espresso-5.0.2/0000755000700200004540000000000012053441230012352 5ustar marsamoscmespresso-5.0.2/include/0000755000700200004540000000000012053440273014003 5ustar marsamoscmespresso-5.0.2/include/c_defs.h.in0000644000700200004540000000121312053145624016003 0ustar marsamoscm/* Copyright (C) 2006 Quantum-ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ /* File c_defs.h.in is used by configure to generate c_defs.h Variables that configure defines should be #undef-ined in include/c_defs.h.in !!! */ /* fortran-to-C naming convention, for functions with and without underscores in the name (some compilers treat them differently) */ #undef F77_FUNC #undef F77_FUNC_ /* do we have the mallinfo structure (see clib/memstat.c) ? */ #undef HAVE_MALLINFO espresso-5.0.2/include/f_defs.h0000644000700200004540000000354312053145624015411 0ustar marsamoscm! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! # define DREAL @@_use_DBLE_instead@@ # define DIMAG @@_use_AIMAG_instead@@ # define DCMPLX @@_use_CMPLX_instead@@ # define DFLOAT @@_use_DBLE_instead@@ # define CMPLX(a,b) cmplx(a,b,kind=DP) #if defined(ADD_BLAS_TWO_UNDERSCORES) # define C_NAME(name) name ## __ #elif defined(ADD_BLAS_ONE_UNDERSCORE) # define C_NAME(name) name ## _ #else # define C_NAME(name) name #endif #define DAXPY C_NAME(daxpy) #define DCOPY C_NAME(dcopy) #define DDOT C_NAME(ddot) #define DGETRF C_NAME(dgetrf) #define DGETRI C_NAME(dgetri) #define DGEMV C_NAME(dgemv) #define DGEMM C_NAME(dgemm) #define DGER C_NAME(dger) #define DNRM2 C_NAME(dnrm2) #define DPOTRF C_NAME(dpotrf) #define DPOTRS C_NAME(dpotrs) #define DSCAL C_NAME(dscal) #define DSPEV C_NAME(dspev) #define DSYTRF C_NAME(dsytrf) #define DSYTRI C_NAME(dsytri) #define DSYEV C_NAME(dsyev) #define DSYGV C_NAME(dsygv) #define DSYGVX C_NAME(dsygvx) #define DSWAP C_NAME(dswap) #define ILAENV C_NAME(ilaenv) #define IDAMAX C_NAME(idamax) #define IZAMAX C_NAME(izamax) #define ZAXPY C_NAME(zaxpy) #define ZCOPY C_NAME(zcopy) #define ZDOTC C_NAME(zdotc) #define ZDOTU C_NAME(zdotu) #define ZGEMM C_NAME(zgemm) #define ZGEMV C_NAME(zgemv) #define ZGESV C_NAME(zgesv) #define ZGESVD C_NAME(zgesvd) #define ZGGEV C_NAME(zggev) #define ZHEEV C_NAME(zheev) #define ZHEEVX C_NAME(zheevx) #define ZHEGV C_NAME(zhegv) #define ZHEGVX C_NAME(zhegvx) #define ZHPEV C_NAME(zhpev) #define ZSCAL C_NAME(zscal) #define ZSWAP C_NAME(zswap) #define ZDSCAL C_NAME(zdscal) espresso-5.0.2/include/fft_defs.h0000644000700200004540000000003512053147026015732 0ustar marsamoscm #define C_POINTER integer*8 espresso-5.0.2/include/fft_defs.h.in0000644000700200004540000000005212053145624016340 0ustar marsamoscm #define C_POINTER integer*@SIZEOF_INT_P@ espresso-5.0.2/include/clean.sh0000755000700200004540000000006512053145624015427 0ustar marsamoscm#!/bin/bash \rm -f c_defs.h fft_defs.h >& /dev/null espresso-5.0.2/include/c_defs.h0000644000700200004540000000137512053147026015405 0ustar marsamoscm/* include/c_defs.h. Generated from c_defs.h.in by configure. */ /* Copyright (C) 2006 Quantum-ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ /* File c_defs.h.in is used by configure to generate c_defs.h Variables that configure defines should be #undef-ined in include/c_defs.h.in !!! */ /* fortran-to-C naming convention, for functions with and without underscores in the name (some compilers treat them differently) */ #define F77_FUNC(name,NAME) name ## _ #define F77_FUNC_(name,NAME) name ## _ /* do we have the mallinfo structure (see clib/memstat.c) ? */ #define HAVE_MALLINFO 1 espresso-5.0.2/include/opt_param.h0000644000700200004540000000050412053145624016137 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined __AIX # define __BSIZ_VALUE 55 #else # define __BSIZ_VALUE 35 #endif espresso-5.0.2/include/defs.h.README0000644000700200004540000001014412053145624016033 0ustar marsamoscm ---------------------------------------------------------------------------- CONFIGURATION FILES You shouldn't need to edit the following files. The two first are automatically generated by "configure". * include/fft_defs.h ================== automatically generated by configure using include/fft_defs.h.in as template - included in Modules/fft_scalar.f90 contains the type for C pointers called by fortran: C_POINTER is integer*8 for 64-bit machines, integer*4 on most other machines DO NOT add C-style comments! some fortran compilers do not like them * include/c_defs.h ================ automatically generated by configure using include/c_defs.h.in as template - included in C files in clib/ . Contains: 1) #define HAVE_MALLINFO if the mallinfo structure is present (Linux, AIX) 2) Macros redefining C symbols so that Fortran finds them F77_FUNC, F77_FUNC_ C routine 'name' in *.c files are defined as F77_FUNC('name','NAME') if 'name' does not contain an underscore; if it does, as F77_FUNC_('name','NAME') Absoft: convert to capital, no added underscores #define F77_FUNC(name,NAME) NAME #define F77_FUNC_(name,NAME) NAME XLF, HP-UX: convert to lowercase, no added underscores #define F77_FUNC(name,NAME) name #define F77_FUNC_(name,NAME) name G95, EKOPath, Alpha Linux: convert to lowercase, add one underscore if the name does not contain underscores, add two if it does #define F77_FUNC(name,NAME) name ## _ #define F77_FUNC_(name,NAME) name ## __ Most other cases: convert to lowercase, add one underscore #define F77_FUNC(name,NAME) name ## _ #define F77_FUNC_(name,NAME) name ## _ * include/f_defs.h ================ OBSOLETE - DO NOT USE ANY LONGER * iotk/include/iotk_config.h ========================= contains definitions for iotk . Defines on output: __IOTK_REAL1 kind for single-precision reals __IOTK_REAL2 kind for double-precision reals __IOTK_WORKAROUND* various workarounds for miscellaneous compiler bugs ---------------------------------------------------------------------------- PREPROCESSING OPTIONS USED IN *.h FILES AND IN THE SOURCES Additional Features: __SOLVENT For solvent model, under development __MS2 For QM-MM, under development Hardware/Compiler: __STD_F95 Standard F95: no allocatable in arrays __AIX Ibm rs/6000 machines __XLF xlf compiler (ibm or macintosh with powerpc processor) __SX6 Nec sx-6 vector machines (Nec compiler) __PGI Portland Group compiler (workarounds for compiler bugs) __GFORTRAN gnu gfortran (workarounds for compiler bugs) __INTEL Intel ifc and ifort compilers (workaround for compiler bugs and for insufficient stack size) OS: Parallel execution: __PARA Parallel execution - should be replaced by: __MPI Use MPI library __OPENMP OpenMP parallelization Libraries: __FFTW FFT routines from internal FFTW library __FFTW3 FFT routines from external FFTW v.3 library __SCSL FFT routines from SGI SCSL scientific library __SUNPERF FFT routines from SUN sunperf scientific library __ESSL use blas/lapack/fft routines from IBM ESSL library __LINUX_ESSL use blas/lapack/fft routines from IBM ESSL library (linux version) __SCALAPACK use Scalapack routines instead of internal ones for parallel subspace diagonalization __MASS use mathematical routines from IBM MASS library ASL, MICRO SX-6 specific libraries Timing: __HPM Hardware Performance Monitor (IBM SP) __QK_USER__ for better timing of fftw in cray xt3 (?) Signals: __PTRACE Enable traceback __TRAP_SIGUSR1 Enable signal trapping (experimental): code will stop and save data if executable is signaled with USR1 All other preprocessing flags are for debugging purposes and should not be used unless you know what you are doing espresso-5.0.2/clib/0000755000700200004540000000000012053440273013271 5ustar marsamoscmespresso-5.0.2/clib/c_mkdir.c0000644000700200004540000001014612053145633015051 0ustar marsamoscm/* Copyright (C) 2003-2007 Quantum ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include #include #include #include #include #include #include #include "c_defs.h" static void fatal ( const char * msg ) { fprintf( stderr , "fatal: %s" , *msg ? msg : "Oops!" ) ; exit( -1 ) ; } /* fatal */ static void * xcmalloc ( size_t size ) { register void * ptr = malloc( size ) ; if ( ptr == NULL ) fatal( "c_mkdir: virtual memory exhausted" ) ; else memset( ptr , 0 , size ) ; return ptr ; } /* xcmalloc */ int F77_FUNC_(c_mkdir_int,C_MKDIR_INT)( const int * dirname , const int * length ) { int i, retval = -1 ; mode_t mode = 0777 ; char * ldir = ( char * ) xcmalloc( (*length) + 1 ) ; for( i = 0; i < * length; i++ ) ldir[ i ] = (char)dirname[ i ]; ldir[*length] = '\0' ; /* memset() in xcmalloc() already do this */ retval = mkdir( ldir , mode ) ; if ( retval == -1 && errno != EEXIST ) { fprintf( stderr , "mkdir fail: [%d] %s\n" , errno , strerror( errno ) ) ; } else { retval = 0 ; } free( ldir ) ; return retval ; } /* end of c_mkdir */ int c_mkdir_safe( const char * dirname ) { int i, retval = -1 ; mode_t mode = 0777 ; retval = mkdir( dirname , mode ) ; if ( retval == -1 && errno != EEXIST ) { fprintf( stderr , "mkdir fail: [%d] %s\n" , errno , strerror( errno ) ) ; } else { retval = 0 ; } return retval ; } int F77_FUNC_(c_chdir_int,C_CHDIR_INT)( const int * dirname , const int * length ) { int i, retval = -1 ; char * ldir = ( char * ) xcmalloc( (*length) + 1 ) ; for( i = 0; i < * length; i++ ) ldir[ i ] = (char)dirname[ i ]; ldir[*length] = '\0' ; /* memset() in xcmalloc() already do this */ retval = chdir( ldir ) ; if ( retval == -1 && errno != EEXIST ) { fprintf( stderr , "chdir fail: [%d] %s\n" , errno , strerror( errno ) ) ; } else { retval = 0 ; } free( ldir ) ; return retval ; } /* end of c_chdir */ /* c_rename: call from fortran as ios = c_remame ( integer old-file-name(:), integer old-file-name, & integer new-file-name(:), integer new-file-name ) renames file old-file-name into new-file-name (don't try this on open files!) ios should return 0 if everything is ok, -1 otherwise. Written by PG by imitating "c_mkdir" without really understanding it */ int F77_FUNC_(c_rename_int,C_RENAME_INT)( const int * oldname, const int * oldlength , const int * newname, const int * newlength ) { int i, retval = -1 ; char * oldname_ = ( char * ) xcmalloc( (*oldlength) + 1 ) ; char * newname_ = ( char * ) xcmalloc( (*newlength) + 1 ) ; for( i = 0; i < * oldlength; i++ ) oldname_[ i ] = (char)oldname[ i ]; for( i = 0; i < * newlength; i++ ) newname_[ i ] = (char)newname[ i ]; oldname_[*oldlength] = '\0' ; newname_[*newlength] = '\0' ; retval = rename( oldname_, newname_ ) ; if ( retval == -1 ) fprintf( stderr , "mv fail: [%d] %s\n" , errno , strerror( errno ) ) ; free( oldname_ ) ; free( newname_ ) ; return retval ; } /* c_rename */ int F77_FUNC_(c_link_int,C_LINK_INT)( const int * oldname, const int * oldlength , const int * newname, const int * newlength ) { int i, retval = -1 ; char * oldname_ = ( char * ) xcmalloc( (*oldlength) + 1 ) ; char * newname_ = ( char * ) xcmalloc( (*newlength) + 1 ) ; for( i = 0; i < * oldlength; i++ ) oldname_[ i ] = (char)oldname[ i ]; for( i = 0; i < * newlength; i++ ) newname_[ i ] = (char)newname[ i ]; oldname_[*oldlength] = '\0' ; newname_[*newlength] = '\0' ; retval = symlink( oldname_, newname_ ) ; if ( retval == -1 ) fprintf( stderr , "ln fail: [%d] %s\n" , errno , strerror( errno ) ) ; free( oldname_ ) ; free( newname_ ) ; return retval ; } /* c_link */ /* EOF */ espresso-5.0.2/clib/fftw.c0000644000700200004540000350205312053145633014415 0ustar marsamoscm/* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ #include #include #if defined(__QK_USER__) #include #endif #include "fftw.h" /**************** import/export using file ***************/ static void file_emitter(char c, void *data) { putc(c,(FILE *) data); } void fftw_export_wisdom_to_file(FILE *output_file) { if (output_file) fftw_export_wisdom(file_emitter,(void *) output_file); } static int file_get_input(void *data) { return getc((FILE *) data); } fftw_status fftw_import_wisdom_from_file(FILE *input_file) { if (!input_file) return FFTW_FAILURE; return fftw_import_wisdom(file_get_input, (void *) input_file); } /*************** import/export using string **************/ static void emission_counter(char c, void *data) { int *counter = (int *) data; ++*counter; } static void string_emitter(char c, void *data) { char **output_string = (char **) data; *((*output_string)++) = c; **output_string = 0; } char *fftw_export_wisdom_to_string(void) { int string_length = 0; char *s, *s2; fftw_export_wisdom(emission_counter, (void *) &string_length); s = fftw_malloc(sizeof(char) * (string_length + 1)); if (!s) return 0; s2 = s; fftw_export_wisdom(string_emitter, (void *) &s2); if (s + string_length != s2) fftw_die("Unexpected output string length!"); return s; } static int string_get_input(void *data) { char **input_string = (char **) data; if (**input_string) return *((*input_string)++); else return 0; } fftw_status fftw_import_wisdom_from_string(const char *input_string) { const char *s = input_string; if (!input_string) return FFTW_FAILURE; return fftw_import_wisdom(string_get_input, (void *) &s); } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* config.c -- this file contains all the codelets the system knows about */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" /* the signature is the same as the size, for now */ #define NOTW_CODELET(x) { x, x, fftw_no_twiddle_##x } #define NOTWI_CODELET(x) { x, x, fftwi_no_twiddle_##x } extern notw_codelet fftw_no_twiddle_1; extern notw_codelet fftw_no_twiddle_2; extern notw_codelet fftw_no_twiddle_3; extern notw_codelet fftw_no_twiddle_4; extern notw_codelet fftw_no_twiddle_5; extern notw_codelet fftw_no_twiddle_6; extern notw_codelet fftw_no_twiddle_7; extern notw_codelet fftw_no_twiddle_8; extern notw_codelet fftw_no_twiddle_9; extern notw_codelet fftw_no_twiddle_10; extern notw_codelet fftw_no_twiddle_11; extern notw_codelet fftw_no_twiddle_12; extern notw_codelet fftw_no_twiddle_13; extern notw_codelet fftw_no_twiddle_14; extern notw_codelet fftw_no_twiddle_15; extern notw_codelet fftw_no_twiddle_16; extern notw_codelet fftw_no_twiddle_32; extern notw_codelet fftw_no_twiddle_64; extern notw_codelet fftwi_no_twiddle_1; extern notw_codelet fftwi_no_twiddle_2; extern notw_codelet fftwi_no_twiddle_3; extern notw_codelet fftwi_no_twiddle_4; extern notw_codelet fftwi_no_twiddle_5; extern notw_codelet fftwi_no_twiddle_6; extern notw_codelet fftwi_no_twiddle_7; extern notw_codelet fftwi_no_twiddle_8; extern notw_codelet fftwi_no_twiddle_9; extern notw_codelet fftwi_no_twiddle_10; extern notw_codelet fftwi_no_twiddle_11; extern notw_codelet fftwi_no_twiddle_12; extern notw_codelet fftwi_no_twiddle_13; extern notw_codelet fftwi_no_twiddle_14; extern notw_codelet fftwi_no_twiddle_15; extern notw_codelet fftwi_no_twiddle_16; extern notw_codelet fftwi_no_twiddle_32; extern notw_codelet fftwi_no_twiddle_64; config_notw fftw_config_notw[] = { NOTW_CODELET(1), NOTW_CODELET(2), NOTW_CODELET(3), NOTW_CODELET(4), NOTW_CODELET(5), NOTW_CODELET(6), NOTW_CODELET(7), NOTW_CODELET(8), NOTW_CODELET(9), NOTW_CODELET(10), NOTW_CODELET(11), NOTW_CODELET(12), NOTW_CODELET(13), NOTW_CODELET(14), NOTW_CODELET(15), NOTW_CODELET(16), NOTW_CODELET(32), NOTW_CODELET(64), {0, 0, (notw_codelet *) 0} }; config_notw fftwi_config_notw[] = { NOTWI_CODELET(1), NOTWI_CODELET(2), NOTWI_CODELET(3), NOTWI_CODELET(4), NOTWI_CODELET(5), NOTWI_CODELET(6), NOTWI_CODELET(7), NOTWI_CODELET(8), NOTWI_CODELET(9), NOTWI_CODELET(10), NOTWI_CODELET(11), NOTWI_CODELET(12), NOTWI_CODELET(13), NOTWI_CODELET(14), NOTWI_CODELET(15), NOTWI_CODELET(16), NOTWI_CODELET(32), NOTWI_CODELET(64), {0, 0, (notw_codelet *) 0} }; /* the signature is the same as the size, for now */ #define TWIDDLE_CODELET(x) { x, x, fftw_twiddle_##x } #define TWIDDLEI_CODELET(x) { x, x, fftwi_twiddle_##x } extern twiddle_codelet fftw_twiddle_2; extern twiddle_codelet fftw_twiddle_3; extern twiddle_codelet fftw_twiddle_4; extern twiddle_codelet fftw_twiddle_5; extern twiddle_codelet fftw_twiddle_6; extern twiddle_codelet fftw_twiddle_7; extern twiddle_codelet fftw_twiddle_8; extern twiddle_codelet fftw_twiddle_9; extern twiddle_codelet fftw_twiddle_10; extern twiddle_codelet fftw_twiddle_16; extern twiddle_codelet fftw_twiddle_32; extern twiddle_codelet fftw_twiddle_64; extern twiddle_codelet fftwi_twiddle_2; extern twiddle_codelet fftwi_twiddle_3; extern twiddle_codelet fftwi_twiddle_4; extern twiddle_codelet fftwi_twiddle_5; extern twiddle_codelet fftwi_twiddle_6; extern twiddle_codelet fftwi_twiddle_7; extern twiddle_codelet fftwi_twiddle_8; extern twiddle_codelet fftwi_twiddle_9; extern twiddle_codelet fftwi_twiddle_10; extern twiddle_codelet fftwi_twiddle_16; extern twiddle_codelet fftwi_twiddle_32; extern twiddle_codelet fftwi_twiddle_64; config_twiddle fftw_config_twiddle[] = { TWIDDLE_CODELET(2), TWIDDLE_CODELET(3), TWIDDLE_CODELET(4), TWIDDLE_CODELET(5), TWIDDLE_CODELET(6), TWIDDLE_CODELET(7), TWIDDLE_CODELET(8), TWIDDLE_CODELET(9), TWIDDLE_CODELET(10), TWIDDLE_CODELET(16), TWIDDLE_CODELET(32), TWIDDLE_CODELET(64), {0, 0, (twiddle_codelet *) 0} }; config_twiddle fftwi_config_twiddle[] = { TWIDDLEI_CODELET(2), TWIDDLEI_CODELET(3), TWIDDLEI_CODELET(4), TWIDDLEI_CODELET(5), TWIDDLEI_CODELET(6), TWIDDLEI_CODELET(7), TWIDDLEI_CODELET(8), TWIDDLEI_CODELET(9), TWIDDLEI_CODELET(10), TWIDDLEI_CODELET(16), TWIDDLEI_CODELET(32), TWIDDLEI_CODELET(64), {0, 0, (twiddle_codelet *) 0} }; /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * executor.c -- execute the fft */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include "fftw.h" #include #include char *fftw_version = "FFTW V1.1 ($Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $)"; /* * This function is called in other files, so we cannot declare * it as static. */ void fftw_strided_copy(int n, FFTW_COMPLEX *in, int ostride, FFTW_COMPLEX *out) { int i; FFTW_REAL r0, r1, i0, i1; FFTW_REAL r2, r3, i2, i3; i = 0; if (n & 3) for (; i < (n & 3); ++i) { out[i * ostride] = in[i]; } for (; i < n; i += 4) { r0 = c_re(in[i]); i0 = c_im(in[i]); r1 = c_re(in[i + 1]); i1 = c_im(in[i + 1]); r2 = c_re(in[i + 2]); i2 = c_im(in[i + 2]); r3 = c_re(in[i + 3]); i3 = c_im(in[i + 3]); c_re(out[i * ostride]) = r0; c_im(out[i * ostride]) = i0; c_re(out[(i + 1) * ostride]) = r1; c_im(out[(i + 1) * ostride]) = i1; c_re(out[(i + 2) * ostride]) = r2; c_im(out[(i + 2) * ostride]) = i2; c_re(out[(i + 3) * ostride]) = r3; c_im(out[(i + 3) * ostride]) = i3; } } /* * Do *not* declare simple executor as static--we need to call it * from executor_cilk.cilk...also, preface its name with "fftw_" * to avoid any possible name collisions. */ void fftw_executor_simple(int n, const FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride, int ostride) { switch (p->type) { case FFTW_NOTW: (p->nodeu.notw.codelet) (in, out, istride, ostride); break; case FFTW_TWIDDLE: { int r = p->nodeu.twiddle.size; int m = n / r; int i; twiddle_codelet *codelet; FFTW_COMPLEX *W; for (i = 0; i < r; ++i) { fftw_executor_simple(m, in + i * istride, out + i * (m * ostride), p->nodeu.twiddle.recurse, istride * r, ostride); } codelet = p->nodeu.twiddle.codelet; W = p->nodeu.twiddle.tw->twarray; codelet(out, W, m * ostride, m, ostride); break; } case FFTW_GENERIC: { int r = p->nodeu.generic.size; int m = n / r; int i; generic_codelet *codelet; FFTW_COMPLEX *W; for (i = 0; i < r; ++i) { fftw_executor_simple(m, in + i * istride, out + i * (m * ostride), p->nodeu.generic.recurse, istride * r, ostride); } codelet = p->nodeu.generic.codelet; W = p->nodeu.generic.tw->twarray; codelet(out, W, m, r, n, ostride); break; } default: fftw_die("BUG in executor: illegal plan\n"); break; } } static void executor_simple_inplace(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride) { switch (p->type) { case FFTW_NOTW: (p->nodeu.notw.codelet) (in, in, istride, istride); break; default: { FFTW_COMPLEX *tmp; if (out) tmp = out; else tmp = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); fftw_executor_simple(n, in, tmp, p, istride, 1); fftw_strided_copy(n, tmp, istride, in); if (!out) fftw_free(tmp); } } } static void executor_many(int n, const FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride, int ostride, int howmany, int idist, int odist) { switch (p->type) { case FFTW_NOTW: { int s; notw_codelet *codelet = p->nodeu.notw.codelet; for (s = 0; s < howmany; ++s) codelet(in + s * idist, out + s * odist, istride, ostride); break; } default: { int s; for (s = 0; s < howmany; ++s) { fftw_executor_simple(n, in + s * idist, out + s * odist, p, istride, ostride); } } } } static void executor_many_inplace(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride, int howmany, int idist) { switch (p->type) { case FFTW_NOTW: { int s; notw_codelet *codelet = p->nodeu.notw.codelet; for (s = 0; s < howmany; ++s) codelet(in + s * idist, in + s * idist, istride, istride); break; } default: { int s; FFTW_COMPLEX *tmp; if (out) tmp = out; else tmp = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); for (s = 0; s < howmany; ++s) { fftw_executor_simple(n, in + s * idist, tmp, p, istride, 1); fftw_strided_copy(n, tmp, istride, in + s * idist); } if (!out) fftw_free(tmp); } } } /* user interface */ void fftw(fftw_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int n = plan->n; if (plan->flags & FFTW_IN_PLACE) { if (howmany == 1) { executor_simple_inplace(n, in, out, plan->root, istride); } else { executor_many_inplace(n, in, out, plan->root, istride, howmany, idist); } } else { if (howmany == 1) { fftw_executor_simple(n, in, out, plan->root, istride, ostride); } else { executor_many(n, in, out, plan->root, istride, ostride, howmany, idist, odist); } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include #include "fftw.h" /* Prototypes for functions used internally in this file: */ static void fftw2d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); static void fftw3d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); static void fftwnd_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); static void fftw2d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist); static void fftw3d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist); static void fftwnd_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist); /*********** Initializing the FFTWND Auxiliary Data **********/ fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags) { int n[2]; n[0] = nx; n[1] = ny; return fftwnd_create_plan(2, n, dir, flags); } fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags) { int n[3]; n[0] = nx; n[1] = ny; n[2] = nz; return fftwnd_create_plan(3, n, dir, flags); } fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags) { int i, j, max_dim = 0; fftwnd_plan p; int cur_flags; if (rank < 0) return 0; for (i = 0; i < rank; ++i) if (n[i] <= 0) return 0; p = (fftwnd_plan) fftw_malloc(sizeof(fftwnd_aux_data)); p->n = 0; p->n_before = 0; p->n_after = 0; p->plans = 0; p->work = 0; p->rank = rank; p->is_in_place = flags & FFTW_IN_PLACE; if (rank == 0) return 0; p->n = (int *) fftw_malloc(sizeof(int) * rank); p->n_before = (int *) fftw_malloc(sizeof(int) * rank); p->n_after = (int *) fftw_malloc(sizeof(int) * rank); p->plans = (fftw_plan *) fftw_malloc(rank * sizeof(fftw_plan)); p->n_before[0] = 1; p->n_after[rank - 1] = 1; for (i = 0; i < rank; ++i) { p->n[i] = n[i]; if (i) { p->n_before[i] = p->n_before[i - 1] * n[i - 1]; p->n_after[rank - 1 - i] = p->n_after[rank - i] * n[rank - i]; } if (i < rank - 1 || (flags & FFTW_IN_PLACE)) { /* fft's except the last dimension are always in-place */ cur_flags = flags | FFTW_IN_PLACE; for (j = i - 1; j >= 0 && n[i] != n[j]; --j); if (n[i] > max_dim) max_dim = n[i]; } else { cur_flags = flags; /* we must create a separate plan for the last dimension */ j = -1; } if (j >= 0) { /* * If a plan already exists for this size * array, reuse it: */ p->plans[i] = p->plans[j]; } else { /* generate a new plan: */ p->plans[i] = fftw_create_plan(n[i], dir, cur_flags); if (!p->plans[i]) { fftwnd_destroy_plan(p); return 0; } } } /* Create work array for in-place FFTs: */ if (max_dim > 0) p->work = (FFTW_COMPLEX *) fftw_malloc(sizeof(FFTW_COMPLEX) * max_dim); return p; } /************* Freeing the FFTWND Auxiliary Data *************/ void fftwnd_destroy_plan(fftwnd_plan plan) { if (plan) { if (plan->plans) { int i, j; for (i = 0; i < plan->rank; ++i) { for (j = i - 1; j >= 0 && plan->plans[i] != plan->plans[j]; --j); if (j < 0 && plan->plans[i]) fftw_destroy_plan(plan->plans[i]); } fftw_free(plan->plans); } if (plan->n) fftw_free(plan->n); if (plan->n_before) fftw_free(plan->n_before); if (plan->n_after) fftw_free(plan->n_after); if (plan->work) fftw_free(plan->work); fftw_free(plan); } } /************** Computing the N-Dimensional FFT **************/ void fftwnd(fftwnd_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { if (plan->is_in_place) /* fft is in-place */ switch (plan->rank) { case 0: break; case 1: fftw(plan->plans[0], howmany, in, istride, idist, plan->work, 1, 0); break; case 2: fftw2d_in_place_aux(plan, howmany, in, istride, idist); break; case 3: fftw3d_in_place_aux(plan, howmany, in, istride, idist); break; default: fftwnd_in_place_aux(plan, howmany, in, istride, idist); } else { if (in == out || out == 0) fftw_die("Illegal attempt to perform in-place FFT!\n"); switch (plan->rank) { case 0: break; case 1: fftw(plan->plans[0], howmany, in, istride, idist, out, ostride, odist); break; case 2: fftw2d_out_of_place_aux(plan, howmany, in, istride, idist, out, ostride, odist); break; case 3: fftw3d_out_of_place_aux(plan, howmany, in, istride, idist, out, ostride, odist); break; default: fftwnd_out_of_place_aux(plan, howmany, in, istride, idist, out, ostride, odist); } } } static void fftw2d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int fft_iter; fftw_plan p0, p1; int n0, n1; p0 = p->plans[0]; p1 = p->plans[1]; n0 = p->n[0]; n1 = p->n[1]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT y dimension (out-of-place): */ fftw(p1, n0, in + fft_iter * idist, istride, n1 * istride, out + fft_iter * odist, ostride, n1 * ostride); /* FFT x dimension (in-place): */ fftw(p0, n1, out + fft_iter * odist, n1 * ostride, ostride, p->work, 1, 1); } } static void fftw3d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int fft_iter; int i; fftw_plan p0, p1, p2; int n0, n1, n2; p0 = p->plans[0]; p1 = p->plans[1]; p2 = p->plans[2]; n0 = p->n[0]; n1 = p->n[1]; n2 = p->n[2]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT z dimension (out-of-place): */ fftw(p2, n0 * n1, in + fft_iter * idist, istride, n2 * istride, out + fft_iter * odist, ostride, n2 * ostride); /* FFT y dimension (in-place): */ for (i = 0; i < n0; ++i) fftw(p1, n2, out + fft_iter * odist + i * n1 * n2 * ostride, n2 * ostride, ostride, p->work, 1, 0); /* FFT x dimension (in-place): */ fftw(p0, n1 * n2, out + fft_iter * odist, n1 * n2 * ostride, ostride, p->work, 1, 0); } } static void fftwnd_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int fft_iter; int j, i; /* Do FFT for rank > 3: */ for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* do last dimension (out-of-place): */ fftw(p->plans[p->rank - 1], p->n_before[p->rank - 1], in + fft_iter * idist, istride, p->n[p->rank - 1] * istride, out + fft_iter * odist, ostride, p->n[p->rank - 1] * ostride); /* do first dimension (in-place): */ fftw(p->plans[0], p->n_after[0], out + fft_iter * odist, p->n_after[0] * ostride, ostride, p->work, 1, 0); /* do other dimensions (in-place): */ for (j = 1; j < p->rank - 1; ++j) for (i = 0; i < p->n_before[j]; ++i) fftw(p->plans[j], p->n_after[j], out + fft_iter * odist + i * ostride * p->n[j] * p->n_after[j], p->n_after[j] * ostride, ostride, p->work, 1, 0); } } static void fftw2d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist) { int fft_iter; fftw_plan p0, p1; int n0, n1; p0 = p->plans[0]; p1 = p->plans[1]; n0 = p->n[0]; n1 = p->n[1]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT y dimension: */ fftw(p1, n0, in_out + fft_iter * idist, istride, istride * n1, p->work, 1, 0); /* FFT x dimension: */ fftw(p0, n1, in_out + fft_iter * idist, istride * n1, istride, p->work, 1, 0); } } static void fftw3d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist) { int i; int fft_iter; fftw_plan p0, p1, p2; int n0, n1, n2; p0 = p->plans[0]; p1 = p->plans[1]; p2 = p->plans[2]; n0 = p->n[0]; n1 = p->n[1]; n2 = p->n[2]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT z dimension: */ fftw(p2, n0 * n1, in_out + fft_iter * idist, istride, n2 * istride, p->work, 1, 0); /* FFT y dimension: */ for (i = 0; i < n0; ++i) fftw(p1, n2, in_out + fft_iter * idist + i * n1 * n2 * istride, n2 * istride, istride, p->work, 1, 0); /* FFT x dimension: */ fftw(p0, n1 * n2, in_out + fft_iter * idist, n1 * n2 * istride, istride, p->work, 1, 0); } } static void fftwnd_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist) /* Do FFT for rank > 3: */ { int fft_iter; int j, i; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* do last dimension: */ fftw(p->plans[p->rank - 1], p->n_before[p->rank - 1], in_out + fft_iter * idist, istride, p->n[p->rank - 1] * istride, p->work, 1, 0); /* do first dimension: */ fftw(p->plans[0], p->n_after[0], in_out + fft_iter * idist, p->n_after[0] * istride, istride, p->work, 1, 0); /* do other dimensions: */ for (j = 1; j < p->rank - 1; ++j) for (i = 0; i < p->n_before[j]; ++i) fftw(p->plans[j], p->n_after[j], in_out + fft_iter * idist + i * istride * p->n[j] * p->n_after[j], p->n_after[j] * istride, istride, p->work, 1, 0); } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 0 FP additions and 0 FP multiplications */ void fftw_no_twiddle_1(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); c_re(out[0]) = tre0_0_0; c_im(out[0]) = tim0_0_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 32 FP multiplications */ void fftw_no_twiddle_10(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_2 - tim0_0_3)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_3 - tre0_0_2)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_3 - tim0_0_2)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_2 - tre0_0_3)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[5 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_2 - tim0_1_3)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_3 - tre0_1_2)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_3 - tim0_1_2)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_2 - tre0_1_3)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 230 FP additions and 100 FP multiplications */ void fftw_no_twiddle_11(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_3_0 + tre0_8_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_5_0 - tim0_6_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_3_0 + tim0_8_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_6_0 - tre0_5_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_2_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_6_0 - tim0_5_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_2_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_5_0 - tre0_6_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_5_0 - tim0_6_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_6_0 - tre0_5_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_6_0 - tim0_5_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_5_0 - tre0_6_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_2_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_5_0 - tim0_6_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_2_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_6_0 - tre0_5_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 104 FP additions and 16 FP multiplications */ void fftw_no_twiddle_12(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre1_2_0 = c_re(in[11 * istride]); tim1_2_0 = c_im(in[11 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[10 * istride]); tim1_1_0 = c_im(in[10 * istride]); tre1_2_0 = c_re(in[2 * istride]); tim1_2_0 = c_im(in[2 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre1_2_0 = c_re(in[5 * istride]); tim1_2_0 = c_im(in[5 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[6 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[6 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[9 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[9 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[3 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tre0_1_2; tim1_0_0 = tim0_1_0 + tim0_1_2; tre1_1_0 = tre0_1_0 - tre0_1_2; tim1_1_0 = tim0_1_0 - tim0_1_2; tre1_0_1 = tre0_1_1 + tre0_1_3; tim1_0_1 = tim0_1_1 + tim0_1_3; tre1_1_1 = tre0_1_1 - tre0_1_3; tim1_1_1 = tim0_1_1 - tim0_1_3; c_re(out[4 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[ostride]) = tre1_1_0 + tim1_1_1; c_im(out[ostride]) = tim1_1_0 - tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tre0_2_2; tim1_0_0 = tim0_2_0 + tim0_2_2; tre1_1_0 = tre0_2_0 - tre0_2_2; tim1_1_0 = tim0_2_0 - tim0_2_2; tre1_0_1 = tre0_2_1 + tre0_2_3; tim1_0_1 = tim0_2_1 + tim0_2_3; tre1_1_1 = tre0_2_1 - tre0_2_3; tim1_1_1 = tim0_2_1 - tim0_2_3; c_re(out[8 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[2 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[11 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[11 * ostride]) = tim1_1_0 + tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 324 FP additions and 144 FP multiplications */ void fftw_no_twiddle_13(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; FFTW_REAL tre0_11_0; FFTW_REAL tim0_11_0; FFTW_REAL tre0_12_0; FFTW_REAL tim0_12_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); tre0_11_0 = c_re(in[11 * istride]); tim0_11_0 = c_im(in[11 * istride]); tre0_12_0 = c_re(in[12 * istride]); tim0_12_0 = c_im(in[12 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0 + tre0_11_0 + tre0_12_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0 + tim0_11_0 + tim0_12_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_4_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_6_0 - tim0_7_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[12 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_4_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_7_0 - tre0_6_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[12 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_5_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_7_0 - tim0_6_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[11 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_5_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_6_0 - tre0_7_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[11 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_6_0 - tim0_7_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_7_0 - tre0_6_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_2_0 + tre0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_7_0 - tim0_6_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_2_0 + tim0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_6_0 - tre0_7_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_6_0 - tim0_7_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_7_0 - tre0_6_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_7_0 - tim0_6_0)); c_re(out[6 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_6_0 - tre0_7_0)); c_im(out[6 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 208 FP additions and 72 FP multiplications */ void fftw_no_twiddle_14(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[13 * istride]); tim1_1_0 = c_im(in[13 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[10 * istride]); tim1_0_0 = c_im(in[10 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_5 = tre1_0_0 + tre1_1_0; tim0_0_5 = tim1_0_0 + tim1_1_0; tre0_1_5 = tre1_0_0 - tre1_1_0; tim0_1_5 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_6 = tre1_0_0 + tre1_1_0; tim0_0_6 = tim1_0_0 + tim1_1_0; tre0_1_6 = tre1_0_0 - tre1_1_0; tim0_1_6 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4 + tre0_0_5 + tre0_0_6; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4 + tim0_0_5 + tim0_0_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_1 + tre0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_2 + tre0_0_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_0_1 - tim0_0_6)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_2 - tim0_0_5)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_3 - tim0_0_4)); c_re(out[8 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_1 + tim0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_2 + tim0_0_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_0_6 - tre0_0_1)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_5 - tre0_0_2)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_4 - tre0_0_3)); c_im(out[8 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_0_1 - tim0_0_6)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_5 - tim0_0_2)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_4 - tim0_0_3)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[12 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_0_6 - tre0_0_1)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_2 - tre0_0_5)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_3 - tre0_0_4)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[12 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_0_1 - tim0_0_6)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_5 - tim0_0_2)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_3 - tim0_0_4)); c_re(out[10 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_0_6 - tre0_0_1)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_2 - tre0_0_5)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_4 - tre0_0_3)); c_im(out[10 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[7 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4 + tre0_1_5 + tre0_1_6; c_im(out[7 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4 + tim0_1_5 + tim0_1_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_1 + tre0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_2 + tre0_1_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_1 - tim0_1_6)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_2 - tim0_1_5)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_3 - tim0_1_4)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_1 + tim0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_2 + tim0_1_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_6 - tre0_1_1)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_5 - tre0_1_2)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_4 - tre0_1_3)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_1 - tim0_1_6)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_5 - tim0_1_2)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_4 - tim0_1_3)); c_re(out[9 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_6 - tre0_1_1)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_2 - tre0_1_5)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_3 - tre0_1_4)); c_im(out[9 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_1 - tim0_1_6)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_5 - tim0_1_2)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_3 - tim0_1_4)); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[11 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_6 - tre0_1_1)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_2 - tre0_1_5)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_4 - tre0_1_3)); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[11 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 202 FP additions and 68 FP multiplications */ void fftw_no_twiddle_15(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[10 * istride]); tim1_2_0 = c_im(in[10 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[8 * istride]); tim1_1_0 = c_im(in[8 * istride]); tre1_2_0 = c_re(in[13 * istride]); tim1_2_0 = c_im(in[13 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre1_2_0 = c_re(in[istride]); tim1_2_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[14 * istride]); tim1_1_0 = c_im(in[14 * istride]); tre1_2_0 = c_re(in[4 * istride]); tim1_2_0 = c_im(in[4 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_4 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_4 = tre2_0_0 + tre2_1_0; tre0_2_4 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_4 = tim2_0_0 + tim2_1_0; tim0_2_4 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_2 - tim0_0_3)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_3 - tre0_0_2)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_3 - tim0_0_2)); c_re(out[12 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_2 - tre0_0_3)); c_im(out[12 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[10 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[10 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_2 - tim0_1_3)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_3 - tre0_1_2)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_3 - tim0_1_2)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_2 - tre0_1_3)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_2_0 + tre0_2_1 + tre0_2_2 + tre0_2_3 + tre0_2_4; c_im(out[5 * ostride]) = tim0_2_0 + tim0_2_1 + tim0_2_2 + tim0_2_3 + tim0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_1 + tre0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_2 + tre0_2_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_2_1 - tim0_2_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_2 - tim0_2_3)); c_re(out[11 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[14 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_1 + tim0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_2 + tim0_2_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_2_4 - tre0_2_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_3 - tre0_2_2)); c_im(out[11 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[14 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_2 + tre0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_1 + tre0_2_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_2_1 - tim0_2_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_3 - tim0_2_2)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_2 + tim0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_1 + tim0_2_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_2_4 - tre0_2_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_2 - tre0_2_3)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 144 FP additions and 24 FP multiplications */ void fftw_no_twiddle_16(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[8 * istride]); tim2_1_0 = c_im(in[8 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[12 * istride]); tim2_1_0 = c_im(in[12 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[9 * istride]); tim2_1_0 = c_im(in[9 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[13 * istride]); tim2_1_0 = c_im(in[13 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[10 * istride]); tim2_1_0 = c_im(in[10 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[14 * istride]); tim2_1_0 = c_im(in[14 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[11 * istride]); tim2_1_0 = c_im(in[11 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[15 * istride]); tim2_1_0 = c_im(in[15 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[8 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[4 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[4 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[12 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[12 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 + tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 - tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[9 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[9 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[13 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[13 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tim0_2_2; tim1_0_0 = tim0_2_0 - tre0_2_2; tre1_1_0 = tre0_2_0 - tim0_2_2; tim1_1_0 = tim0_2_0 + tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 + tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 - tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 - tre0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 + tre0_2_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(out[2 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[6 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[14 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[14 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 - tre0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 + tre0_3_2); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[3 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[3 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[11 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[11 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[7 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[15 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[15 * ostride]) = tim1_1_0 + tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 4 FP additions and 0 FP multiplications */ void fftw_no_twiddle_2(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0; c_im(out[0]) = tim0_0_0 + tim0_1_0; c_re(out[ostride]) = tre0_0_0 - tre0_1_0; c_im(out[ostride]) = tim0_0_0 - tim0_1_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 14 FP additions and 4 FP multiplications */ void fftw_no_twiddle_3(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_0 - tim0_2_0); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[2 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_2_0 - tre0_1_0); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[2 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 376 FP additions and 88 FP multiplications */ void fftw_no_twiddle_32(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[16 * istride]); tim2_1_0 = c_im(in[16 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[24 * istride]); tim2_1_0 = c_im(in[24 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[17 * istride]); tim2_1_0 = c_im(in[17 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[25 * istride]); tim2_1_0 = c_im(in[25 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[18 * istride]); tim2_1_0 = c_im(in[18 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[26 * istride]); tim2_1_0 = c_im(in[26 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[19 * istride]); tim2_1_0 = c_im(in[19 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[27 * istride]); tim2_1_0 = c_im(in[27 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[20 * istride]); tim2_1_0 = c_im(in[20 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[28 * istride]); tim2_1_0 = c_im(in[28 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 + tim1_1_1; tim0_1_4 = tim1_1_0 - tre1_1_1; tre0_3_4 = tre1_1_0 - tim1_1_1; tim0_3_4 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[21 * istride]); tim2_1_0 = c_im(in[21 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[29 * istride]); tim2_1_0 = c_im(in[29 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 + tim1_1_1; tim0_1_5 = tim1_1_0 - tre1_1_1; tre0_3_5 = tre1_1_0 - tim1_1_1; tim0_3_5 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[22 * istride]); tim2_1_0 = c_im(in[22 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[30 * istride]); tim2_1_0 = c_im(in[30 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 + tim1_1_1; tim0_1_6 = tim1_1_0 - tre1_1_1; tre0_3_6 = tre1_1_0 - tim1_1_1; tim0_3_6 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[23 * istride]); tim2_1_0 = c_im(in[23 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[31 * istride]); tim2_1_0 = c_im(in[31 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 + tim1_1_1; tim0_1_7 = tim1_1_0 - tre1_1_1; tre0_3_7 = tre1_1_0 - tim1_1_1; tim0_3_7 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[16 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[16 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[8 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[8 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[24 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[20 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[20 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[12 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[12 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[28 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 + tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 - tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[17 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[17 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[9 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[9 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[25 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[21 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[21 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[13 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[13 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[29 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 + tim0_2_4; tim1_0_0 = tim0_2_0 - tre0_2_4; tre1_1_0 = tre0_2_0 - tim0_2_4; tim1_1_0 = tim0_2_0 + tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 + tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 - tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 - tre0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 + tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[18 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[18 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[10 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[10 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[26 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[22 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[22 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[14 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[14 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[30 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 - tre0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 + tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[19 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[19 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[11 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[11 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[27 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[23 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[23 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[15 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[15 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[31 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 + tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 16 FP additions and 0 FP multiplications */ void fftw_no_twiddle_4(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1; c_im(out[0]) = tim0_0_0 + tim0_0_1; c_re(out[2 * ostride]) = tre0_0_0 - tre0_0_1; c_im(out[2 * ostride]) = tim0_0_0 - tim0_0_1; c_re(out[ostride]) = tre0_1_0 + tim0_1_1; c_im(out[ostride]) = tim0_1_0 - tre0_1_1; c_re(out[3 * ostride]) = tre0_1_0 - tim0_1_1; c_im(out[3 * ostride]) = tim0_1_0 + tre0_1_1; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 44 FP additions and 16 FP multiplications */ void fftw_no_twiddle_5(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_0 - tim0_3_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_3_0 - tre0_2_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_3_0 - tim0_2_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[3 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_0 - tre0_3_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[3 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 40 FP additions and 8 FP multiplications */ void fftw_no_twiddle_6(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[2 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[2 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[3 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(out[3 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_1 - tim0_1_2); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_2 - tre0_1_1); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 928 FP additions and 248 FP multiplications */ void fftw_no_twiddle_64(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[32 * istride]); tim2_1_0 = c_im(in[32 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[40 * istride]); tim2_1_0 = c_im(in[40 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[16 * istride]); tim2_0_0 = c_im(in[16 * istride]); tre2_1_0 = c_re(in[48 * istride]); tim2_1_0 = c_im(in[48 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[24 * istride]); tim2_0_0 = c_im(in[24 * istride]); tre2_1_0 = c_re(in[56 * istride]); tim2_1_0 = c_im(in[56 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 + tim2_1_1; tim0_2_0 = tim2_1_0 - tre2_1_1; tre0_6_0 = tre2_1_0 - tim2_1_1; tim0_6_0 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 + tim2_1_1; tim0_3_0 = tim2_1_0 - tre2_1_1; tre0_7_0 = tre2_1_0 - tim2_1_1; tim0_7_0 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[33 * istride]); tim2_1_0 = c_im(in[33 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[41 * istride]); tim2_1_0 = c_im(in[41 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[17 * istride]); tim2_0_0 = c_im(in[17 * istride]); tre2_1_0 = c_re(in[49 * istride]); tim2_1_0 = c_im(in[49 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[25 * istride]); tim2_0_0 = c_im(in[25 * istride]); tre2_1_0 = c_re(in[57 * istride]); tim2_1_0 = c_im(in[57 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 + tim2_1_1; tim0_2_1 = tim2_1_0 - tre2_1_1; tre0_6_1 = tre2_1_0 - tim2_1_1; tim0_6_1 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 + tim2_1_1; tim0_3_1 = tim2_1_0 - tre2_1_1; tre0_7_1 = tre2_1_0 - tim2_1_1; tim0_7_1 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[34 * istride]); tim2_1_0 = c_im(in[34 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[42 * istride]); tim2_1_0 = c_im(in[42 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[18 * istride]); tim2_0_0 = c_im(in[18 * istride]); tre2_1_0 = c_re(in[50 * istride]); tim2_1_0 = c_im(in[50 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[26 * istride]); tim2_0_0 = c_im(in[26 * istride]); tre2_1_0 = c_re(in[58 * istride]); tim2_1_0 = c_im(in[58 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 + tim2_1_1; tim0_2_2 = tim2_1_0 - tre2_1_1; tre0_6_2 = tre2_1_0 - tim2_1_1; tim0_6_2 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 + tim2_1_1; tim0_3_2 = tim2_1_0 - tre2_1_1; tre0_7_2 = tre2_1_0 - tim2_1_1; tim0_7_2 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[35 * istride]); tim2_1_0 = c_im(in[35 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[43 * istride]); tim2_1_0 = c_im(in[43 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[19 * istride]); tim2_0_0 = c_im(in[19 * istride]); tre2_1_0 = c_re(in[51 * istride]); tim2_1_0 = c_im(in[51 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[27 * istride]); tim2_0_0 = c_im(in[27 * istride]); tre2_1_0 = c_re(in[59 * istride]); tim2_1_0 = c_im(in[59 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 + tim2_1_1; tim0_2_3 = tim2_1_0 - tre2_1_1; tre0_6_3 = tre2_1_0 - tim2_1_1; tim0_6_3 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 + tim2_1_1; tim0_3_3 = tim2_1_0 - tre2_1_1; tre0_7_3 = tre2_1_0 - tim2_1_1; tim0_7_3 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[36 * istride]); tim2_1_0 = c_im(in[36 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[44 * istride]); tim2_1_0 = c_im(in[44 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[20 * istride]); tim2_0_0 = c_im(in[20 * istride]); tre2_1_0 = c_re(in[52 * istride]); tim2_1_0 = c_im(in[52 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[28 * istride]); tim2_0_0 = c_im(in[28 * istride]); tre2_1_0 = c_re(in[60 * istride]); tim2_1_0 = c_im(in[60 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 + tim2_1_1; tim0_2_4 = tim2_1_0 - tre2_1_1; tre0_6_4 = tre2_1_0 - tim2_1_1; tim0_6_4 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 + tim2_1_1; tim0_3_4 = tim2_1_0 - tre2_1_1; tre0_7_4 = tre2_1_0 - tim2_1_1; tim0_7_4 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[37 * istride]); tim2_1_0 = c_im(in[37 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[45 * istride]); tim2_1_0 = c_im(in[45 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[21 * istride]); tim2_0_0 = c_im(in[21 * istride]); tre2_1_0 = c_re(in[53 * istride]); tim2_1_0 = c_im(in[53 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[29 * istride]); tim2_0_0 = c_im(in[29 * istride]); tre2_1_0 = c_re(in[61 * istride]); tim2_1_0 = c_im(in[61 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 + tim2_1_1; tim0_2_5 = tim2_1_0 - tre2_1_1; tre0_6_5 = tre2_1_0 - tim2_1_1; tim0_6_5 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 + tim2_1_1; tim0_3_5 = tim2_1_0 - tre2_1_1; tre0_7_5 = tre2_1_0 - tim2_1_1; tim0_7_5 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[38 * istride]); tim2_1_0 = c_im(in[38 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[46 * istride]); tim2_1_0 = c_im(in[46 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[22 * istride]); tim2_0_0 = c_im(in[22 * istride]); tre2_1_0 = c_re(in[54 * istride]); tim2_1_0 = c_im(in[54 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[30 * istride]); tim2_0_0 = c_im(in[30 * istride]); tre2_1_0 = c_re(in[62 * istride]); tim2_1_0 = c_im(in[62 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 + tim2_1_1; tim0_2_6 = tim2_1_0 - tre2_1_1; tre0_6_6 = tre2_1_0 - tim2_1_1; tim0_6_6 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 + tim2_1_1; tim0_3_6 = tim2_1_0 - tre2_1_1; tre0_7_6 = tre2_1_0 - tim2_1_1; tim0_7_6 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[39 * istride]); tim2_1_0 = c_im(in[39 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[47 * istride]); tim2_1_0 = c_im(in[47 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[23 * istride]); tim2_0_0 = c_im(in[23 * istride]); tre2_1_0 = c_re(in[55 * istride]); tim2_1_0 = c_im(in[55 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[31 * istride]); tim2_0_0 = c_im(in[31 * istride]); tre2_1_0 = c_re(in[63 * istride]); tim2_1_0 = c_im(in[63 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 + tim2_1_1; tim0_2_7 = tim2_1_0 - tre2_1_1; tre0_6_7 = tre2_1_0 - tim2_1_1; tim0_6_7 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 + tim2_1_1; tim0_3_7 = tim2_1_0 - tre2_1_1; tre0_7_7 = tre2_1_0 - tim2_1_1; tim0_7_7 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[32 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[32 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[16 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[16 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[48 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[48 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[8 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[8 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[40 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[40 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[24 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[56 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[56 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[33 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[33 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[17 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[17 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[49 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[49 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[9 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[9 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[41 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[41 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[25 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[57 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[57 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 + tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 - tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[34 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[34 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[18 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[18 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[50 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[50 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[10 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[10 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[42 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[42 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[26 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[58 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[58 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tre0_3_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[35 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[35 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[19 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[19 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[51 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[51 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[11 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[11 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[43 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[43 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[27 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[59 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[59 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 + tim0_4_4; tim1_0_0 = tim0_4_0 - tre0_4_4; tre1_1_0 = tre0_4_0 - tim0_4_4; tim1_1_0 = tim0_4_0 + tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 + tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 - tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 - tre0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 + tre0_4_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[36 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[36 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[20 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[20 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[52 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[52 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[12 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[12 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[44 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[44 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[28 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[60 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[60 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_5_4); tre1_0_0 = tre0_5_0 + tre2_1_0; tim1_0_0 = tim0_5_0 - tim2_1_0; tre1_1_0 = tre0_5_0 - tre2_1_0; tim1_1_0 = tim0_5_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tre0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tre0_5_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tre0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tre0_5_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tim0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tim0_5_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[37 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[37 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[21 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[21 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[53 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[53 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[13 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[13 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[45 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[45 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[29 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[61 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[61 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 - tre0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 + tre0_6_4); tre1_0_0 = tre0_6_0 + tre2_1_0; tim1_0_0 = tim0_6_0 - tim2_1_0; tre1_1_0 = tre0_6_0 - tre2_1_0; tim1_1_0 = tim0_6_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_6_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[38 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[38 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[22 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[22 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[54 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[54 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[14 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[14 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[46 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[46 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[30 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[62 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[62 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_7_4); tre1_0_0 = tre0_7_0 + tre2_1_0; tim1_0_0 = tim0_7_0 - tim2_1_0; tre1_1_0 = tre0_7_0 - tre2_1_0; tim1_1_0 = tim0_7_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tim0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tim0_7_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tim0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_7_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tre0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tre0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[39 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[39 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[23 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[23 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[55 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[55 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[15 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[15 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[47 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[47 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[31 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[63 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[63 * ostride]) = tim2_1_0 + tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 90 FP additions and 36 FP multiplications */ void fftw_no_twiddle_7(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_3_0 - tim0_4_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_4_0 - tre0_3_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_4_0 - tim0_3_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[5 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_3_0 - tre0_4_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[5 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_3_0 - tim0_4_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_4_0 - tre0_3_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 4 FP multiplications */ void fftw_no_twiddle_8(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[6 * istride]); tim1_1_0 = c_im(in[6 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[4 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[2 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[2 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[6 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tim0_1_2; tim1_0_0 = tim0_1_0 - tre0_1_2; tre1_1_0 = tre0_1_0 - tim0_1_2; tim1_1_0 = tim0_1_0 + tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 + tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 - tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 - tre0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 + tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[5 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[5 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[3 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 + tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 92 FP additions and 40 FP multiplications */ void fftw_no_twiddle_9(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre1_2_0 = c_re(in[6 * istride]); tim1_2_0 = c_im(in[6 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(out[ostride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(out[ostride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[7 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[7 * ostride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tim0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tre0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tim0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tre0_2_2); c_re(out[2 * ostride]) = tre0_2_0 + tre1_1_0 + tre1_2_0; c_im(out[2 * ostride]) = tim0_2_0 + tim1_1_0 - tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 + tim1_2_0); c_re(out[5 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tim1_2_0 - tim1_1_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(out[5 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 0 FP additions and 0 FP multiplications */ void fftwi_no_twiddle_1(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); c_re(out[0]) = tre0_0_0; c_im(out[0]) = tim0_0_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 32 FP multiplications */ void fftwi_no_twiddle_10(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_3 - tim0_0_2)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_2 - tre0_0_3)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_2 - tim0_0_3)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_3 - tre0_0_2)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[5 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_3 - tim0_1_2)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_2 - tre0_1_3)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_2 - tim0_1_3)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_3 - tre0_1_2)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 230 FP additions and 100 FP multiplications */ void fftwi_no_twiddle_11(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_3_0 + tre0_8_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_6_0 - tim0_5_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_3_0 + tim0_8_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_5_0 - tre0_6_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_2_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_5_0 - tim0_6_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_2_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_6_0 - tre0_5_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_6_0 - tim0_5_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_5_0 - tre0_6_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_5_0 - tim0_6_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_6_0 - tre0_5_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_2_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_6_0 - tim0_5_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_2_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_5_0 - tre0_6_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 104 FP additions and 16 FP multiplications */ void fftwi_no_twiddle_12(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre1_2_0 = c_re(in[11 * istride]); tim1_2_0 = c_im(in[11 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[10 * istride]); tim1_1_0 = c_im(in[10 * istride]); tre1_2_0 = c_re(in[2 * istride]); tim1_2_0 = c_im(in[2 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre1_2_0 = c_re(in[5 * istride]); tim1_2_0 = c_im(in[5 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[6 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[6 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[9 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[9 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[3 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tre0_1_2; tim1_0_0 = tim0_1_0 + tim0_1_2; tre1_1_0 = tre0_1_0 - tre0_1_2; tim1_1_0 = tim0_1_0 - tim0_1_2; tre1_0_1 = tre0_1_1 + tre0_1_3; tim1_0_1 = tim0_1_1 + tim0_1_3; tre1_1_1 = tre0_1_1 - tre0_1_3; tim1_1_1 = tim0_1_1 - tim0_1_3; c_re(out[4 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[ostride]) = tre1_1_0 - tim1_1_1; c_im(out[ostride]) = tim1_1_0 + tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tre0_2_2; tim1_0_0 = tim0_2_0 + tim0_2_2; tre1_1_0 = tre0_2_0 - tre0_2_2; tim1_1_0 = tim0_2_0 - tim0_2_2; tre1_0_1 = tre0_2_1 + tre0_2_3; tim1_0_1 = tim0_2_1 + tim0_2_3; tre1_1_1 = tre0_2_1 - tre0_2_3; tim1_1_1 = tim0_2_1 - tim0_2_3; c_re(out[8 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[2 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[11 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[11 * ostride]) = tim1_1_0 - tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 324 FP additions and 144 FP multiplications */ void fftwi_no_twiddle_13(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; FFTW_REAL tre0_11_0; FFTW_REAL tim0_11_0; FFTW_REAL tre0_12_0; FFTW_REAL tim0_12_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); tre0_11_0 = c_re(in[11 * istride]); tim0_11_0 = c_im(in[11 * istride]); tre0_12_0 = c_re(in[12 * istride]); tim0_12_0 = c_im(in[12 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0 + tre0_11_0 + tre0_12_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0 + tim0_11_0 + tim0_12_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_4_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_7_0 - tim0_6_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[12 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_4_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_6_0 - tre0_7_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[12 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_5_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_6_0 - tim0_7_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[11 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_5_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_7_0 - tre0_6_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[11 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_7_0 - tim0_6_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_6_0 - tre0_7_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_2_0 + tre0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_6_0 - tim0_7_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_2_0 + tim0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_7_0 - tre0_6_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_7_0 - tim0_6_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_6_0 - tre0_7_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_6_0 - tim0_7_0)); c_re(out[6 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_7_0 - tre0_6_0)); c_im(out[6 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 208 FP additions and 72 FP multiplications */ void fftwi_no_twiddle_14(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[13 * istride]); tim1_1_0 = c_im(in[13 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[10 * istride]); tim1_0_0 = c_im(in[10 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_5 = tre1_0_0 + tre1_1_0; tim0_0_5 = tim1_0_0 + tim1_1_0; tre0_1_5 = tre1_0_0 - tre1_1_0; tim0_1_5 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_6 = tre1_0_0 + tre1_1_0; tim0_0_6 = tim1_0_0 + tim1_1_0; tre0_1_6 = tre1_0_0 - tre1_1_0; tim0_1_6 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4 + tre0_0_5 + tre0_0_6; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4 + tim0_0_5 + tim0_0_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_1 + tre0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_2 + tre0_0_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_0_6 - tim0_0_1)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_5 - tim0_0_2)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_4 - tim0_0_3)); c_re(out[8 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_1 + tim0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_2 + tim0_0_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_0_1 - tre0_0_6)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_2 - tre0_0_5)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_3 - tre0_0_4)); c_im(out[8 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_0_6 - tim0_0_1)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_2 - tim0_0_5)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_3 - tim0_0_4)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[12 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_0_1 - tre0_0_6)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_5 - tre0_0_2)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_4 - tre0_0_3)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[12 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_0_6 - tim0_0_1)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_2 - tim0_0_5)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_4 - tim0_0_3)); c_re(out[10 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_0_1 - tre0_0_6)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_5 - tre0_0_2)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_3 - tre0_0_4)); c_im(out[10 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[7 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4 + tre0_1_5 + tre0_1_6; c_im(out[7 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4 + tim0_1_5 + tim0_1_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_1 + tre0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_2 + tre0_1_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_6 - tim0_1_1)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_5 - tim0_1_2)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_4 - tim0_1_3)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_1 + tim0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_2 + tim0_1_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_1 - tre0_1_6)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_2 - tre0_1_5)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_3 - tre0_1_4)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_6 - tim0_1_1)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_2 - tim0_1_5)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_3 - tim0_1_4)); c_re(out[9 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_1 - tre0_1_6)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_5 - tre0_1_2)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_4 - tre0_1_3)); c_im(out[9 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_6 - tim0_1_1)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_2 - tim0_1_5)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_4 - tim0_1_3)); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[11 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_1 - tre0_1_6)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_5 - tre0_1_2)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_3 - tre0_1_4)); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[11 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 202 FP additions and 68 FP multiplications */ void fftwi_no_twiddle_15(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[10 * istride]); tim1_2_0 = c_im(in[10 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[8 * istride]); tim1_1_0 = c_im(in[8 * istride]); tre1_2_0 = c_re(in[13 * istride]); tim1_2_0 = c_im(in[13 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre1_2_0 = c_re(in[istride]); tim1_2_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[14 * istride]); tim1_1_0 = c_im(in[14 * istride]); tre1_2_0 = c_re(in[4 * istride]); tim1_2_0 = c_im(in[4 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_4 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_4 = tre2_0_0 + tre2_1_0; tre0_2_4 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_4 = tim2_0_0 + tim2_1_0; tim0_2_4 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_3 - tim0_0_2)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_2 - tre0_0_3)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_2 - tim0_0_3)); c_re(out[12 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_3 - tre0_0_2)); c_im(out[12 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[10 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[10 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_3 - tim0_1_2)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_2 - tre0_1_3)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_2 - tim0_1_3)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_3 - tre0_1_2)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_2_0 + tre0_2_1 + tre0_2_2 + tre0_2_3 + tre0_2_4; c_im(out[5 * ostride]) = tim0_2_0 + tim0_2_1 + tim0_2_2 + tim0_2_3 + tim0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_1 + tre0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_2 + tre0_2_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_2_4 - tim0_2_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_3 - tim0_2_2)); c_re(out[11 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[14 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_1 + tim0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_2 + tim0_2_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_2_1 - tre0_2_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_2 - tre0_2_3)); c_im(out[11 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[14 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_2 + tre0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_1 + tre0_2_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_2_4 - tim0_2_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_2 - tim0_2_3)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_2 + tim0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_1 + tim0_2_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_2_1 - tre0_2_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_3 - tre0_2_2)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 144 FP additions and 24 FP multiplications */ void fftwi_no_twiddle_16(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[8 * istride]); tim2_1_0 = c_im(in[8 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[12 * istride]); tim2_1_0 = c_im(in[12 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[9 * istride]); tim2_1_0 = c_im(in[9 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[13 * istride]); tim2_1_0 = c_im(in[13 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[10 * istride]); tim2_1_0 = c_im(in[10 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[14 * istride]); tim2_1_0 = c_im(in[14 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[11 * istride]); tim2_1_0 = c_im(in[11 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[15 * istride]); tim2_1_0 = c_im(in[15 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[8 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[4 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[4 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[12 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[12 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 - tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 + tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[9 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[9 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[13 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[13 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 - tim0_2_2; tim1_0_0 = tim0_2_0 + tre0_2_2; tre1_1_0 = tre0_2_0 + tim0_2_2; tim1_1_0 = tim0_2_0 - tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 - tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 + tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 + tim0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 - tim0_2_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[2 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[6 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[14 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[14 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 + tim0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 - tim0_3_2); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(out[3 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[3 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[11 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[11 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[7 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[15 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[15 * ostride]) = tim1_1_0 - tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 4 FP additions and 0 FP multiplications */ void fftwi_no_twiddle_2(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0; c_im(out[0]) = tim0_0_0 + tim0_1_0; c_re(out[ostride]) = tre0_0_0 - tre0_1_0; c_im(out[ostride]) = tim0_0_0 - tim0_1_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 14 FP additions and 4 FP multiplications */ void fftwi_no_twiddle_3(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_2_0 - tim0_1_0); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[2 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_0 - tre0_2_0); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[2 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 376 FP additions and 88 FP multiplications */ void fftwi_no_twiddle_32(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[16 * istride]); tim2_1_0 = c_im(in[16 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[24 * istride]); tim2_1_0 = c_im(in[24 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[17 * istride]); tim2_1_0 = c_im(in[17 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[25 * istride]); tim2_1_0 = c_im(in[25 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[18 * istride]); tim2_1_0 = c_im(in[18 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[26 * istride]); tim2_1_0 = c_im(in[26 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[19 * istride]); tim2_1_0 = c_im(in[19 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[27 * istride]); tim2_1_0 = c_im(in[27 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[20 * istride]); tim2_1_0 = c_im(in[20 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[28 * istride]); tim2_1_0 = c_im(in[28 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 - tim1_1_1; tim0_1_4 = tim1_1_0 + tre1_1_1; tre0_3_4 = tre1_1_0 + tim1_1_1; tim0_3_4 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[21 * istride]); tim2_1_0 = c_im(in[21 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[29 * istride]); tim2_1_0 = c_im(in[29 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 - tim1_1_1; tim0_1_5 = tim1_1_0 + tre1_1_1; tre0_3_5 = tre1_1_0 + tim1_1_1; tim0_3_5 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[22 * istride]); tim2_1_0 = c_im(in[22 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[30 * istride]); tim2_1_0 = c_im(in[30 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 - tim1_1_1; tim0_1_6 = tim1_1_0 + tre1_1_1; tre0_3_6 = tre1_1_0 + tim1_1_1; tim0_3_6 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[23 * istride]); tim2_1_0 = c_im(in[23 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[31 * istride]); tim2_1_0 = c_im(in[31 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 - tim1_1_1; tim0_1_7 = tim1_1_0 + tre1_1_1; tre0_3_7 = tre1_1_0 + tim1_1_1; tim0_3_7 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[16 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[16 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[8 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[8 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[24 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[20 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[20 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[12 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[12 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[28 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 - tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 + tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[17 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[17 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[9 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[9 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[25 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[21 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[21 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[13 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[13 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[29 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 - tim0_2_4; tim1_0_0 = tim0_2_0 + tre0_2_4; tre1_1_0 = tre0_2_0 + tim0_2_4; tim1_1_0 = tim0_2_0 - tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 - tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 + tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 + tim0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 - tim0_2_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[18 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[18 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[10 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[10 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[26 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[22 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[22 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[14 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[14 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[30 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 + tim0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 - tim0_3_4); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_3_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_3_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[19 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[19 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[11 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[11 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[27 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[23 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[23 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[15 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[15 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[31 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 - tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 16 FP additions and 0 FP multiplications */ void fftwi_no_twiddle_4(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1; c_im(out[0]) = tim0_0_0 + tim0_0_1; c_re(out[2 * ostride]) = tre0_0_0 - tre0_0_1; c_im(out[2 * ostride]) = tim0_0_0 - tim0_0_1; c_re(out[ostride]) = tre0_1_0 - tim0_1_1; c_im(out[ostride]) = tim0_1_0 + tre0_1_1; c_re(out[3 * ostride]) = tre0_1_0 + tim0_1_1; c_im(out[3 * ostride]) = tim0_1_0 - tre0_1_1; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 44 FP additions and 16 FP multiplications */ void fftwi_no_twiddle_5(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_3_0 - tim0_2_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_0 - tre0_3_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_0 - tim0_3_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[3 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_3_0 - tre0_2_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[3 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 40 FP additions and 8 FP multiplications */ void fftwi_no_twiddle_6(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[2 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[2 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[3 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(out[3 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_2 - tim0_1_1); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_1 - tre0_1_2); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 928 FP additions and 248 FP multiplications */ void fftwi_no_twiddle_64(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[32 * istride]); tim2_1_0 = c_im(in[32 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[40 * istride]); tim2_1_0 = c_im(in[40 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[16 * istride]); tim2_0_0 = c_im(in[16 * istride]); tre2_1_0 = c_re(in[48 * istride]); tim2_1_0 = c_im(in[48 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[24 * istride]); tim2_0_0 = c_im(in[24 * istride]); tre2_1_0 = c_re(in[56 * istride]); tim2_1_0 = c_im(in[56 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 - tim2_1_1; tim0_2_0 = tim2_1_0 + tre2_1_1; tre0_6_0 = tre2_1_0 + tim2_1_1; tim0_6_0 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 - tim2_1_1; tim0_3_0 = tim2_1_0 + tre2_1_1; tre0_7_0 = tre2_1_0 + tim2_1_1; tim0_7_0 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[33 * istride]); tim2_1_0 = c_im(in[33 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[41 * istride]); tim2_1_0 = c_im(in[41 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[17 * istride]); tim2_0_0 = c_im(in[17 * istride]); tre2_1_0 = c_re(in[49 * istride]); tim2_1_0 = c_im(in[49 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[25 * istride]); tim2_0_0 = c_im(in[25 * istride]); tre2_1_0 = c_re(in[57 * istride]); tim2_1_0 = c_im(in[57 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 - tim2_1_1; tim0_2_1 = tim2_1_0 + tre2_1_1; tre0_6_1 = tre2_1_0 + tim2_1_1; tim0_6_1 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 - tim2_1_1; tim0_3_1 = tim2_1_0 + tre2_1_1; tre0_7_1 = tre2_1_0 + tim2_1_1; tim0_7_1 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[34 * istride]); tim2_1_0 = c_im(in[34 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[42 * istride]); tim2_1_0 = c_im(in[42 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[18 * istride]); tim2_0_0 = c_im(in[18 * istride]); tre2_1_0 = c_re(in[50 * istride]); tim2_1_0 = c_im(in[50 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[26 * istride]); tim2_0_0 = c_im(in[26 * istride]); tre2_1_0 = c_re(in[58 * istride]); tim2_1_0 = c_im(in[58 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 - tim2_1_1; tim0_2_2 = tim2_1_0 + tre2_1_1; tre0_6_2 = tre2_1_0 + tim2_1_1; tim0_6_2 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 - tim2_1_1; tim0_3_2 = tim2_1_0 + tre2_1_1; tre0_7_2 = tre2_1_0 + tim2_1_1; tim0_7_2 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[35 * istride]); tim2_1_0 = c_im(in[35 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[43 * istride]); tim2_1_0 = c_im(in[43 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[19 * istride]); tim2_0_0 = c_im(in[19 * istride]); tre2_1_0 = c_re(in[51 * istride]); tim2_1_0 = c_im(in[51 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[27 * istride]); tim2_0_0 = c_im(in[27 * istride]); tre2_1_0 = c_re(in[59 * istride]); tim2_1_0 = c_im(in[59 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 - tim2_1_1; tim0_2_3 = tim2_1_0 + tre2_1_1; tre0_6_3 = tre2_1_0 + tim2_1_1; tim0_6_3 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 - tim2_1_1; tim0_3_3 = tim2_1_0 + tre2_1_1; tre0_7_3 = tre2_1_0 + tim2_1_1; tim0_7_3 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[36 * istride]); tim2_1_0 = c_im(in[36 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[44 * istride]); tim2_1_0 = c_im(in[44 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[20 * istride]); tim2_0_0 = c_im(in[20 * istride]); tre2_1_0 = c_re(in[52 * istride]); tim2_1_0 = c_im(in[52 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[28 * istride]); tim2_0_0 = c_im(in[28 * istride]); tre2_1_0 = c_re(in[60 * istride]); tim2_1_0 = c_im(in[60 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 - tim2_1_1; tim0_2_4 = tim2_1_0 + tre2_1_1; tre0_6_4 = tre2_1_0 + tim2_1_1; tim0_6_4 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 - tim2_1_1; tim0_3_4 = tim2_1_0 + tre2_1_1; tre0_7_4 = tre2_1_0 + tim2_1_1; tim0_7_4 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[37 * istride]); tim2_1_0 = c_im(in[37 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[45 * istride]); tim2_1_0 = c_im(in[45 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[21 * istride]); tim2_0_0 = c_im(in[21 * istride]); tre2_1_0 = c_re(in[53 * istride]); tim2_1_0 = c_im(in[53 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[29 * istride]); tim2_0_0 = c_im(in[29 * istride]); tre2_1_0 = c_re(in[61 * istride]); tim2_1_0 = c_im(in[61 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 - tim2_1_1; tim0_2_5 = tim2_1_0 + tre2_1_1; tre0_6_5 = tre2_1_0 + tim2_1_1; tim0_6_5 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 - tim2_1_1; tim0_3_5 = tim2_1_0 + tre2_1_1; tre0_7_5 = tre2_1_0 + tim2_1_1; tim0_7_5 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[38 * istride]); tim2_1_0 = c_im(in[38 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[46 * istride]); tim2_1_0 = c_im(in[46 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[22 * istride]); tim2_0_0 = c_im(in[22 * istride]); tre2_1_0 = c_re(in[54 * istride]); tim2_1_0 = c_im(in[54 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[30 * istride]); tim2_0_0 = c_im(in[30 * istride]); tre2_1_0 = c_re(in[62 * istride]); tim2_1_0 = c_im(in[62 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 - tim2_1_1; tim0_2_6 = tim2_1_0 + tre2_1_1; tre0_6_6 = tre2_1_0 + tim2_1_1; tim0_6_6 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 - tim2_1_1; tim0_3_6 = tim2_1_0 + tre2_1_1; tre0_7_6 = tre2_1_0 + tim2_1_1; tim0_7_6 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[39 * istride]); tim2_1_0 = c_im(in[39 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[47 * istride]); tim2_1_0 = c_im(in[47 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[23 * istride]); tim2_0_0 = c_im(in[23 * istride]); tre2_1_0 = c_re(in[55 * istride]); tim2_1_0 = c_im(in[55 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[31 * istride]); tim2_0_0 = c_im(in[31 * istride]); tre2_1_0 = c_re(in[63 * istride]); tim2_1_0 = c_im(in[63 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 - tim2_1_1; tim0_2_7 = tim2_1_0 + tre2_1_1; tre0_6_7 = tre2_1_0 + tim2_1_1; tim0_6_7 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 - tim2_1_1; tim0_3_7 = tim2_1_0 + tre2_1_1; tre0_7_7 = tre2_1_0 + tim2_1_1; tim0_7_7 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[32 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[32 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[16 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[16 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[48 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[48 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[8 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[8 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[40 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[40 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[24 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[56 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[56 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[33 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[33 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[17 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[17 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[49 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[49 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[9 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[9 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[41 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[41 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[25 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[57 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[57 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 - tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 + tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[34 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[34 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[18 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[18 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[50 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[50 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[10 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[10 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[42 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[42 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[26 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[58 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[58 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[35 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[35 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[19 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[19 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[51 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[51 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[11 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[11 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[43 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[43 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[27 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[59 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[59 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 - tim0_4_4; tim1_0_0 = tim0_4_0 + tre0_4_4; tre1_1_0 = tre0_4_0 + tim0_4_4; tim1_1_0 = tim0_4_0 - tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 - tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 + tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 + tim0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 - tim0_4_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[36 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[36 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[20 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[20 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[52 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[52 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[12 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[12 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[44 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[44 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[28 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[60 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[60 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_5_4); tre1_0_0 = tre0_5_0 - tre2_1_0; tim1_0_0 = tim0_5_0 + tim2_1_0; tre1_1_0 = tre0_5_0 + tre2_1_0; tim1_1_0 = tim0_5_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tim0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tim0_5_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tim0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tim0_5_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tre0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tre0_5_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[37 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[37 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[21 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[21 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[53 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[53 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[13 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[13 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[45 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[45 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[29 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[61 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[61 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 + tim0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 - tim0_6_4); tre1_0_0 = tre0_6_0 - tre2_1_0; tim1_0_0 = tim0_6_0 + tim2_1_0; tre1_1_0 = tre0_6_0 + tre2_1_0; tim1_1_0 = tim0_6_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_6_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_6_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_6_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[38 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[38 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[22 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[22 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[54 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[54 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[14 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[14 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[46 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[46 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[30 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[62 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[62 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_7_4); tre1_0_0 = tre0_7_0 - tre2_1_0; tim1_0_0 = tim0_7_0 + tim2_1_0; tre1_1_0 = tre0_7_0 + tre2_1_0; tim1_1_0 = tim0_7_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tre0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tre0_7_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tre0_7_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tim0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tim0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[39 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[39 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[23 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[23 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[55 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[55 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[15 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[15 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[47 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[47 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[31 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[63 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[63 * ostride]) = tim2_1_0 - tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 90 FP additions and 36 FP multiplications */ void fftwi_no_twiddle_7(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_4_0 - tim0_3_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_3_0 - tre0_4_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_3_0 - tim0_4_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[5 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_4_0 - tre0_3_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[5 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_4_0 - tim0_3_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_3_0 - tre0_4_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 4 FP multiplications */ void fftwi_no_twiddle_8(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[6 * istride]); tim1_1_0 = c_im(in[6 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[4 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[2 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[2 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[6 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 - tim0_1_2; tim1_0_0 = tim0_1_0 + tre0_1_2; tre1_1_0 = tre0_1_0 + tim0_1_2; tim1_1_0 = tim0_1_0 - tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 - tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 + tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 + tim0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 - tim0_1_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[5 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[5 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[3 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 - tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 92 FP additions and 40 FP multiplications */ void fftwi_no_twiddle_9(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre1_2_0 = c_re(in[6 * istride]); tim1_2_0 = c_im(in[6 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(out[ostride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(out[ostride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[7 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[7 * ostride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tre0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tim0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tre0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tim0_2_2); c_re(out[2 * ostride]) = tre0_2_0 + tre1_1_0 - tre1_2_0; c_im(out[2 * ostride]) = tim0_2_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tre1_2_0 - tre1_1_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(out[5 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 + tre1_2_0); c_im(out[5 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 126 FP additions and 68 FP multiplications */ void fftw_twiddle_10(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 9) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_2 - tim0_0_3)); c_re(inout[6 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[4 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_3 - tre0_0_2)); c_im(inout[6 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[4 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_3 - tim0_0_2)); c_re(inout[2 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_2 - tre0_0_3)); c_im(inout[2 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[5 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(inout[5 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_2 - tim0_1_3)); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[9 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_3 - tre0_1_2)); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[9 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_3 - tim0_1_2)); c_re(inout[7 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[3 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_2 - tre0_1_3)); c_im(inout[7 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[3 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 174 FP additions and 84 FP multiplications */ void fftw_twiddle_16(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 15) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[8 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[8 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[4 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[4 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[12 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[12 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 + tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 - tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[9 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[9 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[5 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[5 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[13 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[13 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tim0_2_2; tim1_0_0 = tim0_2_0 - tre0_2_2; tre1_1_0 = tre0_2_0 - tim0_2_2; tim1_1_0 = tim0_2_0 + tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 + tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 - tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 - tre0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 + tre0_2_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(inout[2 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[2 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[10 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[10 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[6 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[14 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[14 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 - tre0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 + tre0_3_2); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[3 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[3 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[11 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[11 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[7 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[15 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[15 * stride]) = tim1_1_0 + tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 6 FP additions and 4 FP multiplications */ void fftw_twiddle_2(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 1) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0; c_re(inout[stride]) = tre0_0_0 - tre0_1_0; c_im(inout[stride]) = tim0_0_0 - tim0_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 18 FP additions and 12 FP multiplications */ void fftw_twiddle_3(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 2) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) - (ti * twi); tim0_2_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_0 - tim0_2_0); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[2 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_2_0 - tre0_1_0); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[2 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 438 FP additions and 212 FP multiplications */ void fftw_twiddle_32(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 31) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 + tim1_1_1; tim0_1_4 = tim1_1_0 - tre1_1_1; tre0_3_4 = tre1_1_0 - tim1_1_1; tim0_3_4 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 + tim1_1_1; tim0_1_5 = tim1_1_0 - tre1_1_1; tre0_3_5 = tre1_1_0 - tim1_1_1; tim0_3_5 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 + tim1_1_1; tim0_1_6 = tim1_1_0 - tre1_1_1; tre0_3_6 = tre1_1_0 - tim1_1_1; tim0_3_6 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 + tim1_1_1; tim0_1_7 = tim1_1_0 - tre1_1_1; tre0_3_7 = tre1_1_0 - tim1_1_1; tim0_3_7 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[16 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[16 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[8 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[8 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[24 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[20 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[20 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[12 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[12 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[28 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 + tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 - tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[17 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[17 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[9 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[9 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[25 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[21 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[21 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[13 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[13 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[29 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 + tim0_2_4; tim1_0_0 = tim0_2_0 - tre0_2_4; tre1_1_0 = tre0_2_0 - tim0_2_4; tim1_1_0 = tim0_2_0 + tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 + tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 - tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 - tre0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 + tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[18 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[18 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[10 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[10 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[26 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[22 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[22 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[14 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[14 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[30 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 - tre0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 + tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[19 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[19 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[11 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[11 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[27 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[23 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[23 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[15 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[15 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[31 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 + tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 22 FP additions and 12 FP multiplications */ void fftw_twiddle_4(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 3) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1; c_im(inout[0]) = tim0_0_0 + tim0_0_1; c_re(inout[2 * stride]) = tre0_0_0 - tre0_0_1; c_im(inout[2 * stride]) = tim0_0_0 - tim0_0_1; c_re(inout[stride]) = tre0_1_0 + tim0_1_1; c_im(inout[stride]) = tim0_1_0 - tre0_1_1; c_re(inout[3 * stride]) = tre0_1_0 - tim0_1_1; c_im(inout[3 * stride]) = tim0_1_0 + tre0_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 32 FP multiplications */ void fftw_twiddle_5(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 4) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) - (ti * twi); tim0_2_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) - (ti * twi); tim0_3_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) - (ti * twi); tim0_4_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_0 - tim0_3_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_3_0 - tre0_2_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_3_0 - tim0_2_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[3 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_0 - tre0_3_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[3 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 50 FP additions and 28 FP multiplications */ void fftw_twiddle_6(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 5) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[2 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[2 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[3 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(inout[3 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_1 - tim0_1_2); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[5 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_2 - tre0_1_1); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[5 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 1054 FP additions and 500 FP multiplications */ void fftw_twiddle_64(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 63) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[32 * stride]); ti = c_im(inout[32 * stride]); twr = c_re(W[31]); twi = c_im(W[31]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[40 * stride]); ti = c_im(inout[40 * stride]); twr = c_re(W[39]); twi = c_im(W[39]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[48 * stride]); ti = c_im(inout[48 * stride]); twr = c_re(W[47]); twi = c_im(W[47]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[56 * stride]); ti = c_im(inout[56 * stride]); twr = c_re(W[55]); twi = c_im(W[55]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 + tim2_1_1; tim0_2_0 = tim2_1_0 - tre2_1_1; tre0_6_0 = tre2_1_0 - tim2_1_1; tim0_6_0 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 + tim2_1_1; tim0_3_0 = tim2_1_0 - tre2_1_1; tre0_7_0 = tre2_1_0 - tim2_1_1; tim0_7_0 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[33 * stride]); ti = c_im(inout[33 * stride]); twr = c_re(W[32]); twi = c_im(W[32]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[41 * stride]); ti = c_im(inout[41 * stride]); twr = c_re(W[40]); twi = c_im(W[40]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[49 * stride]); ti = c_im(inout[49 * stride]); twr = c_re(W[48]); twi = c_im(W[48]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[57 * stride]); ti = c_im(inout[57 * stride]); twr = c_re(W[56]); twi = c_im(W[56]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 + tim2_1_1; tim0_2_1 = tim2_1_0 - tre2_1_1; tre0_6_1 = tre2_1_0 - tim2_1_1; tim0_6_1 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 + tim2_1_1; tim0_3_1 = tim2_1_0 - tre2_1_1; tre0_7_1 = tre2_1_0 - tim2_1_1; tim0_7_1 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[34 * stride]); ti = c_im(inout[34 * stride]); twr = c_re(W[33]); twi = c_im(W[33]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[42 * stride]); ti = c_im(inout[42 * stride]); twr = c_re(W[41]); twi = c_im(W[41]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[50 * stride]); ti = c_im(inout[50 * stride]); twr = c_re(W[49]); twi = c_im(W[49]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[58 * stride]); ti = c_im(inout[58 * stride]); twr = c_re(W[57]); twi = c_im(W[57]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 + tim2_1_1; tim0_2_2 = tim2_1_0 - tre2_1_1; tre0_6_2 = tre2_1_0 - tim2_1_1; tim0_6_2 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 + tim2_1_1; tim0_3_2 = tim2_1_0 - tre2_1_1; tre0_7_2 = tre2_1_0 - tim2_1_1; tim0_7_2 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[35 * stride]); ti = c_im(inout[35 * stride]); twr = c_re(W[34]); twi = c_im(W[34]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[43 * stride]); ti = c_im(inout[43 * stride]); twr = c_re(W[42]); twi = c_im(W[42]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[51 * stride]); ti = c_im(inout[51 * stride]); twr = c_re(W[50]); twi = c_im(W[50]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[59 * stride]); ti = c_im(inout[59 * stride]); twr = c_re(W[58]); twi = c_im(W[58]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 + tim2_1_1; tim0_2_3 = tim2_1_0 - tre2_1_1; tre0_6_3 = tre2_1_0 - tim2_1_1; tim0_6_3 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 + tim2_1_1; tim0_3_3 = tim2_1_0 - tre2_1_1; tre0_7_3 = tre2_1_0 - tim2_1_1; tim0_7_3 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[36 * stride]); ti = c_im(inout[36 * stride]); twr = c_re(W[35]); twi = c_im(W[35]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[44 * stride]); ti = c_im(inout[44 * stride]); twr = c_re(W[43]); twi = c_im(W[43]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[52 * stride]); ti = c_im(inout[52 * stride]); twr = c_re(W[51]); twi = c_im(W[51]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[60 * stride]); ti = c_im(inout[60 * stride]); twr = c_re(W[59]); twi = c_im(W[59]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 + tim2_1_1; tim0_2_4 = tim2_1_0 - tre2_1_1; tre0_6_4 = tre2_1_0 - tim2_1_1; tim0_6_4 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 + tim2_1_1; tim0_3_4 = tim2_1_0 - tre2_1_1; tre0_7_4 = tre2_1_0 - tim2_1_1; tim0_7_4 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[37 * stride]); ti = c_im(inout[37 * stride]); twr = c_re(W[36]); twi = c_im(W[36]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[45 * stride]); ti = c_im(inout[45 * stride]); twr = c_re(W[44]); twi = c_im(W[44]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[53 * stride]); ti = c_im(inout[53 * stride]); twr = c_re(W[52]); twi = c_im(W[52]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[61 * stride]); ti = c_im(inout[61 * stride]); twr = c_re(W[60]); twi = c_im(W[60]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 + tim2_1_1; tim0_2_5 = tim2_1_0 - tre2_1_1; tre0_6_5 = tre2_1_0 - tim2_1_1; tim0_6_5 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 + tim2_1_1; tim0_3_5 = tim2_1_0 - tre2_1_1; tre0_7_5 = tre2_1_0 - tim2_1_1; tim0_7_5 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[38 * stride]); ti = c_im(inout[38 * stride]); twr = c_re(W[37]); twi = c_im(W[37]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[46 * stride]); ti = c_im(inout[46 * stride]); twr = c_re(W[45]); twi = c_im(W[45]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[54 * stride]); ti = c_im(inout[54 * stride]); twr = c_re(W[53]); twi = c_im(W[53]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[62 * stride]); ti = c_im(inout[62 * stride]); twr = c_re(W[61]); twi = c_im(W[61]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 + tim2_1_1; tim0_2_6 = tim2_1_0 - tre2_1_1; tre0_6_6 = tre2_1_0 - tim2_1_1; tim0_6_6 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 + tim2_1_1; tim0_3_6 = tim2_1_0 - tre2_1_1; tre0_7_6 = tre2_1_0 - tim2_1_1; tim0_7_6 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[39 * stride]); ti = c_im(inout[39 * stride]); twr = c_re(W[38]); twi = c_im(W[38]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[47 * stride]); ti = c_im(inout[47 * stride]); twr = c_re(W[46]); twi = c_im(W[46]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[55 * stride]); ti = c_im(inout[55 * stride]); twr = c_re(W[54]); twi = c_im(W[54]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[63 * stride]); ti = c_im(inout[63 * stride]); twr = c_re(W[62]); twi = c_im(W[62]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 + tim2_1_1; tim0_2_7 = tim2_1_0 - tre2_1_1; tre0_6_7 = tre2_1_0 - tim2_1_1; tim0_6_7 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 + tim2_1_1; tim0_3_7 = tim2_1_0 - tre2_1_1; tre0_7_7 = tre2_1_0 - tim2_1_1; tim0_7_7 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[32 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[32 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[16 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[16 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[48 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[48 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[8 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[8 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[40 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[40 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[24 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[56 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[56 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[33 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[33 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[17 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[17 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[49 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[49 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[9 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[9 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[41 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[41 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[25 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[57 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[57 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 + tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 - tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[34 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[34 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[18 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[18 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[50 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[50 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[10 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[10 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[42 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[42 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[26 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[58 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[58 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tre0_3_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[35 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[35 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[19 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[19 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[51 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[51 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[11 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[11 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[43 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[43 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[27 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[59 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[59 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 + tim0_4_4; tim1_0_0 = tim0_4_0 - tre0_4_4; tre1_1_0 = tre0_4_0 - tim0_4_4; tim1_1_0 = tim0_4_0 + tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 + tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 - tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 - tre0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 + tre0_4_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[36 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[36 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[20 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[20 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[52 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[52 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[12 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[12 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[44 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[44 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[28 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[60 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[60 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_5_4); tre1_0_0 = tre0_5_0 + tre2_1_0; tim1_0_0 = tim0_5_0 - tim2_1_0; tre1_1_0 = tre0_5_0 - tre2_1_0; tim1_1_0 = tim0_5_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tre0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tre0_5_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tre0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tre0_5_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tim0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tim0_5_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[37 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[37 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[21 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[21 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[53 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[53 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[13 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[13 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[45 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[45 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[29 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[61 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[61 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 - tre0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 + tre0_6_4); tre1_0_0 = tre0_6_0 + tre2_1_0; tim1_0_0 = tim0_6_0 - tim2_1_0; tre1_1_0 = tre0_6_0 - tre2_1_0; tim1_1_0 = tim0_6_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_6_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[38 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[38 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[22 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[22 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[54 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[54 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[14 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[14 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[46 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[46 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[30 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[62 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[62 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_7_4); tre1_0_0 = tre0_7_0 + tre2_1_0; tim1_0_0 = tim0_7_0 - tim2_1_0; tre1_1_0 = tre0_7_0 - tre2_1_0; tim1_1_0 = tim0_7_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tim0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tim0_7_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tim0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_7_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tre0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tre0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[39 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[39 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[23 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[23 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[55 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[55 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[15 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[15 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[47 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[47 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[31 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[63 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[63 * stride]) = tim2_1_0 + tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 102 FP additions and 60 FP multiplications */ void fftw_twiddle_7(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 6) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) - (ti * twi); tim0_2_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) - (ti * twi); tim0_3_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) - (ti * twi); tim0_4_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre0_5_0 = (tr * twr) - (ti * twi); tim0_5_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre0_6_0 = (tr * twr) - (ti * twi); tim0_6_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_3_0 - tim0_4_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[6 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_4_0 - tre0_3_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[6 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_4_0 - tim0_3_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[5 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_3_0 - tre0_4_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[5 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_3_0 - tim0_4_0)); c_re(inout[3 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_4_0 - tre0_3_0)); c_im(inout[3 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 66 FP additions and 32 FP multiplications */ void fftw_twiddle_8(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 7) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[4 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[4 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[2 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[2 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[6 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tim0_1_2; tim1_0_0 = tim0_1_0 - tre0_1_2; tre1_1_0 = tre0_1_0 - tim0_1_2; tim1_1_0 = tim0_1_0 + tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 + tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 - tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 - tre0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 + tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[5 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[5 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[3 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[3 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[7 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 + tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 72 FP multiplications */ void fftw_twiddle_9(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 8) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_2_0 = (tr * twr) - (ti * twi); tim1_2_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_2_0 = (tr * twr) - (ti * twi); tim1_2_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_2_0 = (tr * twr) - (ti * twi); tim1_2_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(inout[3 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[6 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(inout[3 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[6 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(inout[stride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(inout[stride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[7 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[7 * stride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tim0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tre0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tim0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tre0_2_2); c_re(inout[2 * stride]) = tre0_2_0 + tre1_1_0 + tre1_2_0; c_im(inout[2 * stride]) = tim0_2_0 + tim1_1_0 - tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 + tim1_2_0); c_re(inout[5 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tim1_2_0 - tim1_1_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(inout[5 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 126 FP additions and 68 FP multiplications */ void fftwi_twiddle_10(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 9) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_3 - tim0_0_2)); c_re(inout[6 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[4 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_2 - tre0_0_3)); c_im(inout[6 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[4 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_2 - tim0_0_3)); c_re(inout[2 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_3 - tre0_0_2)); c_im(inout[2 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[5 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(inout[5 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_3 - tim0_1_2)); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[9 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_2 - tre0_1_3)); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[9 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_2 - tim0_1_3)); c_re(inout[7 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[3 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_3 - tre0_1_2)); c_im(inout[7 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[3 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 174 FP additions and 84 FP multiplications */ void fftwi_twiddle_16(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 15) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[8 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[8 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[4 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[4 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[12 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[12 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 - tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 + tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[9 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[9 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[5 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[5 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[13 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[13 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 - tim0_2_2; tim1_0_0 = tim0_2_0 + tre0_2_2; tre1_1_0 = tre0_2_0 + tim0_2_2; tim1_1_0 = tim0_2_0 - tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 - tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 + tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 + tim0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 - tim0_2_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[2 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[2 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[10 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[10 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[6 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[14 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[14 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 + tim0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 - tim0_3_2); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(inout[3 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[3 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[11 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[11 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[7 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[15 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[15 * stride]) = tim1_1_0 - tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 6 FP additions and 4 FP multiplications */ void fftwi_twiddle_2(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 1) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0; c_re(inout[stride]) = tre0_0_0 - tre0_1_0; c_im(inout[stride]) = tim0_0_0 - tim0_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 18 FP additions and 12 FP multiplications */ void fftwi_twiddle_3(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 2) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) + (ti * twi); tim0_2_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_2_0 - tim0_1_0); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[2 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_0 - tre0_2_0); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[2 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 438 FP additions and 212 FP multiplications */ void fftwi_twiddle_32(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 31) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 - tim1_1_1; tim0_1_4 = tim1_1_0 + tre1_1_1; tre0_3_4 = tre1_1_0 + tim1_1_1; tim0_3_4 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 - tim1_1_1; tim0_1_5 = tim1_1_0 + tre1_1_1; tre0_3_5 = tre1_1_0 + tim1_1_1; tim0_3_5 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 - tim1_1_1; tim0_1_6 = tim1_1_0 + tre1_1_1; tre0_3_6 = tre1_1_0 + tim1_1_1; tim0_3_6 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 - tim1_1_1; tim0_1_7 = tim1_1_0 + tre1_1_1; tre0_3_7 = tre1_1_0 + tim1_1_1; tim0_3_7 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[16 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[16 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[8 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[8 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[24 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[20 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[20 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[12 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[12 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[28 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 - tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 + tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[17 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[17 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[9 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[9 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[25 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[21 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[21 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[13 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[13 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[29 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 - tim0_2_4; tim1_0_0 = tim0_2_0 + tre0_2_4; tre1_1_0 = tre0_2_0 + tim0_2_4; tim1_1_0 = tim0_2_0 - tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 - tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 + tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 + tim0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 - tim0_2_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[18 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[18 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[10 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[10 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[26 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[22 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[22 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[14 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[14 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[30 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 + tim0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 - tim0_3_4); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_3_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_3_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[19 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[19 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[11 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[11 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[27 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[23 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[23 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[15 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[15 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[31 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 - tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 22 FP additions and 12 FP multiplications */ void fftwi_twiddle_4(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 3) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1; c_im(inout[0]) = tim0_0_0 + tim0_0_1; c_re(inout[2 * stride]) = tre0_0_0 - tre0_0_1; c_im(inout[2 * stride]) = tim0_0_0 - tim0_0_1; c_re(inout[stride]) = tre0_1_0 - tim0_1_1; c_im(inout[stride]) = tim0_1_0 + tre0_1_1; c_re(inout[3 * stride]) = tre0_1_0 + tim0_1_1; c_im(inout[3 * stride]) = tim0_1_0 - tre0_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 32 FP multiplications */ void fftwi_twiddle_5(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 4) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) + (ti * twi); tim0_2_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) + (ti * twi); tim0_3_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) + (ti * twi); tim0_4_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_3_0 - tim0_2_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_0 - tre0_3_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_0 - tim0_3_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[3 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_3_0 - tre0_2_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[3 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 50 FP additions and 28 FP multiplications */ void fftwi_twiddle_6(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 5) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[2 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[2 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[3 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(inout[3 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_2 - tim0_1_1); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[5 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_1 - tre0_1_2); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[5 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 1054 FP additions and 500 FP multiplications */ void fftwi_twiddle_64(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 63) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[32 * stride]); ti = c_im(inout[32 * stride]); twr = c_re(W[31]); twi = c_im(W[31]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[40 * stride]); ti = c_im(inout[40 * stride]); twr = c_re(W[39]); twi = c_im(W[39]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[48 * stride]); ti = c_im(inout[48 * stride]); twr = c_re(W[47]); twi = c_im(W[47]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[56 * stride]); ti = c_im(inout[56 * stride]); twr = c_re(W[55]); twi = c_im(W[55]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 - tim2_1_1; tim0_2_0 = tim2_1_0 + tre2_1_1; tre0_6_0 = tre2_1_0 + tim2_1_1; tim0_6_0 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 - tim2_1_1; tim0_3_0 = tim2_1_0 + tre2_1_1; tre0_7_0 = tre2_1_0 + tim2_1_1; tim0_7_0 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[33 * stride]); ti = c_im(inout[33 * stride]); twr = c_re(W[32]); twi = c_im(W[32]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[41 * stride]); ti = c_im(inout[41 * stride]); twr = c_re(W[40]); twi = c_im(W[40]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[49 * stride]); ti = c_im(inout[49 * stride]); twr = c_re(W[48]); twi = c_im(W[48]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[57 * stride]); ti = c_im(inout[57 * stride]); twr = c_re(W[56]); twi = c_im(W[56]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 - tim2_1_1; tim0_2_1 = tim2_1_0 + tre2_1_1; tre0_6_1 = tre2_1_0 + tim2_1_1; tim0_6_1 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 - tim2_1_1; tim0_3_1 = tim2_1_0 + tre2_1_1; tre0_7_1 = tre2_1_0 + tim2_1_1; tim0_7_1 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[34 * stride]); ti = c_im(inout[34 * stride]); twr = c_re(W[33]); twi = c_im(W[33]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[42 * stride]); ti = c_im(inout[42 * stride]); twr = c_re(W[41]); twi = c_im(W[41]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[50 * stride]); ti = c_im(inout[50 * stride]); twr = c_re(W[49]); twi = c_im(W[49]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[58 * stride]); ti = c_im(inout[58 * stride]); twr = c_re(W[57]); twi = c_im(W[57]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 - tim2_1_1; tim0_2_2 = tim2_1_0 + tre2_1_1; tre0_6_2 = tre2_1_0 + tim2_1_1; tim0_6_2 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 - tim2_1_1; tim0_3_2 = tim2_1_0 + tre2_1_1; tre0_7_2 = tre2_1_0 + tim2_1_1; tim0_7_2 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[35 * stride]); ti = c_im(inout[35 * stride]); twr = c_re(W[34]); twi = c_im(W[34]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[43 * stride]); ti = c_im(inout[43 * stride]); twr = c_re(W[42]); twi = c_im(W[42]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[51 * stride]); ti = c_im(inout[51 * stride]); twr = c_re(W[50]); twi = c_im(W[50]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[59 * stride]); ti = c_im(inout[59 * stride]); twr = c_re(W[58]); twi = c_im(W[58]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 - tim2_1_1; tim0_2_3 = tim2_1_0 + tre2_1_1; tre0_6_3 = tre2_1_0 + tim2_1_1; tim0_6_3 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 - tim2_1_1; tim0_3_3 = tim2_1_0 + tre2_1_1; tre0_7_3 = tre2_1_0 + tim2_1_1; tim0_7_3 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[36 * stride]); ti = c_im(inout[36 * stride]); twr = c_re(W[35]); twi = c_im(W[35]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[44 * stride]); ti = c_im(inout[44 * stride]); twr = c_re(W[43]); twi = c_im(W[43]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[52 * stride]); ti = c_im(inout[52 * stride]); twr = c_re(W[51]); twi = c_im(W[51]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[60 * stride]); ti = c_im(inout[60 * stride]); twr = c_re(W[59]); twi = c_im(W[59]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 - tim2_1_1; tim0_2_4 = tim2_1_0 + tre2_1_1; tre0_6_4 = tre2_1_0 + tim2_1_1; tim0_6_4 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 - tim2_1_1; tim0_3_4 = tim2_1_0 + tre2_1_1; tre0_7_4 = tre2_1_0 + tim2_1_1; tim0_7_4 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[37 * stride]); ti = c_im(inout[37 * stride]); twr = c_re(W[36]); twi = c_im(W[36]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[45 * stride]); ti = c_im(inout[45 * stride]); twr = c_re(W[44]); twi = c_im(W[44]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[53 * stride]); ti = c_im(inout[53 * stride]); twr = c_re(W[52]); twi = c_im(W[52]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[61 * stride]); ti = c_im(inout[61 * stride]); twr = c_re(W[60]); twi = c_im(W[60]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 - tim2_1_1; tim0_2_5 = tim2_1_0 + tre2_1_1; tre0_6_5 = tre2_1_0 + tim2_1_1; tim0_6_5 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 - tim2_1_1; tim0_3_5 = tim2_1_0 + tre2_1_1; tre0_7_5 = tre2_1_0 + tim2_1_1; tim0_7_5 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[38 * stride]); ti = c_im(inout[38 * stride]); twr = c_re(W[37]); twi = c_im(W[37]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[46 * stride]); ti = c_im(inout[46 * stride]); twr = c_re(W[45]); twi = c_im(W[45]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[54 * stride]); ti = c_im(inout[54 * stride]); twr = c_re(W[53]); twi = c_im(W[53]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[62 * stride]); ti = c_im(inout[62 * stride]); twr = c_re(W[61]); twi = c_im(W[61]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 - tim2_1_1; tim0_2_6 = tim2_1_0 + tre2_1_1; tre0_6_6 = tre2_1_0 + tim2_1_1; tim0_6_6 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 - tim2_1_1; tim0_3_6 = tim2_1_0 + tre2_1_1; tre0_7_6 = tre2_1_0 + tim2_1_1; tim0_7_6 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[39 * stride]); ti = c_im(inout[39 * stride]); twr = c_re(W[38]); twi = c_im(W[38]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[47 * stride]); ti = c_im(inout[47 * stride]); twr = c_re(W[46]); twi = c_im(W[46]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[55 * stride]); ti = c_im(inout[55 * stride]); twr = c_re(W[54]); twi = c_im(W[54]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[63 * stride]); ti = c_im(inout[63 * stride]); twr = c_re(W[62]); twi = c_im(W[62]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 - tim2_1_1; tim0_2_7 = tim2_1_0 + tre2_1_1; tre0_6_7 = tre2_1_0 + tim2_1_1; tim0_6_7 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 - tim2_1_1; tim0_3_7 = tim2_1_0 + tre2_1_1; tre0_7_7 = tre2_1_0 + tim2_1_1; tim0_7_7 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[32 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[32 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[16 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[16 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[48 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[48 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[8 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[8 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[40 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[40 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[24 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[56 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[56 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[33 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[33 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[17 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[17 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[49 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[49 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[9 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[9 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[41 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[41 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[25 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[57 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[57 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 - tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 + tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[34 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[34 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[18 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[18 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[50 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[50 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[10 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[10 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[42 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[42 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[26 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[58 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[58 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[35 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[35 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[19 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[19 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[51 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[51 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[11 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[11 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[43 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[43 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[27 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[59 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[59 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 - tim0_4_4; tim1_0_0 = tim0_4_0 + tre0_4_4; tre1_1_0 = tre0_4_0 + tim0_4_4; tim1_1_0 = tim0_4_0 - tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 - tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 + tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 + tim0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 - tim0_4_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[36 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[36 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[20 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[20 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[52 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[52 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[12 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[12 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[44 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[44 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[28 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[60 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[60 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_5_4); tre1_0_0 = tre0_5_0 - tre2_1_0; tim1_0_0 = tim0_5_0 + tim2_1_0; tre1_1_0 = tre0_5_0 + tre2_1_0; tim1_1_0 = tim0_5_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tim0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tim0_5_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tim0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tim0_5_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tre0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tre0_5_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[37 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[37 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[21 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[21 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[53 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[53 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[13 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[13 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[45 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[45 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[29 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[61 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[61 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 + tim0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 - tim0_6_4); tre1_0_0 = tre0_6_0 - tre2_1_0; tim1_0_0 = tim0_6_0 + tim2_1_0; tre1_1_0 = tre0_6_0 + tre2_1_0; tim1_1_0 = tim0_6_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_6_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_6_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_6_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[38 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[38 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[22 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[22 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[54 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[54 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[14 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[14 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[46 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[46 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[30 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[62 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[62 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_7_4); tre1_0_0 = tre0_7_0 - tre2_1_0; tim1_0_0 = tim0_7_0 + tim2_1_0; tre1_1_0 = tre0_7_0 + tre2_1_0; tim1_1_0 = tim0_7_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tre0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tre0_7_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tre0_7_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tim0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tim0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[39 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[39 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[23 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[23 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[55 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[55 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[15 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[15 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[47 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[47 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[31 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[63 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[63 * stride]) = tim2_1_0 - tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 102 FP additions and 60 FP multiplications */ void fftwi_twiddle_7(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 6) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) + (ti * twi); tim0_2_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) + (ti * twi); tim0_3_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) + (ti * twi); tim0_4_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre0_5_0 = (tr * twr) + (ti * twi); tim0_5_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre0_6_0 = (tr * twr) + (ti * twi); tim0_6_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_4_0 - tim0_3_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[6 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_3_0 - tre0_4_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[6 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_3_0 - tim0_4_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[5 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_4_0 - tre0_3_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[5 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_4_0 - tim0_3_0)); c_re(inout[3 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_3_0 - tre0_4_0)); c_im(inout[3 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 66 FP additions and 32 FP multiplications */ void fftwi_twiddle_8(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 7) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[4 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[4 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[2 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[2 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[6 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 - tim0_1_2; tim1_0_0 = tim0_1_0 + tre0_1_2; tre1_1_0 = tre0_1_0 + tim0_1_2; tim1_1_0 = tim0_1_0 - tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 - tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 + tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 + tim0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 - tim0_1_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[5 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[5 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[3 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[3 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[7 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 - tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 72 FP multiplications */ void fftwi_twiddle_9(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 8) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_2_0 = (tr * twr) + (ti * twi); tim1_2_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_2_0 = (tr * twr) + (ti * twi); tim1_2_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_2_0 = (tr * twr) + (ti * twi); tim1_2_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(inout[3 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[6 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(inout[3 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[6 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(inout[stride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(inout[stride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[7 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[7 * stride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tre0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tim0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tre0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tim0_2_2); c_re(inout[2 * stride]) = tre0_2_0 + tre1_1_0 - tre1_2_0; c_im(inout[2 * stride]) = tim0_2_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tre1_2_0 - tre1_1_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(inout[5 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 + tre1_2_0); c_im(inout[5 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * generic.c -- "generic" solvers. They work for all * n (and are slow) */ #include "fftw.h" #include #include void fftw_twiddle_generic(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int m, int r, int n, int stride) { int i, j, k; const FFTW_COMPLEX *jp; FFTW_COMPLEX *kp; FFTW_COMPLEX *tmp = (FFTW_COMPLEX *) fftw_malloc(r * sizeof(FFTW_COMPLEX)); for (i = 0; i < m; ++i) { for (k = 0, kp = tmp; k < r; ++k, kp++) { FFTW_REAL r0, i0, rt, it, rw, iw; int l1 = i + m * k; int l0; r0 = i0 = 0.0; for (j = 0, jp = A + i * stride, l0 = 0; j < r; ++j, jp += m * stride) { rw = c_re(W[l0]); iw = c_im(W[l0]); rt = c_re(*jp); it = c_im(*jp); r0 += rt * rw - it * iw; i0 += rt * iw + it * rw; l0 += l1; if (l0 > n) l0 -= n; } c_re(*kp) = r0; c_im(*kp) = i0; } for (k = 0, kp = A + i * stride; k < r; ++k, kp += m * stride) *kp = tmp[k]; } fftw_free(tmp); } void fftwi_twiddle_generic(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int m, int r, int n, int stride) { int i, j, k; const FFTW_COMPLEX *jp; FFTW_COMPLEX *kp; FFTW_COMPLEX *tmp = (FFTW_COMPLEX *) fftw_malloc(r * sizeof(FFTW_COMPLEX)); for (i = 0; i < m; ++i) { for (k = 0, kp = tmp; k < r; ++k, kp++) { FFTW_REAL r0, i0, rt, it, rw, iw; int l1 = i + m * k; int l0; r0 = i0 = 0.0; for (j = 0, jp = A + i * stride, l0 = 0; j < r; ++j, jp += m * stride) { rw = c_re(W[l0]); iw = c_im(W[l0]); rt = c_re(*jp); it = c_im(*jp); r0 += rt * rw + it * iw; i0 += it * rw - rt * iw; l0 += l1; if (l0 > n) l0 -= n; } c_re(*kp) = r0; c_im(*kp) = i0; } for (k = 0, kp = A + i * stride; k < r; ++k, kp += m * stride) *kp = tmp[k]; } fftw_free(tmp); } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * malloc.c -- memory allocation related functions */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" #include #include int fftw_malloc_cnt = 0; void *(*fftw_malloc_hook) (size_t n) = (void *(*)(size_t n)) 0; void (*fftw_free_hook) (void *p) = (void (*)(void *p)) 0; #define FFTW_MALLOC_DEBUG 0 /* sorry for this debugging hack ... */ #define COMMA , #if FFTW_MALLOC_DEBUG #define WHEN_DEBUG(a) a /* * debugging malloc/free. Initialize every malloced and freed area to * random values, just to make sure we are not using uninitialized * pointers. Also check for writes past the ends of allocated blocks, * and a couple of other things. * * This code is a quick and dirty hack -- use at your own risk. */ int fftw_malloc_total = 0; #define MAGIC 0xABadCafe #define PAD_FACTOR 2 #define TWOINTS (2 * sizeof(int)) #define VERBOSE_ALLOCATION 0 #if VERBOSE_ALLOCATION #define WHEN_VERBOSE(a) a #else #define WHEN_VERBOSE(a) #endif void *fftw_malloc(size_t n) { char *p; int i; WHEN_VERBOSE({ printf("FFTW_MALLOC %d\n",n); fflush(stdout); }) if (n == 0) fftw_die("Tried to allocate a block of zero size!\n"); fftw_malloc_total += n; p = (char *) malloc(PAD_FACTOR*n + TWOINTS); if (!p) fftw_die("fftw_malloc: out of memory\n"); /* store the size in a known position */ ((int *) p)[0] = n; ((int *) p)[1] = MAGIC; for (i = 0; i < PAD_FACTOR*n; ++i) p[i + TWOINTS] = (char) (i ^ 0xDEADBEEF); ++fftw_malloc_cnt; /* skip the size we stored previously */ return (void *) (p + TWOINTS); } void fftw_free(void *p) { char *q = ((char *) p) - TWOINTS; if (!p) fftw_die("fftw_free: tried to free NULL pointer!\n"); if (!q) fftw_die("fftw_free: tried to free NULL+TWOINTS pointer!\n"); { int n = ((int *) q)[0]; int magic = ((int *) q)[1]; int i; WHEN_VERBOSE({ printf("FFTW_FREE %d\n",n); fflush(stdout); }) if (n == 0) fftw_die("Tried to free a freed pointer!\n"); *((int *) q) = 0; /* set to zero to detect duplicate free's */ if (magic != MAGIC) fftw_die("Wrong magic in fftw_free()!\n"); ((int *) q)[1] = ~MAGIC; if (n < 0) fftw_die("Tried to free block with corrupt size descriptor!\n"); fftw_malloc_total -= n; if (fftw_malloc_total < 0) fftw_die("fftw_malloc_total went negative!\n"); /* check for writing past end of array: */ for (i = n; i < PAD_FACTOR*n; ++i) if (q[i+TWOINTS] != (char) (i ^ 0xDEADBEEF)) { fprintf(stderr, "Byte %d past end of array has changed!\n", i - n + 1); fftw_die("Array bounds overwritten!\n"); } for (i = 0; i < PAD_FACTOR*n; ++i) q[i + TWOINTS] = (char) (i ^ 0xBEEFDEAD); --fftw_malloc_cnt; free(q); } } #else /* production version, no hacks */ #define WHEN_DEBUG(a) void *fftw_malloc(size_t n) { void *p; if (fftw_malloc_hook) return fftw_malloc_hook(n); if (n == 0) n = 1; p = malloc(n); if (!p) fftw_die("fftw_malloc: out of memory\n"); return p; } void fftw_free(void *p) { if (p) { if (fftw_free_hook) { fftw_free_hook(p); return; } free(p); } } #endif /* die when fatal errors occur */ void fftw_die(char *s) { fprintf(stderr, "%s", s); exit(1); } /* check for memory leaks when debugging */ void fftw_check_memory_leaks(void) { extern int fftw_node_cnt, fftw_plan_cnt, fftw_twiddle_size; if (WHEN_DEBUG(fftw_malloc_cnt ||) WHEN_DEBUG(fftw_malloc_total ||) fftw_node_cnt || fftw_plan_cnt || fftw_twiddle_size) { fprintf(stderr, "MEMORY LEAK!!!\n" WHEN_DEBUG("fftw_malloc = %d") " node=%d plan=%d twiddle=%d\n" WHEN_DEBUG("fftw_malloc_total = %d\n"), WHEN_DEBUG(fftw_malloc_cnt COMMA) fftw_node_cnt, fftw_plan_cnt, fftw_twiddle_size WHEN_DEBUG(COMMA fftw_malloc_total)); exit(1); } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include "fftw.h" #include /* * Naive O(n^2) algorithm, used for testing purposes */ void fftw_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out) { int i, j; FFTW_COMPLEX sum; FFTW_COMPLEX w; FFTW_REAL pi = 3.1415926535897932384626434; for (j = 0; j < n; ++j) { c_re(sum) = c_im(sum) = 0.0; for (i = 0; i < n; ++i) { c_re(w) = cos((2.0 * pi * (i * j % n)) / n); c_im(w) = -sin((2.0 * pi * (i * j % n)) / n); c_re(sum) += c_re(in[i]) * c_re(w) - c_im(in[i]) * c_im(w); c_im(sum) += c_im(in[i]) * c_re(w) + c_re(in[i]) * c_im(w); } out[j] = sum; } return; } /* * Naive O(n^2) algorithm, for the inverse. */ void fftwi_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out) { int i, j; FFTW_COMPLEX sum; FFTW_COMPLEX w; FFTW_REAL pi = 3.1415926535897932384626434; for (j = 0; j < n; ++j) { c_re(sum) = c_im(sum) = 0.0; for (i = 0; i < n; ++i) { c_re(w) = cos((2.0 * pi * (i * j % n)) / n); c_im(w) = sin((2.0 * pi * (i * j % n)) / n); c_re(sum) += c_re(in[i]) * c_re(w) - c_im(in[i]) * c_im(w); c_im(sum) += c_im(in[i]) * c_re(w) + c_re(in[i]) * c_im(w); } out[j] = sum; } return; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * planner.c -- find the optimal plan */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" #include #include int fftw_node_cnt = 0; int fftw_plan_cnt = 0; #define NOTW_OPTIMAL_SIZE 32 #define TWIDDLE_OPTIMAL_SIZE 12 /* wisdom prototypes */ extern int fftw_wisdom_lookup(int n, int flags, fftw_direction dir, enum fftw_node_type *type, int *signature, int replace_p); extern void fftw_wisdom_add(int n, int flags, fftw_direction dir, enum fftw_node_type type, int signature); /* constructors --- I wish I had ML */ static fftw_plan_node *make_node(void) { fftw_plan_node *p = (fftw_plan_node *) fftw_malloc(sizeof(fftw_plan_node)); p->refcnt = 0; fftw_node_cnt++; return p; } static void use_node(fftw_plan_node *p) { ++p->refcnt; } static fftw_plan_node *make_node_notw(int size, notw_codelet *codelet) { fftw_plan_node *p = make_node(); p->type = FFTW_NOTW; p->nodeu.notw.size = size; p->nodeu.notw.codelet = codelet; return p; } static fftw_plan_node *make_node_twiddle(int n, int size, twiddle_codelet *codelet, fftw_plan_node *recurse, int flags) { fftw_plan_node *p = make_node(); p->type = FFTW_TWIDDLE; p->nodeu.twiddle.size = size; p->nodeu.twiddle.codelet = codelet; p->nodeu.twiddle.recurse = recurse; use_node(recurse); if (flags & FFTW_MEASURE) p->nodeu.twiddle.tw = fftw_create_twiddle(n, size, n / size); else p->nodeu.twiddle.tw = 0; return p; } static fftw_plan_node *make_node_generic(int n, int size, generic_codelet *codelet, fftw_plan_node *recurse, int flags) { fftw_plan_node *p = make_node(); p->type = FFTW_GENERIC; p->nodeu.generic.size = size; p->nodeu.generic.codelet = codelet; p->nodeu.generic.recurse = recurse; use_node(recurse); if (flags & FFTW_MEASURE) p->nodeu.generic.tw = fftw_create_twiddle(n, 2, n); else p->nodeu.generic.tw = 0; return p; } static void destroy_tree(fftw_plan_node *p) { if (p) { --p->refcnt; if (p->refcnt == 0) { switch (p->type) { case FFTW_NOTW: break; case FFTW_TWIDDLE: if (p->nodeu.twiddle.tw) fftw_destroy_twiddle(p->nodeu.twiddle.tw); destroy_tree(p->nodeu.twiddle.recurse); break; case FFTW_GENERIC: if (p->nodeu.generic.tw) fftw_destroy_twiddle(p->nodeu.generic.tw); destroy_tree(p->nodeu.generic.recurse); break; } fftw_free(p); fftw_node_cnt--; } } } /* create a plan with twiddle factors, and other bells and whistles */ static fftw_plan make_plan(int n, fftw_direction dir, fftw_plan_node *root, int flags, enum fftw_node_type wisdom_type, int wisdom_signature) { fftw_plan p = (fftw_plan) fftw_malloc(sizeof(struct fftw_plan_struct)); p->n = n; p->dir = dir; p->flags = flags; use_node(root); p->root = root; p->cost = 0.0; p->wisdom_type = wisdom_type; p->wisdom_signature = wisdom_signature; p->next = (fftw_plan) 0; p->refcnt = 0; fftw_plan_cnt++; return p; } /* * complete with twiddle factors (because nodes don't have * them when FFTW_ESTIMATE is set) */ static void complete_twiddle(fftw_plan_node *p, int n) { int r; switch (p->type) { case FFTW_NOTW: break; case FFTW_TWIDDLE: r = p->nodeu.twiddle.size; if (!p->nodeu.twiddle.tw) p->nodeu.twiddle.tw = fftw_create_twiddle(n, r, n / r); complete_twiddle(p->nodeu.twiddle.recurse, n / r); break; case FFTW_GENERIC: r = p->nodeu.generic.size; if (!p->nodeu.generic.tw) p->nodeu.generic.tw = fftw_create_twiddle(n, 2, n); complete_twiddle(p->nodeu.generic.recurse, n / r); break; } } static void use_plan(fftw_plan p) { ++p->refcnt; } static void destroy_plan(fftw_plan p) { --p->refcnt; if (p->refcnt == 0) { destroy_tree(p->root); fftw_plan_cnt--; fftw_free(p); } } /* end of constructors */ /* management of plan tables */ static void make_empty_table(fftw_plan *table) { *table = (fftw_plan) 0; } static void insert(fftw_plan *table, fftw_plan this_plan, int n) { use_plan(this_plan); this_plan->n = n; this_plan->next = *table; *table = this_plan; } static fftw_plan lookup(fftw_plan *table, int n, int flags) { fftw_plan p; for (p = *table; p && ((p->n != n) || (p->flags != flags)); p = p->next); return p; } static void destroy_table(fftw_plan *table) { fftw_plan p, q; for (p = *table; p; p = q) { q = p->next; destroy_plan(p); } } static double estimate_node(fftw_plan_node *p) { int k; switch (p->type) { case FFTW_NOTW: k = p->nodeu.notw.size; return 1.0 + 0.1 * (k - NOTW_OPTIMAL_SIZE) * (k - NOTW_OPTIMAL_SIZE); case FFTW_TWIDDLE: k = p->nodeu.twiddle.size; return 1.0 + 0.1 * (k - TWIDDLE_OPTIMAL_SIZE) * (k - TWIDDLE_OPTIMAL_SIZE) + estimate_node(p->nodeu.twiddle.recurse); case FFTW_GENERIC: k = p->nodeu.generic.size; return 10.0 + k * k + estimate_node(p->nodeu.generic.recurse); } return 1.0E20; } /* auxiliary functions */ static void compute_cost(fftw_plan plan) { if (plan->flags & FFTW_MEASURE) plan->cost = fftw_measure_runtime(plan); else { double c; c = plan->n * estimate_node(plan->root); plan->cost = c; } } /* pick the better of two plans and destroy the other one. */ static fftw_plan pick_better(fftw_plan p1, fftw_plan p2) { if (!p1) return p2; if (!p2) return p1; if (p1->cost > p2->cost) { destroy_plan(p1); return p2; } else { destroy_plan(p2); return p1; } } /* find the smallest prime factor of n */ static int factor(int n) { int r; /* try 2 */ if ((n & 1) == 0) return 2; /* try odd numbers up to sqrt(n) */ for (r = 3; r * r <= n; r += 2) if (n % r == 0) return r; /* n is prime */ return n; } /* * Some macrology for the planner. If you have to write * the same line of code twice, there must be some bug. */ #define NOTW_ITERATOR(p, dir) \ config_notw *p = \ p = (dir == FFTW_FORWARD ? \ fftw_config_notw : fftwi_config_notw) #define TWIDDLE_ITERATOR(p, dir) \ config_twiddle *p = \ p = (dir == FFTW_FORWARD ? \ fftw_config_twiddle : fftwi_config_twiddle); #define FORALL_NOTW(p) \ for (; p->size; ++p) #define FORALL_TWIDDLE(p) \ for (; p->size; ++p) /****************************************** * Recursive planner * ******************************************/ fftw_plan planner(fftw_plan *table, int n, fftw_direction dir, int flags); /* * the planner consists of two parts: one that tries to * use accumulated wisdom, and one that does not. * A small driver invokes both parts in sequence */ /* planner with wisdom: look up the codelet suggested by the wisdom */ fftw_plan planner_wisdom(fftw_plan *table, int n, fftw_direction dir, int flags) { fftw_plan best = (fftw_plan) 0; fftw_plan_node *node; int have_wisdom; enum fftw_node_type wisdom_type; int wisdom_signature; /* see if we remember any wisdom for this case */ have_wisdom = fftw_wisdom_lookup(n, flags, dir, &wisdom_type, &wisdom_signature, 0); if (!have_wisdom) return best; if (wisdom_type == FFTW_NOTW) { NOTW_ITERATOR(p, dir); FORALL_NOTW(p) { /* see if wisdom applies */ if (wisdom_signature == p->signature && p->size == n) { node = make_node_notw(n, p->codelet); best = make_plan(n, dir, node, flags, FFTW_NOTW, p->signature); use_plan(best); return best; } } } if (wisdom_type == FFTW_TWIDDLE) { TWIDDLE_ITERATOR(p, dir); FORALL_TWIDDLE(p) { /* see if wisdom applies */ if (wisdom_signature == p->signature && (n % p->size) == 0) { fftw_plan r = planner(table, n / p->size, dir, flags); node = make_node_twiddle(n, p->size, p->codelet, r->root, flags); best = make_plan(n, dir, node, flags, FFTW_TWIDDLE, p->signature); use_plan(best); destroy_plan(r); return best; } } } /* * BUG (or: TODO) Can we have generic wisdom? This is probably * an academic question */ return best; } /* * planner with no wisdom: try all combinations and pick * the best */ fftw_plan planner_normal(fftw_plan *table, int n, fftw_direction dir, int flags) { fftw_plan best = (fftw_plan) 0; fftw_plan newplan; fftw_plan_node *node; /* see if we have any codelet that solves the problem */ { NOTW_ITERATOR(p, dir); FORALL_NOTW(p) { if (p->size == n) { node = make_node_notw(n, p->codelet); newplan = make_plan(n, dir, node, flags, FFTW_NOTW, p->signature); use_plan(newplan); compute_cost(newplan); best = pick_better(newplan, best); } } } /* Then, try all available twiddle codelets */ { TWIDDLE_ITERATOR(p, dir); FORALL_TWIDDLE(p) { if ((n % p->size) == 0 && (!best || n != p->size)) { fftw_plan r = planner(table, n / p->size, dir, flags); node = make_node_twiddle(n, p->size, p->codelet, r->root, flags); newplan = make_plan(n, dir, node, flags, FFTW_TWIDDLE, p->signature); use_plan(newplan); destroy_plan(r); compute_cost(newplan); best = pick_better(newplan, best); } } } /* * if no plan has been found so far, resort to generic codelets */ if (!best) { generic_codelet *codelet = (dir == FFTW_FORWARD ? fftw_twiddle_generic : fftwi_twiddle_generic); int size = factor(n); fftw_plan r = planner(table, n / size, dir, flags); node = make_node_generic(n, size, codelet, r->root, flags); newplan = make_plan(n, dir, node, flags, FFTW_GENERIC, 0); use_plan(newplan); destroy_plan(r); compute_cost(newplan); best = pick_better(newplan, best); } return best; } fftw_plan planner(fftw_plan *table, int n, fftw_direction dir, int flags) { fftw_plan best = (fftw_plan) 0; /* see if plan has already been computed */ best = lookup(table, n, flags); if (best) { use_plan(best); return best; } /* try a wise plan */ best = planner_wisdom(table, n, dir, flags); if (!best) { /* No wisdom. Plan normally. */ best = planner_normal(table, n, dir, flags); } if (best) { insert(table, best, n); /* remember the wisdom */ fftw_wisdom_add(n, flags, dir, best->wisdom_type, best->wisdom_signature); } return best; } fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags) { fftw_plan table; fftw_plan p1; /* validate parameters */ if (n <= 0) return (fftw_plan) 0; if ((dir != FFTW_FORWARD) && (dir != FFTW_BACKWARD)) return (fftw_plan) 0; make_empty_table(&table); p1 = planner(&table, n, dir, flags); destroy_table(&table); complete_twiddle(p1->root, n); return p1; } void fftw_destroy_plan(fftw_plan plan) { destroy_plan(plan); } static void print_node(FILE * f, fftw_plan_node *p, int indent) { if (p) { switch (p->type) { case FFTW_NOTW: fprintf(f, "%*sFFTW_NOTW %d\n", indent, "", p->nodeu.notw.size); break; case FFTW_TWIDDLE: fprintf(f, "%*sFFTW_TWIDDLE %d\n", indent, "", p->nodeu.twiddle.size); print_node(f, p->nodeu.twiddle.recurse, indent); break; case FFTW_GENERIC: fprintf(f, "%*sFFTW_GENERIC %d\n", indent, "", p->nodeu.generic.size); print_node(f, p->nodeu.generic.recurse, indent); break; } } } void fftw_fprint_plan(FILE * f, fftw_plan p) { fprintf(f, "plan: (cost = %e)\n", p->cost); print_node(f, p->root, 0); } void fftw_print_plan(fftw_plan p) { fftw_fprint_plan(stdout, p); } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * timer.c -- this file measures the execution time of * ffts. This information is used by the planner. */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include #include "fftw.h" #include #include /* * The timer keeps doubling the number of iterations * until the program runs for more than FFTW_TIME_MIN */ double fftw_measure_runtime(fftw_plan plan) { FFTW_COMPLEX *in, *out; fftw_time begin, end; double t; int i, iter; int n; n = plan->n; iter = 1; retry: in = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); out = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); begin = fftw_get_time(); for (i = 0; i < iter; ++i) { int j; /* generate random inputs */ for (j = 0; j < n; ++j) { c_re(in[j]) = 1.0; c_im(in[j]) = 32.432; } fftw(plan, 1, in, 1, 0, out, 1, 0); } end = fftw_get_time(); t = fftw_time_to_sec(fftw_time_diff(end,begin)); fftw_free(in); fftw_free(out); if (t < FFTW_TIME_MIN) { iter *= 2; /* * See D. E. Knuth, Structured Programming with GOTO Statements, * Computing Surveys (6), December 1974, for a justification * of this `goto' in the `n + 1/2' loop. */ goto retry; } return t / (double)iter; } #if defined(MAC) || defined(macintosh) /* Use Macintosh Time Manager to get the time: */ #pragma only_std_keywords off /* make sure compiler (CW) recognizes the pascal keywords that are in Timer.h */ #include #pragma only_std_keywords reset fftw_time get_Mac_microseconds(void) { fftw_time t; UnsignedWide microsec; /* * microsec.lo and microsec.hi are * unsigned long's, and are the two parts * of a 64 bit unsigned integer */ Microseconds(µsec); /* get time in microseconds */ /* store lo and hi words into our structure: */ t.lo = microsec.lo; t.hi = microsec.hi; return t; } fftw_time fftw_time_diff(fftw_time t1, fftw_time t2) /* This function takes the difference t1 - t2 of two 64 bit integers, represented by the 32 bit lo and hi words. if t1 < t2, returns 0. */ { fftw_time diff; if (t1.hi < t2.hi) { /* something is wrong...t1 < t2! */ diff.hi = diff.lo = 0; return diff; } else diff.hi = t1.hi - t2.hi; if (t1.lo < t2.lo) { if (diff.hi > 0) diff.hi -= 1; /* carry */ else { /* something is wrong...t1 < t2! */ diff.hi = diff.lo = 0; return diff; } } diff.lo = t1.lo - t2.lo; return diff; } #endif #if defined __WIN32__ #include static LARGE_INTEGER gFreq; static int gHaveHiResTimer = 0; static int gFirstTime = 1; unsigned long GetPerfTime(void) { LARGE_INTEGER lCounter; if (gFirstTime) { gFirstTime = 0; if (QueryPerformanceFrequency(&gFreq)) { gHaveHiResTimer = 1; } } if (gHaveHiResTimer) { QueryPerformanceCounter(&lCounter); return lCounter.u.LowPart; } else { #if defined(__QK_USER__) return (unsigned long) (dclock() * 1000000.0L) #else return (unsigned long) clock(); #endif } } double GetPerfSec(double pTime) { if (gHaveHiResTimer) { return pTime / gFreq.u.LowPart; /* assumes HighPart==0 */ } else { return pTime / CLOCKS_PER_SEC; } } #endif /* __WIN32__ */ /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * twiddle.c -- compute twiddle factors * These are the twiddle factors for *direct* fft. Flip sign to get * the inverse */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" #include #include #define FFTW_K2PI 6.2831853071795864769252867665590057683943387987502 /* * compute the W coefficients (that is, powers of the root of 1) * and store them into an array. */ static void fftw_compute_twiddle(int n, int r, int m, FFTW_COMPLEX *W) { double twoPiOverN; int i, j; twoPiOverN = FFTW_K2PI / (double) n; for (i = 0; i < m; ++i) for (j = 1; j < r; ++j) { int k = i * (r - 1) + (j - 1); c_re(W[k]) = cos(twoPiOverN * (double) i * (double) j); c_im(W[k]) = -sin(twoPiOverN * (double) i * (double) j); } } /* * these routines implement a simple reference-count-based * management of twiddle structures */ static fftw_twiddle *twlist = (fftw_twiddle *) 0; int fftw_twiddle_size = 0; /* total allocated size, for debugging */ fftw_twiddle *fftw_create_twiddle(int n, int r, int m) { fftw_twiddle *tw; FFTW_COMPLEX *W; /* lookup for this n in the twiddle list */ for (tw = twlist; tw; tw = tw->next) if (tw->n == n && tw->r == r && tw->m == m) { ++tw->refcnt; return tw; } /* not found --- allocate a new struct twiddle */ tw = (fftw_twiddle *) fftw_malloc(sizeof(fftw_twiddle)); W = (FFTW_COMPLEX *) fftw_malloc(m * (r - 1) * sizeof(FFTW_COMPLEX)); fftw_twiddle_size += n; tw->n = n; tw->r = r; tw->m = m; tw->twarray = W; tw->refcnt = 1; fftw_compute_twiddle(n, r, m, W); /* enqueue the new struct */ tw->next = twlist; twlist = tw; return tw; } void fftw_destroy_twiddle(fftw_twiddle * tw) { fftw_twiddle **p; --tw->refcnt; if (tw->refcnt == 0) { /* remove from the list of known twiddle factors */ for (p = &twlist; p; p = &((*p)->next)) if (*p == tw) { *p = tw->next; fftw_twiddle_size -= tw->n; fftw_free(tw->twarray); fftw_free(tw); return; } fftw_die("BUG in fftw_destroy_twiddle\n"); } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * wisdom.c -- manage the wisdom */ #include "fftw.h" #include #include #include struct wisdom { int n; int flags; fftw_direction dir; enum fftw_node_type type; /* this is the wisdom */ int signature; /* this is the wisdom */ struct wisdom *next; }; /* list of wisdom */ static struct wisdom *wisdom_list = (struct wisdom *) 0; int fftw_wisdom_lookup(int n, int flags, fftw_direction dir, enum fftw_node_type *type, int *signature, int replacep) { struct wisdom *p; if (!(flags & FFTW_USE_WISDOM)) return 0; /* simply ignore if wisdom is disabled */ flags |= FFTW_MEASURE; /* always use (only) wisdom from measurements */ for (p = wisdom_list; p; p = p->next) { if (p->n == n && p->flags == flags && p->dir == dir) { /* found wisdom */ if (replacep) { /* replace old wisdom with new */ p->type = *type; p->signature = *signature; } else { *type = p->type; *signature = p->signature; } return 1; } } return 0; } void fftw_wisdom_add(int n, int flags, fftw_direction dir, enum fftw_node_type type, int signature) { struct wisdom *p; if (!(flags & FFTW_USE_WISDOM)) return; /* simply ignore if wisdom is disabled */ if (!(flags & FFTW_MEASURE)) return; /* only measurements produce wisdom */ if (fftw_wisdom_lookup(n, flags, dir, &type, &signature, 1)) return; /* wisdom overwrote old wisdom */ p = (struct wisdom *) fftw_malloc(sizeof(struct wisdom)); p->n = n; p->flags = flags; p->dir = dir; p->type = type; p->signature = signature; /* remember this wisdom */ p->next = wisdom_list; wisdom_list = p; } void fftw_forget_wisdom(void) { while (wisdom_list) { struct wisdom *p; p = wisdom_list; wisdom_list = wisdom_list->next; fftw_free(p); } } /* * user-visible routines, to convert wisdom into strings etc. */ #define WISDOM_FORMAT_VERSION "FFTW-1.2" static void (*emit)(char c, void *data); static void emit_string(char *s, void *data) { while (*s) emit(*s++, data); } static void emit_int(int n, void *data) { char buf[128]; sprintf(buf, "%d", n); emit_string(buf, data); } /* dump wisdom in lisp-like format */ void fftw_export_wisdom(void (*emitter)(char c, void *), void *data) { struct wisdom *p; /* install the output handler */ emit = emitter; emit('(',data); emit_string(WISDOM_FORMAT_VERSION,data); for (p = wisdom_list; p; p = p->next) { emit(' ',data); /* separator to make the output nicer */ emit('(',data); emit_int((int) p->n, data); emit(' ',data); emit_int((int) p->flags, data); emit(' ',data); emit_int((int) p->dir, data); emit(' ',data); emit_int((int) p->type, data); emit(' ',data); emit_int((int) p->signature, data); emit(')',data); } emit(')',data); } /* input part */ static int next_char; static int (*get_input)(void *data); static fftw_status input_error; static void read_char(void *data) { next_char = get_input(data); if (next_char == 0 || next_char == EOF) input_error = FFTW_FAILURE; } /* skip blanks, newlines, tabs, etc */ static void eat_blanks(void *data) { while (isspace(next_char)) read_char(data); } static int read_int(void *data) { int sign = 1; int n = 0; eat_blanks(data); if (next_char == '-') { sign = -1; read_char(data); eat_blanks(data); } if (!isdigit(next_char)) { /* error, no digit */ input_error = FFTW_FAILURE; return 0; } while (isdigit(next_char)) { n = n * 10 + (next_char - '0'); read_char(data); } return sign * n; } #define EXPECT(c) \ { \ eat_blanks(data); \ if (input_error == FFTW_FAILURE || \ next_char != c) \ return FFTW_FAILURE; \ read_char(data); \ } #define EXPECT_INT(n) \ { \ n = read_int(data); \ if (input_error == FFTW_FAILURE) \ return FFTW_FAILURE; \ } #define EXPECT_STRING(s) \ { \ char *s1 = s; \ while (*s1) { \ EXPECT(*s1); \ ++s1; \ } \ } fftw_status fftw_import_wisdom(int (*g)(void *), void *data) { int n; int flags; fftw_direction dir; enum fftw_node_type type; int signature; get_input = g; input_error = FFTW_SUCCESS; read_char(data); eat_blanks(data); EXPECT('('); eat_blanks(data); EXPECT_STRING(WISDOM_FORMAT_VERSION); eat_blanks(data); while (next_char != ')') { EXPECT('('); EXPECT_INT(n); EXPECT_INT(flags); EXPECT_INT(dir); EXPECT_INT(type); EXPECT_INT(signature); eat_blanks(data); EXPECT(')'); /* the wisdom has been read properly. Add it */ fftw_wisdom_add(n, flags, dir, type, signature); /* prepare for next morsel of wisdom */ eat_blanks(data); } return FFTW_SUCCESS; } espresso-5.0.2/clib/md5.c0000644000700200004540000003042412053145633014127 0ustar marsamoscm/* Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. L. Peter Deutsch ghost@aladdin.com */ /* $Id: md5.c,v 1.1 2010-08-13 10:50:08 degironc Exp $ */ /* Independent implementation of MD5 (RFC 1321). This code implements the MD5 Algorithm defined in RFC 1321, whose text is available at http://www.ietf.org/rfc/rfc1321.txt The code is derived from the text of the RFC, including the test suite (section A.5) but excluding the rest of Appendix A. It does not include any code or documentation that is identified in the RFC as being copyrighted. The original and principal author of md5.c is L. Peter Deutsch . Other authors are noted in the change history that follows (in reverse chronological order): 2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order either statically or dynamically; added missing #include in library. 2002-03-11 lpd Corrected argument list for main(), and added int return type, in test program and T value program. 2002-02-21 lpd Added missing #include in test program. 2000-07-03 lpd Patched to eliminate warnings about "constant is unsigned in ANSI C, signed in traditional"; made test program self-checking. 1999-11-04 lpd Edited comments slightly for automatic TOC extraction. 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5). 1999-05-03 lpd Original version. */ #include "md5.h" #include #include #include #include #include #include #include #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */ #ifdef ARCH_IS_BIG_ENDIAN # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1) #else # define BYTE_ORDER 0 #endif #define T_MASK ((md5_word_t)~0) #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87) #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9) #define T3 0x242070db #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111) #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050) #define T6 0x4787c62a #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec) #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe) #define T9 0x698098d8 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850) #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e) #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841) #define T13 0x6b901122 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c) #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71) #define T16 0x49b40821 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d) #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf) #define T19 0x265e5a51 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855) #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2) #define T22 0x02441453 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e) #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437) #define T25 0x21e1cde6 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829) #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278) #define T28 0x455a14ed #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa) #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07) #define T31 0x676f02d9 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375) #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd) #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e) #define T35 0x6d9d6122 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3) #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb) #define T38 0x4bdecfa9 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f) #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f) #define T41 0x289b7ec6 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805) #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a) #define T44 0x04881d05 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6) #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a) #define T47 0x1fa27cf8 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a) #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb) #define T50 0x432aff97 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58) #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6) #define T53 0x655b59c3 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d) #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82) #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e) #define T57 0x6fa87e4f #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f) #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb) #define T60 0x4e0811a1 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d) #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca) #define T63 0x2ad7d2bb #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e) static void md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/) { md5_word_t a = pms->abcd[0], b = pms->abcd[1], c = pms->abcd[2], d = pms->abcd[3]; md5_word_t t; #if BYTE_ORDER > 0 /* Define storage only for big-endian CPUs. */ md5_word_t X[16]; #else /* Define storage for little-endian or both types of CPUs. */ md5_word_t xbuf[16]; const md5_word_t *X; #endif { #if BYTE_ORDER == 0 /* * Determine dynamically whether this is a big-endian or * little-endian machine, since we can use a more efficient * algorithm on the latter. */ static const int w = 1; if (*((const md5_byte_t *)&w)) /* dynamic little-endian */ #endif #if BYTE_ORDER <= 0 /* little-endian */ { /* * On little-endian machines, we can process properly aligned * data without copying it. */ if (!((data - (const md5_byte_t *)0) & 3)) { /* data are properly aligned */ X = (const md5_word_t *)data; } else { /* not aligned */ memcpy(xbuf, data, 64); X = xbuf; } } #endif #if BYTE_ORDER == 0 else /* dynamic big-endian */ #endif #if BYTE_ORDER >= 0 /* big-endian */ { /* * On big-endian machines, we must arrange the bytes in the * right order. */ const md5_byte_t *xp = data; int i; # if BYTE_ORDER == 0 X = xbuf; /* (dynamic only) */ # else # define xbuf X /* (static only) */ # endif for (i = 0; i < 16; ++i, xp += 4) xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24); } #endif } #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) /* Round 1. */ /* Let [abcd k s i] denote the operation a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) #define SET(a, b, c, d, k, s, Ti)\ t = a + F(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 0, 7, T1); SET(d, a, b, c, 1, 12, T2); SET(c, d, a, b, 2, 17, T3); SET(b, c, d, a, 3, 22, T4); SET(a, b, c, d, 4, 7, T5); SET(d, a, b, c, 5, 12, T6); SET(c, d, a, b, 6, 17, T7); SET(b, c, d, a, 7, 22, T8); SET(a, b, c, d, 8, 7, T9); SET(d, a, b, c, 9, 12, T10); SET(c, d, a, b, 10, 17, T11); SET(b, c, d, a, 11, 22, T12); SET(a, b, c, d, 12, 7, T13); SET(d, a, b, c, 13, 12, T14); SET(c, d, a, b, 14, 17, T15); SET(b, c, d, a, 15, 22, T16); #undef SET /* Round 2. */ /* Let [abcd k s i] denote the operation a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) #define SET(a, b, c, d, k, s, Ti)\ t = a + G(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 1, 5, T17); SET(d, a, b, c, 6, 9, T18); SET(c, d, a, b, 11, 14, T19); SET(b, c, d, a, 0, 20, T20); SET(a, b, c, d, 5, 5, T21); SET(d, a, b, c, 10, 9, T22); SET(c, d, a, b, 15, 14, T23); SET(b, c, d, a, 4, 20, T24); SET(a, b, c, d, 9, 5, T25); SET(d, a, b, c, 14, 9, T26); SET(c, d, a, b, 3, 14, T27); SET(b, c, d, a, 8, 20, T28); SET(a, b, c, d, 13, 5, T29); SET(d, a, b, c, 2, 9, T30); SET(c, d, a, b, 7, 14, T31); SET(b, c, d, a, 12, 20, T32); #undef SET /* Round 3. */ /* Let [abcd k s t] denote the operation a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ #define H(x, y, z) ((x) ^ (y) ^ (z)) #define SET(a, b, c, d, k, s, Ti)\ t = a + H(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 5, 4, T33); SET(d, a, b, c, 8, 11, T34); SET(c, d, a, b, 11, 16, T35); SET(b, c, d, a, 14, 23, T36); SET(a, b, c, d, 1, 4, T37); SET(d, a, b, c, 4, 11, T38); SET(c, d, a, b, 7, 16, T39); SET(b, c, d, a, 10, 23, T40); SET(a, b, c, d, 13, 4, T41); SET(d, a, b, c, 0, 11, T42); SET(c, d, a, b, 3, 16, T43); SET(b, c, d, a, 6, 23, T44); SET(a, b, c, d, 9, 4, T45); SET(d, a, b, c, 12, 11, T46); SET(c, d, a, b, 15, 16, T47); SET(b, c, d, a, 2, 23, T48); #undef SET /* Round 4. */ /* Let [abcd k s t] denote the operation a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */ #define I(x, y, z) ((y) ^ ((x) | ~(z))) #define SET(a, b, c, d, k, s, Ti)\ t = a + I(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 0, 6, T49); SET(d, a, b, c, 7, 10, T50); SET(c, d, a, b, 14, 15, T51); SET(b, c, d, a, 5, 21, T52); SET(a, b, c, d, 12, 6, T53); SET(d, a, b, c, 3, 10, T54); SET(c, d, a, b, 10, 15, T55); SET(b, c, d, a, 1, 21, T56); SET(a, b, c, d, 8, 6, T57); SET(d, a, b, c, 15, 10, T58); SET(c, d, a, b, 6, 15, T59); SET(b, c, d, a, 13, 21, T60); SET(a, b, c, d, 4, 6, T61); SET(d, a, b, c, 11, 10, T62); SET(c, d, a, b, 2, 15, T63); SET(b, c, d, a, 9, 21, T64); #undef SET /* Then perform the following additions. (That is increment each of the four registers by the value it had before this block was started.) */ pms->abcd[0] += a; pms->abcd[1] += b; pms->abcd[2] += c; pms->abcd[3] += d; } void md5_init(md5_state_t *pms) { pms->count[0] = pms->count[1] = 0; pms->abcd[0] = 0x67452301; pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476; pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301; pms->abcd[3] = 0x10325476; } void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes) { const md5_byte_t *p = data; int left = nbytes; int offset = (pms->count[0] >> 3) & 63; md5_word_t nbits = (md5_word_t)(nbytes << 3); if (nbytes <= 0) return; /* Update the message length. */ pms->count[1] += nbytes >> 29; pms->count[0] += nbits; if (pms->count[0] < nbits) pms->count[1]++; /* Process an initial partial block. */ if (offset) { int copy = (offset + nbytes > 64 ? 64 - offset : nbytes); memcpy(pms->buf + offset, p, copy); if (offset + copy < 64) return; p += copy; left -= copy; md5_process(pms, pms->buf); } /* Process full blocks. */ for (; left >= 64; p += 64, left -= 64) md5_process(pms, p); /* Process a final partial block. */ if (left) memcpy(pms->buf, p, left); } void md5_finish(md5_state_t *pms, md5_byte_t digest[16]) { static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; md5_byte_t data[8]; int i; /* Save the length before padding. */ for (i = 0; i < 8; ++i) data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3)); /* Pad to 56 bytes mod 64. */ md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1); /* Append the length. */ md5_append(pms, data, 8); for (i = 0; i < 16; ++i) digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3)); } espresso-5.0.2/clib/Makefile0000644000700200004540000000056412053145633014740 0ustar marsamoscm# Makefile for clib include ../make.sys OBJS = \ customize_signals.o \ stack.o \ c_mkdir.o \ cptimer.o \ eval_infix.o \ fft_stick.o \ indici.o \ md5.o \ md5_from_file.o \ memstat.o \ ptrace.o \ qsort.o all : clib.a clib.a : $(OBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ source : co -l $(OBJS:.o=.c) clean : - rm -f clib.a *.o *.mod *.i core* include make.depend espresso-5.0.2/clib/cptimer.c0000644000700200004540000000155712053145633015112 0ustar marsamoscm/* Copyright (C) 2002-2006 Quantum ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include #include #include #include "c_defs.h" double F77_FUNC(cclock,CCLOCK)() /* Return the second elapsed since Epoch (00:00:00 UTC, January 1, 1970) */ { struct timeval tmp; double sec; gettimeofday( &tmp, (struct timezone *)0 ); sec = tmp.tv_sec + ((double)tmp.tv_usec)/1000000.0; return sec; } double F77_FUNC(scnds,SCNDS) ( ) /* Return the cpu time associated to the current process */ { static struct rusage T; getrusage(RUSAGE_SELF, &T); return ((double)T.ru_utime.tv_sec + ((double)T.ru_utime.tv_usec)/1000000.0); } espresso-5.0.2/clib/konst.h0000644000700200004540000025171612053145633014616 0ustar marsamoscm/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* $Id: konst.h,v 1.1.1.1 2003-01-19 21:58:43 giannozz Exp $ */ /* * this file contains many floating-point constants in with 40 digits * of precision. * * The constants are sin(pi/2 * i / j) for all relatively prime i and * j, i < j, 1 <= i,j <= 64. * * These constants should be enough to compute any FFT of radix up to * 64. * * The name of the constant is FFTW_K + the first nine digits * of the constant. */ /* First, a few hand-added constants for the hard-coded small-prime routines from Nussbaumer: */ #define FFTW_K1_499999999 1.5 #define FFTW_K1_500000000 1.5 #define FFTW_K1_538841768 1.538841768587626701285145288018454912004 #define FFTW_K363271264 0.3632712640026804429477333787403093748078 #define FFTW_K559016994 0.5590169943749474241022934171828190588601 #define FFTW_K1_250000000 1.25 /* Now, the sin(pi/2 * i / j) constants: */ #define FFTW_K024541228 0.02454122852291228803173452945928292506546 #define FFTW_K024930691 0.02493069173807287528153113172264899347886 #define FFTW_K025332714 0.02533271431318792626715014547444662011749 #define FFTW_K025747913 0.02574791365498855709400812038783297868791 #define FFTW_K026176948 0.02617694830787315261061168555411266379339 #define FFTW_K026620521 0.02662052143777476692526640921682759077404 #define FFTW_K027079384 0.02707938467613449510053273360969360284220 #define FFTW_K027554342 0.02755434236816199651390270841655868519675 #define FFTW_K028046256 0.02804625627586895837690032595826009306718 #define FFTW_K028556050 0.02855605079369625384817304701047898542810 #define FFTW_K029084718 0.02908471874311140688857775001359604786349 #define FFTW_K029633327 0.02963332782255974048476287916054822494737 #define FFTW_K030203027 0.03020302780088884696469629411308802751337 #define FFTW_K030795058 0.03079505855617035387456489497623829357293 #define FFTW_K031410759 0.03141075907812829383918367381782938975792 #define FFTW_K032051577 0.03205157757165517423355052534564389799926 #define FFTW_K032719082 0.03271908282177614206365992631728812611496 #define FFTW_K033414977 0.03341497700767457087526435763745330726371 #define FFTW_K034141110 0.03414111018596789528264900547320423176481 #define FFTW_K034899496 0.03489949670250097164599518162533293735482 #define FFTW_K035692333 0.03569233383898045576004959432178492172990 #define FFTW_K036522023 0.03652202305765883496849494009839034350519 #define FFTW_K037391194 0.03739119427632562109582828094423927302680 #define FFTW_K038302733 0.03830273369003534880305423883905735073019 #define FFTW_K039259815 0.03925981575906860902080336379833358968018 #define FFTW_K040265940 0.04026594010941514336195447585729928046597 #define FFTW_K041324974 0.04132497424881321193833038091793631399735 #define FFTW_K042441203 0.04244120319614830587806918753450720196596 #define FFTW_K043619387 0.04361938736533599978175307720994442711267 #define FFTW_K044864830 0.04486483035051492545809033680196091713385 #define FFTW_K046183458 0.04618345864573959194897001797523264272366 #define FFTW_K047581915 0.04758191582374229744978724403148683485453 #define FFTW_K049067674 0.04906767432741801425495497694268265831474 #define FFTW_K049845885 0.04984588566069716295040714449394960588257 #define FFTW_K050649168 0.05064916883871271227875185748519952674658 #define FFTW_K051478754 0.05147875477034653381895970590186645379975 #define FFTW_K052335956 0.05233595624294383272211862960907841873101 #define FFTW_K053222174 0.05322217484217865465892175510110189963137 #define FFTW_K054138908 0.05413890858541752614990832597459869261258 #define FFTW_K055087760 0.05508776035586544311472166247114340920868 #define FFTW_K056070447 0.05607044723719178819071956605945621966287 #define FFTW_K057088810 0.05708881086276798374853641012211283431406 #define FFTW_K058144828 0.05814482891047582853874801684707152363411 #define FFTW_K059240627 0.05924062789371428721946459254200354944517 #define FFTW_K060378497 0.06037849742228605343802003158079274972614 #define FFTW_K061560906 0.06156090613394283745053467245960896573106 #define FFTW_K062790519 0.06279051952931337607617822456563113312248 #define FFTW_K064070219 0.06407021998071292342141653382538247166027 #define FFTW_K065403129 0.06540312923014306681531555877517544144063 #define FFTW_K066792633 0.06679263374512155398142808167595869283750 #define FFTW_K068242413 0.06824241336467097592118847902245902393309 #define FFTW_K069756473 0.06975647374412530077595883519414332860090 #define FFTW_K071339183 0.07133918319923234032733775265783793276596 #define FFTW_K072995314 0.07299531466090752529007863065550023575340 #define FFTW_K073564563 0.07356456359966742352946562157523432181330 #define FFTW_K074730093 0.07473009358642425429093974573476665337355 #define FFTW_K075933114 0.07593311422524628957116630520938078420417 #define FFTW_K076549252 0.07654925283649564686667574398250835581272 #define FFTW_K077175462 0.07717546212664635123484042864263765610620 #define FFTW_K078459095 0.07845909572784494503296024599345969868195 #define FFTW_K079786105 0.07978610555308308193969075555986694480713 #define FFTW_K080466568 0.08046656871672588043623283523605058814445 #define FFTW_K081158725 0.08115872552743127025162162134332521448309 #define FFTW_K082579345 0.08257934547233232460034393423744022769858 #define FFTW_K084050524 0.08405052492924754505111842927022800243161 #define FFTW_K084805924 0.08480592447550919108850144833189828879530 #define FFTW_K085575008 0.08557500847883974285443620323245675643992 #define FFTW_K087155742 0.08715574274765817355806427083747355137770 #define FFTW_K088795895 0.08879589532293479712937356569797262395585 #define FFTW_K089639308 0.08963930890343349976547043684523300801112 #define FFTW_K090498875 0.09049887582963782754801984544037132033177 #define FFTW_K092268359 0.09226835946330199523965110715450648036301 #define FFTW_K094108313 0.09410831331851431847326684888547588974551 #define FFTW_K095056043 0.09505604330418266363210430415931109734405 #define FFTW_K096023025 0.09602302590768176305366495784331455593243 #define FFTW_K098017140 0.09801714032956060199419556388864184586113 #define FFTW_K099567846 0.09956784659581665718622086379104323229043 #define FFTW_K100095691 0.1000956916240983451177672842105318430707 #define FFTW_K101168321 0.1011683219874321777860407155854228233862 #define FFTW_K102264148 0.1022641489420342371412709255326958104552 #define FFTW_K102820997 0.1028209971373604031806320868342052679487 #define FFTW_K104528463 0.1045284632676534713998341548024981190806 #define FFTW_K106293485 0.1062934856473654067394496659573273763461 #define FFTW_K106895121 0.1068951215651127844145864534883570813393 #define FFTW_K108119018 0.1081190184239417630308083269836870058627 #define FFTW_K109371208 0.1093712083778743869853209878362391474250 #define FFTW_K110008220 0.1100082209940792950410059556544367917515 #define FFTW_K111964476 0.1119644761033078584687059352720242032581 #define FFTW_K113991409 0.1139914098905406252992389774304161634389 #define FFTW_K114683425 0.1146834253984004343275380130470373859191 #define FFTW_K116092914 0.1160929141252302296756665233807114688534 #define FFTW_K117537397 0.1175373974578376441055682668404856236723 #define FFTW_K118273170 0.1182731709213658039500508663092468403330 #define FFTW_K120536680 0.1205366802553230533490676874525435822736 #define FFTW_K122410675 0.1224106751992161984987044741509457875752 #define FFTW_K122888290 0.1228882906647141222666013492105836037724 #define FFTW_K123692631 0.1236926312693476160249117865542554850472 #define FFTW_K124343704 0.1243437046474851743089045920543714991045 #define FFTW_K125333233 0.1253332335643042453731187598165087939429 #define FFTW_K126338594 0.1263385949221291894904811173099765440334 #define FFTW_K127017819 0.1270178197468787473745739656594515054988 #define FFTW_K127877161 0.1278771616845060105905627222310365268112 #define FFTW_K128398355 0.1283983551465509444517094699699360502290 #define FFTW_K130526192 0.1305261922200515915484062278954890101937 #define FFTW_K132725527 0.1327255272837219725719487965069416073282 #define FFTW_K133286955 0.1332869553737788428006966907749246477199 #define FFTW_K134233265 0.1342332658176554760370186415106700491221 #define FFTW_K135000013 0.1350000138532901039432785388369663768285 #define FFTW_K136166649 0.1361666490962465907607258333878729914503 #define FFTW_K137353557 0.1373535578184081750962293169450719150194 #define FFTW_K138156354 0.1381563549518821982285452297396081025637 #define FFTW_K139173100 0.1391731009600654441124966633011052754559 #define FFTW_K139790339 0.1397903395354994779261757065854075728448 #define FFTW_K142314838 0.1423148382732851404437926686163696687910 #define FFTW_K144931859 0.1449318593072467375406813031778968151579 #define FFTW_K145601167 0.1456011677350048723993394166411729066078 #define FFTW_K146730474 0.1467304744553617516588501296467178197062 #define FFTW_K147646564 0.1476465640024812314941125712317733092252 #define FFTW_K149042266 0.1490422661761744469293547152772175569096 #define FFTW_K150464503 0.1504645032747830094280823110511156957377 #define FFTW_K151427777 0.1514277775045766636574676467272196523057 #define FFTW_K152649284 0.1526492842188744985382798067894893515166 #define FFTW_K153391654 0.1533916548786853726487552712140729945838 #define FFTW_K153890576 0.1538905767040617933823856197344647265033 #define FFTW_K156434465 0.1564344650402308690101053194671668923139 #define FFTW_K159063496 0.1590634960190720532010083008860924909668 #define FFTW_K159599895 0.1595998950333792234665111684813029413298 #define FFTW_K160411280 0.1604112808577602403702298186769163785229 #define FFTW_K161781996 0.1617819965527647265442600643364213138441 #define FFTW_K162895473 0.1628954733945887394808006397082655595151 #define FFTW_K164594590 0.1645945902807338941436520590879384195121 #define FFTW_K166329354 0.1663293545831300328593301814704603689804 #define FFTW_K167506223 0.1675062233047364080900562064755421518657 #define FFTW_K169000820 0.1690008203218490740930355553844306062607 #define FFTW_K169910385 0.1699103850286666621064277790456711366916 #define FFTW_K170522192 0.1705221926326237844029624838779488814032 #define FFTW_K170961888 0.1709618887603012263636423572082635319663 #define FFTW_K173648177 0.1736481776669303488517166267693147960003 #define FFTW_K176419766 0.1764197662578084553148843684896065607169 #define FFTW_K176890275 0.1768902751225729626566607665047223570045 #define FFTW_K177553196 0.1775531962543032681443899399620956620757 #define FFTW_K178556894 0.1785568947986366480137183675903137598662 #define FFTW_K179280758 0.1792807588107356641700983494684076980694 #define FFTW_K180255037 0.1802550378139057401698714976814164183253 #define FFTW_K181636850 0.1816368509794364397019702088022006165809 #define FFTW_K182235525 0.1822355254921474566025733714374098829561 #define FFTW_K183749517 0.1837495178165703315744088396207275824891 #define FFTW_K185288724 0.1852887240871143248809536106633607262036 #define FFTW_K185911607 0.1859116071629145811067063130899319181384 #define FFTW_K187381314 0.1873813145857246305425507344472914693386 #define FFTW_K188445323 0.1884453238783182943037067928415765684352 #define FFTW_K189251244 0.1892512443604102036174993987003794963886 #define FFTW_K190391109 0.1903911091646683687060801363670975059804 #define FFTW_K191158628 0.1911586287013723021585445882022354575073 #define FFTW_K191710631 0.1917106319237384206124231501600573332271 #define FFTW_K195090322 0.1950903220161282678482848684770222409276 #define FFTW_K198146143 0.1981461431993975833714472747416084106726 #define FFTW_K198590466 0.1985904666457454649825982338832459220562 #define FFTW_K199185985 0.1991859851038360988453201397948964743053 #define FFTW_K200025693 0.2000256937760444275302791839461314924582 #define FFTW_K201298520 0.2012985200886600791415289683390134818534 #define FFTW_K202217572 0.2022175723320379311800611091313733641995 #define FFTW_K203456013 0.2034560130526337898780287220615784267778 #define FFTW_K204552066 0.2045520661262008192326881916211885127837 #define FFTW_K205215342 0.2052153421956342913242144590999144259414 #define FFTW_K205978618 0.2059786187410983794560099523629392761584 #define FFTW_K207911690 0.2079116908177593371017422844051251662165 #define FFTW_K209881102 0.2098811020648475664288490675128024697633 #define FFTW_K210679269 0.2106792699957263203605157515044546621513 #define FFTW_K211382623 0.2113826236296243207085529083770849382000 #define FFTW_K212565289 0.2125652895529766738829101740168861225007 #define FFTW_K213933083 0.2139330832064974399064939935426070792397 #define FFTW_K214970440 0.2149704402110240671819534770820757537978 #define FFTW_K216439613 0.2164396139381028797595536696179407286733 #define FFTW_K217430175 0.2174301755815569683483334697013744130646 #define FFTW_K218143241 0.2181432413965425520241529749432464294629 #define FFTW_K218681091 0.2186810912063758065815451063216740840845 #define FFTW_K219101240 0.2191012401568697972277375474973577988483 #define FFTW_K222520933 0.2225209339563144042889025644967947594663 #define FFTW_K226048070 0.2260480705837348469528011887515101798955 #define FFTW_K226496767 0.2264967674257643803937744783433568234439 #define FFTW_K227076263 0.2270762630343732075856966925770880866157 #define FFTW_K227853508 0.2278535089031375755972602599574454122751 #define FFTW_K228950549 0.2289505499501340769087585503449667718434 #define FFTW_K229687742 0.2296877421317955508629587031855238968422 #define FFTW_K230615870 0.2306158707424401784501983492929391024576 #define FFTW_K231820150 0.2318201502675282692634378233857375282786 #define FFTW_K233445363 0.2334453638559054117677444302028708487857 #define FFTW_K234886045 0.2348860457809836794344735309665486913327 #define FFTW_K235758935 0.2357589355094272282505103203014875844263 #define FFTW_K236764420 0.2367644204664467369934485993258031509443 #define FFTW_K237326699 0.2373266998711148178062315108453953280872 #define FFTW_K239315664 0.2393156642875577671487537262602118952031 #define FFTW_K241337891 0.2413378912997056469191530270185379193926 #define FFTW_K241921895 0.2419218955996677225604423741003529652950 #define FFTW_K242980179 0.2429801799032638899482741620774711183209 #define FFTW_K243913720 0.2439137201083771486571152797107074577474 #define FFTW_K245485487 0.2454854871407991489222909177963705562718 #define FFTW_K246757397 0.2467573976902936383701134811922532799265 #define FFTW_K247306500 0.2473065005542155019896448542641991067685 #define FFTW_K248689887 0.2486898871648547882422837460064479684175 #define FFTW_K249776478 0.2497764781672268499591643699129970495240 #define FFTW_K250652532 0.2506525322587205393148020352659594949328 #define FFTW_K251978061 0.2519780613851251944452590335089271028724 #define FFTW_K252933382 0.2529333823916807465585823300480383661425 #define FFTW_K253654583 0.2536545839095073878469674038123833536072 #define FFTW_K254218334 0.2542183341934869302181946799708040944181 #define FFTW_K254671120 0.2546711202412287479786428236449119383343 #define FFTW_K258819045 0.2588190451025207623488988376240483283490 #define FFTW_K263102564 0.2631025642275212511495477637383127381948 #define FFTW_K263587166 0.2635871660690676452850324043464993370036 #define FFTW_K264195401 0.2641954018712860094526428604782256719351 #define FFTW_K264981502 0.2649815021966616823313383138368166609255 #define FFTW_K266036845 0.2660368455666751073822760245929750947101 #define FFTW_K266712757 0.2667127574748983863252865151164363940421 #define FFTW_K267528338 0.2675283385292208211946262052833413401837 #define FFTW_K268531867 0.2685318674743767514444181482437582231209 #define FFTW_K269796771 0.2697967711570242712453285226025705364752 #define FFTW_K270840468 0.2708404681430051173825276728313745513853 #define FFTW_K271440449 0.2714404498650742533437874012956754728913 #define FFTW_K272103464 0.2721034648453350043477078027786879151380 #define FFTW_K273662990 0.2736629900720828635390779354368134316248 #define FFTW_K275096112 0.2750961127544780934575888098987339713079 #define FFTW_K275637355 0.2756373558169991856499715746113041477124 #define FFTW_K276835511 0.2768355114248493876262772692158242788007 #define FFTW_K278217463 0.2782174639164526345546182439651524382026 #define FFTW_K278991106 0.2789911060392292518532508950584493874953 #define FFTW_K279485634 0.2794856348516094581371390778942150551101 #define FFTW_K281732556 0.2817325568414296977114179153466168990357 #define FFTW_K284015344 0.2840153447039226174443896906991853505161 #define FFTW_K284527586 0.2845275866310324418705029934626948723724 #define FFTW_K285336224 0.2853362242491053090667449649265463487414 #define FFTW_K286803232 0.2868032327110902531032801731671579370202 #define FFTW_K288099099 0.2880990993652375689266931264899107353051 #define FFTW_K288691947 0.2886919473396210094452906211327828963305 #define FFTW_K290284677 0.2902846772544623676361923758173952746914 #define FFTW_K292056770 0.2920567706369758204437390072356032915605 #define FFTW_K292822771 0.2928227712765503799533928156354034200205 #define FFTW_K293522573 0.2935225731039347541446271583891850734356 #define FFTW_K294755174 0.2947551744109042168307729819601909732057 #define FFTW_K296275580 0.2962755808856339773191629695178234257829 #define FFTW_K297503053 0.2975030538552029766545272343836168141915 #define FFTW_K298514811 0.2985148110016945481161981570821534393776 #define FFTW_K299363122 0.2993631229733579540081126169766754622404 #define FFTW_K300705799 0.3007057995042731216225471359310733948570 #define FFTW_K301720598 0.3017205985951923159681622307862467380143 #define FFTW_K302514550 0.3025145508810757874902189631473865052465 #define FFTW_K303152674 0.3031526741130434999087207406797943019405 #define FFTW_K303676745 0.3036767451096147308106077254328536766584 #define FFTW_K304114832 0.3041148323275178942148291736201549317983 #define FFTW_K309016994 0.3090169943749474241022934171828190588601 #define FFTW_K313681740 0.3136817403988914766564788459941003099933 #define FFTW_K314076712 0.3140767120219488154165234158283970375988 #define FFTW_K314544756 0.3145447561516136728017265820394227561963 #define FFTW_K315108218 0.3151082180236206884739997772913635477845 #define FFTW_K315799587 0.3157995876150249155281530748686182849130 #define FFTW_K316667993 0.3166679938014724990938464926070593078727 #define FFTW_K317791419 0.3177914195819016261653495764591287854944 #define FFTW_K318486650 0.3184866502516844273818275725699376031734 #define FFTW_K319301530 0.3193015301359799731972335422795273269786 #define FFTW_K320269853 0.3202698538628376311280745853886316208567 #define FFTW_K321439465 0.3214394653031615807010576240789015860584 #define FFTW_K322880404 0.3228804047714462166317487451277830603309 #define FFTW_K323437987 0.3234379871492380979025474833971787876719 #define FFTW_K324699469 0.3246994692046834874075727165465870379355 #define FFTW_K326202789 0.3262027892208693378961868432839339339875 #define FFTW_K327067963 0.3270679633174216363417493701584524078072 #define FFTW_K328024857 0.3280248578395690989840510558626828114495 #define FFTW_K328542381 0.3285423819108347330233652537686684647414 #define FFTW_K330279061 0.3302790619551670817748776125965723703131 #define FFTW_K332354799 0.3323547994796596645618863109731018350510 #define FFTW_K333139794 0.3331397947420575668009190940208649269071 #define FFTW_K333806859 0.3338068592337709288283112855367461082971 #define FFTW_K334879612 0.3348796121709861519581150708478901575074 #define FFTW_K336049393 0.3360493932154301264002038813057431950992 #define FFTW_K336889853 0.3368898533922200506892532126191475704777 #define FFTW_K338016878 0.3380168784085027582801184913755462388755 #define FFTW_K338737920 0.3387379202452913812222843549667764425455 #define FFTW_K339238866 0.3392388661180302873463200874425587375464 #define FFTW_K342020143 0.3420201433256687330440996146822595807630 #define FFTW_K344846302 0.3448463026279704341701015644183431449540 #define FFTW_K345365054 0.3453650544213076319521147752559623304845 #define FFTW_K346117057 0.3461170570774929764682149949282125051507 #define FFTW_K347305252 0.3473052528448202855418543554810122464619 #define FFTW_K348201635 0.3482016354343987872360551297332894837702 #define FFTW_K349464179 0.3494641795990983367054385007091167841299 #define FFTW_K350637555 0.3506375551927543753252906248597856202531 #define FFTW_K351374824 0.3513748240813427048873232705101784160143 #define FFTW_K352250047 0.3522500479212335065317523197587126718279 #define FFTW_K352752086 0.3527520865490947802113466208444908167556 #define FFTW_K354604887 0.3546048870425356259696378926000184743163 #define FFTW_K356621532 0.3566215326623130243556992802935517782847 #define FFTW_K357230889 0.3572308898011327811970544491665739772808 #define FFTW_K358367949 0.3583679495453002734841377894134668341915 #define FFTW_K359407772 0.3594077728375128365978369922382092764921 #define FFTW_K359895036 0.3598950365349881487751045723267564202023 #define FFTW_K361241666 0.3612416661871529487447145961837001637245 #define FFTW_K362807705 0.3628077053506410086067015071723732383626 #define FFTW_K363507970 0.3635079705638298484830911630066710945698 #define FFTW_K364160575 0.3641605752528221783209334379434903294574 #define FFTW_K365341024 0.3653410243663950145447379989297688024329 #define FFTW_K366854218 0.3668542188130565156995449132831306900092 #define FFTW_K368124552 0.3681245526846779591569471474929608308988 #define FFTW_K369206147 0.3692061473126844511998878300716878438711 #define FFTW_K370138155 0.3701381553399143568639806676151644570979 #define FFTW_K370949600 0.3709496008697677795187832504613714657766 #define FFTW_K371662455 0.3716624556603275191518049611285091938479 #define FFTW_K372856477 0.3728564777803086108306500487961622518678 #define FFTW_K373817071 0.3738170718407687913912982304163231070236 #define FFTW_K374606593 0.3746065934159120354149637745011951310001 #define FFTW_K375267004 0.3752670048793741338875592256739963144508 #define FFTW_K375827582 0.3758275821142381678666440272552022706104 #define FFTW_K376309371 0.3763093719478354580854128826607312195378 #define FFTW_K376727893 0.3767278936351850994385423912048126363986 #define FFTW_K382683432 0.3826834323650897717284599840303988667613 #define FFTW_K388434796 0.3884347962746947118923318303095684709959 #define FFTW_K388824175 0.3888241754733206472331483352233858759953 #define FFTW_K389270106 0.3892701063173914903895747264449321369261 #define FFTW_K389785873 0.3897858732926793690828678991204515658461 #define FFTW_K390389275 0.3903892751634948132202383101205617972359 #define FFTW_K391104720 0.3911047204901560157361797932002389820702 #define FFTW_K391966609 0.3919666098600750758836817751475364086730 #define FFTW_K393025031 0.3930250316539236181879675098179335770069 #define FFTW_K394355855 0.3943558551133185801016261030214455736355 #define FFTW_K395158538 0.3951585385301554551973223050248713719112 #define FFTW_K396079766 0.3960797660391568236960433916097445675084 #define FFTW_K397147890 0.3971478906347806137543773600194770636112 #define FFTW_K398401089 0.3984010898462414579978803999696789656499 #define FFTW_K399892024 0.3998920243197409718830580631715817256097 #define FFTW_K400453905 0.4004539056512664881900757918031049168799 #define FFTW_K401695424 0.4016954246529694575168416597426171522567 #define FFTW_K403123429 0.4031234292879722141928847864308575941774 #define FFTW_K403921004 0.4039210048718949626390971462228293575194 #define FFTW_K404783343 0.4047833431223938171559229929865110885458 #define FFTW_K405241314 0.4052413140049898709084813055050524665119 #define FFTW_K406736643 0.4067366430758002077539859903414976129231 #define FFTW_K408444256 0.4084442569359961354585130645868912825289 #define FFTW_K409068637 0.4090686371713398883621478572702527811569 #define FFTW_K410412805 0.4104128054527567964242959438829223418615 #define FFTW_K411287103 0.4112871031306115394563645794677849305108 #define FFTW_K411901248 0.4119012482439926753830399595163634298154 #define FFTW_K412707029 0.4127070298043947370477021860733674718905 #define FFTW_K413212185 0.4132121857683781796177459756612098495079 #define FFTW_K415415013 0.4154150130018864255292741492296232035240 #define FFTW_K417508992 0.4175089922850631204988983925715332880857 #define FFTW_K417960344 0.4179603448867834197609712699154881891189 #define FFTW_K418659737 0.4186597375374280866755652051218860503788 #define FFTW_K419889101 0.4198891015602645769737108950291563357023 #define FFTW_K420934762 0.4209347624283349696253509429280529945866 #define FFTW_K422618261 0.4226182617406994361869784896477301815631 #define FFTW_K423914390 0.4239143907098606887419042651814927925410 #define FFTW_K424456698 0.4244566988758150853990378624175550294483 #define FFTW_K425779291 0.4257792915650726488625024457442517039799 #define FFTW_K426776435 0.4267764354964036681347859720543011341509 #define FFTW_K427555093 0.4275550934302820943209668568887985343045 #define FFTW_K428692561 0.4286925614030541830734336648482434287056 #define FFTW_K429483443 0.4294834430300819004044761443765364092055 #define FFTW_K430065202 0.4300652022765204603469796350767522768615 #define FFTW_K430511096 0.4305110968082951443761483565082794876402 #define FFTW_K433883739 0.4338837391175581204757683328483587546100 #define FFTW_K437307320 0.4373073204588553906127706057564501702361 #define FFTW_K437767705 0.4377677051653404809109457323247945767254 #define FFTW_K438371146 0.4383711467890774174527345406582657390627 #define FFTW_K439196588 0.4391965888473703654544278324316179454814 #define FFTW_K440394151 0.4403941515576343095161715337137760630174 #define FFTW_K441221101 0.4412211012432212932561177149092889833885 #define FFTW_K442288690 0.4422886902190012819952389773242447301569 #define FFTW_K443719837 0.4437198378669596859957300716487510074805 #define FFTW_K444311706 0.4443117063539035508920534834793903341199 #define FFTW_K445738355 0.4457383557765382673964575493794868554276 #define FFTW_K447093792 0.4470937929851139085878077015499424448310 #define FFTW_K447617210 0.4476172100627125493354635123469121632099 #define FFTW_K448799180 0.4487991802004621727850403347331436164243 #define FFTW_K449611329 0.4496113296546066000462945794242270758831 #define FFTW_K450203744 0.4502037448176732924559998305063153741703 #define FFTW_K451010119 0.4510101192161018402829405689831741061912 #define FFTW_K451533358 0.4515333583108893507637632100198611342712 #define FFTW_K453990499 0.4539904997395467915604083663578711989830 #define FFTW_K456210657 0.4562106573531629639774980773788514351385 #define FFTW_K456629237 0.4566292373937130644452233125091948196962 #define FFTW_K457242323 0.4572423233046385228159706386386358177793 #define FFTW_K458226521 0.4582265217274103945550366255897399668032 #define FFTW_K458981864 0.4589818644675376813624520888264711922214 #define FFTW_K460065037 0.4600650377311521260415757598109517955579 #define FFTW_K461092501 0.4610925014493258460911917550660284882441 #define FFTW_K461748613 0.4617486132350339305629306731356229872678 #define FFTW_K462538290 0.4625382902408352776971056464298681702475 #define FFTW_K462996644 0.4629966441051207667179520124020620021145 #define FFTW_K464723172 0.4647231720437685456560153351331047775577 #define FFTW_K466667323 0.4666673232256736976711189168781572674051 #define FFTW_K467268628 0.4672686282730619891421497069463566255380 #define FFTW_K468408440 0.4684084406997901392162396741494573562814 #define FFTW_K469471562 0.4694715627858907759594622882278432957232 #define FFTW_K469976743 0.4699767430273200448803201882849598306672 #define FFTW_K471396736 0.4713967368259976485563876259052543776574 #define FFTW_K473093556 0.4730935568360100744212386756923100796709 #define FFTW_K473868662 0.4738686624729986707083830096659750872704 #define FFTW_K474600369 0.4746003697476404014444030521845052424142 #define FFTW_K475947393 0.4759473930370735444313529194551153377644 #define FFTW_K477158760 0.4771587602596084150488630081893860525344 #define FFTW_K477719818 0.4777198185122629226714738291795566445794 #define FFTW_K478253978 0.4782539786213182117281992257619655845446 #define FFTW_K479248986 0.4792489867200568311976566004526127683333 #define FFTW_K480581755 0.4805817551866837805188145730989093322125 #define FFTW_K481753674 0.4817536741017152749871915028721296535285 #define FFTW_K482792202 0.4827922027307448748732654364456006331007 #define FFTW_K483718887 0.4837188871052397910711613404089728511353 #define FFTW_K484550870 0.4845508703326501661482589827850659897206 #define FFTW_K485301962 0.4853019625310810252145722292597299794313 #define FFTW_K486604478 0.4866044785668562872908560142642961120006 #define FFTW_K487694943 0.4876949438136345453546358573087530741093 #define FFTW_K488621241 0.4886212414969549474201908878388776372536 #define FFTW_K489417847 0.4894178478110855091620714559474840496853 #define FFTW_K490110217 0.4901102171780172253599534345284315254418 #define FFTW_K490717552 0.4907175520039378866875617032247567784897 #define FFTW_K491254611 0.4912546110838773740027218272702905763288 #define FFTW_K491732924 0.4917329246456037728350634796082138236387 #define FFTW_K492161631 0.4921616313890073350656423325950721684747 #define FFTW_K492548067 0.4925480679538644138390568320545344677720 #define FFTW_K492898192 0.4928981922297840368730266887588092682396 #define FFTW_K500000000 0.5000000000000000000000000000000000000000 #define FFTW_K499999999 0.5000000000000000000000000000000000000000 #define FFTW_K507295790 0.5072957901801073367475366123379857519655 #define FFTW_K507665800 0.5076658003388399581093093048575938349538 #define FFTW_K508075345 0.5080753452465294585428491475669648936485 #define FFTW_K508531118 0.5085311186492204850105948124297554981888 #define FFTW_K509041415 0.5090414157503713002834427138653056527808 #define FFTW_K509616642 0.5096166425919174293666674157223672698804 #define FFTW_K510270033 0.5102700330608996133204856818145824161513 #define FFTW_K511018679 0.5110186794471103662576250033662606123172 #define FFTW_K511885049 0.5118850490896010021737274853303109596843 #define FFTW_K512899277 0.5128992774059061439084936529403118044651 #define FFTW_K514102744 0.5141027441932217265936938389688157726080 #define FFTW_K514792801 0.5147928015098307273142233930965266875226 #define FFTW_K515553857 0.5155538571770217397098664966397134305304 #define FFTW_K516397461 0.5163974616389619233199213987888180697670 #define FFTW_K517337814 0.5173378141776567710362946754733118933788 #define FFTW_K518392568 0.5183925683105250315384743146752592400898 #define FFTW_K519583950 0.5195839500354335781330010113237876331492 #define FFTW_K520940340 0.5209403404879302861762814495347146459259 #define FFTW_K521435203 0.5214352033794980724261075391331443334846 #define FFTW_K522498564 0.5224985647159488649878978801782938234153 #define FFTW_K523672913 0.5236729139878778613113179353244932106015 #define FFTW_K524307283 0.5243072835572316877977574563473161566248 #define FFTW_K524976580 0.5249765803345601755182577112207755871671 #define FFTW_K526432162 0.5264321628773558002446077991406995661709 #define FFTW_K528067850 0.5280678506503679958734488203376055682261 #define FFTW_K528964010 0.5289640103269624573654923939122347256678 #define FFTW_K529919264 0.5299192642332049540467811518160866687720 #define FFTW_K530420908 0.5304209081197424901275539775477963937120 #define FFTW_K532032076 0.5320320765153365635576303672303707301645 #define FFTW_K533823377 0.5338233779647906819709106917246609497097 #define FFTW_K534465826 0.5344658261278010920448916115059631779908 #define FFTW_K534997619 0.5349976198870972106630769046370179155602 #define FFTW_K535826794 0.5358267949789966182713087678676399780635 #define FFTW_K536696193 0.5366961939916004804283904754877204814678 #define FFTW_K537299608 0.5372996083468238318407855462677067680826 #define FFTW_K538082353 0.5380823531633726744432314599446075951185 #define FFTW_K538567961 0.5385679615609043184417452731084601648522 #define FFTW_K540640817 0.5406408174555975821076359543186916954317 #define FFTW_K542546263 0.5425462638657594057764972215610247085012 #define FFTW_K542948982 0.5429489822014786701886277535350098429865 #define FFTW_K543567550 0.5435675500012211507281151902424756896932 #define FFTW_K544639035 0.5446390350150270822240836920815653816079 #define FFTW_K545534901 0.5455349012105486651327077633824745393135 #define FFTW_K546948158 0.5469481581224268747117627466961884997788 #define FFTW_K548451871 0.5484518712493187136368616554921198282836 #define FFTW_K549508978 0.5495089780708060352627803740501339165127 #define FFTW_K550292715 0.5502927152373913716928201431260802030025 #define FFTW_K550896981 0.5508969814521025226871043191204105871852 #define FFTW_K551767740 0.5517677407704459049547942137195885263307 #define FFTW_K552364972 0.5523649729605058107631005229003669921116 #define FFTW_K552800065 0.5528000653611933830479607237660836570846 #define FFTW_K555570233 0.5555702330196022247428308139485328743749 #define FFTW_K558243722 0.5582437220268647591526404027462258729266 #define FFTW_K558646765 0.5586467658036524568622720968872277915579 #define FFTW_K559192903 0.5591929034707468301604281399859892873066 #define FFTW_K559974786 0.5599747861375953903804362399881110256799 #define FFTW_K561187065 0.5611870653623823692699409283736092029758 #define FFTW_K562083377 0.5620833778521306000972520013088883538429 #define FFTW_K563320058 0.5633200580636220277492615380297605110458 #define FFTW_K564443218 0.5644432188667691804433731669421321560933 #define FFTW_K565136414 0.5651364144225918889815679062534626407621 #define FFTW_K565947094 0.5659470943305951647768230619336659850687 #define FFTW_K566406236 0.5664062369248328318216250522337649325187 #define FFTW_K568064746 0.5680647467311558025118075591275166245335 #define FFTW_K569808057 0.5698080575102661816845660286961865846296 #define FFTW_K570322636 0.5703226369349640602140881497060451205684 #define FFTW_K571268215 0.5712682150947922791574245436284554823534 #define FFTW_K572116660 0.5721166601221696498132192034370527016364 #define FFTW_K573576436 0.5735764363510460961080319128261578646204 #define FFTW_K574787410 0.5747874102144068850436978464129713348833 #define FFTW_K575318660 0.5753186602186205995927072726495191736474 #define FFTW_K575808191 0.5758081914178453007459724538157308417760 #define FFTW_K576680322 0.5766803221148671412510482752668528239788 #define FFTW_K577773831 0.5777738314082511021102199089899935947837 #define FFTW_K578671296 0.5786712961798057416349117556513751600107 #define FFTW_K579421098 0.5794210982045636845678607582146469698519 #define FFTW_K580056909 0.5800569095711981791969811319003074122335 #define FFTW_K581076815 0.5810768154019382799971629059056750994902 #define FFTW_K581858915 0.5818589155579528384237390755893130777775 #define FFTW_K582477696 0.5824776968678021491971347670361124496849 #define FFTW_K582979479 0.5829794791144720768317634478275581254656 #define FFTW_K583394579 0.5833945791074939474110439755476610699679 #define FFTW_K583743672 0.5837436722347898704535849173602861862334 #define FFTW_K587785252 0.5877852522924731291687059546390727685976 #define FFTW_K591877046 0.5918770467870172636974905748868801823425 #define FFTW_K592235252 0.5922352526649800217394881554148630285607 #define FFTW_K592662191 0.5926621913640168354692868591503568120595 #define FFTW_K593179744 0.5931797447293552110980879105045366390442 #define FFTW_K593820185 0.5938201855735016116500901787757969715429 #define FFTW_K594633176 0.5946331763042866161328284577790955529530 #define FFTW_K595699304 0.5956993044924333434670365288299698895119 #define FFTW_K596367358 0.5963673585385014139115331297600029152330 #define FFTW_K597158591 0.5971585917027861648518521605839597728406 #define FFTW_K598110530 0.5981105304912159620592663549050390073657 #define FFTW_K599277666 0.5992776665113469345300241464975926115075 #define FFTW_K600214280 0.6002142805483682182892439332026327230385 #define FFTW_K600742264 0.6007422642379789169170698743449837706706 #define FFTW_K601317091 0.6013170912984058082408764754369813163847 #define FFTW_K602634636 0.6026346363792563891785881549868406216189 #define FFTW_K603804410 0.6038044103254773687416432135874339982464 #define FFTW_K604236389 0.6042363895210945207619697322884734664490 #define FFTW_K605174215 0.6051742151937651659242801329801084792646 #define FFTW_K606225410 0.6062254109666380182743756853644417577991 #define FFTW_K606800145 0.6068001458185933703817660523085167627397 #define FFTW_K608761429 0.6087614290087206394160975428981640045164 #define FFTW_K610647879 0.6106478796354381306932542723821207732355 #define FFTW_K611173714 0.6111737140978492922481400688827063108551 #define FFTW_K612105982 0.6121059825476628441467056202598600662486 #define FFTW_K612907053 0.6129070536529764933643860565186920014861 #define FFTW_K614212712 0.6142127126896678174443358335144494567519 #define FFTW_K615231590 0.6152315905806268454849135634139842776594 #define FFTW_K615661475 0.6156614753256582796688110928436556282509 #define FFTW_K616718872 0.6167188726285430584574009602667958339961 #define FFTW_K617524614 0.6175246149461919150332079754986842314714 #define FFTW_K618158986 0.6181589862206052132242870766482095935286 #define FFTW_K619093949 0.6190939493098339869415608562461182062175 #define FFTW_K619749888 0.6197498889602448854708069331948698244808 #define FFTW_K620235491 0.6202354912682600677739492348652510534689 #define FFTW_K620609481 0.6206094818274227951118685588824422384550 #define FFTW_K623489801 0.6234898018587335305250048840042398106322 #define FFTW_K626509999 0.6265099998359866294090460453355545190924 #define FFTW_K626923805 0.6269238058941064650171695366099533004747 #define FFTW_K627469007 0.6274690073808519692459461113376089475503 #define FFTW_K628219997 0.6282199972956423167888571244982907776990 #define FFTW_K629320391 0.6293203910498374527059024582799704265668 #define FFTW_K630087843 0.6300878435817110813020457226223099127413 #define FFTW_K631087944 0.6310879443260527893674001301433105742008 #define FFTW_K631942038 0.6319420384463039980812672705334167368491 #define FFTW_K632445375 0.6324453755953772378210421356243774316157 #define FFTW_K633012453 0.6330124538088703887271152762762650288323 #define FFTW_K634393284 0.6343932841636454982151716132254933706757 #define FFTW_K635723748 0.6357237482099679982772185699592814904753 #define FFTW_K636242442 0.6362424423265598332563914426192972085437 #define FFTW_K637423989 0.6374239897486897101767128116760161954349 #define FFTW_K638244183 0.6382441836448200939919339938994422817340 #define FFTW_K638846805 0.6388468056519613170701714797131712501021 #define FFTW_K639673021 0.6396730215588912736376413785400172119839 #define FFTW_K640212840 0.6402128404624880139089127673149144443273 #define FFTW_K640593178 0.6405931786981751555801787491064955966940 #define FFTW_K642787609 0.6427876096865393263226434099072634329075 #define FFTW_K645171983 0.6451719835420876332916589890067163479062 #define FFTW_K645627851 0.6456278515588023976509609942805170886061 #define FFTW_K646299237 0.6462992378609408919872782945589183784725 #define FFTW_K647386284 0.6473862847818276391816601341861462687573 #define FFTW_K648228395 0.6482283953077884016265676818920522589008 #define FFTW_K649448048 0.6494480483301836557263207708937628792775 #define FFTW_K650618300 0.6506183002042421137200625338820968810477 #define FFTW_K651372482 0.6513724827222222074539996146910164660920 #define FFTW_K652287411 0.6522874112781211543709918892277518756944 #define FFTW_K652822118 0.6528221181905216240058867193362104152324 #define FFTW_K653172842 0.6531728429537767640842030136563054150768 #define FFTW_K654860733 0.6548607339452850640569250724662935531838 #define FFTW_K656752024 0.6567520240477344067154384346008419370839 #define FFTW_K657203678 0.6572036788179724611572838276890770109395 #define FFTW_K657938725 0.6579387259397126123701191819931188157209 #define FFTW_K658511379 0.6585113790650386427945048286629364391494 #define FFTW_K659345815 0.6593458151000688684251246120553374509154 #define FFTW_K660152120 0.6601521206712317513451242124324233897176 #define FFTW_K660674723 0.6606747233900814419084029992842146796392 #define FFTW_K661311865 0.6613118653236518765686217371023240621957 #define FFTW_K661685837 0.6616858375968594152403677203172028537185 #define FFTW_K663122658 0.6631226582407952023767854926667662795247 #define FFTW_K664795865 0.6647958656139378287087022425974990458408 #define FFTW_K665325700 0.6653257001655653635571413398480420351878 #define FFTW_K666346577 0.6663465779520039455829121186875666953965 #define FFTW_K667318811 0.6673188112222394158299466460967518615170 #define FFTW_K667787758 0.6677877587886956156678714244522237437632 #define FFTW_K669130606 0.6691306063588582138262733306867804735995 #define FFTW_K670384843 0.6703848439562785276102304567161121618440 #define FFTW_K670784730 0.6707847301392234490950123366082160122035 #define FFTW_K671558954 0.6715589548470184006253768504274218032287 #define FFTW_K672300890 0.6723008902613167880864184616374229315599 #define FFTW_K673695643 0.6736956436465572117126919124256946158624 #define FFTW_K674983001 0.6749830015182105320655112776739346328419 #define FFTW_K675590207 0.6755902076156602443483393536743541823082 #define FFTW_K676174900 0.6761749002740194352804986161659714461903 #define FFTW_K677281571 0.6772815716257410747621509844956257184155 #define FFTW_K678311836 0.6783118362696160847748068699856585450415 #define FFTW_K678800745 0.6788007455329417413938555542417347670587 #define FFTW_K679273338 0.6792733388972931155862949904270503180450 #define FFTW_K680172737 0.6801727377709193901873587010337402440270 #define FFTW_K681417939 0.6814179395938911071752870865417535631154 #define FFTW_K682553143 0.6825531432186540828745375453725405780987 #define FFTW_K683592302 0.6835923020228712805134975943161551170438 #define FFTW_K684547105 0.6845471059286886737322833576212092698895 #define FFTW_K685427422 0.6854274223350397681993662181891218368258 #define FFTW_K686241637 0.6862416378687335857296049996175379830146 #define FFTW_K686996926 0.6869969260349016335361463414661483035462 #define FFTW_K687699458 0.6876994588534232930838768523753670644636 #define FFTW_K688354575 0.6883545756937539843892561434196122934864 #define FFTW_K688966919 0.6889669190756865678008668038181416871299 #define FFTW_K689540544 0.6895405447370669246167306299574847028455 #define FFTW_K690079011 0.6900790114821119896680022393860466831042 #define FFTW_K691062648 0.6910626489868646759049354256591699817466 #define FFTW_K691938868 0.6919388689775462000100916668541419889185 #define FFTW_K692724353 0.6927243535095993926023640323286367890472 #define FFTW_K693432500 0.6934325007922417286259483972875805939519 #define FFTW_K694074195 0.6940741952206338743562373929183182498191 #define FFTW_K694658370 0.6946583704589972866564062994226862299198 #define FFTW_K695192427 0.6951924276746422635493018952393936461260 #define FFTW_K695682550 0.6956825506034863980123038192788602156570 #define FFTW_K696133945 0.6961339459629266082804580802171441972963 #define FFTW_K696551029 0.6965510290629970275685644956080105169444 #define FFTW_K696937568 0.6969375686552934513687343434240100437094 #define FFTW_K697296801 0.6972968010939954123883995190174803108192 #define FFTW_K697631521 0.6976315211349847088683553934221612826295 #define FFTW_K697944154 0.6979441547663435525141697077142117061923 #define FFTW_K698236818 0.6982368180860728303443788766343622359181 #define FFTW_K707106781 0.7071067811865475244008443621048490392848 #define FFTW_K715866849 0.7158668492597184358325495667351529571818 #define FFTW_K716152188 0.7161521883143933244871695467834148450420 #define FFTW_K716456740 0.7164567402983151385899735430616918149233 #define FFTW_K716782513 0.7167825131684512560287415441946047504647 #define FFTW_K717131804 0.7171318047589634877970500299385526785307 #define FFTW_K717507257 0.7175072570443311343681755891326858548995 #define FFTW_K717911923 0.7179119230644419217516810110208110922839 #define FFTW_K718349350 0.7183493500977275799770853713340482116475 #define FFTW_K718823683 0.7188236838779293347704518118723688496542 #define FFTW_K719339800 0.7193398003386511393560546744567119082307 #define FFTW_K719903473 0.7199034737579958486390645343470509553063 #define FFTW_K720521593 0.7205215936007870086417952013179792194347 #define FFTW_K721202447 0.7212024473438145312912178776909015417372 #define FFTW_K721956093 0.7219560939545244623539160604710216653225 #define FFTW_K722794863 0.7227948638273915285452633514998522610902 #define FFTW_K723734038 0.7237340381050701616398577367648401146360 #define FFTW_K724247082 0.7242470829514669209410692432905531674831 #define FFTW_K724792787 0.7247927872291199588654846624405482525919 #define FFTW_K725374371 0.7253743710122876379932841111897274422634 #define FFTW_K725995491 0.7259954919231308581383348989285119089043 #define FFTW_K726660322 0.7266603220340270471615222876385396255744 #define FFTW_K727373641 0.7273736415730486959871764176638155218003 #define FFTW_K728140953 0.7281409538757884113627136381609143278784 #define FFTW_K728968627 0.7289686274214115231467303190552591113725 #define FFTW_K729864072 0.7298640726978356573501011944031818828671 #define FFTW_K730835964 0.7308359642781241016508331160835884644009 #define FFTW_K731894522 0.7318945221817254249995908196165164482138 #define FFTW_K733051871 0.7330518718298263285224314892706719069732 #define FFTW_K733885366 0.7338853664321991204758701610226706020529 #define FFTW_K734322509 0.7343225094356855356361262221870633391234 #define FFTW_K734774150 0.7347741508630672705517472711052032451697 #define FFTW_K735723910 0.7357239106731316247742076119610924993214 #define FFTW_K736741137 0.7367411378764049113081712804175510630885 #define FFTW_K737277336 0.7372773368101240413842933949823167074783 #define FFTW_K737833279 0.7378332790417272840054057907426797687494 #define FFTW_K739008917 0.7390089172206591159245343098726481057599 #define FFTW_K740277997 0.7402779970753155388739455189600782362008 #define FFTW_K740951125 0.7409511253549590911756168974951627297289 #define FFTW_K741652105 0.7416521056479575401050298834696252306095 #define FFTW_K742013585 0.7420135854509107900562897491988128499895 #define FFTW_K743144825 0.7431448254773942350146970489742569771891 #define FFTW_K744351737 0.7443517375622702753223079406751082310911 #define FFTW_K744772182 0.7447721827437818541801075535542228384922 #define FFTW_K745642164 0.7456421648831656094855517544592784043106 #define FFTW_K746553221 0.7465532216119626505430821259987599991059 #define FFTW_K747025071 0.7470250712409959770813061511833665718690 #define FFTW_K748510748 0.7485107481711010986346305997013513838464 #define FFTW_K749781202 0.7497812029677341725472752431791603229768 #define FFTW_K750111069 0.7501110696304595415116318903602243084582 #define FFTW_K750672305 0.7506723052527243552853714132129325824726 #define FFTW_K751131930 0.7511319308705198908719336792015250259316 #define FFTW_K751839807 0.7518398074789773964075194063769614427711 #define FFTW_K752570769 0.7525707698561385039345058991616619849640 #define FFTW_K753071466 0.7530714660036109335328981126967543453011 #define FFTW_K753713025 0.7537130253273611135174409504536276492985 #define FFTW_K754106609 0.7541066097768962584072425641248841945967 #define FFTW_K755749574 0.7557495743542582837740358439723444201797 #define FFTW_K757208846 0.7572088465064845475754640536057844730404 #define FFTW_K757511242 0.7575112421616200777921492788026149650951 #define FFTW_K757971723 0.7579717231454529817885572940611047033822 #define FFTW_K758758122 0.7587581226927909019132546363634371874187 #define FFTW_K759404916 0.7594049166547071324830192475886597898185 #define FFTW_K760405965 0.7604059656000309381745943648449019998887 #define FFTW_K761445958 0.7614459583691344354059827794359096182151 #define FFTW_K762162055 0.7621620551276364632557304138001066169968 #define FFTW_K763084068 0.7630840681998065061370822576584453862969 #define FFTW_K763652196 0.7636521965473320213761899200454104141096 #define FFTW_K764037375 0.7640373758216074366584418224732236328521 #define FFTW_K766044443 0.7660444431189780352023926505554166739358 #define FFTW_K767880446 0.7678804460366000439108131759354179442125 #define FFTW_K768197578 0.7681975780402805136696963323797498461191 #define FFTW_K768647139 0.7686471397785320711672309487157031840488 #define FFTW_K769333970 0.7693339709828789081165579311348793444580 #define FFTW_K769833983 0.7698339834299062446400585995897523594467 #define FFTW_K770513242 0.7705132427757892308030096363961778472716 #define FFTW_K771489179 0.7714891798219429236333137852557419058307 #define FFTW_K771916650 0.7719166509163208938857372713158033849885 #define FFTW_K773010453 0.7730104533627369608109066097584698009710 #define FFTW_K774141610 0.7741416106390824490643725637222281648702 #define FFTW_K774604961 0.7746049618276545830695547811609143505275 #define FFTW_K775015651 0.7750156514834587774905671515508743070762 #define FFTW_K775711290 0.7757112907044198070411010109695368955877 #define FFTW_K776523862 0.7765238627180424194178981071015438682470 #define FFTW_K777145961 0.7771459614569708799799377436724038490920 #define FFTW_K778035754 0.7780357543184395071379034311358886990222 #define FFTW_K778641538 0.7786415380497551756216347075406753784977 #define FFTW_K779080574 0.7790805745256704319243606206074903916787 #define FFTW_K779413382 0.7794133820415916066406766395486940072562 #define FFTW_K781831482 0.7818314824680298087084445266740577502323 #define FFTW_K784119806 0.7841198065767104288007771818131996408643 #define FFTW_K784415664 0.7844156649195757164147347243863789879656 #define FFTW_K784799385 0.7847993852786609660467986845419951971886 #define FFTW_K785316930 0.7853169308807449274703402789474438465742 #define FFTW_K786053094 0.7860530947427874697567960561472203660398 #define FFTW_K786551555 0.7865515558026424811142105001200600923644 #define FFTW_K787183480 0.7871834806090501817971553081772994121428 #define FFTW_K788010753 0.7880107536067219566939777878358516666417 #define FFTW_K788346427 0.7883464276266062620091647053596892826565 #define FFTW_K789140509 0.7891405093963935992189811493990907424327 #define FFTW_K790155012 0.7901550123756903651583739005191500716562 #define FFTW_K790775736 0.7907757369376985820782204594612615906186 #define FFTW_K791496488 0.7914964884292541024484192534757154670595 #define FFTW_K791902245 0.7919022459222750967567379392185911277200 #define FFTW_K793353340 0.7933533402912351645797769615012992766286 #define FFTW_K794854441 0.7948544414133532553739957580767734022432 #define FFTW_K795292871 0.7952928712734264419747999587861323112984 #define FFTW_K796093065 0.7960930657056437459980762465098682421823 #define FFTW_K796805111 0.7968051114159045953017786484229447858314 #define FFTW_K797132507 0.7971325072229224793372837601652378546732 #define FFTW_K798017227 0.7980172272802395033328051127962613693613 #define FFTW_K799010485 0.7990104853582490339189956088648939776689 #define FFTW_K799442763 0.7994427634035011497843129165366612315496 #define FFTW_K799839244 0.7998392447397193882383350307398838367966 #define FFTW_K800541240 0.8005412409243604039694861948940174149851 #define FFTW_K801413621 0.8014136218679566597869832895333147708145 #define FFTW_K802123192 0.8021231927550437850832948919339251336279 #define FFTW_K802711637 0.8027116379309636648857701593460559768659 #define FFTW_K803207531 0.8032075314806449098066765129631419238795 #define FFTW_K803997130 0.8039971303669405448263546938160337037246 #define FFTW_K804597779 0.8045977797666683273479469589870672086575 #define FFTW_K805070053 0.8050700531275629237964644458284235283226 #define FFTW_K805451132 0.8054511325509459412018817468525086560274 #define FFTW_K805765105 0.8057651056609781448783432800395721783251 #define FFTW_K806028263 0.8060282634540050525485951357692559600329 #define FFTW_K809016994 0.8090169943749474241022934171828190588601 #define FFTW_K811938005 0.8119380057158564945968154707997246072052 #define FFTW_K812188872 0.8121888727802111341842463443864419315001 #define FFTW_K812486878 0.8124868780056812804083249549706806424640 #define FFTW_K812846684 0.8128466845916152165790961432719088000368 #define FFTW_K813289740 0.8132897407355653520077715387689353346970 #define FFTW_K813848717 0.8138487172701949671014723968817952735703 #define FFTW_K814575952 0.8145759520503357077796110789197173627162 #define FFTW_K815028337 0.8150283375168113542809178737613989382610 #define FFTW_K815560868 0.8155608689592601713495029594534251284932 #define FFTW_K816196912 0.8161969123562216908718525404314132261743 #define FFTW_K816969893 0.8169698930104420169734140372449881772467 #define FFTW_K817584813 0.8175848131515836965049208841306338094710 #define FFTW_K817929360 0.8179293607667176652958167850895491664995 #define FFTW_K818302775 0.8183027759081690562813923055156721567774 #define FFTW_K819152044 0.8191520442889917896844883859168434318900 #define FFTW_K820172254 0.8201722545969558802093426246966592359901 #define FFTW_K820763441 0.8207634412072763263635445613553707767234 #define FFTW_K821420775 0.8214207751204915613062020704361611380444 #define FFTW_K821777815 0.8217778152252451671574450614136543968389 #define FFTW_K822983865 0.8229838658936563945796174234393819906550 #define FFTW_K824126188 0.8241261886220156617296849031023120581344 #define FFTW_K824441560 0.8244415603417603172395375008020188385297 #define FFTW_K824997474 0.8249974745983023155379937789444219618160 #define FFTW_K825471896 0.8254718969627739569806123728687672821516 #define FFTW_K826238774 0.8262387743159948719451625737726783977923 #define FFTW_K827080574 0.8270805742745618249178521862153294255631 #define FFTW_K827688998 0.8276889981568905561357816231375032629304 #define FFTW_K828509649 0.8285096492438421235308184341918643175695 #define FFTW_K829037572 0.8290375725550416920063368415016420263290 #define FFTW_K829405685 0.8294056854502017964409300836351034222685 #define FFTW_K829677013 0.8296770135526188902704259673870759766830 #define FFTW_K831469612 0.8314696123025452370787883776179057567385 #define FFTW_K833313919 0.8333139190825149799338497823040738779341 #define FFTW_K833602385 0.8336023852211194846164818272941764912595 #define FFTW_K833997817 0.8339978178898779396182802893240929133492 #define FFTW_K834573253 0.8345732537213026509332106768737349045847 #define FFTW_K834971812 0.8349718124324073791989500778051524105744 #define FFTW_K835487811 0.8354878114129364196538261700195835937419 #define FFTW_K836182124 0.8361821242547108702206976219550553416196 #define FFTW_K837166478 0.8371664782625285748060612009369102474987 #define FFTW_K838088104 0.8380881048918406577111979492710431086713 #define FFTW_K838670567 0.8386705679454240296375909418045478940395 #define FFTW_K839365426 0.8393654261319499596375221301924238843327 #define FFTW_K839765683 0.8397656832273979021124385277222164103972 #define FFTW_K840025923 0.8400259231507714427435891533712282132058 #define FFTW_K841253532 0.8412535328311811688618116489193677175133 #define FFTW_K842582073 0.8425820736166491030403155344809671036641 #define FFTW_K842892271 0.8428922714167970616253021027431752417750 #define FFTW_K843391445 0.8433914458128857012728568058275720937337 #define FFTW_K843775559 0.8437755598231856492381035650969764103387 #define FFTW_K844327925 0.8443279255020150785485580639666815053816 #define FFTW_K844853565 0.8448535652497070732595712051049570977198 #define FFTW_K845190085 0.8451900855437947525384210461577995981395 #define FFTW_K845596003 0.8455960035018260599096401021741480733078 #define FFTW_K846724199 0.8467241992282841683527758162629652715100 #define FFTW_K847734427 0.8477344278896709378979078108963493518662 #define FFTW_K848048096 0.8480480961564259703861761786903864487287 #define FFTW_K848644257 0.8486442574947509504641043389938084539825 #define FFTW_K849202181 0.8492021815265788876490969373431002233934 #define FFTW_K850217135 0.8502171357296141521341439229493520584706 #define FFTW_K851116672 0.8511166724369997244053230155948839997322 #define FFTW_K851529137 0.8515291377333112998870022534009853476003 #define FFTW_K851919408 0.8519194088383270748769520464652824320111 #define FFTW_K852640164 0.8526401643540922215193834581304121358172 #define FFTW_K853290881 0.8532908816321556602859841530744174889494 #define FFTW_K853593089 0.8535930890373464483418460304073336603452 #define FFTW_K854419404 0.8544194045464885525482156195502508000478 #define FFTW_K855142763 0.8551427630053461657188369620377883134776 #define FFTW_K855781272 0.8557812723014475226428751870717647816026 #define FFTW_K856349030 0.8563490302515889746335454168038935447319 #define FFTW_K856857176 0.8568571761675892445230765519053744460274 #define FFTW_K857314628 0.8573146280763323254728913071983536155226 #define FFTW_K857728610 0.8577286100002720699022699842847701370425 #define FFTW_K858448793 0.8584487936018661185256909553391418597076 #define FFTW_K859053954 0.8590539543698851819025917736107901459966 #define FFTW_K859569606 0.8595696069872011600426288131227073044970 #define FFTW_K860014240 0.8600142402077005233981293105137709830115 #define FFTW_K860401579 0.8604015792601393698695982953288507392950 #define FFTW_K860742027 0.8607420270039436371645764888171186033396 #define FFTW_K861043611 0.8610436117673555084585595060301225131232 #define FFTW_K861312628 0.8613126282324089409969539854169889092899 #define FFTW_K861554081 0.8615540813938061097287323042306235949835 #define FFTW_K861772000 0.8617720007435496349698180347969737605395 #define FFTW_K866025403 0.8660254037844386467637231707529361834714 #define FFTW_K870086991 0.8700869911087114186522924044838488439108 #define FFTW_K870285241 0.8702852410301552181879425663868640291029 #define FFTW_K870503836 0.8705038360561720522112540977190092812503 #define FFTW_K870746077 0.8707460771197771877217507835501149827317 #define FFTW_K871016019 0.8710160199955155735930822648109600128714 #define FFTW_K871318704 0.8713187041233893515466254843890811801214 #define FFTW_K871660470 0.8716604700327512208196316756206218352705 #define FFTW_K872049408 0.8720494081438076081277840260926609267766 #define FFTW_K872496007 0.8724960070727971145251610992220606750668 #define FFTW_K873014113 0.8730141131611881587490998015817489306733 #define FFTW_K873622390 0.8736223906463695371317751603403871753524 #define FFTW_K874346616 0.8743466161445821188274846642006517855751 #define FFTW_K874763084 0.8747630845319612851774127792561794433059 #define FFTW_K875223421 0.8752234219087536975047322807456399773275 #define FFTW_K875734942 0.8757349421956368077335331364008557877370 #define FFTW_K876306680 0.8763066800438635873081159039220625833990 #define FFTW_K876949928 0.8769499282066715222872466054001294856266 #define FFTW_K877678989 0.8776789895672556152144819341043752955765 #define FFTW_K878221573 0.8782215733702285355675152847970664824282 #define FFTW_K878512250 0.8785122509109423770324441012904022125743 #define FFTW_K878817112 0.8788171126619653741299951436845247996106 #define FFTW_K879473751 0.8794737512064890713908547548818411172079 #define FFTW_K880201391 0.8802013911801111312939007656084800475957 #define FFTW_K880595531 0.8805955318567379951929100621071846598466 #define FFTW_K881012194 0.8810121942857845060087088179255903520436 #define FFTW_K881921264 0.8819212643483550297127568636603883495084 #define FFTW_K882678798 0.8826787983255474000126255959521373235657 #define FFTW_K882947592 0.8829475928589269420321713603157193860835 #define FFTW_K883512044 0.8835120444460229228273168942218641218895 #define FFTW_K884115393 0.8841153935046097894486040972072045445368 #define FFTW_K884432930 0.8844329309978143222381222066254039736375 #define FFTW_K885456025 0.8854560256532098959003755220150988786055 #define FFTW_K886360032 0.8863600326884082489319680620575687435341 #define FFTW_K886599306 0.8865993063730000600561492865169439780362 #define FFTW_K887010833 0.8870108331782217010546098830375165208464 #define FFTW_K887352075 0.8873520750565715798425605640019506703212 #define FFTW_K887885218 0.8878852184023752349842692774195844835989 #define FFTW_K888445635 0.8884456359788723003064024832079566539738 #define FFTW_K888835448 0.8888354486549234663115988929508545523678 #define FFTW_K889342148 0.8893421488825189034181645031537721365929 #define FFTW_K889657090 0.8896570909947472780924836875303123734246 #define FFTW_K889871808 0.8898718088114686056939962978651778190884 #define FFTW_K891006524 0.8910065241883678623597095714136263127705 #define FFTW_K892254238 0.8922542386183940179207828634080536567074 #define FFTW_K892518835 0.8925188358598812258172950673579982916784 #define FFTW_K892925858 0.8929258581495684897301089783029903371682 #define FFTW_K893224301 0.8932243011955153203424164474933979780006 #define FFTW_K893632640 0.8936326403234122481925741868666551173761 #define FFTW_K894225269 0.8942252698597112823960628785193238212484 #define FFTW_K894487082 0.8944870822287955820318233216497337670451 #define FFTW_K895163291 0.8951632913550623220670164997537854569905 #define FFTW_K895872260 0.8958722607586879531165149908123770853627 #define FFTW_K896165556 0.8961655569610556111428812574074225463776 #define FFTW_K896872741 0.8968727415326883038941039363930811981792 #define FFTW_K897398428 0.8973984286913583989856569596882832674134 #define FFTW_K897804539 0.8978045395707416571368028976620412024434 #define FFTW_K898390981 0.8983909818919788715724772004503877322352 #define FFTW_K898794046 0.8987940462991669927822956766957853549299 #define FFTW_K899088113 0.8990881137654259575573009403311324039869 #define FFTW_K899312130 0.8993121301712192281267728278439957438859 #define FFTW_K900968867 0.9009688679024191262361023195074450511659 #define FFTW_K902585284 0.9025852843498606067626451490957717568164 #define FFTW_K902797829 0.9027978299657435157159434879211280035795 #define FFTW_K903074732 0.9030747323245327046634600051435581145958 #define FFTW_K903450434 0.9034504346103822750158502586754325787995 #define FFTW_K903989293 0.9039892931234433315862002972305370487101 #define FFTW_K904357160 0.9043571606975774917577889956510946245375 #define FFTW_K904827052 0.9048270524660195277136686479326975939704 #define FFTW_K905448237 0.9054482374931466157217925560288827802948 #define FFTW_K905702263 0.9057022630804714831454571042369241665150 #define FFTW_K906307787 0.9063077870366499632425526567543169832677 #define FFTW_K907090913 0.9070909137343407425834416725781145590933 #define FFTW_K907575419 0.9075754196709570536201612900285178073502 #define FFTW_K908143173 0.9081431738250812992580858365718675308412 #define FFTW_K908465271 0.9084652718195236861115036475859197065373 #define FFTW_K908672791 0.9086727911416249200241224067716522862116 #define FFTW_K909631995 0.9096319953545183714117153830790284600602 #define FFTW_K910634772 0.9106347728549131795432779003164790771901 #define FFTW_K910863824 0.9108638249211758185732917071605506458979 #define FFTW_K911228490 0.9112284903881357028266050899228384756870 #define FFTW_K911505852 0.9115058523116731517830363345907678394956 #define FFTW_K911899845 0.9118998459920900771751693987314744889449 #define FFTW_K912503616 0.9125036164765500159680850800074193201110 #define FFTW_K912783265 0.9127832650613189089239580059304432421433 #define FFTW_K913545457 0.9135454576426008955021275719853171779408 #define FFTW_K914209755 0.9142097557035306546350148293935774010447 #define FFTW_K914412623 0.9144126230158124813216621552768982013708 #define FFTW_K914793868 0.9147938684880209699974625808573866803804 #define FFTW_K915145617 0.9151456172430184708919922968074955054838 #define FFTW_K915773326 0.9157733266550574399193492356940089700766 #define FFTW_K916316904 0.9163169044870047347483910891303247178132 #define FFTW_K916562255 0.9165622558699761858166528942590914119157 #define FFTW_K917211301 0.9172113015054530178438054479656154936903 #define FFTW_K917754625 0.9177546256839811411456038575494850645302 #define FFTW_K918216106 0.9182161068802740147589614153146366024813 #define FFTW_K918612937 0.9186129377636217717227839432978941276582 #define FFTW_K918957811 0.9189578116202306291271881732781545512765 #define FFTW_K919527772 0.9195277725514506383219765907863572139881 #define FFTW_K919979443 0.9199794436588242031333806039892048138233 #define FFTW_K920346183 0.9203461835691594463070513006835656710894 #define FFTW_K920649886 0.9206498866764287674701863104116332022322 #define FFTW_K920905517 0.9209055179449536255994064620068449731338 #define FFTW_K921123653 0.9211236531148501159329021282782128071959 #define FFTW_K921311977 0.9213119778704129896905480715839225965944 #define FFTW_K921476211 0.9214762118704076536461883522196093537778 #define FFTW_K923879532 0.9238795325112867561281831893967882868224 #define FFTW_K926323968 0.9263239682514949705912905047270639912213 #define FFTW_K926494067 0.9264940672148017743152104663441626574522 #define FFTW_K926689607 0.9266896074318334380530112475652589383520 #define FFTW_K926916757 0.9269167573460217630248384996993891944013 #define FFTW_K927183854 0.9271838545667874008064744511369569420976 #define FFTW_K927502451 0.9275024511020946646050826878721451949727 #define FFTW_K927889027 0.9278890272965093271272407498585829086596 #define FFTW_K928367933 0.9283679330160726102005887247635900348309 #define FFTW_K928652999 0.9286529995722621793338215070602379216189 #define FFTW_K928976719 0.9289767198167914417896296010855542620841 #define FFTW_K929347524 0.9293475242268224539554160275642758031236 #define FFTW_K929776485 0.9297764858882514036609425562219907295871 #define FFTW_K930278443 0.9302784433378331543856301730081308574415 #define FFTW_K930873748 0.9308737486442042556377992419512753071420 #define FFTW_K931336177 0.9313361774523384395875688031090437233347 #define FFTW_K931591088 0.9315910880512789729395061972269616864428 #define FFTW_K931864029 0.9318640292114523161883811474964361005778 #define FFTW_K932472229 0.9324722294043558045731158918215633862626 #define FFTW_K932992798 0.9329927988347388877116602555433024982950 #define FFTW_K933180611 0.9331806110416025837525594317989553113908 #define FFTW_K933580426 0.9335804264972017489900430631395707414059 #define FFTW_K934016108 0.9340161087325479993506852910851617783859 #define FFTW_K934248940 0.9342489402945998550750225109270206586844 #define FFTW_K935016242 0.9350162426854148234397845998378307290505 #define FFTW_K935716819 0.9357168190404936530452206735763588980841 #define FFTW_K935905926 0.9359059267573257002917072494667353604862 #define FFTW_K936234870 0.9362348706397372095087557244681174697775 #define FFTW_K936511241 0.9365112411970547880293893304037418045007 #define FFTW_K936949724 0.9369497249997617358215340023800922029264 #define FFTW_K937419661 0.9374196611341208896823459233762131843021 #define FFTW_K937752132 0.9377521321470804584291761743123298881308 #define FFTW_K938191335 0.9381913359224841344523397266860115488320 #define FFTW_K938468422 0.9384684220497604029667155343105113540832 #define FFTW_K938659164 0.9386591647471505040724405750138456370676 #define FFTW_K939692620 0.9396926207859083840541092773247314699362 #define FFTW_K940700266 0.9407002666710332778144147138258163847213 #define FFTW_K940880768 0.9408807689542254723241184190970210354205 #define FFTW_K941140047 0.9411400479795615741432348245881724850480 #define FFTW_K941544065 0.9415440651830207784125094025995023571856 #define FFTW_K941844363 0.9418443636395246934886599986368180673483 #define FFTW_K942260922 0.9422609221188204956176842253179721336254 #define FFTW_K942641491 0.9426414910921783947771677362823118828448 #define FFTW_K942877445 0.9428774454610841700409712864144146678198 #define FFTW_K943154434 0.9431544344712774640574280872093873723077 #define FFTW_K943883330 0.9438833303083675628952636071510366215206 #define FFTW_K944489228 0.9444892287836612562119467742722171807155 #define FFTW_K944669091 0.9446690916079188006659540817282152326248 #define FFTW_K945000818 0.9450008187146684873915352426727239165683 #define FFTW_K945299815 0.9452998150346402616705143998997016607838 #define FFTW_K945817241 0.9458172417006346790196657142849415278238 #define FFTW_K946249369 0.9462493690718368405241967976805762668189 #define FFTW_K946439773 0.9464397731576093538703011154574776795266 #define FFTW_K946930129 0.9469301294951056642558042748539836836988 #define FFTW_K947326353 0.9473263538541913844327283048776780232015 #define FFTW_K947653171 0.9476531711828024442740040119711601634623 #define FFTW_K947927346 0.9479273461671317559187225179207687336495 #define FFTW_K948160647 0.9481606475909658589306343094708234149340 #define FFTW_K948536441 0.9485364419471455261649097836474828763046 #define FFTW_K948825916 0.9488259168373196381387831532597734947289 #define FFTW_K949055747 0.9490557470106686677560247808577723846680 #define FFTW_K949242643 0.9492426435730339082613672603147399360686 #define FFTW_K949397608 0.9493976084683812981670710293175487404773 #define FFTW_K949528180 0.9495281805930366671959360741893450282522 #define FFTW_K951056516 0.9510565162951535721164393333793821434057 #define FFTW_K952635380 0.9526353808033825473157607370981429062638 #define FFTW_K952775122 0.9527751227228962896620281580565795070492 #define FFTW_K952942000 0.9529420004271565558310283034152551849996 #define FFTW_K953144766 0.9531447668141608217276037452354468061606 #define FFTW_K953396392 0.9533963920549305459532780713869375485036 #define FFTW_K953716950 0.9537169507482269211438470646002574361517 #define FFTW_K954139256 0.9541392564000488514758967202113007469136 #define FFTW_K954405001 0.9544050018795074313557527182827665834059 #define FFTW_K954720866 0.9547208665085456260632257187577027324935 #define FFTW_K955102497 0.9551024972069124260581615872080246655679 #define FFTW_K955572805 0.9555728057861407328113340537674666664396 #define FFTW_K955952142 0.9559521426716116096201124770282868790124 #define FFTW_K956166734 0.9561667347392509355062530712604052072035 #define FFTW_K956400984 0.9564009842765224267816104574942389408587 #define FFTW_K956940335 0.9569403357322088649357978869802699694828 #define FFTW_K957422038 0.9574220383620054784219814066701634108048 #define FFTW_K957600599 0.9576005999084059522314160387302455826259 #define FFTW_K957989512 0.9579895123154888744373747669567546242580 #define FFTW_K958427482 0.9584274824582527002251773197822330882206 #define FFTW_K958667853 0.9586678530366606221509833883096862227102 #define FFTW_K958819734 0.9588197348681930497610285413925982910492 #define FFTW_K959492973 0.9594929736144973898903680570663276990624 #define FFTW_K960149873 0.9601498736716017631384943454019255716108 #define FFTW_K960293685 0.9602936856769430717520688004889952933058 #define FFTW_K960518111 0.9605181116313722984399716039511134369404 #define FFTW_K960917321 0.9609173219450995432119881422930318860934 #define FFTW_K961261695 0.9612616959383188619164970485570648735257 #define FFTW_K961416730 0.9614167300122124852309898043387424113665 #define FFTW_K961825643 0.9618256431728190704087962907315185500314 #define FFTW_K962268000 0.9622680003092504049510324619909753067365 #define FFTW_K962455236 0.9624552364536472876302664051852632909944 #define FFTW_K962624246 0.9626242469500120742026630479274062371083 #define FFTW_K962917287 0.9629172873477992950152235973732387993550 #define FFTW_K963270801 0.9632708010475163164004074245844491050914 #define FFTW_K963549992 0.9635499925192229600433361810024919509632 #define FFTW_K963776065 0.9637760657954398666864643555078351536631 #define FFTW_K963962860 0.9639628606958532918885659525499857760906 #define FFTW_K964253495 0.9642534954531409838529948264870398702492 #define FFTW_K964469175 0.9644691750543765745192646181812789566372 #define FFTW_K964635581 0.9646355819083586729132710036114158221655 #define FFTW_K964767868 0.9647678688145159485146378868261663336703 #define FFTW_K965925826 0.9659258262890682867497431997288973676339 #define FFTW_K967027724 0.9670277247913203491918621498323771774221 #define FFTW_K967146854 0.9671468547019571390593240593318965996643 #define FFTW_K967294863 0.9672948630390294157758746656854387201623 #define FFTW_K967483697 0.9674836970574252545056551754955779856175 #define FFTW_K967732946 0.9677329469334988386884628287513969373382 #define FFTW_K968077118 0.9680771188662043051530076728012907428347 #define FFTW_K968303522 0.9683035221222614393926671480238885087824 #define FFTW_K968583161 0.9685831611286311194901683754647358138360 #define FFTW_K968937301 0.9689373017815073299549272178752194446760 #define FFTW_K969077286 0.9690772862290779477269065494657367873034 #define FFTW_K969400265 0.9694002659393304167361073217961682259573 #define FFTW_K969796936 0.9697969360350094718195360156539576289212 #define FFTW_K970031253 0.9700312531945439926039842072861002514568 #define FFTW_K970295726 0.9702957262759964723063778740339903776322 #define FFTW_K970441148 0.9704411482532114174890399562715796811572 #define FFTW_K970941817 0.9709418174260520271569822762937892272498 #define FFTW_K971429893 0.9714298932647099623746131301214786871614 #define FFTW_K971567089 0.9715670893979414829343695558577052136741 #define FFTW_K971811568 0.9718115683235416873794201547326635821400 #define FFTW_K972022914 0.9720229140804107808510859601443895664086 #define FFTW_K972369920 0.9723699203976766018336458341187976440025 #define FFTW_K972758663 0.9727586637650371566638855431106228008872 #define FFTW_K973044870 0.9730448705798238388328851727846959200348 #define FFTW_K973264373 0.9732643737003824959312345137172719428005 #define FFTW_K973438054 0.9734380543606928258135514267061557560963 #define FFTW_K973695423 0.9736954238777790443618756632395424075067 #define FFTW_K973876979 0.9738769792773336481496899701335503917353 #define FFTW_K974011916 0.9740119169423335138154695987232315341728 #define FFTW_K974116147 0.9741161479953870616712023593468831967519 #define FFTW_K974927912 0.9749279121818236070181316829939312172328 #define FFTW_K975702130 0.9757021300385285444603957664195279716440 #define FFTW_K975796382 0.9757963826274356228783491415777791577932 #define FFTW_K975916761 0.9759167619387473989575160319010275841997 #define FFTW_K976075877 0.9760758775559271590070457564913246259691 #define FFTW_K976296007 0.9762960071199333659708864896054275771653 #define FFTW_K976620555 0.9766205557100866832082279628778633517990 #define FFTW_K976848317 0.9768483177596007116214126531054889178029 #define FFTW_K977146865 0.9771468659711595194867185493399910586943 #define FFTW_K977403389 0.9774033898178666485587216924073730415593 #define FFTW_K977555238 0.9775552389476861943402493547982576354464 #define FFTW_K977726916 0.9777269163708468952746194417086665766233 #define FFTW_K978147600 0.9781476007338056379285667478695995324597 #define FFTW_K978556492 0.9785564922995040021441569982979483175857 #define FFTW_K978716845 0.9787168453273544836415447921951226189869 #define FFTW_K978855685 0.9788556850953578475488459902421741595530 #define FFTW_K979084087 0.9790840876823228756328148847602371349846 #define FFTW_K979340621 0.9793406217655515015104288246369218020372 #define FFTW_K979529941 0.9795299412524944939380064428117707242914 #define FFTW_K979790652 0.9797906520422677014706319852738255873975 #define FFTW_K979961705 0.9799617050365868167949249404815421840498 #define FFTW_K980082561 0.9800825610923934085579115422063699191729 #define FFTW_K980172487 0.9801724878485438426221952928871404568919 #define FFTW_K980785280 0.9807852804032304491261822361342390369739 #define FFTW_K981451493 0.9814514932524178941230111511474289750195 #define FFTW_K981559156 0.9815591569910653538492430476851306890594 #define FFTW_K981708319 0.9817083199968549376776858998806597451093 #define FFTW_K981928697 0.9819286972627067003986744426247459609910 #define FFTW_K982083682 0.9820836827421560010932038226168804103451 #define FFTW_K982287250 0.9822872507286886810856417428652684163884 #define FFTW_K982566473 0.9825664732332882361458695018243242460076 #define FFTW_K982684124 0.9826841245925209408606988628810258780288 #define FFTW_K982973099 0.9829730996839017782819488448551987160987 #define FFTW_K983254907 0.9832549075639545845546320564305089875746 #define FFTW_K983365676 0.9833656768294661196753671326297494335829 #define FFTW_K983619906 0.9836199069471435884212429322426942302141 #define FFTW_K983797951 0.9837979515735163526446952978240676138119 #define FFTW_K983929588 0.9839295885986296553956360939899698965200 #define FFTW_K984111204 0.9841112043361161061416962408560232630074 #define FFTW_K984230577 0.9842305779475968124404416073840495619445 #define FFTW_K984315023 0.9843150237975341546618492275637931110120 #define FFTW_K984807753 0.9848077530122080593667430245895230136706 #define FFTW_K985277642 0.9852776423889412447740184331785477871601 #define FFTW_K985353835 0.9853538358476930122394797176177663749267 #define FFTW_K985459517 0.9854595177171968680142498259365517811271 #define FFTW_K985615910 0.9856159103477084622647702939762184573686 #define FFTW_K985871018 0.9858710185182358739239575569680608455649 #define FFTW_K986070253 0.9860702539900285422933352225912048513788 #define FFTW_K986361303 0.9863613034027223736025091948190671107285 #define FFTW_K986643332 0.9866433320848790047469239329842060425036 #define FFTW_K986826522 0.9868265225415261517686243504388935079839 #define FFTW_K987050262 0.9870502626379128637906800282243959059321 #define FFTW_K987181783 0.9871817834144501341077945503208892301209 #define FFTW_K987268354 0.9872683547213445699907431277816711317672 #define FFTW_K987688340 0.9876883405951377261900402476934372607584 #define FFTW_K988087896 0.9880878960910771492992690811307084884358 #define FFTW_K988165472 0.9881654720812594137618841327936534641992 #define FFTW_K988280423 0.9882804237803485263249493778325853582721 #define FFTW_K988468324 0.9884683243281113991621906894031537749210 #define FFTW_K988615412 0.9886154122075342261549440645140983788437 #define FFTW_K988830826 0.9888308262251285450697428829340086130652 #define FFTW_K989040187 0.9890401873221639791098880794573835995058 #define FFTW_K989176509 0.9891765099647809734516737380162430639837 #define FFTW_K989343368 0.9893433680751101977923535631123350883204 #define FFTW_K989441638 0.9894416385809445189738370649369388973400 #define FFTW_K989821441 0.9898214418809327323760920377767187873765 #define FFTW_K990181125 0.9901811253364455904432628100327605252812 #define FFTW_K990268068 0.9902680687415703150837748673448507592511 #define FFTW_K990410430 0.9904104308752051583495612400629094294845 #define FFTW_K990522084 0.9905220846375032755297487161751806762898 #define FFTW_K990685946 0.9906859460363307523423229600962060051400 #define FFTW_K990845596 0.9908455965788067627878172563691414037669 #define FFTW_K990949761 0.9909497617679347552486867131683644064606 #define FFTW_K991077488 0.9910774881547800989077028808834981789933 #define FFTW_K991152831 0.9911528310040071586383345991233567829241 #define FFTW_K991444861 0.9914448613738104111445575269285628712777 #define FFTW_K991722674 0.9917226741361015058214790070582345607756 #define FFTW_K991790013 0.9917900138232461089574427772187849280190 #define FFTW_K991900435 0.9919004352588768873144078072665135340842 #define FFTW_K991987177 0.9919871770507430065166704184575838095046 #define FFTW_K992114701 0.9921147013144778310497930427857785214530 #define FFTW_K992239206 0.9922392066001720806339750438970024692424 #define FFTW_K992320579 0.9923205797370450627452009318759713711174 #define FFTW_K992420509 0.9924205096719357582614560541072921874651 #define FFTW_K992479534 0.9924795345987099981567672516611178200108 #define FFTW_K992708874 0.9927088740980539928007516494925201793436 #define FFTW_K992981096 0.9929810960135169614675928693736574381005 #define FFTW_K993068456 0.9930684569549262956374372478102157228837 #define FFTW_K993238357 0.9932383577419429885478955521937043403491 #define FFTW_K993402089 0.9934020897596750687947423983479637156807 #define FFTW_K993481735 0.9934817353485502085180496808547969202400 #define FFTW_K993712209 0.9937122098932425835331482419473786971526 #define FFTW_K993930677 0.9939306773179494792563298151574801808174 #define FFTW_K994000975 0.9940009752399459187884342036497682765393 #define FFTW_K994137957 0.9941379571543596089553027158795515668545 #define FFTW_K994270301 0.9942703017718973183669165054181572463000 #define FFTW_K994334800 0.9943348002101371309920980500642722883465 #define FFTW_K994521895 0.9945218953682733369226919449805703815208 #define FFTW_K994699875 0.9946998756145890479762568067220906149617 #define FFTW_K994757278 0.9947572788580948291790636723123688992574 #define FFTW_K994869323 0.9948693233918951463213533098837194930039 #define FFTW_K994977815 0.9949778150885040755354075401441960635882 #define FFTW_K995030775 0.9950307753654014099099494968280711167442 #define FFTW_K995184726 0.9951847266721968862448369531094799215754 #define FFTW_K995379112 0.9953791129491982046051034132093649871861 #define FFTW_K995471922 0.9954719225730846047262552811299306157575 #define FFTW_K995561964 0.9955619646030800128976780442146194187237 #define FFTW_K995734176 0.9957341762950345218711911789054817839027 #define FFTW_K995896557 0.9958965576170909700362686366938831171748 #define FFTW_K995974293 0.9959742939952390295817189937211678685354 #define FFTW_K996049842 0.9960498426152169249788048954440014509192 #define FFTW_K996194698 0.9961946980917455322950104024738880461835 #define FFTW_K996331730 0.9963317308626913876242320559879490045416 #define FFTW_K996397488 0.9963974885425265016515427736575384585731 #define FFTW_K996461494 0.9964614941176191465297827729475896395564 #define FFTW_K996584493 0.9965844930066698498193520007504877187805 #define FFTW_K996701189 0.9967011895602227462429879020699209472138 #define FFTW_K996757308 0.9967573081342099855852412239757600532391 #define FFTW_K996812007 0.9968120070307501492577958043253480021674 #define FFTW_K996917333 0.9969173337331279761977734087420444201589 #define FFTW_K997017526 0.9970175264485266683508923434628785416228 #define FFTW_K997065801 0.9970658011837404621446414104254119713626 #define FFTW_K997112913 0.9971129134476474623595146912637885801501 #define FFTW_K997203797 0.9972037971811801482250298708781192656558 #define FFTW_K997290456 0.9972904566786902161355971401825678211717 #define FFTW_K997332283 0.9973322836635516728058606115895235926462 #define FFTW_K997452114 0.9974521146102535413623057568371267046549 #define FFTW_K997564050 0.9975640502598242476131626806442550263694 #define FFTW_K997668769 0.9976687691905391984535782806992783166368 #define FFTW_K997766878 0.9977668786231531595627548884062599817399 #define FFTW_K997858923 0.9978589232386035067380697912727776045318 #define FFTW_K997945392 0.9979453927503363420088404809579925550286 #define FFTW_K998026728 0.9980267284282715619523368068634505533369 #define FFTW_K998103328 0.9981033287370440781595580722798538475393 #define FFTW_K998175554 0.9981755542233174708416597487435284042144 #define FFTW_K998243731 0.9982437317643214135795104790047750439576 #define FFTW_K998308158 0.9983081582712682080478207087832775329371 #define FFTW_K998369103 0.9983691039261356791012880254984185496026 #define FFTW_K998426815 0.9984268150178165621314250714948528394090 #define FFTW_K998481516 0.9984815164333162254755259567160496340501 #define FFTW_K998533413 0.9985334138511238645717905110783489569243 #define FFTW_K998582695 0.9985826956767619481118898673784527334232 #define FFTW_K998629534 0.9986295347545738737844920584394365805909 #define FFTW_K998674089 0.9986740898848305076057717645316607303307 #define FFTW_K998716507 0.9987165071710528071463114367595140457475 #define FFTW_K998756921 0.9987569212189223697539952989398761436398 #define FFTW_K998795456 0.9987954562051723927147716047591006944432 #define FFTW_K998867339 0.9988673391830079766626725799084316622350 #define FFTW_K998932974 0.9989329748023724444057615270546990770867 #define FFTW_K998993066 0.9989930665413146473720559084446391440926 #define FFTW_K999048221 0.9990482215818577624037162194033297553505 #define FFTW_K999098966 0.9990989662046814723577027912279173440084 #define FFTW_K999145758 0.9991457583873010291856105308946378568012 #define FFTW_K999188998 0.9991889981715696377009069466390679555486 #define FFTW_K999229036 0.9992290362407229347371262603414616252706 #define FFTW_K999266181 0.9992661810508100203932244590995250044712 #define FFTW_K999300704 0.9993007047883985526997800741767273557026 #define FFTW_K999332848 0.9993328483702393720704821228710461134067 #define FFTW_K999362825 0.9993628256569916913056650851375650424587 #define FFTW_K999390827 0.9993908270190957300062434400439299644952 #define FFTW_K999417022 0.9994170223661740289494017247549951505277 #define FFTW_K999441563 0.9994415637302546063156399140856621311902 #define FFTW_K999464587 0.9994645874763656444298364462428599458836 #define FFTW_K999486216 0.9994862162006878676974893970113697242550 #define FFTW_K999506560 0.9995065603657315570006908367092536671784 #define FFTW_K999525719 0.9995257197133658746658464748330096458419 #define FFTW_K999543784 0.9995437844895333725476836898291665684873 #define FFTW_K999560836 0.9995608365087943494271135836565668351702 #define FFTW_K999576950 0.9995769500822005769626607634052808295813 #define FFTW_K999592192 0.9995921928281892296257285154349983157366 #define FFTW_K999606626 0.9996066263830528855052742630847215222778 #define FFTW_K999620307 0.9996203070249514057426708547796085483660 #define FFTW_K999633286 0.9996332862232839494682650720821574004171 #define FFTW_K999645611 0.9996456111234525767555760293242736879144 #define FFTW_K999657324 0.9996573249755572800367608883676798759498 #define FFTW_K999668467 0.9996684675143130940321877350828094000117 #define FFTW_K999679075 0.9996790752964305212076609008127490933988 #define FFTW_K999689182 0.9996891820008162841543067648951099180292 #define FFTW_K999698818 0.9996988186962042201157656496661721968500 espresso-5.0.2/clib/fftw.h0000644000700200004540000003267412053145633014426 0ustar marsamoscm /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* fftw.h -- system-wide definitions */ /* $Id: fftw.h,v 1.2 2006-01-15 20:18:53 giannozz Exp $ */ #ifndef FFTW_H #define FFTW_H #include #include #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /* our real numbers */ typedef double FFTW_REAL; /********************************************* * Complex numbers and operations *********************************************/ typedef struct { FFTW_REAL re, im; } FFTW_COMPLEX; #define c_re(c) ((c).re) #define c_im(c) ((c).im) typedef enum { FFTW_FORWARD = -1, FFTW_BACKWARD = 1 } fftw_direction; #ifndef FFTW_1_0_COMPATIBILITY #define FFTW_1_0_COMPATIBILITY 1 #endif #if FFTW_1_0_COMPATIBILITY /* backward compatibility with FFTW-1.0 */ #define REAL FFTW_REAL #define COMPLEX FFTW_COMPLEX #endif /********************************************* * Success or failure status *********************************************/ typedef enum { FFTW_SUCCESS = 0, FFTW_FAILURE = -1 } fftw_status; /********************************************* * Codelets *********************************************/ /* * There are two kinds of codelets: * * NO_TWIDDLE computes the FFT of a certain size, operating * out-of-place (i.e., take an input and produce a * separate output) * * TWIDDLE like no_twiddle, but operating in place. Moreover, * multiplies the input by twiddle factors. */ typedef void (notw_codelet) (const FFTW_COMPLEX *, FFTW_COMPLEX *, int, int); typedef void (twiddle_codelet) (FFTW_COMPLEX *, const FFTW_COMPLEX *, int, int, int); typedef void (generic_codelet) (FFTW_COMPLEX *, const FFTW_COMPLEX *, int, int, int, int); /********************************************* * Configurations *********************************************/ /* * A configuration is a database of all known codelets */ typedef struct { int size; /* size of the problem */ int signature; /* unique codelet id */ notw_codelet *codelet; /* * pointer to the codelet that solves * the problem */ } config_notw; extern config_notw fftw_config_notw[]; extern config_notw fftwi_config_notw[]; typedef struct { int size; /* size of the problem */ int signature; /* unique codelet id */ twiddle_codelet *codelet; } config_twiddle; extern config_twiddle fftw_config_twiddle[]; extern config_twiddle fftwi_config_twiddle[]; extern generic_codelet fftw_twiddle_generic; extern generic_codelet fftwi_twiddle_generic; extern char *fftw_version; /***************************** * Plans *****************************/ /* * A plan is a sequence of reductions to compute a FFT of * a given size. At each step, the FFT algorithm can: * * 1) apply a notw codelet, or * 2) recurse and apply a twiddle codelet, or * 3) apply the generic codelet. */ enum fftw_node_type { FFTW_NOTW, FFTW_TWIDDLE, FFTW_GENERIC }; /* structure that contains twiddle factors */ typedef struct fftw_twiddle_struct { int n; int r; int m; FFTW_COMPLEX *twarray; struct fftw_twiddle_struct *next; int refcnt; } fftw_twiddle; /* structure that holds all the data needed for a given step */ typedef struct fftw_plan_node_struct { enum fftw_node_type type; union { /* nodes of type FFTW_NOTW */ struct { int size; notw_codelet *codelet; } notw; /* nodes of type FFTW_TWIDDLE */ struct { int size; twiddle_codelet *codelet; fftw_twiddle *tw; struct fftw_plan_node_struct *recurse; } twiddle; /* nodes of type FFTW_GENERIC */ struct { int size; generic_codelet *codelet; fftw_twiddle *tw; struct fftw_plan_node_struct *recurse; } generic; } nodeu; int refcnt; } fftw_plan_node; struct fftw_plan_struct { int n; fftw_direction dir; fftw_plan_node *root; double cost; int flags; enum fftw_node_type wisdom_type; int wisdom_signature; struct fftw_plan_struct *next; int refcnt; }; /* a plan is just an array of instructions */ typedef struct fftw_plan_struct *fftw_plan; /* flags for the planner */ #define FFTW_ESTIMATE (0) #define FFTW_MEASURE (1) #define FFTW_IN_PLACE (8) #define FFTW_USE_WISDOM (16) extern fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags); extern fftw_twiddle *fftw_create_twiddle(int n, int r, int m); extern void fftw_destroy_twiddle(fftw_twiddle * tw); extern void fftw_print_plan(fftw_plan plan); extern void fftw_destroy_plan(fftw_plan plan); extern void fftw_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out); extern void fftwi_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out); void fftw(fftw_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); extern double fftw_measure_runtime(fftw_plan plan); extern void fftw_die(char *s); extern void *fftw_malloc(size_t n); extern void fftw_free(void *p); extern void fftw_check_memory_leaks(void); extern void fftw_strided_copy(int, FFTW_COMPLEX *, int, FFTW_COMPLEX *); extern void fftw_executor_simple(int, const FFTW_COMPLEX *, FFTW_COMPLEX *, fftw_plan_node *, int, int); extern void *(*fftw_malloc_hook) (size_t n); extern void (*fftw_free_hook) (void *p); /* Wisdom: */ #define FFTW_HAS_WISDOM /* define this symbol so that we know we are using a version of FFTW with wisdom */ extern void fftw_forget_wisdom(void); extern void fftw_export_wisdom(void (*emitter)(char c, void *), void *data); extern fftw_status fftw_import_wisdom(int (*g)(void *), void *data); extern void fftw_export_wisdom_to_file(FILE *output_file); extern fftw_status fftw_import_wisdom_from_file(FILE *input_file); extern char *fftw_export_wisdom_to_string(void); extern fftw_status fftw_import_wisdom_from_string(const char *input_string); /* * define symbol so we know this function is available (it is not in * older FFTWs) */ #define FFTW_HAS_FPRINT_PLAN extern void fftw_fprint_plan(FILE * f, fftw_plan plan); /* Returns 1 if FFTW is working. Otherwise, its value is undefined: */ #define is_fftw_working() 1 /***************************** * N-dimensional code *****************************/ typedef struct { int is_in_place; /* 1 if for in-place FFT's, 0 otherwise */ int rank; /* * the rank (number of dimensions) of the * array to be FFT'ed */ int *n; /* * the dimensions of the array to the * FFT'ed */ int *n_before; /* * n_before[i] = product of n[j] for j < i */ int *n_after; /* n_after[i] = product of n[j] for j > i */ fftw_plan *plans; /* fftw plans for each dimension */ FFTW_COMPLEX *work; /* * work array for FFT when doing * "in-place" FFT */ } fftwnd_aux_data; typedef fftwnd_aux_data *fftwnd_plan; /* Initializing the FFTWND Auxiliary Data */ fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags); fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags); fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags); /* Freeing the FFTWND Auxiliary Data */ void fftwnd_destroy_plan(fftwnd_plan plan); /* Computing the N-Dimensional FFT */ void fftwnd(fftwnd_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); /****************************************************************************/ /********************************** Timers **********************************/ /****************************************************************************/ /* * Here, you can use all the nice timers available in your machine. */ /* * Things you should define to include your own clock: fftw_time -- the data type used to store a time extern fftw_time fftw_get_time(void); -- a function returning the current time. (We have implemented this as a macro in most cases.) extern fftw_time fftw_time_diff(fftw_time t1, fftw_time t2); -- returns the time difference (t1 - t2). If t1 < t2, it may simply return zero (although this is not required). (We have implemented this as a macro in most cases.) extern double fftw_time_to_sec(fftw_time t); -- returns the time t expressed in seconds, as a double. (Implemented as a macro in most cases.) FFTW_TIME_MIN -- a double-precision macro holding the minimum time interval (in seconds) for accurate time measurements. This should probably be at least 100 times the precision of your clock (we use even longer intervals, to be conservative). This will determine how long the planner takes to measure the speeds of different possible plans. Bracket all of your definitions with an appropriate #ifdef so that they will be enabled on your machine. If you do add your own high-precision timer code, let us know (at fftw@theory.lcs.mit.edu). Only declarations should go in this file. Any function definitions that you need should go into timer.c. */ /* define a symbol so that we know that we have the fftw_time_diff function/macro (it did not exist prior to FFTW 1.2) */ #define FFTW_HAS_TIME_DIFF #ifdef SOLARIS /* we use the nanosecond virtual timer */ #include typedef hrtime_t fftw_time; #define fftw_get_time() gethrtime() #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) ((double) t / 1.0e9) /* * a measurement is valid if it runs for at least * FFTW_TIME_MIN seconds. */ #define FFTW_TIME_MIN (1.0e-4) /* for Solaris nanosecond timer */ #endif /* SOLARIS */ #if defined(MAC) || defined(macintosh) /* Use Macintosh Time Manager routines (maximum resolution is about 20 microseconds). */ typedef struct fftw_time_struct { unsigned long hi,lo; } fftw_time; extern fftw_time get_Mac_microseconds(void); #define fftw_get_time() get_Mac_microseconds() /* define as a function instead of a macro: */ extern fftw_time fftw_time_diff(fftw_time t1, fftw_time t2); #define fftw_time_to_sec(t) ((t).lo * 1.0e-6 + 4294967295.0e-6 * (t).hi) /* very conservative, since timer should be accurate to 20e-6: */ /* (although this seems not to be the case in practice) */ #define FFTW_TIME_MIN (5.0e-2) /* for MacOS Time Manager timer */ #endif /* Macintosh */ #ifdef __WIN32__ #include typedef unsigned long fftw_time; extern unsigned long GetPerfTime(void); extern double GetPerfSec(double ticks); #define fftw_get_time() GetPerfTime() #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) GetPerfSec(t) #define FFTW_TIME_MIN (5.0e-2) /* for Win32 timer */ #endif /* __WIN32__ */ #if defined(_CRAYMPP) /* Cray MPP system */ double SECONDR(void); /* * I think you have to link with -lsci to * get this */ typedef double fftw_time; #define fftw_get_time() SECONDR() #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) (t) #define FFTW_TIME_MIN (1.0e-1) /* for Cray MPP SECONDR timer */ #endif /* _CRAYMPP */ /*********************************************** * last resort: good old Unix clock() ***********************************************/ #ifndef FFTW_TIME_MIN #include typedef clock_t fftw_time; #ifndef CLOCKS_PER_SEC #ifdef sun /* stupid sunos4 prototypes */ #define CLOCKS_PER_SEC 1000000 extern long clock(void); #else /* not sun, we don't know CLOCKS_PER_SEC */ #error Please define CLOCKS_PER_SEC #endif #endif #if defined(__QK_USER__) #define fftw_get_time() ((long) (dclock() * 1000000.0L)) #else #define fftw_get_time() clock() #endif #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) (((double) (t)) / CLOCKS_PER_SEC) /* * ***VERY*** conservative constant: this says that a * measurement must run for 200ms in order to be valid. * You had better check the manual of your machine * to discover if it can do better than this */ #define FFTW_TIME_MIN (2.0e-1) /* for default clock() timer */ #endif /* UNIX clock() */ /****************************************************************************/ #ifdef __cplusplus } /* extern "C" */ #endif /* __cplusplus */ #endif /* FFTW_H */ espresso-5.0.2/clib/stack.c0000644000700200004540000000164412053145633014551 0ustar marsamoscm/* Copyright (C) 2007-2008 Quantum ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include "c_defs.h" #include #include #ifdef __INTEL #include void F77_FUNC_(remove_stack_limit,REMOVE_STACK_LIMIT) (void) { struct rlimit rlim = { RLIM_INFINITY, RLIM_INFINITY }; /* Modified according to Cesar Da Silva suggestions */ if ( setrlimit(RLIMIT_STACK, &rlim) == -1 ) { if ( getrlimit(RLIMIT_STACK, &rlim) == 0 ) { rlim.rlim_cur = rlim.rlim_max; if ( setrlimit(RLIMIT_STACK, &rlim) == 0 ) { getrlimit(RLIMIT_STACK, &rlim); } else { perror(" Cannot set stack size to new value"); } } } } #else void F77_FUNC_(remove_stack_limit,REMOVE_STACK_LIMIT) (void) { } #endif espresso-5.0.2/clib/eval_infix.c0000644000700200004540000004655512053145633015602 0ustar marsamoscm/* Copyright (C) 2008 by www.guidealgoritmi.it Author: Vincenzo Lo Cicero. e-mail: vincenzolocicero@guidealgoritmi.it http://www.guidealgoritmi.it This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* This version of EvalInfix includes a wrapper to allow calls from fortran code (written by Lorenzo Paulatto, 2008). An example F90 program follows: PROGRAM use_ex implicit none character(len=256) :: expr integer :: ierr real(8) :: result real(8),external :: eval_infix expr = "3 * 3" result = eval_infix(ierr, expr) if (ierr == 0) then write(*,*) result, expr else stop endif END PROGRAM */ #include #include #include #include #include #include "c_defs.h" /* #pragma warning( disable : 4996 ) */ #define MAXOP 100 /* dimensione massima di un operando o operatore */ #define MAXSTACK 100 /* dimensione massima dello stack */ typedef int BOOL; #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif typedef enum tagTokenType { EOL, UNKNOWN, VALUE, OPAREN, CPAREN, EXP, UPLUS, UMINUS, MULT, DIV, PLUS, MINUS }TokenTypeEnum; typedef struct tagToken { TokenTypeEnum Type; char str[54]; double Value; }Token; struct Precedence { int inputSymbol; int topOfStack; } PREC_TABLE [ ] = { { 0, -1 }, {-1, -1}, { 0, 0 }, /* EOL, UNKNOWN, VALUE */ { 100, 0 }, { 0, 99 }, /* OPAREN, CPAREN */ { 6, 5 }, {6, 5}, {6, 5}, /* EXP, UPLUS, UMINUS */ { 3, 4 }, { 3, 4 }, /* MULT, DIV */ { 1, 2 }, { 1, 2 } /* PLUS, MINUS */ }; int nNextPos = 0; TokenTypeEnum PreviousTokenType = EOL; int sp_op = 0; Token stack_op[MAXSTACK]; /* stack degli operatori */ /* Operazioni sullo stack degli operatori */ void push_op(Token, char *); Token pop_op(char *); Token top_op(char *); BOOL is_empty_op(); int sp_val = 0; double stack_val[MAXSTACK]; /* stack degli operandi */ /* Operazioni sullo stack degli operandi */ void push_val(double, char *); double pop_val(char *); double top_val(char *); BOOL is_empty_val(); TokenTypeEnum GetNextToken(const char *str, Token *token, BOOL bIsInfix); double BinaryOperation(double left, double right, char op, char *strError); /*BOOL InfixToPostfix(const char *strInfix, char *strPostfix, char *strError); double EvalPostfix(const char *strExpression, char *strError); */ double EvalInfix(const char *strExpression, char *strError); /* inserisce un elemento nello stack degli operatori */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ void push_op(Token Tok, char *strError) { strcpy(strError, ""); if (sp_op < MAXSTACK) stack_op[sp_op++] = Tok; else sprintf(strError, "Error: operators stack is full, cannot add more elements %c\n", Tok.str[0]); } /* Estrae e ritorna un elemento dallo stack degli operatori */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ Token pop_op(char *strError) { Token tok_temp; strcpy(strError, ""); if (sp_op > 0) return stack_op[--sp_op]; else { sprintf(strError, "Error: missing operator\n"); strcpy(tok_temp.str, ""); tok_temp.Type = UNKNOWN; return tok_temp; } } /* Ritorna il valore in cima allo stack degli operatori senza estrarlo */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ Token top_op(char *strError) { Token tok_temp; strcpy(strError, ""); if (sp_op >= 0) return stack_op[sp_op - 1]; else { sprintf(strError, "Error: missing operator\n"); strcpy(tok_temp.str, ""); tok_temp.Type = UNKNOWN; return tok_temp; } } /* Ritorna un valore diverso da zero se lo stack degli operatori è vuoto */ BOOL is_empty_op() { if ( sp_op > 0 ) return FALSE; else return TRUE; } /* Inserisce un elemento nello stack degli operandi */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ void push_val(double c, char *strError) { strcpy(strError, ""); if (sp_val < MAXSTACK) stack_val[sp_val++] = c; else sprintf(strError, "Error: values stack is full: cannot add more elements %g\n", c); } /* Estrae e ritorna un elemento dallo stack degli operandi */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ double pop_val(char *strError) { strcpy(strError, ""); if (sp_val > 0) return stack_val[--sp_val]; else { sprintf(strError, "Error: missing operand\n"); return 0; } } /* ritorna il valore in cima allo stack degli operandi senza estrarlo */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ double top_val(char *strError) { strcpy(strError, ""); if (sp_val > 0) return stack_val[sp_val - 1]; else { sprintf(strError, "Error top: values stack is empty\n"); return 0; } } /* ritorna un valore diverso da zero se lo stack degli operandi è vuoto */ BOOL is_empty_val() { if ( sp_val > 0 ) return FALSE; else return TRUE; } /* ritorna un valore diverso da zero per "e", "E", "d o "D", o se il carattere prima lo era */ BOOL is_scientific(char strChar) { BOOL static was_scientific = FALSE; if (was_scientific) { was_scientific = FALSE; return TRUE; } else if (strChar == 'e' || strChar == 'E'|| strChar == 'd' || strChar == 'D') { was_scientific = TRUE; return TRUE; } else if ( isdigit(strChar) ){ was_scientific = FALSE; return TRUE; } else { was_scientific = FALSE; return FALSE; } } /* Analizzatore lessicale */ TokenTypeEnum GetNextToken(const char *str, Token *token, BOOL bIsInfix) { int i; char strToken[MAXOP]; while ( 1 ) { while ( str[nNextPos++] == ' ' ) ; --nNextPos; if ( str[nNextPos] == '\0' ) { token->Type = EOL; strcpy(token->str, "\n"); nNextPos = 0; PreviousTokenType = EOL; return EOL; } else if ( is_scientific(str[nNextPos]) ) { i = 0; while ( is_scientific(strToken[i++] = str[nNextPos++]) ) if (strToken[i-1] == 'd' || strToken[i-1] == 'D') strToken[i-1] = 'e'; if ( str[nNextPos - 1] == '.' ) { while ( is_scientific(strToken[i++] = str[nNextPos++]) ) if (strToken[i-1] == 'd' || strToken[i-1] == 'D') strToken[i-1] = 'e'; strToken[i - 1] = '\0'; --nNextPos; token->Type = VALUE; strcpy(token->str, strToken); token->Value = atof(strToken); return VALUE; } else { strToken[i - 1] = '\0'; --nNextPos; token->Type = VALUE; strcpy(token->str, strToken); token->Value = atof(strToken); return VALUE; } } else if ( str[nNextPos] == '.' ) { i = 0; strToken[i++] = str[nNextPos++]; while ( is_scientific(strToken[i++] = str[nNextPos++]) ) if (strToken[i-1] == 'd' || strToken[i-1] == 'D') strToken[i-1] = 'e'; strToken[i - 1] = '\0'; --nNextPos; token->Type = VALUE; strcpy(token->str, strToken); token->Value = atof(strToken); return VALUE; } else if ( str[nNextPos] == '(' ) { token->Type = OPAREN; strcpy(token->str, "("); ++nNextPos; return OPAREN; } else if ( str[nNextPos] == ')' ) { token->Type = CPAREN; strcpy(token->str, ")"); ++nNextPos; return CPAREN; } else if ( str[nNextPos] == '+' ) { strcpy(token->str, "+"); ++nNextPos; if ( !bIsInfix ) { token->Type = PLUS; return PLUS; } else { if ( PreviousTokenType == CPAREN || PreviousTokenType == VALUE ) { token->Type = PLUS; return PLUS; } else { token->Type = UPLUS; return UPLUS; } } } else if ( str[nNextPos] == '-' ) { strcpy(token->str, "-"); ++nNextPos; if ( !bIsInfix ) { token->Type = MINUS; return MINUS; } else { if ( PreviousTokenType == CPAREN || PreviousTokenType == VALUE ) { token->Type = MINUS; return MINUS; } else { token->Type = UMINUS; return UMINUS; } } } else if ( str[nNextPos] == '~' ) { strcpy(token->str, "~"); ++nNextPos; if ( !bIsInfix ) { token->Type = UMINUS; return UMINUS; } else { token->Type = UNKNOWN; return UNKNOWN; } } else if ( str[nNextPos] == '*' ) { token->Type = MULT; strcpy(token->str, "*"); ++nNextPos; return MULT; } else if ( str[nNextPos] == '/' ) { token->Type = DIV; strcpy(token->str, "/"); ++nNextPos; return DIV; } else if ( str[nNextPos] == '^' ) { token->Type = EXP; strcpy(token->str, "^"); ++nNextPos; return EXP; } else { token->Type = UNKNOWN; token->str[0] = str[nNextPos]; token->str[1] = '\0'; ++nNextPos; return UNKNOWN; } } return EOL; } /* Ritorna il risultato di un'operazione binaria */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ double BinaryOperation(double left, double right, char op, char* strError) { strcpy(strError, ""); switch ( op ) { case '-': return left - right; case '+': return left + right; case '*': return left * right; case '/': if ( right == 0 ) { sprintf(strError, "Error: division by zero!\n"); return 0.0; } else return left / right; case '^': return pow(left, right); default: if ( op == '(' ) sprintf(strError, "Error: unbalanced brackets.\n"); else sprintf(strError, "Error: unknown operator: %c\n", op); return 0.0; } } /* Calcola e restituisce il risultato di un'espressione in forma infissa */ double EvalInfix(const char *strExpression, char * strError) { int i = 0; Token tok; Token tok_temp; double left, right; double dblRet; strcpy(strError, ""); tok_temp.Type = EOL; tok_temp.str[0] = '@'; tok_temp.str[1] = '\0'; push_op(tok_temp, strError); if ( strError[0] != '\0' ) return 0.0; while ( (PreviousTokenType = GetNextToken(strExpression, &tok, TRUE)) != EOL ) { if ( tok.Type == UNKNOWN ) { sprintf(strError, "Error: invalid token: %s\n", tok.str); return 0.0; } else if ( tok.Type == VALUE ) { push_val(tok.Value, strError); if ( strError[0] != '\0' ) return 0.0; } else if ( tok.Type == OPAREN || tok.Type == UMINUS || tok.Type == UPLUS ) { push_op(tok, strError); if ( strError[0] != '\0' ) return 0.0; } else if ( tok.Type == CPAREN ) { while ( top_op(strError).Type != OPAREN ) { if ( strError[0] != '\0' ) return 0.0; tok_temp = pop_op(strError); if ( strError[0] != '\0' ) return 0.0; if ( (tok_temp.Type == EOL) || (is_empty_op()) ) { sprintf(strError, "Error: unbalanced brackets.\n"); return 0.0; } right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; if ( tok_temp.Type != UMINUS ) { left = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; dblRet = BinaryOperation(left, right, tok_temp.str[0], strError); if ( strError[0] != '\0' ) return 0.0; push_val(dblRet, strError); if ( strError[0] != '\0' ) return 0.0; } else { push_val( -1 * right, strError ); if ( strError[0] != '\0' ) return 0.0; } } pop_op(strError); if ( strError[0] != '\0' ) return 0.0; } else { while ( PREC_TABLE[ top_op(strError).Type ].topOfStack >= PREC_TABLE[ tok.Type ].inputSymbol ) { if ( strError[0] != '\0' ) return 0.0; if ( top_op(strError).Type != UMINUS && top_op(strError).Type != UPLUS ) { if ( strError[0] != '\0' ) return 0.0; right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; left = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; tok_temp = pop_op(strError); if ( strError[0] != '\0' ) return 0.0; dblRet = BinaryOperation(left, right, tok_temp.str[0], strError); if ( strError[0] != '\0' ) return 0.0; push_val(dblRet, strError); if ( strError[0] != '\0' ) return 0.0; } else { if ( top_op(strError).Type == UMINUS ) { if ( strError[0] != '\0' ) return 0.0; right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; pop_op(strError); if ( strError[0] != '\0' ) return 0.0; push_val(-1 * right, strError); if ( strError[0] != '\0' ) return 0.0; } else { pop_op(strError); if ( strError[0] != '\0' ) return 0.0; } } } if ( tok.Type != EOL ) { push_op(tok, strError); if ( strError[0] != '\0' ) return 0.0; } } } while ( 1 ) { tok_temp = pop_op(strError); if ( strError[0] != '\0' ) return 0.0; if ( tok_temp.Type == EOL ) break; if ( tok_temp.Type != UPLUS ) { right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; } if ( tok_temp.Type != UMINUS && tok_temp.Type != UPLUS ) { left = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; dblRet = BinaryOperation(left, right, tok_temp.str[0], strError); if ( strError[0] != '\0' ) return 0.0; push_val(dblRet, strError); if ( strError[0] != '\0' ) return 0.0; } else { push_val( -1 * right, strError ); if ( strError[0] != '\0' ) return 0.0; } } dblRet = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; if ( is_empty_val() ) { return dblRet; } else { sprintf(strError, "Error: malformed expression.\n"); return 0.0; } } double eval_infix( int *ierr, const char *strExpression, int len ) { double result = 0.0; char strHelper[257]; char strError[257]; int i; /* maximum length of strExpression is 256 chars */ if (len>256) { printf("[eval_infix.c] expression longer than 256 characters\n"); ierr[0] = 1; return result; } /* it's safer to reformat strings for C, with null terminator '\0' */ for(i=0;i 256 ) { *ierr = 3; } else { for( i = 0; i < *len; i ++ ) { tmp[i] = (char)strExpression[i]; } result = eval_infix( ierr, tmp, *len ); } return result; } espresso-5.0.2/clib/memstat.c0000644000700200004540000000152012053145633015107 0ustar marsamoscm/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include "c_defs.h" /* This function return the numer of kilobytes allocated by the calling process. Auhor: Carlo Cavazzoni. */ #if defined (__SVR4) && defined (__sun) #define SUN_MALLINFO #endif #if defined(HAVE_MALLINFO) && !defined(__QK_USER__) && !defined(SUN__MALLINFO) #include void F77_FUNC(memstat,MEMSTAT)(int *kilobytes) { struct mallinfo info; info = mallinfo(); #if defined(__AIX) *kilobytes = (info.arena) / 1024 ; #else *kilobytes = (info.arena + info.hblkhd) / 1024 ; #endif #else void F77_FUNC(memstat,MEMSTAT)(int *kilobytes) { *kilobytes = -1; #endif } espresso-5.0.2/clib/ptrace.c0000644000700200004540000000115612053145633014720 0ustar marsamoscm#include "c_defs.h" /* Print the stack trace */ #ifdef __PTRACE #include #include #endif #include void F77_FUNC(ptrace,PTRACE)(int *kilobytes) { #ifdef __PTRACE void *array[12]; size_t size; char **strings; size_t i; size = backtrace (array, 12); strings = backtrace_symbols (array, size); printf ("Obtained %zd stack frames.\n", size); printf ("Use 'addr2line -e /where/is/code.x 0x12345' to get the source line number\n"); for (i = 0; i < size; i++) printf ("%s\n", strings[i]); free (strings); #else printf ("No stack trace available.\n"); #endif } espresso-5.0.2/clib/md5_from_file.c0000644000700200004540000000424512053145633016153 0ustar marsamoscm/* Copyright (C) 2005-2008 Quantum ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . ------------------------------------------------------ */ #include #include #include #include "c_defs.h" #include "md5.h" #define MAX_BUF 1024 static void fatal ( const char * msg ) { fprintf( stderr , "fatal: %s" , *msg ? msg : "Oops!" ) ; exit( -1 ) ; } /* fatal */ static void * xcmalloc ( size_t size ) { register void * ptr = malloc( size ) ; if ( ptr == NULL ) fatal( "md5_from_file: virtual memory exhausted" ) ; else memset( ptr , 0 , size ) ; return ptr ; } /* xcmalloc */ char *readFile( FILE *file ) { char *out; unsigned long fileLen; if (!file) { exit(1); } fseek(file, 0, SEEK_END); fileLen=ftell(file); fseek(file, 0, SEEK_SET); out=(char *)xcmalloc(fileLen+1); if (!out) { fprintf(stderr, "Memory error!"); fclose(file); exit(1); } fread(out, fileLen, 1, file); return out; } void get_md5(const char *file, char *md5, int err) { FILE *fp; char *data; md5_state_t state; md5_byte_t digest[16]; if(file==NULL) { err = 1; return; } fp=fopen(file,"rb"); if(fp==NULL) { err = 2; return; } data=readFile(fp); if(data==NULL) { err = 3; return; } md5_init(&state); md5_append(&state,(const md5_byte_t *)data,strlen(data)); md5_finish(&state,digest); int i=0; for(i;i<16;i++){ snprintf(md5+i*2,sizeof(md5),"%02x",digest[i]); } fclose(fp); free(data); err = 0; return; } int F77_FUNC_(file_md5,FILE_MD5)( const int * f_name, const int * f_len, int * out ) { int i, err = -1 ; char * md5 = ( char * ) xcmalloc( 32 + 1 ) ; char * f = ( char * ) xcmalloc( (*f_len) + 1) ; for( i = 0; i < * f_len; i++ ) f[ i ] = (char)f_name[ i ]; f[*f_len] = '\0' ; get_md5( f , md5, err) ; for( i = 0; i < 32; i++ ) out[ i ] = md5[ i ]; free(f); free(md5); return err; } espresso-5.0.2/clib/md5.h0000644000700200004540000000650612053145633014140 0ustar marsamoscm/* Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. L. Peter Deutsch ghost@aladdin.com */ /* $Id: md5.h,v 1.1 2010-08-13 10:50:08 degironc Exp $ */ /* Independent implementation of MD5 (RFC 1321). This code implements the MD5 Algorithm defined in RFC 1321, whose text is available at http://www.ietf.org/rfc/rfc1321.txt The code is derived from the text of the RFC, including the test suite (section A.5) but excluding the rest of Appendix A. It does not include any code or documentation that is identified in the RFC as being copyrighted. The original and principal author of md5.h is L. Peter Deutsch . Other authors are noted in the change history that follows (in reverse chronological order): 2002-04-13 lpd Removed support for non-ANSI compilers; removed references to Ghostscript; clarified derivation from RFC 1321; now handles byte order either statically or dynamically. 1999-11-04 lpd Edited comments slightly for automatic TOC extraction. 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5); added conditionalization for C++ compilation from Martin Purschke . 1999-05-03 lpd Original version. */ #ifndef md5_INCLUDED # define md5_INCLUDED /* * This package supports both compile-time and run-time determination of CPU * byte order. If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is * defined as non-zero, the code will be compiled to run only on big-endian * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to * run on either big- or little-endian CPUs, but will run slightly less * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined. */ typedef unsigned char md5_byte_t; /* 8-bit byte */ typedef unsigned int md5_word_t; /* 32-bit word */ /* Define the state of the MD5 Algorithm. */ typedef struct md5_state_s { md5_word_t count[2]; /* message length in bits, lsw first */ md5_word_t abcd[4]; /* digest buffer */ md5_byte_t buf[64]; /* accumulate block */ } md5_state_t; #ifdef __cplusplus extern "C" { #endif /* Initialize the algorithm. */ void md5_init(md5_state_t *pms); /* Append a string to the message. */ void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes); /* Finish the message and return the digest. */ void md5_finish(md5_state_t *pms, md5_byte_t digest[16]); #ifdef __cplusplus } /* end extern "C" */ #endif #endif /* md5_INCLUDED */ espresso-5.0.2/clib/indici.c0000644000700200004540000000725112053145633014703 0ustar marsamoscm/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include #include #include "c_defs.h" #define MAX_INDEX 32768 struct Index { unsigned char i[8]; } ; static struct Index * P_Index; static int * P_IndexIndex; static struct Index * LN; static int * IG; static int LN_SIZE; int IndexCmp( struct Index * A, struct Index * B) { int i; for(i = 7; i>=0 ; i--) { if(A->i[i] > B->i[i] ) { return +1; } else if(A->i[i] < B->i[i]) { return -1; } } return 0; } int index_comp(unsigned i,unsigned j) { int cmp; cmp = IndexCmp(P_Index + i, P_Index + j); if ( cmp > 0 ) return 1; else if ( cmp == 0 ) return 0; return -1; } int index_swap(unsigned i,unsigned j) { static struct Index tmp; static int itmp; tmp = P_Index[j] ; P_Index[j] = P_Index[i] ; P_Index[i] = tmp ; itmp = P_IndexIndex[j] ; P_IndexIndex[j] = P_IndexIndex[i] ; P_IndexIndex[i] = itmp ; return 1; } int IndexSort(struct Index * A, int * IndexIndex, int n) { void Qsort(unsigned n,int (*comp)(),int (*swap)()); P_Index = A; P_IndexIndex = IndexIndex; Qsort((unsigned)n,index_comp,index_swap); return 1; } int IndexSet( struct Index * A, int I1, int I2, int I3 ) { unsigned int himask = 0xFF00; unsigned int lomask = 0x00FF; if(abs(I1)>=MAX_INDEX || abs(I2)>=MAX_INDEX || abs(I3)>=MAX_INDEX ) { return -1; } if(I1<0) I1 += MAX_INDEX; if(I2<0) I2 += MAX_INDEX; if(I3<0) I3 += MAX_INDEX; A->i[7] = (unsigned char ) 0; A->i[6] = (unsigned char ) 0; A->i[5] = (unsigned char ) ((himask & (unsigned int) I1)>>8); A->i[4] = (unsigned char ) ( lomask & (unsigned int) I1); A->i[3] = (unsigned char ) ((himask & (unsigned int) I2)>>8); A->i[2] = (unsigned char ) ( lomask & (unsigned int) I2); A->i[1] = (unsigned char ) ((himask & (unsigned int) I3)>>8); A->i[0] = (unsigned char ) ( lomask & (unsigned int) I3); return 0; } int IndexShow(struct Index A) { int i; for(i=7;i>=0;i--) printf("%2x",A.i[i]); printf("\n"); return 0; } int IndexFind(struct Index * A, int n, struct Index * B) { int lb, ub, i, cmp; lb = 0; ub = n-1; i = lb; while(lb<(ub-1)) { i = lb + (ub - lb)/2; cmp = IndexCmp(B,&A[i]); if(cmp>0) { lb = i; } else if(cmp<0) { ub = i; } else { ub = lb = i; } } if(lb LN_SIZE) { exit(*ig); } IndexSet( &LN[*ig-1], *IRI1, *IRI2, *IRI3 ); IG[*ig-1] = *ig; } int F77_FUNC_(ln_activate,LN_ACTIVATE)() { IndexSort(LN,IG,LN_SIZE); return 0; } int F77_FUNC_(ln_ind,LN_IND)(int * IRI1, int * IRI2, int * IRI3) { static struct Index B; static int ib; IndexSet(&B,*IRI1,*IRI2,*IRI3); ib = IndexFind(LN,LN_SIZE,&B); if(ib>=0) return IG[ib]; return -1; } espresso-5.0.2/clib/customize_signals.c0000644000700200004540000000112112053145633017174 0ustar marsamoscm #ifdef __TRAP_SIGUSR1 #include #include #include int init_signal(int signum, void (*new_handler)(int)) { static struct sigaction action; action.sa_handler = new_handler; // Don't block anything. // Not sure if it's the correct behavior (or even if there is one) sigemptyset(&action.sa_mask); // This will probably make MPI happy action.sa_flags = SA_RESTART; return sigaction(signum, &action, NULL); } int init_signal_USR1(void (*new_handler)(int)) { return init_signal(SIGUSR1, new_handler); } #else void dummy ( ) { } #endif espresso-5.0.2/clib/make.depend0000644000700200004540000000055412053145633015375 0ustar marsamoscmc_mkdir.o : ../include/c_defs.h cptimer.o : ../include/c_defs.h eval_infix.o : ../include/c_defs.h fft_stick.o : ../include/c_defs.h fft_stick.o : fftw.c fftw.o : fftw.o : indici.o : ../include/c_defs.h md5.o : md5_from_file.o : ../include/c_defs.h md5_from_file.o : memstat.o : ../include/c_defs.h ptrace.o : ../include/c_defs.h stack.o : ../include/c_defs.h espresso-5.0.2/clib/fft_stick.c0000644000700200004540000001436712053145633015426 0ustar marsamoscm/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include "c_defs.h" #if defined __FFTW # include "fftw.c" int F77_FUNC_ (create_plan_1d, CREATE_PLAN_1D)(fftw_plan *p, int *n, int *idir) { fftw_direction dir = ( (*idir < 0) ? FFTW_FORWARD : FFTW_BACKWARD ); *p = fftw_create_plan(*n, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if( *p == NULL ) fprintf(stderr," *** CREATE_PLAN: warning empty plan ***\n"); /* printf(" pointer size = %d, value = %d\n", sizeof ( *p ), *p ); */ return 0; } int F77_FUNC_ (destroy_plan_1d, DESTROY_PLAN_1D)(fftw_plan *p) { if ( *p != NULL ) fftw_destroy_plan(*p); else fprintf(stderr," *** DESTROY_PLAN: warning empty plan ***\n"); return 0; } int F77_FUNC_ (create_plan_2d, CREATE_PLAN_2D) (fftwnd_plan *p, int *n, int *m, int *idir) { fftw_direction dir = ( (*idir < 0) ? FFTW_FORWARD : FFTW_BACKWARD ); *p = fftw2d_create_plan(*m, *n, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if( *p == NULL ) fprintf(stderr," *** CREATE_PLAN_2D: warning empty plan ***\n"); /* printf(" pointer size = %d, value = %d\n", sizeof ( *p ), *p ); */ return 0; } int F77_FUNC_ (destroy_plan_2d, DESTROY_PLAN_2D)(fftwnd_plan *p) { if ( *p != NULL ) fftwnd_destroy_plan(*p); else fprintf(stderr," *** DESTROY_PLAN_2D: warning empty plan ***\n"); return 0; } int F77_FUNC_ (create_plan_3d, CREATE_PLAN_3D) (fftwnd_plan *p, int *n, int *m, int *l, int *idir) { fftw_direction dir = ( (*idir < 0) ? FFTW_FORWARD : FFTW_BACKWARD ); *p = fftw3d_create_plan(*l, *m, *n, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if( *p == NULL ) { fprintf(stderr," *** CREATE_PLAN_3D: warning empty plan ***\n"); fprintf(stderr," *** input was (n,m,l,dir): %d %d %d %d ***\n", *l, *m, *n, *idir); } /* printf(" pointer size = %d, value = %d\n", sizeof ( *p ), *p ); */ return 0; } int F77_FUNC_ (destroy_plan_3d, DESTROY_PLAN_3D)(fftwnd_plan *p) { if ( *p != NULL ) fftwnd_destroy_plan(*p); else fprintf(stderr," *** DESTROY_PLAN_3D: warning empty plan ***\n"); return 0; } int F77_FUNC_ (fft_x_stick, FFT_X_STICK) (fftw_plan *p, FFTW_COMPLEX *a, int *nx, int *ny, int *nz, int *ldx, int *ldy ) { int i, j, ind; int xstride, bigstride; int xhowmany, xidist; double * ptr; /* trasform along x and y */ bigstride = (*ldx) * (*ldy); xhowmany = (*ny); xstride = 1; xidist = (*ldx); /* ptr = (double *)a; */ for(i = 0; i < *nz ; i++) { /* trasform along x */ fftw(*p,xhowmany,&a[i*bigstride],xstride,xidist,0,0,0); } return 0; } int F77_FUNC_ (fft_y_stick, FFT_Y_STICK) (fftw_plan *p, FFTW_COMPLEX *a, int *ny, int *ldx ) { fftw(*p, 1, a, (*ldx), 1, 0, 0, 0); return 0; } int F77_FUNC_ (fft_z_stick, FFT_Z_STICK) (fftw_plan *p, FFTW_COMPLEX *zstick, int *ldz, int *nstick_l) { int howmany, idist; howmany = (*nstick_l) ; idist = (*ldz); fftw(*p, howmany, zstick, 1, idist, 0, 0, 0); return 0; } int F77_FUNC_ ( fftw_inplace_drv_1d, FFTW_INPLACE_DRV_1D ) (fftw_plan *p, int *nfft, FFTW_COMPLEX *a, int *inca, int *idist) { fftw(*p, (*nfft), a, (*inca), (*idist), 0, 0, 0); return 0; } int F77_FUNC_ ( fftw_inplace_drv_2d, FFTW_INPLACE_DRV_2D ) ( fftwnd_plan *p, int *nfft, FFTW_COMPLEX *a, int *inca, int *idist) { fftwnd( *p, (*nfft), a, (*inca), (*idist), 0, 0, 0 ); return 0; } int F77_FUNC_ ( fftw_inplace_drv_3d, FFTW_INPLACE_DRV_3D ) ( fftwnd_plan *p, int *nfft, FFTW_COMPLEX *a, int *inca, int *idist) { fftwnd( *p, (*nfft), a, (*inca), (*idist), 0, 0, 0 ); return 0; } int F77_FUNC_ (fft_x_stick_single, FFT_X_STICK_SINGLE) (fftw_plan *p, FFTW_COMPLEX *a, int *nx, int *ny, int *nz, int *ldx, int *ldy ) { int i, j, ind; int xstride, bigstride; int xhowmany, xidist; double * ptr; /* trasform along x and y */ bigstride = (*ldx) * (*ldy); xhowmany = (*ny); xstride = 1; xidist = (*ldx); fftw(*p,xhowmany,a,xstride,xidist,0,0,0); return 0; } int F77_FUNC_ (fft_z_stick_single, FFT_Z_STICK_SINGLE) (fftw_plan *p, FFTW_COMPLEX *a, int *ldz) { fftw(*p, 1,a, 1, 0, 0, 0, 0); return 0; } /* Computing the N-Dimensional FFT void fftwnd(fftwnd_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); */ /* void fftw(fftw_plan plan, int howmany, fftw_complex *in, int istride, int idist, fftw_complex *out, int ostride, int odist); The function fftw computes the one-dimensional Fourier transform, using a plan created by fftw_create_plan (See Section Plan Creation for One-dimensional Transforms.) The function fftw_one provides a simplified interface for the common case of single input array of stride 1. Arguments plan is the plan created by fftw_create_plan howmany is the number of transforms fftw will compute. It is faster to tell FFTW to compute many transforms, instead of simply calling fftw many times. in, istride and idist describe the input array(s). There are howmany input arrays; the first one is pointed to by in, the second one is pointed to by in + idist, and so on, up to in + (howmany - 1) * idist. Each input array consists of complex numbers, which are not necessarily contiguous in memory. Specifically, in[0] is the first element of the first array, in[istride] is the second element of the first array, and so on. In general, the i-th element of the j-th input array will be in position in[i * istride + j * idist]. out, ostride and odist describe the output array(s). The format is the same as for the input array. In-place transforms: If the plan specifies an in-place transform, ostride and odist are always ignored. If out is NULL, out is ignored, too. Otherwise, out is interpreted as a pointer to an array of n complex numbers, that FFTW will use as temporary space to perform the in-place computation. out is used as scratch space and its contents destroyed. In this case, out must be an ordinary array whose elements are contiguous in memory (no striding). */ #else /* This dummy subroutine is there for compilers that dislike empty files */ int dumfftwdrv() { return 0; } #endif espresso-5.0.2/clib/qsort.c0000644000700200004540000000235112053145633014610 0ustar marsamoscm/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include #include /* qsort - quick sort qsort(n,comp,swap) unsigned n; int (*comp)(); int (*swap)(); ***** see bsort for parameters */ static unsigned _rearr(unsigned lb,unsigned ub); static void _quick(unsigned lb,unsigned ub); static int (*_comp)(unsigned,unsigned), (*_swap)(unsigned,unsigned); void Qsort(unsigned n,int (*comp)(),int (*swap)()) { _comp = comp; _swap = swap; _quick(0,n-1); } static void _quick(unsigned lb,unsigned ub) { unsigned j; if(lb lb && (*_comp)(ub,lb) >=0) ub--; if(ub != lb) { (*_swap)(ub,lb); while(lb 0 ) GO TO 30 ! dummy=' ' WRITE(stdout, '(5x,a)') "Waiting for input..." DO WHILE ( TRIM(dummy) .NE. "MAGICALME" ) READ (stdin,fmt='(A512)',END=20) dummy WRITE (stdtmp,'(A)') trim(dummy) END DO ! 20 CLOSE ( UNIT=stdtmp, STATUS='keep' ) ENDIF ! IF (lcheckxml) THEN ! OPEN ( UNIT = stdtmp, FILE = TRIM(input_file) , FORM = 'FORMATTED', & STATUS = 'OLD', IOSTAT = ierr ) IF ( ierr > 0 ) GO TO 30 CALL test_input_xml (stdtmp, lxmlinput_loc ) CLOSE ( UNIT=stdtmp, status='keep') ! lxmlinput = lxmlinput_loc ! ENDIF ! IF (lxmlinput_loc) then IF ( input_file .NE. "input_tmp.in") THEN WRITE(stdout, '(5x,a)') "Reading xml input from "//TRIM(input_file) ELSE WRITE(stdout, '(5x,a)') "Reading xml input from standard input" END IF CALL iotk_open_read( unit_loc, TRIM(input_file), attr = attr, & qe_syntax = .true., ierr = ierr) ELSE IF ( input_file .NE. "input_tmp.in") THEN WRITE(stdout, '(5x,a)') "Reading input from "//TRIM(input_file) ELSE WRITE(stdout, '(5x,a)') "Reading input from standard input" END IF OPEN ( UNIT = unit_loc, FILE = TRIM(input_file), FORM = 'FORMATTED', & STATUS = 'OLD', IOSTAT = ierr ) ENDIF IF ( ierr > 0 ) GO TO 30 ! open_input_file = 0 RETURN 30 open_input_file = 2 RETURN ! END FUNCTION open_input_file INTEGER FUNCTION close_input_file ( ) ! ! ... this subroutine closes the input file opened by open_input_file ! ... removes temporary file if data was read from stdin ! ... (not in the xml case, though, because it is not clear how to do it) ! ... returns -1 if unit is not opened, 0 if no problem, > 0 if problems ! ... --------------------------------------------------------------- ! IMPLICIT NONE ! LOGICAL :: opened INTEGER :: ierr ! INQUIRE ( unit_loc, opened = opened ) IF (opened) THEN ! IF (lxmlinput_loc) THEN CALL iotk_close_read(unit=unit_loc, ierr = ierr) ELSE IF ( TRIM(input_file) == "input_tmp.in") THEN CLOSE (UNIT=unit_loc, STATUS='delete', IOSTAT=ierr ) ELSE CLOSE (UNIT=unit_loc, STATUS='keep', IOSTAT=ierr ) ENDIF ENDIF ! ELSE ierr = -1 ENDIF ! close_input_file = ierr ! END FUNCTION close_input_file ! ENDMODULE open_close_input_file espresso-5.0.2/Modules/mp_wave.f900000644000700200004540000006503512053145633015761 0ustar marsamoscm! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE mp_wave IMPLICIT NONE SAVE CONTAINS SUBROUTINE mergewf ( pw, pwt, ngwl, ig_l2g, mpime, nproc, root, comm ) ! ... This subroutine merges the pieces of a wave functions (pw) splitted across ! ... processors into a total wave function (pwt) containing al the components ! ... in a pre-defined order (the same as if only one processor is used) USE kinds USE parallel_include IMPLICIT NONE COMPLEX(DP), intent(in) :: PW(:) COMPLEX(DP), intent(out) :: PWT(:) INTEGER, INTENT(IN) :: mpime ! index of the calling processor ( starting from 0 ) INTEGER, INTENT(IN) :: nproc ! number of processors INTEGER, INTENT(IN) :: root ! root processor ( the one that should receive the data ) INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ig_l2g(:) INTEGER, INTENT(IN) :: ngwl INTEGER, ALLOCATABLE :: ig_ip(:) COMPLEX(DP), ALLOCATABLE :: pw_ip(:) INTEGER :: ierr, i, ip, ngw_ip, ngw_lmax, itmp, igwx, gid #if defined __MPI INTEGER :: istatus(MPI_STATUS_SIZE) #endif ! ! ... Subroutine Body ! igwx = MAXVAL( ig_l2g(1:ngwl) ) #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE( ngwl, ngw_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( igwx, itmp, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) igwx = itmp #endif IF( igwx > SIZE( pwt ) ) & CALL errore(' mergewf ',' wrong size for pwt ',SIZE(pwt) ) #if defined __MPI DO ip = 1, nproc IF( (ip-1) /= root ) THEN ! ... In turn each processors send to root the wave components and their indexes in the ! ... global array IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ig_l2g, ngwl, MPI_INTEGER, ROOT, IP, gid, IERR ) CALL MPI_SEND( pw(1), ngwl, MPI_DOUBLE_COMPLEX, ROOT, IP+NPROC, gid, IERR ) END IF IF ( mpime == root) THEN ALLOCATE(ig_ip(ngw_lmax)) ALLOCATE(pw_ip(ngw_lmax)) CALL MPI_RECV( ig_ip, ngw_lmax, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) CALL MPI_RECV( pw_ip, ngw_lmax, MPI_DOUBLE_COMPLEX, (ip-1), IP+NPROC, gid, istatus, IERR ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ngw_ip, ierr ) DO I = 1, ngw_ip PWT(ig_ip(i)) = pw_ip(i) END DO DEALLOCATE(ig_ip) DEALLOCATE(pw_ip) END IF ELSE IF(mpime == root) THEN DO I = 1, ngwl PWT(ig_l2g(i)) = pw(i) END DO END IF END IF CALL MPI_BARRIER( gid, IERR ) END DO #elif ! defined __MPI DO I = 1, ngwl ! WRITE( stdout,*) 'MW ', ig_l2g(i), i PWT( ig_l2g(i) ) = pw(i) END DO #else CALL errore(' MERGEWF ',' no communication protocol ',0) #endif RETURN END SUBROUTINE mergewf !=----------------------------------------------------------------------------=! SUBROUTINE splitwf ( pw, pwt, ngwl, ig_l2g, mpime, nproc, root, comm ) ! ... This subroutine splits a total wave function (pwt) containing al the components ! ... in a pre-defined order (the same as if only one processor is used), across ! ... processors (pw). USE kinds USE parallel_include IMPLICIT NONE COMPLEX(DP), INTENT(OUT) :: PW(:) COMPLEX(DP), INTENT(IN) :: PWT(:) INTEGER, INTENT(IN) :: mpime, nproc, root INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ig_l2g(:) INTEGER, INTENT(IN) :: ngwl INTEGER, ALLOCATABLE :: ig_ip(:) COMPLEX(DP), ALLOCATABLE :: pw_ip(:) INTEGER ierr, i, ngw_ip, ip, ngw_lmax, gid, igwx, itmp #if defined __MPI integer istatus(MPI_STATUS_SIZE) #endif ! ! ... Subroutine Body ! igwx = MAXVAL( ig_l2g(1:ngwl) ) #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE(ngwl, ngw_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE(igwx, itmp , 1, MPI_INTEGER, MPI_MAX, gid, IERR ) igwx = itmp #endif IF( igwx > SIZE( pwt ) ) & CALL errore(' splitwf ',' wrong size for pwt ',SIZE(pwt) ) #if defined __MPI DO ip = 1, nproc ! ... In turn each processor send to root the the indexes of its wavefunction conponents ! ... Root receive the indexes and send the componens of the wavefunction read from the disk (pwt) IF ( (ip-1) /= root ) THEN IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ig_l2g, ngwl, MPI_INTEGER, ROOT, IP, gid,IERR) CALL MPI_RECV( pw(1), ngwl, MPI_DOUBLE_COMPLEX, ROOT, IP+NPROC, gid, istatus, IERR ) END IF IF ( mpime == root ) THEN ALLOCATE(ig_ip(ngw_lmax)) ALLOCATE(pw_ip(ngw_lmax)) CALL MPI_RECV( ig_ip, ngw_lmax, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, ngw_ip, ierr) DO i = 1, ngw_ip pw_ip(i) = PWT(ig_ip(i)) END DO CALL MPI_SEND( pw_ip, ngw_ip, MPI_DOUBLE_COMPLEX, (ip-1), IP+NPROC, gid, IERR ) DEALLOCATE(ig_ip) DEALLOCATE(pw_ip) END IF ELSE IF ( mpime == root ) THEN DO i = 1, ngwl pw(i) = PWT(ig_l2g(i)) END DO END IF END IF CALL MPI_BARRIER(gid, IERR) END DO #elif ! defined __MPI DO I = 1, ngwl pw(i) = pwt( ig_l2g(i) ) END DO #else CALL errore(' SPLITWF ',' no communication protocol ',0) #endif RETURN END SUBROUTINE splitwf !=----------------------------------------------------------------------------=! SUBROUTINE mergerho(rho, rhot, ngl, ig_l2g, mpime, nproc, root) ! ... This subroutine merges the pieces of a charge density (rho) splitted across ! ... processors into a total charge (rhot) containing al the components ! ... in a pre-defined order (the same as if only one processor is used) USE kinds USE parallel_include IMPLICIT NONE REAL(DP), INTENT(IN) :: rho(:) REAL(DP), INTENT(OUT) :: rhot(:) INTEGER, INTENT(IN) :: mpime, nproc, root INTEGER, INTENT(IN) :: ig_l2g(:) INTEGER, INTENT(IN) :: ngl INTEGER, ALLOCATABLE :: ig_ip(:) REAL(DP), ALLOCATABLE :: rho_ip(:) INTEGER :: ierr, i, ip, ng_ip, ng_lmax, ng_g #if defined __MPI INTEGER :: istatus(MPI_STATUS_SIZE) #endif #if defined __MPI ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE(ngl, ng_lmax, 1, MPI_INTEGER, MPI_MAX, MPI_COMM_WORLD, ierr) CALL MPI_ALLREDUCE(ngl, ng_g , 1, MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, ierr) IF( ng_g > SIZE( rhot ) ) THEN CALL errore(' mergerho ',' wrong size for rho ',1 ) END IF DO ip = 1, nproc IF( (ip-1) /= root ) THEN ! ... In turn each processors send to root the rho components and their indexes in the ! ... global array IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ig_l2g, ngl, MPI_INTEGER, root, ip, MPI_COMM_WORLD, ierr) CALL MPI_SEND( rho(1), ngl, MPI_DOUBLE_PRECISION, root, ip+nproc, MPI_COMM_WORLD,ierr) END IF IF ( mpime == root ) THEN ALLOCATE( ig_ip(ng_lmax) ) ALLOCATE( rho_ip(ng_lmax) ) CALL MPI_RECV( ig_ip, ng_lmax, MPI_INTEGER, (ip-1), ip, MPI_COMM_WORLD, istatus, ierr ) CALL MPI_RECV( rho_ip, ng_lmax, MPI_DOUBLE_PRECISION, (ip-1), ip+nproc, MPI_COMM_WORLD, istatus, ierr ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, ng_ip, ierr) DO I = 1, ng_ip rhot(ig_ip(i)) = rho_ip(i) END DO DEALLOCATE(ig_ip) DEALLOCATE(rho_ip) END IF ELSE IF(mpime == root) THEN DO I = 1, ngl rhot(ig_l2g(i)) = rho(i) END DO END IF END IF CALL MPI_BARRIER(MPI_COMM_WORLD, ierr) END DO #elif ! defined __MPI DO I = 1, ngl rhot( ig_l2g(i) ) = rho(i) END DO #else CALL errore(' mergerho ',' no communication protocol ',0) #endif RETURN END SUBROUTINE mergerho SUBROUTINE splitrho(rho, rhot, ngl, ig_l2g, mpime, nproc, root) ! ... This subroutine splits rho containing al the G-vecs components ! ... in a pre-defined order (the same as if only one processor is used), across ! ... processors (rho). USE kinds USE parallel_include IMPLICIT NONE REAL(DP), INTENT(OUT) :: rho(:) REAL(DP), INTENT(IN) :: rhot(:) INTEGER, INTENT(IN) :: mpime, nproc, root INTEGER, INTENT(IN) :: ig_l2g(:) INTEGER, INTENT(IN) :: ngl INTEGER :: ierr, i, ng_ip, ip, ng_lmax, ng_g #if defined __MPI INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER, ALLOCATABLE :: ig_ip(:) COMPLEX(DP), ALLOCATABLE :: rho_ip(:) #if defined __MPI ! ... Get local and global rho dimensions CALL MPI_ALLREDUCE(ngl, ng_lmax, 1, MPI_INTEGER, MPI_MAX, MPI_COMM_WORLD, ierr) CALL MPI_ALLREDUCE(ngl, ng_g , 1, MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, ierr) IF( ng_g > SIZE( rhot ) ) THEN CALL errore(' splitrho ',' wrong size for rhot ', 1 ) END IF DO ip = 1, nproc ! ... In turn each processor send to root the the indexes of its rho conponents ! ... Root receive the indexes and send the componens of the rho read from the disk (rhot) IF ( (ip-1) /= root ) THEN IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ig_l2g, ngl, MPI_INTEGER, root, ip, MPI_COMM_WORLD, ierr) CALL MPI_RECV( rho(1), ngl, MPI_DOUBLE_PRECISION, root, ip+nproc, MPI_COMM_WORLD, istatus, ierr ) END IF IF ( mpime == root ) THEN ALLOCATE(ig_ip(ng_lmax)) ALLOCATE(rho_ip(ng_lmax)) CALL MPI_RECV( ig_ip, ng_lmax, MPI_INTEGER, (ip-1), IP, MPI_COMM_WORLD, istatus, ierr ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, ng_ip, ierr) DO i = 1, ng_ip rho_ip(i) = rhot(ig_ip(i)) END DO CALL MPI_SEND( rho_ip, ng_ip, MPI_DOUBLE_PRECISION, (ip-1), ip+nproc, MPI_COMM_WORLD, ierr) DEALLOCATE(ig_ip) DEALLOCATE(rho_ip) END IF ELSE IF ( mpime == root ) THEN DO i = 1, ngl rho(i) = rhot(ig_l2g(i)) END DO END IF END IF CALL MPI_BARRIER(MPI_COMM_WORLD, ierr) END DO #elif ! defined __MPI DO i = 1, ngl rho(i) = rhot( ig_l2g(i) ) END DO #else CALL errore(' splitrho ',' no communication protocol ',0) #endif RETURN END SUBROUTINE splitrho !=----------------------------------------------------------------------------=! SUBROUTINE mergeig(igl, igtot, ngl, mpime, nproc, root, comm) ! ... This subroutine merges the pieces of a vector splitted across ! ... processors into a total vector (igtot) containing al the components ! ... in a pre-defined order (the same as if only one processor is used) USE kinds USE parallel_include IMPLICIT NONE INTEGER, intent(in) :: igl(:) INTEGER, intent(out) :: igtot(:) INTEGER, INTENT(IN) :: mpime ! index of the calling processor ( starting from 0 ) INTEGER, INTENT(IN) :: nproc ! number of processors INTEGER, INTENT(IN) :: root ! root processor ( the one that should receive the data ) INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ngl INTEGER, ALLOCATABLE :: ig_ip(:) INTEGER :: ierr, i, ip, ng_ip, ng_lmax, ng_g, gid, igs #if defined __MPI INTEGER :: istatus(MPI_STATUS_SIZE) #endif #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE( ngl, ng_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( ngl, ng_g , 1, MPI_INTEGER, MPI_SUM, gid, IERR ) IF( ng_g > SIZE( igtot ) ) THEN CALL errore(' mergeig ',' wrong size for igtot ',SIZE(igtot) ) END IF igs = 1 DO ip = 1, nproc IF( (ip-1) /= root ) THEN ! ... In turn each processors send to root the wave components and their indexes in the ! ... global array IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( igl(1), ngl, MPI_INTEGER, ROOT, IP, gid, IERR ) END IF IF ( mpime == root) THEN ALLOCATE( ig_ip(ng_lmax) ) CALL MPI_RECV( ig_ip, ng_lmax, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) CALL MPI_GET_COUNT( istatus, MPI_INTEGER, ng_ip, ierr ) DO i = 1, ng_ip igtot( igs + i - 1 ) = ig_ip( i ) END DO DEALLOCATE(ig_ip) END IF ELSE IF(mpime == root) THEN ng_ip = ngl DO i = 1, ngl igtot( igs + i - 1 ) = igl( i ) END DO END IF END IF IF(mpime == root) THEN igs = igs + ng_ip END IF CALL MPI_BARRIER( gid, IERR ) END DO #elif ! defined __MPI igtot( 1:ngl ) = igl( 1:ngl ) #else CALL errore(' mergeig ',' no communication protocol ',0) #endif RETURN END SUBROUTINE mergeig !=----------------------------------------------------------------------------=! SUBROUTINE splitig(igl, igtot, ngl, mpime, nproc, root, comm) ! ... This subroutine splits a replicated vector (igtot) stored on the root proc ! ... across processors (igl). USE kinds USE parallel_include IMPLICIT NONE INTEGER, INTENT(OUT) :: igl(:) INTEGER, INTENT(IN) :: igtot(:) INTEGER, INTENT(IN) :: mpime, nproc, root INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ngl INTEGER ierr, i, ng_ip, ip, ng_lmax, ng_g, gid, igs #if defined __MPI integer istatus(MPI_STATUS_SIZE) #endif INTEGER, ALLOCATABLE :: ig_ip(:) #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE(ngl, ng_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE(ngl, ng_g , 1, MPI_INTEGER, MPI_SUM, gid, IERR ) IF( ng_g > SIZE( igtot ) ) THEN CALL errore(' splitig ',' wrong size for igtot ', SIZE(igtot) ) END IF igs = 1 DO ip = 1, nproc ! ... In turn each processor sends to root the indices of its wavefunction components ! ... Root receives the indices and sends the components of the wavefunction read from the disk (pwt) IF ( (ip-1) /= root ) THEN IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ngl, 1 , MPI_INTEGER, ROOT, IP, gid,IERR) CALL MPI_RECV( igl, ngl, MPI_INTEGER, ROOT, IP+NPROC, gid, istatus, IERR ) END IF IF ( mpime == root ) THEN ALLOCATE(ig_ip(ng_lmax)) CALL MPI_RECV( ng_ip, 1, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) DO i = 1, ng_ip ig_ip(i) = igtot( igs + i - 1) END DO CALL MPI_SEND( ig_ip, ng_ip, MPI_INTEGER, (ip-1), IP+NPROC, gid, IERR ) DEALLOCATE(ig_ip) END IF ELSE IF ( mpime == root ) THEN ng_ip = ngl DO i = 1, ng_ip igl(i) = igtot( igs + i - 1) END DO END IF END IF IF( mpime == root ) igs = igs + ng_ip CALL MPI_BARRIER(gid, IERR) END DO #elif ! defined __MPI igl( 1:ngl ) = igtot( 1:ngl ) #else CALL errore(' splitig ',' no communication protocol ',0) #endif RETURN END SUBROUTINE splitig !=----------------------------------------------------------------------------=! SUBROUTINE pwscatter( c, ctmp, ngw, indi_l, sour_indi, dest_indi, & n_indi_rcv, n_indi_snd, icntix, mpime, nproc, group ) USE kinds USE parallel_include implicit none integer :: indi_l(:) ! list of G-vec index to be exchanged integer :: sour_indi(:) ! the list of source processors integer :: dest_indi(:) ! the list of destination processors integer :: n_indi_rcv ! number of G-vectors to be received integer :: n_indi_snd ! number of G-vectors to be sent integer :: icntix ! total number of G-vec to be exchanged INTEGER, INTENT(IN) :: nproc, mpime, group COMPLEX(DP) :: c(:) COMPLEX(DP) :: ctmp(:) integer :: ngw integer :: ig, icsize INTEGER :: me, idest, isour, ierr COMPLEX(DP), ALLOCATABLE :: my_buffer( : ) COMPLEX(DP), ALLOCATABLE :: mp_snd_buffer( : ) COMPLEX(DP), ALLOCATABLE :: mp_rcv_buffer( : ) INTEGER, ALLOCATABLE :: ibuf(:) ! ! ... SUBROUTINE BODY ! me = mpime + 1 if( icntix .lt. 1 ) then icsize = 1 else icsize = icntix endif ALLOCATE( mp_snd_buffer( icsize * nproc ) ) ALLOCATE( mp_rcv_buffer( icsize * nproc ) ) ALLOCATE( my_buffer( ngw ) ) ALLOCATE( ibuf( nproc ) ) ctmp = ( 0.0_DP, 0.0_DP ) ! WRITE( stdout,*) 'D: ', nproc, mpime, group ibuf = 0 DO IG = 1, n_indi_snd idest = dest_indi(ig) ibuf(idest) = ibuf(idest) + 1; if(idest .ne. me) then mp_snd_buffer( ibuf(idest) + (idest-1)*icsize ) = C( indi_l( ig ) ) else my_buffer(ibuf(idest)) = C(indi_l(ig)) end if end do #if defined __MPI call MPI_ALLTOALL( mp_snd_buffer(1), icsize, MPI_DOUBLE_COMPLEX, & mp_rcv_buffer(1), icsize, MPI_DOUBLE_COMPLEX, & group, ierr) #else CALL errore(' pwscatter ',' no communication protocol ',0) #endif ibuf = 0 DO IG = 1, n_indi_rcv isour = sour_indi(ig) if(isour.gt.0 .and. isour.ne.me) then ibuf(isour) = ibuf(isour) + 1 CTMP(ig) = mp_rcv_buffer(ibuf(isour) + (isour-1)*icsize) else if(isour.gt.0) then ibuf(isour) = ibuf(isour) + 1 CTMP(ig) = my_buffer(ibuf(isour)) else CTMP(ig) = (0.0_DP,0.0_DP) end if end do DEALLOCATE( mp_snd_buffer ) DEALLOCATE( mp_rcv_buffer ) DEALLOCATE( my_buffer ) DEALLOCATE( ibuf ) RETURN END SUBROUTINE pwscatter !=----------------------------------------------------------------------------=! SUBROUTINE redistwf( c_dist_pw, c_dist_st, npw_p, nst_p, comm, idir ) ! ! Redistribute wave function. ! c_dist_pw are the wave functions with plane waves distributed over processors ! c_dist_st are the wave functions with electronic states distributed over processors ! USE kinds USE parallel_include implicit none COMPLEX(DP) :: c_dist_pw(:,:) COMPLEX(DP) :: c_dist_st(:,:) INTEGER, INTENT(IN) :: npw_p(:) ! the number of plane wave on each processor INTEGER, INTENT(IN) :: nst_p(:) ! the number of states on each processor INTEGER, INTENT(IN) :: comm ! group communicator INTEGER, INTENT(IN) :: idir ! direction of the redistribution ! idir > 0 c_dist_pw --> c_dist_st ! idir < 0 c_dist_pw <-- c_dist_st INTEGER :: mpime, nproc, ierr, npw_t, nst_t, proc, i, j, ngpww, ii INTEGER, ALLOCATABLE :: rdispls(:), recvcount(:) INTEGER, ALLOCATABLE :: sendcount(:), sdispls(:) COMPLEX(DP), ALLOCATABLE :: ctmp( : ) #ifdef __MPI CALL mpi_comm_rank( comm, mpime, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_rank ', ierr ) CALL mpi_comm_size( comm, nproc, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_size ', ierr ) ALLOCATE( rdispls( nproc ), recvcount( nproc ), sendcount( nproc ), sdispls( nproc ) ) npw_t = 0 nst_t = 0 DO proc=1,nproc sendcount(proc) = npw_p(mpime+1) * nst_p(proc) recvcount(proc) = npw_p(proc) * nst_p(mpime+1) npw_t = npw_t + npw_p(proc) nst_t = nst_t + nst_p(proc) END DO sdispls(1)=0 rdispls(1)=0 DO proc=2,nproc sdispls(proc) = sdispls(proc-1) + sendcount(proc-1) rdispls(proc) = rdispls(proc-1) + recvcount(proc-1) END DO ALLOCATE( ctmp( npw_t * nst_p( mpime + 1 ) ) ) IF( idir > 0 ) THEN ! ! ... Step 1. Communicate to all Procs so that each proc has all ! ... G-vectors and some states instead of all states and some ! ... G-vectors. This information is stored in the 1-d array ctmp. ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) ! CALL MPI_ALLTOALLV( c_dist_pw, sendcount, sdispls, MPI_DOUBLE_COMPLEX, & & ctmp, recvcount, rdispls, MPI_DOUBLE_COMPLEX, comm, ierr) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) ! ! Step 2. Convert the 1-d array ctmp into a 2-d array consistent with the ! original notation c(ngw,nbsp). Psitot contains ntot = SUM_Procs(ngw) G-vecs ! and nstat states instead of all nbsp states ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) ii = (i-1) * npw_p(proc) DO j = 1, npw_p(proc) c_dist_st( j + ngpww, i ) = ctmp( rdispls(proc) + j + ii ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ELSE ! ! Step 4. Convert the 2-d array c_dist_st into 1-d array ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) ii = (i-1) * npw_p(proc) DO j = 1, npw_p(proc) ctmp( rdispls(proc) + j + ii ) = c_dist_st( j + ngpww, i ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ! ! Step 5. Redistribute among processors. The result is stored in 2-d ! array c_dist_pw consistent with the notation c(ngw,nbsp) ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) CALL MPI_ALLTOALLV( ctmp, recvcount, rdispls, MPI_DOUBLE_COMPLEX, & & c_dist_pw, sendcount , sdispls, MPI_DOUBLE_COMPLEX, comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) END IF DEALLOCATE( ctmp ) DEALLOCATE( rdispls, recvcount, sendcount, sdispls ) #endif RETURN END SUBROUTINE redistwf SUBROUTINE redistwfr( c_dist_pw, c_dist_st, npw_p, nst_p, comm, idir ) ! ! Redistribute wave function. ! c_dist_pw are the wave functions with plane waves distributed over processors ! c_dist_st are the wave functions with electronic states distributed over processors ! USE kinds USE parallel_include implicit none REAL(DP) :: c_dist_pw(:,:) REAL(DP) :: c_dist_st(:,:) INTEGER, INTENT(IN) :: npw_p(:) ! the number of plane wave on each processor INTEGER, INTENT(IN) :: nst_p(:) ! the number of states on each processor INTEGER, INTENT(IN) :: comm ! group communicator INTEGER, INTENT(IN) :: idir ! direction of the redistribution ! idir > 0 c_dist_pw --> c_dist_st ! idir < 0 c_dist_pw <-- c_dist_st INTEGER :: mpime, nproc, ierr, npw_t, nst_t, proc, i, j, ngpww INTEGER, ALLOCATABLE :: rdispls(:), recvcount(:) INTEGER, ALLOCATABLE :: sendcount(:), sdispls(:) REAL(DP), ALLOCATABLE :: ctmp( : ) #ifdef __MPI CALL mpi_comm_rank( comm, mpime, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_rank ', ierr ) CALL mpi_comm_size( comm, nproc, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_size ', ierr ) ALLOCATE( rdispls( nproc ), recvcount( nproc ), sendcount( nproc ), sdispls( nproc ) ) npw_t = 0 nst_t = 0 DO proc=1,nproc sendcount(proc) = npw_p(mpime+1) * nst_p(proc) recvcount(proc) = npw_p(proc) * nst_p(mpime+1) npw_t = npw_t + npw_p(proc) nst_t = nst_t + nst_p(proc) END DO sdispls(1)=0 rdispls(1)=0 DO proc=2,nproc sdispls(proc) = sdispls(proc-1) + sendcount(proc-1) rdispls(proc) = rdispls(proc-1) + recvcount(proc-1) END DO ALLOCATE( ctmp( npw_t * nst_p( mpime + 1 ) ) ) IF( idir > 0 ) THEN ! ! ... Step 1. Communicate to all Procs so that each proc has all ! ... G-vectors and some states instead of all states and some ! ... G-vectors. This information is stored in the 1-d array ctmp. ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) ! CALL MPI_ALLTOALLV( c_dist_pw, sendcount, sdispls, MPI_DOUBLE_PRECISION, & & ctmp, recvcount, rdispls, MPI_DOUBLE_PRECISION, comm, ierr) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) ! ! Step 2. Convert the 1-d array ctmp into a 2-d array consistent with the ! original notation c(ngw,nbsp). Psitot contains ntot = SUM_Procs(ngw) G-vecs ! and nstat states instead of all nbsp states ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) DO j = 1, npw_p(proc) c_dist_st( j + ngpww, i ) = ctmp( rdispls(proc) + j + (i-1) * npw_p(proc) ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ELSE ! ! Step 4. Convert the 2-d array c_dist_st into 1-d array ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) DO j = 1, npw_p(proc) ctmp( rdispls(proc) + j + (i-1) * npw_p(proc) ) = c_dist_st( j + ngpww, i ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ! ! Step 5. Redistribute among processors. The result is stored in 2-d ! array c_dist_pw consistent with the notation c(ngw,nbsp) ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) CALL MPI_ALLTOALLV( ctmp, recvcount, rdispls, MPI_DOUBLE_PRECISION, & & c_dist_pw, sendcount , sdispls, MPI_DOUBLE_PRECISION, comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) END IF DEALLOCATE( ctmp ) DEALLOCATE( rdispls, recvcount, sendcount, sdispls ) #endif RETURN END SUBROUTINE redistwfr !=----------------------------------------------------------------------------=! END MODULE mp_wave espresso-5.0.2/Modules/ws_base.f900000644000700200004540000001720012053145633015735 0ustar marsamoscm! ! Copyright (C) 2009 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE ws_base !============================================================================ ! ! Module containing type definitions and auxiliary routines to deal with ! basic operations on the Wigner-Seitz cell associated to a given set ! of Bravais fundamental lattice vectors. ! ! Should contain low level routines and no reference to other modules ! (with the possible exception of kinds and parameters) so as to be ! call-able from any other module. ! ! content: ! ! - ws_type : derived type definition used to encoded the auxiliary ! quantities needed by the other WS functions or routines ! ! - ws_init(a,ws) ! : a routine that initializes a ws_type variable ! ! - ws_clear(ws) ! : a routine that un-sets a ws_type variable ! ! - ws_test(ws) ! : a routine that tests whether a ws_type variable has been ! initialized ! ! - ws_vect(r,ws,r_ws) ! : a routine that given a vector returns an equivalent ! vector inside the WS cell ! ! - ws_dist(r,ws) ! : a routine that, given a vector, returns the shortest ! distance from any point in the Bravais lattice ! ! - ws_weight(r,ws) ! : a routine that given a vector ! returns 1.0 if the vector is inside the WS cell ! returns 0.0 if the vector is outside the WS cell ! returns 1/(1+NR) if the vector is on the frontier of the ! WS cell and NR is the number of Bravais ! lattice points whose distance is the same ! as the one from the origin ! !============================================================================ ! USE kinds, ONLY: dp ! IMPLICIT NONE ! TYPE ws_type PRIVATE ! this means (I hope) that internal variables can only ! be accessed through calls of routines inside the module. REAL(DP) :: & a(3,3), & ! the fundamental Bravais lattice vectors aa(3,3), & ! a^T*a b(3,3), & ! the inverse of a, i.e. the transponse of the fundamental ! reciprocal lattice vectors norm_b(3) ! the norm of the fundamental reciprocal lattice vectors LOGICAL :: & initialized = .FALSE. ! .TRUE. when initialized END TYPE ws_type PRIVATE PUBLIC :: ws_type, ws_init, ws_clean, ws_test, ws_vect, ws_dist, ws_weight, ws_dist_stupid !============================================================================ ! CONTAINS !--------------------------------------------------------------- SUBROUTINE ws_init(a,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: a(3,3) TYPE(ws_type), INTENT(OUT) :: ws REAL(DP) :: garbage INTEGER :: i ! ws%a = a CALL invmat( 3, ws%a, ws%b, garbage ) ! invmat is defined in flib ws%aa = MATMUL(TRANSPOSE(a),a) do i=1,3 ws%norm_b(i) = DSQRT(SUM(ws%b(i,:)*ws%b(i,:))) end do ws%initialized = .TRUE. RETURN END SUBROUTINE ws_init ! !--------------------------------------------------------------- SUBROUTINE ws_clean(ws) !--------------------------------------------------------------- TYPE(ws_type), INTENT(OUT) :: ws ws%initialized = .FALSE. RETURN END SUBROUTINE ws_clean ! !--------------------------------------------------------------- SUBROUTINE ws_test(ws) !--------------------------------------------------------------- TYPE(ws_type), INTENT(IN) :: ws IF (.NOT.ws%initialized) CALL errore & ('ws_test','trying to use an uninitialized ws_type variable',1) RETURN END SUBROUTINE ws_test !--------------------------------------------------------------- SUBROUTINE ws_vect(r,ws,r_ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP), INTENT(OUT) :: r_ws(3) REAL(DP) :: x(3), y(3), c, ctest INTEGER :: lb(3), ub(3), i1, i2, i3, m(3) CALL ws_test(ws) x = MATMUL(ws%b,r) x(:) = x(:) - NINT(x(:)) c = SUM(x*MATMUL(ws%aa,x)) m = 0 lb(:) = NINT ( x(:) - DSQRT (c) * ws%norm_b(:) ) ! CEILING should be enough for lb but NINT might be safer ub(:) = NINT ( x(:) + DSQRT (c) * ws%norm_b(:) ) ! FLOOR should be enough for ub but NINT might be safer DO i1 = lb(1), ub(1) DO i2 = lb(2), ub(2) DO i3 = lb(3), ub(3) y = x - (/i1,i2,i3/) ctest = SUM(y*MATMUL(ws%aa,y)) IF (ctest < c) THEN c = ctest m = (/i1,i2,i3/) END IF END DO END DO END DO y = x-m r_ws = MATMUL(ws%a,y) RETURN END SUBROUTINE ws_vect ! !--------------------------------------------------------------- FUNCTION ws_dist_stupid(r,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP) :: ws_dist_stupid REAL(DP) :: r_ws(3) integer :: i1,i2,i3 real(DP) :: rr, rmin, rtest(3) CALL ws_test(ws) rmin = 1.d+9 do i1=-3,3 do i2=-3,3 do i3=-3,3 rtest(:) = r(:) + ws%a(:,1)*i1 + ws%a(:,2)*i2 + ws%a(:,3)*i3 rr = sum(rtest(:)**2) if (rr < rmin) rmin = rr end do end do end do ws_dist_stupid = DSQRT(rmin) RETURN END FUNCTION ws_dist_stupid ! !--------------------------------------------------------------- FUNCTION ws_dist(r,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP) :: ws_dist REAL(DP) :: r_ws(3) CALL ws_test(ws) CALL ws_vect(r,ws,r_ws) ws_dist = DSQRT(SUM(r_ws**2)) RETURN END FUNCTION ws_dist ! !--------------------------------------------------------------- FUNCTION ws_weight(r,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP) :: ws_weight REAL(DP) :: x(3), y(3), c, ctest INTEGER :: lb(3), ub(3), i1, i2, i3, m(3) REAL(DP), PARAMETER :: eps6 = 1.0E-6_DP ws_weight = 0.0_DP CALL ws_test(ws) x = MATMUL(ws%b,r) c = SUM(x*MATMUL(ws%aa,x)) lb(:) = NINT ( x(:) - DSQRT (c) * ws%norm_b(:) ) ! CEILING should be enough for lb but NINT might be safer ub(:) = NINT ( x(:) + DSQRT (c) * ws%norm_b(:) ) ! FLOOR should be enough for ub but NINT might be safer DO i1 = lb(1), ub(1) DO i2 = lb(2), ub(2) DO i3 = lb(3), ub(3) y = x - (/i1,i2,i3/) ctest = SUM(y*MATMUL(ws%aa,y)) IF (ctest < c - eps6 ) THEN ws_weight = 0.0_DP RETURN END IF IF (ctest < c + eps6 ) THEN ws_weight = ws_weight + 1.0_DP END IF END DO END DO END DO IF (ws_weight == 0.0_DP) CALL errore ('ws_weight','unexpected error',1) ws_weight = 1.0_dp / ws_weight RETURN END FUNCTION ws_weight ! END MODULE ws_base espresso-5.0.2/Modules/run_info.f900000644000700200004540000000113712053145633016133 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !==-----------------------------------------------------------------------==! MODULE run_info !==-----------------------------------------------------------------------==! IMPLICIT NONE ! ... title of the simulation CHARACTER(LEN=75) :: title=' ' ! END MODULE run_info !==-----------------------------------------------------------------------==! espresso-5.0.2/Modules/radial_grids.f900000644000700200004540000003752712053145633016754 0ustar marsamoscm! ! Copyright (C) 2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE radial_grids !============================================================================ ! ! Module containing type definitions and auxiliary routines to deal with ! data on logarithmic radial grids. ! Should contain low level routines and no reference to other modules ! (with the possible exception of kinds and parameters) so as to be ! call-able from any other module. ! ! content: ! ! - ndmx : parameter definition max grid dimension ! ! - radial_grid_type : derived type definition for radial grids ! ! - do_mesh : a routine to build the radial mesh ! ! - check_mesh : a routine to check if grid is consistently set ! ! - hartree : a routine that solve the Poisson's equation on radial grid ! ! - series : a simple routine returning the coefficient of the polynomial ! describing the leading behavior of a function f at small r. ! ! - write_grid_on_file, read_grid_from_file : I/O routines ! !============================================================================ ! USE kinds, ONLY: dp ! IMPLICIT NONE ! integer, parameter :: & ndmx=3500 ! the maximum mesh size TYPE radial_grid_type INTEGER :: & mesh ! the actual number of mesh points REAL(DP),POINTER :: & r(:), & ! the radial mesh r2(:), & ! the square of the radial mesh rab(:), & ! d r(x) / d x where x is the linear grid sqr(:), & ! the square root of the radial mesh rm1(:), & ! 1 / r rm2(:), & ! 1 / r**2 rm3(:) ! 1 / r**3 REAL(DP) :: & xmin, & ! the minimum x rmax, & ! the maximum radial point zmesh, & ! the ionic charge used for the mesh dx ! the deltax of the linear mesh END TYPE radial_grid_type PRIVATE PUBLIC :: ndmx, radial_grid_type, & do_mesh, check_mesh, hartree, series, & write_grid_on_file, read_grid_from_file, & allocate_radial_grid,& deallocate_radial_grid,& nullify_radial_grid,& radial_grid_COPY interface deallocate_radial_grid module procedure & deallocate_radial_grid_s,& ! only one deallocate_radial_grid_v ! an array end interface !============================================================================ ! CONTAINS ! ! Build the radial (logarithmic) grid ! ! r(i) = exp ( xmin + (i-1) dx ) / zmesh i=1,mesh ! r2(i) is r(i) square, sqr(i) is sqrt(r(i)) and ! rab(i) is the integration element = r(i)*dx ! ! more general grid definitions are possible but currently not implemented ! (example: Vanderbilt's grid, same as above but starting at r=0) ! r(i) = exp ( xmin ) * ( exp( (i-1)*dx ) - 1.0_dp ) / zmesh ! rab(i) = ( r(i) + exp(xmin)/zmesh ) * dx ! !--------------------------------------------------------------- subroutine radial_grid_COPY(X,Y) !--------------------------------------------------------------- type(radial_grid_type),intent(in) :: X type(radial_grid_type),intent(inout) :: Y ! call deallocate_radial_grid(Y) call allocate_radial_grid(Y, X%mesh) ! Y%r(1:X%mesh) = X%r(1:X%mesh) Y%r2(1:X%mesh) = X%r2(1:X%mesh) Y%rab(1:X%mesh) = X%rab(1:X%mesh) Y%sqr(1:X%mesh) = X%sqr(1:X%mesh) Y%rm1(1:X%mesh) = X%rm1(1:X%mesh) Y%rm2(1:X%mesh) = X%rm2(1:X%mesh) Y%rm3(1:X%mesh) = X%rm3(1:X%mesh) ! Y%xmin = X%xmin Y%rmax = X%rmax Y%zmesh = X%zmesh Y%dx = X%dx end subroutine radial_grid_COPY ! !--------------------------------------------------------------- subroutine allocate_radial_grid(grid,mesh) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid integer,intent(in) :: mesh if(mesh>ndmx) & call errore('allocate_radial_grid', 'mesh>ndmx',1) allocate( & grid%r(mesh), & grid%r2(mesh), & ! the square of the radial mesh grid%rab(mesh), & ! d r(x) / d x where x is the linear grid grid%sqr(mesh), & ! the square root of the radial mesh grid%rm1(mesh), & ! 1 / r grid%rm2(mesh), & ! 1 / r**2 grid%rm3(mesh) ) ! 1 / r**3 grid%mesh = mesh end subroutine allocate_radial_grid ! !--------------------------------------------------------------- subroutine deallocate_radial_grid_s(grid) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid if (associated(grid%r)) deallocate(grid%r) if (associated(grid%r2)) deallocate(grid%r2) if (associated(grid%rab)) deallocate(grid%rab) if (associated(grid%sqr)) deallocate(grid%sqr) if (associated(grid%rm1)) deallocate(grid%rm1) if (associated(grid%rm2)) deallocate(grid%rm2) if (associated(grid%rm3)) deallocate(grid%rm3) grid%mesh = 0 call nullify_radial_grid(grid) end subroutine deallocate_radial_grid_s !--------------------------------------------------------------- subroutine deallocate_radial_grid_v(grid) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid(:) integer :: n do n = 1,size(grid) if (associated(grid(n)%r)) deallocate(grid(n)%r) if (associated(grid(n)%r2)) deallocate(grid(n)%r2) if (associated(grid(n)%rab)) deallocate(grid(n)%rab) if (associated(grid(n)%sqr)) deallocate(grid(n)%sqr) if (associated(grid(n)%rm1)) deallocate(grid(n)%rm1) if (associated(grid(n)%rm2)) deallocate(grid(n)%rm2) if (associated(grid(n)%rm3)) deallocate(grid(n)%rm3) grid(n)%mesh = 0 enddo !deallocate(grid) end subroutine deallocate_radial_grid_v !--------------------------------------------------------------- subroutine nullify_radial_grid(grid) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid nullify( & grid%r, & grid%r2, & ! the square of the radial mesh grid%rab, & ! d r(x) / d x where x is the linear grid grid%sqr, & ! the square root of the radial mesh grid%rm1, & ! 1 / r grid%rm2, & ! 1 / r**2 grid%rm3 ) ! 1 / r**3 grid%mesh = -1 end subroutine nullify_radial_grid ! !--------------------------------------------------------------- subroutine do_mesh(rmax,zmesh,xmin,dx,ibound,grid) !--------------------------------------------------------------- ! use kinds, only : DP implicit none type(radial_grid_type),intent(out) :: grid integer, intent(in) :: ibound real(DP),intent(in) :: rmax, zmesh, dx real(DP),intent(inout):: xmin real(DP) :: xmax, x integer :: mesh, i ! xmax=log(rmax*zmesh) mesh=(xmax-xmin)/dx+1 ! ! mesh must be odd for simpson integration. ! mesh=2*(mesh/2)+1 if(mesh+1 > ndmx) call errore('do_mesh','ndmx is too small',1) if(ibound == 1) xmin=xmax-dx*(mesh-1) ! call deallocate_radial_grid(grid) call allocate_radial_grid(grid,mesh) ! do i=1,mesh x=xmin+DBLE(i-1)*dx grid%r(i) = exp(x)/zmesh grid%r2(i) = grid%r(i)*grid%r(i) grid%rab(i) = grid%r(i)*dx grid%sqr(i) = sqrt(grid%r(i)) grid%rm1(i) = 1._dp/grid%r(i) grid%rm2(i) = 1._dp/grid%r(i)**2 grid%rm3(i) = 1._dp/grid%r(i)**3 end do ! grid%mesh = mesh grid%dx = dx grid%xmin = xmin grid%rmax = rmax grid%zmesh = zmesh return end subroutine do_mesh ! ! check that logarithmic grid is consistently set !--------------------------------------------------------------- subroutine check_mesh(grid) !--------------------------------------------------------------- ! use kinds, only : DP use constants, only : eps8 implicit none type(radial_grid_type),intent(in) :: grid integer :: i if (grid%mesh < 0 ) call errore('check_mesh','grid%mesh < 0 ',1) do i=1,grid%mesh if (abs(grid%r2(i)/grid%r(i)**2-1.d0) > eps8 ) & call errore('check_mesh',' r2(i) is different ',i) if (abs(grid%sqr(i)/sqrt(grid%r(i))-1.d0) > eps8 ) & call errore('check_mesh',' sqr(i) is different ',i) if (abs(grid%rab(i)/(grid%r(i)*grid%dx)-1.d0) > eps8 ) & call errore('check_mesh',' rab(i) is different ',i) end do return end subroutine check_mesh ! ! Solution of the Poisson's equation on a radial (logarithmic) grid !--------------------------------------------------------------- subroutine hartree(k,nst,mesh,grid,f,vh) !--------------------------------------------------------------- ! use kinds, only : DP ! use radial_grids, only: radial_grid_type implicit none integer,intent(in):: & k, & ! input: the k of the equation nst, & ! input: at low r, f goes as r**nst mesh ! input: the dimension of the mesh type(radial_grid_type), intent(in) :: & grid ! input: the radial grid real(DP), intent(in):: & f(mesh) ! input: the 4\pi r2 \rho function real(DP), intent(out):: & vh(mesh) ! output: the required solution ! ! local variables ! integer :: & k21, & ! 2k+1 nk1, & ! nst-k-1 ierr, & ! integer variable for allocation control i ! counter real(DP):: & c0,c2,c3, & ! coefficients of the polynomial expansion close to r=0 ch, & ! dx squared / 12.0 xkh2, & ! ch * f ei, di, & ! auxiliary variables for the diagonal and ! off diagonal elements of the matrix f1, fn, & ! variables used for the boundary condition vhim1, vhi ! variables for the right hand side real(DP), allocatable:: & d(:), & ! the diagonal elements of ! the tridiagonal sys. e(:) ! the off diagonal elements ! of the trid. sys. ! ! Allocate space for the diagonal and off diagonal elements ! if (mesh.ne.grid%mesh) call errore('hartree',' grid dimension mismatch',1) allocate(d(mesh),stat=ierr) allocate(e(mesh),stat=ierr) if (ierr.ne.0) call errore('hartree',' error allocating d or e',1) ! ! Find the series expansion of the solution close to r=0 ! k21=2*k+1 nk1=nst-k-1 if(nk1.le.0) then write(6,100) k,nst 100 format(5x,'stop in "hartree": k=',i3,' nst=',i3) stop !else if(nk1.ge.4) then ! not sure whether the following is really correct, but the above wasn't else if(nk1.ge.3) then c2=0.0_dp c3=0.0_dp else e(1)=0.0_dp do i=1,4 d(i)=-k21*f(i)/grid%r(i)**nst end do call series(d,grid%r,grid%r2,e(nk1)) c2=e(1)/(4.0_dp*k+6.0_dp) c3=e(2)/(6.0_dp*k+12.0_dp) end if ! ! Set the main auxiliary parameters ! ch=grid%dx*grid%dx/12.0_dp xkh2=ch*(DBLE(k)+0.5_dp)**2 ei=1.0_dp-xkh2 di=-(2.0_dp+10.0_dp*xkh2) ! ! Set the diagonal and the off diagonal elements of the ! linear system, compute a part of the right hand side ! do i=2,mesh d(i)=-di e(i)=-ei vh(i)=k21*ch*grid%sqr(i)*f(i) end do ! ! Use the boundary condition to eliminate the value of the ! solution in the first point from the first equation. This ! part for the diagonal element ! f1=(grid%sqr(1)/grid%sqr(2))**k21 d(2)=d(2)-ei*f1 ! ! Use the boundary condition to eliminate the value of the ! solution in the last point from the last equation ! fn=(grid%sqr(mesh-1)/grid%sqr(mesh))**k21 d(mesh-1)=d(mesh-1)-ei*fn ! ! In the first point vh(1) has the same definition as in the other points ! vhim1=k21*ch*grid%sqr(1)*f(1) ! ! Compute the right hand side using the auxiliary quantity vh(i). ! do i=2,mesh-1 vhi=vh(i) vh(i)=vhim1+10.0_dp*vhi+vh(i+1) vhim1=vhi end do ! ! Use the boundary condition to eliminate the value of the solution in the ! first point from the first equation. This part for the right hand side. ! vh(2)=vh(2)-ei*grid%sqr(1)**k21*(c2*(grid%r2(2)-grid%r2(1)) & +c3*(grid%r(2)**3-grid%r(1)**3)) ! ! solve the linear system with lapack routine dptsv ! call dptsv(mesh-2,1,d(2),e(2),vh(2),mesh-2,ierr) if (ierr.ne.0) call errore('hartree', 'error in lapack', ierr) ! ! Set the value of the solution at the first and last point ! First, find c0 from the solution in the second point ! c0=vh(2)/grid%sqr(2)**k21-c2*grid%r2(2)-c3*grid%r(2)*grid%r2(2) ! ! and then use the series expansion at the first point ! vh(1)=grid%sqr(1)**k21*(c0+c2*grid%r2(1)+c3*grid%r(1)**3) ! ! the solution at the last point is given by the boundary ! condition ! vh(mesh)=vh(mesh-1)*fn ! ! The solution must be divided by r (from the equation) ! and multiplied by the square root of r (from the log ! mesh transformation) ! do i=1,mesh vh(i)= vh(i) / grid%sqr(i) end do deallocate(e) deallocate(d) return end subroutine hartree ! ! simple routine returning the coefficient of the polynomial ! describing the leading behavior of a function f at small r. !--------------------------------------------------------------- subroutine series(f,r,r2,b) !--------------------------------------------------------------- ! use kinds, only : DP implicit none real(DP):: dr21,dr31,dr32,dr41,dr42,dr43,df21,df32,df43, & ddf42,ddf31 real(DP):: f(4),r(4),r2(4),b(0:3) dr21=r(2)-r(1) dr31=r(3)-r(1) dr32=r(3)-r(2) dr41=r(4)-r(1) dr42=r(4)-r(2) dr43=r(4)-r(3) df21=(f(2)-f(1))/dr21 df32=(f(3)-f(2))/dr32 df43=(f(4)-f(3))/dr43 ddf42=(df43-df32)/dr42 ddf31=(df32-df21)/dr31 b(3)=(ddf42-ddf31)/dr41 b(2)=ddf31-b(3)*(r(1)+r(2)+r(3)) b(1)=df21-b(2)*(r(2)+r(1))-b(3)*(r2(1)+r2(2)+r(1)*r(2)) b(0)=f(1)-r(1)*(b(1)+r(1)*(b(2)+r(1)*b(3))) return end subroutine series !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! ! I/O routines ! !---------------------------------------------------------------------- subroutine write_grid_on_file(iunit,grid) ! use radial_grids, only: radial_grid_type implicit none type(radial_grid_type), intent(in) :: grid integer, intent(in) :: iunit integer :: n ! WRITE(iunit,'(i8)') grid%mesh WRITE(iunit,'(e20.10)') grid%dx WRITE(iunit,'(e20.10)') grid%xmin WRITE(iunit,'(e20.10)') grid%zmesh WRITE(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh) WRITE(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh) WRITE(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh) ! WRITE(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh) return end subroutine write_grid_on_file subroutine read_grid_from_file(iunit,grid) ! use radial_grids, only: radial_grid_type implicit none type(radial_grid_type), intent(out) :: grid integer, intent(in) :: iunit integer :: n ! READ(iunit,'(i8)') grid%mesh READ(iunit,'(e20.10)') grid%dx READ(iunit,'(e20.10)') grid%xmin READ(iunit,'(e20.10)') grid%zmesh READ(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh) READ(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh) READ(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh) ! READ(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh) grid%rab(1:grid%mesh) = grid%r(1:grid%mesh) * grid%dx grid%rm1(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh) grid%rm2(1:grid%mesh) = 1._dp/grid%r2(1:grid%mesh) grid%rm3(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)**3 return end subroutine read_grid_from_file !---------------------------------------------------------------------- END MODULE radial_grids espresso-5.0.2/Modules/read_namelists.f900000644000700200004540000021671312053145633017316 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE read_namelists_module !---------------------------------------------------------------------------- ! ! ... this module handles the reading of input namelists ! ... written by: Carlo Cavazzoni ! -------------------------------------------------- ! USE kinds, ONLY : DP USE input_parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! REAL(DP), PARAMETER :: sm_not_set = -20.0_DP ! PUBLIC :: read_namelists, sm_not_set ! ! ... modules needed by read_xml.f90 ! PUBLIC :: control_defaults, system_defaults, ee_defaults, & electrons_defaults, wannier_ac_defaults, ions_defaults, & cell_defaults, press_ai_defaults, wannier_defaults, control_bcast, & system_bcast, ee_bcast, electrons_bcast, ions_bcast, cell_bcast, & press_ai_bcast, wannier_bcast, wannier_ac_bcast, control_checkin, & system_checkin, electrons_checkin, ions_checkin, cell_checkin, & wannier_checkin, wannier_ac_checkin, fixval ! ! ... end of module-scope declarations ! ! ---------------------------------------------- ! CONTAINS ! !=-----------------------------------------------------------------------=! ! ! Variables initialization for Namelist CONTROL ! !=-----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE control_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! IF ( prog == 'PW' ) THEN title = ' ' calculation = 'scf' ELSE title = 'MD Simulation' calculation = 'cp' END IF verbosity = 'default' IF( prog == 'PW' ) restart_mode = 'from_scratch' IF( prog == 'CP' ) restart_mode = 'restart' nstep = 50 IF( prog == 'PW' ) iprint = 100000 IF( prog == 'CP' ) iprint = 10 IF( prog == 'PW' ) isave = 0 IF( prog == 'CP' ) isave = 100 ! tstress = .FALSE. tprnfor = .FALSE. tabps = .FALSE. ! IF( prog == 'PW' ) dt = 20.0_DP IF( prog == 'CP' ) dt = 1.0_DP ! ndr = 50 ndw = 50 ! ! ... use the path specified as outdir and the filename prefix ! ... to store output data ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( TRIM( outdir ) == ' ' ) outdir = './' IF( prog == 'PW' ) prefix = 'pwscf' IF( prog == 'CP' ) prefix = 'cp' ! ! ... directory containing the pseudopotentials ! CALL get_env( 'ESPRESSO_PSEUDO', pseudo_dir ) IF ( TRIM( pseudo_dir ) == ' ') THEN CALL get_env( 'HOME', pseudo_dir ) pseudo_dir = TRIM( pseudo_dir ) // '/espresso/pseudo/' END IF ! refg = 0.05_DP max_seconds = 1.E+7_DP ekin_conv_thr = 1.E-6_DP etot_conv_thr = 1.E-4_DP forc_conv_thr = 1.E-3_DP disk_io = 'default' dipfield = .FALSE. lberry = .FALSE. gdir = 0 nppstr = 0 wf_collect = .FALSE. IF( prog == 'CP' ) wf_collect = .TRUE. ! default for CP is true printwfc = -1 lelfield = .FALSE. lorbm = .FALSE. nberrycyc = 1 lkpoint_dir = .TRUE. lecrpa = .FALSE. ! saverho = .TRUE. memory = 'default' ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist SYSTEM ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE system_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! ibrav = -1 celldm = (/ 0.0_DP, 0.0_DP, 0.0_DP, 0.0_DP, 0.0_DP, 0.0_DP /) a = 0.0_DP b = 0.0_DP c = 0.0_DP cosab = 0.0_DP cosac = 0.0_DP cosbc = 0.0_DP nat = 0 ntyp = 0 nbnd = 0 tot_charge = 0.0_DP tot_magnetization = -1 ecutwfc = 0.0_DP ecutrho = 0.0_DP nr1 = 0 nr2 = 0 nr3 = 0 nr1s = 0 nr2s = 0 nr3s = 0 nr1b = 0 nr2b = 0 nr3b = 0 occupations = 'fixed' smearing = 'gaussian' degauss = 0.0_DP nspin = 1 nosym = .FALSE. nosym_evc = .FALSE. force_symmorphic = .FALSE. use_all_frac = .FALSE. noinv = .FALSE. ecfixed = 0.0_DP qcutz = 0.0_DP q2sigma = 0.01_DP input_dft = 'none' ecutfock = -1.0_DP ! ! ... set starting_magnetization to an invalid value: ! ... in PW starting_magnetization MUST be set for at least one atomic type ! ... (unless the magnetization is set in other ways) ! ... in CP starting_magnetization MUST REMAIN UNSET ! starting_magnetization = sm_not_set IF ( prog == 'PW' ) THEN ! starting_ns_eigenvalue = -1.0_DP U_projection_type = 'atomic' ! END IF lda_plus_U = .FALSE. lda_plus_u_kind = 0 Hubbard_U = 0.0_DP Hubbard_J0 = 0.0_DP Hubbard_J = 0.0_DP Hubbard_alpha = 0.0_DP Hubbard_beta = 0.0_DP step_pen=.false. A_pen=0.0_DP sigma_pen=0.01_DP alpha_pen=0.0_DP edir = 1 emaxpos = 0.5_DP eopreg = 0.1_DP eamp = 0.0_DP ! ! ... postprocessing of DOS & phonons & el-ph la2F = .FALSE. ! ! ... non collinear program variables ! lspinorb = .FALSE. starting_spin_angle=.FALSE. noncolin = .FALSE. lambda = 1.0_DP constrained_magnetization= 'none' fixed_magnetization = 0.0_DP B_field = 0.0_DP angle1 = 0.0_DP angle2 = 0.0_DP report = 1 ! no_t_rev = .FALSE. ! assume_isolated = 'none' ! one_atom_occupations=.FALSE. ! spline_ps = .false. ! real_space = .false. ! ! ... DFT-D ! london = .false. london_s6 = 0.75_DP london_rcut = 200.00_DP ! #ifdef __ENVIRON ! ... Environ ! do_environ = .false. ! #endif ! ... ESM ! esm_bc='pbc' esm_efield=0.0_DP esm_w=0.0_DP esm_nfit=4 esm_debug=.FALSE. esm_debug_gpmax=0 ! RETURN ! END SUBROUTINE #ifdef __ENVIRON !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist ENVIRON ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE environ_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! verbose = 0 environ_thr = 1.D-1 environ_type = 'input' ! stype = 1 rhomax = 0.005 rhomin = 0.0001 tbeta = 4.8 ! env_static_permittivity = 1.D0 eps_mode = 'electronic' solvationrad(:) = 3.D0 atomicspread(:) = 0.5D0 add_jellium = .false. ! ifdtype = 1 nfdpoint = 2 ! mixtype = 'linear' ndiis = 1 mixrhopol = 0.5 tolrhopol = 1.D-10 ! env_surface_tension = 0.D0 delta = 0.00001D0 ! env_pressure = 0.D0 ! env_ioncc_concentration = 0.0D0 zion = 1.0D0 rhopb = 0.0001D0 solvent_temperature = 300.0D0 ! RETURN ! END SUBROUTINE ! #endif ! DCC !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist EE ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ee_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! ncompx = 1 ncompy = 1 ncompz = 1 mr1 = 0 mr2 = 0 mr3 = 0 ecutcoarse = 100.D0 errtol = 1.d-22 nlev = 2 itmax = 1000 whichbc = 0 ! centercompx = 0.D0 ! centercompy = 0.D0 ! centercompz = 0.D0 ! spreadcomp = -9999.D0 mixing_charge_compensation = 1.0D0 n_charge_compensation = 5 comp_thr = 1.D-4 ! multipole = 'dipole' ! poisson_maxiter = 5000 ! poisson_thr = 1.D-6 ! comp_thr = 1.D-2 ! ebc_thr = 1.D-2 ! rhoionmax = 1.D0 ! smoothspr = 0.25D0 ! deltapot = 5.D-1 nlev = 2 ! which_smoothing = 'sphere' RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist ELECTRONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE electrons_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! emass = 400.0_DP emass_cutoff = 2.5_DP orthogonalization = 'ortho' ortho_eps = 1.E-8_DP ortho_max = 20 electron_maxstep = 100 scf_must_converge = .true. ! ! ... ( 'sd' | 'cg' | 'damp' | 'verlet' | 'none' | 'diis' ) ! electron_dynamics = 'none' electron_damping = 0.1_DP ! ! ... ( 'zero' | 'default' ) ! electron_velocities = 'default' ! ! ... ( 'nose' | 'not_controlled' | 'rescaling') ! electron_temperature = 'not_controlled' ekincw = 0.001_DP fnosee = 1.0_DP ampre = 0.0_DP grease = 1.0_DP conv_thr = 1.E-6_DP diis_size = 4 diis_nreset = 3 diis_hcut = 1.0_DP diis_wthr = 0.0_DP diis_delt = 0.0_DP diis_maxstep = 100 diis_rot = .FALSE. diis_fthr = 0.0_DP diis_temp = 0.0_DP diis_achmix = 0.0_DP diis_g0chmix = 0.0_DP diis_g1chmix = 0.0_DP diis_nchmix = 3 diis_nrot = 3 diis_rothr = 0.0_DP diis_ethr = 0.0_DP diis_chguess = .FALSE. mixing_mode = 'plain' mixing_fixed_ns = 0 mixing_beta = 0.7_DP mixing_ndim = 8 diagonalization = 'david' diago_thr_init = 0.0_DP diago_cg_maxiter = 20 diago_david_ndim = 4 diago_full_acc = .FALSE. ! sic = 'none' sic_epsilon = 0.0_DP sic_alpha = 0.0_DP force_pairing = .false. ! fermi_energy = 0.0_DP n_inner = 2 niter_cold_restart=1 lambda_cold=0.03_DP rotation_dynamics = "line-minimization" occupation_dynamics = "line-minimization" rotmass = 0.0_DP occmass = 0.0_DP rotation_damping = 0.0_DP occupation_damping = 0.0_DP ! tcg = .FALSE. maxiter = 100 passop = 0.3_DP niter_cg_restart = 20 etresh = 1.E-6_DP ! epol = 3 efield = 0.0_DP epol2 = 3 efield2 = 0.0_DP efield_cart(1)=0.d0 efield_cart(2)=0.d0 efield_cart(3)=0.d0 ! occupation_constraints = .false. ! adaptive_thr = .false. conv_thr_init = 0.1E-2_DP conv_thr_multi = 0.1_DP ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist WANNIER_AC ! !---------------------------------------------------------------------- SUBROUTINE wannier_ac_defaults( prog ) !---------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! plot_wannier = .FALSE. use_energy_int = .FALSE. print_wannier_coeff = .FALSE. nwan = 0 constrain_pot = 0.d0 plot_wan_num = 0 plot_wan_spin = 1 ! RETURN ! END SUBROUTINE !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist IONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ions_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! ! ... ( 'full' | 'coarse-grained' ) ! phase_space = 'full' ! ! ... ( 'sd' | 'cg' | 'damp' | 'verlet' | 'none' | 'bfgs' | 'beeman' ) ! ion_dynamics = 'none' ion_radius = 0.5_DP ion_damping = 0.1_DP ! ! ... ( 'default' | 'from_input' ) ! ion_positions = 'default' ! ! ... ( 'zero' | 'default' | 'from_input' ) ! ion_velocities = 'default' ! ! ... ( 'nose' | 'not_controlled' | 'rescaling' | 'berendsen' | ! 'andersen' | 'langevin' ) ! ion_temperature = 'not_controlled' ! tempw = 300.0_DP fnosep = -1.0_DP fnosep(1) = 1.0_DP nhpcl = 0 nhptyp = 0 ndega = 0 tranp = .FALSE. amprp = 0.0_DP greasp = 1.0_DP tolp = 100.0_DP ion_nstepe = 1 ion_maxstep = 100 delta_t = 1.0_DP nraise = 1 ! refold_pos = .FALSE. remove_rigid_rot = .FALSE. ! upscale = 100.0_DP pot_extrapolation = 'atomic' wfc_extrapolation = 'none' ! ! ... BFGS defaults ! bfgs_ndim = 1 trust_radius_max = 0.8_DP ! bohr trust_radius_min = 1.E-4_DP ! bohr trust_radius_ini = 0.5_DP ! bohr w_1 = 0.01_DP w_2 = 0.50_DP ! sic_rloc = 0.0_DP ! ! ... meta-dynamics defaults ! fe_step = 0.4_DP fe_nstep = 100 sw_nstep = 10 eq_nstep = 0 g_amplitude = 0.005_DP ! RETURN ! END SUBROUTINE ! ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist CELL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE cell_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! cell_parameters = 'default' ! ! ... ( 'sd' | 'pr' | 'none' | 'w' | 'damp-pr' | 'damp-w' | 'bfgs' ) ! cell_dynamics = 'none' ! ! ... ( 'zero' | 'default' ) ! cell_velocities = 'default' press = 0.0_DP wmass = 0.0_DP ! ! ... ( 'nose' | 'not_controlled' | 'rescaling' ) ! cell_temperature = 'not_controlled' temph = 0.0_DP fnoseh = 1.0_DP greash = 1.0_DP ! ! ... ('all'* | 'volume' | 'x' | 'y' | 'z' | 'xy' | 'xz' | 'yz' | 'xyz' ) ! cell_dofree = 'all' cell_factor = 0.0_DP cell_nstepe = 1 cell_damping = 0.0_DP press_conv_thr = 0.5_DP ! RETURN ! END SUBROUTINE ! ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist PRESS_AI ! !=----------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE press_ai_defaults( prog ) ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! abivol = .false. abisur = .false. pvar = .false. fill_vac = .false. cntr = .false. scale_at = .false. t_gauss = .false. jellium = .false. P_ext = 0.0_DP P_in = 0.0_DP P_fin = 0.0_DP Surf_t = 0.0_DP rho_thr = 0.0_DP dthr = 0.0_DP step_rad = 0.0_DP delta_eps = 0.0_DP delta_sigma = 0.0_DP R_j = 0.0_DP h_j = 0.0_DP n_cntr = 0 axis = 3 ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist WANNIER ! !----------------------------------------------------------------------- SUBROUTINE wannier_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! wf_efield = .FALSE. wf_switch = .FALSE. ! sw_len = 1 ! efx0 = 0.0_DP efy0 = 0.0_DP efz0 = 0.0_DP efx1 = 0.0_DP efy1 = 0.0_DP efz1 = 0.0_DP ! wfsd = 1 ! wfdt = 5.0_DP maxwfdt = 0.30_DP wf_q = 1500.0_DP wf_friction = 0.3_DP !======================================================================= !Lingzhu Kong neigh = 48 vnbsp = 0 poisson_eps = 1.D-6 dis_cutoff = 7.0_DP exx_ps_rcut = 5.0 exx_me_rcut = 10.0 !======================================================================= ! nit = 10 nsd = 10 nsteps = 20 ! tolw = 1.E-8_DP ! adapt = .TRUE. ! calwf = 3 nwf = 0 wffort = 40 ! writev = .FALSE. ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist CONTROL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE control_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( title, ionode_id ) CALL mp_bcast( calculation, ionode_id ) CALL mp_bcast( verbosity, ionode_id ) CALL mp_bcast( restart_mode, ionode_id ) CALL mp_bcast( nstep, ionode_id ) CALL mp_bcast( iprint, ionode_id ) CALL mp_bcast( isave, ionode_id ) CALL mp_bcast( tstress, ionode_id ) CALL mp_bcast( tprnfor, ionode_id ) CALL mp_bcast( tabps, ionode_id ) CALL mp_bcast( dt, ionode_id ) CALL mp_bcast( ndr, ionode_id ) CALL mp_bcast( ndw, ionode_id ) CALL mp_bcast( outdir, ionode_id ) CALL mp_bcast( wfcdir, ionode_id ) CALL mp_bcast( prefix, ionode_id ) CALL mp_bcast( max_seconds, ionode_id ) CALL mp_bcast( ekin_conv_thr, ionode_id ) CALL mp_bcast( etot_conv_thr, ionode_id ) CALL mp_bcast( forc_conv_thr, ionode_id ) CALL mp_bcast( pseudo_dir, ionode_id ) CALL mp_bcast( refg, ionode_id ) CALL mp_bcast( disk_io, ionode_id ) CALL mp_bcast( tefield, ionode_id ) CALL mp_bcast( tefield2, ionode_id ) CALL mp_bcast( dipfield, ionode_id ) CALL mp_bcast( lberry, ionode_id ) CALL mp_bcast( gdir, ionode_id ) CALL mp_bcast( nppstr, ionode_id ) CALL mp_bcast( lkpoint_dir, ionode_id ) CALL mp_bcast( wf_collect, ionode_id ) CALL mp_bcast( printwfc, ionode_id ) CALL mp_bcast( lelfield, ionode_id ) CALL mp_bcast( lorbm, ionode_id ) CALL mp_bcast( nberrycyc, ionode_id ) CALL mp_bcast( saverho, ionode_id ) CALL mp_bcast( lecrpa, ionode_id ) CALL mp_bcast( vdw_table_name,ionode_id ) CALL mp_bcast( memory, ionode_id ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist SYSTEM ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE system_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( ibrav, ionode_id ) CALL mp_bcast( celldm, ionode_id ) CALL mp_bcast( a, ionode_id ) CALL mp_bcast( b, ionode_id ) CALL mp_bcast( c, ionode_id ) CALL mp_bcast( cosab, ionode_id ) CALL mp_bcast( cosac, ionode_id ) CALL mp_bcast( cosbc, ionode_id ) CALL mp_bcast( nat, ionode_id ) CALL mp_bcast( ntyp, ionode_id ) CALL mp_bcast( nbnd, ionode_id ) CALL mp_bcast( tot_charge, ionode_id ) CALL mp_bcast( tot_magnetization, ionode_id ) CALL mp_bcast( ecutwfc, ionode_id ) CALL mp_bcast( ecutrho, ionode_id ) CALL mp_bcast( nr1, ionode_id ) CALL mp_bcast( nr2, ionode_id ) CALL mp_bcast( nr3, ionode_id ) CALL mp_bcast( nr1s, ionode_id ) CALL mp_bcast( nr2s, ionode_id ) CALL mp_bcast( nr3s, ionode_id ) CALL mp_bcast( nr1b, ionode_id ) CALL mp_bcast( nr2b, ionode_id ) CALL mp_bcast( nr3b, ionode_id ) CALL mp_bcast( occupations, ionode_id ) CALL mp_bcast( smearing, ionode_id ) CALL mp_bcast( degauss, ionode_id ) CALL mp_bcast( nspin, ionode_id ) CALL mp_bcast( nosym, ionode_id ) CALL mp_bcast( nosym_evc, ionode_id ) CALL mp_bcast( noinv, ionode_id ) CALL mp_bcast( force_symmorphic, ionode_id ) CALL mp_bcast( use_all_frac, ionode_id ) CALL mp_bcast( ecfixed, ionode_id ) CALL mp_bcast( qcutz, ionode_id ) CALL mp_bcast( q2sigma, ionode_id ) CALL mp_bcast( input_dft, ionode_id ) CALL mp_bcast( nqx1, ionode_id ) CALL mp_bcast( nqx2, ionode_id ) CALL mp_bcast( nqx3, ionode_id ) CALL mp_bcast( exx_fraction, ionode_id ) CALL mp_bcast( screening_parameter, ionode_id ) CALL mp_bcast( exxdiv_treatment, ionode_id ) CALL mp_bcast( x_gamma_extrapolation, ionode_id ) CALL mp_bcast( yukawa, ionode_id ) CALL mp_bcast( ecutvcut, ionode_id ) CALL mp_bcast( ecutfock, ionode_id ) CALL mp_bcast( starting_magnetization, ionode_id ) CALL mp_bcast( starting_ns_eigenvalue, ionode_id ) CALL mp_bcast( U_projection_type, ionode_id ) CALL mp_bcast( lda_plus_U, ionode_id ) CALL mp_bcast( lda_plus_u_kind, ionode_id ) CALL mp_bcast( Hubbard_U, ionode_id ) CALL mp_bcast( Hubbard_J0, ionode_id ) CALL mp_bcast( Hubbard_J, ionode_id ) CALL mp_bcast( Hubbard_alpha, ionode_id ) CALL mp_bcast( Hubbard_beta, ionode_id ) CALL mp_bcast( step_pen, ionode_id ) CALL mp_bcast( A_pen, ionode_id ) CALL mp_bcast( sigma_pen, ionode_id ) CALL mp_bcast( alpha_pen, ionode_id ) CALL mp_bcast( edir, ionode_id ) CALL mp_bcast( emaxpos, ionode_id ) CALL mp_bcast( eopreg, ionode_id ) CALL mp_bcast( eamp, ionode_id ) CALL mp_bcast( la2F, ionode_id ) ! ! ... non collinear broadcast ! CALL mp_bcast( lspinorb, ionode_id ) CALL mp_bcast( starting_spin_angle, ionode_id ) CALL mp_bcast( noncolin, ionode_id ) CALL mp_bcast( angle1, ionode_id ) CALL mp_bcast( angle2, ionode_id ) CALL mp_bcast( report, ionode_id ) CALL mp_bcast( constrained_magnetization, ionode_id ) CALL mp_bcast( B_field, ionode_id ) CALL mp_bcast( fixed_magnetization, ionode_id ) CALL mp_bcast( lambda, ionode_id ) ! CALL mp_bcast( assume_isolated, ionode_id ) CALL mp_bcast( one_atom_occupations, ionode_id ) CALL mp_bcast( spline_ps, ionode_id ) ! CALL mp_bcast( london, ionode_id ) CALL mp_bcast( london_s6, ionode_id ) CALL mp_bcast( london_rcut, ionode_id ) ! CALL mp_bcast( no_t_rev, ionode_id ) #ifdef __ENVIRON CALL mp_bcast( do_environ, ionode_id ) #endif ! ! ... ESM method broadcast ! CALL mp_bcast( esm_bc, ionode_id ) CALL mp_bcast( esm_efield, ionode_id ) CALL mp_bcast( esm_w, ionode_id ) CALL mp_bcast( esm_nfit, ionode_id ) CALL mp_bcast( esm_debug, ionode_id ) CALL mp_bcast( esm_debug_gpmax, ionode_id ) RETURN ! END SUBROUTINE #ifdef __ENVIRON !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist ENVIRON ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE environ_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( verbose, ionode_id ) CALL mp_bcast( environ_thr, ionode_id ) CALL mp_bcast( environ_type, ionode_id ) ! CALL mp_bcast( stype, ionode_id ) CALL mp_bcast( rhomax, ionode_id ) CALL mp_bcast( rhomin, ionode_id ) CALL mp_bcast( tbeta, ionode_id ) ! CALL mp_bcast( env_static_permittivity, ionode_id ) CALL mp_bcast( eps_mode, ionode_id ) CALL mp_bcast( solvationrad, ionode_id ) CALL mp_bcast( atomicspread, ionode_id ) CALL mp_bcast( add_jellium, ionode_id ) ! CALL mp_bcast( ifdtype, ionode_id ) CALL mp_bcast( nfdpoint, ionode_id ) ! CALL mp_bcast( mixtype, ionode_id ) CALL mp_bcast( ndiis, ionode_id ) CALL mp_bcast( mixrhopol, ionode_id ) CALL mp_bcast( tolrhopol, ionode_id ) ! CALL mp_bcast( env_surface_tension, ionode_id ) CALL mp_bcast( delta, ionode_id ) ! CALL mp_bcast( env_pressure, ionode_id ) ! CALL mp_bcast( env_ioncc_concentration, ionode_id ) CALL mp_bcast( zion, ionode_id ) CALL mp_bcast( rhopb, ionode_id ) CALL mp_bcast( solvent_temperature, ionode_id ) ! RETURN ! END SUBROUTINE ! #endif ! DCC !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist EE ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ee_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( ecutcoarse, ionode_id ) CALL mp_bcast( mixing_charge_compensation, ionode_id ) CALL mp_bcast( errtol, ionode_id ) CALL mp_bcast( comp_thr, ionode_id ) CALL mp_bcast( nlev, ionode_id ) CALL mp_bcast( itmax, ionode_id ) CALL mp_bcast( whichbc, ionode_id ) CALL mp_bcast( n_charge_compensation, ionode_id ) CALL mp_bcast( ncompx, ionode_id ) CALL mp_bcast( ncompy, ionode_id ) CALL mp_bcast( ncompz, ionode_id ) CALL mp_bcast( mr1, ionode_id ) CALL mp_bcast( mr2, ionode_id ) CALL mp_bcast( mr3, ionode_id ) CALL mp_bcast( cellmin, ionode_id ) CALL mp_bcast( cellmax, ionode_id ) RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist ELECTRONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE electrons_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( emass, ionode_id ) CALL mp_bcast( emass_cutoff, ionode_id ) CALL mp_bcast( orthogonalization, ionode_id ) CALL mp_bcast( electron_maxstep, ionode_id ) CALL mp_bcast( scf_must_converge, ionode_id ) CALL mp_bcast( ortho_eps, ionode_id ) CALL mp_bcast( ortho_max, ionode_id ) CALL mp_bcast( electron_dynamics, ionode_id ) CALL mp_bcast( electron_damping, ionode_id ) CALL mp_bcast( electron_velocities, ionode_id ) CALL mp_bcast( electron_temperature, ionode_id ) CALL mp_bcast( conv_thr, ionode_id ) CALL mp_bcast( ekincw, ionode_id ) CALL mp_bcast( fnosee, ionode_id ) CALL mp_bcast( startingwfc, ionode_id ) CALL mp_bcast( ampre, ionode_id ) CALL mp_bcast( grease, ionode_id ) CALL mp_bcast( startingpot, ionode_id ) CALL mp_bcast( diis_size, ionode_id ) CALL mp_bcast( diis_nreset, ionode_id ) CALL mp_bcast( diis_hcut, ionode_id ) CALL mp_bcast( diis_wthr, ionode_id ) CALL mp_bcast( diis_delt, ionode_id ) CALL mp_bcast( diis_maxstep, ionode_id ) CALL mp_bcast( diis_rot, ionode_id ) CALL mp_bcast( diis_fthr, ionode_id ) CALL mp_bcast( diis_temp, ionode_id ) CALL mp_bcast( diis_achmix, ionode_id ) CALL mp_bcast( diis_g0chmix, ionode_id ) CALL mp_bcast( diis_g1chmix, ionode_id ) CALL mp_bcast( diis_nchmix, ionode_id ) CALL mp_bcast( diis_nrot, ionode_id ) CALL mp_bcast( diis_rothr, ionode_id ) CALL mp_bcast( diis_ethr, ionode_id ) CALL mp_bcast( diis_chguess, ionode_id ) CALL mp_bcast( mixing_fixed_ns, ionode_id ) CALL mp_bcast( mixing_mode, ionode_id ) CALL mp_bcast( mixing_beta, ionode_id ) CALL mp_bcast( mixing_ndim, ionode_id ) CALL mp_bcast( tqr, ionode_id ) CALL mp_bcast( diagonalization, ionode_id ) CALL mp_bcast( diago_thr_init, ionode_id ) CALL mp_bcast( diago_cg_maxiter, ionode_id ) CALL mp_bcast( diago_david_ndim, ionode_id ) CALL mp_bcast( diago_full_acc, ionode_id ) CALL mp_bcast( sic, ionode_id ) CALL mp_bcast( sic_epsilon , ionode_id ) CALL mp_bcast( sic_alpha , ionode_id ) CALL mp_bcast( force_pairing , ionode_id ) ! ! ... ensemble-DFT ! CALL mp_bcast( fermi_energy, ionode_id ) CALL mp_bcast( n_inner, ionode_id ) CALL mp_bcast( niter_cold_restart, ionode_id ) CALL mp_bcast( lambda_cold, ionode_id ) CALL mp_bcast( rotation_dynamics, ionode_id ) CALL mp_bcast( occupation_dynamics,ionode_id ) CALL mp_bcast( rotmass, ionode_id ) CALL mp_bcast( occmass, ionode_id ) CALL mp_bcast( rotation_damping, ionode_id ) CALL mp_bcast( occupation_damping, ionode_id ) ! ! ... conjugate gradient ! CALL mp_bcast( tcg, ionode_id ) CALL mp_bcast( maxiter, ionode_id ) CALL mp_bcast( etresh, ionode_id ) CALL mp_bcast( passop, ionode_id ) CALL mp_bcast( niter_cg_restart, ionode_id ) ! ! ... electric field ! CALL mp_bcast( epol, ionode_id ) CALL mp_bcast( efield, ionode_id ) ! CALL mp_bcast( epol2, ionode_id ) CALL mp_bcast( efield2, ionode_id ) CALL mp_bcast( efield_cart, ionode_id ) ! ! ... occupation constraints ... ! CALL mp_bcast( occupation_constraints, ionode_id ) ! ! ... real space ... CALL mp_bcast( real_space, ionode_id) CALL mp_bcast( adaptive_thr, ionode_id ) CALL mp_bcast( conv_thr_init, ionode_id ) CALL mp_bcast( conv_thr_multi, ionode_id ) RETURN ! END SUBROUTINE ! ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist IONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ions_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( phase_space, ionode_id ) CALL mp_bcast( ion_dynamics, ionode_id ) CALL mp_bcast( ion_radius, ionode_id ) CALL mp_bcast( ion_damping, ionode_id ) CALL mp_bcast( ion_positions, ionode_id ) CALL mp_bcast( ion_velocities, ionode_id ) CALL mp_bcast( ion_temperature, ionode_id ) CALL mp_bcast( tempw, ionode_id ) CALL mp_bcast( fnosep, ionode_id ) CALL mp_bcast( nhgrp, ionode_id ) CALL mp_bcast( fnhscl, ionode_id ) CALL mp_bcast( nhpcl, ionode_id ) CALL mp_bcast( nhptyp, ionode_id ) CALL mp_bcast( ndega, ionode_id ) CALL mp_bcast( tranp, ionode_id ) CALL mp_bcast( amprp, ionode_id ) CALL mp_bcast( greasp, ionode_id ) CALL mp_bcast( tolp, ionode_id ) CALL mp_bcast( ion_nstepe, ionode_id ) CALL mp_bcast( ion_maxstep, ionode_id ) CALL mp_bcast( delta_t, ionode_id ) CALL mp_bcast( nraise, ionode_id ) CALL mp_bcast( refold_pos, ionode_id ) CALL mp_bcast( remove_rigid_rot, ionode_id ) CALL mp_bcast( upscale, ionode_id ) CALL mp_bcast( pot_extrapolation, ionode_id ) CALL mp_bcast( wfc_extrapolation, ionode_id ) ! ! ... BFGS ! CALL mp_bcast( bfgs_ndim, ionode_id ) CALL mp_bcast( trust_radius_max, ionode_id ) CALL mp_bcast( trust_radius_min, ionode_id ) CALL mp_bcast( trust_radius_ini, ionode_id ) CALL mp_bcast( w_1, ionode_id ) CALL mp_bcast( w_2, ionode_id ) ! CALL mp_bcast( sic_rloc, ionode_id ) ! CALL mp_bcast( fe_step, ionode_id ) CALL mp_bcast( fe_nstep, ionode_id ) CALL mp_bcast( sw_nstep, ionode_id ) CALL mp_bcast( eq_nstep, ionode_id ) CALL mp_bcast( g_amplitude, ionode_id ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist CELL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE cell_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( cell_parameters, ionode_id ) CALL mp_bcast( cell_dynamics, ionode_id ) CALL mp_bcast( cell_velocities, ionode_id ) CALL mp_bcast( cell_dofree, ionode_id ) CALL mp_bcast( press, ionode_id ) CALL mp_bcast( wmass, ionode_id ) CALL mp_bcast( cell_temperature, ionode_id ) CALL mp_bcast( temph, ionode_id ) CALL mp_bcast( fnoseh, ionode_id ) CALL mp_bcast( greash, ionode_id ) CALL mp_bcast( cell_factor, ionode_id ) CALL mp_bcast( cell_nstepe, ionode_id ) CALL mp_bcast( cell_damping, ionode_id ) CALL mp_bcast( press_conv_thr, ionode_id ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist PRESS_AI ! !=----------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE press_ai_bcast() !---------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast ! IMPLICIT NONE ! ! CALL mp_bcast( abivol, ionode_id ) CALL mp_bcast( abisur, ionode_id ) CALL mp_bcast( t_gauss, ionode_id ) CALL mp_bcast( cntr, ionode_id ) CALL mp_bcast( P_ext, ionode_id ) CALL mp_bcast( Surf_t, ionode_id ) CALL mp_bcast( pvar, ionode_id ) CALL mp_bcast( P_in, ionode_id ) CALL mp_bcast( P_fin, ionode_id ) CALL mp_bcast( delta_eps, ionode_id ) CALL mp_bcast( delta_sigma, ionode_id ) CALL mp_bcast( fill_vac, ionode_id ) CALL mp_bcast( scale_at, ionode_id ) CALL mp_bcast( n_cntr, ionode_id ) CALL mp_bcast( axis, ionode_id ) CALL mp_bcast( rho_thr, ionode_id ) CALL mp_bcast( dthr, ionode_id ) CALL mp_bcast( step_rad, ionode_id ) CALL mp_bcast( jellium, ionode_id ) CALL mp_bcast( R_j, ionode_id ) CALL mp_bcast( h_j, ionode_id ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist WANNIER ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE wannier_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast ! IMPLICIT NONE ! CALL mp_bcast( wf_efield, ionode_id ) CALL mp_bcast( wf_switch, ionode_id ) CALL mp_bcast( sw_len, ionode_id ) CALL mp_bcast( efx0, ionode_id ) CALL mp_bcast( efy0, ionode_id ) CALL mp_bcast( efz0, ionode_id ) CALL mp_bcast( efx1, ionode_id ) CALL mp_bcast( efy1, ionode_id ) CALL mp_bcast( efz1, ionode_id ) CALL mp_bcast( wfsd, ionode_id ) CALL mp_bcast( wfdt, ionode_id ) !================================================================= !Lingzhu Kong CALL mp_bcast( neigh, ionode_id ) CALL mp_bcast( poisson_eps, ionode_id ) CALL mp_bcast( dis_cutoff, ionode_id ) CALL mp_bcast( exx_ps_rcut, ionode_id ) CALL mp_bcast( exx_me_rcut, ionode_id ) CALL mp_bcast( vnbsp, ionode_id ) !================================================================= CALL mp_bcast( maxwfdt, ionode_id ) CALL mp_bcast( wf_q, ionode_id ) CALL mp_bcast( wf_friction, ionode_id ) CALL mp_bcast( nit, ionode_id ) CALL mp_bcast( nsd, ionode_id ) CALL mp_bcast( nsteps, ionode_id ) CALL mp_bcast( tolw, ionode_id ) CALL mp_bcast( adapt, ionode_id ) CALL mp_bcast( calwf, ionode_id ) CALL mp_bcast( nwf, ionode_id ) CALL mp_bcast( wffort, ionode_id ) CALL mp_bcast( writev, ionode_id ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist WANNIER_NEW ! !=----------------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE wannier_ac_bcast() !---------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast ! IMPLICIT NONE ! ! CALL mp_bcast( plot_wannier,ionode_id ) CALL mp_bcast( use_energy_int,ionode_id ) CALL mp_bcast( print_wannier_coeff,ionode_id ) CALL mp_bcast( nwan, ionode_id ) CALL mp_bcast( plot_wan_num,ionode_id ) CALL mp_bcast( plot_wan_spin,ionode_id ) ! CALL mp_bcast( wan_data,ionode_id ) CALL mp_bcast( constrain_pot, ionode_id ) RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist CONTROL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE control_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' control_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE( calculation_allowed ) IF( TRIM(calculation) == calculation_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' calculation '''// & & TRIM(calculation)//''' not allowed ',1) IF( ndr < 50 ) & CALL errore( sub_name,' ndr out of range ', 1 ) IF( ndw > 0 .AND. ndw < 50 ) & CALL errore( sub_name,' ndw out of range ', 1 ) IF( nstep < 0 ) & CALL errore( sub_name,' nstep out of range ', 1 ) IF( iprint < 1 ) & CALL errore( sub_name,' iprint out of range ', 1 ) IF( prog == 'PW' ) THEN IF( isave > 0 ) & CALL infomsg( sub_name,' isave not used in PW ' ) ELSE IF( isave < 1 ) & CALL errore( sub_name,' isave out of range ', 1 ) END IF IF( dt < 0.0_DP ) & CALL errore( sub_name,' dt out of range ', 1 ) IF( max_seconds < 0.0_DP ) & CALL errore( sub_name,' max_seconds out of range ', 1 ) IF( ekin_conv_thr < 0.0_DP ) THEN IF( prog == 'PW' ) THEN CALL infomsg( sub_name,' ekin_conv_thr not used in PW ') ELSE CALL errore( sub_name,' ekin_conv_thr out of range ', 1 ) END IF END IF IF( etot_conv_thr < 0.0_DP ) & CALL errore( sub_name,' etot_conv_thr out of range ', 1 ) IF( forc_conv_thr < 0.0_DP ) & CALL errore( sub_name,' forc_conv_thr out of range ', 1 ) IF( prog == 'CP' ) THEN IF( dipfield ) & CALL infomsg( sub_name,' dipfield not yet implemented ') IF( lberry ) & CALL infomsg( sub_name,' lberry not implemented yet ') IF( gdir /= 0 ) & CALL infomsg( sub_name,' gdir not used ') IF( nppstr /= 0 ) & CALL infomsg( sub_name,' nppstr not used ') END IF ! IF( prog == 'PW' .AND. TRIM( restart_mode ) == 'reset_counters' ) THEN CALL infomsg ( sub_name, ' restart_mode == reset_counters' // & & ' not implemented in PW ' ) END IF ! IF( refg < 0 ) & CALL errore( sub_name, ' wrong table interval refg ', 1 ) ! IF( ( prog == 'CP' ) .AND. ( TRIM(memory) == 'small' ) .AND. wf_collect ) & CALL errore( sub_name, ' wf_collect = .true. is not allowed with memory = small ', 1 ) allowed = .FALSE. DO i = 1, SIZE( memory_allowed ) IF( TRIM(memory) == memory_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' memory '''// & & TRIM(memory)//''' not allowed ',1) RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist SYSTEM ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE system_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' system_checkin ' INTEGER :: i LOGICAL :: allowed ! ! IF( ( ibrav /= 0 ) .AND. (celldm(1) == 0.0_DP) .AND. ( a == 0.0_DP ) ) & CALL errore( ' iosys ', & & ' invalid lattice parameters ( celldm or a )', 1 ) ! IF( nat < 0 ) & CALL errore( sub_name ,' nat less than zero ', MAX( nat, 1) ) ! IF( ntyp < 0 ) & CALL errore( sub_name ,' ntyp less than zero ', MAX( ntyp, 1) ) IF( ntyp < 0 .OR. ntyp > nsx ) & CALL errore( sub_name , & & ' ntyp too large, increase NSX ', MAX( ntyp, 1) ) ! IF( nspin < 1 .OR. nspin > 4 .OR. nspin == 3 ) & CALL errore( sub_name ,' nspin out of range ', MAX(nspin, 1 ) ) ! IF( ecutwfc <= 0.0_DP ) & CALL errore( sub_name ,' ecutwfc out of range ',1) IF( ecutrho < 0.0_DP ) & CALL errore( sub_name ,' ecutrho out of range ',1) ! IF( prog == 'CP' ) THEN IF( degauss /= 0.0_DP ) & CALL infomsg( sub_name ,' degauss is not used in CP ') END IF ! IF( ecfixed < 0.0_DP ) & CALL errore( sub_name ,' ecfixed out of range ',1) IF( qcutz < 0.0_DP ) & CALL errore( sub_name ,' qcutz out of range ',1) IF( q2sigma < 0.0_DP ) & CALL errore( sub_name ,' q2sigma out of range ',1) IF( prog == 'CP' ) THEN IF( ANY(starting_magnetization /= SM_NOT_SET ) ) & CALL infomsg( sub_name ,& & ' starting_magnetization is not used in CP ') ! IF( lda_plus_U ) & ! CALL infomsg( sub_name ,' lda_plus_U is not used in CP ') IF( la2F ) & CALL infomsg( sub_name ,' la2F is not used in CP ') ! IF( ANY(Hubbard_U /= 0.0_DP) ) & ! CALL infomsg( sub_name ,' Hubbard_U is not used in CP ') IF( ANY(Hubbard_alpha /= 0.0_DP) ) & CALL infomsg( sub_name ,' Hubbard_alpha is not used in CP ') IF( nosym ) & CALL infomsg( sub_name ,' nosym not implemented in CP ') IF( nosym_evc ) & CALL infomsg( sub_name ,' nosym_evc not implemented in CP ') IF( noinv ) & CALL infomsg( sub_name ,' noinv not implemented in CP ') END IF ! ! ... control on SIC variables ! IF ( sic /= 'none' ) THEN ! IF (sic_epsilon > 1.0_DP ) & CALL errore( sub_name, & & ' invalid sic_epsilon, greater than 1.',1 ) IF (sic_epsilon < 0.0_DP ) & CALL errore( sub_name, & & ' invalid sic_epsilon, less than 0 ',1 ) IF (sic_alpha > 1.0_DP ) & CALL errore( sub_name, & & ' invalid sic_alpha, greater than 1.',1 ) IF (sic_alpha < 0.0_DP ) & CALL errore( sub_name, & & ' invalid sic_alpha, less than 0 ',1 ) ! IF ( .NOT. force_pairing ) & CALL errore( sub_name, & & ' invalid force_pairing with sic activated', 1 ) IF ( nspin /= 2 ) & CALL errore( sub_name, & & ' invalid nspin with sic activated', 1 ) IF ( tot_magnetization /= 1._DP ) & CALL errore( sub_name, & & ' invalid tot_magnetization_ with sic activated', 1 ) ! ENDIF ! ! ... control on EXX variables ! DO i = 1, SIZE( exxdiv_treatment_allowed ) IF( TRIM(exxdiv_treatment) == exxdiv_treatment_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) CALL errore(sub_name, & ' invalid exxdiv_treatment: '//TRIM(exxdiv_treatment), 1 ) ! IF ( TRIM(exxdiv_treatment) == "yukawa" .AND. yukawa <= 0.0 ) & CALL errore(sub_name, ' invalid value for yukawa', 1 ) ! IF ( TRIM(exxdiv_treatment) == "vcut_ws" .AND. ecutvcut <= 0.0 ) & CALL errore(sub_name, ' invalid value for ecutvcut', 1 ) ! IF ( x_gamma_extrapolation .AND. ( TRIM(exxdiv_treatment) == "vcut_ws" .OR. & TRIM(exxdiv_treatment) == "vcut_spherical" ) ) & CALL errore(sub_name, ' x_gamma_extrapolation cannot be used with vcut', 1 ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist ELECTRONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE electrons_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' electrons_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE(electron_dynamics_allowed) IF( TRIM(electron_dynamics) == & electron_dynamics_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' electron_dynamics '''//& & TRIM(electron_dynamics)//''' not allowed ',1) IF( emass <= 0.0_DP ) & CALL errore( sub_name, ' emass less or equal 0 ',1) IF( emass_cutoff <= 0.0_DP ) & CALL errore( sub_name, ' emass_cutoff less or equal 0 ',1) IF( ortho_eps <= 0.0_DP ) & CALL errore( sub_name, ' ortho_eps less or equal 0 ',1) IF( ortho_max < 1 ) & CALL errore( sub_name, ' ortho_max less than 1 ',1) IF( fnosee <= 0.0_DP ) & CALL errore( sub_name, ' fnosee less or equal 0 ',1) IF( ekincw <= 0.0_DP ) & CALL errore( sub_name, ' ekincw less or equal 0 ',1) IF( occupation_constraints ) & CALL errore( sub_name, ' occupation_constraints not yet implemented ',1) ! RETURN END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist IONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ions_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' ions_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE( phase_space_allowed ) IF( TRIM( phase_space ) == phase_space_allowed(i) ) allowed = .TRUE. END DO IF ( .NOT. allowed ) & CALL errore( sub_name, ' phase_space '''// & & TRIM( phase_space )// ''' not allowed ', 1 ) ! allowed = .FALSE. DO i = 1, SIZE(ion_dynamics_allowed) IF( TRIM(ion_dynamics) == ion_dynamics_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' ion_dynamics '''// & & TRIM(ion_dynamics)//''' not allowed ',1) IF( tempw <= 0.0_DP ) & CALL errore( sub_name,' tempw out of range ',1) IF( fnosep( 1 ) <= 0.0_DP ) & CALL errore( sub_name,' fnosep out of range ',1) IF( nhpcl > nhclm ) & CALL infomsg ( sub_name,' nhpcl should be less than nhclm') IF( nhpcl < 0 ) & CALL infomsg ( sub_name,' nhpcl out of range ') IF( ion_nstepe <= 0 ) & CALL errore( sub_name,' ion_nstepe out of range ',1) IF( ion_maxstep < 0 ) & CALL errore( sub_name,' ion_maxstep out of range ',1) ! IF (sic /= 'none' .and. sic_rloc == 0.0_DP) & CALL errore( sub_name, ' invalid sic_rloc with sic activated ', 1 ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist CELL ! !=----------------------------------------------------------------------=! ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE cell_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' cell_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE(cell_dynamics_allowed) IF( TRIM(cell_dynamics) == & cell_dynamics_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' cell_dynamics '''// & TRIM(cell_dynamics)//''' not allowed ',1) IF( wmass < 0.0_DP ) & CALL errore( sub_name,' wmass out of range ',1) IF( prog == 'CP' ) THEN IF( cell_factor /= 0.0_DP ) & CALL infomsg( sub_name,' cell_factor not used in CP ') END IF IF( cell_nstepe <= 0 ) & CALL errore( sub_name,' cell_nstepe out of range ',1) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist WANNIER ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE wannier_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = 'wannier_checkin' ! IF ( calwf < 1 .OR. calwf > 5 ) & CALL errore( sub_name, ' calwf out of range ', 1 ) ! IF ( wfsd < 1 .OR. wfsd > 3 ) & CALL errore( sub_name, ' wfsd out of range ', 1 ) ! ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist WANNIER_NEW ! !=----------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE wannier_ac_checkin( prog ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = 'wannier_new_checkin' ! ! IF ( nwan > nwanx ) & CALL errore( sub_name, ' nwan out of range ', 1 ) IF ( plot_wan_num < 0 .OR. plot_wan_num > nwan ) & CALL errore( sub_name, ' plot_wan_num out of range ', 1 ) IF ( plot_wan_spin < 0 .OR. plot_wan_spin > 2 ) & CALL errore( sub_name, ' plot_wan_spin out of range ', 1 ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Set values according to the "calculation" variable ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE fixval( prog ) !----------------------------------------------------------------------- ! USE constants, ONLY : e2 ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' fixval ' ! ! SELECT CASE( TRIM( calculation ) ) CASE ('scf') IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'none' cell_dynamics = 'none' END IF CASE ('nscf', 'bands') IF( prog == 'CP' ) occupations = 'bogus' IF( prog == 'CP' ) electron_dynamics = 'damp' CASE ( 'cp-wf' ) IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'damp' END IF IF ( prog == 'PW' ) & CALL errore( sub_name, ' calculation ' // & & TRIM( calculation ) // ' not implemented ', 1 ) !========================================================================= !Lingzhu Kong CASE ( 'cp-wf-nscf','cp-wf-pbe0','pbe0-nscf' ) IF( prog == 'CP' ) THEN occupations = 'fixed' electron_dynamics = 'damp' ion_dynamics = 'damp' END IF IF ( prog == 'PW' ) & CALL errore( sub_name, ' calculation ' // & & TRIM( calculation ) // ' not implemented ', 1 ) !========================================================================= CASE ('relax') IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'damp' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'bfgs' END IF CASE ( 'md', 'cp' ) IF( prog == 'CP' ) THEN electron_dynamics = 'verlet' ion_dynamics = 'verlet' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'verlet' END IF CASE ('vc-relax') IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'damp' cell_dynamics = 'damp-pr' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'bfgs' cell_dynamics= 'bfgs' END IF CASE ( 'vc-md', 'vc-cp' ) IF( prog == 'CP' ) THEN electron_dynamics = 'verlet' ion_dynamics = 'verlet' cell_dynamics = 'pr' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'beeman' END IF ! CASE DEFAULT ! CALL errore( sub_name,' calculation '// & & TRIM(calculation)//' not implemented ', 1 ) ! END SELECT ! IF ( prog == 'PW' ) THEN ! IF ( calculation == 'nscf' .OR. calculation == 'bands' ) THEN ! startingpot = 'file' startingwfc = 'atomic+random' ! ELSE IF ( restart_mode == "from_scratch" ) THEN ! startingwfc = 'atomic+random' startingpot = 'atomic' ! ELSE ! startingwfc = 'file' startingpot = 'file' ! END IF ! ELSE IF ( prog == 'CP' ) THEN ! startingwfc = 'random' startingpot = ' ' ! END IF ! IF ( TRIM( sic ) /= 'none' ) THEN force_pairing = ( nspin == 2 .AND. ( tot_magnetization==0._dp .OR. & tot_magnetization==1._dp ) ) END IF ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Namelist parsing main routine ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE read_namelists( prog, unit ) !----------------------------------------------------------------------- ! ! this routine reads data from standard input and puts them into ! module-scope variables (accessible from other routines by including ! this module, or the one that contains them) ! ---------------------------------------------- ! ! ... declare modules ! USE io_global, ONLY : ionode, ionode_id USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! ! ... declare variables ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! prog = 'PW' pwscf ! prog = 'CP' cpr ! ! INTEGER, INTENT(IN), optional :: unit ! ! ... declare other variables ! INTEGER :: ios ! INTEGER :: unit_loc=5 ! ! ... end of declarations ! ! ---------------------------------------------- ! IF(PRESENT(unit)) unit_loc = unit ! IF( prog /= 'PW' .AND. prog /= 'CP' ) & CALL errore( ' read_namelists ', ' unknown calling program ', 1 ) ! ! ... default settings for all namelists ! IF( prog == 'PW' .OR. prog == 'CP') THEN CALL control_defaults( prog ) CALL system_defaults( prog ) CALL electrons_defaults( prog ) CALL ions_defaults( prog ) CALL cell_defaults( prog ) #ifdef __ENVIRON CALL environ_defaults( prog ) #endif CALL ee_defaults( prog ) ENDIF ! ! ... Here start reading standard input file ! ! ... CONTROL namelist ! IF(prog == 'PW' .OR. prog == 'CP' ) THEN ios = 0 IF( ionode ) THEN READ( unit_loc, control, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist control ', ABS(ios) ) END IF ! CALL control_bcast( ) CALL control_checkin( prog ) ! ! ... fixval changes some default values according to the value ! ... of "calculation" read in CONTROL namelist ! CALL fixval( prog ) ! ! ... SYSTEM namelist ! ios = 0 IF( ionode ) THEN READ( unit_loc, system, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist system ', ABS(ios) ) END IF ! CALL system_bcast( ) ! CALL system_checkin( prog ) ! ! CALL allocate_input_ions( ntyp, nat ) ! ! ... ELECTRONS namelist ! ios = 0 IF( ionode ) THEN READ( unit_loc, electrons, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist electrons ', ABS(ios) ) END IF ! CALL electrons_bcast( ) CALL electrons_checkin( prog ) ! ! ... IONS namelist ! ios = 0 IF ( ionode ) THEN ! IF ( TRIM( calculation ) == 'relax' .OR. & TRIM( calculation ) == 'md' .OR. & TRIM( calculation ) == 'vc-relax' .OR. & TRIM( calculation ) == 'vc-md' .OR. & TRIM( calculation ) == 'cp' .OR. & TRIM( calculation ) == 'vc-cp' .OR. & TRIM( calculation ) == 'smd' .OR. & TRIM( calculation ) == 'cp-wf-nscf' .OR. & !Lingzhu Kong TRIM( calculation ) == 'cp-wf-pbe0' .OR. & !Lingzhu Kong TRIM( calculation ) == 'pbe0-nscf' .OR. & !Lingzhu Kong TRIM( calculation ) == 'cp-wf' ) READ( unit_loc, ions, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist ions ', ABS(ios) ) END IF ! CALL ions_bcast( ) CALL ions_checkin( prog ) ! ! ... CELL namelist ! ios = 0 IF( ionode ) THEN IF( TRIM( calculation ) == 'vc-relax' .OR. & TRIM( calculation ) == 'vc-cp' .OR. & TRIM( calculation ) == 'vc-md' .OR. & TRIM( calculation ) == 'vc-md' ) THEN READ( unit_loc, cell, iostat = ios ) END IF END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist cell ', ABS(ios) ) END IF ! CALL cell_bcast() CALL cell_checkin( prog ) ! ios = 0 IF( ionode ) THEN if (tabps) then READ( unit_loc, press_ai, iostat = ios ) end if END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist press_ai ', ABS(ios) ) END IF ! CALL press_ai_bcast() #ifdef __ENVIRON ! ! ... ENVIRON namelist ! IF ( do_environ ) THEN ios = 0 IF( ionode ) READ( unit_loc, environ, iostat = ios ) CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) CALL errore( ' read_namelists ', & & ' reading namelist environ ', ABS(ios) ) END IF CALL environ_bcast() #endif ! ! ... EE namelist ! IF ( TRIM( assume_isolated ) == 'dcc' ) THEN ios = 0 IF( ionode ) READ( unit_loc, ee, iostat = ios ) CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) CALL errore( ' read_namelists ', & & ' reading namelist ee ', ABS(ios) ) END IF CALL ee_bcast() ! ! ... WANNIER NAMELIST ! CALL wannier_defaults( prog ) ios = 0 IF( ionode ) THEN IF( TRIM( calculation ) == 'cp-wf' .OR. & ! Lingzhu Kong TRIM( calculation ) == 'cp-wf-nscf' .OR. & ! Lingzhu Kong TRIM( calculation ) == 'cp-wf-pbe0' .OR. & ! Lingzhu Kong TRIM( calculation ) == 'pbe0-nscf' ) THEN ! Lingzhu Kong READ( unit_loc, wannier, iostat = ios ) END IF END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist wannier ', ABS(ios) ) END IF ! CALL wannier_bcast() CALL wannier_checkin( prog ) ! ! ... WANNIER_NEW NAMELIST ! CALL wannier_ac_defaults( prog ) ios = 0 IF( ionode ) THEN IF( use_wannier ) THEN READ( unit_loc, wannier_ac, iostat = ios ) END IF END IF CALL mp_bcast( ios, ionode_id ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist wannier_new ', ABS(ios) ) END IF ! CALL wannier_ac_bcast() CALL wannier_ac_checkin( prog ) ! ENDIF ! RETURN ! END SUBROUTINE read_namelists ! ! END MODULE read_namelists_module espresso-5.0.2/Modules/version.f900000644000700200004540000000077712053150761016010 0ustar marsamoscm! ! Copyright (C) 2003-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE global_version ! IMPLICIT NONE ! SAVE ! CHARACTER (LEN=6) :: version_number = '5.0.2' CHARACTER (LEN=12) :: svn_revision = '9392' ! END MODULE global_version espresso-5.0.2/Modules/error_handler.f900000644000700200004540000001630012053145633017140 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE errore( calling_routine, message, ierr ) !---------------------------------------------------------------------------- ! ! ... This is a simple routine which writes an error message to output: ! ... if ierr <= 0 it does nothing, ! ... if ierr > 0 it stops. ! ! ... **** Important note for parallel execution *** ! ! ... in parallel execution unit 6 is written only by the first node; ! ... all other nodes have unit 6 redirected to nothing (/dev/null). ! ... As a consequence an error not occurring on the first node ! ... will be invisible. For T3E and ORIGIN machines, this problem ! ... is solved by writing an error message to unit * instead of 6. ! ... Whenever possible (IBM SP machines), we write to the standard ! ... error, unit 0 (the message will appear in the error files ! ... produced by loadleveler). ! USE io_global, ONLY : stdout USE io_files, ONLY : crashunit, crash_file USE parallel_include #if defined(__PTRACE) && defined(__INTEL) USE ifcore, ONLY : tracebackqq #endif ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: calling_routine, message ! the name of the calling calling_routinee ! the output messagee INTEGER, INTENT(IN) :: ierr ! the error flag INTEGER :: mpime, mpierr ! the task id CHARACTER(LEN=6) :: cerr ! ! IF ( ierr <= 0 ) RETURN ! ! ... the error message is written un the "*" unit ! WRITE( cerr, FMT = '(I6)' ) ierr WRITE( UNIT = *, FMT = '(/,1X,78("%"))' ) WRITE( UNIT = *, FMT = '(5X,"Error in routine ",A," (",A,"):")' ) & TRIM(calling_routine), TRIM(ADJUSTL(cerr)) WRITE( UNIT = *, FMT = '(5X,A)' ) TRIM(message) WRITE( UNIT = *, FMT = '(1X,78("%"),/)' ) ! #if defined (__MPI) && defined (__AIX) ! ! ... in the case of ibm machines it is also written on the "0" unit ! ... which is automatically connected to stderr ! WRITE( UNIT = 0, FMT = '(/,1X,78("%"))') WRITE( UNIT = 0, FMT = '(5X,"Error in routine ",A," (",A,"):")' ) & TRIM(calling_routine), TRIM(ADJUSTL(cerr)) WRITE( UNIT = 0, FMT = '(5X,A)' ) TRIM(message) WRITE( UNIT = 0, FMT = '(1X,78("%"),/)' ) ! #endif ! WRITE( *, '(" stopping ...")' ) ! CALL flush_unit( stdout ) ! #ifdef __PTRACE #ifdef __INTEL call tracebackqq(user_exit_code=-1) #else WRITE( UNIT = 0, FMT = '(5X,A)' ) "Printing strace..." CALL ptrace() #endif #endif ! #if defined (__MPI) ! mpime = 0 ! CALL MPI_COMM_RANK( MPI_COMM_WORLD, mpime, mpierr ) ! ! .. write the message to a file and close it before exiting ! .. this will prevent loss of information on systems that ! .. do not flush the open streams ! .. added by C.C. ! OPEN( UNIT = crashunit, FILE = crash_file, & POSITION = 'APPEND', STATUS = 'UNKNOWN' ) ! WRITE( UNIT = crashunit, FMT = '(/,1X,78("%"))' ) WRITE( UNIT = crashunit, FMT = '(5X,"task #",I10)' ) mpime WRITE( UNIT = crashunit, & FMT = '(5X,"from ",A," : error #",I10)' ) calling_routine, ierr WRITE( UNIT = crashunit, FMT = '(5X,A)' ) message WRITE( UNIT = crashunit, FMT = '(1X,78("%"),/)' ) ! CLOSE( UNIT = crashunit ) ! ! ... try to exit in a smooth way ! CALL MPI_ABORT( MPI_COMM_WORLD, mpierr ) ! CALL MPI_FINALIZE( mpierr ) ! #endif ! STOP 2 ! RETURN ! END SUBROUTINE errore ! !---------------------------------------------------------------------- SUBROUTINE infomsg( routine, message ) !---------------------------------------------------------------------- ! ! ... This is a simple routine which writes an info message ! ... from a given routine to output. ! USE io_global, ONLY : stdout, ionode ! IMPLICIT NONE ! CHARACTER (LEN=*) :: routine, message ! the name of the calling routine ! the output message ! IF ( ionode ) THEN ! WRITE( stdout , '(5X,"Message from routine ",A,":")' ) routine WRITE( stdout , '(5X,A)' ) message ! END IF ! RETURN ! END SUBROUTINE infomsg ! module error_handler implicit none private public :: init_error, add_name, chop_name, error_mem, warning type chain character (len=35) :: routine_name type(chain), pointer :: previous_link end type chain type(chain), pointer :: routine_chain contains subroutine init_error(routine_name) implicit none character (len=*), intent(in) :: routine_name allocate(routine_chain) routine_chain%routine_name = routine_name nullify(routine_chain%previous_link) return end subroutine init_error subroutine add_name(routine_name) implicit none character (len=*), intent(in) :: routine_name type(chain), pointer :: new_link allocate(new_link) new_link%routine_name = routine_name new_link%previous_link => routine_chain routine_chain => new_link return end subroutine add_name subroutine chop_name implicit none type(chain), pointer :: chopped_chain chopped_chain => routine_chain%previous_link deallocate(routine_chain) routine_chain => chopped_chain return end subroutine chop_name recursive subroutine trace_back(error_code) implicit none integer :: error_code write(unit=*,fmt=*) " Called by ", routine_chain%routine_name if (.not.associated(routine_chain%previous_link)) then write(unit=*,fmt=*) & " +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++" write(unit=*,fmt=*) " " if( error_code > 0 ) then stop else return end if end if routine_chain => routine_chain%previous_link call trace_back(error_code) end subroutine trace_back subroutine error_mem(message,error_code) character (len=*), intent(in) :: message integer, intent(in), optional :: error_code integer :: action_code type(chain), pointer :: save_chain if (present(error_code)) then action_code = error_code else action_code = 1 end if if( action_code /= 0 ) then write(unit=*,fmt=*) " " write(unit=*,fmt=*) & " +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++" if( action_code > 0 ) then write(unit=*,fmt=*) " Fatal error in routine `", & trim(routine_chain%routine_name),"': ",message else write(unit=*,fmt=*) " Warning from routine `", & trim(routine_chain%routine_name),"': ",message save_chain => routine_chain end if write(unit=*,fmt=*) & " +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++" routine_chain => routine_chain%previous_link call trace_back(action_code) routine_chain => save_chain end if return end subroutine error_mem subroutine warning(message) character (len=*), intent(in) :: message call error_mem(message,-1) return end subroutine warning end module error_handler espresso-5.0.2/Modules/stick_base.f900000644000700200004540000005136612053145633016434 0ustar marsamoscm! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------= MODULE stick_base !=----------------------------------------------------------------------= USE kinds USE io_global, ONLY: ionode IMPLICIT NONE PRIVATE SAVE PUBLIC :: sticks_maps, sticks_sort, sticks_countg, sticks_dist, sticks_pairup PUBLIC :: sticks_owner, sticks_deallocate, sticks_maps_scalar, sticks_ordered_dist ! ... sticks_owner : stick owner, sticks_owner( i, j ) is the index of the processor ! ... (starting from 1) owning the stick whose x and y coordinate are i and j. INTEGER, ALLOCATABLE, TARGET :: sticks_owner( : , : ) !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= SUBROUTINE sticks_maps( tk, ub, lb, b1, b2, b3, gcut, gcutw, gcuts, st, stw, sts, me, nproc, comm ) USE mp, ONLY: mp_sum LOGICAL, INTENT(in) :: tk ! if true use the full space grid INTEGER, INTENT(in) :: ub(:) ! upper bounds for i-th grid dimension INTEGER, INTENT(in) :: lb(:) ! lower bounds for i-th grid dimension REAL(DP) , INTENT(in) :: b1(:), b2(:), b3(:) ! reciprocal space base vectors REAL(DP) , INTENT(in) :: gcut ! cut-off for potentials REAL(DP) , INTENT(in) :: gcutw ! cut-off for plane waves REAL(DP) , INTENT(in) :: gcuts ! cut-off for smooth mesh INTEGER, INTENT(out) :: st( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(out) :: stw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(out) :: sts(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh INTEGER, INTENT(in) :: me ! my proc id (starting from 0) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER, INTENT(in) :: comm ! communicator of the g-vec group INTEGER :: i, j, k, kip REAL(DP) :: gsq stw = 0 st = 0 sts = 0 ! ... Here find the basic maps of sticks st, stw and sts for the potential ! ... cut-off gcut, wavefunction cut-off gcutw, and smooth mesh cut-off gcuts ! ... st(i,j) will contain the number of G vectors of the stick whose ! ... indices are (i,j). #if defined (__EKO) WRITE(*,*) ! Workaround for EKOPath compiler bug #endif IF( .not. tk ) THEN kip = 0 + abs(lb(3)) + 1 IF( mod( kip, nproc ) == me ) THEN st (0,0) = st (0,0) + 1 stw(0,0) = stw(0,0) + 1 sts(0,0) = sts(0,0) + 1 ENDIF DO i= 0, 0 DO j= 0, 0 DO k= 1, ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc ) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO DO i = 0, 0 DO j = 1, ub(2) DO k = lb(3), ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO DO i = 1, ub(1) DO j = lb(2), ub(2) DO k = lb(3), ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ELSE DO i= lb(1), ub(1) DO j= lb(2), ub(2) DO k= lb(3), ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc ) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 ENDIF IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDDO ENDDO ENDDO ENDIF CALL mp_sum(st , comm ) CALL mp_sum(stw , comm ) CALL mp_sum(sts , comm ) #if defined __STICKS_DEBUG ! Test sticks WRITE( 6,*) 'testtesttesttesttesttesttesttesttesttest' WRITE( 6,*) 'lb = ', lb(1), lb(2) WRITE( 6,*) 'ub = ', ub(1), ub(2) WRITE( 6,*) 'counts = ', count( st > 0 ), count( stw > 0 ), count( sts > 0 ) WRITE( 6,*) 'cut-offs = ', gcut, gcutw, gcuts WRITE( 6,*) 'b1 = ', b1(1:3) WRITE( 6,*) 'b2 = ', b2(1:3) WRITE( 6,*) 'b3 = ', b3(1:3) DO i = lb(1), ub(1) DO j = lb(2), ub(2) WRITE( 6,'(2I4,3I6)') i,j,st(i,j),stw(i,j),sts(i,j) ENDDO ENDDO WRITE( 6,*) 'testtesttesttesttesttesttesttesttesttest' ! Test sticks #endif RETURN END SUBROUTINE sticks_maps !=----------------------------------------------------------------------= SUBROUTINE sticks_maps_scalar( lgamma, ub, lb, b1, b2, b3, gcutm, gkcut, gcutms, stw, ngm, ngms ) LOGICAL, INTENT(in) :: lgamma ! if true use gamma point simmetry INTEGER, INTENT(in) :: ub(:) ! upper bounds for i-th grid dimension INTEGER, INTENT(in) :: lb(:) ! lower bounds for i-th grid dimension REAL(DP) , INTENT(in) :: b1(:), b2(:), b3(:) ! reciprocal space base vectors REAL(DP) , INTENT(in) :: gcutm ! cut-off for potentials REAL(DP) , INTENT(in) :: gkcut ! cut-off for plane waves REAL(DP) , INTENT(in) :: gcutms ! cut-off for smooth mesh ! INTEGER, INTENT(out) :: ngm, ngms ! ! stick map for wave functions, note that map is taken in YZ plane ! INTEGER, INTENT(out) :: stw( lb(2) : ub(2), lb(3) : ub(3) ) INTEGER :: i1, i2, i3, n1, n2, n3 REAL(DP) :: amod ngm = 0 ngms = 0 stw = 0 n1 = max( abs( lb(1) ), abs( ub(1) ) ) n2 = max( abs( lb(2) ), abs( ub(2) ) ) n3 = max( abs( lb(3) ), abs( ub(3) ) ) loop1: DO i1 = - n1, n1 ! ! Gamma-only: exclude space with x<0 ! IF (lgamma .and. i1 < 0) CYCLE loop1 ! loop2: DO i2 = - n2, n2 ! ! Gamma-only: exclude plane with x=0, y<0 ! IF(lgamma .and. i1 == 0.and. i2 < 0) CYCLE loop2 ! loop3: DO i3 = - n3, n3 ! ! Gamma-only: exclude line with x=0, y=0, z<0 ! IF(lgamma .and. i1 == 0 .and. i2 == 0 .and. i3 < 0) CYCLE loop3 ! amod = (i1 * b1 (1) + i2 * b2 (1) + i3 * b3 (1) ) **2 + & (i1 * b1 (2) + i2 * b2 (2) + i3 * b3 (2) ) **2 + & (i1 * b1 (3) + i2 * b2 (3) + i3 * b3 (3) ) **2 IF (amod <= gcutm) ngm = ngm + 1 IF (amod <= gcutms) ngms = ngms + 1 IF (amod <= gkcut ) THEN stw( i2, i3 ) = 1 IF (lgamma) stw( -i2, -i3 ) = 1 ENDIF ENDDO loop3 ENDDO loop2 ENDDO loop1 RETURN END SUBROUTINE sticks_maps_scalar !=----------------------------------------------------------------------= SUBROUTINE sticks_sort( ngc, ngcw, ngcs, nct, idx, nproc ) ! ... This subroutine sorts the sticks indexes, according to ! ... the length and type of the sticks, wave functions sticks ! ... first, then smooth mesh sticks, and finally potential ! ... sticks ! lengths of sticks, ngc for potential mesh, ngcw for wave functions mesh ! and ngcs for smooth mesh INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group ! nct, total number of sticks INTEGER, INTENT(in) :: nct ! index, on output, new sticks indexes INTEGER, INTENT(out) :: idx(:) INTEGER :: mc, nr3x, ic REAL(DP) :: dn3 REAL(DP), ALLOCATABLE :: aux(:) nr3x = maxval( ngc(1:nct) ) + 1 dn3 = REAL( nr3x ) IF( nproc > 1 ) THEN ALLOCATE( aux( nct ) ) DO mc = 1, nct aux(mc) = ngcw(mc) aux(mc) = dn3 * aux(mc) + ngcs(mc) aux(mc) = dn3 * aux(mc) + ngc(mc) aux(mc) = -aux(mc) idx(mc) = 0 ENDDO CALL hpsort( nct, aux(1), idx(1)) DEALLOCATE( aux ) ELSE ic = 0 DO mc = 1, nct IF( ngcw(mc) > 0 ) THEN ic = ic + 1 idx(ic) = mc ENDIF ENDDO DO mc = 1, nct IF( ngcs(mc) > 0 .and. ngcw(mc) == 0 ) THEN ic = ic + 1 idx(ic) = mc ENDIF ENDDO DO mc = 1, nct IF( ngc(mc) > 0 .and. ngcs(mc) == 0 .and. ngcw(mc) == 0 ) THEN ic = ic + 1 idx(ic) = mc ENDIF ENDDO ENDIF #if defined __STICKS_DEBUG WRITE( 6,*) '-----------------' WRITE( 6,*) 'STICKS_SORT DEBUG' DO mc = 1, nct WRITE( 6, fmt="(4I10)" ) idx(mc), ngcw( idx(mc) ), ngcs( idx(mc) ), ngc( idx(mc) ) ENDDO WRITE( 6,*) '-----------------' #endif RETURN END SUBROUTINE sticks_sort !=----------------------------------------------------------------------= SUBROUTINE sticks_countg( tk, ub, lb, st, stw, sts, in1, in2, ngc, ngcw, ngcs ) INTEGER, INTENT(in) :: ub(:), lb(:) INTEGER, INTENT(in) :: st( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(in) :: stw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(in) :: sts(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh LOGICAL, INTENT(in) :: tk INTEGER, INTENT(out) :: in1(:), in2(:) INTEGER, INTENT(out) :: ngc(:), ngcw(:), ngcs(:) INTEGER :: j1, j2, i1, i2, nct, min_size ! ! ... initialize the sticks indexes array ist ! ... nct counts columns containing G-vectors for the dense grid ! ... ncts counts columns contaning G-vectors for the smooth grid ! nct = 0 ngc = 0 ngcs = 0 ngcw = 0 min_size = min( size( in1 ), size( in2 ), size( ngc ), size( ngcw ), size( ngcs ) ) DO j2 = 0, ( ub(2) - lb(2) ) DO j1 = 0, ( ub(1) - lb(1) ) i1 = j1 IF( i1 > ub(1) ) i1 = lb(1) + ( i1 - ub(1) ) - 1 i2 = j2 IF( i2 > ub(2) ) i2 = lb(2) + ( i2 - ub(2) ) - 1 IF( st( i1, i2 ) > 0 ) THEN ! this sticks contains G-vectors nct = nct + 1 IF( nct > min_size ) & CALL errore(' sticks_countg ',' too many sticks ', nct ) in1(nct) = i1 in2(nct) = i2 ngc(nct) = st( i1 , i2) IF( stw( i1, i2 ) .gt. 0 ) ngcw(nct) = stw( i1 , i2) IF( sts( i1, i2 ) .gt. 0 ) ngcs(nct) = sts( i1 , i2) ENDIF ! WRITE(7,fmt="(5I5)") i1, i2, nct, ngc(nct), ngcw( nct ) ENDDO ENDDO RETURN END SUBROUTINE sticks_countg !=----------------------------------------------------------------------= SUBROUTINE sticks_dist( tk, ub, lb, idx, in1, in2, ngc, ngcw, ngcs, nct, & ncp, ncpw, ncps, ngp, ngpw, ngps, stown, stownw, stowns, nproc ) LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: ub(:), lb(:), idx(:) INTEGER, INTENT(out) :: stown( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(out) :: stownw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(out) :: stowns(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh INTEGER, INTENT(in) :: in1(:), in2(:) INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nct INTEGER, INTENT(out) :: ncp(:), ncpw(:), ncps(:) INTEGER, INTENT(out) :: ngp(:), ngpw(:), ngps(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER :: mc, i1, i2, i, j, jj ncp = 0 ncps = 0 ncpw = 0 ngp = 0 ngps = 0 ngpw = 0 stown = 0 stownw = 0 stowns = 0 DO mc = 1, nct i = idx( mc ) ! ! index contains the desired ordering of sticks (see above) ! i1 = in1( i ) i2 = in2( i ) ! IF ( ( .not. tk ) .and. ( (i1 < 0) .or. ( (i1 == 0) .and. (i2 < 0) ) ) ) GOTO 30 ! jj = 1 IF ( ngcw(i) > 0 ) THEN ! ! this is an active sticks: find which processor has currently ! the smallest number of plane waves ! DO j = 1, nproc IF ( ngpw(j) < ngpw(jj) ) THEN jj = j ELSEIF ( ( ngpw(j) == ngpw(jj) ) .and. ( ncpw(j) < ncpw(jj) ) ) THEN jj = j ENDIF ENDDO ELSE ! ! this is an inactive sticks: find which processor has currently ! the smallest number of G-vectors ! DO j = 1, nproc IF ( ngp(j) < ngp(jj) ) jj = j ENDDO ENDIF ! ! potential mesh ncp(jj) = ncp(jj) + 1 ngp(jj) = ngp(jj) + ngc(i) stown(i1,i2) = jj ! smooth mesh IF ( ngcs(i) > 0 ) THEN ncps(jj) = ncps(jj) + 1 ngps(jj) = ngps(jj) + ngcs(i) stowns(i1,i2) = jj ENDIF ! wave functions mesh IF ( ngcw(i) > 0 ) THEN ncpw(jj) = ncpw(jj) + 1 ngpw(jj) = ngpw(jj) + ngcw(i) stownw(i1,i2) = jj ENDIF 30 CONTINUE ENDDO RETURN END SUBROUTINE sticks_dist !=----------------------------------------------------------------------= SUBROUTINE sticks_pairup( tk, ub, lb, idx, in1, in2, ngc, ngcw, ngcs, nct, & ncp, ncpw, ncps, ngp, ngpw, ngps, stown, stownw, stowns, nproc ) LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: ub(:), lb(:), idx(:) INTEGER, INTENT(inout) :: stown( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(inout) :: stownw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(inout) :: stowns(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(in) :: in1(:), in2(:) INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nct INTEGER, INTENT(out) :: ncp(:), ncpw(:), ncps(:) INTEGER, INTENT(out) :: ngp(:), ngpw(:), ngps(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER :: mc, i1, i2, i, jj IF ( .not. tk ) THEN ! when gamma symmetry is used only the sticks of half reciprocal space ! are generated, then here we pair-up the sticks with those of the other ! half of the space, using the gamma symmetry relation ! Note that the total numero of stick "nct" is not modified DO mc = 1, nct i = idx(mc) i1 = in1(i) i2 = in2(i) IF( i1 == 0 .and. i2 == 0 ) THEN jj = stown( i1, i2 ) IF( jj > 0 ) ngp( jj ) = ngp( jj ) + ngc( i ) - 1 jj = stowns( i1, i2 ) IF( jj > 0 ) ngps( jj ) = ngps( jj ) + ngcs( i ) - 1 jj = stownw( i1, i2 ) IF( jj > 0 ) ngpw( jj ) = ngpw( jj ) + ngcw( i ) - 1 ELSE jj = stown( i1, i2 ) IF( jj > 0 ) THEN stown( -i1, -i2 ) = jj ncp( jj ) = ncp( jj ) + 1 ngp( jj ) = ngp( jj ) + ngc( i ) ENDIF jj = stowns( i1, i2 ) IF( jj > 0 ) THEN stowns( -i1, -i2 ) = jj ncps( jj ) = ncps( jj ) + 1 ngps( jj ) = ngps( jj ) + ngcs( i ) ENDIF jj = stownw( i1, i2 ) IF( jj > 0 ) THEN stownw( -i1, -i2 ) = jj ncpw( jj ) = ncpw( jj ) + 1 ngpw( jj ) = ngpw( jj ) + ngcw( i ) ENDIF ENDIF ENDDO ENDIF IF( allocated( sticks_owner ) ) DEALLOCATE( sticks_owner ) ALLOCATE( sticks_owner( lb(1): ub(1), lb(2):ub(2) ) ) sticks_owner( :, : ) = abs( stown( :, :) ) RETURN END SUBROUTINE sticks_pairup !=----------------------------------------------------------------------= SUBROUTINE sticks_ordered_dist( tk, ub, lb, idx, in1, in2, ngc, ngcw, ngcs, nct, & ncp, ncpw, ncps, ngp, ngpw, ngps, stown, stownw, stowns, nproc ) ! ! This routine works as sticks_dist only it distributes the sticks according to sticks_owner. ! This ensures that the gvectors for any 'smooth like grid' remain on the same proc as the ! original grid. ! LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: ub(:), lb(:), idx(:) INTEGER, INTENT(out) :: stown( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(out) :: stownw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(out) :: stowns(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh INTEGER, INTENT(in) :: in1(:), in2(:) INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nct INTEGER, INTENT(out) :: ncp(:), ncpw(:), ncps(:) INTEGER, INTENT(out) :: ngp(:), ngpw(:), ngps(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER :: mc, i1, i2, i, j, jj ncp = 0 ncps = 0 ncpw = 0 ngp = 0 ngps = 0 ngpw = 0 stown = sticks_owner stownw = 0 stowns = 0 DO mc = 1, nct i = idx( mc ) ! ! index has no effect in this case ! i1 = in1( i ) i2 = in2( i ) ! IF ( ( .not. tk ) .and. ( (i1 < 0) .or. ( (i1 == 0) .and. (i2 < 0) ) ) ) GOTO 30 ! ! potential mesh set according to sticks_owner jj = stown(i1,i2) ncp(jj) = ncp(jj) + 1 ngp(jj) = ngp(jj) + ngc(i) ! smooth mesh IF ( ngcs(i) > 0 ) THEN ncps(jj) = ncps(jj) + 1 ngps(jj) = ngps(jj) + ngcs(i) stowns(i1,i2) = jj ENDIF ! wave functions mesh IF ( ngcw(i) > 0 ) THEN ncpw(jj) = ncpw(jj) + 1 ngpw(jj) = ngpw(jj) + ngcw(i) stownw(i1,i2) = jj ENDIF 30 CONTINUE ENDDO RETURN END SUBROUTINE sticks_ordered_dist !=----------------------------------------------------------------------= SUBROUTINE sticks_deallocate IF( allocated( sticks_owner ) ) DEALLOCATE( sticks_owner ) RETURN END SUBROUTINE sticks_deallocate !=----------------------------------------------------------------------= END MODULE stick_base !=----------------------------------------------------------------------= espresso-5.0.2/Modules/read_input.f900000644000700200004540000000442412053145633016450 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE read_input !--------------------------------------------------------------------------- ! USE kinds, ONLY: DP ! IMPLICIT NONE SAVE ! PRIVATE PUBLIC :: read_input_file, has_been_read ! LOGICAL :: has_been_read = .FALSE. ! CONTAINS ! !------------------------------------------------------------------------- SUBROUTINE read_input_file ( prog ) !------------------------------------------------------------------------- ! USE read_namelists_module, ONLY : read_namelists USE read_cards_module, ONLY : read_cards USE io_global, ONLY : ionode, ionode_id USE xml_input, ONLY : xml_input_dump USE read_xml_module, ONLY : read_xml USE mp, ONLY : mp_bcast USE mp_global, ONLY : intra_image_comm USE iotk_module, ONLY : iotk_attlenx USE open_close_input_file, ONLY : open_input_file, close_input_file ! IMPLICIT NONE ! CHARACTER(LEN=2), INTENT (IN) :: prog CHARACTER(LEN=iotk_attlenx) :: attr LOGICAL :: xmlinput INTEGER :: ierr ! ! IF ( ionode ) THEN IF ( prog == 'CP' ) CALL xml_input_dump() ierr = open_input_file( xmlinput, attr) END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) CALL errore('read_input', 'opening input file',ierr) CALL mp_bcast( xmlinput, ionode_id, intra_image_comm ) CALL mp_bcast( attr, ionode_id, intra_image_comm ) ! IF ( xmlinput ) THEN ! CALL read_xml ( prog, attr ) ! ELSE ! ! ... Read NAMELISTS ! CALL read_namelists( prog ) ! ! ... Read CARDS ! CALL read_cards ( prog ) ! END IF IF ( ionode) ierr = close_input_file( ) ! has_been_read = .TRUE. ! RETURN ! END SUBROUTINE read_input_file ! END MODULE read_input espresso-5.0.2/Modules/electrons_base.f900000644000700200004540000004060512053145633017307 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE electrons_base !------------------------------------------------------------------------------! USE kinds, ONLY: DP ! IMPLICIT NONE SAVE INTEGER :: nbnd = 0 ! number electronic bands, each band contains ! two spin states INTEGER :: nbndx = 0 ! array dimension nbndx >= nbnd INTEGER :: nspin = 0 ! nspin = number of spins (1=no spin, 2=LSDA) INTEGER :: nel(2) = 0 ! number of electrons (up, down) INTEGER :: nelt = 0 ! total number of electrons ( up + down ) INTEGER :: nupdwn(2) = 0 ! number of states with spin up (1) and down (2) INTEGER :: iupdwn(2) = 0 ! first state with spin (1) and down (2) INTEGER :: nudx = 0 ! max (nupdw(1),nupdw(2)) INTEGER :: nbsp = 0 ! total number of electronic states ! (nupdwn(1)+nupdwn(2)) INTEGER :: nbspx = 0 ! array dimension nbspx >= nbsp ! INTEGER :: nupdwn_bgrp(2) = 0 ! number of states with spin up (1) and down (2) in this band group INTEGER :: iupdwn_bgrp(2) = 0 ! first state with spin (1) and down (2) in this band group INTEGER :: nudx_bgrp = 0 ! max (nupdw_bgrp(1),nupdw_bgrp(2)) in this band group INTEGER :: nbsp_bgrp = 0 ! total number of electronic states ! (nupdwn_bgrp(1)+nupdwn_bgrp(2)) in this band group INTEGER :: nbspx_bgrp = 0 ! array dimension nbspx_bgrp >= nbsp_bgrp local to the band group INTEGER :: i2gupdwn_bgrp(2)= 0 ! global index of the first local band LOGICAL :: telectrons_base_initval = .FALSE. LOGICAL :: keep_occ = .FALSE. ! if .true. when reading restart file keep ! the occupations calculated in initval REAL(DP), ALLOCATABLE :: f(:) ! occupation numbers ( at gamma ) REAL(DP) :: qbac = 0.0_DP ! background neutralizing charge INTEGER, ALLOCATABLE :: ispin(:) ! spin of each state REAL(DP), ALLOCATABLE :: f_bgrp(:) ! occupation numbers ( at gamma ) INTEGER, ALLOCATABLE :: ispin_bgrp(:) ! spin of each state INTEGER, ALLOCATABLE :: ibgrp_g2l(:) ! local index of the i-th global band index ! !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! SUBROUTINE electrons_base_initval( zv_ , na_ , nsp_ , nbnd_ , nspin_ , & occupations_ , f_inp, tot_charge_, tot_magnetization_ ) USE constants, ONLY : eps8 USE io_global, ONLY : stdout REAL(DP), INTENT(IN) :: zv_ (:), tot_charge_ REAL(DP), INTENT(IN) :: f_inp(:,:) REAL(DP), INTENT(IN) :: tot_magnetization_ INTEGER, INTENT(IN) :: na_ (:) , nsp_ INTEGER, INTENT(IN) :: nbnd_ , nspin_ CHARACTER(LEN=*), INTENT(IN) :: occupations_ REAL(DP) :: nelec, nelup, neldw, ocp, fsum INTEGER :: iss, i, in nspin = nspin_ ! ! ... set nelec ! nelec = 0.0_DP DO i = 1, nsp_ nelec = nelec + na_ ( i ) * zv_ ( i ) END DO nelec = nelec - tot_charge_ ! ! ... set nelup/neldw ! nelup = 0._dp neldw = 0._dp call set_nelup_neldw (tot_magnetization_, nelec, nelup, neldw ) IF( ABS( nelec - ( nelup + neldw ) ) > eps8 ) THEN CALL errore(' electrons_base_initval ',' inconsistent n. of electrons ', 2 ) END IF ! ! Compute the number of bands ! IF( nbnd_ /= 0 ) THEN nbnd = nbnd_ ! nbnd is given from input ELSE nbnd = NINT( MAX( nelup, neldw ) ) ! take the maximum between up and down states END IF IF( nelec < 1 ) THEN CALL errore(' electrons_base_initval ',' nelec less than 1 ', 1 ) END IF ! IF( ABS( NINT( nelec ) - nelec ) > eps8 ) THEN CALL errore(' electrons_base_initval ',' nelec must be integer', 2 ) END IF ! IF( nbnd < 1 ) & CALL errore(' electrons_base_initval ',' nbnd out of range ', 1 ) ! IF ( nspin /= 1 .AND. nspin /= 2 ) THEN WRITE( stdout, * ) 'nspin = ', nspin CALL errore( ' electrons_base_initval ', ' nspin out of range ', 1 ) END IF IF( MOD( nbnd, 2 ) == 0 ) THEN nbspx = nbnd * nspin ELSE nbspx = ( nbnd + 1 ) * nspin END IF ALLOCATE( f ( nbspx ) ) ALLOCATE( ispin ( nbspx ) ) f = 0.0_DP ispin = 0 iupdwn ( 1 ) = 1 nel = 0 SELECT CASE ( TRIM(occupations_) ) CASE ('bogus') ! ! bogus to ensure \sum_i f_i = Nelec (nelec is integer) ! f ( : ) = nelec / nbspx nel (1) = nint( nelec ) nupdwn (1) = nbspx if ( nspin == 2 ) then ! ! bogus to ensure Nelec = Nup + Ndw ! nel (1) = ( nint(nelec) + 1 ) / 2 nel (2) = nint(nelec) / 2 nupdwn (1)=nbnd nupdwn (2)=nbnd iupdwn (2)=nbnd+1 end if ! keep_occ = .true. ! CASE ('from_input') ! ! occupancies have been read from input ! ! count electrons ! IF( nspin == 1 ) THEN nelec = SUM( f_inp( :, 1 ) ) nelup = nelec / 2.0_DP neldw = nelec / 2.0_DP ELSE nelup = SUM ( f_inp ( :, 1 ) ) neldw = SUM ( f_inp ( :, 2 ) ) nelec = nelup + neldw END IF ! ! consistency check ! IF( nspin == 1 ) THEN IF( f_inp( 1, 1 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) ELSE IF( f_inp( 1, 1 ) < 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) IF( f_inp( 1, 2 ) < 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) IF( ( f_inp( 1, 1 ) + f_inp( 1, 2 ) ) == 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) END IF DO i = 2, nbnd IF( nspin == 1 ) THEN IF( f_inp( i, 1 ) > 0.0_DP .AND. f_inp( i-1, 1 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) ELSE IF( f_inp( i, 1 ) > 0.0_DP .AND. f_inp( i-1, 1 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) IF( f_inp( i, 2 ) > 0.0_DP .AND. f_inp( i-1, 2 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) END IF END DO ! ! count bands ! nupdwn (1) = 0 nupdwn (2) = 0 DO i = 1, nbnd IF( nspin == 1 ) THEN IF( f_inp( i, 1 ) > 0.0_DP ) nupdwn (1) = nupdwn (1) + 1 ELSE IF( f_inp( i, 1 ) > 0.0_DP ) nupdwn (1) = nupdwn (1) + 1 IF( f_inp( i, 2 ) > 0.0_DP ) nupdwn (2) = nupdwn (2) + 1 END IF END DO ! if( nspin == 1 ) then nel (1) = nint( nelec ) iupdwn (1) = 1 else nel (1) = nint(nelup) nel (2) = nint(neldw) iupdwn (1) = 1 iupdwn (2) = nupdwn (1) + 1 end if ! DO iss = 1, nspin DO in = iupdwn ( iss ), iupdwn ( iss ) - 1 + nupdwn ( iss ) f( in ) = f_inp( in - iupdwn ( iss ) + 1, iss ) END DO END DO ! CASE ('fixed') if( nspin == 1 ) then nel(1) = nint(nelec) nupdwn(1) = nbnd iupdwn(1) = 1 else IF ( nelup + neldw /= nelec ) THEN CALL errore(' electrons_base_initval ',' wrong # of up and down spin', 1 ) END IF nel(1) = nint(nelup) nel(2) = nint(neldw) nupdwn(1) = nint(nelup) nupdwn(2) = nint(neldw) iupdwn(1) = 1 iupdwn(2) = nupdwn(1) + 1 end if ! if( (nspin == 1) .and. MOD( nint(nelec), 2 ) /= 0 ) & ! CALL errore(' electrons_base_initval ', & ! ' must use nspin=2 for odd number of electrons', 1 ) ! ocp = 2 for spinless systems, ocp = 1 for spin-polarized systems ocp = 2.0_DP / nspin ! ! default filling: attribute ocp electrons to each states ! until the good number of electrons is reached do iss = 1, nspin fsum = 0.0_DP do in = iupdwn ( iss ), iupdwn ( iss ) - 1 + nupdwn ( iss ) if ( fsum + ocp < nel ( iss ) + 0.0001_DP ) then f (in) = ocp else f (in) = max( nel ( iss ) - fsum, 0.0_DP ) end if fsum = fsum + f(in) end do end do ! CASE ('ensemble','ensemble-dft','edft') if ( nspin == 1 ) then ! f ( : ) = nelec / nbnd nel (1) = nint(nelec) nupdwn (1) = nbnd ! else ! if (nelup.ne.0) then if ((nelup+neldw).ne.nelec) then CALL errore(' electrons_base_initval ',' nelup+neldw .ne. nelec', 1 ) end if nel (1) = nelup nel (2) = neldw else nel (1) = ( nint(nelec) + 1 ) / 2 nel (2) = nint(nelec) / 2 end if ! nupdwn (1) = nbnd nupdwn (2) = nbnd iupdwn (2) = nbnd+1 ! do iss = 1, nspin do i = iupdwn ( iss ), iupdwn ( iss ) - 1 + nupdwn ( iss ) f (i) = nel (iss) / DBLE (nupdwn (iss)) end do end do ! end if CASE DEFAULT CALL errore(' electrons_base_initval ',' occupation method not implemented', 1 ) END SELECT do iss = 1, nspin do in = iupdwn(iss), iupdwn(iss) - 1 + nupdwn(iss) ispin(in) = iss end do end do nbndx = nupdwn (1) nudx = nupdwn (1) nbsp = nupdwn (1) + nupdwn (2) IF ( nspin == 1 ) THEN nelt = nel(1) ELSE nelt = nel(1) + nel(2) END IF IF( nupdwn(1) < nupdwn(2) ) & CALL errore(' electrons_base_initval ',' nupdwn(1) should be greater or equal nupdwn(2) ', 1 ) IF( nbnd < nupdwn(1) ) & CALL errore(' electrons_base_initval ',' inconsistent nbnd, should be .GE. than nupdwn(1) ', 1 ) IF( nbspx < ( nupdwn(1) * nspin ) ) & CALL errore(' electrons_base_initval ',' inconsistent nbspx, should be .GE. than nspin * nupdwn(1) ', 1 ) IF( ( 2 * nbnd ) < nelt ) & CALL errore(' electrons_base_initval ',' too few states ', 1 ) IF( nbsp < INT( nelec * nspin / 2.0_DP ) ) & CALL errore(' electrons_base_initval ',' too many electrons ', 1 ) telectrons_base_initval = .TRUE. RETURN END SUBROUTINE electrons_base_initval !---------------------------------------------------------------------------- ! subroutine set_nelup_neldw ( tot_magnetization_, nelec_, nelup_, neldw_ ) ! USE kinds, ONLY : DP USE constants, ONLY : eps8 ! REAL (KIND=DP), intent(IN) :: tot_magnetization_ REAL (KIND=DP), intent(IN) :: nelec_ REAL (KIND=DP), intent(OUT) :: nelup_, neldw_ LOGICAL :: integer_charge, integer_magnetization ! integer_charge = ( ABS (nelec_ - NINT(nelec_)) < eps8 ) ! IF ( tot_magnetization_ < 0 ) THEN ! default when tot_magnetization is unspecified IF ( integer_charge) THEN nelup_ = INT( nelec_ + 1 ) / 2 neldw_ = nelec_ - nelup_ ELSE nelup_ = nelec_ / 2 neldw_ = nelup_ END IF ELSE ! tot_magnetization specified in input ! if ( (tot_magnetization_ > 0) .and. (nspin==1) ) & CALL errore(' set_nelup_neldw ', & 'tot_magnetization is inconsistent with nspin=1 ', 2 ) integer_magnetization = ( ABS( tot_magnetization_ - & NINT(tot_magnetization_) ) < eps8 ) IF ( integer_charge .AND. integer_magnetization) THEN ! ! odd tot_magnetization requires an odd number of electrons ! even tot_magnetization requires an even number of electrons ! if ( ((MOD(NINT(tot_magnetization_),2) == 0) .and. & (MOD(NINT(nelec_),2)==1)) .or. & ((MOD(NINT(tot_magnetization_),2) == 1) .and. & (MOD(NINT(nelec_),2)==0)) ) & CALL infomsg(' set_nelup_neldw ', & 'BEWARE: non-integer number of up and down electrons!' ) ! ! ... setting nelup/neldw ! nelup_ = ( INT(nelec_) + tot_magnetization_ ) / 2 neldw_ = ( INT(nelec_) - tot_magnetization_ ) / 2 ELSE ! nelup_ = ( nelec_ + tot_magnetization_ ) / 2 neldw_ = ( nelec_ - tot_magnetization_ ) / 2 END IF END IF return end subroutine set_nelup_neldw !---------------------------------------------------------------------------- SUBROUTINE deallocate_elct() IF( ALLOCATED( f ) ) DEALLOCATE( f ) IF( ALLOCATED( ispin ) ) DEALLOCATE( ispin ) IF( ALLOCATED( f_bgrp ) ) DEALLOCATE( f_bgrp ) IF( ALLOCATED( ispin_bgrp ) ) DEALLOCATE( ispin_bgrp ) IF( ALLOCATED( ibgrp_g2l ) ) DEALLOCATE( ibgrp_g2l ) telectrons_base_initval = .FALSE. RETURN END SUBROUTINE deallocate_elct !---------------------------------------------------------------------------- SUBROUTINE distribute_bands( nbgrp, my_bgrp_id ) INTEGER, INTENT(IN) :: nbgrp, my_bgrp_id INTEGER, EXTERNAL :: ldim_block, gind_block INTEGER :: iss, n1, n2, m1, m2, ilocal, iglobal ! IF( .NOT. telectrons_base_initval ) & CALL errore( ' distribute_bands ', ' electrons_base_initval not yet called ', 1 ) nupdwn_bgrp = nupdwn iupdwn_bgrp = iupdwn nudx_bgrp = nudx nbsp_bgrp = nbsp nbspx_bgrp = nbspx i2gupdwn_bgrp= 1 DO iss = 1, nspin nupdwn_bgrp( iss ) = ldim_block( nupdwn( iss ), nbgrp, my_bgrp_id ) i2gupdwn_bgrp( iss ) = gind_block( 1, nupdwn( iss ), nbgrp, my_bgrp_id ) END DO ! iupdwn_bgrp(1) = 1 IF( nspin > 1 ) THEN iupdwn_bgrp(2) = iupdwn_bgrp(1) + nupdwn_bgrp( 1 ) END IF nudx_bgrp = nupdwn_bgrp( 1 ) nbsp_bgrp = nupdwn_bgrp( 1 ) + nupdwn_bgrp ( 2 ) nbspx_bgrp = nbsp_bgrp IF( MOD( nbspx_bgrp, 2 ) /= 0 ) nbspx_bgrp = nbspx_bgrp + 1 ALLOCATE( f_bgrp ( nbspx_bgrp ) ) ALLOCATE( ispin_bgrp ( nbspx_bgrp ) ) ALLOCATE( ibgrp_g2l ( nbspx ) ) f_bgrp = 0.0 ispin_bgrp = 0 ibgrp_g2l = 0 ! DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 f_bgrp(n1:n2) = f(m1:m2) ispin_bgrp(n1:n2) = ispin(m1:m2) ilocal = n1 DO iglobal = m1, m2 ibgrp_g2l( iglobal ) = ilocal ilocal = ilocal + 1 END DO END DO RETURN END SUBROUTINE distribute_bands !------------------------------------------------------------------------------! END MODULE electrons_base !------------------------------------------------------------------------------! espresso-5.0.2/Modules/kind.f900000644000700200004540000000541112053145633015240 0ustar marsamoscm! ! Copyright (C) 2002-2004 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE kinds !------------------------------------------------------------------------------! IMPLICIT NONE SAVE ! ... kind definitions INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER, PARAMETER :: sgl = selected_real_kind(6,30) INTEGER, PARAMETER :: i4b = selected_int_kind(9) PRIVATE PUBLIC :: i4b, sgl, DP, print_kind_info ! !------------------------------------------------------------------------------! ! CONTAINS ! !------------------------------------------------------------------------------! ! !! Print information about the used data types. ! SUBROUTINE print_kind_info (stdout) ! !------------------------------------------------------------------------------! ! IMPLICIT NONE INTEGER, INTENT(IN) :: stdout ! WRITE( stdout,'(/,T2,A)') 'DATA TYPE INFORMATION:' ! WRITE( stdout,'(/,T2,A,T78,A,2(/,T2,A,T75,I6),3(/,T2,A,T67,E14.8))') & 'REAL: Data type name:', 'DP', ' Kind value:', kind(0.0_DP), & ' Precision:', precision(0.0_DP), & ' Smallest nonnegligible quantity relative to 1:', & epsilon(0.0_DP), ' Smallest positive number:', tiny(0.0_DP), & ' Largest representable number:', huge(0.0_DP) WRITE( stdout,'(/,T2,A,T78,A,2(/,T2,A,T75,I6),3(/,T2,A,T67,E14.8))') & ' Data type name:', 'sgl', ' Kind value:', kind(0.0_sgl), & ' Precision:', precision(0.0_sgl), & ' Smallest nonnegligible quantity relative to 1:', & epsilon(0.0_sgl), ' Smallest positive number:', tiny(0.0_sgl), & ' Largest representable number:', huge(0.0_sgl) WRITE( stdout,'(/,T2,A,T72,A,4(/,T2,A,T61,I20))') & 'INTEGER: Data type name:', '(default)', ' Kind value:', & kind(0), ' Bit size:', bit_size(0), & ' Largest representable number:', huge(0) WRITE( stdout,'(/,T2,A,T72,A,/,T2,A,T75,I6,/)') 'LOGICAL: Data type name:', & '(default)', ' Kind value:', kind(.TRUE.) WRITE( stdout,'(/,T2,A,T72,A,/,T2,A,T75,I6,/)') & 'CHARACTER: Data type name:', '(default)', ' Kind value:', & kind('C') ! END SUBROUTINE print_kind_info ! !------------------------------------------------------------------------------! END MODULE kinds !------------------------------------------------------------------------------! espresso-5.0.2/Modules/fft_parallel.f900000644000700200004540000002256012053145633016752 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=---------------------------------------------------------------------==! ! ! ! Parallel 3D FFT high level Driver ! ( Charge density and Wave Functions ) ! ! Written and maintained by Carlo Cavazzoni ! Last update Apr. 2009 ! !=---------------------------------------------------------------------==! ! MODULE fft_parallel ! IMPLICIT NONE SAVE ! CONTAINS ! ! General purpose driver, including Task groups parallelization ! !---------------------------------------------------------------------------- SUBROUTINE tg_cft3s( f, dfft, isgn, use_task_groups ) !---------------------------------------------------------------------------- ! ! ... isgn = +-1 : parallel 3d fft for rho and for the potential ! NOT IMPLEMENTED WITH TASK GROUPS ! ... isgn = +-2 : parallel 3d fft for wavefunctions ! ! ... isgn = + : G-space to R-space, output = \sum_G f(G)exp(+iG*R) ! ... fft along z using pencils (cft_1z) ! ... transpose across nodes (fft_scatter) ! ... and reorder ! ... fft along y (using planes) and x (cft_2xy) ! ... isgn = - : R-space to G-space, output = \int_R f(R)exp(-iG*R)/Omega ! ... fft along x and y(using planes) (cft_2xy) ! ... transpose across nodes (fft_scatter) ! ... and reorder ! ... fft along z using pencils (cft_1z) ! ! ... The array "planes" signals whether a fft is needed along y : ! ... planes(i)=0 : column f(i,*,*) empty , don't do fft along y ! ... planes(i)=1 : column f(i,*,*) filled, fft along y needed ! ... "empty" = no active components are present in f(i,*,*) ! ... after (isgn>0) or before (isgn<0) the fft on z direction ! ! ... Note that if isgn=+/-1 (fft on rho and pot.) all fft's are needed ! ... and all planes(i) are set to 1 ! ! This driver is based on code written by Stefano de Gironcoli for PWSCF. ! Task Group added by Costas Bekas, Oct. 2005, adapted from the CPMD code ! (Alessandro Curioni) and revised by Carlo Cavazzoni 2007. ! USE fft_scalar, ONLY : cft_1z, cft_2xy USE fft_base, ONLY : fft_scatter USE kinds, ONLY : DP USE fft_types, ONLY : fft_dlay_descriptor USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP), INTENT(inout) :: f( : ) ! array containing data to be transformed TYPE (fft_dlay_descriptor), INTENT(in) :: dfft ! descriptor of fft data layout INTEGER, INTENT(in) :: isgn ! fft direction LOGICAL, OPTIONAL, INTENT(in) :: use_task_groups ! specify if you want to use task groups parallelization ! INTEGER :: me_p INTEGER :: n1, n2, n3, nx1, nx2, nx3 COMPLEX(DP), ALLOCATABLE :: yf(:), aux (:) INTEGER :: planes( dfft%nr1x ) LOGICAL :: use_tg ! ! IF( present( use_task_groups ) ) THEN use_tg = use_task_groups ELSE use_tg = .false. ENDIF ! IF( use_tg .and. .not. dfft%have_task_groups ) & CALL errore( ' tg_cft3s ', ' call requiring task groups for a descriptor without task groups ', 1 ) ! n1 = dfft%nr1 n2 = dfft%nr2 n3 = dfft%nr3 nx1 = dfft%nr1x nx2 = dfft%nr2x nx3 = dfft%nr3x ! IF( use_tg ) THEN ALLOCATE( aux( dfft%nogrp * dfft%tg_nnr ) ) ALLOCATE( YF ( dfft%nogrp * dfft%tg_nnr ) ) ELSE ALLOCATE( aux( dfft%tg_nnr ) ) ENDIF ! me_p = dfft%mype + 1 ! IF ( isgn > 0 ) THEN ! IF ( isgn /= 2 ) THEN ! IF( use_tg ) & CALL errore( ' tg_cft3s ', ' task groups on large mesh not implemented ', 1 ) ! CALL cft_1z( f, dfft%nsp( me_p ), n3, nx3, isgn, aux ) ! planes = dfft%iplp ! ELSE ! CALL pack_group_sticks() ! IF( use_tg ) THEN CALL cft_1z( yf, dfft%tg_nsw( me_p ), n3, nx3, isgn, aux ) ELSE CALL cft_1z( f, dfft%nsw( me_p ), n3, nx3, isgn, aux ) ENDIF ! planes = dfft%iplw ! ENDIF ! CALL fw_scatter( isgn ) ! forwart scatter from stick to planes ! IF( use_tg ) THEN CALL cft_2xy( f, dfft%tg_npp( me_p ), n1, n2, nx1, nx2, isgn, planes ) ELSE CALL cft_2xy( f, dfft%npp( me_p ), n1, n2, nx1, nx2, isgn, planes ) ENDIF ! ELSE ! IF ( isgn /= -2 ) THEN ! IF( use_tg ) & CALL errore( ' tg_cft3s ', ' task groups on large mesh not implemented ', 1 ) ! planes = dfft%iplp ! ELSE ! planes = dfft%iplw ! ENDIF IF( use_tg ) THEN CALL cft_2xy( f, dfft%tg_npp( me_p ), n1, n2, nx1, nx2, isgn, planes ) ELSE CALL cft_2xy( f, dfft%npp( me_p ), n1, n2, nx1, nx2, isgn, planes) ENDIF ! CALL bw_scatter( isgn ) ! IF ( isgn /= -2 ) THEN ! CALL cft_1z( aux, dfft%nsp( me_p ), n3, nx3, isgn, f ) ! ELSE ! IF( use_tg ) THEN CALL cft_1z( aux, dfft%tg_nsw( me_p ), n3, nx3, isgn, yf ) ELSE CALL cft_1z( aux, dfft%nsw( me_p ), n3, nx3, isgn, f ) ENDIF ! CALL unpack_group_sticks() ! ENDIF ! ENDIF ! DEALLOCATE( aux ) ! IF( use_tg ) THEN DEALLOCATE( yf ) ENDIF ! RETURN ! CONTAINS ! SUBROUTINE pack_group_sticks() INTEGER :: ierr ! IF( .not. use_tg ) RETURN ! IF( dfft%tg_rdsp(dfft%nogrp) + dfft%tg_rcv(dfft%nogrp) > size( yf ) ) THEN CALL errore( 'pack_group_sticks' , ' inconsistent size ', 1 ) ENDIF IF( dfft%tg_psdsp(dfft%nogrp) + dfft%tg_snd(dfft%nogrp) > size( f ) ) THEN CALL errore( 'pack_group_sticks', ' inconsistent size ', 2 ) ENDIF CALL start_clock( 'ALLTOALL' ) ! ! Collect all the sticks of the different states, ! in "yf" processors will have all the sticks of the OGRP #if defined __MPI CALL MPI_ALLTOALLV( f(1), dfft%tg_snd, dfft%tg_psdsp, MPI_DOUBLE_COMPLEX, yf(1), dfft%tg_rcv, & & dfft%tg_rdsp, MPI_DOUBLE_COMPLEX, dfft%ogrp_comm, IERR) IF( ierr /= 0 ) THEN CALL errore( 'pack_group_sticks', ' alltoall error 1 ', abs(ierr) ) ENDIF #endif CALL stop_clock( 'ALLTOALL' ) ! !YF Contains all ( ~ NOGRP*dfft%nsw(me) ) Z-sticks ! RETURN END SUBROUTINE pack_group_sticks ! SUBROUTINE unpack_group_sticks() ! ! Bring pencils back to their original distribution ! INTEGER :: ierr ! IF( .not. use_tg ) RETURN ! IF( dfft%tg_usdsp(dfft%nogrp) + dfft%tg_snd(dfft%nogrp) > size( f ) ) THEN CALL errore( 'unpack_group_sticks', ' inconsistent size ', 3 ) ENDIF IF( dfft%tg_rdsp(dfft%nogrp) + dfft%tg_rcv(dfft%nogrp) > size( yf ) ) THEN CALL errore( 'unpack_group_sticks', ' inconsistent size ', 4 ) ENDIF CALL start_clock( 'ALLTOALL' ) #if defined __MPI CALL MPI_Alltoallv( yf(1), & dfft%tg_rcv, dfft%tg_rdsp, MPI_DOUBLE_COMPLEX, f(1), & dfft%tg_snd, dfft%tg_usdsp, MPI_DOUBLE_COMPLEX, dfft%ogrp_comm, IERR) IF( ierr /= 0 ) THEN CALL errore( 'unpack_group_sticks', ' alltoall error 2 ', abs(ierr) ) ENDIF #endif CALL stop_clock( 'ALLTOALL' ) RETURN END SUBROUTINE unpack_group_sticks ! SUBROUTINE fw_scatter( iopt ) !Transpose data for the 2-D FFT on the x-y plane ! !NOGRP*dfft%nnr: The length of aux and f !nr3x: The length of each Z-stick !aux: input - output !f: working space !isgn: type of scatter !dfft%nsw(me) holds the number of Z-sticks proc. me has. !dfft%npp: number of planes per processor ! ! USE fft_base, ONLY: fft_scatter ! INTEGER, INTENT(in) :: iopt ! IF( iopt == 2 ) THEN ! IF( use_tg ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nogrp*dfft%tg_nnr, f, dfft%tg_nsw, dfft%tg_npp, iopt, use_tg ) ! ELSE ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsw, dfft%npp, iopt ) ! ENDIF ! ELSEIF( iopt == 1 ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsp, dfft%npp, iopt ) ! ENDIF ! RETURN END SUBROUTINE fw_scatter ! SUBROUTINE bw_scatter( iopt ) ! USE fft_base, ONLY: fft_scatter ! INTEGER, INTENT(in) :: iopt ! IF( iopt == -2 ) THEN ! IF( use_tg ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nogrp*dfft%tg_nnr, f, dfft%tg_nsw, dfft%tg_npp, iopt, use_tg ) ! ELSE ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsw, dfft%npp, iopt ) ! ENDIF ! ELSEIF( iopt == -1 ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsp, dfft%npp, iopt ) ! ENDIF ! RETURN END SUBROUTINE bw_scatter ! END SUBROUTINE tg_cft3s ! END MODULE fft_parallel espresso-5.0.2/Modules/recvec.f900000644000700200004540000001620712053145633015567 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE gvect !=----------------------------------------------------------------------------=! ! ... variables describing the reciprocal lattice vectors ! ... G vectors with |G|^2 < ecutrho, cut-off for charge density ! ... With gamma tricks, G-vectors are divided into two half-spheres, ! ... G> and G<, containing G and -G (G=0 is in G>) ! ... This is referred to as the "dense" (or "hard", or "thick") grid USE kinds, ONLY: DP IMPLICIT NONE SAVE INTEGER :: ngm = 0 ! local number of G vectors (on this processor) ! with gamma tricks, only vectors in G> INTEGER :: ngm_g= 0 ! global number of G vectors (summed on all procs) ! in serial execution, ngm_g = ngm INTEGER :: ngl = 0 ! number of G-vector shells INTEGER :: ngmx = 0 ! local number of G vectors, maximum across all procs REAL(DP) :: ecutrho = 0.0_DP ! energy cut-off for charge density REAL(DP) :: gcutm = 0.0_DP ! ecutrho/(2 pi/a)^2, cut-off for |G|^2 ! nl = fft index for G-vectors (with gamma tricks, only for G>) ! nlm = as above, for G< (used only with gamma tricks) INTEGER, ALLOCATABLE :: nl(:), nlm(:) INTEGER :: gstart = 2 ! index of the first G vector whose module is > 0 ! Needed in parallel execution: gstart=2 for the ! proc that holds G=0, gstart=1 for all others ! G^2 in increasing order (in units of tpiba2=(2pi/a)^2) ! REAL(DP), ALLOCATABLE, TARGET :: gg(:) ! gl(i) = i-th shell of G^2 (in units of tpiba2) ! igtongl(n) = shell index for n-th G-vector ! REAL(DP), POINTER :: gl(:) INTEGER, ALLOCATABLE, TARGET :: igtongl(:) ! ! G-vectors cartesian components ( in units tpiba =(2pi/a) ) ! REAL(DP), ALLOCATABLE, TARGET :: g(:,:) ! mill = miller index of G vectors (local to each processor) ! G(:) = mill(1)*bg(:,1)+mill(2)*bg(:,2)+mill(3)*bg(:,3) ! where bg are the reciprocal lattice basis vectors ! INTEGER, ALLOCATABLE, TARGET :: mill(:,:) ! ig_l2g = converts a local G-vector index into the global index ! ("l2g" means local to global): ig_l2g(i) = index of i-th ! local G-vector in the global array of G-vectors ! INTEGER, ALLOCATABLE, TARGET :: ig_l2g(:) ! ! sortedig_l2g = array obtained by sorting ig_l2g ! INTEGER, ALLOCATABLE, TARGET :: sortedig_l2g(:) ! ! mill_g = miller index of all G vectors ! INTEGER, ALLOCATABLE, TARGET :: mill_g(:,:) ! ! the phases e^{-iG*tau_s} used to calculate structure factors ! COMPLEX(DP), ALLOCATABLE :: eigts1(:,:), eigts2(:,:), eigts3(:,:) ! CONTAINS SUBROUTINE gvect_init( ngm_ , comm ) ! ! Set local and global dimensions, allocate arrays ! USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngm_ INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed ! ngm = ngm_ ! ! calculate maximum over all processors ! ngmx = ngm CALL mp_max( ngmx, comm ) ! ! calculate sum over all processors ! ngm_g = ngm CALL mp_sum( ngm_g, comm ) ! ! allocate arrays - only those that are always kept until the end ! ALLOCATE( gg(ngm) ) ALLOCATE( g(3, ngm) ) ALLOCATE( mill(3, ngm) ) ALLOCATE( nl (ngm) ) ALLOCATE( nlm(ngm) ) ALLOCATE( ig_l2g(ngm) ) ALLOCATE( igtongl(ngm) ) ! RETURN ! END SUBROUTINE gvect_init SUBROUTINE deallocate_gvect() ! IF( ASSOCIATED( gl ) ) DEALLOCATE( gl ) IF( ALLOCATED( gg ) ) DEALLOCATE( gg ) IF( ALLOCATED( g ) ) DEALLOCATE( g ) IF( ALLOCATED( mill_g ) ) DEALLOCATE( mill_g ) IF( ALLOCATED( mill ) ) DEALLOCATE( mill ) IF( ALLOCATED( igtongl ) ) DEALLOCATE( igtongl ) IF( ALLOCATED( ig_l2g ) ) DEALLOCATE( ig_l2g ) IF( ALLOCATED( sortedig_l2g ) ) DEALLOCATE( sortedig_l2g ) IF( ALLOCATED( eigts1 ) ) DEALLOCATE( eigts1 ) IF( ALLOCATED( eigts2 ) ) DEALLOCATE( eigts2 ) IF( ALLOCATED( eigts3 ) ) DEALLOCATE( eigts3 ) IF( ALLOCATED( nl ) ) DEALLOCATE( nl ) IF( ALLOCATED( nlm ) ) DEALLOCATE( nlm ) END SUBROUTINE deallocate_gvect !=----------------------------------------------------------------------------=! END MODULE gvect !=----------------------------------------------------------------------------=! !=----------------------------------------------------------------------------=! MODULE gvecs !=----------------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE SAVE ! ... G vectors with |G|^2 < 4*ecutwfc, cut-off for wavefunctions ! ... ("smooth" grid). Gamma tricks and units as for the "dense" grid ! INTEGER :: ngms = 0 ! local number of smooth vectors (on this processor) INTEGER :: ngms_g=0 ! global number of smooth vectors (summed on procs) ! in serial execution this is equal to ngms INTEGER :: ngsx = 0 ! local number of smooth vectors, max across procs ! nl = fft index for smooth vectors (with gamma tricks, only for G>) ! nlm = as above, for G< (used only with gamma tricks) INTEGER, ALLOCATABLE :: nls(:), nlsm(:) REAL(DP) :: ecuts = 0.0_DP ! energy cut-off = 4*ecutwfc REAL(DP) :: gcutms= 0.0_DP ! ecuts/(2 pi/a)^2, cut-off for |G|^2 REAL(DP) :: dual = 0.0_DP ! ecutrho=dual*ecutwfc LOGICAL :: doublegrid = .FALSE. ! true if smooth and dense grid differ ! doublegrid = (dual > 4) CONTAINS SUBROUTINE gvecs_init( ngs_ , comm ) USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngs_ INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed ! ngms = ngs_ ! ! calculate maximum over all processors ! ngsx = ngms CALL mp_max( ngsx, comm ) ! ! calculate sum over all processors ! ngms_g = ngms CALL mp_sum( ngms_g, comm ) ! ! allocate arrays ! ALLOCATE( nls (ngms) ) ALLOCATE( nlsm(ngms) ) ! RETURN ! END SUBROUTINE gvecs_init SUBROUTINE deallocate_gvecs() IF( ALLOCATED( nls ) ) DEALLOCATE( nls ) IF( ALLOCATED( nlsm ) ) DEALLOCATE( nlsm ) END SUBROUTINE deallocate_gvecs !=----------------------------------------------------------------------------=! END MODULE gvecs !=----------------------------------------------------------------------------=! espresso-5.0.2/Modules/descriptors.f900000644000700200004540000001642612053145633016664 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE descriptors ! IMPLICIT NONE SAVE INTEGER ldim_block, ldim_cyclic, ldim_block_cyclic, ldim_block_sca INTEGER gind_block, gind_cyclic, gind_block_cyclic, gind_block_sca EXTERNAL ldim_block, ldim_cyclic, ldim_block_cyclic, ldim_block_sca EXTERNAL gind_block, gind_cyclic, gind_block_cyclic, gind_block_sca ! Descriptor for linear algebra data distribution (like in Cannon's algorithm) ! ! Remember here we use square matrixes block distributed on a square grid of processors ! TYPE la_descriptor INTEGER :: ir = 0 ! globla index of the first row in the local block of the distributed matrix INTEGER :: nr = 0 ! number of row in the local block of the distributed matrix INTEGER :: ic = 0 ! global index of the first column in the local block of the distributed matrix INTEGER :: nc = 0 ! number of column in the local block of the distributed matrix INTEGER :: nrcx = 0 ! leading dimension of the distribute matrix (greather than nr and nc) INTEGER :: active_node = 0 ! if > 0 the proc holds a block of the lambda matrix INTEGER :: n = 0 ! global dimension of the matrix INTEGER :: nx = 0 ! global leading dimension ( >= n ) INTEGER :: npr = 0 ! number of row processors INTEGER :: npc = 0 ! number of column processors INTEGER :: myr = 0 ! processor row index INTEGER :: myc = 0 ! processor column index INTEGER :: comm = 0 ! communicator INTEGER :: mype = 0 ! processor index ( from 0 to desc( la_npr_ ) * desc( la_npc_ ) - 1 ) INTEGER :: nrl = 0 ! number of local rows, when the matrix rows are cyclically distributed across proc INTEGER :: nrlx = 0 ! leading dimension, when the matrix is distributed by row END TYPE ! CONTAINS !------------------------------------------------------------------------ ! SUBROUTINE descla_local_dims( i2g, nl, n, nx, np, me ) IMPLICIT NONE INTEGER, INTENT(OUT) :: i2g ! global index of the first local element INTEGER, INTENT(OUT) :: nl ! local number of elements INTEGER, INTENT(IN) :: n ! number of actual element in the global array INTEGER, INTENT(IN) :: nx ! dimension of the global array (nx>=n) to be distributed INTEGER, INTENT(IN) :: np ! number of processors INTEGER, INTENT(IN) :: me ! taskid for which i2g and nl are computed ! ! note that we can distribute a global array larger than the ! number of actual elements. This could be required for performance ! reasons, and to have an equal partition of matrix having different size ! like matrixes of spin-up and spin-down ! #if __SCALAPACK nl = ldim_block_sca( nx, np, me ) i2g = gind_block_sca( 1, nx, np, me ) #else nl = ldim_block( nx, np, me ) i2g = gind_block( 1, nx, np, me ) #endif ! This is to try to keep a matrix N * N into the same ! distribution of a matrix NX * NX, useful to have ! the matrix of spin-up distributed in the same way ! of the matrix of spin-down ! IF( i2g + nl - 1 > n ) nl = n - i2g + 1 IF( nl < 0 ) nl = 0 RETURN ! END SUBROUTINE descla_local_dims ! ! SUBROUTINE descla_init( descla, n, nx, np, me, comm, includeme ) ! IMPLICIT NONE TYPE(la_descriptor), INTENT(OUT) :: descla INTEGER, INTENT(IN) :: n ! the size of this matrix INTEGER, INTENT(IN) :: nx ! the max among different matrixes sharing ! this descriptor or the same data distribution INTEGER, INTENT(IN) :: np(2), me(2), comm INTEGER, INTENT(IN) :: includeme INTEGER :: ir, nr, ic, nc, lnode, nrcx, nrl, nrlx INTEGER :: ip, npp IF( np(1) /= np(2) ) & CALL errore( ' descla_init ', ' only square grid of proc are allowed ', 2 ) IF( n < 0 ) & CALL errore( ' descla_init ', ' dummy argument n less than 1 ', 3 ) IF( nx < n ) & CALL errore( ' descla_init ', ' dummy argument nx less than n ', 4 ) IF( np(1) < 1 ) & CALL errore( ' descla_init ', ' dummy argument np less than 1 ', 5 ) ! find the block maximum dimensions #if __SCALAPACK nrcx = ldim_block_sca( nx, np(1), 0 ) #else nrcx = ldim_block( nx, np(1), 0 ) DO ip = 1, np(1) - 1 nrcx = MAX( nrcx, ldim_block( nx, np(1), ip ) ) END DO #endif ! ! find local dimensions, if appropriate ! IF( includeme == 1 ) THEN ! CALL descla_local_dims( ir, nr, n, nx, np(1), me(1) ) CALL descla_local_dims( ic, nc, n, nx, np(2), me(2) ) ! lnode = 1 ! ELSE ! nr = 0 nc = 0 ! ir = 0 ic = 0 ! lnode = -1 ! END IF descla%ir = ir ! globla index of the first row in the local block of lambda descla%nr = nr ! number of row in the local block of lambda ( the "2" accounts for spin) descla%ic = ic ! global index of the first column in the local block of lambda descla%nc = nc ! number of column in the local block of lambda descla%nrcx = nrcx ! leading dimension of the distribute lambda matrix descla%active_node = lnode ! if > 0 the proc holds a block of the lambda matrix descla%n = n ! global dimension of the matrix descla%nx = nx ! global leading dimension descla%npr = np(1) ! number of row processors descla%npc = np(2) ! number of column processors descla%myr = me(1) ! processor row index descla%myc = me(2) ! processor column index descla%comm = comm ! communicator descla%mype = descla%myc + descla%myr * descla%npr ! processor index ( from 0 to desc( la_npr_ ) * desc( la_npc_ ) - 1 ) npp = np(1) * np(2) ! Compute local dimension of the cyclically distributed matrix ! IF( includeme == 1 ) THEN nrl = ldim_cyclic( n, npp, descla%mype ) ELSE nrl = 0 END IF nrlx = n / npp + 1 descla%nrl = nrl ! number of local rows, when the matrix rows are cyclically distributed across procs descla%nrlx = nrlx ! leading dimension IF( nr < 0 .OR. nc < 0 ) & CALL errore( ' descla_init ', ' wrong valune for computed nr and nc ', 1 ) IF( nrcx < 1 ) & CALL errore( ' descla_init ', ' wrong value for computed nrcx ', 2 ) IF( nrcx < nr ) & CALL errore( ' descla_init ', ' nrcx < nr ', ( nr - nrcx ) ) IF( nrcx < nc ) & CALL errore( ' descla_init ', ' nrcx < nc ', ( nc - nrcx ) ) IF( nrlx < nrl ) & CALL errore( ' descla_init ', ' nrlx < nrl ', ( nrl - nrlx ) ) IF( nrl < 0 ) & CALL errore( ' descla_init ', ' nrl < 0 ', ABS( nrl ) ) RETURN END SUBROUTINE descla_init END MODULE descriptors espresso-5.0.2/Modules/control_flags.f900000644000700200004540000003533312053145633017155 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE control_flags !=--------------------------------------------------------------------------=! ! ! ... this module contains all basic variables that controls the ! ... execution flow !---------------------------------------------- ! USE kinds USE parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! TYPE convergence_criteria ! LOGICAL :: active INTEGER :: nstep REAL(DP) :: ekin REAL(DP) :: derho REAL(DP) :: force ! END TYPE convergence_criteria ! PUBLIC :: tbeg, nomore, nbeg, isave, iprint, tv0rd, nv0rd, tzeroc, tzerop, & tfor, tpre, tzeroe, tsde, tsdp, tsdc, taurdr, & ndr, ndw, tortho, ortho_eps, ortho_max, tstress, tprnfor, & timing, memchk, tprnsfac, tcarpar, & trane,dt_old,ampre, tranp, amprp, tdipole, t_diis, t_diis_simple,& t_diis_rot, tnosee, tnosep, tnoseh, tcp, tcap, tdamp, tdampions, & tconvthrs, tolp, convergence_criteria, tionstep, nstepe, & tsteepdesc, tatomicwfc, tscreen, gamma_only, force_pairing, & lecrpa, tddfpt, smallmem ! PUBLIC :: fix_dependencies, check_flags PUBLIC :: tksw, trhor, thdyn, trhow PUBLIC :: twfcollect, printwfc PUBLIC :: lkpoint_dir PUBLIC :: program_name ! ! ... declare execution control variables ! CHARACTER(LEN=4) :: program_name = ' ' ! used to control execution flow ! inside module: 'PW' or 'CP' ! LOGICAL :: trhor = .FALSE. ! read rho from unit 47 (only cp, seldom used) LOGICAL :: trhow = .FALSE. ! CP code, write rho to restart dir LOGICAL :: tksw = .FALSE. ! CP: write Kohn-Sham states to restart dir ! LOGICAL :: tsde = .FALSE. ! electronic steepest descent LOGICAL :: tzeroe = .FALSE. ! set to zero the electronic velocities LOGICAL :: tfor = .FALSE. ! move the ions ( calculate forces ) LOGICAL :: tsdp = .FALSE. ! ionic steepest descent LOGICAL :: tzerop = .FALSE. ! set to zero the ionic velocities LOGICAL :: tprnfor = .FALSE. ! print forces to standard output LOGICAL :: taurdr = .FALSE. ! read ionic position from standard input LOGICAL :: tv0rd = .FALSE. ! read ionic velocities from standard input LOGICAL :: tpre = .FALSE. ! calculate stress, and (in fpmd) variable cell dynamic LOGICAL :: thdyn = .FALSE. ! variable-cell dynamics (only cp) LOGICAL :: tsdc = .FALSE. ! cell geometry steepest descent LOGICAL :: tzeroc = .FALSE. ! set to zero the cell geometry velocities LOGICAL :: tstress = .FALSE. ! print stress to standard output LOGICAL :: tortho = .FALSE. ! use iterative orthogonalization LOGICAL :: timing = .FALSE. ! print out timing information LOGICAL :: memchk = .FALSE. ! check for memory leakage LOGICAL :: tprnsfac = .FALSE. ! print out structure factor LOGICAL :: tcarpar = .FALSE. ! tcarpar is set TRUE for a "pure" Car Parrinello simulation LOGICAL :: tdamp = .FALSE. ! Use damped dynamics for electrons LOGICAL :: tdampions = .FALSE. ! Use damped dynamics for ions LOGICAL :: tatomicwfc = .FALSE. ! Use atomic wavefunctions as starting guess for ch. density LOGICAL :: tscreen = .FALSE. ! Use screened coulomb potentials for cluster calculations LOGICAL :: twfcollect = .FALSE. ! Collect wave function in the restart file at the end of run. LOGICAL :: lkpoint_dir = .TRUE. ! save each k point in a different directory INTEGER :: printwfc = -1 ! Print wave functions, temporarely used only by ensemble-dft LOGICAL :: force_pairing = .FALSE. ! Force pairing LOGICAL :: lecrpa = .FALSE. ! RPA correlation energy request LOGICAL :: tddfpt = .FALSE. ! use tddfpt specific tweaks to ph.x routines LOGICAL :: smallmem = .FALSE. ! the memory per task is small ! TYPE (convergence_criteria) :: tconvthrs ! thresholds used to check GS convergence ! ! ... Ionic vs Electronic step frequency ! ... When "ion_nstep > 1" and "electron_dynamics = 'md' | 'sd' ", ions are ! ... propagated every "ion_nstep" electronic step only if the electronic ! ... "ekin" is lower than "ekin_conv_thr" ! LOGICAL :: tionstep = .FALSE. INTEGER :: nstepe = 1 ! parameters to control how many electronic steps ! between ions move LOGICAL :: tsteepdesc = .FALSE. ! parameters for electronic steepest desceent INTEGER :: nbeg = 0 ! internal code for initialization ( -1, 0, 1, 2, .. ) INTEGER :: ndw = 0 ! INTEGER :: ndr = 0 ! INTEGER :: nomore = 0 ! INTEGER :: iprint =10 ! print output every iprint step INTEGER :: isave = 0 ! write restart to ndr unit every isave step INTEGER :: nv0rd = 0 ! ! ! ... .TRUE. if only gamma point is used ! LOGICAL :: gamma_only = .TRUE. ! ! This variable is used whenever a timestep change is requested ! REAL(DP) :: dt_old = -1.0_DP ! ! ... Wave function randomization ! LOGICAL :: trane = .FALSE. REAL(DP) :: ampre = 0.0_DP ! ! ... Ionic position randomization ! LOGICAL :: tranp(nsx) = .FALSE. REAL(DP) :: amprp(nsx) = 0.0_DP ! ! ... Read the cell from standard input ! LOGICAL :: tbeg = .FALSE. ! ! ... This flags control the calculation of the Dipole Moments ! LOGICAL :: tdipole = .FALSE. ! ! ... Flags that controls DIIS electronic minimization ! LOGICAL :: t_diis = .FALSE. LOGICAL :: t_diis_simple = .FALSE. LOGICAL :: t_diis_rot = .FALSE. ! ! ... Flag controlling the Nose thermostat for electrons ! LOGICAL :: tnosee = .FALSE. ! ! ... Flag controlling the Nose thermostat for the cell ! LOGICAL :: tnoseh = .FALSE. ! ! ... Flag controlling the Nose thermostat for ions ! LOGICAL :: tnosep = .FALSE. LOGICAL :: tcap = .FALSE. LOGICAL :: tcp = .FALSE. REAL(DP) :: tolp = 0.0_DP ! tolerance for temperature variation ! REAL(DP), PUBLIC :: & ekin_conv_thr = 0.0_DP, &! conv. threshold for fictitious e. kinetic energy etot_conv_thr = 0.0_DP, &! conv. threshold for DFT energy forc_conv_thr = 0.0_DP ! conv. threshold for atomic forces INTEGER, PUBLIC :: & ekin_maxiter = 100, &! max number of iter. for ekin convergence etot_maxiter = 100, &! max number of iter. for etot convergence forc_maxiter = 100 ! max number of iter. for atomic forces conv. ! ! ... Several variables controlling the run ( used mainly in PW calculations ) ! ! ... logical flags controlling the execution ! LOGICAL, PUBLIC :: & lfixatom=.FALSE., &! if .TRUE. some atom is kept fixed lscf =.FALSE., &! if .TRUE. the calc. is selfconsistent lbfgs =.FALSE., &! if .TRUE. the calc. is a relaxation based on BFGS lmd =.FALSE., &! if .TRUE. the calc. is a dynamics llang =.FALSE., &! if .TRUE. the calc. is Langevin dynamics lpath =.FALSE., &! if .TRUE. the calc. is a path optimizations lneb =.FALSE., &! if .TRUE. the calc. is NEB dynamics lsmd =.FALSE., &! if .TRUE. the calc. is string dynamics lwf =.FALSE., &! if .TRUE. the calc. is with wannier functions !================================================================= ! Lingzhu Kong lwfnscf =.FALSE., & lwfpbe0 =.FALSE., &! if .TRUE. the calc. is with wannier functions and with PBE0 functional lwfpbe0nscf=.FALSE.,& !================================================================= lbands =.FALSE., &! if .TRUE. the calc. is band structure lconstrain=.FALSE.,&! if .TRUE. the calc. is constraint ldamped =.FALSE., &! if .TRUE. the calc. is a damped dynamics llondon =.FALSE., & ! if .TRUE. compute semi-empirical dispersion correction restart =.FALSE. ! if .TRUE. restart from results of a preceding run ! ! ... pw self-consistency ! INTEGER, PUBLIC :: & ngm0, &! used in mix_rho niter, &! the maximum number of iteration nmix, &! the number of iteration kept in the history imix ! the type of mixing (0=plain,1=TF,2=local-TF) REAL(DP), PUBLIC :: & mixing_beta, &! the mixing parameter tr2 ! the convergence threshold for potential LOGICAL, PUBLIC :: & conv_elec ! if .TRUE. electron convergence has been reached ! next 3 variables used for EXX calculations LOGICAL, PUBLIC :: & adapt_thr ! if .TRUE. an adaptive convergence threshold is used ! for the scf cycle in an EXX calculation. REAL(DP), PUBLIC :: & tr2_init, &! initial value of tr2 for adaptive thresholds tr2_multi ! the dexx multiplier for adaptive thresholds ! tr2 = tr2_multi * dexx after each V_exx update LOGICAL, PUBLIC :: scf_must_converge ! ! ... pw diagonalization ! REAL(DP), PUBLIC :: & ethr ! the convergence threshold for eigenvalues INTEGER, PUBLIC :: & david, &! max dimension of subspace in Davidson diagonalization isolve, &! Davidson or CG or DIIS diagonalization max_cg_iter, &! maximum number of iterations in a CG di diis_buff, &! dimension of the buffer in diis diis_ndim ! dimension of reduced basis in DIIS LOGICAL, PUBLIC :: & diago_full_acc = .FALSE. ! if true, empty eigenvalues have the same ! accuracy of the occupied ones ! ! ... wfc and rho extrapolation ! REAL(DP), PUBLIC :: & alpha0, &! the mixing parameters for the extrapolation beta0 ! of the starting potential INTEGER, PUBLIC :: & history, &! number of old steps available for potential updating pot_order = 0, &! type of potential updating ( see update_pot ) wfc_order = 0 ! type of wavefunctions updating ( see update_pot ) ! ! ... ionic dynamics ! INTEGER, PUBLIC :: & nstep = 1, &! number of ionic steps istep = 0 ! current ionic step LOGICAL, PUBLIC :: & conv_ions ! if .TRUE. ionic convergence has been reached REAL(DP), PUBLIC :: & upscale ! maximum reduction of convergence threshold ! ! ... system's symmetries ! LOGICAL, PUBLIC :: & noinv = .FALSE. ! if .TRUE. q=>-q symmetry not used in k-point generation ! ! ... phonon calculation ! INTEGER, PUBLIC :: & modenum ! for single mode phonon calculation ! ! ... printout control ! INTEGER, PUBLIC :: & io_level = 1 ! variable controlling the amount of I/O to file INTEGER, PUBLIC :: & ! variable controlling the amount of I/O to output iverbosity = 0 ! -1 minimal, 0 low, 1 medium, 2 high, 3 debug ! ! ... miscellany ! LOGICAL, PUBLIC :: & use_para_diag = .FALSE. ! if .TRUE. a fully distributed memory iteration ! algorithm and parallel Householder algorithm are used ! LOGICAL, PUBLIC :: & remove_rigid_rot = .FALSE. ! if .TRUE. the total torque acting on the atoms ! is removed LOGICAL, PUBLIC :: & do_makov_payne = .FALSE. ! if .TRUE. makov-payne correction for isolated ! system is used ! INTEGER :: ortho_max = 0 ! maximum number of iterations in routine ortho REAL(DP) :: ortho_eps = 0.0_DP ! threshold for convergence in routine ortho ! ! ... Number of neighbouring cell to consider in ewald sum ! INTEGER, PUBLIC :: iesr = 1 ! ! ... Real-sapce algorithms ! LOGICAL, PUBLIC :: tqr=.FALSE. ! if true the Q are in real space !LOGICAL, PUBLIC :: real_space=.false. ! beta functions in real space ! ! ... External Forces on Ions ! LOGICAL, PUBLIC :: textfor = .FALSE. ! ! ... end of module-scope declarations ! !=--------------------------------------------------------------------------=! CONTAINS !=--------------------------------------------------------------------------=! ! !------------------------------------------------------------------------ SUBROUTINE fix_dependencies() !------------------------------------------------------------------------ ! IMPLICIT NONE ! ! ... Car Parrinello simulation ! tcarpar = .TRUE. ! IF ( t_diis .OR. tsteepdesc ) THEN ! tcarpar = .FALSE. ! END IF ! ! ... if thdyn = .FALSE. set TSDC and TZEROC to .FALSE. too. ! IF ( .NOT. thdyn ) THEN ! tsdc = .FALSE. tzeroc = .FALSE. ! END IF ! IF ( .NOT. tfor ) THEN ! tzerop = .FALSE. tv0rd = .FALSE. tsdp = .FALSE. tcp = .FALSE. tcap = .FALSE. tnosep = .FALSE. ! ELSE ! IF ( tsdp ) THEN ! tcp = .FALSE. tcap = .FALSE. tnosep = .FALSE. tv0rd = .FALSE. ! END IF ! IF ( tv0rd ) tzerop = .TRUE. ! END IF ! IF ( tsde ) tnosee = .FALSE. ! CALL check_flags() ! RETURN ! END SUBROUTINE fix_dependencies ! !------------------------------------------------------------------------ SUBROUTINE check_flags() !------------------------------------------------------------------------ ! ! ... do some checks for consistency ! IF ( tnosee .AND. t_diis ) & CALL errore( ' control_flags ', 'DIIS + ELECT. NOSE ? ', 0 ) ! !IF ( tortho .AND. t_diis ) & ! CALL errore(' control_flags ','DIIS, ORTHO NOT PERMITTED',0) ! IF ( tnosep .AND. tcp ) & CALL errore( ' control_flags ', ' TCP AND TNOSEP BOTH TRUE', 0 ) ! IF ( tnosep .AND. tcap ) & CALL errore( ' control_flags ', ' TCAP AND TNOSEP BOTH TRUE', 0 ) ! IF ( tcp .AND. tcap ) & CALL errore( ' control_flags ', ' TCP AND TCAP BOTH TRUE', 0 ) ! IF ( tdipole .AND. thdyn ) & CALL errore( ' control_flags ', ' DIPOLE WITH CELL DYNAMICS ', 0 ) ! IF ( tv0rd .AND. tsdp ) & CALL errore( ' control_flags ', & & ' READING IONS VELOCITY WITH STEEPEST D.', 0 ) ! RETURN ! END SUBROUTINE check_flags ! END MODULE control_flags espresso-5.0.2/Modules/wrappers.f900000644000700200004540000003057412053145633016166 0ustar marsamoscm! ! Copyright (C) 2004-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! ! NOTE: by default the following macro is DISABLED: the default version of the ! subroutines and functions is in the second half of the file. ! ! NOTE: the mkdir function is NOT called directly as it return error on directory ! already existing, we are instead using a c wrapper (c_mkdir_safe) #ifdef __ISO_C_BINDING ! MODULE wrappers USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ISO_C_BINDING IMPLICIT NONE ! ! C std library functions fortran wrappers: PUBLIC f_remove, f_link, rename, f_chdir, f_mkdir, f_rmdir, f_getcwd ! more stuff: PUBLIC feval_infix, md5_from_file ! ! HELP: ! integer f_remove(pathname) ! integer f_rename(oldfile, newfile) ! integer f_chdir(newdir) ! integer f_chmod(mode) i.e. mode=777 ! integer f_mkdir(dirname, mode) mode is optional ! integer f_rmdir(dirname) ! subroutine f_getcwd(dirname) ! All *name are fortran characters of any length characters, ! mode are integers, all functions return 0 if successful, -1 otherwise ! ! real(dp) :: result = feval_infix(integer:: ierr, character(len=*) :: expression) ! subroutine md5_from_file(character(len=*) :: filename, character(len=32) ::md5) PRIVATE ! SAVE ! ! Interfaces to the C functions, these are kept private as Fortran ! characters have (?) to be converted explicitly to C character arrays. ! Use the f_* wrappers instead INTERFACE FUNCTION remove(pathname) BIND(C,name="remove") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: pathname(*) INTEGER(c_int) :: r END FUNCTION FUNCTION rename(input,output) BIND(C,name="rename") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: input(*) CHARACTER(kind=c_char),INTENT(in) :: output(*) INTEGER(c_int) :: r END FUNCTION FUNCTION link(input,output) BIND(C,name="link") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: input(*) CHARACTER(kind=c_char),INTENT(in) :: output(*) INTEGER(c_int) :: r END FUNCTION ! FUNCTION chmod(filename,mode) BIND(C,name="chmod") RESULT(r) ! USE iso_c_binding ! CHARACTER(kind=c_char),INTENT(in) :: filename(*) ! INTEGER(c_int),VALUE ,INTENT(in) :: mode ! INTEGER(c_int) :: r ! END FUNCTION FUNCTION chdir(filename) BIND(C,name="chdir") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: filename(*) INTEGER(c_int) :: r END FUNCTION ! FUNCTION mkdir(dirname,mode) BIND(C,name="c_mkdir") RESULT(r) ! USE iso_c_binding ! CHARACTER(kind=c_char),INTENT(in) :: dirname(*) ! INTEGER(c_int),VALUE ,INTENT(in) :: mode ! INTEGER(c_int) :: r ! END FUNCTION FUNCTION mkdir_safe(dirname) BIND(C,name="c_mkdir_safe") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: dirname(*) INTEGER(c_int) :: r END FUNCTION FUNCTION rmdir(dirname) BIND(C,name="rmdir") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: dirname(*) INTEGER(c_int) :: r END FUNCTION FUNCTION getcwd(buffer,size) BIND(C,name="getcwd") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char) ,INTENT(out) :: buffer(*) INTEGER(c_size_t),VALUE,INTENT(in) :: size TYPE(c_ptr) :: r END FUNCTION END INTERFACE ! ! ==================================================================== CONTAINS ! ==================================================================== ! fortran wrappers functions that call the C functions after converting ! frotran characters to C character arrays FUNCTION f_remove(filename) RESULT(r) CHARACTER(*),INTENT(in) :: filename INTEGER(c_int) :: r r= remove(TRIM(filename)//C_NULL_CHAR) END FUNCTION FUNCTION f_rename(input,output) RESULT(k) CHARACTER(*),INTENT(in) :: input,output INTEGER :: k k= rename(TRIM(input)//C_NULL_CHAR,TRIM(output)//C_NULL_CHAR) END FUNCTION FUNCTION f_link(input,output) RESULT(k) CHARACTER(*),INTENT(in) :: input,output INTEGER :: k k= link(TRIM(input)//C_NULL_CHAR,TRIM(output)//C_NULL_CHAR) END FUNCTION FUNCTION f_chdir(dirname) RESULT(r) CHARACTER(*),INTENT(in) :: dirname INTEGER(c_int) :: r r= chdir(TRIM(dirname)//C_NULL_CHAR) END FUNCTION FUNCTION f_mkdir(dirname) RESULT(r) CHARACTER(*),INTENT(in) :: dirname INTEGER(c_int) :: r r= mkdir_safe(TRIM(dirname)//C_NULL_CHAR) END FUNCTION ! FUNCTION f_chmod(filename, mode) RESULT(r) ! CHARACTER(*),INTENT(in) :: filename ! INTEGER,INTENT(in) :: mode ! INTEGER(c_int) :: r ! INTEGER(c_int) :: c_mode ! c_mode = INT(mode, kind=c_int) ! r= chmod(TRIM(filename)//C_NULL_CHAR, c_mode) ! END FUNCTION FUNCTION f_rmdir(dirname) RESULT(r) CHARACTER(*),INTENT(in) :: dirname INTEGER(c_int) :: r r= rmdir(TRIM(dirname)//C_NULL_CHAR) END FUNCTION SUBROUTINE f_getcwd(output) CHARACTER(kind=c_char,len=*),INTENT(out) :: output TYPE(c_ptr) :: buffer INTEGER(C_LONG) :: length,i length=LEN(output) buffer=getcwd(output,length) DO i=1,length IF(output(i:i) == C_NULL_CHAR) EXIT ENDDO output(i:)=' ' END SUBROUTINE ! ! ==================================================================== ! Two more wrappers for eval_infix (simple algebric expression parser) ! and for get_md5 which computes the md5 sum of a file. ! FUNCTION feval_infix(fierr, fstr) USE ISO_C_BINDING IMPLICIT NONE REAL(DP) :: feval_infix INTEGER :: fierr CHARACTER(len=*) :: fstr INTEGER :: filen ! INTERFACE FUNCTION ceval_infix(cierr, cstr, cilen) BIND(C, name="eval_infix") !REAL(kind=c_double) FUNCTION ceval_infix(cierr, cstr, cilen) BIND(C, name="eval_infix") ! double eval_infix( int *ierr, const char *strExpression, int len ) USE ISO_C_BINDING REAL(kind=c_double) :: ceval_infix INTEGER(kind=c_int) :: cierr CHARACTER(kind=c_char) :: cstr(*) INTEGER(kind=c_int),VALUE :: cilen END FUNCTION ceval_infix END INTERFACE ! INTEGER(kind=c_int) :: cierr INTEGER(kind=c_int) :: cilen CHARACTER(len=len_trim(fstr)+1,kind=c_char) :: cstr ! INTEGER :: i ! filen = len_trim(fstr) cilen = INT(filen, kind=c_int) DO i = 1,filen cstr(i:i) = fstr(i:i) ENDDO cstr(filen+1:filen+1)=C_NULL_CHAR ! feval_infix = REAL( ceval_infix(cierr, cstr, cilen), kind=DP) fierr = INT(cierr) RETURN END FUNCTION feval_infix ! ! SUBROUTINE md5_from_file (ffile, fmd5) IMPLICIT NONE CHARACTER(LEN=*), INTENT (IN) :: ffile CHARACTER(len=32), INTENT (OUT) :: fmd5 ! INTERFACE SUBROUTINE cget_md5(cfile, cmd5, cierr) BIND(C, name="get_md5") ! void get_md5(const char *file, char *md5, int err) USE ISO_C_BINDING CHARACTER(kind=c_char) :: cfile(*) CHARACTER(kind=c_char) :: cmd5(*) INTEGER(kind=c_int) :: cierr END SUBROUTINE cget_md5 END INTERFACE ! INTEGER,PARAMETER :: md5_length = 32 INTEGER :: i ! CHARACTER(len=len_trim(ffile)+1,kind=c_char) :: cfile!(*) CHARACTER(len=(md5_length+1),kind=c_char) :: cmd5!(*) INTEGER(kind=c_int) :: cierr ! cfile = TRIM(ffile)//C_NULL_CHAR ! CALL cget_md5(cfile, cmd5, cierr) ! DO i = 1,md5_length fmd5(i:i) = cmd5(i:i) ENDDO ! END SUBROUTINE END MODULE ! ==================================================================== #else ! interfaces not using iso_c_binding follow ! ==================================================================== MODULE wrappers ! ! these routines are used to pass fortran strings to C routines in a ! safe way. Strings are converted to integer arrays here, passed to ! C wrappers, converted back to strings. Other ways to pass fortran ! strings to C turned out to be non portable and not safe ! USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE SAVE CONTAINS ! FUNCTION feval_infix( ierr, str ) REAL(DP) :: feval_infix INTEGER :: ierr CHARACTER(LEN=*) :: str INTEGER :: i, ilen INTEGER, ALLOCATABLE :: istr(:) REAL(DP), EXTERNAL :: eval_infix_wrapper ALLOCATE( istr( LEN( str ) ) ) DO i = 1, LEN( str ) istr(i) = ICHAR( str(i:i) ) IF( istr(i) < 0 .OR. istr(i) > 127 ) & CALL errore( ' feval_infix ', ' invalid character ', ABS( istr(i) ) ) END DO ilen = LEN( str ) feval_infix = eval_infix_wrapper( ierr, istr, ilen ) DEALLOCATE( istr ) RETURN END FUNCTION ! FUNCTION f_mkdir( dirname ) INTEGER :: f_mkdir CHARACTER(LEN=*) :: dirname INTEGER :: i, ilen INTEGER, ALLOCATABLE :: istr(:) INTEGER, EXTERNAL :: c_mkdir_int ALLOCATE( istr( LEN_TRIM( dirname ) ) ) DO i = 1, LEN_TRIM( dirname ) istr(i) = ICHAR( dirname(i:i) ) IF( istr(i) < 0 .OR. istr(i) > 127 ) & CALL errore( ' f_mkdir ', ' invalid character ', ABS( istr(i) ) ) END DO ilen = LEN_TRIM( dirname ) f_mkdir = c_mkdir_int( istr, ilen ) DEALLOCATE( istr ) RETURN END FUNCTION ! FUNCTION f_chdir( dirname ) INTEGER :: f_chdir CHARACTER(LEN=*) :: dirname INTEGER :: i, ilen INTEGER, ALLOCATABLE :: istr(:) INTEGER, EXTERNAL :: c_chdir_int ALLOCATE( istr( LEN_TRIM( dirname ) ) ) DO i = 1, LEN_TRIM( dirname ) istr(i) = ICHAR( dirname(i:i) ) IF( istr(i) < 0 .OR. istr(i) > 127 ) & CALL errore( ' f_chdir ', ' invalid character ', ABS( istr(i) ) ) END DO ilen = LEN_TRIM( dirname ) f_chdir = c_chdir_int( istr, ilen ) DEALLOCATE( istr ) RETURN END FUNCTION ! FUNCTION f_rename( oldname, newname ) INTEGER :: f_rename CHARACTER(LEN=*) :: oldname CHARACTER(LEN=*) :: newname INTEGER :: i, lold, lnew INTEGER, ALLOCATABLE :: iold(:) INTEGER, ALLOCATABLE :: inew(:) INTEGER, EXTERNAL :: c_rename_int lold = LEN( oldname ) lnew = LEN( newname ) ALLOCATE( iold( lold ) ) ALLOCATE( inew( lnew ) ) DO i = 1, lold iold(i) = ICHAR( oldname(i:i) ) IF( iold(i) < 0 .OR. iold(i) > 127 ) & CALL errore( ' f_rename ', ' invalid character ', ABS( iold(i) ) ) END DO DO i = 1, lnew inew(i) = ICHAR( newname(i:i) ) IF( inew(i) < 0 .OR. inew(i) > 127 ) & CALL errore( ' f_rename ', ' invalid character ', ABS( inew(i) ) ) END DO f_rename = c_rename_int( iold, lold, inew, lnew ) DEALLOCATE( inew ) DEALLOCATE( iold ) RETURN END FUNCTION ! FUNCTION f_link( oldname, newname ) INTEGER :: f_link CHARACTER(LEN=*) :: oldname CHARACTER(LEN=*) :: newname INTEGER :: i, lold, lnew INTEGER, ALLOCATABLE :: iold(:) INTEGER, ALLOCATABLE :: inew(:) INTEGER, EXTERNAL :: c_link_int lold = LEN( oldname ) lnew = LEN( newname ) ALLOCATE( iold( lold ) ) ALLOCATE( inew( lnew ) ) DO i = 1, lold iold(i) = ICHAR( oldname(i:i) ) IF( iold(i) < 0 .OR. iold(i) > 127 ) & CALL errore( ' f_link ', ' invalid character ', ABS( iold(i) ) ) END DO DO i = 1, lnew inew(i) = ICHAR( newname(i:i) ) IF( inew(i) < 0 .OR. inew(i) > 127 ) & CALL errore( ' f_link ', ' invalid character ', ABS( inew(i) ) ) END DO f_link = c_link_int( iold, lold, inew, lnew ) DEALLOCATE( inew ) DEALLOCATE( iold ) RETURN END FUNCTION ! SUBROUTINE md5_from_file (filename, md5) CHARACTER(LEN=*), INTENT (IN) :: filename CHARACTER(len=32), INTENT (OUT) :: md5 CHARACTER(LEN=len_trim(filename)) :: ftrim INTEGER , EXTERNAL :: file_md5 INTEGER, ALLOCATABLE :: istr(:) INTEGER :: getter(32), retval, i, ilen ftrim = TRIM(filename) ilen = LEN(ftrim ) ALLOCATE( istr( ilen ) ) DO i = 1, ilen istr(i) = ichar( ftrim(i:i) ) ENDDO retval = file_md5( istr, ilen, getter ) DO i = 1,32 md5(i:i) = char( getter(i) ) ENDDO DEALLOCATE( istr ) END SUBROUTINE ! END MODULE #endif espresso-5.0.2/Modules/mp_image_global_module.f900000644000700200004540000001311612053145633020757 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_image_global_module !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_comm_free, mp_size, mp_rank, mp_sum, mp_barrier, & mp_bcast, mp_start, mp_end USE io_global, ONLY : stdout, io_global_start, io_global_getmeta USE parallel_include ! IMPLICIT NONE SAVE ! ! ... World group (all processors) ! INTEGER :: mpime = 0 ! processor index (starts from 0 to nproc-1) INTEGER :: root = 0 ! index of the root processor INTEGER :: nproc = 1 ! number of processors INTEGER :: world_comm = 0 ! communicator ! ! ... Image groups (processors within an image) ! INTEGER :: nimage = 1 ! number of images INTEGER :: me_image = 0 ! index of the processor within an image INTEGER :: root_image= 0 ! index of the root processor within an image INTEGER :: my_image_id=0 ! index of my image INTEGER :: nproc_image=1 ! number of processors within an image INTEGER :: inter_image_comm = 0 ! inter image communicator INTEGER :: intra_image_comm = 0 ! intra image communicator ! ! ... number of processors written in the data file for checkin purposes: INTEGER :: nproc_file = 1 ! world group INTEGER :: nproc_image_file = 1 ! in an image ! PRIVATE :: mp_images_init ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE mp_image_startup (root,comm) !----------------------------------------------------------------------- ! ... This subroutine initializes MPI ! ... Processes are organized in NIMAGE images each dealing with a subset of ! ... images used to discretize the "path" (only in "path" optimizations) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: comm INTEGER, INTENT(IN) :: root ! INTEGER :: myrank, npe ! ! ... now initialize processors and groups variables ! ... set global coordinate for this processor ! ... root = index of the root processor ! myrank = mp_rank(comm) npe = mp_size(comm) ! ! ... mp_global_path_start set default values for ! mpime, root, nproc, world_comm, nproc_image, my_image_id, ! root_image ... ! CALL mp_image_global_start( root, myrank, comm, npe ) ! ! ... initialize input/output, set (and get) the I/O nodes ! ... sets meta_ionode and ionode_id (==root) ! CALL io_global_getmeta ( myrank, root ) ! IF ( myrank==root ) THEN ! ! ... How many parallel images ? ! CALL get_arg_nimage( nimage ) ! nimage = MAX( nimage, 1 ) nimage = MIN( nimage, npe ) ! END IF ! CALL mp_barrier(comm) ! ! ... broadcast input parallelization options to all processors ! CALL mp_bcast( nimage, root, comm ) ! ! ... initialize images, band, k-point, ortho groups in sequence ! CALL mp_images_init( ) ! ! RETURN ! END SUBROUTINE mp_image_startup ! !----------------------------------------------------------------------- SUBROUTINE mp_image_global_start( root_i, mpime_i, group_i, nproc_i ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: root_i, mpime_i, group_i, nproc_i ! root = root_i mpime = mpime_i world_comm = group_i nproc = nproc_i nproc_image = nproc_i my_image_id = 0 me_image = mpime root_image = root inter_image_comm = group_i intra_image_comm = group_i ! RETURN ! END SUBROUTINE mp_image_global_start ! !----------------------------------------------------------------------- !---------------------------------------------------------------------------- SUBROUTINE mp_images_init () !--------------------------------------------------------------------------- ! ! ... This routine divides all MPI processors into images ! IMPLICIT NONE INTEGER :: ierr = 0 ! #if defined (__MPI) ! IF ( nimage < 1 .OR. nimage > nproc ) & CALL errore( 'init_images', 'invalid number of images, out of range', 1 ) IF ( MOD( nproc, nimage ) /= 0 ) & CALL errore( 'init_images', 'n. of images must be divisor of nprocs', 1 ) ! ! ... set number of cpus per image ! nproc_image = nproc / nimage ! ! ... set index of image for this processor ( 0 : nimage - 1 ) ! my_image_id = mpime / nproc_image ! ! ... set index of processor within the image ( 0 : nproc_image - 1 ) ! me_image = MOD( mpime, nproc_image ) ! CALL mp_barrier(world_comm) ! ! ... the intra_image_comm communicator is created ! CALL MPI_COMM_SPLIT( world_comm, my_image_id, mpime, intra_image_comm, ierr ) IF ( ierr /= 0 ) CALL errore & ( 'init_images', 'intra image communicator initialization', ABS(ierr) ) ! CALL mp_barrier(world_comm) ! ! ... the inter_image_comm communicator is created ! CALL MPI_COMM_SPLIT( world_comm, me_image, mpime, inter_image_comm, ierr ) IF ( ierr /= 0 ) CALL errore & ( 'init_images', 'inter image communicator initialization', ABS(ierr) ) #endif RETURN ! END SUBROUTINE mp_images_init ! END MODULE mp_image_global_module espresso-5.0.2/Modules/plugin_flags.f900000644000700200004540000000153512053145633016770 0ustar marsamoscm! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE plugin_flags !=--------------------------------------------------------------------------=! ! ! ... this module contains all basic variables that controls ! ... the use or not of plugins. !---------------------------------------------- ! USE kinds USE parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! ! ! ... declare execution control variables ! CHARACTER(LEN=256), PUBLIC :: plugin_name LOGICAL, PUBLIC :: use_plumed LOGICAL, PUBLIC :: use_pw2casino ! END MODULE plugin_flags espresso-5.0.2/Modules/recvec_subs.f900000644000700200004540000003016712053145633016624 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------= MODULE recvec_subs !=----------------------------------------------------------------------= ! ... subroutines generating G-vectors and variables nl* needed to map ! ... G-vector components onto the FFT grid(s) in reciprocal space ! ... Most important dependencies: next three modules USE gvect, ONLY : ig_l2g, g, gg, ngm, ngm_g, gcutm, & mill, nl, gstart USE gvecs, ONLY : ngms, gcutms, ngms_g, nls USE fft_base, ONLY : dfftp, dffts ! USE kinds, ONLY : DP USE constants, ONLY : eps8 PRIVATE SAVE PUBLIC :: ggen !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= ! !----------------------------------------------------------------------- SUBROUTINE ggen ( gamma_only, at, bg, comm, no_global_sort ) !---------------------------------------------------------------------- ! ! This routine generates all the reciprocal lattice vectors ! contained in the sphere of radius gcutm. Furthermore it ! computes the indices nl which give the correspondence ! between the fft mesh points and the array of g vectors. ! USE mp, ONLY: mp_rank, mp_size, mp_sum ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: gamma_only REAL(DP), INTENT(IN) :: at(3,3), bg(3,3) INTEGER, OPTIONAL, INTENT(IN) :: comm LOGICAL, OPTIONAL, INTENT(IN) :: no_global_sort ! if no_global_sort is present (and it is true) G vectors are sorted only locally and not globally. ! In this case no global array should be allocated and sorted (save memory ! and a lot of time for large systems). ! ! here a few local variables ! REAL(DP) :: t (3), tt INTEGER :: ngm_save, ngms_save, n1, n2, n3, n1s, n2s, n3s, ngm_offset, ngm_max, ngms_max ! REAL(DP), ALLOCATABLE :: g2sort_g(:) ! array containing all g vectors, on all processors: replicated data ! when no_global_sort is present (and it is true) only g vectors for the current processor are stored INTEGER, ALLOCATABLE :: mill_g(:,:), mill_unsorted(:,:) ! array containing all g vectors generators, on all processors: replicated data ! when no_global_sort is present (and it is true) only g vectors for the current processor are stored INTEGER, ALLOCATABLE :: igsrt(:) ! INTEGER :: m1, m2, mc INTEGER :: ni, nj, nk, i, j, k, ipol, ng, igl, indsw INTEGER :: mype, npe LOGICAL :: global_sort INTEGER, ALLOCATABLE :: ngmpe(:) ! IF( PRESENT( no_global_sort ) .AND. .NOT. PRESENT( comm ) ) THEN CALL errore ('ggen', ' wrong subroutine arguments, communicator is missing ', 1) END IF IF( .NOT. PRESENT( no_global_sort ) .AND. PRESENT( comm ) ) THEN CALL errore ('ggen', ' wrong subroutine arguments, parameter no_global_sort is missing ', 1) END IF ! global_sort = .TRUE. ! IF( PRESENT( no_global_sort ) ) THEN global_sort = .NOT. no_global_sort END IF ! IF( .NOT. global_sort ) THEN mype = mp_rank( comm ) npe = mp_size( comm ) ALLOCATE( ngmpe( npe ) ) ngmpe = 0 ngm_max = ngm ngms_max = ngms ELSE ngm_max = ngm_g ngms_max = ngms_g END IF ! ! save current value of ngm and ngms ! ngm_save = ngm ngms_save = ngms ! ngm = 0 ngms = 0 ! ! counters ! ! set the total number of fft mesh points and and initial value of gg ! The choice of gcutm is due to the fact that we have to order the ! vectors after computing them. ! gg(:) = gcutm + 1.d0 ! ! and computes all the g vectors inside a sphere ! ALLOCATE( mill_g( 3, ngm_max ),mill_unsorted( 3, ngm_max ) ) ALLOCATE( igsrt( ngm_max ) ) ALLOCATE( g2sort_g( ngm_max ) ) ! g2sort_g(:) = 1.0d20 ! ! max miller indices (same convention as in module stick_set) ! ni = (dfftp%nr1-1)/2 nj = (dfftp%nr2-1)/2 nk = (dfftp%nr3-1)/2 ! iloop: DO i = -ni, ni ! ! gamma-only: exclude space with x < 0 ! IF ( gamma_only .and. i < 0) CYCLE iloop jloop: DO j = -nj, nj ! ! gamma-only: exclude plane with x = 0, y < 0 ! IF ( gamma_only .and. i == 0 .and. j < 0) CYCLE jloop IF( .NOT. global_sort ) THEN m1 = mod (i, dfftp%nr1) + 1 IF (m1 < 1) m1 = m1 + dfftp%nr1 m2 = mod (j, dfftp%nr2) + 1 IF (m2 < 1) m2 = m2 + dfftp%nr2 mc = m1 + (m2 - 1) * dfftp%nr1x IF ( dfftp%isind ( mc ) == 0) CYCLE jloop END IF kloop: DO k = -nk, nk ! ! gamma-only: exclude line with x = 0, y = 0, z < 0 ! IF ( gamma_only .and. i == 0 .and. j == 0 .and. k < 0) CYCLE kloop t(:) = i * bg (:,1) + j * bg (:,2) + k * bg (:,3) tt = sum(t(:)**2) IF (tt <= gcutm) THEN ngm = ngm + 1 IF (tt <= gcutms) ngms = ngms + 1 IF (ngm > ngm_max) CALL errore ('ggen', 'too many g-vectors', ngm) mill_unsorted( :, ngm ) = (/ i,j,k /) IF ( tt > eps8 ) THEN g2sort_g(ngm) = tt ELSE g2sort_g(ngm) = 0.d0 ENDIF ENDIF ENDDO kloop ENDDO jloop ENDDO iloop IF( .NOT. global_sort ) THEN ngmpe( mype + 1 ) = ngm CALL mp_sum( ngmpe, comm ) END IF IF (ngm /= ngm_max) & CALL errore ('ggen', 'g-vectors missing !', abs(ngm - ngm_max)) IF (ngms /= ngms_max) & CALL errore ('ggen', 'smooth g-vectors missing !', abs(ngms - ngms_max)) igsrt(1) = 0 IF( .NOT. global_sort ) THEN CALL hpsort_eps( ngm, g2sort_g, igsrt, eps8 ) ELSE CALL hpsort_eps( ngm_g, g2sort_g, igsrt, eps8 ) END IF mill_g(1,:) = mill_unsorted(1,igsrt(:)) mill_g(2,:) = mill_unsorted(2,igsrt(:)) mill_g(3,:) = mill_unsorted(3,igsrt(:)) DEALLOCATE( g2sort_g, igsrt, mill_unsorted ) IF( .NOT. global_sort ) THEN ! compute adeguate offsets in order to avoid overlap between ! g vectors once they are gathered on a single (global) array ! ngm_offset = 0 DO ng = 1, mype ngm_offset = ngm_offset + ngmpe( ng ) END DO END IF ngm = 0 ngms = 0 ! ngloop: DO ng = 1, ngm_max i = mill_g(1, ng) j = mill_g(2, ng) k = mill_g(3, ng) #if defined(__MPI) IF( global_sort ) THEN m1 = mod (i, dfftp%nr1) + 1 IF (m1 < 1) m1 = m1 + dfftp%nr1 m2 = mod (j, dfftp%nr2) + 1 IF (m2 < 1) m2 = m2 + dfftp%nr2 mc = m1 + (m2 - 1) * dfftp%nr1x IF ( dfftp%isind ( mc ) == 0) CYCLE ngloop END IF #endif ngm = ngm + 1 ! Here map local and global g index !!! ! N.B. the global G vectors arrangement depends on the number of processors ! IF( .NOT. global_sort ) THEN ig_l2g( ngm ) = ng + ngm_offset ELSE ig_l2g( ngm ) = ng END IF g (1:3, ngm) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3) gg (ngm) = sum(g (1:3, ngm)**2) IF (gg (ngm) <= gcutms) ngms = ngms + 1 IF (ngm > ngm_save) CALL errore ('ggen', 'too many g-vectors', ngm) ENDDO ngloop IF (ngm /= ngm_save) & CALL errore ('ggen', 'g-vectors (ngm) missing !', abs(ngm - ngm_save)) IF (ngms /= ngms_save) & CALL errore ('ggen', 'g-vectors (ngms) missing !', abs(ngm - ngms_save)) ! ! determine first nonzero g vector ! IF (gg(1).le.eps8) THEN gstart=2 ELSE gstart=1 ENDIF ! ! Now set nl and nls with the correct fft correspondence ! DO ng = 1, ngm n1 = nint (sum(g (:, ng) * at (:, 1))) + 1 mill (1,ng) = n1 - 1 n1s = n1 IF (n1<1) n1 = n1 + dfftp%nr1 IF (n1s<1) n1s = n1s + dffts%nr1 n2 = nint (sum(g (:, ng) * at (:, 2))) + 1 mill (2,ng) = n2 - 1 n2s = n2 IF (n2<1) n2 = n2 + dfftp%nr2 IF (n2s<1) n2s = n2s + dffts%nr2 n3 = nint (sum(g (:, ng) * at (:, 3))) + 1 mill (3,ng) = n3 - 1 n3s = n3 IF (n3<1) n3 = n3 + dfftp%nr3 IF (n3s<1) n3s = n3s + dffts%nr3 IF (n1>dfftp%nr1 .or. n2>dfftp%nr2 .or. n3>dfftp%nr3) & CALL errore('ggen','Mesh too small?',ng) #if defined (__MPI) && !defined (__USE_3D_FFT) nl (ng) = n3 + ( dfftp%isind (n1 + (n2 - 1) * dfftp%nr1x) - 1) * dfftp%nr3x IF (ng <= ngms) & nls (ng) = n3s + ( dffts%isind (n1s+(n2s-1)*dffts%nr1x) - 1 ) * dffts%nr3x #else nl (ng) = n1 + (n2 - 1) * dfftp%nr1x + (n3 - 1) * dfftp%nr1x * dfftp%nr2x IF (ng <= ngms) & nls (ng) = n1s + (n2s - 1) * dffts%nr1x + (n3s - 1) * dffts%nr1x * dffts%nr2x #endif ENDDO ! DEALLOCATE( mill_g ) IF ( gamma_only) CALL index_minusg() IF( ALLOCATED( ngmpe ) ) DEALLOCATE( ngmpe ) END SUBROUTINE ggen ! !----------------------------------------------------------------------- SUBROUTINE index_minusg() !---------------------------------------------------------------------- ! ! compute indices nlm and nlms giving the correspondence ! between the fft mesh points and -G (for gamma-only calculations) ! USE gvect, ONLY : ngm, nlm, mill USE gvecs, ONLY : nlsm, ngms USE fft_base, ONLY : dfftp, dffts ! IMPLICIT NONE ! INTEGER :: n1, n2, n3, n1s, n2s, n3s, ng ! DO ng = 1, ngm n1 = -mill (1,ng) + 1 n1s = n1 IF (n1 < 1) THEN n1 = n1 + dfftp%nr1 n1s = n1s + dffts%nr1 END IF n2 = -mill (2,ng) + 1 n2s = n2 IF (n2 < 1) THEN n2 = n2 + dfftp%nr2 n2s = n2s + dffts%nr2 END IF n3 = -mill (3,ng) + 1 n3s = n3 IF (n3 < 1) THEN n3 = n3 + dfftp%nr3 n3s = n3s + dffts%nr3 END IF IF (n1>dfftp%nr1 .or. n2>dfftp%nr2 .or. n3>dfftp%nr3) THEN CALL errore('index_minusg','Mesh too small?',ng) ENDIF #if defined (__MPI) && !defined (__USE_3D_FFT) nlm(ng) = n3 + (dfftp%isind (n1 + (n2 - 1) * dfftp%nr1x) - 1) * dfftp%nr3x IF (ng<=ngms) & nlsm(ng) = n3s + (dffts%isind (n1s+(n2s-1) * dffts%nr1x) - 1) * dffts%nr3x #else nlm(ng) = n1 + (n2 - 1) * dfftp%nr1x + (n3 - 1) * dfftp%nr1x * dfftp%nr2x IF (ng<=ngms) & nlsm(ng) = n1s + (n2s - 1) * dffts%nr1x + (n3s-1) * dffts%nr1x * dffts%nr2x #endif ENDDO END SUBROUTINE index_minusg ! !=----------------------------------------------------------------------= END MODULE recvec_subs !=----------------------------------------------------------------------= ! !----------------------------------------------------------------------- SUBROUTINE gshells ( vc ) !---------------------------------------------------------------------- ! ! calculate number of G shells: ngl, and the index ng = igtongl(ig) ! that gives the shell index ng for (lacal) G-vector of index ig ! USE kinds, ONLY : DP USE gvect, ONLY : gg, ngm, gl, ngl, igtongl USE constants, ONLY : eps8 ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: vc ! INTEGER :: ng, igl ! IF ( vc ) THEN ! ! in case of a variable cell run each G vector has its shell ! ngl = ngm gl => gg DO ng = 1, ngm igtongl (ng) = ng ENDDO ELSE ! ! G vectors are grouped in shells with the same norm ! ngl = 1 igtongl (1) = 1 DO ng = 2, ngm IF (gg (ng) > gg (ng - 1) + eps8) THEN ngl = ngl + 1 ENDIF igtongl (ng) = ngl ENDDO ALLOCATE (gl( ngl)) gl (1) = gg (1) igl = 1 DO ng = 2, ngm IF (gg (ng) > gg (ng - 1) + eps8) THEN igl = igl + 1 gl (igl) = gg (ng) ENDIF ENDDO IF (igl /= ngl) CALL errore ('gshells', 'igl <> ngl', ngl) ENDIF END SUBROUTINE gshells espresso-5.0.2/Modules/stick_set.f900000644000700200004540000005703612053145633016315 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------= MODULE stick_set !=----------------------------------------------------------------------= ! ... Distribute G-vectors across processors as sticks and planes, ! ... initialize FFT descriptors for both dense and smooth grids ! ... Most important dependencies: next three modules USE stick_base ! USE kinds, ONLY: DP USE io_global, ONLY: ionode, stdout USE fft_types, ONLY: fft_dlay_descriptor, fft_dlay_allocate, & fft_dlay_set, fft_dlay_scalar IMPLICIT NONE PRIVATE SAVE PUBLIC :: pstickset, pstickset_custom !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= SUBROUTINE pstickset( gamma_only, bg, gcut, gkcut, gcuts, & dfftp, dffts, ngw, ngm, ngs, mype, root, nproc, comm, nogrp_ ) LOGICAL, INTENT(in) :: gamma_only ! ... bg(:,1), bg(:,2), bg(:,3) reciprocal space base vectors. REAL(DP), INTENT(in) :: bg(3,3) REAL(DP), INTENT(in) :: gcut, gkcut, gcuts TYPE(fft_dlay_descriptor), INTENT(inout) :: dfftp, dffts INTEGER, INTENT(out) :: ngw, ngm, ngs INTEGER, INTENT(IN) :: mype, root, nproc, comm INTEGER, INTENT(IN) :: nogrp_ LOGICAL :: tk INTEGER :: ub(3), lb(3) ! ... ub(i), lb(i) upper and lower miller indexes ! ! ... Plane Waves ! INTEGER, ALLOCATABLE :: stw(:,:) ! ... stick map (wave functions), stw(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstpw(:) ! ... number of sticks (wave functions), nstpw(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstpw(:) ! ... number of G-vectors (wave functions), sstpw(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nstw, nstpwx ! ... nstw local number of sticks (wave functions) ! ... nstpwx maximum among all processors of nstw ! ! ... Potentials ! INTEGER, ALLOCATABLE :: st(:,:) ! ... stick map (potentials), st(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstp(:) ! ... number of sticks (potentials), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstp(:) ! ... number of G-vectors (potentials), sstp(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nst, nstpx ! ... nst local number of sticks (potentials) ! ... nstpx maximum among all processors of nst ! ! ... Smooth Mesh ! INTEGER, ALLOCATABLE :: sts(:,:) ! ... stick map (smooth mesh), sts(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstps(:) ! ... number of sticks (smooth mesh), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstps(:) ! ... number of G-vectors (smooth mesh), sstps(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nsts ! ... nsts local number of sticks (smooth mesh) INTEGER, ALLOCATABLE :: ist(:,:) ! sticks indices ordered INTEGER :: ip, ngm_ , ngs_ INTEGER, ALLOCATABLE :: idx(:) tk = .not. gamma_only ub(1) = ( dfftp%nr1 - 1 ) / 2 ub(2) = ( dfftp%nr2 - 1 ) / 2 ub(3) = ( dfftp%nr3 - 1 ) / 2 lb = - ub ! ... Allocate maps ALLOCATE( stw ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( st ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( sts ( lb(1):ub(1), lb(2):ub(2) ) ) st = 0 stw = 0 sts = 0 ! ... Fill in the stick maps, for given g-space base and cut-off CALL sticks_maps( tk, ub, lb, bg(:,1), bg(:,2), bg(:,3), & gcut, gkcut, gcuts, st, stw, sts, mype, & nproc, comm ) ! ... Now count the number of stick nst and nstw nst = count( st > 0 ) nstw = count( stw > 0 ) nsts = count( sts > 0 ) ALLOCATE(ist(nst,5)) ALLOCATE(nstp(nproc)) ALLOCATE(sstp(nproc)) ALLOCATE(nstpw(nproc)) ALLOCATE(sstpw(nproc)) ALLOCATE(nstps(nproc)) ALLOCATE(sstps(nproc)) ! ... initialize the sticks indexes array ist CALL sticks_countg( tk, ub, lb, st, stw, sts, & ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5) ) ! ... Sorts the sticks according to their length ALLOCATE( idx( nst ) ) CALL sticks_sort( ist(:,4), ist(:,3), ist(:,5), nst, idx, nproc ) ! ... Set as first stick the stick containing the G=0 ! ! DO iss = 1, nst ! IF( ist( idx( iss ), 1 ) == 0 .AND. ist( idx( iss ), 2 ) == 0 ) EXIT ! END DO ! itmp = idx( 1 ) ! idx( 1 ) = idx( iss ) ! idx( iss ) = itmp CALL sticks_dist( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ngw = sstpw( mype + 1 ) ngm = sstp( mype + 1 ) ngs = sstps( mype + 1 ) CALL sticks_pairup( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ! ... Allocate and Set fft data layout descriptors #if defined __MPI CALL fft_dlay_allocate( dfftp, mype, root, nproc, comm, nogrp_ , dfftp%nr1x, dfftp%nr2x ) CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, nogrp_ , dffts%nr1x, dffts%nr2x ) CALL fft_dlay_set( dfftp, tk, nst, dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & ub, lb, idx, ist(:,1), ist(:,2), nstp, nstpw, sstp, sstpw, st, stw ) CALL fft_dlay_set( dffts, tk, nsts, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, & ub, lb, idx, ist(:,1), ist(:,2), nstps, nstpw, sstps, sstpw, sts, stw ) #else DEALLOCATE( stw ) ALLOCATE( stw( lb(2) : ub(2), lb(3) : ub(3) ) ) CALL sticks_maps_scalar( (.not.tk), ub, lb, bg(:,1),bg(:,2),bg(:,3),& gcut, gkcut, gcuts, stw, ngm_ , ngs_ ) IF( ngm_ /= ngm ) CALL errore( ' pstickset ', ' inconsistent ngm ', abs( ngm - ngm_ ) ) IF( ngs_ /= ngs ) CALL errore( ' pstickset ', ' inconsistent ngs ', abs( ngs - ngs_ ) ) CALL fft_dlay_allocate( dfftp, mype, root, nproc, comm, 1, max(dfftp%nr1x, dfftp%nr3x), dfftp%nr2x ) CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, 1, max(dffts%nr1x, dffts%nr3x), dffts%nr2x ) CALL fft_dlay_scalar( dfftp, ub, lb, dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, stw ) CALL fft_dlay_scalar( dffts, ub, lb, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, stw ) #endif ! ... Maximum number of sticks (potentials) nstpx = maxval( nstp ) ! ... Maximum number of sticks (wave func.) nstpwx = maxval( nstpw ) IF( dffts%have_task_groups ) THEN ! ! Initialize task groups. ! Note that this call modify dffts adding task group data. ! CALL task_groups_init( dffts ) ! END IF IF (ionode) THEN WRITE( stdout,*) IF ( nproc > 1 ) THEN WRITE( stdout, '(5X,"Parallelization info")') ELSE WRITE( stdout, '(5X,"G-vector sticks info")') ENDIF WRITE( stdout, '(5X,"--------------------")') WRITE( stdout, '(5X,"sticks: dense smooth PW", & & 5X,"G-vecs: dense smooth PW")') IF ( nproc > 1 ) THEN WRITE( stdout,'(5X,"Min",4X,2I8,I7,12X,2I9,I8)') & minval(nstp), minval(nstps), minval(nstpw), & minval(sstp), minval(sstps), minval(sstpw) WRITE( stdout,'(5X,"Max",4X,2I8,I7,12X,2I9,I8)') & maxval(nstp), maxval(nstps), maxval(nstpw), & maxval(sstp), maxval(sstps), maxval(sstpw) END IF WRITE( stdout,'(5X,"Sum",4X,2I8,I7,12X,2I9,I8)') & sum(nstp), sum(nstps), sum(nstpw), & sum(sstp), sum(sstps), sum(sstpw) ! in the case k=0, the lines above and below differ: ! above all sticks, below only those in the half sphere IF ( .NOT. tk ) & WRITE( stdout,'(5X,"Tot",4X,2I8,I7)') nst, nsts, nstw ENDIF DEALLOCATE( ist ) DEALLOCATE( idx ) DEALLOCATE( st, stw, sts ) DEALLOCATE( sstp ) DEALLOCATE( nstp ) DEALLOCATE( sstpw ) DEALLOCATE( nstpw ) DEALLOCATE( sstps ) DEALLOCATE( nstps ) IF(ionode) WRITE( stdout,*) RETURN END SUBROUTINE pstickset !---------------------------------------------------------------------- SUBROUTINE pstickset_custom( gamma_only, bg, gcut, gkcut, gcuts, & dfftp, dffts, ngw, ngm, ngs, mype, root, nproc, comm, nogrp_ ) LOGICAL, INTENT(in) :: gamma_only ! ... bg(:,1), bg(:,2), bg(:,3) reciprocal space base vectors. REAL(DP), INTENT(in) :: bg(3,3) REAL(DP), INTENT(in) :: gcut, gkcut, gcuts TYPE(fft_dlay_descriptor), INTENT(inout) :: dfftp, dffts INTEGER, INTENT(inout) :: ngw, ngm, ngs INTEGER, INTENT(IN) :: mype, root, nproc, comm INTEGER, INTENT(IN) :: nogrp_ LOGICAL :: tk INTEGER :: ub(3), lb(3) ! ... ub(i), lb(i) upper and lower miller indexes ! ! ... Plane Waves ! INTEGER, ALLOCATABLE :: stw(:,:) ! ... stick map (wave functions), stw(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstpw(:) ! ... number of sticks (wave functions), nstpw(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstpw(:) ! ... number of G-vectors (wave functions), sstpw(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nstw, nstpwx ! ... nstw local number of sticks (wave functions) ! ... nstpwx maximum among all processors of nstw ! ! ... Potentials ! INTEGER, ALLOCATABLE :: st(:,:) ! ... stick map (potentials), st(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstp(:) ! ... number of sticks (potentials), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstp(:) ! ... number of G-vectors (potentials), sstp(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nst, nstpx ! ... nst local number of sticks (potentials) ! ... nstpx maximum among all processors of nst ! ! ... Smooth Mesh ! INTEGER, ALLOCATABLE :: sts(:,:) ! ... stick map (smooth mesh), sts(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstps(:) ! ... number of sticks (smooth mesh), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstps(:) ! ... number of G-vectors (smooth mesh), sstps(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nsts ! ... nsts local number of sticks (smooth mesh) INTEGER, ALLOCATABLE :: ist(:,:) ! sticks indices ordered INTEGER :: ip, ngm_ , ngs_ INTEGER, ALLOCATABLE :: idx(:) tk = .not. gamma_only ub(1) = ( dfftp%nr1 - 1 ) / 2 ub(2) = ( dfftp%nr2 - 1 ) / 2 ub(3) = ( dfftp%nr3 - 1 ) / 2 lb = - ub ! ... Allocate maps ALLOCATE( stw ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( st ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( sts ( lb(1):ub(1), lb(2):ub(2) ) ) st = 0 stw = 0 sts = 0 ! ... Fill in the stick maps, for given g-space base and cut-off CALL sticks_maps( tk, ub, lb, bg(:,1), bg(:,2), bg(:,3), & gcut, gkcut, gcuts, st, stw, sts, mype, & nproc, comm ) ! ... Now count the number of stick nst and nstw nst = count( st > 0 ) nstw = count( stw > 0 ) nsts = count( sts > 0 ) ALLOCATE(ist(nst,5)) ALLOCATE(nstp(nproc)) ALLOCATE(sstp(nproc)) ALLOCATE(nstpw(nproc)) ALLOCATE(sstpw(nproc)) ALLOCATE(nstps(nproc)) ALLOCATE(sstps(nproc)) ! ... initialize the sticks indexes array ist CALL sticks_countg( tk, ub, lb, st, stw, sts, & ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5) ) ! ... Sorts the sticks according to their length ALLOCATE( idx( nst ) ) CALL sticks_sort( ist(:,4), ist(:,3), ist(:,5), nst, idx, nproc ) ! ... Distribute the sticks as in dfftp CALL sticks_ordered_dist( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ngw = sstpw( mype + 1 ) ngm = sstp( mype + 1 ) ngs = sstps( mype + 1 ) CALL sticks_pairup( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ! ... Allocate and Set fft data layout descriptors #if defined __MPI CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, nogrp_ , dffts%nr1x, dffts%nr2x ) CALL fft_dlay_set( dffts, tk, nsts, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, & ub, lb, idx, ist(:,1), ist(:,2), nstps, nstpw, sstps, sstpw, sts, stw ) #else DEALLOCATE( stw ) ALLOCATE( stw( lb(2) : ub(2), lb(3) : ub(3) ) ) CALL sticks_maps_scalar( (.not.tk), ub, lb, bg(:,1),bg(:,2),bg(:,3),& gcut, gkcut, gcuts, stw, ngm_ , ngs_ ) IF( ngs_ /= ngs ) CALL errore( ' pstickset_custom ', ' inconsistent ngs ', abs( ngs - ngs_ ) ) CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, 1, max(dffts%nr1x, dffts%nr3x), dffts%nr2x ) CALL fft_dlay_scalar( dffts, ub, lb, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, stw ) #endif ! ... Maximum number of sticks (potentials) nstpx = maxval( nstp ) ! ... Maximum number of sticks (wave func.) nstpwx = maxval( nstpw ) ! IF( dffts%have_task_groups ) THEN ! ! Initialize task groups. ! Note that this call modify dffts adding task group data. ! ! CALL task_groups_init( dffts ) ! ! END IF !!$ IF (ionode) THEN !!$ WRITE( stdout,*) !!$ IF ( nproc > 1 ) THEN !!$ WRITE( stdout, '(5X,"Parallelization info")') !!$ ELSE !!$ WRITE( stdout, '(5X,"G-vector sticks info")') !!$ ENDIF !!$ WRITE( stdout, '(5X,"--------------------")') !!$ WRITE( stdout, '(5X,"sticks: dense smooth PW", & !!$ & 5X,"G-vecs: dense smooth PW")') !!$ IF ( nproc > 1 ) THEN !!$ WRITE( stdout,'(5X,"Min",4X,2I8,I7,12X,2I9,I8)') & !!$ minval(nstp), minval(nstps), minval(nstpw), & !!$ minval(sstp), minval(sstps), minval(sstpw) !!$ WRITE( stdout,'(5X,"Max",4X,2I8,I7,12X,2I9,I8)') & !!$ maxval(nstp), maxval(nstps), maxval(nstpw), & !!$ maxval(sstp), maxval(sstps), maxval(sstpw) !!$ END IF !!$ WRITE( stdout,'(5X,"Sum",4X,2I8,I7,12X,2I9,I8)') & !!$ sum(nstp), sum(nstps), sum(nstpw), & !!$ sum(sstp), sum(sstps), sum(sstpw) !!$ ! in the case k=0, the lines above and below differ: !!$ ! above all sticks, below only those in the half sphere !!$ IF ( .NOT. tk ) & !!$ WRITE( stdout,'(5X,"Tot",4X,2I8,I7)') nst, nsts, nstw !!$ ENDIF DEALLOCATE( ist ) DEALLOCATE( idx ) DEALLOCATE( st, stw, sts ) DEALLOCATE( sstp ) DEALLOCATE( nstp ) DEALLOCATE( sstpw ) DEALLOCATE( nstpw ) DEALLOCATE( sstps ) DEALLOCATE( nstps ) IF(ionode) WRITE( stdout,*) RETURN END SUBROUTINE pstickset_custom !----------------------------------------- ! Task groups Contributed by C. Bekas, October 2005 ! Revised by C. Cavazzoni !-------------------------------------------- SUBROUTINE task_groups_init( dffts ) USE parallel_include ! USE io_global, ONLY : stdout USE fft_types, ONLY : fft_dlay_descriptor ! T.G. ! NPGRP: Number of processors per group ! NOGRP: Number of processors per orbital task group IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(inout) :: dffts !---------------------------------- !Local Variables declaration !---------------------------------- INTEGER :: I INTEGER :: IERR INTEGER :: num_planes, num_sticks INTEGER :: nnrsx_vec ( dffts%nproc ) INTEGER :: pgroup( dffts%nproc ) INTEGER :: strd CALL task_groups_init_first( dffts ) ! IF ( dffts%nogrp > 1 ) WRITE( stdout, 100 ) dffts%nogrp, dffts%npgrp 100 FORMAT( /,3X,'Task Groups are in USE',/,3X,'groups and procs/group : ',I5,I5 ) !Find maximum chunk of local data concerning coefficients of eigenfunctions in g-space #if defined __MPI CALL MPI_Allgather( dffts%nnr, 1, MPI_INTEGER, nnrsx_vec, 1, MPI_INTEGER, dffts%comm, IERR) strd = maxval( nnrsx_vec( 1:dffts%nproc ) ) #else strd = dffts%nnr #endif IF( strd /= dffts%tg_nnr ) CALL errore( ' task_groups_init ', ' inconsistent nnr ', 1 ) !------------------------------------------------------------------------------------- !C. Bekas...TASK GROUP RELATED. FFT DATA STRUCTURES ARE ALREADY DEFINED ABOVE !------------------------------------------------------------------------------------- !dfft%nsw(me) holds the number of z-sticks for the current processor per wave-function !We can either send these in the group with an mpi_allgather...or put the !in the PSIS vector (in special positions) and send them with them. !Otherwise we can do this once at the beginning, before the loop. !we choose to do the latter one. !------------------------------------------------------------------------------------- ! ! ALLOCATE( dffts%tg_nsw(dffts%nproc)) ALLOCATE( dffts%tg_npp(dffts%nproc)) num_sticks = 0 num_planes = 0 DO i = 1, dffts%nogrp num_sticks = num_sticks + dffts%nsw( dffts%nolist(i) + 1 ) num_planes = num_planes + dffts%npp( dffts%nolist(i) + 1 ) ENDDO #if defined __MPI CALL MPI_ALLGATHER(num_sticks, 1, MPI_INTEGER, dffts%tg_nsw(1), 1, MPI_INTEGER, dffts%comm, IERR) CALL MPI_ALLGATHER(num_planes, 1, MPI_INTEGER, dffts%tg_npp(1), 1, MPI_INTEGER, dffts%comm, IERR) #else dffts%tg_nsw(1) = num_sticks dffts%tg_npp(1) = num_planes #endif ALLOCATE( dffts%tg_snd( dffts%nogrp ) ) ALLOCATE( dffts%tg_rcv( dffts%nogrp ) ) ALLOCATE( dffts%tg_psdsp( dffts%nogrp ) ) ALLOCATE( dffts%tg_usdsp( dffts%nogrp ) ) ALLOCATE( dffts%tg_rdsp( dffts%nogrp ) ) dffts%tg_snd(1) = dffts%nr3x * dffts%nsw( dffts%mype + 1 ) IF( dffts%nr3x * dffts%nsw( dffts%mype + 1 ) > dffts%tg_nnr ) THEN CALL errore( ' task_groups_init ', ' inconsistent dffts%tg_nnr ', 1 ) ENDIF dffts%tg_psdsp(1) = 0 dffts%tg_usdsp(1) = 0 dffts%tg_rcv(1) = dffts%nr3x * dffts%nsw( dffts%nolist(1) + 1 ) dffts%tg_rdsp(1) = 0 DO i = 2, dffts%nogrp dffts%tg_snd(i) = dffts%nr3x * dffts%nsw( dffts%mype + 1 ) dffts%tg_psdsp(i) = dffts%tg_psdsp(i-1) + dffts%tg_nnr dffts%tg_usdsp(i) = dffts%tg_usdsp(i-1) + dffts%tg_snd(i-1) dffts%tg_rcv(i) = dffts%nr3x * dffts%nsw( dffts%nolist(i) + 1 ) dffts%tg_rdsp(i) = dffts%tg_rdsp(i-1) + dffts%tg_rcv(i-1) ENDDO RETURN END SUBROUTINE task_groups_init ! SUBROUTINE task_groups_init_first( dffts ) USE parallel_include ! USE fft_types, ONLY : fft_dlay_descriptor ! IMPLICIT NONE ! TYPE(fft_dlay_descriptor), INTENT(inout) :: dffts ! INTEGER :: i, n1, ipos, color, key, ierr, itsk, ntsk INTEGER :: pgroup( dffts%nproc ) ! !SUBDIVIDE THE PROCESSORS IN GROUPS ! DO i = 1, dffts%nproc pgroup( i ) = i - 1 ENDDO ! !LIST OF PROCESSORS IN MY ORBITAL GROUP ! ! processors in these group have contiguous indexes ! n1 = ( dffts%mype / dffts%nogrp ) * dffts%nogrp - 1 DO i = 1, dffts%nogrp dffts%nolist( i ) = pgroup( n1 + i + 1 ) IF( dffts%mype == dffts%nolist( i ) ) ipos = i - 1 ENDDO ! !LIST OF PROCESSORS IN MY PLANE WAVE GROUP ! DO I = 1, dffts%npgrp dffts%nplist( i ) = pgroup( ipos + ( i - 1 ) * dffts%nogrp + 1 ) ENDDO ! !SET UP THE GROUPS ! ! !CREATE ORBITAL GROUPS ! #if defined __MPI color = dffts%mype / dffts%nogrp key = MOD( dffts%mype , dffts%nogrp ) CALL MPI_COMM_SPLIT( dffts%comm, color, key, dffts%ogrp_comm, ierr ) if( ierr /= 0 ) & CALL errore( ' task_groups_init_first ', ' creating ogrp_comm ', ABS(ierr) ) CALL MPI_COMM_RANK( dffts%ogrp_comm, itsk, IERR ) CALL MPI_COMM_SIZE( dffts%ogrp_comm, ntsk, IERR ) IF( dffts%nogrp /= ntsk ) CALL errore( ' task_groups_init_first ', ' ogrp_comm size ', ntsk ) DO i = 1, dffts%nogrp IF( dffts%mype == dffts%nolist( i ) ) THEN IF( (i-1) /= itsk ) CALL errore( ' task_groups_init_first ', ' ogrp_comm rank ', itsk ) END IF END DO #endif ! !CREATE PLANEWAVE GROUPS ! #if defined __MPI color = MOD( dffts%mype , dffts%nogrp ) key = dffts%mype / dffts%nogrp CALL MPI_COMM_SPLIT( dffts%comm, color, key, dffts%pgrp_comm, ierr ) if( ierr /= 0 ) & CALL errore( ' task_groups_init_first ', ' creating pgrp_comm ', ABS(ierr) ) CALL MPI_COMM_RANK( dffts%pgrp_comm, itsk, IERR ) CALL MPI_COMM_SIZE( dffts%pgrp_comm, ntsk, IERR ) IF( dffts%npgrp /= ntsk ) CALL errore( ' task_groups_init_first ', ' pgrp_comm size ', ntsk ) DO i = 1, dffts%npgrp IF( dffts%mype == dffts%nplist( i ) ) THEN IF( (i-1) /= itsk ) CALL errore( ' task_groups_init_first ', ' pgrp_comm rank ', itsk ) END IF END DO dffts%me_pgrp = itsk #endif RETURN END SUBROUTINE task_groups_init_first ! !=----------------------------------------------------------------------= END MODULE stick_set !=----------------------------------------------------------------------= espresso-5.0.2/Modules/mp_global.f900000644000700200004540000006650612053145633016263 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_global !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_comm_free, mp_size, mp_rank, mp_sum, mp_barrier, & mp_bcast, mp_start, mp_end USE io_global, ONLY : stdout, io_global_start, meta_ionode_id, meta_ionode USE parallel_include ! IMPLICIT NONE SAVE ! ! ... World group (all processors) ! INTEGER :: mpime = 0 ! processor index (starts from 0 to nproc-1) INTEGER :: root = 0 ! index of the root processor INTEGER :: nproc = 1 ! number of processors INTEGER :: world_comm = 0 ! communicator INTEGER :: nproc_file = 1 ! saved on file ! ! ... Image groups (processors within an image) ! INTEGER :: nimage = 1 ! number of images INTEGER :: me_image = 0 ! index of the processor within an image INTEGER :: root_image= 0 ! index of the root processor within an image INTEGER :: my_image_id=0 ! index of my image INTEGER :: nproc_image=1 ! number of processors within an image INTEGER :: inter_image_comm = 0 ! inter image communicator INTEGER :: intra_image_comm = 0 ! intra image communicator INTEGER :: nproc_image_file = 1 ! value saved on file ! ! ... Pot groups (processors within a cooking-pot) ! INTEGER :: npot = 1 ! number of pots INTEGER :: me_pot = 0 ! index of the processor within a pot INTEGER :: root_pot = 0 ! index of the root processor within a pot INTEGER :: my_pot_id = 0 ! index of my pot INTEGER :: nproc_pot = 1 ! number of processors within a pot INTEGER :: inter_pot_comm = 0 ! inter pot communicator INTEGER :: intra_pot_comm = 0 ! intra pot communicator INTEGER :: nproc_pot_file = 1 ! value saved on file ! ! ... Pool groups (processors within a pool of k-points) ! INTEGER :: npool = 1 ! number of "k-points"-pools INTEGER :: me_pool = 0 ! index of the processor within a pool INTEGER :: root_pool = 0 ! index of the root processor within a pool INTEGER :: my_pool_id = 0 ! index of my pool INTEGER :: nproc_pool = 1 ! number of processors within a pool INTEGER :: inter_pool_comm = 0 ! inter pool communicator INTEGER :: intra_pool_comm = 0 ! intra pool communicator INTEGER :: nproc_pool_file = 1 ! saved on file ! ! ... Band groups (processors within a pool of bands) ! INTEGER :: nbgrp = 1 ! number of band groups INTEGER :: me_bgrp = 0 ! index of the processor within a band group INTEGER :: root_bgrp = 0 ! index of the root processor within a band group INTEGER :: my_bgrp_id = 0 ! index of my band group INTEGER :: nproc_bgrp = 1 ! number of processor within a band group INTEGER :: inter_bgrp_comm = 0 ! inter band group communicator INTEGER :: intra_bgrp_comm = 0 ! intra band group communicator INTEGER :: ibnd_start = 0 !starting band index INTEGER :: ibnd_end = 0 !ending band index INTEGER :: nproc_bgrp_file = 1 ! value saved on file ! ! ... ortho (or linear-algebra) groups ! INTEGER :: np_ortho(2) = 1 ! size of the processor grid used in ortho INTEGER :: me_ortho(2) = 0 ! coordinates of the processors INTEGER :: me_ortho1 = 0 ! task id for the ortho group INTEGER :: nproc_ortho = 1 ! size of the ortho group: INTEGER :: leg_ortho = 1 ! the distance in the father communicator ! of two neighbour processors in ortho_comm INTEGER :: ortho_comm = 0 ! communicator for the ortho group INTEGER :: ortho_row_comm = 0 ! communicator for the ortho row group INTEGER :: ortho_col_comm = 0 ! communicator for the ortho col group INTEGER :: ortho_comm_id= 0 ! id of the ortho_comm INTEGER :: nproc_ortho_file = 1 ! value saved on file ! #if defined __SCALAPACK INTEGER :: me_blacs = 0 ! BLACS processor index starting from 0 INTEGER :: np_blacs = 1 ! BLACS number of processor INTEGER :: world_cntx = -1 ! BLACS context of all processor INTEGER :: ortho_cntx = -1 ! BLACS context for ortho_comm #endif ! ! ... "task" groups (for band parallelization of FFT) ! INTEGER :: ntask_groups = 1 ! number of proc. in an orbital "task group" INTEGER :: ntask_groups_file = 1 ! number of task groups ! ! ... Misc parallelization info ! INTEGER :: kunit = 1 ! granularity of k-point distribution ! ... number of processors written in the data file for checkin purposes: ! PRIVATE :: init_pools, init_bands, init_ortho PRIVATE :: ntask_groups ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE mp_startup ( start_images ) !----------------------------------------------------------------------- ! ... This wrapper subroutine initializes MPI ! ... If option with_images=.true., processes are organized into images, ! ... each of which performing a quasi-indipendent calculation, uch as ! ... a point in configuration space (NEB) or a phonon irrep (PHonon) ! ... Within each image processes are further subdivided into various ! ... groups and parallelization levels ! IMPLICIT NONE LOGICAL, INTENT(IN), OPTIONAL :: start_images INTEGER :: world, nproc_ortho_in = 0, root = 0 LOGICAL :: do_images ! ! ! ... get the basic parameters from communications sub-system ! ... to handle processors ! ... mpime = processor number, starting from 0 ! ... nproc = number of processors ! ... world = group index of all processors ! CALL mp_start( nproc, mpime, world ) ! ! ... for compatibility: initialize images ! meta_ionode = ( mpime == root ) meta_ionode_id = root do_images = PRESENT(start_images) IF ( do_images ) do_images = start_images IF ( do_images ) THEN ! ! ... get nimage from command line ! IF ( meta_ionode ) THEN ! CALL get_arg_nimage( nimage ) nimage = MAX( nimage, 1 ) nimage = MIN( nimage, nproc ) ! END IF CALL mp_barrier(world) CALL mp_bcast( nimage, meta_ionode_id ) ELSE nimage = 1 END IF ! CALL init_images ( world ) ! ! ... now initialize processors and groups variables ! ... set global coordinate for this processor ! ... root = index of the root processor ! CALL mp_startup_new (root_image, intra_image_comm ) ! RETURN ! END SUBROUTINE mp_startup !----------------------------------------------------------------------- SUBROUTINE mp_startup_new (root, world ) !----------------------------------------------------------------------- ! ... This subroutine initializes the various parallelization levels ! ... inside an image. On input: ! ... root =root processor for this image ! ... world=communicator for this image (intra_image_comm) ! ... Within each image processes are subdivided into: ! ... npool k-points groups, for parallelization over k-points ! ... Each k-point group is subdivided into ! ... nbgr band groups, for parallelization over bands ! ... Each band group performs parallelization over plane waves ! ... and is subdivided into ! ... ntg task groups, for parallelization of H*psi ! ... ndiag linear-algebra groups, for parallelization of LA ! ... Npool, nbgr, ntg, ndiag are read from command line ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: world, root INTEGER :: nproc_ortho_in = 0 ! INTEGER :: myrank, npe ! ! ... now initialize processors and groups variables ! ... set global coordinate for this processor ! ... root = index of the root processor ! myrank = mp_rank(world) npe = mp_size(world) ! CALL mp_global_start_new( root, myrank, world, npe ) ! ! ... initialize input/output, set (and get) the I/O nodes ! CALL io_global_start( myrank, root ) ! IF ( myrank == root ) THEN ! ! ... How many parallel pots ? ! CALL get_arg_npot( npot ) npot = MAX( npot, 1 ) npot = MIN( npot, nproc ) ! ! ... How many band groups? ! CALL get_arg_nbgrp( nbgrp ) nbgrp = MAX( nbgrp, 1 ) nbgrp = MIN( nbgrp, nproc ) ! ! ... How many k-point pools ? ! CALL get_arg_npool( npool ) npool = MAX( npool, 1 ) npool = MIN( npool, nproc ) ! ! ... How many task groups ? ! CALL get_arg_ntg( ntask_groups ) ! ! ... How many processors involved in diagonalization of Hamiltonian ? ! CALL get_arg_northo( nproc_ortho_in ) ! ! ... nproc_ortho_in = 0 if no command-line option -ndiag or -northo ! ... nproc_ortho_in = N if -ndiag N or -northo N comm-line opt present ! END IF ! CALL mp_barrier(world) ! ! ... broadcast input parallelization options to all processors ! CALL mp_bcast( npool, root, world ) CALL mp_bcast( nbgrp, root, world ) CALL mp_bcast( ntask_groups, root, world ) CALL mp_bcast( nproc_ortho_in, root, world ) CALL mp_bcast( npot, root, world ) ! ! ... initialize k-point, band, ortho groups in sequence ! CALL init_pots( world ) CALL init_pools( world ) CALL init_bands( intra_pool_comm ) CALL init_ortho( nproc_ortho_in, intra_bgrp_comm ) ! RETURN ! END SUBROUTINE mp_startup_new ! !----------------------------------------------------------------------- SUBROUTINE mp_global_start_new( root_i, mpime_i, group_i, nproc_i ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: root_i, mpime_i, group_i, nproc_i ! root = root_i mpime = mpime_i world_comm = group_i nproc = nproc_i nproc_pool = nproc_i nproc_bgrp = nproc_i my_pool_id = 0 my_bgrp_id = 0 me_pool = mpime me_bgrp = mpime root_pool = root root_bgrp = root inter_pool_comm = group_i intra_pool_comm = group_i inter_bgrp_comm = group_i intra_bgrp_comm = group_i ortho_comm = group_i ortho_row_comm = group_i ortho_col_comm = group_i ! RETURN ! END SUBROUTINE mp_global_start_new ! !----------------------------------------------------------------------- SUBROUTINE mp_global_end ( ) !----------------------------------------------------------------------- ! CALL mp_barrier() CALL mp_end () ! END SUBROUTINE mp_global_end ! !----------------------------------------------------------------------- SUBROUTINE mp_global_group_start( mep, myp, nprocp, num_of_pools ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: mep, myp, nprocp, num_of_pools ! me_pool = mep my_pool_id = myp nproc_pool = nprocp npool = num_of_pools ! RETURN ! END SUBROUTINE mp_global_group_start ! !---------------------------------------------------------------------------- SUBROUTINE init_images ( parent_comm ) !--------------------------------------------------------------------------- ! ! ... This routine divides all MPI processors into images ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: parent_comm ! INTEGER :: ierr = 0 INTEGER :: parent_nproc = 1 INTEGER :: parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! IF ( nimage < 1 .OR. nimage > parent_nproc ) & CALL errore( 'init_images', 'invalid number of images, out of range', 1 ) IF ( MOD( nproc, nimage ) /= 0 ) & CALL errore( 'init_images', 'n. of images must be divisor of parent_nproc', 1 ) ! ! ... set number of cpus per image ! nproc_image = parent_nproc / nimage ! ! ... set index of image for this processor ( 0 : nimage - 1 ) ! my_image_id = parent_mype / nproc_image ! ! ... set index of processor within the image ( 0 : nproc_image - 1 ) ! me_image = MOD( parent_mype, nproc_image ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_image_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, my_image_id, parent_mype, intra_image_comm, ierr ) IF ( ierr /= 0 ) CALL errore & ( 'init_images', 'intra image communicator initialization', ABS(ierr) ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_image_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, me_image, parent_mype, inter_image_comm, ierr ) IF ( ierr /= 0 ) CALL errore & ( 'init_images', 'inter image communicator initialization', ABS(ierr) ) #endif RETURN ! END SUBROUTINE init_images !---------------------------------------------------------------------------- SUBROUTINE init_bands( parent_comm ) !--------------------------------------------------------------------------- ! ! ... This routine divides parent_comm into band pools ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: parent_comm ! INTEGER :: ierr = 0 INTEGER :: parent_nproc = 1 INTEGER :: parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! IF ( nbgrp < 1 .OR. nbgrp > parent_nproc ) & CALL errore( 'init_bands', 'invalid number of band groups, out of range', 1 ) IF ( MOD( parent_nproc, nbgrp ) /= 0 ) & CALL errore( 'init_bands', 'n. of band groups must be divisor of parent_nproc', 1 ) ! ! ... Set number of processors per band group ! nproc_bgrp = parent_nproc / nbgrp ! ! ... set index of band group for this processor ( 0 : nbgrp - 1 ) ! my_bgrp_id = parent_mype / nproc_bgrp ! ! ... set index of processor within the image ( 0 : nproc_image - 1 ) ! me_bgrp = MOD( parent_mype, nproc_bgrp ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_bgrp_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, my_bgrp_id, parent_mype, intra_bgrp_comm, ierr ) ! IF ( ierr /= 0 ) & CALL errore( 'init_bands', 'intra band group communicator initialization', ABS(ierr) ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_bgrp_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, me_bgrp, parent_mype, inter_bgrp_comm, ierr ) ! IF ( ierr /= 0 ) & CALL errore( 'init_bands', 'inter band group communicator initialization', ABS(ierr) ) ! #endif RETURN ! END SUBROUTINE init_bands ! !---------------------------------------------------------------------------- SUBROUTINE init_pots( parent_comm ) !--------------------------------------------------------------------------- ! ! ... This routine divides the parent group into pots ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: parent_comm ! INTEGER :: ierr = 0 INTEGER :: parent_nproc = 1 INTEGER :: parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! ! ... number of cpus per pot (they are created inside each parent group) ! nproc_pot = parent_nproc / npot ! IF ( MOD( parent_nproc, npot ) /= 0 ) & CALL errore( 'init_pots', 'invalid number of pots, parent_nproc /= nproc_pot * npot', 1 ) ! ! ... my_pot_id = pot index for this processor ( 0 : npot - 1 ) ! ... me_pot = processor index within the pot ( 0 : nproc_pot - 1 ) ! my_pot_id = parent_mype / nproc_pot me_pot = MOD( parent_mype, nproc_pot ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_pot_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, my_pot_id, parent_mype, intra_pot_comm, ierr ) ! IF ( ierr /= 0 ) & CALL errore( 'init_pots', 'intra pot communicator initialization', ABS(ierr) ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_pot_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, me_pot, parent_mype, inter_pot_comm, ierr ) ! IF ( ierr /= 0 ) & CALL errore( 'init_pots', 'inter pot communicator initialization', ABS(ierr) ) ! #endif ! RETURN END SUBROUTINE init_pots ! !---------------------------------------------------------------------------- SUBROUTINE init_pools( parent_comm ) !--------------------------------------------------------------------------- ! ! ... This routine divides band groups into k-point pools ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: parent_comm ! INTEGER :: ierr = 0 INTEGER :: parent_nproc = 1 INTEGER :: parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! ! ... number of cpus per pool of k-points (they are created inside each image) ! nproc_pool = parent_nproc / npool ! IF ( MOD( parent_nproc, npool ) /= 0 ) & CALL errore( 'init_pools', 'invalid number of pools, parent_nproc /= nproc_pool * npool', 1 ) ! ! ... my_pool_id = pool index for this processor ( 0 : npool - 1 ) ! ... me_pool = processor index within the pool ( 0 : nproc_pool - 1 ) ! my_pool_id = parent_mype / nproc_pool me_pool = MOD( parent_mype, nproc_pool ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_pool_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, my_pool_id, parent_mype, intra_pool_comm, ierr ) ! IF ( ierr /= 0 ) & CALL errore( 'init_pools', 'intra pool communicator initialization', ABS(ierr) ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_pool_comm communicator is created ! CALL MPI_COMM_SPLIT( parent_comm, me_pool, parent_mype, inter_pool_comm, ierr ) ! IF ( ierr /= 0 ) & CALL errore( 'init_pools', 'inter pool communicator initialization', ABS(ierr) ) ! #endif ! RETURN END SUBROUTINE init_pools ! !---------------------------------------------------------------------------- SUBROUTINE init_ortho( nproc_ortho_in, parent_comm ) !--------------------------------------------------------------------------- ! ! ... Ortho group initialization ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nproc_ortho_in! read from command-line, 0 if unset INTEGER, INTENT(IN) :: parent_comm ! communicator of the parent group ! INTEGER :: nproc_ortho_try INTEGER :: parent_nproc ! nproc of the parent group INTEGER :: ierr = 0 ! parent_nproc = mp_size( parent_comm ) ! #if defined __SCALAPACK ! define a 1D grid containing all MPI task of MPI_COMM_WORLD communicator ! CALL BLACS_PINFO( me_blacs, np_blacs ) CALL BLACS_GET( -1, 0, world_cntx ) CALL BLACS_GRIDINIT( world_cntx, 'Row', 1, np_blacs ) ! #endif ! IF( nproc_ortho_in > 0 ) THEN ! command-line argument -ndiag N or -nproc N set to N ! use the command line value ensuring that it falls in the proper range nproc_ortho_try = MIN( nproc_ortho_in , parent_nproc ) ELSE ! no command-line argument -ndiag N or -nproc N is present ! insert here custom architecture specific default definitions #if defined __SCALAPACK nproc_ortho_try = MAX( parent_nproc/2, 1 ) #else nproc_ortho_try = 1 #endif END IF ! ! the ortho group for parallel linear algebra is a sub-group of the pool, ! then there are as many ortho groups as pools. ! CALL init_ortho_group( nproc_ortho_try, parent_comm ) ! RETURN ! END SUBROUTINE init_ortho ! ! SUBROUTINE init_ortho_group( nproc_try_in, comm_all ) ! IMPLICIT NONE INTEGER, INTENT(IN) :: nproc_try_in, comm_all LOGICAL, SAVE :: first = .true. INTEGER :: ierr, color, key, me_all, nproc_all, nproc_try #if defined __SCALAPACK INTEGER, ALLOCATABLE :: blacsmap(:,:) INTEGER, ALLOCATABLE :: ortho_cntx_pe(:,:,:) INTEGER :: nprow, npcol, myrow, mycol, i, j, k INTEGER, EXTERNAL :: BLACS_PNUM ! INTEGER :: nparent=1 INTEGER :: total_nproc=1 INTEGER :: total_mype=0 INTEGER :: nproc_parent=1 INTEGER :: my_parent_id=0 #endif #if defined __MPI me_all = mp_rank( comm_all ) ! nproc_all = mp_size( comm_all ) ! nproc_try = MIN( nproc_try_in, nproc_all ) nproc_try = MAX( nproc_try, 1 ) IF( .NOT. first ) THEN ! ! free resources associated to the communicator ! CALL mp_comm_free( ortho_comm ) ! #if defined __SCALAPACK IF( ortho_comm_id > 0 ) THEN CALL BLACS_GRIDEXIT( ortho_cntx ) ENDIF ortho_cntx = -1 #endif ! END IF ! find the square closer (but lower) to nproc_try ! CALL grid2d_dims( 'S', nproc_try, np_ortho(1), np_ortho(2) ) ! ! now, and only now, it is possible to define the number of tasks ! in the ortho group for parallel linear algebra ! nproc_ortho = np_ortho(1) * np_ortho(2) ! IF( nproc_all >= 4*nproc_ortho ) THEN ! ! here we choose a processor every 4, in order not to stress memory BW ! on multi core procs, for which further performance enhancements are ! possible using OpenMP BLAS inside regter/cegter/rdiaghg/cdiaghg ! (to be implemented) ! color = 0 IF( me_all < 4*nproc_ortho .AND. MOD( me_all, 4 ) == 0 ) color = 1 ! leg_ortho = 4 ! ELSE IF( nproc_all >= 2*nproc_ortho ) THEN ! ! here we choose a processor every 2, in order not to stress memory BW ! color = 0 IF( me_all < 2*nproc_ortho .AND. MOD( me_all, 2 ) == 0 ) color = 1 ! leg_ortho = 2 ! ELSE ! ! here we choose the first processors ! color = 0 IF( me_all < nproc_ortho ) color = 1 ! leg_ortho = 1 ! END IF ! key = me_all ! ! initialize the communicator for the new group by splitting the input communicator ! CALL MPI_COMM_SPLIT( comm_all, color, key, ortho_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " init_ortho_group ", " initializing ortho group communicator ", ierr ) ! ! Computes coordinates of the processors, in row maior order ! me_ortho1 = mp_rank( ortho_comm ) ! IF( me_all == 0 .AND. me_ortho1 /= 0 ) & CALL errore( " init_ortho_group ", " wrong root task in ortho group ", ierr ) ! if( color == 1 ) then ortho_comm_id = 1 CALL GRID2D_COORDS( 'R', me_ortho1, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) CALL GRID2D_RANK( 'R', np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2), ierr ) IF( ierr /= me_ortho1 ) & CALL errore( " init_ortho_group ", " wrong task coordinates in ortho group ", ierr ) IF( me_ortho1*leg_ortho /= me_all ) & CALL errore( " init_ortho_group ", " wrong rank assignment in ortho group ", ierr ) CALL MPI_COMM_SPLIT( ortho_comm, me_ortho(2), me_ortho(1), ortho_col_comm, ierr ) CALL MPI_COMM_SPLIT( ortho_comm, me_ortho(1), me_ortho(2), ortho_row_comm, ierr ) else ortho_comm_id = 0 me_ortho(1) = me_ortho1 me_ortho(2) = me_ortho1 endif #if defined __SCALAPACK ! ! This part is used to eliminate the image dependency from ortho groups ! SCALAPACK is now independent of whatever level of parallelization ! is present on top of pool parallelization ! total_nproc = mp_size(mpi_comm_world) total_mype = mp_rank(mpi_comm_world) nparent = total_nproc/npool/nproc_pool nproc_parent = total_nproc/nparent my_parent_id = total_mype/nproc_parent ! ! ALLOCATE( ortho_cntx_pe( npool, nbgrp, nparent ) ) ALLOCATE( blacsmap( np_ortho(1), np_ortho(2) ) ) DO j = 1, nparent DO k = 1, nbgrp DO i = 1, npool CALL BLACS_GET( -1, 0, ortho_cntx_pe( i, k, j ) ) ! take a default value blacsmap = 0 nprow = np_ortho(1) npcol = np_ortho(2) IF( ( j == ( my_parent_id + 1 ) ) .and. ( k == ( my_bgrp_id + 1 ) ) .and. & ( i == ( my_pool_id + 1 ) ) .and. ( ortho_comm_id > 0 ) ) THEN blacsmap( me_ortho(1) + 1, me_ortho(2) + 1 ) = BLACS_PNUM( world_cntx, 0, me_blacs ) END IF ! All MPI tasks defined in world comm take part in the definition of the BLACS grid CALL mp_sum( blacsmap ) CALL BLACS_GRIDMAP( ortho_cntx_pe(i,k,j), blacsmap, nprow, nprow, npcol ) CALL BLACS_GRIDINFO( ortho_cntx_pe(i,k,j), nprow, npcol, myrow, mycol ) IF( ( j == ( my_parent_id + 1 ) ) .and. ( k == ( my_bgrp_id + 1 ) ) .and. & ( i == ( my_pool_id + 1 ) ) .and. ( ortho_comm_id > 0 ) ) THEN IF( np_ortho(1) /= nprow ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong no. of task rows ', 1 ) IF( np_ortho(2) /= npcol ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong no. of task columns ', 1 ) IF( me_ortho(1) /= myrow ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong task row ID ', 1 ) IF( me_ortho(2) /= mycol ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong task columns ID ', 1 ) ortho_cntx = ortho_cntx_pe(i,k,j) END IF END DO END DO END DO DEALLOCATE( blacsmap ) DEALLOCATE( ortho_cntx_pe ) #endif #else ortho_comm_id = 1 #endif first = .false. RETURN END SUBROUTINE init_ortho_group ! ! SUBROUTINE distribute_over_bgrp( i2g, nl, nx ) ! IMPLICIT NONE INTEGER, INTENT(OUT) :: i2g ! global index of the first local element INTEGER, INTENT(OUT) :: nl ! local number of elements INTEGER, INTENT(IN) :: nx ! dimension of the global array to be distributed ! INTEGER, EXTERNAL :: ldim_block, gind_block ! nl = ldim_block( nx, nbgrp, my_bgrp_id ) i2g = gind_block( 1, nx, nbgrp, my_bgrp_id ) ! RETURN ! END SUBROUTINE distribute_over_bgrp ! SUBROUTINE init_index_over_band(comm,nbnd) IMPLICIT NONE #if defined (__MPI) ! include 'mpif.h' ! #endif INTEGER, INTENT(IN) :: comm, nbnd INTEGER :: npe, myrank, ierror, rest, k myrank = mp_rank(comm) npe = mp_size(comm) ! call mpi_comm_rank(comm, mp_rank, ierror) ! call mpi_comm_size(comm, mp_size, ierror) rest = mod(nbnd, npe) k = int(nbnd/npe) if(k.ge.1)then if(rest > myrank)then ibnd_start = (myrank)*k + (myrank+1) ibnd_end = (myrank+1)*k + (myrank+1) else ibnd_start = (myrank)*k + rest + 1 ibnd_end = (myrank+1)*k + rest endif else ibnd_start = 1 ibnd_end = nbnd endif END SUBROUTINE init_index_over_band ! ! FUNCTION get_ntask_groups() IMPLICIT NONE INTEGER :: get_ntask_groups get_ntask_groups = ntask_groups RETURN END FUNCTION get_ntask_groups ! END MODULE mp_global espresso-5.0.2/Modules/wave_base.f900000644000700200004540000005007412053145633016254 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! BEGIN manual !==----------------------------------------------==! MODULE wave_base !==----------------------------------------------==! ! (describe briefly what this module does...) ! ---------------------------------------------- ! END manual USE kinds IMPLICIT NONE SAVE PRIVATE REAL(DP) :: frice = 0.0_DP ! friction parameter for electronic ! damped dynamics REAL(DP) :: grease = 0.0_DP ! friction parameter for electronic ! damped dynamics PUBLIC :: dotp, hpsi, rande_base, gram_kp_base, gram_gamma_base PUBLIC :: converg_base, rande_base_s, scalw PUBLIC :: wave_steepest PUBLIC :: wave_verlet PUBLIC :: wave_speed2 PUBLIC :: frice, grease INTERFACE dotp MODULE PROCEDURE dotp_gamma, dotp_kp, dotp_gamma_n, dotp_kp_n END INTERFACE INTERFACE hpsi MODULE PROCEDURE hpsi_gamma, hpsi_kp END INTERFACE INTERFACE converg_base MODULE PROCEDURE converg_base_gamma, converg_base_kp END INTERFACE !==----------------------------------------------==! CONTAINS !==----------------------------------------------==! SUBROUTINE gram_kp_base(wf, gid) USE mp, ONLY: mp_sum COMPLEX(DP) :: wf(:,:) INTEGER, INTENT(IN) :: gid COMPLEX(DP), PARAMETER :: one = ( 1.0_DP,0.0_DP) COMPLEX(DP), PARAMETER :: onem = (-1.0_DP,0.0_DP) COMPLEX(DP), PARAMETER :: zero = ( 0.0_DP,0.0_DP) REAL(DP), PARAMETER :: small = 1.e-16_DP COMPLEX(DP), ALLOCATABLE :: s(:) REAL(DP) :: anorm INTEGER :: ib, ngw, nb ngw = SIZE(wf, 1) nb = SIZE(wf, 2) ALLOCATE( s(nb) ) DO ib = 1, nb IF(ib > 1)THEN s = zero CALL ZGEMV & ('C', ngw, ib-1, one, wf(1,1), ngw, wf(1,ib), 1, zero, s(1), 1) CALL mp_sum(s,gid) CALL ZGEMV & ('N', ngw, ib-1, onem, wf(1,1), ngw, s(1), 1, one, wf(1,ib), 1) END IF anorm = SUM( DBLE( wf(:,ib) * CONJG(wf(:,ib)) ) ) CALL mp_sum(anorm, gid) anorm = 1.0_DP / MAX( SQRT(anorm), small ) CALL zdscal(ngw, anorm, wf(1,ib), 1) END DO DEALLOCATE( s ) RETURN END SUBROUTINE gram_kp_base !==----------------------------------------------==! !==----------------------------------------------==! ! BEGIN manual SUBROUTINE gram_gamma_base(wf, gzero, gid) ! Gram-Schmidt ortogonalization procedure ! input: cp(2,ngik,n) = ( .... ) ! ( .... ) ! ( ...............................................) ! ( .... ) ! output: the same orthogonalized ! ---------------------------------------------- ! line 7&8 : s(k) = - k=1,..,i-1 (orthonormal) ! i (non-orthogonal) ! line 9 : s(k) = 2*sum_g{} + s(k) ! line 10 : = - sum_k {s(k) } ! lines 12-15: normalize |psi(i)> ! note: line 2 com. out due to im()=0 for all k (gam. p. is ass.) ! s(k) is added in 9 to av. doub. count. of ! |psi(i)> after line 10 is orthogonal to |psi(k)> k=1,...,i-1 ! ---------------------------------------------- ! END manual USE mp, ONLY: mp_sum USE mp_global, ONLY: mpime COMPLEX(DP), INTENT(INOUT) :: wf(:,:) INTEGER, INTENT(IN) :: gid LOGICAL, INTENT(IN) :: gzero REAL(DP), PARAMETER :: one = 1.0_DP REAL(DP), PARAMETER :: two = 2.0_DP REAL(DP), PARAMETER :: onem = -1.0_DP REAL(DP), PARAMETER :: zero = 0.0_DP REAL(DP), PARAMETER :: small = 1.e-16_DP REAL(DP) :: dnrm2 REAL(DP), ALLOCATABLE :: s(:) REAL(DP) :: anorm, wftmp INTEGER :: ib, nwfr, ngw, nb ngw = SIZE(wf, 1) nb = SIZE(wf, 2) nwfr = SIZE(wf, 1) * 2 ALLOCATE( s(nb) ) DO ib = 1, nb IF(ib.GT.1)THEN s = zero ! ... only the processor that own G=0 IF(gzero) THEN wftmp = -DBLE(wf(1,ib)) CALL daxpy(ib-1, wftmp, wf(1,1), nwfr, s(1), 1) END IF CALL DGEMV('T', nwfr, ib-1, two, wf(1,1), nwfr, wf(1,ib), 1, one, s(1), 1) CALL mp_sum(s, gid) !WRITE( stdout, fmt = '(I3, 16F8.2)' ) mpime, s(1:nb) CALL DGEMV('N', nwfr, ib-1, onem, wf(1,1), nwfr, s(1), 1, one, wf(1,ib), 1) END IF IF(gzero) THEN anorm = dnrm2( 2*(ngw-1), wf(2,ib), 1) anorm = 2.0_DP * anorm**2 + DBLE( wf(1,ib) * CONJG(wf(1,ib)) ) ELSE anorm = dnrm2( 2*ngw, wf(1,ib), 1) anorm = 2.0_DP * anorm**2 END IF CALL mp_sum(anorm, gid) anorm = 1.0_DP / MAX( small, SQRT(anorm) ) CALL dscal( 2*ngw, anorm, wf(1,ib), 1) END DO DEALLOCATE( s ) RETURN END SUBROUTINE gram_gamma_base !==----------------------------------------------==! !==----------------------------------------------==! FUNCTION hpsi_kp( c, dc ) ! (describe briefly what this routine does...) ! ---------------------------------------------- IMPLICIT NONE COMPLEX(DP) :: zdotc COMPLEX(DP) :: c(:,:) COMPLEX(DP) :: dc(:) COMPLEX(DP), DIMENSION( SIZE( c, 2 ) ) :: hpsi_kp INTEGER :: jb, ngw, nx ! ... end of declarations ! ---------------------------------------------- IF( SIZE( c, 1 ) /= SIZE( dc ) ) & CALL errore(' hpsi_kp ', ' wrong sizes ', 1 ) ngw = SIZE( c, 1 ) nx = SIZE( c, 2 ) DO jb = 1, nx hpsi_kp( jb ) = - zdotc( ngw, c(1,jb), 1, dc(1), 1) END DO RETURN END FUNCTION hpsi_kp !==----------------------------------------------==! !==----------------------------------------------==! FUNCTION hpsi_gamma( gzero, c, ngw, dc, n, noff ) IMPLICIT NONE COMPLEX(DP) :: c(:,:) COMPLEX(DP) :: dc(:) LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: n, noff, ngw REAL(DP), DIMENSION( n ) :: hpsi_gamma COMPLEX(DP) :: zdotc INTEGER :: j IF(gzero) THEN DO j = 1, n hpsi_gamma(j) = & - DBLE( (2.0_DP * zdotc(ngw-1, c(2,j+noff-1), 1, dc(2), 1) + c(1,j+noff-1)*dc(1)) ) END DO ELSE DO j = 1, n hpsi_gamma(j) = - DBLE( (2.0_DP * zdotc(ngw, c(1,j+noff-1), 1, dc(1), 1)) ) END DO END IF RETURN END FUNCTION hpsi_gamma !==----------------------------------------------==! !==----------------------------------------------==! ! BEGIN manual SUBROUTINE converg_base_gamma(gzero, cgrad, gemax, cnorm, comm) ! this routine checks for convergence, by computing the norm of the ! gradients of wavefunctions ! version for the Gamma point ! ---------------------------------------------- ! END manual USE mp, ONLY: mp_sum, mp_max IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: cgrad(:,:,:) LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm REAL(DP), INTENT(OUT) :: gemax, cnorm ! ... declare other variables INTEGER :: imx, IZAMAX, i, nb, ngw REAL(DP) :: gemax_l ! ... end of declarations ! ---------------------------------------------- ngw = SIZE( cgrad, 1) nb = SIZE( cgrad, 2) gemax_l = 0.0_DP cnorm = 0.0_DP DO i = 1, nb imx = IZAMAX( ngw, cgrad(1, i, 1), 1 ) IF ( gemax_l < ABS( cgrad(imx, i, 1) ) ) THEN gemax_l = ABS ( cgrad(imx, i, 1) ) END IF cnorm = cnorm + dotp(gzero, cgrad(:,i,1), cgrad(:,i,1), comm) END DO CALL mp_max(gemax_l, comm) CALL mp_sum(nb, comm) CALL mp_sum(ngw, comm) gemax = gemax_l cnorm = SQRT( cnorm / (nb * ngw) ) RETURN END SUBROUTINE converg_base_gamma ! ---------------------------------------------- ! ---------------------------------------------- ! BEGIN manual SUBROUTINE converg_base_kp(weight, cgrad, gemax, cnorm, comm) ! this routine checks for convergence, by computing the norm of the ! gradients of wavefunctions ! version for generic k-points ! ---------------------------------------------- ! END manual USE mp, ONLY: mp_sum, mp_max IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: cgrad(:,:,:) REAL(DP), INTENT(IN) :: weight(:) REAL(DP), INTENT(OUT) :: gemax, cnorm INTEGER, INTENT(IN) :: comm ! ... declare other variables INTEGER :: nb, ngw, nk, iabs, IZAMAX, i, ik REAL(DP) :: gemax_l, cnormk COMPLEX(DP) :: zdotc ! ... end of declarations ! ---------------------------------------------- ngw = SIZE( cgrad, 1) nb = SIZE( cgrad, 2) nk = SIZE( cgrad, 3) gemax_l = 0.0_DP cnorm = 0.0_DP DO ik = 1, nk cnormk = 0.0_DP DO i = 1, nb iabs = IZAMAX( ngw, cgrad(1,i,ik), 1) IF( gemax_l < ABS( cgrad(iabs,i,ik) ) ) THEN gemax_l = ABS( cgrad(iabs,i,ik) ) END IF cnormk = cnormk + DBLE( zdotc(ngw, cgrad(1,i,ik), 1, cgrad(1,i,ik), 1)) END DO cnormk = cnormk * weight(ik) cnorm = cnorm + cnormk END DO CALL mp_max(gemax_l, comm) CALL mp_sum(cnorm, comm) CALL mp_sum(nb, comm) CALL mp_sum(ngw, comm) gemax = gemax_l cnorm = SQRT( cnorm / ( nb * ngw ) ) RETURN END SUBROUTINE converg_base_kp !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION wdot_gamma(gzero, ng, a, b) LOGICAL, INTENT(IN) :: gzero COMPLEX(DP) :: a(:), b(:) INTEGER, OPTIONAL, INTENT(IN) :: ng REAL(DP) :: ddot INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( PRESENT (ng) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' wdot_gamma ', ' wrong dimension ', 1 ) IF (gzero) THEN wdot_gamma = ddot( 2*(n-1), a(2), 1, b(2), 1) wdot_gamma = 2.0_DP * wdot_gamma + DBLE( a(1) ) * DBLE( b(1) ) ELSE wdot_gamma = 2.0_DP * ddot( 2*n, a(1), 1, b(1), 1) END IF RETURN END FUNCTION wdot_gamma !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION dotp_gamma(gzero, ng, a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing HALF-SPACE complex wave functions, with the G-point symmetry ! ... a( -G ) = CONJG( a( G ) ). Only half of the values plus G=0 are really ! ... stored in the array. ! ! ... dotp = < a | b > ! USE mp, ONLY: mp_sum REAL(DP) :: ddot REAL(DP) :: dot_tmp INTEGER, INTENT(IN) :: ng LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: a(:), b(:) INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' dotp_gamma ', ' wrong dimension ', 1 ) ! ... gzero is true on the processor where the first element of the ! ... input arrays is the coefficient of the G=0 plane wave ! IF (gzero) THEN dot_tmp = ddot( 2*(n-1), a(2), 1, b(2), 1) dot_tmp = 2.0_DP * dot_tmp + DBLE( a(1) ) * DBLE( b(1) ) ELSE dot_tmp = ddot( 2*n, a(1), 1, b(1), 1) dot_tmp = 2.0_DP*dot_tmp END IF CALL mp_sum( dot_tmp, comm ) dotp_gamma = dot_tmp RETURN END FUNCTION dotp_gamma !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION dotp_gamma_n(gzero, a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing HALF-SPACE complex wave functions, with the G-point symmetry ! ... a( -G ) = CONJG( a( G ) ). Only half of the values plus G=0 are really ! ... stored in the array. USE mp, ONLY: mp_sum LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: a(:), b(:) INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( n < 1 ) & CALL errore( ' dotp_gamma_n ', ' wrong dimension ', 1 ) dotp_gamma_n = dotp_gamma(gzero, n, a, b, comm) RETURN END FUNCTION !==----------------------------------------------==! !==----------------------------------------------==! COMPLEX(DP) FUNCTION dotp_kp(ng, a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing FULL-SPACE complex wave functions USE mp, ONLY: mp_sum COMPLEX(DP) :: zdotc INTEGER, INTENT(IN) :: ng COMPLEX(DP) :: a(:),b(:) INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: dot_tmp INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' dotp_kp ', ' wrong dimension ', 1 ) dot_tmp = zdotc(ng, a(1), 1, b(1), 1) CALL mp_sum(dot_tmp, comm) dotp_kp = dot_tmp RETURN END FUNCTION dotp_kp !==----------------------------------------------==! !==----------------------------------------------==! COMPLEX(DP) FUNCTION dotp_kp_n(a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing FULL-SPACE complex wave functions USE mp, ONLY: mp_sum COMPLEX(DP) zdotc COMPLEX(DP), INTENT(IN) :: a(:),b(:) INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: dot_tmp INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( n < 1 ) & CALL errore( ' dotp_kp_n ', ' wrong dimension ', 1 ) dot_tmp = zdotc( n, a(1), 1, b(1), 1) CALL mp_sum( dot_tmp, comm ) dotp_kp_n = dot_tmp RETURN END FUNCTION dotp_kp_n !==----------------------------------------------==! !==----------------------------------------------==! COMPLEX(DP) FUNCTION wdot_kp(ng, a, b) ! ... Compute the dot product between complex vectors "a" and "b" ! ... representing FULL-SPACE complex wave functions ! ... Note this is a _SCALAR_ subroutine COMPLEX(DP) :: a(:), b(:) INTEGER, INTENT(IN), OPTIONAL :: ng COMPLEX(DP) :: zdotc INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( PRESENT (ng) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' dotp_kp_n ', ' wrong dimension ', 1 ) wdot_kp = zdotc(n, a(1), 1, b(1), 1) RETURN END FUNCTION wdot_kp !==----------------------------------------------==! !==----------------------------------------------==! SUBROUTINE rande_base(wf,ampre) ! randomize wave functions coefficients ! ---------------------------------------------- USE random_numbers, ONLY : randy IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: wf(:,:) REAL(DP), INTENT(IN) :: ampre ! ... declare other variables INTEGER i, j REAL(DP) rranf1, rranf2 ! ... end of declarations ! ---------------------------------------------- DO i = 1, SIZE(wf, 2) DO j = 1, SIZE( wf, 1) rranf1 = 0.5_DP - randy() rranf2 = 0.5_DP - randy() wf(j,i) = wf(j,i) + ampre * CMPLX(rranf1, rranf2, KIND=DP) END DO END DO RETURN END SUBROUTINE rande_base !==----------------------------------------------==! SUBROUTINE rande_base_s(wf,ampre) ! randomize wave functions coefficients ! ---------------------------------------------- USE random_numbers, ONLY : randy IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: wf(:) REAL(DP), INTENT(IN) :: ampre ! ... declare other variables INTEGER j REAL(DP) rranf1, rranf2 ! ... end of declarations ! ---------------------------------------------- DO j = 1, SIZE( wf ) rranf1 = 0.5_DP - randy() rranf2 = 0.5_DP - randy() wf(j) = wf(j) + ampre * CMPLX(rranf1, rranf2, KIND=DP) END DO RETURN END SUBROUTINE rande_base_s !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION scalw(gzero, RR1, RR2, metric, comm) USE mp, ONLY: mp_sum IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: rr1(:), rr2(:), metric(:) LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm INTEGER :: ig, gstart, ngw REAL(DP) :: rsc ngw = MIN( SIZE(rr1), SIZE(rr2), SIZE(metric) ) rsc = 0.0_DP gstart = 1 IF (gzero) gstart = 2 DO ig = gstart, ngw rsc = rsc + rr1( ig ) * CONJG( rr2( ig ) ) * metric( ig ) END DO CALL mp_sum(rsc, comm) scalw = rsc RETURN END FUNCTION scalw !==----------------------------------------------==! !==----------------------------------------------==! SUBROUTINE wave_steepest( CP, C0, dt2m, grad, ngw, idx ) IMPLICIT NONE COMPLEX(DP), INTENT(OUT) :: CP(:) COMPLEX(DP), INTENT(IN) :: C0(:) COMPLEX(DP), INTENT(IN) :: grad(:) REAL(DP), INTENT(IN) :: dt2m(:) INTEGER, OPTIONAL, INTENT(IN) :: ngw, idx ! IF( PRESENT( ngw ) .AND. PRESENT( idx ) ) THEN CP( : ) = C0( : ) + dt2m(:) * grad( (idx-1)*ngw+1 : idx*ngw ) ELSE CP( : ) = C0( : ) + dt2m(:) * grad(:) END IF ! RETURN END SUBROUTINE wave_steepest !==----------------------------------------------==! !==----------------------------------------------==! SUBROUTINE wave_verlet( cm, c0, ver1, ver2, ver3, grad, ngw, idx ) IMPLICIT NONE COMPLEX(DP), INTENT(INOUT) :: cm(:) COMPLEX(DP), INTENT(IN) :: c0(:) COMPLEX(DP), INTENT(IN) :: grad(:) REAL(DP), INTENT(IN) :: ver1, ver2, ver3(:) INTEGER, OPTIONAL, INTENT(IN) :: ngw, idx ! IF( PRESENT( ngw ) .AND. PRESENT( idx ) ) THEN cm( : ) = ver1 * c0( : ) + ver2 * cm( : ) + ver3( : ) * grad( (idx-1)*ngw+1:idx*ngw) ELSE cm( : ) = ver1 * c0( : ) + ver2 * cm( : ) + ver3( : ) * grad( : ) END IF ! RETURN END SUBROUTINE wave_verlet !==----------------------------------------------==! !==----------------------------------------------==! FUNCTION wave_speed2( cp, cm, wmss, fact ) IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: cp(:) COMPLEX(DP), INTENT(IN) :: cm(:) REAL(DP) :: wmss(:), fact REAL(DP) :: wave_speed2 REAL(DP) :: ekinc COMPLEX(DP) :: speed INTEGER :: j speed = ( cp(1) - cm(1) ) ekinc = fact * wmss(1) * CONJG( speed ) * speed DO j = 2, SIZE( cp ) speed = ( cp(j) - cm(j) ) ekinc = ekinc + wmss(j) * CONJG( speed ) * speed END DO wave_speed2 = ekinc RETURN END FUNCTION wave_speed2 !==----------------------------------------------==! END MODULE wave_base !==----------------------------------------------==! espresso-5.0.2/Modules/read_cards.f900000644000700200004540000016014312053165100016375 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- MODULE read_cards_module !--------------------------------------------------------------------------- ! ! ... This module handles the reading of cards from standard input ! ... Original version written by Carlo Cavazzoni ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : angstrom_au USE parser, ONLY : field_count, read_line, get_field, parse_unit USE io_global, ONLY : ionode, ionode_id ! USE input_parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: read_cards ! ! ... end of module-scope declarations ! ! ---------------------------------------------- ! CONTAINS ! ! ... Read CARDS .... ! ! ... subroutines ! !---------------------------------------------------------------------- SUBROUTINE card_default_values( ) !---------------------------------------------------------------------- ! USE autopilot, ONLY : init_autopilot ! IMPLICIT NONE ! ! ! ... mask that control the printing of selected Kohn-Sham occupied ! ... orbitals, default allocation ! CALL allocate_input_iprnks( 0, nspin ) nprnks = 0 ! ! ... Simulation cell from standard input ! trd_ht = .false. rd_ht = 0.0_DP ! ! ... dipole ! tdipole_card = .false. ! ! ... Constraints ! nconstr_inp = 0 constr_tol_inp = 1.E-6_DP ! ! ... ionic mass initialization ! atom_mass = 0.0_DP ! ! ... dimension of the real space Ewald summation ! iesr_inp = 1 ! ! ... k-points ! k_points = 'gamma' tk_inp = .false. nkstot = 1 nk1 = 0 nk2 = 0 nk3 = 0 k1 = 0 k2 = 0 k3 = 0 ! ! ... Electronic states ! tf_inp = .false. ! ! ... ion_velocities ! tavel = .false. ! CALL init_autopilot() ! RETURN ! END SUBROUTINE card_default_values ! ! !---------------------------------------------------------------------- SUBROUTINE read_cards ( prog, unit ) !---------------------------------------------------------------------- ! USE autopilot, ONLY : card_autopilot ! IMPLICIT NONE ! INTEGER, INTENT(IN), optional :: unit ! CHARACTER(len=2) :: prog ! calling program ( PW, CP, WA ) CHARACTER(len=256) :: input_line CHARACTER(len=80) :: card CHARACTER(len=1), EXTERNAL :: capital LOGICAL :: tend INTEGER :: i ! INTEGER :: unit_loc=5 ! ! if(present(unit)) unit_loc = unit parse_unit = unit_loc ! CALL card_default_values( ) ! 100 CALL read_line( input_line, end_of_file=tend ) ! IF( tend ) GOTO 120 IF( input_line == ' ' .OR. input_line(1:1) == '#' .OR. & input_line(1:1) == '!' ) GOTO 100 ! READ (input_line, *) card ! DO i = 1, len_trim( input_line ) input_line( i : i ) = capital( input_line( i : i ) ) ENDDO ! IF ( trim(card) == 'AUTOPILOT' ) THEN ! CALL card_autopilot( input_line ) IF ( prog == 'PW' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'ATOMIC_SPECIES' ) THEN ! CALL card_atomic_species( input_line, prog ) ! ELSEIF ( trim(card) == 'ATOMIC_POSITIONS' ) THEN ! CALL card_atomic_positions( input_line, prog ) ! ELSEIF ( trim(card) == 'ATOMIC_FORCES' ) THEN ! CALL card_atomic_forces( input_line, prog ) ! ELSEIF ( trim(card) == 'CONSTRAINTS' ) THEN ! CALL card_constraints( input_line ) ! ELSEIF ( trim(card) == 'DIPOLE' ) THEN ! CALL card_dipole( input_line ) IF ( prog == 'PW' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'ESR' ) THEN ! CALL card_esr( input_line ) IF ( prog == 'PW' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'K_POINTS' ) THEN ! IF ( ( prog == 'CP' ) ) THEN IF( ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ELSE CALL card_kpoints( input_line ) ENDIF ! ELSEIF ( trim(card) == 'OCCUPATIONS' ) THEN ! CALL card_occupations( input_line ) ! ELSEIF ( trim(card) == 'CELL_PARAMETERS' ) THEN ! CALL card_cell_parameters( input_line ) ! ELSEIF ( trim(card) == 'ATOMIC_VELOCITIES' ) THEN ! CALL card_ion_velocities( input_line ) IF ( prog == 'CP' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'KSOUT' ) THEN ! CALL card_ksout( input_line ) IF ( ( prog == 'PW' ) .and. ionode ) & WRITE( stdout,'(a)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'PLOT_WANNIER' ) THEN ! CALL card_plot_wannier( input_line ) ELSEIF ( trim(card) == 'WANNIER_AC' .and. ( prog == 'WA' )) THEN ! CALL card_wannier_ac( input_line ) ELSE ! IF ( ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ENDIF ! ! ... END OF LOOP ... ! ! GOTO 100 ! 120 CONTINUE ! RETURN ! END SUBROUTINE read_cards ! ! ... Description of the allowed input CARDS ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_SPECIES ! ! set the atomic species been read and their pseudopotential file ! ! Syntax: ! ! ATOMIC_SPECIE ! label(1) mass(1) psfile(1) ! ... ... ... ! label(n) mass(n) psfile(n) ! ! Example: ! ! ATOMIC_SPECIES ! O 16.0 O.BLYP.UPF ! H 1.00 H.fpmd.UPF ! ! Where: ! ! label(i) ( character(len=4) ) label of the atomic species ! mass(i) ( real ) atomic mass ! ( in u.m.a, carbon mass is 12.0 ) ! psfile(i) ( character(len=80) ) file name of the pseudopotential ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_atomic_species( input_line, prog ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line CHARACTER(len=2) :: prog INTEGER :: is, ip, ierr CHARACTER(len=4) :: lb_pos CHARACTER(len=256) :: psfile ! ! IF ( taspc ) THEN CALL errore( ' card_atomic_species ', ' two occurrences', 2 ) ENDIF IF ( ntyp > nsx ) THEN CALL errore( ' card_atomic_species ', ' nsp out of range ', ntyp ) ENDIF ! DO is = 1, ntyp ! CALL read_line( input_line ) READ( input_line, *, iostat=ierr ) lb_pos, atom_mass(is), psfile CALL errore( ' card_atomic_species ', & 'cannot read atomic specie from: '//trim(input_line), abs(ierr)) atom_pfile(is) = trim( psfile ) lb_pos = adjustl( lb_pos ) atom_label(is) = trim( lb_pos ) ! DO ip = 1, is - 1 IF ( atom_label(ip) == atom_label(is) ) THEN CALL errore( ' card_atomic_species ', & & ' two occurrences of the same atomic label ', is ) ENDIF ENDDO ! ENDDO taspc = .true. ! RETURN ! END SUBROUTINE card_atomic_species ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_POSITIONS ! ! set the atomic positions in the cell ! ! Syntax: ! ! ATOMIC_POSITIONS (units_option) ! label(1) tau(1,1) tau(2,1) tau(3,1) mbl(1,1) mbl(2,1) mbl(3,1) ! label(2) tau(1,2) tau(2,2) tau(3,2) mbl(1,2) mbl(2,2) mbl(3,2) ! ... ... ... ... ... ! label(n) tau(1,n) tau(2,n) tau(3,n) mbl(1,3) mbl(2,3) mbl(3,3) ! ! Example: ! ! ATOMIC_POSITIONS (bohr) ! O 0.0099 0.0099 0.0000 0 0 0 ! H 1.8325 -0.2243 -0.0001 1 1 1 ! H -0.2243 1.8325 0.0002 1 1 1 ! ! Where: ! ! units_option == crystal position are given in scaled units ! units_option == bohr position are given in Bohr ! units_option == angstrom position are given in Angstrom ! units_option == alat position are given in units of alat ! ! label(k) ( character(len=4) ) atomic type ! tau(:,k) ( real ) coordinates of the k-th atom ! mbl(:,k) ( integer ) mbl(i,k) > 0 the i-th coord. of the ! k-th atom is allowed to be moved ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_atomic_positions( input_line, prog ) ! USE wrappers, ONLY: feval_infix ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line CHARACTER(len=2) :: prog CHARACTER(len=4) :: lb_pos INTEGER :: ia, k, is, nfield, idx, rep_i LOGICAL, EXTERNAL :: matches LOGICAL :: tend ! INTEGER :: ifield, ierr REAL(DP) :: field_value CHARACTER(len=256) :: field_str, error_msg ! ! IF ( tapos ) THEN CALL errore( 'card_atomic_positions', 'two occurrences', 2 ) ENDIF IF ( .not. taspc ) THEN CALL errore( 'card_atomic_positions', & & 'ATOMIC_SPECIES must be present before', 2 ) ENDIF IF ( ntyp > nsx ) THEN CALL errore( 'card_atomic_positions', 'nsp out of range', ntyp ) ENDIF IF ( nat < 1 ) THEN CALL errore( 'card_atomic_positions', 'nat out of range', nat ) ENDIF ! CALL allocate_input_ions(ntyp,nat) ! if_pos = 1 ! sp_pos = 0 rd_pos = 0.0_DP na_inp = 0 ! IF ( matches( "CRYSTAL", input_line ) ) THEN atomic_positions = 'crystal' ELSEIF ( matches( "BOHR", input_line ) ) THEN atomic_positions = 'bohr' ELSEIF ( matches( "ANGSTROM", input_line ) ) THEN atomic_positions = 'angstrom' ELSEIF ( matches( "ALAT", input_line ) ) THEN atomic_positions = 'alat' ELSE IF ( trim( adjustl( input_line ) ) /= 'ATOMIC_POSITIONS' ) THEN CALL errore( 'read_cards ', & & 'unknown option for ATOMIC_POSITION: '& & // input_line, 1 ) ENDIF IF ( prog == 'CP' ) atomic_positions = 'bohr' IF ( prog == 'PW' ) atomic_positions = 'alat' ENDIF ! reader_loop : DO ia = 1,nat ! CALL read_line( input_line, end_of_file = tend ) IF ( tend ) CALL errore( 'read_cards', & 'end of file reading atomic positions', ia ) ! CALL field_count( nfield, input_line ) ! IF ( sic /= 'none' .and. nfield /= 8 ) & CALL errore( 'read_cards', & 'ATOMIC_POSITIONS with sic, 8 columns required', 1 ) ! IF ( nfield /= 4 .and. nfield /= 7 .and. nfield /= 8) & CALL errore( 'read_cards', 'wrong number of columns ' // & & 'in ATOMIC_POSITIONS', ia ) ! read atom symbol (column 1) and coordinate CALL get_field(1, lb_pos, input_line) lb_pos = trim(lb_pos) ! error_msg = 'Error while parsing atomic position card.' ! read field 2 (atom X coordinate) CALL get_field(2, field_str, input_line) rd_pos(1,ia) = feval_infix(ierr, field_str ) CALL errore('card_atomic_positions', error_msg, ierr) ! read field 2 (atom Y coordinate) CALL get_field(3, field_str, input_line) rd_pos(2,ia) = feval_infix(ierr, field_str ) CALL errore('card_atomic_positions', error_msg, ierr) ! read field 2 (atom Z coordinate) CALL get_field(4, field_str, input_line) rd_pos(3,ia) = feval_infix(ierr, field_str ) CALL errore('card_atomic_positions', error_msg, ierr) ! IF ( nfield >= 7 ) THEN ! read constrains (fields 5-7, if present) CALL get_field(5, field_str, input_line) READ(field_str, *) if_pos(1,ia) CALL get_field(6, field_str, input_line) READ(field_str, *) if_pos(2,ia) CALL get_field(7, field_str, input_line) READ(field_str, *) if_pos(3,ia) ENDIF ! IF ( nfield == 8 ) THEN CALL get_field(5, field_str, input_line) READ(field_str, *) id_loc(ia) ENDIF ! match_label: DO is = 1, ntyp ! IF ( trim(lb_pos) == trim( atom_label(is) ) ) THEN ! sp_pos(ia) = is exit match_label ! ENDIF ! ENDDO match_label ! IF( ( sp_pos(ia) < 1 ) .or. ( sp_pos(ia) > ntyp ) ) THEN ! CALL errore( 'read_cards', 'species '//trim(lb_pos)// & & ' in ATOMIC_POSITIONS is nonexistent', ia ) ! ENDIF ! is = sp_pos(ia) ! na_inp(is) = na_inp(is) + 1 ! ENDDO reader_loop ! tapos = .true. ! RETURN ! END SUBROUTINE card_atomic_positions ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_FORCES ! ! read external forces (in atomic units) from standard input ! ! Syntax: ! ! ATOMIC_FORCES ! label Fx(1) Fy(1) Fz(1) ! ..... ! label Fx(n) Fy(n) Fz(n) ! ! Example: ! ! ??? ! ! Where: ! ! label (character(len=4)) atomic label ! Fx(:), Fy(:) and Fz(:) (REAL) x, y and z component of the external force ! acting on the ions whose coordinate are given ! in the same line in card ATOMIC_POSITION ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_atomic_forces( input_line, prog ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line CHARACTER(len=2) :: prog INTEGER :: ia, k, nfield CHARACTER(len=4) :: lb ! ! IF( tforces ) THEN CALL errore( ' card_atomic_forces ', ' two occurrences ', 2 ) ENDIF ! IF( .not. taspc ) THEN CALL errore( ' card_atomic_forces ', & & ' ATOMIC_SPECIES must be present before ', 2 ) ENDIF ! rd_for = 0.0_DP ! DO ia = 1, nat ! CALL read_line( input_line ) CALL field_count( nfield, input_line ) IF ( nfield == 4 ) THEN READ(input_line,*) lb, ( rd_for(k,ia), k = 1, 3 ) ELSEIF( nfield == 3 ) THEN READ(input_line,*) ( rd_for(k,ia), k = 1, 3 ) ELSE CALL errore( ' iosys ', ' wrong entries in ATOMIC_FORCES ', ia ) ENDIF ! ENDDO ! tforces = .true. ! RETURN ! END SUBROUTINE card_atomic_forces ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! K_POINTS ! ! use the specified set of k points ! ! Syntax: ! ! K_POINTS (mesh_option) ! n ! xk(1,1) xk(2,1) xk(3,1) wk(1) ! ... ... ... ... ! xk(1,n) xk(2,n) xk(3,n) wk(n) ! ! Example: ! ! K_POINTS ! 10 ! 0.1250000 0.1250000 0.1250000 1.00 ! 0.1250000 0.1250000 0.3750000 3.00 ! 0.1250000 0.1250000 0.6250000 3.00 ! 0.1250000 0.1250000 0.8750000 3.00 ! 0.1250000 0.3750000 0.3750000 3.00 ! 0.1250000 0.3750000 0.6250000 6.00 ! 0.1250000 0.3750000 0.8750000 6.00 ! 0.1250000 0.6250000 0.6250000 3.00 ! 0.3750000 0.3750000 0.3750000 1.00 ! 0.3750000 0.3750000 0.6250000 3.00 ! ! Where: ! ! mesh_option == automatic k points mesh is generated automatically ! with Monkhorst-Pack algorithm ! mesh_option == crystal k points mesh is given in stdin in scaled ! units ! mesh_option == tpiba k points mesh is given in stdin in units ! of ( 2 PI / alat ) ! mesh_option == gamma only gamma point is used ( default in ! CPMD simulation ) ! mesh_option == tpiba_b as tpiba but the weights gives the ! number of points between this point ! and the next ! mesh_option == crystal_b as crystal but the weights gives the ! number of points between this point and ! the next ! mesh_option == tpiba_c the code expects three k points ! k_0, k_1, k_2 in tpiba units. ! These points define a rectangle ! in reciprocal space with vertices k_0, k_1, ! k_2, k_1+k_2-k_0: k_0 + \alpha (k_1-k_0)+ ! \beta (k_2-k_0) with 0<\alpha,\beta < 1. ! The code produces a uniform mesh n1 x n2 ! k points in this rectangle. n1 and n2 are ! the weights of k_1 and k_2. The weight of k_0 ! is not used. Useful for contour plots of the ! bands. ! mesh_option == crystal_c as tpiba_c but the k points are given ! in crystal coordinates. ! ! ! n ( integer ) number of k points ! xk(:,i) ( real ) coordinates of i-th k point ! wk(i) ( real ) weights of i-th k point ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_kpoints( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, j, ijk INTEGER :: nkaux INTEGER, ALLOCATABLE :: wkaux(:) REAL(DP), ALLOCATABLE :: xkaux(:,:) REAL(DP) :: delta, wk0 REAL(DP) :: dkx(3), dky(3) LOGICAL, EXTERNAL :: matches LOGICAL :: tend,terr LOGICAL :: kband = .false. LOGICAL :: kband_plane = .false. ! ! IF ( tkpoints ) THEN CALL errore( ' card_kpoints ', ' two occurrences', 2 ) ENDIF ! IF ( matches( "AUTOMATIC", input_line ) ) THEN ! automatic generation of k-points k_points = 'automatic' ELSEIF ( matches( "CRYSTAL", input_line ) ) THEN ! input k-points are in crystal (reciprocal lattice) axis k_points = 'crystal' IF ( matches( "_B", input_line ) ) kband=.true. IF ( matches( "_C", input_line ) ) kband_plane=.true. ELSEIF ( matches( "TPIBA", input_line ) ) THEN ! input k-points are in 2pi/a units k_points = 'tpiba' IF ( matches( "_B", input_line ) ) kband=.true. IF ( matches( "_C", input_line ) ) kband_plane=.true. ELSEIF ( matches( "GAMMA", input_line ) ) THEN ! Only Gamma (k=0) is used k_points = 'gamma' ELSE ! by default, input k-points are in 2pi/a units k_points = 'tpiba' ENDIF ! IF ( k_points == 'automatic' ) THEN ! ! ... automatic generation of k-points ! nkstot = 0 CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line, *, END=10, ERR=20) nk1, nk2, nk3, k1, k2 ,k3 IF ( k1 < 0 .or. k1 > 1 .or. & k2 < 0 .or. k2 > 1 .or. & k3 < 0 .or. k3 > 1 ) CALL errore & ('card_kpoints', 'invalid offsets: must be 0 or 1', 1) IF ( nk1 <= 0 .or. nk2 <= 0 .or. nk3 <= 0 ) CALL errore & ('card_kpoints', 'invalid values for nk1, nk2, nk3', 1) ALLOCATE ( xk(3,1), wk(1) ) ! prevents problems with debug flags ! ! when init_startk is called in iosys ELSEIF ( ( k_points == 'tpiba' ) .or. ( k_points == 'crystal' ) ) THEN ! ! ... input k-points ! CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line, *, END=10, ERR=20) nkstot ! IF (kband) THEN ! ! Only the initial and final k points of the lines are given ! nkaux=nkstot ALLOCATE(xkaux(3,nkstot), wkaux(nkstot)) DO i = 1, nkstot CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line,*, END=10, ERR=20) xkaux(1,i), xkaux(2,i), & xkaux(3,i), wk0 wkaux(i) = NINT ( wk0 ) ! beware: wkaux is integer ENDDO ! Count k-points first nkstot=0 DO i=1,nkaux-1 IF ( wkaux(i) > 0 ) THEN nkstot=nkstot+wkaux(i) ELSEIF ( wkaux(i) == 0 ) THEN nkstot=nkstot+1 ELSE CALL errore ('card_kpoints', 'wrong number of points',i) ENDIF ENDDO nkstot=nkstot+1 ALLOCATE ( xk(3,nkstot), wk(nkstot) ) ! Now fill the points nkstot=0 DO i=1,nkaux-1 IF (wkaux(i)>0) THEN delta=1.0_DP/wkaux(i) DO j=0,wkaux(i)-1 nkstot=nkstot+1 xk(:,nkstot)=xkaux(:,i)+delta*j*(xkaux(:,i+1)-xkaux(:,i)) wk(nkstot)=1.0_DP ENDDO ELSEIF (wkaux(i)==0) THEN nkstot=nkstot+1 xk(:,nkstot)=xkaux(:,i) wk(nkstot)=1.0_DP ELSE CALL errore ('card_kpoints', 'wrong number of points',i) ENDIF ENDDO nkstot=nkstot+1 xk(:,nkstot)=xkaux(:,nkaux) wk(nkstot)=1.0_DP DEALLOCATE(xkaux) DEALLOCATE(wkaux) ELSEIF (kband_plane) THEN ! ! Generate a uniform mesh of k points on the plane defined by ! the origin k_0, and two vectors applied in k_0, k_1 and k_2. ! IF (nkstot /= 3) CALL errore ('card_kpoints', & 'option _c requires 3 k points',i) nkaux=nkstot ALLOCATE(xkaux(3,nkstot), wkaux(nkstot)) DO i = 1, nkstot CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line,*, END=10, ERR=20) xkaux(1,i), xkaux(2,i), & xkaux(3,i), wk0 wkaux(i) = NINT ( wk0 ) ! beware: wkaux is integer ENDDO ! Count k-points first nkstot = wkaux(2) * wkaux(3) ALLOCATE ( xk(3,nkstot), wk(nkstot) ) dkx(:)=(xkaux(:,2)-xkaux(:,1))/(wkaux(2)-1.0_DP) dky(:)=(xkaux(:,3)-xkaux(:,1))/(wkaux(3)-1.0_DP) wk0=1.0_DP/nkstot ijk=0 DO i=1, wkaux(2) DO j = 1, wkaux(3) ijk=ijk+1 xk(:,ijk) = xkaux(:,1) + dkx(:)*(i-1) + dky(:) * (j-1) wk(ijk) = wk0 ENDDO ENDDO DEALLOCATE(xkaux) DEALLOCATE(wkaux) ELSE ! ! Reads on input the k points ! ALLOCATE ( xk(3, nkstot), wk(nkstot) ) DO i = 1, nkstot CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line,*, END=10, ERR=20) xk(1,i),xk(2,i),xk(3,i),wk(i) ENDDO ENDIF ! ELSEIF ( k_points == 'gamma' ) THEN ! nkstot = 1 ALLOCATE ( xk(3,1), wk(1) ) xk(:,1) = 0.0_DP wk(1) = 1.0_DP ! ENDIF ! tkpoints = .true. tk_inp = .true. ! RETURN 10 CALL errore ('card_kpoints', ' end of file while reading ' & & // trim(k_points) // ' k points', 1) 20 CALL errore ('card_kpoints', ' error while reading ' & & // trim(k_points) // ' k points', 1) ! END SUBROUTINE card_kpoints ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! OCCUPATIONS ! ! use the specified occupation numbers for electronic states. ! Note that you should specify 10 values per line maximum! ! ! Syntax (nspin == 1): ! ! OCCUPATIONS ! f(1) .... .... f(10) ! f(11) .... f(nbnd) ! ! Syntax (nspin == 2): ! ! OCCUPATIONS ! u(1) .... .... u(10) ! u(11) .... u(nbnd) ! d(1) .... .... d(10) ! d(11) .... d(nbnd) ! ! Example: ! ! OCCUPATIONS ! 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ! 2.0 2.0 2.0 2.0 2.0 1.0 1.0 ! ! Where: ! ! f(:) (real) these are the occupation numbers ! for LDA electronic states. ! ! u(:) (real) these are the occupation numbers ! for LSD spin == 1 electronic states ! d(:) (real) these are the occupation numbers ! for LSD spin == 2 electronic states ! ! Note, maximum 10 values per line! ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_occupations( input_line ) ! USE wrappers, ONLY: feval_infix ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line, field_str INTEGER :: is, nx10, i, j, nspin0 INTEGER :: nfield, nbnd_read, nf, ierr LOGICAL :: tef ! ! IF ( tocc ) THEN CALL errore( ' card_occupations ', ' two occurrences', 2 ) ENDIF nspin0=nspin IF (nspin == 4) nspin0=1 ! ALLOCATE ( f_inp ( nbnd, nspin0 ) ) DO is = 1, nspin0 ! nbnd_read = 0 DO WHILE ( nbnd_read < nbnd) CALL read_line( input_line, end_of_file=tef ) IF (tef) CALL errore('card_occupations',& 'Missing occupations, end of file reached',1) CALL field_count( nfield, input_line ) ! DO nf = 1,nfield nbnd_read = nbnd_read+1 IF (nbnd_read > nbnd ) EXIT CALL get_field(nf, field_str, input_line) ! f_inp(nbnd_read,is) = feval_infix(ierr, field_str ) CALL errore('card_occupations',& 'Error parsing occupation: '//trim(field_str), nbnd_read*ierr) ENDDO ENDDO ! ENDDO ! tf_inp = .true. tocc = .true. ! RETURN ! END SUBROUTINE card_occupations ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! DIPOLE ! ! calculate polarizability ! ! Syntax: ! ! DIPOLE ! ! Where: ! ! no parameters ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_dipole( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line ! ! IF ( tdipole ) THEN CALL errore( ' card_dipole ', ' two occurrences', 2 ) ENDIF ! tdipole_card = .true. tdipole = .true. ! RETURN ! END SUBROUTINE card_dipole ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! IESR ! ! use the specified number of neighbour cells for Ewald summations ! ! Syntax: ! ! ESR ! iesr ! ! Example: ! ! ESR ! 3 ! ! Where: ! ! iesr (integer) determines the number of neighbour cells to be ! considered: ! iesr = 1 : nearest-neighbour cells (default) ! iesr = 2 : next-to-nearest-neighbour cells ! and so on ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_esr( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line ! IF ( tesr ) THEN CALL errore( ' card_esr ', ' two occurrences', 2 ) ENDIF CALL read_line( input_line ) READ(input_line,*) iesr_inp ! tesr = .true. ! RETURN ! END SUBROUTINE card_esr ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! CELL_PARAMETERS ! ! use the specified cell dimensions ! ! Syntax: ! ! CELL_PARAMETERS (cell_option) ! HT(1,1) HT(1,2) HT(1,3) ! HT(2,1) HT(2,2) HT(2,3) ! HT(3,1) HT(3,2) HT(3,3) ! ! cell_option == alat lattice vectors in units of alat (default) ! cell_option == bohr lattice vectors in Bohr ! cell_option == angstrom lattice vectors in Angstrom ! ! Example: ! ! CELL_PARAMETERS ! 24.50644311 0.00004215 -0.14717844 ! -0.00211522 8.12850030 1.70624903 ! 0.16447787 0.74511792 23.07395418 ! ! Where: ! ! HT(i,j) (real) cell dimensions ( in a.u. ), ! note the relation with lattice vectors: ! HT(1,:) = A1, HT(2,:) = A2, HT(3,:) = A3 ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_cell_parameters( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, j LOGICAL, EXTERNAL :: matches ! ! IF ( tcell ) THEN CALL errore( ' card_cell_parameters ', ' two occurrences', 2 ) ENDIF ! IF ( matches( "BOHR", input_line ) ) THEN cell_units = 'bohr' ELSEIF ( matches( "ANGSTROM", input_line ) ) THEN cell_units = 'angstrom' ELSE cell_units = 'alat' ENDIF ! DO i = 1, 3 CALL read_line( input_line ) READ(input_line,*) ( rd_ht( i, j ), j = 1, 3 ) ENDDO ! trd_ht = .true. tcell = .true. ! RETURN ! END SUBROUTINE card_cell_parameters ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_VELOCITIES ! ! read velocities (in atomic units) from standard input ! ! Syntax: ! ! ATOMIC_VELOCITIES ! label(1) Vx(1) Vy(1) Vz(1) ! .... ! label(n) Vx(n) Vy(n) Vz(n) ! ! Example: ! ! ??? ! ! Where: ! ! label (character(len=4)) atomic label ! Vx(:), Vy(:) and Vz(:) (REAL) x, y and z velocity components of ! the ions ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_ion_velocities( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: ia, k, is, nfield CHARACTER(len=4) :: lb_vel ! ! IF( tionvel ) THEN CALL errore( ' card_ion_velocities ', ' two occurrences', 2 ) ENDIF ! IF( .not. taspc ) THEN CALL errore( ' card_ion_velocities ', & & ' ATOMIC_SPECIES must be present before ', 2 ) ENDIF ! rd_vel = 0.0_DP sp_vel = 0 ! IF ( ion_velocities == 'from_input' ) THEN ! tavel = .true. ! DO ia = 1, nat ! CALL read_line( input_line ) CALL field_count( nfield, input_line ) IF ( nfield == 4 ) THEN READ(input_line,*) lb_vel, ( rd_vel(k,ia), k = 1, 3 ) ELSE CALL errore( ' iosys ', & & ' wrong entries in ION_VELOCITIES ', ia ) ENDIF ! match_label: DO is = 1, ntyp IF ( trim( lb_vel ) == atom_label(is) ) THEN sp_vel(ia) = is exit match_label ENDIF ENDDO match_label ! IF ( sp_vel(ia) < 1 .or. sp_vel(ia) > ntyp ) THEN CALL errore( ' iosys ', ' wrong LABEL in ION_VELOCITIES ', ia ) ENDIF ! ENDDO ! ENDIF ! tionvel = .true. ! RETURN ! END SUBROUTINE ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! CONSTRAINTS ! ! Ionic Constraints ! ! Syntax: ! ! CONSTRAINTS ! NCONSTR CONSTR_TOL ! CONSTR_TYPE(.) CONSTR(1,.) CONSTR(2,.) ... { CONSTR_TARGET(.) } ! ! Where: ! ! NCONSTR(INTEGER) number of constraints ! ! CONSTR_TOL tolerance for keeping the constraints ! satisfied ! ! CONSTR_TYPE(.) type of constrain: ! 1: for fixed distances ( two atom indexes must ! be specified ) ! 2: for fixed planar angles ( three atom indexes ! must be specified ) ! ! CONSTR(1,.) CONSTR(2,.) ... ! ! indices object of the constraint, as ! they appear in the 'POSITION' CARD ! ! CONSTR_TARGET target for the constrain ( in the case of ! planar angles it is the COS of the angle ). ! this variable is optional. ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_constraints( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, nfield ! ! IF ( tconstr ) CALL errore( 'card_constraints', 'two occurrences', 2 ) ! CALL read_line( input_line ) ! CALL field_count( nfield, input_line ) ! IF ( nfield == 1 ) THEN ! READ( input_line, * ) nconstr_inp ! ELSEIF ( nfield == 2 ) THEN ! READ( input_line, * ) nconstr_inp, constr_tol_inp ! ELSE ! CALL errore( 'card_constraints', 'too many fields', nfield ) ! ENDIF WRITE(stdout,'(5x,a,i4,a,f12.6)') & 'Reading',nconstr_inp,' constraints; tolerance:', constr_tol_inp ! CALL allocate_input_constr() ! DO i = 1, nconstr_inp ! CALL read_line( input_line ) ! READ( input_line, * ) constr_type_inp(i) ! CALL field_count( nfield, input_line ) ! IF ( nfield > nc_fields + 2 ) & CALL errore( 'card_constraints', & 'too many fields for this constraint', i ) ! SELECT CASE( constr_type_inp(i) ) CASE( 'type_coord', 'atom_coord' ) ! IF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i) ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6)') i, & ') '//constr_type_inp(i)(1:4),int(constr_inp(1,i)) ,& ' coordination wrt type:', int(constr_inp(2,i)), & ' cutoff distance and smoothing:', constr_inp(3:4,i) ELSEIF ( nfield == 6 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') i, & ') '//constr_type_inp(i)(1:4),int(constr_inp(1,i)) , & ' coordination wrt type:', int(constr_inp(2,i)), & ' cutoff distance and smoothing:', constr_inp(3:4,i), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', 'type_coord, ' // & & 'atom_coord: wrong number of fields', nfield ) ! ENDIF ! CASE( 'distance' ) ! IF ( nfield == 3 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i) ! WRITE(stdout,'(7x,i3,a,2i3)') & i,') distance between atoms: ', int(constr_inp(1:2,i)) ELSEIF ( nfield == 4 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout,'(7x,i3,a,2i3,a,f12.6)') i, & ') distance between atoms: ', int(constr_inp(1:2,i)), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'distance: wrong number of fields', nfield ) ! ENDIF ! CASE( 'planar_angle' ) ! IF ( nfield == 4 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i) ! WRITE(stdout, '(7x,i3,a,3i3)') & i,') planar angle between atoms: ', int(constr_inp(1:3,i)) ELSEIF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout, '(7x,i3,a,3i3,a,f12.6)') i, & ') planar angle between atoms: ', int(constr_inp(1:3,i)), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'planar_angle: wrong number of fields', nfield ) ! ENDIF ! CASE( 'torsional_angle' ) ! IF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i) ! WRITE(stdout, '(7x,i3,a,4i3)') & i,') torsional angle between atoms: ', int(constr_inp(1:4,i)) ELSEIF ( nfield == 6 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout, '(7x,i3,a,4i3,a,f12.6)') i, & ') torsional angle between atoms: ', int(constr_inp(1:4,i)),& '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'torsional_angle: wrong number of fields', nfield ) ! ENDIF ! CASE( 'bennett_proj' ) ! IF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i) ! WRITE(stdout, '(7x,i3,a,i3,a,3f12.6)') i, & ') bennet projection of atom ', int(constr_inp(1,i)), & ' along vector:', constr_inp(2:4,i) ELSEIF ( nfield == 6 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout, '(7x,i3,a,i3,a,3f12.6,a,f12.6)') i, & ') bennet projection of atom ', int(constr_inp(1,i)), & ' along vector:', constr_inp(2:4,i), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'bennett_proj: wrong number of fields', nfield ) ! ENDIF ! CASE DEFAULT ! CALL errore( 'card_constraints', 'unknown constraint ' // & & 'type: ' // trim( constr_type_inp(i) ), 1 ) ! END SELECT ! ENDDO ! tconstr = .true. ! RETURN ! END SUBROUTINE card_constraints ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! KSOUT ! ! Enable the printing of Kohn Sham states ! ! Syntax ( nspin == 2 ): ! ! KSOUT ! nu ! iu(1) iu(2) iu(3) .. iu(nu) ! nd ! id(1) id(2) id(3) .. id(nd) ! ! Syntax ( nspin == 1 ): ! ! KSOUT ! ns ! is(1) is(2) is(3) .. is(ns) ! ! Example: ! ! ??? ! ! Where: ! ! nu (integer) number of spin=1 states to be printed ! iu(:) (integer) indexes of spin=1 states, the state iu(k) ! is saved to file KS_UP.iu(k) ! ! nd (integer) number of spin=2 states to be printed ! id(:) (integer) indexes of spin=2 states, the state id(k) ! is saved to file KS_DW.id(k) ! ! ns (integer) number of LDA states to be printed ! is(:) (integer) indexes of LDA states, the state is(k) ! is saved to file KS.is(k) ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_ksout( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, s, nksx TYPE occupancy_type INTEGER, POINTER :: occs(:) END TYPE occupancy_type TYPE(occupancy_type), ALLOCATABLE :: is(:) ! IF ( tksout ) THEN CALL errore( ' card_ksout ', ' two occurrences', 2 ) ENDIF ! nprnks = 0 nksx = 0 ! ALLOCATE ( is (nspin) ) ! DO s = 1, nspin ! CALL read_line( input_line ) READ(input_line, *) nprnks( s ) ! IF ( nprnks( s ) < 1 ) THEN CALL errore( ' card_ksout ', ' wrong number of states ', 2 ) ENDIF ! ALLOCATE( is(s)%occs( 1:nprnks(s) ) ) ! CALL read_line( input_line ) READ(input_line, *) ( is(s)%occs(i), i = 1, nprnks( s ) ) ! nksx = max( nksx, nprnks( s ) ) ! ENDDO ! CALL allocate_input_iprnks( nksx, nspin ) ! DO s = 1, nspin ! DO i = 1, nprnks( s ) ! iprnks( i, s ) = is(s)%occs(i) ! ENDDO ! DEALLOCATE( is(s)%occs ) ! ENDDO ! DEALLOCATE( is ) ! tksout = .true. ! RETURN ! END SUBROUTINE ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! PLOT WANNIER ! ! Needed to specify the indices of the wannier functions that ! have to be plotted ! ! Syntax: ! ! PLOT_WANNIER ! index1, ..., indexN ! ! Where: ! ! index1, ..., indexN are indices of the wannier functions ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_plot_wannier( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line LOGICAL, EXTERNAL :: matches ! INTEGER :: i, ib CHARACTER(len=5) :: i_char CHARACTER(len=6), EXTERNAL :: int_to_char ! ! IF ( twannier ) & CALL errore( 'card_plot_wannier', 'two occurrences', 2 ) ! IF ( nwf > 0 ) THEN ! IF ( nwf > nwf_max ) & CALL errore( 'card_plot_wannier', 'too many wannier functions', 1 ) ! CALL read_line( input_line ) ! ib = 0 ! DO i = 1, nwf_max ! i_char = int_to_char( i ) ! IF ( matches( ' ' // trim( i_char ) // ',', & ' ' // trim( input_line ) // ',' ) ) THEN ! ib = ib + 1 ! IF ( ib > nwf ) & CALL errore( 'card_plot_wannier', 'too many indices', 1 ) ! wannier_index(ib) = i ! ENDIF ! ENDDO ! ENDIF ! twannier = .true. ! RETURN ! END SUBROUTINE card_plot_wannier ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ! TEMPLATE ! ! This is a template card info section ! ! Syntax: ! ! TEMPLATE ! RVALUE IVALUE ! ! Example: ! ! ??? ! ! Where: ! ! RVALUE (real) This is a real value ! IVALUE (integer) This is an integer value ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_template( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line ! ! IF ( ttemplate ) THEN CALL errore( ' card_template ', ' two occurrences', 2 ) ENDIF ! ! .... CODE HERE ! ttemplate = .true. ! RETURN ! END SUBROUTINE ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- !WANNIER_AC !Wannier# 1 10.5 15.7 2 !atom 1 !d 1 0.45 !p 3 0.55 !Wannier# 2 10.5 15.7 1 !atom 3 !p 1 0.8 !Spin#2: !Wannier# 1 10.5 15.7 2 !atom 1 !d 1 0.45 !p 3 0.55 !Wannier# 2 10.5 15.7 1 !atom 3 !p 1 0.8 !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_wannier_ac( input_line ) ! USE wannier_new, ONLY: nwan IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i,j,k, nfield, iwan, ning, iatom,il,im,ispin LOGICAL :: tend REAL :: c, b_from, b_to CHARACTER(len=10) :: text, lo ispin = 1 ! DO i = 1, nwan ! CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'end of file reading trial wfc composition', i ) ! CALL field_count( nfield, input_line ) ! IF ( nfield == 4 ) THEN READ(input_line,*) text, iwan, b_from, b_to ning = 1 ELSEIF ( nfield == 5 ) THEN READ(input_line,*) text, iwan, b_from, b_to, ning ELSE CALL errore( 'read_cards', & 'wrong format', nfield ) ENDIF IF(iwan/=i) CALL errore( 'read_cards', 'wrong wannier order', iwan) ! Read atom number CALL read_line( input_line, end_of_file = tend ) READ(input_line,*) text, iatom ! wan_data(iwan,ispin)%iatom = iatom wan_data(iwan,ispin)%ning = ning wan_data(iwan,ispin)%bands_from = b_from wan_data(iwan,ispin)%bands_to = b_to ! DO j=1, ning CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'not enough wavefunctions', j ) IF (ning==1) THEN READ(input_line,*) lo,im c = 1.d0 ELSE READ(input_line,*) lo,im,c ENDIF SELECT CASE(trim(lo)) CASE('s') il = 0 CASE('p') il = 1 CASE('d') il = 2 CASE('f') il = 3 CASE DEFAULT CALL errore( 'read_cards', & 'wrong l-label', 1 ) END SELECT wan_data(iwan,ispin)%ing(j)%l = il wan_data(iwan,ispin)%ing(j)%m = im wan_data(iwan,ispin)%ing(j)%c = c ENDDO ENDDO !Is there spin 2 information? CALL read_line( input_line, end_of_file = tend ) ! IF ( .not. tend ) THEN READ(input_line,*) text IF ( trim(text) == 'Spin#2:') THEN ! ok, there is spin 2 data ispin = 2 ! DO i = 1, nwan ! CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'end of file reading trial wfc composition', i ) ! CALL field_count( nfield, input_line ) ! IF ( nfield == 4 ) THEN READ(input_line,*) text, iwan, b_from, b_to ning = 1 ELSEIF ( nfield == 4 ) THEN READ(input_line,*) text, iwan, b_from, b_to, ning ELSE CALL errore( 'read_cards', & 'wrong format', nfield ) ENDIF IF(iwan/=i) CALL errore( 'read_cards', 'wrong wannier order', iwan) ! Read atom number CALL read_line( input_line, end_of_file = tend ) READ(input_line,*) text, iatom ! wan_data(iwan,ispin)%iatom = iatom wan_data(iwan,ispin)%ning = ning wan_data(iwan,ispin)%bands_from = b_from wan_data(iwan,ispin)%bands_to = b_to ! DO j=1, ning CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'not enough wavefunctions', j ) IF (ning==1) THEN READ(input_line,*) lo,im c = 1.d0 ELSE READ(input_line,*) lo,im,c ENDIF SELECT CASE(trim(lo)) CASE('s') il = 0 CASE('p') il = 1 CASE('d') il = 2 CASE('f') il = 3 CASE DEFAULT CALL errore( 'read_cards', & 'wrong l-label', 1 ) END SELECT wan_data(iwan,ispin)%ing(j)%l = il wan_data(iwan,ispin)%ing(j)%m = im wan_data(iwan,ispin)%ing(j)%c = c ENDDO ENDDO ENDIF ENDIF ! RETURN ! END SUBROUTINE card_wannier_ac END MODULE read_cards_module espresso-5.0.2/Modules/becmod.f900000644000700200004540000003547712053145633015563 0ustar marsamoscm! ! Copyright (C) 2001-2007 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- ! MODULE becmod ! ! ... *bec* contain - used in h_psi, s_psi, many other places ! ... calbec( npw, beta, psi, betapsi [, nbnd ] ) is an interface calculating ! ... betapsi(i,j) = (the sum is over npw components) ! ... or betapsi(i,s,j)= (s=polarization index) ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only, smallmem USE gvect, ONLY : gstart USE noncollin_module, ONLY : noncolin, npol ! SAVE ! #ifdef __STD_F95 TYPE bec_type REAL(DP), POINTER :: r(:,:) ! appropriate for gammaonly COMPLEX(DP),POINTER :: k(:,:) ! appropriate for generic k COMPLEX(DP),POINTER :: nc(:,:,:) ! appropriate for noncolin INTEGER :: comm INTEGER :: nbnd INTEGER :: nproc INTEGER :: mype INTEGER :: nbnd_loc INTEGER :: ibnd_begin END TYPE bec_type #else TYPE bec_type REAL(DP), ALLOCATABLE :: r(:,:) ! appropriate for gammaonly COMPLEX(DP),ALLOCATABLE :: k(:,:) ! appropriate for generic k COMPLEX(DP),ALLOCATABLE :: nc(:,:,:) ! appropriate for noncolin INTEGER :: comm INTEGER :: nbnd INTEGER :: nproc INTEGER :: mype INTEGER :: nbnd_loc INTEGER :: ibnd_begin END TYPE bec_type #endif ! TYPE (bec_type) :: becp ! PRIVATE REAL(DP), ALLOCATABLE :: & becp_r(:,:) ! for real (at Gamma) wavefunctions COMPLEX(DP), ALLOCATABLE :: & becp_k (:,:), & ! as above for complex wavefunctions becp_nc(:,:,:) ! as above for spinors ! INTERFACE calbec ! MODULE PROCEDURE calbec_k, calbec_gamma, calbec_gamma_nocomm, calbec_nc, calbec_bec_type ! END INTERFACE INTERFACE becscal ! MODULE PROCEDURE becscal_nck, becscal_gamma ! END INTERFACE ! PUBLIC :: bec_type, becp, allocate_bec_type, deallocate_bec_type, calbec, & beccopy, becscal, is_allocated_bec_type ! CONTAINS !----------------------------------------------------------------------- SUBROUTINE calbec_bec_type ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- !_ USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_size, mp_rank, mp_get_comm_null ! IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) TYPE (bec_type), INTENT (inout) :: betapsi ! NB: must be INOUT otherwise ! the allocatd array is lost INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd ! INTEGER :: local_nbnd INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block INTEGER :: nproc, mype, m_loc, m_begin, m_max, ip INTEGER :: ibnd, ibnd_loc REAL(DP), ALLOCATABLE :: dtmp(:,:) ! IF ( present (nbnd) ) THEN local_nbnd = nbnd ELSE local_nbnd = size ( psi, 2) ENDIF IF ( gamma_only ) THEN ! IF( betapsi%comm == mp_get_comm_null() ) THEN ! CALL calbec_gamma ( npw, beta, psi, betapsi%r, local_nbnd, intra_bgrp_comm ) ! ELSE ! ALLOCATE( dtmp( SIZE( betapsi%r, 1 ), SIZE( betapsi%r, 2 ) ) ) ! DO ip = 0, betapsi%nproc - 1 m_loc = ldim_block( betapsi%nbnd , betapsi%nproc, ip ) m_begin = gind_block( 1, betapsi%nbnd, betapsi%nproc, ip ) IF( ( m_begin + m_loc - 1 ) > local_nbnd ) m_loc = local_nbnd - m_begin + 1 IF( m_loc > 0 ) THEN CALL calbec_gamma ( npw, beta, psi(:,m_begin:m_begin+m_loc-1), dtmp, m_loc, betapsi%comm ) IF( ip == betapsi%mype ) THEN betapsi%r(:,1:m_loc) = dtmp(:,1:m_loc) END IF END IF END DO DEALLOCATE( dtmp ) ! END IF ! ELSEIF ( noncolin) THEN ! CALL calbec_nc ( npw, beta, psi, betapsi%nc, local_nbnd ) ! ELSE ! CALL calbec_k ( npw, beta, psi, betapsi%k, local_nbnd ) ! ENDIF ! RETURN ! END SUBROUTINE calbec_bec_type !----------------------------------------------------------------------- SUBROUTINE calbec_gamma_nocomm ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- USE mp_global, ONLY: intra_bgrp_comm IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) REAL (DP), INTENT (out) :: betapsi(:,:) INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd INTEGER :: m IF ( present (nbnd) ) THEN m = nbnd ELSE m = size ( psi, 2) ENDIF CALL calbec_gamma ( npw, beta, psi, betapsi, m, intra_bgrp_comm ) RETURN ! END SUBROUTINE calbec_gamma_nocomm !----------------------------------------------------------------------- SUBROUTINE calbec_gamma ( npw, beta, psi, betapsi, nbnd, comm ) !----------------------------------------------------------------------- ! ! ... matrix times matrix with summation index (k=1,npw) running on ! ... half of the G-vectors or PWs - assuming k=0 is the G=0 component: ! ... betapsi(i,j) = 2Re(\sum_k beta^*(i,k)psi(k,j)) + beta^*(i,0)psi(0,j) ! USE mp, ONLY : mp_sum IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) REAL (DP), INTENT (out) :: betapsi(:,:) INTEGER, INTENT (in) :: npw INTEGER, INTENT (in) :: nbnd INTEGER, INTENT (in) :: comm ! INTEGER :: nkb, npwx, m ! m = nbnd ! nkb = size (beta, 2) IF ( nkb == 0 ) RETURN ! CALL start_clock( 'calbec' ) npwx= size (beta, 1) IF ( npwx /= size (psi, 1) ) CALL errore ('calbec', 'size mismatch', 1) IF ( npwx < npw ) CALL errore ('calbec', 'size mismatch', 2) #ifdef DEBUG WRITE (*,*) 'calbec gamma' WRITE (*,*) nkb, size (betapsi,1) , m , size (betapsi, 2) #endif IF ( nkb /= size (betapsi,1) .or. m > size (betapsi, 2) ) & CALL errore ('calbec', 'size mismatch', 3) ! IF ( m == 1 ) THEN ! CALL DGEMV( 'C', 2*npw, nkb, 2.0_DP, beta, 2*npwx, psi, 1, 0.0_DP, & betapsi, 1 ) IF ( gstart == 2 ) betapsi(:,1) = betapsi(:,1) - beta(1,:)*psi(1,1) ! ELSE ! CALL DGEMM( 'C', 'N', nkb, m, 2*npw, 2.0_DP, beta, 2*npwx, psi, & 2*npwx, 0.0_DP, betapsi, nkb ) IF ( gstart == 2 ) & CALL DGER( nkb, m, -1.0_DP, beta, 2*npwx, psi, 2*npwx, betapsi, nkb ) ! ENDIF ! CALL mp_sum( betapsi( :, 1:m ), comm ) ! CALL stop_clock( 'calbec' ) ! RETURN ! END SUBROUTINE calbec_gamma ! !----------------------------------------------------------------------- SUBROUTINE calbec_k ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- ! ! ... matrix times matrix with summation index (k=1,npw) running on ! ... G-vectors or PWs : betapsi(i,j) = \sum_k beta^*(i,k) psi(k,j) ! USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) COMPLEX (DP), INTENT (out) :: betapsi(:,:) INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd ! INTEGER :: nkb, npwx, m ! nkb = size (beta, 2) IF ( nkb == 0 ) RETURN ! CALL start_clock( 'calbec' ) npwx= size (beta, 1) IF ( npwx /= size (psi, 1) ) CALL errore ('calbec', 'size mismatch', 1) IF ( npwx < npw ) CALL errore ('calbec', 'size mismatch', 2) IF ( present (nbnd) ) THEN m = nbnd ELSE m = size ( psi, 2) ENDIF #ifdef DEBUG WRITE (*,*) 'calbec k' WRITE (*,*) nkb, size (betapsi,1) , m , size (betapsi, 2) #endif IF ( nkb /= size (betapsi,1) .or. m > size (betapsi, 2) ) & CALL errore ('calbec', 'size mismatch', 3) ! IF ( m == 1 ) THEN ! CALL ZGEMV( 'C', npw, nkb, (1.0_DP,0.0_DP), beta, npwx, psi, 1, & (0.0_DP, 0.0_DP), betapsi, 1 ) ! ELSE ! CALL ZGEMM( 'C', 'N', nkb, m, npw, (1.0_DP,0.0_DP), & beta, npwx, psi, npwx, (0.0_DP,0.0_DP), betapsi, nkb ) ! ENDIF ! CALL mp_sum( betapsi( :, 1:m ), intra_bgrp_comm ) ! CALL stop_clock( 'calbec' ) ! RETURN ! END SUBROUTINE calbec_k ! !----------------------------------------------------------------------- SUBROUTINE calbec_nc ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- ! ! ... matrix times matrix with summation index (k below) running on ! ... G-vectors or PWs corresponding to two different polarizations: ! ... betapsi(i,1,j) = \sum_k=1,npw beta^*(i,k) psi(k,j) ! ... betapsi(i,2,j) = \sum_k=1,npw beta^*(i,k) psi(k+npwx,j) ! USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) COMPLEX (DP), INTENT (out) :: betapsi(:,:,:) INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd ! INTEGER :: nkb, npwx, npol, m ! nkb = size (beta, 2) IF ( nkb == 0 ) RETURN ! CALL start_clock ('calbec') npwx= size (beta, 1) IF ( 2*npwx /= size (psi, 1) ) CALL errore ('calbec', 'size mismatch', 1) IF ( npwx < npw ) CALL errore ('calbec', 'size mismatch', 2) IF ( present (nbnd) ) THEN m = nbnd ELSE m = size ( psi, 2) ENDIF npol= size (betapsi, 2) #ifdef DEBUG WRITE (*,*) 'calbec nc' WRITE (*,*) nkb, size (betapsi,1) , m , size (betapsi, 3) #endif IF ( nkb /= size (betapsi,1) .or. m > size (betapsi, 3) ) & CALL errore ('calbec', 'size mismatch', 3) ! CALL ZGEMM ('C', 'N', nkb, m*npol, npw, (1.0_DP, 0.0_DP), beta, & npwx, psi, npwx, (0.0_DP, 0.0_DP), betapsi, nkb) ! CALL mp_sum( betapsi( :, :, 1:m ), intra_bgrp_comm ) ! CALL stop_clock( 'calbec' ) ! RETURN ! END SUBROUTINE calbec_nc ! ! !----------------------------------------------------------------------- FUNCTION is_allocated_bec_type (bec) RESULT (isalloc) !----------------------------------------------------------------------- IMPLICIT NONE TYPE (bec_type) :: bec LOGICAL :: isalloc #ifdef __STD_F95 isalloc = (associated(bec%r) .or. associated(bec%nc) .or. associated(bec%k)) #else isalloc = (allocated(bec%r) .or. allocated(bec%nc) .or. allocated(bec%k)) #endif RETURN ! !----------------------------------------------------------------------- END FUNCTION is_allocated_bec_type !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE allocate_bec_type ( nkb, nbnd, bec, comm ) !----------------------------------------------------------------------- USE mp, ONLY: mp_size, mp_rank, mp_get_comm_null IMPLICIT NONE TYPE (bec_type) :: bec INTEGER, INTENT (in) :: nkb, nbnd INTEGER, INTENT (in), OPTIONAL :: comm INTEGER :: ierr, nbnd_siz INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block ! #ifdef __STD_F95 NULLIFY(bec%r) NULLIFY(bec%nc) NULLIFY(bec%k) #endif ! nbnd_siz = nbnd bec%comm = mp_get_comm_null() bec%nbnd = nbnd bec%mype = 0 bec%nproc = 1 bec%nbnd_loc = nbnd bec%ibnd_begin = 1 ! IF( PRESENT( comm ) .AND. gamma_only .AND. smallmem ) THEN bec%comm = comm bec%nproc = mp_size( comm ) IF( bec%nproc > 1 ) THEN nbnd_siz = nbnd / bec%nproc IF( MOD( nbnd, bec%nproc ) /= 0 ) nbnd_siz = nbnd_siz + 1 bec%mype = mp_rank( bec%comm ) bec%nbnd_loc = ldim_block( becp%nbnd , bec%nproc, bec%mype ) bec%ibnd_begin = gind_block( 1, becp%nbnd, bec%nproc, bec%mype ) END IF END IF ! IF ( gamma_only ) THEN ! ALLOCATE( bec%r( nkb, nbnd_siz ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_bec_type ', ' cannot allocate bec%r ', ABS(ierr) ) ! bec%r(:,:)=0.0D0 ! ELSEIF ( noncolin) THEN ! ALLOCATE( bec%nc( nkb, npol, nbnd_siz ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_bec_type ', ' cannot allocate bec%nc ', ABS(ierr) ) ! bec%nc(:,:,:)=(0.0D0,0.0D0) ! ELSE ! ALLOCATE( bec%k( nkb, nbnd_siz ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_bec_type ', ' cannot allocate bec%k ', ABS(ierr) ) ! bec%k(:,:)=(0.0D0,0.0D0) ! ENDIF ! RETURN ! END SUBROUTINE allocate_bec_type ! !----------------------------------------------------------------------- SUBROUTINE deallocate_bec_type (bec) !----------------------------------------------------------------------- ! USE mp, ONLY: mp_get_comm_null IMPLICIT NONE TYPE (bec_type) :: bec ! bec%comm = mp_get_comm_null() bec%nbnd = 0 ! #ifdef __STD_F95 IF (associated(bec%r)) DEALLOCATE(bec%r) IF (associated(bec%nc)) DEALLOCATE(bec%nc) IF (associated(bec%k)) DEALLOCATE(bec%k) #else IF (allocated(bec%r)) DEALLOCATE(bec%r) IF (allocated(bec%nc)) DEALLOCATE(bec%nc) IF (allocated(bec%k)) DEALLOCATE(bec%k) #endif ! RETURN ! END SUBROUTINE deallocate_bec_type SUBROUTINE beccopy(bec, bec1, nkb, nbnd) IMPLICIT NONE TYPE(bec_type), INTENT(in) :: bec TYPE(bec_type) :: bec1 INTEGER, INTENT(in) :: nkb, nbnd IF (gamma_only) THEN CALL dcopy(nkb*nbnd, bec1%r, 1, bec%r, 1) ELSEIF (noncolin) THEN CALL zcopy(nkb*npol*nbnd, bec%nc, 1, bec1%nc, 1) ELSE CALL zcopy(nkb*nbnd, bec%k, 1, bec1%k, 1) ENDIF RETURN END SUBROUTINE beccopy SUBROUTINE becscal_nck(alpha, bec, nkb, nbnd) IMPLICIT NONE TYPE(bec_type), INTENT(INOUT) :: bec COMPLEX(DP), INTENT(IN) :: alpha INTEGER, INTENT(IN) :: nkb, nbnd IF (gamma_only) THEN CALL errore('becscal_nck','called in the wrong case',1) ELSEIF (noncolin) THEN CALL zscal(nkb*npol*nbnd, alpha, bec%nc, 1) ELSE CALL zscal(nkb*nbnd, alpha, bec%k, 1) ENDIF RETURN END SUBROUTINE becscal_nck SUBROUTINE becscal_gamma(alpha, bec, nkb, nbnd) IMPLICIT NONE TYPE(bec_type), INTENT(INOUT) :: bec REAL(DP), INTENT(IN) :: alpha INTEGER, INTENT(IN) :: nkb, nbnd IF (gamma_only) THEN CALL dscal(nkb*nbnd, alpha, bec%r, 1) ELSE CALL errore('becscal_gamma','called in the wrong case',1) ENDIF RETURN END SUBROUTINE becscal_gamma END MODULE becmod espresso-5.0.2/Modules/input_parameters.f900000644000700200004540000020274612053145633017707 0ustar marsamoscm! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------------=! ! MODULE input_parameters ! !=----------------------------------------------------------------------------=! ! ! this module contains ! 1) the definitions of all input parameters ! (both those read from namelists and those read from cards) ! 2) the definitions of all namelists ! 3) routines that allocate data needed in input ! Note that all values are initialized, but the default values should be ! set in the appropriate routines contained in module "read_namelists" ! The documentation of input variables can be found in Doc/INPUT_PW.* ! (for pw.x) or in Doc/INPUT_CP (for cp.x) ! Originally written by Carlo Cavazzoni for FPMD ! !=----------------------------------------------------------------------------=! ! USE kinds, ONLY : DP USE parameters, ONLY : nsx, lqmax USE wannier_new,ONLY : wannier_data ! IMPLICIT NONE ! SAVE ! !=----------------------------------------------------------------------------=! ! BEGIN manual ! ! ! * DESCRIPTION OF THE INPUT FILE ! (to be given as standard input) ! ! The input file has the following layout: ! ! &CONTROL ! control_parameter_1, ! control_parameter_2, ! ....... ! control_parameter_Lastone ! / ! &SYSTEM ! sistem_parameter_1, ! sistem_parameter_2, ! ....... ! sistem_parameter_Lastone ! / ! &ELECTRONS ! electrons_parameter_1, ! electrons_parameter_2, ! ....... ! electrons_parameter_Lastone ! / ! &IONS ! ions_parameter_1, ! ions_parameter_2, ! ....... ! ions_parameter_Lastone ! / ! &CELL ! cell_parameter_1, ! cell_parameter_2, ! ....... ! cell_parameter_Lastone ! / ! ATOMIC_SPECIES ! slabel_1 mass_1 pseudo_file_1 ! slabel_2 mass_2 pseudo_file_2 ! ..... ! ATOMIC_POSITIONS ! alabel_1 px_1 py_1 pz_1 ! alabel_2 px_2 py_2 pz_2 ! ..... ! CARD_3 ! .... ! CARD_N ! ! -- end of input file -- ! !=----------------------------------------------------------------------------=! ! CONTROL Namelist Input Parameters !=----------------------------------------------------------------------------=! ! CHARACTER(len=80) :: title = ' ' ! a string describing the current job CHARACTER(len=80) :: calculation = 'none' ! Specify the type of the simulation ! See below for allowed values CHARACTER(len=80) :: calculation_allowed(15) DATA calculation_allowed / 'scf', 'nscf', 'relax', 'md', 'cp', & 'vc-relax', 'vc-md', 'vc-cp', 'bands', 'neb', 'smd', 'cp-wf', & 'cp-wf-nscf','cp-wf-pbe0', 'pbe0-nscf'/ ! Lingzhu Kong CHARACTER(len=80) :: verbosity = 'default' ! define the verbosity of the code output CHARACTER(len=80) :: verbosity_allowed(6) DATA verbosity_allowed / 'debug', 'high', 'medium', 'default', & 'low', 'minimal' / CHARACTER(len=80) :: restart_mode = 'restart' ! specify how to start/restart the simulation CHARACTER(len=80) :: restart_mode_allowed(3) DATA restart_mode_allowed / 'from_scratch', 'restart', 'reset_counters' / INTEGER :: nstep = 10 ! number of simulation steps, see "restart_mode" INTEGER :: iprint = 10 ! number of steps/scf iterations between successive writings ! of relevant physical quantities to standard output INTEGER :: isave = 100 ! number of steps between successive savings of ! information needed to restart the run (see "ndr", "ndw") ! used only in CP LOGICAL :: tstress = .true. ! .TRUE. calculate the stress tensor ! .FALSE. do not calculate the stress tensor LOGICAL :: tprnfor = .true. ! .TRUE. calculate the atomic forces ! .FALSE. do not calculate the atomic forces REAL(DP) :: dt = 1.0_DP ! time step for molecular dynamics simulation, in atomic units ! CP: 1 a.u. of time = 2.4189 * 10^-17 s, PW: twice that much ! Typical values for CP simulations are between 1 and 10 a.u. ! For Born-Oppenheimer simulations, larger values can be used, ! since it mostly depends only upon the mass of ions. INTEGER :: ndr = 50 ! Fortran unit from which the code reads the restart file INTEGER :: ndw = 50 ! Fortran unit to which the code writes the restart file CHARACTER(len=256) :: outdir = './' ! specify the directory where the code opens output and restart ! files. When possible put this directory in the fastest available ! filesystem ( not NFS! ) CHARACTER(len=256) :: prefix = 'prefix' ! specify the prefix for the output file, if not specified the ! files are opened as standard fortran units. CHARACTER(len=256) :: pseudo_dir = './' ! specify the directory containing the pseudopotentials REAL(DP) :: refg = 0.05_DP ! Accurancy of the interpolation table, interval between ! table values in Rydberg CHARACTER(len=256) :: wfcdir = 'undefined' ! scratch directory that is hopefully local to the node ! to store large, usually temporary files. REAL(DP) :: max_seconds = 1.0E+7_DP ! smoothly terminate program after the specified number of seconds ! this parameter is typically used to prevent an hard kill from ! the queuing system. REAL(DP) :: ekin_conv_thr = 1.0E-5_DP ! convergence criterion for electron minimization ! this criterion is met when "ekin < ekin_conv_thr" ! convergence is achieved when all criteria are met REAL(DP) :: etot_conv_thr = 1.0E-4_DP ! convergence criterion for ion minimization ! this criterion is met when "etot(n+1)-etot(n) < etot_conv_thr", ! where "n" is the step index, "etot" the DFT energy ! convergence is achieved when all criteria are met REAL(DP) :: forc_conv_thr = 1.0E-3_DP ! convergence criterion for ion minimization ! this criterion is met when "MAXVAL(fion) < forc_conv_thr", ! where fion are the atomic forces ! convergence is achieved when all criteria are met CHARACTER(len=80) :: disk_io = 'default' ! Specify the amount of I/O activities LOGICAL :: tefield = .false. ! if .TRUE. a sawtooth potential simulating a finite electric field ! is added to the local potential = only used in PW LOGICAL :: tefield2 = .false. ! if .TRUE. a second finite electric field is added to the local potential ! only used in CP LOGICAL :: lelfield = .false. ! if .TRUE. a static homogeneous electric field is present ! via the modern theory of polarizability - differs from tefield! LOGICAL :: lorbm = .false. ! if .TRUE. an orbital magnetization is computed (Kubo terms) LOGICAL :: dipfield = .false. ! if .TRUE. the dipole field is subtracted ! only used in PW for surface calculations LOGICAL :: lberry = .false. ! if .TRUE., use modern theory of the polarization INTEGER :: gdir = 0 ! G-vector for polarization calculation ( related to lberry ) ! only used in PW INTEGER :: nppstr = 0 ! number of k-points (parallel vector) ( related to lberry ) ! only used in PW INTEGER :: nberrycyc = 1 !number of covergence cycles on electric field LOGICAL :: wf_collect = .false. ! This flag controls the way wavefunctions are stored to disk: ! .TRUE. collect wavefunctions from all processors, store them ! into a single restart file on a single processors ! .FALSE. do not collect wavefunctions, store them into distributed ! files ! Only for PW and only in the parallel case INTEGER :: printwfc=1 ! if <0 do nothing, if==0 print rho and fort.47, if == nband print band LOGICAL :: saverho = .true. ! This flag controls the saving of charge density in CP codes: ! .TRUE. save charge density to restart dir ! .FALSE. do not save charge density LOGICAL :: tabps = .false. ! for ab-initio pressure and/or surface ! calculations LOGICAL :: lkpoint_dir = .true. ! opens a directory for each k point LOGICAL :: use_wannier = .false. ! use or not Wannier functions LOGICAL :: lecrpa = .FALSE. ! if true symmetry in scf run is neglected for RPA Ec calculation ! CHARACTER(len=256) :: vdw_table_name = ' ' CHARACTER(len=80) :: memory = 'default' ! controls memory usage CHARACTER(len=80) :: memory_allowed(3) DATA memory_allowed / 'small', 'default', 'large' / ! if memory = 'small' then QE tries to use (when implemented) algorithms using less memory, ! even if they are slower than the default ! if memory = 'large' then QE tries to use (when implemented) algorithms using more memory ! to enhance performance. #if defined (__MS2) LOGICAL :: MS2_enabled = .false. ! Enable the shared memory exchange in MS2 CHARACTER(len=256) :: MS2_handler = ' '! Name for the shared memory handler in MS2 #endif NAMELIST / control / title, calculation, verbosity, restart_mode, & nstep, iprint, isave, tstress, tprnfor, dt, ndr, ndw, outdir, & prefix, wfcdir, max_seconds, ekin_conv_thr, etot_conv_thr, & forc_conv_thr, pseudo_dir, disk_io, tefield, dipfield, lberry, & gdir, nppstr, wf_collect, printwfc, lelfield, nberrycyc, refg, & tefield2, saverho, tabps, lkpoint_dir, use_wannier, lecrpa, & vdw_table_name, lorbm, memory #if defined ( __MS2) NAMELIST / control / MS2_enabled, MS2_handler #endif ! !=----------------------------------------------------------------------------=! ! SYSTEM Namelist Input Parameters !=----------------------------------------------------------------------------=! ! INTEGER :: ibrav = 14 ! index of the the Bravais lattice ! Note: in variable cell CP molecular dynamics, usually one does ! not want to put constraints on the cell symmetries, thus ! ibrav = 14 is used REAL(DP) :: celldm(6) = 0.0_DP ! dimensions of the cell (lattice parameters and angles) REAL(DP) :: a = 0.0_DP REAL(DP) :: c = 0.0_DP REAL(DP) :: b = 0.0_DP REAL(DP) :: cosab = 0.0_DP REAL(DP) :: cosac = 0.0_DP REAL(DP) :: cosbc = 0.0_DP ! Alternate definition of the cell - use either this or celldm INTEGER :: nat = 0 ! total number of atoms INTEGER :: ntyp = 0 ! number of atomic species INTEGER :: nbnd = 0 ! number of electronic states, this parameter is MANDATORY in CP REAL(DP):: tot_charge = 0.0_DP ! total system charge REAL(DP) :: tot_magnetization = -1.0_DP ! majority - minority spin. ! A value < 0 means unspecified REAL(DP) :: ecutwfc = 0.0_DP ! energy cutoff for wave functions in k-space ( in Rydberg ) ! this parameter is MANDATORY REAL(DP) :: ecutrho = 0.0_DP ! energy cutoff for charge density in k-space ( in Rydberg ) ! by default its value is "4 * ecutwfc" INTEGER :: nr1 = 0 INTEGER :: nr2 = 0 INTEGER :: nr3 = 0 ! dimensions of the real space grid for charge and potentials ! presently NOT used in CP INTEGER :: nr1s = 0 INTEGER :: nr2s = 0 INTEGER :: nr3s = 0 ! dimensions of the real space grid for wavefunctions ! presently NOT used in CP INTEGER :: nr1b = 0 INTEGER :: nr2b = 0 INTEGER :: nr3b = 0 ! dimensions of the "box" grid for Ultrasoft pseudopotentials CHARACTER(len=80) :: occupations = 'fixed' ! select the way electronic states are filled ! See card 'OCCUPATIONS' if ocupations='from_input' CHARACTER(len=80) :: smearing = 'gaussian' ! select the way electronic states are filled for metalic systems REAL(DP) :: degauss = 0.0_DP ! parameter for the smearing functions - NOT used in CP INTEGER :: nspin = 1 ! number of spinors ! "nspin = 1" for LDA simulations ! "nspin = 2" for LSD simulations ! "nspin = 4" for NON COLLINEAR simulations LOGICAL :: nosym = .true., noinv = .false. ! (do not) use symmetry, q => -q symmetry in k-point generation LOGICAL :: nosym_evc = .false. ! if .true. use symmetry only to symmetrize k points LOGICAL :: force_symmorphic = .false. ! if .true. disable fractionary translations (nonsymmorphic groups) LOGICAL :: use_all_frac = .false. ! if .true. enable usage of all fractionary translations, ! disabling check if they are commensurate with FFT grid REAL(DP) :: ecfixed = 0.0_DP, qcutz = 0.0_DP, q2sigma = 0.0_DP ! parameters for modified kinetic energy functional to be used ! in variable-cell constant cut-off simulations CHARACTER(len=80) :: input_dft = 'none' ! Variable used to overwrite dft definition contained in ! pseudopotential files; 'none' means DFT is read from pseudos. ! Only used in PW - allowed values: any legal DFT value REAL(DP) :: starting_magnetization( nsx ) = 0.0_DP ! ONLY PW LOGICAL :: lda_plus_u = .false. ! Use DFT+U method - following are the needed parameters INTEGER :: lda_plus_u_kind = 0 INTEGER, PARAMETER :: nspinx=2 REAL(DP) :: starting_ns_eigenvalue(lqmax,nspinx,nsx) = -1.0_DP REAL(DP) :: hubbard_u(nsx) = 0.0_DP REAL(DP) :: hubbard_j0(nsx) = 0.0_DP REAL(DP) :: hubbard_j(3,nsx) = 0.0_DP REAL(DP) :: hubbard_alpha(nsx) = 0.0_DP REAL(DP) :: hubbard_beta(nsx) = 0.0_DP CHARACTER(len=80) :: U_projection_type = 'atomic' LOGICAL :: la2F = .false. ! For electron-phonon calculations ! LOGICAL :: step_pen=.false. REAL(DP) :: A_pen(10,nspinx) = 0.0_DP REAL(DP) :: sigma_pen(10) = 0.01_DP REAL(DP) :: alpha_pen(10) = 0.0_DP ! next group of variables PWSCF ONLY ! INTEGER :: nqx1 = 1, nqx2 = 1, nqx3=1 ! REAL(DP) :: exx_fraction = -1.0_DP ! if negative, use defaults REAL(DP) :: screening_parameter = -1.0_DP ! CHARACTER(len=80) :: exxdiv_treatment = 'gygi-baldereschi' ! define how ro cure the Coulomb divergence in EXX ! Allowed values are: CHARACTER(len=80) :: exxdiv_treatment_allowed(6) DATA exxdiv_treatment_allowed / 'gygi-baldereschi', 'gygi-bald', 'g-b',& 'vcut_ws', 'vcut_spherical', 'none' / ! LOGICAL :: x_gamma_extrapolation = .true. REAL(DP) :: yukawa = 0.0_DP REAL(DP) :: ecutvcut = 0.0_DP ! auxiliary variables to define exxdiv treatment LOGICAL :: adaptive_thr = .FALSE. REAL(DP) :: conv_thr_init = 0.001_DP REAL(DP) :: conv_thr_multi = 0.1_DP REAL(DP) :: ecutfock = -1.d0 ! parameters for external electric field INTEGER :: edir = 0 REAL(DP) :: emaxpos = 0.0_DP REAL(DP) :: eopreg = 0.0_DP REAL(DP) :: eamp = 0.0_DP ! Various parameters for noncollinear calculations LOGICAL :: noncolin = .false. LOGICAL :: lspinorb = .false. LOGICAL :: starting_spin_angle=.FALSE. REAL(DP) :: lambda = 1.0_DP REAL(DP) :: fixed_magnetization(3) = 0.0_DP REAL(DP) :: angle1(nsx) = 0.0_DP REAL(DP) :: angle2(nsx) = 0.0_DP INTEGER :: report = 1 LOGICAL :: no_t_rev = .FALSE. CHARACTER(len=80) :: constrained_magnetization = 'none' REAL(DP) :: B_field(3) = 0.0_DP ! A fixed magnetic field defined by the vector B_field is added ! to the exchange and correlation magnetic field. CHARACTER(len=80) :: sic = 'none' ! CP only - SIC correction (D'avezac Mauri) ! Parameters for SIC calculation REAL(DP) :: sic_epsilon = 0.0_DP REAL(DP) :: sic_alpha = 0.0_DP LOGICAL :: force_pairing = .false. LOGICAL :: spline_ps = .false. ! use spline interpolation for pseudopotential LOGICAL :: one_atom_occupations=.false. CHARACTER(len=80) :: assume_isolated = 'none' ! used to define corrections for isolated systems ! other possibilities: ! 'makov-payne', 'martyna-tuckerman`, `dcc`, 'esm' ! LOGICAL :: london = .false. ! if .true. compute semi-empirical dispersion term ( C6_ij / R_ij**6 ) ! other DFT-D parameters ( see PW/mm_dispersion.f90 ) REAL ( DP ) :: london_s6 = 0.75_DP , & ! default global scaling parameter for PBE london_rcut = 200.00_DP #ifdef __ENVIRON ! LOGICAL :: do_environ = .false. #endif ! CHARACTER(LEN=3) :: esm_bc = 'pbc' ! 'pbc': ordinary calculation with periodic boundary conditions ! 'bc1': vacuum-slab-vacuum ! 'bc2': metal-slab-metal ! 'bc3': vacuum-slab-metal REAL(DP) :: esm_efield = 0.0_DP ! applied electronic field [Ryd/a.u.] (used only for esm_bc='bc2') REAL(DP) :: esm_w = 0.0_DP ! position of effective screening medium from z0=L_z/2 [a.u.] ! note: z1 is given by z1=z0+abs(esm_w) INTEGER :: esm_nfit = 4 ! number of z-grid points for polynomial fitting at cell edge LOGICAL :: esm_debug = .FALSE. ! used to enable debug mode (output v_hartree and v_local) INTEGER :: esm_debug_gpmax = 0 ! if esm_debug is .TRUE., calcualte v_hartree and v_local ! for abs(gp)<=esm_debug_gpmax (gp is integer and has tpiba unit) NAMELIST / system / ibrav, celldm, a, b, c, cosab, cosac, cosbc, nat, & ntyp, nbnd, ecutwfc, ecutrho, nr1, nr2, nr3, nr1s, nr2s, & nr3s, nr1b, nr2b, nr3b, nosym, nosym_evc, noinv, use_all_frac, & force_symmorphic, starting_magnetization, & occupations, degauss, nspin, ecfixed, & qcutz, q2sigma, lda_plus_U, lda_plus_u_kind, & Hubbard_U, Hubbard_J, Hubbard_alpha, & Hubbard_J0, Hubbard_beta, & edir, emaxpos, eopreg, eamp, smearing, starting_ns_eigenvalue, & U_projection_type, input_dft, la2F, assume_isolated, & nqx1, nqx2, nqx3, ecutfock, & exxdiv_treatment, x_gamma_extrapolation, yukawa, ecutvcut, & exx_fraction, screening_parameter, & #ifdef __ENVIRON do_environ, & #endif noncolin, lspinorb, starting_spin_angle, lambda, angle1, angle2, & report, & constrained_magnetization, B_field, fixed_magnetization, & sic, sic_epsilon, force_pairing, sic_alpha, & tot_charge, tot_magnetization, & spline_ps, one_atom_occupations, london, london_s6, london_rcut, & step_pen, A_pen, sigma_pen, alpha_pen, no_t_rev, & esm_bc, esm_efield, esm_w, esm_nfit, esm_debug, esm_debug_gpmax #ifdef __ENVIRON ! !=----------------------------------------------------------------------------=! ! ENVIRON Namelist Input Parameters !=----------------------------------------------------------------------------=! ! ! Global parameters ! INTEGER :: verbose = 0 ! verbosity 0: only prints summary of polarization charge calculation; ! 1: prints an extra file with details of iterative convergence; ! 2: prints 3D cube files of physical properties REAL(DP) :: environ_thr = 1.d-1 ! how early in scf should the corrective pot start being calculated CHARACTER( LEN = 256 ) :: environ_type = 'input' ! keyword to set up all the environment parameters at once to a specific set ! vacuum = all the flags are off (perm=1.d0, surf=0.0, pres=0.0) ! water = parameters optimized for water solutions in Andreussi et al. ! J. Chem. Phys. 136, 064102 (perm=78, surf=50, pres=-0.35) ! input = do not use any predefined set, use paramters from input ! ! Switching function parameters ! REAL(DP) :: stype = 1 ! type of switching functions used in the solvation models ! 0: original Fattebert-Gygi ! 1: ultrasoft dielectric function as defined in Andreussi et al. REAL(DP) :: rhomax = 0.005 ! first parameter of the sw function, roughly corresponding ! to the density threshold of the solvation model REAL(DP) :: rhomin = 0.0001 ! second parameter of the sw function when stype=1 REAL(DP) :: tbeta = 4.8 ! second parameter of the sw function when stype=0 ! ! Dielectric solvent parameters ! REAL(DP) :: env_static_permittivity = 1.D0 ! static dielectric permittivity of the solvation model. If set equal ! to one (=vacuum) no dielectric effects CHARACTER( LEN = 256 ) :: eps_mode = 'electronic' ! eps_mode method for calculating the density that sets ! the dielectric constant ! electronic = dielectric depends self-consist. on electronic density ! ionic = dielectric defined on a fictitious ionic density, generated ! as the sum of exponential functions centered on atomic ! positions of width specified in input by solvationrad(ityp) ! full = similar to electronic, but an extra density is added to ! represent the core electrons and the nuclei. This extra ! density is defined as the sum of gaussian functions centered ! on atomic positions of width equal to atomicspread(ityp) REAL(DP) :: solvationrad(nsx) = 3.D0 ! solvationrad radius of the solvation shell for each species when the ! ionic dielectric function is adopted REAL(DP) :: atomicspread(nsx) = 0.5D0 ! gaussian spreads of the atomic density of charge LOGICAL :: add_jellium = .false. ! depending on periodic boundary corrections, one may need to explicitly ! polarize the compensatinig jellium background ! ! Numerical differentiators paramters ! INTEGER :: ifdtype = 1 ! type of numerical differentiator: 1=central differences, ! 2=low-noise lanczos (m=2), 3=low-noise lanczos (m=4), ! 4=smooth noise-robust (n=2), 5=smooth noise-robust (n=4) INTEGER :: nfdpoint = 1 ! number of points used in the numerical differentiator ! N = 2*nfdpoint+1 ! ! Iterative solver parameters ! CHARACTER( LEN=256 ) :: mixtype = 'linear' ! mixing method for iterative calculation of polarization charges ! 'linear', 'anderson', 'diis', 'broyden' REAL(DP) :: mixrhopol = 0.5D0 ! mixing param to be used in iter calculation of polarization charges REAL(DP) :: tolrhopol = 1.D-10 ! convergence threshold for polarization charges in iterative procedure INTEGER :: ndiis=1 ! order of DIIS interpolation of iterative polarization charge ! ! Cavitation energy parameters ! REAL(DP) :: env_surface_tension = 0.D0 ! solvent surface tension, if equal to zero no cavitation term REAL(DP) :: delta = 0.00001D0 ! finite difference parameter to compute the molecular surface ! ! PV energy parameters ! REAL(DP) :: env_pressure = 0.D0 ! external pressure for PV energy, if equal to zero no pressure term ! ! Ionic countercharge parameters ! REAL(DP) :: env_ioncc_concentration = 0.D0 ! molar concentration of ionic countercharge (M=mol/L) REAL(DP) :: zion = 1.D0 ! valence of ionic countercharge REAL(DP) :: rhopb = 0.0001D0 ! density threshold for the onset of ionic countercharge REAL(DP) :: solvent_temperature = 300.D0 ! temperature of the solution NAMELIST / environ / & verbose, environ_thr, environ_type, & stype, rhomax, rhomin, tbeta, & env_static_permittivity, eps_mode, & solvationrad, atomicspread, add_jellium, & ifdtype, nfdpoint, & mixtype, ndiis, mixrhopol, tolrhopol, & env_surface_tension, delta, & env_pressure, & env_ioncc_concentration, zion, rhopb, & solvent_temperature #endif ! !=----------------------------------------------------------------------------=! ! EE Namelist Input Parameters !=----------------------------------------------------------------------------=! ! ! kinetic energy cutoff for the coarse (MultiGrid) grid REAL(DP) :: ecutcoarse = 100.0d0 ! amount of "new" correction introduced when mixing REAL(DP) :: mixing_charge_compensation = 1.0 ! error tolerance for the multigrid solver REAL(DP) :: errtol = 1.d-22 ! how early in scf itarations should the corrective pot start being calculated REAL(DP) :: comp_thr = 1.d-2 ! nlev number of grid levels in the multigrid solver INTEGER :: nlev = 2 ! itmax maximum number of iterations in the multigrid solver INTEGER :: itmax = 1000 ! whichbc 0 if aperiodic INTEGER :: whichbc(3) = 0 ! sets after how many scf cycles the corrective potential should be calculated INTEGER :: n_charge_compensation = 5 ! INTEGER :: ncompx = 1 INTEGER :: ncompy = 1 INTEGER :: ncompz = 1 ! ONLY PWSCF ! INTEGER :: mr1 = 0 INTEGER :: mr2 = 0 INTEGER :: mr3 = 0 REAL(DP) :: cellmin( 3 ) = 0.D0 ! ONLY PWSCF REAL(DP) :: cellmax( 3 ) = 1.D0 NAMELIST / ee / comp_thr, & ncompx,n_charge_compensation, & ncompy, ncompz,mixing_charge_compensation, & mr1, mr2, mr3, ecutcoarse, & errtol, nlev, itmax, whichbc, & cellmin, cellmax !=----------------------------------------------------------------------------=! ! ELECTRONS Namelist Input Parameters !=----------------------------------------------------------------------------=! REAL(DP) :: emass = 0.0_DP ! effective electron mass in the CP Lagrangian, ! in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) ! Typical values in CP simulation are between 100. and 1000. REAL(DP) :: emass_cutoff = 0.0_DP ! mass cut-off (in Rydbergs) for the Fourier acceleration ! effective mass is rescaled for "G" vector components with kinetic ! energy above "emass_cutoff" ! Use a value grether than "ecutwfc" to disable Fourier acceleration. CHARACTER(len=80) :: orthogonalization = 'ortho' ! orthogonalization = 'Gram-Schmidt' | 'ortho'* ! selects the orthonormalization method for electronic wave functions ! 'Gram-Schmidt' use Gram-Schmidt algorithm ! 'ortho' use iterative algorithm REAL(DP) :: ortho_eps = 1.E-8_DP ! meaningful only if orthogonalization = 'ortho' ! tolerance for iterative orthonormalization, ! a value of 1.d-8 is usually sufficent INTEGER :: ortho_max = 20 ! meaningful only if orthogonalization = 'ortho' ! maximum number of iterations for orthonormalization ! usually between 15 and 30. INTEGER :: electron_maxstep = 1000 ! maximum number of steps in electronic minimization ! This parameter apply only when using 'cg' electronic or ! ionic dynamics LOGICAL :: scf_must_converge = .true. ! stop or continue if SCF does not converge CHARACTER(len=80) :: electron_dynamics = 'none' ! set how electrons should be moved CHARACTER(len=80) :: electron_dynamics_allowed(6) DATA electron_dynamics_allowed & / 'default', 'sd', 'cg', 'damp', 'verlet', 'none' / REAL(DP) :: electron_damping = 0.0_DP ! meaningful only if " electron_dynamics = 'damp' " ! damping frequency times delta t, optimal values could be ! calculated with the formula ! sqrt(0.5*log((E1-E2)/(E2-E3))) ! where E1 E2 E3 are successive values of the DFT total energy ! in a steepest descent simulations CHARACTER(len=80) :: electron_velocities = 'default' ! electron_velocities = 'zero' | 'default'* ! 'zero' restart setting electronic velocities to zero ! 'default' restart using electronic velocities of the previous run CHARACTER(len=80) :: electron_temperature = 'not_controlled' ! electron_temperature = 'nose' | 'not_controlled'* | 'rescaling' ! 'nose' control electronic temperature using Nose thermostat ! see parameter "fnosee" and "ekincw" ! 'rescaling' control electronic temperature via velocities rescaling ! 'not_controlled' electronic temperature is not controlled REAL(DP) :: ekincw = 0.0_DP ! meaningful only with "electron_temperature /= 'not_controlled' " ! value of the average kinetic energy (in atomic units) forced ! by the temperature control REAL(DP) :: fnosee = 0.0_DP ! meaningful only with "electron_temperature = 'nose' " ! oscillation frequency of the nose thermostat (in terahertz) CHARACTER(len=80) :: startingwfc = 'random' ! startingwfc = 'atomic' | 'atomic+random' | 'random' | 'file' ! define how the code should initialize the wave function ! 'atomic' start from superposition of atomic wave functions ! 'atomic+random' as above, plus randomization ! 'random' start from random wave functions ! 'file' read wavefunctions from file REAL(DP) :: ampre = 0.0_DP ! meaningful only if "startingwfc = 'random'", amplitude of the ! randomization ( allowed values: 0.0 - 1.0 ) REAL(DP) :: grease = 0.0_DP ! a number <= 1, very close to 1: the damping in electronic ! damped dynamics is multiplied at each time step by "grease" ! (avoids overdamping close to convergence: Obsolete ?) ! grease = 1 : normal damped dynamics ! used only in CP INTEGER :: diis_size = 0 ! meaningful only with " electron_dynamics = 'diis' " ! size of the matrix used for the inversion in the iterative subspace ! default is 4, allowed value 1-5 INTEGER :: diis_nreset = 0 ! meaningful only with " electron_dynamics = 'diis' " ! number of steepest descendent step after a reset of the diis ! iteration, default value is 3 REAL(DP) :: diis_hcut = 0.0_DP ! meaningful only with " electron_dynamics = 'diis' " ! energy cutoff (a.u.), above which an approximate diagonal ! hamiltonian is used in finding the direction to the minimum ! default is "1.0" REAL(DP) :: diis_wthr = 1.E-4_DP ! meaningful only with " electron_dynamics = 'diis' " ! convergence threshold for wave function ! this criterion is satisfied when the maximum change ! in the wave functions component between two diis steps ! is less than this threshold ! default value is ekin_conv_thr REAL(DP) :: diis_delt = 1.0_DP ! meaningful only with " electron_dynamics = 'diis' " ! electronic time step used in the steepest descendent step ! default is "dt" INTEGER :: diis_maxstep = 100 ! meaningful only with " electron_dynamics = 'diis' " ! maximum number of iteration in the diis minimization ! default is electron_maxstep LOGICAL :: diis_rot = .false. ! meaningful only with " electron_dynamics = 'diis' " ! if "diis_rot = .TRUE." enable diis with charge mixing and rotations ! default is "diis_rot = .FALSE." REAL(DP) :: diis_fthr = 1.E-3_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! convergence threshold for ionic force ! this criterion is satisfied when the maximum change ! in the atomic force between two diis steps ! is less than this threshold ! default value is "0.0" REAL(DP) :: diis_temp = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! electronic temperature, significant only if ??? REAL(DP) :: diis_achmix = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! "A" parameter in the charge mixing formula ! chmix = A * G^2 / (G^2 + G0^2) , G represents reciprocal lattice vectors REAL(DP) :: diis_g0chmix = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! "G0^2" parameter in the charge mixing formula INTEGER :: diis_nchmix = 0 ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! dimension of the charge mixing REAL(DP) :: diis_g1chmix = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! "G1^2" parameter in the charge mixing formula ! metric = (G^2 + G1^2) / G^2 , G represents reciprocal lattice vectors INTEGER :: diis_nrot(3) = 0 ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! start upgrading the charge density every "diis_nrot(1)" steps, ! then every "diis_nrot(2)", and at the end every "diis_nrot(3)", ! depending on "diis_rothr" REAL(DP) :: diis_rothr(3) = 1.E-4_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! threshold on the charge difference between two diis step ! when max charge difference is less than "diis_rothr(1)", switch ! between the "diis_nrot(1)" upgrade frequency to "diis_nrot(2)", ! then when the max charge difference is less than "diis_rothr(2)", ! switch between "diis_nrot(2)" and "diis_nrot(3)", upgrade frequency, ! finally when the max charge difference is less than "diis_nrot(3)" ! convergence is achieved REAL(DP) :: diis_ethr = 1.E-4_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! convergence threshold for energy ! this criterion is satisfied when the change ! in the energy between two diis steps ! is less than this threshold ! default value is etot_conv_thr LOGICAL :: diis_chguess = .false. ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! if "diis_chguess = .TRUE." enable charge density guess ! between two diis step, defaut value is "diis_chguess = .FALSE." CHARACTER(len=80) :: mixing_mode = 'default' ! type of mixing algorithm for charge self-consistency ! used only in PWscf REAL(DP) :: mixing_beta = 0.0_DP ! parameter for mixing algorithm ! used only in PWscf INTEGER :: mixing_ndim = 0 ! dimension of mixing subspace ! used only in PWscf CHARACTER(len=80) :: diagonalization = 'david' ! diagonalization = 'david' or 'cg' ! algorithm used by PWscf for iterative diagonalization REAL(DP) :: diago_thr_init = 0.0_DP ! convergence threshold for the first iterative diagonalization. ! used only in PWscf INTEGER :: diago_cg_maxiter = 100 ! max number of iterations for the first iterative diagonalization ! using conjugate-gradient algorithm - used only in PWscf INTEGER :: diago_david_ndim = 4 ! dimension of the subspace used in Davidson diagonalization ! used only in PWscf LOGICAL :: diago_full_acc = .false. REAL(DP) :: conv_thr = 1.E-6_DP ! convergence threshold in electronic ONLY minimizations ! used only in PWscf INTEGER :: mixing_fixed_ns = 0 ! For DFT+U calculations, PWscf only CHARACTER(len=80) :: startingpot = 'potfile' ! specify the file containing the DFT potential of the system ! used only in PWscf INTEGER :: n_inner = 2 ! number of inner loop per CG iteration. ! used only in CP INTEGER :: niter_cold_restart = 1 !frequency of full cold smearing inner cycle (in iterations) REAL(DP) :: lambda_cold !step for not complete cold smearing inner cycle LOGICAL :: tgrand = .false. ! whether to do grand-canonical calculations. REAL(DP) :: fermi_energy = 0.0_DP ! chemical potential of the grand-canonical ensemble. CHARACTER(len=80) :: rotation_dynamics = "line-minimization" ! evolution the rotational degrees of freedom. CHARACTER(len=80) :: occupation_dynamics = "line-minimization" ! evolution of the occupational degrees of freedom. REAL(DP) :: rotmass = 0 ! mass for the rotational degrees of freedom. REAL(DP) :: occmass = 0 ! mass for the occupational degrees of freedom. REAL(DP) :: occupation_damping = 0 ! damping for the rotational degrees of freedom. REAL(DP) :: rotation_damping = 0 ! damping for the occupational degrees of freedom. LOGICAL :: tcg = .true. ! if true perform in cpv conjugate gradient minimization of electron energy INTEGER :: maxiter = 100 ! max number of conjugate gradient iterations REAL(DP) :: etresh =1.0E-7_DP ! treshhold on energy REAL(DP) :: passop =0.3_DP ! small step for parabolic interpolation INTEGER :: niter_cg_restart !frequency of restart for the conjugate gradient algorithm in iterations INTEGER :: epol = 3 ! electric field direction REAL(DP) :: efield =0.0_DP ! electric field intensity in atomic units ! real_space routines for US pps LOGICAL :: real_space = .false. REAL(DP) :: efield_cart(3) ! electric field vector in cartesian system of reference INTEGER :: epol2 = 3 ! electric field direction REAL(DP) :: efield2 =0.0_DP ! electric field intensity in atomic units LOGICAL :: tqr = .false. ! US contributions are added in real space LOGICAL :: occupation_constraints = .false. ! If true perform CP dynamics with constrained occupations ! to be used together with penalty functional ... NAMELIST / electrons / emass, emass_cutoff, orthogonalization, & electron_maxstep, scf_must_converge, ortho_eps, ortho_max, electron_dynamics, & electron_damping, electron_velocities, electron_temperature, & ekincw, fnosee, ampre, grease, & diis_size, diis_nreset, diis_hcut, & diis_wthr, diis_delt, diis_maxstep, diis_rot, diis_fthr, & diis_temp, diis_achmix, diis_g0chmix, diis_g1chmix, & diis_nchmix, diis_nrot, diis_rothr, diis_ethr, diis_chguess, & mixing_mode, mixing_beta, mixing_ndim, mixing_fixed_ns, & tqr, diago_cg_maxiter, diago_david_ndim, diagonalization , & startingpot, startingwfc , conv_thr, & adaptive_thr, conv_thr_init, conv_thr_multi, & diago_thr_init, n_inner, fermi_energy, rotmass, occmass, & rotation_damping, occupation_damping, rotation_dynamics, & occupation_dynamics, tcg, maxiter, etresh, passop, epol, & efield, epol2, efield2, diago_full_acc, & occupation_constraints, niter_cg_restart, & niter_cold_restart, lambda_cold, efield_cart, real_space ! !=----------------------------------------------------------------------------=! ! IONS Namelist Input Parameters !=----------------------------------------------------------------------------=! ! CHARACTER(len=80) :: phase_space = 'full' ! phase_space = 'full' | 'coarse-grained' ! 'full' the full phase-space is used for the ionic ! dynamics ! 'coarse-grained' a coarse-grained phase-space, defined by a set ! of constraints, is used for the ionic dynamics ! CHARACTER(len=80) :: phase_space_allowed(2) ! DATA phase_space_allowed / 'full', 'coarse-grained' / CHARACTER(len=80) :: phase_space_allowed(1) DATA phase_space_allowed / 'full' / CHARACTER(len=80) :: ion_dynamics = 'none' ! set how ions should be moved CHARACTER(len=80) :: ion_dynamics_allowed(8) DATA ion_dynamics_allowed / 'none', 'sd', 'cg', 'langevin', & 'damp', 'verlet', 'bfgs', 'beeman' / REAL(DP) :: ion_radius(nsx) = 0.5_DP ! pseudo-atomic radius of the i-th atomic species ! (for Ewald summation), values between 0.5 and 2.0 are usually used. REAL(DP) :: ion_damping = 0.2_DP ! meaningful only if " ion_dynamics = 'damp' " ! damping frequency times delta t, optimal values could be ! calculated with the formula ! sqrt(0.5*log((E1-E2)/(E2-E3))) ! where E1 E2 E3 are successive values of the DFT total energy ! in a ionic steepest descent simulation CHARACTER(len=80) :: ion_positions = 'default' ! ion_positions = 'default'* | 'from_input' ! 'default' restart the simulation with atomic positions read ! from the restart file ! 'from_input' restart the simulation with atomic positions read ! from standard input ( see the card 'ATOMIC_POSITIONS' ) CHARACTER(len=80) :: ion_velocities = 'default' ! ion_velocities = 'zero' | 'default'* | 'random' | 'from_input' ! 'default' restart the simulation with atomic velocities read ! from the restart file ! 'random' start the simulation with random atomic velocities ! 'from_input' restart the simulation with atomic velocities read ! from standard input (see the card 'ATOMIC_VELOCITIES' ) ! 'zero' restart the simulation with atomic velocities set to zero CHARACTER(len=80) :: ion_temperature = 'not_controlled' ! ion_temperature = 'nose' | 'not_controlled'* | 'rescaling' | ! 'berendsen' | 'andersen' | 'rescale-v' | 'rescale-T' | 'reduce-T' ! ! 'nose' control ionic temperature using Nose thermostat ! see parameters "fnosep" and "tempw" ! 'rescaling' control ionic temperature via velocity rescaling ! see parameters "tempw" and "tolp" ! 'rescale-v' control ionic temperature via velocity rescaling ! see parameters "tempw" and "nraise" ! 'rescale-T' control ionic temperature via velocity rescaling ! see parameter "delta_t" ! 'reduce-T' reduce ionic temperature ! see parameters "nraise", delta_t" ! 'berendsen' control ionic temperature using "soft" velocity ! rescaling - see parameters "tempw" and "nraise" ! 'andersen' control ionic temperature using Andersen thermostat ! see parameters "tempw" and "nraise" ! 'not_controlled' ionic temperature is not controlled REAL(DP) :: tempw = 300.0_DP ! meaningful only with "ion_temperature /= 'not_controlled' " ! value of the ionic temperature (in Kelvin) forced ! by the temperature control INTEGER, PARAMETER :: nhclm = 4 REAL(DP) :: fnosep( nhclm ) = 50.0_DP ! meaningful only with "ion_temperature = 'nose' " ! oscillation frequency of the nose thermostat (in terahertz) ! nhclm is the max length for the chain; it can be easily increased ! since the restart file should be able to handle it ! perhaps better to align nhclm by 4 INTEGER :: nhpcl = 0 ! non-zero only with "ion_temperature = 'nose' " ! this defines the length of the Nose-Hoover chain INTEGER :: nhptyp = 0 ! this parameter set the nose hoover thermostat to more than one INTEGER :: nhgrp(nsx)=0 ! this is the array to assign thermostats to atomic types ! allows to use various thermostat setups INTEGER :: ndega = 0 ! this is the parameter to control active degrees of freedom ! used for temperature control and the Nose-Hoover chains REAL(DP) :: tolp = 50.0_DP ! meaningful only with "ion_temperature = 'rescaling' " ! tolerance (in Kelvin) of the rescaling. When ionic temperature ! differs from "tempw" more than "tolp" apply rescaling. REAL(DP) :: fnhscl(nsx)=-1.0_DP ! this is to scale the target energy, in case there are constraints ! the dimension is the same as nhgrp, meaning that atomic type ! i with a group nhgrp(i) is scaled by fnhscl(i) LOGICAL :: tranp(nsx) = .false. ! tranp(i) control the randomization of the i-th atomic specie ! .TRUE. randomize ionic positions ( see "amprp" ) ! .FALSE. do nothing REAL(DP) :: amprp(nsx) = 0.0_DP ! amprp(i) meaningful only if "tranp(i) = .TRUE.", amplitude of the ! randomization ( allowed values: 0.0 - 1.0 ) for the i-th atomic specie. ! Add to the positions a random displacements vector ( in bohr radius ) ! defined as: amprp( i ) * ( X, Y, Z ) ! where X, Y, Z are pseudo random number in the interval [ -0.5 , 0.5 ] REAL(DP) :: greasp = 0.0_DP ! same as "grease", for ionic damped dynamics ! NOT used in FPMD INTEGER :: ion_nstepe = 1 ! number of electronic steps for each ionic step INTEGER :: ion_maxstep = 1000 ! maximum number of step in ionic minimization REAL(DP) :: upscale = 100.0_DP ! Max reduction allowed in scf threshold during optimization CHARACTER(len=80) :: pot_extrapolation = 'default', & wfc_extrapolation = 'default' ! These variables are used only by PWSCF LOGICAL :: refold_pos LOGICAL :: remove_rigid_rot = .false. ! ! ... delta_T, nraise, tolp are used to change temperature in PWscf ! REAL(DP) :: delta_t = 1.0_DP INTEGER :: nraise = 1 ! ! ... variables added for new BFGS algorithm ! INTEGER :: bfgs_ndim = 1 REAL(DP) :: trust_radius_max = 0.8_DP REAL(DP) :: trust_radius_min = 1.E-3_DP REAL(DP) :: trust_radius_ini = 0.5_DP REAL(DP) :: w_1 = 0.5E-1_DP REAL(DP) :: w_2 = 0.5_DP REAL(DP) :: sic_rloc = 0.0_DP ! ! ... variable for meta-dynamics ! INTEGER, PARAMETER :: max_nconstr = 100 INTEGER :: fe_nstep = 100 INTEGER :: sw_nstep = 10 INTEGER :: eq_nstep = 0 REAL(DP) :: g_amplitude = 0.005_DP ! REAL(DP) :: fe_step( max_nconstr ) = 0.4_DP ! NAMELIST / ions / phase_space, ion_dynamics, ion_radius, ion_damping, & ion_positions, ion_velocities, ion_temperature, & tempw, fnosep, nhgrp, fnhscl, nhpcl, nhptyp, ndega, tranp, & amprp, greasp, tolp, ion_nstepe, ion_maxstep, & refold_pos, upscale, delta_t, pot_extrapolation, & wfc_extrapolation, nraise, remove_rigid_rot, & trust_radius_max, trust_radius_min, & trust_radius_ini, w_1, w_2, bfgs_ndim, sic_rloc, & fe_step, fe_nstep, sw_nstep, eq_nstep, g_amplitude !=----------------------------------------------------------------------------=! ! CELL Namelist Input Parameters !=----------------------------------------------------------------------------=! ! CHARACTER(len=80) :: cell_parameters = 'default' ! cell_parameters = 'default'* | 'from_input' ! 'default' restart the simulation with cell parameters read ! from the restart file or "celldm" if ! "restart = 'from_scratch'" ! 'from_input' restart the simulation with cell parameters ! from standard input ( see the card 'CELL_PARAMETERS' ) CHARACTER(len=80) :: cell_dynamics = 'none' ! set how the cell should be moved CHARACTER(len=80) :: cell_dynamics_allowed(7) DATA cell_dynamics_allowed / 'sd', 'pr', 'none', 'w', 'damp-pr', & 'damp-w', 'bfgs' / CHARACTER(len=80) :: cell_velocities = 'default' ! cell_velocities = 'zero' | 'default'* ! 'zero' restart setting cell velocitiy to zero ! 'default' restart using cell velocity of the previous run REAL(DP) :: press = 0.0_DP ! external pressure (in GPa, remember 1 kbar = 10^8 Pa) REAL(DP) :: wmass = 0.0_DP ! effective cell mass in the Parrinello-Rahman Lagrangian (in atomic units) ! of the order of magnitude of the total atomic mass ! (sum of the mass of the atoms) within the simulation cell. ! if you do not specify this parameters, the code will compute ! its value based on some physical consideration CHARACTER(len=80) :: cell_temperature = 'not_controlled' ! cell_temperature = 'nose' | 'not_controlled'* | 'rescaling' ! 'nose' control cell temperature using Nose thermostat ! see parameters "fnoseh" and "temph" ! 'rescaling' control cell temperature via velocities rescaling ! 'not_controlled' cell temperature is not controlled ! NOT used in FPMD REAL(DP) :: temph = 0.0_DP ! meaningful only with "cell_temperature /= 'not_controlled' " ! value of the cell temperature (in Kelvin) forced ! by the temperature control REAL(DP) :: fnoseh = 1.0_DP ! meaningful only with "cell_temperature = 'nose' " ! oscillation frequency of the nose thermostat (in terahertz) REAL(DP) :: greash = 0.0_DP ! same as "grease", for cell damped dynamics CHARACTER(len=80) :: cell_dofree = 'all' ! cell_dofree = 'all'* | 'volume' | 'x' | 'y' | 'z' | 'xy' | 'xz' | 'yz' | 'xyz' ! select which of the cell parameters should be moved ! 'all' all axis and angles are propagated (default) ! 'volume' the cell is simply rescaled, without changing the shape ! 'x' only the "x" axis is moved ! 'y' only the "y" axis is moved ! 'z' only the "z" axis is moved ! 'xy' only the "x" and "y" axis are moved, angles are unchanged ! 'xz' only the "x" and "z" axis are moved, angles are unchanged ! 'yz' only the "y" and "z" axis are moved, angles are unchanged ! 'xyz' "x", "y" and "z" axis are moved, angles are unchanged REAL(DP) :: cell_factor = 0.0_DP ! NOT used in FPMD INTEGER :: cell_nstepe = 1 ! number of electronic steps for each cell step REAL(DP) :: cell_damping = 0.0_DP ! meaningful only if " cell_dynamics = 'damp' " ! damping frequency times delta t, optimal values could be ! calculated with the formula ! sqrt(0.5*log((E1-E2)/(E2-E3))) ! where E1 E2 E3 are successive values of the DFT total energy ! in a ionic steepest descent simulation REAL(DP) :: press_conv_thr = 0.5_DP NAMELIST / cell / cell_parameters, cell_dynamics, cell_velocities, & press, wmass, cell_temperature, temph, fnoseh, & cell_dofree, greash, cell_factor, cell_nstepe, & cell_damping, press_conv_thr ! !=----------------------------------------------------------------------------=!! ! PRESS_AI Namelist Input Parameters !=----------------------------------------------------------------------------=! ! ! LOGICAL :: abivol = .false. LOGICAL :: abisur = .false. LOGICAL :: pvar = .false. LOGICAL :: fill_vac=.false. LOGICAL :: scale_at=.false. LOGICAL :: t_gauss =.false. LOGICAL :: jellium= .false. LOGICAL :: cntr(nsx)=.false. REAL(DP) :: P_ext = 0.0_DP REAL(DP) :: P_in = 0.0_DP REAL(DP) :: P_fin = 0.0_DP REAL(DP) :: rho_thr = 0.0_DP REAL(DP) :: step_rad(nsx) = 0.0_DP REAL(DP) :: Surf_t = 0.0_DP REAL(DP) :: dthr = 0.0_DP REAL(DP) :: R_j = 0.0_DP REAL(DP) :: h_j = 0.0_DP REAL(DP) :: delta_eps = 0.0_DP REAL(DP) :: delta_sigma=0.0_DP INTEGER :: n_cntr = 0 INTEGER :: axis = 0 NAMELIST / press_ai / abivol, P_ext, pvar, P_in, P_fin, rho_thr, & & step_rad, delta_eps, delta_sigma, n_cntr, & & fill_vac, scale_at, t_gauss, abisur, & & Surf_t, dthr, cntr, axis, jellium, R_j, h_j !=----------------------------------------------------------------------------=! ! WANNIER Namelist Input Parameters !=----------------------------------------------------------------------------=! LOGICAL :: wf_efield LOGICAL :: wf_switch ! INTEGER :: sw_len ! REAL(DP) :: efx0, efy0, efz0 REAL(DP) :: efx1, efy1, efz1 ! INTEGER :: wfsd ! REAL(DP) :: wfdt REAL(DP) :: maxwfdt REAL(DP) :: wf_q REAL(DP) :: wf_friction !======================================================================= !Lingzhu Kong INTEGER :: vnbsp INTEGER :: neigh REAL(DP) :: poisson_eps REAL(DP) :: dis_cutoff REAL(DP) :: exx_ps_rcut REAL(DP) :: exx_me_rcut !======================================================================= INTEGER :: nit INTEGER :: nsd INTEGER :: nsteps ! REAL(DP) :: tolw ! LOGICAL :: adapt ! INTEGER :: calwf INTEGER :: nwf INTEGER :: wffort ! LOGICAL :: writev !============================================================================== !Lingzhu Kong NAMELIST / wannier / wf_efield, wf_switch, sw_len, efx0, efy0, efz0,& efx1, efy1, efz1, wfsd, wfdt, neigh,poisson_eps,& dis_cutoff,exx_ps_rcut, exx_me_rcut, vnbsp, & maxwfdt, wf_q, wf_friction, nit, nsd, nsteps, & tolw, adapt, calwf, nwf, wffort, writev !=============================================================================== ! END manual ! ---------------------------------------------------------------------- !=----------------------------------------------------------------------------=! ! WANNIER_NEW Namelist Input Parameters !=----------------------------------------------------------------------------=! LOGICAL :: & plot_wannier = .false.,& ! if .TRUE. wannier number plot_wan_num is plotted use_energy_int = .false., & ! if .TRUE. energy interval is used to generate wannier print_wannier_coeff = .false. ! if .TRUE. INTEGER, PARAMETER :: nwanx = 50 ! max number of wannier functions INTEGER :: & nwan, &! number of wannier functions plot_wan_num = 0, &! number of wannier for plotting plot_wan_spin = 1 ! spin of wannier for plotting REAL(DP) :: & constrain_pot(nwanx,2) ! constrained potential for wannier NAMELIST / wannier_ac / plot_wannier, use_energy_int, nwan, & plot_wan_num, plot_wan_spin, constrain_pot, print_wannier_coeff ! END manual ! ---------------------------------------------------------------------- ! ---------------------------------------------------------------- ! BEGIN manual ! !=----------------------------------------------------------------------------=! ! CARDS parameters !=----------------------------------------------------------------------------=! ! ! Note: See file read_cards.f90 for card syntax and usage ! ! ATOMIC_SPECIES ! CHARACTER(len=3) :: atom_label(nsx) = 'XX' ! label of the atomic species being read CHARACTER(len=80) :: atom_pfile(nsx) = 'YY' ! pseudopotential file name REAL(DP) :: atom_mass(nsx) = 0.0_DP ! atomic mass of the i-th atomic species ! in atomic mass units: 1 a.m.u. = 1822.9 a.u. = 1.6605 * 10^-27 kg LOGICAL :: taspc = .false. LOGICAL :: tkpoints = .false. LOGICAL :: tforces = .false. LOGICAL :: tocc = .false. LOGICAL :: tcell = .false. LOGICAL :: tdipole = .false. LOGICAL :: tionvel = .false. LOGICAL :: tconstr = .false. LOGICAL :: tesr = .false. LOGICAL :: tksout = .false. LOGICAL :: ttemplate = .false. LOGICAL :: twannier = .false. ! ! ATOMIC_POSITIONS ! REAL(DP), ALLOCATABLE :: rd_pos(:,:) ! unsorted positions from input INTEGER, ALLOCATABLE :: sp_pos(:) INTEGER, ALLOCATABLE :: if_pos(:,:) INTEGER, ALLOCATABLE :: id_loc(:) INTEGER, ALLOCATABLE :: na_inp(:) LOGICAL :: tapos = .false. CHARACTER(len=80) :: atomic_positions = 'crystal' ! atomic_positions = 'bohr' | 'angstrong' | 'crystal' | 'alat' ! select the units for the atomic positions being read from stdin ! ! ... variable added for NEB ( C.S. 17/10/2003 ) ! ! ! ! ION_VELOCITIES ! REAL(DP), ALLOCATABLE :: rd_vel(:,:) ! unsorted velocities from input INTEGER, ALLOCATABLE :: sp_vel(:) LOGICAL :: tavel = .false. ! ! ATOMIC_FORCES ! REAL(DP), ALLOCATABLE :: rd_for(:,:) ! external forces applied to single atoms ! ! KPOINTS ! ! ... k-points inputs LOGICAL :: tk_inp = .false. REAL(DP), ALLOCATABLE :: xk(:,:), wk(:) INTEGER :: nkstot = 0, nk1 = 0, nk2 = 0, nk3 = 0, k1 = 0, k2 = 0, k3 = 0 CHARACTER(len=80) :: k_points = 'gamma' ! k_points = 'automatic' | 'crystal' | 'tpiba' | 'gamma'* ! k_points = 'crystal_b' | 'tpiba_b' ! select the k points mesh ! 'automatic' k points mesh is generated automatically ! with Monkhorst-Pack algorithm ! 'crystal' k points mesh is given in stdin in scaled units ! 'tpiba' k points mesh is given in stdin in units of ( 2 PI / alat ) ! 'gamma' only gamma point is used ( default in CPMD simulation ) ! _b means that a band input is given. The weights is a integer ! number that gives the number of points between the present point ! and the next. The weight of the last point is not used. ! ! OCCUPATIONS ! REAL(DP), ALLOCATABLE :: f_inp(:,:) LOGICAL :: tf_inp = .false. ! ! DIPOLE ! LOGICAL :: tdipole_card = .false. ! ! ESR ! INTEGER :: iesr_inp = 1 ! ! CELL_PARAMETERS ! REAL(DP) :: rd_ht(3,3) = 0.0_DP CHARACTER(len=80) :: cell_units = 'alat' LOGICAL :: trd_ht = .false. ! ! CONSTRAINTS ! INTEGER :: nc_fields = 4 ! max number of fields that is allowed to ! define a constraint INTEGER :: nconstr_inp = 0 REAL(DP) :: constr_tol_inp = 1.E-6_DP ! CHARACTER(len=20), ALLOCATABLE :: constr_type_inp(:) REAL(DP), ALLOCATABLE :: constr_inp(:,:) REAL(DP), ALLOCATABLE :: constr_target_inp(:) LOGICAL, ALLOCATABLE :: constr_target_set(:) ! ! KOHN_SHAM ! INTEGER, ALLOCATABLE :: iprnks( :, : ) INTEGER :: nprnks( nspinx ) = 0 ! logical mask used to specify which kohn sham orbital should be ! written to files 'KS.' ! ! CLIMBING_IMAGES ! ! ! ... variable added for NEB ( C.S. 20/11/2003 ) ! LOGICAL, ALLOCATABLE :: climbing( : ) ! ! PLOT_WANNIER ! INTEGER, PARAMETER :: nwf_max = 1000 ! INTEGER :: wannier_index( nwf_max ) ! ! WANNIER_NEW ! TYPE (wannier_data) :: wan_data(nwanx,2) ! END manual ! ---------------------------------------------------------------------- LOGICAL :: xmloutput = .false. ! if .true. PW produce an xml output CONTAINS SUBROUTINE allocate_input_ions( ntyp, nat ) ! INTEGER, INTENT(in) :: ntyp, nat ! IF ( allocated( rd_pos ) ) DEALLOCATE( rd_pos ) IF ( allocated( sp_pos ) ) DEALLOCATE( sp_pos ) IF ( allocated( if_pos ) ) DEALLOCATE( if_pos ) IF ( allocated( id_loc ) ) DEALLOCATE( id_loc ) IF ( allocated( na_inp ) ) DEALLOCATE( na_inp ) IF ( allocated( rd_vel ) ) DEALLOCATE( rd_vel ) IF ( allocated( sp_vel ) ) DEALLOCATE( sp_vel ) IF ( allocated( rd_for ) ) DEALLOCATE( rd_for ) ! ALLOCATE( rd_pos( 3, nat ) ) ALLOCATE( sp_pos( nat) ) ALLOCATE( if_pos( 3, nat ) ) ALLOCATE( id_loc( nat) ) ALLOCATE( na_inp( ntyp) ) ALLOCATE( rd_vel( 3, nat ) ) ALLOCATE( sp_vel( nat) ) ALLOCATE( rd_for( 3, nat ) ) ! rd_pos = 0.0_DP sp_pos = 0 if_pos = 1 id_loc = 0 na_inp = 0 rd_vel = 0.0_DP sp_vel = 0 rd_for = 0.0_DP ! RETURN ! END SUBROUTINE allocate_input_ions SUBROUTINE allocate_input_constr() ! IF ( allocated( constr_type_inp ) ) DEALLOCATE( constr_type_inp ) IF ( allocated( constr_inp ) ) DEALLOCATE( constr_inp ) IF ( allocated( constr_target_inp ) ) DEALLOCATE( constr_target_inp ) IF ( allocated( constr_target_set ) ) DEALLOCATE( constr_target_set ) ! ALLOCATE( constr_type_inp( nconstr_inp ) ) ALLOCATE( constr_target_inp( nconstr_inp ) ) ALLOCATE( constr_target_set( nconstr_inp ) ) ! ALLOCATE( constr_inp( nc_fields, nconstr_inp ) ) ! constr_type_inp = ' ' constr_inp = 0.0_DP constr_target_inp = 0.0_DP constr_target_set = .false. ! RETURN ! END SUBROUTINE allocate_input_constr SUBROUTINE allocate_input_iprnks( nksx, nspin ) ! INTEGER, INTENT(in) :: nksx, nspin ! IF( allocated( iprnks ) ) DEALLOCATE( iprnks ) ! ALLOCATE( iprnks( max( 1, nksx), nspin ) ) ! iprnks = 0 ! RETURN ! END SUBROUTINE allocate_input_iprnks SUBROUTINE deallocate_input_parameters() ! IF ( allocated( xk ) ) DEALLOCATE( xk ) IF ( allocated( wk ) ) DEALLOCATE( wk ) IF ( allocated( rd_pos ) ) DEALLOCATE( rd_pos ) IF ( allocated( sp_pos ) ) DEALLOCATE( sp_pos ) IF ( allocated( if_pos ) ) DEALLOCATE( if_pos ) IF ( allocated( id_loc ) ) DEALLOCATE( id_loc ) IF ( allocated( na_inp ) ) DEALLOCATE( na_inp ) IF ( allocated( rd_vel ) ) DEALLOCATE( rd_vel ) IF ( allocated( sp_vel ) ) DEALLOCATE( sp_vel ) IF ( allocated( rd_for ) ) DEALLOCATE( rd_for ) ! ! IF ( allocated( constr_type_inp ) ) DEALLOCATE( constr_type_inp ) IF ( allocated( constr_inp ) ) DEALLOCATE( constr_inp ) IF ( allocated( constr_target_inp ) ) DEALLOCATE( constr_target_inp ) IF ( allocated( constr_target_set ) ) DEALLOCATE( constr_target_set ) ! IF ( allocated( iprnks ) ) DEALLOCATE( iprnks ) ! RETURN ! END SUBROUTINE deallocate_input_parameters ! !=----------------------------------------------------------------------------=! ! END MODULE input_parameters ! !=----------------------------------------------------------------------------=! espresso-5.0.2/Modules/read_uspp.f900000644000700200004540000007136512053145633016310 0ustar marsamoscm! ! Copyright (C) 2006-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- MODULE read_uspp_module !--------------------------------------------------------------------- ! ! routines reading ultrasoft pseudopotentials in older formats: ! Vanderbilt's code and Andrea's RRKJ3 format ! USE kinds, ONLY: DP USE parameters, ONLY: lmaxx, lqmax USE io_global, ONLY: stdout USE funct, ONLY: set_dft_from_name, dft_is_hybrid, dft_is_meta, & set_dft_from_indices ! ! Variables above are not modified, variables below are ! USE uspp_param, ONLY: oldvan ! IMPLICIT NONE SAVE PRIVATE PUBLIC :: readvan, readrrkj ! CONTAINS !--------------------------------------------------------------------- subroutine readvan( iunps, is, upf ) !--------------------------------------------------------------------- ! ! Read Vanderbilt pseudopotential from unit "iunps" ! for species "is" into the structure "upf" ! info on DFT level in module "funct" ! ! ------------------------------------------------------ ! Important: ! ------------------------------------------------------ ! The order of all l-dependent objects is always s,p,d ! ------------------------------------------------------ ! potentials, e.g. vloc_at, are really r*v(r) ! wave funcs, e.g. chi, are really proportional to r*psi(r) ! and are normalized so int (chi**2) dr = 1 ! thus psi(r-vec)=(1/r)*chi(r)*y_lm(theta,phi) ! conventions carry over to beta, etc ! charge dens, e.g. rho_atc, really 4*pi*r**2*rho ! ! ------------------------------------------------------ ! Notes on qfunc and qfcoef: ! ------------------------------------------------------ ! Since Q_ij(r) is the product of two orbitals like ! psi_{l1,m1}^star * psi_{l2,m2}, it can be decomposed by ! total angular momentum L, where L runs over | l1-l2 | , ! | l1-l2 | +2 , ... , l1+l2. (L=0 is the only component ! needed by the atomic program, which assumes spherical ! charge symmetry.) ! ! Recall qfunc(r) = y1(r) * y2(r) where y1 and y2 are the ! radial parts of the wave functions defined according to ! ! psi(r-vec) = (1/r) * y(r) * Y_lm(r-hat) . ! ! For each total angular momentum L, we pseudize qfunc(r) ! inside rc as: ! ! qfunc(r) = r**(L+2) * [ a_1 + a_2*r**2 + a_3*r**4 ] ! ! in such a way as to match qfunc and its 1'st derivative at ! rc, and to preserve ! ! integral dr r**L * qfunc(r) , ! ! i.e., to preserve the L'th moment of the charge. The array ! qfunc has been set inside rc to correspond to this pseudized ! version using the minimal L, namely L = | l1-l2 | (e.g., L=0 ! for diagonal elements). The coefficients a_i (i=1,2,3) ! are stored in the array qfcoef(i,L+1,j,k) for each L so that ! the correctly pseudized versions of qfunc can be reconstructed ! for each L. (Note that for given l1 and l2, only the values ! L = | l1-l2 | , | l1-l2 | +2 , ... , l1+l2 are ever used.) ! ------------------------------------------------------ ! USE constants, ONLY : fpi USE pseudo_types ! implicit none ! ! First the arguments passed to the subroutine ! TYPE (pseudo_upf) :: upf integer & & is, &! The number of the pseudopotential & iunps ! The unit of the pseudo file ! ! Local variables real(DP) & & exfact, &! index of the exchange and correlation used & etotpseu, &! total pseudopotential energy & eloc, &! energy of the local potential & dummy, &! dummy real variable & rinner1, &! rinner if only one is present & rcloc ! the cut-off radius of the local potential real(DP), allocatable:: & & ee(:), &! the energy of the valence states & rc(:), &! the cut-off radii of the pseudopotential & eee(:), &! energies of the beta function & ddd(:,:) ! the screened D_{\mu,\nu} parameters integer, allocatable :: & & nnlz(:), &! The nlm values of the valence states & iptype(:) ! more recent parameters integer & & iver(3), &! contains the version of generating code & idmy(3), &! contains the date of creation of the pseudo & ifpcor, &! for core correction, 0 otherwise & ios, &! integer variable for I/O control & i, &! dummy counter & keyps, &! the type of pseudopotential. Only US allowed & irel, &! says if the pseudopotential is relativistic & ifqopt, &! level of Q optimization & npf, &! as above & nang, &! number of angular momenta in pseudopotentials & lloc, &! angular momentum of the local part of PPs & lp, &! counter on Q angular momenta & l, &! counter on angular momenta & iv, jv, ijv, &! beta function counter & ir ! mesh points counter ! character(len=20) :: title character(len=60) fmt ! ! We first check the input variables ! if (is <= 0) & call errore('readvan','routine called with wrong 1st argument', 1) if (iunps <= 0 .or. iunps >= 100000) & call errore('readvan','routine called with wrong 2nd argument', 1) ! read(iunps, *, err=100 ) & (iver(i),i=1,3), (idmy(i),i=1,3) write(upf%generated, & "('Generated by Vanderbilt code, v. ',i1,'.',i1,'.',i1)") iver ! if ( iver(1) > 7 .or. iver(1) < 1 .or. & iver(2) > 9 .or. iver(2) < 0 .or. & iver(3) > 9 .or. iver(3) < 0 ) & call errore('readvan','wrong file version read',1) ! read( iunps, '(a20,3f15.9)', err=100, iostat=ios ) & title, upf%zmesh, upf%zp, exfact ! upf%psd = title(1:2) ! if ( upf%zmesh < 1 .or. upf%zmesh > 100.0_DP) & call errore( 'readvan','wrong zmesh read', is ) if ( upf%zp <= 0.0_DP .or. upf%zp > 100.0_DP) & call errore('readvan','wrong atomic charge read', is ) if ( exfact < -6 .or. exfact > 6) & & call errore('readvan','Wrong xc in pseudopotential',1) ! convert from "our" conventions to Vanderbilt conventions call dftname_cp (nint(exfact), upf%dft) call set_dft_from_name( upf%dft ) IF ( dft_is_meta() ) & CALL errore( 'readvan ', 'META-GGA not implemented', 1 ) ! read( iunps, '(2i5,1pe19.11)', err=100, iostat=ios ) & upf%nwfc, upf%mesh, etotpseu if ( upf%nwfc < 0 ) & call errore( 'readvan', 'wrong nchi read', upf%nwfc ) if ( upf%mesh < 0 ) & call errore( 'readvan','wrong mesh', is ) ! ! info on pseudo eigenstates - energies are not used ! ALLOCATE ( upf%oc(upf%nwfc), upf%lchi(upf%nwfc) ) ALLOCATE ( nnlz(upf%nwfc), ee(upf%nwfc) ) read( iunps, '(i5,2f15.9)', err=100, iostat=ios ) & ( nnlz(iv), upf%oc(iv), ee(iv), iv=1,upf%nwfc ) do iv = 1, upf%nwfc i = nnlz(iv) / 100 upf%lchi(iv) = nnlz(iv)/10 - i * 10 enddo read( iunps, '(2i5,f15.9)', err=100, iostat=ios ) & keyps, ifpcor, rinner1 upf%nlcc = (ifpcor == 1) ! ! keyps= 0 --> standard hsc pseudopotential with exponent 4.0 ! 1 --> standard hsc pseudopotential with exponent 3.5 ! 2 --> vanderbilt modifications using defaults ! 3 --> new generalized eigenvalue pseudopotentials ! 4 --> frozen core all-electron case if ( keyps < 0 .or. keyps > 4 ) then call errore('readvan','wrong keyps',keyps) else if (keyps == 4) then call errore('readvan','keyps not implemented',keyps) end if upf%tvanp = (keyps == 3) upf%tpawp = .false. ! ! Read information on the angular momenta, and on Q pseudization ! (version > 3.0) ! if (iver(1) >= 3) then read( iunps, '(2i5,f9.5,2i5,f9.5)', err=100, iostat=ios ) & nang, lloc, eloc, ifqopt, upf%nqf, dummy !!! PWSCF: lmax(is)=nang, lloc(is)=lloc ! ! NB: In the Vanderbilt atomic code the angular momentum goes ! from 1 to nang ! if ( nang < 0 ) & call errore(' readvan', 'Wrong nang read', nang) if ( lloc == -1 ) lloc = nang+1 if ( lloc > nang+1 .or. lloc < 0 ) & call errore( 'readvan', 'wrong lloc read', is ) if ( upf%nqf < 0 ) & call errore(' readvan', 'Wrong nqf read', upf%nqf) if ( ifqopt < 0 ) & call errore( 'readvan', 'wrong ifqopt read', is ) else ! old format: no distinction between nang and nchi nang = upf%nwfc end if ! ! Read and test the values of rinner (version > 5.1) ! rinner = radius at which to cut off partial core or q_ij ! ALLOCATE ( upf%rinner(2*nang-1) ) if (10*iver(1)+iver(2) >= 51) then ! read( iunps, *, err=100, iostat=ios ) & (upf%rinner(lp), lp=1,2*nang-1 ) ! do lp = 1, 2*nang-1 if (upf%rinner(lp) < 0.0_DP) & call errore('readvan','Wrong rinner read', is ) enddo else if (iver(1) > 3) then do lp = 2, 2*nang-1 upf%rinner(lp)=rinner1 end do end if ! if (iver(1) >= 4) & read( iunps, '(i5)',err=100, iostat=ios ) irel ! ! set the number of angular momentum terms in q_ij to read in ! if (iver(1) == 1) then oldvan(is) = .TRUE. ! old format: no optimization of q_ij => 3-term taylor series upf%nqf=3 upf%nqlc=5 else if (iver(1) == 2) then upf%nqf=3 upf%nqlc = 2*nang - 1 else upf%nqlc = 2*nang - 1 end if ! if ( upf%nqlc > lqmax .or. upf%nqlc < 0 ) & call errore(' readvan', 'Wrong nqlc read', upf%nqlc ) ! ALLOCATE ( rc(nang) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( rc(l), l=1,nang ) ! ! reads the number of beta functions ! read( iunps, '(2i5)', err=100, iostat=ios ) & upf%nbeta, upf%kkbeta ! ALLOCATE ( upf%kbeta(upf%nbeta) ) upf%kbeta(:) = upf%kkbeta ! if( upf%nbeta < 0 ) & call errore( 'readvan','nbeta wrong', is ) if( upf%kkbeta > upf%mesh .or. upf%kkbeta < 0 ) & call errore( 'readvan','kkbeta wrong or too large', is ) ! ! Now reads the main Vanderbilt parameters ! ALLOCATE ( upf%lll(upf%nbeta) ) ALLOCATE ( upf%beta(upf%mesh,upf%nbeta) ) ALLOCATE ( upf%dion(upf%nbeta,upf%nbeta), upf%qqq(upf%nbeta,upf%nbeta) ) ALLOCATE ( upf%qfunc(upf%mesh,upf%nbeta*(upf%nbeta+1)/2) ) ALLOCATE ( upf%qfcoef(upf%nqf, upf%nqlc, upf%nbeta, upf%nbeta) ) ALLOCATE ( eee(upf%nbeta), ddd(upf%nbeta,upf%nbeta) ) do iv=1,upf%nbeta read( iunps, '(i5)',err=100, iostat=ios ) upf%lll(iv) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & eee(iv), ( upf%beta(ir,iv), ir=1,upf%kkbeta ) do ir=upf%kkbeta+1,upf%mesh upf%beta(ir,iv)=0.0_DP enddo if ( upf%lll(iv) > lmaxx .or. upf%lll(iv) < 0 ) & call errore( 'readvan', 'lll wrong or too large ', is ) do jv=iv,upf%nbeta ! ! the symmetric matric Q_{nb,mb} is stored in packed form ! Q(iv,jv) => qfunc(ijv) as defined below (for jv >= iv) ! ijv = jv * (jv-1) / 2 + iv read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & upf%dion(iv,jv), ddd(iv,jv), upf%qqq(iv,jv), & (upf%qfunc(ir,ijv),ir=1,upf%kkbeta), & ((upf%qfcoef(i,lp,iv,jv),i=1,upf%nqf),lp=1,upf%nqlc) do ir=upf%kkbeta+1,upf%mesh upf%qfunc(ir,ijv)=0.0_DP enddo ! ! Use the symmetry of the coefficients ! if ( iv /= jv ) then upf%dion(jv,iv)=upf%dion(iv,jv) upf%qqq(jv,iv) =upf%qqq(iv,jv) upf%qfcoef(:,:,jv,iv)=upf%qfcoef(:,:,iv,jv) end if enddo enddo ! ! Set additional, not present, variables to dummy values ALLOCATE(upf%els(upf%nwfc)) upf%els(:) = 'nX' ALLOCATE(upf%els_beta(upf%nbeta)) upf%els_beta(:) = 'nX' ALLOCATE(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta)) upf%rcut(:) = 0._dp upf%rcutus(:) = 0._dp DEALLOCATE (ddd) ! ! for versions later than 7.2 ! if (10*iver(1)+iver(2) >= 72) then ALLOCATE (iptype(upf%nbeta)) read( iunps, '(6i5)',err=100, iostat=ios ) & (iptype(iv), iv=1,upf%nbeta) read( iunps, '(i5,f15.9)',err=100, iostat=ios ) & npf, dummy DEALLOCATE (iptype) end if ! ! read the local potential ! ALLOCATE ( upf%vloc(upf%mesh) ) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & rcloc, ( upf%vloc(ir), ir=1,upf%mesh ) ! ! If present reads the core charge rho_atc(r)=4*pi*r**2*rho_core(r) ! if ( upf%nlcc ) then ALLOCATE ( upf%rho_atc(upf%mesh) ) if (iver(1) >= 7) & read( iunps, '(1p4e19.11)', err=100, iostat=ios ) dummy read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( upf%rho_atc(ir), ir=1,upf%mesh ) endif ! ! Read the screened local potential (not used) ! ALLOCATE ( upf%rho_at(upf%mesh) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & (upf%rho_at(ir), ir=1,upf%mesh) ! ! Read the valence atomic charge ! read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & (upf%rho_at(ir), ir=1,upf%mesh) ! ! Read the logarithmic mesh (if version > 1) ! ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) ) if (iver(1) >1) then read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & (upf%r(ir),ir=1,upf%mesh) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & (upf%rab(ir),ir=1,upf%mesh) else ! ! generate herman-skillman mesh (if version = 1) ! call herman_skillman_grid & ( upf%mesh, upf%zmesh, upf%r, upf%rab ) end if ! ! convert vloc to the conventions used in the rest of the code ! (as read from Vanderbilt's format it is r*v_loc(r)) ! do ir = 2, upf%mesh upf%vloc (ir) = upf%vloc (ir) / upf%r(ir) enddo upf%vloc (1) = upf%vloc (2) ! ! set rho_atc(r)=rho_core(r) (without 4*pi*r^2 factor, ! for compatibility with rho_atc in the non-US case) ! if (upf%nlcc) then upf%rho_atc(1) = 0.0_DP do ir=2,upf%mesh upf%rho_atc(ir) = upf%rho_atc(ir)/fpi/upf%r(ir)**2 enddo end if ! ! Read the wavefunctions of the atom ! if (iver(1) >= 7) then read( iunps, *, err=100, iostat=ios ) i if (i /= upf%nwfc) & call errore('readvan','unexpected or unimplemented case',1) end if ! ALLOCATE ( upf%chi(upf%mesh, upf%nwfc) ) if (iver(1) >= 6) & read( iunps, *, err=100, iostat=ios ) & ( (upf%chi(ir,iv), ir=1,upf%mesh), iv=1,upf%nwfc ) ! if (iver(1) == 1) then ! ! old version: read the q_l(r) and fit them with the Vanderbilt's form ! call fit_qrl ( ) ! end if ! ! Here we write on output information on the pseudopotential ! WRITE( stdout,200) is 200 format (/4x,60('=')/4x,'| pseudopotential report', & & ' for atomic species:',i3,11x,'|') WRITE( stdout,300) 'pseudo potential version', & iver(1), iver(2), iver(3) 300 format (4x,'| ',1a30,3i4,13x,' |' /4x,60('-')) WRITE( stdout,400) title, upf%dft 400 format (4x,'| ',2a20,' exchange-corr |') WRITE( stdout,500) upf%zmesh, is, upf%zp, exfact 500 format (4x,'| z =',f5.0,4x,'zv(',i2,') =',f5.0,4x,'exfact =', & & f10.5, 9x,'|') WRITE( stdout,600) ifpcor, etotpseu 600 format (4x,'| ifpcor = ',i2,10x,' atomic energy =',f10.5, & & ' Ry',6x,'|') WRITE( stdout,700) 700 format(4x,'| index orbital occupation energy',14x,'|') WRITE( stdout,800) ( iv, nnlz(iv), upf%oc(iv), ee(iv), iv=1,upf%nwfc ) DEALLOCATE (ee, nnlz) 800 format(4x,'|',i5,i11,5x,f10.2,f12.2,15x,'|') if (iver(1) >= 3 .and. nang > 0) then write(fmt,900) 2*nang-1, 40-8*(2*nang-2) 900 format('(4x,"| rinner =",',i1,'f8.4,',i2,'x,"|")') WRITE( stdout,fmt) (upf%rinner(lp),lp=1,2*nang-1) end if WRITE( stdout,1000) 1000 format(4x,'| new generation scheme:',32x,'|') WRITE( stdout,1100) upf%nbeta, upf%kkbeta, rcloc 1100 format(4x,'| nbeta = ',i2,5x,'kkbeta =',i5,5x,'rcloc =',f10.4,4x,& & '|'/4x,'| ibeta l epsilon rcut',25x,'|') do iv = 1, upf%nbeta lp=upf%lll(iv)+1 WRITE( stdout,1200) iv,upf%lll(iv),eee(iv),rc(lp) 1200 format(4x,'|',5x,i2,6x,i2,4x,2f7.2,25x,'|') enddo WRITE( stdout,1300) 1300 format (4x,60('=')) ! DEALLOCATE (eee, rc) return 100 call errore('readvan','error reading pseudo file', abs(ios) ) ! CONTAINS !----------------------------------------------------------------------- subroutine fit_qrl ( ) !----------------------------------------------------------------------- ! ! find coefficients qfcoef that fit the pseudized qrl in US PP ! these coefficients are written to file in newer versions of the ! Vanderbilt PP generation code but not in some ancient versions ! implicit none ! real (kind=DP), allocatable :: qrl(:,:), a(:,:), ainv(:,:), b(:), x(:) real (kind=DP) :: deta integer :: iv, jv, ijv, lmin, lmax, l, ir, irinner, i,j ! ! allocate ( a(upf%nqf,upf%nqf), ainv(upf%nqf,upf%nqf) ) allocate ( b(upf%nqf), x(upf%nqf) ) ALLOCATE ( qrl(upf%kkbeta, upf%nqlc) ) ! do iv=1,upf%nbeta do jv=iv,upf%nbeta ! ! original version, assuming lll(jv) >= lll(iv) ! lmin=lll(jv,is)-lll(iv,is)+1 ! lmax=lmin+2*lll(iv,is) ! note that indices run from 1 to Lmax+1, not from 0 to Lmax ! lmin = ABS( upf%lll(jv) - upf%lll(iv) ) + 1 lmax = upf%lll(jv) + upf%lll(iv) + 1 IF ( lmin < 1 .OR. lmax > SIZE(qrl,2)) & CALL errore ('fit_qrl', 'bad 2rd dimension for array qrl', 1) ! ! read q_l(r) for all l ! read(iunps,*, err=100) & ( (qrl(ir,l),ir=1,upf%kkbeta), l=lmin,lmax) ! ijv = jv * (jv-1) / 2 + iv ! do l=lmin,lmax ! ! reconstruct rinner ! do ir=upf%kkbeta,1,-1 if ( abs(qrl(ir,l)-upf%qfunc(ir,ijv)) > 1.0d-6) go to 10 end do 10 irinner = ir+1 upf%rinner(l) = upf%r(irinner) ! ! least square minimization: find ! qrl = sum_i c_i r^{l+1}r^{2i-2} for r < rinner ! a(:,:) = 0.0_DP b(:) = 0.0_DP do i = 1, upf%nqf do ir=1,irinner b(i) = b(i) + upf%r(ir)**(2*i-2+l+1) * qrl(ir,l) end do do j = i, upf%nqf do ir=1,irinner a(i,j) = a(i,j) + upf%r(ir)**(2*i-2+l+1) * & upf%r(ir)**(2*j-2+l+1) end do if (j > i) a(j,i) = a(i,j) end do end do ! call invmat (upf%nqf, a, ainv, deta) ! do i = 1, upf%nqf upf%qfcoef(i,l,iv,jv) = dot_product(ainv(i,:),b(:)) if (iv /= jv) upf%qfcoef(i,l,jv,iv) = upf%qfcoef(i,l,iv,jv) end do end do end do end do ! deallocate ( qrl, x, b , ainv, a ) return ! 100 call errore('readvan','error reading Q_L(r)', 1 ) end subroutine fit_qrl ! end subroutine readvan !----------------------------------------------------------------------- SUBROUTINE herman_skillman_grid (mesh,z,r,rab) !----------------------------------------------------------------------- ! ! generate Herman-Skillman radial grid (obsolescent) ! c - 0.88534138/z**(1/3) ! IMPLICIT NONE ! INTEGER mesh REAL(DP) :: z, r(mesh), rab(mesh) ! REAL(DP) :: deltax,pi INTEGER :: nblock,i,j,k ! pi=4.0_DP*ATAN(1.0_DP) nblock = mesh/40 i=1 r(i)=0.0_DP deltax=0.0025_DP*0.5_DP*(3.0_DP*pi/4.0_DP)**(2.0_DP/3.0_DP)/z**(1.0_DP/3.0_DP) DO j=1,nblock DO k=1,40 i=i+1 r(i)=r(i-1)+deltax rab(i)=deltax END DO deltax=deltax+deltax END DO ! RETURN END SUBROUTINE herman_skillman_grid ! !--------------------------------------------------------------------- subroutine readrrkj( iunps, is, upf ) !--------------------------------------------------------------------- ! ! This routine reads Vanderbilt pseudopotentials produced by the ! code of Andrea Dal Corso. Hard PPs are first generated ! according to the Rabe Rappe Kaxiras Johannopoulos recipe. ! Ultrasoft PP's are subsequently generated from the hard PP's. ! ! Output parameters in module "uspp_param" ! info on DFT level in module "dft" ! USE constants, ONLY : fpi USE pseudo_types ! implicit none ! ! First the arguments passed to the subroutine ! TYPE (pseudo_upf) :: upf integer :: & is, &! The index of the pseudopotential iunps ! the unit from with pseudopotential is read ! ! Local variables ! integer:: iexch, icorr, igcx, igcc integer:: & nb,mb, ijv,&! counters on beta functions n, &! counter on mesh points ir, &! counters on mesh points pseudotype,&! the type of pseudopotential ios, &! I/O control ndum, &! dummy integer variable l ! counter on angular momentum real(DP):: & x, &! auxiliary variable etotps, &! total energy of the pseudoatom rdum ! dummy real variable ! logical :: & rel ! if true the atomic calculation is relativistic ! character(len=75) :: & titleps ! the title of the pseudo ! integer :: & lmax ! max angular momentum character(len=2) :: & adum ! dummy character variable ! ! We first check the input variables ! if (is <= 0) & call errore('readrrkj','routine called with wrong 1st argument', 1) if (iunps <= 0 .or. iunps >= 100000) & call errore('readrrkj','routine called with wrong 2nd argument', 1) ! read( iunps, '(a75)', err=100, iostat=ios ) & titleps upf%psd = titleps(7:8) ! read( iunps, '(i5)',err=100, iostat=ios ) & pseudotype upf%tvanp = (pseudotype == 3) upf%tpawp = .false. if ( upf%tvanp ) then upf%generated = & "RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code" else upf%generated = & "RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code" endif read( iunps, '(2l5)',err=100, iostat=ios ) & rel, upf%nlcc read( iunps, '(4i5)',err=100, iostat=ios ) & iexch, icorr, igcx, igcc ! ! workaround to keep track of which dft was read ! See also upf2internals ! write( upf%dft, "('INDEX:',4i1)") iexch,icorr,igcx,igcc call set_dft_from_indices(iexch,icorr,igcx,igcc, 0) ! Cannot read nonlocal in this format read( iunps, '(2e17.11,i5)') & upf%zp, etotps, lmax if ( upf%zp < 1 .or. upf%zp > 100 ) & call errore('readrrkj','wrong potential read',is) ! read( iunps, '(4e17.11,i5)',err=100, iostat=ios ) & upf%xmin, rdum, upf%zmesh, upf%dx, upf%mesh ! if ( upf%mesh < 0) & call errore('readrrkj', 'wrong mesh',is) ! read( iunps, '(2i5)', err=100, iostat=ios ) & upf%nwfc, upf%nbeta ! if ( upf%nbeta < 0) & call errore('readrrkj', 'wrong nbeta', is) if ( upf%nwfc < 0 ) & call errore('readrrkj', 'wrong nchi', is) ! read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( rdum, nb=1,upf%nwfc ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( rdum, nb=1,upf%nwfc ) ! ALLOCATE ( upf%oc(upf%nwfc), upf%lchi(upf%nwfc), upf%lll(upf%nwfc) ) ! do nb=1,upf%nwfc read(iunps,'(a2,2i3,f6.2)',err=100,iostat=ios) & adum, ndum, upf%lchi(nb), upf%oc(nb) upf%lll(nb)=upf%lchi(nb) ! ! oc < 0 distinguishes between bound states from unbound states ! if ( upf%oc(nb) <= 0.0_DP) upf%oc(nb) = -1.0_DP enddo ! ALLOCATE ( upf%kbeta(upf%nbeta) ) ALLOCATE ( upf%dion(upf%nbeta,upf%nbeta), upf%qqq(upf%nbeta,upf%nbeta) ) ALLOCATE ( upf%beta(upf%mesh,upf%nbeta) ) ALLOCATE ( upf%qfunc(upf%mesh,upf%nbeta*(upf%nbeta+1)/2) ) upf%kkbeta = 0 do nb=1,upf%nbeta read ( iunps, '(i6)',err=100, iostat=ios ) upf%kbeta(nb) upf%kkbeta = MAX ( upf%kkbeta, upf%kbeta(nb) ) read ( iunps, '(1p4e19.11)',err=100, iostat=ios ) & ( upf%beta(ir,nb), ir=1,upf%kbeta(nb)) do ir=upf%kbeta(nb)+1,upf%mesh upf%beta(ir,nb)=0.0_DP enddo do mb=1,nb ! ! the symmetric matric Q_{nb,mb} is stored in packed form ! Q(nb,mb) => qfunc(ijv) as defined below (for mb <= nb) ! ijv = nb * (nb - 1) / 2 + mb read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & upf%dion(nb,mb) if (pseudotype == 3) then read(iunps,'(1p4e19.11)',err=100,iostat=ios) & upf%qqq(nb,mb) read(iunps,'(1p4e19.11)',err=100,iostat=ios) & (upf%qfunc(n,ijv),n=1,upf%mesh) else upf%qqq(nb,mb)=0.0_DP upf%qfunc(:,ijv)=0.0_DP endif if ( mb /= nb ) then upf%dion(mb,nb)=upf%dion(nb,mb) upf%qqq(mb,nb)=upf%qqq(nb,mb) end if enddo enddo ! ! reads the local potential ! ALLOCATE ( upf%vloc(upf%mesh) ) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & rdum, ( upf%vloc(ir), ir=1,upf%mesh ) ! ! reads the atomic charge ! ALLOCATE ( upf%rho_at(upf%mesh) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( upf%rho_at(ir), ir=1,upf%mesh ) ! ! if present reads the core charge ! if ( upf%nlcc ) then ALLOCATE ( upf%rho_atc(upf%mesh) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( upf%rho_atc(ir), ir=1,upf%mesh ) endif ! ! read the pseudo wavefunctions of the atom ! ALLOCATE ( upf%chi(upf%mesh, upf%nwfc) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ((upf%chi(ir,nb),ir=1,upf%mesh),nb=1,upf%nwfc) ! ! set several variables for compatibility with the rest of the code ! upf%nqf=0 upf%nqlc=2*lmax+1 if ( upf%nqlc > lqmax .or. upf%nqlc < 0 ) & call errore(' readrrkj', 'Wrong nqlc', upf%nqlc ) ALLOCATE ( upf%rinner(upf%nqlc) ) do l=1,upf%nqlc upf%rinner(l)=0.0_DP enddo ! ! compute the radial mesh ! ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) ) do ir = 1, upf%mesh x = upf%xmin + DBLE(ir-1) * upf%dx upf%r(ir) = EXP(x) / upf%zmesh upf%rab(ir) = upf%dx * upf%r(ir) end do ! ! set rho_atc(r)=rho_core(r) (without 4*pi*r^2 factor) ! if ( upf%nlcc ) then do ir=1,upf%mesh upf%rho_atc(ir) = upf%rho_atc(ir)/fpi/upf%r(ir)**2 enddo end if ! ! Set additional, not present, variables to dummy values allocate(upf%els(upf%nwfc)) upf%els(:) = 'nX' allocate(upf%els_beta(upf%nbeta)) upf%els_beta(:) = 'nX' allocate(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta)) upf%rcut(:) = 0._dp upf%rcutus(:) = 0._dp ! return 100 call errore('readrrkj','Reading pseudo file',abs(ios)) stop end subroutine readrrkj ! end module read_uspp_module espresso-5.0.2/Modules/fft_base.f900000644000700200004540000006615112053145633016074 0ustar marsamoscm! ! Copyright (C) 2006-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! !---------------------------------------------------------------------- ! FFT base Module. ! Written by Carlo Cavazzoni !---------------------------------------------------------------------- ! !=----------------------------------------------------------------------=! MODULE fft_base !=----------------------------------------------------------------------=! USE kinds, ONLY: DP USE parallel_include USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE ! ... data structure containing all information ! ... about fft data distribution for a given ! ... potential grid, and its wave functions sub-grid. TYPE ( fft_dlay_descriptor ) :: dfftp ! descriptor for dense grid ! Dimensions of the 3D real and reciprocal space FFT grid ! relative to the charge density and potential ("dense" grid) TYPE ( fft_dlay_descriptor ) :: dffts ! descriptor for smooth grid ! Dimensions of the 3D real and reciprocal space ! FFT grid relative to the smooth part of the charge density ! (may differ from the full charge density grid for USPP ) TYPE ( fft_dlay_descriptor ) :: dfftb ! descriptor for box grids ! Dimensions of the 3D real and reciprocal space ! FFT grid relative to the "small box" computation ! of the atomic augmentation part of the ! charge density used in USPP (to speed up CPV iterations) SAVE PRIVATE PUBLIC :: fft_scatter, grid_gather, grid_scatter PUBLIC :: dfftp, dffts, dfftb, fft_dlay_descriptor PUBLIC :: cgather_sym, cgather_smooth, cgather_custom PUBLIC :: cscatter_sym, cscatter_smooth, cscatter_custom PUBLIC :: gather_smooth, scatter_smooth PUBLIC :: tg_gather !=----------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------=! ! ! ! ! ALLTOALL based SCATTER, should be better on network ! with a defined topology, like on bluegene and cray machine ! !----------------------------------------------------------------------- SUBROUTINE fft_scatter ( dfft, f_in, nr3x, nxx_, f_aux, ncp_, npp_, isgn, use_tg ) !----------------------------------------------------------------------- ! ! transpose the fft grid across nodes ! a) From columns to planes (isgn > 0) ! ! "columns" (or "pencil") representation: ! processor "me" has ncp_(me) contiguous columns along z ! Each column has nr3x elements for a fft of order nr3 ! nr3x can be =nr3+1 in order to reduce memory conflicts. ! ! The transpose take places in two steps: ! 1) on each processor the columns are divided into slices along z ! that are stored contiguously. On processor "me", slices for ! processor "proc" are npp_(proc)*ncp_(me) big ! 2) all processors communicate to exchange slices ! (all columns with z in the slice belonging to "me" ! must be received, all the others must be sent to "proc") ! Finally one gets the "planes" representation: ! processor "me" has npp_(me) complete xy planes ! ! b) From planes to columns (isgn < 0) ! ! Quite the same in the opposite direction ! ! The output is overwritten on f_in ; f_aux is used as work space ! ! If optional argument "use_tg" is true the subroutines performs ! the trasposition using the Task Groups distribution ! #ifdef __MPI USE parallel_include #endif USE kinds, ONLY : DP IMPLICIT NONE TYPE (fft_dlay_descriptor), INTENT(in) :: dfft INTEGER, INTENT(in) :: nr3x, nxx_, isgn, ncp_ (:), npp_ (:) COMPLEX (DP), INTENT(inout) :: f_in (nxx_), f_aux (nxx_) LOGICAL, OPTIONAL, INTENT(in) :: use_tg #ifdef __MPI INTEGER :: dest, from, k, offset, proc, ierr, me, nprocp, gproc, gcomm, i, kdest, kfrom INTEGER :: me_p, nppx, mc, j, npp, nnp, ii, it, ip, ioff, sendsiz, ncpx ! LOGICAL :: use_tg_ #if defined __HPM ! CALL f_hpmstart( 10, 'scatter' ) #endif ! ! Task Groups use_tg_ = .false. IF( present( use_tg ) ) use_tg_ = use_tg me = dfft%mype + 1 ! IF( use_tg_ ) THEN ! This is the number of procs. in the plane-wave group nprocp = dfft%npgrp ELSE nprocp = dfft%nproc ENDIF ! CALL start_clock ('fft_scatter') ! ncpx = 0 nppx = 0 IF( use_tg_ ) THEN DO proc = 1, nprocp gproc = dfft%nplist( proc ) + 1 ncpx = max( ncpx, ncp_ ( gproc ) ) nppx = max( nppx, npp_ ( gproc ) ) ENDDO ELSE DO proc = 1, nprocp ncpx = max( ncpx, ncp_ ( proc ) ) nppx = max( nppx, npp_ ( proc ) ) ENDDO IF ( dfft%nproc == 1 ) THEN nppx = dfft%nr3x END IF ENDIF sendsiz = ncpx * nppx ! ierr = 0 IF (isgn.gt.0) THEN IF (nprocp==1) GO TO 10 ! ! "forward" scatter from columns to planes ! ! step one: store contiguously the slices ! offset = 1 DO proc = 1, nprocp from = offset IF( use_tg_ ) THEN gproc = dfft%nplist(proc)+1 ELSE gproc = proc ENDIF dest = 1 + ( proc - 1 ) * sendsiz ! DO k = 1, ncp_ (me) kdest = dest + (k - 1) * nppx - 1 kfrom = from + (k - 1) * nr3x - 1 DO i = 1, npp_ ( gproc ) f_aux ( kdest + i ) = f_in ( kfrom + i ) ENDDO ENDDO offset = offset + npp_ ( gproc ) ENDDO ! ! maybe useless; ensures that no garbage is present in the output ! f_in = 0.0_DP ! ! step two: communication ! IF( use_tg_ ) THEN gcomm = dfft%pgrp_comm ELSE gcomm = dfft%comm ENDIF ! CALL mpi_barrier (gcomm, ierr) ! why barrier? for buggy openmpi over ib CALL mpi_alltoall (f_aux(1), sendsiz, MPI_DOUBLE_COMPLEX, f_in(1), sendsiz, MPI_DOUBLE_COMPLEX, gcomm, ierr) IF( abs(ierr) /= 0 ) CALL errore ('fft_scatter', 'info<>0', abs(ierr) ) ! 10 CONTINUE ! f_aux = (0.d0, 0.d0) ! IF( isgn == 1 ) THEN !$omp parallel default(none) private(ip,ioff,i,mc,it,j) shared(dfft,nppx,sendsiz,me,f_in,f_aux) !$omp do DO ip = 1, dfft%nproc ioff = dfft%iss( ip ) DO i = 1, dfft%nsp( ip ) mc = dfft%ismap( i + ioff ) it = ( i - 1 ) * nppx + ( ip - 1 ) * sendsiz DO j = 1, dfft%npp( me ) f_aux( mc + ( j - 1 ) * dfft%nnp ) = f_in( j + it ) ENDDO ENDDO ENDDO !$omp end do !$omp end parallel ELSE IF( use_tg_ ) THEN npp = dfft%tg_npp( me ) nnp = dfft%nr1x * dfft%nr2x ELSE npp = dfft%npp( me ) nnp = dfft%nnp ENDIF ! !$omp parallel default(none) private(ip,ioff,i,mc,it,j,gproc,ii) shared(dfft,nppx,npp,nnp,sendsiz,use_tg_,f_in,f_aux) !$omp do DO ip = 1, dfft%nproc IF( use_tg_ ) THEN gproc = ( ip - 1 ) / dfft%nogrp + 1 IF( MOD( ip - 1, dfft%nogrp ) == 0 ) ii = 0 ELSE gproc = ip ii = 0 ENDIF ! ioff = dfft%iss( ip ) ! DO i = 1, dfft%nsw( ip ) ! mc = dfft%ismap( i + ioff ) ! it = ii * nppx + ( gproc - 1 ) * sendsiz ! DO j = 1, npp f_aux( mc + ( j - 1 ) * nnp ) = f_in( j + it ) ENDDO ! ii = ii + 1 ! ENDDO ! ENDDO !$omp end do !$omp end parallel END IF ELSE ! ! "backward" scatter from planes to columns ! IF( isgn == -1 ) THEN DO ip = 1, dfft%nproc ioff = dfft%iss( ip ) DO i = 1, dfft%nsp( ip ) mc = dfft%ismap( i + ioff ) it = ( i - 1 ) * nppx + ( ip - 1 ) * sendsiz DO j = 1, dfft%npp( me ) f_in( j + it ) = f_aux( mc + ( j - 1 ) * dfft%nnp ) ENDDO ENDDO ENDDO ELSE IF( use_tg_ ) THEN npp = dfft%tg_npp( me ) nnp = dfft%nr1x * dfft%nr2x ELSE npp = dfft%npp( me ) nnp = dfft%nnp ENDIF DO ip = 1, dfft%nproc IF( use_tg_ ) THEN gproc = ( ip - 1 ) / dfft%nogrp + 1 IF( MOD( ip - 1, dfft%nogrp ) == 0 ) ii = 0 ELSE gproc = ip ii = 0 ENDIF ! ioff = dfft%iss( ip ) ! DO i = 1, dfft%nsw( ip ) ! mc = dfft%ismap( i + ioff ) ! it = ii * nppx + ( gproc - 1 ) * sendsiz ! DO j = 1, npp f_in( j + it ) = f_aux( mc + ( j - 1 ) * nnp ) ENDDO ! ii = ii + 1 ! ENDDO ENDDO END IF IF( nprocp == 1 ) GO TO 20 ! ! step two: communication ! IF( use_tg_ ) THEN gcomm = dfft%pgrp_comm ELSE gcomm = dfft%comm ENDIF ! CALL mpi_barrier (gcomm, ierr) ! why barrier? for buggy openmpi over ib CALL mpi_alltoall (f_in(1), sendsiz, MPI_DOUBLE_COMPLEX, f_aux(1), sendsiz, MPI_DOUBLE_COMPLEX, gcomm, ierr) IF( abs(ierr) /= 0 ) CALL errore ('fft_scatter', 'info<>0', abs(ierr) ) ! ! step one: store contiguously the columns ! f_in = 0.0_DP ! offset = 1 DO proc = 1, nprocp from = offset IF( use_tg_ ) THEN gproc = dfft%nplist(proc)+1 ELSE gproc = proc ENDIF dest = 1 + ( proc - 1 ) * sendsiz ! DO k = 1, ncp_ (me) kdest = dest + (k - 1) * nppx - 1 kfrom = from + (k - 1) * nr3x - 1 DO i = 1, npp_ ( gproc ) f_in ( kfrom + i ) = f_aux ( kdest + i ) ENDDO ENDDO offset = offset + npp_ ( gproc ) ENDDO 20 CONTINUE ENDIF CALL stop_clock ('fft_scatter') #endif #if defined __HPM ! CALL f_hpmstop( 10 ) #endif RETURN END SUBROUTINE fft_scatter !---------------------------------------------------------------------------- SUBROUTINE grid_gather( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... REAL*8 f_in = distributed variable (nxx) ! ... REAL*8 f_out = gathered variable (nr1x*nr2x*nr3x) ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in( : ), f_out( : ) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! IF( size( f_in ) < dfftp%nnr ) & CALL errore( ' grid_gather ', ' f_in too small ', dfftp%nnr - size( f_in ) ) ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! info = size( f_out ) - displs( dfftp%nproc - 1 ) - recvcount( dfftp%nproc - 1 ) ! IF( info < 0 ) & CALL errore( ' grid_gather ', ' f_out too small ', -info ) ! info = 0 ! CALL MPI_GATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dfftp%root, & dfftp%comm, info ) ! CALL errore( 'grid_gather', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #endif ! RETURN ! END SUBROUTINE grid_gather !---------------------------------------------------------------------------- SUBROUTINE grid_scatter( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data from the first processor of every pool ! ! ... REAL*8 f_in = gathered variable (nr1x*nr2x*nr3x) ! ... REAL*8 f_out = distributed variable (nxx) ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in( : ), f_out( : ) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! IF( size( f_out ) < dfftp%nnr ) & CALL errore( ' grid_scatter ', ' f_out too small ', dfftp%nnr - size( f_in ) ) ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! info = size( f_in ) - displs( dfftp%nproc - 1 ) - sendcount( dfftp%nproc - 1 ) ! IF( info < 0 ) & CALL errore( ' grid_scatter ', ' f_in too small ', -info ) ! info = 0 ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'grid_scatter', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dfftp%nnr ) f_out(sendcount(dfftp%mype)+1:dfftp%nnr) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #endif ! RETURN ! END SUBROUTINE grid_scatter ! ! ... "gather"-like subroutines ! !----------------------------------------------------------------------- SUBROUTINE cgather_sym( f_in, f_out ) !----------------------------------------------------------------------- ! ! ... gather complex data for symmetrization (in phonon code) ! ... COMPLEX*16 f_in = distributed variable (nrxx) ! ... COMPLEX*16 f_out = gathered variable (nr1x*nr2x*nr3x) ! USE mp, ONLY : mp_barrier USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in( : ), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'cgather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = 2 * dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_ALLGATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, & f_out, recvcount, displs, MPI_DOUBLE_PRECISION, & dfftp%comm, info ) ! CALL errore( 'cgather_sym', 'info<>0', info ) ! ! CALL mp_barrier( dfftp%comm ) ! CALL stop_clock( 'cgather' ) ! #endif ! RETURN ! END SUBROUTINE cgather_sym ! !---------------------------------------------------------------------------- SUBROUTINE cgather_smooth ( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... gathers data on the smooth AND complex fft grid ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... COMPLEX*16 f_in = distributed variable ( dffts%nnr ) ! ... COMPLEX*16 f_out = gathered variable (nr1sx*nr2sx*nr3sx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = 2 * dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_GATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dfftp%root, & dfftp%comm, info ) ! CALL errore( 'cgather_smooth', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #endif ! RETURN ! END SUBROUTINE cgather_smooth ! !---------------------------------------------------------------------------- SUBROUTINE cgather_custom ( f_in, f_out, dfftt ) !---------------------------------------------------------------------------- ! ! ... gathers data on the custom AND complex fft grid ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... COMPLEX*16 f_in = distributed variable ( dfftt%nnr ) ! ... COMPLEX*16 f_out = gathered variable (nr1sx*nr2sx*nr3sx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) TYPE ( fft_dlay_descriptor ), INTENT(IN) :: dfftt ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = 2 * dfftt%nnp * dfftt%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_GATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dfftp%root, & dfftp%comm, info ) ! CALL errore( 'cgather_custom', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #endif ! RETURN ! END SUBROUTINE cgather_custom ! ! ... "scatter"-like subroutines ! !---------------------------------------------------------------------------- SUBROUTINE cscatter_sym( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data from the first processor of every pool ! ! ... COMPLEX*16 f_in = gathered variable (nr1x*nr2x*nr3x) ! ... COMPLEX*16 f_out = distributed variable (nxx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'cscatter_sym' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = 2 * dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'cscatter_sym', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dfftp%nnr ) f_out(sendcount(dfftp%mype)+1: dfftp%nnr ) = 0.D0 ! CALL stop_clock( 'cscatter_sym' ) ! #endif ! RETURN ! END SUBROUTINE cscatter_sym ! !---------------------------------------------------------------------------- SUBROUTINE cscatter_smooth( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data on the smooth AND complex fft grid ! ... scatters data from the first processor of every pool ! ! ... COMPLEX*16 f_in = gathered variable (nr1sx*nr2sx*nr3sx) ! ... COMPLEX*16 f_out = distributed variable ( dffts%nnr) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = 2 * dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'scatter', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dffts%nnr ) f_out(sendcount(dfftp%mype)+1: dffts%nnr ) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #endif ! RETURN ! END SUBROUTINE cscatter_smooth ! !---------------------------------------------------------------------------- SUBROUTINE cscatter_custom( f_in, f_out, dfftt ) !---------------------------------------------------------------------------- ! ! ... scatters data on the custom AND complex fft grid ! ... scatters data from the first processor of every pool ! ! ... COMPLEX*16 f_in = gathered variable (nr1sx*nr2sx*nr3sx) ! ... COMPLEX*16 f_out = distributed variable ( dfftt%nnr) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) TYPE ( fft_dlay_descriptor ), INTENT(IN) :: dfftt ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = 2 * dfftt%nnp * dfftt%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'scatter', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dfftt%nnr ) f_out(sendcount(dfftp%mype)+1: dfftt%nnr ) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #endif ! RETURN ! END SUBROUTINE cscatter_custom ! !---------------------------------------------------------------------------- SUBROUTINE gather_smooth ( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... gathers data on the smooth AND real fft grid ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... REAL*8 f_in = distributed variable ( dffts%nnr ) ! ... REAL*8 f_out = gathered variable (nr1sx*nr2sx*nr3sx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dffts%nproc-1), recvcount(0:dffts%nproc-1) ! ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dffts%nproc - 1 ) ! recvcount(proc) = dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dffts%comm ) ! CALL MPI_GATHERV( f_in, recvcount(dffts%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dffts%root, & dffts%comm, info ) ! CALL errore( 'gather', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #endif ! RETURN ! END SUBROUTINE gather_smooth ! !---------------------------------------------------------------------------- SUBROUTINE scatter_smooth( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data on the smooth AND real fft grid ! ... scatters data from the first processor of every pool ! ! ... REAL*8 f_in = gathered variable (nr1sx*nr2sx*nr3sx) ! ... REAL*8 f_out = distributed variable ( dffts%nnr) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dffts%nproc-1), sendcount(0:dffts%nproc-1) ! ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dffts%nproc - 1 ) ! sendcount(proc) = dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dffts%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dffts%mype), MPI_DOUBLE_PRECISION, & dffts%root, dffts%comm, info ) ! CALL errore( 'scatter', 'info<>0', info ) ! IF ( sendcount(dffts%mype) /= dffts%nnr ) f_out(sendcount(dffts%mype)+1: dffts%nnr ) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #endif ! RETURN ! END SUBROUTINE scatter_smooth ! SUBROUTINE tg_gather( dffts, v, tg_v ) ! USE parallel_include ! USE fft_types, ONLY : fft_dlay_descriptor ! T.G. ! NOGRP: Number of processors per orbital task group IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(in) :: dffts REAL(DP) :: v(:) REAL(DP) :: tg_v(:) INTEGER :: nsiz, i, ierr, nsiz_tg INTEGER :: recv_cnt( dffts%nogrp ), recv_displ( dffts%nogrp ) nsiz_tg = dffts%tg_nnr * dffts%nogrp IF( size( tg_v ) < nsiz_tg ) & CALL errore( ' tg_gather ', ' tg_v too small ', ( nsiz_tg - size( tg_v ) ) ) nsiz = dffts%npp( dffts%mype+1 ) * dffts%nr1x * dffts%nr2x IF( size( v ) < nsiz ) & CALL errore( ' tg_gather ', ' v too small ', ( nsiz - size( v ) ) ) ! ! The potential in v is distributed across all processors ! We need to redistribute it so that it is completely contained in the ! processors of an orbital TASK-GROUP ! recv_cnt(1) = dffts%npp( dffts%nolist(1) + 1 ) * dffts%nr1x * dffts%nr2x recv_displ(1) = 0 DO i = 2, dffts%nogrp recv_cnt(i) = dffts%npp( dffts%nolist(i) + 1 ) * dffts%nr1x * dffts%nr2x recv_displ(i) = recv_displ(i-1) + recv_cnt(i-1) ENDDO ! clean only elements that will not be overwritten ! DO i = recv_displ(dffts%nogrp) + recv_cnt( dffts%nogrp ) + 1, size( tg_v ) tg_v( i ) = 0.0d0 ENDDO #if defined (__MPI) CALL MPI_Allgatherv( v(1), nsiz, MPI_DOUBLE_PRECISION, & tg_v(1), recv_cnt, recv_displ, MPI_DOUBLE_PRECISION, dffts%ogrp_comm, IERR) IF( ierr /= 0 ) & CALL errore( ' tg_gather ', ' MPI_Allgatherv ', abs( ierr ) ) #endif END SUBROUTINE tg_gather !=----------------------------------------------------------------------=! END MODULE fft_base !=----------------------------------------------------------------------=! espresso-5.0.2/Modules/check_stop.f900000644000700200004540000001214712053145633016441 0ustar marsamoscm! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! ... This module contains functions to check if the code should ! ... be smoothly stopped. ! ... In particular the function check_stop_now returns .TRUE. if ! ... either the user has created a given file or if the ! ... elapsed time is larger than max_seconds ! !------------------------------------------------------------------------------! MODULE check_stop !------------------------------------------------------------------------------! ! USE kinds ! IMPLICIT NONE ! SAVE ! REAL(DP) :: max_seconds = 1.E+7_DP ! LOGICAL, PRIVATE :: tinit = .FALSE. ! REAL(DP) :: init_second ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE check_stop_init() !----------------------------------------------------------------------- ! USE input_parameters, ONLY : max_seconds_ => max_seconds USE io_global, ONLY : stdout USE io_files, ONLY : prefix, exit_file #if defined __TRAP_SIGUSR1 USE set_signal, ONLY : signal_trap_init #endif ! IMPLICIT NONE ! REAL(DP), EXTERNAL :: cclock ! IF ( tinit ) & WRITE( UNIT = stdout, & FMT = '(/,5X,"WARNING: check_stop already initialized")' ) ! ! ... the exit_file name is set here ! exit_file = TRIM( prefix ) // '.EXIT' ! IF ( max_seconds_ > 0.0_DP ) max_seconds = max_seconds_ ! init_second = cclock() tinit = .TRUE. ! #if defined __TRAP_SIGUSR1 CALL signal_trap_init ( ) #endif ! RETURN ! END SUBROUTINE check_stop_init ! !----------------------------------------------------------------------- FUNCTION check_stop_now( inunit ) !----------------------------------------------------------------------- ! USE mp, ONLY : mp_bcast USE mp_global, ONLY : intra_image_comm USE io_global, ONLY : ionode, ionode_id, meta_ionode, stdout USE io_files, ONLY : tmp_dir, exit_file, iunexit #if defined __TRAP_SIGUSR1 USE set_signal, ONLY : signal_detected #endif ! IMPLICIT NONE ! INTEGER, OPTIONAL, INTENT(IN) :: inunit ! INTEGER :: unit LOGICAL :: check_stop_now, tex, tex2 LOGICAL :: signaled REAL(DP) :: seconds REAL(DP), EXTERNAL :: cclock ! ! ! ... cclock is a C function returning the elapsed solar ! ... time in seconds since the Epoch ( 00:00:00 1/1/1970 ) ! IF ( .NOT. tinit ) & CALL errore( 'check_stop_now', 'check_stop not initialized', 1 ) ! unit = stdout IF ( PRESENT( inunit ) ) unit = inunit ! check_stop_now = .FALSE. ! signaled = .FALSE. ! IF ( ionode ) THEN ! ! ... Check first if exit file exists in current directory ! INQUIRE( FILE = TRIM( exit_file ), EXIST = tex ) ! IF ( tex ) THEN ! check_stop_now = .TRUE. OPEN( UNIT = iunexit, FILE = TRIM( exit_file ) ) CLOSE( UNIT = iunexit, STATUS = 'DELETE' ) ! ELSE ! ! ... Check if exit file exists in scratch directory ! INQUIRE( FILE = TRIM(tmp_dir) // TRIM( exit_file ), EXIST = tex2 ) ! IF ( tex2 ) THEN ! check_stop_now = .TRUE. OPEN( UNIT = iunexit, FILE = TRIM(tmp_dir) // TRIM(exit_file) ) CLOSE( UNIT = iunexit, STATUS = 'DELETE' ) ! ELSE seconds = cclock() - init_second check_stop_now = ( seconds > max_seconds ) END IF ! END IF ! END IF ! #if defined __TRAP_SIGUSR1 signaled = signal_detected() check_stop_now = check_stop_now .OR. signaled tex = tex .OR. signaled #endif ! CALL mp_bcast( check_stop_now, ionode_id, intra_image_comm ) ! IF ( check_stop_now .AND. meta_ionode ) THEN ! IF ( tex ) THEN ! WRITE( UNIT = unit, & FMT = '(/,5X,"Program stopped by user request")' ) ! ELSE ! WRITE( UNIT = unit, & FMT = '(/,5X,"Maximum CPU time exceeded")' ) WRITE( UNIT = unit, & FMT = '(/,5X,"max_seconds = ",F10.2)' ) max_seconds WRITE( UNIT = unit, & FMT = '(5X,"elapsed seconds = ",F10.2)' ) seconds ! END IF ! END IF ! RETURN ! END FUNCTION check_stop_now ! END MODULE check_stop espresso-5.0.2/Modules/constants.f900000644000700200004540000001303712053145633016332 0ustar marsamoscm! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE constants !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! ! ... The constants needed everywhere ! IMPLICIT NONE ! SAVE ! ! ... Mathematical constants ! REAL(DP), PARAMETER :: pi = 3.14159265358979323846_DP REAL(DP), PARAMETER :: tpi = 2.0_DP * pi REAL(DP), PARAMETER :: fpi = 4.0_DP * pi REAL(DP), PARAMETER :: sqrtpi = 1.77245385090551602729_DP REAL(DP), PARAMETER :: sqrtpm1= 1.0_DP / sqrtpi REAL(DP), PARAMETER :: sqrt2 = 1.41421356237309504880_DP ! ! ... Physical constants, SI (NIST CODATA 2006), Web Version 5.1 ! http://physics.nist.gov/constants REAL(DP), PARAMETER :: H_PLANCK_SI = 6.62606896E-34_DP ! J s REAL(DP), PARAMETER :: K_BOLTZMANN_SI = 1.3806504E-23_DP ! J K^-1 REAL(DP), PARAMETER :: ELECTRON_SI = 1.602176487E-19_DP ! C REAL(DP), PARAMETER :: ELECTRONVOLT_SI = 1.602176487E-19_DP ! J REAL(DP), PARAMETER :: ELECTRONMASS_SI = 9.10938215E-31_DP ! Kg REAL(DP), PARAMETER :: HARTREE_SI = 4.35974394E-18_DP ! J REAL(DP), PARAMETER :: RYDBERG_SI = HARTREE_SI/2.0_DP ! J REAL(DP), PARAMETER :: BOHR_RADIUS_SI = 0.52917720859E-10_DP ! m REAL(DP), PARAMETER :: AMU_SI = 1.660538782E-27_DP ! Kg REAL(DP), PARAMETER :: C_SI = 2.99792458E+8_DP ! m sec^-1 ! ! ... Physical constants, atomic units: ! ... AU for "Hartree" atomic units (e = m = hbar = 1) ! ... RY for "Rydberg" atomic units (e^2=2, m=1/2, hbar=1) ! REAL(DP), PARAMETER :: K_BOLTZMANN_AU = K_BOLTZMANN_SI / HARTREE_SI REAL(DP), PARAMETER :: K_BOLTZMANN_RY = K_BOLTZMANN_SI / RYDBERG_SI ! ! ... Unit conversion factors: energy and masses ! REAL(DP), PARAMETER :: AUTOEV = HARTREE_SI / ELECTRONVOLT_SI REAL(DP), PARAMETER :: RYTOEV = AUTOEV / 2.0_DP REAL(DP), PARAMETER :: AMU_AU = AMU_SI / ELECTRONMASS_SI REAL(DP), PARAMETER :: AMU_RY = AMU_AU / 2.0_DP ! ! ... Unit conversion factors: atomic unit of time, in s and ps ! REAL(DP), PARAMETER :: AU_SEC = H_PLANCK_SI/tpi/HARTREE_SI REAL(DP), PARAMETER :: AU_PS = AU_SEC * 1.0E+12_DP ! ! ... Unit conversion factors: pressure (1 Pa = 1 J/m^3, 1GPa = 10 Kbar ) ! REAL(DP), PARAMETER :: AU_GPA = HARTREE_SI / BOHR_RADIUS_SI ** 3 & / 1.0E+9_DP REAL(DP), PARAMETER :: RY_KBAR = 10.0_DP * AU_GPA / 2.0_DP ! ! ... Unit conversion factors: 1 debye = 10^-18 esu*cm ! ... = 3.3356409519*10^-30 C*m ! ... = 0.208194346 e*A ! ... ( 1 esu = (0.1/c) Am, c=299792458 m/s) ! REAL(DP), PARAMETER :: DEBYE_SI = 3.3356409519_DP * 1.0E-30_DP ! C*m REAL(DP), PARAMETER :: AU_DEBYE = ELECTRON_SI * BOHR_RADIUS_SI / & DEBYE_SI ! REAL(DP), PARAMETER :: eV_to_kelvin = ELECTRONVOLT_SI / K_BOLTZMANN_SI REAL(DP), PARAMETER :: ry_to_kelvin = RYDBERG_SI / K_BOLTZMANN_SI ! ! .. Unit conversion factors: Energy to wavelength ! REAL(DP), PARAMETER :: EVTONM = 1E+9_DP * H_PLANCK_SI * C_SI / & &ELECTRONVOLT_SI REAL(DP), PARAMETER :: RYTONM = 1E+9_DP * H_PLANCK_SI * C_SI / RYDBERG_SI ! ! Speed of light in atomic units ! REAL(DP), PARAMETER :: C_AU = C_SI / BOHR_RADIUS_SI * AU_SEC ! ! ... zero up to a given accuracy ! REAL(DP), PARAMETER :: eps4 = 1.0E-4_DP REAL(DP), PARAMETER :: eps6 = 1.0E-6_DP REAL(DP), PARAMETER :: eps8 = 1.0E-8_DP REAL(DP), PARAMETER :: eps12 = 1.0E-12_DP REAL(DP), PARAMETER :: eps14 = 1.0E-14_DP REAL(DP), PARAMETER :: eps16 = 1.0E-16_DP REAL(DP), PARAMETER :: eps24 = 1.0E-24_DP REAL(DP), PARAMETER :: eps32 = 1.0E-32_DP ! REAL(DP), PARAMETER :: gsmall = 1.0E-12_DP ! REAL(DP), PARAMETER :: e2 = 2.0_DP ! the square of the electron charge REAL(DP), PARAMETER :: degspin = 2.0_DP ! the number of spins per level ! !!!!!! COMPATIBIILITY ! REAL(DP), PARAMETER :: bohr_radius_cm = bohr_radius_si * 100.0_DP REAL(DP), PARAMETER :: BOHR_RADIUS_ANGS = bohr_radius_cm * 1.0E8_DP REAL(DP), PARAMETER :: ANGSTROM_AU = 1.0_DP/BOHR_RADIUS_ANGS REAL(DP), PARAMETER :: DIP_DEBYE = AU_DEBYE REAL(DP), PARAMETER :: AU_TERAHERTZ = AU_PS REAL(DP), PARAMETER :: AU_TO_OHMCMM1 = 46000.0_DP ! (ohm cm)^-1 REAL(DP), PARAMETER :: RY_TO_THZ = 1.0_DP / AU_TERAHERTZ / FPI REAL(DP), PARAMETER :: RY_TO_CMM1 = 1.E+10_DP * RY_TO_THZ / C_SI ! END MODULE constants ! perl script to create a program to list the available constants: ! extract with: grep '^!XX!' constants.f90 | sed 's,!XX!,,' > mkconstlist.pl ! then run: perl mkconstlist.pl constants.f90 > testme.f90 ! and compile and run: testme.f90 !XX!#!/usr/bin/perl -w !XX! !XX!use strict; !XX! !XX!print <) { !XX! if ( /REAL\s*\(DP\)\s*,\s*PARAMETER\s*::\s*([a-zA-Z_0-9]+)\s*=.*$/ ) { !XX! print " WRITE (*,'(A18,G24.17)') '$1:',$1\n"; !XX! } !XX!} !XX! !XX!print < 0 fatal error ! IMPLICIT NONE CHARACTER(*), INTENT(in) :: str INTEGER, INTENT(out) :: major, minor, patch, ierr ! INTEGER :: i1, i2, length INTEGER :: ierrtot CHARACTER(10) :: num(3) ! major = 0 minor = 0 patch = 0 length = LEN_TRIM( str ) ! IF ( length == 0 ) THEN ! ierr = -1 RETURN ! ENDIF i1 = SCAN( str, ".") i2 = SCAN( str, ".", BACK=.TRUE.) ! IF ( i1 == 0 .OR. i2 == 0 .OR. i1 == i2 ) THEN ! ierr = 1 RETURN ! ENDIF ! num(1) = str( 1 : i1-1 ) num(2) = str( i1+1 : i2-1 ) num(3) = str( i2+1 : ) ! ierrtot = 0 ! READ( num(1), *, IOSTAT=ierr ) major IF (ierr/=0) RETURN ! READ( num(2), *, IOSTAT=ierr ) minor IF (ierr/=0) RETURN ! READ( num(3), *, IOSTAT=ierr ) patch IF (ierr/=0) RETURN ! END SUBROUTINE version_parse ! !-------------------------------------------------------------------------- FUNCTION version_compare(str1, str2) !-------------------------------------------------------------------------- ! ! Compare two version strings; the result is ! ! "newer": str1 is newer that str2 ! "equal": str1 is equal to str2 ! "older": str1 is older than str2 ! " ": str1 or str2 has a wrong format ! IMPLICIT NONE CHARACTER(*) :: str1, str2 CHARACTER(10) :: version_compare ! INTEGER :: version1(3), version2(3) INTEGER :: basis, icheck1, icheck2 INTEGER :: ierr ! version_compare = " " ! CALL version_parse( str1, version1(1), version1(2), version1(3), ierr) IF ( ierr/=0 ) RETURN ! CALL version_parse( str2, version2(1), version2(2), version2(3), ierr) IF ( ierr/=0 ) RETURN ! ! basis = 1000 ! icheck1 = version1(1) * basis**2 + version1(2)* basis + version1(3) icheck2 = version2(1) * basis**2 + version2(2)* basis + version2(3) ! IF ( icheck1 > icheck2 ) THEN ! version_compare = 'newer' ! ELSEIF( icheck1 == icheck2 ) THEN ! version_compare = 'equal' ! ELSE ! version_compare = 'older' ! ENDIF ! END FUNCTION version_compare ! !-------------------------------------------------------------------------- SUBROUTINE get_field(n, field, str, sep) !-------------------------------------------------------------------------- ! Extract whitespace-separated nth block from string IMPLICIT NONE INTEGER,INTENT(IN) :: n CHARACTER(len=*),INTENT(OUT) :: field CHARACTER(len=*),INTENT(IN) :: str CHARACTER(len=1),OPTIONAL,INTENT(IN) :: sep INTEGER :: i,j,z ! block start and end INTEGER :: k ! block counter CHARACTER(len=1) :: sep1, sep2 !print*, "------------- parser start -------------" !print '(3a)', "string: -->", str,"<--" IF(present(sep)) THEN sep1 = sep sep2 = sep ! redundant, but easy ELSE sep1 = char(32) ! ... blank character sep2 = char(9) ! ... tab char ENDIF ! k = 1 ! counter for the required block ! DO i = 1,len(str) ! look for the beginning of the required block z = MAX(i-1,1) !print '(2a1,3i4,2l)', str(i:i), str(z:z), i,z,k,n,& ! (str(i:i) == sep1 .or. str(i:i) == sep2), (str(z:z) /= sep1 .and. str(z:z) /= sep2) IF( k == n) EXIT IF( (str(i:i) == sep1 .or. str(i:i) == sep2) & .and. & (str(z:z) /= sep1 .and. str(z:z) /= sep2) & ) & k = k+1 ENDDO ! !print*, "i found: ",i DO j = i,len(str) ! look for the beginning of the next block z = MAX(j-1,1) IF( (str(j:j) == sep1 .or. str(j:j) == sep2) & .and. & (str(z:z) /= sep1 .and. str(z:z) /= sep2) & ) & k = k+1 IF( k >n) EXIT ENDDO !print*, "j found: ",j ! IF (j <= len(str)) THEN ! if we are here, the reqired block was followed by a separator ! and another field, we have to trash one char (a separator) field = TRIM(adjustl(str(i:j-1))) !print*, "taking: ",i,j-2 ELSE ! if we are here, it was the last block in str, we have to take ! all the remaining chars field = TRIM(adjustl(str(i:len(str)))) !print*, "taking from ",i ENDIF !print*, "------------- parser end -------------" END SUBROUTINE get_field END MODULE parser espresso-5.0.2/Modules/fft_types.f900000644000700200004540000004712012053145633016321 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE fft_types USE io_global, ONLY : stdout IMPLICIT NONE SAVE TYPE fft_dlay_descriptor INTEGER :: nst ! total number of sticks INTEGER, POINTER :: nsp(:) ! number of sticks per processor ( potential ) ! using proc index starting from 1 !! ! on proc mpime -> nsp( mpime + 1 ) INTEGER, POINTER :: nsw(:) ! number of sticks per processor ( wave func ) ! using proc index as above INTEGER :: nr1 = 0 ! INTEGER :: nr2 = 0 ! effective FFT dimensions of the 3D grid (global) INTEGER :: nr3 = 0 ! INTEGER :: nr1x = 0 ! FFT grids leading dimensions INTEGER :: nr2x = 0 ! dimensions of the arrays for the 3D grid (global) INTEGER :: nr3x = 0 ! may differ from nr1 ,nr2 ,nr3 in order to boost performances INTEGER :: npl = 0 ! number of "Z" planes for this processor = npp( mpime + 1 ) INTEGER :: nnp = 0 ! number of 0 and non 0 sticks in a plane ( ~nr1*nr2/nproc ) INTEGER :: nnr = 0 ! local number of FFT grid elements ( ~nr1*nr2*nr3/proc ) ! size of the arrays allocated for the FFT, local to each processor: ! in parallel execution may differ from nr1x*nr2x*nr3x ! Not to be confused either with nr1*nr2*nr3 INTEGER, POINTER :: ngl(:) ! per proc. no. of non zero charge density/potential components INTEGER, POINTER :: nwl(:) ! per proc. no. of non zero wave function plane components INTEGER, POINTER :: npp(:) ! number of "Z" planes per processor INTEGER, POINTER :: ipp(:) ! offset of the first "Z" plane on each proc ( 0 on the first proc!!!) INTEGER, POINTER :: iss(:) ! index of the first stick on each proc INTEGER, POINTER :: isind(:) ! for each position in the plane indicate the stick index INTEGER, POINTER :: ismap(:) ! for each stick in the plane indicate the position INTEGER, POINTER :: iplp(:) ! indicate which "Y" plane should be FFTed ( potential ) INTEGER, POINTER :: iplw(:) ! indicate which "Y" plane should be FFTed ( wave func ) ! ! descriptor id and pointer, for future use ! INTEGER :: id INTEGER :: tptr ! ! Sub (box) grid descriptor ! INTEGER, POINTER :: irb(:,:) ! the offset of the box corner INTEGER, POINTER :: imin3(:) ! the starting local plane INTEGER, POINTER :: imax3(:) ! the last local plane INTEGER, POINTER :: np3(:) ! number of local plane for the box fft ! ! fft parallelization ! INTEGER :: mype ! my processor id (starting from 0) in the fft group INTEGER :: comm ! communicator of the fft gruop INTEGER :: nproc ! number of processor in the fft group INTEGER :: root ! root processor ! ! task groups ! LOGICAL :: have_task_groups ! INTEGER :: me_pgrp ! task id for plane wave task group INTEGER :: nogrp ! number of proc. in an orbital "task group" INTEGER :: npgrp ! number of proc. in a plane-wave "task group" INTEGER :: ogrp_comm ! orbital group communicator INTEGER :: pgrp_comm ! plane-wave group communicator INTEGER, POINTER :: nolist(:) ! list of pes in orbital group INTEGER, POINTER :: nplist(:) ! list of pes in pw group ! INTEGER :: tg_nnr ! maximum among nnr INTEGER, POINTER :: tg_nsw(:) ! number of sticks per task group ( wave func ) INTEGER, POINTER :: tg_npp(:) ! number of "Z" planes per task group INTEGER, POINTER :: tg_snd(:) ! number of element to be sent in group redist INTEGER, POINTER :: tg_rcv(:) ! number of element to be received in group redist INTEGER, POINTER :: tg_psdsp(:)! send displacement for all to all (pack) INTEGER, POINTER :: tg_usdsp(:)! send displacement for all to all (unpack) INTEGER, POINTER :: tg_rdsp(:)! receive displacement for all to all ! END TYPE INTEGER, PRIVATE :: icount = 0 CONTAINS SUBROUTINE fft_dlay_allocate( desc, mype, root, nproc, comm, nogrp, nx, ny ) TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: mype, root, nproc, comm, nx, ny ! mype starting from 0 INTEGER, INTENT(in) :: nogrp ! number of task groups ALLOCATE( desc%nsp( nproc ) ) ALLOCATE( desc%nsw( nproc ) ) ALLOCATE( desc%ngl( nproc ) ) ALLOCATE( desc%nwl( nproc ) ) ALLOCATE( desc%npp( nproc ) ) ALLOCATE( desc%ipp( nproc ) ) ALLOCATE( desc%iss( nproc ) ) ALLOCATE( desc%isind( nx * ny ) ) ALLOCATE( desc%ismap( nx * ny ) ) ALLOCATE( desc%iplp( nx ) ) ALLOCATE( desc%iplw( nx ) ) desc%nsp = 0 desc%nsw = 0 desc%ngl = 0 desc%nwl = 0 desc%npp = 0 desc%ipp = 0 desc%iss = 0 desc%isind = 0 desc%ismap = 0 desc%iplp = 0 desc%iplw = 0 desc%id = 0 desc%mype = mype desc%comm = comm desc%nproc = nproc desc%root = root desc%have_task_groups = .false. IF( nogrp > 1 ) & desc%have_task_groups = .true. desc%me_pgrp = 0 ! IF( MOD( nproc, MAX( 1, nogrp ) ) /= 0 ) & CALL errore( " fft_dlay_allocate ", "the number of task groups should be a divisor of nproc ", 1 ) desc%nogrp = MAX( 1, nogrp ) desc%npgrp = nproc / MAX( 1, nogrp ) desc%ogrp_comm = 0 desc%pgrp_comm = 0 ALLOCATE( desc%nolist( desc%nogrp ) ) ALLOCATE( desc%nplist( desc%npgrp ) ) desc%nolist = 0 desc%nplist = 0 NULLIFY( desc%tg_nsw ) NULLIFY( desc%tg_npp ) NULLIFY( desc%tg_snd ) NULLIFY( desc%tg_rcv ) NULLIFY( desc%tg_psdsp ) NULLIFY( desc%tg_usdsp ) NULLIFY( desc%tg_rdsp ) END SUBROUTINE fft_dlay_allocate SUBROUTINE fft_dlay_deallocate( desc ) TYPE (fft_dlay_descriptor) :: desc IF ( associated( desc%nsp ) ) DEALLOCATE( desc%nsp ) IF ( associated( desc%nsw ) ) DEALLOCATE( desc%nsw ) IF ( associated( desc%ngl ) ) DEALLOCATE( desc%ngl ) IF ( associated( desc%nwl ) ) DEALLOCATE( desc%nwl ) IF ( associated( desc%npp ) ) DEALLOCATE( desc%npp ) IF ( associated( desc%ipp ) ) DEALLOCATE( desc%ipp ) IF ( associated( desc%iss ) ) DEALLOCATE( desc%iss ) IF ( associated( desc%isind ) ) DEALLOCATE( desc%isind ) IF ( associated( desc%ismap ) ) DEALLOCATE( desc%ismap ) IF ( associated( desc%iplp ) ) DEALLOCATE( desc%iplp ) IF ( associated( desc%iplw ) ) DEALLOCATE( desc%iplw ) IF ( associated( desc%nolist ) ) DEALLOCATE( desc%nolist ) IF ( associated( desc%nplist ) ) DEALLOCATE( desc%nplist ) desc%id = 0 IF( desc%have_task_groups ) THEN IF ( associated( desc%tg_nsw ) ) DEALLOCATE( desc%tg_nsw ) IF ( associated( desc%tg_npp ) ) DEALLOCATE( desc%tg_npp ) IF ( associated( desc%tg_snd ) ) DEALLOCATE( desc%tg_snd ) IF ( associated( desc%tg_rcv ) ) DEALLOCATE( desc%tg_rcv ) IF ( associated( desc%tg_psdsp ) ) DEALLOCATE( desc%tg_psdsp ) IF ( associated( desc%tg_usdsp ) ) DEALLOCATE( desc%tg_usdsp ) IF ( associated( desc%tg_rdsp ) ) DEALLOCATE( desc%tg_rdsp ) ENDIF desc%have_task_groups = .false. END SUBROUTINE fft_dlay_deallocate !=----------------------------------------------------------------------------=! SUBROUTINE fft_box_allocate( desc, mype, root, nproc, comm, nat ) TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: nat, nproc, mype, root, comm ! mype starting from 0 ALLOCATE( desc%irb( 3, nat ) ) ALLOCATE( desc%imin3( nat ) ) ALLOCATE( desc%imax3( nat ) ) ALLOCATE( desc%npp( nproc ) ) ALLOCATE( desc%ipp( nproc ) ) ALLOCATE( desc%np3( nat ) ) desc%irb = 0 desc%imin3 = 0 desc%imax3 = 0 desc%npp = 0 desc%ipp = 0 desc%np3 = 0 desc%mype = mype desc%nproc = nproc desc%comm = comm desc%root = root desc%have_task_groups = .false. END SUBROUTINE fft_box_allocate SUBROUTINE fft_box_deallocate( desc ) TYPE (fft_dlay_descriptor) :: desc IF( associated( desc%irb ) ) DEALLOCATE( desc%irb ) IF( associated( desc%imin3 ) ) DEALLOCATE( desc%imin3 ) IF( associated( desc%imax3 ) ) DEALLOCATE( desc%imax3 ) IF( associated( desc%npp ) ) DEALLOCATE( desc%npp ) IF( associated( desc%ipp ) ) DEALLOCATE( desc%ipp ) IF( associated( desc%np3 ) ) DEALLOCATE( desc%np3 ) desc%have_task_groups = .false. END SUBROUTINE fft_box_deallocate !=----------------------------------------------------------------------------=! SUBROUTINE fft_dlay_set( desc, tk, nst, nr1, nr2, nr3, nr1x, nr2x, nr3x, & ub, lb, idx, in1, in2, ncp, ncpw, ngp, ngpw, st, stw ) TYPE (fft_dlay_descriptor) :: desc LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: nst INTEGER, INTENT(in) :: nr1, nr2, nr3 ! size of real space grid INTEGER, INTENT(in) :: nr1x, nr2x, nr3x ! padded size of real space grid INTEGER, INTENT(in) :: ub(3), lb(3) ! upper and lower bound of real space indices INTEGER, INTENT(in) :: idx(:) INTEGER, INTENT(in) :: in1(:) INTEGER, INTENT(in) :: in2(:) INTEGER, INTENT(in) :: ncp(:) INTEGER, INTENT(in) :: ncpw(:) INTEGER, INTENT(in) :: ngp(:) INTEGER, INTENT(in) :: ngpw(:) INTEGER, INTENT(in) :: st( lb(1) : ub(1), lb(2) : ub(2) ) INTEGER, INTENT(in) :: stw( lb(1) : ub(1), lb(2) : ub(2) ) INTEGER :: npp( desc%nproc ), n3( desc%nproc ), nsp( desc%nproc ) INTEGER :: np, nq, i, is, iss, i1, i2, m1, m2, n1, n2, ip ! Task-grouping C. Bekas ! INTEGER :: sm IF( ( size( desc%ngl ) < desc%nproc ) .or. ( size( desc%npp ) < desc%nproc ) .or. & ( size( desc%ipp ) < desc%nproc ) .or. ( size( desc%iss ) < desc%nproc ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions ', 1 ) IF( ( nr1 > nr1x ) .or. ( nr2 > nr2x ) .or. ( nr3 > nr3x ) ) & CALL errore( ' fft_dlay_set ', ' wrong fft dimensions ', 2 ) IF( ( size( idx ) < nst ) .or. ( size( in1 ) < nst ) .or. ( size( in2 ) < nst ) ) & CALL errore( ' fft_dlay_set ', ' wrong number of stick dimensions ', 3 ) IF( ( size( ncp ) < desc%nproc ) .or. ( size( ngp ) < desc%nproc ) ) & CALL errore( ' fft_dlay_set ', ' wrong stick dimensions ', 4 ) ! Set the number of "xy" planes for each processor ! in other word do a slab partition along the z axis sm = 0 npp = 0 IF ( desc%nproc == 1 ) THEN npp(1) = nr3 ELSEIF( desc%nproc <= nr3 ) THEN np = nr3 / desc%nproc nq = nr3 - np * desc%nproc DO i = 1, desc%nproc npp(i) = np IF ( i <= nq ) npp(i) = np + 1 ENDDO ELSE DO ip = 1, nr3 ! some compiler complains for empty DO loops DO i = 1, desc%nproc, desc%nogrp npp(i) = npp(i) + 1 sm = sm + 1 IF ( sm == nr3 ) exit ENDDO IF ( sm == nr3 ) exit ENDDO ENDIF desc%npp( 1:desc%nproc ) = npp desc%npl = npp( desc%mype + 1 ) ! Find out the index of the starting plane on each proc n3 = 0 DO i = 2, desc%nproc n3(i) = n3(i-1) + npp(i-1) ENDDO desc%ipp( 1:desc%nproc ) = n3 ! Set the proper number of sticks IF( .not. tk ) THEN desc%nst = 2*nst - 1 ELSE desc%nst = nst ENDIF ! Set fft actual and leading dimensions desc%nr1 = nr1 desc%nr2 = nr2 desc%nr3 = nr3 desc%nr1x = nr1x desc%nr2x = nr2x desc%nr3x = nr3x desc%nnp = nr1x * nr2x ! see ncplane ! Set fft local workspace dimension IF ( desc%nproc == 1 ) THEN desc%nnr = nr1x * nr2x * nr3x desc%tg_nnr = desc%nnr ELSE desc%nnr = max( nr3x * ncp( 1 ), nr1x * nr2x * npp( 1 ) ) DO i = 2, desc%nproc desc%nnr = max( desc%nnr, nr3x * ncp( i ) ) desc%nnr = max( desc%nnr, nr1x * nr2x * npp( i ) ) END DO desc%nnr = max( 1, desc%nnr ) ! ensure that desc%nrr > 0 ( for extreme parallelism ) desc%tg_nnr = desc%nnr DO i = 1, desc%nproc desc%tg_nnr = max( desc%tg_nnr, nr3x * ncp( i ) ) desc%tg_nnr = max( desc%tg_nnr, nr1x * nr2x * npp( i ) ) ENDDO desc%tg_nnr = max( 1, desc%tg_nnr ) ! ensure that desc%nrr > 0 ( for extreme parallelism ) ENDIF desc%ngl( 1:desc%nproc ) = ngp( 1:desc%nproc ) desc%nwl( 1:desc%nproc ) = ngpw( 1:desc%nproc ) IF( size( desc%isind ) < ( nr1x * nr2x ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions, isind ', 5 ) IF( size( desc%iplp ) < ( nr1x ) .or. size( desc%iplw ) < ( nr1x ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions, ipl ', 5 ) ! ! 1. Temporarily store in the array "desc%isind" the index of the processor ! that own the corresponding stick (index of proc starting from 1) ! 2. Set the array elements of "desc%iplw" and "desc%iplp" to one ! for that index corresponding to YZ planes containing at least one stick ! this are used in the FFT transform along Y ! desc%isind = 0 desc%iplp = 0 desc%iplw = 0 DO iss = 1, nst is = idx( iss ) i1 = in1( is ) i2 = in2( is ) IF( st( i1, i2 ) > 0 ) THEN m1 = i1 + 1; IF ( m1 < 1 ) m1 = m1 + nr1 m2 = i2 + 1; IF ( m2 < 1 ) m2 = m2 + nr2 IF( stw( i1, i2 ) > 0 ) THEN desc%isind( m1 + ( m2 - 1 ) * nr1x ) = st( i1, i2 ) desc%iplw( m1 ) = 1 ELSE desc%isind( m1 + ( m2 - 1 ) * nr1x ) = -st( i1, i2 ) ENDIF desc%iplp( m1 ) = 1 IF( .not. tk ) THEN n1 = -i1 + 1; IF ( n1 < 1 ) n1 = n1 + nr1 n2 = -i2 + 1; IF ( n2 < 1 ) n2 = n2 + nr2 IF( stw( -i1, -i2 ) > 0 ) THEN desc%isind( n1 + ( n2 - 1 ) * nr1x ) = st( -i1, -i2 ) desc%iplw( n1 ) = 1 ELSE desc%isind( n1 + ( n2 - 1 ) * nr1x ) = -st( -i1, -i2 ) ENDIF desc%iplp( n1 ) = 1 ENDIF ENDIF ENDDO ! ! Compute for each proc the global index ( starting from 0 ) of the first ! local stick ( desc%iss ) ! DO i = 1, desc%nproc IF( i == 1 ) THEN desc%iss( i ) = 0 ELSE desc%iss( i ) = desc%iss( i - 1 ) + ncp( i - 1 ) ENDIF ENDDO IF( size( desc%ismap ) < ( nst ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions ', 6 ) ! ! 1. Set the array desc%ismap which maps stick indexes to ! position in the palne ( iss ) ! 2. Re-set the array "desc%isind", that maps position ! in the plane with stick indexes (it is the inverse of desc%ismap ) ! ! wave function sticks first desc%ismap = 0 nsp = 0 DO iss = 1, size( desc%isind ) ip = desc%isind( iss ) IF( ip > 0 ) THEN nsp( ip ) = nsp( ip ) + 1 desc%ismap( nsp( ip ) + desc%iss( ip ) ) = iss IF( ip == ( desc%mype + 1 ) ) THEN desc%isind( iss ) = nsp( ip ) ELSE desc%isind( iss ) = 0 ENDIF ENDIF ENDDO ! check number of stick against the input value IF( any( nsp( 1:desc%nproc ) /= ncpw( 1:desc%nproc ) ) ) THEN DO ip = 1, desc%nproc WRITE( stdout,*) ' * ', ip, ' * ', nsp( ip ), ' /= ', ncpw( ip ) ENDDO CALL errore( ' fft_dlay_set ', ' inconsistent number of sticks ', 7 ) ENDIF desc%nsw( 1:desc%nproc ) = nsp( 1:desc%nproc ) ! then add pseudopotential stick DO iss = 1, size( desc%isind ) ip = desc%isind( iss ) IF( ip < 0 ) THEN nsp( -ip ) = nsp( -ip ) + 1 desc%ismap( nsp( -ip ) + desc%iss( -ip ) ) = iss IF( -ip == ( desc%mype + 1 ) ) THEN desc%isind( iss ) = nsp( -ip ) ELSE desc%isind( iss ) = 0 ENDIF ENDIF ENDDO ! check number of stick against the input value IF( any( nsp( 1:desc%nproc ) /= ncp( 1:desc%nproc ) ) ) THEN DO ip = 1, desc%nproc WRITE( stdout,*) ' * ', ip, ' * ', nsp( ip ), ' /= ', ncp( ip ) ENDDO CALL errore( ' fft_dlay_set ', ' inconsistent number of sticks ', 8 ) ENDIF desc%nsp( 1:desc%nproc ) = nsp( 1:desc%nproc ) icount = icount + 1 desc%id = icount ! Initialize the pointer to the fft tables desc%tptr = icount RETURN END SUBROUTINE fft_dlay_set !=----------------------------------------------------------------------------=! SUBROUTINE fft_box_set( desc, nr1b, nr2b, nr3b, nr1bx, nr2bx, nr3bx, nat, & irb, npp, ipp ) IMPLICIT NONE TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: nat INTEGER, INTENT(in) :: irb( :, : ) INTEGER, INTENT(in) :: npp( : ) INTEGER, INTENT(in) :: ipp( : ) INTEGER, INTENT(in) :: nr1b, nr2b, nr3b, nr1bx, nr2bx, nr3bx INTEGER :: ir3, ibig3, irb3, imin3, imax3, nr3, isa IF( nat > size( desc%irb, 2 ) ) THEN WRITE( stdout, fmt="( ///,'NAT, SIZE = ',2I10)" ) nat, size( desc%irb, 2 ) CALL errore(" fft_box_set ", " inconsistent dimensions ", 1 ) ENDIF IF( desc%nproc > size( desc%npp ) ) & CALL errore(" fft_box_set ", " inconsistent dimensions ", 2 ) desc%nr1 = nr1b desc%nr2 = nr2b desc%nr3 = nr3b desc%nr1x = nr1bx desc%nr2x = nr2bx desc%nr3x = nr3bx desc%irb( 1:3, 1:nat ) = irb( 1:3, 1:nat ) desc%npp( 1:desc%nproc ) = npp( 1:desc%nproc ) desc%ipp( 1:desc%nproc ) = ipp( 1:desc%nproc ) nr3 = sum( npp( 1:desc%nproc ) ) DO isa = 1, nat imin3 = nr3b imax3 = 1 irb3 = irb( 3, isa ) DO ir3 = 1, nr3b ibig3 = 1 + mod( irb3 + ir3 - 2, nr3 ) IF( ibig3 < 1 .or. ibig3 > nr3 ) & & CALL errore(' fft_box_set ',' ibig3 wrong ', ibig3 ) ibig3 = ibig3 - ipp( desc%mype + 1 ) IF ( ibig3 > 0 .and. ibig3 <= npp(desc%mype + 1) ) THEN imin3 = min( imin3, ir3 ) imax3 = max( imax3, ir3 ) ENDIF ENDDO desc%imin3( isa ) = imin3 desc%imax3( isa ) = imax3 desc%np3( isa ) = imax3 - imin3 + 1 ENDDO desc%have_task_groups = .false. END SUBROUTINE fft_box_set !=----------------------------------------------------------------------------=! SUBROUTINE fft_dlay_scalar( desc, ub, lb, nr1, nr2, nr3, nr1x, nr2x, nr3x, stw ) IMPLICIT NONE TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: lb(:), ub(:) INTEGER, INTENT(in) :: stw( lb(2) : ub(2), lb(3) : ub(3) ) INTEGER :: nr1, nr2, nr3, nr1x, nr2x, nr3x INTEGER :: m1, m2, i2, i3 IF( size( desc%iplw ) < nr3x .or. size( desc%isind ) < nr2x * nr3x ) & CALL errore(' fft_dlay_scalar ', ' wrong dimensions ', 1 ) desc%isind = 0 desc%iplw = 0 desc%iplp = 1 desc%nr1 = nr1 desc%nr2 = nr2 desc%nr3 = nr3 desc%nr1x = nr1x desc%nr2x = nr2x desc%nr3x = nr3x ! here we are setting parameter as if we were ! in a serial code, sticks are along X dimension ! and not along Z DO i2 = lb( 2 ), ub( 2 ) DO i3 = lb( 3 ), ub( 3 ) m1 = i2 + 1; IF ( m1 < 1 ) m1 = m1 + nr2 m2 = i3 + 1; IF ( m2 < 1 ) m2 = m2 + nr3 IF( stw( i2, i3 ) > 0 ) THEN desc%isind( m1 + ( m2 - 1 ) * nr2x ) = 1 ! st( i1, i2 ) desc%iplw( m2 ) = 1 ENDIF ENDDO ENDDO desc%nnr = nr1x * nr2x * nr3x desc%npl = nr3 desc%nnp = nr1x * nr2x desc%npp = nr3 desc%ipp = 0 desc%tg_nnr = desc%nnr ! desc%have_task_groups = .false. RETURN END SUBROUTINE fft_dlay_scalar END MODULE fft_types espresso-5.0.2/Modules/mp_base.f900000644000700200004540000007257312053145633015736 0ustar marsamoscm! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! Wrapper for MPI implementations that have problems with large messages ! ! In some MPI implementation the communication subsystem ! crashes when message exceeds a given size, so we need ! to break down MPI communications in smaller pieces ! #define __MSGSIZ_MAX 100000 #define __BCAST_MSGSIZ_MAX 100000 ! Some implementation of MPI (OpenMPI) if it is not well tuned for the given ! network hardware (InfiniBand) tend to lose performance or get stuck inside ! collective routines if processors are not well synchronized ! A barrier fixes the problem ! #define __USE_BARRIER !=----------------------------------------------------------------------------=! ! SUBROUTINE mp_synchronize( gid ) USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: gid #if defined __MPI && defined __USE_BARRIER INTEGER :: ierr CALL mpi_barrier( gid, ierr ) IF( ierr /= 0 ) CALL errore( 'mp_synchronize ', ' error in mpi_barrier ', ierr ) #endif RETURN END SUBROUTINE mp_synchronize !=----------------------------------------------------------------------------=! ! SUBROUTINE BCAST_REAL( array, n, root, gid ) USE kinds, ONLY: DP USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: n, root, gid REAL(DP) :: array( n ) #if defined __MPI INTEGER :: msgsiz_max = __BCAST_MSGSIZ_MAX INTEGER :: nblk, blksiz, iblk, istart, ierr #if defined __TRACE write(*,*) 'BCAST_REAL IN' #endif IF( n <= 0 ) GO TO 1 #if defined __USE_BARRIER CALL mp_synchronize( gid ) #endif IF( n <= msgsiz_max ) THEN CALL MPI_BCAST( array, n, MPI_DOUBLE_PRECISION, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_real ', ' error in mpi_bcast 1 ', ierr ) ELSE nblk = n / msgsiz_max blksiz = msgsiz_max DO iblk = 1, nblk istart = (iblk-1)*msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_DOUBLE_PRECISION, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_real ', ' error in mpi_bcast 2 ', ierr ) END DO blksiz = MOD( n, msgsiz_max ) IF( blksiz > 0 ) THEN istart = nblk * msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_DOUBLE_PRECISION, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_real ', ' error in mpi_bcast 3 ', ierr ) END IF END IF 1 CONTINUE #if defined __TRACE write(*,*) 'BCAST_REAL OUT' #endif #endif RETURN END SUBROUTINE BCAST_REAL SUBROUTINE BCAST_INTEGER( array, n, root, gid ) USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: n, root, gid INTEGER :: array( n ) #if defined __MPI INTEGER :: msgsiz_max = __MSGSIZ_MAX INTEGER :: nblk, blksiz, iblk, istart, ierr #if defined __TRACE write(*,*) 'BCAST_INTEGER IN' #endif IF( n <= 0 ) GO TO 1 #if defined __USE_BARRIER CALL mp_synchronize( gid ) #endif IF( n <= msgsiz_max ) THEN CALL MPI_BCAST( array, n, MPI_INTEGER, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_integer ', ' error in mpi_bcast 1 ', ierr ) ELSE nblk = n / msgsiz_max blksiz = msgsiz_max DO iblk = 1, nblk istart = (iblk-1)*msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_INTEGER, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_integer ', ' error in mpi_bcast 2 ', ierr ) END DO blksiz = MOD( n, msgsiz_max ) IF( blksiz > 0 ) THEN istart = nblk * msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_INTEGER, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_integer ', ' error in mpi_bcast 3 ', ierr ) END IF END IF 1 CONTINUE #if defined __TRACE write(*,*) 'BCAST_INTEGER OUT' #endif #endif RETURN END SUBROUTINE BCAST_INTEGER SUBROUTINE BCAST_LOGICAL( array, n, root, gid ) USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: n, root, gid LOGICAL :: array( n ) #if defined __MPI INTEGER :: msgsiz_max = __MSGSIZ_MAX INTEGER :: nblk, blksiz, iblk, istart, ierr #if defined __TRACE write(*,*) 'BCAST_LOGICAL IN' #endif IF( n <= 0 ) GO TO 1 #if defined __USE_BARRIER CALL mp_synchronize( gid ) #endif IF( n <= msgsiz_max ) THEN CALL MPI_BCAST( array, n, MPI_LOGICAL, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_logical ', ' error in mpi_bcast 1 ', ierr ) ELSE nblk = n / msgsiz_max blksiz = msgsiz_max DO iblk = 1, nblk istart = (iblk-1)*msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_LOGICAL, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_logical ', ' error in mpi_bcast 2 ', ierr ) END DO blksiz = MOD( n, msgsiz_max ) IF( blksiz > 0 ) THEN istart = nblk * msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_LOGICAL, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_logical ', ' error in mpi_bcast 3 ', ierr ) END IF END IF 1 CONTINUE #if defined __TRACE write(*,*) 'BCAST_LOGICAL OUT' #endif #endif RETURN END SUBROUTINE BCAST_LOGICAL ! ! ... "reduce"-like subroutines ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_real( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim ! size of the array REAL(DP) :: ps(dim) ! array whose elements have to be reduced INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! REAL(DP) :: buff(maxb) ! the use of the common here could help the transfer of data to the network device COMMON / mp_base_real / buff ! #if defined __TRACE write(*,*) 'reduce_base_real IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_real OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_real ! ! ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_integer( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER :: ps(dim) INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! INTEGER :: buff(maxb) COMMON / mp_base_integer / buff ! #if defined __TRACE write(*,*) 'reduce_base_integer IN' #endif ! CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_integer OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_integer ! ! ... "reduce"-like subroutines ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_real_to( dim, ps, psout, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed variable ps(dim) over the processors, ! ... and store the results in variable psout. ! ... This version uses a fixed-length buffer of appropriate (?) length ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim REAL(DP), INTENT(IN) :: ps(dim) REAL(DP) :: psout(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! #if defined __TRACE write(*,*) 'reduce_base_real_to IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_comm_rank', info ) ! IF ( dim > 0 .AND. nproc <= 1 ) THEN psout = ps END IF IF( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), psout(1+(n-1)*maxb), maxb, MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), psout(1+(n-1)*maxb), maxb, MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_allreduce 1', info ) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_allreduce 2', info ) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_real_to OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_real_to ! ! ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_integer_to( dim, ps, psout, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed integer variable ps(dim) over the processors, and ! ... saves the result on the output variable psout. ! ... This version uses a fixed-length buffer of appropriate (?) length ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER, INTENT(IN) :: ps(dim) INTEGER :: psout(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! #if defined __TRACE write(*,*) 'reduce_base_integer_to IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_comm_rank', info ) ! IF ( dim > 0 .AND. nproc <= 1 ) THEN psout = ps END IF IF( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), psout( 1+(n-1)*maxb ), maxb, MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), psout( 1+(n-1)*maxb ), maxb, MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_allreduce 1', info ) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_allreduce 2', info ) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_integer_to OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_integer_to ! ! ! Parallel MIN and MAX ! !---------------------------------------------------------------------------- SUBROUTINE parallel_min_integer( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the minimum of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! INTEGER :: buff(maxb) COMMON / mp_base_integer / buff ! #if defined __TRACE write(*,*) 'parallel_min_integer IN' #endif ! CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_min_integer OUT' #endif ! #endif ! RETURN ! END SUBROUTINE parallel_min_integer ! !---------------------------------------------------------------------------- SUBROUTINE parallel_max_integer( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the maximum of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! INTEGER :: buff(maxb) COMMON / mp_base_integer / buff ! #if defined __TRACE write(*,*) 'parallel_max_integer IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_max_integer OUT' #endif #endif ! RETURN ! END SUBROUTINE parallel_max_integer !---------------------------------------------------------------------------- SUBROUTINE parallel_min_real( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the minimum value of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim REAL(DP) :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! REAL(DP) :: buff(maxb) COMMON / mp_base_real / buff ! #if defined __TRACE write(*,*) 'parallel_min_real IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_min_real OUT' #endif #endif ! RETURN ! END SUBROUTINE parallel_min_real ! !---------------------------------------------------------------------------- SUBROUTINE parallel_max_real( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the maximum value of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim REAL(DP) :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! REAL(DP) :: buff(maxb) COMMON / mp_base_real / buff ! #if defined __TRACE write(*,*) 'parallel_max_real IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_max_real OUT' #endif ! #endif ! RETURN ! END SUBROUTINE parallel_max_real SUBROUTINE hangup() #if defined (__MPI) IMPLICIT NONE INCLUDE 'mpif.h' INTEGER IERR CALL MPI_BARRIER( MPI_COMM_WORLD, ierr ) IF( ierr /= 0 ) CALL errore( ' hangup ', ' error in mpi_barrier ', ierr ) CALL MPI_FINALIZE( ierr ) IF( ierr /= 0 ) CALL errore( ' hangup ', ' error in mpi_finalize ', ierr ) #endif STOP 'hangup' END SUBROUTINE hangup espresso-5.0.2/Modules/parallel_include.f900000644000700200004540000000152012053145633017607 0ustar marsamoscm! ! Copyright (C) 2003-2004 Carlo Cavazzoni ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! ! SISSA Code Interface -- Carlo Cavazzoni !------------------------------------------------------------------------------C MODULE parallel_include #if defined __MPI ! ! Include file for MPI ! INCLUDE 'mpif.h' ! ! this is only for symmetry with respect to the serial build LOGICAL :: tparallel = .true. #else ! an empty module can break compilation when it is used by other modules LOGICAL :: tparallel = .false. #endif END MODULE parallel_include espresso-5.0.2/Modules/griddim.f900000644000700200004540000002315712053145633015741 0ustar marsamoscm! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE grid_subroutines !=----------------------------------------------------------------------------=! ! This module contains subroutines that are related to grids ! parameters USE kinds, ONLY: DP USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE SAVE PRIVATE PUBLIC :: realspace_grids_init, realspace_grid_init_custom, realspace_grids_info CONTAINS SUBROUTINE realspace_grids_init( dfftp, dffts, at, bg, gcutm, gcuts ) ! USE fft_scalar, only: good_fft_dimension, good_fft_order USE io_global, only: stdout ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: at(3,3), bg(3,3) REAL(DP), INTENT(IN) :: gcutm, gcuts TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftp, dffts ! IF( dfftp%nr1 == 0 .OR. dfftp%nr2 == 0 .OR. dfftp%nr3 == 0 ) THEN ! ! ... calculate the size of the real-space dense grid for FFT ! ... first, an estimate of nr1,nr2,nr3, based on the max values ! ... of n_i indices in: G = i*b_1 + j*b_2 + k*b_3 ! ... We use G*a_i = n_i => n_i .le. |Gmax||a_i| ! dfftp%nr1 = int ( sqrt (gcutm) * & sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 dfftp%nr2 = int ( sqrt (gcutm) * & sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 dfftp%nr3 = int ( sqrt (gcutm) * & sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! CALL grid_set( bg, gcutm, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! ELSE WRITE( stdout, '( /, 3X,"Info: using nr1, nr2, nr3 values from input" )' ) END IF dfftp%nr1 = good_fft_order( dfftp%nr1 ) dfftp%nr2 = good_fft_order( dfftp%nr2 ) dfftp%nr3 = good_fft_order( dfftp%nr3 ) dfftp%nr1x = good_fft_dimension( dfftp%nr1 ) dfftp%nr2x = dfftp%nr2 dfftp%nr3x = good_fft_dimension( dfftp%nr3 ) ! ... As above, for the smooth grid IF( dffts%nr1 == 0 .OR. dffts%nr2 == 0 .OR. dffts%nr3 == 0 ) THEN ! IF ( gcuts == gcutm ) THEN ! ... No double grid, the two grids are the same dffts%nr1 = dfftp%nr1 ; dffts%nr2 = dfftp%nr2 ; dffts%nr3 = dfftp%nr3 dffts%nr1x= dfftp%nr1x; dffts%nr2x= dfftp%nr2x; dffts%nr3x= dfftp%nr3x RETURN END IF ! dffts%nr1= int (2 * sqrt (gcuts) * & sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 dffts%nr2= int (2 * sqrt (gcuts) * & sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 dffts%nr3= int (2 * sqrt (gcuts) * & sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! CALL grid_set( bg, gcuts, dffts%nr1, dffts%nr2, dffts%nr3 ) ! ELSE WRITE( stdout, '( /, 3X,"Info: using nr1s, nr2s, nr3s values from input" )' ) END IF dffts%nr1 = good_fft_order( dffts%nr1 ) dffts%nr2 = good_fft_order( dffts%nr2 ) dffts%nr3 = good_fft_order( dffts%nr3 ) dffts%nr1x = good_fft_dimension(dffts%nr1) dffts%nr2x = dffts%nr2 dffts%nr3x = good_fft_dimension(dffts%nr3) IF ( dffts%nr1 > dfftp%nr1 .or. dffts%nr2 > dfftp%nr2 .or. dffts%nr3 > dfftp%nr3 ) THEN CALL errore(' realspace_grids_init ', ' smooth grid larger than dense grid?',1) END IF RETURN END SUBROUTINE realspace_grids_init !=----------------------------------------------------------------------------=! SUBROUTINE realspace_grid_init_custom( dfftp, at, bg, gcutm ) ! USE fft_scalar, only: good_fft_dimension, good_fft_order USE io_global, only: stdout ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: at(3,3), bg(3,3) REAL(DP), INTENT(IN) :: gcutm TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftp ! IF( dfftp%nr1 == 0 .OR. dfftp%nr2 == 0 .OR. dfftp%nr3 == 0 ) THEN ! ! ... calculate the size of the real-space dense grid for FFT ! ... first, an estimate of nr1,nr2,nr3, based on the max values ! ... of n_i indices in: G = i*b_1 + j*b_2 + k*b_3 ! ... We use G*a_i = n_i => n_i .le. |Gmax||a_i| ! dfftp%nr1 = int ( sqrt (gcutm) * & sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 dfftp%nr2 = int ( sqrt (gcutm) * & sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 dfftp%nr3 = int ( sqrt (gcutm) * & sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! CALL grid_set( bg, gcutm, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! ELSE WRITE( stdout, '( /, 3X,"Info: using nr1, nr2, nr3 values from input" )' ) END IF dfftp%nr1 = good_fft_order( dfftp%nr1 ) dfftp%nr2 = good_fft_order( dfftp%nr2 ) dfftp%nr3 = good_fft_order( dfftp%nr3 ) dfftp%nr1x = good_fft_dimension( dfftp%nr1 ) dfftp%nr2x = dfftp%nr2 dfftp%nr3x = good_fft_dimension( dfftp%nr3 ) RETURN END SUBROUTINE realspace_grid_init_custom !=----------------------------------------------------------------------------=! SUBROUTINE realspace_grids_info ( dfftp, dffts, nproc_ ) ! Print info on local and global dimensions for real space grids USE io_global, ONLY: ionode, stdout USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(IN) :: dfftp, dffts INTEGER, INTENT(IN) :: nproc_ INTEGER :: i IF(ionode) THEN WRITE( stdout,*) WRITE( stdout,*) ' Real Mesh' WRITE( stdout,*) ' ---------' WRITE( stdout,1000) dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1, dfftp%nr2, dfftp%npl, 1, 1, nproc_ WRITE( stdout,1010) dfftp%nr1x, dfftp%nr2x, dfftp%nr3x WRITE( stdout,1020) dfftp%nnr WRITE( stdout,*) ' Number of x-y planes for each processors: ' WRITE( stdout, fmt = '( 3X, "nr3l = ", 10I5 )' ) & ( dfftp%npp( i ), i = 1, nproc_ ) WRITE( stdout,*) WRITE( stdout,*) ' Smooth Real Mesh' WRITE( stdout,*) ' ----------------' WRITE( stdout,1000) dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1, dffts%nr2, dffts%npl,1,1, nproc_ WRITE( stdout,1010) dffts%nr1x, dffts%nr2x, dffts%nr3x WRITE( stdout,1020) dffts%nnr WRITE( stdout,*) ' Number of x-y planes for each processors: ' WRITE( stdout, fmt = '( 3X, "nr3sl = ", 10I5 )' ) & ( dffts%npp( i ), i = 1, nproc_ ) END IF 1000 FORMAT(3X, & 'Global Dimensions Local Dimensions Processor Grid',/,3X, & '.X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z.',/, & 3(1X,I5),2X,3(1X,I5),2X,3(1X,I5) ) 1010 FORMAT(3X, 'Array leading dimensions ( nr1x, nr2x, nr3x ) = ', 3(1X,I5) ) 1020 FORMAT(3X, 'Local number of cell to store the grid ( nrxx ) = ', 1X, I9 ) RETURN END SUBROUTINE realspace_grids_info SUBROUTINE grid_set( bg, gcut, nr1, nr2, nr3 ) ! this routine returns in nr1, nr2, nr3 the minimal 3D real-space FFT ! grid required to fit the G-vector sphere with G^2 <= gcut ! On input, nr1,nr2,nr3 must be set to values that match or exceed ! the largest i,j,k (Miller) indices in G(i,j,k) = i*b1 + j*b2 + k*b3 ! ---------------------------------------------- ! ... declare modules USE kinds, ONLY: DP USE mp, ONLY: mp_max, mp_min, mp_sum USE mp_global, ONLY: me_image, nproc_image, intra_image_comm IMPLICIT NONE ! ... declare arguments INTEGER, INTENT(INOUT) :: nr1, nr2, nr3 REAL(DP), INTENT(IN) :: bg(3,3), gcut ! ... declare other variables INTEGER :: i, j, k, nr, nb(3) REAL(DP) :: gsq, g(3) ! ---------------------------------------------- nb = 0 ! ... calculate moduli of G vectors and the range of indices where ! ... |G|^2 < gcut (in parallel whenever possible) DO k = -nr3, nr3 ! ! ... me_image = processor number, starting from 0 ! IF( MOD( k + nr3, nproc_image ) == me_image ) THEN DO j = -nr2, nr2 DO i = -nr1, nr1 g( 1 ) = DBLE(i)*bg(1,1) + DBLE(j)*bg(1,2) + DBLE(k)*bg(1,3) g( 2 ) = DBLE(i)*bg(2,1) + DBLE(j)*bg(2,2) + DBLE(k)*bg(2,3) g( 3 ) = DBLE(i)*bg(3,1) + DBLE(j)*bg(3,2) + DBLE(k)*bg(3,3) ! ... calculate modulus gsq = g( 1 )**2 + g( 2 )**2 + g( 3 )**2 IF( gsq < gcut ) THEN ! ... calculate maximum index nb(1) = MAX( nb(1), ABS( i ) ) nb(2) = MAX( nb(2), ABS( j ) ) nb(3) = MAX( nb(3), ABS( k ) ) END IF END DO END DO END IF END DO CALL mp_max( nb, intra_image_comm ) ! ... the size of the required (3-dimensional) matrix depends on the ! ... maximum indices. Note that the following choice is slightly ! ... "small": 2*nb+2 would be needed in order to guarantee that the ! ... sphere in G-space never overlaps its periodic image nr1 = 2 * nb(1) + 1 nr2 = 2 * nb(2) + 1 nr3 = 2 * nb(3) + 1 RETURN END SUBROUTINE grid_set !=----------------------------------------------------------------------------=! END MODULE grid_subroutines !=----------------------------------------------------------------------------=! espresso-5.0.2/Modules/Makefile0000644000700200004540000000342712053145633015440 0ustar marsamoscm# Makefile for Modules include ../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../iotk/src $(MOD_FLAG)../ELPA/src $(MOD_FLAG). MODULES = \ atom.o \ autopilot.o \ basic_algebra_routines.o \ becmod.o \ bfgs_module.o \ cell_base.o \ check_stop.o \ clocks.o \ compute_dipole.o \ constants.o \ constraints_module.o \ control_flags.o \ coulomb_vcut.o \ descriptors.o \ dspev_drv.o \ electrons_base.o \ environment.o \ error_handler.o \ fd_gradient.o \ fft_base.o \ fft_custom.o \ fft_interfaces.o \ fft_parallel.o \ fft_scalar.o \ fft_types.o \ funct.o \ generate_function.o \ griddim.o \ image_io_routines.o \ input_parameters.o \ io_files.o \ io_global.o \ ions_base.o \ kernel_table.o \ kind.o \ mm_dispersion.o \ mp.o \ mp_base.o \ mp_global.o \ mp_image_global_module.o \ mp_wave.o \ noncol.o \ open_close_input_file.o \ parallel_include.o \ parameters.o \ parser.o \ paw_variables.o \ plugin_flags.o \ plugin_arguments.o \ pseudo_types.o \ ptoolkit.o \ radial_grids.o \ random_numbers.o \ read_input.o \ read_namelists.o \ read_ncpp.o \ read_pseudo.o \ read_upf_v1.o \ read_upf_v2.o \ read_uspp.o \ read_xml.o \ read_xml_cards.o \ read_xml_fields.o \ recvec.o \ recvec_subs.o \ run_info.o \ set_signal.o \ sic.o \ splinelib.o \ stick_base.o \ stick_set.o \ timestep.o\ version.o \ upf.o \ upf_to_internal.o \ uspp.o \ wave_base.o \ wavefunctions.o \ write_upf_v2.o \ xc_vdW_DF.o \ xml_input.o \ xml_io_base.o \ zhpev_drv.o \ wannier_new.o \ wrappers.o\ ws_base.o \ read_cards.o all : version.o libqemod.a version.f90: version.f90.in - ( if test -x ../install/update_version ; then \ ../install/update_version; fi ) libqemod.a: $(MODULES) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ clean : - /bin/rm -f *.o *.a *.d *.i *~ *.F90 *.mod *.L include make.depend espresso-5.0.2/Modules/xml_input.f900000644000700200004540000001551112053145633016334 0ustar marsamoscm! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------------=! ! MODULE xml_input USE xml_io_base USE iotk_module USE kinds IMPLICIT NONE PRIVATE PUBLIC :: xml_input_dump INTERFACE dump_keyword MODULE PROCEDURE dump_keyword_str, dump_keyword_i END INTERFACE CONTAINS SUBROUTINE xml_input_dump USE io_global, ONLY : ionode, stdout USE io_files, ONLY : iunpun USE global_version, ONLY : version_number USE input_parameters CHARACTER(LEN=256) :: filename INTEGER :: ierr return filename = 'qe_input.xml' IF ( ionode ) THEN ! ! ... Open XML descriptor ! WRITE( stdout, '(/,3X,"Dumping input parameters",/)' ) ! CALL iotk_open_write( iunpun, FILE = filename, BINARY = .FALSE., IERR = ierr ) ! END IF IF ( ionode ) THEN CALL iotk_write_attr( attr, "targetNamespace", "http://www.deisa.org/pwscf/3_2", FIRST = .TRUE. ) CALL iotk_write_attr( attr, "elementFormDefault", "qualified" ) CALL iotk_write_attr( attr, "xmlns", "http://www.w3.org/2001/XMLSchema" ) CALL iotk_write_attr( attr, "xmlns:tns", "http://www.deisa.org/pwscf/3_2" ) CALL iotk_write_begin( iunpun, "schema", attr ) CALL write_header( "Quantum ESPRESSO", TRIM(version_number) ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "CONTROLS", attr ) CALL dump_keyword( "title", title, "namelist", " " ) CALL dump_keyword( "calculation", calculation, "namelist", " ", calculation_allowed ) CALL dump_keyword( "verbosity", verbosity, "namelist", " ", verbosity_allowed ) CALL dump_keyword( "restart_mode", restart_mode, "namelist", " ", restart_mode_allowed ) CALL dump_keyword( "nstep", nstep, "namelist", " ", min_value = 1 ) CALL dump_keyword( "iprint", iprint, "namelist", " ", min_value = 1 ) CALL iotk_write_end( iunpun, "CONTROLS" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "SYSTEM", attr ) CALL iotk_write_end( iunpun, "SYSTEM" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "ELECTRONS", attr ) CALL iotk_write_end( iunpun, "ELECTRONS" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "IONS", attr ) CALL iotk_write_end( iunpun, "IONS" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "CELL", attr ) CALL iotk_write_end( iunpun, "CELL" ) CALL iotk_write_attr( attr, "section_type", "card", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "ATOMIC_SPECIES", attr ) CALL iotk_write_end( iunpun, "ATOMIC_SPECIES" ) CALL iotk_write_attr( attr, "section_type", "card", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "ATOMIC_POSITIONS", attr ) CALL iotk_write_end( iunpun, "ATOMIC_POSITIONS" ) CALL iotk_write_attr( attr, "section_type", "card", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "K_POINTS", attr ) CALL iotk_write_end( iunpun, "K_POINTS" ) CALL iotk_write_end( iunpun, "schema" ) END IF IF ( ionode ) CALL iotk_close_write( iunpun ) RETURN END SUBROUTINE SUBROUTINE dump_keyword_str( kname, defval, usage, descr, allowed ) USE io_files, ONLY : iunpun CHARACTER(LEN=*) :: kname CHARACTER(LEN=*) :: defval CHARACTER(LEN=*) :: usage CHARACTER(LEN=*) :: descr CHARACTER(LEN=*), OPTIONAL :: allowed(:) CALL iotk_write_attr( attr, "required", "no", FIRST = .TRUE. ) CALL iotk_write_attr( attr, "repeat", "no") CALL iotk_write_begin( iunpun, "KEYWORD", ATTR = attr ) CALL iotk_write_attr( attr, "type", "default", FIRST = .TRUE. ) CALL iotk_write_dat( iunpun, "NAME", kname, ATTR = attr ) CALL iotk_write_attr( attr, "kind", "STRING", FIRST = .TRUE. ) ! type CALL iotk_write_begin( iunpun, "DATA_TYPE", ATTR = attr ) CALL iotk_write_dat( iunpun, "N_VAR", 1 ) CALL iotk_write_end( iunpun, "DATA_TYPE" ) IF( usage == "namelist" ) THEN CALL iotk_write_dat( iunpun, "USAGE", kname//" = value" ) ELSE CALL iotk_write_dat( iunpun, "USAGE", usage ) END IF IF( PRESENT( allowed ) ) THEN CALL iotk_write_dat( iunpun, "ALLOWED_VALUES", allowed ) END IF CALL iotk_write_dat( iunpun, "DESCRIPTION", descr ) CALL iotk_write_dat( iunpun, "DEFAULT_VALUE", defval ) CALL iotk_write_end( iunpun, "KEYWORD" ) RETURN END SUBROUTINE SUBROUTINE dump_keyword_i( kname, defval, usage, descr, min_value, max_value ) USE io_files, ONLY : iunpun CHARACTER(LEN=*) :: kname INTEGER :: defval ! type CHARACTER(LEN=*) :: usage CHARACTER(LEN=*) :: descr INTEGER, OPTIONAL :: min_value ! type INTEGER, OPTIONAL :: max_value ! type CALL iotk_write_attr( attr, "required", "no", FIRST = .TRUE. ) CALL iotk_write_attr( attr, "repeat", "no") CALL iotk_write_begin( iunpun, "KEYWORD", ATTR = attr ) CALL iotk_write_attr( attr, "type", "default", FIRST = .TRUE. ) CALL iotk_write_dat( iunpun, "NAME", kname, ATTR = attr ) CALL iotk_write_attr( attr, "kind", "INTEGER", FIRST = .TRUE. ) ! type CALL iotk_write_begin( iunpun, "DATA_TYPE", ATTR = attr ) CALL iotk_write_dat( iunpun, "N_VAR", 1 ) CALL iotk_write_end( iunpun, "DATA_TYPE" ) IF( usage == "namelist" ) THEN CALL iotk_write_dat( iunpun, "USAGE", kname//" = value" ) ELSE CALL iotk_write_dat( iunpun, "USAGE", usage ) END IF IF( PRESENT( min_value ) ) THEN CALL iotk_write_dat( iunpun, "MIN_VALUE", min_value ) END IF IF( PRESENT( max_value ) ) THEN CALL iotk_write_dat( iunpun, "MAX_VALUE", max_value ) END IF CALL iotk_write_dat( iunpun, "DESCRIPTION", descr ) CALL iotk_write_dat( iunpun, "DEFAULT_VALUE", defval ) CALL iotk_write_end( iunpun, "KEYWORD" ) RETURN END SUBROUTINE END MODULE espresso-5.0.2/Modules/image_io_routines.f900000644000700200004540000000376112053145633020022 0ustar marsamoscm! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE image_io_routines !---------------------------------------------------------------------------- ! ! ... This module contains all subroutines used for I/O in image ! ... parallelization ! ! ... from the orignal path_io Written by Carlo Sbraccia ( 2003-2006 ) ! USE kinds, ONLY : DP USE io_global, ONLY : meta_ionode, meta_ionode_id ! IMPLICIT NONE ! PRIVATE ! PUBLIC :: io_image_start, io_image_stop ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE io_image_start() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : me_image, root_image ! IMPLICIT NONE ! ! ! ... the I/O node is set again according to the number of parallel ! ... images that have been required: for each parallel image there ! ... is only one node that does I/O ! ionode = ( me_image == root_image ) ionode_id = root_image ! RETURN ! END SUBROUTINE io_image_start ! ! !----------------------------------------------------------------------- SUBROUTINE io_image_stop() !----------------------------------------------------------------------- ! USE io_global, ONLY : io_global_start USE mp_global, ONLY : mpime, root ! IMPLICIT NONE ! ! ! ... the original I/O node is set again ! CALL io_global_start( mpime, root ) ! RETURN ! END SUBROUTINE io_image_stop ! END MODULE image_io_routines espresso-5.0.2/Modules/ptoolkit.f900000644000700200004540000037627212053145633016200 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !==----------------------------------------------==! MODULE parallel_toolkit !==----------------------------------------------==! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE parallel_include IMPLICIT NONE SAVE PRIVATE PUBLIC :: rep_matmul_drv PUBLIC :: zrep_matmul_drv PUBLIC :: dsqmdst, dsqmcll, dsqmred, dsqmsym PUBLIC :: zsqmdst, zsqmcll, zsqmred, zsqmher CONTAINS ! --------------------------------------------------------------------------------- SUBROUTINE dsqmdst( n, ar, ldar, a, lda, desc ) ! ! Double precision SQuare Matrix DiSTribution ! This sub. take a replicated square matrix "ar" and distribute it ! across processors as described by descriptor "desc" ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar REAL(DP) :: ar(ldar,*) ! matrix to be splitted, replicated on all proc INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc ! REAL(DP), PARAMETER :: zero = 0_DP ! INTEGER :: i, j, nr, nc, ic, ir, nx ! IF( desc%active_node <= 0 ) THEN RETURN END IF nx = desc%nrcx ir = desc%ir ic = desc%ic nr = desc%nr nc = desc%nc IF( lda < nx ) & CALL errore( " dsqmdst ", " inconsistent dimension lda ", lda ) IF( n /= desc%n ) & CALL errore( " dsqmdst ", " inconsistent dimension n ", n ) DO j = 1, nc DO i = 1, nr a( i, j ) = ar( i + ir - 1, j + ic - 1 ) END DO DO i = nr+1, nx a( i, j ) = zero END DO END DO DO j = nc + 1, nx DO i = 1, nx a( i, j ) = zero END DO END DO RETURN END SUBROUTINE dsqmdst SUBROUTINE zsqmdst( n, ar, ldar, a, lda, desc ) ! ! double complex (Z) SQuare Matrix DiSTribution ! This sub. take a replicated square matrix "ar" and distribute it ! across processors as described by descriptor "desc" ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar COMPLEX(DP) :: ar(ldar,*) ! matrix to be splitted, replicated on all proc INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc ! COMPLEX(DP), PARAMETER :: zero = ( 0_DP , 0_DP ) ! INTEGER :: i, j, nr, nc, ic, ir, nx ! IF( desc%active_node <= 0 ) THEN RETURN END IF nx = desc%nrcx ir = desc%ir ic = desc%ic nr = desc%nr nc = desc%nc IF( lda < nx ) & CALL errore( " zsqmdst ", " inconsistent dimension lda ", lda ) IF( n /= desc%n ) & CALL errore( " zsqmdst ", " inconsistent dimension n ", n ) DO j = 1, nc DO i = 1, nr a( i, j ) = ar( i + ir - 1, j + ic - 1 ) END DO DO i = nr+1, nx a( i, j ) = zero END DO END DO DO j = nc + 1, nx DO i = 1, nx a( i, j ) = zero END DO END DO RETURN END SUBROUTINE zsqmdst ! --------------------------------------------------------------------------------- SUBROUTINE dsqmcll( n, a, lda, ar, ldar, desc, comm ) ! ! Double precision SQuare Matrix CoLLect ! This sub. take a distributed square matrix "a" and collect ! the block assigned to processors into a replicated matrix "ar", ! matrix is distributed as described by descriptor desc ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar REAL(DP) :: ar(ldar,*) ! matrix to be merged, replicated on all proc INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER, INTENT(IN) :: comm ! INTEGER :: i, j #if defined __MPI ! INTEGER :: np, nx, ipc, ipr, npr, npc, noff INTEGER :: ierr, ir, ic, nr, nc REAL(DP), ALLOCATABLE :: buf(:,:) ! IF( desc%active_node > 0 ) THEN ! np = desc%npr * desc%npc nx = desc%nrcx npr = desc%npr npc = desc%npc ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN ALLOCATE( buf( nx, nx * np ) ) ELSE ALLOCATE( buf( 1, 1 ) ) END IF ! IF( lda /= nx ) & CALL errore( " dsqmcll ", " inconsistent dimension lda ", lda ) ! IF( desc%n /= n ) & CALL errore( " dsqmcll ", " inconsistent dimension n ", n ) ! CALL mpi_gather( a, nx*nx, mpi_double_precision, & buf, nx*nx, mpi_double_precision, 0, desc%comm , ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmcll ", " in gather ", ABS( ierr ) ) ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN DO ipc = 1, npc CALL descla_local_dims( ic, nc, n, desc%nx, npc, ipc-1 ) DO ipr = 1, npr CALL descla_local_dims( ir, nr, n, desc%nx, npr, ipr-1 ) noff = ( ipc - 1 + npc * ( ipr - 1 ) ) * nx DO j = 1, nc DO i = 1, nr ar( i + ir - 1, j + ic - 1 ) = buf( i, j + noff ) END DO END DO END DO END DO END IF ! DEALLOCATE( buf ) ! END IF ! CALL mpi_bcast( ar, ldar * n, mpi_double_precision, 0, comm, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmcll ", " in bcast ", ABS( ierr ) ) #else DO j = 1, n DO i = 1, n ar( i, j ) = a( i, j ) END DO END DO #endif RETURN END SUBROUTINE dsqmcll SUBROUTINE zsqmcll( n, a, lda, ar, ldar, desc, comm ) ! ! double complex (Z) SQuare Matrix CoLLect ! This sub. take a distributed square matrix "a" and collect ! the block assigned to processors into a replicated matrix "ar", ! matrix is distributed as described by descriptor desc ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar COMPLEX(DP) :: ar(ldar,*) ! matrix to be merged, replicated on all proc INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER, INTENT(IN) :: comm ! INTEGER :: i, j #if defined __MPI ! INTEGER :: np, nx, ipc, ipr, npr, npc, noff INTEGER :: ierr, ir, ic, nr, nc COMPLEX(DP), ALLOCATABLE :: buf(:,:) ! IF( desc%active_node > 0 ) THEN ! np = desc%npr * desc%npc nx = desc%nrcx npr = desc%npr npc = desc%npc ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN ALLOCATE( buf( nx, nx * np ) ) ELSE ALLOCATE( buf( 1, 1 ) ) END IF ! IF( lda /= nx ) & CALL errore( " zsqmcll ", " inconsistent dimension lda ", lda ) ! IF( desc%n /= n ) & CALL errore( " zsqmcll ", " inconsistent dimension n ", n ) ! CALL mpi_gather( a, nx*nx, mpi_double_complex, & buf, nx*nx, mpi_double_complex, 0, desc%comm , ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmcll ", " in gather ", ABS( ierr ) ) ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN DO ipc = 1, npc CALL descla_local_dims( ic, nc, n, desc%nx, npc, ipc-1 ) DO ipr = 1, npr CALL descla_local_dims( ir, nr, n, desc%nx, npr, ipr-1 ) noff = ( ipc - 1 + npc * ( ipr - 1 ) ) * nx DO j = 1, nc DO i = 1, nr ar( i + ir - 1, j + ic - 1 ) = buf( i, j + noff ) END DO END DO END DO END DO END IF ! DEALLOCATE( buf ) ! END IF ! CALL mpi_bcast( ar, ldar * n, mpi_double_complex, 0, comm, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmcll ", " in bcast ", ABS( ierr ) ) #else DO j = 1, n DO i = 1, n ar( i, j ) = a( i, j ) END DO END DO #endif RETURN END SUBROUTINE zsqmcll ! --------------------------------------------------------------------------------- SUBROUTINE dsqmwpb( n, a, lda, desc ) ! ! Double precision SQuare Matrix WiPe Border subroutine ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) ! matrix to be redistributed into b TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: i, j ! DO j = 1, desc%nc DO i = desc%nr + 1, desc%nrcx a( i, j ) = 0_DP END DO END DO DO j = desc%nc + 1, desc%nrcx DO i = 1, desc%nrcx a( i, j ) = 0_DP END DO END DO ! RETURN END SUBROUTINE dsqmwpb ! --------------------------------------------------------------------------------- SUBROUTINE dsqmsym( n, a, lda, desc ) ! ! Double precision SQuare Matrix SYMmetrization ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif INTEGER :: i, j INTEGER :: comm INTEGER :: nr, nc, dest, sreq, ierr, sour REAL(DP) :: atmp #if defined __MPI IF( desc%active_node <= 0 ) THEN RETURN END IF IF( n /= desc%n ) & CALL errore( " dsqmsym ", " wrong global dim n ", n ) IF( lda /= desc%nrcx ) & CALL errore( " dsqmsym ", " wrong leading dim lda ", lda ) comm = desc%comm nr = desc%nr nc = desc%nc IF( desc%myc == desc%myr ) THEN ! ! diagonal block, procs work locally ! DO j = 1, nc DO i = j + 1, nr a(i,j) = a(j,i) END DO END DO ! ELSE IF( desc%myc > desc%myr ) THEN ! ! super diagonal block, procs send the block to sub diag. ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, dest ) CALL mpi_isend( a, lda*lda, MPI_DOUBLE_PRECISION, dest, 1, comm, sreq, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmsym ", " in isend ", ABS( ierr ) ) ! ELSE IF( desc%myc < desc%myr ) THEN ! ! sub diagonal block, procs receive the block from super diag, ! then transpose locally ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, sour ) CALL mpi_recv( a, lda*lda, MPI_DOUBLE_PRECISION, sour, 1, comm, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmsym ", " in recv ", ABS( ierr ) ) ! DO j = 1, lda DO i = j + 1, lda atmp = a(i,j) a(i,j) = a(j,i) a(j,i) = atmp END DO END DO ! END IF IF( desc%myc > desc%myr ) THEN ! CALL MPI_Wait( sreq, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmsym ", " in wait ", ABS( ierr ) ) ! END IF #else DO j = 1, n ! DO i = j + 1, n ! a(i,j) = a(j,i) ! END DO ! END DO #endif RETURN END SUBROUTINE dsqmsym SUBROUTINE zsqmher( n, a, lda, desc ) ! ! double complex (Z) SQuare Matrix HERmitianize ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,lda) TYPE(la_descriptor), INTENT(IN) :: desc #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif INTEGER :: i, j INTEGER :: comm, myid INTEGER :: nr, nc, dest, sreq, ierr, sour COMPLEX(DP) :: atmp COMPLEX(DP), ALLOCATABLE :: tst1(:,:) COMPLEX(DP), ALLOCATABLE :: tst2(:,:) #if defined __MPI IF( desc%active_node <= 0 ) THEN RETURN END IF IF( n /= desc%n ) & CALL errore( " zsqmsym ", " wrong global dim n ", n ) IF( lda /= desc%nrcx ) & CALL errore( " zsqmsym ", " wrong leading dim lda ", lda ) comm = desc%comm nr = desc%nr nc = desc%nc IF( desc%myc == desc%myr ) THEN ! ! diagonal block, procs work locally ! DO j = 1, nc a(j,j) = CMPLX( DBLE( a(j,j) ), 0_DP, KIND=DP ) DO i = j + 1, nr a(i,j) = CONJG( a(j,i) ) END DO END DO ! ELSE IF( desc%myc > desc%myr ) THEN ! ! super diagonal block, procs send the block to sub diag. ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, dest ) CALL mpi_isend( a, lda*lda, MPI_DOUBLE_COMPLEX, dest, 1, comm, sreq, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmher ", " in mpi_isend ", ABS( ierr ) ) ! ELSE IF( desc%myc < desc%myr ) THEN ! ! sub diagonal block, procs receive the block from super diag, ! then transpose locally ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, sour ) CALL mpi_recv( a, lda*lda, MPI_DOUBLE_COMPLEX, sour, 1, comm, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmher ", " in mpi_recv ", ABS( ierr ) ) ! DO j = 1, lda DO i = j + 1, lda atmp = a(i,j) a(i,j) = a(j,i) a(j,i) = atmp END DO END DO DO j = 1, nc DO i = 1, nr a(i,j) = CONJG( a(i,j) ) END DO END DO ! END IF IF( desc%myc > desc%myr ) THEN ! CALL MPI_Wait( sreq, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmher ", " in MPI_Wait ", ABS( ierr ) ) ! END IF #if defined __PIPPO CALL MPI_Comm_rank( comm, myid, ierr ) ALLOCATE( tst1( n, n ) ) ALLOCATE( tst2( n, n ) ) tst1 = 0.0d0 tst2 = 0.0d0 do j = 1, desc%nc do i = 1, desc%nr tst1( i + desc%ir - 1, j + desc%ic - 1 ) = a( i , j ) end do end do CALL MPI_REDUCE( tst1, tst2, n*n, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm, ierr ) IF( myid == 0 ) THEN DO j = 1, n ! IF( tst2(j,j) /= CMPLX( DBLE( tst2(j,j) ), 0_DP, KIND=DP ) ) & WRITE( 4000, * ) j, tst2(j,j) ! DO i = j + 1, n ! IF( tst2(i,j) /= CONJG( tst2(j,i) ) ) WRITE( 4000, * ) i,j, tst2(i,j) ! END DO ! END DO END IF DEALLOCATE( tst1 ) DEALLOCATE( tst2 ) #endif #else DO j = 1, n ! a(j,j) = CMPLX( DBLE( a(j,j) ), 0_DP, KIND=DP ) ! DO i = j + 1, n ! a(i,j) = CONJG( a(j,i) ) ! END DO ! END DO #endif RETURN END SUBROUTINE zsqmher ! --------------------------------------------------------------------------------- SUBROUTINE dsqmred( na, a, lda, desca, nb, b, ldb, descb ) ! ! Double precision SQuare Matrix REDistribution ! ! Copy a global "na * na" matrix locally stored in "a", ! and distributed as described by "desca", into a larger ! global "nb * nb" matrix stored in "b" and distributed ! as described in "descb". ! ! If you want to read, get prepared for an headache! ! Written struggling by Carlo Cavazzoni. ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: na INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,lda) ! matrix to be redistributed into b TYPE(la_descriptor), INTENT(IN) :: desca INTEGER, INTENT(IN) :: nb INTEGER, INTENT(IN) :: ldb REAL(DP) :: b(ldb,ldb) TYPE(la_descriptor), INTENT(IN) :: descb INTEGER :: ipc, ipr, npc, npr INTEGER :: ipr_old, ir_old, nr_old, irx_old INTEGER :: ipc_old, ic_old, nc_old, icx_old INTEGER :: myrow, mycol, ierr, rank INTEGER :: col_comm, row_comm, comm, sreq INTEGER :: nr_new, ir_new, irx_new, ir, nr, nrtot, irb, ire INTEGER :: nc_new, ic_new, icx_new, ic, nc, nctot, icb, ice INTEGER :: ib, i, j, myid INTEGER :: nrsnd( desca%npr ) INTEGER :: ncsnd( desca%npr ) INTEGER :: displ( desca%npr ) INTEGER :: irb_new( desca%npr ) INTEGER :: ire_new( desca%npr ) INTEGER :: icb_new( desca%npr ) INTEGER :: ice_new( desca%npr ) REAL(DP), ALLOCATABLE :: buf(:) REAL(DP), ALLOCATABLE :: ab(:,:) REAL(DP), ALLOCATABLE :: tst1(:,:) REAL(DP), ALLOCATABLE :: tst2(:,:) #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif IF( desca%active_node <= 0 ) THEN RETURN END IF ! preliminary consistency checks IF( nb < na ) & CALL errore( " dsqmred ", " nb < na, this sub. work only with nb >= na ", nb ) IF( nb /= descb%n ) & CALL errore( " dsqmred ", " wrong global dim nb ", nb ) IF( na /= desca%n ) & CALL errore( " dsqmred ", " wrong global dim na ", na ) IF( ldb /= descb%nrcx ) & CALL errore( " dsqmred ", " wrong leading dim ldb ", ldb ) IF( lda /= desca%nrcx ) & CALL errore( " dsqmred ", " wrong leading dim lda ", lda ) npr = desca%npr myrow = desca%myr npc = desca%npc mycol = desca%myc comm = desca%comm #if defined __MPI ! split communicator into row and col communicators CALL MPI_Comm_rank( comm, myid, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_rank 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_split 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, myrow, mycol, row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_split 2 ", ABS( ierr ) ) CALL MPI_Comm_rank( col_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_rank 2 ", ABS( ierr ) ) IF( rank /= myrow ) & CALL errore( " dsqmred ", " building col_comm ", rank ) CALL MPI_Comm_rank( row_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_rank 3 ", ABS( ierr ) ) IF( rank /= mycol ) & CALL errore( " dsqmred ", " building row_comm ", rank ) ALLOCATE( buf( descb%nrcx * descb%nrcx ) ) ALLOCATE( ab( descb%nrcx, desca%nrcx ) ) ! write( 3000 + myid, * ) 'na, nb = ', na, nb DO j = 1, descb%nc DO i = 1, descb%nr b( i, j ) = 0.0d0 END DO END DO ab = 0.0d0 ! first redistribute rows, column groups work in parallel DO ipr = 1, npr ! CALL descla_local_dims( ir_new, nr_new, nb, descb%nx, npr, ipr-1 ) ! irx_new = ir_new + nr_new - 1 ! write( 3000 + myid, * ) 'ir_new, nr_new, irx_new = ', ir_new, nr_new, irx_new ! DO ipr_old = 1, npr ! CALL descla_local_dims( ir_old, nr_old, na, desca%nx, npr, ipr_old-1 ) ! irx_old = ir_old + nr_old - 1 ! ! write( 3000 + myid, * ) 'ir_old, nr_old, irx_old = ', ir_old, nr_old, irx_old ! IF( ir_old >= ir_new .AND. ir_old <= irx_new ) THEN ! nrsnd( ipr_old ) = MIN( nr_old, irx_new - ir_old + 1 ) irb = 1 ire = nrsnd( ipr_old ) irb_new( ipr_old ) = ir_old - ir_new + 1 ire_new( ipr_old ) = irb_new( ipr_old ) + nrsnd( ipr_old ) - 1 ! ELSE IF( ir_new >= ir_old .AND. ir_new <= irx_old ) THEN ! nrsnd( ipr_old ) = irx_old - ir_new + 1 irb = ir_new - ir_old + 1 ire = nr_old irb_new( ipr_old ) = 1 ire_new( ipr_old ) = nrsnd( ipr_old ) ! ELSE nrsnd( ipr_old ) = 0 irb = 0 ire = 0 irb_new( ipr_old ) = 0 ire_new( ipr_old ) = 0 END IF ! ! write( 3000 + myid, * ) 'ipr_old, nrsnd = ', ipr_old, nrsnd( ipr_old ) ! write( 3000 + myid, * ) 'ipr_old, irb, ire = ', ipr_old, irb, ire ! write( 3000 + myid, * ) 'ipr_old, irb_new, ire_new = ', ipr_old, irb_new( ipr_old ), ire_new( ipr_old ) ! IF( ( myrow == ipr_old - 1 ) .AND. ( nrsnd( ipr_old ) > 0 ) ) THEN IF( myrow /= ipr - 1 ) THEN ib = 0 DO j = 1, desca%nc DO i = irb, ire ib = ib + 1 buf( ib ) = a( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_PRECISION, ipr-1, ipr, col_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_isend ", ABS( ierr ) ) ELSE DO j = 1, desca%nc ib = irb DO i = irb_new( ipr_old ), ire_new( ipr_old ) ab( i, j ) = a( ib, j ) ib = ib + 1 END DO END DO END IF END IF ! IF( nrsnd( ipr_old ) /= ire - irb + 1 ) & CALL errore( " dsqmred ", " somthing wrong with row 1 ", nrsnd( ipr_old ) ) IF( nrsnd( ipr_old ) /= ire_new( ipr_old ) - irb_new( ipr_old ) + 1 ) & CALL errore( " dsqmred ", " somthing wrong with row 2 ", nrsnd( ipr_old ) ) ! nrsnd( ipr_old ) = nrsnd( ipr_old ) * desca%nc ! END DO ! IF( myrow == ipr - 1 ) THEN DO ipr_old = 1, npr IF( nrsnd( ipr_old ) > 0 ) THEN IF( myrow /= ipr_old - 1 ) THEN CALL mpi_recv( buf, nrsnd(ipr_old), MPI_DOUBLE_PRECISION, ipr_old-1, ipr, col_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_recv ", ABS( ierr ) ) CALL mpi_get_count( istatus, MPI_DOUBLE_PRECISION, ib, ierr) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_get_count ", ABS( ierr ) ) IF( ib /= nrsnd(ipr_old) ) & CALL errore( " dsqmred ", " somthing wrong with row 3 ", ib ) ib = 0 DO j = 1, desca%nc DO i = irb_new( ipr_old ), ire_new( ipr_old ) ib = ib + 1 ab( i, j ) = buf( ib ) END DO END DO END IF END IF END DO ELSE DO ipr_old = 1, npr IF( myrow == ipr_old - 1 .AND. nrsnd( ipr_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Wait ", ABS( ierr ) ) END IF END DO END IF ! END DO ! then redistribute cols, row groups work in parallel DO ipc = 1, npc ! CALL descla_local_dims( ic_new, nc_new, nb, descb%nx, npc, ipc-1 ) ! icx_new = ic_new + nc_new - 1 ! ! write( 3000 + myid, * ) 'ic_new, nc_new, icx_new = ', ic_new, nc_new, icx_new ! DO ipc_old = 1, npc ! CALL descla_local_dims( ic_old, nc_old, na, desca%nx, npc, ipc_old-1 ) ! icx_old = ic_old + nc_old - 1 ! ! write( 3000 + myid, * ) 'ic_old, nc_old, icx_old = ', ic_old, nc_old, icx_old ! IF( ic_old >= ic_new .AND. ic_old <= icx_new ) THEN ! ncsnd( ipc_old ) = MIN( nc_old, icx_new - ic_old + 1 ) icb = 1 ice = ncsnd( ipc_old ) icb_new( ipc_old ) = ic_old - ic_new + 1 ice_new( ipc_old ) = icb_new( ipc_old ) + ncsnd( ipc_old ) - 1 ! ELSE IF( ic_new >= ic_old .AND. ic_new <= icx_old ) THEN ! ncsnd( ipc_old ) = icx_old - ic_new + 1 icb = ic_new - ic_old + 1 ice = nc_old icb_new( ipc_old ) = 1 ice_new( ipc_old ) = ncsnd( ipc_old ) ! ELSE ncsnd( ipc_old ) = 0 icb = 0 ice = 0 icb_new( ipc_old ) = 0 ice_new( ipc_old ) = 0 END IF ! ! write( 3000 + myid, * ) 'ipc_old, ncsnd = ', ipc_old, ncsnd( ipc_old ) ! write( 3000 + myid, * ) 'ipc_old, icb, ice = ', ipc_old, icb, ice ! write( 3000 + myid, * ) 'ipc_old, icb_new, ice_new = ', ipc_old, icb_new( ipc_old ), ice_new( ipc_old ) IF( ( mycol == ipc_old - 1 ) .AND. ( ncsnd( ipc_old ) > 0 ) ) THEN IF( mycol /= ipc - 1 ) THEN ib = 0 DO j = icb, ice DO i = 1, descb%nrcx ib = ib + 1 buf( ib ) = ab( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_PRECISION, ipc-1, ipc, row_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_isend 2 ", ABS( ierr ) ) ELSE ib = icb DO j = icb_new( ipc_old ), ice_new( ipc_old ) DO i = 1, descb%nrcx b( i, j ) = ab( i, ib ) END DO ib = ib + 1 END DO END IF END IF IF( ncsnd( ipc_old ) /= ice-icb+1 ) & CALL errore( " dsqmred ", " somthing wrong with col 1 ", ncsnd( ipc_old ) ) IF( ncsnd( ipc_old ) /= ice_new( ipc_old ) - icb_new( ipc_old ) + 1 ) & CALL errore( " dsqmred ", " somthing wrong with col 2 ", ncsnd( ipc_old ) ) ! ncsnd( ipc_old ) = ncsnd( ipc_old ) * descb%nrcx ! END DO ! IF( mycol == ipc - 1 ) THEN DO ipc_old = 1, npc IF( ncsnd( ipc_old ) > 0 ) THEN IF( mycol /= ipc_old - 1 ) THEN ib = icb_new( ipc_old ) CALL mpi_recv( b( 1, ib ), ncsnd(ipc_old), MPI_DOUBLE_PRECISION, ipc_old-1, ipc, row_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_recv 2 ", ABS( ierr ) ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_PRECISION, ib, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_GET_COUNT 2 ", ABS( ierr ) ) IF( ib /= ncsnd(ipc_old) ) & CALL errore( " dsqmred ", " somthing wrong with col 3 ", ib ) END IF END IF END DO ELSE DO ipc_old = 1, npc IF( mycol == ipc_old - 1 .AND. ncsnd( ipc_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Wait 2 ", ABS( ierr ) ) END IF END DO END IF ! END DO DEALLOCATE( ab ) DEALLOCATE( buf ) CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_comm_free 1 ", ABS( ierr ) ) CALL mpi_comm_free( row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_comm_free 2 ", ABS( ierr ) ) #if defined __PIPPO ! this is for debugging, tests through global matrix, if ! the two matrix (pre and before the redistribution) coincide. ALLOCATE( tst1( nb, nb ) ) ALLOCATE( tst2( nb, nb ) ) ALLOCATE( ab( nb, nb ) ) ab = 0.0d0 do j = 1, desca%nc do i = 1, desca%nr ab( i + desca%ir - 1, j + desca%ic - 1 ) = a( i , j ) end do end do CALL MPI_REDUCE( ab, tst1, nb*nb, MPI_DOUBLE_PRECISION, MPI_SUM, 0, comm, ierr ) ab = 0.0d0 do j = 1, descb%nc do i = 1, descb%nr ab( i + descb%ir - 1, j + descb%ic - 1 ) = b( i , j ) end do end do CALL MPI_REDUCE( ab, tst2, nb*nb, MPI_DOUBLE_PRECISION, MPI_SUM, 0, comm, ierr ) IF( myid == 0 ) THEN write( 1000, * ) na, nb, SUM( ABS( tst2 - tst1 ) ) END IF DEALLOCATE( ab ) DEALLOCATE( tst2 ) DEALLOCATE( tst1 ) #endif #endif RETURN END SUBROUTINE dsqmred SUBROUTINE zsqmred( na, a, lda, desca, nb, b, ldb, descb ) ! ! double complex (Z) SQuare Matrix REDistribution ! ! Copy a global "na * na" matrix locally stored in "a", ! and distributed as described by "desca", into a larger ! global "nb * nb" matrix stored in "b" and distributed ! as described in "descb". ! ! If you want to read, get prepared for an headache! ! Written struggling by Carlo Cavazzoni. ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: na INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,lda) ! matrix to be redistributed into b TYPE(la_descriptor), INTENT(IN) :: desca INTEGER, INTENT(IN) :: nb INTEGER, INTENT(IN) :: ldb COMPLEX(DP) :: b(ldb,ldb) TYPE(la_descriptor), INTENT(IN) :: descb INTEGER :: ipc, ipr, npc, npr INTEGER :: ipr_old, ir_old, nr_old, irx_old INTEGER :: ipc_old, ic_old, nc_old, icx_old INTEGER :: myrow, mycol, ierr, rank INTEGER :: col_comm, row_comm, comm, sreq INTEGER :: nr_new, ir_new, irx_new, ir, nr, nrtot, irb, ire INTEGER :: nc_new, ic_new, icx_new, ic, nc, nctot, icb, ice INTEGER :: ib, i, j, myid INTEGER :: nrsnd( desca%npr ) INTEGER :: ncsnd( desca%npr ) INTEGER :: displ( desca%npr ) INTEGER :: irb_new( desca%npr ) INTEGER :: ire_new( desca%npr ) INTEGER :: icb_new( desca%npr ) INTEGER :: ice_new( desca%npr ) COMPLEX(DP), ALLOCATABLE :: buf(:) COMPLEX(DP), ALLOCATABLE :: ab(:,:) COMPLEX(DP), ALLOCATABLE :: tst1(:,:) COMPLEX(DP), ALLOCATABLE :: tst2(:,:) #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif IF( desca%active_node <= 0 ) THEN RETURN END IF ! preliminary consistency checks IF( nb < na ) & CALL errore( " zsqmred ", " nb < na, this sub. work only with nb >= na ", nb ) IF( nb /= descb%n ) & CALL errore( " zsqmred ", " wrong global dim nb ", nb ) IF( na /= desca%n ) & CALL errore( " zsqmred ", " wrong global dim na ", na ) IF( ldb /= descb%nrcx ) & CALL errore( " zsqmred ", " wrong leading dim ldb ", ldb ) IF( lda /= desca%nrcx ) & CALL errore( " zsqmred ", " wrong leading dim lda ", lda ) npr = desca%npr myrow = desca%myr npc = desca%npc mycol = desca%myc comm = desca%comm #if defined __MPI ! split communicator into row and col communicators CALL MPI_Comm_rank( comm, myid, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_rank 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_split 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, myrow, mycol, row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_split 2 ", ABS( ierr ) ) CALL MPI_Comm_rank( col_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_rank 2 ", ABS( ierr ) ) IF( rank /= myrow ) & CALL errore( " zsqmred ", " building col_comm ", rank ) CALL MPI_Comm_rank( row_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_rank 3 ", ABS( ierr ) ) IF( rank /= mycol ) & CALL errore( " zsqmred ", " building row_comm ", rank ) ALLOCATE( buf( descb%nrcx * descb%nrcx ) ) ALLOCATE( ab( descb%nrcx, desca%nrcx ) ) DO j = 1, descb%nc DO i = 1, descb%nr b( i, j ) = ( 0_DP , 0_DP ) END DO END DO ab = ( 0_DP , 0_DP ) ! first redistribute rows, column groups work in parallel DO ipr = 1, npr ! CALL descla_local_dims( ir_new, nr_new, nb, descb%nx, npr, ipr-1 ) ! irx_new = ir_new + nr_new - 1 ! DO ipr_old = 1, npr ! CALL descla_local_dims( ir_old, nr_old, na, desca%nx, npr, ipr_old-1 ) ! irx_old = ir_old + nr_old - 1 ! IF( ir_old >= ir_new .AND. ir_old <= irx_new ) THEN ! nrsnd( ipr_old ) = MIN( nr_old, irx_new - ir_old + 1 ) irb = 1 ire = nrsnd( ipr_old ) irb_new( ipr_old ) = ir_old - ir_new + 1 ire_new( ipr_old ) = irb_new( ipr_old ) + nrsnd( ipr_old ) - 1 ! ELSE IF( ir_new >= ir_old .AND. ir_new <= irx_old ) THEN ! nrsnd( ipr_old ) = irx_old - ir_new + 1 irb = ir_new - ir_old + 1 ire = nr_old irb_new( ipr_old ) = 1 ire_new( ipr_old ) = nrsnd( ipr_old ) ! ELSE nrsnd( ipr_old ) = 0 irb = 0 ire = 0 irb_new( ipr_old ) = 0 ire_new( ipr_old ) = 0 END IF ! IF( ( myrow == ipr_old - 1 ) .AND. ( nrsnd( ipr_old ) > 0 ) ) THEN IF( myrow /= ipr - 1 ) THEN ib = 0 DO j = 1, desca%nc DO i = irb, ire ib = ib + 1 buf( ib ) = a( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_COMPLEX, ipr-1, ipr, col_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_isend 1 ", ABS( ierr ) ) ELSE DO j = 1, desca%nc ib = irb DO i = irb_new( ipr_old ), ire_new( ipr_old ) ab( i, j ) = a( ib, j ) ib = ib + 1 END DO END DO END IF END IF ! IF( nrsnd( ipr_old ) /= ire - irb + 1 ) & CALL errore( " zsqmred ", " somthing wrong with row 1 ", nrsnd( ipr_old ) ) IF( nrsnd( ipr_old ) /= ire_new( ipr_old ) - irb_new( ipr_old ) + 1 ) & CALL errore( " zsqmred ", " somthing wrong with row 2 ", nrsnd( ipr_old ) ) ! nrsnd( ipr_old ) = nrsnd( ipr_old ) * desca%nc ! END DO ! IF( myrow == ipr - 1 ) THEN DO ipr_old = 1, npr IF( nrsnd( ipr_old ) > 0 ) THEN IF( myrow /= ipr_old - 1 ) THEN CALL mpi_recv( buf, nrsnd(ipr_old), MPI_DOUBLE_COMPLEX, ipr_old-1, ipr, col_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_recv 1 ", ABS( ierr ) ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ib, ierr) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_GET_COUNT 1 ", ABS( ierr ) ) IF( ib /= nrsnd(ipr_old) ) & CALL errore( " zsqmred ", " somthing wrong with row 3 ", ib ) ib = 0 DO j = 1, desca%nc DO i = irb_new( ipr_old ), ire_new( ipr_old ) ib = ib + 1 ab( i, j ) = buf( ib ) END DO END DO END IF END IF END DO ELSE DO ipr_old = 1, npr IF( myrow == ipr_old - 1 .AND. nrsnd( ipr_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Wait 1 ", ABS( ierr ) ) END IF END DO END IF ! END DO ! then redistribute cols, row groups work in parallel DO ipc = 1, npc ! CALL descla_local_dims( ic_new, nc_new, nb, descb%nx, npc, ipc-1 ) ! icx_new = ic_new + nc_new - 1 ! DO ipc_old = 1, npc ! CALL descla_local_dims( ic_old, nc_old, na, desca%nx, npc, ipc_old-1 ) ! icx_old = ic_old + nc_old - 1 ! IF( ic_old >= ic_new .AND. ic_old <= icx_new ) THEN ! ncsnd( ipc_old ) = MIN( nc_old, icx_new - ic_old + 1 ) icb = 1 ice = ncsnd( ipc_old ) icb_new( ipc_old ) = ic_old - ic_new + 1 ice_new( ipc_old ) = icb_new( ipc_old ) + ncsnd( ipc_old ) - 1 ! ELSE IF( ic_new >= ic_old .AND. ic_new <= icx_old ) THEN ! ncsnd( ipc_old ) = icx_old - ic_new + 1 icb = ic_new - ic_old + 1 ice = nc_old icb_new( ipc_old ) = 1 ice_new( ipc_old ) = ncsnd( ipc_old ) ! ELSE ncsnd( ipc_old ) = 0 icb = 0 ice = 0 icb_new( ipc_old ) = 0 ice_new( ipc_old ) = 0 END IF ! IF( ( mycol == ipc_old - 1 ) .AND. ( ncsnd( ipc_old ) > 0 ) ) THEN IF( mycol /= ipc - 1 ) THEN ib = 0 DO j = icb, ice DO i = 1, descb%nrcx ib = ib + 1 buf( ib ) = ab( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_COMPLEX, ipc-1, ipc, row_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_isend 2 ", ABS( ierr ) ) ELSE ib = icb DO j = icb_new( ipc_old ), ice_new( ipc_old ) DO i = 1, descb%nrcx b( i, j ) = ab( i, ib ) END DO ib = ib + 1 END DO END IF END IF IF( ncsnd( ipc_old ) /= ice-icb+1 ) & CALL errore( " zsqmred ", " somthing wrong with col 1 ", ncsnd( ipc_old ) ) IF( ncsnd( ipc_old ) /= ice_new( ipc_old ) - icb_new( ipc_old ) + 1 ) & CALL errore( " zsqmred ", " somthing wrong with col 2 ", ncsnd( ipc_old ) ) ! ncsnd( ipc_old ) = ncsnd( ipc_old ) * descb%nrcx ! END DO ! IF( mycol == ipc - 1 ) THEN DO ipc_old = 1, npc IF( ncsnd( ipc_old ) > 0 ) THEN IF( mycol /= ipc_old - 1 ) THEN ib = icb_new( ipc_old ) CALL mpi_recv( b( 1, ib ), ncsnd(ipc_old), MPI_DOUBLE_COMPLEX, ipc_old-1, ipc, row_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_recv 2 ", ABS( ierr ) ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ib, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_GET_COUNT 2 ", ABS( ierr ) ) IF( ib /= ncsnd(ipc_old) ) & CALL errore( " zsqmred ", " somthing wrong with col 3 ", ib ) END IF END IF END DO ELSE DO ipc_old = 1, npc IF( mycol == ipc_old - 1 .AND. ncsnd( ipc_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Wait 2 ", ABS( ierr ) ) END IF END DO END IF ! END DO DEALLOCATE( ab ) DEALLOCATE( buf ) CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_comm_free 1 ", ABS( ierr ) ) CALL mpi_comm_free( row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_comm_free 2 ", ABS( ierr ) ) #if defined __PIPPO ! this is for debugging, tests through global matrix, if ! the two matrix (pre and before the redistribution) coincide. ALLOCATE( tst1( nb, nb ) ) ALLOCATE( tst2( nb, nb ) ) ALLOCATE( ab( nb, nb ) ) ab = 0.0d0 do j = 1, desca%nc do i = 1, desca%nr ab( i + desca%ir - 1, j + desca%ic - 1 ) = a( i , j ) end do end do CALL MPI_REDUCE( ab, tst1, nb*nb, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm, ierr ) ab = 0.0d0 do j = 1, descb%nc do i = 1, descb%nr ab( i + descb%ir - 1, j + descb%ic - 1 ) = b( i , j ) end do end do CALL MPI_REDUCE( ab, tst2, nb*nb, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm, ierr ) IF( myid == 0 ) THEN write( 4000, * ) na, nb, SUM( ABS( tst2 - tst1 ) ) END IF DEALLOCATE( ab ) DEALLOCATE( tst2 ) DEALLOCATE( tst1 ) #endif #endif RETURN END SUBROUTINE zsqmred ! --------------------------------------------------------------------------------- SUBROUTINE rep_matmul_drv( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC, comm ) ! ! Parallel matrix multiplication with replicated matrix ! written by Carlo Cavazzoni ! implicit none ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: m, n, k REAL(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc REAL(DP) :: a(lda,*), b(ldb,*), c(ldc,*) INTEGER, INTENT(IN) :: comm ! ! DGEMM PERFORMS ONE OF THE MATRIX-MATRIX OPERATIONS ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! WHERE OP( X ) IS ONE OF ! ! OP( X ) = X OR OP( X ) = X', ! ! ALPHA AND BETA ARE SCALARS, AND A, B AND C ARE MATRICES, WITH OP( A ) ! AN M BY K MATRIX, OP( B ) A K BY N MATRIX AND C AN M BY N MATRIX. ! ! ! #if defined __MPI ! INTEGER :: ME, I, II, J, JJ, IP, SOUR, DEST, INFO, IERR, ioff, ldx INTEGER :: NB, IB_S, NB_SOUR, IB_SOUR, IBUF INTEGER :: nproc, mpime, q, r REAL(DP), ALLOCATABLE :: auxa( : ) REAL(DP), ALLOCATABLE :: auxc( : ) ! ! ... BODY ! CALL MPI_COMM_SIZE(comm, NPROC, IERR) CALL MPI_COMM_RANK(comm, MPIME, IERR) IF ( NPROC == 1 ) THEN ! if there is only one proc no need of using parallel alg. CALL dgemm(TRANSA, TRANSB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc) RETURN END IF ME = MPIME + 1 Q = INT( m / NPROC ) R = MOD( m , NPROC ) ! ... Find out the number of elements in the local block ! along "M" first dimension os matrix A NB = Q IF( ME <= R ) NB = NB + 1 ! ... Find out the global index of the local first row IF( ME <= R ) THEN ib_s = (Q+1)*(ME-1) + 1 ELSE ib_s = Q*(ME-1) + R + 1 END IF ldx = m / nproc + 1 ALLOCATE( auxa( MAX( n, k ) * ldx ) ) ALLOCATE( auxc( MAX( n, m ) * ldx ) ) IF( TRANSA == 'N' .OR. TRANSA == 'n' ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = A( I + ioff, J ) END DO ibuf = ibuf + ldx END DO ELSE ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = A( J, I + ioff ) END DO ibuf = ibuf + ldx END DO !ioff = ib_s - 1 !call mytranspose( A( 1, ioff + 1 ), lda, auxa(1), ldx, m, nb) END IF IF( beta /= 0.0_DP ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, n DO I = 1, NB auxc( ibuf + I ) = C( I + ioff, J ) END DO ibuf = ibuf + ldx END DO END IF CALL dgemm( 'N', transb, nb, n, k, alpha, auxa(1), ldx, B, ldb, beta, auxc(1), ldx ) ! ... Here processors exchange blocks DO IP = 0, NPROC-1 ! ... Find out the number of elements in the block of processor SOUR NB_SOUR = q IF( (IP+1) .LE. r ) NB_SOUR = NB_SOUR+1 ! ... Find out the global index of the first row owned by SOUR IF( (IP+1) .LE. r ) THEN ib_sour = (Q+1)*IP + 1 ELSE ib_sour = Q*IP + R + 1 END IF IF( mpime == ip ) auxa(1:n*ldx) = auxc(1:n*ldx) CALL MPI_BCAST( auxa(1), ldx*n, mpi_double_precision, ip, comm, IERR) IF( ierr /= 0 ) & CALL errore( " rep_matmul_drv ", " in MPI_BCAST ", ABS( ierr ) ) IBUF = 0 ioff = IB_SOUR - 1 DO J = 1, N DO I = 1, NB_SOUR C( I + ioff, J ) = AUXA( IBUF + I ) END DO IBUF = IBUF + ldx END DO END DO DEALLOCATE( auxa, auxc ) #else ! if we are not compiling with __MPI this is equivalent to a blas call CALL dgemm(TRANSA, TRANSB, m, N, k, alpha, A, lda, B, ldb, beta, C, ldc) #endif RETURN END SUBROUTINE rep_matmul_drv SUBROUTINE zrep_matmul_drv( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC, comm ) ! ! Parallel matrix multiplication with replicated matrix ! written by Carlo Cavazzoni ! implicit none ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: m, n, k COMPLEX(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc COMPLEX(DP) :: a(lda,*), b(ldb,*), c(ldc,*) INTEGER, INTENT(IN) :: comm ! ! DGEMM PERFORMS ONE OF THE MATRIX-MATRIX OPERATIONS ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! WHERE OP( X ) IS ONE OF ! ! OP( X ) = X OR OP( X ) = X', ! ! ALPHA AND BETA ARE SCALARS, AND A, B AND C ARE MATRICES, WITH OP( A ) ! AN M BY K MATRIX, OP( B ) A K BY N MATRIX AND C AN M BY N MATRIX. ! ! ! #if defined __MPI ! INTEGER :: ME, I, II, J, JJ, IP, SOUR, DEST, INFO, IERR, ioff, ldx INTEGER :: NB, IB_S, NB_SOUR, IB_SOUR, IBUF INTEGER :: nproc, mpime, q, r COMPLEX(DP), ALLOCATABLE :: auxa( : ) COMPLEX(DP), ALLOCATABLE :: auxc( : ) ! ! ... BODY ! CALL MPI_COMM_SIZE(comm, NPROC, IERR) CALL MPI_COMM_RANK(comm, MPIME, IERR) IF ( NPROC == 1 ) THEN ! if there is only one proc no need of using parallel alg. CALL zgemm(TRANSA, TRANSB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc) RETURN END IF ME = MPIME + 1 Q = INT( m / NPROC ) R = MOD( m , NPROC ) ! ... Find out the number of elements in the local block ! along "M" first dimension os matrix A NB = Q IF( ME <= R ) NB = NB + 1 ! ... Find out the global index of the local first row IF( ME <= R ) THEN ib_s = (Q+1)*(ME-1) + 1 ELSE ib_s = Q*(ME-1) + R + 1 END IF ldx = m / nproc + 1 ALLOCATE( auxa( MAX( n, k ) * ldx ) ) ALLOCATE( auxc( MAX( n, m ) * ldx ) ) IF( TRANSA == 'N' .OR. TRANSA == 'n' ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = A( I + ioff, J ) END DO ibuf = ibuf + ldx END DO ELSE ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = CONJG( A( J, I + ioff ) ) END DO ibuf = ibuf + ldx END DO !ioff = ib_s - 1 !call mytranspose( A( 1, ioff + 1 ), lda, auxa(1), ldx, m, nb) END IF IF( beta /= 0.0_DP ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, n DO I = 1, NB auxc( ibuf + I ) = C( I + ioff, J ) END DO ibuf = ibuf + ldx END DO END IF CALL zgemm( 'N', transb, nb, n, k, alpha, auxa(1), ldx, B, ldb, beta, auxc(1), ldx ) ! ... Here processors exchange blocks DO IP = 0, NPROC-1 ! ... Find out the number of elements in the block of processor SOUR NB_SOUR = q IF( (IP+1) .LE. r ) NB_SOUR = NB_SOUR+1 ! ... Find out the global index of the first row owned by SOUR IF( (IP+1) .LE. r ) THEN ib_sour = (Q+1)*IP + 1 ELSE ib_sour = Q*IP + R + 1 END IF IF( mpime == ip ) auxa(1:n*ldx) = auxc(1:n*ldx) CALL MPI_BCAST( auxa(1), ldx*n, mpi_double_complex, ip, comm, IERR) IF( ierr /= 0 ) & CALL errore( " zrep_matmul_drv ", " in MPI_BCAST ", ABS( ierr ) ) IBUF = 0 ioff = IB_SOUR - 1 DO J = 1, N DO I = 1, NB_SOUR C( I + ioff, J ) = AUXA( IBUF + I ) END DO IBUF = IBUF + ldx END DO END DO DEALLOCATE( auxa, auxc ) #else ! if we are not compiling with __MPI this is equivalent to a blas call CALL zgemm(TRANSA, TRANSB, m, N, k, alpha, A, lda, B, ldb, beta, C, ldc) #endif RETURN END SUBROUTINE zrep_matmul_drv !==----------------------------------------------==! END MODULE parallel_toolkit !==----------------------------------------------==! ! ! !=----------------------------------------------------------------------------=! ! ! ! Cannon's algorithms for parallel matrix multiplication ! written by Carlo Cavazzoni ! ! ! SUBROUTINE sqr_mm_cannon( transa, transb, n, alpha, a, lda, b, ldb, beta, c, ldc, desc ) ! ! Parallel square matrix multiplication with Cannon's algorithm ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: n REAL(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc REAL(DP) :: a(lda,*), b(ldb,*), c(ldc,*) TYPE(la_descriptor), INTENT(IN) :: desc ! ! performs one of the matrix-matrix operations ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! where op( x ) is one of ! ! OP( X ) = X OR OP( X ) = X', ! ! alpha and beta are scalars, and a, b and c are square matrices ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr integer :: np integer :: i, j, nr, nc, nb, iter, rowid, colid logical :: ta, tb INTEGER :: comm ! ! real(DP), allocatable :: bblk(:,:), ablk(:,:) ! #if defined (__MPI) ! integer :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN ! ! quick return if only one processor is used ! CALL dgemm( TRANSA, TRANSB, n, n, n, alpha, a, lda, b, ldb, beta, c, ldc) ! RETURN ! END IF IF( desc%npr /= desc%npc ) & CALL errore( ' sqr_mm_cannon ', ' works only with square processor mesh ', 1 ) ! ! Retrieve communicator and mesh geometry ! np = desc%npr comm = desc%comm rowid = desc%myr colid = desc%myc ! ! Retrieve the size of the local block ! nr = desc%nr nc = desc%nc nb = desc%nrcx ! #if defined (__MPI) CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " sqr_mm_cannon ", " in MPI_BARRIER ", ABS( ierr ) ) #endif ! allocate( ablk( nb, nb ) ) DO j = 1, nc DO i = 1, nr ablk( i, j ) = a( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb ablk( i, j ) = 0.0_DP END DO END DO DO j = 1, nb DO i = nr+1, nb ablk( i, j ) = 0.0_DP END DO END DO ! ! allocate( bblk( nb, nb ) ) DO j = 1, nc DO i = 1, nr bblk( i, j ) = b( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb bblk( i, j ) = 0.0_DP END DO END DO DO j = 1, nb DO i = nr+1, nb bblk( i, j ) = 0.0_DP END DO END DO ! ! ta = ( TRANSA == 'T' .OR. TRANSA == 't' ) tb = ( TRANSB == 'T' .OR. TRANSB == 't' ) ! ! Shift A rowid+1 places to the west ! IF( ta ) THEN CALL shift_exch_block( ablk, 'W', 1 ) ELSE CALL shift_block( ablk, 'W', rowid+1, 1 ) END IF ! ! Shift B colid+1 places to the north ! IF( tb ) THEN CALL shift_exch_block( bblk, 'N', np+1 ) ELSE CALL shift_block( bblk, 'N', colid+1, np+1 ) END IF ! ! Accumulate on C ! CALL dgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, beta, c, ldc) ! DO iter = 2, np ! ! Shift A 1 places to the east ! CALL shift_block( ablk, 'E', 1, iter ) ! ! Shift B 1 places to the south ! CALL shift_block( bblk, 'S', 1, np+iter ) ! ! Accumulate on C ! CALL dgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, 1.0_DP, c, ldc) ! END DO deallocate( ablk, bblk ) RETURN CONTAINS SUBROUTINE shift_block( blk, dir, ln, tag ) ! ! Block shift ! IMPLICIT NONE REAL(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir ! shift direction INTEGER, INTENT(IN) :: ln ! shift length INTEGER, INTENT(IN) :: tag ! communication tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! IF( dir == 'W' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid - ln + np, np ) icsrc = MOD( colid + ln + np, np ) ! ELSE IF( dir == 'E' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid + ln + np, np ) icsrc = MOD( colid - ln + np, np ) ! ELSE IF( dir == 'N' ) THEN irdst = MOD( rowid - ln + np, np ) irsrc = MOD( rowid + ln + np, np ) icdst = colid icsrc = colid ELSE IF( dir == 'S' ) THEN irdst = MOD( rowid + ln + np, np ) irsrc = MOD( rowid - ln + np, np ) icdst = colid icsrc = colid ELSE CALL errore( ' sqr_mm_cannon ', ' unknown shift direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_PRECISION, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_mm_cannon ", " in MPI_SENDRECV_REPLACE ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_block SUBROUTINE shift_exch_block( blk, dir, tag ) ! ! Combined block shift and exchange ! only used for the first step ! IMPLICIT NONE REAL(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir INTEGER, INTENT(IN) :: tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour INTEGER :: icol, irow ! IF( dir == 'W' ) THEN ! icol = rowid irow = colid ! irdst = irow icdst = MOD( icol - irow-1 + np, np ) ! irow = rowid icol = MOD( colid + rowid+1 + np, np ) ! irsrc = icol icsrc = irow ! ELSE IF( dir == 'N' ) THEN ! icol = rowid irow = colid ! icdst = icol irdst = MOD( irow - icol-1 + np, np ) ! irow = MOD( rowid + colid+1 + np, np ) icol = colid ! irsrc = icol icsrc = irow ELSE CALL errore( ' sqr_mm_cannon ', ' unknown shift_exch direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_PRECISION, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_mm_cannon ", " in MPI_SENDRECV_REPLACE 2 ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_exch_block END SUBROUTINE sqr_mm_cannon !=----------------------------------------------------------------------------=! SUBROUTINE sqr_zmm_cannon( transa, transb, n, alpha, a, lda, b, ldb, beta, c, ldc, desc ) ! ! Parallel square matrix multiplication with Cannon's algorithm ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: n COMPLEX(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc COMPLEX(DP) :: a(lda,*), b(ldb,*), c(ldc,*) TYPE(la_descriptor), INTENT(IN) :: desc ! ! performs one of the matrix-matrix operations ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! where op( x ) is one of ! ! OP( X ) = X OR OP( X ) = X', ! ! alpha and beta are scalars, and a, b and c are square matrices ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! INTEGER :: ierr INTEGER :: np INTEGER :: i, j, nr, nc, nb, iter, rowid, colid LOGICAL :: ta, tb INTEGER :: comm ! ! COMPLEX(DP), ALLOCATABLE :: bblk(:,:), ablk(:,:) COMPLEX(DP) :: zone = ( 1.0_DP, 0.0_DP ) COMPLEX(DP) :: zzero = ( 0.0_DP, 0.0_DP ) ! #if defined (__MPI) ! integer :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN ! ! quick return if only one processor is used ! CALL zgemm( TRANSA, TRANSB, n, n, n, alpha, a, lda, b, ldb, beta, c, ldc) ! RETURN ! END IF IF( desc%npr /= desc%npc ) & CALL errore( ' sqr_zmm_cannon ', ' works only with square processor mesh ', 1 ) ! ! Retrieve communicator and mesh geometry ! np = desc%npr comm = desc%comm rowid = desc%myr colid = desc%myc ! ! Retrieve the size of the local block ! nr = desc%nr nc = desc%nc nb = desc%nrcx ! #if defined (__MPI) CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " sqr_zmm_cannon ", " in MPI_BARRIER ", ABS( ierr ) ) #endif ! allocate( ablk( nb, nb ) ) DO j = 1, nc DO i = 1, nr ablk( i, j ) = a( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb ablk( i, j ) = zzero END DO END DO DO j = 1, nb DO i = nr+1, nb ablk( i, j ) = zzero END DO END DO ! ! allocate( bblk( nb, nb ) ) DO j = 1, nc DO i = 1, nr bblk( i, j ) = b( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb bblk( i, j ) = zzero END DO END DO DO j = 1, nb DO i = nr+1, nb bblk( i, j ) = zzero END DO END DO ! ! ta = ( TRANSA == 'C' .OR. TRANSA == 'c' ) tb = ( TRANSB == 'C' .OR. TRANSB == 'c' ) ! ! Shift A rowid+1 places to the west ! IF( ta ) THEN CALL shift_exch_block( ablk, 'W', 1 ) ELSE CALL shift_block( ablk, 'W', rowid+1, 1 ) END IF ! ! Shift B colid+1 places to the north ! IF( tb ) THEN CALL shift_exch_block( bblk, 'N', np+1 ) ELSE CALL shift_block( bblk, 'N', colid+1, np+1 ) END IF ! ! Accumulate on C ! CALL zgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, beta, c, ldc) ! DO iter = 2, np ! ! Shift A 1 places to the east ! CALL shift_block( ablk, 'E', 1, iter ) ! ! Shift B 1 places to the south ! CALL shift_block( bblk, 'S', 1, np+iter ) ! ! Accumulate on C ! CALL zgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, zone, c, ldc) ! END DO deallocate( ablk, bblk ) RETURN CONTAINS SUBROUTINE shift_block( blk, dir, ln, tag ) ! ! Block shift ! IMPLICIT NONE COMPLEX(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir ! shift direction INTEGER, INTENT(IN) :: ln ! shift length INTEGER, INTENT(IN) :: tag ! communication tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! IF( dir == 'W' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid - ln + np, np ) icsrc = MOD( colid + ln + np, np ) ! ELSE IF( dir == 'E' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid + ln + np, np ) icsrc = MOD( colid - ln + np, np ) ! ELSE IF( dir == 'N' ) THEN irdst = MOD( rowid - ln + np, np ) irsrc = MOD( rowid + ln + np, np ) icdst = colid icsrc = colid ELSE IF( dir == 'S' ) THEN irdst = MOD( rowid + ln + np, np ) irsrc = MOD( rowid - ln + np, np ) icdst = colid icsrc = colid ELSE CALL errore( ' sqr_zmm_cannon ', ' unknown shift direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_COMPLEX, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_zmm_cannon ", " in MPI_SENDRECV_REPLACE 1 ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_block ! SUBROUTINE shift_exch_block( blk, dir, tag ) ! ! Combined block shift and exchange ! only used for the first step ! IMPLICIT NONE COMPLEX(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir INTEGER, INTENT(IN) :: tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour INTEGER :: icol, irow ! IF( dir == 'W' ) THEN ! icol = rowid irow = colid ! irdst = irow icdst = MOD( icol - irow-1 + np, np ) ! irow = rowid icol = MOD( colid + rowid+1 + np, np ) ! irsrc = icol icsrc = irow ! ELSE IF( dir == 'N' ) THEN ! icol = rowid irow = colid ! icdst = icol irdst = MOD( irow - icol-1 + np, np ) ! irow = MOD( rowid + colid+1 + np, np ) icol = colid ! irsrc = icol icsrc = irow ELSE CALL errore( ' sqr_zmm_cannon ', ' unknown shift_exch direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_COMPLEX, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_zmm_cannon ", " in MPI_SENDRECV_REPLACE 2 ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_exch_block END SUBROUTINE sqr_zmm_cannon ! ! ! ! SUBROUTINE sqr_tr_cannon( n, a, lda, b, ldb, desc ) ! ! Parallel square matrix transposition with Cannon's algorithm ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, ldb REAL(DP) :: a(lda,*), b(ldb,*) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! INCLUDE 'mpif.h' ! #endif ! INTEGER :: ierr INTEGER :: np, rowid, colid INTEGER :: i, j, nr, nc, nb INTEGER :: comm ! REAL(DP), ALLOCATABLE :: ablk(:,:) ! #if defined (__MPI) ! INTEGER :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN RETURN END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN CALL mytranspose( a, lda, b, ldb, n, n ) RETURN END IF IF( desc%npr /= desc%npc ) & CALL errore( ' sqr_tr_cannon ', ' works only with square processor mesh ', 1 ) IF( n /= desc%n ) & CALL errore( ' sqr_tr_cannon ', ' inconsistent size n ', 1 ) IF( lda /= desc%nrcx ) & CALL errore( ' sqr_tr_cannon ', ' inconsistent size lda ', 1 ) IF( ldb /= desc%nrcx ) & CALL errore( ' sqr_tr_cannon ', ' inconsistent size ldb ', 1 ) comm = desc%comm rowid = desc%myr colid = desc%myc np = desc%npr ! ! Compute the size of the local block ! nr = desc%nr nc = desc%nc nb = desc%nrcx ! allocate( ablk( nb, nb ) ) DO j = 1, nc DO i = 1, nr ablk( i, j ) = a( i, j ) END DO END DO DO j = nc+1, nb DO i = 1, nb ablk( i, j ) = 0.0_DP END DO END DO DO j = 1, nb DO i = nr+1, nb ablk( i, j ) = 0.0_DP END DO END DO ! CALL exchange_block( ablk ) ! #if defined (__MPI) CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " sqr_tr_cannon ", " in MPI_BARRIER ", ABS( ierr ) ) #endif ! DO j = 1, nr DO i = 1, nc b( j, i ) = ablk( i, j ) END DO END DO ! deallocate( ablk ) RETURN CONTAINS SUBROUTINE exchange_block( blk ) ! ! Block exchange ( transpose ) ! IMPLICIT NONE REAL(DP) :: blk( :, : ) ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! irdst = colid icdst = rowid irsrc = colid icsrc = rowid ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_PRECISION, & idest, np+np+1, isour, np+np+1, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_tr_cannon ", " in MPI_SENDRECV_REPLACE ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE END SUBROUTINE ! SUBROUTINE redist_row2col( n, a, b, ldx, nx, desc ) ! ! redistribute a, array whose second dimension is distributed over processor row, ! to obtain b, with the second dim. distributed over processor clolumn ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldx, nx REAL(DP) :: a(ldx,nx), b(ldx,nx) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! INCLUDE 'mpif.h' ! #endif ! INTEGER :: ierr INTEGER :: np, rowid, colid INTEGER :: comm INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! #if defined (__MPI) ! INTEGER :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN RETURN END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN b = a RETURN END IF IF( desc%npr /= desc%npc ) & CALL errore( ' redist_row2col ', ' works only with square processor mesh ', 1 ) IF( n /= desc%n ) & CALL errore( ' redist_row2col ', ' inconsistent size n ', 1 ) IF( nx /= desc%nrcx ) & CALL errore( ' redist_row2col ', ' inconsistent size lda ', 1 ) comm = desc%comm rowid = desc%myr colid = desc%myc np = desc%npr ! irdst = colid icdst = rowid irsrc = colid icsrc = rowid ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " redist_row2col ", " in MPI_BARRIER ", ABS( ierr ) ) ! CALL MPI_SENDRECV(a, ldx*nx, MPI_DOUBLE_PRECISION, idest, np+np+1, & b, ldx*nx, MPI_DOUBLE_PRECISION, isour, np+np+1, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " redist_row2col ", " in MPI_SENDRECV ", ABS( ierr ) ) ! #else b = a #endif ! RETURN END SUBROUTINE redist_row2col ! ! ! SUBROUTINE cyc2blk_redist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (input) is cyclically distributed by rows across processors ! B (output) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb REAL(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, nproc, comm_a integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! real(DP), allocatable :: rcvbuf(:,:,:) real(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' cyc2blk_redist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' cyc2blk_redist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' cyc2blk_redist ', ' nb less than the number of proc ', 1 ) nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) ! ! loop over all processors ! DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) IF( ip_desc%nrcx /= nb ) & CALL errore( ' cyc2blk_redist ', ' inconsistent block dim nb ', 1 ) ! IF( ip_desc%active_node > 0 ) THEN ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN CALL check_sndbuf_index() sndbuf( il, j ) = a( ( ii - 1 )/nproc + 1, jj ) il = il + 1 END IF END DO END DO END IF CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_precision, & rcvbuf, nbuf, mpi_double_precision, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " cyc2blk_redist ", " in mpi_gather ", ABS( ierr ) ) END DO ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN CALL check_rcvbuf_index() b( i, j ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else b( 1:n, 1:n ) = a( 1:n, 1:n ) #endif RETURN CONTAINS SUBROUTINE check_sndbuf_index() CHARACTER(LEN=38), SAVE :: msg = ' check_sndbuf_index in cyc2blk_redist ' IF( j > SIZE(sndbuf,2) ) CALL errore( msg, ' j > SIZE(sndbuf,2) ', ip+1 ) IF( il > SIZE(sndbuf,1) ) CALL errore( msg, ' il > SIZE(sndbuf,1) ', ip+1 ) IF( ( ii - 1 )/nproc + 1 < 1 ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 < 1 ', ip+1 ) IF( ( ii - 1 )/nproc + 1 > lda ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 > SIZE(a,1) ', ip+1 ) IF( jj < 1 ) CALL errore( msg, ' jj < 1 ', ip+1 ) IF( jj > n ) CALL errore( msg, ' jj > n ', ip+1 ) RETURN END SUBROUTINE check_sndbuf_index SUBROUTINE check_rcvbuf_index() CHARACTER(LEN=38), SAVE :: msg = ' check_rcvbuf_index in cyc2blk_redist ' IF( i > ldb ) CALL errore( msg, ' i > ldb ', ip+1 ) IF( j > ldb ) CALL errore( msg, ' j > ldb ', ip+1 ) IF( j > nb ) CALL errore( msg, ' j > nb ', ip+1 ) IF( il > SIZE( rcvbuf, 1 ) ) CALL errore( msg, ' il too large ', ip+1 ) RETURN END SUBROUTINE check_rcvbuf_index END SUBROUTINE cyc2blk_redist SUBROUTINE cyc2blk_zredist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (input) is cyclically distributed by rows across processors ! B (output) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb COMPLEX(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, nproc, comm_a integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! COMPLEX(DP), allocatable :: rcvbuf(:,:,:) COMPLEX(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' cyc2blk_zredist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' cyc2blk_zredist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' cyc2blk_zredist ', ' nb less than the number of proc ', 1 ) ! nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN CALL check_sndbuf_index() sndbuf( il, j ) = a( ( ii - 1 )/nproc + 1, jj ) il = il + 1 END IF END DO END DO CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_complex, & rcvbuf, nbuf, mpi_double_complex, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " cyc2blk_zredist ", " in mpi_gather ", ABS( ierr ) ) END DO ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN CALL check_rcvbuf_index() b( i, j ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else b( 1:n, 1:n ) = a( 1:n, 1:n ) #endif RETURN CONTAINS SUBROUTINE check_sndbuf_index() CHARACTER(LEN=40), SAVE :: msg = ' check_sndbuf_index in cyc2blk_zredist ' IF( j > SIZE(sndbuf,2) ) CALL errore( msg, ' j > SIZE(sndbuf,2) ', ip+1 ) IF( il > SIZE(sndbuf,1) ) CALL errore( msg, ' il > SIZE(sndbuf,1) ', ip+1 ) IF( ( ii - 1 )/nproc + 1 < 1 ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 < 1 ', ip+1 ) IF( ( ii - 1 )/nproc + 1 > SIZE(a,1) ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 > SIZE(a,1) ', ip+1 ) IF( jj < 1 ) CALL errore( msg, ' jj < 1 ', ip+1 ) IF( jj > n ) CALL errore( msg, ' jj > n ', ip+1 ) RETURN END SUBROUTINE check_sndbuf_index SUBROUTINE check_rcvbuf_index() CHARACTER(LEN=40), SAVE :: msg = ' check_rcvbuf_index in cyc2blk_zredist ' IF( i > ldb ) CALL errore( msg, ' i > ldb ', ip+1 ) IF( j > ldb ) CALL errore( msg, ' j > ldb ', ip+1 ) IF( j > nb ) CALL errore( msg, ' j > nb ', ip+1 ) IF( il > SIZE( rcvbuf, 1 ) ) CALL errore( msg, ' il too large ', ip+1 ) RETURN END SUBROUTINE check_rcvbuf_index END SUBROUTINE cyc2blk_zredist SUBROUTINE blk2cyc_redist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (output) is cyclically distributed by rows across processors ! B (input) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb REAL(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, comm_a, nproc integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! REAL(DP), allocatable :: rcvbuf(:,:,:) REAL(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' blk2cyc_redist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' blk2cyc_redist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' blk2cyc_redist ', ' nb less than the number of proc ', 1 ) ! nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN sndbuf( il, j ) = b( i, j ) il = il + 1 END IF END DO END DO CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_precision, & rcvbuf, nbuf, mpi_double_precision, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " blk2cyc_redist ", " in mpi_gather ", ABS( ierr ) ) END DO ! DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) ! ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN a( ( ii - 1 )/nproc + 1, jj ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else a( 1:n, 1:n ) = b( 1:n, 1:n ) #endif RETURN END SUBROUTINE blk2cyc_redist SUBROUTINE blk2cyc_zredist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (output) is cyclically distributed by rows across processors ! B (input) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb COMPLEX(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, comm_a, nproc integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! COMPLEX(DP), allocatable :: rcvbuf(:,:,:) COMPLEX(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' blk2cyc_zredist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' blk2cyc_zredist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' blk2cyc_zredist ', ' nb less than the number of proc ', 1 ) ! nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN sndbuf( il, j ) = b( i, j ) il = il + 1 END IF END DO END DO CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_complex, & rcvbuf, nbuf, mpi_double_complex, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " blk2cyc_zredist ", " in mpi_gather ", ABS( ierr ) ) END DO ! DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) ! ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN a( ( ii - 1 )/nproc + 1, jj ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else a( 1:n, 1:n ) = b( 1:n, 1:n ) #endif RETURN END SUBROUTINE blk2cyc_zredist ! ! ! ! Double Complex and Double Precision Cholesky Factorization of ! an Hermitan/Symmetric block distributed matrix ! written by Carlo Cavazzoni ! ! SUBROUTINE qe_pzpotrf( sll, ldx, n, desc ) ! use descriptors use parallel_include use kinds ! implicit none ! integer :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc real(DP) :: one, zero complex(DP) :: sll( ldx, ldx ), cone, czero integer :: myrow, mycol, ierr integer :: jb, info, ib, kb integer :: jnr, jir, jic, jnc integer :: inr, iir, iic, inc integer :: knr, kir, kic, knc integer :: nr, nc integer :: rcomm, ccomm, color, key, myid, np complex(DP), allocatable :: ssnd( :, : ), srcv( :, : ) one = 1.0_DP cone = 1.0_DP zero = 0.0_DP czero = 0.0_DP #if defined __MPI myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr IF( desc%npr /= desc%npc ) THEN CALL errore( ' pzpotrf ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pzpotrf ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ALLOCATE( ssnd( ldx, ldx ) ) ALLOCATE( srcv( ldx, ldx ) ) DO jb = 1, np ! ! Update and factorize the current diagonal block and test ! for non-positive-definiteness. ! CALL descla_local_dims( jir, jnr, n, desc%nx, np, jb-1 ) ! ! since we loop on diagonal blocks/procs we have jnc == jnr ! jnc = jnr ! ! prepare row and colum communicators IF( ( myrow >= ( jb-1 ) ) .AND. ( mycol <= ( jb-1 ) ) ) THEN color = mycol key = myrow ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm , color, key, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_split 1 ", ABS( ierr ) ) ! IF( myrow >= jb-1 .and. mycol <= jb-1 ) THEN color = myrow key = mycol ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm, color, key, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_split 2 ", ABS( ierr ) ) ! ! here every process can work independently, then we need a reduce. ! IF( jb > 1 ) THEN ! DO ib = 1, jb - 1 IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( ib - 1 ) ) ) THEN ! ! this is because only the lover triangle of ssnd will be set to 0 by ZHERK ! ssnd = 0.0_DP ! ! remember: matrix ssnd is nr*nr, and procs on the diagonale have nr == nc ! CALL ZHERK( 'L', 'N', nr, nc, -ONE, sll, ldx, zero, ssnd, ldx ) ! END IF END DO IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN ! ! accumulate on the diagonal block/proc ! CALL mpi_barrier( rcomm, ierr ) CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_COMPLEX, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in MPI_REDUCE 1 ", ABS( ierr ) ) ! END IF ! END IF ! ! Only proj ( jb-1, jb-1 ) operates this ! info = 0 ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL ZPOTF2( 'L', jnr, sll, ldx, INFO ) IF( info /= 0 ) & CALL errore( " pzpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) END IF ! IF( ( jb > 1 ) .AND. ( jb < np ) ) THEN ! ! Compute the current block column. ! ! processors ( 1 : jb - 1, jb ) should bcast their blocs ! along column to processor ( 1 : jb - 1, jb + 1 : nb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 1 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 2 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np CALL descla_local_dims( iir, inr, n, desc%nx, np, ib-1 ) DO kb = 1, jb - 1 CALL descla_local_dims( kic, knc, n, desc%nx, np, kb-1 ) IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( kb - 1 ) ) ) THEN CALL zgemm( 'N', 'C', inr, jnr, knc, -CONE, sll, ldx, srcv, ldx, czero, ssnd, ldx ) END IF END DO IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF END DO ! ! processors ( jb, jb + 1 : nb ) should collect block along row, ! from processors ( 1 : jb - 1, jb + 1 : nb ) ! DO kb = jb + 1, np IF( ( myrow == ( kb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN IF( ( jb == 1 ) ) THEN IF( mycol == ( jb - 1 ) ) THEN sll = ssnd END IF ELSE CALL mpi_barrier( rcomm, ierr ) CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_COMPLEX, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_reduce 2 ", ABS( ierr ) ) END IF END IF END DO ! END IF ! IF( jb < np ) THEN ! ! processor "jb,jb" should broadcast his block to procs ( jb+1 : nb, jb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 3 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 4 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL ZTRSM( 'R', 'L', 'C', 'N', nr, nc, CONE, srcv, ldx, sll, ldx ) END IF END DO ! END IF ! CALL mpi_comm_free( rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_free 1 ", ABS( ierr ) ) ! CALL mpi_comm_free( ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_free 2 ", ABS( ierr ) ) ! END DO DEALLOCATE( srcv, ssnd ) #else CALL ZPOTRF( 'L', n, sll, ldx, info ) IF( info /= 0 ) & CALL errore( " pzpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) #endif return END SUBROUTINE qe_pzpotrf ! now the Double Precision subroutine SUBROUTINE qe_pdpotrf( sll, ldx, n, desc ) ! use descriptors use parallel_include use kinds ! implicit none ! integer :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP) :: one, zero REAL(DP) :: sll( ldx, ldx ) integer :: myrow, mycol, ierr integer :: jb, info, ib, kb integer :: jnr, jir, jic, jnc integer :: inr, iir, iic, inc integer :: knr, kir, kic, knc integer :: nr, nc integer :: rcomm, ccomm, color, key, myid, np REAL(DP), ALLOCATABLE :: ssnd( :, : ), srcv( :, : ) one = 1.0_DP zero = 0.0_DP #if defined __MPI myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr IF( desc%npr /= desc%npc ) THEN CALL errore( ' pdpotrf ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pdpotrf ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ALLOCATE( ssnd( ldx, ldx ) ) ALLOCATE( srcv( ldx, ldx ) ) DO jb = 1, np ! ! Update and factorize the current diagonal block and test ! for non-positive-definiteness. ! CALL descla_local_dims( jir, jnr, n, desc%nx, np, jb-1 ) ! ! since we loop on diagonal blocks/procs we have jnc == jnr ! jnc = jnr ! ! prepare row and colum communicators IF( ( myrow >= ( jb-1 ) ) .AND. ( mycol <= ( jb-1 ) ) ) THEN color = mycol key = myrow ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm , color, key, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_split 1 ", ABS( ierr ) ) ! IF( myrow >= jb-1 .and. mycol <= jb-1 ) THEN color = myrow key = mycol ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm, color, key, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_split 2 ", ABS( ierr ) ) ! ! here every process can work independently, then we need a reduce. ! IF( jb > 1 ) THEN ! DO ib = 1, jb - 1 IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( ib - 1 ) ) ) THEN ! ! this is because only the lover triangle of ssnd will be set to 0 by ZHERK ! ssnd = 0_DP ! ! remember: matrix ssnd is nr*nr, and procs on the diagonale have nr == nc ! CALL DSYRK( 'L', 'N', nr, nc, -ONE, sll, ldx, zero, ssnd, ldx ) ! END IF END DO IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN ! ! accumulate on the diagonal block/proc ! CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_PRECISION, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in MPI_REDUCE 1 ", ABS( ierr ) ) ! END IF ! END IF ! ! Only proj ( jb-1, jb-1 ) operates this ! info = 0 ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL DPOTRF( 'L', jnr, sll, ldx, INFO ) IF( info /= 0 ) & CALL errore( " pdpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) END IF ! IF( ( jb > 1 ) .AND. ( jb < np ) ) THEN ! ! Compute the current block column. ! ! processors ( 1 : jb - 1, jb ) should bcast their blocs ! along column to processor ( 1 : jb - 1, jb + 1 : nb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 1 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 2 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np CALL descla_local_dims( iir, inr, n, desc%nx, np, ib-1 ) DO kb = 1, jb - 1 CALL descla_local_dims( kic, knc, n, desc%nx, np, kb-1 ) IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( kb - 1 ) ) ) THEN CALL dgemm( 'N', 'T', inr, jnr, knc, -ONE, sll, ldx, srcv, ldx, zero, ssnd, ldx ) END IF END DO IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF END DO ! ! processors ( jb, jb + 1 : nb ) should collect block along row, ! from processors ( 1 : jb - 1, jb + 1 : nb ) ! DO kb = jb + 1, np IF( ( myrow == ( kb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN IF( ( jb == 1 ) ) THEN IF( mycol == ( jb - 1 ) ) THEN sll = ssnd END IF ELSE CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_PRECISION, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_reduce 2 ", ABS( ierr ) ) END IF END IF END DO ! END IF ! IF( jb < np ) THEN ! ! processor "jb,jb" should broadcast his block to procs ( jb+1 : nb, jb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 3 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 4 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL DTRSM( 'R', 'L', 'T', 'N', nr, nc, ONE, srcv, ldx, sll, ldx ) END IF END DO ! END IF ! CALL mpi_comm_free( rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_free 1 ", ABS( ierr ) ) CALL mpi_comm_free( ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_free 2 ", ABS( ierr ) ) ! END DO DEALLOCATE( srcv, ssnd ) #else CALL DPOTRF( 'L', n, sll, ldx, info ) IF( info /= 0 ) & CALL errore( " pzpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) #endif return END SUBROUTINE qe_pdpotrf ! ! ! ! SUBROUTINE qe_pztrtri ( sll, ldx, n, desc ) ! pztrtri computes the parallel inversion of a lower triangular matrix ! distribuited among the processes using a 2-D block partitioning. ! The algorithm is based on the schema below and executes the model ! recursively to each column C2 under the diagonal. ! ! |-------|-------| |--------------------|--------------------| ! | A1 | 0 | | C1 = trtri(A1) | 0 | ! A = |-------|-------| C = |--------------------|--------------------| ! | A2 | A3 | | C2 = -C3 * A2 * C1 | C3 = trtri(A3) | ! |-------|-------| |--------------------|--------------------| ! ! The recursive steps of multiplication (C2 = -C3 * A2 * C1) is based on the Cannon's algorithms ! for parallel matrix multiplication and is done with BLACS(dgemm) ! ! ! Arguments ! ============ ! ! sll = local block of data ! ldx = leading dimension of one block ! n = size of the global array diributed among the blocks ! desc = descriptor of the matrix distribution ! ! ! written by Ivan Girotto ! USE kinds USE parallel_include USE descriptors IMPLICIT NONE INTEGER, INTENT( IN ) :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc COMPLEX(DP), INTENT( INOUT ) :: sll( ldx, ldx ) COMPLEX(DP), PARAMETER :: ONE = (1.0_DP, 0.0_DP) COMPLEX(DP), PARAMETER :: ZERO = (0.0_DP, 0.0_DP) #if defined __MPI INTEGER :: status(MPI_STATUS_SIZE) #endif INTEGER :: req(2), ierr, col_comm INTEGER :: send, recv, group_rank, group_size INTEGER :: myrow, mycol, np, myid, comm ! counters INTEGER :: k, i, j, count, step_count, shiftcount, cicle INTEGER :: C3dim ! Dimension of submatrix B INTEGER :: nc, nr ! Local dimension of block INTEGER :: info, sup_recv INTEGER :: idrowref, idcolref, idref, idrecv ! B and BUF_RECV are used to overload the computation of matrix multiplication and the shift of the blocks COMPLEX(DP), ALLOCATABLE, DIMENSION( :, : ) :: B, C, BUF_RECV COMPLEX(DP) :: first myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr comm = desc%comm IF( desc%npr /= desc%npc ) THEN CALL errore( ' pztrtri ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pztrtri ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ! clear elements outside local meaningful block nr*nc DO j = nc+1, ldx DO i = 1, ldx sll( i, j ) = zero END DO END DO DO j = 1, ldx DO i = nr+1, ldx sll( i, j ) = zero END DO END DO #if defined __MPI ALLOCATE( B( ldx, ldx ) ) ALLOCATE( C( ldx, ldx ) ) ALLOCATE( BUF_RECV ( ldx, ldx ) ) IF( np == 2 ) THEN ! ! special case with 4 proc, 2x2 grid ! IF( myrow == mycol ) THEN CALL compute_ztrtri() END IF ! CALL GRID2D_RANK( 'R', np, np, 1, 0, idref ) ! IF( myrow == 0 .AND. mycol == 0 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_COMPLEX, idref, 0, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_send 1 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 1 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_COMPLEX, idref, 1, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_send 2 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 0 ) THEN ! CALL GRID2D_RANK( 'R', np, np, 0, 0, i ) CALL GRID2D_RANK( 'R', np, np, 1, 1, j ) ! CALL MPI_Irecv( B, ldx*ldx, MPI_DOUBLE_COMPLEX, i, 0, comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_irecv 3 ", ABS( ierr ) ) ! CALL MPI_Irecv( C, ldx*ldx, MPI_DOUBLE_COMPLEX, j, 1, comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_irecv 4 ", ABS( ierr ) ) ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 5 ", ABS( ierr ) ) ! CALL zgemm('N', 'N', ldx, ldx, ldx, ONE, sll, ldx, b, ldx, ZERO, buf_recv, ldx) ! CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 6 ", ABS( ierr ) ) ! CALL zgemm('N', 'N', ldx, ldx, ldx, -ONE, c, ldx, buf_recv, ldx, ZERO, sll, ldx) ! END IF ! IF( myrow == 0 .AND. mycol == 1 ) THEN ! sll = zero ! END IF ! DEALLOCATE( b, c, buf_recv ) ! RETURN ! END IF IF( myrow >= mycol ) THEN ! ! only procs on lower triangle partecipates ! CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_split 9 ", ABS( ierr ) ) CALL MPI_Comm_size( col_comm, group_size, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_size 10 ", ABS( ierr ) ) ! CALL MPI_Comm_rank( col_comm, group_rank, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_rank 11 ", ABS( ierr ) ) ! ELSE ! ! other procs stay at the window! ! CALL MPI_Comm_split( comm, MPI_UNDEFINED, MPI_UNDEFINED, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_split 12 ", ABS( ierr ) ) ! sll = zero ! END IF ! ! Compute the inverse of a lower triangular ! along the diagonal of the global array with BLAS(ztrtri) ! IF( mycol == myrow ) THEN ! CALL compute_ztrtri() ! ELSE IF( myrow > mycol ) THEN ! buf_recv = sll ! END IF IF( myrow >= mycol ) THEN ! ! Broadcast the diagonal blocks to the processors under the diagonal ! CALL MPI_Bcast( sll, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Bcast 13 ", ABS( ierr ) ) ! END IF ! Compute A2 * C1 and start the Cannon's algorithm shifting the blocks of column one place to the North ! IF( myrow > mycol ) THEN ! CALL zgemm( 'N', 'N', ldx, ldx, ldx, ONE, buf_recv, ldx, sll, ldx, ZERO, c, ldx ) ! send = shift( 1, group_rank, 1, ( group_size - 1 ), 'N' ) recv = shift( 1, group_rank, 1, ( group_size - 1 ), 'S' ) ! CALL MPI_Sendrecv( c, ldx*ldx, MPI_DOUBLE_COMPLEX, send, 0, buf_recv, & ldx*ldx, MPI_DOUBLE_COMPLEX, recv, 0, col_comm, status, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Sendrecv 14 ", ABS( ierr ) ) ! END IF ! Execute the Cannon's algorithm to compute ricorsively the multiplication of C2 = -C3 * A2 * C1 ! DO count = ( np - 2 ), 0, -1 C3dim = (np-1) - count ! Dimension of the submatrix C3 first = ZERO cicle = 0 IF( ( myrow > count ) .AND. ( mycol >= count ) ) THEN idcolref = count + 1 idrowref = myrow CALL GRID2D_RANK( 'R', np, np, idrowref, idcolref, idref ) idrecv = idref - 1 ! Compute C2 = -C3 * A2 * C1 DO shiftcount = count, np-2 IF(mycol>count)THEN ! Execute the virtual shift of the matrix C3 along the row in order to know which processor ! have to send the block to C2 IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, myid, myrow-count, C3dim, 'W') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, send, 1, C3dim, 'E') END IF IF(send==idref)THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_COMPLEX, idrecv, myid, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Send 15 ", ABS( ierr ) ) END IF ELSE IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, myid+1, myrow-count, C3dim, 'E') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, sup_recv, 1, C3dim, 'W') END IF CALL MPI_Recv(C, ldx*ldx, MPI_DOUBLE_COMPLEX, sup_recv, sup_recv, comm, status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Recv 16 ", ABS( ierr ) ) send = shift(1, group_rank, 1, (group_size-1), 'S') recv = shift(1, group_rank, 1, (group_size-1), 'N') ! with the no-blocking communication the computation and the shift of the column block are overapped ! IF( MOD( cicle, 2 ) == 0 ) THEN CALL MPI_Isend(BUF_RECV, ldx*ldx, MPI_DOUBLE_COMPLEX, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Isend 17 ", ABS( ierr ) ) CALL MPI_Irecv(B, ldx*ldx, MPI_DOUBLE_COMPLEX, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Irecv 18 ", ABS( ierr ) ) CALL zgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, BUF_RECV, ldx, first, sll, ldx) ELSE CALL MPI_Isend(B, ldx*ldx, MPI_DOUBLE_COMPLEX, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Isend 19 ", ABS( ierr ) ) CALL MPI_Irecv(BUF_RECV, ldx*ldx, MPI_DOUBLE_COMPLEX, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Irecv 20 ", ABS( ierr ) ) CALL zgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, B, ldx, ONE, sll, ldx) END IF ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 21 ", ABS( ierr ) ) ! CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 22 ", ABS( ierr ) ) ! END IF cicle = cicle + 1 first = ONE END DO END IF END DO IF( myrow >= mycol ) THEN CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_comm_free 25 ", ABS( ierr ) ) END IF DEALLOCATE(B) DEALLOCATE(C) DEALLOCATE(BUF_RECV) #else CALL compute_ztrtri() #endif CONTAINS SUBROUTINE compute_ztrtri() ! ! clear the upper triangle (excluding diagonal terms) and ! DO j = 1, ldx DO i = 1, j-1 sll ( i, j ) = zero END DO END DO ! CALL ztrtri( 'L', 'N', nr, sll, ldx, info ) ! IF( info /= 0 ) THEN CALL errore( ' pztrtri ', ' problem in the local inversion ', info ) END IF ! END SUBROUTINE compute_ztrtri INTEGER FUNCTION shift ( idref, id, pos, size, dir ) IMPLICIT NONE INTEGER :: idref, id, pos, size CHARACTER ( LEN = 1 ) :: dir IF( ( dir == 'E' ) .OR. ( dir == 'S' ) ) THEN shift = idref + MOD ( ( id - idref ) + pos, size ) ELSE IF( ( dir == 'W' ) .OR. ( dir == 'N' ) ) THEN shift = idref + MOD ( ( id - idref ) - pos + size, size ) ELSE shift = -1 END IF RETURN END FUNCTION shift END SUBROUTINE qe_pztrtri ! now the Double Precision subroutine SUBROUTINE qe_pdtrtri ( sll, ldx, n, desc ) ! pztrtri computes the parallel inversion of a lower triangular matrix ! distribuited among the processes using a 2-D block partitioning. ! The algorithm is based on the schema below and executes the model ! recursively to each column C2 under the diagonal. ! ! |-------|-------| |--------------------|--------------------| ! | A1 | 0 | | C1 = trtri(A1) | 0 | ! A = |-------|-------| C = |--------------------|--------------------| ! | A2 | A3 | | C2 = -C3 * A2 * C1 | C3 = trtri(A3) | ! |-------|-------| |--------------------|--------------------| ! ! The recursive steps of multiplication (C2 = -C3 * A2 * C1) is based on the Cannon's algorithms ! for parallel matrix multiplication and is done with BLACS(dgemm) ! ! ! Arguments ! ============ ! ! sll = local block of data ! ldx = leading dimension of one block ! n = size of the global array diributed among the blocks ! desc = descriptor of the matrix distribution ! ! ! written by Ivan Girotto ! USE kinds USE parallel_include USE descriptors IMPLICIT NONE INTEGER, INTENT( IN ) :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP), INTENT( INOUT ) :: sll( ldx, ldx ) REAL(DP), PARAMETER :: ONE = 1.0_DP REAL(DP), PARAMETER :: ZERO = 0.0_DP #if defined __MPI INTEGER :: status(MPI_STATUS_SIZE) #endif INTEGER :: req(2), ierr, col_comm INTEGER :: send, recv, group_rank, group_size INTEGER :: myrow, mycol, np, myid, comm ! counters INTEGER :: k, i, j, count, step_count, shiftcount, cicle INTEGER :: C3dim ! Dimension of submatrix B INTEGER :: nc, nr ! Local dimension of block INTEGER :: info, sup_recv INTEGER :: idrowref, idcolref, idref, idrecv ! B and BUF_RECV are used to overload the computation of matrix multiplication and the shift of the blocks REAL(DP), ALLOCATABLE, DIMENSION( :, : ) :: B, C, BUF_RECV REAL(DP) :: first myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr comm = desc%comm IF( desc%npr /= desc%npc ) THEN CALL errore( ' pdtrtri ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pdtrtri ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ! clear elements outside local meaningful block nr*nc DO j = nc+1, ldx DO i = 1, ldx sll( i, j ) = zero END DO END DO DO j = 1, ldx DO i = nr+1, ldx sll( i, j ) = zero END DO END DO #if defined __MPI ALLOCATE( B( ldx, ldx ) ) ALLOCATE( C( ldx, ldx ) ) ALLOCATE( BUF_RECV ( ldx, ldx ) ) IF( np == 2 ) THEN ! ! special case with 4 proc, 2x2 grid ! IF( myrow == mycol ) THEN CALL compute_dtrtri() END IF ! CALL GRID2D_RANK( 'R', np, np, 1, 0, idref ) ! IF( myrow == 0 .AND. mycol == 0 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_PRECISION, idref, 0, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Send 1 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 1 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_PRECISION, idref, 1, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Send 2 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 0 ) THEN ! CALL GRID2D_RANK( 'R', np, np, 0, 0, i ) CALL GRID2D_RANK( 'R', np, np, 1, 1, j ) ! CALL MPI_Irecv( B, ldx*ldx, MPI_DOUBLE_PRECISION, i, 0, comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 3 ", ABS( ierr ) ) ! CALL MPI_Irecv( C, ldx*ldx, MPI_DOUBLE_PRECISION, j, 1, comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 4 ", ABS( ierr ) ) ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 5 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, ONE, sll, ldx, b, ldx, ZERO, buf_recv, ldx) ! CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 6 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, -ONE, c, ldx, buf_recv, ldx, ZERO, sll, ldx) ! END IF ! IF( myrow == 0 .AND. mycol == 1 ) THEN ! sll = zero ! END IF ! DEALLOCATE( b, c, buf_recv ) ! RETURN ! END IF IF( myrow >= mycol ) THEN ! ! only procs on lower triangle partecipates ! CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_split 9 ", ABS( ierr ) ) CALL MPI_Comm_size( col_comm, group_size, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_size 10 ", ABS( ierr ) ) CALL MPI_Comm_rank( col_comm, group_rank, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_rank 11 ", ABS( ierr ) ) ! ELSE ! ! other procs stay at the window! ! CALL MPI_Comm_split( comm, MPI_UNDEFINED, MPI_UNDEFINED, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_split 12 ", ABS( ierr ) ) ! sll = zero ! END IF ! ! Compute the inverse of a lower triangular ! along the diagonal of the global array with BLAS(ztrtri) ! IF( mycol == myrow ) THEN ! CALL compute_dtrtri() ! ELSE IF( myrow > mycol ) THEN ! buf_recv = sll ! END IF IF( myrow >= mycol ) THEN ! ! Broadcast the diagonal blocks to the processors under the diagonal ! CALL MPI_Bcast( sll, ldx*ldx, MPI_DOUBLE_PRECISION, 0, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Bcast 13 ", ABS( ierr ) ) ! END IF ! Compute A2 * C1 and start the Cannon's algorithm shifting the blocks of column one place to the North ! IF( myrow > mycol ) THEN ! CALL dgemm( 'N', 'N', ldx, ldx, ldx, ONE, buf_recv, ldx, sll, ldx, ZERO, c, ldx ) ! send = shift( 1, group_rank, 1, ( group_size - 1 ), 'N' ) recv = shift( 1, group_rank, 1, ( group_size - 1 ), 'S' ) ! CALL MPI_Sendrecv( c, ldx*ldx, MPI_DOUBLE_PRECISION, send, 0, buf_recv, & ldx*ldx, MPI_DOUBLE_PRECISION, recv, 0, col_comm, status, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Sendrecv 14 ", ABS( ierr ) ) ! END IF ! Execute the Cannon's algorithm to compute ricorsively the multiplication of C2 = -C3 * A2 * C1 ! DO count = ( np - 2 ), 0, -1 C3dim = (np-1) - count ! Dimension of the submatrix C3 first = ZERO cicle = 0 IF( ( myrow > count ) .AND. ( mycol >= count ) ) THEN idcolref = count + 1 idrowref = myrow CALL GRID2D_RANK( 'R', np, np, idrowref, idcolref, idref ) idrecv = idref - 1 ! Compute C2 = -C3 * A2 * C1 DO shiftcount = count, np-2 IF(mycol>count)THEN ! Execute the virtual shift of the matrix C3 along the row in order to know which processor ! have to send the block to C2 IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, myid, myrow-count, C3dim, 'W') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, send, 1, C3dim, 'E') END IF IF(send==idref)THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_PRECISION, idrecv, myid, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Send 15 ", ABS( ierr ) ) END IF ELSE IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, myid+1, myrow-count, C3dim, 'E') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, sup_recv, 1, C3dim, 'W') END IF CALL MPI_Recv(C, ldx*ldx, MPI_DOUBLE_PRECISION, sup_recv, sup_recv, comm, status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Recv 16 ", ABS( ierr ) ) send = shift(1, group_rank, 1, (group_size-1), 'S') recv = shift(1, group_rank, 1, (group_size-1), 'N') ! with the no-blocking communication the computation and the shift of the column block are overapped IF( MOD( cicle, 2 ) == 0 ) THEN ! CALL MPI_Isend(BUF_RECV, ldx*ldx, MPI_DOUBLE_PRECISION, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Isend 17 ", ABS( ierr ) ) CALL MPI_Irecv(B, ldx*ldx, MPI_DOUBLE_PRECISION, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 18 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, BUF_RECV, ldx, first, sll, ldx) ! ELSE ! CALL MPI_Isend(B, ldx*ldx, MPI_DOUBLE_PRECISION, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Isend 19 ", ABS( ierr ) ) CALL MPI_Irecv(BUF_RECV, ldx*ldx, MPI_DOUBLE_PRECISION, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 20 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, B, ldx, ONE, sll, ldx) ! END IF ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 21 ", ABS( ierr ) ) CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 22 ", ABS( ierr ) ) ! END IF cicle = cicle + 1 first = ONE END DO END IF END DO IF( myrow >= mycol ) THEN CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in mpi_comm_free 25 ", ABS( ierr ) ) END IF DEALLOCATE(B) DEALLOCATE(C) DEALLOCATE(BUF_RECV) #else CALL compute_dtrtri() #endif CONTAINS SUBROUTINE compute_dtrtri() ! ! clear the upper triangle (excluding diagonal terms) and ! DO j = 1, ldx DO i = 1, j-1 sll ( i, j ) = zero END DO END DO ! CALL dtrtri( 'L', 'N', nr, sll, ldx, info ) ! IF( info /= 0 ) THEN CALL errore( ' pdtrtri ', ' problem in the local inversion ', info ) END IF ! END SUBROUTINE compute_dtrtri INTEGER FUNCTION shift ( idref, id, pos, size, dir ) IMPLICIT NONE INTEGER :: idref, id, pos, size CHARACTER ( LEN = 1 ) :: dir IF( ( dir == 'E' ) .OR. ( dir == 'S' ) ) THEN shift = idref + MOD ( ( id - idref ) + pos, size ) ELSE IF( ( dir == 'W' ) .OR. ( dir == 'N' ) ) THEN shift = idref + MOD ( ( id - idref ) - pos + size, size ) ELSE shift = -1 END IF RETURN END FUNCTION shift END SUBROUTINE qe_pdtrtri SUBROUTINE qe_pdsyevd( tv, n, desc, hh, ldh, e ) USE kinds USE descriptors USE dspev_module, ONLY : pdspev_drv IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: n, ldh ! n = matrix size, ldh = leading dimension of hh TYPE(la_descriptor), INTENT(IN) :: desc ! desc = descrittore della matrice REAL(DP) :: hh( ldh, ldh ) ! input: hh = matrix to be diagonalized REAL(DP) :: e( n ) ! output: hh = eigenvectors, e = eigenvalues INTEGER :: nrlx, nrl REAL(DP), ALLOCATABLE :: diag(:,:), vv(:,:) CHARACTER :: jobv nrl = desc%nrl nrlx = desc%nrlx ALLOCATE( diag( nrlx, n ) ) ALLOCATE( vv( nrlx, n ) ) jobv = 'N' IF( tv ) jobv = 'V' ! ! Redistribute matrix "hh" into "diag", ! matrix "hh" is block distributed, matrix diag is cyclic distributed CALL blk2cyc_redist( n, diag, nrlx, n, hh, ldh, ldh, desc ) ! CALL pdspev_drv( jobv, diag, nrlx, e, vv, nrlx, nrl, n, & desc%npc * desc%npr, desc%mype, desc%comm ) ! IF( tv ) CALL cyc2blk_redist( n, vv, nrlx, n, hh, ldh, ldh, desc ) ! DEALLOCATE( vv ) DEALLOCATE( diag ) RETURN END SUBROUTINE SUBROUTINE qe_pzheevd( tv, n, desc, hh, ldh, e ) USE kinds USE descriptors USE zhpev_module, ONLY : pzhpev_drv IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: n, ldh ! n = matrix size, ldh = leading dimension of hh TYPE(la_descriptor), INTENT(IN) :: desc ! desc = descrittore della matrice COMPLEX(DP) :: hh( ldh, ldh ) ! input: hh = matrix to be diagonalized REAL(DP) :: e( n ) ! output: hh = eigenvectors, e = eigenvalues INTEGER :: nrlx, nrl COMPLEX(DP), ALLOCATABLE :: diag(:,:), vv(:,:) CHARACTER :: jobv nrl = desc%nrl nrlx = desc%nrlx ! ALLOCATE( diag( nrlx, n ) ) ALLOCATE( vv( nrlx, n ) ) ! jobv = 'N' IF( tv ) jobv = 'V' CALL blk2cyc_zredist( n, diag, nrlx, n, hh, ldh, ldh, desc ) ! CALL pzhpev_drv( jobv, diag, nrlx, e, vv, nrlx, nrl, n, & desc%npc * desc%npr, desc%mype, desc%comm ) ! if( tv ) CALL cyc2blk_zredist( n, vv, nrlx, n, hh, ldh, ldh, desc ) ! DEALLOCATE( vv ) DEALLOCATE( diag ) RETURN END SUBROUTINE SUBROUTINE sqr_dsetmat( what, n, alpha, a, lda, desc ) ! ! Set the values of a square distributed matrix ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: what ! what = 'A' set all the values of "a" equal to alpha ! what = 'U' set the values in the upper triangle of "a" equal to alpha ! what = 'L' set the values in the lower triangle of "a" equal to alpha ! what = 'D' set the values in the diagonal of "a" equal to alpha INTEGER, INTENT(IN) :: n ! dimension of the matrix REAL(DP), INTENT(IN) :: alpha ! value to be assigned to elements of "a" INTEGER, INTENT(IN) :: lda ! leading dimension of a REAL(DP) :: a(lda,*) ! matrix whose values have to be set TYPE(la_descriptor), INTENT(IN) :: desc ! descriptor of matrix a INTEGER :: i, j IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF SELECT CASE( what ) CASE( 'U', 'u' ) IF( desc%myc > desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = 1, j - 1 a( i, j ) = alpha END DO END DO END IF CASE( 'L', 'l' ) IF( desc%myc < desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = j - 1, desc%nr a( i, j ) = alpha END DO END DO END IF CASE( 'D', 'd' ) IF( desc%myc == desc%myr ) THEN DO i = 1, desc%nr a( i, i ) = alpha END DO END IF CASE DEFAULT DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO END SELECT ! RETURN END SUBROUTINE sqr_dsetmat SUBROUTINE sqr_zsetmat( what, n, alpha, a, lda, desc ) ! ! Set the values of a square distributed matrix ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: what ! what = 'A' set all the values of "a" equal to alpha ! what = 'U' set the values in the upper triangle of "a" equal to alpha ! what = 'L' set the values in the lower triangle of "a" equal to alpha ! what = 'D' set the values in the diagonal of "a" equal to alpha ! what = 'H' clear the imaginary part of the diagonal of "a" INTEGER, INTENT(IN) :: n ! dimension of the matrix COMPLEX(DP), INTENT(IN) :: alpha ! value to be assigned to elements of "a" INTEGER, INTENT(IN) :: lda ! leading dimension of a COMPLEX(DP) :: a(lda,*) ! matrix whose values have to be set TYPE(la_descriptor), INTENT(IN) :: desc ! descriptor of matrix a INTEGER :: i, j IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF SELECT CASE( what ) CASE( 'U', 'u' ) IF( desc%myc > desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = 1, j - 1 a( i, j ) = alpha END DO END DO END IF CASE( 'L', 'l' ) IF( desc%myc < desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = j - 1, desc%nr a( i, j ) = alpha END DO END DO END IF CASE( 'D', 'd' ) IF( desc%myc == desc%myr ) THEN DO i = 1, desc%nr a( i, i ) = alpha END DO END IF CASE( 'H', 'h' ) IF( desc%myc == desc%myr ) THEN DO i = 1, desc%nr a( i, i ) = CMPLX( DBLE( a(i,i) ), 0_DP, KIND=DP ) END DO END IF CASE DEFAULT DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO END SELECT ! RETURN END SUBROUTINE sqr_zsetmat espresso-5.0.2/Modules/ions_base.f900000644000700200004540000006353612053145633016271 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE ions_base !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE parameters, ONLY : ntypx ! IMPLICIT NONE SAVE ! nsp = number of species ! na(is) = number of atoms of species is ! nax = max number of atoms of a given species ! nat = total number of atoms of all species INTEGER :: nsp = 0 INTEGER :: na(ntypx) = 0 INTEGER :: nax = 0 INTEGER :: nat = 0 ! zv(is) = (pseudo-)atomic charge ! amass(is) = mass of ions, in atomic mass units ! rcmax(is) = Ewald radius (for ion-ion interactions) REAL(DP) :: zv(ntypx) = 0.0_DP REAL(DP) :: amass(ntypx) = 0.0_DP REAL(DP) :: rcmax(ntypx) = 0.0_DP ! ityp( i ) = the type of i-th atom in stdin ! atm( j ) = name of the type of the j-th atomic specie ! tau( 1:3, i ) = position of the i-th atom INTEGER, ALLOCATABLE :: ityp(:) REAL(DP), ALLOCATABLE :: tau(:,:) ! initial positions read from stdin (in bohr) REAL(DP), ALLOCATABLE :: vel(:,:) ! initial velocities read from stdin (in bohr) REAL(DP), ALLOCATABLE :: tau_srt(:,:) ! tau sorted by specie in bohr REAL(DP), ALLOCATABLE :: vel_srt(:,:) ! vel sorted by specie in bohr INTEGER, ALLOCATABLE :: ind_srt(:) ! index of tau sorted by specie INTEGER, ALLOCATABLE :: ind_bck(:) ! reverse of ind_srt CHARACTER(LEN=3) :: atm( ntypx ) CHARACTER(LEN=3), ALLOCATABLE :: label_srt( : ) CHARACTER(LEN=80) :: tau_format ! format of input atomic positions: ! 'alat','crystal','bohr','angstrom' ! if_pos( x, i ) = 0 : x coordinate of i-th atom will be kept fixed INTEGER, ALLOCATABLE :: if_pos(:,:) ! allowed values: 0 or 1 only INTEGER, ALLOCATABLE :: iforce(:,:) ! if_pos sorted by specie INTEGER :: fixatom = 0 ! number of frozen atoms INTEGER :: ndofp =-1 ! ionic degree of freedom INTEGER :: ndfrz = 0 ! frozen degrees of freedom REAL(DP) :: fricp ! friction parameter for damped dynamics REAL(DP) :: greasp ! friction parameter for damped dynamics ! ... taui = real ionic positions in the center of mass reference ! ... system at istep = 0 ! ... this array is used to compute mean square displacements, ! ... it is initialized when NBEG = -1, NBEG = 0 and TAURDR = .TRUE. ! ... first index: x,y,z, second index: atom sorted by specie with respect input ! ... this array is saved in the restart file REAL(DP), ALLOCATABLE :: taui(:,:) ! ... cdmi = center of mass reference system (related to the taui) ! ... this vector is computed when NBEG = -1, NBEG = 0 and TAURDR = .TRUE. ! ... this array is saved in the restart file REAL(DP) :: cdmi(3), cdm(3) ! ... cdms = center of mass computed for scaled positions (taus) REAL(DP) :: cdms(3) ! REAL(DP), ALLOCATABLE :: extfor(:,:) ! external forces on atoms LOGICAL :: tions_base_init = .FALSE. LOGICAL, PRIVATE :: tdebug = .FALSE. INTERFACE ions_vel MODULE PROCEDURE ions_vel3, ions_vel2 END INTERFACE !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! SUBROUTINE sort_tau( tausrt, isrt, tau, isp, nat, nsp ) IMPLICIT NONE REAL(DP), INTENT(OUT) :: tausrt( :, : ) INTEGER, INTENT(OUT) :: isrt( : ) REAL(DP), INTENT(IN) :: tau( :, : ) INTEGER, INTENT(IN) :: nat, nsp, isp( : ) INTEGER :: ina( nsp ), na( nsp ) INTEGER :: is, ia ! ... count the atoms for each specie na = 0 DO ia = 1, nat is = isp( ia ) IF( is < 1 .OR. is > nsp ) & CALL errore(' sorttau ', ' wrong species index for positions ', ia ) na( is ) = na( is ) + 1 END DO IF ( ANY ( na(1:nsp) == 0 ) ) & CALL errore ('sort_atoms', 'some atomic species have no atoms',1) ! ... compute the index of the first atom in each specie ina( 1 ) = 0 DO is = 2, nsp ina( is ) = ina( is - 1 ) + na( is - 1 ) END DO ! ... sort the position according to atomic specie na = 0 DO ia = 1, nat is = isp( ia ) na( is ) = na( is ) + 1 tausrt( :, na(is) + ina(is) ) = tau(:, ia ) isrt ( na(is) + ina(is) ) = ia END DO RETURN END SUBROUTINE sort_tau !------------------------------------------------------------------------------! SUBROUTINE unsort_tau( tau, tausrt, isrt, nat ) IMPLICIT NONE REAL(DP), INTENT(IN) :: tausrt( :, : ) INTEGER, INTENT(IN) :: isrt( : ) REAL(DP), INTENT(OUT) :: tau( :, : ) INTEGER, INTENT(IN) :: nat INTEGER :: isa, ia DO isa = 1, nat ia = isrt( isa ) tau( :, ia ) = tausrt( :, isa ) END DO RETURN END SUBROUTINE unsort_tau !------------------------------------------------------------------------- SUBROUTINE ions_base_init( nsp_, nat_, na_, ityp_, tau_, vel_, amass_,& atm_, if_pos_, tau_format_, alat_, at_, & rcmax_ , extfor_ ) !------------------------------------------------------------------------- ! USE constants, ONLY: amu_au, bohr_radius_angs USE io_global, ONLY: stdout ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nsp_, nat_, na_(:), ityp_(:) REAL(DP), INTENT(IN) :: tau_(:,:) REAL(DP), INTENT(IN) :: vel_(:,:) REAL(DP), INTENT(IN) :: amass_(:) CHARACTER(LEN=*), INTENT(IN) :: atm_(:) CHARACTER(LEN=*), INTENT(IN) :: tau_format_ INTEGER, INTENT(IN) :: if_pos_(:,:) REAL(DP), INTENT(IN) :: alat_, at_(3,3) REAL(DP), INTENT(IN) :: rcmax_(:) REAL(DP), INTENT(IN) :: extfor_(:,:) ! INTEGER :: i, ia, is ! ! nsp = nsp_ nat = nat_ ! IF ( nat < 1 ) & CALL errore( 'ions_base_init ', 'nax out of range', 1 ) IF ( nsp < 1 ) & CALL errore( 'ions_base_init ', 'nsp out of range', 1 ) IF ( nsp > SIZE( na ) ) & CALL errore( 'ions_base_init ', & & 'nsp too large, increase ntypx parameter ', 1 ) ! na(1:nsp) = na_(1:nsp) nax = MAXVAL( na(1:nsp) ) ! atm(1:nsp) = atm_(1:nsp) tau_format = TRIM( tau_format_ ) ! IF ( nat /= SUM( na(1:nsp) ) ) & CALL errore( 'ions_base_init ','inconsistent nat and na ', 1 ) ! CALL deallocate_ions_base() ! ALLOCATE( ityp( nat ) ) ALLOCATE( tau( 3, nat ) ) ALLOCATE( vel( 3, nat ) ) ALLOCATE( tau_srt( 3, nat ) ) ALLOCATE( vel_srt( 3, nat ) ) ALLOCATE( ind_srt( nat ) ) ALLOCATE( ind_bck( nat ) ) ALLOCATE( if_pos( 3, nat ) ) ALLOCATE( iforce( 3, nat ) ) ALLOCATE( taui( 3, nat ) ) ALLOCATE( label_srt( nat ) ) ALLOCATE( extfor( 3, nat ) ) ! ityp(1:nat) = ityp_(1:nat) vel(:,1:nat) = vel_(:,1:nat) if_pos(:,1:nat) = if_pos_(:,1:nat) ! ! ... radii, masses ! DO is = 1, nsp_ ! rcmax(is) = rcmax_(is) ! IF( rcmax(is) <= 0.0_DP ) & CALL errore( 'ions_base_init ', 'invalid rcmax', is ) ! END DO ! SELECT CASE ( TRIM( tau_format ) ) ! ! ... convert input atomic positions to internally used format: ! ... tau in atomic units ! CASE( 'alat' ) ! ! ... input atomic positions are divided by a0 ! tau(:,1:nat) = tau_(:,1:nat) * alat_ vel(:,1:nat) = vel_(:,1:nat) * alat_ ! CASE( 'bohr' ) ! ! ... input atomic positions are in a.u.: do nothing ! tau(:,1:nat) = tau_(:,1:nat) vel(:,1:nat) = vel_(:,1:nat) ! CASE( 'crystal' ) ! ! ... input atomic positions are in crystal axis ("scaled") ! DO ia = 1, nat ! DO i = 1, 3 ! tau(i,ia) = at_(i,1)*alat_ * tau_(1,ia) + & at_(i,2)*alat_ * tau_(2,ia) + & at_(i,3)*alat_ * tau_(3,ia) ! vel(i,ia) = at_(i,1)*alat_ * vel_(1,ia) + & at_(i,2)*alat_ * vel_(2,ia) + & at_(i,3)*alat_ * vel_(3,ia) END DO ! END DO ! CASE( 'angstrom' ) ! ! ... atomic positions in A ! tau(:,1:nat) = tau_(:,1:nat) / bohr_radius_angs vel(:,1:nat) = vel_(:,1:nat) / bohr_radius_angs ! CASE DEFAULT ! CALL errore( 'ions_base_init',' tau_format = ' // & & TRIM( tau_format ) // ' not implemented ', 1 ) ! END SELECT ! ! ... tau_srt : atomic species are ordered according to ! ... the ATOMIC_SPECIES input card. Within each specie atoms are ordered ! ... according to the ATOMIC_POSITIONS input card. ! ... ind_srt : can be used to restore the original position ! CALL sort_tau( tau_srt, ind_srt, tau, ityp, nat, nsp ) ! vel_srt(:,:) = vel(:,ind_srt(:)) ! DO ia = 1, nat ! label_srt( ia ) = atm( ityp( ind_srt( ia ) ) ) ! END DO ! ! ... generate ind_bck from ind_srt (reverse sort list) ! DO ia = 1, nat ! ind_bck(ind_srt(ia)) = ia ! END DO ! DO ia = 1, nat ! extfor( :, ia ) = extfor_( :, ind_srt( ia ) ) ! END DO ! IF( tdebug ) THEN WRITE( stdout, * ) 'ions_base_init: unsorted position and velocities' DO ia = 1, nat WRITE( stdout, fmt="(A3,3D12.4,3X,3D12.4)") & atm( ityp( ia ) ), tau(1:3, ia), vel(1:3,ia) END DO WRITE( stdout, * ) 'ions_base_init: sorted position and velocities' DO ia = 1, nat WRITE( stdout, fmt="(A3,3D12.4,3X,3D12.4)") & atm( ityp( ind_srt( ia ) ) ), tau_srt(1:3, ia), vel_srt(1:3,ia) END DO END IF ! ! ... The constrain on fixed coordinates is implemented using the array ! ... if_pos whose value is 0 when the coordinate is to be kept fixed, 1 ! ... otherwise. ! if_pos = 1 if_pos(:,:) = if_pos_(:,1:nat) ! iforce = 0 iforce(:,:) = if_pos(:,ind_srt(:)) ! fixatom=COUNT( if_pos(1,:)==0 .AND. if_pos(2,:)==0 .AND. if_pos(3,:)==0 ) ndofp = COUNT( iforce == 1 ) ndfrz = 3*nat - ndofp ! amass(1:nsp) = amass_(1:nsp) ! IF ( ANY( amass(1:nsp) <= 0.0_DP ) ) & CALL errore( 'ions_base_init ', 'invalid mass', 1 ) ! CALL ions_cofmass( tau_srt, amass, na, nsp, cdmi ) ! DO ia = 1, nat ! taui(1:3,ia) = tau_srt(1:3,ia) - cdmi(1:3) ! END DO ! tions_base_init = .TRUE. ! RETURN ! END SUBROUTINE ions_base_init ! !------------------------------------------------------------------------- SUBROUTINE deallocate_ions_base() !------------------------------------------------------------------------- ! IMPLICIT NONE ! IF ( ALLOCATED( ityp ) ) DEALLOCATE( ityp ) IF ( ALLOCATED( tau ) ) DEALLOCATE( tau ) IF ( ALLOCATED( vel ) ) DEALLOCATE( vel ) IF ( ALLOCATED( tau_srt ) ) DEALLOCATE( tau_srt ) IF ( ALLOCATED( vel_srt ) ) DEALLOCATE( vel_srt ) IF ( ALLOCATED( ind_srt ) ) DEALLOCATE( ind_srt ) IF ( ALLOCATED( ind_bck ) ) DEALLOCATE( ind_bck ) IF ( ALLOCATED( if_pos ) ) DEALLOCATE( if_pos ) IF ( ALLOCATED( iforce ) ) DEALLOCATE( iforce ) IF ( ALLOCATED( taui ) ) DEALLOCATE( taui ) IF ( ALLOCATED( label_srt ) ) DEALLOCATE( label_srt ) IF ( ALLOCATED( extfor ) ) DEALLOCATE( extfor ) ! tions_base_init = .FALSE. ! RETURN ! END SUBROUTINE deallocate_ions_base ! !------------------------------------------------------------------------- SUBROUTINE ions_vel3( vel, taup, taum, na, nsp, dt ) !------------------------------------------------------------------------- USE constants, ONLY : eps8 IMPLICIT NONE REAL(DP) :: vel(:,:), taup(:,:), taum(:,:) INTEGER :: na(:), nsp REAL(DP) :: dt INTEGER :: ia, is, i, isa REAL(DP) :: fac IF( dt < eps8 ) & CALL errore( ' ions_vel3 ', ' dt <= 0 ', 1 ) fac = 1.0_DP / ( dt * 2.0_DP ) isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO i = 1, 3 vel(i,isa) = ( taup(i,isa) - taum(i,isa) ) * fac END DO END DO END DO RETURN END SUBROUTINE ions_vel3 !------------------------------------------------------------------------------! SUBROUTINE ions_vel2( vel, taup, taum, nat, dt ) USE constants, ONLY : eps8 IMPLICIT NONE REAL(DP) :: vel(:,:), taup(:,:), taum(:,:) INTEGER :: nat REAL(DP) :: dt INTEGER :: ia, i REAL(DP) :: fac IF( dt < eps8 ) & CALL errore( ' ions_vel3 ', ' dt <= 0 ', 1 ) fac = 1.0_DP / ( dt * 2.0_DP ) DO ia = 1, nat DO i = 1, 3 vel(i,ia) = ( taup(i,ia) - taum(i,ia) ) * fac END DO END DO RETURN END SUBROUTINE ions_vel2 !------------------------------------------------------------------------------! SUBROUTINE ions_cofmass( tau, pmass, na, nsp, cdm ) USE constants, ONLY : eps8 IMPLICIT NONE REAL(DP), INTENT(IN) :: tau(:,:), pmass(:) REAL(DP), INTENT(OUT) :: cdm(3) INTEGER, INTENT(IN) :: na(:), nsp REAL(DP) :: tmas INTEGER :: is, i, ia, isa ! tmas=0.0_DP do is=1,nsp tmas=tmas+na(is)*pmass(is) end do if( tmas < eps8 ) & call errore(' ions_cofmass ', ' total mass <= 0 ', 1 ) ! do i=1,3 cdm(i)=0.0_DP isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 cdm(i)=cdm(i)+tau(i,isa)*pmass(is) end do end do cdm(i)=cdm(i)/tmas end do ! RETURN END SUBROUTINE ions_cofmass !------------------------------------------------------------------------------! SUBROUTINE randpos(tau, na, nsp, tranp, amprp, hinv, ifor ) USE cell_base, ONLY: r_to_s USE io_global, ONLY: stdout USE random_numbers, ONLY: randy IMPLICIT NONE REAL(DP) :: hinv(3,3) REAL(DP) :: tau(:,:) INTEGER, INTENT(IN) :: ifor(:,:), na(:), nsp LOGICAL, INTENT(IN) :: tranp(:) REAL(DP), INTENT(IN) :: amprp(:) REAL(DP) :: oldp(3), rand_disp(3), rdisp(3) INTEGER :: k, is, isa, isa_s, isa_e, isat WRITE( stdout, 600 ) isat = 0 DO is = 1, nsp isa_s = isat + 1 isa_e = isat + na(is) IF( tranp(is) ) THEN WRITE( stdout,610) is, na(is) WRITE( stdout,615) DO isa = isa_s, isa_e oldp = tau(:,isa) rand_disp(1) = randy () rand_disp(2) = randy () rand_disp(3) = randy () rand_disp = amprp(is) * ( rand_disp - 0.5_DP ) rdisp = rand_disp CALL r_to_s( rdisp(:), rand_disp(:), hinv ) DO k = 1, 3 tau(k,isa) = tau(k,isa) + rand_disp(k) * ifor(k,isa) END DO WRITE( stdout,620) (oldp(k),k=1,3), (tau(k,isa),k=1,3) END DO END IF isat = isat + na(is) END DO 600 FORMAT(//,3X,'Randomization of SCALED ionic coordinates') 610 FORMAT( 3X,'Species ',I3,' atoms = ',I4) 615 FORMAT( 3X,' Old Positions New Positions') 620 FORMAT( 3X,3F10.6,2X,3F10.6) RETURN END SUBROUTINE randpos !------------------------------------------------------------------------------! SUBROUTINE ions_kinene( ekinp, vels, na, nsp, h, pmass ) IMPLICIT NONE REAL(DP), intent(out) :: ekinp ! ionic kinetic energy REAL(DP), intent(in) :: vels(:,:) ! scaled ionic velocities REAL(DP), intent(in) :: pmass(:) ! ionic masses REAL(DP), intent(in) :: h(:,:) ! simulation cell integer, intent(in) :: na(:), nsp integer :: i, j, is, ia, ii, isa ekinp = 0.0_DP isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 do j=1,3 do i=1,3 do ii=1,3 ekinp=ekinp+pmass(is)* h(j,i)*vels(i,isa)* h(j,ii)*vels(ii,isa) end do end do end do end do end do ekinp=0.5_DP*ekinp return END SUBROUTINE ions_kinene !------------------------------------------------------------------------------! subroutine ions_temp( tempp, temps, ekinpr, vels, na, nsp, h, pmass, ndega, nhpdim, atm2nhp, ekin2nhp ) ! use constants, only: k_boltzmann_au ! implicit none ! REAL(DP), intent(out) :: ekinpr, tempp REAL(DP), intent(out) :: temps(:) REAL(DP), intent(out) :: ekin2nhp(:) REAL(DP), intent(in) :: vels(:,:) REAL(DP), intent(in) :: pmass(:) REAL(DP), intent(in) :: h(:,:) integer, intent(in) :: na(:), nsp, ndega, nhpdim, atm2nhp(:) ! integer :: nat, i, j, is, ia, ii, isa REAL(DP) :: cdmvel(3), eks, eks1 ! call ions_cofmass( vels, pmass, na, nsp, cdmvel ) ! nat = SUM( na(1:nsp) ) ! ekinpr = 0.0_DP temps( 1:nsp ) = 0.0_DP ekin2nhp(1:nhpdim) = 0.0_DP ! do i=1,3 do j=1,3 do ii=1,3 isa = 0 do is=1,nsp eks = 0.0_DP do ia=1,na(is) isa = isa + 1 eks1 = pmass(is)*h(j,i)*(vels(i,isa)-cdmvel(i))*h(j,ii)*(vels(ii,isa)-cdmvel(ii)) eks=eks+eks1 ekin2nhp(atm2nhp(isa)) = ekin2nhp(atm2nhp(isa)) + eks1 end do ekinpr = ekinpr + eks temps(is) = temps(is) + eks end do end do end do end do ! do is = 1, nhpdim ekin2nhp(is) = ekin2nhp(is) * 0.5_DP enddo ! ! do is = 1, nsp if( na(is) < 1 ) call errore(' ions_temp ', ' 0 number of atoms ', 1 ) temps( is ) = temps( is ) * 0.5_DP temps( is ) = temps( is ) / k_boltzmann_au / ( 1.5_DP * na(is) ) end do ! ekinpr = 0.5_DP * ekinpr ! IF( ndega < 1 ) THEN tempp = 0.0_DP ELSE tempp = ekinpr / k_boltzmann_au * 2.0_DP / DBLE( ndega ) END IF ! return end subroutine ions_temp !------------------------------------------------------------------------------! subroutine ions_thermal_stress( stress, pmass, omega, h, vels, nsp, na ) USE constants, ONLY : eps8 REAL(DP), intent(inout) :: stress(3,3) REAL(DP), intent(in) :: pmass(:), omega, h(3,3), vels(:,:) integer, intent(in) :: nsp, na(:) integer :: i, j, is, ia, isa isa = 0 if( omega < eps8 ) call errore(' ions_thermal_stress ', ' omega <= 0 ', 1 ) do is = 1, nsp do ia = 1, na(is) isa = isa + 1 do i = 1, 3 do j = 1, 3 stress(i,j) = stress(i,j) + pmass(is) / omega * & & ( (h(i,1)*vels(1,isa)+h(i,2)*vels(2,isa)+h(i,3)*vels(3,isa)) * & (h(j,1)*vels(1,isa)+h(j,2)*vels(2,isa)+h(j,3)*vels(3,isa)) ) enddo enddo enddo enddo return end subroutine ions_thermal_stress !------------------------------------------------------------------------------! subroutine ions_vrescal( tcap, tempw, tempp, taup, tau0, taum, na, nsp, fion, iforce, & pmass, delt ) use constants, only: pi, k_boltzmann_au, eps8 USE random_numbers, ONLY : randy implicit none logical, intent(in) :: tcap REAL(DP), intent(inout) :: taup(:,:) REAL(DP), intent(in) :: tau0(:,:), taum(:,:), fion(:,:) REAL(DP), intent(in) :: delt, pmass(:), tempw, tempp integer, intent(in) :: na(:), nsp integer, intent(in) :: iforce(:,:) REAL(DP) :: alfap, qr(3), alfar, gausp REAL(DP) :: dt2by2 integer :: i, ia, is, nat, isa dt2by2 = 0.5_DP * delt * delt gausp = delt * sqrt( tempw * k_boltzmann_au ) nat = SUM( na( 1:nsp ) ) if(.not.tcap) then if( tempp < eps8 ) call errore(' ions_vrescal ', ' tempp <= 0 ', 1 ) alfap = 0.5_DP * sqrt(tempw/tempp) isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 do i=1,3 taup(i,isa) = tau0(i,isa) + & & alfap*(taup(i,isa)-taum(i,isa)) + & & dt2by2/pmass(is)*fion(i,isa)*iforce(i,isa) end do end do end do else do i=1,3 qr(i)=0.0_DP isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 alfar=gausp/sqrt(pmass(is))*cos(2.0_DP*pi*randy())*sqrt(-2.0_DP*log(randy())) taup(i,isa)=alfar qr(i)=qr(i)+alfar end do end do qr(i)=qr(i)/nat end do isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 do i=1,3 alfar=taup(i,isa)-qr(i) taup(i,isa)=tau0(i,isa)+iforce(i,isa)* & & (alfar+dt2by2/pmass(is)*fion(i,isa)) end do end do end do end if return end subroutine ions_vrescal !------------------------------------------------------------------------------! subroutine ions_shiftvar( varp, var0, varm ) implicit none REAL(DP), intent(in) :: varp(:,:) REAL(DP), intent(out) :: varm(:,:), var0(:,:) varm = var0 var0 = varp return end subroutine ions_shiftvar !------------------------------------------------------------------------------! SUBROUTINE ions_reference_positions( tau ) ! Calculate the real position of atoms relative to the center of mass (cdm) ! and store them in taui ! cdmi: initial position of the center of mass (cdm) in cartesian coor. IMPLICIT NONE REAL(DP) :: tau( :, : ) INTEGER :: isa CALL ions_cofmass( tau, amass, na, nsp, cdmi ) DO isa = 1, nat taui(:,isa) = tau(:,isa) - cdmi(:) END DO RETURN END SUBROUTINE ions_reference_positions !------------------------------------------------------------------------------! SUBROUTINE ions_displacement( dis, tau ) ! Calculate the sum of the quadratic displacements of the atoms in the ref. ! of cdm respect to the initial positions. ! taui: initial positions in real units in the ref. of cdm ! ---------------------------------------------- ! att! tau_ref: starting position in center-of-mass ref. in real units ! ---------------------------------------------- IMPLICIT NONE REAL (DP), INTENT(OUT) :: dis(:) REAL (DP), INTENT(IN) :: tau(:,:) REAL(DP) :: rdist(3), r2, cdm(3) INTEGER :: is, ia, isa ! ... Compute the current value of cdm "Center of Mass" ! CALL ions_cofmass(tau, amass, na, nsp, cdm ) ! IF( SIZE( dis ) < nsp ) & CALL errore(' displacement ',' size of dis too small ', 1) isa = 0 DO is = 1, nsp dis(is) = 0.0_DP r2 = 0.0_DP DO ia = 1, na(is) isa = isa + 1 rdist = tau(:,isa) - cdm r2 = r2 + SUM( ( rdist(:) - taui(:,isa) )**2 ) END DO dis(is) = dis(is) + r2 / DBLE(na(is)) END DO RETURN END SUBROUTINE ions_displacement !-------------------------------------------------------------------------- SUBROUTINE ions_cofmsub( tausp, iforce, nat, cdm, cdm0 ) !-------------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(INOUT) :: tausp(:,:) INTEGER, INTENT(IN) :: iforce(:,:) INTEGER, INTENT(IN) :: nat REAL(DP), INTENT(IN) :: cdm(:), cdm0(:) ! INTEGER :: i, ia ! DO ia = 1, nat ! DO i = 1, 3 ! tausp(i,ia) = tausp(i,ia) + DBLE( iforce(i,ia) ) * ( cdm0(i) - cdm(i) ) ! END DO ! END DO ! RETURN ! END SUBROUTINE ions_cofmsub REAL(DP) FUNCTION compute_eextfor( tau0 ) IMPLICIT NONE REAL(DP), OPTIONAL, INTENT(IN) :: tau0(:,:) INTEGER :: i REAL(DP) :: e compute_eextfor = 0.0d0 e = 0.0d0 IF( PRESENT( tau0 ) ) THEN DO i = 1, SIZE( extfor,2 ) e = e + extfor( 3, i ) * tau0( 3, i ) & + extfor( 2, i ) * tau0( 2, i ) & + extfor( 1, i ) * tau0( 1, i ) END DO ELSE DO i = 1, SIZE( extfor,2 ) e = e + extfor( 3, i ) * tau( 3, i ) & + extfor( 2, i ) * tau( 2, i ) & + extfor( 1, i ) * tau( 1, i ) END DO END IF compute_eextfor = - e RETURN END FUNCTION compute_eextfor !------------------------------------------------------------------------------! END MODULE ions_base !------------------------------------------------------------------------------! espresso-5.0.2/Modules/upf_to_internal.f900000644000700200004540000000471412053145633017510 0ustar marsamoscm! ! Copyright (C) 2004-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This module is USEd, for the time being, as an interface ! between the UPF pseudo type and the pseudo variables internal representation !=----------------------------------------------------------------------------=! MODULE upf_to_internal !=----------------------------------------------------------------------------=! IMPLICIT NONE PRIVATE PUBLIC :: set_pseudo_upf SAVE !=----------------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------------=! ! !--------------------------------------------------------------------- subroutine set_pseudo_upf (is, upf, grid) !--------------------------------------------------------------------- ! ! set "is"-th pseudopotential using the Unified Pseudopotential Format ! "upf" - convert and copy to internal variables ! If "grid" is present, reconstruct radial grid. ! Obsolescent - for old-style PP formats only. ! USE funct, ONLY: set_dft_from_name, set_dft_from_indices ! USE pseudo_types USE radial_grids, ONLY: radial_grid_type, allocate_radial_grid ! implicit none ! INTEGER :: is TYPE (pseudo_upf) :: upf TYPE (radial_grid_type), target, optional :: grid ! ! Local variables ! integer :: iexch,icorr,igcx,igcc ! ! old formats never contain "1/r" pseudopotentials ! upf%tcoulombp = .false. ! ! workaround for rrkj format - it contains the indices, not the name ! if ( upf%dft(1:6)=='INDEX:') then read( upf%dft(7:10), '(4i1)') iexch,icorr,igcx,igcc call set_dft_from_indices(iexch,icorr,igcx,igcc, 0) !Cannot read nonloc in this format else call set_dft_from_name( upf%dft ) end if ! if(present(grid)) then call allocate_radial_grid(grid,upf%mesh) grid%dx = upf%dx grid%xmin = upf%xmin grid%zmesh= upf%zmesh grid%mesh = upf%mesh ! grid%r (1:upf%mesh) = upf%r (1:upf%mesh) grid%rab(1:upf%mesh) = upf%rab(1:upf%mesh) upf%grid => grid endif ! end subroutine set_pseudo_upf !=----------------------------------------------------------------------------=! END MODULE upf_to_internal !=----------------------------------------------------------------------------=! espresso-5.0.2/Modules/dspev_drv.f900000644000700200004540000004637512053145633016325 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE dspev_module IMPLICIT NONE SAVE PRIVATE PUBLIC :: pdspev_drv, dspev_drv #if defined __SCALAPACK PUBLIC :: pdsyevd_drv #endif CONTAINS SUBROUTINE ptredv( tv, a, lda, d, e, v, ldv, nrl, n, nproc, me, comm ) ! ! Parallel version of the famous HOUSEHOLDER tridiagonalization ! Algorithm for simmetric matrix. ! ! AUTHOR : Carlo Cavazzoni - SISSA 1997 ! comments and suggestions to : carlo.cavazzoni@cineca.it ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! ! ! INPUTS : ! ! TV if it is true compute eigrnvectors "v" ! ! A(NRL,N) Local part of the global matrix A(N,N) to be reduced, ! only the upper triangle is needed. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! LDA LEADING DIMENSION OF MATRIX A. ! ! LDV LEADING DIMENSION OF MATRIX V. ! ! NRL NUMBER OF ROWS BELONGING TO THE LOCAL PROCESSOR. ! ! N DIMENSION OF THE GLOBAL MATRIX. ! ! NPROC NUMBER OF PROCESSORS. ! ! ME INDEX OF THE LOCAL PROCESSOR (Starting from 0). ! ! ! OUTPUTS : ! ! V(NRL,N) Orthogonal transformation that tridiagonalize A, ! this matrix is distributed among processor ! in the same way as A. ! ! D(N) Diagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! E(N) Subdiagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! USE kinds, ONLY : DP IMPLICIT NONE LOGICAL, INTENT(IN) :: tv INTEGER, intent(in) :: N, NRL, LDA, LDV INTEGER, intent(in) :: NPROC, ME, comm REAL(DP) :: A(LDA,N), D(N), E(N), V(LDV,N) ! REAL(DP), external ::ddot ! REAL(DP) :: g, scalef, sigma, kappa, f, h, tmp REAL(DP), ALLOCATABLE :: u(:) REAL(DP), ALLOCATABLE :: p(:) REAL(DP), ALLOCATABLE :: vtmp(:) REAL(DP) :: tu, tp, one_over_h REAL(DP) :: one_over_scale REAL(DP) :: redin(3), redout(3) REAL(DP), ALLOCATABLE :: ul(:) REAL(DP), ALLOCATABLE :: pl(:) integer :: l, i, j, k, t, tl, ierr integer :: kl, jl, ks, lloc integer, ALLOCATABLE :: is(:) integer, ALLOCATABLE :: ri(:) ! .......... FOR I=N STEP -1 UNTIL 1 DO -- .......... IF( N == 0 ) THEN RETURN END IF ALLOCATE( u( n+2 ), p( n+1 ), vtmp( n+2 ), ul( n ), pl( n ), is( n ), ri( n ) ) DO I = N, 1, -1 IS(I) = (I-1)/NPROC RI(I) = MOD((I-1),NPROC) ! owner of I-th row IF(ME .le. RI(I) ) then IS(I) = IS(I) + 1 END IF END DO DO I = N, 2, -1 L = I - 1 ! first element H = 0.0_DP IF ( L > 1 ) THEN SCALEF = 0.0_DP DO K = 1, is(l) SCALEF = SCALEF + DABS( A(K,I) ) END DO #if defined __MPI CALL reduce_base_real( 1, scalef, comm, -1 ) #endif IF ( SCALEF .EQ. 0.0_DP ) THEN ! IF (RI(L).EQ.ME) THEN E(I) = A(is(L),I) END IF ! ELSE ! ...... CALCULATION OF SIGMA AND H ONE_OVER_SCALE = 1.0_DP/SCALEF SIGMA = 0.0_DP DO k = 1,is(L) A(k,I) = A(k,I) * ONE_OVER_SCALE SIGMA = SIGMA + A(k,I)**2 END DO IF( ri(l) .eq. me ) THEN F = A( is(l), i ) ELSE F = 0.0_DP END IF ! CONSTRUCTION OF VECTOR U vtmp( 1:l ) = 0.0_DP k = ME + 1 DO kl = 1,is(l) vtmp(k) = A(kl,I) k = k + NPROC END DO DO kl = 1,is(l) UL(kl) = A(kl,I) END DO #if defined __MPI vtmp( l + 1 ) = sigma vtmp( l + 2 ) = f CALL reduce_base_real_to( L + 2, vtmp, u, comm, -1 ) sigma = u( l + 1 ) f = u( l + 2 ) #else u(1:l) = vtmp(1:l) #endif G = -SIGN(SQRT(SIGMA),F) H = SIGMA - F*G ONE_OVER_H = 1.0_DP/H E(I) = SCALEF*G U(L) = F - G IF( RI(L) == ME ) THEN UL(is(l)) = F - G A(is(l),I) = F - G END IF ! CONSTRUCTION OF VECTOR P DO J = 1,L vtmp(j) = 0.0_DP DO KL = 1, IS(J) vtmp(J) = vtmp(J) + A(KL,J) * UL(KL) END DO IF( L > J .AND. ME == RI(J) ) then DO K = J+1,L vtmp(J) = vtmp(J) + A(IS(J),K) * U(K) END DO END IF vtmp(J) = vtmp(J) * ONE_OVER_H END DO KAPPA = 0.5_DP * ONE_OVER_H * ddot( l, vtmp, 1, u, 1 ) #if defined __MPI vtmp( l + 1 ) = kappa CALL reduce_base_real_to( L + 1, vtmp, p, comm, -1 ) kappa = p( l + 1 ) #else p(1:l) = vtmp(1:l) #endif CALL daxpy( l, -kappa, u, 1, p, 1 ) CALL DGER( is(l), l, -1.0_DP, ul, 1, p, 1, a, lda ) CALL DGER( is(l), l, -1.0_DP, p( me + 1 ), nproc, u, 1, a, lda ) END IF ELSE IF(RI(L).EQ.ME) THEN G = A(is(l),I) END IF #if defined __MPI CALL bcast_real( g, 1, ri( L ), comm ) #endif E(I) = G END IF D(I) = H END DO E(1) = 0.0_DP D(1) = 0.0_DP IF( tv ) THEN DO J = 1,N V(1:nrl,J) = 0.0_DP IF(RI(J).EQ.ME) THEN V(IS(J),J) = 1.0_DP END IF END DO DO I = 2,N L = I - 1 LLOC = IS(L) ! IF( D(I) .NE. 0.0_DP ) THEN ! ONE_OVER_H = 1.0_DP/D(I) ! IF( lloc > 0 ) THEN CALL DGEMV( 't', lloc, l, 1.0d0, v(1,1), ldv, a(1,i), 1, 0.0d0, p(1), 1 ) ELSE P(1:l) = 0.0d0 END IF #if defined __MPI CALL reduce_base_real_to( L, p, vtmp, comm, -1 ) #else vtmp(1:l) = p(1:l) #endif IF( lloc > 0 ) THEN CALL DGER( lloc, l, -ONE_OVER_H, a(1,i), 1, vtmp, 1, v, ldv ) END IF END IF END DO END IF DO I = 1,N U(I) = 0.0_DP IF(RI(I).eq.ME) then U(I) = A(IS(I),I) END IF END DO #if defined __MPI CALL reduce_base_real_to( n, u, d, comm, -1 ) #else D(1:N) = U(1:N) #endif DEALLOCATE( u, p, vtmp, ul, pl, is, ri ) RETURN END SUBROUTINE ptredv !==----------------------------------------------==! SUBROUTINE ptqliv( tv, d, e, n, z, ldz, nrl, mpime, comm ) ! ! Modified QL algorithm for CRAY T3E PARALLEL MACHINE ! calculate the eigenvectors and eigenvalues of a matrix reduced to ! tridiagonal form by PTREDV. ! ! AUTHOR : Carlo Cavazzoni - SISSA 1997 ! comments and suggestions to : carlo.cavazzoni@cineca.it ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! NOTE : the algorithm that finds the eigenvalues is not parallelized ! ( it scales as O(N^2) ), I preferred to parallelize only the ! updating of the eigenvectors because it is the most costly ! part of the algorithm ( it scales as O(N^3) ). ! For large matrix in practice all the time is spent in the updating ! that in this routine scales linearly with the number of processors, ! in fact there is no communication at all. ! ! ! INPUTS : ! ! TV if it is true compute eigrnvectors "z" ! ! D(N) Diagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! E(N) Subdiagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! N DIMENSION OF THE GLOBAL MATRIX. ! ! NRL NUMBER OF ROWS OF Z BELONGING TO THE LOCAL PROCESSOR. ! ! LDZ LEADING DIMENSION OF MATRIX Z. ! ! Z(LDZ,N) Orthogonal transformation that tridiagonalizes the original ! matrix A. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! ! ! OUTPUTS : ! ! Z(LDZ,N) EIGENVECTORS OF THE ORIGINAL MATRIX. ! THE Jth COLUMN of Z contains the eigenvectors associated ! with the jth eigenvalue. ! The eigenvectors are scattered among processors (4PE examp. ) ! eigenvector | PE ! elements | ! V(1) | 0 ! V(2) | 1 ! V(3) | 2 ! V(4) | 3 ! V(5) | 0 ! V(6) | 1 ! .... .. ! ! D(N) Eigenvalues of the original matrix, ! this vector is equal on all processors. ! ! ! ! USE kinds, ONLY : DP IMPLICIT NONE LOGICAL, INTENT(IN) :: tv INTEGER, INTENT(IN) :: n, nrl, ldz, mpime, comm REAL(DP) :: d(n), e(n) REAL(DP) :: z(ldz,n) INTEGER :: i, iter, mk, k, l, m, ierr REAL(DP) :: b, dd, f, g, p, r, c, s REAL(DP), ALLOCATABLE :: cv(:,:) REAL(DP), ALLOCATABLE :: fv1(:) REAL(DP), ALLOCATABLE :: fv2(:) ALLOCATE( cv( 2,n ) ) ALLOCATE( fv1( nrl ) ) ALLOCATE( fv2( nrl ) ) do l = 2,n e(l-1) = e(l) end do do l=1,n iter=0 1 do m=l,n-1 dd = abs(d(m))+abs(d(m+1)) if ( abs(e(m))+dd .eq. dd ) goto 2 end do m=n 2 if ( m /= l ) then if ( iter == 200 ) then call errore(' tqli ',' too many iterations ', iter) end if iter=iter+1 ! ! iteration is performed on one processor and results broadcast ! to all others to prevent potential problems if all processors ! do not behave in exactly the same way (even with the same data!) ! if ( mpime == 0 ) then g=(d(l+1)-d(l))/(2.0_DP*e(l)) r=pythag(g,1.0_DP) g=d(m)-d(l)+e(l)/(g+sign(r,g)) s=1.0_DP c=1.0_DP p=0.0_DP do i=m-1,l,-1 f=s*e(i) b=c*e(i) r=pythag(f,g) e(i+1)=r if ( r == 0.0_DP) then d(i+1)=d(i+1)-p e(m)=0.0_DP goto 1 endif c=g/r g=d(i+1)-p s=f/r r=(d(i)-g)*s+2.0_DP*c*b p=s*r d(i+1)=g+p g=c*r-b ! cv(1,i-l+1) = c cv(2,i-l+1) = s !cv(1,i) = c !cv(2,i) = s end do ! d(l)=d(l)-p e(l)=g e(m)=0.0_DP end if #if defined __MPI CALL bcast_real( cv, 2*(m-l), 0, comm ) CALL bcast_real( d(l), m-l+1, 0, comm ) CALL bcast_real( e(l), m-l+1, 0, comm ) #endif if( tv ) then do i=m-1,l,-1 do k=1,nrl fv2(k) =z(k,i+1) end do do k=1,nrl fv1(k) =z(k,i) end do c = cv(1,i-l+1) s = cv(2,i-l+1) do k=1,nrl z(k,i+1) =s*fv1(k) + c*fv2(k) z(k,i) =c*fv1(k) - s*fv2(k) end do end do end if goto 1 endif end do DEALLOCATE( cv ) DEALLOCATE( fv1 ) DEALLOCATE( fv2 ) RETURN END SUBROUTINE ptqliv !==----------------------------------------------==! SUBROUTINE peigsrtv(tv,d,v,ldv,n,nrl) USE kinds, ONLY : DP ! ! This routine sorts eigenvalues and eigenvectors ! generated by PTREDV and PTQLIV. ! ! AUTHOR : Carlo Cavazzoni - SISSA 1997 ! comments and suggestions to : carlo.cavazzoni@cineca.it ! IMPLICIT NONE LOGICAL, INTENT(IN) :: tv INTEGER, INTENT (IN) :: n,ldv,nrl REAL(DP), INTENT(INOUT) :: d(n),v(ldv,n) INTEGER :: i,j,k REAL(DP):: p do 13 i=1,n-1 k=i p=d(i) do j=i+1,n if(d(j).le.p)then k=j p=d(j) endif end do if(k.ne.i)then d(k)=d(i) d(i)=p ! ! Exchange local elements of eigenvectors. ! if( tv ) then do j=1,nrl p=v(j,i) v(j,i)=v(j,k) v(j,k)=p END DO end if endif 13 continue return END SUBROUTINE peigsrtv ! !------------------------------------------------------------------------- FUNCTION pythag(a,b) USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: a, b, pythag REAL(DP) :: absa, absb absa=abs(a) absb=abs(b) if(absa.gt.absb)then pythag=absa*sqrt(1.0_DP+(absb/absa)**2) else if(absb.eq.0.0_DP)then pythag=0.0_DP else pythag=absb*sqrt(1.0_DP+(absa/absb)**2) endif endif return END FUNCTION pythag ! !==----------------------------------------------==! SUBROUTINE pdspev_drv( jobz, ap, lda, w, z, ldz, & nrl, n, nproc, mpime, comm ) USE kinds, ONLY : DP IMPLICIT NONE CHARACTER, INTENT(IN) :: JOBZ INTEGER, INTENT(IN) :: lda, ldz, nrl, n, nproc, mpime INTEGER, INTENT(IN) :: comm REAL(DP) :: ap( lda, * ), w( * ), z( ldz, * ) REAL(DP), ALLOCATABLE :: sd( : ) LOGICAL :: tv ! IF( n < 1 ) RETURN ! tv = .false. IF( jobz == 'V' .OR. jobz == 'v' ) tv = .true. ALLOCATE ( sd ( n ) ) CALL ptredv( tv, ap, lda, w, sd, z, ldz, nrl, n, nproc, mpime, comm) CALL ptqliv( tv, w, sd, n, z, ldz, nrl, mpime, comm) DEALLOCATE ( sd ) CALL peigsrtv( tv, w, z, ldz, n, nrl) RETURN END SUBROUTINE pdspev_drv !==----------------------------------------------==! SUBROUTINE dspev_drv( JOBZ, UPLO, N, AP, W, Z, LDZ ) USE kinds, ONLY : DP IMPLICIT NONE CHARACTER :: JOBZ, UPLO INTEGER :: IOPT, INFO, LDZ, N REAL(DP) :: AP( * ), W( * ), Z( LDZ, * ) REAL(DP), ALLOCATABLE :: WORK(:) IF( n < 1 ) RETURN ALLOCATE( work( 3*n ) ) #if defined __ESSL IOPT = 0 IF((JOBZ .EQ. 'V') .OR. (JOBZ .EQ. 'v') ) iopt = iopt + 1 IF((UPLO .EQ. 'U') .OR. (UPLO .EQ. 'u') ) iopt = iopt + 20 CALL DSPEV(IOPT, ap, w, z, ldz, n, work, 3*n) #else CALL DSPEV(jobz, uplo, n, ap(1), w(1), z(1,1), ldz, work, INFO) IF( info .NE. 0 ) THEN CALL errore( ' dspev_drv ', ' diagonalization failed ',info ) END IF #endif DEALLOCATE( work ) RETURN END SUBROUTINE dspev_drv #if defined __SCALAPACK SUBROUTINE pdsyevd_drv( tv, n, nb, s, lds, w, ortho_cntx ) USE kinds, ONLY : DP USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm,root_bgrp,ortho_comm #ifdef __ELPA USE elpa1 #endif IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: nb, n, ortho_cntx ! nb = block size, n = matrix size, ortho_cntx = BLACS context INTEGER, INTENT(IN) :: lds ! lds = leading dim of s REAL(DP) :: s(:,:), w(:) ! input: s = matrix to be diagonalized ! output: s = eigenvectors, w = eigenvalues INTEGER :: desch( 10 ) REAL(DP) :: rtmp( 4 ) INTEGER :: itmp( 4 ) REAL(DP), ALLOCATABLE :: work(:) REAL(DP), ALLOCATABLE :: vv(:,:) INTEGER, ALLOCATABLE :: iwork(:) INTEGER :: LWORK, LIWORK, info CHARACTER :: jobv INTEGER :: i #ifdef __ELPA INTEGER :: nprow,npcol,my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols #endif IF( SIZE( s, 1 ) /= lds ) & CALL errore( ' pdsyevd_drv ', ' wrong matrix leading dimension ', 1 ) ! IF( tv ) THEN ALLOCATE( vv( SIZE( s, 1 ), SIZE( s, 2 ) ) ) jobv = 'V' ELSE CALL errore( ' pdsyevd_drv ', ' PDSYEVD does not compute eigenvalue only ', ABS( info ) ) END IF CALL descinit( desch, n, n, nb, nb, 0, 0, ortho_cntx, SIZE( s, 1 ) , info ) IF( info /= 0 ) CALL errore( ' pdsyevd_drv ', ' desckinit ', ABS( info ) ) lwork = -1 liwork = 1 itmp = 0 rtmp = 0.0_DP #ifdef __ELPA CALL BLACS_Gridinfo(ortho_cntx,nprow, npcol, my_prow,my_pcol) call GET_ELPA_ROW_COL_COMMS(ortho_comm, my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols) CALL SOLVE_EVP_REAL(n, n, s, lds, w, vv, lds ,nb ,mpi_comm_rows, mpi_comm_cols) s = vv IF( ALLOCATED( vv ) ) DEALLOCATE( vv ) #else CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, rtmp, lwork, itmp, liwork, info ) IF( info /= 0 ) CALL errore( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) ) lwork = MAX( 131072, 2*INT( rtmp(1) ) + 1 ) liwork = MAX( 8*n , itmp(1) + 1 ) ALLOCATE( work( lwork ) ) ALLOCATE( iwork( liwork ) ) CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, work, lwork, iwork, liwork, info ) IF( info /= 0 ) CALL errore( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) ) IF( tv ) s = vv IF( ALLOCATED( vv ) ) DEALLOCATE( vv ) DEALLOCATE( work ) DEALLOCATE( iwork ) #endif !#ifdef __ELPA ! uncomment only if you want to printout eigenv* for debug ! ! purposes ! ALLOCATE ( work (n) ) ! CALL PDLAPRNT( N, N, s, 1, 1, desch, 0, 0, 's', 99, WORK ) ! DO i=1,N ! WRITE(88,*)i,w(i) ! END DO ! DEALLOCATE( work ) !#else ! ALLOCATE ( work (n) ) ! write(*,*)n ! CALL PDLAPRNT( N, N, s, 1, 1, desch, 0, 0, 's', 100, WORK ) ! DO i=1,N ! WRITE(200,*)i,w(i) ! END DO ! DEALLOCATE( work ) !#endif RETURN END SUBROUTINE pdsyevd_drv #endif END MODULE dspev_module espresso-5.0.2/Modules/basic_algebra_routines.f900000644000700200004540000001414512053145633021005 0ustar marsamoscm! ! Copyright (C) 2003-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE basic_algebra_routines !---------------------------------------------------------------------------- ! ! ... Written by Carlo Sbraccia ( 16/12/2003 ) ! ! ... This module contains a limited number of functions and operators ! ... for vectorial algebra. Wherever possible the appropriate BLAS routine ! ... ( always the double precision version ) is used. ! ! ... List of public methods : ! ! x .dot. y dot product between vectors ( ) ! x .ext. y external (vector) product between vectors ( ) ! norm( x ) norm of a vector ( SQRT() ) ! A .times. x matrix-vector multiplication ( A|x> ) ! x .times. A vector-matrix multiplication ( =4.3) compilers ! This module is compiled only if the following preprocessing option ! is enabled #if defined __TRAP_SIGUSR1 USE iso_c_binding USE io_global, ONLY : stdout USE mp_global, ONLY : root, world_comm, mp_bcast, mpime IMPLICIT NONE LOGICAL,VOLATILE::signal_trapped INTERFACE FUNCTION init_signal_USR1(new_handler) BIND(c, name = "init_signal_USR1") USE iso_c_binding TYPE(C_FUNPTR),VALUE,INTENT(IN):: new_handler INTEGER(C_INT)::init_signal_USR1 END FUNCTION init_signal_USR1 FUNCTION init_signal(signum, new_handler) BIND(c, name = "init_signal") USE iso_c_binding INTEGER(C_INT),VALUE :: signum TYPE(C_FUNPTR), VALUE,INTENT(IN) :: new_handler INTEGER(C_INT)::init_signal END FUNCTION init_signal END INTERFACE CONTAINS SUBROUTINE set_signal_USR1(routine) USE iso_c_binding TYPE(C_FUNPTR),TARGET::ptr INTERFACE SUBROUTINE routine(signal) bind(C) USE iso_c_binding INTEGER(C_INT),VALUE, INTENT(IN)::signal END SUBROUTINE routine END INTERFACE ptr = C_FUNLOC(routine) IF (init_signal_USR1(ptr) .NE. 0) THEN CALL errore("set_signal_USR1", "The association of signal USR1 failed!", 1) ENDIF END SUBROUTINE set_signal_USR1 ! Unused. Here for possible future developments SUBROUTINE set_signal_action(signal, routine) USE iso_c_binding INTEGER::signal TYPE(C_FUNPTR),TARGET::ptr INTERFACE SUBROUTINE routine(signal) bind(C) USE iso_c_binding INTEGER(C_INT),VALUE::signal END SUBROUTINE routine END INTERFACE ptr = C_FUNLOC(routine) IF (init_signal(signal, ptr) .NE. 0) THEN CALL errore("set_signal", "The association of the signal failed!", 1) ENDIF END SUBROUTINE set_signal_action ! Sets the signal_trapped flag on all nodes/processors ! Only the master will use the signal, though SUBROUTINE custom_handler(signum) BIND(c) USE iso_c_binding INTEGER(C_INT),VALUE,INTENT(IN):: signum WRITE(UNIT = stdout, FMT = *) " **** Trapped signal", signum signal_trapped = .TRUE. END SUBROUTINE custom_handler ! Set the signal handler for SIGUSR1 to 'custom_handler' ! Every processor will trap the signal, howver only 0 will actually ! use the result (required since the default action for SIGUSR1 is ! exit) SUBROUTINE signal_trap_init USE iso_c_binding WRITE(UNIT = stdout, FMT=*) " signal trapping enabled: kill the code with -SIGUSR1 to stop cleanly the simulation " CALL set_signal_USR1(custom_handler) END SUBROUTINE signal_trap_init FUNCTION signal_detected() LOGICAL::signal_detected ! If the signal is trapped, set the exit status and broadcast it ! DO NOT broadcast the signal_trapped variable or you will be Very ! Sorry signal_detected = signal_trapped CALL mp_bcast(signal_detected, root, world_comm) END FUNCTION signal_detected #else USE io_global, ONLY : stdout CONTAINS ! Place holders to employ when the signal trapping feature is disabled SUBROUTINE signal_trap_init WRITE(UNIT = stdout, FMT=*) " signal trapping disabled: compile with " WRITE(UNIT = stdout, FMT=*) " -D__TRAP_SIGUSR1 to enable this feature" END SUBROUTINE signal_trap_init FUNCTION signal_detected() LOGICAL::signal_detected signal_detected = .FALSE. END FUNCTION signal_detected #endif END MODULE set_signal espresso-5.0.2/Modules/fft_scalar.f900000644000700200004540000017441412053145633016431 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------! ! FFT scalar drivers Module - contains machine-dependent routines for: ! ! FFTW, FFTW3, ESSL, LINUX_ESSL, SCSL, SUNPERF, NEC ASL libraries ! ! (both 3d for serial execution and 1d+2d FFTs for parallel execution, ! ! excepted NEC ASL, 3d only, no parallel execution) ! ! Written by Carlo Cavazzoni, modified by P. Giannozzi, contributions ! ! by Martin Hilgemans, Guido Roma, Pascal Thibaudeau, Stephane Lefranc, ! ! Nicolas Lacorne, Filippo Spiga - Last update Aug 2012 ! !--------------------------------------------------------------------------! #include "fft_defs.h" !=----------------------------------------------------------------------=! MODULE fft_scalar !=----------------------------------------------------------------------=! USE kinds IMPLICIT NONE SAVE PRIVATE PUBLIC :: cft_1z, cft_2xy, cft_b, cfft3d, cfft3ds PUBLIC :: good_fft_dimension, allowed, good_fft_order PUBLIC :: cft_b_omp_init, cft_b_omp ! ... Local Parameter ! ndims Number of different FFT tables that the module ! could keep into memory without reinitialization ! nfftx Max allowed fft dimension INTEGER, PARAMETER :: ndims = 3, nfftx = 2049 ! Workspace that is statically allocated is defined here ! in order to avoid multiple copies of the same workspace ! lwork: Dimension of the work space array (if any) #if ( defined __ESSL || defined __LINUX_ESSL ) && ! ( defined __FFTW || defined __FFTW3 ) ! ESSL IBM library: see the ESSL manual for DCFT INTEGER, PARAMETER :: lwork = 20000 + ( 2*nfftx + 256 ) * 64 + 3*nfftx REAL (DP) :: work( lwork ) #elif defined __SCSL || defined __SUNPERF ! SGI scientific library scsl and SUN sunperf INTEGER, PARAMETER :: lwork = 2 * nfftx COMPLEX (DP) :: work(lwork) #elif defined __FFTW3 ! Only FFTW_ESTIMATE is actually used #define FFTW_MEASURE 0 #define FFTW_ESTIMATE 64 #endif #if defined __FFTW INTEGER :: cft_b_dims( 4 ) C_POINTER :: cft_b_bw_planz = 0 C_POINTER :: cft_b_bw_planx = 0 C_POINTER :: cft_b_bw_plany = 0 #endif !=----------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------=! ! !=----------------------------------------------------------------------=! ! ! ! ! FFT along "z" ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cft_1z(c, nsl, nz, ldz, isign, cout) ! driver routine for nsl 1d complex fft's of length nz ! ldz >= nz is the distance between sequences to be transformed ! (ldz>nz is used on some architectures to reduce memory conflicts) ! input : c(ldz*nsl) (complex) ! output : cout(ldz*nsl) (complex - NOTA BENE: transform is not in-place!) ! isign > 0 : forward (f(G)=>f(R)), isign <0 backward (f(R) => f(G)) ! Up to "ndims" initializations (for different combinations of input ! parameters nz, nsl, ldz) are stored and re-used if available INTEGER, INTENT(IN) :: isign INTEGER, INTENT(IN) :: nsl, nz, ldz COMPLEX (DP) :: c(:), cout(:) REAL (DP) :: tscale INTEGER :: i, err, idir, ip INTEGER, SAVE :: zdims( 3, ndims ) = -1 INTEGER, SAVE :: icurrent = 1 LOGICAL :: done #if defined __HPM INTEGER :: OMP_GET_THREAD_NUM #endif INTEGER :: tid ! ... Machine-Dependent parameters, work arrays and tables of factors ! ltabl Dimension of the tables of factors calculated at the ! initialization stage #if defined __OPENMP INTEGER :: offset, ldz_t INTEGER :: omp_get_max_threads EXTERNAL :: omp_get_max_threads #endif #if defined __FFTW || defined __FFTW3 ! Pointers to the "C" structures containing FFT factors ( PLAN ) ! C_POINTER is defined in include/fft_defs.h ! for 32bit executables, C_POINTER is integer(4) ! for 64bit executables, C_POINTER is integer(8) C_POINTER, SAVE :: fw_planz( ndims ) = 0 C_POINTER, SAVE :: bw_planz( ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL ! ESSL IBM library: see the ESSL manual for DCFT INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx REAL (DP), SAVE :: fw_tablez( ltabl, ndims ) REAL (DP), SAVE :: bw_tablez( ltabl, ndims ) #elif defined __SCSL ! SGI scientific library scsl INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256 REAL (DP), SAVE :: tablez (ltabl, ndims) REAL (DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #elif defined __SX6 ! NEC MathKeisan INTEGER, PARAMETER :: ltabl = 2 * nfftx + 64 REAL (DP), SAVE :: tablez (ltabl, ndims) REAL (DP) :: work(4*nz*nsl) COMPLEX (DP) :: DUMMY INTEGER, SAVE :: isys = 1 #elif defined __SUNPERF ! SUN sunperf library INTEGER, PARAMETER :: ltabl = 4 * nfftx + 15 REAL (DP), SAVE :: tablez (ltabl, ndims) #endif IF( nsl < 0 ) THEN CALL errore(" fft_scalar: cft_1z ", " nsl out of range ", nsl) END IF ! ! Here initialize table only if necessary ! DO ip = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters done = ( nz == zdims(1,ip) ) #if defined __ESSL || defined __LINUX_ESSL || defined __FFTW3 ! The initialization in ESSL and FFTW v.3 depends on all three parameters done = done .AND. ( nsl == zdims(2,ip) ) .AND. ( ldz == zdims(3,ip) ) #endif IF (done) EXIT END DO IF( .NOT. done ) THEN ! no table exist for these parameters ! initialize a new one ! WRITE( stdout, fmt="('DEBUG cft_1z, reinitializing tables ', I3)" ) icurrent #if defined __FFTW IF( fw_planz( icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_planz( icurrent) ) IF( bw_planz( icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_planz( icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_planz( icurrent), nz, idir) idir = 1; CALL CREATE_PLAN_1D( bw_planz( icurrent), nz, idir) #elif defined __FFTW3 IF( fw_planz( icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_planz( icurrent) ) IF( bw_planz( icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_planz( icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_planz( icurrent), 1, nz, nsl, c, & (/SIZE(c)/), 1, ldz, cout, (/SIZE(cout)/), 1, ldz, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_planz( icurrent), 1, nz, nsl, c, & (/SIZE(c)/), 1, ldz, cout, (/SIZE(cout)/), 1, ldz, idir, FFTW_ESTIMATE) #elif defined __ESSL || defined __LINUX_ESSL tscale = 1.0_DP / nz CALL DCFT ( 1, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, 1, & tscale, fw_tablez(1, icurrent), ltabl, work(1), lwork) CALL DCFT ( 1, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, -1, & 1.0_DP, bw_tablez(1, icurrent), ltabl, work(1), lwork) #elif defined __SCSL CALL ZZFFTM (0, nz, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, & tablez (1, icurrent), DUMMY, isys) #elif defined __SX6 CALL ZZFFTM (0, nz, 1, 1.0_DP, DUMMY, ldz, DUMMY, ldz, & tablez (1, icurrent), work, isys) #elif defined __SUNPERF CALL zffti (nz, tablez (1, icurrent) ) #else CALL errore(' cft_1z ',' no scalar fft driver specified ', 1) #endif zdims(1,icurrent) = nz; zdims(2,icurrent) = nsl; zdims(3,icurrent) = ldz; ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF ! ! Now perform the FFTs using machine specific drivers ! #if defined __FFT_CLOCKS CALL start_clock( 'cft_1z' ) #endif #if defined __FFTW #if defined __OPENMP ldz_t = ldz ! IF (isign < 0) THEN !$omp parallel default(none) private(tid,offset,i,tscale) shared(c,isign,nsl,fw_planz,ip,nz,cout,ldz) & !$omp & firstprivate(ldz_t) !$omp do DO i=1, nsl offset = 1 + ((i-1)*ldz_t) CALL FFT_Z_STICK_SINGLE(fw_planz( ip), c(offset), ldz_t) END DO !$omp end do tscale = 1.0_DP / nz !$omp workshare cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) * tscale !$omp end workshare !$omp end parallel ELSE IF (isign > 0) THEN !$omp parallel default(none) private(tid,offset,i) shared(c,isign,nsl,bw_planz,ip,cout,ldz) & !$omp & firstprivate(ldz_t) !$omp do DO i=1, nsl offset = 1 + ((i-1)* ldz_t) CALL FFT_Z_STICK_SINGLE(bw_planz( ip), c(offset), ldz_t) END DO !$omp end do !$omp workshare cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) !$omp end workshare !$omp end parallel END IF #else IF (isign < 0) THEN CALL FFT_Z_STICK(fw_planz( ip), c(1), ldz, nsl) tscale = 1.0_DP / nz cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) * tscale ELSE IF (isign > 0) THEN CALL FFT_Z_STICK(bw_planz( ip), c(1), ldz, nsl) cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) END IF #endif #elif defined __FFTW3 IF (isign < 0) THEN CALL dfftw_execute_dft( fw_planz( ip), c, cout) tscale = 1.0_DP / nz cout( 1 : ldz * nsl ) = cout( 1 : ldz * nsl ) * tscale ELSE IF (isign > 0) THEN CALL dfftw_execute_dft( bw_planz( ip), c, cout) END IF #elif defined __SCSL IF ( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / nz ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP END IF IF (isign /= 0) CALL ZZFFTM (idir, nz, nsl, tscale, c(1), ldz, & cout(1), ldz, tablez (1, ip), work, isys) #elif defined __SX6 IF ( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / nz ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP END IF IF (isign /= 0) CALL ZZFFTM (idir, nz, nsl, tscale, c(1), ldz, & cout(1), ldz, tablez (1, ip), work, isys) #elif defined __ESSL || defined __LINUX_ESSL ! essl uses a different convention for forward/backward transforms ! wrt most other implementations: notice the sign of "idir" IF( isign < 0 ) THEN idir =+1 tscale = 1.0_DP / nz CALL DCFT (0, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, idir, & tscale, fw_tablez(1, ip), ltabl, work, lwork) ELSE IF( isign > 0 ) THEN idir =-1 tscale = 1.0_DP CALL DCFT (0, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, idir, & tscale, bw_tablez(1, ip), ltabl, work, lwork) END IF #elif defined __SUNPERF IF ( isign < 0) THEN DO i = 1, nsl CALL zfftf ( nz, c(1+(i-1)*ldz), tablez ( 1, ip) ) END DO cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) / nz ELSE IF( isign > 0 ) THEN DO i = 1, nsl CALL zfftb ( nz, c(1+(i-1)*ldz), tablez ( 1, ip) ) enddo cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) END IF #else CALL errore(' cft_1z ',' no scalar fft driver specified ', 1) #endif #if defined __FFT_CLOCKS CALL stop_clock( 'cft_1z' ) #endif RETURN END SUBROUTINE cft_1z ! ! !=----------------------------------------------------------------------=! ! ! ! ! FFT along "x" and "y" direction ! ! ! !=----------------------------------------------------------------------=! ! ! SUBROUTINE cft_2xy(r, nzl, nx, ny, ldx, ldy, isign, pl2ix) ! driver routine for nzl 2d complex fft's of lengths nx and ny ! input : r(ldx*ldy) complex, transform is in-place ! ldx >= nx, ldy >= ny are the physical dimensions of the equivalent ! 2d array: r2d(ldx, ldy) (x first dimension, y second dimension) ! (ldx>nx, ldy>ny used on some architectures to reduce memory conflicts) ! pl2ix(nx) (optional) is 1 for columns along y to be transformed ! isign > 0 : forward (f(G)=>f(R)), isign <0 backward (f(R) => f(G)) ! Up to "ndims" initializations (for different combinations of input ! parameters nx,ny,nzl,ldx) are stored and re-used if available IMPLICIT NONE INTEGER, INTENT(IN) :: isign, ldx, ldy, nx, ny, nzl INTEGER, OPTIONAL, INTENT(IN) :: pl2ix(:) COMPLEX (DP) :: r( : ) INTEGER :: i, k, j, err, idir, ip, kk REAL(DP) :: tscale INTEGER, SAVE :: icurrent = 1 INTEGER, SAVE :: dims( 4, ndims) = -1 LOGICAL :: dofft( nfftx ), done INTEGER, PARAMETER :: stdout = 6 #if defined __HPM INTEGER :: OMP_GET_THREAD_NUM #endif #if defined __OPENMP INTEGER :: offset INTEGER :: nx_t, ny_t, nzl_t, ldx_t, ldy_t INTEGER :: itid, mytid, ntids INTEGER :: omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif #if defined __FFTW || defined __FFTW3 C_POINTER, SAVE :: fw_plan( 2, ndims ) = 0 C_POINTER, SAVE :: bw_plan( 2, ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx REAL (DP), SAVE :: fw_tablex( ltabl, ndims ), fw_tabley( ltabl, ndims ) REAL (DP), SAVE :: bw_tablex( ltabl, ndims ), bw_tabley( ltabl, ndims ) #elif defined __SCSL INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256 REAL (DP), SAVE :: tablex (ltabl, ndims), tabley(ltabl, ndims) COMPLEX (DP) :: XY(nx+nx*ny) REAL (DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #elif defined __SX6 INTEGER, PARAMETER :: ltabl = 2*nfftx + 64 REAL (DP), SAVE :: tablex(ltabl, ndims), tabley(ltabl, ndims) REAL (DP) :: work(4*nx*ny) COMPLEX (DP) :: XY(ldx*ny) COMPLEX (DP) :: DUMMY INTEGER, SAVE :: isys = 1 #elif defined __SUNPERF INTEGER, PARAMETER :: ltabl = 4 * nfftx + 15 REAL (DP), SAVE :: tablex (ltabl, ndims) REAL (DP), SAVE :: tabley (ltabl, ndims) #endif #if defined __SCSL isys(0) = 1 #endif dofft( 1 : nx ) = .TRUE. IF( PRESENT( pl2ix ) ) THEN IF( SIZE( pl2ix ) < nx ) & CALL errore( ' cft_2xy ', ' wrong dimension for arg no. 8 ', 1 ) DO i = 1, nx IF( pl2ix(i) < 1 ) dofft( i ) = .FALSE. END DO END IF ! WRITE( stdout,*) 'DEBUG: ', COUNT( dofft ) ! ! Here initialize table only if necessary ! DO ip = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters done = ( ny == dims(1,ip) ) .AND. ( nx == dims(3,ip) ) #if defined __ESSL || defined __LINUX_ESSL || defined __FFTW3 ! The initialization in ESSL and FFTW v.3 depends on all four parameters done = done .AND. ( ldx == dims(2,ip) ) .AND. ( nzl == dims(4,ip) ) #endif IF (done) EXIT END DO IF( .NOT. done ) THEN ! no table exist for these parameters ! initialize a new one ! WRITE( stdout, fmt="('DEBUG cft_2xy, reinitializing tables ', I3)" ) icurrent #if defined __FFTW IF( fw_plan( 2,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 2,icurrent) ) IF( bw_plan( 2,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 2,icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 2,icurrent), ny, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 2,icurrent), ny, idir) IF( fw_plan( 1,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 1,icurrent) ) IF( bw_plan( 1,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 1,icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 1,icurrent), nx, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 1,icurrent), nx, idir) #elif defined __FFTW3 IF ( ldx /= nx .OR. ldy /= ny ) THEN IF( fw_plan(2,icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(2,icurrent) ) IF( bw_plan(2,icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(2,icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan(2,icurrent), 1, ny, 1, r(1:), & (/ldx*ldy/), ldx, 1, r(1:), (/ldx*ldy/), ldx, 1, idir, & FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan(2,icurrent), 1, ny, 1, r(1:), & (/ldx*ldy/), ldx, 1, r(1:), (/ldx*ldy/), ldx, 1, idir, & FFTW_ESTIMATE) IF( fw_plan(1,icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(1,icurrent) ) IF( bw_plan(1,icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(1,icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan(1,icurrent), 1, nx, ny, r(1:), & (/ldx*ldy/), 1, ldx, r(1:), (/ldx*ldy/), 1, ldx, idir, & FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan(1,icurrent), 1, nx, ny, r(1:), & (/ldx*ldy/), 1, ldx, r(1:), (/ldx*ldy/), 1, ldx, idir, & FFTW_ESTIMATE) ELSE IF( fw_plan( 1, icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan( 1, icurrent) ) IF( bw_plan( 1, icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan( 1, icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 1, icurrent), 2, (/nx, ny/), nzl,& r(1:), (/nx, ny/), 1, nx*ny, r(1:), (/nx, ny/), 1, nx*ny, idir,& FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 1, icurrent), 2, (/nx, ny/), nzl,& r(1:), (/nx, ny/), 1, nx*ny, r(1:), (/nx, ny/), 1, nx*ny, idir,& FFTW_ESTIMATE) END IF #elif defined __ESSL || defined __LINUX_ESSL #if defined __OPENMP tscale = 1.0_DP / ( nx * ny ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, nx, 1, 1.0_DP, & fw_tabley( 1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, nx, -1, 1.0_DP, & bw_tabley(1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, 1, & tscale, fw_tablex( 1, icurrent), ltabl, work(1), lwork) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, -1, & 1.0_DP, bw_tablex(1, icurrent), ltabl, work(1), lwork) #else tscale = 1.0_DP / ( nx * ny ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, 1, 1, 1.0_DP, & fw_tabley( 1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, 1, -1, 1.0_DP, & bw_tabley(1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, 1, & tscale, fw_tablex( 1, icurrent), ltabl, work(1), lwork) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, -1, & 1.0_DP, bw_tablex(1, icurrent), ltabl, work(1), lwork) #endif #elif defined __SCSL CALL ZZFFTMR (0, ny, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, & tabley (1, icurrent), DUMMY, isys) CALL ZZFFTM (0, nx, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, & tablex (1, icurrent), DUMMY, isys) #elif defined __SX6 CALL ZZFFT(0, ny, 1.0_DP, DUMMY, DUMMY, & tabley (1, icurrent), work, isys) CALL ZZFFTM (0, nx, 1, 1.0_DP, DUMMY, ldx, DUMMY, ldx, & tablex(1, icurrent), work, isys) #elif defined __SUNPERF CALL zffti (ny, tabley (1, icurrent) ) CALL zffti (nx, tablex (1, icurrent) ) #else CALL errore(' cft_2xy ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = ny; dims(2,icurrent) = ldx; dims(3,icurrent) = nx; dims(4,icurrent) = nzl; ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF ! ! Now perform the FFTs using machine specific drivers ! #if defined __FFT_CLOCKS CALL start_clock( 'cft_2xy' ) #endif #if defined __FFTW #if defined __OPENMP nx_t = nx ny_t = ny nzl_t = nzl ldx_t = ldx ldy_t = ldy ! IF( isign < 0 ) THEN ! tscale = 1.0_DP / ( nx * ny ) ! !$omp parallel default(none) private(offset,itid,mytid,ntids,k,j,i) shared(r,dofft,ip,fw_plan,nzl,nx,ny,ldx,ldy,tscale) & !$omp & firstprivate(nx_t, ny_t, nzl_t, ldx_t, ldy_t) !$omp do DO i=1,nzl offset = 1+ ((i-1)*(ldx_t*ldy_t)) CALL FFT_X_STICK_SINGLE( fw_plan(1,ip), r(offset), nx_t, ny_t, nzl_t, ldx_t, ldy_t ) END DO !$omp end do mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN IF( itid == mytid ) THEN j = i + ldx_t*ldy_t * ( k - 1 ) call FFT_Y_STICK(fw_plan(2,ip), r(j), ny_t, ldx_t) END IF itid = MOD( itid + 1, ntids ) END IF end do end do !$omp barrier !$omp workshare r = r * tscale !$omp end workshare !$omp end parallel ! CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ! ELSE IF( isign > 0 ) THEN ! !$omp parallel default(none) private(offset,itid,mytid,ntids,k,j,i) shared(r,nx,nzl,dofft,ip,bw_plan) & !$omp & firstprivate(nx_t, ny_t, nzl_t, ldx_t, ldy_t) mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN IF( itid == mytid ) THEN j = i + ldx_t*ldy_t * ( k - 1 ) call FFT_Y_STICK( bw_plan(2,ip), r(j), ny_t, ldx_t) END IF itid = MOD( itid + 1, ntids ) END IF end do end do !$omp barrier !$omp do DO i=1,nzl offset = 1+ ((i-1)*(ldx_t*ldy_t)) CALL FFT_X_STICK_SINGLE( bw_plan(1,ip), r(offset), nx_t, ny_t, nzl_t, ldx_t, ldy_t ) END DO !$omp end do !$omp end parallel ! END IF #else IF( isign < 0 ) THEN CALL FFT_X_STICK( fw_plan(1,ip), r(1), nx, ny, nzl, ldx, ldy ) do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call FFT_Y_STICK(fw_plan(2,ip), r(j), ny, ldx) END IF end do end do tscale = 1.0_DP / ( nx * ny ) CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ELSE IF( isign > 0 ) THEN do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call FFT_Y_STICK( bw_plan(2,ip), r(j), ny, ldx) END IF end do end do CALL FFT_X_STICK( bw_plan(1,ip), r(1), nx, ny, nzl, ldx, ldy ) END IF #endif #elif defined __FFTW3 IF ( ldx /= nx .OR. ldy /= ny ) THEN IF( isign < 0 ) THEN do j = 0, nzl-1 CALL dfftw_execute_dft( fw_plan (1, ip), & r(1+j*ldx*ldy:), r(1+j*ldx*ldy:)) end do do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call dfftw_execute_dft( fw_plan ( 2, ip), r(j:), r(j:)) END IF end do end do tscale = 1.0_DP / ( nx * ny ) CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ELSE IF( isign > 0 ) THEN do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call dfftw_execute_dft( bw_plan ( 2, ip), r(j:), r(j:)) END IF end do end do do j = 0, nzl-1 CALL dfftw_execute_dft( bw_plan( 1, ip), & r(1+j*ldx*ldy:), r(1+j*ldx*ldy:)) end do END IF ELSE IF( isign < 0 ) THEN call dfftw_execute_dft( fw_plan( 1, ip), r(1:), r(1:)) tscale = 1.0_DP / ( nx * ny ) CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ELSE IF( isign > 0 ) THEN call dfftw_execute_dft( bw_plan( 1, ip), r(1:), r(1:)) END IF END IF #elif defined __ESSL || defined __LINUX_ESSL #if defined __OPENMP IF( isign < 0 ) THEN tscale = 1.0_DP / ( nx * ny ) do k = 1, nzl kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, & 1, tscale, fw_tablex( 1, ip ), ltabl, work( 1 ), lwork) CALL DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, nx, & 1, 1.0_DP, fw_tabley(1, ip), ltabl, work( 1 ), lwork) end do ELSE IF( isign > 0 ) THEN DO k = 1, nzl kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, nx, & -1, 1.0_DP, bw_tabley(1, ip), ltabl, work( 1 ), lwork) CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, & -1, 1.0_DP, bw_tablex(1, ip), ltabl, work( 1 ), lwork) END DO END IF #else IF( isign < 0 ) THEN idir = 1 tscale = 1.0_DP / ( nx * ny ) do k = 1, nzl kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r(kk), 1, ldx, r(kk), 1, ldx, nx, ny, idir, & tscale, fw_tablex( 1, ip ), ltabl, work( 1 ), lwork) do i = 1, nx IF( dofft( i ) ) THEN kk = i + ( k - 1 ) * ldx * ldy call DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, 1, & idir, 1.0_DP, fw_tabley(1, ip), ltabl, work( 1 ), lwork) END IF end do end do ELSE IF( isign > 0 ) THEN idir = -1 DO k = 1, nzl do i = 1, nx IF( dofft( i ) ) THEN kk = i + ( k - 1 ) * ldx * ldy call DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, 1, & idir, 1.0_DP, bw_tabley(1, ip), ltabl, work( 1 ), lwork) END IF end do kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, idir, & 1.0_DP, bw_tablex(1, ip), ltabl, work( 1 ), lwork) END DO END IF #endif #elif defined __SX6 IF( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / (nx * ny) DO k = 0, nzl-1 kk = k * ldx * ldy ! FORWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) ! FORWARD: nx FFTs in the Y direction DO i = 1, nx IF ( dofft(i) ) THEN DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO END DO ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP DO k = 0, nzl-1 ! BACKWARD: nx FFTs in the Y direction kk = (k) * ldx * ldy DO i = 1, nx IF ( dofft(i) ) THEN DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO ! BACKWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) END DO END IF #elif defined __SCSL IF( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / (nx * ny) DO k = 0, nzl-1 kk = k * ldx * ldy ! FORWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) ! FORWARD: nx FFTs in the Y direction DO i = 1, nx IF ( dofft(i) ) THEN !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO END DO ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP DO k = 0, nzl-1 ! BACKWARD: nx FFTs in the Y direction kk = (k) * ldx * ldy DO i = 1, nx IF ( dofft(i) ) THEN !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO ! BACKWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) END DO END IF #elif defined __SUNPERF IF ( isign < 0 ) THEN DO k = 1, ny * nzl kk = 1 + ( k - 1 ) * ldx CALL zfftf ( nx, r (kk), tablex (1, ip) ) END DO DO i = 1, nx IF ( dofft(i) ) THEN DO j = 1, nzl kk = (j - 1) * ldx * ny + i CALL ZCOPY (ny, r (kk), ldx, work, 1) CALL zfftf (ny, work, tabley (1, ip) ) CALL ZCOPY (ny, work, 1, r (kk), ldx) END DO END IF END DO CALL ZDSCAL ( ldx * ny * nzl, 1.0_DP/(nx * ny), r, 1) ELSE IF (isign > 0) THEN DO i = 1, nx IF ( dofft(i) ) THEN DO j = 1, nzl kk = (j - 1) * ldx * ny + i CALL ZCOPY (ny, r (kk), ldx, work, 1) CALL zfftb (ny, work, tabley (1, ip) ) CALL ZCOPY (ny, work, 1, r (kk), ldx) END DO END IF END DO DO k = 1, ny * nzl kk = 1 + ( k - 1 ) * ldx CALL zfftb ( nx, r (kk), tablex (1, ip) ) END DO END IF #else CALL errore(' cft_2xy ',' no scalar fft driver specified ', 1) #endif #if defined __FFT_CLOCKS CALL stop_clock( 'cft_2xy' ) #endif RETURN END SUBROUTINE cft_2xy ! !=----------------------------------------------------------------------=! ! ! ! ! 3D scalar FFTs ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cfft3d( f, nx, ny, nz, ldx, ldy, ldz, isign ) ! driver routine for 3d complex fft of lengths nx, ny, nz ! input : f(ldx*ldy*ldz) complex, transform is in-place ! ldx >= nx, ldy >= ny, ldz >= nz are the physical dimensions ! of the equivalent 3d array: f3d(ldx,ldy,ldz) ! (ldx>nx, ldy>ny, ldz>nz may be used on some architectures ! to reduce memory conflicts - not implemented for FFTW) ! isign > 0 : f(G) => f(R) ; isign < 0 : f(R) => f(G) ! ! Up to "ndims" initializations (for different combinations of input ! parameters nx,ny,nz) are stored and re-used if available IMPLICIT NONE INTEGER, INTENT(IN) :: nx, ny, nz, ldx, ldy, ldz, isign COMPLEX (DP) :: f(:) INTEGER :: i, k, j, err, idir, ip REAL(DP) :: tscale INTEGER, SAVE :: icurrent = 1 INTEGER, SAVE :: dims(3,ndims) = -1 #if defined __FFTW || defined __FFTW3 C_POINTER, save :: fw_plan(ndims) = 0 C_POINTER, save :: bw_plan(ndims) = 0 #elif defined __SCSL INTEGER, PARAMETER :: ltabl = (2 * nfftx + 256)*3 REAL (DP), SAVE :: table (ltabl, ndims) REAL (DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #elif defined __SUNPERF INTEGER, PARAMETER :: ltabl = (4 * nfftx + 15)*3 REAL (DP), SAVE :: table (ltabl, ndims) #elif defined __SX6 INTEGER, PARAMETER :: ltabl = 60 INTEGER, PARAMETER :: lwork = 195+6*nfftx INTEGER, SAVE :: iw0(ltabl, ndims) INTEGER :: k_off, kj_offset REAL (DP), SAVE :: auxp (lwork, ndims) ! not sure whether auxp is work space or not COMPLEX(DP), DIMENSION(:), ALLOCATABLE :: cw2 COMPLEX (DP) :: f_out(size(f)) # if defined ASL && defined MICRO INTEGER :: nbtasks COMMON/NEC_ASL_PARA/nbtasks # endif #endif IF ( nx < 1 ) & call errore('cfft3d',' nx is less than 1 ', 1) IF ( ny < 1 ) & call errore('cfft3d',' ny is less than 1 ', 1) IF ( nz < 1 ) & call errore('cfft3',' nz is less than 1 ', 1) #if defined __SX6 # if defined ASL ALLOCATE (cw2(ldx*ldy*ldz)) CALL zfc3cl (f(1), nx, ny, nz, ldx, ldy, ldz, err) # else ALLOCATE (cw2(6*ldx*ldy*ldz)) # endif #endif ! ! Here initialize table only if necessary ! ip = -1 DO i = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters IF ( ( nx == dims(1,i) ) .and. & ( ny == dims(2,i) ) .and. & ( nz == dims(3,i) ) ) THEN ip = i EXIT END IF END DO IF( ip == -1 ) THEN ! no table exist for these parameters ! initialize a new one #if defined __FFTW IF ( nx /= ldx .or. ny /= ldy .or. nz /= ldz ) & call errore('cfft3','not implemented',1) IF( fw_plan(icurrent) /= 0 ) CALL DESTROY_PLAN_3D( fw_plan(icurrent) ) IF( bw_plan(icurrent) /= 0 ) CALL DESTROY_PLAN_3D( bw_plan(icurrent) ) idir = -1; CALL CREATE_PLAN_3D( fw_plan(icurrent), nx, ny, nz, idir) idir = 1; CALL CREATE_PLAN_3D( bw_plan(icurrent), nx, ny, nz, idir) #elif defined __FFTW3 IF ( nx /= ldx .or. ny /= ldy .or. nz /= ldz ) & call errore('cfft3','not implemented',3) IF( fw_plan(icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(icurrent) ) IF( bw_plan(icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(icurrent) ) idir = -1 CALL dfftw_plan_dft_3d ( fw_plan(icurrent), nx, ny, nz, f(1:), & f(1:), idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_dft_3d ( bw_plan(icurrent), nx, ny, nz, f(1:), & f(1:), idir, FFTW_ESTIMATE) #elif defined __ESSL || defined __LINUX_ESSL ! no initialization for 3d FFT's from ESSL #elif defined __SCSL CALL zzfft3d (0, nx, ny, nz, 0.0_DP, DUMMY, 1, 1, DUMMY, 1, 1, & table(1,icurrent), work(1), isys) #elif defined __SUNPERF CALL zfft3i ( nx, ny, nz, table (1,icurrent) ) #elif defined __SX6 # if defined ASL # if defined MICRO CALL hfc3fb (nx,ny,nz, f(1) , ldx, ldy, ldz, 0, & iw0(1,icurrent), auxp(1,icurrent), cw2(1), nbtasks, err) # else CALL zfc3fb (nx,ny,nz, f(1), ldx, ldy, ldz, 0, & iw0(1,icurrent), auxp(1,icurrent), cw2(1), err) # endif # else ! for some reason the error variable is not set by this driver on NEC SX machines err = 0 CALL ZZFFT3D (0, nx,ny,nz, 1.0_DP, f(1), ldx, ldy, & & f(1), ldx, ldy, auxp(1,icurrent), cw2(1), err) # endif IF (err /= 0) CALL errore('cfft3d','FFT init returned an error ', err) #else CALL errore(' cfft3d ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = nx; dims(2,icurrent) = ny; dims(3,icurrent) = nz ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF ! ! Now perform the 3D FFT using the machine specific driver ! #if defined __FFTW IF( isign < 0 ) THEN call FFTW_INPLACE_DRV_3D( fw_plan(ip), 1, f(1), 1, 1 ) tscale = 1.0_DP / DBLE( nx * ny * nz ) call ZDSCAL( nx * ny * nz, tscale, f(1), 1) ELSE IF( isign > 0 ) THEN call FFTW_INPLACE_DRV_3D( bw_plan(ip), 1, f(1), 1, 1 ) END IF #elif defined __FFTW3 IF( isign < 0 ) THEN call dfftw_execute_dft( fw_plan(ip), f(1:), f(1:)) tscale = 1.0_DP / DBLE( nx * ny * nz ) call ZDSCAL( nx * ny * nz, tscale, f(1), 1) ELSE IF( isign > 0 ) THEN call dfftw_execute_dft( bw_plan(ip), f(1:), f(1:)) END IF #elif defined __ESSL || defined __LINUX_ESSL IF ( isign < 0 ) THEN tscale = 1.0_DP / ( nx * ny * nz ) idir = +1 ELSE IF( isign > 0 ) THEN tscale = 1.0_DP idir = -1 END IF IF( isign /= 0 ) CALL dcft3( f(1), ldx,ldx*ldy, f(1), ldx,ldx*ldy, & nx,ny,nz, idir, tscale, work(1), lwork) #elif defined __SCSL IF ( isign /= 0 ) THEN IF ( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / DBLE( nx * ny * nz ) ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP END IF CALL ZZFFT3D ( idir, nx, ny, nz, tscale, f(1), ldx, ldy, & f(1), ldx, ldy, table(1,ip), work(1), isys ) END IF #elif defined __SUNPERF IF( isign < 0 ) THEN CALL zfft3f ( nx, ny, nz, f(1), ldx, ldy, table(1,ip), ltabl ) tscale = 1.0_DP / DBLE( nx * ny * nz ) CALL ZDSCAL ( ldx*ldy*ldz, tscale, f(1), 1 ) ELSE IF( isign > 0 ) THEN CALL zfft3b ( nx, ny, nz, f(1), ldx, ldy, table(1,ip), ltabl ) ENDIF #elif defined __SX6 # if defined ASL # if defined MICRO CALL hfc3bf (nx,ny,nz, f(1), ldx,ldy, ldz, & -isign, iw0(1,ip), auxp(1,ip), cw2(1), nbtasks, err) # else CALL zfc3bf (nx,ny,nz, f(1), ldx,ldy, ldz, & -isign, iw0(1,ip), auxp(1,ip), cw2(1), err) # endif IF ( isign < 0) THEN tscale = 1.0_DP / DBLE( nx * ny * nz ) call ZDSCAL( ldx * ldy * ldz, tscale, f(1), 1) END IF # else ! for some reason the error variable is not set by this driver on NEC SX machines err = 0 tscale = 1.0_DP IF ( isign < 0) THEN tscale = tscale / DBLE( nx * ny * nz ) END IF CALL ZZFFT3D (isign, nx,ny,nz, tscale, f(1), ldx,ldy, & f_out(1), ldx,ldy, auxp(1,ip), cw2(1), err) !$omp parallel do private(j,i,k_off,kj_offset) do k=1,nz k_off = (k-1)*ldx*ldy do j=1,ny kj_offset = (j-1)*ldx + k_off do i=1,nx f(i+kj_offset) = f_out(i+kj_offset) end do end do end do !$omp end parallel do # endif IF (err /= 0) CALL errore('cfft3d','FFT returned an error ', err) DEALLOCATE(cw2) #endif RETURN END SUBROUTINE cfft3d ! !=----------------------------------------------------------------------=! ! ! ! ! 3D scalar FFTs, but using sticks! ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cfft3ds (f, nx, ny, nz, ldx, ldy, ldz, isign, & do_fft_x, do_fft_y) ! ! driver routine for 3d complex "reduced" fft - see cfft3d ! The 3D fft are computed only on lines and planes which have ! non zero elements. These lines and planes are defined by ! the two integer vectors do_fft_x(ldy*nz) and do_fft_y(nz) ! (1 = perform fft, 0 = do not perform fft) ! This routine is implemented only for fftw, essl, acml ! If not implemented, cfft3d is called instead ! !---------------------------------------------------------------------- ! implicit none integer :: nx, ny, nz, ldx, ldy, ldz, isign ! ! logical dimensions of the fft ! physical dimensions of the f array ! sign of the transformation complex(DP) :: f ( ldx * ldy * ldz ) integer :: do_fft_x(:), do_fft_y(:) ! integer :: m, incx1, incx2 INTEGER :: i, k, j, err, idir, ip, ii, jj REAL(DP) :: tscale INTEGER, SAVE :: icurrent = 1 INTEGER, SAVE :: dims(3,ndims) = -1 #if defined __FFTW || __FFTW3 C_POINTER, SAVE :: fw_plan ( 3, ndims ) = 0 C_POINTER, SAVE :: bw_plan ( 3, ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx REAL (DP), SAVE :: fw_table( ltabl, 3, ndims ) REAL (DP), SAVE :: bw_table( ltabl, 3, ndims ) #else CALL cfft3d (f, nx, ny, nz, ldx, ldy, ldz, isign) RETURN #endif tscale = 1.0_DP ! WRITE( stdout, fmt="('DEBUG cfft3ds :',6I6)") nx, ny, nz, ldx, ldy, ldz ! WRITE( stdout, fmt="('DEBUG cfft3ds :',24I2)") do_fft_x ! WRITE( stdout, fmt="('DEBUG cfft3ds :',24I2)") do_fft_y IF( ny /= ldy ) & CALL errore(' cfft3ds ', ' wrong dimensions: ny /= ldy ', 1 ) ip = -1 DO i = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters IF( ( nx == dims(1,i) ) .and. ( ny == dims(2,i) ) .and. & ( nz == dims(3,i) ) ) THEN ip = i EXIT END IF END DO IF( ip == -1 ) THEN ! no table exist for these parameters ! initialize a new one #if defined __FFTW IF( fw_plan( 1, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 1, icurrent) ) IF( bw_plan( 1, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 1, icurrent) ) IF( fw_plan( 2, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 2, icurrent) ) IF( bw_plan( 2, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 2, icurrent) ) IF( fw_plan( 3, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 3, icurrent) ) IF( bw_plan( 3, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 3, icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 1, icurrent), nx, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 1, icurrent), nx, idir) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 2, icurrent), ny, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 2, icurrent), ny, idir) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 3, icurrent), nz, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 3, icurrent), nz, idir) #elif defined __FFTW3 IF( fw_plan( 1, icurrent) /= 0 ) & CALL dfftw_destroy_plan( fw_plan( 1, icurrent) ) IF( bw_plan( 1, icurrent) /= 0 ) & CALL dfftw_destroy_plan( bw_plan( 1, icurrent) ) IF( fw_plan( 2, icurrent) /= 0 ) & CALL dfftw_destroy_plan( fw_plan( 2, icurrent) ) IF( bw_plan( 2, icurrent) /= 0 ) & CALL dfftw_destroy_plan( bw_plan( 2, icurrent) ) IF( fw_plan( 3, icurrent) /= 0 ) & CALL dfftw_destroy_plan( fw_plan( 3, icurrent) ) IF( bw_plan( 3, icurrent) /= 0 ) & CALL dfftw_destroy_plan( bw_plan( 3, icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 1, icurrent), & 1, nx, 1, f(1:), (/ldx, ldy, ldz/), 1, ldx, & f(1:), (/ldx, ldy, ldz/), 1, ldx, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 1, icurrent), & 1, nx, 1, f(1:), (/ldx, ldy, ldz/), 1, ldx, & f(1:), (/ldx, ldy, ldz/), 1, ldx, idir, FFTW_ESTIMATE) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 2, icurrent), & 1, ny, nx, f(1:), (/ldx, ldy, ldz/), ldx, 1, & f(1:), (/ldx, ldy, ldz/), ldx, 1, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 2, icurrent), & 1, ny, nx, f(1:), (/ldx, ldy, ldz/), ldx, 1, & f(1:), (/ldx, ldy, ldz/), ldx, 1, idir, FFTW_ESTIMATE) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 3, icurrent), & 1, nz, nx*ny, f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, & f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 3, icurrent), & 1, nz, nx*ny, f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, & f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, idir, FFTW_ESTIMATE) #elif defined __ESSL || defined __LINUX_ESSL ! ! ESSL sign convention for fft's is the opposite of the "usual" one ! tscale = 1.0_DP ! x - direction incx1 = 1; incx2 = ldx; m = 1 CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nx, m, 1, 1.0_DP, & fw_table( 1, 1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nx, m, -1, 1.0_DP, & bw_table(1, 1, icurrent), ltabl, work(1), lwork ) ! y - direction incx1 = ldx; incx2 = 1; m = nx; CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, ny, m, 1, 1.0_DP, & fw_table( 1, 2, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, ny, m, -1, 1.0_DP, & bw_table(1, 2, icurrent), ltabl, work(1), lwork ) ! z - direction incx1 = ldx * ldy; incx2 = 1; m = ldx * ny CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nz, m, 1, 1.0_DP, & fw_table(1, 3, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nz, m, -1, 1.0_DP, & bw_table(1, 3, icurrent), ltabl, work(1), lwork ) #else CALL errore(' cfft3ds ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = nx; dims(2,icurrent) = ny; dims(3,icurrent) = nz ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF IF ( isign > 0 ) THEN ! ! i - direction ... ! incx1 = 1; incx2 = ldx; m = 1 do k = 1, nz do j = 1, ny jj = j + ( k - 1 ) * ldy ii = 1 + ldx * ( jj - 1 ) if ( do_fft_x( jj ) == 1 ) THEN #if defined __FFTW call FFTW_INPLACE_DRV_1D( bw_plan( 1, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( bw_plan( 1, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1,incx2, f (ii), incx1,incx2, nx, m, & -isign, 1.0_DP, bw_table ( 1, 1, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 2) #endif endif enddo enddo ! ! ... j-direction ... ! incx1 = ldx; incx2 = 1; m = nx do k = 1, nz ii = 1 + ldx * ldy * ( k - 1 ) if ( do_fft_y( k ) == 1 ) then #if defined __FFTW call FFTW_INPLACE_DRV_1D( bw_plan( 2, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( bw_plan( 2, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1, incx2, f (ii), incx1, incx2, nx, m, & -isign, 1.0_DP, bw_table ( 1, 2, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 3) #endif endif enddo ! ! ... k-direction ! incx1 = ldx * ldy; incx2 = 1; m = ldx * ny #if defined __FFTW call FFTW_INPLACE_DRV_1D( bw_plan( 3, ip), m, f( 1 ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( bw_plan( 3, ip), f(1:), f(1:) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f( 1 ), incx1, incx2, f( 1 ), incx1, incx2, nz, m, & -isign, 1.0_DP, bw_table ( 1, 3, ip ), ltabl, work( 1 ), lwork) #endif ELSE ! ! ... k-direction ! incx1 = ldx * ny; incx2 = 1; m = ldx * ny #if defined __FFTW call FFTW_INPLACE_DRV_1D( fw_plan( 3, ip), m, f( 1 ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( fw_plan( 3, ip), f(1:), f(1:) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f( 1 ), incx1, incx2, f( 1 ), incx1, incx2, nz, m, & -isign, 1.0_DP, fw_table ( 1, 3, ip ), ltabl, work( 1 ), lwork) #endif ! ! ... j-direction ... ! incx1 = ldx; incx2 = 1; m = nx do k = 1, nz ii = 1 + ldx * ldy * ( k - 1 ) if ( do_fft_y ( k ) == 1 ) then #if defined __FFTW call FFTW_INPLACE_DRV_1D( fw_plan( 2, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( fw_plan( 2, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1, incx2, f (ii), incx1, incx2, ny, m, & -isign, 1.0_DP, fw_table ( 1, 2, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 4) #endif endif enddo ! ! i - direction ... ! incx1 = 1; incx2 = ldx; m = 1 do k = 1, nz do j = 1, ny jj = j + ( k - 1 ) * ldy ii = 1 + ldx * ( jj - 1 ) if ( do_fft_x( jj ) == 1 ) then #if defined __FFTW call FFTW_INPLACE_DRV_1D( fw_plan( 1, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( fw_plan( 1, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1,incx2, f (ii), incx1,incx2, nx, m, & -isign, 1.0_DP, fw_table ( 1, 1, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 5) #endif endif enddo enddo call DSCAL (2 * ldx * ldy * nz, 1.0_DP/(nx * ny * nz), f(1), 1) END IF RETURN END SUBROUTINE cfft3ds ! !=----------------------------------------------------------------------=! ! ! ! ! 3D parallel FFT on sub-grids ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cft_b ( f, nx, ny, nz, ldx, ldy, ldz, imin3, imax3, sgn ) ! driver routine for 3d complex fft's on box grid, parallel case ! fft along xy is done only on planes that correspond to dense grid ! planes on the current processor, i.e. planes with imin3 <= nz <= imax3 ! implemented for essl, fftw, scsl, complib, only for sgn=1 (f(R) => f(G)) ! (beware: here the "essl" convention for the sign of the fft is used!) ! implicit none integer nx,ny,nz,ldx,ldy,ldz,imin3,imax3,sgn complex(dp) :: f(:) integer isign, naux, ibid, nplanes, nstart, k real(DP) :: tscale integer :: ip, i integer, save :: icurrent = 1 integer, save :: dims( 4, ndims ) = -1 #if defined __FFTW || __FFTW3 C_POINTER, save :: bw_planz( ndims ) = 0 C_POINTER, save :: bw_planx( ndims ) = 0 C_POINTER, save :: bw_plany( ndims ) = 0 C_POINTER, save :: bw_planxy( ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx real(dp), save :: aux3( ltabl, ndims ) real(dp), save :: aux2( ltabl, ndims ) real(dp), save :: aux1( ltabl, ndims ) #elif defined __SCSL INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256 real(dp), save :: bw_coeffz( ltabl, ndims ) real(dp), save :: bw_coeffy( ltabl, ndims ) real(dp), save :: bw_coeffx( ltabl, ndims ) REAL(DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #endif isign = -sgn tscale = 1.0_DP if ( isign > 0 ) then call errore('cft_b','not implemented',isign) end if ! ! 2d fft on xy planes - only needed planes are transformed ! note that all others are left in an unusable state ! nplanes = imax3 - imin3 + 1 nstart = ( imin3 - 1 ) * ldx * ldy + 1 ! ! Here initialize table only if necessary ! ip = -1 DO i = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters IF ( ( nx == dims(1,i) ) .and. ( ny == dims(2,i) ) .and. & ( nz == dims(3,i) ) .and. ( nplanes == dims(4,i) ) ) THEN ip = i EXIT END IF END DO IF( ip == -1 ) THEN ! no table exist for these parameters ! initialize a new one #if defined __FFTW if ( bw_planz(icurrent) /= 0 ) & call DESTROY_PLAN_1D( bw_planz(icurrent) ) call CREATE_PLAN_1D( bw_planz(icurrent), nz, 1 ) if ( bw_planx(icurrent) /= 0 ) & call DESTROY_PLAN_1D( bw_planx(icurrent) ) call CREATE_PLAN_1D( bw_planx(icurrent), nx, 1 ) if ( bw_plany(icurrent) /= 0 ) & call DESTROY_PLAN_1D( bw_plany(icurrent) ) call CREATE_PLAN_1D( bw_plany(icurrent), ny, 1 ) if ( bw_planxy(icurrent) /= 0 ) & call DESTROY_PLAN_2D( bw_planxy(icurrent) ) call CREATE_PLAN_2D( bw_planxy(icurrent), nx, ny, 1 ) ! #elif defined __FFTW3 if ( bw_planz(icurrent) /= 0 ) & call dfftw_destroy_plan(bw_planz(icurrent)) call dfftw_plan_many_dft( bw_planz(icurrent), 1, nz, ldx*ldy, & f(1:), (/SIZE(f)/), ldx*ldy, 1, f(1:), (/SIZE(f)/), ldx*ldy, 1, & 1, FFTW_ESTIMATE ) if ( bw_planxy(icurrent) /= 0 ) & call dfftw_destroy_plan(bw_planxy(icurrent)) call dfftw_plan_many_dft( bw_planxy(icurrent), 2, (/nx, ny/), nplanes,& f(nstart:), (/ldx, ldy/), 1, ldx*ldy, f(nstart:), (/ldx, ldy/), & 1, ldx*ldy, 1, FFTW_ESTIMATE ) #elif defined __ESSL || defined __LINUX_ESSL if( nz /= dims(3,icurrent) ) then call dcft( 1, f(1), ldx*ldy, 1, f(1), ldx*ldy, 1, nz, ldx*ldy, & isign, tscale, aux3(1,icurrent), ltabl, work(1), lwork) end if call dcft( 1, f(1), 1, ldx, f(1), 1, ldx, nx, ldy*nplanes, isign, & tscale, aux1(1,icurrent), ltabl, work(1), lwork) if( ny /= dims(2,icurrent) ) then call dcft( 1, f(1), ldx, 1, f(1), ldx, 1, ny, ldx, isign, & tscale, aux2(1,icurrent), ltabl, work(1), lwork) end if #elif defined __SCSL CALL ZZFFT (0, nz, 0.0_DP, DUMMY, 1, bw_coeffz(1, icurrent), & work(1), isys) CALL ZZFFT (0, ny, 0.0_DP, DUMMY, 1, bw_coeffy(1, icurrent), & work(1), isys) CALL ZZFFT (0, nx, 0.0_DP, DUMMY, 1, bw_coeffx(1, icurrent), & work(1), isys) #else CALL errore(' cft_b ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = nx; dims(2,icurrent) = ny dims(3,icurrent) = nz; dims(4,icurrent) = nplanes ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF #if defined __FFTW ! ! fft along Z ! call FFTW_INPLACE_DRV_1D( bw_planz(ip), ldx*ldy, f(1), ldx*ldy, 1 ) ! ! fft along Y ! fft along X ! do k = imin3, imax3 call FFTW_INPLACE_DRV_1D( bw_plany(ip), nx, f((k-1)*ldx*ldy + 1), ldx, 1 ) call FFTW_INPLACE_DRV_1D( bw_planx(ip), ny, f((k-1)*ldx*ldy + 1), 1, ldx ) end do #elif defined __FFTW3 call dfftw_execute_dft(bw_planz(ip), f(1:), f(1:)) call dfftw_execute_dft(bw_planxy(ip), f(nstart:), f(nstart:)) #elif defined __ESSL || defined __LINUX_ESSL ! fft in the z-direction... call dcft( 0, f(1), ldx*ldy, 1, f(1), ldx*ldy, 1, nz, ldx*ldy, isign, & tscale, aux3(1,ip), ltabl, work(1), lwork) ! x-direction call dcft( 0, f(nstart), 1, ldx, f(nstart), 1, ldx, nx, ldy*nplanes, & isign, tscale, aux1(1,ip), ltabl, work(1), lwork) ! y-direction DO K = imin3, imax3 nstart = ( k - 1 ) * ldx * ldy + 1 call dcft( 0, f(nstart), ldx, 1, f(nstart), ldx, 1, ny, ldx, isign, & tscale, aux2(1,ip), ltabl, work(1), lwork) END DO #elif defined __SCSL CALL ZZFFTMR (1, nz, ldx*ldy, tscale, f(1), ldx*ldy, f(1), & ldx*ldy, bw_coeffz(1, ip), work(1), isys) CALL ZZFFTM (1, nx, ldy*nplanes, tscale, f(nstart), ldx, & f(nstart), ldx, bw_coeffx(1, ip), work(1), isys) DO k = imin3, imax3 nstart = ( k - 1 ) * ldx * ldy + 1 CALL ZZFFTMR (1, ny, ldx, tscale, f(nstart), ldx, f(nstart), & ldx, bw_coeffy(1, ip), work(1), isys) END DO #endif RETURN END SUBROUTINE cft_b ! !=----------------------------------------------------------------------=! ! ! ! ! 3D parallel FFT on sub-grids, to be called inside OpenMP region ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cft_b_omp_init ( nx, ny, nz ) ! driver routine for 3d complex fft's on box grid, init subroutine ! implicit none integer, INTENT(IN) :: nx,ny,nz ! ! Here initialize table ! #if defined __FFTW !$omp single IF( cft_b_bw_planz == 0 ) THEN CALL CREATE_PLAN_1D( cft_b_bw_planz, nz, 1 ) cft_b_dims(3) = nz END IF IF( cft_b_bw_planx == 0 ) THEN CALL CREATE_PLAN_1D( cft_b_bw_planx, nx, 1 ) cft_b_dims(1) = nx END IF IF( cft_b_bw_plany == 0 ) THEN CALL CREATE_PLAN_1D( cft_b_bw_plany, ny, 1 ) cft_b_dims(2) = ny END IF !$omp end single #else CALL errore(' cft_b_omp_init ',' no scalar fft driver specified ', 1) #endif RETURN END SUBROUTINE cft_b_omp_init SUBROUTINE cft_b_omp ( f, nx, ny, nz, ldx, ldy, ldz, imin3, imax3, sgn ) ! driver routine for 3d complex fft's on box grid, parallel (MPI+OpenMP) case ! fft along xy is done only on planes that correspond to dense grid ! planes on the current processor, i.e. planes with imin3 <= nz <= imax3 ! implemented ONLY for internal fftw, and only for sgn=1 (f(R) => f(G)) ! (beware: here the "essl" convention for the sign of the fft is used!) ! ! This driver is meant for calls inside parallel OpenMP sections ! implicit none integer, INTENT(IN) :: nx,ny,nz,ldx,ldy,ldz,imin3,imax3,sgn complex(dp) :: f(:) INTEGER, SAVE :: k !$omp threadprivate (k) if ( -sgn > 0 ) then CALL errore('cft_b_omp','forward transform not implemented',1) end if #if defined __FFTW IF ( ( cft_b_bw_planz == 0 ) .or. ( cft_b_bw_planx == 0 ) .or. ( cft_b_bw_plany == 0 ) ) THEN CALL errore('cft_b_omp','plan not initialized',1) END IF ! consistency check IF ( ( nx /= cft_b_dims(1) ) .or. ( ny /= cft_b_dims(2) ) .or. ( nz /= cft_b_dims(3) ) ) THEN CALL errore('cft_b_omp', 'dimensions are inconsistent with the existing plan',1) END IF ! fft along Z ! call FFTW_INPLACE_DRV_1D( cft_b_bw_planz, ldx*ldy, f(1), ldx*ldy, 1 ) ! ! fft along Y ! fft along X ! do k = imin3, imax3 call FFTW_INPLACE_DRV_1D( cft_b_bw_plany, nx, f((k-1)*ldx*ldy + 1), ldx, 1 ) call FFTW_INPLACE_DRV_1D( cft_b_bw_planx, ny, f((k-1)*ldx*ldy + 1), 1, ldx ) end do #else CALL errore(' cft_b_omp ',' no scalar fft driver specified ', 1) #endif RETURN END SUBROUTINE cft_b_omp ! !=----------------------------------------------------------------------=! ! ! ! ! FFT support Functions/Subroutines ! ! ! !=----------------------------------------------------------------------=! ! ! integer function good_fft_dimension (n) ! ! Determines the optimal maximum dimensions of fft arrays ! Useful on some machines to avoid memory conflicts ! USE kinds, only : DP IMPLICIT NONE INTEGER :: n, nx REAL(DP) :: log2n ! ! this is the default: max dimension = fft dimension nx = n ! #if defined(__ESSL) || defined(__LINUX_ESSL) log2n = LOG ( dble (n) ) / LOG ( 2.0_DP ) ! log2n is the logarithm of n in base 2 IF ( ABS (NINT(log2n) - log2n) < 1.0d-8 ) nx = n + 1 ! if n is a power of 2 (log2n is integer) increase dimension by 1 #elif defined(__SX6) ! if (mod (n, 2) ==0) nx = n + 1 ! for nec vector machines: if n is even increase dimension by 1 #endif ! good_fft_dimension = nx return end function good_fft_dimension !=----------------------------------------------------------------------=! function allowed (nr) ! find if the fft dimension is a good one ! a "bad one" is either not implemented (as on IBM with ESSL) ! or implemented but with awful performances (most other cases) USE kinds implicit none integer :: nr logical :: allowed integer :: pwr (5) integer :: mr, i, fac, p, maxpwr integer :: factors( 5 ) = (/ 2, 3, 5, 7, 11 /) ! find the factors of the fft dimension mr = nr pwr = 0 factors_loop: do i = 1, 5 fac = factors (i) maxpwr = NINT ( LOG( DBLE (mr) ) / LOG( DBLE (fac) ) ) + 1 do p = 1, maxpwr if ( mr == 1 ) EXIT factors_loop if ( MOD (mr, fac) == 0 ) then mr = mr / fac pwr (i) = pwr (i) + 1 endif enddo end do factors_loop IF ( nr /= ( mr * 2**pwr (1) * 3**pwr (2) * 5**pwr (3) * 7**pwr (4) * 11**pwr (5) ) ) & CALL errore (' allowed ', ' what ?!? ', 1 ) if ( mr /= 1 ) then ! fft dimension contains factors > 11 : no good in any case allowed = .false. else #if defined __ESSL || defined __LINUX_ESSL ! IBM machines with essl libraries allowed = ( pwr(1) >= 1 ) .and. ( pwr(2) <= 2 ) .and. ( pwr(3) <= 1 ) .and. & ( pwr(4) <= 1 ) .and. ( pwr(5) <= 1 ) .and. & ( ( (pwr(2) == 0 ) .and. ( pwr(3) + pwr(4) + pwr(5) ) <= 2 ) .or. & ( (pwr(2) /= 0 ) .and. ( pwr(3) + pwr(4) + pwr(5) ) <= 1 ) ) #else ! fftw and all other cases: no factors 7 and 11 allowed = ( ( pwr(4) == 0 ) .and. ( pwr(5) == 0 ) ) #endif endif return end function allowed !=----------------------------------------------------------------------=! INTEGER FUNCTION good_fft_order( nr, np ) ! ! This function find a "good" fft order value greater or equal to "nr" ! ! nr (input) tentative order n of a fft ! ! np (optional input) if present restrict the search of the order ! in the ensamble of multiples of np ! ! Output: the same if n is a good number ! the closest higher number that is good ! an fft order is not good if not implemented (as on IBM with ESSL) ! or implemented but with awful performances (most other cases) ! IMPLICIT NONE INTEGER, INTENT(IN) :: nr INTEGER, OPTIONAL, INTENT(IN) :: np INTEGER :: new new = nr IF( PRESENT( np ) ) THEN DO WHILE( ( ( .NOT. allowed( new ) ) .OR. ( MOD( new, np ) /= 0 ) ) .AND. ( new <= nfftx ) ) new = new + 1 END DO ELSE DO WHILE( ( .NOT. allowed( new ) ) .AND. ( new <= nfftx ) ) new = new + 1 END DO END IF IF( new > nfftx ) & CALL errore( ' good_fft_order ', ' fft order too large ', new ) good_fft_order = new RETURN END FUNCTION good_fft_order !=----------------------------------------------------------------------=! END MODULE fft_scalar !=----------------------------------------------------------------------=! espresso-5.0.2/Modules/read_ncpp.f900000644000700200004540000002027412053145633016252 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine read_ncpp (iunps, np, upf) !----------------------------------------------------------------------- ! USE kinds, only: dp USE parameters, ONLY: lmaxx use funct, only: set_dft_from_name, dft_is_hybrid USE pseudo_types implicit none ! TYPE (pseudo_upf) :: upf integer :: iunps, np ! real(DP) :: cc(2), alpc(2), aps(6,0:3), alps(3,0:3), & a_nlcc, b_nlcc, alpha_nlcc real(DP) :: x, vll real(DP), allocatable:: vnl(:,:) real(DP), parameter :: rcut = 10.d0, e2 = 2.d0 real(DP), external :: qe_erf integer :: nlc, nnl, lmax, lloc integer :: nb, i, l, ir, ios=0 logical :: bhstype, numeric ! !==================================================================== ! read norm-conserving PPs ! read (iunps, *, end=300, err=300, iostat=ios) upf%dft if (upf%dft(1:2) .eq.'**') upf%dft = 'PZ' read (iunps, *, err=300, iostat=ios) upf%psd, upf%zp, lmax, nlc, & nnl, upf%nlcc, lloc, bhstype if (nlc > 2 .or. nnl > 3) & call errore ('read_ncpp', 'Wrong nlc or nnl', np) if (nlc*nnl < 0) call errore ('read_ncpp', 'nlc*nnl < 0 ? ', np) if (upf%zp <= 0d0 .or. upf%zp > 100 ) & call errore ('read_ncpp', 'Wrong zp ', np) ! ! In numeric pseudopotentials both nlc and nnl are zero. ! numeric = (nlc <= 0) .and. (nnl <= 0) ! if (lloc == -1000) lloc = lmax if (lloc < 0 .or. lmax < 0 .or. & .not.numeric .and. (lloc > min(lmax+1,lmaxx+1) .or. & lmax > max(lmaxx,lloc)) .or. & numeric .and. (lloc > lmax .or. lmax > lmaxx) ) & call errore ('read_ncpp', 'wrong lmax and/or lloc', np) if (.not.numeric ) then ! ! read here pseudopotentials in analytic form ! read (iunps, *, err=300, iostat=ios) & (alpc(i), i=1,2), (cc(i), i=1,2) if (abs (cc(1)+cc(2)-1.d0) > 1.0d-6) & call errore ('read_ncpp', 'wrong pseudopotential coefficients', 1) do l = 0, lmax read (iunps, *, err=300, iostat=ios) (alps(i,l), i=1,3), & (aps(i,l), i=1,6) enddo if (upf%nlcc ) then read (iunps, *, err=300, iostat=ios) & a_nlcc, b_nlcc, alpha_nlcc if (alpha_nlcc <= 0.d0) call errore('read_ncpp','alpha_nlcc=0',np) endif endif read (iunps, *, err=300, iostat=ios) upf%zmesh, upf%xmin, upf%dx, & upf%mesh, upf%nwfc if ( upf%mesh <= 0) & call errore ('read_ncpp', 'wrong number of mesh points', np) if ( upf%nwfc < 0 .or. & (upf%nwfc < lmax .and. lloc == lmax) .or. & (upf%nwfc < lmax+1 .and. lloc /= lmax) ) & call errore ('read_ncpp', 'wrong no. of wfcts', np) ! ! Here pseudopotentials in numeric form are read ! ALLOCATE ( upf%chi(upf%mesh,upf%nwfc), upf%rho_atc(upf%mesh) ) upf%rho_atc(:) = 0.d0 ALLOCATE ( upf%lchi(upf%nwfc), upf%oc(upf%nwfc) ) allocate (vnl(upf%mesh, 0:lmax)) if (numeric ) then do l = 0, lmax read (iunps, '(a)', err=300, iostat=ios) read (iunps, *, err=300, iostat=ios) (vnl(ir,l), ir=1,upf%mesh ) enddo if ( upf%nlcc ) then read (iunps, *, err=300, iostat=ios) (upf%rho_atc(ir), ir=1,upf%mesh) endif endif ! ! Here pseudowavefunctions (in numeric form) are read ! do nb = 1, upf%nwfc read (iunps, '(a)', err=300, iostat=ios) read (iunps, *, err=300, iostat=ios) upf%lchi(nb), upf%oc(nb) ! ! Test lchi and occupation numbers ! if (nb <= lmax .and. upf%lchi(nb)+1 /= nb) & call errore ('read_ncpp', 'order of wavefunctions', 1) if (upf%lchi(nb) > lmaxx .or. upf%lchi(nb) < 0) & call errore ('read_ncpp', 'wrong lchi', np) if (upf%oc(nb) < 0.d0 .or. upf%oc(nb) > 2.d0*(2*upf%lchi(nb)+1)) & call errore ('read_ncpp', 'wrong oc', np) read (iunps, *, err=300, iostat=ios) ( upf%chi(ir,nb), ir=1,upf%mesh ) enddo ! !==================================================================== ! PP read: now setup ! IF ( numeric ) THEN upf%generated='Generated by old ld1 code (numerical format)' ELSE upf%generated='From published tables, or generated by old fitcar code (analytical format)' END IF call set_dft_from_name( upf%dft ) ! ! calculate the number of beta functions ! upf%nbeta = 0 do l = 0, lmax if (l /= lloc ) upf%nbeta = upf%nbeta + 1 enddo ALLOCATE ( upf%lll(upf%nbeta) ) nb = 0 do l = 0, lmax if (l /= lloc ) then nb = nb + 1 upf%lll (nb) = l end if enddo ! ! compute the radial mesh ! ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) ) do ir = 1, upf%mesh x = upf%xmin + DBLE (ir - 1) * upf%dx upf%r(ir) = exp (x) / upf%zmesh upf%rab(ir) = upf%dx * upf%r(ir) enddo do ir = 1, upf%mesh if ( upf%r(ir) > rcut) then upf%kkbeta = ir go to 5 end if end do upf%kkbeta = upf%mesh ! ! ... force kkbeta to be odd for simpson integration (obsolete?) ! 5 upf%kkbeta = 2 * ( ( upf%kkbeta + 1 ) / 2) - 1 ! ALLOCATE ( upf%kbeta(upf%nbeta) ) upf%kbeta(:) = upf%kkbeta ALLOCATE ( upf%vloc(upf%mesh) ) upf%vloc (:) = 0.d0 ! if (.not. numeric) then ! ! bring analytic potentials into numerical form ! IF ( nlc == 2 .AND. nnl == 3 .AND. bhstype ) & CALL bachel( alps(1,0), aps(1,0), 1, lmax ) ! do i = 1, nlc do ir = 1, upf%kkbeta upf%vloc (ir) = upf%vloc (ir) - upf%zp * e2 * cc (i) * & qe_erf ( sqrt (alpc(i)) * upf%r(ir) ) / upf%r(ir) end do end do do l = 0, lmax vnl (:, l) = upf%vloc (1:upf%mesh) do i = 1, nnl vnl (:, l) = vnl (:, l) + e2 * (aps (i, l) + & aps (i + 3, l) * upf%r (:) **2) * & exp ( - upf%r(:) **2 * alps (i, l) ) enddo enddo if ( upf%nlcc ) then upf%rho_atc(:) = ( a_nlcc + b_nlcc*upf%r(:)**2 ) * & exp ( -upf%r(:)**2 * alpha_nlcc ) end if ! end if ! ! assume l=lloc as local part and subtract from the other channels ! if (lloc <= lmax ) & upf%vloc (:) = vnl (:, lloc) ! lloc > lmax is allowed for PP in analytical form only ! it means that only the erf part is taken as local part do l = 0, lmax if (l /= lloc) vnl (:, l) = vnl(:, l) - upf%vloc(:) enddo ! ! compute the atomic charges ! ALLOCATE ( upf%rho_at (upf%mesh) ) upf%rho_at(:) = 0.d0 do nb = 1, upf%nwfc if ( upf%oc(nb) > 0.d0) then do ir = 1, upf%mesh upf%rho_at(ir) = upf%rho_at(ir) + upf%oc(nb) * upf%chi(ir,nb)**2 enddo endif enddo !==================================================================== ! convert to separable (KB) form ! ALLOCATE ( upf%beta (upf%mesh, upf%nbeta) ) ALLOCATE ( upf%dion (upf%nbeta,upf%nbeta), upf%lll (upf%nbeta) ) upf%dion (:,:) = 0.d0 nb = 0 do l = 0, lmax if (l /= lloc ) then nb = nb + 1 ! upf%beta is used here as work space do ir = 1, upf%kkbeta upf%beta (ir, nb) = upf%chi(ir, l+1) **2 * vnl(ir, l) end do call simpson (upf%kkbeta, upf%beta (1, nb), upf%rab, vll ) upf%dion (nb, nb) = 1.d0 / vll ! upf%beta stores projectors |beta(r)> = |V_nl(r)phi(r)> do ir = 1, upf%kkbeta upf%beta (ir, nb) = vnl (ir, l) * upf%chi (ir, l + 1) enddo upf%lll (nb) = l endif enddo deallocate (vnl) ! ! for compatibility with USPP ! upf%nqf = 0 upf%nqlc= 0 upf%tvanp =.false. upf%tpawp =.false. upf%has_so=.false. ! ! Set additional, not present, variables to dummy values allocate(upf%els(upf%nwfc)) upf%els(:) = 'nX' allocate(upf%els_beta(upf%nbeta)) upf%els_beta(:) = 'nX' allocate(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta)) upf%rcut(:) = 0._dp upf%rcutus(:) = 0._dp ! return 300 call errore ('read_ncpp', 'pseudo file is empty or wrong', abs (np) ) end subroutine read_ncpp espresso-5.0.2/Modules/io_files.f900000644000700200004540000003213212053145633016104 0ustar marsamoscm! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE io_files !=----------------------------------------------------------------------------=! ! USE parameters, ONLY: ntypx ! ! ... The name of the files ! IMPLICIT NONE ! SAVE ! CHARACTER(len=256) :: tmp_dir = './' ! directory for temporary files CHARACTER(len=256) :: wfc_dir = 'undefined' ! directory for large files on each node, should be kept 'undefined' if not known CHARACTER(len=256) :: prefix = 'os' ! prepended to file names CHARACTER(len=6) :: nd_nmbr = '000000' ! node number (used only in parallel case) CHARACTER(len=256) :: pseudo_dir = './' ! original location of PP files CHARACTER(len=256) :: pseudo_dir_cur = ' ' ! current location when restarting CHARACTER(len=256) :: psfile( ntypx ) = 'UPF' CHARACTER(len=256) :: outdir = './' ! CHARACTER(len=256) :: qexml_version = ' ' ! the format of the current qexml datafile LOGICAL :: qexml_version_init = .FALSE. ! whether the fmt has been read or not ! CHARACTER(LEN=256) :: input_drho = ' ' ! name of the file with the input drho CHARACTER(LEN=256) :: output_drho = ' ' ! name of the file with the output drho ! CHARACTER(LEN=5 ), PARAMETER :: crash_file = 'CRASH' CHARACTER (LEN=261) :: & exit_file = "os.EXIT" ! file required for a soft exit ! CHARACTER (LEN=9), PARAMETER :: xmlpun_base = 'data-file' CHARACTER (LEN=13), PARAMETER :: xmlpun = xmlpun_base // '.xml' ! ! ... The units where various variables are saved ! INTEGER :: rhounit = 17 INTEGER :: crashunit = 15 INTEGER :: pseudounit = 10 INTEGER :: opt_unit = 20 ! optional unit ! ! ... units in pwscf ! INTEGER :: iunres = 1 ! unit for the restart of the run INTEGER :: iunpun = 4 ! unit for saving the final results INTEGER :: iunwfc = 10 ! unit with wavefunctions INTEGER :: iunoldwfc = 11 ! unit with old wavefunctions INTEGER :: iunoldwfc2 = 12 ! as above at step -2 INTEGER :: iunat = 13 ! unit for saving (orthogonal) atomic wfcs INTEGER :: iunsat = 14 ! unit for saving (orthogonal) atomic wfcs * S INTEGER :: iunocc = 15 ! unit for saving the atomic n_{ij} INTEGER :: iunigk = 16 ! unit for saving indices INTEGER :: iunpaw = 17 ! unit for saving paw becsum and D_Hxc ! INTEGER :: iunexit = 26 ! unit for a soft exit INTEGER :: iunupdate = 27 ! unit for saving old positions (extrapolation) INTEGER :: iunnewimage = 28 ! unit for parallelization among images INTEGER :: iunlock = 29 ! as above (locking file) ! INTEGER :: iunbfgs = 30 ! unit for the bfgs restart file INTEGER :: iunatsicwfc = 31 ! unit for sic wfc ! INTEGER :: iuntmp = 90 ! temporary unit, when used must be closed ASAP ! INTEGER :: nwordwfc = 2 ! length of record in wavefunction file INTEGER :: nwordatwfc = 2 ! length of record in atomic wfc file INTEGER :: nwordwann = 2 ! length of record in sic wfc file ! ! ... "path" specific ! !... finite electric field (Umari) ! INTEGER :: iunefield = 31 ! unit to store wavefunction for calculatin electric field operator ! INTEGER :: iunefieldm = 32 !unit to store projectors for hermitean electric field potential ! INTEGER :: iunefieldp = 33 !unit to store projectors for hermitean electric field potential ! ! ... For Wannier Hamiltonian ! INTEGER :: iunwpp = 113 INTEGER :: iunwf = 114 INTEGER :: nwordwpp = 2 INTEGER :: nwordwf = 2 ! INTEGER, EXTERNAL :: find_free_unit CONTAINS ! !-------------------------------------------------------------------------- SUBROUTINE delete_if_present( filename, in_warning ) !-------------------------------------------------------------------------- ! USE io_global, ONLY : ionode, stdout ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: filename LOGICAL, OPTIONAL, INTENT(IN) :: in_warning LOGICAL :: exst, warning INTEGER :: iunit ! IF ( .NOT. ionode ) RETURN ! INQUIRE( FILE = filename, EXIST = exst ) ! IF ( exst ) THEN ! iunit = find_free_unit() ! warning = .FALSE. ! IF ( PRESENT( in_warning ) ) warning = in_warning ! OPEN( UNIT = iunit, FILE = filename , STATUS = 'OLD' ) CLOSE( UNIT = iunit, STATUS = 'DELETE' ) ! IF ( warning ) & WRITE( UNIT = stdout, FMT = '(/,5X,"WARNING: ",A, & & " file was present; old file deleted")' ) filename ! END IF ! RETURN ! END SUBROUTINE delete_if_present ! !-------------------------------------------------------------------------- FUNCTION check_writable ( file_path, process_id ) RESULT ( ios ) !-------------------------------------------------------------------------- ! ! ... if run by multiple processes, specific "process_id" to avoid ! ... opening, closing, deleting the same file from different processes ! ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: file_path INTEGER, OPTIONAL, INTENT(IN) :: process_id ! INTEGER :: ios ! CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ! ... check whether the scratch directory is writable ! ... note that file_path should end by a "/" ! IF ( PRESENT (process_id ) ) THEN OPEN( UNIT = 4, FILE = TRIM(file_path) // 'test' // & & TRIM( int_to_char ( process_id ) ), & & STATUS = 'UNKNOWN', FORM = 'UNFORMATTED', IOSTAT = ios ) ELSE OPEN( UNIT = 4, FILE = TRIM(file_path) // 'test', & STATUS = 'UNKNOWN', FORM = 'UNFORMATTED', IOSTAT = ios ) END IF ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! !----------------------------------------------------------------------- END FUNCTION check_writable !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine diropn (unit, extension, recl, exst, tmp_dir_) !----------------------------------------------------------------------- ! ! this routine opens a file named "prefix"."extension" in tmp_dir ! for direct I/O access ! If appropriate, the node number is added to the file name ! #if defined(__SX6) # define DIRECT_IO_FACTOR 1 #else # define DIRECT_IO_FACTOR 8 #endif ! ! the record length in direct-access I/O is given by the number of ! real*8 words times DIRECT_IO_FACTOR (may depend on the compiler) ! USE kinds implicit none ! ! first the input variables ! character(len=*) :: extension ! input: name of the file to open character(len=*), optional :: tmp_dir_ ! optional variable, if present it is used as tmp_dir integer :: unit, recl ! input: unit of the file to open ! input: length of the records logical :: exst ! output: if true the file exists ! ! local variables ! character(len=256) :: tempfile, filename ! complete file name integer :: ios integer*8 :: unf_recl ! used to check I/O operations ! length of the record logical :: opnd ! Check if the optional variable tmp_dir is included ! ! if true the file is already opened ! if (unit < 0) call errore ('diropn', 'wrong unit', 1) ! ! we first check that the file is not already openend ! ios = 0 inquire (unit = unit, opened = opnd) if (opnd) call errore ('diropn', "can't open a connected unit", abs(unit)) ! ! then we check the filename extension ! if (extension == ' ') call errore ('diropn','filename extension not given',2) filename = trim(prefix) // "." // trim(extension) if (present(tmp_dir_)) then tempfile = trim(tmp_dir_) // trim(filename) //nd_nmbr else tempfile = trim(tmp_dir) // trim(filename) //nd_nmbr endif inquire (file = tempfile, exist = exst) ! ! the unit for record length is unfortunately machine-dependent ! unf_recl = DIRECT_IO_FACTOR * int(recl, kind=kind(unf_recl)) if (unf_recl <= 0) call errore ('diropn', 'wrong record length', 3) ! open (unit, file = trim(adjustl(tempfile)), iostat = ios, form = 'unformatted', & status = 'unknown', access = 'direct', recl = unf_recl) if (ios /= 0) call errore ('diropn', 'error opening '//trim(tempfile), unit) return !----------------------------------------------------------------------- end subroutine diropn !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine seqopn (unit, extension, formatt, exst, tmp_dir_) !----------------------------------------------------------------------- ! ! this routine opens a file named "prefix"."extension" ! in tmp_dir for sequential I/O access ! If appropriate, the node number is added to the file name ! implicit none ! ! first the dummy variables ! character(len=*) :: formatt, extension ! input: name of the file to connect ! input: 'formatted' or 'unformatted' character(len=*), optional :: tmp_dir_ ! optional variable, if present it is used as tmp_dir integer :: unit ! input: unit to connect logical :: exst ! output: true if the file already exist ! ! here the local variables ! character(len=256) :: tempfile, filename ! complete file name integer :: ios ! integer variable to test I/O status logical :: opnd ! true if the file is already opened if (unit < 1) call errore ('seqopn', 'wrong unit', 1) ! ! test if the file is already opened ! ios = 0 inquire (unit = unit, opened = opnd) if (opnd) call errore ('seqopn', "can't open a connected unit", & abs (unit) ) ! ! then we check the extension of the filename ! if (extension.eq.' ') call errore ('seqopn','filename extension not given',2) filename = trim(prefix) // "." // trim(extension) ! Use the tmp_dir from input, if available if ( present(tmp_dir_) ) then tempfile = trim(tmp_dir_) // trim(filename) else tempfile = trim(tmp_dir) // trim(filename) end if if ( trim(nd_nmbr) == '1' .or. trim(nd_nmbr) == '01'.or. & trim(nd_nmbr) == '001' .or. trim(nd_nmbr) == '0001'.or. & trim(nd_nmbr) == '00001' .or. trim(nd_nmbr) == '000001' ) then ! ! do not add processor number to files opened by processor 1 ! in parallel execution: if only the first processor writes, ! we do not want the filename to be dependent on the number ! of processors ! !tempfile = tempfile else tempfile = trim(tempfile) // nd_nmbr end if inquire (file = tempfile, exist = exst) ! ! Open the file ! open (unit = unit, file = tempfile, form = formatt, status = & 'unknown', iostat = ios) if (ios /= 0) call errore ('seqopn', 'error opening '//trim(tempfile), unit) return !----------------------------------------------------------------------- end subroutine seqopn !----------------------------------------------------------------------- ! !=----------------------------------------------------------------------------=! END MODULE io_files !=----------------------------------------------------------------------------=! ! !---------------------------------------------------------------------------- SUBROUTINE davcio( vect, nword, unit, nrec, io ) !---------------------------------------------------------------------------- ! ! ... direct-access vector input/output ! ... read/write nword words starting from the address specified by vect ! USE io_global, ONLY : stdout USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nword, unit, nrec, io ! input: the dimension of vect ! input: the unit where to read/write ! input: the record where to read/write ! input: flag if < 0 reading if > 0 writing REAL(DP), INTENT(INOUT) :: vect(nword) ! input/output: the vector to read/write ! INTEGER :: ios ! integer variable for I/O control LOGICAL :: opnd ! ! CALL start_clock( 'davcio' ) ! INQUIRE( UNIT = unit ) ! IF ( unit <= 0 ) CALL errore( 'davcio', 'wrong unit', 1 ) IF ( nrec <= 0 ) CALL errore( 'davcio', 'wrong record number', 2 ) IF ( nword <= 0 ) CALL errore( 'davcio', 'wrong record length', 3 ) IF ( io == 0 ) CALL infomsg( 'davcio', 'nothing to do?' ) ! INQUIRE( UNIT = unit, OPENED = opnd ) ! IF ( .NOT. opnd ) & CALL errore( 'davcio', 'unit is not opened', unit ) ! ios = 0 ! IF ( io < 0 ) THEN ! READ( UNIT = unit, REC = nrec, IOSTAT = ios ) vect IF ( ios /= 0 ) & CALL errore( 'davcio', 'error while reading from file', unit ) ! ELSE IF ( io > 0 ) THEN ! WRITE( UNIT = unit, REC = nrec, IOSTAT = ios ) vect IF ( ios /= 0 ) & CALL errore( 'davcio', 'error while writing to file', unit ) ! END IF ! CALL stop_clock( 'davcio' ) ! RETURN ! END SUBROUTINE davcio espresso-5.0.2/Modules/bfgs_module.f900000644000700200004540000010206112053145633016600 0ustar marsamoscm! ! Copyright (C) 2003-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE bfgs_module !---------------------------------------------------------------------------- ! ! ... Ionic relaxation through the Newton-Raphson optimization scheme ! ... based on the Broyden-Fletcher-Goldfarb-Shanno algorithm for the ! ... estimate of the inverse Hessian matrix. ! ... The ionic relaxation is performed converting cartesian (and cell) ! ... positions into internal coordinates. ! ... The algorithm uses a "trust radius" line search based on Wolfe ! ... conditions. Steps are rejected until the first Wolfe condition ! ... (sufficient energy decrease) is satisfied. Updated step length ! ... is estimated from quadratic interpolation. ! ... When the step is accepted inverse hessian is updated according to ! ... BFGS scheme and a new search direction is obtained from NR or GDIIS ! ... method. The corresponding step length is limited by trust_radius_max ! ... and can't be larger than the previous step multiplied by a certain ! ... factor determined by Wolfe and other convergence conditions. ! ! ... Originally written ( 5/12/2003 ) and maintained ( 2003-2007 ) by ! ... Carlo Sbraccia ! ... Modified for variable-cell-shape relaxation ( 2007-2008 ) by ! ... Javier Antonio Montoya, Lorenzo Paulatto and Stefano de Gironcoli ! ... Re-analyzed by Stefano de Gironcoli ( 2010 ) ! ! ... references : ! ! ... 1) Roger Fletcher, Practical Methods of Optimization, John Wiley and ! ... Sons, Chichester, 2nd edn, 1987. ! ... 2) Salomon R. Billeter, Alexander J. Turner, Walter Thiel, ! ... Phys. Chem. Chem. Phys. 2, 2177 (2000). ! ... 3) Salomon R. Billeter, Alessandro Curioni, Wanda Andreoni, ! ... Comput. Mat. Science 27, 437, (2003). ! ... 4) Ren Weiqing, PhD Thesis: Numerical Methods for the Study of Energy ! ... Landscapes and Rare Events. ! ! USE kinds, ONLY : DP USE io_files, ONLY : iunbfgs, prefix USE constants, ONLY : eps16 USE cell_base, ONLY : iforceh ! USE basic_algebra_routines ! IMPLICIT NONE ! PRIVATE ! ! ... public methods ! PUBLIC :: bfgs, terminate_bfgs ! ! ... public variables ! PUBLIC :: bfgs_ndim, & trust_radius_ini, trust_radius_min, trust_radius_max, & w_1, w_2 ! ! ... global module variables ! SAVE ! CHARACTER (len=8) :: fname="energy" ! name of the function to be minimized ! REAL(DP), ALLOCATABLE :: & pos(:), &! positions + cell grad(:), &! gradients + cell_force pos_p(:), &! positions at the previous accepted iteration grad_p(:), &! gradients at the previous accepted iteration inv_hess(:,:), &! inverse hessian matrix (updated using BFGS formula) metric(:,:), & h_block(:,:), & hinv_block(:,:), & step(:), &! the (new) search direction (normalized NR step) step_old(:), &! the previous search direction (normalized NR step) pos_old(:,:), &! list of m old positions - used only by gdiis grad_old(:,:), &! list of m old gradients - used only by gdiis pos_best(:) ! best extrapolated positions - used only by gdiis REAL(DP) :: & nr_step_length, &! length of (new) Newton-Raphson step nr_step_length_old,&! length of previous Newton-Raphson step trust_radius, &! new displacement along the search direction trust_radius_old, &! old displacement along the search direction energy_p ! energy at previous accepted iteration INTEGER :: & scf_iter, &! number of scf iterations bfgs_iter, &! number of bfgs iterations gdiis_iter, &! number of gdiis iterations tr_min_hit = 0 ! set to 1 if the trust_radius has already been ! set to the minimum value at the previous step ! set to 2 if trust_radius is reset again: exit LOGICAL :: & conv_bfgs ! .TRUE. when bfgs convergence has been achieved ! ! ... default values for the following variables are set in ! ... Modules/read_namelist.f90 (SUBROUTINE ions_defaults) ! ! ... Note that trust_radius_max, trust_radius_min, trust_radius_ini, ! ... w_1, w_2, bfgs_ndim have a default value, but can also be assigned ! ... in the input. ! INTEGER :: & bfgs_ndim ! dimension of the subspace for GDIIS ! fixed to 1 for standard BFGS algorithm REAL(DP) :: & trust_radius_ini, &! suggested initial displacement trust_radius_min, &! minimum allowed displacement trust_radius_max ! maximum allowed displacement REAL(DP) :: &! parameters for Wolfe conditions w_1, &! 1st Wolfe condition: sufficient energy decrease w_2 ! 2nd Wolfe condition: sufficient gradient decrease ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE bfgs( pos_in, h, energy, grad_in, fcell, fixion, scratch, stdout,& energy_thr, grad_thr, cell_thr, energy_error, grad_error, & cell_error, istep, nstep, step_accepted, stop_bfgs, lmovecell ) !------------------------------------------------------------------------ ! ! ... list of input/output arguments : ! ! pos : vector containing 3N coordinates of the system ( x ) ! energy : energy of the system ( V(x) ) ! grad : vector containing 3N components of grad( V(x) ) ! fixion : vector used to freeze a deg. of freedom ! scratch : scratch directory ! stdout : unit for standard output ! energy_thr : treshold on energy difference for BFGS convergence ! grad_thr : treshold on grad difference for BFGS convergence ! the largest component of grad( V(x) ) is considered ! energy_error : energy difference | V(x_i) - V(x_i-1) | ! grad_error : the largest component of ! | grad(V(x_i)) - grad(V(x_i-1)) | ! cell_error : the largest component of: omega*(stress-press*I) ! nstep : the maximun nuber of scf-steps ! step_accepted : .TRUE. if a new BFGS step is done ! stop_bfgs : .TRUE. if BFGS convergence has been achieved ! IMPLICIT NONE ! REAL(DP), INTENT(INOUT) :: pos_in(:) REAL(DP), INTENT(INOUT) :: h(3,3) REAL(DP), INTENT(INOUT) :: energy REAL(DP), INTENT(INOUT) :: grad_in(:) REAL(DP), INTENT(INOUT) :: fcell(3,3) INTEGER, INTENT(IN) :: fixion(:) CHARACTER(LEN=*), INTENT(IN) :: scratch INTEGER, INTENT(IN) :: stdout REAL(DP), INTENT(IN) :: energy_thr, grad_thr, cell_thr INTEGER, INTENT(OUT) :: istep INTEGER, INTENT(IN) :: nstep REAL(DP), INTENT(OUT) :: energy_error, grad_error, cell_error LOGICAL, INTENT(OUT) :: step_accepted, stop_bfgs LOGICAL, INTENT(IN) :: lmovecell ! INTEGER :: n, i, j, k, nat LOGICAL :: lwolfe REAL(DP) :: dE0s, den ! ... for scaled coordinates REAL(DP) :: hinv(3,3),g(3,3),ginv(3,3),garbage, omega ! ! n = SIZE( pos_in ) + 9 nat = size (pos_in) / 3 if (nat*3 /= size (pos_in)) call errore('bfgs',' strange dimension',1) ! ! ... work-space allocation ! ALLOCATE( pos( n ) ) ALLOCATE( grad( n ) ) ! ALLOCATE( grad_old( n, bfgs_ndim ) ) ALLOCATE( pos_old( n, bfgs_ndim ) ) ! ALLOCATE( inv_hess( n, n ) ) ! ALLOCATE( pos_p( n ) ) ALLOCATE( grad_p( n ) ) ALLOCATE( step( n ) ) ALLOCATE( step_old( n ) ) ALLOCATE( pos_best( n ) ) ! ... scaled coordinates work-space ALLOCATE( hinv_block( n-9, n-9 ) ) ! ... cell related work-space ALLOCATE( metric( n , n ) ) ! ! ... the BFGS file read (pos & grad) in scaled coordinates ! call invmat(3, h, hinv, omega) ! volume is defined to be positve even for left-handed vector triplet omega = abs(omega) ! hinv_block = 0.d0 FORALL ( k=0:nat-1, i=1:3, j=1:3 ) hinv_block(i+3*k,j+3*k) = hinv(i,j) ! ! ... generate metric to work with scaled ionic coordinates g = MATMUL(TRANSPOSE(h),h) call invmat(3,g,ginv,garbage) metric = 0.d0 FORALL ( k=0:nat-1, i=1:3, j=1:3 ) metric(i+3*k,j+3*k) = g(i,j) FORALL ( k=nat:nat+2, i=1:3, j=1:3 ) metric(i+3*k,j+3*k) = 0.04 * omega * ginv(i,j) ! ! ... generate bfgs vectors for the degrees of freedom and their gradients pos = 0.0 pos(1:n-9) = pos_in if (lmovecell) FORALL( i=1:3, j=1:3) pos( n-9 + j+3*(i-1) ) = h(i,j) grad = 0.0 grad(1:n-9) = grad_in if (lmovecell) FORALL( i=1:3, j=1:3) grad( n-9 + j+3*(i-1) ) = fcell(i,j)*iforceh(i,j) ! ! if the cell moves the quantity to be minimized is the enthalpy IF ( lmovecell ) fname="enthalpy" ! CALL read_bfgs_file( pos, grad, fixion, energy, scratch, n, stdout ) ! scf_iter = scf_iter + 1 istep = scf_iter ! ! ... convergence is checked here ! energy_error = ABS( energy_p - energy ) grad_error = MAXVAL( ABS( MATMUL( TRANSPOSE(hinv_block), grad(1:n-9)) ) ) conv_bfgs = energy_error < energy_thr conv_bfgs = conv_bfgs .AND. ( grad_error < grad_thr ) ! IF( lmovecell) THEN cell_error = MAXVAL( ABS( MATMUL ( TRANSPOSE ( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ),& TRANSPOSE(h) ) ) ) / omega conv_bfgs = conv_bfgs .AND. ( cell_error < cell_thr ) #undef DEBUG #ifdef DEBUG write (*,'(3f15.10)') TRANSPOSE ( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ) write (*,*) write (*,'(3f15.10)') TRANSPOSE(h) write (*,*) write (*,'(3f15.10)') MATMUL (TRANSPOSE( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ),& TRANSPOSE(h) ) / omega write (*,*) write (*,*) cell_error/cell_thr*0.5d0 #endif END IF ! stop_bfgs = conv_bfgs .OR. ( scf_iter >= nstep ) .OR. ( tr_min_hit > 1 ) ! ! ... quick return if possible ! IF ( stop_bfgs ) GOTO 1000 ! ! ... some output is written ! WRITE( UNIT = stdout, & & FMT = '(/,5X,"number of scf cycles",T30,"= ",I3)' ) scf_iter WRITE( UNIT = stdout, & & FMT = '(5X,"number of bfgs steps",T30,"= ",I3,/)' ) bfgs_iter IF ( scf_iter > 1 ) WRITE( UNIT = stdout, & & FMT = '(5X,A," old",T30,"= ",F18.10," Ry")' ) fname,energy_p WRITE( UNIT = stdout, & & FMT = '(5X,A," new",T30,"= ",F18.10," Ry",/)' ) fname,energy ! ! ... the bfgs algorithm starts here ! IF ( .NOT. energy_wolfe_condition( energy ) .AND. (scf_iter > 1) ) THEN ! ! ... the previous step is rejected, line search goes on ! step_accepted = .FALSE. ! WRITE( UNIT = stdout, & & FMT = '(5X,"CASE: ",A,"_new > ",A,"_old",/)' ) fname,fname ! ! ... the new trust radius is obtained by quadratic interpolation ! ! ... E(s) = a*s*s + b*s + c ( we use E(0), dE(0), E(s') ) ! ! ... s_min = - 0.5*( dE(0)*s'*s' ) / ( E(s') - E(0) - dE(0)*s' ) ! if (abs(scnorm(step_old(:))-1._DP) > 1.d-10) call errore('bfgs', & ' step_old is NOT normalized ',1) ! (normalized) search direction is the same as in previous step step(:) = step_old(:) ! dE0s = ( grad_p(:) .dot. step(:) ) * trust_radius_old IF (dE0s > 0._DP ) CALL errore( 'bfgs', & 'dE0s is positive which should never happen', 1 ) den = energy - energy_p - dE0s ! ! estimate new trust radius by interpolation trust_radius = - 0.5_DP*dE0s*trust_radius_old / den ! WRITE( UNIT = stdout, & & FMT = '(5X,"new trust radius",T30,"= ",F18.10," bohr")' ) & trust_radius ! ! ... values from the last succeseful bfgs step are restored ! pos(:) = pos_p(:) energy = energy_p grad(:) = grad_p(:) ! IF ( trust_radius < trust_radius_min ) THEN ! ! ... the history is reset ( the history can be reset at most two ! ... consecutive times ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"trust_radius < trust_radius_min")' ) WRITE( UNIT = stdout, FMT = '(/,5X,"resetting bfgs history",/)' ) ! ! ... if tr_min_hit=1 the history has already been reset at the ! ... previous step : something is going wrong ! IF ( tr_min_hit == 1 ) THEN CALL infomsg( 'bfgs', & 'history already reset at previous step: stopping' ) tr_min_hit = 2 ELSE tr_min_hit = 1 END IF ! CALL reset_bfgs( n ) ! step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! normalize step but remember its length nr_step_length = scnorm(step) step(:) = step(:) / nr_step_length ! trust_radius = min(trust_radius_ini, nr_step_length) ! ELSE ! tr_min_hit = 0 ! END IF ! ELSE ! ! ... a new bfgs step is done ! bfgs_iter = bfgs_iter + 1 ! IF ( bfgs_iter == 1 ) THEN ! ! ... first iteration ! step_accepted = .FALSE. ! ELSE ! step_accepted = .TRUE. ! nr_step_length_old = nr_step_length ! WRITE( UNIT = stdout, & & FMT = '(5X,"CASE: ",A,"_new < ",A,"_old",/)' ) fname,fname ! CALL check_wolfe_conditions( lwolfe, energy, grad ) ! CALL update_inverse_hessian( pos, grad, n, stdout ) ! END IF ! compute new search direction and store NR step length IF ( bfgs_ndim > 1 ) THEN ! ! ... GDIIS extrapolation ! CALL gdiis_step() ! ELSE ! ! ... standard Newton-Raphson step ! step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! END IF IF ( ( grad(:) .dot. step(:) ) > 0.0_DP ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"uphill step: resetting bfgs history",/)' ) ! CALL reset_bfgs( n ) step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! END IF ! ! normalize the step and save the step length nr_step_length = scnorm(step) step(:) = step(:) / nr_step_length ! ! ... the new trust radius is computed ! IF ( bfgs_iter == 1 ) THEN ! trust_radius = min(trust_radius_ini, nr_step_length) tr_min_hit = 0 ! ELSE ! CALL compute_trust_radius( lwolfe, energy, grad, n, stdout ) ! END IF ! WRITE( UNIT = stdout, & & FMT = '(5X,"new trust radius",T30,"= ",F18.10," bohr")' ) & trust_radius ! END IF ! ! ... step along the bfgs direction ! IF ( nr_step_length < eps16 ) & CALL errore( 'bfgs', 'NR step-length unreasonably short', 1 ) ! ! ... information required by next iteration is saved here ( this must ! ... be done before positions are updated ) ! CALL write_bfgs_file( pos, energy, grad, scratch ) ! ! ... positions and cell are updated ! pos(:) = pos(:) + trust_radius * step(:) ! 1000 CONTINUE ! ... input ions+cell variables IF ( lmovecell ) FORALL( i=1:3, j=1:3) h(i,j) = pos( n-9 + j+3*(i-1) ) pos_in = pos(1:n-9) ! ... update forces grad_in = grad(1:n-9) ! ! ... work-space deallocation ! DEALLOCATE( pos ) DEALLOCATE( grad ) DEALLOCATE( pos_p ) DEALLOCATE( grad_p ) DEALLOCATE( pos_old ) DEALLOCATE( grad_old ) DEALLOCATE( inv_hess ) DEALLOCATE( step ) DEALLOCATE( step_old ) DEALLOCATE( pos_best ) DEALLOCATE( hinv_block ) DEALLOCATE( metric ) ! RETURN ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE gdiis_step() !-------------------------------------------------------------------- USE basic_algebra_routines IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: res(:,:), overlap(:,:), work(:) INTEGER, ALLOCATABLE :: iwork(:) INTEGER :: k, k_m, info REAL(DP) :: gamma0 ! ! gdiis_iter = gdiis_iter + 1 ! k = MIN( gdiis_iter, bfgs_ndim ) k_m = k + 1 ! ALLOCATE( res( n, k ) ) ALLOCATE( overlap( k_m, k_m ) ) ALLOCATE( work( k_m ), iwork( k_m ) ) ! work(:) = 0.0_DP iwork(:) = 0 ! ! ... the new direction is added to the workspace ! DO i = bfgs_ndim, 2, -1 ! pos_old(:,i) = pos_old(:,i-1) grad_old(:,i) = grad_old(:,i-1) ! END DO ! pos_old(:,1) = pos(:) grad_old(:,1) = grad(:) ! ! ... |res_i> = H^-1 \times |g_i> ! CALL DGEMM( 'N', 'N', n, k, n, 1.0_DP, & inv_hess, n, grad_old, n, 0.0_DP, res, n ) ! ! ... overlap_ij = ! CALL DGEMM( 'T', 'N', k, k, n, 1.0_DP, & res, n, res, n, 0.0_DP, overlap, k_m ) ! overlap( :, k_m) = 1.0_DP overlap(k_m, : ) = 1.0_DP overlap(k_m,k_m) = 0.0_DP ! ! ... overlap is inverted via Bunch-Kaufman diagonal pivoting method ! CALL DSYTRF( 'U', k_m, overlap, k_m, iwork, work, k_m, info ) CALL DSYTRI( 'U', k_m, overlap, k_m, iwork, work, info ) CALL errore( 'gdiis_step', 'error in Bunch-Kaufman inversion', info ) ! ! ... overlap is symmetrised ! FORALL( i = 1:k_m, j = 1:k_m, j > i ) overlap(j,i) = overlap(i,j) ! pos_best(:) = 0.0_DP step(:) = 0.0_DP ! DO i = 1, k ! gamma0 = overlap(k_m,i) ! pos_best(:) = pos_best(:) + gamma0*pos_old(:,i) ! step(:) = step(:) - gamma0*res(:,i) ! END DO ! ! ... the step must be consistent with the last positions ! step(:) = step(:) + ( pos_best(:) - pos(:) ) ! IF ( ( grad(:) .dot. step(:) ) > 0.0_DP ) THEN ! ! ... if the extrapolated direction is uphill use only the ! ... last gradient and reset gdiis history ! step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! gdiis_iter = 0 ! END IF ! DEALLOCATE( res, overlap, work, iwork ) ! END SUBROUTINE gdiis_step ! END SUBROUTINE bfgs ! !------------------------------------------------------------------------ SUBROUTINE reset_bfgs( n ) !------------------------------------------------------------------------ ! ... inv_hess in re-initalized to the initial guess ! ... defined as the inverse metric ! INTEGER, INTENT(IN) :: n ! REAL(DP) :: garbage ! call invmat(n, metric, inv_hess, garbage) ! gdiis_iter = 0 ! END SUBROUTINE reset_bfgs ! !------------------------------------------------------------------------ SUBROUTINE read_bfgs_file( pos, grad, fixion, energy, scratch, n, stdout ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(INOUT) :: pos(:) REAL(DP), INTENT(INOUT) :: grad(:) INTEGER, INTENT(IN) :: fixion(:) CHARACTER(LEN=*), INTENT(IN) :: scratch INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: stdout REAL(DP), INTENT(INOUT) :: energy ! CHARACTER(LEN=256) :: bfgs_file LOGICAL :: file_exists REAL(DP) :: garbage ! ! bfgs_file = TRIM( scratch ) // TRIM( prefix ) // '.bfgs' ! INQUIRE( FILE = TRIM( bfgs_file ) , EXIST = file_exists ) ! IF ( file_exists ) THEN ! ! ... bfgs is restarted from file ! OPEN( UNIT = iunbfgs, FILE = TRIM( bfgs_file ), & STATUS = 'UNKNOWN', ACTION = 'READ' ) ! READ( iunbfgs, * ) pos_p READ( iunbfgs, * ) grad_p READ( iunbfgs, * ) scf_iter READ( iunbfgs, * ) bfgs_iter READ( iunbfgs, * ) gdiis_iter READ( iunbfgs, * ) energy_p READ( iunbfgs, * ) pos_old READ( iunbfgs, * ) grad_old READ( iunbfgs, * ) inv_hess READ( iunbfgs, * ) tr_min_hit READ( iunbfgs, * ) nr_step_length ! CLOSE( UNIT = iunbfgs ) ! step_old = ( pos(:) - pos_p(:) ) trust_radius_old = scnorm( step_old ) step_old = step_old / trust_radius_old ! ELSE ! ! ... bfgs initialization ! WRITE( UNIT = stdout, FMT = '(/,5X,"BFGS Geometry Optimization")' ) ! ! initialize the inv_hess to the inverse of the metric call invmat(n, metric, inv_hess, garbage) ! pos_p = 0.0_DP grad_p = 0.0_DP scf_iter = 0 bfgs_iter = 0 gdiis_iter = 0 energy_p = energy step_old = 0.0_DP nr_step_length = 0.0_DP ! trust_radius_old = trust_radius_ini ! pos_old(:,:) = 0.0_DP grad_old(:,:) = 0.0_DP ! tr_min_hit = 0 ! END IF ! END SUBROUTINE read_bfgs_file ! !------------------------------------------------------------------------ SUBROUTINE write_bfgs_file( pos, energy, grad, scratch ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: pos(:) REAL(DP), INTENT(IN) :: energy REAL(DP), INTENT(IN) :: grad(:) CHARACTER(LEN=*), INTENT(IN) :: scratch ! ! OPEN( UNIT = iunbfgs, FILE = TRIM( scratch )//TRIM( prefix )//'.bfgs', & STATUS = 'UNKNOWN', ACTION = 'WRITE' ) ! WRITE( iunbfgs, * ) pos WRITE( iunbfgs, * ) grad WRITE( iunbfgs, * ) scf_iter WRITE( iunbfgs, * ) bfgs_iter WRITE( iunbfgs, * ) gdiis_iter WRITE( iunbfgs, * ) energy WRITE( iunbfgs, * ) pos_old WRITE( iunbfgs, * ) grad_old WRITE( iunbfgs, * ) inv_hess WRITE( iunbfgs, * ) tr_min_hit WRITE( iunbfgs, * ) nr_step_length ! CLOSE( UNIT = iunbfgs ) ! END SUBROUTINE write_bfgs_file ! !------------------------------------------------------------------------ SUBROUTINE update_inverse_hessian( pos, grad, n, stdout ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: pos(:) REAL(DP), INTENT(IN) :: grad(:) INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: stdout INTEGER :: info ! REAL(DP), ALLOCATABLE :: y(:), s(:) REAL(DP), ALLOCATABLE :: Hy(:), yH(:) REAL(DP) :: sdoty, sBs, Theta REAL(DP), ALLOCATABLE :: B(:,:) ! ALLOCATE( y( n ), s( n ), Hy( n ), yH( n ) ) ! s(:) = pos(:) - pos_p(:) y(:) = grad(:) - grad_p(:) ! sdoty = ( s(:) .dot. y(:) ) ! IF ( ABS( sdoty ) < eps16 ) THEN ! ! ... the history is reset ! WRITE( stdout, '(/,5X,"WARNING: unexpected ", & & "behaviour in update_inverse_hessian")' ) WRITE( stdout, '( 5X," resetting bfgs history",/)' ) ! CALL reset_bfgs( n ) ! RETURN ! ELSE ! Conventional Curvature Trap here ! See section 18.2 (p538-539 ) of Nocedal and Wright "Numerical ! Optimization"for instance ! LDM Addition, April 2011 ! ! While with the Wolfe conditions the Hessian in most cases ! remains positive definite, if one is far from the minimum ! and/or "bonds" are being made/broken the curvature condition ! Hy = s ; or s = By ! cannot be satisfied if s.y < 0. In addition, if s.y is small ! compared to s.B.s too greedy a step is taken. ! ! The trap below is conventional and "OK", and has been around ! for ~ 30 years but, unfortunately, is rarely mentioned in ! introductory texts and hence often neglected. ! ! First, solve for inv_hess*t = s ; i.e. t = B*s ! Use yH as workspace here ALLOCATE (B(n,n) ) B = inv_hess yH= s call DPOSV('U',n,1,B,n, yH, n, info) ! Info .ne. 0 should be trapped ... if(info .ne. 0)write( stdout, '(/,5X,"WARNING: info=",i3," for Hessian")' )info DEALLOCATE ( B ) ! ! Calculate s.B.s sBs = ( s(:) .dot. yH(:) ) ! ! Now the trap itself if ( sdoty < 0.20D0*sBs ) then ! Conventional damping Theta = 0.8D0*sBs/(sBs-sdoty) WRITE( stdout, '(/,5X,"WARNING: bfgs curvature condition ", & & "failed, Theta=",F6.3)' )theta y = Theta*y + (1.D0 - Theta)*yH endif END IF ! Hy(:) = ( inv_hess .times. y(:) ) yH(:) = ( y(:) .times. inv_hess ) ! ! ... BFGS update ! inv_hess = inv_hess + 1.0_DP / sdoty * & ( ( 1.0_DP + ( y .dot. Hy ) / sdoty ) * matrix( s, s ) - & ( matrix( s, yH ) + matrix( Hy, s ) ) ) ! DEALLOCATE( y, s, Hy, yH ) ! RETURN ! END SUBROUTINE update_inverse_hessian ! !------------------------------------------------------------------------ SUBROUTINE check_wolfe_conditions( lwolfe, energy, grad ) !------------------------------------------------------------------------ IMPLICIT NONE REAL(DP), INTENT(IN) :: energy REAL(DP), INTENT(IN) :: grad(:) LOGICAL, INTENT(OUT) :: lwolfe ! lwolfe = energy_wolfe_condition ( energy ) .AND. & gradient_wolfe_condition ( grad ) ! END SUBROUTINE check_wolfe_conditions ! !------------------------------------------------------------------------ LOGICAL FUNCTION energy_wolfe_condition ( energy ) !------------------------------------------------------------------------ IMPLICIT NONE REAL(DP), INTENT(IN) :: energy ! energy_wolfe_condition = & ( energy-energy_p ) < w_1 * ( grad_p.dot.step_old ) * trust_radius_old ! END FUNCTION energy_wolfe_condition ! !------------------------------------------------------------------------ LOGICAL FUNCTION gradient_wolfe_condition ( grad ) !------------------------------------------------------------------------ IMPLICIT NONE REAL(DP), INTENT(IN) :: grad(:) ! gradient_wolfe_condition = & ABS( grad .dot. step_old ) < - w_2 * ( grad_p .dot. step_old ) ! END FUNCTION gradient_wolfe_condition ! !------------------------------------------------------------------------ SUBROUTINE compute_trust_radius( lwolfe, energy, grad, n, stdout ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lwolfe REAL(DP), INTENT(IN) :: energy REAL(DP), INTENT(IN) :: grad(:) INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: stdout ! REAL(DP) :: a LOGICAL :: ltest ! ltest = ( energy - energy_p ) < w_1 * ( grad_p .dot. step_old ) * trust_radius_old ltest = ltest .AND. ( nr_step_length_old > trust_radius_old ) ! IF ( ltest ) THEN a = 1.5_DP ELSE a = 1.1_DP END IF IF ( lwolfe ) a = 2._DP * a ! trust_radius = MIN( trust_radius_max, a*trust_radius_old, nr_step_length ) ! IF ( trust_radius < trust_radius_min ) THEN ! ! ... the history is reset ! ! ... if tr_min_hit the history has already been reset at the ! ... previous step : something is going wrong ! IF ( tr_min_hit == 1 ) THEN CALL infomsg( 'bfgs', & 'history already reset at previous step: stopping' ) tr_min_hit = 2 ELSE tr_min_hit = 1 END IF ! WRITE( UNIT = stdout, & FMT = '(5X,"small trust_radius: resetting bfgs history",/)' ) ! CALL reset_bfgs( n ) step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! nr_step_length = scnorm(step) step(:) = step(:) / nr_step_length ! trust_radius = min(trust_radius_min, nr_step_length ) ! ELSE ! tr_min_hit = 0 ! END IF ! END SUBROUTINE compute_trust_radius ! !----------------------------------------------------------------------- REAL(DP) FUNCTION scnorm1( vect ) !----------------------------------------------------------------------- IMPLICIT NONE REAL(DP), INTENT(IN) :: vect(:) ! scnorm1 = SQRT( DOT_PRODUCT( vect , MATMUL( metric, vect ) ) ) ! END FUNCTION scnorm1 ! !----------------------------------------------------------------------- REAL(DP) FUNCTION scnorm( vect ) !----------------------------------------------------------------------- IMPLICIT NONE REAL(DP), INTENT(IN) :: vect(:) REAL(DP) :: ss INTEGER :: i,k,l,n ! scnorm = 0._DP n = SIZE (vect) / 3 do i=1,n ss = 0._DP do k=1,3 do l=1,3 ss = ss + & vect(k+(i-1)*3)*metric(k+(i-1)*3,l+(i-1)*3)*vect(l+(i-1)*3) end do end do scnorm = MAX (scnorm, SQRT (ss) ) end do ! END FUNCTION scnorm ! !------------------------------------------------------------------------ SUBROUTINE terminate_bfgs( energy, energy_thr, grad_thr, cell_thr, & lmovecell, stdout, scratch ) !------------------------------------------------------------------------ ! USE io_files, ONLY : prefix, delete_if_present ! IMPLICIT NONE REAL(DP), INTENT(IN) :: energy, energy_thr, grad_thr, cell_thr LOGICAL, INTENT(IN) :: lmovecell INTEGER, INTENT(IN) :: stdout CHARACTER(LEN=*), INTENT(IN) :: scratch ! IF ( conv_bfgs ) THEN ! WRITE( UNIT = stdout, & & FMT = '(/,5X,"bfgs converged in ",I3," scf cycles and ", & & I3," bfgs steps")' ) scf_iter, bfgs_iter IF ( lmovecell ) THEN WRITE( UNIT = stdout, & & FMT = '(5X,"(criteria: energy < ",E8.2,", force < ",E8.2, & & ", cell < ",E8.2,")")') energy_thr, grad_thr, cell_thr ELSE WRITE( UNIT = stdout, & & FMT = '(5X,"(criteria: energy < ",E8.2,", force < ",E8.2, & & ")")') energy_thr, grad_thr END IF WRITE( UNIT = stdout, & & FMT = '(/,5X,"End of BFGS Geometry Optimization")' ) WRITE( UNIT = stdout, & & FMT = '(/,5X,"Final ",A," = ",F18.10," Ry")' ) fname, energy ! CALL delete_if_present( TRIM( scratch ) // TRIM( prefix ) // '.bfgs' ) ! ELSE ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of BFGS Geometry Optimization")' ) ! END IF ! END SUBROUTINE terminate_bfgs ! END MODULE bfgs_module espresso-5.0.2/Modules/wannier_new.f900000644000700200004540000000446612053145633016640 0ustar marsamoscm! Copyright (C) 2006-2008 Dmitry Korotin - dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE wannier_new ! ! ... Variables to construct and store wannier functions ! USE kinds, ONLY : DP ! SAVE ! INTEGER, PARAMETER :: ningx = 10 ! max number of trial wavefunction ingredients LOGICAL :: & use_wannier, &! if .TRUE. wannier functions are constructed rkmesh, &! if .TRUE. regular k-mesh without symmetry is used !now used in input_parameters_mod plot_wannier, &! if .TRUE. wannier number plot_wan_num is plotted use_energy_int, &! if .TRUE. uses energy interval for wannier generation, not band numbers print_wannier_coeff ! if .TRUE. computes and prints coefficients of wannier decomp. on atomic functions INTEGER :: & nwan, &! number of wannier functions plot_wan_num, &! number of wannier for plotting plot_wan_spin ! spin of wannier for plotting REAL(kind=DP), allocatable :: & wan_pot(:,:), &! constrained potential wannier_energy(:,:), &! energy of each wannier (of each spin) wannier_occ(:,:,:) ! occupation matrix of wannier functions(of each spin) COMPLEX(kind=DP), allocatable :: & pp(:,:), &! projections coef(:,:,:) ! coefficients of wannier decomp. on atomic functions TYPE ingredient INTEGER :: l = 0, & ! l value for atomic wfc m = 0, & ! m value for atomic wfc iatomwfc = 0 ! number of corresponding atomic orbital REAL :: c = 0.d0 ! coefficient END TYPE ingredient TYPE wannier_data INTEGER :: iatom = 0, & ning = 0 REAL :: bands_from = 0.d0, & bands_to = 0.d0 TYPE (ingredient) :: ing(ningx) END TYPE wannier_data TYPE (wannier_data), allocatable :: wan_in(:,:) END MODULE wannier_new espresso-5.0.2/Modules/xml_io_base.f900000644000700200004540000022503612053145633016603 0ustar marsamoscm! ! Copyright (C) 2005-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE xml_io_base !---------------------------------------------------------------------------- ! ! ... this module contains some common subroutines used to read and write ! ... in XML format the data produced by Quantum ESPRESSO package ! ! ... written by Carlo Sbraccia (2005) ! ... modified by Andrea Ferretti (2006-08) ! USE iotk_module ! USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir, prefix, iunpun, xmlpun, & current_fmt_version => qexml_version USE io_global, ONLY : ionode, ionode_id, stdout USE mp, ONLY : mp_bcast USE parser, ONLY : version_compare ! IMPLICIT NONE PRIVATE ! CHARACTER(5), PARAMETER :: fmt_name = "QEXML" CHARACTER(5), PARAMETER :: fmt_version = "1.4.0" ! LOGICAL, PARAMETER :: rho_binary = .TRUE. ! CHARACTER(iotk_attlenx) :: attr ! ! PUBLIC :: fmt_name, fmt_version PUBLIC :: current_fmt_version ! PUBLIC :: rho_binary PUBLIC :: attr ! PUBLIC :: create_directory, change_directory, & kpoint_dir, wfc_filename, copy_file, & restart_dir, check_restartfile, check_file_exst, & pp_check_file, save_history, save_print_counter, & read_print_counter, set_kpoints_vars, & write_header, write_control, write_moving_cell, & write_cell, write_ions, write_symmetry, write_planewaves, & write_efield, write_spin, write_magnetization, write_xc, & write_exx, write_occ, write_bz, write_para, & write_phonon, write_rho_xml, write_wfc, write_eig, & read_wfc, read_rho_xml ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE create_directory( dirname ) !------------------------------------------------------------------------ ! USE wrappers, ONLY : f_mkdir USE mp, ONLY : mp_barrier USE mp_global, ONLY : me_image, intra_image_comm USE io_files, ONLY : check_writable ! CHARACTER(LEN=*), INTENT(IN) :: dirname ! INTEGER :: ierr CHARACTER(LEN=6), EXTERNAL :: int_to_char ! IF ( ionode ) ierr = f_mkdir( TRIM( dirname ) ) CALL mp_bcast ( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'create_directory', & 'unable to create directory ' // TRIM( dirname ), ierr ) ! ! ... syncronize all jobs (not sure it is really useful) ! CALL mp_barrier( intra_image_comm ) ! ! ... check whether the scratch directory is writable ! IF ( ionode ) ierr = check_writable ( dirname, me_image ) CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'create_directory:', & TRIM( dirname ) // ' non existent or non writable', ierr ) ! RETURN ! END SUBROUTINE create_directory ! !------------------------------------------------------------------------ SUBROUTINE change_directory( dirname ) !------------------------------------------------------------------------ ! USE wrappers, ONLY : f_chdir USE mp, ONLY : mp_barrier USE mp_global, ONLY : me_image, intra_image_comm ! CHARACTER(LEN=*), INTENT(IN) :: dirname ! INTEGER :: ierr CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ierr = f_chdir( TRIM( dirname ) ) CALL mp_bcast ( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'change_directory', & 'unable to change to directory ' // TRIM( dirname ), ierr ) ! ! ... syncronize all jobs (not sure it is really useful) ! CALL mp_barrier( intra_image_comm ) ! ! RETURN ! END SUBROUTINE change_directory ! !------------------------------------------------------------------------ FUNCTION kpoint_dir( basedir, ik ) !------------------------------------------------------------------------ ! CHARACTER(LEN=256) :: kpoint_dir CHARACTER(LEN=*), INTENT(IN) :: basedir INTEGER, INTENT(IN) :: ik ! CHARACTER(LEN=256) :: kdirname CHARACTER(LEN=5) :: kindex CHARACTER(LEN=6) :: kindex1 ! IF (ik<99999) THEN WRITE( kindex, FMT = '( I5.5 )' ) ik kdirname = TRIM( basedir ) // '/K' // kindex ELSEIF (ik<999999) THEN WRITE( kindex1, FMT = '( I6.6 )' ) ik kdirname = TRIM( basedir ) // '/K' // kindex1 ELSE call errore('kpoint_dir','ik too large, increase format',1) ENDIF ! kpoint_dir = TRIM( kdirname ) ! RETURN ! END FUNCTION kpoint_dir ! !------------------------------------------------------------------------ FUNCTION wfc_filename( basedir, name, ik, ipol, tag, extension, dir ) !------------------------------------------------------------------------ ! CHARACTER(LEN=256) :: wfc_filename CHARACTER(LEN=*), INTENT(IN) :: basedir CHARACTER(LEN=*), INTENT(IN) :: name INTEGER, INTENT(IN) :: ik INTEGER, OPTIONAL, INTENT(IN) :: ipol CHARACTER(*), OPTIONAL, INTENT(IN) :: tag CHARACTER(*), OPTIONAL, INTENT(IN) :: extension LOGICAL, OPTIONAL, INTENT(IN) :: dir ! CHARACTER(LEN=256) :: filename, tag_, ext_ LOGICAL :: dir_true ! ! filename = ' ' tag_ = ' ' ext_ = '.dat' dir_true = .true. ! IF ( PRESENT( tag ) ) tag_ = '_'//TRIM(tag) IF ( PRESENT( extension ) ) ext_ = '.'//TRIM(extension) ! IF ( PRESENT( ipol ) ) THEN ! WRITE( filename, FMT = '( I1 )' ) ipol ! END IF IF ( PRESENT( dir )) dir_true=dir ! IF (dir_true) THEN filename = TRIM( kpoint_dir( basedir, ik ) ) // '/' // & & TRIM( name ) // TRIM( filename ) // TRIM( tag_ ) // TRIM( ext_) ELSE filename = TRIM( kpoint_dir( basedir, ik ) ) // '_' // & & TRIM( name ) // TRIM( filename ) // TRIM( tag_ ) // TRIM( ext_) ENDIF ! wfc_filename = TRIM( filename ) ! RETURN ! END FUNCTION ! !------------------------------------------------------------------------ SUBROUTINE copy_file( file_in, file_out ) !------------------------------------------------------------------------ ! CHARACTER(LEN=*), INTENT(IN) :: file_in, file_out ! CHARACTER(LEN=256) :: string INTEGER :: iun_in, iun_out, ierr ! ! IF ( .NOT. ionode ) RETURN ! CALL iotk_free_unit( iun_in, ierr ) CALL iotk_free_unit( iun_out, ierr ) ! CALL errore( 'copy_file', 'no free units available', ierr ) ! OPEN( UNIT = iun_in, FILE = file_in, STATUS = "OLD" ) OPEN( UNIT = iun_out, FILE = file_out, STATUS = "UNKNOWN" ) ! copy_loop: DO ! READ( UNIT = iun_in, FMT = '(A256)', IOSTAT = ierr ) string ! IF ( ierr < 0 ) EXIT copy_loop ! WRITE( UNIT = iun_out, FMT = '(A)' ) TRIM( string ) ! END DO copy_loop ! CLOSE( UNIT = iun_in ) CLOSE( UNIT = iun_out ) ! RETURN ! END SUBROUTINE ! !------------------------------------------------------------------------ FUNCTION restart_dir( outdir, runit ) !------------------------------------------------------------------------ ! ! KNK_nimage ! USE mp_global, ONLY: my_image_id CHARACTER(LEN=256) :: restart_dir CHARACTER(LEN=*), INTENT(IN) :: outdir INTEGER, INTENT(IN) :: runit ! CHARACTER(LEN=256) :: dirname INTEGER :: strlen CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ! ... main restart directory ! ! ... keep the line below ( this is the old style RESTARTXX ) !!! ! ! dirname = 'RESTART' // int_to_char( runit ) ! the next line is to have separate RESTART for each image ! KNK_nimage ! if (my_image_id > 0) dirname = trim(dirname) // '_' // trim(int_to_char( my_image_id )) ! dirname = TRIM( prefix ) // '_' // TRIM( int_to_char( runit ) )// '.save' ! IF ( LEN( outdir ) > 1 ) THEN ! strlen = INDEX( outdir, ' ' ) - 1 ! dirname = outdir(1:strlen) // '/' // dirname ! END IF ! restart_dir = TRIM( dirname ) ! RETURN ! END FUNCTION restart_dir ! !------------------------------------------------------------------------ FUNCTION check_restartfile( outdir, ndr ) !------------------------------------------------------------------------ ! USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_image_comm ! IMPLICIT NONE ! LOGICAL :: check_restartfile INTEGER, INTENT(IN) :: ndr CHARACTER(LEN=*), INTENT(IN) :: outdir CHARACTER(LEN=256) :: filename LOGICAL :: lval ! ! filename = restart_dir( outdir, ndr ) ! IF ( ionode ) THEN ! filename = TRIM( filename ) // '/' // TRIM( xmlpun ) ! INQUIRE( FILE = TRIM( filename ), EXIST = lval ) ! END IF ! CALL mp_bcast( lval, ionode_id, intra_image_comm ) ! check_restartfile = lval ! RETURN ! END FUNCTION check_restartfile ! !------------------------------------------------------------------------ FUNCTION check_file_exst( filename ) !------------------------------------------------------------------------ ! USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_image_comm ! IMPLICIT NONE ! LOGICAL :: check_file_exst CHARACTER(LEN=*) :: filename ! LOGICAL :: lexists ! IF ( ionode ) THEN ! INQUIRE( FILE = TRIM( filename ), EXIST = lexists ) ! ENDIF ! CALL mp_bcast ( lexists, ionode_id, intra_image_comm ) ! check_file_exst = lexists RETURN ! END FUNCTION check_file_exst ! !------------------------------------------------------------------------ FUNCTION pp_check_file() !------------------------------------------------------------------------ ! USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_image_comm USE control_flags, ONLY : lkpoint_dir, tqr ! IMPLICIT NONE ! LOGICAL :: pp_check_file CHARACTER(LEN=256) :: dirname, filename INTEGER :: ierr LOGICAL :: lval, found, back_compat ! ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' filename = TRIM( dirname ) // '/' // TRIM( xmlpun ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = filename, IERR = ierr ) ! CALL mp_bcast ( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pp_check_file', 'file ' // & & TRIM( dirname ) // ' not found', ierr ) ! ! set a flag for back compatibility (before fmt v1.4.0) ! back_compat = .FALSE. ! IF ( TRIM( version_compare( current_fmt_version, "1.4.0" )) == "older") & back_compat = .TRUE. ! IF ( ionode ) THEN ! IF ( .NOT. back_compat ) THEN ! CALL iotk_scan_begin( iunpun, "CONTROL" ) ! ENDIF ! CALL iotk_scan_dat( iunpun, "PP_CHECK_FLAG", lval, FOUND = found) ! IF ( .NOT. found ) lval = .FALSE. ! CALL iotk_scan_dat( iunpun, "LKPOINT_DIR", lkpoint_dir, FOUND = found) ! IF ( .NOT. found ) lkpoint_dir = .TRUE. ! CALL iotk_scan_dat( iunpun, "Q_REAL_SPACE", tqr, FOUND = found) ! IF ( .NOT. found ) tqr = .FALSE. ! ! IF ( .NOT. back_compat ) THEN ! CALL iotk_scan_end( iunpun, "CONTROL" ) ! ENDIF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( lval, ionode_id, intra_image_comm ) ! CALL mp_bcast( lkpoint_dir, ionode_id, intra_image_comm ) ! CALL mp_bcast( tqr, ionode_id, intra_image_comm ) ! pp_check_file = lval ! RETURN ! END FUNCTION pp_check_file ! !------------------------------------------------------------------------ SUBROUTINE save_history( dirname, iter ) !------------------------------------------------------------------------ ! ! ... a copy of the xml descriptor (data-file.xml) is saved in the ! ... history subdir ! USE io_files, ONLY : xmlpun_base ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(IN) :: iter ! #if defined (__VERBOSE_SAVE) ! CHARACTER(LEN=256) :: filename CHARACTER(LEN=6) :: hindex ! CALL create_directory( TRIM( dirname ) // '/history' ) ! WRITE( hindex, FMT = '(I6.6)' ) iter ! IF ( ionode ) THEN ! filename = TRIM( dirname ) // '/history/' // & & TRIM( xmlpun_base ) // hindex // '.xml' ! CALL copy_file( TRIM( dirname ) // "/" // TRIM( xmlpun ), & TRIM( filename ) ) ! END IF ! #endif ! RETURN ! END SUBROUTINE save_history ! !------------------------------------------------------------------------ SUBROUTINE save_print_counter( iter, outdir, wunit ) !------------------------------------------------------------------------ ! ! ... a counter indicating the last successful printout iteration is saved ! USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iter CHARACTER(LEN=*), INTENT(IN) :: outdir INTEGER, INTENT(IN) :: wunit ! INTEGER :: ierr CHARACTER(LEN=256) :: filename, dirname ! ! dirname = restart_dir( outdir, wunit ) ! CALL create_directory( TRIM( dirname ) ) ! IF ( ionode ) THEN ! filename = TRIM( dirname ) // '/print_counter.xml' ! CALL iotk_open_write( iunpun, FILE = filename, & & ROOT = "PRINT_COUNTER", IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'save_print_counter', & 'cannot open restart file for writing', ierr ) ! IF ( ionode ) THEN ! CALL iotk_write_begin( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) CALL iotk_write_dat( iunpun, "STEP", iter ) CALL iotk_write_end( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) ! CALL iotk_close_write( iunpun ) ! END IF ! RETURN ! END SUBROUTINE save_print_counter ! !------------------------------------------------------------------------ SUBROUTINE read_print_counter( nprint_nfi, outdir, runit ) !------------------------------------------------------------------------ ! ! ... the counter indicating the last successful printout iteration ! ... is read here ! USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: nprint_nfi CHARACTER(LEN=*), INTENT(IN) :: outdir INTEGER, INTENT(IN) :: runit ! INTEGER :: ierr CHARACTER(LEN=256) :: filename, dirname ! ! dirname = restart_dir( outdir, runit ) ! IF ( ionode ) THEN ! filename = TRIM( dirname ) // '/print_counter.xml' ! CALL iotk_open_read( iunpun, FILE = filename, IERR = ierr ) ! IF ( ierr > 0 ) THEN ! nprint_nfi = -1 ! ELSE ! CALL iotk_scan_begin( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) CALL iotk_scan_dat( iunpun, "STEP", nprint_nfi ) CALL iotk_scan_end( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) ! CALL iotk_close_read( iunpun ) ! END IF ! END IF ! CALL mp_bcast( nprint_nfi, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_print_counter ! !------------------------------------------------------------------------ SUBROUTINE set_kpoints_vars( ik, nk, kunit, ngwl, igl, & ngroup, ikt, iks, ike, igwx, ipmask, ipsour, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ) !------------------------------------------------------------------------ ! ! ... set working variables for k-point index (ikt) and ! ... k-points number (nkt) ! USE mp, ONLY : mp_sum, mp_get, mp_max, mp_rank, mp_size ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ik, nk, kunit INTEGER, INTENT(IN) :: ngwl, igl(:) INTEGER, INTENT(OUT) :: ngroup INTEGER, INTENT(OUT) :: ikt, iks, ike, igwx INTEGER, INTENT(OUT) :: ipmask(:), ipsour LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ! INTEGER :: ierr, i INTEGER :: nkl, nkr, nkbl, nkt INTEGER :: nproc_parent, nproc_group, my_group_id, me_in_group, me_in_parent, io_in_parent ! nproc_parent = mp_size( parent_group_comm ) nproc_group = mp_size( intra_group_comm ) my_group_id = mp_rank( inter_group_comm ) me_in_group = mp_rank( intra_group_comm ) me_in_parent = mp_rank( parent_group_comm ) ! ! find the ID (io_in_parent) of the io PE ( where ionode == .true. ) ! io_in_parent = 0 IF( ionode ) io_in_parent = me_in_parent CALL mp_sum( io_in_parent, parent_group_comm ) ! ikt = ik nkt = nk ! ! ... find out the number of pools ! ngroup = nproc_parent / nproc_group ! ! ... find out number of k points blocks ! nkbl = nkt / kunit ! ! ... k points per pool ! nkl = kunit * ( nkbl / ngroup ) ! ! ... find out the reminder ! nkr = ( nkt - nkl * ngroup ) / kunit ! ! ... Assign the reminder to the first nkr pools ! IF ( my_group_id < nkr ) nkl = nkl + kunit ! ! ... find out the index of the first k point in this pool ! iks = nkl * my_group_id + 1 ! IF ( my_group_id >= nkr ) iks = iks + nkr * kunit ! ! ... find out the index of the last k point in this pool ! ike = iks + nkl - 1 ! ipmask = 0 ipsour = io_in_parent ! ! ... find out the index of the processor which collect the data ! ... in the pool of ik ! IF ( ngroup > 1 ) THEN ! IF ( ( ikt >= iks ) .AND. ( ikt <= ike ) ) THEN ! IF ( me_in_group == root_in_group ) ipmask( me_in_parent + 1 ) = 1 ! END IF ! ! ... Collect the mask for all proc in the image ! CALL mp_sum( ipmask, parent_group_comm ) ! DO i = 1, nproc_parent ! IF( ipmask(i) == 1 ) ipsour = ( i - 1 ) ! END DO ! END IF ! igwx = 0 ierr = 0 ! IF ( ( ikt >= iks ) .AND. ( ikt <= ike ) ) THEN ! IF ( ngwl > SIZE( igl ) ) THEN ! ierr = 1 ! ELSE ! igwx = MAXVAL( igl(1:ngwl) ) ! END IF ! END IF ! ! ... get the maximum index within the pool ! CALL mp_max( igwx, intra_group_comm ) ! ! ... now notify all procs if an error has been found ! CALL mp_max( ierr, parent_group_comm ) ! CALL errore( 'set_kpoint_vars ', 'wrong size ngl', ierr ) ! IF ( ipsour /= io_in_parent ) & CALL mp_get( igwx, igwx, me_in_parent, io_in_parent, ipsour, 1, parent_group_comm ) ! RETURN ! END SUBROUTINE set_kpoints_vars ! ! ! ... writing subroutines ! ! !------------------------------------------------------------------------ SUBROUTINE write_header( creator_name, creator_version ) !------------------------------------------------------------------------ ! IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: creator_name, creator_version CALL iotk_write_begin( iunpun, "HEADER" ) ! CALL iotk_write_attr(attr, "NAME",TRIM(fmt_name), FIRST=.TRUE.) CALL iotk_write_attr(attr, "VERSION",TRIM(fmt_version) ) CALL iotk_write_empty( iunpun, "FORMAT", ATTR=attr ) ! CALL iotk_write_attr(attr, "NAME",TRIM(creator_name), FIRST=.TRUE.) CALL iotk_write_attr(attr, "VERSION",TRIM(creator_version) ) CALL iotk_write_empty( iunpun, "CREATOR", ATTR=attr ) ! CALL iotk_write_end( iunpun, "HEADER" ) ! END SUBROUTINE write_header ! ! !------------------------------------------------------------------------ SUBROUTINE write_control( pp_check_flag, lkpoint_dir, q_real_space, beta_real_space) !------------------------------------------------------------------------ ! IMPLICIT NONE LOGICAL, OPTIONAL, INTENT(IN) :: pp_check_flag, lkpoint_dir, q_real_space, beta_real_space CALL iotk_write_begin( iunpun, "CONTROL" ) ! ! This flag is used to check if the file can be used for post-processing IF ( PRESENT( pp_check_flag ) ) & CALL iotk_write_dat( iunpun, "PP_CHECK_FLAG", pp_check_flag ) ! ! This flag says how eigenvalues are saved IF ( PRESENT( lkpoint_dir ) ) & CALL iotk_write_dat( iunpun, "LKPOINT_DIR", lkpoint_dir ) ! ! This flag says if Q in real space has to be used IF ( PRESENT( q_real_space ) ) & CALL iotk_write_dat( iunpun, "Q_REAL_SPACE", q_real_space ) ! This flag says if Beta functions were treated in real space IF ( PRESENT( beta_real_space ) ) & CALL iotk_write_dat( iunpun, "BETA_REAL_SPACE", beta_real_space ) ! CALL iotk_write_end( iunpun, "CONTROL" ) ! END SUBROUTINE write_control ! ! !------------------------------------------------------------------------ SUBROUTINE write_cell( ibrav, celldm, alat, a1, a2, a3, b1, b2, b3, & do_mp, do_mt, do_esm ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: ibrav REAL(DP), INTENT(IN) :: celldm(6), alat REAL(DP), INTENT(IN) :: a1(3), a2(3), a3(3) REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3) LOGICAL, INTENT(IN) :: do_mp, do_mt, do_esm ! CHARACTER(LEN=256) :: bravais_lattice,es_corr ! CALL iotk_write_begin( iunpun, "CELL" ) ! SELECT CASE ( ibrav ) CASE( 0 ) bravais_lattice = "free" CASE( 1 ) bravais_lattice = "cubic P (sc)" CASE( 2 ) bravais_lattice = "cubic F (fcc)" CASE( 3 ) bravais_lattice = "cubic I (bcc)" CASE( 4 ) bravais_lattice = "Hexagonal and Trigonal P" CASE( 5 ) bravais_lattice = "Trigonal R" CASE( 6 ) bravais_lattice = "Tetragonal P (st)" CASE( 7 ) bravais_lattice = "Tetragonal I (bct)" CASE( 8 ) bravais_lattice = "Orthorhombic P" CASE( 9 ) bravais_lattice = "Orthorhombic base-centered(bco)" CASE( 10 ) bravais_lattice = "Orthorhombic face-centered" CASE( 11 ) bravais_lattice = "Orthorhombic body-centered" CASE( 12 ) bravais_lattice = "Monoclinic P" CASE( 13 ) bravais_lattice = "Monoclinic base-centered" CASE( 14 ) bravais_lattice = "Triclinic P" END SELECT ! IF(do_mp)THEN es_corr = "Makov-Payne" ELSE IF(do_mt) THEN es_corr = "Martyna-Tuckerman" ELSE IF(do_esm) THEN es_corr = "ESM" ELSE es_corr = "None" ENDIF CALL iotk_write_dat( iunpun, & "NON-PERIODIC_CELL_CORRECTION", TRIM( es_corr ) ) CALL iotk_write_dat( iunpun, & "BRAVAIS_LATTICE", TRIM( bravais_lattice ) ) ! CALL iotk_write_attr( attr, "UNITS", "Bohr", FIRST = .TRUE. ) CALL iotk_write_dat( iunpun, "LATTICE_PARAMETER", alat, ATTR = attr ) ! CALL iotk_write_dat( iunpun, "CELL_DIMENSIONS", celldm(1:6) ) ! CALL iotk_write_begin( iunpun, "DIRECT_LATTICE_VECTORS" ) CALL iotk_write_empty( iunpun, "UNITS_FOR_DIRECT_LATTICE_VECTORS", ATTR=attr ) CALL iotk_write_dat( iunpun, "a1", a1(:) * alat, COLUMNS=3 ) CALL iotk_write_dat( iunpun, "a2", a2(:) * alat, COLUMNS=3 ) CALL iotk_write_dat( iunpun, "a3", a3(:) * alat, COLUMNS=3 ) CALL iotk_write_end( iunpun, "DIRECT_LATTICE_VECTORS" ) ! CALL iotk_write_attr( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "RECIPROCAL_LATTICE_VECTORS" ) CALL iotk_write_empty( iunpun, "UNITS_FOR_RECIPROCAL_LATTICE_VECTORS", ATTR=attr ) CALL iotk_write_dat( iunpun, "b1", b1(:), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "b2", b2(:), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "b3", b3(:), COLUMNS=3 ) CALL iotk_write_end( iunpun, "RECIPROCAL_LATTICE_VECTORS" ) ! CALL iotk_write_end( iunpun, "CELL" ) ! END SUBROUTINE write_cell ! SUBROUTINE write_moving_cell(lmovecell, cell_factor) LOGICAL, INTENT(IN) :: lmovecell REAL(DP), INTENT(IN) :: cell_factor CALL iotk_write_begin( iunpun, "MOVING_CELL" ) CALL iotk_write_dat( iunpun, "CELL_FACTOR", cell_factor) CALL iotk_write_end( iunpun, "MOVING_CELL" ) RETURN END SUBROUTINE write_moving_cell !------------------------------------------------------------------------ SUBROUTINE write_ions( nsp, nat, atm, ityp, psfile, & pseudo_dir, amass, tau, if_pos, dirname, pos_unit ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: nsp, nat INTEGER, INTENT(IN) :: ityp(:) CHARACTER(LEN=*), INTENT(IN) :: atm(:) CHARACTER(LEN=*), INTENT(IN) :: psfile(:) CHARACTER(LEN=*), INTENT(IN) :: pseudo_dir CHARACTER(LEN=*), INTENT(IN) :: dirname REAL(DP), INTENT(IN) :: amass(:) REAL(DP), INTENT(IN) :: tau(:,:) INTEGER, INTENT(IN) :: if_pos(:,:) REAL(DP), INTENT(IN) :: pos_unit ! INTEGER :: i, flen, flen2 LOGICAL :: exst CHARACTER(LEN=256) :: file_pseudo_in, file_pseudo_out ! ! CALL iotk_write_begin( iunpun, "IONS" ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! flen = LEN_TRIM( pseudo_dir ) flen2= LEN_TRIM( dirname ) ! CALL iotk_write_attr ( attr, "UNITS", "a.m.u.", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_ATOMIC_MASSES", ATTR = attr ) ! DO i = 1, nsp ! CALL iotk_write_begin( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! CALL iotk_write_dat( iunpun, "ATOM_TYPE", atm(i) ) ! ! ... Copy PP file into the .save directory - verify that the ! ... sourcefile exists and is not the same as the destination file ! IF ( pseudo_dir(flen:flen) /= '/' ) THEN file_pseudo_in = pseudo_dir(1:flen) // '/' // TRIM(psfile(i)) ELSE file_pseudo_in = pseudo_dir(1:flen) // TRIM(psfile(i)) END IF ! IF ( dirname(flen2:flen2) /= '/' ) THEN file_pseudo_out = dirname(1:flen2) // '/' // TRIM(psfile(i)) ELSE file_pseudo_out = dirname(1:flen2) // TRIM(psfile(i)) END IF ! IF ( file_pseudo_in .ne. file_pseudo_out ) THEN INQUIRE ( FILE=file_pseudo_in, EXIST=exst ) IF ( exst ) THEN CALL copy_file( TRIM( file_pseudo_in ), TRIM( file_pseudo_out ) ) ELSE CALL infomsg( 'write_ions', & 'file ' // TRIM( file_pseudo_in) // ' not present' ) END IF END IF ! CALL iotk_write_dat( iunpun, "MASS", amass(i) ) ! CALL iotk_write_dat( iunpun, "PSEUDO", TRIM( psfile(i) ) ) ! CALL iotk_write_end( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ENDDO ! ! This is the original location where PP files are read from ! CALL iotk_write_dat( iunpun, "PSEUDO_DIR", TRIM( pseudo_dir) ) ! CALL iotk_write_attr( attr, "UNITS", "Bohr", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_ATOMIC_POSITIONS", ATTR = attr ) ! DO i = 1, nat ! CALL iotk_write_attr( attr, "SPECIES", & & atm( ityp(i) ), FIRST = .TRUE. ) CALL iotk_write_attr( attr, "INDEX", ityp(i) ) CALL iotk_write_attr( attr, "tau", tau(:,i)*pos_unit ) CALL iotk_write_attr( attr, "if_pos", if_pos(:,i) ) CALL iotk_write_empty( iunpun, & & "ATOM" // TRIM( iotk_index( i ) ), attr ) ! END DO ! CALL iotk_write_end( iunpun, "IONS" ) ! END SUBROUTINE write_ions ! !------------------------------------------------------------------------ SUBROUTINE write_symmetry( ibrav, nrot, nsym, invsym, noinv, & time_reversal, no_t_rev, ft, & s, sname, irt, nat, t_rev ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: ibrav, nrot, nsym LOGICAL, INTENT(IN) :: invsym, noinv, time_reversal, no_t_rev INTEGER, INTENT(IN) :: s(:,:,:), irt(:,:), nat, t_rev(:) REAL(DP), INTENT(IN) :: ft(:,:) CHARACTER(LEN=*), INTENT(IN) :: sname(:) ! INTEGER :: i ! ! CALL iotk_write_begin( iunpun, "SYMMETRIES" ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_SYMMETRIES", nsym ) CALL iotk_write_dat( iunpun, "NUMBER_OF_BRAVAIS_SYMMETRIES", nrot ) ! CALL iotk_write_dat( iunpun, "INVERSION_SYMMETRY", invsym ) ! CALL iotk_write_dat( iunpun, "DO_NOT_USE_TIME_REVERSAL", noinv ) ! CALL iotk_write_dat( iunpun, "TIME_REVERSAL_FLAG", time_reversal ) ! CALL iotk_write_dat( iunpun, "NO_TIME_REV_OPERATIONS", no_t_rev ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_write_attr( attr, "UNITS", "Crystal", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_SYMMETRIES", ATTR = attr ) ! DO i = 1, nsym ! CALL iotk_write_begin( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! CALL iotk_write_attr ( attr, "NAME", TRIM( sname(i) ), FIRST=.TRUE. ) CALL iotk_write_attr ( attr, "T_REV", t_rev(i) ) CALL iotk_write_empty( iunpun, "INFO", ATTR = attr ) ! CALL iotk_write_dat( iunpun, "ROTATION", s(:,:,i), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "FRACTIONAL_TRANSLATION", ft(:,i), COLUMNS=3 ) ! IF ( nat > 0 ) & CALL iotk_write_dat( iunpun, "EQUIVALENT_IONS", irt(i,1:nat), COLUMNS=8 ) ! CALL iotk_write_end( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! ENDDO ! ! ... the following are the symmetries of the Bravais lattice alone ! ... (they may be more than crystal, i.e. basis+lattice, symmetries) ! DO i = nsym+1, nrot ! CALL iotk_write_begin( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! CALL iotk_write_attr ( attr, "NAME", TRIM( sname(i) ), FIRST=.TRUE. ) CALL iotk_write_empty( iunpun, "INFO", ATTR = attr ) CALL iotk_write_dat( iunpun, "ROTATION", s(:,:,i), COLUMNS=3 ) ! CALL iotk_write_end( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! ENDDO ! CALL iotk_write_end( iunpun, "SYMMETRIES" ) ! END SUBROUTINE write_symmetry ! !------------------------------------------------------------------------ SUBROUTINE write_efield( tefield, dipfield, edir, emaxpos, eopreg, eamp ) !------------------------------------------------------------------------ ! LOGICAL, INTENT(IN) :: & tefield, &! if .TRUE. a finite electric field is added to the ! local potential dipfield ! if .TRUE. the dipole field is subtracted INTEGER, INTENT(IN) :: & edir ! direction of the field REAL(DP), INTENT(IN) :: & emaxpos, &! position of the maximum of the field (00) CALL iotk_write_dat(iunpun,"LAMBDA",lambda) ! CALL iotk_write_end( iunpun, "MAGNETIZATION_INIT" ) ! RETURN ! END SUBROUTINE write_magnetization ! !------------------------------------------------------------------------ SUBROUTINE write_xc( dft, nsp, lda_plus_u, lda_plus_u_kind, U_projection, Hubbard_lmax, & Hubbard_l, Hubbard_U, Hubbard_J, Hubbard_J0, Hubbard_beta, & Hubbard_alpha, inlc, vdw_table_name, pseudo_dir, dirname ) !------------------------------------------------------------------------ ! CHARACTER(LEN=*), INTENT(IN) :: dft LOGICAL, INTENT(IN) :: lda_plus_u INTEGER, OPTIONAL, INTENT(IN) :: lda_plus_u_kind INTEGER, OPTIONAL, INTENT(IN) :: nsp CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: U_projection INTEGER, OPTIONAL, INTENT(IN) :: Hubbard_lmax INTEGER, OPTIONAL, INTENT(IN) :: Hubbard_l(:) REAL(DP), OPTIONAL, INTENT(IN) :: Hubbard_U(:), Hubbard_J(:,:), Hubbard_alpha(:), & Hubbard_J0(:), Hubbard_beta(:) INTEGER, OPTIONAL, INTENT(IN) :: inlc CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: vdw_table_name, pseudo_dir, dirname ! INTEGER :: i, flen CHARACTER(LEN=256) :: file_table ! CALL iotk_write_begin( iunpun, "EXCHANGE_CORRELATION" ) ! CALL iotk_write_dat( iunpun, "DFT", dft ) ! CALL iotk_write_dat( iunpun, "LDA_PLUS_U_CALCULATION", lda_plus_u ) ! IF ( lda_plus_u ) THEN ! IF ( .NOT. PRESENT( Hubbard_lmax ) .OR. & .NOT. PRESENT( Hubbard_l ) .OR. & .NOT. PRESENT( U_projection ) .OR. & .NOT. PRESENT( Hubbard_U ) .OR. & .NOT. PRESENT( Hubbard_J0 ) .OR. & .NOT. PRESENT( Hubbard_J ) .OR. & .NOT. PRESENT( nsp ) .OR. & .NOT. PRESENT( Hubbard_alpha ) .OR. & .NOT. PRESENT( Hubbard_beta ) ) & CALL errore( 'write_xc', & ' variables for LDA+U not present', 1 ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! CALL iotk_write_dat( iunpun, "LDA_PLUS_U_KIND", lda_plus_u_kind ) ! CALL iotk_write_dat( iunpun, "U_PROJECTION_TYPE", trim(U_projection) ) ! CALL iotk_write_dat( iunpun, "HUBBARD_LMAX", Hubbard_lmax ) ! CALL iotk_write_dat( iunpun, "HUBBARD_L", & Hubbard_l(1:nsp) ) ! CALL iotk_write_dat( iunpun, "HUBBARD_U", Hubbard_U(1:nsp) ) ! CALL iotk_write_dat( iunpun, "HUBBARD_J", Hubbard_J(1:3,1:nsp), COLUMNS = 3 ) ! CALL iotk_write_dat( iunpun, "HUBBARD_J0", Hubbard_J0(1:nsp) ) ! CALL iotk_write_dat( iunpun, "HUBBARD_ALPHA", Hubbard_alpha(1:nsp) ) ! CALL iotk_write_dat( iunpun, "HUBBARD_BETA", Hubbard_beta(1:nsp) ) ! END IF ! ! Vdw kernel table ! CALL iotk_write_dat( iunpun, "NON_LOCAL_DF", inlc ) IF ( inlc == 1 .OR. inlc ==2 ) THEN IF ( .NOT. PRESENT( vdw_table_name ) .OR. & .NOT. PRESENT( pseudo_dir ) .OR. & .NOT. PRESENT( dirname )) & CALL errore( 'write_xc', & ' variable vdw_table_name not present', 1 ) CALL iotk_write_dat( iunpun, "VDW_KERNEL_NAME", vdw_table_name ) ! ! Copy the file in .save directory ! flen = LEN_TRIM( pseudo_dir ) IF ( pseudo_dir(flen:flen) /= '/' ) THEN ! file_table = pseudo_dir(1:flen) // '/' // vdw_table_name ! ELSE ! file_table = pseudo_dir(1:flen) // vdw_table_name ! END IF ! CALL copy_file( TRIM( file_table ), TRIM( dirname ) // "/" // TRIM( vdw_table_name ) ) END IF ! CALL iotk_write_end( iunpun, "EXCHANGE_CORRELATION" ) ! END SUBROUTINE write_xc !------------------------------------------------------------------------ SUBROUTINE write_exx( x_gamma_extrapolation, nqx1, nqx2, nqx3, & exxdiv_treatment, yukawa, ecutvcut, exx_fraction, & screening_parameter, exx_is_active ) !------------------------------------------------------------------------ ! LOGICAL, INTENT(IN) :: x_gamma_extrapolation, exx_is_active INTEGER, OPTIONAL, INTENT(IN) :: nqx1, nqx2, nqx3 CHARACTER(LEN=*), INTENT(IN) :: exxdiv_treatment REAL(DP), INTENT(IN) :: yukawa, ecutvcut, exx_fraction REAL(DP), INTENT(IN) :: screening_parameter CALL iotk_write_begin(iunpun, "EXACT_EXCHANGE" ) call iotk_write_dat(iunpun, "x_gamma_extrapolation", x_gamma_extrapolation) call iotk_write_dat(iunpun, "nqx1", nqx1) call iotk_write_dat(iunpun, "nqx2", nqx2) call iotk_write_dat(iunpun, "nqx3", nqx3) call iotk_write_dat(iunpun, "exxdiv_treatment", exxdiv_treatment) call iotk_write_dat(iunpun, "yukawa", yukawa) call iotk_write_dat(iunpun, "ecutvcut", ecutvcut) call iotk_write_dat(iunpun, "exx_fraction", exx_fraction) call iotk_write_dat(iunpun, "screening_parameter", screening_parameter) call iotk_write_dat(iunpun, "exx_is_active", exx_is_active) CALL iotk_write_end(iunpun, "EXACT_EXCHANGE" ) END SUBROUTINE write_exx ! !------------------------------------------------------------------------ SUBROUTINE write_occ( lgauss, ngauss, degauss, ltetra, ntetra, & tetra, tfixed_occ, lsda, nstates_up, nstates_down, f_inp ) !------------------------------------------------------------------------ ! USE constants, ONLY : e2 ! LOGICAL, INTENT(IN) :: lgauss, ltetra, tfixed_occ, lsda INTEGER, OPTIONAL, INTENT(IN) :: ngauss, ntetra, nstates_up, nstates_down INTEGER, OPTIONAL, INTENT(IN) :: tetra(:,:) REAL(DP), OPTIONAL, INTENT(IN) :: degauss, f_inp(:,:) ! INTEGER :: i ! ! CALL iotk_write_begin( iunpun, "OCCUPATIONS" ) ! CALL iotk_write_dat( iunpun, "SMEARING_METHOD", lgauss ) ! IF ( lgauss ) THEN ! CALL iotk_write_dat( iunpun, "SMEARING_TYPE", ngauss ) ! CALL iotk_write_attr( attr, "UNITS", "Hartree", FIRST = .TRUE. ) ! CALL iotk_write_dat( iunpun, "SMEARING_PARAMETER", & degauss / e2, ATTR = attr ) ! END IF ! CALL iotk_write_dat( iunpun, "TETRAHEDRON_METHOD", ltetra ) ! IF ( ltetra ) THEN ! CALL iotk_write_dat( iunpun, "NUMBER_OF_TETRAHEDRA", ntetra ) ! DO i = 1, ntetra ! CALL iotk_write_dat( iunpun, "TETRAHEDRON" // & & iotk_index( i ), tetra(1:4,i) ) ! END DO ! END IF ! CALL iotk_write_dat( iunpun, "FIXED_OCCUPATIONS", tfixed_occ ) ! IF ( tfixed_occ ) THEN ! CALL iotk_write_attr( attr, "lsda" , lsda, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "nstates_up", nstates_up ) CALL iotk_write_attr( attr, "nstates_down", nstates_down ) ! CALL iotk_write_empty( iunpun, 'INFO', ATTR = attr ) ! CALL iotk_write_dat( iunpun, "INPUT_OCC_UP", f_inp(1:nstates_up,1) ) ! IF ( lsda ) & CALL iotk_write_dat( iunpun, "INPUT_OCC_DOWN", f_inp(1:nstates_down,2) ) ! END IF ! CALL iotk_write_end( iunpun, "OCCUPATIONS" ) ! END SUBROUTINE write_occ ! !------------------------------------------------------------------------ SUBROUTINE write_bz( num_k_points, xk, wk, k1, k2, k3, nk1, nk2, nk3, & qnorm, nks_start, xk_start, wk_start ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: num_k_points, k1, k2, k3, nk1, nk2, nk3 REAL(DP), INTENT(IN) :: xk(:,:), wk(:) REAL(DP), INTENT(IN) :: qnorm INTEGER, INTENT(IN), OPTIONAL :: nks_start REAL(DP), INTENT(IN), OPTIONAL :: xk_start(:,:), wk_start(:) ! INTEGER :: ik, i ! ! CALL iotk_write_begin( iunpun, "BRILLOUIN_ZONE" ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_K-POINTS", num_k_points ) ! CALL iotk_write_attr( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_K-POINTS", attr ) ! CALL iotk_write_attr( attr, "nk1", nk1, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "nk2", nk2 ) CALL iotk_write_attr( attr, "nk3", nk3 ) CALL iotk_write_empty( iunpun, "MONKHORST_PACK_GRID", attr ) CALL iotk_write_attr( attr, "k1", k1, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "k2", k2 ) CALL iotk_write_attr( attr, "k3", k3 ) CALL iotk_write_empty( iunpun, "MONKHORST_PACK_OFFSET", attr ) ! DO ik = 1, num_k_points ! CALL iotk_write_attr( attr, "XYZ", xk(:,ik), FIRST = .TRUE. ) ! CALL iotk_write_attr( attr, "WEIGHT", wk(ik) ) ! CALL iotk_write_empty( iunpun, "K-POINT" // & & TRIM( iotk_index(ik) ), attr ) ! END DO ! ! ... these are k-points and weights in the Irreducible BZ ! IF (present(nks_start).and.present(xk_start).and.present(wk_start)) THEN ! CALL iotk_write_dat( iunpun, "STARTING_K-POINTS", nks_start ) ! DO ik = 1, nks_start ! CALL iotk_write_attr( attr, "XYZ", xk_start(:,ik), FIRST = .TRUE. ) ! CALL iotk_write_attr( attr, "WEIGHT", wk_start(ik) ) ! CALL iotk_write_empty( iunpun, "K-POINT_START" // & & TRIM( iotk_index(ik) ), attr ) ! END DO ENDIF ! CALL iotk_write_dat( iunpun, "NORM-OF-Q", qnorm ) ! CALL iotk_write_end( iunpun, "BRILLOUIN_ZONE" ) ! END SUBROUTINE write_bz ! !------------------------------------------------------------------------ SUBROUTINE write_para( kunit, nproc, nproc_pool, nproc_image, & ntask_groups, nproc_pot, nproc_bgrp, nproc_ortho ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: kunit, nproc, nproc_pool, nproc_image, & ntask_groups, nproc_pot, nproc_bgrp, nproc_ortho ! ! CALL iotk_write_begin( iunpun, "PARALLELISM" ) CALL iotk_write_dat( iunpun, & "GRANULARITY_OF_K-POINTS_DISTRIBUTION", kunit ) CALL iotk_write_dat( iunpun, "NUMBER_OF_PROCESSORS", nproc ) CALL iotk_write_dat( iunpun, & "NUMBER_OF_PROCESSORS_PER_POOL", nproc_pool ) CALL iotk_write_dat( iunpun, & "NUMBER_OF_PROCESSORS_PER_IMAGE", nproc_image ) CALL iotk_write_dat( iunpun, "NUMBER_OF_PROCESSORS_PER_TASKGROUP", & ntask_groups ) CALL iotk_write_dat( iunpun, "NUMBER_OF_PROCESSORS_PER_POT", & nproc_pot ) CALL iotk_write_dat( iunpun, "NUMBER_OF_PROCESSORS_PER_BAND_GROUP", & nproc_bgrp ) CALL iotk_write_dat( iunpun, "NUMBER_OF_PROCESSORS_PER_DIAGONALIZATION", & nproc_ortho ) CALL iotk_write_end( iunpun, "PARALLELISM" ) ! ! END SUBROUTINE write_para !------------------------------------------------------------------------ SUBROUTINE write_phonon( modenum, xqq ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: modenum REAL(DP), INTENT(IN) :: xqq(:) ! ! CALL iotk_write_begin( iunpun, "PHONON" ) ! CALL iotk_write_dat( iunpun, "NUMBER_OF_MODES", modenum ) ! CALL iotk_write_attr( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_Q-POINT", attr ) ! CALL iotk_write_dat( iunpun, "Q-POINT", xqq(:), COLUMNS=3 ) ! CALL iotk_write_end( iunpun, "PHONON" ) ! END SUBROUTINE write_phonon ! ! ... methods to write and read charge_density ! !------------------------------------------------------------------------ SUBROUTINE write_rho_xml( rho_file_base, rho, & nr1, nr2, nr3, nr1x, nr2x, ipp, npp, & ionode, intra_group_comm, inter_group_comm ) !------------------------------------------------------------------------ ! ! ... Writes charge density rho, one plane at a time. ! ... If ipp and npp are specified, planes are collected one by one from ! ... all processors, avoiding an overall collect of the charge density ! ... on a single proc. ! USE io_files, ONLY : rhounit USE mp, ONLY : mp_get, mp_sum, mp_rank, mp_size ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: rho_file_base REAL(DP), INTENT(IN) :: rho(:) INTEGER, INTENT(IN) :: nr1, nr2, nr3 INTEGER, INTENT(IN) :: nr1x, nr2x INTEGER, INTENT(IN) :: ipp(:) INTEGER, INTENT(IN) :: npp(:) LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: intra_group_comm, inter_group_comm ! INTEGER :: ierr, i, j, k, kk, ldr, ip CHARACTER(LEN=256) :: rho_file CHARACTER(LEN=10) :: rho_extension REAL(DP), ALLOCATABLE :: rho_plane(:) INTEGER, ALLOCATABLE :: kowner(:) INTEGER :: my_group_id, me_group, nproc_group, io_group_id, io_group ! me_group = mp_rank( intra_group_comm ) nproc_group = mp_size( intra_group_comm ) my_group_id = mp_rank( inter_group_comm ) ! rho_extension = '.dat' IF ( .NOT. rho_binary ) rho_extension = '.xml' ! rho_file = TRIM( rho_file_base ) // TRIM( rho_extension ) ! IF ( ionode ) THEN CALL iotk_open_write( rhounit, FILE = rho_file, BINARY = rho_binary, IERR = ierr ) CALL errore( 'write_rho_xml', 'cannot open' // TRIM( rho_file ) // ' file for writing', ierr ) END IF ! IF ( ionode ) THEN ! CALL iotk_write_begin( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_write_attr( attr, "nr1", nr1, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "nr2", nr2 ) CALL iotk_write_attr( attr, "nr3", nr3 ) ! CALL iotk_write_empty( rhounit, "INFO", attr ) ! END IF ! ALLOCATE( rho_plane( nr1*nr2 ) ) ALLOCATE( kowner( nr3 ) ) ! ! ... find the index of the group (pool) that will write rho ! io_group_id = 0 ! IF ( ionode ) io_group_id = my_group_id ! CALL mp_sum( io_group_id, intra_group_comm ) CALL mp_sum( io_group_id, inter_group_comm ) ! ! ... find the index of the ionode within its own group (pool) ! io_group = 0 ! IF ( ionode ) io_group = me_group ! CALL mp_sum( io_group, intra_group_comm ) ! ! ... find out the owner of each "z" plane ! DO ip = 1, nproc_group ! kowner( (ipp(ip)+1):(ipp(ip)+npp(ip)) ) = ip - 1 ! END DO ! ldr = nr1x*nr2x ! DO k = 1, nr3 ! ! Only one subgroup write the charge density ! IF( ( kowner(k) == me_group ) .AND. ( my_group_id == io_group_id ) ) THEN ! kk = k - ipp( me_group + 1 ) ! DO j = 1, nr2 ! DO i = 1, nr1 ! rho_plane(i+(j-1)*nr1) = rho(i+(j-1)*nr1x+(kk-1)*ldr) ! END DO ! END DO ! END IF ! IF ( kowner(k) /= io_group .AND. my_group_id == io_group_id ) & CALL mp_get( rho_plane, rho_plane, me_group, io_group, kowner(k), k, intra_group_comm ) ! IF ( ionode ) & CALL iotk_write_dat( rhounit, "z" // iotk_index( k ), rho_plane ) ! END DO ! DEALLOCATE( rho_plane ) DEALLOCATE( kowner ) ! IF ( ionode ) THEN ! CALL iotk_write_end( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_close_write( rhounit ) ! END IF ! RETURN ! END SUBROUTINE write_rho_xml ! !------------------------------------------------------------------------ SUBROUTINE read_rho_xml( rho_file_base, nr1, nr2, nr3, nr1x, nr2x, & ipp, npp, rho ) !------------------------------------------------------------------------ ! ! ... Reads charge density rho, one plane at a time, to avoid ! ... collecting the entire charge density on a single processor ! USE io_files, ONLY : rhounit USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_bgrp_comm, intra_image_comm USE mp, ONLY : mp_put, mp_sum, mp_rank, mp_size ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: rho_file_base INTEGER, INTENT(IN) :: nr1, nr2, nr3 INTEGER, INTENT(IN) :: nr1x, nr2x REAL(DP), INTENT(OUT) :: rho(:) INTEGER, INTENT(IN) :: ipp(:) INTEGER, INTENT(IN) :: npp(:) ! INTEGER :: ierr, i, j, k, kk, ldr, ip INTEGER :: nr( 3 ) INTEGER :: me_group, nproc_group CHARACTER(LEN=256) :: rho_file REAL(DP), ALLOCATABLE :: rho_plane(:) INTEGER, ALLOCATABLE :: kowner(:) LOGICAL :: exst ! me_group = mp_rank ( intra_bgrp_comm ) nproc_group = mp_size ( intra_bgrp_comm ) ! rho_file = TRIM( rho_file_base ) // ".dat" exst = check_file_exst( TRIM(rho_file) ) ! IF ( .NOT. exst ) THEN ! rho_file = TRIM( rho_file_base ) // ".xml" exst = check_file_exst( TRIM(rho_file) ) ! ENDIF ! IF ( .NOT. exst ) CALL errore('read_rho_xml', 'searching for '//TRIM(rho_file), 10) ! IF ( ionode ) THEN CALL iotk_open_read( rhounit, FILE = rho_file, IERR = ierr ) CALL errore( 'read_rho_xml', 'cannot open ' // TRIM( rho_file ) // ' file for reading', ierr ) END IF ! IF ( ionode ) THEN ! CALL iotk_scan_begin( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_scan_empty( rhounit, "INFO", attr ) ! CALL iotk_scan_attr( attr, "nr1", nr(1) ) CALL iotk_scan_attr( attr, "nr2", nr(2) ) CALL iotk_scan_attr( attr, "nr3", nr(3) ) ! IF ( nr1 /= nr(1) .OR. nr2 /= nr(2) .OR. nr3 /= nr(3) ) & CALL errore( 'read_rho_xml', 'dimensions do not match', 1 ) ! END IF ! ALLOCATE( rho_plane( nr1*nr2 ) ) ALLOCATE( kowner( nr3 ) ) ! DO ip = 1, nproc_group ! kowner((ipp(ip)+1):(ipp(ip)+npp(ip))) = ip - 1 ! END DO ! ldr = nr1x*nr2x ! ! ... explicit initialization to zero is needed because the physical ! ... dimensions rho may exceed the true size of the FFT grid ! rho(:) = 0.0_DP ! DO k = 1, nr3 ! ! ... only ionode reads the charge planes ! IF ( ionode ) & CALL iotk_scan_dat( rhounit, "z" // iotk_index( k ), rho_plane ) ! ! ... planes are sent to the destination processor ! CALL mp_bcast( rho_plane, ionode_id, intra_image_comm ) ! IF( kowner(k) == me_group ) THEN ! kk = k - ipp( me_group + 1 ) DO j = 1, nr2 DO i = 1, nr1 rho(i+(j-1)*nr1x+(kk-1)*ldr) = rho_plane(i+(j-1)*nr1) END DO END DO ! END IF ! END DO ! DEALLOCATE( rho_plane ) DEALLOCATE( kowner ) ! IF ( ionode ) THEN ! CALL iotk_scan_end( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_close_read( rhounit ) ! END IF ! RETURN ! END SUBROUTINE read_rho_xml ! !------------------------------------------------------------------------ ! ... methods to write and read wavefunctions ! !------------------------------------------------------------------------ SUBROUTINE write_wfc( iuni, ik, nk, kunit, ispin, nspin, wf0, ngw, & gamma_only, nbnd, igl, ngwl, filename, scalef, & ionode, root_in_group, intra_group_comm, & inter_group_comm, parent_group_comm ) !------------------------------------------------------------------------ ! USE mp_wave, ONLY : mergewf USE mp, ONLY : mp_get, mp_size, mp_rank, mp_sum USE control_flags, ONLY : lwfnscf, lwfpbe0nscf ! Lingzhu Kong ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iuni INTEGER, INTENT(IN) :: ik, nk, kunit, ispin, nspin COMPLEX(DP), INTENT(IN) :: wf0(:,:) INTEGER, INTENT(IN) :: ngw LOGICAL, INTENT(IN) :: gamma_only INTEGER, INTENT(IN) :: nbnd INTEGER, INTENT(IN) :: ngwl INTEGER, INTENT(IN) :: igl(:) CHARACTER(LEN=256), INTENT(IN) :: filename REAL(DP), INTENT(IN) :: scalef ! scale factor, usually 1.0 for pw and 1/SQRT( omega ) for CP LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ! INTEGER :: j INTEGER :: iks, ike, ikt, igwx INTEGER :: ngroup, ipsour INTEGER, ALLOCATABLE :: ipmask(:) INTEGER :: me_in_group, nproc_in_group, io_in_parent, nproc_in_parent, me_in_parent COMPLEX(DP), ALLOCATABLE :: wtmp(:) ! ngroup = mp_size( inter_group_comm ) me_in_group = mp_rank( intra_group_comm ) nproc_in_group = mp_size( intra_group_comm ) me_in_parent = mp_rank( parent_group_comm ) nproc_in_parent = mp_size( parent_group_comm ) ! ALLOCATE( ipmask( nproc_in_parent ) ) ! io_in_parent = 0 IF( ionode ) io_in_parent = me_in_parent CALL mp_sum( io_in_parent, parent_group_comm ) ! CALL set_kpoints_vars( ik, nk, kunit, ngwl, igl, & ngroup, ikt, iks, ike, igwx, ipmask, ipsour, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ) ! IF ( ionode ) THEN ! CALL iotk_open_write( iuni, FILE = TRIM( filename ), ROOT="WFC", BINARY = .TRUE. ) ! CALL iotk_write_attr( attr, "ngw", ngw, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "igwx", igwx ) CALL iotk_write_attr( attr, "gamma_only", gamma_only ) CALL iotk_write_attr( attr, "nbnd", nbnd ) CALL iotk_write_attr( attr, "ik", ik ) CALL iotk_write_attr( attr, "nk", nk ) CALL iotk_write_attr( attr, "ispin", ispin ) CALL iotk_write_attr( attr, "nspin", nspin ) CALL iotk_write_attr( attr, "scale_factor", scalef ) ! CALL iotk_write_empty( iuni, "INFO", attr ) ! END IF ! ALLOCATE( wtmp( MAX( igwx, 1 ) ) ) ! wtmp = 0.0_DP ! Next 3 lines: Lingzhu Kong IF ( ( index(filename,'evc0') > 0 ) .and. (lwfnscf .or. lwfpbe0nscf) )THEN IF ( ionode ) OPEN(60,file='cp_wf.dat',status='unknown',form='unformatted') ENDIF DO j = 1, nbnd ! IF ( ngroup > 1 ) THEN ! IF ( ikt >= iks .AND. ikt <= ike ) & CALL mergewf( wf0(:,j), wtmp, ngwl, igl, me_in_group, & nproc_in_group, root_in_group, intra_group_comm ) ! IF ( ipsour /= io_in_parent ) & CALL mp_get( wtmp, wtmp, me_in_parent, & io_in_parent, ipsour, j, parent_group_comm ) ! ELSE ! CALL mergewf( wf0(:,j), wtmp, ngwl, igl, & me_in_parent, nproc_in_parent, io_in_parent, parent_group_comm ) ! END IF ! IF ( ionode ) & CALL iotk_write_dat( iuni, "evc" // iotk_index( j ), wtmp(1:igwx) ) ! Next 3 lines : Lingzhu Kong IF ( ( index(filename,'evc0') > 0 ) .and. (lwfnscf .or. lwfpbe0nscf) ) THEN IF ( ionode ) write(60)wtmp(1:igwx) ENDIF ! END DO ! Next 4 lines : Lingzhu Kong IF ( ( index(filename,'evc0') > 0 ) .and. (lwfnscf .or. lwfpbe0nscf) )THEN IF ( ionode ) close(60) !Lingzhu Kong write(*,*)'done writing evc0' ENDIF IF ( ionode ) CALL iotk_close_write( iuni ) ! DEALLOCATE( wtmp ) DEALLOCATE( ipmask ) ! RETURN ! END SUBROUTINE write_wfc ! !------------------------------------------------------------------------ SUBROUTINE read_wfc( iuni, ik, nk, kunit, ispin, & nspin, wf, ngw, nbnd, igl, ngwl, filename, scalef, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm, & flink ) !------------------------------------------------------------------------ ! USE mp_wave, ONLY : splitwf USE mp, ONLY : mp_put, mp_size, mp_rank, mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iuni COMPLEX(DP), INTENT(OUT) :: wf(:,:) INTEGER, INTENT(IN) :: ik, nk INTEGER, INTENT(IN) :: kunit INTEGER, INTENT(INOUT) :: ngw, nbnd, ispin, nspin INTEGER, INTENT(IN) :: ngwl INTEGER, INTENT(IN) :: igl(:) CHARACTER(LEN=256), INTENT(IN) :: filename REAL(DP), INTENT(OUT) :: scalef LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: root_in_group, intra_group_comm, inter_group_comm, parent_group_comm LOGICAL, OPTIONAL, INTENT(IN) :: flink ! INTEGER :: j COMPLEX(DP), ALLOCATABLE :: wtmp(:) INTEGER :: ierr INTEGER :: iks, ike, ikt INTEGER :: igwx, igwx_, ik_, nk_ INTEGER :: ngroup, ipdest INTEGER, ALLOCATABLE :: ipmask(:) LOGICAL :: flink_ INTEGER :: me_in_group, nproc_in_group, io_in_parent, nproc_in_parent, me_in_parent ! flink_ = .FALSE. IF( PRESENT( flink ) ) flink_ = flink ! ngroup = mp_size( inter_group_comm ) me_in_group = mp_rank( intra_group_comm ) nproc_in_group = mp_size( intra_group_comm ) me_in_parent = mp_rank( parent_group_comm ) nproc_in_parent = mp_size( parent_group_comm ) ! ALLOCATE( ipmask( nproc_in_parent ) ) ! io_in_parent = 0 IF( ionode ) io_in_parent = me_in_parent CALL mp_sum( io_in_parent, parent_group_comm ) ! CALL set_kpoints_vars( ik, nk, kunit, ngwl, igl, & ngroup, ikt, iks, ike, igwx, ipmask, ipdest, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ) ! ! if flink = .true. we are following a link and the file is ! already opened for read ! ierr = 0 ! IF ( ionode .AND. .NOT. flink_ ) & CALL iotk_open_read( iuni, FILE = filename, & BINARY = .TRUE., IERR = ierr ) ! CALL mp_bcast( ierr, io_in_parent, parent_group_comm ) ! CALL errore( 'read_wfc ', & 'cannot open restart file for reading', ierr ) ! IF ( ionode ) THEN ! CALL iotk_scan_empty( iuni, "INFO", attr ) ! CALL iotk_scan_attr( attr, "ngw", ngw ) CALL iotk_scan_attr( attr, "nbnd", nbnd ) CALL iotk_scan_attr( attr, "ik", ik_ ) CALL iotk_scan_attr( attr, "nk", nk_ ) CALL iotk_scan_attr( attr, "ispin", ispin ) CALL iotk_scan_attr( attr, "nspin", nspin ) CALL iotk_scan_attr( attr, "igwx", igwx_ ) CALL iotk_scan_attr( attr, "scale_factor", scalef ) ! END IF ! CALL mp_bcast( ngw, io_in_parent, parent_group_comm ) CALL mp_bcast( nbnd, io_in_parent, parent_group_comm ) CALL mp_bcast( ik_, io_in_parent, parent_group_comm ) CALL mp_bcast( nk_, io_in_parent, parent_group_comm ) CALL mp_bcast( ispin, io_in_parent, parent_group_comm ) CALL mp_bcast( nspin, io_in_parent, parent_group_comm ) CALL mp_bcast( igwx_, io_in_parent, parent_group_comm ) CALL mp_bcast( scalef, io_in_parent, parent_group_comm ) ! ALLOCATE( wtmp( MAX( igwx_, igwx ) ) ) ! DO j = 1, nbnd ! IF ( j <= SIZE( wf, 2 ) ) THEN ! IF ( ionode ) THEN ! CALL iotk_scan_dat( iuni, & "evc" // iotk_index( j ), wtmp(1:igwx_) ) ! IF ( igwx > igwx_ ) wtmp((igwx_+1):igwx) = 0.0_DP ! =========================================================== ! Lingzhu Kong !IF ( j .eq. 1)write(*,'(10f12.5)')(wtmp(i),i=1,igwx_) ! =========================================================== ! END IF ! IF ( ngroup > 1 ) THEN ! IF ( ipdest /= io_in_parent ) & CALL mp_put( wtmp, wtmp, me_in_parent, & io_in_parent, ipdest, j, parent_group_comm ) ! IF ( ( ikt >= iks ) .AND. ( ikt <= ike ) ) & CALL splitwf( wf(:,j), wtmp, ngwl, igl, me_in_group, & nproc_in_group, root_in_group, intra_group_comm ) ! ELSE ! CALL splitwf( wf(:,j), wtmp, ngwl, igl, & me_in_parent, nproc_in_parent, io_in_parent, parent_group_comm ) ! END IF ! END IF ! END DO ! IF ( ionode .AND. .NOT. flink_ ) CALL iotk_close_read( iuni ) ! DEALLOCATE( wtmp ) DEALLOCATE( ipmask ) ! RETURN ! END SUBROUTINE read_wfc ! ! !------------------------------------------------------------------------ SUBROUTINE write_eig( iuni, filename, nbnd, eig, energy_units, & occ, ik, ispin, lkpoint_dir ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iuni INTEGER, INTENT(IN) :: nbnd REAL(DP), INTENT(IN) :: eig(:) CHARACTER(*), INTENT(IN) :: energy_units REAL(DP), OPTIONAL, INTENT(IN) :: occ(:) INTEGER, OPTIONAL, INTENT(IN) :: ik, ispin LOGICAL, OPTIONAL, INTENT(IN) :: lkpoint_dir CHARACTER(LEN=256), INTENT(IN) :: filename LOGICAL :: lkpoint_dir0 ! lkpoint_dir0=.TRUE. IF (present(lkpoint_dir)) lkpoint_dir0=lkpoint_dir IF ( ionode ) THEN ! if (lkpoint_dir0) CALL iotk_open_write ( iuni, & FILE = TRIM( filename ), BINARY = .FALSE. ) ! CALL iotk_write_attr ( attr, "nbnd", nbnd, FIRST=.TRUE. ) IF ( PRESENT( ik) ) CALL iotk_write_attr ( attr, "ik", ik ) IF ( PRESENT( ispin) ) CALL iotk_write_attr ( attr, "ispin", ispin ) CALL iotk_write_empty( iuni, "INFO", ATTR = attr ) ! CALL iotk_write_attr ( attr, "UNITS", TRIM(energy_units), FIRST = .TRUE. ) CALL iotk_write_empty( iuni, "UNITS_FOR_ENERGIES", ATTR=attr) ! CALL iotk_write_dat( iuni, "EIGENVALUES", eig(:) ) ! IF ( PRESENT( occ ) ) THEN ! CALL iotk_write_dat( iuni, "OCCUPATIONS", occ(:) ) ! ENDIF ! IF (lkpoint_dir0) CALL iotk_close_write ( iuni ) ! ENDIF ! END SUBROUTINE write_eig END MODULE xml_io_base espresso-5.0.2/Modules/clocks.f900000644000700200004540000003230712053145633015575 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... Time-printing utilities - Contains the following subroutines: ! init_clocks( go ) initialization - must be called first ! go = .TRUE. : up to "maxclock" clocks can be started ! go = .FALSE.: only clock #1 can be started ! start_clock( label ) starts clock "label" (max 12 characters) ! if "label" has never been started, initializes it ! issues warning if "label" already started ! stop_clock( label ) stops clock "label" ! issues warning if "label" is either not running ! or has never been started ! print_clock( label ) print cpu and wall time measured by clock "label" ! clock "label" may be running or stopped ! and remains in the same state ! issues warning if "label" has never been started ! ... and the following function (real(kind=dp): ! get_clock( label ) return wall time measured by clock "label" ! returns -1 if "label" has never been started ! ... All output and warnings are written to stdout ! ... Clocks should be started, read, stopped either on all processors, or ! ... only on one, but not half and half! For parallel debugging, uncomment: !#define __TRACE ! ... See also comments in subroutine print_this_clock about parallel case ! !---------------------------------------------------------------------------- MODULE mytime !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! SAVE ! INTEGER, PARAMETER :: maxclock = 100 REAL(DP), PARAMETER :: notrunning = - 1.0_DP ! REAL(DP) :: cputime(maxclock), t0cpu(maxclock) REAL(DP) :: walltime(maxclock), t0wall(maxclock) CHARACTER(len=12) :: clock_label(maxclock) INTEGER :: called(maxclock) ! INTEGER :: nclock = 0 LOGICAL :: no INTEGER :: trace_depth = 0 ! END MODULE mytime ! !---------------------------------------------------------------------------- SUBROUTINE init_clocks( go ) !---------------------------------------------------------------------------- ! ! ... go = .TRUE. : clocks will run ! ... go = .FALSE. : only clock #1 will run ! USE kinds, ONLY : DP USE mytime, ONLY : called, t0cpu, cputime, no, notrunning, maxclock, & clock_label, walltime, t0wall ! IMPLICIT NONE ! LOGICAL :: go INTEGER :: n ! ! no = .not. go ! DO n = 1, maxclock ! called(n) = 0 cputime(n) = 0.0_DP t0cpu(n) = notrunning walltime(n) = 0.0_DP t0wall(n) = notrunning clock_label(n) = ' ' ! ENDDO ! RETURN ! END SUBROUTINE init_clocks ! !---------------------------------------------------------------------------- SUBROUTINE start_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout #if defined (__TRACE) USE mp_global, ONLY : mpime #endif USE mytime, ONLY : nclock, clock_label, notrunning, no, maxclock, & t0cpu, t0wall, trace_depth ! IMPLICIT NONE ! CHARACTER(len=*) :: label ! CHARACTER(len=12) :: label_ INTEGER :: n REAL(DP), EXTERNAL :: scnds, cclock ! #if defined (__TRACE) WRITE( stdout, '("mpime = ",I2,", TRACE (depth=",I2,") Start: ",A12)') mpime, trace_depth, label trace_depth = trace_depth + 1 #endif ! IF ( no .and. ( nclock == 1 ) ) RETURN ! ! ... prevent trouble if label is longer than 12 characters ! label_ = trim ( label ) ! DO n = 1, nclock ! IF ( clock_label(n) == label_ ) THEN ! ! ... found previously defined clock: check if not already started, ! ... store in t0cpu the starting time ! IF ( t0cpu(n) /= notrunning ) THEN ! WRITE( stdout, '("start_clock: clock # ",I2," for ",A12, & ! & " already started")' ) n, label_ ELSE t0cpu(n) = scnds() t0wall(n) = cclock() ENDIF ! RETURN ! ENDIF ! ENDDO ! ! ... clock not found : add new clock for given label ! IF ( nclock == maxclock ) THEN ! WRITE( stdout, '("start_clock: Too many clocks! call ignored")' ) ! ELSE ! nclock = nclock + 1 clock_label(nclock) = label_ t0cpu(nclock) = scnds() t0wall(nclock) = cclock() ! ENDIF ! RETURN ! END SUBROUTINE start_clock ! !---------------------------------------------------------------------------- SUBROUTINE stop_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout #if defined (__TRACE) USE mp_global, ONLY : mpime #endif USE mytime, ONLY : no, nclock, clock_label, cputime, walltime, & notrunning, called, t0cpu, t0wall, trace_depth ! IMPLICIT NONE ! CHARACTER(len=*) :: label ! CHARACTER(len=12) :: label_ INTEGER :: n REAL(DP), EXTERNAL :: scnds, cclock ! #if defined (__TRACE) trace_depth = trace_depth - 1 WRITE( *, '("mpime = ",I2,", TRACE (depth=",I2,") End: ",A12)') mpime, trace_depth, label #endif ! IF ( no ) RETURN ! ! ... prevent trouble if label is longer than 12 characters ! label_ = trim ( label ) ! DO n = 1, nclock ! IF ( clock_label(n) == label_ ) THEN ! ! ... found previously defined clock : check if properly initialised, ! ... add elapsed time, increase the counter of calls ! IF ( t0cpu(n) == notrunning ) THEN ! WRITE( stdout, '("stop_clock: clock # ",I2," for ",A12, & & " not running")' ) n, label ! ELSE ! cputime(n) = cputime(n) + scnds() - t0cpu(n) walltime(n) = walltime(n) + cclock() - t0wall(n) t0cpu(n) = notrunning t0wall(n) = notrunning called(n) = called(n) + 1 ! ENDIF ! RETURN ! ENDIF ! ENDDO ! ! ... clock not found ! WRITE( stdout, '("stop_clock: no clock for ",A12," found !")' ) label ! RETURN ! END SUBROUTINE stop_clock ! !---------------------------------------------------------------------------- SUBROUTINE print_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mytime, ONLY : nclock, clock_label ! IMPLICIT NONE ! CHARACTER(len=*) :: label ! CHARACTER(len=12) :: label_ INTEGER :: n ! IF ( label == ' ' ) THEN ! WRITE( stdout, * ) ! DO n = 1, nclock ! CALL print_this_clock( n ) ! ENDDO ! ELSE ! ! ... prevent trouble if label is longer than 12 characters ! label_ = trim ( label ) ! DO n = 1, nclock ! IF ( clock_label(n) == label_ ) THEN ! CALL print_this_clock( n ) ! exit ! ENDIF ! ENDDO ! ENDIF ! RETURN ! END SUBROUTINE print_clock ! !---------------------------------------------------------------------------- SUBROUTINE print_this_clock( n ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mytime, ONLY : no, nclock, clock_label, cputime, walltime, & notrunning, called, t0cpu, t0wall ! ! ... See comments below about parallel case ! ! USE mp, ONLY : mp_max ! USE mp_global, ONLY : intra_image_comm, my_image_id ! IMPLICIT NONE ! INTEGER :: n REAL(DP) :: elapsed_cpu_time, elapsed_wall_time, nsec, msec INTEGER :: nday, nhour, nmin, nmax, mday, mhour, mmin ! REAL(DP), EXTERNAL :: scnds, cclock ! ! IF ( t0cpu(n) == notrunning ) THEN ! ! ... clock stopped, print the stored value for the cpu time ! elapsed_cpu_time = cputime(n) elapsed_wall_time= walltime(n) ! ELSE ! ! ... clock not stopped, print the current value of the cpu time ! elapsed_cpu_time = cputime(n) + scnds() - t0cpu(n) elapsed_wall_time = walltime(n) + cclock() - t0wall(n) called(n) = called(n) + 1 ! ENDIF ! nmax = called(n) ! ! ... In the parallel case there are several possible approaches ! ... The safest one is to leave each clock independent from the others ! ... Another possibility is to print the maximum across all processors ! ... This is done by uncommenting the following lines ! ! CALL mp_max( elapsed_cpu_time, intra_image_comm ) ! CALL mp_max( elapsed_wall_time, intra_image_comm ) ! CALL mp_max( nmax, intra_image_comm ) ! ! ... In the last line we assume that the maximum cpu time ! ... is associated to the maximum number of calls ! ... NOTA BENE: by uncommenting the above lines you may run into ! ... serious trouble if clocks are not started on all nodes ! IF ( n == 1 ) THEN ! ! ... The first clock is written as days/hour/min/sec ! nday = elapsed_cpu_time / 86400 nsec = elapsed_cpu_time - 86400 * nday nhour = nsec / 3600 nsec = nsec - 3600 * nhour nmin = nsec / 60 nsec = nsec - 60 * nmin ! ! ... The first clock writes elapsed (wall) time as well ! mday = elapsed_wall_time / 86400 msec = elapsed_wall_time - 86400 * mday mhour = msec / 3600 msec = msec - 3600 * mhour mmin = msec / 60 msec = msec - 60 * mmin ! IF ( nday > 0 .or. mday > 0 ) THEN ! WRITE( stdout, & '(5X,A12," : ",3X,I2,"d",3X,I2,"h",I2, "m CPU ", & & " ",3X,I2,"d",3X,I2,"h",I2, "m WALL"/)' ) & clock_label(n), nday, nhour, nmin, mday, mhour, mmin ! ELSEIF ( nhour > 0 .or. mhour > 0 ) THEN ! WRITE( stdout, & '(5X,A12," : ",3X,I2,"h",I2,"m CPU ", & & " ",3X,I2,"h",I2,"m WALL"/)' ) & clock_label(n), nhour, nmin, mhour, mmin ! ELSEIF ( nmin > 0 .or. mmin > 0 ) THEN ! WRITE( stdout, & '(5X,A12," : ",I2,"m",F5.2,"s CPU ", & & " ",I2,"m",F5.2,"s WALL"/)' ) & clock_label(n), nmin, nsec, mmin, msec ! ELSE ! WRITE( stdout, & '(5X,A12," : ",3X,F5.2,"s CPU ",7X,F5.2,"s WALL"/)' )& clock_label(n), nsec, msec ! ENDIF ! ELSEIF ( nmax == 1 .or. t0cpu(n) /= notrunning ) THEN ! ! ... for clocks that have been called only once ! WRITE( stdout, & '(5X,A12," : ",F9.2,"s CPU ",F9.2,"s WALL (",I8," calls)")' ) & clock_label(n), elapsed_cpu_time, elapsed_wall_time, nmax ! ELSEIF ( nmax == 0 ) THEN ! ! ... for clocks that have never been called ! WRITE( stdout, & '("print_this: clock # ",I2," for ",A12," never called !"/)' ) & n, clock_label(n) ! ELSE ! ! ... for all other clocks ! WRITE( stdout, & '(5X,A12," : ",F9.2,"s CPU ",F9.2,"s WALL (",I8," calls)")' ) & clock_label(n), elapsed_cpu_time, elapsed_wall_time, nmax ! ENDIF ! RETURN ! END SUBROUTINE print_this_clock ! !---------------------------------------------------------------------------- FUNCTION get_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mytime, ONLY : no, nclock, clock_label, walltime, & notrunning, called, t0wall, t0cpu ! ! ... See comments in subroutine print_this_clock about parallel case ! ! USE mp, ONLY : mp_max ! USE mp_global, ONLY : intra_image_comm ! IMPLICIT NONE ! REAL(DP) :: get_clock CHARACTER(len=*) :: label INTEGER :: n ! REAL(DP), EXTERNAL :: cclock ! ! IF ( no ) THEN ! IF ( label == clock_label(1) ) THEN ! get_clock = cclock() ! ELSE ! get_clock = notrunning ! ENDIF ! RETURN ! ENDIF ! DO n = 1, nclock ! IF ( label == clock_label(n) ) THEN ! IF ( t0cpu(n) == notrunning ) THEN ! get_clock = walltime(n) ! ELSE ! get_clock = walltime(n) + cclock() - t0wall(n) ! ENDIF ! ! ... See comments in subroutine print_this_clock about parallel case ! ! CALL mp_max( get_clock, intra_image_comm ) ! RETURN ! ENDIF ! ENDDO ! ! ... clock not found ! get_clock = notrunning ! RETURN ! END FUNCTION get_clock espresso-5.0.2/Modules/coulomb_vcut.f900000644000700200004540000002775712053145633017035 0ustar marsamoscm! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Written by Giovanni Bussi ! Adapted to QE by Andrea Ferretti & Layla Martin Samos ! !---------------------------------- MODULE coulomb_vcut_module !---------------------------------- ! IMPLICIT NONE PRIVATE ! ! general purpose parameters ! INTEGER, PARAMETER :: DP=KIND(1.0d0) REAL(DP), PARAMETER :: PI = 3.14159265358979323846_DP REAL(DP), PARAMETER :: TPI = 2.0_DP * pi REAL(DP), PARAMETER :: FPI = 4.0_DP * pi REAL(DP), PARAMETER :: e2 = 2.0_DP REAL(DP), PARAMETER :: eps6 = 1.0E-6_DP ! ! definitions ! TYPE vcut_type REAL(DP) :: a(3,3) REAL(DP) :: b(3,3) REAL(DP) :: a_omega REAL(DP) :: b_omega REAL(DP), POINTER :: corrected(:,:,:) REAL(DP) :: cutoff LOGICAL :: orthorombic END TYPE vcut_type ! PUBLIC :: vcut_type PUBLIC :: vcut_init PUBLIC :: vcut_get PUBLIC :: vcut_spheric_get PUBLIC :: vcut_destroy PUBLIC :: vcut_info CONTAINS !------------------------------------------ SUBROUTINE vcut_init(vcut,a,cutoff) !------------------------------------------ ! TYPE(vcut_type), INTENT(OUT) :: vcut REAL(DP), INTENT(IN) :: a(3,3) REAL(DP), INTENT(IN) :: cutoff INTEGER :: n1,n2,n3 INTEGER :: i1,i2,i3 INTEGER :: ierr REAL(DP) :: q(3) CHARACTER(9) :: subname='vcut_init' REAL(DP) :: mod2a(3) vcut%cutoff=cutoff vcut%a=a vcut%b= TPI * transpose(num_inverse(vcut%a)) vcut%b_omega=num_determinant(vcut%b) vcut%a_omega=num_determinant(vcut%a) ! automatically finds if wether the cell is orthorombic or not vcut%orthorombic=.false. mod2a=sum(vcut%a**2,1) if(sum(vcut%a(:,1)*vcut%a(:,2))/(mod2a(1)*mod2a(2)) vcut%cutoff**2 ) CYCLE ! vcut%corrected(i1,i2,i3) = & vcut_formula(q,vcut%a,vcut%b,vcut%a_omega,vcut%b_omega,vcut%orthorombic) ! ENDDO ENDDO ENDDO ! END SUBROUTINE vcut_init !------------------------------------------ SUBROUTINE vcut_info(iun, vcut) !------------------------------------------ ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun TYPE(vcut_type), INTENT(IN) :: vcut ! INTEGER :: i, n(3) ! IF ( ASSOCIATED( vcut%corrected ) ) THEN ! DO i = 1, 3 n(i) = ( SIZE( vcut%corrected, i) -1 ) / 2 ENDDO ! WRITE(iun, "( 2x,'Cutoff: ',f6.2,4x,' n grid: ',3i4,/)") vcut%cutoff, n(:) ! ENDIF ! END SUBROUTINE vcut_info !------------------------------------------ SUBROUTINE vcut_destroy(vcut) !------------------------------------------ ! TYPE(vcut_type), INTENT(INOUT) :: vcut INTEGER :: ierr ! DEALLOCATE(vcut%corrected, STAT=ierr) IF ( ierr/=0 ) CALL errore('vcut_destroy','deallocating vcut',ABS(ierr)) ! END SUBROUTINE vcut_destroy !------------------------------------------ FUNCTION vcut_get(vcut,q) RESULT(res) !------------------------------------------ ! TYPE(vcut_type), INTENT(IN) :: vcut REAL(DP), INTENT(IN) :: q(3) REAL(DP) :: res ! REAL(DP) :: i_real(3) INTEGER :: i(3) CHARACTER(8) :: subname='vcut_get' ! i_real=(MATMUL(TRANSPOSE(vcut%a),q))/ TPI i=NINT(i_real) ! ! internal check IF( SUM( (i-i_real)**2 ) > eps6 ) & CALL errore(subname,'q vector out of the grid',10) ! IF( SUM(q**2) > vcut%cutoff**2 ) THEN ! ! usual form of Coulomb potential res = FPI * e2 / SUM(q**2) ! ELSE ! IF( i(1)>ubound(vcut%corrected,1) .OR. i(1)ubound(vcut%corrected,2) .OR. i(2)ubound(vcut%corrected,3) .OR. i(3) 1d-5) then write(0,*) "AHIA",sum((matmul(inv,a)-eye3)**2) write(0,*) "A",a write(0,*) "inv",inv write(0,*)">>", matmul(inv,a) stop end if end function num_inverse function num_determinant(a) result(det) real(dp), intent(in) :: a(3,3) real(dp) :: det det = a(1,1)*a(2,2)*a(3,3) + a(1,2)*a(2,3)*a(3,1) + a(1,3)*a(2,1)*a(3,2) & - a(1,1)*a(2,3)*a(3,2) - a(1,2)*a(2,1)*a(3,3) - a(1,3)*a(2,2)*a(3,1) end function num_determinant !!! end tools from sax !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! END MODULE coulomb_vcut_module espresso-5.0.2/Modules/zhpev_drv.f900000644000700200004540000012506312053145633016330 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE zhpev_module IMPLICIT NONE SAVE PRIVATE PUBLIC :: pzhpev_drv, zhpev_drv #if defined __SCALAPACK PUBLIC :: pzheevd_drv #endif CONTAINS ! !------------------------------------------------------------------------- SUBROUTINE pzhptrd( n, nrl, ap, lda, d, e, tau, nproc, me, comm ) !------------------------------------------------------------------------- ! ! Parallel MPI version of the LAPACK routine ZHPTRD ! ! Carlo Cavazzoni (carlo.cavazzoni@cineca.it) -- CINECA ! Dicember 12, 1999 ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! LAPACK routine (version 2.0) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University ! USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE ! .. __SCALAR Arguments .. INTEGER LDA, N, NRL, NPROC, ME, comm ! .. ! .. Array Arguments .. REAL(DP) D( * ), E( * ) COMPLEX(DP) AP(LDA, * ), TAU( * ) ! .. ! ! Purpose ! ======= ! ! PZHPTRD reduces a complex Hermitian distributed matrix AP to ! real symmetric tridiagonal form T by a unitary similarity ! transformation: Q**H * A * Q = T. ! ! Arguments ! ========= ! ! N (input) INTEGER ! The order of the mglobal atrix AP. N >= 0. ! ! NRL (input) INTEGER ! The number of local rows of the matrix AP. NRL >= 0. ! ! AP (input/output) COMPLEX(DP) array, dimension (LDA,N) ! On entry, the Hermitian matrix AP. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! On exit, the diagonal and first subdiagonal ! of A are overwritten by the corresponding elements of the ! tridiagonal matrix T, and the elements below the first ! subdiagonal, with the array TAU, represent the unitary ! matrix Q as a product of elementary reflectors; ! ! LDA (input) INTEGER ! Leading dimension of the local matrix AP, LDA > NRL ! ! D (output) DOUBLE PRECISION array, dimension (N) ! The diagonal elements of the tridiagonal matrix T: ! D(i) = AP(i,i). ! ! E (output) DOUBLE PRECISION array, dimension (N-1) ! The off-diagonal elements of the tridiagonal matrix T: ! E(i) = A(i+1,i) ! ! TAU (output) COMPLEX(DP) array, dimension (N-1) ! The __SCALAR factors of the elementary reflectors (see Further ! Details). ! ! NPROC (input) INTEGER ! Number of processors ! ! ME (input) INTEGER ! Index of the local processor ( 0, 1, 2, ..., NPROC-1 ) ! ! Further Details ! =============== ! ! the matrix Q is represented as a product of elementary ! reflectors ! ! Q = H(1) H(2) . . . H(n-1). ! ! Each H(i) has the form ! ! H(i) = I - tau * v * v' ! ! where tau is a complex __SCALAR, and v is a complex vector with ! v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, ! overwriting A(i+2:n,i), and tau is stored in TAU(i). ! ! ===================================================================== ! ! .. Parameters .. COMPLEX(DP) ONE, ZERO, HALF PARAMETER ( ONE = ( 1.0_DP, 0.0_DP ),ZERO = ( 0.0_DP, 0.0_DP ), & & HALF = ( 0.5_DP, 0.0_DP ) ) REAL(DP) RONE, RZERO PARAMETER ( RONE = 1.0_DP, RZERO = 0.0_DP ) INTEGER QI INTEGER IL(N+1) INTEGER OW(N+1) COMPLEX(DP) CTMP COMPLEX(DP) CTMPV(N+1) COMPLEX(DP) TAUL(N+1) COMPLEX(DP) APKI(N+1) REAL(DP) TMP REAL(DP) TMPV(N+1) ! .. ! .. Local __SCALARs .. INTEGER J, I, I1, K, I2, NI1, JL INTEGER KL, J1 COMPLEX(DP) ALPHA, TAUI INTEGER KNT, IERR REAL(DP) ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM ! .. ! .. External Subroutines .. EXTERNAL zaxpy EXTERNAL zdscal, zscal ! .. ! .. External Functions .. COMPLEX(DP) zdotc EXTERNAL zdotc REAL(DP) DLAMCH, DLAPY3, DZNRM2 COMPLEX(DP) ZLADIV EXTERNAL DLAMCH, DLAPY3, DZNRM2, ZLADIV ! .. ! .. Intrinsic Functions .. INTRINSIC DABS, DBLE, AIMAG, SIGN ! ! .. Executable Statements .. ! ! Quick return if possible ! IF(N.LE.0) THEN RETURN END IF DO I = 1,N+1 QI = (I-1)/NPROC OW(I) = MOD((I-1),NPROC) IF(ME .le. OW(I) ) then IL(I) = QI + 1 ELSE IL(I) = QI END IF END DO ! ! Reduce the lower triangle of A. ! IF (OW(1).EQ.ME) THEN AP( IL(1), 1 ) = DBLE( AP( IL(1), 1 ) ) END IF DO I = 1, N - 1 ! ! Generate elementary reflector H(i) = I - tau * v * v' ! to annihilate A(i+2:n,i) ! IF (OW(I+1).EQ.ME) THEN ALPHA = AP( IL(I+1), I ) END IF #if defined __MPI CALL BCAST_REAL( ALPHA, 2, OW(I+1), comm ) #endif IF( (N-I).LE.0 ) THEN TAUI = RZERO ELSE IF(OW(I+2).EQ.ME) THEN I2 = IL(I+2) ELSE I2 = IL(I+2) + 1 ! I+2 ENDIF NI1 = NRL - I2 + 1 ! N-I-1 IF((N-I-1).GT.0) THEN IF( NI1 .GT. 0 ) THEN XNORM = DZNRM2( NI1, AP( I2, I ), 1 ) ELSE XNORM = 0.0_DP END IF #if defined __MPI XNORM = XNORM ** 2 CALL reduce_base_real( 1, xnorm, comm, -1 ) XNORM = SQRT( xnorm ) #endif ELSE XNORM = 0.0_DP ENDIF ALPHR = DBLE( ALPHA ) ALPHI = AIMAG( ALPHA ) IF( XNORM.EQ.RZERO .AND. ALPHI.EQ.RZERO ) THEN TAUI = RZERO ELSE BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) RSAFMN = RONE / SAFMIN IF( DABS( BETA ).LT.SAFMIN ) THEN KNT = 0 10 CONTINUE KNT = KNT + 1 IF(NI1.GT.0) THEN CALL zdscal( NI1, RSAFMN, AP( I2, I ), 1 ) ENDIF BETA = BETA*RSAFMN ALPHI = ALPHI*RSAFMN ALPHR = ALPHR*RSAFMN IF( DABS( BETA ).LT.SAFMIN ) GO TO 10 IF((N-I-1).GT.0) THEN XNORM = DZNRM2( NI1, AP( I2, I ), 1 ) #if defined __MPI XNORM = XNORM ** 2 CALL reduce_base_real( 1, xnorm, comm, -1 ) XNORM = SQRT( XNORM ) #endif ELSE XNORM = 0.0_DP ENDIF ALPHA = CMPLX( ALPHR, ALPHI, KIND=DP ) BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) TAUI = CMPLX( (BETA-ALPHR)/BETA, -ALPHI/BETA, KIND=DP ) ALPHA = ZLADIV( ONE, ALPHA-BETA ) IF(NI1.GT.0) THEN CALL zscal( NI1, ALPHA, AP( I2, I ), 1 ) ENDIF ALPHA = BETA DO J = 1, KNT ALPHA = ALPHA*SAFMIN END DO ELSE TAUI = CMPLX( (BETA-ALPHR)/BETA, -ALPHI/BETA, KIND=DP ) ALPHA = ZLADIV( ONE, ALPHA-BETA ) IF(NI1.GT.0) THEN CALL zscal( NI1, ALPHA, AP( I2, I ), 1 ) ENDIF ALPHA = BETA END IF END IF ENDIF ! E( I ) = ALPHA ! IF( TAUI.NE.ZERO ) THEN ! ! Apply H(i) from both sides to A(i+1:n,i+1:n) ! ! ... AP( I+1, I ) = ONE IF (OW(I+1).EQ.ME) THEN AP( IL(I+1), I ) = ONE END IF ! ! Compute y := tau * A * v storing y in TAU(i:n-1) ! ! ... broadcast A(K,I) IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ! I+2 ENDIF #if defined __MPI DO J = I+1, N CTMPV(J) = ZERO END DO DO JL = I1, NRL J = ME + (JL-1)*NPROC + 1 CTMPV(J) = AP(JL,I) END DO CALL reduce_base_real_to( 2*(n - i) , ctmpv( i + 1 ), apki( i + 1 ), comm, -1 ) #else DO J = I+1,N APKI(J) = AP(J,I) ENDDO #endif DO J = I+1, N+1 TAU(J-1) = ZERO END DO DO JL = I1, NRL J = ME + (JL-1)*NPROC + 1 TAU(J-1) = ZERO DO K = I+1, J TAU(J-1) = TAU(J-1) + TAUI * AP(JL,K) * APKI(K) END DO END DO DO J = I+1, N IF(OW(J+1).EQ.ME) THEN J1 = IL(J+1) ELSE J1 = IL(J+1) + 1 ! I+2 ENDIF DO KL = J1, NRL K = ME + (KL-1)*NPROC + 1 TAU(J-1) = TAU(J-1) + TAUI * CONJG(AP(KL,J)) * APKI(K) END DO END DO #if defined __MPI ! ... parallel sum TAU CALL reduce_base_real( 2*(n - i + 1), tau( i ), comm, -1 ) #endif ! ! Compute w := y - 1/2 * tau * (y'*v) * v ! ! ... ALPHA = -HALF*TAUI*zdotc(N-I,TAU(I),1,AP(I+1,I),1) JL = 1 DO J = I, N IF(OW(J+1).EQ.ME) THEN TAUL(JL) = TAU(J) JL = JL + 1 END IF END DO IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ! I+1 ENDIF NI1 = NRL - I1 + 1 ! N-I IF ( NI1 > 0 ) THEN ALPHA = -HALF*TAUI*zdotc(NI1,TAUL(1),1,AP(I1,I),1) ELSE ALPHA = 0.0_DP END IF #if defined __MPI CALL reduce_base_real( 2, alpha, comm, -1 ) #endif #if defined __MPI IF ( NI1 > 0 ) CALL zaxpy(NI1,ALPHA,AP(I1,I),1,TAUL(1),1) JL = 1 DO J = I, N CTMPV(J) = ZERO IF(OW(J+1).EQ.ME) THEN CTMPV(J) = TAUL(JL) JL = JL + 1 END IF END DO CALL reduce_base_real_to( 2*(n - i + 1) , ctmpv( i ), tau( i ), comm, -1 ) #else CALL zaxpy(N-I,ALPHA,AP(I+1,I),1,TAU(I),1) #endif ! ! Apply the transformation as a rank-2 update: ! A := A - v * w' - w * v' ! ! ... broadcast A(K,I) IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ! I+2 ENDIF #if defined __MPI DO J = I+1, N CTMPV(J) = ZERO END DO DO JL = I1, NRL J = ME + (JL-1)*NPROC + 1 CTMPV(J) = AP(JL,I) END DO CALL reduce_base_real_to( 2*(n - i) , ctmpv( i + 1 ), apki( i + 1 ), comm, -1 ) #else DO J = I+1, N APKI(J) = AP(J,I) END DO #endif DO K = I+1,N DO JL = I1,NRL J = ME + (JL-1)*NPROC + 1 AP(JL,K) = AP(JL,K) - ONE * AP(JL,I) * CONJG(TAU(K-1)) - & & CONJG(ONE) * TAU(J-1) * CONJG(APKI(K)) END DO END DO ! END IF IF(OW(I+1).EQ.ME) THEN AP(IL(I+1),I) = E( I ) END IF IF(OW(I).EQ.ME) THEN D( I ) = DBLE(AP( IL(I),I )) END IF #if defined __MPI CALL BCAST_REAL(D(I),1,OW(I),comm) #endif TAU( I ) = TAUI END DO IF(OW(I).EQ.ME) THEN D( N ) = DBLE(AP( IL(I),I )) END IF #if defined __MPI CALL BCAST_REAL(D(N),1,OW(I),comm) #endif ! RETURN ! ! End of ZHPTRD ! END SUBROUTINE pzhptrd !==----------------------------------------------==! SUBROUTINE pzupgtr( n, nrl, ap, lda, tau, q, ldq, nproc, me, comm) USE kinds, ONLY : DP USE io_global, ONLY : stdout ! ! Parallel MPI version of the LAPACK routine ZUPGTR ! ! Carlo Cavazzoni (carlo.cavazzoni@cineca.it) -- CINECA ! Dicember 12, 1999 ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! LAPACK routine (version 2.0) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University IMPLICIT NONE ! ! .. __SCALAR Arguments .. INTEGER INFO, LDQ, N, LDA, NRL, NPROC, ME, comm ! .. ! .. Array Arguments .. COMPLEX(DP) AP(LDA, * ), Q( LDQ, * ), TAU( * ) ! .. ! ! Purpose ! ======= ! ! PZUPGTR generates a complex unitary matrix Q which is defined as the ! product of n-1 elementary reflectors H(i) of order n, as returned by ! PZHPTRD : ! ! Q = H(1) H(2) . . . H(n-1). ! ! Arguments ! ========= ! ! N (input) INTEGER ! The order of the mglobal atrix AP. N >= 0. ! ! NRL (input) INTEGER ! The number of local rows of the matrix AP. NRL >= 0. ! ! AP (input) COMPLEX(DP) array, dimension (LDA,N) ! The vectors which define the elementary reflectors, as ! returned by PZHPTRD. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! LDA (input) INTEGER ! Leading dimension of the local matrix AP, LDA > NRL ! ! TAU (input) COMPLEX(DP) array, dimension (N-1) ! TAU(i) must contain the __SCALAR factor of the elementary ! reflector H(i), as returned by PZHPTRD. ! ! Q (output) COMPLEX(DP) array, dimension (LDQ,N) ! The N-by-N unitary matrix Q. ! The rows of the matrix are distributed among processors ! in the same way of the matrix AP ! ! LDQ (input) INTEGER ! The leading dimension of the array Q. LDQ >= max(1,NRL). ! ! NPROC (input) INTEGER ! Number of processors ! ! ME (input) INTEGER ! Index of the local processor ( 0, 1, 2, ..., NPROC-1 ) ! ! ===================================================================== ! ! .. Parameters .. COMPLEX(DP) ONE, ZERO PARAMETER ( ONE = (1.0_DP,0.0_DP), ZERO = (0.0_DP,0.0_DP) ) ! change the following parameters to tune the performances ! INTEGER, PARAMETER :: opt_zgemv = 40 INTEGER, PARAMETER :: opt_zgerc = 40 INTEGER QI INTEGER IL(N+1) INTEGER OW(N+1) COMPLEX(DP) CTMP COMPLEX(DP) WORK(N+1) ! .. ! .. Local __SCALARs .. INTEGER :: I, IINFO, J, K, JL, KL, J1, I1, I2, NI1, L, IERR INTEGER :: ibeg, iend, nr INTEGER, EXTERNAL :: ldim_cyclic, lind_cyclic ! .. ! .. Executable Statements .. ! ! Test the input arguments ! ! Quick return if possible ! IF( N == 0 ) THEN RETURN END IF nr = ldim_cyclic( n, nproc, me ) ! IF( nr /= nrl ) & CALL errore( " pzupgtr ", " inconsistent dimensions ", nrl ) ! ibeg = lind_cyclic( 1, n, nproc, me ) iend = lind_cyclic( nr, n, nproc, me ) ! DO I = 1,N+1 QI = (I-1)/NPROC OW(I) = MOD((I-1),NPROC) IF(ME .le. OW(I) ) then IL(I) = QI + 1 ELSE IL(I) = QI END IF END DO ! ! Unpack the vectors which define the elementary reflectors and ! set the first row and column of Q equal to those of the unit ! matrix ! IF(OW(1).EQ.ME) THEN Q( IL(1), 1 ) = ONE DO KL = 2, NRL Q( KL, 1 ) = ZERO END DO DO J = 2, N Q( IL(1), J ) = ZERO END DO ELSE DO KL = 1, NRL Q( KL, 1 ) = ZERO END DO ENDIF DO J = 2, N IF(OW(J+1).EQ.ME) THEN J1 = IL(J+1) ELSE J1 = IL(J+1) + 1 ENDIF DO KL = J1, NRL Q( KL, J ) = AP( KL, J-1 ) END DO END DO IF( N.GT.1 ) THEN ! ! Generate Q(2:n,2:n) ! DO I = N-1, 1, -1 ! ! Apply H(i) to A(i:m,i:n) from the left ! IF( I.LT.(N-1) ) THEN IF(OW(I+1).EQ.ME) THEN Q( IL(I+1), I+1 ) = ONE END IF ! ! Form H * C ! IF( TAU(I).NE.ZERO ) THEN ! ! w := C' * v ! IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ENDIF ! IF( N-1-I > OPT_ZGEMV ) THEN IF( NRL-I1+1 > 0 ) THEN CALL zgemv( 'C', NRL-I1+1, N-1-I, one, Q( I1, I+1+1 ), ldq, Q( I1, I+1 ), 1, zero, work, 1 ) ELSE work( 1 : N-1-I ) = 0.0_DP END IF ELSE DO J = 1, N-1-I CTMP = ZERO DO KL = I1, NRL CTMP = CTMP + CONJG( Q( KL, J+I+1 ) ) * Q( KL,I+1 ) END DO WORK(J) = CTMP END DO END IF #if defined __MPI CALL reduce_base_real( 2*(n - 1 - i), work, comm, -1 ) #endif ! ! C := C - v * w' ! IF( N-1-I > opt_zgerc ) THEN IF( NRL-I1+1 > 0 ) THEN CALL zgerc( NRL-I1+1, N-1-I, -TAU(I), Q(I1, I+1), 1, work, 1, Q( I1, 1+I+1 ), ldq ) END IF ELSE DO J = 1, N-1-I CTMP = -TAU(I) * CONJG( WORK( J ) ) DO KL = I1, NRL Q( KL, J+I+1 ) = Q( KL, J+I+1 ) + CTMP * Q(KL, I+1) END DO END DO END IF END IF END IF IF( I.LT.(N-1) ) THEN IF(OW(I+2).EQ.ME) THEN I2 = IL(I+2) ! I+2 ELSE I2 = IL(I+2) + 1 ! local ind. of the first element > I+2 ENDIF NI1 = NRL - I2 + 1 ! N-I-1 IF ( NI1 > 0 ) CALL zscal( NI1, -TAU( I ), Q( I2, I+1 ), 1 ) END IF IF(OW(I+1).EQ.ME) THEN Q( IL(I+1), I+1 ) = ONE - TAU( I ) END IF ! ! Set A(1:i-1,i) to zero ! DO L = 1, I - 1 IF(OW(L+1).EQ.ME) THEN Q( IL(L+1), I+1 ) = ZERO END IF END DO END DO END IF RETURN ! ! End of ZUPGTR ! END SUBROUTINE pzupgtr !==----------------------------------------------==! SUBROUTINE pzsteqr( compz, n, nrl, d, e, z, ldz, nproc, me, comm ) ! ! Parallel MPI version of the LAPACK routine ZHPTRD ! ! Carlo Cavazzoni (carlo.cavazzoni@cineca.it) -- CINECA ! Dicember 12, 1999 ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! LAPACK routine (version 2.0) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University ! USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE ! .. __SCALAR Arguments .. CHARACTER COMPZ INTEGER LDZ, N, NRL, NPROC, ME, comm ! .. ! .. Array Arguments .. REAL(DP) D( * ), E( * ) COMPLEX(DP) Z( LDZ, * ) ! .. ! ! Purpose ! ======= ! ! PZSTEQR computes all eigenvalues and, optionally, eigenvectors of a ! symmetric tridiagonal matrix using the implicit QL or QR method. ! The eigenvectors of a full or band complex Hermitian matrix can also ! be found if PZHPTRD has been used to reduce this ! matrix to tridiagonal form. ! ! Arguments ! ========= ! ! COMPZ (input) CHARACTER*1 ! = 'N': Compute eigenvalues only. ! = 'V': Compute eigenvalues and eigenvectors of the original ! Hermitian matrix. On entry, Z must contain the ! unitary matrix used to reduce the original matrix ! to tridiagonal form. ! = 'I': Compute eigenvalues and eigenvectors of the ! tridiagonal matrix. Z is initialized to the identity ! matrix. ! ! N (input) INTEGER ! The order of the mglobal atrix AP. N >= 0. ! ! NRL (input) INTEGER ! The number of local rows of the matrix AP. NRL >= 0. ! ! D (input/output) DOUBLE PRECISION array, dimension (N) ! On entry, the diagonal elements of the tridiagonal matrix. ! On exit, if INFO = 0, the eigenvalues in ascending order. ! ! E (input/output) DOUBLE PRECISION array, dimension (N-1) ! On entry, the (n-1) subdiagonal elements of the tridiagonal ! matrix. ! On exit, E has been destroyed. ! ! Z (input/output) COMPLEX(DP) array, dimension (LDZ, N) ! On entry, if COMPZ = 'V', then Z contains the unitary ! matrix used in the reduction to tridiagonal form. ! On exit if COMPZ = 'V', Z contains the ! orthonormal eigenvectors of the original Hermitian matrix, ! and if COMPZ = 'I', Z contains the orthonormal eigenvectors ! of the symmetric tridiagonal matrix. ! If COMPZ = 'N', then Z is not referenced. ! The rows of the matrix are distributed among processors ! with blocking factor 1, i.e. for NPROC = 4 : ! ROW Index | Processor index owning the row ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! LDZ (input) INTEGER ! The leading dimension of the array Z. LDZ >= 1, and if ! eigenvectors are desired, then LDZ >= max(1,NRL). ! ! NPROC (input) INTEGER ! Number of processors ! ! ME (input) INTEGER ! Index of the local processor ( 0, 1, 2, ..., NPROC-1 ) ! ! ===================================================================== ! ! .. Parameters .. REAL(DP) RZERO, RONE, TWO, THREE, CTEMP, STEMP PARAMETER ( RZERO = 0.0_DP, RONE = 1.0_DP, TWO = 2.0_DP, & & THREE = 3.0_DP ) COMPLEX(DP) ZERO, ONE,ZTEMP PARAMETER ( ZERO = ( 0.0_DP, 0.0_DP ), ONE = ( 1.0_DP, 0.0_DP ) ) INTEGER MAXIT PARAMETER ( MAXIT = 30 ) ! .. INTEGER :: QI, KL, INFO INTEGER :: IL(N+1) INTEGER :: OW(N+1) REAL(DP) :: WORK(2*N) REAL(DP) :: dvar(6) ! .. Local __SCALARs .. INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND, & & LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1, & & NM1, NMAXIT, IERR REAL(DP) ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2, & & S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST ! .. ! .. External Functions .. LOGICAL LSAME REAL(DP) DLAMCH, DLANST, DLAPY2 EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2 ! .. ! .. External Subroutines .. EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASRT, XERBLA EXTERNAL ZLASET, ZLASR, ZSWAP ! .. ! .. Intrinsic Functions .. INTRINSIC DABS, MAX, SIGN, SQRT ! .. ! .. Executable Statements .. ! ! Test the input parameters. ! INFO = 0 ! DEBUG START ! if( n > 400 ) then ! write( 4000 + me, * ) LDZ, N, NRL, NPROC, ME, comm ! do i = 1, n ! write( 4000 + me, * ) d( i ) ! end do ! do i = 1, n ! write( 4000 + me, * ) e( i ) ! end do ! do j = 1, n ! do i = 1, nrl ! write( 4000 + me, * ) z( i, j ) ! end do ! end do ! close( 4000 + me ) ! call mpi_barrier( comm, i ) ! stop 'qui' ! end if ! DEBUG END ! IF( LSAME( COMPZ, 'N' ) ) THEN ICOMPZ = 0 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ICOMPZ = 2 ELSE ICOMPZ = -1 END IF IF( ICOMPZ.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( (LDZ.LT.1) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX(1,NRL) ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSTEQR', -INFO ) RETURN END IF ! ! Quick return if possible ! IF(N.LE.0) THEN RETURN END IF ! DO I = 1,N+1 QI = (I-1)/NPROC OW(I) = MOD((I-1),NPROC) IF(ME .le. OW(I) ) then IL(I) = QI + 1 ELSE IL(I) = QI END IF END DO IF( N.EQ.1 ) THEN IF( ICOMPZ.EQ.2 .AND. OW(1).EQ.ME ) Z( IL(1), 1 ) = ONE RETURN END IF ! ! Determine the unit roundoff and over/underflow thresholds. ! We ensure that all procs have the same data! ! EPS = DLAMCH( 'E' ) EPS2 = EPS**2 SAFMIN = DLAMCH( 'S' ) SAFMAX = RONE / SAFMIN SSFMAX = SQRT( SAFMAX ) / THREE SSFMIN = SQRT( SAFMIN ) / EPS2 ! dvar(1) = EPS dvar(2) = EPS2 dvar(3) = SAFMIN dvar(4) = SAFMAX dvar(5) = SSFMAX dvar(6) = SSFMIN ! CALL BCAST_REAL( dvar, 6, 0, comm ) ! EPS = dvar(1) EPS2 = dvar(2) SAFMIN = dvar(3) SAFMAX = dvar(4) SSFMAX = dvar(5) SSFMIN = dvar(6) ! ! Compute the eigenvalues and eigenvectors of the tridiagonal ! matrix. ! IF( ICOMPZ.EQ.2 ) THEN CALL ZLASET( 'Full', NRL, N, ZERO, ZERO, Z, LDZ ) DO J = 1, N IF(OW(J).EQ.ME) THEN Z( IL(J), J ) = ONE END IF END DO END IF ! NMAXIT = N*MAXIT JTOT = 0 ! ! Determine where the matrix splits and choose QL or QR iteration ! for each block, according to whether top or bottom diagonal ! element is smaller. ! L1 = 1 NM1 = N - 1 ! 10 CONTINUE IF( L1 .GT. N ) GO TO 160 IF( L1 .GT. 1 ) E( L1-1 ) = RZERO IF( me == 0 ) THEN IF( L1.LE.NM1 ) THEN DO M = L1, NM1 TST = DABS( E( M ) ) IF( TST .EQ. RZERO ) GO TO 30 IF( TST .LE. ( SQRT(DABS(D(M)))*SQRT(DABS(D(M+1))) ) * EPS ) THEN E( M ) = RZERO GO TO 30 END IF END DO END IF M = N ! 30 CONTINUE END IF CALL BCAST_REAL( e( l1 ), nm1-l1+1, 0, comm ) CALL BCAST_INTEGER( m, 1, 0, comm ) L = L1 LSV = L LEND = M LENDSV = LEND L1 = M + 1 IF( LEND.EQ.L ) GO TO 10 ! ! Scale submatrix in rows and columns L to LEND ! ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) ) ISCALE = 0 IF( ANORM.EQ.RZERO ) GO TO 10 IF( ANORM.GT.SSFMAX ) THEN ISCALE = 1 CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, INFO ) CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, INFO ) ELSE IF( ANORM.LT.SSFMIN ) THEN ISCALE = 2 CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, INFO ) CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, INFO ) END IF ! ! Choose between QL and QR iteration ! IF( DABS( D( LEND ) ).LT.DABS( D( L ) ) ) THEN LEND = LSV L = LENDSV END IF ! IF( LEND.GT.L ) THEN ! ! QL Iteration ! ! Look for small subdiagonal element. ! 40 CONTINUE IF( me == 0 ) THEN IF( L.NE.LEND ) THEN LENDM1 = LEND - 1 DO M = L, LENDM1 TST = DABS( E( M ) )**2 IF( TST.LE.( EPS2*DABS(D(M)) )*DABS(D(M+1))+ SAFMIN )GO TO 60 END DO END IF ! M = LEND ! 60 CONTINUE END IF CALL BCAST_INTEGER( m, 1, 0, comm ) IF( M.LT.LEND ) E( M ) = RZERO P = D( L ) IF( M.EQ.L ) THEN ! ! Eigenvalue found. ! D( L ) = P L = L + 1 IF( L.LE.LEND ) GO TO 40 GO TO 140 END IF ! ! If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 ! to compute its eigensystem. ! IF( M.EQ.L+1 ) THEN IF( ICOMPZ.GT.0 ) THEN CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S ) WORK( L ) = C WORK( N-1+L ) = S CTEMP = WORK( L ) STEMP = WORK( N-1+L ) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, 1+L ) Z( KL, 1+L ) = CTEMP*ZTEMP - STEMP*Z( KL, L ) Z( KL, L ) = STEMP*ZTEMP + CTEMP*Z( KL, L ) END DO END IF ELSE CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 ) END IF D( L ) = RT1 D( L+1 ) = RT2 E( L ) = RZERO L = L + 2 IF( L.LE.LEND ) GO TO 40 GO TO 140 END IF ! IF( JTOT.EQ.NMAXIT ) GO TO 140 JTOT = JTOT + 1 ! ! Form shift. ! ! ! iteration is performed on one processor and results broadcast ! to all others to prevent potential problems if all processors ! do not behave in exactly the same way (even with the same data!) ! if ( me == 0 ) then G = ( D( L+1 )-P ) / ( TWO*E( L ) ) R = DLAPY2( G, RONE ) G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) ) ! S = RONE C = RONE P = RZERO ! ! Inner loop ! MM1 = M - 1 DO I = MM1, L, -1 F = S*E( I ) B = C*E( I ) CALL DLARTG( G, F, C, S, R ) IF( I.NE.M-1 ) E( I+1 ) = R G = D( I+1 ) - P R = ( D( I )-G )*S + TWO*C*B P = S*R D( I+1 ) = G + P G = C*R - B ! ! If eigenvectors are desired, then save rotations. ! IF( ICOMPZ.GT.0 ) THEN WORK( I ) = C WORK( N-1+I ) = -S END IF END DO D( L ) = D( L ) - P E( L ) = G END IF #if defined __MPI CALL BCAST_REAL( d( L ), m - l + 1, 0, comm ) CALL BCAST_REAL( e( L ), m - l + 1, 0, comm ) #endif ! ! If eigenvectors are desired, then apply saved rotations. ! IF( ICOMPZ.GT.0 ) THEN #if defined __MPI CALL BCAST_REAL( work, 2*n, 0, comm ) #endif DO J = M - L + 1 - 1, 1, -1 CTEMP = WORK( L + J -1) STEMP = WORK( N-1+L + J-1) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, J+1+L-1 ) Z( KL, J+1+L-1 ) = CTEMP*ZTEMP - STEMP*Z( KL, J+L-1 ) Z( KL, J+L-1 ) = STEMP*ZTEMP + CTEMP*Z( KL, J+L-1 ) END DO END IF END DO END IF ! GO TO 40 ! ELSE ! ! QR Iteration ! ! Look for small superdiagonal element. ! 90 CONTINUE IF( me == 0 ) THEN IF( L.NE.LEND ) THEN LENDP1 = LEND + 1 DO 100 M = L, LENDP1, -1 TST = DABS( E( M-1 ) )**2 IF( TST.LE.(EPS2*DABS(D(M)))*DABS(D(M-1))+ SAFMIN )GO TO 110 100 CONTINUE END IF ! M = LEND ! 110 CONTINUE END IF CALL BCAST_INTEGER( m, 1, 0, comm ) IF( M.GT.LEND ) E( M-1 ) = RZERO P = D( L ) IF( M.EQ.L ) THEN ! ! Eigenvalue found. ! D( L ) = P L = L - 1 IF( L.GE.LEND ) GO TO 90 GO TO 140 END IF ! ! If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 ! to compute its eigensystem. ! IF( M.EQ.L-1 ) THEN IF( ICOMPZ.GT.0 ) THEN CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S ) WORK( M ) = C WORK( N-1+M ) = S CTEMP = WORK( M ) STEMP = WORK( N-1+M ) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, L) Z( KL, L ) = CTEMP*ZTEMP - STEMP*Z( KL, L-1 ) Z( KL, L-1 ) = STEMP*ZTEMP + CTEMP*Z( KL, L-1 ) END DO END IF ELSE CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 ) END IF D( L-1 ) = RT1 D( L ) = RT2 E( L-1 ) = RZERO L = L - 2 IF( L.GE.LEND ) GO TO 90 GO TO 140 END IF ! IF( JTOT.EQ.NMAXIT ) GO TO 140 JTOT = JTOT + 1 ! ! Form shift. ! ! ! iteration is performed on one processor and results broadcast ! to all others to prevent potential problems if all processors ! do not behave in exactly the same way (even with the same data!) ! if ( me == 0 ) then G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) ) R = DLAPY2( G, RONE ) G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) ) ! S = RONE C = RONE P = RZERO ! ! Inner loop ! LM1 = L - 1 DO I = M, LM1 F = S*E( I ) B = C*E( I ) CALL DLARTG( G, F, C, S, R ) IF( I.NE.M ) E( I-1 ) = R G = D( I ) - P R = ( D( I+1 )-G )*S + TWO*C*B P = S*R D( I ) = G + P G = C*R - B ! ! If eigenvectors are desired, then save rotations. ! IF( ICOMPZ.GT.0 ) THEN WORK( I ) = C WORK( N-1+I ) = S END IF END DO D( L ) = D( L ) - P E( LM1 ) = G END IF #if defined __MPI CALL BCAST_REAL( d(M), L - M + 1, 0, comm) CALL BCAST_REAL( e(M), L - M + 1, 0, comm ) #endif ! ! If eigenvectors are desired, then apply saved rotations. ! IF( ICOMPZ.GT.0 ) THEN #if defined __MPI CALL BCAST_REAL(work,2*n,0,comm) #endif DO J = 1, L - M CTEMP = WORK( M+J-1 ) STEMP = WORK( N-1+M+J-1 ) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, J+M ) Z( KL, J+M ) = CTEMP*ZTEMP - STEMP*Z(KL, J+M-1) Z( KL, J+M-1 ) = STEMP*ZTEMP + CTEMP*Z(KL, J+M-1) END DO END IF END DO END IF ! GO TO 90 ! END IF ! ! Undo scaling if necessary ! 140 CONTINUE IF( ISCALE.EQ.1 ) THEN CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, & & D( LSV ), N, INFO ) CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ), & & N, INFO ) ELSE IF( ISCALE.EQ.2 ) THEN CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, & & D( LSV ), N, INFO ) CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ), & & N, INFO ) END IF ! ! Check for no convergence to an eigenvalue after a total ! of N*MAXIT iterations. ! IF( JTOT .EQ. NMAXIT ) THEN DO 150 I = 1, N - 1 IF( E( I ) .NE. RZERO ) INFO = INFO + 1 150 CONTINUE WRITE(6,*) 'WARNING pzsteqr, convergence not achieved INFO = ', INFO RETURN END IF GO TO 10 ! ! Order eigenvalues and eigenvectors. ! 160 CONTINUE IF( ICOMPZ.EQ.0 ) THEN ! ! Use Quick Sort ! CALL DLASRT( 'I', N, D, INFO ) ! ELSE ! ! Use Selection Sort to minimize swaps of eigenvectors ! DO 180 II = 2, N I = II - 1 K = I P = D( I ) DO 170 J = II, N IF( D( J ).LT.P ) THEN K = J P = D( J ) END IF 170 CONTINUE IF( K.NE.I ) THEN D( K ) = D( I ) D( I ) = P CALL ZSWAP( NRL, Z( 1, I ), 1, Z( 1, K ), 1 ) END IF 180 CONTINUE END IF RETURN ! ! End of ZSTEQR ! END SUBROUTINE pzsteqr !==----------------------------------------------==! SUBROUTINE zhpev_drv( JOBZ, UPLO, N, AP, W, Z, LDZ ) USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE CHARACTER :: JOBZ, UPLO INTEGER :: IOPT, INFO, LDZ, N COMPLEX(DP) :: AP( * ), Z( LDZ, * ) REAL(DP) :: W( * ) REAL(DP), ALLOCATABLE :: RWORK(:) COMPLEX(DP), ALLOCATABLE :: ZWORK(:) #if defined __ESSL IOPT = 0 IF((JOBZ .EQ. 'V') .OR. (JOBZ .EQ. 'v') ) iopt = iopt + 1 IF((UPLO .EQ. 'U') .OR. (UPLO .EQ. 'u') ) iopt = iopt + 20 ALLOCATE( rwork( 4*n ) ) CALL ZHPEV(IOPT, ap, w, z, ldz, n, rwork, 4*n) DEALLOCATE( rwork ) #else ALLOCATE( rwork( MAX(1, 3*n-2) ), zwork( MAX(1, 2*n-1)) ) CALL ZHPEV(jobz, uplo, n, ap, w, z, ldz, zwork, rwork, INFO) DEALLOCATE( rwork, zwork ) IF( info .NE. 0 ) THEN CALL errore( ' dspev_drv ', ' diagonalization failed ',info ) END IF #endif RETURN END SUBROUTINE zhpev_drv !==----------------------------------------------==! SUBROUTINE pzhpev_drv( jobz, ap, lda, w, z, ldz, & nrl, n, nproc, mpime, comm ) USE kinds, ONLY : DP IMPLICIT NONE CHARACTER :: JOBZ INTEGER, INTENT(IN) :: lda, ldz, nrl, n, nproc, mpime INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: ap( lda, * ), z( ldz, * ) REAL(DP) :: w( * ) REAL(DP), ALLOCATABLE :: rwork( : ) COMPLEX(DP), ALLOCATABLE :: cwork( : ) ! ALLOCATE( rwork( n ) ) ALLOCATE( cwork( n ) ) ! CALL pzhptrd( n, nrl, ap, lda, w, rwork, cwork, nproc, mpime, comm) IF( jobz == 'V' .OR. jobz == 'v' ) THEN CALL pzupgtr( n, nrl, ap, lda, cwork, z, ldz, nproc, mpime, comm) END IF CALL pzsteqr( jobz, n, nrl, w, rwork, z, ldz, nproc, mpime, comm) DEALLOCATE( cwork ) DEALLOCATE( rwork ) RETURN END SUBROUTINE pzhpev_drv !==----------------------------------------------==! #if defined __SCALAPACK SUBROUTINE pzheevd_drv( tv, n, nb, h, w, ortho_cntx ) USE kinds, ONLY : DP IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: nb, n, ortho_cntx ! nb = block size, n = matrix size, ortho_cntx = BLACS context COMPLEX(DP) :: h(:,:) ! input: h = matrix to be diagonalized ! output: h = eigenvectors REAL(DP) :: w(:) ! output: w = eigenvalues COMPLEX(DP) :: ztmp( 4 ) REAL(DP) :: rtmp( 4 ) INTEGER :: itmp( 4 ) COMPLEX(DP), ALLOCATABLE :: work(:) COMPLEX(DP), ALLOCATABLE :: v(:,:) REAL(DP), ALLOCATABLE :: rwork(:) INTEGER, ALLOCATABLE :: iwork(:) INTEGER :: LWORK, LRWORK, LIWORK INTEGER :: desch( 10 ), info CHARACTER :: jobv ! IF( tv ) THEN ALLOCATE( v( SIZE( h, 1 ), SIZE( h, 2 ) ) ) jobv = 'V' ELSE CALL errore( ' pzheevd_drv ', ' pzheevd does not compute eigenvalue only ', ABS( info ) ) END IF CALL descinit( desch, n, n, nb, nb, 0, 0, ortho_cntx, SIZE( h, 1 ) , info ) lwork = -1 lrwork = -1 liwork = -1 CALL PZHEEVD( 'V', 'L', n, h, 1, 1, desch, w, v, 1, 1, & desch, ztmp, LWORK, rtmp, LRWORK, itmp, LIWORK, INFO ) IF( info /= 0 ) CALL errore( ' cdiaghg ', ' PZHEEVD ', ABS( info ) ) lwork = INT( REAL(ztmp(1)) ) + 1 lrwork = INT( rtmp(1) ) + 1 liwork = itmp(1) + 1 ALLOCATE( work( lwork ) ) ALLOCATE( rwork( lrwork ) ) ALLOCATE( iwork( liwork ) ) CALL PZHEEVD( 'V', 'L', n, h, 1, 1, desch, w, v, 1, 1, & desch, work, LWORK, rwork, LRWORK, iwork, LIWORK, INFO ) IF( info /= 0 ) CALL errore( ' cdiaghg ', ' PZHEEVD ', ABS( info ) ) IF( tv ) h = v DEALLOCATE( work ) DEALLOCATE( rwork ) DEALLOCATE( iwork ) IF( ALLOCATED( v ) ) DEALLOCATE( v ) RETURN END SUBROUTINE pzheevd_drv #endif END MODULE zhpev_module espresso-5.0.2/Modules/pseudo_types.f900000644000700200004540000003377112053145633017050 0ustar marsamoscm! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE pseudo_types ! this module contains the definitions of several TYPE structures, ! together with their allocation/deallocation routines USE kinds, ONLY: DP use radial_grids, ONLY: radial_grid_type IMPLICIT NONE SAVE ! ! Additional data to make a PAW setup out of an US pseudo, ! they are all stored on a radial grid: TYPE paw_in_upf REAL(DP),POINTER :: ae_rho_atc(:) ! AE core charge (pseudo ccharge ! is already included in upf) REAL(DP),POINTER :: pfunc(:,:,:),&! Psi_i(r)*Psi_j(r) pfunc_rel(:,:,:), & ! Psi_i(r)*Psi_j(r) small component ptfunc(:,:,:), & ! as above, but for pseudo aewfc_rel(:,:) ! as above, but for pseudo REAL(DP),POINTER :: ae_vloc(:) ! AE local potential (pseudo vloc ! is already included in upf) REAL(DP),POINTER :: oc(:) ! starting occupation used to init becsum ! they differ from US ones because they ! are indexed on BETA functions, non on WFC REAL(DP),POINTER :: augmom(:,:,:) ! multipole AE-pseudo (i,j,l=0:2*lmax) REAL(DP) :: raug ! augfunction max radius INTEGER :: iraug ! index on rgrid closer to, and >, raug INTEGER :: lmax_aug ! max angmom of augmentation functions, it is == ! to 2* max{l of pseudized wavefunctions} ! note that nqlc of upf also includes the angmom of ! empty virtual channel used to generate local potential REAL(DP) :: core_energy ! constant to add in order to get all-electron energy CHARACTER(len=12):: augshape ! shape of augmentation charge END TYPE paw_in_upf TYPE pseudo_upf CHARACTER(LEN=80):: generated=' '! generator software CHARACTER(LEN=80):: author=' ' ! pseudopotential's author CHARACTER(LEN=80):: date=' ' ! generation date CHARACTER(LEN=80):: comment=' ' ! author's comment CHARACTER(LEN=2) :: psd=' ' ! Element label CHARACTER(LEN=20) :: typ=' ' ! Pseudo type ( NC or US or PAW) CHARACTER(len=6) :: rel=' ' ! relativistic: {no|scalar|full} LOGICAL :: tvanp ! .true. if Ultrasoft LOGICAL :: tcoulombp ! .true. if Coulomb 1/r potential LOGICAL :: nlcc ! Non linear core corrections CHARACTER(LEN=25) :: dft ! Exch-Corr type REAL(DP) :: zp ! z valence REAL(DP) :: etotps ! total energy REAL(DP) :: ecutwfc ! suggested cut-off for wfc REAL(DP) :: ecutrho ! suggested cut-off for rho ! CHARACTER(len=11) :: nv ! UPF file three-digit version i.e. 2.0.0 INTEGER :: lmax ! maximum l component in beta INTEGER :: lmax_rho ! max l component in charge (should be 2*lmax) REAL(DP), POINTER :: vnl(:,:,:) ! vnl(i,l,s) = V(r_i)_{ls} ! only for single-channel NC PP ! Wavefunctions and projectors INTEGER :: nwfc ! number of atomic wavefunctions INTEGER :: nbeta ! number of projectors INTEGER, POINTER :: kbeta(:) ! kbeta(nbeta) see below INTEGER :: kkbeta ! kkbeta=max(kbeta(:)) ! kbeta<=mesh is the number of grid points for each beta function ! beta(r,nb) = 0 for r > r(kbeta(nb)) ! kkbeta<=mesh is the largest of such number so that for all beta ! beta(r,nb) = 0 for r > r(kkbeta) ! INTEGER, POINTER :: lll(:) ! lll(nbeta) l of each projector REAL(DP), POINTER :: beta(:,:) ! beta(mesh,nbeta) projectors ! CHARACTER(LEN=2), POINTER :: els(:) ! els(nwfc) label of wfc CHARACTER(LEN=2), POINTER :: els_beta(:) ! els(nbeta) label of beta INTEGER, POINTER :: nchi(:) ! lchi(nwfc) value of pseudo-n for wavefcts INTEGER, POINTER :: lchi(:) ! lchi(nwfc) value of l for wavefcts REAL(DP), POINTER :: oc(:) ! oc(nwfc) occupancies for wavefcts REAL(DP), POINTER :: epseu(:) ! pseudo one-particle energy (nwfc) REAL(DP), POINTER :: rcut_chi(:)! rcut_chi(nwfc) cutoff inner radius REAL(DP), POINTER :: rcutus_chi(:)! rcutus_chi(nwfc) ultrasoft outer radius ! Chi and rho_at are only used for initial density and initial wfcs: REAL(DP), POINTER :: chi(:,:) ! chi(mesh,nwfc) atomic wavefcts REAL(DP), POINTER :: rho_at(:) ! rho_at(mesh) atomic charge ! Minimal radial grid: INTEGER :: mesh ! number of points in the radial mesh REAL(DP) :: xmin ! the minimum x of the linear mesh REAL(DP) :: rmax ! the maximum radius of the mesh REAL(DP) :: zmesh ! the nuclear charge used for mesh REAL(DP) :: dx ! the deltax of the linear mesh REAL(DP), POINTER :: r(:) ! r(mesh) radial grid REAL(DP), POINTER :: rab(:) ! rab(mesh) dr(x)/dx (x=linear grid) ! Pseudized core charge REAL(DP), POINTER :: rho_atc(:) ! rho_atc(mesh) atomic core charge ! Local potential INTEGER :: lloc ! L of channel used to generate local potential ! (if < 0 it was generated by smoothing AE potential) REAL(DP) :: rcloc ! vloc = v_ae for r > rcloc REAL(DP), POINTER :: vloc(:) ! vloc(mesh) local atomic potential ! REAL(DP), POINTER :: dion(:,:) ! dion(nbeta,nbeta) atomic D_{mu,nu} ! Augmentation LOGICAL :: q_with_l ! if .true. qfunc is pseudized in ! different ways for different l INTEGER :: nqf ! number of Q coefficients INTEGER :: nqlc ! number of angular momenta in Q REAL(DP):: qqq_eps ! qfunc is null if its norm is .lt. qqq_eps REAL(DP), POINTER :: rinner(:) ! rinner(0:2*lmax) r_L REAL(DP), POINTER :: qqq(:,:) ! qqq(nbeta,nbeta) q_{mu,nu} ! Augmentation without L dependecy REAL(DP), POINTER :: qfunc(:,:) ! qfunc(mesh,nbeta*(nbeta+1)/2) ! Q_{mu,nu}(|r|) function for |r|> r_L ! Augmentation depending on L (optional, compulsory for PAW) REAL(DP), POINTER :: qfuncl(:,:,:)! qfuncl(mesh,nbeta*(nbeta+1)/2,l) ! Q_{mu,nu}(|r|) function for |r|> r_L ! Analitycal coeffs cor small r expansion of qfunc (Vanderbilt's code) REAL(DP), POINTER :: qfcoef(:,:,:,:) ! qfcoef(nqf,0:2*lmax,nbeta,nbeta) ! coefficients for Q for |r| 0 ) IF( ALLOCATED( pos_localisation ) ) DEALLOCATE( pos_localisation ) ALLOCATE( pos_localisation( 4, MAX( nat_localisation, 1 ) ) ) ! IF( nat_localisation > 0 ) print_localisation = .TRUE. ! RETURN END SUBROUTINE sic_initval !------------------------------------------------------------------------------! SUBROUTINE deallocate_sic() IMPLICIT NONE IF( ALLOCATED( pos_localisation ) ) DEALLOCATE( pos_localisation ) IF( ALLOCATED( ind_localisation ) ) DEALLOCATE( ind_localisation ) RETURN END SUBROUTINE deallocate_sic !------------------------------------------------------------------------------! SUBROUTINE sic_info( ) USE io_global, ONLY: stdout IMPLICIT NONE ! ! prints the type of USIC we will do : ! IF( self_interaction == 0 ) THEN RETURN END IF WRITE(stdout, 591) WRITE(stdout, 592) self_interaction WRITE(stdout, 593) !!select case (self_interaction) IF ( self_interaction /= 0 ) THEN write(stdout,*) & ' Unpaired-electron self-interaction correction by Mauri', self_interaction write(stdout,*) & ' E_USIC_EHTE = U_hartree[rho_up + rho_dw]- sic_espilon * U_hartree[rho_up-rhp_down]' write(stdout,*) & ' E_USIC_XC = E_xc[rho_up,rho_dw] - sic_alpha( E_xc[rho_up,rho_dw] + E_xc[rho_dw, rho_dw]) ' END IF !!select 591 FORMAT( 3X,' ') 592 FORMAT( 3X,'Introducing a Mauri Avezac Calandra Self_Interaction Correction: ', I3) 593 FORMAT( 3X,'----------------------------------------') RETURN END SUBROUTINE sic_info !------------------------------------------------------------------------------! END MODULE sic_module !------------------------------------------------------------------------------! espresso-5.0.2/Modules/fft_custom.f900000644000700200004540000004317312053145633016473 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- ! Module containing routines for fft with an custom energy cutoff !-------------------------------------------------------------------- ! MODULE fft_custom USE kinds, ONLY: DP USE parallel_include USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE TYPE fft_cus ! ... data structure containing all information ! ... about fft data distribution for a given ! ... potential grid, and its wave functions sub-grid. TYPE ( fft_dlay_descriptor ) :: dfftt ! descriptor for the custom grid REAL(kind=DP) :: ecutt ! Custom cutoff (rydberg) REAL(kind=DP) :: dual_t ! Dual factor REAL(kind=DP) :: gcutmt INTEGER :: nr1t,nr2t,nr3t INTEGER :: nrx1t,nrx2t,nrx3t INTEGER :: nrxxt INTEGER :: ngmt,ngmt_l,ngmt_g INTEGER, DIMENSION(:), POINTER :: nlt,nltm REAL(kind=DP), DIMENSION(:), POINTER :: ggt REAL(kind=DP), DIMENSION(:,:),POINTER :: gt INTEGER, DIMENSION(:), POINTER :: ig_l2gt INTEGER :: gstart_t INTEGER, DIMENSION(:), POINTER :: ig1t,ig2t,ig3t INTEGER :: nlgt INTEGER :: npwt,npwxt LOGICAL :: initalized = .FALSE. END TYPE fft_cus !-------------------------------------------------------------------- CONTAINS !=----------------------------------------------------------------------------=! SUBROUTINE gvec_init( fc, ngm_, comm ) ! ! Set local and global dimensions, allocate arrays ! USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngm_ INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed TYPE(fft_cus), INTENT(INOUT) :: fc ! fc%ngmt = ngm_ ! ! calculate maximum over all processors ! fc%ngmt_l = ngm_ CALL mp_max( fc%ngmt_l, comm ) ! ! calculate sum over all processors ! fc%ngmt_g = ngm_ CALL mp_sum( fc%ngmt_g, comm ) ! ! allocate arrays - only those that are always kept until the end ! ALLOCATE( fc%ggt(fc%ngmt) ) ALLOCATE( fc%gt (3, fc%ngmt) ) ! ALLOCATE( mill(3, fc%ngmt) ) ALLOCATE( fc%nlt (fc%ngmt) ) ALLOCATE( fc%nltm(fc%ngmt) ) ALLOCATE( fc%ig_l2gt(fc%ngmt) ) ! ALLOCATE( igtongl(fc%ngmt) ) ! RETURN ! END SUBROUTINE gvec_init !-------------------------------------------------------------------- ! SUBROUTINE set_custom_grid(fc) !----------------------------------------------------------------------- ! This routine computes the dimensions of the minimum FFT grid ! compatible with the input cut-off ! ! NB: The values of nr1, nr2, nr3 are computed only if they are not ! given as input parameters. Input values are kept otherwise. ! USE cell_base, ONLY : at, tpiba2 USE fft_scalar, ONLY : allowed IMPLICIT NONE TYPE(fft_cus) :: fc INTEGER, PARAMETER :: nmax = 5000 ! an unreasonably big number for a FFT grid ! ! the values of nr1, nr2, nr3 are computed only if they are not given ! as input parameters ! fc%nr1t=0 fc%nr2t=0 fc%nr3t=0 IF (fc%nr1t == 0) THEN ! ! estimate nr1 and check if it is an allowed value for FFT ! fc%nr1t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 1)**2 + & &at(2, 1)**2 + at(3, 1)**2) ) + 1 10 CONTINUE IF (fc%nr1t > nmax) & CALL errore ('set_fft_dim', 'nr1 is unreasonably large', fc%nr1t) IF (allowed (fc%nr1t) ) GOTO 15 fc%nr1t = fc%nr1t + 1 GOTO 10 ELSE IF (.NOT.allowed (fc%nr1t) ) CALL errore ('set_fft_dim', & 'input nr1t value not allowed', 1) ENDIF 15 CONTINUE ! IF (fc%nr2t == 0) THEN ! ! estimate nr1 and check if it is an allowed value for FFT ! fc%nr2t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 2)**2 + & &at(2, 2)**2 + at(3, 2)**2) ) + 1 20 CONTINUE IF (fc%nr2t > nmax) & CALL errore ('set_fft_dim', 'nr2t is unreasonably large', fc%nr2t) IF (allowed (fc%nr2t) ) GOTO 25 fc%nr2t = fc%nr2t + 1 GOTO 20 ELSE IF (.NOT.allowed (fc%nr2t) ) CALL errore ('set_fft_dim', & 'input nr2t value not allowed', 2) ENDIF 25 CONTINUE ! IF (fc%nr3t == 0) THEN ! ! estimate nr3 and check if it is an allowed value for FFT ! fc%nr3t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 3) **2 + & &at(2, 3)**2 + at(3, 3) **2) ) + 1 30 CONTINUE IF (fc%nr3t > nmax) & CALL errore ('set_fft_dim', 'nr3 is unreasonably large', fc%nr3t) IF (allowed (fc%nr3t) ) GOTO 35 fc%nr3t = fc%nr3t + 1 GOTO 30 ELSE IF (.NOT.allowed (fc%nr3t) ) CALL errore ('set_fft_dim', & 'input nr3t value not allowed', 3) ENDIF 35 CONTINUE ! ! here we compute nr3s if it is not in input ! RETURN END SUBROUTINE set_custom_grid SUBROUTINE ggent(fc) USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, tpiba2 USE control_flags, ONLY : gamma_only USE constants, ONLY : eps8 IMPLICIT NONE TYPE(fft_cus) :: fc ! REAL(DP) :: t (3), tt, swap ! INTEGER :: ngmx, n1, n2, n3, n1s, n2s, n3s ! REAL(DP), ALLOCATABLE :: g2sort_g(:) ! array containing all g vectors, on all processors: replicated data INTEGER, ALLOCATABLE :: mill_g(:,:), mill_unsorted(:,:) ! array containing all g vectors generators, on all processors: ! replicated data INTEGER, ALLOCATABLE :: igsrt(:) ! #ifdef __MPI INTEGER :: m1, m2, mc ! #endif INTEGER :: i, j, k, ipol, ng, igl, iswap, indsw, ni, nj, nk ! ALLOCATE( fc%gt(3,fc%ngmt), fc%ggt(fc%ngmt) ) ! ALLOCATE( fc%ig_l2gt( fc%ngmt_l ) ) ALLOCATE( mill_g( 3, fc%ngmt_g ), mill_unsorted( 3, fc%ngmt_g ) ) ALLOCATE( igsrt( fc%ngmt_g ) ) ALLOCATE( g2sort_g( fc%ngmt_g ) ) ALLOCATE( fc%ig1t(fc%ngmt), fc%ig2t(fc%ngmt), fc%ig3t(fc%ngmt) ) g2sort_g(:) = 1.0d20 ! ! save present value of ngm in ngmx variable ! ngmx = fc%ngmt ! fc%ngmt = 0 ! ! max miller indices (same convention as in module stick_set) ! ni = (fc%dfftt%nr1-1)/2 nj = (fc%dfftt%nr2-1)/2 nk = (fc%dfftt%nr3-1)/2 ! iloop: DO i = -ni, ni ! ! gamma-only: exclude space with x < 0 ! IF ( gamma_only .AND. i < 0) CYCLE iloop jloop: DO j = -nj, nj ! ! gamma-only: exclude plane with x = 0, y < 0 ! IF ( gamma_only .AND. i == 0 .AND. j < 0) CYCLE jloop kloop: DO k = -nk, nk ! ! gamma-only: exclude line with x = 0, y = 0, z < 0 ! IF ( gamma_only .AND. i == 0 .AND. j == 0 .AND. k < 0) CYCLE kloop t(:) = i * bg (:,1) + j * bg (:,2) + k * bg (:,3) tt = SUM(t(:)**2) IF (tt <= fc%gcutmt) THEN fc%ngmt = fc%ngmt + 1 IF (fc%ngmt > fc%ngmt_g) CALL errore ('ggent', 'too ma& &ny g-vectors', fc%ngmt) mill_unsorted( :, fc%ngmt ) = (/ i,j,k /) IF ( tt > eps8 ) THEN g2sort_g(fc%ngmt) = tt ELSE g2sort_g(fc%ngmt) = 0.d0 ENDIF ENDIF ENDDO kloop ENDDO jloop ENDDO iloop IF (fc%ngmt /= fc%ngmt_g ) & CALL errore ('ggen', 'g-vectors missing !', ABS(fc%ngmt - fc%ngmt_g)) igsrt(1) = 0 CALL hpsort_eps( fc%ngmt_g, g2sort_g, igsrt, eps8 ) mill_g(1,:) = mill_unsorted(1,igsrt(:)) mill_g(2,:) = mill_unsorted(2,igsrt(:)) mill_g(3,:) = mill_unsorted(3,igsrt(:)) DEALLOCATE( g2sort_g, igsrt, mill_unsorted ) fc%ngmt = 0 ngloop: DO ng = 1, fc%ngmt_g i = mill_g(1, ng) j = mill_g(2, ng) k = mill_g(3, ng) #ifdef __MPI m1 = MOD (i, fc%dfftt%nr1) + 1 IF (m1 < 1) m1 = m1 + fc%dfftt%nr1 m2 = MOD (j, fc%dfftt%nr2) + 1 IF (m2 < 1) m2 = m2 + fc%dfftt%nr2 mc = m1 + (m2 - 1) * fc%dfftt%nr1x IF ( fc%dfftt%isind ( mc ) == 0) CYCLE ngloop #endif fc%ngmt = fc%ngmt + 1 ! Here map local and global g index !!! ! N.B. the global G vectors arrangement depends on the number of processors ! fc%ig_l2gt( fc%ngmt ) = ng fc%gt (1:3, fc%ngmt) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3) fc%ggt (fc%ngmt) = SUM(fc%gt (1:3, fc%ngmt)**2) IF (fc%ngmt > ngmx) CALL errore ('ggen', 'too many g-vectors', fc%ngmt) ENDDO ngloop IF (fc%ngmt /= ngmx) & CALL errore ('ggent', 'g-vectors missing !', ABS(fc%ngmt - ngmx)) ! ! determine first nonzero g vector ! IF (fc%ggt(1).LE.eps8) THEN fc%gstart_t=2 ELSE fc%gstart_t=1 ENDIF ! ! Now set nl and nls with the correct fft correspondence ! DO ng = 1, fc%ngmt n1 = NINT (SUM(fc%gt (:, ng) * at (:, 1))) + 1 fc%ig1t (ng) = n1 - 1 IF (n1<1) n1 = n1 + fc%dfftt%nr1 n2 = NINT (SUM(fc%gt (:, ng) * at (:, 2))) + 1 fc%ig2t (ng) = n2 - 1 IF (n2<1) n2 = n2 + fc%dfftt%nr2 n3 = NINT (SUM(fc%gt (:, ng) * at (:, 3))) + 1 fc%ig3t (ng) = n3 - 1 IF (n3<1) n3 = n3 + fc%dfftt%nr3 IF (n1>fc%dfftt%nr1 .OR. n2>fc%dfftt%nr2 .OR. n3>fc%dfftt%nr3) & CALL errore('ggent','Mesh too small?',ng) #if defined (__MPI) && !defined (__USE_3D_FFT) fc%nlt (ng) = n3 + ( fc%dfftt%isind (n1 + (n2 - 1) * fc%dfftt%nr1x)& & - 1) * fc%dfftt%nr3x #else fc%nlt (ng) = n1 + (n2 - 1) * fc%dfftt%nr1x + (n3 - 1) * & & fc%dfftt%nr1x * fc%dfftt%nr2x #endif ENDDO ! DEALLOCATE( mill_g ) ! ! calculate number of G shells: ngl IF ( gamma_only) CALL index_minusg_custom(fc) !set npwt,npwxt !This should eventually be calcualted somewhere else with !n_plane_waves() but it is good enough for gamma_only IF(gamma_only) THEN fc%npwt=0 fc%npwxt=0 DO ng = 1, fc%ngmt tt = (fc%gt (1, ng) ) **2 + (fc%gt (2, ng) ) **2 + (fc%gt& & (3, ng) ) **2 IF (tt <= fc%ecutt / tpiba2) THEN ! ! here if |k+G|^2 <= Ecut increase the number of G ! inside the sphere ! fc%npwt = fc%npwt + 1 ENDIF ENDDO fc%npwxt=fc%npwt ENDIF ! IF( ALLOCATED( ngmpe ) ) DEALLOCATE( ngmpe ) RETURN END SUBROUTINE ggent !----------------------------------------------------------------------- SUBROUTINE index_minusg_custom(fc) !---------------------------------------------------------------------- ! ! compute indices nlm and nlms giving the correspondence ! between the fft mesh points and -G (for gamma-only calculations) ! ! IMPLICIT NONE ! TYPE(fft_cus), INTENT(INOUT) :: fc ! INTEGER :: n1, n2, n3, n1s, n2s, n3s, ng ! DO ng = 1, fc%ngmt n1 = -fc%ig1t (ng) + 1 IF (n1 < 1) n1 = n1 + fc%dfftt%nr1 n2 = -fc%ig2t (ng) + 1 IF (n2 < 1) n2 = n2 + fc%dfftt%nr2 n3 = -fc%ig3t (ng) + 1 IF (n3 < 1) n3 = n3 + fc%dfftt%nr3 IF (n1>fc%dfftt%nr1 .OR. n2>fc%dfftt%nr2 .OR. n3>fc%dfftt%nr3) THEN CALL errore('ggent meno','Mesh too small?',ng) ENDIF #if defined (__MPI) && !defined (__USE_3D_FFT) fc%nltm(ng) = n3 + (fc%dfftt%isind (n1 + (n2 - 1) * fc& &%dfftt%nr1x) - 1) * fc%dfftt%nr3x #else fc%nltm(ng) = n1 + (n2 - 1) * fc%dfftt%nr1x + (n3 - 1) * fc& &%dfftt%nr1x * fc%dfftt%nr1x #endif ENDDO END SUBROUTINE index_minusg_custom SUBROUTINE deallocate_fft_custom(fc) !this subroutine deallocates all the fft custom stuff USE fft_types, ONLY : fft_dlay_deallocate IMPLICIT NONE TYPE(fft_cus) :: fc IF(.NOT. fc%initalized) RETURN DEALLOCATE(fc%nlt,fc%nltm) CALL fft_dlay_deallocate(fc%dfftt) DEALLOCATE(fc%ig_l2gt,fc%ggt,fc%gt) DEALLOCATE(fc%ig1t,fc%ig2t,fc%ig3t) fc%initalized=.FALSE. RETURN END SUBROUTINE deallocate_fft_custom !---------------------------------------------------------------------------- SUBROUTINE reorderwfp_col ( nbands, npw1, npw2, pw1, pw2, ngwl1, ngwl2,& & ig_l2g1, ig_l2g2, n_g, mpime, nproc, comm ) !-------------------------------------------------------------------------- ! ! A routine using collective mpi calls that reorders the ! wavefunction in pw1 on a grid specified by ig_l2g1 and puts it ! in pw2 in the order required by ig_l2g2. ! ! Can transform multiple bands at once, as specifed by the nbands ! option. ! ! This operation could previously be performed by calls to ! mergewf and splitwf however that scales very badly with number ! of procs. ! ! Written by P. Umari, documentationa added by S. Binnie ! USE kinds USE parallel_include USE io_global, ONLY : stdout IMPLICIT NONE INTEGER, INTENT(in) :: npw1, npw2 INTEGER, INTENT(IN) :: nbands ! Number of bands to be transformed COMPLEX(DP), INTENT(IN) :: pw1(npw1,nbands) ! Input wavefunction COMPLEX(DP), INTENT(INOUT) :: pw2(npw2,nbands) ! Output INTEGER, INTENT(IN) :: mpime ! index of calling proc (starts at 0) INTEGER, INTENT(IN) :: nproc ! number of procs in the communicator INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ig_l2g1(ngwl1),ig_l2g2(ngwl2) INTEGER, INTENT(IN) :: ngwl1,ngwl2 ! Global maximum number of G vectors for both grids INTEGER, INTENT(in) :: n_g ! Local variables INTEGER :: ngwl1_max, ngwl2_max, npw1_max, npw2_max, ngwl_min INTEGER :: gid,ierr INTEGER, ALLOCATABLE :: npw1_loc(:),npw2_loc(:) INTEGER, ALLOCATABLE :: ig_l2g1_tot(:,:),ig_l2g2_tot(:,:), itmp(:) INTEGER :: ii,ip,ilast,iband COMPLEX(kind=DP), ALLOCATABLE :: pw1_tot(:,:),pw2_tot(:,:) COMPLEX(kind=DP), ALLOCATABLE :: pw1_tmp(:),pw2_tmp(:), pw_global(:) #ifdef __MPI gid=comm ALLOCATE(npw1_loc(nproc),npw2_loc(nproc)) ! ! Calculate the size of the global correspondance arrays ! CALL MPI_ALLREDUCE( ngwl1, ngwl1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( ngwl2, ngwl2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( npw1, npw1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( npw2, npw2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLGATHER( npw1, 1, MPI_INTEGER, npw1_loc, 1,& & MPI_INTEGER, gid, IERR ) CALL MPI_ALLGATHER( npw2, 1, MPI_INTEGER, npw2_loc, 1,& & MPI_INTEGER, gid, IERR ) ! ALLOCATE(ig_l2g1_tot(ngwl1_max,nproc),ig_l2g2_tot(ngwl2_max& &,nproc)) ! ! All procs gather correspondance arrays ! ALLOCATE(itmp(ngwl1_max)) itmp(1:ngwl1)=ig_l2g1(1:ngwl1) CALL MPI_ALLGATHER( itmp, ngwl1_max, MPI_INTEGER, ig_l2g1_tot,& & ngwl1_max, MPI_INTEGER, gid, IERR ) DEALLOCATE(itmp) ! ALLOCATE(itmp(ngwl2_max)) itmp(1:ngwl2)=ig_l2g2(1:ngwl2) CALL MPI_ALLGATHER( itmp, ngwl2_max, MPI_INTEGER, ig_l2g2_tot,& & ngwl2_max, MPI_INTEGER, gid, IERR) DEALLOCATE(itmp) ! ! ALLOCATE( pw1_tot(npw1_max,nproc), pw2_tot(npw2_max,nproc) ) ALLOCATE( pw1_tmp(npw1_max), pw2_tmp(npw2_max) ) ALLOCATE( pw_global(n_g) ) ! DO ii=1, nbands, nproc ! ilast=MIN(nbands,ii+nproc-1) ! ! Gather the input wavefunction. ! DO iband=ii, ilast ! ip = MOD(iband,nproc) ! ip starts from 1 to nproc-1 pw1_tmp(1:npw1)=pw1(1:npw1,iband) CALL MPI_GATHER( pw1_tmp, npw1_max, MPI_DOUBLE_COMPLEX,& & pw1_tot, npw1_max, MPI_DOUBLE_COMPLEX, ip, gid, ierr ) ! ENDDO ! pw_global = ( 0.d0, 0.d0 ) ! ! Put the gathered wavefunction into the standard order. ! DO ip=1,nproc ! pw_global( ig_l2g1_tot(1:npw1_loc(ip), ip) ) = & & pw1_tot( 1:npw1_loc(ip), ip ) ! ENDDO ! ! Now put this into the correct order for output. ! DO ip=1,nproc ! pw2_tot( 1:npw2_loc(ip), ip ) = & & pw_global ( ig_l2g2_tot(1:npw2_loc(ip),ip) ) ! ENDDO ! ! Scatter the output wavefunction across the processors. ! DO iband=ii,ilast ! ip=MOD(iband,nproc) CALL MPI_SCATTER( pw2_tot, npw2_max, MPI_DOUBLE_COMPLEX,& & pw2_tmp, npw2_max, MPI_DOUBLE_COMPLEX, ip, gid, ierr ) pw2(1:npw2,iband)=pw2_tmp(1:npw2) ! ENDDO ! ENDDO ! DEALLOCATE(npw1_loc,npw2_loc) DEALLOCATE(ig_l2g1_tot,ig_l2g2_tot) DEALLOCATE(pw1_tot,pw2_tot) DEALLOCATE(pw1_tmp,pw2_tmp) DEALLOCATE(pw_global) ! #else ! ngwl_min = MIN( ngwl1, ngwl2 ) ! pw2(:, 1:nbands) = ( 0.0d0, 0.0d0 ) pw2( ig_l2g2(1:ngwl_min), 1:nbands ) = pw1( ig_l2g1(1:ngwl_min), 1:nbands ) ! #endif ! RETURN ! END SUBROUTINE reorderwfp_col !---------------------------------------------------------------------------- END MODULE fft_custom espresso-5.0.2/Modules/xc_vdW_DF.f900000644000700200004540000032211012053145633016114 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! Copyright (C) 2009 Brian Kolb, Timo Thonhauser - Wake Forest University ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- #define FFTGRADIENT !#undef FFTGRADIENT MODULE vdW_DF !! This module calculates the non-local correlation contribution to the energy !! and potential. This method is based on the method of Guillermo Roman-Perez !! and Jose M. Soler described in: !! !! G. Roman-Perez and J. M. Soler, PRL 103, 096101 (2009) !! !! henceforth referred to as SOLER. That method is a new implementation !! of the method found in: !! !! M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and !! B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). !! !! henceforth referred to as DION. Further information about the !! functional and its corresponding potential can be found in: !! !! T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, !! and D.C. Langreth, Phys. Rev. B 76, 125112 (2007). !! !! A review article that shows many of the applications vdW-DF has been !! applied to so far can be found at: !! !! D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). !! !! There are a number of subroutines in this file. All are used only !! by other subroutines here except for the xc_vdW_DF subroutine !! which is the driver routine for the vdW-DF calculations and is called !! from v_of_rho. This routine handles setting up the parallel run (if !! any) and carries out the calls necessary to calculate the non-local !! correlation contributions to the energy and potential. USE kinds, ONLY : dp USE constants, ONLY : pi, e2 USE kernel_table, ONLY : q_mesh, Nr_points, Nqs, r_max USE mp, ONLY : mp_bcast, mp_sum, mp_barrier, mp_bcast_cv USE mp_global, ONLY : me_pool, nproc_pool, intra_pool_comm, root_pool USE io_global, ONLY : ionode USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE control_flags, ONLY : iverbosity, gamma_only USE io_global, ONLY : stdout IMPLICIT NONE REAL(DP), PARAMETER :: epsr =1.d-12 ! a small number to cut off points with negative or undefined densities integer :: vdw_type = 1 private public :: xc_vdW_DF, stress_vdW_DF, interpolate_kernel, print_sigma, dv_drho_vdw, vdw_type CONTAINS !! ################################################################################################# !! | | !! | XC_VDW_DF | !! |_____________| SUBROUTINE xc_vdW_DF(rho_valence, rho_core, etxc, vtxc, v) !! Modules to include !! ------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nlm USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba !! ------------------------------------------------------------------------- !! Local variables !! ---------------------------------------------------------------------------------- ! _ real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) ! PWSCF input variables real(dp), intent(inout) :: etxc, vtxc, v(:,:) !_ integer :: i_grid, theta_i, i_proc, I !! Indexing variables over grid points, ! !! theta functions, and processors, and a ! !! generic index. real(dp) :: grid_cell_volume !! The volume of the unit cell per G-grid point real(dp), allocatable :: q0(:) !! The saturated value of q (equations 11 and 12 of DION) ! !! This saturation is that of equation 7 in ! !! SOLER real(dp), allocatable :: gradient_rho(:,:) !! The gradient of the charge density. The ! !! format is as follows: ! !! gradient_rho(grid_point, cartesian_component) real(dp), allocatable :: potential(:) !! The vdW contribution to the potential real(dp), allocatable :: dq0_drho(:) !! The derivative of the saturated q0 ! !! (equation 7 of SOLER) with respect ! !! to the charge density (sort of. see ! !! get_q0_on_grid subroutine below.) real(dp), allocatable :: dq0_dgradrho(:) !! The derivative of the saturated q0 ! !! (equation 7 of SOLER) with respect ! !! to the gradient of the charge density ! !! (again, see get_q0_on_grid subroutine) complex(dp), allocatable :: thetas(:,:) !! These are the functions of equation 11 of ! !! SOLER. They will be forward Fourier transformed ! !! in place to get theta(k) and worked on in ! !! place to get the u_alpha(r) of equation 14 ! !! in SOLER. They are formatted as follows: ! !1 thetas(grid_point, theta_i) real(dp) :: Ec_nl !! The non-local vdW contribution to the energy real(dp), allocatable :: total_rho(:) !! This is the sum of the valence and core ! !! charge. This just holds the piece assigned ! !! to this processor. #ifndef FFTGRADIENT integer, parameter :: Nneighbors = 4 !! How many neighbors on each side ! !! to include in numerical derivatives. ! !! Can be from 1 to 6 real(dp), allocatable :: full_rho(:) !! This is the whole charge density. It ! !! is the sum of valence and core density ! !! over the entire simulation cell. Each ! !! processor has a copy of this to do the ! !! numerical gradients. integer, ave :: msy_start_z, my_end_z !! Starting and ending z-slabs for this processor integer, allocatable, save :: procs_Npoints(:) !! The number of grid points assigned to each proc integer, allocatable, save :: procs_start(:) !! The first assigned index into the charge-density array for each proc integer, allocatable, save :: procs_end(:) !! The last assigned index into the charge density array for each proc #endif logical, save :: first_iteration = .true. !! Whether this is the first time this ! !! routine has been called. !! --------------------------------------------------------------------------------------------- !! Begin calculations !! Check to make sure we aren't trying to do a spin-polarized run !! Gamma point calculations can be done using the special {gamma} features !! stress tensor calcultion and cell relaxation run are also possible. !! -------------------------------------------------------------------------------------------------------- call errore('xc_vdW_DF','vdW functional not implemented for spin polarized runs', size(rho_valence,2)-1) !! -------------------------------------------------------------------------------------------------------- if (first_iteration) then #ifndef FFTGRADIENT !! Here we set up the calculations on the first iteration. If this is a parallel run, each !! processor figures out which element in the charge-density array it should start and stop on. !! PWSCF splits the cell up into slabs in the z-direction to distribute over processors. !! Thus, each processor figures out what z-planes its region corresponds to. That is important !! for the get_3d_indices and get_potential subroutines below. !! -------------------------------------------------------------------------------------------------- allocate( procs_Npoints(0:nproc_pool-1), procs_start(0:nproc_pool-1), procs_end(0:nproc_pool-1) ) procs_Npoints(me_pool) = dfftp%nnr procs_start(0) = 1 ! All processors communicate how many points they have been assigned. Each processor ! then calculates for itself what the starting and ending indices should be for every ! other processor. !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do i_proc = 0, nproc_pool-1 call mp_bcast(procs_Npoints(i_proc), i_proc, intra_pool_comm) call mp_barrier(intra_pool_comm) procs_end(i_proc) = procs_start(i_proc) + procs_Npoints(i_proc) - 1 if (i_proc .ne. nproc_pool-1) then procs_start(i_proc+1) = procs_end(i_proc)+1 end if end do !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Each processor finds the starting and ending z-planes assined to them. Since ! PWSCF splits the cell into slabs in the z-direction, the beginning (ending) ! z slabs can be found by dividing the starting (ending) index into the charge density ! array by the number of points in a slab of thickness 1. We add 1 to the starting ! z plane because of the integer division and the fact that arrays in Fortran start at 1. ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ my_start_z = procs_start(me_pool)/(dfftp%nr1x*dfftp%nr2x)+1 my_end_z = procs_end(me_pool)/(dfftp%nr1x*dfftp%nr2x) !write(*,'(A,3I5)') "Parall en [proc, my_start_z, my_end_z]", me_pool, my_start_z, my_end_z ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #endif first_iteration = .false. !! Here we output some of the parameters being used in the run. This is important because !! these parameters are read from the vdW_kernel_table file. The user should ensure that !! these are the parameters they were intending to use on each run. !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (ionode ) then WRITE( stdout, '(//,5x,"************************************************************************")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* You are using vdW-DF for exchange-correlation in this calculation.")') WRITE( stdout, '(5x,"* Please cite the following three references that made this development")') WRITE( stdout, '(5x,"* possible:")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and")') WRITE( stdout, '(5x,"* B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and")') WRITE( stdout, '(5x,"* D. C. Langreth, Phys. Rev. B 76, 125112 (2007).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* If you are using vdW-DF2, please also cite:")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and")') WRITE( stdout, '(5x,"* D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* If you are calculating the stress with vdW-DF, please also cite:")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and")') WRITE( stdout, '(5x,"* S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"************************************************************************",/)') WRITE( stdout, '(5x,"Carrying out vdW-DF run using the following parameters:",/)') WRITE( stdout, '(5X,A,I6,A,I6,A,F8.3)' ) "Nqs = ", Nqs, " Nr_points = ", Nr_points, " r_max = ", r_max WRITE( stdout, '(5X,"q_mesh =")') WRITE( stdout, '(10X,4F15.8)' ) (q_mesh(I), I=1, Nqs) #ifdef FFTGRADIENT WRITE( stdout, '(/,5x,"Gradients computed in reciprocal space",/)') #else WRITE( stdout, '(/,5x,"Gradients computed in real space",/)') #endif WRITE( stdout, '(5x,"************************************************************************",//)') end if !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end if !! -------------------------------------------------------------------------------------------------- !! Allocate arrays. nnr is a PWSCF variable that holds the number of points assigned to !! a given processor. !! --------------------------------------------------------------------------------------- allocate( q0(dfftp%nnr) ) allocate( gradient_rho(dfftp%nnr, 3) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( total_rho(dfftp%nnr) ) !! --------------------------------------------------------------------------------------- !! Add together the valence and core charge densities to get the total charge density total_rho = rho_valence(:,1) + rho_core(:) #ifdef FFTGRADIENT !! ------------------------------------------------------------------------- !! Here we calculate the gradient in reciprocal space using FFT !! ------------------------------------------------------------------------- call numerical_gradient(total_rho,gradient_rho) #else !! ------------------------------------------------------------------------- !! Here we calculate the gradient numerically in real space !! The Nneighbors variable is set above and gives the number of points in !! each direction to consider when taking the numerical derivatives. !! ------------------------------------------------------------------------- !! If there is only 1 processor the needed information is held by the !! total_rho array, otherwise we need to allocate the full_rho array that !! will be deallocated the call since it is no longer needed. !! !! The full_rho array holds the charge density at every point in the !! simulation cell. !! Each processor needs this because the numerical gradients require !! knowledge of the !! charge density on points outside the slab one has !! been given. We don't allocate this in the case of using a single !! processor since total_rho would already hold this information. !! nr1x, nr2x, and nr3x are PWSCF variables that hold the TOTAL number of !! divisions along each lattice vector. Thus, their product is the total !! number of points in the cell (not just those assigned to a particular !! processor). !! ------------------------------------------------------------------------ if (nproc_pool > 1) then allocate( full_rho(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) full_rho(procs_start(me_pool):procs_end(me_pool)) = total_rho ! All the processors broadcast their piece of the charge density to fill in the full_rho ! arrays of all processors ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do i_proc = 0, nproc_pool - 1 call mp_barrier(intra_pool_comm) call mp_bcast(full_rho(procs_start(i_proc):procs_end(i_proc)), i_proc, intra_pool_comm) end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Here we calculate the gradient numerically in real space call numerical_gradient(full_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) deallocate(full_rho) else ! Here we calculate the gradient numerically in real space call numerical_gradient(total_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) end if #endif !! ------------------------------------------------------------------------------------------------------------- !! Find the value of q0 for all assigned grid points. q is defined in equations !! 11 and 12 of DION and q0 is the saturated version of q defined in equation !! 7 of SOLER. This routine also returns the derivatives of the q0s with respect !! to the charge-density and the gradient of the charge-density. These are needed !! for the potential calculated below. !! --------------------------------------------------------------------------------- CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! --------------------------------------------------------------------------------- !! Here we allocate and calculate the theta functions of SOLER equation 11. Thee are defined as !! rho * P_i(q0(rho, gradient_rho)) where P_i is a polynomial that interpolates a Kroneker delta !! function at the point q_i (taken from the q_mesh) and q0 is the saturated version of q. q is !! defined in equations 11 and 12 of DION and the saturation proceedure is defined in equation 7 !! of soler. This is the biggest memory consumer in the method since the thetas array is !! (total # of FFT points)*Nqs complex numbers. In a parallel run, each processor will hold the !! values of all the theta functions on just the points assigned to it. !! -------------------------------------------------------------------------------------------------- !! thetas are stored in reciprocal space as theta_i(k) because this is the way they are used later !! for the convolution (equation 11 of SOLER). The ffts used here are timed. !! -------------------------------------------------------------------------------------------------- allocate( thetas(dfftp%nnr, Nqs) ) CALL get_thetas_on_grid(total_rho, q0, thetas) !! --------------------------------------------------------------------------------------------- !! Carry out the integration in equation 7 of SOLER. This also turns the thetas array into the !! precursor to the u_i(k) array which is inverse fourier transformed to get the u_i(r) functions !! of SOLER equation 14. Add the energy we find to the output variable etxc. This process is timed. !! -------------------------------------------------------------------------------------------------- call start_clock( 'vdW_energy') call vdW_energy(thetas, Ec_nl) etxc = etxc + Ec_nl call stop_clock( 'vdW_energy') !! -------------------------------------------------------------------------------------------------- !! If verbosity is set to high we output the total non-local correlation energy found !! --------------------------------------------------------------------------------------- if (iverbosity > 0) then call mp_sum(Ec_nl,intra_pool_comm) if (ionode) write(*,'(/ / A /)') " ----------------------------------------------------------------" if (ionode) write(*,'(A, F22.15 /)') " Non-local correlation energy = ", Ec_nl if (ionode) write(*,'(A /)') " ----------------------------------------------------------------" end if !! ---------------------------------------------------------------------------------------- !! Inverse Fourier transform the u_i(k) to get the u_i(r) of SOLER equation 14. These FFTs !! are also timed and added to the timing of the forward FFTs done earlier. !!--------------------------------------------------------------------------------------- call start_clock( 'vdW_ffts') do theta_i = 1, Nqs !call cft3(thetas(:,theta_i), dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, 1) CALL invfft('Dense', thetas(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !! ------------------------------------------------------------------------- !! Here we allocate the array to hold the potential. This is calculated via !! equation 13 of SOLER, using the u_i(r) calculated from quations 14 and !! 15 of SOLER. Each processor allocates the array to be the size of the !! full grid because, as can be seen in SOLER equation 13, processors need !! to access grid points outside their allocated regions. !! This process is timed. The timer is stopped below after the v output !! variable has been updated with the non-local corelation potential. !! That is, the timer includes the communication time necessary in a !! parallel run. !! ------------------------------------------------------------------------- #ifdef FFTGRADIENT call start_clock( 'vdW_v' ) allocate( potential(dfftp%nnr) ) call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, thetas, potential) !! ------------------------------------------------------------------------- v(:,1) = v(:,1) + e2*potential(:) call stop_clock( 'vdW_v' ) !! ----------------------------------------------------------------------- !! The integral of rho(r)*potential(r) for the vtxc output variable !! -------------------------------------------------------------------- grid_cell_volume = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) do i_grid = 1, dfftp%nnr vtxc = vtxc + e2*grid_cell_volume*rho_valence(i_grid,1)*potential(i_grid) end do deallocate(potential) #else call start_clock( 'vdW_v' ) allocate( potential(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) call get_potential(q0, dq0_drho, dq0_dgradrho, Nneighbors, gradient_rho, thetas, potential, my_start_z, my_end_z) !! ------------------------------------------------------------------------- !! Reduction process to sum all the potentials of all the processors. !! ---------------------------------------------------------------------- ! call mp_barrier( intra_pool_comm ) call mp_sum(potential, intra_pool_comm) !! ---------------------------------------------------------------------- !! Here, the potential is rebroadcast. Since each processor has part of the output v array it is easier if !! each processor adds only its assigned points to the v array. After this step, however, all !! processors hold the vdW potential over the entire grid. !! ------------------------------------------------------------------------------------------------------ ! call mp_barrier( intra_pool_comm ) call mp_bcast(potential, root_pool, intra_pool_comm) !! ------------------------------------------------------------------------------------------------------ !! Each processor adds its piece of the potential to the output v array. !! Stop the timer for the potential. !! ----------------------------------------------------------------------- v(:,1) = v(:,1) + e2*potential(procs_start(me_pool):procs_end(me_pool)) call stop_clock( 'vdW_v' ) !! ----------------------------------------------------------------------- !! The integral of rho(r)*potential(r) for the vtxc output variable !! -------------------------------------------------------------------- grid_cell_volume = omega/(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) do i_grid = 1, dfftp%nnr vtxc = vtxc + e2*grid_cell_volume * total_rho(i_grid)*potential(procs_start(me_pool)+i_grid-1) end do deallocate(potential) #endif !! ---------------------------------------------------------------------- !! Deallocate all arrays. deallocate(q0, gradient_rho, dq0_drho, dq0_dgradrho, total_rho, thetas) END SUBROUTINE xc_vdW_DF !! ################################################################################################# !! | | !! | STRESS_VDW_DF | !! |_________________| SUBROUTINE stress_vdW_DF(rho_valence, rho_core, sigma) USE fft_base, ONLY : dfftp use gvect, ONLY : ngm, nl, g, nlm USE cell_base, ONLY : tpiba implicit none real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) ! Input variables real(dp), intent(inout) :: sigma(3,3) ! real(dp), allocatable :: gradient_rho(:,:) ! real(dp), allocatable :: total_rho(:) ! Rho values real(dp), allocatable :: q0(:) ! real(dp), allocatable :: dq0_drho(:) ! Q-values real(dp), allocatable :: dq0_dgradrho(:) ! complex(dp), allocatable :: thetas(:,:) ! Thetas #ifndef FFTGRADIENT real(dp), allocatable :: full_rho(:) ! additional Rho values onthe full grid integer, save :: my_start_z, my_end_z ! integer, allocatable, save :: procs_Npoints(:) ! integer, allocatable, save :: procs_start(:) ! integer, allocatable, save :: procs_end(:) ! logical, save :: first_stress_iteration = .true. ! integer :: Nneighbors = 4 #endif integer :: i_proc, theta_i, l, m real(dp) :: sigma_grad(3,3) real(dp) :: sigma_ker(3,3) !! --------------------------------------------------------------------------------------------- !! Tests !! -------------------------------------------------------------------------------------------------------- call errore('xc_vdW_DF','vdW functional not implemented for spin polarized runs', size(rho_valence,2)-1) !IF ( gamma_only) CALL errore ('xc_vdW_DF', & ! & 'vdW functional not implemented for gamma point calculations. & ! & Use kpoints automatic and specify the gamma point explicitly', 2) sigma(:,:) = 0.0_DP sigma_grad(:,:) = 0.0_DP sigma_ker(:,:) = 0.0_DP #ifndef FFTGRADIENT !! --------------------------------------------------------------------------------------------- !! Parallel setup !! --------------------------------------------------------------------------- if (first_stress_iteration) then allocate( procs_Npoints(0:nproc_pool-1), procs_start(0:nproc_pool-1), procs_end(0:nproc_pool-1) ) procs_Npoints(me_pool) = dfftp%nnr procs_start(0) = 1 do i_proc = 0, nproc_pool-1 call mp_bcast(procs_Npoints(i_proc), i_proc, intra_pool_comm) call mp_barrier(intra_pool_comm) procs_end(i_proc) = procs_start(i_proc) + procs_Npoints(i_proc) - 1 if (i_proc .ne. nproc_pool-1) then procs_start(i_proc+1) = procs_end(i_proc)+1 end if end do my_start_z = procs_start(me_pool)/(dfftp%nr1x*dfftp%nr2x)+1 my_end_z = procs_end(me_pool)/(dfftp%nr1x*dfftp%nr2x) !write(*,'(A,3I5)') "Parall stress [proc, my_start_z, my_end_z]", me_pool, my_start_z, my_end_z first_stress_iteration = .false. end if #endif !! --------------------------------------------------------------------------------------- !! Allocations !! --------------------------------------------------------------------------------------- allocate( gradient_rho(dfftp%nnr, 3) ) allocate( total_rho(dfftp%nnr) ) allocate( q0(dfftp%nnr) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( thetas(dfftp%nnr, Nqs) ) !! --------------------------------------------------------------------------------------- !! Charge !! --------------------------------------------------------------------------------------- total_rho = rho_valence(:,1) + rho_core(:) #ifdef FFTGRADIENT !! ------------------------------------------------------------------------- !! Here we calculate the gradient in reciprocal space using FFT !! ------------------------------------------------------------------------- call numerical_gradient(total_rho,gradient_rho) #else !! --------------------------------------------------------------------------------------- !! Here we calculate the gradient in Real space !! --------------------------------------------------------------------------------------- if (nproc_pool > 1) then allocate( full_rho(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) full_rho(procs_start(me_pool):procs_end(me_pool)) = total_rho do i_proc = 0, nproc_pool - 1 call mp_barrier(intra_pool_comm) call mp_bcast(full_rho(procs_start(i_proc):procs_end(i_proc)), i_proc, intra_pool_comm) end do call numerical_gradient(full_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) deallocate(full_rho) else call numerical_gradient(total_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) end if #endif !! ------------------------------------------------------------------------------------------------------------- !! Get q0. !! --------------------------------------------------------------------------------- CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! --------------------------------------------------------------------------------- !! Get thetas in reciprocal space. !! --------------------------------------------------------------------------------- CALL get_thetas_on_grid(total_rho, q0, thetas) !! --------------------------------------------------------------------------------------- !! Stress !! --------------------------------------------------------------------------------------- CALL stress_vdW_DF_gradient(total_rho, gradient_rho, q0, dq0_drho, & dq0_dgradrho, thetas, sigma_grad) CALL print_sigma(sigma_grad, "VDW GRADIENT") CALL stress_vdW_DF_kernel(total_rho, q0, thetas, sigma_ker) CALL print_sigma(sigma_ker, "VDW KERNEL") sigma = - (sigma_grad + sigma_ker) do l = 1, 3 do m = 1, l - 1 sigma (m, l) = sigma (l, m) enddo enddo CALL print_sigma(sigma, "VDW ALL") deallocate( gradient_rho, total_rho, q0, dq0_drho, dq0_dgradrho, thetas ) END SUBROUTINE stress_vdW_DF !! ############################################################################################################### !! | | !! | STRESS_VDW_DF_GRADIENT | !! | | SUBROUTINE stress_vdW_DF_gradient (total_rho, gradient_rho, q0, dq0_drho, & dq0_dgradrho, thetas, sigma) !!----------------------------------------------------------------------------------- !! Modules to include !! ---------------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nlm, nl, gg, igtongl, & gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba, alat, at, tpiba2 !! ---------------------------------------------------------------------------------- implicit none real(dp), intent(IN) :: total_rho(:) ! real(dp), intent(IN) :: gradient_rho(:, :) ! Input variables real(dp), intent(inout) :: sigma(:,:) ! real(dp), intent(IN) :: q0(:) ! real(dp), intent(IN) :: dq0_drho(:) ! real(dp), intent(IN) :: dq0_dgradrho(:) ! complex(dp), intent(IN) :: thetas(:,:) ! complex(dp), allocatable :: u_vdW(:,:) ! real(dp), allocatable :: d2y_dx2(:,:) ! real(dp) :: y(Nqs), dP_dq0, P, a, b, c, d, e, f ! Interpolation real(dp) :: dq ! integer :: q_low, q_hi, q, q1_i, q2_i , g_i ! Loop and q-points integer :: l, m real(dp) :: prefactor ! Final summation of sigma integer :: i_proc, theta_i, i_grid, q_i, & ! ix, iy, iz ! Iterators character(LEN=1) :: intvar !real(dp) :: at_inverse(3,3) allocate( d2y_dx2(Nqs, Nqs) ) allocate( u_vdW(dfftp%nnr, Nqs) ) sigma(:,:) = 0.0_DP prefactor = 0.0_DP !! -------------------------------------------------------------------------------------------------- !! Get u in k-space. !! --------------------------------------------------------------------------------------------------- call thetas_to_uk(thetas, u_vdW) !! -------------------------------------------------------------------------------------------------- !! Get u in real space. !! --------------------------------------------------------------------------------------------------- call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !! -------------------------------------------------------------------------------------------------- !! Get the second derivatives for interpolating the P_i !! --------------------------------------------------------------------------------------------------- call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) !! --------------------------------------------------------------------------------------------- i_grid = 0 !! ---------------------------------------------------------------------------------------------------- !! Do the real space integration to obtain the stress component !! ---------------------------------------------------------------------------------------------------- do i_grid = 1, dfftp%nnr q_low = 1 q_hi = Nqs ! ! Figure out which bin our value of q0 is in in the q_mesh ! do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('stress_vdW_gradient','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do q_i = 1, Nqs y(:) = 0.0D0 y(q_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(q_i,q_low) + f*d2y_dx2(q_i,q_hi) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ prefactor = u_vdW(i_grid,q_i) * dP_dq0 * dq0_dgradrho(i_grid) do l = 1, 3 do m = 1, l sigma (l, m) = sigma (l, m) - e2 * prefactor * & (gradient_rho(i_grid,l) * gradient_rho(i_grid,m)) enddo enddo !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end do end do #ifdef __MPI call mp_sum( sigma, intra_pool_comm ) #endif call dscal (9, 1.d0 / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3), sigma, 1) deallocate( d2y_dx2, u_vdW ) END SUBROUTINE stress_vdW_DF_gradient !! ############################################################################################################### !! | | !! | STRESS_VDW_DF_KERNEL | !! | | SUBROUTINE stress_vdW_DF_kernel (total_rho, q0, thetas, sigma) !! Modules to include !! ---------------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nl, gg, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba, tpiba2 USE constants, ONLY: pi implicit none real(dp), intent(IN) :: q0(:) real(dp), intent(IN) :: total_rho(:) real(dp), intent(inout) :: sigma(3,3) ! complex(dp), intent(IN) :: thetas(:,:) real(dp), allocatable :: dkernel_of_dk(:,:) ! integer :: l, m, q1_i, q2_i , g_i ! real(dp) :: g2, ngmod2, g_kernel, G_multiplier ! integer :: last_g, theta_i allocate( dkernel_of_dk(Nqs, Nqs) ) sigma(:,:) = 0.0_DP !! -------------------------------------------------------------------------------------------------- !! Integration in g-space !! --------------------------------------------------------------------------------------------------- last_g = -1 G_multiplier = 1.0D0 if (gamma_only) G_multiplier = 2.0D0 do g_i = gstart, ngm g2 = gg (g_i) * tpiba2 g_kernel = sqrt(g2) if ( igtongl(g_i) .ne. last_g) then call interpolate_Dkernel_Dk(g_kernel, dkernel_of_dk) ! Gets the derivatives last_g = igtongl(g_i) end if do q2_i = 1, Nqs do q1_i = 1, Nqs do l = 1, 3 do m = 1, l sigma (l, m) = sigma (l, m) - G_multiplier * 0.5 * e2 *& thetas(nl(g_i),q1_i)*dkernel_of_dk(q1_i,q2_i)*conjg(thetas(nl(g_i),q2_i))* & (g (l, g_i) * g (m, g_i) * tpiba2) / g_kernel end do end do enddo end do if (g_i < gstart ) sigma(:,:) = sigma(:,:) / G_multiplier enddo #ifdef __MPI call mp_sum( sigma, intra_pool_comm ) #endif deallocate( dkernel_of_dk ) END SUBROUTINE stress_vdW_DF_kernel !! ############################################################################################################### !! | | !! | GET_Q0_ON_GRID | !! |__________________| !! This routine first calculates the q value defined in (DION equations 11 and 12), then !! saturates it according to (SOLER equation 7). SUBROUTINE get_q0_on_grid (total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! !! more specifically it calcultates the following !! !! q0(ir) = q0 as defined above !! dq0_drho(ir) = total_rho * d q0 /d rho !! dq0_dgradrho = total_rho / |gradient_rho| * d q0 / d |gradient_rho| !! USE fft_base, ONLY : dfftp USE kernel_table, ONLY : q_cut, q_min real(dp), intent(IN) :: total_rho(:), gradient_rho(:,:) !! Input variables needed real(dp), intent(OUT) :: q0(:), dq0_drho(:), dq0_dgradrho(:) !! Output variables that have been allocated ! !! outside this routine but will be set here. ! _ real(dp), parameter :: LDA_A = 0.031091D0, LDA_a1 = 0.2137D0 ! real(dp), parameter :: LDA_b1 = 7.5957D0 , LDA_b2 = 3.5876D0 ! see J.P. Perdew and Yue Wang, Phys. Rev. B 45, 13244 (1992). real(dp), parameter :: LDA_b3 = 1.6382D0 , LDA_b4 = 0.49294D0 !_ real(dp) :: Z_ab = -0.8491D0 !! see DION integer, parameter :: m_cut = 12 !! How many terms to include in the sum ! !! of SOLER equation 7 real(dp) :: kF, r_s, sqrt_r_s, gradient_correction !! Intermediate variables needed to get q and q0 real(dp) :: LDA_1, LDA_2, q, exponent !! real(dp) :: dq0_dq !! The derivative of the saturated q0 with respect to q. ! !! Needed by dq0_drho and dq0_dgradrho by the chain rule. integer :: i_grid, index, count=0 !! Indexing variables if (vdw_type==1) Z_ab = -0.8491D0 if (vdw_type==2) Z_ab = -1.887D0 ! initialize q0-related arrays ... q0(:) = q_cut dq0_drho(:) = 0.0_DP dq0_dgradrho(:) = 0.0_DP do i_grid = 1, dfftp%nnr !! This prevents numerical problems. If the charge density is negative (an !! unphysical situation), we simply treat it as very small. In that case, !! q0 will be very large and will be saturated. For a saturated q0 the derivative !! dq0_dq will be 0 so we set q0 = q_cut and dq0_drho = dq0_dgradrho = 0 and go on !! to the next point. !! ------------------------------------------------------------------------------------ if (total_rho(i_grid) < epsr) cycle !! ------------------------------------------------------------------------------------ !! Calculate some intermediate values needed to find q !! ------------------------------------------------------------------------------------ kF = (3.0D0*pi*pi*total_rho(i_grid))**(1.0D0/3.0D0) r_s = (3.0D0/(4.0D0*pi*total_rho(i_grid)))**(1.0D0/3.0D0) sqrt_r_s = sqrt(r_s) gradient_correction = -Z_ab/(36.0D0*kF*total_rho(i_grid)**2) & * (gradient_rho(i_grid,1)**2+gradient_rho(i_grid,2)**2+gradient_rho(i_grid,3)**2) LDA_1 = 8.0D0*pi/3.0D0*(LDA_A*(1.0D0+LDA_a1*r_s)) LDA_2 = 2.0D0*LDA_A * (LDA_b1*sqrt_r_s + LDA_b2*r_s + LDA_b3*r_s*sqrt_r_s + LDA_b4*r_s*r_s) !! ------------------------------------------------------------------------------------ !! This is the q value defined in equations 11 and 12 of DION !! --------------------------------------------------------------- q = kF + LDA_1 * log(1.0D0+1.0D0/LDA_2) + gradient_correction !! --------------------------------------------------------------- !! Here, we calculate q0 by saturating q according to equation 7 of SOLER. Also, we find !! the derivative dq0_dq needed for the derivatives dq0_drho and dq0_dgradrh0 discussed below. !! --------------------------------------------------------------------------------------- exponent = 0.0D0 dq0_dq = 0.0D0 do index = 1, m_cut exponent = exponent + ( (q/q_cut)**index)/index dq0_dq = dq0_dq + ( (q/q_cut)**(index-1)) end do q0(i_grid) = q_cut*(1.0D0 - exp(-exponent)) dq0_dq = dq0_dq * exp(-exponent) !! --------------------------------------------------------------------------------------- !! This is to handle a case with q0 too small. We simply set it to the smallest q value in !! out q_mesh. Hopefully this doesn't get used often (ever) !! --------------------------------------------------------------------------------------- if (q0(i_grid) < q_min) then q0(i_grid) = q_min end if !! --------------------------------------------------------------------------------------- !! Here we find derivatives. These are actually the density times the derivative of q0 with respect !! to rho and gradient_rho. The density factor comes in since we are really differentiating !! theta = (rho)*P(q0) with respect to density (or its gradient) which will be !! dtheta_drho = P(q0) + dP_dq0 * [rho * dq0_dq * dq_drho] and !! dtheta_dgradient_rho = dP_dq0 * [rho * dq0_dq * dq_dgradient_rho] !! The parts in square brackets are what is calculated here. The dP_dq0 term will be interpolated !! later. There should actually be a factor of the magnitude of the gradient in the gradient_rho derivative !! but that cancels out when we differentiate the magnitude of the gradient with respect to a particular !! component. !! ------------------------------------------------------------------------------------------------------------------------- dq0_drho(i_grid) = dq0_dq * (kF/3.0D0 - 7.0D0/3.0D0*gradient_correction & - 8.0D0*pi/9.0D0 * LDA_A*LDA_a1*r_s*log(1.0D0+1.0D0/LDA_2) & + LDA_1/(LDA_2*(1.0D0 + LDA_2)) & * (2.0D0*LDA_A*(LDA_b1/6.0D0*sqrt_r_s + LDA_b2/3.0D0*r_s + LDA_b3/2.0D0*r_s*sqrt_r_s + 2.0D0*LDA_b4/3.0D0*r_s**2))) dq0_dgradrho(i_grid) = total_rho(i_grid) * dq0_dq * 2.0D0 * (-Z_ab)/(36.0D0*kF*total_rho(i_grid)**2) !! -------------------------------------------------------------------------------------------------------------------------- end do end SUBROUTINE get_q0_on_grid !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GET_THETAS_ON_GRID | !! |______________________| SUBROUTINE get_thetas_on_grid (total_rho, q0_on_grid, thetas) real(dp), intent(in) :: total_rho(:), q0_on_grid(:) !! Input arrays complex(dp), intent(inout):: thetas(:,:) !! value of thetas for the grid points ! !! assigned to this processor. The format ! !! is thetas(grid_point, theta_i) ! NB: thetas are returned in reciprocal space integer :: i_grid, Ngrid_points !! An index for the point on the grid and the total ! !! number of grid points integer :: theta_i !! an index Ngrid_points = size(q0_on_grid) !! Interpolate the P_i polynomials defined in equation 3 in SOLER for the particular !! q0 values we have. CALL spline_interpolation(q_mesh, q0_on_grid, thetas) !! Form the thetas where theta is defined as rho*p_i(q0) !! ------------------------------------------------------------------------------------ do i_grid = 1, Ngrid_points thetas(i_grid,:) = thetas(i_grid,:) * total_rho(i_grid) end do !! ------------------------------------------------------------------------------------ !! Get thetas in reciprocal space. call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL fwfft ('Dense', thetas(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') END SUBROUTINE get_thetas_on_grid !! ############################################################################################################### !! ############################################################################################################### !! | | !! | SPLINE_INTERPOLATION | !! |________________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge University !! press, page 97. It was adapted for Fortran, of course and for the problem at hand, in that it finds !! the bin a particular x value is in and then loops over all the P_i functions so we only have to find !! the bin once. SUBROUTINE spline_interpolation (x, evaluation_points, values) real(dp), intent(in) :: x(:), evaluation_points(:) !! Input variables. The x values used to form the interpolation ! !! (q_mesh in this case) and the values of q0 for which we are ! !! interpolating the function complex(dp), intent(inout) :: values(:,:) !! An output array (allocated outside this routine) that stores the ! !! interpolated values of the P_i (SOLER equation 3) polynomials. The ! !! format is values(grid_point, P_i) integer :: Ngrid_points, Nx !! Total number of grid points to evaluate and input x points real(dp), allocatable, save :: d2y_dx2(:,:) !! The second derivatives required to do the interpolation integer :: i_grid, lower_bound, upper_bound, index, P_i !! Some indexing variables real(dp), allocatable :: y(:) !! Temporary variables needed for the interpolation real(dp) :: a, b, c, d, dx !! Nx = size(x) Ngrid_points = size(evaluation_points) !! Allocate the temporary array allocate( y(Nx) ) !! If this is the first time this routine has been called we need to get the second !! derivatives (d2y_dx2) required to perform the interpolations. So we allocate the !! array and call initialize_spline_interpolation to get d2y_dx2. !! ------------------------------------------------------------------------------------ if (.not. allocated(d2y_dx2) ) then allocate( d2y_dx2(Nx,Nx) ) call initialize_spline_interpolation(x, d2y_dx2) end if !! ------------------------------------------------------------------------------------ do i_grid=1, Ngrid_points lower_bound = 1 upper_bound = Nx do while ( (upper_bound - lower_bound) > 1 ) index = (upper_bound+lower_bound)/2 if ( evaluation_points(i_grid) > x(index) ) then lower_bound = index else upper_bound = index end if end do dx = x(upper_bound)-x(lower_bound) a = (x(upper_bound) - evaluation_points(i_grid))/dx b = (evaluation_points(i_grid) - x(lower_bound))/dx c = ((a**3-a)*dx**2)/6.0D0 d = ((b**3-b)*dx**2)/6.0D0 do P_i = 1, Nx y = 0 y(P_i) = 1 values(i_grid, P_i) = a*y(lower_bound) + b*y(upper_bound) & + (c*d2y_dx2(P_i,lower_bound) + d*d2y_dx2(P_i, upper_bound)) end do end do deallocate( y ) END SUBROUTINE spline_interpolation !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INITIALIZE_SPLINE_INTERPOLATION | !! |___________________________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge !! University Press, pages 96-97. It was adapted for Fortran and for the problem at hand. SUBROUTINE initialize_spline_interpolation (x, d2y_dx2) real(dp), intent(in) :: x(:) !! The input abscissa values real(dp), intent(inout) :: d2y_dx2(:,:) !! The output array (allocated outside this routine) ! !! that holds the second derivatives required for ! !! interpolating the function integer :: Nx, P_i, index !! The total number of x points and some indexing ! !! variables real(dp), allocatable :: temp_array(:), y(:) !! Some temporary arrays required. y is the array ! !! that holds the funcion values (all either 0 or 1 here). real(dp) :: temp1, temp2 !! Some temporary variables required Nx = size(x) allocate( temp_array(Nx), y(Nx) ) do P_i=1, Nx !! In the Soler method, the polynomicals that are interpolated are Kroneker delta funcions !! at a particular q point. So, we set all y values to 0 except the one corresponding to !! the particular function P_i. !! ---------------------------------------------------------------------------------------- y = 0.0D0 y(P_i) = 1.0D0 !! ---------------------------------------------------------------------------------------- d2y_dx2(P_i,1) = 0.0D0 temp_array(1) = 0.0D0 do index = 2, Nx-1 temp1 = (x(index)-x(index-1))/(x(index+1)-x(index-1)) temp2 = temp1 * d2y_dx2(P_i,index-1) + 2.0D0 d2y_dx2(P_i,index) = (temp1-1.0D0)/temp2 temp_array(index) = (y(index+1)-y(index))/(x(index+1)-x(index)) & - (y(index)-y(index-1))/(x(index)-x(index-1)) temp_array(index) = (6.0D0*temp_array(index)/(x(index+1)-x(index-1)) & - temp1*temp_array(index-1))/temp2 end do d2y_dx2(P_i,Nx) = 0.0D0 do index=Nx-1, 1, -1 d2y_dx2(P_i,index) = d2y_dx2(P_i,index) * d2y_dx2(P_i,index+1) + temp_array(index) end do end do deallocate( temp_array, y) end SUBROUTINE initialize_spline_interpolation !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INTERPOLATE_KERNEL | !! |____________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge !! University Press, page 97. Adapted for Fortran and the problem at hand. This function is used to !! find the Phi_alpha_beta needed for equations 11 and 14 of SOLER. subroutine interpolate_kernel(k, kernel_of_k) USE kernel_table, ONLY : r_max, Nr_points, kernel, d2phi_dk2, dk real(dp), intent(in) :: k !! Input value, the magnitude of the g-vector for the ! !! current point. real(dp), intent(inout) :: kernel_of_k(:,:) !! An output array (allocated outside this routine) ! !! that holds the interpolated value of the kernel ! !! for each pair of q points (i.e. the phi_alpha_beta ! !! of the Soler method. integer :: q1_i, q2_i, k_i !! Indexing variables real(dp) :: A, B, C, D !! Intermediate values for the interpolation !! Check to make sure that the kernel table we have is capable of dealing with this !! value of k. If k is larger than Nr_points*2*pi/r_max then we can't perform the !! interpolation. In that case, a kernel file should be generated with a larger number !! of radial points. !! ------------------------------------------------------------------------------------- if ( k >= Nr_points*dk ) then write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk call errore('interpolate kernel', 'k value requested is out of range',1) end if !! ------------------------------------------------------------------------------------- kernel_of_k = 0.0D0 !! This integer division figures out which bin k is in since the kernel !! is set on a uniform grid. k_i = int(k/dk) !! Test to see if we are trying to interpolate a k that is one of the actual !! function points we have. The value is just the value of the function in that !! case. !! ---------------------------------------------------------------------------------------- if (mod(k,dk) == 0) then do q1_i = 1, Nqs do q2_i = 1, q1_i kernel_of_k(q1_i, q2_i) = kernel(k_i,q1_i, q2_i) kernel_of_k(q2_i, q1_i) = kernel(k_i,q2_i, q1_i) end do end do return end if !! ---------------------------------------------------------------------------------------- !! If we are not on a function point then we carry out the interpolation !! ---------------------------------------------------------------------------------------- A = (dk*(k_i+1.0D0) - k)/dk B = (k - dk*k_i)/dk C = (A**3-A)*dk**2/6.0D0 D = (B**3-B)*dk**2/6.0D0 do q1_i = 1, Nqs do q2_i = 1, q1_i kernel_of_k(q1_i, q2_i) = A*kernel(k_i, q1_i, q2_i) + B*kernel(k_i+1, q1_i, q2_i) & +(C*d2phi_dk2(k_i, q1_i, q2_i) + D*d2phi_dk2(k_i+1, q1_i, q2_i)) kernel_of_k(q2_i, q1_i) = kernel_of_k(q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------- end subroutine interpolate_kernel !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INTERPOLATE_DKERNEL_DK | !! |________________________| subroutine interpolate_Dkernel_Dk(k, dkernel_of_dk) USE kernel_table, ONLY : r_max, Nr_points, kernel, d2phi_dk2, dk implicit none real(dp), intent(in) :: k !! Input value, the magnitude of the g-vector for the ! !! current point. real(dp), intent(inout) :: dkernel_of_dk(Nqs,Nqs) !! An output array (allocated outside this routine) ! !! that holds the interpolated value of the kernel ! !! for each pair of q points (i.e. the phi_alpha_beta ! !! of the Soler method. integer :: q1_i, q2_i, k_i !! Indexing variables real(dp) :: A, B, dAdk, dBdk, dCdk, dDdk !! Intermediate values for the interpolation !! ------------------------------------------------------------------------------------- if ( k >= Nr_points*dk ) then write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk call errore('interpolate kernel', 'k value requested is out of range',1) end if !! ------------------------------------------------------------------------------------- dkernel_of_dk = 0.0D0 k_i = int(k/dk) !! ---------------------------------------------------------------------------------------- A = (dk*(k_i+1.0D0) - k)/dk B = (k - dk*k_i)/dk dAdk = -1.0D0/dk dBdk = 1.0D0/dk dCdk = -((3*A**2 -1.0D0)/6.0D0)*dk dDdk = ((3*B**2 -1.0D0)/6.0D0)*dk do q1_i = 1, Nqs do q2_i = 1, q1_i dkernel_of_dk(q1_i, q2_i) = dAdk*kernel(k_i, q1_i, q2_i) + dBdk*kernel(k_i+1, q1_i, q2_i) & + dCdk*d2phi_dk2(k_i, q1_i, q2_i) + dDdk*d2phi_dk2(k_i+1, q1_i, q2_i) dkernel_of_dk(q2_i, q1_i) = dkernel_of_dk(q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------- end subroutine interpolate_Dkernel_Dk !! ############################################################################################################### !! | | !! | NUMERICAL_GRADIENT | !! |_______________________| #ifdef FFTGRADIENT !! Calculates the gradient of the charge density numerically on the grid. We use !! the PWSCF gradient style. subroutine numerical_gradient(total_rho, gradient_rho) use gvect, ONLY : ngm, nl, g, nlm USE cell_base, ONLY : tpiba USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft ! ! I/O variables ! real(dp), intent(in) :: total_rho(:) !! Input array holding total charge density. real(dp), intent(out) :: gradient_rho(:,:) !! Output array that will holds the gradient ! !! of the charge density. ! local variables ! integer :: icar !! counter on cartesian components complex(dp), allocatable :: c_rho(:) !! auxiliary complex array for rho complex(dp), allocatable :: c_grho(:) !! auxiliary complex array for grad rho ! rho in G space allocate ( c_rho(dfftp%nnr), c_grho(dfftp%nnr) ) c_rho(1:dfftp%nnr) = CMPLX(total_rho(1:dfftp%nnr),0.0_DP) CALL fwfft ('Dense', c_rho, dfftp) do icar=1,3 ! compute gradient in G space c_grho(:) =CMPLX(0.0_DP,0.0_DP) c_grho(nl(:)) = CMPLX (0.0_DP,1.0_DP) * tpiba * g(icar,:) * c_rho(nl(:)) if (gamma_only) c_grho( nlm(:) ) = CONJG( c_grho( nl(:) ) ) ! back in real space CALL invfft ('Dense', c_grho, dfftp) gradient_rho(:,icar) = REAL( c_grho(:) ) end do deallocate ( c_rho, c_grho ) return end subroutine numerical_gradient #else !! Calculates the gradient of the charge density numerically on the grid. We could simply !! use the PWSCF gradient routine but we need the derivative of the gradient at point j !! with respect to the density at point i for the potential (SOLER equation 13). This is !! difficult to do with the standard means of calculating the density gradient but trivial !! in the case of the numerical formula because the derivative of the gradient at point j !! with respect to the density at point i is just whatever the coefficient is in the numerical !! derivative formula. subroutine numerical_gradient(full_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, at real(dp), intent(in) :: full_rho(:) !! Input array holding the value of the total charge density ! !! on all grid points of the simulation cell integer, intent(in) :: Nneighbors, my_start_z, my_end_z !! Input variables giving the order of the numerical derivative, ! !! and the starting and ending z-slabs for the given processor. real(dp), intent(inout) :: gradient_rho(:,:) !! Output array (allocated outside the routine) that holds the ! !! gradient of the charge density only in the region assigned to ! !! the given processor in the format: ! !! gradient_rho(grid_point, cartesian_component) real(dp), pointer, save :: coefficients(:) !! A pointer to an array of coefficients used for the numerical ! !! differentiation. See gradient_coefficients function for more ! !! detail. integer, pointer, save :: indices3d(:,:,:) !! A pointer to a rank 3 array that gives the relation between the ! !! x, y, and z indices of a point and its index in the charge density ! !! array. Used to easily find neighbors in the x, y, and z directions. integer :: i_grid, ix1, ix2, ix3, nx !! Indexing variables real(dp) :: temp(3) !! A temporary array for the gradient at a point real(dp), save :: at_inverse(3,3) !! The inverse of the matrix of unit cell basis vectors logical, save :: have_at_inverse = .false. !! Flag to determine if we have found the inverse matrix yet gradient_rho = 0.0D0 !! Get pointers to the gradient coefficients and the 3d index array needed to find !! the gradient if we don't have them already. !! ---------------------------------------------------------------------------------- if (.not. associated(indices3d) ) then indices3d => get_3d_indices(Nneighbors) coefficients => gradient_coefficients(Nneighbors) end if !! ---------------------------------------------------------------------------------- !! Here we need to get the transformation matrix that takes our calculated "gradient" !! , gradient_rho()!! to the real thing. It is just the (normalized) inverse of the matrix of unit cell !! basis vectors. If the unit cell has orthogonal basis vectors then this will be a !! diagonal matrix with the diagonal elements bein 1/(basis vector length). In the !! general case this will not be diagonal (e.g. for hexagonal unit cells). !! ---------------------------------------------------------------------------------- if (.not. have_at_inverse) then at_inverse = alat*at call invert_3x3_matrix(at_inverse) ! Normalize by the number of grid points in each direction ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ at_inverse(1,:) = at_inverse(1,:) * dble(dfftp%nr1x) at_inverse(2,:) = at_inverse(2,:) * dble(dfftp%nr2x) at_inverse(3,:) = at_inverse(3,:) * dble(dfftp%nr3x) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Take the transpose because of the way Fortran does matmul() (used below) at_inverse = transpose(at_inverse) ! Mark that we have gotten the transformation matrix so we don't have to find it again have_at_inverse = .true. end if !! ---------------------------------------------------------------------------------- i_grid = 0 !! Here we loop over all of the points assigned to a given processor. For each point we loop !! over all relavant neighbors (determined by the variable Nneighbors) and multiply the value !! of the density of each by the corresponding coefficient. We then tranform the vector by !! multiplying it by the inverse of the unit cell matrix found above. This takes care of cases !! where the basis vectors are not the same length or are not even orthogonal. !! ----------------------------------------------------------------------------------------------- do ix3 = my_start_z, my_end_z do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 temp = 0.0D0 do nx = -Nneighbors, Nneighbors temp(1) = temp(1) + coefficients(nx) * full_rho(indices3d(ix1+nx,ix2,ix3)) temp(2) = temp(2) + coefficients(nx) * full_rho(indices3d(ix1,ix2+nx,ix3)) temp(3) = temp(3) + coefficients(nx) * full_rho(indices3d(ix1,ix2,ix3+nx)) end do gradient_rho(i_grid,:) = matmul(at_inverse,temp) end do end do end do !! ----------------------------------------------------------------------------------------------- !! FAKE PATCH !! !gradient_rho = 0.0D0 end subroutine numerical_gradient #endif !! ################################################################################################# !! | | !! | thetas_to_uk | !! |______________| subroutine thetas_to_uk(thetas, u_vdW) USE gvect, ONLY : nl, nlm, gg, ngm, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : tpiba, omega complex(dp), intent(in) :: thetas(:,:) !! On input this variable holds the theta functions (equation 11, SOLER) ! !! in the format thetas(grid_point, theta_i). complex(dp), intent(out) :: u_vdW(:,:) ! !! On output this array holds u_alpha(k) = Sum_j[theta_beta(k)phi_alpha_beta(k)] real(dp), allocatable :: kernel_of_k(:,:) !! This array will hold the interpolated kernel values for each pair of q values ! !! in the q_mesh. real(dp) :: g integer :: last_g, g_i, q1_i, q2_i, count, i_grid !! Index variables complex(dp) :: theta(Nqs) !! Temporary storage vector used since we are overwriting the thetas array here. !! ------------------------------------------------------------------------------------------------- allocate( kernel_of_k(Nqs, Nqs) ) u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP) last_g = -1 do g_i = 1, ngm if ( igtongl(g_i) .ne. last_g) then g = sqrt(gl(igtongl(g_i))) * tpiba call interpolate_kernel(g, kernel_of_k) last_g = igtongl(g_i) end if theta = thetas(nl(g_i),:) do q2_i = 1, Nqs do q1_i = 1, Nqs u_vdW(nl(g_i),q2_i) = u_vdW(nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i) end do end do end do if (gamma_only) u_vdW(nlm(:),:) = CONJG(u_vdW(nl(:),:)) deallocate( kernel_of_k ) !! ----------------------------------------------------------------------------------------------- end subroutine thetas_to_uk !! ################################################################################################# !! | | !! | VDW_ENERGY | !! |_____________| !! This routine carries out the integration of equation 11 of SOLER. It returns the non-local !! exchange-correlation energy and the u_alpha(k) arrays used to find the u_alpha(r) arrays via !! equations 14 and 15 in SOLER. subroutine vdW_energy(thetas, vdW_xc_energy) USE gvect, ONLY : nl, nlm, gg, ngm, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : tpiba, omega complex(dp), intent(inout) :: thetas(:,:) !! On input this variable holds the theta functions ! !! (equation 11, SOLER) in the format thetas(grid_point, theta_i). ! !! On output this array holds ! !! u_alpha(k) = Sum_j[theta_beta(k)phi_alpha_beta(k)] real(dp), intent(out) :: vdW_xc_energy !! The non-local correlation energy. An output variable. real(dp), allocatable :: kernel_of_k(:,:) !! This array will hold the interpolated kernel values ! !! for each pair of q values in the q_mesh. real(dp) :: g !! The magnitude of the current g vector integer :: last_g !! The shell number of the last g vector ! integer :: g_i, q1_i, q2_i, count, i_grid !! Index variables complex(dp) :: theta(Nqs), thetam(Nqs), theta_g(Nqs) !! Temporary storage vector used since we are overwriting the thetas array here. real(dp) :: G0_term, G_multiplier complex(dp), allocatable :: u_vdw(:,:) !! temporary array holding u_alpha(k) vdW_xc_energy = 0.0D0 allocate (u_vdW(dfftp%nnr,Nqs)) u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP) allocate( kernel_of_k(Nqs, Nqs) ) !! Loop over PWSCF's array of magnitude-sorted g-vector shells. For each shell, interpolate !! the kernel at this magnitude of g, then find all points on the shell and carry out the !! integration over those points. The PWSCF variables used here are !! ngm = number of g-vectors on this processor, nl = an array that gives the indices into the !! FFT grid for a particular g vector, igtongl = an array that gives the index of which shell a !! particular g vector is in, gl = an array that gives the magnitude of the g vectors for each shell. !! In essence, we are forming the reciprocal-space u(k) functions of SOLER equation 14. These are !! kept in thetas array. !! ------------------------------------------------------------------------------------------------- !! !! Here we should use gstart,ngm but all the cases are handled by conditionals inside the loop !! G_multiplier = 1.0D0 if (gamma_only) G_multiplier = 2.0D0 last_g = -1 do g_i = 1, ngm if ( igtongl(g_i) .ne. last_g) then g = sqrt(gl(igtongl(g_i))) * tpiba call interpolate_kernel(g, kernel_of_k) last_g = igtongl(g_i) end if theta = thetas(nl(g_i),:) do q2_i = 1, Nqs do q1_i = 1, Nqs u_vdW(nl(g_i),q2_i) = u_vdW(nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i) end do vdW_xc_energy = vdW_xc_energy + G_multiplier * (u_vdW(nl(g_i),q2_i)*conjg(theta(q2_i))) end do if (g_i < gstart ) vdW_xc_energy = vdW_xc_energy / G_multiplier end do if (gamma_only) u_vdW(nlm(:),:) = CONJG(u_vdW(nl(:),:)) !! --------------------------------------------------------------------------------------------------- !! Apply scaling factors. The e2 comes from PWSCF's choice of units. This should be !! 0.5 * e2 * vdW_xc_energy * (2pi)^3/omega * (omega)^2, with the (2pi)^3/omega being !! the volume element for the integral (the volume of the reciprocal unit cell) and the !! 2 factors of omega being used to cancel the factor of 1/omega PWSCF puts on forward !! FFTs of the 2 theta factors. 1 omega cancels and the (2pi)^3 cancels because there should !! be a factor of 1/(2pi)^3 on the radial Fourier transform of phi that was left out to cancel !! with this factor. !! --------------------------------------------------------------------------------------------------- vdW_xc_energy = 0.5D0 * e2 * omega * vdW_xc_energy deallocate( kernel_of_k ) thetas(:,:) = u_vdW(:,:) deallocate (u_vdW) !! --------------------------------------------------------------------------------------------------- end subroutine vdW_energy !! ############################################################################################################### !! ############################################################################################################### !! | | !! | dv_drho_vdw | !! |_________________| #ifdef FFTGRADIENT subroutine dv_drho_vdw(rho_valence, rho_core, drho, nspin, dv_drho) USE gvect, ONLY : nl, g, nlm, ngm USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, tpiba, omega integer :: nspin real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) complex(DP), intent(IN) :: drho (dfftp%nnr, nspin) complex(DP), intent(INOUT) :: dv_drho(dfftp%nnr, nspin) !! ------------------------------------------------------------------------- !! For the potential !! ------------------------------------------------------------------------- integer :: i_grid, theta_i, i_proc, I real(dp) :: grid_cell_volume real(dp), allocatable :: q0(:) real(dp), allocatable :: gradient_rho(:,:) real(dp), allocatable :: potential(:) real(dp), allocatable :: dq0_drho(:) real(dp), allocatable :: dq0_dgradrho(:) complex(dp), allocatable :: thetas(:,:) real(dp), allocatable :: total_rho(:) complex(dp), allocatable :: u_vdW(:,:) !! ------------------------------------------------------------------------- !! For the derivative !! ------------------------------------------------------------------------- real(dp), allocatable :: potential_plus(:), potential_minus(:) real(dp) :: lambda real(DP), allocatable :: drho_real(:) allocate( q0(dfftp%nnr) ) allocate( gradient_rho(dfftp%nnr, 3) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( total_rho(dfftp%nnr) ) allocate( drho_real(dfftp%nnr) ) allocate( thetas(dfftp%nnr, Nqs) ) allocate( u_vdW(dfftp%nnr, Nqs) ) allocate( potential_plus(dfftp%nnr), potential_minus(dfftp%nnr) ) !! Derivative parameter lambda = 0.01D0 !! Delta rho in real space CALL invfft ('Dense', drho(:,1), dfftp) drho_real(:) = REAL( drho(:,1) ) !! ------------------------------------------------------------------------- !! Potential plus !! ------------------------------------------------------------------------- total_rho = rho_valence(:,1) + rho_core(:) + lambda*drho_real(:) call numerical_gradient(total_rho,gradient_rho) CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) CALL get_thetas_on_grid(total_rho, q0, thetas) !!call vdW_energy(thetas, Ec_nl) call thetas_to_uk(thetas, u_vdW) call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !!call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, thetas, potential) call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, u_vdW, potential_plus) !! ------------------------------------------------------------------------- !! Potential minus !! ------------------------------------------------------------------------- total_rho = rho_valence(:,1) + rho_core(:) - lambda*drho_real(:) call numerical_gradient(total_rho,gradient_rho) CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) CALL get_thetas_on_grid(total_rho, q0, thetas) !!call vdW_energy(thetas, Ec_nl) call thetas_to_uk(thetas, u_vdW) call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !!call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, thetas, potential) call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, u_vdW, potential_minus) !! ------------------------------------------------------------------------- !! Derivative !! ------------------------------------------------------------------------- dv_drho(:,1) = (potential_plus(:) - potential_minus(:))/(2*lambda) !! ------------------------------------------------------------------------- !! Deallocate !! ------------------------------------------------------------------------- CALL fwfft ('Dense', drho(:,1), dfftp) deallocate( q0, gradient_rho, dq0_drho, dq0_dgradrho, total_rho) deallocate( drho_real,thetas, u_vdW) deallocate( potential_plus, potential_minus ) end subroutine dv_drho_vdw #endif !! ############################################################################################################### !! | | !! | GET_POTENTIAL | !! |_________________| !! This routine finds the non-local correlation contribution to the potential (i.e. the derivative of the non-local !! piece of the energy with respect to density) given in SOLER equation 13. The u_alpha(k) functions were found !! while calculating the energy. They are passed in as the matrix u_vdW. Most of the required derivatives were !! calculated in the "get_q0_on_grid" routine, but the derivative of the interpolation polynomials, P_alpha(q), !! (SOLER equation 3) with respect to q is interpolated here, along with the polynomials themselves. #ifdef FFTGRADIENT subroutine get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, u_vdW, potential) use gvect, ONLY : nl, g, nlm USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, tpiba real(dp), intent(in) :: q0(:), gradient_rho(:,:) !! Input arrays holding the value of q0 for all points assigned ! !! to this processor and the gradient of the charge density for ! !! points assigned to this processor. real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:)!! The derivative of q0 with respect to the charge density and ! !! gradient of the charge density (almost). See comments in ! !! the get_q0_on_grid subroutine above. complex(dp), intent(in) :: u_vdW(:,:) !! The functions u_alpha(r) obtained by inverse transforming the ! !! functions u_alph(k). See equations 14 and 15 in SOLER real(dp), intent(inout) :: potential(:) !! The non-local correlation potential for points on the grid over ! !! the whole cell (not just those assigned to this processor). real(dp), allocatable, save :: d2y_dx2(:,:) !! Second derivatives of P_alpha polynomials for interpolation integer :: i_grid, P_i,icar !! Index variables integer :: q_low, q_hi, q !! Variables to find the bin in the q_mesh that a particular q0 ! !! belongs to (for interpolation). real(dp) :: dq, a, b, c, d, e, f !! Inermediate variables used in the interpolation of the polynomials real(dp) :: y(Nqs), dP_dq0, P !! The y values for a given polynomial (all 0 exept for element i of P_i) ! !! The derivative of P at a given q0 and the value of P at a given q0. Both ! !! of these are interpolated below real(dp), allocatable ::h_prefactor(:) complex(dp), allocatable ::h(:) allocate (h_prefactor(dfftp%nnr),h(dfftp%nnr)) potential = 0.0D0 h_prefactor = 0.0D0 !! ------------------------------------------------------------------------------------------- !! Get the second derivatives of the P_i functions for interpolation. We have already calculated !! this once but it is very fast and it's just as easy to calculate it again. !! --------------------------------------------------------------------------------------------- if (.not. allocated( d2y_dx2) ) then allocate( d2y_dx2(Nqs, Nqs) ) call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) end if !! --------------------------------------------------------------------------------------------- do i_grid = 1,dfftp%nnr q_low = 1 q_hi = Nqs ! Figure out which bin our value of q0 is in in the q_mesh ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('get_potential','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do P_i = 1, Nqs y = 0.0D0 y(P_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi) P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi) !! The first term in equation 13 of SOLER potential(i_grid) = potential(i_grid) + u_vdW(i_grid,P_i)* (P + dP_dq0 * dq0_drho(i_grid)) if (q0(i_grid) .ne. q_mesh(Nqs)) then h_prefactor(i_grid) = h_prefactor(i_grid) + u_vdW(i_grid,P_i)* dP_dq0 * dq0_dgradrho(i_grid) end if end do end do do icar = 1,3 h(:) = CMPLX(h_prefactor(:) * gradient_rho(:,icar),0.0_DP) CALL fwfft ('Dense', h, dfftp) h(nl(:)) = CMPLX(0.0_DP,1.0_DP) * tpiba * g(icar,:) * h(nl(:)) if (gamma_only) h(nlm(:)) = CONJG(h(nl(:))) CALL invfft ('Dense', h, dfftp) potential(:) = potential(:) - REAL(h(:)) end do !! ------------------------------------------------------------------------------------------------------------------------ deallocate (h_prefactor,h) end subroutine get_potential #else subroutine get_potential(q0, dq0_drho, dq0_dgradrho, N, gradient_rho, u_vdW, potential, my_start_z, my_end_z) USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, at real(dp), intent(in) :: q0(:), gradient_rho(:,:) !! Input arrays holding the value of q0 for all points assigned ! !! to this processor and the gradient of the charge density for ! !! points assigned to this processor. real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:) !! The derivative of q0 with respect to the charge density and ! !! gradient of the charge density (almost). See comments in ! !! the get_q0_on_grid subroutine above. real(dp), intent(inout) :: potential(:) !! The non-local correlation potential for points on the grid over ! !! the whole cell (not just those assigned to this processor). integer, intent(in) :: N, my_start_z, my_end_z !! The number of neighbors used in the numerical gradient formula ! !! and the starting and ending z planes for this processor complex(dp), intent(in) :: u_vdW(:,:) !! The functions u_alpha(r) obtained by inverse transforming the ! !! functions u_alph(k). See equations 14 and 15 in SOLER real(dp), allocatable, save :: d2y_dx2(:,:) !! Second derivatives of P_alpha polynomials for interpolation integer :: i_grid, ix1, ix2, ix3, P_i, nx !! Index variables integer :: q_low, q_hi, q !! Variables to find the bin in the q_mesh that a particular q0 ! !! belongs to (for interpolation). real(dp) :: prefactor !! Intermediate variable used to minimize calculations real(dp), pointer, save :: coefficients(:) !! Pointer to the gradient coefficients. Used to find the derivative ! !! of the magnitude of the gradient of the charge density with ! !! respect to the charge density at another point. Equation 13 in SOLER integer, pointer, save :: indices3d(:,:,:) !! A pointer to a rank 3 array that gives the relation between the ! !! x, y, and z indices of a point and its index in the charge density ! !! array. Used to easily find neighbors in the x, y, and z directions. real(dp) :: dq, a, b, c, d, e, f !! Inermediate variables used in the interpolation of the polynomials real(dp) :: y(Nqs), dP_dq0, P !! The y values for a given polynomial (all 0 exept for element i of P_i) ! !! The derivative of P at a given q0 and the value of P at a given q0. Both ! !! of these are interpolated below real(dp), save :: at_inverse(3,3) logical, save :: have_at_inverse = .false. if (.not. have_at_inverse) then at_inverse = alat * at call invert_3x3_matrix(at_inverse) at_inverse(1,:) = at_inverse(1,:) * dble(dfftp%nr1x) at_inverse(2,:) = at_inverse(2,:) * dble(dfftp%nr2x) at_inverse(3,:) = at_inverse(3,:) * dble(dfftp%nr3x) have_at_inverse = .true. end if potential = 0.0D0 !! Find the gradient coefficients and the 3d index mapping array if we don't already have it. !! ------------------------------------------------------------------------------------------- if (.not. associated(indices3d) ) then indices3d => get_3d_indices() coefficients => gradient_coefficients() end if !! ------------------------------------------------------------------------------------------- !! Get the second derivatives of the P_i functions for interpolation. We have already calculated !! this once but it is very fast and it's just as easy to calculate it again. !! --------------------------------------------------------------------------------------------- if (.not. allocated( d2y_dx2) ) then allocate( d2y_dx2(Nqs, Nqs) ) call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) end if !! --------------------------------------------------------------------------------------------- i_grid = 0 !! Loop over all the points assigned to this processor. For each point and each q value in the q_mesh, !! interpolate P_i and dP_dq0. !! -------------------------------------------------------------------------------------------------------------------- do ix3 = my_start_z, my_end_z do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 q_low = 1 q_hi = Nqs ! Figure out which bin our value of q0 is in in the q_mesh ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('get_potential','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do P_i = 1, Nqs y = 0.0D0 y(P_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi) P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi) !! The first term in equation 13 of SOLER potential(indices3d(ix1,ix2,ix3)) = potential(indices3d(ix1,ix2,ix3)) + & u_vdW(i_grid,P_i)* (P + dP_dq0 * dq0_drho(i_grid)) ! Now, loop over all relevant neighbors and calculate the second term in equation 13 of SOLER. Note, ! that we are using our value of u_vdW and gradients and adding the piece of the potential point i_grid ! contributes to the neighbor's potential. If the value of q0 at point i_grid is equal to q_cut, the ! derivative dq0_dq will be 0 so both of dq0_drho and dq0_dgradrho will be 0. Thus, we can safely ! skip these points. ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (q0(i_grid) .ne. q_mesh(Nqs)) then prefactor = u_vdW(i_grid,P_i) * dP_dq0 * dq0_dgradrho(i_grid) do nx = -N,N potential(indices3d(ix1+nx,ix2,ix3)) = potential(indices3d(ix1+nx,ix2,ix3)) & + prefactor * coefficients(nx) & * (gradient_rho(i_grid,1)*at_inverse(1,1) + gradient_rho(i_grid,2)*at_inverse(2,1) & + gradient_rho(i_grid,3)*at_inverse(3,1)) potential(indices3d(ix1,ix2+nx,ix3)) = potential(indices3d(ix1,ix2+nx,ix3)) & + prefactor * coefficients(nx) & * (gradient_rho(i_grid,1)*at_inverse(1,2) + gradient_rho(i_grid,2)*at_inverse(2,2) & + gradient_rho(i_grid,3)*at_inverse(3,2)) potential(indices3d(ix1,ix2,ix3+nx)) = potential(indices3d(ix1,ix2,ix3+nx)) & + prefactor * coefficients(nx) & * (gradient_rho(i_grid,1)*at_inverse(1,3) + gradient_rho(i_grid,2)*at_inverse(2,3) & + gradient_rho(i_grid,3)*at_inverse(3,3)) end do end if !! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end do end do end do end do !! ------------------------------------------------------------------------------------------------------------------------ end subroutine get_potential #endif !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GRADIENT_COEFFICIENTS | !! |_________________________| !! This routine returns a pointer to an array holding the coefficients for a derivative expansion to some order. !! The derivative is found by multiplying the value of the function at a point + or - n away from the sample point by !! the coefficient gradient_coefficients(+ or - n) and dividing by the appropriate dx for that direction. function gradient_coefficients(N) real(dp), allocatable, target, save:: coefficients(:) !! The local array that will hold the coefficients. A pointer to this ! !! array will be returned by the function integer, intent(in), optional :: N !! The number of neighbors to use on each side for the gradient ! !! calculation. Can be between 1 (i.e. 3 point derivative formula) ! !! and 6 (i.e. 13 point derivative formula). real(dp), pointer :: gradient_coefficients(:) !! Pointer to the coefficients array that will be returned if (.not. allocated(coefficients) ) then if (.not. present(N) ) call errore('gradient_coefficients', 'Number of neighbors for gradient must be specified',2) allocate( coefficients(-N:N) ) select case (N) case (1) coefficients(-1:1) = (/-0.5D0, 0.0D0, 0.5D0/) case (2) coefficients(-2:2) = (/0.0833333333333333D0, -0.6666666666666666D0, 0.0D0, & 0.6666666666666666D0, -0.0833333333333333D0/) case (3) coefficients(-3:3) = (/-0.0166666666666666D0, 0.15D0, -0.75D0, 0.0D0, 0.75D0, & -0.15D0, 0.016666666666666666D0/) case (4) coefficients(-4:4) = (/0.00357142857143D0, -0.03809523809524D0, 0.2D0, -0.8D0, 0.0D0, & 0.8D0, -0.2D0, 0.03809523809524D0, -0.00357142857143D0/) case (5) coefficients(-5:5) = (/-0.00079365079365D0, 0.00992063492063D0, -0.05952380952381D0, & 0.23809523809524D0, -0.8333333333333333D0, 0.0D0, 0.8333333333333333D0, & -0.23809523809524D0, 0.05952380952381D0, -0.00992063492063D0, 0.00079365079365D0/) case (6) coefficients(-6:6) = (/0.00018037518038D0, -0.00259740259740D0, 0.01785714285714D0, & -0.07936507936508D0, 0.26785714285714D0, -0.85714285714286D0, 0.0D0, & 0.85714285714286D0, -0.26785714285714D0, 0.07936507936508D0, & -0.01785714285714D0, 0.00259740259740D0, -0.00018037518038D0/) case default call errore('xc_vdW_DF', 'Order of numerical gradient not implemented', 2) end select end if gradient_coefficients => coefficients end function gradient_coefficients !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GET_3D_INDICES | !! |__________________| !! This routine builds a rank 3 array that holds the indices into the FFT grid for a point with a given !! set of x, y, and z indices. The array holds an extra 2N points in each dimension (N to the left and N !! to the right) so the code can find the neighbors of edge points easily. This is done by just copying the !! first N points in each dimension to the end of that dimension and the end N points to the beginning. function get_3d_indices(N) USE fft_base, ONLY : dfftp integer, intent(in), optional :: N !! The number of neighbors in each direction that will ! !! be used for the gradient formula. If not supplied, ! !! the code just returns the pointer to the already ! !! allocated rho_3d array. real(dp) :: dx, dy, dz !! integer :: ix1, ix2, ix3, i_grid !! Index variables integer, allocatable, target, save :: rho_3d(:,:,:) !! The local array that will store the indices. Only a pointer ! !! to this array will be returned. integer, pointer :: get_3d_indices(:,:,:) !! The returned pointer to the rho_3d array of indices. !! If the routine has not already been run we set up the rho_3d array by looping over it !! and assigning indices to its elements. If this routine has already been run we simply !! return a pointer to the existing array. !! -------------------------------------------------------------------------------- if (.not. allocated(rho_3d)) then ! Check to make sure we have been given the number of neighbors since the routine has ! not been run yet. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (.not. present(N)) then call errore('get_3d_rho','Number of neighbors for numerical derivatives & & must be specified',2) end if ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ allocate( rho_3d(-N+1:dfftp%nr1x+N, -N+1:dfftp%nr2x+N, -N+1:dfftp%nr3x+N) ) i_grid = 0 do ix3 = 1, dfftp%nr3x do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 rho_3d(ix1, ix2, ix3) = i_grid end do end do end do ! Apply periodic boundary conditions to extend the array by N places in each ! direction ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ rho_3d(-N+1:0,:,:) = rho_3d(dfftp%nr1x-N+1:dfftp%nr1x, :, :) rho_3d(:,-N+1:0,:) = rho_3d(:, dfftp%nr2x-N+1:dfftp%nr2x, :) rho_3d(:,:,-N+1:0) = rho_3d(:, :, dfftp%nr3x-N+1:dfftp%nr3x) rho_3d(dfftp%nr1x+1:dfftp%nr1x+N, :, :) = rho_3d(1:N, :, :) rho_3d(:, dfftp%nr2x+1:dfftp%nr2x+N, :) = rho_3d(:, 1:N, :) rho_3d(:, :, dfftp%nr3x+1:dfftp%nr3x+N) = rho_3d(:, :, 1:N) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end if !! ------------------------------------------------------------------------------------------ !! Return the point to rho_3d get_3d_indices => rho_3d end function get_3d_indices !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INVERT_3X3_MATRIX | !! |_____________________| !! This routine is just a hard-wired subroutine to invert a 3x3 matrix. It is used to invert the matrix of !! unit cell basis vectors to find the gradient and the derivative of the gradient with respect to the !! density. subroutine invert_3x3_matrix(M) real(dp), intent(inout) :: M(3,3) !! On input, the 3x3 matrix to be inverted ! !! On output, the inverse of the 3x3 matrix given real(dp) :: temp(3,3) !! Temporary storage real(dp) :: determinant_M !! The determinant of the input 3x3 matrix temp = 0.0D0 temp(1,1) = M(2,2)*M(3,3) - M(2,3)*M(3,2) temp(1,2) = M(1,3)*M(3,2) - M(1,2)*M(3,3) temp(1,3) = M(1,2)*M(2,3) - M(1,3)*M(2,2) temp(2,1) = M(2,3)*M(3,1) - M(2,1)*M(3,3) temp(2,2) = M(1,1)*M(3,3) - M(1,3)*M(3,1) temp(2,3) = M(1,3)*M(2,1) - M(1,1)*M(2,3) temp(3,1) = M(2,1)*M(3,2) - M(2,2)*M(3,1) temp(3,2) = M(1,2)*M(3,1) - M(1,1)*M(3,2) temp(3,3) = M(1,1)*M(2,2) - M(1,2)*M(2,1) determinant_M = M(1,1) * (M(2,2)*M(3,3) - M(2,3)*M(3,2)) & - M(1,2) * (M(2,1)*M(3,3) - M(2,3)*M(3,1)) & + M(1,3) * (M(2,1)*M(3,2) - M(2,2)*M(3,1)) if (abs(determinant_M) > 1e-6) then M = 1.0D0/determinant_M*temp else call errore('invert_3x3_matrix','Matrix is close to singular',1) end if end subroutine invert_3x3_matrix SUBROUTINE print_sigma(sigma, title) real(dp), intent(in) :: sigma(:,:) character(len=*), intent(in) :: title integer :: l WRITE( stdout, '(10x,A)') TRIM(title)//" stress" WRITE( stdout, '(10x,3F13.8)') sigma(1,1), sigma(1,2), sigma(1,3) WRITE( stdout, '(10x,3F13.8)') sigma(2,1), sigma(2,2), sigma(2,3) WRITE( stdout, '(10x,3F13.8)') sigma(3,1), sigma(3,2), sigma(3,3) WRITE( stdout, '(10x)') END SUBROUTINE print_sigma !! ############################################################################################################### END MODULE vdW_DF espresso-5.0.2/Modules/paw_variables.f900000644000700200004540000000653512053145633017142 0ustar marsamoscmMODULE paw_variables ! USE kinds, ONLY : DP ! IMPLICIT NONE PUBLIC SAVE !!!!!!!!!!!!!!!!!!!!!!!! !!!! Control flags: !!!! ! Set to true after initialization, to prevent double allocs: LOGICAL :: paw_is_init = .false. ! Analogous to okvan in "uspp_param" (Modules/uspp.f90) LOGICAL :: & okpaw = .FALSE. ! if .TRUE. at least one pseudo is PAW !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! Pseudopotential data: !!!! ! There is (almost) no pseudopotential data here, it is all stored in the upf type. ! See files pseudo_types.f90 and read_uspp.f90 ! Constant to be added to etot to get all-electron energy REAL(DP) :: total_core_energy = 0._dp ! true if all the pseudopotentials are PAW LOGICAL :: only_paw !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! Initialization data: !!!! INTEGER,PARAMETER :: lm_fact = 3 ! To converge E_xc integrate up to LM = lm_fact * lm_max INTEGER,PARAMETER :: lm_fact_x = 3 ! As above, for gradient corrected functionals INTEGER,PARAMETER :: xlm = 2 ! Additional factor to add to have a good grad.corr. INTEGER,PARAMETER :: radial_grad_style = 0 ! = 0 or 1, algorithm to use for d/dr TYPE paw_radial_integrator ! the following variables are used to integrate radial sampling INTEGER :: lmax ! max l component that can be integrated correctly INTEGER :: ladd ! additional l max that have been added for grad.corr. INTEGER :: lm_max ! as above, but +1 and squared INTEGER :: nx ! number of integration directions REAL(DP),POINTER :: ww(:) ! integration weights (one per direction) REAL(DP),POINTER :: ylm(:,:) ! Y_lm(nx,lm_max) REAL(DP),POINTER :: wwylm(:,:) ! ww(nx) * Y_lm(nx,lm_max) ! additional variables for gradient correction REAL(DP),POINTER :: dylmt(:,:),&! |d(ylm)/dtheta|**2 dylmp(:,:) ! |d(ylm)/dphi|**2 REAL(DP),POINTER :: cos_phi(:) ! cos(phi) REAL(DP),POINTER :: sin_phi(:) ! sin(phi) REAL(DP),POINTER :: cos_th(:) ! cos(theta) (for divergence) REAL(DP),POINTER :: sin_th(:) ! sin(theta) (for divergence) REAL(DP),POINTER :: cotg_th(:) ! cos(theta)/sin(theta) (for divergence) END TYPE TYPE(paw_radial_integrator), ALLOCATABLE :: & rad(:) ! information to integrate different atomic species !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! self-consistent variables: !!!! ! This type contains some useful data that has to be passed to all ! functions, but cannot stay in global variables for parallel: TYPE paw_info INTEGER :: a ! atom index INTEGER :: t ! atom type index = itype(a) INTEGER :: m ! atom mesh = g(t)%mesh INTEGER :: b ! number of beta functions = upf(t)%nbeta INTEGER :: l ! max angular index l+1 -> (l+1)**2 is max ! lm index, it is used to allocate rho INTEGER :: ae ! tells if we are doing all-electron (1) or pseudo (2) END TYPE ! Analogous to deeq in "uspp_param" (Modules/uspp.f90) REAL(DP), ALLOCATABLE :: & ddd_paw(:,:,:) ! D: D^1_{ij} - \tilde{D}^1_{ij} (only Hxc part) REAL(DP), ALLOCATABLE :: vs_rad(:,:,:) END MODULE paw_variables espresso-5.0.2/Modules/read_upf_v1.f900000644000700200004540000006422112053145633016512 0ustar marsamoscm ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE read_upf_v1_module !=----------------------------------------------------------------------------=! ! this module handles the reading of pseudopotential data ! ... declare modules USE kinds, ONLY: DP USE radial_grids, ONLY: allocate_radial_grid IMPLICIT NONE SAVE PRIVATE PUBLIC :: read_upf_v1, scan_begin, scan_end CONTAINS ! !--------------------------------------------------------------------- subroutine read_upf_v1 (iunps, upf, grid, ierr, header_only) !--------------------------------------------------------------------- ! ! read pseudopotential "upf" in the Unified Pseudopotential Format ! from unit "iunps" - return error code in "ierr" (success: ierr=0) ! use pseudo_types use radial_grids, only : radial_grid_type ! implicit none ! INTEGER, INTENT(IN) :: iunps INTEGER, INTENT(OUT) :: ierr LOGICAL, INTENT(IN), OPTIONAL :: header_only TYPE (pseudo_upf), INTENT(INOUT) :: upf TYPE (radial_grid_type), TARGET, INTENT(INOUT) :: grid ! ! Local variables ! integer :: ios character (len=80) :: dummy logical, external :: matches ! ! Prepare the pointers ! CALL nullify_pseudo_upf( upf ) should be nullified when instantiated ! upf%grid => grid ! ! First check if this pseudo-potential has spin-orbit information ! ierr = 1 ios = 0 upf%q_with_l=.false. upf%has_so=.false. upf%has_gipaw = .false. addinfo_loop: do while (ios == 0) read (iunps, *, iostat = ios, err = 200) dummy if (matches ("", dummy) ) then upf%has_so=.true. endif if ( matches ( "", dummy ) ) then upf%has_gipaw = .true. endif if (matches ("", dummy) ) then upf%q_with_l=.true. endif enddo addinfo_loop !------->Search for Header ! This version doesn't use the new routine scan_begin ! because this search must set extra flags for ! compatibility with other pp format reading ierr = 1 ios = 0 rewind(iunps) header_loop: do while (ios == 0) read (iunps, *, iostat = ios, err = 200) dummy if (matches ("", dummy) ) then ierr = 0 call read_pseudo_header (upf, iunps) exit header_loop endif enddo header_loop ! ! this should be read from the PP_INFO section ! upf%generated='Generated by new atomic code, or converted to UPF format' IF ( PRESENT (header_only) ) THEN IF ( header_only ) RETURN END IF if (ierr .ne. 0) return call scan_end (iunps, "HEADER") ! WRITE( stdout, * ) "Reading pseudopotential file in UPF format" !-------->Search for mesh information call scan_begin (iunps, "MESH", .true.) call read_pseudo_mesh (upf, iunps) call scan_end (iunps, "MESH") !-------->If present, search for nlcc if ( upf%nlcc ) then call scan_begin (iunps, "NLCC", .true.) call read_pseudo_nlcc (upf, iunps) call scan_end (iunps, "NLCC") else ALLOCATE( upf%rho_atc( upf%mesh ) ) upf%rho_atc = 0.0_DP endif !-------->Fake 1/r potential: do not read PP if (.not. matches ("1/r", upf%typ) ) then !-------->Search for Local potential call scan_begin (iunps, "LOCAL", .true.) call read_pseudo_local (upf, iunps) call scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential call scan_begin (iunps, "NONLOCAL", .true.) call read_pseudo_nl (upf, iunps) call scan_end (iunps, "NONLOCAL") !-------- else call set_coulomb_nonlocal(upf) end if !-------->Search for atomic wavefunctions call scan_begin (iunps, "PSWFC", .true.) call read_pseudo_pswfc (upf, iunps) call scan_end (iunps, "PSWFC") !-------->Search for atomic charge call scan_begin (iunps, "RHOATOM", .true.) call read_pseudo_rhoatom (upf, iunps) call scan_end (iunps, "RHOATOM") !-------->Search for add_info if (upf%has_so) then call scan_begin (iunps, "ADDINFO", .true.) call read_pseudo_addinfo (upf, iunps) call scan_end (iunps, "ADDINFO") endif !-------->GIPAW data IF ( upf%has_gipaw ) then CALL scan_begin ( iunps, "GIPAW_RECONSTRUCTION_DATA", .false. ) CALL read_pseudo_gipaw ( upf, iunps ) CALL scan_end ( iunps, "GIPAW_RECONSTRUCTION_DATA" ) END IF !--- Try to get the core radius if not present. Needed by the ! atomic code for old pseudo files IF (upf%nbeta>0) THEN ! rcutus may be unallocated if nbeta=0 IF(upf%rcutus(1)<1.e-9_DP) THEN call scan_begin (iunps, "INFO", .true.) call read_pseudo_ppinfo (upf, iunps) call scan_end (iunps, "INFO") ENDIF ENDIF 200 return end subroutine read_upf_v1 !--------------------------------------------------------------------- subroutine scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! implicit none ! Unit of the input file integer :: iunps ! Label to be matched character (len=*) :: string ! String read from file character (len=75) :: rstring ! Flag if .true. rewind the file logical, external :: matches logical :: rew integer :: ios ios = 0 if (rew) rewind (iunps) do while (ios==0) read (iunps, *, iostat = ios, err = 300) rstring if (matches ("", rstring) ) return enddo return 300 call errore ('scan_begin', 'No '//string//' block', abs (ios) ) end subroutine scan_begin !--------------------------------------------------------------------- subroutine scan_end (iunps, string) !--------------------------------------------------------------------- implicit none ! Unit of the input file integer :: iunps ! Label to be matched character (len=*) :: string ! String read from file character (len=75) :: rstring logical, external :: matches read (iunps, '(a)', end = 300, err = 300) rstring if (matches ("", rstring) ) return return 300 call errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', -1) end subroutine scan_end ! !--------------------------------------------------------------------- subroutine read_pseudo_header (upf, iunps) !--------------------------------------------------------------------- ! USE pseudo_types, ONLY: pseudo_upf USE kinds implicit none ! TYPE (pseudo_upf), INTENT(INOUT) :: upf integer :: iunps ! integer :: nw character (len=80) :: dummy logical, external :: matches ! Version number (presently ignored) read (iunps, *, err = 100, end = 100) upf%nv , dummy ! Element label read (iunps, *, err = 100, end = 100) upf%psd , dummy ! Type of pseudo (1/r cannot be read with default format!!!) read (iunps, '(a80)', err = 100, end = 100) dummy upf%typ=trim(adjustl(dummy)) ! if (matches ('US', upf%typ) ) then upf%tvanp = .true. upf%tpawp = .false. upf%tcoulombp = .false. else if (matches ('PAW', upf%typ) ) then ! Note: if tvanp is set to false the results are wrong! upf%tvanp = .true. upf%tpawp = .true. upf%tcoulombp = .false. else if (matches ('NC', upf%typ) ) then upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp = .false. else if (matches ('1/r', upf%typ) ) then upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp = .true. else call errore ('read_pseudo_header', 'unknown pseudo type', 1) endif read (iunps, *, err = 100, end = 100) upf%nlcc , dummy read (iunps, '(a20,t24,a)', err = 100, end = 100) upf%dft, dummy read (iunps, * ) upf%zp , dummy read (iunps, * ) upf%etotps, dummy read (iunps, * ) upf%ecutwfc, upf%ecutrho read (iunps, * ) upf%lmax , dummy read (iunps, *, err = 100, end = 100) upf%mesh , dummy upf%grid%mesh = upf%mesh call allocate_radial_grid(upf%grid,upf%grid%mesh) ! IF ( upf%grid%mesh > SIZE (upf%grid%r) ) & ! CALL errore('read_pseudo_header', 'too many grid points', 1) read (iunps, *, err = 100, end = 100) upf%nwfc, upf%nbeta , dummy read (iunps, '(a)', err = 100, end = 100) dummy ALLOCATE( upf%els( upf%nwfc ), upf%lchi( upf%nwfc ), upf%oc( upf%nwfc ) ) do nw = 1, upf%nwfc read (iunps, * ) upf%els (nw), upf%lchi (nw), upf%oc (nw) enddo return 100 call errore ('read_pseudo_header', 'Reading pseudo file', 1 ) end subroutine read_pseudo_header !--------------------------------------------------------------------- subroutine read_pseudo_mesh (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir IF(associated(upf%grid)) THEN upf%r => upf%grid%r upf%rab => upf%grid%rab ELSE ALLOCATE( upf%r( upf%mesh ), upf%rab( upf%mesh ) ) ENDIF upf%r = 0.0_DP upf%rab = 0.0_DP call scan_begin (iunps, "R", .false.) read (iunps, *, err = 100, end = 100) (upf%r(ir), ir=1,upf%mesh ) call scan_end (iunps, "R") call scan_begin (iunps, "RAB", .false.) read (iunps, *, err = 101, end = 101) (upf%rab(ir), ir=1,upf%mesh ) call scan_end (iunps, "RAB") ! upf%grid%r(1:upf%mesh) = upf%r(1:upf%mesh) ! upf%grid%rab(1:upf%mesh) = upf%rab(1:upf%mesh) return 100 call errore ('read_pseudo_mesh', 'Reading pseudo file (R) for '//upf%psd,1) 101 call errore ('read_pseudo_mesh', 'Reading pseudo file (RAB) for '//upf%psd,2) end subroutine read_pseudo_mesh !--------------------------------------------------------------------- subroutine read_pseudo_nlcc (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir ! ALLOCATE( upf%rho_atc( upf%mesh ) ) upf%rho_atc = 0.0_DP read (iunps, *, err = 100, end = 100) (upf%rho_atc(ir), ir=1,upf%mesh ) ! return 100 call errore ('read_pseudo_nlcc', 'Reading pseudo file', 1) return end subroutine read_pseudo_nlcc !--------------------------------------------------------------------- subroutine read_pseudo_local (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir ! ALLOCATE( upf%vloc( upf%mesh ) ) upf%vloc = 0.0_DP read (iunps, *, err=100, end=100) (upf%vloc(ir) , ir=1,upf%mesh ) return 100 call errore ('read_pseudo_local','Reading pseudo file', 1) return end subroutine read_pseudo_local !--------------------------------------------------------------------- subroutine read_pseudo_nl (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: nb, mb, ijv, n, ir, ios, idum, ldum, icon, lp, i, ikk, l, l1,l2, nd ! counters character (len=75) :: dummy ! ! Threshold for qfunc to be considered zero (inserted in version UPF v2) upf%qqq_eps = -1._dp ! if ( upf%nbeta == 0) then upf%nqf = 0 upf%nqlc= 0 upf%kkbeta = 0 ALLOCATE( upf%kbeta( 1 ) ) ALLOCATE( upf%lll( 1 ) ) ALLOCATE( upf%beta( upf%mesh, 1 ) ) ALLOCATE( upf%dion( 1, 1 ) ) ALLOCATE( upf%rinner( 1 ) ) ALLOCATE( upf%qqq ( 1, 1 ) ) ALLOCATE( upf%qfunc ( upf%mesh, 1 ) ) ALLOCATE( upf%qfcoef( 1, 1, 1, 1 ) ) ALLOCATE( upf%rcut( 1 ) ) ALLOCATE( upf%rcutus( 1 ) ) ALLOCATE( upf%els_beta( 1 ) ) return end if ALLOCATE( upf%kbeta( upf%nbeta ) ) ALLOCATE( upf%lll( upf%nbeta ) ) ALLOCATE( upf%beta( upf%mesh, upf%nbeta ) ) ALLOCATE( upf%dion( upf%nbeta, upf%nbeta ) ) ALLOCATE( upf%rcut( upf%nbeta ) ) ALLOCATE( upf%rcutus( upf%nbeta ) ) ALLOCATE( upf%els_beta( upf%nbeta ) ) upf%kkbeta = 0 upf%lll = 0 upf%beta = 0.0_DP upf%dion = 0.0_DP upf%rcut = 0.0_DP upf%rcutus = 0.0_DP upf%els_beta = ' ' do nb = 1, upf%nbeta call scan_begin (iunps, "BETA", .false.) read (iunps, *, err = 100, end = 100) idum, upf%lll(nb), dummy read (iunps, *, err = 100, end = 100) ikk upf%kbeta(nb) = ikk upf%kkbeta = MAX ( upf%kkbeta, upf%kbeta(nb) ) read (iunps, *, err = 100, end = 100) (upf%beta(ir,nb), ir=1,ikk) read (iunps, *, err=200,iostat=ios) upf%rcut(nb), upf%rcutus(nb) read (iunps, *, err=200,iostat=ios) upf%els_beta(nb) call scan_end (iunps, "BETA") 200 continue enddo call scan_begin (iunps, "DIJ", .false.) read (iunps, *, err = 101, end = 101) nd, dummy do icon = 1, nd read (iunps, *, err = 101, end = 101) nb, mb, upf%dion(nb,mb) upf%dion (mb,nb) = upf%dion (nb,mb) enddo call scan_end (iunps, "DIJ") if ( upf%tvanp .or. upf%tpawp) then call scan_begin (iunps, "QIJ", .false.) read (iunps, *, err = 102, end = 102) upf%nqf upf%nqlc = 2 * upf%lmax + 1 ALLOCATE( upf%rinner( upf%nqlc ) ) ALLOCATE( upf%qqq ( upf%nbeta, upf%nbeta ) ) IF (upf%q_with_l .or. upf%tpawp) then ALLOCATE( upf%qfuncl ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2, 0:2*upf%lmax ) ) upf%qfuncl = 0.0_DP ELSE ALLOCATE( upf%qfunc ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2 ) ) upf%qfunc = 0.0_DP ENDIF ALLOCATE( upf%qfcoef( MAX( upf%nqf,1 ), upf%nqlc, upf%nbeta, upf%nbeta ) ) upf%rinner = 0.0_DP upf%qqq = 0.0_DP upf%qfcoef = 0.0_DP if ( upf%nqf /= 0) then call scan_begin (iunps, "RINNER", .false.) read (iunps,*,err=103,end=103) ( idum, upf%rinner(i), i=1,upf%nqlc ) call scan_end (iunps, "RINNER") end if do nb = 1, upf%nbeta do mb = nb, upf%nbeta read (iunps,*,err=102,end=102) idum, idum, ldum, dummy !" i j (l)" if (ldum /= upf%lll(mb) ) then call errore ('read_pseudo_nl','inconsistent angular momentum for Q_ij', 1) end if read (iunps,*,err=104,end=104) upf%qqq(nb,mb), dummy ! "Q_int" upf%qqq(mb,nb) = upf%qqq(nb,mb) ! ijv is the combined (nb,mb) index ijv = mb * (mb-1) / 2 + nb IF (upf%q_with_l .or. upf%tpawp) THEN l1=upf%lll(nb) l2=upf%lll(mb) DO l=abs(l1-l2),l1+l2 read (iunps, *, err=105, end=105) (upf%qfuncl(n,ijv,l), & n=1,upf%mesh) END DO ELSE read (iunps, *, err=105, end=105) (upf%qfunc(n,ijv), n=1,upf%mesh) ENDIF if ( upf%nqf > 0 ) then call scan_begin (iunps, "QFCOEF", .false.) read (iunps,*,err=106,end=106) & ( ( upf%qfcoef(i,lp,nb,mb), i=1,upf%nqf ), lp=1,upf%nqlc ) do i = 1, upf%nqf do lp = 1, upf%nqlc upf%qfcoef(i,lp,mb,nb) = upf%qfcoef(i,lp,nb,mb) end do end do call scan_end (iunps, "QFCOEF") end if enddo enddo call scan_end (iunps, "QIJ") else upf%nqf = 1 upf%nqlc = 2 * upf%lmax + 1 ALLOCATE( upf%rinner( upf%nqlc ) ) ALLOCATE( upf%qqq ( upf%nbeta, upf%nbeta ) ) ALLOCATE( upf%qfunc ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2 ) ) ALLOCATE( upf%qfcoef( upf%nqf, upf%nqlc, upf%nbeta, upf%nbeta ) ) upf%rinner = 0.0_DP upf%qqq = 0.0_DP upf%qfunc = 0.0_DP upf%qfcoef = 0.0_DP endif return 100 call errore ('read_pseudo_nl', 'Reading pseudo file (BETA)', 1 ) 101 call errore ('read_pseudo_nl', 'Reading pseudo file (DIJ)', 2 ) 102 call errore ('read_pseudo_nl', 'Reading pseudo file (QIJ)', 3 ) 103 call errore ('read_pseudo_nl', 'Reading pseudo file (RINNER)',4) 104 call errore ('read_pseudo_nl', 'Reading pseudo file (qqq)', 5 ) 105 call errore ('read_pseudo_nl', 'Reading pseudo file (qfunc)',6 ) 106 call errore ('read_pseudo_nl', 'Reading pseudo file (qfcoef)',7) end subroutine read_pseudo_nl !--------------------------------------------------------------------- subroutine read_pseudo_pswfc (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf ! implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! character (len=75) :: dummy integer :: nb, ir ALLOCATE( upf%chi( upf%mesh, MAX( upf%nwfc, 1 ) ) ) upf%chi = 0.0_DP do nb = 1, upf%nwfc read (iunps, *, err=100, end=100) dummy !Wavefunction labels read (iunps, *, err=100, end=100) ( upf%chi(ir,nb), ir=1,upf%mesh ) enddo return 100 call errore ('read_pseudo_pswfc', 'Reading pseudo file', 1) end subroutine read_pseudo_pswfc !--------------------------------------------------------------------- subroutine read_pseudo_rhoatom (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf ! implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir ! ALLOCATE( upf%rho_at( upf%mesh ) ) upf%rho_at = 0.0_DP read (iunps,*,err=100,end=100) ( upf%rho_at(ir), ir=1,upf%mesh ) ! return 100 call errore ('read_pseudo_rhoatom','Reading pseudo file', 1) end subroutine read_pseudo_rhoatom ! !--------------------------------------------------------------------- subroutine read_pseudo_addinfo (upf, iunps) !--------------------------------------------------------------------- ! ! This routine reads from the new UPF file, ! and the total angular momentum jjj of the beta and jchi of the ! wave-functions. ! USE pseudo_types, ONLY: pseudo_upf USE kinds implicit none integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf integer :: nb ALLOCATE( upf%nn(upf%nwfc) ) ALLOCATE( upf%epseu(upf%nwfc), upf%jchi(upf%nwfc) ) ALLOCATE( upf%jjj(upf%nbeta) ) upf%nn=0 upf%epseu=0.0_DP upf%jchi=0.0_DP do nb = 1, upf%nwfc read (iunps, *,err=100,end=100) upf%els(nb), & upf%nn(nb), upf%lchi(nb), upf%jchi(nb), upf%oc(nb) if ( abs ( upf%jchi(nb)-upf%lchi(nb)-0.5_dp ) > 1.0d-7 .and. & abs ( upf%jchi(nb)-upf%lchi(nb)+0.5_dp ) > 1.0d-7 ) then call infomsg ( 'read_pseudo_upf', 'obsolete ADDINFO section ignored') upf%has_so = .false. return end if enddo upf%jjj=0.0_DP do nb = 1, upf%nbeta read (iunps, *, err=100,end=100) upf%lll(nb), upf%jjj(nb) if ( abs ( upf%lll(nb)-upf%jjj(nb)-0.5_dp) > 1.0d-7 .and. & abs ( upf%lll(nb)-upf%jjj(nb)+0.5_dp) > 1.0d-7 ) then call infomsg ( 'read_pseudo_upf', 'obsolete ADDINFO section ignored') upf%has_so = .false. return end if enddo read(iunps, *) upf%xmin, upf%rmax, upf%zmesh, upf%dx upf%grid%dx = upf%dx upf%grid%xmin = upf%xmin upf%grid%zmesh= upf%zmesh upf%grid%mesh = upf%mesh return 100 call errore ('read_pseudo_addinfo','Reading pseudo file', 1) end subroutine read_pseudo_addinfo ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! implicit none ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! CALL scan_begin ( iunps, "GIPAW_FORMAT_VERSION", .false. ) READ ( iunps, *, err=100, end=100 ) upf%gipaw_data_format CALL scan_end ( iunps, "GIPAW_FORMAT_VERSION" ) IF ( upf%gipaw_data_format == 1 .or. upf%gipaw_data_format == 0 ) THEN CALL read_pseudo_gipaw_core_orbitals ( upf, iunps ) CALL read_pseudo_gipaw_local ( upf, iunps ) CALL read_pseudo_gipaw_orbitals ( upf, iunps ) ELSE CALL errore ( 'read_pseudo_gipaw', 'UPF/GIPAW in unknown format', 1 ) END IF RETURN 100 CALL errore ( 'read_pseudo_gipaw', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw_core_orbitals ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! IMPLICIT NONE ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! CHARACTER ( LEN = 75 ) :: dummy1, dummy2 INTEGER :: nb, ir CALL scan_begin ( iunps, "GIPAW_CORE_ORBITALS", .false. ) READ ( iunps, *, err=100, end=100 ) upf%gipaw_ncore_orbitals ALLOCATE ( upf%gipaw_core_orbital_n(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_l(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_el(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital(upf%mesh,upf%gipaw_ncore_orbitals) ) upf%gipaw_core_orbital = 0.0_dp DO nb = 1, upf%gipaw_ncore_orbitals CALL scan_begin ( iunps, "GIPAW_CORE_ORBITAL", .false. ) READ (iunps, *, err=100, end=100) & upf%gipaw_core_orbital_n(nb), upf%gipaw_core_orbital_l(nb), & dummy1, dummy2, upf%gipaw_core_orbital_el(nb) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_core_orbital(ir,nb), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_CORE_ORBITAL" ) END DO CALL scan_end ( iunps, "GIPAW_CORE_ORBITALS" ) RETURN 100 CALL errore ( 'read_pseudo_gipaw_core_orbitals', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw_core_orbitals !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw_local ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! IMPLICIT NONE ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! INTEGER :: ir CALL scan_begin ( iunps, "GIPAW_LOCAL_DATA", .false. ) ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) CALL scan_begin ( iunps, "GIPAW_VLOCAL_AE", .false. ) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_vlocal_ae(ir), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_VLOCAL_AE" ) CALL scan_begin ( iunps, "GIPAW_VLOCAL_PS", .false. ) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_vlocal_ps(ir), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_VLOCAL_PS" ) CALL scan_end ( iunps, "GIPAW_LOCAL_DATA" ) RETURN 100 CALL errore ( 'read_pseudo_gipaw_local', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw_local !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw_orbitals ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! IMPLICIT NONE ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! CHARACTER ( LEN = 75 ) :: dummy INTEGER :: nb, ir CALL scan_begin ( iunps, "GIPAW_ORBITALS", .false. ) READ ( iunps, *, err=100, end=100 ) upf%gipaw_wfs_nchannels ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) inquire ( unit = iunps, name = dummy ) DO nb = 1, upf%gipaw_wfs_nchannels CALL scan_begin ( iunps, "GIPAW_AE_ORBITAL", .false. ) READ (iunps, *, err=100, end=100) & upf%gipaw_wfs_el(nb), upf%gipaw_wfs_ll(nb) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_wfs_ae(ir,nb), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_AE_ORBITAL" ) CALL scan_begin ( iunps, "GIPAW_PS_ORBITAL", .false. ) READ (iunps, *, err=100, end=100) & upf%gipaw_wfs_rcut(nb), upf%gipaw_wfs_rcutus(nb) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_wfs_ps(ir,nb), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_PS_ORBITAL" ) END DO CALL scan_end ( iunps, "GIPAW_ORBITALS" ) RETURN 100 CALL errore ( 'read_pseudo_gipaw_orbitals', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw_orbitals ! subroutine read_pseudo_ppinfo (upf, iunps) !--------------------------------------------------------------------- ! USE pseudo_types, ONLY: pseudo_upf USE kinds, ONLY : dp implicit none ! TYPE (pseudo_upf), INTENT(INOUT) :: upf integer :: iunps character (len=80) :: dummy logical, external :: matches real(dp) :: rdummy integer :: idummy, nb, ios ios=0 DO while (ios==0) READ (iunps, '(a)', err = 100, end = 100, iostat=ios) dummy IF (matches ("Rcut", dummy) ) THEN DO nb=1,upf%nbeta READ (iunps, '(a2,2i3,f6.2,3f19.11)',err=100, end=100,iostat=ios) & upf%els_beta(nb), idummy, & idummy, rdummy, upf%rcut(nb), upf%rcutus (nb), rdummy ENDDO ios=100 ENDIF ENDDO 100 RETURN END SUBROUTINE read_pseudo_ppinfo SUBROUTINE set_coulomb_nonlocal(upf) USE pseudo_types, ONLY : pseudo_upf IMPLICIT NONE TYPE(pseudo_upf) :: upf upf%nqf = 0 upf%nqlc= 0 upf%qqq_eps= -1._dp upf%kkbeta = 0 ALLOCATE( upf%kbeta(1), & upf%lll(1), & upf%beta(upf%mesh,1), & upf%dion(1,1), & upf%rinner(1), & upf%qqq(1,1), & upf%qfunc(upf%mesh,1),& upf%qfcoef(1,1,1,1), & upf%rcut(1), & upf%rcutus(1), & upf%els_beta(1) ) RETURN END SUBROUTINE set_coulomb_nonlocal !=----------------------------------------------------------------------------=! END MODULE read_upf_v1_module !=----------------------------------------------------------------------------=! espresso-5.0.2/Modules/random_numbers.f900000644000700200004540000001173212053145633017331 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE random_numbers !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTERFACE gauss_dist ! MODULE PROCEDURE gauss_dist_scal, gauss_dist_vect ! END INTERFACE ! CONTAINS ! !------------------------------------------------------------------------ FUNCTION randy ( irand ) !------------------------------------------------------------------------ ! ! x=randy(n): reseed with initial seed idum=n ( 0 <= n <= ic, see below) ! if randy is not explicitly initialized, it will be ! initialized with seed idum=0 the first time it is called ! x=randy() : generate uniform real(DP) numbers x in [0,1] ! REAL(DP) :: randy INTEGER, optional :: irand ! INTEGER , PARAMETER :: m = 714025, & ia = 1366, & ic = 150889, & ntab = 97 REAL(DP), PARAMETER :: rm = 1.0_DP / m INTEGER :: j INTEGER, SAVE :: ir(ntab), iy, idum=0 LOGICAL, SAVE :: first=.true. ! IF ( present(irand) ) THEN idum = MIN( ABS(irand), ic) first=.true. END IF IF ( first ) THEN ! first = .false. idum = MOD( ic - idum, m ) ! DO j=1,ntab idum=mod(ia*idum+ic,m) ir(j)=idum END DO idum=mod(ia*idum+ic,m) iy=idum END IF j=1+(ntab*iy)/m IF( j > ntab .OR. j < 1 ) call errore('randy','j out of range',ABS(j)+1) iy=ir(j) randy=iy*rm idum=mod(ia*idum+ic,m) ir(j)=idum ! RETURN ! END FUNCTION randy ! !------------------------------------------------------------------------ SUBROUTINE set_random_seed ( ) !------------------------------------------------------------------------ ! ! poor-man random seed for randy ! INTEGER, DIMENSION (8) :: itime INTEGER :: iseed, irand ! CALL date_and_time ( values = itime ) ! itime contains: year, month, day, time difference in minutes, hours, ! minutes, seconds and milliseconds. iseed = ( itime(8) + itime(6) ) * ( itime(7) + itime(4) ) irand = randy ( iseed ) ! END SUBROUTINE set_random_seed ! !----------------------------------------------------------------------- FUNCTION gauss_dist_scal( mu, sigma ) !----------------------------------------------------------------------- ! ! ... this function generates a number taken from a normal ! ... distribution of mean value \mu and variance \sigma ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: mu REAL(DP), INTENT(IN) :: sigma REAL(DP) :: gauss_dist_scal ! REAL(DP) :: x1, x2, w ! ! gaussian_loop: DO ! x1 = 2.0_DP * randy() - 1.0_DP x2 = 2.0_DP * randy() - 1.0_DP ! w = x1 * x1 + x2 * x2 ! IF ( w < 1.0_DP ) EXIT gaussian_loop ! END DO gaussian_loop ! w = SQRT( ( - 2.0_DP * LOG( w ) ) / w ) ! gauss_dist_scal = x1 * w * sigma + mu ! RETURN ! END FUNCTION gauss_dist_scal ! !----------------------------------------------------------------------- FUNCTION gauss_dist_vect( mu, sigma, dim ) !----------------------------------------------------------------------- ! ! ... this function generates an array of numbers taken from a normal ! ... distribution of mean value \mu and variance \sigma ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: mu REAL(DP), INTENT(IN) :: sigma INTEGER, INTENT(IN) :: dim REAL(DP) :: gauss_dist_vect( dim ) ! REAL(DP) :: x1, x2, w INTEGER :: i ! ! DO i = 1, dim, 2 ! gaussian_loop: DO ! x1 = 2.0_DP * randy() - 1.0_DP x2 = 2.0_DP * randy() - 1.0_DP ! w = x1 * x1 + x2 * x2 ! IF ( w < 1.0_DP ) EXIT gaussian_loop ! END DO gaussian_loop ! w = SQRT( ( - 2.0_DP * LOG( w ) ) / w ) ! gauss_dist_vect(i) = x1 * w * sigma ! IF ( i >= dim ) EXIT ! gauss_dist_vect(i+1) = x2 * w * sigma ! END DO ! gauss_dist_vect(:) = gauss_dist_vect(:) + mu ! RETURN ! END FUNCTION gauss_dist_vect ! END MODULE random_numbers espresso-5.0.2/Modules/splinelib.f900000644000700200004540000002014412053145633016274 0ustar marsamoscm! ! Copyright (C) 2004-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- MODULE splinelib !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! PRIVATE ! PUBLIC :: dosplineint, spline, splint, splint_deriv ! INTERFACE dosplineint ! MODULE PROCEDURE dosplineint_1D, dosplineint_2D ! END INTERFACE ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE spline( xdata, ydata, startu, startd, d2y ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xdata(:), ydata(:), startu, startd REAL(DP), INTENT(OUT) :: d2y(:) ! INTEGER :: i, k, ydim REAL(DP) :: p, sig REAL(DP), ALLOCATABLE :: u(:) ! ! ydim = SIZE( ydata ) ! ALLOCATE( u( ydim ) ) ! u(1) = startu d2y(1) = startd ! DO i = 2, ydim - 1 ! sig = ( xdata(i) - xdata(i-1) ) / ( xdata(i+1) - xdata(i-1) ) p = sig * d2y(i- 1) + 2.0_DP d2y(i) = ( sig - 1.0_DP ) / p u(i) = ( 6.0_DP * ( ( ydata(i+1) - ydata(i) ) / & ( xdata(i+1) - xdata(i) ) - ( ydata(i) - ydata(i-1) ) / & ( xdata(i) - xdata(i-1) ) ) / & ( xdata(i+1) - xdata(i-1) ) - sig * u(i-1) ) / p ! END DO ! d2y(ydim) = 0 ! DO k = ydim - 1, 1, -1 ! d2y(k) = d2y(k) * d2y(k+1) + u(k) ! END DO ! DEALLOCATE( u ) ! END SUBROUTINE spline ! !------------------------------------------------------------------------ FUNCTION splint( xdata, ydata, d2y, x ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xdata(:), ydata(:), d2y(:) REAL(DP), INTENT(IN) :: x ! REAL(DP) :: splint INTEGER :: khi, klo, xdim REAL(DP) :: a, b, h ! ! xdim = SIZE( xdata ) ! klo = 1 khi = xdim ! klo = MAX( MIN( locate( xdata, x ), ( xdim - 1 ) ), 1 ) ! khi = klo + 1 ! h = xdata(khi) - xdata(klo) ! a = ( xdata(khi) - x ) / h b = ( x - xdata(klo) ) / h ! splint = a * ydata(klo) + b * ydata(khi) + & ( ( a**3 - a ) * d2y(klo) + ( b**3 - b ) * d2y(khi) ) * & ( h**2 ) / 6.0_DP END FUNCTION splint !------------------------------------------------------------------------ FUNCTION splint_deriv( xdata, ydata, d2y, x ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xdata(:), ydata(:), d2y(:) REAL(DP), INTENT(IN) :: x ! REAL(DP) :: splint_deriv INTEGER :: khi, klo, xdim REAL(DP) :: a, b, da, db, h ! ! xdim = SIZE( xdata ) ! klo = 1 khi = xdim ! klo = MAX( MIN( locate( xdata, x ), ( xdim - 1 ) ), 1 ) ! khi = klo + 1 ! h = xdata(khi) - xdata(klo) ! a = ( xdata(khi) - x ) / h b = ( x - xdata(klo) ) / h da = -1.0_DP / h db = 1.0_DP / h ! splint_deriv = da * ydata(klo) + db * ydata(khi) + & ( ( 3.0_DP*a**2 - 1.0_DP ) * da * d2y(klo) + & ( 3.0_DP*b**2 - 1.0_DP ) * db * d2y(khi) ) * & ( h**2 ) / 6.0_DP END FUNCTION splint_deriv !------------------------------------------------------------------- FUNCTION locate( xx, x ) !------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xx(:) REAL(DP), INTENT(IN) :: x ! INTEGER :: locate INTEGER :: n, jl, jm, ju LOGICAL :: ascnd ! ! n = SIZE( xx ) ascnd = ( xx(n) >= xx(1) ) jl = 0 ju = n + 1 ! main_loop: DO ! IF ( ( ju - jl ) <= 1 ) EXIT main_loop ! jm = ( ju + jl ) / 2 ! IF ( ascnd .EQV. ( x >= xx(jm) ) ) THEN ! jl = jm ! ELSE ! ju = jm ! END IF ! END DO main_loop ! IF ( x == xx(1) ) THEN ! locate = 1 ! ELSE IF ( x == xx(n) ) THEN ! locate = n - 1 ! ELSE ! locate = jl ! END IF ! END FUNCTION locate ! ! !------------------------------------------------------------------------ SUBROUTINE dosplineint_1D( old_mesh, old_vec, new_mesh, new_vec ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL (DP), INTENT(IN) :: old_mesh(:), new_mesh(:) REAL (DP), INTENT(IN) :: old_vec(:) REAL (DP), INTENT(OUT) :: new_vec(:) ! REAL (DP), ALLOCATABLE :: d2y(:) INTEGER :: i INTEGER :: old_dim, new_dim ! ! old_dim = SIZE( old_vec ) new_dim = SIZE( new_vec ) ! IF ( old_dim /= SIZE( old_mesh ) ) & CALL errore( 'dosplineint', & 'dimensions of old_mesh and old_vec do not match', 1 ) ! IF ( new_dim /= SIZE( new_mesh ) ) & CALL errore( 'dosplineint', & 'dimensions of new_mesh and new_vec do not match', 1 ) ! ALLOCATE( d2y( old_dim ) ) ! d2y = 0 ! CALL spline( old_mesh , old_vec(:), 0.0_DP, 0.0_DP, d2y ) ! DO i = 1, new_dim ! new_vec(i) = splint( old_mesh, old_vec(:), d2y, new_mesh(i) ) ! END DO ! DEALLOCATE( d2y ) ! END SUBROUTINE dosplineint_1D ! !------------------------------------------------------------------------ SUBROUTINE dosplineint_2D( old_mesh, old_vec, new_mesh, new_vec ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL (DP), INTENT(IN) :: old_mesh(:), new_mesh(:) REAL (DP), INTENT(IN) :: old_vec(:,:) REAL (DP), INTENT(OUT) :: new_vec(:,:) ! REAL (DP), ALLOCATABLE :: d2y(:) INTEGER :: dim, i, j INTEGER :: old_dim, new_dim ! ! dim = SIZE( old_vec, 1 ) ! IF( dim /= SIZE( new_vec, 1 ) ) & CALL errore( 'dosplineint', & 'dimensions of old_vec and new_vec do not match', 1 ) ! old_dim = SIZE( old_vec, 2 ) new_dim = SIZE( new_vec, 2 ) ! IF ( old_dim /= SIZE( old_mesh, 1 ) ) & CALL errore( 'dosplineint', & 'dimensions of old_mesh and old_vec do not match', 1 ) ! IF ( new_dim /= SIZE( new_mesh, 1 ) ) & CALL errore( 'dosplineint', & 'dimensions of new_mesh and new_vec do not match', 1 ) ! ALLOCATE( d2y( old_dim ) ) ! DO i = 1, dim ! d2y = 0 ! CALL spline( old_mesh , old_vec(i,:), 0.0_DP, 0.0_DP, d2y ) ! DO j = 1, new_dim ! new_vec(i,j) = splint( old_mesh, old_vec(i,:), d2y, new_mesh(j) ) ! END DO ! END DO ! DEALLOCATE( d2y ) ! END SUBROUTINE dosplineint_2D ! END MODULE splinelib espresso-5.0.2/Modules/plugin_arguments.f900000644000700200004540000000437412053145633017705 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_arguments() !----------------------------------------------------------------------------- ! ! check for presence of command-line option "-plugin_name" or "--plugin_name" ! where "plugin_name" has to be set here. If such option is found, variable ! "use_plugin_name" is set and usage of "plugin_name" is thus enabled. ! Currently implemented: "plumed" (case insensitive) ! USE kinds, ONLY : DP ! USE io_global, ONLY : stdout ! USE plugin_flags ! ! IMPLICIT NONE ! INTEGER :: iiarg, nargs, iargc, i, i0 CHARACTER (len=1), EXTERNAL :: lowercase CHARACTER (len=256) :: arg ! ! #if defined(__ABSOFT) # define getarg getarg_ # define iargc iargc_ #endif ! nargs = iargc() ! add here more plugins use_plumed = .false. use_pw2casino = .false. ! DO iiarg = 1, nargs CALL getarg( iiarg, plugin_name) IF ( plugin_name(1:1) == '-') THEN i0 = 1 IF ( plugin_name(2:2) == '-') i0 = 2 arg = ' ' DO i=i0+1, LEN_TRIM (plugin_name) arg(i-i0:i-i0) = lowercase (plugin_name(i:i)) END DO ! write(0,*) "plugin_name: ", trim(arg) ! add here more plugins IF ( TRIM(arg)=='plumed' ) THEN use_plumed = .true. END IF IF ( TRIM(arg)=='pw2casino' ) THEN use_pw2casino = .true. ENDIF ENDIF ENDDO ! RETURN ! END SUBROUTINE plugin_arguments ! !---------------------------------------------------------------------------- SUBROUTINE plugin_arguments_bcast(root,comm) !---------------------------------------------------------------------------- ! ! broadcast plugin arguments ! USE mp_global, ONLY : mp_bcast USE plugin_flags ! IMPLICIT NONE ! integer :: root integer :: comm ! CALL mp_bcast(use_plumed,root,comm) ! CALL mp_bcast(use_pw2casino,root,comm) ! ! write(0,*) "use_plumed: ", use_plumed ! RETURN ! END SUBROUTINE plugin_arguments_bcast espresso-5.0.2/Modules/environment.f900000644000700200004540000001557212053165100016657 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !==-----------------------------------------------------------------------==! MODULE environment !==-----------------------------------------------------------------------==! USE kinds, ONLY: DP USE io_files, ONLY: crash_file, crashunit, nd_nmbr USE io_global, ONLY: stdout, meta_ionode USE mp_global, ONLY: me_image, my_image_id, root_image, nimage, & nproc_image, nproc, npool, nproc_bgrp, nbgrp, get_ntask_groups USE global_version, ONLY: version_number, svn_revision IMPLICIT NONE ! ... title of the simulation CHARACTER(LEN=75) :: title SAVE PRIVATE PUBLIC :: environment_start PUBLIC :: environment_end !==-----------------------------------------------------------------------==! CONTAINS !==-----------------------------------------------------------------------==! SUBROUTINE environment_start( code ) CHARACTER(LEN=*), INTENT(IN) :: code LOGICAL :: exst, debug = .false. CHARACTER(LEN=80) :: code_version, uname CHARACTER(LEN=6), EXTERNAL :: int_to_char INTEGER :: iost ! ... Intel compilers v .ge.8 allocate a lot of stack space ! ... Stack limit is often small, thus causing SIGSEGV and crash CALL remove_stack_limit ( ) ! ... use ".FALSE." to disable all clocks except the total cpu time clock ! ... use ".TRUE." to enable clocks CALL init_clocks( .TRUE. ) CALL start_clock( TRIM(code) ) code_version = TRIM (code) // " v." // TRIM (version_number) IF ( TRIM (svn_revision) /= "unknown" ) code_version = & TRIM (code_version) // " (svn rev. " // TRIM (svn_revision) // ")" ! ... for compatibility with PWSCF #ifdef __MPI nd_nmbr = TRIM ( int_to_char( me_image+1 )) #else nd_nmbr = ' ' #endif IF( meta_ionode ) THEN ! ... search for file CRASH and delete it INQUIRE( FILE=TRIM(crash_file), EXIST=exst ) IF( exst ) THEN OPEN( UNIT=crashunit, FILE=TRIM(crash_file), STATUS='OLD',IOSTAT=iost ) IF(iost==0) CLOSE( UNIT=crashunit, STATUS='DELETE', IOSTAT=iost ) IF(iost/=0) WRITE(stdout,'(5x,"Remark: CRASH file could not ne deleted")') END IF ELSE ! ... one processor per image (other than meta_ionode) ! ... or, for debugging purposes, all processors, ! ... open their own standard output file #if defined(DEBUG) debug = .true. #endif IF (me_image == root_image .OR. debug ) THEN uname = 'out.' // trim(int_to_char( my_image_id )) // '_' // & trim(int_to_char( me_image)) OPEN ( unit = stdout, file = TRIM(uname),status='unknown') ELSE OPEN ( unit = stdout, file='/dev/null', status='unknown' ) END IF END IF ! CALL opening_message( code_version ) #ifdef __MPI CALL parallel_info ( ) #else CALL serial_info() #endif END SUBROUTINE environment_start !==-----------------------------------------------------------------------==! SUBROUTINE environment_end( code ) CHARACTER(LEN=*), INTENT(IN) :: code IF ( meta_ionode ) WRITE( stdout, * ) CALL stop_clock( TRIM(code) ) CALL print_clock( TRIM(code) ) CALL closing_message( ) IF( meta_ionode ) THEN WRITE( stdout,'(A)') ' JOB DONE.' WRITE( stdout,3335) END IF 3335 FORMAT('=',78('-'),'=') CALL flush_unit(stdout) RETURN END SUBROUTINE environment_end !==-----------------------------------------------------------------------==! SUBROUTINE opening_message( code_version ) CHARACTER(LEN=*), INTENT(IN) :: code_version CHARACTER(LEN=9) :: cdate, ctime CALL date_and_tim( cdate, ctime ) ! WRITE( stdout, '(/5X,"Program ",A," starts on ",A9," at ",A9)' ) & TRIM(code_version), cdate, ctime ! WRITE( stdout, '(/5X,"This program is part of the open-source Quantum ",& & "ESPRESSO suite", & &/5X,"for quantum simulation of materials; please cite", & &/9X,"""P. Giannozzi et al., J. Phys.:Condens. Matter 21 ",& & "395502 (2009);", & &/9X," URL http://www.quantum-espresso.org"", ", & &/5X,"in publications or presentations arising from this work. More details at",& &/5x,"http://www.quantum-espresso.org/quote.php")' ) RETURN END SUBROUTINE opening_message !==-----------------------------------------------------------------------==! SUBROUTINE closing_message( ) CHARACTER(LEN=9) :: cdate, ctime CHARACTER(LEN=80) :: time_str CALL date_and_tim( cdate, ctime ) time_str = 'This run was terminated on: ' // ctime // ' ' // cdate IF( meta_ionode ) THEN WRITE( stdout,*) WRITE( stdout,3334) time_str WRITE( stdout,3335) END IF 3334 FORMAT(3X,A60,/) 3335 FORMAT('=',78('-'),'=') RETURN END SUBROUTINE closing_message !==-----------------------------------------------------------------------==! SUBROUTINE parallel_info ( ) ! #if defined(__OPENMP) INTEGER, EXTERNAL :: omp_get_max_threads #endif ! #if defined(__OPENMP) WRITE( stdout, '(/5X,"Parallel version (MPI & OpenMP), running on ",& &I7," processor cores")' ) nproc * omp_get_max_threads() ! WRITE( stdout, '(5X,"Number of MPI processes: ",I7)' ) nproc ! WRITE( stdout, '(5X,"Threads/MPI process: ",I7)' ) & omp_get_max_threads() #else WRITE( stdout, '(/5X,"Parallel version (MPI), running on ",& &I5," processors")' ) nproc #endif ! IF ( nimage > 1 ) WRITE( stdout, & '(5X,"path-images division: nimage = ",I7)' ) nimage IF ( npool > 1 ) WRITE( stdout, & '(5X,"K-points division: npool = ",I7)' ) npool IF ( nbgrp > 1 ) WRITE( stdout, & '(5X,"band groups division: nbgrp = ",I7)' ) nbgrp IF ( nproc_bgrp > 1 ) WRITE( stdout, & '(5X,"R & G space division: proc/nbgrp/npool/nimage = ",I7)' ) nproc_bgrp IF ( get_ntask_groups() > 1 ) WRITE( stdout, & '(5X,"wavefunctions fft division: fft/group = ",I7)' ) & get_ntask_groups() ! END SUBROUTINE parallel_info !==-----------------------------------------------------------------------==! SUBROUTINE serial_info ( ) ! #if defined(__OPENMP) INTEGER, EXTERNAL :: omp_get_max_threads #endif ! #if defined(__OPENMP) WRITE( stdout, '(/5X,"Serial multi-threaded version, running on ",& &I4," processor cores")' ) omp_get_max_threads() ! #else WRITE( stdout, '(/5X,"Serial version")' ) #endif ! END SUBROUTINE serial_info !==-----------------------------------------------------------------------==! END MODULE environment !==-----------------------------------------------------------------------==! espresso-5.0.2/Modules/read_xml_cards.f900000644000700200004540000024224012053145633017265 0ustar marsamoscm! ! !-------------------------------------------------------------! ! This module handles the cards reading in case of xml input ! ! ! ! written by Simone Ziraldo (08/2010) ! !-------------------------------------------------------------! ! ! cards not yet implemented: ! KSOUT ! AUTOPILOT ! ATOMIC_FORCES ! PLOT_WANNIER ! WANNIER_AC ! DIPOLE ! ESR ! ! to implement these cards take inspiration from file read_cards.f90 ! MODULE read_xml_cards_module ! ! USE io_global, ONLY : xmlinputunit USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end, iotk_scan_dat,& iotk_scan_dat_inside, iotk_scan_attr, iotk_attlenx USE read_xml_fields_module, ONLY : clean_str USE kinds, ONLY : DP ! USE io_global, ONLY : stdout ! USE input_parameters ! ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: card_xml_atomic_species, card_xml_atomic_list, card_xml_chain, card_xml_cell, & card_xml_kpoints, card_xml_occupations, card_xml_constraints, card_xml_climbing_images, & card_xml_plot_wannier, card_default, card_bcast ! ! ! CONTAINS ! ! !--------------------------------------------------------------------------! ! This subroutine sets all the cards default value; as an input ! ! takes the card name that you want to set ! !--------------------------------------------------------------------------! SUBROUTINE card_default( card ) ! ! USE autopilot, ONLY : init_autopilot ! USE read_namelists_module, ONLY : sm_not_set ! ! IMPLICIT NONE ! ! CHARACTER( len = * ),INTENT( IN ) :: card ! ! SELECT CASE ( trim(card) ) ! CASE ('INIT_AUTOPILOT') CALL init_autopilot() ! CASE ('ATOMIC_LIST') ! ! ... nothing to initialize ! ... because we don't have nat ! CASE ('CHAIN' ) ! ! ... nothing to initialize ! ... because we don't have nat ! CASE ('CELL') trd_ht = .false. rd_ht = 0.0_DP ! CASE ('ATOMIC_SPECIES') atom_mass = 0.0_DP hubbard_u = 0.0_DP hubbard_j0 = 0.0_DP hubbard_alpha = 0.0_DP hubbard_beta = 0.0_DP starting_magnetization = sm_not_set starting_ns_eigenvalue = -1.0_DP angle1 = 0.0_DP angle2 = 0.0_DP ion_radius = 0.5_DP nhgrp = 0 fnhscl = -1.0_DP tranp = .false. amprp = 0.0_DP ! CASE ('K_POINTS') k_points = 'gamma' tk_inp = .false. nkstot = 1 nk1 = 0 nk2 = 0 nk3 = 0 k1 = 0 k2 = 0 k3 = 0 ! CASE ('OCCUPATIONS') tf_inp = .FALSE. ! CASE ('CONSTRAINTS') nconstr_inp = 0 constr_tol_inp = 1.E-6_DP ! CASE ('CLIMBING_IMAGES') ! ... nothing to initialize ! CASE ('PLOT_WANNIER') ! ! wannier_index = ! CASE ('KSOUT') ! ... not yet implemented in xml reading CALL allocate_input_iprnks( 0, nspin ) nprnks = 0 ! CASE ('DIPOLE') ! ... not yet implemented in xml reading tdipole_card = .FALSE. CASE ('ESR') ! ... not yet implemented in xml reading iesr_inp = 1 ! CASE ('ION_VELOCITIES') ! ... not yet implemented in xml reading tavel = .false. ! CASE DEFAULT CALL errore ( 'card_default', 'You want to initialize a card that does & ¬ exist or is not yet implemented ( '//trim(card)//' card)', 1 ) ! END SELECT ! ! END SUBROUTINE card_default ! ! ! ! !---------------------------------------------------------------------------! ! This subroutine broadcasts the varibles defined in the various cards; ! ! the input string is the name of the card that you want to broadcast ! !---------------------------------------------------------------------------! SUBROUTINE card_bcast( card ) ! ! USE io_global, ONLY : ionode, ionode_id ! USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! ! CHARACTER( len = * ),INTENT( IN ) :: card INTEGER :: nspin0 ! ! SELECT CASE ( trim(card) ) ! ! CASE ( 'CELL' ) CALL mp_bcast( ibrav, ionode_id ) CALL mp_bcast( celldm, ionode_id ) CALL mp_bcast( A, ionode_id ) CALL mp_bcast( B, ionode_id ) CALL mp_bcast( C, ionode_id ) CALL mp_bcast( cosAB, ionode_id ) CALL mp_bcast( cosAC, ionode_id ) CALL mp_bcast( cosBC, ionode_id ) CALL mp_bcast( cell_units, ionode_id ) CALL mp_bcast( rd_ht, ionode_id ) CALL mp_bcast( trd_ht, ionode_id ) ! CASE ( 'ATOMIC_SPECIES' ) CALL mp_bcast( ntyp, ionode_id ) CALL mp_bcast( atom_mass, ionode_id ) CALL mp_bcast( atom_pfile, ionode_id ) CALL mp_bcast( atom_label, ionode_id ) CALL mp_bcast( taspc, ionode_id ) CALL mp_bcast( hubbard_u, ionode_id ) CALL mp_bcast( hubbard_j0, ionode_id ) CALL mp_bcast( hubbard_alpha, ionode_id ) CALL mp_bcast( hubbard_beta, ionode_id ) CALL mp_bcast( starting_magnetization, ionode_id ) CALL mp_bcast( starting_ns_eigenvalue, ionode_id ) CALL mp_bcast( angle1, ionode_id ) CALL mp_bcast( angle2, ionode_id ) CALL mp_bcast( ion_radius, ionode_id ) CALL mp_bcast( nhgrp, ionode_id ) CALL mp_bcast( fnhscl, ionode_id ) CALL mp_bcast( tranp, ionode_id ) CALL mp_bcast( amprp, ionode_id ) ! CASE ( 'ATOMIC_LIST' ) CALL mp_bcast( atomic_positions, ionode_id ) CALL mp_bcast( nat, ionode_id ) ! CALL mp_bcast( num_of_images, ionode_id ) ! ... ionode has already done it inside card_xml_atomic_list IF (.not.ionode) THEN CALL allocate_input_ions( ntyp, nat ) END IF ! CALL mp_bcast( pos, ionode_id ) CALL mp_bcast( if_pos, ionode_id ) CALL mp_bcast( na_inp, ionode_id ) CALL mp_bcast( sp_pos, ionode_id ) CALL mp_bcast( rd_pos, ionode_id ) CALL mp_bcast( sp_vel, ionode_id ) CALL mp_bcast( rd_vel, ionode_id ) CALL mp_bcast( tapos, ionode_id ) ! ! CASE ( 'CHAIN' ) ! CALL mp_bcast( atomic_positions, ionode_id ) ! CALL mp_bcast( nat, ionode_id ) ! CALL mp_bcast( num_of_images, ionode_id ) ! ! ... ionode has already done it inside card_xml_atomic_list ! IF (.not.ionode) THEN ! CALL allocate_input_ions( ntyp, nat ) ! IF (num_of_images>1) THEN ! IF ( allocated( pos ) ) deallocate( pos ) ! allocate( pos( 3*nat, num_of_images ) ) ! END IF ! END IF ! CALL mp_bcast( pos, ionode_id ) ! CALL mp_bcast( if_pos, ionode_id ) ! CALL mp_bcast( sp_pos, ionode_id ) ! CALL mp_bcast( rd_pos, ionode_id ) ! CALL mp_bcast( na_inp, ionode_id ) ! CALL mp_bcast( tapos, ionode_id ) ! CASE ( 'CONSTRAINTS' ) CALL mp_bcast( nconstr_inp, ionode_id ) CALL mp_bcast( constr_tol_inp, ionode_id ) IF ( .not.ionode ) CALL allocate_input_constr() CALL mp_bcast( constr_type_inp, ionode_id ) CALL mp_bcast( constr_target_inp, ionode_id ) CALL mp_bcast( constr_target_set, ionode_id ) CALL mp_bcast( constr_inp, ionode_id ) ! CASE ( 'K_POINTS' ) CALL mp_bcast( k_points, ionode_id ) CALL mp_bcast( nkstot, ionode_id ) CALL mp_bcast( nk1, ionode_id ) CALL mp_bcast( nk2, ionode_id ) CALL mp_bcast( nk3, ionode_id ) CALL mp_bcast( k1, ionode_id ) CALL mp_bcast( k2, ionode_id ) CALL mp_bcast( k3, ionode_id ) CALL mp_bcast( xk, ionode_id ) CALL mp_bcast( wk, ionode_id ) ! CASE ( 'OCCUPATIONS' ) IF ( .not.ionode ) THEN nspin0 = nspin if ( nspin == 4 ) nspin0 = 1 ALLOCATE( f_inp (nbnd, nspin0 ) ) END IF CALL mp_bcast( f_inp, ionode_id ) ! ! CASE ( 'CLIMBING_IMAGES' ) ! IF ( .not.ionode ) ALLOCATE( climbing( num_of_images ) ) ! CALL mp_bcast( climbing, ionode_id ) ! CASE ( 'PLOT_WANNIER' ) CALL mp_bcast( wannier_index, ionode_id ) ! CASE DEFAULT CALL errore ( 'card_bcast', 'You want to broadcast a card that does & ¬ exist or is not yet implemented', 1 ) ! ! END SELECT ! ! ! END SUBROUTINE card_bcast ! ! !-------------------------------------------------------------------------! ! Here after there are the manuals and the reading of the xml cards ! ! For more information see the Help file ! !-------------------------------------------------------------------------! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! CELL (compulsory) ! ! ! ! specify the cell of your calculation ! ! ! ! Syntax: ! ! ! ! ! ! depends on the type ! ! ! ! ! ! sym can be cubic or exagonal ! ! ! ! if: ! ! ! ! 1) type is qecell, inside CELL node there is: ! ! ! ! ! ! ! ! celldm(2) celldm(3) celldm(4) celldm(5) celldm(6) ! ! ! ! ! ! ! ! 2) type is abc, inside CELL node there is: ! ! ! ! ! ! A B C cosAB cosAC cosBC ! ! ! ! ! ! 3) type is matrix, inside there will be: ! ! ! ! ! ! ! ! HT(1,1) HT(1,2) HT(1,3) ! ! HT(2,1) HT(2,2) HT(2,3) ! ! HT(3,1) HT(3,2) HT(3,3) ! ! ! ! ! ! ! ! ! ! Where: ! ! HT(i,j) (real) cell dimensions ( in a.u. ), ! ! note the relation with lattice vectors: ! ! HT(1,:) = A1, HT(2,:) = A2, HT(3,:) = A3 ! ! units can be bohr (default) or alat (in this case you ! ! have to specify alat) ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_cell ( ) ! IMPLICIT NONE ! ! CHARACTER( LEN = iotk_attlenx ) :: attr, attr2 CHARACTER( LEN = 20 ) :: option,option2 INTEGER :: i, j, ierr LOGICAL :: found REAL( kind = DP ), DIMENSION(6) :: vect_tmp ! ! ! CALL iotk_scan_begin( xmlinputunit, 'cell', attr = attr, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_cell', 'error scanning begin of cell & &card', ABS( ierr ) ) ! IF ( found ) THEN ! CALL iotk_scan_attr( attr, 'type', option, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning type & &attribute of cell node', abs(ierr) ) ! ! IF ( trim(option) == 'qecell' ) THEN ! CALL iotk_scan_begin( xmlinputunit, 'qecell', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning begin & &of qecell node', abs(ierr) ) ! CALL iotk_scan_attr( attr2, 'ibrav', ibrav, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading ibrav & &attribute of qecell node', abs(ierr) ) ! CALL iotk_scan_attr(attr2, 'alat', celldm(1), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading alat & &attribute of qecell node', abs(ierr) ) ! CALL iotk_scan_dat_inside( xmlinputunit, celldm(2:6), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading data inside & &qecell node', abs(ierr) ) ! CALL iotk_scan_end( xmlinputunit, 'qecell', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning end of & &qecell node', abs(ierr) ) ! ELSE IF ( trim(option) == 'abc' ) THEN ! CALL iotk_scan_begin(xmlinputunit, 'abc', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning begin & &of abc node', abs(ierr) ) ! CALL iotk_scan_attr( attr2, 'ibrav', ibrav, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading ibrav & &attribute of abc node', abs(ierr) ) ! CALL iotk_scan_dat_inside( xmlinputunit, vect_tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading data inside & &abc node', abs(ierr) ) ! A = vect_tmp(1) B = vect_tmp(2) C = vect_tmp(3) cosAB = vect_tmp(4) cosAC = vect_tmp(5) cosBC = vect_tmp(6) ! CALL iotk_scan_end(xmlinputunit,'abc', ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning end of & &abc node', abs(ierr) ) ! ELSE IF (trim(option)=='matrix') THEN ! ibrav = 0 ! CALL iotk_scan_begin( xmlinputunit, 'matrix', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning begin & &of matrix node', abs(ierr) ) ! CALL iotk_scan_attr( attr2, 'units', option2, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading units attribute & &of matrix node', abs(ierr) ) ! IF (found) THEN IF ( trim(option2) == 'alat' ) THEN ! cell_units = 'alat' ! CALL iotk_scan_attr(attr2, 'alat', celldm(1), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading alat& &attribute of MATRIX node', abs(ierr) ) ! ELSE IF ( trim(option2) == 'bohr' ) THEN ! cell_units = 'bohr' ! ELSE ! CALL errore( 'card_xml_cell', 'invalid units attribute', abs(ierr) ) ! END IF ELSE ! cell_units = 'bohr' ! END IF ! ! CALL iotk_scan_dat_inside( xmlinputunit, rd_ht, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading data inside & &matrix node', abs(ierr) ) ! rd_ht = transpose( rd_ht ) trd_ht = .TRUE. ! CALL iotk_scan_end( xmlinputunit, 'matrix', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning end of & &matrix node', abs(ierr) ) ! ELSE CALL errore( 'card_xml_cell', 'type '//trim(option)//' in cell node does not exist', 1 ) END IF ! CALL iotk_scan_end( xmlinputunit, 'cell', ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning end of cell & &card', ABS( ierr ) ) ELSE ! CALL errore( 'read_xml_pw', 'cell card not found', 1 ) ! END IF ! ! RETURN ! END SUBROUTINE card_xml_cell ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! ATOMIC_SPECIES (compulsory) ! ! ! ! set the atomic species been read and their pseudopotential file ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! mass(i) ! ! ! ! ! ! ! ! ! ! ! ! psfile(i) ! ! ! ! ! ![ optional ! ! ! ! ! ! starting_magnetization(i) ! ! ! ! ! ! ! ! ! ! ! ! hubbard_alpha(i) ! ! ! ! ! ! ! ! ! ! ! ! hubbard_alpha(i) ! ! ! ! ! ! ! ! ! ! ! ! starting_ns_eigenvalue(ns , ispin, i ) ! ! ! ! ! ! ! ! ! ! ! ! angle1(i) ! ! ! ! ! ! ! ! ! ! ! ! angle2(i) ! ! ! ! ! ! ! ! ! ! ! ! ion_radius(i) ! ! ! ! ! ! ! ! ! ! ! ! nhgrp(i) ! ! ! ! ! ! ! ! ! ! ! ! fnhscl(i) ! ! ! ! ! ! ! ! ! ! ! ! tranp(i) ! ! ! ! ! ! ! ! ! ! ! ! amprp(i) ! ! ! ! ! !] ! ! ! ! .... ! ! .... ! ! ! ! ! ! Where: ! ! ! ! only the pseudofile property is compulsory, the others are optional! ! ! ! label(i) ( character(len=4) ) label of the atomic species ! ! mass(i) ( real ) atomic mass ! ! ( in u.m.a, carbon mass is 12.0 ) ! ! psfile(i) ( character(len=80) ) file name of the pseudopotential ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_atomic_species( ) ! IMPLICIT NONE ! ! INTEGER :: is, ip, ierr, direction CHARACTER( LEN = 4 ) :: lb_pos CHARACTER( LEN = 256 ) :: psfile CHARACTER( LEN = iotk_attlenx ) :: attr, attr2 LOGICAL :: found, psfile_found ! ! ! CALL iotk_scan_begin( xmlinputunit, 'atomic_species', attr = attr, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning begin of atomic_species & &card', ABS( ierr ) ) ! IF ( found ) THEN ! CALL iotk_scan_attr( attr, 'ntyp', ntyp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &reading ntyp attribute inside atomic_species node', abs( ierr ) ) ! IF( ntyp < 0 .OR. ntyp > nsx ) & CALL errore( 'card_xml_atomic_species', & ' ntyp is too large', MAX( ntyp, 1) ) ! DO is = 1, ntyp ! CALL iotk_scan_begin( xmlinputunit, 'specie', attr = attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning specie node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'name', lb_pos, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &reading name attribute of specie node', abs( ierr ) ) ! psfile_found = .false. ! DO CALL iotk_scan_begin( xmlinputunit, 'property', attr = attr2, & direction = direction, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning begin property node', abs( ierr ) ) ! IF (direction == -1) EXIT ! CALL read_property( attr2 ) ! ! CALL iotk_scan_end( xmlinputunit, 'property', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning end of property node', abs( ierr ) ) END DO ! CALL iotk_scan_end( xmlinputunit, 'property', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning end of property node', abs( ierr ) ) ! CALL iotk_scan_end( xmlinputunit, 'specie', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning end of specie node', abs( ierr ) ) ! IF (.not. psfile_found ) CALL errore( 'card_xml_atomic_species', & 'no pseudofile found', abs( is ) ) ! atom_pfile(is) = trim( psfile ) lb_pos = adjustl( lb_pos ) atom_label(is) = trim( lb_pos ) ! ! DO ip = 1, is - 1 ! IF ( atom_label(ip) == atom_label(is) ) THEN CALL errore( ' card_xml_atomic_species ', & ' two occurrences of the same atomic label', is ) ENDIF ENDDO ! ENDDO ! ! ... this variable is necessary to mantain compatibility. ! ... With new xml input the compulsory of atomic_species is already given ! taspc = .true. ! CALL iotk_scan_end( xmlinputunit, 'atomic_species', ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error scanning end of & &atomic_species node', ABS( ierr ) ) ! ELSE ! CALL errore( 'read_xml_pw', 'atomic_species card not found', 1 ) ! ENDIF ! RETURN ! CONTAINS ! SUBROUTINE read_property ( attr_in) ! IMPLICIT NONE ! CHARACTER( len = * ), INTENT( in ) :: attr_in INTEGER :: index1, index2 CHARACTER( len = 50 ) :: prop_name ! CALL iotk_scan_attr( attr_in, 'name', prop_name, ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error reading name & &attribute of property node', ABS( is ) ) SELECT CASE ( trim(prop_name) ) ! CASE ( 'mass' ) CALL iotk_scan_dat_inside( xmlinputunit, atom_mass(is) , ierr = ierr) ! CASE ( 'pseudofile' ) CALL iotk_scan_dat_inside( xmlinputunit, psfile, ierr = ierr) psfile = clean_str( psfile ) psfile_found = .true. ! CASE ( 'starting_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, starting_magnetization( is ),& ierr = ierr) ! CASE ( 'hubbard_alpha' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_alpha( is ),& ierr = ierr) ! CASE ( 'hubbard_beta' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_beta( is ),& ierr = ierr) ! CASE ( 'hubbard_u' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_u( is ),& ierr = ierr) ! CASE ( 'hubbard_j0' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_j0( is ),& ierr = ierr) ! CASE ( 'starting_ns_eigenvalue' ) ! CALL iotk_scan_attr( attr_in, 'ns', index1, ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error reading ns & &attribute of property node', ABS( is ) ) ! CALL iotk_scan_attr( attr_in, 'ispin', index2, ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error reading ispin & &attribute of property node', ABS( is ) ) ! CALL iotk_scan_dat_inside( xmlinputunit, & starting_ns_eigenvalue( index1, index2, is), ierr = ierr) ! CASE ( 'angle1' ) CALL iotk_scan_dat_inside( xmlinputunit, angle1( is ),& ierr = ierr) ! CASE ( 'angle2' ) ! CALL iotk_scan_dat_inside( xmlinputunit, angle2( is ),& ierr = ierr) ! CASE ( 'ion_radius' ) ! CALL iotk_scan_dat_inside( xmlinputunit, ion_radius( is ),& ierr = ierr) ! CASE ( 'nhgrp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, nhgrp( is ),& ierr = ierr) ! CASE ( 'fnhscl' ) ! CALL iotk_scan_dat_inside( xmlinputunit, fnhscl( is ),& ierr = ierr) ! CASE ( 'tranp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, tranp( is ),& ierr = ierr) ! CASE ( 'amprp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, amprp( is ),& ierr = ierr) ! CASE DEFAULT CALL errore( 'card_xml_atomic_species', 'property '& //trim(prop_name)//' not known', abs( is ) ) END SELECT ! ! IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error reading ' & //trim(prop_name)//' data', abs( is ) ) ! END SUBROUTINE read_property ! END SUBROUTINE card_xml_atomic_species ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! ! ! ATOMIC_LIST (compulsory for PW) ! ! ! ! set the atomic positions ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! tau(1,1) tau(2,1) tau(3,1) ! ! ! ! ! ! ! ! ... ! ! ! ! ! ! Where: ! ! ! ! units_option == crystal position are given in scaled units ! ! units_option == bohr position are given in Bohr ! ! units_option == angstrom position are given in Angstrom ! ! units_option == alat position are given in units of alat ! ! ! ! label(k) ( character(len=4) ) atomic type ! ! tau(:,k) ( real ) coordinates of the k-th atom ! ! mbl(:,k) ( integer ) mbl(i,k) > 0 the i-th coord. of the ! ! k-th atom is allowed to be moved ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_atomic_list( ) ! IMPLICIT NONE ! ! CHARACTER( len = iotk_attlenx ) :: attr INTEGER :: ierr, is LOGICAL :: found ! ! CALL iotk_scan_begin( xmlinputunit, 'atomic_list', attr, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error scanning begin & &of atomic_list node', abs(ierr) ) ! CALL iotk_scan_attr( attr, 'units', atomic_positions, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error reading units & &attribute of atomic_list node', abs(ierr) ) ! IF ( found ) THEN IF ( (trim( atomic_positions ) == 'crystal') .or. & (trim( atomic_positions ) == 'bohr') .or. & (trim( atomic_positions ) == 'angstrom').or. & (trim( atomic_positions ) == 'alat') ) THEN atomic_positions = trim( atomic_positions ) ELSE CALL errore( 'car_xml_atom_lists', & 'error in units attribute of atomic_list node, unknow '& & //trim(atomic_positions)//' units', 1 ) ENDIF ELSE ! ... default value atomic_positions = 'alat' ENDIF ! CALL iotk_scan_attr( attr, 'nat', nat, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error reading nat attribute & &of atomic_list node', abs(ierr) ) ! IF ( nat < 1 ) THEN CALL errore( 'card_xml_atomic_list', 'nat out of range', nat ) END IF ! ! ... allocation of needed arrays CALL allocate_input_ions( ntyp, nat ) ! if_pos = 1 sp_pos = 0 rd_pos = 0.0_DP sp_vel = 0 rd_vel = 0.0_DP na_inp = 0 ! ! CALL read_image( 1, rd_pos, rd_vel ) ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error scanning end of & &atomic_list node', abs( ierr ) ) ! ! tapos = .true. ! RETURN ! ! END SUBROUTINE card_xml_atomic_list ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-! ! ! ! ! ! CHAIN (used in neb and smd calculation) ! ! ! ! set the atomic positions for a chian ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! ! ! tau(1,1) tau(2,1) tau(3,1) ! ! ! ! ! ! ! ... ! ! ! ! ! ! ... ! ! ! ! ... ! ! ! ! ! ! ! ! Where: ! ! ! ! notation of atomic_list node is the same of the atomic_list cards. ! ! the difference is that inside the chain card you put more atomic_list node ! ! with the attribute num that indicates the number of the image ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-! ! SUBROUTINE card_xml_chain( ) ! IMPLICIT NONE ! ! CHARACTER( LEN = iotk_attlenx ) :: attr LOGICAL :: found,end_of_chain INTEGER :: ierr REAL (DP), DIMENSION( :, :), ALLOCATABLE :: tmp_image ! ! end_of_chain = .false. ! CALL iotk_scan_begin( xmlinputunit, 'chain', attr, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning begin & ! &of chain node', abs(ierr) ) ! ! ! ! ! CALL iotk_scan_attr( attr, 'num_of_images', num_of_images, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error reading & ! &num_of_images attribute of chain node', abs(ierr) ) ! ! ! IF ( num_of_images < 1 ) CALL errore ( 'card_xml_chain', 'null & ! &or negative num_of_images', 1 ) ! ! ! CALL find_image( 1 ) ! IF (end_of_chain) CALL errore( 'card_xml_chain', 'first image not found', 1 ) ! ! ! CALL iotk_scan_attr( attr, 'units', atomic_positions, found = found, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error reading units attribute & ! &of atomic_list node', abs(ierr) ) ! ! ! IF ( found ) THEN ! IF ( (trim( atomic_positions ) == 'crystal') .or. & ! (trim( atomic_positions ) == 'bohr') .or. & ! (trim( atomic_positions ) == 'angstrom').or. & ! (trim( atomic_positions ) == 'alat') ) THEN ! atomic_positions = trim( atomic_positions ) ! ELSE ! CALL errore( 'car_xml_chain', & ! 'error in units attribute of atomic_list node, unknow '& ! & //trim(atomic_positions)//' units', 1 ) ! ENDIF ! ELSE ! ! ... default value ! atomic_positions = 'alat' ! ENDIF ! ! ! CALL iotk_scan_attr( attr, 'nat', nat, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error reading nat attribute & ! &of atomic_list node', abs(ierr) ) ! ! ! IF ( nat < 1 ) THEN ! CALL errore( 'card_xml_chain', 'nat out of range', abs(nat) ) ! END IF ! ! ! ... allocation of needed arrays ! CALL allocate_input_ions( ntyp, nat ) ! ! ! if_pos = 1 ! sp_pos = 0 ! rd_pos = 0.0_DP ! na_inp = 0 ! ! ! ! ! IF ( allocated( pos ) ) deallocate( pos ) ! allocate( pos( 3*nat, num_of_images ) ) ! ! allocate( tmp_image( 3, nat ) ) ! ! pos(:, :) = 0.0_DP ! ! CALL read_image( 1, tmp_image ) ! ! ... transfer of tmp_image data in pos array (to mantain compatibility) ! CALL reshaffle_indexes( 1 ) ! ! input_images = 1 ! ! DO ! ! ! ! ... a trick to move the cursor at the beginning of chain node ! ! ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning end of & ! &atomic_list node', input_images ) ! ! ! CALL iotk_scan_end( xmlinputunit, 'chain', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning end of chain & ! &node', abs(ierr) ) ! ! ! CALL iotk_scan_begin( xmlinputunit, 'chain', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning begin & ! &of chain node', abs( ierr ) ) ! ! ... end of the trick ! ! ! CALL find_image( input_images + 1 ) ! ! ! IF (end_of_chain) EXIT ! ! ! input_images = input_images + 1 ! ! ! IF ( input_images > num_of_images ) CALL errore( 'card_xml_chain',& ! 'too many images in chain node', 1 ) ! ! ! CALL read_image( input_images, tmp_image ) ! ! ... transfer tmp_image data in pos array (to mantain compatibility) ! CALL reshaffle_indexes( input_images ) ! ! ! ENDDO ! ! ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning end of & ! &atomic_list node', abs(ierr) ) ! ! ! ! ! tapos = .true. ! ! DEALLOCATE(tmp_image) RETURN ! ! CONTAINS ! ! ... does a scan to find the image with attribute num="iimage" ! SUBROUTINE find_image( iimage ) ! ! ! INTEGER, INTENT( in ) :: iimage ! INTEGER :: direction, rii ! ! ! DO ! CALL iotk_scan_begin( xmlinputunit, 'atomic_list', attr, & ! direction = direction, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning begin & ! &of atomic_list node', abs(ierr) ) ! ! ! CALL iotk_scan_attr( attr, 'num', rii, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error reading num & ! &attribute of atomic_list node', abs(ierr) ) ! ! ! IF ( rii == iimage ) EXIT ! ! ! IF ( direction == -1 ) THEN ! end_of_chain = .true. ! EXIT ! END IF ! ! ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_chain', 'error scanning end & ! &of atomic_list node', abs(iimage) ) ! ! ! END DO ! ! ! END SUBROUTINE find_image ! ! ! ! ... copy the data from tmp_image to pos, necessary to mantain the notation ! ! ... of old input ! SUBROUTINE reshaffle_indexes( iimage ) ! ! ! INTEGER, INTENT( in ) :: iimage ! INTEGER :: ia_tmp, idx_tmp ! ! DO ia_tmp = 1,nat ! idx_tmp = 3*(ia_tmp -1 ) ! pos(idx_tmp+1:idx_tmp+3, iimage) = tmp_image( 1:3, ia_tmp ) ! END DO ! END SUBROUTINE reshaffle_indexes ! ! END SUBROUTINE card_xml_chain ! ! ! ! ! ... Subroutine that reads a single image inside chain node ! ! SUBROUTINE read_image( image, image_pos, image_vel ) ! IMPLICIT NONE ! INTEGER, INTENT( in ) :: image REAL( DP ), INTENT( inout ), DIMENSION( 3, nat ) :: image_pos REAL( DP ), INTENT( inout ), DIMENSION( 3, nat ), OPTIONAL :: image_vel ! ! INTEGER :: ia, idx, ierr, is, direction CHARACTER( len = iotk_attlenx ) :: attr CHARACTER( len = 4 ) :: lb_pos LOGICAL :: found_vel, read_vel REAL( DP ) :: default ! default = 1.0_DP ! ia = 0 ! read_vel = .true. IF (present(image_vel)) read_vel = .true. ! DO ! CALL iotk_scan_begin( xmlinputunit, 'atom', attr = attr, & direction = direction, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error scanning begin of & &atom node', abs(ierr) ) ! IF (direction == -1) THEN IF (ia < nat) CALL errore( 'read_image', & 'less atoms than axpected in atomic_list', image ) EXIT END IF ! ia = ia + 1 ! IF ( ia > nat) CALL errore( 'read_image', & 'more atoms than axpected in atomic_list', image ) ! ! ... compulsory name attribute CALL iotk_scan_attr( attr, 'name', lb_pos, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error reading & &name attribute of atom node', abs(ierr) ) ! CALL iotk_scan_dat( xmlinputunit,'position', image_pos( 1:3, ia ), attr = attr, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error reading position data of & &atom node', abs(ierr) ) ! IF (read_vel) THEN CALL iotk_scan_begin( xmlinputunit, 'velocity', & found = found_vel, ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'read_al_image', 'error scanning begin of & &velocity node', abs(ierr) ) ! IF (found_vel) THEN ! CALL iotk_scan_dat_inside( xmlinputunit, image_vel( 1:3, ia ), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_al_image', 'error reading & &velocity', abs(ierr) ) ! CALL iotk_scan_end( xmlinputunit, 'velocity', ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'read_al_image', 'error scanning end of & &velocity node', abs(ierr) ) ! ENDIF ENDIF ! CALL iotk_scan_end( xmlinputunit, 'atom', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error scanning end of & &atom node', abs(ierr) ) ! ! IF ( image == 1 ) THEN ! CALL iotk_scan_attr( attr, 'ifx', if_pos(1,ia), default = 1, ierr=ierr ) IF ( ierr /= 0) CALL errore( 'read_image', & 'error reading ifx attribute of atom node', image ) ! CALL iotk_scan_attr( attr, 'ify', if_pos(2,ia), default = 1, ierr = ierr ) IF ( ierr /= 0) CALL errore( 'read_image', & 'error reading ify attribute of atom node', image ) ! CALL iotk_scan_attr( attr, 'ifz', if_pos(3,ia), default = 1, ierr = ierr ) IF ( ierr /= 0) CALL errore( 'read_image', & 'error reading ifz attribute of atom node', image ) ! lb_pos = adjustl( lb_pos ) ! match_label_path: DO is = 1, ntyp ! IF ( trim( lb_pos ) == trim( atom_label(is) ) ) THEN ! sp_pos( ia ) = is IF (found_vel .and. read_vel) sp_vel( ia) = is ! EXIT match_label_path ! ENDIF ! ENDDO match_label_path ! IF ( ( sp_pos( ia ) < 1 ) .or. ( sp_pos( ia ) > ntyp ) ) CALL errore( & 'read_image', 'wrong name in atomic_list node', ia ) ! is = sp_pos( ia ) ! na_inp( is ) = na_inp( is ) + 1 ! ENDIF ! ENDDO ! CALL iotk_scan_end( xmlinputunit, 'atom', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error scanning end of & &atom node', abs(ierr) ) ! IF ( image == 1) THEN DO is = 1, ntyp IF( na_inp( is ) < 1 ) & CALL errore( 'read_image', 'no atom found in atomic_list for '& //trim(atom_label(is))//' specie', is ) ENDDO ENDIF ! RETURN ! END SUBROUTINE read_image ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! K_POINTS ! ! ! ! use the specified set of k points ! ! ! ! Syntax: ! ! ! ! ! ! ! ! if mesh_option = tpiba, crystal, tpiba_b or crystal_b : ! ! ! ! ! ! ! ! xk(1,1) xk(2,1) xk(3,1) wk(1) ! ! ... ... ... ... ! ! xk(1,n) xk(2,n) xk(3,n) wk(n) ! ! ! ! ! ! ! ! else if mesh_option = automatic ! ! ! ! ! ! nk1 nk2 nk3 k1 k2 k3 ! ! ! ! ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! mesh_option == automatic k points mesh is generated automatically ! ! with Monkhorst-Pack algorithm ! ! mesh_option == crystal k points mesh is given in stdin in scaled ! ! units ! ! mesh_option == tpiba k points mesh is given in stdin in units ! ! of ( 2 PI / alat ) ! ! mesh_option == gamma only gamma point is used ( default in ! ! CPMD simulation ) ! ! mesh_option == tpiba_b as tpiba but the weights gives the ! ! number of points between this point ! ! and the next ! ! mesh_option == crystal_b as crystal but the weights gives the ! ! number of points between this point and ! ! the next ! ! ! ! n ( integer ) number of k points ! ! xk(:,i) ( real ) coordinates of i-th k point ! ! wk(i) ( real ) weights of i-th k point ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_kpoints( attr ) ! IMPLICIT NONE ! CHARACTER( len = * ), INTENT( in ) :: attr ! LOGICAL :: kband = .FALSE. CHARACTER( len = 20 ) :: type CHARACTER( len = iotk_attlenx ) :: attr2 INTEGER :: i,j, nkaux, ierr INTEGER, DIMENSION( 6 ) :: tmp INTEGER, DIMENSION( : ), ALLOCATABLE :: wkaux REAL( DP ), DIMENSION( : , : ), ALLOCATABLE :: points_tmp, xkaux REAL( DP ) :: delta ! ! CALL iotk_scan_attr(attr, 'type', type, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading type attribute & &of k_points node', abs( ierr ) ) ! SELECT CASE ( trim( type ) ) ! CASE ('automatic') !automatic generation of k-points k_points = 'automatic' ! CASE ('crystal') ! input k-points are in crystal (reciprocal lattice) axis k_points = 'crystal' ! CASE ('crystal_b') k_points = 'crystal' kband=.true. ! CASE ('tpiba') ! input k-points are in 2pi/a units k_points = 'tpiba' ! CASE ('tpiba_b') k_points = 'tpiba' kband=.true. ! CASE ('gamma') ! Only Gamma (k=0) is used k_points = 'gamma' ! CASE DEFAULT ! by default, input k-points are in 2pi/a units k_points = 'tpiba' ! END SELECT ! IF ( k_points == 'automatic' ) THEN ! ! ... automatic generation of k-points ! nkstot = 0 CALL iotk_scan_dat( xmlinputunit, 'mesh', tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading data inside mesh & &node', abs( ierr ) ) ! nk1 = tmp( 1 ) nk2 = tmp( 2 ) nk3 = tmp( 3 ) k1 = tmp( 4 ) k2 = tmp( 5 ) k3 = tmp( 6 ) ! ! ... some checks ! IF ( k1 < 0 .or. k1 > 1 .or. & k2 < 0 .or. k2 > 1 .or. & k3 < 0 .or. k3 > 1 ) CALL errore & ('card_xml_kpoints', 'invalid offsets: must be 0 or 1', 1) ! IF ( nk1 <= 0 .or. nk2 <= 0 .or. nk3 <= 0 ) CALL errore & ('card_xml_kpoints', 'invalid values for nk1, nk2, nk3', 1) ! ELSE IF ( ( k_points == 'tpiba' ) .OR. ( k_points == 'crystal' ) ) THEN ! ! ... input k-points are in 2pi/a units ! CALL iotk_scan_begin( xmlinputunit, 'mesh', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error scanning begin of mesh & &node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'npoints', nkstot, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading attribute npoints of mesh & &node', abs( ierr ) ) ! ! IF ( nkstot > size( xk, 2 ) ) CALL errore & ('card_xml_kpoints', 'too many k-points', nkstot) ! allocate( points_tmp(4,nkstot) ) ! CALL iotk_scan_dat_inside( xmlinputunit, points_tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading data inside mesh & &node', abs( ierr ) ) ! xk( :, 1:nkstot ) = points_tmp( 1:3, : ) wk( 1:nkstot ) = points_tmp( 4, : ) ! deallocate( points_tmp ) ! CALL iotk_scan_end( xmlinputunit, 'mesh', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error scanning end of mesh & &node', abs( ierr ) ) ! ! IF ( kband ) THEN ! nkaux=nkstot ! allocate( xkaux( 3, nkstot ) ) allocate( wkaux( nkstot ) ) ! xkaux( :, 1:nkstot ) = xk( :, 1:nkstot ) wkaux( 1:nkstot ) = nint( wk(1:nkstot) ) nkstot = 0 ! DO i = 1, nkaux-1 ! delta = 1.0_DP/wkaux(i) ! DO j=0, wkaux(i)-1 ! nkstot=nkstot+1 IF ( nkstot > SIZE (xk,2) ) CALL errore & ('card_xml_kpoints', 'too many k-points',nkstot) ! xk( :, nkstot ) = xkaux( :, i ) + delta*j*( xkaux(:,i+1) - xkaux(:,i) ) wk(nkstot)=1.0_DP ! ENDDO ! ENDDO ! nkstot = nkstot + 1 xk( :, nkstot ) = xkaux( :, nkaux ) wk( nkstot ) = 1.0_DP ! deallocate(xkaux) deallocate(wkaux) ENDIF ! ELSE IF ( k_points == 'gamma' ) THEN ! nkstot = 1 xk(:, 1) = 0.0_DP wk(1) = 1.0_DP ! ENDIF ! tk_inp = .TRUE. ! RETURN ! ! END SUBROUTINE card_xml_kpoints ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! OCCUPATIONS (optional) ! ! ! ! use the specified occupation numbers for electronic states. ! ! ! ! Syntax (nspin == 1) or (nspin == 4): ! ! ! ! ! ! ! ! f(1) ! ! .... ! ! .... ! ! f(nbnd) ! ! ! ! ! ! ! ! Syntax (nspin == 2): ! ! ! ! ! ! ! ! u(1) ... u(nbnd) ! ! d(1) ... d(nbnd) ! ! ! ! ! ! ! ! Where: ! ! ! ! f(:) (real) these are the occupation numbers ! ! for LDA electronic states. ! ! ! ! u(:) (real) these are the occupation numbers ! ! for LSD spin == 1 electronic states ! ! d(:) (real) these are the occupation numbers ! ! for LSD spin == 2 electronic states ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_occupations( ) ! ! IMPLICIT NONE ! INTEGER :: nspin0, ierr REAL( DP ), ALLOCATABLE :: tmp_data(:) ! ! nspin0 = nspin IF (nspin == 4) nspin0 = 1 ! IF (nbnd==0) CALL errore( 'card_xml_occupation', 'nbdn is not defined ', 1 ) ! allocate ( f_inp ( nbnd, nspin0 ) ) ! IF ( nspin0 == 2 ) THEN ! CALL iotk_scan_dat_inside( xmlinputunit, f_inp, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_occupations', 'error reading data inside & &occupations node', abs( ierr ) ) ! ELSE IF ( nspin0 == 1 ) THEN ! ALLOCATE( tmp_data( nbnd ) ) ! CALL iotk_scan_dat_inside(xmlinputunit, tmp_data, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_occupations', 'error reading data inside & &occupations node', abs( ierr ) ) ! f_inp(:,1) = tmp_data ! DEALLOCATE( tmp_data ) ! END IF ! RETURN ! ! END SUBROUTINE card_xml_occupations ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! CONSTRAINTS (optional) ! ! ! ! Ionic Constraints ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! constr(1,1) constr(2,1) constr(3,1) constr(4,1) ! ! ! ! ! ! ! ! ... ! ! ... ! ! ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! nconstr(INTEGER) number of constraints ! ! ! ! constr_tol tolerance for keeping the constraints ! ! satisfied ! ! ! ! constr_type(.) type of constrain: ! ! 1: for fixed distances ( two atom indexes must ! ! be specified ) ! ! 2: for fixed planar angles ( three atom indexes! ! must be specified ) ! ! ! ! constr_target(.) target for the constrain ( in the case of ! ! planar angles it is the COS of the angle ). ! ! this variable is optional. ! ! ! ! ! ! constr(1,.) constr(2,.) ... ! ! ! ! indices object of the constraint ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_constraints( ) ! ! IMPLICIT NONE ! ! LOGICAL :: found CHARACTER( len = iotk_attlenx ) :: attr2,attr INTEGER :: i, ierr, direction ! ! nconstr_inp = 0 ! DO ! CALL iotk_scan_begin( xmlinputunit, 'constraint', direction = direction, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning begin of constraint node', nconstr_inp ) ! CALL iotk_scan_end( xmlinputunit, 'constraint', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning end of constraint node', nconstr_inp ) ! IF (direction == -1) EXIT ! nconstr_inp = nconstr_inp + 1 ! ENDDO CALL iotk_scan_end( xmlinputunit, 'constraints', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning end of constraints node', abs(ierr) ) ! ... already did, it can not gives error CALL iotk_scan_begin( xmlinputunit, 'constraints', attr ) ! CALL iotk_scan_attr( attr, 'tol', constr_tol_inp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error reading tol attribute of constraints node', abs( ierr ) ) ! ! WRITE( stdout, '(5x,a,i4,a,f12.6)' ) & 'Reading',nconstr_inp,' constraints; tolerance:', constr_tol_inp ! CALL allocate_input_constr() ! DO i = 1, nconstr_inp ! CALL iotk_scan_begin( xmlinputunit, 'constraint', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning begin of constraint node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'type', constr_type_inp(i), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error reading type attribute of constraint node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'target', constr_target_inp(i), found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error reading target attribute of constraint node', abs( ierr ) ) ! IF ( found ) constr_target_set(i) = .TRUE. ! SELECT CASE( constr_type_inp(i) ) ! CASE( 'type_coord', 'atom_coord' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,i3,a,i2,a,2f12.6)' ) & i,') '//constr_type_inp(i)(1:4),int( constr_inp(1,i) ),& ' coordination wrt type:', int( constr_inp(2,i) ), & ' cutoff distance and smoothing:', constr_inp(3:4,i) ! ELSE ! WRITE( stdout, '(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') & i,') '//constr_type_inp(i)(1:4),int( constr_inp(1,i) ),& ' coordination wrt type:', int( constr_inp(2,i) ), & ' cutoff distance and smoothing:', constr_inp(3:4,i), & '; target:', constr_target_inp(i) ! END IF ! CASE( 'distance' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,i3,a,i3)' ) & i,') distance from atom:', int( constr_inp(1,i) ), & ' to:', int( constr_inp(2,i) ) ! ELSE ! WRITE( stdout, '(7x,i3,a,i3,a,i3,a,f12.6)' ) & i,') distance from atom', int( constr_inp(1,i) ), & ' to atom', int( constr_inp(2,i) ), & '; target:', constr_target_inp(i) ! ENDIF ! CASE( 'planar_angle' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,3i3)') & i,') planar angle between atoms: ', int( constr_inp(1:3,i) ) ! ELSE ! WRITE(stdout, '(7x,i3,a,3i3,a,f12.6)') & i,') planar angle between atoms: ', int( constr_inp(1:3,i) ),& '; target:', constr_target_inp(i) ! ENDIF ! CASE( 'torsional_angle' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,4i3)' ) & i,') torsional angle between atoms: ', int( constr_inp(1:4,i) ) ! ELSE ! WRITE( stdout, '(7x,i3,a,4i3,a,f12.6)' ) & i,') torsional angle between atoms: ', int( constr_inp(1:4,i) ), & '; target:', constr_target_inp(i) ! ENDIF ! CASE( 'bennett_proj' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF (.not.constr_target_set(i)) THEN ! WRITE( stdout, '(7x,i3,a,i3,a,3f12.6)' ) & i,') bennet projection of atom ', int( constr_inp(1,i) ),& ' along vector:', constr_inp(2:4,i) ! ELSE ! WRITE(stdout, '(7x,i3,a,i3,a,3f12.6,a,f12.6)') & i,') bennet projection of atom ', int( constr_inp(1,i) ),& ' along vector:', constr_inp(2:4,i), & '; target:', constr_target_inp(i) ENDIF ! CASE DEFAULT ! CALL errore( 'card_xml_constraints', 'unknown constraint ' // & & 'type: ' // trim( constr_type_inp(i) ), 1 ) ! END SELECT ! CALL iotk_scan_end( xmlinputunit, 'constraint', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning end of constraint node', abs( ierr ) ) ! ENDDO ! RETURN ! ! 10 CALL errore( 'card_xml_constraints', 'error reading data inside constraint node', i ) ! ! END SUBROUTINE card_xml_constraints ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! CLIMBING_IMAGES (optional) ! ! ! ! Needed to explicitly specify which images have to climb ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! index1 ! ! index2 ! ! ... ! ! indexN ! ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! index1, ..., indexN are indices of the images that have to climb ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_climbing_images( ) ! ! ! IMPLICIT NONE ! ! ! ! ! INTEGER :: i, num_climb_images, ierr ! INTEGER, DIMENSION(:), ALLOCATABLE :: tmp ! CHARACTER (LEN=iotk_attlenx) :: attr ! ! ! ! ! IF ( CI_scheme == 'manual' ) THEN ! ! ! IF ( allocated( climbing ) ) deallocate( climbing ) ! ! ! allocate( climbing( num_of_images ) ) ! ! ! climbing( : ) = .FALSE. ! ! ! CALL iotk_scan_begin( xmlinputunit, 'images', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_climbing_images', 'error scanning begin of & ! &images node', abs( ierr ) ) ! ! ! CALL iotk_scan_begin( xmlinputunit, 'integer', attr, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_climbing_images', 'error scanning begin of & ! &integer node', abs( ierr ) ) ! ! ! CALL iotk_scan_end( xmlinputunit, 'integer', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_climbing_images', 'error scanning end of & ! &integer node', abs( ierr ) ) ! ! ! CALL iotk_scan_attr( attr, 'n1', num_climb_images, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_climbing_images', 'error reading n1 attribute of & ! &integer node', abs( ierr ) ) ! ! ! IF ( num_climb_images < 1 ) CALL errore( 'card_xml_climbing_images', 'non positive value & ! &of num_climb_images', abs( num_climb_images ) ) ! ! ! allocate( tmp( num_climb_images ) ) ! ! ! CALL iotk_scan_dat_inside( xmlinputunit, tmp, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_climbing_images', 'error reading data inside & ! &images node', abs( ierr ) ) ! ! ! CALL iotk_scan_end( xmlinputunit, 'images', ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_climbing_images', 'error scanning end of & ! &images node', abs( ierr ) ) ! ! ! DO i = 1, num_climb_images ! ! ! IF ( ( tmp(i) > num_of_images ) .or. ( tmp(i)<0 ) ) CALL errore('card_xml_climbing_images',& ! "image that doesn't exist", 1 ) ! ! ! climbing(tmp(i)) = .true. ! ! ! ENDDO ! ! ! ENDIF ! ! RETURN ! ! END SUBROUTINE card_xml_climbing_images ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! PLOT_WANNIER (optional) ! ! ! ! Needed to specify the indices of the wannier functions that ! ! have to be plotted ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! index1 ! ! ..... ! ! indexN ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! index1, ..., indexN are indices of the wannier functions ! ! ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_plot_wannier( ) ! IMPLICIT NONE ! ! INTEGER :: i, j, ib, ni, ierr INTEGER, DIMENSION(:), ALLOCATABLE :: tmp CHARACTER (LEN=iotk_attlenx) :: attr ! ! ! CALL iotk_scan_begin( xmlinputunit, 'wf_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning begin of & &wf_list node', abs( ierr ) ) ! IF ( nwf > 0 ) THEN CALL iotk_scan_begin( xmlinputunit, 'integer', attr, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning begin of & &integer node', abs( ierr ) ) ! CALL iotk_scan_end( xmlinputunit, 'integer', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning end of & &integer node', abs( ierr ) ) ! CALL iotk_scan_attr( attr, 'n1', ni , ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error reading n1 attribute of & &integer node', abs( ierr ) ) ! IF ( (ni < 1) .or. (ni > nwf) ) CALL errore( 'card_xml_plot_wannier', 'invalid value & &of n1', abs( ni ) ) ! allocate( tmp( ni ) ) ! CALL iotk_scan_dat_inside( xmlinputunit, tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error reading data inside & & data', abs( ierr ) ) ! CALL iotk_scan_end( xmlinputunit, 'wf_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning end of & &wf_list node', abs( ierr ) ) ! ! ordering in ascending order ib = 1 DO j = 1, nwf ! DO i = 1, ni IF ( tmp(i) == j ) THEN wannier_index(ib) = j ib = ib + 1 ENDIF ENDDO ! ENDDO ! deallocate( tmp ) ! ENDIF ! RETURN ! END SUBROUTINE card_xml_plot_wannier ! END MODULE read_xml_cards_module espresso-5.0.2/Modules/fd_gradient.f900000644000700200004540000001656412053145633016574 0ustar marsamoscm! ! Copyright (C) 2006-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! !---------------------------------------------------------------------- ! Module to compute finite differences gradients on dense real space grid ! Written by Oliviero Andreussi !---------------------------------------------------------------------- ! !=----------------------------------------------------------------------=! MODULE fd_gradient !=----------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE CONTAINS !=----------------------------------------------------------------------=! SUBROUTINE calc_fd_gradient( nfdpoint, icfd, ncfd, nnr, f, grad ) !=----------------------------------------------------------------------=! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp, ONLY : mp_sum USE mp_global, ONLY : me_pool, intra_pool_comm, & me_bgrp, intra_bgrp_comm USE fft_base, ONLY : grid_scatter IMPLICIT NONE ! INTEGER, INTENT(IN) :: nfdpoint INTEGER, INTENT(IN) :: ncfd INTEGER, INTENT(IN) :: icfd(-nfdpoint:nfdpoint) INTEGER, INTENT(IN) :: nnr REAL( DP ), DIMENSION( nnr ), INTENT(IN) :: f REAL( DP ), DIMENSION( 3, nnr ), INTENT(OUT) :: grad INTEGER :: index, index0, i, ir, ir_end, ipol, in INTEGER :: ix(-nfdpoint:nfdpoint),iy(-nfdpoint:nfdpoint),iz(-nfdpoint:nfdpoint) INTEGER :: ixc, iyc, izc, ixp, ixm, iyp, iym, izp, izm REAL( DP ), DIMENSION( :, : ), ALLOCATABLE :: gradtmp ! grad = 0.D0 ! ALLOCATE( gradtmp( 3, dfftp%nr1x*dfftp%nr2x*dfftp%nr3x ) ) gradtmp = 0.D0 ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! DO ir = 1, ir_end ! index = index0 + ir - 1 iz(0) = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*iz(0) iy(0) = index / dfftp%nr1x index = index - dfftp%nr1x*iy(0) ix(0) = index ! DO in = 1, nfdpoint ix(in) = ix(in-1) + 1 IF( ix(in) .GT. dfftp%nr1x-1 ) ix(in) = 0 ix(-in) = ix(-in+1) - 1 IF( ix(-in) .LT. 0 ) ix(-in) = dfftp%nr1x-1 iy(in) = iy(in-1) + 1 IF( iy(in) .GT. dfftp%nr2x-1 ) iy(in) = 0 iy(-in) = iy(-in+1) - 1 IF( iy(-in) .LT. 0 ) iy(-in) = dfftp%nr2x-1 iz(in) = iz(in-1) + 1 IF( iz(in) .GT. dfftp%nr3x-1 ) iz(in) = 0 iz(-in) = iz(-in+1) - 1 IF( iz(-in) .LT. 0 ) iz(-in) = dfftp%nr3x-1 ENDDO ! DO in = -nfdpoint, nfdpoint i = ix(in) + iy(0) * dfftp%nr1x + iz(0) * dfftp%nr1x * dfftp%nr2x + 1 gradtmp(1,i) = gradtmp(1,i) - icfd(in)*f(ir)*dfftp%nr1x i = ix(0) + iy(in) * dfftp%nr1x + iz(0) * dfftp%nr1x * dfftp%nr2x + 1 gradtmp(2,i) = gradtmp(2,i) - icfd(in)*f(ir)*dfftp%nr2x i = ix(0) + iy(0) * dfftp%nr1x + iz(in) * dfftp%nr1x * dfftp%nr2x + 1 gradtmp(3,i) = gradtmp(3,i) - icfd(in)*f(ir)*dfftp%nr3x ENDDO ! ENDDO ! #if defined (__MPI) DO ipol = 1, 3 CALL mp_sum( gradtmp(ipol,:), intra_bgrp_comm ) CALL grid_scatter( gradtmp(ipol,:), grad(ipol,:) ) ENDDO #else grad = gradtmp #endif ! DEALLOCATE( gradtmp ) ! DO ir = 1,nnr grad(:,ir) = MATMUL( bg, grad(:,ir) ) ENDDO grad = grad / DBLE(ncfd) / alat ! RETURN END SUBROUTINE calc_fd_gradient SUBROUTINE init_fd_gradient( ifdtype, nfdpoint, ncfd, icfd ) USE kinds, ONLY : DP IMPLICIT NONE ! INTEGER, INTENT(IN) :: ifdtype, nfdpoint INTEGER, INTENT(OUT) :: ncfd INTEGER, INTENT(OUT) :: icfd(-nfdpoint:nfdpoint) ! INTEGER :: in ! ncfd = 0 icfd = 0 ! SELECT CASE ( ifdtype ) ! CASE ( 1 ) ! (2N+1)-point Central Differences IF ( nfdpoint .EQ. 1 ) THEN ncfd = 2 icfd( 1 ) = 1 ELSE IF ( nfdpoint .EQ. 2 ) THEN ncfd = 12 icfd( 2 ) = -1 icfd( 1 ) = 8 ELSE IF ( nfdpoint .EQ. 3 ) THEN ncfd = 60 icfd( 3 ) = 1 icfd( 2 ) = -9 icfd( 1 ) = 45 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 840 icfd( 4 ) = -3 icfd( 3 ) = 32 icfd( 2 ) =-168 icfd( 1 ) = 672 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE ( 2 ) ! Low-Noise Lanczos Differentiators ( M = 2 ) IF ( nfdpoint .GE. 2 ) THEN ncfd = (nfdpoint)*(nfdpoint+1)*(2*nfdpoint+1)/3 DO in = 1,nfdpoint icfd( in ) = in ENDDO ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP END IF ! CASE ( 3 ) ! Super Lanczos Low-Noise Differentiators ( M = 4 ) IF ( nfdpoint .EQ. 3 ) THEN ncfd = 252 icfd( 3 ) = -22 icfd( 2 ) = 67 icfd( 1 ) = 58 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 1188 icfd( 4 ) = -86 icfd( 3 ) = 142 icfd( 2 ) = 193 icfd( 1 ) = 126 ELSE IF ( nfdpoint .EQ. 5 ) THEN ncfd = 5148 icfd( 5 ) =-300 icfd( 4 ) = 294 icfd( 3 ) = 532 icfd( 2 ) = 503 icfd( 1 ) = 296 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE ( 4 ) ! Smooth Noise-Robust Differentiators ( n = 2 ) IF ( nfdpoint .EQ. 2 ) THEN ncfd = 8 icfd( 2 ) = 1 icfd( 1 ) = 2 ELSE IF ( nfdpoint .EQ. 3 ) THEN ncfd = 32 icfd( 3 ) = 1 icfd( 2 ) = 4 icfd( 1 ) = 5 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 128 icfd( 4 ) = 1 icfd( 3 ) = 6 icfd( 2 ) = 14 icfd( 1 ) = 14 ELSE IF ( nfdpoint .EQ. 5 ) THEN ncfd = 512 icfd( 5 ) = 1 icfd( 4 ) = 8 icfd( 3 ) = 27 icfd( 2 ) = 48 icfd( 1 ) = 42 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE ( 5 ) ! Smooth Noise-Robust Differentiators ( n = 4 ) IF ( nfdpoint .EQ. 3 ) THEN ncfd = 96 icfd( 3 ) = -5 icfd( 2 ) = 12 icfd( 1 ) = 39 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 96 icfd( 4 ) = -2 icfd( 3 ) = -1 icfd( 2 ) = 16 icfd( 1 ) = 27 ELSE IF ( nfdpoint .EQ. 5 ) THEN ncfd = 1536 icfd( 5 ) = -11 icfd( 4 ) = -32 icfd( 3 ) = 39 icfd( 2 ) = 256 icfd( 1 ) = 322 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE DEFAULT ! WRITE(*,*)'ERROR: finite difference type unknown, ifdtype=',ifdtype STOP ! END SELECT ! DO in = 1,nfdpoint icfd( -in ) = - icfd( in ) ENDDO ! RETURN ! END SUBROUTINE init_fd_gradient !=----------------------------------------------------------------------=! END MODULE fd_gradient !=----------------------------------------------------------------------=! espresso-5.0.2/Modules/noncol.f900000644000700200004540000000606012053145633015604 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- ! MODULE noncollin_module USE kinds, ONLY : DP USE parameters, ONLY : ntypx ! SAVE ! INTEGER :: & npol, & ! number of coordinates of wfc report, & ! print the local quantities (magnet. and rho) ! every #report iterations nspin_lsda = 1, & ! =1 when nspin=1,4 =2 when nspin=2 nspin_mag = 1, & ! =1 when nspin=1,4 (domag=.false.), =2 when ! nspin=2, =4 nspin=4 (domag=.true.) nspin_gga = 1, & ! =1 when nspin=1,4 (domag=.false.) ! =2 when nspin=2,4 (domag=.true.) (needed with gga) i_cons = 0 ! indicator for constrained local quantities ! INTEGER, ALLOCATABLE :: & ! ! when spherical (non-overlapping) integration pointlist(:) ! regions are defined around atoms this index ! say for each point in the fft grid to which ! atom it is assigned (0 if no atom is selected) ! LOGICAL :: & noncolin, & ! true if noncollinear magnetism is allowed lsign=.FALSE. ! if true use the sign feature to calculate ! rhoup and rhodw ! REAL (DP) :: & angle1(ntypx), &! Define the polar coordinates of the starting angle2(ntypx), &! magnetization's direction for each atom mcons(3,ntypx)=0.d0, &! constrained values for local variables magtot_nc(3), &! total magnetization bfield(3)=0.d0, &! magnetic field used in some cases vtcon, &! contribution of the constraining fields to ! the total energy r_m(ntypx) = 0.0d0, &! Radius for local integrations for each type lambda ! prefactor in the penalty functional ! for constraints ! REAL (DP), ALLOCATABLE :: & factlist(:), &! weight factors for local integrations r_loc(:), &! local integrated charge m_loc(:,:) ! local integrated magnetization REAL(DP) :: & ux(3) ! versor for deciding signs in gga ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE deallocate_noncol() !------------------------------------------------------------------------ ! IF ( ALLOCATED( pointlist) ) DEALLOCATE( pointlist ) IF ( ALLOCATED( factlist ) ) DEALLOCATE( factlist ) IF ( ALLOCATED( r_loc ) ) DEALLOCATE( r_loc ) IF ( ALLOCATED( m_loc ) ) DEALLOCATE( m_loc ) ! END SUBROUTINE deallocate_noncol ! END MODULE noncollin_module espresso-5.0.2/Modules/read_upf_v2.f900000644000700200004540000007065512053145633016523 0ustar marsamoscm! ! Copyright (C) 2008-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE read_upf_v2_module !=----------------------------------------------------------------------------=! ! this module handles the reading of pseudopotential data ! ... declare modules USE kinds, ONLY: DP USE pseudo_types, ONLY: pseudo_upf USE radial_grids, ONLY: radial_grid_type USE parser, ONLY : version_compare USE iotk_module ! PRIVATE PUBLIC :: read_upf_v2 CONTAINS !------------------------------------------------+ SUBROUTINE read_upf_v2(u, upf, grid, ierr) ! !---------------------------------------------+ ! Read pseudopotential in UPF format version 2, uses iotk ! USE pseudo_types, ONLY: nullify_pseudo_upf, deallocate_pseudo_upf USE radial_grids, ONLY: radial_grid_type, nullify_radial_grid IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data TYPE(radial_grid_type),OPTIONAL,INTENT(INOUT),TARGET :: grid ! INTEGER,OPTIONAL,INTENT(OUT):: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_namlenx) :: root CHARACTER(len=iotk_attlenx) :: attr INTEGER :: ierr_ LOGICAL :: found LOGICAL,EXTERNAL :: matches CHARACTER(len=6),PARAMETER :: max_version = '2.0.1' ! ! Prepare the type . Should be done where upf is instantiated ! CALL deallocate_pseudo_upf(upf) ! CALL nullify_pseudo_upf(upf) ! ! IF(present(grid)) call nullify_radial_grid(grid) ! nullify(upf%grid) ! ! Initialize the file CALL iotk_open_read(u, attr=attr, root=root, ierr=ierr_) ! IF((abs(ierr_)>0) .or. .not. matches('UPF',root) ) THEN ! CALL iotk_close_read(u,ierr=ierr_) IF(.not. present(ierr)) & CALL errore('read_upf_v2','Cannot open UPF file.',1) ierr = 1 RETURN ENDIF CALL iotk_scan_attr(attr, 'version', upf%nv) IF (version_compare(upf%nv, max_version) == 'newer') & CALL errore('read_upf_v2',& 'Unknown UPF format version: '//TRIM(upf%nv),1) ! ! Skip human-readable header CALL iotk_scan_begin(u,'PP_INFO',found=found) if(found) CALL iotk_scan_end(u,'PP_INFO') ! ! Read machine-readable header CALL read_upf_header(u, upf) IF(upf%tpawp .and. .not. present(grid)) & CALL errore('read_upf_v2', 'PAW requires a radial_grid_type.', 1) ! ! CHECK for bug in version 2.0.0 of UPF file IF ( version_compare(upf%nv, '2.0.1') == 'older' .and. upf%tvanp .and. & .not. upf%tpawp ) CALL errore('read_upf_v2',& 'Ultrasoft pseudopotentials in UPF format v.2.0.0 are & & affected by a bug compromising their quality. Please & & regenerate pseudopotential file for '//TRIM(upf%psd), 1) ! Read radial grid mesh CALL read_upf_mesh(u, upf, grid) ! Read non-linear core correction charge ALLOCATE( upf%rho_atc(upf%mesh) ) IF(upf%nlcc) THEN CALL iotk_scan_dat(u, 'PP_NLCC', upf%rho_atc) ELSE ! A null core charge simplifies several functions, mostly in PAW upf%rho_atc(1:upf%mesh) = 0._dp ENDIF ! Read local potential IF(.not. upf%tcoulombp) THEN ALLOCATE( upf%vloc(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_LOCAL', upf%vloc) ENDIF ! Read nonlocal components: projectors, augmentation, hamiltonian elements CALL read_upf_nonlocal(u, upf) ! Read initial pseudo wavefunctions ! (usually only wfcs with occupancy > 0) CALL read_upf_pswfc(u, upf) ! Read all-electron and pseudo wavefunctions CALL read_upf_full_wfc(u, upf) ! Read valence atomic density (used for initial density) ALLOCATE( upf%rho_at(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_RHOATOM', upf%rho_at) ! Read additional info for full-relativistic calculation CALL read_upf_spin_orb(u, upf) ! Read additional data for PAW (All-electron charge, wavefunctions, vloc..) CALL read_upf_paw(u, upf) ! Read data for gipaw reconstruction CALL read_upf_gipaw(u, upf) ! ! Close the file (not the unit!) CALL iotk_close_read(u) ! IF( present(ierr) ) ierr=0 RETURN CONTAINS ! SUBROUTINE read_upf_header(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr CHARACTER(len=256) :: dft_buffer ! needed to allow the string defining the ! DFT flavor to be longer than upf%dft ! (currntly 25) without getting iotk upset. ! An error message is issued if trimmed ! dft_buffer exceeds upf%dft size. INTEGER :: len_buffer ! INTEGER :: nw ! ! Read HEADER section with some initialization data CALL iotk_scan_empty(u, 'PP_HEADER', attr=attr) CALL iotk_scan_attr(attr, 'generated', upf%generated, default=' ') CALL iotk_scan_attr(attr, 'author', upf%author, default='anonymous') CALL iotk_scan_attr(attr, 'date', upf%date, default=' ') CALL iotk_scan_attr(attr, 'comment', upf%comment, default=' ') ! CALL iotk_scan_attr(attr, 'element', upf%psd) CALL iotk_scan_attr(attr, 'pseudo_type', upf%typ) CALL iotk_scan_attr(attr, 'relativistic', upf%rel) ! CALL iotk_scan_attr(attr, 'is_ultrasoft', upf%tvanp) CALL iotk_scan_attr(attr, 'is_paw', upf%tpawp) CALL iotk_scan_attr(attr, 'is_coulomb', upf%tcoulombp, default=.false.) ! CALL iotk_scan_attr(attr, 'has_so', upf%has_so, default=.false.) CALL iotk_scan_attr(attr, 'has_wfc', upf%has_wfc, default=upf%tpawp) CALL iotk_scan_attr(attr, 'has_gipaw', upf%has_gipaw, default=.false.) !EMINE CALL iotk_scan_attr(attr, 'paw_as_gipaw', upf%paw_as_gipaw, default=.false.) ! CALL iotk_scan_attr(attr, 'core_correction',upf%nlcc) ! CALL iotk_scan_attr(attr, 'functional', upf%dft) CALL iotk_scan_attr(attr, 'functional', dft_buffer) len_buffer=len_trim(dft_buffer) if (len_buffer > len(upf%dft)) & call errore('read_upf_v2','String defining DFT is too long',len_buffer) upf%dft=TRIM(dft_buffer) CALL iotk_scan_attr(attr, 'z_valence', upf%zp) CALL iotk_scan_attr(attr, 'total_psenergy', upf%etotps, default=0._dp) CALL iotk_scan_attr(attr, 'wfc_cutoff', upf%ecutwfc, default=0._dp) CALL iotk_scan_attr(attr, 'rho_cutoff', upf%ecutrho, default=0._dp) CALL iotk_scan_attr(attr, 'l_max', upf%lmax) CALL iotk_scan_attr(attr, 'l_max_rho', upf%lmax_rho, default=2*upf%lmax) CALL iotk_scan_attr(attr, 'l_local', upf%lloc, default=0) CALL iotk_scan_attr(attr, 'mesh_size', upf%mesh) CALL iotk_scan_attr(attr, 'number_of_wfc', upf%nwfc) CALL iotk_scan_attr(attr, 'number_of_proj', upf%nbeta) ! !CALL iotk_scan_end(u, 'PP_HEADER') !CALL debug_pseudo_upf(upf) ! RETURN END SUBROUTINE read_upf_header ! SUBROUTINE read_upf_mesh(u, upf, grid) USE radial_grids, ONLY: allocate_radial_grid IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data TYPE(radial_grid_type),OPTIONAL,INTENT(INOUT),TARGET :: grid ! INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr LOGICAL :: found ! CALL iotk_scan_begin(u, 'PP_MESH', attr=attr) CALL iotk_scan_attr(attr, 'dx', upf%dx, default=0._dp) CALL iotk_scan_attr(attr, 'mesh', upf%mesh, default=upf%mesh) CALL iotk_scan_attr(attr, 'xmin', upf%xmin, default=0._dp) CALL iotk_scan_attr(attr, 'rmax', upf%rmax, default=0._dp) CALL iotk_scan_attr(attr, 'zmesh',upf%zmesh, default=0._dp) IF (present(grid)) THEN CALL allocate_radial_grid(grid, upf%mesh) ! grid%dx = upf%dx grid%mesh = upf%mesh grid%xmin = upf%xmin grid%rmax = upf%rmax grid%zmesh = upf%zmesh ! upf%grid => grid upf%r => upf%grid%r upf%rab => upf%grid%rab ELSE ALLOCATE( upf%r( upf%mesh ), upf%rab( upf%mesh ) ) ENDIF ! CALL iotk_scan_dat(u, 'PP_R', upf%r(1:upf%mesh)) CALL iotk_scan_dat(u, 'PP_RAB', upf%rab(1:upf%mesh)) ! IF (present(grid)) THEN ! Reconstruct additional grids upf%grid%r2 = upf%r**2 upf%grid%sqr = sqrt(upf%r) upf%grid%rm1 = upf%r**(-1) upf%grid%rm2 = upf%r**(-2) upf%grid%rm3 = upf%r**(-3) ENDIF CALL iotk_scan_end(u, 'PP_MESH') ! RETURN END SUBROUTINE read_upf_mesh ! SUBROUTINE read_upf_nonlocal(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb,mb,ln,lm,l,nmb,ierr=0 !INTEGER :: nb_=-1,mb_=-1,l_=-1,nmb_=-1 REAL(DP):: zeros(upf%mesh) LOGICAL :: isnull, found zeros=0._dp ! ! modified by AF !IF (upf%tcoulombp) RETURN IF (upf%tcoulombp) upf%nbeta = 0 ! ! Allocate space for non-local part IF ( upf%nbeta == 0) then upf%nqf = 0 upf%nqlc= 0 upf%qqq_eps= -1._dp upf%kkbeta = 0 ALLOCATE( upf%kbeta(1), & upf%lll(1), & upf%beta(upf%mesh,1), & upf%dion(1,1), & upf%rinner(1), & upf%qqq(1,1), & upf%qfunc(upf%mesh,1),& upf%qfcoef(1,1,1,1), & upf%rcut(1), & upf%rcutus(1), & upf%els_beta(1) ) ! !CALL iotk_scan_end(u, 'PP_NONLOCAL') RETURN END IF ! ! CALL iotk_scan_begin(u, 'PP_NONLOCAL') ! ALLOCATE( upf%kbeta(upf%nbeta), & upf%lll(upf%nbeta), & upf%beta(upf%mesh, upf%nbeta), & upf%dion(upf%nbeta, upf%nbeta),& upf%rcut(upf%nbeta), & upf%rcutus(upf%nbeta), & upf%els_beta(upf%nbeta) ) ! ! Read the projectors: DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_BETA'//iotk_index( nb ), & upf%beta(:,nb), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%els_beta(nb), default='Xn') CALL iotk_scan_attr(attr, 'angular_momentum', upf%lll(nb)) CALL iotk_scan_attr(attr, 'cutoff_radius_index', upf%kbeta(nb), default=upf%mesh) CALL iotk_scan_attr(attr, 'cutoff_radius', upf%rcut(nb), default=0._dp) CALL iotk_scan_attr(attr, 'ultrasoft_cutoff_radius', upf%rcutus(nb), default=0._dp) ! ! Old version of UPF PPs v.2 contained an error in the tag. ! To be able to read the old PPs we need the following ! IF ( upf%rcutus(nb)==0._DP) & CALL iotk_scan_attr(attr,'norm_conserving_radius',upf%rcutus(nb), & default=0._dp) ENDDO ! ! Read the hamiltonian terms D_ij CALL iotk_scan_dat(u, 'PP_DIJ', upf%dion, attr=attr) ! CALL iotk_scan_attr(attr, 'non_zero_elements', upf%nd) ! ! Read the augmentation charge section augmentation : & IF(upf%tvanp .or. upf%tpawp) THEN ! CALL iotk_scan_begin(u, 'PP_AUGMENTATION', attr=attr) CALL iotk_scan_attr(attr, 'q_with_l', upf%q_with_l) CALL iotk_scan_attr(attr, 'nqf', upf%nqf) CALL iotk_scan_attr(attr, 'nqlc', upf%nqlc, default=2*upf%lmax+1) IF (upf%tpawp) THEN CALL iotk_scan_attr(attr,'shape', upf%paw%augshape, default='UNKNOWN') CALL iotk_scan_attr(attr,'cutoff_r', upf%paw%raug, default=0._dp) CALL iotk_scan_attr(attr,'cutoff_r_index', upf%paw%iraug, default=upf%mesh) CALL iotk_scan_attr(attr,'l_max_aug', upf%paw%lmax_aug, default=upf%lmax_rho) ENDIF ! a negative number means that all qfunc are stored CALL iotk_scan_attr(attr,'augmentation_epsilon',upf%qqq_eps, default=-1._dp) ! ALLOCATE( upf%rinner( upf%nqlc ) ) ALLOCATE( upf%qqq ( upf%nbeta, upf%nbeta ) ) IF ( upf%q_with_l ) THEN ALLOCATE( upf%qfuncl ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2, 0:2*upf%lmax ) ) upf%qfuncl=0._dp ELSE ALLOCATE( upf%qfunc (upf%mesh, upf%nbeta*(upf%nbeta+1)/2) ) ENDIF ! ! Read the integrals of the Q functions CALL iotk_scan_dat(u, 'PP_Q',upf%qqq ) ! ! read charge multipoles (only if PAW) IF( upf%tpawp ) THEN ALLOCATE(upf%paw%augmom(upf%nbeta,upf%nbeta, 0:2*upf%lmax)) CALL iotk_scan_dat(u, 'PP_MULTIPOLES', upf%paw%augmom) ENDIF ! ! Read polinomial coefficients for Q_ij expansion at small radius IF(upf%nqf <= 0) THEN upf%rinner(:) = 0._dp ALLOCATE( upf%qfcoef(1,1,1,1) ) upf%qfcoef = 0._dp ELSE ALLOCATE( upf%qfcoef( MAX( upf%nqf,1 ), upf%nqlc, upf%nbeta, upf%nbeta ) ) CALL iotk_scan_dat(u, 'PP_QFCOEF',upf%qfcoef, attr=attr) CALL iotk_scan_dat(u, 'PP_RINNER',upf%rinner, attr=attr) ENDIF ! ! Read augmentation charge Q_ij ultrasoft_or_paw : & IF( upf%tvanp) THEN DO nb = 1,upf%nbeta ln = upf%lll(nb) DO mb = nb,upf%nbeta lm = upf%lll(mb) nmb = mb * (mb-1) /2 + nb q_with_l : & IF( upf%q_with_l ) THEN DO l = abs(ln-lm),ln+lm,2 ! only even terms CALL iotk_scan_dat(u, 'PP_QIJL'//iotk_index((/nb,mb,l/)),& upf%qfuncl(:,nmb,l),default=zeros,attr=attr) IF( upf%tpawp) upf%qfuncl(upf%paw%iraug+1:,nmb,l) = 0._dp ENDDO ELSE q_with_l CALL iotk_scan_dat(u, 'PP_QIJ'//iotk_index((/nb,mb/)),& upf%qfunc(:,nmb),attr=attr,default=zeros) ENDIF q_with_l ENDDO ENDDO ! ENDIF ultrasoft_or_paw ! CALL iotk_scan_end(u, 'PP_AUGMENTATION') ! ENDIF augmentation ! ! Maximum radius of beta projector: outer radius to integrate upf%kkbeta = MAXVAL(upf%kbeta(1:upf%nbeta)) ! For PAW augmentation charge may extend a bit further: IF(upf%tpawp) upf%kkbeta = MAX(upf%kkbeta, upf%paw%iraug) ! CALL iotk_scan_end(u, 'PP_NONLOCAL') ! RETURN END SUBROUTINE read_upf_nonlocal ! SUBROUTINE read_upf_pswfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw ! CALL iotk_scan_begin(u, 'PP_PSWFC') ! ALLOCATE( upf%chi(upf%mesh,upf%nwfc) ) ALLOCATE( upf%els(upf%nwfc), & upf%oc(upf%nwfc), & upf%lchi(upf%nwfc), & upf%nchi(upf%nwfc), & upf%rcut_chi(upf%nwfc), & upf%rcutus_chi(upf%nwfc), & upf%epseu(upf%nwfc) & ) ! DO nw = 1,upf%nwfc CALL iotk_scan_dat(u, 'PP_CHI'//iotk_index(nw), & upf%chi(:,nw), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%els(nw), default='Xn') CALL iotk_scan_attr(attr, 'l', upf%lchi(nw)) CALL iotk_scan_attr(attr, 'occupation', upf%oc(nw)) CALL iotk_scan_attr(attr, 'n', upf%nchi(nw), default=upf%lchi(nw)-1) CALL iotk_scan_attr(attr, 'pseudo_energy', upf%epseu(nw), default=0._dp) CALL iotk_scan_attr(attr, 'cutoff_radius', upf%rcut_chi(nw),default=0._dp) CALL iotk_scan_attr(attr, 'ultrasoft_cutoff_radius', upf%rcutus_chi(nw),default=0._dp) ENDDO ! CALL iotk_scan_end(u, 'PP_PSWFC') ! RETURN END SUBROUTINE read_upf_pswfc SUBROUTINE read_upf_full_wfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr LOGICAL :: exst ! INTEGER :: nb ! IF(.not. upf%has_wfc) RETURN ! CALL iotk_scan_begin(u, 'PP_FULL_WFC') ! ALLOCATE( upf%aewfc(upf%mesh, upf%nbeta) ) DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_AEWFC'//iotk_index(nb), & upf%aewfc(:,nb), attr=attr) ENDDO IF (upf%has_so .and. upf%tpawp) THEN ALLOCATE( upf%paw%aewfc_rel(upf%mesh, upf%nbeta) ) nb_loop: DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_AEWFC_REL'//iotk_index(nb), & upf%paw%aewfc_rel(:,nb), attr=attr, found=exst) IF (.not.exst) THEN upf%paw%aewfc_rel=0.0_DP EXIT nb_loop ENDIF ENDDO nb_loop ENDIF ALLOCATE( upf%pswfc(upf%mesh, upf%nbeta) ) DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_PSWFC'//iotk_index(nb), & upf%pswfc(:,nb), attr=attr) ENDDO CALL iotk_scan_end(u, 'PP_FULL_WFC') ! END SUBROUTINE read_upf_full_wfc ! SUBROUTINE read_upf_spin_orb(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw, nb ! IF (.not. upf%has_so) RETURN ! CALL iotk_scan_begin(u, 'PP_SPIN_ORB') ! ALLOCATE (upf%nn(upf%nwfc)) ALLOCATE (upf%jchi(upf%nwfc)) ! DO nw = 1,upf%nwfc CALL iotk_scan_empty(u, 'PP_RELWFC'//iotk_index(nw),& attr=attr) !CALL iotk_scan_attr(attr, 'els', upf%els(nw)) ! already read CALL iotk_scan_attr(attr, 'nn', upf%nn(nw)) !CALL iotk_scan_attr(attr, 'lchi', upf%lchi(nw)) ! already read CALL iotk_scan_attr(attr, 'jchi', upf%jchi(nw)) !CALL iotk_scan_attr(attr, 'oc', upf%oc(nw)) ! already read ENDDO ! ALLOCATE(upf%jjj(upf%nbeta)) ! DO nb = 1,upf%nbeta CALL iotk_scan_empty(u, 'PP_RELBETA'//iotk_index(nb),& attr=attr) CALL iotk_scan_attr(attr, 'lll', upf%lll(nb)) CALL iotk_scan_attr(attr, 'jjj', upf%jjj(nb)) ENDDO ! CALL iotk_scan_end(u, 'PP_SPIN_ORB') ! RETURN END SUBROUTINE read_upf_spin_orb ! SUBROUTINE read_upf_paw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb,nb1 IF (.not. upf%tpawp ) RETURN CALL iotk_scan_begin(u, 'PP_PAW', attr=attr) CALL iotk_scan_attr(attr, 'paw_data_format', upf%paw_data_format) IF(upf%paw_data_format /= 2) & CALL errore('read_upf_v2::paw',& 'Unknown format of PAW data.',1) CALL iotk_scan_attr(attr, 'core_energy', upf%paw%core_energy, default=0._dp) ! ! Full occupation (not only > 0 ones) ALLOCATE( upf%paw%oc(upf%nbeta) ) CALL iotk_scan_dat(u, 'PP_OCCUPATIONS',upf%paw%oc) ! ! All-electron core charge ALLOCATE( upf%paw%ae_rho_atc(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_AE_NLCC', upf%paw%ae_rho_atc) ! ! All-electron local potential ALLOCATE( upf%paw%ae_vloc(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_AE_VLOC', upf%paw%ae_vloc) ! ALLOCATE(upf%paw%pfunc(upf%mesh, upf%nbeta,upf%nbeta) ) upf%paw%pfunc(:,:,:) = 0._dp IF (upf%has_so) THEN ALLOCATE(upf%paw%pfunc_rel(upf%mesh, upf%nbeta,upf%nbeta) ) upf%paw%pfunc_rel(:,:,:) = 0._dp ENDIF DO nb=1,upf%nbeta DO nb1=1,nb upf%paw%pfunc (1:upf%mesh, nb, nb1) = & upf%aewfc(1:upf%mesh, nb) * upf%aewfc(1:upf%mesh, nb1) IF (upf%has_so) THEN upf%paw%pfunc_rel (1:upf%paw%iraug, nb, nb1) = & upf%paw%aewfc_rel(1:upf%paw%iraug, nb) * & upf%paw%aewfc_rel(1:upf%paw%iraug, nb1) ! ! The small component is added to pfunc. pfunc_rel is useful only ! to add a small magnetic contribution ! upf%paw%pfunc (1:upf%paw%iraug, nb, nb1) = & upf%paw%pfunc (1:upf%paw%iraug, nb, nb1) + & upf%paw%pfunc_rel (1:upf%paw%iraug, nb, nb1) ENDIF upf%paw%pfunc(upf%paw%iraug+1:,nb,nb1) = 0._dp ! upf%paw%pfunc (1:upf%mesh, nb1, nb) = upf%paw%pfunc (1:upf%mesh, nb, nb1) IF (upf%has_so) upf%paw%pfunc_rel (1:upf%mesh, nb1, nb) = & upf%paw%pfunc_rel (1:upf%mesh, nb, nb1) ENDDO ENDDO ! ! Pseudo wavefunctions (not only the ones for oc > 0) ! All-electron wavefunctions ALLOCATE(upf%paw%ptfunc(upf%mesh, upf%nbeta,upf%nbeta) ) upf%paw%ptfunc(:,:,:) = 0._dp DO nb=1,upf%nbeta DO nb1=1,upf%nbeta upf%paw%ptfunc (1:upf%mesh, nb, nb1) = & upf%pswfc(1:upf%mesh, nb) * upf%pswfc(1:upf%mesh, nb1) upf%paw%ptfunc(upf%paw%iraug+1:,nb,nb1) = 0._dp ! upf%paw%ptfunc (1:upf%mesh, nb1, nb) = upf%paw%ptfunc (1:upf%mesh, nb, nb1) ENDDO ENDDO ! ! Finalize CALL iotk_scan_end(u, 'PP_PAW') RETURN END SUBROUTINE read_upf_paw ! SUBROUTINE read_upf_gipaw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF (.not. upf%has_gipaw ) RETURN CALL iotk_scan_begin(u, 'PP_GIPAW', attr=attr) CALL iotk_scan_attr(attr, 'gipaw_data_format', upf%gipaw_data_format) IF(upf%gipaw_data_format /= 2) & CALL infomsg('read_upf_v2::gipaw','Unknown format version') ! CALL iotk_scan_begin(u, 'PP_GIPAW_CORE_ORBITALS', attr=attr) CALL iotk_scan_attr(attr, 'number_of_core_orbitals', upf%gipaw_ncore_orbitals) ALLOCATE ( upf%gipaw_core_orbital_n(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_el(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_l(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital(upf%mesh,upf%gipaw_ncore_orbitals) ) DO nb = 1,upf%gipaw_ncore_orbitals CALL iotk_scan_dat(u, 'PP_GIPAW_CORE_ORBITAL'//iotk_index(nb), & upf%gipaw_core_orbital(:,nb), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%gipaw_core_orbital_el(nb)) CALL iotk_scan_attr(attr, 'n', upf%gipaw_core_orbital_n(nb)) CALL iotk_scan_attr(attr, 'l', upf%gipaw_core_orbital_l(nb)) ENDDO CALL iotk_scan_end(u, 'PP_GIPAW_CORE_ORBITALS') ! ! Read valence all-electron and pseudo orbitals and their labels !EMINE IF (upf%paw_as_gipaw) THEN !READ PAW DATA INSTEAD OF GIPAW upf%gipaw_wfs_nchannels = upf%nbeta ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_el(nb) = upf%els_beta(nb) upf%gipaw_wfs_ll(nb) = upf%lll(nb) upf%gipaw_wfs_ae(:,nb) = upf%aewfc(:,nb) ENDDO DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_ps(:,nb) = upf%pswfc(:,nb) ENDDO ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) upf%gipaw_vlocal_ae(:)= upf%vloc(:) upf%gipaw_vlocal_ps(:)= upf%paw%ae_vloc(:) DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_rcut(nb)=upf%rcut(nb) upf%gipaw_wfs_rcutus(nb)=upf%rcutus(nb) ENDDO ELSEIF (upf%tcoulombp) THEN upf%gipaw_wfs_nchannels = 1 ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_el(nb) = "1S" upf%gipaw_wfs_ll(nb) = 0 upf%gipaw_wfs_ae(:,nb) = 0.0d0 upf%gipaw_wfs_ps(:,nb) = 0.0d0 ENDDO ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) upf%gipaw_vlocal_ae(:)= 0.0d0 upf%gipaw_vlocal_ps(:)= 0.0d0 DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_rcut(nb)=1.0d0 upf%gipaw_wfs_rcutus(nb)=1.0d0 ENDDO ELSE CALL iotk_scan_begin(u, 'PP_GIPAW_ORBITALS', attr=attr) CALL iotk_scan_attr(attr, 'number_of_valence_orbitals', upf%gipaw_wfs_nchannels) ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) DO nb = 1,upf%gipaw_wfs_nchannels CALL iotk_scan_begin(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%gipaw_wfs_el(nb)) CALL iotk_scan_attr(attr, 'l', upf%gipaw_wfs_ll(nb)) CALL iotk_scan_attr(attr, 'cutoff_radius', upf%gipaw_wfs_rcut(nb)) CALL iotk_scan_attr(attr, 'ultrasoft_cutoff_radius', upf%gipaw_wfs_rcutus(nb),& default=upf%gipaw_wfs_rcut(nb)) ! read all-electron orbital CALL iotk_scan_dat(u, 'PP_GIPAW_WFS_AE', upf%gipaw_wfs_ae(:,nb)) ! read pseudo orbital CALL iotk_scan_dat(u, 'PP_GIPAW_WFS_PS', upf%gipaw_wfs_ps(:,nb)) ! CALL iotk_scan_end(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb)) ENDDO CALL iotk_scan_end(u, 'PP_GIPAW_ORBITALS') !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Read all-electron and pseudo local potentials ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) CALL iotk_scan_begin(u, 'PP_GIPAW_VLOCAL') CALL iotk_scan_dat(u, 'PP_GIPAW_VLOCAL_AE',upf%gipaw_vlocal_ae(:)) CALL iotk_scan_dat(u, 'PP_GIPAW_VLOCAL_PS',upf%gipaw_vlocal_ae(:)) CALL iotk_scan_end(u, 'PP_GIPAW_VLOCAL') ENDIF CALL iotk_scan_end(u, 'PP_GIPAW') RETURN END SUBROUTINE read_upf_gipaw ! END SUBROUTINE read_upf_v2 ! END MODULE read_upf_v2_module espresso-5.0.2/Modules/kernel_table.f900000644000700200004540000002322312053145633016743 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! Copyright (C) 2009 Brian Kolb, Timo Thonhauser - Wake Forest University ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE kernel_table !! This module is used to read in the kernel table file !! "vdW_kernel_table" and store some of the important parameters. The !! top of the vdW_kernel_table file holds the number of q points, the !! number of radial points (r) used in the kernel generation, the maximum !! value of r used (r is the parameter in the kernel function d=q*r where !! q is defined in DION equation 11), and the values of the q points !! used. These parameters are stored as public parameters for use in !! various routines. This routine also reads the tabulated values of the !! Fourier transformed kernel function for each pair of q values (see !! SOLER equations 3 and 11). Since these kernel functions need to be !! interpolated using splines, the second derivatives of the Fourier !! transformed kernel functions (phi_alpha_beta) are also tabulated in !! the vdW_kernel_table and are read in here. !! This is done in a module because there are quite a few subroutines in !! xc_vdW_DF.f90 that require knowledge of the number (identity) of q !! points, the maximum value of the radius, and, of course, the tabulated !! kernel function and its second derivatives (for spline interpolation). !! Putting this routine in a module meas that those routines can just use !! kernel_table rather than passing variables around all over the place. USE kinds, ONLY : dp USE io_files, ONLY : pseudo_dir USE constants, ONLY : pi use wrappers, ONLY : md5_from_file implicit none private save !! Variables to be used by various routines in xc_vdW_DF.f90, declared !! public so they can be seen from outside ! -------------------------------------------------------------------------- public :: Nqs, Nr_points, r_max, q_mesh, q_cut, q_min, dk public :: kernel, d2phi_dk2 public :: initialize_kernel_table public :: vdw_table_name public :: vdw_kernel_md5_cksum integer :: Nqs, Nr_points !! The number of q points and radial points ! !! used in generating the kernel phi(q1*r, q2*r) ! !! (see DION 14-16 and SOLER 3) real(dp) :: r_max, q_cut, q_min, dk !! The maximum value of r, the maximum and minimum ! !! values of q and the k-space spacing of grid points. ! !! Note that, during a vdW run, values of q0 found ! !! larger than q_cut will be saturated (SOLER 6-7) to ! !! q_cut real(dp), allocatable :: q_mesh(:) !! The values of all the q points used real(dp), allocatable :: kernel(:,:,:) !! A matrix holding the Fourier transformed kernel function ! !! for each pair of q values. The ordering is ! !! kernel(k_point, q1_value, q2_value) real(dp), allocatable :: d2phi_dk2(:,:,:) !! A matrix holding the second derivatives of the above ! !! kernel matrix at each of the q points. Stored as ! !! d2phi_dk2(k_point, q1_value, q2_value) ! character(len=256) :: vdw_table_name !! If present from input use this name CHARACTER(LEN=30) :: double_format = "(1p4e23.14)" CHARACTER(len=32) :: vdw_kernel_md5_cksum = 'NOT SET' ! INTEGER, EXTERNAL :: find_free_unit ! -------------------------------------------------------------------------- CONTAINS !! ################################################################################### !! | | !! | INITIALIZE_KERNEL_TABLE | !! |___________________________| !! Subroutine that actually reads the kernel file and stores the parameters. This routine !! is called only once, at the start of a vdW run. subroutine initialize_kernel_table() integer :: q1_i, q2_i !! Indexing variables integer :: kernel_file !! The unit number for the kernel file logical :: file_exists !! A variable to say whether ! !! needed file exists character(len=1000) :: kernel_file_name !! The path to the kernel file. ! !! Although this name must be ! !! "vdW_kernel_table", this variable ! !! is used to hold the entire path ! !! since we check 3 places for it. !!write(*,*) "Reading kernel table ... " !! Get the unit number for the kernel file kernel_file = find_free_unit() !! !! if (TRIM(vdw_table_name)==' ') then vdw_table_name='vdW_kernel_table' endif if (allocated(kernel)) then return end if !! First we check the current directory for the vdW_kernel_table file !! If it is not found there it is looked for in the pseudopotential !! directory. If it's not there the default kernel file installed !! in the PW directory of the PWSCF source is tried. If none of those !! exist the code crashes. kernel_file_name=vdw_table_name inquire(file=kernel_file_name, exist=file_exists) !! If the file is found in the current directory we use that one !! ------------------------------------------------------------------------------------------ if (.not. file_exists) then !! No "vdW_kernel_table" file in the current directory. Try the pseudopotential directory !! ----------------------------------------------------------------------------------------- kernel_file_name = trim(pseudo_dir)//'/'//vdw_table_name inquire(file=kernel_file_name, exist=file_exists) if (.not. file_exists) then !! Finally, try the default pw_dir/PW/vdW_kernel_table file !! -------------------------------------------------------------------------------------- kernel_file_name = 'DEFAULT_KERNEL_TABLE_FILE' inquire(file=kernel_file_name, exist=file_exists) if (.not. file_exists) then !! No "vdW_kernel_table" file could be found. Time to die. call errore('read_kernel_table', 'No \"vdW_kernel_table\" file could be found',1) end if end if end if !! Generates the md5 file CALL md5_from_file(kernel_file_name, vdw_kernel_md5_cksum) !! Open the file to read open(unit=kernel_file, file=kernel_file_name, status='old', form='formatted', action='read') !! Read in the number of q points used for this kernel file, the !! number of r points, and the maximum value of the r point read(kernel_file, '(2i5)') Nqs, Nr_points read(kernel_file, double_format) r_max allocate( q_mesh(Nqs) ) allocate( kernel(0:Nr_points,Nqs,Nqs), d2phi_dk2(0:Nr_points,Nqs,Nqs) ) !! Read in the values of the q points used to generate this kernel read(kernel_file, double_format) q_mesh !! For each pair of q values, read in the function phi_q1_q2(k). !! That is, the fourier transformed kernel function assuming q1 and q2 !! for all the values of r used. !! ---------------------------------------------------------------------------------------------- do q1_i = 1, Nqs do q2_i = 1, q1_i read(kernel_file, double_format) kernel(0:Nr_points, q1_i, q2_i) kernel(0:Nr_points, q2_i, q1_i) = kernel(0:Nr_points, q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------------- !! Again, for each pair of q values (q1 and q2), read in the value !! of the second derivative of the above mentiond Fourier transformed !! kernel function phi_alpha_beta(k). These are used for spline !! interpolation of the Fourier transformed kernel. !! ----------------------------------------------------------------------------------------------- do q1_i = 1, Nqs do q2_i = 1, q1_i read(kernel_file, double_format) d2phi_dk2(0:Nr_points, q1_i, q2_i) d2phi_dk2(0:Nr_points, q2_i, q1_i) = d2phi_dk2(0:Nr_points, q1_i, q2_i) end do end do !! ----------------------------------------------------------------------------------------------- close(kernel_file) !! Define a few more vaiables useful to some of the subroutines in xc_vdW_DF.f90 !! ------------------------------------------------------------------------------------------------ q_cut = q_mesh(Nqs) q_min = q_mesh(1) dk = 2.0D0*pi/r_max !! ------------------------------------------------------------------------------------------------ end subroutine initialize_kernel_table !! ################################################################################################# end MODULE kernel_table espresso-5.0.2/Modules/parameters.f900000644000700200004540000000135212053145633016456 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE parameters IMPLICIT NONE SAVE INTEGER, PARAMETER :: & ntypx = 10, &! max number of different types of atom npsx = ntypx, &! max number of different PPs (obsolete) nsx = ntypx, &! max number of atomic species (CP) npk = 40000, &! max number of k-points lmaxx = 3, &! max non local angular momentum (l=0 to lmaxx) lqmax= 2*lmaxx+1 ! max number of angular momenta of Q END MODULE parameters espresso-5.0.2/Modules/timestep.f900000644000700200004540000000350612053145633016150 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! AB INITIO COSTANT PRESSURE MOLECULAR DYNAMICS ! ---------------------------------------------- ! Car-Parrinello Parallel Program ! Carlo Cavazzoni - Gerardo Ballabio ! SISSA, Trieste, Italy - 1997-99 ! Last modified: Sat Feb 12 11:43:48 MET 2000 ! ---------------------------------------------- ! BEGIN manual MODULE time_step ! (describe briefly what this module does...) ! ---------------------------------------------- ! routines in this module: ! SUBROUTINE set_time_step(dt) ! ---------------------------------------------- ! END manual ! ---------------------------------------------- USE kinds IMPLICIT NONE SAVE PRIVATE ! ... declare module-scope variables REAL(DP) :: delthal, twodelt, fordt2, dt2, dt2by2, delt REAL(DP) :: tps ! elapsed simulated time in picoseconds PUBLIC :: set_time_step, tps, delt, twodelt, dt2, dt2by2 ! end of module-scope declarations ! ---------------------------------------------- CONTAINS ! subroutines ! ---------------------------------------------- ! ---------------------------------------------- SUBROUTINE set_time_step(dt) REAL(DP), INTENT(IN) :: dt delt = dt dt2 = dt ** 2 fordt2 = 4.0_DP * dt2 delthal = 0.5_DP * delt twodelt = 2.0_DP * delt dt2by2 = 0.5_DP * dt2 tps = 0.0_DP RETURN END SUBROUTINE set_time_step ! ---------------------------------------------- ! ---------------------------------------------- END MODULE time_step espresso-5.0.2/Modules/read_xml.f900000644000700200004540000004214612053145633016114 0ustar marsamoscm! !---------------------------------------------------------! ! This module handles the reading of fields and cards ! ! in case of xml input ! ! ! ! written by Simone Ziraldo (08/2010) ! !---------------------------------------------------------! MODULE read_xml_module ! ! USE input_parameters ! USE io_global, ONLY : ionode, ionode_id, xmlinputunit USE mp, ONLY : mp_bcast USE iotk_module, ONLY : iotk_attlenx ! ! ...default and checkin of fields ! USE read_namelists_module, ONLY : control_defaults, system_defaults,& ee_defaults, electrons_defaults, wannier_ac_defaults, ions_defaults, & cell_defaults, press_ai_defaults, wannier_defaults, control_bcast, & system_bcast, ee_bcast, electrons_bcast, ions_bcast,cell_bcast, & press_ai_bcast, wannier_bcast, wannier_ac_bcast, control_checkin, & system_checkin, electrons_checkin, ions_checkin, cell_checkin, & wannier_checkin, wannier_ac_checkin, fixval ! ! USE read_xml_fields_module, ONLY : read_xml_fields USE read_xml_cards_module, ONLY : card_xml_atomic_species, card_xml_atomic_list, & card_xml_chain, card_xml_cell, card_xml_kpoints, card_xml_occupations, & card_xml_constraints, card_xml_climbing_images, card_xml_plot_wannier, card_default, card_bcast ! ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: read_xml ! CONTAINS ! ! !--------------------------------------------------------! ! This routine organizes reading of the xml file ! ! depending on the program ! !--------------------------------------------------------! SUBROUTINE read_xml( prog, attr ) ! ! IMPLICIT NONE ! ! CHARACTER(len = 2), INTENT(IN) :: prog CHARACTER(len = *), INTENT(IN) :: attr INTEGER :: ierr ! SELECT CASE (prog) ! CASE ('PW') ! CALL read_xml_common( attr, 'PW' ) ! ! CALL read_xml_pw() ! ! ! CASE ('NEB') ! ! ! CALL read_xml_common( attr, 'PW' ) ! ! CASE ('CP') ! CALL read_xml_common( attr, 'CP' ) CALL read_xml_cp() ! CASE default ! CALL errore('read_xml', "xml input isn't implemented for "//prog//' program', 1) ! END SELECT ! ! RETURN ! END SUBROUTINE read_xml ! ! !--------------------------------------------------------! ! Common part of the reading: setting default values, ! ! reading of cell and atomic_species cards ! !--------------------------------------------------------! SUBROUTINE read_xml_common( attr, prog ) ! ! USE iotk_module, ONLY : iotk_scan_attr ! ! IMPLICIT NONE ! ! CHARACTER (len = *), INTENT(IN) :: attr, prog ! CHARACTER (len = 256) :: dummy INTEGER :: ierr LOGICAL :: found ! ! ! ... default settings for all parameters ! CALL control_defaults( prog ) CALL system_defaults( prog ) CALL electrons_defaults( prog ) CALL ions_defaults( prog ) CALL cell_defaults( prog ) CALL ee_defaults( prog ) CALL wannier_defaults( prog ) CALL wannier_ac_defaults( prog ) ! ! ! ... reading the attributes of the xml root node ! IF (ionode) THEN ! CALL iotk_scan_attr( attr, 'calculation', dummy, found = found, ierr = ierr ) IF ( .not. found ) CALL errore( 'read_xml_cp', 'attribute calculation of root & &node is compulsory', abs(ierr) ) ! IF ( ierr /= 0 ) CALL errore( 'read_xml_cp', 'error reading calculation & &attribute of root node', 1 ) calculation = trim( dummy ) ! CALL iotk_scan_attr( attr, 'prefix', dummy, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_cp', 'error reading prefix attribute & &of root node', abs(ierr) ) IF ( found ) prefix = trim( dummy ) ! CALL iotk_scan_attr( attr, 'title', dummy, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_cp', 'error reading title attribute & &of root node', 1 ) IF ( found ) title = trim( dummy ) ! END IF ! ! ... bcast the read attributes ! CALL mp_bcast( calculation, ionode_id ) CALL mp_bcast( prefix, ionode_id ) CALL mp_bcast( title, ionode_id ) ! ! ... fixing some default values using the calculation variable ! CALL fixval( prog ) ! ! ... why this is compulsory? ( read autopilot.f90 ) CALL card_default( 'INIT_AUTOPILOT' ) ! ! ! ... reading CELL card ! CALL card_default( 'CELL' ) ! IF ( ionode ) THEN ! CALL card_xml_cell( ) ! END IF ! CALL card_bcast( 'CELL' ) ! ! ! ... reading ATOMIC_SPECIES card ! CALL card_default( 'ATOMIC_SPECIES' ) ! IF ( ionode ) THEN ! CALL card_xml_atomic_species( ) ! END IF ! CALL card_bcast( 'ATOMIC_SPECIES' ) ! RETURN ! END SUBROUTINE read_xml_common ! ! !--------------------------------------------------------! ! The rest of the reading for PW program: fields and ! ! other cards ! !--------------------------------------------------------! SUBROUTINE read_xml_pw( ) ! ! USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end USE iotk_unit_interf, ONLY : iotk_rewind ! ! IMPLICIT NONE ! ! INTEGER :: ierr CHARACTER (len = iotk_attlenx) :: attr CHARACTER (len = 30) :: field, card LOGICAL :: found_al, found ! ! ! ... reading ATOMIC_LIST or CHAIN cards ! CALL card_default( 'ATOMIC_LIST' ) CALL card_default( 'CHAIN' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, 'atomic_list', found = found_al, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning begin & &of atomic_list card', abs(ierr) ) ! IF ( found_al ) THEN ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning end & &of atomic_list card', abs( ierr ) ) ! CALL card_xml_atomic_list( ) ! ELSE ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! CALL iotk_scan_begin( xmlinputunit, 'chain', found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning begin & &of chain card', abs( ierr ) ) ! IF ( found ) THEN CALL iotk_scan_end( xmlinputunit, 'chain', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning & &end of chain card', ABS( ierr ) ) CALL card_xml_chain( ) ELSE CALL errore('read_xml_pw',"neither atomic_list nor chain found", 1 ) ENDIF ENDIF ENDIF ! CALL mp_bcast( found_al, ionode_id) ! IF (found_al) THEN CALL card_bcast( 'ATOMIC_LIST' ) ELSE CALL card_bcast( 'CHAIN' ) ENDIF ! ! ! ! ... reading all the FIELDS ! ! ! ... we need to know if startingwfc and starting pot are set startingwfc = 'none' startingpot = 'none' ! IF (ionode) THEN ! CALL read_xml_fields() ! END IF ! ! ! ... some fixval that the previous call of fixval wasn't ! ... able to do ! IF ( calculation == 'nscf' .or. calculation == 'bands' ) THEN ! IF (startingpot == 'none') startingpot = 'file' IF (startingwfc == 'none') startingwfc = 'atomic' ! ELSE IF ( restart_mode == 'from_scratch' ) THEN ! IF (startingwfc == 'none') startingwfc = 'atomic' IF (startingpot == 'none') startingpot = 'atomic' ! ELSE ! IF (startingwfc == 'none') startingwfc = 'file' IF (startingpot == 'none') startingpot = 'file' ! END IF ! ! ! ! ... checkin of all the parameters inserted in the fields ! IF ( ionode ) THEN ! CALL control_checkin( 'PW' ) CALL system_checkin( 'PW' ) CALL electrons_checkin( 'PW' ) CALL ions_checkin( 'PW' ) CALL cell_checkin( 'PW' ) CALL wannier_checkin( 'PW' ) CALL wannier_ac_checkin( 'PW' ) ! END IF ! ! ! ... bcast all the field parameters ! CALL control_bcast( ) CALL system_bcast( ) CALL electrons_bcast( ) CALL ions_bcast( ) CALL cell_bcast() CALL press_ai_bcast() CALL ee_bcast() CALL wannier_bcast() CALL wannier_ac_bcast() ! ! ! ... second step : reading of the remaining cards ! ! ! ... reading CONSTRAINTS card ! card = 'constraints' CALL card_default( 'CONSTRAINTS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim(card), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_constraints( ) ! CALL iotk_scan_end( xmlinputunit, trim(card), ierr = ierr) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'CONSTRAINTS' ) ! ! ! ... reading K_POINTS card ! card = 'k_points' CALL card_default( 'K_POINTS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), attr = attr, found = found,& ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_kpoints( attr ) ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! CALL errore('read_xml_pw', 'K_POINTS card was not found', 1) ! END IF ! END IF ! CALL card_bcast( 'K_POINTS' ) ! ! ! ... reading OCCUPATIONS card ! card = 'occupations' CALL card_default( 'OCCUPATIONS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_occupations() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'OCCUPATIONS' ) ! ! ! ... reading CLIMBING_IMAGES card ! card = 'climbing_images' CALL card_default( 'CLIMBING_IMAGES' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_climbing_images() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'CLIMBING_IMAGES' ) ! ! ! ! RETURN ! 9 CALL errore('read_xml_pw', 'error reading begin tag of '//card//' card', ABS( ierr ) ) 10 CALL errore('read_xml_pw', 'error reading end tag of '//card//' card', ABS( ierr ) ) ! ! END SUBROUTINE read_xml_pw ! ! ! !--------------------------------------------------------! ! The rest of the reading for CP program : fileds and ! ! other cards ! !--------------------------------------------------------! SUBROUTINE read_xml_cp( ) ! ! USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end USE iotk_unit_interf, ONLY : iotk_rewind ! ! IMPLICIT NONE ! ! INTEGER :: ierr CHARACTER (len = iotk_attlenx) :: attr CHARACTER (len = 30) :: field, card LOGICAL :: found ! ! ! ... reading ATOMIC_LIST cards ! ! CALL card_default( 'ATOMIC_LIST' ) ! IF ( ionode ) THEN ! IF ( ( trim( calculation ) == 'neb' ) .or. ( trim( calculation ) == 'smd' ) ) THEN CALL card_xml_chain ( ) ELSE CALL card_xml_atomic_list ( ) END IF ! END IF ! CALL card_bcast( 'ATOMIC_LIST' ) ! ! ! ... reading all the FIELDS ! IF (ionode) THEN ! CALL read_xml_fields() ! END IF ! ! ! ... checkin of all the parameters inserted in the fields ! IF ( ionode ) THEN ! CALL control_checkin( 'CP' ) CALL system_checkin( 'CP' ) CALL electrons_checkin( 'CP' ) CALL ions_checkin( 'CP' ) CALL cell_checkin( 'CP' ) CALL wannier_checkin( 'CP' ) CALL wannier_ac_checkin( 'CP' ) ! END IF ! ! ! ... bcast all the field parameters ! CALL control_bcast( ) CALL system_bcast( ) CALL electrons_bcast( ) CALL ions_bcast( ) CALL cell_bcast() CALL press_ai_bcast() CALL ee_bcast() CALL wannier_bcast() CALL wannier_ac_bcast() ! ! ! ... second step : reading of the remaining cards ! ! ! ... reading CONSTRAINTS card ! card = 'constraints' CALL card_default( 'CONSTRAINTS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim(card), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_constraints( ) ! CALL iotk_scan_end( xmlinputunit, trim(card), ierr = ierr) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'CONSTRAINTS' ) ! ! ... reading OCCUPATIONS card ! card = 'occupations' CALL card_default( 'OCCUPATIONS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_occupations() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'OCCUPATIONS' ) ! ! ! ... reading CLIMBING_IMAGES card ! card = 'climbing_images' CALL card_default( 'CLIMBING_IMAGES' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_climbing_images() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'CLIMBING_IMAGES' ) ! ! ! ... reading CLIMBING_IMAGES card ! card = 'plot_wannier' CALL card_default( 'PLOT_WANNIER' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_plot_wannier() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id ) ! IF ( found ) CALL card_bcast( 'PLOT_WANNIER' ) ! ! ! ! RETURN ! 9 CALL errore('read_xml_pw', 'error reading begin tag of '//card//' card', ABS( ierr ) ) 10 CALL errore('read_xml_pw', 'error reading end tag of '//card//' card', ABS( ierr ) ) ! ! END SUBROUTINE read_xml_cp ! ! ! END MODULE read_xml_module espresso-5.0.2/Modules/constraints_module.f900000644000700200004540000012510512053145633020232 0ustar marsamoscm! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define __REMOVE_CONSTRAINT_FORCE !#define __DEBUG_CONSTRAINTS #define __USE_PBC ! !---------------------------------------------------------------------------- MODULE constraints_module !---------------------------------------------------------------------------- ! ! ... variables and methods for constraint Molecular Dynamics and ! ... constrained ionic relaxations (the SHAKE algorithm based on ! ... lagrange multipliers) are defined here. ! ! ... most of these variables and methods are also used for meta-dynamics ! ... and free-energy smd : indeed the collective variables are implemented ! ... as constraints. ! ! ... written by Carlo Sbraccia ( 24/02/2004 ) ! ! ... references : ! ! ... 1) M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, ! ... Clarendon Press - Oxford (1986) ! USE kinds, ONLY : DP USE constants, ONLY : eps8, eps16, eps32, tpi, fpi USE io_global, ONLY : stdout ! USE basic_algebra_routines ! IMPLICIT NONE ! SAVE ! PRIVATE ! ! ... public methods ! PUBLIC :: init_constraint, & check_constraint, & remove_constr_force, & remove_constr_vec, & deallocate_constraint, & compute_dmax, & pbc, & constraint_grad ! ! ! ... public variables (assigned in the CONSTRAINTS input card) ! PUBLIC :: nconstr, & constr_tol, & constr_type, & constr, & lagrange, & constr_target, & dmax, & gp ! ! ... global variables ! INTEGER :: nconstr=0 REAL(DP) :: constr_tol INTEGER, ALLOCATABLE :: constr_type(:) REAL(DP), ALLOCATABLE :: constr(:,:) REAL(DP), ALLOCATABLE :: constr_target(:) REAL(DP), ALLOCATABLE :: lagrange(:) REAL(DP), ALLOCATABLE :: gp(:) REAL(DP) :: dmax ! CONTAINS ! ! ... public methods ! !----------------------------------------------------------------------- SUBROUTINE init_constraint( nat, tau, ityp, tau_units ) !----------------------------------------------------------------------- ! ! ... this routine is used to initialize constraints variables and ! ... collective variables (notice that collective variables are ! ... implemented as normal constraints but are read using specific ! ... input variables) ! USE input_parameters, ONLY : nconstr_inp, constr_tol_inp, & constr_type_inp, constr_inp, & constr_target_inp, & constr_target_set, nc_fields ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(in) :: tau(3,nat) INTEGER, INTENT(in) :: ityp(nat) REAL(DP), INTENT(in) :: tau_units ! INTEGER :: i, j INTEGER :: ia, ia0, ia1, ia2, ia3, n_type_coord1 REAL(DP) :: d0(3), d1(3), d2(3) REAL(DP) :: smoothing, r_c INTEGER :: type_coord1, type_coord2 REAL(DP) :: dtau(3), norm_dtau REAL(DP) :: k(3), phase, norm_k COMPLEX(DP) :: struc_fac CHARACTER(20),ALLOCATABLE :: tmp_type_inp(:) LOGICAL,ALLOCATABLE :: tmp_target_set(:) REAL(DP),ALLOCATABLE :: tmp_target_inp(:) ! CHARACTER(len=6), EXTERNAL :: int_to_char ! ! nconstr = nconstr_inp constr_tol = constr_tol_inp WRITE(stdout,'(5x,a,i4,a,f12.6)') & 'Setting up ',nconstr,' constraints; tolerance:', constr_tol ! ALLOCATE( lagrange( nconstr ) ) ALLOCATE( constr_target( nconstr ) ) ALLOCATE( constr_type( nconstr ) ) ! ALLOCATE( constr( nc_fields, nconstr ) ) ALLOCATE( gp( nconstr ) ) ALLOCATE( tmp_type_inp(nconstr),tmp_target_set(nconstr),tmp_target_inp(nconstr) ) ! ! ... setting constr to 0 to findout which elements have been ! ... set to an atomic index. This is required for CP. ! constr(:,:) = 0.0_DP ! constr(:,1:nconstr) = constr_inp(:,1:nconstr_inp) tmp_type_inp(1:nconstr) = constr_type_inp(1:nconstr_inp) tmp_target_set(1:nconstr) = constr_target_set(1:nconstr_inp) tmp_target_inp(1:nconstr) = constr_target_inp(1:nconstr_inp) ! ! ... set the largest possible distance among two atoms within ! ... the supercell ! IF ( any( tmp_type_inp(:) == 'distance' ) ) CALL compute_dmax() ! ! ... initializations of constr_target values for the constraints : ! DO ia = 1, nconstr ! SELECT CASE ( tmp_type_inp(ia) ) CASE( 'type_coord' ) ! ! ... constraint on global coordination-number, i.e. the average ! ... number of atoms of type B surrounding the atoms of type A ! constr_type(ia) = 1 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_type_coord( ia ) ENDIF ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') & ia,') type #',int(constr_inp(1,ia)) ,' coordination wrt type:', int(constr(2,ia)), & ' cutoff distance and smoothing:', constr(3:4,ia), & '; target:', constr_target(ia) ! CASE( 'atom_coord' ) ! ! ... constraint on local coordination-number, i.e. the average ! ... number of atoms of type A surrounding a specific atom ! constr_type(ia) = 2 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_atom_coord( ia ) ENDIF ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') & ia,') atom #',int(constr_inp(1,ia)) ,' coordination wrt type:', int(constr(2,ia)), & ' cutoff distance and smoothing:', constr(3:4,ia), & '; target:', constr_target(ia) ! CASE( 'distance' ) ! constr_type(ia) = 3 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_distance( ia ) ENDIF ! IF ( constr_target(ia) > dmax ) THEN ! WRITE( stdout, '(/,5X,"target = ",F12.8,/, & & 5X,"dmax = ",F12.8)' ) & constr_target(ia), dmax CALL errore( 'init_constraint', 'the target for constraint ' //& & trim( int_to_char( ia ) ) // ' is larger than ' //& & 'the largest possible value', 1 ) ! ENDIF ! WRITE(stdout,'(7x,i3,a,2i3,a,f12.6)') & ia,') distance between atoms: ', int(constr(1:2,ia)), '; target:', constr_target(ia) ! CASE( 'planar_angle' ) ! ! ... constraint on planar angle (for the notation used here see ! ... Appendix C of the Allen-Tildesley book) ! constr_type(ia) = 4 IF ( tmp_target_set(ia) ) THEN ! ! ... the input value of target for the torsional angle (given ! ... in degrees) is converted to the cosine of the angle ! constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_planar_angle( ia ) ENDIF ! WRITE(stdout, '(7x,i3,a,3i3,a,f12.6)') & ia,') planar angle between atoms: ', int(constr(1:3,ia)), '; target:', constr_target(ia) ! CASE( 'torsional_angle' ) ! ! ... constraint on torsional angle (for the notation used here ! ... see Appendix C of the Allen-Tildesley book) ! constr_type(ia) = 5 IF ( tmp_target_set(ia) ) THEN ! ! ... the input value of target for the torsional angle (given ! ... in degrees) is converted to the cosine of the angle ! constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_torsional_angle( ia ) ENDIF ! WRITE(stdout, '(7x,i3,a,4i3,a,f12.6)') & ia,') torsional angle between atoms: ', int(constr(1:4,ia)), '; target:', constr_target(ia) ! CASE( 'struct_fac' ) ! ! ... constraint on structure factor at a given k-vector ! constr_type(ia) = 6 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_structure_factor( ia ) ENDIF ! CASE( 'sph_struct_fac' ) ! ! ... constraint on spherical average of the structure factor for ! ... a given k-vector of norm k ! constr_type(ia) = 7 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_sph_structure_factor( ia ) ENDIF ! CASE( 'bennett_proj' ) ! ! ... constraint on the projection onto a given direction of the ! ... vector defined by the position of one atom minus the center ! ... of mass of the others ! ... ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, ! ... Ed. by A.S. Nowick and J.J. Burton, New York 1975 ) ! constr_type(ia) = 8 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_bennett_proj( ia ) ENDIF ! CASE DEFAULT ! CALL errore( 'init_constraint', & 'collective-variable or constrait type not implemented', 1 ) ! END SELECT ! ENDDO ! DEALLOCATE( tmp_type_inp,tmp_target_set,tmp_target_inp ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------- SUBROUTINE set_type_coord( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! type_coord1 = anint( constr(1,ia) ) type_coord2 = anint( constr(2,ia) ) ! r_c = constr(3,ia) ! smoothing = 1.0_DP / constr(4,ia) ! constr_target(ia) = 0.0_DP ! n_type_coord1 = 0 ! DO ia1 = 1, nat ! IF ( ityp(ia1) /= type_coord1 ) CYCLE ! DO ia2 = 1, nat ! IF ( ia2 == ia1 ) CYCLE ! IF ( ityp(ia2) /= type_coord2 ) CYCLE ! dtau(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! norm_dtau = norm( dtau(:) ) ! constr_target(ia) = constr_target(ia) + 1.0_DP / & ( exp( smoothing*( norm_dtau - r_c ) ) + 1.0_DP ) ! ENDDO ! n_type_coord1 = n_type_coord1 + 1 ! ENDDO ! constr_target(ia) = constr_target(ia) / dble( n_type_coord1 ) ! END SUBROUTINE set_type_coord ! !------------------------------------------------------------------- SUBROUTINE set_atom_coord( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! ia1 = anint( constr(1,ia) ) type_coord1 = anint( constr(2,ia) ) ! r_c = constr(3,ia) ! smoothing = 1.0_DP / constr(4,ia) ! constr_target(ia) = 0.0_DP ! DO ia2 = 1, nat ! IF ( ia2 == ia1 ) CYCLE ! IF ( ityp(ia2) /= type_coord1 ) CYCLE ! dtau(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! norm_dtau = norm( dtau(:) ) ! constr_target(ia) = constr_target(ia) + 1.0_DP / & ( exp( smoothing*( norm_dtau - r_c ) ) + 1.0_DP ) ! ENDDO ! END SUBROUTINE set_atom_coord ! !------------------------------------------------------------------- SUBROUTINE set_distance( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! ia1 = anint( constr(1,ia) ) ia2 = anint( constr(2,ia) ) ! dtau(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! constr_target(ia) = norm( dtau(:) ) ! END SUBROUTINE set_distance ! !------------------------------------------------------------------- SUBROUTINE set_planar_angle( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! ia0 = anint( constr(1,ia) ) ia1 = anint( constr(2,ia) ) ia2 = anint( constr(3,ia) ) ! d0(:) = pbc( ( tau(:,ia0) - tau(:,ia1) )*tau_units ) d1(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! d0(:) = d0(:) / norm( d0(:) ) d1(:) = d1(:) / norm( d1(:) ) ! constr_target(ia) = acos(- d0(:) .dot. d1(:))*360.0_DP/tpi ! END SUBROUTINE set_planar_angle ! !------------------------------------------------------------------- SUBROUTINE set_torsional_angle( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia REAL(DP) :: x01(3),x12(3),phi ! ia0 = anint( constr(1,ia) ) ia1 = anint( constr(2,ia) ) ia2 = anint( constr(3,ia) ) ia3 = anint( constr(4,ia) ) ! d0(:) = pbc( ( tau(:,ia0) - tau(:,ia1) )*tau_units ) d1(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) d2(:) = pbc( ( tau(:,ia2) - tau(:,ia3) )*tau_units ) ! x01(:) = cross(d0,d1) x12(:) = cross(d1,d2) ! IF((x01.dot.x01) ! ! ... in normal cases the constraint equation should be satisfied at ! ... the very first iteration. ! USE ions_base, ONLY : amass ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(inout) :: taup(3,nat) REAL(DP), INTENT(in) :: tau0(3,nat) INTEGER, INTENT(in) :: if_pos(3,nat) REAL(DP), INTENT(inout) :: force(3,nat) INTEGER, INTENT(in) :: ityp(nat) REAL(DP), INTENT(in) :: tau_units REAL(DP), INTENT(in) :: dt REAL(DP), INTENT(in) :: massconv ! INTEGER :: na, i, idx, dim REAL(DP), ALLOCATABLE :: dgp(:,:), dg0(:,:,:) REAL(DP) :: g0 REAL(DP) :: lambda, fac, invdtsq LOGICAL, ALLOCATABLE :: ltest(:) LOGICAL :: global_test INTEGER, PARAMETER :: maxiter = 100 ! REAL(DP), EXTERNAL :: ddot ! ! ALLOCATE( dgp( 3, nat ) ) ALLOCATE( dg0( 3, nat, nconstr ) ) ! ALLOCATE( ltest( nconstr ) ) ! invdtsq = 1.0_DP / dt**2 ! dim = 3*nat ! DO idx = 1, nconstr ! CALL constraint_grad( idx, nat, tau0, & if_pos, ityp, tau_units, g0, dg0(:,:,idx) ) ! ENDDO ! outer_loop: DO i = 1, maxiter ! inner_loop: DO idx = 1, nconstr ! ltest(idx) = .false. ! CALL constraint_grad( idx, nat, taup, & if_pos, ityp, tau_units, gp(idx), dgp ) ! ! ... check if gp = 0 ! #if defined (__DEBUG_CONSTRAINTS) WRITE( stdout, '(2(2X,I3),F12.8)' ) i, idx, abs( gp(idx) ) #endif ! IF ( abs( gp(idx) ) < constr_tol ) THEN ! ltest(idx) = .true. ! CYCLE inner_loop ! ENDIF ! ! ... if gp <> 0 find new taup and check again ! ... ( gp is in bohr and taup in tau_units ) ! DO na = 1, nat ! dgp(:,na) = dgp(:,na) / ( amass(ityp(na))*massconv ) ! ENDDO ! lambda = gp(idx) / ddot( dim, dgp, 1, dg0(:,:,idx), 1 ) ! DO na = 1, nat ! fac = amass(ityp(na))*massconv*tau_units ! taup(:,na) = taup(:,na) - lambda*dg0(:,na,idx)/fac ! ENDDO ! lagrange(idx) = lagrange(idx) + lambda*invdtsq ! force(:,:) = force(:,:) - lambda*dg0(:,:,idx)*invdtsq ! ENDDO inner_loop ! global_test = all( ltest(:) ) ! ! ... all constraints are satisfied ! IF ( global_test ) exit outer_loop ! ENDDO outer_loop ! IF ( .not. global_test ) THEN ! ! ... error messages ! WRITE( stdout, '(/,5X,"Number of step(s): ",I3)') min( i, maxiter ) WRITE( stdout, '(/,5X,"constr_target convergence: ")' ) ! DO i = 1, nconstr ! WRITE( stdout, '(5X,"constr # ",I3,2X,L1,3(2X,F16.10))' ) & i, ltest(i), abs( gp(i) ), constr_tol, constr_target(i) ! ENDDO ! CALL errore( 'check_constraint', & 'on some constraint g = 0 is not satisfied', 1 ) ! ENDIF ! DEALLOCATE( dgp ) DEALLOCATE( dg0 ) DEALLOCATE( ltest ) ! RETURN ! END SUBROUTINE check_constraint ! !----------------------------------------------------------------------- SUBROUTINE remove_constr_force( nat, tau, & if_pos, ityp, tau_units, force ) !----------------------------------------------------------------------- ! ! ... the component of the force that is orthogonal to the ! ... ipersurface defined by the constraint equations is removed ! ... and the corresponding value of the lagrange multiplier computed ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(in) :: tau(:,:) INTEGER, INTENT(in) :: if_pos(:,:) INTEGER, INTENT(in) :: ityp(:) REAL(DP), INTENT(in) :: tau_units REAL(DP), INTENT(inout) :: force(:,:) ! INTEGER :: i, j, dim REAL(DP) :: g, ndg, dgidgj REAL(DP) :: norm_before, norm_after REAL(DP), ALLOCATABLE :: dg(:,:,:) REAL(DP), ALLOCATABLE :: dg_matrix(:,:) INTEGER, ALLOCATABLE :: iwork(:) ! REAL(DP), EXTERNAL :: ddot, dnrm2 ! ! dim = 3*nat ! lagrange(:) = 0.0_DP ! #if defined (__REMOVE_CONSTRAINT_FORCE) ! norm_before = dnrm2( 3*nat, force, 1 ) ! ALLOCATE( dg( 3, nat, nconstr ) ) ! IF ( nconstr == 1 ) THEN ! CALL constraint_grad( 1, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,1) ) ! lagrange(1) = ddot( dim, force, 1, dg(:,:,1), 1 ) ! ndg = ddot( dim, dg(:,:,1), 1, dg(:,:,1), 1 ) ! force(:,:) = force(:,:) - lagrange(1)*dg(:,:,1)/ndg ! ELSE ! ALLOCATE( dg_matrix( nconstr, nconstr ) ) ALLOCATE( iwork( nconstr ) ) ! DO i = 1, nconstr ! CALL constraint_grad( i, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,i) ) ! ENDDO ! DO i = 1, nconstr ! dg_matrix(i,i) = ddot( dim, dg(:,:,i), 1, dg(:,:,i), 1 ) ! lagrange(i) = ddot( dim, force, 1, dg(:,:,i), 1 ) ! DO j = i + 1, nconstr ! dgidgj = ddot( dim, dg(:,:,i), 1, dg(:,:,j), 1 ) ! dg_matrix(i,j) = dgidgj dg_matrix(j,i) = dgidgj ! ENDDO ! ENDDO ! CALL DGESV( nconstr, 1, dg_matrix, & nconstr, iwork, lagrange, nconstr, i ) ! IF ( i /= 0 ) & CALL errore( 'remove_constr_force', & 'error in the solution of the linear system', i ) ! DO i = 1, nconstr ! force(:,:) = force(:,:) - lagrange(i)*dg(:,:,i) ! ENDDO ! DEALLOCATE( dg_matrix ) DEALLOCATE( iwork ) ! ENDIF ! #if defined (__DEBUG_CONSTRAINTS) ! WRITE( stdout, '(/,5X,"Intermediate forces (Ry/au):",/)') ! DO i = 1, nat ! WRITE( stdout, '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & i, ityp(i), force(:,i) ! ENDDO ! #endif ! norm_after = dnrm2( dim, force, 1 ) ! IF ( norm_before < norm_after ) THEN ! WRITE( stdout, '(/,5X,"norm before = ",F16.10)' ) norm_before WRITE( stdout, '( 5X,"norm after = ",F16.10)' ) norm_after ! CALL errore( 'remove_constr_force', & 'norm(F) before < norm(F) after', 1 ) ! ENDIF ! DEALLOCATE( dg ) ! #endif ! END SUBROUTINE remove_constr_force ! !----------------------------------------------------------------------- SUBROUTINE remove_constr_vec( nat, tau, & if_pos, ityp, tau_units, vec ) !----------------------------------------------------------------------- ! ! ... the component of a displacement vector that is orthogonal to the ! ... ipersurface defined by the constraint equations is removed ! ... and the corresponding value of the lagrange multiplier computed ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(in) :: tau(:,:) INTEGER, INTENT(in) :: if_pos(:,:) INTEGER, INTENT(in) :: ityp(:) REAL(DP), INTENT(in) :: tau_units REAL(DP), INTENT(inout) :: vec(:,:) ! INTEGER :: i, j, dim REAL(DP) :: g, ndg, dgidgj REAL(DP), ALLOCATABLE :: dg(:,:,:), dg_matrix(:,:), lambda(:) INTEGER, ALLOCATABLE :: iwork(:) ! REAL(DP), EXTERNAL :: ddot, dnrm2 ! ! dim = 3*nat ! ALLOCATE( lambda( nconstr ) ) ALLOCATE( dg( 3, nat, nconstr ) ) ! IF ( nconstr == 1 ) THEN ! CALL constraint_grad( 1, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,1) ) ! lambda(1) = ddot( dim, vec, 1, dg(:,:,1), 1 ) ! ndg = ddot( dim, dg(:,:,1), 1, dg(:,:,1), 1 ) ! vec(:,:) = vec(:,:) - lambda(1)*dg(:,:,1)/ndg ! ELSE ! ALLOCATE( dg_matrix( nconstr, nconstr ) ) ALLOCATE( iwork( nconstr ) ) ! DO i = 1, nconstr ! CALL constraint_grad( i, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,i) ) ! ENDDO ! DO i = 1, nconstr ! dg_matrix(i,i) = ddot( dim, dg(:,:,i), 1, dg(:,:,i), 1 ) ! lambda(i) = ddot( dim, vec, 1, dg(:,:,i), 1 ) ! DO j = i + 1, nconstr ! dgidgj = ddot( dim, dg(:,:,i), 1, dg(:,:,j), 1 ) ! dg_matrix(i,j) = dgidgj dg_matrix(j,i) = dgidgj ! ENDDO ! ENDDO ! CALL DGESV( nconstr, 1, dg_matrix, & nconstr, iwork, lambda, nconstr, i ) ! IF ( i /= 0 ) & CALL errore( 'remove_constr_vec', & 'error in the solution of the linear system', i ) ! DO i = 1, nconstr ! vec(:,:) = vec(:,:) - lambda(i)*dg(:,:,i) ! ENDDO ! DEALLOCATE( dg_matrix ) DEALLOCATE( iwork ) ! ENDIF ! DEALLOCATE( lambda, dg ) ! END SUBROUTINE remove_constr_vec ! !----------------------------------------------------------------------- SUBROUTINE deallocate_constraint() !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! IF ( allocated( lagrange ) ) DEALLOCATE( lagrange ) IF ( allocated( constr ) ) DEALLOCATE( constr ) IF ( allocated( constr_type ) ) DEALLOCATE( constr_type ) IF ( allocated( constr_target ) ) DEALLOCATE( constr_target ) IF ( allocated( gp ) ) DEALLOCATE( gp ) ! RETURN ! END SUBROUTINE deallocate_constraint ! !----------------------------------------------------------------------- FUNCTION cross(A,B) !----------------------------------------------------------------------- ! ! ... cross product ! IMPLICIT NONE ! REAL(DP),INTENT(in) :: A(3),B(3) REAL(DP) cross(3) ! cross(1) = A(2)*B(3)-A(3)*B(2) cross(2) = A(3)*B(1)-A(1)*B(3) cross(3) = A(1)*B(2)-A(2)*B(1) ! END FUNCTION ! !----------------------------------------------------------------------- FUNCTION pbc( vect ) !----------------------------------------------------------------------- ! ! ... periodic boundary conditions ( vect is assumed to be given ! ... in cartesian coordinates and in atomic units ) ! USE cell_base, ONLY : at, bg, alat ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: vect(3) REAL(DP) :: pbc(3) ! ! #if defined (__USE_PBC) ! pbc(:) = matmul( vect(:), bg(:,:) )/alat ! pbc(:) = pbc(:) - anint( pbc(:) ) ! pbc(:) = matmul( at(:,:), pbc(:) )*alat ! #else ! pbc(:) = vect(:) ! #endif RETURN ! END FUNCTION pbc ! !----------------------------------------------------------------------- SUBROUTINE compute_dmax() !----------------------------------------------------------------------- ! ! ... dmax corresponds to one half the longest diagonal of the cell ! USE cell_base, ONLY : at, alat ! IMPLICIT NONE ! INTEGER :: x,y,z REAL(DP) :: diago(3) ! dmax = 0._dp !norm(at(:,1)+at(:,2)+at(:,3)) ! DO z = -1,1,2 DO y = -1,1,2 DO x = -1,1,2 diago = x*at(:,1) + y*at(:,2) + z*at(:,3) dmax = max(dmax, norm(diago)) ENDDO ENDDO ENDDO ! dmax= dmax*alat*.5_dp ! RETURN ! END SUBROUTINE compute_dmax ! END MODULE constraints_module espresso-5.0.2/Modules/funct.f900000644000700200004540000026673712053145633015456 0ustar marsamoscm! ! Copyright (C) 2004-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------- module funct !------------------------------------------------------------------- ! This module contains data defining the DFT functional in use ! and a number of functions and subroutines to manage them. ! Data are PRIVATE and are accessed and set only by function calls. ! Basic drivers to compute XC quantities are also included. ! ! setting routines: set_dft_from_name (previously which_dft) ! set_dft_from_indices ! enforce_input_dft ! start_exx ! stop_exx ! set_finite_size_volume ! retrieve functions: get_dft_name ! get_iexch ! get_icorr ! get_igcx ! get_igcc ! get_exx_fraction ! dft_name ! write_dft_name ! logical functions: dft_is_gradient ! dft_is_meta ! dft_is_hybrid ! dft_is_nonlocc ! exx_is_active ! dft_has_finite_size_correction ! ! XC computation drivers: xc, xc_spin, gcxc, gcx_spin, gcc_spin, gcc_spin_more ! derivatives of XC computation drivers: dmxc, dmxc_spin, dmxc_nc, dgcxc, ! dgcxc_spin ! USE io_global, ONLY: stdout USE kinds, ONLY: DP IMPLICIT NONE PRIVATE SAVE ! subroutines/functions managing dft name and indices PUBLIC :: set_dft_from_indices, set_dft_from_name PUBLIC :: enforce_input_dft, write_dft_name, dft_name PUBLIC :: init_dft_exxrpa, enforce_dft_exxrpa PUBLIC :: get_dft_name, get_iexch, get_icorr, get_igcx, get_igcc, get_inlc PUBLIC :: dft_is_gradient, dft_is_meta, dft_is_hybrid, dft_is_nonlocc ! additional subroutines/functions for hybrid functionals PUBLIC :: start_exx, stop_exx, get_exx_fraction, exx_is_active PUBLIC :: set_exx_fraction PUBLIC :: set_screening_parameter, get_screening_parameter ! additional subroutines/functions for finite size corrections PUBLIC :: dft_has_finite_size_correction, set_finite_size_volume ! driver subroutines computing XC PUBLIC :: xc, xc_spin, gcxc, gcx_spin, gcc_spin, gcc_spin_more PUBLIC :: tau_xc , tau_xc_spin, dmxc, dmxc_spin, dmxc_nc PUBLIC :: dgcxc, dgcxc_spin PUBLIC :: nlc ! general XC driver PUBLIC :: vxc_t, exc_t ! vector XC driver PUBLIC :: evxc_t_vec, gcx_spin_vec ! ! PRIVATE variables defining the DFT functional ! PRIVATE :: dft, dft_shortname, iexch, icorr, igcx, igcc, inlc PRIVATE :: discard_input_dft PRIVATE :: isgradient, ismeta, ishybrid PRIVATE :: exx_fraction, exx_started PRIVATE :: has_finite_size_correction, & finite_size_cell_volume, finite_size_cell_volume_set ! character (len=25) :: dft = 'not set' character (len=6) :: dft_shortname = ' ' ! ! dft is the exchange-correlation functional, described by ! one of the following keywords ("dft_shortname"): ! "pz" = "sla+pz" = Perdew-Zunger LDA ! "bp" = "b88+p86" = Becke-Perdew grad.corr. ! "pw91" = "sla+pw+ggx+ggc" = PW91 (aka GGA) ! "blyp" = "sla+b88+lyp+blyp" = BLYP ! "pbe" = "sla+pw+pbx+pbc" = PBE ! "revpbe"= "sla+pw+rpb+pbc" = revPBE (Zhang-Yang) ! "pbesol"= "sla+pw+psx+psc" = PBEsol ! "q2d" = "sla+pw+q2dx+q2dc" = PBEQ2D ! "hcth" = "nox+noc+hcth+hcth" = HCTH/120 ! "olyp" = "nox+lyp+optx+blyp" = OLYP ! "wc" = "sla+pw+wcx+pbc" = Wu-Cohen ! "sogga = "sla+pw+sox+pbec" = SOGGA ! "tpss" = "sla+pw+tpss+tpss" = TPSS Meta-GGA ! "m06l" = "nox+noc+m6lx+m6lc" = M06L Meta-GGA ! "pbe0" = "pb0x+pw+pb0x+pbc" = PBE0 ! "hse" = "sla+pw+hse+pbc" = Heyd-Scuseria-Ernzerhof ! (HSE 06, see note below) ! "b3lyp" = "b3lp+vwn+b3lp+b3lp"= B3LYP ! "vdw-df"= "sla+pw+rpb+vdw1" = vdW-DF ! "vdw-df2"="sla+pw+rw86+vdw2" = vdW-DF2 ! "vdw-df-c09"="sla+pw+c09x+vdw1" ! "vdw-df2-c09"="sla+pw+c09x+vdw2" ! or by any nonconflicting combination of the following keywords ! (case-insensitive): ! ! Exchange: "nox" none iexch=0 ! "sla" Slater (alpha=2/3) iexch=1 (default) ! "sl1" Slater (alpha=1.0) iexch=2 ! "rxc" Relativistic Slater iexch=3 ! "oep" Optimized Effective Potential iexch=4 ! "hf" Hartree-Fock iexch=5 ! "pb0x" PBE0 (Slater*0.75+HF*0.25) iexch=6 ! "b3lp" B3LYP(Slater*0.80+HF*0.20) iexch=7 ! "kzk" Finite-size corrections iexch=8 ! ! Correlation: "noc" none icorr=0 ! "pz" Perdew-Zunger icorr=1 (default) ! "vwn" Vosko-Wilk-Nusair icorr=2 ! "lyp" Lee-Yang-Parr icorr=3 ! "pw" Perdew-Wang icorr=4 ! "wig" Wigner icorr=5 ! "hl" Hedin-Lunqvist icorr=6 ! "obz" Ortiz-Ballone form for PZ icorr=7 ! "obw" Ortiz-Ballone form for PW icorr=8 ! "gl" Gunnarson-Lunqvist icorr=9 ! "b3lp" B3LYP (same as "vwn") icorr=10 ! "kzk" Finite-size corrections icorr=11 ! ! Gradient Correction on Exchange: ! "nogx" none igcx =0 (default) ! "b88" Becke88 (beta=0.0042) igcx =1 ! "ggx" Perdew-Wang 91 igcx =2 ! "pbx" Perdew-Burke-Ernzenhof exch igcx =3 ! "rpb" revised PBE by Zhang-Yang igcx =4 ! "hcth" Cambridge exch, Handy et al igcx =5 ! "tpss" TPSS meta-gga igcx =7 ! "optx" Handy's exchange functional igcx =6 ! "pb0x" PBE0 (PBE exchange*0.75) igcx =8 ! "b3lp" B3LYP (Becke88*0.72) igcx =9 ! "psx" PBEsol exchange igcx =10 ! "wcx" Wu-Cohen igcx =11 ! "hse" HSE screened exchange igcx =12 ! "rw86" revised PW86 igcx =13 ! "pbe" same as PBX, back-comp. igcx =14 ! "meta" same as TPSS, back-comp. igcx =15 ! "c09x" Cooper 09 igcx =16 ! "sox" sogga igcx =17 ! "m6lx" M06L exchange Meta-GGA igcx =18 ! "q2dx" Q2D exchange grad corr igcx =19 ! ! Gradient Correction on Correlation: ! "nogc" none igcc =0 (default) ! "p86" Perdew86 igcc =1 ! "ggc" Perdew-Wang 91 corr. igcc =2 ! "blyp" Lee-Yang-Parr igcc =3 ! "pbc" Perdew-Burke-Ernzenhof corr igcc =4 ! "hcth" Cambridge corr, Handy et al igcc =5 ! "tpss" TPSS meta-gga igcc =6 ! "b3lp" B3LYP (Lee-Yang-Parr*0.81) igcc =7 ! "psc" PBEsol corr igcc =8 ! "pbe" same as PBX, back-comp. igcc =9 ! "meta" same as TPSS, back-comp. igcc =10 ! "m6lc" M06L corr Meta-GGA igcc =11 ! "q2dc" Q2D correlation grad corr igcc =12 ! ! Van der Waals functionals (nonlocal term only) ! "nonlc" none inlc =0 (default) ! "vdw1" vdW-DF1 inlc =1 ! "vdw2" vdW-DF2 inlc =2 ! ! References: ! pz J.P.Perdew and A.Zunger, PRB 23, 5048 (1981) ! vwn S.H.Vosko, L.Wilk, M.Nusair, Can.J.Phys. 58,1200(1980) ! wig E.P.Wigner, Trans. Faraday Soc. 34, 67 (1938) ! hl L.Hedin and B.I.Lundqvist, J. Phys. C4, 2064 (1971) ! gl O.Gunnarsson and B.I.Lundqvist, PRB 13, 4274 (1976) ! pw J.P.Perdew and Y.Wang, PRB 45, 13244 (1992) ! obpz G.Ortiz and P.Ballone, PRB 50, 1391 (1994) ! obpw as above ! b88 A.D.Becke, PRA 38, 3098 (1988) ! p86 J.P.Perdew, PRB 33, 8822 (1986) ! pbe J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! pw91 J.P.Perdew and Y. Wang, PRB 46, 6671 (1992) ! blyp C.Lee, W.Yang, R.G.Parr, PRB 37, 785 (1988) ! hcth Handy et al, JCP 109, 6264 (1998) ! olyp Handy et al, JCP 116, 5411 (2002) ! revPBE Zhang and Yang, PRL 80, 890 (1998) ! pbesol J.P. Perdew et al., PRL 100, 136406 (2008) ! q2d L. Chiodo et al., PRL 108, 126402 (2012) ! rw86 E. Amonn D. Murray et al, J. Chem. Theory comp. 5, 2754 (2009) ! wc Z. Wu and R. E. Cohen, PRB 73, 235116 (2006) ! kzk H.Kwee, S. Zhang, H. Krakauer, PRL 100, 126404 (2008) ! pbe0 J.P.Perdew, M. Ernzerhof, K.Burke, JCP 105, 9982 (1996) ! hse Heyd, Scuseria, Ernzerhof, J. Chem. Phys. 118, 8207 (2003) ! Heyd, Scuseria, Ernzerhof, J. Chem. Phys. 124, 219906 (2006). ! b3lyp P.J. Stephens,F.J. Devlin,C.F. Chabalowski,M.J. Frisch ! J.Phys.Chem 98, 11623 (1994) ! vdW-DF M. Dion et al., PRL 92, 246401 (2004) ! T. Thonhauser et al., PRB 76, 125112 (2007) ! vdw-DF2 Lee et al., Phys. Rev. B 82, 081101 (2010) ! c09x V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010) ! tpss J.Tao, J.P.Perdew, V.N.Staroverov, G.E. Scuseria, ! PRL 91, 146401 (2003) ! sogga Y. Zhao and D. G. Truhlar, JCP 128, 184109 (2008) ! m06l Y. Zhao and D. G. Truhlar, JCP 125, 194101 (2006) ! ! NOTE ABOUT HSE: there are two slight deviations with respect to the HSE06 ! functional as it is in Gaussian code (that is considered as the reference ! in the chemistry community): ! - The range separation in Gaussian is precisely 0.11 bohr^-1, ! instead of 0.106 bohr^-1 in this implementation ! - The gradient scaling relation is a bit more complicated ! [ see: TM Henderson, AF Izmaylov, G Scalmani, and GE Scuseria, ! J. Chem. Phys. 131, 044108 (2009) ] ! These two modifications accounts only for a 1e-5 Ha difference for a ! single He atom. Info by Fabien Bruneval ! integer, parameter:: notset = -1 ! integer :: iexch = notset integer :: icorr = notset integer :: igcx = notset integer :: igcc = notset integer :: inlc = notset real(DP):: exx_fraction = 0.0_DP real(DP):: screening_parameter = 0.0_DP logical :: isgradient = .false. logical :: ismeta = .false. logical :: ishybrid = .false. logical :: exx_started = .false. logical :: has_finite_size_correction = .false. logical :: finite_size_cell_volume_set = .false. real(DP):: finite_size_cell_volume = notset logical :: isnonlocc = .false. logical :: discard_input_dft = .false. ! ! internal indices for exchange-correlation ! iexch: type of exchange ! icorr: type of correlation ! igcx: type of gradient correction on exchange ! igcc: type of gradient correction on correlation ! inlc: type of non local correction on correlation ! ! ismeta: .TRUE. if gradient correction is of meta-gga type ! ishybrid: .TRUE. if the xc functional is an HF+DFT hybrid like ! PBE0, B3LYP, HSE or HF itself ! ! see comments above and routine "set_dft_from_name" below ! ! data integer :: nxc, ncc, ngcx, ngcc, ncnl parameter (nxc = 8, ncc =11, ngcx =19, ngcc = 12, ncnl=2) character (len=4) :: exc, corr character (len=4) :: gradx, gradc, nonlocc dimension exc (0:nxc), corr (0:ncc), gradx (0:ngcx), gradc (0: ngcc), nonlocc (0: ncnl) data exc / 'NOX', 'SLA', 'SL1', 'RXC', 'OEP', 'HF', 'PB0X', 'B3LP', 'KZK' / data corr / 'NOC', 'PZ', 'VWN', 'LYP', 'PW', 'WIG', 'HL', 'OBZ', & 'OBW', 'GL' , 'B3LP', 'KZK' / data gradx / 'NOGX', 'B88', 'GGX', 'PBX', 'RPB', 'HCTH', 'OPTX',& 'TPSS', 'PB0X', 'B3LP','PSX', 'WCX', 'HSE', 'RW86', 'PBE', & 'META', 'C09X', 'SOX', 'M6LX', 'Q2DX' / data gradc / 'NOGC', 'P86', 'GGC', 'BLYP', 'PBC', 'HCTH', 'TPSS',& 'B3LP', 'PSC', 'PBE', 'META', 'M6LC', 'Q2DC' / data nonlocc / ' ', 'VDW1', 'VDW2' / CONTAINS !----------------------------------------------------------------------- subroutine set_dft_from_name( dft_ ) !----------------------------------------------------------------------- ! ! translates a string containing the exchange-correlation name ! into internal indices iexch, icorr, igcx, igcc ! implicit none ! input character(len=*) :: dft_ ! local integer :: len, l, i character (len=50):: dftout logical :: dft_defined = .false. logical, external :: matches character (len=1), external :: capital integer :: save_iexch, save_icorr, save_igcx, save_igcc, save_inlc ! ! ! Exit if discard_input_dft ! if ( discard_input_dft ) return ! ! save current status of XC indices ! save_iexch = iexch save_icorr = icorr save_igcx = igcx save_igcc = igcc save_inlc = inlc ! ! convert to uppercase ! len = len_trim(dft_) dftout = ' ' do l = 1, len dftout (l:l) = capital (dft_(l:l) ) enddo ! ! ---------------------------------------------- ! FIRST WE CHECK ALL THE SPECIAL NAMES ! Note: comparison is now done via exact matching ! not using function "matches" ! ---------------------------------------------- ! if ( 'REVPBE' .EQ. TRIM(dftout) ) then ! special case : revPBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 4) call set_dft_value (igcc, 4) call set_dft_value (inlc, 0) dft_defined = .true. else if ('RPBE' .EQ. TRIM(dftout)) then ! special case : RPBE call errore('set_dft_from_name', & & 'RPBE (Hammer-Hansen-Norskov) not implemented (revPBE is)',1) else if ('PBE0'.EQ. TRIM(dftout) ) then ! special case : PBE0 call set_dft_value (iexch,6) call set_dft_value (icorr,4) call set_dft_value (igcx, 8) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('HSE' .EQ. TRIM( dftout) ) then ! special case : HSE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 12) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('PBESOL'.EQ. TRIM(dftout) ) then ! special case : PBEsol call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,10) call set_dft_value (igcc, 8) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('PBEQ2D' .EQ. TRIM(dftout) .OR. 'Q2D'.EQ. TRIM(dftout) ) then ! special case : PBEQ2D call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,19) call set_dft_value (igcc,12) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('VDW-DF2-C09' .EQ. TRIM(dftout) ) then ! Special case vdW-DF2 with C09 exchange call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 16) call set_dft_value (igcc, 0) call set_dft_value (inlc, 2) dft_defined = .true. else if ('VDW-DF-C09' .EQ. TRIM(dftout) ) then ! Special case vdW-DF with C09 exchange call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 16) call set_dft_value (igcc, 0) call set_dft_value (inlc, 1) dft_defined = .true. else if ('VDW-DF2' .EQ. TRIM(dftout) ) then ! Special case vdW-DF2 call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 13) call set_dft_value (igcc, 0) call set_dft_value (inlc, 2) dft_defined = .true. else if ('VDW-DF' .EQ. TRIM(dftout)) then ! Special case vdW-DF call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 4) call set_dft_value (igcc, 0) call set_dft_value (inlc, 1) dft_defined = .true. else if ('PBE' .EQ. TRIM(dftout) ) then ! special case : PBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 3) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('WC' .EQ. TRIM(dftout) ) then ! special case : Wu-Cohen call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,11) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('B3LYP'.EQ. TRIM(dftout) ) then ! special case : B3LYP hybrid call set_dft_value (iexch,7) call set_dft_value (icorr,2) call set_dft_value (igcx, 9) call set_dft_value (igcc, 7) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('PBC'.EQ. TRIM(dftout) ) then ! special case : PBC = PW + PBC call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,0) !Default call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : BP = B88 + P86 else if ('BP'.EQ. TRIM(dftout) ) then call set_dft_value (iexch,1) !Default call set_dft_value (icorr,1) !Default call set_dft_value (igcx, 1) call set_dft_value (igcc, 1) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : PW91 = GGX + GGC else if ('PW91'.EQ. TRIM(dftout) ) then call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 2) call set_dft_value (igcc, 2) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : HCTH else if ('HCTH'.EQ. TRIM(dftout)) then call set_dft_value(iexch,0) ! contained in hcth call set_dft_value(icorr,0) ! contained in hcth call set_dft_value (igcx,5) call set_dft_value (igcc,5) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : OLYP = OPTX + LYP else if ('OLYP'.EQ. TRIM(dftout)) then call set_dft_value(iexch,0) ! contained in optx call set_dft_value(icorr,3) call set_dft_value(igcx, 6) call set_dft_value(igcc, 3) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : TPSS meta-GGA Exc else IF ('TPSS'.EQ. TRIM(dftout ) ) THEN CALL set_dft_value( iexch, 1 ) CALL set_dft_value( icorr, 4 ) CALL set_dft_value( igcx, 7 ) CALL set_dft_value( igcc, 6 ) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special cases : OEP no GC part (nor LDA...) and no correlation by default else IF ('OEP' .EQ. TRIM(dftout) ) THEN call set_dft_value (iexch,4) call set_dft_value (icorr, 0) CALL set_dft_value( igcx, 0 ) call set_dft_value (igcc, 0) !Default call set_dft_value (inlc,0) !Default dft_defined = .true. ! special cases : HF no GC part (nor LDA...) and no correlation by default else IF ('HF' .EQ. TRIM(dftout) ) THEN call set_dft_value (iexch,5) call set_dft_value (icorr, 0) CALL set_dft_value( igcx, 0 ) call set_dft_value (igcc, 0) !Default call set_dft_value (inlc,0) !Default dft_defined = .true. ! special cases : BLYP (note, BLYP=>B88) else IF ('BLYP' .EQ. TRIM(dftout) ) THEN call set_dft_value (iexch,1) !Default call set_dft_value (icorr,3) CALL set_dft_value( igcx, 1 ) call set_dft_value (igcc, 3) call set_dft_value (inlc, 0) !Default dft_defined = .true. ! special cases : PZ (LDA is equivalent to PZ) else IF (('PZ' .EQ. TRIM(dftout) ).OR.('LDA' .EQ. TRIM(dftout) )) THEN call set_dft_value (iexch,1) call set_dft_value (icorr, 1) CALL set_dft_value( igcx, 0) call set_dft_value (igcc, 0) call set_dft_value (inlc,0) dft_defined = .true. ! special case : SOGGA = SOX + PBEc else if (matches ('SOGGA', dftout) ) then call set_dft_value (iexch, 1) call set_dft_value (icorr,4) call set_dft_value (igcx,17) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) ! Default dft_defined = .true. ! special case : M06L Meta GGA else if ( matches( 'M06L', dftout ) ) THEN ! CALL set_dft_value( iexch, 0 ) ! contained in m6lx CALL set_dft_value( icorr, 0 ) ! contained in m6lc CALL set_dft_value( igcx, 18 ) CALL set_dft_value( igcc, 11) call set_dft_value (inlc,0) ! Default dft_defined = .true. END IF ! ! ---------------------------------------------------------------- ! If the DFT was not yet defined, check every part of the string ! ---------------------------------------------------------------- ! if (.not. dft_defined) then ! write(*,"(A,A)") "Setting by parts: ", TRIM(dftout) ! exchange iexch = notset do i = 0, nxc if (matches (exc (i), dftout) ) call set_dft_value (iexch, i) enddo if (iexch .eq. notset) call set_dft_value (iexch,0) ! correlation icorr = notset do i = 0, ncc if (matches (corr (i), dftout) ) call set_dft_value (icorr, i) enddo if (icorr .eq. notset) call set_dft_value (icorr,0) ! gradient correction, exchange igcx = notset do i = 0, ngcx if (matches (gradx (i), dftout) ) call set_dft_value (igcx, i) enddo if (igcx .eq. notset) call set_dft_value (igcx,0) ! gradient correction, correlation igcc = notset do i = 0, ngcc if (matches (gradc (i), dftout) ) call set_dft_value (igcc, i) enddo if (igcc .eq. notset) call set_dft_value (igcc,0) ! non-local correlation ! THE LOOP IS REVERSED TO HANDLE THE VDW2 CASE BEFORE THE VDW inlc = notset do i = ncnl ,1, -1 if (matches (nonlocc (i), dftout) ) call set_dft_value (inlc, i) enddo if (inlc .eq. notset) call set_dft_value (inlc,0) endif ! ---------------------------------------------------------------- ! Last check ! No more defaults, the code exit if the dft is not defined ! ---------------------------------------------------------------- ! Back compatibility - TO BE REMOVED if (igcx == 14) igcx = 3 ! PBE -> PBX if (igcc == 9) igcc = 4 ! PBE -> PBC if (igcx == 15) igcx = 7 ! TPSS -> META if (igcc == 10) igcc = 6 ! TPSS -> META if (igcx == 6) & call errore('set_dft_from_name','OPTX untested! please test',-igcx) if (iexch <=0 .and. & icorr <=0 .and. & igcx <= 0 .and. & igcc <= 0 .and. & inlc <= 0) & call errore('set_dft_from_name','No dft definition was found',0) ! ! Fill variables and exit ! dft = dftout dftout = exc (iexch) //'-'//corr (icorr) //'-'//gradx (igcx) //'-' & &//gradc (igcc) //'-'// nonlocc(inlc) call set_auxiliary_flags ! ! check dft has not been previously set differently ! if (save_iexch .ne. notset .and. save_iexch .ne. iexch) then write (stdout,*) iexch, save_iexch call errore('set_dft_from_name',' conflicting values for iexch',1) end if if (save_icorr .ne. notset .and. save_icorr .ne. icorr) then write (stdout,*) icorr, save_icorr call errore('set_dft_from_name',' conflicting values for icorr',1) end if if (save_igcx .ne. notset .and. save_igcx .ne. igcx) then write (stdout,*) igcx, save_igcx call errore('set_dft_from_name',' conflicting values for igcx',1) end if if (save_igcc .ne. notset .and. save_igcc .ne. igcc) then write (stdout,*) igcc, save_igcc call errore('set_dft_from_name',' conflicting values for igcc',1) end if if (save_inlc .ne. notset .and. save_inlc .ne. inlc) then write (stdout,*) inlc, save_inlc call errore('set_dft_from_name',' conflicting values for inlc',1) end if return end subroutine set_dft_from_name ! !----------------------------------------------------------------------- subroutine set_auxiliary_flags !----------------------------------------------------------------------- ! set logical flags describing the complexity of the xc functional ! define the fraction of exact exchange used by hybrid fuctionals ! logical, external :: matches !! Reversed as before VDW isgradient = ( (igcx > 0) .or. ( igcc > 0) ) isnonlocc = (inlc > 0) ismeta = (igcx == 7) .or. (igcx == 18) ! PBE0 IF ( iexch==6 .or. igcx ==8 ) exx_fraction = 0.25_DP ! HSE IF ( igcx ==12 ) THEN exx_fraction = 0.25_DP screening_parameter = 0.106_DP END IF ! HF or OEP IF ( iexch==4 .or. iexch==5 ) exx_fraction = 1.0_DP !B3LYP IF ( matches( 'B3LP',dft ) .OR. matches( 'B3LYP',dft ) ) & exx_fraction = 0.2_DP ishybrid = ( exx_fraction /= 0.0_DP ) has_finite_size_correction = ( iexch==8 .or. icorr==11) return end subroutine set_auxiliary_flags ! !----------------------------------------------------------------------- subroutine set_dft_value (m, i) !----------------------------------------------------------------------- ! implicit none integer :: m, i ! local if ( m /= notset .and. m /= i) then write(*, '(A,2I4)') "parameters", m, i call errore ('set_dft_value', 'two conflicting matching values', 1) end if m = i return end subroutine set_dft_value !----------------------------------------------------------------------- subroutine enforce_input_dft (dft_, nomsg) ! ! translates a string containing the exchange-correlation name ! into internal indices and force any subsequent call to set_dft_from_name ! to return without changing them ! implicit none character(len=*), intent(in) :: dft_ logical, intent(in), optional :: nomsg call set_dft_from_name (dft_) if (dft == 'not set') call errore('enforce_input_dft','cannot fix unset dft',1) discard_input_dft = .true. if ( present (nomsg) ) return write (stdout,'(/,5x,a)') "IMPORTANT: XC functional enforced from input :" call write_dft_name write (stdout,'(5x,a)') "Any further DFT definition will be discarded" write (stdout,'(5x,a/)') "Please, verify this is what you really want" return end subroutine enforce_input_dft !----------------------------------------------------------------------- subroutine enforce_dft_exxrpa ( ) ! implicit none ! !character(len=*), intent(in) :: dft_ !logical, intent(in), optional :: nomsg iexch = 0; icorr = 0; igcx = 0; igcc = 0 exx_fraction = 1.0_DP ishybrid = ( exx_fraction /= 0.0_DP ) write (stdout,'(/,5x,a)') "XC functional enforced to be EXXRPA" call write_dft_name write (stdout,'(5x,a)') "!!! Any further DFT definition will be discarded" write (stdout,'(5x,a/)') "!!! Please, verify this is what you really want !" return end subroutine enforce_dft_exxrpa !----------------------------------------------------------------------- subroutine init_dft_exxrpa ( ) ! implicit none ! exx_fraction = 1.0_DP ishybrid = ( exx_fraction /= 0.0_DP ) write (stdout,'(/,5x,a)') "Only exx_fraction is set to 1.d0" write (stdout,'(5x,a)') "XC functional still not changed" call write_dft_name return end subroutine init_dft_exxrpa !----------------------------------------------------------------------- subroutine start_exx if (.not. ishybrid) & call errore('start_exx','dft is not hybrid, wrong call',1) exx_started = .true. end subroutine start_exx !----------------------------------------------------------------------- subroutine stop_exx if (.not. ishybrid) & call errore('stop_exx','dft is not hybrid, wrong call',1) exx_started = .false. end subroutine stop_exx !----------------------------------------------------------------------- function exx_is_active () logical exx_is_active exx_is_active = exx_started end function exx_is_active !----------------------------------------------------------------------- subroutine set_exx_fraction (exxf_) implicit none real(DP):: exxf_ exx_fraction = exxf_ write (stdout,'(5x,a,f6.2)') 'EXX fraction changed: ',exx_fraction end subroutine set_exx_fraction !--------------------------------------------------------------------- subroutine set_screening_parameter (scrparm_) implicit none real(DP):: scrparm_ screening_parameter = scrparm_ write (stdout,'(5x,a,f12.7)') 'EXX Screening parameter changed: ', & & screening_parameter end subroutine set_screening_parameter !---------------------------------------------------------------------- function get_screening_parameter () real(DP):: get_screening_parameter get_screening_parameter = screening_parameter return end function get_screening_parameter !----------------------------------------------------------------------- function get_iexch () integer get_iexch get_iexch = iexch return end function get_iexch !----------------------------------------------------------------------- function get_icorr () integer get_icorr get_icorr = icorr return end function get_icorr !----------------------------------------------------------------------- function get_igcx () integer get_igcx get_igcx = igcx return end function get_igcx !----------------------------------------------------------------------- function get_igcc () integer get_igcc get_igcc = igcc return end function get_igcc !----------------------------------------------------------------------- function get_inlc () integer get_inlc get_inlc = inlc return end function get_inlc !----------------------------------------------------------------------- function dft_is_nonlocc () logical :: dft_is_nonlocc dft_is_nonlocc = isnonlocc return end function dft_is_nonlocc !----------------------------------------------------------------------- function get_exx_fraction () real(DP):: get_exx_fraction get_exx_fraction = exx_fraction return end function get_exx_fraction !----------------------------------------------------------------------- function get_dft_name () character (len=25) :: get_dft_name get_dft_name = dft return end function get_dft_name !----------------------------------------------------------------------- function dft_is_gradient () logical :: dft_is_gradient dft_is_gradient = isgradient return end function dft_is_gradient !----------------------------------------------------------------------- function dft_is_meta () logical :: dft_is_meta dft_is_meta = ismeta return end function dft_is_meta !----------------------------------------------------------------------- function dft_is_hybrid () logical :: dft_is_hybrid dft_is_hybrid = ishybrid return end function dft_is_hybrid !----------------------------------------------------------------------- function dft_has_finite_size_correction () logical :: dft_has_finite_size_correction dft_has_finite_size_correction = has_finite_size_correction return end function dft_has_finite_size_correction !----------------------------------------------------------------------- subroutine set_finite_size_volume(volume) real, intent (IN) :: volume if (.not. has_finite_size_correction) & call errore('set_finite_size_volume', & 'dft w/o finite_size_correction, wrong call',1) if (volume <= 0.d0) & call errore('set_finite_size_volume', & 'volume is not positive, check omega and/or nk1,nk2,nk3',1) finite_size_cell_volume = volume finite_size_cell_volume_set = .TRUE. end subroutine set_finite_size_volume !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine set_dft_from_indices(iexch_,icorr_,igcx_,igcc_, inlc_) integer :: iexch_, icorr_, igcx_, igcc_, inlc_ if ( discard_input_dft ) return if (iexch == notset) iexch = iexch_ if (iexch /= iexch_) then write (stdout,*) iexch, iexch_ call errore('set_dft',' conflicting values for iexch',1) end if if (icorr == notset) icorr = icorr_ if (icorr /= icorr_) then write (stdout,*) icorr, icorr_ call errore('set_dft',' conflicting values for icorr',1) end if if (igcx == notset) igcx = igcx_ if (igcx /= igcx_) then write (stdout,*) igcx, igcx_ call errore('set_dft',' conflicting values for igcx',1) end if if (igcc == notset) igcc = igcc_ if (igcc /= igcc_) then write (stdout,*) igcc, igcc_ call errore('set_dft',' conflicting values for igcc',1) end if if (inlc == notset) inlc = inlc_ if (inlc /= inlc_) then write (stdout,*) inlc, inlc_ call errore('set_dft',' conflicting values for inlc',1) end if dft = exc (iexch) //'-'//corr (icorr) //'-'//gradx (igcx) //'-' & &//gradc (igcc)//'-'//nonlocc (inlc) ! WRITE( stdout,'(a)') dft call set_auxiliary_flags return end subroutine set_dft_from_indices !--------------------------------------------------------------------- subroutine dft_name(iexch_, icorr_, igcx_, igcc_, inlc_, longname_, shortname_) !--------------------------------------------------------------------- ! convert the four indices iexch, icorr, igcx, igcc ! into user-readable strings ! implicit none integer iexch_, icorr_, igcx_, igcc_, inlc_ character (len=6) :: shortname_ character (len=25):: longname_ ! if (iexch_==1.and.igcx_==0.and.igcc_==0) then shortname_ = corr(icorr_) else if (iexch_==1.and.icorr_==3.and.igcx_==1.and.igcc_==3) then shortname_ = 'BLYP' else if (iexch_==1.and.icorr_==1.and.igcx_==1.and.igcc_==0) then shortname_ = 'B88' else if (iexch_==1.and.icorr_==1.and.igcx_==1.and.igcc_==1) then shortname_ = 'BP' else if (iexch_==1.and.icorr_==4.and.igcx_==2.and.igcc_==2) then shortname_ = 'PW91' else if (iexch_==1.and.icorr_==4.and.igcx_==3.and.igcc_==4) then shortname_ = 'PBE' else if (iexch_==6.and.icorr_==4.and.igcx_==8.and.igcc_==4) then shortname_ = 'PBE0' else if (iexch_==1.and.icorr_==4.and.igcx_==4.and.igcc_==4) then shortname_ = 'revPBE' else if (iexch_==1.and.icorr_==4.and.igcx_==10.and.igcc_==8) then shortname_ = 'PBESOL' else if (iexch_==1.and.icorr_==4.and.igcx_==19.and.igcc_==12) then shortname_ = 'Q2D' else if (iexch_==1.and.icorr_==4.and.igcx_==12.and.igcc_==4) then shortname_ = 'HSE' else if (iexch_==1.and.icorr_==4.and.igcx_==11.and.igcc_==4) then shortname_ = 'WC' else if (iexch_==7.and.(icorr_==10.or.icorr_==2).and.igcx_==9.and. & igcc_==7) then shortname_ = 'B3LYP' else if (iexch_==0.and.icorr_==3.and.igcx_==6.and.igcc_==3) then shortname_ = 'OLYP' else if (iexch_==1.and.icorr_==4.and.igcx_==4.and.igcc_==0.and.inlc_==1) then shortname_ = 'VDW-DF' else if (iexch_==1.and.icorr_==4.and.igcx_==13.and.igcc_==0.and.inlc_==2) then shortname_ = 'VDW-DF2' else if (iexch_==1.and.icorr_==4.and.igcx_==16.and.igcc_==0.and.inlc_==1) then shortname_ = 'VDW-DF-C09' else if (iexch_==1.and.icorr_==4.and.igcx_==16.and.igcc_==0.and.inlc_==2) then shortname_ = 'VDW-DF2-C09' else if (iexch_==0.and.icorr_==0.and.igcx_==18.and.igcc_==11) then shortname_ = 'M06L' else if (iexch_==1.and.icorr_==4.and.igcx_==17.and.igcc_==4) then shortname_ = 'SOGGA' else shortname_ = ' ' end if write(longname_,'(5a5)') exc(iexch_),corr(icorr_),gradx(igcx_),gradc(igcc_),nonlocc(inlc_) return end subroutine dft_name subroutine write_dft_name !----------------------------------------------------------------------- WRITE( stdout, '(5X,"Exchange-correlation = ",A, & & " (",5I2,")")') TRIM( dft ), iexch, icorr, igcx, igcc, inlc WRITE( stdout, '(5X,"EXX-fraction =",F12.2)') & get_exx_fraction() return end subroutine write_dft_name ! !----------------------------------------------------------------------- !------- LDA DRIVERS -------------------------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine xc (rho, ex, ec, vx, vc) !----------------------------------------------------------------------- ! lda exchange and correlation functionals - Hartree a.u. ! ! exchange : Slater, relativistic Slater ! correlation: Ceperley-Alder (Perdew-Zunger parameters) ! Vosko-Wilk-Nusair ! Lee-Yang-Parr ! Perdew-Wang ! Wigner ! Hedin-Lundqvist ! Ortiz-Ballone (Perdew-Zunger formula) ! Ortiz-Ballone (Perdew-Wang formula) ! Gunnarsson-Lundqvist ! ! input : rho=rho(r) ! definitions: E_x = \int E_x(rho) dr, E_x(rho) = rho\epsilon_c(rho) ! same for correlation ! output: ex = \epsilon_x(rho) ( NOT E_x(rho) ) ! vx = dE_x(rho)/drho ( NOT d\epsilon_x(rho)/drho ) ! ec, vc as above for correlation ! implicit none real(DP) :: rho, ec, vc, ex, vx ! real(DP), parameter :: small = 1.E-10_DP, third = 1.0_DP / 3.0_DP, & pi34 = 0.6203504908994_DP ! pi34=(3/4pi)^(1/3) real(DP) :: rs ! if (rho <= small) then ec = 0.0_DP vc = 0.0_DP ex = 0.0_DP vx = 0.0_DP return else rs = pi34 / rho**third ! rs as in the theory of metals: rs=(3/(4pi rho))^(1/3) endif !..exchange if (iexch == 1) THEN ! 'sla' call slater (rs, ex, vx) ELSEIF (iexch == 2) THEN ! 'sl1' call slater1(rs, ex, vx) ELSEIF (iexch == 3) THEN ! 'rxc' CALL slater_rxc(rs, ex, vx) ELSEIF ((iexch == 4).or.(iexch==5)) THEN ! 'oep','hf' IF (exx_started) then ex = 0.0_DP vx = 0.0_DP else call slater (rs, ex, vx) endif ELSEIF (iexch == 6) THEN ! 'pb0x' CALL slater(rs, ex, vx) if (exx_started) then ex = (1.0_DP - exx_fraction) * ex vx = (1.0_DP - exx_fraction) * vx end if ELSEIF (iexch == 7) THEN ! 'b3lyp' CALL slater(rs, ex, vx) if (exx_started) then ex = 0.8_DP * ex vx = 0.8_DP * vx end if ELSEIF (iexch == 8) THEN ! 'sla+kzk' if (.NOT. finite_size_cell_volume_set) call errore ('XC',& 'finite size corrected exchange used w/o initialization',1) call slaterKZK (rs, ex, vx, finite_size_cell_volume) else ex = 0.0_DP vx = 0.0_DP endif !..correlation if (icorr == 1) then call pz (rs, 1, ec, vc) elseif (icorr == 2) then call vwn (rs, ec, vc) elseif (icorr == 3) then call lyp (rs, ec, vc) elseif (icorr == 4) then call pw (rs, 1, ec, vc) elseif (icorr == 5) then call wigner (rs, ec, vc) elseif (icorr == 6) then call hl (rs, ec, vc) elseif (icorr == 7) then call pz (rs, 2, ec, vc) elseif (icorr == 8) then call pw (rs, 2, ec, vc) elseif (icorr == 9) then call gl (rs, ec, vc) elseif (icorr ==10) then ! b3lyp call vwn (rs, ec, vc) elseif (icorr ==11) then if (.NOT. finite_size_cell_volume_set) call errore ('XC',& 'finite size corrected correlation used w/o initialization',1) call pzKZK (rs, ec, vc, finite_size_cell_volume) else ec = 0.0_DP vc = 0.0_DP endif ! return end subroutine xc !!!!!!!!!!!!!!SPIN !----------------------------------------------------------------------- subroutine xc_spin (rho, zeta, ex, ec, vxup, vxdw, vcup, vcdw) !----------------------------------------------------------------------- ! lsd exchange and correlation functionals - Hartree a.u. ! ! exchange : Slater (alpha=2/3) ! correlation: Ceperley & Alder (Perdew-Zunger parameters) ! Perdew & Wang ! ! input : rho = rhoup(r)+rhodw(r) ! zeta=(rhoup(r)-rhodw(r))/rho ! implicit none real(DP) :: rho, zeta, ex, ec, vxup, vxdw, vcup, vcdw ! real(DP), parameter :: small= 1.E-10_DP, third = 1.0_DP/3.0_DP, & pi34= 0.6203504908994_DP ! pi34=(3/4pi)^(1/3) real(DP) :: rs ! if (rho <= small) then ec = 0.0_DP vcup = 0.0_DP vcdw = 0.0_DP ex = 0.0_DP vxup = 0.0_DP vxdw = 0.0_DP return else rs = pi34 / rho**third endif !..exchange IF (iexch == 1) THEN ! 'sla' call slater_spin (rho, zeta, ex, vxup, vxdw) ELSEIF (iexch == 2) THEN ! 'sl1' call slater1_spin (rho, zeta, ex, vxup, vxdw) ELSEIF (iexch == 3) THEN ! 'rxc' call slater_rxc_spin ( rho, zeta, ex, vxup, vxdw ) ELSEIF ((iexch == 4).or.(iexch==5)) THEN ! 'oep','hf' IF (exx_started) then ex = 0.0_DP vxup = 0.0_DP vxdw = 0.0_DP else call slater_spin (rho, zeta, ex, vxup, vxdw) endif ELSEIF (iexch == 6) THEN ! 'pb0x' call slater_spin (rho, zeta, ex, vxup, vxdw) if (exx_started) then ex = (1.0_DP - exx_fraction) * ex vxup = (1.0_DP - exx_fraction) * vxup vxdw = (1.0_DP - exx_fraction) * vxdw end if ELSEIF (iexch == 7) THEN ! 'b3lyp' call slater_spin (rho, zeta, ex, vxup, vxdw) if (exx_started) then ex = 0.8_DP * ex vxup = 0.8_DP * vxup vxdw = 0.8_DP * vxdw end if ELSE ex = 0.0_DP vxup = 0.0_DP vxdw = 0.0_DP ENDIF !..correlation if (icorr == 0) then ec = 0.0_DP vcup = 0.0_DP vcdw = 0.0_DP elseif (icorr == 1) then call pz_spin (rs, zeta, ec, vcup, vcdw) elseif (icorr == 2) then call vwn_spin (rs, zeta, ec, vcup, vcdw) elseif (icorr == 3) then call lsd_lyp (rho, zeta, ec, vcup, vcdw) ! from CP/FPMD (more_functionals) elseif (icorr == 4) then call pw_spin (rs, zeta, ec, vcup, vcdw) else call errore ('lsda_functional (xc_spin)', 'not implemented', icorr) endif ! return end subroutine xc_spin ! !----------------------------------------------------------------------- subroutine xc_spin_vec (rho, zeta, length, evx, evc) !----------------------------------------------------------------------- ! lsd exchange and correlation functionals - Hartree a.u. ! ! exchange : Slater (alpha=2/3) ! correlation: Ceperley & Alder (Perdew-Zunger parameters) ! Perdew & Wang ! ! input : rho = rhoup(r)+rhodw(r) ! zeta=(rhoup(r)-rhodw(r))/rho ! implicit none integer, intent(in) :: length real(DP), intent(in) :: rho(length), zeta(length) real(DP), intent(out) :: evx(length,3), evc(length,3) ! real(DP), parameter :: small= 1.E-10_DP, third = 1.0_DP/3.0_DP, & pi34= 0.6203504908994_DP ! pi34=(3/4pi)^(1/3) ! integer :: i logical :: comp_energy_loc real(DP) :: rs(length) ! !..exchange select case (iexch) case(1) ! 'sla' call slater_spin_vec (rho, zeta, evx, length) case(2) ! 'sl1' do i=1,length call slater1_spin (rho(i), zeta(i), evx(i,3), evx(i,1), evx(i,2)) end do case(3) ! 'rxc' do i=1,length call slater_rxc_spin (rho(i), zeta(i), evx(i,3), evx(i,1), evx(i,2)) end do case(4,5) ! 'oep','hf' if (exx_started) then evx = 0.0_DP else call slater_spin_vec (rho, zeta, evx, length) endif case(6) ! 'pb0x' call slater_spin_vec (rho, zeta, evx, length) if (exx_started) then evx = (1.0_DP - exx_fraction) * evx end if case(7) ! 'b3lyp' call slater_spin_vec (rho, zeta, evx, length) if (exx_started) then evx = 0.8_DP * evx end if case default evx = 0.0_DP end select !..correlation where (rho.gt.small) rs = pi34 / rho**third elsewhere rs = 1.0_DP ! just a sane default, results are discarded anyway end where select case(icorr) case (0) evc = 0.0_DP case (1) do i=1,length call pz_spin (rs(i), zeta(i), evc(i,3), evc(i,1), evc(i,2)) end do case (2) do i=1,length call vwn_spin (rs(i), zeta(i), evc(i,3), evc(i,1), evc(i,2)) end do case(3) do i=1,length call lsd_lyp (rho(i), zeta(i), evc(i,3), evc(i,1), evc(i,2)) ! from CP/FPMD (more_functionals) end do case(4) call pw_spin_vec (rs, zeta, evc, length) case default call errore ('lsda_functional (xc_spin_vec)', 'not implemented', icorr) end select ! where (rho.le.small) evx(:,1) = 0.0_DP evc(:,1) = 0.0_DP evx(:,2) = 0.0_DP evc(:,2) = 0.0_DP evx(:,3) = 0.0_DP evc(:,3) = 0.0_DP end where ! end subroutine xc_spin_vec ! !----------------------------------------------------------------------- !------- GRADIENT CORRECTIONS DRIVERS ---------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine gcxc (rho, grho, sx, sc, v1x, v2x, v1c, v2c) !----------------------------------------------------------------------- ! gradient corrections for exchange and correlation - Hartree a.u. ! See comments at the beginning of module for implemented cases ! ! input: rho, grho=|\nabla rho|^2 ! definition: E_x = \int E_x(rho,grho) dr ! output: sx = E_x(rho,grho) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! sc, v1c, v2c as above for correlation ! implicit none real(DP) :: rho, grho, sx, sc, v1x, v2x, v1c, v2c real(DP) :: sxsr, v1xsr, v2xsr real(DP), parameter:: small = 1.E-10_DP ! exchange if (rho <= small) then sx = 0.0_DP v1x = 0.0_DP v2x = 0.0_DP elseif (igcx == 1) then call becke88 (rho, grho, sx, v1x, v2x) elseif (igcx == 2) then call ggax (rho, grho, sx, v1x, v2x) elseif (igcx == 3) then call pbex (rho, grho, 1, sx, v1x, v2x) elseif (igcx == 4) then call pbex (rho, grho, 2, sx, v1x, v2x) elseif (igcx == 5 .and. igcc == 5) then call hcth(rho, grho, sx, v1x, v2x) elseif (igcx == 6) then call optx (rho, grho, sx, v1x, v2x) ! case igcx == 7 (meta-GGA) must be treated in a separate call to another ! routine: needs kinetic energy density in addition to rho and grad rho elseif (igcx == 8) then ! 'pbe0' call pbex (rho, grho, 1, sx, v1x, v2x) if (exx_started) then sx = (1.0_DP - exx_fraction) * sx v1x = (1.0_DP - exx_fraction) * v1x v2x = (1.0_DP - exx_fraction) * v2x end if elseif (igcx == 9) then ! 'b3lyp' call becke88 (rho, grho, sx, v1x, v2x) if (exx_started) then sx = 0.72_DP * sx v1x = 0.72_DP * v1x v2x = 0.72_DP * v2x end if elseif (igcx ==10) then ! 'pbesol' call pbex (rho, grho, 3, sx, v1x, v2x) elseif (igcx ==11) then ! 'wc' call wcx (rho, grho, sx, v1x, v2x) elseif (igcx ==12) then ! 'pbexsr' call pbex (rho, grho, 1, sx, v1x, v2x) if(exx_started) then call pbexsr (rho, grho, sxsr, v1xsr, v2xsr, screening_parameter) sx = sx - exx_fraction * sxsr v1x = v1x - exx_fraction * v1xsr v2x = v2x - exx_fraction * v2xsr endif elseif (igcx ==13) then ! 'rPW86' call rPW86 (rho, grho, sx, v1x, v2x) elseif (igcx ==16) then ! 'C09x' call c09x (rho, grho, sx, v1x, v2x) elseif (igcx ==19) then ! 'pbesol' call pbex (rho, grho, 4, sx, v1x, v2x) else sx = 0.0_DP v1x = 0.0_DP v2x = 0.0_DP endif ! correlation if (rho.le.small) then sc = 0.0_DP v1c = 0.0_DP v2c = 0.0_DP elseif (igcc == 1) then call perdew86 (rho, grho, sc, v1c, v2c) elseif (igcc == 2) then call ggac (rho, grho, sc, v1c, v2c) elseif (igcc == 3) then call glyp (rho, grho, sc, v1c, v2c) elseif (igcc == 4) then call pbec (rho, grho, 1, sc, v1c, v2c) ! igcc == 5 (HCTH) is calculated together with case igcx=5 ! igcc == 6 (meta-GGA) is treated in a different routine elseif (igcc == 7) then !'B3LYP' call glyp (rho, grho, sc, v1c, v2c) if (exx_started) then sc = 0.81_DP * sc v1c = 0.81_DP * v1c v2c = 0.81_DP * v2c end if elseif (igcc == 8) then ! 'PBEsol' call pbec (rho, grho, 2, sc, v1c, v2c) ! igcc == 9 set to 5, back-compatibility ! igcc ==10 set to 6, back-compatibility ! igcc ==11 M06L calculated in another routine else if (igcc == 12) then ! 'Q2D' call pbec (rho, grho, 3, sc, v1c, v2c) else sc = 0.0_DP v1c = 0.0_DP v2c = 0.0_DP endif ! return end subroutine gcxc ! !!!!!!!!!!!!!!SPIN !----------------------------------------------------------------------- subroutine gcx_spin (rhoup, rhodw, grhoup2, grhodw2, & sx, v1xup, v1xdw, v2xup, v2xdw) !----------------------------------------------------------------------- ! gradient corrections for exchange - Hartree a.u. ! implicit none ! ! dummy arguments ! real(DP) :: rhoup, rhodw, grhoup2, grhodw2, sx, v1xup, v1xdw, & v2xup, v2xdw ! up and down charge ! up and down gradient of the charge ! exchange and correlation energies ! derivatives of exchange wr. rho ! derivatives of exchange wr. grho ! real(DP) :: sxsr, v1xupsr, v2xupsr, v1xdwsr, v2xdwsr real(DP), parameter :: small = 1.E-10_DP real(DP) :: rho, sxup, sxdw integer :: iflag ! ! ! exchange rho = rhoup + rhodw if (rho <= small .or. igcx == 0) then sx = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP elseif (igcx == 1) then if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call becke88_spin (rhoup, grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call becke88_spin (rhodw, grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = sxup + sxdw elseif (igcx == 2) then if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call ggax (2.0_DP * rhoup, 4.0_DP * grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call ggax (2.0_DP * rhodw, 4.0_DP * grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw elseif (igcx == 3 .or. igcx == 4 .or. igcx == 8 .or. & igcx == 10 .or. igcx == 12) then ! igcx=3: PBE, igcx=4: revised PBE, igcx=8: PBE0, igcx=10: PBEsol ! igcx=12: HSE if (igcx == 4) then iflag = 2 elseif (igcx == 10) then iflag = 3 else iflag = 1 endif if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call pbex (2.0_DP * rhoup, 4.0_DP * grhoup2, iflag, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call pbex (2.0_DP * rhodw, 4.0_DP * grhodw2, iflag, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw if (igcx == 8 .and. exx_started ) then sx = (1.0_DP - exx_fraction) * sx v1xup = (1.0_DP - exx_fraction) * v1xup v1xdw = (1.0_DP - exx_fraction) * v1xdw v2xup = (1.0_DP - exx_fraction) * v2xup v2xdw = (1.0_DP - exx_fraction) * v2xdw end if if (igcx == 12 .and. exx_started ) then call pbexsr_lsd (rhoup, rhodw, grhoup2, grhodw2, sxsr, & v1xupsr, v2xupsr, v1xdwsr, v2xdwsr, & screening_parameter) ! write(*,*) sxsr,v1xsr,v2xsr sx = sx - exx_fraction*sxsr v1xup = v1xup - exx_fraction*v1xupsr v2xup = v2xup - exx_fraction*v2xupsr v1xdw = v1xdw - exx_fraction*v1xdwsr v2xdw = v2xdw - exx_fraction*v2xdwsr end if elseif (igcx == 9) then if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call becke88_spin (rhoup, grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call becke88_spin (rhodw, grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = sxup + sxdw if (exx_started ) then sx = 0.72_DP * sx v1xup = 0.72_DP * v1xup v1xdw = 0.72_DP * v1xdw v2xup = 0.72_DP * v2xup v2xdw = 0.72_DP * v2xdw end if elseif (igcx == 11) then ! 'Wu-Cohen' if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call wcx (2.0_DP * rhoup, 4.0_DP * grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call wcx (2.0_DP * rhodw, 4.0_DP * grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw ! case igcx == 5 (HCTH) and 6 (OPTX) not implemented ! case igcx == 7 (meta-GGA) must be treated in a separate call to another ! routine: needs kinetic energy density in addition to rho and grad rho else call errore ('gcx_spin', 'not implemented', igcx) endif ! return end subroutine gcx_spin ! !----------------------------------------------------------------------- subroutine gcx_spin_vec(rhoup, rhodw, grhoup2, grhodw2, & sx, v1xup, v1xdw, v2xup, v2xdw, length) !----------------------------------------------------------------------- ! gradient corrections for exchange - Hartree a.u. ! implicit none ! ! dummy arguments ! integer, intent(in) :: length real(DP),intent(in) :: rhoup(length), rhodw(length) real(DP),intent(in) :: grhoup2(length), grhodw2(length) real(DP),intent(out) :: sx(length) real(DP),intent(out) :: v1xup(length), v1xdw(length) real(DP),intent(out) :: v2xup(length), v2xdw(length) ! up and down charge ! up and down gradient of the charge ! exchange and correlation energies ! derivatives of exchange wr. rho ! derivatives of exchange wr. grho ! real(DP), parameter :: small = 1.E-10_DP real(DP) :: rho(length), sxup(length), sxdw(length) integer :: iflag integer :: i ! ! ! exchange rho = rhoup + rhodw select case(igcx) case(0) sx = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP case(1) do i=1,length if (rhoup(i) > small .and. sqrt (abs (grhoup2(i)) ) > small) then call becke88_spin (rhoup(i), grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt (abs (grhodw2(i)) ) > small) then call becke88_spin (rhodw(i), grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = sxup + sxdw case(2) do i=1,length if (rhoup(i) > small .and. sqrt (abs (grhoup2(i)) ) > small) then call ggax (2.0_DP * rhoup(i), 4.0_DP * grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt (abs (grhodw2(i)) ) > small) then call ggax (2.0_DP * rhodw(i), 4.0_DP * grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw case(3,4,8,10) ! igcx=3: PBE, igcx=4: revised PBE, igcx=8 PBE0, igcx=10: PBEsol if (igcx == 4) then iflag = 2 elseif (igcx == 10) then iflag = 3 else iflag = 1 endif call pbex_vec (2.0_DP * rhoup, 4.0_DP * grhoup2, iflag, sxup, v1xup, v2xup, length, small) call pbex_vec (2.0_DP * rhodw, 4.0_DP * grhodw2, iflag, sxdw, v1xdw, v2xdw, length, small) sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw if (igcx == 8 .and. exx_started ) then sx = (1.0_DP - exx_fraction) * sx v1xup = (1.0_DP - exx_fraction) * v1xup v1xdw = (1.0_DP - exx_fraction) * v1xdw v2xup = (1.0_DP - exx_fraction) * v2xup v2xdw = (1.0_DP - exx_fraction) * v2xdw end if case(9) do i=1,length if (rhoup(i) > small .and. sqrt(abs(grhoup2(i)) ) > small) then call becke88_spin (rhoup(i), grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt(abs(grhodw2(i))) > small) then call becke88_spin (rhodw(i), grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = sxup + sxdw if (exx_started ) then sx = 0.72_DP * sx v1xup = 0.72_DP * v1xup v1xdw = 0.72_DP * v1xdw v2xup = 0.72_DP * v2xup v2xdw = 0.72_DP * v2xdw end if case(11) ! 'Wu-Cohen' do i=1,length if (rhoup(i) > small .and. sqrt(abs(grhoup2(i))) > small) then call wcx (2.0_DP * rhoup(i), 4.0_DP * grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt(abs(grhodw2(i))) > small) then call wcx (2.0_DP * rhodw(i), 4.0_DP * grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw case default call errore ('gcx_spin_vec', 'not implemented', igcx) end select ! if (igcx.ne.0) then where (rho.le.small) sx = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP end where end if ! end subroutine gcx_spin_vec ! !----------------------------------------------------------------------- subroutine gcc_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) !----------------------------------------------------------------------- ! gradient corrections for correlations - Hartree a.u. ! Implemented: Perdew86, GGA (PW91), PBE ! implicit none ! ! dummy arguments ! real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c ! the total charge ! the magnetization ! the gradient of the charge squared ! exchange and correlation energies ! derivatives of correlation wr. rho ! derivatives of correlation wr. grho real(DP), parameter :: small = 1.E-10_DP, epsr=1.E-6_DP ! if ( abs(zeta) > 1.0_DP ) then sc = 0.0_DP v1cup = 0.0_DP v1cdw = 0.0_DP v2c = 0.0_DP return else ! ! ... ( - 1.0 + epsr ) < zeta < ( 1.0 - epsr ) zeta = SIGN( MIN( ABS( zeta ), ( 1.0_DP - epsr ) ) , zeta ) endif if (igcc == 0 .or. rho <= small .or. sqrt(abs(grho)) <= small) then sc = 0.0_DP v1cup = 0.0_DP v1cdw = 0.0_DP v2c = 0.0_DP elseif (igcc == 1) then call perdew86_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) elseif (igcc == 2) then call ggac_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) elseif (igcc == 4) then call pbec_spin (rho, zeta, grho, 1, sc, v1cup, v1cdw, v2c) elseif (igcc == 8) then call pbec_spin (rho, zeta, grho, 2, sc, v1cup, v1cdw, v2c) else call errore ('lsda_functionals (gcc_spin)', 'not implemented', igcc) endif ! return end subroutine gcc_spin ! ! ================================================================== SUBROUTINE gcc_spin_more( RHOA, RHOB, GRHOAA, GRHOBB, GRHOAB, & SC, V1CA, V1CB, V2CA, V2CB, V2CAB ) ! ==--------------------------------------------------------------== ! == GRADIENT CORRECTIONS FOR EXCHANGE AND CORRELATION == ! == == ! == EXCHANGE : BECKE88 == ! == GGAX == ! == CORRELATION : PERDEW86 == ! == LEE, YANG & PARR == ! == GGAC == ! ==--------------------------------------------------------------== IMPLICIT NONE REAL(DP) :: RHOA,RHOB,GRHOAA,GRHOBB,GRHOAB REAL(DP) :: SC,V1CA,V2CA,V1CB,V2CB,V2CAB ! ... Gradient Correction for correlation REAL(DP) :: SMALL, RHO PARAMETER(SMALL=1.E-20_DP) SC=0.0_DP V1CA=0.0_DP V2CA=0.0_DP V1CB=0.0_DP V2CB=0.0_DP V2CAB=0.0_DP IF( igcc == 3 .or. igcc == 7) THEN RHO=RHOA+RHOB IF(RHO.GT.SMALL) then CALL LSD_GLYP(RHOA,RHOB,GRHOAA,GRHOAB,GRHOBB,SC,& V1CA,V2CA,V1CB,V2CB,V2CAB) if (igcc == 7 .and. exx_started) then SC = 0.81d0*SC V1CA = 0.81d0*V1CA V2CA = 0.81d0*V2CA V1CB = 0.81d0*V1CB V2CB = 0.81d0*V2CB V2CAB = 0.81d0*V2CAB endif endif ELSE CALL errore( " gcc_spin_more ", " gradiet correction not implemented ", 1 ) ENDIF ! ==--------------------------------------------------------------== RETURN END SUBROUTINE gcc_spin_more ! ! !----------------------------------------------------------------------- !------- NONLOCAL CORRECTIONS DRIVERS ---------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine nlc (rho_valence, rho_core, enl, vnl, v) !----------------------------------------------------------------------- ! non local correction for the correlation ! ! input: rho_valence, rho_core ! definition: E_nl = \int E_nl(rho',grho',rho'',grho'',|r'-r''|) dr ! output: enl = E_nl ! vnl= D(E_x)/D(rho) ! v = Correction to the potential ! USE vdW_DF, ONLY: xc_vdW_DF, vdw_type implicit none REAL(DP), INTENT(IN) :: rho_valence(:,:), rho_core(:) REAL(DP), INTENT(INOUT) :: v(:,:) REAL(DP), INTENT(INOUT) :: enl, vnl if (inlc == 1 .or. inlc == 2) then vdw_type = inlc call xc_vdW_DF(rho_valence, rho_core, enl, vnl, v) else enl = 0.0_DP vnl = 0.0_DP v = 0.0_DP endif ! return end subroutine nlc ! !----------------------------------------------------------------------- !------- META CORRECTIONS DRIVERS ---------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine tau_xc (rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) !----------------------------------------------------------------------- ! gradient corrections for exchange and correlation - Hartree a.u. ! See comments at the beginning of module for implemented cases ! ! input: rho, grho=|\nabla rho|^2 ! ! definition: E_x = \int e_x(rho,grho) dr ! ! output: sx = e_x(rho,grho) = grad corr ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! v3x= D(E_x)/D(tau) ! ! sc, v1c, v2c as above for correlation ! implicit none real(DP) :: rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c !_________________________________________________________________________ if (igcx == 7 .and. igcc == 6) then call tpsscxc (rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) elseif (igcx == 18 .and. igcc == 11) then call m06lxc (rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) else call errore('v_xc_meta','wrong igcx and/or igcc',1) end if return end subroutine tau_xc ! ! !----------------------------------------------------------------------- subroutine tau_xc_spin (rhoup, rhodw, grhoup, grhodw, tauup, taudw, ex, ec, & & v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, v1cup, v1cdw, & & v2cup, v2cdw, v2cup_vec, v2cdw_vec, v3cup, v3cdw) !----------------------------------------------------------------------- ! ! implicit none real(dp), intent(in) :: rhoup, rhodw, tauup, taudw real(dp), dimension (3), intent(in) :: grhoup, grhodw real(dp), intent(out) :: ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw real(dp), dimension(3), intent(out) :: v2cup_vec, v2cdw_vec ! ! Local variables ! integer :: ipol real(dp) :: rh, zeta, atau, grhoup2, grhodw2 real(dp), parameter :: epsr=1.0d-08, zero=0._dp ! !_____________________________ grhoup2 = zero grhodw2 = zero v2cup = zero v2cdw = zero v2cup_vec (:) = zero v2cdw_vec (:) = zero do ipol=1,3 grhoup2 = grhoup2 + grhoup(ipol)**2 grhodw2 = grhodw2 + grhodw(ipol)**2 end do if (igcx == 7 .and. igcc == 6) then call tpsscx_spin(rhoup, rhodw, grhoup2, grhodw2, tauup, & & taudw, ex, v1xup,v1xdw,v2xup,v2xdw,v3xup,v3xdw) rh = rhoup + rhodw zeta = (rhoup - rhodw) / rh atau = tauup + taudw ! KE-density in Hartree call tpsscc_spin(rh,zeta,grhoup,grhodw, atau,ec, & & v1cup,v1cdw,v2cup_vec,v2cdw_vec,v3cup, v3cdw) elseif (igcx == 18 .and. igcc == 11) then call m06lxc_spin (rhoup, rhodw, grhoup2, grhodw2, tauup, taudw, & & ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw) else call errore('v_xc_meta','wrong igcx and/or igcc',1) end if end subroutine tau_xc_spin !----------------------------------------------------------------------- !------- DRIVERS FOR DERIVATIVES OF XC POTENTIAL ----------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- function dmxc (rho) !----------------------------------------------------------------------- ! ! derivative of the xc potential with respect to the local density ! ! implicit none ! real(DP), intent(in) :: rho ! input: the charge density ( positive ) real(DP) :: dmxc ! output: the derivative of the xc potential ! ! local variables ! real(DP) :: dr, vxp, vcp, vxm, vcm, vx, ex, ec, rs real(DP), external :: dpz integer :: iflg ! real(DP), parameter :: small = 1.E-30_DP, e2 = 2.0_DP, & pi34 = 0.75_DP / 3.141592653589793_DP, third = 1.0_DP /3.0_DP ! dmxc = 0.0_DP if (rho < small) then return endif ! ! first case: analytical derivatives available ! if (get_iexch() == 1 .and. get_icorr() == 1) then rs = (pi34 / rho) **third !..exchange call slater (rs, ex, vx) dmxc = vx / (3.0_DP * rho) !..correlation iflg = 2 if (rs < 1.0_DP) iflg = 1 dmxc = dmxc + dpz (rs, iflg) else ! ! second case: numerical derivatives ! dr = min (1.E-6_DP, 1.E-4_DP * rho) call xc (rho + dr, ex, ec, vxp, vcp) call xc (rho - dr, ex, ec, vxm, vcm) dmxc = (vxp + vcp - vxm - vcm) / (2.0_DP * dr) endif ! ! bring to rydberg units ! dmxc = e2 * dmxc return ! end function dmxc ! !----------------------------------------------------------------------- subroutine dmxc_spin (rhoup, rhodw, dmuxc_uu, dmuxc_ud, dmuxc_du, & dmuxc_dd) !----------------------------------------------------------------------- ! derivative of the xc potential with respect to the local density ! spin-polarized case ! implicit none ! real(DP), intent(in) :: rhoup, rhodw ! input: spin-up and spin-down charge density real(DP), intent(out) :: dmuxc_uu, dmuxc_ud, dmuxc_du, dmuxc_dd ! output: up-up, up-down, down-up, down-down derivatives of the ! XC functional ! ! local variables ! real(DP) :: rhotot, rs, zeta, fz, fz1, fz2, ex, vx, ecu, ecp, vcu, & vcp, dmcu, dmcp, aa, bb, cc, dr, dz, ec, vxupm, vxdwm, vcupm, & vcdwm, rho, vxupp, vxdwp, vcupp, vcdwp, zeta_eff real(DP), external :: dpz, dpz_polarized integer :: iflg ! real(DP), parameter :: small = 1.E-30_DP, e2 = 2.0_DP, & pi34 = 0.75_DP / 3.141592653589793_DP, third = 1.0_DP/3.0_DP, & p43 = 4.0_DP / 3.0_DP, p49 = 4.0_DP / 9.0_DP, m23 = -2.0_DP / 3.0_DP ! dmuxc_uu = 0.0_DP dmuxc_du = 0.0_DP dmuxc_ud = 0.0_DP dmuxc_dd = 0.0_DP ! rhotot = rhoup + rhodw if (rhotot <= small) return zeta = (rhoup - rhodw) / rhotot if (abs (zeta) > 1.0_DP) return if (get_iexch() == 1 .and. get_icorr() == 1) then ! ! first case: analytical derivative available ! !..exchange rs = (pi34 / (2.0_DP * rhoup) ) **third call slater (rs, ex, vx) dmuxc_uu = vx / (3.0_DP * rhoup) rs = (pi34 / (2.0_DP * rhodw) ) **third call slater (rs, ex, vx) dmuxc_dd = vx / (3.0_DP * rhodw) !..correlation rs = (pi34 / rhotot) **third iflg = 2 if (rs < 1.0_DP) iflg = 1 dmcu = dpz (rs, iflg) dmcp = dpz_polarized (rs, iflg) call pz (rs, 1, ecu, vcu) call pz_polarized (rs, ecp, vcp) fz = ( (1.0_DP + zeta) **p43 + (1.0_DP - zeta) **p43 - 2.0_DP) & / (2.0_DP**p43 - 2.0_DP) fz1 = p43 * ( (1.0_DP + zeta) **third- (1.0_DP - zeta) **third) & / (2.0_DP**p43 - 2.0_DP) fz2 = p49 * ( (1.0_DP + zeta) **m23 + (1.0_DP - zeta) **m23) & / (2.0_DP**p43 - 2.0_DP) aa = dmcu + fz * (dmcp - dmcu) bb = 2.0_DP * fz1 * (vcp - vcu - (ecp - ecu) ) / rhotot cc = fz2 * (ecp - ecu) / rhotot dmuxc_uu = dmuxc_uu + aa + (1.0_DP - zeta) * bb + (1.0_DP - zeta)**2 * cc dmuxc_du = dmuxc_du + aa + ( - zeta) * bb + (zeta**2 - 1.0_DP) * cc dmuxc_ud = dmuxc_du dmuxc_dd = dmuxc_dd+aa - (1.0_DP + zeta) * bb + (1.0_DP + zeta)**2 * cc else rho = rhoup + rhodw dr = min (1.E-6_DP, 1.E-4_DP * rho) call xc_spin (rho - dr, zeta, ex, ec, vxupm, vxdwm, vcupm, vcdwm) call xc_spin (rho + dr, zeta, ex, ec, vxupp, vxdwp, vcupp, vcdwp) dmuxc_uu = (vxupp + vcupp - vxupm - vcupm) / (2.0_DP * dr) dmuxc_ud = dmuxc_uu dmuxc_dd = (vxdwp + vcdwp - vxdwm - vcdwm) / (2.0_DP * dr) dmuxc_du = dmuxc_dd ! dz = min (1.d-6, 1.d-4 * abs (zeta) ) dz = 1.E-6_DP ! ! If zeta is too close to +-1, the derivative is computed at a slightly ! smaller zeta ! zeta_eff = SIGN( MIN( ABS( zeta ), ( 1.0_DP - 2.0_DP*dz ) ) , zeta ) call xc_spin (rho, zeta_eff - dz, ex, ec, vxupm, vxdwm, vcupm, vcdwm) call xc_spin (rho, zeta_eff + dz, ex, ec, vxupp, vxdwp, vcupp, vcdwp) dmuxc_uu = dmuxc_uu + (vxupp + vcupp - vxupm - vcupm) * & (1.0_DP - zeta) / rho / (2.0_DP * dz) dmuxc_ud = dmuxc_ud- (vxupp + vcupp - vxupm - vcupm) * & (1.0_DP + zeta) / rho / (2.0_DP * dz) dmuxc_du = dmuxc_du + (vxdwp + vcdwp - vxdwm - vcdwm) * & (1.0_DP - zeta) / rho / (2.0_DP * dz) dmuxc_dd = dmuxc_dd- (vxdwp + vcdwp - vxdwm - vcdwm) * & (1.0_DP + zeta) / rho / (2.0_DP * dz) endif ! ! bring to rydberg units ! dmuxc_uu = e2 * dmuxc_uu dmuxc_du = e2 * dmuxc_du dmuxc_ud = e2 * dmuxc_ud dmuxc_dd = e2 * dmuxc_dd ! return end subroutine dmxc_spin !----------------------------------------------------------------------- subroutine dmxc_nc (rho, mx, my, mz, dmuxc) !----------------------------------------------------------------------- ! derivative of the xc potential with respect to the local density ! and magnetization ! non colinear case ! implicit none ! real(DP), intent(in) :: rho, mx, my, mz ! input: charge density and magnetization real(DP), intent(out) :: dmuxc(4,4) ! output: derivative of XC functional ! ! local variables ! REAL(DP) :: zeta, ex, ec, dr, dz, vxupm, vxdwm, vcupm, & vcdwm, vxupp, vxdwp, vcupp, vcdwp, vxup, vxdw, vcup, vcdw REAL(DP) :: amag, vs, dvxc_rho, dvxc_mx, dvxc_my, dvxc_mz, & dbx_rho, dbx_mx, dbx_my, dbx_mz, dby_rho, dby_mx, & dby_my, dby_mz, dbz_rho, dbz_mx, dbz_my, dbz_mz, zeta_eff REAL(DP), PARAMETER :: small = 1.E-30_DP, e2 = 2.0_DP ! ! dmuxc = 0.0_DP ! IF (rho <= small) RETURN amag = sqrt(mx**2+my**2+mz**2) zeta = amag / rho IF (abs (zeta) > 1.0_DP) RETURN CALL xc_spin (rho, zeta, ex, ec, vxup, vxdw, vcup, vcdw) vs=0.5_DP*(vxup+vcup-vxdw-vcdw) dr = min (1.E-6_DP, 1.E-4_DP * rho) CALL xc_spin (rho - dr, zeta, ex, ec, vxupm, vxdwm, vcupm, vcdwm) CALL xc_spin (rho + dr, zeta, ex, ec, vxupp, vxdwp, vcupp, vcdwp) dvxc_rho = ((vxupp + vcupp - vxupm - vcupm)+ & (vxdwp + vcdwp - vxdwm - vcdwm)) / (4.0_DP * dr) IF (amag > 1.E-10_DP) THEN dbx_rho = ((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))* mx / (4.0_DP*dr*amag) dby_rho = ((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))* my / (4.0_DP*dr*amag) dbz_rho = ((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))* mz / (4.0_DP*dr*amag) ! dz = min (1.d-6, 1.d-4 * abs (zeta) ) dz = 1.0E-6_DP ! ! If zeta is too close to +-1, the derivative is computed at a slightly ! smaller zeta ! zeta_eff = SIGN( MIN( ABS( zeta ), ( 1.0_DP - 2.0_DP*dz ) ) , zeta ) CALL xc_spin (rho, zeta_eff - dz, ex, ec, vxupm, vxdwm, vcupm, vcdwm) CALL xc_spin (rho, zeta_eff + dz, ex, ec, vxupp, vxdwp, vcupp, vcdwp) ! The variables are rho and m, so zeta depends on rho ! dvxc_rho=dvxc_rho- ((vxupp + vcupp - vxupm - vcupm)+ & (vxdwp + vcdwp - vxdwm - vcdwm))*zeta/rho/(4.0_DP * dz) dbx_rho = dbx_rho-((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))*mx*zeta/rho/(4.0_DP*dz*amag) dby_rho = dby_rho-((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))*my*zeta/rho/(4.0_DP*dz*amag) dbz_rho = dbz_rho-((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))*mz*zeta/rho/(4.0_DP*dz*amag) ! ! here the derivatives with respect to m ! dvxc_mx = ((vxupp + vcupp - vxupm - vcupm) + & (vxdwp + vcdwp - vxdwm - vcdwm))*mx/rho/(4.0_DP*dz*amag) dvxc_my = ((vxupp + vcupp - vxupm - vcupm) + & (vxdwp + vcdwp - vxdwm - vcdwm))*my/rho/(4.0_DP*dz*amag) dvxc_mz = ((vxupp + vcupp - vxupm - vcupm) + & (vxdwp + vcdwp - vxdwm - vcdwm))*mz/rho/(4.0_DP*dz*amag) dbx_mx = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mx**2*amag/rho/ & (4.0_DP*dz) + vs*(my**2+mz**2))/amag**3 dbx_my = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mx*my*amag/rho/ & (4.0_DP*dz) - vs*(mx*my))/amag**3 dbx_mz = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mx*mz*amag/rho/ & (4.0_DP*dz) - vs*(mx*mz))/amag**3 dby_mx = dbx_my dby_my = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*my**2*amag/rho/ & (4.0_DP*dz) + vs*(mx**2+mz**2))/amag**3 dby_mz = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*my*mz*amag/rho/ & (4.0_DP*dz) - vs*(my*mz))/amag**3 dbz_mx = dbx_mz dbz_my = dby_mz dbz_mz = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mz**2*amag/rho/ & (4.0_DP*dz) + vs*(mx**2+my**2))/amag**3 dmuxc(1,1)=dvxc_rho dmuxc(1,2)=dvxc_mx dmuxc(1,3)=dvxc_my dmuxc(1,4)=dvxc_mz dmuxc(2,1)=dbx_rho dmuxc(2,2)=dbx_mx dmuxc(2,3)=dbx_my dmuxc(2,4)=dbx_mz dmuxc(3,1)=dby_rho dmuxc(3,2)=dby_mx dmuxc(3,3)=dby_my dmuxc(3,4)=dby_mz dmuxc(4,1)=dbz_rho dmuxc(4,2)=dbz_mx dmuxc(4,3)=dbz_my dmuxc(4,4)=dbz_mz ELSE dmuxc(1,1)=dvxc_rho ENDIF ! ! bring to rydberg units ! dmuxc = e2 * dmuxc ! RETURN end subroutine dmxc_nc ! !----------------------------------------------------------------------- subroutine dgcxc (r, s2, vrrx, vsrx, vssx, vrrc, vsrc, vssc) !----------------------------------------------------------------------- USE kinds, only : DP implicit none real(DP) :: r, s2, vrrx, vsrx, vssx, vrrc, vsrc, vssc real(DP) :: dr, s, ds real(DP) :: sx, sc, v1xp, v2xp, v1cp, v2cp, v1xm, v2xm, v1cm, & v2cm s = sqrt (s2) dr = min (1.d-4, 1.d-2 * r) ds = min (1.d-4, 1.d-2 * s) call gcxc (r + dr, s2, sx, sc, v1xp, v2xp, v1cp, v2cp) call gcxc (r - dr, s2, sx, sc, v1xm, v2xm, v1cm, v2cm) vrrx = 0.5d0 * (v1xp - v1xm) / dr vrrc = 0.5d0 * (v1cp - v1cm) / dr vsrx = 0.25d0 * (v2xp - v2xm) / dr vsrc = 0.25d0 * (v2cp - v2cm) / dr call gcxc (r, (s + ds) **2, sx, sc, v1xp, v2xp, v1cp, v2cp) call gcxc (r, (s - ds) **2, sx, sc, v1xm, v2xm, v1cm, v2cm) vsrx = vsrx + 0.25d0 * (v1xp - v1xm) / ds / s vsrc = vsrc + 0.25d0 * (v1cp - v1cm) / ds / s vssx = 0.5d0 * (v2xp - v2xm) / ds / s vssc = 0.5d0 * (v2cp - v2cm) / ds / s return end subroutine dgcxc ! !----------------------------------------------------------------------- subroutine dgcxc_spin (rup, rdw, gup, gdw, vrrxup, vrrxdw, vrsxup, & vrsxdw, vssxup, vssxdw, vrrcup, vrrcdw, vrscup, vrscdw, vssc, & vrzcup, vrzcdw) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the exchange and correlatio ! potentials with respect to the density, the gradient and zeta ! USE kinds, only : DP implicit none real(DP), intent(in) :: rup, rdw, gup (3), gdw (3) ! input: the charges and the gradient real(DP), intent(out):: vrrxup, vrrxdw, vrsxup, vrsxdw, vssxup, & vssxdw, vrrcup, vrrcdw, vrscup, vrscdw, vssc, vrzcup, vrzcdw ! output: derivatives of the exchange and of the correlation ! ! local variables ! real(DP) :: r, zeta, sup2, sdw2, s2, s, sup, sdw, dr, dzeta, ds, & drup, drdw, dsup, dsdw, sx, sc, v1xupp, v1xdwp, v2xupp, v2xdwp, & v1xupm, v1xdwm, v2xupm, v2xdwm, v1cupp, v1cdwp, v2cp, v1cupm, & v1cdwm, v2cm ! charge densities and square gradients ! delta charge densities and gra ! delta gradients ! energies ! exchange potentials ! exchange potentials ! coorelation potentials ! coorelation potentials real(DP), parameter :: eps = 1.d-6 ! r = rup + rdw if (r.gt.eps) then zeta = (rup - rdw) / r else zeta = 2.d0 endif sup2 = gup (1) **2 + gup (2) **2 + gup (3) **2 sdw2 = gdw (1) **2 + gdw (2) **2 + gdw (3) **2 s2 = (gup (1) + gdw (1) ) **2 + (gup (2) + gdw (2) ) **2 + & (gup (3) + gdw (3) ) **2 sup = sqrt (sup2) sdw = sqrt (sdw2) s = sqrt (s2) ! ! up part of exchange ! if (rup.gt.eps.and.sup.gt.eps) then drup = min (1.d-4, 1.d-2 * rup) dsup = min (1.d-4, 1.d-2 * sdw) ! ! derivatives of exchange: up part ! call gcx_spin (rup + drup, rdw, sup2, sdw2, sx, v1xupp, v1xdwp, & v2xupp, v2xdwp) call gcx_spin (rup - drup, rdw, sup2, sdw2, sx, v1xupm, v1xdwm, & v2xupm, v2xdwm) vrrxup = 0.5d0 * (v1xupp - v1xupm) / drup vrsxup = 0.25d0 * (v2xupp - v2xupm) / drup call gcx_spin (rup, rdw, (sup + dsup) **2, sdw2, sx, v1xupp, & v1xdwp, v2xupp, v2xdwp) call gcx_spin (rup, rdw, (sup - dsup) **2, sdw2, sx, v1xupm, & v1xdwm, v2xupm, v2xdwm) vrsxup = vrsxup + 0.25d0 * (v1xupp - v1xupm) / dsup / sup vssxup = 0.5d0 * (v2xupp - v2xupm) / dsup / sup else vrrxup = 0.d0 vrsxup = 0.d0 vssxup = 0.d0 endif if (rdw.gt.eps.and.sdw.gt.eps) then drdw = min (1.d-4, 1.d-2 * rdw) dsdw = min (1.d-4, 1.d-2 * sdw) ! ! derivatives of exchange: down part ! call gcx_spin (rup, rdw + drdw, sup2, sdw2, sx, v1xupp, v1xdwp, & v2xupp, v2xdwp) call gcx_spin (rup, rdw - drdw, sup2, sdw2, sx, v1xupm, v1xdwm, & v2xupm, v2xdwm) vrrxdw = 0.5d0 * (v1xdwp - v1xdwm) / drdw vrsxdw = 0.25d0 * (v2xdwp - v2xdwm) / drdw call gcx_spin (rup, rdw, sup2, (sdw + dsdw) **2, sx, v1xupp, & v1xdwp, v2xupp, v2xdwp) call gcx_spin (rup, rdw, sup2, (sdw - dsdw) **2, sx, v1xupm, & v1xdwm, v2xupm, v2xdwm) vrsxdw = vrsxdw + 0.25d0 * (v1xdwp - v1xdwm) / dsdw / sdw vssxdw = 0.5d0 * (v2xdwp - v2xdwm) / dsdw / sdw else vrrxdw = 0.d0 vrsxdw = 0.d0 vssxdw = 0.d0 endif ! ! derivatives of correlation ! if (r.gt.eps.and.abs (zeta) .le.1.d0.and.s.gt.eps) then dr = min (1.d-4, 1.d-2 * r) call gcc_spin (r + dr, zeta, s2, sc, v1cupp, v1cdwp, v2cp) call gcc_spin (r - dr, zeta, s2, sc, v1cupm, v1cdwm, v2cm) vrrcup = 0.5d0 * (v1cupp - v1cupm) / dr vrrcdw = 0.5d0 * (v1cdwp - v1cdwm) / dr ds = min (1.d-4, 1.d-2 * s) call gcc_spin (r, zeta, (s + ds) **2, sc, v1cupp, v1cdwp, v2cp) call gcc_spin (r, zeta, (s - ds) **2, sc, v1cupm, v1cdwm, v2cm) vrscup = 0.5d0 * (v1cupp - v1cupm) / ds / s vrscdw = 0.5d0 * (v1cdwp - v1cdwm) / ds / s vssc = 0.5d0 * (v2cp - v2cm) / ds / s ! dzeta = min (1.d-4, 1.d-2 * abs (zeta) ) dzeta = 1.d-6 ! ! If zeta is too close to +-1 the derivative is evaluated at a slightly ! smaller value ! zeta = SIGN( MIN( ABS( zeta ), ( 1.0_DP - 2.0_DP*dzeta ) ) , zeta ) call gcc_spin (r, zeta + dzeta, s2, sc, v1cupp, v1cdwp, v2cp) call gcc_spin (r, zeta - dzeta, s2, sc, v1cupm, v1cdwm, v2cm) vrzcup = 0.5d0 * (v1cupp - v1cupm) / dzeta vrzcdw = 0.5d0 * (v1cdwp - v1cdwm) / dzeta else vrrcup = 0.d0 vrrcdw = 0.d0 vrscup = 0.d0 vrscdw = 0.d0 vssc = 0.d0 vrzcup = 0.d0 vrzcdw = 0.d0 endif return end subroutine dgcxc_spin ! !----------------------------------------------------------------------- !------- VECTOR AND GENERAL XC DRIVERS ------------------------------- !----------------------------------------------------------------------- ! !--------------------------------------------------------------- subroutine vxc_t(rho,rhoc,lsd,vxc) !--------------------------------------------------------------- ! ! this function returns the XC potential in LDA or LSDA approximation ! use io_global, only : stdout use kinds, only : DP implicit none integer:: lsd real(DP):: vxc(2), rho(2),rhoc,arho,zeta real(DP):: vx(2), vc(2), ex, ec ! real(DP), parameter :: e2=2.0_dp, eps=1.e-30_dp vxc(1)=0.0_dp if (lsd.eq.1) vxc(2)=0.0_dp if (lsd.eq.0) then ! ! LDA case ! arho=abs(rho(1)+rhoc) if (arho.gt.eps) then call xc(arho,ex,ec,vx(1),vc(1)) vxc(1)=e2*(vx(1)+vc(1)) endif else ! ! LSDA case ! arho = abs(rho(1)+rho(2)+rhoc) if (arho.gt.eps) then zeta = (rho(1)-rho(2)) / arho ! zeta has to stay between -1 and 1, but can get a little ! out the bound during the first iterations. if (abs(zeta).gt.1.0_dp) zeta = sign(1._dp, zeta) call xc_spin(arho,zeta,ex,ec,vx(1),vx(2),vc(1),vc(2)) vxc(1) = e2*(vx(1)+vc(1)) vxc(2) = e2*(vx(2)+vc(2)) endif endif return end subroutine vxc_t !--------------------------------------------------------------- function exc_t(rho,rhoc,lsd) !--------------------------------------------------------------- ! use kinds, only : DP implicit none integer:: lsd real(DP) :: exc_t, rho(2),arho,rhot, zeta,rhoc real(DP) :: ex, ec, vx(2), vc(2) real(DP),parameter:: e2 =2.0_DP exc_t=0.0_DP if(lsd == 0) then ! ! LDA case ! rhot = rho(1) + rhoc arho = abs(rhot) if (arho.gt.1.e-30_DP) then call xc(arho,ex,ec,vx(1),vc(1)) exc_t=e2*(ex+ec) endif else ! ! LSDA case ! rhot = rho(1)+rho(2)+rhoc arho = abs(rhot) if (arho.gt.1.e-30_DP) then zeta = (rho(1)-rho(2)) / arho ! In atomic this cannot happen, but in PAW zeta can become ! a little larger than 1, or smaller than -1: if( abs(zeta) > 1._dp) zeta = sign(1._dp, zeta) call xc_spin(arho,zeta,ex,ec,vx(1),vx(2),vc(1),vc(2)) exc_t=e2*(ex+ec) endif endif return end function exc_t subroutine evxc_t_vec(rho,rhoc,lsd,length,vxc,exc) !--------------------------------------------------------------- ! ! this function returns the XC potential in LDA or LSDA approximation ! integer, intent(in) :: lsd, length real(DP), intent(in) :: rho(length,2), rhoc(length) real(DP), intent(out), optional :: vxc(length,2) real(DP), intent(out), optional :: exc(length) ! real(DP) :: arho real(DP) :: arhoV(length), zetaV(length) real(DP) :: evx(length,3), evc(length,3) real(DP) :: ex, ec, vx, vc ! integer :: i real(DP), parameter :: e2 = 2.0_dp, eps = 1.e-30_dp if (lsd.eq.0) then ! ! LDA case ! do i=1,length arho = abs(rho(i,1)+rhoc(i)) if (arho.gt.eps) then call xc(arho,ex,ec,vx,vc) else ex = 0.0_dp ec = 0.0_dp vx = 0.0_dp vc = 0.0_dp end if if (present(vxc)) vxc(i,1) = e2*(vx+vc) if (present(exc)) exc(i) = e2*(ex+ec) end do else ! ! LSDA case ! arhoV = abs(rho(:,1)+rho(:,2)+rhoc(:)) where (arhoV.gt.eps) zetaV = (rho(:,1)-rho(:,2)) / arhoV elsewhere zetaV = 0.0_DP ! just a sane default, results are discarded anyway end where ! zeta has to stay between -1 and 1, but can get a little ! out of bound during the first iterations. zetaV = min( 1.0_DP, zetaV) zetaV = max(-1.0_DP, zetaV) call xc_spin_vec(arhoV, zetaV, length, evx, evc) if (present(vxc)) then vxc(:,1) = e2*(evx(:,1) + evc(:,1)) vxc(:,2) = e2*(evx(:,2) + evc(:,2)) end if if (present(exc)) exc = e2*(evx(:,3)+evc(:,3)) end if end subroutine evxc_t_vec end module funct espresso-5.0.2/Modules/io_global.f900000644000700200004540000000752412053145633016251 0ustar marsamoscm! ! Copyright (C) 2002-2004 FPMD & PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE io_global !---------------------------------------------------------------------------- ! IMPLICIT NONE ! PRIVATE SAVE ! PUBLIC :: io_global_start, meta_io_global_start, io_global_getionode, io_global_getmeta PUBLIC :: stdout, ionode, ionode_id, meta_ionode, meta_ionode_id PUBLIC :: xmlinputunit, xmloutputunit, xmltmpunit ! INTEGER :: stdout = 6 ! unit connected to standard output INTEGER :: ionode_id = 0 ! index of the i/o node LOGICAL :: ionode = .TRUE. ! identifies the i/o node INTEGER :: meta_ionode_id = 0 ! index of the i/o node for meta-codes LOGICAL :: meta_ionode = .TRUE. ! identifies the i/o node for meta-codes LOGICAL :: first = .TRUE. INTEGER :: xmlinputunit ! unit connected to the xml input INTEGER :: xmloutputunit = 51 ! unit connected to the xml output INTEGER :: xmltmpunit = 52 ! unit connected to the temp xml output ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE io_global_start( mpime, ionode_set ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: mpime, ionode_set ! ! IF ( mpime == ionode_set ) THEN ! ionode = .TRUE. ! ELSE ! ionode = .FALSE. ! END IF ! ionode_id = ionode_set ! first = .FALSE. ! RETURN ! END SUBROUTINE io_global_start ! !----------------------------------------------------------------------- SUBROUTINE meta_io_global_start( mpime, ionode_set ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: mpime, ionode_set ! ! IF ( mpime == ionode_set ) THEN ! meta_ionode = .TRUE. ! ELSE ! meta_ionode = .FALSE. ! END IF ! meta_ionode_id = ionode_set ! first = .FALSE. ! RETURN ! END SUBROUTINE meta_io_global_start ! ! ! !----------------------------------------------------------------------- SUBROUTINE io_global_getionode( ionode_out, ionode_id_out ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! LOGICAL, INTENT(OUT) :: ionode_out INTEGER, INTENT(OUT) :: ionode_id_out ! ! IF ( first ) & CALL errore( ' io_global_getionode ', ' ionode not yet defined ', 1 ) ! ionode_out = ionode ionode_id_out = ionode_id ! RETURN ! END SUBROUTINE io_global_getionode ! ! !----------------------------------------------------------------------- SUBROUTINE io_global_getmeta( myrank, root ) !----------------------------------------------------------------------- ! ! ... writes in module variables meta_ionode_id and meta_ionode ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: myrank, root ! ! IF(myrank == root) THEN ! meta_ionode = .true. ! ELSE meta_ionode = .false. ! ENDIF ! meta_ionode_id = root ! RETURN ! END SUBROUTINE io_global_getmeta ! ! END MODULE io_global espresso-5.0.2/Modules/make.depend0000644000700200004540000002130112053145633016065 0ustar marsamoscmatom.o : radial_grids.o autopilot.o : input_parameters.o autopilot.o : io_global.o autopilot.o : kind.o autopilot.o : mp.o autopilot.o : parser.o basic_algebra_routines.o : kind.o becmod.o : control_flags.o becmod.o : kind.o becmod.o : mp.o becmod.o : mp_global.o becmod.o : noncol.o becmod.o : recvec.o bfgs_module.o : basic_algebra_routines.o bfgs_module.o : cell_base.o bfgs_module.o : constants.o bfgs_module.o : io_files.o bfgs_module.o : kind.o cell_base.o : constants.o cell_base.o : control_flags.o cell_base.o : io_global.o cell_base.o : kind.o check_stop.o : input_parameters.o check_stop.o : io_files.o check_stop.o : io_global.o check_stop.o : kind.o check_stop.o : mp.o check_stop.o : mp_global.o check_stop.o : set_signal.o clocks.o : io_global.o clocks.o : kind.o clocks.o : mp_global.o compute_dipole.o : cell_base.o compute_dipole.o : fft_base.o compute_dipole.o : kind.o compute_dipole.o : mp.o compute_dipole.o : mp_global.o constants.o : kind.o constraints_module.o : basic_algebra_routines.o constraints_module.o : cell_base.o constraints_module.o : constants.o constraints_module.o : input_parameters.o constraints_module.o : io_global.o constraints_module.o : ions_base.o constraints_module.o : kind.o control_flags.o : kind.o control_flags.o : parameters.o dspev_drv.o : kind.o dspev_drv.o : mp_global.o electrons_base.o : constants.o electrons_base.o : io_global.o electrons_base.o : kind.o environment.o : io_files.o environment.o : io_global.o environment.o : kind.o environment.o : mp_global.o environment.o : version.o error_handler.o : io_files.o error_handler.o : io_global.o error_handler.o : parallel_include.o fd_gradient.o : cell_base.o fd_gradient.o : fft_base.o fd_gradient.o : kind.o fd_gradient.o : mp.o fd_gradient.o : mp_global.o fft_base.o : fft_types.o fft_base.o : kind.o fft_base.o : mp.o fft_base.o : parallel_include.o fft_custom.o : cell_base.o fft_custom.o : constants.o fft_custom.o : control_flags.o fft_custom.o : fft_scalar.o fft_custom.o : fft_types.o fft_custom.o : io_global.o fft_custom.o : kind.o fft_custom.o : mp.o fft_custom.o : parallel_include.o fft_interfaces.o : fft_base.o fft_interfaces.o : fft_parallel.o fft_interfaces.o : fft_scalar.o fft_interfaces.o : fft_types.o fft_interfaces.o : kind.o fft_parallel.o : fft_base.o fft_parallel.o : fft_scalar.o fft_parallel.o : fft_types.o fft_parallel.o : kind.o fft_parallel.o : parallel_include.o fft_scalar.o : kind.o fft_types.o : io_global.o funct.o : io_global.o funct.o : kind.o funct.o : xc_vdW_DF.o generate_function.o : cell_base.o generate_function.o : constants.o generate_function.o : fft_base.o generate_function.o : kind.o generate_function.o : mp_global.o griddim.o : fft_scalar.o griddim.o : fft_types.o griddim.o : io_global.o griddim.o : kind.o griddim.o : mp.o griddim.o : mp_global.o image_io_routines.o : io_global.o image_io_routines.o : kind.o image_io_routines.o : mp_global.o input_parameters.o : kind.o input_parameters.o : parameters.o input_parameters.o : wannier_new.o io_files.o : io_global.o io_files.o : kind.o io_files.o : parameters.o ions_base.o : cell_base.o ions_base.o : constants.o ions_base.o : io_global.o ions_base.o : kind.o ions_base.o : parameters.o ions_base.o : random_numbers.o kernel_table.o : constants.o kernel_table.o : io_files.o kernel_table.o : kind.o kernel_table.o : wrappers.o mm_dispersion.o : cell_base.o mm_dispersion.o : io_global.o mm_dispersion.o : ions_base.o mm_dispersion.o : kind.o mm_dispersion.o : mp.o mm_dispersion.o : mp_global.o mp.o : io_global.o mp.o : kind.o mp.o : parallel_include.o mp_base.o : kind.o mp_base.o : parallel_include.o mp_global.o : io_global.o mp_global.o : mp.o mp_global.o : parallel_include.o mp_image_global_module.o : io_global.o mp_image_global_module.o : mp.o mp_image_global_module.o : parallel_include.o mp_wave.o : kind.o mp_wave.o : parallel_include.o noncol.o : kind.o noncol.o : parameters.o open_close_input_file.o : ../iotk/src/iotk_module.o open_close_input_file.o : io_global.o parser.o : io_global.o parser.o : kind.o parser.o : mp.o parser.o : mp_global.o paw_variables.o : kind.o plugin_arguments.o : io_global.o plugin_arguments.o : kind.o plugin_arguments.o : mp_global.o plugin_arguments.o : plugin_flags.o plugin_flags.o : kind.o plugin_flags.o : parameters.o pseudo_types.o : kind.o pseudo_types.o : radial_grids.o ptoolkit.o : descriptors.o ptoolkit.o : dspev_drv.o ptoolkit.o : io_global.o ptoolkit.o : kind.o ptoolkit.o : parallel_include.o ptoolkit.o : zhpev_drv.o radial_grids.o : constants.o radial_grids.o : kind.o random_numbers.o : kind.o read_cards.o : autopilot.o read_cards.o : constants.o read_cards.o : input_parameters.o read_cards.o : io_global.o read_cards.o : kind.o read_cards.o : parser.o read_cards.o : wannier_new.o read_cards.o : wrappers.o read_input.o : ../iotk/src/iotk_module.o read_input.o : io_global.o read_input.o : kind.o read_input.o : mp.o read_input.o : mp_global.o read_input.o : open_close_input_file.o read_input.o : read_cards.o read_input.o : read_namelists.o read_input.o : read_xml.o read_input.o : xml_input.o read_namelists.o : constants.o read_namelists.o : input_parameters.o read_namelists.o : io_global.o read_namelists.o : kind.o read_namelists.o : mp.o read_ncpp.o : funct.o read_ncpp.o : kind.o read_ncpp.o : parameters.o read_ncpp.o : pseudo_types.o read_pseudo.o : atom.o read_pseudo.o : constants.o read_pseudo.o : funct.o read_pseudo.o : io_files.o read_pseudo.o : io_global.o read_pseudo.o : ions_base.o read_pseudo.o : kind.o read_pseudo.o : mp.o read_pseudo.o : pseudo_types.o read_pseudo.o : radial_grids.o read_pseudo.o : read_uspp.o read_pseudo.o : upf.o read_pseudo.o : upf_to_internal.o read_pseudo.o : uspp.o read_pseudo.o : wrappers.o read_upf_v1.o : kind.o read_upf_v1.o : pseudo_types.o read_upf_v1.o : radial_grids.o read_upf_v2.o : ../iotk/src/iotk_module.o read_upf_v2.o : kind.o read_upf_v2.o : parser.o read_upf_v2.o : pseudo_types.o read_upf_v2.o : radial_grids.o read_uspp.o : constants.o read_uspp.o : funct.o read_uspp.o : io_global.o read_uspp.o : kind.o read_uspp.o : parameters.o read_uspp.o : pseudo_types.o read_uspp.o : uspp.o read_xml.o : ../iotk/src/iotk_module.o read_xml.o : ../iotk/src/iotk_unit_interf.o read_xml.o : input_parameters.o read_xml.o : io_global.o read_xml.o : mp.o read_xml.o : read_namelists.o read_xml.o : read_xml_cards.o read_xml.o : read_xml_fields.o read_xml_cards.o : ../iotk/src/iotk_module.o read_xml_cards.o : autopilot.o read_xml_cards.o : input_parameters.o read_xml_cards.o : io_global.o read_xml_cards.o : kind.o read_xml_cards.o : mp.o read_xml_cards.o : read_namelists.o read_xml_cards.o : read_xml_fields.o read_xml_fields.o : ../iotk/src/iotk_module.o read_xml_fields.o : ../iotk/src/iotk_unit_interf.o read_xml_fields.o : input_parameters.o read_xml_fields.o : io_global.o read_xml_fields.o : kind.o recvec.o : kind.o recvec.o : mp.o recvec_subs.o : constants.o recvec_subs.o : fft_base.o recvec_subs.o : kind.o recvec_subs.o : mp.o recvec_subs.o : recvec.o set_signal.o : io_global.o set_signal.o : mp_global.o sic.o : io_global.o sic.o : kind.o splinelib.o : kind.o stick_base.o : io_global.o stick_base.o : kind.o stick_base.o : mp.o stick_set.o : fft_types.o stick_set.o : io_global.o stick_set.o : kind.o stick_set.o : parallel_include.o stick_set.o : stick_base.o timestep.o : kind.o upf.o : ../iotk/src/iotk_module.o upf.o : kind.o upf.o : pseudo_types.o upf.o : radial_grids.o upf.o : read_upf_v1.o upf.o : read_upf_v2.o upf_to_internal.o : funct.o upf_to_internal.o : pseudo_types.o upf_to_internal.o : radial_grids.o uspp.o : constants.o uspp.o : kind.o uspp.o : parameters.o uspp.o : pseudo_types.o uspp.o : random_numbers.o wannier_new.o : kind.o wave_base.o : kind.o wave_base.o : mp.o wave_base.o : mp_global.o wave_base.o : random_numbers.o wavefunctions.o : kind.o wrappers.o : io_global.o wrappers.o : kind.o write_upf_v2.o : ../iotk/src/iotk_module.o write_upf_v2.o : kind.o write_upf_v2.o : pseudo_types.o write_upf_v2.o : radial_grids.o ws_base.o : kind.o xc_vdW_DF.o : cell_base.o xc_vdW_DF.o : constants.o xc_vdW_DF.o : control_flags.o xc_vdW_DF.o : fft_base.o xc_vdW_DF.o : fft_interfaces.o xc_vdW_DF.o : io_global.o xc_vdW_DF.o : kernel_table.o xc_vdW_DF.o : kind.o xc_vdW_DF.o : mp.o xc_vdW_DF.o : mp_global.o xc_vdW_DF.o : recvec.o xml_input.o : ../iotk/src/iotk_module.o xml_input.o : input_parameters.o xml_input.o : io_files.o xml_input.o : io_global.o xml_input.o : kind.o xml_input.o : version.o xml_input.o : xml_io_base.o xml_io_base.o : ../iotk/src/iotk_module.o xml_io_base.o : constants.o xml_io_base.o : control_flags.o xml_io_base.o : io_files.o xml_io_base.o : io_global.o xml_io_base.o : kind.o xml_io_base.o : mp.o xml_io_base.o : mp_global.o xml_io_base.o : mp_wave.o xml_io_base.o : parser.o xml_io_base.o : wrappers.o zhpev_drv.o : io_global.o zhpev_drv.o : kind.o fft_scalar.o : ../include/fft_defs.h espresso-5.0.2/Modules/generate_function.f900000644000700200004540000003754212053145633020024 0ustar marsamoscm! ! Copyright (C) 2006-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- ! Module to generate functions on the real space dense grid ! Written by Oliviero Andreussi !---------------------------------------------------------------------- ! !=----------------------------------------------------------------------=! MODULE generate_function !=----------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE CONTAINS !---------------------------------------------------------------------- SUBROUTINE generate_gaussian( nnr, charge, spread, pos, rho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : sqrtpi USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr REAL( DP ), INTENT(IN) :: charge, spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: rho( nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index, index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: scale, spr2, dist REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: rholocal ( : ) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! scale = charge / ( sqrtpi * spread )**3 spr2 = ( spread / alat )**2 ALLOCATE( rholocal( nnr ) ) rholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SUM( r * r ) ! rholocal( ir ) = scale * EXP(-dist/spr2) ! END DO ! rho = rho + rholocal DEALLOCATE( rholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_gaussian !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_gradgaussian( nnr, charge, spread, pos, gradrho ) !---------------------------------------------------------------------- ! USE kinds, ONLY: DP USE constants, ONLY: sqrtpi USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr REAL( DP ), INTENT(IN) :: charge, spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: gradrho( 3, nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index, index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: scale, spr2, dist REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: gradrholocal ( :, : ) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! scale = 2.d0 * charge / sqrtpi**3 / spread**5 spr2 = ( spread / alat )**2 ALLOCATE( gradrholocal( 3, nnr ) ) gradrholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SUM( r * r ) ! gradrholocal( :, ir ) = scale * EXP(-dist/spr2) * r(:) * alat ! END DO ! gradrho = gradrho + gradrholocal DEALLOCATE( gradrholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_gradgaussian !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_exponential( nnr, spread, pos, rho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr REAL( DP ), INTENT(IN) :: spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: rho( nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index, index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: dist, arg REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: rholocal ( : ) REAL( DP ), PARAMETER :: exp_arg_limit = 25.D0 ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! ALLOCATE( rholocal( nnr ) ) rholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index r = 0.D0 ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SQRT(SUM( r * r )) * alat arg = dist - spread ! IF( ABS( arg ) .LT. exp_arg_limit ) THEN rholocal( ir ) = EXP( - arg ) ELSE rholocal( ir ) = 0.D0 END IF ! END DO ! rho = rho + rholocal DEALLOCATE( rholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_exponential !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_gradexponential( nnr, spread, pos, gradrho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr REAL( DP ), INTENT(IN) :: spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: gradrho( 3, nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index, index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: dist, arg REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: gradrholocal ( :, : ) REAL( DP ), PARAMETER :: exp_arg_limit = 25.D0 ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! ALLOCATE( gradrholocal( 3, nnr ) ) gradrholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SQRT(SUM( r * r )) * alat arg = dist - spread IF ( dist .GT. 1.D-6 .AND. ABS( arg ) .LT. exp_arg_limit ) THEN gradrholocal( :, ir ) = r(:) * alat / dist * EXP( - arg ) ELSE gradrholocal( :, ir ) = 0.D0 ENDIF ! END DO ! gradrho = gradrho + gradrholocal DEALLOCATE( gradrholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_gradexponential !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_axis( nnr, icor, pos, axis ) !---------------------------------------------------------------------- USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm ! INTEGER, INTENT(IN) :: nnr INTEGER, INTENT(IN) :: icor REAL(DP), INTENT(IN) :: pos(3) REAL(DP), INTENT(OUT) :: axis( dfftp%nnr ) ! INTEGER :: i, j, k, ir, ir_end, ip, index, index0 REAL(DP) :: inv_nr1, inv_nr2, inv_nr3 REAL(DP) :: r(3), s(3) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = r(:) - pos(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, r, bg, -1 ) ! r(:) = r(:) - ANINT( r(:) ) ! CALL cryst_to_cart( 1, r, at, 1 ) ! axis(ir) = r(icor) ! END DO ! axis = axis * alat ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_axis !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_distance( nnr, pos, distance ) !---------------------------------------------------------------------- USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm ! INTEGER, INTENT(IN) :: nnr REAL(DP), INTENT(IN) :: pos(3) REAL(DP), INTENT(OUT) :: distance( 3, dfftp%nnr ) ! INTEGER :: i, j, k, ir, ir_end, ip, index, index0 REAL(DP) :: inv_nr1, inv_nr2, inv_nr3 REAL(DP) :: r(3), s(3) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = r(:) - pos(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, r, bg, -1 ) ! r(:) = r(:) - ANINT( r(:) ) ! CALL cryst_to_cart( 1, r, at, 1 ) ! distance(:,ir) = r(:) ! END DO ! distance = distance * alat ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_distance !---------------------------------------------------------------------- !=----------------------------------------------------------------------=! END MODULE generate_function !=----------------------------------------------------------------------=! espresso-5.0.2/Modules/upf.f900000644000700200004540000000522712053145633015112 0ustar marsamoscm! Copyright (C) 2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE upf_module !=----------------------------------------------------------------------------=! ! this module handles reading of unified pseudopotential format (UPF) ! in either v1 or v2 format ! ! A macro to trim both from left and right #define TRIM(a) trim(adjustl(a)) ! USE kinds, ONLY: DP USE pseudo_types, ONLY: pseudo_upf, deallocate_pseudo_upf USE iotk_module ! USE read_upf_v1_module USE read_upf_v2_module ! IMPLICIT NONE PUBLIC !PRIVATE !PUBLIC :: read_upf, pseudo_upf, deallocate_pseudo_upf ! CONTAINS !------------------------------------------------+ SUBROUTINE read_upf(upf, grid, ierr, unit, filename) ! !---------------------------------------------+ ! Read pseudopotential in UPF format (either v.1 or v.2) ! ierr = -1 : read UPF v.1 ! ierr = 0 : read UPF v.2 ! ierr = 1 : not an UPF file, or error while reading ! USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid USE read_upf_v1_module,ONLY: read_upf_v1 IMPLICIT NONE INTEGER,INTENT(IN),OPTIONAL :: unit ! i/o unit CHARACTER(len=*),INTENT(IN),OPTIONAL :: filename ! i/o filename TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data TYPE(radial_grid_type),OPTIONAL,INTENT(INOUT),TARGET :: grid INTEGER,INTENT(OUT) :: ierr ! INTEGER :: u ! i/o unit ierr = 0 IF(.not. present(unit)) THEN IF (.not. present(filename)) & CALL errore('read_upf',& 'You have to specify at least one between filename and unit',1) CALL iotk_free_unit(u) ELSE u = unit ENDIF ! IF(present(filename)) & open (unit = u, file = filename, status = 'old', form = & 'formatted', iostat = ierr) IF(ierr>0) CALL errore('read_upf', 'Cannot open file: '//TRIM(filename),1) ! CALL read_upf_v2( u, upf, grid, ierr ) ! IF(ierr>0) THEN REWIND(u) CALL deallocate_pseudo_upf( upf ) CALL deallocate_radial_grid( grid ) CALL read_upf_v1( u, upf, grid, ierr ) IF(ierr==0) ierr=-1 ENDIF RETURN END SUBROUTINE read_upf !=----------------------------------------------------------------------------=! END MODULE upf_module !=----------------------------------------------------------------------------=! #undef TRIM espresso-5.0.2/Modules/atom.f900000644000700200004540000000154712053145633015261 0ustar marsamoscm! ! Copyright (C) 2004-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE atom ! ! ... The variables needed to describe the atoms and related quantities ! USE radial_grids, ONLY : radial_grid_type ! SAVE ! type(radial_grid_type), allocatable, target :: & rgrid(:) ! the information on atomic radial grids. ! NB: some of the subsequent data are therefore redundant ! and will be eliminated in due course asap INTEGER, ALLOCATABLE :: & msh(:) ! the point at rcut ! END MODULE atom espresso-5.0.2/Modules/read_pseudo.f900000644000700200004540000003101012053145633016577 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE read_pseudo_mod !=----------------------------------------------------------------------------=! ! ! read pseudopotential files. Note that each processor reads! ! Main input module: USE io_files, ONLY: pseudo_dir, pseudo_dir_cur, psfile USE ions_base, ONLY: ntyp => nsp ! Main output modules: USE atom, ONLY: msh, rgrid USE ions_base, ONLY: zv USE uspp_param, ONLY: upf, newpseudo, oldvan, nvb USE uspp, ONLY: okvan, nlcc_any IMPLICIT NONE SAVE PRIVATE ! PUBLIC :: readpp, check_order ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE readpp ( input_dft, printout ) !----------------------------------------------------------------------- ! ! read PP files and put the result into the "upf" structure ! set DFT to input_dft if present, to the value read in PP files otherwise ! USE kinds, ONLY: DP USE mp, ONLY: mp_bcast, mp_sum USE io_global, ONLY: stdout, ionode USE pseudo_types, ONLY: pseudo_upf, nullify_pseudo_upf, deallocate_pseudo_upf USE funct, ONLY: enforce_input_dft, & get_iexch, get_icorr, get_igcx, get_igcc, get_inlc use radial_grids, ONLY: deallocate_radial_grid, nullify_radial_grid USE wrappers, ONLY: md5_from_file USE upf_module, ONLY: read_upf USE upf_to_internal, ONLY: set_pseudo_upf USE read_uspp_module, ONLY: readvan, readrrkj ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(INOUT) :: input_dft LOGICAL, OPTIONAL, INTENT(IN) :: printout ! REAL(DP), parameter :: rcut = 10.d0 CHARACTER(len=256) :: file_pseudo ! file name complete with path LOGICAL :: printout_ = .FALSE. INTEGER :: iunps, isupf, nt, nb, ir, ios INTEGER :: iexch_, icorr_, igcx_, igcc_, inlc_ ! ! ... initialization: allocate radial grids etc ! iunps = 4 IF( ALLOCATED( rgrid ) ) THEN DO nt = 1, SIZE( rgrid ) CALL deallocate_radial_grid( rgrid( nt ) ) CALL nullify_radial_grid( rgrid( nt ) ) END DO DEALLOCATE( rgrid ) if(allocated(msh)) DEALLOCATE( msh ) END IF ALLOCATE( rgrid( ntyp ), msh( ntyp ) ) DO nt = 1, ntyp CALL nullify_radial_grid( rgrid( nt ) ) END DO IF( ALLOCATED( upf ) ) THEN DO nt = 1, SIZE( upf ) CALL deallocate_pseudo_upf( upf( nt ) ) CALL nullify_pseudo_upf( upf( nt ) ) END DO DEALLOCATE( upf ) END IF ! ALLOCATE ( upf( ntyp ) ) ! ! nullify upf objects as soon as they are instantiated ! do nt = 1, ntyp CALL nullify_pseudo_upf( upf( nt ) ) end do ! IF (input_dft /='none') CALL enforce_input_dft (input_dft) ! IF ( PRESENT(printout) ) THEN printout_ = printout END IF IF ( ionode .AND. printout_) THEN WRITE( stdout,"(//,3X,'Atomic Pseudopotentials Parameters',/, & & 3X,'----------------------------------' )" ) END IF ! nvb = 0 do nt = 1, ntyp ! ! variables not necessary for USPP, but necessary for PAW; ! will be read from file if it is a PAW dataset. ! rgrid(nt)%xmin = 0.d0 rgrid(nt)%dx = 0.d0 ! ! try first pseudo_dir_cur if set: in case of restart from file, ! this is where PP files should be located ! ios = 1 IF ( pseudo_dir_cur /= ' ' ) THEN file_pseudo = TRIM (pseudo_dir_cur) // TRIM (psfile(nt)) OPEN (unit = iunps, file = file_pseudo, status = 'old', & form = 'formatted', action='read', iostat = ios) CALL mp_sum (ios) IF ( ios /= 0 ) CALL infomsg & ('readpp', 'file '//TRIM(file_pseudo)//' not found') ! ! file not found? no panic (yet): if the restart file is not visible ! to all processors, this may happen. Try the original location END IF ! ! try the original location pseudo_dir, as set in input ! (it should already contain a slash at the end) ! IF ( ios /= 0 ) THEN file_pseudo = TRIM (pseudo_dir) // TRIM (psfile(nt)) OPEN (unit = iunps, file = file_pseudo, status = 'old', & form = 'formatted', action='read', iostat = ios) CALL mp_sum (ios) CALL errore('readpp', 'file '//TRIM(file_pseudo)//' not found',ABS(ios)) END IF ! upf(nt)%grid => rgrid(nt) ! ! start reading - UPF first: the UPF format is detected via the ! presence of the keyword '' at the beginning of the file ! IF( ionode .AND. printout_ ) THEN WRITE( stdout, "(/,3X,'Reading pseudopotential for specie # ',I2, & & ' from file :',/,3X,A)") nt, TRIM(file_pseudo) END IF ! call read_upf(upf(nt), rgrid(nt), isupf, unit=iunps) ! if (isupf ==-1 .OR. isupf== 0) then ! IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is UPF v.',i1)") isupf+2 call set_pseudo_upf (nt, upf(nt)) ! ! UPF is assumed to be multi-projector ! newpseudo (nt) = .true. ! else ! rewind (unit = iunps) ! ! The type of the pseudopotential is determined by the file name: ! *.vdb or *.van Vanderbilt US pseudopotential code pseudo_type=1 ! *.RRKJ3 Andrea's US new code pseudo_type=2 ! none of the above: PWSCF norm-conserving format pseudo_type=0 ! if ( pseudo_type (psfile (nt) ) == 1 .or. & pseudo_type (psfile (nt) ) == 2 ) then ! ! PPs produced by Andrea Dal Corso's atomic code are assumed to ! be multiprojector; NCPP produced by Vanderbilt's core are not ! newpseudo (nt) = ( pseudo_type (psfile (nt) ) == 2 ) ! IF ( newpseudo (nt) ) THEN IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is RRKJ3')") call readrrkj (iunps, nt, upf(nt)) ELSE IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is Vanderbilt US PP')") CALL readvan (iunps, nt, upf(nt)) ENDIF CALL set_pseudo_upf (nt, upf(nt), rgrid(nt)) ! else newpseudo (nt) = .false. IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is old PWscf NC format')") ! call read_ncpp (iunps, nt, upf(nt)) ! CALL set_pseudo_upf (nt, upf(nt), rgrid(nt)) ! endif ! endif ! ! end of reading ! close (iunps) ! ! Calculate MD5 checksum for this pseudopotential ! CALL md5_from_file(file_pseudo, upf(nt)%md5_cksum) ! ! ... Zv = valence charge of the (pseudo-)atom, read from PP files, ! ... is set equal to Zp = pseudo-charge of the pseudopotential ! zv(nt) = upf(nt)%zp ! ! ... count US species ! IF (upf(nt)%tvanp) nvb=nvb+1 ! ! ... Check for DFT consistency - ignored if dft enforced from input ! IF (nt == 1) THEN iexch_ = get_iexch() icorr_ = get_icorr() igcx_ = get_igcx() igcc_ = get_igcc() inlc_ = get_inlc() ELSE IF ( iexch_ /= get_iexch() .OR. icorr_ /= get_icorr() .OR. & igcx_ /= get_igcx() .OR. igcc_ /= get_igcc() .OR. & inlc_ /= get_inlc() ) THEN CALL errore( 'readpp','inconsistent DFT read from PP files', nt) END IF END IF ! ! the radial grid is defined up to r(mesh) but we introduce ! an auxiliary variable msh to limit the grid up to rcut=10 a.u. ! This is used to cut off the numerical noise arising from the ! large-r tail in cases like the integration of V_loc-Z/r ! do ir = 1, rgrid(nt)%mesh if (rgrid(nt)%r(ir) > rcut) then msh (nt) = ir goto 5 endif enddo msh (nt) = rgrid(nt)%mesh 5 msh (nt) = 2 * ( (msh (nt) + 1) / 2) - 1 ! ! msh is forced to be odd for simpson integration (maybe obsolete?) ! ! check for zero atomic wfc, ! check that (occupied) atomic wfc are properly normalized ! call check_atwfc_norm(nt) ! enddo ! ! more intializations ! okvan = ( nvb > 0 ) nlcc_any = ANY ( upf(1:ntyp)%nlcc ) ! return end subroutine readpp !----------------------------------------------------------------------- integer function pseudo_type (psfile) !----------------------------------------------------------------------- implicit none character (len=*) :: psfile integer :: l ! l = len_trim (psfile) pseudo_type = 0 if (psfile (l - 3:l) .eq.'.vdb'.or.psfile (l - 3:l) .eq.'.van') & pseudo_type = 1 if (l > 5) then if (psfile (l - 5:l) .eq.'.RRKJ3') pseudo_type = 2 end if ! return end function pseudo_type !--------------------------------------------------------------- SUBROUTINE check_atwfc_norm(nt) !--------------------------------------------------------------- ! check for the presence of zero wavefunctions first ! check the normalization of the atomic wfc (only those with non-negative ! occupations) and renormalize them if the calculated norm is incorrect ! by more than eps6 (10^{-6}) ! USE kinds, ONLY : dp USE constants, ONLY : eps6, eps8 USE io_global, ONLY : stdout implicit none integer,intent(in) :: nt ! index of the pseudopotential to be checked ! integer :: & mesh, kkbeta, & ! auxiliary indices of integration limits l, & ! orbital angular momentum iwfc, ir, & ! counter on atomic wfcs and on radial mesh ibeta, ibeta1, ibeta2 ! counters on betas logical :: & match ! a logical variable real(DP) :: & norm, & ! the norm j ! total (spin+orbital) angular momentum real(DP), allocatable :: & work(:), gi(:) ! auxiliary variable for becp character (len=80) :: renorm ! allocate (work(upf(nt)%nbeta), gi(upf(nt)%grid%mesh) ) ! define indices for integration limits mesh = upf(nt)%grid%mesh kkbeta = upf(nt)%kkbeta ! renorm = ' ' DO iwfc = 1, upf(nt)%nwfc l = upf(nt)%lchi(iwfc) if ( upf(nt)%has_so ) j = upf(nt)%jchi(iwfc) ! ! the smooth part first .. gi(1:mesh) = upf(nt)%chi(1:mesh,iwfc) * upf(nt)%chi(1:mesh,iwfc) call simpson (mesh, gi, upf(nt)%grid%rab, norm) ! IF ( norm < eps8 ) then WRITE( stdout,'(5X,"WARNING: atomic wfc # ",i2, & & " for atom type",i2," has zero norm")') iwfc, nt ! ! set occupancy to a small negative number so that this wfc ! is not going to be used for starting wavefunctions ! upf(nt)%oc (iwfc) = -eps8 END IF ! IF ( upf(nt)%oc(iwfc) < 0.d0) CYCLE ! only occupied states are normalized ! if ( upf(nt)%tvanp ) then ! ! the US part if needed do ibeta = 1, upf(nt)%nbeta match = l.eq.upf(nt)%lll(ibeta) if (upf(nt)%has_so) match=match.and.abs(j-upf(nt)%jjj(ibeta)) < eps6 if (match) then gi(1:kkbeta)= upf(nt)%beta(1:kkbeta,ibeta) * & upf(nt)%chi (1:kkbeta,iwfc) call simpson (kkbeta, gi, upf(nt)%grid%rab, work(ibeta)) else work(ibeta)=0.0_dp endif enddo do ibeta1=1,upf(nt)%nbeta do ibeta2=1,upf(nt)%nbeta norm=norm+upf(nt)%qqq(ibeta1,ibeta2)*work(ibeta1)*work(ibeta2) enddo enddo end if norm=sqrt(norm) if (abs(norm-1.0_dp) > eps6 ) then renorm = TRIM(renorm) // ' ' // upf(nt)%els(iwfc) upf(nt)%chi(1:mesh,iwfc)=upf(nt)%chi(1:mesh,iwfc)/norm end if end do deallocate (work, gi ) IF ( LEN_TRIM(renorm) > 0 ) WRITE( stdout, & '(15x,"file ",a,": wavefunction(s) ",a," renormalized")') & TRIM(psfile(nt)),TRIM(renorm) RETURN ! END SUBROUTINE check_atwfc_norm SUBROUTINE check_order ! CP-specific check INTEGER :: nt DO nt =2, ntyp IF ( (.NOT. upf(nt-1)%tvanp) .AND. upf(nt)%tvanp ) THEN CALL errore ('readpp', 'ultrasoft PPs must precede norm-conserving',nt) ENDIF END DO END SUBROUTINE check_order END MODULE read_pseudo_mod espresso-5.0.2/Modules/autopilot.f900000644000700200004540000007061312053145633016341 0ustar marsamoscm! autopilot.f90 !******************************************************************************** ! autopilot.f90 Copyright (c) 2005 Targacept, Inc. !******************************************************************************** ! The Autopilot Feature suite is a user level enhancement that enables the ! following features: ! automatic restart of a job; ! preconfiguration of job parameters; ! on-the-fly changes to job parameters; ! and pausing of a running job. ! ! For more information, see README.AUTOPILOT in document directory. ! ! This program is free software; you can redistribute it and/or modify it under ! the terms of the GNU General Public License as published by the Free Software ! Foundation; either version 2 of the License, or (at your option) any later version. ! This program is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY FOR A PARTICULAR ! PURPOSE. See the GNU General Public License at www.gnu.or/copyleft/gpl.txt for ! more details. ! ! THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. ! EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES ! PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, ! INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND ! FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND THE ! PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, ! YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! ! IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING, ! WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE ! THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY ! GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR ! INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA ! BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A ! FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER ! OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! ! You should have received a copy of the GNU General Public License along with ! this program; if not, write to the ! Free Software Foundation, Inc., ! 51 Franklin Street, ! Fifth Floor, ! Boston, MA 02110-1301, USA. ! ! Targacept's address is ! 200 East First Street, Suite 300 ! Winston-Salem, North Carolina USA 27101-4165 ! Attn: Molecular Design. ! Email: atp@targacept.com ! ! This work was supported by the Advanced Technology Program of the ! National Institute of Standards and Technology (NIST), Award No. 70NANB3H3065 ! !******************************************************************************** MODULE autopilot !--------------------------------------------------------------------------- ! ! This module handles the Autopilot Feature Suite ! Written by Lee Atkinson, with help from the ATP team at Targacept, Inc ! Created June 2005 ! Modified by Yonas Abraham, Sept 2006 ! ! The address for Targacept, Inc. is: ! 200 East First Street, Suite ! 300, Winston-Salem, North Carolina 27101; ! Attn: Molecular Design. ! ! See README.AUTOPILOT in the Doc directory for more information. !--------------------------------------------------------------------------- USE kinds USE parser, ONLY : read_line IMPLICIT NONE SAVE INTEGER, parameter :: MAX_INT = huge(1) INTEGER, parameter :: max_event_step = 32 !right now there can be upto 32 Autopilot Events INTEGER, parameter :: n_auto_vars = 10 !right now there are only 10 Autopilot Variables INTEGER :: n_events INTEGER :: event_index = 0 INTEGER :: max_rules = 320 !(max_event_step * n_auto_vars) INTEGER :: n_rules INTEGER :: event_step(max_event_step) INTEGER :: current_nfi LOGICAL :: pilot_p = .FALSE. ! pilot property LOGICAL :: restart_p = .FALSE. ! restart property LOGICAL :: pause_p = .FALSE. ! pause property INTEGER :: pilot_unit = 42 ! perhaps move this to io_files CHARACTER(LEN=256) :: pilot_type ! AUTOPILOT VARIABLES ! These are the variable tables which change the actual variable ! dynamically during the course of a simulation. There are many ! parameters which govern a simulation, yet only these are allowed ! to be changed using the event rule mechanism. ! Each of these tables are ytped according to their variable ! and begin with event_ ! &CONTROL INTEGER :: rule_isave(max_event_step) INTEGER :: rule_iprint(max_event_step) REAL(DP) :: rule_dt(max_event_step) ! &SYSTEM ! &ELECTRONS REAL(DP) :: rule_emass(max_event_step) CHARACTER(LEN=80) :: rule_electron_dynamics(max_event_step) REAL(DP) :: rule_electron_damping(max_event_step) ! &IONS CHARACTER(LEN=80) :: rule_ion_dynamics(max_event_step) REAL(DP) :: rule_ion_damping(max_event_step) CHARACTER(LEN=80) :: rule_ion_temperature(max_event_step) REAL(DP) :: rule_tempw(max_event_step) ! &CELL ! &PHONON ! Each rule also needs to be correlated (flagged) against the event time table ! This is used to flag the a given variable is to be changed on an ! event. Initially all set to false, a rule against an event makes it true ! Each of these flags are LOGICALs and begin with event_ ! &CONTROL LOGICAL :: event_isave(max_event_step) LOGICAL :: event_iprint(max_event_step) LOGICAL :: event_dt(max_event_step) ! &SYSTEM ! &ELECTRONS LOGICAL :: event_emass(max_event_step) LOGICAL :: event_electron_dynamics(max_event_step) LOGICAL :: event_electron_damping(max_event_step) ! &IONS LOGICAL :: event_ion_dynamics(max_event_step) LOGICAL :: event_ion_damping(max_event_step) LOGICAL :: event_ion_temperature(max_event_step) LOGICAL :: event_tempw(max_event_step) ! &CELL ! &PHONON PRIVATE PUBLIC :: auto_check, init_autopilot, card_autopilot, add_rule, & & assign_rule, restart_p, max_event_step, event_index, event_step, rule_isave, & & rule_iprint, rule_dt, rule_emass, rule_electron_dynamics, rule_electron_damping, & & rule_ion_dynamics, rule_ion_damping, rule_ion_temperature, rule_tempw, & & event_isave, event_iprint, event_dt, event_emass, & & event_electron_dynamics, event_electron_damping, event_ion_dynamics, & & current_nfi, pilot_p, pilot_unit, pause_p,auto_error, parse_mailbox, & & event_ion_damping, event_ion_temperature, event_tempw CONTAINS !---------------------------------------------------------------------------- SUBROUTINE auto_error( calling_routine, message) !---------------------------------------------------------------------------- ! This routine calls errore based upon the pilot property flag. ! If the flag is TRUE, the simulation will not stop, ! but the pause property flag is set to TRUE, ! causing pilot to force a state of sleep, ! until the user can mail proper commands. ! Otherwise, its assumed that dynamics have not started ! and this call is an indirect result of read_cards. ! Thus the simulation will stop. ! Either way errore will always issues a warning message. USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: calling_routine, message ! the name of the calling calling_routinee ! the output message INTEGER :: ierr ! the error flag IF (pilot_p) THEN ! if ierr < 0 errore writes the message but does not stop ierr = -1 pause_p = .TRUE. !call mp_bcast(pause_p, ionode_id) ELSE ! if ierr > 0 it stops ierr = 1 ENDIF CALL errore( calling_routine, message, ierr ) END SUBROUTINE auto_error !----------------------------------------------------------------------- ! AUTO (restart) MODE ! ! Checks if restart files are present, just like what readfile_cp does, ! which calls cp_readfile which create a path to restart.xml. ! This could be checked with inquire, as in check_restartfile. ! If restart_mode=auto, and restart.xml is present, ! then restart_mode="restart", else its "from_scratch". ! Set other associated vars, appropriately. ! ! Put this in setcontrol_flags on the select statement !----------------------------------------------------------------------- LOGICAL FUNCTION auto_check (ndr, outdir) USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast IMPLICIT NONE INTEGER, INTENT(IN) :: ndr ! I/O unit number CHARACTER(LEN=*), INTENT(IN) :: outdir CHARACTER(LEN=256) :: dirname, filename CHARACTER (LEN=6), EXTERNAL :: int_to_char LOGICAL :: restart_p = .FALSE. INTEGER :: strlen ! right now cp_readfile is called with outdir = ' ' ! so, in keeping with the current design, ! the responsibility of setting ! ndr and outdir is the calling program IF (ionode) THEN dirname = 'RESTART' // int_to_char( ndr ) IF ( LEN( outdir ) > 1 ) THEN strlen = index(outdir,' ') - 1 dirname = outdir(1:strlen) // '/' // dirname END IF filename = TRIM( dirname ) // '/' // 'restart.xml' INQUIRE( FILE = TRIM( filename ), EXIST = restart_p ) auto_check = restart_p END IF CALL mp_bcast(auto_check, ionode_id) return END FUNCTION auto_check !----------------------------------------------------------------------- ! INITIALIZE AUTOPILOT ! ! Must be done, even if not in use. ! Add this as a call in read_cards.f90 sub: card_default_values !----------------------------------------------------------------------- SUBROUTINE init_autopilot IMPLICIT NONE integer :: event pause_p = .FALSE. ! Initialize all events to an iteration that should never occur DO event=1,max_event_step event_step(event) = MAX_INT ENDDO n_events = 0 n_rules = 0 event_index = 1 ! Initialize here ! &CONTROL event_isave(:) = .false. event_iprint(:) = .false. event_dt(:) = .false. ! &SYSTEM ! &ELECTRONS event_emass(:) = .false. event_electron_dynamics(:) = .false. event_electron_damping(:) = .false. ! &IONS event_ion_dynamics(:) = .false. event_ion_damping(:) = .false. event_ion_temperature(:) = .false. event_tempw(:) = .false. ! &CELL ! &PHONON rule_isave(:) = 0 rule_iprint(:) = 0 rule_dt(:) = 0.0_DP rule_emass(:) = 0.0_DP rule_electron_dynamics(:) = 'NONE' rule_electron_damping(:) = 0.0_DP rule_ion_dynamics(:) = 'NONE' rule_ion_damping(:) = 0.0_DP rule_ion_temperature(:) = 'NOT_CONTROLLED' rule_tempw(:) = 0.01_DP END SUBROUTINE init_autopilot !----------------------------------------------------------------------- ! subroutine CARD_AUTOPILOT ! ! called in READ_CARDS and in PARSE_MAILBOX !----------------------------------------------------------------------- SUBROUTINE card_autopilot( input_line ) USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast IMPLICIT NONE INTEGER :: i, j, linelen CHARACTER(LEN=256) :: input_line LOGICAL :: process_this_line = .FALSE. LOGICAL :: endrules = .FALSE. LOGICAL :: tend = .FALSE. LOGICAL, SAVE :: tread = .FALSE. LOGICAL, EXTERNAL :: matches CHARACTER(LEN=1), EXTERNAL :: capital !ASU: copied this here since it seems not to be executed during each ! call of the routine. Needed for multiple rules in same block process_this_line = .FALSE. endrules = .FALSE. tend = .FALSE. tread = .FALSE. ! This is so we do not read a autopilot card twice from the input file IF (( .NOT. pilot_p ) .and. tread ) THEN CALL errore( ' card_autopilot ', ' two occurrences', 2 ) END IF ! If this routined has been called from parse_mailbox ! the pilot_type should be set IF ( pilot_p ) THEN ! IF its MANUAL then process this line first! ! other skip this line and get the next IF (TRIM(pilot_type) .eq. 'MANUAL') THEN process_this_line = .TRUE. ELSE IF (TRIM(pilot_type) .eq. 'PILOT') THEN process_this_line = .FALSE. ELSE IF (TRIM(pilot_type) .eq. 'AUTO') THEN process_this_line = .FALSE. ELSE IF( ionode ) WRITE(*,*) 'AUTOPILOT: UNRECOGNIZED PILOT TYPE!', TRIM(pilot_type), '====' GO TO 10 END IF ELSE ! this routine is called from read_cards pilot_type = 'AUTO' process_this_line = .FALSE. END IF j=0 ! must use a local (j) since n_rules may not get updated correctly DO WHILE ((.NOT. endrules) .and. j<=max_rules) j=j+1 IF (j > max_rules) THEN CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rules May Have Been Execced!') go to 10 END IF ! Assume that pilot_p is an indicator and that ! this call to card_autopilot is from parse_mailbox ! and not from read_cards IF(pilot_p) THEN IF ( .NOT. process_this_line ) THEN ! get the next one CALL read_line( input_line, end_of_file = tend) END IF ELSE ! from read_cards CALL read_line( input_line, end_of_file = tend) END IF linelen = LEN_TRIM( input_line ) DO i = 1, linelen input_line( i : i ) = capital( input_line( i : i ) ) END DO ! If ENDRULES isnt found, add_rule will fail ! and we run out of line anyway IF ( tend .or. matches( 'ENDRULES', input_line ) ) GO TO 10 ! Assume this is a rule CALL ADD_RULE(input_line) ! now, do not process this line anymore ! make sure we get the next one process_this_line = .FALSE. END DO IF( ionode ) WRITE(*,*) 'AUTOPILOT SET' 10 CONTINUE END SUBROUTINE card_autopilot !----------------------------------------------------------------------- ! ADD RULE !----------------------------------------------------------------------- SUBROUTINE add_rule( input_line ) USE io_global, ONLY: ionode, ionode_id IMPLICIT NONE integer :: i, j, linelen integer :: eq1_pos, eq2_pos, plus_pos, colon_pos CHARACTER(LEN=256) :: input_line CHARACTER(LEN=32) :: var_label CHARACTER(LEN=32) :: value_str INTEGER :: on_step, now_step, plus_step integer :: ios integer :: event LOGICAL, EXTERNAL :: matches CHARACTER(LEN=1), EXTERNAL :: capital ! this is a temporary local variable event = n_events ! important for parsing i=0 j=0 eq1_pos = 0 eq2_pos = 0 plus_pos = 0 colon_pos = 0 linelen=LEN_TRIM( input_line ) ! Attempt to get PLUS SYMBOL i = 1 do while( (plus_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. '+') then plus_pos = i endif end do ! Attempt to get a colon i = 1 do while( (colon_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. ':') then colon_pos = i endif end do ! Attempt to get first equals i = 1 do while( (eq1_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. '=') then eq1_pos = i endif end do ! Attempt to get second equals if ((eq1_pos .ne. 0) .and. (eq1_pos < colon_pos)) then i = colon_pos + 1 do while( (eq2_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. '=') then eq2_pos = i endif end do endif ! Complain if there is a bad parse if (colon_pos .eq. 0) then call auto_error( ' AutoPilot ','Missing colon separator') go to 20 endif if (eq1_pos .eq. 0) then call auto_error( ' AutoPilot ','Missing equals sign') go to 20 endif if ((plus_pos > 0) .and. (eq1_pos < colon_pos)) then call auto_error( ' AutoPilot ','equals and plus found prior to colon') go to 20 endif !================================================================================ ! Detect events IF ( (pilot_type .eq. 'MANUAL') .or. (pilot_type .eq. 'PILOT') ) THEN !------------------------------------------- !Do the equivalent of the following: !READ(input_line, *) now_label, plus_label1, plus_step, colon_label, var_label, eq_label2, value_str !Format: ! [NOW [+ plus_step] :] var_label = value_str !------------------------------------------- ! if there is a NOW, get it and try to get plus and plus_step IF ( matches( 'NOW', input_line ) ) THEN ! Attempt to get PLUS_STEP plus_step = 0 ! if all is non-trivial, read a PLUS_STEP if ((plus_pos > 0) .and. (colon_pos > plus_pos)) then ! assume a number lies between read(input_line(plus_pos+1:colon_pos-1),*,iostat=ios) plus_step if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on NOW line!') go to 20 end if end if ! set NOW event now_step = current_nfi + plus_step ELSE ! set NOW event now_step = current_nfi END IF !================================================================================ ! set event ! ! Heres where it get interesting ! We may have a new event , or not! :) IF ( ((event-1) .gt. 0) .and. ( now_step .lt. event_step(event-1)) ) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Dynamic Rule Event Out of Order!') go to 20 ENDIF IF ( (event .eq. 0) .or. ( now_step .gt. event_step(event)) ) THEN ! new event event = event + 1 IF (event > max_event_step) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rule Event Exceeded!') go to 20 ENDIF event_step(event) = now_step n_events = event ENDIF ELSE IF ( matches( 'ON_STEP', input_line ) ) THEN ! Assuming pilot_type is AUTO ! if it isnt and ON_STEP these rules wont take anyway !------------------------------------------- !Do the equivalent of the following: !READ(input_line, *) on_step_label, eq_label1, on_step, colon_label, var_label, eq_label2, value_str !Format: ! ON_STEP = on_step : var_label = value_str !------------------------------------------- IF( ionode ) write(*,*) 'ADD_RULE: POWER STEERING' ! Attempt to get ON_STEP on_step = MAX_INT ! if all is non-trivial, read a PLUS_STEP if ((eq1_pos > 0) .and. (colon_pos > eq1_pos)) then ! assume a number lies between read(input_line(eq1_pos+1:colon_pos-1),*,iostat=ios) on_step if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on ON_STEP line!') go to 20 end if end if !================================================================================ ! set event ! ! Heres where it get interesting ! We may have a new event , or not! :) IF ( ((event-1) .gt. 0) .and. ( on_step .lt. event_step(event-1)) ) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Dynamic Rule Event Out of Order!') go to 20 ENDIF IF ( (event .eq. 0) .or. (on_step .gt. event_step(event)) ) THEN ! new event event = event + 1 IF (event > max_event_step) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rule Event Exceeded!') go to 20 ENDIF event_step(event) = on_step n_events = event ENDIF END IF ! Event Detection Complete !------------------------------------- ! Now look for a label and a value !------------------------------------- if (eq2_pos .eq. 0) then var_label = input_line(colon_pos+1: eq1_pos-1) read( input_line(eq1_pos+1:linelen), *, iostat=ios) value_str if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on NOW_STEP line!') go to 20 end if else var_label = input_line(colon_pos+1: eq2_pos-1) read( input_line(eq2_pos+1:linelen), *, iostat=ios) value_str if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on ON_STEP line!') go to 20 end if endif ! The Assignment must lie outside the new event scope since ! there can exists more than one rule per event IF ( (n_rules+1) .gt. max_rules) THEN IF( ionode ) write(*,*) ' AutoPilot: current n_rules', n_rules CALL auto_error( ' AutoPilot ', ' invalid number of rules ') go to 20 END IF call assign_rule(event, var_label, value_str) !IF( ionode ) write(*,*) ' Number of rules: ', n_rules CALL flush_unit(6) 20 CONTINUE END SUBROUTINE add_rule !----------------------------------------------------------------------- ! ASSIGN_RULE !----------------------------------------------------------------------- SUBROUTINE assign_rule(event, var, value) USE input_parameters, ONLY : isave, iprint, dt, tempw USE io_global, ONLY: ionode, ionode_id IMPLICIT NONE INTEGER :: i, event, varlen CHARACTER(LEN=32) :: var CHARACTER(LEN=32) :: value INTEGER :: int_value REAL :: real_value REAL(DP) :: realDP_value LOGICAL :: assigned LOGICAL, EXTERNAL :: matches CHARACTER(LEN=1), EXTERNAL :: capital var = TRIM(var) varlen = LEN_TRIM(var) DO i = 1, varlen var( i : i ) = capital( var( i : i ) ) END DO IF( ionode ) write(*,'(" Reading rule: ",A20,A20)' ) var, value assigned = .TRUE. IF ( matches( "ISAVE", var ) ) THEN read(value, *) int_value rule_isave(event) = int_value event_isave(event) = .true. ELSEIF ( matches( "IPRINT", var ) ) THEN read(value, *) int_value rule_iprint(event) = int_value event_iprint(event) = .true. ELSEIF ( matches( "DT", var ) ) THEN read(value, *) real_value rule_dt(event) = real_value event_dt(event) = .true. !IF( ionode ) write(*,*) 'RULE_DT', rule_dt(event), 'EVENT', event ELSEIF ( matches( "EMASS", var ) ) THEN read(value, *) realDP_value rule_emass(event) = realDP_value event_emass(event) = .true. ELSEIF ( matches( "ELECTRON_DYNAMICS", var ) ) THEN read(value, *) value if ((value .ne. 'SD') .and. (value .ne. 'VERLET') .and. (value .ne. 'DAMP') .and. (value .ne. 'NONE')) then call auto_error(' autopilot ',' unknown electron_dynamics '//trim(value) ) assigned = .FALSE. go to 40 endif rule_electron_dynamics(event) = value event_electron_dynamics(event) = .true. ELSEIF ( matches( "ELECTRON_DAMPING", var ) ) THEN read(value, *) realDP_value rule_electron_damping(event) = realDP_value event_electron_damping(event) = .true. ELSEIF ( matches( "ION_DYNAMICS", var ) ) THEN read(value, *) value if ((value .ne. 'SD') .and. (value .ne. 'VERLET') .and. (value .ne. 'DAMP') .and. (value .ne. 'NONE')) then call auto_error(' autopilot ',' unknown ion_dynamics '//trim(value) ) assigned = .FALSE. go to 40 endif rule_ion_dynamics(event) = value event_ion_dynamics(event) = .true. ELSEIF ( matches( "ION_DAMPING", var ) ) THEN read(value, *) realDP_value rule_ion_damping(event) = realDP_value event_ion_damping(event) = .true. ELSEIF ( matches( "ION_TEMPERATURE", var ) ) THEN read(value, *) value if ((value .ne. 'NOSE') .and. (value .ne. 'NOT_CONTROLLED') .and. (value .ne. 'RESCALING')) then call auto_error(' autopilot ',' unknown ion_temperature '//trim(value) ) assigned = .FALSE. go to 40 endif rule_ion_temperature(event) = value event_ion_temperature(event) = .true. ELSEIF ( matches( "TEMPW", var ) ) THEN read(value, *) realDP_value rule_tempw(event) = realDP_value event_tempw(event) = .true. ELSE CALL auto_error( 'autopilot', ' ASSIGN_RULE: FAILED '//trim(var)//' '//trim(value) ) END IF 40 if (assigned) then n_rules = n_rules + 1 else IF( ionode ) write(*,*) ' Autopilot: Rule Assignment Failure ' CALL auto_error( 'autopilot', ' ASSIGN_RULE: FAILED '//trim(var)//' '//trim(value) ) endif END SUBROUTINE assign_rule !----------------------------------------------------------------------- ! PARSE_MAILBOX ! ! Read the mailbox with a mailbox parser ! if it starts with ON_STEP, then apply to event table etc ! if not the try to establish that its a variable to set right now !----------------------------------------------------------------------- SUBROUTINE parse_mailbox () USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast, mp_barrier IMPLICIT NONE INTEGER :: i CHARACTER(LEN=256) :: input_line LOGICAL :: tend CHARACTER(LEN=1), EXTERNAL :: capital LOGICAL, EXTERNAL :: matches ! we can use this parser routine, since parse_unit=pilot_unit CALL read_line( input_line, end_of_file=tend ) IF (tend) GO TO 50 DO i = 1, LEN_TRIM( input_line ) input_line( i : i ) = capital( input_line( i : i ) ) END DO ! This conditional implements the PAUSE feature calling init_auto_pilot, ! will reset this modules global PAUSE_P variable to FALSE IF ( matches( "PAUSE", input_line ) .or. & matches( "SLEEP", input_line ) .or. & matches( "HOVER", input_line ) .or. & matches( "WAIT", input_line ) .or. & matches( "HOLD", input_line ) ) THEN IF( ionode ) write(*,*) 'SLEEPING' IF( ionode ) write(*,*) 'INPUT_LINE=', input_line pause_p = .TRUE. ! now you can pass continue to resume ELSE IF (matches( "CONTINUE", input_line ) .or. & matches( "RESUME", input_line ) ) THEN IF( ionode ) write(*,*) 'RUNNING' IF( ionode ) write(*,*) 'INPUT_LINE=', input_line pause_p = .FALSE. ! Now just quit this subroutine ELSE ! Also, We didnt see a PAUSE cmd! pause_p = .FALSE. ! now lets detect the mode for card_autopilot ! even though this line will be passed to it the first time IF ( matches( "AUTOPILOT", TRIM(input_line) ) ) THEN IF( ionode ) WRITE(*,*) ' New autopilot course detected' pilot_type ='AUTO' ELSE IF (matches( "PILOT", TRIM(input_line) ) ) THEN IF( ionode ) WRITE(*,*) ' Relative pilot course correction detected' pilot_type ='PILOT' ELSE IF (matches( "NOW", TRIM(input_line) ) ) THEN IF( ionode ) WRITE(*,*) ' Manual piloting detected' pilot_type ='MANUAL' ELSE ! Well lets just pause since this guys is throwing trash IF( ionode ) WRITE(*,*) ' Mailbox contents not understood: pausing' pause_p = .TRUE. ENDIF END IF IF (pause_p) GO TO 50 ! ok if one adds a rule during steering` ! event table must be cleared (from steer point) forward ! ! Every nodes gets this (and the call to card_autopilot ! which calls add_rule, which calls assign_rule, etc ! In this way we sync the event table ! Then we shouldn't have to sync employ_rules variable ! changes, or their subroutine side effects (like ions_nose_init) CALL init_autopilot() CALL card_autopilot( input_line ) 50 CONTINUE end subroutine parse_mailbox END MODULE autopilot espresso-5.0.2/Modules/version.f90.in0000644000700200004540000000100212053145633016375 0ustar marsamoscm! ! Copyright (C) 2003-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE global_version ! IMPLICIT NONE ! SAVE ! CHARACTER (LEN=6) :: version_number = '5.0.2' CHARACTER (LEN=12) :: svn_revision = 'unknown' ! END MODULE global_version espresso-5.0.2/Modules/mm_dispersion.f900000644000700200004540000005121412053145633017165 0ustar marsamoscm! ! Copyright (C) 2009 D. Forrer and M. Pavone ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Z=55-86 contributed by Martin Andersson (2011) !------------------------------------------------------------------------------ ! MODULE london_module ! ! Module for Dispersion Correction ! [ V. Barone et al. J. Comp. Chem., 30, 934 (2009) ] ! [ S. Grimme, J. Comp. Chem., 27, 1787 (2006) ]. ! USE kinds , ONLY : DP ! IMPLICIT NONE ! SAVE ! ! REAL ( DP ) , ALLOCATABLE , PRIVATE :: C6_i ( : ) , & R_vdw ( : ) , & C6_ij ( : , : ) , & R_sum ( : , : ) , & r ( : , : ) , & dist2 ( : ) ! ! C6_i ( ntyp ) : atomic C6 coefficient of each atom type ! R_vdw ( ntyp ) : Van der Waals Radii of each atom type ! C6_ij ( ntyp , ntyp ) : C6 coefficients of each atom type pair: sqrt ( C6i * C6j ) ! R_sum ( ntyp , ntyp ) : sum of VdW radii ! r ( 3 , mxr ) : ordered distance vectors ! dist2 ( mxr ) : ordered distances ! REAL ( DP ) , PUBLIC :: scal6 , lon_rcut ! ! scal6 : global scaling factor ! lon_rcut : public cut-off radius ! INTEGER , PRIVATE :: mxr ! ! max number of r ( see rgen) ! REAL ( DP ) , PRIVATE :: r_cut , beta = 20.0_DP ! ! beta : damping function parameter ! r_cut : cut-off radius in alat units ! CONTAINS ! !--------------------------------------------------------------------------- ! Initialize parameters !--------------------------------------------------------------------------- ! SUBROUTINE init_london ( ) ! ! extract parameters from database and compute C6_ij and R_sum(i,j) ! USE ions_base , ONLY : ntyp => nsp, & atom_label => atm ! USE cell_base , ONLY : alat, omega ! USE io_global, ONLY : ionode, ionode_id, stdout ! #if defined __MPI USE mp, ONLY : mp_bcast #endif ! IMPLICIT NONE ! INTEGER, PARAMETER :: maxZ = 86 REAL (DP) :: vdw_coeffs(2,maxZ) ! vdw C6 and radii for the first 86 atoms for the DFTD2 method ! data taken from the DFTD2 sections of the dftd3.f file found ! on S.Grimmes home page for the DFTD3 method ! http://toc.uni-muenster.de/DFTD3/index.html DATA vdw_coeffs / & 4.857, 1.892,& 2.775, 1.912,& 55.853, 1.559,& 55.853, 2.661,& 108.584, 2.806,& 60.710, 2.744,& 42.670, 2.640,& 24.284, 2.536,& 26.018, 2.432,& 21.855, 2.349,& 198.087, 2.162,& 198.087, 2.578,& 374.319, 3.097,& 320.200, 3.243,& 271.980, 3.222,& 193.230, 3.180,& 175.885, 3.097,& 159.927, 3.014,& 374.666, 2.806,& 374.666, 2.785,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 589.405, 3.118,& 593.221, 3.264,& 567.896, 3.326,& 438.498, 3.347,& 432.600, 3.305,& 416.642, 3.264,& 855.833, 3.076,& 855.833, 3.035,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 1294.678, 3.160,& 1342.899, 3.409,& 1333.532, 3.555,& 1101.101, 3.575,& 1092.775, 3.575,& 1040.391, 3.555,& 10937.246, 3.405,& 7874.678, 3.330,& 6114.381, 3.251,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 3646.454, 3.378,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 1990.022, 3.322,& 1986.206, 3.752,& 2191.161, 3.673,& 2204.274, 3.586,& 1917.830, 3.789,& 1983.327, 3.762,& 1964.906, 3.636/ ! INTEGER :: ilab , ata , atb , i ! local : counter of atom type ! ata , atb : counters of C6_ij matrix ! counter INTEGER, EXTERNAL :: atomic_number !! REAL ( DP ) :: R_0, C_0, e_cut , sls ! local : buffers ! ! here we allocate parameters ! ALLOCATE ( C6_ij ( ntyp , ntyp ) , & R_sum ( ntyp , ntyp ) ) ! IF ( ionode ) THEN ! ! and some buffers on ionode ! ALLOCATE ( C6_i ( ntyp ) , & R_vdw ( ntyp ) ) ! ! here we initialize parameters to unphysical values ! C6_i ( : ) = -1.d0 R_vdw ( : ) = -1.d0 C6_ij ( : , : ) = -1.d0 R_sum ( : , : ) = -1.d0 ! DO ilab = 1 , ntyp ! i = atomic_number ( atom_label ( ilab ) ) IF ( i > 0 .AND. i < 87 ) THEN C6_i ( ilab ) = vdw_coeffs(1,i) R_vdw ( ilab ) = vdw_coeffs(2,i) ELSE CALL errore ( ' init_london ' ,& 'atom ' // atom_label(ilab) //' not found ' , ilab ) END IF ! END DO ! ! are there all the parameters we need? ! DO ilab = 1 , ntyp ! IF ( ( C6_i ( ilab ) < 0.d0 ) .or. & ( R_vdw ( ilab ) < 0.d0 ) ) THEN ! CALL errore ( ' init_london ' ,& ' one or more parameters not found ' , 4 ) ! END IF ! END DO ! ! ...here we store C6_ij parameters of each pair of atom types ! into a square matrix C6_ij = sqrt ( C6_i * C6_j ) ! DO atb = 1 , ntyp ! DO ata = 1 , ntyp ! C6_ij ( ata , atb ) = sqrt ( C6_i ( ata ) * C6_i ( atb ) ) ! R_sum ( ata , atb ) = R_vdw ( ata ) + R_vdw ( atb ) ! END DO ! END DO ! WRITE ( stdout ,'( /, 5X, "-------------------------------------" , & & /, 5X, "Parameters for Dispersion Correction:" , & & /, 5X, "-------------------------------------" , & & /, 5X, " atom VdW radius C_6 " , / )' ) DO ata = 1 , ntyp ! WRITE (stdout , '( 8X, A3 , 6X , F7.3 , 8X , F7.3 )' ) & atom_label ( ata ) , R_vdw ( ata ) , C6_i ( ata ) ! END DO ! ! ... atomic parameters are deallocated ! DEALLOCATE ( C6_i , R_vdw ) ! ! ... cutoff radius in alat units ! r_cut = lon_rcut / alat ! ! ... define a gross maximum bound of the mxr size ! mxr = 1 + INT ( ( 2 * ( lon_rcut + alat ) ) ** 3 / omega ) ! END IF ! #if defined __MPI ! broadcast data to all processors ! CALL mp_bcast ( C6_ij, ionode_id ) CALL mp_bcast ( R_sum, ionode_id ) CALL mp_bcast ( r_cut, ionode_id ) CALL mp_bcast ( mxr , ionode_id ) ! #endif ! ALLOCATE ( r ( 3 , mxr ) , dist2 ( mxr ) ) ! RETURN ! END SUBROUTINE init_london ! !--------------------------------------------------------------------------- ! Compute dispersion energy !--------------------------------------------------------------------------- ! FUNCTION energy_london ( alat , nat , ityp , at , bg , tau ) ! ! here we compute the dispersion contribution to the total energy ! ! E = - ( C_6^ij / R_ij ** 6 ) * f_damp ( R_ij ) * scal6 ! ! where f_damp is the damping function: ! ! f_damp ( R_ij ) = [ 1 + exp ( -beta ( R_ij / (R_i^0+R_j^0) - 1 )) ] ** (-1) ! ! and scal6 is a global scaling factor ! #if defined __MPI USE mp_global, ONLY : me_image , nproc_image, intra_image_comm USE mp, ONLY : mp_sum #endif ! IMPLICIT NONE ! !INTEGER , PARAMETER :: mxr = 500000 ! local: max number of r ( see rgen ) ! INTEGER :: ata , atb , nrm , nr ! locals : ! ata , atb : atom counters ! nrm : actual number of vectors computed by rgen ! nr : counter ! INTEGER :: first , last , resto , divid ! locals : parallelization stuff ! INTEGER , INTENT ( IN ) :: nat , ityp ( nat ) ! input: ! nat : number of atoms ! itype : type of each atom ! REAL ( DP ) :: dist , f_damp , energy_london , dtau ( 3 ) , dist6 ! locals: ! dist : distance R_ij between the current pair of atoms ! f_damp : damping function ! energy_london : the dispersion energy ! dtau : output of rgen ( not used ) ! dist6 : distance**6 ! REAL ( DP ) , INTENT ( IN ) :: alat , tau (3, nat) , & at ( 3 , 3 ) , bg ( 3 , 3 ) ! input : ! alat : the cell parameter ! tau : atomic positions in alat units ! at : direct lattice vectors ! bg : reciprocal lattice vectors ! energy_london = 0.d0 ! #if defined __MPI ! ! parallelization: divide atoms across processors of this image ! (different images have different atomic positions) ! resto = MOD ( nat , nproc_image ) divid = nat / nproc_image ! IF ( me_image + 1 <= resto ) THEN ! first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ! ELSE ! first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) ! END IF ! #else ! first = 1 last = nat #endif ! ! ... the dispersion energy ! DO ata = first , last ! DO atb = 1 , nat ! dtau ( : ) = tau ( : , ata ) - tau ( : , atb ) ! CALL rgen ( dtau, r_cut, mxr, at, bg, r, dist2, nrm ) ! DO nr = 1 , nrm ! dist = alat * sqrt ( dist2 ( nr ) ) dist6 = dist ** 6 ! f_damp = 1.d0 / ( 1.d0 + & exp ( -beta * ( dist / ( R_sum ( ityp (atb) , ityp (ata) ) ) - 1 ))) ! energy_london = energy_london - & ( C6_ij ( ityp ( atb ) , ityp ( ata ) ) / dist6 ) * & f_damp ! END DO ! END DO ! END DO ! energy_london = scal6 * 0.5d0 * energy_london ! ! #if defined (__MPI) 999 CALL mp_sum ( energy_london , intra_image_comm ) #endif ! RETURN ! END FUNCTION energy_london ! !--------------------------------------------------------------------------- ! Compute dispersion forces acting on atoms !--------------------------------------------------------------------------- ! FUNCTION force_london ( alat , nat , ityp , at , bg , tau ) ! ! #if defined __MPI USE mp_global, ONLY : me_image , nproc_image , intra_image_comm USE mp, ONLY : mp_sum #endif ! IMPLICIT NONE ! !INTEGER , PARAMETER :: mxr = 500000 ! local: max number of r ( see rgen ) ! INTEGER :: ata , atb , nrm , nr , ipol ! locals : ! ata , atb : atom counters ! nrm : actual number of vectors computed by rgen ! nr : counter on neighbours shells ! ipol : counter on coords ! INTEGER :: first , last , resto, divid ! locals : ! first : lower bound on processor ! last : upper ! INTEGER , INTENT ( IN ) :: nat , ityp ( nat ) ! input: ! nat : number of atoms ! ityp : type of each atom ! REAL ( DP ) :: dist , f_damp , dtau ( 3 ) , force_london ( 3 , nat ) , & dist6 , dist7 , exparg , expval , par , fac , add ! locals : ! dist : distance R_ij between the current pair of atoms ! f_damp : damping function ! dtau : \vec R_ij ! force_london : dispersion forces ! dist6 : dist**6 ! dist7 : dist**7 ! ... and some buffers ! REAL ( DP ) , INTENT ( IN ) :: alat , tau (3, nat) , & at ( 3 , 3 ) , bg ( 3 , 3 ) ! input: ! alat : the cell parameter ! tau : atomic positions in alat units ! at : direct lattice vectors ! bg : reciprocal lattice vectors ! ! force_london ( : , : ) = 0.d0 ! #if defined __MPI ! ! parallelization: divide atoms across processors of this image ! (different images have different atomic positions) ! resto = MOD ( nat , nproc_image ) divid = nat / nproc_image ! IF ( me_image + 1 <= resto ) THEN ! first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ! ELSE ! first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) ! END IF ! #else ! first = 1 last = nat #endif ! ! ... the dispersion forces ! DO ata = first , last ! DO atb = 1 , nat ! IF ( ata /= atb ) THEN ! dtau ( : ) = tau ( : , ata ) - tau ( : , atb ) ! ! generate neighbours shells ! CALL rgen ( dtau, r_cut, mxr, at, bg, r, dist2, nrm ) ! ! compute forces ! par = beta / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) ! DO nr = 1 , nrm ! dist = alat * sqrt ( dist2 ( nr ) ) dist6 = dist ** 6 dist7 = dist6 * dist ! exparg = - beta * ( dist / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) - 1 ) ! expval = exp ( exparg ) ! fac = C6_ij ( ityp ( atb ) , ityp ( ata ) ) / dist6 ! add = 6.d0 / dist ! DO ipol = 1 , 3 ! force_london ( ipol , ata ) = force_london ( ipol , ata ) + & ( scal6 / ( 1 + expval ) * fac * & ( - par * expval / ( 1.d0 + expval ) + add ) * & r ( ipol , nr ) * alat / dist ) ! END DO ! END DO ! END IF ! END DO ! END DO ! #if defined (__MPI) 999 CALL mp_sum ( force_london , intra_image_comm ) #endif ! RETURN ! END FUNCTION force_london ! ! !--------------------------------------------------------------------------- ! Compute dispersion contribution to the stress tensor !--------------------------------------------------------------------------- ! FUNCTION stres_london ( alat , nat , ityp , at , bg , tau , omega ) ! ! #if defined __MPI USE mp_global, ONLY : me_image , nproc_image , intra_image_comm USE mp, ONLY : mp_sum #endif ! IMPLICIT NONE ! !INTEGER , PARAMETER :: mxr = 500000 ! local: max number of r ( see rgen ) ! INTEGER :: ata , atb , nrm , nr , ipol , lpol , spol ! locals : ! ata , atb : atom counters ! nrm : actual number of vectors computed by rgen ! nr : counter on neighbours shells ! xpol : coords counters ipol lpol spol ! INTEGER :: first , last , resto, divid ! locals : parallelization ! INTEGER , INTENT ( IN ) :: nat , ityp ( nat ) ! input: ! nat : number of atoms ! ityp : type of each atom ! REAL ( DP ) :: dist , f_damp , dtau ( 3 ) , stres_london ( 3 , 3 ) , & dist6 , dist7 , exparg , expval , par , fac , add ! locals: ! dist : distance R_ij of current pair of atoms ! f_damp : damping function ! dtau : \vec R_ij ! stres_london : dispersion contribution to stress tensor ! dist6 : dist**6 ! dist7 : dist**7 ! and some buffers ! REAL ( DP ) , INTENT ( IN ) :: alat , tau (3, nat) , omega , & at ( 3 , 3 ) , bg ( 3 , 3 ) ! input : ! alat : the cell parameter ! tau : atomic positions in alat units ! omega : unit cell volume ! at : direct lattice vectors ! bg : reciprocal lattice vectors ! ! ! stres_london ( : , : ) = 0.d0 ! first=0 last=0 ! #if defined __MPI ! ! parallelization: divide atoms across processors of this image ! (different images have different atomic positions) ! resto = MOD ( nat , nproc_image ) divid = nat / nproc_image ! IF ( me_image + 1 <= resto ) THEN ! first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ! ELSE ! first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) ! END IF ! #else ! first = 1 last = nat #endif ! ! ... the dispersion stress tensor ! DO ata = first , last ! DO atb = 1 , nat ! dtau ( : ) = tau ( : , ata ) - tau ( : , atb ) ! ! generate neighbours shells ! CALL rgen ( dtau, r_cut, mxr, at, bg, r, dist2, nrm ) ! ! compute stress ! par = beta / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) ! DO nr = 1 , nrm ! dist = alat * sqrt ( dist2 ( nr ) ) dist6 = dist ** 6 dist7 = dist6 * dist ! exparg = - beta * ( dist / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) - 1 ) ! expval = exp ( exparg ) ! fac = C6_ij ( ityp ( atb ) , ityp ( ata ) ) / dist6 ! add = 6.d0 / dist ! DO ipol = 1 , 3 ! DO lpol = 1 , ipol ! stres_london ( lpol , ipol ) = stres_london ( lpol , ipol ) + & ( scal6 / ( 1 + expval ) * fac * & ( - par * expval / ( 1.d0 + expval ) + add ) * & r ( ipol , nr ) * alat / dist ) * & r ( lpol , nr ) * alat ! END DO ! END DO ! END DO ! END DO ! END DO ! DO ipol = 1 , 3 ! DO lpol = ipol + 1 , 3 ! stres_london ( lpol , ipol ) = stres_london ( ipol , lpol ) ! END DO ! END DO ! stres_london ( : , : ) = - stres_london ( : , : ) / ( 2.d0 * omega ) ! #if defined (__MPI) 999 CALL mp_sum ( stres_london , intra_image_comm ) #endif ! RETURN ! END FUNCTION stres_london ! !--------------------------------------------------------------------------- ! clean memory !--------------------------------------------------------------------------- ! SUBROUTINE dealloca_london ! ! ! IMPLICIT NONE ! IF ( ALLOCATED ( C6_i ) ) DEALLOCATE ( C6_i ) IF ( ALLOCATED ( R_vdw ) ) DEALLOCATE ( R_vdw ) IF ( ALLOCATED ( C6_ij ) ) DEALLOCATE ( C6_ij ) IF ( ALLOCATED ( R_sum ) ) DEALLOCATE ( R_sum ) IF ( ALLOCATED ( r ) ) DEALLOCATE ( r ) IF ( ALLOCATED ( dist2 ) ) DEALLOCATE ( dist2 ) ! RETURN ! END SUBROUTINE dealloca_london ! END MODULE london_module espresso-5.0.2/Modules/wavefunctions.f900000644000700200004540000000375712053145633017221 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE wavefunctions_module !=----------------------------------------------------------------------------=! USE kinds, ONLY : DP IMPLICIT NONE SAVE ! COMPLEX(DP), ALLOCATABLE, TARGET :: & evc(:,:) ! wavefunctions in the PW basis set ! noncolinear case: first index ! is a combined PW + spin index ! COMPLEX(DP) , ALLOCATABLE, TARGET :: & psic(:), & ! additional memory for FFT psic_nc(:,:) ! as above for the noncolinear case ! ! ! electronic wave functions, CPV code ! distributed over gvector and bands ! COMPLEX(DP), ALLOCATABLE :: c0_bgrp(:,:) ! wave functions at time t COMPLEX(DP), ALLOCATABLE :: cm_bgrp(:,:) ! wave functions at time t-delta t COMPLEX(DP), ALLOCATABLE :: phi_bgrp(:,:) ! |phi> = s'|c0> = |c0> + sum q_ij |i> ! for hybrid functionals in CP with Wannier functions COMPLEX(DP), ALLOCATABLE :: cv0(:,:) ! Lingzhu Kong CONTAINS SUBROUTINE deallocate_wavefunctions IF( ALLOCATED( cv0) ) DEALLOCATE( cv0) ! Lingzhu Kong IF( ALLOCATED( c0_bgrp ) ) DEALLOCATE( c0_bgrp ) IF( ALLOCATED( cm_bgrp ) ) DEALLOCATE( cm_bgrp ) IF( ALLOCATED( phi_bgrp ) ) DEALLOCATE( phi_bgrp ) IF( ALLOCATED( psic_nc ) ) DEALLOCATE( psic_nc ) IF( ALLOCATED( psic ) ) DEALLOCATE( psic ) IF( ALLOCATED( evc ) ) DEALLOCATE( evc ) END SUBROUTINE deallocate_wavefunctions !=----------------------------------------------------------------------------=! END MODULE wavefunctions_module !=----------------------------------------------------------------------------=! espresso-5.0.2/Modules/compute_dipole.f900000644000700200004540000000646112053145633017331 0ustar marsamoscm! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... original code written by Giovanni Cantele and Paolo Cazzato ! ... adapted to work in the parallel case by Carlo Sbraccia ! ... originally part of the makov_payne.f90 file ! ... adapted to accept any kind of density by Oliviero Andreussi ! !-------------------------------------------------------------------- SUBROUTINE compute_dipole( nnr, nspin, rho, r0, dipole, quadrupole ) !-------------------------------------------------------------------- USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat, omega USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... Define variables ! ! nnr is passed in input, but nnr should match dfftp%nnr ! for the calculation to be meaningful INTEGER, INTENT(IN) :: nnr, nspin REAL(DP), INTENT(IN) :: rho( nnr, nspin ) REAL(DP), INTENT(IN) :: r0(3) REAL(DP), INTENT(OUT) :: dipole(0:3), quadrupole(3) ! ! ... Local variables ! REAL(DP) :: r(3), rhoir INTEGER :: i, j, k, ip, ir, ir_end, index, index0 REAL(DP) :: inv_nr1, inv_nr2, inv_nr3 ! ! ... Initialization ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! dipole(:) = 0.D0 quadrupole(:) = 0.D0 ! #if defined (__MPI) index0 = dfftp%nr1x*dfftp%nr2x*SUM(dfftp%npp(1:me_bgrp)) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else index0 = 0 ir_end = nnr #endif ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = r(:) - r0(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, r, bg, -1 ) ! r(:) = r(:) - ANINT( r(:) ) ! CALL cryst_to_cart( 1, r, at, 1 ) ! rhoir = rho( ir, 1 ) ! IF ( nspin == 2 ) rhoir = rhoir + rho(ir,2) ! ! ... dipole(0) = charge density ! dipole(0) = dipole(0) + rhoir ! DO ip = 1, 3 ! dipole(ip) = dipole(ip) + rhoir*r(ip) quadrupole(ip) = quadrupole(ip) + rhoir*r(ip)**2 ! END DO ! END DO ! CALL mp_sum( dipole(0:3) , intra_bgrp_comm ) CALL mp_sum( quadrupole(1:3) , intra_bgrp_comm ) ! dipole(0) = dipole(0)*omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! DO ip = 1, 3 dipole(ip) = dipole(ip)*omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) * alat END DO ! quadrupole = quadrupole*omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) * alat**2 ! RETURN ! !---------------------------------------------------------------------------- END SUBROUTINE compute_dipole !---------------------------------------------------------------------------- espresso-5.0.2/Modules/read_xml_fields.f900000644000700200004540000007335512053145633017450 0ustar marsamoscm! !----------------------------------------------------------------! ! This module handles the reading of fields in xml inputs ! ! ! ! written by Simone Ziraldo (08/2010) ! !----------------------------------------------------------------! MODULE read_xml_fields_module ! ! USE io_global, ONLY : xmlinputunit USE kinds, ONLY : DP USE input_parameters ! ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: read_xml_fields, clean_str ! ! ... temporary variable needed to rebuild the old input_dft variable CHARACTER (len = 5) :: exchange, exchange_grad_corr, correlation, & correlation_grad_corr, xc_specials ! CONTAINS ! ! ! !----------------------------------------------------------! ! This subroutine does a loop over all fields and ! ! sets the parameters that reads in these nodes ! ! note: the current implementation doesn't require ! ! the fields name or the number of fields ! !----------------------------------------------------------! SUBROUTINE read_xml_fields () ! ! USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end, iotk_scan_attr, iotk_attlenx USE iotk_unit_interf, ONLY : iotk_rewind ! ! IMPLICIT NONE ! ! INTEGER :: ierr, direction1, direction2 CHARACTER(len = iotk_attlenx) :: attr CHARACTER(len = 30) :: name CHARACTER(len = 30) :: field ! ! ! ... the scanning must start from the beginning of the root node ! CALL iotk_rewind( xmlinputunit ) ! ! ... default values for strings exchange = 'none' exchange_grad_corr = 'none' correlation = 'none' correlation_grad_corr = 'none' xc_specials = 'none' ! ! ... fields loop ! DO ! call iotk_scan_begin( xmlinputunit, 'field', attr, direction = direction1, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning begin of field & &node', ABS( ierr ) ) ! IF ( direction1 == -1 ) THEN ! ! ... the scanning changes direction -> no more fields call iotk_scan_end( xmlinputunit, 'field' ) ! EXIT ! END IF ! call iotk_scan_attr(attr, 'name', field, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error getting the name of field', & ABS( ierr ) ) ! ! ... parameters loop ! DO ! CALL iotk_scan_begin(xmlinputunit, 'parameter', attr, direction = direction2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning begin of parameter & &node inside '//trim(field)//' field', ABS( ierr ) ) ! IF ( direction2 == -1 ) THEN ! ! ... the scanning changes direction -> no more parameters CALL iotk_scan_end( xmlinputunit, 'parameter', ierr = ierr) ! EXIT END IF ! CALL iotk_scan_attr( attr, 'name', name, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning the name of a PARAMETER & &inside '//trim(field)//' field', ABS( ierr ) ) ! ! ! ... association string -> name of variable and reading of its value CALL read_parameter( name ) ! ! CALL iotk_scan_end( xmlinputunit, 'parameter', ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning end of '//name//' PARAMETER & &inside '//trim(field)//' field', ABS( ierr ) ) ! END DO ! ! call iotk_scan_end( xmlinputunit, 'field', ierr = ierr ) IF (ierr /= 0) CALL errore( 'read_xml_fields', 'error scanning end of '//field//' field', 1) ! END DO ! ! ... reconstruction of input_dft variable ( parameter used in the old input format ) ! ! ... if one of the parameter is setted IF ( (trim(exchange) /= 'none') .or. (trim(exchange_grad_corr) /= 'none') & .or. (trim(correlation) /= 'none') .or. (trim(correlation_grad_corr) /= 'none') ) THEN ! ! ... all the parameter must be setted IF ( (trim(exchange) /= 'none') .and. (trim(exchange_grad_corr) /= 'none') & .and. (trim(correlation) /= 'none') .and. (trim(correlation_grad_corr) /= 'none') ) THEN input_dft = trim(exchange)//'-'//trim(exchange_grad_corr)//'-'& //trim(correlation)//'-'//trim(correlation_grad_corr) ELSE ! ... error: at least one parameter is not set CALL errore( 'read_xml_fields', 'all the parameters exchange, exchange_grad_corr, & &correlation and correlation_grad_corr must be set', 1 ) ! ENDIF ELSE IF (trim(xc_specials) /= 'none') input_dft = trim(xc_specials) END IF ! RETURN ! ! END SUBROUTINE read_xml_fields ! ! ! !--------------------------------------------------------------! ! This routine takes the parameter name as an input and ! ! with it reads the correspondig parameter ! !--------------------------------------------------------------! SUBROUTINE read_parameter ( name ) ! USE iotk_module,ONLY : iotk_scan_dat_inside ! IMPLICIT NONE ! ! CHARACTER ( len = * ), INTENT(IN) :: name ! INTEGER :: ierr ! ! ... temporary buffers needed for the reading of strings ! CHARACTER ( len = 256 ) :: tmpstr ! ierr = 0 ! ! ... list and reading of al the possible parameters ! SELECT CASE (name(1:len_trim(name))) ! ! CASE ( 'abivol' ) CALL iotk_scan_dat_inside( xmlinputunit, abivol, ierr = ierr ) ! CASE ( 'adapt' ) CALL iotk_scan_dat_inside( xmlinputunit, adapt, ierr = ierr ) ! CASE ( 'ampre' ) CALL iotk_scan_dat_inside( xmlinputunit, ampre, ierr = ierr ) ! CASE ( 'assume_isolated' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) assume_isolated = clean_str(tmpstr) ! CASE ( 'bfgs_ndim' ) CALL iotk_scan_dat_inside( xmlinputunit, bfgs_ndim, ierr = ierr ) ! CASE ( 'calwf' ) CALL iotk_scan_dat_inside( xmlinputunit, calwf, ierr = ierr ) ! CASE ( 'cell_damping' ) CALL iotk_scan_dat_inside( xmlinputunit, cell_damping, ierr = ierr ) ! CASE ( 'cell_dofree' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_dofree = clean_str(tmpstr) ! CASE ( 'cell_dynamics' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_dynamics = clean_str(tmpstr) ! CASE ( 'cell_factor' ) CALL iotk_scan_dat_inside( xmlinputunit, cell_factor, ierr = ierr ) ! CASE ( 'cell_parameters' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_parameters = clean_str(tmpstr) ! CASE ( 'cell_temperature' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_temperature = clean_str(tmpstr) ! CASE ( 'cell_velocities' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_velocities = clean_str(tmpstr) ! ! CASE ( 'CI_scheme' ) ! CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ! CI_scheme = clean_str(tmpstr) ! CASE ( 'comp_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, comp_thr, ierr = ierr ) ! CASE ( 'constrained_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) constrained_magnetization = clean_str(tmpstr) ! CASE ( 'conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, conv_thr, ierr = ierr ) ! CASE ( 'correlation' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) correlation = clean_str(tmpstr) ! CASE ( 'correlation_grad_corr' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) correlation_grad_corr = clean_str(tmpstr) ! ! CASE ( 'damp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, damp, ierr = ierr ) ! ! CASE ( 'degauss' ) CALL iotk_scan_dat_inside( xmlinputunit, degauss, ierr = ierr ) ! CASE ( 'delta_t' ) CALL iotk_scan_dat_inside( xmlinputunit, delta_t, ierr = ierr ) ! CASE ( 'diago_cg_maxiter' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_cg_maxiter, ierr = ierr ) ! CASE ( 'diago_david_ndim' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_david_ndim, ierr = ierr ) ! CASE ( 'diago_full_acc' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_full_acc, ierr = ierr ) ! CASE ( 'diago_thr_init' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_thr_init, ierr = ierr ) ! CASE ( 'diagonalization' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) diagonalization = clean_str(tmpstr) ! CASE ( 'dipfield' ) CALL iotk_scan_dat_inside( xmlinputunit, dipfield, ierr = ierr ) ! CASE ( 'disk_io' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) disk_io = clean_str(tmpstr) ! ! CASE ( 'ds' ) ! CALL iotk_scan_dat_inside( xmlinputunit, ds, ierr = ierr ) ! CASE ( 'dthr' ) CALL iotk_scan_dat_inside( xmlinputunit, dthr, ierr = ierr ) ! CASE ( 'dt' ) CALL iotk_scan_dat_inside( xmlinputunit, dt, ierr = ierr ) ! CASE ( 'ecfixed' ) CALL iotk_scan_dat_inside( xmlinputunit, ecfixed, ierr = ierr ) ! CASE ( 'ecutrho' ) CALL iotk_scan_dat_inside( xmlinputunit, ecutrho, ierr = ierr ) ! CASE ( 'ecutwfc' ) CALL iotk_scan_dat_inside( xmlinputunit, ecutwfc, ierr = ierr ) ! CASE ( 'edir' ) CALL iotk_scan_dat_inside( xmlinputunit, edir, ierr = ierr ) ! CASE ( 'efield' ) CALL iotk_scan_dat_inside( xmlinputunit, efield, ierr = ierr ) ! CASE ( 'efield_cart' ) CALL iotk_scan_dat_inside( xmlinputunit, efield_cart, ierr = ierr ) ! CASE ( 'efx0' ) CALL iotk_scan_dat_inside( xmlinputunit, efx0, ierr = ierr ) ! CASE ( 'efx1' ) CALL iotk_scan_dat_inside( xmlinputunit, efx1, ierr = ierr ) ! CASE ( 'efy0' ) CALL iotk_scan_dat_inside( xmlinputunit, efy0, ierr = ierr ) ! CASE ( 'efy1' ) CALL iotk_scan_dat_inside( xmlinputunit, efy1, ierr = ierr ) ! CASE ( 'efz0' ) CALL iotk_scan_dat_inside( xmlinputunit, efz0, ierr = ierr ) ! CASE ( 'efz1' ) CALL iotk_scan_dat_inside( xmlinputunit, efz1, ierr = ierr ) ! CASE ( 'electron_damping' ) CALL iotk_scan_dat_inside( xmlinputunit, electron_damping, ierr = ierr ) ! CASE ( 'electron_dynamics' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) electron_dynamics = clean_str(tmpstr) ! CASE ( 'electron_temperature' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) electron_temperature = clean_str(tmpstr) ! CASE ( 'electron_velocities' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) electron_velocities = clean_str(tmpstr) ! CASE ( 'eamp' ) CALL iotk_scan_dat_inside( xmlinputunit, eamp, ierr = ierr ) ! CASE ( 'ecutcoarse' ) CALL iotk_scan_dat_inside( xmlinputunit, ecutcoarse, ierr = ierr ) ! CASE ( 'ekin_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, ekin_conv_thr, ierr = ierr ) ! CASE ( 'ekincw' ) CALL iotk_scan_dat_inside( xmlinputunit, ekincw, ierr = ierr ) ! CASE ( 'electron_maxstep' ) CALL iotk_scan_dat_inside( xmlinputunit, electron_maxstep, ierr = ierr ) ! CASE ( 'scf_must_converge' ) CALL iotk_scan_dat_inside( xmlinputunit, scf_must_converge, ierr = ierr ) ! CASE ( 'emass' ) CALL iotk_scan_dat_inside( xmlinputunit, emass, ierr = ierr ) ! CASE ( 'emass_cutoff' ) CALL iotk_scan_dat_inside( xmlinputunit, emass_cutoff, ierr = ierr ) ! CASE ( 'emaxpos' ) CALL iotk_scan_dat_inside( xmlinputunit, emaxpos, ierr = ierr ) ! CASE ( 'eopreg' ) CALL iotk_scan_dat_inside( xmlinputunit, eopreg, ierr = ierr ) ! CASE ( 'epol' ) CALL iotk_scan_dat_inside( xmlinputunit, epol, ierr = ierr ) ! CASE ( 'etot_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, etot_conv_thr, ierr = ierr ) ! CASE ( 'exchange' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) exchange = clean_str(tmpstr) ! CASE ( 'exchange_grad_corr' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) exchange_grad_corr = clean_str(tmpstr) ! ! CASE ( 'first_last_opt' ) ! CALL iotk_scan_dat_inside( xmlinputunit, first_last_opt, ierr = ierr ) ! CASE ( 'fixed_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, fixed_magnetization, ierr = ierr ) ! CASE ( 'fnosee' ) CALL iotk_scan_dat_inside( xmlinputunit, fnosee, ierr = ierr ) ! CASE ( 'fnoseh' ) CALL iotk_scan_dat_inside( xmlinputunit, fnoseh, ierr = ierr ) ! CASE ( 'fnosep' ) CALL iotk_scan_dat_inside( xmlinputunit, fnosep, ierr = ierr ) ! CASE ( 'forc_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, forc_conv_thr, ierr = ierr ) ! CASE ( 'force_symmorphic' ) CALL iotk_scan_dat_inside( xmlinputunit, force_symmorphic, ierr = ierr ) ! CASE ( 'gdir' ) CALL iotk_scan_dat_inside( xmlinputunit, gdir, ierr = ierr ) ! CASE ( 'grease' ) CALL iotk_scan_dat_inside( xmlinputunit, grease, ierr = ierr ) ! CASE ( 'greash' ) CALL iotk_scan_dat_inside( xmlinputunit, greash, ierr = ierr ) ! CASE ( 'greasp' ) CALL iotk_scan_dat_inside( xmlinputunit, greasp, ierr = ierr ) ! ! CASE ( 'k_max' ) ! CALL iotk_scan_dat_inside( xmlinputunit, k_max, ierr = ierr ) ! ! CASE ( 'k_min' ) ! CALL iotk_scan_dat_inside( xmlinputunit, k_min, ierr = ierr ) ! CASE ( 'iprint' ) CALL iotk_scan_dat_inside( xmlinputunit, iprint, ierr = ierr ) ! CASE ( 'ion_damping' ) CALL iotk_scan_dat_inside( xmlinputunit, ion_damping, ierr = ierr ) ! CASE ( 'ion_dynamics' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_dynamics = clean_str(tmpstr) ! CASE ( 'ion_nstepe' ) CALL iotk_scan_dat_inside( xmlinputunit, ion_nstepe, ierr = ierr ) ! CASE ( 'ion_positions' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_positions = clean_str(tmpstr) ! CASE ( 'ion_temperature' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_temperature = clean_str(tmpstr) ! CASE ( 'ion_velocities' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_velocities = clean_str(tmpstr) ! CASE ( 'isave' ) CALL iotk_scan_dat_inside( xmlinputunit, isave, ierr = ierr ) ! CASE ( 'la2F' ) CALL iotk_scan_dat_inside( xmlinputunit, la2F, ierr = ierr ) ! CASE ( 'lambda' ) CALL iotk_scan_dat_inside( xmlinputunit, lambda, ierr = ierr ) ! CASE ( 'lambda_cold' ) CALL iotk_scan_dat_inside( xmlinputunit, lambda_cold, ierr = ierr ) ! CASE ( 'lberry' ) CALL iotk_scan_dat_inside( xmlinputunit, lberry, ierr = ierr ) ! CASE ( 'lda_plus_u' ) CALL iotk_scan_dat_inside( xmlinputunit, lda_plus_u, ierr = ierr ) ! CASE ( 'lda_plus_u_kind' ) CALL iotk_scan_dat_inside( xmlinputunit, lda_plus_u_kind, ierr = ierr ) ! CASE ( 'lelfield' ) CALL iotk_scan_dat_inside( xmlinputunit, lelfield, ierr = ierr ) ! CASE ( 'lorbm' ) CALL iotk_scan_dat_inside( xmlinputunit, lorbm, ierr = ierr ) ! CASE ( 'lkpoint_dir' ) CALL iotk_scan_dat_inside( xmlinputunit, lkpoint_dir, ierr = ierr ) ! CASE ( 'london' ) CALL iotk_scan_dat_inside( xmlinputunit, london, ierr = ierr ) ! CASE ( 'london_rcut' ) CALL iotk_scan_dat_inside( xmlinputunit, london_rcut, ierr = ierr ) ! CASE ( 'london_s6' ) CALL iotk_scan_dat_inside( xmlinputunit, london_s6, ierr = ierr ) ! CASE ( 'lspinorb' ) CALL iotk_scan_dat_inside( xmlinputunit, lspinorb, ierr = ierr ) ! CASE ( 'max_seconds' ) CALL iotk_scan_dat_inside( xmlinputunit, max_seconds, ierr = ierr ) ! CASE ( 'maxiter' ) CALL iotk_scan_dat_inside( xmlinputunit, maxiter, ierr = ierr ) ! CASE ( 'maxwfdt' ) CALL iotk_scan_dat_inside( xmlinputunit, maxwfdt, ierr = ierr ) ! CASE ( 'mixing_beta' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_beta, ierr = ierr ) ! CASE ( 'mixing_charge_compensation' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_charge_compensation, ierr = ierr ) ! CASE ( 'mixing_fixed_ns' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_fixed_ns, ierr = ierr ) ! CASE ( 'mixing_mode' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) mixing_mode = clean_str(tmpstr) ! CASE ( 'mixing_ndim' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_ndim, ierr = ierr ) ! CASE ( 'n_charge_compensation' ) CALL iotk_scan_dat_inside( xmlinputunit, n_charge_compensation, ierr = ierr ) ! CASE ( 'n_inner' ) CALL iotk_scan_dat_inside( xmlinputunit, n_inner, ierr = ierr ) ! CASE ( 'nberrycyc' ) CALL iotk_scan_dat_inside( xmlinputunit, nberrycyc, ierr = ierr ) ! CASE ( 'nbnd' ) CALL iotk_scan_dat_inside( xmlinputunit, nbnd, ierr = ierr ) ! CASE ( 'ndega' ) CALL iotk_scan_dat_inside( xmlinputunit, ndega, ierr = ierr ) ! CASE ( 'ndr' ) CALL iotk_scan_dat_inside( xmlinputunit, ndr, ierr = ierr ) ! CASE ( 'ndw' ) CALL iotk_scan_dat_inside( xmlinputunit, ndw, ierr = ierr ) ! CASE ( 'nhpcl' ) CALL iotk_scan_dat_inside( xmlinputunit, nhpcl, ierr = ierr ) ! CASE ( 'nhptyp' ) CALL iotk_scan_dat_inside( xmlinputunit, nhptyp, ierr = ierr ) ! CASE ( 'niter_cold_restart' ) CALL iotk_scan_dat_inside( xmlinputunit, niter_cold_restart, ierr = ierr ) ! CASE ( 'nit' ) CALL iotk_scan_dat_inside( xmlinputunit, nit, ierr = ierr ) ! CASE ( 'niter_cg_restart' ) CALL iotk_scan_dat_inside( xmlinputunit, niter_cg_restart, ierr = ierr ) ! CASE ( 'nlev' ) CALL iotk_scan_dat_inside( xmlinputunit, nlev, ierr = ierr ) ! CASE ( 'noinv' ) CALL iotk_scan_dat_inside( xmlinputunit, noinv, ierr = ierr ) ! CASE ( 'noncolin' ) CALL iotk_scan_dat_inside( xmlinputunit, noncolin, ierr = ierr ) ! CASE ( 'nosym_evc' ) CALL iotk_scan_dat_inside( xmlinputunit, nosym_evc, ierr = ierr ) ! CASE ( 'nosym' ) CALL iotk_scan_dat_inside( xmlinputunit, nosym, ierr = ierr ) ! CASE ( 'nppstr' ) CALL iotk_scan_dat_inside( xmlinputunit, nppstr, ierr = ierr ) ! CASE ( 'nr1' ) CALL iotk_scan_dat_inside( xmlinputunit, nr1, ierr = ierr ) ! CASE ( 'nr1b' ) CALL iotk_scan_dat_inside( xmlinputunit, nr1b, ierr = ierr ) ! CASE ( 'nr1s' ) CALL iotk_scan_dat_inside( xmlinputunit, nr1s, ierr = ierr ) ! CASE ( 'nr2' ) CALL iotk_scan_dat_inside( xmlinputunit, nr2, ierr = ierr ) ! CASE ( 'nr2b' ) CALL iotk_scan_dat_inside( xmlinputunit, nr2b, ierr = ierr ) ! CASE ( 'nr2s' ) CALL iotk_scan_dat_inside( xmlinputunit, nr2s, ierr = ierr ) ! CASE ( 'nr3' ) CALL iotk_scan_dat_inside( xmlinputunit, nr3, ierr = ierr ) ! CASE ( 'nr3b' ) CALL iotk_scan_dat_inside( xmlinputunit, nr3b, ierr = ierr ) ! CASE ( 'nr3s' ) CALL iotk_scan_dat_inside( xmlinputunit, nr3s, ierr = ierr ) ! CASE ( 'nraise' ) CALL iotk_scan_dat_inside( xmlinputunit, nraise, ierr = ierr ) ! CASE ( 'nsd' ) CALL iotk_scan_dat_inside( xmlinputunit, nsd, ierr = ierr ) ! CASE ( 'nspin' ) CALL iotk_scan_dat_inside( xmlinputunit, nspin, ierr = ierr ) ! CASE ( 'nstep' ) CALL iotk_scan_dat_inside( xmlinputunit, nstep, ierr = ierr ) ! CASE ( 'nsteps' ) CALL iotk_scan_dat_inside( xmlinputunit, nsteps, ierr = ierr ) ! CASE ( 'nwf' ) CALL iotk_scan_dat_inside( xmlinputunit, nwf, ierr = ierr ) ! CASE ( 'occupations' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) occupations = clean_str(tmpstr) ! ! CASE ( 'opt_scheme' ) ! CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ! opt_scheme = clean_str(tmpstr) ! CASE ( 'ortho_eps' ) CALL iotk_scan_dat_inside( xmlinputunit, ortho_eps, ierr = ierr ) ! CASE ( 'ortho_max' ) CALL iotk_scan_dat_inside( xmlinputunit, ortho_max, ierr = ierr ) ! CASE ( 'orthogonalization' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) orthogonalization = clean_str(tmpstr) ! CASE ( 'outdir' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) outdir = clean_str(tmpstr) ! CASE ( 'P_ext' ) CALL iotk_scan_dat_inside( xmlinputunit, P_ext, ierr = ierr ) ! CASE ( 'P_fin' ) CALL iotk_scan_dat_inside( xmlinputunit, P_fin, ierr = ierr ) ! CASE ( 'P_in' ) CALL iotk_scan_dat_inside( xmlinputunit, P_in, ierr = ierr ) ! CASE ( 'passop' ) CALL iotk_scan_dat_inside( xmlinputunit, passop, ierr = ierr ) ! ! CASE ( 'path_thr' ) ! CALL iotk_scan_dat_inside( xmlinputunit, path_thr, ierr = ierr ) ! ! CASE ( 'phase_space' ) ! CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ! phase_space = clean_str(tmpstr) ! CASE ( 'pot_extrapolation' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) pot_extrapolation = clean_str(tmpstr) ! CASE ( 'press' ) CALL iotk_scan_dat_inside( xmlinputunit, press, ierr = ierr ) ! CASE ( 'press_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, press_conv_thr, ierr = ierr ) ! CASE ( 'pseudo_dir' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) pseudo_dir = clean_str(tmpstr) ! CASE ( 'pvar' ) CALL iotk_scan_dat_inside( xmlinputunit, pvar, ierr = ierr ) ! CASE ( 'q2sigma' ) CALL iotk_scan_dat_inside( xmlinputunit, q2sigma, ierr = ierr ) ! CASE ( 'qcutz' ) CALL iotk_scan_dat_inside( xmlinputunit, qcutz, ierr = ierr ) ! CASE ( 'refold_pos' ) CALL iotk_scan_dat_inside( xmlinputunit, refold_pos, ierr = ierr ) ! CASE ( 'report' ) CALL iotk_scan_dat_inside( xmlinputunit, report, ierr = ierr ) ! CASE ( 'remove_rigid_rot' ) CALL iotk_scan_dat_inside( xmlinputunit, remove_rigid_rot, ierr = ierr ) ! CASE ( 'restart_mode' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) restart_mode = clean_str(tmpstr) ! CASE ( 'rho_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, rho_thr, ierr = ierr ) ! CASE ( 'saverho' ) CALL iotk_scan_dat_inside( xmlinputunit, saverho, ierr = ierr ) ! CASE ( 'smearing' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) smearing = clean_str(tmpstr) ! CASE ( 'startingpot' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) startingpot = clean_str(tmpstr) ! CASE ( 'startingwfc' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) startingwfc = clean_str(tmpstr) ! CASE ( 'Surf_t' ) CALL iotk_scan_dat_inside( xmlinputunit, Surf_t, ierr = ierr ) ! CASE ( 'sw_len' ) CALL iotk_scan_dat_inside( xmlinputunit, sw_len, ierr = ierr ) ! CASE ( 'tabps' ) CALL iotk_scan_dat_inside( xmlinputunit, tabps, ierr = ierr ) ! CASE ( 'tcg' ) CALL iotk_scan_dat_inside( xmlinputunit, tcg, ierr = ierr ) ! CASE ( 'tefield' ) CALL iotk_scan_dat_inside( xmlinputunit, tefield, ierr = ierr ) ! ! CASE ( 'temp_req' ) ! CALL iotk_scan_dat_inside( xmlinputunit, temp_req, ierr = ierr ) ! CASE ( 'temph' ) CALL iotk_scan_dat_inside( xmlinputunit, temph, ierr = ierr ) ! CASE ( 'tempw' ) CALL iotk_scan_dat_inside( xmlinputunit, tempw, ierr = ierr ) ! CASE ( 'tolp' ) CALL iotk_scan_dat_inside( xmlinputunit, tolp, ierr = ierr ) ! CASE ( 'tot_charge' ) CALL iotk_scan_dat_inside( xmlinputunit, tot_charge, ierr = ierr ) ! CASE ( 'tot_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, tot_magnetization, ierr = ierr ) ! CASE ( 'tolw' ) CALL iotk_scan_dat_inside( xmlinputunit, tolw, ierr = ierr ) ! CASE ( 'tprnfor' ) CALL iotk_scan_dat_inside( xmlinputunit, tprnfor, ierr = ierr ) ! CASE ( 'tqr' ) CALL iotk_scan_dat_inside( xmlinputunit, tqr, ierr = ierr ) ! CASE ( 'trust_radius_ini' ) CALL iotk_scan_dat_inside( xmlinputunit, trust_radius_ini, ierr = ierr ) ! CASE ( 'trust_radius_max' ) CALL iotk_scan_dat_inside( xmlinputunit, trust_radius_max, ierr = ierr ) ! CASE ( 'trust_radius_min' ) CALL iotk_scan_dat_inside( xmlinputunit, trust_radius_min, ierr = ierr ) ! CASE ( 'tstress' ) CALL iotk_scan_dat_inside( xmlinputunit, tstress, ierr = ierr ) ! CASE ( 'U_projection_type' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) U_projection_type = clean_str(tmpstr) ! ! CASE ( 'use_masses' ) ! CALL iotk_scan_dat_inside( xmlinputunit, use_masses, ierr = ierr ) ! ! CASE ( 'use_freezing' ) ! CALL iotk_scan_dat_inside( xmlinputunit, use_freezing, ierr = ierr ) ! CASE ( 'upscale' ) CALL iotk_scan_dat_inside( xmlinputunit, upscale, ierr = ierr ) ! CASE ( 'verbosity' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) verbosity = clean_str(tmpstr) ! CASE ( 'w_1' ) CALL iotk_scan_dat_inside( xmlinputunit, w_1, ierr = ierr ) ! CASE ( 'w_2' ) CALL iotk_scan_dat_inside( xmlinputunit, w_2, ierr = ierr ) ! CASE ( 'wf_collect' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_collect, ierr = ierr ) ! CASE ( 'wf_efield' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_efield, ierr = ierr ) ! CASE ( 'wf_friction' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_friction, ierr = ierr ) ! CASE ( 'wf_q' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_q, ierr = ierr ) ! CASE ( 'wf_switch' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_switch, ierr = ierr ) ! CASE ( 'wfc_extrapolation' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) wfc_extrapolation = clean_str(tmpstr) ! CASE ( 'wfcdir' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) wfcdir = clean_str(tmpstr) ! CASE ( 'wfdt' ) CALL iotk_scan_dat_inside( xmlinputunit, wfdt, ierr = ierr ) ! CASE ( 'wffort' ) CALL iotk_scan_dat_inside( xmlinputunit, wffort, ierr = ierr ) ! CASE ( 'wfsd' ) CALL iotk_scan_dat_inside( xmlinputunit, wfsd, ierr = ierr ) ! CASE ( 'wmass' ) CALL iotk_scan_dat_inside( xmlinputunit, wmass, ierr = ierr ) ! CASE ( 'writev' ) CALL iotk_scan_dat_inside( xmlinputunit, writev, ierr = ierr ) ! CASE ( 'xc_specials' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) xc_specials = clean_str(tmpstr) ! ... up to here ! CASE ( 'xmloutput' ) CALL iotk_scan_dat_inside( xmlinputunit, xmloutput, ierr = ierr ) ! case ( 'vdw_table_name' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) vdw_table_name = clean_str(tmpstr) ! case ( 'input_dft' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) input_dft = clean_str(tmpstr) CASE default ! CALL errore( 'read_parameter', 'no parameter with name '//trim( name ), 1 ) ! ! END SELECT ! IF (ierr/=0) THEN CALL errore( 'read_parameter', 'problem reading parameter '//trim( name ), 1 ) END IF ! ! RETURN ! ! END SUBROUTINE read_parameter ! ! !---------------------------------------------------------! ! Function that eliminate the tab characters and adjust ! ! to the left side the string ! !---------------------------------------------------------! FUNCTION clean_str( string ) ! ! IMPLICIT NONE ! ! CHARACTER (len = *) :: string CHARACTER (len = len( string ) ) :: clean_str INTEGER :: i ! do i = 1, len( string ) ! if ( ichar( string(i:i) ) == 9 ) then clean_str(i:i)=' ' else clean_str(i:i)=string(i:i) end if ! end do ! clean_str = adjustl( clean_str ) ! ! END FUNCTION clean_str ! ! ! END MODULE read_xml_fields_module espresso-5.0.2/Modules/cell_base.f900000644000700200004540000007453012053145633016234 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE cell_base !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE constants, ONLY : pi, bohr_radius_angs USE io_global, ONLY : stdout ! IMPLICIT NONE SAVE ! ! ibrav: index of the bravais lattice (see latgen.f90) INTEGER :: ibrav ! celldm: old-style parameters of the simulation cell (se latgen.f90) REAL(DP) :: celldm(6) = (/ 0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP /) ! traditional crystallographic cell parameters (alpha=cosbc and so on) REAL(DP) :: a, b, c, cosab, cosac, cosbc ! alat: lattice parameter - often used to scale quantities, or ! in combination to other parameters/constants to define new units REAL(DP) :: alat = 0.0_DP ! omega: volume of the simulation cell REAl(DP) :: omega = 0.0_DP ! tpiba: 2 PI/alat, tpiba2=tpiba^2 REAL(DP) :: tpiba = 0.0_DP, tpiba2 = 0.0_DP ! direct and reciprocal lattice primitive vectors ! at(:,i) are the lattice vectors of the simulation cell, a_i, ! in alat units: a_i(:) = at(:,i)/alat ! bg(:,i) are the reciprocal lattice vectors, b_i, ! in tpiba=2pi/alat units: b_i(:) = bg(:,i)/tpiba REAL(DP) :: at(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) REAL(DP) :: bg(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) ! ! ------------------------------------------------------------------------- ! ... periodicity box ! ... In the matrix "a" every row is the vector of each side of ! ... the cell in the real space TYPE boxdimensions REAL(DP) :: a(3,3) ! direct lattice generators REAL(DP) :: m1(3,3) ! reciprocal lattice generators REAL(DP) :: omega ! cell volume = determinant of a REAL(DP) :: g(3,3) ! metric tensor REAL(DP) :: gvel(3,3) ! metric velocity REAL(DP) :: pail(3,3) ! stress tensor ( scaled coor. ) REAL(DP) :: paiu(3,3) ! stress tensor ( cartesian coor. ) REAL(DP) :: hmat(3,3) ! cell parameters ( transpose of "a" ) REAL(DP) :: hvel(3,3) ! cell velocity REAL(DP) :: hinv(3,3) REAL(DP) :: deth INTEGER :: perd(3) END TYPE boxdimensions ! The following relations should always be kept valid: ! h = at*alat; ainv = h^(-1); ht=transpose(h) REAL(DP) :: h(3,3) = 0.0_DP ! simulation cell at time t REAL(DP) :: ainv(3,3) = 0.0_DP REAL(DP) :: hold(3,3) = 0.0_DP ! simulation cell at time t-delt REAL(DP) :: hnew(3,3) = 0.0_DP ! simulation cell at time t+delt REAL(DP) :: velh(3,3) = 0.0_DP ! simulation cell velocity REAL(DP) :: deth = 0.0_DP ! determinant of h ( cell volume ) INTEGER :: iforceh(3,3) = 1 ! if iforceh( i, j ) = 0 then h( i, j ) ! is not allowed to move LOGICAL :: fix_volume = .FALSE.! True if cell volume is kept fixed LOGICAL :: fix_area = .FALSE. ! True if area in xy plane is kept constant REAL(DP) :: wmass = 0.0_DP ! cell fictitious mass REAL(DP) :: press = 0.0_DP ! external pressure REAL(DP) :: frich = 0.0_DP ! friction parameter for cell damped dynamics REAL(DP) :: greash = 1.0_DP ! greas parameter for damped dynamics LOGICAL :: tcell_base_init = .FALSE. INTERFACE cell_init MODULE PROCEDURE cell_init_ht, cell_init_a END INTERFACE INTERFACE pbcs MODULE PROCEDURE pbcs_components, pbcs_vectors END INTERFACE INTERFACE s_to_r MODULE PROCEDURE s_to_r1, s_to_r1b, s_to_r3 END INTERFACE INTERFACE r_to_s MODULE PROCEDURE r_to_s1, r_to_s1b, r_to_s3 END INTERFACE !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! ! SUBROUTINE cell_base_init( ibrav_, celldm_, a_, b_, c_, cosab_, cosac_, & cosbc_, trd_ht, rd_ht, cell_units ) ! ! ... initialize cell_base module variables, set up crystal lattice ! IMPLICIT NONE INTEGER, INTENT(IN) :: ibrav_ REAL(DP), INTENT(IN) :: celldm_ (6) LOGICAL, INTENT(IN) :: trd_ht REAL(DP), INTENT(IN) :: rd_ht (3,3) CHARACTER(LEN=*), INTENT(IN) :: cell_units REAL(DP), INTENT(IN) :: a_ , b_ , c_ , cosab_, cosac_, cosbc_ REAL(DP) :: units ! IF ( ibrav_ == 0 .and. .not. trd_ht ) THEN CALL errore('cell_base_init', 'ibrav=0: must read cell parameters', 1) ELSE IF ( ibrav /= 0 .and. trd_ht ) THEN CALL errore('cell_base_init', 'redundant data for cell parameters', 2) END IF ! ibrav = ibrav_ celldm = celldm_ a = a_ ; b = b_ ; c = c_ ; cosab = cosab_ ; cosac = cosac_ ; cosbc = cosbc_ ! IF ( trd_ht ) THEN ! ! ... crystal lattice vectors read from input: find units ! SELECT CASE ( TRIM( cell_units ) ) CASE ( 'bohr' ) IF( celldm( 1 ) /= 0.0_DP .OR. a /= 0.0_dp ) CALL errore & ('cell_base_init','lattice vectors in Bohr or in a0 units?',1) units = 1.0_DP CASE ( 'angstrom' ) IF( celldm( 1 ) /= 0.0_DP .OR. a /= 0.0_dp ) CALL errore & ('cell_base_init','lattice vectors in A or in a0 units?',2) units = 1.0_DP / bohr_radius_angs CASE DEFAULT IF( celldm( 1 ) /= 0.0_DP ) THEN units = celldm( 1 ) ELSE IF ( a /= 0.0_dp ) THEN units = a / bohr_radius_angs ELSE units = 1.0_DP END IF END SELECT ! ! ... Beware the transpose operation between matrices ht and at! ! at = TRANSPOSE( rd_ht ) * units ! ! ... at is in atomic units: find alat, bring at to alat units, find omega ! IF( celldm( 1 ) /= 0.0_DP ) THEN alat = celldm( 1 ) ELSE IF ( a /= 0.0_dp ) THEN alat = a / bohr_radius_angs ELSE alat = SQRT ( at(1,1)**2+at(2,1)**2+at(3,1)**2 ) END IF ! for compatibility: celldm still used in phonon etc celldm(1) = alat ! at(:,:) = at(:,:) / alat CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! ELSE ! ... crystal lattice via celldm or crystallographica parameters ! IF ( celldm(1) == 0.D0 .and. a /= 0.D0 ) THEN ! celldm(1) = a / bohr_radius_angs celldm(2) = b / a celldm(3) = c / a ! IF ( ibrav == 14 ) THEN ! ! ... triclinic lattice ! celldm(4) = cosbc celldm(5) = cosac celldm(6) = cosab ! ELSE IF ( ibrav ==-12 ) THEN ! ! ... monoclinic P lattice, unique axis b ! celldm(5) = cosac ! ELSE ! ! ... trigonal and monoclinic lattices, unique axis c ! celldm(4) = cosab ! ENDIF ! ELSE IF ( celldm(1) /= 0.D0 .and. a /= 0.D0 ) THEN ! CALL errore( 'input', 'do not specify both celldm and a,b,c!', 1 ) ! END IF ! ! ... generate at (in atomic units) from ibrav and celldm ! CALL latgen( ibrav, celldm, at(1,1), at(1,2), at(1,3), omega ) ! ! ... define lattice constants alat, divide at by alat ! alat = celldm(1) at(:,:) = at(:,:) / alat ! END IF ! ! ... Generate the reciprocal lattice vectors ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! tpiba = 2.0_DP * pi / alat tpiba2 = tpiba * tpiba RETURN ! END SUBROUTINE cell_base_init !------------------------------------------------------------------------------! ! ... set box ! ... box%m1(i,1) == b1(i) COLUMN are B vectors ! ... box%a(1,i) == a1(i) ROW are A vector ! ... box%omega == volume ! ... box%g(i,j) == metric tensor G !------------------------------------------------------------------------------! SUBROUTINE cell_init_ht( what, box, hval ) TYPE (boxdimensions) :: box REAL(DP), INTENT(IN) :: hval(3,3) CHARACTER, INTENT(IN) :: what IF( what == 't' .OR. what == 'T' ) THEN ! hval == ht box%a = hval box%hmat = TRANSPOSE( hval ) ELSE ! hval == hmat box%hmat = hval box%a = TRANSPOSE( hval ) END IF CALL gethinv( box ) box%g = MATMUL( box%a(:,:), box%hmat(:,:) ) box%gvel = 0.0_DP box%hvel = 0.0_DP box%pail = 0.0_DP box%paiu = 0.0_DP RETURN END SUBROUTINE cell_init_ht !------------------------------------------------------------------------------! SUBROUTINE cell_init_a( alat, at, box ) TYPE (boxdimensions) :: box REAL(DP), INTENT(IN) :: alat, at(3,3) INTEGER :: i DO i=1,3 ! this is HT: the rows are the lattice vectors box%a(1,i) = at(i,1)*alat box%a(2,i) = at(i,2)*alat box%a(3,i) = at(i,3)*alat ! this is H : the column are the lattice vectors box%hmat(i,1) = at(i,1)*alat box%hmat(i,2) = at(i,2)*alat box%hmat(i,3) = at(i,3)*alat END DO box%pail = 0.0_DP box%paiu = 0.0_DP box%hvel = 0.0_DP CALL gethinv(box) box%g = MATMUL( box%a(:,:), box%hmat(:,:) ) box%gvel = 0.0_DP RETURN END SUBROUTINE cell_init_a !------------------------------------------------------------------------------! SUBROUTINE r_to_s1 (r,s,box) REAL(DP), intent(out) :: S(3) REAL(DP), intent(in) :: R(3) type (boxdimensions), intent(in) :: box integer i,j DO I=1,3 S(I) = 0.0_DP DO J=1,3 S(I) = S(I) + R(J)*box%m1(J,I) END DO END DO RETURN END SUBROUTINE r_to_s1 !------------------------------------------------------------------------------! SUBROUTINE r_to_s3 ( r, s, na, nsp, hinv ) REAL(DP), intent(out) :: S(:,:) INTEGER, intent(in) :: na(:), nsp REAL(DP), intent(in) :: R(:,:) REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 ) integer :: i, j, ia, is, isa isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO I=1,3 S(I,isa) = 0.0_DP DO J=1,3 S(I,isa) = S(I,isa) + R(J,isa)*hinv(i,j) END DO END DO END DO END DO RETURN END SUBROUTINE r_to_s3 !------------------------------------------------------------------------------! SUBROUTINE r_to_s1b ( r, s, hinv ) REAL(DP), intent(out) :: S(:) REAL(DP), intent(in) :: R(:) REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 ) integer :: i, j DO I=1,3 S(I) = 0.0_DP DO J=1,3 S(I) = S(I) + R(J)*hinv(i,j) END DO END DO RETURN END SUBROUTINE r_to_s1b !------------------------------------------------------------------------------! SUBROUTINE s_to_r1 (S,R,box) REAL(DP), intent(in) :: S(3) REAL(DP), intent(out) :: R(3) type (boxdimensions), intent(in) :: box integer i,j DO I=1,3 R(I) = 0.0_DP DO J=1,3 R(I) = R(I) + S(J)*box%a(J,I) END DO END DO RETURN END SUBROUTINE s_to_r1 !------------------------------------------------------------------------------! SUBROUTINE s_to_r1b (S,R,h) REAL(DP), intent(in) :: S(3) REAL(DP), intent(out) :: R(3) REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a ) integer i,j DO I=1,3 R(I) = 0.0_DP DO J=1,3 R(I) = R(I) + S(J)*h(I,j) END DO END DO RETURN END SUBROUTINE s_to_r1b !------------------------------------------------------------------------------! SUBROUTINE s_to_r3 ( S, R, na, nsp, h ) REAL(DP), intent(in) :: S(:,:) INTEGER, intent(in) :: na(:), nsp REAL(DP), intent(out) :: R(:,:) REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a ) integer :: i, j, ia, is, isa isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO I = 1, 3 R(I,isa) = 0.0_DP DO J = 1, 3 R(I,isa) = R(I,isa) + S(J,isa) * h(I,j) END DO END DO END DO END DO RETURN END SUBROUTINE s_to_r3 ! !------------------------------------------------------------------------------! ! SUBROUTINE gethinv(box) IMPLICIT NONE TYPE (boxdimensions), INTENT (INOUT) :: box ! CALL invmat( 3, box%a, box%m1, box%omega ) box%deth = box%omega box%hinv = TRANSPOSE( box%m1 ) ! RETURN END SUBROUTINE gethinv FUNCTION get_volume( hmat ) IMPLICIT NONE REAL(DP) :: get_volume REAL(DP) :: hmat( 3, 3 ) get_volume = hmat(1,1)*(hmat(2,2)*hmat(3,3)-hmat(2,3)*hmat(3,2)) + & hmat(1,2)*(hmat(2,3)*hmat(3,1)-hmat(2,1)*hmat(3,3)) + & hmat(1,3)*(hmat(2,1)*hmat(3,2)-hmat(2,2)*hmat(3,1)) RETURN END FUNCTION get_volume ! !------------------------------------------------------------------------------! ! FUNCTION pbc(rin,box,nl) RESULT (rout) IMPLICIT NONE TYPE (boxdimensions) :: box REAL (DP) :: rin(3) REAL (DP) :: rout(3), s(3) INTEGER, OPTIONAL :: nl(3) s = matmul(box%hinv(:,:),rin) s = s - box%perd*nint(s) rout = matmul(box%hmat(:,:),s) IF (present(nl)) THEN s = REAL( nl, DP ) rout = rout + matmul(box%hmat(:,:),s) END IF END FUNCTION pbc ! !------------------------------------------------------------------------------! ! FUNCTION saw(emaxpos,eopreg,x) RESULT (sawout) IMPLICIT NONE REAL(DP) :: emaxpos,eopreg,x REAL(DP) :: y, sawout, z z = x - emaxpos y = z - floor(z) if (y.le.eopreg) then sawout = (0.5_DP - y/eopreg) * (1._DP-eopreg) else ! ! I would use: sawout = y - 0.5_DP * ( 1.0_DP + eopreg ) ! sawout = (-0.5_DP + (y-eopreg)/(1._DP-eopreg)) * (1._DP-eopreg) end if END FUNCTION saw ! !------------------------------------------------------------------------------! ! SUBROUTINE get_cell_param(box,cell,ang) IMPLICIT NONE TYPE(boxdimensions), INTENT(in) :: box REAL(DP), INTENT(out), DIMENSION(3) :: cell REAL(DP), INTENT(out), DIMENSION(3), OPTIONAL :: ang ! This code gets the cell parameters given the h-matrix: ! a cell(1)=sqrt(box%hmat(1,1)*box%hmat(1,1)+box%hmat(2,1)*box%hmat(2,1) & +box%hmat(3,1)*box%hmat(3,1)) ! b cell(2)=sqrt(box%hmat(1,2)*box%hmat(1,2)+box%hmat(2,2)*box%hmat(2,2) & +box%hmat(3,2)*box%hmat(3,2)) ! c cell(3)=sqrt(box%hmat(1,3)*box%hmat(1,3)+box%hmat(2,3)*box%hmat(2,3) & +box%hmat(3,3)*box%hmat(3,3)) IF (PRESENT(ang)) THEN ! gamma ang(1)=acos((box%hmat(1,1)*box%hmat(1,2)+ & box%hmat(2,1)*box%hmat(2,2) & +box%hmat(3,1)*box%hmat(3,2))/(cell(1)*cell(2))) ! beta ang(2)=acos((box%hmat(1,1)*box%hmat(1,3)+ & box%hmat(2,1)*box%hmat(2,3) & +box%hmat(3,1)*box%hmat(3,3))/(cell(1)*cell(3))) ! alpha ang(3)=acos((box%hmat(1,2)*box%hmat(1,3)+ & box%hmat(2,2)*box%hmat(2,3) & +box%hmat(3,2)*box%hmat(3,3))/(cell(2)*cell(3))) ! ang=ang*180.0_DP/pi ENDIF END SUBROUTINE get_cell_param !------------------------------------------------------------------------------! SUBROUTINE pbcs_components(x1, y1, z1, x2, y2, z2, m) ! ... This subroutine compute the periodic boundary conditions in the scaled ! ... variables system USE kinds INTEGER, INTENT(IN) :: M REAL(DP), INTENT(IN) :: X1,Y1,Z1 REAL(DP), INTENT(OUT) :: X2,Y2,Z2 REAL(DP) MIC MIC = REAL( M, DP ) X2 = X1 - DNINT(X1/MIC)*MIC Y2 = Y1 - DNINT(Y1/MIC)*MIC Z2 = Z1 - DNINT(Z1/MIC)*MIC RETURN END SUBROUTINE pbcs_components !------------------------------------------------------------------------------! SUBROUTINE pbcs_vectors(v, w, m) ! ... This subroutine compute the periodic boundary conditions in the scaled ! ... variables system USE kinds INTEGER, INTENT(IN) :: m REAL(DP), INTENT(IN) :: v(3) REAL(DP), INTENT(OUT) :: w(3) REAL(DP) :: MIC MIC = REAL( M, DP ) w(1) = v(1) - DNINT(v(1)/MIC)*MIC w(2) = v(2) - DNINT(v(2)/MIC)*MIC w(3) = v(3) - DNINT(v(3)/MIC)*MIC RETURN END SUBROUTINE pbcs_vectors !------------------------------------------------------------------------------! SUBROUTINE cell_dyn_init( trd_ht, rd_ht, wc_ , total_ions_mass , press_ , & frich_ , greash_ , cell_dofree ) USE constants, ONLY: au_gpa, amu_au USE io_global, ONLY: stdout IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: cell_dofree LOGICAL, INTENT(IN) :: trd_ht REAL(DP), INTENT(IN) :: rd_ht (3,3) REAL(DP), INTENT(IN) :: wc_ , frich_ , greash_ , total_ions_mass REAL(DP), INTENT(IN) :: press_ ! external pressure from input ! ( in KBar = 0.1 GPa ) INTEGER :: i,j ! press = press_ / 10.0_DP ! convert press in KBar to GPa press = press / au_gpa ! convert to AU ! frich = frich_ ! for the time being this is set elsewhere greash = greash_ WRITE( stdout, 105 ) WRITE( stdout, 110 ) press_ 105 format(/,3X,'Simulation Cell Parameters (from input)') 110 format( 3X,'external pressure = ',f15.2,' [KBar]') wmass = wc_ IF( wmass == 0.0_DP ) THEN wmass = 3.0_DP / (4.0_DP * pi**2 ) * total_ions_mass wmass = wmass * AMU_AU WRITE( stdout,130) wmass ELSE WRITE( stdout,120) wmass END IF 120 format(3X,'wmass (read from input) = ',f15.2,' [AU]') 130 format(3X,'wmass (calculated) = ',f15.2,' [AU]') IF( wmass <= 0.0_DP ) & CALL errore(' cell_dyn_init',' wmass out of range ',0) IF ( trd_ht ) THEN ! WRITE( stdout, 210 ) WRITE( stdout, 220 ) ( rd_ht( 1, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( rd_ht( 2, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( rd_ht( 3, j ), j = 1, 3 ) ! 210 format(3X,'initial cell from CELL_PARAMETERS card') 220 format(3X,3F14.8) ! END IF ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! CALL init_dofree ( cell_dofree ) ! tcell_base_init = .TRUE. WRITE( stdout, 300 ) ibrav WRITE( stdout, 305 ) alat WRITE( stdout, 310 ) at(:,1)*alat WRITE( stdout, 320 ) at(:,2)*alat WRITE( stdout, 330 ) at(:,3)*alat WRITE( stdout, * ) WRITE( stdout, 350 ) bg(:,1)/alat WRITE( stdout, 360 ) bg(:,2)/alat WRITE( stdout, 370 ) bg(:,3)/alat WRITE( stdout, 340 ) omega 300 FORMAT( 3X, 'ibrav = ',I4) 305 FORMAT( 3X, 'alat = ',F14.8) 310 FORMAT( 3X, 'a1 = ',3F14.8) 320 FORMAT( 3X, 'a2 = ',3F14.8) 330 FORMAT( 3X, 'a3 = ',3F14.8) 350 FORMAT( 3X, 'b1 = ',3F14.8) 360 FORMAT( 3X, 'b2 = ',3F14.8) 370 FORMAT( 3X, 'b3 = ',3F14.8) 340 FORMAT( 3X, 'omega = ',F16.8) RETURN END SUBROUTINE cell_dyn_init !------------------------------------------------------------------------------! SUBROUTINE init_dofree ( cell_dofree ) ! set constraints on cell dynamics/optimization CHARACTER(LEN=*), INTENT(IN) :: cell_dofree SELECT CASE ( TRIM( cell_dofree ) ) CASE ( 'all', 'default' ) iforceh = 1 CASE ( 'shape' ) iforceh = 1 fix_volume = .true. ! 2DSHAPE: CASE FOR SHAPE CHANGE IN xy PLANE WITH CONST AREA ! contribution from Richard Charles Andrew ! Physics Department, University of Pretoria ! South Africa, august 2012. CASE ( '2Dshape' ) iforceh = 1 iforceh(3,3) = 0 iforceh(1,3) = 0 iforceh(3,1) = 0 iforceh(2,3) = 0 iforceh(3,2) = 0 fix_area = .true. ! 2DSHAPE CASE ( 'volume' ) CALL errore(' init_dofree ', & ' cell_dofree = '//TRIM(cell_dofree)//' not yet implemented ', 1 ) CASE ('x') iforceh = 0 iforceh(1,1) = 1 CASE ('y') iforceh = 0 iforceh(2,2) = 1 CASE ('z') iforceh = 0 iforceh(3,3) = 1 CASE ('xy') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 ! ... if you want the entire xy plane to be free, uncomment: ! iforceh(1,2) = 1 ! iforceh(2,1) = 1 ! 2DSHAPE THE ENTIRE xy PLANE IS FREE CASE ('2Dxy') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 iforceh(1,2) = 1 iforceh(2,1) = 1 ! 2DSHAPE CASE ('xz') iforceh = 0 iforceh(1,1) = 1 iforceh(3,3) = 1 CASE ('yz') iforceh = 0 iforceh(2,2) = 1 iforceh(3,3) = 1 CASE ('xyz') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 iforceh(3,3) = 1 CASE DEFAULT CALL errore(' init_dofree ',' unknown cell_dofree '//TRIM(cell_dofree), 1 ) END SELECT END SUBROUTINE init_dofree !------------------------------------------------------------------------------! SUBROUTINE cell_base_reinit( ht ) USE control_flags, ONLY: iverbosity IMPLICIT NONE REAL(DP), INTENT(IN) :: ht (3,3) INTEGER :: j alat = sqrt( ht(1,1)*ht(1,1) + ht(1,2)*ht(1,2) + ht(1,3)*ht(1,3) ) tpiba = 2.0_DP * pi / alat tpiba2 = tpiba * tpiba ! IF( iverbosity > 2 ) THEN WRITE( stdout, 210 ) WRITE( stdout, 220 ) ( ht( 1, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( ht( 2, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( ht( 3, j ), j = 1, 3 ) END IF 210 format(3X,'Simulation cell parameters with the new cell:') 220 format(3X,3F14.8) ! matrix "ht" used in CP is the transpose of matrix "at" ! times the lattice parameter "alat"; matrix "ainv" is "bg" divided alat ! at = TRANSPOSE( ht ) / alat ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) CALL volume( alat, at(1,1), at(1,2), at(1,3), deth ) omega = deth ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! IF( iverbosity > 2 ) THEN WRITE( stdout, 305 ) alat WRITE( stdout, 310 ) at(:,1)*alat WRITE( stdout, 320 ) at(:,2)*alat WRITE( stdout, 330 ) at(:,3)*alat WRITE( stdout, * ) WRITE( stdout, 350 ) bg(:,1)/alat WRITE( stdout, 360 ) bg(:,2)/alat WRITE( stdout, 370 ) bg(:,3)/alat WRITE( stdout, 340 ) omega END IF 300 FORMAT( 3X, 'ibrav = ',I4) 305 FORMAT( 3X, 'alat = ',F14.8) 310 FORMAT( 3X, 'a1 = ',3F14.8) 320 FORMAT( 3X, 'a2 = ',3F14.8) 330 FORMAT( 3X, 'a3 = ',3F14.8) 350 FORMAT( 3X, 'b1 = ',3F14.8) 360 FORMAT( 3X, 'b2 = ',3F14.8) 370 FORMAT( 3X, 'b3 = ',3F14.8) 340 FORMAT( 3X, 'omega = ',F14.8) RETURN END SUBROUTINE cell_base_reinit !------------------------------------------------------------------------------! SUBROUTINE cell_steepest( hnew, h, delt, iforceh, fcell ) REAL(DP), INTENT(OUT) :: hnew(3,3) REAL(DP), INTENT(IN) :: h(3,3), fcell(3,3) INTEGER, INTENT(IN) :: iforceh(3,3) REAL(DP), INTENT(IN) :: delt INTEGER :: i, j REAL(DP) :: dt2 dt2 = delt * delt DO j=1,3 DO i=1,3 hnew(i,j) = h(i,j) + dt2 * fcell(i,j) * REAL( iforceh(i,j), DP ) ENDDO ENDDO RETURN END SUBROUTINE cell_steepest !------------------------------------------------------------------------------! SUBROUTINE cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos ) REAL(DP), INTENT(OUT) :: hnew(3,3) REAL(DP), INTENT(IN) :: h(3,3), hold(3,3), hnos(3,3), fcell(3,3) INTEGER, INTENT(IN) :: iforceh(3,3) REAL(DP), INTENT(IN) :: frich, delt LOGICAL, INTENT(IN) :: tnoseh REAL(DP) :: htmp(3,3) REAL(DP) :: verl1, verl2, verl3, dt2, ftmp, v1, v2, v3 INTEGER :: i, j dt2 = delt * delt IF( tnoseh ) THEN ftmp = 0.0_DP htmp = hnos ELSE ftmp = frich htmp = 0.0_DP END IF verl1 = 2.0_DP / ( 1.0_DP + ftmp ) verl2 = 1.0_DP - verl1 verl3 = dt2 / ( 1.0_DP + ftmp ) verl1 = verl1 - 1.0_DP DO j=1,3 DO i=1,3 v1 = verl1 * h(i,j) v2 = verl2 * hold(i,j) v3 = verl3 * ( fcell(i,j) - htmp(i,j) ) hnew(i,j) = h(i,j) + ( v1 + v2 + v3 ) * REAL( iforceh(i,j), DP ) ENDDO ENDDO RETURN END SUBROUTINE cell_verlet !------------------------------------------------------------------------------! subroutine cell_hmove( h, hold, delt, iforceh, fcell ) REAL(DP), intent(out) :: h(3,3) REAL(DP), intent(in) :: hold(3,3), fcell(3,3) REAL(DP), intent(in) :: delt integer, intent(in) :: iforceh(3,3) REAL(DP) :: dt2by2, fac integer :: i, j dt2by2 = 0.5_DP * delt * delt fac = dt2by2 do i=1,3 do j=1,3 h(i,j) = hold(i,j) + fac * iforceh(i,j) * fcell(i,j) end do end do return end subroutine cell_hmove !------------------------------------------------------------------------------! subroutine cell_force( fcell, ainv, stress, omega, press, wmassIN ) USE constants, ONLY : eps8 REAL(DP), intent(out) :: fcell(3,3) REAL(DP), intent(in) :: stress(3,3), ainv(3,3) REAL(DP), intent(in) :: omega, press REAL(DP), intent(in), optional :: wmassIN integer :: i, j REAL(DP) :: wmass IF (.not. present(wmassIN)) THEN wmass = 1.0 ELSE wmass = wmassIN END IF do j=1,3 do i=1,3 fcell(i,j) = ainv(j,1)*stress(i,1) + ainv(j,2)*stress(i,2) + ainv(j,3)*stress(i,3) end do end do do j=1,3 do i=1,3 fcell(i,j) = fcell(i,j) - ainv(j,i) * press end do end do IF( wmass < eps8 ) & CALL errore( ' movecell ',' cell mass is less than 0 ! ', 1 ) fcell = omega * fcell / wmass return end subroutine cell_force !------------------------------------------------------------------------------! subroutine cell_move( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, vnhh, velh, tsdc ) REAL(DP), intent(out) :: hnew(3,3) REAL(DP), intent(in) :: h(3,3), hold(3,3), fcell(3,3) REAL(DP), intent(in) :: vnhh(3,3), velh(3,3) integer, intent(in) :: iforceh(3,3) REAL(DP), intent(in) :: frich, delt logical, intent(in) :: tnoseh, tsdc REAL(DP) :: hnos(3,3) hnew = 0.0 if( tnoseh ) then hnos = vnhh * velh else hnos = 0.0_DP end if ! IF( tsdc ) THEN call cell_steepest( hnew, h, delt, iforceh, fcell ) ELSE call cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos ) END IF return end subroutine cell_move !------------------------------------------------------------------------------! SUBROUTINE cell_gamma( hgamma, ainv, h, velh ) ! ! Compute hgamma = g^-1 * dg/dt ! that enters in the ions equation of motion ! IMPLICIT NONE REAL(DP), INTENT(OUT) :: hgamma(3,3) REAL(DP), INTENT(IN) :: ainv(3,3), h(3,3), velh(3,3) REAL(DP) :: gm1(3,3), gdot(3,3) ! ! g^-1 inverse of metric tensor = (ht*h)^-1 = ht^-1 * h^-1 ! gm1 = MATMUL( ainv, TRANSPOSE( ainv ) ) ! ! dg/dt = d(ht*h)/dt = dht/dt*h + ht*dh/dt ! derivative of metrix tensor ! gdot = MATMUL( TRANSPOSE( velh ), h ) + MATMUL( TRANSPOSE( h ), velh ) ! hgamma = MATMUL( gm1, gdot ) ! RETURN END SUBROUTINE cell_gamma !------------------------------------------------------------------------------! SUBROUTINE cell_update_vel( htp, ht0, htm, delt, velh ) ! IMPLICIT NONE TYPE (boxdimensions) :: htp, ht0, htm REAL(DP), INTENT(IN) :: delt REAL(DP), INTENT(OUT) :: velh( 3, 3 ) velh(:,:) = ( htp%hmat(:,:) - htm%hmat(:,:) ) / ( 2.0d0 * delt ) htp%gvel = ( htp%g(:,:) - htm%g(:,:) ) / ( 2.0d0 * delt ) ht0%hvel = velh RETURN END SUBROUTINE cell_update_vel !------------------------------------------------------------------------------! subroutine cell_kinene( ekinh, temphh, velh ) use constants, only: k_boltzmann_au implicit none REAL(DP), intent(out) :: ekinh, temphh(3,3) REAL(DP), intent(in) :: velh(3,3) integer :: i,j ekinh = 0.0_DP do j=1,3 do i=1,3 ekinh = ekinh + 0.5_DP*wmass*velh(i,j)*velh(i,j) temphh(i,j) = wmass*velh(i,j)*velh(i,j)/k_boltzmann_au end do end do return end subroutine cell_kinene !------------------------------------------------------------------------------! function cell_alat( ) real(DP) :: cell_alat if( .NOT. tcell_base_init ) & call errore( ' cell_alat ', ' alat has not been set ', 1 ) cell_alat = alat return end function cell_alat ! !------------------------------------------------------------------------------! END MODULE cell_base !------------------------------------------------------------------------------! espresso-5.0.2/Modules/mp.f900000644000700200004540000021272112053145633014733 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined __HPM # include "/cineca/prod/hpm/include/f_hpm.h" #endif !------------------------------------------------------------------------------! MODULE mp !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE parallel_include ! IMPLICIT NONE PUBLIC :: mp_start, mp_end, & mp_bcast, mp_sum, mp_max, mp_min, mp_rank, mp_size, & mp_gather, mp_get, mp_put, mp_barrier, mp_report, mp_group_free, & mp_root_sum, mp_comm_free, mp_comm_create, mp_comm_group, & mp_group_create, mp_comm_split, mp_set_displs ! INTERFACE mp_bcast MODULE PROCEDURE mp_bcast_i1, mp_bcast_r1, mp_bcast_c1, & mp_bcast_z, mp_bcast_zv, & mp_bcast_iv, mp_bcast_rv, mp_bcast_cv, mp_bcast_l, mp_bcast_rm, & mp_bcast_cm, mp_bcast_im, mp_bcast_it, mp_bcast_rt, mp_bcast_lv, & mp_bcast_lm, mp_bcast_r4d, mp_bcast_r5d, mp_bcast_ct, mp_bcast_c4d,& mp_bcast_c5d END INTERFACE INTERFACE mp_sum MODULE PROCEDURE mp_sum_i1, mp_sum_iv, mp_sum_im, mp_sum_it, & mp_sum_r1, mp_sum_rv, mp_sum_rm, mp_sum_rt, mp_sum_r4d, & mp_sum_c1, mp_sum_cv, mp_sum_cm, mp_sum_ct, mp_sum_c4d, & mp_sum_c5d, mp_sum_c6d, mp_sum_rmm, mp_sum_cmm, mp_sum_r5d END INTERFACE INTERFACE mp_root_sum MODULE PROCEDURE mp_root_sum_rm, mp_root_sum_cm END INTERFACE INTERFACE mp_get MODULE PROCEDURE mp_get_r1, mp_get_rv, mp_get_cv, mp_get_i1, mp_get_iv, & mp_get_rm END INTERFACE INTERFACE mp_put MODULE PROCEDURE mp_put_rv, mp_put_cv, mp_put_i1, mp_put_iv, & mp_put_rm END INTERFACE INTERFACE mp_max MODULE PROCEDURE mp_max_i, mp_max_r, mp_max_rv, mp_max_iv END INTERFACE INTERFACE mp_min MODULE PROCEDURE mp_min_i, mp_min_r, mp_min_rv, mp_min_iv END INTERFACE INTERFACE mp_gather MODULE PROCEDURE mp_gather_i1, mp_gather_iv, mp_gatherv_rv, mp_gatherv_iv, & mp_gatherv_rm, mp_gatherv_im, mp_gatherv_cv END INTERFACE INTERFACE mp_alltoall MODULE PROCEDURE mp_alltoall_c3d, mp_alltoall_i3d END INTERFACE INTERFACE mp_circular_shift_left MODULE PROCEDURE mp_circular_shift_left_d2d_int,mp_circular_shift_left_d2d_double,mp_circular_shift_left_d2d_complex END INTERFACE CHARACTER(LEN=80), PRIVATE :: err_msg = ' ' !------------------------------------------------------------------------------! ! CONTAINS ! !------------------------------------------------------------------------------! ! !------------------------------------------------------------------------------! !..mp_gather_i1 SUBROUTINE mp_gather_i1(mydata, alldata, root, gid) IMPLICIT NONE INTEGER, INTENT(IN) :: mydata, root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER, INTENT(OUT) :: alldata(:) INTEGER :: ierr #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL MPI_GATHER(mydata, 1, MPI_INTEGER, alldata, 1, MPI_INTEGER, root, group, IERR) IF (ierr/=0) CALL mp_stop( 8001 ) #else alldata(1) = mydata #endif RETURN END SUBROUTINE mp_gather_i1 !------------------------------------------------------------------------------! !..mp_gather_iv !..Carlo Cavazzoni SUBROUTINE mp_gather_iv(mydata, alldata, root, gid) IMPLICIT NONE INTEGER, INTENT(IN) :: mydata(:), root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER, INTENT(OUT) :: alldata(:,:) INTEGER :: msglen, ierr #if defined (__MPI) msglen = SIZE(mydata) IF( msglen .NE. SIZE(alldata, 1) ) CALL mp_stop( 8000 ) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL MPI_GATHER(mydata, msglen, MPI_INTEGER, alldata, msglen, MPI_INTEGER, root, group, IERR) IF (ierr/=0) CALL mp_stop( 8001 ) #else msglen = SIZE(mydata) IF( msglen .NE. SIZE(alldata, 1) ) CALL mp_stop( 8002 ) alldata(:,1) = mydata(:) #endif RETURN END SUBROUTINE mp_gather_iv ! !------------------------------------------------------------------------------! !..mp_start SUBROUTINE mp_start(numtask, taskid, groupid) ! ... IMPLICIT NONE INTEGER, INTENT (OUT) :: numtask, taskid, groupid INTEGER :: ierr ! ... ierr = 0 numtask = 1 taskid = 0 groupid = 0 # if defined(__MPI) CALL mpi_init(ierr) IF (ierr/=0) CALL mp_stop( 8003 ) CALL mpi_comm_rank(mpi_comm_world,taskid,ierr) IF (ierr/=0) CALL mp_stop( 8005 ) #if defined __HPM ! initialize the IBM Harware performance monitor CALL f_hpminit( taskid, 'profiling' ) #endif CALL mpi_comm_size(mpi_comm_world,numtask,ierr) groupid = mpi_comm_world IF (ierr/=0) CALL mp_stop( 8006 ) # endif RETURN END SUBROUTINE mp_start ! !------------------------------------------------------------------------------! !..mp_end SUBROUTINE mp_end IMPLICIT NONE INTEGER :: ierr, taskid ierr = 0 taskid = 0 #if defined __HPM ! terminate the IBM Harware performance monitor #if defined(__MPI) CALL mpi_comm_rank( mpi_comm_world, taskid, ierr) #endif CALL f_hpmterminate( taskid ) #endif #if defined(__MPI) CALL mpi_finalize(ierr) IF (ierr/=0) CALL mp_stop( 8004 ) #endif RETURN END SUBROUTINE mp_end !------------------------------------------------------------------------------! !..mp_group SUBROUTINE mp_comm_group( comm, group ) IMPLICIT NONE INTEGER, INTENT (IN) :: comm INTEGER, INTENT (OUT) :: group INTEGER :: ierr ierr = 0 #if defined(__MPI) CALL mpi_comm_group( comm, group, ierr ) IF (ierr/=0) CALL mp_stop( 8007 ) #else group = 0 #endif END SUBROUTINE mp_comm_group SUBROUTINE mp_comm_split( old_comm, color, key, new_comm ) IMPLICIT NONE INTEGER, INTENT (IN) :: old_comm INTEGER, INTENT (IN) :: color, key INTEGER, INTENT (OUT) :: new_comm INTEGER :: ierr ierr = 0 #if defined(__MPI) CALL MPI_COMM_SPLIT( old_comm, color, key, new_comm, ierr ) IF (ierr/=0) CALL mp_stop( 8008 ) #else new_comm = old_comm #endif END SUBROUTINE mp_comm_split SUBROUTINE mp_group_create( group_list, group_size, old_grp, new_grp ) IMPLICIT NONE INTEGER, INTENT (IN) :: group_list(:), group_size, old_grp INTEGER, INTENT (OUT) :: new_grp INTEGER :: ierr ierr = 0 new_grp = old_grp #if defined(__MPI) CALL mpi_group_incl( old_grp, group_size, group_list, new_grp, ierr ) IF (ierr/=0) CALL mp_stop( 8009 ) #endif END SUBROUTINE mp_group_create !------------------------------------------------------------------------------! SUBROUTINE mp_comm_create( old_comm, new_grp, new_comm ) IMPLICIT NONE INTEGER, INTENT (IN) :: old_comm INTEGER, INTENT (IN) :: new_grp INTEGER, INTENT (OUT) :: new_comm INTEGER :: ierr ierr = 0 new_comm = old_comm #if defined(__MPI) CALL mpi_comm_create( old_comm, new_grp, new_comm, ierr ) IF (ierr/=0) CALL mp_stop( 8010 ) #endif END SUBROUTINE mp_comm_create !------------------------------------------------------------------------------! !..mp_group_free SUBROUTINE mp_group_free( group ) IMPLICIT NONE INTEGER, INTENT (INOUT) :: group INTEGER :: ierr ierr = 0 #if defined(__MPI) CALL mpi_group_free( group, ierr ) IF (ierr/=0) CALL mp_stop( 8011 ) #endif END SUBROUTINE mp_group_free !------------------------------------------------------------------------------! SUBROUTINE mp_comm_free( comm ) IMPLICIT NONE INTEGER, INTENT (INOUT) :: comm INTEGER :: ierr ierr = 0 #if defined(__MPI) IF( comm /= MPI_COMM_NULL ) THEN CALL mpi_comm_free( comm, ierr ) IF (ierr/=0) CALL mp_stop( 8012 ) END IF #endif RETURN END SUBROUTINE mp_comm_free !------------------------------------------------------------------------------! !..mp_bcast SUBROUTINE mp_bcast_i1(msg,source,gid) IMPLICIT NONE INTEGER :: msg INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL BCAST_INTEGER( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_i1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_iv(msg,source,gid) IMPLICIT NONE INTEGER :: msg(:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL BCAST_INTEGER( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_iv ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_im( msg, source, gid ) IMPLICIT NONE INTEGER :: msg(:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL BCAST_INTEGER( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_im ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_it(msg,source,gid) IMPLICIT NONE INTEGER :: msg(:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL BCAST_INTEGER( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_it ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_r1(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg INTEGER :: msglen, source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_r1 ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_rv(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg(:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_rv ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_rm(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg(:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_rm ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_rt(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg(:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_rt ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_r4d(msg, source, gid) IMPLICIT NONE REAL (DP) :: msg(:,:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_r4d ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_r5d(msg, source, gid) IMPLICIT NONE REAL (DP) :: msg(:,:,:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_r5d !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_c1(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, 2 * msglen, source, group ) #endif END SUBROUTINE mp_bcast_c1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_cv(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, 2 * msglen, source, group ) #endif END SUBROUTINE mp_bcast_cv ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_cm(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, 2 * msglen, source, group ) #endif END SUBROUTINE mp_bcast_cm ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_ct(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, 2 * msglen, source, group ) #endif END SUBROUTINE mp_bcast_ct ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_c4d(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, 2 * msglen, source, group ) #endif END SUBROUTINE mp_bcast_c4d SUBROUTINE mp_bcast_c5d(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:,:,:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_real( msg, 2 * msglen, source, group ) #endif END SUBROUTINE mp_bcast_c5d ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_l(msg,source,gid) IMPLICIT NONE LOGICAL :: msg INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_logical( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_l ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_lv(msg,source,gid) IMPLICIT NONE LOGICAL :: msg(:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_logical( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_lv !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_lm(msg,source,gid) IMPLICIT NONE LOGICAL :: msg(:,:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL bcast_logical( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_lm ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_z(msg,source,gid) IMPLICIT NONE CHARACTER (len=*) :: msg INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen, ierr, i INTEGER, ALLOCATABLE :: imsg(:) #if defined(__MPI) ierr = 0 msglen = len(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid IF (ierr/=0) CALL mp_stop( 8014 ) ALLOCATE (imsg(1:msglen), STAT=ierr) IF (ierr/=0) CALL mp_stop( 8015 ) DO i = 1, msglen imsg(i) = ichar(msg(i:i)) END DO CALL bcast_integer( imsg, msglen, source, group ) DO i = 1, msglen msg(i:i) = char(imsg(i)) END DO DEALLOCATE (imsg, STAT=ierr) IF (ierr/=0) CALL mp_stop( 8016 ) #endif END SUBROUTINE mp_bcast_z ! !------------------------------------------------------------------------------! ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_zv(msg,source,gid) IMPLICIT NONE CHARACTER (len=*) :: msg(:) INTEGER :: source INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen, m1, m2, ierr, i, j INTEGER, ALLOCATABLE :: imsg(:,:) #if defined(__MPI) ierr = 0 m1 = LEN(msg) m2 = SIZE(msg) msglen = LEN(msg)*SIZE(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid ALLOCATE (imsg(1:m1,1:m2), STAT=ierr) IF (ierr/=0) CALL mp_stop( 8017 ) DO j = 1, m2 DO i = 1, m1 imsg(i,j) = ichar(msg(j)(i:i)) END DO END DO CALL bcast_integer( imsg, msglen, source, group ) DO j = 1, m2 DO i = 1, m1 msg(j)(i:i) = char(imsg(i,j)) END DO END DO DEALLOCATE (imsg, STAT=ierr) IF (ierr/=0) CALL mp_stop( 8018 ) #endif END SUBROUTINE mp_bcast_zv ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_i1(msg_dest, msg_sour, mpime, dest, sour, ip, gid) INTEGER :: msg_dest, msg_sour INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen = 1 #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(dest .NE. sour) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen=1 CALL MPI_SEND( msg_sour, msglen, MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8019 ) ELSE IF(mpime .EQ. dest) THEN msglen=1 CALL MPI_RECV( msg_dest, msglen, MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8020 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8021 ) END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest = msg_sour msglen = 1 END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8022 ) #endif RETURN END SUBROUTINE mp_get_i1 !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_iv(msg_dest, msg_sour, mpime, dest, sour, ip, gid) INTEGER :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen = SIZE(msg_sour) CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8023 ) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8024 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8025 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8026 ) #endif RETURN END SUBROUTINE mp_get_iv !------------------------------------------------------------------------------! SUBROUTINE mp_get_r1(msg_dest, msg_sour, mpime, dest, sour, ip, gid) REAL (DP) :: msg_dest, msg_sour INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen = 1 CALL MPI_SEND( msg_sour, msglen, MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8027 ) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, msglen, MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8028 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8029 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest = msg_sour msglen = 1 END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8030 ) #endif RETURN END SUBROUTINE mp_get_r1 !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_rv(msg_dest, msg_sour, mpime, dest, sour, ip, gid) REAL (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen = SIZE(msg_sour) CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8027 ) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8028 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8029 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8030 ) #endif RETURN END SUBROUTINE mp_get_rv !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_rm(msg_dest, msg_sour, mpime, dest, sour, ip, gid) REAL (DP) :: msg_dest(:,:), msg_sour(:,:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8031 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8032 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8033 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour,1), 1:SIZE(msg_sour,2)) = msg_sour(:,:) msglen = SIZE( msg_sour ) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8034 ) #endif RETURN END SUBROUTINE mp_get_rm !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_cv(msg_dest, msg_sour, mpime, dest, sour, ip, gid) COMPLEX (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF( dest .NE. sour ) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_COMPLEX, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8035 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_COMPLEX, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8036 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_COMPLEX, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8037 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8038 ) #endif RETURN END SUBROUTINE mp_get_cv !------------------------------------------------------------------------------! ! ! !------------------------------------------------------------------------------! SUBROUTINE mp_put_i1(msg_dest, msg_sour, mpime, sour, dest, ip, gid) INTEGER :: msg_dest, msg_sour INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(dest .NE. sour) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, 1, MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8039 ) msglen = 1 ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, 1, MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8040 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8041 ) msglen = 1 END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest = msg_sour msglen = 1 END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8042 ) #endif RETURN END SUBROUTINE mp_put_i1 !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_iv(msg_dest, msg_sour, mpime, sour, dest, ip, gid) INTEGER :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8043 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8044 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8045 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8046 ) #endif RETURN END SUBROUTINE mp_put_iv !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_rv(msg_dest, msg_sour, mpime, sour, dest, ip, gid) REAL (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8047 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8048 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8049 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8050 ) #endif RETURN END SUBROUTINE mp_put_rv !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_rm(msg_dest, msg_sour, mpime, sour, dest, ip, gid) REAL (DP) :: msg_dest(:,:), msg_sour(:,:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8051 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8052 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8053 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour,1),1:SIZE(msg_sour,2)) = msg_sour(:,:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8054 ) #endif RETURN END SUBROUTINE mp_put_rm !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_cv(msg_dest, msg_sour, mpime, sour, dest, ip, gid) COMPLEX (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF( dest .NE. sour ) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_COMPLEX, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8055 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_COMPLEX, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8056 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_COMPLEX, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8057 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8058 ) #endif RETURN END SUBROUTINE mp_put_cv ! !------------------------------------------------------------------------------! ! !..mp_stop ! SUBROUTINE mp_stop(code) IMPLICIT NONE INTEGER, INTENT (IN) :: code WRITE( stdout, fmt='( "*** error in Message Passing (mp) module ***")' ) WRITE( stdout, fmt='( "*** error msg: ",A60)' ) TRIM( err_msg ) WRITE( stdout, fmt='( "*** error code: ",I5)' ) code #if defined(__MPI) CALL mpi_abort(mpi_comm_world,code) #endif STOP END SUBROUTINE mp_stop !------------------------------------------------------------------------------! ! !..mp_sum SUBROUTINE mp_sum_i1(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_i1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_iv(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = size(msg) CALL reduce_base_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_iv ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_im(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = size(msg) CALL reduce_base_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_im ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_it(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:,:,:) INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = size(msg) CALL reduce_base_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_it !------------------------------------------------------------------------------! SUBROUTINE mp_sum_r1(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_r1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_rv(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_rv ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_rm(msg, gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:) INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_rm SUBROUTINE mp_root_sum_rm( msg, res, root, gid ) IMPLICIT NONE REAL (DP), INTENT (IN) :: msg(:,:) REAL (DP), INTENT (OUT) :: res(:,:) INTEGER, INTENT (IN) :: root INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen, ierr, taskid #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_rank( group, taskid, ierr) IF( ierr /= 0 ) CALL mp_stop( 8059 ) ! IF( taskid == root ) THEN IF( msglen > size(res) ) CALL mp_stop( 8060 ) END IF CALL reduce_base_real_to( msglen, msg, res, group, root ) #else res = msg #endif END SUBROUTINE mp_root_sum_rm SUBROUTINE mp_root_sum_cm( msg, res, root, gid ) IMPLICIT NONE COMPLEX (DP), INTENT (IN) :: msg(:,:) COMPLEX (DP), INTENT (OUT) :: res(:,:) INTEGER, INTENT (IN) :: root INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen, ierr, taskid #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_rank( group, taskid, ierr) IF( ierr /= 0 ) CALL mp_stop( 8061 ) IF( taskid == root ) THEN IF( msglen > size(res) ) CALL mp_stop( 8062 ) END IF CALL reduce_base_real_to( 2 * msglen, msg, res, group, root ) #else res = msg #endif END SUBROUTINE mp_root_sum_cm ! !------------------------------------------------------------------------------! !------------------------------------------------------------------------------! ! SUBROUTINE mp_sum_rmm( msg, res, root, gid ) IMPLICIT NONE REAL (DP), INTENT (IN) :: msg(:,:) REAL (DP), INTENT (OUT) :: res(:,:) INTEGER, OPTIONAL, INTENT (IN) :: root INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen INTEGER :: taskid, ierr msglen = size(msg) #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid IF( PRESENT( root ) ) THEN ! CALL mpi_comm_rank( group, taskid, ierr) IF( ierr /= 0 ) CALL mp_stop( 8063 ) IF( taskid == root ) THEN IF( msglen > size(res) ) CALL mp_stop( 8064 ) END IF ! CALL reduce_base_real_to( msglen, msg, res, group, root ) ! ELSE ! IF( msglen > size(res) ) CALL mp_stop( 8065 ) ! CALL reduce_base_real_to( msglen, msg, res, group, -1 ) ! END IF #else res = msg #endif END SUBROUTINE mp_sum_rmm ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_rt( msg, gid ) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_rt ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_r4d(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_r4d !------------------------------------------------------------------------------! SUBROUTINE mp_sum_c1(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_c1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_cv(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_cv ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_cm(msg, gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:) INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_cm ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_cmm(msg, res, gid) IMPLICIT NONE COMPLEX (DP), INTENT (IN) :: msg(:,:) COMPLEX (DP), INTENT (OUT) :: res(:,:) INTEGER, OPTIONAL, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real_to( 2 * msglen, msg, res, group, -1 ) #else res = msg #endif END SUBROUTINE mp_sum_cmm ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_ct(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = SIZE(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_ct ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_c4d(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_c4d ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_c5d(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_c5d !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_r5d(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:,:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_r5d ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_c6d(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:,:,:,:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = size(msg) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL reduce_base_real( 2 * msglen, msg, group, -1 ) #endif END SUBROUTINE mp_sum_c6d !------------------------------------------------------------------------------! SUBROUTINE mp_max_i(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL parallel_max_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_max_i ! !------------------------------------------------------------------------------! ! !..mp_max_iv !..Carlo Cavazzoni ! SUBROUTINE mp_max_iv(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = size(msg) CALL parallel_max_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_max_iv ! !---------------------------------------------------------------------- SUBROUTINE mp_max_r(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = 1 CALL parallel_max_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_max_r ! !------------------------------------------------------------------------------! SUBROUTINE mp_max_rv(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = size(msg) CALL parallel_max_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_max_rv !------------------------------------------------------------------------------! SUBROUTINE mp_min_i(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = 1 CALL parallel_min_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_min_i !------------------------------------------------------------------------------! SUBROUTINE mp_min_iv(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = SIZE(msg) CALL parallel_min_integer( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_min_iv !------------------------------------------------------------------------------! SUBROUTINE mp_min_r(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = 1 CALL parallel_min_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_min_r ! !------------------------------------------------------------------------------! SUBROUTINE mp_min_rv(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid msglen = size(msg) CALL parallel_min_real( msglen, msg, group, -1 ) #endif END SUBROUTINE mp_min_rv !------------------------------------------------------------------------------! SUBROUTINE mp_barrier(gid) IMPLICIT NONE INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr #if defined(__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL MPI_BARRIER(group,IERR) IF (ierr/=0) CALL mp_stop( 8066 ) #endif END SUBROUTINE mp_barrier !------------------------------------------------------------------------------! !.. Carlo Cavazzoni !..mp_rank FUNCTION mp_rank( comm ) IMPLICIT NONE INTEGER :: mp_rank INTEGER, OPTIONAL, INTENT(IN) :: comm INTEGER :: ierr, taskid ierr = 0 taskid = 0 #if defined(__MPI) IF( PRESENT( comm ) ) THEN CALL mpi_comm_rank(comm,taskid,ierr) ELSE CALL mpi_comm_rank(mpi_comm_world,taskid,ierr) END IF IF (ierr/=0) CALL mp_stop( 8067 ) #endif mp_rank = taskid END FUNCTION mp_rank !------------------------------------------------------------------------------! !.. Carlo Cavazzoni !..mp_size FUNCTION mp_size( comm ) IMPLICIT NONE INTEGER :: mp_size INTEGER, OPTIONAL, INTENT(IN) :: comm INTEGER :: ierr, numtask ierr = 0 numtask = 1 #if defined(__MPI) IF( PRESENT( comm ) ) THEN CALL mpi_comm_size(comm,numtask,ierr) ELSE CALL mpi_comm_size(mpi_comm_world,numtask,ierr) END IF IF (ierr/=0) CALL mp_stop( 8068 ) #endif mp_size = numtask END FUNCTION mp_size SUBROUTINE mp_report INTEGER :: i WRITE( stdout, *) #if defined(__MPI) # if defined (__MP_STAT) WRITE( stdout, 20 ) # endif 20 FORMAT(3X,'please use an MPI profiler to analisy communications ') #else WRITE( stdout, *) #endif RETURN END SUBROUTINE mp_report !------------------------------------------------------------------------------! !..mp_gatherv_rv !..Carlo Cavazzoni SUBROUTINE mp_gatherv_rv( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE REAL(DP) :: mydata(:) REAL(DP) :: alldata(:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! CALL MPI_GATHERV( mydata, recvcount( myid + 1 ), MPI_DOUBLE_PRECISION, & alldata, recvcount, displs, MPI_DOUBLE_PRECISION, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else IF ( SIZE( alldata ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( 1:recvcount( 1 ) ) = mydata( 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_rv !------------------------------------------------------------------------------! !..mp_gatherv_cv !..Carlo Cavazzoni SUBROUTINE mp_gatherv_cv( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE COMPLEX(DP) :: mydata(:) COMPLEX(DP) :: alldata(:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! CALL MPI_GATHERV( mydata, recvcount( myid + 1 ), MPI_DOUBLE_COMPLEX, & alldata, recvcount, displs, MPI_DOUBLE_COMPLEX, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else IF ( SIZE( alldata ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( 1:recvcount( 1 ) ) = mydata( 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_cv !------------------------------------------------------------------------------! !..mp_gatherv_rv !..Carlo Cavazzoni SUBROUTINE mp_gatherv_iv( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE INTEGER :: mydata(:) INTEGER :: alldata(:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! CALL MPI_GATHERV( mydata, recvcount( myid + 1 ), MPI_INTEGER, & alldata, recvcount, displs, MPI_INTEGER, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else IF ( SIZE( alldata ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( 1:recvcount( 1 ) ) = mydata( 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_iv !------------------------------------------------------------------------------! !..mp_gatherv_rm !..Carlo Cavazzoni SUBROUTINE mp_gatherv_rm( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE REAL(DP) :: mydata(:,:) ! Warning first dimension is supposed constant! REAL(DP) :: alldata(:,:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid, nsiz INTEGER, ALLOCATABLE :: nrecv(:), ndisp(:) #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata, 2 ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata, 2 ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! ALLOCATE( nrecv( npe ), ndisp( npe ) ) ! nrecv( 1:npe ) = recvcount( 1:npe ) * SIZE( mydata, 1 ) ndisp( 1:npe ) = displs( 1:npe ) * SIZE( mydata, 1 ) ! CALL MPI_GATHERV( mydata, nrecv( myid + 1 ), MPI_DOUBLE_PRECISION, & alldata, nrecv, ndisp, MPI_DOUBLE_PRECISION, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) ! DEALLOCATE( nrecv, ndisp ) ! #else IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( alldata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( :, 1:recvcount( 1 ) ) = mydata( :, 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_rm !------------------------------------------------------------------------------! !..mp_gatherv_im !..Carlo Cavazzoni SUBROUTINE mp_gatherv_im( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE INTEGER :: mydata(:,:) ! Warning first dimension is supposed constant! INTEGER :: alldata(:,:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid, nsiz INTEGER, ALLOCATABLE :: nrecv(:), ndisp(:) #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata, 2 ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata, 2 ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! ALLOCATE( nrecv( npe ), ndisp( npe ) ) ! nrecv( 1:npe ) = recvcount( 1:npe ) * SIZE( mydata, 1 ) ndisp( 1:npe ) = displs( 1:npe ) * SIZE( mydata, 1 ) ! CALL MPI_GATHERV( mydata, nrecv( myid + 1 ), MPI_INTEGER, & alldata, nrecv, ndisp, MPI_INTEGER, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) ! DEALLOCATE( nrecv, ndisp ) ! #else IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( alldata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( :, 1:recvcount( 1 ) ) = mydata( :, 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_im !------------------------------------------------------------------------------! SUBROUTINE mp_set_displs( recvcount, displs, ntot, nproc ) ! Given the number of elements on each processor (recvcount), this subroutine ! sets the correct offsets (displs) to collect them on a single ! array with contiguous elemets IMPLICIT NONE INTEGER, INTENT(IN) :: recvcount(:) ! number of elements on each processor INTEGER, INTENT(OUT) :: displs(:) ! offsets/displacements INTEGER, INTENT(OUT) :: ntot INTEGER, INTENT(IN) :: nproc INTEGER :: i displs( 1 ) = 0 ! #if defined (__MPI) IF( nproc < 1 ) CALL mp_stop( 8090 ) DO i = 2, nproc displs( i ) = displs( i - 1 ) + recvcount( i - 1 ) END DO ntot = displs( nproc ) + recvcount( nproc ) #else ntot = recvcount( 1 ) #endif RETURN END SUBROUTINE mp_set_displs !------------------------------------------------------------------------------! SUBROUTINE mp_alltoall_c3d( sndbuf, rcvbuf, gid ) IMPLICIT NONE COMPLEX(DP) :: sndbuf( :, :, : ) COMPLEX(DP) :: rcvbuf( :, :, : ) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) IF ( SIZE( sndbuf, 3 ) < npe ) CALL mp_stop( 8069 ) IF ( SIZE( rcvbuf, 3 ) < npe ) CALL mp_stop( 8069 ) nsiz = SIZE( sndbuf, 1 ) * SIZE( sndbuf, 2 ) CALL MPI_ALLTOALL( sndbuf, nsiz, MPI_DOUBLE_COMPLEX, & rcvbuf, nsiz, MPI_DOUBLE_COMPLEX, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else rcvbuf = sndbuf #endif RETURN END SUBROUTINE mp_alltoall_c3d !------------------------------------------------------------------------------! SUBROUTINE mp_alltoall_i3d( sndbuf, rcvbuf, gid ) IMPLICIT NONE INTEGER :: sndbuf( :, :, : ) INTEGER :: rcvbuf( :, :, : ) INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe #if defined (__MPI) group = mpi_comm_world IF( PRESENT( gid ) ) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) IF ( SIZE( sndbuf, 3 ) < npe ) CALL mp_stop( 8069 ) IF ( SIZE( rcvbuf, 3 ) < npe ) CALL mp_stop( 8069 ) nsiz = SIZE( sndbuf, 1 ) * SIZE( sndbuf, 2 ) CALL MPI_ALLTOALL( sndbuf, nsiz, MPI_INTEGER, & rcvbuf, nsiz, MPI_INTEGER, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else rcvbuf = sndbuf #endif RETURN END SUBROUTINE mp_alltoall_i3d SUBROUTINE mp_circular_shift_left_d2d_int( buf, itag, gid ) IMPLICIT NONE INTEGER :: buf INTEGER, INTENT(IN) :: itag INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = mpi_comm_world IF( PRESENT( gid ) ) group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, 1, MPI_INTEGER, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_d2d_int SUBROUTINE mp_circular_shift_left_d2d_double( buf, itag, gid ) IMPLICIT NONE REAL(DP) :: buf( :, : ) INTEGER, INTENT(IN) :: itag INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = mpi_comm_world IF( PRESENT( gid ) ) group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, SIZE(buf), MPI_DOUBLE_PRECISION, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_d2d_double SUBROUTINE mp_circular_shift_left_d2d_complex( buf, itag, gid ) IMPLICIT NONE COMPLEX(DP) :: buf( :, : ) INTEGER, INTENT(IN) :: itag INTEGER, OPTIONAL, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = mpi_comm_world IF( PRESENT( gid ) ) group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, SIZE(buf), MPI_DOUBLE_COMPLEX, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_d2d_complex FUNCTION mp_get_comm_null( ) IMPLICIT NONE INTEGER :: mp_get_comm_null #if defined(__MPI) mp_get_comm_null = MPI_COMM_NULL #else mp_get_comm_null = 0 #endif END FUNCTION mp_get_comm_null FUNCTION mp_get_comm_self( ) IMPLICIT NONE INTEGER :: mp_get_comm_self #if defined(__MPI) mp_get_comm_self = MPI_COMM_SELF #else mp_get_comm_self = 0 #endif END FUNCTION mp_get_comm_self !------------------------------------------------------------------------------! END MODULE mp !------------------------------------------------------------------------------! espresso-5.0.2/Modules/uspp.f900000644000700200004540000002561712053145633015314 0ustar marsamoscm! ! Copyright (C) 2004-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE uspp_param ! ! ... Ultrasoft and Norm-Conserving pseudopotential parameters ! USE kinds, ONLY : DP USE parameters, ONLY : npsx USE pseudo_types, ONLY : pseudo_upf ! SAVE PUBLIC :: n_atom_wfc ! TYPE (pseudo_upf), ALLOCATABLE, TARGET :: upf(:) INTEGER :: & nh(npsx), &! number of beta functions per atomic type nhm, &! max number of different beta functions per atom nbetam, &! max number of beta functions iver(3,npsx) ! version of the atomic code INTEGER :: & lmaxkb, &! max angular momentum lmaxq ! max angular momentum + 1 for Q functions LOGICAL :: & newpseudo(npsx), &! if .TRUE. multiple projectors are allowed oldvan(npsx) ! old version of Vanderbilt PPs, using ! Herman-Skillman grid - obsolescent INTEGER :: & nvb, &! number of species with Vanderbilt PPs (CPV) ish(npsx) ! for each specie the index of the first beta ! function: ish(1)=1, ish(i)=1+SUM(nh(1:i-1)) CONTAINS ! !---------------------------------------------------------------------------- FUNCTION n_atom_wfc( nat, ityp, noncolin ) !---------------------------------------------------------------------------- ! ! ... Find number of starting atomic orbitals ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat, ityp(nat) LOGICAL, INTENT(IN), OPTIONAL :: noncolin INTEGER :: n_atom_wfc ! INTEGER :: na, nt, n LOGICAL :: non_col ! ! non_col = .FALSE. IF ( PRESENT (noncolin) ) non_col=noncolin n_atom_wfc = 0 ! DO na = 1, nat ! nt = ityp(na) ! DO n = 1, upf(nt)%nwfc ! IF ( upf(nt)%oc(n) >= 0.D0 ) THEN ! IF ( non_col ) THEN ! IF ( upf(nt)%has_so ) THEN ! n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n) ! IF ( ABS( upf(nt)%jchi(n)-upf(nt)%lchi(n) - 0.5D0 ) < 1.D-6 ) & n_atom_wfc = n_atom_wfc + 2 ! ELSE ! n_atom_wfc = n_atom_wfc + 2 * ( 2 * upf(nt)%lchi(n) + 1 ) ! END IF ! ELSE ! n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n) + 1 ! END IF END IF END DO END DO ! RETURN ! END FUNCTION n_atom_wfc END MODULE uspp_param MODULE uspp ! ! Ultrasoft PPs: ! - Clebsch-Gordan coefficients "ap", auxiliary variables "lpx", "lpl" ! - beta and q functions of the solid ! USE kinds, ONLY: DP USE parameters, ONLY: lmaxx, lqmax IMPLICIT NONE PRIVATE SAVE PUBLIC :: nlx, lpx, lpl, ap, aainit, indv, nhtol, nhtolm, nkb, nkbus, & vkb, dvan, deeq, qq, nhtoj, ijtoh, beta, becsum, deallocate_uspp PUBLIC :: okvan, nlcc_any PUBLIC :: qq_so, dvan_so, deeq_nc PUBLIC :: dbeta INTEGER, PARAMETER :: & nlx = (lmaxx+1)**2, &! maximum number of combined angular momentum mx = 2*lqmax-1 ! maximum magnetic angular momentum of Q INTEGER :: &! for each pair of combined momenta lm(1),lm(2): lpx(nlx,nlx), &! maximum combined angular momentum LM lpl(nlx,nlx,mx) ! list of combined angular momenta LM REAL(DP) :: & ap(lqmax*lqmax,nlx,nlx) ! Clebsch-Gordan coefficients for spherical harmonics ! INTEGER :: nkb, &! total number of beta functions, with struct.fact. nkbus ! as above, for US-PP only ! INTEGER, ALLOCATABLE ::& indv(:,:), &! indes linking atomic beta's to beta's in the solid nhtol(:,:), &! correspondence n <-> angular momentum l nhtolm(:,:), &! correspondence n <-> combined lm index for (l,m) ijtoh(:,:,:) ! correspondence beta indexes ih,jh -> composite index ijh ! LOGICAL :: & okvan = .FALSE.,& ! if .TRUE. at least one pseudo is Vanderbilt nlcc_any=.FALSE. ! if .TRUE. at least one pseudo has core corrections ! COMPLEX(DP), ALLOCATABLE, TARGET :: & vkb(:,:) ! all beta functions in reciprocal space REAL(DP), ALLOCATABLE :: & becsum(:,:,:) ! \sum_i f(i) REAL(DP), ALLOCATABLE :: & dvan(:,:,:), &! the D functions of the solid deeq(:,:,:,:), &! the integral of V_eff and Q_{nm} qq(:,:,:), &! the q functions in the solid nhtoj(:,:) ! correspondence n <-> total angular momentum ! COMPLEX(DP), ALLOCATABLE :: & ! variables for spin-orbit/noncolinear case: qq_so(:,:,:,:), &! Q_{nm} dvan_so(:,:,:,:), &! D_{nm} deeq_nc(:,:,:,:) ! \int V_{eff}(r) Q_{nm}(r) dr ! ! spin-orbit coupling: qq and dvan are complex, qq has additional spin index ! noncolinear magnetism: deeq is complex (even in absence of spin-orbit) ! REAL(DP), ALLOCATABLE :: & beta(:,:,:) ! beta functions for CP (without struct.factor) REAL(DP), ALLOCATABLE :: & dbeta(:,:,:,:,:) ! derivative of beta functions w.r.t. cell for CP (without struct.factor) ! CONTAINS ! !----------------------------------------------------------------------- subroutine aainit(lli) !----------------------------------------------------------------------- ! ! this routine computes the coefficients of the expansion of the product ! of two real spherical harmonics into real spherical harmonics. ! ! Y_limi(r) * Y_ljmj(r) = \sum_LM ap(LM,limi,ljmj) Y_LM(r) ! ! On output: ! ap the expansion coefficients ! lpx for each input limi,ljmj is the number of LM in the sum ! lpl for each input limi,ljmj points to the allowed LM ! ! The indices limi,ljmj and LM assume the order for real spherical ! harmonics given in routine ylmr2 ! implicit none ! ! input: the maximum li considered ! integer :: lli ! ! local variables ! integer :: llx, l, li, lj real(DP) , allocatable :: r(:,:), rr(:), ylm(:,:), mly(:,:) ! an array of random vectors: r(3,llx) ! the norm of r: rr(llx) ! the real spherical harmonics for array r: ylm(llx,llx) ! the inverse of ylm considered as a matrix: mly(llx,llx) real(DP) :: dum ! if (lli < 0) call errore('aainit','lli not allowed',lli) if (lli*lli > nlx) call errore('aainit','nlx is too small ',lli*lli) llx = (2*lli-1)**2 if (2*lli-1 > lqmax) & call errore('aainit','ap leading dimension is too small',llx) allocate (r( 3, llx )) allocate (rr( llx )) allocate (ylm( llx, llx )) allocate (mly( llx, llx )) r(:,:) = 0.0_DP ylm(:,:) = 0.0_DP mly(:,:) = 0.0_DP ap(:,:,:)= 0.0_DP ! - generate an array of random vectors (uniform deviate on unitary sphere) call gen_rndm_r(llx,r,rr) ! - generate the real spherical harmonics for the array: ylm(ir,lm) call ylmr2(llx,llx,r,rr,ylm) !- store the inverse of ylm(ir,lm) in mly(lm,ir) call invmat(llx, ylm, mly, dum) !- for each li,lj compute ap(l,li,lj) and the indices, lpx and lpl do li = 1, lli*lli do lj = 1, lli*lli lpx(li,lj)=0 do l = 1, llx ap(l,li,lj) = compute_ap(l,li,lj,llx,ylm,mly) if (abs(ap(l,li,lj)) > 1.d-3) then lpx(li,lj) = lpx(li,lj) + 1 if (lpx(li,lj) > mx) & call errore('aainit','mx dimension too small', lpx(li,lj)) lpl(li,lj,lpx(li,lj)) = l end if end do end do end do deallocate(mly) deallocate(ylm) deallocate(rr) deallocate(r) return end subroutine aainit ! !----------------------------------------------------------------------- subroutine gen_rndm_r(llx,r,rr) !----------------------------------------------------------------------- ! - generate an array of random vectors (uniform deviate on unitary sphere) ! USE constants, ONLY: tpi USE random_numbers, ONLY: randy implicit none ! ! first the I/O variables ! integer :: llx ! input: the dimension of r and rr real(DP) :: & r(3,llx), &! output: an array of random vectors rr(llx) ! output: the norm of r ! ! here the local variables ! integer :: ir real(DP) :: costheta, sintheta, phi do ir = 1, llx costheta = 2.0_DP * randy() - 1.0_DP sintheta = SQRT ( 1.0_DP - costheta*costheta) phi = tpi * randy() r (1,ir) = sintheta * cos(phi) r (2,ir) = sintheta * sin(phi) r (3,ir) = costheta rr(ir) = 1.0_DP end do return end subroutine gen_rndm_r ! !----------------------------------------------------------------------- function compute_ap(l,li,lj,llx,ylm,mly) !----------------------------------------------------------------------- !- given an l and a li,lj pair compute ap(l,li,lj) implicit none ! ! first the I/O variables ! integer :: & llx, &! the dimension of ylm and mly l,li,lj ! the arguments of the array ap real(DP) :: & compute_ap, &! this function ylm(llx,llx),&! the real spherical harmonics for array r mly(llx,llx) ! the inverse of ylm considered as a matrix ! ! here the local variables ! integer :: ir compute_ap = 0.0_DP do ir = 1,llx compute_ap = compute_ap + mly(l,ir)*ylm(ir,li)*ylm(ir,lj) end do return end function compute_ap ! !----------------------------------------------------------------------- SUBROUTINE deallocate_uspp() !----------------------------------------------------------------------- ! IF( ALLOCATED( nhtol ) ) DEALLOCATE( nhtol ) IF( ALLOCATED( indv ) ) DEALLOCATE( indv ) IF( ALLOCATED( nhtolm ) ) DEALLOCATE( nhtolm ) IF( ALLOCATED( nhtoj ) ) DEALLOCATE( nhtoj ) IF( ALLOCATED( ijtoh ) ) DEALLOCATE( ijtoh ) IF( ALLOCATED( vkb ) ) DEALLOCATE( vkb ) IF( ALLOCATED( becsum ) ) DEALLOCATE( becsum ) IF( ALLOCATED( qq ) ) DEALLOCATE( qq ) IF( ALLOCATED( dvan ) ) DEALLOCATE( dvan ) IF( ALLOCATED( deeq ) ) DEALLOCATE( deeq ) IF( ALLOCATED( qq_so ) ) DEALLOCATE( qq_so ) IF( ALLOCATED( dvan_so ) ) DEALLOCATE( dvan_so ) IF( ALLOCATED( deeq_nc ) ) DEALLOCATE( deeq_nc ) IF( ALLOCATED( beta ) ) DEALLOCATE( beta ) IF( ALLOCATED( dbeta ) ) DEALLOCATE( dbeta ) ! END SUBROUTINE deallocate_uspp ! END MODULE uspp espresso-5.0.2/Modules/write_upf_v2.f900000644000700200004540000006510712053145633016736 0ustar marsamoscm! ! Copyright (C) 2008-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE write_upf_v2_module !=----------------------------------------------------------------------------=! ! this module handles the writing of pseudopotential data ! ... declare modules USE kinds, ONLY: DP USE pseudo_types, ONLY: pseudo_upf USE radial_grids, ONLY: radial_grid_type USE iotk_module ! IMPLICIT NONE ! PRIVATE PUBLIC :: write_upf_v2, pseudo_config, deallocate_pseudo_config TYPE pseudo_config INTEGER :: nwfs CHARACTER(len=32) :: pseud CHARACTER(len=2),POINTER :: els(:) !=> null() ! label INTEGER,POINTER :: nns(:) !=> null() ! n INTEGER,POINTER :: lls(:) !=> null() ! l REAL(DP),POINTER :: ocs(:) !=> null() ! occupation REAL(DP),POINTER :: rcut(:) !=> null() ! NC cutoff radius REAL(DP),POINTER :: rcutus(:) !=> null() ! US cutoff radius REAL(DP),POINTER :: enls(:) !=> null() ! energy END TYPE pseudo_config CONTAINS !-------------------------------+ SUBROUTINE write_upf_v2(u, upf, conf, u_input) !----------------------------+ ! Write pseudopotential in UPF format version 2, uses iotk ! IMPLICIT NONE INTEGER,INTENT(IN) :: u ! unit for writing TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data ! optional: configuration used to generate the pseudopotential TYPE(pseudo_config),OPTIONAL,INTENT(IN) :: conf ! optional: unit pointing to input file containing generation data INTEGER, OPTIONAL, INTENT(IN) :: u_input ! CHARACTER(len=iotk_attlenx) :: attr ! ! Initialize the file CALL iotk_write_attr(attr, 'version', TRIM(upf%nv), first=.true.) CALL iotk_open_write(u, attr=attr, root='UPF', skip_head=.true.) ! ! Write human-readable header CALL write_info(u, upf, conf, u_input) ! Write machine-readable header CALL write_header(u, upf) ! Write radial grid mesh CALL write_mesh(u, upf) ! Write non-linear core correction charge IF(upf%nlcc) CALL iotk_write_dat(u, 'PP_NLCC', upf%rho_atc, columns=4) ! Write local potential IF(.not. upf%tcoulombp) THEN CALL iotk_write_dat(u, 'PP_LOCAL', upf%vloc, columns=4) ELSE CALL iotk_write_attr(attr, 'type', '1/r', first=.true.) CALL iotk_write_attr(attr, 'comment', 'Coulomb 1/r potential') CALL iotk_write_empty(u, 'PP_NLCC', attr=attr) ENDIF ! Write potentials in semilocal form (if existing) IF ( upf%typ == "SL" ) CALL write_semilocal(u, upf) ! Write nonlocal components: projectors, augmentation, hamiltonian elements CALL write_nonlocal(u, upf) ! Write initial pseudo wavefunctions ! (usually only wfcs with occupancy > 0) CALL write_pswfc(u, upf) ! If included, write all-electron and pseudo wavefunctions CALL write_full_wfc(u, upf) ! Write valence atomic density (used for initial density) CALL iotk_write_dat(u, 'PP_RHOATOM', upf%rho_at, columns=4) ! Write additional info for full-relativistic calculation CALL write_spin_orb(u, upf) ! Write additional data for PAW (All-electron charge, wavefunctions, vloc..) CALL write_paw(u, upf) ! Write additional data for GIPAW reconstruction CALL write_gipaw(u, upf) ! ! Close the file (not the unit!) CALL iotk_close_write(u) CONTAINS ! SUBROUTINE write_info(u, upf, conf, u_input) ! Write human-readable header ! The header is written directly, not via iotk IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit: write to unit u TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data ! optional: configuration used to generate the pseudopotential TYPE(pseudo_config),OPTIONAL,INTENT(IN) :: conf INTEGER, OPTIONAL, INTENT(IN) :: u_input ! read input data from u_input ! INTEGER :: nb ! aux counter INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=256) :: line LOGICAL :: opnd ! CALL iotk_write_begin(u,'PP_INFO') ! WRITE(u, '(4x,a)', err=100) TRIM(CHECK(upf%generated)) WRITE(u, '(4x,a)', err=100) & 'Author: '//TRIM(CHECK(upf%author)) WRITE(u, '(4x,a)', err=100) & 'Generation date: '//TRIM(CHECK(upf%date)) WRITE(u, '(4x,a)', err=100) & 'Pseudopotential type: '//TRIM(CHECK(upf%typ)) WRITE(u, '(4x,a)', err=100) & 'Element: '//TRIM(CHECK(upf%psd)) WRITE(u, '(4x,a)', err=100) & 'Functional: '//TRIM(CHECK(upf%dft)) WRITE(u,'()') ! ! Cutoff Information WRITE(u, '(4x,a,f5.0,a)') & 'Suggested minimum cutoff for wavefunctions:',upf%ecutwfc,' Ry' WRITE(u, '(4x,a,f5.0,a)') & 'Suggested minimum cutoff for charge density:',& upf%ecutrho,' Ry' ! ! Write relativistic information IF (TRIM(upf%rel)=='full') THEN WRITE(u, '(4x,a)', err=100) & "The Pseudo was generated with a Fully-Relativistic Calculation" ELSE IF (TRIM(upf%rel)=='scalar') THEN WRITE(u, '(4x,a)', err=100) & "The Pseudo was generated with a Scalar-Relativistic Calculation" ELSE WRITE(u, '(4x,a)', err=100) & "The Pseudo was generated with a Non-Relativistic Calculation" ENDIF ! ! Write local potential information IF (upf%lloc >= 0 ) THEN WRITE(u, '(4x,a,i3,f9.4)', err=100) & "L component and cutoff radius for Local Potential:", upf%lloc, upf%rcloc ELSE IF (upf%lloc == -1 ) THEN WRITE(u, '(4x,a,f9.4)', err=100) & "Local Potential by smoothing AE potential with Bessel fncs, cutoff radius:", upf%rcloc ELSE IF (upf%lloc == -2 ) THEN WRITE(u, '(4x,a,f9.4)', err=100) & "Local Potential according to Troullier-Martins recipe, cutoff radius:", upf%rcloc ELSE WRITE(u, '(4x,a,i3,f9.4)', err=100) & "Local Potential: unknown format, L component and cutoff radius:",upf%lloc, upf%rcloc ENDIF ! IF (upf%has_so) & WRITE(u, '(4x,a,i3,f9.4)', err=100) & "Pseudopotential contains additional information for spin-orbit calculations." IF (upf%has_gipaw) & WRITE(u, '(4x,a,i3,f9.4)', err=100) & "Pseudopotential contains additional information for GIPAW reconstruction." ! ! Write valence orbitals information WRITE(u, '(/,4x,a)') 'Valence configuration: ' WRITE(u, '(4x,a2,2a3,a6,2a11,1a13)', err=100) & "nl"," pn", "l", "occ", "Rcut", "Rcut US", "E pseu" DO nb = 1, upf%nwfc IF(upf%oc(nb) >= 0._dp) THEN WRITE(u, '(4x,a2,2i3,f6.2,2f11.3,1f13.6)') & CHECK(upf%els(nb)), upf%nchi(nb), & upf%lchi(nb), upf%oc(nb), upf%rcut_chi(nb), & upf%rcutus_chi(nb), upf%epseu(nb) ENDIF END DO IF( present(conf) ) THEN WRITE(u, '(4x,a)') 'Generation configuration:' DO nb = 1,conf%nwfs WRITE(u, '(4x,a2,2i3,f6.2,2f11.3,1f13.6)') & CHECK(conf%els(nb)), conf%nns(nb), & conf%lls(nb), conf%ocs(nb), conf%rcut(nb), & conf%rcutus(nb), conf%enls(nb) ENDDO WRITE(u,'(/,4x,2a)') 'Pseudization used: ',TRIM(CHECK(conf%pseud)) ELSE WRITE(u, '(/,4x,a)') 'Generation configuration: not available.' ENDIF IF(TRIM(upf%comment) /= ' ') THEN WRITE(u, '(4x,"Comment:",/,4x,a)', err=100) TRIM(CHECK(upf%comment)) END IF ! IF ( PRESENT(u_input) ) THEN ! ! copy content of input file used in pseudopotential generation ! INQUIRE (unit=u_input, opened=opnd) IF (opnd) THEN WRITE (u,'("")') REWIND (unit=u_input) 10 READ (u_input, '(A)',end=20,err=25) line WRITE (u, '(A)') TRIM(CHECK(line)) GO TO 10 25 CALL infomsg('write_upf_v2::write_inputfile', 'problem writing input data') 20 WRITE (u,'("")') ELSE CALL infomsg('write_upf_v2::write_inputfile', 'input file not open') END IF ! END IF ! CALL iotk_write_end(u,'PP_INFO') CALL iotk_write_comment(u,' ') CALL iotk_write_comment(u,' END OF HUMAN READABLE SECTION ') CALL iotk_write_comment(u,' ') ! RETURN 100 CALL errore('write_upf_v2::write_info', 'Writing pseudo file', 1) ! END SUBROUTINE write_info ! ! SUBROUTINE write_header(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw ! ! Write HEADER section with some initialization data !CALL iotk_write_attr(attr, 'version', upf%nv, first=.true., newline=.true.) CALL iotk_write_attr(attr, 'generated', TRIM(upf%generated),first=.true.) CALL iotk_write_attr(attr, 'author', TRIM(upf%author), newline=.true.) CALL iotk_write_attr(attr, 'date', TRIM(upf%date), newline=.true.) CALL iotk_write_attr(attr, 'comment', TRIM(upf%comment), newline=.true.) ! CALL iotk_write_attr(attr, 'element', upf%psd, newline=.true.) CALL iotk_write_attr(attr, 'pseudo_type', TRIM(upf%typ), newline=.true.) CALL iotk_write_attr(attr, 'relativistic', TRIM(upf%rel), newline=.true.) ! CALL iotk_write_attr(attr, 'is_ultrasoft', upf%tvanp, newline=.true.) CALL iotk_write_attr(attr, 'is_paw', upf%tpawp, newline=.true.) CALL iotk_write_attr(attr, 'is_coulomb', upf%tcoulombp, newline=.true.) ! CALL iotk_write_attr(attr, 'has_so', upf%has_so, newline=.true.) CALL iotk_write_attr(attr, 'has_wfc', upf%has_wfc, newline=.true.) !EMINE CALL iotk_write_attr(attr, 'has_gipaw', upf%has_gipaw, newline=.true.) CALL iotk_write_attr(attr, 'paw_as_gipaw', upf%paw_as_gipaw, newline=.true.) ! CALL iotk_write_attr(attr, 'core_correction',upf%nlcc, newline=.true.) CALL iotk_write_attr(attr, 'functional', TRIM(upf%dft), newline=.true.) CALL iotk_write_attr(attr, 'z_valence', upf%zp, newline=.true.) CALL iotk_write_attr(attr, 'total_psenergy', upf%etotps, newline=.true.) CALL iotk_write_attr(attr, 'wfc_cutoff', upf%ecutwfc, newline=.true.) CALL iotk_write_attr(attr, 'rho_cutoff', upf%ecutrho, newline=.true.) CALL iotk_write_attr(attr, 'l_max', upf%lmax, newline=.true.) CALL iotk_write_attr(attr, 'l_max_rho', upf%lmax_rho, newline=.true.) CALL iotk_write_attr(attr, 'l_local', upf%lloc, newline=.true.) CALL iotk_write_attr(attr, 'mesh_size', upf%mesh, newline=.true.) CALL iotk_write_attr(attr, 'number_of_wfc', upf%nwfc, newline=.true.) CALL iotk_write_attr(attr, 'number_of_proj', upf%nbeta, newline=.true.) CALL iotk_write_empty(u, 'PP_HEADER', attr=attr) ! !CALL iotk_write_end(u, 'PP_HEADER') ! RETURN END SUBROUTINE write_header ! SUBROUTINE write_mesh(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! CALL iotk_write_attr(attr, 'dx', upf%dx, first=.true.) CALL iotk_write_attr(attr, 'mesh', upf%mesh) CALL iotk_write_attr(attr, 'xmin', upf%xmin) CALL iotk_write_attr(attr, 'rmax', upf%rmax) CALL iotk_write_attr(attr, 'zmesh',upf%zmesh) CALL iotk_write_begin(u, 'PP_MESH', attr=attr) ! CALL iotk_write_dat(u, 'PP_R', upf%r, columns=4) CALL iotk_write_dat(u, 'PP_RAB', upf%rab, columns=4) ! CALL iotk_write_end(u, 'PP_MESH') ! RETURN END SUBROUTINE write_mesh ! SUBROUTINE write_semilocal(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr INTEGER :: nb, l, ind ! CALL iotk_write_begin(u, 'PP_SEMILOCAL') ! ! Write V_l(r) DO nb = 1,upf%nbeta l = upf%lll(nb) ind = 1 CALL iotk_write_attr(attr, 'L',l, first=.true.) IF ( upf%has_so ) THEN CALL iotk_write_attr(attr, 'J', upf%jjj(nb)) IF ( l > 0 .AND. ABS (upf%jjj(nb)-l-0.5_dp) < 0.001_dp) ind = 2 ENDIF CALL iotk_write_dat(u, 'PP_VNL'//iotk_index(l), & upf%vnl(:,l,ind), attr=attr, columns=4) END DO ! CALL iotk_write_end(u, 'PP_SEMILOCAL') ! END SUBROUTINE write_semilocal ! SUBROUTINE write_nonlocal(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb,mb,ln,lm,l,nmb LOGICAL :: isnull ! IF (upf%tcoulombp) RETURN ! CALL iotk_write_begin(u, 'PP_NONLOCAL') ! ! Write the projectors: DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'angular_momentum', upf%lll(nb)) CALL iotk_write_attr(attr, 'cutoff_radius_index', upf%kbeta(nb)) CALL iotk_write_attr(attr, 'cutoff_radius', upf%rcut(nb)) CALL iotk_write_attr(attr, 'ultrasoft_cutoff_radius',upf%rcutus(nb)) CALL iotk_write_dat(u, 'PP_BETA'//iotk_index( nb ), & upf%beta(:,nb), attr=attr, columns=4) ENDDO ! ! Write the hamiltonian terms D_ij CALL iotk_write_dat(u, 'PP_DIJ', upf%dion, columns=4) ! ! Write the augmentation charge section augmentation : & IF(upf%tvanp .or. upf%tpawp) THEN CALL iotk_write_attr(attr, 'q_with_l', upf%q_with_l, first=.true.) CALL iotk_write_attr(attr, 'nqf', upf%nqf) CALL iotk_write_attr(attr, 'nqlc', upf%nqlc) IF (upf%tpawp) THEN CALL iotk_write_attr(attr,'shape', TRIM(upf%paw%augshape)) CALL iotk_write_attr(attr,'cutoff_r', upf%paw%raug) CALL iotk_write_attr(attr,'cutoff_r_index', upf%paw%iraug) CALL iotk_write_attr(attr,'augmentation_epsilon',upf%qqq_eps) CALL iotk_write_attr(attr,'l_max_aug', upf%paw%lmax_aug) ENDIF ! CALL iotk_write_begin(u, 'PP_AUGMENTATION', attr=attr) ! ! Write the integrals of the Q functions CALL iotk_write_dat(u, 'PP_Q',upf%qqq, columns=4) ! ! Write charge multipoles (only if PAW) IF ( upf%tpawp ) THEN CALL iotk_write_comment(u, ' augmentation charge multipoles (only for PAW) ') CALL iotk_write_dat(u, 'PP_MULTIPOLES', upf%paw%augmom, columns=4) ENDIF ! ! Write polinomial coefficients for Q_ij expansion at small radius IF ( upf%nqf > 0) THEN CALL iotk_write_comment(u, ' polinomial expansion of Q_ij at small radius ') CALL iotk_write_dat(u, 'PP_QFCOEF',upf%qfcoef, attr=attr, columns=4) CALL iotk_write_dat(u, 'PP_RINNER',upf%rinner, attr=attr, columns=4) ENDIF ! ! Write augmentation charge Q_ij DO nb = 1,upf%nbeta ln = upf%lll(nb) DO mb = nb,upf%nbeta lm = upf%lll(mb) nmb = mb * (mb-1) /2 + nb IF( upf%q_with_l ) THEN DO l = abs(ln-lm),ln+lm,2 ! only even terms CALL iotk_write_attr(attr, 'first_index', nb, first=.true.) CALL iotk_write_attr(attr, 'second_index', mb) CALL iotk_write_attr(attr, 'composite_index', nmb) CALL iotk_write_attr(attr, 'angular_momentum', l) ! isnull = .false. ! omit functions that are multiplied by zero IF( upf%tpawp ) isnull = (abs(upf%paw%augmom(nb,mb,l)) < upf%qqq_eps) ! IF ( isnull ) THEN CALL iotk_write_attr(attr, 'is_null', isnull) CALL iotk_write_empty(u, 'PP_QIJL'//iotk_index((/nb,mb,l/)),& attr=attr) ELSE CALL iotk_write_dat(u, 'PP_QIJL'//iotk_index((/nb,mb,l/)),& upf%qfuncl(:,nmb,l),attr=attr, columns=4) ENDIF ENDDO ELSE CALL iotk_write_attr(attr, 'first_index', nb, first=.true.) CALL iotk_write_attr(attr, 'second_index', mb) CALL iotk_write_attr(attr, 'composite_index', nmb) ! isnull = .false. ! omit functions that are multiplied by zero IF( upf%tpawp ) isnull = ( abs(upf%qqq(nb,mb)) < upf%qqq_eps ) IF ( isnull ) THEN CALL iotk_write_attr(attr, 'is_null', isnull) CALL iotk_write_empty(u, 'PP_QIJ'//iotk_index((/nb,mb/)),& attr=attr) ELSE CALL iotk_write_dat(u, 'PP_QIJ'//iotk_index((/nb,mb/)),& upf%qfunc(:,nmb),attr=attr, columns=4) ENDIF ENDIF ENDDO ENDDO ! CALL iotk_write_end(u, 'PP_AUGMENTATION') ! ENDIF augmentation ! CALL iotk_write_end(u, 'PP_NONLOCAL') ! RETURN END SUBROUTINE write_nonlocal ! SUBROUTINE write_pswfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw ! CALL iotk_write_begin(u, 'PP_PSWFC') ! DO nw = 1,upf%nwfc CALL iotk_write_attr(attr, 'index', nw, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els(nw)) CALL iotk_write_attr(attr, 'l', upf%lchi(nw)) CALL iotk_write_attr(attr, 'occupation', upf%oc(nw)) CALL iotk_write_attr(attr, 'n', upf%nchi(nw)) CALL iotk_write_attr(attr, 'pseudo_energy', upf%epseu(nw)) CALL iotk_write_attr(attr, 'cutoff_radius', upf%rcut_chi(nw)) CALL iotk_write_attr(attr, 'ultrasoft_cutoff_radius', upf%rcutus_chi(nw)) CALL iotk_write_dat(u, 'PP_CHI'//iotk_index(nw), & upf%chi(:,nw), columns=4, attr=attr) ENDDO ! CALL iotk_write_end(u, 'PP_PSWFC') ! RETURN END SUBROUTINE write_pswfc ! SUBROUTINE write_spin_orb(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw, nb ! IF (.not. upf%has_so) RETURN ! CALL iotk_write_begin(u, 'PP_SPIN_ORB') ! DO nw = 1,upf%nwfc CALL iotk_write_attr(attr, 'index', nw, first=.true.) CALL iotk_write_attr(attr, 'els', upf%els(nw)) CALL iotk_write_attr(attr, 'nn', upf%nn(nw)) CALL iotk_write_attr(attr, 'lchi', upf%lchi(nw)) CALL iotk_write_attr(attr, 'jchi', upf%jchi(nw)) CALL iotk_write_attr(attr, 'oc', upf%oc(nw)) CALL iotk_write_empty(u, 'PP_RELWFC'//iotk_index(nw),& attr=attr) ENDDO ! DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'lll', upf%lll(nb)) CALL iotk_write_attr(attr, 'jjj', upf%jjj(nb)) CALL iotk_write_empty(u, 'PP_RELBETA'//iotk_index(nb),& attr=attr) ENDDO ! CALL iotk_write_end(u, 'PP_SPIN_ORB') ! RETURN END SUBROUTINE write_spin_orb ! SUBROUTINE write_full_wfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF(.not. upf%has_wfc) RETURN CALL iotk_write_attr(attr, 'number_of_wfc', upf%nbeta, first=.true.) CALL iotk_write_begin(u, 'PP_FULL_WFC', attr=attr) ! All-electron wavefunctions corresponding to beta functions DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'l', upf%lll(nb)) CALL iotk_write_dat(u, 'PP_AEWFC'//iotk_index(nb), & upf%aewfc(:,nb), columns=4, attr=attr) ENDDO IF (upf%has_so.and.upf%tpawp) THEN DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'l', upf%lll(nb)) CALL iotk_write_attr(attr, 'j', upf%jjj(nb)) CALL iotk_write_dat(u, 'PP_AEWFC_REL'//iotk_index(nb), & upf%paw%aewfc_rel(:,nb), columns=4, attr=attr) ENDDO ENDIF ! Pseudo wavefunctions DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'l', upf%lll(nb)) CALL iotk_write_dat(u, 'PP_PSWFC'//iotk_index(nb), & upf%pswfc(:,nb), columns=4, attr=attr) ENDDO ! Finalize CALL iotk_write_end(u, 'PP_FULL_WFC') END SUBROUTINE write_full_wfc SUBROUTINE write_paw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF (.not. upf%tpawp ) RETURN CALL iotk_write_attr(attr, 'paw_data_format', upf%paw_data_format, first=.true.) CALL iotk_write_attr(attr, 'core_energy', upf%paw%core_energy) CALL iotk_write_begin(u, 'PP_PAW', attr=attr) ! Full occupation (not only > 0 ones) CALL iotk_write_dat(u, 'PP_OCCUPATIONS',upf%paw%oc, columns=4) ! All-electron core charge CALL iotk_write_dat(u, 'PP_AE_NLCC', upf%paw%ae_rho_atc, columns=4) ! All-electron local potential CALL iotk_write_dat(u, 'PP_AE_VLOC', upf%paw%ae_vloc,columns=4) ! CALL iotk_write_end(u, 'PP_PAW') ! RETURN END SUBROUTINE write_paw ! SUBROUTINE write_gipaw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF (.not. upf%has_gipaw) RETURN CALL iotk_write_attr(attr, 'gipaw_data_format', upf%gipaw_data_format, first=.true.) CALL iotk_write_begin(u, 'PP_GIPAW', attr=attr) CALL iotk_write_attr(attr, 'number_of_core_orbitals', upf%gipaw_ncore_orbitals, first=.true.) CALL iotk_write_begin(u, 'PP_GIPAW_CORE_ORBITALS', attr=attr) DO nb = 1,upf%gipaw_ncore_orbitals CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%gipaw_core_orbital_el(nb)) CALL iotk_write_attr(attr, 'n', upf%gipaw_core_orbital_n(nb)) CALL iotk_write_attr(attr, 'l', upf%gipaw_core_orbital_l(nb)) CALL iotk_write_dat(u, 'PP_GIPAW_CORE_ORBITAL'//iotk_index(nb), & upf%gipaw_core_orbital(:,nb), columns=4, attr=attr) ENDDO CALL iotk_write_end(u, 'PP_GIPAW_CORE_ORBITALS') ! ! Only write core orbitals in the PAW as GIPAW case IF (upf%paw_as_gipaw) THEN CALL iotk_write_end(u, 'PP_GIPAW') RETURN ENDIF ! ! Write valence all-electron and pseudo orbitals CALL iotk_write_attr(attr, 'number_of_valence_orbitals', upf%gipaw_wfs_nchannels, first=.true.) CALL iotk_write_begin(u, 'PP_GIPAW_ORBITALS', attr=attr) ! DO nb = 1,upf%gipaw_wfs_nchannels CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%gipaw_wfs_el(nb)) CALL iotk_write_attr(attr, 'l', upf%gipaw_wfs_ll(nb)) CALL iotk_write_attr(attr, 'cutoff_radius', upf%gipaw_wfs_rcut(nb)) CALL iotk_write_attr(attr, 'ultrasoft_cutoff_radius', upf%gipaw_wfs_rcutus(nb)) CALL iotk_write_begin(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb), attr=attr) ! CALL iotk_write_dat(u, 'PP_GIPAW_WFS_AE', upf%gipaw_wfs_ae(:,nb), columns=4) CALL iotk_write_dat(u, 'PP_GIPAW_WFS_PS', upf%gipaw_wfs_ps(:,nb), columns=4) ! CALL iotk_write_end(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb)) ENDDO CALL iotk_write_end(u, 'PP_GIPAW_ORBITALS') ! ! Write all-electron and pseudo local potentials CALL iotk_write_begin(u, 'PP_GIPAW_VLOCAL') CALL iotk_write_dat(u, 'PP_GIPAW_VLOCAL_AE', & upf%gipaw_vlocal_ae(:), columns=4) CALL iotk_write_dat(u, 'PP_GIPAW_VLOCAL_PS', & upf%gipaw_vlocal_ae(:), columns=4) CALL iotk_write_end(u, 'PP_GIPAW_VLOCAL') ! CALL iotk_write_end(u, 'PP_GIPAW') RETURN END SUBROUTINE write_gipaw ! ! Remove '<' and '>' from string, replacing them with '/', necessary ! or iotk will complain while read-skipping PP_INFO section. FUNCTION CHECK(in) RESULT (out) CHARACTER(len=*) :: in #if defined(__PGI) INTEGER, PARAMETER :: length = 255 CHARACTER(len=length) :: out #else CHARACTER(len=len(in)) :: out #endif INTEGER :: i DO i = 1,len(in) IF ( in(i:i) == '<' .or. in(i:i) == '>' ) THEN out(i:i) = '/' ELSE out(i:i) = in(i:i) ENDIF ENDDO END FUNCTION CHECK END SUBROUTINE write_upf_v2 SUBROUTINE deallocate_pseudo_config(conf) TYPE(pseudo_config),INTENT(INOUT) :: conf if (associated(conf%els) ) deallocate(conf%els) if (associated(conf%nns) ) deallocate(conf%nns) if (associated(conf%lls) ) deallocate(conf%lls) if (associated(conf%ocs) ) deallocate(conf%ocs) if (associated(conf%rcut) ) deallocate(conf%rcut) if (associated(conf%rcutus)) deallocate(conf%rcutus) if (associated(conf%enls) ) deallocate(conf%enls) END SUBROUTINE deallocate_pseudo_config END MODULE write_upf_v2_module espresso-5.0.2/Modules/fft_interfaces.f900000644000700200004540000003307612053145633017305 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Extracted from "cp_interfaces", written by Carlo Cavazzoni !=----------------------------------------------------------------------------=! MODULE fft_interfaces !=----------------------------------------------------------------------------=! IMPLICIT NONE PRIVATE PUBLIC :: fwfft, invfft INTERFACE invfft SUBROUTINE invfft_x( grid_type, f, dfft, ia ) USE fft_types, only: fft_dlay_descriptor USE kinds, ONLY: DP IMPLICIT NONE INTEGER, OPTIONAL, INTENT(IN) :: ia CHARACTER(LEN=*), INTENT(IN) :: grid_type TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft COMPLEX(DP) :: f(:) END SUBROUTINE END INTERFACE INTERFACE fwfft SUBROUTINE fwfft_x( grid_type, f, dfft ) USE fft_types, only: fft_dlay_descriptor USE kinds, ONLY: DP IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: grid_type TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft COMPLEX(DP) :: f(:) END SUBROUTINE END INTERFACE !=----------------------------------------------------------------------------=! END MODULE !=----------------------------------------------------------------------------=! ! ! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ---------------------------------------------- ! These subroutines written by Carlo Cavazzoni ! Last modified August 2010 by Paolo Giannozzi ! ---------------------------------------------- !----------------------------------------------------------------------- subroutine invfft_x( grid_type, f, dfft, ia ) !----------------------------------------------------------------------- ! grid_type = 'Dense' ! inverse fourier transform of potentials and charge density ! on the dense grid . On output, f is overwritten ! grid_type = 'Smooth' ! inverse fourier transform of potentials and charge density ! on the smooth grid . On output, f is overwritten ! grid_type = 'Wave' ! inverse fourier transform of wave functions ! on the smooth grid . On output, f is overwritten ! grid_type = 'Box' ! not-so-parallel 3d fft for box grid, implemented only for sign=1 ! G-space to R-space, output = \sum_G f(G)exp(+iG*R) ! The array f (overwritten on output) is NOT distributed: ! a copy is present on each processor. ! The fft along z is done on the entire grid. ! The fft along xy is done only on planes that have components on the ! dense grid for each processor. Note that the final array will no ! longer be the same on all processors. ! grid_type = 'Custom' ! inverse fourier transform of potentials and charge density ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! grid_type = 'CustomWave' ! inverse fourier transform of wave functions ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! ! USE kinds, ONLY: DP use fft_base, only: dfftp, dffts, dfftb use fft_scalar, only: cfft3d, cfft3ds, cft_b, cft_b_omp use fft_parallel, only: tg_cft3s USE fft_types, only: fft_dlay_descriptor IMPLICIT none TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft INTEGER, OPTIONAL, INTENT(IN) :: ia CHARACTER(LEN=*), INTENT(IN) :: grid_type COMPLEX(DP) :: f(:) ! INTEGER :: imin3, imax3, np3 IF( grid_type == 'Dense' ) THEN IF( dfft%nr1 /= dfftp%nr1 .OR. dfft%nr2 /= dfftp%nr2 .OR. & dfft%nr3 /= dfftp%nr3 .OR. dfft%nr1x /= dfftp%nr1x .OR. & dfft%nr2x /= dfftp%nr2x .OR. dfft%nr3x /= dfftp%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Dense fft ', 1 ) call start_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Smooth fft ', 1) call start_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Wave fft ' , 1 ) call start_clock('fftw') ELSE IF( grid_type == 'Box' ) THEN IF( dfft%nr1 /= dfftb%nr1 .OR. dfft%nr2 /= dfftb%nr2 .OR. & dfft%nr3 /= dfftb%nr3 .OR. dfft%nr1x /= dfftb%nr1x .OR. & dfft%nr2x /= dfftb%nr2x .OR. dfft%nr3x /= dfftb%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Box fft ', 1 ) !$omp master ! ! clocks called inside a parallel region do not work properly! ! in the future we probably need a thread safe version of the clock ! call start_clock( 'fftb' ) !$omp end master ELSE IF( grid_type == 'Custom' ) THEN call start_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call start_clock('fftcw') ELSE call errore( ' invfft ', ' unknown grid: '//grid_type , 1 ) END IF #if defined __MPI && !defined __USE_3D_FFT IF( grid_type == 'Dense' ) THEN call tg_cft3s( f, dfftp, 1 ) ELSE IF( grid_type == 'Smooth' ) THEN call tg_cft3s( f, dffts, 1 ) ELSE IF( grid_type == 'Wave' ) THEN call tg_cft3s( f, dffts, 2, dffts%have_task_groups ) ELSE IF( grid_type == 'Custom' ) THEN CALL tg_cft3s( f, dfft, 1 ) ELSE IF( grid_type == 'CustomWave' ) THEN CALL tg_cft3s( f, dfft, 2, dfft%have_task_groups ) ELSE IF( grid_type == 'Box' .AND. dfftb%np3( ia ) > 0 ) THEN #if defined __OPENMP && defined __FFTW call cft_b_omp( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & dfftb%imin3( ia ), dfftb%imax3( ia ), 1 ) #else call cft_b( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & dfftb%imin3( ia ), dfftb%imax3( ia ), 1 ) #endif END IF #else IF( grid_type == 'Dense' ) THEN call cfft3d( f, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, 1) ELSE IF( grid_type == 'Smooth' ) THEN call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, 1) ELSE IF( grid_type == 'Wave' ) THEN #if defined __MPI && defined __USE_3D_FFT call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, 1) #else call cfft3ds( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, 1, & dffts%isind, dffts%iplw ) #endif ELSE IF( grid_type == 'Box' ) THEN #if defined __OPENMP && defined __FFTW call cft_b_omp( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & dfftb%imin3( ia ), dfftb%imax3( ia ), 1 ) #else call cfft3d( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, 1) #endif ELSE IF( grid_type == 'Custom' ) THEN CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, 1) ELSE IF( grid_type == 'CustomWave' ) THEN #if defined __MPI && defined __USE_3D_FFT CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, 1) #else CALL cfft3ds( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, 1, & dfft%isind, dfft%iplw ) #endif END IF #endif IF( grid_type == 'Dense' ) THEN call stop_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN call stop_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN call stop_clock('fftw') ELSE IF( grid_type == 'Box' ) THEN !$omp master call stop_clock( 'fftb' ) !$omp end master ELSE IF( grid_type == 'Custom' ) THEN call stop_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call stop_clock('fftcw') END IF ! return end subroutine invfft_x !----------------------------------------------------------------------- subroutine fwfft_x( grid_type, f, dfft ) !----------------------------------------------------------------------- ! grid_type = 'Dense' ! forward fourier transform of potentials and charge density ! on the dense grid . On output, f is overwritten ! grid_type = 'Smooth' ! forward fourier transform of potentials and charge density ! on the smooth grid . On output, f is overwritten ! grid_type = 'Wave' ! forward fourier transform of wave functions ! on the smooth grid . On output, f is overwritten ! grid_type = 'Custom' ! forward fourier transform of potentials and charge density ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! grid_type = 'CustomWave' ! forward fourier transform of wave functions ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! USE kinds, ONLY: DP use fft_base, only: dfftp, dffts use fft_scalar, only: cfft3d, cfft3ds use fft_parallel, only: tg_cft3s USE fft_types, only: fft_dlay_descriptor implicit none TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft CHARACTER(LEN=*), INTENT(IN) :: grid_type COMPLEX(DP) :: f(:) IF( grid_type == 'Dense' ) THEN IF( dfft%nr1 /= dfftp%nr1 .OR. dfft%nr2 /= dfftp%nr2 .OR. & dfft%nr3 /= dfftp%nr3 .OR. dfft%nr1x /= dfftp%nr1x .OR. & dfft%nr2x /= dfftp%nr2x .OR. dfft%nr3x /= dfftp%nr3x ) & CALL errore( ' fwfft ', ' inconsistent descriptor for Dense fft ', 1 ) call start_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' fwfft ', ' inconsistent descriptor for Smooth fft ', 1 ) call start_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' fwfft ', ' inconsistent descriptor for Wave fft ', 1 ) call start_clock( 'fftw' ) ELSE IF( grid_type == 'Custom' ) THEN call start_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call start_clock('fftcw') ELSE call errore( ' fwfft ', ' unknown grid: '//grid_type , 1 ) END IF #if defined __MPI && !defined __USE_3D_FFT IF( grid_type == 'Dense' ) THEN call tg_cft3s(f,dfftp,-1) ELSE IF( grid_type == 'Smooth' ) THEN call tg_cft3s(f,dffts,-1) ELSE IF( grid_type == 'Wave' ) THEN call tg_cft3s(f,dffts,-2, dffts%have_task_groups ) ELSE IF( grid_type == 'Custom' ) THEN CALL tg_cft3s( f, dfft, -1 ) ELSE IF( grid_type == 'CustomWave' ) THEN CALL tg_cft3s( f, dfft, -2, dfft%have_task_groups ) END IF #else IF( grid_type == 'Dense' ) THEN call cfft3d( f, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, -1) ELSE IF( grid_type == 'Smooth' ) THEN call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, -1) ELSE IF( grid_type == 'Wave' ) THEN #if defined __MPI && defined __USE_3D_FFT call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, -1) #else call cfft3ds( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, -1, & dffts%isind, dffts%iplw ) #endif ELSE IF( grid_type == 'Custom' ) THEN CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, -1) ELSE IF( grid_type == 'CustomWave' ) THEN #if defined __MPI && defined __USE_3D_FFT CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, -1) #else CALL cfft3ds( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, -1, & dfft%isind, dfft%iplw ) #endif END IF #endif IF( grid_type == 'Dense' ) THEN call stop_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN call stop_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN call stop_clock( 'fftw' ) ELSE IF( grid_type == 'Custom' ) THEN call stop_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call stop_clock('fftcw') END IF return end subroutine fwfft_x espresso-5.0.2/archive/0000755000700200004540000000000012053440273014001 5ustar marsamoscmespresso-5.0.2/archive/lapack-3.2.tar.gz0000644000700200004540002313351412053145624016701 0ustar marsamoscm‹D›ÜJlapack-3.2.tarìý}S;³7Œîïõ)¦ê¹«b` ž1/᪓ªÇ6$ƒaaXÁ«NÕ)&ñÆØ\~Y ëÓŸn½¤‘f4ã±d´÷µ‚g4R«Õj½ôOÝÃÞSïöa³¶¾ÿŸe¥*¤½múïî.ù·Òß,ýO„»{ÕÝ`· ÖþÇÛYERšOg½‰çýÏco2í=ާ¶|íþ~­6 £þoœÔ;K·þ‚ê^°³T¡ÿkÕZµìÿU$½ÿoo†½Y¸5Xvðî¶µÿk0Þÿ'¨îìîmÕí]xlïl‡ÿãU ¤Áš~óþÇ:|<Ÿ½óHj×O½³O^çêô´~Ñõή.ϯ.½OG'‡ìzzºj]zí«ÓÆá…üÉý® "^nuÚõówjÙð¤óåìR)|3H+œ…Ù½JþºêxGŸ¼­“Ë-¯ºöÇ'þéÉÙç£fýÄûtRÿì{—Þå™wqøõ¨} •Rÿt …Ö›_à}óìâ`+±ŒÎåÙ¹wÖö>ÕN®.;[\&ä¾<ì\z‡gPÃõÑ%äv·ª$÷åøúËÙÉ÷WýäŠ0…侨_øqäïà_í?ª^à…^ÍÛñöY>ùí¶S)-VŠœ[~ëVÊQ»yíÕ½ðG÷,ºs34”¨æ¬9•^?9ÿRÿ£Rݪúð¿5¯ˆ¿ª[{þfuk-VýÈ­‚Æá¥¥ü`«æo[A¼|òMóóáé_Ðcïtu›vü–×Aiož\¶¡ë›Ÿ®9¿8—ùŽÌsל—Î9k¿ÌP{ǹvçœç®9?^4s^¹öæ…çÚGÎ9/Bç2Ýr¾ôLT¦—HÆõ_m¥ë¿°îÆ×{åúoéëð¥­ÿ.kåúï…Ö¿ÂÚêÔyÅ䘳ÓuÍ ë çœg:/Z®tºæÄµ@˵L·œ/­•Ê´ª¤Ïÿw«?ÿ w÷âç?;»åü¿Šôîn‰ç?8ÿ‡åü_žÿrþ‹,Kb¥f^D…ÅYG28Ÿì8ŸìÀêÃ5§{™®g+Î';Î';Î';Î';Î';Î';ЛŽg+ÐGÎ9]Ïk°L·S,s•ç5Æùµûÿ`g×0ÿo—óÿ*Ò»»%îÿÊýÿ[Ùÿ/en…ý½}nuÛ18ïל÷ëÎûõç]øÁÝ[ëúúJö{;¥þ_Ez7]âþ¯SîÿÊýŸ^â[Ùÿuœ÷çý_Çyÿ×qÞÿuœ÷çý_Çyÿ×qÞÿuœ÷çý_Çyÿ×qÞÿuœ÷çý_Çyÿ×yáýßô•ìÿöjåü¿ŠônºÄý_§Üÿ•û?ÛÜê¶ë8ïÿ:Îû¿Žóþ¯ã¼ÿëü"û¿ÎE³ð;™ðÿÕñÿ0”øÿU$Sÿßö~>=oר´ý°Àü¿no‡»AHæÿ=xTÎÿ+HT=w®0µAOկϻ•¶ß¬ûÍk7k~³‹ÿv×þX'™·@£Ýö†ÀµúäÛü±?šMáÙ´¤æÙéùÉá5õ/qíMJÂbü¶('*°>™ôžË»®¬¯%ð_ésüó|>yOûøçGšèsüÛâÝŽGÐy£™7<ö§^Ïû§;O¼§á<úÅ û4ŸÌ¾÷'ÞAÖ §R¡õÂÿÆw7}ëí¾7Œp$ù^í}¼ßûÀ÷8¾Üúw^¾¯½ß¯ùæ®kÞ]ÿ¸Ø› €@ïö{oô ²ÍÆ,64bÐÉXÎø.±Gp×?îv œ=ü9ëOFðí§ùè–V%¾¾8„õJ§Yotöäð–Cíè©(U÷ –]['‡ˆÞº8¼¼ºhK/è'•f}mëðÏ-Xn˜²¡ `†ÀÛª·¶È1ù½æ}>ÃUSX ‡t;¾ë{÷Ð]óQÿ¿shÇ`t;éS)§ú³èCÏgì=0Ú‰¸ö>z¼ÁG]ù'V“@:ÉXÙlokëäÔbCÏÙå9»Jή”óàÌ ªÞÖâs6ÙìVŽºkð˜ý±ÒºR~t½&å"$aÍH€ük<êÒ]|µ4ÏÚ0†¯E÷Ö›˜y3ž}—9©³)¬"á5áœn‰lBuÍF“®öÁ+[þüöÉ8ÿߎW9ÿ{A|þß)ïÿ­$Ñ)ÏÿÍ3:ÿç˜ü_t®GºAÁ= ä9þ'™Où¯ç_m–&#ë¬\N·bÖ¢Óí[šb—?¯õÿÝxv»Âý_-¨ÆôXÚW’TÍûéªÝ¼<:k{̓³Ëæœ`à=N=Pî ³gÞÓd|7¿yã{oöcÌf©;Âÿ•<úFòÞ&Ó+¡èíàjg Á¼ËÃÓsç=âÑh6Œ¦ƒ[Ó&>¿8jwŽš¨‚Ž?ë“© Õ1¿àߣž—“•ÃdÅxJÿÝ Œ¯Ð™kmNeEÍ`¼Ÿd‰YÒ¬fmk”eªK þ(·•ù“mþŸ¯òü·¶ßÿ•öß•$6ÄLóÿÕœÿ ÝN«€7ºÌ4Á«z×4C_•3t134™›—05_½ÌÔŒ“rÚœl!þ(çä·‘Œóÿ·›ÇV6ÿ‡5bÿ×÷ÿåýß•$:Zåó_³V./êíŽê·ý։ߺò ȯû'uŸ- Èãç° Ó¢ ˆ©ÂØzÖ‰u 5ÕüR¿¨7¬Eh˳¢¨W°HXT•E†…sÝõԟЕÅxÔ'« X`<ö`ëüs“0! Þ…†~öþóÑë Ÿ¾÷Öëë?A·ÞÀJcýÙ‡Wðúþ],ƒ©<½øVñêï¼59?Íú3}šÑëîÈKX_ô½)]IøÞOòü™¦ ô½˜]†Þt~³y7è}zCúáÃBãnj¢+ÔU}IzÑó6£Ž]¶äùß;yðñ8AóNŸú·¸²¢+;Ájœánú¼s`AÕS–05‡ãÓÿÈs&M´ØÞ»ö;ì‹w£wöþÚJøü’~>Ó?çø}“~«}oîg½ «_H+ú?3–ᔾÞäÃËÆÛS¯£ùã ¬‡A¼'À5U̽ºZÊ©÷ê¹ß›yÃ~þþ·?o9Øv$°m%ðv<œ?ŽRhl/BcëÄFÈg#R/”T¥A6–Bh‚\OïŸ=¯êm ûøÜ‘Ú+Gj¯¨Ur ½Wz¯Üè%3QLAód#œ~ ÒNõ2ŽÕrÁÓ«¥û0lóÁÑéa»ƒኇs(Ã5µðF´MŸ†„€lÝárµäjEØFxkT•>õ&33iuÊGð° ÉÂL¤¼?¸ "õ±ƒž†°»TJ¡k¢1m-SÅ»T,ƒ‘R y¤Ÿ“Îò"ýè¤\“¥\M‘sum0—ˆ†¡RöÃ\-æ&C!/„zk>™¦cè`µw‡lĸÉÙ<û%ÞÉÞòv<™ô§OãÙ‚÷‡ñ(ÿZš½Êt~û¦òb6~ßÏ `>üò€È ûkZ/÷I•“þ=ÌΣÛþJî%²„LSØè§ÉøÛ¤÷èMûß$èË!lã&½Ñ¾öz29êD7?¢ ý H_ßÏáKFø&úÞ·>™- ×èoôè‘moXõ½c²QôÚ†ZðTŠÊ¦wlÎCöÏ>ÙqžÖ¯+XÚ1ä†Ï óNÚïŸl î[3©^Ê`§ŒYÑ.J›TaôÏ‚°Vím(íeÝfRPø:U­b>U7Q1¿@7NQ„a<ÕQvè96ˆ™°:5£cËÂ)\ŸÈ”Ï5µã¦ ™îsS…–j¨°*n«]ïÝL+ôŠßü¬FG†e–:8@‹~4=Æc»ƒi?M/‹\’V]ÇÔ­R‡Ž¸±ä $Ÿ*‚2r|ƒO¸Æ+Å\oÑï ݨI@ ÜW1¸×2ö²VòqšÅ5è–÷»•d¨ “ÏN(äH~:òºÞ¨ÏÝÓþ 錞æ37ú»ôuRª‹R·8)Õ@wQ)í:Iéóé7`–_ÀnüT8Ìf}² À²çOw=,WAA1Ùí:Ên7·ìvé!q.Ù%ê·ÿO³}cB5ÏaaÐg‚±¹é}eMÅUF¸y „•ìf°ÿa——ŒÇöâØ6¥ãìßÛ=6IžônDV˜Ÿ½ƒ¹×œŒÿ…‰¯÷Ík" Û.ÂD7v`’õ¾ô{ÔÖIY/вÉäMǰ4ë€( zJýSÑXœdœ÷@ç÷g}ÓÁÿY›ŸÁžÃ¾ùôOD*ðð#q¬y¸AŽòy½¦}ø÷áÅYüK|JMʧñÓ•{„ÙÑþtFmþ±|íwý–ߺ:üÖµßêú'‡íküO—}ɯеÏÐ6l " ÌÎ?>ÁëVüšÃÙéÄ;ó&[R‘âóëËÆI}Aä„+ Ö<Ú¡¤Ë> :ª@)âfuÿVdöV‚vªòŸŸ¼ÊVûìr‹4Œ×êZcf™ø»KþŽ–°AHˆåj¾[[ó.¿ÊÆVµ¸"pÒ9$õŸ2ó‰9{¨go'f¯éÙaÓ›”;–ÿ*1ÿŽžTäÒ(T´ÑºÚ¬íþ ÉM`Öº‚ªá“nò'¢ýèá“Ô˘a«}hø„Kfå=¢|G†œl€Ò2X8»?çP“þl>ùø·ZÓÁͰ/IýL)ß:»ØÂnŒ~I¢T©Í9¾D•²FŰ‚‹| jmm-²^Ñâé8‡æë’*HìÀbÁC5Ag`ü³Ë·Û£o³ïâð‡Ÿd²ÓM¶3ìó¹zþDW1¸±„vØÞÐãåvÕ6ë£*Æ{BÒGO{„6½S©ïãœÆ?hÛ{äì³I¦[×ÚxŒ½ƒ9½‚Un2ãgB]KÝ„:ºR]VG×,dÂråÄvŠzÁj+dg¤- p›4áëÞím:ícwþwŽ{[Ø!=Ó<ˆêMqIÚûÛ÷h»Î\ê‘–ýDvcxHÌŽY£Õˆ!D`a¸¡ÀÆÆª4’ƒØ[¥> L™0ÉveiÔÃó©›îlEÒl²$÷º¢/P65q>S[v‚íRû±U°e¶±IÒÇäÉ¢ôSÄ„ìPÈr4Qfˆý¼’Äèc+.BëüŽÏ~6ñ0ÏCŒÆ Z ‘¢ÍI´bñYhµ‰r·rÌÆÖ1[THG r"2s,IräÐ_Áv~:ŠÍX<&\AX¼tYõªh“ P Â"å°¶49ÌØªÚkØ™Š¦¦Ò%ѼASóMý©¡DaC{!zFibÄhšñýÇÇ•áÿjÐÎZ‰ÿ{¡D%AÁÿžžÒå}Ý'ÿ4(PÁ6à¿ lŸÍb€-R6– EÚ±œ®…0€ Öƒ7 *XY, q]–€äÐ8°-ÆO°:‚ÅþÛðÖ8¼«©Àø<|‹æÎ¯GÅß|$6\‚$”½‹?c+2xµÆêH @ ”áMòŽ4ë¶?eàÖRЈ"XÐãÍòz<&ÆrÜÖßðçÎÁzÈ`ÌëWè,F;CÎñlIÂH™Çùp6xn)Ú°7MCÖ+"cFt‚teøFàÕoÞ%~$ÀƒÊGÒúÛ0HÇTî6¸ÛXw&î6H£6F5LÜeßX¹Û0q·!s·‘»®pḺUFç H&W7& —2ÌÔ|0ê¶HñÄ«"—€ÚÄŒF¡¸kò›áú„¦  §j·ÏútmbËÖUÎM¬›hÞ2~lAØJ¥ œ=ù†Ð—=„‹Ñ9þÖ@'EpX´/òæO˜n\Ðtr³%*Ù”§$¡¸ý®Ôƒ^7ò†ï"‚Tˆ³ E‹ k”JÊnU¬”멃­™>ØšIƒÒ̇oÑ€c¤ˆ5.%jSš#²áké8Ä›Ÿú7“yoòŒ8Äý 8Äñ¤7Gy„’s0¿¿‡Ü‡‡Þ—ÞäG8´¢aç ;t(ª>ü6z¾?N½Ï@é“w27âÈÅ´Ïddâ›à‰l<öOüvóì¤î·/ξÒÿ64f`ÅuÿÛðÛg—uüéàê5A>eìÒÌ0RH¹‡CÓ›Mæ}Œyü<Ç»4}è$Ïü +ˆ»ÛÂA5¡7YðhíÎ'*Œ²ˆ4!›HZ ¬ S5ô”A*Õ»™Ïþ}ôžÚ¢.ë1Ká‰Q£ úèµøxT­=ü“–áƒÓ1'Ø>cåäŠq¬ÜbøY  ¥¼`pEò„p8–ámëªèŽ—õ5âõ5âõyÆJÉ•ÆP·É Ýê6¤ÝæÂÜRk wÔ-,xÕovÎÇð·°&ˆ>>µ¸8 /‰ÂÕa¸$w‹æNåRzê Ò躔žêôÿ»Å•$r4à˜(™Šç£xD»-^†HžÞæWÐì† s Á21•@‚ø£¿0kØ0ƒÕS’h±·J?•±6E¨ÜÔ”Á} ±PQ>ŒIûi1'è'+l'ã„oºXd„Ðqµ‘ÖèÚÍD—& »Å€(<ï„ѲAšU9Š0z˜œý6!w„µKæi$çûC ëŽ| 1@æÈwvæ`ŠôÁ>ÌöSÕá[ ¸ ó–2$‚TÍ—ªú’¡J¼˜jš>,Ÿè›ƒå0óƒÌÈŽÊ(Q4½EÔ€ƒ-:²¢g7a&ö•BT±þ… ÆWÇ®0ZE³wE<¬æ­QëŠgç®xÝ&熥‰ Ï1h@B`^E¿ÿ’H›ÒT[¿¼ Åù˜Úš!Ão²á5f§M6¼Æì´©Ô˜§«Têžþ…£qw_ÝÉFp·»ÂâwÅvWý$?æsêŒn2çl6Åã›â±°)¶ÍE¥Ëag’,ü’œˆ¤}M‡9.^µêâF¿÷ŒçŠâ@ÆÑÌg:í‰GDbG`Z!†kƒvë2&ÅÂl(!ʃ=vª™™ô&¹ÿZNߨÏ/]\{íz-éfWìDÏÕÊèÖ·Ûæ¾u<ƒ5õ›œÁ½d²ÿÍWyþìÆÎÿ¶Ãòüo‰/íüïê—?ÿ»Êuþ÷ü®<ö+ýÊc¿òد<ö+ýÊc¿Ô~,ýÊc?騝<ð{™¿«òÀï×=ð#Ÿ˜ÏŒÊ“¾—:é³uJyħñ]•G|/œŒçßoVèÿ) ÷öªñó¿íòüo‰Ž=ùüïKãô¯ÊÕùÉ™ßö[+vÿÔ"õÄÝ?!9«=#D.hg„ªß'ÃY¡ÍïS7M#mk?åaÐêâ ‘ì`¡ÐÇ,~à'~Liôé:èÝQÀn ¶+ßp«2u9JDV{Ž~HÞh3 -Dolû„çvo8þÑŸ(ß…°Sœ£´Èûo‰~ÚÈ›>îP%J)v·P„ªÞ»+êÇbŽn™.I†Úc{vKR Ú²×|Bkòš –Wsч®ãÉ=s]ÒA«k€õ–õ0X“kF«vRÁèf!Ó½) Öéý³çU½-ØÊx­W}*\øùU ±±¡‹U@glàÁ¥RLâQ™r<¦1µàr1‘îâjK vzÚ5k'qø”i7™n. šÐU“ñ퀖µPi‹/¤©²E¯àcZ”e˜6Ä}]ȪñØ%þ1tå÷³ñx?£áµc†ª j<҇¥“þ=L£ÛþÚ¥X,U}H;¸ƒ=ð72Wü ‡4潬‡ÓÔoÏêVŽ™{£ˆ\ý@¡l­å*~ÈÊ"³3½¸CòÔ¨ ÒïźÓè*¥?rYð¹ÈÀ^Vˆ¹é+B ìÞc˜S¦47€É¥8Ìr)-Å=êb€½ KŽq!ÓJt¬Ö¢‚Ì‘• {e‘r-À±!Õ§ò©yŠ>Í­6ƒÄ˜ëEèÍCÁ2ÌFsŒˆG»îÖ*mÿx£eø%jY{¤ðd&¨‚8DWK˨K+ª“7vaeš8èótóý6í|l‚Ì3gÙÈ© i©zÓdJxô¸ü›Q[¤‰1ì™NæMç·ß G)ˆ¶%…Ê(I“Æ1qFʌǿ4O›äÍçȨ‹dŒ§ˆ)QOæÓÞR›uAŒÙœ¢WÌjJPÏY ÊrC°ƒM¥Éå.¨Ù8bUè,³ˆ» Š‰— *»ùð •QR ê·¨W~mAMFæ‚‘z~C@CÒð«mž‚Ôn2aß~4£é¹•‚è—üÃØý+„޾vŸ¦™œ‹Ø½‹`Í.þE®ýÞpì÷Fz¿7’ú]íxÖóQ×3Rè8¾Áa>óŠÏëȾ0®ãXìf&§4£Søææ‚á››YÅ­™KÜLòÖt7*‚oûO3¦ùÉñ*F²ÿø>¸ý®ÔƒÑiä !2ÞE†©gdò1h¦AÅ‹ФœMÍôÐ\p4 ij–ñü°ù©3™Ãl„Ïý Ïñ¤7Gv„Òq0¿¿‡Ü‡‡Þ—ÞäG8´AaÊ‚YŠª¿žïSï3PúäÌÄô…¦}&ƒ>ß>âQC;òrEŽû-¿}qöµ®1ãêüüðÂPßkBÏJð<Ò~æ³ Í ÅÌ#a#š“–f mË_ÙÆy<¯Àå,ˆO•ªÝÌ„{yñnÍ£J?'t›JŒ@¯Î0ÖdßJ1k2Hv[Ï®ø="}a¥Ìà3©‘ÉgRô]Óå» 4‰D&, ÞLTkJ@]ì÷èIWÿ¿[lë!Õ¯áØ XÍT`a’ï#ö>ÕaQ“{ÀqÀi¦˜Q᣺¸èbSM>fˆ_‡)I–Œ¸_ÝÃÇXì#qD Ó;æîÞKáæn7UàD#)´j z‚Õ¸SõZ¤Æ£À¦f¥Eû‘ýÁ ZþQR”DpР߯sÜ~#/&gônÔ&‹ Tä)H…-`J8©/‰ºŽKa•I*ÊšèCa×>šörŒúd„V‡:õÓ&5…Ëê*«Ggó’²ú¡”U5e‘U;‚- •–c´¢U5nÕĪÔ2NÐd™.[¸Ïã´Ähq„aÙ/¤ÇïM…ˆœw18Û|¢±!““'OžÔî©“ñiÈš ýj |hþш´ÆèuŠ0,Xkà*êƒåÁ¼ â4ìR¾Rð¡-b|V¾¦rÅ•½öJâëÎâ|µ_FÌׂ½<7’]ŽOX¦·•løÏÕù öv ñ_vÊøÏ+ItkøOáÿqµÞ_ïÇ÷æûÑ=RÌ‹¹w”\-éð¸Å\;¦£ ëz1¦´L(aQ¼5Go…çà;Ñ ¤’xMñ¢è2¦¬P Ž{QÁI^HýŸevfg`EÎ6Å«]ñ¬Ht›ÈŠÒÍØ‚‘cœA:ÅÅÅZš£±ä`L¥Ë1›Ë1 Á!™œ8Ý8¿@\/g?fJ1¥O³Ò§™÷*|š¡3³$ίìY&òJܘ© k5¦XÉžÉbxŽtÏdœ=‹ 2JÏdoÝ3YÞÀ_XŽùNG•Ñ_¥³²ÒYY鬬hge’+Tiªï²8”èuú$‹\ŽÙm¹˜Ì>prx&Y‚—±ãÒÁ˜BØžc‡ÝÍ,Ò¥¯Ôe˜E>´”Ã[Xa~º4U¢ºí*H•¼¨Ÿ.ä†Ñ¥øâJ™¡‹V?¥û-©})ȦŸu±eëòå{ÖZXÕýÚ^µ­^µÞN²à?&Â?ÒðÛ»{1üÇÎ^ÿs%‰Ê®Šÿ¸Pá øAP NTŠtüò½ƒ õX"ÊÃàqáiÈ~8é0nU âQ ?×oÇ£ÿýVñ~¾óˆ²2à<ªáMúÑŠp 1¾¡ïãAÃv`)%¼£„w¼)xðRZ.¼£4 «\}AÃp‰´Yi£¸FÈÞ&£1ؽýJL1‰ó;Á~ìýâÔ¦ô~I,&©_ŠÇ %ú ¢Q6ÙÀ'•RŒµ?Ãøµáõ_”TÂbëïå£ ô=„€lAëºD¼ TA*: †'pÄ!TA~ˆlWæ5rjHllfL€@-wµ¨K;6eÍGƒ™f©&¬>15< ôp-nÆV¯Û®1ÃÑhYÏg´” 9\^` hJ@~§^“Fe¨]YÄom'´2Ž ÉÎ…©Î/ÖùC4¬sõd¾ÿMÄ¡@ÍÂD~"Õ¤ìŒw-…šŠŠ ³ ³Ý!Í1ëÆëEúñÚÚ‘v#'£­¶P7_GýlIqCC­p¸^‘Dh)nGÈàÅl²´(’4“eª"ID:,S‘$v–µž¢†v\¬Y´¦D5”ÍeJ¡bST" ±\EâÔ‘)zÈhÌdMÛsíg'Ë%¥8Yaí½œDh)®H²`í^áöF›ý/\åýï½=Ýþ·»[Þÿ^I¢²¤ÙÿB£^úÎ`T®~ëÛøWxëû"L6 †ŽFÁgjd¿¨5pmýÙÕf™ S®„G÷Á±œÒfXÚ ßÍpµWÂK›¡ÊÕ´þ—1]»âu_¶,Í·¥ù¶4ß–æÛÒ|[šo½ò’xiÎ]²97õ²·ÁÝ¿“X¸û_À®ÔLm¿®ƒ_%Þ§ôtg‚ñŒ‡ç1X„e«.¥…ôy`»Ìl¹gŽI±ó.3æ1™šc}%Uj¹{N ì:Tj½‡n¬4~J¯^1úMŒÜúQIaWêRߚъŠfW~–Ùo7ÁÅo-±ÛJâ*ß’mè¸]íòD“fQ§¹íÞÊUƒ{°Ñå†¯Ïøîbf×ÍcBbº‹‰L7«Ìäµ×Û/&3bÍg×]KtR/¨u±Å¥úGÀ´\!¾–¤¸»*1ÖRŽ[ÐË‚èÌ«qªðÔöJt%ãUà†øüð– . †7 ¶W¤›G‘ö«á˜–‚³pº%Ž)ãœóšñz†…œW¸8Â×vaÜŠÿx(’Œÿ¨ÛµPÃìTƒÝÿ±ŠDEQÇ´èVòò¢Þîøm¿¥hø›ÄhŸÍÜXrmÔ EªÁJ0rBÉZ!ÒÀp’øGãCúÙ"- *‚;÷˜Aƒ"F¤“¡”àz Ò0bFüu¾¦ápd<1•(}@÷i%JÕI£(Ч@TÀ |ô9^n÷±rŠB‘ìGF»„À? Z Íý@3Üö§|AKí[ "ß=°øÖzÖiZsGò†sÄYöȸ!À.¤nv^‚v´ds5 qùPC_S# {)÷b7•yÍ!_ìö±ÂH°™µ‰~p4ñÌ †ZFêYpI´\àN›rg„ܱ}‘6\˜ÃR²¶ÈPP6ÎÖŠ&mÅ­Þ UÝÑ MC-ÜŠERN©æ–„‹Rí«Ù1R-'ʘ*ŽË™OJ×LÕV ¡x;ÎGÓH? ˵µïqû1«–Ô«’ä¸ÞºI=Vù–óöÐfyp5 û>›zº_üvdînäèKœ#Ç8EýLû*¥ޱ$ª¹„MÑJAq¬¶6†aÆE$©S¤<3¼Céf¡‰_>Xå%‡60lCnðhC7èlyF$„ð#.G¹•‚Œ_>¸ãhd•hÐ7’Dß¼%‰n$Htca‰ÖK·ItÃU¢ŽÝH—èÆê$º‘I¢…K4iâê¼(%¦‰S¥MúÚ}5Ó—vÄ¥*ù0—Í<˜K±–ˆísÂ.›&xßB¸KZäJ€—ZIÐËÔr*:(|™·ƒ¬ ÉØAírê W…ÀL†`æÃ`uá Ø›éн¹b'¤I#À¸"јµt4æ‡ÍOý›É: јûИcØÈ'³„Ãä`~¹/½/½ÉþphÅlBOÂH€¢êÃoc çûãÔû ”>y'3.ŽßLûŒµðt|‡½víkÿÙܯ¡ $4©½~ƒÿ½F×Ld*úè‰CÃ;¯>‚M)A„6qü\ô§ýÞäö»w4ºÕà ¿š’—³(õØ?ñÛg_ë3H4qC}&\-YLXC6Ñ€Mjbº€H@ŒžœÃÂ,nl%-¡xGÕÇ_·økÙüE8/5ZŠ•ÂXY vL0ÂWñ«òçr;Iá4sdÅ5dn&TC¿&ƒekzöVböm=»Š{EΧ;?оm¸~»ÿ¶é‚· B“dܶV”IÊO%Q€~!¹Ý¢5Še[VzÔÿ#´*d-“ù”A’‹¨„¸7‰øJ–'0Zòîáv}KH!’G2‚;ÿI “J¸3NOâè4…Ûúìø´&‡’H4#¬AÞ˜;†ˆG™{:’Åòp(R"&$ÖÓ)P£Ý{:D Jâ¹¹¥Î›h¤S>äìiýA’B3‚É]æì<0·=Ùh[iÆA„v•…ú¥–þÊ é¬Ìý\:k?3Ú(5®›ÞÖê‚:IŽ„â@#-)ÃøH€P5UB6‹³rBÚß²ÔB&aÄgÄÐ~ õi"¯1™ ´ ›fà_鸿zêWRЕô¾Å$ú·Épˆˆ;H8}ÁiKè+)Ç0ï’ê’e„Rdè_7B¨ŽÓ¿Ñˆ~XQŒBPûj ¨å@“©pÒì%ØÎ39ÛËW)Îb›JɆ¦%½"•²÷ «”]׾Ŵ,•²ûUŠ=²]°pP¹Üh¹BÖKa¤ÝȦ.mõÃÅ8!šiJ43VU°Ÿ6øäê8È›Çú:ñÖ€mð¯5L˜LŠ*¬Á>¯óσlË7LäÈçãÔ‘ŸcÖD¨Øs—,p‘’âH˜nŒ¤˜wW«jM÷“—ÉM]¨ÓøE…¨…‘èJ´/Úñ9Y ^—Aog£-‘­üeXµªÑ0ȱ2 Ïm0C-m™U˜î S÷"ruËÕ]aXê.’JÝÅS©»ì´¹é.{øõ0ËZç«Y­Wv5k%Évÿ«Àë_)÷¿Âí½ ÿso»VÞÿZE¢ò®ÝÿJ¾þ•íâW ÔO¸êµÄk^9nw¹]îr¾Û•ïòV–ÛYrœÑiüJ–„ô‚Ô;YJÖñ–¡É¤ûX䃇¶J•×±ÊëXÞ[¼Ž•:X]oD¥áòRRžKIä‘^P%7J¨êÂ+Id»ìKIx¿¤¨»H«–[ÞE*ï"ýbw‘Ê›åÍòæFys£¼¹QÞÜ(onОzÕ77`Ƽö‹¸¿!Ÿ)]؃Cy“Ã7_ψ®s Ùò~Fy?CùÖp?ÃíŽEÕÔ‘ïX´VáÔüíÞ±H °YޮЉ“·+Òú¸¼W!ZÞ« É~¯"v<UàM‰Ôпå ­¤Whvº#á™ÉêØbˆø¼’» $84E#ÿ±ŒK RjZË+¾sà26_çmƒ<3ª¯'¼ŠÛ+œ.b7 ´žïÊÀ‹¢÷ëygå0q™¯âñ”'ëý¢ðö sC¬. —wÖb¤¼8ÑÖõÉpCCAÐ2míh*ÖȬ§‹äž`70’{—qëƒcö8S•‰÷B)Pv]Xï¢+¥8Ç]Õg˜'€O˜¸¡rè›ZQ}c‡êé öžsN3µ“šB|mAj*̶¦Áô–ÕÔŽ³œW%f¹µp8 3þ÷éñŸ•ჽ½=þÃ6f+ñ¿+HTvüïùé_ô|¿Íq¿çþµaS(ö·‹w³G}0áI©Xœÿ›ù{^Y_ó¯ñ?ÝJÜ/´[ÂýFÈ¡M÷]'‰‘ø,ýä Ðg¯«Áu¥X ¾G1¸Ôö<ÒÂÌ#(÷ޏ(@—AyuË¿ïMçOOà †ƒþÂ&†ÁeÆj’7²Vsøm;Xäø›¥H@3‰~|GÛ ™ÙIŸŸ£)<÷R m‹î~•)¬Ÿ;Bo/µèlK¨yQ© ˆTòµß¢;ösÆì–1Ðxþo´ÿõ•·æ­½±]9d@vE0 )‹‹µl£G×*’¨9À¬Ï µ¨Aè_ 5ÆGÚ›d"Ô…ˆéÃ|Ðh¢±ðïüÍ ¦ÙB­r]>"o¼I»q6ø§ôà; `r®BÏRTN'YºeÑ Æþ À„íàãuÛ}™á\¡c}ä0ÿÆlŽ8AÈÊJKüœ…a5‡t×’Mñ0ÔnFœD$¤Uœ¯]kÌîmy‹†“~VEÛª¨ÄVKìMÌ.6Û3»° Ûe±)ÕÏdMÊ‹sG àѳ™ÓíªÿÅëŠÑ¢’âþ ™Ð2Ù¥"¤f²¥ž$òE>ë°o¥E’W}@‘/Ö  G¶ï¡x`„ï톡8yÇ”¼ãˆ<êïjlmokª›“«åä#èÀÛS|øpé-=Nú±QK¤Qc~£×Œ‘7F¢a{U&/>eˆ…Í3×ôß"ÃØNј£„`ô¢]ŠÂ±£jâm9fm9î. ED Žè$q,Ó¨%MÿØT™|ÒW˜*C êruYòX7BCMê-‚'£^DîçT®š–¹ÇŽ ^о 1c…(¼´!lŽ#:`mZòØ¢%ÐÉU•mP•6dyNýeHKRº:B9ƒª\F”ä5i•‚;llˆÿ1)þ‘†ÿØ Âþcg/,ñ«HT>TüÇ… ÿ`ØúyFo|£"C=–òpx\`>᡹t zòøÉÇ?é- ºé` Ù¢<8€C³+ }‰¥”àñ«J“±ÊÕ4ÿ7z]»âuߨ-­÷¥õ¾´Þ—ÖûÒzOrþÊÖûòºÿooÍw¾î/BØ,`ÿWjÿgþºÝoö_µÕa¦tŽºo,â˲QŸÒB¸JØ.ª[\`R€¼³ŒyLHƒX_I•ZÜ»•Z] +›'ÔU%Æ!çÍÄT܃f¤2Ù•Ÿ¥Ú|ÍèÓM°óñKYì2–¸ùrð Üvù$úrÁô« ó·,©x‹`£Ëÿ ß*öÂe¡[ …ˆv“ÑnV!Í ×°ß;g,( ÌÁd¹›.ÌΆÎTO˜V'ú×’ìw_Xø ¿ôþb¨’âýw¼©Å?H“ÆlJÓj°-ùæ±_éâ‚iySÊ‚Òéª' G4v˜– ³qr €)Óœø†à9¦¥ãw¿ó'#þg2ž}[þ§„;µXüíÿ³ŠDǽŒÿ¹8»ü\iÖýfÃoúLXúUG¨œú‰×tâ`µÞž³>’3ßžw;~|özŸÿôGh˜‘#¡-ù=å¨[rÚg§~§Y?1=»ž×;óçÅeTË+Ìÿ!ËŽêÖš÷ùÌ»<‹bz7ñì˜çïxÄý¯ùøk äÞl°_ôÛ°ÊÎ'4½OÚ‚ÙYè‡üÙà¥a“!ɸŽW8yïɳµµõõpƒÓÜò(âëxÏ«‘½ÇФ6É‹( F~MHßó§a¬eúñp91-#õ?ÂiV¨ÿ·kÛ1ý–ú%)®ÿqüWÚ>êr üÌ8DúRvû×¶©ˆÎfç>PhɼÁP97ÏdAÇDlÿECñ0#ßójïƒàýÞžïq|‡è›;x¾_CsudŠŒnz[Ãþªp-w¾Ç|j¨k0£ÝǨ-Ãã (fÀö9Lg‘}¶M6†§Mî£Ò-¯t=UQ¢ÚM#1±HN·ã»>ÁEˆ#´~õÿ;º€ì@l% ÆÛ²éIqœÌQ¾ò¨yM=6afà~㓚¶Y1Ó¥Ó3ˆÍ ±©ÖZ9á`2ëXk­Nÿï!®ÿwvv¶w‚`{‡èÿ½2þßJ’AÿÃJ¼âµ}5 u)*þòam·&«,û”ÀµV”hi´¤¶uª§(Ô‘g¾PÆ»·Ž˜®f—üá8‰Ô ®§§aoÔ;Ÿ¡õÑÒ|;¦ üé`äUnéŸkÄàŒ>ß°|„99dÿ–"úo)dŠmjH»l“Q4¥‚õÛ¼ÉVYãLÏîŽ\ Ê»y­ÑÉ;̃¾+À·] Öº™l}ûS‚ñÁ×™£öÜþTñØ®¶,»¹.»Ù]JŸåe7³¢²oå@KÍ‘–nµPKú,?~»¹€»)¸ÏH• n:MHPmƒQ¡´S·Ê:*ëè76HUð_·ª>‘2¬´£tŠ“?¥7Ì6ä~p|Â:üÙ¿Ïz7Ã>"›f}1mEÈ1tÝÎTþ¯çéKvªçÈ’q… Wþ*q1?ÑŲ„kƒ§±gb¥/w‰²è?’iG2`LŠhE™0òIÅÛlo  êhCÿªÿª«}Õ•¾’wž´Îo²«êM\åcÅxÖYÇE”'Ypøš—ÿØÄ¼ìC)//ê#ëèH2,殸u+Ó‘†r¯¤ìs ·?Ö|¹õrãcmW›^n›~­dÞÿ{˜vþ·‹ÿûÀ Üÿ­"Ña«ìÿØ`'Û ÙÇu^þô[äS@âŽÛõ(ðmžŠXõ£Óúg¿ ¼¾Ö®A°œoðLSéÔi òt ¤x4•ý^õ£+I/6­šõÿÞÓêÎÿÂju'fÿ)ý¬&ôÿ×ú9Ú˜×&uûá4˜ü{äUýPq¦ `0šõ'T­ÂóǘgåU÷KRà¢fºxóÎ®Š“t¯¾94êâ"v„ÎBî'•\8¢Û@ÜÏ6 —Ìrv•œ¶Ÿ¢nù¾GºFà=´c“GÒ6uvc®mË®ÎKžJ¤¶éMã-ÓVîØÊä˜Ìóÿóããêü…»†ù¿Œÿ´šD•€2ÿwOO+£ƒCŸÜy<nÀêþÉAÝoÀ>†Ëõ›ðg3»30ò±6õaÉX.ˆ5òÏ„W0AOžõD½‚ÅÃ’¢QÁ:pmQÁŠÜ½„!O$/axTñˆ´É#E÷VÅÐŒ\…Õ×0{¸ÖMæl<1el¬×õŒÔɆ¡yßR t‰á3¿`Þ>Ps˽5‘å ü‡Zð£Gê8Œä¸íO]LØž£_0–9îŒð,N¢WW ê==õqÕÄnûzÃþý ×'“Á·ï3û‹¸ìŒÐ¢9âJîÓ×ôë‰öµ¡«D²3œ<¬ V²ì/5fÒ ÇH\²«5ê>åVïÑ xÓ d—%Ð$¥ Iÿpt‹ö¸¬þÖÎFÃŒ~h,)&7@,õ=‘çè‰MÐäìe¥@šl‚qJ_§zˆÂŒª9m4¼¡–ü ô‹æ®ÍkªÁ× ˜òó:’‹H¤zt*5"Û ùB^åêœ7.þ³*dÖózˆT¡úý¡§û|dw?MZ ;©€AúàÇ`ÚWÉT\61W[±r|¦È”ðèqùWÕˆð±€MŒÙácƒÀG/…·ß‰ã!¥ Ú‹»/èä»Áè§D×JA²·¨ÊŒG)ˆ•až6é|:uÓFŠ˜Å­s¤|Ú[jó£.ˆ1›³BôŠYM ê9 TÙAnv°©4¹Áµ G¬ =b‚eqT1ñrAeNO_ 2JJAýõʯ-¨6Åš_§NŠ˜Odîh|„¥"Ž`a‰EO5dc˜˜Ð%™W™ÎoÖ¼§ÉøÛ¤÷¸å}µÍ𑊕B:bÓ+°ï'ñ‡÷ˆ3’˜SôÜJAôKþáHGvÙøÕ ¯Ý'ʆ¡ð8lLU›#ÓàkxÉ~ ™5\û½áØïô~o$õ»Úñ¬ç£®g¤Ð‘tƒmæ@yR;vìÕe]›Ò/Œ+)²OZ©œÒŒÚzG87Vàrˆ.l¸Ð!¡ä„©$ ³L°8wqkæ7“¼5Ä AÏ@ðmÿiÆt/Ùߣj¢n!ûïƒÛïjA=FÞ"ã]¤º¡$|1Ã"y‹LðHáf’€&ålêÐᆆÐ\p4 ¤‰Ä9e-Ý9å‡ÍOý›É¼7yFç”ûœSŽ'½Ù8ê°#”Žƒùý=ä>¼8ô¾ô&?úáՅåü±óU~=ß§Þg ôÉ;™‰ ,îÎ2í3ÙœõV=žÖM ‰E=dû-¿}qöµ®qàêü\À‚åú’œ}žµ9Ï$_ŸðÜ V]}ªæôÊÅiŽ9óB]urHá‘“X£KZÚGßòÕƒÁlDZÛ,zÀÔÿï÷‰Õ¯–kò$Ê+±ÆñJs)ÕO ï ·+Gþ1Z•¹ÎÑ%ÊæÂ½Ê–ñT‘ëôf­ÙéÌà– S’,—:èΘ§7‹Y"îÚéswï¥ps7›ª¬†à¦%k( †!Q?hÄ­ª”âϳYiÑ~dlPZÖëðóÈFƒLýwÃkï¥ï²¹DÃä4ºTâ™ršaµ@bþ6&9pKpF¥,I·ÄZ¤¬É!÷»ö¡³—cˆÕ©Ü§Ryêþ¦MD ÌT0ˆ“3Ûp í\š`~(3›`î[eÌð8^oY’–-»ªFi¶êXUDë•㸈:÷Vä>7S®‹A$ÌÑ2_Í=ŒU‡yf]Ñý!¡!&ozHÆ6ŸM…ãé(Fü:%{¨àl³+ ±$®bŠƒcµw"b¬êk'[jD_áAÇž‰ê’¢‡ c2üÉ|š;8Ë`B˜Uvml/4e›F´Ñ”1htÒhÚû¥FÓ® W1-k4í.8šöì£)KDá4Ĭ  ’uÚ ƒ˜x˜:cpH@~»Ãƒý41–«ãQ©ë•ÿh ñÄN—iˆ€áä»:ÿ.È6ûbÊ ð×ÁqáJ-.ƒ!,<¬Z…< rLaÚ¤°–¦ Ä0uu"WW´ †a)ˆYÑŽÏ3Ü9s_„­EÀÄ6üoðß4üo°»·ÃÿVwJüï*• ÿ› ÿ]ðw‰ ßX_7¨o:Ò7¸wéx^%çƒ@T0 )µå/æïEh¨ Æ[Âx½·ãµIW8®m¤–°Ú<°ÚÈ ­äz‡>QTªå0‘eÃj!Y¢iizÍØÃMû iKìa‰=,±‡%ö0J%öÐ+±‡o{¨r” Ãtø«‚Ý€ƒUSGf¶–ãä¯FyJà È8XWÔÎ&#ZJÀà ê'(ÓÊ€~XÙ:Å'ýQ"öq%bï…Åy¤&Îo2gó2¹*¨\08"аG/ f³u³#h(*aQêÄTì+Ç¢ˆ3³÷ô ¡Å^ª§W öjí9ÒˆÿšÝ<þ³2üW­ZÛ bñŸwÊøÏ+IT”dü×eãô/ÿupTÿLA`¨uíµ›×NÐ/qö øæ‡x‘â Ây]WÜ1^ØÌÄÎÿôog㉠àõçïú:$0$öàþäv<úßoxá­Á+Óõ“A±F^ØÇVy¬6†Ôâoi ¦šlàåh<Ú$?° jú§1›Ë ÂÃ[WÅ{@_¿Þšw7è}C£SÄg'ܳϼñxÏ’ž¶‰“l6âqü²F®+µÄ t„R±@Úª–†¢yW…âÒë }ÂôA“~p+>Pdß•e¨ \Žä &3Ú…8Vlf×DÑ"eEk:cÐÁò¥2 üáÉü¯sÓl¼0xž½¾¢6› g¦½p* òÌ€¦hÙâK+ÅLç0n6…ÚKn޹N àZçk y6…>½ö¼ª·5ìoy­åaÀ’Á+6fËÀ1›¨Øs¼Ízz¨[µœ¼äbßHØðþýýàv€Ó•Ф¨B¨_)‡>eóŸL=ï­| m2þ¡Íšr‹| |  —‡+ÉÖ¡ÅH…È€(òUã=ød¦ŸŽ¡C·¼K(p6~ïg¦öÀØ3Tágã)‰t‡41 ƒ7í# Žƒájé¦ðµ˜3mêRZSx÷“ñ#vè?P E ÜÏ¡,öv ˘Þ7 ‡7¦°wë± Ÿís½¶Yž¢E˜ôʦwlÎB‰}K¦~MÀ8¢…6Ë'ê({Ã;Â̸!¤­©°úgt/vuÚ[ØG¯Çš¤dŠk‰ _v¬A«lÁ»Õ1vcaѨ  @¥,<Œ°›ñl‚;|ûe&|ð2FY2ì5 2·vì{§GíŠ×öI4‘V|¤ˆ´šÖÏ@—~ï±(ºñ… ÛsMµÑ£ÉôdÒŸ>GDg$q$Ïz |¿cÛIÜ÷næ3’'¾ò{v›ðWfÜeÜ6OœnbË–¤ULD·¥B¼,Z¥¸‰Õ®÷n¦rê’–Äy0ºÞÄ©ð:®GU£mÚnEÈÊk%É•¢6è{#¶™ePfªz˜äS»X4ôÑDt¥˜ë-ú=i& íºna:¢1 7Ï y°FFDãnD£«Øûæ5‘í §(q !ŽO´f½@Ë&w{4ÃÄÕ½9è)õO5üb/'žŽLxtíûÇ×~ëüäªø­kÿ„eä°ÂöèÉc¿}vÕ>ºLQ¾1T&¶ê³Ë;¦Ÿ|Å8B0†¼zÇ‘‚F  +NÐŒ¡ÍÂxÖ¦ˆ~Púšœ¸šG_™ÐšE!NÆ%îèÙ.¾Û܉¨Û¢/Åùa^("9<^‘#…ˆ¾¢ãX^#Qïq€‹÷¢#´R6Õ²ùj6{ÓGX/¹ç®?½íÓ•Óp<~ÒpQ¤{NLLn]³•g¥½в} =X>63ßÖe ±0[“µ…¾6¬ãb•л½íO§0NûÿãšÚʶph:x‚%|*ïÛwsÜô$ÃÈ'³’ÌŠ"„V2Hé,À÷ÇÚKyXÄYÇ“ DKº®gFà7 ¹ÐìÌZ€{Æ¢JÇÇ›­5kdH9]WŽÖG\ädƒ[yóáŸ0‘qKài%k,Æ3¤sºy1€ì1J~ëÚÜ¡©ÐYÖ¡×yzô:©K¬dñ”¥Óky;ýšõúµ±Û¡þ³áqEd@ cÊ.#Œ&ø7“”éûc™HKíÇ[Ÿ/·ZkTM¶äŠ7;i†ln'Åz^¢¢q7†ËÃÓ¶¼AÄ Ã¥ZÉå)EÍ {˜R3N²³¦;šØÌ,§DEôÁ½Ï_J9ÈÅÞr±°&ÚcրǴ &ZT m¦)!ПeE}Tlߌ¸6l Ï0[¨URW·ä ‡‘‘®Üœ&SÚû¸™HY² H?‡ ‹µ‹]! Ó´/ÍÛ©C%0$cdU*~i€’bJƒö&#m­%' ©Íiæj1­æõÒ¶‹Æ›n0¸4>iô²É„3-6¾ˆ‰"ØÎ4¬z?®` )ybxuc ¯Y=¨'NBµ>ýè—=xz%C°¶´!˜ƒUùö iöZ±¦›‘õ»,«Xåã%Šä½§Û¬¶ôÁç0îø=²Ø‹V Íd¦û;˜–;Œ\FÐn­µÍ` ÞÌ1%m³ßÝQJÌq˜‚;\%:u^JÞ²§ÎK¯aT|(xT8ëWÁ»àÃkCûËC9X”sÁ\Ð$èH¸•XoŽ›2Ä>SðM™_3YîÿLWyÿg7Ðý?oïí–þŸW’èQïÿt~û?¿l"–q%IÂÍFÿT îFɆ˸2à|žïÜs»™ÝlÊŽ\“olu¹© ëIE`B] ¡nxÏÌ7 ¼ÆdÅÞg–£DHt[*— I× ¢”â×–~Œß5x¹ûKÞ’t¹~bWBEéŸ|(Çå“åXÌÍ%—+Iöntƒê-I¥,¢M S${y%ba-ñ<ße§Œ×&—|ùˆ.¢¨9:ºƒDž [õÚK¯±‚Dò˜V )ºH”ñꯌ¤Ü,êQD| ê0‡§ N¥ëC µµØ»CIMv¾š±² HN7‹‚o¯öÆtç§0ùÏ!Îwá'jë’FK>§©£%ƒŠq °”±•¨m£ÒêBà%/pk¶À¡šÛm@òl•ó¦PÔÓø[lèíÓÒbo %5ØåîÆÊnq&Â/#-zOveW¤CE—2ó]Šš[üpÚ_ÚpÊÁžâׯE ¾Ìw^m&z¡Xé-¥Î‹ßR2ßÿyZaüŸp§º«ßÿÙçåýŸU$*zÊýŸscüŸúyî«?˹ôs^ÉzãçüWøÃoüä±™·ð¶µ¼b£–òú®Ø”±~Ê‹6†ôë\´©Ÿ3º\®‰X–o´ŽKz!bí}˜~Äv„ÁmÏI“4Эý–g S­2ìÂ7 ÑQ—s\útL!Á0kêY5 eävz'þ®Eß°Oø[ø’_äûw6ø§´I0ô|WÜØeÓì/Ï®|ÂÙUóc·œØ¥»ãšÃ·"´Ub9H»X`öÛÅ0—aJÔòk@-û-ø~pð[ –K¤rœˆ×ŠTN ØqnñyÕàןçjpžC¼PPƒ–Ô~ùãW̉nµ2DPß wì‚óJ* «%‚–àHhmƒT[>N<ÑoQ.yÄ´ô{F@ P]Ê Ÿ2Ä!Lƒ/qXQHƒ…äÂ Ž  OqøRp¥½ÿÃ>ïõ®x !\Ô*´ kଘ‚[Bì”´ÍöF>·õ\ˆÈÔ|¼AŵŒ“ª±ödE˜çU}™¯äÐ\K°<9 B÷ö"¥& ~ ˜š4bõˆ‹Â‘%æAFôƆG‚@('$E­¾D<ŠL¡23#ªi-3O–&ÁHB\”‚cN›I —pDµ×ËŽGc™Î/Ž+”ø ‘,ãŽ0çE¢8 ¨ÚK0G‡”G¯$¬)iðà½AþË5DC»žžæÔpIµHíÊ7ÉѶ¾H¨§1¹›Ÿùf8Æ¥‡Q0R 0Z¼¾öp ¯c^ûP•/=éi§ÜïÄ¥†ð”8©½Dœ§´¿rΘg´W%Á”LÃn•8åó2šÂ¯š,øïÆwj;Õ8þ;(ñß«HtH«øocü‡_ÿý F|pƒ~—JºÊ½2ÐC‰?OM%þ´K4z‰F/Ñè<•hôXöA£—.­K4záhôB æ 1¢n°Sï}9û¿ÎÆ…àtKó-xR€ÏQc+”›poÛyvv¿ØYoNZÎëðˆ]ÀðÉq™4y½&WØ ¥‚ÁxË€—r§ªרNnAÖë¦ Mp›‹@Æ£ÆYFhâõ@g¿Ù99±Ð¥¨¥ùÔlYò·YìüíøßÎî_;ïÝÜEçÆ¥º×.`äíÅšÜsä ³]Å‘W;¨7ÜΆÏñy…U¦!çcÝëÞvéNCzÛm䤴|–¹í6Fgk»Ãõ×û † ^€ó”a¾¨å¦Œ:xRTæÓfÿÁ8]c@#NEwý[à[ÿN)ˆõ ¿ Y™ÎoÖ¼§ÉøÛ¤÷úî«mÀ¡*Q "ôÆ.?Aþ$·Qq\ÛÆ¦¾$‘Òb…ñ²FúE ôµ»j Woq°e9lƒcûFò5 .æ¸Õ¢›J¸§‡À L¦ì.«²²„8ÊL#]fI2C•—&6’ÜPRHÁ‡>4Ü¥‘„#ÛZú›Ÿú7“yoòŒ@ö3\ÃyÍqGØgóû{È}xqè}éM~ô‡Cë5ï ² ¨úðÛèùòÏ@é“w2Ú(~e$í3ùJÈ›¾@áŸÖ¯‹¼‹rì·üöÅÙ×zŒx"£ÜEñ¯ÎÏ/ •'ݱ9ks6JWlàáG¯h7lÔs^Îq¿UrÂ)…!‘æâUÎ&P‚‡1“ á|wÊûW5Kð×ÚýöÒp¡ît¾&= Þ èTÒM~›„4…^"‘/˜Ðv_¼[s¿#C?'¤˜JŒ.Ý8_x‰]»©3€¿ñr)÷e¦ÜÍâb·fŒ×qL .ä8_±9M¼‘³£gO¾À³«g‡e~@C§¹´R¶ÿ¶}{jŽÀ$æ™îááë2î’;@ÞÖÙÅ–»D ªÃÚáG´ëÛêÿw‹íA¥rÈο7¢`“BÈ!Nµw˜Œà ¯¹®“]²éŒá Ö´$.oëhjLúM»jS·Üµñ8T:ë¬ÓRµ•XSv<ËNðŒ^˜hYy)×Ö¨´ü (vLÌÌJúz~Ÿò½ä@;7íª O¢ÃÙÜ96üJ¼±€ÉÁnŒÉêÁÚ” r§ O6cŠûvœ`™ÐE.0õð}švie’áÊENï.ñýíË轎#ŽsM)bhAarÃH: Hxùû¼Øt Žî™4Ñ»uÜÌéf8Ù•L^U¤†œaÈó#©dâE{"Ez1BQv“€u¿ƒLís]{ä¨Ú4Ç” ºGkÒp±€a0¹HT2òSŠ›JÒl‡v#H|‘†óê°ùRûmØsL™F”%‰MÕS<:R\«MÇ7gÖÎAê2 š¬š^é0à`ë#gÝš<lÀiL¯kl/ÖpÛ80¬xZâ80À„åqàxÍ.ýŽTônEtc½žsfÊ‚V•Q:z²šcûèd ôô¡.úˆ”)F¼öÅ”"â3ý2ÙÊ-¸ü«;n ›Îž,˱_ŽÙ°¶˜² "UúÞ¼iB×ÛC˽0q§Í“EöÂä‰ÒV%›Òï¯Rö°HÙ -w 0e‘½Ð0ñɲ·È›t}*kÊc ý¢Vå¦p?pí“° Å*)혀ŠÉ1p>“˜d\aÒ$ë8}Ÿé°ôˆÌX|jùiS;&ä¦Ór’§Tñ¶\ ”I¼ ;æ”ï³êB—Ë÷Î2édÈ¡ëM+ÍVJ¯'öxâKl,V…£ä¬?ÁÔŠÓÒ• yŠ ’²à­þÐñ°Ã:»ÖØUØÄÅ9”¤ê¦å8+•êÆšPnö U7 ƒp¢k†ã„Rݼ"uSsZb²¨›Ú‚n®jŽg;EÜÄB^yëõ&Ûý¯Æÿ¨ílï”ñ?^(Ñq©Ýÿ2Æÿ 7¾ò†Áo—„ßëÊ š˜x§‹ùo6Üé¢ñt׊{\"À®úD‰K „ù)~¨á@(XÑ$ºË…¥Ýæ*Cm¨¥¼¾PB²|9Š ²X´ .ž®á6„ôºÆÛ0vaYpÃKM¿PÀ NW† *‰øðä€6NÕfÖk$9o‘¬âIRXŒ„F;ÜÉy}äånän!îŽ,ãâUÜ1]à0bÿ/s¼ÝÐ"І=T‡Ï»èÁfÜ2XG¬cÑ`¿Uœ횉û­Š2VÇ‹ÄêP¡þÖjbWRc||PÏ£^Í€ï/c|üò1>ò†øX ÂG=¯O鬡; t˜ïæ÷^¾7ââ#Yvi/a¹iù ¼uïþÉPœHOFÃÜ/©8£ìÎë³x ·úqdäÕ2öäJ>Ö{ )î±¾¯¼Šï~×Î6¤¸§ÝâüèfyQlôçQœÕ%nâ@.Æ×m޼PŠ"¼°~XJ¤œ"‡ü^öŽ^pÔG¾9óSHYKõ}KŽ@A¢IG¡'bçÖjs ]ðð :áΦȅŽeÔîg Ö¥ßd@áþ¨ó9·Mv¤Ý]À6¦®›jetKâ8r¾3pD‡Ø…„tp9¸Äsugm ij"yÂŒ])²˜Mú OrF†Xø×VÇ“ØX¹Nºá´à`É첺À  ™ƒ2,nhUƒ'SÌ´¤© g †Œ…ÝüM4Ïù‚+d™ xàÉ`ñÐ>/®÷?dé×LqÝ’•~¾+ôý1Ä¢ñs®‹ä³Êàx¦ýf ¯üçt…þÿýp/æÿo»Ä®"Q!UñŸÒÿ¿ŒíœzÞt<ü§o@ŠzýÿÎ5„(w*ˆÝ&ÐÐëõÈ¿6'cC¹aÉåÿ5AÜ4nEvúÛŸúÌøªþ_FÌŠA3Æ#{Í/,6€%4'±LA+?3Ta¥ úù:{\Cï;†0ÈFÀTJ Œ PF(£”QʨeT€2*@ Œ €,²ªßüNïtp×÷#¨{iËBƒà†pN–m¼ë2PÀz(€ Í7†àæE”¼2P@(   g#:e €_$PÀ`ôPUm¬“ç½TÏÃQ‡dðÚ“Åiäf6òZ¼ð …/ÓÃ}‚ú÷®>è· …°y½ç^è‹òœìýw1x3ƒ/‹™üÕeqA‡uºö—„£Aü°h0ƒ äך•ÝPçÅ/8ø@¥ú–D=Ð-a^<£dX$NBê5 °èä^—pKÊ蜎¹ó{ýߌ»y·\ºÂ´X—÷©žëÜç1ðì"-¶ùw_Ì]0&[Ã]Ø»ûˆç »d×Ä®@RûüàĆ»Nw²¼¡°³ˆãÃPXÌÃnÔˆå …ÝÅZl ‹ÑÁ´ú¡ìƒ_G@¾x ¾Èë¾»¶Œ•[àì2Ö¶t[¢’¹È_j¬3Îï/—ªã5ÉcnAsrxøÏà— N÷.fwý¶x9ïŸØ¼ñgõàz%3ëà ·ñδi©Ó-mð‚K‘Ú¢K‘Zj žß]wÕ2­©LÁ–³¤ªí¾ÞH%oDw-¸`Ôº¹ åb-ßr1³îÊÒG×] ®k…œ‡8Þ8ìä²a»ÿ·ÂøÛÕ ªÅØÞÛ«•÷ÿV‘¨Èh÷ÿ~ýø¿Lwú¦ÏÓYÿ‘Ü=ˆß뫯ÿ-q#îòßBòÅ»y#_í»!ÓŸĬù/ž’w–Ðê¥>ÇÐí±7C𺑜hŽÁì™\¤é÷&›ò3¨u0ºÎïÈm%âË‹àÀN¯3¿ýNJ› „p®€^X(TâR…„–Q(^m !ä .OFÄ¢!(Ø8q@Á‡‘kŠØ(+ãO”ñ'Êøeü‰2þDbåñ'¤KEäN‹%q“B½_ÉbSD÷‰Êhe4Š2E¢ŒF¡}·Šh2E¢øhâFËŠ‚RëÑÞâ!>‘5 …³cZÙþf11-Š MáànÙÅÛrv¿õV¯íYz+Ýå½ÕÍ'kÜR= «þñcý¿„kVq¿õ/­¢À€3ËØ™ 'ŽêœŽ„‹‰SဢȀ3¯dï-ÍulÊ^Âí´xÀ™%‡žˆnUÉ( W¨VˆbEŽÇ£`n1Žô"D’ˆ(6Ý I ^’ ÚBHäi[‘ñ#’šèâzÕñ',¢™¬+1ÀŽ‹WòL’„Eˆn¢æ­’ueΘQ‹ôLÊR=CŠ WVô°Èìwü%#M¬.ò3Â9ÊU’ÞÏ6"¢ºøá°»PóŠ ‘ÔÊ¢UÿB!'ŠˆîÆ#S$o“WW»ß‘ ’9m™ˆ_"ƒÈ¦JL—°‘—›² =’Á×Ö¢œüÌ ›^9Àu:7)i³1çÌ~m²5“­,gö{£Íù±­ÒÖ„U«€€ñ·+»=eödʪíjÔL£Ç¤”ÖÕb­Vý]^Ç.©6³ WH®õ¢ZÙÞÈœ¿ëV³ük#Ð~‡ø›–¡ÛyŽšöŶö{g› 4wn =Gü^«!óüÿóéy…óÿîÎ^üþOÿk%‰Ê¼tÿç ~}ÞÅ ¿Îç|ÿ ‹ÿvæþø¥‡ûâú·[ÄÒhË´@¸…¹nÖ=<<öñƒ[> çÑ/NÎ|ÚGœÿd<ÂTM@/ª6ŸFê|<êç]X,i© ß]º&È¿0,¢ Þ0£o·d=4ß3ʃËü?QŽK]Oõg2lÕ²N8’EG]ù‡@3TÉXÙlo°,iæc9»OZ’'­Â£…·ün[¼Û޽ÛïvbïvÅ»Ý[ÌçHÆùÿn<+púOÿ÷ÂØü¿Sžÿ­&ñh]ÿœ]¾åÕº©¡Aj¼Ã~7¿¥Ž~Œ¹÷_c=àh\Öb%“Q°\SX׺Ռ,-ÖéR£¨ë/GfQ‹Ž"͘¸$ \I[‚ìä0cî¸ÕÌ~aBú¥j¸¤ ‘uéŒ.?Ö¥Ã@ºèXgËÃ"Í—Ön£?²®+Œóÿ·›ÇúÿÃÝ~lÿ¿½[Îÿ«HTjäýÿçÆé_ìbó)ŒƒÖ‰ßºò‰sLÅ ß8¼¬û‹Xi™XŒuÁ@+ÇJO î ‘ -)ï~†•á’Çýà)N©Ÿ¢MfXŒ®¦ 5ùyjG_iÞMÖ[~å÷ïä ²;Aòž8C—īД®|:Iz& ±GûS‚}zïýaèMç7›ÜÏýða¡!Ñcß~‹z§¬c~’"§ƒ‹9¨³ðßÕa­{\ع~os–tJ_§z:ÕØÉÎÊAJ'À¬d×k§‹¸^Ëë."ðv<œ?ŽRh\È=\ëÄFÈg#R&”T¥A6–Bh‚8OïŸ=¯Jaƒ­Gj¯©½J V¿)ô^Yè½rt¾‡šéÕ®púJ;Ug,¦®[µ\ðbz>§Ï?ÕÍ]•ã*à t’B5¨ä×N)ÆêãŽq™Hy½P PúØAOÃæˆ¬‰þåGÃ8UÂ#:XªŸ1òH?']vÄçKþáT)QJ f°Âº™™ˆbÑ× –ý0W‹¹ÉPHÀ a†ÞšO¦)n³ÕÞ9äž\79›‰ç¾»1Ù×ÝŽ'“þôi<"{hîûE)†}-Mèäîö;zÄó1ì`ú÷3$˜ÿ¥þ‡ý5­—u_*¹—È2;a£™=oÚÿF° ÄñÎlÒMák¯'“£Îo“ñ#ÊÐ?袆ôõý¾d„Oa~ï}ë“I’pþ6̆»Rå³K·^ÛFL°A¼ö›ó½«O÷Kõkâî/ŠÂgÐy§GíŠwêÏ ûÖÌE@ªWˆƒÿ#ÌŠç§´Iö@ÿŒ^D"ím(í•ÜfÒ·áMQS;=*º¨Âì©“ÌøêJ Œ‰E?‹£¯Ìƒi?M/»¸mTŠ\+:°ðÕ{^žÀÞÉØË6ZÉÆi× [ÞWìV’i *L>;¡#}øéÈëz£>CIn‹ÇИܟµ}³ûPxó1تlTI†Uòwÿ¡±º‰u©/Ñã®ßò[Wçߺö[]ÿä°}ÿé*~«nDaãÃ’E;úñ p"šÓÙg&?Ÿ1g£§‰þ8cnA“ÝwƼ}ž5“»OØ3&åßÑó3÷ XÑFëŠÜ Jq÷éì 4¨>é&"ÚŸÓ©(=(\†SQa>!—ë„Qü%‰R……N‚—Äõà Îñø Ã)­­é–ô+êáH§Ó#þÙå{áÑ·Ùwq2ÃOÙ‰#Û¶õùD÷MJ6n/·ëäS3b!飧=BcשԳñNã´íý RôÙ$±ª/Rµ¢ÈÉ)V©û95ÔѵÔÑM¨£+ÕÑeutÍ"´Zߨb/ÍOCê‘ýD¶J÷Ä19úŒN;#†q´D÷’Ç©Ùï( y’snY$sX< &9âóðBþ¯¨SV×*±ëÜ éèˆÔÅuJNK¯; ÛjnmèÊ|3¤¸azÑÛãÜíÚ|zÄÉËë¾Éà“ƒU!‚Ù ®+S.µÄñKºnŒùŒ7¤‘†)îm'}|¥9Íæà’GQ$áö’¼òÐc¨szeÎ"í‰;ñãÍÖÕ®å*§þñFë$É™ r̈Ï 4HzšÑ%±ß¬4xr뜽:§Ëz§kìKŠ`ƒ/ÑbúQ¯zá'uh$ª[2’{=Ý©hÜl¨ìX¥{Œc-í²Å¤Å¢ÒS„ ršMdQïu›SЄÞìVŽ™)¢BoqÊDøw,õ™ìšÓy¤a~vÚý˜¥3:Šå´]-Ä\5º­0-Ö1J”'œÍ\j¦Ž8¯Yt'÷«yÍ2ã¿ú«óÿ†»&üWyÿk%‰Ê²‚ÿ:<=¥ Í:ÍÚ 80Ö€ÿ6(¬ 6 F€µH%X”mÇ~q‹Á€5*X!üѬ`­°`À±D,·ùDZ`ÍhV?Ñ!øoÃ[㸠¦ûòð-ÚɼQó‘ÿ’LzôŽ“„#1*Ç?šä¡ü¶?eÀF#)hDAd?æqʽž l~êßLæ½É3bÒö3`ÒÆ“ÞluæJÎÁüþr^z_z“ýáЊ\ƒ}2ìÇ¡¨úðÛèùþ8õ>¥OÞÉL`Ïã(¶´ÏdœÚFq- wìŸøíæÙIÝo_œ}¥ÿmhühŸ]‹³KÓIÔÒq2h aà$ÇÃaæÍ&ó>âˆ<þ žã ‰>0þ™_c`‘ xÒuÇá.ë1i–¢mü赸€ªvþIËð‰@!é¤ÏXy#¹¢F©´6‘‚)/LÖÚP%š2^¾[sÇ%ŠºÖº–º=#dbHÇd`ä¢qÍ[¹pŽ, : •;ÒV†ê· {/Ä00yFŸÚ?\ùˆÇâ/‰|Ô¡$w‹ævBÖq/vÏNÍ·úÿÝbg/1˜Ç^KÅXE»ÍVc¶vjxOXOB(¹¡ÖR,£F»vb¤F›Ç#…Õ´…k– Úv·àbJ,#RéG£ŠÖ&õ˜â2š2àª!–Í*6ƒ1i? ÆãÇc…í¤qœðM‹Œ°&®4’š]»™èÒ¤Á/Z‡B¦N- ¤Y•?CÀl;E¿MÈ្yAÉùÁþˆ§#ÿ¤È ÑŽ÷ÓÕAšà¿“$ß$øÉ¨ ¾bçT2t†SMëu©(z9ñÖ¢î4EäMas¦¡KÊã݈€Á”ÏP4IT¦b¹`$ w2!hT23ëÍwÉâ³W¤â Rç*ÒbMsš"Ò¬9ƒíT§i6¾Õ‰I]t'ìŒsëÎc?ÿ)E”]\yæ '‘]ûÙ+Dy&‹˜Ñ”‚p.ª=SçL©(]{²5E(ý…µ§‹¦ Gsàq?U4þІÿ[ÿ·`74Ä,ý¿­&QYÒð²ÿ·òüö*}¾þ >ß2BïJn^éÀÍLàK:p{CЦ ¦çǘS1Å‘XšÝYs*ö†A©^2ZsKH¥$#­¥¤z@¢à4ÂÍÑx´I±/§Hêh×!hîN‘”rJIoÀAÒ ¡¼¢Â]$ýʾ‘âP“Ò/R- Øóífõ]ý»T¯E&?G)N‹DÓ0Ý—N‹J§E¿´Ó¢ÒG‘Teé£H%¤ôQ”à£è7õG䊹1:*Ý ñbÝ ¹bf,þ^w _ÒßOäÐ'ÕÒ,Ìÿ»ëž,à¦Ó^¡ž%øÕ9üý꼕d±ÿOVÿ5€?÷bñ_wÃÒþ¿ŠDÇœjÿ¿¨D†fò§Ö~ XÀæ/‡læ~^òª ûždØÇæ¤7z€}«ØˆFW¢yùçú3·ê#=Ý™amóÄï=ò}kŠž½ñ7X;¬–¬÷ÙM÷¥™¦·hcv°\F6×ìæÅ"ŒŠÞ£Rˆ*Ö¿yÑÁ<çØFZö®ˆÇÑ\:h]ñìÜ¯Û öÖ‘™2fHNˆã¢è÷_—Q6íë³Qs–ÌcjÃü%¬ŒÉV¾˜Q0ÙÊ3 ¦Zëb÷|S­u{úŽ–Ä}u“qÀÝÈ«Þùôƒå¸oõ6 ™s6×q‚‰ëX˜¸Úfû–Råt.é0~IkROb•SXò‰åD*í@ª.nFð+5$ä=×"Žæ&ÓqiÜ­3;PÒ 1Ü(³[91)–NC QìªSÍÜi¤7éÞsÁ’x€˜zaÍØ]×kIWcb'ˆ®f.·NÝ6wªã (¦ò@p%Éxþ7š<†+»ÿS­Uƒýüow§¼ÿ³’ÄuŒ¶\ütÕn^âí‹Ó°Òfç€NGÊéÞbGz×ñP¶4¡Û þüv8¸ëãñóVÜãÛâ`½NvJlQŠŒ`uécÌiŒ%-t-ö?½é'³Š÷Mqk|qÛ•KyYòCÚ»ìÈ{—·þt|‡û4²) ¶¥,û5¼$3Áæ£/6døèFeçÏÄmJ܇׫RÖë#¿}vqêw`zèC›tq1í?÷P¼ßùóâ2*åà+ü€®>É Æ1iªyOÚ"Wlì ¨º õµ5é3)imÜn͇‡ÀçhÏ|©Ä ŽÇOxø kØÁ?½!ž¯ÌÆtÌ%¥ä¤~^o¶¢BzóŸƒá 7yæëÿDïÈꟊSÅkûÞ5=Zó)>¡iM11³•"Y4ù䋯p©:0,‰Èº#uIDÄA0¾0.‰ 8Böù" X tÂßëìã÷ôËõõÐöë!’Ï'á1­ÿ ¬!ß¿'¥Yj3.¢‡qÉ„‰‰){å¼u S×TTa}$ß$/³0c¹ÊúÍ“qý7ÏVgÿ­†ÁN[ÿU·Ëõß*Sd’ý÷âìÖ{Ìð{À,¿M¿“Ïî šÖ…¤ÐŇÄÎ{ÁÐ ©Gnq¡uöi؃¥ˆ:9dâü/.߉ÃeXdáøð½Úû x¿÷g{äë¸ |_{¿_ó©µÖ씞\yü ¦kša}M]©¹. Ì¸x Ųè!€1ܦ8b/$¤åç3ïO¡$,ÚíøŽÄúðæ#Xˆ¡ÂÚ3Å›d±ghÕ!%S4=ˆNÙäCš#ùPMGÏcIÆÊf{ƒ­7´p˜„l–³«äìJ9å“.å°É4×ÈêW ë:êö€ƒ ›ì·‰ÙtX+â£ÒE¢­G†q"P©MûÚœ-uÅÍxö]æ9턈ËaU92²·;j¶Þê¨ÑQ›õ&+-®Ùè§?ʵūM¶ùÿÛê΂jÜÿKyþ³šD¨6ÿ®ÔýƒÆ"“>- ã>1ßÂt9›ÌogÞ·Á?}˜:óÎÏyf× ÿâìLüÿâÏ!:GŸaýd:Ž€JPk6¤‰ ?ÿ¬¡]ƒþ¾|YFŽ—ã[Tž7Ï+E÷ÊhøÛªÞUù|.7q:À7¼P4œJ¿/´ßk¿Åò€ÎWbCJšZº¢Í/l‡ÑÏ5© ž !™¾¶~!Ñe\HäA52õvÞaÎN,Wrn ÒÅOSâ–¨à}“Ï¢èÒ›×€®¸ÿþõ&7›þ_]üÏê^¸· úggg{'¶wþg„j‰ÿ]I2êÿSÃð€œg7±Ñ#UWv`³‡'­¸å 2lùêçç']<9ôNÏŽ>xŸþ:lw¨cŒOg§u´uøÞUæ ½F×k{ðâÏ¥YI•ƒëõõË5Ï÷¾~ÁhðypÔ¬_²ÒÎÏ:‡[¤ˆÃ“ÃÓÃöeÇ;û f¯ùÚ¢ .Y®+'×Gd§³æ“•{Iio¼®jºF¶C¨Í¼ªÏ.‘BNè–‰”±­çuŽNNêÐ~h¦×ézW£ög~ã[²‹b_=ºüÂ9¬}<øtRÿ ñ¾Ô;äPZ­útvrröË@¾u$¸ùâãf°uP•~WùOñD˰ÂoiŸS9øðòK®‘ß4ô›¾Ç§ò{¬‡ËÄ—O$š)Ão™’P†k~ô›ÔL~Ó¶Fïi[É{a¯9d#ŠðË«{‡æÅÑ9±­¡`Ô/ë^çòì¢þŃu@"Â[ÁOW6j9iÛ¥PfÀ\Ó0+XeÊðàZ*ëýx>#Ešq–¾„+lKÕÝç7þ÷4éßÈKfi#¸›Aƒ‚üµ?…O{ßúÞ&'´†Üôg?úý‘‚ù9`ãò »dêÛq껋SßeÔ“שw ÇããN³êÓžÂxQÖða¨=Ü&9CõáÉRR?‘r}]„íÀÿ„>ÿ ý˯gþWÿoÙŒŽQ§,íÎåá¹ÉcäAoÖC/³¾>ÿà˜Ä±ø÷8¨}ÔQïå‡åDÂpÊ» vÇ@o$ã'ߨò|;æ"%:¤#úWªò‰·Wbã¢ÉG4‘¥/V»æíTý ê×øÊ];©A–FmØ^AÙ}ŒD&:R¾hź%ð+~¥áâ:vÐÄ‘¾Ânæïu"{ÒKv õuбA—ÞaŒx…‰ñS(2W|ŒCÔ6©É;RÛ¶ nÛ:¡`Cìä¶mbË‘”uòv;¹q;îËÔŸVVì.‹é}½N”ŽG.µ'ñd/öZ¶Η6ªÁf{M8Òñ2s`"eì*˜Q6Æ‚°êÀqFû°ø(Û7à2¦·® \ou5¶·®“†W«_žÄÄ–áàºE¯œK×û‰„×°‘ñ?#,c‘2BŒ™9êZò𠌀…øæ Ebäfg ª½ƒ¸:ü…N]^O²žÿhH¹ÿl×ýü'¨í•ç?«Ht4éç?Ÿ+°Ä>€µö5üÛ ²ÿÄ×ïjYÅœ¹Ÿÿ€é\^\5/΀؉÷Åûúå¨ù…løæ¿îBiPäéùYû°}ÉEÂÍ¿›°ÇSrm^[' f?Ã5qPÒ…¿×/˃o‰/'gMÒ¡èšmrÒB7Ú8§Ôñ w“dVõIéqÝì²Ù¦s] BrÒ…-Ù_õ“«Cr–‡ÕøÞ&ýzœT~tz~‚BÕ ¬òMT7‚CðöxäÈçð@:ñ‰Î±³£Ú>×O;Ú.èŸC÷QMyRóÎ!ðïŸðïŸð/BG|ZNâ•§ƒ+È'ï#N ?9ï1õ|>[Ìhëv<$Ž}Ä’&‰‚è¤Hʵƒ¶áývu—dßÝÛÛ ò÷ÎÖþnu{w{ç`óƒtΤŸ Á`Á])…V ó.W›ðßl~Ù<Ø„» #@4—fÞ±²Þ9Ü„Â7Ûgíöáç:j=Þ†s²¿8×qæÖé9#²}Ø‹ÎÆ6? ánU¨ØÏW'õ‹M¬žRjØ%“mÏA€“)ö'ÝóÈ4\‘g4ßzŒRbøý3lņâ0MœÁ±]Ö&”û^ªoÉÂ÷PA$W o¾Ir¬Ó‘«ù eÕ¢.sï4ÃÙc°4P™f½?¸XÿI®I®k`Õ•J 1Øo6¿6[ì\#¾)‹Úùg¨ËæNž†ιXCñ¶„èÖÛÐ!aÔw!m×{I,xmäí)é¼aìR8hà>ÆÀn"cì£Ï/Κ‡W ðfvļÄHŠ1@îz*£Ê“0–'yÖ•Ö)2¤—s-rDm¥{q­ÃÐÐÊOG×›_hÆøq]$=ØF´iÊò³_5 '’QS:ª*_dF‘&KâÌ•yæƒ;ªæ'—i;ƒiª‚ç„È€¹"+g‰aª iGh†c&uv8Ü¢ÓŒ˜j b²h¼ vy†z¡9䨊+õ7IRWŠ6íÙN·¸*Zr¢ë0B÷¼‡ÇÚh†Ô§!}JOÍÔ”~b¤°„KåL¬á;ÙnÐVB›¾nløº±á뱆ÓÃDUGIãŠLu°ù4Hƾ*ñ©<Ôô!;ƒ ŠÏHšd°NøG‘ªÔ៸ÐÔÑÆœ ÌÐe!ÖTšY›Lkbòµ5uÝØÔX¿‡dú ãÃL²@„ UÂüÈHhX0ð=«[}¼½Æ„.¶XƒÂâCKìZ˜«wXÆÂ c&±0G‚ U‡†ÉTlÅ?R½Ížÿ®‡ËÆóßéÍ ã†áöNÿ½”ç¿«HTàåóßNãô¯ÊÕùÉ™ßö[/þ³E*Œ‡ÿDº:?Îï$ù¢9 UÃ~œ…ÚÂ~Ɔ¦Gõi¾ýH|Or¼&œˆvÓçÇÇ>ÐuëÝàÇ”FŸB™0ŒY²y7è}C_eS_¢ÈsÏ1 (Éy£ƒb”0æäî ñho8þÑŸ(ß…½Ñ·9Êì€O¢Ÿ6ò¦p*)›RŠ=Š(¡ê£÷îŠÆ?›cÏKA’¡ö˜Ó>KR Ú²×|Bkòš –WsÑ^WÇ“;Š%\’§Õ–#]-«7XM®­J1‚n(†Ð:…Á:½ö¼ª·5ìÃãWí¶p˜T%ÄÆ†ê³:c=—*Å$úÊTücêCL-¸\L¤»¸Úƒºû…š•èS¦Ýdº¹$hB TMÆ?”"D •¶ø’'MU¶hd(¬£§ºÂ„ic@¢‡¬ïÅ–CWn‘q??‰÷3¨xøÀ3TUãé€Þ«ôïaºÝ’Ñ.åVý†0ÏÞ´ÿÌ?è,dÒMïe=œ¦~{æiÄ»ŸŒ±ÿAÇzÈ UÏ¡2–“ƒ`1ô3aýmÐÎCúÌÓš‚Ì•ºÀh‘®ÚôŽÍYÈ…_ŠŸG÷‰XØ1änyk¾í½§AÙÞfÆ}mA…=Ð?£n:´t‘ä-ÚºãГC±COŸc^ÅÐCŸêª[`Ë»1¸hP RÆÜÍx6‘ ¾} :Ó$±¤Aç´æy­ƒÎmÀûÞéQ›x:¹mÅGŽH«po;àµý…9_$ÜuNã•"~9WñEG¢vª´¸ðÑKóOoêu‡0Îeèæ_ÐÃùªC7>þ—'Gp>?¹ê<³¡Þ7ÀÙ?O‹ âLÎaßhˆáL_dΜÑ{+Wpføn#xã¡™É1äR¼¶«~Úó†`Î>yÑÈÅíe‡-¶øt_Ì_½´ocåà ï/½Øæ¨sY¡‹Sê{ýq‹ð‚A‹Ó¨z[‹Å¤eXŒV‹‘rpI È¡î¨éy{D];ðÓ)m`É1˜ÆZ®ðÆdeãI±vMŒ' »Ìœ µ”lÜÛÇ3DÁŽi’ãÍÖšgiAò(“¢ëõÊÉFBH^N#ýãžÒì"\ìN–˜¦,¤©\;[Ô«QNùÍÒ„b Ã"¨š<5Žþ´Ðʱ4ÆyMéB{Ä{ˆe—nßËÚí±@Ì u¼{È[c¦´Ïââ:H‘–âa õ ±8:ý 1Žq¹ÒJôum½V©dŠÝÖÕR¤B ˆVMµ¦|朢5s+ÇôÖ‹jG³6 Ì}"NHãï¢{Üx$àF¬Òö7Z6!_†Ít[j·*ëÙCjgÔ˜éá·V™¶ž£gèP·ißcÓx“n³;ŠCNgHËÑÓ…D/F“—œì´uùfüßmo¸:ÿa­óÿ¾–þÿV’¨l+ø¿fýýÿÕ¹ Àœ—¾à¾<¾;àõøHF9&¾Þ™áæþ&Žf{£§`>…,óÑd<öïHÜ•)1Dæáa{<GäYýÄ£“x,":…ƒòRÜQuU^å£ðSOÇÛD¹Æ{Äõhùì ú˜½Ô<_Q;)®è®ç#‡çQG÷òªSyÒ Oó¥œD™"Ö'æõÈ¿¹ƒv] MrÖa¿7Úœ?©ÞÙѤ¬ƒ1&üµÐÀ¥ôøU¿’h ÿg"?ŽùGë;rld5uª:Ëç;~ '¥2éÕF ½Üb¯Cùu{]“_×b¯·å×Ûü` tSH2Ïÿw…€I™ÿw‚í]ÍÿË6f+çÿ$>ö­ñÿ:$L‡ÿ;€ÿ ú¾8D/§ß1õëW—_Î.:ÊÄ{¶Þb²nÂ$¸å{•ãó“5_²aF:ƧöIè1¨ñÞàÎ÷¶à5¼»ÚÂÕÿeÿgo YZ“ñ·ï¾÷iË»äÅÙ×°ó?>Íg}fWõ'ˆø¹C¯öhõù1Ø}bÕéÿœõGw7ùíÝÞÎçC2×›Ù¤?9äã‚E8<Ø:ß‚ÈLT >ƒ…Á`DÞûdžê`ÎÎ5)ªC¢ÅN¥:?’Ôß0Ì_íM„çyÈõȱ·ŸUNºôwwÍÇ"èÝæ”V3ŠSâþpÊßmDþõ(6ï¤ËîwýûÁˆÒÚó¦ƒÇJÑ…ùñRÌ71ééùÁí\+eùÓyTÚ2> )Íâ76Ùë­“ãØs{Ûé.›ØÅÜv¸“["o^ÅîÞ%šñiÖ˜C^YÒ+ˆÅA¡cQŽØÀ8ütxqØnv1ùÈ 'õ‚ÐDÝ@Æ?WDTÉ ':‚*F—Ä¡“ ÷¿õo&=Dª2PÝ6|Où‰ŸÍ§À ß«¿'ÀãG¯=Þòvjû¾w‰ØÐ[YCëN{ 0aÄßRpgg|?û&áØQ€ºê?ÍúDŒƒý½}ÐJOO[°Øû°Y k\-þE5÷—#ô-}WévOOÖTn˜½¼ìíÕj@<–z_/Ž./I§|د~¨RØRj´–7#[PÓ׋ƚœ]CÊ#ðÕ¿˜%4gÛ EaÛ5þ6ïSxëdF75<ó6l#Юݛa-:­e?¬ÖðÜ©9ž€xà'D•PX0H(Ô‘£m™Døx[zѧ“AYGÒãMû¤c䯪{Õ ø}…DÒЛ0žAP+Ç|^XÐëŽÜ+žÛ^Žû9ο‘;€Ñ¨ïäøH,”YŒh\Œƒ;b;¼¦Z þGßý„Ö“ðH«ñîÊÚo‹ÆøBÿÝ ¼«tˆ³Ìµuúƒ¸Å”·1ª¦î@ß×|3ÌGîmÎaÄY›ÎvÌA´‚<ˆ¹÷µ5óHjåÑše×YnÆÞL2ïÿžVxÿ;Ø«mïiç¿eü—U%:F•óßóèþ7»ý}¾Ê«ß˸ô}^Éuãû<åÆ÷k»ð»¹5À«b·ð6áU_ö–ïyËôã;Ú¥†ž<Çë7/pñ[¦°~¾Ê‹ßÉ5¿µ‹ß/u—úœ±c{3o´Ž÷fèÝáµ÷aî»ÖB–‘‘JI7©oo*¥0 £ŠýèR§¸È9CQÐXЖ±[§ŒP;äRm€j14šh,ü»s‚i¶P+s›¼Ác­'ÜjýÓGz¢{›ŽLÔnͺ1Ñ:ü^)C?V cb¼qc◣ˎ/siÐS/ùª3by}Ðz}ÐûŠp<’I›W$÷)„>ütäu½Qž1º§ýÒGÿ »‰˜S” »‰˜,Jî$*Å”÷Ëû‰«¸Ÿè·Zô¤ÏP竹›Èþ|ÓW Soý™î &ßúÛŽÂr^ú;//ýýJ—þÎYA™oýI¾òÚ_yí¯¼ö—xí¯ÕÒLDïÂnRìÙô-¸¬Iyñ¯ó®2¡Õ2w÷ïîÌWûÎ+Ö[ ±k˜w]à Æ(äPÄ/ýA]­cÐß©w Z”1\ðø=oÒ ”>eH‚‰]˜,·HòÈ«»çç.8‹_óÓD¯°ëwºÂR¯ã½íûwØ?¦²+MêK¿€—²XX‘Š+æF^¬ Á X¿Sö/|kÏ& ÜÌ‹D‰ªÂ¶åòŸ¨f™Wór+ÕWt)OOF-þâÞùopq¯ dÁL „¤á?jÛ5ÿ±½ì”øU$:DTüÇ… ÿ`Øúù¾Sï²A¿  ‡;Æãó) È8éÐcm çQp?×¾CÕiÀx LÛôÑ…-áâ;8tC3?û}‰¥”ÐŽÚQB;ò@;J›¶ÊÕ´i¿ʦ„Ù8Ál"s·`ŽR 0Êf·sH)»ð¥¼*q=Eàzr÷Z‡’{­Ä $-9ÍxAúÒY 4€áJPÀ ƒ¸·„Lü°Y‰_µ—­ùš)—£×X¾ºv`2ðÆ‘ft–œ~ÍûF¾ÂiàWÜ"­b^•Ež˜ÓÜX7»~ó¢ý€$vªóI}âÙ,–€ÇóÈìD[5&+;ñPŸ°Àfkd ”€íX9ÎÄÚÈ¿«¯KªÐZ1?_×@1%‚Æ Î¢LÕJ“rNéz”Nì©ýr¯c’ÍjFã #ª7Ú Â˜ tÚKñCóZ1]•z4­õåö¢·ºÙáåâc6ð"c–aŽ­Æ3L Ù¢Ç,1ÞðÒ 2î§™ñ—9v&-F”fÂO²[a*hìî­|ì*}šÅjîh7‚%Øof7²ÙÂÕÝÿÝÙÛ‹Ç®î•öŸU$*êšý'4€è½ßâí@¯îÖïE˜l Ó BÏh¢?žS¬C‘a(åâoi¢©´•Ö¡Ò:”ÖÎ7`ún ºvÅë¾XêJC]i¨+ u¥¡.¾Û(oóþ6†;çÛ¼{ê¡RÔä ¦¾ð•˜ú,w©³ànÌè7¥ûS\_ŒgßY9  lÅ£´®’¶{¨–Á˜Ëï,c“i1ÖWR¥–[¤À®C¥ÖÃÆJã‡Ê꽊Ҩ™óJRª¡S³šP™ìÊÏROê£{,]»-…ßÌxaC)ü‡í2Ÿ ã•™M] ¤º•Eth7oZï1Ǻ4§‰Õ~“5º0,ëýnz÷;]bÄ']4Ç´ãOÖ»”/fÙ-þò÷›T\‹Y‹ó)®Wf;v±¿^fµ3Û¯O²Ff…^‰[•õ:ƒ[ºy;Œ™·Íöß½§ÕÅÿ©UÃ0fÿÝ©–ößU$* Šý÷+ È6þç¬.à9ÞPàn½…{Øþ„žsOå;œ‚ÔxSÏmhKŠßg NΚHˆ?û‹î—Í/ŠýеG÷»Õ£?HÜç± äg"òŸtªÄ<’ŽBCŒ•Íö;$Gh±!H)Qή+Ï‚Aºt'ô¾Ñ]&ðëÿþÊ:µÅ§2‡°…‚áxp—õXì´Ѕ"L_žÐ…—t&qé,R8”ç°–9Îa­HÊ åâ!¼,í]W¼K*/@1å…±òB¥¼2pb™”d^ÿ=?>®lý†;»eü—JtÜ+ë¿îéi¥stpè“3ÞÓ( ˆrP÷ðß Ò„?›ÇÁ*°(«fo#T  l1h`ëµe£‚•ÁÍ Ö˜%\’P‚x„®€¥6f*:¹"8É1Bø‘(LZ 5;ב7F}ðc0í«d*p.Ë•ã3}@¦„GË¿ªF„™›CNÀéÞt~û€³”‚h[,P@èä;Œ.Ë(ѵ…‹d ”5ŽR+Ãu’¹'žý#ð;¹$K,z†¬Ý‡aÂó+½Êt~³æ±ˆÔ[ dš)0êRÒ›^}? Vög$1§è¹•‚´/G:܉¾vŸ)†Âã@UoŽL£¯á%ƒ–™ 5\;¾áØñôŽo$u<•hÞõ¬ï¥Î§¤Ð¡tƒ#mæ°ûR;vTÖXUì ãRŠ…«b‚J3:E¬j.±ª™UÜš¹ÄÍ$oM'qó B ø¶ÿ4cÊ—lñQ7!|”€ß·ßÕ‚z0<¼!DÆ»HŨ¾˜é¼E¦(X¥®é8šé ¹àh>H Ⱦ–²ÿ°ù©3™÷&ϲßϲOz³qÔaG(óû{È}xqè}éM~ô‡C+þ؇‰Šª¿žïSï3PúäÌÄ ‡å§}&[)_ PïjÚ¬›üeõ?ö[~ûâìk]cÅÕùùᅡ⥇&ã j€Ð…#Ê|BPWaÜêKŽ\}ZÚG÷4,­aÚÙØBnÀK N¼à­ùÚD7ÃãÅ^^¼[s¿y@?'t›JŒ®28_N8M¼ËPÓ³'_}ØÖ³Ã ?i¯T ­”íÅ¿mDßžZ¿Û×tù.M"‘éž¿/åÅ©r‡B¾QAsmàrEJ«‹]=?êÿw‹_IõkñŒ w%RL¥âeô©á=ávåÈ?vŒ×U8ÂÛ0HQÑ_˜5!Vh0¦$Y2^ÍpÐ1´±Åê‡3½cîî½nî¦qSE“67-Y¢u°w(4ðR`ìÍJ‹ö#ûCÄ¿€ŸÖh*2<Fƒ|/}— ŒÉ9|[D<BN3,Òãh`²D`‹,I·ÄZ¤¬É!÷»ö¡³—cˆ'Ç Š"óœú¿i‘ÂóÌ#åÅ6H;—&˜JÁÌ&˜öxIiñÒ¯{X ·ªFi¶êXUDë•㸈f ¤é>7S®‹AáøÇü1ó̺¢û#BrÆÙädlóÉÃv*yBäIYw$H|¼k1™¬—°1î+;Iu}M$¯i8 »”¡öhùjc‡;Cm]’ÄÐÅj1˜oûlÔxìxñ÷*¯Ô¯  ÿ÷Ïêüÿí…Õí8þ¯VâÿV‘¨Hjø¿¿TÿøÇîƒä_†;!îпèÖV· ‡€õ—Ý' ðDó È`~Ì”Á#à³¼³ûÉÏÎè½T€]ÂãI=¾jÇÌI åõT PÑ಺^Œ)-IV¥Û¿¥°m}ÉÌT0ˆRH¢×2>"ÌP—1eE‚p؃j©OòI©¡@rzK`E¢+0++œÕK6V$:MdūƘ@FÛ§3J£ô ©vß zÐ̌à u)a Éä„Àè.ˆÀø<€FŠ®Õ c-!9e¢öº=„Fˆ‡Ò­`‘†y^Ѳ¼ ¾vƒüû\¸…p¯Ä;¡j¢·VcòQ˜ìÕ0fÐOõjpö,b’ÿkn ó˜Þ|⊆\ˆëªµÚ]ªÈÔÃ΄gq¾ÚÜ*®õ ¬. ñXÇóVB—XŽªÎaEô×'²¶½'¦rBBOETÖ“¾‰Ã¾´x‹ìÚƒ(e2¶˜¼8ȉ]ðw@AHÉna ë#æîl §5Å@…Ù]†ÕЕ9fH©Îä2³uÛ•*ÎW«³¬8mÛ9¹opÐĪˆ£|bÞTl>³[)uÕ=ês3Ž%)ÞUj×±¸K1ÐGŽ9ì†?LlˆdËs*0€äiæuîãÃn Š×|LkVlÞÇÔÆ¤´ Š8vl±iæbÝatù–Òvw–vW–‹äÔ‡]։݅{1ÙŸ]šw¸TÏpÉÁšqÜM -åð—Å'œí`Qª¯Ë‚F2þ§afÑd€#»œZ¬z±ƒW’›£ OÐea}$BF Q(I£Å¦ŒÞ(íž(%üLr/çT †T¼*sÄñÐÊU–­q‚lo/”¸K|¥`ˆß0Yð“áiøZm[Çlï†%þc%‰ŽBÿqa ÿHP ‡~\ÐÃãqá%Ç} Òâ>&‡zœô{C)Þ#nh6·P%°£v”ÀŽÒ­sõ­Ñ%ÆfqŒr!?{›Œh÷b øK~ìýâÔ¦ô~I,Æèï…•@ƒŒ_¨/Ф€à Z&Ÿ %’ൠ²Ç9tÄ,í÷U¯#Ú¡fþ§‘õ‡\ýÂÒ0¦&'˜ý•¢!ñ¯ÛŠ1#cÀŒ&JÉà3äŸ8+åV[š!‚Uê•_?«óëg"¼~•7Ê^f/ f€Kt=-6UÞåŒ' 2³ö:â­%Åû—½®°ðs-t©ã%5ÒÜ2Æ‹[0¸äñ’7¸[Ax—`nË/ÖPl‘™=k󌗥K+>Ê.7Jû’k²ÙÂÕÝÿÝÙ böŸ½ Œÿ¶’DG‰fÿ  zéw)v ×zë÷"L¶…i¡g´ÑÏ)æ¡È2”rï7ºô‹å”æ¡ÒgN¶ÿ†;Án-æÿy7,í¿«HTztûo‹®€//êíŽßö[Š#膡7‰è&üÙ,Ø t‹T‚U`ÈŸA˜UœY¸Á®ð&F¯ò³™‡[’}÷±Nj&~ö9b$«¡"Cqc½þNÄ¡`ÖâñÄøÙ;2ˆ}öN _¡™u7ÓªŸé&³&‹p½úé,DdÕÉ? ú=ÍþÀB?ÂfLœ@²cK‰’~ù Ž˜En–yÚ¿CÌ[˜ÑZ„eÙ£CUa¹¦„Ò­Š'Ÿ]›7%K­lÃ.Ȉ ¸¹"3¶ý°»0l6*2ÊÑ <³fÒæ#ŽÑÀÆi-¸Ó¦Ü!w’‡­ [hŠâÌØj½¤µÎôZ㣾ÈZ›´ÖÛå׺(ˆÁ ÅÐÜ’  JA9` -'ʘ94.=>)ARG3…S)Øíx8M#­éY¦‡Y\ö1Wx©W)È Jøèb#AŠxŒPÁ[™–-,(=üÕDò˜Âz N­=ÝUòÛà›»™Z§YL=Õ®n,‰êglšNÆJA†¸Óu/n´åÁ¦¡aIêD(ÙŠÙLîTzÌtjƽ¼ÿtÊË„(Ò_-ª³iäí¬ŠqÕ¸åV 2~ùàœ=«Dƒy¸‘$úæ-It#A¢ K´^ºM¢®Ýp”èFºD7V'ÑLÝ(\¢ vsïTi3ë0j¦a¤ì )UóÁ¤šy`RbmääDJ5Mˆœ… R´È•`¥´’ÐR©ä€-2tP:^*oY’±ƒÚåÔAy@SM:þRue3]W6Ò•„Òyd§š¬HøT-ŸŠ¨>l~êßLæ½É3¨ö3¨Æ°Ovõeï`~¹/½/½Éþph…YÍû ^PT}øm ô|œzŸÖ'ïd&âàÄ!WiŸÉª_‰Ä?. ÆuìŸøí‹³¯u$J§¡â¥«È€µ8 zV Ë‹¸=‹´ ô¬€©¶4þºÅ_ËÂx©5’À^íÅBœ2ë©åå ó’?—ÛI §™£Ȇ̗Y27(‹!Ê’h5={+1û¶ž]Å’a7¥ûŽˆ¾m¸~»ÿ¶é‚a B“Äd±µVÇBdO%Q€~!¹Ý\Ôa9@wiôô£ÿß-vø" y7 Õì1€³ HD+±•$Å—Ñ[Y]`¸ËNÛ]èKŠzªí„ÐѲÐAft¦~ƒ5Ô§‰mƤâ‹è×)Ù#Q=-»ä£=™«˜â±Ü;t"0CúÚÉ–ÑWľa"!ÕÙ{“è¡À>Óµ˜± 4–e0Ûy´u°½üÑ”mÑFS^ŸŽ½_j4íºpÓ²FÓî‚£Éq%X8äI ^&ë´I#•,~Ótˆ„Y)‘4XUÁ~šËÕq”e½râ­ žØ#TÈ4ð( ú]d›}1eRd¤<-‚Ô0˜,‹ÆX¹’ŠQÊu „p «V!ƒSF˜¸YÁ µ4µP˜ †©«¹º¢1 KAÌ"ˆöh{a–û Î0åÖâ0å2-)Ùðß¿Óðßau'îÿko»Ä¯"Ña©á¿“áßË~¯ôëíõNGzgw/Ï­d}xfŸ¦–TãÆü½+T¸K·÷æaÜÒ˜ÌÈ®;}o‡VÛ¿/AÒ. iò‹ÈºÈD+Ut‘æ Ÿƒ¤YkG—ØèW…$-±Ñ¿6ºD’–HÒIZ"I£ôk#IK)eݯ#ÕÎQJ©üºþZR7hÕÔëA ­Ux2,A %T#²– ÐÕ€@µcψ–üùÁŸ:ZÍ–¶2Ð&V¶N±f”èKB\‰¾|aq^5©‰óÛ?Öó*ü‚`B ,‘½40ÑÖÍŽ°¨ „¸©KS±¯WX fÐÞÓ/„ü{©ž^1p¯UÆÑüå“ÿ7»yüguø¿Ú^Ãÿí%þo‰ŽnÿwÙ8ýKÆÿÕ?S ÁçÑ` NÐ?%ÄgËß“_4¼ï:C”Ol¯ÚGÍH›,þ›×÷×VõõŸ4Aô{ðžÈx½Ÿ<^§RŽ¡ðø[‚À˜#>–66É,H²)Û¿n°J©OíŽïæ•À[óî½ohÀ™†ÉKÊ!„¤Mœìd6͈±«+µÄ t„ÉÑRlT-èF󮿯EÔÖ&$ØÇfýÀÆ)ð®rFòÆåŒŒŽí9"6Ëw¢D‘²5Αñ´#°|©L[xA2ÛEhºxa.ˆK{}o-ðk0 ÐÒÒÈ¥¨;=ætÃeSh»äæ˜ë”0®uÞ¸ÖÈÀSßÓûgÏ«z[Ãþ–×Z Ï!ZgJ°N1‰¨ð+œ¡ÜctJr¬ƒs–\ ãüº÷1Fßg);öi8–P 'Ô¯”CŸ²iO¦žwŒV>Ð6ÿPŠˆ&K¹E¾„ÿP…‹Ã:zêH†ÅÅ€èïUã=ød‚ŸŽ¡C·¼K B5~ïg)ø b½è(R™³q” ^E:‰ŽCšÖÄ›ö¿‘uÆÁpµôFSøZL•6u)-%¼ûÉø;ôŒ­E~?‡²Ø[ \Óû¦A!Ç´öΠq=vPä³ó¯mÖ…§h¶'½²é›³ÃyŸC - ;†Ü-ÄZ>ñ0þ”½áaf܈ÓÖTØý3zx"vÓÚÛ°*½rk–¬‹Ž5}éòŠÆ´JÓ›–1vcaѨ  @¥,<Œ°›ñl‚;|ûeŒ@¥”eŒ²d4ÞkdnìØ÷NÚ¯Enà{áÖÏ@—~ñ `‡øBn¦”F&Ó“Iú4AÞbF!‡z |›BãDªÂ(äÆ÷næ3’'¾òsŒ þ6â ¥åÖ¨kúz á߯ó…¿Îþý§ZúZªr¥¨ úÞˆíáDðñ×.=Lòå½E¿Ï#>•–ÑWÝY?=aILçÖùÉU'À¸Î',#v¶Ï®ÚG—I@Ö·‡ŒõaæÉ!]]¼g#Œ3^p„Ú4ƒ6͘MWȦô59Q57޾2¡imØÎd(h Û™ E²fPPønÃ>ÙM˜½pkr&¼ ô' £}E‡®$‹nŠ`ƈÖ4 µÊš/fé’Ö®âY¨âÍX̱Y”ME³ñØ›>ÂR€L+wýémŸ.Іãñ“5#ì?11Ñ©Zí;>Ûø±™¹«m ­cP ù¬U’IkTiOIT±ó­¯öRû8ëxrAÝbIjÈW7`MBÄVLhÉg-À=…=c„ú¥ îãÍÖš{w½ÉzÂ讄Ž# s²Á çù e˜È¸$p´’5Jgsmºe~1Ìq)]ä { ÈÅšhSŒYÃL j¢E•ÐfšéýùPVDÑGEÜ„0ƒX#³JÒê–VèOéJÌiÒ”{Y‚@:Ì6Ñu 2¿úÒ„›(ã1 %ìuÔƒøUvH-ÓqìDC¿ ±zý„™ºÏªŽâroHÉújù"Àïj%éÊYVo¦ûéÒr-‰‹)Å´TÂ59ºò R×ãn _ϧt:f“-šârú 妢!i£Þqmšc_¤^XÌ0–“Wß©cy)¹S`g: _Á„ŒW}0e¾Q5ŽKÚäõ‚˜œç•`vC²à¿§«ÄïÖ øïÝÿ½ŠD„ŠÿîüføïÎ_ž7ÿékŽ]§³þ#9Hîÿw®!¿ëë?A›Ýà7îMÈ÷}CÐ) 1 Ù“§äûEøw>ì7¡Ã¿Ûco†–3<âŸhƒÙ3Óö{“MùÐ5Ýçwý;Š Fnö:óÛ老©€ DåjçÐrH¯ZK$ú«E¢ agÈ22…¡³ñâŠBçÃÉ„nË_bÐK z‰AÇTbÐ_.¶Ä [Ôåk‚Ç–ôƒ^bÐK z‰A/1è¼Â—Á ]²ùŒºÁ]ŸãÉo0éJ9BaÂfnNtY‰H/é%"]|_"ÒKDú+G¤w~+DúïH‡ýÁ20épj0ú§u¯½ dz±˜Qg²}ù>MƒÉ šAÛ³Án0ɰÓÍ¢ÐíáÓ‹@_m;ô¾²*3Ä´@»|™YŽ\>— I8Uƒ(%¤8N5b>#Øôåì^“qÁÛ•PQú';hSŠòɇy/ºî‚I·w£ÀkI*emR˜"ÙË+ k‘ˆçùÐîïÍ,}NQï^xÅ1è‹ÂOSg»FžáÆ– @Ü,CnO:̶E¢Ï`å áP €‹K ïBz,#d4;â{¡¾Í 6µQ`½V÷’àòn˜¤‰J-Ï=¨äñ-n—÷¡½ļ‹%.·! QišëÒã‚*`sÔxÞîÏ|SÄVyâ}¶•âÓ;/„O7㿟Véÿ;Ø«mÇðß{%þ{%‰ œ‚ÿ>7úÿ®Ÿç†~/ô}^ÉŠø>Ó¿9à[€eˆÑ¹}€¿°A%ÂZ-åõ!¬K_ß&N•8ë·Ž³®Ÿ3º\PÂ|MÅ­#¾†âa×Þ‡é(bŒ˜¡­ÎI“4Ì•$ÌÃ4ªlšó `DTá–8SDÌH„zV H‡Â#µÌí£7àïZô û„¿…_!ù¥!¾°gƒú@›„Ḃuc—M¡¿<»Bò gWÍYØ¥áúâšÃ·ôTb9F¯X\ÞÛ…°•nTKÐÚk­ù-ø~6ðvk%Þì•ãÍR¡`<– vþ{9'ý5¡`çy“žçD‚-ä›´%µ_þøUû$E¢[­„ `+Èí‚ô¼’jLoÉVß%ø)ZÇ Õ– é-Ê% X~OG¦pE9áSf€8„éâ`p è +òLº\8YP5á)ÈE ®´×áˆÃ~¯wÅ[ðTê¢~˜Å®½ˆwRg ÄÜ\˜¢¤m¶7òyŸäBD¦æã *®¥»ÓTµ'k,Â<¯‚ìË Í¡¹–ìÉt!yr²þ…îõ:0-JäÃÔêÔ;ÎêlsÜV¯îº4paÃ#Ò+ f–¤èÁE]š+Ä ±ØYš+еé9Ev:ƒ¥E}O••ÃtW5–d‘ÒÊy"5%MŠƒ“-¶+Âé"Ã?~•‰S<˜:L¤Ù?­aÏ¦Æ D£9åµ{@]Òß©JýMwTí44|lSdI‰ã}5®KMÉØû+„çrqjÁ­Òÿgì…þk§Z Jü×*•ÿeôÿùKá¿Þ¬ÇO7ìWé賄¡©Ü+}–4[*hQ*h%­ y¿"­ô¡VÂÑJ8Z G+áhÊÀÑJÏd%·xµŽÉŠ2‹.Å7™ÕÛOÒá9¦,ð’Ôšî’,#Äd3'ÄdQwe¦òsZ!85˪‹C†îƒìŽÜe#@b5ë°ÆÕrÙeEñ.¶YLf_B\¤VâaÌ4y*º–Û<[¼c²Õ¨!»Y—5lÇÕ²‹i!´±ÌÍ+[Rm1ïfoVóìe7‹²]LĘ’ÕÎJ\’’Q„VãºlÁuÖ‹ú,KÄÒF¸±t¿æí&+n¤Hfiðì,€“ÂÐf–.\¾“3(æ†Á·ôåËy.sèÑ‚¡&Ë€–‚3-Æ“YÚ°çx1'ü|î¡¿™2–((Iøæ,@Ó¢°foÇš0Ë~_De,ÅÓ™ƒ$ŒF}!tÚK98+Sb2ãÿ&+Œÿ½·ñ¿wɯ½=ÿ{§Äÿ­"Ññ¨àÿ.NO+£ƒC?Ö) ðq€'ç_ê,xþÛpÂÆQ{X {ÉmbX$ˆÕ°7bPÅ*.Xx£‚•f€ƒÝÇñè†q÷q ÜŽõ†Oß{ëã'zô݈Béeƒ¿VÐ…ô¥GÁcSÂk?c˜´G )äA ÚJrš1†© C:«c„²°©Ä ÍšÃß}$bI#¤Gï\ €Ø¥ž#@‹fŽ#´D¥óál€¸È)pªX-0ò~†„ÒàŒ‰-R™Ü3õŸ¤Å?½ ŸN´OEïºâ­ŠÅIÖO¤d=R2ÔS`sAc°™)ÁÌÆ„Œ±ŒKã-õõ—ÈAV«ì““ Yו†hþH†U&}´Bh¥-~ìo­<¥¯SAD§¶á”–˜t[)Sª£<#°2/à3¢Šbî8aÌSíçO\G˜ðhÖI„~¡ÒI'S6Ány_ òŽÎ¶”á'#I6"€2Þ¨3tÖ´?c8y–†ä8¶‘s?CôõŒBM— H§:Rh¡a†Cú!7,#´ö[~ûâìk=ÆÍV:µ½«ggQ¨i /"vVÊöãß6¢oO혤8ðÏA—ü>%ÀooëìbË‹ÀiAu˜ëD»´­þ·ØžQ*‡ìôð{#4*É1¥ìòT{‡©QÁIðšë2 D [јeÞ`XKâ’­¡¬MêKÃ_×-lƒƒ¤#É:=ÇT[‰å1ea·ôï¤!C(жeå¥\[£Òò3@11k*éëuú}ÊQtÝÀOÃOó$:œýÁ]¦Á¯D+&Wh˜¬¾V M©ÈGÚðd;1¦h°o'Û°w¸`#ài*}e’áÊENï.ñýíË(Ø÷ˆƒËÇFD`Šî.$†‘tà‘ò÷y‹FÑ3i¢w¹UB¹R…QrG.RÇćr:E:ÍãVÕ)Áy÷¹b"e ©ÌÃ*÷¸ŽHƒ6“%ï‚ÓdÝqìº0‚'Ë´ÕàÓ–D“S–i+Hž¶Çi˪²BWôRdoÙËŽ[Çö2@vú¥UÊ^X-RöBÃ4ÇSÙ “qäá" ít}ú.§B w¹vI˜„C1S§m—¨gƒc§Åsè´4à)U ÛÀEb²¯2¤…tFÂF?Â\Øgíøqž§Nó&Ê8YÏP6.xë.\è6ÙÙSN\!`KÙJ¢å¨ÚV$Ó{…Ê´å’¦L2ýáMË´Ó¼‰É&ÓùvV‚}5Ç{YEÀìñH6ÌÞ†ÿ^¡ÿ×êîN-ÿ{¯Ä¯"QAÑðßFÿ¯ñ×,~»d7°ÎÉìÅ/ ¼ô´ª–òú<­–¿Mœ*ý­¾y«œ® ÀÔD\X²?U£Ú2+|4'ztàÑ$¯¨ vÀ愾j4·oS]ØÅé«@Œš€›FÌŸ3ˆóízn-C‡—¾Z_“¯Ö·ç¦•Ÿ _ꎻ,}¼¾ˆW-h­&†2Lõ ûA=|Šz5D°ô ûæ}Ãæu »€gØÜ‘Ê_}Pò"bŽ œË‚‰'Y¡#=ð;‡ ÏÔw†0»i(%AËò#„»u¶!ÅÝ”ç@õ-Äö.(t·…%ÄävëÛ2ζKœí¬½à¨_rtí…G}Dß«˜ýj"b§ ºxM$Jx0\4šõo«: d—Å[~ÞÕ¢ãV¢º@/¡¯#ÖtZOæ %­ «…ãDÿ¢ñŸqÒÀÑœQŸµ1´š°Ï«t˜y‘+œsædÁÿLWèÿqow'îÿq¯ôÿ¸’DÅKÅÿtJÿ뉠¡Î©)|4³ÆCGsW¨Nb[ †®×#ßküŒâN¨$×Ä<Û FNÙçãmêsÀËKû|¼Œø3ÕGwšX˜kH‹gHNYÚfvº‰^ •‚„GHèÊëìn! ìèÒÐý¥SHS)¥SÈÒ)dé²t é†K+B–N!\:…,B¾6ˆ_ér N!éÀ’b½Ó`"Õ­€´S¡>#£€ï¼ëÒOdé)ò "ùøÇ¥§ÈÒS¤RXé)²ô¹TO‘ÒSä/â)’“åoÔÆ:¹qŠpM;Äý’¿³/ÍVä2l qÈ)Hl™.œ¾wuB¸½¨/ÌÍÈí!wChp‚ÂS&7„)fÝE…¤G&Î#‹Î><¬²¸„àÔ²³Á%xa-B?,ê Ó ˆÏ% žÐL~1-8¡ûKvÉ<Žæ÷ÈEGÅñšäê² )‡CGeT9ÁçA@Þ'Bý0eòÈhqOisÂèì6nQgÄ¡ë]’¬ƒ'tšW1Ùî92¥¢­)ƒ'Ü^²oÏ…]4ÆÏ :i\âàÉäsÑ4xVäs1ŸkR±~Í9§Õ‡Žy{'ec’É#£Í{àræ>tJ¸Ÿ¬®ž+œ'5¦4Kš\7: ôì§O™…$Rò¤ÁºHGb#“‹N€µTGÀËcµLs¤aŒÕ–3EÖ¶Wä#ÖqŒÕœN5¦4™ÖòM¦™ÇXv×Äú[pž¬­òöG'£×¼Évÿc…þ_ƒ ¨Æý¿†åýU$*`ÚýßÈÿkç/ÓUŽéótÖ$ÀÔøuŽúúOP.7â ^R&ä{7eô“âØ4OfSòÎâûU½±áèûµ=öfv@¯3ÓÍ1˜=,u¿7Ù”ŸA­ƒÑíp~GpêÄõ Á±=^g~û”6 ±È_)Ŭ ñ£z&+ÝоZ7´B”b’Èý¢>hÙhpuAË‹«Z[þÒm逶t@[: -¡^: -ÐòÄ—mœœ É™3Ù›‡´êÍæœ6B’—îhKw´¥;ÚÒ-)¥tG»2w´ÒméŽ6»;Zz^‘WÚb]ZZ\D¦[§³z´uòš†Iö…¹YŒSÛb}Ó:8²Û^ŠãJ«ÛÆ,½•îóÒêñ‹5®–±C]áaRdÆú Hü¸ãÊ—sW[ Çéålg?n˜Gõ‚ƷŰþ.h‹ô8ýJFñ^–Þsöć)e/ó÷8½dß³ð~U.hq“¹’MGÃê¸íýÈÚÑÚ ¢¾ç³æºÆlOõ’iõ-ùÍÏüôÑ.ÍNcóvSv/™/èivA/Î’ßX'wßI#)‡ëØ"FÒBþf‹pè¸@© sY<ð/4ì"'ÊÙýÌ.{ØE´­ž´ç´eZz2â¿þíMç:NÆUÃj ÿµÔ‚ÿµŠDGpÌìðéªÝ¼Ä?þ®w®N+mÿï¼Ð¯vXWóìôüäðÚû;˜ Ò¬÷À}÷Í…ú†XÝúÞ?½á¼?åTü/Z£î„5ªö>Þï}àoÇwhb»ƒçû5´àF'ÀƒÑíOokØßòª±ÜAø?ð©±Kjye°nYƒòh†õ5ÕÞäjê˜ÍB&_?IFŸX¹Íz£#Nk¹ý†=e³‰d }e«zÇm,6ÅÉϘ á;êNš•“wm±÷ùÌ»ÄQy{v;¾#~W¥Sq<G`Ó¹DG¼ò¹³ì¤C^@rj;Ì«»8õ;ÍúÉ¡­ñM Ó2Æ*³¡úG§0âÏ‹K}Ý" ¼¹4œ/!©ÞGߣ›f¨9ÈãΟôö[4ë_ñææw4çÃÄ?€U)®fcjõæR?¯7[Q!½ùÏÁpЛÈ6äl….ŽRM!ün[£#f:ðÀ’ •Ø øY¢yE0(†¿×Ù·ïɇëë¡í3ÖU–ËyXT!þXDŽnHY–ºŒ6 ãCÂP”Ò<•¾ûÝYX=ç±ñKÊ^GUP*9»´“.¦ç?’’O¿HÎ_åôË´þÜö{?WwþnÇΪeü§Õ$*Ã|ê˾£fñ{m¿¹’u_ð5³÷ÜFw}×ÿI®ë1Èö÷Þ?8Ó¢k'@– XDáHxå'A‡õ¯ƒ€XåÙhQÆŸŽñÀ‡Ê„¨¯¤ ;üÃ@ùó¬è¨C) -«€œbâ4¢#£P9€a3++„ÌÛÐb,“»#çæ-?’—‡:)â°iÇBOü°)ï¹R¢#§ÄÇ\«fo±í°ª<—Zq2Îÿw+žÿý˜ý§Z+çÿU$6jcóÿ›ÿVyî#"Ê…ã™ë¹Êó¢Àñ(å”ul pw pðòK€JÁÙ@/´àEðéÿÀ6ý&CŒNþV$Mý‚ÎxSՉߥ­å´ÿÚ’qþŸ®vþöâø`¯œÿW‘„Ö׿ÿ›ÿ;+™ÿé^´œóŸŠÙü»›LbÓ|'ï4ßyùižm6qÊé,4˳R÷øûŽW*bµüX듦xNeÚÖÞ¡¡åÿÆ’qþÿwÅûÿÝþ#¨m—óÿ*’˜ ´ùÿo6ÿ¿Øg‘+à}°óþÃÎë\Äq …X‚RIɳVøûÕ¬"å"‡ x4qÅð·}"5@PW¶h0±!ñh@Ÿ&/ÜZ\®VžLóÿ&ÂþÊüÿVaÚ߆ù'ÜÙ ¶ƒêÿw»Üÿ¯$Ñ1Ž?‰ùŸÞonÖýfcM )-Có*öXCý¼¹ÉôÏÕhðÏÎÆ—ýÑý´ôýèY³7€b z^£?y€ û™xýk×?#Ÿ»Úãú7ý ƈٕçHû:$r0LภMÒ­Ë‹«Ã-œç›Ä« ¹TÃÂög0“¢S½fròánmcÎÖn{ÓdG¸ô]“9®¬çUk²³R–¡‘!R¡Pò¬É˳xå°äöq•1éÝè'uAx;~|B/€”ÀE$¹CÏް-îÒhQyY‡¥èeÃÿ»yvp¨uªÇ‚1§IRÓÑ#™ò¤˜ÏØÑ‘y¸¢îIë ò2D¶=þ9X¨ÍÛ>Öw3ž}×+$ÁOnú³Ám„#dãˆí¯¼û[ru5í{ðÀƒõ!uqÜyïêï8Ù«wšGG [#ìÅ»þ¬;£ÀáóÉà‘ûBzìÝ~Gl>¾øñ}pûV%DºG¾Ô=ÒÍ`æ}ð¦ýïFVýÝš(X)Š`L‹–‡„p ¬–ä6šÐå¬Ù3Ûe]°¢Y_‹7¢Ç )æ5ô ávØ>»G$a÷ÞDy&9ÜÝd=À(g<ÅõîˆïNæÐTö%MýŽâ°ÆŠ;‚À–l}>ÜÚßcžÖÈX ¢x;ñŸM¯Æ?nè7äôãýX ¹Û-Á°VÓy²»ç ë;SX†Â¸„û:[j{„Rúð|'>ØÞÑ?Ø©%~°ê`ËeÆox»ÛÆ+ô5’ékÄèk$Ó׈Ñ×é}KèKèÛàƒÖ·áN5]Þ}Ã0¶¨˜§á†yøÁÐýν†z'ŠƒòuCþZ Œ_28˜kvRÑí˜]pÉŒçeÎ-ÓÝ…iýÚ{è߆ý¢êH^ÿ5‚ÿ `oƒ½zþWÆÿXIb¡ `!õþÿz~ ýñÇÿSLúãÿñèÅ(¦r™háŠôvÒïÍúap3Áíw`Œ‚¸E¿D—Ö°¼&‹ªo°Ýx"ñ "¿û¤’:øU€Û”]þ>M`ELv%PÏÊ7,SñUÓþ®–‡ýŸ–ćãùkuÛ¿²T'QÔ¯®ñÓ‹XùäÖFçxŪæßloˆ” ¹ÛzÚâ%‰¢§®~rBÊ‚ÒëúîpJú•;ÆíJT¬÷]˜Üw¡¥óÌŸÉÜ4|y ¾´÷žá³¿íŸÙ*TÛXKncÍÒFógr•†/Ä—ö6>ûÛþ™­B>Tù8f•)sn;æñfT‰èˆ´Þ FäT aîÇóITít JÚ?¼»ã7äX>úGïOˆvÁr¨z ²L¢úÀ+ôÏÊŠFŸ¸ÜCÿŒa¥ÔÿÙÃ&¢baìÀ"Ù†Úô,6Jäww”œmìß`3G‘€¢)ÉôØC3,0íÝÓ“[ôl sèÝÌûéåw}HÎógVÌÁ=/B¥¾%¬(ñîÇ«:¢'NQ(Ÿ§’ZÆ‹³Ä…°Ú+¼×ñÞ,ç,ÿ´ý÷þÄBa99jøÑ¾傺ÛÇ"fã§Í!Qbò¡…¶–Çñ?ôìøæaÓË'ƒû $ÕGé¾c¢ òàvØïX¡ÀÒÛ>sÆ?Ç?i™ô„Zx9>ÝñS±ð½üé¢ùþ‡To‘hóï~ ¯úúè®?!Þêñà OÙfÏʉæ=íM€³á®ûóý*>ȩ́0Ϧ3q·ßÇÿøÞ V™?Ý!¼NÿiFÕjUòÑ6~Ôÿ_hîi´1+h ðˆÏ¼ÿ[a¢»ýX…”6AÒÑ”ÒK¢6ôμ]Ì÷ƒÑ€< î½çñÄâîí€TÚðZ-‘¶€/3òS–=˜àEÇIøïϧgü÷vLÿ½ÏðâWaìýÿø?Ó }ÿ|ç0û’ôžÈüÈðøÿ±5þãÿVhµkÈQ»µ?þhr: ›i@êå„ܲ*Ù>УŒ´[FÐr UÝâ#øwŽÿrjnu·ü7£î–R´4uZOîX…wŒ”;Vñ«øŽ6ð.âÉåÉ«õŽÕÊYqÇj¿ã,¹,9ÐÉø›“qÇYœZáœ%ÿ2 ÿe”ý±ä_Æ’KþåÄüˈû—ÿfDý{ÇYòw¼{ÈÊËELeŒÿ„¿ø­Ò0^X*Yaw¢°¿õŠRX±ûíh £µu|A8ê÷ïèìLOÙL /éßt¡¸ øóãÑðÙ6Ây‰†ç"ƒ]i0_îB7P[ÙØûÙŸÜ {âÿ±ë®³Ìk^|·j¿ílÚ/,Hûáéé·þã?(µßnè¿Ógö/ÿýDþE­7›ÐG3öjöÄþň£ä9û÷iÊ?ùÖŸÐBé?OüWÈ~†‘R u¥ˆäÝ2òny·ßÙïïü· ï–‘wËÈ»eäÝ2òny·yPú„èNøwNKŸÐB'ìWÈ~†‘ u…‰tÞ1:ïwŒwSþ[ÐyÇè¼ctÞ1:ïwŒÎ»ˆÎ;ÊÆ;ÊÆ;ÊÆ;ÆÆ;ÁƼ¿9yÿ2òþeäýËØøïwþ[÷/#ï_FÞ¿Œ¼yÿ2òþÈû—±ñ_ÆÆ)ÿ¥lü—±ñ_ÁÆ¿u:_~H-®cþ`{D:¤ÙPbÿN¸Ü?ÐC_Kñ_>jú¨±ðH¦ígþ/)í–—vËJ»e¥¡\gßë¸$?D"\ÓE¸ÆDø‘‰.û—||Ç+ºcÝÑŠ¸ÀÕt«1{$3ì3ÿ—ö//ì_VØ¿Õÿ2ªÿeTÿQý·^è峯ñG±žò„ñ3=±´ðÄØðÑÿjK OŒmO°È«dý[dø[dàÓÃD äÿÐç@Þ~V¿h~!YáßO'õÏ0—üßÿWÍrQoã‡ðü?è¾ä?žÜ21 i«Bc.‰´ÈX˜ &ZñÿA÷ÂÿQ*ã­ Q†’QÆÂLD±ù<µÉ*I¥/Öµ.ôÅË$䥛@i°ûI¦ÄŠN¥5&e.´ÆËÔi5k¢†×þø?ÿ/î‹ùX#px8yô6ï½ulÝoÿãaŸÎ.0 rv~ umÞzÿ÷ÿãmŽQš_ú|üWO&ûÏ´X÷¿©øïí˜ÿ—í½ÝÒÿËJ=Ï"7‹ø«Ã\þ¾Þ»_YýΧ}Œã<ë‰|fCÄŽG¯û‚˜ã 1£sàSÿô<ðÛ<ï îõNÏt x'òÜ7x'`Òdtìµnr3žè.ïtG»ê§8ôºSˆó_9+N™›ó'"±©U@ÀàÜ]“˜uÊâRNmW£V /§΋㯤—W±KªØ‚Îñ”í0D•²À Dàü]§Š¥ú3ÄŸ¼“ÈPSóo«?wÖxü)¹U»Õ¤.£?~,ˆyþÇ“ÄÕÍÿ»µ0æÿ­ZÞÿZIbãòªqqvƒãFÅõy'ÿ:ŸÿýNÿí:­è T7­ °Œ¼K !Ó´õB·¡wÕÁ#1i2÷¿äÆÙ× ª¦ž²NXÒÍ0ùö—Ô¥³}þyÞ0ÇGs·a²îÔÉ”<‘ T_³ë2±ÏG”ßRPðµòLFÃ»Üø:êj7θû_„bÆÊf{ƒ¹Á•&5–³Ësv•œ]uú3ÇèVŽºÓ‡ý±2ºÞÑ#Yƒð‘ºôE×¼IXo«ˆI”3®:¶Yuti|Hú¯hÚšc[–)§Ƕc¥RèH– ÿÙà‡ž1C9cËXkrÆši5â½ØÊÃ8ÿS›éªîW·wƒØü”øÏ•$.|ÊþŸÝÈtšðÅmÇÉ™NÀPs‚3RvíÔK?GLæRÉqÇ÷©uâ[Û®R¨× ÌMå[òþþM6–ñ¿Òø_A<þG–÷?W’,㟾jçÏ.g€ª:a«ÿÞèŽÝŒ›Æ1¹ÓùpöªO8 ,à0Q½þÇdæ ÎŒÕÙƒ=³6_ L˜+¹ñex¹ôÇ/8)þFÉ<ÿ¯6þ×vm'¶þßÞ-çÿU$iªæÿUÆüÊì‹X|°/Vnr°/æ céᾚ'…û"›âëP ñu˜)Ä)ùa½¢ÇïÖ‹JÂòÂz‘•Aö TÒg¿{ *­Ùõœa½êeX¯‚Ãz1îÖ‹æüUÂz9'óúo¼RûïÎN<þkµ<ÿ]IbÃD²ÿ6Ϩý7‡ñ÷Å̽ °ÉÀë{?}r\"~?;£ÁdÛXiä- ¹ †Ü·f¼Ý+Âxë`±ÝËl±ÝKªIzÎÌ´I–Ù$cld•ßm‹wÛ±w;âÝNìÝ®x·ûºlºY’qþÇû¶Îu©ø¯˜ýw{7(ã­$qAUÎÎ.ßÚ ôä#= áõž&ã»ùíŒX…~ŒÙ*Àþ¢P¯Eì:ËZ˜¬7(%VƒN¹|°.4Ó ]E¬ÓUEQ‹ Ö7Ž&¦¢Ö;BÒÉìO¸’¶ÚØÉIßq«™ýÂÞÐ0ú¥DgkŽu FWëü‹®/Öيð^@DºµÛè%,!Ìó±+€”ùg{çÿí Ø¦þÿJÿß«I\ÊÔùŸ¯ `À…Wåå. ®.ÎÏ:‡±%A“âËXTQbYPoÈýŸ³þè®Op!¤w{;œÉ|ͪ»`&§õ¡‡Z‚¼êßõ‰,ô·G¬V||£ÏW­ òE¥TEeÛÞ È9äuåäzãˆLí}ë{SÐðر7ýÙ~q„H#¶»tb»‹ÛeÄÒTÏgN]&Í t7Œš¶‡ËT¯ÊdàâðÓáÅa»yØQ„ëu!øDÄ…À©æBNÆe"ùT´=\q£yĦ7üÖ¿™À°›ßEß&½Gºõø4žÌ&=bšžO¾W~O€•^{¼åíÔö}ïrL{láí:Ewñ žnÑ»=º0¼Ÿý@ÿ;°)– /oÁþÞ>Œµ§§-XH}ج…5®Îÿ¢¾u.Ï. ‹*ÝîééÁÁšÊ‡¸ÛÊjüwo?¨VXcÕ/½¯G——‡DÁدîÔày“ísÐJ£;|+B<ï}ëÃèÜnAõ_/kìëøµ°›iTvP¦ì¢A„šûÉøÑûKĦiÎ ¶aâ€íßøÛÝ&ŽþéOftóÌÛ[U²¥ìͰ–FÖ²Vkh—jŽ'êƒ?òC\I_}Øi^ãT*“ï Ÿ.ú´`R#ÌN‘ìyÓ>é\ù«ê^5>D_!‘,¬ßq¤LgÏÃ>íÎŒÁl}›ºŒÂÛ¶®ýÌöRxɬ[ѨFß‹F³¨aשÅ’÷D‰­çõÖçKe{Â[ÝÔ÷ðçh¢“Í‘wƒ)Á>] ? q ºy7è}zCúáÃBC¢Ç‰±¬H—xÞ¦¤Š÷ Mg#ô¦Œ~ºi^¶ d×7ëØ¦Š1›xúWŠ^ÿוÇ'á£÷®ýyûnôÎÎÿ­„Ï/éç3ýówŽß7é÷·Y¾¿qKp ÿs0cNéëM>Dl,=ÕØm}'À,UZ½ºZÊ©÷úìdgÞ°>¢ÿíOÆ[N¶ l[ ¼ç£Û‹ÐØ:q£òÙˆT‡ %U)E¥Z§ ÎÓûgX½Ó+?­Gj¯©½J V¿)ô^Yè½r£—hs¤—(Y)Ù§¨´³2R«å‚§WË6‰Ð惣ÓÃ6ÙšTüòôðøhMëe”aÒ¿‡IytKb(JïU8;Ùíü7rqëÇÁßxxs‘#erÔù +ÈqÄ}}?9áü„ 'IÂ5úÛ0zdÛV}ï˜ì›¼¶!¤nò®ˆ¨lzÇæ‘)ŸkjÇMÒ3fGUh©–3€ŠÛÄj×{7Ó =[^ƒÿƒEèȰºRcbÑÆ¢Ç\îÇ`ÚOÓËâ @œ^ÇÔ­R[’ÿtc!;GO•’Oèn&]%W+Å\ÓC'J7j÷U î—Œ½l£•|`œfq ºå}Ån%™ªÂä³ 9Ò‡ŸŽ¼.ñØÏ鯸-cfLq£ŸŠR]”ºÅI©>º‹Ji×IJŸ·H¿³|-tÞø¨Ý'»¡}yÜñ‰bTq‘ÜnnÉíR¤N.É%Ê—Ç‚H± N[âÝWéâ\(_œÛåå#êê@ ®`':Á&¼ÝcSäIïFd…¹ùñÙ;˜{ÍÉø_zE®‰<€lg¸h¼MgÎz1ÀؾwÂàÓAô”úù.Ù{Ù+xfDXûÓƒ…ûÇ×þq×où­«ó€ÎŸ¶¯ñ?]Ce‡?IŒ©¡éŒžG §Ñ3é³ÃkhM[,M´#…ˆ¦â†à'ÑSÑQ>ò -òüç'¯²Õ>»Ü¢Ñé±h˜5fIˆ¿»äïh (ÏÕ|·»»Åªæ¦ ö”ÙÌÙC={;1{MÏ{Ó¤üÛ±üW‰ùwôü°îÁ°¢Öñíiþòƒþ%7ÜXë ª†OºÉŸˆöË·Ïè§ŸÎð®^üSr“Êdå=|GÆ•lJÑíô»?çÐa‘/ØM7C96 säú*tcôK¥J…ì¡ñ%¹UHŰ‚s9>M‚î43LflG:ñÏ.ßóŽ¾Í¾‹~ŠÈNÙö¬Ï'LŒæ‡K ÜÝA+lƒæñr»j‹ô1ã,!飧=BÛÓ©Ô³ñNã´íý*l}ZíŠÕN«ˆê6¡P%¿@›PG×RG7¡Ž®TG—ÕÑ5‹P‡°\9-¢>¤·‹ù5tmǽʄ/:z··0»ó¿sÜ`Â6å™3à¡öSoŠ+ÐÊß¾G{f~êQtè'²%ÂZvÄjF !⃠Å16¥q¿œ­”À…ÜvËU¶…’9,ž»PÂç^v³”'à SCgIU†îUb+Ö9†5t«W¿k 䈚g`[Í­ ]™o†Ç"×dîvÂ8w»¦»Òfò¶söü 6üU¬N¸ÔÇ,éºQ:Ðø 1Ùˆ!4LÇÔ„Ÿi| Vš ™äK¸®_§ß]ÇÄï¯#ÖÉg–Œô¸éœ6™³H8íúu%ð7[Wk¸–«œúÇ­[јØc¸m¤j½^imùÇÜþ¯'Kïc2^NÇDø},C&v£‚ $ùáØoV<¹uÎÞÓe½Ó5v%ÅGðÞ²úQ¯zá'uh¤ó!¹×}"8°ßGv¬¿4?hæ‘T“d‹I‹E¥§”¾ŸGX¥Üëõu~¿sßI'cêVŽ™)¢BoqTAøw,õr&¡óH Âüì<ŠéfžÒÅrÚ®ô{FÛúÓbý£Dq:4-3Œ8Õ ˆÅáÙÉýv?´dÆa½•á¿Â]þ«Œÿ°’De_ÁžžÒ…iÝ'ÿ4(LÁ€5à¿ kŸÍ`-R0 åÙ±_œ¨ü°F+?š¬) 8“ˆã6ÿ8¬Íöã§ lÌ×È¿ o゚ ìË÷h'ðzDQüÍGbü#H2éÑ;VLnŒ`Ä|¨ÿh’w„òÛþ”¤ ‘=ü˜Ç)÷z<&ðÖrr ÔßðçÎ(²zYÌVËüþ1Ú˜l>%7”‚$øÄã|8< ·€Ö›¦Ìꊅ‰1£Nx/’¾Ð2õ›w‰ i7Äë'Ã8ú"ÚÚê„E‡í¤]=É ^'fðèuC}Ý_˜”wíÍÒB´½DÕÎÃ?i>($Ýâô+o$WÔˆ#•Ã&Rp"僂é`Ã:Cê DSÆËwkî¸DQwÃZwÃR·g$ ‘L@ é˜ ŒŒ!“‘q c.œ#µ×¡rG: Pý¶aï…æ&ÉèãSû‡‹#ñøû%‘:ô‘änÑÜn@È:î¹îÙéøVÿ¿[ìŒE"FóÀk©+г[eØÚ©á=a}-·n¨µ˨Ѯ½B ÑI£‘@‚¢¿0klÛÝ‚‹)I°ŒxH¥*Z›8Ôó^ŠËhÊ€«†X«Ø Ƥý4¶“ÆqÂ7],2š¸ÒHhjtíf¢K“†ÝbÐ:2uBÈhYÈ Íªœ@ÅN¸)L vŠ~›;Â?%ó‚4’óƒý!OG>o`Lä;;s0E ú`fûéê MðßI’oüdTŒ_±s*:Ë©¦õºT”@½œøGkQwʰŸ¾È)ÓÐ%åñîNDÀ`JŸc)š¤ *S±\0Ð;™4*™™õæ»dñÙ+Rq©si±¦9ƒÚÒ5g°½€ê ¶ SÁ®›î„ÝpnÝyì'â?‘ § Ž43Ey†I|ç¨<ƒ]ûÙ+Dy&‹˜ÑDVí£=SçL©(]{² >üVÚÓŽE SУ9ð‡¸Ÿziü¡ ÿ·:ÿoÁn°Çÿí–ñ_W’¨ìiø?ÙÿÛ =¿½Ÿo‡¿‚Ï·ŒÐ»Ò›W:p3ø’ÜÞ´)ƒéù1æTLq$–fwÖœŠ½!DPª¤ŒÖÜÒRéÉHkéi…(8ps4mRì‹Å)’:Úuš»S$¥œÒAÒp´dØ/¼I¿²o¤8Ô¤ô‹G (ö|»Y}Wÿ.Õk‘ÉÏQŠÓ"ÑôL÷¥Ó¢ÒiÑ/í´¨ôQ$UYú(R )}%ø(úMý¹bnŒŽ…J·B¼ØD·B®˜‹ ×ãè—ô÷9ôIµ4 óðïîº' ¸)Æ´Wè…g ~uK¿:o&Yìÿ“Íÿiöÿj°»§Ûÿw«aiÿ_E¢cTµÿ_T"Ã?3ùSk?…d´ù‹$›¹Ÿ—¶ Ãþ…'öqç9é`?+6¨ÑUh¾þ¹þŒ€®ºÁHFwfX@Û<±Á{|?ËŽ&|˜üéÏËa‡Õ’õ>»é¾´1ÓômÌ–ËÈæšÝ¼X„QÑ{T QÅú2/:˜ç»ÂhCËÞñØ!šK­+ž»âuÄÞò"2SÆ É q\ýþKâ2Jæºf15—eÉ<¦6Ì_Âʘlå‹“­|1£`ªµ.vÏ7ÕZ·§áhIÜW7ÙÜ|°º]±‘O?XŽ[ñVo’9g3q'˜¸Ž…‰«m¶o)XNç’îã—ä°&õ$V9…%ŸXN¤Ò¤êâf¿RƒGxâÈÑÜd:.»ufJZ!†ev+'&ÅÒi(!ʃ]uª™;ô&Ý{.¸SS/¬»ëz-éjLìÑÕÌåÖ©ÛæNu<¼ðÊÁ×™Œç£Éc¸²û?ÕZµº;ÿÛ«•ç«H|à¢ïÓU»y‰»ªNûâ4¬´ÙÙŸÓqŸrº—ýHï:Ã!Ç–,tÔŸßw}<^cÞŠ{|[ü¬×ÉN‰-V±€¬:}Œ9±¤£u )ö?½é'³Š÷MtÜ#Ú§ù1°ÞA¶ƒCíN" v5—òªæ‡´ÅÙ‘·8!gÌéø·sdïlKYökx—f0‚=J_ìÛðQiçÏÄÝLÜÕ׋á-ëÎõ‘ß>»8õ;°X=ôv]bLÛÇmïwþ¼¸ŒJ`9øF  ‹T²ÐÀŸqŸM@šj”vÆ…ûª®Àz~mMúLÊEZ7/Bóá!ð6ÚB_*¡Ã‡ãñžÃRwðOoˆÇ-³1]+s @i8©Ÿ×›­¨Þüç`8èMžù>û?Ñ;²I bSñÚ¾wMOÚ|J£OhZS,ÑlAIÖV>9Öâ aª +'²µ+ÀÇÓ³/Ÿ–ÃLN3`«àÿÜTó¹/^^±,‚ȹa î)®Ø}  ùùÌ»ÄÃ+ Âv;¾#¡@¼ù&@œ0Mñ¢Yì}ÈCÉRí ¢Ã9ùlçH>‹ÄÑc\’±²ÙÞ`ë-Š&!›åì*9»RNù€L^FtØINs½CV#¸‚Xïè`ÝÇ&6Ù;o³éh.VÄG¥‹D[ ‘ãèE R[hs¸Ô7ãÙw™ç´".‡Uå¤ÉÞî¨Ùz«£FGmÖ›¬´¸f£Ÿþ(ׯ/Ùæÿo«;ÿ ¶ƒþko¯ôÿ²’ÄF²:ÿ®tê~§‘yÒ÷Égî“ô-Lˆ³Éüvæ}üÓ‡É16W“lé3°|Ø‘4}^øg‡ì(âïÏŽ>·‡PêĆ4Má~·S_C[ùÝû²l'mG1+ÂÍhN©º+FK Nxtžþ€›¨æ·ø/¼^¿.”_+¿ÄtOçŸ uà ´D{[ØívÑÏ5©täFªGþ®­_H4AQPÀ…DGD±O˜«£çi@žÃ-Î+º„i ΰ‚ß7ÙR]e6~xÌŠÛ¿ Ãö¯~~~ÒÅcCïôìàèÓÑá÷ùè¯Ãv‡:ÉøtvqZG[‡ï}ñQÿaÎÐkt½¶/.ðPš•Té\¯¯_®y¾÷õ Fî€аƒ£fýò•v~Ö9Ü"Ežž¶/;ÞÙ'X{uÈÄÛ^9 E‡ëÊÉõÆÙÖ¬ùd™^ERÚ›¯ë„š·A푽ê<¯ê³ F¤º?"e¬Ck@‚.>=:©_@û¡™°÷®:GíÏì¿ðó+ãëÑåÎï`ícçÓIý3ðÅûRïsUh ¶íÓÙÉÉÙW,¹×‘#Uà7ƒ­Ãªô»ÊŠ'Z†Í~K[›JçKÀË/A¸F~ÓüÑoúŸÊï±._>V<‘h¦ ¿eJBBI®ùÑoR3ùMÛ½§m%ï…iæðУƒ‰0Ì«{‡æÅÑ91±Oê—uØ:]Ô?£”°‹3ì[UWj7i³¡§ªfÀüÕ0ÓXeÊ$±s-•õ~<Ÿ‘"É$ç¾0lKUÜç7þ÷4éßÈKfr#ÀœQ¯¶<…O{ßúÞf#´ƒÜôg?úý‘ ê°AÙé.âvœâîâwŤkuŠ-$ïpRG¤ú4„§0Ô‡5|j·IÎP}¸Cr†”ºE$×8Õ.H;þ'ô‘`üOè_~=ó¿úËöÈè„‹:diw.ÏMž z³zx˜õµ¹„ 2,‹ÃÔG­ó^žIhNB®59ÛcÇh ðF2n@qè­Å·cîQ¢“6¢qq¡¡žøw{UAm!Úqd0YücµkÞNÕª~/×µãdiÔ†í5ñÔ×ÇHL¢s1á'€V¬›÷¾âWÚ©Yë§Eì$è+ì[þ^'ò&½dGI_× tõƈW˜?J"Úÿc4¢¶IMÞ‘Ú¶]pÛÖ bó ·m[ޤ¬“·ÛÉÛqo\–þ´³bwY¬Hïëu¢hL~ò}Wz½(Ï^ ýåó÷MeÍ·ÈtÎQíÿ>-†Æníü Ïòáw®È©éÄæóÙBæU·3¾w‹Ny°aâ¤'ˆŽ{¤|(ÞoW÷wiöݽ½½ðpÏßÙÚß­nïn~Šô£iÜVRÀ³0ÆríðÍæ—̓MZ› Á¢¥4ónì ‡McõÎá&¾Ù>k·?×Q=ñÂ9Ù „ë8¥êôœ‡‘?ÙªëE‡[›À…ˆp·*táç«“úÅ&VO)5lsÎɾå À)?û“nZdš@bÈ3šo]§”Ømÿ ";8 Ghl“´ ¥¾—jã;ªð=Þ]1 ø&ɱN‡bŒCWxŽ'3¨u˜{—ަ{¥€°ê}çJ’w—¦ò†±Ká` ì»‰ Œ±f<¿8k\]€¸›Ù?±ã(ƹ멌*OÂXžPäYWZ§È^εȵ•n¥µ CC+?]o~¡ã§m‘ô`ÑÔ(ËÏ~Õ0œHFMå|¨ª|‘Eš,=ˆ3STæ™ÏݨJP˜Ÿ\¦íL æ§ óxžþf‰@,o%†©2¤€N‰Ô¹áp‹N0bv¨ÉæÌ¢ñ.ØåêÔ“&J¬Ôß$I])Ú´g;œâªhȉ®¨Ýók£þQŸ†ôi(=e4RúÂ.•3±†ïdo¸A[ lnøº±áëÆ†¯ÇNÏU$Œ+2ÓÁÑ ûª`ÄçñPçχìü1Œ'>!i‚ÁŽ'áE¨N‡âB@kP[?0ŽóB—„XKa`fmih°‹‰©×ÖÒucKc½’É7Œ2É|‚N kð?"!¡a¹À· ¬nõñö¹ØB ‹,±)aâ«>Þau 3Œ˜Ä 6T¦R±_þHµ6{^ž ¯4ϧ7+Œÿ†µ==þçNµ”ç¿«Hl0Jç¿Æé_•«ó“3¿í·Vþ³E*‰‡ÿDZ2ŸçwŠíל„ªa? ÎBma?ãCÓ£zŽ4ß~$¾'9bND‰ »éóãcèºõnðcJ£OÑLƬ?Ù¼ô¾¡¯²©‹/Qä³ç”ä¼ÑA Éu:êäî ¡go8þÑŸ(ß…½Ñ·9ʉì€O¢Ÿ6ò¦ˆ*)›RŠ=Š(¡ê£÷îŠÆ?›cÏKA’¡ö˜Ó>KR Ú²×|Bkòš –WsÑ^WÇ“; \’§Õ–#]-«7XM®­J1‚n(†Ð:…Á:½ö¼ª·5ìÃãWí¶p˜T%ÄÆ†ê³:cãÿÏÞ¿5§±,ëÂ𺞿¢WÄŽWHnÉ4è8߀e!6HÃÒ¸Y$l³-& ößÿ*³ªº«ªëÔMƒ$»{Îa]Ǭ¬¬C>™ žK¥b¬¾2%ÿ˜ê“‹ .“È..¶âÉNÝý’š¥è¯Lº‰í朠0-iÕlúC*"î¡Ô—Pð¤)óu eW˜dÙc´ã«&øÆbNMÉPîà¼_LI?/H„†ßaîeFUh:¦†³³Ñg²\Lnq¶ ©eG!Ìsg0}ÁµâǼƒÌ†“ùgQ»ÄïP¿ŒŸgÓßïàp¨!Kà'RKÉq°ú‰@¿k¤sÀ‡!óÀ&s…|^tp¨¶ƒ}´è¥˜yp«…Ô`34e À«)ûMІÄpì =¨°ÔlÔ/‡r9?â pËsêÅ‹C±SO]c^ÄÔŸê²[`Ô»ÑN¸d’E¤@©(¼–šp7ÓÅ‚°ìlüåkjÒé‰M:¯=ÏKt~î$ ºíº:!|ÛIÏœøYÏ„{ݯãÙ_˜ÓøeÂ]á4^*â·s_t$j¯J‹ ½2ÿôºQ÷ã\†nþM<œ¯#ts¿üžÙÁùüôrñ@Κº^qç°•ÄïüÈùPÙ¾:Íœ9£öN®àÌ$ߛ蕇fÆëÆ•xm—ý´ç Áœ1|ò²‘‹{«[lð龜¿zá|ÆÊ›Üß,z±ÉçªB;ê{ùq‹-xÆ Å®V½®ˆÅñ¢eX Ú‰‰tAI¯ðð'gz¯ž´‹îø-”2±Ä˜Lˆ&s-WxcÜÙB¬]áqãcæ™Sh-m6œáÓ ’`Ç4ÉÉvg3„;³È>Ë„¨ÇÑV£rúÆ’—·‘þ…¸§4y.v/KLSÒT¬mêNä(§ÜºÔR¬fZ¤Uã¯ÚÙï ­œAmœWÇš#F˜C,û ûAÖaOb^jàýCÞj¹"{—df/—XÔÃѼֱ|âÎ<†Øy¼ì2»(ޱ¤ë)]|šØEy#ñ^îáe]×.©MbÒûÑp²ýôˆ<û^}:!™H±#Í”ÞÉ*ÆŽ¦˜€ºæ§í âûö=qvI#p‹Õ•]áók`pÏQ™ðêM$¼|¥^×Ä×µÔëºøºžz½+¾Þ工טU?úõÿqøÿè ¶¯úß#›‚rý_Çæ ¸þŸ'ø†þ?_5ô¿(Ðÿy%âÿÜøi€ÿro PÁÛoätáEƒýEœ¿Ø~xGû Ãéüê€ÿb çëþÛk~mÀÿçÂÒŸ3r,›ª“-ÀMQìøæÛZn¬}ÌË@HckFÒ[Ñ»20ŠQÛ& ÞÈËBŸ‚´L¡ŽYCˆØAPu€jHG: >×ÉgÞ`𬦔)É›¾!§!ÆÅøûÚ“àvó¡¦ýˆhœ~/”ˆµ0U #bßøq Ðhv}Ðh ƒ¼å±„á£Á'PÓ`"e]Ìç°}u\“ùµ{>Z@û1V5'+†Dµ³RLªÒZâSK|jøÔ°Ó¡èÔ—ŒMý ¥NÔ§'jG}%WP9AŸç%èów}žçE} »öYÂ>KاöÙé“=”œã³™zÔ%)/þeb=Ž~¸÷øpg†vžWŒ¨•lÒn)*¢T ¹ÖiIÐ'©«óæ„Èo'ƤC CÒ!ÀçÏD„RÀ'¥DH‰A8AG.x (¢<¼ðâpžþŒ³<ÌSa½Âà—ªÀ’ᘯ ã£++&¥N|©LÇfaM"®DfªŠ˜dÿzB5î¿1jÓÄK 3V¢¢°gÆÕ¬š™[¨¾ P¦úhY´xàæy Ü\ÕcÀÌ „¸ðõúžŠÿØÝ¯ï•øu®1þÃÁA=åÿ¹Z/õ¿ëx(ïHúßOd÷xð‡pÁݳNÅ›¾¾ðˆý@jÍ‚œsG3zçMN=?¦\¡Êku˜ýaEñ(UôÈq¼„Â0:àÁÑ튗Sšq …§ ¥°@ròkê·8úƒp*Åh‹wmñLŸ@•ñ V¶{oØíàQ"¾,`)¯¥”×r¼­#¬Ãz TÏ'ôx£úRp¿˜e\óÒkœG芘àp££gp)~…+|Eª!Oø J*‘8TI²Äº¨gŽuQ/²ešr411"^–òî:~g+/D£—WK•W“Êó ž¡_ÿ=<¬mý¯ÕöªéøQ¹þ¯åa $®ÿ×ÝneÐ~wâ`7 ž¾k„Mòo“‚h‘­â@@±P() ªcoTXܘìÐ0ˆ’ýD³­ Ô’%F¨! ÄàjUËl3ÌLr£ËÖ–#¢ÉcD´Bl:Ó%ln5Ô„î` 2–R«R_MN¢…¹‚ *Ã$·£¹f  ðÄŒ±ÄiÔ-ÝÆ8b:}†#Øþ°‹ðà~ôy…ÙøË×EÀñb ¹íð0l‹Ò²‹.wŸæž)¹5c?&†ú.&%KžÐR!&½‹‡ÆÙaxTµ Œ«B< pMF˜ö¤KRA³Ñg“[êJ<ïlrŸ£`xR|CKÚz3šç‰Ò‹Ûä­/°M&ÆèÒ×Nô$”ÁC“§‡ ᛑqQ |AK.ˆä^Ì—d˜4‘¢7ÔV*ì-ÕÈç 5Âiロªàš|2… øoCúÀ.®uR $;L×I0yðc<ÉÍ”à< †•*'dò—„‡€ó¿,Fbõ#t1…œÓ€“ƒùÓíWçHѾ `dïÆ“/¼%ª´PB ’ÈÒ2­Ä‘ beè×Mú~]q‘’Ú1! gØD„t´äî'C"6'E<*z1·ž“@æ FL¶”Úˉ© d¢ˆQ 'D0¬"þŒ/¼œQ þ0*kIɨ_’Qù½Õ$ø‰$‡×ÎEÒÉ‹Ìgôøž€ŸÑH€l±èµ¡bÁ˜…¬K¬ *ó§›Íàq6ý2>ì4 Œn¥€¨/RAÐŽÔòJÈ÷±’°"ÅkŠšZ*HÉ9QÀÆ8ôµÿJÙÔžzËrs¢›}ÍÀZe<Ôôø¦çÀ7Ýß´ <åh>ôlì…Á§M¡SéfÚ"Ð`·…!ö¨¬±ŠXíVŠ…+bŒJzE,j-±¨••ÝZ¹ØMÇo-/v H…¤Á·£Ç¾xÄÙT~|ß~• ’é©¥ 62=D2Fé¢&óé¢ dລ¬s´Ü µäh>°‹²®»AÖ‡ÛïG7³§á쀬2€¬§³ábš X¸ãÝÓçÏ$õqÿ8ø8œýÝß¡ØO#²Ð‘¢÷_¦¤=_æÁÒÒÇàt¯`iX¶+›¨˜z1fžßW³ÕÐùQZ ö}vÂ^ÿìSCéþåùùq_SÙJÂQñA%ÓÛ3GÐa¼ê‰×©ZŒ6-í¯€ëp, ­`šÙ — œtIÔ¹;ÚÍðX©—ýMä9ÍŽíÖ•˜@Ù½Áé]+–½®&·CßwÕäd+WW"ʄƖ¤ó6“¼]c¾£t¾–O¾¨¦c‰Lz¸g_ †¾+aèED=MõþÉ)«Ÿ–è=Ñè?;ìšJ¨_‰g£ÁÊ; ¹Ñ¢’º«yÔ®´ÃÏxM…#|Múam1ýI-2@Cá±ñ’šï!;ShSƒv! /erG?Üj)£ ›15 I-ÑX{ …mŒ¹UéÐqdâøä«1š†Ø¡‰ù…|ÙP¡ðx‡ïJϘ·™,ûî8 ð"p¥ ¸[ ­FGÆÇ£%1ßï›§ÎAŽ)n“Dfé†Q¸mb‘Âó2f£|˜¦öseŒyX2f6Æ4ÇËqÅ·qÃý ZY7e¬Ì¢ÊIšE3Rô_›)ÕãIáøÅü/ªåYuãáO’3Î"oÆ._áHߟp æÇ|i<ÂýO|?ù†ã—7zÏ鎢Kx)§žN1듆ìžLö¹˜Æ’ïªLÖë܇9ô‰ÿ³â6Eð¨yv¸Bž&Þâ®ÌÊ tÍ'´fIç}BuLŠB» ˆS'Úëò0–­Ë/Çx˜Ýš]R,’×^³A¼^zíþÌ\ÞÁœžÁì Áºqríf åÉá9,‹O0-ÚÁ 0d_‡ ;þ§‰ažzÖd€#³œZ¬x1ƒWìÝ‘™ÇtYZžDVÈh!Å6[LòGëÐì‰PÀÏØG9§hÐ<Å‹2O­\&iÑ'r`{sx!„Sâo†øþcV üÃ…ÿ¨×öUüÇîþn‰ÿXËCg­ŒÿèkÃÿ! ¤€Ð«zøc<ú=î_äŠûgõ7 ï…x¸¡èüBý•ÀŽØQ;Jm´JÕgÔF—›å16’A~ö>i5ÐþÅî·ü˜ÇÅ«Oîq±£ ôö›Â‹J Áâש›ïR€x‚ŽÎ7B‰$x)H‚ìqî<±ËG»ƒóÓˈv§¨ÿi¤;5Æóš°vÔ[¼®Ëµ¿4B4$žOð²µø 12ÆË¨¢9C¾É“Vm.E«Ô/*7?kpó³8¼äÊe-³—½À'ºš›(írÆF™I{•ÐÖð¤/ûW½¬°ðc5tÎùâŒ4¶Šùâ Ì>_ò÷*HïÌkUóÅŠ+Q³ç mžù²²`YÅG¹‚íF©_ZÕcÒÿÔÖgÿ»·_OéêÕRÿ³Ž‡Î*EÿSÓ*€¨Ñoaz —dõÛ¯Ù5B5—Fèh„è—_õP¢rØý&F¿PN©*ÕC¥z¨T½tõÐo`ìç;/Û˜¯ÔÔ•šºRSWjêJMÝ‹×Ô•6ÀÁŸ¬¹sÚòjÜy{éúbwÞKèúj/D×g°ö½Â5å:¥õ›Ós5l™¦ 9C£Õx´-8øƒÉVÕ`F ¤úãC¦M£Ó-¦ÆJ¨Ô`ZŒ^{Tj43ÖVš¾;— Mþ­¦zÉP˜-•SÛ©¨o(k^‹¿eðìymVêpÓ•uhKáXwÍ¿ Ü\›îÔGKªª}bš_ç%ºÑ*9EõœzV³á&ëôÒZX6f×›V×ÎqK]Xq£mæâð£R¤ 0W¥ÞU/×cµýRDzjã´àX›ÙG]ür‡Qál¶¸d^Z½Á±25¶š`)Ëm_=wíôÜFýï·âÀvýom/ªÖSþŸJû¿µ<”ÛTýo‡î˜/úÞ ì…Ét3„œèºE>¶ pÝÁ‚¡X¿˜VÓ†,§nB,øÐ‚¨Va6õpGÐÃy$uÁIÕÄß„óO<Ãå@‰¢¸¹Õ؈ãS0mñt¦Í¶¡„X¶ !¬…¤dVÝLË~¦[L›‡ëUog¡ tœÕÀ?MšŸ&ÿÆB?’CZ|É®-i$Jšó[|ŧf‰ç£Û)Ii SZÇaGYòäR5Ö\Ó†Ò#\ŠÛï®õ‹[‚¦VÔa¤Ä¶(n­Im¾ì.¬ &ÎlOtO¬¨´ùŒcm`ó4 È€–K¨Ó£Ô™uìÓÖ‡,ôIâϘj½ µ.ÔZÓ³¾ÈZ[´ÖÛÕ׺,ˆÁ ÅÐÚ  RA9` ¯–1uhš{B,AG‹8:§TL°ÛéýÓÃdžHDÎ29Ìâ²O¹À °^© +ÁŸxˆµ 2´ˆÇi+¶e JGñ‘<ªðoCˆ…N—ÖoCÕUò7vð×?‹HEXfã`êN½º¶$*Ÿy°iºKiâN7‚´Ò–›&Kš$/„‚®˜­ä^¥§T§z\ÑóûO§´´D‘þdP•L“@«g•”«aBå$µT6ç7ïàìY9šÈ‘o7Gß¼&ŽnZ8º¹4G«¥›8ºéËÑMOŽnº9º¹>Žnfâèfá]°›{¯J[ôµÿ4j¹0Rf”Ìù`R­<0©xo‘ääDJµtˆœ¥ R´Èµ`¥”ÐRÎòÀiÈ—Ê;@F‚d ~y PÐT‹Î?§¬l¹eek)Y‰MÁÁÓ>‘dE§êiøT@u¸ý~t3{Î~€ê(€jJÎÀÓYŒ]mï½{úü™¤>£û{#ÌêéaD؋ոÿ2%íùú0>¶>§‹8NråÊ&Bª~„ϼ¤ë$< {ý³O ¥û±SSÙJTdÀZÅ8 zK¶i}ö‡ÈÓ$ëÒøë-jH°ßä¥Ö°½(Ú‹…8eÚS-ÊËæ%fû‰…ÓÄIdMâ‹,‰[––¥evZ]MÞ±&ßU“ËX2&·ïˆ$oÓ7ïQ:oËÃÕt“ÄÖYG 5ùU`2.˜Ú/ÀEƒ,ûô4Fo9FÿÙa—,B¯ó´š9p– V´KãŠ#ùâ/`Aê)ÁGÀÙp/ˆŒ.N6$w WòÆÐDzÈ0\VŒKãÉH —v±¿äpY‘,0Á4\¼Àa¡!౉-TÒg©µEº×é•÷viÀ›Ûq.^üÇJ;Ê%޲á9øRb‹/£ö²ºÄt¶û´Ïõœˆ¶SlGÇÐ\aÀ™úi ZÔ”µö_Ds;’' £†+¹à£ÝNUxÒ±Ü;tc†Ô½“éi&¹Ð¾f!ÁêÌ£Oü×^½¶—ŠÿxpPâ¿ÖñPnñ_Íîß"þë]»ñ‚À«EƒAzA¿¤pC¬G,¾¨×U†ˆÐG=Ì‹ª¶Y,0 Æë'¬¿­Ÿ:$ûaƒü"b·~òØjx1†ÈâoQ“ q)B(m2lã(Hޏ(êBn ÚÒê *Á7"{¢`3¸¿Àeþ¼0|–;6$‡“aŸx³íêjžoÕjIè ™¢¥˜Zµ ÐM»ÈgQ_ˆSÌÁ¾˜&c¥`’ûò¦MóÎŽ9˜"&-¨•£°l-GÍçO@x:P¾P¦†,¼ ‘ìq˜²ta>è;s}¯-h`˜ÜÐQšKXjhÄù™.Û±´³wG_§ ¯÷­óÆ·F›“ù=ÿü+ªÁÎýh'謒å¹Ñ¸1^Dd(¬Pþñ>–‹5K,†Ñ|»Ž ^ÛV©öñ~LHBA¤~©ú+[öÄÖóQÊ'm›MHE$‹¥Ø£PÀÈÌEƒNACy&“ÍÅåwU| qŸOÉ€î¨húHšøyAQcßâx *¢P¤lq!¡(ã M wÌG_pŸñc|OjNæ$w¼TšÄ¥°•>Ϧ0 ß!þvüó)‹½…à&Ã/ ,nJ `ï47`— !;ƒ=½,ì‚jGe;8Ñ'Á ܪ /„ÂNHêàÉ YˆQAÊ~´!1Öho*ì5=`Ç'.å-9&¯<çš!ç²sMݺ¼ ¹Fz¥ÈMûÑΰdVE¤@©(¼–ša7ÓÅ‚0îlüåkj–±J¥¬b–Ù‘Y/i’ùM°“0è¶{• E¾9ö̬7]Yú•°*ÄÓ¹…\N˜= OÏf£ùãt‚ŒLh c>TKàÇKPfƘoÂàæiiÒ;?ÏhÒ¯#vl,´ü:õDeO€ŽW*h‘ EeÒ'ì 'Dv‡$/>t{0,#ý®,Ò¯z3‡øÅø¾óÓËA1~OYBìë]öÚ6ðâëCC†d…É'\_ì_-¤/]p‚àÓøôø=_øžoKõ£¯tÈJÎÏ Láüì°ÀTTc $ùÞèBéÎèÉKÇ4Æ»ßU 90VÀÐWtêÆàÔx˜06º1 n¬†5æ›Vºµ {ÔØò 7¤€6'›6¶Z²%g1ó²äãòq7šßŽèæç~:}T`GHþSÍQ‹å±£¡”µ™õÄ]oì`mx`ÌŠ©ÝÅ;U'†é¡‚q•—"Û§IÇ&”$‡ÿôYX¢wÂZ]Ö8;˜&P è=Ùîl†pFW»¬>éÛÑЧo¸5¼œ—87±—¬³¤t¶Öºµ´ËáOÓ´ùãƒLez•gD‘A±`kXax² z=ï _±Q¿Ò»åIÇ Õ€páÉÎ#¬Mäo&.Ñ<ΰ¢¼öˆíÞÙ¤b²#f(;ì%ep¸Fá¶iW(h<ØÁÞà‚¢ž¼Av#bÕÜ\þ8ÄŒÏRbÆ‹w–‚L'L“Z™ÅÇ*ˆýÇü¹d‘_,ÁKK¢íxÎjðåð,)‰–BÛ.!D¸‡LèÇ¢ J2Š×%e²Ü¤õm­Üíœn!æµhŠ£,Àá|Aè¦ô%½Ä —txJ ú‹ÂÅ–tƒ¸|Ið؃^bÐK z‰A/1è%Wø<t”%Û_qÖïFO~cÁ¤KåÄ“æžP–•ˆô‘^"ÒKD:ö¯D¤¿ DúàB¤ÿ9€trX&]N'ß+¤îÍL/3ê@6 /ߺÑ4ðøASh{6Ø <"ìt»(t{Aøô"ÐW»£ï‡¬Ê 1-Çn_fæ#+"#Ëçb$§ªa%˓ƩæCÌg›>€½@3ü±Y%²ƒ†àqŸ|˜÷‚ ë>˜tó0ú¼V$R–‘&… ’ƒ¼±´IhžížÑnfÅèsº‰ÚxæMÇ / ?u®v Œ<ƒÅ–@Ü.CnOz¬¶E¢Ï½`åKáP €‹  ïBF,#d4;â{©±Í 65µÀhV÷œàò,L\¬RÏceŸß9ÐâfðŸÚKAÌ 1,ñ±†,D¸5—Ñã’"`{ ÔxÞáÏl)bªÜj϶V|úàãÓõøïÇuúÿŽöªiü÷n‰ÿ^ÇC™RŸký7ÎsC¿Wú>¯dE|Ÿ¿jßðƒeƀѹýF>A‡J„µ\ÊËCX—¾¾u”*qÖ¯gÝ8gíòA ð5•`²øЇÝ|[s£ˆM0b†¶:OG”·„9a˜DUv¡Œ"œÃçSŠ#+¶žUC¸ Á¡ä'¹HGúG-Èçz’‡eáoÉ·~S_0¾‹ñ÷i›€Ḃõ#—I ??¹j˜…“«¦À¬^äRp}iÉzrc9F¯X\Þë…°•nTKÐÚs€ÖÂù?¿x=€µoöÂñfN(X Ë ;ÿ³œ“þžP°ó¼ÎIÏs"Á–òMÚú/f~Ñ>I¡ÑŽ%>§ ÒóŠS™Þµ¾+ðSJšÐysB¸ÚÙªHïP*‘æ¡fáÏtdJW”!%a‡š›4.=bMžI—â / ªÂ<ʰàJo‹ü8ì·êP¼O¥>â‡iìzËx'õ–@LÀ­À…)pÚvïM>‰pi>yCÙµtwê”X¢ÄBâ _fhɵbO¦Kñ“—öWËt/×iQâ° ¦F§v0pFg{œâ¦zU×¥€ oäÞjfx$9¸¬KSmq'aA,væ’bº6mÓ™Sä 3XZ2öTXy,wiQcx |€½\“'RÝ£°Bqp²åcE80]fú§Á¯bã$¦ iöÉOë_Ú³©¶‚¸‹ÉšòÒ= ®hÊïU…ñ¦'ªž Ÿ:ë|_ëRÝ£ý5BÈÎWæâÔ€ÿZ§ÿÏZTÛOã¿Jü×:ÊQ2þKëÿóÕã¿^­ÇO?ìWé賄¡ÉÔ+}–4ÓSÐ’§ •´€üŽ´Ò‡Z G+áh%­„£å…£•žÉJ8ïñz“¥]‰o2£·Ûå9ºYxô¾„8K­ÅØæQø©`èZnõlñŽÉÖ#†Ìj]Ö±=_Í.ˬXÚ7æ†ñ+Þn²âFŠôaæ‚ggœ†63 áêœI@1? ¾a,ŸÏs™Çˆ 5Y´¬œi1žÌ\Óžãżðó¹§þv^Ș•Qløæ,@Ó¢°f¯Çš0Ë~_Fd¬ÄÓ™'ŒF}&tÚKvpV>ÖGÿ›=<¬1þ÷þ~ô_Qu¿ì þ¯ºWâÿÖñÐ9+áÿúÝneÐ~w& ÀEvxzþ±Áb7É¿M/< EíAVöוA1¤(š½QP‚ØÖˆå„7+PQÈ !„Õeh˜vׄ£ÙðþñëpkúH¯Á›1ŠPxÙä¯%D!}PÀØiB6†C{ 0B „@­˜R+t ê Ž5Ë‚®¢šu‡¿û ƒÂb'„Ÿ6|`0Œ'(‹&N£²âJžîcÀBÎ U ˜¡ŒÏ ‘ŸÐPÑ ÓÂʰžnü4À,žµO³Î”¬ñèúb¬ŠÅF6þLtd#:2È.VÈ$çŒÆ 2sÄɦ˜Œ‘Œsã-õïg¥ «Uó “ÉŠl¨(JÍÔg¡”¶Lk„SšbÆþApÊ.}íuMAÁ!-ªw›;$Q ”gyF0e^gÒ*гã K ò8ç€yÂÞA‡A3."4‡ÜNº˜²v'ø„h;ºÚŽe4´ ²LÞH@utÉl“ùÌYóÑ‚aãe(4dzœú"®ƒÈÓtÛð Ú)/…N¨Yá ý$5ÙF(iâ¥Ìè4#`‘Èq„fY*(µL¤#Mú›PØâ>†"CfãÛÅý¯ôrÂ*S@“Ž Ì¶¾ pVwßMÍqôÝÖÙØw¡³õÝ™ê MÕ`SƒÑÖR†£úê¢3‰¢™p J¤‚°½)Ü;ÏŸD~€ymš›êNd¢ ›—5ñ –ܤ¯ýPSS¸ à•B¶ó£‹†ï›v8gs8EÑã mx º“„ tÞ$çÌzIÚP’xòLÓÍ3MÏPáÀ¹†±À7´)8‚Èød 50j9²aënìïáöûÑÍìi8ûØß£ Øß)9ýN“5® cöîéóg’ú¸|Î~Œîïa2߉È"E5î¿LI{¾’³öÒÒÇàtK£4ZØ•MD¿H-Ïï’¸04òIØ {ý³OT¿á‚…Þ_‡—ççÇ}M•F8õYï8ÔCªÉ›¿"DT‡tµ?¾ø”I@ªÏÆh˜w5ÝäÇ”Ò ûKòuùÀÈÚþZA²²—&(*›q@©øm¬b·A¢9l[JÑÂ"’˜v«¿±é†¦Ù±)ºtµ7²9…¯n0¤§E­K}‘)uËÒ¸¯„÷Ž–á½ìXuè/a» uÖÉ{µj‘¼WÓ,süÉÂ{5;v¼¶ 0Û-O7r ÔÚ>—.–E¸¯Ô®ãeƒBÙeØàÄkó\óÚðÇÉËà6pœ«4ÏR2ÃrЀL †â¬—¾.P ©×ú%œ(g(—´´«-eA‡'{ÊÐÖô”í$:ž¢mM<}P(O ÛàÉÄÓ‡¯š§½ÖMxL<ïd“¯îi‹U´®dW ­7á¿×èÿµº_=Hû-ñßky(c)øo­ÿWD|çu yWà–C»3y‚íÿ‘ÀKO«r)/ÏÓjð[G©Òßê«÷·ÊÛ•¤jňÙý©rè•–Y¡¤9‘¤ë’Ú¼¢Z:í!Í !}>inߦ1~ti§/=ªqjñÞ€Î×ë¹µ ^új}_­¯ÏM+ÏŸ SêÁ,}¼>‹W9h¬&…8tú†=”/¢’QÍ,}þzß°y]Ã.á6w¤ò”¼ˆ˜ã1æeÁÄméDüÉaÂ3&Ì® ±·eõÂý[ó¤Ý”ç@õ5Äö.(twÌ +ˆÉí7¶eœmŸ8ÛYzÉY¿âèÚKÏú¤}/6bö‹‰ˆí@x-ð9*ö`¸l4ë?$Vµ p—Å[~ÞÕñÀ­3Du^B_F¬i×Hæ %-M«¥ãDÿ¦ñŸ=1Ó ÒœQŸ•9´ž°Ïët˜Ù_Y8çÌÿ3_£ÿǃ½ƒ´ÿÇÿ³ž‡² Œÿ”þ·J]Èh¦/M‡‹æ®A´0$wŒºÚJ|¯ñw"fˆ;¡<>^¡J¶‰ŠMÑçãíhrËsû|¼Hè‘RÏM'wšX˜kHƒgHÞ²!é7¨}ØM'x” Š=B’¡¼ÊîR3Àž^!5Ã_:…Ô•R:…,B–N!K§~X´Ò)déRÀ¥SÈÒ)äKƒõ•N!Wà’N,!¾; ðnu)„“ õ™yç…\•~"KO‘¯ÕÇ3—ž"KO‘¥§ÈÒS¤ÂxŠ”ž"O‘4€,p#wÖËåˆWTk: þFþÞ¾@ÿY‰Ë°Ä§À°Uº8´8!|ëë„pwY_˜Û‰ÛCî†Pã…?™Ü:T¹Ë: qG#ÎËÞ><Œ¼¸‚€Ô¢³Áxa-‚—õ†©aDçþdbD;¢Ê/•ǹS°;·[̺£ÅZG‹*¿!Œsv—Ûi¯‰Å Ü¥«.Ç’;µé=7ŠŒP_V"9WGQãëÂ4Ãpíæur©.Ã"°Öá²/ Å`x ô‹É7Wy½¹9àæYÏ¢¥4_Fx–\Т£»ÆdGó{䢳âdSpuYЊ”á£4«¼ ó„AÞZá}ðdòÈhpOirÂèí6nYgÄ5_û‘¬“§æµ®Âcš<ªçHGã¾:&Omwž=—vјž<Ïè¤q…“'“ÏEÝäY“ÏÅ|®IãýkÎ5­y8tÌ;:ŽƒI&Œ&ï«YûÀ)áZ|²úz®\rTˆVÐ*©sÝè1ѳß>ef’DÈc‡U‘žM|L.»ÖŽ€W7Çê™ÖHÍ«¯f‰¬ï®ÉG¬ç«/¹œ*D+h1­ç[L3ϱ쮉Õ9¶ä:Y_§ÅÇ`Å~\ó>&û5úªä]ÊÿëAiÿ±Ž‡2¤bÿñ›ûü­3ë˜ÿš/FRM›v4¶~t›s€ñ2þ ÚpÜ âè'Å´)žÌæøÎàûU¶ÞðôýÚ› D€7šù˜¦/~!®z4œm‹¿‘ZÇ“Ûû§;Ĭ£K(‚ã|‚ÁÓíW,mÆ¥¿ƒ’ПŒì™¬tCûbÝÐÆ¬ÌГÈ÷Ëú e³Á×-Ÿ,¾hMéK´¥ÚÒm逶p´z逶t@˾m åˆ,gÎdo,ie+æœ6A•—îhKw´¥;ZÞÝÒméŽVÈQ€;ÚA鎶tG›Ým €^“WÚb]Z\Dº5ÕY=ÚzyMƒGô…¹]ŒSÛb}Óz8²Û]‰ãJ£ÛÆ,£åöyiôøÅ:WÏ8 Þ®ðà‘d¦Æ¨ü´ãÊçsW[ ÇéÕOlo?nðXgõ’Џåpÿ>h‹ô8ýBfñA–ÑóöÄc ¯ÿ’ö8½bß³ ].h—q“™¸’u#cU ÷’~dÍÈm «¯Àù¬¸¾ñÛ^2~¢¿±ù‰ïžíâÜÌá46ï0e÷’ùŒžf—ôâ,øõr÷m›I9\Ç1“–ò7[„C÷ÈV]ÈœËâ©i—8QÎîgvÕÓ.iÛZ¡J/Æ9mù¬üÑá¿~Žf7÷Ãâ`vüùT­ÿWDV½=ò–ÌBÀEÕýÿµŽ‡ÎrÿÅ.TƒA¿G¶Á!½ŸÝŒU>§óF« Ÿ~ŽïÇÃÙ/® *³Ñýøa<Ùý9=l3ñr9ßs1šLà^o&¿µ†÷ãÏÓÙd< š£Ù·Ñýèjƒ{裇«zÓï#ô)X# %êlÌ(´RÙÚdÅžñëB¦x¥:é±'˜Œ+`x¡Ñl6 2¼'mäª9F1®CÁ¾´ñÆ´°€¯‚Î*Éà†˜ü¨è?HÙP”@N0„hwù÷i´ƒ.âU‡_FPðãlLUž„†£Ÿ£[ªœ/ØÅ04`Bø™Ô>›Ã_ %ç,x˜Þ?ÿ¢0¯Y ÎÎáòzÁ.©' ܱ˜BÐ|†šÛfúÉ[RÝíèªCÕ)*™?o ¯,Æ#^¹.Æày88APÁ®oÊã'*-Áóð„…C8á~|ß~夥ã+\ß-.š ½Z(èñ‚)Òé%=¥t2 Loœüp?–•Ö,'ײKzÓ¿ŠxDÞ÷T´ÅÏéqïÈ]­Îxexs?‚ûûÅ(žK|7ð©ß¾8®[að¾ º#ò›tÌ*Aôo^6 £Ù„bEOÁÌúþ¬ßm\T‚`k+Vyxb# !ù9¡1ó&J^´kðæëðŽ|¡…þ/ZôÌ2î_†÷t^l›êþ†ë+Ëí }Ìëÿÿ `¢ˆ]€cýß­Õ£dý?Ø#ëÿ~=Ú-×ÿu<†õÿý~ãºBg1ý²9ý?d’Ó9½ù¯ÿþ×;v\ÓWå#Ù üw®Ý@oBV€¬2t/…t?ðß\æuÏOÛ­öEÐ;ë³ä^HuµqÞ¤#=^§*Ñf ’­’”º)ù®â¿“]þ. ÊÆ€Ëž"Nõ pd• ê5±<\i‡ V+ÙõL5}™Ü¡¶˜–‚ÉI2¶5 £ÿ™ï°YCDâÓMÀ÷‘È©¡AÝ<î‚Ø>Àê%mƒwD”N¾ mfƒ? íO"{;›‘ŽðÝèûø~zÊœð}8¾ÇÅ™4¿ut¥ÀÞ‘nƒ¨ ÿ*»±Ï¬5·Ó‡29Q8Ó-ßwЪO'ÈÞ@ë!Ëá€$ÅÓ=˜ |Ÿ~ñ~ÿ͸øÿca/º>“!$Òuò¡ò?ÿÜò?ÿ³ùÿƉ¤öÅ ÂàÿœäÏxòy'ÿÿ± 2›~ß%,ÎÁÀ“@ÚÀVv¼3Ü{’äÉ,@柫œD˜Ç»C¬+Ù”þ·¸)¥c%ÌçôÎf<ò_(`5Ó>ë¶•Ö·#5—Ú¿*¥Ó¹ÄËǺˆ¬»ÀŠ4퇕òòbLûahF1ûáÿÖÈjô.†Ú³ ×ž!‰ða§Çt^_À[›¬.d5%Ø0|*àN—Û°y§° ù_ÁÆûåÝSk@›*ÒêGþ·ðÉ"ßê·ÿÝÆˆÒJGŠÛLöÕ¤üq H-õbA¾ŒsÿÙ»òõ=ºýÿÿþ|,dãÏ×ý_T«¥ì?«eü¯µÿEåú¿Ž‡ &óúùJ×&G.Í[€Å)÷Î÷ûïd‘lZÅ/ËU¼°Uœ.ß+X½/ŸeõÆeÛµjšF¿”«öË{ôëÿlºXßú¿W«‚ÿß½½½Ý½(ÚÝ£ëiÿ±–‡ÎLñþ÷]ÿì¢ô€,ÛtñÈÚ"‰| ƒA -Qî €ðÐâhQ=y1KÔ•Ö’e¯À­h?®©uU ¶|޺ƞ›†Æãã=½?~¼NžµÀ•:d.~Æ4¥Î|çãIP¹¥7Ñûßl4¼‡R¸'Cîú÷–:7¼ý…©n§÷£ŸØ1Ó%t²0Lü%ùé´Ú5øºëL5¸@¿­+¥Â¨¥àsVW€½b\¶¼}2 ÀíOÁù_KõþÇ£È?=Þ ŠÛŤÉ÷Ÿï˜-å°µŒ@’ýzUÃvsØ®³Û/qØ®s Û¯dØ®³ Ûuþa»¦é¼ÃSŸ5U³†6·”a7žŒBøëWñ gŪãjZ-ù׫ÚbP¤þÚ:ái“†EíÚ²áŽ8½ 9í­ÚïÉ´ÁcGV‚©“r£2P{spKÎ_â˜xÅXCá€%6ŒÊ8kšc•é\×J.Ó-5-v¦imÁþ  Ç›`°{RžpHã¿Ð´üË6¤e…´¼¨¿Ø@'¬a8é­^û¨&žñ,ôÉ‘¢†H ‘)RÈ”(C/úÑŸÿæDî­Íþ?Ú'‡=åþ7ªUËóß:: ¥óß Õ8­ôÂw18 ðW@j¡¿Kßûßþ‹8_´•â àŒ8_¸Ã ›8‹%ò÷g°s?Ú ªÏZF½K¨)ägïã Þ`笿.cÍ÷½ŽûÝd³ësok¼VåþèhÃ+„/éÕ´˜6Óºš´7Ë5)óŒ¨mÝ ø8­üÿró°Æø_õê®*ÿwöKüçZž´üÿÐìþÍ|'wÃ^Ø9 ;—!†Þ“b€…Íã‹F˜ß2„–…è– ¼"¤UC•]Mð0l⫉<,Ì, <@–CŒF2Ùf Nâù:7¿’PºDé 9Ô/†[¿â¸bâûT]1dAû?_¸3Ë$½— â…¼Ä;È9][€^ôÑ‹IM¤2(ä+»ŸiCj[üí>˜?ÝlóÈ)4ã·'ò#éxò³Ï%æ²a®bR³È+Iô²å"]ÆË7ò•i8}#a9ÇÙ7˜S—¾vé*te^W{ÏÕìQºËÜç6•4ðvzÿô0q´q©ìΩ_I:S#åùB›*•7JÁ¶Î _Ï?ÿ ‚*ÝnvN=[{éÙÚKKk¥‰ìh率½—~íÅE€rfj8Í ÜÒå§ŒgµœñR÷v9ÉÉ´* %߀T|—ßT” !³¤bŒá³•‘ËGàf ‚4„}•|kM'ÔD?…‰¿ Þª8Ø•N>ÈX~"9YÃçd¡gq°Z"ÕèwͲ°Ø!ó´ô4)ÈÁƉxƒÑDNôiðˆâ! "È@iàR™dÛdNº!z4'²oS_yŒà݆¤pò¢]ª°ÔlÔ™r|SÞŠW¥~+éëÔ¦ˆ?Qkó…ÙƒµÑø{ém–<93Z‹~оs~Œç#—\ö‰§Óþô#á‹êFhBŽ\ÚQ6µ3h—Y؃îŸ`X1ÑX˜|u&‡öQ‡N×ÁdD~cížÐ>Ôúµÿº0.UYéº8.U'Àõ²\šVzë¸TÔt;ÝI~÷È´Û>¼›_­½ŒVÅoå.ÝÑBdBòã_A%Ú©¾{ƒh^ògsSŸßÚáÀR é+?˜²5ÜaûšF<<¹;açò< ;Waç:<=î]Á?\»žBc­NýuB¤Æ1!Ù…d'¤\EÄDÌ»0SØÂTìÄ®5¼`*Ê¡=a*x!9 gŠ^HŽ¢¶ô{jzí*zÓ¹|û}¨ætÆ;Œªš,×ö,qÿsÆH¤—«ˆ‘HÆ™¶uGqÈDø&°R¥‚Gvx‰‘–(V`ë¿yµ¹©‰³#àqN•-‚Dz+º.ÃÇk~WxsÝÈî<ÙyqÄWðt°F<1¼Ük¹Ï† ƒ Y±IÊOýè cŸÎÐMgè™GžðÙOËÁ劒¨P¥øQSǵ¡ŽkK×B׬Žk=“­7Xd|ˆç×0DʾÇ3ÚgŒ…—¯É5kBdX2Ý€aSsU˜Éú¨6q |X£G1£°ª÷'À–ðh™14J¥o•Ћ-nR`` àœŽZw²Õýúp-ÒMó¤aZõ%‰»›¡aœº×Æ :©æå |¨‰ê D—e¶¼XÀF-¾÷qËÆT0¶”zE˜i𤃹ç—+c¶ˆ ‡Dز…4¢÷_çôöKŸ$‰¹Hã'Ÿlw.7a·Wé†'o:§¶pElÊ1—\,$_ç%£%v‘1_:ŸxHS †Ó]AWD~½Ðàßà,18×lt®µÃcxÒ3X\±˜qTk&£p‹:é$]ª;b3í£î޲˜V|þ¢n‹FSû©uGŒcÑúÌÜÇmõBßÁ&4ÜlG­<›„kÌÎIb(³7g¡œ ëk#Äe,¢‘Ì«ok#¯Z /_WNØä:ÁÉEe!z2͉ÀÊb0EoÆ#æá!sh»Â¸+ªÏ^CTÖŠdÄúê1c·²…u\˦š)Éê8Š#oónYíÞ$²¸DèÿÎÿ9zxXþ³íî©þ?wöËø?kyè—ðŸÇÝ.=º5BüÓ¤8P Ú$ÿ6)´E>¶ E€v° ¨€”lÆ~òæmV :ò¡U:3`A µ¬XPÝIcA[ÉVxúHöÁd ›h……÷N- ÆÀ[Pwy=qQüÍ_¨ÃG$©ðÓFú7¶÷&¯6Y6(BCÒ2øÐÂwØ­ÛÑœ‹X°  EŒ~‹Á¢ïV0 ÈÏbdÁ‹ÕVœ‡ÿî md€Œ¦ðpR!ƒÅÚΣOp‹¨¡ˆÔÃÓýbüx?¾¥hÓáÜ…(mHZdFŒ‚pï¨ÉãHå<ÖL1xTÊ$œ´|£tje nÓBÝæÊ¨ÛÔQ·‰nšÕÔQ—å1R·©£nS¤n3u}á¸0!«ˆÎŒ!¹\Üè0`œpšÉéȬÛÁâQ/bW€Ú…„Z©¸›êКûÕp~I×b ¯ŒÛÈúõíbÇ4TÞ]lh»¨^3zì:¡—RA9Gò¡o¿ .H×DòY} (‚Ç }¾dý$ˇ.n†¢D@-[ò¤‚”/ë tׄí…6iRJ@ÆáúùàUº¬ýzŽŸLc‰`2© (úü¦À41}ÕÔRAJÎo¾øÉfVfn’Âof¾Q™y"1sj±ãÌü-33§ŠJóØÄÅÌM 37ý˜yB7Š>¥›˜¹éËÌMOfNmdÒÌÜ\ž™›NfnZ˜ù[Š™›žÌœ2]( &ÊrhW†e  ½À¢­%Á¢Ì Žÿ”le²îà§·Òk³n¦ YÐt6ÕñøÓ¨GalH¹ !u-m°‘é!BD¨Ô8:4î‘fRqœVãý/!#¥ºs²©î†4“­e›l´Í|º±ù–L8Ö”x SIƒÚÖˆl8Ôº‡z¸ý~t3{Î~õ(u:.¦É`¶sÞ=}þLR÷ƒÃÙÑý½­JNÎä„á,ï¿LI{¾>̃¤¥GÙˆ\ue‘©¯k¹0ëIxöZg§°×?ûDÿm*Dú!üÛ {g øGwõr¡¿"özÀ0rÐŒ,fO# üù,¬F·Wùþ7ƒbÁ!úé ÓAöMpáv¢`££×O@4”Z®¤«†Þ=¥7O‹€Ù}Åõ*p@:z%ëŒd[9¡a ~΃_Πæ#ÚØDé‚$•0 Ò$¯›òë¦øšRKÍÞ’Þ§ó'ï©*ò¢‘RD"Mˆ"%Ð_A‡ÏRYÙdzt4Yb¤Š9‚þi+oÚ+j¦±’Ëá§)€šÒ‚ÁUñ¤p,Â[7ªê—Žëk¦ëk¦ë ´•6핦P×vv umi§A×¹0×TŒÌãº&Û`9oÓLùþšì’Ì]sÆåQØ 2xN¶ ÃÆÔšÚʦíi@xyÜ­Ò»žÑvØU“Ð8¨Ê:ñœj†bˆÙ®æ=¿h?„l-XÄŠÁ¨Î"â“~ƒ¤°i?<6ÖÒb¯¥qÔ ce‰¯½)¬%‚;›ñ)AFy1"¹ ƒ^Ð_VØž‹âH7•-2B(¹Ø°Á•vígj— ûÅ@S(<ó›Ñ14»U9%{a4á‘pš4¯%u‚µ´Ó;ÉéÁ>ÄèÊvH±AÈ$æ3ž„@‡æiväH+¶ð™"æÑ1%"§äsŠ>;RSuñƒP” µ: !”S<à1ðdšÜXg+ª  ìÌPéš2ítÅrÖ‰Ì+Iä±’¸dæ†À!ZÙs1Èn1 RÏÎ ”3ÆÈ†¬ƒç53†Ù#ÚË­6ŸÅ¸äiú.Á‚žÚ.yjÕ"Wã(Û²Çx1ʸÞåXŽ#¯5ȰG!õ¡G~ ò Yðò-ÈL\Ó" stXÔÊ.·2GGÆYT«./^·šÉk›œ­YålÖéPs®ÚØ)e:Ô¢•O‡Zm‰éPË·L‡ÚÍkŸ5ç±-î¦cÔ4Kæóœ5óbR˳˜ˆ»Õ$mÆÕDÜÇú¯+VÃ0Hà”È^–ÚþÒ;ڔĬe[àyŘڙç¶a¢W:mXeoÝjÍ…·+ŰŒs Š2‚˜T©e³Ò‚ç³J½jd•ºÃö*eF($ËævC+…´弯sJ~/Žª×rŸšR§žmu…ç5s”ùâ³î¸øôüGµÕRøÝÒÿïZÊ»2þ£ßª$Ȇù pŠÉ úà»r#Þƒ—»^dG¿% ;àÐ>N¾Qr¶OìÞ“ÍO¾§ùE§ üàLS¨ DWüN€]ï„dŸDßLø(‡i\FvPF  Ïk x¨¢%zv}qZâàA*DfëßH_ì¡oõ ­R4ûP¤ƒ+Þ•¡øå=/[ÃùÚ 4‰Þ9… °f–äûo ´)5Õ¦mÌókšO¨ŽùwRøÚ®)ý¬]ášÒÏ:§)WNÅéšÃS©{$Ÿ_ øë[É^xÍúVõ?ålê”m"åLºÄ‹.ñ$Ö%öôŠD©Ã%§ÍùäÄ{ç•·ÎæÔÝáøøÓjÄV<ÜÞîã{Oýžî’' ‹]})…hlÍjex$Õ²¦„$ YWÑ/kÛksüµ¢Á1_\úxÓÛզ͜+u“ç«_ôÜ]ýàzÞ½AõÚïÞ^Âcºÿ{Zãý_m/}ÿw•÷ëxèüQîÿ.ÿ°û¿Ë\÷¿6Êk¿òÚ¯¼ö+¯ýÊk¿òÚ¯¼ösŽcyíW^û¯ýÊû¾ç¹ï»,ïû~ßû>Ì¢¿0*ïùžëžÏ4(åýžt¿wYÞï­áÑÞÿ}½Y£ÿ§Z½º[MÝÿí×Êû¿uåñÒ4QŽösð¬ß!â –ú0&Ûò2Ó6†tçó ¼QÓ9®|£ÊÜç*(xºu´Éa”ôœ=°3î#ÜÛÍ‚ûéÑLÊOZHNŠOÀ;âù[h?íäÍN¨‚C ©³W(lÕ_ÁÆ%ucñ^™.â&ijOÙ Ü sͧ´æ{^3Ò`u5}é:ÝÑ;×]´úXï/ƒ¾fmUn*X»YÈô`N&ëüó¯ ¨;äðt^ô­pá÷_T$¤æ†|-V!2ã \\JÅX¯Ê¤ë1uŠÉÅÀ‹Id[ñd§·ý¤få&~eÒMl7ç…iI«fÓÊ-ë¡Ô—P¸H“y‹ÚÚCJ”e²lŒÑ{]U|cÖúS2”;8ïÓGÒÄÏ ^û#̨̽ M‰àƒËÒÙè3Y.&·£;yH¡X*ú Mì⎜z¿àZñc|Oƒ^~å°KüõËHðy6}€ñý'j †,ŸHe,åœ,QÃ/4î&~×Hç€{CvÄ zzØ…£Õvp¢O‚gÚOIpo…Ô•mÈÀ±‰”MÎ,NO´öƒšzãò–œb“WžS/^Šzêó"¦¨Te­€aÊÝh'\2É"R T^KM¸›ébAXv6þò55ét‹ÄŠ&מç¥N:¿ wÝv¯ô È70çžyÂõ¦ B‰¯Cv{ü0ü2ž ÉÜrÇZã˜Éâ{DðË&•#øhCg°gŸÏŸÀ/)õSê¿Ïy*Xð¦®^Æabêj©ˆßNI]´/â4ã9G½0͸nÔ=–Îÿ~;Ýê«qþ…ð/×7Ú}žŸ^"î Ц´}mÞþQÂÄ$$»Š¢´Â‚Ó>¼Ý$§^×?úê4ƒ;¿Œêc{8t“;?’ïMôÊùá%êJ”Ͳz9›Ó>&¥È/£;½e=ÙõVíÆÎ Š^NÍ.œ:¹²öÄ¿—7;“ç—U¹²sÔ÷òýØY:ðŒNì\­z]ìâEËìÀŽzî¯]éE^iÀ}Õ$í¢û~·¦L,ªÂ„h2×r¹»Ã]Žè{MGxÜ™y"f±fÃÍD:AâüŽÂ§N¶;›!ÜFöY&xÁ‹¶•Ó7m¼ô¯ ðäbKu¢gq{t]9aÎ’VÀnˆÊv{¤\Éën-2;ÓK»1Ä_µ²Àåx/5žZÇP޵øã2:àóa‚ƒ¬LrÓW˜Ý ¦Ð7ºD.?€vŽ’üeyó”ò¤]ª RеDšœÀV¦cu¬Ö¡œ`§H‡2…¹²D¼àÙJTñ6Ý!Qs ÎÈt½Éi‘0Ȇyf™bÌ3"\ùFpT«ô“7ïRΚC…Û© s~äV\.-£4ŒOÞۥũuÖçç6þ&ù|¢›ƒÌ7gæÈ) 5Ïj%yä·é§ 1ù+,FÊŠŽ!‹ñhˆ'ôuù'=züçèáaøÏh?ÿÜ+ã®å¡3]Âw»•AûÝqˆ'N5h“üÛ¤ÐùØ* @ñ¤\müϸYE @›¨Š|hU ¾ hPˆ l‹ÊíÓ±@Å@Ô[Í8 5… Ñ>…„Í­†šÐåÀPÚA¯2›?ÚÂ\¢…ùíÈ  #xCYâ44i–nb|µHŸáããt'ì6’b¨¦3†ëà o!‚èpnÁƒb[T¦}Tt¹û4÷LÉ­ªø1)S½ ¶1)Yò„– 1éåº_·âN(ðøV„xuH˜€¤K2Þ&†ÆØ‰­ßžMՀÀUÕ·†'Å7¤±”!!w|`¹q›ŒØÜ¶iÙ¯0ƒ#‡ ¥zrx‰®”Fö–jä+Bí~^‘Ê÷oCþÀ.$tR ; ׯ ‹T9“.'dò—„‡€ó¿µ‡]La5pÂ`þtûñXRA´/2k‰LœÆDj[¦•8:ø­~ÙÄ7sX#D\Ø1–¼ELˆÊxÂŽ–ÜýdRÄæ¤ˆGE/¦âÖsȼÔˆÉÁ–R{91ä‚L1 ô„†UÄŸQã…—3*³|yŒÊZR2ê—dT~oFµ£LsÁL‘¥~½" © iúÉ´N‘Lò0é0©’o‘0YÑÔÔRA4'Ϙ²1B(ékÿeº™É¹ŒÙ» Ôìã_¦é;îMÏqoºÇ½iwyàÙÈ'CÏšBçñ LóEPDtöÌXW–C»c¡»ŸÒ„^Ñ»[KFïnee·V.vÓñ[Ë‹ÝR!iðíèqÁ$?^/€`¤Á¸Iò_Ç·_傆dvjiƒLÂp¥Æ ¹¼G š«ññhyN€–{´–œ­Â'@ñ­»!¾‡ÛïG7³'²Ä÷(Äw:.¦É€µ;Þ=}þLR÷ƒÃÙÑý½L–,²Ê’¢÷_¦¤=_æÁÒÒÇàt/ŸiP°+›úýMÀ­« Ÿ„°×?ûÔPˆry~~Ü×TûrQÔ<;“Ráøñ¡˜)¼/Ö¢yiiÆÈÆüµ6Ž1’1àžc\Ö’ød ,´›R/û›þešÛ­+1={Øí>¶R0f;HzWM.ù¿Â±0¶Lã;«™ÉwV’¯å“/ªéX"Ô¯&¨9m@#>Òû¯ÑvØD¨_Á1j°ºN`©Í{ït\Õâž$X“Nض…ÈTÑ&MÌ¿ƒN {ŽÌðx÷“N0f”€Bmh³%Þ¨T¼Àë**‰U&È(ããÑžx.ì›§ÓAŽioè%h¸n…Û&¶)œY)³¶)ÊêY™õ°dVùɬf£ ”膱Ô² 7Êb™m%N4`ÂLæ6þ+9xºx‚ðÌ&"îøÍVVH’Ó‡7c—/5&hº}ùä<< œ š¤îW˜ÏmrÔâE1š½BLÇ´Õ¢jÄhq6ØwB¼ û”°|ª#[ºÉâK`óÙ»·í^°O;pfgçü6hŸ¥`"/ÄŒÐ0V£‹…f÷L—Âs¸=Óqò,ƒÈ(=Ó½vÏtyÀA9zK Ž*£ßJgu¥³ºÒY]ÑÎêGJ Òdßui(ÑËôI—¸œ3kráÑ{@Êã–f^æNJsRÃ}£ŠÀÍ­_¾êÂDSè0 OìÁ¡œR]Xª _‘ºp½&᥺P¦ê3ª cLß¡xÙÆ–¥æ¶ÔÜ–šÛRs[jnKÍmi^jriwצÉuZyküü{é~c?ÿKè~kkÕýRµo;ð+”é×)ýïœ^ÀÂ0]ðh=e°¨Ð¥mÁÑÀLVÌsx$%02m–95VB¥£s,ðÚ£R£º¶Òôí¼lXô‡è·Õ›“Â,éœzoE[EYóZü-»óÞk‹Š+q#¥Ø†oÅús8¿^ó/(K Ó¦ÓÔf7å²²=zsÍ?Ö^žâÝGÅ®*Æbž¹^’i®3sM^e½Ù(™¡U>ã¹ëM«ú¸µ>j8§sxVËÆW_¯‹‘•'‡ôªðêóz<*¼ ѽyɨU´!½F¼& ƒ¤áUˆî5É'¤‰Ha6 ÇúV³ð²‡'ãºó’áj‚¥|Wøâ7jk´7â?¾±ã?êÑÞ~”òÿ¿W-ñëx(—©ø=-^ô½AØ ;R €f!°1@‹|l-‹I™‹k¢t°f¨â!§q"´¥E¡EšD>´ *d˜ 5Ò`#plO)7(zä›pM )¤ˆ4µø‘&Ý ¯iH'"™Ît% 0\ŸR¢P$J‚¥¨1 Ä LÙG÷*§ˆA—¤ÕñÀ-ùÓ¤ÒÔßh‚ÛÑœïd©.âLCA˜ï‹u­&Hoî0ma˜—8¨8Kž(:bà ÖÍ.K@§fW}Qç9 6U؈˜‚00fµYÐZ Ƭ++¬ &7Š OpO¬ bø¤em`S= F‰–K¨Ó£Ô™uÌS?~Þø‡=vi‘¡ $Tœ©-Ú‹[µ²¸)¢Š„ZºË¢¥¼àR­#%ëZ³ã¥:^-c¢8Íg!– ®EJ[*¦âíôþéa2OäS,c¹´®KfÕb½RAi&±4AŒæ­ª×S•ï@9«@ž/1É7Âþ![„¿ U7ùߨí~Ä\DdÂ29…UêÇx>’[ªÁìhK¢Â›ÁCØ*-”†N@oS€63Ò±¤Iò*)àPâEÞ£t=ߤ0‹Ï;ƒÒ’#Ô!Á:4&‚fT2M-0BBC„ •“ÔRAÚœß|cs4³r4ßn޾yMÝ´ptsiŽVK7qtÓ—£›žÝtsts}ÝÌÄÑÍÂ9š‡8IM…ÇDKG¸¯´èkíòdšU-ӌǔÙ3"³•‘ï.R眠̖ü·*“¹X¦2@0Ó9@0F͹¡™yÈHŒäÑ/¯zQøL;@3B%†‡œo¹å|k)9MANÃ+ B¸"±šu7VópûýèföD °šG°šSr´ŸÎbD¦É»§ÏŸIêãþqðq8û1º¿7":ÉH’™@ŠjÜ™’ö|}˜HKƒÓE8.îtec=ìNï`ÔîHÿzÓïÛGu`à„U{o¨÷àß7é W£¿‚øšãø.hLÈ1ñ¢-˜?ýÑ|4œÝ~ Ú“[,úû¡+yATOÂÓ°×?ûÔPˆ‚¡Å5ÕZзÉÃ݉Æv*6¦ûè7¡dô¶láÒ Y$á·)«ëøë-*Èh䥂W³á])à•rgð-ÐÕé*fû‰…ÓĉžW“¸e©,…“µÃjëjòŽ5ù®š\FÈåÝ’’¼Mß¼Gé¼-dnTÓ1AVhngq›ÔÀMäWȸ`j¿€NDú²Ã-½4ýg‡/äI”(+ .ãyG!Á”%4މÉÒ$@GC®ù7DÂ4‚šÜ3>-z޳áÞp¹¸ñj§»µÏŽbkq –„cÐJÐyÃòh‚"ei+p‹¥áp%+j$5Ò8Òþ’#m…ÑÙh®ï©7FÆÄèÊa˜à± 4-ìÜgÍNs+ŸµŠ˜VjhY _ê.€XNgeå’YG™ñHÎÐoj_«KÊ$1RŠGiIæ‡dÕ’@V–"L +‡åûß1Ô‚‹0 ¸NSˆÀ¦ü«•Öðha´“hàÙRØÀ†3›–Å=ºðÄ#Üâ`9@ÍÆh9uËizšI.Œ¥£Yy±:;—ÐiFد!1ðŽ·ÿM3ùbD:Ƭ™÷Q=æ4r‚N³Ë”h7Ïòí®^¨xÃŒMB%¢˜–ô‚„ÊÁo-Tö}GžU •ý×(TÌá#Ïå†×²gªE6ù†;׈3²%è©#â«*:rM?±:ã†íMB7ò×KLl‹O¬Éò7xþ(Û&¼x€µàÄ9ûs¬q#dŒz¼,òž“¢ìpÌx,R7Õ¦”÷—këŽiÀ—ö¾.5lܤ!é¢À¾Bã—ŠôÒ,¹Ë ¼36ÎJXþ²V5 ÓZ”c‡V³Þà@‚ºk»U˜«9O%bu«–`µZ)ÁèSJ°ø)%Øò̱½–Å×Û˜«³>c®Éþ«@ó/‡ýWm¯ZWí¿vö£ÒþkeLÅþËnþ•ËðK Zl¼VoߕìËϪËÛ¨+ŸÕV³,1Îè¸g±…sOÔõ…Šo5/ öÁ+ÐÅÞJ\ð¯ñzÎÈáƒxÕš¯ÿM¶È°?6ƒÍ·5+ŽQb_‰"mJ¡ SÀ<ÓìQe€‚E Fš$ýD¤Æ”b¦ˆ´„.éBÄB€"€pB:Òi”Xð¹N>óÓd5¥´!™ðM0Á0.ÆßGÐxGZ0øQ@ÚùÑ ){D¬…©RëøÆˆÅãáh+´`8¿xE_Ûf`‚o3Ì@°]…¸ ”ØÞÌ+¸‰€Ùhf¢¡hX|t0Á ¯ÒHK­)/ÆÁO¿~bƒ</¦“ÅZÜFX¼ñ!h¸TÌÕÍ=`ƒä?1XÚW;ÀÒ)މ”%-^»È¢ í£pñkd4‘¹Hûæä×þ땱Òu>VºÎÈJ¿v,íµËá®R1qö˜Õ®=Yí:7«]ïÐüyX-A„Ö܈ÐZmûŒtïf4Dè~D¨ë9ü´€$ÙÙçÏãÛØè$ï4&íIÏfw$õј"ÇC©þ¹È´@ùÅèí9¨DŠ×fmþœ~Ÿy r„Ý&ç·ëð$<¹ O®ÃNØ!ÿ¿ ;×6Léë©Âåd>Œf"™‚C^np¨¤)é ”´cSPGܘc_“ãÚš#v {ðu`è¡Äp@Ö©§GfL›ÈÇéä%Àí¯˜)âµ\+’øƒnP:Wʦޱ^émG›[BTb ]Ɉè+¸¶Tp­Vp­§­Efù‰,ZdÍÂVY=¤Í9+7Ž··£ù\ÙQÓ>ØÖ?’%ÉJ¦ò—¯Ò9÷=Ú>|Fý-޶ЙÒ6 ƒÈºÑÒàÎcÒ(@Àv3d33^¯æYjà3$ó‚ú`"W:jàï,«{tàzÓ®TJG!÷SÏY¡®~­ât½6†lOµ-/"U£ÂaU¤ÁË’Hìt„Éž ãÕÅTüŬvÉ!:>ªª7¢$åÅÇkGcü“ fÂJXU»²kÍ«ŠVUæðèDèè4Ž ×Ã`3 ÿPXK´EŽèÓȼza–MÒ‰¶)#¶î‘à½Yå—nß mßIÒ>êÀŠÔØys²mÊ^—tŽ“:”L$â?ZÅôü9Õ©s¥þª.¸qjÔ¯r {[Û |£mkØA•1LH‰AøÂägŠ‹ú·ÎÐv4î ù¥‰®SqÇ$‘cM¥;sÂ:sr½!œXÚ‰q"¶QyF\Ûefâ `a °Æ«•föÉ®…wÄÕ ¸ùmGx<<Ê)}eÙéž¼‰T”øJ$^dÅ"ò\sXËm:cMròÄ '²0–=",MÖ9˜æY•ØUAè„åúd¢À° ]àœ²KàÏŸûð?³á?üO´TUüÏ>ùSâÖðÐy/ãú2ü‡açKø{äRï³B¨?ʧé$˜âÒ1Ò } Òç'·øI­ú¸ vDwŒõá(E„ª`úJ)Q>%ÊçwAùøºã*åSb dª>#Æà™W%âÊ q%¹ò¢Ä‘J!„2¡Ì’Jðv§VB¼_ˆWîQ³QÈ{ÔVácÍêb-³‡µnbÚ$¯ .¢nùcœ‚DB¤„‡üð=ùÎ)é€?؃œÃÖöˆ5§Bð-ºCvÀVü j‘÷MÌ3æÓd¼P@H²S]Ç-‰Þ„ji„‚ŒyQ ÖÀœêçÓØÈêf<)’Ͱx˜O`M=˜Ãå€ J•L ÒbªsÌ™­J šµÌÛ› ÞYCÍø÷MŠ›ej\9ר8\…ª¤ê?îRBVâOÐylGF9ÖÂuE™L•µaf+s½6ÇåüŒ1ÍÕR\sed³›5®î¯­†GÃ=WNöIkn²»jóå¡«çe"§¦Fá²,1¢´Êi.êdet¢ÎŠªY©¨£šFi ï3nAiÐU³¾y;ZZXæiHK”|â •¬¼Át\€œ‹9/–qHI­›õí ›ª:.Ó¥®æm7‹T‡ÿBåY%em‡eÁßxj™ûA©e~‘Iÿ[[§ÿ‡ýƒ”ÿ‡êA©ÿ]ÇCg¤¢ÿ­iÀÔïCF=°äúA½z^ú5»:¸æ©þEÕÁJø_¾ÚâDQìð Qj‹éSj‹/mñz}B”Úb™ªÏ¨-þ ,º}‡âe[l—ŠûRq_*îKÅ}©¸Ç”Žâ¾ôóP*ò½ý<ÄÁ©–Pý×Öªúgnøý]:\¡»N©ÿçôT¢pGšÖ`D}>m R0y(0øŠ€GÂðÁÒ¦Ñ Rc%Tjð^{Tjô%¡­4­–íèJxCNƒT'äAQRž¼sêz"UÙsmQðq[tNˆ×ü‹M}¾Z ÍõFŸ—÷WÂZDo®ùÇÚkÅ]ø ,TÝc̤×Kréuf6Í‹Õ0û`D( ÉÁ¸ùÚÍÎÞ:N§›xÖÇüW÷_?3ûîïàÙ %Å;oyË‹{àâÇl‚žõ [ò­e¿ÎÅÑò*–•%ùÓWV"M¬8³7¬oµ(/ÇðdZ_:'Ã2²røN­„ïüžÿ3›.¾¬ ÿSvë{ þg¯Z-㿬å¡SZÄÿôÏ.>TZ°Õ [á Ö‡fÈ/‡-O4yîàjõïy‡ÁÝôé†ìjo§÷£ŸÁ‡ñ÷Ñô ¼ Ú¯Óý.»ELRª•½³~7´§º›hÏ›äÖ»FsÒðŸìF9|7øßý‹¤H–…lM01!zhnJ´‚õ©$Ó3¢xa.”n§w#„% #ÐpþóDEÚ%ª-Qeò†ýÆÈÏÿ4¶þQ¦‚éåI9’è[¨¶Žˆv“·ih„ОMv³ùÇ®zùÿcø¸>ù_«Fšø¥ÿ·µ<ùÿ©qòŸ¡þÿÉîQì_Râ“ú3Éýñ„œ¨Œ‹SŽ•Ï(òW$ÄÕêýdÄÆ,âm2Ýâ !42> O*8Dù5õ[,ÿð–y%h‹HÄ 0ae»÷†a„›ñ‚ÀR^K)¯…”Æ¥†¤V—™d R}÷ÿÇP,D—”éKI%+&8àDDÊ ëV`_µ„¾©]ã=S;&õëO^âÊÇòè×ÿ_ë³ÿ«íï©þ_÷ªµ¨\ÿ×ñÐù/­ÿ×ÝneÐ~w"¬©›„Oß5Â&ù·IA·ÈÇV¡q ¡(ž” óË›Ø*0nÖÛŠFj!;‹fª"Z¨ÏßJ($X bL²ˆÚf†Q P-^ ZbŒè&Ýbf€Ó™.as«¡&¤ö‚ÖhÒ fHH¦òˆ´æ–[kapª&'ÝÂLÔpSÜŽæ>v0§] Kœ¶ Dš¥›4¤‚†#ØE1x_p?ú¼€Êlüåë"à6 µí&€ØÅÏ>*ºÜ}š{¦äÖ Uü˜¬l¼,,cR²ä -bR„!4ÎnjIÍ€oÕAˆG`%„‡`Bº$4}& 8¹¥á<³Ù[žMî3Ú¡ž߯RÛƒ¤yž–˜q›¼­, l“‰1ºôµÓB Êb“§‡j¦9#㢘k-¹ ’{ ƒÍ¼†¤I©…ŽÚJ¥‘½¥ù\‘Æ9m|ìç*¸ø߆`}Dåû·¡jüÀ€^:)‚Ò‘I òàÇx>’›)™l1S»T9!“¸$<œÿe1ƒª¡‹)ëÈÔ$ÁJùö+IѾÌýÈ ß'_xKTi¡%Öb––i%ŽT+C¿lÒ7ð낈‹”¬Ð¶ˆ Q8C' ¤£%w?‚±9)âQÑ‹©¸õœ2ï5br°¥Ô^NL¹ EŒ=!‚añgÔxáåŒÊœ¼Fe-)õK2*¿7£š?‘äðÚ¹(B:y‘ùŒNwtA¶XôöQ±ÂälL&0I *ó§›Íàq6ý2>°P캕‚d’-Ø¡©å•ï'ÚÃ>ÀН)jj© š“gœ¨¶ÞÆ(ôôµÿBÙÔž¶å—ÅæD7ùšÝ.™±PÓwÜ›žãÞt{Ó6îòÀ³‘O†ž5…Τ˜h‹@cž/Œ°ç@‘#»v Œ{SšC»“Âsi+åSšPÙïÄÎM)`»‡¬K\`,!C+ÑÓ¯­¬ìÖÊÅn:~ky±[@*$ ¾=.˜ìÅó=ˆ&jVM’ÿø:¾ý*4$³SKldzˆd3t¤‹Þöœ÷ˆ™–k„l<Zž åž­%'@«ð €]DãôºÛ8ýpûýèfö4œýãô£ ÆéÓÙp1M¬ Üñîéóg’ú¸|Î~Œîï&ìO#²Î‘¢÷_¦¤=_æÁÒÒÇàt/`isvW6Q½õZM»» Çù‚LãOÂNØëŸ}j(„¸Ãçʉkª*¡È.  eVNhœECÝR Ò= áÌP¸Âš`ÒÏá÷Å–²ÄJ˜‚ JÛÀæ)*=LJ–K¨Ó£Ô™uóÖ‡.ìI ¦z/h½‹T½é‰¿t½Ë¢û¼âD´v„àRA9 }¯–1ðPz,C,A‰zC…ÙÄÅX$RIE“™rñCAKRAéaµ4AAn¦õ­bå;PN Ž„…†]–k‡›Á#}ñ‘Æa téô-È+F»‡B“̪ofTZºžiR‘Zž¾äÔâ2 ¨J¦‰ Ä41€˜¤‚´9¿­ÅôíFàè›×ÄÑM G7—æhµtG¿>`V&Žnfâèfáî…´+b½ž˜ÃÊè@«R9Öh2´=-|×t 0 WãÉÃ᪭*•cÜ”·ÒàÝ啵_´È4Ì¿ïø1ʩƶ²Ž1; ]Þ2$ãyôËk€¬å¤è5cø<ÑÆ%†žçÜ;ƾÓß Ã烊‹Á'ôr•ìIÌȽÞ¢Gîuøk?ä,o 蜌—î'N'úgMâ‹,8=;ð.…Óë<NϞ׎Õ뭫ׯuÖ(ÊS0{šz­`=³R5 &À çci’(*†480X¦ÑCûÔWÂcFXa~,M=SÃíp?µ‘»ù€še.kL–† ° H —ÓfAp‰Ý5—Õá>Ks©áÊp9üµæ®U@7S«§»™ÒúeqÌÃîÀ–€ë2Šƒ£Ìþô“†‘•D©£]€ØÊ=ÝE¸—Oûl0"ÚN±C;p…Ëi*ÂDSþÕ ÇSQŒÛ‘¼&ál¬É%Иªð¤Á1€Ú;#,¨{'ÓÓLrÁAÅžÅÕÙñY c"üÉ|ꌒe2Ì*»´ŽvW?›²-#ÊlÊ4Æ6›~«Ù´ïCUxV5›ö—œMæÙ”%žˆ 1«C­d]öj‘&^s®œ!,Èo?pxtäbc±:“¦Q9 Û›„OÍàt± 0ó5x¾(Ûê O~`x‚¿ŽVˆ —jñ™ `ᵪ‘ÉkQŽ%£æ²IªÕ]b¡0F¬9w'buE3b­V2bF4ã³kY‚z‚‰ûµŽLlÂÿÿuᣃ]Õÿ÷^µVÆÿYËC™BÁÿÚá¿«þ®ô›ëëõu#}3€{WŽç•R~‹LCJuyã…ôí‘TÂxKoða¼¦9é Ç5ÍÔV›V›8¡\ÏÂÔGA ZY5¬’%š–>/{X¢iÿ4m‰=,±‡%ö°Ä&O‰= Jìá«Æ*w%è°þ C?à`U7ƒÕ8ù+ƒIš8¨id ,ƒë*–I[JÀà+ ª'(ÓÚ€~PÙÅ'ý«DìaãJÄÞ3³óH;…_dÎäer]P¹ap D”`žÌffOÐPRÀ¢ä-ˆ®ØŽE+gfégB‹=×H¯ìÕÉä9R‹ÿZÜ<|_þ«^Ý­¤ð_Õz‰ÿZÇCùDÄ]4»‹ø¯wíÆ C„ÖUØîµ®¼ _ñ5'ÉR|WÛ…Å ðºªøƒ» ·ÖXÎßG·‹éL‡ìú ktc ¢"þˆý°¡þr;üŸ/ò"Ø$¯D0×O†Áš£ût.`µ1ˆKƒ/M@WC^N¦“müQù5¥l¹Bx\CTrU‚oàÏ7Ø îÆÃ/ -ð õìØbŠL›ô,(èiŸx³íú"À/kˆá†TKª@O ‹ mhÕ*PP4íz0Pœ{}1O1sÛ2´h†Û8ƒÄû¾$‘àËp˜6Íp8Mta®˜ô­VÖ²µ¬5Ÿ?ÁÐò…25ôá‰ôoplº0\ž¹¾¢#5ë0g ô¥· b* äL£è˜KKÅ̟ȼَ޽;ú:d€o7¾52ÈÙœLôùç_AP vîG;Aguà/;jÅDl¯&2èGh³áŽq+‹—X £Æ }þ<¾Ãr&")œÔ/•CeëŸØz>0Jù¤m³é©ˆdÕ{ ¨™¹ØP. %8*Ù€ŒQ×X5Á·Wúù” èNpA \LI?/(>í#ϽŒ«P(›ÆvÈIh'Ê8hC8óÑÜpüßß“Z†“9ɯ™&q)ì)‚ϳé èwR …|~"e±·s²~QxSZ{§‘¸»”ÙY6èéea´¾8*ÛÁ‰> ^‡4^Lã Q¢È5Cò4*¤ì7Aáö¦Â~P³Ñƒz|rSÞ’SnòÊs® B¦È¹fý¼sôʵ[žc7Ú–̪ˆ(•…×R3ìfºXÆ¿|MÍ20x³ÌŽ{I“Ìo‚„A·Ý«½#†tÒ3%~Ö3ÁzÓ‘¥_‡,|nz#ŒÅÎ\seö(<=›æÓ 2ò'ü¬–ÀÏ+dn›Cˆ‡ÁÍÓÓ¤w~¿üüõÆ7„×!„õ §_§®èkÛ.&i·¡B0­¡¸ Õn oæ¼| œæŒÞ<žÜÎp4ád…^¥å¨,`”CûÏRy¥Â#¹PT&ýpÂsq”ØjÆtòÇ!òh¦2ºTÌÕÍÝd£}÷í ”±æ†2ÖjÛg¤{d PÆý PF#Hqø%h H²3X¢bëƒ40ј´?&=›Ý‘Ô“ù”,\"7ÇC©þ¹\ô€Þå„Îñ–¶¯Â“ðä*윟^¢°sž²„VØ;#Ró$ì]öÚ6,å+g¾ƒn}Én/$«Q>Tb˜^npp è Ô"Ó'@@=h0´enD 2(äÆ{X}çè+@³ ÀÃv(âžšœAI¾7‘?Dñ9üæEâ]ò*Ї|+}è+:‘cŒkÂ*ñ{˜áñûx€ÒhAÎ{Ì Ó1Y7Èbw‘W¶¦Û²ßíÅps y²d+/[¾Ói0 Û\ŠîFóÛÝHÝO§  ‡çTGäÎÛˆVzÛ-[;¶d„"Cf=ñµø,"mÈO¤³dñÆ­†ºUlÀÞ•0¼½Íçdiœþó[tÒWv¢MÂ#Ùá‘üDæ}ùª•nƒ~1(€xQ+ðl\D,•´:Qº ðã²òRœiÒñÇ %]UN2? %hšYàbN˜ R)Èød»³i )>W•ö&¶£- DNßpÅn>È<8oqnb/Yg!„!]™Ýšãå0±'Àù+ý€:Ѳl@¯òŒè•mHÛÆfñ'Ë ×óúõ+í°[l?ùçMÀ‘ Ovam"3q‰æÁ±?i¨ýdçÃÅNg“ŠÉŽ˜¡X<³—”a`æž-¼ó »1(\vô“7Èn!ÕØ\þ8ÄŒ¥ÏRbÆ‹w–‚q'L“Z™ÅÇ*ˆýÇü¹d‘_,ÁKK¢íxÎj0ïð,)‰–BÛ.!D¸‡LèÇ¢ J2Ô׃,c•6EkèÖrS×·åŠ"™án^‹)}8L8g–È(ÊÏcÁbýbV¸L‡Âºíœ*)L!Α-©Sƒ…Dž浃ÿL½¥W ¡Ó.Ørµ˜nÇÓÞÇÝ×™-øtß6Ùr®š–‹_ÄRífšFÉŸ1šÇ¾4¼¸Y¶EO+ëÒ‰­V Õƒ?/eÖW7 s+ß¹Á5e¯„9«{R«²j²Ž>ØNØÏŸ~+ÛʧŸÇÌãæ9¸áKv€K­f:³xV<‘|æÐ~Ý5®bKšäèe3íH%æ¸R‹_žv®Möƒ»smz óâ°àyá-acÚE‡/v­hå RÎsAËPÜ‹A”µÞF2¨§Éb$ó?ûŸù:íö÷öRö?Ñ~iÿ³Ž‡NÙþgðGÙÿ þ‚ùôþûHqí<_ŒPá7úÏ“bùÓØúI¤×MlæƒwHâÒ-¾Í~n“Èpb ŠhŽï ¦?PDlý“ÏôŠP­zÓ`ØPÒÎÇ´ŒñâQŒ†³mñ7Ò®ñäöþéntGñaT ÌÑ?Áàéö+–6Áa‰ÅÊ E]q@ªYeÜPiˆôb ‘âiÀðŠ8g–µBb3É׉O4_¤Ô<,MJ¤Ò©4A*MJ¤Ò©4A*M„N¿ÌIVš •&H¥ ’à eÉöWœuã»7'º±˜$IåÄ“œêžP–•I¥ARiT$•I©ä¯È iP$ IŽ=9S¬Â$IÀÍŽ'ß+¤îgFÉÖVa2àm€bß¿õƒíùY&$–MÙak¢ÕÁvQÆM™'õ„ú¡=3[hÆdÄÞgæ#+ú#±–ÊÅH‚™‚†•,OÚLaÀÇ´­ÁóÙ/h%éc~bBEÉŸ|G‡ðɉp,ÆrÉÇ$É<Œ~ ½‰”e¤Ia‚ä /G,-Ešç3vÊh6¹bã#º‰¢ÚéÄ UכϽNJ¬NäáY¿RbH”ÑôW„PneE”4> õXÃxSÁzh©¾l:d볿eÆÚ ¼,‹–‚n¯×bH°ù)läç3øIúº¢ù’Ï-€{¾ä P1ÞV3»2ƒ´MÍ4ºxNã¢,g œ¬¹]ØW¬œ–BIt3p¹É·_LO 6²õØËtcmVFEÜŒpc¤eme×fj$X 9Er˜eæ3Jº[ü„:ZÝ„ÊAŸâ·È…L¿Ìv¯¦Z½Q¬ÕJi°+%½ýÏããÿÔö¢ZÚþ§V+íÖñPæ’ìεñç¹MVjôs^Éjñsþ»Füá?1Hr ØÌÛoäôµ4±‘Kyy&6e¬ŸÒÐFóü>†6sÖ.3À²L¶`I "6ßÖÜf$&;·=Ç.) [³•' ­"Î"Ô ÑA–s\ú|J!ÁdÕÂÖ³j—¡uùI.Ò‘þQ›Pò¹žäaYø[ò­†ßÈ/Œïbü}DÚ&ÀÐó™ø‘Ë$ÙŸŸ\5ÌÂÉUSÖ ^äR€ÝiÉÚrc9H»X`öëÅ0—aJÔòËC-‡ò~_ðg –K¤rº/©ìǰãÜ âó2ªÁï">ÏÕà<'†x© ¡ÿbæÌÝéX$Pß(wì‚óІÕA+p@šÐysB¸ÚÙz“ß¡T"ÍC¥ÒŸBu)%BJ Â57;h|‰{0ÄšB,Å^P…yŠÃ`Á•Þù,|ÞªCñBøˆRè-ÖÀ[1·‚ØÀiÛ½7ùÜÖs&Â¥ùä e×2N‚Sbˆ ‰T€|™Í rH®‡@XŠŸ¼ÏZ¦{}‘Š“?ˆ‰j›1ËúÂæÈó #nãM€!F([I¬>K<¤E¦P™©!Tµ™™*«“ mȦ°-)ÇìZK —Цòëyg“ÙLWÏ=Jz°<†™‡Äyžè^SªþÔIÍDJ¥Ö@÷(±àóA~›¢!Ä'Ÿg^êäp¶Z„~å[èh_Ÿ'T‚׬ÜÏOŠœ«#ÉÊÃ(h[³`²…}éá^ÆÚvX¦/½ïé9¬<ãÆ·W"ü±.lÏ'Ák ­4†Uí…DIÐ=º‰·NœòyMáõ>ü÷ã?Ôöv«û)üw½Ä¯å¡“VÆkã?üFøïß0âƒô» ôP¢Ðeê•Jü¹ó)ñçÉSâÏKüy‰?~GüyéC»D£—hô D£—hô—ŒF/]Z—hôÂÑè…x´. ý´§ÖF7±. Ut©´®ú²Îˆ0ÝNtj™ PËú¹Ö•/! ©{@z|=9üΚ=Æúó†?jT³²Î­ âwBËYj-®©5ÂO/™R¼Gëõˆ!3 †u,Je)ôf”»§©LQ@õåÜb¿ZÉs°]ì¬Å—µæÑ²Ð ðy,ãôz9,^ή­–6¹œ\ûÙ*nó éVáÛi÷åíÿ:–CÒ­Î7vL•üj»!Ù½nçÙÙýbgµ4L—Ề ”ÜÔ1^”+ì¥'SÁ@¼UÀË ±«*Æ5v \”Õät©En{ÈxÒ9õšzûÍÎI‰åì¢VçS;&̊׹íÂ`ç¯ÇÿvvÿÚy-t—]Wê^»€¹wTiò¯“ëð°½ôd,Ø ë™ëëp¬ýJ=þ{öð°6üw=ªÕÿ½ßöÿ]=(ñßëxèðßýn·2h¿;xƒ¢À»€?=ÿØáé»FØ$ÿ6½ðà*j a¯8Ô $ÅA%ì‚Ç6±æ,‹‡ÍáÖfج@•Àã„8Vçá l¦qÞ„k®áýã×áÖô‘*›1|\xÙä¯E9}P|ðÉB.;~ ¨qŽ'¹iJ=ŒÜ‰#¨;rÖ, zŠP#Öþî/¨‹öAøi#ý›p·ç‡Árêû˜5Tp§| 6C¶¹øí”×D -×,uÐ~’šl6”4ñšf÷›­!È0¶ˆ]#-"û™oRA©õâelóE»Iè‚zc6“EŽ¸Û¡½Ùøvqÿ+½®°Ê}jxýû.˜6¸ûnjŽ£ï˜-sßM„ÎÖw+_3B0Ãú@ÊÐÛ+d1X ³N‡è‚tÊê?žŠ'Ö €\„¥èntKè6º“ bcÂM"+ó§›Íàq6ý2>y÷É4á@”Ha{S6Pd<¢QÊÌkÓÜT·$,-U/k¢Ú[˜hؤ¯ýPSS¸lÌÁ¶ålR°ކï›vk ÎæpÔ¢‡Úð@,è Ì™I«´³$ð䙦›gš6ž¡Âs cohSp‘ñÉjLjæÈfRwÛn¿ÝÌž†³_`r”ÁdJŽÈÓdkؽ{úü™¤>£û{£µ™ïDd‘¢÷_¦¤=_Éüiécpºˆ¥QÚrÄ•M´ yÝ–a·qµc”“°öúgŸ)BÀdŒ^žŸ÷5mð0¹9ëqª 7äÇ¿‚J¤Ühóç4Ùñ·19eâ•‚’°ó`8‰†p%òcJ5ƒ´#ùº|Ôeõ­X3°—s„†—=}ã¿T6»n[‚]¡&%¢¹ íwcÓßb†fǦèJLLp¼Í_RF8 ÷ךÚèR_dJݲ4.eC£5ÎÑu<1Ïñ6¸éZísöÔävsž}59Ù@FùÒØ²£tÞf’·kfŽHÇæ™,‚àJvA]´ vÎú;AÊ:ˆÔ ;ŠÉYpgôŸv2ÊÁó$ä×bbm Ä€]å<Í ò%¯¹¬P^¢a’4:5•´¶;ŠyN¾)†7 ƒåMÀQ¡Â hƒ^›Ê½„ò˜°0#[ö\ 4j>Ñ1ÒR¬­Yé„0íð0m+ŽõÍïÈAMèຠgø8ûÀ]e“oVûx<ÔÇð=Ù‘>9!ï´ãv1<ÉdßM7XlèÞ2@ÐzÿîºÌ‘ÖÆ¾TäâÃç£ü†ŒZy´9èÕ:7’:ØÐ'‚ǃ îÐàâÅüy‘ê 8=ÐI¢-8â©Ê9ÑÏL^Q9Ð0zÛ‡+{Ñ‘pp¯'V(I®äàÁSG\Ö¶=E›â ’°n{S˜.L <>eGÁãrW‰ýöè8@Æ—éy\@ € ŠO¦9exâ9M=*n\©ME;g–Ï‘ÓÂLÀˆÚ…Ó zÝö–®ö™`BQÃóÂfÂîr=7ÎÍž?+œ а8< ïÜVSÉ»%6ÒÍ­FÎÕ) rU„ñ¨yÞœ˜ç'ƒ¨»'{öøÞLézÈc쵛͎cØ­Cn} ½…º`žœõÒ÷˜ê|ãµ9‡2‡¸HPVYÒÒ¿æyåa\_ëÌ8Öº½Ã«I*p:žëR)pÌ0ÎQ¡gÉÛÞèºæN¡8/IàÔ½v¤ðN}IçWuÏž"ì²@‘WÚe­÷1Ù­1þG}¿ZOÅÿ¨ÕKû¯uò†øX"ÂG#¯O鬡; t˜ïç÷^´ññ‘,º´ÐÛ´Ž|*Þ;w;ð&‘E„ÑЋU”Ýy}ôFެyõŒc'¸’OžåI{¬/Æ%¯ä»ßw°5OÚËnq>t³Æ¼(6úŽ÷,Îê×:‘‹ñs›c"/…¢ÿ«‡+‰”Sä”?È>ÐKÎúÄ'g> –µÂYŸ´oÅ(0¸tz"u-w·Ðý/±¤î ¸‰\XXÖÚ£ŒÁºTË`ÎØu>¯¶‡ÓV:éÜ8-ÕMÁ,â$ñ¼3rDgØ…„tð:ùDóuem ų&ŽŽjÇ:Sl1ÿ#MrF†XǨ¯(éÙre³jZrºdvW]`ІÌA– 9´®é“)nšm9ȃa³a? kA¾è YÖ‚¥xE2X>¼Ï³ËþÃ,›)º›]ðç y°V?ZELR?çž°è`>ë >wÛ/äjÀÎ×èÿ¿^Eügéÿÿ9ʆ2þsPúÿ7CFÝ ˜Oï¿4€Ñ`ôŸ'(ÊÝÁƒÈa6ƒ1Bôj+ñ¯Í߉Qî_Xpù…À›&ÂWD§ÿ·£yÈ1/ÚéÿEB¬Bc: ¸×üÂbBð& Q@ËÏT@*( @Æù*{\Íè{†ÐðF@WJ Œ PF(£”QʨeT€2*@ Œ ` @'îê·¿¢àïF5R€|&Ž,4hŸpÛÆ ¹*l•ØÔ|mÐm^F(  P (¤’¿Ö@ƒ2PÀo(`<ù.„Y•;ëåuÏéw8 Þz²8ë\Ì&>‹Wƒ¡ âUz¸·ø ëëƒ~wÙPÛ‰×{î…¾(?ÁvÏ¿Ëþ°x^Ìä©NË‹Kºª3´ëh…A8Š`ÄÃeƒ!h± ß»:­è‚:/ŠÁÃÿ)•·õ@Õé„‚Z`™8 N£»èå^åpÓÑ+ƒuçwú¿vòn0Á‚g¹8.o~ë=üæ1 í2=6:w_ÎW0<¦ž{û¯÷÷ÏáwvÇľ Ró áƆ;N÷²ºÉ°·ŒßÍdXνnÒ‰ÕM†ýåzlœ ËÅÑç&ƒÝ¿Š†|ö@ ü(‘×}w}»·ÈÛ_¬iû¶ l%s‘¿ÒX rœßY. '›‚»Ü‚BçäððŸÁ.›„AÞú ™ý]ô›âä´G1yãÏêÁ×H3ëä©í.;yÔPŽ>Æ}uMžý{XÚµ½fò<ŸsûNžì§ceò¬É{¾XñiÍ~VkjNk9WÁzÝíüʃÓá/Ì/8WŒ[px2y7…XÍ¢^^nt‘âÝü¯ÄÁ}É=‹âµ½ ‹Îû»‡ÐÍ|ïi/Ò‘\Úá%7#õe7#ugž?^zÕ3m«t±V³«ªï¿ÜP%¯Ez-¹iTƹ -c=ß–1³ôÊÔG•^Kîë…܉xÚÊ å?&ûÏ5ÆÿØ­îî§âÔËøky¨Pì?ÿ˜øƒ¿uÆœó_óÅèNÒ­Ÿd¸‰8Ñ™”øƒäN ߈67ˆ-þIÑëŠÿê9¾3„þ­9=Cô¦Áð‰à7t>¦)Æ‹_hA5ζÅßH­ãÉíýÓš©¡óN(‚#zƒÁÓíW,mCÓpÔR%†£çO \F!y±QHb&gv8#– AÂæ‰o>|¤fY¤Œ?RÆ)ã”ñGÊø#k?"X“¡1‹%rc‰G"Ö²Ø$‰!Y¤ŒFRF#)£‘”ÑH¤|ÏdPF#)£‘$¶aZSP’b#"¸á7Yšx{%C!lÓ¤ØÐ$ζ}|mg[`ôÚŸe´Ü!Œ^YçVêfZŽÿÖ¥ã<_´’­~bgr"mÕ9H§Ä'I‘‡^È,>X™Ï`Ç^=b:àЊC$vtbÑܺ‘¬Éé|LÄ/Æ•jT@$‘¤Å:; [ð;>Gˆ ’§o…†±õÑË1øºã˜Ó®ÍbÉÇ#}&ÞjE0¯Uöƽ¥eΘ!I‹gõL¡ê\¬žƒ"ÅD¬+|bdö9ÿœ‘FÖ}JˆâéÌ&ûs† IZ]ü„Ø_ª{…F ±u³pñ¿TÈ‘"büñÈ$öÃòšŠÃ‚˜Ý[2&¡‹ò…IúXüÔ8*xjä Jñ{ŵ.qGÖ¢dð¢B””Ï ÿ{q< |õám‘uи.&ü/>ÿ‘§zííW!þËn´Wÿ¯`¯ÈF˜ž?ÿkÿÛ›ûá"*nÇìÏQµ^‹vkõÝ:à¿÷Êø?ëy¨Œ?ïŸ}è7ºA‹ðÀE$*ËÜ'ÆŽpÀAÀáQ|ÃÕôÍ!(Ξ™Šm:ƒÊÒP(2Óü‹éЦÅÚ¿Yö÷Õý÷ÁñÏáÃãý(8g•_Œ~.ì˜ zˆ²r_°w ê‚=°¬_üµŸB±:hMHëÍ%·[Á1EÚà¿×aÐ={G~á[CŽˆŸóÆ`àtôÅ,ä¼o´ÌmÈ «àOëãq«…ôo- >7Þ žwyÿoî§·ß„rȸwÏzBóÞ’_Ȩ¾eäèé("wüÝp1ôb¤bùT×ßíìïí×öŽ·wߊ½Ý>-†7„;š¢>õÛÇt€Ã#xŸ¿ Âk·ðê"ˆªÉ ;ÛÆVò"8e’‹Üöd Úàñÿa×ä.ø ºSeLF?‚[2ðÄ>ú>¼Ð2L—·Á˜ï4.Cà%%ÜÃñýœ“?-Ÿ!(ô‡“_!ÕÍ)zñnŠjýñä;`¹“Hió‘÷P>%„عè_ïµÿ_ØféÇëÔØþTJ¸`OsˆBbSv¬ÀÈ {ê €|8ÞÙ·¥ `;^þ}{›•ñd!7:¾™âC,‡p²×\œ²!{ïÏúÝÆEPÙ€‰CdÖO*êPvrñÕÍŸîóðmDN0X´ÏãÙ†‡~Œ± °7gJ,xÔý[ÈK4åQŒÞgÑÓJTÝ|YbŒ4ióíFëÝÙE+ØxkNUc©.­©êªqu~mMµ ©ZgŽT{jð©qnMµOR Z½~·fKu€©ƒË®-Õ!ÖÃlKu„© ™-è·dÀº«e–Κ§T¼ðI‹åþvƒÎjrDž?Ýð} U´¶ëaT» ûÖ©) ©lÔ:CSTg:—ÚiЭF®Écvûm‡„}&{Z sûÕX’BûÂà„Œð1™Ø½óÈ)UÒµÂb¸W9 ÷ÂÚfH¿î'_ÿN>^i9o‚ÔÓýtÞyâ§ òÉܨ£†iñãn’XÓ?HQ‡é ¡&«© §.© 'ºmœQK¿¤6•J)!Ožw“ ¨ D°¿p,%¥ÂŸÈ3#ƒã±[æ»P¬t¥ L:Ùx[Ý©WC€…ï’¿ÛÕƒc"댹*€íð$Œ6Ãö_QHð„ü!Ò”®œükáJA’Õà_ÂnÖ¯ë-„Rb ßëøz×UŠ”ÌþuÅ…ÐØÆ~ÐíÑïý¾‡Å컊‘’Ù¿æ-Ä“UHÓ÷“té`©‡®¶HÉì_½ ¡Ì"´l¿:G¨ŠÉöx.úµF¿"'†uW!R2ëWi\Ë;‘Ã=^­íëz Q§12]xà*EJfÿºâBT.Gž ’þ‰³ÚÅ&1Yl_óâÉ*uyò«³z7Ydé-}uMcEæ+Ò) ¤ÙÎÇU a’› 9”ç­" Ž‘ožÆtßö–æ h³JÞWrøsx\u”°›”€yèÂHþÔéŸ}[ D”Ð ëï¹+€‰¶Ïïà•n  LhÅS—‰Éúѳo< !mf" ZOçÙkw?3 Ùä+„6"d¢ãQ«²ñpÈ š"¤ØPîRqtXÔÆÁ³O¡ðûí14BáÕm343BÚiX¹W’«Ù\x’ ÒvÃÝ.;¼7"FQ²ô^D ÞÛYv(;’ ¢DÚ“Xi.JßÝ  û¿éNƒ_í•nè$ÂÉ”ìöÄéõ:ö Uº«· ‡Â/Yð¬»d¨¤l0ÈîœU:—’›úCu?÷j¿Ä]C2í¿½@zÚ¿º­@šëýw’txæ€2í3l¥ŒÞ7za±ô>@™öÞÛI:èî%D¡åfB–~«=U½… „0¨Ñÿû«N©1Ã@ÿŠ ¦6ë½óˆ¾Ùû—XkÀßçQÊPèôÞÔ¶ÀÛGl>$ÿB q—˜Á0­¿Œ+޲ @é%yZÌp¯VI#˜ãÒ@0å×b¨´ÉñÿŽÑ&[rÙÐDTt© …*¨*4éb‹ùM ™n´Gþlÿ€jgeœ¹‹! =°44sΆB¢TCw…†îÓÐCcC):ÀÐN| íkÄMÔ§ƒþT@ÝK’±So” ¿î'K|:tdé½G¬KƒÌ]ÚOwi¿È.EUcŸ¨^×Ô'ªŸ­ÐD"71-5pPºrµ(¨±µlƒ¯Ó§û»ÉÆz$C7º€M@,ņšÑYR‚ѵ¹S‚÷Æ_P-ÑÁŒ‘3“¯»»`˜8ÝÅ@;è`õÜüQojÑ‚¿’Ëfà’`=Œå›,V)‚¥›!sÀ4=Eq¢Ã„A¤SmO?ÕŽÜƒ×ØüwЬå1OèÈI¹P{-Q,1Ä.˜dÌÛH2F3í\vÓÌ“Sp§'“ J“ æ&A‹[ÒëºÎ_2ÛãçíòÃxò4×u|[Óó]wÏ·­]ßFiAQ`ßi:É2Kõ&Æ>©Ð±Z [ :f‡uÈŸNü7hÿsŒÛÉ+üšD>u¯sÇÞ]TȆ‰p )3ªìòµÊŒÁ—z%Úµ¬×­‹¨zEÒ|»¾íWø§úÉRÎa’ˆ"ú÷šý¯f2‘A`` è'Bòû<hzJµBüsÉg@&&JWä +ü,)²0Ÿç \–LÖhƒ´{/ QÖj¼õ…‘áྥÃmø/²¦½Æ´ÿ˜Óƒ@RZò.~ ÿ¯‡Á9ÉŸRwÍÉûBÿØÕÿa|µ(tØqË@Æ7«5¡$kFv¿´ßRµEÜ §Ø·RœÌ6h=ÓZíÇyéUƒSçx å‹û²—\°ÒjÎΰ £øJóЇ_àñPÔÐ ÄÝMµSÖëšcµaûºòBê8öÑÎnô£ä’ÛfËhgo/ážFQ¥u>·x‡G17×WÆS>¼]+y{¥=‚›Úq¬RWàí][·VÞƒCé Ö_pWE‰IÝV0Zí&óBÞ¶Z÷±ö"OÖ¯—¬¿ÒeaýˆêC`œ_B?TÖ'\EÑGŽ-—V²Ó®E¬kë’ì»%{¯¸G©õß_Bî){ÛUtÊ{S•ZwRÍ[‡üæÍ‡Š‹ƒ·:IÃXûÈI´}֠݃dëµK«®9Žù«:±áH„J•㪻+¬÷j¨÷â3 Êu·,Ë_ëÁ>ͽ¸·õ:ýé°æàýÔÓ*c‰lkóãÕ6¼¤¾*ÛŽdORPÒ.ÝÝ8‡«Fs™¦¦go€kZ.9»zb¨Ý½©Ò%íÀQP´sm`³Ã¾òÀ=žéÄ,^b¼ŽµG¾¸xI+OÞ+•5ÐÖo‹‘^sl·=«ß2qÆÕ‡KÆ-®•qýn2×Ó¥C¯¶(Îp)_¿š˜žÝ²zíuGÝ’­ <èJÂì…±µ÷æ]fë4wfR¢]Òäà^ÝI¶äÞUí&äq» ͺ"JdÙ^Üvâú7ÒÉêǗĹ9£k!®Ÿ„²ì&œèÕ0ö ÚÃeäëmã+¬‹?žþ=”@/•§5/Y­9k=ëÄvz]°¶2ÍbLuÊüê¼ÇÞ‡«óhç ¶Ä+ñj{]ÕÖ5Õ>#ßI_#ê bFü6H _BNÙk/šì  ì$¾„œY­";Ìä€G4bû!Š™îˆæÌk6ÅPKoº£ÑTk‚îuòûõ¦è­›Z^vz©êfxIjèɦo'¯ºí^¥ªoõaÅ1gؽJ½¾__§Ì6lj{tÎM7É,·?1U9^‚ùæU¤lÀÛkööš¿Í`Ô™-öÐU³Æ¸bù¡BH‘X¶…­ëŒš#1‰BÈ\Ÿ zÈ,ýCs¼šµ½—Îö^ælïAÎöÖÍíE÷Õ&ƒHx)™xú´4H:ÀöD¡Øà|‡~­Þ5·Ýi›Z /³8i2ìEåF×+=Kc÷,F§àÕÛhsJ^fnì5<…;gÆÐWµ¼,¡µ" Biz·mÖ 6Ñ€y 5˜hL$lm¹Z’%]ââc{€M@ƒšFÿx4úýÆõ|1“_*›Aƒô[B>Ÿ½Áýáâ#ÚÞ_œ±RÇÈX„—‚‹ã~7h^Ó¿ïÚïß÷{­c0n¹<½hŸŸ¶ßÁ{èOHê:fEôŽ?œ¶?´›§Ç;qãZ;Á)ùãÓà¬'ç§aìïŽ[zc+£ýZžØ^Ök¶+§Ç‚Iš{ù‰Ä'™É΀ƀÏ/<êÌ;c rz3ñÙ£ZdÑ—qÁÙl¯È¶hŒÛ@¾£;1+ŠÁ;ò#e _O¹@Ú±ŽD¨À&rL{só ~#ì¹5x·J¯6a¨ ’“or?œ‘‰MZ"F¬Ñ>ÉÔÆÖñ†QÒ;»Z§gd¡!eðfJÑa ¥ÁI·Ðx)´¾ZÕQÛ9´‹à}£}tƒÆ‡c”L4J‰°Nñè3ïd ~7†ôѼ;ö‚껃8ÞƒvÌÛaLéðÀiA^¿ãSšà®i¥Hdžñ{€Fj€˜·("{z’ž"{² ¼»ì’c[£ÿá_Ñpu¡–»Ñº¸$’0NÖ½$+?áý³ ygÎúÉçãS¬K\g5Ëì!.³ûâ*›É ›Òž­ótò,„lªlmªkj:mhÚNÓÉéL‹=-~²q¯S–óº¹ÜæN@xKàwJú{âE‡ìn»?ûN2E÷—½ÖE›,[te4ÂA3Ã2Y÷´å¤­—¤áÂT‡mâŧ³ wÙm÷;šÝȽ?nÑ^^SF»Aƹé}ëB{÷x؆|VÊŠþ7:8Jè6‡D¼÷è´O鲂ɹü~5e}ßö«-a¿ÚÒìW {HÛNÑsÊÓYW«Æ›fúÛP«æŸþƒeLûínãCˆÍr'hðJƺ¸ÕÞF!¥VZlIÞÔ$ƒDØm*J¹0¶vë’ …iRQŠË…ñݦ&™P˜˜ª¦ñ¤$HÇÚ–í|ÌùÂ5‹cSP z•ò—‹mÇÞ }¶æ¢ƒŸ°a ðw£ßnÓ.Ù9À︗ņÀæ€GÒþßdeo_\ïÄ¢ Ðópqþ\tNY€²´G/̯‹¦¦wkñºá˜óôfŽ f”'½Ïbx£ŒÄaÈ;¹MÃpn µ¬ìø¥={^ÆSWûÆQ…Þl3ÒçpÅ& a”ƒpÚ²>úÓ–« (6à1Ÿ¶\Ç«Z»¾¶£šx¬ÊÿÙÿ»¶†øßõÝZ=Úû¯¨º·°Uw÷w1þwT+ã¯ã¡\#Åÿ®Q¡å ÿM¼4ï‡sv0…0Ç<ß!/ÜÑßÍÆßGD:ÿ †Áüët¶îÀ•Ñçñýh3|ÏHÊè0˜n§³»94ýŒuB¢`8‘Wûài>ž| îÇóÅöݘ$^ŒîȲ„±!1i)æ@,FÉŠENgè}²M«›dË< †“Éäû]0bÈI †ØR(Ûq;œ@¦7‹!Ù{ÞAîF÷£E\2ö£Ü~%+ù-.äŸgÓÆùóôþ~ú×÷H'ÈîCŸo°éFv´L|õȪDZÁe·Ûè_Dr’ÓZð¾}ŠËò~J–\öÚìà&æã6`hk;ƒ^ã|C®ü2øHV¥ŠíÈUÏ9@¸_—ƒcЭ;§d™¢ûö÷1§°Uÿý)ìª/`ñêjƒ’B*¨ñv3ÇÖGò¾uÖ·ã*4<YäA¢_’}f¸°dÀSÜq¿Fê¹j_Ð ÑþÕ!_|$e|<;}Göz§—ôP ú r&×?! fÀ'<ŽUƒˆLŽz°±¤J‚]¯²:IYb%_Y¸®á®•¬mØqR*ì횦ÜTâºWÓó HÈÀ…l¢Y-ûTÝ9@,Ôfªº8Ÿ_5Íã s-ÑNͬӵðl­ÇÝ¿Sía}%;0k²ã…ÙÑ:;½ìö({´>43$þ˜¥ä™J>Ïø¢Ÿ%q–f\dkÆ K3²$>ϘZY_fn8–x`–ÄÇýZ–’=sýïhôoñˆòn:ùhàd‡ü? Þ=­Ùôÿò¯‡d›tË\'wä§Éœ»ú`')ˆ¬¦d]Œ&wd æ# ›ýž¬û3²~Í!ÜÁœ’厥÷_F7¤ÊAT{¾#¶ébtûu2†aÐ=LIwC"¦ó`7 *³Ñ÷ñ|LšPßÄF!I8$ë-YáÇ·ó¤ x ÇD²WÍÈñr<šÜŽHŸÇ´’œ§“ ù­7„Ë!Råéð†Ô¸˜Î~…IAGÕj0 kõ× 5œÏƒÙÚΞ&dk|¿Ã&s1~̓„¦„¥’Ýä—!ìFS…d„‡q?:*ó§ùp²™ý)èµù…Lú‰lÉkršß ÌNaƒÞà²9°– à2ô .&íÿ5øç¸F¸°wl+ cnðú ±1«Á&æÁߢø· ¹KL©ú´¢þÇÆé{òÇQaŸÕˆõaü²GsRßÛVâtôZ#‰›®§8Ôÿ+Øßã‰!4†µà6-º×~Gÿvšôoã”þm»ªl³Jx)äó/ §ÙÿW~h5,3VŸ·ž@3"Ççƒ6â!Ût›;Ý&Ôô Äü ^õp IýØ…vþôZØ[ãá*è]ô¹Gèô]$9F\@ÌùSX8/B<¤„¸~¢Rß‘ü­cK5Bñ>çød Z䇭øDJäAêu|®ÀÙì"õ¾^KÞáàŒ×Ïáš:hTw"yÔ`¿l±Ì=#d¯p€Œ9#ì­+œ-lå\UâʯxŒý­Ù®Ô´Áu\’9ÛuªŠàúÂ'ßu*ß?• Æzkæë¼l Cž­ðÙ·‰s?ž˜äk§YáÓqÓ̪ȣ\Ìn:j$®¶3 ¹d,—®9-.QÓŠxš7Ä4éê=µùA«õ±…ø§FÿÔéŸ]úgþÙ·Œ)¼'S¹Õý»õ1¯j»ý†9$ùþΤ(!?½?qD„RËBUgËð*u=§·.$x Mh½U…X©%ÖØz«VœÁ?9ãÉ·ô¾ôˆŸ>Æ¿}¤¿™Çsƒ‰11žw駸¨‹sgx>eÙâOçüíàa‘5¼°Oçñ'8ùºI|lOø>¯7š²Ïà úÓd¼&O7ädwµó'8©ý·Š˜núH6Ñxë*€RïPò„ÁûîYË·‚M¶²˜ȳóã^…-¬x÷[˜B¶W&?$›d.¤ÕÀJ òìÓdø8ÿ:]ä¶>%»\ß¡uä÷ãh¤M?únñ÷ñ2"w Ø"m¦¢'}Çäûáz ÷Ûó`6ú1&§r&`7â1%h§Í]‚½KüúSµûŸÚ;Þ»솻îùbúøˆUÃýø¯àóp|ÿ4³VJ7I梡/·„¥É™ç눼š£ÙŒŒïèç˜T·õäXuÃÎPw¶šØ6K©iñu6"Ô¹¿ ¾ïŸFœhbfçA[‰t*1$°Øí×Ñí7,æ‘®héóX5å 7Ó·¤òžç` 0~‡Ûóh笿C¿}¸ØáÛ™éP«O=,…›½ ¾±OR3}q½*sŸ¹m¶Giãö„BZ°E1cÄ%éURô&Î=ªB’_ Wš>»µOˆ%õGÓ%©W‘ˆGQ†¤c’NSN3òšÍ¶e¾ƒÑÙà'«¥v„ÒPtšâ@$°£¤¬,'‚7½“ƒ¿­kZ£ æª,t'陵Ðk |Áy ã3é%õΉÞÒsöéò”èµÄ¨WÅ7Ê„`™)„Ÿt ýñ¯tVð£†ç8í›ÒƒÇhÕ-£E50–Q"@q”È×d”à Œ;úŽÖ¹Á/0–<žJ£÷6›©n¢ ÈÒËf|üÆ^’¯I/á ô’r}{ Un(·3ù:‰gl©“ä—`SXµà ™¯O¤·ñš5OvHú†ÖƒMëûšÏ² Ï¹„˜>[Õ=é´lü`Ëxh£qˆŢ;&ØÅ©¾Þªº1ô(LO³£x#c-"µíFf™ GqÛ°qƒ­Úøök¼ucùþüóK³qÓÚG‰wÆA|ƒÒOŸ)p¯½jz.’‘S?Ðê/ˆh¹IoÍøÅ]R÷¾©nEš ä1¿#i'—ÈÿKœ¢8CÓæ¡úÁÜçía©¸êAUî²ÔXZÑ^•Rî0U5ТWóÉð1•\¦؉> o¿’á ÉU[‚!$ú+¾û>JU4A«zÍý†ÞÑâg\¶èµ¸@ Úè¨Z•k€ ó­ãøÀESA"ˆ¥©ÔJóÀ¿XŸ•¹Éô„$qïãùlt?ÞŒïÇ‹_ÀÇxÁÃ0?£ŸÃ[ 9J(ÑcŽ‚z-”oëXÍÆ4 ÃÀ aÃ+­¸ ÆÄA…è·$Õ6ùúRÒ™ Yƒ’˜æ;I~»æ¿¹ÿE£q*9¡5u]3¯ãÌ'[• B[ln‘ßÞÖH«¤ß¶àó6|&oëPSz{p}ÀyjŽd¦´$G¬§ûÅNp6Ás9Q’__ÐÔ,3HÜRNEÔ¦å‡;¼‡3r›oSrHS¡oé­?ª| ² ì+ Gõ:×øùšðÊÝ]Ë5yŸèØE>å­„ÚÆãºò¿à¦²‚¹ È^ZöC2ØòvzÇ|bxlÉÞšõ‰ª’»¶@²W—Ö˜FÙi´-iû÷¤RŒÞ‡sþˆˆ@a%ƒûØÅÓl"­I5˜Ê SÒ.®5<î çXÒ&ëÚ–@ÒØŒçÁdºÐÞoØ(Qg‹É ®FØÖ«è,½€’²ˆm¢DJ®]äVà5—vg#2Ü£W¸VN©ŒòŒr„ô j ÜŠ ­¥Âõùjsáö”³Ò¯gØQP½ø;ò´ÎÐ8à«Tâÿ†ìŸ=ùŸ}öfêÉ[ñŸƒøŸCS¶Cx{Dÿ!Ç9 aºÿxONÖª°-ÃËròµ=`ñŠÅ¡‰*é1Á‰Mw†|RÓ+K‡>“ª@¹0 ÚV¦sí4AWÅõ±ð±ª¬e[PÕR}­ &G¡Õ€ÿæb@¢Áf(yL é¯,ªU 1?Rb‚öè#%ä.£+hÈ×=¤ë^Š®µ’®6º‚†Po?¤xBòñ ¤hAòñ0”r Þ…ü|RÔáÿ*о¯Â~jêk„˜¬æA0;EK²g 'èž@× :&ò±Ž$9H‘dw=$‰Ùq)¢hyÍXLº}<4|£3ú0E¹½’r2å ²ó~B:øz€´;JÑnÿ l µØ Øa+QFµ]ÊABãšî¶yÞ"$80VÜ.½¨¥Oƒú"SuÏx÷Óöw‚24é||EAÞ$ˆþ£¸'Ä<)Z0Þ«3ºP›Dê¤ /;í:¬Ší1Àlòôx h×7ÀV·Z°÷‡;HDÁÊk9>%¹ÿ>&GõÖG°ñ=ï·Úð¹@ ¼htÐKYTIÑ9á飈s £3JØ@žÛ` £ !Çë³~ð¡Ü$žÚXLA²µyK÷…*b”ž\bU,1Už®„ŽRÂK¼+$n4g§—ÇI.Ô¡ºÐ’ «XêO܈ºP.º3êk,mEvü÷ñ)X‘6ÈPoßnPw+*¥ÎNOÏ>µ{X##ü§6‘HÍc´@ú7ïXMh@@ñðò'uµ÷Yê(•º“J}§®¦RKÊ&9õáQ*5*=IJ¥ž„`ßݲßß“›Xò¿é%%ÞV«%ƒ¢!( d‘Ñ ±IÇŃðÚ]Âd^Sç4`ÌOæfÛ*Õ’åvø”MBª³Þñ;þ;´C‘ùÉ‘œ›&¢¹Ì­}˜\`lÖaz¤ÚwÀ2Bù*רë§ µ # 7YÛp¶Ü>ùðŽTHšòî²eõ •ýÔúÈÌxGÄéYïÃéõm-ïSc€K'¼n_|L®tH·"¥ä$jâL’³Ë’ð† _ÂñzÕvÈAfëJJÙ Ž ºdpÈÄxw‰Þ7.O/pœ`‚5ˆÌÿHæQ»#ʧ&àþΆԜ0Ã&â„[Wþ‹^bðŸ£+>Œ@J(‘ #K™L[R)ð³À𑘀·Š®Ãt·]m¬ªƒ¾†€TŒ@‹šÇB£øÕÒ1€>3+YáN]ëoF8ƒ;÷DtïcÜŠxžéIÐXŠï ‘í“ÌEý 16ž3úø–‚bO?Ç÷c@¥ñ[9„ΨfÆ‹âç41ØSÍ>& r;f]P¡ö~† ¶JÛ… ŸkÌ@dY¾áÓ!X[ÜöÀ ǧœfä§, |zF Ø56´sÒkgHÈøÿÞ“7áâ/ñî=O£â5àwsö_øÝÌ+Yðîí®wo `wÝÁF Æe€T&›ð×ÖS {ƒ~ƒü“€1 V'¤Àv|’ÿ:—äÁ¢Û‡è½ÄLJtøNRA"6;§ðùÊë\’§ {Oß5,e·q ŽRÈÿI)]¦óiô?À'˜pï`ÒÙf¬$óLƒ%ó˜òþòRâ¿DÀ̦zô€È†Ã`ÚÂÈŸ6q‰íºÛ"ø^o¸¢i[Z@6u_½‘Z!>ñõ;mg &JWäm­@ïèÙÍ=™D¯Ô𠮥(¸À,„eÞnô.Z^0yšx˜kÂ*AýßA‚6޹•r»6MsƒÕónôv+ Èfptð Â×“Ä T…Ö§¨Ìpn‚Š‘»ŒdîÜ+¼nSúz²½Œý•Ãû– ê‰©ê¹¨Tî•' Ú=-^~eÀ®D‹ ¿qzok€PÂO ‚iOkÒ#b»l!}3Öå‰Ù§ƒ¸ª›†Ü5Cn€môH‹PØÑ…g+U„ž¼¬W ”€²Þ÷<&Œäd¢V>!Fµ 뇵©å¸DÌŒ9ò)¥9…§œr$Áv,‘]'xá@ðÈX°î¥F€Û€,G ÇŽ‚‡)¿¾'ÁÃx2~xz`°ûñg²ÏŸ>¤"xPÊþ ZõÚýFÓ,}'i¾®¡šv €ë÷.Ò’I „‘û*|?RÔ?ôôú£ÉôéËWs·¡º–êT(UÒŽkÇVš“©ˆëíœSHq?¥Ï}`öä…ˆ‘UçgÐØQæMÀðÓy$= rÒÍ?“˜5”˜pšß`ÿtqOãO¶] Ò˜íˆ.ãkƒ:«œiGd¢µè<«k˜€_ª´Ónýëf¤#É09Êû‹ _ò½µ‘®>ˆ¯½{Fî%O‡Dÿ®wªãÑÀÈÔ¼8]^œ®*eÙBÄCBÄ+L]|’@FH­£"yNyè"š~s«wjr{(ñà÷Ñ킜÷¯4%+ê¦a’% Iʈˆ‘¸,/CìYK°p@€Lp@˜àÚŶª  ÏéµÀ $áV÷ÔT}cs 2Û˜4`ç<(!Ý pP ß#…7ô¶-uÐkó¿ð»)Üú™3_™9~¬òUyì '@D=ºY;~àÚN!äó.åó ¥8å´òকüC7‘vº†ßGÁèûhö »d?q3ú { r¹gnö%$À?Ïáð…À‘¸;0 âøÁÕÇ<ûéCŽÿ¸Åq%CÓÑÎ¥#YKmwLd²G¶Žä½Ê¢Xu¸ kÓÙU鵨Ò\gÐ=»Å‚Kí+wƒ¯â_]Å ®-Ý`¼é¡RÐÕˆ&‡`cdz$s±Ókwß®ã¾Áíë[½ˆ¾]³¾];çg ‚û¡r†if:ÛÒ§À–‡£¨¶`wbT ãU»¾b[Xzµˆ;Tz݇Œ^ ÖŽŽn¢e¶_/™ÃLáªÜòÐÅîž*Ún9öåéépu%ÑÖ“l¥ÐuÇÑ|lj±ìB¸fo9®ág{|9&¦ê‹ážfŠ{äîe{~Ë­rQ¶R` ãÇE²e€é¡&Dä €øm´gù1œ‹á·Ñ$On§3p†pÿËOÌ¡UÀYÇ—g]†˜–'†²§QîÚ‡Ý/ÔS÷ ÊãI·Áhü@gp‹{‹þñÀó||'.s²±{}\Ù⸤Cpd¥§©.æsmÐX–:f¡U¹Æ)óòE«Ø¥û¦S¬Ãg{–dÝ£æ`]zœ9†W°öid›•»÷YI΃¤jÐmÁ\=5žþ5ù1?î—0$‚{Ôä=¼MJ1TÀÞÆ&©,ª&=E(Ã5ìÂ|zj¾«qÕÔ¬¬p–Ëtìâü9_|„ãŸW_µ×§é‡w5âÃ͇ߵ”å]íÅIÖ¡,ãJâëeìt"_;á^Òª@K¼¤tª©‹ª ˆ\´6..õ]'6nQýýit.­±ŠÆ%¿%Š«½Ì%e}¢k.MÛÓ5V­Òjqb67É`kâ44Ñ[™˜ùœµ MPȾ`‹š^Q‡±57m ¦+úH¦,Ê»l÷QSk•1eó±vºJãuJ/‡ þßÇÆm¼áa¹‘6ÛÐjF2˜l¸ì5\Æþ¶)C _; T*;m4`_ï´Ï0gøØfØMs¼¬2üL2Rö=‹5ˆ¯-FCŒlVÙL0òØ_x_¸y•¹›öWÈ©VÓúâgqámn±¤­…7O.¤Mð×Úp§íD "l)†ÞÏËÐëaèÃÕóóákZŽ22³Ç¶ÎӔƜ÷²£ñ6¢ÉlA“Û|&§íL>ï§Ì&3+<ø´3ƒ™LvÑ@††¨—Ícb‹—¼w=¡dî’¡sÔà …xZÅä7‰)ÀÆÏ&“%Œºm`,0ÔªÅo2Ø-Zœæ,.[«!‹ÙŠÅ`¢³_I¯ü.†*õjÚöÆVüR†*Òý¸åú[âïbŒTvõUË—¶R½.ýöÕÇDF{èè³`“¶)*-bþ@‹j%âeÒ8·X“h,Hä¾&Ö$ìù½ìaЦµO‹…ô*wêZ-µ¼¶^KŸ:õµXò(¶9ÆRŒ6;ôø.FÜŠmrhˆT•…Fe¡P1 jõ3ÔÁÐå,áRÖ:–};©Gq ¯Ì´GoÎóª¬vÌ£“2ÔIls4&8ær®.„|);àÅ@æ…ÙÐf,Ózÿ\À?—&{™+Ø›š)i2Y³Ì»vƒÈRøw[~Sq¡·u ããe*•æâ0¡¬e„…¨9×#ÀmfŠx#ËVip“Õàæ’ZÜ 7^°˜6øåyÑ+§ÿ2MqýÎÕ)Ë?Cœƒô _g6ÄÁÁ´äé1ø¿£Ù”£‹a—…³&^CÚK¤1yþáàE¾or’ü¥©Oiê#õ³4õ¡¦>—N[ŸK0ö¹ü7¦5[Ê´.Ÿ`1`sкø7¦×Ãë™mFë¡a,Ù¢ÐßA‰ïþ9Œ¶ ¾6IB{íö Nû$º“âJæ5ž?±S&3¥˜dû>‘f/“%úx.Ñ'[Ä™À+èLP¤)}¬M^%؃Ó¾¦Oôñ2€bIó›AÑÇ©Ÿô3fñ°dñDó{Ùªx† Áó IÍ´½8,^d »‹ÖˆEkâÔn{˜¯ÈæV0ŠÖpEkëál˜d²bæ—Œ&0{˜4Ýý7àtp{Üý{Ã=™^…i;QÇkC¬!óh婢æpƬÚ·„¹Àïc ¢¥óBÆ­i·NÖ¸#R¸ˆßDzC¥ËsÙ¹}ªe7Àò²ä0¾æ#™¹ƒRä®TäJ‘«^¸È5[)r_¨ÈµOµu‹\¼¸úLVu¹Lêü´n࢓&E˜Ñå°¡“ è|Ã%I† Àiϧ®,»^†zþkî&Cyì…2™+ä·,ò0TP ×Z)@…&>¶M¸|YJ$mÌb•yý–ð¸ÍÓÒf’Yæ`Õ s¸J†±›µ¼ †9ÊÃ0¾»†e$FŽÁÌaë?˜û¯`0³Ø;É"Œ’ÜI~æHÙl‘ò"å±BÊa‚ä¾Íf|´’“³m~SÓuûºZ[%¶;§³³Þñr¶JíøGa]eµU‚¿[%¯K'å§O‹Q0||œMŽU :üélüe ¨%ª”ss%Ǧ®#q 0¸† ¾£Nj+¡¼e+}Òui pTüW¨@L!wï¨]žŒüO^F¾zfF~ß lêâd纗Ó(ÏÇ"ÏÇæÎßàÎCö:Líœvv>²ßbe'ÊþÒ~ΖíµÙÏé.¬%vö‰…YÎ¥o3¥*ÕË×Âlæ,·…¥…\i!õ ˜l‰Æ[h@ͱÀ Níê•ÁÜÊøø¿™Ú"YÁ)$ÓÛŽ¹ækÓæ¢ŽjÓ–¹!RcÖl¦V÷0SÛ]¥™šgªC55ˆ”¹Õ–íÃq¿EíÕȧËÒ^­´W‹Ÿ¶ŠJ²Z{ukyÃLåµ^K[¬%¤ÌÙ ‹,µz¹e#KNªk #%D‹2SÂHCHAxÒî@0—3„SãÝŽŽl6O¸ýœh7§S5ZÓPóêÍ5½6£6XŠBº (þÍÔÈ?íÞ«·Us˜”AwS°½äί•Í,±á*$ RÍ×J*ùÌ4‡NqãñïÜæª«³â€“c» ýÒW1]~?è|˜¨UåÚ)É]3än÷¨I Ns*<åÔüVNÔ¢¨›jÐË1CR.LæB’mÐÎY§k°B5‹i‰Ë¢$eHÒu„ ²ØXÍFÖ"]ÁZD²±Ý’Í`×+ê ŒN×n÷AXºk7÷Ð[ytV&E³ñ²‡¹i»cÜhܤ/?3„ŠqYXÆfù F×>6<°óÇõº¨ F‡>Á„t‘„Òƒ¬×H.ήÃË1šÐ¾dÓ0 †V{˜9dãÔ¤Ф[$g`ï:žÁtì*.—’oèÏ 9öÆHVG¦æx¿ñ {ãlŽ3ÔM (̮ʚN)c R¬ z3Ž.´÷ªvð€‚×»KEœ2*\2Ðæ&aH®c¤¾€kØyT—VDÑ ºu¹¦nYáB˃ŒýÆFÅ—1‡'D†mww :R;œqªnt „ 3»øI`aN•aåý2ïÙˆ6õ¼¹Ò0ßÚOԡɉ¤ŽÈµçˆüzv±RòØi±48V$Ä1–ê;Ç[H‡ kÇ»à ÿn­>å쾋×lsõW‚}‚_ýDxÀ {(玪QVW÷pÚ¢ðÄOÄuj©} IÁõüФ¯ aWG!yymÅßYÀw]ßÓ™†çÀà‰büа;2ì’.õs¤ØÕ~€Ý^Õ„é2ÂÆNhŽÝ|<œt&SOÆXù^ AûÝ!h´Ò¹ÁqÐèc7Éô¹<%]#‰H—O/»=$nÝ4–v’žr.wrSr3.8=]‘ë[*Åé ˜l-ø­]üÖÞ‚ßúHf$·>ž÷KôV‰ÞŠŸ½U¢·V‚ÞÊÜ"œÃ2‘¿K;Œ«eðn~BþOÞŸ0–™’"zëDëåÜ‚Ìrx6»‚óã~jÄÎ}˜—P/XµB\²Šzº]Éx/àÏWøÊ蜜ú&_ÞùñúÝ‹ÇÀýü…ïËgÁBpjUooÞü÷œˆ¯”#j;ÖËôòEyÙ!^7ÓVïNÓ©A-V,}_Í]Gë }‰ÛhpË ^™• +”ÏAâƒgãr#9;,r¦¹C_䬗ræ‡Qò(¹= çu,lœ8AI}IÉ_I€IÚ»MžŽJ²YÁ=º.C ÙH³³qI’¾8Ì€}Ê‚]ÓºGöàžÁ½`O1æ©—óä<vrør6¢úëÔ7i¹ýN>0'Ëe²àä…nò6Yàt¥ì !òq–c¤öi,¤/ݦZFŒ`CgÙ¯VâfÅÕ'6‰´2#ƒ¯¤¢@Z™¸rÚ»h§'›d³$ÆÈ`”Ñy¡ßæûÁÒßåœfrOè )’ðD}(2ÊÚÌp¢LX"Ovÿsf•¶Ö ˜v1îq”c †Ç*ALŠð˜“=D‹¿= '…rAƒ$¨­”” d‡ÕýWa_ Pa2ÄÒ7ø'?ò' ìG†~“ZÀOjVŒŠ¿k*±1=äcG¯o”âr‚ý;ŠKrâ~TØË?ˆäq æè)Ú‰:917>§âĘÂ:±gçÄ`"sEvQ ç7ÇЧ-Ù¤?òÃØDaŒô;ëP8nœÄÀžœ¶œ¨ž ý#`¬{7UG­À1©,ë8^Q ¬,—Ôeá[G9`R…`¤<RöÈâÞKÓ3#.JŠ"t+Š^2ÁMŠ¥Åúx¬AÂrw`ô5v¨…B1ìT 5õ»@¡¸¯±(3êÙ¼“ §Cõ`ŸË)˜þL¬;û–þÀJ0Ör`,ÉQw“%à±w%u’ã®Î=}‰þλò7Æ ³µhͼö<`û¬CÀj%¬Ä€ÅO‰û 0`aP³qÛïãÄK‹þÊêÄKĉéà`àÐË¢ù=°b ÃüX±‹ÕV䬈½€Ø‘ß'?Lððõ2±Ý? ¶ûbpD_%B ]Õ•±W C×€¥[²ßÕ-âssø%Ó&KÁùb4ŸÌ¬×—™Õç}è½g°ûÜ…¼og`Pú<+}žéËóSoz†3.¹dó‘ï( ŽSÏì+Ì-";l)È'r©Èˆ€ 4±¾18/v ^««6[$èl‘öWéªÍý9kèçÒcÛ«òØfFuzM̤Q9}·ùÃ;“¤=½Ùê-½À¥Ÿ×âÎ)óìíyÙ^à\3Àa†Lð®Û\ƶõÖã .£‡7fM—¥G5îÀQ[ë[Ë«'njæm›BíÃQۆΠ¸«c¾£‹«û–€Ô¥²údûÄ÷,½÷Ø”KqzºËît'ö7ðƒ~: ¼AÀ?A-¸ÆÀ¼ÿP0oä¸@ÁC ì[ „X0ÁÞíñvöç ²òOxñ‰Z¢‹¯€Â™ ÉvVÿí¢ïáÖãh}¾]½°ÄAº‰ E¥_‚#EÝ›šÞób]7Þý}àÆU“+CÜxÿáÆâ Ä5êµ\‘øcÓµ“È{%¹!B–½BJ]d?Û¼BÐÉzË”—k¨¹lh¨ÜÚ5ƒ—÷=ÀËpO1 ¼CÄGŸÈþ‘‘¿p*ǫۮnçÁçÙôTP½°¨üçiL–”`ÌG·ãá}ð}4›§hS\ÎöW²_@Í _÷›§ ,#qä†›Ç Ä2_á&ã:˜>Ýß!Àd2ÝØåfÜ!êçîµ£’ÍÐ\,Œ K¤CÊâ°®y–å ï@i¤3½‘VŠ÷À(RèƒçF \i‰þñC›Ý¿1~(û#FýHß}J ëš…«ürcMì¹gª½¶†ÊL•¯…«j_ îYP]ÈÖÍ…M‰ ׿x xž½Ü€õ/rýϰ·s6`5SbÏ8%ÎõRy “áÜ ’×À…çz¡´Šñ?ò­y5¿ox¸a;¾]H±ø!guB ¯³n¬³Ç+.¼Î]{üÐRl¥ûîJkE×yè®S$nqŒ|`d䦞‘WÍËM=/¯š›zv^5G«ÕŠ÷S…ֻ箷ºŠÉtàUoáÕyU»š)uhœRçÆµaE“éܸ0¬hW…M µBaIX ëjŒ»X™wƒgØa ža‡1x†Æà9všJW¾ÃÐÔ¹qHcéwzF^ùCÏË+ßaèÙyå; G¯|‡¡g°Õï0ôõ®|‡¡¯v5SʨeüšwÆ…aU; 㪰ª†yIXÕÃ(› å"³bò¸ßª(W©ô&å:žH+PDb­òýé*jÝÓ×*uµZt¥•ÒžV‹«ôHSimUƒ*±–Q[È¥ga­Ëga­Ëç`-M¥«g­Ëu±–Y òå /5c5\E+äí«©QUxòå.8°ª’“WX+º‡Ò Zô(æA]…îÄ2¢+ÎsópFZ£¦‚úLQTT«—ŬZE?µzi,Ô»NylªvÅY¨¶¶z™lT"PŸ06[É$v1ØJ¦²ƒ»VÀZ†:ÖÊW'kÁ%öûJöc6È£àšÊÇïPÍ#šàe2 £¦Sgï“–Íô+.ƒÙ5™Ê Òv0˜c— õ†wq}›Î½k7>„A7cÛ&Nî:+èÎ¥.žíVâÉoN}°ÎÑúd8 º€ïžýÐuM~ '€sÝ3`?ÔϦ_žXeÌrhèxæLòCþýˆŸ?ÒÏçðïEÿmng}ò÷|ãµÛêdŠ 'v€%€¦žþÙ‡Kk˜ Ü&%£=þ-4Ê€¹wy ·y»| £4¤¼Åk¬šÈƹŠšNô^bv¬1pÂIÍëK;Y§Cp©ñ±³dÉ€[ÁÒຠ‚Ž{Ùk_pWôqÃl®Þ5Ýl‘æpI­1º‚·qÑYý°cÜõPðÄNþÀ¦ÞîÉI× oÂ8’)ùoت¡gçÜ99!‡îýGþž´J÷þ‚¿ç>£+P8‰… ›è}Jt#͇æ“3ñi\2¨ºßÆÀ®‰SjÚýØ×,.dÑ` H²|R‡¡iO3’[SÁIy@mç Õ yÌqõ¥þNHkñwì ûýþÎ¥ˆ°ÂêÜ}@é•€†ùOÀ#|í\ÒÂu 5äøÀs´Á æ8…j NEèøç„ú¿!|Xa®Ü7ƒ7²¨‰ƒO± ‹·iM?Û;=$¡…ØÏâ¥.zÚ’Ÿ¸9›š<±+ä,¿‚íž–Ý¿&?E²‹tO¥±¥m`#s½‚S»"¼ ¢“.T›raØ;caÉç7Âβâ´2çeékç¸mK¶VÉtÀgÃ^ 6j)O´Ø"R¨(:ÞPGŠú:Óú‡’\îvÕÑ¡®‡ßÉ]io¡sAJÊ6¥žòB¢TÁîuÁWŽÖ­¹¢xð««dOÇ! ÓÆ4iêhbò™ÅܯEô‘#àßk;í Ù[½ï" Ñk$,Êd9ªÀÞþ «4®ü !Ý6§vª 5ãÁøƒî¸Y ®FÁ!³ª™G«nïx:f ƒi.rnÀÕŒ'§Íð2C;~Q°å 4NÅ’Ùl° ™þ¢]öö<‹ØÓ”àní‹Ö™©I,‹çºC; ×­IÊåÓñÀ:4TrOóÄ’‰7#¶ÑHv®ù¤VâUÉXóŽ4È/¹4Nš$ Û–mê”N-^׆ÝÂLJuž«6õ©zŒb¯Ó3³©ÌL­`…{Ç<3³†ü(ÿÒ““r-z,¹‰jz™è;;¾;¶8½v–ùÍdìZ‘C»]óm©A´Yçv²êD¡q­1LùÝ"¦¼ve—ªÙ[nÊóU°Ïý=g•ûÅÌ}ûúïžû„oV?ù<'ÿ¹2ùÏS“®‚$Ú£¥i£•w¡Ö-ªÚåÓ°ÔeYÔ]¬ÇºŒ4òyÞ¥vÍ*%Ú@TûñNsØÐW$^³©…¤ONú2RÜÄÞ˜øI¤a¤ÛþEúíŸV»@HüîçwøèHâñÅ}loFïÎâÜðLO…€»äc®PÁé¼ê•éLºóÛ}ô]=œWϹ·«ÛéÃãÓ‚ß5£›É?èÖ›½õ½ðv^Bæs\£ WÑ41Èßà·ySqþà'rmxÜ8KrÝ,yî2ÇÃíþÍÛ—¾xF–/âVùªBÿ^ó¿üýÅÜû~×Ѻ _ Iûý¶…œt.ŸR’Â’•ô¦ÿ™ažžš‰ÛÒQ5Ý’á=í.Üþ‹wËÐ#2éþw_ô»Æo”uekH@ÊŽl¹©Np¬¹*A‹®8ŠðFBcQÒ°Áì7ïËo ^!7h4‘äÚº•zÕâ¯Xœ¼¦É”®{*¯Å=øÎ¯¢äe½+¾âIyVi!‰£œjüÓwÀùqOØþ#'¡ÎI[-¦ÒÉ#KÍ×úš!Ò_W®ùÚVóuªækMÍ\4·p©£Ÿ£[Pܲ8 ã ™ÌÁÓ¼§ñ»ýFìMqGÉýeøô…*‘?wŒÐ’w+Ñû2¢¦î?Ä¿÷å'@ÜŽ†3Œf'DÕ |/™:¿ •Çß$wÓ[DÀhÔ$MûdÂ9”\konÑ_XéB°äŸ7”;àµå‚!Þ\kgD *Z<{š\éÇ­^s—-W© :½zÎ>˜t«g\Ó‘£g–;nõä ´œ†YÚ»ˆ­k5hÒhÖTYAíäŽ[ÏJ‘tiôš¶ûÛ­sûÍ'zâÓu›Bºûü:ž§‚SW†Â¼•¢§ˆóm¾ì`·I·ãðd…P¬—ìŸd ðó‚ÆKÒØü/©øóöƒ‘‡6–û¶iZEáC~Û‚¥¹7RÍR ìåZ(–nŸ{IèHË¡Ûûûéô÷ø÷dC<ÈOÃÙ(.‚ûÑlé¿ï?ÃÛÛ'P±Ê!«ªKöÏDJßÓÁað_ÕGì1â¾’¡:ÐÐÎ/)ÙcIò1Mœ#l–Ú2V·N75¤y ‚Â×ë¹ÞM3õ~üŽùÑÚƒàôx0.>‰þ±‘òzþ>h´Z—ýÆÅqìâ}†ëŸã+pŽ¥§Ü§CmšGiPh‡î± †ÁÁö‡hogŸúÀŽ?ƒsv ŽÎ׺38ßW¿¿ìµÀc:€>YHNûäFzL&Í)ÕtÒù1¾#›Ì19*¼öCq&·Í§ý|'¶~›Éú'ù!@Þ~9Zm_–Ð.¢Ot‘Ψl«UÙ^H™m„MTQF3Ô¹wN}†ÄŸ.Y’õ÷E$¥/§bä=øÉnŽàÚhÀcéÉü;ÝÓ͵¨ºW˜zôŸ§˜¡häÇã ppŒ·©ÇsœgîôMÆÊÀsdë‡ÕSðÜ ù–A' æNîžÎ:Ù8ô+óòÀwhQY8ƒÍà (¾ïŽa>cði $Ý‘ÒyzÀ'6§{2[kÞzþ P•W -¨;ÕaKÑÚgcUZ-Õ‚ !.d:ꕼzùû¿2æI–€CË@ëV.âU@Bó©P}º±ÿLžnàº{8‡ã^îψ$>įž&c"¦î!X<_ÌÆ7O°NÜŒ?FDDoWwöðÆ…üý}E¿9SÔ¶ðZ·K>vO„ú‡ßGÁ<¾ 4þ>VÞXH.±·<§q¼‘«hÜÓ¸Apc;¼ÿ_8<)¾gc(f.„ëÂD><H¤âîÞAò $¾žÈ_IË%M,m‹‘@¹A¼€ d÷2šÜŽ€Ç™A ùÔ†]Ë ldn¦O“;¯#djrÒà¼DNÆcÚGž db-¬‡ûáüpâÑùq4Oï‚crd¾9b+`>j3Ööl÷´y¢¤²têiÎÂÈÌFÃoÁÓ£˜çæW0ÿ6~|„ëÓˆ’$¡1 „P;H{òSsÈÒV—k4׳Õå‹ ¾…õ¢Z­niü>ÄÙŽ:£oOä·xáÜ‚+Œ½”:^afX•Çž17]þ˜Ö—±÷ ¨ ­O( AüMÐ iõ¶¤HFMG,ïÚïI =—¿/B,ú;Îúá-#°ï„êWpIf¥%¦téÀ½ ãó̯#Âè3å+YßîF z¾NØíày2^°¨K¿ïÒe}d^ßâÐGl&¹0y,6ƒÈøz²¶J¶›£úIëS)ìwaAûôôø!ÂßÓËc0Î4‡é#ÝÞ©WX$%^n5¯›Oc3VÇÊú”ëSÖ9®´Ç†xdŒñi1\¦“û_tŸ7[P¬)Ά`E°GE;m nž•bœÈjÅVñY†ñÐÈT¤·ðrjþ¶™ˆÛnjÓÓÀIduz|Z@(lƒd†RƲ–ÿ¼ 혧ÇjÑ9¥),– Ú%Äì2ç [o3 ).7ÄU~¿?ƒc%5ŽWw$,Á¤ÐŽ·J7¶¤%<µ 4»O9¾»d$âæ7 Ý”P~r™ÓgÌN}“"µq óseß_(Q°’SÌÅq#%ƒAlÇRZ :ª3Î7ÔF{Gëk$õ¥‚¤¾cõ Â^”5Kï” ¥*‹-LZCþõ_å“õ¹>o¿m×wjoa™y ÎÚ½oooúÎç"ê g›êþî.þ=ØßÇ¿Õý^­Ôvÿ+ªîíìFÕÝ}ò{´·W¯þWP-¢r×C–5²Ôÿõ@V…áÃtnJG’}.„/롳ç¼öl÷Èùî´qQOŽòöˆlIRwñtóP7pãÀó=òb ×Ùø;ÙLÍd†¨¥ÏãûÑfø<ž‘”Ñn0ÝNgw¸›ap[H„:r¿c˜§û1ÙÜgô\ƒ›!z)pŠù#±%'–8= äø ¢ë´lî ÙUM¦°*Þ‘­ß. ¡Cl(”ƒÍ¸%[/ÒéÍbÈ]wÜîG‹¸dìF=€­Ñðñ´|‰eLïï§? q­Nú@¶sÿ†Ÿ7Øl#»4¦=F LÄëà²Ûmô¯²_^ïÛ§¸—ÙÔäl§.äã6èÈî zó ¹òËà#Yו*¶#W<#ä*p*¸71í÷ å‚*êbÞÇŒÂuu§€«¼€k‹þñ§6Yå‚ïáÌqÜh}$ï[gýw;®bgçQ\Ì\Ò;b„– º›*ýÑù fˆöwèUøÅGRÆÇ³ÓwÉY(‰õ­'~BÌ‚Îmðz°Ddc]öKÒGIP÷*+Ž“[4ùo3¨Dñ§êÎA¸]Ý9ÚLUçó«ѦZ¢z¸íDéZx6ûØÊ#aò%6Ùv·Ñä”ÜWË?ñà:Câ‹~¦Äƒ,mîw2´9Cbð"ÖÉP²gbH>þožÞM'_@«œìÿ‡üD–|ýü9h“bvðøãð,‹Ò{Àr Rà2\òá¾ý”38²ÝÝâO7l .Þ.F·_' º£‡)([ž‚Þtçð0¨ôGßÇx‚6à;$ò’Hèñ-œ¦ïdÛŒœáÆx›ýnLó„pRœNÈùV<|’ ÓÙ¯08:¨VY"a¿­á|4Èzô4г’Íç=éè”Â÷«»õ£3íaøpû=éá9UÃi8¾!?!»¨˜ºÖÅ·ÔdA‚“ÔÇýcBìÙÑý½ñÈLŽÂ3$¡ñ”´çëÃ<ø@öÁéâŽçÀ*› ›G6–‘œñ¶«ÕƒÝËpò…/—ƒ¿6zÇŸ6à2eã²×é}êmó)YÎÈòÉïPÈ"—¨BØÃÖÉÙÓ„lîcXM!óýP‘QH–Í/L5w—*„$ƒKXxçAeþ4N6ÅkÑŠæßkó3Öº„¼‚à.]Âà²9°– àxhså´—Q«šÓ÷Yk ~ÙS,mÌ´I\,éICÞ“Röín¿£¦3Sú·yì*sÉy.ЕñœðÙ b1û Ù>Àr7DDãFEd[ñ뇋šö»v—ß×ô.ú\go¶:ù}âž(D1NþeïHþÖ±%\ü9'×A{¢ó^×´\SÁž0í«^KÞu`oÙ¿V‰Û X)jØa y€;Mn®Tã¿™{IÈ[áCÍ@?baæŒÍ¦R-¢ gkF¥Š Å›ë¬³ÕR³¦Êº¨¸‹ùT‰)cfÙ¼ ¯vŒç̦™‘ ¹8ÛtpÊ I(Ü0š½ƒišŽ:0KsZ1ø$í; ó†˜&]=ÙÄæqtÈZ;QˆjôOþÙ¥öè2[Ýnëc~¤÷NVÀMtËB°µ^E·–¹‹~GÝ!i ªDèòCÙíí=aæ’ðž ðnü7,Óiƒn÷Yd{Î àŸpn/÷Þo=îÔüÿð.˜ n©Ÿ&ãá¥Êü öj¿Ä½¦›>’^ÄWœdþ¼Ãí ¿ŒÞ 6™,6'Tgçǽø6ŽÚ1QÏtT@ÆA&ÏöO†ó¯ÓEîÀšbk²xâ2­#ÁA̼Œ¼SîïY‡É»¤ÃP]Ü_•Iú‰w8÷Ã/t‡K/˜ÀzæÇxr›Uv%÷švÐÜ|XÎãןÐK6Ù]÷|1¥8•)ÜPý >Ç÷O3k¥tß`.úr‹`85žp_F•§¸¹¿³ÕÄvJM‹¯³¡Îý]‚¬‰õ­h—d+‘îº$ævºk| á‰už‚×]^¾pÚü;:õlüK£ÀHøî¯"0o¥ß>\ìð¥ÓGADvžH†æIR3ô|M Öѵ­ÂÖm0Ïá0Tl‘h ”ÀùÅ®°ÞÄùÑvz”ü½ÒôÉØ­}B,©?š.I½ŠRVÉЛ)˰ݞ8*äk2(ðZÏö‚¾c‚unðãÂRã‚{QiXàÜ´™ê¦ìb ÝËf¼ÝÆ^’¯I/á ô’íS}{ Un('¨|Äm²ÔÉf¨ böPÏÌy"óõ Mƒú÷»>̯ÏZ·-cÍÖçdÅCåžÇ $NLõîªË‘GaFºth5‘ZØqðæÂŽ.,°@Œo¿Æ ËÈW òÏ/Ír!»–åt®P‚ø Aý‹ sÅH ‚Þ$$;  á߯⢠gnz‚NêÞ5ÕªÌ6 ü(c²vÚã0y¼®‚¸=,è&àã^Uî²ÔØØJÊ€­ož ŽÙMU2|Üæì]+°þ= o¿Èç‘lð^tS€XÃõ¿ JCñ‘&¶‰×>oèE5¡2¥lvEhRÜm%¦¿¢¥AÚ<“æ±:+aƒMHw>ÞÌF÷ãáÍø~¼øE­É1©úF?‡·TјîúÐ?Z½ÊÇfæðPë ù(á%iýƒ ŒØ÷/(£ïajªÁ®Í´>’XÞÖp º)›ªÀë(~}¢¾naæHôË­WªaÞÓ}‚û VæVqÀØ„-òÛ[ðÂ'ý¶»+#o!H`”^Ú[­v|Ô_%<³9Î&¸³¤ŠP:>­ ššeN|,1ßJT³ŠiEW%ƒàDzâOMé'~òU”k/¼£‹ð_ÂÔp÷ÄüõhN{2í#Xè½½Ymñ¯-êNªÕÒB“ÜLQŒUÌ{ ¸AC[RÜK/; ö¤<ÁŽÞcgpKƒBzǘœÝƒDZÊZ”ºUz•„f>JÓóU',z\ÔØ…†˜,Jáýîâ&Ïkš‰‡©§“LòV9ÉËIþ»:Q„ÏÁˆlׄ]7Úœ?Í&Êþ¹J•Lڬ뼑°­'–´©Z¯AScu= Ð'Ó…öÈF’¶ñÄÕW*¦—Ámÿ Ô,b›(‘’‹)¹xé§=…ч².\ÝW¸šN©Œ2OÚU‹ªro(´Vp ©6—Å«J¿R¼°·¦OìF‚Ó‡n©+àd7··üŸýøŸöV2G‡ð–ìÅ7‘ é>à;Ù¼FP­àÉ—Ó3ª¤ ‰Ó’=E¥§SsI•|*S)Óœ¢2UШÂ?ÆrX0¯fâæA#sšä5xöÓŠÖI&‰”1g–vGU É>R’ ´äc©·—¢^­¤^Šz ¶!$¨gÈÇ=¤Þ~ŠzõµS“ÆXŒÉغ–‰¡úB‡ýÂÈÈÇ$ÉAŠ$»%Cé¨Wš† +G>!ýSôÛ{ôKˆ%% >™éò¯ØAs@×KlꞨ†(í‚ÝGºûüZúzA¿ØWB—ÖØÍV-í2H_Àž©€ôéEY±Øšµô CP&/ØÈ›öÀw ¸§KÛï0£Å†Êdn». `î²-¢ˆ™g±”0ô4¶A:r¸SÓØíôOIn£õl$ÏûÇ­öL®IÎqÈÕ¯DÑ9áã£HcŽ£ƒþn Sí ÙåY1?ôhþ)7S µ«b_¨"FN÷ä«b‰©ö„â ¡14mupü÷ñ)`OOð¹övÓ½Wyvzzö©Ýû `ÈXŸ?µ‰h#dýßÜhiWh@@µòÌ$uµ÷Yêz*5õò(¤–Zs@‚‹¶÷»;óÐÆ>nbÉÿ¦7ШŠPKF?‘” %‚¹p ÔŽ“jÚ½Âö~¿q ÚÿRµ{Ü>D©ömbÚE‡«Ñ$Â…œß©Ö`U¡Zr†áæ&hƒ[@þ?ôHµï¨+½¸ü”½±­¾CqnR ?é½zÜ†Íøö)LŸw¤BÒ”w—-(«L¨ ¼r ,’²vãæOý³Þ‡ÓëÚ6ZžjÍ–\a~Eª=i¯pÐÆPüLI1ƒØúî†_¦º–š0ÎQm§NR±6]|$ó­K†Ž°ö;2‰8x߸<½ÀQ„)’ê ÉÌh·`üùd#ìÐßQF@¡x:V¯4‰Üâ66ÿ¢ÇDÑu!w  Œ=Ô@Æ¥LÄ i0*³Ãàá†÷Äz‡Žv®<ÜU¹„Å"FÙ-j J¹Â@ƒ‡ÿáÀäÜWÐýƒqW཯0^ÄЧ!l+Ì; Ù© óX•×ÍVå¿)þyƒ)ØÊ“#úÆ­Íä E`a¾¡Ò ¹5Hè82‚'šî¥)FŠQÐCMz’+PBŒEN“Þø½•¬âz›JÁæ¬F\ò~ñÆ7«¨äøØ’ÕŒJ6ó@¼q»äŠ"Á½œxl—æéÀ–Ì-ty1öàÈ܇Á‡|"‡C”§½0 ;à"”ˆG3ÉNAbž‚¬D—“äô*ÚÄð#¾jaÌs1]ðI2uÌxþë€op•—âó$é]žžÆAééÕ3ì*Ø}tâ/™@ƒ1ûk1 ˆíÛ"öYø×4³ M#K}Ý"®Ç€‡Ìù_iÓ0n1Qº"o08½úÄàDE¾×„õŽk) ˘£M8äíFï¢å‰¦™åA·Qç?ˆþÍbÿvâ 9å:!(K0Ž$×”ÈXHø•Áɺìn Hò’¥§ÍPÀËÚS4`If:èJ¢àbÿ.¾'ÁÃx2~xz`à×ñg²Oš>È—øë/MXmò;Eñú¿”Lð/(s¥†|?Rø+Tê›Ñdúô嫦f^ËS-Ü£œ¬© Ö½%kZ@Ž¢m#¾´‹ŸD 1‚¦c¢1y: ™;òÅE@à¶Vƒ–QWß‚ò¸ úJ’ôߘ^Å`À¢Û4Xäo=þ¡µ‘nE3iØ¢gw¡ðŽþVœê` É‹ÓeáÅéªÒ(©èCÙ¶‘ƒméyíd ymæa±øWådÖB~–ë5r5}ÌšÔ¤kÒV¯ï奼ÌL5 P;²ü ;Zajóè™ð€ÿÓmÐÅ>a× ›ËV¶Ö3ž®V¢Õ4Ï@Ðò³IÒü7fÑM–ºÉçIS'MÛ< ’©Ò´Mòt¡ ókla2™ç /ב—k¨Ö8y>š¹çO`v2…šfº‘®Y—ÿê'Rc. pL§@xjš×dÍÛ"{Rݤ ô󪩟Wcj5éæ™CQànÃ1«‚€nÝݳ+ˆ£È7D¹‘µèEð_ ‡Þ0—Ä‘wš Þܘ”Ýye§Oo`Žäé ¬b.vI67ÚGÒ°¦ èÕE³Ó°É(%âèÊ£up¯®o´gL» j[A6 ¾ÛFìþáƒÑ(ø†ºpIr‹NsÀÝ||'N“¹‹HìŠ gurú¤«GÆZ’±É36}2Ö©Í Ævµ.@,ý.“czëH²ô{˜¾ƒé­‹K¿ÏÂ+bçRÅ2Pc*ú"̨ë–cXÖCš•,9P¡cÍayŽ’êš •[\Ÿê¢*«¯Éê³®<e‹&%Šk1AR¸ñ™l¼†ZÒ%Ôýµp²wÉzè2a¹„í$ÛI¼…>‰³5/ÉÇк:“Ç*ØþL';CA òÉ3´ˆµ–•³‘ŒóÖ> à–i²¥#ܧ:††•ŒèwÀ‚1b´r6–çIç"ØÂABÞÝ%v/’ß‹ëW¸Tø´S˜VF dG9t«1‡ÅXƒo$2L6®‹ÓñØKd(HcßAOƒ KÎPŽÓìÃ’‘j xYjJÒï+×ùé‡Lø/S0d$Ûß_Á º¢˜ÿÍøLœš>ÙíMŒÑ™>*3_îéæ˜;u?•D~Pµ¼<¬šÞ¥¢‹!*µZMÿiÂ3ê `ñ~É0ÂE#xÇÔ`XœßäË‹™Ñ¯BœMÑ3K‹ WÕÛ=kP$ƒ-‘t ò˜àêÙG8Ý`ãÒÐX£wú¡èÖãw1JLŸVbõ ‹RèÖM›/z¸e>‚p»)[ïxîµÎúýãÖÅéµÍ}ÜŠ;¸ðëQªÊÓSÒ# "×¼¼ @ÂíîeW@ü2P¯ Ü— ¬¶w_C¢¸Ýàè˜4"Ý̧$ŠA¬{Ä[ÿï8oecƒ¡áƒüEn\,ðu“.Ä/…h„)ÉA?˽ y[qÞÍWÏ Taž !þnœ¶ßQrl鑉: ó<|µßÁ‡Ó`û‰&J%–¯Äò•X>å)±|¯Ë7€.ß)Þqœž™b>Ÿg.‡÷ =²Ý:„Õ{˜7*€/51bÈÞ ý|“<¤9ü;Håˆãj·[‘$/ÿÌÞÇfYá–н нÁÛÓþÆ[Ê5o7.O½`|¼‘½nË_ jÿþÿ³÷·MmäL8z½=û)Tõ¿«0¬Ïø“:[ulcˆÁ6ܶIðÖy〓ø,àÜ6l6×§?Ý-iF3#i4~$YO%øI­VKjµ~ÝBÓ²¼ <‰ôóåË ý ‹!ýNw@¿8ÐïtIœ_‚K‹àbFC¿cƾdæ’é¢çRˆk‰òœÐ,é ¢"TŒkR!1“}.òþo±L¸¦p$ž+7úï(mœ†+ŽoHMú­|1É «G=N(q¢=&k)4#"vÇ*.8F+ˆ1êʾhÂ.Æ€‹±_%(ðÖ ð 2Á¥à¥àö%ןGÄûëxö„7s?ã­ÙóO°M‚MUlddź ‚n %iÖ½è ¼P’N .gWøVìVfà–;jË`)ùd‚l¹áµ–k¹AOHO³•1éÏ_‰R Y)¸,ÈU¼•;Ø*õäÌf•cå°r ,Z倫ʪrGT9ʤrDQ9@¨ø6ÒVŸ~ù\a9<°‘šŽ‹rEaI´§H=Ñå“Þ{ÂNñm²¦Žûà1‚¦LÒàœJÜ’n•Ê4LÓJ`_™0_ ¾ÜðÅiœg>'MåÉ*@^„-OvÚ¶>E°]´Xaëj• Õ• ÒÁs9á³"ˆ® à¬(¨Ë™…r¹Ã²¢p.HVÄå‚ÇrcE±^XióN¢à`°œç™4¢ü Ð+GÜ•‘ºrC\eƒ[-†µZhµÊ*U£Éˆ¯ZËÌœJ›+¦*# *Õ )[^ÑÕ/ô‡¯N¸ÄgA;é@W™o4 芎X2”‘tåµ±,ÔŠ\¸‚GøSþ¤,K­.c[Ãæ`sG¯eøIÜš´fF¬àj:¬Z¨ö«€ÒüBgg+~PšqsÝØèÐhI¨Üöo@£å™ŸCô™ŠCC[°¯¢Ï¢dfB¢©è³h1F$þº-4šï€F+n&WS53–£BÐÂHÇ*ôŒîå$èÆwÞAÏV=ÛØµâ¶:6IÛ¡ÑLY“h´%hoEf‘ž,бÆY€Äd— †ÌÌ*=|¬£éf;r³aÆ2£ÅÎZ5˜ño?…Ž©¡ßÐu€ô43Ué3â_€4‹§TCÇ âþ âТ4~§­w;ZšÀž‘L D<9úp?tÅ{V[$Μ¼++;úŒ¾D° ¬ÔÿϦòT•”ÈEuüìTÞ§ÕQ/a^×Û‰]¦ÛPî”k­—¸<Ð/Äö­¢ÜÒ‚ÁïŠKaâ~I´:pEVà^îpP\'Åu Áïp{»V,Å„£jM ¬¸|0§\ †•L+!°Kõ&""ä¨1xGylX&„È6ÎÌdŠ„ _ðrϰܳw”)%ÊUÕ1xÓ£¯ÌÉ3Äæ ž`jÐÛ“†+®@…4³†}¢Ñü¸©ŒÔ›# i¨·BH]é!MÎ ]Nè/æc™‚~‘Ê )ñÕ–n¿Üãy—çµ\t)Çx^¥eãy-EB­!–À¸–Þ!€‚ÖíNgÏ-B‹s-¶Š ZŒEì÷r—ȧCÕšŸ^Ž„94Ð)’s¦Åä̈û¯œµA®ó"H]L˜ãvÇeÌNŸ¾½¾ŒÙèÛ·ÙôŸÉA6д¢*z¹'K×Ô'Y%e—v¤,ÔeK0O2r`ìQ×°kâĹ–åysôu·©ÌÐ @ùÃg‡ú[›ÎAÃóS4uAcEôÏÜN3´S¢_3\ª»[M—zjG¦‹§†=2ÝóõáR‹dzé×A¦W2½¼dºÙ˜t|æ„Uvàô)8½´fpú~0’â<ã/Û¡»Ük^ú5¢¢ö®dTÔÞÕšþ¶£¢’²—ŽCç¸vBµïâ¤*Ï›D¦ïâ¤lMÆImÜÐî ;"w²÷xþžR@ZÕ`à/aâ¼¼”÷¢›9ʱò‰+у0ªíKqïé*㨮@G-ï¦ÙKŒŸÈ è/_îUÿ¢Àª½+M`Õž‚Ï ho€Ìß¡, À‚@ÿÛÐíˆhol$ʪÜì.eU 7᠔ʞ*ÛQ{ˆTC|TW¸¯=2ªæþs5(j2 ¬ñVsë•æ26çÀµ¥yIÝÕ¤“øDys,‰¼†™Î9éŽG×ÒLIJֽ±£ÁÕxç¹H®·v´‰e)‰â×GO^oþfáè©1Act¸¢¥W~y ²x‰X¥º” ¨‹[ý5å‹ÇÕ&sŒ]דÅá*˜…›­¼25­Ÿ¹P×œÔæ±É/µÔ”Ð=n_O”É[O¬&n‘\6_(·¶Ö³Tcw$¢µC›l‚-Ë‚tÊÁ&ô*p â½…2h+B<¢Q4US;1mh×-Ö…WÄu [ú?d¾ê{eqcaÙNȾ9˪™v;P?å^î Ã…ãý{v¨]Ú!œ‹Ó@ʘy»k³Í=ÄMkø¾4fŠBìe¤2Ó_*Lí¢1vצÖûË^ ^Š뤸°Ó#öûüížz¾ÓÛâ}߸¹Î©Rq kîžgjc–V»l—ë!µƒ¶Ø?hçÐöÏ‚ÝóËEéõW¥×r›éæ£ôf ¹«ÜÀ‚ûÓ2³„Þ-9]¥žaVÝzÇ¿¤v‘=J°[ Ø ÎÊ7îÉ@z1n)E"R¦,rµ"sàaåRû•Æ>8=hwð^Ý|HÝ*â~ÞøÃÅŸ/þðb7*¬;þ°Ëš“JÛ¢ñ‡Ùýôñõé™}ú!Þ9øö¹MSL¨TØsp¤™éÀͰ¨¤M8RT*¶ð·úž-wwÄb#C¸•Ï|y™V?Ú˜î2%äõÒ¥(Ye—BÛO%Ñ Å™j®= pô@€£ñðÖ‹^-îòH=9‡™ û !sEö 7×£³•f<ÄV YÝ‹ûnàý%bB³ÅÜ/Ü$M¬¬ ÿyÞâýÉý¯ì?×ášm2ÃÉôí¦)ûcæ&ýüÐAÀßyü¬Áëw®˹$<ê9æ¸!îU¯ó@ݹoõH¸˜Ë‰û Ø\,Å|”ø¹Vê*pyY³…Ìçžap}×€ ¤o.ÄèY°s xk¾ÖƒÀ_Þ…»ðbçI°O Ã]Ê“Àdþ×÷$(:yPˆø…] xtñ/¦”/A¦ÐöÉ«WãLÚåNÞ p•Ë¥‰ÃKaWRÜ=XÜù!Nˆâä^ÞŽ‘4quEª»¢þÈÁÔô;ð¤4_v›!Ì|œËt ÐÄÕr'Â2‘e@÷1lÚuåt1׳SHuç²§,>!;—Ýó+º„¸¸h¼]Œ¨Cƒý"í-‹:4÷7˜’üœÞ!Å¥¼CƒÜý«½CbÁ¿¶î!â¯Ê!r]Á¯é+»T<…èµ8Œ¬«»v¾#¦'=´ãÎwÄÍw$³÷ÆæÜ3×G¸Ýл;"¼ÜÀ˜!«ˆð!X­#ˆ(t+ž ò&ˆ•»‚„ó 0Þ7÷BáÚá<9®ÎÄÿy}@J?Ÿˆ-¹u—µ#•¶ˆ(*Ýä²VOóÂpòqÙ¿ó±=YýD"í˜ õù!è¢4І—øo>†]´:§ßÕßL£F¥ZT‚ûjUÒì—­Q|ª ½þ>3f¶rÓd8óe+(1Mî¼SJtPR™ª‚:±Ql!èåw!«`Þ/êªX¢ ®éâ­L®ŠÉ‹q¬·â˜¯Ä1܇£» 'qίâª(o½)­ÈUqÁÛsVìªhòÔ§­Õ]Q{"¤ú,î®õÙù,nÂg1ë¥@'@“sãæÝ„ç ”GòÆZ±-Ʋƒ#Ú½û \0ýô`þøý¨‹ Zsé<•áyêœ}žMŸè˘ó.Tÿ÷:eŠØüÛø~2zdgs¼Üh Ê9ü êA˜¤oá]³Woר <æîˆlþuúúø@ØßçñøÊŸÆìaü²<ìüSý‹Ð”ÃSÿõŸüÃF‰Ï” ˆA›c‡4úÃN‡÷×ûf§U¿]ÜWº lWC' TP‘HçHb¼ig/¨Æ- dƒVÍÀ?³Y ´ðÁÇK9Î)‡¬:×Qm’Åj‰»méo]òE œzø¶!ß.ãau2•碕ý­ÄÅ-ï¯`ÞÈs´^‡4äÙ0ä)îŠ{TØ ×­ÜÝÉè¢ÄS\_±ÉœÍÇ/8ˆä-¨Ÿ~pÐYrîä$ƒ™ Òð†‹‚&ŸaôýxùŠÓ)”ø}“•¤þú*<(ä©‘Fµb¾5O­w<ºÿÊ^&OcYé ‚“ ãèŸÐ:ñL3ïø¾š±š€àÀiiøC6:˜œç¨pY‹Ý@Ãëã†y‚(‚FüŽc*pg•%„þÙ¤ÃTÖÃ74]eþá þ—áþŸÀÿj!.‚°Yܧ9 ¿GD«˜¥Á€›”PÂA!8–&¥‚ü'QUdaªó¿ÜÐÃG•Zñ7¬áŠlæƒÙJqÐM££ñFèl”_G™úŽ·OGãÐ1Ø<Ec¿àŸCï Òx+„ Þ!·Ò5·Ò5·Ò5ƒ·Ò5ƒ·Ò5ƒ-tMÉ:¡Z¶HHã­2x„4ÞJ×4ÞJ×4ÞJ× ÞJ× ÞJ× ¶Ð5å´ MвEBo…Á ¤ñVº¦ñVº¦ñVºfðVºfðVºf°…®©Z'4ßESô×KGãÐ1Ø>±ÙÌOÒáoD>b“™†ŽÍÈil.Ûƒ7Ò/ƒ7Ò/ƒÍ÷KëȦ™mÛÈõ7IˆMT7Jˆª«ú2¿›»æ-2x+„¨Úûö»æ-2Ø!öÃ&²®ák? x„t³Ò°tÍFe¤aéšÍâ¬6¯‘Á[éšÁ[éšÁæºF`¤ 4±ú&pÀ{å0üvocÜñuD´£'¿>®Q‰¸ÝÛœiSKEïMPA¼ho›ŠÞ¦©(YåbS"-½7AE ÛçÅ&©8±Ê…^?U +1Pi‰PÅb›m3'ÚoíÍqâ4“L$ã•pBKDÏ.˜›!Â(ç„Y0WN„gÖnÌB±rK¥žŠ©Ø)b±I^¸MX«ÓÄ‹&M1æ[×ÄÛÕÄU"¶§ *¶¬‰«¼Øž&®òb{šx\.¶£}Æåb«TlYËÅv4ñ¸\lEÿÔˆÅæ5ñ¸Tl[ÓÄÓdb#úg\&¶¢‰§ÉÄÆ9±=MÜM(Ö­}ºIņ¨Ø²&î&ëÑÄK&MÝ7UM<gHˆíêõpAB ‡o„„¢‘„Ûk$¡d'!æ+·Ê$(.Û !îÿ´ âŽ>›£¡÷ú¢÷ú¢÷ú"X>¶=.Úo`\´ßÀ¸Ør_ôÞ@_ô6ÛÇõ´7Þ q÷²mÐ÷£Ú šõb‹4l¯/4ëÅvä¡ýÆEû Œ‹ö[î Íz±E6Ò§öy2†4Ml…7@Bcû$ ¶E‚~±ÐÙ/7@Bcû$ ¶E‚f¥ØŠ8¶·?"ÚÛ‰ebóâ˜X%¶DÂ&F„§5H:,þæh0މ Ò`k§A³NÎ46ACÊü´R&¨u˃}©ØŒLÚ׊ Ò°åqá²lo„†- —…{uçYeóyVûçYýíŸgõ£‹Ç6γúšu|ÃçY:6m§íT‰-Ò°»}ÿ œgõ ªÄiØ^_lù<«oP%¶HÖÇÅ–ûbËçY}ƒ*±Éó,Óz±I;­i½Ø" [±Û›Ö‹-Ò°½¾Øòy–i½Ø" [Û;Ï2­[¤aËãb{çY¦õbƒvkÓr±=¶a½·,›2[ÖŠ-‘°ó,ÓJ±qÜÚy–iØÊˆØÚy–e•Ø [9Ïr]$Öi¯v]%6HÃVìö¦ub“6sÓB±E¶ržåºTlF&·wžåºXlf\lï<Ë´\l‘†gUÌ1ËzW¹ÄùM/BIo½ñʈ€`šØñÈX!Š=pK4¶IA{ë¹H«)m¥þÁöêkI[©3íG(ÒjH[©°½úãÚÑVêßLûãÁˆt‹¢¾úµÄBJtÂÆºþÖ··ÛúöÆZ[‹Ó:ßß`ýƒö¯±~c÷o¨ýíµ·?¢ U-v#?UÚˆõÈטÖOFÂzá§«F¦£±}:ìªÒ†éØ(?V ?]uÚ0íÓaW¥6LÇFù‘0xø©ªÕFì. ñÐcoˆVUksÜhošñÀë)²á¯‰2tÜбFnXõ°ÍqÃ(ëâF"úº“p¬ÁRg¡£á6d×IGŠxlŒíMñ#¢µŸZì—ŽZûšÍ˜‰©dT$¬i®:ûÆÈ0Zõ6F†ƒÆ¾126É„¥ÍU_ßF‹ßÆÈpÐÖ7FÆ&¹‘0Ä9êêk6&DC¯œn‚éšú&xaµ®ñ°ì®zúzƒÃ§ÈE’Š5ò"]Kß/Œr±&^$â²»êè›#ÃdAÞ7Ò5ôÍ‘±Vn@&ÐËYëöZƒfNä:ïÃÃöy±"a³Ýo¦å©ÆótÏ Nñ¡×ÜöºH •~~ÝëÔÐ|-¯U€ì¦Öï7ÏPÇÍþ Ï®Ï4âºwؼk ú{Øxª%Ì{ÀŸ°ŒóZ«m)ƒgØËsšþ‡S¶ß—8ÕÏlú™5€»Í#âh‹x׿­÷ Ý­n“5:µ+`Ã`xÓ̳ۛöužµjyÖ^ >ìvjwðÞµÏàO¯Ùo¢µ«Ï WëöÛ’–‹ñóx6zÏÙߣÇWxù<±Ñ3ë°O?X—=^f“XíÓö_¦3Hñòu,OžéÓh6ýäç‡ÑˈÍ_f¯÷/¯³1›ÿïu2?`P*¦˜M__&Ïã<û>yùÊ^Ÿ¿ž_Ælü8~?¿ÌÙ|üÂ^¦ìË«¨ìˆÓ‹l`“9Û»h¢H¿§¿ýá²÷½=‘¬öúÏäq2šý5Q» ™/ì:=ÑíñßãGVdõÇÑ\ä<³êáùøÓì :ôN«§G¢û.G÷±³éól9°~öeú utG/“éó葵GŸ¦ÀÕéì‡ÌÑoÎ^?†ÔÍ^“½;ƒdzñÓHÀ³é¡K_ŸÆ³É=U{ü2z¾>ÍÙ´åk¿<È\ý¿Ê÷£§§ÑìqòüÅ!›ÈxtÄnFÀ„ñËx6‡OrÀ_wnÚÍ;UZþlö@à®»r\ÞÔzµNsÐì…Ir”FgŽŽp{T`û”‡¾ó‚ï‰%YOïúâÖZ% ¡Ä¦…òW¥Ü^³ÖŽI{i³–+ˆ' -å¤()<”t…ÌîC—Œf('¯\¾m,ç4˜×Í µ"Æ9ü8òEÂöõE«%›&YÏ{ ¹$xòg>‹àŒ’Hã´Àp ›QããÜ©µœ˜—Pjðñ@åH{ŠRÊù¢¤in Öœz(mÁô˜g—ðïÒÜæ‹&°å}V¥öõG|éUƒ”rÛm °½7Í^HGó8dÏ_ŸïqôÚ[ÕJäd}œêFj§_ƒ¢[Ï0w>Ï'÷º²¡¡½V·ßj(¹¡6àWãº{y‘'TÉß¿¾Œ>=Ža†é:Æh5vÖQópn?'ÔÞ?[Ô`?Yê0¥Šˆq4¡Ð£ëÞ/˜aÿ¨Ö=;BQ¢L·{A}tÍÓênB z-J€R* •Ó—\´øB«X€Â•ôìﯿD…FI¨Sœ¡ñµø÷ð{ìP\€H^Ž7–êoµ›G—@-}O ß_Ð÷rÒPVÚ¨êÃALÿ‰IŽNøü{tÀGèiu©*ñ€ÅŸ>¬’óéÓ8\7aÍüïx6—%Šë] ŽŠDþ%ò´{ìkÈOЫL¡ñQ¾öuí JñÚâ­F¹Î)ïkò H£|:”h+$έN§ßÈ4û8~ÏólôønG³1nÏÇ£ù û:züÌF÷÷¯x¢ xÍåBPloüm:{aŸaûþÈ;ŽwPÇjÐrÐQn›²#äOÙËk5dÚ3¶ØÊË^Î+Õ¦ÜK JÕŒG$=6®ƒvOíI}U'lÿ’³¯œ(Çb”@DÎnB¢T_wnnÍ3ܶ¬Õgíf¿Ïïk]ö¾ÖŽÏY­Ñ¸íÕMYà^žï1ýÓ¼»i6xéñ‚¨6Í#( ©ôî`ö=É3ÅrPý…W>Bhe^y¿¿Ç'âVÈz@4@?®õšÂäõô1TÞ¾ít«Ù*jð–xØ¢;‘ÖËóÛncкî²v: QC=˜öÛ=YÔO7؆Ø÷)?îæ£iò0~~A“ÿîäÃñäÃ|r ƒ¼)ˆ­,fø^+Ç è½ËÅñgζڈ ²Ý‹ÎhHŠ\\.ùŠïÅ”Kž^bRyŒO°<-|F$Ãy æ>Êó´þ”Rº iQ$²À ãùdŸNee>~ä&b(=ãÿ{ FŽ ð%Pï{ñŠ˜‡ÝàZÇà’xR9Ž’Gbk‰FÎÉjýðÓ*¢1AVžÔ:®%ò1‰ot.iaˆL,̨",¾ 2pê@EásÝœO 'r‘|'a¼QLÖ¢ø"H»­7 t2`qŠ©Xœ¥xï (³‚g–¢ ÚŒ3ˆ€ŠnI_¿ôTeQcžpõ©ZVH¬[€ä|,@ÜlÜ}…ouþaϯOŸN1š³o£ÉŒP*³ÑóÃô)øéõyëÃÓã,áa2™M>½âõiüò} ³îaá¨L§’ðº[s–^sŒ® Îñ tàmçR©ô÷˜Íƒ#û ~íC3>²Œ…,„Ùw^HHäâEt·S0zœü÷íÈŠ¿G³ 3—YáéàŒQ=UfªN¿¥òIø &Q>^F?å°Bø™Ó§L™8yƒ¯ÀVÐÐÆÏ÷cLÂõ ÞµP/»DeíÓôõùA@عÒú™Mxe.œ|ý|1_ÉŸà§y²Z|i›>°ï“ÇG( &,[%|SÕfô˶Œem/¬¬zC‹^¦ìÓl<ú‹Ä+y>ý`ó¿&ß¾!¢Áã, 9Â* ÆyU¬ý­ƒŽDؘñ #W5ú¦B¡pÓþ1¾ L—g˽ŒþJ® ´+•ãKp\d@•hß áæë¬@M戜2Vƒµ‘[^ªß) %-"ŠÔÍõ„Å &úþYëšp—gC9ÑïæßÅç_ Ð Yë)cŒ1Æš|ŒC Yà߈Ϳïq]ü”b7Béb„áª7æ àôùñW¦g/KÀu01„ð \ ù`ÿ3ü<­Sã«]ëc b0ʱ&j%ªäpþ Ä#Œy~.-"ž¿õ‚YA¹ƒ‘1=¤ †Éó·×lÇ^Cf,eò ëød7s¬mæH™šñ¢ÉTؘ>=·0+‰š?FþWÔŒÕE}Ž‘‚Æqd%»¾â«™%UØ8Î8Ê Jݓµ£‘€G‰«}"ÁSœÏÖÄ4*é0ƒãÚ Ï®ä‹cÒ&cò%Ù@º9£Ü&¤™}H=ÓÕG˜X0D LÜ[ƒ÷|’ýƒ¦zšÁa«8hÖ“=®Ár Oà,aG µñÖñúja}ñÚjg¢>eU ë;Y°u±)¥ÆV+^Xd±úí?»ç?£o°üc\ Ž1ŽL«{qüðéqôâ}^E°#,TJ%z=©TèµàóÏðËI¹àÿÇó ež¯üŸ‚W.Tþà «¨<íy¿ÀÚÁþ Ï|ô4›ÒA²Ï+áÆÛzøp¸é]_€¢ÈÎ@ÒñdЬ@›9»¾­·›¡Ùhõé0ŽôÔ¹˜×G¨°½~›ò(<°z™ .A*i.R•y™~á;* ¿óNd?/TšµsX~FhIe7‚„ÁøŸ»ÃZbIVVâ„cYü£’ð!s[ìaUï“>Û¸£¿Ã<ë\Ÿ5ÈÄÊŸR ööÏk 3 êZ-‡ô_?JfPl"DHã}³qUÈóWO¼úⵈKjgêÁ”« r ß@/ ötuŠ2⌻çk±kƒSdÅñéÑI¥\ñËg‡¥cgM…VfÞáy\JOUèO›¢€ žbŽ¢¡,üŽÂI΄6S²ÖfSj^ž‰v‹†£σZ±çñwØ$ÌÇGH¢ZNÑŠ¯ø˜:äšô¨²޾}ÃÄ%]ÅÊy¿Œ&¸a °ÅÈóýÆ<‰UÏq÷4zaSö<}Á-ÇôñïD9Pô|îOˆ¥ ›×oºPÛ"__Rs)ÏYŽØ'~Åýdò$8‡BXE 8ax€È‚ÏÕØçSúÌKø]­%Há¬4xé4x±:ýØçr* + ~: %kÅDÂô.?ÃVòf6y~‰ööÿ~btU¥Wì4®?¸¾é9U”Y–Ûc½±\hÁ‘³}C÷òÇÞÝ>eª*™žC|¸ˆÒÛ=Ù<­¡">áýËK#[Âé:¾×lç@¸ßÖ,$íï±³3Ø;î›Sùê¬vw3´¦*bªÞõàšªD5öRj,cYë”+˜ªÿ±vcMu‚©º½ŽoMU¥6öo;ÖT§T# ƒ-tôñ^ë¬Ö©Ýí-³rJÑló¹%qÊÞÀWÕ°›¿~’Ê$?ÿÞË·ŠyÏ¿Ë×*Ö¡™é³ Pë5Q%)¡˜qÍl1CQöѽ öÈ0|Fñè7àßHÐUÚÌ‘,ù¬æ|æQÔ`õçoëâ«zøUƒ¾Ò,m¢Ü>þ¾°Kƒöš†ÛV/ûD¶Ö™ Yt\8*žQ$Œ¾Ї±Ï…£¼¹ÄÆgãGö‹r£µÆ*M©Ìã•R*k`ež²*ŠW?ŠOÞJZÖÇÊÔbMu®¢e$ÐP_™'V_£¯NÍrè7Qa!ÒÀB´Îl ˜>ÇÇ£(¼Ì^ƒˆºß¿Nî¿ÂVá·Ÿ`0ƒy|*‚ç2<Œï'O0V!„Ñøàíó8-@ 5#úk=4þ\ŽgŽFTž]ÕÈvÃvÿ¸¢MžÜiH.ß ‰P8náÁ˜•Š‹˜vÔëâJ…ZˆÈx…ŽÕ}g(" úægΫ¨3N#\àôûž4tª*39Lä0ƒÊLÃ'@L$æã«}å]L¹gªçÏ1SÝ1S#s;æà/)Éûyœê1y_—\oÇŠÇÁ>Ûc}:MÞÛ#iü:F_‡g¡ìE™‰ûŒ°äÀ¢Û‘” `Р{x;Ý#]÷ÐÔ„çNéÆ[@½@1ô`Èó·Åðm9WÍ—ó>~ü ßgÆ~ 5_Ò:70#á;©œôïrÕ}3ù˜Î‡j5Ú‰“§Ó@s"QÍ7×B¹Y¿QÊÈËÄ kK-ŒPî„Ö”Tž2B#½ Å«_“zסº$* d1|±,ªÅDbþbYË?@Í&ôyU–cÅÑÄ¢â"ÿ¤{1¤ÍÓKö"øÏ֗‘o+!Ta¨Þ2Ϥ{1Q–yQ¥YêbôuÅ^ÿ9ö"²Vù§È‹± ]bù"(;åŸNíERé_Dy)ò"»r ‘ã}(EDvY9 q©õ‘]–ÒGR½> ryU–1GKE¨?«ÂQ8: ”ê”ЉNø”á¹èð´0áØ_Ѩ÷£Œ[b¼ÇG¿ò²Ì¨O™7@ Q’\]xàrXSWáT™œ Ö©\;øÃ9`Ùaï6qHªÓǽã”! eÅó´`Ø*‚†UU£=sj*ÓÆbtŽà…TÂæ(³–B8FÌC”ësǺdȧEwC¨¡ÅO¶°€p‡Áƒš–Ë)G6#¸µÄŸâŽ]mº(Á?À ݼ·ß_âVöïñý ž&wAÅa¤vÒ¿ ôÛî¢AMnåˆ<’ °‰â ð*r‚¦Ùs"¹;FV,”m¬›ëñP{"<Šº?¤’€ý;Nd>Ð×éfw™<⪚é$z:Åt:±¤%é<5ÓIVü$Ü €?bÕµ\ë>ôöÊ¿#Á5ñ|‘…!àn¨° •RZ݇r¸ãr¨Xù×'Ák’)|Ócâ ßÒäx"µcÄö ù“¬<^Tkƒ·—#ÕàÀT›C%áèX5…Ù²¬þÎ ±Ø ˆÍ@¡”0Ö†8ï·þlÒ0¹£¿H¼ë 1^x…»ÜI¾”/‘ÑÂ+ •O'9zg\ÐÎÕ0õ—;±¥Òï¬Ä{¹’|ëç¼™Húƒ;ž`0´ÔÉ0•™aÐ]}ª»Œ¿NÁª ß,n-9 p½3þ¸°ÙƒŽ‰ñ,êš^ðpvUÆŠÝiuߪÄ¢a_sUèÿ{Ö´CJ‹ éÅœå“ò’KôþA3g‚,^V²ì²î”C'i ûþ+Ú‘áG2^uó»ÄÏCõçaâPñ)ÄéòP†«µžD~bÊIà—k%މúCñëPþšé|Ð3Ÿg¡áàF¨A’ðØ&ßæ©oòh&¾@·æ…m;`°Fáq:fò-G„èJd:zÃéè-Ah<=?r» ŽÜ†ñÈïÁ0wÉOܪ¹ËN‰”ž—L:Ô´p¨iáPÆÐ‰~©iâ7Ñ~WÑ”˜lá·0^ ¦‰CÑÄX5^\ ½Ð)-Öÿ]ÞÿèBé%ï5¦Ô¢ú ¯´¨”žQ•#Å‹)«ùr¨û-·yÝ÷CÃ÷ †ôâûÃD†"ÿ¡Â“™ÄoxÑQ%ž¯d¨¨dª¨b©¨b©èD_àPþ¨¨j,l(ÓÃÅTÑ©¡"ϳÔ$”UyÉËy)å||œÑ—~LÂèË¢”KõKi¥Ø—åxÊ¡¬H-ô­-ô%ÓñoU eU‡QR½‚¦2úÚ×§æõ•ã_kÚßj'+ôâßjZ'«K|«iž¬MØ~A;qQ̨QLDê/8MTƒ0bQŸm~¢tµÏsÞ%‚rÑ1“üyÿYœÉߤi’„E †2‰WÕ]ŒÉT=HÌ’y"’+DD׉ÄRžké~¬®Û”EfN©|‰i5‰ôCž0x‘éýäŸ~Ъ8 ãíšÒS˜NÕÓ׃´‡—dI^ø¾Õ'è>Ï^ ZëõjÃ> À7¹}V‹;Dïãe@ÞÅà=¹ê®å=5MBàmïƒf¯ƒ7%Ñ+Þ7Öì5»&=ݶ­›v‹ß¤„íÉãñ¢ˆnó¢ÝºhÕÛM%ßkÿÚÇþu7Ï.oÚ á§'%vÖl`XòƒŒ‡Ñ‹&v:ж…£o7•7ãåËÉ"‰ùYžwÊ÷ÔøþGè?3R° /,]^'GOü€”ÿœíd6¿›ˆöì²Ý7&èãÅÉ\$`? â(s:lù½Œ¸•ç3Ýïô Äó ¶Ÿü´›h2™ÄdAŒÆƒøÞ:ö¼Ç{® ƒ©/Pk´¯ûM,C’ ”òûâ”Îëó )µÝ@§ Øy­Õff¿_»hÒÌÄC”+›}~?rƒ³\w ù­ªlÅã¿Ážµ}ÞÊüˆ˜†$/àç39¤|›~¥HF…w{G{ñèðÇ{Œ.o`]®@7 €ÄYž½˜kÉÞ¶=2~†²$ "¶p>(íO’=XÉK»Ø*ã‹V¬UáÅóJÖàØA8N Õã˨—eØÚè ÿj]šízPCS¥¤»ÖR®Ïj I¸HB ½š\zÍÿ½mõš&È÷à=´üã{X\kìì¶ÓÂyqK?ñhuÎc)"w­1¸…™0HÖ¹…•dÿšÕ›AvÝ ß7ÛT—ºÎj–Ù*-³·+åtÀ'â½Xçy,²Š¡r°ŸÅÇaÝÒ[€ƒÞ¤Îå²n9oKÅ\R‚ßsžðïÅÒ3kvM2Áؽ,7ƒI÷ÊÚäŸS´ÞáÊPG5qðñZÜ®Ù?Òhr\‘;oÖ™W^TÄ¢êîºJÞšÛ¯ázZwÖÑehê" §ãÎÑVʬ’ÔÊ%Sêæ8y|¨õZ5`Ì9ø=­‚DN+ò~·ÿ…9¡5­G“^¬S‡ÍDÎò½1x§.PíFÐt©Ó ?Æ¡RÇ¥ÒY#5Ž‹’PàHz0s‹ßa¤Ö²6ÕM«·•6£ÆÖBU™·æP‘>Gš§ˆ!Æ~ššõÑkji$ÐÄYSKSÍüV±’oy¾ª’mû¿åëýþî,½¿ò¯P®œ”¼B©RÂûËÞÉîþÇM<\Ž#÷?úá÷®×?úêµÓƒ¯ã ß°O;f¼àùÓ¼íûëtöÂ6ýyò8>¢ Ÿ'3HéUÙl|?=Ð=ØÓÏT'&b£Ù~=°×9^îý8™¿>L ñËø_£§Ä@SQ‹‰e¥"§³§Ñ LñxmÛgû §?3ºëb„ŽÅÕ“@Áˆ(ÅrˆŽûÑ3¶gúéeŠ4]òý0~¿%S;Šìþ+h÷¤\ÈËÇ©Œéããô;&.–  ŠÓ¥—{b¸z.&TºS”Ë>ìŒj=ØÕÜ@÷dç­6© n»­¼ä]É'3ìñ®=êwk7{Ñà›þ{X cUziUÈŒ˜—›»í7ñ”šµaáä7‹ËÜR9o×.`W‡Ëi¯ù±…&×HAµsÔ°šµÆ{ø½qÝ;;J+ÏÊn`¹Ý‘2 ,ÈdÜìõ`«Ø¼k x¯rÄ ƒ÷PÆûëöèŸí[®âc†^ vzæ‡L¡,}|G{Þó`pY™Š¤±%§²®Â²Ô ±neÑJKš4¬¶Ôp(:ûÐ×”›H\tª£Ö¾y_#š§ü/$ʹ•YobE&YŠiÈSêì¢Ùù€B@‹9¨{Ô `£à7®Û·.ïù³‹z†Äýa–Ä™J¾ÉxÐË’8 ƒldô³‘%ñM†Ä|¯â܃Yßd+ÙÏR²cbyö4¿S·8gÓç/è Î.à_ž½²Ælú_ùñýè ”šG\lÐ0wо=ÏaãÖÃÊM¯°öÁ’÷2~~À+cçcº¯ïVé¬vx›óäžµa±Âíã—ñ'¨²Üæ7?RiŒï¿>OpOÉ:ã§)ð0‚ñ<±’Çr³ñß“9ÞÇTÜ'‚ª^Ž`u„õxr? Â_åÅT3Ø NÆÏ÷chó„Ù`=}~†ïºtÅTÙ}‚_¦³ù° Ó“BõaeýÊ£ùœÕ@yçevØñ<¦“9«JÅÓ<,b‘]ÏÔOÝÚ…ÚÈÞø°i{‹âqõ„ˆôJðèë¾>g” ˜6M^¾>)í»˜M_¿Áêôòp”Å6`¯;CÎ]þ<¹ʘ_® ÿŸ?½Î~Àl:zȳë@{yPè»óÙ îãn¯ò‚mºšE…­ç{¬Ïó °¼½ùKXPÿe6ƒ};y#v+2öý•Èý7R¤0«ì•=¿R„ooû5âé ‡ì#T ÒÄ Ÿ½Âaíõ h‡ÞiõDÊ\o‚ú‘”Ç<ëÙ“Q¤#ç2íåx6~ú!…;O¬’œâŒ » j;=,Þ/¿Žž¿ŒA5¨ nûìu›÷ØË”íÝv¯º×»{l>å £Ò†W’C#{{¡ìÍ^ŸA‘}|™ Jø2yÂÛÑ€§ R¡î÷e lBÝ1Qˆ¸v µÇ9ËÍ_ç£çýìf(ÖmI“NÒ Š,üŒÈ fvødÝþm½o-à™\%(FcŠü³Ù»†É¥Ö>Yì6mbR r´2f¡O„뇬L\ðf%ºSãæŠð–$=í#üV)ËĈ2±ÜâEw[güõªÎ_kmþZo¦UÙ•žÈRàý©,‰¾çÙÿ‡%^ÈLUá{–°ý;8^³æM?êl^¨®æF·€;ý.Þ(uIÆ .õ"Ô? &´:øÒmPlÄ£e‰u=[;iee|€wLµqAƒÄ¨êçi]£ƒú ò7š–j}àxOƒ»‹ƒ} ,õ?Úyw8ƒÄïE?ü‡;¥Þ~笖ÒIb°+Šøæ@|an°='E3ö£QÍI±°•s‘ *¿SÞÊâÄH°•pwOˆAIælÃDl8pÉ7Läû3Ç|Ñp‹à‚læä(ã>ëÁ„Wõœvûf‘$Y”ÓÜ~ŠàôÄŠq:KDsv¦à8täœÉÉ3yÇóæ)M²zÇ“#?…Õak‚üØ¢¶(ü[¥i“±Y°=ëFÚ£iR¤Užêë’+[—\ÕÕ¹ª‡Ýï‘l¡s¹vÆÕžÜ-Õ¨îEºâª®vDèû6@´Aä¤Npæw¸«vàµoá5YÓq ‘5ÝÂwø=2º e À:™1³>bɧ1Ñ]zL ݆ÚÅ‚úKl@ˆÌ› CÈnð-r“àØO%¶18ôVÑÒ[ü|ÂÒK°‹S{ >†½„°—Äϵ—¨Î=i…Xªwhé´¿ì'šIç*–VÖƒ=4µ>†­ÄØJ±Sum%V¹3±,ÖHÚ(G ß°}eÕBû¬\Ÿ µÁš55$=¡E¶oýÝwYôY½´ILŸ­>è´«§6y°e¬Úx ¥¸â ,ŽGOÔ[ˆ+†…éyv(2Ö"j7 Ë\Ùgã´Šªj“û¯ê&2Jý þüÐ(nZÇÕ ËóÎ~pX ‹U.$ǰ ¶ôÈ«?Ð}{Ÿ›¾¤õ-¬»bª{‘gÂùX@h"Žìäø=¡št«ÔwfEÒ#RI×ö“B´ÉbyEåç\Ò%{^p»wØ}â¼-¢,‡šèÓèþ+tû*<)˜èiÂ>MÔ€,!+LŽlÕ¿s3+¾¥5‹lÛ s8Á^¡)mÞÍ`¯Åbk<Ï‚©2«\ÃÈÄ$AÃ¥|6~œŒ>M'/?P„Ép#/ãF÷x2O 0„+úÒ©h´~ÊXÒøƒ¢ëFÛZŽnU¤þÄ 9ÉC÷Ú)ù Æ¬Lçâ‰y¾Ëð»¡ü¹ý›6&RSÔ‘9 2_äXŽSÁöà»c¨Š|w€ïñ=üЧ^R3n¥æÄfÎKØ]½>¾±ëgÚ²q¨gùpÀS‹Ì¼k05»çBJØ!J+÷udÏÆíqW†ƒànŸ˜&ÇåV{Ã<«å…úŽâ8òƒ™!½‚¬\èŒ0Cø=0EÀ/!¬D~©ª€¤°CÑŠ]Ží1áûÚçŽÜË} ÌŠuŸ"Î.è»Ønöcgì{è2[ÃÓ®óê1Qqµ£ZšmÈý¡ ûòÆ{tµ ¡*Pà vEan`!…"¼X“N»¥è!çµÛö€ú C æç÷ ó­ö(~ƒ“#tpïh/BN>C†C_:ÿýÆí òkïNv#2»K„n)Ã!•¢Ü ±¾Là© $U|Íä=x˜Fc!Þé‡ä§Æ‡éàð~nGŠ› áüâ¿Í%ü¤Àp‹¨H,x«£BÁ |1? ÒO°cúÄfx[oËCøCÝIkbÛB[uŒ«ÿ¯náΊjè œ¢(‡™ÖRa˜É®Úø¾Àò®náM§ÃöYÍRüŠ ñ†= öÿ ”Ž8 ©õ.ðެ3]¶a…“{ß<¤pkB!ç·mLIa´ãæ§Œ§5¹qÎ&Ý9çà– @×;ihhk!°¦]qüz >!ñ¡MrIMbíÕDÉŠœûܬ-ŒÝgÚO ¾jY¸>(0 hDæx¯;h8¡Éy”ayn”cÅw¬Èû÷šòÀ‘K»6M}OÔs6þŒ ú Ô6F’ GÀf´ª`}±&›x 'C¦‰;ks²nSz*98 ¿7”ƒ!˜ñS!>»Ésöإܭ®ÕŠß øSxâ‰ß#oºÇ>­Ç¯ØÆÓFqÔ臿V´:t›tÒ®Ô‘`‚.hÎ8[ؾ!·oȇ.PDs__ân˜¸+Z…'i8)Ó_û@ ½h2õ;d³¾º•à¯x9iÁC™ Fïtwo\µ%ç ÁaˆÁˆ<ºFÈ‘ឱ`Ýš“K†žë/¸ᡯǞ¦ú:zfO“çÉÓë“§O>ƒæ=}JÜfâÀ ,û¤êw¤ûw YúFò|C#4t@D?ª@™ÈŠÉ Ä¿$ý1.ü5ùƱñØV<?O_¿|57«»°T…tÔIIæ3\÷¨ÝäÀÛ½KÆN».ÍŒ©`Ñù‡ÕŽbㆉõ»‚t"€gÔð˜\L˜>M˜¸¿Þ:¤’XšM©! …è6Ð3 ñQÍh¤Â@kðqVÔ4s´BÒj¼Ãĺфé %§é~°‡ì ?7ö’Õ³ÀhÜ5J/<êýoݶNF™Q¨eqº,²8]U±UC}ÄÕ1w:0·ú„·5å0µŽ‹ð´åýL<ýþA·mŠÜ‘Á¿Ç÷/°¿ÓÈ ITv¹±G•ǽ‹æž*†Ø´¶DSÙL Á£4æVÌΧٸTê™…û¿6ŽoÏ&ŒoáÚ°¢îY˜Rz0õ¨Ìy¸ÍZ‚E Á Á0M˜z7W3O{¨ˆ$<è´MÕ³ÁZ ñËÆ¤Llç°x>×t“C¬ð2^1ζԌqóô]Wìp¦G'ÌC£0u~=)â@¦‹vð !Mé!’ó—ó ¥¤ÎÓ±‡tVøÃ•H;_û£¿Çlü÷xöÁ­ O|F68".[J !Jα;úr!HIÜé›'âà¡ÕÇ<úù»RqÒ’‘ƒåÕmJ²•¦z¸˜žˆc¨)É7YqD7Ú¼Z|ô{czÓÝo±­\§I§8ôkߥ||wì/M0zø,˜FDºCñÄ1=§ªö0½màmham+®¢mCѶaêølÀ8äꆙislKŸ8š·<òìŸû)+.dhãÇ"Nåë•Pa¹‘4Tní#;¢SAŠO`J3ÉÙ­•"¢b·<|ñ@ÓSNÛ¬½<ùîî"¼Àõ$[)|ÝI!?ÅDb,{%RS^Njä^F‘W‰ ¸úf¤§žžhó²õ½4rÇ¥([)¨Â¸IQFoz¸· ìá =~H®ßGsö2úküÌ&Ï÷Ó† xüá6Í„þúÊUfÓÜ-O€ûNBµ°/ö…ØãÈ·þx̾SH4âÞSˆ6ŒÞ;Ÿ<¨‹ÃÜm¬O+[°!¤d廩åKSÐD–"eáU¥õSæå‹WQâzS›êpQϬeîD‡ž(xìC#§Vs‘ Q@EP£ÊÓõ¬0çIX5máXmwÿšüUÊOúEõOW˜Â¼§”·Î9æ A1±ñÎÐ7ae Å-%pÁµ0—–šm5i5õiªìå2m»äC¿þ‹/=ÊöÏ©­Zóiò‘Mõd÷e÷§-e‹®öê »â"“º£b±;,Ê—¶Åb±µÐ >YvPWÔ§Kj!Á‹j!›ÖþƆµÿïÖÅìÃÚMh}æ ª\в%Š<›QÔ‡”Rÿ5G="MÀ7:©MQ<šMg™(ŸÜDa/XØrnRƒ 3eÜÌ$<Ë)PViy#êþê:*×®¢:Ò¬Ì$iòÈ¢þ÷äžZÓº.G÷ÛuàéÙn/°Û|µ"ŽÐÙʱyM[ž‰@ÇÖuE^¸é½×)zåa:øDËæßÇ39#à˜O/EN ©´^1ŽãÍYTqQI%³ö÷t‚3Ø·ñˆß>B˘šuŽÇG6¥—Ò¥¤îãÌË2Îʆ)$ ¬€©*ºTÑ$'‰$Ñß«˧Ã/^àßý:¡‚¾‹„õŠŠx .¸àÀW·ØH§ÂÇqy"mTÁ0†T ²I¤¢Ì®®Ù¢ …?”çèu*ã·(ÍÓíl1¹BÓ˜ÑX>³VŠÎo Ýfª^˜¥"Uì·2Bùö,·¤Å}¼×ôñê¥3CÜÓ+‡.M”W‡„×¾ôóQ½eô.!¼[¸l‘³”tkh¼O¸…t/šäÈsÝë5УN /° 9؆vsàÖ¢D•í6´(â¼Q¿pçáVç¶£ø½ ×¶¸#Ê!ëßöo€â8½ ‹ºñ® úºËWa΢À‹ªq!êßys{{Ü#†áx[¥ \ò{x4n‹ût¤Ñ+¼9~:ryÚ®ŽØx•Vß ³ãF¯T— ½¿†YÌmäÌËÿwbâQJýtÞœ@4ü‰8…Äl×Q ?^ .Œ ï‰;“ðEš ݼI蟋/Iº„ƒDÒB{ÆÁù!Íó!ÍíÁÝë!áòàêñ@dz©Þ¨›§z:Ü\¼ìN.Nþ nΠφ®Å¯ÂÕ«!‹KC6†lÎ ‹x28»1¤Ëªˆqì~´÷_ˆ­k!n¾ ÎŽ Kz-8c©iã4á«•ðT/„+r-°¥pt+ÈèSÉ¡ÀålÚÍ• ›A&'"]ÝÜ|²9dòplŒ£¿@vgLPËL€o=Ú»˜ íÍ5³s€ t; nÛ´Í'ZÜ·çTªÀk× ’EÏîÜP׋@ùVЉ=ö\-áä±íŽ®G:ú*Ñ×úYãÔ‘¥¯m»Ø³‚¾Îèž oi¬Þ˜ÆjÐ!:1S×9@óVå‘Õ'Âx?SJ¾LP3±u÷­ø.­È "âæ;ÕHmËå»z2d[[U7‰ pç,;3Ö9æþà tŽ9=dC9GÐÙYÎT¶;º9+´9 áÎkvÃ4Ç«Hâ™a†Ê0á#‰ÌLvB%' énä…tu\qW,òŸ}Ü,èø³ ×ÏR.? ûû,èì³à¸YÐÍ'ÓÀ±9ød9ë:tRõÞÂú±@Wè“Ítuýò\ý™‚ÓŒÂì Ö9:¥¤AЊ…¤‹­ø¥\>"öq‹ù;"ß«q÷(髎m#õ¦9›èÕWg­1¥ÍŠoIÒ;gç[ò/ô-þŠ{Fí&ÞT'—’Øó³y˜,È«|ü¢&g-³üÍz¼¸\âR܈ÇK̇ÅXŠÑ·…oªÕûåß~i¦¸0S\–).Ǥ‹1Ã;1ÿu-yy?=ËìÕÂ慎þ´!½[ËOå½bÖº+¡ŠâŠbΟôQá’/é¯ò§Ìfé“uù’dviœáŸþ¹5ùÜ¡’ffÉMdÞ g­L_ø·8ó˜cyg/bÆûÛDõž“Á¿Î•DÎýõ¾ºà-Èf¡Ö X)vŽ'YOn¹ç Iã@Ü’BÎà‡î*\RzoÓ%¥ê¶ÁLx˜¸9¤œ$·rôsV‡ú],^¿±ÿŽgS‰²E½†M8C+XÊnh€çO ⓈۨE#Ì¿syÙ¹¼DÚ¹syá./·©>/·èôrûŽÒš=Færýbïƒw”^3> 3a"h(¼Ä3,ñìå0bú]}szí8þT?®HIGó/ŸÀ“'“»NÀ²ŠËÝ%ÌÉu‡?Ž<üÉv‡ sºÆ„­Ò¥‡?Vǧì×0W þ89‰¤‹»ñ'õœÎÍ©ÃÁ£ÃÕîä³áxmW ¾šhwþHñüˆzJØý9´ÎZ?‰ÔS^7Ž¨Ûƒ”¡uàÐú<¤qÝ0ËKFW=b6-½C¼ iÇ{éƒé§p‘ê`mNŠè]à·˜9}KÀæ—ˆ8S®ÞH¿ÕÍýv•õ&‹È¿Ž‡Cœ/Ûî²ûPËîˆääÑ`üYödrÊíï¦ÜµN¹ýÝ”«Þø”kî·Ý”ûF§\ûPÛô”›³]‰ƒY&ï²…\Ëܤé¾Tž¬Âl_²ˆ#™ë<€?Jæ¡ýiZ–’“Úûš»„ëÌ"~3™`û‹{Ø8öã…kÑúXa†O´)Æ—¥&Æ,^B™×ïè•.énZIwÁ¬s²n©®S`ìîoC`NW­a™cÎ\À/Õ½3+?Agfñ­M]$Wᜓî™ãæ–“Í'g1‡œE¼qpÅI7„fsÂY‹â”J›ÛÐL³¾®×gGhçüÄìºÛ\Îg‡ã ÿ” ¬»¬>;8â7â³ãd„IåüôéÛë˘¾}›Mÿ™<ŽÏð§³É— ‚–ø¡\zˆjbè¦$f CžPág:“:ÈÀ(繕?ɺ4¤Tü @L—¸0ç{ ùÏEùnË‚|^1M“äÔuoAç4Ï4ß3wÇ3‡¹7Åå,ÕßÌeî·x›©sÿÎÌ–ígó#Ó¬#âªè‰+ó KZ3#UƯ+ó³X wžb;O±<+æÐõIu‚"¨Qø‰áK”Ì;³C˜|\ÃLµG<ÄbLÒ»†%IqõÿJã@ª÷—ž Ûr÷*:¸{•Öéî¥Ük´‡¯ø¥Eærâ>aÍÞÎÙëm;{ AQ]¾~:o¯Eï*ZëW«˜=¼žhu·-éD¶ì-D ]=Ô1]9¤Ü,df^9ti¼no…ìô—2sA$êgv_3î]¦z•ÅwéÒðë#É™ëøÙ\¾ Wóǯ彶àO«ûÓ»n=¬x 7¿§Ðai·àø®.Aá÷è“€ k’»]8ut. ¸MjuРç%íi A(:¸BÌÆæö ¹[]î?BÕOvQsáâ.=Ü}¦“ èíøÜÄ,$&ߘˆ#ÌÑuï¨cp‰!,‹EšûDÂk¢“rOŒÅYÂê#‘âÑQ\#"n6èX§«N°w:v'éŽÝ·AïÒÐIui0z‡&ûÝ&­ô‹M´·š$-}îIs'ZÝm ÖK@–¿¹fèâ°‚j˜Ú¯ÃUÝ\Su¹AFw}L²óØf=ÂÂîìD.nJéMlŽTäÄÀ4t¨jŸž9ôtú‰…"¤Ââx“z›Šó=*Ž7¨ØÏsÒÜm\ïKq¼)ÅNLÄÅÆDŽÓ'Žw¤’“z¿Iw€ª¤˜)c ‘ øFÊØ»8ÔTø)Ÿ@ ÏɱΠo“$]ð¨Gç°åÁ¢îHQã†1‡#ÔAhr%ÃY—øâ 5·_……v†c˜ÅܯÈã9Ú9 Aj9ˆ’ˆ«ôÉqRZaGXÉç2³â¾Òà{bö3ôù¨Ó“b9åŽ] қ³•†Írfe@e-ÉÊŒÇÊ ÆJY2À°V<1ÙéqŠyGN±ûéãëÓ3ûôC¼KCûãÐGõ½ŽòŠ | “]ð„ðžT°L*R& ¼)¢d' uã ¹’pWí˜âÒ%zdèØ#LÚAQAËA Ëb`ÕÒpÇp2ÇXj*x'_»C›R¡ßü)F>â·n³,訖s‰%/ktmÔõ9ìR ÁhêæG‡®…$QnÀ½Ÿ ÌT¤yì$;ÈÕ u²àœ:„sbÓY*â)î¤Î´U–éÔ„e ¥ÄמËäÿ:X¦rÁŸ1"t.yŽÒbè'ÀQd[ß—QååÚçWGûìñj qý&«õšÔL>·mh$‚&·o;]bnÑ­£‰Ü¬ba¢ TC!«5x Vg#`™’X¦ü/Ëô‡=#¹³CÍìP3ôìP3;Ô GÍ4 —/áü~)01f.¨`™Kmàe &%Ø2boš½„1—]ã*ïð5±Ê°äiiØÅFΙ‡F^>òpóуøÃnáŠ+Ñ Ò*Cç`Âòû18‰8¸vôz㊻±ƒn4Qn­Îå©ñm†,-z'if•‘ku`«0j-F…Å °1#MÅJ½Û½$ ¨ºbÆô» PwAjÄ2’àtѸ¦ÐI*L$‰I¦I Æ(JŒ˜ ’± ˆ’,ˆ mtaêb\Ø L Iº™‘$i0’U`HRÂÁ1$v‰zÄ:b1‘ZA#Nˆ¸ˆ…€ÔX¬Î° —èB‹ã6ô·æ ‰˜7Ú=2ÇâWÚ…¸ 1€´³E†P+«‚½daßÚ9w“Â9=ÓÌÈŽ%-ލ–Œ‘Ï\ŽmŽã–ö.á,Sl3GKKfK&øŠ ®${è*ó)ª6€vîJ`IÊÒ‹uö0½rì0­¸Gà²Èáª)ih”pÑEÉŠCÉB±#PŠîë¯+öde3ˆ…†t¼Éâ`“,H“(ÚȘŒi1& „b²Â"Ü£Ú¨Ät£¸ûÎz¢,¨ŠKÚ¤èãP˜T¨I€óøÓŽÁ~ãßT,Ê奙*þ´1Å¥1E<åÒž]VÀVÌÙ+ ¸ Úu¼J)Ùç_tƒŠxù°‚å+¸¿¸ ð) †äI§dˆê.LHì%—RB;:@”"eYû™9Å1·Š\X—EnSêXí³¨#Î'¡±Ò´ÌïÑc{@+·ây¸]Í&ŠõWf ‚”UîĨªEôPüó« zdt"/3¢gkñŒâ`ŸpîX(Š~¬ÙíîâíEË!ŠRï^¿KDßh¢cì!¶Â«ßÕÛÀL16ÿ§ìiªü{ M~€iòw ¦¨ Ÿ¨i­ ¦< í»?)®)k4 ¥:ad Ë9¯‚ {ýWDAùåïpPÿ"TÆkÛƒKáW‡ƒ*ý‹qP¥·€ƒÂí:P#k‡„úI‘P“léW‡D0Ô"i“-€wc› ¢¤¾¥ô>6‹ïÜmØ·ôBÞN˜¥ôKÓwÁ–vÁ–tå¹ :^ºxËœ‰9Ö˜Û ¡àÏ·áÖ‚HMéS³#|XÖÛØ–ꈌ@A¦éˆÍõÁÍjû %lÏ› ¤e»o5[¼šÊ:i™ïXÍzÁê.žÖOOË €t˜!Q FÖrGB†-HÆá²Õ»‹Ñ•|~–]©sžž·£+ –…ż˜x7¦+#mÝÍDêÊK8ei‘/Ãk nkÃ*9µ$ÛÕEi‹q»º&nÛ€¬Lºkº„M‹ÀYÕƒ:Sj_Iß,#Ò1ËR°Ì ™ZsFIJ…¸á1 ÅÅ7ç)qßtøX×b8z‘u¦Ç9„›;P–e• –.Ëœ$%^bš(0§93!uíÂþË]ÿY&­âtsóÒâä9AkY–È¥a`¼X»”ðxº_|}<½¢}[úuз'S€º4ômå o#R·¸­ ±(©²w²CåîP¹›CåFâýºkÇæf:¸a„nÅ¡‹¦ƒ>ô9 ûŒ{ljÂ[q£LÖT†ÖÔ9û<›>Ñ—1è*.ÿ÷:¥€ØüÛø~B·ÕÏæxƒ=ДsøÖy:,“ÈØ»f¯Þ®Qbº©75êÞ‘R0dó¯Ó×ÇÂz<Lj;ù4f„¿yøÙ!·f´« Å; ;J$ÒO©;7Ë ¨Än^ÈM{ÆJ¯C-(+3FÃÝùwQï|À—¦x¡Èdü»þxéYö0!Œ'ŠÐføÝ€—3¨÷鋳4¸áÉz xüô±“†¼¥¦óV•ã=ÂÆ¥­Æ¡Rô—ϨCÕ¾B™y[sÁ ÈI>â Òš×ïëêG#Ä¡·Š& œ†µP1ào†U 4õV]¿§A3* Ëná¡C C¢ÛõøÀØE•’µ“Q²QØÜdQ6‘á«”lzÈÆ¹±!f—3ÈØÔüaQ§²ºY¤hšEP‡ g‘ O¢òÛ½ ‰gÙT»¿ÊOL•oD j_–Œ"_È6-…õˆn~ñRØŽn%`ó E´þ-èv©¬gH”CâF?+o`0ܦä Há~RZGÿŸºÖ¼žŽ¯˜:-!¢ãISêB(ˆ«ïrQ'¶>¬xåuuveÅ+¯³d¯SnZV[i%½RÕuVÓëT™»:A>1 r]/Èë–åº^–×-Îu½8¯[¢ãÕªö©•Ö[N¯·°ŽÁtâTïÊ«=uªv=CªjR7ƵaMƒéƸ0¬iÝW…5  x…Ê’°&ÖÕ4quRtjÖ0ú[Ð0ú[Ð0ú[Ð0úÛÐ04•®]ÃÐÔ¹–é_`£×0ô‚¼v C/Ëk×0ôâ¼v à Ñk×0ô¶~ C_ïÚ5 }µëRÆSV<Žß°†a\Ö¥aW…uiæ%a]†qn^©™&±À¨%•R†Á8ZÃ9$µž®£Ò²¶ÒHC «®ó$½NÞÎÂêêWÜú6·˜  áóa*ƒgHúü ši~<Ø`x¸µjyÖÉ«·^†±½®,¢W·º›.ÂfszrNHÿÑ3ë ž·„4#÷¼É3Á‡?ž¾O^¾b~áI€©¯Ú¾º%rÿeŠ.  —,²x@çšüüÀã•Î^ï_^g[€œ!° W8ô<÷|}þ>zFìñøQ€­Èy6ýò**^È;D,‹zuüÛÒ_þþÿzô·¾Ç®{ðz³÷³ûEd Ež)y4츱äÞõÅ­µTJ%bQÞâ!ÌÓâHØ Ù§ÂN7tqÔ8gÐ ‘ó`2F3Jô9Mˆf”º%ã—Èàå,=î¶!|¶ÇݬнªUoÕ-˜fàïõù9Ežº2sᢠŒj_D'Žþ°ƒ“yÛm dë€([”hMÏ€9ëi;ã¯AÑYC8ë:­®s0ch&È öWŽyïPÅ¡@°2”14]÷{_þè~ÈßeˆÙ–„1%1Ã>«Q£ÎÊnø˜š¸” ]U÷Z”Å2ŒaË›„¦¤ &[1ñ†Ë/˜ L‰‚¨Ä4fܸ†ä‰`<ôúd_µô=µD|Aß˹BY™t!°ôã…QþK à¯nyáºs\È- A9ÚX­!PAâ„\Rô ”¹œü¼Ï~N)Ácˆ d N«igë¨K¬1PˆIPü,¡jöCD¡”th’^Í$PnåÙ㱦~åE=â# $‚"]Êi¸”mïW)‘•€9¯Hïk\ïI1 •‡p`ôñ½AAU$b’šƒŸOͽ8sy#mà—H,ÍNœ¡<¦èï /5¤¹5,ÞÏÅD ‚X"’V#eh#Kš+ Vð’®’²®SC9 xR×ñÄ GÄUòøo0â1pÏa26 íÙ©®¤±w,>äÀe–Œj¯¿‹JƒÊÖêF‘à{Áï¡г+J8I# AE$Ê7÷VÑÞðä­p,q'œ©»@3¦uG~½XÓ}hLÕö_J|TB˜&¨P8šMS!N&ð&;NË2‹ËL¥)!$Þm4"I"‹ã Á­[“TFÁæýAuh¸”>ÌÃ0(&Ùô„Jê’‹ÍZaLcM"è1ñ`ñ™K¢% E069걡 ÉÐî±ÈP¸B]šp’£‹ ‰ùúIÈuà\¹*3Az­X» jÚcœ7ÛÏ6˜\ˆ ÛNó^Þ8¹ÆXicL»”Fª)/7Æä²s ¶rj••Õ 6Ý‚ë8¶›Ø`»I 6ܵ²ðšA»I“Xt%Ò­ÚõÁ0—g™µ«i]-šL/šñH}‚¿YÕ¾Ó¦ÚwmZ_‘jØI¶ÐÓiž^ûКo¹†.¤hM5’R?Ú³–ÑÀÓ‚S‚PÚÒåBßN&ãA‰8|ÌXI5ë|æSЉ:W‚¢ÎeÈ–ûéÓ·×iÌ£g;³¢|ìfÅ ÂL¦ÀHÙqr§¦½×0ˆ¹#ñaÌv>ˆ$!Éâ*ì9þz'^‡òuÀßŘî]p±êî„ìõZ¦ñ¡ÔæŒÃqÃÐ|…ÿ‘™8LÚf"–¿¦ û{gKVJö²´¾7àKNð¹!-kâân|¾ì´£3{?Ë{t‘è¨?ɤ2kdâ ¢"·5qz¯0RdWQÞˆõd4×VKé½drÏRóP_3ÞxÔ‰Ö<´ÕÍ;Œ –Èxñ‚ÂI( Ð<É3ÿ«U4hÜÄè6:R{:¿í60&*¿Þb{xuqENN@ö¿OùióÉhAÐú~öG¦@íÞbÚw¯%ìÞåâïÎiôª¹^t @RÄ<‹Ä$¯)áS”_KylЀ˜Äg$ž¡(ƒé3„‘ú`}ÒoÊ!¥«¤Òµ9*|IlÏqoÞ—áDåw>~ä¡z<êñÿ½øô‡{:‘ Jÿ*‰—èó®tm•ZŽWÏ!+ýðÓ¢¸«r“.åI P¬ƒMw×o8ÚRÎpµ ¦Ž`ó+_ ZÏts$?¦ÖÜ݃ttßù,/ÃqôO`0-¦Zà—âµëYºÕN¾Ú•K’qõùÌ«Ÿÿ«2¼†1O¸T-K$Ö­‰ù!X" ›8òtÓæôIÜ?g¯Ï˜“Ÿ°‡Éüe6ùôŠ+§ñË÷1LƇ…£2àõ×äÈÄ'Õ¢”Šñ6Þ¹œ(ÃÜýÚ‡f\¦“¹³ÚìÎ@(œ§j~¿&É ¿, äyò2=Nþ‹Û;lûߣÙ‹™+÷…tpŒVOU[”‚„Çè1¯*¥8f°`ÐdÐ;ÆÏ÷cÐ ïZ¨}|š¾>?("ê‘|Â@ŠìJ'œz1‡ùùb¾’?Aeå4O;ÖoãÙdúÀ¾O`§úi ãÞ·„yªÚ<~Ù§¬Mî…U4°¯s~6ýÅ^¿©y>ý`ó¿&ß¾¡eÎãÍ­fJ¼|bn«!«$bà ˜”ñ#ÎÝ…BáfÆc|:. M²Ûþrâü/Öm¡¤í/)n´Ø ÔñMiëÀªè€!¾±ŒnÅ oÆ™í¬utãM­rf{óÑ‚§(Ø÷= ¶X}‡Æ$;_1eÊYž»ÇI°eøþu R:“áË¿Žæìaü·£gaEûŽñÊ'/â*„_wͰ_H`^X‚ûøG‡[¦pºV’"À»z Z#N>Lƶ×ÍÎ!õ‰v«kµÛÍ `‡Zû¶‰^<æ»n ì,nì”dªCç Ó•"2&¾Uô¹ü ÑorÑ$M¿Ãå Bðù­4ƒOŸAq‚qðm4{XNä ÉÆ/p:·_QÒ®ÑQ¦zù1|µUr”Ñå$0¹µ:ZD<K¹V@:ùhÓó[`•ùöú‚-âÇÏK™<ÃB4ù÷ è”qÚŒ½Àí%«œ,–¹qC¹pÜ‹*lgœ¤ä¼¡n’ø¡èù5îܸe\  ˜Bw±ªuvKZ˜ÁÑî~³+ùb;ä´9’œ H6nÎ(·yYz]6³OÌ©–{1‹Ðmbµ6zVÒÅ]4÷ýA30M¬°™4k‰9§í`–ŽÝÜ¥óâ4ÔÆ[Çë«…õ%n;õ)“½þf³,­‹µH)5¶ˆðÂ"kÈoÿq~GßF÷ücœ]ÑyµÕ½8~øô8z)}v/Éü€_¨”JôzR©ÐkÁçŸ EÏ÷¼“ÿx…rå¤äJøÞ+—=ï?¬°ŠÊÓ˜Ía†eÿy‚Épô4›ÒA²Ï+áÆÛz¸ÐÜô®/@ËÁ}QmP µè¨V+qbWÀ×Ì¢ºfâŽXæ{öÒ¥b³Éßcº|„º6¨âøÈãá‡ÉŒ«ó¤ðì#žÜVÔRb9©ÄéìiôÂr4bÛ>Û?bµgP&ž§¸<€Æ3Âãa$`D„b9DÆ=hМ駗‘tm~?Ž_‚’©E†ÁèžàpRq¢2¦Óï˜Ø/@@‹y‡_ï‰Ñʉ8^¤‰f•þm§Së ̼7·vÞâÖ’`A Bi UÉ'3ìñž=êwk7{Ñà›þ{XÎbUziUÈŒ˜ƒåP¾E7úÖ9Cà+•ÿ\æNÚè%;À-z¯ù±«B´ Ú9ªÚÍZã=üÞ¸î¥Ó\ßà­~è‚Ë­ „– tí#?&ç|ÊàUޏ‘•߬zÝ> ·á=‘zæ‡L¡,äüOÖ©ó@Ÿ,²2;Ic ŠNe¦„Ê=ø_8:I”$r+S^'‹ôŽŠ‰"e¼‰¨ƒ<%¡«)»œ G¢ñ‹*9#ñª÷ă^¦Äý,dô®²$ö¯œcòþxü.X†Ï¦Ï_ð’]Á¿¼Ôíß?³sD–¿÷£'Xiè¦Æ¾ÜÔ À²žËÉt„Ô6̨ü?~‚âû¯ŸÄ¬ª˜pãû¯ÏxŠÏ:ã§)Ë_ŸXwzT­²\oü÷„ö‚Þ~žuF0Á¤7¹Ç}ÙCV4ƒÝÀ„ ˜gž'{Žé3ì”Ôm Tð2ýȳӓBAºL¤õ•5Fó9«Áÿ:²‚ó Âv®R(Oó0?h·UÕÃshá+ìÏp_XF/A1 ¸k%(0V¤L ‡ÔÍ^˜=û>~|4n¾`S5#æ§@Ï×§9»€-â7Ö~y¹ú¸p…ÝæMd„Ýâéa¡ð‘à£ç/°ÕÔ·ý?öºÍ{¸-ß»í^u¯?v÷Ø| +¬Hr7ëFhÜXzf¯Ï°ª>¾LpÂëøøõØÐ áJôEŸ<$ d¸]ƵlÎró×ùèy_Ýpê`Üší`·%wZ7üŒ¦e%êL²„þm½o-@)[, '_kŸg•cúT6E®ÐÑF‡Ð“Ì/p¯ØÞ:ãXòZ›¿Ö›iÅRÜsÉ\xl!sâûáÜ_ò,»ÿ¼¼!õ’£á‰áP?nÅ[g­ŽÜ‘w=yðiÈ·q^äiùÏÓô Åo¿Ñ´ ×°ÿ 7ü€}M²©[ ¨þ$cyýðwäªQ½aœ¹.·© ¸þÉ¢ê¿ïËïÌ­öædW ä„Z˜9c½«º('Åš1VkHrSël4âYe réÅ\iØÇ\À$‹L‚Øccß,t$mr:ÙO‘ˆ~˜P±e b‚§r΂“zMˆÌ›§4Éê]/ÝÅøQ^ž^|þRä/%þRæ/0èÎ:ÆûÅn“!UÖz#²¹çVhTl,cU<ãñ!4ga0¹±èÃÅíx«ÖPãz3½#¥X¼ëã;ó°Ùãz®(”ؽc3g^†}ñ3¬ø¤›¾>O^Ò‚6üóWTz~¨J¥›~ˆ¶îթ׬Ѻ/íƒl_LžæŠ5ùú¦Ù Œ¸ üC̽y¡5¡],P—ä0¦CŒ䨦çÑ·ù×éËÂÂ…ÁÖ¦p¤µ ©ƒ7xp-O—…{ü3³ &Ào!Ä:dæ„#„m';Äãè W)¹‘¾OžP;f•€¼Ñæ&á:üüéñ…"êP3Òëž¿L9>`ŠV–ìóhòø:³VÊsÑØ–{BÉs^õ° m>üÜ‹ßEm«I¨±š^¾ÎÆÀLJÑ•‘ë…­D®NEEìB9t"8®R"ëÉò•í݇Lҵɮ…ŠpÑg´ÁxèÇÆ?] ŽäZébÛ•’¢xó†­ÄØJ¡€º¶«Ü‹mk$é¿‘FÖC”! ¼wBÐV02çá: '4Üåé/¹¿>kÑÖ?¶Œ¾­Ía'ƒÏ{r :èhë­–âË‘CaÆãÐÈnÔPDb±§Î›+*2N¸¸\à1¹ÿ,"£\5àÏÍr ƒ'ù¨Ø,X°³àAÑ”ÃΘ ¹KÄdXVÍ3p®H«èàfšoúK¦ºéÔ–2!¢[î]L¾ I8[ôˆTh_Ç·åB´Ébò¸Ñ¾î7…i(ì>éÖˆ>}9\ÿžF÷_Ÿñ 2Dî+è˜Ô€„™'‰SF–ÀÚs~çö rDÅ}UÐsP8š…BÇF‚]MTȳà_ªËÊÓ*ÛÇ$A»M`6~œŒ>M'/?¸»lÉÄIÕøŸÑ=?' y€v5ŠUSôåÖ\]F OC1Š,}h”B’ÿ%…Häva ÓFèy/ m?ŠáÇŸ½àçËøÏ Êì©ÞÔH}¬Z*Ù&´9ˆ2rz†H8€ïŽ1"R仃 4 üŠ—³xÉU½Ñ`¨ìñhœñ£–]?“RÉÏñxÿ4<µÈFø‘=øÁ ¥Uƒ ôk¨Áw÷ԯꑯx8nÌ—‹™²ÈîæÑ_i´'‰ š­a”÷®Ü–ÃÍ¥ ù±Áƒ™4ºBxCŽŒ d¯Ïaä¥QÁÝ䊃ÉP-€òB/a Š‹BŒÜlnÓY8O±Ø*òy°ãóù,³%G«nªèʉÆ>e¨É¼¤o¢1ä %e^óD¡éàI™CŠ bÂ!>Ø ñÝÿµø8Ï_Ø´4EÙ&GÜ×ÙsLm.ðC#­þš¶ÍaâB㤒öã~?Hjp,ޏáçé‹ÖðccɉÐwûA5Š% ŽÂÉ?X<‹JgRhŠRAö?íæ‹?\rÑDŸ“Çn±Ê¸ì$CŸ¤q•ÅÌ… µJH²8¹âÊBä[ŽðT²ü B^DÀŸüáêtƒæ1ü`CÊ?'ø”ì}jc’@2”ƒVêa™J¸DÉ,/—ä 9¾TO(Sùɤ¦ü€SsÒɧrü‰ŒåˆK8ê¡c»f>©ÃϸJ;uˆFâDгL¬C…·ÓiAÃ20‰Á/!2A~©.ð¤Ž%%„‡XŸ.°á¤Šx~ UKŮЀGq÷iR=ò5N½frh²N­ñÒB´8¨]5»È®:FYñn`Þ<=ò4¾: êEbÝ‹Fbò𦥋^³6 _»(±”‚\;D¥Š¯Û–XPKL”PVJ®îÂ{¼’X÷æ‡fá™íZCAïQºó8‘×íöõÇV÷Bs‰6lÁPoPúô))0Ž=ŽL¨ë´U©‹‰Ô<✚úä¼ôŸH§+̘ÞSÒñ0 ½@çѹÕm#ADk½^mÈú­?¡Y­®ô ˆ±â8ôyᬭÕa"€]×YÜM¦ T [é@(õÀµ1æ ¿èBµg<WP~ÂÓV_UG àÖ½CÔyÛB*RÎnXV¯ ¼Ã~mbw&Ü€Ðëócïº{ÑqÚxyq7ŸÐNíòâŽ>@¯²¥X~ͽ¦ ˜~à–Ôöò"O¢ùä†ÃÚó@Ù4 ÞÃØè@מÁp¡{^»m¨Qœí‚Éî=Hq«ý)p¦qèÅz Æñämw‘çé…ñß©¡Ñx¿#±ï±èw‘2ú@ ª@êË ûªe5>&œ]*«¥¸”ˆÛüh#Eõ¦BT"^¹\¤©V¶.©:_ë+¸³`4w𧦨f- êmOÛ³EÜm‹fwÛ_ž-Z¶ø5Ó¼pllE椶¢A-k¿AHlGÜ/WT9dˆÿ`‚a†-Y(Bv€¹M€p®öÜŽ¾ãW뱂ÍYøÛ}pÆñÆÑ· ­%«}‚lÍ=àj[¶¬\†Øo÷eÀõz[Z>áOˆè0ÍkÅ  ᛾ƒMhÝ<ƒ·Wæ'3 Ú8eµq²¢xsð‡B Öé½¥Ÿt+€¹˜΃L¾½ãÿÞ~B‹1Ú~ûf¡ïÞ¶ÛÁ½ªÜĊ˺°»&¡é;LÉÄ«Òx{µT,¯¨®!³…¤ÁZ[t…<ë1ÍyùK.uIX²š(Y‘3¸™[éú‡U˜7„]jY69(0 æ$äx¯;h8B„y&y´áåj¸¥ D–j æ£\žì+gtO”<ˆ"ýð[–êˆ}4 óáYBW›qL„ÈÚâѯ: xì ïö{ù:zfO“çÉÓë“€vN>ƒž2}ŠÚª1ך .á{„·©³èÿÄ2á_<±Œò×äwbuxJ1~ž¾~ùª©YÖraªEÆ·Šäa¾ãuDpƒT¼÷’Гz§r˜ ‘+á¹ Ù|í¡ ¼·¦Qãeã¿3å„´…§rô¥×]LI³ ·2Ôâ×2Ôä½ *X~¿f»Ð²ƒ…_飊ígƧdqº,²8]Uš³þp±­- ¶üÁ¼è10~6˰ZþK² Ð]ž£õ¥š?1TV„¤š é [ téH^y©-’ñËÉ´""‡éu˜É?_ë—¨›5zÄR/pfºZÅÕ’ºy„0å,[ ’ú;Ê¢$"u]Ž“z|œÔmã„…C¥n*ðt° óÏDa0™ÇŒ,×Q–k¨Ö8x˜?õ…Çc”†PÝÌ7H‘6Š‚rð¯~ ±Æ’B@ÊpbQ £†¼º ïTRÝ búqU×+–2´ê\w–€ ´-¤Œ*Ƹæž>ºXpuB-ÄKE‹Mÿ(ëš¹L&ƒ#·ê!šÚ˜2¯þ!PØuÅ,¤}tÌm™Ë+‹i¯ÒH3ñÄKlˆ]‘›ùCz`W¨:¶&R@ÙñßãÙ³Âøû4þŒcc¼‰¸)¶ì!Î$…-|ãè iIëARà çO§o^ÙùÓí['Gx®úÖiŽ¡8öÙí½ fM˸%CÜ^ .Ú"‡ÇmpëØƒ[i¾§P‚æa†I¡²P‰æA¥¿•uN¥µæ:±\ñn1µ%Œ.:vJ[A[Ðb#ÚR\ª- Þ–†}5ðrës.Ú3Ií#;¹c¢âÿ‚6n¹N)!9ã³ÔUp£°Ó¤®Üž„ÌHi9*¦µKÄRŒ—Ú‡O·hxH" c qo¥JIÆuZßxËÄ<œ¶hp÷PcvHðôï£9{ý…álŸï§3t¼|üá „²ÃعV?FG§”|Ú{LØÞú…?1T¢öéÇì;¹¡¢äžb°`¬°ùäA&ó4& êp÷ÉW‡Œ~˜±.3Ö]2¹[ÝAh]€DúGLSzkOŠôeJEé­‹“H_·¢Q†Ô¥Jd:á®Bg%NÖ-»Äˆ¬U‘µF¦¬9"ÏiX]] XPÅu©ÖEž·.ê³®2‹:gJÚbB’hql²?l½5h²7ɺé2OWò(ê¤Ð$ûΓ=á f#O{·Žº¢ ®!ú$el}æƒ'Ce”ƒ?Ïfäïi+ýgã(œYûˆCøô9-êLJæÔ”®%ÆqS‚­Ôy6˜Ïé‹ ³Ýè†yKKh/¼º“Ô¯q©p¡SVAcQ¾è݋Ɨ©Hdlñ»¬Ã]5ê Òx1ðÝ  g('Õ¹Á’‘È; ¹ÃD¯3ç'ð_¦è«êïö‰-Ì¿gr¤+±îLìv$£Ë€Ê,—eÝ‹^XI$I\hþ±Z0ýrš¸Yˆœ…Bò;Os/©ðŸqc't#šÈ8¸À9Ø¿ÀÂt¥’]ÌŒQ‚l±cæÈb#zF@;5eƸ˜`KÙ9 ðøÞGÙÝqI©1lv€C$hó,@iÅñ ¹ r6ÎE $è¾-Hv8e¾ànï(²îƆí6®{½fcÐÚâdÍÁ6´›·%ªl·¡EˆZývÀ1x ­ÎmGAÇ lŽwÈú·}¼å3NoEâ€n E D_wùœÏY>ˈQÿ.È›ÛÛ¨?|ý%® <ûò{í8/a2\%ô, Áû=%IœS Ùþ‘•ª'PÀÐܵvëŒ7ú@ÿÓå瀓óœúäìpr;œÜ'·ÃÉ­'×Ç?·!F®MF‰3sÀ§`ßÌåHP\ ®Ý<LJÅ%D<Âõ[ÿ}yK0þí'rWÕ¶ï‰ïoÿH8—çËÊ — ×?Þk÷ö޹¸ïݶCÅùò‹%Pq…ÅPq§;P\wº,&.ɧEP$<¢i2bFŠdæ“¢çSˆ‰ñÀ û‘ŽGP*žÃ¸¨haØçBïÿË„KÇMá)l£ÿŽÒ&ŒO¸¡yR<ª­G1Éf©Çìî”8QŠÁ´öÃöºÚ˧ÓPVÈ_6Œ’ ØÏ„ô‹Áüb¿JÝ­A¿ÍžKÁ-JÁí;J®?Qˆ÷üÇì5`g’<ØîIå„ä½»Nô ¸ÉÙ”Ö”Ó”ÐäŽf2„×I>™ Ln8¦e@Ln RtżdLD 0$ÂWc¢ÈR ^ÉŠ”‡äBJ=Qr€eÁ¹(K…9ಀܑFÄ;`Œ2ŒÑEÐ"¾´§_>WXŒê6RÓñB.`!>•áV,'v¯Òþ,€Z 8(2h!XûA¯8³ņ̃i©h U@"8 š¬)ô®m¶Ž €hêÆ,Ö¹;ö'ð'‚úqBñDp? <1èO:~'øqïÄ@?éÀ(ÔǵãÙ‰"‚2àuÒÀ:‰‚W€ÔI‡é¤`tâð!€Ž#:ÇzfŸÍqÃådå,†ÈY޳'u}ψÂYËÌœJ›+ò&#ì&u#)[èÐõô‡¯N¸€gÁÄè 9™Ý34 4‡Î 2”‘šã#´±,Ôy\Ü|‚Gì›R–¥B;-‹tr€9¹cœ² ü$ºÉ m2ãš  &¢)gúU K~!‰Æ²¿tɸu‰n[t˜¥$ j‡Yú7`–òÌÏ!FIE+áAº¯b”"dfÁ+)ø$l`¼½ÛÂ,ù˜¥â†0KrÍ€$c9*P) «”èòADÁSÜTiõP¥ŒwGo'*\xi[2eM––@*mn” cÔ8 @FƒÒèR™›®Çu´µl<+µj0÷áß~>Š4Rão!€›ô 3Ué$â_LЧTãw âûËÖx¸uZivè¥ è%X"™ˆ ^ôá ~èŠ÷â´¬I^Ë“ÖDß!†–ÈÿŽgSyŒÚAäB,~P'oîé¨÷¢*z¹'K×Ô'Y%e—v¤,ÔeK0O2|[ìQ×°kâĹ–åysôu·©ÌÐ yùÃg‡ú[›øE÷o|Ц.h¬h‚þ™»Ài†vJôkƬtW`«é1+OíÀoeÒð£g~{¾>feQü.ý:ÀïŠ~—7ü6Û“^¶œ°Êûý/Å~—V‹ýÞ—ãf[Àn—K›K¿F0ÊÞÕá½ F¹Cuï‚QƃQ6 E£ 0âWFüf ËKyy³™ Kž¸·9ˆGÙ¾·3®& ¥á†fT€n𽄴G.h–øð ‘)wÐïxÄÊž¨Þa¾S1ßœ÷!+åoÙ•z8´ ½`ÔI=RÙ‚ÙãM‚MºB\ía&5/k#LFÂKj‚voY¶^±,£šÀ¬4éP¬štª¿/V^Ë"¯‰5Z·)ÐÑzCXG›X–’(~mëäÅÉoc?1F‡+xå$§Àe—ˆë¨K ë·ÀŸDßê/@þWDTL¨ü™B*:‚HpÊ\_“3Ÿ™v;¬8å*ן;x"êü,=F¡¿TŒÂE,¾±…¥ˆå4ÅI4Ø4$o=ÝF|ÂÞUNµòÆÈÊ ð§‹KX\q\BË-_›K˜)È r3iˆ·LËTÌl°ätÅèÏ™§ÇÕ <]S¼ÀÓ(šRѺ™ã®,\`áç XüùÂ.xÝá]&ÌTÚ ÈOÏìÓñ.ýt‰ª¬gKÁ³‘QH?ßž8r./ÓêçOÓ]¦¤s \º%«ì²Chûï©$:a*Rí ±'‚“Èàƒh&ö¸”? f{h®FËû ‘=Èù2VF h.W Yhƒ*7HïþÑÙbHH71KFެ¢ósÞâÉý¯ì<ךmÃiô-¶Ž Àm–RK\Õô‹‚º¸Éaïß],OâÂú®!NÆò¤]Ú=µ›®KSôÍ% a‡Î\R3gìî0þw`Âöx5и~“ÕzMj&Œ´Û64 A“Û·.1·˜Às­1š¨9‚¨||Yq³ø²’¾¬üÖðeu`f@—åÙÇ$ÀÌß!Ìv³m"Ì€²zŽùnÀ,|¦Á˜Õ]^VHY9f.')³"ÇÌÅ\„è²’??¾ìò²f‹CÊág±ë‘õÑIÍ…áh;ÔÙÏ‚:ów°³mÀÎVqS²9 ç¯;+.;£Ðš ãÎxTÆðL–²žéî~Y ò,µË i°s­†6-)†2M$ÊX ƒÜ¸’²ÄMÀqB ˆ×à˜2>pBÐDðÞ$iEý‘ƒIæw2­§4_v›!ÐfœËt ÐÄ5_'Â2‘e8Ç "Ònçxºjœcu‡sÜáVœã¾$Ú ¹»%z…Ì­] ;Ñ•á0曢WȴİØ!2)DæïŠ^ ösc—E/…þÜݽ»-Úø¬evN¥mcðÏËZ= €éuž·ƒˆÚž¬ÑHÄ[ó‚§>ƒ­(üa@_Ú ®ØïîS'Ñì~ð#7’Ø*ÏV±R¹)t.\芔6È­p•q)TÝz޵ýÀn—­œ¡½ï߈Ùt´‘xœ .\"‘ÇËÅÂ2Õ*UÛÃp.8 º«¡~ÌXLd¨R­uĤ:[AÁˆHu¶2þå°e¦.yNœ* ½ü.DbÌûE±Ñ%RGMw3a£“1­á0ͱ0 0uQ0!0l´ wYZ6z¥a3ÃFÇ » ™;€ôVÒJÈM X:Îñ­¡¦Ë¨i´›ô¡'`lö`p T”ŒÖ²x3´xÏÙçÙô‰¾Œ!qêü¿× LœlĿ߯÷“Ñ#û{<›cœ} )(çð+,`t”'ÍwÍ^½]£2êˆ k°ù×éëã0žÇãDŠ|³‡ñgÈò°I§‚¤‹Ð”ÃSÿõ˜xƒÒáëè “ÊñöélžŽ¢‘øçÐ{„ Þ!ƒ·Â‘Á8R²ÊH! e‹„ Þ!ƒ·Â‘Á8RN“AË ¼Bo…#ƒ-p¤j•ße>ó×KÇ`ûtÄ$ÄOÒáo¤_b¢¡cõ:bÁaÙ!¶žñ7ÎÑ5þ†Ôw3G6Lˆ]aÕ Þuu]aÝ6!ƒLÓêº qžW—"„ïOHT}ÓM*rëy»·1æø:"ÚÑýÞ†w*·{›SµTôÞÄ‹ö¶©èmšŠ’U.6¥j©è½ *¹Ø>/6IʼnU.ô+¾ª®DKÖ¡ŠÅ&4B3'ÚoíÍqâ4“L$už•pBKDÏ.˜›!Â(ç„Y0WN„gÖnÌB±òm¬žŠ©Ø)b±I^¸MX+SÄ‹&EO1UE<¾ÑOHíêÕpAB †o„„¢‘„Ûk$¡d'!v¶Ê$(ç-Û !~æ³9zo€½7À‡`Öܶ<´ß€µ ½"!:ÛÛfxaÕ®6Æ «’µ^ÄÝSäÂ_/,Tèx‘¤b¼°ª]ã…Q.ÖÄ‹„ß “`¬^µaRE7ÇÑØ7¬ŠùJ¸AGO ¿p×OÅŠ„.Áú«ñ(C„W7•Á3$ˆ‚‡7Ó‚‡ók„Û  ÿY«v‘gÈ™ú0z‰·¸#8R»úÐmmI‹¼ÚxίŸS ïÑ3ë`ÄÚ®z:õ2Åã$W$ž<Ó§ÆAägºoþ2{½yág¬œnÒAvE„ã]‘©^a/ùõ15q;(x†uöZ”%E–&‡dp»ÌùóéÓ8\`øïx6—%Š£›vŠDþ%Ý0|ìkÈOЋS–¡DËý[PÊe^Þý&KÔ$E5FÜÕr-Ï@•þþ+Í·áW^ôö¥H‰ ‹8 —²Mâýïʼ/²’ ›óŠô¾æš'RÂN ¼ï º* ‰kÚ© Êx3—_©©½Í4r5}'!ÏØÐêðZKX’ý\LÜw«B\ÅÛÁëÓHs¯(XKºJʺN åL™êhBRf8 N +ØPÓ«Á•ôY½„UÜ@i,‡ï;äŽ.Žž+7GÏå•O÷Ó§o /‰nyæ»MÑÛ-¶‘¢ÇEJJŽYÑGi ïõ#ùãB'ö:×ÁõOÝ_\ˆÚù`ÞïDÇÈ»"ñ@\D¤ˆË‘ˆäëõ° ž¬!3 rüÍ…ÛöHC°´eÝ<]†—kø†ÌZýh6Æuõq<5ýëèñ3Ýß¿¢¥0°€òšË…ø•ÚŸaÝ}ä½vÜ¿Í/À ®BäEæ”EX;Q#‡pS’ÕÆc»V^öq^éâèÌá^RP@PªfÐ-yG÷‰åŽnãQ£þ¾a~ytóL\¯ÌZ}Önöûlð¾Öeïk‰Ë°ÏY­Ñ¸íÕÍàægºJZ‘â;¼:,‘ñ:â…)’g›tƒóIžù^õ¨"~>YøzèĦ6ÔºM·TžÏo» ¼Môxà=ž0ô`¶m÷XäRä Œ”ïSn3äƒbòÊ/nëv»[ÇÝm¦K‚Û½Åvt½–Ø‚õ.?¢rÞñD¶í^tbBRÄ Ä´|æô bÛ ñy’g(ÊûbôÄ]®Œi½% Rº iÑcqà6¨>mðe>~ä[4ÕÚ=ãÿ{ FŽzšNçèh@Þ ªu *yÔl¶ª¬íü8bj©õÃOë=DN[dz<‚Mž·:œúhOG™:I˜d°øZ`âÆ)Y¤èÈ,f€R]<æï;Öd8ÀZôpFw¢=21od8È(¦d,Åk×Ó7ëÉÃRd8šã :›èär“»~‰©ÄÛ˜'\eª–UëšÄü¬8‘sü88l6z~˜>±ç×§Oh"}žÀäÿôøƒ=Læ/³É§W\t>_¾a>=,•Éί»ÕdéÕĈGZpöÆsEÏêþ³¹œ‘ÃÜýÚ‡f|ð$s§Ìꤌq‘Š¢>”{î‰ú¿G³ 3? ‡l‡sõT™FZ *?6ðœ%üÌ«ŠŒ¦ F^ûöÝsЂÆÏ÷c,ËïZ¨ }š¾>?(Òì‘(ÃÆ(Ï UõbºóóÅ|%‚ Ôiž¶õß ×§ìû¶óŸÆ0Eò–0OU›Ç/ò”µÉ½°Š¶âuMx™²O³ñè/ò¦äùôƒÍÿš|û†z7_´þ™U´2þˆ#r±¶:Á) ~Äi¾P(À$zŒoBD2"~h5)Ç—¬x· ;F!Ú_üÃ_—rTSËÇjè8-¾î>!_Æ ð¬u4Þx('ÀÝ´µø´¥ÑD‘µî<ìèù;è÷¡½«1eÊé¾;Œ=ØO}ÿ:†A3c¯Þ®±¯£9{¿ðýÕèYØD!Ñ3›¼°ù×éëãÃnµ[ÇÞIé+ó’(û0±ƒªÈÂm ËÒEç:X²³?ƒ 5â¢Ïõ•iU ©O¤°›Y«Ýn^>ÔÚ·MôAÁÝÛN^Ð0ç£Ç4ƒÅ-ƒ’ì‡õaèÚÀ-I[>)cŒ1Æš|ŒC O à߈Ϳïq-ûIW,]Œ0\®Æ|åš>ƒn îÛhö)°\ÀC¿ÀeŒÆñ?èÁÏ3ÐT1u0¾Úµ>– £k¢V¢J篰Ö?˜ç‡Ñ"âù[/˜ù‘ÃéÑ25Lž¿½¾`‹8Ð2c)“gX€'»™cm3GʄЌM6³Æôé Ø¸…YIÔü ´â¿”Æ5®;ZCÃç)hGV²ë+¾šYrQ…㌳¡œ Ô +ixP;ÿY\Ï ˜¢à|V$¦Q±H‡ˆNxv%_ÌZ‘6œdéæŒr[¤sZ3û zž$¦«0± cLÜ[ƒ÷|’ýƒ¦zšÁ[Ýþ YKLö¸>ËÞA›}&Ï÷¯cX‚Žáßôú|õûíÿYÍóÛÿ#´R,úóÖ½ûÙ˜ŒqMs¨ƒ¤ÖyŠ"øÿps¥Æ2øÛÔ\p—ˆ9§ßçï0%=}(cࡺÖÕjý6}˜4a¨žÃ¶ƒ ‚\ s.ŽùÇñ,Èx6}ýäZÝŸæ\†êˆžÝƒÊ êüaC~àžÅhò"7/Zÿ<}±‡ÉçÏ J>¿`9Aeó#(t*ú%Ù-y@‘ÆŒæšøôyŒå@EOèz$* ‹…}üŒ ø>9œý3ÂF)½DEΉպï$´¿=p–IF‰W¯‚‰kä-ù2ýýG^¢öŸ`×) ? g4°v° ´])£ÈHâ\„#@ŽCmŽ‹å÷¯“û¯$œ¼„þž6/AÕ0Îþ¡©X¼PÞßçÉ|þ¯èø)ÓÓôoÞGÓOÿ¿ñ}0>c½èHúІçOãñ3!¨]åëýãxô,ê!ºçÕÌ¡õ÷²,¾u„fòœ< èÞ¼¶·Î{?à?6dEóÊobˆÿÁæÄ¤£)ûí·†üî>üîL~÷~÷§üî¿â»ß~ƒ>zÇR…ë7žàÒ‰¿ñÄÊW¿‰ Êw÷¿…¼S{ö·° wìr¼Qû¿ý¿þ'×¾®5{ûŒ¿»¾ô÷Ãìÿè¼ÿ“Ãù²ÝªïÃötª–}e7DVsá çÂq…Û‹¥Ÿ¥–~æ\úƒZú±ô?SKÿÓ¹ôÿBé#±pÌýß‚Ö+ßœ%¾ù3ö û ^Þýöÿúÿ €ßÑP‚ogOìð3;ñ‚ö|>š¾#úA-G¬.͉?¼gÿóÿFÿçÿ³q:MÿóWP‡³þWTÞ éþNÿÛÈófõ?yýÏ_HÿÓçrÐÿü…ô?}®þ÷ëë¾¢ÿùŠþçÇô?§ÿiæ•ßÄúŸê¾ÔÿüPÿó¥þç‡úŸ/õ? ýÏOê¾FÿóµúŸ¯è~¨ÿùiúŸï æøŠþç‡úŸŸªÿ9®ê~¨ÿYK?s.]ÕÿüPÿ³–þ§séŠþç'ô??¡ÿù ýÏÿéÅÔ‘ªÿyŤþWÞé›xÞ¬þW\^ÿ+.¤ÿés9èÅ…ô?}®þ÷ëëEEÿ+*ú_1¦ÿwúŸf^ùM q¡ÿQ‡kȯîÅWRý+Jõ¯ªE©þ—PÿŠIõ¯¨QÿŠZõ¯¨¨ÅPý+¦©Eƒ–£(9EEû+†Ú_1Uûs)[UþŠ¡òg-ü̵pU÷+†ºŸµð?] WT¿bBõ+&T¿bBõ+þBª=&ýOÕW¢ñØõ¿ÊI¹pò@ž¯Œú_ygÿÛÌÇËMïú¢WëˆcS‰àOÀa=è5£Ð+’óHi“ȳúÑ…¯ß¦>BÕr‚ ßž†©Cþ¡¦M…7ÊèÛ·1L\"x¬œ‡ñË4ÐÎ__¾½¾ä98ö×Ô°ê9B}G/ ê°çé âc§'Ê¢çãLK,U‘`SãpEÆ›.0†‘/‡‰/©9‰”ç,GìGÿMXÕxF1%8‡B‹n-à„aÌ-|®Æ>ŸÒg^Âïj-A ¯`¥ÁK§Á‹ÕéÇ>—Si¨XIðÓI(Y (& Î\ò3ìQofØ8Fz û?1ºª2øUÌ·²?¸¾é9U—,·Çzc¹2Ђ#gûϲ—?öîö)SUÉäðâÃE”ÞîÉæiQõñ ï—X^j<A8]ÇÑí÷Ûšå¤ýã=Ö?»°½cs*Rõkw7Ckª"¦ê].¬©JTc/¥Æ2–Õ¸N©±‚©úk7ÖT'˜ªÛëøÖTUjcÿ¶cMuJ5¢0ØRAGïµúµNíno™•SŠf›Ï-rPÀêèð¾Ò¨ž~fó×OR™äÎ{ùV1ïùwùZÅ:4#3}¶j¡Æ!ªs{H(f\3[Ì«!ûè^P{dg(uDƒìöð¿o¤ê*múÐ_ó@Hó(o ð·uñU=üªA_iÖ7QJ_X—¥‘{Mý«—}6[ët†,:.›x-åQ _ÅÇÃØçÂQ^Œ\â?cˆÛfÁ8ΑýÇ¢Üh­±JS*óxe…”ÊXY…§¬ŠâÕâ“·’–õ±2µXS«h 4ÔWæ‰Õ—Ãè«S³úMTXˆ4°m 3ƒ¦Oôñ´/³×àæ!nϾ=ãá÷çxÏÀCnöa|?y‚± )È¿- ,Ë'oŸÇeb¨Ñ_‹øë¡ñçrlus~>þ+Ú‘áG2^uó»ÄÏCõçaâPq,ÄXòPÞ4j; <‰üÄ”“À;/×Jõ‡âסü5Óù g>ÏBOÓq–8Pƒ$á±M¾?ÌSßäÑL|nÍ ÛvÀ`ÂãtÌä[ŽÑŸÈD+þHGo Bãéù‘Ûepä6Œ'@~†¹K~âVÍ]æy31]ö³¶!åå¥Õ?OR©ƒã&¹Q6sƒ|’ÜàGÝ&)M‡‰xèÑRWqnV®‘‰¬œðöó„ÚIcCÅr‹Î\ÆóXøÑL°ñì.äÙ]„gîÜ­f;~N{—ư¥8/)ËA«Ÿá 'ïh˽¤ªãAkqwкÐA«ÝÅ OY×rØŠ³Å¡ÃñÝPàÄOÕó×ÓàøÕ¸‚ˆƒÖà@µóñ¦‘ó<þ®¾PUÆb( §ÞBbÏËËCåCj)¼ ëY®8³5–²ÔY.ÐêÞQ»md¶ºÃ€7]þÎt œÁ£OËþr§²»3×­Ÿ¹òY*âMh³‚®Ô¤²²cÍi--bH°–o|+‡=]¯mFеü^Úf݉‰µÑ¨˜NÅi¬¨“¨Iö4ÍJ›ýWÑ»ËÛ'6¥¶¶¤ÙfSù²Ñ÷#lô¤¨Fص¼ý.1©C7ó$à/ßÅÑ¢©ó8%¥„OI¥<¨á, ¢Ž1aˆF‹‚âŽFI© ”ën °à¼LV‰”ÕçeyÂ,+KœôaΓ"ë¡§7àJ£”Ú*ñ¯ù®¨ù®”¯|YÖ$¬èžhV5ßê2£S"¥ç%“5-jZ8”1t¢_jš8äMô£ßU4%&[8ä-Œ¨iâP41V—B/tJ‹õ—÷?ºPb¢d÷wyCŠê7¼Ò¢R~xFUŽ/¦¬VäË¡îK´Üæuß ߃Ò‹ïŠü‡ ;Lf¿µà·J<_ÉPQÉTQÅRQÅRщ¾À¡ü!QQÕXØPþ¦!†‹©¢SCEžg©Iþ(«ò*:IBC~>>ÎèK?&aôeQÊ¥ú%´RìËr<åPV¤ŽúÖú’éø·‰ª†²ªÃ(©^AS}íëSóúÊñ¯5mƒo5“zño5­“Õ%¾Õ4OÖ¦ l¿ 8„Ž(fTŽ(&"õœ&ªA±¨Ï6?QºÚç9ïA¹è˜Iþ<Œÿ,N‰äïÒŽ4IÂ"C™Ä«&ÖvQg ‰Y2ODr…ˆâ:‘XÊób-Ý—@ºMYdæ”Ê—˜V“H?ä ƒ™ÞO®ñé­Š³pãý¦¹§0 ª§¯i/É’.r7xßê xêsSë5û¬ÖëÕ†}<€orû¬:wˆÞg×稞_ Þ“«þàZ”Òozôq6hö:¬>ä¯g­óóf¯Ùm4ñèé¶=hÝ´[Í3üÛ“‡ºš¢ˆnó¢ÝºhÕÛM%ßkÿÚÇþu7Ï.oÚ á§'%vÖl`lòƒŒ‡Ñ‹D'v:жŤo7•7:·u+’˜™åy§|Oïßx˜þ3# úÂöQ˜äè‰òƒ‚³ŒÂæw!Ÿ]¶û†Àý3ø’‹,â‡A|eN‡­11!‡[y.10ÓýNŸ@<úgûùÈOû¸‰&“I AÄh<ˆï­cÏ{ÚD$ ¦’.l½íë~ËdFbä#¥ìÒ1.×çRj»N°óZ«Í:Í~¿vѤ™‰Ç)W6û2ÿy ¶ŸÊ÷Æ;4¿U•­xü·“ â³¶Ï[ù€Óäü|&‡t€oÓ¯ÉÐðnòh/"þxÑ ¬Ë5Rèº8˳3pí1ÙÛ¶GÆÏPV€dAÄÎ%ªýI@²+y cb[e|ñ›ÅÊQ^<ÿ¨d„ãR=¾ŒzYÖQQ€}¡®¡ð¯Ö¥Ù®54Uj@ºk åú¬’„‹¤¸öHäï5ÿ÷¶Õkvš ߃÷Ðòïaq­±³ÛNgKäÅ-ýÄk Õ9¥ˆÜµÆàf YçV~ýkVoØu/|ßlS]ê:«Yf«´ÌVÔU6:‹ó^¬ó¼ YÅP9ØÏŽâã0Œné-À‰BoRçrY·œ·¥b.)Áï9Oø÷Šb陵?»&™àÀùm·1hÁ²ÅW –›A‡ÄLV’S´ÞáÊPG5qðñšuo;õf¯¤Ñä¸"wÞ¬3¯¼¨ˆÅz›‚º;‡®â­ûƒb>+g•Á,CëPQ8w޶Rf•¤V.˜R7ÇÉãC­×ªž s~O« ‚ÓŠ(f”Z»5­G“^¬S‡ÍDÎò½1x§¦¦³ éR§~2ŒC¥ŽK¥³Gj%¡À‘ô`æ¿ÈH­emª›Vo3*mF­…ª2oÍ¡"}Ž4=NÃ<ö3{ššõÑkji$ÐÄYSKSÍüV±’oy¾ª’mû¿…ëýþî,½ŠW¢û¿OJ^¡T)ÑýÅÝýy¸Gîôù šåúGŸÕGs¡aèhžï Ø‹³Éßãg¼5zÄæ_§³ö€ˆi¼Vøˆ2|žÌ ¥W¥Û…gs,H^]·†ã=ʳñè½â¼ìq29|˜@b¼dyòLwÜab Š©¨ÅIJòÛ°gO£˜Ýk•áoTÝŸ‰‹%hÄ3Þ† _ï‰áš¹˜K» d ^Ù‡MQ­šÛ¨ì¼Õ&-¡’˜Øn»­Ð@Õ|2ÃïÚ£~·v³­¾é¿‡e0VÅ¡—V…̈9p¥°Û~¨ÙQÖL~³Øy )B 9o×.`C‡+i¯ù±…ÖÖHAµsT®šµÆ{ø½qÝ;;J+É踼܂ÚH– d-nöz°KlÞµ<ƒW9âX„Á{(ãýuû TÏö-×î1C¯› =óC¦P–>¾£íny08ЬÌNEÒX‚’SYWaYj†X·²h‘%%Zj8” }èkÊM$.:ÕQkß¼¯ÍÀSþŽNe‰Üʬ7±"“,•iúÍΔh\ÆAÑ£^D'Ïî0Ú·.ïøþE=Câþ0KâL%ßdH<èeIœ…ŒA62úYÈÈ’ø&Cb¾KqîÁ,‰o²•ìg)Ù1±?Ãw]ºÜ ªl>A/ÓÙ|XÐéI¡Àú°°~eÑ|Îj ‡¼Žó2;ìuGÓÉœU ¥âiÖ°H‹®gê§níBmdoü Ø4‡]Eñ¸zBDz%x ôuaï?£TÀ´élòòõIißÅlúú §—‡£¼(¶»ÜrîúóçÉ=PÆürùÿüéuö6_ÓÑCž]ÿÊ˃BßÏNpw{•lÓÕ,*l=ßc}žW€Õ½èÍ_‚ú/³ñ´(èÛÉËQ[y”±ïϨÃ@î¿‘"…Ye¯|èù•"|{Û¯ÏHm8d¡J&ýìk¯_@ <ôN«'RæzT¤<æYÈžŒ"9—i/dzñÓ)Üyb•ägTØ]PÛéa¡ðxùuôüe ³HmpÛÿc¯Ûü¸Ç^¦lï¶{Õ½þØÝcó)¿ÿu6¼‘™ØÕ ]oöú zìãË5—ÉÞ‹<‘ U¿/c`ªŽ‰BÄ…c¨<ÎYnþ:=ïg7@±nKs’(ÐcágÄd0³«'ëöoë}k˜Oã*A1#äŸÍÞ5L.µö9Èb·i+“"\ð¨À3Ðû2ect­›•ÜN›(›‘ôTc\ð?X¥,#²ÄZp‹Ýmñ׫:­µùk½™VeKTz"K÷§²$úžgÿ–|x5"3U…ïYÂÞïàlÍš7ý<ê±y¡³šÝÂ{£ºx‹Ô%€ºÔPÿ€šÐêàK·Am°Ö$Öôd<í¤e´ðÞ+ÕÆ¥ £ŽŸ§Gè7ÈßhZªôã=iP .-6$x˜ÔOü¨å}ÜÚ ¿ýðwdn‘z øš³ZNH'‰Á>¬%â›ñ…¹eÀöœÌØfD6'ÅÂVÎE.¨üNy+‹#ÁVÂÝ]<-%™³ U°áÀ%ß0‘ïÏóEÃ-‚ ²™“£Œû©>^ÕsrØí›E’dQNpû)‚Ó*é,QÌ#Ø 9N Wi"¼¾²t/p©£œj:Ÿ`°c$¡q¬‚Uå©RK6ª±q¯8C´!“Ç{|K»—g{|¿Jïh3ÊßñïÌý¹Ç÷—”˜6ü]PÔà&µÚì‰lÁ»ùŽ:-…‚!%!Z‚w¸g’ßÑuè.Ç@BD«Þ3¨O¤÷¾>O^ÄÕâd¯œ¿â自Qºé7ÐMÉò¨œ0×ÎhZɳóÎä¶/–såPðú¦Ù͉ՑŒXˆÕ%/TPø"Ô=å Dr„ŽEXc›žGßæ_§/ 7 —>[›Â¥i¤Þ]4¤×G V0þÛ>9$ý+˜¿…L+­™£Ei;YQG_¸~Îm¼s6ŸÀ&Tma8Ámn* ÁÏn†/GµîÙ5#½îùËôÛ7ªú™n þ<š<¾Î¬•rMÇ\4¶åD¯XÃO36žÍ ÇÿL B´XÃn哨š<ØjºR¬¦—¯³1pçñßä,™†Å±n³l%r]2"(b÷_Ç÷Q1ßäžEÞ-°|Å ðÿ •wm2‡k¼"\ô-ÈÞÑuI *ttÌ =*’Nîö÷º{R;S‹Üb!*}fÚrBi‘îÁ¡ŠDQ Àäù)¬[äǰEá7Ø*M›ŒÍ‚Y7ÒM“"­òTŸ°X—\ٺ䪮vÈU=ìxd ˵3®öäöh©Î@u/ÒWuµ#Bǰ¢ "'u‚3¿Ãý´¯} ¯ÉŒŽcˆÌè¾Ãï‘‘Ðm(>Ð8ÐÉŒ™õ>‰îÒc•ðèè6ÔŽ(Ô_bBdæx\hÂtƒoù¨›Ç~*±ýˆ¡À¡·Š–Þâ–^‚]œÚKð1ì%ü€½$öx®½DuîI+ÄR½C{ÌHï íe?ÑL:,±´²ì¡©•ð1l%~ÀVŠªk+±Ê½˜‰e±FÒF9ÒHø†í+«Zfåú­ Ö¬y¨!é -²}ëï¾Ë² Ïê¥Mbúl…ôA§ÍX=µÉƒ-cÕÆãP(Å5!8`q z¢ÞB\1t(LϳÓ@‘±‘P»IXæÊ>§mTÜPU›Ü T7‘Qêoðç‡FqÓ:;¨¦X˜'pö‹Âbø«r!9€e°¥G^ý.ÛûÜô%­oaÝSÝØ‹<ÎÇÒBqd'LJè Ф+¥¾3+’‘Jº³Ÿ¢MŽË+*8ç’nèÜÛ‚[¼Ãî'Ehe9ÔDŸF÷_¡ûØ7PáéÄHñÊÀDHãõi¢b !ˆÉRý;7³â[Z³Èª­0‡ì ‘ÒÑÞ}Ð öZ<Ñ)¦Ñ¸Ãó,ø—*³Ê5ŒLL4Û)þŠ*.q/Ùt2|Ã"RŠªY¿á£Ä{A°ü W¼\²;hHsmPgn¦L9ˆäg—ràǤâ°ôªŽ‡Oò ÿK᧬â¨ÏXùA«r¾MÓU ÿ÷ÍÅà\†ÿû4ÑœÓS™ÞLQ(h˜‰'À=<êsF–_ñx>–‰¯å_ý_m|Å#à^%ÏÑvðö$ϱtð¶šÎ‰x_Ÿæ9&ä¿ :S0®uB%Ñ Å wBÀVs'Øà%,ÁØyÑ„õ×ãcü$Á†Òf؈àRŒÐÊ—±˜xÕ"¯ŠÁ0ÆO%â\5Á¹òŽsQÎa´rÈ:üX!Þ&xWùWðuD¿ ÊQIçeüT+fyìë,­¾çh-A[¢¸·øÉ­Ÿ¾ÏT@ѱ€Ùü¤ã›rè6>0EÀ/!¬D~©ª€¤°CÑŠ×\Ží1áïÚç΀ܳ ÌŠuŸ¢Ì¾è¯Ønöcgì{è&[ÃÓ®óê1Qq¯£ZšmÈý¡ ûòÆ{t¯½é5­>:JCƒÚ…¶…Šðn@¦Oâ3˜ú®»íá§—÷±Ö§en Þ‡Æh–+„zûCra„m//~Ä3}u ¨%{TWXÊ÷÷ï@瀟ÝRÄóÚm{@ý„ƒ¡óó{ùV{¿ÁÉ:¸w´!'Ÿ¡á/½þ~ãöùµw'»‚]‰%B7Š”áƒJQî„gX_&ðÔ’*¾fò·£ÄM°ð~±ßæ~RP¸ET$¼ÕQaà ¾˜é&Ø1}b3¼­·åü¡î¤õ°m!‚Œ­:ÆÑ€ÿW·ðgD5ÔNOqÃÌ c©0ÌbWmü_`yW·ð¦Saû¬f)~Å„x£÷€PJGŽÔzøGÖŽ.۰‰½oR¸‚5¡óÛ6¦¤¿0Úqó ŠøÅÓš\8g“®GpKŸë44´µXÏ‹®~=HŸPøÐ&¹œ&qöj¢dEÎh}nÒ†î~§ö“ïƒZV¬ ̘‘9ÞëNHržeXžåXñ+ò£þ½¦áíL9L­ã" ¦Q§îP¼pLOÄ¡ª=LoÛ0hZØDÛŠ«hÛP´m˜:>0¹£n†afÚÛÒ'Žå-<÷ç>ÊŠûšÄø‘ˆS9Âz%TXnA$ •[ûÈŽèTâ˜ÒLò]vk¥«¨˜Ä-_<Ðô”Ó6+E/O>ć»»/p=ÉV _wRÈO1‘Ë^‰Ô”—“¹—Q¤ÇUb®¾é©'¤'Ú¼l}/Üq)ÊV ª0nR…Лîi{xBŽ’ÛÇ÷Ñœ½Œþ?³Éóýt†á¸MsŸ¿¾r•Ù4WEË`¾“ppí#ì Å„}!ö8ò­?³ïN¸÷˜ CöÎ'êâ0w`›0ëÓÊìÀ#G)YùnªCùÒ4‘¥HYxUiý”yùâU”¸ÞÔ¦:\Ô³0k™;С ûÐÈ©Õ\¤BPယ…•§ëYaΓ°j<Ú±Ú6îþ5ù«”Ÿô%ŠâŸ®0…yO)osÌAƒbbã¡oÂÊ@‹ ZJÀ‚!ja.-5ÛjÒjê!ÊTÙËeÚvɇ6~ý_z”íŸS[µæÓä#›êÉîÊîO[Ê]íÕAvÅE&uGÅb# vX”/m‹Åbk¡A}²ì ®.<¨O—ÔB‚ÕB&65¬ý kÿß3¬‹Ù‡µ›ÑúÌT¹eK*y6£ˆ)¥ ök6ŽzCšmtR›¢îýx4›Î2Q>¹ˆ"º^°°å4ܤfʸ™Ix•S¬ÒòFÕõÕuT®]Eu¤Y™IÒä‘E}ïÉ<µ"¦u[Žî·3êÀË9²Ý^`·øiEœ ³•có˜¶<Ž­%êŠ4.‹ûs¤Ñ+<9>:ryÚ®ŽØx•V¿ ³ÓFTw ½¯†YÌmäÈËÿw`âÑIýtÞ@4ü‰8„ÄìÖQï ?^ .Œ ω;’ðEšŒÝ ûú,èè³à¸YÐÅ'ÓÀ±9÷d9ë:tRõÞÀú±˜@Wè“Ítuýò\ý™‚ÓŒÂì Ö9:¤¤ÁϼQœ]Q2û¡,섲 Êbî'N§ÌŽ'kܸЙÁÙ$»§‰êf¯B:™~#‹Úzò§‘ ¥˜ïØËPˆ£oÉâŽ%+ð*qs)ÉäOâ&„éž$7îâ6ì~!©N!i!Vw³/ˆÁDç’pùUÜ=Š…¤‹­ø¥Ü="öq‹ù;"ß«qõ(髎m#õ¦9šèÕWG­1¥ÍŠ_IÒ3gçWò/ô+¾ŠkFí&ÞT'w’Øó³y—,È«|ü‚&g÷-³üÍz»¸\ÞR܈·KÌÅXŠÑ¯…oªÕ{å¿~Y¦¸(S\’).Ť 1û0ÿuÎ,yy/=ËäÑÂ劉]ßQaCÎ-z‡–ŸÊoŬo'\UBïÅ Åœ?éCÁ%_ÒSåO™ÍÒ'ëò"Éì.Ò8Ã?üskò¹CõÌÌ“ƒÈ†}@ÎZ5˜¸ðo?p!æ‘ÆòÎþ!ÄŒ÷·‰4êí&ƒ‰œõë}uòÇ{ÍB¬°Fì\N²ºœÜrŸ’Ƹ…>œÁÝU8£ôÞ¦3JÕmk™ð-qsE9Inâè笮(ô:W¼~cÿϦ_‹ š wUe74Àó§„ïI¬mÔ–æß9»ìœ]"íÜ9»pg—ÛTo—[tw¹}Gi;"s¹tQ÷Á;J¯˜ ï„Æ™0‘ 4^â–xöŽrÑü®^9 ½vª‡W¤¤‹Žy‰—OàÓÉQ'`YÅ寿ä´ÃG×þd»¹„9]^ÂVéÌëKS öKN˜«óœ\€DÒÅø“zBçæÎáàËáˆgwòÖp¼~‚¶+ _Í ´»}¤ø|D}$ìžZ7­‡Dêù®ƒGÔáÁ Çкnh½R ‹8m˜å%£“Ž1›–Þ!R…´ã·½ôÁôS8Gˆ u°6gDô® j[Ìœ¾%ó¿Ž3Dœ)Wo¤ßêæ~»ÊzEäÚ_Ç·!ΗmwÙ}¨ewAròe0þ,{29åöwSîZ§ÜþnÊÕ?o|Ê5÷ÛnÊ}£S®}¨mzÊMخĵ,“_ÙBNeîÒtè^*OVáH¶€YÄ…ÌõÚ´% óÐþ4-KÉÉUÍ}Í]Âif™L€ýÅ}k úñµ8}¬0ÃÀ'ÚãËR“@Hcÿ Ìëwô"—t­¤£`V9Y·ÀT×)0vÇŽ·!0§‹Œ«Ö°ÌŒ±@g.à‘êÞ™•Ÿ 3³xÕ¦.’«pËI÷ÉqsÈÉæ³˜+Î"~8 8á¤B³¹ß¬EqJ¥Ímh¦Y_×ë­#´s~bvÝm.ç­Ã‘…JÖ]VoññÖq2¤r~úôíõeÌF߾ͦÿLžÁ‰gøÓÙäËAKüP.½GD051tS3€!O¨ð3Id`”óÜÊŸd]šR*þƒ…G ¦«[˜óíOŽ‚ü碂|·eA>¯˜¦Ir꺷 [š‹Oš‹×™»Ë™ÃÜ›âl–êiæ2÷[üÌÔ¹çAfËö³yé ÖqUôÄ•ùŽ%­™‘*ãÆ×•yY¬…;±Xžsèô¤º?Ô¿(<Äð%JæÙL>®.a¦Ú#¾a1&éÂ’¤¸z~¥q ÕïKÏ…m9z½JëtôRn3Z«Wüª"s9qo°‹foçæõVݼ„ˆ¨Î^?Ÿ×¢÷­Àé+áÏeÎ^I´º›‡–t[öæ¡…®꘮Rn2³¯º4^1„·@vúŠ3™¹ õ3»—÷+SýÉb ‹;siøõ‘ãÌuülÎ^ЫùˆË×òþZð§Õýé¶Œ¾U<…›ÇSèª´Š›o|Wg ð{ôF@¸5‡GßK×¢ŽÎY7H­šò¼¤Å¡#Í BÇWˆYWÂܾ!w«Ë=Gh¸òÉ.j(\Ü™‡;Ît½o›˜mÄäq9ºîu Î0ä‰eñ HsœHøKtR¸IX½#Rœ":ŠSDÄáÁfòe«ãt½ öNÇîÞ"ݱ{5è:©Î ¦óáÊd¿Ï¤•~™‰ö&“¤/à iŽD«»ÄzñÇò·Õ ]\UP Sûu¸ªÛjª.·Æè®ŒIvÛ¬/XØÈeM)½‰Í‘Šœ˜†5Píàͳ"WžN?±P„TX\nRoPq¾;ÅñÖûINš£ë)Ž·£Ø‰‰8טÈqºåÄñ~“TrRï4ÉâèãMuó!e,!r©ßH{ך <å³há99Ö9á à x¤ Rõ(ã¶uzR,çÛÑK¤Az3 µÒPY¬ x¬ÀX™‘XYaX)«SÖŠ'&;=NqŽã˜)v?}|}zfŸ~ˆwi8ú¨¾Òñ]la² žØ“ “IÅȤÁ6Eü‚ì„¡nÜâ±30WáJ ºÂCR\:€¢D {„I;(*h9¨aYô«Zî.CæKM…í$bjwhS*ô›?åÑÈGüÖm–e•Ãr.q£äe¨º>Ç€] MÝüÐе&Ê ²÷“Á˜Š4d‡·ZAN„S‡Nl:KÅ:¥Ô™¶jC1šPL®”øÚÓ ˜ü_ÅT.˜€3FlÎ%ÏQZ ÷ä5Šl‹âû2ª¼¼Ãùüê8Ÿ=^ 4®ßdµ^“š Ãç¶ MƒDÐäöm§KÌ-ºât4ÑšUL´jøc5г)£Aél&Sr€É”ÿ%0™þ°Çã"÷ovx™^f‡—Ùáe/Ó0Y¾„ðû¥@ع Âd.µÁ–-˜”ˈo¾iörÄYv¥¼CÖÄÂ(Ã*§Ea9kÖÙÃtêȱôâuË"‡«‚¢¤áP"E %+%üÄŽ=)º¯¿®¨“•Í Ò‘&‹ÃL²`L¢8#c2¦E—,~É ˆpd£Ó"Jì÷7뉲à).i“¢ÿƒ`RA&ÂãO;^ûo|SQ(——fªøÓÆ—ÆiÀ”K{vYAX1WdǪ$€*h×U*9¤dŸýÑ $âå¨ Z”Àªàþâ2@¦,†'–’!.¨»`0!±—h\J çèNŠ”eígæ»Ü*ra]¹M©cœÏJ@>ŽŸxÆHÓ2#°Gê­ÜŠäáv!4›X(Ö_“%RV¹cD¢ªË#À? ØÏ¯‚呉¼ÌXž­Å0ŠÃ|¹c¡ÈA†Ûî“»Ý]Ì –h9,QêMëw‰ˆ;GtcŒ7ÄVxÑ»±zŒ)FÆcþ”ÀL•˜ÉÐLþδƒ3íàLk„3åYhÙýIMY#©Ø'Ä £YN~ üSØë¿"þÉç(‡€ú! 2^Ò\¿:Té_Œ€*½ni× ¢¸X; ÔOŠ¢8d»H¿j $ .I›l¤Ûlà$ ä-¥÷±Y|ÏnC½¥òvB+¥_‘¾ °´ °¤+Ïí0ÐñŠÐ•ûX¶€LÌ ªÆÜî  ~¾ ±DgJŸ"˜Ûò޽¶TGd„2MGl®nVÛ)¡zÞlð,ÛíªÙbÔTÖ<Ë|£jÖëTw1´~ªZfè£ÓÀ ‰Z0š–;2lA2ö–­Þ]\®äó³ÄåJóìô¼í¸\i€,+æÅÄ»éÐ\iën&:WƘ[Â],K‹|RKp[JÉ©%éÜ®.J[ŒÛÕ5qÛaeÒQÓ%TZȪÔ™RûJꔘf1Ž©øW– enÈÔB˜3–-º ý("–¸é2M‰õ¦CƺÃqp¬3=ÎaÛÜ!²,«± @Yæ$)ñÓD9Ý¿™ £kö_î²Ï2i§›‹’—Ï T˲D+ ƒáÅÚ¥„ÄÓýâëcè5¸ÛÒ¯ƒ»=)˜‚Ò¥án+ow‘š¸ÅmMH܈EI•½“w‡ÇÝ7ãÏ€Í];*7{ Á cs+Ø\4ô¡ÏaØ÷`Ü 8NØŠe²¦2´¦ÎÙçÙô‰¾ŒVq1ø¿× ,lĿ߯÷º›~6ÇûꦠœÃ¯°ÎÓa™ÄÄÞ5{õvÊÓM½9¨D÷Ž”‚!›¾>>Öãy<~@Üɧ1{ üÍÃ϶5£]u-ÞaØQ"‘|Jݹi Xf@%vó0@\Ú0VzòÈhAY™±x0îèž¿‹zç¾4Å Å$ãßõoÄKϲ‡ a|<ñP5Ã<A½O/Xœ¥ Á OÖã™zýÛ»ËïúŠMæl>~Á‘wt^ ã-ftl™ì|Dc˜hHÃY+ š|†ýãå+Ž(ñûlúüER•†BžiT+æ{ÁÔzÇ£û¯ìeò4–•¾`!xF†^œQ&4±=Óì0~;C¬& 8Àˆ" ÈFGIºlºáþ—àþWàÿ ü¯â½{ ß‚¦žG<ÊwUí<êÖyÔFãéQÝܧ?à‘>ö¢bÒ7Ót>Àªr¼GؘB ´Õ8TŠþòu¨ÚW(3ok.X9ÉC\AZóú}]ýh„8ô6C@ÑD@Ó°v*&üÍ0 ja€¦þªë÷´"h&@e@aÂ-#tˆaHÔcCb;£"£h"£ R²v2J2 ››,Ê&2|•’MÙ876ÄŒàB›š?l"ê4PV7‹M³êpá,²áÉCT~»·!ñ,›j÷7Pù‰©òÈb!CíëÁ’Qã Ù¦¥°‘ÂÍ/^ ÛÑí¢l~¡ˆÖ¿Ý.•€õ ‰²qHÜègå †Ô¼)¼ÑOJëèÿSך×ÓñSÇ£%DtµÒzËéõÖ1˜Nœê]yµ§NÕ®gHUCêÆ¸6¬i0݆5 £㪰¦¯PYÖ$ºƒ&®NŠNÍF F F F†¦Òµkš:×2ò«kô†^×®aèeyí†^œ×®a$zí†^ÀÖ¯aèë]»†¡¯v=CÊxÊŠÇñÖ0Œ ú4 㪰. ü$¬KÃ0ÎÍ+•"óÁ$µ¤rCÊ0Gk8‡Ä¢ÖÓuTZÖVihaÕuž¤×ÉÛYX]§É:ýuuhDª,U½„EônÅë‹ÙAW[aü8JV§õRXŸ¿âöE:Ô|ìscìÐu˜µÍ½¹†®¼1våÊøj>; PZÆ®sÕjY¼Î9X©w“Ó°©Ú5ÏÄJµñQ»†ÉØxLÁCaØdl-C8MÀÖ2’S¤k ¢e¨3­Åꔎ,è6“ ýavVâ@kžÊÅS©Ï£º'er›án%×çŠÛ@ßæ”!|>Leð I_ƒŸA3ÍÏ€ o·¢³Ví"Ï:yõ¾Ë0¶×•ÅCôêVwÇåAÀlÎCOÎ é?zfÄóvƒfäž7y&øð§ÑóÃ÷ÉÃËWÌ/< 0õU›àÀW·Bî¿LÑ¥‚áñ’Eöè\“Ÿx¼ÒÙëýËë c 3Ä–!ðʇžç>‚¯ÏßGψ=? °µ9Ϧ_^EeÂKy‡ˆeCûCúËßßàßAþÖ÷Øu^oö~v¿ˆLAÈ3„WCŽKí]_ÜZK¤PÎ!Ôô_žCÆÉ= >hº¡{£Æ1ƒˆœ“ñ™ùèS"ÏiÂ3£Ä-»ü@.?`é1· ¡³=îb…®U­z¨nÁ¯ÏÏ)"öÕ•™ M`Tûú#9p ;8a@‘·ÝÖ@F°ˆ²EˆÖ4±¤ÈOÔ ŠÎ¾™X×iuC3A±¿rÌ{‡ê ½aŒ¡éºßûòw @÷û@þ.ÃËæ°$Œ'‰ö)PqVvÃÇÔÄí dè ¬º×¢(–aüZÞü ,%M®0ÑŠI7\rxlÁdPŠHD%ž1㾸À5$OàawÐû¨¥ï©%âû ú^Îʪ¤ €¥ç/Œò_bðüxuË ×-n˜ãBæha€ÊÑÆj A j#ä’"g ÌåDÐç}ö{tJ CŒµ K`ZM;[G]bBL‚âg ³P£"¥¤C“4ðh&r+Ï‹5ýÛð+/ê i éRNÃ¥l“xÿ»²@‰¬4ÌyEz_ãvOJI¨8„£ï šª!‰ð’Ôü|ÒhîÅ™Ëiƒ¾Dâhvâ åñDgx•!ÅÇ= ˆañ~.&âĪQ´:%CUÒ\Q°‚—t•”uÊYÀ“ºŽ'¦@8"¦’ǃA{“qaˆhÏNu%5¸[ñ!.“°däPsý]TTþ;°îP7ªˆߨCø ~ÅPŒ]QÂIQÐ("Q¾¹·Šö†'ï‚c‰›àLÝZ1­;ò3èÄšîCCª¶ÿRbàÂ4…ÂÑlš q2ùƒ7ÙqZ–Y\f*M é$ñ¶h#™HYWÞ€hÝš¤26ïªCÃ¥ôa†@1ɦ'T‚P—\lÖ ã©k‰‹Ï\šð,Éà,‚±É¡P íL†6E†ÂúêÒ„“ \L(8ND˜È×OB®çÊU™ ÒkÅÚmèPÓã¼Ù~¶ÁäBdØ®pš÷òÆÉÝ0ÆJ«cÚ¥4RMy¹1&—«`°•S«¬¬f°é\ïÄq°ÝÄÛMb°á®•…W´ÚMšÄ¢+‘nÕЮ†¹<ˬ]MëjÑdzÑŒGêüͪþó0Õ¾ÓÐhÓúŠTÃN²…žNûðôÚ‡ÖtË5ti Eãgª”bøÑž-°Š^ܘ„Ñ–îúv2 JÄàÃ@Æú«©Yçƒ4R<Ô¹u.õÜOŸ¾½¾HCÅ7Û™åc6)•e2F"ßÈN“»4í}†A¬ýÐ(‰ c¾À°óA$јIWaû»Èñ×;ñ:”¯þÆ(Âtß‚‹ÕPwd¯×²0£6g¾ˆ›õ€æ+üÌÄ!Ò6³ù³üõl ÔÿÛ8[ù°R²•Õx„õ½_n‚Ï iUtãse§Õ»øYîÚ£ DGýI&•Y#“^ ¹­‰Ï{…"»ŠâF¬'ƒ¹¶ZJï%“{–š‡úšñ¦£N´æ¡­æa¢æ¡¦f94hZ³ñ?߯÷x‚#âHOžA¶ÙëCÛHƒe-auËýeôú…Ÿ&](æ¤äJÆØ‹ZX”öàÂ[žV® Ã÷—ÈÛ+%¾IL˜4J¥$¡x+uo o0Ü/5ñùCÊ.ÂLx“R"g2/Q~ç2?[v` m'j#voWGiP4§Sƒt;=Ù ˜ö¥L‹ÆB6.Ãø`!­œBºJjÿ F¸šWÍMB ~ç(jŒ’R°Ã€q3\°¹fðu2OD åq•AÍWåguI<5< .äÂÏ\¥W®æ¢Ëù`ŠüåE³5-ÞQuQÔ‚/DZüœVï6ÏÓîG ‡ïpVÏáò µ\4P-ˆVÂ!$eéôr‘ïÇéôi_ ªÌó /’ºÙh6f£ö8²õuôø™îï_ñ”$›Šbœ }ŠGiý sÒ#ïÑ °µÒÆç7ÂÂŽªh; Ù€šebR1_@—=šPRú×2âmµe¬…ÈkíëFc%2G]ã ê@ò¸¡Í3Y“µú¬Ýì÷Ùà=ÌÔïk‰8¨ç¬ÖhÜöjƒfô“¢ˆ†OóC‚†%2^G¼ 0EABq3OòÌ¿ðªG ÷/º=ŽTžÎo» …Êo5ÁSØÞXÜc‘8“ýïS~Á¥|òJД¾Ÿ}Ó‘)¾c»·˜òÝk ýºw¹ø™»³B½a®1Í"1ÉÛIø åÄJ4h\‰MH[Åâk>‹ã™.Œä'Ô:[[ z0ƒŠî;ãe8‰þ l¥ÅTãûR¼v=F·šÈ—¢ ûr—S2œ>ŸyõóUFÕ0æ —€ªe €ÄºU€æ‡` ˆ`jâ ÓL•Ó'qéûœ½>O`~züÁ&ó—ÙäÓ+®ŸÆ/ßÇ0ŽÊd€×_wb7œHjP*Æ‹wçrr s÷kšq9NæÎj¦CQpžžùUš$'üê±€çÉËdô8ù/îè°íf,f®\ ÒÁqY=UÍO è?6¢§F¼ªx@â˜j€ñ‘A×?ßQêvÞµPãø4}}~PDÔ#ùµ_ŠlD'œz1oùùb¾’?Aå4O›ÔoãÙdúÀ¾O`súi cÝ·„yªÚ<~Ù§¬Mî…U4°¯s ~6ýÅ^¿©y>ý`ó¿&ß¾¡1ÎãÍ­fJh|bn«!O§$@à X‘ñ#Î×…BáfÃc|ú( ²;ýrâ¸/ÖmÂw¤í/!Ä|A©ãÛÐ2ÖUyG2ƒá€ r:Ìeg­s ¯a•sÙ›˜<*Áv8Nj;0÷-Fv^bÊ”Ã:ww’`cðýëär&c“ÍÙÃø…oFÏÂTöƒ‘O^Ä=¿î*ñÿgïM#[®òàˆYûHX Ç –¦%õ¢u`Lº[-©¥î–ÜÝš=–GÔ3Ó<©[înͼyHbÂfÀ˜Í,0„„Å–€¶ÙÌþÁ‰³c‡Å66ðŸsªêÞº÷VÝ[·ÕêÖÌÓ}oÔ[-§NU:uê;§Âo0/%Îeü£Å•B›îŒ¤ðî¶î>‚V“ëuòØ¥>"Ü6ÄJårq˜p=WÞ+¢‹Žù"h[ó›t %~òû®çé¾ð>tèóñ+†~‘}g¤£}·m¸ùC |~eÉìnT%˜'ÍÞR` (º#¿@~ÿH9Gç•êÍÆðQÔJTÉYF7ÀTä&ioþü%åÎéÁ£Mϯ4€uåät€-âçËKiw`éi?û&tÄ<-ú‹âj’Q ‹³\§¡Ü¦aÎEæc ))7Ô­?ù\ßÁýw‘ô+"ASènM •nbIs3X×—yv%Ÿo%#É[€ÆÒÍe'—¥Ke1¾`Ž´Ï )BW…åÊè6I·r‘ì»F˜+lÅ\@£Øv¤´ïZ.‹¦¡6Þ:^_έ/pØš¨OöúkËâ´Î×"¥Tß" ó¬!?6ç¨yÒ®¥êÆ|ÿÖQs»=Š:`ZZX ×å¥%zMeøçT6^^Ê>–N-.-/¤S Kð}zq1»ôK¢ò¨ÖÕì±c«Íãnß”’Ý 7.ÖÇßnmgô%Ø •s¬«{õ XÓû ¾úfÕÕwÓ2ß1°—îëµïµèÖð&jí Èæãvû¨5Gn·{2½Àz­ƒnïÔ¬ÃDt×C9jÃr~Øîñi||„½Kj)¾œTb·wܰÍýr†Mϱ\Ô’N—•CКxšŒ4‰P,‡È8ÝšÓ½5hJèÃÖQkà”LÍÈ2Ô-š„œ“*•Ñ=:êÞÇÄ™´ô¡«øõ”˜m æˆãHa Ÿê{•J®¶Ï@†ïî5Øz©LÊÀó?誮’Of˜â=;W¯æv§¼5À7õMX}U̦£ª1K Z½‡Þö¥u†8#–¢Sug ÈS£2:Ô6p{_+Þ(Áúâ-(·ŽJ{1WØ„ß ;µµ¹¨bê]¼ü=õ÷¸µaHº’Ÿ"“?eH/Íq£,¿€u§¼æn&Üë$õÌw™BY(FY¶R, ši–-²U‘Ô— kUAP¨< a“©¹å@yN"»2åmr²Èô\6P¤LƒU§4@èË*g#h¤8Žø}–œ‘x#„}âF-Vâz2jÛqg¶­SòV몳 ¯u;wðÈ’mÍÁÿI¹Kp?Þ¾ÍJPÌY 7›Ç°ÒÐ…Žu¹½ÈA²¶KaÚDãkän#Žî´nAñõÓ[Bª*Æ FëànOýY¥uÜECûé1«vçVVX¢Öº×¦]ez:É*MA ôÚ¸Ã;ô¢z°¯h“ñs­Íó$q÷ÒíÀžKÝAƒnïA’­.§RÒ»„Ö]Vhöû,"þ´åd…èÚ…áRj!»šù Ý ­Ì®C Oa§‡;4ǪºЉÃÝP‚C'eb8¤.ÖŠÀìÞýÖÑ‘qÛ³1xÜzî÷Ùl6OXyp(sÕqár»Í"›ÈûÎÕÙTê*‚Æ›;°iiä{õkSÕâ)ÜàOíU·«;7ªS¬ß…V$¹¯‡uÃ5Œ‹G,=½Ó¬ªGƒ6.Pxk¿EzÁ]‰îˆ£—Ã@! 7Þ¸–õY¢Úov¦Õ­«ñ­ÙXVKrŸ¡ÅzÃÏh–V‚ÓK¨ïåë¡e`(e),ìGžoæÊë±ðç˜Þ/êÂ[è¨uCHè‰å7¼/…7¹´ÆAç¹2Í£Š¥¸o“¹ð°CæÄ÷Câ¾/¾Ø…X’ò Õ-›'VCý¸/­•*rW_mÔä©I_F‰ÚHÒŸ$Á Åo¿P ¹7`ç Hüœˆt“1f â ø‘͸¿#wPªíû™ksݪÀõÏИ@œD^ý3ò;s+½ ÙÕc¡fΘÏûª….JÈšÑW+Hr#ë,üYe5ÑÅl8i؄ä1 ÃΙÓæAG£M ’éˆQw*ö¦x‘NðD$„Ç2¤‹ƒ‚y“”&X½í­¼`*¤— Éò—þ²È_pÒU*…Íá|ƒqWÎõÊdsÏÐ0Y8‹er‘Ð ÿ@¸1ïÇÛüWª ÊF3½#uX¼«ã;ó´™â®(Ôשy S©‹r†qÖzÒJO;íÀgÐV¿ŠêÎU] tÝÐ…hÓîX®`"¬ÑŠ/mŒ3lZOsÅ"½³[¬:FJÜ^²×™²Ô;ˆÂL–ôwš'ý»ÝÁÐ ÀE Œ~wµ£u ©ƒ7x´-O …Ïüæ3ËŠÃonƒ±:§½œà¶“, GÍ;\Iäfô¸ß' %N«yÍäãúëü|£D‡é7x`!"9ºîþ ËÑ]´›<`·›í£Ó^h¥|¡7m9 ¼<V²ÐŠÃÏÄø%Ôa5 UÁWÓàn¯Ü9:tñ Î1ù^„•ÈÕ$ÏàÃát€Þ Háe)!õdùʆíº-©†/\ã”DŸÑª’FG6þi£1'×@»?¨Š¾›çqS tqF µÐÑ– 0:!H˜Q¤:<¸pgµ)¢5N~òGùß`«4m26 ¶UO{4Mò´*p#q»„›PBºÔ3µWà£Û)ø©Ê›mŸPSR¿?S¿òèéÜçLšIfVæý˜Z ÝVâl¥P,m[‰UNù¶<Ã5’ôZO#ó.æ9î;.„Ë™™}Wæë uwoúßl¿>k6¬Â2fÂÚìv3¸Ü³è”ÕH[ïÊ‚9²(ÌxTêÙeŠ,ìÔy}EõE‹Ë.탻΂!2ÊUþ<Ð,Þx’Š‚9;M9õ9QÄolËV’ŒCœ—R¤ATp“Ì·¼nÝ ¦ºéD—2!¦[îILÞ A—¸°.pè©ÐbŽoSÞ&{ˆu¼H ØãBy§^Æ·û¤_#:õ%pý;nÜEìÆ (dZœV3»hᆛ R™XÂÁxh¥¹Âíä%ˆ<ò;%ª°g§p4õ̸ž*{%P!Ï‚©®Pž®°iLâ´ÛÑz­£vóVû¨=xÀ¾`«%ΞZO7øÉ—Ë´”Q šlFn¹ÕeÔ®qÕFž¥ N|BrÀ¤øˆÅ.L\Úð"ï– ƒ¡M{QüøsÚùyËÿs2§Uwj¤ÞWˆ+lÚD™3 Š;C$ÌÀwóÉóÝŒ—~Å[YÒÁU½P`¨ìñPœñÂ¥–ítH©ä's¼ žZdvÃ{ˆ°ü¨ÒªQê9<ù¯N©_å=_ñ8ܘ/á3Q‘=-MaH£HD¥Ðlù¼¼OãJÀm4ÜZ <’I¡ +„'1D8á¨gìÕ9„‚|¡4*¸\q0ªPžë&l¡¬à¢àã7ºÛoæÊ)æ[…\>7.ù|Ž|±Ù‚³U'*ªRЄ‹ 5Y:èhŒ7HÆF™×,(4ýá<2$ ÆâË)~9Å->»GÈýk–¦(ÛäŠ{ÚëøÔæ? Òê¯QÛ B.4N*iÚ:݈)îtZÃOK–…¾[wªQ,~„¦O^cþ,*MœI®=ÊKÙú´›/þ𑋦÷„,\Ž"Ë2ȳ%âÙJ€g‹Ï\y‘d7̼xÜ éÉøRG”Ñi?Ó º» »nZgÏ­úUÜEþˆâ„-* ‚¢/`ÑT@pÛ¡·ñ¤ÅUW™àÖ@9Þsï˜Äàq ¿TxRÇ‚ŽÂ{¬N7W‰G;Ås~~ûTIE£ŠG~×i ²2—Ñ8PÔŠeÈ}½È*¹Â&:«íÖŠ…R}_¡ÀFn»XEvå1ÎJzÆñê\Zã¡C•NQÖ)o,¦4^±´Q+æä‡ç%–RÛ‡¨bI©ÂAàV½%¦Ô%,*%8wvá^Aôzñz±Œ€Ër®ŽÁ æ§(ݺŸÈryçF©º¡À´D›o”@ä‹}¾*½GG“zg&ÔµZZ©³Ô<䜚zy}ÉéƒL =ž®0cú´’ˆ‡yH¨:{†Ì¥jøC4W«åöY½ô4«T•>>VÌ»þ0œµ¹<Øu­ù]hRJµ°U.„;wÜn5Ž0ï*T»Æãq9åœ4Ãê[QçwC#¸uouÞÙ2õ5¨HYÛ+`Yµ"ðûµˆÝpBеêFyŽÓÆËó»¹vhWÚïô*ÛYJEá×Ü£ Š©;.KåtRä 4ŸÜÛpZ§3s ÎL š›07*Ðu0 ×`ºÀÔ]Ïí•Ô‹8œía· £¸TÀþÇ(i`8Ôæ|=àãxðš;O¸2FúU<Îwcjp4ÞïÈAì{¬ú]¤t§>U`ïåM}+‹j}T¸ðQ¹²à%â?šÇHQ¾¨ˆ@Nª•­K¤À×zã n­ÍüÉ)*€Y ðzâÓölWܬÙ÷EzÇ •-~@)[qRWÑ`‘58^'"¶%š—«©0Ä0+Ý–  ÛAÒ µ-»Ž©õ£Ró¾‚ÍY¨Ú}°Fçú1µèlHÖL­ 5÷´ƒ–-UØP`q]¿\—ñÖóei÷„?.žÃÏa/ 2„o øöQ$ΪIo·1> H'3 Ê(°Ê(ª(Þü¡‚yúCoé§]`.¦‚ó S¥. ìø¯¶ŸÐ^Œ–ߺyÐW÷Êeç:Un`ÅE]X]ƒ€s0 ¦dâ5¨îxo•T„®~®!³„¤ÁJ›µ2ë‘ÊIùK.tA°±š(X‘5d™Û鿇QÀ’Ç„HvjâØ)0’FÈüTµQ°þòL4äÑ‚Ÿ•_¨¡—œpYª˜Ïry®¯œÐQò8À‹óÃoTª"vÑÌ͇' Um>Æ"kÕg†G?9˜èx fÇx­ßàn³ÃŽÛöñé±v¶oƒ–Ò=öZª1×5ÍÝ–ð=‚ÛT)ú<_&ü‹ç•BžjŸph'V‡g­N÷ôÎ]MͲ– S-2Ö•×òŽ×=ã=N@9„Ǩxå%a'+ôNå0s "Û&óí²yÛÛCNxeM!ÇËÈúgÊùh Ïä éUJ¯»“’¤ —2äü·2ääµ *˜}?v—e ßÖÿFÚÏŒ—MÉâtYdqºª4'1üáÃ67İåæE89ð³y «%à_ÿHÚgo½ÆQÍ&ËCRN4SÍ9š´'¯¼Ï–ÃÈøäsÚ!"ކéît˜É?•_ëw§›5zÄR/PfºZÅ­’…¼y†0å$[L’üUÊ¢›$"u^Γ¼žäÃæ s§J>lªÀSÁ*Ì?†Édž3²\CFY®¡Zãäarþ䇞?ŒQv˜By3ß EÔ,rÊÁ¿ú‰Ä†˜K Ó‰yŒòò‚¼PIu“ŠéçU^?¯XÄÔÊsÝYÂ-в1«ãš{ôìbÎÍ 9-mZÜdzM`¬sæ2™ Ž\Ê»XjcRxȸzM`°óŠQHûè˜[02—?¡,¦½J!ÊÀã/± vEVlæéU¡ê„5‘‚˶îµzÊ óïVë6ÎIŒþ&â „ewQ&lá'GgˆJšw’&9*uóÊΟj=T8³]s ‡c]óø“hïŹдŒ[2Äõß9çÊ'r¸ïÑ·ö=¸•æ‹p•.d$L•y‡J4Ÿ*3g¢2Ï© ­9O,W|[Lmq£‹ƒŽÑ–‚Ӵ؈¶dÏÔ–oK!|’ðrê³.ÚIí#;¹ ¢âý‚6n·Ž(Á8ãRjÛ¹ŠQØi"WnOBfD4ŒÜ£Ú%â )ÆKíÃÅ-‚8B_Clå­T)É´Nëo™ÃQ‹wef³N¿ßì³Aó) tÛ9èöÐíòèÅ ŒFÕ UùctsŠÈ§½ÉôˆímÆ ±ðLJIÔ>õV‹Ý''T´‘PLŒýÕoªÓ¤Å$a!£Yíî>ùjc‘1ãfÌËŒy›ŒYî”AW†.@"ýÇKSúОé)ý6¥]œDú%q)eˆ\ªD¦eî(„`VáähÝ 1"ë Ï KV±æˆ<«nuy_Aצ:Xy}yQ_èê!3ña‘çL‰ZLÈ=í16“MÖq›D'oZ‡Â›ºé2OWò(ê¤Ð$ëÖBW‚…‘§½…[G]VôIAôIÄ*XºÍ'; CE ÊÉŸd=òö +½{-/˜Yûˆ#øh™æõâCsjD׈’ á¨)ÁŒR¤œuä¹›#rdaºaÞ…3h/´ºÕ¨?ǥ†Nev†4æõàó^½hÌâ ‰“͵»«F]"FA¾Ä£áåDº6„däò Hî.Q«ùÌùÁ&ü.zêúû€Ý¢0 ýû­žœéJì:Ó#'{8‰ŽÑfBÅ—‹º9æ½þp)$p=¢ùÇ•”é—ÕÀÍB„ßL¥‚ߥ5×’ ïyÿ vB7¢‰Œƒ ¬¯H˜ªTò½‹™1f€“ÍwÌìYlDÏ`§ÆŸÌ5‚Ây6DÜ¿÷Qv7D\Dj ¨íàãZ\s0Z~4h‰©²(€ Ÿí…M™ïK °ÛfCVÝÀX¯ÕÂN­V,4Êûa´æ`Êņ]‹U–ËÐ"@-¿×à<¥Ê^EÁÆ ø«Œ7Ëê{u¼åÓOï’†EÝZˆÞ©r™ÏYäÀ==7¢þª“715%0øÆûÁK\x„õ%§Ú±¾0‡Ép=@–а$8ï§”$~NœdÓs:Lª~¸p8†æ^Ï•Kk¼Ñ3zôŸ&‡8 ”\æQ@É¡GÎ%Jî%w‰’»DÉ%WÇ?{.B®L&‰€3sÀ§ ßÌåHH\®\\Çàņ¸ƒ«—ÖáëòŽ`ü[äp.ª-6‰›{Ïœ€KòEåWŸŸ*צæùp™ŸÚ+‡‰ËÈ/΀‰K ‡‰[½„Äù!q«gEÄù4 †D@G4-Œ˜q"±ù‚ ÑóÉÅ€øx`…üˆF#¨pÍa\T´ð‰/¬óAŸyÜ— — ŽšÂ3ØBý*¥ ˜žp!Bã*¤&pTYŽ">b:“ÅR4XÝ)q =~éLÈ?Ú«j¯žŽÂü…þâ!”l ~&œŸäçûUèö C€ñ»ìù(ØÃQ°w•’ëÏS=ûÿàv°/‰¬ïOI儯{õ<±ƒVÐ&k\S PS DSl8“=–ÉZ'øÄ2Ù¡˜Îa²d¢+ä’1)À_‰"Kh% R’=)ò<É|yd;² ,pd6Š5²ÇYo0Š /²ÄY‹ø>0¬.~¹¬1©‡‘² qQ†[±„ؽjH³\ø3:h$РX¸ ¡@AöǼâÄ&m>K‹ÄäA‘°¦°»aÒÚƒÿ!ÑYBew,äO,Øóc…áñ ~bx¼À ôŽîcÝñB~,`;^  fǰãÅÅ@ëDAu§ Ò‰@èøÀCVðKlNè‰}40Ç•’3g0ÎHœÈõ=&ç\$s$m¶¸›˜ ›È¼§lžCW_Ð>½*î£æÄvÎ@Ò4À:+ˆQFl`Žˆ0Œe®Îcãäãò%fV™KäR ä’@+јjˆp^ôa ~¨Š÷Þ4 ¤I^ÇÒÄ;¹5`°<>Óêuåñ/jž‹°ø!¼±§¢Þïè½ ´â»§³ ÜU&!¿éÀåd™”oK(Ê]2öXöL@«G@„þ3‚‘‡;iUqVUCì1Ü9ž²Ç—â×ã£êœp=þñÁ,€=p8dO0­ÄU,2Ô–ˆG‡Ø–Bã*å Í î²°f&S$õ‚—»†å®]¥LA†V,c1=ÌgÆœÜaQçgÑÑ 3gŠN8lhÅ pÁc7pu6 ÁÛN'™°¶Pm¼>²â…&|è"fG‘0äv¯ñG$Œ^P¹‘ÔE[FeÊÆ 3¸`uµèÓÅãèC®žS¤ÀU/–RѪ±#Ž,P`êá ˜}øø¼ÚÌHÚ† ȺG§Çvëx}ÚBU6–‚»eYâ¢~¾=±„ãlmEÕÏŸ2¦ÛŠHg?Ù²)JVYe³Ðö+‘$Z!*"í ¾Çƒ’iȰƒh&Nq;@ÍN£¹-ïC@dDv'wìKX$ ¹\)d˜ ªÜ0z§Ï÷ ‡ƒ´fÁ˜‘Qtr.=|çyr?+;Ïv¢Æc(F·Ð"¶ÓØI)µÄQ  GÒÅMþCûþ^Fñ$.œßõÃÁ(ž´‹@ûoZíf#‚kËwó À0Cg.p©ó™3.ï.~v ¦x5иz‘åjEj&Ì´½24 A“Ë{•*17@scQsìPù8è²ìxÑe è²Å‹†.Ë+ð2¶,Énáe™K|Ù%¾lrø²œ,Ÿ`™;X– =Ó Ìò¶ð®P@Y7f.Ç( Å™‹Ùp±e7$3~tÙÖV.,)Ÿù®EÖG&5b£]bÎÌYæt6 ÐÙ(nH6Gà|ôAgÙ³€Î(¬æÐ¨3‘ñv&K¹„éî| î,²Ë­€i°s­†¶,f2MJ_ ø±%å 7û 1à lcÊØÀ&÷±H#ê™+dXh¾ì6CM??ÎÒ1@×|­‹E–áÓ‰F;n”ãê¨QŽ+—(ÇK”ãÊr¼À—CÛá//o‡!þrb×CÃNtd(̇ù†èQã1CâW\â1)<æïˆ>äçØ.‰>öóò–èË[¢Ï¹HçHÚÆþÜÊå£à—VQûÀy—Ѱ'.@ÔíÖ¼à©Ï g+ ¿0#mÛ슽è$š-CÞàF’°ÊãU¬Tn ›Ë›à¹"eà63³o)TÝ|‚OµiÇn¯œ®½ïوشš´žXœCM>:ùˆfv@½¾_©°ûP!è¡|w ±Në~|âȉtˆfŸãZâË)T|ãF(ÆÒàVr.ULQZøÁg“yÝ—ÝIÕÇͷͼû¶ ßž> 2&3ˆ“"ÝRÃEÂHECy…½YåôÝm?rD§„É{s›µû¬ßà€—òo=àç´A¹Æ…)ixûEAíÛ0Ñ ƒï÷@Hêw¶]#0O4ªó\d½­æÁ]6hËknÛ,',ýq¢·I†wH*¶é«^k«qv°ÇHÃ5ÙhgF击ÄH0 sñ€²à´‰¸®Š‡D°ö¿,ü[€‹ð4»i’˜B¼È7!à°‚õs^šRò÷R£4EsN;Ûz>¤•Bx“Î’§ —¤#x±Ò‘ÑÑA&•ùÉÓÑ?Y#?ðÏlúÒ¸„4. GàÈBèI9´LÆ ¤qQ8Ò˜G£Æˆ e‚„4.!‹Â‘Æ8²:F26ò,s¾t4&O‡o„d‚tdÆÒ/¾¢¡cô:bÊBˆLްžÉŒ#¢k2cRßÍ3!á «fòžWׄ+¬“&¤K¬ž7!ÖrõL„ðýñ2 ÕŒi Œ&¹õÜ›s2:"ÊÞýÞ˜w*{SãSµTÔ.Ä‹ò¤©¨›Š…Ðq1.õPKEíBPጋÉóbœT,‡Ž ýНj§#Ñ’µD¨Ãb¡™å‹À‰òø8±kLuž‘pBKD-|`އã˜;'ÌsäD¤ÍÚyPŒ|«§"bTŒ‰Šˆa1N^Ø ¬‘)âY“"ާ˜ª"îßèFíèÕpA‚£†…„¬‘„=çHÂB8 ¾ã°s!aÑ‚å¼e4øÏ|ÆGCíð¡vøàHÍI‡òæCm¼|X²”¦­ÐhðŸ÷|˜ “ãƒF>L† ‡ óA#Γ†UKù`ÐtÇ@BcR$襃Î60“"A#&2Ê“ É0þ± çEBZ»É´ ™ñÑ` çNƒF4LDã !bVœw_„ ‡ñŒ‡pé0žñ`#$ÇBÃyŽÕ$µ`6IÕ'o’ªOÞ$U÷Ê«I˜¤ê±=f“”Ž„qo½ë†•cì4LØ$U7¬“é‹É™bꆕc2}1a>LØ$e’ãÜz›äÃØi˜°IÊ$&Ó“3ŘäÃdúbÂ|˜°IÊ$Æh0‰‡q“0Y“Tˆp+ “5I™DÃDÆÂÄLR!‚al&)[ÁpžÛ[Épî4LØ$e’ c§aÂ&)[é0žñ09“”I>œ³IjÑì®PÛzì{é8WGªÞ1{õ~@¼[½q{7¦ú“«¿<áö—Ç×~?ðÝÛÿZõ}Lõ7&WyÂí/¯ý~Œ»·ÿuRø\!öî(‰çßúòd[_[ë}N¦QŸcýöŸcýÆîSûËçÞ~UZ Q„2‘šÐ8ô¡L¤B4Že9­— £z062µ¤ñ’1Nn–ìL´Î4^2ŒªÃØÈ× ÆKÆ8¹XÑ3‘úÔ8ôŠÀÐÐÙÞÆÃ‹Píjl¼U²Î~·Áˆq‘9^„P¡ãEŠsäE¨Ú56^ÇÅ9ñ"à7h50F¯‰†aREÇLj¡1.n„*æ#á]NQ |üÂ6^?+Úë_ñçQ#ôÇŠPÏ#¸ï¬+±Àëaè2DxuSIW¦÷XÎfšî[uÏê¬âöIc9|ï[¹.wktit_¹5º/¯{:蟀¾$v!¸Ýé_nˆ.Іh¸MŒv|8ÉQcVòq¤º÷ùÑØãNìsvœkŸ4z¿¸µrݼ×ñΡw4D⌸‰H—"É3¡×Âx²‚ÌÔHð7v[# EÀÒRèÆi˽”XÃ7d†à‰Â’RgÐkwúíÝÞª©•ªõRAaK:—vzõÔÖû ªœöØ3|Ýçj€ûEaJIœ—‰óþÄy™XÎŒ‰ÐÞž>i u†‹œ$ƒ–¼­¾9`Mº)I׃5Øi¯`BÅN^’ÔA©).š›ó}§yz‡›‘6<;ž´ºå‘ß³ÐMƒ:½áÿ%LMž«î4ˆ!9Ú]8ó}‚+–ÛœœíÀÅÕ|ëfÒ;=4ËwWÄ‚» Ë"LŽmÓ6ÃiÒ†“/_O¸™!;}á”ÁKÉè®re¡Ê­²¡±åÉb8O†áÉ6m–†ä ÏlàÉ‚'‹<ñ –ž,‡ódélãd‹Þmœl‰/<¥¯ù!  fœ„°c5œ+g"C°#0DTv¬رŸºO’+RtÑz?ã¶ þ™‚ÖÜà4…·3õÞvѽp¢IN)TޏÔ9°_g®lv/#í¡.ǵƻí~à¾fFKh@ðb‹M—\Iºlí,-í’ÆyÐvTÞ:´$‘š0øˆbñež§õ×ÊÜK“<ùt øzáj\PÝFq5¹@mâ:è,bÑÒiÍ×:ƒH‰«ëGÝî éìG wö“¬ytähôÍ^ ×Õ£VTô»Í£Û¬yppŠVBÇúÉk^Lù¯Ò¾ ëîïµ9çÞm~ñ­s"/Âx §,ÂZA I`VëJIÙÇI¥‹½’þ$§§Tͤ;ãÝÜË!wsõ÷ óK£‹kâZeVª³r±^gÍ\•mæ—`¯³\¡°WË5ŠÎÏt…´2Šoâ}Ðn‰Œ×á/ÈM<Ó¤››—“,³‘^™[?/}-t`à ›i݆[*Ïë{Õޢ͠ã Oj mË5æ¹ ¹ 3å~—Û ù¤h‚ò‹[ºË­åÎ6ÖåÀåÚp;ºZIlÁj[ÃOYïx<[€rÍ+˜±B 1¥À¡—œ™”Øøæ6ª0>9É3då=1ú âWFŠ´Þ %.yµ™0Ó¼Çýâ íOuÚà&J¿uÄ·hª¥Ý7{Z/”êzÖiþ냚‡WÃÌèQ´Ç%†£‡ÙÈCŒ3ñÚöä-ôÔáLÄ8–ã š›èàrÂ]¿Ä¬¤ÄÛ˜Ç]eVBVH¬[hH>8«ŒçÜÞë5;‡ÝcÖ9=¾…&ñÓNþñÑvØîzí[§¸ÐÜj î·@†Î¦æɶ¯—+È™W#þhH‰¶E·ª7ïµX_Ja7w=w½èŸ0ÁÜ’œ0>¤¼(åNû#¢þ^³×Æbúsî4­à^YUDGIAÀãÇž«¸ŸyUžyÁ” ÈkoÀ^»šO«sР"p‹ð®„úÏ­îiçPÍiʰr†ÎmФˆz!â2Élr)¹ŒJÓj’¶ò'ÐëÝCv¿ [ø[- †¼ ˜gE›'³hȳ¨Mžv«(`+NûЄA—Ý굚O1oJž[Xÿ©öÉ ZåÓ¼ù¢õ¶¤ +¹ðG‰‹Å³4SqNFð#ŠöT*5‚s߸ècDøÐR²è_¦üÝ&l)o‰aÈ×¢Õ´ˆåc5é9™ØpÀ ¹,DÞZi¨„ï¾y—‚jxA¥Ñ7‘µÖ‚ºúú&ôô~x÷bʈó{{º³kº·Ó¤Ç _¾œcw›}vØð]T³#,Ÿ¨ÃÚÖ¿Û==:¼\ßÎc‡¤ô•y”}Ø'-ÉÂ) ÎbE§7X²µ·‚ Õã€Ïζir©¤7$²R¹\Ü&\Ï•÷Šèaà ª{•<¼ ù-ƒþÐ ¶æ·ÿAJ²æ÷]ÇnO Zìøô‰˜c|¢ˆ9VäsÌ™Rx.ÿ7Yÿ¤u€«×=Pa¼béb†áÕâkU·Ú$L¸“fo)°\²S¿À…‹OÆÖÓmèÁÛ=ÐM1µ3¿Ê¹:– &£œk¢V¢JNç»°ºÁœçGÞ"üùKÌ ùˆéÑþ5´;'§l‡’@f,¥Ý%·})9ÎMrD„¢¿h²ŒºÇÇÀÆ H%Qó-ЃŸRWØ©T@GQŸy¤ 0ïYÉv¶ùj’‹*,ÌÇ”†R@©ÛRÒé vÜ+sï2¿f'40EÊúDHˆQ±H»,–yv%ŸÏ&%Œ ìMcéæŒ²[¤ëY1þ yj$ÄÕ ,èv‚ûF©±É…ì5õ$ÁKÕz£˜ {\œå@ž…¸²jã­ãõåÜúüµåÖD}ʪâÖ·¸‹RÀFqn)´€t a┟ao°Ûkw^ò°áÓ±³"a ¾S†zcgضªh',1EX°£ÖÓ\Ô‘ì”â«ÆÁJSÉùôÍiÊ·¢ä³xfñáÝCo§d µ›OÿŒ~$äeŽλòÈ¿('Ò©é‹%Æ€¤éù©'Öv65oN•©öBSe1Uîæî~hªLU؉Hµˆ©ê7r»¡©– ÕÚÕZ%–j™Råê{•°T+T#vsXªUâ& K=?Uz"WÉÝœ:ËÒ ‡f™‹×_ì?¼3|~ŠÏjЪû§·¤^ÄOþ¦’¥l2¹™Ì-…NMŠ7ACg¨qŠê¬Mƒ«ÃmþãÏn;uHÑ3ÅSÈ™éÏ™é#—”2úéWwÓ‘R%X+.†‹‰•äb2C0Jø¸ä~¼î¾½ c\lÌ®°ÀS¹±[¨Ã¼KÒ»¼3·ëÈPZz»à&Ö´Sd1EP!ÔxÓkãS7ÉøD7×CÓͤTúJIÊäÃ*©ŒDE’qY€l‡m)”Š/id ¾í@ä¡ÌÚÊtž+CO±Bn>5—]K%Y"5·¯³©¹å5uÆ\‰ ÀRr+™žN–®¥“0·à¤;”†èoȨL¤çR,ƒa¸…~o!œ³Äüœ¥Ÿ¢Jñ$ ÿxÎ…ð˜¥vð-òÏiþy‘ŠYŠ*Æ“,üã°…X }ÉMlà2•ºE‹'YøGëBø`Q([¤‘=”¢d‹2ÿ˜ái$&³Q…x’…~´˜Æ™a§1Æä¢¬6ìãx ñOctÉå¨R<ÉÂ?žs!þQNc.¹ê¶OÕQÃÄaKØÇa ±*Yïä÷Ïê…áØ²ì•ÞžQÓØ'ó}2Rxf»ìW¥ƒ”In.dÅ;o}²`UùæiÌõ¶yž—q²g/£•_VÖR%,¸%P¾0ÂK–¿,…•¢„+¬¦V€mI ¼å‡T1À6, ¡±êL]!&³«W, š…HeÝÎY¦áµ°›#ц+„‘DñþȤDDÈ ž"É3ˆ®\àâheTŠƒe!–BáÑÓ14Bá¡S343£i„Ž^ì8å² Pð¨Ñí—²ÃZ1Š’3ë"~¡`­Žxe‡O#‰!J<:I(ÏU‰c«­¡°ôˆj ÀÙ™‡TQà“ˆ&“«',ªÓëáÐR\«WÕ„å›8 ˜¨–@Êm‡è ø":gŠÏ%×ÒÀ¿H- ½ÚŸÁÖàNûGONû‡NŽz{MÀ#&¬ ø¦} E`Å“ÑÚ"¡gÖ|ÓÞZ ðH]B q,^Ùa·Úóc¢ù]_áÿÛŠ K‚<îÌ]J«»iþËâãj­wò{¹–)"ufÃËTAùpñœŒp|¯u0@ MðüÒ©Ø V:ûn&JöM«@DÉ÷öÒúȺh“â ´ÉŒ·l<Û¡ƒ.?QLÞ%AT žšX¸É«Oг= ÇûÞØÿŒŸÎú‚óxa1@èr¡x2I(& º º0BWŒ„rt€NúéË9$jÓÑAa{!™Øõ¦Ýî×}Ò"›­š´Ú¢5Ѥzì&-›´4Ê&¥SÆ6ñs]S›øùl‚'RG“8¥Æ¬Ü_” Ô˜™fS¬Ne©©zÅÜmax›ŽÀRLùs:ËS…âf¾ðC_òÄâ9¤ “CÇ/L÷cîð£<"P„p€G'w›<œˆŒÒ®°®€á(c3Jp`u#»yÅ*Gt3dfpÀñ½QÚI´bˆé¨LµEýTSFä"þL¤ÐßzRZó„O€!9WÏñÀ±k)Ç”°q£e™?œek‚gÚ¹Í3Kt;-? ÒAd¢Y@k£©éòÇ´6Dǘ›|Üîœöu ŸÕ´|!ºå³¡Mw~MÅÛÎÓé|^œ_Ä;?t,s ;t̄ۆ—m _^/=Q$uò&ýE’à]eàØÚN# +`™éÄ‚|›I,sÀ~È&Ò !ëu¡‘NÝ„ô IÊŸö•OK ùn™¿ )gÅÍÒKš¿î‹ühftRÚ€Åßà µßX"Ђœ"€l’^öä ÂÔDÁŠlaeˆŸ…R /ˆ€ಡÁd<u©zÑe…ܼ-ŒŒ:wžo gñ_:4í>¥Å„ôbN‹“ò’è üŸM²es&ÈâìRÌÉ`øbû„éÅ1-* ް2ð„Že5£”šQØ—+ ?¶p(àpŠ¥PŽÃlCêũՒ“—›"Ï—=ùœ¶,ºVþE&²1Â`ä˜4WlÆ ÚWÔsƒen@\˜ö7*Ô\³¦ 6Â>ž{!YêûôÜBúãËå¥-¤/Ós‹‹îè¹`õQgcÅ[YuFsVŒÊÕ‘)›±¹ÛçÚ"´Ô.«})u•±½Ö¬soÇòŠÇk/¸Sb¥Ý3$Et‡2`YðjÁªð«uQ0k1m9ô³—Cÿ\[gè§ùyöóEh‡èèâèƒÕ•K+ÙyÓÒ¢iã’ì —Ãûœ[Xÿí%ä¢O·=FY+Uu'@Þ8ä·$7±©h,Ïë$Ú«‘L[-,»ª×¯:±•¾ZäêèW¨¤Ä>.µpŽõ®ðêEg(…r6Z– _ëò’èÍE§µÙ,ÿj%ÑÁKæU:9ŒæU1V—E÷B})¡ŽÄOž:±¤®Ý/GvW†ç\5MMËÖà¨h9wïj‰¡ŽnMŠ/iË¥çV‘1;ÂW´ã™v̪ãáX{¼†‹‹´ò kRoíTŒàšfí9•I\ÝvøràŽ®eÿÀµ³dާI+V´øˆŽa‰ôš_Mƒ^XY-™a7¬u[ÝËa=®G˜]°am­¼{‡uptÆ:FÚ±—Ðtžž[vüÉ$ž¡ÓÞ¨j³šj'8î<Ó<8@Z8ñ‡±À“ð"äŒ`{æB³@ü%œž„!g\¯Èmár°ð¸S…ðâ˜émÕÝ@DÍæjÏ/Ì‘Ë×>o‚ʾûýþ´­›{^nWÕ3áx 5T½®oÇ‹^KÕD&éÿQïð#Áº·«ÉÊÍÀÏûêÏû·Í¶½‰1Ì…ÿ€¼X9ÌsÙóSÜ7o¦ýøë¾øu_þé3ⱇ¡š5ÎmËR ׳-YØOòŽñçp@ÒIÌžD¸>° :=)<€ÿIw¼L(½{‘ôî IïòôfÍôRøj“C$þèqñ´¡–œ4 b{ÒI•à ~Æ7vT/˜©¦pÚ&ªñÇx vIF]ÔKtVñÒ !v1Ä‹£z½háÇØÄÞ䎧hs¶ vmõ—Ç!43J‡Pž>Ú7«î¸èÖѽ…;L'ëäL¤:lÍD=¼¤tîe­›¥:‘@59¼ö8W«åöë@~“˜f9h'QïwÖQpo46É÷¾±#¯+ÒÀ‚±ÄÅZ/À£W¼F²X+V EtnÙ+7J»å¿ Û“„ºämaÕâF¹´QÊ—‹îåd…9V†ÿs7ê;Õ$ÛÚ-'Yzuy­ xõÆLLÿµaî&°ò^ »b¥\T\zŒWÉ‹$æCfÐ,hÈ÷Ôøþ‚ß:³f¤`Èãt'©œ=~,þ£Sp<ß+P‹ÆqáƒQ œqšÌô¡(êx-< ¯ÌŠQàÑA¬óëvQÉã#¦4=}…>Á𜩯M'=?MãR$§TrùmÁ )õÆí³‰×2æ¢ïÅ,”w`¡2$™žÛaR~ (ã÷¥ðú2©ˆÚv¡Ól=W*³J±^ÏmI2ñ[J”uJÞ>㹎…\é£ùmEÑý¿-;÷=hû¼”tøáÙ(wÚ,;$§A½XÀ1²¥E|ɬe—æVà%5+r!M'¨#Ò|MÇYGEá ­w …ÿsU’v5¨¡¨R£;WRv` ^¤EZبåäÂP+¾`¯T+VŠ0¾›Ðò “±[Û«À¶-WÛØ£Ÿx ´:'±‘;Whì$t’Uö`凱¿ÃòE'Û©¹ï‹eªK]g5Ëì -³Kv7…jº9ïÅ:Ï»`˜…PL•™iÿäw6@¾Ó|ò¥u®Å–¿u¯so¤,—uK¹-ƒ€HJð{Îþ½E´[£ö®I8່½žKÖó1tHº.ë2)Giæo‰†Ljøé_?‹kÿZ©’ÛH²5 5ŽMЕL4q¦4KBKMÄ’<­IF‰m*ÎoabíÖ%S Ó¤â÷&µMM2¥05UFII‘Ž™™°ý1O=‹e„)*†¢JÙËÅR„nÜ[KÑ!wب\ÏÕJ9`hø=é²D*òòÝÀÊ^jìÏ9¢`¤ûáÑÅsÑeAÎò]°¸.ššÖÆu#bÎs˰ 7f|LZïÅh+Æ’Ø„ÑØÁÌ%~ çŒR˹m¿´{/ãÆË¸ë*­Ñ=ªØšY1„ô9¢öbÊ Lb/³ °Û }ô»­(HlàcÞmEm¯2¥ìR²”Ψ۪8÷?‡ÞÿÃýßÙ…ljqñ±tjqiy!ZXZ û¿²—÷ãá£Æsÿw† ­¨ë¿ùÃ/ϰüQ³/6¦xͱÌw ìEýa¯}¯Òùk²þÝnoÀ1”ÑíöQkŽ2Ün÷ ez…õZÝÞa êÞ¦:1köZðSóöÛ;ì¨Ý̶!ñ uËÝ…Œ‰ (fY-Æ—•ŠìöŽ›¨¹%PÓ2lTækv:]”%.  šD)–Ct4;Øžî­AtÏClÑaë¨5pJ¦vdÙÁ]XÉh!¿ÝëËkœowŽº÷1qvÚ+]}>%¦h´B|UaUÇíX}¯RÉÕöHNØ­±õWFàYγW-5ÄÆMÍ'3L k3¹z5·;å­¾©oÂÊã«b6U…̈9P¸7Ø^½ˆg+l® Ë×Û×en¹ê¯—Q«nàâU+Þ(á!…§ Ü:j3Å\a~/ìÔÖæ¢ŠÁ†Ûfè{ §Q†FHÚÅkµ¨çf©Á3¤—æørcÊØÜ)¯®WÞã›bÌPËÁž\Ï|—)”¥Žïh;–bi˜Y¶ÈVER_‚«²¶Ý²Ô ¾veѺFZ+¬mÔp(:{6£)78kUG®¼»™Ãäˆ A\È4¹ÕŠw©¹eÂBMªsòÙU“/6̵¤ç²äf¬Ef{b£X¹Ž#…†=®¯ Q_ƒÆ‹³£°SÞ«Tùðxb##ñfœ’7c•¼#q£'q2ñȨÇ!#Nâ݉aóPˆ“x/Fwã¶Äºã$.Ö2qJ¶L,Ï[­«êe­Û¹ƒh¶5ÿ'ÙÚ)+ôºÏÈ›ÍcP“ŽpùBã`³s_uú°íªa‚9· XMa´:‡°F²~‹®Í^‡u¿ë'Ë7ÑS†å·¥GwZ· Êºs©vN¥©Ñ:¸ÛiãŽUZÇ](à° â ÛŸc i–èµîµûm !;M­¤“° ë-¬ð탾[þŠÛDÐZ=Ø^¶[ƒ´¹Í €l°Cîv:ð]µ‰Æ!¨²Ü¼5º½I· ÕåTŠÕa­¾Ë Í~Ÿå@µ9m%evرºí>[J-dW“°,zZ´ÓS?Usj#k­`SöÙù•e"ºQ[€·@_öï=JLëöÚƒ»ÇJû6zÝÓXï‡sIQlvª=äÜÎíÛí Œe—ÿ[§½°…ê6“lçiЇúnfØ2îÃö¶“‚mºšE…¥ÎÖ—N§@aȦû· ú ×jb}Û´0ˆrÇØýªEûR¤0k1½8›Î,eáÛ½zŽxFšÈ,»UÂhbÐÏéÔlîô蕳éÕ•e9æjmÔ¸äxL²:Ýnz:²/Ónµz­ãrp'‰U’SœQnwAm«³©ÔUàåÝfçN ”\c¯~mªZ¼1…ЧöªÛÕÕ)Öï‚–Z%ªÏØ› õ±wÚÕøhÐF%sÐ>nõÙ}à) )W›¼Ó6¡6(’Á&}´ÏýÓ~³3߈Ī%i ‘@5†Ÿa7¿ÈÌAaYµ¾—¯‡– кìŒÿÊž(Öv`V‹aEa" ÌÍ£~'ù “gµÏcÁ ¤ iO‡͹DSRÛÌ•×á%‚¢š ID¹è#]üYãÕ§y­!<¬ä¸õý^]ÏJŒ»--ÊÄxƒFhÁ%^tµ´Æ_·óü5Wæ¯ùbT•%Qé²,ޯʒè{3÷y5"3U…ïYôq‚¦_Š»õ$êëI¡››]îÔ«xýÙ–ªÔ“PƒšPªàKµ@m# U¬Ú¨ÉÀÑA“%ì6x5}×WHŒ{™$-³tvJ¿AþB1¤šF8^“cú _Ì8/nçr:N›‡*Q)§#TÝM¨XÀc¾à+ò¥#ç )Wƒçõ°öüäV‡­qòc‹RØ"÷l•¦MÆf-³<íÑ4ÉÓª´ [ñuÉvX—lçÕÙλÝï‘l¡–ÙvÆö”ÜY©3P#ôtÅv^íä6@´Aä¤N°æ·k°àu&„×tÒ€sˆNBø¿{fBµ Lø@ó@7f̬÷œrМ¨žyN žîÕ‚ÚÙ”ú‹oBˆÌé Cç[>+äVòŸØ´ÇÆ`Ñ[ÙÞâ5!½@µ—à£ÛKø{Ilm{‰êœ’Œ3õmO=½ƒ¶›é@3é¤(¤•ygûM­„n+ñ¶Rlrm[‰UNù¬3Ã5’öØžFÂ7lZYµÐÒ,×'h­³fõ] IOh–M‡þž±YôYÓQBLŸ-=é´WVÃÆCXÆ•0»ƒ‚ [\±3ª8Õ×›ò+†…éy¶ê(2¡EÔn,}e+Žb7TÕÚwÕMd”úüy QÜ´nTªi™9 ”~˜š¶˜ Î`ìú‘W×ðâËin5“†;·î%SÝØ‹<Êci#)¹¦äç©St™fhЋTß™K’‘J:«.§¼MöË+ZLqέªâ~\Ü‚ïvŸ8ùBc*K &zÜ<¸ ÝÇN@…§0Åß ]s,à«*'d©IpC÷n£¥÷´lqã¸Â Nt:•òÖ€F󙢳áâ©V1^¹é«•çÁ¿T_èà†é‰IœÖ;šy¯uÔnÞjµp“G@ƒZO782ÉåDUÄK`ÙL’ù ztGæ–4î€Á…׳âætå u*^’ ©fáãLÉg6feº8˜çÛr¿Û—ß!»ç—vúr"5Y™ûNæ­™Kp*Øô |7Ÿª<ßÍàûY|¿f±¦ z°¿Ïp?Õ'6s^Âëôh0Çv:´oãX(ÎòýO-2ó®ÁÔì€TWQZ¹¹#{8î‘«ÒË›»µcšÿ•[ýé4)ÉrIaÀ¾I7ÊñÓ}z¿ceCgkÙ‡ßÝóaÈçck޹NÿÓ‘ú5´T&(Y Ê~L† ”7W-ʉa¡¬€n-ÚÄ\[ó¸µ{Ö‡Gø<šU™4ûhrÉùã>¿"PYÉÐ;8íu«˜B-tìï'­×x@ëùvg5 ޵W¿§1­óGfr•Jà5ÁIñgÑûgIüÑLæþªþYvþ¬˜²­à¯«ülç…Áö“Öª¨–‘±>f°âZcµkÒ‰`ŸÐÄæš¡œÔÜdqžÉ@¥0à§­âÌu;gUò<ÿKᇵâÄjùy­rLNB+‡ÿêæbP¢á¿: 3’ry`ÕNµ¸&¿¶¢~Ø’KFòjùµ„“ }ÒЉl£ Õ®áQÊ÷šðúÔ©Â]Ç Ü’5‹{ËÙ2ʇ5¨HYÛ+`Yµ"pÇa‡Ÿ¿>˜k Nwªåý9N/ïF®NK'þ\jlº&hVÚW$î É…±–±«èGÜžÓWëéÌld¦¨.·”)ï cmâ­çöÊ ê'œ`9ù›0JìQ95¡ƒksSr’1:Ð'Ò óqnÄ_§oÊnD†`Wb‰Ð"¥;m¡RwÂQ¯.¤Õ’*¾óœ¢1åïôYòäb)Ê¢¤i©ˆ`£Û™V±©ëZ¨{ðHˆë>FUÄr‡Èw‚ÆRlwˆBO2oõ;DÇ·¸/üï+…ÅäNŸnµ•&­rñ{#k'é'bp»0z;lºä#rwî é€`ëïF…ÇÅ d“©£Zê„:kAº'˜û|0šy·Ï·Þ&úʈv[mVÉ<ï`ä×Ñô&è|ƒ@ñèô p^ƒ7gwó£ÃÇ›ÇJH|©¢"â ÞÂÍD×e¨ka¿Ô‰Ëð6oiù-‡ o<?.^Ãà˜–òÝþmïÁ”Òj™ÅÌJ ©0HÖí2þƒ/°¼í=xSFñ\^Ë…”¿bB(¢Œ!Wà(¥"Ž…rµ |‡n ']ØlÃŦnži¸ª¡õ½2¦¤¿ pf󣊥(ºÃàý"Øô‚q<ÄK*>_ïÛ¢¡­„€Ž‘µusÐû1£´I.ñAW5Q°"k‡nÆÆý'*¹‡Ô7Á©eT¾Nq| `ÈÌOU+$=Ï‚cX–%Xö*ËrœÃTQ³òÑ®M“Ÿõ¬µn£BƒgݱŽFäzâ”Jðú|§j47ñRŸá²nSú¬«:‘Ïñ÷‚rFÓÆ¥â4HSPNEhPªj!½ø­À~¹½ø=2§:ŸAHï" ‚KˆÖŒÇIpÈ ]Û4žU$ˆ¢ ª<Š«›6äÎr#²£ ‘°ã ÏL ={E«ðüЃ¥eú(ö”0íM¦Ü»ÌH¥p}È79QÁC™ C˜ ,9 f]ì‰çÑ5BŽ O Öý¨9¯e€`€Ëu§Ùq±aw›vÜî´O2¿}¶ÝãÀœÀ²¯!UWî+²ôäù*†Fhè€ ýTuÏ’É Ä¿4ú}\xª}°­xôßêtOïÜ57«Û©Î¶réÈ :f‚#™‹¸ê\¹ÈQÇz a·!<ÓG‘Áªó4ËÍùæ  xÙ'yJÉ!8@HÌ ILÜðO‰?ÒIˆJ.L«! hÏQ4 þYÍh¦­ÂD+ðy–Õ iw)!r¦T¸Š‰u³ ÓA2JNò¾1…ìs?¦‚Õ3Ç2^5Ž^x*Ô%úߪeÝeÆA-‹Óe‘Åéªò-êL\&ÞÔ!ÙÕǽ)©u\„§,/Aâé§gªeSEϼ×:t{ì¦f òljʶÛ÷¨ãqj£8¥ClZY¢ÈÂlΣ4d+fçbÖ?*õÌÂ}açw:lh0î]†uÚ0ÉÜ„2 ¢Ge®È+@}¡%„ŒFƒ`Á~Ô `êX Ì``<å}e(@™JÙT=sà»9¼mLÊÄ>‹'ÔwN'|…/Báyà–š1nY¿&°áyÅ0hztƒyß8˜'T¾úžˆá;@FFmçAËžÒC4Î+|œÇ(%RNûRZáW"ÃùZoÞk±Ö½Vï‚zAŸ¸Õº:ìpŽDÀ¾ˆ\l ewÔåB‘¸R7 bç¡ÕÇ<ûùÛRq¢’‘wéö^D²•¦º÷˜W¨É7eq8;ÚÂJ|ö§SÆôÚ«Ü‚š3¸NM±œûf4Á7‚oÞtΜ™`²ôp)EDžºCqC2=²ò~tÛö¶¡uN´-;Š¶í‹¶íGÎÏ^HžÊ1¦™iw–>€?y$À;i+þshãç4Våó•Pa¹i‘4Tnî#£UAŠCdD3ÉyÛ®•"ô¦b*yøâ¶§„¶Yzyð!>ܼéá®'ñJáëNù6cÙ#5‹g5r/£ŒÛãpõÂŒž|`ôx›¯ï¥•Û?Šâ•‚*ŒÝ(ò:˜îe{xÂÌÏ’ËËýfŸ šOµ:¬Ý9èö0^ÂÑ;1GŽ;Û¶c6ÊW3äqÐîA ¼öö…lÀ¾à{,ùVoµØ}Š'VÜŠ´‡aûíCuqè[°MØõiesvàž3„ˆ¬|7U¡|Q šÈ’¥,¼ª¨~н|ñ*¸ÞT¦:lÔ37ë"÷ D<÷¡™“ËÙŒ QÀ/Ô,¬;ÜnxÐ'gñÛ½÷ͳÏñf¯‹+OÚÖ•G1]†ž±}bÇ!~oÿ‚ã£uƒ‰:áÛvü_üQ5Ç2ÛZ¿ÊðÎ*Qô 7•€ƒŠŽ\ž¶ª#Ö_e¨SŠÙ#%†;J¤/ŠÞÅ<Îmä¥zÁ ÷Îâag3Ѽ1x·høãñvñå½®!-¸2ÜBÆî%ÃWi²¸T‡p“¡ÿmœd¢ý;,œ;‚žÚÓ^Q.Qþöî_[W:wŽtã@½>Ò…Ãà¿aã¾î½cå¸açµpÙ¨†8ŒØºkÄñÕˆç¨ÏKc kÿŒè±*‚VÛŸÙù3<ƒÖ¶;§ kŒ3ºcXƒÄiç4ák(á‘îÛä3–ÂÒ_"¦³D,O ›Cw;‰x±¼#lˆ´õ‹°sŠˆç˲1–Žñ½ baHc!Ùõ0öl<;×LÌ^6˜ô8€t{4:´›äÈà§RE”Û Hæ=”´ƒ“ƒQA'Æô`qس}ï•IwtÞÓÑÛ¾ŽÑÏo•8}¶Ûñ=#èë˜~'þ©p‘æê®i®:£cuæpTþq=Œ·nEä‹…¡[÷L(°Ç†K#òîð¸vàˆ@ûj¥Ë•±uш·¶ªþ1pܼyl·×¯ÃÁíõæˆ ßöÀÎã@·=ps{Øv\Ìv›¯mÖöWjƒ„Š!Œð‘DÆA\[Á­X{;¬õPº‰: ¶¹DœñÞ éÑ4¤;Ó™|™†vdÒ‹iÈy3¤ÿR¬‰æ¹æœÿÔ‰é}4”ªwÖáôÒ°zy<zåüÇóÊô¬ÆÌj¥·M¶ÞÊÕÆÚÏ&¶“ÍÐ6Cº× ç[ceqŠíUsŽÛ:cxÒÄw£Q}høE÷^Ç)fX[OÒã£ó݉1 ±tœÞkf.3vþ2±œeìa´›Lˆ w|±› áN/‘/Qî.¡¾.fGƒ—‹ÎÅ%àßò¨ø²dSA÷œ°âÏäËⱇ˜¿=ã{4~, úª½F[O½Q^4zõÕÆ‹FkFŒh³â4t;ºtšy:ÍpG+ç‘ÜnˆÃ‰ÆÉÄÛV×áD<–Ę̈ymC±’Þ?:uT{(ÏŒ×ÙÇæbžìXœ}|î;ÆRŒn=|û®ÞC8ã¸íð‹VÅ%«â‚Uq¡*]¦êÞ£ú¬óå¡ ÐEÂóuè É$P†´§Š‡ÎHïõóP9÷˜û(àÏãºðhï³rž&Üûåb ˜ÕaŒ­Öp‰1Dgá¶kß™KAgÆq=Ž\$Gá»í¸dçµÏei8¥aœ•†ðTŠ6„ÆóQ:Å)’6»©e}=_—&¡ó³jñl.Mù„DaÝŒëÒ„3~,.MVF˜HÎwON-Ö<9éuŸnøÏð»½ö6¢–ø¡\tˆˆsbêF$f CžPág:“š‰Á(kÙÊŸ`]š"*¾ÆÜ#Óå=Ìúþ/Ëüİùæ„òz†iÔHŽ\÷†ôݳqܳqͳ÷˳½y‘îx6²?ÄO•ý—nvaÙ67;ÁÚ3\=qdvAk¦§J¿ñud®u!ÖÂKGºKGº$Ë&гKõñ"îµ…Þrþ¦Þ4xe[9-g9Ëô.fQ„Ùº¾EqÇïú›1cöfËZx³-œ§7›rcÕhüÙü×Q™Ëñ»¼mkîÖïö.ÝÚ.ÝÚÎx±•ǹí¡óköÒªaÜ‚ŽmîuTæl#»§êüýèÎzOÕH/§ª˜.¥Rîž2s/¥Ú2^H…÷¡VêŠW¹ škáîv “nI7;Õ½ÎÇN¿o›†›7èhÒ\ÓÃæû†+V’/W#½^j Y¾Aîlð§T}è}Ú"\ϰ¹®ËØ¢k,Äss}½Fr¿RÆÖ›ÊýÝ9¯ÎñåÎ÷Ò7«¢óöÀf©‚íMM6iGB?ÎÔ”Ï<åæÎr—ªÜõ†æ9—ž^KëðÞPÜó¨ èâ¸+ùŒK&·"ÑÜNm®bð&"W¶”(Ï“€ÃI%â¢?“P÷’¯’ŠâUâñ ³‚FX±ºD{§îCºî¢÷©Dzƒ˜Œ„/Xø­9¥è+s´÷å¤1nž‰òÄÝ=3¡×ËœýN¤}_TýÔ~ÝÕH+6wé.& v¯3ÛÏ•`½‰Í‘ ˜˜†5Pmá5"_¨J=°P¸T„ø,EÞÓc}CåÝ<áGaQžJ¶7ñXÞÁNŒÇ;ÉDŽÕ]:–·èD’ysNO)l¯›O)c ž«3øÌØ»Héªá ;¤¯ Æ—‹ Üf$¤dà亷šì;MmÙ¨yŽ8C‘GçЬ½15+Vtv0²=Ùx@fÌa ¥êî‚á,5œ–ÐcsûUØq…`^Qo«GÌëÁÈêÑh;РDôE‡(÷ƒà¢Âx[B ƒHQ cøìŽ€‡ŠyZá=#Ã(Y Àl £7&0 ûgü‹úòï채ǀùX0…ÓcrÜÌcÝ£Óã»õ@¼‹ò&Á©{œT4ŠÐƒ 3;çqác‘`¬H$V8XDɈOn JdP¼,IÉåøíP ^J¯B(=ÖíEâõ"Àzª_ Câ­šxrø:­Aâe$ÞbÊþ2â˶xŽ…á°{6p9Ϧ̿5¦Ê/±j:VmŠW«Y®V¤fÂôÙ+CÓ 4¹¼W©s³¶è²`Ðõ@ro#§=aË• êjhsÄËÏqþ¢Aèµ`ôZ|–½6aFÎks·v óº„y]¼.a^æá#Gd‚×zïU0DKß‚ÿá÷-æ2sR…ymi£¦‡@¸""¥£ŸÂn±˜NÀtÛ è—˜0\Ü’´²CqaÀ¾›|ØC ‹îœG;?{Póâø–;!Åí"/y7#A´¥¬ãƒËï‡Ä†B[‡£Â 0[ýÖÓ.ÆU ŠX‚ñ • ¦3sg$[ˆûÈ|!#qT@¢(‘•!ЋРGeíWa[ÌÐÈdH Ñ8¡áABqB^”˜1Óbƒ†Ñ g±v¥Sõâ´€¥¢BÐ0[´ÓÑÿÆ!L‘¡Bæ BýD ëø>:M´µe¦?eL±eL0Ú Ï.+p€GæŠÂ1GHZLP)™æ_ß°ƒã¤“(íÖC ‚p¿±å`€† Ú ŠEØ~`01v·ÐVüÕdæ)+´Ÿ™ÕM¡Cέ+dÜFÔ1¢j$p*K,•¦2LÓ2#„JŸ =3ÅÍLhJ ¡X©ž HYï–ñËV´¨)³ ¬Ô”Œ_–ŽššXÄ3e{èßÙhL¿)Öm~/cŒ]â¶Î†Ûòß’¡·èA´<”­]ËødÌ> ØðÄ„âÅÂ(sT°E °ØÒ³,–qÐb™K¸Ø%\ì.ö,„‹%Y&l¼=:Á´@±¸ÁTH™9†AÂBP X™;` XY†ãÊ2çjìJöÐ@ÉVí6Ž2ùJp#H?ŸJ¶ð,†’-\(nåÏKFáï.Ád)˜ŒÂ ^†:{TC’wˆXgÚdÜŸû3¢þØxã£ià½Íâöˆ0`t!'‚ZV]ÆQ»Œ£¦/ÏîÔò*å‘@Y¼¸klôÁÇp?¥÷ÌñÇ¢E Ç7±¸wTž©#bB%™¦#Æ×»£íƒ‡5ü[Ø-Ôñ¢,-gø7óÍÓq¯¾Œ÷PE3Ã?­&¦KÔñàìq n ‚ÑãÂ꽌,|–Èr‘2/œž‹Y. І€Í¤¼ã.“¶êxâËÅŒ'üîâ´(#ƒÂ nkÃuYµ$šÛ+ÃÒæãöÊ9q; ÆË¤Ç«M°?ÌK«ûŒ éå­ óvC*2·|LûʉŒŸ‰f‘0af‡,„Yã…™M˜B-j8#p¿OpÜo:†ª>JÜAvضŽ [ÓcBÐDÌâŽJ̬Ɖ¿Ä¨À¬î3Ž…bêÜåÉ‹¤}¬Ž/bcTœF+Ø1‹—× Ìèk—žQ÷KFÏ1«A&/<:Èäå”)@b2yi‚ÈdÕä5~ËÜ(¡Ê&Ë“:ö–/ñÊ—xåÑà•½±&=M_‡Åš4™õQ&φe>¡³P/µcÆ9/YàœÑTQ‡±â£òC༠aܘ“õ–¡õ¶Ïn÷ºÇô¥Œ‹Ê OÛ°¤°&럴ÚÍ#v¯Õë·»¤É)gö.è t8'ñÅ7‹µ|9Ge¸qßè5_läö|“”Œ}Ö¿Û==:$ŒI§Õ:D¼Ë­;$àÏáÃ`6ÃsuÈ0ÞqØa"‘-KÝ:nðYl¤'v³H¤Ã;s£´¯x œ"¬žݴئµ¨D[° Ìš›…n#_¹N÷“Šõ¶ÒMüͬ >±É3‰pv}ȿۭ¹PÄFD9|ó4xÖÆ.ÿTãŸjõ듸u”§ØÙfí>ë·8CçÖs ÙÌ¡EŽUƒÂK •i8‹EAíÛ0ó €ï÷º;’z¨Ä1dÎ8cQ­˜ïA#ëm5î²Aû¸%+`!ˆ!@C4Jž6 ÂI‘Ö¡ØñÌb5Á˜i¸&íQ`að¥`«ÿ²ðoþ-¿%ø· ÿVRþ¾^…oa‡Ä@•þ$ªøIÔ铨'Q±õgBµnš¤þ€¸ìJÅš"oˆª\‡¥h~Š<)GcÌq<ýåâw?©D‘¤Ì¼Á gÕPKÒ‘ ^œ×ŸÑÕöÙôxÈšHq΀%™ñ0`%„šúS£®?­‚fT¤ÎB€Ø?®Ð†ŸŽ_2u<šCDÇ“¦ Õw ޾ËEØz·â‘×™5ÖY•¼Î…ð:å¦e´•.EWšu+ÑuªÌÝ@^6ä¼~ Ÿ÷XÎëÇòyç¼~8Ÿ÷ˆöW«Ú§FZïbt½©ó˜LËVõ޼ÚU«jÏgJ­§Ô®qm8§É´k\ÎiíW…sš@þ •%ᜆ°®F§‰£E«f £> £> £> £> CSé¹kš:ÏEò‹Šô†~ Ÿ»†¡Ëç®aè‡ó¹k†}î†~€¿†¡¯÷Ü5 }µç3¥Œ§¬x&?f ø0œ—†a\ÎKÃ0/ ç¥aeóHG‘ù`²X+$|¦TnIÙw&Ò9DR­^ûéyÔº¨¯ÕÓÔÔ¨+]¶¨”·45ºJW5•fΫS=CËxZ…ˆ¥‰ ­½‰ ­½I -M¥ç?´öÆ5´Ì§PX \j2ÎgTñ ¥¡ý|jôxʽMaÇú9e…™Q·ÐÓ©!ç(æN=³“=‡îÜ5wçÈXk<©àaS|GTç/‹Eµ¾ó©ó—ÆJ½ã”ǦjÏY"+ÕfÎ_&xX˜°1v.“8j€ËTŽ]ç0´ uºCk¸:ÉY Øë  ƒcvÈãàžÊÆoÅŸGuÁ‹åÆ]§vÖ—–z˜ë—S†ðk2•Á3ý` >0Å(¯±¿ë¸Î­•rIVIª÷àºqî¶C¼ ·÷twßθÁüú< kŸ¼OšVAìxÕ ïG.¨íAÕo5;‡÷Û‡ƒ»˜_x·`êí2AÏ·÷ð^tÑ݆Cò’Eö&Šž“ŸyðÞÞéÁà´‡q6ÈQçËØxáûä~°§ûÍâÜ[GØ/õ½îSQ™ð\AÞ!:^Ä“ÜÈãßMz¿ÉßïâßFþæ§ØN ^w§v_X— ŒüšˆK4„Ôv6öB‰ Tè,–Jô:âËÌ%E“(iœ•”ÙøNi˜á *¯q|‚iNÓ™æ<—U×3YãEó^ÖŒÅÎ…Š\RŠ'Òï5˜‘—̰è¸û†0ùiîìˆNŽ¥|¨.ä„¿;ëë<ú=üÛÞ6sb£Ì*ïÜ@צú~e!»W-5dÄz‡°°ˆðº©äHa® ⎿:EÇ ×Žw¾'Åmíð§Tµc‡Ñ‰= Só*êszC1†è~ß”¿]ºßòw[:%a0YÌ0MQªÔpÓ²snD&.;%CaÕµ%Àë¯æÍwbÒÒj+‹XeÜ5– F¤ñ„?U‚™3î`\CòDts ƒ,lµô=µD|¿AßK9¢ÈF]L,=Áxa” #÷àÇí=^¸NÄbŽ ™£„1_(G«5DÉQ€ -sFbB„|ŸfW¼ÂÆy ?<™£RkÚYš«k b~!±SrǧäõãÐ3­Éä, ¡eWrxHæèoݯÒÞ`Á¦z:—Ó°%Z‡=AÓ>¡üâ“/WÓÞÒ¨yÆÒÜ÷W”•^d¥‰eÎ+Òg41:H»s50wÂÕñ½A¥C}.³–šB… £â”¿«xT4m$)OpÞŠ¿{xâ+  Û3†ó„Ì’ +ñU!BóU0¤Ž6T­¹"GiXÐU²¨"î¨ux’×ñÄ]KjKóß@’`$°Ù`)":NõRkp'Ÿ¸0ÃR”À-ÀQ©Sù`ݬäv€„Œ±‡ðüŠ¡ÀÝ¢„å(¢p/šE¢2æÞʆ7¾¹šÖ÷¤?²”ø985󾩩•¬hŸfjn£Ã? ÀàìäÖ"›¡`ÄD½P´ÈÛ¶J›“^;Íì¦25m™Ã›±¥Ô ÛB'·»ì¤“ÆÅÆ0çF1çµK»§šÅ³Íy¹ n;“1²Ê¥ÑLþp zòøÃì_¶œý»¾Ù¿˜ýhH`îÍX‚™&UkØ¥Z·¬jPÃbgY[‰{¢Éô¢4Hð·€ÞìçD ™¾ÅÓl7ô©Æ6!ÁÍ“¾Œàp?™”ÊÄ´NLë5@í9ß%Ik?Zò#­ýr•ö㎉ßñLã&4ç~颦g“ÁûDÐTŒPï—*NW*×å9ºî+‘®û2.ÖA÷øät ­ÒòYd¿Æ1GZ¤aFÝ=vižE‰ý•¹Ã†³’ãDnε—ê:÷¶¸ÖgO¬/ó-º•ë’¾ š†þ(ŒÌ7üu_¾6äþ¹õvÖi …–Öj¥vò9]æ,Åq‘+´fÿ!›q¾–ÍÌ- ëøÁÞY/¦fnb^+UrÒÒ\AM Õ&í˺Â5<€ÂÓa¹ù1bÛWæJ°_{ð"5.Ë tš¸[hßY›Â‘SdPÎñ;H\#v!ðSAþ$nç!s0Oæ[ë*eïª\ÅÏÒ,å]à+êO2©ÌêYQœ;Êš¨öÛ/¹ªìh(Ñ”¶ZJŸ&O‡Ô¼¯¯ï¬xkÞ«y?Pó¾¦f)£ ´æ´Xëé“ÖžõŠÛÚ˜Íì´פ¥?ç`œóå¾Ó<½ÃÏ7{#R²½ïŒUåê µ=(4ðnÄ€QxÃù¾æýa ™»­Ü#ŒF'â‡R« lå”Ê·W\Cõ H¸-͵6.in&šC®{z†#ŠBÍ€?WøèÀŸCŒ Žš­ÌìbÙRÅÀï=æ6‡Ø=º:·CÇïM®LÕ2yî1DËB ÞþM„B9¿A¡õˆ™}ÿ¢.Ñ‚Tqƒ¿ ˜Û¡^”â9Ø  J÷9ÝûD·.T¸œénت‡\½Ûóð‡ÊÄõ\º¢ \¶åºCÍg{=ñ3ßÔ*7|Ò¿ AyEÀåÅ0ÏñÍó<ÕàËü†ï"N¬Œ‡Ÿäi}§?ðÝ ®Í TÝ š ¨µEo-·$£¸|äåpEÿ¨Û=!mÿTã~’áMƒr/ÐìµXsÀŽZMPîï6n³æÁÁ)ž¸zƒH®¤üaÜoƒ˜>â#ºa)¥¿èLjs»jYÛUÈÜÉ„ù&£¤ìÓÀ*¢‡CÄ@Hm1+q¨ÓMÍeÏ<`tZa)]Ú™G/®‰ØÛ¬Tgåb½Î› Ò7sHéë,W(ìÕr¢œâŒëŸâM N¥B®cmšÇGPœG!µ—“,CAÄ1löFzqn‰ÇÍvÞc@w öwںݸԬ×÷ªŒ²Î/VC„H ’ryBO·aÒÜïòcO>?Ú‡ e¶a³ð°oc…z.׆۳ÕJbWVÛd­ñ{/¹­ye’"Eô–î‚4.Û2)¡ ùf ¿(ã²2¢§>ƒƒ–d½åRÚŽTº°O‹ êò >ïøí·Ž¸v­žãûu녧΀öÁ)7‹S™ «Ïª/wrpm熦ÕªçhººûiXH£Ûò.å €ãB'›D‚a_`-H‹©3ØŒÄÀâsŽvŒó™î¬ö`„<ÖR>O—åÄ–|wgkÆúÐ?nå!88ÈF‰×¶ ›Ð¬3Q‘£\'¼©‡K^½üwbfó¸KÀJȉu«€°³ 1á.ŒŸåÏõû§YçôøÚ¿›}vÒl÷ÈÚßÚ=v~:í´AZ= œ»?èµoârq«5¸ßI=›š[$Ë ¼>º+€Q=¤Ä-}·o+[JýÍ{-Öw £N!õÜõ¢Ü ‰,¦32k¹Î¯§aůMu(BÓmó¨ý n"‘÷š½6ÓW®+«à„^YUI¥ãÂâ²û &Q>ny?éžÃYN‹ÿ6Ÿ)±—+€Óê´p gxWBíe š[ÝÓΡ2°Ó4ªaÇ!ìÛ¼2ÊÆL2›\J.ã«IÚBŸ´zíî!»ß†­ó­È“°ðÍŠ6cf1,ã¢6OÚ­¬€:í‹+hz­æSìôDÍsëë?Õ>9A;jš³Ä刼g¢Ã”kzˆ÷ðGœKÓLEžmØg¦"ú×T*5Ryß8Ú- Eã¿ny%ËsM‹zߎ…)oßóOðePó½ö"ÖƒÕ ïŽNð~ëb8Î…rCä±{îáHäµµÒ:´ o¶—ùBJñ§9ÍÁvØï¼°íÐ 7ÑzÊWJqLnï•èltîßmÁÈïÉëTîŠwØðO³#̆÷ñþ”ö@\áôè.fá)™W<ç%þÑâ6'‹µ„®á¦il½F­GP&ïÚÑ­.õáF2V*—‹À„ë¹ò^==ÍwþA3Øšß¶)Éê•ßwHMW¢É;zB‡>¿bèùÐwF:ÚºÛ†ËÍÄÀ緑ѪÐí=àš_o)°\#¿À%"üеrŽŽíå Ub$ŠZ‰*9Ëèr5˜ŠÜ<ï-Ÿ¿¤\s$Aµéù-L°\œ°EÙ™±”v·ö³oBGÌÓ¢¿è!n]¥°8Ë `Ê`æ\Taa>¦’rCÝÚñcñõÜorO{¿Š"40…î"úPé&–47ƒå1Ã2Ï®äóíë£d$aëhl ÝœQvrYzæã æÈƒ !EèVÕ\½ïéS’}×H“`…}M£˜ È`ÛŽ”öÝ`ªóô7ÔÆ[Çë˹õn\]õ)Â^ÃkœÖùZ¤”ê[Dxaž5äñÇ.ŸGí9jž4žšÍÎeæqœÇH¥êÆü3·ŽšƒìÜíQÔ›±ÔÒ½./-Ñk*Ã?§àírö±tjqiy!ZX‚ïÓ‹‹ ©ÇXj•G=°ìÂRÈ;†U«yÜí›ÒA²Û#áÆÅzøìÞ­íl€: {Ñr®‘u·;^õ T¦À!Wn²ªrƒ&™ïØK·ÖöÚ÷@ÙÅ«‰›"Ð ou»}Ôš£ ·Û=H™^`½ÖA·wHÚ–@ c":<굚‡­uÔmé°Ýãû.RÖ¸ã«j)¾œTb·wÜÀfEk9æçX®Z_§‹«ö!¨¦M4k"M"Ë!2@5„æto š2NÉaë¨5pJ¦fdªnÍ‚K —ÊèuïcâLÚêæUüzJÌ6Ð"ű7­ þë{•J®¶Ï`‰ÜÝk°õR™t-÷G>†; %ŸÌ0Å{v®^ÍíNyk€oê› wøª˜MGU!3b–À]ËÆÄ)­3Äø±"­ËÜÎ!cA  ´³ÔŠ7J°|{ ʭ㞨˜+lÂï…ÚÚ\T1õÆÎ.^ñtö¸qaHº§œ£(ÒeH/Íq~cÊØÜ)¯¹{5÷bs=ó]¦PŠäCöÌKƒâŸe‹0$ùãKµ*˹8‘šK%áß4K¤w©¹åäljnu:P…“Ï®Âr›jIÏe“³é¹t°™ ︬ çiÑëUÎlØàhã÷¯svã%bö‰ëû17j±×ãÐ\ÛŽAsŒÄ2m;FÉ–‰1y½Õºê(wkÝÎ<Žg[sðRîÝ·o³3G&ëÍæ1,‹ty]n5sPà€N’¤äoâ A„n)î´nAñõÓ[b P ƒÖÁÝ"ZX¥uÜÅã¡ÓcVíέ¬°D­u¯M†ôt’Uš /AB·p·èEçõ`Ù&óûZ›çIâN¶Ûý·º9† ÝÞƒ$[]N¥Du°wY¡ÙﳬG§-'+(ÇGÐÐn»Ï–R ÙÕ$3íf}evZx »~Ü­;&ý-Тî†ä˜Õa!†Cêb­ÌîÝo·ô°Uïó€Ç] çîqŸmôº§'¬<8”¹ê¸ÊºÝf‘MdL§fWgS©«èºÓìÜ l#ר«_›ªoL¡±gj¯º]ݹQbý.,g°|J,rîÙxÄ:Ù;í€ p4hãjŠ—N÷)èô‚»lÞ‡‰‡B apáí³Dÿ´ßìL«f ߯ÈP-É=§Ö9~ÆC%Þ]°„ú^¾Z&ÀíkXXªÉÄÇ ñÚÌ•×ã;a.ú¸¨ñ%2³Ð)¥ç üå,…÷Ci;åÊü5_Œ*–r`ÏÈ\x(sâ{ ¬KˆcSR¨ !&.,xA9°V‰ŠuªíM¥µREšªšÄ$˜=žÊ(æIR’$íá¯ø òŠ!¥Qo(V-ƒÇTNDôˇXÛPu FËfÜß‘;¨‚ÖöýÌÍq,X* ‡Ã &å¥CVF~gn%°7!»Z€šÔÂÌóy_µÐE 9PB3úª`Ind…‚?k ¬F"º˜ ‡3æ!»! «093mŒ4 ¥Ô›Ž)u7¡b(5‡CÓNGy!ä<á€k‚ÁÒ(o’Ò«5űû;è"®6·ÓIzÉð—,Yà/‹ü&ã•JasxE0 ÛÐõBÃÆjQ/œÅ¤¾Æc?i‚Aè1ïÇÛü߈ ¦”ï2èm!èí¦B¦Ó߈@‹Èw¤¬‡@*úÔ¼ÅÑ€ëßÐí´9E¶—þ)ªtT•ˆÒuO@ß#+Šc©­sk¤ÕH›ú ›²Øœ@9ÙÙ-V£<îȯ Qž:!Ú’ePÎ~êhDbA–mê4Oúw»ƒ¡…ëLX›Ü•–F¤Þ D<„Oüæ;šL€ß\&ˆeÍÌ rÛN&¡£æ®0s{zÝowQ÷.‡¼Ñæ&á²ïü|A1øBÁû¨Ñu÷]ŽÓé¢Áë»ÝlöB+åú…¹hlË¡%6B=àEó?+¦½ÂaXMBCñÕ4¸ÛkwŽ]d‘s¼LþYa%ríÌ3 qˆ`|arŽx•ˆÅ²|eózÝzUÃÆ.¡Êà¢ÏhK£Ÿ/ÿ´Ñ˜“K¬Íyh¨t Ïã¦^-XIG[B¬ïè¦$á¸D‘êåº5¨M­qò“/¶Èý[¥i“±YKÀ,O{4Mò´*p4s»„ºBº´BµWà£Û)ø©:£mŸPSr[q¦~!ÕÓ-¸Çš4S ¶ meÞQË©•ðÑm%~ÀV }Ö¶•Xå”o§5\#Iö42ï"Š™ãàç*™Ùw×=¡î¦Qÿû‚Íà×g͆õOXÆLX›ÝN"З{↛0Õ»²à_Ž, 3B<›[CÅž:¯¯hÖ(pq¹À¢}p×Y0DF¹jÀŸšåÂqWòQ±È0gC£®*Ÿ³9FùÆ&°l%ɸ+ÃRŠ´Š îÍùNÛ­{ÁT7!(únÈ-ÉëkQº ø@üú.pè©ð¨ß.¦¼Möëx‹| åzQ¾ÜÏè÷›Àõï¸yp1M' 8™uZA”í¢$-GA—ä‰@©’è 7˜pWbdSÀwYuqp+@[ÓŒë­z\ÝTyüKÕ…2v…Mc§ñŽ:Ðkµ›·ÚGíÁîÝ Û9qrØzºyÀÏ-]F ébÆe3IæÛSGm„èUw,yÖ?4t8!‘ÉQ›B2s—a^ÓFy· 'uÚ벃?§Ÿ·ü?(sZ PÔûª!'ƒmB;†(s&A h"a¾›ÇÈ„žïfœnð+^°˜.í…CG⌾÷l§Cš%?WåýShðÔ"³uJD›âµ”VÙRÏ¡_R¿Ê{¾âw`¾„ÏË·q;lA~,ð[…‚®žÄx‹CÊœ±Wçø"r8†Ò¨àjpÙÁd¨@yJ< Í`—;¸-ÒÝã3WZ1ßZä2ºpÉèód´Üœ¯:aQ•¢&\h¨ÉÒAgdc0b2uʼfQ¡éç‰"Ù1î$/\NòËIþ¨1Ú=WïX Ô5Eë&ßûÓ^ǧ?§øa”V‘Úo¸>Bõ¤’¦ýÞ{Hªsú ûNw µ…±dY(¾u§Å$à‡0 tñ5æÏ¢Òę䦼T!P» ãºhâOÈã<_e|ðC&Eq•ùì† µJ¨L?¹âN¶”ç[VÑåüqÂãxÓüá*u'1°ü³äüY´’9½‚¿‚.>Ml¶lñ ¼¦±Z%º±äg:d$MK¾õTG#O8ù¡¨œÊülUœ°Ò¡«ròŠŒåˆ‹Ðòn¸ ÌÉÃÏãP+^D#QXÔ…$òõ¹ð4\MiX¶ÉY†'Mxjo³Ä½Å÷2—Ü pw€ex2‡Ç8ðv‘¸·à^vìÜ“¬1cÃ2±®ÅPµmàÃR’£Òàí2±d9À’…Ë¥ã^y¶’Ð;x¿Jü[ ðoñ¡àŸË,/S’솙/;!«_/‰2:{â'DÁ ÂJœÖÙó3Aó‚^Xò]ûš–­L0t’¾€ESÁÝ‹ÞX”÷’f‚; åÑm¼c`ƒ_\x„üRÕH§ º+ Í:]3*—!úA üªÐ’ JÖáÐ(âÚ4de.£qSªËûz‘Ur…Mt u!P`#·]¬"»ò)½›dk«si÷‘I«—žV•ªÒÝÄWí¼ëÉÆ»+—áûÁ5¿ó[J©ö0Ò{…\‡9tH@‚*T»ÆC :åÜ«Ãê[Qç&÷€FpÓã,*ã³eœ>kP!²¶WÀ²jEà2Ž•"‘€súrߨíT7Êûsœ6^žßyÏ5a@»Ò~÷= WÙhS , ¿æ¾PLÝq6,cÒæ“c*ös:3—…T‚¦Æ&Ì· t í5˜‚ Ös{åõ"N‘@»@€nÂÌ(°ÿådƒáP›óõ€ãÁ{Ž==àÊ-é²ó8ß&ª!y¿#±ï±èw‘Ò'@TáÖ!¯j^YTè[†Ê•ÿ(÷8“l@ŠòE…¨@òω¸ÕAÙ0Eê\0jÖz…Ñßœ¢V˜5 o ÚãDŸ5;Ñ?¢¸üÉ_/V¦ÿÂc‡æX`”,Õ* ö[ƒ›vnаDOsš#¥  U·%C]á —PfN^Ç0ûQÀy_Áæ¬Fsƒ>X£¡ýæT9$«ÃlqÐÉ¥ êV yN¹.ï¼É—ë!ÃRÉv/xÃb5|SÀw°E$©ZM2x»SAHšYVF¹YF‰I8áÅXÍÓzK?è.s1Œ$ ™*uáj€ÿjø êh¯›'Iu¯Ls¤ŽSŒ Q·Vé C€Çq ¦dâ5Ä‘ÀqF,©Hi½{€†Ì’ ~ÖP®GŒ'E(D¹ÞAßj¢`EÖÐqn¥K›F2Ü©eTÈo§À8ˆn!óSÕFÁIÍ3ÑÇެüBòæDùSíä|–3y ‡rdBWlÊó/"¿ ²Š°07µTµù‡ˆ¬Uß9zWÂLÇ“4;Æk‘w›vÜî´O¶}´¥î±×”¹®iî‡ï¨Š×çù2á_<ÒõòTû„ƒ`±:<Äiuº§wîjj–µl˜j‘qõ¼ç ðxÝ3ÞóDxÒŒW‘Ê´BïT3G³mâ1<Û.›·½=ä7Úr¼Œ¬ÿw¦!—ðÔ’^¥ôºÂI 2qÙON\Ä/£w¾(L©`îÝ.¹°›Å+Xø¶þ7ª8Ð~f¼S§Ë"‹ÓU¥9ªâ¶¹!†-0/bž ÌŸÍcX-ÿúG² Ð~<{ë5Žjþøk’r‚¤™jÎÑè=y…ï+ã€;X žf¹9í‡ç9<Ó™üSÉñÅÞ¹Ú/Ç•ˆU±Ö ,ž®VqIF!ož!L9ë“$•²è&‰H—ó$ïŸ'ù°yÂÜ©’›*ðT° óÏDa2™çŒ,×Q–k¨Ö8y˜œ?ù¡çc”¦PÞÌ7H5‹œrð¯~"±!æ’B@Ätb^˜§†¼¼ otRݤbúy•×Ï+1µò\y–€´pDÌ*Ƹê=»M0¼]7çâÊC‹›ƒ¯ 4zÎ\&sî!Ê»¨scRxÈ|M ÕóŠqJûè˜[02—?¡,¦ÍJ!ÊÐä/± ¶EVlæ)‚U¡ê„5‘Âg·îµzï óïVë6ÎIŒ)Bý„ewa8lá;'GgˆJšw’&9*uóÊΟj=T8³]s ‡c]óxÞhïU)¹Ð´Œ›>8¦_(MR¹KÁ÷hÃýûÜKóE8‚J×¹$L•y‡J´·*3g¢2Ï© ­9O,W¼€Lmqï[;¢-§-hâmÉž©-Þ–Bø$+à`äþh;]´§­ÚGärNÅO Ü~Q‚‘Ç¥Ô¶s²0ÔD®ÜЄ̈h9tFµK„ÌR¬Ú‡‹[´<‘–¾†ØÊ[©R’‰ŸÖ7Þ2!‡£ îaÊAðf Á¿ÙgƒæS*»sÐí¡ƒêÑ‹!@ DŒËªòÇè‘O{¥œéÛÛŒAcá´©}ê­»Oîºh$9 H<Þ®ß>T§I?ŠIÂDF³ÚÝ}òÕÆ"cÆÍ˜—ó6³Üs…®º ]€Dú)§ô¡=)Ò/RúmJº8‰ôKâ²IʹT‰LËÜ¥ á¾6ÊѺ>bDÖž–¬0bÍyVÝêò›ƒ*®Mu锨//ê ]=d&>,òœ)Q‹ 9’¢=Æf²É2n“è°@ëPx“B7]†âé’2EšdÝZ¨ÑãJ°0ò‚÷¨ËŠ>)ˆ>‰XK·ùdGa¨ˆA9ù“¬G~±aE e¯åE{kˆ–i^G´§Ft(™0ðˆÌ(EÊYGž»9"Av9&æ]8ƒöâÁó[ús\*lèTfgè@c^7GïE¶Æ!.R‘ˆ1Ùä œ³™vÞ .£ —ß âYrŒr"?B2òyŸ.w(©Õ|æüàþNÝAý}ÀnQ@ŠþýVOÎt%â¡é‘“=œD£i3¡bËEÝóÞ$»Hâý}9òãJÊôËjà®5¦¦RÁïÒšKžEœÿ ·C7¢‰Œ£¬/ˆœªTò½‹™1º‚“ÍwÎìYlDÏЪÆåÎ_ƒ#Ây6DÜ¿÷Qv7D\ k ÉïàôãZ\s°b~¤k‰ʲ(€q Àï…o™o\!ÐÝfËVÝÀpÆÕÂN­V,4Êûa1øæpÜAîE*Ëeh‘(—ßkp$ Re¯¢à~´× œeõ½:^’ì§wIÃ"‡nŒž DïT¹Ìç,r ¬‹ QÕÉ›˜šØC|ãýà%. |– ¥ˆ 1Lq@QJX#ø{o+“Ƽ'ïôœ‰«.`O Ÿ×såÒgÇŒŸ¨ò!FÏÇ—yp|^ ÕOrTºDô]"ú.}—ˆ¾GÑWÇ?{.š¯LÖ ‰Ö3sÌƧ ôÌåHø^t”®-ÄY­ã¼ñÃøÃîÕKk?þÖå5ïø·ÈáÜ5^*lK6÷žȽÍrOxä^øbøêóSåÚÔ<5óS{e+0Ÿ$²º%ýú,s Ìò†ô Þ/#¿8 Þ/5Þoõîç‡û­žíàÒ0èŠÑÐ…1#`bs)ï¢ç’‹nñ™ó¬0-Ñ8 È¢âTŒkX!‘“u>ä3û2ášÂñ`xº\¨_¥´£®X8¿!5Më²öE|Ät&[¬ûh8O ÄRôȬ3a9±8\±A3†Bãa¯l@Œ&£¾èûUB÷ CT&ø(ØÃQ°w•’ëOŠ=Ãûn«wŒ·”wðñþƒcØ,ÁÖ*BÒ³bH݆fAÕ‡•4ë^ô8ÇÞVXI+(—5Ž+ˆ+‚+6|Ë»e¶|b·ìP[glÙPHOÒʘˆôgH„¯ÆD­t– ð*êÊry~f¶Šƒ´²‡YYP °²@WÅVÙãª,ˆ·@TÅ„SYb©,€T|V¿\V„!„‘޲FaI´§ˆ<×åBo“T|›¬i„%ÌÞyŒÐ)S†(P§·¤¥2 Ù4ðW,ä×P°/ûƒ|q&—6Ÿ–FòdP/΋–' A¶>y^´Xa–ÐÕ*¶+°Ëƒê²Biyp]1 Z^h—>Ë è²gyA]À,/”Ë•eÉò"¾bà±¢äN à ±¬åLQ™,KôU(&#ze‡»Šºq5 Üj¬U¤Feu.’9’6[dULXU¤AÃS¶À¢k`èŸ^w‰ƒyÒA¯b»ß iè±Ä(#6ôÊ&Æ2W+²qãráUù²,º:$˜í¬H6 ›=†-ÞÄ¢×B¡kfÜš´¦C¬àj 4-“ ¢íŠšfÜÜx76:LZ0w‰I{6`Ò’,“@ šŠFC[pFÅ yÉŒ…GS1hÞbŒx4üuR˜´Œ&-;&Lš\MàÌXŽ Ds£«4ºË“hëù€6zÚŹ±<ŒˆñÃÖ.k¦¬AÀÚ0jh2zâ Ë k¼¬áØm)033«ô³Š6ø[Ø©\¬,6 l­”!ëI/ºL‡>¤Ê™©Š†¡ÿ0š?¥c®áïðGªæÅ¨ñ+hI¼„ªÅ€ª x©†ÜRÌpËÃÄt[‰ t³®ZcÙáÒRCD€‹.-ÒËÇ —GîXP— %G.Íz2²pi‹q¸4m('v‘Â¥YŠo:ígg„þl oÅ„Šz4QÚ<8ÁXS ¶Øñ#d_¸¶Ø¥8æasü&ȳ’³ü  eGHàá°}à5-=ƒÏCß‘‹ ³ÜîØÌÙîñÉé Åš''½îÓícBu i¹ÛkßiwšGÑEp+šÕdçN´ò¸Æj  7Sž%TÁRõx‡›.®°|žEUt&vO2­¨O°JÊ.íHqÈË–`ž`ˆAߣ®aË¡‰çZ!Ï…Ñ;Õ¢"¡‡@#ó‡K‡üE“ë á_xM]P‘€~˜»ÀJB[%z4ãªÚ+°+ÑqUWÃÁë"ªáÇ´ ¼žÎèãªf5àõ…G¼¾$Àë‹ã¯›m€AßhNØÒ%~ýYŠ__8güú´3“ü<ã/“‚ªÛ\ƒ¾ðh„O­mËð©µíKôúÅŸJ _4#ܾý2¤êÅG¨_†TuØ ©ZlØ¡ÞaìˆÜ5Ê^ãùkJQñV,ü¶ƒ…ߺµ%/R7s”cæw¨;WË[â¢ÔQ†\5Ü™ŽÚÞn±˜?ž+Ó%^¾6ìc°6žE1XkÛš¬55ؾV€AüYƒñülƒ¹#´½0–ˆ¬r×{戬zŒ¸ >dPUUÙ—†‡S5ÄRµÅý†GQÕܘ®P Ÿ5Þƒz ºŒãÙ0`nI0é0¼št¨(/pö%‘7Ó'ÅñH\I,kjK1Z^·¤åzãaE›X–(þÜpéÁ Ñ/,.=2~¨[ØôÈ/>€Ÿ!®©.%¨³CóbO±ùð±CµÉ,ãÜÕdq¸ &Dáfs¯“šЄ«í Vj3…Ο%Ä©)¡}¿š(“7Ÿ>„»erÙ~¡ß†5ŸEÚ½=ñ¯-6´eYð‚A Ø‹n;þA¼»p†!Ñ(ÖÔNÌGûÚs‹-³WD™µ [ºBľ|dQf-ÚVN| V3íá˜ýˆ»¼cÌý¯…£î¢Îãlü"æÌÅ oOø7CƒýE1S^F$33g j;lDÞó jkÇý³^%¾à9á‰ðf§GlùùÝÛ5õ¨§6Á;ÂqPϦüæìÐÔÆœ=¶íY{({¶R;h‚ýƒ¦mÿ Ù=\Lß̈cú†Ü€:þ˜¾±ô*·¶»8ÿ¨LÙ8z¬®_!„Uš€ôŸQ»ˆSØ.¬ìBÇåwj =‚w&EÂS¦,ò,jEì0Å«ç¥xÕãÿ ÝeÄ€~U“.u£ˆVœzx£g¾hÅÃÝ¿pÞÑŠmÖœHÚ†V̺G§Çvëxgáæg'¦˜P©°4aO3£1œnQA«°§¨H˜ánõÓa)¸W¸%,Âí|–hà­­¨úùSÆt[éìЯ[6EÉ*«lÚ~%’D+@g¤ÁÞ÷pÒ “ÆóÛ´÷:r›GêÉ Ì l˜ ¤+²;¹¹¯ Ø0ã9¶RÈ0@_ÜwÞ>Ci6œ'†ÝHÓƒ¬#è?d^zøþóä~VöŸít'ÌP˜n¡Ý4b̬e•Zâ¨ÄÐ#Š+ç'ìC ¹ ‰N\=ªc†¸þ"Â×`´#¢Ð‰xŒÈË#Fî2âÌïÌØ,N¹®"ÂÄZ8ŽÎW$óðúŠ,<|¾"ZTåÄ}ElÖŽHÚ.}EDQѾ"[¹|”·†•?‰}˜ÿK’°'®?‰çn³B¡>7#ÝM€Z÷Þ‚LÌË„eÍÎÑ×ûð'Ö¬Q©••œ>C]ðÀÎÖpñˆöÛ¶Ý:˜?óµ8ö=î3‘v:cÝtûlî`)#§23q]oøù‚ÓîYÖ˜9‡)|cèúÑÄŸJ@ÒëG¯ ÇéÆãG¯Œ‘:Myît±RC uº8b‚fL¦ØC¿$fþ[ ¸Ñ†ƒÄ:Ë<öR4TAö­ˆ)®‚Ë gÀ·ð¸LŸŒÈ «cÊËð+†“—$'ýÂ’ä_¼Fqaé:Þpdf¼r‚Ò•}ñ ÊK‡Ãˆ-ôT¦j¡Vl»z¹"†Ä(˜÷ˆz5.Ð×t]W,¯Æàu:¡wé˜/Ò1Ü¢£»B'pΣâÕ(ïÊY‘WãwîŒØ«Ñäf¨?Q;WÏFí¡êÞxyÐ¥{ã8Üã^%dð4ùAŽßÓÑHxÂ@¹'¯¯“rw\´pwDÓwˆŸÈá÷z¢A—ŽT©öÙí^÷˜¾ôù âBõÂÓ6,S¬Éú'­ƒvóˆÝkõúx%*Ðä”3{ÔB1I7Ä›ÅZ¾œ£2ðh˜< ¬·{ztHøßN«uˆ å[-vغ Y/]#]³Ð”ÙÕÌU ªÓ@o´Ÿi9÷s<¡ø„üæE–h4§½¹×ÛO³¦p¥Ãc%h ÂÐúØ!OÔ÷+îiºY¬T¼Jà} ‹;¡àJ§”NͮΦRPöZëà¨ÙƒÎuýa8æ‘%ú§ýfÇÙ¡þ‰:ç>®q<‹D:·Aõãö¯Ñy™ÖŠÞ\LXÔ7B=;=Ž>dün±½í”cYÏ© äNÉ|µø}½ôW:eDt¼û¶ ßžÅ-k†`’Ĥë¤Åo…ib&ÉGlÈ~–c]Ľ1ðÒ¨QaZ½â’6œk×9zX½¢xŠmÖî³~k€sV^Õz뇹E5—Ç '¤áŒµoÃd0¸‹ÒJ¼ßÙ(©ßÙv&yj¤Q­˜["ëm5î²Aû¸%+`!(sð(…M›–¥ úÖ!}ÕkÍb5Áާ ÒpM6Ú'Ö"Ñ]Eý7ÐüœåPežÂ‡Ú†ù pVÊÎ ®ï¸D†ãD—5ñÂ%@{Yø·ÿáßü[†+)ÿ †Ýé4I=üQ´BòJ ·aá d^Ú°Rò‰ä"“Vžÿå–%>/•B8‡ŽÒ ŒÎ¤#ï¿à(: „ŽÆXéÈèè Ûâüäé(\:ã§#kìü3›¾„. ! @Há¢tMá¢tMá¢tMã¢tMã¢tMc]³*ÐR-$¤pQi\B ¥k ¥k ¥k¥k¥kèšÅ(&h™ !…‹BHãR¸(]S¸(]S¸(]Ó¸(]Ó¸(]Ó˜@׬„ ´Œ¦˜9_: „ŽÆäéðI³LŽÌXƇO˜ièÏ8õɲ‰ÑѸ ýÒ¸ ýÒ¿8–Â4³É6s3ã$$l¨Ž•UWÍŒÉünîš‹@H㢢jï“ïš‹@Hc„„h4‘óš¾á‡‚ƒn6VB !]3Ö1Réšñb­6Ÿ#!‹Ò5‹Ò5ñue§H°fLà€Må0|ojlÜÉèˆ({O~Ç|\£±75>Ó¦–ŠÚ… ‚xQž4µqS±:.Æe!ÒRQ»T8ãbò¼'Ë¡ãB¯Ÿªˆ‘¨´D¨Ãb›m3'Êåñqb5Ö˜*Æ#á„–ˆZøÀÆ11vN˜æÈ‰H›µó ¹¥ROEĨÃbœ¼°X£Óij&MQê×Ä“ÕÄU"&§ *&¬‰«¼˜œ&®òbrš¸\LFûô‹‰R1aMÜ?.&£‰ûÇÅDôOͰ¿&îçÄÄ4ñ¨11ýÓ?&&¢‰G‰±sbrš¸Ý 8oíÓnTŒ‰Š kâvãâ|4ñ“&Ž ª&î‡3†íèõpA‚£‡…„¬‘„=çHÂB8 >_¹s!aÑ‚ÅÁe4øýŸ&AƒßÑg|4Ô.@_Ô.@_Ô.@_8ËǤçEùÌ‹ò˜î‹Úè‹ÚxûbÉr½0íÇ@ƒß½l4øý¨ÆGƒf½˜ “ë Íz1™ñP¾ó¢|æEùÌ‹ ÷…f½˜ cé‹Õp9éCš¶Âc ¡0y“"A¿Xèì—c ¡0y“"A³RLd8–'?#Ê“ŸebüÃ1°JLˆ„q̈´Ö i±HdÆGƒqNŒ‘ã¤8w4ë„áLc4Dȧ±Ð! Î{<„/ã“ákÅi˜ð¼°Y¶ÇBÄç…ÍÂ=ºó¬EóyV}òçYõÉŸgÕ½‹Ç$γêšu|ÌçY:Æm§­T‰ Ò0»}ýœgÕ ªÄi˜\_Lø<«nP%&HÄçÅ„ûbÂçYuƒ*1Îó,Óz1N;­i½˜ ±Û›Ö‹ Ò0¹¾˜ðy–i½˜ ž“;Ï2­¤aÂóbrçY¦õbŒvkÓr19&a½Y,Æe:Y+&DÂ$γL+ÅD†ãÄγLëÄDfÄÄγBV‰ ‘0‘ó,ÛEâ<íÕ¶«Äi˜ˆÝÞ´NŒÓfnZ(&HÃDγl—ŠñŒÉÉgÙ.㙓;Ï2-¤alçYKæ˜eµíDàü¦æ¡¤v¾ñʈGLŒd,—Å8! “¤ 62ÆÉ€!ÎRW?gs``hè•Óqð"ZS/Bm£çÀ Xv[=ý|ƒÃGŒ‹ çÈ‹h-}¼0Ž‹sâE .»­Ž>>2Läñq#ZCçÊÈz9+­'è‹Æf±*ÊçF­Ô(&D®õ bxØ4/V$,–ëŨ<+þ<Õ5¨S|¨{µ*ÒB¥¯ïÔ*¹4ŸAËsKÀ¶›«×‹k ¨cb½Qg;ë ±S›-Þ,5êSØxªÅÍ;÷Œõ\©RÏ0•ä4=S6ß—f8ÕCֽ͞îçˆw¢-â]}/_ƒv—ªEöD%· lhìï“lo·¼“dk¥ÜF’U ¨«•ÜMxïÊkð§V¬ÞÚÕ§QËUëeIËF«Óê5­>»×<:…—ÛÝkvX…ÝzÀªì¸9赟f¹9L[t{bp·%·;ô©Ùë5òóasÐdýAïô`pÚk±^ë…§í^ëË€R1E¯{:hwZIv¿=¸ËN;÷›A뵎ZǭΠÏú­t!ÙSQÙ§ÙÀÚ}6µQÄ!½IëûS ÈžjÔ¦D²ÜéÓí£v³÷@ÖDí‚fØ ÚkÓåÖ½Ö˲üQ³/rÎβ½ö`Ðê°n‡­Ì®·nõN¡ ÙôêÊêœè¾­æÁSl­Û¹ƒ-Ö÷ît;PGµ9hw;Í#VnÞêW»½2G© ¼Y;½}RkE¶ÙìÝo9¶z­ã€zÝg KO[½ö•;ºÓzî÷Ù´å„•‡2WýP¹Ù<>nöŽÚ;ÙDƹ9¶Û&´­^>É ¿SÙ-oΤ—œÑòD±n§*çån®–«Åš; ”fg‚¥æRk¸ËÅ6mƒX eH{2¸’'HHmgc/”J@…Îb©i(–¿*å®íìåËE¶[+JõÒNËEâCË­4†”M¢¤qVRæöGz­Ùátʧ@X¯ð9ìˆþFqC­ˆq9Àå ‘°¼³Q™®&$Y!ëÙš @òLZþÌ @šŒC ÌH·9. ¬Z‘KÑ5cÄG߸E•»89_”‚4Í-Á²”/¥% I¶ÿo™Û¼Q¶laá*ïÜÀ—ú>°ªQƒRöª¥¶w·Xsé(> ³gõúiç'xÄŒJ¤<¿ œªzj§_¢K¯~û@W64´VªÖK7÷Zª†­vª[ÐÞ5ƒ*¡­ƒÓAóÖQ D5Èt_@»aèawÍ_0‡Tü¼PØt~ƨ?€˜?aê wÅÄ:š„PèÜNmŠÀÌ0=—«®Íá`¢L{SNݰÍSvêŽB j%J€ãT*eœ\ÙøjÒW¬Rîr»¶ƒ—Üo¡ÖóÄU<ÖÐÂÈJüûŠû=ö h7ÀG$/ÁKõ—æÊŹ- –¾§‰ï7è{)6QèÕø3!¦¿F%Áç'|¾âòzJsUª„Jœaþ§Ki¿{ÜrWXXŸiõºþ²DqÕ¹Æ\–ÈßBžVç3òƒôºbÔ_"ޝi]{R`Æ–¨>°JÉÓšL¨'RÉ8@-KvJ +†œ]y†özÔѰoݯ`¬1”$UP÷öý×a‡ùœ†-Á-  å¦|Õšö–FÍ3–澿¢,ø"+M8s^‘¦“Ó9IktŸ;ëøÞ *¢ž(47w¾Rñåï*˜·‹ºùÌʦ4¶´Äfq4 hpÔdS"}°¯x ¼Š •&eܾ"GwXÐU²¨"î¨U$7 NE`{>ƒœÖðlÕÀ3êv’çÚ)+®ròâÍF£Å0‘p‘†ŒÄÀDñìYl敦„h’x[¶°ãlIY,Hrà­[“ºcɧT…†I£h)j¨.óZ\µiÈ9±UÑŠ¨{†i±ZOè*³µ%ºÖS¼Ž†-­X•? Tå ü´¡WµÓTk ðšp‹i¨6\ È%ùk^*ùÛÛªM‡´ÿ<¾æÍ[0ÇÞS^ƒ?P{a øgø[Ü­'YwÖs\Ù\7ÏT®KƒBánëà)n$èµú§G ò¡…øñ {|ê©Ø"ã^¼¹[ýn}ˆzäþF~„ À³KæÉQˆ‰=óp»\1¢q¤šé“Õ¼;ÄÉASçî|Œ‹ 2 `óf‘~ßæM²wJ½&i'œOpRéC!ÁIž µ§x²‚ÌÔà{i#×6ìöÚJ 徨ÕJ¡»tзͼ. Q(ákž3Tð5?üž9—¯£Å´‚– ¹o&«ŠwØü¿ ÖPƧÜ7ë ×´ O‡åf‡­ÛíNÛWæJ'ùrš¯Ë¥†¾Aõ›‡4Ë/­wùÄ4Úã¨äj×Ý/ SJâ¼Lœ÷'Î{4E{ôUp7ã’ý° xú¤u€–^¾6$AjãÂptz Û‚k²Aû¸•ÄA¡ÁNû &i‡ J¯Q°&,›…9_Ñwš§w¸IzûÅW÷øò{ºËÇécØåmÈ_»aØöm®ºÓ ^æh?í|Ìk4¾EÙæôlo{~cÒXaÚÁxˆ–ï®Um4)Û¦í¯Ó¦ ' P'7äçß8¥ðr2)¥z…!%e«mÅL*žV¹ã{>#טº/30ÎÀ;űÍ7ýá\ g¤S„Y†Ó£åóBÊ“&¸3 ~ï<ºí ×ÿ#˜¶4 Óœ–NŠUKfV-G²Ê·sƪoGŽUÝLîµ#ؾ2$ÛÅ<—£6OÆ™mƒÙMzÛPkZ1wÀêc5Žä<ŸmN#ÆÊ,¤ÚÀ¬tzèÑc „jÔ@fœçaË•›*|Õ ´”¿<¦*m'‰b†žÍ¤üÉÔÎÍš'‰úLOÈÕˆEO¤Š\øØHy1‹Ø¹r|!”ã‹–·7(ZLˆEV¤Š\hYÔZûðL‹¥ÐNZ>ó´ˆX_EªÈ5–Yh7“é+¡L\~¤ûWßgÚ‚Dn™Èj3ã2 Í73íé›Ã#ÁÌ l‘Ó³G°Ju¶%NéT~&åݑ͸‡¢r¯ˆæÈV¯×í±¹¹ñn»/¶¥sê>±X«6‚È Óæ N“$fÉB#‰œ/îÖ 2o5žåzÎîžç/_æyb½xö”»™àv[J>¨¾žA›G-gPßԇƺ@uÜÕ&“EW›LÚÏRFûêKÜÔ{Ôíž½÷¨5hõ“¬ytäXƒ›½nõZÍþ€ÝmÝf̓ƒS<©w€ ¼æÅ”Sl­uÒí Øíæ yÄ;ŽwPÇ-tÐrÐvöв#ÞP± hGd³R݈F,%e/'•Nöêeö%98¥jæ#’î›×ÎÉ}ZíI}UËlz‹³o1PŽA)QœÝwÄQ½SÙÝkר°Wn°R•‹õ:klæªl3Wö£ ×Y®PØ«åEYàT’ÍO1ýS¼¹[,ðÒýQmšÇGPÏ™¾ Òw9É2Ø(–€ê7Ò‹sˆëL*ï§§¸0!n¹L †hÚ¹Z‘ ¼ž:&‚ÊË{•*EKY ØOpt§<Òº¾W-4ЮX~: ñH5ûåš,ªG&¬ Sì~—¢óÙÔ>luxŽpyœbyœb>†Ðé,X›~­”àÖøÚÖðÈ6k»¯ÇœY®y%’"—-¾"yå½¹äV™~Ë3ÐâàA}x2¬ç@öQÓú£OHi;%`¦yaЇžu:â L”~눛›Uø‰oö´^xêÌ]LˆâMñŠHŠËÉu“K"Uå< ž¯üÔsè–«»ŸFAõ då ÀKCçµDTq“p(-¼‘©ÂÂŒUÂâsÖE²È‹Êóèæ\$,K"ùî †ÌÐ(¦H¯aQK:„‘vëoÀýÄ@ød#>gâ½-L-’s& b`Ø8ƒhXÒ-# ôõKÏŠ ajÌã®>+!«$Ö-@â¬Wˆ úÊY‹<Ð\¿ ßõ<Í:§Ç·®Ñ쳓f»G(˜^³sØ=v~:í´a©8>z€%¶ûƒ^ûÖ)®V·Zƒû-À³©¹E:ì„×ËåçÌËÑÿaHq_ @CÞV¶”ú›÷Z¬ï œBê¹ëEÿ$32œc€õ¢B:!¿^Ôx ± Í£ö3¸‡G^ÜköÚXL_f…§‚ÒceU‘ZÅ ‹Ëî7˜Dù¸åý¤_c)÷3§Å3g™"8y»ÀWÐÖZƒÎ&áƒïJ¨£m¡âv«{Ú9TfPš¦ìâœáz›µye.Ä™d6¹”\Æ/V“dÁ8áÖ=d÷ÛGGP¯°ðÍŠ6cf1,ã¢6OÚ­¬€:íC‹]v«×j>Å`È+yn=`ý§Ú''ˆ”Hs–¸qaK ŠyÔUè¥™Š„î\r¦"W8ú©T*5KÀ<¾qÌ[ÉËÝòþJî ´1-ú—cÿ‘]¼}Ï?<Á×\‰ËL=‹XV'|È8ºÓû­Cˆw å†èãˆþµµÒ:´éf’íKÑ)‘‡—ÈD²Ö~Ó‹Ý#ã&ôü~hWSʈ­½«³³Ç¼·“±Ç _¾œcwaµ?l øž³Ù6fHÔaíëßíž^.äç±TúʼÚË> ì&M¡p-³Ž8K¶öy´zÜØáÙÙ6­€.õáöZV*—‹À„ë¹ò^ýÔ]ðnu¯’‡4VfЫšÁÖüfVHIØü¾ëþÎͶAû&Ÿ>sŒO1ÇŠ|Ž9S O`àÿ&럴p¡¼j2¢(¡t1Ãplñ±Û9zÀÕëÞR` ¸0¦~Ë#ŸŒ­§ÛЃ·{ ‡cjg~•su,ALF9×D­D•œÎwA¥8‚9ϼEøó—˜ò÷i2¦GkÔÐ°Eí ™±”vöö¥ä87É!Šþ¢ÉŽXè' •DÍ·@EÊkãªÐê>óHAaÞ³’ílóÕ,$UX˜) ¥€R7ë¤BíhAà1Jüz HÐÀ)ëƒ7!FÅ"íf°KM”0&ïSH7g”Ý ˜㯑‡sB\ÝÁ‚Á[@pß(56¹½F¢ž$8lÅ\@Øãúà,òx.$ Š¡6Þ:^_έÏ_[nMÔ§¬*n}ËC¶Î×"¥TßjÅ ó,V?vùœý9jžÀ 2›ËÌã 7ÿÌ­£æ 3×Øc¦–èuyi‰^Sþžl*y,Z\Z^H§–àûôÂârú1–! Æç´?€Å‡=+W¿yÜí›ÒA²Û·ÇAÐxŸ)Ñá ›ˆs0×ë{•J®¶Ï@îî5Øz©\|Ü=Ž‘9ê åTÉD©§ 0¤2¹z5·;å-¾©oÂò¢>›Ž*\æÂä,*ð†‡*­³¹rcŽ¥¦_—Y#É2z5ÐZQ+Þ(|ö–’[Gíº˜+lÂï…ÚÚ\hõÆÎ.CC®TÞ#ct#$5Æ›à Š55÷xziŽ[Û›{s§¼æ*û”º–k”v4|v¹@é)ŠUõñK³ h‹lU¤S]°*e[”¢¦Vµ+¥T-Üd9\þª…ýDZ<èÎÙŒ¦DoʬUé„5{<‘šK%áß4K¤w©¹åäljnu:PÏdWy-jËOÏe“³é¹t°|ÊóÄF±rº“Ñ0&\I•w“x´ú_v¬ú_&•Y êK—úß8ž)Ñáç¢ÿ=Cª‘½Ôÿ&¤ÿ= ºUÅZc²LYß·M zuʺ5µm[:mSÒµ¶eÚ¥œ´Tº|Æõ(ë?ÚýråòüÈë uѸþãóXžÔrzy9†õ?»I?ÆGN‰æy–¯ÿšþ?íK¹ÃSvebJ5íý»­^Ëû0ˆ éµ`[Ö¾×r‡—pjjê#HÝoÞ†”íNûøô8Éú§waÀ4,=ÏSvauº¨wû¨{_-û«¤WýOÔª&C0™® ¢é+…$0É4;lßiœ›Ž›A»ßoªY¡ó(+ì 8ôª‡ PD€tÑÑ”‡ =<¤ \uÃu¿í¥»‹LÀÐUÝ"zoµncDÛÄ^óð´y4ÍràAOdw~z{­þÝîÑ!›%ÎÌÌ$°ŽÙô´·ÚæÓ˜¤Ï„tø«Õñ»'òÈß”ª ®¯ žžI¤gÝ\ê^Å¥PñÛ©“‘¡ Ý‚WRI¦D¼¢Œ„nëBú•juôÕ|’¹ÁÃc–(P\©RªÂ߆¹Eù\šT¤ÔEJMa 1I’ÕP2ÓËMü ¿z©=O }‡êëTD½ºìû5 I¯C˜à^LtcÒóŸCj©ŸÞrpJN=š‚H2e4%ÅÀÄ‹Þ!þ Fpî—ÄÎß>³ñ/ö‚†¦5yZ*Í5r:¢Ø¼€¶°y-³ Ø5z5/gÚüîÙá¼KÈ'¨`DÉm³“Ø4Õ7yD‰•Ép¯Í¶‚,5@£‘Ç®yã~3Š®É0^(òŠ¥g1Š2ü7ï\vÉ4 ^X x/Í[–‚ƒý†ñvë3˜EI|À–Á‹ú%0äqÇý’ëó$¥‰Å í¨yr®GÐ:Ï.˜åYTÙ¬l¼œ“£S„,Þj’¨I5ïuÛ‡¡ßí÷Û·@™< ç± yŠ9hò ‡Žä¦‹GÊÅïåzë‰H¡4ŒH˜!iy…â9Ø©úY‰VÒ¬jx’”»éÀ¸ ÑÅû@$Ýõ|ÙëaÙ‰Úˆòa(ýoÊ¿–ŸD@xþjXþFDæZXfw1e¯„ò>šw{¡ÕGç/‡×ïÌSþðúÝüÞQ(Ùk<©ø’‹H3ÎÙââ%x@\bDS¬_¦ ÓRJË%©T,ÓáVV£*PS’ÌB7Rõ’È oZÝð*ÛeËî´ò »O/s›|/F„Yìƒ)0< `9m„ET±‹žd𽉠 RE• lMD8"ÃæD”‹‹¢§\Á~ýö\z–œôº'ðâìa0Ö6­®B™f°5T‹8¸Ûåî`nJ>“(i`4Ça÷Ç͸óìâZ°¬Á®‘üÿØÓö!™ °e÷!5”qÿn›ö…JwÂ2Öí{ m úƒxíÖ } ñ4eâ2ÃáBó䤅z>7]baÁt,X-dŠò`Âä€Õ(}Ždg¯Ÿö¨äµÖ Ù>ò(uX5ÜKëÈϰÉ=ÔËìPþ\¯á~Æp¥ytÐ=:–£·Ý9èÂôà.ÂýÓ;¸µ#µ’nÀH>‚ÝY‡¦u¥Ùë޶¼m¹;yY\eŽåæX"½º òCÁÁã]y­{-ÐÕùx´É3Òe(MÔ(fOºmÐÀ•þ 4yNÎ…\¡’déÅ$[]X]]L»Àz—ÎsHˆJ-«Ï±<'lašUh£ íqt !+‚ŽV‡Dæ'¥é®Y†Žb é³¼4›Y^ž;ŸÍmü ¦¥áÍ2—våÝ%¿Ív’ëI¾w~Ao-ƒ½|×€º=WØQS ‰iyK¹io—ÉÞÎaŒh:‰ù²nŸ{qöh¡îùNs  4'ø‹bËàðt©É[-_àÜ‚D~žòΩµ4î‚x¹sDŒˆP'…Í}rƒ¢*nËhó¢—ʃV§Úk&ÞQë,K’$Üí‘¿â!Yôî¶ŽQšöZwÚ}\™“Þ%ó`ºæíÛÜÑdX÷dÐ>n?㚪ù#ãíÁBreæR33ÇŒ_ùIœé£cú-uûm²MÂÄoÝq|L&G/ñ¾Øí£{…Ì|C°éÙ#å¼A> ²ó®ˆ/nl–(â>F¡ðwå]LÎÝMÜ?c…™o ¬•÷H'±fO“æòlÎ ÑëÍ\úŠò™Ú¢r§ ÉÉú[:Ö‡pÞ-Ʊú8 ø0wg0çc}>Èz… y®'ëú!çö‚6TŒÚ 9]ä©òa}×r8s„69‡Ã'ј#­ö»·º§=\Ó¼‹›[Œ"Õê‡ÌNTßnR233HŠ7 6ÀñN{-ª¨ßUgH«Ý&e"$ –Ù@a8$•)5—YD¹p€¿8ò‹…¶BþÚÒˆ¨Pˆ#8Mü%O§Ã’äXTS .RCU?cžd*¦‡†B‘~–;›ˆ FØí¹š/×r“¤ˆ5yë•‚[íeØf‘Xé0jÒ|†³´)~?FÆ÷;0C3ÔË^›ÛºÒ¼<šÉ ‰øšVÂ"ø¸Ëº‡ ჼ¬ªÿʰõÛàÊåß`Ò<½Ža‘3¥Þ`A>ªÔ…®Ç÷µ‡ ôj:¸Ý÷èù´j*ê½2¥¼z>ËCßAfj”tIYƆ =9j8;ÁÁýnpnæˆ.ÊsrÀãÙƒ.ÛI²öT…þÿT("· ¼m3é‚™º‡‡¸óBÓ! H% °œˆ@³ Ft³sGYÃA€ÝEÀ›…—)²ñ‚Xu¨6ÒÁ~öôb#LÀ‹Vç'ß·¡I¸‘–=,»¼‘Á¤"ø–”_ß,¾ÝF-‰:Qn‘“ –ô–ÍÀ]#qYRœ¼ùsÔ½#w£´•'¹½E±»ÝûÐ)=Œ¹¬Æ£Ì¦u¥‡z 2âÒ£”ê]T¬ˆÂ:—‡/–·U½ˆvÚ¥RHqEUWOß”ÞX(C+/Ù!•"þø¯?DBr3> ÇF¦Ød-—]o ñQ¬*q¼â4êæK ]>†Å—\ÛamLÛÚ˜ñ[ùgʉPQ=zlÆGõ¨5dçL¬r^ãX,3˾0PÑv‰›¹xû°”#Ø<]Ú+{%®y˜ám~n ÁÓ®Š/¸DÌòÐìܱíŒ$† £SlFùÆ^‡„##ÄEôˆ"þ ¬¹Ò®Sœ¹CÉNEtMÒ9PËgÇÔ2Ú…$?ø 8í^Ð"âµ%SÔr`àpø”»iŧæÓZ>9§·>æøJbŽ„üøGL ÎPKf`&¥å(²áZŽBNáO#¹rË+Ùºhâ¨ó¦³!Sʉ–ܘcÛMÜp )‡«.Uüø\Y‚`Ã*W¡‹bëE•þÞÈÕª¶†ß*­^»ÕášCùÚVæ‹[¹‚r©Š2ªTˆyt È›¹ò:Ëb™¯‹e®C]¹FHs}õÒÍÆ¦ LÚ,Õ@iÜØh.wu•|— z8¤t½.ˆ×EMÉCÝ6JŒõê²¼øÖr9¨´£CéIs·‰.¹… âð+±dØê.aî7Òï|í~Ã|ÙÁP 6Ñ¢jk™¯[ÒBï1Ы{LƒÞÍíôðf̆za§?C½8¤çp¾D(z®Ÿ£œ‰Î‰¼Ó.-Ðô‚&Á°¯&ÐŽ8e^Ã-_5€Ù² ¯føüO`ÎÌ,²é^×ÌL&pš?/°»àK’$ñ§Ðâ?wˆ.$ÞÙ‡•9C·ê&IÁ«¯a yq“GB¸†;sPXk@³ñ N¤Y #RA|J¤ñæ/®¬Ïf§§•ÃûíVë6ž÷Ú|{˜“ˆØc ÚGa{Úùy*œX«›A{Ðìàœ†IŒ:9—c½Ö½v÷´Ïrž]ˆY>{}RFAˆº_zn`ÎzúJ¦wf3Á2¹:ÅÜÛ¼L§Z9%+)b¼<ÕüîHÖ…„P÷„ÎÆOLÌI¹†8k‘V”š‹L'ŠÔ%$£¼jÞ÷ŒKI:Z"9eÊLw~‘?h¦;Ýrå&ÜUà¹Ìû”HX¨Æž6”Ñ¥k`ú³|¨“*&vW°ˆvºL Bw ~²o¯ÎZswæ’è`~Ó7o¤hÒlUЉ$g­È¥í×”`/?û‰Õ(:úµmÕZaç°Ù;„ýçÑZÈûš–šÝ*à'8Çî€jÓÿddøSî}×ó-p­"×3ƒ§^,`öö@p°ÈáÆÇŸÅx£•³*»²ête:¢+é&>É™ÑÏ‚Æ(aa#$dR‹Ãö‰º1tPw©«4Û{Y!§ ¶µv3RÛîµìOÛéÁè Ý£>ÅÌH•cóÒhO ‰ºÀé¶ï|‡NZ@ˆÝãlÖÚ·y4]|C”ãíSÞÕ‹W©-NAN‰°KÞȵeÓ¯°“fäúýÓcŽgU±@ PÒ©7€ÉŒŠ¦5÷Æ™[ û(ð2PÈ0¸´[l‚d”Jñ¨Ó™9¬kÎá‡âÛî8›Z¾É›ƒîôN‘²£Äî]´tÜê°Gwî¨PÈóÉò”6Én7Oܹ‚¶}ÊÇýÂöI.š^…‚¯…ô‚÷EÉs=üŒöûxUÆéÁŒ.´­¢JÇ`ð5·u²¸¤CtžÏ-ˆò7ûZó3ÈÓ6Ói€«¹úGÝÛ·ûª‰Ô{ \ãsF±nxn‹B›®oè(¹¤IŸƒºgÖx)îz»Ó<:z¤0åÂF@!Á=²)s“Gî¦a¿¿èÝïsë7ŠJ‹•Çcí¬g¹|#SVü’8Tö¾”Uî$VV|Zjâ+rS‘ô-ÏÃS Å@©º1Gænn.§ÚqØÞjq¨7Z®Î,K21VñJ’Íû~.݆MÔmŠûÞÁ³Eî¡<ðVsÔí>Ք܄}Âl'xµ.âçKŽ­ ¬üºzMœt½§p#ÕÆÉ*Œ!‡-Ḇs>P%?&Å[S±<LJ&ÙÉÉÑNlëé“£öA{pô`ŽÒÂ0K—Qw\œÇ™zD4 2ñ¡:=7ûãtgi'ˆº9i@·a´pWÊáÌy&Ü,„ýñ¤×îrhy®ôà²Ñb¼›ÎùÙú“.¤À{ÐÜo èälj-GmJƒZó°Ç¹5Ïk€óÀ>š2¿Sä²Öµä%¼Tû©‰ñ–”Ã~dT_ñÛ¢{RÃÏÀÝ’ãbmF>áãÜms(ñA=Ìg’ Ï4aMfkx¶™ñëNþŒ6B¶9J|öõyíµŠC¸ïŒ°èÕ¡ó*ì5T‹á)¤É&.>d”kê/kün}w> +Ž=`¾*Ÿyë¥ñ"zS¯ÉÔÿ6V°MnlÜèÀMùìe¨è G%SC©ôŒ>1Ø&Âce÷Æ}Öèph2YÔó™Èn—í™Á`:3::³!tRɤ3£Ù}9éô·ò1<Þ YæƽÌ/JXê®ÄaòíÞ£F%bñÖºk|‹)¨°P YsròdÐW·ã¶3PðbÒðâõñÅb¸Iˆÿq(jkß$ SŸhk|…5oõØiØÆ‘+Xóä¤×}º} 6uà„Ãå±'2¼º·ôv–{7xTðâÈŽê:¡ ‚: ý$-×­§›h2åÍ*<à¶ÈB*ÍfV–2‹IªweV–Ó+ÓJõÍ£~—Óо­ì˜i/Š]¬EöhÇÒírö*€Žøùà¨Û'Ä(ºkL'Éz –«Üvë°.¤×NË0»f‹1"òDçÂ{©`"Bï%7 5»-„4¼òŠ¥@-X.Ρ“Ýøvû¨yG ­ J€p´¶y”Õ°e<æðDç äL’Ý*C8§]1!¡ÑaÚÎÕOmÑ×礓ZFqÃå0©œk£¸)qÛRI%¦[¬n¹[¼™/5Žus·¾WáðIxŸdUþ}£¶+|c¦§¼ià X¼“ Þ>1Aå8.̰²³OÅæiÖÛ=Tr%AŽÑʹG¬ÜïrÑNÑ2|Y  µEngm Sù!| 1¬ $˜Å2Â4+ ùnq÷=rBísܧIêV&²'¨|Ôr¦›Ø¥õZ/³Ô `9yË’3,.Ö/Ä3Lè"®ðàšÝ ïôZнƒ¨Í1'«]©¬[¸VuZ-n†eÑÑÓç^àh‚šy…3Áb N¶©¸Ä Gq#ã”4Š ñ1H$òÈú_&}ƒ]2@fÅ‘<Ë×Vtèv[$ÔQöÿ~¬*Ç-þ$;p×í3•¯ƒîê4qWðUªÆõEe4„°ß1½ð)Âï2.וS¦b›Vìi…ˆLÅ¡qxè'PÞuï%ÏDaR¸ô´ñÌí¨ {Iptw‹;ò(Çx¨+PB!êµNz­>ôšg¨J¹<Šß‘z š@Ø+ôšî™å4s|4„Ž…®Àx¡ï1?¡ø€þ"ÔcS¨s­uÀ®7Ÿv UÉhõî6O¨gÝRŽ» +y³I$Ó¡)ÊN)•…‹sóˆV1ô)QPC¥Û.öµwÊ•oÑá á…OÄùB‡;èe‹ =`eìÏãÓ>Yòˆïèl…ÇF’¹¨°¡JMf|—#³i®¨Í±e-#6'‘*3D·é94¹eœÂ^wAÎל:¦Š'ýöQ·3å˜ÂeØa'E]¹&ÀMÆÙ”dùf¿åþLÕŸwåMnîÔ®¤©:z¢kÔ’Ê–›û¬+ÙjÒý¸{¨ÀÍZJºŠÏ€¥éOºŒè¯Œ–%uÙg R ö%Ý „ïç÷–óä.”p†MO1Ñ7š¡F ˜J*A›}YÕNÓgU6û2çénÃC™•Ã_^§Ÿy•@;¼aýÏó6ô=#@[© +óeõ |ÒŒµÆ¼þ1£«×Q|yƒƒ(Ð\cÞtl[Q4ŸûÞaByÓ œñÁaTtë¿uÐ9|„Õ“ÅF©R<³±þ§ñ²/ïú¿´°´x¹þãáÃ"qW/ªk‰IŸ®·nõN±2P –#ãˆbs,ìa¿ß>æ@&žáΓ0n­ƒn燫¥P%² Û Ë åëu铳„‹³ ÇG˜O•±âNjEïá'øaFC}®{óˆÜ¹Z-·Ÿ@sQLÍGS1ĬøðŸ‡Ð{(4åN‚5Ztý5§!iwùÖož(ÃЛ§Gà±ÿOžuˆ”ÿiÿýKK™ËûŸÇò\Êÿxò_+öŸ¼”û>Áþd„àòl’ÿÉKÑ?¢Ç,ÿKÕÆ“…ݽ'Ͼˆ’ÿée¿ü_N-]Êÿ±<—ò?žüGt 4gpæÈ˜Ö€¦Ê^4QÂÿfPŠ“ÜÅ¥HЬ&ÉËfÜìä=(s‚øÕHÞKyûð=áòLöŸ´ÿügia)u)ÿÇñ\Êÿ³ÊÿGßð wŒ°ühЗ–Ÿ ô˜åu§zvÑOO¤þŸYöŸÿcòKù?†ç‘—ÿ.Å3Á ƒVócÝð'ü2ÆâPºÍtO QÆ/æ?yÛ“xyÅq«Ùî9ÇO:æ’ZÜ%ÆóÕ“IwEáiÜÏRÙ&—ã{Íö‰FÖí`1@Kï|¼]}•_â~)KÑÇ(ÿLJÿZXZöŸÿ...]â¿Æòð)«â¿/þKçã¤q3ª¾«Ô@­S•ƒ*Ó©%…·‹©ÔYœJI¶%§Æã¿¼»™K²Üõ y(ü«î€Ô´ÖÙ5¥Þm™N²}ùvx5.Ë…$×àÕ„¬Ô×'j-_޹ ¢ÔiÚtã‘®öUømÚßV=ð[`W‰®sŠiÀæÅû’ê<¾ïM‡…Ì–”ÄU'0VЉ:šÖÌlzq-åPÜ@í"„q†ÿØZîæî>ËWxtïÇÕ¸œ6eSl‹·ÉṲ̈ö¶Vmˆxs…“7sÓi°1À­hÆ,½Áï³A§«Œ†T Ä#çA¢YÜ™ŠA€NY™ÙFý~RÜ­Ðçîã)`…MsçÃy&2º¸='ׂ?j™ —ænM–}ÃýN…6$Q@‚:êvO"{nÑØs gé¹ëž3õÖb*]® \‘I 1‚öÚG°ô`4v@!ÝiQ:é?ÖU¸;vOÏ,ûD†wÓ9½;+zizÄsjŽº^LÑF]?Ê–Ø4£m:Þkµÿ#͵ÕJGcã¤ÓE ‰ºÆÑx&‚•Í{žŸÌE˼I3ØêyGþûbÖMññˆ;‘à˜ì XßFLÒŠ~!*M·žG\˜ÔÄFñ6s9¼ÅS pY̲RL©sptJxLÞú$Úb|Ô,)Åä+m–˜Pb\ö1 Z§Ž>Yî¢RnÑíâ@Çö}äÁ7²ˆ¥ˆ™™Vìõº½«Ìå½:ÿ›}ò‡r‘ÀtRÙ¯ïå¤qÜLî+"G¼Spˆ¤j:©BCSÝLTi]¯ú¬Xn5#Òÿ4ú?l4¡»F¥ü?mÿY ØÿaSp©ÿã ŒÖR9w½XK0øS²’ÛÚ©%ÅûRÕy¿›k6ƒ6¡qoV⇋n’¢†™˜è  ï\^$ J´è”i>ÉS‹ð#.QÌ¿B©€OXvÜülS¢·lP¼rÚ·÷˜C_<ïö8ÅŸ4w5Å«µÆ ©¨°ëšs­ƒÒökÎÕ. ÅoLåüH,dç%‘Çûhä?ŸÌOÊ!|v¡!ÿS™¥åÇÒ©l6µ°¼)ðü7³|iÿË#M%Â$úçŹyÜ )&¥¨ Bv ±©ªF|Á”RMK†²ÓáòLrfš=W¬ ÏMòLÏ{®Èˆï¼•<´sí">šùÔ¼ßYIÏŽj¸‡Îÿ¥EPü2Rÿ[^N¥PÿËd3—óÏ'Ϧç2âkÿì%ßöøÂ*K±î­Ï~üS>e¾ÜêÜÜEKAŠÕæ×Û–‚ͯÁ²¼ÖÂpãÏþãýA¯Õ<~üé—ÿð~¥ÿ1?ò!¯{ðù¯þ˜;ßóü«w?÷ÍŸôó?ðÜ×6“ßô¥øÝóQ[ßöéZúùOxó;þÏ[SÙÇîÝùÄïøô—~éïî¿ÿ¿ù‡gþþÇþÉç}Ìe^ôuÿøWoyóßT?hçmý~×fßùºÔçúg~ÐK~ùþ}Þ`ᣮݵx hßðÑ_üe_úÂ÷¹:ý±_ôWúÆO}Í_N}{ùŸõÚ/úoùš¿-wÞÝüÒ'Þy÷ýßëçg*/}íkãÏæÒw¾mþé…\ñÃ^û²ú`¦ý–×~ÚƒoMþøÛ^öî¯ù¹¿{Ûè‹Ö¶Ž^ó­ßuíÊëžÿëOgÛÅW½ó£^så—þ}í¾àmßûs÷~ös^ð1ù Ÿù½ÿŽÛü›¯üàû·üÝ[ÞyÿÇÿuæK¿ð'_ø¥ß¾ô3ï¼òÛoÿ˜8ú²'~ümÏñßüòkŠý²ÿùôêKë׿7ï?—½ªóÉÏÑÏú7K?ø_üÚO¥îåÿá>ã‡ßúm‰7}ï¿ø?7Þï›^ûâÙOûÈw~á?ÿ©7¾©ôÔG|Ÿ|÷;¾ü'þí{¼ýõû_þ~O¾þ×^=ÿu¯]þ÷…ý‚ÂïýŽý½~üÆG¼è—ßõ¶âüÎë¾ó{þñÞøÏ÷õo~ë§åÖßçößþçû·ÿv÷ËJßöåßý…ßðôO|ݯ½é µožù¿ïõ 6gü¿dâ‹n}éÓ?=ÿŸüuo}ϯ¾úðË>íÆG}ÀOÒ¿¼ò·_üòßóÓ9óõ_ó ßøEúî_}ÕÛo¾î‹ÿû‹>ûdóýó+ºú¦?ÿš7¾xí_¾öã?ùÃë«·×®}rûÞ±õ¿ßôâÅß¿ëËÓK;ÿýåG?ø÷þú/ýù;^÷³_ù¿ý–?ÿ¦Êyëß|ÛË~ûS~¯òËÿäEüøß½ùU*¯þÎûã§>åUß÷¯~ñ‹~ìo^õÊ×ÿöS_ò_ÞþÖÏûÁ·Þ~îÏþï7|å{¾æüá?øÝŸ-×~î?ÿ»ÿðÁµÌ;+?ø+É¥Çv¿é¾¯÷OÿûõÁ‡þÁ÷fçëퟺó¼_j~òë—þðû¾ÿÕ¹ó£w*ïýþÛk~â Í7þão¾¹ÔÿþOÿ°ûko|ÎÎéûþÙÛf¾ðð9ü›/}îüíOo¼¥~Xüÿ¾9õ|ï_ÞÙŸþ±ëö§ÇŸööŸûœ'“¯þÒ[ßýÙ¯ù„WüEåŇ}È«¶¾ê¿<ñ5°ù?wÞü†•öŸ[ù’ûž¿þÔÇ?îCw?æv^óªûŸù…ïwã½ÞýŠw¾ö÷ï|Ðû¿êGÞô¾/êf ;µçnÝúÊë¿÷“ïý~ë§ÿ1ñI¯yÅ{Þ|ç—üÜá½ûšŸÚù‚ç²ÿÚ/ûÀÙwcé¿ûßíüþ·®ý·÷ùñy}nóï<7wuúS÷ÞýÏÞ÷w^ûS¯ÿ¯/ÿˆÞ믶þÅÿú½ÛýwâÏOÿöoäÃ>ûÉ/þæùǽ¯íüô3O¾úãò±XÛ¼ú ïªþ³ùÿãsŸ~õ{¬ýÞó_ù~ß8scé׿ñ·_ÿCñÝßóó¿|ºõ¿ÿkJ?ñA¿þà“¾úîàµÿãÊs?á%ÿñGßóËÿáꇼ黾áÿû;?ã=ÿôR™ÙÄ_¿Ïû]ýµxÍo?þ™ÏþŸó¦—d¿ýíïXü¡ͽÿ§üÎÔ‹~ðC_õŽïI¿ü9?ú¯Úòk/ùˆ›Ý¿ûçÿò¦_ÿ®æ_ñÙÿâk;ÿùÿûÓ¿X~ò}þý;þqåÅÿö“¾â?ý«×tó/ý„×?õâïüäþú÷ý£ïü¡“Oú“wÝèßþîûïñžü¢•ç-|ßê?|ëö‹®}ãûÇÌÿÁã¥ÇçŸùæk¥ù÷_þ¿ô‹Ë¯ª}ýsŸyñ7<þå?´tëS¶ßã-_ÑyÛÝ·UzÛßýÒïú¦oüÔW§þúnå¹/}ÉG¿öÅϹöÎ{ßò²g>ó¿õ_þ}ŸÙÿ‹+|Õ;>þëþôׯþ‡¿ù'?ô±ßþ©ßöU¿Úú­Ÿ¬üÞg~èKv?ó#¾îËþëó _ðMßð¼ÓÛ¶þÓÇßþéïü°ÿûòW?}ò›¹ß[üÚ|ìúË>öûßõ5/}ò½äwÞkÿ·wûK^Ù|ÏVþëþÛ×5ÿø³þÉÇÜ[z×ÊŸÌÿÐc¿þê¿û¥_eoýÝW¼Ï>ñÁ÷i…ùoZ½ñú§ŽjüßöÖ×ç_ø¿¸úØ×ÔïÜû¥üWàþ—›G¯¼úÿ)ùS3ë¿÷K¿ö_ùõŸÿäÔññO<çÿ}öõéïzõç½jù¯òÿ«òܧ?ãOÿ*ý]¿Wù„/}âž÷ßóÚ¿øœŸøøûÍ_¿ùÃ?ûÌ?Cÿ3^øäÞWÿÔË–Þø‚ù—_ñkßðîþY¯?é rßÖù­ŸúðùÏúå¿õW¿ñ–/zÝ‹~îÕVÛýúÿøÖ7üòÇ}Qî[ÿþ,|{búÖ[?#·øu¯ø7¿ó›¥§?õ+ßõK/ŸNüã'}êKæ›ÿú}þèÃ~eëÊüÖì^ÿð×­5¿ý?¼î'Þü>o>zÑ/þ·þ»ÿû?üº¯ýŽOÎ?ÿ‹ûÅ..}ÈW>çÇþþúg}ÆÇüêoüíÖþ¼Y~ký?½ Ú™ÿ¤«?ÿQÿ6û?÷;3ÛßÿÖïø…ÏýµÅOxï7÷>ès^òÁïZüæ¯Ç[?ïÅ_¾óâÏ~å¿êKþöÓþÕG<ñêÜN¿ïÛ7~øû>µõ?®•_óæ¿žúŽ_è<ï©ïÿÎ?:ùÜOùO<ÈýÛg^³üÜÚþ»¾à½²oéÜxYåe÷wŸ÷ ÿçÓìÇ>rë3¾ù¯|ÿ'¿ÿÝwó“þ×Þ黾î5?øiù×~Àqþk?%ñ²óóðþ¯¸þSO¾ëÞüGŸõ/~sö«ßüÿ懯}Ä÷}ûÁ›ò?3÷ÿßïþÚÉíŸ~ú½áÍú½?üƒ¿xãý é·üÕoÿâôÏäó?÷k¿ú§ý½çm}üÓ¯|å{m¼åßþÒ••—ôVÛ·?ðe_ý¦Ûÿì'OÞñÇ·~´õ—Ÿ´õ;?³ó9ü¿~襟±ñ ?þÙï¹òëïññ!ßúó ¿úݯøW½åõŸþ/ýØ/úØø¯~ûü£g~g*¿ñ“;¿|ÿWîü{Xâÿô³ÿìÿèë¿êK_õ¯ùYvã·^ö[?¾ñ+÷>è[þþôGßõæø›¿xÕ/¾êÏ>îÝûŸwíïþoúùßò¯³ïn¾ýÞðÖwÿõëžþ¨nLïýùë~ô×Þô=+›‹/þôÎk^÷á{ÿôS_ûÎ?L}ÀÏ­þåñg¾¶÷óßùÂþ…/:ù¨?|óËÿäkK+Ÿ´ýНüÔûÊOÝþ¨é;O½fñ½_þæ7ýøaý/^ó5‹ÿ{ëøg^ú Ÿø+Î{.&¿ëö¾újÿ ?÷¾QxÑ :|éÇÿØÆ7}ÿWýÈsÞøæñ>…'þßK¾æŸ¼|û˾ïÝ_Â+|Á^Ùý…éoÙûªÇ翨ÿø þ"³ö•ë­xåï>õ‰½ß¯ÿÑüëŸxÝW½|éê·®}îwþÓ?û£wÿî}Þ'>öÙ¯L~ö{ÝüŠ¿øúýÍÂüLå¥/yõ?äÖ_ó9 o{Ó[V~ñ}ÿôù·?î…Ý»÷%ÿþÿí×úëöÊ¿ÿߟúÉÁ ~îög~èŸþàß½û»ïÞ·üÈý›Wìý|áw?ï÷þà§ÿ~ó•ßù¹÷ÿþûƒ·}ó½üs?ú ßýÄ?ÞÌ<ùµo.îÿx×üÂÛ^ò3­Î¡PIàê1¤½à›LzeQ~¹” h9KY-çÏ?íÓú¿³ô‘Ÿ÷ö?{ɯþË7ì?÷GŸü¸¯^øO{æ ×ßø²Ûÿ1¯-eŸúäŸ_zãñ?üë_ù'¹7}å{}â~íÿëo¯~GîC{Û¿~Ç/?gã/?òå_òœ×~þÿã—M}îÛžóî·ÿɼñK¾øþGþñçßyÙ‹7~ñ«ßûSŸøÁ¯üÆÕ¿üÙ[ïü¯øüJò=ž¼ùÑ_ÿ×/~ó›~þu¿ÿÊßÿ¥í?ý¾§þ÷½ü9ÿ÷‡^öº½÷û•ú޽¿úñ«üÊÕ/ú|ûûŽlö”ýÈç?õɯúÞë3ïþœw.¾w¡üÅÏù¸¿û¿³õç~Añ·ÙëþãŸ?çËæÞô±ÿì=~ÿÛÞùø“oþ?}ÑO~òíïMýêÿ»¥ïjüÕÿyåo”§?öyåüêoyá_ýÕ·ýùû¿è£_µýSoÙ×ýÎ~ïëO>ñÿ?#ï, Ô£ënÛ¶mÛ¶mÛÖ·mÛ¶mÛ¶mÛ¸ÝçVŸ3ø'=K½³U«’zóT’»>;RçYJlðódê=˜¡dƒúÒèábnžúµY8n-¿ŠÉ¦¤Qìmý·òc%†ô(;ØG0ÆÔ©‘Ç‹‰Ç&},MˆGc«ýXbTðà¿°%©+¥ óÖmðØ~b)iŒ)~T¤“²:+®0÷dÓQJ¡jý©-}, –?ÿ¯ùÒ$"²'ï¸\£Â¾ýj5)¯À9÷3O‹#óª·O41®¦žÅ‹')‹.PÐ d>Ùͬó!Z‚åEÎÐ0$þá¢ë¦;óša>A®ç_*!¶¼þõL¦ Z@î:ƒœù¿–ˆ¢½ÁŒ-x"Pè8­JŒ„ü¿“»Ð³1åþTEз{À­Šò4Q@ý¼Dì Å<“ ÚJ¹ßü‰ ÓuK Xôò œblS«Öd© ˜ö¡cnÚÏCEšb¿!‰¢Ë±çróde• ØÛÖð]›»M†ÄlëåŒõŸ89I 4Êû Á 4‚ÆÈ™e÷^Oõ)ùÛ»DP`s+!ÿ(=®Ž¥ØèU]z<3¿x&/ÑQÕCl¦;µi¡% h duà¾(dø,+20åoÎÔÔš¤Ê,Ÿ,‡’QžyÅ~´Ö ½°P„8f®ÚkâÍyïGÒ1ýb(~³0$K.€‰°¸3ÖzS$à‹"Oõ´È´Vío^¾en»ç‚¹Ø'ƒYïsòÉè@Êa è)À,æá[FÇ:²ß ØõN«–œ¾ø;ºY·ß¹ôuS¶Ì;RFŸ¶ßÅ-yj`þ«àöæYWÑôÒ¿íõJÎÞ”•¸vÃxD ré…8u# ˜zÚv£kÁÌõÒÕ­H¤µ·²l$~¦‚¹”VÝð] ûŽNh"ÎQoÚÅpB”XÜf…ìÙM¦¡¢é©@¨k»iE)z9Ùõ`…ŠÐ§%èkÁªÍ-6ŸÄÇ}÷8q:¦^q’%<«5‡L²å Z¼ZÛp³Í_¥¯«‰‰êâ$ê![#¯NZÜ­à¢^c¿»þKu}mã(¥•m(u$¢BÔ€s¸’z-Ò, Àh·œv?Vw)bÔ‰_sëAK'U¶ºœò |¬6s£²œJ÷áµOi3”ë®&ÞlsØÓ2°¼>¨á$$ùçå*°&ÞoåQ²G$¶œ–<»â¹÷Œ©õÙ°Öu­«\¤³êc÷Šâ =Æ` ï„þ|ívFǪ%OQAžû¬j)i§ ùë†ñ2€?Ñ[³``8ƒ ã l‘Ù4ë *ç26²ÈN_Ÿðþ#í’Í#3Q­PØØV…™Ñk|´,QÐ`ü DÊ(… Jqˆì?޹íî9Â/¯Ù‘òZ”ïöå¤úN å^Îyb8´ÌD|PÞ.0î½FÖ´Ž ¯ÎK:"+èÞŸæà]‰qŽE~¬l$´Bã(ÙTHÙ …å"] ÷Kž¹¾ g”ÆÏzÏ®†LA<ÎÌ^ÜcÿëñbÍtÌêë¡òzÌ•‘R›@ï•Û)RÖ£“‹_ºpº—fë–òURôê$ÀwOæçK˜XaŠ÷­‡ìº}ߨBBp_ŽÔô˜YJã ÛGÞ 0 ýQy÷Òí)öÕf¯tÈ2œW\p6WE”Ô˜ºÙ5yºm¯ O|e¹ MÔ"›Y„ ¿¥Q€Êv3MeÛOè†On$ªÒ t€y›D¤N3§³›êéÖÌåÁç :Nš¾"ø· ƾ™éŸ1P7à>CBÛÒÝ]P› ,.TK_qĪá‘~ú±¬L3=ÙgÙ¸qq® ´8pcå*áÆå§ü „’ˆÀSÁäyoEazèJÇcó©R³)sŒ¬‡Êmž¸ä‹¤’}ʸ‡•šj £lè3*“ x×ݹPâYíTž(JÚ>|¢^,å ;ˆùÒZ:ä¬e‚f™ 7:n.SǾ—­Gxß!ˆ-ÛÂÖð ®fàͱÖ÷‚Ô¯ÞN›G|â›j¸oÜ$³Ÿ……° ¡ˆþŽAõ1ϤEà”z Q»ÜÐÛ½e…áo¦cÏÞ}›Ò]>òÎÛoe]¿0>—×\C)½V˜Æ)gíA”uùjrœôÛ¶ÖÛöïø¶ù.²Ú}ô“ÜqÙË1†¯¦ÓÒqZÑ#ú5×"Õ.òþ( ‘^ǹмRÂ-¯fî7òïdÚzŽÚxÀÿãíþdagü‘‘í?L #ûÿʪËÚ/3 ôœ©[´ðþò(©*€Šô¨àL¾B´¢ }{å™ÜìØ@CHU¨Iâxó<Ìzû2÷Ú”(ÔÈô=pf±7þ‹¾jî°YfXŒÛè޹ͪᵞ'.Œ®¼‘Ïä‘-˜‚\¬ISŸ}:õG¼KŽóP¿†Ì$ Æ Ý:É1ƒï0㮘øbõ]û·‹Šd¶Ý輫5Í!EìQ@Ê¿òÜ I¶ÜƒK.X,É ï‡–&‹“åŒ,ª›ïûqÖÍ|ýïã”»6ä-w=«¢¡±üðCC\™ºk‘EºæÂ+HÖÆþ<:òFê 숟áß ¿m4ËàÚ³¸€.±\û¢;¬+Ôƒ£’9´²c<¡¨Ûè°¡ð5í å¾Ì}6‰‡Òø¿Çö–³3|æ{[ÚéS|%[<;þä”)“ÊiU9(C,/ÆD±-»™`ž–¨‹jƒ“u£¿sƒÞêË”UÕýZH!Å *Bæ¿þ¬¦Ð~­° tŒ’AAíÝǺ ŠUö‚÷·Ž{o!×l?AÀ§PÇsK¥«ZÜì¶*ä¸l¼„ô• ]H¯¢{k†ôÔ9¢æ3ÅQÕ‚¡„{ÛVÁ¿Ð|éÓa"@ú÷ ýळ]ZÝèùz²§g#—,è !Ðcб*œ†°ª©>ǹ-ÁXihŠ¸Ç½3,+U >»ir®³Ç÷ÀDÿõ|—Ȳ¹ìùÈÅXjÌŠÆ!£' á[@†ÁÛTÿ7yÅöq›ó¨éj»óbÖµ)ÈJ9}é dò§Œ#— ΰ©1„kkŠ{ê€Þ²þR”ú ’jïL¿3ØRÕN£-a‡ûÁŸ!îˆuö ¯¹Èì'Ã# Š#Œ 1 ­õ¶æKfìžպ ¾{H†Àÿ‘Iÿ‚üwÄÎÂþEFŽÿÌ$FÎÿ5ÖÑLÂs|}ê3¤ÏU4ÀvÅ?E¦Tf"‘"åx7ø\Eg¼˜ìÛÍÐTWs}™¦ÞÏ»¬äéã©Ü½&rú›úëór%tó ægG·§#ÙÙ8ùÓíÙü÷ñ~x°—³#Ùdq´|û‡~ÁÚet&ª#²Îëëú ïíÙž¬ô!zùS¤Ñ­Ê”þs”¥¢t³‡»lÃäö÷ê@‰v•¼`ççÝ îÂâå÷¯]åÑôð÷ß—'èÝ€µù=œ"CeÀÛ Q7#\¯ÊîÇݘ_ ¤6ð”Fax"ÙM*…ñ¶.•F8r}¼uúÓÚýìoTЦŸ3Üè+ÖoÉÍïCÕ8åóï\˜4ðíA•Õ^îfmD½FÝ«ü=›Üèµ~êÖ gz¢n4ãÂm.Ìw"ÔäT¨êÿU{Øcñ¢Ù_sO,=V–F/ÇÇæêÑKž^ç¿Ã%^êÑ+?Ñ€¿êVvò¿=qϾ²ñ}°uÍ«»@U=.iWVÿ1óÇ,u÷Q¶{¨ÙD¹«*¸X‘8dñê5QìÓ¥¿Í*EÂð\Kð#’(„Ÿ¦€Ý3R`d1$”¦YŽ€™T²X{]tÐ#Ÿ’?Ñk7¬–¹²ZÍÉ ¾üûx+çü®ÏήL2*Ñþ§'‘ŒÜ-àxu aÍS¥”2jÐ[Œ×ÚErl.2'4Sí›G?–ƒ“‰QòZ§ŽKa£( ñFÿ~žô‰hiö‹\JÝùšQxÑ~Ú:ÊVZk (gLS+™È0(j¤Mý™ŒóbVƒ+Ö|³¨”%>®>¼ºëÉŽ ‹:]áþºýÇþºôaZÊ[´høÝ*'†Îã;ÙÖ¨]°q§*‡½).V¯¹ ù§,Š>n35zÙlo¢ÉŽQõ¨:&¨9×I_l? ˜‡ŒW¼¤ˆ•ÂÌ[èˆcž4a¯Â…Ÿ¨R´ÖÈ®w’Duö›NùÈ,Új†<^þè9¨¤7_~õØDk–üCåV£YÛƒ¡çž4¿ò‡Þ SÞmi.ú— d­K6Š\à@–e< d3—¶sþç¡êBPî© QJlßáx¨sÖpTó¿6F°ÏúpŠFðR‡Þt’,:„#‹eÅýŒ•æJàÿe.B ·~öæòóUoó‘ 0Äü“º¶œ 3”z¸ŽËÀ§¢ŒuqYæ±Á5$ zÞZ3^›[Ü À2—‹ivàÄsÚ_|’a( p2¥VøÙ9;µžRž\1æû*Û!×s_+û›c¼s ‹2‹¶žYBßç=Ûí Þ¹ÔÏ"Ù ²+àpxåP¿$]±Ú-Î:!Åìi,o94k:öU;|ÂÚ` í¨ÌþN†R*ŒÛÃйóžzl=4…ãL|÷–“Dþ­ÙÍ.ŒmF¢º¶sV8­®íODb‹èæ‹ñ_SS³iÖ!ñX‚|cE ˜<Ž|5ý(„yùK?”óÁƒpüÁà]JÑón!¤q[éCQ6–¬Í%“±K©Z¼@ÃT$ûƼ÷ºñÃD;ƒ2µ¼Ùµ–­¿ÖDÓIgg¿ØhÄZ5TÇá©×Ìz¦Æ&OšÐIó¶û ©ƒýÀ;yvkÕêž+‡Ý£bù僎jFµõøÜÚ•÷]þzaYgÕ๠pÂ¥¶ßv¨Ä”¶Œ„g›XJ¶ÆïŽA\'+Š‘‰9@v›¹ÈÉ~$–©„g9¼dÔø T–Þ:0YÈÏÕšþ€ú"€dòQ¤uH8õ£bFžüþâÂAxB|¸•¹ž·m`ü‚VsÄ–é¨#)˜•¾‚u¶inI) ìO»ö×y¨K‹-»±£YRŸ¡âxZÛTòXîù(/¨$›‡& µI'Ûˆt?æ*!Î-æÌ¯eÜÒísßÖÕË6“t] Ú\8e†=dyyÈSfi(Ò/¤šVk=Ž ÷À$ñ¸˜æµ“l8‹ÑÆ1¶LØ6[Õ,"ãòF¢E’BÈ]:meÆŸ[d¦ˆÆMÐ$PFk1¢$3ðŒ6Q†1D rMAËQƒé‡ší•O,šÁaÊÆ°‚ùaMfoÛÉãL9ë19ÐL«§CÒÁH`ô6Sól "€† ,̤&…°vÓÔ¯7¶'KCÝ$ãFcLG©ò·<<Ô8>nC ˜P<(ÃUôkÈ›¡àÇ^:ÖÉhø–‘ °¢ªŠŒúAâ%8[Ï;>nÕ±²ëJsÓÊSÇןÚ;Æe€{²2¸_ð÷ó ç}záŒq=r +¹¾W…œ‘ÍÎ{ïK˜ÐÛ¨M¤·÷u<$ÜZlÌ%8ð’ùí.yÌŒD·‹|¢–6d~ßÁK/QÚÒ=ÅÍ$¯H—vsKœY>ï -Ëiíè…þ³[,÷o‰ÍÏè82.ÊŽMR – oW‚ÑK®xíH è»}‘”Odד™ÇÉmM(y¯ïŒ8¾‘¨õ¸-k[Ä]åÊ!!äWn܈uJ´úãŸÑ_¼Zc0šH³Ò›á¬ú4¢ý¬¹%#áDD©Ê†æ2.ç4áÔ»%¤\nb’”bz_®˜Ý_p‘ìï §-¹È¼žŠ¸ydѹ`1<ñ«flìA3 q_úô ½krsU‚ì1´ÆÓz ©qï:f¸Ç)ŠQtEm'›Ì5VÅúÙg‰ùƒÃ_!¨êõªÀ8û“viX}„ª Ú¢ÃyèD™ᬘEG¦g|aÆÌÓ3k|é ”¼q›É©>‹×â1╎§{~ É’;·@£­pX š5ðž¸÷±)ƒ„à¤ʶ-x"9oÆX?ÿÁô4£°¨s‘DÇ|á2ù‰MjQ¸Ï†€êß§tRª1Š4ÕÇ…7—(,ªÞ–Kµ‰±]“O,Îf"=æD]gÞï·‡£†p¬,/¨!÷YàÔÉ‘BÉkõ7–ÌÌL³žýë’”ó¹ßlb®6`ÐT!¡jCOlWS–G–¶lÂA•_m´9žšµ&Vƒñ}Þ$@OδϞS¼èY"TI¦²F~ÎtIOÞ¾¼ÇB&~Þ¼™É[©ŠÓ>jƒmû›õ©àEÔJê±È7 L Ñœ~{rN³J\ü/<´_§v¡0Òp™6P~2 Ð50ïžð@‰ :OØšz?qÅÄ'!?°Ô A°pÐp¿¨ÂX\¢mÇÿßۂǼ•Ï.e1²ÎR€ÕÀKɳ 2¥+Ãg2ò<ÕËÁ±% ]JÀâ¹ ÂÁe`iŸ4è4‚^JT“}¯ìÞò hùþÛûÆsoˆEؤ¯øøÒ­P4º žep)ïBøàºÿˆ(ÓÉjà½a–-½!ƒá?öõ¸÷-I‡ˆØÖOfØ£eË“ÍÓŠƒ5¥*`§ Wdc-ºB âñ¦{Rˆ“©ÁÙü|_·ìöÔÅÓƒ‘,I¡øÑ mrX?æ‰úáb}iɶD:X²äm5À†¨$…xISÌ>»†ƒSxöŒœ²…ðjÊ‘oµÿj–âr“ n½jY'¬ûR¹òŠ—~r™ú/ˆ æoëèñþà”)]é7öAÈy˜ b…E @šL×Åêó}NˆC¢ÇÜÂp!Þ-#:2õÏÄI_WfÌçTYFäî\uËlÝ`VB01ØãŽÖˆ¹+¤Þ ó™ŒíšØÇ¸aï€w›çl–¢R^j8²Ïä6ÌU²J]Ùa †>v¡6hbZà>½„Ûıƒ >¥/Ç–šJWJ–ì{•p™Y(iÅN¸ìá=ŽQÔeRÎm‚¬;1‘~D)†Ø‹Ú£<¬Z¬_àT8Guvf¼+²C³÷­W­²ÎŸ|{ ©Õ ÓöuGMQ1{b5ã Ó#CIlÒ$wÚSãÞ/ ­»«Í@¢(¸a˜ÖûŸôÛËY,Ë<Ð yñ˜™è~ÉÖÄ€Ÿˆ–Jb¶ V1vGþÆ)[¯µ`v§¥Ìæà8óJ»póß«ÚÇÓ½û<ø+}üξEâqóL$\¬}ÓÔ¼Áײïîš>»Í›°—Ã)·É÷{ ˆ‡PÝ.+ø_z>žø¶oæ¹Í >FZø_ä-à”›`>Ú[Ól¹Mõ©\Vj#b~6{ƒ%ßаNVÚc8ÿe¥O(F¾( †`ÑÀözµ¶kmõu׃Â"³"¥öº³ý\ýÚ½êŠ$'õ·õ ëåô¶šR~99Ä|`XÀ€ O½üÑ ›äëÔ€ËÓœ¤¥Ú—˜!>2×9ÍÒNiŽä[ 8Ät|6¯í ì!nî)ÄξZ«IÏ †It±i0$‚/ëø“›"käÁf,ñCFÜ z2å‹™«f¹‚BÐŒÍæð½ UoúNY-ðÄa•I†ab>ðÓþâ#j´o ÃvGÅÆ/´ì˜{WËmÙ½çIM“‚¸m6ârLÅ4+  yM´$ÿÀŒáð™?$Á)Ö Û“„©ã»¼rø·8ðÀª%6¨tÏ6m W›blWÕãè{{<š’ô@¹pÑÐÜGI=îј<¶‘^.§ÄÑáñLßno¾ÌÑáûö&¢Âþüþ}ÌÜøÅýþ{“G×çÝü×åùÚùÂ-»»Õ?§—ÖÎÌÓo~Œ$Ãå§   #ü åõ‰¶ø*¬ØŠv¯SúŠ;ø¥‰‚.ÜÕW­N3()šE=¥z|k2¹:›/LäoÏÕb’ Ku3>$•G8ó¶ñEo©€.¤!6™mß”`ÇhMÀcúNÐ0°Žyd­nKzÎ_i;G[üAÅkoNO;#G'°,oK‹¾á›Î@!žOš·¢Sؼ–óô¶]yYI–zÐFÛÚ­!sò¸Þ´ˆƒwX¡™8,b „s Ç(œp‰Š•H›74?‹ëSâ3°&=@‹<¡ˆÌ‚lãûõð þTáò?=ãÿ t³r²3ü_•™á?‰=3ãÿ†Ø÷hk:c!úšˆïS* XÝ¥H¥\+éDRжÆOå€GSˆu‹(‚ÿ\-ñšÏÝÒ@LJ#LÏ.,ý¼¬í0_¹C³Ýƒý-ö¡ƒÛ<óòz¸÷%‰~ž½=ìœúÃF3NÐ8;5pòy<3§ |=}Ìö£vÒÒ,9GÍŒ <Þ?D­œò;–+ õK €¤‡ f%Ýù ÓɳóãB`ü@šqs{´/~Ü“GQp"×8iëø§+Á›&ìÓ£óß éYÜUg ïnxÀ7IfŒø}~Ÿ”NÞ÷»­ûã°qÙïß×ÛÈÙ¼GÒBa MH›{GÌÖ¨©¸ìIÌ‚õ0DÃóEþ\Ÿ¿Ïlœ´J̆˜‹T€é©ú5öìêÕJ³Ÿ¦<­[ÓöGÃ47ÂGéÒÛKŠßaºÃù^ØÕòm6ÞÝ­ŒŽ‡ÏŽƒc(2͜Ō"É˾諒A ç8¬°áhZTí£Ï=^³*8°c¶nlØJ“­„žÙv|åÿòœÚÄGSÖ'ƒì Rƒ01—Ÿ#øý0K0ŠhA3KlÏf:û³H3ÛðÛÍU5p*óòmd¨§ÅoJÎâ¥y™”Ä©éAós¬s ¬ü³Žø;Òz4´†<}2†¦Â€™_*b—׳Ëåû+° 4úKŒ8ðoÜ^v Î*0QUŸ†ÀÿÆM6XH(z÷K·Û…¾®³ò·®ËH·Úwûê¶ž_@EO `ø$Œî ™&¡D%Áߤ„­¶Ó÷VjÞÍâŒD›ÀÈ¥ 9ÐÚ&0hXiÞ¨2R¨<^½·9hC&ZùD`¤]øPÊPçù¼ÿ¸þ¾>?µë¤ÞØ›{^„à¶èóë¾õÒP«PYP†FߢM-h¦Åd÷^pîÖ„"î· 5cho÷5Á×—ÀÈNIÂÿy‡¨ 6úà ð9u+±ÍË*›ë2I9pòkf´kÄ"`Bh 'Îã%“±Ê¸_V Ü8 #ÿÇ9Ýß³Æ-ÑÔ§_Œ†‘FêñØ,?‘|F¹a1±œžØa„!ªäX”u)+÷. Žàn¿§ ‡{¨Ô”žªòu=µ²ÿÕ›¾ÈtŸxŠqóR8­ž¤ בÙxÒœJ7² ² Þ‹q~xþzzí|SʳÆ5>û¢ñºtsòzzþz*fȆ1Q"}Fn>ÿó³óµu#*Î „b|ëšLåewâ— (¯uP˜ûÑ*À„Ijú ”þ›v²§æT¿ŠÕÅ£ ùM–VFÝó]¯u%Hyòòh( ù®k§žOBášX)DßBî/9ðò˜G-‘Ú­ìë©)žŠÉÄ‘¯}šª^e&¦sñû*öÓª4OR Åk§~¨6¹y@—¼!õyÿÄZKV»ožcê¥SìÝàDÑ·4Oöòè}çì9—Æ?¨^Fˆ{¼âÅy,º.õçýäž/æÒ¦´àT*‚zm€ r&2`ئ0?ä [M™z¦2ÓrV1;3¤!#<óhzmœ^0TÛÅœ¯$§S¤€Îð`Íjõ׋+µ0¥Ÿ&:¡ºc>*€ÃhA]îÖ6"‡¯ŽtE\*¹Å«8ðžÁ”™ƪM64÷í”ÔîjÚc}O|ò_ŸÆZÝÂB5i¿ìó2 …ú›~Q¢€u¡óÈRs fƒ‘“gXöº˜ ›à-y;Ô<½ãvÊTKuÆVë=ëµÇ}ý'Oä$G&T®àíåÄR¸@ênY=Ž,žBVkàv%l¨ñ¶¢Päê÷€DÀIKÕ50ÄuŸ1Dy&„¤B¡*oYT .ô‚odRÜ¢âzÂwjæG b96Y ýõ¾ðD å4À(Ü®A¢ ©À ±åaxªjýsç_ÿ&Oa“‘nª,D,\¹É}¥|J\ølmá,Aöœ¨ É/»ä×>«j—º u¼×ÅTé³\Ôq šBÐè¶‹^¾—I®4•¤ñ5k5à-èµÚ18ÄQäÄi~Þ¥B9b¯Ö›ž×š=+\s¿¼‘ T€€»§²îae(«Nû¬—Ò§Ha›ÂQDÂEöVAÈøs1¢W X…ˆ5ås0u¿G2uþ<¼¡¢¾ïG] ¼[ÈL[+ˆ²0ûλ3–º·‚ÇÊðÎÈ1 Ïx5Ì2Y"ÆŠ«aáx{æh™’PÐA“<ì8‡:5f=ö¶ëö¡±}ZËYY9ŪDÀœëÞY,q×aõøu/q˜Åt@l ›"ý*ߪª$jBrc‰…uà68Än>tI!š ¡½ ™ÔðñÈØH·ÕÝak8?‘ã+S¥#8²ßÑ=‡üÚAWÅîr÷'ÄÕ‰“ã1ç±LÛt@šWp ]g…Üs©Tv8àKfb  Þ½[ áK¨uóX7Ì´ý?•éîÁÂo8,ô¸nfß¡]¦K|kCäé|ÂDW¬JU¾7/ÝDñ;1¥oâ¼]>½Å Õ¡ ùM¶Îf"gÕxÝ"S(ˆXC¦c í)~6ºÆ$Ú™(Âoô¦c®æü0¡A€naˆüåùä ?©Ú0¡‡O–#fP_ Ë{Ð^€'šµƒ]y¤ Á6Hx-b¢¼MÊñ£âÇû²Ï0ð¯È.¤W,röÑ&BøvˆKßëlŒzÉC©wM~ÊèÓ¦‡ Vº¿%<(%w-î^ê¨8u7_3ÕtÒf¬Õ˜õb:7^Zk[ËQ=”Üð!ùáo*¶7&ºÚ(S;_ùZë—¸D}C(Ø%βÿÕ-:é±i>{ɦé©ÀšZO‡|«¦JV½~eP{ÓUiEáoikîeúÞ1Wœ Ö$j”‹ê(6¨Œjb؈„™òHo-2ã:–Æf—o€*xê J‡äÆ'-ákCœ#\3Ìwï(µ‹wý«õ¥þ<ÕP©"˜yä|æÅi/J |,gxÿÒÙ"ás’ëÀ '0°¾ *vÝcÛ:¢1¤)ï»^7~] _-¶æ©Oÿa¹¼)Ù¶`þ+I¨æ/¨ß¶kj`­ÇòŦ¼M÷ù(aÑO¸Ò˜ä?_¡²¹˜­Ù×ðg¿’]~¥ÇÍ8°=ñH~z*ŠIŠgR`ÇŽGUÆOÓ­'2j’7ž‹‰õN¿‰Ý6P0؈ƒî»ÆÞ"Œ¶ª’µß 1ÏNH£ Šè÷ú È”þ²”ûþðJÙ…"^pÏJ»¸f& ,.Â:Þ½ºI½Çk¹éö°ð- äéãõnëJCKc´WQó[¨SM +/*ÎÈ(áâ)‘)’’¥¨”áa'¥ cáœtx:ÛhÉ/òG]ZÛ6ªØœk@ø<’™P«¼b<Eê‰yÇ_!èÔSÓÒÙL4&!ö¿e§V¬4Â;‰Â—`3íµ j…D¾É— Þä¨×pò 1äª[ž‰Õè0ay<9ï5½`Ÿ_P)è%MAC±¤àQ$G4fNËÊ›öE°x¡ŠÇ÷Ê~&ùšoÝs{f²vkP‡€Fd*‚^&°~VÚÕä(_æ é»DÔƒq}{¯ƒ¿t |@F‡ƒÔ£¢ÃÃ?º”K´»òL¥á—‡RpS%ö\1•}JͶT .ñŠô2º¤èzZ=&J²´BU÷—C䢠’æ,׈cd’ªto¾l›œîWQe pZü£±¨oZ'z<–âR¼©{Mr΋ý:o·í‰8ñeï6'…6Lª{–1 ‘±Ç<ð ›]£éb0RÈ ¼má^Öš™$-7D» ÂãXc9Ë®>"=¯Ýz~/AÈ®´1kdÈ®„Bà~v³;™ pA¶R‘ 5ýͼØ%*fÉ’¸@kìiW1q3âiÇ’9þË9mÆç„Vš×ëÑxñ  ó‡XB†2ö½=úY]KoËF¤H¸”ò!m·ÜXŒ^vâ'â+$é,Ó]ŽZÉ~ %oNaÖ­ËÛAϩƯÐÝôï$œ“òI‰>d%&ö9£æO‰Ô—D©°dJ˜¡åèqé{Ò$3 V0k<J+ä^â¼Üß ²ℤæÞEI’X-9(«´65¼‰1QXÚƒèFØwf÷£'Ö¶{ð \R8öŠl´  =ü#Ð|¸ž™(xòVn"ŸvTeüa~ýÙ0újPO€æ„^IÕBc×müŸ˜Ñ,bÚ[r%´Èîö âlŒˆ{7GDs ‘iž®ã ª÷ý ¤ÚýÇ»õ·?Þ$-Z«±ƒSÜÒD˜¬ÆZ•¦Âd¡¹xNô—Û,»Kv7 á7{ôî· ˜½¤ }—¶ã!Ë/Ç…!*]ö„=DÜq¾ç÷ªõl•ÑD`ž%†â £tI9Ém,F¸|@à‘â«ù†„Ý" îl»ï–½èôÀӺî”üöãéuXd\ìáúÕ/šï¡Y”¦J—´ù'°Ý]ªöäˆÖwœA†éY]%)¤$}¤U¶wÖ^–§ìRˆ§”¬¡ÑßFãç|A6õ¹Ð[ôRHg%\ž°F9ÏK`U¼ö•Âdiq3§+8‚Cà¹#Òèí.oˤ+’g®PïT²PHD“x€H´‘8BϸÝÎ)úϧú›0ß ”¹’ýP–Ûì¹’x2Ϩ@ZëäÁÿ@Õ)êuÿ³[ÿ?=øGÌœŒÿOýÏ¥lF–ÿÕVöŒŽ¦=ÎuëäÇô÷3Ü¡nËo <¶$ ò ሜÉJɤ ­ßWÊ+æ/.sN’ ’6›9Eq—uU½\^~<&Ìü&ï~ŸoÏþ¸¾`~³ð¾<û³†ŸgÏ÷GEAa{ÿÆWhRÃÄå᭿盄§¾§·N’b2[³¡¹;>œŒ2°ËFNË$'5&ØùeœÌFÓg®,§ÌlƒÁì†ÌéR”²Î<ò k“6/gæ–Ô¸8±IÙÕ“Ò3T'mrE«Ìyqeg®”lbpírβÔ´çb-!a’æ{T²øåqð\&ËBƒY³Ò’‚£¶ßg´ÛKS¹^`ãJ²¶²ì Œ¤4jŸûbÁ DX½O=¢3xß~¨4Bêgèò„ƒF)Š Œm §ÌkrTç¯Õœ1X–(CŠž‰x\`ÝÍÒ)™ïã³sš”=†mjRêÔ=qªåu lÔ™£hÛàø¨ãŠ,©ÙðežVŽadF-ßÉX%L© Ᾰ[÷Í q£ ©qªA%~Xž ü_–\qû­¯gæËÕ5(O.š½'½ÓÅþËrzf¾ '€˜Å”ëKB¡­†ñ<ŽY^ad:gÙ#hÎ2C+}ƒä)HmQÄ€sèsB#ìêç#0íïK'ƒë%ûBÿ×g0;>¤È“é¸U` µ hìÖY-ý‹ËŒ 1²¾>­óXð„,ôÔ Ã¯ôKtû †ô®©ßªa©ï=u€N_ØìZÿg³ã¸Ú­Ã(úÁï§í?~Ô5?§æÁ mg€m UÏl‘4€5¨wé¸úÊ+©¬ÚëÇ~Ë|ÊùÍxo*šŠ¶ùP “§è2Top5ì»&T6 ÎÒ':µ^—k“a>ÔF5­À[O0ó%Xp‡·éÓGI¼œxῆŠ6L EJ\ lz®Žù±7l„£Øo´à­å<넇°…ÎÝ¥øù,ìÒÁËJ ¥¹*.”/‚Ga­Ö È¿:6ôªÚv S7!6·Üö›dÚa‚¾>,OžêÊeΣœEŠî _®r€ ­O+ó '| 8ðÄ\+¥z´þFjea\­hÁÖ@Xo—ÎuqÔIA2º„0 ´,މ•åÎ!³¾è€^S?´Å%9k (î)Ô5s“\úâŽ{î,Èí«fšlÇèIÿÙ`US³hpÜsý º¹¯§ŸŸ¡ j…“Y»¶·ÏŠÁìòjU^_K¦äo¿d‡gùe.ÍçåY¯«ah£qÕš™X"Â%4ÖžOl׫+æšÀïò‰Â¶m³nd&çxk 2ˆpMÔ‰,fØP2NÐS^˜Ñ'ð4‰%à |î9€'ÔR4“•ÄÔà°àÿû ølªˆt9`¦”ã\ïâày45’~£l9óe ¨.o]³ŽáK~xuKTV³ºeÞï[Høé‰$œeMßM4p‹ŸÜ–ó*Ã+a |ºšº_?¬šbdœ¥Þ ¯Ñjí¬c>ªÊho_ßÐ’DÔëî!»_ó&ð¯«9¼ò8á Ü%4œhÙ×ÔùO‚íPÀ¿S9DW‰4¡bV©@¤@›+øÈÍbT æÒ|¾z¿à Ù:“nû uÀNŒ ¢öE°¯Y5ƒÑÄ=mƒ…Ô‚Ú‰­è(Øá ƒt‹ÄÖÙä–ÉM°…ðIU>‡7~iÀ\ÏIþ2^Ü™¸–Pnö±^×ˉ¼-Íc=X?ü‘x° ´€®ÐÙ“Þ@4¯›~ð*ë ´Í°ÂÎðÑ?Å´=üÕ£+\!̇k?„½öR¶IyªŒ²EË÷"'(8ÜoÚãlQü.»?tFú­fy<ì)-vù5~%öeS-€~¼_¤›ú”üƒ™«=›$‹´ÍŒar8t›¥>Dx“IÀé §{fÈ­Ö6¼Éýmÿq.–˜sBN ŸEÅX—HŸQ¤ë죨S†óðQìÅhÑ*Tïе™v|O­¦Xu\3 6;CK,âþXЂÕyéê€Tl¾ËbP{Y´³¼Á£˜`k¸f¿ ¶ðŠLØ%E"öÛ!†¢¼€ù[ Q ø*ñ1«‹öÏ ,8̰>>Ïk~X–²€ñ¢rÈVU¿¸F>*z«èzyd¦Òå~cü+ö7ºÅ•ÁÛá¤R&Í¥»®´ž: ,ƒÚ1-ÖCÔJøÁuê!:b”£ -Z6»˜i#ÕȹS¤£GüïQ'Â1¤¢#èµ7{t4+´»}£Ø¹qdcr½oyoìV¥ÿ ²¢^{fÞØM°¶)~Ðv6°Nòk*iŸž]Fõ|:¼Â„!ú;/‡è¸oh¬³ 7YŸÿ« BÄ•`ð¨êæ ³gö*¬èn-t×+^Iq:°6DìC›(={'¯×TõKªd=ªcUJÄ]r‹¢p^þC<$•$ô ¥dÜitAs ¾âêW„–QŽ¿lñKB¸*ÅóƼŸýJÑ´7ŽÄ_Çk2 ‰up«ò}ˆ5o41Ý4ß4È)V-$‚œ*P”ÝВݶ¨[a{.gš±l~$ïdûsd€SÀ!Þ]iœuöãô 8o>pháf™TzÞ>{¨á‹ æoÔJ·Uè’‡)¤†jÙ6Ð)1)Å)z—aqžx%>) ÒÏ«¶ÒóXGëdE¿©ìV󂌱Š5fÓ]½y?eB—Ÿ ^C*X³ªþ¶ÓӇ肶zÌéЋbû*Z6è³ÿ$¶¼S6ˆßxÅLŸB0›ø­Fúv'j¤ŽöNȉ&Ak¡µFøèLõa ì &Ì´Ó ‡èÜS²5蕲íàý„·‡ÒüH…ÈãHÙ¹÷& ªGÔ*ø¥NËeîò‡‹ÐÍ €+ —2Ëb•TEÝÕX¢(—¾€Ñ*u=Ñ'ÄÉè©Þ*ûÄúIâ ˜ÜılóWìíXP±r°E‡¸°pÔ?Pyèb4ÃÚX4c)µ SRAL5ù,¯¸"_:‘+{xÐLXa•¯)Ë0$ìñ’/ñ-BÑýâ¥)-iÍÏ ?щ”âŬDXŠ‚%ìd;Cº“‰èœó£tw³AÚ0mé&’Ø šz+}òCŸ†ñà÷žRœ=9X)A¼¼*À|VU8¸‹5»Îø–¸‚-UÄRç8«ï+íõÍfÜQ½~-'R5ÚZS˜OÍP•ÄPÁãö©ŠR¸x€jb6Ÿ(¦ìª³ïÓ“*ŽˆÛòÂv"Ù í ÕÞ!Ø£†»f C$¬ÞÅïû60âÚ]¤¦BÆdo7²T·Ê2¦´ nÔò­s\9pÚ &4ZÇɱG óïßjpÔ§õ׉|ªõè-á±ÌRæ#טtB¨*¸‘[E ƒ CÜnÄa­û<¤ ‡ûÚ;}Âi€õ«n8äËçWåÓ>塨b–m…Ó¦–þé'Í]& "™ÛN6þ7TE²‚ƒ[Ìà†ºù[oƒõÁ‚dÜ•rÓŠáÚœ*#D j9LJ¿Èp±Æ¹ úŽ^ñÝåC¨í#"ô>m ¤‚Þ+<òXnšN>NÁÇ’Š†rG,'mZ³bŸ/Ÿ[Ú"^ú~÷fì¼%zßyßuÛ R N¾/`‚ ffí3‰2×LÄ-Ï>ôÎäsa$ CŒ@ÂΰÓ*³xýO¡4ÏV>{Œ;$¸»'`b‘@«©¹Þ’”ÃFSŠÍ‹lɹtIÏR_ °í`9ßzW³u£½2ê\ìµ¾Q¹7m‡$‚­uöfºåuvé‹>hÍ.…5ñSBíÚ”ÉPz6Uz&[whÆ…Ò;«îÅ£J€ü×#1ä(TM•}øe¼à@†×Uj g²q[»¾˜¢ ^ÂÍë\ÅÁϾV*ŒÖËa§í+¸6Æý)+$´õò,óá †Ñ |¡ŒjlÌ,a, XaÛd¯0ð¥FÙÜëB"ahÞx)S Ü[B0ƃ{kh­ßùM!¶®£hÜ¢p#\17aªXF %ŠÒd¾ƒC `¼Ç^7Dv³ýR¬£A^ª0uxƨñ£ýBÕ3 hè<ÚùdHü3cõbTU‹ñ;%•ˆ[§ŽµWí ¡EíUÖ¬8Œ°Ý4©+¶ZX”õ6XèRd`[¬*²c^*û‚Àª4`"£NŠßÜÈmÆ5¾Z"áåa¡'ué´DÄ[5F±YV;R¡ØøÅ|¾LÓ?IÚJ\¬­ÇW+ÀgK… £«&ºNÿ,¡u°d&RANÝÕ(k8Uœ´¼0ÐÓ ì9jІŒ›Gý +¨]|•rº\|ŸPâȯ­œÎ1h“ÙgZ‚•ñ]íyóçϯU• HT«úÐÖ·O2®Mþ•·UgÄ(Ó60/¤tXª¸ke!I6`lÝÝ5I árÆ„õ=äËj3Uš‰CÞÞàÜ0KÏ Ì–ÀZŽé)$A’‘™~}õ;ËMàÔÚ«³eÒ¿¾\ýS¥°²¬ újâ¶©õ/}{°xvÉÐÍ늃Œ¯kÛ6p ÷ºé‡@ž1‚qHÕO!ÀŸ»,ÉZ~ß'°îlbÀ3a€ŲBBm$²{7…éÂnªK:>*hUä48*fæiií·=B Á©zÊY 2»m×åªB$g€5Qxú¢ê m ñŠñÏâìú—bÁ¶Ž}ŽŠnxrí0i4Ù¢ª,꽟6þ<DýΠÓoà°#_Ã’pÏwMyë¤f[ÃFíÙãoáqž±–«2z Ùú`Õ¦w7î7Cˉ‘&Aë±a5àè]"‡>É)× ñœúP|iQHŠþˆçÏm/Áû}2’YãSÚ=CöJHüØåt5\ëóA @wª¢Éb»õúYŸ„¦>Ø9=BñÍ£ŠÚ‘œÙ¼8PÉ(Q¤rræ“IÕ*È(û™–æ€ú™Vé¸Çq7>4¨n¾Té* ÚUÄ–'·/>ëCIñ\×àÈV‚^Åb„æJÍò+é¥þ4À¸ÌR‹q/•d—ÂÆø½&lr7«·èìLüÄÃV¶~[IÏæ”?Ð,HnÕmÁ¹ð Z¢ô'´'sDÏ113ô¸67£ÿ€H¢2 r„€-`7äÄèÿÏE(o½nrdídɳç§^‡§~räˆ'¹)!{Ôþ*H~"Èe®Rae/îP³ã½•ÇC³V7\<¡š6¥tÓ§BhŇ3yy ÏÕ$›ú,¹sH²¼ä¾Œ´½—Ü´†ð ËCÐÅKT½¨!±+M0ëz9+Å6}PEj¸óZt¶À¶uÞýتdV.Á þ@8g˘6X†Åhð^'H¼R=‚[\È»èR=›ZÙœ4†'¦ã#ÌûÐEû*-%ÉÿûeXÝk,CÏiÿ%Èê]Y(Áå/HrBë%kSRFK „93ÅÃïãÑ@U{zì¯-’·}é$MõÚ±ãÕìþ•aüΟ€ &”Ô Püyba`íþÏàà#Tó?áËÿ ݰprpþ_••õ?á+ÛÿîÕèh:£ˆ#ùª¿‹Ÿ;z³ºâ¿&ÝÜ{¹?ÜÑŒñùã›@šABo¬÷ù2_MWÖÞb˜UvUQ5=¾?ž{ºO›ùNßËþ}†ãúAûÑÇíâ>8œpü¸ûþû^¹X82׿Î8+«‹=4þ^o2þo²÷pñ²ð´“–´Þ“#÷\lhæŽÈOUçWŠ<ñLS¼Ó“ûßp¬K콚d/GÖË=e¬Î »ÝýÍIéž½Pχ?ç^ÓÚD'ä Åç#‚zƒaåŠkå‘q;²žãÇ>é¿Û­owõ/WN¹¦ÔÉ‘’Lh‰^e‰Ãé*YäFÏ××ñ‡MNjö:nFŸXÐ~a2CÒ7´¾-I ãÖ-TUñä3öéÄþýl›kЙi½Ã¢êc­£”qµb×ÖçôÊóÒE_lð ³2`ºÃ¥ëãs´{­&b{ML}°Iƒ/µõ.Âd ´¾¢„À}²Ô›5#㆓¸û/.Mnª©ÏÛ‰¡Òœ n§8½›O$R„Ù¶\q݃‘‘Ÿ!dC=%¿dqž&¸ÉvÓ›ÓÛJ0ÏÙæ¾/ çIÞwü¹–Z¼™Žäz‰3D‰6¢6ÎO† ñÆæœÌ\S±dm5sr‹WŒÄæíH-g^Âí6‰PN2 i%zÞ¼ñ»^qõÂtú„æ M¡t·©Óﳋ“Ùê¤%F’×ë6²÷œ»|¼hç]¹£o~²VÕc²·gj…ˆÊQŒ^Õoö%­ù‰D‰9CX×UZíäh¨¾ÌI§þÈ ¯¯-ë*>poóÆÃ?¥œ³NlJêLÀ®¥ÜuÅîû1’ošôÔa`€¡€ÿ¨nHkkL"ˆVá* ¨"˜VF¶auV²}Õ@þÀt’XΪQ ð—Ñ ÷†@¦´prÂGišl”(vA\)L¹RºÂEºhسi±‘ŠÏ¤gž§eÒí}§„˜wD4®Ò+H 'ës´"Ë%xÕÒ> ¬\Öî!}GA”") U44¢In le‘ðÕGUÒqø—÷äô~Œ5’5#ž©sòf+ßΆÆáÎ= sšØÁ¥rA±R>XÕ–&ñºÉ«s?IFŒ³  ,¤ZÜ »ZNU)jr²ÑfYØ)lbÉØ ƒã6¿egÚJÀʼnÁa:g[OO8ÚгÖ>Ï´à=ÂE{Væ{lþQGQK¸4"½ÙSD6çrlGYÖÅjAG? ­¼Á“Ÿ=È5]²mÃÍAõé‰ÄMn©°øv‡ïî‰[‚!šÈih^‹Ec 3SXÃÜ ›¼Ž–d8®„"`“ëþ0V&õ5¼\à2LEùZ}lJáƒ96€€Œ©wáIIºûTDµ.ë´˜¸_;<¢Öábx„ >0ˆA­ugŠÙBážÌ5‡šX|…Þ=i•ù°L§*„ͰK]Re±ŽV©é6w®“»ùë&¿þÖQš,–ùº,4ºj`º¦QM•ß;Š—…!̤§CŠH‘H”’$‰$„›Ê`Lf°8caJ¾L ë“îä±à¸ÊØŽ'Õ)Eèþ™ËÁ† pU}í )6¢è{P°©×ù(¬ý³Ó ñ¾´«‰–ÀírñÐ¥JN?þÉÿ$&%áϲIÁ‘q·Á‰3ÎCOmvXöJqb3tÃX^‡ð“ë}ÚGã„Ø·c•’19@+óÌ z2ž¥vË6ŸªÏÆîG_ÛÖUÄ›â•Ø%,¡f­zoã©dSË”J0I©œðÌ=ï9#½žÛù >Øã¼“uy휴} &gšlCÌ«3¼úÓaÂBê Žcž°ã‹¬ó³ ÿa-qiø»-`øs›0\…X!|}h mß©çy‚¶y™¤ÊÅ"(Ì"ߤSI5ã§6W©nšæ¸ÎnsðGÀåDf ®~q]‚÷猇Ï ' œEëí0z°UœÇЗ îÞ«Ø™¿dÞ' ðò¤(z²q‘$+äaôPá­jD镸ޣþ¤¶‰‡ Õ¸Ï3Þ­‹6y¨Ñ0ª‚½‚‚Ðö«Š1ºâòŒtŠÍk°$óųѹÁ#Þ¦àí¦+tçå\+úPR¾ƒhF%ûk;8 YWkl•?>œå'nŠwJK¸ó¾Øj†»Ü¡F†C”³Õ‘"þkĶn«1ïC€biÕÙÓ‡ ôbp|¸Ô¼»}§ŒïÒ¸‘òºˆ4eÊņ¹ – )ïGåÁ‹)•¶%:ÌpÜø/6¾eÊžô{¸ÖZ0 ´RI2Ga‹(ëéà yb¾ân­¦-i å$ 4®#Ïf`8$)^ì[冸±HBfµ½¬šV&¯­ ¬4œ&XÙÏJBz®Õt›e=‹NíoG©"ÿ)׺àZO£;_Èß,ìñá0âG^Éá5 Þ°‘0Ñ+x©KÑ“í?PÝ[ê.çù•àÌIöEsjuW»ÐÖ 9Vå«mJã^\ŒTJ—ŸH¥1ez±Ka·—QyÒ§¢TˆÛÀâ·¢­.kbÌ:U*‹ºc[¬–ŠYÝS5àÉÌx¾u8Îr¼Ô¢Èsμ&Ô=f´#ý«†z{Õ¡Ü-‰”Ptϧ*?‚XLç^›åÌ/i·3C°¦0±Nç¾Å¹´Zdªd¹ë4"€Ð {1}CÛeXÊœÇ,‰XöLÄð^sÅb¦4íL3ìjcä¾ xp98×1—ØïM~µTàªO³ÚTlúÙ±S g ¡JQ½I‚ú°JÍbI„Jà ™ÒˆQ­Y9œ7q3¯'À5ô¾âÎxŽ ™’ãoz÷ä¥Y†©Ðö—<ŽknØ#hüÔC#w&3åÝ›#æøÉ ̉ÚÓæ fx‰‘~¢W›ÊÉ{õ¬Çþ«¡*©SPgH%¿ä(8®-ž‘"KѳÝÝhýäµwPížlÊœêNçÛÖåLûJ÷1–XN-¼éúØg:3æ×Ÿ¢Õƒ“”=9[DªË»T×Aj&Æ9â¨äHÊ›éWÛr!;¡Ó+Ç£ÞN¹Ðê+Eù:ëºy¦Ö„.ƒÉö!ª~à½m¡D]a¾ÏjØJÇqmwb¸ŽíŒP&úoÄ„pE/øâ„4ÍÕÙ:žÐ7h}tæf–kyæV†t}¬M+D)ˆ‡ÅtO“& ,¡ØˆIn¸}ÓÜv )¨å€;€ˆÅÙ¼NþËxÞ8OcaMO¿-Æ0m‡ÄÌ~ržž´NÀ–o뮣SXŒáæ±$LCs?0 s“¨ÿµmxC0øÕ+q-¦<„ú`ý™­×å=ÐÁʆo¿]H ¢ç}2á?L¨'†ÆtnÓ^ û¶¨åþS§Ï…;ý½Q&RÇݪQ±U¼pý¨´._]hÔ=•ÖB(Aí\ª_ÖEôÍ‚púºبãä¿ 9¼Ù~&(éºÎ0ïs vDi 6:„aô&Câ§ü|–xš/…}7c‰îØ=áA°nPéVüÝßKÂ÷óí4QºŠt›Õ_Œhø¬˜+7+@»ŒõÑõª3÷ŒMV[Lî0¢9­žð³1ÆR@P‹˜yUfKÿŒR.·¬SÆÚ„]ß³×éÓeÅb†s©™•¨†þA+kߦ…&á|ì˶l©h, ¥e/rÓÖè%êÛ¬¿yq{þ9)øç¿búé ¬®ÉŠHcH®‰ ¤-†¼Ô œ2R$÷ŠÊAãjoÝ^Ú‰õ‰vêA‡ïÉ~£÷V÷ÍÜ»°¼»bú(_ʼnê¤É›¿÷~ò‹RåÍüO”Äú?· YX9þß66–ÿDIl¬ÿ”´Âc‡*ž¸‡È_Hêçi?B­¾›!ñëß06” ˆ–©+Í]¥¸´Sªy>4cØÂïKLT7^YýöÙ_-޿䦆—à(~üej3¼þWò‡Ÿ»‹ùæëïWw÷í$>ŸÖóÜ7´Ôcÿvçó³ÉKj½½õ÷!—Mö:Ø~6Êíkÿ÷<ëW;í…£!÷µR¤¤ž¢aou_•¶n¾}iSs¼ßÍ\µ·ŠÍ Á¬ÕÃ¥q5€ÍºRwóhUÏuGnÍ©a^¢ƒ;äÎwD¡î )¦M¯foÁo®~Wnæ8Uû×òWçTt #Œ”¼NŽðÊæœ#Ʊ‚ˆ³ØÏå¨ùÓ%Áha«–¡w6|éc«–v/˜!Hoµ."5¤¸›ªvãÝT º|)ÌÓùx}¤¨{À.Ú ÐÙ­ Ås|n¬æ¾†QÎÚÿFGï)ã fLäiGª÷ÀBè!päjÇ«í Íñöi0Æ€³ )Xí+±LpÅWÍ~DPâ4 ¶Nì0D|_,ìÑ/ðãW ,×+`dA¥& Q]oÖcˆÿQèÁ•ïßi1œ£âõRyxÛ-ŠjtKS{â+J¥EÑ’¯ÛyÛÔââí…Ì}á\l–âðÑûDtçøè/H#}þ,E¦ƒÑ¿)ŠC pKHw Mf žàŽš¥ÄG†Ãiˆ8³hw7®L!`q¸Ë1Ç•¶›‹¡äQÂ%\"ÜMÐÅ2»æ_¾w1Ù 5Š\zm¡^wäU4ìØŒ®ž‰÷s€y¥»óÓìaÂÆñHVhlë¯b˃s+=2U±òG|Dßr ?L+•¹PÃöþFø]ò}sà’%‘ÍAÑz8,üýDU|G;^ü}Ò¶è¥Ë?Ëåq­÷C_M'Îv”ÅDÔoõÒàó§Ð÷§Ógÿø– ²‰‚³»EøzuðK…JBÑBDvµCÜõÃ"°©k¤®sð£êÆ7j (kC4zå^µj3M–r|HQÇ“â:^‘š4n™­õÎ á8khÙâ ’*øš&’có,˜zÙ‰êOKÀh›Š7%Ë_ÎþS½öQïò«Áå½VçÒýÜ CùCpÀЧž°]ä?ÔâDpϲÆâ;oèØÇPàæ©jcÔ”ÐB_ùl|S+29–Ñ !æ,¨UQàu7©Ñ-XuðmWbP];üÆžnFK‘£NÂ_ãÓ|[ý‰÷’Ëh@O“B{"’L¦Z!˜]ôxŽh¬5Ê#$×_[deœ??üô‚ÂŽLrÁÀ&Ç3šBZÐUr» лàp3Îî €p  GT‹÷…I4ñ·‰™’©¨#Ñ=¶#®Á¬ÌÐ>E˜vqu"@0ðBÖ'æS@KŒƒÀÅy£á#j¥Ê>8õ‡ÛRLKÂŒÊ$€jpêÔ£mX‘<9!×ëÅÌë‚°²-*ufh§£¶[ òO|4(¨ØI·ÚL§ø×ãUm‚aV 9p±Ësv)&Ö ùenEœìÛ©¥¿jÒXý2}EâoÜB3C[;©C;}z§ù$¹+)X ,‚{‹Û#i㸡²9{Ò÷<®Ñ•騑“CV-Ö™á`¢Ü Þ(º³L‡‹€ ~…#¡<Ã0l”ÄêUü/AÞÞÆ_¨¸šø%¡$»Wó‡%…V&z±CY:@. nõ¹z/5 ÖÞ,¼\Õ1‰dØ%?v†åsþüÏ×qÄ@Çp±û›èÛ†¶zlê*+^±ªp¼j/(À£ %oQ*°£æ^êj\É‹«eNêª`ÆWë3nÚª‚–½ÔUu3ÜÔvóÛ‘I\'ýl;Å¿»õí˜Ãy‰éŽ;žÍp$ˆ GoòýÒ<×O¼Ô^|é««Ç–@…ÏÝÔÞ£Eöä^öWµÞÔ"÷Õ]—4UµÂ½ÚÃà†èr>‰"IªÂ>;·p;mͶðlufDSñœ£naL݉N‰«ST“æ‚–ë˜êK vîWÀ†Ü<:KÉÙã"iÉC‹´ÊL©ùˆõò¼4¢lÇQH—ÑY$™¼·4Y·†x£9XÀët oÙŸ\!q,3"HiøPµ8 N/û%ÃPÓNAË"ä¿Î–øÊ«ˆT“^ó‚Rþ ¼QhD0:‘YcŽGùµ|ßÃó¶vvÉ,#ãåbY×,\Gsd<è•lV÷ØÚÏudT“±(ôkH1\,o¤¢ý§*ã߯®/“ZÚ *IûÛŠ²«‡ºvå…/"ùÈÒI8]x®?¯™3´p`}Že£1¸É.SŽ¥ « ©ÁÔ1xµ^/>SSå‚Pܱ©ÅèA³ZQØ× H£2µG=”Ø=mžþ ýSqè‚àu§»n•¦&¡EÖU]ƒWÊ÷`¼z—äŠKŸrH@ZúT!(ºû„¢N. Å­ EûSóµEªØ“c˜þŸ'”øô¾ÊOqߌ'øÓ,ÅXEbå÷9I2öÂa´×7dýV¨™RåRé ê@v90õFdž%èÜ€ÜòëŠ×P¹Çfؼ3X|€Üe,òÆÌ SÎôиì½<¯²7¼U3C5ˆX—ƒ—=€šñ’b Ì‚O÷tî÷Z¹€Ô¬§Û Æ sF<ðz‘“‘&š/µ$4¹ÁâÃT‘JŠÔz€Nä¤F)Ñþ(<ÿ´C `ç#(Ÿ±¾´ªiÅY{ÄMµˆ®èL_çó1sRËÂ!Ó úÅ|•”Ðèø(w·Ð‘¡…úVz0sd$Ü—‡$Adƒ0>¹r öÃö ùO?\_iGåæóíòAæ,t<)£)™"/ÃàE ë¯@; ‘ovÊÀÚ†™#/Ž›&…ý€ØfŒ7 ¸À(î`Àlô–O»¸jçg€"©ÝnM³‘ı L+Èqv̤é"ÇÅÌu aFÜIí`müaBƒGPðK<¦‡OB Õf25\“¼QT¬­žÑnÿRÏ'¨rµ¦"C0ôšÃz¬à*ÅRŸ+Õ\]W­ƒ¶Öè­ª’¿²%2k:êR¾¾pGƒ Ï…J'>-ëi"6! ^Åo'3÷ÁŽWó«÷#ꇲï€ô±C¦ÓNG¥rhõKf—­:*oËjåM<£Š!q­:M©e.SŸPö^TÕ³â©Wo’Zª›‹â½2£ÀÙ’ËÓþž!¢ixΉ¹PAŸÖÅâ´ü;@]Aq÷ÐçôQòøT¾*¨I4P°æ||ò¼B CQ?§ Á¥¢³t='MV\ÑhŽJ'*ñøíK¤‘w-€EHÿÉ1H*â]ˆÔLÎóä ѱê3D¸B„ìE$f‰ŸÎv–@t €¦”Cþ@_šlz©Ø(™m´ÅJV.šÅÑ,œ+¦D¸%/ËŠd? †ÂŽÛ‰‰¹ê<Šê>ÖðôŽeÜ—Åx}2š¾È&“aÐ|wžz¦êèà ”CŸ'§YA Á_Vz`\;IÀ²{N\#mhÊ@¢$dmœrkjʯ)Y × N`>ߺ|]Ÿ–¶î4g­¢çgEªx)ZœÕ©–þÓçÊýƘ’çÑè˜LJS&½üâzFEϘΔ͙–ðÕç’oPtè/¦žQ•6«óWÏG6€ÙLrÈ#÷/Þ™&hi„„-êµÎ×N)Ѧ dF ±¼®Æ¹%½=/ó4]¾6˜•- ‚~(ÖCjÒzn:'`2mË5šAÐï;º"¦.SÚÎ,à•&ƒñž´Â“»ÕZÐ0F†3Z˜ÆÆæJ~Ô]œÒ×A²alÏ{IoÀâúÒæåpxÅUÆçU™z–=€3Í–þAX3®Ï´Øçbõ“ô-C°?ºVØf U¤ê,¨HÉÙ€GÖ/òá˼—GJ2*œ²æ<àœ8©þ€]rÜØ·ˆí—ÌRÑMå WV²²J]t!êÚ|¯ÅlH›’ì¨þì³p"œ4­:;ëQêIŠãáñ[>רÔkpÓDeðê±13»N Á^ÙÐÓê=¬b°—3o&M9.ƒlêï¶ÅÕÃÖ¹‘ü³ˆ”S}ÖÙ]¹ƒt±c¼Î†ìÓ‡ä’>ø­Æ&SÄëÞÆe©×鱨é¯ÚE[fYòæi½{Ôɦ0yù7s Xh &cõ7¦ÉªN•¢ —è”±äM2ì¦Å!'ã:•Ä–ÔŠ¼aeüïBV‡'şؽ£\;ºÅûÄ’Õ(×=cu"ÐX¾•ÜËæ‘ö-Ýš t’q%³ªÌ”>5r‹>‡¾5K!’sa« Ö­z%m/7wÍö¯ì3R«ÝÉ™Û@ׇDŸÂSé̓˚ÈB×£s}@©·Jp¿‚Å,7Ðs3½ 3ð‹=EqÆjÆ“HxŠbCR¶5 hJW ý©ûh )ý;6É7R™(&áj'hµB¬n¨ªdžrà N¥…áßåŠu— dzR›Ô]Ã5Xå’w…¿öÆ\ce>ÒÌ…s´\ÂÚp£DùP?ѲÙÔ¯rmiC§ŽÝ Sf_Ýä'2{|mËFm/¸q¶óJ̸Ê1„žLô(§þðe§]Ànêeçûd¥¾.¸/sôuòZŒÞëÔÊÄZk·]bæ!Áqb¿ç ;Vûõ½CϪüÔÒ®c䦮{Vœ'ÝöÈÊ™ï í *v¡¡¶ó§kZœjÓY€‹T³ÓÏ~cŠQy*±ÔÖ¦‡Ã½ÿÊO~•1-ùó•c³ðBÞB¦°t:m:lÚ°nôþSã©×$ÀeJÝr¦8™=µô´žg3›ÉžíÃÔÁTŽ¢¥ dȇ仹7¬Ö¶ÔÀùN×¾³Izþ&uè Ïû´ÊÇPn…Œ@é_Wæ.»ØÆáÔ4(+ÝÆö—AT47 Tk³àÓl±d:·¸dß“æËœ[¯j¹E/•Ù¸dÒkiô—„™š btÎIï…'U»èNÂÂO&B?7)ËȶkC‰1EŸat£ Õ®‚§—ð÷Ù‰ßÝ Uì¯.ãOˆ£ g~AµÂ¾ÁXàË̵'á|õSqô‘ž™›“öÚæ ÚWeM?>qy«…Ï|Õ<è±þìé¼ù–Ñ“â_b’` *_^èÕoyyƒT}+"i)rÆ PooD›Pò«2᩟CDáf˲ɗÑý¸¸þè‚2)ä„>'ÿÜëçd­ñ€äiÒ—ãª]e˜` ¼Ôeé2Ü”^Àb¹?XÐEDLÀåB–’÷§¯±Q9™­ôÑ0l¾CrN{;Áë´;±ÉTè-± íùgVÒõ ¤_©ñÔù0øBùÆ x]”иþzä|^Í Ò‹!¦$*4z¶‚*°ÍUÍeâ[’ ÷K¨Û NéÆk\guý0›È>¡û 7íßw†«Ï@GH(Ofu¤xæcœƒÕ²oƆY4ë",ýƒu®Ct™{ íÚô%ÌžÃä%Bã.bÚä“â]Õ7ßUÌw Ò¨>—?}¾Wµ½W¦,™œ$¦¯¨O)åsØ|¹Ò•Z¯«L”ÔGÑ5ò¼ ÞvY¾¹•Âæ)föÖŽ*N×Xš{꩟õ9tÞZUõRÍl=cM»²8ÅÞÓìŽ\{gÔ1Ü»SXýv)v˜Éü)ˆÿú¹ŸÆ÷¼×ÿX”ßêKÆÔÒ¦ï.Ô}†ÿÚûõµ9w¥Úi2~%Å\mXq¸¥ O¥v-\yÇʛዬs»Üª4á3$ø#¼¬²ü:L¤7”•C[zˆ ÐfF"Ùêé®7—Ç„ÿ ¼êýiNqß™7•r¶éËöS¡_pžÞÂ<I¹Cúƒ¢OÖˆÍéEkÞýA%®QnŒŠÑøl> Ù»ÞªFJóÀ³ÐøŽñW?‰¡ðƒG…†ªíñY¦œu­^h¥a`V=W‘‚¨í§ªãíDýFU‹0Ù¥r ©^‡4¶J€NÉ'æ‘ÍgëtC˜´’¹[•ÚäâJ3æ¿Ts‹UÎ[ËL&ÁçÑèK¯ŒçcR2}G¢xF ÒÝŸa~© |6µ¨ àâñýFý¡ÉÈî6‘F÷)Ærsϼ3Ç[½I#ûJÉLãP¸½®ãè#dþ5œ;˜£—Æ@ŸVÝ õÇF`äZÆöU¡«—Û»Pµcs€™øs~$$ĹÂìÝí}°¿ßýhú~aü'sdûŸA5VF–ÿwIŠñ?™#;Óÿê’”®¦3ޏÓ+s5~8ÿ4GLm—4¿ÓštT!%"ÜVƒ…@`$R<ÄåúÏÓl5s•7¡·°ISYWl5Oo÷&?î\GîƒßÅÝÙ]ìé‘_ÈŸî É ýØEÝ)}\¼\»íÌQGKi⬎×gÆì_–z±ò{¸?¦OOneä%×ÕìømÜÌ–¶ÑëÝ{·ÉŽïq3«6zvîH¿=[:ö+Í4r3Q5¡ÞBR8¦J¡ÛCk¹ö¨Ñ†ÑÝ¡äß<–-Áø‹Å›SÏÑÍXyŒ†HMžM)IÎr¶¾TíZû-è ƒLò£¤òNÆ=C-šW NMÝqÀ\ 6³Ž!x«‡ìü6“p÷ðïQŽi\ÔêmÒ©aÖŒS&Õ’Ö Rg ݧÕÕW¨YúH`¯zË”™Ž)º]|ï?nìòQizW3?7‡ä}ö:éþÖÒd·áªkŽ_üenÅÅ™ÑÁMü¼aO±ÈYeM™¢|°–iÎWOºä6f0 %_^ìvSز~~ Æ–Øh_øÚž0¼"Ÿ4÷~T7® Bö¿¸ô%É«v¹«Œw'ŒŽð]Í9þ}×4Gz¿Ý)ÁG¾5Äz&LkúÔuŽºS$fMžªz›±º{v1¹û(àv¼òN†Ë\è¥Àõ΄8¹¢òî<œL HzÒè^IÝ|‹= ÈNðtÏ,spçÀ݇è7†E5†{Y¸4 pÚ’)ßO~€„wPß$)ÐØB«fJJÇÂWÔqîû.¸??n õ+_'wŠ¡!*°~È’vÇ ¿W²Çz†dYo)V$™€¡ ví¬ 7–=QÈzÉcÌùõËŽ‡vÕÁK?†Úp\Ê*‹{Q˨¡ýº¹>w8ª«]í7ý·£ôŽo$õ¡ºvË  ™³Mý¶ôs÷q~£ü €€I·…¡q:ƒªÙµ-°h@%T ž›·ûúõ cÌ)ñsIxà]÷#ýÙïñe@€ôLt¾{tvNxÇpE†AãÖ}à°wÙÍ¡MÀ›þ9ŠV¹É1(¬6ÀÒ‚£Zå÷p'e«\ã’L&hp‡î*óõ¡žªäŒ'³à©¬3\KWUBûâ/·iYòW3â'§C^Mݳ¸1¡ªÇž³+ŒgþÑS™NÔ’ŠÄfÑËâ1²¯P!“Cj§ÿré+aHéò5â›w‘÷ë®ãYy©ô`½çQ$ØçÀPàt;+ 1ªýu šg!P^©¾¼ÕaÙsÈæÆà¡ŠÏ™”F¼Sj"Ò¡• ¼Ó8 k¸¾35ÝRÒ& ìÁ õL4&š$¬ˆmGà¡›„ o÷ˆ$]wkÓ‘5/ð€¼­nIgý³0iMÃC«ú.eÕ‡„D'{úÐR«§=cñHè9If3§w©r»Ÿ ¬¢ËÜèñ vúò¦Mò]ªTLËdÌ c”4ðíh‡›:C?‡ I‚¡âXê–^µfg¯™¸O€… ®ƒ·×w,2Ï/ ¢oEe(C0?Ø”‹¼6(ß×—¦¾Dþ†¬ûÏ›ìÁ§¶ë¡,—H)¤YÕèÍÊW§Ú^Æñ‘*ë9Óû!»ÂÏAs ’WW”xúlûGŽLKÉDÄ0kJ@/@XFÖ”Êy,Ô4EªŒ¼p(:ðg¹ð’Ýã‘i(Cx`ÖgÏ;ð° œ©t.rŠ_SB_üŽ=þ2 ˆ/ħ“Î ñšcì EgÈž([Ú¡Z2¡àÑTdÝ*Lìºy‚·µÚ|µ_0Üú-_{LC4\aK ãŸåµøíˆŽ.¦^D˜« îÓq¾—TÁ/W'›pÆ’oÅ¡"<í$èië±ÎspqºvÅ•GÓÆÀ0¼À˜rÐ*ùû©×-æèÛÂÁÏF8Sßø ƒÎÃ0ÈÙûD‡Hk¢^ÃÞòÅäcqa§#«äšº©¯xªhžZ·}íåPxϲî¦fξâ3–H“œ¼Š­šãâ‚6¥F'óöú/íî8¦Á}fÁU.MŠ\ÞKVŠî¢(ÚbÑÚvż±Ñý}Ÿò•xÕiìT x ÐVb¬z}èýã»ôצì/O${|4ô½·)Â}<¹¦Cçø¬<;c1ú«0[0ºl–ÊrÏ,fZÊêÂ*@"ÔP•å#­0„ñåä’ º;=𶓨ÄdÊ£E,ÜF+®†É­„¼¼4ŒÆÕ>,ÑgÌ]ï dr.ósèd^°c!ÙlGã§!ó«u•KÜ‘ÛÑxvy 9»Fù‘b¾•ÔàÐÂGˆM‡éËmıäÞ 3<šm¯i¡÷Ï ÖÞÁ±¦&õ4S ƒïXÇ%§y_ÎÂúÒD2»`cÌžYC¶=Þ•j?ì¯{¥µñÚùEIè*·{ò­¸6àÃþ9x=ï,Èå/¤"´í„(0 J¤jf¼>¹‹ëóòpy¾ß<¼Ìáëãä|Ÿ5pp}0ÿ>¬$ÕÔ…ý9}»‹ÃãáùµaÝ%«@%@§«idƒå|#‰g!Dûùƒš\à«)€¯[KÂà×­JûÇ`çàœG¾î©°>ç6™­¥ìo§ a_ •2Úò P¼E¡®S¥ÜPÁ™Ùt&1Å¢q/Ò·3ô­&Ëä±p ;¯ ¸Ë<¦*¯KÕ«]uˆ.p0ÀS«=’åE“¿ÔCe<`oº&nA ×îÞ!K<Šžîw£a Q;ZŸ\ÇCƒ¡wC ãˆIv÷{Ƽ¨ÝgŽjáÚÑ<“ÂE«`"ƒVë"Xc3Vë5_/a£õÓ—²÷¥R3’è œ>ãq,! }­CY'ÌáÛ¢‡Mñfá1ö‘bº’… @–§ô\÷=}dˆõ. öí¹*‘ÙpÓvîW“ œz´reƒ›EÓ·Õè·!éRQµ½0¦²E†šCц쫙±Üaø*¸&”Sä ‡<ÆŸ¹.r!ú_1îÑãí÷dÆ ÷w˜“ûxñ'˜Ða?™ÑœŃáÔ.reB¬VUõj!ÓLøˆêð’Á›a°j ™>£TéKͧÁ¤)™¦Õ҅¶Ÿ’töó%YJ~Äåk1%™aŒ!Á©P*£‹°Hmâ6¨Êø¢ÔžDálºpɺ¯Í*# zjå)ê[ÒˆTAF§,þ3\«ÂêC¸¸CÔ¦žböé‘,2$ìŽ2%¨RRHLÂfÐ9 ”Øá0l峬¦÷Ánç qè|:÷l±{ÍkŸh­w‹{›×2žÏ³IÒ £ü²ðÓñ¿À(D™Ot¥ù¾U¦Ô~$4­ß•uÃX_>—~Á×Ô÷°”•Ù÷m wuȼÜÅ;ÛXöñÍ ®¨kÏ"Eˆ Ϧÿiˆ‹£#0ÝuÈX÷Q'÷s ký¹êïíÆN¬ñÚÑÂÛmm%êßàŸ¼¿¯æ™f–¯xꌀC@篬ÃþL$åŒämÆÓ@>^–]ÁÇ>ò¯v×(r‚ë+uw]`×®ˆ?Ęî R®´9ˆ[9¾¡±É– ü¯RäáZ_ xNÁ‚˜¿rR=ª"CÁ_…Áv.ß…ßTïCIƽ†”Ÿ¯‚‘¥^ün½Ëàœ¨_cÍ+¢¦ÇD4#*éeðÁÑjè½~JË(£ÍTb¾ëž+[ÞÇjgnÉØÀQ½Žã´Ó;R¤R¸3-Ô³ûHèaˆè ÀðQ¢RS±mcuù+¦&ј²?©ž (pÎn "Oè¥GDÈÛ;¼ #©z×Q@ܬ@ï.$ÒFAÍA4KgDëB™Ib4 è™´¹ÚOyÖû"òË'îx4¥RÖU1±b‰[N|ñûîG”ÄeÀáV~~ ¬kãàk— ßD¡é_bøua¢Pc2öËGy:2IëÝ‘— ,oGÙ(ÚBlŒ9eÅ)…þ¦I+Ô‘VQÏ`*ÄÄ%½RAæ+;Õ}–òª¼m¡d*¤"úˆøni22¸öÏÇ¢&ßÙ2~ATqIý£R d¸ÜBN~X‚,ª•ARõqgà°_a2þr†¦¯B§øá„©È·ƒ¾èHå‘\`ÔJªŒp"c-‘‰oDÎYr o›Æ4ýãì‹&2…wý„í/ÙÐùþÝÞ‡Vk¡D‰ò^¶ã#÷ÛxZº\™Þºw=¨8Æ‚\/®ÁÇj瓘ex3ÐËQëÔU¾ü²U^.…6siê6¦œèœ&ŸJƒìÎ;à° eÊØî‚øˆ¶¹xŽýnEØg6FÚ·.úY»#"tƒ> )“ÄÈDäŸ;r„“é«áu¼1K#%5).œÎ=hïXáÖÊ£5&±ƒÈRè@ÀZ¥F)“µe÷f$èåÊKÁ×dÎ^%àëh “['ìDÂbÿ5YfÏG‘(†xc4DPÕÖAêìæ/@‹ÝrÃH²âq†;´‚*ª‘×>“-köÑŽQ€ØµPûû«·š†HɰmÀö`“ì%U¶s¾8}Á?&oâ\P)™ä¨CfM¨a©Á$0€œ‚Ò6µ2øu²ÅFÖl›Ñ¨ó“&Ô‘½ào&ôšÃ9ˆß|‚ú&‘þÊücÁœKÆ{ïÉÎwüB¿•[‹,œ£NµE0Õæ7¦VÏFÍÌD!ã"³5Mp)ˆšù2wI³Êñ‘jNaBÛ˜ÜÊ ý‹Y>xìÄ>uE™`~2j×½‚˜ëö)Ó–‘OÉW:þLÜ “Yüà}Tí²¨ÀgªCK|¨H"g+Ô}×4-zH€EDÙgÚFËlW0ÁGaóbz›r>ðÍ<µÜ f;ûÁÚâe» Ñ PKï|ç«÷øÞ¤†"¯–>Vó®çËy÷D·4‚¼_ó¨ïbºåeú"!(ìÉË:QJü·—Ý;žX E'©†W)­ÑË+8©•ûüaÖJPuoöëÝùÿLõÕs2Ÿ­+$3o¹\µ‘¿Ã˜Œã²Ô7½ç×E{ Ð/ E5c¸Œí—wÐýújx,*„)¢éƒÏ[T¬W|šÂUpåÓëDcxžJ1Æ[óúúºjêȽF ·£b^xd‹v0Ú½°Ôc6ÿȾS¶ŒV Ù³»*Nµ óð¤Óª¸w•­—ÓøsÊp%ö*#}0²3H §N®'ú‡SØî½l÷^ªƒu ¼Êb†(k2màÍDš›(ï}u¦Ä‘Ǻœ”d"F—_é °<n7sÆx“át”~m´Qáa«™gÓa?ÐÞΚ#†á¶ý‰–ûŽÜ4tÂÀˆ²€ªƒ©‰ë¾Ø€›&EñóðTʵËW+!¶‹õÀ=([uÃ<’¨ Gš-kþdèéµ4öõÖü؃ƒüuf†è‡e’³Ž?Õ¬Ü'/öÇ‘ªã1iþ½š.‡Øg\&9j ¯§ú¸@Pû,ŽÅæ³­¸<9»ù9ý[+ýCQ0oß0*ÍpâãP¾Jî0<ãä·©”×̬ªê¶:IwP‰jWÓ}· 8]OåŽdöµ)6>súüø­qÆÈ¶2½ÁS ¶˜×d$Fÿú‘í1ßÖ=aŒ'êqÓ:í¸HAÀa4ÎPr’G­©ù—œ3µ ;Ší$xÄ%Ròáädîºó3˜­y¼ÀtË Á `ΩÏ€{+úOGÿÉß\ØŠ¨úaËJ{ð9­Æ?±¨°œ&«–rJ¶2OWì*@±•(Ô$ã3¶ÈÊ;?‘ŸÓjØ –œÖOÂ¨á°ø|«MQ?ŠÉæsL­U;÷ÆtË[ZuŒIߊ‘À>>ù§Á`z^FñÁÕ“]>?a¯GöUxç3Ô‹Ÿm©®MÑõDåÂ,)#ºJ5Oaø˜Ýk«­Ýï±`1ÎT!¹Z\¼ìïý´Šv­EFP¼RD÷­}ŽêÔ ,eõãöfgaül=×Ê9“G¢ì^â» F|ðp±øK"Ù …A*ãÜØ€¸ÿ‹Æ@;â‡Ôº*ô‚ˆkLRœâ…Ò>mSŠÉ»½¬ËÞoÈŠôzʷȤœ" ›þ/3>óßcF«n¡¶â­Ï©ðËwtã­’²…X¦?„#‹âOŸµ¡Ó.¼Šú#mÓ‰e*u¤î3;|H¿•rŠ›ôš¨œ±4‹Nm5ÐìTE2”a7 ¼ÒcÓñ€‹…(ûK-ÕÞ‚äÿÇØ? 5ÙÚè²mÛ¶mÛ¶mÛ¶mÛ¶mÛÖ»ŒóýÇÞ}Ñ}Ñ7YcÖmÅÌ|¢ÆÈ¨Ã÷µ0C#²¨=ÿ­bU± å==LD‚Ä.~>yÒQ¼?ÊÕ±dUi®bßN ‡ I%½|‹`ùçö ¥¡/SRTâ –üÆÂÉ¡ja ¹ šœyÕú[]`t‰)Fuü Ϊ3j Ü0~Ç>gúþí´×‘øWÌR÷Ž·Òùù ¼lŸ~ ~ôè}ºÞÉö /'Õ/Îè>dV².•\dÈ]uªúöÂ6L¹ûTåõåQÁ¯eŽ"wíqnpjå­4±ó˜¯yåœÝƒ7H¬Ñu²`é…àØ^ãšGOØ€¶Î#‘ýòÕ}íÐÄ`h ö÷´«­Ù bOzôÝçÆ”` 9|™œX Xý_¬÷NaŠÁrU>¸(GŠÆ‰ov-~¥¶þg§‚‹°W©¶&n6ŠöO*Ÿ5—/Š[ %á/ÁB;ñ iÝv\Í]ì=&ÄQ¾5V%JŒ£‘‘]9…ðµ Õ}\üz:¶øGÞ¥ñ¼íPXxôÈYqv¬/ÃÔk!–¥Ý´!ZÙþ¹eiÂ):ßn¢×§¦{ÒˆW›ì¶ÛŽFÖjs(¨¿ìP/'Cè¢f ã7a,¼3vM²¸#W×…¾¾ª;\Ÿˆß½©„kû%¬d~AË©¹é8ãI|»«îÏŒïeó$~„í‹×ù1Jhý §šè1–1‡¹ïn«7+3$kUNtÆQ[`DÓ³j»Ó qÎà²\kŠÀä½NÁæïŽj;àíZîj/çøGƒ§Z¢‹/Å/¢·Ì¨­À–“ŸW=ð¬hÉXld¾Òå Ý`õÜ¡8òpPÖ+G¶M»FÅEä™k\‡yôàê!¨«UØKR—µ `ü†'ºïÊHà[r…ÿº‹ÿ€ùÞþ;(ÿ?øûÿ€rfæÿRÿ‡GŽÿUˆã-ö¤ЏÓïoD_§žî”o&¶5L†hç†3B¬P°Íór¢µ‰ªZûÀ0þ·‡D©±qüÄD»5Ûë°ÿåÛä5ª¶?ðŸ~Í^Ç…f¹>yýº{œ¸|KPÚ"óüºø¼º#–¾w[ÛLüLm¼^½NžmÛR¬4sŽmÛP´"5kŽ]›—Š”'l-T_Âð¨XÌš–dÖžýÉENj ì™ ¿?ŽýËŽ¬ôæÝE¾c N)Y/ýåöäIEìåœ_ûæ“¢µ5Å9æÜt×\4DŠ;€¨‚‚Õ¦ö«} «•£&øýêCYÛPæ Eé“QGЇ$t%ÒÅ»¨€x„ûa‚i²;C0 Ë+j€‘¶œEppùûPÛòlüo##ÔŽƒ PËT¬Ðû![¨iÏ92HÀÃÄäQQŒyI;@~KÌ]¸>›V¬ú‚o`xcƒ(Ç ³Vðd%<á›V¨âÎz 9i.Æ/²ç„dÓ­ä¯GüòËD8=ÑDw“¦þc,ÅŽ ç¯QQPCØOCX?ÅøOÛ&€"†µäµäGWÜ2l1Œ7N|27WPÈÉ@T©5©ŒQ•’‡\Jã!þ(uÊ&ûÞeÚ]ªm›R&‚5Y8<æÐ–éb*YEr 0Ì3` ÀÀ˜ãp}ê×gSYx¹Éá ²ue0Xò^m;"#]Ò ìLH¤#ïÎx¿ýq¼ø‡µIÌó!Ýïî7RБúŽ>îÏ­ø1¢_Ͼ¹%çÙÑz%c\ä´nY*\FïËDˆ“ö@Š 8¬B€0zúð:ö¹Ø]Úz[eÈ…GLŒÒTj‹B †çfB@&EÑR âÕ°Ø4 z™ÛúäøÂH-ôF˜G#êJ2Ha;L©VÌ ÐGЉ/VÝW:A‡" 8Z*'>œ£=m‡rDÏn •aç’I Ô„(x–¶¹J±ÍPV€|‹RZ¼ Âb;%N0Ê( 69ÀûêEÖ·‹Ü¦Ä`$!+±¼˜ mÕñkƨpxÕ2ƒh&Vi»±›ßæÄè÷ÙÛðØæ†'ôéR<Æ£pf ’[®Mî«—€&µ- ê–A}@0`a£’è©ЃªE‰ÙaWk&M5“Hªˆ«¨ÛÜ­6Øà¡|_’@Ú’ïk“(¹¢YlkêÁ? RûÅ ½/Šr)HØÙÀÅ™ù­ßª‘1ÅóÒŸ¨ ÏáçE‡ CcI¾Vk±¨„­Å5&¦Zh<‚M ’‚LèW„] 3_–Qo¤2[N×DZÜ$^(ÜM&/”¸æ =–€Ìô*K7‡zKˆi™Ê€ëBì2š&ÛéÆZO»Ü¢ç.Ácx"$Õ·…#Q¦›°–çämÞ¸K ô•ÖaÜ«½ÅŽ'5„ÅT'­fi–˜¦ùêØi(¸F)˜?GMض#ßñW0ì2&wô7gÌ\[U*£ÑÌ-'­N÷=XBüÞµI„±Û÷‰h,Ö¯Ò7µC…µ¥@ÚÓAŽ¡ÅÀÜ|܇UL7/CŦA úbbˆ5Ié{Ö @~!öÂQRMÚN‘‹x>ÿ›u¢šaLèà²ó,ГSW: –5c{À§pÇ‚§kúg¦1ð]bp‹Ný5U9¶]P)ÿL<´µ-…«C1Ø Aø6˜LðA“¤—`‰àe€«ä䱸÷‡“ͨôH.ùŒá9ù'‡…ÁWF²Øºg§¹ç˜°.Ii¨8 œçL·my¶¬#ZʨȘDðŠéâ¾ü ´£"p¨õ {º @‡Ú»ð9ºvýמ*yBÐÓ÷­2®kIcl·¹õ˜¹V8<ÖœxœoÁ#žö1V¿7d2-G/CŸÈ´»öú2ƒ@/<ÓpÞû€™Å GMØ[øŽÀ¡¤'@í>«#9•QÆÂfo:“×.¤š.tZ5q¢ œ› s»ªhHp´¦°…¾ª…%3Õ'"UhÆâ ñᔾà,ŠIYhHû—a#H´€èÏÏ¢“2!'Ì%áÐÖVôGA1‰ùìÿÈàá~® lFY[.9¡‰%<ÑìÛÉx žÊ}$Ègë‘Yâ/Ÿ°à¥Õ‡·~YZòTŶ¦òýHíöVc¤Û ÍtÅÞls'Þ£#î^´¾P¹aÉS4ÌR«ŠüÖ+9¬B’oº#Ÿú_ÚñlyeÊ.¥›°ÊÈ3Ï\c%„¢if„‚ŽŒ|¯ EõQ¯\VæÂÂt{ÔýHÑK¥‘OrÊð :Üû2Ùj‡äN|:²ÍïÍÜuá¹!âÈc³¹oDâ®u™—Ãäy½u5,ü2úü>×¼¿[²/cý£3Òhµ¶«R±BÏBŠK:‚¿àz×}˜FƒxŽ®Ú0ÓÅ´uÞÒµiK+hâås78Ä—Œå½¸;•ñ‘ƒ±¦\u¯ú0ç<4ûz攈âRs"å ¯‡QÓIo9·‹{¯ÃßmF¸ü´Úõô ìܳ¸ÁL팆ýUášÑéiDcùȶŸý–Ê—ü–KŽz~*æz ¸. ¹Š¨uWqãÖs]u«Ô3Á²å¶Ds0®ð«žÕT‰´o5ÿ ™7‰YìR.6DfõV®IÜ’Ž‘dvÒÅ»,}™M ÔÕ"6wp}ÍnߪGÁ°gJê8º;$¥°Ò¯CÝžW;;ÛR³o%ÚòßÖåAø•:Ç‹Ï"Bw0}´6}Ÿj4=‡æA»®¢zöÅ µ=Y—å’çSõd{š"Y<‚[o¼Dë¡oghJXWåY®¥Ç«2ìœÔ|àAÉž›.ùÒÛ¦©ºî2o ¡uì‡Åjõæ% 6ísexC'ç3©þ²˜µøG›Zm4À¡ó#zKå+±OùéÉÙ¡˜E28ÊuýޤÝ/­.ì ŒrÒ¤J@(­ÜÃrÀh€"Ê÷B.ù7w°0ry}#yŒwS+®ß–MÔJž/7±ÚÈ}¤ÄìÑ'—x|Pƒ_ýcâuÐ ¯€áÓ¡àÈ_ôPA ’c Vˆ’êˆåñã(æ#„úg>‘ÐQ<£Þ®…ä­Ž4±€ ƒFñW ^ðO¾öw½[ï€í©Ýõ肺%tàÊd„v€«*¹Èp,†ˆÃ„·ÿô…ŒÂ—þ;žáø1|,Œ¬ÿ¥2ÿx†åµcg;uüÑ79~£}†ƒOxŸ>í d<®ñøÆ®D±„†Ìdc”&zx¿¼ª~•—7ÜÙ¡„ÍPnÞÅ]Õu·:+_~sHó7ý×ïó3$÷ò—‡ÿã#$œ½ü²¾¼^_'g‡{J mž‡¿÷ý‘Dî˜Á^ŽöÚ¹½^þ—Qw†»Sc<3Go†»—Â4#3o°b!ZÍÊ‹}z”“š†Êc64ÃîW¿¥Mlà:WÅîpHÎþÈçôß‹Û^¥¨ÔðŠ óõå‡NX ú2é·ìs‰FÌêò´&Íš§n:è¯ç£¹ÀÐä …ŽàF=‚͇¸ÆÈQ¯3ØÚlpýõA3Ó{ÜÞÒàKËÊ:ÿÙ „¸´ p|ª„×'D¥ÖçÉzGyZ4Âê–b¢⎌ü4{ Hm’63oe .5ú¥þÖIuO?Ú!ìQÅIKè£èOsÀ$.qƼ88¸9@ÓC"Kt˜²—4t5àx‰(ûá³ËÃÐH>¢øØršoZø²å Q¨¼†G-(¥¡àeYw—“›!'ÐOÊK&${ëÎâ]‡ëÄ#wÜKx34¹»æe°†Þ©ïÕâÎLÃ1ÃË4Í7Q’‚V) V^ N ?’„&A‚PP´€6öE|3éDô¾¸Ò±XÖPH¸‚ÁÑr0§òãóƒeûã¹€n‚+˜LªÀzpqœÓ”ÁЈ$n£8©!¯BÇa·e©›!6G:ð"ŽILéLÑ3šÃÊjÀŸ?s°ƒ:T7§AéhMõzs@³BÁµÂM¨&Ç_=£Ý^ú‚Ó$Ž‚nNOEo4Bî,wÇ< Ånwé‚jjZö%È’~A~è7ËM ÌùS‰Â-0Ü“¨Ä>0aÉ¿°;†%å†Y…Fk‘|³ÐoaýóÁøí€U!bߺ#’ñ-A["„âKk’âçœM‚8„µqˆhJþ\u¿NþèËmÌKP.7¯ñáCëm }á“|ˆ]?†0-w´€Tñ!Wà8Õ•³ðÍÍQ¯2E}ˆhŒÄ{ˆjbW’* AZ°¾ÂèÑ`tkkÐmsê„æ'sA(w¡òHþ&é•wEÙB7hä{ߔͪ kj W&ëÐ0%E©qüx kw˶[c­Zª!ÿdáÚâ +Û`ÜD÷M©h€Öü)8×è?ÿ©º¸MA"¤?F Ðí·ò‡†’åñn@¦’rð}tÝÃÉféCº}0aÑû!ù‡´Eør¤Qíç6üpGÖ! {ÇÉÑóEØü³ú¨S,ÙÅ0)¿bßgªÍ^>]R_/#AÁí`(d£>·>äsJL\ûý¸ž†‹ˆ¾ƒÔ×´®ÉÄFé˜ßN L]àqª^.-t`tÚˆ53>ʸ"*ˆØu–×~ê¼}Šr…‡¹b8šTê‚  ,(¸ «lù±Àì”@2,×âÐPÀÓ4¡ÿň 쎥ÌCS|s_½$ß“üwØ®ÊÜ#v'$ez¯\ýO]¬øŸzçA·˜Ç…ÕrÇà Ëiyu¢¿oª›Z™ëJó ¢'1m‘­Í*çtXe<+$}D°³?Yœ†ÄS =þžgÞÇÏÍ‚WIÒJb½1Å#,Ÿ 0àãy„òâÈ{D! ,øþa9”IúXDh_Åcð~ýŽ‘V£ A®ÝÛaHòûí`¬ÁÁ++b ™¨ü}rûôA×D€*™1M€õnï8E,4 UÓÃZr¡ö>¨2½úqhqÛx>Ú±¯ø±þîç=Ãð›>ðâaüDûTFMÐŒ”ÐÏ¿H®ê±OGI•¸×`æµ 6†–èÉYfæ.nôÁŠ˜ôüÁBò:Åe‘ûeÏQ3MS£öT€+]„Zán7Ì•ÜS@?SZ'¦;  k^xÀ2`äîzâÁw"V¡–³íÎs-¼0ÖpSOÔ:Ë\¯–àÄEàV§C„/_ÄU†—ɵkîbŸ³ÿF'Èœ7ÁÓht•´F`Àš7¶†ÂSeû…êuÀzÀÉF<_D B5.`™QÐ×ÖÜ ­É„µ¬s…–  ôY‹kŸ! "üjÕÒ£-uAr<ºT?&–I|ÕúìT!Œ'[†pÄT7ŰJUGTÂEÒU¨qs'¢Ö’éq‚ZJ÷nf£c‘€°)™îÑ+Ù–ÒUØE‰!«â4÷+ãòˆ(]»™xl¥Üˆ¥ÉHá#ãeCç]>øŠ"SÐÄ`e÷þ5Ä=™y±ì‚apËl8«h L¨8à ãì„YyídLl'<_ë ]ŠÔ×÷¬œ„©íBó% ÊŒŠÙqÜÕÿ Dׄdj˜ANYÔÊÆ×p¸Ìk3§PK¯gû­Si™|®R·M&$ôHÄ™Hh^Zúú(âo#)牉m-÷L°"8Q9• ‹´LnÚ¨DEc$•?sí«p‘e:0ƒá ´—Öä@\øPºø¹Ê°Û‹áp­ ÃI]•ËèLpl”<¡zxwœ~iVƒfLµZ†v#2Ñ¥6i'º%”¼°Y°Ž…ÅØc^&Ðí³%eБ1.ª®J”øV<¹".À Á“ÂHš#`DЗb¡SGÁ˜f°Þá#GéɆ}v}f4RŒ¹4XS!ì(ü’°¤œâ`g ´üJ)9†«o˜z¬÷Ÿ/·Á@PwRÛê—y¡Ô¶£úSmáN)næ•ÝsÙç gvë)(ïaM¬±Sñ0£Si£¿_Lo: Tª! uª(ÎÊ)/¤gßì˜";¥¡Âʤneç¾ Î>Ÿk!OÎZŸjV« r¤ š—9Pl:("ä ã²\TADæ/¡vVL* ×T×)¿·,9©w¶¥p8ÕXªY¥BÎw´mu%Ùc7+5/5¹XÛ}/¤…ÞJ½0ÎùÔÝžU‰V-ê‰Ïdç×w~,Jg£hÉ šh÷þ4s’X–b9mh7ö¡¨´ðtˆ!^a‘ÈþQ˜ÿè·}ü)`tÀ!’t<ø4J%Óí#VßOT×ÀTqYL?µ`Ï:Æ/®²ÏA×gpH¿ÁÇÏà;@’i„¢»GöæœwpŒFÇ?T·Á]!êùñë9Ó‹œ ’­»vŒ ñÊÅT·…ÃÑ6B @.3]šçBg4}BX}pQˆø†hÙ¼Ž€¶æwp{•0êË\ Ø#+3`/È-ð0Mª >xN“Ü#}z™•ð4¦eÑQ·¬»xáÕX#źK—Çáâ1V.Çu$§5;¥¸k2}K…_‹Àœ.B;%N©!‘ºøÄûJûy'„™^ù §±lÈ~|v1¸z!3Æ5Ò\Ó”X%¬.ûŒT|f[4¾kor.Óú~´QTWéùW¢îºon©V’”=Šf>QÑÖ6Z¼øöâ¡ßþcƒFAÒñûM=oRR9ØyŒÉ0üƒ¶û×w£s}_äø"¨¹‹#X-¶ æçR<è¥ÐÏS0‡å*r#;xVÖÓ+Ã!Òò!¼våÍ8ðNfg$½F•³FŸ%XG¸gïç1æ%ÂʅÉ+\Õzv–`nR¨r7üÊÉ— ¿&8êÁÜ™ŽQÏJSÓíéPÛ ù0*s[~~ìÔ –Uôê²1‰ŒŸ¼‚([3Nð % µHa®=f¤\²B<×ë&gw’[oÑ®¶îi™ˆ¿·DÐüZ£TÎÉ’±Øe˜<‡È…¶#äN¸/Áً̆q@i“Q ¸G@¬nœ^ÜʶQÕoõKðñ)4µÖ…(TÁ·¾È:H™.‘)Ý{-6/ó’‚,Hvš·rjE|¸]Æ@1–&ã›îƒíæäëÀâ ýl¡‹G;Œ‡> $†D–«ÜèÄd–±3çÀ3rı ÎsyÊ £.â /Ó4Øh U(ÝÙZ‰î4=¢×€ ’áëŸÛ´®Á¤Íª‚[H€ò¾Y ;Æ \>[Šc7yÃb‰r‚O½`ºYc ïü¾ú# º°-î}ݸRó¹>Ès…#£,Ë‘Ÿ8Æ;ç¼)kË©þÞ¾UGw6 <ÖïzŒ1´Åʉ°"ÉZ!É=´Æ€ØöªkßÄRèÑ=)oÕ«‹ý¤ölÃQTË%“Ú¶¬v~b7)Åfiz¹¡“Åä5(:àäÎèè…lòâUÊ(ä.¢€1Nþ膸œ¶nMÄ’&ʈÖ_${鿣÷T¼,}‹iK›ÌR„PܲCE}2ÃG`9Ú4þ<éKžr§¤=§viÇ| cµ Ëþ/e<úŸLæÈ’ÊQ:3T)(¨š4¢Î¿ÓgÝ :?°Ç¢…hOÂ\b}6]ÓZ>Äk{¡Ý„©DÎ/îï¶  FPwºüˆä"É3{÷ 6É­ñh5Á“µ7ÊÓÅÖí³²â⫙ċEŠÆl4Ãþ§Ö y}*‡Öxÿ¢ëФ«Mäå­J?¬Ö¨¼â¥½e ÷É ´¦…§œif‡¬oXç­®¤º_ýA(¶»‘EîX:Ýõ—JÂ…š[hôl5¸ÈelµÐðš¥hnæ°=®Nê`[W_—ëÂÚÚ[ëÅlîØÕbûOŒ4‚ˆT–V„D­WÛÞNÔJÓŠC_ÅÆÚs#„…’ØÞ¸VÊ Èýí¯Ìhjüh¯Ý=l=]]Ý&«“`„ªf,i¼ yo[q9Ð…CÍMgG¦ôdE+ø5×Ò…Òl޼¢“ó-ÌUÇwBGËÛPåÙôJnztU‚%Û+;q„ý‹e®]ë¹Í‹Ÿ«¹¼Y’?óvn¥èºY1Âo“;þ¿³òaºàœ|Å7gO®¹?‹j·›€"꽽ݹ_Ë'>©Z÷Ù¶Íð%‹›µd~u+`q9Zâ˽Z_øJæà[¯åß>ì)†F¶ã-sÚžâ&ˬ¦6 ôÞµu²Yާ-[¬àâA˜=·m«ôk”çÏ8%ç Ýñ®&Âí­]<®›¾ž˜ÜÔmöäv¬I}……ݲPúëçqF¡iÒSáz9‰Îí´\ã¨hèü¿€ýl|×½Ç>g„ø‚ËKL–GŸE;´‚D´YW¹·_êblû4wÏ‹hOs‚ DäöàìçAsÞï|j 3›œ63}§ŽE©C6°) š !—&£X¹ç×Ù(f¬Ç›•Nl9X˜FŒá±ö¡?l̺ ª—ÒØÊY9|ɤ—{nQbïîÁ lHLæA"®Z-ô¢ä%Aade÷ÖÑߊœ$¡äÖÅ–©<\§‡¡Ã\6DxîƒY$¼caŸ¿‹£“ú‡}ŠàÞ¢ÿ¯üß:fVÆÿR9þ¼Âù¿Á+£:Úõ8â­|HöØ%Ï.{â= Àynë½X‘á _„Œ6 KHÜÞÛp\}¤Ào5õuÕ]Õæ¯¶0å]]kU®kêÕçÛ³³åýôú¹±Ùû‹ùèæûy‘³d?®VÏ›Ãô1eÔÃ,rFοß4{dlB‚W±Øå†/ÙÏêæí?_rpsœ­?6íèÁkc“·ôO­ú÷¯k²Á6}?víëÁJ^IÛæÜ²è¡)ÛÓO—øg÷ŽÑŒ{—^·³s6ÿyQ ˶½PœU°=þ8åu»½›·Ïmèœ3Çô¹/G6¬Ñ‹i[‰ŸÏÐréóô'zW*õwû®'÷ôì;¹ùYŸ ÕG“ÜZÅà‡`<Ò?v3ÿþIi}ž <´a[½Ãª¶YæªE‚{ËëvU.V£j£¯~yiÖ%Ô}»¾›Õã^%%™÷F÷£Õ¥ŠÖìPÈ8Õ†×3õ奷TÙ^HùBu7ü“¤íKßW}¼o“’?F¨ú–ŸòrS¨¿}-Xr9‹Üþ]aB—í«JïÏ*|ÌŒûý\wÜË´gÎ-PVM¶ƒs,ÉÄ.ƒŒ´ÊäH¥H0÷£i¹eSZ'4S/1ßos/§m•»m5Þÿè¸ ¶E†Æ_ûž.~Ô¹V–]Ì q䟘ÿˆIXξmÿÙóXyb%svŽæÖ’ú4jLH‘X’Ògò§Q–î…ºìqä‡þÍëñAùâbDÖ±2–I-“Õ×¢\æ­ý5Oÿ¸¬ÆøX$^"_{Ö¾m´{òá’R%ˆmç:rsë-°V+o ¡® ªN³å_î„fï $,eÞ—aø®8ÇJ^ëÆK( i6v×bî «ûn‡aÉF‹¡žhñ;ܾ 0h I©Z˜Ø0æG÷gÉ Ç§AþÔBœÍ«hst¬1í¥3ÞKAzK\ O3‹°ep¬ô'ºsœÞŽIãµ-vX²ÑMEú#]÷ÉÜnâBÇÛ<œ¦+Û–¶iŠà¥E]Ä©€ áVÄö´’¡} &ƒõ JO¯ÿ2÷ÌXƃiçŸluT¨šÑR\ÛéJÖÑÛI§ã!§å“cVbP%Ôä- ¤›b1lͽmër&è[%YLddLµ†ükWDLJh(˜†(Rþ.$n)ûN`Ñg²Æ Çm/Ì„J7½ôõ,UäŒçÑËYg¢9C½Ä%ùº÷R’xæk5–œxßy@4ØÎå7„qß¿âQ¼‡þ,2CV`ÞPÑ$cž@£o1pDR:Ù%‘±.ÿÂs¡”#ù. »cHcå¯bü3ßÐaNDí`Ëní65±SøOßE)¤Og¥a¼Ê ½  ~ÿD”%ƒ\Ø Ø›i|C„lÂp[zÚW¯þ5QòÜBKÐÂDx¯Ý&*Ø5¶ˆrQj~Ós?}qâ9²’Û‡š ‰,þ¡¢¸òóï%ùãÎã=t¡ÍàVÁaÍþ)#­¤Düö#U47xòÚ‰­ÄÅiÂÓgÊôÙ£IºÃQkè/fA»:!XÝ•Aû>IŠ[Œcð|­²å„í@¶AJÂn£Ä µŠíEK$b;µõh;säÉ~’Uï‘i ÄúßE°.3kÍ6 jògí!=¤4÷|Ó„ß …Kó<ÿeý:ý´„h—ãWu&á,Šh8ÀvúݧSöÂÜÛ?¦%£«f·S̓2 ¦*ÿµïY×sOÀYG’´µàÖ"\5Mé#4³Z#d8RÚ‰R©é¯‚( Y—\åh=Ù¬r¬%WšÜ£-”‰-2&µ' ˜<è¹§E9@+×/ôÏ…Z¡¬Røö+¢$¸ÁëD(uê8kºÆáKD²õÂkµFiôÇ‹óTu#{P$EkéQ CA‰­ùÜDzïáS{sS+’‰~¶Ðˆdè.Š<ú ì‚hìšzšÿ®Êí2ó<´€„¥æ¢©ˆÕ„ØÓØ<‡hÑN¹!É€{'8Òl?ÔÇÂÊ ‡Í"1ÞED«QµMKû*E}›PW~‹âÐzÔÈ’Ò,RÙ@s‹²/¦Hy¥“(­–Éj;HØÝ«­ìX«ø+FÕsž1AçA"Ý4ÌgIl%Þ’W·3òËÒ¥í ™YØh©f&+$žB¿šÂ™Ð1Ý*M’ CvV”8ÑwX{2*‚„¶Jú[&ˆÎ pE+W‹(',×1ZÂ<çìœ×—™P1l°=ðÍSeV5°ÓöÕî3wT8‚Žîÿ¨§tIâdDßµò¼|weE˜½ßÏq|² )Xãƒ1¾œimÝ£Àâ5 Oýƒp>ò‹Ë-P;T ½ò>#Ø'ÙÀYÚRn*ÈñSQ€ôC®Én%˜Ð¿Þãß,›|è ñæ—R§TIX*tB'ì‘7PO¼¥nä ð 1 ¹seç_‹3—VÔžO]:ã€Sðu½ÀúäâJÞ?#ÊYíS¼»øÎí›l´¬f÷íÝš=’ª†mòoJ׉U¢%ø Š Î1V2_ÿí`o9¤ÙHDÁ‚"³GQ´X˜±C‘Æ;+ZtŸ%Wi?x r¨8K“_îùqá-ÒÒ¤™k=LöÑmTÐ IF¯‚È$R 1¾ m0‡ia°¾»¨ÛÒ˜àç44@ a˜K_C¬µf°¤—sO†µOðÑɆ£Zz!ð·38­|¤Æ„aʱ·‰w£ˆ ¶+6;·e9KÜU2%êýû4ánз§²7r]åh3Zßã• #n•ÐèÚ p‚ä©X+çì]®<øêÁÄ7Ÿ1l< ãÇÏ¡ uuŠûÖâÀÖ›9‡‘7ÄÃÜq s8“Ö o rñPDM Í4!˜ZDòW˪Ov¯bÕ3<Šj¸'Òì»0h‹caèœÇ߯élH„â Åv3©Wlc- !õ°~ÃhîP}ëÞÚ7ó‘DúxY D‚æ[ÞÖùÃ5Œ…;Óáu ÏìLau¡ÜÐ_T×oMôl-à–\V(ŸhûÉ-›U)Uéu1ÒÜ5`Œ­Ð©£Áê¶”jëå7˜ç²YdöàŸÄ Æ«8÷h7ZìÿFçöEµJ÷ðØm)@f¶òH‰åÎc«]ä™ì‰ÕÌ|¦âU´Ù©ØJ9HÆ36ƒã†@NtŽ&*pí’à˜èJ1å»äa Ñáü`ªÄl¢<t 3R2V¶£Ø>²ÿ;ºvz¬ÒùŽŸŸçãÿr6 €Çm÷öI°òÚR0e(l¿~ZÝ—ŸÃãûpy¾ë~›ŸÃû5%þOÁûûxoÞ_җdzý½¾yLž=¯žíe&Tr®"•·H•˜íŸæúÓB÷Ï£¯«Óˆeéåý‰±èm:zî:"?=*ÿg„˹=?-ÊP¤|óDZØW% á´¹lm©eQIubÙ\?ž&“WÉBY$¿D'ãØ©/w»v»Çôqö¨>ôÙ$:ÆY´&ɨeDº¼²#’ |Œ}¬Àô%ÉLª7GÈüÐ…ßþ×Mœ!SÚšñæ»BÃ| bF6¦­ É 'ùL§1$WÈû”ÛóÀF/Áð¤Éi€ÆøD;!™V®z´‡î Þ¤#3•Üx¨’ ÇïÆ4©ø–cx1¸å‚ª µW¨úäTá¯6|N+o8Íá×2ÓñA8tOq ˇ‹²2é§‘ â¤˜Å ­÷÷ýŒ ÷²Y©]:Î8ÜÀ{616­QÞÙSmX”ʲ†ÿ…Äöýòâ²zÜÏ‘44/»!‚(D5 ô_Z#Çѵ٨ÑÄ¥ ›ó–÷©,—¢Œpž¨ìBYäÞHóžoš«7'Ûæ0–@, ùHù%€9Ú¾õ·á7´@Þ¹ÊÅ-9ef“žòöÎŒâ¾8±ÃF˶äÆóÄÕön¼Ítâ¡9w|œÓº‹èáŸDq,î„•úäÓÂþèoã:â¡d 'KÏx–ÏZG\fx&ŽÖˆ…ÿÐ⹪øAþÝB©Éåq®+õÌ×c1ærJ£`<;ó‹ŽwçpÍÍ[È­Žž¢d¸£uŽj‚Äõ0… öõ\}-…vÐñ=´søŸ¾¨©¥§·[KOˆÐéù 5&A›úÞy &o‚DÕòJúÌXÅþ6úÀ é,”~^¼C(¤èm£NÁ‚ éj¦·JÏ¥Mj^g¹m´©OþÜTëcìäÜæ¸L¼\ŸÞu5ÿ·PðýkCgX­Q°³ŸÓÎËÆ4Ð8^[€á ªA†E–yÿ€,²Ã–Mhµ}î$F\ÍR³ë´KÛç Er¨ílŸmÊÇŸAŒž§Y )ÍkMÿÈ¡4 ¦ª'n£ÐÀß»Ð!ñµ™”Un™D°úÒ2äpóÆÆ­RÂC ¹¨/Ü›FƉ»‘ò°ÝÈÐW¸èu­ Öæ£~{ß7^âø=hØY#¼ÑõôàØª$Þ‘•QÏ2eÝe€¥ƒÛ@d>–A1yH¾+HÆ}&°¯·;¸åUÂo¯q†°‡T’oŨwlûÃàJ^vÈž)í"óhEœv’R鮄|ŠÞ7¤¥dhûíc†à„v²O¯2a’ß®‹L µb9™9âÉ%k¤v{Ùd6b“‹Á™\Ÿ‘KûT÷oúA/xGM èÉo¼Ë½ªçûÛ¿Ãù©Ñé1•§që ¨QãGÂ8–H­ )= kšÈ@]}æÔü!-…§º•ÇËC“ØeÞ®Ò¥@¨]Tè$ê~Ùó 3M$·b˜ ÍÀA3–x¨÷0ö‹‹7gŒEogS¨ ²Š1ˆÀëm¶üÕ}uÉÔVvÍt¸Ì@Ÿ ø‹Á<<ƒË|&wn?<«{íg×R @,¬X×{N‹¹6~¦a=½X²>nqºÁ2™­¾JgDmïnKË™·ßª­ëükqõÙÜ–£o2-a©pbs7’™ié7=Òë“.Clø¹ %­$苎O´Uº u=Ð:ÝíÆýÚMMøÑF¸–/‘ƒŸæSGÒ®€§™,‘í*[ú†ò¬*¶IˆNmU[öÖ^ÃE4HÅé^Œ}Ç©=ÈŽ£õ89ÖðssE‹ã±×opü¬ŸS/ÍÛãy§WøZ—šŸ²“šÑ„oW-]/Ö(Rö=‚´|\Òõx³Ýþ¡#Huˆ-¼á\?äoK™-äú)ÜTùž~N¿@ãõõþ&˜5¿˜›øgÚI¥T.,]æÐ̨`>ª?ÔÌÏÿÂî˜_ü„ìÿ:ÁX8˜þŸÊÉôß 'óÿʦ«™Œ#n÷úìAü>f¿ËÖñVÁ« 5–¥Õ%Ö„KÍ?3§°2¦„#E4ºúëìIT­°Ë‹Þ§@A‚V]ÍÔœ qð`r®Ì8©ø—ÂOßÇXî௟óí@´L_~}/ÏÏÅíùÊe'«(âéõz+é'?DËnéz%š#ÂÁûõ{"Ÿí¿¹õÇû%ï1šuÛ‘Â8¤mžþ°’|+'G8bÁ¾oçÎ6iÑéãÛ¨g;wpwŒ’Å÷5©&?gYý¨ˆ‹ÓƒÊæ¿Y5é]ÏÎo(í×4f3×Î%#„Õûái={’ å0ÿj®¿Ýóu~;'Ôæeñ–oï.–9¹õ}´Ð¶Û¤*l'Û·Eå ö †´¾–Ê–+iŒÚ§Ó=ܦg¤m¦´€6!4H/72»ý‹àù[Ôºþeܱ7ÏWqë…Ó"Ș€Ø;¸ÿ$•<Öw}ß?.Ÿf™<^ȆÉkšÏ§UT¡œnå£.ÙÆörzˆ<­¯FrKHÖä,•ÅõLxÁô¬´Œë ô* |Ç&@tM¯‹(Ç6×âÔôâ›PZDç_Œ7ù?“\Ï“(w*ˆ¿çiµòl¦È\ .uE™-»¾ñM—¹îýelÁð¥b+æÕ4KtߦBR¨ÜÛꮾžòkj,@¡¤¥ä„%;<Â#B\ÕìãæäùùßU³(KF{‡¡JŠÇRn‹bð´ÃâòrÿióN^fãíóóy¾ë•=Ÿøøñ}_¿OÞÊÿ\žÞ'/ϫÌqL[±¡H qݘ5SoÇŽÙŽšùŽ~1ó_²ã/Ígnc ”•»à£d8=/?äk£Ï{££Ýž«ö}VíôÚ²¯“be¯~I+ Wß“Øs¼kCòg¼15T+í¸ßœ¶fíß(C‡‡8ðmOL»ORD"'7«îõÚæü¯rùíÙéÁT+ÓÅ/ 4Œ?øÔrjÑ»”À¹¨ õ‚œuñ›ûÀmßhaFmrDµ§̯”èÅ} •‡(bª˜뾊î$ô’¨À:.4Y>ÙOÅü‹x¹’näi*”¬Ò<¢2ƒÙG¨]jG ±o“‘É*<äÈw"üâéî4;ïŽZëeE¹qRÌeÃã ò ukm‡DèÛÒŒ2«ï’ÿ^Ôͪ±`^aœï¨Bv(E}žeÊœè>â»Eø¯Žªk‹¬à;Š«{[–ÈZÛ1Éwôn͇ë¶Œì¦MšÖèR†ÐULrd³î ,Š…jc îàÌiŠªü^Ú–q¨Ð“eîà¨ëÉJ_r‡·î°pÀt8$+Õ×£‚>äù à¨éd—)ª¦,y öA’…™ÙJ‚­ NÔ|¬ì[cfÍ146Gz^ žµ&¹ â™°7·ƒ ÎK»¤ ÞlÁ(d4OñÛý×Ä¿W³ ’U»îµ/Ì0’ÉD‘ò[²ãß¼´@å=þY¹ÂÒp6x§€½!ºà˜x(÷Ô –U¿1˜„à»–bL|i¨o±PîÉÈ#:¤f  ¤¤Ÿ£˜pÚ‚}I J®Ïc6VD¼žÍ A3œö‰ÚÑtPw*\c+AÓïOk±ìÉ wZ­'Æuù:, Ö||%¸€À‘£Oñ ŠvWÿî„€:GJò»z®;^ ñô‰€ˆA.Ì„»iªÅ¬ó;жIðUÐëö€p [%hêxŸt!_¯ÃäolQ¬‰øC+@ó—+*7Ø ßCݬ#À`:ÜàÍØX½š%+”ðÂ1¯Gx§6Ͼ®¶MëÌ šó‹ª“û€²cc ˆžÐ::c‚À"$|"2õH³O…"¹Éã­oá œótx`pqÇh¸»ƒ¡iÛóþ•Tã¹}̪ÿ#ذ%.ãj)aëB‰ïag°n`Ïn™Œã³þvyÐm€D‘f sï=(‰½¸×£~÷€=°!â~£µ…]B;û‰Ê†VWÔWm6.®—ò¤8¾0ÒÝà#¼>9œgàqø:x¥iÙwõ^Ô›‚åtIh%×È9A ¤µ4ÐõZ³±@Ϩ… 3;ùÕ˜çÍ8w×Fe쫌Pÿ0펠á$Ek]¬OŒk—߽빅sù1àùy;SÙ @„ à"–!Ã'®]ÌD ûf‘£ ʉÉ^æ? ‘<ö` cV4°¨ê7Æåž£:°ÄÿÙ}ÐÂqo‡;½šý‡žà|0Í­äÅ o5OfÊ;"­£*•€2ü“¸<Ò)N .éäÏÍB—“8 (ˆ£ñÐ ´¶ÆÕ}¦wbß°fñW68*@(¬ße›šäº'ÎAgÇ$¢óÇ1‚aëUÔ<7­Æè™šæ9>Щª“m Xp°(3ÜwäÑ¢šýæ/yóåÿ0ˆJx¬Ô™–`x©úr'ƃ·°ŠBúšý%_ž8Y4 vjcñLhÅ‚U˜JðŠ º·~py¼Ï»ÑO\ê¿759¸2=»¿@‡Ï`NH‡}ü¤—˜œ†I‘wŽ  íÑb4V·ƒCN! gf¼TehFËÌn8À³øƒ>|â«^Ó‡-ù‚å,–TãGÛ¹¤ù)qA:@R¥Kô‰Õ§W9pÅþQÀÂR«¾kŠ˜šÉ«Ÿ†æß÷8ïûˆBªGwÓã¡C¥‹…È~h&Ú¥Á á—S‰ÆBê—y£áÎÝ{˜k¡Y†@Ì–Üv°pñ†—ò]¢Wû@X¥xsmu7-6kgî/-.îËÇ&Ã׿Ó}ñF/ýelˆV(‰÷™³"í<§¨tסÏ1¿*ÀxÕÄJrQIA sq¦ÿo½ïæÁ.k9i;ŸB£M4 fõìͯD%˜50ƒ# ºŒ!è–T £ ßÑЕ†pöâó<ói„y\=-¾¯sÝÂo>l°…Ý{òò!ŘÀwƒ³6ßb½úÐ è% D#­,Ëe’Ž5@‹9±ù…Ì¿ƒ,€Q{>°\Óɱ¬÷TÎÀ ÒßâýÓ܆®ŒÃˆ‰Ö.õy†"8^(Õˆq—‡I|•7õreÉ|Ϊl]÷çW ":%o§×B=$+¦ÒÿŽA¤ƒmSËÑ­WÕϨCƒ\þÀa¿¼NYe Ÿ îÔj§]†“‘„­osP|ÑŽ­ñ0<¨’}gC#ȉ£Ëq¶¾¡OûݾíaIBzÊ2-Á¬-Nqß d[Úm.|ÁQHÉb]ÄèNøC\F”Í RÞ?š*i{ßP Îá‡,QŽÙ5}Оè üêÐ]³G_þ`AP°Ax”®6 Tr¦8=7¢e^Ÿ (.‰à2¨ÊÐ8½1Ýñv¼±l£ 29‘MBÅ@­ù?_Kh–Ö\3„ì.€ݘåt›6òƒ­d‘Fà»U¯Úà8´fÑÜœ¡Ã¬Y]©¦Þeôd ÌÐô k8iyÈ8ÂgO µH>9ØŸëz&GÌŸi̬2ú²×…M§"i)ùû“µÈérzœ_)Pk 3 =F“Äs†¯aºÍUú|^^ÎÏv>›]4ôô, µGÙ¿z¢*&ú¥"|pe°;¢1 èˆ:1m€c²0›p߉lR-àú¤r< ñ\jD!–¡“þþÚëREJ²jéÛÎ*Q¢QzP·’™žË—îe¸Uµ Ó¡§î”tml¼-}EŽ-u¼eÍÁ @2Ô‹Žü£bŒ*çlñí‘AÂUy»Qû>;þZ†I:4ÿú-÷µ‚æ&OÈ5ÑÔqãØ¤úæBF¢ôgq¡çþ¸¿w‡ÀÇ=’A‰x4Hטã-^˜  ¦I`ÒFãÛþ]5Û8ÍØRn}ãaÞ‰fjhïôCõ„[ó¸KX!C¬1¤C0»?D6¬x~Úž¡’©æ_¤K ÇîZµÓçg.ïM$,ΘX°:¼2 Íc–´ÏZ`ƒó„VϦ»%7“KÄ‹]‹R¦·pÊj<¤ÔV †'DJpýM‹šÑ4ËK¡óݤ7éGFfÞƒ×&ÈÍÕà&RXý ¦¤â ßF•]ie‰ˆ¤J#òàèýÂkGÞ†-ù8FRD‘½âÐ:À4P`O;@ÙÑA5;®ÂÆãSræ³×Šéýæ\ñußMPy¬ÙùÅþx5ijÄž²ÊRæ±qòa¹y6£[ý4îûlØùmÖõìynØÿ–îúlÖÍqÈ|Ìßž-²’+À>2ìW­Ç-"£¼ž"E.‰º·€Btt.Û ÿ2aSRtcSdS›´ä¢à ^.™À²8õONqe¹np’Ñdõ‰‘+ÅÑòL;ày‚SJ«òKúµSbé‡×iNŽwd’üîC)h“¢Ó©,ëõ am‰ÍyyB#­?*Ôø„ GÀ:Zžã'’k}o5|T„(M´!¤€ZüNiA&¡sŸKŒeà{)8Õ+)ßúDq€2‚+JäÜÖ_ËH7)w’¡Yzç˜@ô“XÅð§)@ù]]€M „ÜN‹um6  ŽhnNÁ"0I”&ÌâÙ’%É#ª¾¬ØQÇRq».•`¢“à ?ä+³Xeî¬Ä `ÚÃ;-uñ'4çTÙ}ßjº«æ+A&hÔ§“.|ÇtÔbfå‰ôLÉ,R}çY=…Ö3à½T+„¨ÂùÌGm¡¿Ô/¸çô0bXÈöÞÐ÷ÞDäÛ^¦qäë& K峥迷†òyD(R&X äh(1 µî‚¿Ô‚h—,’e© »Çõ0C§XŸšoé»o"€+›F…Z0O©žüaD?ê=fŠ]Še“Ð1ÐÑ–F‡:’7;Ð ®eÉVJrËègþ´¿ƒbäŽêf¬Æù€z ªXôÜÁôc­àjCi7 ŒÄ\hã„'ã¹ð•Z02žá ŸÇ9wê)¦#à‰ƒYgT Ó‰2ƒd±ä³-¶¢ùIíIl‡Ÿä iñjì”u%iÍÐϷϳàñ«Û’SÞöÞT=òÔÓè`~aÐUQ(f%õ<#¼¼ë®«,ÍJ{e¦»: u(7¥,#¿îòwZoô³7¥K3ߕ؎Oo„‰öYAˆ‘‹¾£+Ò™¢TJ!òc%¾ÌE%Äø¡g”Há…Ξu3xJ¿Ü”Lg„MÿË¥D²ÆKjÂKÍ[…ÃATÀ¿ÆøTK,ÇUæ/jóÒsílbÔ°Ä’M’õ P?>Horú\OZU¸´q:ÈÝ«ÆË&æBžHv£ÝêªÉ9à›Î ‡°Ä7$¼51É,'õ×'¼Uƒ¹Z<†—•ðš1¦ B'9’Ç#‘‰Bã)«2#gSƒHÆù0TØ/»Åh¨ÿGМ[v(áÅ®¶µ›QHæ+BùŒ<\°ÌkE„{—×úmØMùZKˆAֆРÏä&ŸWxó‘—Øt6(íl‘'¼Žƒ‹ÝµÄ‚]¦V»#Ó kê”[/y_{°éK„~0åÅ ^/xüŸ‹=ñw[Í9xÚ¤Jþd©¸ÐwVçH¡3 É×Ï´[†{=<ƒP©séÓ.­Ï굎5y~ À<°‘.o©–bHN–C fóÆÎm÷¦­9 ã-…ž-C{$Æ`25¡XT §%[$µ+‡BzÛô W|o?ŽË%I]B¯haQÉ¡$fÛJkTŸSÃÒßd3BåÔƒ^ÎÊß$òø*aØkW¶ÓbdNúeJkþH”¹òZ,Të…ó è¹×›]+òšÁ¯WÁ¾<ƒùÐÁ@F)ƺ>¬ž4~…ÎQóV«Y‹è „dóQ }ˆ`øï<ñšWÕ#J‹n©ù 2 f†ZÒo~ŠD ~§ãÅš¤rc!íãbŽ:^Iuû&Í8ngí¢†…Ìõ•‹šŒšsÄöðØslfƒ­[cþG#ÈÅ%r𶏝—À…ÈT:çÍ Úe3þ™ƒ`'=Ý7Q7ÁÆ4<¾y ®ŽÁ¬T­‰æ €§ÂÏ:ƒÕ%™N>6H1XsÁ&ˆ´ìgæìaj–’{è¥ÐÕÌEêêL²±@)&»–wŠ2ߘðß¡r–ËL9Kìj'‰ÛJì¾¾¨$Ÿ¹Š‰D‚’£6Õ·˜Ó!‰‡ïdAå¾#à“ñ›¤´:»$%Ò1]öË&[FÏ?ëÒ_[Â…ÄSÞ“éh¸«O9íü´ozó4ÓüpªQ¹pÞ”HÅÃ9Ü~rÊoßñ×¢7ðºÉrê{š|½Ÿž]’ÖŒú¶ OµÏbŸ=#d>×âã¿åZš]¯™Þa¾ê‹´ŸY»¨®Ñ¼dæ¼Ë¥&‘Ýùwþçk½WkŸsk®±]w„ý–+üAb¼g{†ù=ô±Y¨3’µÙ™«?竎_óÊ6"Ö÷üëxñ³žÜ»î^¨o¹²ìвç+Á»ò—«M’nÍÓØv]ùËÕ×w¾ã—7¢n¦Ð¹Ï>BâYìè€Î· ×Ô?Ët1ç/1_óâÈFáËèbHÎÃFõjó’?D Üc°¹šè¼4ü¢"¼Ã!4-LÄB7ò$‹¤ä¯*5‡]^£¥J`ÁµªZ[øúaµMÝ*Q­Iu8›ôªR¹+kL¼¹ÎËo*"ëL2 ¥Ÿ¯§Ò[°‚=”#IÇ¿õêS#§ÒRºlÈXÓ ¸•³y•œ±õ¹›#ÚfÐK^P°9èÒÜ_ûÀ¯ýàn\©ûV¬þtµŒuQ]ª¢_³ó ÜëY\ÙZƒ2ñW£¨åNïÑò8‡ú!Ùì´ÚÔ£[7ãx½«éÓÌM–^5pÔÞᆹ'°·=(!@d/‰‹ïj¶3ñ&g·ƒoÃV ì¨ætí›ñÚïP9˃K'¿C”œœºÄ7ä©®›Àœy†=©©HK49‹À4ò}Ù¥®ô¯™Û]‹%ßì¯N½*j¤cšr¾|}1’%j.>©²uO%Sb:ÅSgk¨’Y7„›ú¦ÌÜú§Q$¡ä¾{¦¢KJjë•^ñ«Úß“4U”€hÃL{ú¼ü’0½êÛ9-þ±ˆáãy§èáÍß{ƼH« 옥‰·Á,6‹YË2ñÇ›Ì\Ä.j»çäàxÓŠ‚ÿïrþ_')++ÃÅq²ýx—ýå/ÕÕ´ÇOÚ3ÊØ_ˆß…v¯|šÛ ÅWÓ«çn2œ¹Þ€G’”’(áA²î÷#zŠá©ªª4fDPSW?EÄG/óÛœEÞž}§ÿíõðe»ï Ë?7ïÏaü›¥ûíôèõvðsû‹Lr0wj6î~Ο²¶9?ËÍÜeÙÞý¸nî¿ýs䘒„àþY”Sbš{»‡3jZƒhìçÅAÝYi–“—[?µó¼|r8‰“UÒxú=¤0cœ•¹ÛÇ‹³Qš²èó÷•?ÿƒŽ6„Ñ…™{1!­ÿ ­œA–`anóvžÓêý«÷y6ìü°íûXwzžöq–S/œÏ$¡ûœQ*÷Ìâ–~Ðèµ£Ÿ’©sÐýãDbëà€`–´cñåiÇÆRnŽ~ÉÒ$!ÔI¹' vVš#TÌ8)1±š§œØÑÄ k1\«¿pµ$yäÙžà•ƒh›âµ:;)âñÛÓ©ž|ÜMŒ”¼Ì_Ò5ÉÃoFnzBâl§ ¥¬,x·9Ìp.ä?µ¹¸ÿ681üÁ ôX¦ *Ò‰ü©?Ô6ðãèä? t(°ê©û,¨v` éà=zØìZ$‚Û|k‰¹ÏäFƒ˜eõdz“39ãdãûÚD¤ë¦…× /1+)eúqŠïùÅ7 ô‰‹áx“C»‡²Ä~ÿö]Ô¶ ®‘EÅöUkHv¹%³ãO,ùëךA£ y­ÙÉ›>E?D á„ “”/¾5I¨=røN“v^h]UMi_´ €û`îû;&|ãYâpd“]Ä#8> ÔW˜‚j]ê±r¥d{‘J‡œôÖ ŸDôó]”)/Ä;äÒ¾ŠütÊÄ €'%„H’('+6/[vžœ¸îÇ퀮P%Q¯ ­XAôŽmCõ ­+EV,u®ÀNè=&nvŽvt¾°MyQŒ$Î8“ÀÈ’‹(ÐCËÕ‹álÝ/ %hkU¤…gòãÇÑô´,ÀÁZIÎÍ|²ùff‚JÚ„5Õ›ºñÒO“^ƒp7ß/¥hò jL„äöïiñݬ,YÓ’á¡ò(„@Œx(bBÒË8…¹êËJædy„L¥kË(€ äñRÍ¡kp1é“âÛ ”îú£Ó ýâÿõß×ç?¨'¿®þŽø;2%Ü©þž]vz¦Úï¡c÷Ÿe/wz>g™À ®hºÜ2–[iñÓRÌÁEY?ˆ¨+$ –%äÓÀ@÷ÍæðRÓ#€~m92f˜] pC3§í»1çð½´ø’§f,= ¨EƒU €–Ifm •„<*áÉ\A*Z OB^ûà€´Î¾¬Ý¦†  à‚ïA‰{Ð bnLm¦‘úK ˜ƒtì‚[ZÉÊ7Å]Å×6kêôˆu¡sKÒ±i^ÑW ͽ uèU€@E pt§«ÞÀXµ£ÙØ“!•ƒÀ8È ¯Â¤Ð‰µ(%£*qëYâ÷Ñå($ rzj#,ãÌø`O™c²À⸵1 Ÿ"¿®uC V+Æâ##XÛ ñf]-âe½özŸ'¦¶!ÓzúÈÇ. ®Ë° ¼?ƒ"‰ˆüQv4¶2)ûRÃKk(hBZ»þha-XYuðg"9,D¿Yóª?üã¼äÅd©¾h‹! ö¹µì›˜Ø%-CÚ¨EX\ÇzF°-°@†R÷mÒ3×ã¸ÑK5£ÝŠÙu.›“õ/`>^ñ¹Çl…±Ó ý˾÷ÓLDwš>~W§+Gô‘2ÿ)hp‰‡„b• à ö,ìís¶•ÒåÓýhe•ϸ‹&wɬ®û•-­äå`Sq&¹QâBᛯSAÅSG‚Ú;CÝÂPvãíDœ¬fí!½6EÅ‹UqA‘€úì M‘ãñV‹Ö ÖüX±;¥·Yž<ªÅEŠ«KÒÔd _úLD;}Ôjrí°Ú@õZ늈:­é@ÔUmWl`f|3|€ª1>‚µ–é•HD.ÆÑüó¸ùùŸ ü äÜW0ÔÀ𲿅‚°4ÄÞ¾hv…U<$ LmXèBo¹ì)t%YòA~¤²<±Út Êß;eMH¡šÑP´É†Ó£ðÀõz1jm ïZô:Ž}ä> tN}xbàMžá=(ÎÍ'ždjŠ8ê£\å<Æt‰Z¤ÁÑ©»èmb·~êtÊô×é“ §íÎü®µ¢ÜÒ.ùðžú~ʺ«¬Ê½†ì±uo–žÄ„àeˆ,4fPó¨ˆyOK˜—?K'äœ\w3ÊêxaC{<¦Ý`×Þ>æ“åÒ°˜B…Ñ÷E"ÓÇc³Å4áE¼•‹ò| ¤B«ˆ$ã ýùH ¢8Bb‰ËŒò;yt[Í&‚ê‚Jåzþ¢ ‘¶v!M͸nhý¾’©˜4—4˜›ažA˜f0,’Ë9ÖÚp׆Wég±gfxÐflŒ¥SŸÅ˜‚ :Õ8 dcNÜ&¨bx[VFK}ª"1w`°ÔÏñŠuq$&_©Y‹•FL²xy•†tHvðU£Ú©ÚúGi10?ê”ù .bÒCc™ú†"Í×Éd/£‰·ŠD1aêi)+ä³3ñS_ßh}âZH‰¼µkKU¥n5Å]jò¹­’jS ¶e$ ’•³›!¢g¬”¸Â\lÊóÂYpý0©«OðV%­Ÿ3ɾ•7¾}Þ âQ^^¾¯ÿë´\HÈ}÷Qh† ûœøFR!¾ÓãçÍ`qóW|ßfï×øíêæÏßvcó—ÿ˜>|ßÔ/Ïçýn.¯OË—_cJ}¦Í)rs&H¸ÝJ‰1§~æöž\8ß" ìÁt)Z wXŠ^¤Pê–£&c–xÓ ¹¼!‹– D\ÔŽÄíFÐWF*Y¤ )p걩q:ð©G}Ks- Ù`›”9q_¦7l†nCŽ ûŒ‚:åQª®£9ñ¤õÚ%ÞºÑr£A?ùOÅesç¤E8ðôS½iVÊ|Ž`WÍ&¦nçÊhÆNùZQ=ø‘iâr‡g+’úgTÉgýš@²jé8¬XºÅÑRx/òhls5&]"ó®<ù j7;ç"¨ô¡É x HJ%"h•¤ %à ²kiQe¬[ZH¹âxgdƒ/ 䎕ò¦šqÊg’BaƒöóS§Œ_/_xŠY{³þ&T¦™Ò¤ª“‹>L(5d9‡`¡¥b`¥€$"pÈ€0¶^ £»m"Iv埘3YŽú©MB”…" ³Óã|D9G€E"€mºDI7ðþ*¦$>ºËÜø©(%°Šà‘¬Ê!…2”ÜJXh5&(¿¨C°#-ü8|Òx*zÄ©:úõZjlÜúµ6JzÀÓÆ­–ÂP®›MÙòUÙwÀªê¿§:¿JÌE,„¬‹Ýº®>¢lId'$wD¬P @] ŠV(ê*VK㧃Qq¶‘‰¨¦§O4iZâéýë<IÜ¥5P0èråßÄp¯ºE†£âfA¡.(:~];I]UPo»ÄhÑ=”_:O욯ì˜Ü¼LC¦ÎüLMœ ¶Fž€ÐÑ'Ξp0гnÁp!o8{£á†Ÿñ © O>¬§¬ê¬¥Êˆi£ pO(\5Ç.£þê#H² +ÞµI˜l)ŒuFÂü¶¤ß ^ЩJéØÜaŒW,„bL?r¹ó«R îÙ4$ó„+_;4 ` NVf…íÖ9‹«-ôé“ÁKâþõD²zM™ýÛ¯s†žß¯íór•äeš¢…Óª½l$‹Cr1ó2ÄÖŠu|ü±6–šËGv,@ûM ×f¸ŠsÆó5•)¢‚3ZÝñ?=Ñ§ÈÆ»³9O>¤œâ€ß6]ØYì^á¬<ãÉ7ñ¡MqyFŸít^èO«SóöÑZszHÒ™Àtx„1­kÕQòbsjg.egã?‹öË4‰™§Aý\± .Œ>O 7¸ª’LçÂÒÃéb˜ï gl2£Cúø8žiÖ+ŽáÛ8Jƒˆ‰@ÿð=c³ãkBÕôá’ÍuIÀíáBkè†ïâøÀ†Š-5bUüGHÀì¬hHa}mäš²¯“yrIË?¦Õ;KCÕ `ÍPÖ †!¦1ßXÃg|Gƒ¸³¤ªKkÓóN«‹5ØŸAŸ§Ì§pÞð|±«ˆì.¿å®æ#jz'íš_LK2î*ý”!éܶ2Æv hÏ|Á`ÅM+fÈèñßzVm’v””€ØÙ+ýá—Ë:?ü+8±¤¬%ÚV«~þpTbQUúKWòF|äµ™µfÑ„VËúÒ󇶳ÍVz¢^¹mbB‹ª+©uâªÞ-…Ý$pÑ‚@o{{g»ºåg[3ÉÖ[×.ÜðåE:óZÕ‰6u¢$MŒõ—È¿P\ä#¥öOª·AùK‚q͸ÏÏÇéП)ôhZ1í»z(‹œºC¼ÚÃ{"ºKs£K) þÑu|ýˆ»8'MPiÙøè†¸§@í£nÿ/5xciŽ9GÓ;sæŠðÖÖÂ#‰ ’h® %ëN³@bìú 32ŒW+!-†\9 ÷?F^r¯ž•¥Õ:ÖWï7+yJGž\—»”°eÇ¢€*÷RZÔ®éþ€eIj*•¤j×¹y‚(X ØCÀ8GN-l2€¥w8èL˜šZ Çôµ –´¹´’­UïSñJ01ÏŽyÐ(c´+¤mËpû•XµÆhi·QùÑx-VÔœ}b În‹™¥´Çúf)§Ýµ¥ìT‚Ô‹iú Ëjï ?\$z вîO”IÿN¢4›­â9*Má©f'dÌ'‘æ“×Ò *îíVºj98ñÔ²N³vÆó®NýAù_›1[{•AUçùw/³Ï##+ÃôVÃöM[Üæ¡8õÞÎÈÆ«” R‡y….%Lwå ì&Û*h0·‹ïúºÞõrÔÇa¡…«×\°F4±°ª¨pJâ¦fš‰lP± Qpr‘Ý‹¸xþ€œ¹P­BÕÜ~”ÚJÙsé—ÖqI>Uð©v kò\Tn†d´qBÔÊm»„û¾Ù†#kßYzáùÔ­M_°ü;i7Õ{­ó}êÕÖ‡õ•Š÷m{<À!kb–yÌqÐØ¹ Éô"ûŠd´•ÒGgä#,Cª¿MêÕ`‘Â" R®äISf–ànüÕ ÒŠïðºç¥ Ö" 0€¢p& *Ç B”ÞzØ©s£ÅZJÔuG‚1+8XNK´‡Ñ3úx0#Ü)èªÝÅ(ÌÔ£ôâN©'ÛØ ø:÷„'!¤áRQòþBÂ¥Zóç7²×ðj4AÎ" ‹*ƒŸ´¹Ý©«r«3&IÇ‹ÍPÛ¨W3kJC5þ iwsòy2 ‚ðè4ðôZáÿYÇæÞw-<”!~I‡ÂVŽw¬r}<«ÎóÏ¢=½ÜÁ] ¤§‰Fœ~ÿW@"á3}*fnв)>»iŽV1bž¸vªMӲ̀ÊWƒz4ÚmOµ×=ظ"«|«G0[å ãŒídçË'³ ¤^(Fž(r$=ý¾2 ‘E‹ž ¢pØÕâ¨rݑć!¯gÅ2¹ §#f”Ì–­•Y¢GùJ6½ fDö‹\>¹pçžD“Ì’ò¬Hê†{‡TÆûZÁ >’6eb©Õ«EÎ}¨PfcÅ®‚TAorJÜι"¸£µëâX^§h‹ŠåÝc=7¢ç¥Úê'—½°=Ž•Ô¹uà„ì¬cíïl%/d[šYÕl¼<‹Xýöü„]'1¶lfεZ(:.£w2ÄȃKq{µî¤!x#ª€ï™ˆC= •VÞKÃuï~ï Y9gc’]Ø By?&šLdÓ‰3œ¤;µŠ ‚(˜B¾§”Å{ÊSÑy•¸è…˜O[¡;¸ù~±Ñf}y3‰Ã« “uµÛj‚D0WB‹†WÎì>*á²DõrØPôO¿ÄÅ^ç^ž—É7k øL‘Y—ëî°¹ªm{­[™ ”Å• ´ã©!´#¶Ò8fîóøm9Î<nžóþ–djTföfxÏOÙžg6beµ¯ªmÆyÞj)¦éî¢&ŽBÄ2ÞäÜ*Zq7ŒèNQ†ónZ³&d³¦;>|®.c؃f-Û%`¦O¦r oÎð Ö\#eï:!VHæEŒ¬XûÏãVbâéöV‚b"Q¥ÒFøèWrWU+é\¯úõíÃayÄãðbù6 ‘—ÕÊ–_¦ÔGÁêõBwc¤¾üÀx)@ ô®=+0Ÿï¤cQ­9©‘×ÛŸæëãbYJù¤u ’ÍÛŠ1th4HÔ;X¤ ¤:[‰šGÀùÖ$”ã6T~hS„`©î‚Ž:É‘'=ñ¸­Ã%U‚ŒŸ**ÛL“Ù¿9ÕJ#¯ÑGM„«\1M‡ãpÕ1ó@—^ãÝgˆÃŽ't«4£ÝWbí,/¾l€tPÕôÇ_|ÔϧD®"ö\Aš‚]îx•NÉ~ßÁ‰í¤Æb¹F´áXÿ‹O°º| ér›e{€¬öˆœc4Dvrw‡>sr¿iÎ}£ÖygêG¾µ«¬S5‘­g ,°ë_ù;…oAÈüFY.Ç2ÿZ?éëg“Ç1zâÀÙìÿg³³ü?œÍÄÀòßp6ëÿêoeM{œqÄ9fÃö›lwàÛŠ{` ¸"Š4XM²ðqФ"ɺ­&ߪϚ¼ËL]¥’#Á‹ f_ÕõÕ}šõ¿ô?ÞßWµwÃþæÿiT<<š¥þpúµ|==Þ©çÀë[5pùx#vß§šSMý ì\߯Æ[7½ìSµá±ù$.9ô«gÓœ ÁÛ­šMƒÓÒ8ûüº7£%¦g?Qøÿ Uý[ƒ•c6[¿g×fu8 X×¾Ü(‘©ÍÂlõkC nyCÛcnôëH >Ršü‡¾À;-Ž]nß*ffšj¡öÄêceà9Vò+uùï¹Á§vöS2C"ºÇhø’Kò¸~4¬å©|Ø`° .Ï‚ l®Wß;ÆH`¹`}Q¬þ¯sÓ†5x]¦þ~ø;Í›`”jÌvNsƒ‹ B+O°]òÔµ 98 7geí¼Ázz•j#ƪOå! x5n9Wø<>½ AǽÝĶ™ÔÌÎÀ‘>ñ fÐÓ?äq¸äžÅO«Ÿ.–7I’»ƒ‡ éªÇî¤X¼Tf+1ÀùÎö‡×¯"ðÅ ü”åVoü»†­ì’ÖÝåÇÌëè,gÎ0Q dˆotv(*óIy`ºg;=TH<Õ¦Þ;v¼ôQÔVf÷ÁP³PUܧGĦV@Dƒs¶·^u3t®{uæÿ¿çQ¸n€8Scã³é%¾Å¤§ÝòL’ì§Ì.ÐæQtwÈÒÖW ?Ÿ{>¾¼TÛ¾[»r÷`Ô Z{y«»#@m‹Ä–~ý^Àw½Àj‘c#ÖMWŠ'!NË3š‰„T±¢S,Ål¡ÊPÀäíóCQ+Úc$&-DYËþ©‹9Äuß^‡ó¾™ms]CY¤t'±š›£,ØRTƒ(³Æ=z¼µÇP´ì]€-¸_Káê-­»oÆù„ÑÅ}ëÞ»›—N^7S1Vík&–£ˆIÕBcICË®ÍÌ`hðHŠø\6h Ô•?Ř'\µ÷ G¥Wß.DYtÊØ–S’Ž:Ü•T¼8—ÂÔK”MÐòeÑ"µ®‹ Ï37¿¨CN?>l¼xF~š ØÆiQcØìšçn|p¬€aôy±‘º€›S‡çRÄE±‡UبÜuÑi¸‚~qr tÊsA9ïen?àˆeô‡Àµâ 0Ž*‡®Ñ#=¶K-~hY22¥¬nãªÏIæ9 XÈÄçšä8©Ñr<©=daĬ£±2 9ŠärG ÿ9nˆ>dFsK]®#«‘!Èaèu“FÛè@¥ I>Œ£ IÇY,bÁg/”HÝHpŒoUx5ä8òÒ›üƒ Sžá 6·—a·!žp\5ÀÕ€°â?jM-æŽY‚rrl[4¹€¤DJÌüÏ…Mâó†X^Œ¼#$¡v÷1 ¶ÝKFrÑqÈŽ÷Owt”H0#(!À‰€ûMÄÁžFô M[,ñÉšX–·•בDdRÀRg²ÎÍ¢^ l™dðñ‘"éÖŒ=ÑÖntŽsÐ5R{ôÅßrËÄaT:é®&+Š8J0$#„ÁzPÞ8N­AQ,ЉIÉRšéJÙX’C~()àU)ϵºÁ__#IáÉ–„–ô„LBéI‹\! ä\”d2…Ç]† TÆ+g+n:4WÜÚh•UÊy!@§…ÜPÖ|í…‚¡Î´Ç€•ŽCô—Ó:¡€rè*}mý°ÞCnÙ+¯ÒŸA²I±q‰î]M\9~å=‡So‹ž4¯â]ý…à³1W¸ô"±¡OŒ½¾Û¨ ݼ¶ž깩 ”½0ˆh”–m …+ަŽçAÄO “ñaOBŒf„|‚p-lÁ»¥¨ð,RÑÕ'®ÌÑ·êG ýJ_NxcÉ–µ•Þ ›ÃåRSA†ÜB±vZ -~=PîeЪȷ§/C„ T[§¬RTœU—X½0ÜoÚëg¾ •x3¹2zƒU&20ðÕ!(§ÇCøÊHW‹Ü©púawÆÓèÏqÄü< ¢Æ´·€QS)zvb/í„A¸¤ úPÔÙ¬ÑÎåJ—ê/oHÓ Ûe]~CWãÅ)CÏ.u}yýó1ðÒÇí'õÙ¶0n¨­æßm06{ÝY1¡¢N·º鹉$âK–[ȽKt¯kPp@¥eÄ*®`Š£‡ä’ ¨G ¤±ÕnÖÿ’Zrº6"ÎcunbæþS PF…®Rhî€hÛÝ8Ø´à×â• í䀄Å#Ò>ß`#¶S uÚ¸•ú³DŠÔNýÚE̖̤º2M[ÝdKÝöÉÞö“boÅÙp±U«XФ´¸å%¸êÞ™‹*ß…!n¯=¨„êý7púÃNA‘Si&üct´’Ð’«Ö Ê̓ïõD¾iÿJXmíÌá*OOž² …צNlø?O«&3_8ýÌrõ‘ï ÈIy1¿3ßÍŒ­…G(¿¬E¦„g¢=Ô¢_ùÕXtÑŸ«ü’µ¼¾‘V×K`2H.¸OCÒR^oÄQ!ìnuüv™@›+ëî«Y (ŒBÞ܂ǗBž%rì­1Á÷½›†Õ1t[7=iæÌ˜:@_Qí@:Þݵ3aì`ɤÐԩȘ„Ú°A)$@&W¤ƒÒÒJdÛDØÌ÷x!`*B»Ý ñ:˜Ú`Â"Þžg÷–÷äô—èÑÙ®À%™(“±C×®ÄÁøÕ+š³ÊJ€ñêÀS¦Ò‘wAÄF6ÅoOò,é§x5èdšÝ ´L^õ ãÛ€ßAíª¸%R•ëß14W—Š—©‡ûG—\á^ãY,öݧ­RšòuãLaÇ… ÑȪ¬pf€.’Œ^Ï‘—Ã@þ9 x¶Iœºšƒ B†ßpnœAÿŠL8ÓO@‡UdéÏòJšÓm ñ§ni"«M©G˜¨8z.!vç”ã`¾’ˆ\*›mâZ þ]˜D¢gÛg]»ßêó|´EšÖ}h+Hb#"`Çý"4ø˜ÖðZF7rËÞÜÅãññp|#Ó!â„áT§_åÏhFÓ±œkÁÀ›ãóœ2ä Ð(À¾ÇQâc;%¦Ì_œ?D˜×ú `Ñ_ºÏIék)”茳@Å’Å7U.s\.3})Jtr )r^ ãŒý±â¼`Ï ¨…Åÿä2•&;8™Í"hž}›æ¡p.ž„yÅðîúþÜ5ù´‹„0x¦»q×ïN×8¦_7Èb¼ìR2³¼Á )1ОxÁ…9@H-èÖ¬*Cð=;”ÍOg’>­,jbô[x†N-cU(®éÝÍÊŒ†·GˆefXvéœ8%©ÄCG'Ùy)1H½h5XU '7‹í;àÑgS8ËAk‰Ïܤf·;§²#þœ 6¶Y5‰ááKôÕ©S/š'ÒÈ_A[‘²¢sW1 •ùÀD–W>8Xk<+ ^¤z•Îìzy;` "›Œ}*¼7joˆE^ öd[ÊÈ»³]¾¶vu.Æ_^LO܉ñkFáw‚<@e'.T‹v´Ú,ìÁïzù=!£ÞF=wÛ]ÛG¯°ÄŸf+ǦÓ+0/@Q–`¥—„F…PF©–=ëxÀŸ‘j¹É{è?Wkb(ͽ]>x+1M§â–DöûôêÒÄï{>_¾ºv“$Äšf‰ož HíÁñmPjB°ÔFçÓÛ¿ÛA©!\¼g#ŸÈi$ þ-ç {ššÞÎ &¶#2?§( ïçCSmV3Ýb­*"ÎæžÅŸ¿s7î«^ë­ ýu7›Å©¿ 4„­¾2û½\A^ýEÀ¥dt¥1¬7`ç'ŒøÃ%1ªˆd£TÚ„a~ ÿžŠ…õRĦçvñ&G(ú[šÖ}Ö‘ø¾ÑUAJ™u‘d.Ôw]PÑÖ´­Ç"¦´[Õ J2åß±(ÞXX¾“:³ßAÓî¹çÕЫµý+H)ÝiǶóÛí§­Õnž]Q\4²õòô+‚¯Bªr%èó<@•“¾°l ¼˜BXŠØìÖ”._1qA¶,Ó бHùµ>enyö,¦›®#Vy¾Ýê¢V}FUÓ _™îÌ«¥Î’§ÞàÔ¿PœYò´¦˜<”³7›S ~iZXd§gJÝ6rB6²ÒÝr³ ºÞIkÖ4€švwM:cF­ue[*ÌY^Õë—õ†Í¶`D6ÚÞK³zî¢ta"£)tvµ=WS¶V•|ǼŽm¹RŸrå}NfIgj¹ƒ³äõ€ÜžY}‚¨Èd»/¾XƒF½Î‡@ç±ÎŒÚÑ.ÙR¸H»O¾6 D¢ B÷öN`V éÀa=ƒêkª ¡ÿ-j¡2ò¥G5†–žC7&Q]]3‰uµG\ ¿‡r°+-ë;Å~¹ç¦˜ásheð×bØZmŠx]cøM 5@:? Lˆ´’ŸN½™uÿ£¦…,øo˜éÿƒGÿÇÏö_[9˜ÿÌÄø¿ÂL£Ú¶ö8°¿v/â7íÙ”MQ{úQE­pëxQzvý­ sô‘È$mÉï9ÝÏõô•˜’+1fëÖõíG2,XQ%xJ(’þzŽdj81yú¹«îoO'Ï‘öjÇüçêÕývrz}h8á‚5löòa÷#T©ÇŽý[:¹ßÝͽWó™kBÔâ¿Ó½Î¹7ëB“l¾ 4 –Ýì?XR“©÷vÞ“4ëƒîý/Ö£9ë ï}aâ÷¹K…Ý!‚‹ž÷GÒÔ¨I*rÍ2oPûÖ¶)E.tÞ£èEZ>w­¥>ß{Ðh)çv8Érˬá÷ 2=A‚õ®eÞ»Ö`ûS »%®wLöÛ ÑÖìÿ÷g÷ ácêÚ˜…4jIÍÕœ;·tàr^˾ä÷ëaÃ×w\ö¡å@n3[›1áÀfÖ9¥ÔµÏ í‰[ñ²ï´¿ë_X ^Ø¿ïùÆ¥¿ñ+®ïÊy@ÇHl#v}óÁÿ2óû¨ëõÏÕkí§fʰ:Œ‡È¿­ðPªƒ/é"a^ñOÛÊ )S¡Û¾B¶ÇZŽPà·ËJ— ¥©LzuLÏä ÇñŸ²kq¤Ή½¢“[ÛpºâÎç8UñDû¾ZÓ%íT™¥Ð„>kÒã0gQ¥ÊkŒ@hµê*@b‡=ÌlVà⸋÷Â.ÁÞ9D±ðH1V΄¶WÁÈ|£ÕÌJ¥÷¡Ìbš‘âƒ@‹»é´˜KsLÞ]€tÆ·$€•¾ °)]’@ÉK⦭#Á Õ­ p7ª*v Ú¾l ôµÚ™¼òòïÀšÒ”{ µæ¦¢{H DhY'¬ºùQV“Ö#©"`Ñðȉj pMHÙ¬tŒ€Ü_Z ¬ÆÇGµP ëü¬]òÁè§è=Ü |¼yÀ5†³‡ùýÕ®Ð/+/¹hÂs%?‡N;ã,ˆõ@u6—¸6JɸäyVbމ·,g=½zlãöÎçµf°˜‰œÓýÞAFqY[,˜-N'Íl¸„¢dUdƒGU BS¬÷ÉOôìG«¿r™%³×<#‚ËKÕàÃ)_lRH¬¤-ÆQ,¤§"˜ç¢~Ž;«ƒœ×åætP Ũ»çõ¼fpNßm­3Äyhò«€†©¤ÔÉtâ‘U4ø‚±ÎQ$/N'4õŠÑ•jþ½Œ|­  W<ÈžJÎ{‡z´À­«M$7u,@&ÉWûzÔ˜£ˆtq˜>Æé(²p¥ò$´;+ö&)+N¿¸¿tÌFÍJ§¿6±›fpD³&(E9óàt¬ú!O¤)¤²¸Wu€À$ǘ­©×€ZæµÁ¶+â—J Zò„b„†û2¯FfZ=Ü;¥¬ézváéfÖN–¯ç[A žsý‹®0ÍJB¤r7¥¸Pœ°Mµ QÄeØh·UØ„o§"àŠ!iò›F{ç˜ØÉC¾9àcQcµ. D¨P†Ð%|^£:\*nîhðQinÉøôÙq¦Æ‡'±Áåô»ì, Ñ7uoEoä/ôæl‚\o«h®=$L|U®} åsŽÙFIDȶTR3 Ë`ÿå d¥Ñ„o7‡_F©ºH:Ó’º;¨¹‘¾B¦å8ÈÕ⪮máë‡r"Þ .qOŒqr^ˆ*8Q“å‡iN縴»tWAóÂÆ­Ú}t€’‘l=¶HA"Y|¹Cõcº»ÃÞã´•¿Íƒ·†¤Z oY”Æ›@ ÉÕ iF?•J’í½{Æ´ŽmšÿbI×Û@«ã-~Î÷¸¡0€½-Íé ßÓÇâæµ÷ÆL.<H?XQE‘o‘uÂÞ—pÕ‹‘ôlvü*¢pöÀ6„O$?ÛØWákå‰ íÊ%ñù¦”µ2õÔb+ÛahÌ¡îÔŽŒŸ„©ÔQ1aä/ýÆŒ6å™â¨Îñ™ ®Q•ëŒC)2ûŠ'¹ õ•¯Â:>(gšx:Åì©~ŸeÅ8 ûþ< OžÅǧ>¹e†ðôÖ „M;ƒ'9Yo: ùΧÇ#? l¿ÿ¶Lº-rI¿Çr2O8än^rùÅ„QúBó¾«tGàõ"Ü1¹~žÐ.ùÂqþh mZ2z{,,€#ê˵ µ( ³ÔêÉÏ?"Û4Oé˜)6syE8Ä{CÃíájó’f™?M¥G¶yÎó~úG®Élç_e2 =æHòµ‘t3»üÿ=ŽI²_…kKãÚŸ“Þ1³}Aæ3ad8Îâà³Lkš8n{"±àŸûÐî%.åÛ™ çÍ¥þ4¶r‚_ÌÛ^ŠhK A/Ó²›Ì4zX¬ðˇÇöµ.lIh¡c£–˜C G =û÷§¼öi ZÀéÍÿA$Œµýž¦U4®0þ`ikXøM†ûQm®HÆ#•±„ÊñJ¹ÊÖ,¾ìÚ¨£%¢ s‹8qU:·½B’ l-U¼(ÄTt¦„‡ >÷µ/özUÂ= V×o³A÷C+0]9òº<"®Ï7å›EüzõGè»òK܈çÎÏLë•ßñõÔºÙS·—£7É 0Åó¿/Õ£ÒÒ ðRrPºK[úZ‚/=ÀRpUNÒ«ìýâEÝùÍÝKVþf' 3VnI?Xje‹æ§ot]¢ŸÏPU ÃNlˆU¤ÝÉÁ@Y¥ÂîæÚv3³Ë#*•»vúë¡8iô{H@š£ÃéhpjlŒEŒgåÏ®²s_¦ê]dWC—܇«Ù¬üèt9,‘ï/xªƒfŠYÅ6{& !I$òwç+×g¿~8¸ ï%þÿû‡`a¢6[]¶mÛ¶mÛ¶mÛ6¾eÛ¶mÛ¶uÿsî©]Úêdd̘½ÌŒ9ÆófŒq8ùVŽuL6BUÓ°ñö¦£†¥‚è³9gQt;F;#Lž¸Ð‹ Ì6å~¤Õ°¯’:ÆÜªU-íªo&[Ò/ÓÈ"û IS¬öð–*‘멤)f¬DQ­%p:3oÞwŽô<Ÿ÷‘±j4|‘¦u±Š$=)<£Å¨½y€½â ,]Â@YæÄXóh6B+{¶qTJeOµF]£1¾ãÂñ¾œuK±6>…~'ù±`r®Ló~’ŽWJÐC¼À‡’™Tµ²9Èr.ÑŸîÖnн™ó áÿ ÞÜ©ø?9ã)r&6¶ÿ^åüŸŠœ‰á£È{t·’pÆ_ž²ðì³°ußjï“=E¥‹%¡à&©„ H0³ }{˜¯²TSYy›h@#åÝ×h™¯Ž'¦³îêÖDuêÞÿžß–ºª^>ù÷çÚÔ÷ô#ïg\?¯.v^Àãëð|-gZ¢ÙÅôøO©øÈj¼nÔúª·^Žºªúð®uSÞäìÃO(ÐJØán=ˆCT¦ÜÞ=ŠÒU))áëâfËÒǰOZG,]ßûÐÍZ>ï»}þXýú讨àýy*E¡AÝÑèèV%LáóñÙ›<¬qtRÜ䦆ÂDz]ï×Éàü´i›ínÛiJ¶®ºæùÍáÝÅÏ“fˤG5Α[펴=<çÍ!oÎöSqý8vÇEÑ·ðĪ ìÍ‚½§Æ\‚Q? ëö¦;¹çÿ¾ ‹¹}\!ŒWw'‡îâðnw HÞfªR‚¨ÃêZ&†Â+8X}è‹k‡ÔÁU÷°ÔdžDê½xe$¯+CH£Ðï/4õp==€‚¢Ã ‡²ú¶Ìf°Û•¹›^}G¬»ìãÿž¤„ÇB@=¿aBŽ«Œ1™ü>Î¥‹×Ñú¼ ]‹ÿ¿Äê W©cæ{Æ»ek JŒÆj6·V…¶Y¿“HøAD5Ç?6ÜçfÞb{ú .¦„¢…ò~û¤ÌoCuÕ‰fDš7ÀÞÀB„êä§FŽdÐòÁ^§TîõVËóÀöñPÓ£ò¼ãÎ&®][+<óDä1„«¿PaÎþ ÚS¥çÔö·P˜ï –fîÉeÁÇ(Ø`¹B…ü”òB(ü‚™¢±§°˜*伿¾)fw‹Üu=vº9ññéœ^1ñ—øÃÙ‰h*´?k™Hzbª‹P'âi‰b. ²`Í ÃVÿN%{H_>ìSì[®°ß½ÀZE¤ü E3W·§²¦¾;ò†…Y i€íÑu{+0Ðvô%F‰´oزllq7mDVapð4Ê[Û LËKG÷ìä,_ô“Þ¥ý8ü⠱̺ ôR"/ÖLfa*°¡ø£®)"màb‘üŒ3¹œŸöý‚Ó+¨·”“0Ü €›9£åÕìRàŠÈR¤OKÆÚ]”ìÐÑ®¢o‡~¤lƒµ±E›kËfH`Z<º*H[4×&-J•C¡T¬kÄݻŋ…ÔóÑÄÿc£ ØÓi%[Of²lõ. Ê'#ïšÍLt¿ 2‘[›ñZN—>Áe#E~n}„Ó®c»TOr¯2”Ui’¥ßĹ™¶ûêoé…GÀ&Ñ_m+š]§=—¹Qðqäqô’¦l꾩t{ßÏ ØùEůþm5]п·Ìð:óçó²Ùél|Ú¤:0ÙÌ;µ6iTdâŒöÂþ“8›Q mH¼´´ÚŸHa±Mhµß7+Yu _ĺiöÇ >ä¡- óþ€ªßð9å†Tè¬.H…b¬¤qYðÕû…N|ïv„!&Ô£©”Li¡¢’˜w½`h¼@tf=•¶ñyª Þõ) ùÒô(<Þ?½db(ÅW@ç“wö?Ç çõš  ¼ã¿Sá’(œ¶Ýïû âþõvoe¬¿#8àú\`°¬O-Îý ³SR„&«—zsDØ\ßFÅÙå°jšäAKù’¿?<5¼Ö¥dB¯üC¹6çˆ3‹»ß5Å%ªŽè±ª¹G‚O.ŒLÆCf%›zFÇøëìúÕxº›G¸öw…Sœ4ÄF²†ö1Ìâ“N{á[_PãÞ´Eiˆ ÁÎΔÕýÌ0 “¸Å¶QyZÌâ3 â«mLælWÕ~؇m t?âa öÐM¿Í*”Å„cŠâUÞy½':ÐïA᯦2½_rFz=´Ññ>š¯9K!Zì…_'‘"¹ßÚO¥—"±†!³GõÒ)±¿xHGC{ƒ­¼Ã2 ÓNU_a`ãf-Oªª†»[©2UÛªñz1Õ¾ým^p»5 ˜y ÏNåã;"É×ñÁß³¢9Ê‚Àu£bbÁáNŒ€—2#kräN:¦¡£Ki-iÆ:éÙy ƒÆÚÈdA% M×A€ùǺÿb’³Sn *"m:F}DÏI¹Â‘·2¯ŽöQÃŽtÐi«h{ÕŠLÍ¥-ß]éapë¿·žJá-ÌÌÄÐOpºWÅÐo{ÒƒØ8]&2ÚIꋦ«"¹Ë@Åžr÷1–wçŒ%bÞ—ã¦og©ž1HœRâÔvÞ†ü8±^œôÏàgòŽÚŽ?N„Q7]Õœò¦™Z |Qs³cwWä@– Ô.Ðù\Îì½öŸjwÁ”Ô©èºø!µÛ 7­fP³átrÃôå9 êýlkoI@8X%µ<(©É6oÃF7¦-OR ´ß“ÎpºéO›Øõã–z?Ç”,(ö«òË,b3ÿ[gØ!ÃAaíŠoQÓ]bt&Ý|j²JçYŽÜÉÆ«Ñ5¨”µo ¦ë}¶\vD/Êt‰A°`{äÃÀšÈqw’Êt–BIyˆØÙ*ë·$´úàv3žž“Šîöc tÐd@`?e¦_yN¸Z«Êp••mËsÝse+>„õ¨óqž`“N-Y4ù^5Ñ${ÐÜ,ζ¡55¹D¨€i”n{àÓI_ä ù:w0Iñ™ªù!@ii½ 2F9qcÚB—åxþõkÿMÕM•8‹áñGD{r¤`xó; bÄœðrx=y °%>„°ý[ ¹âNlóÑ/™sP&v÷Ä-9ÑsÆÄ(X³)ÀÝ)M0®L`»ÉŒ¡?Û&获ÎG¨ …-CT~œý½Â™OG ‚ç oƒâ_ôÎs¶íË}uK—r‡èº—sP„‡.Ú¿Ì@Ø’ƒŽ†ÀwirŠÙ^Я· ÛnúQZÇS§Q{é1K2dÄÕµZ´¯Wi9e*R$ÿ‹$™pŽE+ÇfZÛRù ”ù<·öÁ} «9—;V®¯«SÁöšëeê ÷žüBðpA+–‡Ó>)ÕÛ1ü-mg6%U«–ȃ÷ŒÝU‡7Û$ùÀL*q˜YDB‘·P#`¾× †Ûõ ÖŒá&;)e3 3^(gLëàpþµƒ'zóI9ûñ­…]º¸’/î3•uÆ3”—ǼlÅ5¹ÿ`ÕÄ}Âð8-ÆÂ«–ábf!ωŒAbñœTÄAðz¡kT²þrg¤ó¡6i\ÌÙ)i#|çR4χ‡öz>»kĶô]’&› ´ø ¨PØ¡Öh%ñ×bkw«‰H+é a¦|"å@ïøMJÓ¼[¬¯h+c8wú+Ê`7¢Ã6¹Ü¾Ç†‡dXË?i~u±‡.ÄB>ù|VXˆ2õÃr>?Ÿ—‘•·5)Z¶cªRPw­Öëû(d´¼=]ŸûÉUâù>^?Gðu}½^ÏgÖŽ/çoïùð|¿ŸÇEWþŸïÉWô¥–ж·RrÑIÔ§˜‚Ìf.2±\É÷[&bôý¨ÂÇÙ"Rú­­YÐða:á(ÆbF01‰8~]¼YvÐþÏ%Î3:²I~ :ýfˆÚ*_y#]^W>‰µFÛÌ‹TTàšYUë/<5…N ·~ˆcp{iÑô—#è'‡‹1ìþ>˜ü@9ÇNÿšCkF¢ö¡,Ÿ‹³oxo‚ ®|o+FRyÞ@ª¢Ï?ˆn%ã`g_½]»¼'0¦œm„¤¤7Z 'ö§SñÀ‚Ö!dô½Ý¥èð¯æaZÑŽOdê*ÜXB—vâTÝdZ^‹ÏÎkÛðVU6’O8…7(ŸìRtƒÖZ~³ªØÝ.Á£ì>œÒí­Óý)ÐûLG*¼;ß“àœÅ7òuQi îô!tçBU!£j³´…ehhu$”Øî14‹¢“UtEB/ÏPÐÜñh³òÈdã5²$å’$mpµÖñü¿s%»¿e¡4ë°§nJÖtQÔam/ÈGåô®¶ÆuŒúìtŠ7$å­à0IƒÒÕȶw©KÍG'Á##ø)‡M r.MM¾²}`IÅî·Õ·,ì »–W‹y€~¾ÎÁŽS«mœcœÅåk‹åg{RsÀÖ¡\‰«$iL7iÊÿôA½„DíKÞÂû…™õHBdÐË ,•)èn—J¾””Ýø¶q{ý…@óGÿÄH½-„D'y}¼ã°‚;ªó©WØP”:/TÌ”º½í£å\^ñ°ÁôÝm¶ù| ¨‚µþEãš{RÚuX"í”Úé»RŒTÍSS`23MèsÎ'œnCLò˜Ÿ!:Xgiàëq‚'CVkðuüê78ˆ"_¾‘°T+9¥¾Ô­”uoe;'Î/¹Y¯(›¥k+€ãwJJêÉŸ¶Çú÷˜M¿0ËÕ9@ü,Œ×Lªyšjé!´e’â ¾ä!)wc”`3&¶ãMœ®©LÁši'·MbP<%X˜µQ”EçÁß}°]ÞAIœK~™ä¢$'¶wq¬²­PÂ$Óå«çŽæ‹G{â—µ+·ŸÅÄPŠ á†g,S»„“M: Úºð¶eà ¹ ieipcMó¨Èůƒ$1¬¨M'I[—,±ÕSô*$Õ4@]2P_e᜴cdÞǸ„VÏSì¾9j®ã ±Ý÷eÏãhµnËyG}¬ˆ Æûmâ÷F Ââ˜d?@Ç’~ã†ím¾ûRÁ1Çœ$H²¹H¤®ýÆØX #Ç|§ÔÕâ@]e-nº;NÓä%kaÙ¥â¦Á×­rÒ ]Óš9æ$bΛ×#\¸8 ÕbY#ò­Fµc øIæd¬¼¾ex*Ë+&NÒ"5¢Z Ÿö6@ë„øØ÷sÙå ì*ñÒU«æà´Hå‡Ùri «^s7ƒo¯lšØôçg¢ÏnãIË—EÌUê±8HbF£V÷ÀuÛ¸[þ¸%ÞHòN^¨Þ…zcLpS›ÄgŒ½+[rp¶ì>Žc”j&ªù¨jnLAGÆ7Ù€Ù›ÍA½ÀôZž: ŠbLÀ9nvÉzðÆ\' xIIóànÆZFÊ(6v̱¦ÔÔ´ÏÑDå[UŠ^2­YMO1úÄ åØ J¼E(lˆtpáä°%¡ˆ­ky‰4Ôô[€_º4 ²œÎò§ð‚W'v Òª 饷ʩÓT+ Z0± Qnäq¤äÎgy••‘»>ŸvW_MŠSº“Á–Îu¡T¼;%I¸ceÜJ#ê3j8ÐÆÇW*Tj £5úÌDIˆƒ¢&´ÓÄ'Ôž”E°žl³Æ¸ï-Ê2/j¹H˜Y~!!ÆNm„#Zv®“z7æVPí‡1ßeͱö]î0à]nÞ<•À6Õˆ*N†@r÷ïj¿ ¡ˆn/¤&“"§¨—e…[¯qê­èq^¬0œ žUÚ%í^šömÆÏÈß$»0³;®)Öm\§®}E”Q£qkPû}yUOÉðÇ1µ¾èãBÁ}p¾•±OÔ‰®ý¸!øhÀNy†·¼G\n`ó]‚ýÚ×t‚)—OœѺÍ}ÔÄ•XŒŒÄrBC ML“…¬ÊèDö•Z¢…‚Û h¤!·ZÖ$°ÑÅaý«å¶\€ÏÚMØ5TvÆ‹W)ÎÎÞá-ÇÕˆz OÔä ŸdSlð„Òøò–Vï­_ÐàÖ‰G f÷“‰¼F±¼K‡ Ø±¾•ÆB‡ã–êð5W <>ÐÀ¶Š)ųäŠæ¼½ŠgQaÌâ%å#õ"oiLH ùÍ9öÉuæS‘º0šû'ÑÁ–B`« †Õ;胤 õ0&Èwbå€[¨- Ͱ“VºÈw2á8v‚(Å?„\‚Ï-XòuTÜnÎÏLˆû¬~E-:7€ rs*â¦e„m½*ƒ¯-X”/gì$&Äqh™ßý±ƒCºþÙiN _ Ch¸$àx„BÄ1`ïW¯}í ÐÇ}EÕ£S^’ÊÜø<²Ì ;ZLýz\é'U4‡)IÄKR ¯ÝUpL¬—JÁÈbwGöòjŸq8[q]fiÜðNÖ?g>Z}kDÖ?ïB7U•<×ly¨«å 'ÉN”é,¡½ Ž÷²,G” ܃¢&Y,[žæ O·ÂŰÃúõ8œI±”\`ÝâvÓ+Nf8Åpû/ÞcUÍó°î#Jÿ¼gûùÀþcSeŽ»Ðà©Ì6ý,S#ß\ÅØ6Ô53Æ>i¤ƒ‚0~¹‡ÅÁzk2ÄÉÒžˆkàôôÖLùÒÍ-7ÅáAØBrdÇ ¯Òιx"€»Þ×Ãy[‡§—ÌÙÝI§ã§ž$ø™r…Rèô€!Œ˜⪠»ÙÞ úW#ÙO›ßOÏ*ñ|þjŒ?%^ç'hQ±L²AiüZ-<ÙšP ;$¤$u’­©¹Kf¾OÛžty1ŸãñtåC«`°¡7TÞùŸ¨µ-l{QBufÜͳ:vŠÙ÷¨{†À6ý¤Öx FyJíl#Öçõ|¤˜áÛ”Ô‘2U<¾ìÚßiºË飸À,1]CyËptó†˜gd#òâJc˜Ì¶Ò#A×í¶ë>êþ€ÒÕ‰˜½5#EÂeYDX[‘—$­J1Ì’"kÝÉý#™z•ì}bä|J'Ï]Ïn1na.¥óÿûulÚ¸Q{µ!¯Ë˜”KZ+i 䪡±ŠwÔo9Æg]H0Wß&PÚÖZ´UÊÏÀ7nRsŸÀ¬Ü OTŸ×—ÉMâô{ìј_Y@Gâ-nÉôÂæ’nšY’|J0šî$¹- &­Ó½E6ô+Ìœ `‰‡É»E"ÚÎЛ[Ë…È¡®j<sܼzöcσ¦f7º;Â,¬ßâ$á>§ÚTötÿEA“-–G®š¢·žûýº?RIMÎwçâË|Î †1g¢ªùH¤ô³·Â lJ›U*y0›ï~éÞŒA¯Sw€Ž™“ÛËŽ¤n×P.+¶U%eB fr*YÕvåŽÃ•³ar³iH’{,¿a´µïéÞ,æ6ÑÀÄò´Ó$2ˆxò£ŸW**¼÷¾KQIŠ÷ž¤ç_tO(Ã\DáéÊìÄ»Bý#¿xÚ$ü¤ž—ß èÃnNPP¯í_Ãïθ õÉE“ù=#H¬È"¼Ðû õ;Ç»‹¿pÎâþA»pŠÛ) 2çÁ©sjL ˆŒC¨±1[­~?ÌÌý½³N?†ùõ'ç5Õ%@U¯ÜøÑhºÊ¼ ½IMì­ŠTã¹tŽ.¬Xù‹;63†o«cݘãwÈÜæ¡Ë=»•ÐéçÞ  ðª Œ“@,†º6)øU-} º§% ‚½õC†yqÞ|0(O gÏÛxöã&žya¨#gÊ|?Y”dh1™>ÏØeIŽxV,õþ»ºƒŽ yæÞзV™ãvDY6-΢§ù:.¯ ·þßb^m@43Õ̯3ß#ÓÝå-v„ÑÓ8>‚ñÕõ'¹¢;îHÝֲɎ6üN[Õ4Ü%wÊc°û?¦HX}"l¤+þÑ#Ûº¾OMÎyA^”þ€³EïO“‚)Âþ)éeEëåö‡6¶êV&HO nºB@­n%@=¦êâžØà± åDW.G&ßI1<¢/#°^ð÷ü8E® Çpb¶ÚB«#`ë5qÁHçÍñŠj@ȼs*Š\ù ÐB/zÙX²·Ã…u"c€Ä Íú‡×t3rÑY]Å•›Áÿ&ÚY#^ÏWoP‚:´sPÝÂ+æ6¶§aé ªŸ$ˆQO š‹—^\CçåJŠÆß¹76è#ΈeuEãþ1?w÷Óá( £Z ò ³R¼Â3ÏLâ‰Á mô÷öUÑ \²©´X-Ã⟭&B€,2RGVÇ]+á_£‘«*«Ý1ß5¢•Y>âMCU@ ¹ ¤€d!ŽÊ>§bnvòÂ0-9.®õ0ˆçJfMðÞ+X ¡àÉ9qÖŸGÃóïVœˆ†dÐ)Û‘n„$25IfîF°Tv†¥Yª7[×äX°ÀÔ{Qu6Á‹‡Ïo ç_ ç¸:KGßÓãÑ·LÖÁjØ<‡]dk¯wËqGeû<ùׯÑëñø9ùñ¯;þÏeߟïãTùýi¿iEŸŽÏ¿þÓ1æ²M¯ˆè¼9Ä5)=C¨"};­n4\~SøÑñP /å»…*l Á²ZFÅýÌ8‚e_ SÇLAövI-¹žx${ؘ­ ït#¨ˆ§èA­‚¢žçŸC¥œnq»ëPÿy„Î|ìøÏÙû7éí€äð}G‰Ú$¼%¢+é¿ìTÛMH–›!Cª/hîXTA1x$-Ò/˜)„ðõî¨"z‰×Á’ –íĨ£dL’ý1tX\<'rNnàä9ÐFáûKÛÐáŒï!â´mL€ý!±%›Ž˜I?"°;0G‰&,1ËÃ}€ð •®w“a—yåÊØëO <¨R¤à>d²0;{«Çök‚Þm5³þÓ<7|¿$B‘˜+¦›ïPÎ9ÓîZMZ2þ eäkÑ@€å´ÁY ©ët5¢L¾ñѶôàë4ÔòdC¬e‹O6kúK…* ä¨|s!ü³wæâm–œÂjÊø33÷uŰ@5Ÿ#A"$c`gmb "³o$bµenö3¡EQ3Ch±Œd‚6§¡3{­ÙÊ4†iFÞƒ!Eaô’lÅ!,`ª”ŸfÈóãÞÓ´VÙÊCš† ç8 s9dK…5rH+zC¨F”ý׋Žv˜‡ùôVî“ö…`ÔjRÒzLî^6É2Ðy+[) Tß‹«ÅÏ…~éC-ª· ç¡ç[4Ç”á$ÏZÃŽ‚vYM5”Hè^]¤ “ž¸f½¼ýî£*o.d{åIp®NIÈ2œkÔî˜ïTø’@½=­ä= ZÇ<¹-ò 4Qž.=úìXÉ´¾€S‘óü‡ë…÷Û2 CzÙ,GŠòÌ.üäP\1ô›&ÁSçžž·^n^2@º}G0ÿŒ#;Ç· GUà¸9pó gSN– ñ\¦dgr˜’l錱”Á½P€¬(²uÌr¥=Ü!¹.¯ ©ä<«“7%—†ÀN¡`šA}a÷K¡‚ÿuÆÊuÞ™àÆM .s|ßx¢Ó†‘Ö>ÂVç"¤®êõïîÊÒ^ à ­u%É4w´&MÞïGeC¬VúQ¡Á ¤iÔ‡ ™¥¤òÑ6ÝN‚X¢²4¿†-¨ƒ:Ä‚qÔ9ÙeÞwÛØ uþT1–dx=së:2Ä5Æd§»Òeùvúþü¼ßs—îO«ùÀ~öÊL´e¸@‡È„£Ì¸™ M[i‹ æ[n\˜5Òa£Éd‘¬‹¯¨¼µÁš„äJ´4ÐI¾¼Pü:0$´¤œê/ 1‡í² XsfêŒp23 WuQ¦…b³dh,ErnØK ¦ªÚeëí šàiÅýŠˆI`2Tq`“å\Z-@cKæ,Ðl>­k¿n–Ùý¢\Ûz^¥=“D¶§áù.àí^ÓJP*ÈLjZNs. Bæ`ò'ÁYÝH«—/<6JÏ(d[ ` #'U¼QuôÑžo ƒßeis P‹¨q¼CTs6tÈÉÜÇ»ôМÞK»öæ@q®¢•‹RG-Ù!¨‡=ù3LAt.ØA±tÀ‚½J{7dy1Z«ìEН2©GžI H&Uúóå"”ÔL÷&¨±“z-p3ËZàjYú™Ì‰+ ØÍÂ;Xµ7pS(umý[ߌ€ºÈþƒ{‹k4X>˜U¹0f·S ¨#pP ±Þ6ü6)”œ¥ócròÿ6I‘´…ŠîUEBs7é«TlÖGUµïtÝ0–°³CçÁ_¨ƒâæïÔo‘Ûg«˜¹À*Ti\dÖϽws˜)ìëâYO¯QYj+ºµ¡š”yuí@𠉦­ €n!}a°Ï~c©&*EÔ£Ö,‚z!eÖFê\/V·u·0R7Q‹Ñòµ8t¥ò¤¯ŒŸÒœÖ=1:Ї ŠO™®KáƒOûšw"ˆ•=q‚Ùíü¥å9î¥~½:Q¼ÖT8«xCÿâÁ¥/CàY6Æœ|6EZyu  º„G€óþÚ«¼-›u¾š¬‡ªŽh´²ºú+­ýX;µÐt‘ýJóÖœ×á#±Ë <ψpÞkö­.3 k8æ! P/޽bÛ“ò3çíŸÜ¢š9°äàúA$•¸¸LW’M×ñFÕX0Š/¢=*"GV¥#´¾¶4’ʳaÂc9‰Å.°úá{ÍLe £d@‡—ÊÅ“ÏuìU²˜ªÁÂA%ZTïšB¹YÛˆrç’ÀÎOùÚKÉ»ïj#'OñpI[¤6ñj5Ý¡@d€Ks“ßoOF·ý‰)\µI|nÙRs•¥Ùe PŠÊ/øXíÛa¨7Üb/B¶ÅÑÿMp¨±¼€µ_q îC øSl~lŽ”×øØr¶˜;1"5j¯`f„Á›ž'â7ÇÕ”ût,ðU /7bíÆÖmš­â%Ž:ýÒî =Gãk·òX¬ZE/ßëÏ}#“\­¯ïËd%º¶­[B«½º¨\!b?—j¾½Vl¦W‹2a€J¢NM“ 1^-¹£Û8–ç„îG$#ñ\q¦I…ê ôDá <Ò‹ ÚµÛkÀM~Üí ÛæÕOò¯ëêQ墿šó +s'sÙ4¥/{N"yD™¬Í¯‚¨¸Ô”¼b=iØ?‘²®E ŠŒ#C§.x1Õ¸ ÁcŠcèEþ:‰fã…»¸¡¹Ö>_¹BUúŒ-—;rRM:'¡‡[aä1œÕÕèŒÔŠèÝ~Ç!ùA^ÛŽç'Ü óŸíˆÇ÷qìô¶–ïGØ$6 ÿ"õä\WéÒO|‚¼xgv´ØÈ¼wɽ6öÍ#ÕdŒ^µ8(`C¹ÌèàŸ~¥Ä؃^à2TrÒ' ÿ¨Ä–Jy?jÀjŸ}4ß:¢&ì®ÛªÛZŒhÀo¡g£]@Zç¥úlb?ã&²Î^»z[ø:¥ƒÉva8«#;yÛ—§ Ž÷<ñÛ*œQ3 ªÐ)?¥Bb4ËxÈ¢a™NIÞSpm´Ú=Çåjof³NѬû쨶éÑ¢“#k* ö/” Ç…­èÖ°û$piÎÃ)1Y5àî¶Î3=<ømý“鯛פêí°³2X°ìœDN×ÃuÎF—&Ëò¾E g$ƒžsöÍÝUÌjqŸ9ªXvä^–TºËwŹ—5w‡<÷á5ÒòõGf,×µük6Ê…ÝŸÃ7æ¡'  LjÈzà¯À@õßËÈû=aY«Ò‘‹Ý"в«Ð%ŽeeÊ<~ÖIŒä}Sñ®&Ë$Žügn6‹*޼xîÑðB¿ Ϩs’íe ÙkNñÊ8xê‡ÜY©²cŽœx™ûCv¹,yÅŠ%5ä§ÀÓn õ¡E¦2§R.´ð6)[jž#1jÆ 1ÓE4åp-#™zù ·‡ƒ{öHtys2 e wÖOû‘×þ—>æø„æó¿«hþ öÒJÒjt§Ê6ô?ðEuìØÿ øú?U¾ìlŒÿg•™õ‚/f¶ÿ øZÑýÿ±ñâ»Ü—ßAI´Qðï yRd°É*† q?ÖÊ*ç.3óru“¤©!ˆb½Ì?Ë?;oíútÿ¿h,_?×Aµ¹ý?tr{ywÓÔ_®>-^N^ÏgZóuÓËçðäw\}ÏÖÆiøé¹:¹ß6ì<6…(j˵ÖïdNë5£¦èÀ‡— 3ê5þ•üZ6Ÿ%M7ØøYÍŠïO ½7'ƒéÚ½¡#ƒÜ$»cˆ?ÐX5ؼ«—äX¬ &¡ê¾€ƒÊߌ¯T±A‰}Sø?gÏøõt5Y¦˜çC_+jõ€»hUKéõ•K$æHaÛVù†d1ÿjtôí† jFPK¯Þó±v•%à3æ7Äêöl[£†šSHø»wl6Bê/³¹€zÿüˆ%öê 0?Õ…à&ŸõÚ7mF bX+¹ Èh`#.Ví­¨å`ÊKº!€ul¤’O©ÔÛ Âq×ìüzqko“š-›Y×µqà<œ•ÉéE¸ *VéTù(h'õÆÄîÒV?¡$©Ám)VüŠc :ˆ$ìF%À‘záq1~=‚€øÚ¶€Á@Ó1‚ª¶ûês’¨é çÓd²רž€¸}•ùû*j"éÁàßm{hpSn©QQµ)1§³ëZ%Àntuf4MK e”ºJ)¿B×°-ÁïHõÿ¤4)~“ìc ,RFÏ|€9+hšw€ÎÖûµˆŠ_î“g{U´Öó çð° ì™þÝ„sP¾Ïï‘ÄPeRLÝþdôc~œ¸¿Gc*tn[5 ´5L¦À4Žzƒ7V~¬Å†Àñ.ß ™Ó8üRÀ=8ƒQpEks¹3)½VÓ+Χ-àÙ?.¹#Nt¨Œ2 ­4ç^CHˆ1è«•Œ$€¶Þ‚j" Ïû’UšåÁ,_Ÿ½K†¸i¨´N8qúÅïËH/rÝr˜NÐm6ƒ ·Wû’ÞE˜Ÿ%þ»B‚Ñ€6!2~û¹€"Bð·yë8—”¡\”0óÖÃr„NPÕ³Q—îLÚÎ4!N:U+më0‡LjŸ½ZÃ67x”Æþ÷´ we™dÆa¥ªÒ†¡ö&;b/Ò€ëØñ B~.˜eÝùqÓøñþÙ ž‘¦ÚIaAÃ]ç&™g4&ßÈKvYÛ¥¾z;tk¼Ô¤’© &ÓŒÂÚMØÉbnZs~¹š¸_¢#RY.+í»1%¨øDË”F@mpÍûÙ,E+4Sn‹õÈ_ÿæ(ÿ>œoî$ݳ$‡~_?'°•ÁöÔ¢‡¶ÿ‹ÑŸ¼¼|/§gWUkëæa°w“RæÇól¿çó÷ÔÊ—;{Þóˆ<ÞîŸÇãKÙýÚÓœš?—ç§ÏËLõ›–Èãˆ[| ‘—½kšºë¥yÉCcÛxÛ¯ VÝ“òÜXb¦ñÈê/ c™¸÷vä*}š%mp9?_MÉ3>`ɘ•ª^#{2Õ£`!è%ù#–Ú>qç -ýãÑsŠÛãB& ÛË>̲-gº+§&_+ÏDüÚIž: 6 áÙò'A5@8Zqbì¢Ê„(t øP'Dw¢pž>2—ÅU.z{4‘ þ(·DÈ »Žvˆj" ‡Æš8JÁþ#èPý@VDñíñ^êhôæû¥aH9d—:®vTMÂâXi; œè¸ÀCÍ}½Ñ©Y%Ïk;àìšD†[‡£»&UMD¿N3Æ“1‰²ðc¡VܶhZ\Ó?ÇFé‡8¹j:­:<ÛÂU·›á¹õ8ã'ª‡ÄAñMy]Á¹ø‚ëa½.;…CYØQW]øë™ ‚býgŸºKž\ÛÓ£&Ó[f?v/€)CLä›zôŸMÌ¡l5ëÄ5å¬ð~¸/ÂÅDÖLQrpC‚œážd…P#Àï-Ý‚¸æPœƒKðdµ±çÝu¹‰þÐÛ2$M´WM‡ßY9³6Ó W—¯½"ã§Ô>96‘-çèMí5z*íI6ßÞ)’)-‚üLhB‰mhó„Wê‰ÈЄýÝ$á–+Œ]|mO ân€P½˜2ÓEO¾,èÇâ÷XÁµcÂ`ËÛûˆá1a†¥@tƒ¶ö¢¸ësM¸Q ýÈ7‚FâóÝŠ5Ȭ44 Ñ Y5=ßky¾oÉWdK^÷›PÖÂ"Uê‰äWž!‘‹æ÷&'4ÿÚ%¤]eðÓ S¨SzvUxBƒÒ °| <_2Òé”|R4 %"9•Zè•Òé—yµr:肤+LîÔIÙŠSÈNš©‹¥b8«E0£Bþ!1X7i) ½áÖ1‘æ¼ÑPÿ‹ÜU«Â*ÄgcÜ#ñ븋tÄv^É*Ž’ÙX/¾<ô5./<Ñxê©Ö²ÇªKe¼iAÐp%.zafõÞJÊCtd4ƒ\!7½§Áš/Ö Á5ð óF ”dhO‰q Ë»%²¼£ßôeŒ üˆLÃMgi)@¦‘,çæhÏ "J`¨ùÊ\t¹ÁBžj`ˆ…—ñºlÝ©¹5´Hj)Gãó—]„æPfÈkÂq…Ë~Å„~­s Œ 4âExd_Ùïwa¾6z?ºúF)¡<].^¿W@ýÄù{oì~쾌«“:jÒÕÚìDÚàÖ×fEjá§<)¦!s†•6CEXy–§âÙrÐb·JÀëɆ¸Ýn@°='éXUˆ@[Oú–Á˦Ç*Y@¬¤²Ë‚[§k1kÒó®tç®g‚!×C–Љ)wd¿®ùkyˆ9äÛ Ðž&ödLJ€oˆZ°T4iÏ œ²­Â(»,©‰•Ü´k›d?5*Å¢YÆJÊ™¨wŠ”bÈ«ÂóÞbZçÙÕt¿,VFòé%”ÖÓ“â~±6î#™Y)<2é*’IqCK¬'[Y†7{AºL/|õ\"–ØQ„ëÑÜF.]pÌ$f¡8ûë\°àâ*¼¾ßÉŽÛ ‰1 \Б½žPi¡¶Škú®˜’¼Fˆ ­Ÿx4Tª hmÁÀÿ O 7³/QS²`Q’Ó@6H8G1˜ ð:a“¸ªæ } `‘¥™&wT0v nè>¾s›ÚôtLçf¸Ÿ#ü3»àç¨e£Gý'}\èp‡EF €ÍÛ©h@oƒBçÊYìx¨{âä¬ÊÔ˜´UÛí›7 Œw:T§Ëè³Ðÿ84ªi@”±!† 2•/'ª0JÙŠ·£ôMË{”o T}5ÑŠfµ0#öíˆNÌë†Kaw#M\ðbïQ"̤úBBúŸ%ñ×KGQ%QضÄfèf4.艑;¡–¥æòW{Q³r~r€uJŠß~§„Ôa®ŠƒafcL¯¹º‹ð§š[TZÖ—óC˜mžq]©Ãž‘_JP\¯…ÿÌ"?JÂ'pü³D3'¨«ç^’Ɉlþéêê~a{§¯¢åعÈ?m<œ¸ù‡÷ÐmÃŽ ƒ&󠱃ÓZÀ¨Œ S¡ÌáIe¤•ðˆb.º±/Uç¹ÛL³C&÷ [Èeè,óXÙÄÇJÃßžÉÛmdÞêy ®^¼œL£·8Úï]F;g¡åçÇïwWkâ {¶ 4<§ˆ°‰Ð“+ßWW—#Ý7û‡;¥ñ gáa´ŠCÐdä,ñÝpGïßOOù¼V9AÄuÉn¼WžSÿÐlpa—m*óšÌÑ,QÒò¸äˆù*ÛÐ礩åÓ—ºdGzOu[¶fã{Ã÷ìY°ËŽ)äà°‘èÑ©tF– xµDò‰÷áµÒ1òâìóÒžø]œî+u&šÀa~a̓ÆÈ£UªÚ5Œ¥ùx‚k"$b¨bðÉx$óÈÖÉuÝä{ïjÓ,n«õ\Krr{“„ÆÜ!Â}# F$XI©,œªíÇ¡"¼°³C8Tå;Mt#©\“žØ¬cŠ‚àFW©…'üN<GºwygmîEx¸cø"OÆ×EE’úpË1Å”¶Ìlmçç‰R¥.,ÏêÅ}Wèà…‚»Óy&u&µ”6Ûa·p$©Ù©¼´¸˜néò3¡Çša™;\Öî:IÅ­N׉ø‹Š¤Ì¨Å·Z’f¿þZý?Ð_¤kÐu¾b~΃»£\CD ÷¨0rå·|(1¡Ÿ—ò Ð~†6O!É’E†7Ñòµ’‡0¡XêúfÄ`ˆŠk< roåš+å¬Ð˜eÚ¼Bƒ¸ŽòŽâ£‰©Ž^þ!ŸïŽâœþ”f¶q^d ‡*YñpÅÞ Ïã*“=äT´Ä.9‡ E;`Ãlh­.)dgÁgB1‡»±5ÚÅcoPUü›“HÃB?54Û §¿ò:¼9‘®6T¤ú*\2ö™üàëêƒLîËÁi°c@ø³½\lLwñ à›ê÷߈[êBÒ¿Th­\/ ÏÈWë!“=üB;#“…h”bç¡ÿÊRé͇i”ßLÝXÁæ|IŠá)¦º{zÚè¨ÔI‰KÐjC¤Õöð·ì¼ÂðÒñum;fÄ›ïÒãH×™(îKµ`K½á…ký­“ÕÙgÄÆ1¿qѱ˜="‡=ÂÐáãçôå’ëÄsºrJœì´Ã®ä;æÖòÁR¹©ç©ÆTÄç)3ÖócBÍ =IšóÞ¦åÃJªHKEE‰ÐáÇdöã0ú"ª„%[ú¥9¤îÕúõ¼«3;³[çËRê=žAéÁ1ô÷rØKè·0Y*Ì*¹fwVfŠ Ñ”ESÁª$I·OŒ;ÛÒa,µYõ­S‘GR劸y»ÒAY2'rÏ yvke¸rñ`ÆÅQJ8g-­JgSí_àìóËrš µ]Š›¯HA«œîÄèÆ×«È„šœÆŽËKq­2wªÀ ˆ$-Õ ë±ÉÛ!³Kµ«Mïk·Ýµ,´qÅàXß2ƒÖ‹V¡1Т¬Ì3à*­âI]¨h§ºw˜ E‰{&¬9Uù©qÃIpƒt©8³•Ø V(··„!¾W]p: œe­°ßön7„ª÷wTƒ¤qØ”˜ÐÔ'zP¸Ñ7rènWAò͉·¦>E"ÔVÉC$; 5‰ñÅ“ ̾úl)¢6NAc[’J‡Õèj¦Óþ}ª¼hò.1“´S1À(79?+¾¬è2÷U¯÷«ÃüIÿéõòWyßÿ=5éÏz´7Jýéôêøú9ºýŽkq0ÿ?´ï0¼éã¿h^žo›_ÓÆäû“_jðÛlæ‹ò»·AÌÓ‹v÷#ñowHþý¯«ÛÛáõU“¾š,]Lû0!Ùƒ /ExÕ×÷ïÆÇ½º½~Ÿ·›ÛïMT~î²?Ÿÿ;è·óß]îNOßçgÿˆsFZö˜ƒãÕØû“³&^MxãoUóÖBAj`†œÃJØ×”YU7FHÂÕš‡¤m¾íò?t ²£àÕÙÊjŒX)¬üZèŠÕô“ó1¸YÍȧè­h’´ƒˆdp¿Yt~›œXtÃ…ÙAXïÅv'‚J%=bã”PÎT¡¾òµü×#0[\ôpmÏÞÈ6O°­}#? ûê"¾Ñ ŸÝ:Ö êŽÝ°;%‰„ž¹Á§©È]dôÓ"qG µ4ãŽèn+C‚ì˜Éj/eÀ¯n<¾èp).¾¯V¼_ xý´!Mê#àU¹XÓŒ þµP¾Úðº«ßҮѡ‚®•ªÇu=¡Œ%ãA5H~ˆ–M'HãBâI ÝɪøâQkxî¼@K0Z¨–d(ÏXþ¹©Å|ßb¼Èõ¢ØÏq‡û榋h&ÑÛNi)B‘ \¬” å,%dÅ1ÔvŽÙr­õ²äÚË¥Éê.éÞv¬e,K†ñ˜I°JÞ♈ää—'¾œÏ£>€'çöÁôJSxÃö¹ô +fÞ^貑J›QýS±Í¼ ›ô îkk¿àßÊpRæÖÅ™slp×B 4 ájPö¢÷œ ù>èöHB ”,¢lšúÍLê® ê/«î/6™ðo-©Õ—œ"ë³¹ìY³F†U†"Îç. Õºw€o¹û«ÉäÎÐ"-Ë$èssØÇAÚLZîQU±õ8dˆÿ&û(Nc<º§M »¢uAL°¾™1dtãÿåÏ%‚äXÕ‚ lq°OIİÄ\¹…Zº®–Ï™`żr03é9ÝÉŒÞ Þsý+'’7•Èø•¿’xù4u ¯”è!9ñAÈ#ÝÁ¿'AZ=2Fp$¯)Ic8EMARqO‚|-œrRIZ…©g¬BF*iF‰Ûö€­PK-N[!R!’VH-MKÙº[nR¶ðDÏ  4˦Ê ª=ÏÀ,nX܆Éóæ/\­äºâ ®QõÌXÌË–gàÈÃÃã­8דm nË⹃Âm‡á°€ÿ‚I &ú¢Z³çϯí<ø£s& ßÚ{‰psG¼U|ö\é…¸”¼&´“ºf¥^$aé8’ÅMÒWüRha|T ©ä­4¨=À²~?óò°é$E™ÅÌáLg,ÍbÖd¢zä×ÊàÙl81c‘\YS5 š”0“‚Õ»OÌ-4ZG 7ì³M!îŸ|Üé~Dµ¨ü†1FØxŠ©ˆtɰÁÊM³¤À÷ß²Á;^Ív¥_Ü…ÆB,e°ŽÕ!^ */ü[ʨæ^¡yt¢òA/ _[`ˆ¿}>+“_á üƒÓ¹ì§¡èÒcÙ.#æi·:Kú,åà×4·¥†Û$®Ù@"Ýnt§:–dº#@£¹je1QsäªÓƒE{,ÄöΉ¹­»×˜wíÊÁx»ìQ¸ãÒNž#’î}Ìú‹RL2"( ˆËÄðqjU™ÀS¡"¿µT<쀊ïÓßv¯é¢ôœÔÇmÛâ¡SÝÀÖ;M'5 `!XbæT¨” §œzX­ùAéÁÈJsÏ ÜS‡AÖEä8 Ò>1À#d:!®õë\ÄÐ>Í"aãà¦zÏÌ›€j¸{Vcq‰V¶Í—šG®K!ÿqÎzkɄϘ&ž4©™±uŽœÀéGºsÇ ÿûœ!äy"xwZT=àMÖ¹î5§ˆî=eI†£ÎÕäÍ79Œn­ Hþ”5'åJº`›Œ€-~½¹J½ß½/X§xkæQ¨Çf h¶Í7”þAaÆž6€xÖ[jè‹ïßKÓÂß7˜ï}ÒÛuÑ›Cס~ËWG~Ç&<\äýòÈ~r\äõ]b ^(!˜»¥(B¼HœJÐkˆØ3’=I #¶lRy<&}šàW8¡”¤ˆO`¥Ø¸¤Aìûó4\®k/àâ¿cЛyÑ ž¬$f Pm`½8ÛU¯´T T÷ÒÌ[ô PˆHy:ßK«DÓñ u@{ÑÏ{­Nh£¬ý-Ð1hSúJšÎ@dZÚ/<ˆò8În•­ %9u>¥>’—c8Vì9φðÅ7éI%ec½¦%ú$KŸ¥C“`ª¯ ®Ý¶zoÞ cݱ‘iÎ`³) …Óö¯Þ‹û˜}þA‹Ãªª 9ÿF…Ë'çfA‰l¬|~e…c¦‰dŒ;©¿e‚"ô's*îKß,Gž[tv¼¶õîj·y­2_ämµØmÆ$9Ç}滯–œÞ}MÓ@}¦¶ùí铼ª) ìE.Xò"aÎ_Cíû_mûâca¤\³›¼ ±A‚dK)‘ Mر9qx÷ ÅhÒ?T"æëžÐZÎFã1±Oxjv#š¦þ&8~Ôùµ™L$^]“àv&Þ?ð+10æV³j # ´Ué¢S*=\FšBíºX*|ÖKD=^}XˆžôeùÃ[ éÀ¶óÒçÀæOXa––hKÄf8VxÕugó˜|õG±¦‘ƒm|îŽKÍÒpáÙm§ox¨}¾* ŸunMF¥cOÎŽ6w’FÊ*×—YŒ7Áò“,Ž@ý~0j¤ô[‚S¸#òO %–‡äc+B¸¸e’–|sPü.”\o&ñÜêP((R%L43—µðub{ÀúߌnQ¼VX3ø•”T€ÔñB3"¤@Ä…wAY“ÞoS^ó¾JY’·¬‰œEÏë]#dHs‡\ ’ÔŽ„K럟K;‚Âl+_Û}LHÝ' e'–Êç¤f¢õ'ÞA$R1)×A$— …—[¤Ü3šéNzxˆã qâö™ª>I¿·kßN€ÝÓ~(±îéâÖ§wDvžô#üÈ-ŸwÆM§å’uæïˆ‚²•]œáDÑûÂá‚tºa¢†»b’DÆÄŸ Ní ýaí 5–rÝ»Sõ ’)Ž›\iÉáö\Í©ø}§¥Aø|r·oGu2,B ‹¶/‡F(.¤†¡Ê«dú·u•ôŸQXÍ(: £j~3Ûh´o些 Akj؆ðÕA¤³ïSë¹ð>z,™3Z…k:EcxŸÅ /˜4ùH?82ª´`¡ÊåãC<]šáJYu4Gl] ž€%ŠÑã,‡¾ÿ|ÛÔéPä];9ˆIv킇]ËÃ<1kI YÊ×R¶Âr¦ g#…‰¸¡Ë…ƸáÙ~ê’-ŒºÚÒ\jbŸ­(Y|¥){†«.ÚCNöØ5èÖ+?p®ì%Ù4^åP­/ŠÄ•Xx«Ø¤ª×±M&#£/š6¨Èv?ù±æÍ¯ ÖS™øÝ™]aEºÀ%À¶¨î¾¥„ËØÀh“'²ø›®62‚•2H  ÔPµÔ×¥3¼e½i¸‘Æ&çؤð¨×x»ˆ xîêr`¹«tð—[À¬5¹$Š,5JÆì kt¼ ¿éïõ›+2+Ï}Ž÷ ÙzÙWë–†×Gd â™,¿ qÙWd%»3­ËÎw’ŒóË•vÄÈ»_qQ’Z6K2}3ÑVÂq:µ`¸1¾Jºë7^¸%Ú×´&Ý9©´Íš`z‹Í.Áóx%b<ŘÌ×âÈ-Ùé±ÑEº-ë½*ƒ¾Ø*û2oÏõ$1`4yOY"ûõaødAÓ pQC×+q Ö„vØ6 ØŒ¾uãÚ4¼÷=åï» äiFªÏí'†&«VK®NRèÆúÉeh‹õëû•ãÕä1ò¾” 7¡£²Ÿä(¤gƒCÛ­Ñ=–Å윌ùMZ8/ÍÔ©Í6¸O—\#Ë‘šï®o-qû¼øÊ›Ët8DïŸÜXjƉ^„}Càg ‹:¤>QžÜ¤Wp­ÊÂÞvôEÙj;FçëC£AþÌZêôÈÏ|ô=3FY™3ì!>D(È©‘¼º p èJ¸¼}Ö¥ž¥káMûþæÂ„…Šœ¸[7N^›+ÜËg2šLív#z§háÓ’ø›Ãp¸Âácq ‰õë¾.m™–°þ9”SÙ‚ÌF›S“€sA ¹³F_!1Šì§›ÕèÓ…®™­‘-~ØÄnA#±4-Þê¸l’aHþjì>)Yh³BïB·ŽÃÜ7Á 7Ñ…lÑ8 \‹7—4ö޶éÜ)O/‘ 8–}=úø™ºv¸ÕÎWà¯ßµ£+öA] KIìÖ@¬K=ß&ÁR& JO´í†Ó˜/áîȦ:æJ¾%ßÜ©©‚î¿«?ñ]V-î0¸BÈtŠÌ!+„54èçXÇÒŸju €æã\#Ìʤ©iÄ&ŠÁ“¾rä ½x U<ûXea$e(‹qæÜ»›—á0‰ÿNÏíÓPls }¯Á„)m,v2C :òtž}²• tì\RÃôò‡Iïj•…ê`/k¹ÊûiâãW]\¤íØWsßÖÝ<©äÒÀƒ·Ê´RJ]¬CãEEûÜã•EAAL­hG “fâåçÞÝñÜŠÝo;çå’l· RÄžð5X‡ò4î|eR¨<&™:ÇbŠ'TWv·)>3HÙ RšAs €·ˆu⟦™ñFa.™A„"[Ãy=‡ “ÁÖN}¡©³ßhfŒU+ ÂûvÞ4ÛPdE/¹Uqvžù°£PO«Õ}z,2ÆÀòQ&†¯÷_{u”¾ø ë¯)¥iÛf~i³;Í›)]ñï öèãZYRY—º{O¸^Û[e1L 6C3÷º‹ZTGéØz‡ç|2‚÷ˆHxa ²Uç(£ïœâB¸{(­» ^”KЩWÛEF·õ¸(lÆ¢äìÆFÛŒNûèœ$œÈ!ò„‡ƒI½åÁgAyY¾ˆ”?›¡N6wÊ‘S†­ÔW¡(\à‰yi®NéuOÒKG¶7#(…0ûž¶za9\¡"rknWºðßÄLÈ%'<ÏH»+ïÍŠÏ,Ý88$iÝ…þ]:˜YE“ç—®×ÿ%cô>À»í¥š¨k’áƒYöY"yYÒú‡úƒïïÌQá|áì6Ü©phÔpîQzŒií³¼xK—lIJì-×Ñ$¿8#;ã'*ðYEôΘ<óÈɱW ”©–•e/s5œQ¸tÑ‘ï)$–ÖìCX'øpß}°‹Þ­D.X7óX®¹Õ)fÐtëäG¸€ö““é‚Ý?H¸„½4°Üg#kpúMÊ›ÂÛnÓ¿‹Scð1^0…Å‹wÊ—„Ë?³V~¯/Pö!¥1Äèõۊªà?NþŸM;y,RÑ÷fcãÌ¥ˆë??yÆà„,”A »Ùß½ßqñF§[|ŽÏ‚Èàg àîQ;BϹ!¯çø _)c”éË£oà±팿hD`’Î]|Ž NV‹¦øñ.ᆸ´à.‡!ÄPv‚ÐÔ6(}ºùœ¬'L!ñbüߌ־ÐZQ¯ße÷”‡ñÊÉtÂïÅ]’߀½ /lFYÝûkW“Ù«×xÉ¢¸Ô–B€Hn.ÜÐJô8lhK¯Ê#–µÿVžGfCôˆ—z´óskÂÞlߢÂáªêÝû¾@k+Y¨×·û'µNÆq‹÷¯šþ± VDÿ'žú¡Óÿ?BŸý¿Fcaÿ¿à)Žÿ žjÑֶǃ½} \ø ]jkµºåN.µLêtÖM×OƒJ;Ôpû¾“v²ËÙÙ æt3Ðл™M=öù–ˆó߈R´ý•üËëÛŽ¸a¿szš[L·ý<û>y=¸8=ö6oSŠÐjáõíŒÜ9f‹¸!¤ø~}>9-ËÅ.Έً ÆiyUºý®OWºX¸óÃX>'«rCg,Ÿ¸Ö;Q7¬ëÁÿ"¶ëÁ,A½Î[0/«ŸÒ“7Bºé»²ÿDÕ’"lÞØ9%¬³€L–ÎÚGaÙ²FcÕü}傃ƒÞË…ã‹Ñ Ájivm¹é&¡ÝPþÑÊóãûA‡XÀB¸ÂI aÃt«>ÀÓÔR€jt˜ìÁu¼¡;X[k·¨‘Uèj|pzI^­·¶2 õ­rÌ"ãµ~àé˃…&J,j!8ÙÑïA7Rñzë#„°‚8Âb ¤›„1ÎÝD°—-:,}•+bå‚£­“žr߉Ivîá¶ÖZMGéyÏA$…SfÄò ”ÆgƒÛ’ßá‰*/áyî,JáÆ âô`ÑpûÕ(w?¤š…¾@{uRY\(Tº’ôÚLw­¯ã©e޳v£çÕÀÏÒ+½…Bq€Ü‰Å]¿0¶èü2R貿 …ó_bÛJK2{³÷QY”橜_²Û¹E¼‡ûF) ~Ó:À{ÕÚ¿mó®du¤¿K~-³¡âŠXX.¬&ÉQ ‹}zdj™Eƒƒ"1™QÚ\ÏÈôñõwN ÍbHȧožŽÚ‚’`ÔÜ P”ÄZ/&Õ)dþÀÃÖFXmîª8b3r‚î0–Ý~Q¾†›k]4vþZHL4YCdcÙÏRë]³7ÔdAË´ˆ )õÆ Eòir/ÅïWÌ ¼Ôo¶#\jÌò6ã~‡A-“I9¸GÑAÝ¢ÛÉ”hØÝÎεɽì䕪~±µ?gG¼'m±I|-̉à•Å©“ÄqгI¡­ç Ûï)ÚДÔùÎ# m0ìãÚñiû0…F8ˆ½}´Êø¨qvúù'í÷náüxοÅ^gOÏFÎowrzœÿ~tЦ?ÈÿÛð³tZ%¾u§ÆëÖõzÝ@*C+¼ŠÐöÉÕ!€­ýYg9à<®çIؤÉsÞŽ‡#Bü¼^UC+8T…W¬^¤cô”¼i(s×9ɸ¿ ¡Î%¼ÜÔHÿé¨ÌöÆùë¥ä×mí7LFüûYYþ&»ÈX[Cñ iŸ«¯—ž^7µdú㣤ÇÍIMoæ)ä[~7k=„~r2±`È䓽yÕ3 ;×î„>Úi•«U pµ,ß$Ë=ZÁ‹h”ã8°æ:`ïµõ“zgd×è `ƒi[”·½$Õ’÷âáö=˜© ?Ô‘i^5[x‚Om"*Ÿvj@S3—ȉ)JâÑÑzK¹9ä —µmÖü‰i»7´€ÕcŒëeL¶sKg|*ÞT{Ôœ²Ý™,YÚ’Gl¯c”F«ðN h–è ØôŠY6)£Ø¼™°Ùœ¹> ä@*©!1…_™BAê©þBõ©$ T±XáÌ{×<,ÌEˆ #£e›Ìô·eÏDÃÉÁ¦†ZVROÊ%^?ùšÿâôER’¶Ijl!±_ª}Ї{Ãæ2%a"B¦Œ \¦”³Ð_‡Vsmµá*â¤]q[$?AL ¸'yFŸ!°õ/ô~Qq¾¤Üþr‰µ×SÖ#tõDõäh£÷&/¯•¬>©~¢Ë;ŸBЬ”œ·Øö%.ãçÛÁe(¦jtóOe_@Y›œ{Á©Ä64ŒvG«(*qE­‹·ªˆmŒ ŒÆ1˜V[zëéò— šPªEÐái—“£žMTšäðL¡¼¶Ö€&'’bxµ|ež—Y´× òFŽjS GÙ€üjõ‰ÁëOœe•ŒÂ™`È¢ ’eóI'ø -&ƒ ÆÞE[B{:„’×YD)VÈœÝ"§Å¥·Z–—мj›•ŠÊôÌ)hØC<27>3g'EÙÎGæ„Ä‘SlÚ9V?£T°T|Ê‹F­FÏë+ãTê0ù›6™˜˜ãTÍ"áÊKˆ².¥)äØXŸüø9cÐ> ­/Dq³¨5|ÚÌ,d“j¬Œ¾¬Ö´R.› 9mëQÌpcžäþµ3]ûz¿Äåê,çÛ¶±ñ¶Ê`½Œ0 € Tý=ŠÔÀ¾ ‚¤µ #§¤qîg6¹äìk)xPO’@œT*Á¥kÌk2v‰Ãç?ù /KXMIѵŠÒ´8š°%`!àý«ñšÞûNãFÌ $7´Ë_†äY.Nz™ ·)ãI^žŸ„´µYµÇâp¨vñC¯9£\t¶}¦Ðì­\žQTÑóiΆJy¡_†˜ãKó E¬‡$[ý>wJ½Šg1&njpSp]ˆi÷oЏóÓnô¾‘¿dÁ ôX‡ÜÅõ¼|¾¼ŽV•åoÓ;DÃÑõ÷î3Dt@`CÀ„ÛƒŸ¥Aë™U;*möåÖ]†Cª#öúÌ |Z¿‡ZxlòIÉ1uù _%ù›6ÂßNIÎ0½2¨Ê¢EØâŽ èÕœMÐR‰R¾-Üv¼ð?²Þb­òvI‹e+«iFÔê4ógQä¾`„­Êkѥʒ#Ê.ðÆH®Dmž3^(jÀ¿¸ýÛiw¤Uü)5–ŒVä¹·±’¤TpCÊ3–|–T©û·r?E 5+C¼2»ŽE[þhâÃÍn; Ù‰OVd+¹®ZéböºaW\er@HØ3gî›B¡ø—Å2šc¡1õ¬KðYR ®²MRÍAó³3p'¶F0ŽûqA:Lƒ?LM@Ò#SØÒjƒGkJ0t#4zg½Ô/…-LSÝÆ + ËЊœ/ŒŒŠ£‘sNë·ñ$`õ†e—YHÀøˆum6Îôhé©#æöåâ·0Eû' ÏPRÍòu¾æõ€^€Ù½ÖSîèOçÐg@ùÊ›;'ÍÞ²¸ÓvÇ6¤–~v®r›l³Ëd r.‰ïN?aŠ2å3DšÝóðØH(--º Y Óšzf±Éë%7b¨%SV.*[lµ<Á#G3{§|<Šáð]ML]¨%hmìpØr \®¦gà\Ÿu¾¨«^q¤ÐOŒ“ð<èÃÉú0”º?€# Uü.Ã÷—ñ`  GÝòí mëbdý ££D"‡Úöà»%ßPîÜÚ3zd.¹Êx ³‰ÆxÒÈgtm±ˆ­»Ÿ$ÍŠˆ…gq'1~”¡•E°Rœ·ý=†*‰Ð?%¢DÕ” ƃwTp "&f ÷q$7Z4ɾ®¸«ZR,Xyã²ä0­ñ .ê¾E4ìÞlpä}Œ‰®S WŒÕº€ÿ Õnd_©¡ÚAÀv¤« t´~ÀøÀ«­5ï\{%EK>6Ïl;ª½’ï"ñP¥2‹!®õ!L'²Dd“ôe{®ÂÊGÀcëÀy&f7ÅV5mv¶‰õ¸P‚fW%݉ã›0ª”;+ôª®7e,˜9áîo¼:Yž¾Š[:GtÄ\-sg]#gÉ»ÂFe<Û1È[—29|º§É¶LO¶G¢4Œä¬±|+†vŸ.KßÎ±šˆ—º#©·˜,ZŠÙ!„Òµ`®¿Ýªf.”* ³ÊÑ{mÿõTƒæä?ƱÎ"=š½9û¥×¥K™ÕÉç¬_P!»òû­%ªSDÌAå¥ç"â«›úèSí)Á›‘ØcóÛöœ~!<·D'ºaj±‚íNˆTv|a è5Gå57V\6h1î@*ÆøQÁµ¼Œ1°nB+áêÌœåÌäùÐÇZÑëxâþ`¡eGéIOÐȉü“~rëžØQ}9¶éDÄa~ÌeC˜¥Ü‚O|MÎ9²ƒ{ šž©§[Èܘš¶òôÓ­$[¢•ÍÒ̽ëe'̇ï`Ñ\â3öj“H¸×Ž/¡‰D¦±§ŽË¥A´,Báãùç5cƒ´F³Ì_³Ùõa4Í~ÉÄfÁ¹?Žñ¬yó›!ö%½3-:ñ4¾u,ÌœO©ÿYØ·‹FÖðÜaT,ˆtEH_ÇøÝDÈ‚‘l{uwÖ[Ý ÌQs£‡Øqz½$ÿõU0±ì’X ¿pùwª­áÐïÑί† ÌQÚÌûYp óº„#Œ¥!çOS´".™{U£\ríd«{s&Ò ·mfVRðOÈžIC4e-­sÔ=ûX|“¼üÿbpÿ+Pˆ™ñ¿c†XÙþ§Áeeÿ_Å im9é²"嚣³î9àÍåØ\ùD'I†#=ôO;æì¢‡&ôåë%µ.oŠAN+°¦FÑZ_m^êõt–è³¥aúŸ¼}¼$®ûHýåãÿ8‘,¥Ë~¸úõt¸{¹|·4a“š¥låðqOî“EÅ.™­Z9{ù>ï¼&KÎÊiš¶òËs³R“ )Nij^´¡#«ZYŸ¼–ú¬y}5£Ò—åæ” ÌÚûééMku2U:¾î•ýÑP36Áë‘’Í:ÞŸ?ÛïÙÞÉs3‚Ÿ½ðg«d/m铟˜×XÊ¢#ߨcãø–¤1a`n¿¢ÂÞ Gêy™7Çy’YK@9£0Îìà˜Ædç®4mäð•üäý†`Ül. 0‡ùµZT¹°äç—ã–V ëÕ_\íyÃJ.Ç0»ª‡‚¾ ‘%(0Ŷ¨ƒR¢ŒéòñÏŠ–kgÊ”e§¶l³'C5')Üå¦}¶¹øZYL˜£7·îQnVЊÊ+ jWB'œyÅœ^n„)…•Ûý×ÚÖlÕ‰h{÷ ´‡Z#`[ǘ㼛ټ÷$ùµAq6Øq Lã|gÆ%P“Ö2¦ZjD;g]÷.ˆýÐ1¢ªèæü×BÛûÄÅþÌĢ؛õJ *,A¥nIí éI‘¸(½©¡SjTÐàšY‚Ì^R×K¢T9%ìôÞT†ýãßÔ‡RøÅ” ž¬Ä^ÍJoNLÍ™„­¾ w£Úä†õŽ2M²\N5“=‘ÖÙ ^E`¶lBvî²ä¯çœÙú34Ž$ CÖ¹ƒD¦‹=åâÁ%Åù4ÉÒÝžA¤å™/¯r…fp£‰°Dc#3üú°gMÈñ8ZÁŸÍç”›ŸŒq:*oˆÕ†ŒŒG²tØq”Lî•N¡<"å€ïæ*¼µt(ÖÚÀ¤œ%¶(“\¢®O;Ë´TÞ[†Ë6djÛ§ðÒÝš,Åœ¥Ù|ƒ@;[þñºñk¡¡,ƒÙg>x»_KÝe´g&Gkœ’KáGþOÖk‹ÓIÇA» S4ÛDÅ‹P‰ ± WO]2ÎrKß–æ9YÄ;¼†!sœÓ±ö¾˜ëÊpNJ6O¶[´S‘ µÞXÏ ¸´’¼ÜoQ·Ý¼ÎJüŶîv!R6 xC£$ÜŒDàWçHïë•@^ëæÕ»í’¦–Ú)ßähÜ·??* G¸”4ÑIz)b¬` ‘#gyQ0lb‘s%Ó¹ŽHn¶×\¶Ñ€IVTHúð³Üz‚?€‘añ¶_üU<ûNü6È¿\fK}¼}(~:B¿Å®„´-úÔ¶–GQZ^ûüxëÕ*žªT~ùãӢ簕ܶ0þ•É£Èï²û0yç,½†ÉCìSk¡rx¹ø^®OSá^’ß^áÀ FM…u ôék £@orñ1r}½_G—ï1<\ÿ0ü7¼½2}ò¿õï“ó‰Óªà!'éò’Þ¸fƒ²º7¶Ú7U zú´Õª,B+ó1¥ó{rŒH×û.ÔÚÈÂ!J0»ÃÔ«è>h¹Ñòø!´ïŽK‚dØ­ávøHÌFÀ) ¤Cì§ðÄë‚Z{-Oþb³S…úšE€4{&Lx’©®¢IyÁ½"…܃ÓÝÄÁwQY-¶Á›bT»F\öú2¯Tq¸3m9±°[4Ö)!FÊB‡yîü §l7“„ÂÕ9x®\@¢©Id?õ? $û±^êd;—«ç» W^gÕ­òRÎUa×¢’ õ¦h·µqžþTæ¼âƒœ—&= %õ•ªëÅR ¸e”]*>‘uâ6婯­ ´æ;ÒÓÕÁ¸b1-÷nP~¯q¨Üˆl³¶z8Ç¿¥ ÈAîµëS§µ¹\R¾Ú.²šPcËmƸÐÔ†â)-DްÉÖ‰å¶ÐFsŸMFý 1Ï6÷ Ýuy `DäjówV¼ÚÖ`¦­x<Ï;„–\Ÿ4öe¨¥gÀÿýÈej`|L‰xßÝ„ûØäÆÀ²Tu’²’†ÐÉÚRgŸF‹! `$UÊš”Ì”ùv«Dü¨ýv7ñÚ6¯Ôx¬aý¬ZÐk8ÚIB%©L›=ô{áw:åµÕŽ×*ìWàûá˜+m½S:<?¯àèÁô6›Mç¢dÂ."¡j»1–‡\"yÍèæÑÀlEÂÿÆÀ°æ¯^¢•°˜5ü¤É{· ÝqŒ@uqÌ· •˜TâlÖ3¾@L‡ïR›ì ú‡¤@ø-EîÊýj¾}âC“]ÿ“X„Í2Î`<*åhk£m7]—æ~j”š¡Ñàj· ÐQÌK.š-µC'ß>Õ4ŠôWΛ`¨”¶IR{¾ƒ|îoÄÏIPŠC‘ÙìOŠ“¯ òYm>¬ñY§ª°0áÃ-3I50䌎õo׆'´(„wMÊ#©òã=YßšT†6— ß‹°3é­ô¨«w˜eMc?ôÆ%•fNŽž‘‚Óz´‘{àÑVX$á"H,u×Åš®9̯žZ­ÕØI.Ê_´ª(pkç.€wìyéêy‹¸dMßîíµ+mK/™r¿¯± É´Wì'44/„/Og‹Ùà,²$2b! Þð Ôª2,l¹ÈUÄíúhܡܦqgâ"œ?Šh—£)ì7 ¶ÜÎ':õÝlYˆê!Ê [iwœÑÎ·Þ r—Æ%aO"ÜY¢Š\#jÚ„wþ·q_*L™öù+:·šé’sc´ç_W~_†Ú«öÉ=´Í&×Ór‡¶oLŸBJï]R^-~qbçhñÌZµf„^dÍ&Œ5œmBòjW—L¾¸Ëó;„Ú®õPÀLäo1ã Ù(û¼ÝývËèE«wv'½µpщ³N/´–tÍc¨ÚzãRÿÎÀ³ÈîH×5–®‹Ò4*Òõì"t¾-Êžc˜”D'gÄãç¦f1p¾@bÉ ñ ›³Ì¶C6‡$Åä^òo`Ø%…oz׃Ï+"ÂóÂc‡î Nàuú¬)¼/ËAªÍISÚ›:í­7Î30m¶[¦Ši `` ;(‰n¬Qî‰XŽœÿTÚþ~ç0t<0_ʃãð¼ŠZIWØT©ôðmÏÏÐTjêAgŠKQ8µÜª!ˆÉЯ‰”R°c3D1®,tñLzüö`Ê‹óDrCBÖ#לMn$#J[zc/Ì(¸QÎû•Ÿ³‚n“ŸYĬQÑm¦W¡à«ã;…Ù»¬0ãáþš&PüD›ÖuÛõ]êø'Š$-çŽA ùd¯x¼¹O¿£ Yî«‘ØÓMÍ`‹ÒŽû´ä´k'cÑÎó»Žh²4‰C†]9í›ÍŒú›bíLØÂ»!û~?ùG$Ç Ä=ÜÍi’¹E1\f© Ûä|±æÈXæÃªorGöcþ B:1ñmÌý¿¬ãâ‘—³Ä>!½Í1ÎÕ1Éø¬ªO¤àIPçÍ2„à† T†‹ ÉI5â¤Æ+s’¤=9iĺÁ æÃdªK‰¡Òu8eÐEú$2DOÄîItƒÄょAq €ol*%÷P‘ªÁýãgý–oDìËJW)ÑCÆ‹8C†å§ ¸³&gGÈBžžaî$ImÓuù:Ýÿèø"üÀÿiÊXÿk¾ÈÌÌñßSG6æÿiÊØXþW5:šÉ8cޝO`þÃZôyŠX®êéÄÏýSL4@ ©(çàÑÔ×í4—kÔÌW“•µ·˜@Á¢ò®î¸šž>ž*>”dž”÷}ÏwGkè‡o÷MÑùô$;2<~¾++#7àJK(" éêòô‡ÞLÒôƒ$§SUkèþ;¾müã’ÖÖîú·#&ÍmVîþô¡™"ýl5äÆÕÛ¾=üë'g;ø¯àÌÙ}Ü·/·`~`Ì’îðq¹ƒ0±FYæu²s)ùà8ó×·×ð^YÁÊO·ÚÝ,£™ô¹ –ÝÙ1É]kÞ9%y¨q„† ¬W;G=y†:ènsþeÏ· µƒ”¶X(Øù×ð%!yîm„‹²«;ôÞ¶¥©œrB_ÔóÉ!‘Û;Ôei~oc=™Ý(†oÄ/Øìwµ+̽çnÛø*œM]x3申C’wÝÁ†$¬í2! ƒÇ7##7¹p9$o!;ù—5ÚD U9 wõöçàßx{/MÎTH”ô:9Ê×;¿þµ¿Wƒë(ûñUÖû¯rÅ9Ïhµ{„‚ ÕY¼wx‡Sà†xB#|‡•¤ ([áëÀ6æÝÔfwȬ ±×Àw4’@wŒh¦0ÉNóx£à|¿{“6êßHaŒÉ/ã‚nA±ªnoh·C‡)™Ì„¡°6©C¿©vá :ß7à«,F§:„"Vë âV:¢A’Ä'äÖ&[örõ3ŒV×’ïéÓ¹ y'ÑÑPgxò£=K[Õ“%«zvx‡¡,77É7"ò>úà¨_âè;Ú¯üåŸÑÐáüCíÖ¹/p à«uÇê=$#Và%ÃãfW‹ÕauQÜ(53 Ÿêªæ†¾Œ‹'ëÕöì¸Ôûfa‚ö8‰`µ®¶BÞEZM&Ù)ëšÇʬ^2Û*Í»ÅiÖ’\©¬¦ªù—î=L²¶ å*€S¦ˆ ¬‡à‡(RC„°á6Ô¥¶eIbIéÂUÓÍ‚6ÜïRé·ØK½@©áÖkäq£g9œ ÐDq 7´zoœ°B_>nbYÂÏa÷#'œÕ¤@z„} ¸á¹¿Uˆk0ùºd|pä"•U`S˜NIÃsÑnK‹Ûðó©^]wvs›Ów¼È~î@¢õÂUÙ<|&fŽÜÛܤôY0Í©ínýˆ¼Å–wY^ž¿ÿÆÎ@!νÖËǽÇ숆¦`JA# ó¼'a>Œ,È&wÄŽˆi ˜cbCmoÁžýëhË1Fu9^×Y‹XÌŽ(•Æß)joÝÊ1°—îÁ r~AþJ(¡@‘˜ÊŒj¬“ü¢Iá…,’W…vèYÅ­…YSaæ¸©ŠžÌÀ¸Øa膻r@íª]õzOsCy¿×€hpø#’¶K釨R”Àö½ aI\Å<ç¾*†3¤M÷ÄÍ÷ ÅbéÓU´Õ€Y(O•dô>6 ÍjöÚð€Ùa.H ¸õú®5ó.¯?^3¼l”%‹mg2'q¶Á¼ìf®Ž( ¶Í=¶CÉ41{ñd2ñï83wè yQÍ—œ9§°O¼ÚJ±™ß™ƒx«ÆæÇcÆ•ÁlR‘ÁÔÇ_yªyÿÔ„ÅÅo»<Ò^¹´bz&¸ãæÉh‰-»ÁÒ%Ûì [ýòØœž4ˆ»l¼+ÂÒÏÝñe«oQi¨ºGÎ"—WZ–N†# Õ+²Âs¾)d¿apiNž1—@£X$ß%>,³N¹´-‘=4‰*á%TðØ_W{/eê`YöJÙþ® HâÅÀ–ä „Ëõ’ÞÒ_ ¹Ý±ô 0zåDp@ ·Jæ[¥á‘A„ÚÄyðý¼Jv߉ouZ)4†£:¾¾Œè/Ø-C8)öp¬‚q4z\#<ÓÄ%€ÇBçÞ+£‡N-¯’G+ ¡„È*yè]¯Š¥%ZsZ&,æÁw,”)Ñ8}Z”;ˆÔ"¤Y¦C8Šø¯òl6-(B Õ÷¤ë>Ë똆Ì~^êT…#Ì=ÞfV^8ƒ&¸ìÆ{-Õ6ˆž´µP4U,›¥š«]#¤°ÿŠ7,Aì×f—é>qÕ g¥Ã5yÉW€Ó©!ƒšC…¥Qz«AÇh‚ŸýH„FÛ褃‰èƒýì‘¿“[Ï?í…Q:Ð_KÈ:&½‰¢ ÉЙz‰Ë;8“E;‰& ‡äÇKøqxŠè/òç`’µvÇü õ‰`Œí‘5г…y‡©HC°TQUŽNÆc: ?df£Ÿ­–Úî@ô*ëR#ᩱ:Æ.Ža3Ìj¯,wt±M·¶{H¨S¥¿yÑB^Mdç5ÝÁ×È(pì)–îò)œwô0Í 44ûÍÏ0Êc¸šç?‡Y¬³£X†w<‡ÇñÕ* Úž.èÃX¼7e¹$Ó aûìá [T³R³ñ𞿹 Lg@Àg¿'æKì‚J¤+Òîk)^»"#wþÔÝÕÉ•Væ‹ó@éÓr?Fwð=1'·ðkç%Âü`ÑÔ½ƒ¡GËÀ}EœéÄý ˜mõ¢ÖsuGQ:J˔ڊn¥Ëa÷</:K7fão!»~ak%4Jão–ËHQÈi{žÌÚæVU’M'÷$ŽŸ2öÝuº©ÒPsJþi‰òÐO.£ÁaÆ…¦$õò¬Âu½ åtFaÔŒ% y¿¦fŠã Zš!(FÃ!di¸›Zn¹°J–S©-‰oJ›åÜ›+~ ciÂŽ€MJÖrƒà“‡ÁÀâ\ûŸ[•ã&×*Sî}¡+I”¸yQEqG‘Ö±°É€Êæû …ìÏ?>½ª·¼µ¯±Åw/•”1—ƒðÅ÷ZÞŠ¶½´Qô–‡,÷æ[Z\$ØÊøV‘Æç)bK_ Ñ:í´;Rô[Î_N3þZ‘±®v™VÐü&~ö_㣕ƒÿ<&K(Ññ¾—¶‚g8<æÞ(8ÚOŠ´„‹ÖÆÆoA*•üæ‘‘·ùšX«'^ï¨ ›@*}¾¶'ÆñÌÃ13Þ›μiý2ƒÕžT‘Ë9º`'d¶†gý¦u­”2‘Zn6º—KšÕ:ÏuÓIåIÁm8 e‚ƒ ³u@ß™ VvdeÍJ¤~ê?^ƒêr_jMü£5hö ]-½Ö±ŠX¶3‚Ÿ‚;7CÅÈÕH)S>9® ¶»R#R$çéD«q†Í‘ÕÊ䬣FõNBŨÀT¾Û%ì#f˜NZy<'%}?Tù¼Úý±‰Ì¦k…MSA²ìq`¹!€ãޏXâ8åD}_FKOÓ®uµ3UbZßtWóÚˆãÚjí¡ÆžbEò3é³ÉØâù&c5-0ÁôèûÞl• ï#/[ ðù•²µV.xÛ8Ú@IÕEÖŽh•FÌ™šú%BAŠ¿)?1A¦T剟K ÁÅ™2 ’s ³Ç0si¢ÞÌ=AÝ–øf Ûºxký¬tæøükàõ·¤_Éõ¬o÷¨V`%%O¤°ˆ ÑÀ5³ Çü£}\ŽZöÔwÆP~šîTñ­ÕŸ’¢Ì0·G«êXa ßÕY ’b¼ ÕçF–·Z¼¬ j±iØŒ ®Z‘+Áûž¯ic„³á¤épyÍ í…´Ÿ´ÀYVqf>¬ÅQ¼ô+2Þš%'ã>Ýò‰xc“Öyk¥¦åÒ Y Úb‰(a0VG{è#fkÊUèæÍ"È¡ú •íaæ8üE »¶•PKÉ—DwOÕ¹óÜ„)¨zÊ9S è%ö&±M§s¾V3é'ÒMHÅ&^ƒ'¶0=²#$o~”þ˜ŒpO7ô20ˆ>+ƒ“šƒ”•# z÷,锸¶VN‹móµ ºRRTˆ8"ÓH)gA°zd‡ç©“³+Q ˆ†ò\­ý—Þ;’ÌiÌPrúáŸ.xöH2–¾´@–‡Wl¥âb>Ö/ÏLdïÚB"s¡J¶‹ÚÐøW¥;Øÿ?⮪¯ý'©-HQQ˜™;»=û¾‹lcÉÎ )-²•]¶R¶²%”•(•´"dI) åïÌT“1½õë÷¾ÿϸs·s¾çœçù>Ë9÷NÂ×µ¼xÎ{Èu:3?ôl))½`΢Íì‡É±ÁnöhXnþ唟¼Ý y–MU„¢íh߇Û./üPÕ4lpžw¶f9:þÍö ¿;æ^Ø#ù¬·´ ûÅO`¦†ÏIíî,}±z ©²NZ³“#xçùÃO÷ï&D-m´ ô¿Uvx(2î‚M:Ô)N8øÐ_™Åš€é­Èñ@µ}Ò¬¬ç"õÏÚŸ{ûõB÷s6}¡¾î4Þ0>uã> QcШæÚÍÕú ØŽ?À¢óZî—¯S¯k¢]8³rx^OêVP?úî@:,»”µ–{Ø{ë×ÐÃ8έ‰×ÙœRs²«™é½¿0w³Ò&Û³wg[•ªZÙpU6k5Ťë£Ó;&ļ½_YÕ7ô³{OÅÚöó•u<}*üU\Ð`w¬Â§³ƒ2ö3éÎ-÷­Švæe-lbfvêÚû¼i›^Î{ ¿ŠÄ Ø#oÒrÎìmâ–àûxôJLxä¤Ë’órΪk/¶=¾Ï¥ðYvÁ–—Õv˜{éÎÇI“©p™3ª.Ž{å#{LÇD¸¯¬Àª¹f7\¯qzm“з­:LÿBtæ.÷mˆÑf­ffUOEc”ñ5‹¬îº0wt»—¯•Œ¯îì»ù ËðbrãDM•~mx{n“±t7÷”ULõª°S± ºÏo{.Ƭ>U±|ÙÕ$“u K*¢ð‡ÓOÆE㎳"˜Û;}×nïØy©I@HEU¨Ç~¡¥ú9i³¤‰÷ñ õË»)1¸Y Ò(ÚÆ Ô`Þ¥áÝQZ¢~^€wø”ç¸뮫W¥7ºtõǤþRì°=t+²£=áè×µ$Óâ{ÓQÑy™Rë×uø””¶‡•"M9NhŒt¬|Üù²9çÉìQߺȂµbÏ¥{¬®T±ßooÁ©rÊÛ)źt¿Ik^œŠŒ›ý´—~®VתdëJåü‘õo§Ë¹b+³GkøÓOÔ5”·¿øâ\ÙÐ%Î0¶Â2“¨%×ôšz¶L•ß>z¸äÔ‚K5Îõ¶Ç›o˜ÁHnˆ“~Û >¢AÊá_w›ÍÙzŠ;ݹÎó$—‡††{gìCWÅF‹p—Sl Qò­]Hœ‹=›2Ñ ³^¿Aß|lùlé™ ò‡òÞ=Ò2Y]圑Օí¦³Ç†ÐÑç)¹¡èœc3»#+öÑZ÷0³Þ‡JûS_ì\»G\;Ïöñý;ɳ‰÷Þô?P)—hê¿ì+jå³[½2«÷‰È¡™¾öK-ÅÄÓ¹-ER]Ø\.™½òhëºiüBû$§+îÅ ß6çD!žßiAÕ,»tFÜD ^Õ=q—ÎÙcœÏâ¯Â‹ rDZÔü¯éõ¯Þ­úµ'g¼žãîã ÅÔ*›Q’Ç«k¢/’zÁà×îuWÃýŒ‰ú×ôd©A£LÄØîjÒyÉ$iI'_—€æ×KÎG½èÿìf8%ü@u`…é+R÷hĘNè3LÍ£t}lùÅGÑGýG‚^ÉœXÌã+¯鱜}“PÐf˜äÔÙå$QùswäüT‚oó˜ä„ìŽ9Pòðƒª ¢iW­lIݵ÷âý7Î> ¾·¾)âë‚Ãï#yU˜¦^NKwšè»ð´?»~t(ryœæb‰‡ ì%•ÏçòÕq˜ì.èyÙ±’xYoï­ºÚ%),5§DVÔi„k.e·ñKR:ÐÓÃÆ´ÿÅŽ1«¦ÏïsnïÄž:½yéÖT¸·)æË‰º vë%êU4–ÁÈDÊ nâúü1 yå —C‘ðiO^•ŽûN&f´ñÚãÎW'ö*]_ q~ÔõóÓÇÅÒ†#/·7qsäOXúU}‰WâTzÉײTA,kΨd‚ǽþðÀË“K²ìv™Ñ'ÎÉépòÛdðh£úÄ9ñ[ëì2õ^wãd`¿äî…ç>…ŽsÓ¡"ÇzsŒÖ€‡ÖŸ™6:ž\xB$|ãÇ!\YiTÁè›d&Ö£ò/4´ý Œ6ìÞð`GZ˜i:ë |vzf*?½ðkݾ±æä@BˬTÌôðL}žvšt¬}gS~ÙøA™Ó7zM¹,¯™†–-9ø¼Ò žó¾ì~µ»0SbÎ2£‘ÀÔ ¶ †Â£_1ù¶T`M¯>õôã¸$É›Æ:üÊq]¯¯oÎr]ÎŒ+‡ÌÅýpèÈÎ×ýÆ+µê*&«øzÇ!ÓGxÄYMš„tf O _sô›M0»ùxMêJ™®§ÎkºŠ_V?­Mž;Õ)z1Njq±öÇq‰=æËô«ÓXƼfÍȾv›Î[O?y8$ErnÆÊ ŽGO f8¥Ê±WÍøÖò%žÆûê8…ø©_~¸eGcš[BÃK67Âf»y†ØÖ]Þ¸™zZ±*.x½pðîÐÛý1F|Fk L—ô§¯_kPWþ}mó²@dÒéU³ÕØk®-÷'E¢ýiªê®R6CçjRt¸ Ž!8—ºtyí]¨(§r)`ÇÈõ‚¸‰{Η¸]; $V‹Ú%?n<¹yYL2 3xß,ú½×'VÎ7BRÕyÃyåÉüò¹ýÀZvÿï^·H®)Z±¹9Ø c$g±ðuÙm#›ÝÝÑÇíÖ<^£Aj”Þ¬Ý`Ô>ªÊÌ3·ò훺»72tðP'G G Çáâ5¬æW÷Ú óøÈÀCÉÕMþqr2Ì\l5ƒÓBÛ¤:oæ¶ÿdÿi[ 'C9ïN;ò°Ñf¹#¤©Ê'瀲àÊx»ÒÈO%<€üíOlÞc¶wêÝÉbûàŸýQ(y£‰8_î>˜_“ò‰ÏWÏ| V_<Ö½æt¬ÿ®ôøŠÖæ~|]&Ç3®åqãÚcqÍíZ³ûˆÆÖªY¾-_ÙP/lÞ²éÝyU®¢Š$8·ñûÒÎÐg¡kWÆpÛ]µUÔ89ŽÍ¹žT׿ÚõéR,¦„ɪ“wÑ•W¡Ÿ+úE–uebow<3]z®|HðÝUM“;oYGýêÍ%¾\voâ_z2íB¡LFûDÆuʼn­šH`½;·Æýs@·vèðG65Dáú-|¼ˆEa^aìˆÖ¶†šÈ5§C9©>±^(ëØ=ËÕ°(먎†½ |hÇŠÝqqWήÚhE”LJ[ -u~+ÈïmÛe­|\.ÒúÀY§sëRCñª›³ÌÊCÓlOó›ý„˜%å׉Á+÷š»¹~Éåtµâè!uÅvĵY]³y«ÎÊUV;ú6”’/Y²ÒZì&¿S°>jjzãë#+¬Ã¾xyib¢þ ôJ^.]»k“ž‡ÒºØS‡4™žÈl²n½’˜¦,7…õZícæ—3xmû`òjÕ»IAˆ‚Ѫeâ –Gž«Km²{uE}iБ†cëÚº;³N/>ш rð ª>­™…ÏWï'm(\i’Ï™wS†):zÕU®%5R¡ÿ.ÃK‹˜B879$kx´?æ"®‚v?÷RW¸ÊgÎydmJ¼æ®[q±·—?Ó(µË#~¦F`¼ªíTfðO¿û")8µ2Ý¥,»(=/}ì%0ªqç`ôÀõVñ÷È»¼” Ù•I’>âUáÿ¾ðÙ+ç%å4L9 ¢¹¡°ÕŽ ä1½~ðÒ=q_E3ILBòÇô¤äîdPTí‘rèÑQk>’£^tóN‡‹xÌ“ñt#ØsKU^s™ÉyŒZ)¯fY~«µ yv…‡O²~¼[”æœßHȘ¦ìP¿—ÚRÅÅ[a¦IB–_²éÛ¥— ‹¬/ϸ.êÒ Z\ ;å{sBØlÓ©[èÇŽuE±Á4<Ü vµÎÉyç°‹ôª{n'l}2·"Žõ´èÀ„¯{Ç+~~ç­öl<5¦”¯ñ³Øæ€îm‚g®ièÞéѨÁ}•·U±èÌÔiIJڄÉܰxaX¦‘@xû›q™ž² ÙibYúÇ;)¾Æ¦oWÊt;«×.w5¼éÅ옰Gpt³8§Ø@Ë‘tã²ÅiYê•èî¢Un&>¥ÄuG¹-Ü7£¶ÃT"+Æxbsã„Ñioß8¯;ãp"àž=þõ ýÁÆéܸp®… 9 ¢ƒç]ÂÙÜSŒWÑ^£§,Qåå®Ä[aø¤«·Òb«¿«2繈“·¦U^ÊŸ­Ù35ê4=iÚPÚþô ¸k³¤ëþíÞ…ÚW½or^Ýd8ðÈÐ^=?´~pÃç’¯u↢,BÊ×µ/jÆ÷ä‡;+9µä M¼ãk¹ôZÌNËiSÌØÂ–àœèûÕÝ;«„àyFÆhü¢Œ€ÑÕï_‰¬ÝQ$ë&t=ªE]B¬ui^ÉsÛê®Ó„”-Í{Þpî9 Oˆ^+¶‹ÙöÎT¢ˆ$Á¬šðËV÷A 7¬:­³è†éæ]Úž„eoÄ­–^wÞs±ÆàaýüÛeùk4f&ž ¦G½µã‰7Dö«hÖf4nB‡;qŸX#‹˜$}S6.º’X¨¬¨í~¨:=ì~gÙ°„YÿùígÝÑÄpIަÑbˆ‰µ§’&;erÄÃ5¥…×£'ÃFÄžÄc N¿ÎõÉd÷¹ÍCD™,ŠüØ©»1øítE*Ò-iOÄåˆê%îVcÚÂ6»pFݾÀ­ºy¿€]²?oéIÒºA‰Ë¨}å¦ Æ/öpév§ù*.}ÝÏÊù ´ò¤¦ú›ÆÎ–Ñ"Ïw_·¤ìæ÷6’”¹ÖüÈcñùÅuú¸ŠNÛ½nGã­:£wÂ<¹3Ä2 „ñn’ÁðleIÐZ±~SØ[–׆1e Ã÷8ûyb~<¾$c_z5»ª¦ŸìïÅwŽÒ«UÐݤæ´\s&ñ*±s…ñ÷Nk&˜2˜6¤ûÜ-mj¸ªÊ©®¤ôäÙ”02òËÞ½{G«6;úˬy{ø¬l ³‰¨-ËĽŸçãì™É½ ˆmvl/“ïµŒÖ ¬>çq09kyj<ÒKUIMÀF³E÷FHggñƒüµ×õ`au+ óÕrÝ‚lõÞô®0ªÚV!C@v°r¯>kÌóÜú“b¡Þ5æGK î­[wí¾˜µ"ëÈØ=Ö;œÛ}DEœz2 sT¢Euíæ˜kúa‚Õ/t;—ò§·þ•É퇌l¿2»„Û,Œªy*ðn¹ÉñZ‡Ã¹£ªªc#W®î(Í=­X«¯3®rÞHêö¥Dî=RëB 7-Ûàß)Õï«K¨=¼–K÷€Ý)V®¨þWàÛ¿¿>;Xzµ=D—§Å2ÖárzñÐ{3Î1U-we‹ö”ÁÎÆÂ%}¹ yÓ¬¼â†“êmL÷YÜh’("^vçBArÆ}3Á›9¹Ò´‡®_åT펮 «ÙYál¶ÑÞpRyÔe7çÈ髽=»…1Z±p­à€'i ý*Ò“¥7ள"$lïî«ö<¸í2»BTê!ñ =Á]&Æì»4­zÒõÈ>o½÷ÊÔž‰wrFE°ÄÝÛvð)[œ² Ý’›=¨ñbsv—OÎPéÁ’›‚½åî*ºŸ8›o+æSA'Ɉ—<謟:»/Â"»£~û²±;3w­è|+6ð20¥zލ[µàÉBÜ;¥Kq¶{jG¢Ò3*ëîœõCPOׇ_wy6\T7~9üÌ…w£qÉ÷¥Ùœc'w‹‡º¥!î¬/’lV8:Æ,ÀöÈËÑciÉ…)÷夛bFbSI±Èœx……û/®[ìÒÛU„)¯¿úñQúç"?Ò½3¥K…Jw)‰ÝË+–º|K?Z§¥[‹õÑ?^zòë2`y3‡ãÎ òÏ^Úm}þ ®d½BÐTò–%+«„Ï/•2’ 9¢ÿ¡4l?‡…bí$°¼ØK|ùu+$—窮{Gãl|î~°_˜ãg”#†™ˆ°Ì´²Þ³Çàôš›­Iøgº‘Çcˆ]>³Ú`»q½šÕòÉ(:˜÷äÖ*çÇ×úc8ï~œ.ÙñÅñâ’Cñ‘GWî¶îØ:Ú’ŽÈè›mkrza/éŒÄ?Dÿt>b"ú­džœ—¯>Ýîäk9~áÀnìêè³Åìçï {”ü´ðVÇà•„x‹T-ŒÓjî×<·œïÀÃMö”ä³Vu»¼ 5äåîâW­Û76 >ê+¶YP/£½É*ßÑt´ñÈÖE wò¹«ïç_ ™)¹cÛqœigØÞÅëË ×²¹¸B²ífn¸+þ*ÿ應ÔëÛ6Þòæÿb«ô`ï¬IbûÖVÛFõ™Þ=Ž0oàáö "Âè¾ÅíÁÝ[ÂF7Ö^œ®SýÄÁt®Ïœ€)ÛHå¶Nç!N6KF u¥%O<ÜÐ*´¥œ¹¯­ ç}±mšWy%µ?Ú= Iªè»ùb¹Ì[6#/Vñè®ãé¶fóÔh¾‘ÒYŽŒ˜©/Þ“½(ÃŽ#‚ý²_þ•ˆŠ®­+Úù2ŒÝÏgJù?œJíèK×ÎëZ–­ æ»ùU4Ö窙…»öè´É4Áµ¹ÝšS4#‘ànÚœwù®à¡'¹‡ãÏÝNѶ9Ê”•uý|¢#;;`"Ÿ¨}­½ø sßþ˜4É5›f‚Ñ2ð)óZÞkª'‹5•N Ç&%ydcX¢âÙ—»cìN$v´‰“s: ä-¾ü<§e6²€µ´gÇ O„Ýù2‰ŒÏ–c§N(ÜxÑÉ¡—QâðE?S饟ÆOönÊáŠÐWzQèÄ"¼‹Sä`´âé“Eõ  ®í?«³lÔÏoõÐãgÌ•chŸ‡÷w îW¿¬*5^þt[¹LóÓ‡òQ5¼gŽz%Üøü êÃÚÊ>þŽ9µ÷qLoßTeoz>¿·wYZïëÊZ•H>?øGŽ} |zAªcŠ“] ¢¶×v„Ûzg—yYdVJòœÜÐmð¥ò­òI±Wgï»}6º`þfTÑî+#OÈ;OqöÐÛ•e=º‰bÓ•»ë?Wdó>ð » ÷ñ†Ä¡ÓºÝ&;o%íÖÝ_þh™ßCŸ·ƒÎéÅw!Åùѽ…–mrëï)Ï6Dêz/’–¹èž¶G9{`pÍ×Ö\ÉÁÔg]«€ìÇ_Ýã5DZ$<×ï› }}LfØÁÍ[¥ïuOãÐy´áœúÇQ›{ ‰Šì÷N´.™Øs³§Èaí¡Ä…¶%ÚŽ­_e?Êçw\ Òv­¢+³(x¬Â8».à¨þ—ÄúÛ ¹B¥Ÿä]Âr{G‹o9²ÏwCÆŽIÔ̧Ù.ë 9úä3îÛKË1Xš.Äͳj÷[«¶/š›z¯»´òÎx¶:ëmÚÛÃ|Ñ—™ŒûäˆG/ˆ™s·œl¹Å¬©·Sìd•ëì4 WÔÄ~ä 1—eB–yàë”,îõ_¾ë¾ ³íÏcySœ¦13³vã{6 ÜÆ~!ø_øòÊÑ{¼ÍÑqm#÷µ‰wœ\O®O¹›nºG[ºvÕ®¿?Pëãæ‡ŽÏðÍk|a6dåërd‹`ßègØÎþÔ®õËoEÖóWN¯¯Ú.}Kt3ŸVþS}™57#W]Ù0±Ï@mÉãM¦)QKÊPÃ,ìïµxÙÌ»ZG‘ZŽ; ¯Jø²Õ•TczóÞ.qÏ,õ嶎bIGYåWT»{œáÏ)A_ÿ [OJå~ά“X¾,úíáG·Œ±aΉjãé›j"Ò ª³«Žž-7·é\l›±ç^‡é×)Ž¢ç²ej z×ò_=sácÝÎÙg"+"˜Úd· úc6vϧ…N&C.ÜÞeº ‚Ö°hD»¿ºÂQðÂ)í¼‚UÖ,: »_sôð!¢60Š¹Ý·©SkE«YÃ5 ü]@â®mJšXˆˆùúck}eŹsÄ`ϰ»žøêúHû2ÑžŠÐ~+–È۱贵*qÍ:O+SƒÁ'Kœ2Û\BVçÎè]\i²¥Ï©UáÄã™ãLk„ÎÀ³ÔE÷Ø.ÝóI|é 3–'pTƇ8fÑÄRÁª"¹µËƒã’Oßæ|¡r†Gú¦“b tqøõå_H»úá¬í¾ìØM|+‹…Žçs˜l9}VsÅ%ô©…ÕGÄ“dÎñ2KÞéR˜¼¾`Ýçxîgê™#XUWåî_²ã.Ü£·<­Ç~_FEi^XHôvùíò-õµªvÉ—6'zžZ$š—,u“©_Ô)ÂôVʧAúžG÷séý¹–ýa–ñ_ª¹Ã¡ïúɾ¡öÉlz‰yïáÓa_U¤ÎGöç¼#FÏ(ùOU^ |¶iQøƒgÖ(‰3œ»µHfü±Ÿ PÓ$Ç˦‰Îøú2{Õüw{ïq•/¨ZeŸ³Þ¢Þ¥úUóÝ ö›…Õ“ÇøIdè6GGè»ß*qì™) žY¥t÷ Ûƒ`¿–À¥R«ºmn®²è’©=X£ü6 çÓrySw¦UÏ ßºÇ7m¿øÎÚ©æ©ÎqgˆvÝMøî7 x[f´o1Õ'>.ĨU~ÙÈÁžNºþRÀhqÎïëj;ž-OÞïાÛßg®½ÒÇI<àX}èÒL1ÑÇ—ú}z‘ÆzJo*MV<®­\tÖ¦ÔÍa­4ÛíˆÌ\ý„ÁÁ/)–¶×Hu}´›9 ½+úˆKÚÇÑŒ6v$·ÔÛÜv?—  > WRνûÊú|®þ6«º•uùյ㕾¦yz·óàlX9÷´•b/Xý¥9|ã¡ñîÁŽp¿›®vö\oõ?iÿÛ&ýîú>Áb;µ§çÞ"{ª7µ$eíÉî×=¡A»òþéñ›Åxý{ËŽ.-ï6×߯‚Ýrxr„(¨8ÒdñÆŒ!ÁÓçïu¤¡äeá2“)é]™Kí$Ï™l¹ÇÜYœË-÷*iöJ“L©úMbÿpÕ.<±åIsÇ¡Çbi;ù£îo|"ûÚ:w ß©«_¬Pn¦ç\ß\ø´>ãIXšœ²wì»l ¥(Îô.aé·–(­¬I]“™WXÚn=ÃÜèYÙíPÖ6º7´¹!N8Ô6Ҵ˧ÍÝ8ÔÖÅßQËãùqó†ó/³ždS½R/üá–I~«2fç:6ë òOE£^ûh»/ƒŸ#ܾ i}LþK£L ÙÑÿ iƒ}#sþQC¡«§ÙzZÏÉñ$nç¶GÎêòm|8¶à’Ö8GäÛ÷JÚ¶T¯´ò”qd_i8¢8š)y¼øÖý熧TßïÝg÷äBd{g¼CÓ~}>ÓcÞ|aî ÎME]ÞgVûjÇ –ƒz_1è+»› 4ös>ÿLæÜÛù¯U'g}˰Þ¯dªt3ûè³Ãò†öÊòÔ!”/eÙ¼òKE4*Vˆ<Ü)ßn*÷0 ™>Tø˜Mz««PúÔ-U¢tpä²`ÎÍ}Kk/ò1k4ôÖ‡[g)êzäë6¯°¸Ò®·DRûæµÑw/¼Ãä¦DÄ› ¾èÅ ßMFj]˜±TÁ°õ‡Ó¯T]Ò:¬¹)W´<Ì<‰xbdMÛó!]z\K’VŽË,ºÅî´ÞÛÊYÔº½ïÒž¨‚3áŒ^ÊÝ!Dª¯iB÷«ÖÞS[­›­<ôÙæ–Ø ^{òeœ¶Ç–„W" gSr.xÔçß̹l _b¼$œeæ¡â£wWÛô1=­;7 ³áõg©]K®XŸ¹Ð1ShV–f©hz:Ó$^)«µtP7I.he%N÷ÄvnÄÙ ¦¾iïw=‡ ±ðcD«-ß;ä]F<ªÊêÈ 2ê±KW•껂 ˆnh[ò¦aÙnÎ[[¹ª G‹W)†zÂÂD»7ö}bNâX"ëv¸þdb ³f–…|Б휥ƒÈ€Z³ÕA/V8 GÝŠƒiõ±æíëcl4J,Pm@´âŸÞg=£ 5µšX Xd3 ¼6@4¯ÂåKåÙ]‰SJ†y·…mõ #{”Îo*ËbÑÏMÚû½H{Èþ°¶¿ã® AçâYó 6ö¶_‰k1”á´s·—lz_Q[¥ô„$QÖª/ÖkázzêV³wÃtùÛ¬Eç29b3Ë2€(½1Tn ›‚„HrÍ”iÇQôa"æåë‡r ù¶ˆ/cu&T9sŒˆUÓ–˜(7gÃ;·Úè³µÀµŽš›áln™™yÇË9Ù­¹©kC®ù^¾%î®V·ž×Ü@¾0B®}ºq›«jp¾¡^œdNäÇ“€sqÖ ¼§T9Ûu¾ÀòªÜ£üø¬ò¶ÔË5eö0ƒ]z·aR“ŽqIë¯ÇæÄ=k_`¾LObßo¦{®ò^ ï ÁÒ™Ó–ìõË·úÅö=¼]³psиš*ñÉ Åê+n¼Oذ^ì ºK™³½œŠˆ\<‡óC«$âq•˜…'6Û—Ùjê̺íÑå>c+²Mº˜Þ>r3H4¶˜Ý;ïäóæ6¥÷·Žˆ¨^GÁß)G¨ÙgðcíˆvÞÝW %wXkÏŸnÂhìã>”,›ÜxoÏJ铟>¨?ÎëXaR%ŠÙ²«Å&jY¿þŠÛmb".©r«sn¶5-Û¿3“3ôRE¡ÌÎ÷Âm:gV¯¬6fÚ´ …Û~¾¢ôÜìË “ÆÅëÔU%Õ³†ŽE‹XØjúoœâûÒ¤Î^vŒÅ8<ï±eë•]KªÜÏ]­ s;½ëöÉJK‰!ïõ°Òä¡ÇB Ëy±"Ç®¶YÕ /fÁ»7?mës|‚ÍsƒºÝlZv¦I±åý)5YÝ⯛s­Î–”p G¡‘q“" I¦‹yäêÂl=°ØC·“7Œœ)d~}rÈ"ÔµìÆ«ðÒ^çl{ =Še{YÇ®Nzašq™5üçQ©¥&+lù/¾(ûŠ9¡qùÆMK±géˆþÌPÒÖÆËÒ=ò›Ÿ<7?#ž{£‘Ðé!Nþ©œö «uåHY°‚™½GåºMTv²någ®ñz9u4­c˜t­»$ï R©Xë•î껈´Úí–Jž‘R#S'ö]ß*®±P—KÂôQ«ñMG×êÌÉØúÖØyµÞööK›¾Ù*Éô¶ãV¥ðSš ÷qϲ>xÝ!XWê}ôÖºu˜ïƒ¯‹T—Åmñ¶-„úU;¤úBùë{{3TºŠ0¢LãZC¼U‘whøúóqúËjûÊ­ðäC‹ª®.VzQ£³/ÜÛ% Ž9ßxmètˆ›oÐ,Ëô“ [¸“ÎG¦ÜPš½Sq”?^š·îP’™´‰øºƒ¤ªA§ç%>xp§¨Ú7º¯&³÷о^ûÞîã·ìn|ôLΔý2¾ÐGÀJ±Ì 9ÍŠ\²Ï×~ƒD5aHdx þZx@«;j¹Æº ÞËÚSóŒ7°<+±X“QÖœbºAð):5u¤*ôî¾ëŠU¯ö-+‘sÕxè"·êCŸ0vçjikåì‡쉯*.v]ªM3Éƺh †& š×´U7I n=¹¥Žïê~|ñú‡·&Þ ™ô€©Ì'õ;ÖÏtL‡s—>Òw»»oòí‚+j×{6ˋ԰“|PÙ÷wíw‡õ¡åÞÜÛ¨Í[é„a‰¾ñÔ™f“÷ÒÙôk*Ò†'ªhÛÁîíá>E&N0…˜X»È̃±€n³#‡??ºÊ&:ìõ 59Ôz뼃¹{‘Ïs…Þ™ñÇÛs©Õf,÷ì³Ac'óda–§[œ£N-Û#iK»…¾WUÍ;„®ÎL.xl%ܺkݵî= ¥ Öß·R>¦Æ}*°ª{QÔŽ¸ ißE(¦…Ü9È+MÌnnïú•ÅÂT>|ku ^ãØB[Nþ¡E{F¶ì|žb6¶a‘ã2p“¼º'G¢ìÁꋎüw=œ "²^gùà¡§†{ÍqǨ7ðàøA.¤Èóy’ßV¬¡˜ïßÂáçI~'i0bþ8†çÆÊ³×B¿¼p;êV=q§ÞyeM㊨’¶Æ«W_ R6/^{°VÛÈИèó©Å²Ž“k‘\‡…³ÑkBåý/ïL4Þ›´e¼Ûè°óÕ¤÷ŒôŽ©w*¹ð}GïFí!Lõ¬wˆŽOÞ?ö~²÷î¨pt6Þw«ÖÖuRÛ§'÷rë“Ô”vÌØvç«.ì[à®y¢ýÚK§€¾šÓní×ñ©y[Üñòù äÊ£Ýð9k#ØÝö&ïôVæÔVnu½¸´1ÅsË–bDÓò-»­/vZ}ÑçFvî)Ðyñ.%;vÇ~ðïÜÍ€â%„®—G=X®¨o߯²Æ¶–OXìÎyUQé'ƒFotï–nÍòÆì{/TÏ•¡œ\³øså 8žY™ûŽªÞÞ±ÇökZ×ÑÙZ(Bò³@©vX{{ x¯¾‘ê—,Õm3vÝN5 >‹òše”²½½?æq?èô?v¾èpÂDg–ç3÷î{Üz‡Uq3þg˜­S|VÚn¿W¹6m¼(Àåy†Dbñ![ø5Ÿ¨Ù˜uI.7Èߤ¡Ñ_”•–uÈ&=Un-nKåÕØ@\8"$Æ~C’¢ÊùI¿®Ã'œŽ,èk“ȯ—Ê*iìß4¥Ž-x›]¹ûÀ^™­ÑÞWŸ ô¦ù¯mï‚¿?Ÿ¸kÿøþ[Ëý̧EÃ3…€PÎë=i÷c}äû"‘öþqÁ‡üö·fª4°°¾u =ç\¶V¿áDôó¹ÍÝ;k2õË^Ô”7P#ñsgÀo¾R·6äh¯ÏÙX¹w£ ã©m#uåï’µêÔäÇÌîn†î*ñoªe:KÚˆ4ÁÔ«Ô³ËT•?ݎ̘PÛ«¼-,öÞÉÁ¶©‘ÏY»?xYª†hŸZë› Ä£nÂr]zErmRS“/Nó_…àÖ„Ø6àýšÇ'0«O³Vœ¹Áub’«¼œT¤y êñÝÎi„|íÑë_FDD™î™øú©2CÙVoÿ–ò¸›qK‹7ZóL.æ[XË-óøª–kð…¸ÃÈÙZ—"ã^D<Ãéî]ý ËaW¢;fê^ò¢õ‘Áð!‘kI'"ÆÒDzƒêUµ»DŠíŒÇ{ãJ°ú‚˜G­wö¢NÞ³H¹ùÍ\N]šà»j@bÈÁ8Ã-r;|øLä†Ñl›i²ËçÛ/Â]·Çú<0cUÛƒzñâE–fÌþc6“;îéÜYf˜ ¸b,├c[ç'ÖÇj6±¤ºVËjÝ.!±™ƒÓÑþ)ÿýÔÎà7«Ê6˜?mf9WÈ©Ë÷£ch€È™ þ²¢%GÄ–âs~ SÏø/cûp‡Ž†«Èac7#¶ý»·²Ô_}XÎ"r¨ëÚ-&™Î *;J4Ö<¬Ýsï..èÅdzƒª.®{®I­[ð”[Š›m´¬â1F<]puâƒû‘upìƒ{Û_b-–6tÔë¾H4©æ]w‘O>¸ð#?ßµk½‹•e-/Ó¨ž1>a‹f÷n”´¸Q.hÀåð-ÿ„g¬!Ò=‹¸ ²ž¯ÚúQðìýéxtÏâ6¯Ͻi!i»zFI„ܹøeèÌ>¯q=ÝU>Y>˜U³|"è zCµÊï°›8‚-îåúÓ)AÃRObO8héz.yj²¢É+$LعÑ2û¸19ÛB%­Ãk¦þÚ#äêeqÉsŸ9v{I®D>±_wוtòAæ4a¡ûÇÜM‡#O¡µÓ;&œ6 yt[%i6%½v}idÞÎSJˆ´Q/Éõ±g.Z7}tÜ"гðQJº†’C¦È“üåÆÈ˜¸°õÓlüΆ¸ŒîÇfÕ’“¸öl^¼&ak·ìf{%d}ßÉ$ž›>kwÞê[¸_ö‰’ Þ3éûÕætoˆÞfbæM׿‡Üe%{ϲˆ ŸIꘒ¸°CHù²N‚…cÀÓ÷<üá7^¿ûè•1ÑÔ×ÁA.„ Øâ—xrS_¸%ÏãMJGNÎð{ –‰Öœ+o+Oå=¥u;Ý×Mrf¿È… u™ºOV-è-3?¤ãmÄÛ•›¨+9*Ó6ê˜ã4,£ÈoÌ·ôJå²Qæ#¡äšCb¼Lê_Ë?ŠÙ®m{¿5N”“­‚y„ÍÁÅÙw "ÝõŠ^üHþ9¸…]ÝU‹5}F•³„ºý_3ߦŒ˜ÈâòÀ+m‘ní(ØZú´qëy?-[6¥Š“ü*›˜¼Dú÷2;m6¹ÎÓ¡rLiQjÌ"Ë «Ô¸W L-ZSö‚㚪èhHûãÔÖûÏg'^ž® ؆ÓÀ‘ ëf}3*ŠY"&Ê4då¶PBþˆ”ö2ß—‡-¬©õj¨guâ ËPÉëy< ½×$D¦lWXlE®ó£/ö›Õ£â×uudûžÐ I];º£õ–œ¹6d‰EÚ¥Ì5g:Ì,/ÁùÑnäœ×ÉŠö•´ܪ¨‘5Q¿eÓѰâëýƒz;øVf7½èÎõ­»iÆ"bÕÚYápam ó¸ôÞxÙeó®Ò° ÞRg×õÚb #•%—NYë¢@ƒú‰c9Ïœ?¯ß˜×dFH"dz&ã.ÊWg>p<ÍæÖb@{‡cüã;&Iõ ~Û¹=ª×”œL(ëÂ!6rÿÊ¥<Ã…ðë¿'§…ÆÖÙÊ­ƒ©¯ÃxŒæ_öHË/ð z%XôdiË®»>ëršk4e"kŽèoع{U„Eܱç¶Å„é0Ã5o«w†9YŽº7õJžòÌyߟ%e¾±®¼X àòô9–Óc.;>½6¸Ù@’|—ûáøu19åÒƒ—+­+šo‚ÝOKß$Ø&/E\>’Š”õÙpÄM]غ”°‹ó$·|ôÙÈ/ÊUp¨d¸-Atj— ÖÜÊoé²÷–ª?Óîâ–æ~“mñ´_hê.5ÞÛ«L/%¦l:a”V¼ÞÚ7†×>ÚarÄñR¸C»VQzC®þ¸«%0s$ö¤—8÷kûk˜Ç'¥dÓnz¸“îN83óë—Aï6¼¾èGs•à#.bÀÉÂO»Ý–~±[¨½%aªØ®ÍH~Ñ>ŸðçRob]Ó™w…½>#Qê $—Þ!³YfÒÑÂH-BHÉùúæ™âge«–«|ª 'mŒw9Ès&ûÔ²’ˆûykû–Uµ,9 «XÞ?¥\x©Iä*9üà¶»e‘¹ýúH‡¯:gM,mï(]Zªã“ÙžX¸PѸDA}+éý´Xx×Sµ¨Ï74¬4TxokóàüŽÂ¢®ÂЉ1Ç6Þ…™^óVv\I<£YÙ½Uµ*üÌ#ëS¶G Ú÷–Õ¸xíC~Þú˜iŸ.iVñl¤O?¯2a}]ù5.ψ­îFë>}^}õõrÏá€&¦ϼF¦QÃ1¿MɤÖWx“OW’Ä_¾1ú&ÝÏÉlð­4}ôùͰr3Ì›tÒQóTy×õ¾³åYì|›"N…OIZlk„Þ­/×NIx´[ydM|è’Ä>ñϧ»»fxî½¶ÐÝ·lƒyð™ó•‘óüÌËdÕÞÕsº³}wÞjêäl[Isj¡óÚŒ1ÿþÞ¸B?q..KäÍÞÎ#uÊ1ªÛMªmjdGø‘K ÌRHaæÌBÝàôA?’÷M¡)Ï _ö5Xõ/¸¦Wª”Lžz CÁù+kRK«”¤ïÊòøõÇ2·¹•9RâËzpŠðpæ]IåÕìNFY}—Ž/ÐêôÙÄ4õ YSy![㛬Lƒw÷ÀÁ“:Â:.‚Aˆ‹UݱAúý餧jNÕƒQµ.S—_¾‰—6™>)¯ûb8˜Hì9º6äËe‰[gó±eÌ,<Æ„ EÒ„©m_g–tÝ};Oùí(ÿý±(ôÓÀ߃×±v Â5‰vNÖòî{aæÐd6 ÀpÀ‚ ®çNÃM¼Ê‹èF‚A“Úzàa¢·»—-Ñ,DÇËÝVŸH2‡ë(*Ãમ`qò0¸q/ ¼_Ù¼ K~æŠ Wárnnî$os :bWOƒÅzÃЄo—PQb‘ÿU˜´ðô\|X,ùGÙà) FÊdl8$eP6”)ül8 eC¹À³á)÷á)÷á)÷á)÷á)÷á)÷á)µã)µã)¥à)¥(¥(¥(¥(¥(¥(¥(¥(¥(¥ Hê nQsF Ì $ó¿ $vîP ßS:‰DP·Ô– ©-A¢¨[4u;WÆìܦ!qÿզͧ HO×D€Ú€Ú€ÚCÝb©[ÜÜ&!ñs›þw£…ÂÑ5E…ŒÂÎ…ŠBÌ…ŠÂÿï bPtPÑÔÞFS{£n©Gå$$†*pªÀaº¦Íe/$æ¿Ë²?5í‡Æ~o†Ú µ)jS¨LŒ$³ëOM 02mh_;ù_o® Ò¥…ˆEÏ…ø}åÕÿP}qô2O%$•ý‘TúGâèt€j4h›ðßÕy›€ÿŽ‚ “MÔÿHðô¼§ão<ŠâÿóôžŽ‡ ÿ]f~hèy è :á¿kÐçƒ èIê›KB H€@P·täD˜k¸Ä—œæm’® Õ£8êOÝR›DõUäÜ&ˆ¹d ÿw| éH @Î%+IñOV@Ç @á/€ê6T·  ºM0—9ä\r€ÿ=s(: :EŠÚ$Ô\ßæ2 €úßGpŠÎiPsQ5ׇPÿ]gt^¨h T4UP¨@ñøh¡£ç:§û¿‡Ž¡ Dª PP€ê„j“0sã7›ÛÌÿßc‘tM¡8Ÿ´P1t¼ŽýïúóC¥'C,E†,)bçú öŸy<7KGn¸ÿ‡^ÄÑó4ŽŽ‡qt½‡ûïòðOñóxnn.¿þ0Ã02"’7 ®îdç 3g£è(ö[…êëS-*%ü֣ƶzÔ@PMéQC=ªß¯Gu²õ¨ž¬ÕmÔ£úhzTGGêèQM°Õ~éQ•iõ¨´¥GÕy=ªBéQ¥T*zÔ~×c³€]áCÖÚäMPNã`pe'/oè x ®a ~§´FãYþ<–àÍÖ$kw‡o]H.m’‹“¸OÁ W$zƒ#¡žô ºÉÙ’œÜÝ`æhJeÊNÐBEhºÛá†ÞÄo%Ð`ÆÑ`6p"¹ETÝH^îv>ä²D)µÀ½‰ä] „’í›QQh¢›+ xºRõˆ¾NÞ`Þ0}'7["ŒäH„QºFÇÇÆÅɦGt!Z{ékæÖ¨ãEô¥t(µö¹ŠL «]ÙɬÎÝËÕšD_jÞ ð4 ér0Hº*4ätäÔazî>$¨‹¿Wãcó£&4M÷QˤV@lô}‰.0¤ ƒY»ÙR!¯!§Ï €®r£¨É?j¥tq!ŠQ« À*þSÓP ªh«¤ËE Véäêäæð½RØ.{w/õ$JAî"x¸KÆš&º–#è`hû½|ˆ~0w{˜5¨•߸^€ÐlTuGÃæ%mPõ•"û”ñ ò}ç`éPº‘¬½¨ÊãBœ·ÕZ!ÃÐV=×ÃAÒ+¿‚»‡?¹gAKB"×c©¥Ûá®ÖÎD P}%ˆ{­]=Àã$÷¹§@è Q‚–D蓲ô4¢4,M°n{ÆÝbP7]w`èªSuó™ØDªäüj 3tsÚ Ó÷÷&]é¥ó]PóJÃÏŠOøI°´â@ÁГ->}9M%Ú í¬’F*ZÀ\ê詇¦} 9M²ˆ(’¿þªJ€®Jr´,Ðù6ô,D[¿’‚¶–"¥~ð»–â¯êG1¨Ÿ–’ºpž’ úƒ*WURR‚Y{9‘]‰$ÐfA(T5ä”´Œ~…Í]ÃéIˆÌ»äZ(=@}Mk[Gʼn Í·ƒÊýF’ójz:‚BÒ²ð+´¬Dß?ôj¢àE„üKd“`N6^Ö^þ ÐÐp¶?~’Jú‡Þ¥ðqûQ%¹§@'ÖÁËÚu~ …¥%‚Ÿ*¦%I€. œ‡$4—Ê ¿n0šA½´äGŸ¯ '?šzÉÍÕ´&yD´“èFô²&AÖñ—00 `кRÀ\_ 5¿PBÚ@n?(v ARòô±&‘½»ùœ„Ÿa`i™ˆVQs³ü(z£­[ÉÉèæMfáߪ «–Ü~º 6€Þü&j´îÐ6ìwètŽÒï´&  U@ ¤oá]·Ð$ÕYú‡#‚£-7¢æê>jnüQõ\tn-]-”@ÑV97†¢§š*ÿLp4ð3º†ÒÁ¹2@ñM @ÿT™±Ê@Fpó¸ ?ËÈOúýIFP´2B×kôt©ž"7 û}\ÀÈtÞ ˆn`‡yçw°øù)ãg!™Ë˜(zÆÜI$Á¼}<<ܽH j"0¨‰níÁ<ÁØ,/˜"‘díäâ 9ìP3©&“¬Ð0Ù‚ ¥÷Ö~¨)a~oÖ8P³ßÌäOZJ× ô@¹ÊT0r´jHKtYV4=)+¨Ò¸ßKèJ¤t+­\¡ç zG“ìåP\Ð ÇaÐ0[w0p²£yúzQó׋¦µñ蹞'zž ×ÚÖP8ÉÕæía=_]huÑz™è¹ÎšžD¢¯ï¥c”N«è¹ô¦çImÈû¬çK«ÈAb8o-´Ôˆž«äèy<1pLœÈŽ2‰b)á$ OÙy9-ÈA4oÍhÚšçj!šž^æøÆôáTD«`tIx4=—P‰×c®ùý^AE´îz®»…¦w·äl\œ J<ý¿–¹- ›E §yÙà*pU6¸¼»—È\ät-( -@6‚™C‚‹€Ò¶`e0s4-A½p,À"Ð t0°`8AÝ@Æ¥bïîNË%B¢ïcC‚j]g™oÉIšEzem øÇFYö~E³Qò®àW€2UB“Ýœ;³ó§ A"ÀXl‡‘@€ AÀ  Ãàq Î‚Žš¶dnîûÁBW AsÚkJ‚@˜ÀÈÜ)Œ “ÀãÁ»,ƒEH QóA12w¾ðA¡É[ìâ]Ü<@Ð €Ð­,úc (°ph,„ ÁàÀ-ˆ %BþB—TÍܵ$ÿ t^Á-€ÃK€{H‚à #a¡›\ú§`Д”Zä¨k`@E`„†‘ÄоfëïÐàPtÑh $ºhˆ¤PŒÐ0›¹SóÿT~ÑX0Ì·($8 A1Ÿübù[²þÞ-@‚É/¨PXFÃ@|1ŒÅ÷¯éå"ÆH ¹W0H ùÅ0–ß¿æ˜ohŒb]$Jö /b ¿†ò‹ÿk¢ù&1H€Œ …@ Á¡êÚ8a~ ÿÇ xr· A®ÁB¸ »ËPdèÖþ1,¥[PxHT@ù%€– n~VëyÒËóCúk¦ù Ù$ê TqÜ/!1eü_ÓÍ7H¼´¾…í$ø´YÈ_"b(ÎÍ;ß¡Ñd'E«@€8 $æ—q2þ¯Ý½o‚B‚Þd¯@ã öT{†‚ÍpÈþÚçû†‰Q@[4_ ì–ñpý[ÌŒB È¾= d#ÐßF!±h#4 Gêßbf€º˜8c!±A6ŒÕÂ24¡„Ë ¥‚úÀƒ(> «…eHÏtˉÿ©bX¥oXfnÇÌ“âžÏ¿EК@é0h” ÌíyÒßóCú·\AVY00®Ý —À1Tt#4ÿ7艒MF‚ìˆíW ÇxÌþ-rÀzH ɤ@J`eÁpŒÇì¯É™ öK#HÉ æÿJ²q 9‘ðo14Ó($Š(ôOéºõühþ-†F‚\åÐ1ÄBà?åè’Øó¢¡<>ø7p@òC€v †­'W Aõ)‰ÁÒÖÐŒ°Ó^ 9†@þš¨~ów¥í)8Hh`>·YŽ¡N!éžDøÇ@@›IîÈh0$@ø)Ԣ̈́3@BÃ8zH<‚ $Áp8655†Å°Q·ÒdÉh—ý[™ O§QèJ@üNÓæ×´æßJa!½£ò(H780,™'”–cè• ‘í|Céy„ˆ 5ÿ3rHÈ¿ö¾Áâ(œ@ g°8ÂüBÏÈA"ÿ-íÃbPä`ò©± .ìO±"mnŸKû°h%NÉšŒ ø)N¤Mþ3@òo¥~°–H4dɰ(ÂOá!mÞž’¿6óß Qä¨ Š $&æ§°ð7ÐXwZšy€¿)CÎ=CÉp²C n1X‡¦u(Ì/0äQ€LÑÔȵÿÐhJ*T/òüDB€2œ o‚Ãþ~: 0ªß†‚íý 4·Ì/ 0dA€Tý6 A² äˆ@¹h (!hPn”æý>"¶N Ãk¡ºÍhÆÌö{@Р¦u˜ À¸x~ †;â` Á¿åÝÉá9<µMªš Š(Õßïž÷ï 9BÉxS¦Õ@oÔL)¿Ý! üî߯ )EgQj„‡”€žC¡1Ôïw†ÛýÛ@ œ$9¡âpˆ[çò‹Áü¹×Í€ã!7›ŒYò²Âï3‡‹µ7ÜÞÚS‘äêò ÖÀü¹#Å/H¾hêd1ÄtÐÀ¢0¿×šþP-½¡AC¿o„~,ñ@¢±à­Ø9L‡ù·L3K d–¨Ã†Å#ÿ„ðÉÃýûdù[ýG(¶C ÌxCG6,¸æˆ;´BŒ±âý- ‘rÜð yCN'#$ =qìßRäàAÓß‘€1 É CGœîudÌÎ`£4–ÂÎ( µÌeç_±"íÒ?»¿Ÿäa´Üç÷ýg<–¬Hš’™òŸ!¿š6ªøƒ‰C$íÒŸ?jx5Þ›ÓJF+C~»•ÐL ’,<òT$d`²Bh-ûŽþÁªù© m)Óµ8²Œ¡ úã(ü€ên( öþ#1ZCò%,ò Æ7×JöbQ?‰ÉodÂ)¯Sú»`˜ö}[hýä2ÎÛÿ¸V‰Ã1Ö?4]óJ.íRŒšÈe4ÿÛ…ýZhðê ¢PPnŒL‘(Zïétœv*žaÃæk í\ìWáw:ÿ?: ô¹ü¿e\€@™µÅà°Ôyv™‹0 ³O 0R%†A`lâS:À(²Ž‚‡š· ,´œãEP”W?ýQ”jƒò(ß©ŒÎ‘Èy\qhY9C8kí‘ ’]he‘’<ý1 ò„èýŽ_Ãù§6Ÿ8R^[õWL $(ƒ ”sE£ªo MŸýùð3ÂêaÈË~ ”<8üh$ŽøŸòD¿‹ço}q$Ødµ€2¿äAÆó#Yô[ÞÀhì÷;†€§/Jršƒb`°ƒð¿bqÆ+?Fóa¿ï>"©“>u OÉ °´©›?Yû0šûsgš¤Éã@¾‚£1vVäO:ûl8€ü[5¥uÀÈ«âi0à´ ÷mš¯!À_GO y¢'š¸„$£'hiÕdF“L¿o÷P8Jø»ýpË5ÙÌÔ–6Ùz޳ˎ•]>¡\¿ª•§™eÁºÛ«·BX~þ)$­Ë'Rô2]¸±‘‰¶Ê6M}S$‚ü~]°ßm½œ< ×w!)¯,¡ 0tŽú¦Gk/ŠüžòW 7v²#9z›ƒîÔióýgØ~ìápxpŒ•ÜÀ^žP~úèûC5"i߀5׊|»“Ü’ï;ÆNnrnÞNß÷ìí‰^D7[¢·9 â%z9y;»Z“Ù¸‹ ‘ÄÂw ¿ÉÌ‹èécíbA;’së¥ô nŠ @ݽÒÇ^¨`ãC~ƒùÊ›ÑÌ¡•“HJ|ûfA>//ï¾×\t„Ä!oT}Ê? šþÆat8øý[‡CEÛk(Ú^›ëÄÎß1`i dÚfÓ&z¾‹Šœ±ž‚Š(*zx:A¡¼zh~AAãÇ ¾gÉFýÐHÝ2$j>i6pr%z‹ë¹»Z»ÑbaTítÅ÷2µµ´õÀfÊ›Ðkå7.(F iT…™_!PH …G‘·j`@N¥ý h¾Q®þ~/x5K€á‘xìB<€áÈ/aGÀ`£ÐäU’PÀ°$ðtE³áÈswx, ZÃCGñrat!H µA×aHÊÀA¹p2(hÿ(hKÀà)×à@¦·Xt] ÙY(ÃÁ¾ƒC[ðóÆvÆöÇí”Ó25‡ÌÀ€~È(/4g0dÚ!Cÿ`1Cþy‹ú²O»Gý°Ísì·?ˆß¾ûÏëFÐ|ûÎÂà=ó–ô/Ô7o ?³<æ×,?שø',O€{ú¸C<ïàH¢á4ZOô»à¨jéëé«St˜+8”ß©š_pÀ«iø.8ØoÍ6¿ÎÓ*×Ïhžü¡¨È  ŠA[ Å~`¿óù¹|<È;dKÁcA†KÇA H~Ýš¬ºx<¨ŒÐŠ:@c@{@>é+ØH.x°÷ðóÑ$KnC#VEÞBàɉ!yE~¶C ¿`F@á)WÍ¢täh.ýí x%Ú’?ÄÏ2„ýµ Íuîÿ £kïD#;´+é¾ËŽ‚¡Ž¢±d s%‡òsm ¬!z~+úÁЫÈ[Pfû?~ ÙÍÇ‘=p0À= O  ã KN9–G½– :þ;€z/¥ª4‚„C€œ€£ …ð×€Å2CaÉ2B¾R|G¹‡gƒ®…ŽãP”6’ËÀPÊD"ü÷hœ¾5  Výmº‘ü„u‹B`¿'7Ú(À¡N¤y’)›µ·# Ýóò–ž¾‚¶äd©ÒË0ð+ÊûÙËúAyx$ž*Š(òÊ‘ßQ<å™| ?sï%‹H¢8(VHPl0 Ÿ ‰$v / C‘=`ÈÆaAoŽù,Ž K`mÈ\B÷“§%d¢¤|ÿ™A*Ä"ÈŸoß!4ßö)È =è’ ÖBå‚gØ(ØÑD‹hz Z€E¾Kž~ƒ&‰°?Ëþ×r5w¥Ë¿è9aæ‹´Ô t´É„Fç8a~‘5 ¥[ZY@æ¸CsöÉ#KŽ©qßÇG^"ó'‹$ÿ¾õ*6,=,ÅÄ ¿…bjì<ÌH© Â/†¶8䔣”_ÚÁ€Ü}ÃCï‡$?‡Ia\ÈS@A[JE”k)„ÿqP‹Ï°©jÉkQ¢º¾FbeÛ°´ýøa›†ù ›!?„LùOûG-áÛ6ú+~]ͽsŽÐ|hJýéÛ?éYÚŸûѳ†ZšË 9¥!)/‚ý»üCŒ±hÚÿ§ÈNa¿.jä¾Yr†µ`É«ñŠo€#€öC žAÍwÇ/ðâ! EÌw Ô P~¦*JŽ„!Uͤüg&ÐÚÅÃѲ}Do'w76 îr—» ÷vùÙ¤!Ñs§ï~mò®–µ+qž„(97‡€‰CÏqb Ðä(ÖÊç:xÃÐlp9o[ò+ºQЋ»­=Tˆ{Rv¡â¡sÐlpU’µ‹“­œ›ƒ ìH¸>‰èjýf=9y¨O$‰ü”…¤&'ÊYŠ’ñ@?´Å d–¥MWÓ4‘>ë<' ¦ð- :24ih¡(i—Uº n<ïQËŒ×Ù,xœmWJÒÀ¡N¬Í–Ž޶›5»nx9ÁeCÞ\u+8ïÉ-;ƒ{6O­Á1MäŒJ³ÐÈ®ªD_Ù­˜ï6»ûýì!+%°ÐÅÅîŸ ?àl¿£0rHË[ç~±ßâÕ_¶:^oÉ{×Î=a´¡ÁÜïítÏ3ôu–/LéWzk5îJˆí¸Žhay˜ÄÑucŒ Û:¶ié½ó'/ÂZòº?؈(§n~õß¡rçðÔ¬©ûæušcb;§7‰]zÙob¯è"Vš4©ÂÒ³|'‘iÁbJÖ±…²Þ æT”c¶DÎf Ë0½°õÛp¾Η»xÃÌc#8n«Š²ø…™3À̱ø2ùÂV˜­·÷ã=™ñ~Nz|Í"a«V WV=sÏÞÓ‘_»e¹Ë­ zn8v`†£bD’»Ž·ðpJN&²-/GÅUDø¹Ôõ_¹³bï—.ö/®_×4f¿½qçä æÎíyòë¦e­Yò\¦/|¨N»Â½§ù‘^ïDÑýæû»z_ ¦ û¶îyòd­é‰ŠãÚÞZ6>Ûö^¹¿uo§½IîÑÊBˆüëcêìÌqh–°+,O-V—ªUÌu×ÃF·O”ǸÆoËyšËe~о™ãKBfI¾Ï¾LK]ä)®§õ·Gñ Ø¿ÜÌÖ¿s½çÔ@"yÁä²âðž‘y&h~æ×z47[üM‹$ô¦ÐÏÁÌ£DXÌOJí~W"É@‡p(6¸¦“·7Èd=Z¥ÚGôr‡»»á$?÷Ÿ˜«@À?R Flí¬¬m¬ììì|&8J {UP_OXO ¶t[LdOäI U Ü–α¨ÎùýAã•VVöv¤ñã¤;ð³b·4îŠè¶yt ÊËÑÆ­šâ·4´ZõÇ4ÅnªÜÖcòòâ>4‹ÒWßú‘{7¸#+yœç^¸~ø-=}Y¬dÿ긄3«E'_çYÝÍð¯áC"–K‘KCÒš®Þikò»÷e‡mÌjæç…­—)íÛQ™€róà×k‹Ïáá¾ñ±>’_/·ù8šwz ôNúÂÊ3½%6inQbħKª£%z&QñÒ…Ù–;%6…»ª?o]/;y6@}ÉSì¾iQƒü½™öO¿|ýÚò±äÊ~¸ÿõ™O?-º÷¸¬¢(Yz¼÷¤íѪ ÏýýFuïÌÇpÑ‘Áº÷s’—Ý£´ÚÒíz¼·úɻ摫mѰÝlÊ®xÆ=ó¹ÍGާiO•bvô>6ÚïçpÛzHÄ=ª ØÑµâmÑèëÉ‘¦&ãŠy_=Ww8p7ãÖÄvO¾i¾¢¡n¯]b¯Çýñ‰Ú/^VʤM fZ`ôª'^—è !#U¢Ÿ‘ø®L$hB@‡˜GÀƒ´êDÞý¡NFú„Äàæ*E£Pp9¸?Ü n ÷vÚ ×„ËÃÝávpo¢/Ñ ®·uwuµ†+À‰{m]¬]áp"\îèïážU„{Âíá:T; W‚{ÁÀ@ë ÷†;Âõà$¸\Ÿ¬¬*p¸¤²pU¸/ÜNrô"á~p¸5ÜnïîãW‡ï…»Âm~ÖiÔ\Fý#F Ð4JfÂjÂm\QT‘sn—lŽøJÌÓË/Õº=Öq¯Ðìþ?ÎÞ1Ì–0ÍÒ>iÛ¶mgž´mÛ¶mÛ¶OÚ¶mÛ¶3¿ª®îéB×Ì7óo¿{Ç?⊱îg­å*e ƒ? Hëîôrfƒª¢Ž¬õ› J ë™Óæ>㘑3‹É>{†âaBª+3CøM—í¶*ž“àV…ç ÇÏOîÈBR¡9û ˆÌŸƒáqÝ«¢oHóßdg8$ð-xTšªj‹Ð§ž«˜šùžpØk‰ò”È '5ΰ1°O/OP-X×Üý6›‡c‰—&6÷O/÷àš»×' cDYßus6êq©=²n.Ll6š”|&-‹d“dÌó#†*'yÒ}{¼ù.PÞ@!öY|Lœ³–þŠq/'z¹Â ¼—ˆçXÇ-Ì›¾k`|QZuî…#ãîò™Ü¢pNn®›¯1¾¸ìôi,“„&¨´Liê“­ô†i“ˆ&¬L)ãÔÆÇôèž& Yoqé½UzÇŒ1“à&$LñcU߃­ŒPèd&ˆLêSÔFY’%H†CzU( ™èX%t ¹éb†Ãv“Ü%ê{E¯­‰ úGbGÓÓ¨Ù4‹¨ÆVx¬á]3æmLŸfÛ½¾Åm%^:ÒÛ·.y;?x&ŠSD«ÛÕ¦š*.JF–r²=KžuÖ–‘ªl+RÊ”u+ж¿<=Ÿºi„ }ϺgP2iù¨ TéUø\+( 'áF@b‡Þ”Y5õ}¤H§á'rôÂÅãøÆk×Aª]ôázMv¢¦7‡ÍI¬pTæ&óö=â˜ÑI8B¡4U$+èU«bB1ÀAp†×]åz#µœ#–á•WFHËÁ˜îâÐ9xˆŽ2d0E‹LÙ76ö>Öµ K‡¦çþæYì*Ëq8¬CÆÇ—§C–Lí¾ÆlLžç—ÊR`”Ü ~Ôr|7λ^°e  ¯bÆt§1µðStèìË#Àf€G¹nb§©Çz<€mt&•ååïãJPöx_!Å[{my$é­ƒB_5XKwQ|hù.9ƒ#Ry•ýKŽºrähFÖ ô3.yµZ¤ –y¨˜ÖOÈ嬊r§ŠF˜¯ð¯<#ü³)3lŸ»ÕîÆ)LØ“bõ8÷W|ÏÆ v3÷/ô,Úêeì*$¦‰]êE`d°{¾goé/E…{ ’›lòAc¬¨øÇüÓÙ(Šò«ÈIµB8«Áah§Ì@ƒÂ;?÷Ü5`0?:u¼-…[P85%1‰Vž8ÛÕB¾2&Lü[,¨qf"$2 ¾ˆˆ‰Sü³Œ¤ê³êƒ ÀѰíü•)9ßV·¾;¸çÉ|7f0Æ7x¸¢\³~a3ž8ªMó¨µn èŒì"¼:-38Eýùne´&SCÛ»á¨Ébª\­7Ê bidît)¥còBºÛbÅò"&£â0 *áÕè'I#3 µŒœmÖŠ ô(_¤¼^³É©êržtèÏ%&¨pŒÓz‹kVš,Òð "äÛòfò64‡'ÑKÿ‘øŸwL3®g FãáS»èsñ…šµ§¹F ß'ÅãƒÏW0H¤rYÈþ}©UÝ7Ë'û)Ñdª—ÉqG'lxŸØÁpöîoãïr±ˆ92kñE¡?Ú˜ô©1èf¿72²¥—†Û ŠYXÖÀ:üÂWÑ¿ŒJª{f—šêY®âsÃaÇ—1?Ez£ÈµÈÃI1³¼„:gc ‡§Ð-°#pÏ›§ jѳ`ݶ×f쀮ŒRE<ï,ÆÜ[¡W,x«2RaŽý$ïÝb×.²´Uü¸uGt'f~†RØ«UJœ’ÓNcÿŽgÎÇ¢O‹ò¯škä0W_lâA.[uTÝ,#M…\ÑvÜÕÆXM¸XžN¯5Îÿ<¾ŸïÏaÉ„òøÓ#¡h÷k.oó¬i•Åé 5[Pû±ÜmoºŽ¢’åtUÈ‘ŒçùPE¦NŽÇú^ÓÅ ¡x3îŽ(—£ ¤œ ¥$þþ.C±ê%éé¼-¬¯‘ÙémEÎ×kIñ’²¡É*¸®o\™™¾~—cßñP(Æ"ñˆ •kkŒ\\Ä»ÝÃRKYèîE¾8t<Òâ «$? ¬Nncfv;ÅÜ`K6ÇD•†µibÿ£_Ê­ƒSœiÅ€ €¶Zë7©KŸÌ@ñù:i7ífÒèÎܾÜ¿rÇéü›¹_ð<\f-_$‘~ûušˆÈ˜Õk‹zN™Àà¤"¯>áD÷/A@Yàp"²Fa]Aúë‚w‰È ‘†Ë1ìKüùQZx¡zx±Œû`ÚZtšÙ]¢€ÎšJõrc ÕõјíL_ßD¦qA—– ìK~¼ýñŸÔ¼¥‹@(àûœ£L8\jº ަý]J´š¥‡¥ ÐÆÝQOÛE‰Œ˜ÁTHvûÊÁ¹í²Á[‹ûÚ²Aõ² 0Úk%¾Á=Z-J)¿J»§> W½-ÎW½€µ!¨h}²G’¤FÁŒm4A8Û©ìq*FcŒ'ñwœ¸ÑÐcÑÔ”c´Ë ,ŽfåÊÍš˜égò q"£7%´™{;é8Ý}а j K @7eªídŽž\ËèÅ‚‰®‡8­÷Ý05azH^˜„¨‹…ƒ =8£’K™¡–8@ý‰Y@ÔW|o±–èh4Z~Ú©ˆ}-Üj\…‡‹ ÎX,tIß1ûaùWroÔ0¯ "òVm”VneëM )J@¼¢ë%¯á1‰ŒªPr[g±Ý ´ÛLðâØhU};ý¨’áÊ»kV§ZÆ»çç¡/“(ÿ0‚–sÃ%ñ6ñZ˜Wz1èx4®ç¢L=×ø ‰›†r†]bd@ÝÀõÛ?·\yw¼èq¬,¡¾ÖÉ:É”…8ëש:bE35ß#Îá²Aë~±«l”9çæw-ì%?[ ò.U‘†û”‚ÂÔ•ƒõ°>»°Øæ¡°?ì6…ëɯ‰~Æ«Éá%åP©}¹cF01Èq|NûH­ý|DÙß2¨•ß飯œ^)öÌÇüºÎ“èg{D0§-C5úàñJuZ|Ä6£šÍb]pYÌ®õ[ À¥2ˆ¸ä†+qyÂÆWPD¯·5Ô{k`ÒyÜ81´ÃˆCxâ0ï07äSõ‹oØXuÔÈëP­ì 4¸”E(`š¯‹H‚=$,xDü¸ºD:ÏõÅXßÎp®_\×™¦¿tˆë0ùH–l;º\»KÍ}ÎÀ8+¤[™_Jè“S™¡â-_œ*@Ã5>Ý{Æ—mê/$JÍÛ,¼>3¹6Ø;fˆ¾Õ=®Y*ª5,)¢¯³Ã[mhýÇíÜ.ˆ÷JíˆÅá× G?±Cù¶\áÚÏÖ—N)N/Dúd¥ ãou ìézñ%Ö*ÅRXX|ôÌPÖÉÄ PÕç0Ú2?¶ÚµUu“Zyu¤´O‰)ºÁüˆîÏ™[áE²¼ˆXb`—AŸŠÆlàY\ªÜ'gdç}iUß²ˆ“[W@oÊQnçƒ0ç Àhñ£Ësg©Z D›ªlQ‡½Ó%`UO”Znª&ùVH2äx+4ÃìÒG|ãß±s»%úsš¤—)Š–Ó$;,_0’i–ZP<XœÐì[ÒüFx!LÌ» Ý}¯ÄÑX–L|D2‚ÉädMm~Ùò Ôõöñ õHü¡€Äo+Ó-³ íÓ;Áüމ™ú§)רŠ?1óe¼©YST¸Î‰?üGˆå×*ÍT- ߥ "É¢…b\T“Öè²éT‰­¬LÎá¬+°* !–AZ œß/‰2§Y˜˜”€·ÁèÈð{ÊÞEütLÅ|àé3( äÖÓ²Ef"ôWóœ@®x^ÔmæE·9'ôñ|~ß´˜t’)$*Ïݽ¹;ÃB‹w<8žn …N÷õ 8žï€µMÇ•uCÕj(y[æáK ˜Z'í^/§7Í1¦áy®+Þ6Mh›¸ÈÕWª­g¥Ã{Èû—C”ÛŠ÷ mi*Üç„™ ,æÐ£²…óÞ)ý fo'È–žýÕ>“sj?µv3}÷°ÒÙÚ_Z½NŸ×ªÈÄT‘v¤1Ê^1ŠÉ­ùrbømTD…H‰Nœè û®W>öx,¾w|ƒÖ…¹+>¹HGÁo&¾^°ìÏñ^ÏÈ#” MÊ~cI¤Ýë-›[[l½™¤kÈ5¼kÃiQƒë¨~kF´‡²ñæ]ºÁíÚºòòt™þ«(М<ʇ»$Û¿Éö(8Ø<‹‘¯$‹w<' ç¥%â„îÌò ë2}Í”!‡â0KC³¹R`óCRvªhŒòÖܺýl'H0i\?3NŸcÆg[_äX8"*…†Ô±ä«“’XaÚ§¸Ž­70RÙšå:¸£P*e—Ù°EžoR…Ýú‰Ø^ãÔ8©Ñ[^W—½X†Fd=­¥åñ6U“•!>¿†9˜L>&íÓ‹ l =©•ç§šçæ¥ÜÇ[=Öò„Ÿ¤½J+ÖßÑ9á%3dYºùÌu…îuÁW"l²ƒ?>·ÎhœrlOºntPµ–ä¾ïÚPÔÇDœ‡ü ;Æý~ú¹m\€ê0²Êî/`ÄCÜysŽå—PѲ!<EÕ•zÁUi q°ë)f5¦ö¢ËŽ°Ç—=_A:b<ÛÁA²/>|™Á¶KMʉËàIR,)‰ºÌìóÝIiúêú틘ӷjda"˜Ñ›‡+ÆzÖyg hhT²õßD?äOUkb”cO A©uêÍvØyk¸Cx$´+í žëX+X³beƒaãh*dwºd¹µÝã›ÑD<¼ õ‘nzØÊÚ=tÍ•#GŠý~¥sÇU(óõ'E½XšF.Üi—–­x}°]†º<·„2¦]ç»óÓBTâ·rØJrlðp?sÒ°òùc \ê—tuεRÀx+ÂWÇÁ!b‰ ˜ ¦å][±Çé—o(*Bc¼KéL¼Ç;Yè0Þ¥ÕÏó†zqž(±rR2r Ÿ]J½aLwdù7r3rD·tøAŸ¾T=ª «ðÆ~€êÓS ºZ¥¼5Ðö¢ 1(îkQÑñ¸\[Ê£‹SãU* Ù¾Îh™Š0E2¥I?àÊsÕ”—­Úøû×™*µ¤ˆù*ù +ý$«šDQ #L‰™iAa©¦-Tø?àN<µ•Oköµ”£ûí¶pWdÕCŠ8ìg"> ¬ývÍÉ—û)óŒ„í (#ö°àdzC‡ÑŒ~8µÍÜß—Ï}L'_|ûv§6æ/í_í-Ò+Âó3lxÚãCTÔR=¶¨Ýó6gøeŠÔ—š-h$"ƒ%!¤váòúVL¾ê#±¥ç¿! —r Øy·ÔƒÓ(Õ¿ªïFAèÞÀcÓÁ¾™¨ýøn%1vB£"ÑcúV¨Å~ÓÎÍ’°ðœ¢ÛÎZ“T¦ˆGê')‡cb…”ÿfT|TøUmŸN¼Z¶µc—å =Ýc`ÎýºDñë°ž7Çi6Á¹ž×. - u…ÐÂfO—(2’“\ÎQ§ÌX$4 :¾X~£ á-àA¼Í¦Æüv+ ×Þ¨÷Ár™„’LFç0#3N'E.$\ÆNWÃÎtâ9JÁ=Rä 2_ã­Na­ð²it’lïµD a7§ñY(¶¥bà pŒ( ÿø‚ fˆ×Qþ ŒÉúÞ°Â<2]àr¼¼þ¡6¹¯Q¾¢À`jšÐì…¡ÁŒI¬ÊysÞ¬ÓR¾{eGICÌþþRL«éR“9ñR ½X8ÀYW‹ðm´Tñ(¥4Œ .¢í#à92âù°Q¬Oþú›I¡²s4nÿ¢•…˜™$XÓÓ\„ :Ÿ…C,X"Mr²ˆ q¼Í0ºNÍYNúÐÓ®m.J·Žƒ5—n å' ÖDï96·/`à®å…ÝÉXìJÍN«û”Ï1t(I³W 8W>Høò>Î!ü–P¿n©:\÷àVde8'P|‚+‚Ãéð ·NMû˜Õz}ÓöFµÓ‰u+Žæ~~lÉ÷œKQsw ÞÃÑ< -*ÝÏ©ÈÉ Î ×Ÿ&»ý(š¨,7œ:ÿõÓ-·¥F¦_ x˜$Ê®ÆÃsx¤„À?N˜ËNÅÈî)%Kø!ý“qŠ4Wšw%sšŸ XÃfÁÜÕ§q°Ý­„¨ýAVÏŠÄC¤Äöåcä,ÇÚ-ÚM郢)èæÈÍ#•þŸ!½Ÿ³of¾ðቅ]å^ýš¬ü6aé7pi¶<¯…ãÁW¬C^&n"B@bsš°·1Û.!v%l[<µþŒÏ÷ÅŽª¶ºœ®ë(7ž¼ÜC{âǡڱÃ, B²?)ôFÏyp–õ¸K‘½PŒÜÒ­³PÝúAû4:ÖòßÓ˜ Δ³¤¦€©jlúÕõŽÆ —Ɗט+ ˆZ%Ã[±Ê!ì%¡ˆ×én˜Å§’óê/ÞÓºÓî•„`›x$«÷î´R¨-Û:ØÇyé‡#x+ï%„ó ¶VDJ”ý2äa•C¬$†Ç”ç7š×{Á®ÐÜÑpÿÇ)¬E •=妈‹F$öì}Z4   Q Ü‹³Ü$]¿«6cˆš3Ðo"»BýCAt¨½kî´ˆjwê+Î1ÈñÜb|s¢ø„¾¯åDÍé*»ŽËäÃS™~µåÝÒ½k­ß]šÑDu-oƒ67¯æ”iÞöÅ S†¹4¤³Þ3a4¿–í'úƒ›Ÿqbq]O»Û½ê´uÏô]—OsxáaÅ‹éW‰9`yÅw¾°YìÆÞ:2•“‹U·nh¶ySs¬F<ÊxG®£úð*¢ú¼déu ƒ‘«Ãð)“áa±Ä–BÅõlx<îŸRîÕl¼ºò%ÏL Ø–É'cQ“Ž}gùð´Ï.;˜÷©A÷ú4Vç`VâÛÚ­ë}y–êI»S[‡Ú“ÕHš.ôÐ)œ¦ÀâJ<ç™pö†÷âk²Ïºñ=$×qÊÚßÓ³YÅ¿n›aUxÑÍݱjS¾ÎîgèÃ$á(¡ªE¢D”5*#xëõ,†0ɶ\{ñ!31y6m ±ùëîÆÕ6§œ‘U{Ÿ÷ƒ©j¿"„¿Šéy¦^çß3‰h~0€$Ô¦mœxܯ÷ë MgðÖŽ/[ GH}RÈ2Ó=ä¶#ÒFZl\X—BWîÎû+ª ³üƃ¼Ã(*©«j -7ÑH¦,¹ðäwÕëplét}MÓ]ÅÑmÃËÓÂZõzäGÔRð¬/x…&;S-õÙ¡}×¾½#÷5h)W”™ ¨N݃÷™å #hc(d󡓒峚bý^)¹ÜÇæ Þ¤¥)»Û™ñ¶¤ÈÄf;q$]d®‡9k¾KËS»CÝ›‹ •ƒ| ÷"‘Á#b’SÙNv&8byEÉÒz:ìä‘$èv ¦¥§Å¦#ir„ x,‡æ \ÌŒdóëæ=”Áx7Ý(ÍDŸ3œ 9ï<¿eŽ5±^âV@Çl¾÷Rþ!¦áAf`hTðïO˜WdLô¸¯nù&òÈdÖ3xýu®†.؃Ên؋Ũ ”¥/Â~}£à‘ùË+dnƒu®ëme¿µ ©{=>efú°î¾jVJýy» j®TJZñ€¯›æjòp~€©˳ E¦Bšlö™÷´Wæ¤Bá%Æ/xl§O³Å9râ=ý“3ËkuFƒ²ñ”þaìÅÞ¶†~ªˆï%Zgêl»ñè¬Ã Äâ·ôw2%Šà„ $Œßåº{‰“èZe_†z‚£ç>dòK½÷ì/ž» ³Ä®Î²Q§‹9ظ˜"çÖÎyçÝoÒAZù4Å©o׃å«b¢™Â?7cÀÒõ>’¢ ir¡Êû0}võ|}¥í´³EGžLÌ#VòÛ?œ»nUÊŒ/{`„Ó¥¹Vhîw”;"«¥yTrTRT®5¬–`4¥eìy]Ge±ì£{SÚÞj2FâO ·¯ä~_E9f:¬¼˜8Í¿K]”cÍöZï`Ó2µâË/UZS^ 9ÚLaAi‡5I¢Né:÷_oàóR]•w²%=D‚£ó„g_CKS‰#Iª¢]BÐÖLˆAÈbôãé¦{®9{ê¶a€ú²ÔñZ(Å +:À¼è þé+æ˜ ]7EXßä?ÚéB=YXpâoÅÛV]10Zfá¬]öGá_2÷7|ÊøÅ¶.çFÍ‚Š{ÒÛ.Ù6¿ú­YÄTï¨6N|ƒÃ̲T<˜4öš7Æ)AGþF½9Qä÷3ÕKè¹Stýtä £ðY4+¼8Ú¨\ð%…'Žù;ÆB„ý‡1F\ŒdŠt$Mž)ÿ΋[&¢Ž 7¯I²mhð©¿ïÏ{æ±z·á©ŸS`A|§­,ÎoòEœÁS"è9UÁšº±ï*º>¾9Ã+Vk‡f¾YX‹8D†Í'ªèPn·“µ°Xý°íù1‹Ú%5*JƒÁ~—.Ü'g[xø ª€öÊoÈîäoôÜø¢¹1y²8ª?%Ènj VŠˆ.ú´Iȧ™»QEK³Ûñ…µÝ+Keþ=\ ‡éñ¡qOI麪}Òt²ÊõçÏ.¥iZuU¼ôÝ8(…hȘ%>¹Dxo 8¤'Àa—¼v‰Þ7SžÓ—÷lLÉØáS!&3Ô¢oÊÃÊ/(@´ ˜Üo“·W_qrj 5ÎKcÊ(Ë'lÅOät<Ú) Ù»ÀˆŽ'º'Ü'Ý„!qïïå©jÖ{ÌÌg¬¹Ç†à_þ ÉÚ‹¶BEˆFnøËjúšù‡«¿ãcÖ,»V‹~ñÊ¿¬ôQ[,NÒ §f ðŠ­–ß¨°¥5I¡TUgü4ß#!6¶?·¥xiGRÊùDÊkf?Ý¢A-ô‰ÏwIþ‚w|¼Á¼§~îEA,›“ôh¸2 ÔóV-è°9Ãâ)üXdù~ïSË¢8»Ðßd˜LDL”’˜Ÿ8uDÿËkWñ *TQ} 6ãýó͸¥û†8wêâcÊAkî]\¨Ùilén¾[ŽQêÅã…õÔë=_oœ ·ÐþΆ¡£·ç%£ñÉɺžßw!‰p¿k2üá"©MªGУÕݬ]1üaß@¨ÂÄòôœ*j膣ÌE1¥«Žú£n*±¸2øéš|ÇWÛ(Ð÷Ñö(ØE`ÀÒ¯­«„Ò®+D¬¾•Ú lNäยšŠcjMm¸DH¯ÇH»Ïº7š³J—ú–΀Hqð+|Xeê¨B¨LyDzˆã;vtY´YÙCŒ©½;·,æŒÏ³µ(HwôБ…¹Ñ†tjÚCèNœ÷zf]$AGR¬³ZBNVáø ôÑ„Ûú´“>©ŽœŽCÞë§ú/޶3Œ¶wÕü ÁEÒId(¨1€¨Ž¼—… :O,h¤-—桚áí㋎R‚Ú3=gCCW…VØ´E€¥ýH5ú@×5ºè–ºÂ ý„ä;.mèùË”<ïøÑu4’éȘÁÀ*ÒÎç3ƒuÞR·£È»¾R'`Ü€yÌBrXU6“e4»bzµû Ëœ„[¢Í– !Z¹ ÕpZˆ…¡€‰\ÁÕÍy§ û´ûÑúÙÝ Ñ2!Xßšdsð!M*‰~åŒÍ„ì?]üžêÆögëçÓ7M;κ—µ¿³ý<žÊ i͘Ö/ë­¡P Õ°)œÇì„rÆÆÖSC)Ó9‡݉muíÌè6qy¬-¬~/oòS@ÿa:ÿ]ýݳÞ]þ©×âä{on|v¼úZd†<4:!`±¤L£Ë±5øõbO³e4†6FÈîJÁ©ñP/ÌÏqØ%Ü-ÚvÀ{";‹át¾˜ÿì=Œ:iŽã%1¿¬ã er%„>Uûvxm³´ŽV´Ê ô`Jöã¶ÏýìíPEA/þrq¥‰c»7æÁsýã#ëèQû âo‹8¶âᡯ>7'žõñ)Í _Ž`NP>šŸL–¬„=ÍáuQŸNÁ‚XMmè¶6ð[L†g‚„óî$uµõu¸ÈèÑ?:p$¤„_ZÖíxfýý>=÷›Ç©éjåˆl«/ÐþGêä¦<’BQ5e …eèÈ„L†Uç÷äWMóŒzqWvâ÷©?ÌEN¸^ 4Dø¥ª§Æf'Š??¥»  çøn½œ–Úx½ðÆÛkÑ*1rùxÒ²ïioÿˆî¯ª‡BðÙ+Býýrü0« 2g´9÷ãçù™:d8­:çb×&…b>)ûýî$©?uw!¼ÖÞöëCtóLøi/IÅEœ¤¢„©uŸÒ²"­H5¦*ÕºúS“Ú‘P2 ÷kkmbCJÁåF÷»b¹k²+HãL÷#²6VV+y|3O¹üƒð͘ñÂ$êÜWzѽØ<\àÜQïuølPÉôîâ½]ndÍýon½áêSxŽ')ÛkrÁiVÊ:²îüæÁ>BÛW¬wübúr”áDÛoÑØF†ã}A45Œ˜seÃs· Û¹q'Co üä4”IȽÚÐPŒn}tE¾³ˆ´ à V¾‡îëoË Íøƒ£ˆ‚DPˆõŠnj~Â$n¸åÀd7}ܸ±â˜Mô±I´ÙÓœb XÀ˜À–ËHWbvP&½ˆQÙÚUù]Hû^nZÊøîŠî*ÏÝÜšÏìÞHÕº;}½Ê¿<'øÞ’èB÷€áGa5Ãd"êÜæ ŒÞ÷¬è¹<›/oíaeG ¬³øz¾vE6¦ ïgº‡;ì˜$„ÊÍËÉ!HŒ…óØ‡Í ¿®J_JFÎ~(¸²!}eã_ëß.æMd·¿mmk.M YÛC…‡ÉJÈ‘ÄèçK¦fNú>™zH]cûÒý0Ψtõ²6Õ ³ßrЌҌ ¢H«é iIhd% ¼Üýi,sC6‰.¸7x&é…[ݪ`§eŠ*žè‡¼gN í•™O%€ù<œ™³ÂÃy[SP|Èä¼v ƒ…”1èÈ© þÏy†O‘Ç<Â-(ýò˜¾G”5ÔjÑ ô›Û6* ž-S½‹ÊÊ-äc¥Œ  ›âóëHfä#áe@П»§¿gö\…M¼I ºî¥*|`Zxˆ„éJeÒ0ÃçY÷± D±6ÐÈÓSd|ŠuŸñÁMÙÀamÑôål^AÚ=rƒÎo&º£ü$€^¦žsE»¸ø”·rƒŒˆ>âñÞ4ì„,/ÿÝÇîvñ¹s3ò§úPõë’u…ʵ‡Ë~oôÎðÂÚJ Ûõ>И¼ëÞ¼j4ÙâãÔîk åèà v[Hþ,æô„ù_aë?ÇEý;Xö¯±)ÿËÀòWCãüÿC ý?þºüoXÆòï ÿâðaûß±ÿr%xüÕ#ÿ?YþGö¯$ì¯øë¿X×ßì ‡¶þFµþÞ£`ù­þ‘Y±ü3³bù².°r0ü³ua¤ùÚ^¯]x¦Ñ®u?FR)½ÜFOnÓØ(G(E?—ƒ ÿ£›¨>Š2Ð @):=zBº@¤f. +šÔã‰™Âæ¾‚É6ácûãZuêeŠ~I¹túmÆ÷[‘q¸(qLͳôí¢D&‘W#|Àhß²kpσïÄ…4 ×ÃZmé÷çǯÇëЃ&‡ôɾ¹%^;Q¥ÚØTײäè/öÊr—†ªã7OÐ+g¨Z¨§çGW¨bÝÏ*-À–w·é挓Ó&¢A‹bÓ0S»ÖRÑ™?Ïþß\ý<ÕY€<Ü@è!îö:J½*¥o\@<)7·^®}¬'Á}:°ÛThÁï­AՈלý3ÖSõb¾/ቤ²uÙœÖíSQö53̹,1ú¤ Di0““€&ŒL öÆYéÁ“È&È özVés“„&”L!öú¨L†éÊ“ˆ&œ†U&)ŒLi,““n&4£“FË 2“^&¨Lñê3Ô¦—éÝQ ±g3Ðz ŒiªiÛÐ3i éQ|LIuF:ÆÇrºŒ¤NVÝUÝ©Â5mmZ$¾;Fõcæ Å%#ȆÈî¡UH©‰Ž™ž2ôX†Í±Ö¹²S`é¶g–ë+M¶Þ;74)ê^3]=â¾ßÕ@!°«|³>»Sü‘`ÅД¸‹¼§'ªÜ:æ‡ÕoÍ} 0ßNa3q‚Þ!: ›folu±C5]¾z½ä¼ôãvȰɮjC ØcÌõèìTw˜(XÌ z0V@~¿xJ=ÖŸz5H|5>)uóók «åµ4h‘Ø\×ïÄ‹3¶à¡3’ŠÈ .¤ª> .¥pÎNçqHÚ3 ër‹øÙþ♟ØûÀÁãìB6’)(àIÁ•p˜ãR9£ëÓáô˜¾ñã¥f\áœÆ)O§Š[ç“Õ£l<$µK¬Â˜²Gȶ½œ: äÔ¨Œ–DH t¥ÎÄ®Ír;L‚ Ý«RÌ@®V©œ£\˜7på§?i¶5•vä߀é7ùC !ªv¿þ¢hG-cý›V²öuÉ(à Š8Ê)Wìcñ?‡8ü‰›:.úÓ$ȼ‰¿\>ÜÙ.ŸR8ù{ÂÆ³ç¼™-)¹77.‰Ÿ„,g¶NmáÉÊÕ«¤˜ZŸÉÕwÙõ³"ñwQÙŸ¿··¿Æ{}Óënyükí^Ü/ˆ=ì¡Ô{Aݬڈu̽;–·¾é·OGø?†s×ïÙ;3Ý¿ßÉí•®¶±f‡·2£'áG-î)b•[ƒ¼µL¿à<ç5Ňãkܽð´Õ/µÒ¦bxmáUĵ¡¥ ð«ø#cöÝxÉàãÆ’Ë ð{È÷ǸJh"&o¨4åa7µAÌO öÏø©‰ò´à?È%ìË3 ç8'ƒ¡§UNÿrϸVn§ŽÖâ͘Ò€>´_M 5¢Lg1$Æ ÙÌ R´_¾ e—Ã÷¨ ðÜ1 |™ÈHJIÂÜ4[—GT»±ìK΄avêî2ÒÆPmq L €Ã·qiœ²R[K჌D0,A¢b¼ß“jäžS1a/Óš(,)w–”7 ¯º ½iöÒ®BËÞ³›-uz71SLW¶C×(„Ö,’VùF¶6pÈÄŽÎfrwÎQAãßz§ËÓ×üss¿ï´X[2IYì–,‘m#+RÞ­¥ ©•,P‘.˜È ¿ —Q¤lE-鬡]!¥¯µ"H:Ìd/¢¥#I5»Eθ\ðGx»ü:«O•ß#í6¦k¢nhéÜï1Êèš=&J†?ÕL%¡j£XE°S%ý7)¢Ï•’䂤ö´ÛGÎ/äÝЂ k²mï$Oè?€ÏΕdPq²0ÀÞM  U ûfIE²ä(Fór>Œþ®½ÊµË» ½{·¦ºèȤ;Y+¯6ʸ¦c;eùT±é7ø¸ÇpØä¼à›d¥YcrŒë>[ŒÉõS²âù$š2ùÁ´Î¯.píˆ×cCÎ胪ÆÒÞóKÒÖ-¨©(ÌŒÍL¢‰þƒçu42½¢9)ÈW‡fÖVõŒfg vªœ†¨¡ÙJËé§p°*ÌÉ,×5ÌýL£ÇíO ›87 öSÙ_™í8ÈÕGÙʯ8±ÛB½ ÄiAq{FÔw„:fÂUö`8*fÑ:€g„'oÅ»«»oùGI¾³‚ÞY>·¦ÕhtKYvÊ-o½^dèP¬w +\ÀU Sæ=SP>5bƒ+fÝl?97.Ô°Æ6²¤}Õų~X‚J-¸=±hß±Õ4OtšÀáŠ^þ4mcu±Ñló*k¨67 $äF£ `l<ŽážÒÅËë{ãRåxiX.X²¤÷Ó:÷Ë€Ÿ4³Š\•[QZð\.Õ÷¦Œò@Eå”¶ ø\Ç,*c–rzÄX@^b B¦›¿˜\žÖao”UÖÂòíßYƒt¿mUŒJu _&i#yN”-ð’ræðgzSwSòîÚC®Òh6Œ"“È„ µ|%kF©yUuHâ¿d\ àÈ [g Kê§(F|´];&Өݔ¸‰^±òÛ 4*ïÓSÓr¯€ÿn2_á;{~©RÎ.q²^kC/) áq¿Ws ¹ ¡ÎŠé N{-ʆjÃrY^D—€m©ÙºxO‰ Ô„®¶pIÿ©x »eeÙoôTÅbpÉ­Ú ážê$ékMâCuBŒ0S'ën]ÅEN­¬¢ú3M>WZ,— ?Œ&r½¦¨¦"³tZâ ‰¶YÉã°ÉŠŒL ¬pæá—T)ýEÖ€ëÖÙ åî/§^·Øœ\5ƒ-ˆgŸç”7ž¹´ÜVã€Úˆý"ÀRÁ©OùT‘Àö50A÷Í åO _R´Ç7ÆÑõä*ÿ m / ½»f)‰©o#î¸>¢Z_5ÁˆzÖ¡¸,€PDX@¬—fš GjxrâTKg.¨ÐF9ý511ÊñyAû¶ÚÒ˰09È2»ß¼¸PŒBI”[/oF¦µS^lp±xÛ€PÈg´Ð«ÐœêÖ[”{$ßÇCNéŽf1`¡¾Jú½òß1¦z?êŽeéE“NÃÛ Z1Â^ʘ4â2š¥¶ŠdéK‡HÞ¼˜ Jï;¥§˶7œæò¨­ò‹ÖÆîÃ3+ƒ.}È-µ¥Á¾¸äl³5&÷~%ù¶Ô3ð°*d"W*—T½@ÁÇ9ñÞé8ˆÎ£ô£—%PžˆÛZTîV9q(¯cJG¹Ÿr—϶bùó(›d¥-µ&þ( &ªìBMèCP—:CV‹6(1‚ØÀÄ„=)vôIÔR8µ_ÚþvtÓr¸ñýC†Þû}ã|ñ©*ŒšüáÅ-F‹çYn_ŸbSׇioÓvI†YÖMãð˜pj%€Æ¼<¼4L½á“Í\»Ì&@§mÎã.|j§9A{wë‰6­*@ž‰Cǯmõƒ *NL1'ÃáëæÚ‘8³2¨þ;E®Üþ¼ø±ç7É—ûJö·Ì>p ÙôênBv[dêÍ8ƒ¤Ó¡5å-?ÁŠ ûÓnßU´‘Xp.ìzý‰œ ©J€B†J6~+°j{NŽ÷áf¹Ps«¹¡~Ôýëzט¬^ð‘%å”Á >N)¤odšÙ¸v"¹™$Ï>Èg¶çnÍÂÑ!¤»; žu;•²Á†l.ïWè‚6a¥üó)ù5‰Õ¢ý›-¥—ëÃ=ÇMÑrü-¯$¶Ï 7 ׳WoÃ9•Ýùé¶ÜnçJr8°1]¸jíIœÛìô©®! ‚´±ìx½íùîWoAÒ2ä•ÇØrÀoôoÐâë4|Çèb>Ó™q‚.³‚ˆNòp¢3‹ÖGðXR‘àTêÖ9ÔNâÉt'|RÊfñpS7`éy‡…š$‚{ ëDêת‚¨Ë…ÌÃâ¹ÎMÒ%•bsþÌ‚”õ"­þÞriÈ%ê"E@=a×L§”!m GÂ' e=uèµ÷,‡?¦9ûçë2’áØ¶ùþ#þ|G'ÇGZ¿$‰°ŠÂó¾ á[&ØY{8iX8” 劢ÊË ~&ñ ,öú¿Ý’i¦é(˨‡º]ÌTYÔ'ʉðEäê–ÞeÏ]ȃPË £BÀÃV†ŠJKFÐ$<’%T=9µìå1aêd9§uÏ'¨18L@ˆžË_ÏEØ?Êãaò0n„C—rÜ(%CxIºì8·ŠÚòf‰¤=?e^.'L“‹L½‰ßx~#Iê:…®^÷ÖqÜðS?yVhp ãfJó%¥·{ãðœzpž gæ´r±ðp°+üNL)’ΔT&No4§ëDŒ£zuת/`L ìcŒE”tyS¤.^F9 ×¥¡"àaªLòŒ¿Ý|αz¹Ñÿá@ÌuÝØ k_ Ól´Ê÷¤™¦}ž[´O€Œ}x9Î%X¦¤6NÑ4T²öÖvTW8›æî‹S”ޤ{YÓ—å:RI‘"Zho£q@@ëv«)nÒjƒQâƒ¼Šˆ°*+ê2‰š—’BX÷™¯"ß¹)Ü!\¸°É?™&È/h€s®p%0E5:Ôø3Xv»°*H³€¥<ÐÉÆKbBnqOêS°þÈUدÊÀ]žk…Ÿ6Ý6a°Õó~(thIB" ”†cªÓ„à=Èæ&Õ;âαæJLß#¹`ÂôªXüb¥T½UxÜh•ŠÑfÁöˆÕ(WççÙšíý ã‘ â­!Y¤1lëGy,òå: ýtkc{£§*xnã¼7AA:ÐÎí`–®—øÕdÅ2ZR H8N©Àü8GnÕÐ×]BCw»WÙaê5]@£.¾1SgÏ .ÞЧ0”³|‘ïÙŠºJE"oôzMsZ_Ÿ;‹|d”Vž)!_Í'ËÑ3Žm>-~r~žzý»ùñsŒËVÞßn怣Á>Þ¶ÞÛR~Ž1í—ev¿vÛÏIqØåû]åÀñg±Æ+Y-ë¨lŽ^Îb‚û'À_s-‰1‰ñÐÑ•¥Ì ^ÂáéB&;f¨l»d—mÔ£³êµËÑ —κ€ïœÑlÂT-£QæüŒsá:j_³!CòŒcXUy¯{£É¶&‡ ÍA“?EÃ*)ÉBo‘ÄÛùd@(ÛÝ’ã7™ªõZÝÖ@åpeõŸFr"ÁZøÝÏz¯Ë¸²V¿QÎ’Ú™…zÏ6y‡¨ÎEmžæ¶¬OXÕÝ“wή}ÓT‡5 ûp-©S­¡›éPèYÇb†¶ºør{†1Ô7:&…}|æùàó€ú¨Î‚É“›aŒÁPPuª+âÌpÎÁ0)Ò;!bóO`|{ôØ;ÎÍ'¹¼«o‚"üÂVÒvtzXÚþ¶Ëƒ`8:ce¢¬5eöÈñ¶²o‚»ƒÏ/"B—2Á¢?’ëá€Ä[«´…Xéãwúd+潪i-Q£Å\}bÊé|NF¸”»í”á Cͧ?ÖNÜWÇŽŒŸîLf!'³õyˆO9ªæyŸ'%§ásOåd0‡½,ÀéGv§@$»Ø_ÛÐ}öéO9$º4Öì•{‚ì¾­ù—¯Z.‚>Y)%¥«È]ÛÁN+Ñ$âïÌÞ˜vöyÛåÄÕJ‚é'çÎmk>úŠ4hi)§…—äìJkÈJS¾ž‹ÃºSý¼ìo}8—±¨ ¶‰{šÚHÞÊãhÍ ^~&ž™FÖ£…h° ^ŸÁ¡± 3—_yõÅ_»d¬ÅÊ`ž%"`ý°Ó•¬ö±ùEO˱¢qFÓØ bÊAØï©fÁ*5q¼zÇ*ƇÌ=Ð|bS1 ½,£{µº#wŠp{Su¬·Ç£9‘Ÿo¯ÆÌ5qœÞyÅßñ­²$…¸uI;SpG,üB]»¥10þø6šÖ£¼ÛÇH™|˜‚†\s¡(ß>/w¶¿|‡ƒ­¤K–5Åÿ|¿©ÚßGrWä!’ ·k°†½¼eiUÔ™u‹2Ú¸fñ² &–Žm"o@ÈeKuùÔÓ‘=XV€°kà72EF?;ºjõ+­öÒØ„^fôTQçç¥Ed¨ôŠ›9<ŸÛšÁßÈ™ê,¬ ¯ùúΌݒ¼¸IPÅ#L€8ŽÔüñ~‰ý-µ"ÊÙ«S«efkëøY]]¿²±|…2º?â%¤£‡Òt¿Îä½Tm˜ù—çÜr4±›•·2:¥'ù1Cð+Ám/¦ÕíáâƒÊ ÑÜJï¾ÚЊ¹Ë ßx^ð.’aÌ€·`æ‹°ê\UûV¹Tuy€h­…ʼ+®jîºk†lÎ7ËI.8µßáô×ÒŒYä7=Ç47hÞÛäðC˜Û ~ìðl /µ–Æ_¡ÿôlC4;BY™@ Ú¿e?<ˆ«ÀÚP¨ÆI«WÍA{3%ªw½¥eVwÖLoèƒõU¡ý+`ùçŒÑ‡þ9û¿ÓŠþVÌÆð?èýeã?°Ö+býwl€‘ùŸÙ3ãÿÉ-ó¿‡ÿ‰þüü ü0ÀßGý§ðÿ/Zÿ?79ÿ}£úÿMLÃßûSªÕ ”WÚy+T"==le[—Ëcʪ#˜4øå-”Óaüðõ!Å¿ƒÜsñ‰áäÒ•°5JU4«_4®–T,mE-j¸:§:º¸Ô´º;Ö[–µ/ªkÑ—%¦·^|^¼ù¸-.Ñ#FÖ¬v®Œ¾†úîÉrŽf ©kîÀ ·0ïÌ¿/åSiÖù ¦|‚÷ÜhmÀXà ‘Hô òBÛ2·íÔöûû8ÅQOñŽv¯é``"Sø„`=ýõùç…a§ ãl.È p\À†@Å÷aÕg6‰c¢bAű7‡Bˆå‘…i¶¯³ÐQN x äniÅÃ$­Ê*™­d7;4ˆ…¾7P©µ[ÎêÙv4º Š‘„iŠLäreέÇÃ×…­KP™Ê]ÉÑÆ“5®ò›åË\Ë«µ,èŽDºÄ¯ · Žå?ʯ’ÀŽd¬‹På¸Ê¤'…,%¥KJä)R2D¤K/É=Ï•Çã Í%¡=ÈŽ >ßý ÊbMàQá} ’n+ú7äE7÷è¹0þ|)¬·šÀÆp1|ϾB!¥HføéЦò"Jg:Ý%W©~›w¬»ÄZw^-Œa‘¹Ê®±Ûœo(ÚÖR­2-4o¨ H:KµC䤇bãÞÓøŠ’T©áçfG‘ªêm#c+¡4‚Ó¶ó´<"¬X¡QâÀwöáx9 ËãxkRÁ¡Â®Ì÷Q¾qÊPÖ3C’~ã9&q#¹§ÓüáÌ1Þ›eU‘/¡– –36&Ù Ûu)ß›Ÿu¶›`àj¨~ïŒ`Xè` ’^ç¶Ö¡3¸’+ߥÎÉÍ,‘èçu€´#lç:~üÍvØËCbÈ+ÕØI>5¸‹*‰9¼×Áª&CËYPÛÓç°1¹àÝ×R%šÛ@³„£Út˜^ ®ðš0ZMòz¶0~ÔÝEÃeØ*Ë&t¤ ¢Êa¨Ú[ꔃéª\Bî#Ñe€@e †¥bÞ¬Ñ)­9QÔ´ØhtÿY¸­Ý6•¢)S‘ ‘¦^¢œ˜b½”éuLû&»òd4[E0Ê8Ã?tx[ ¯å5ÅN©·ŸÇ ¹EBšßLáµ8ãÉ[Ò†¨ Íز.æ9e@EÁ£¦YdÌ[®·¶ I–GàPäç ÆôO§îq[â€¸ï­ œGSzú+ÕÍ<‰„€u,¦tgÊÇè ÃŽ€ºŽáARADø 3óiåd*žfHé´kosš÷=(fhÐÔéQùQgÖ¸öó Û¯†©3èŒHì›gj®Ê„F(QMÛâDãð`ã9èÃï§?"pχ°ãzqýqæZÕe®•$øNÆ&!ر#–—·•f5Œªò¿Þžå´´ª ^`å®ñÝ‚ Tá÷ªÎáñëWÐBv¸¸á¨¸uT+KöéåNsÀ6ÙEÍžY¶m¯!)ý×á×ð ^Í?RÓIÁ-l ]lðW9w>†Çͦñâí'¢‹;ÖdÀðüM_?Ét‹ySØüá \gö~!{KÌmÜ ”a;)œ8›”ë#Èžådz ´k‡{¦¤‰·‹#]*«ÜØr6¼ôfÉÝ‹°‡^³ºÁÕ‡—fj‡EíMÞº°9ÃÛÎÛ˜ƒcí^=ú‚¡sx jRwÛ0÷*ÛÞñ¸ÔoÍœ¡k`X¢½õœBÖøp ƒŠÈïN¬sx@E²<â4ìT¾jr:…gÆ.¿±©ë'ÃŽ` M) È2š†–Œ=™c›GcÈ$‘\D­CÄñÞW`ÒZ£¤rÒx”á#P ù¤N5Ý7CÞ˜4—Ò4 ¥ø0:ºª* =;/‰•o'5­³„Єæ&aÛt¸‹Bƒ­#›x×&gœl²ÌÙ?Š·NߘQP°(UÌÈù° ¯¿ííúzàíFâõ±û«’Nø¦@™¯peVrH.) 0ýÌBTÇŒ}Ø„c›Ó/¦ÀäÕî&T—u÷èIÀ:BDTŠäð,x~äcÒÌ¿qaÐÓjiû¤±3À›UTÆIPJò5´7ïÎl²ÅŒ3ãs8ÖmsÈ€¿ŸŠ9Ç2{ëMݧov'»Þ•hã~›C›Œ>WGK ±•Vóiq“Jj!eImäæÞëâ5x¹Ð™èRAçDÓ¤@¨™î‘ïæ+9(¸æ@õöQ÷8/ÜÌàg¡PØÇ#ƒ‘I“:³Iɸ¿—ÜâFU7HFDq5_ŽJÚ–öÝòVé¡R§>"*Ã<|zuÓíϺeÒÁpø >zWÞ×Uվ޲#MrBFI1ÑŒ^e…ŠóýZ£TÛ‘]ªa«Ï‹Æá·f  YžŽwð#·ÿvu]Ì{/_åxKú,Š@ÜÜ?/gÀŸ:³¦_м¯Ï¡épµraue2·¶´§Ó²ÇE`Ó‚l<]2¸åBÉÔÅš ]›-€‡ÀnQ±po!ªd&š’ç‡<]w’¼aÎIyb½åæÉJBp+g”D™^.ï’OH9w\„ï¢Oqå#"_ãÚDãÌ÷˜3…D-šÓñ4Æ0âÇD<½Ÿ_ÇO\_û)I{áÍ:ä ÁŒ‚áQ¿UTuÔ«jÄYÁDÞFÚN׌ÆÑ¬´æÜ…ÊÂíC”CБx÷ðžá:攘ÏRý7pêûž6s–]õˆ™Þ‹0v$»£Oê±v w×°XhVœ£pC¤…ÒËR»Kñ¸álD‘–«^éœ4Üœl;&ám·¤(:.¬çè0›×ypÝ3ßÑìÀVë‡îxnÇe a:¤7s¨Ìǯ3t4j‡)ÁÝH¦@I—iP«ÑƦÐð»ăæ6ÂC{R2Œ¤…mÝGVY«MXrD+È<̹¦(TÉñ[@–*—šR5|ÒÒ¸ìañŽžïѦ—.È–*SX¡™¢ÁRgÂŒ5t³gŽSD.½•÷ ŠÀËà z˜w‹(*N§&9ƒ>’Ãi9ou.gëEU"…àÀPØÑÆŽm¨¢¥·O‹†QªQÌ9d(2ÊÁ‚°ô£i­Rvú jö2)5†ÊÚ‚Ìú $ÿøÊLæf‹Ã§Ñ0‰2Ï>Ìý>Ëê ZˆV»âÝO±å'·ï6y·—±¨µãŠ&Û‰Ûr}*|F+Žñ”?—ƒüò¥(ÇÓðßÂÝÙ´º`ƒ¨,؈ô§ð/€¡kÙ²ðVœ4+Žy‰Õ°éæ´ kÕ%Ý'X¯=+)?‡Ãa”Î,dœb±]p8GÕ=š*¥_©‹&žRTŵ6ú žJ5%5«ëèÎë×ü¶Ë*8âJTŒ'tGÜ]Ôü0“Þ*¼ÈkmÍ1i|(Ë×Ñ ªºR“´¢L Rs•ʨÉQ•fdˆã 2䢖¤_ËXjw|ç?=`9Ø”Ê )h ˜=«OTÊ$™Æ– %%Ägz}û®¨o*úÄ«ù pôä\ùTsO+McßY>X?ÖU‡QJK¤P¢o;t³œŠ10«?aCÕ¤Åðª2gzÑë…áV×%qÚ<¨ÐýöàÇàͪ«%µq¥µ¥“‹'µ¢/Mˆˆ0>±Gëlé-±ÀQ·Ç9˜#ôö¿›Ì–K&DûùËSæ¹ôÛ»@É©«€@´={ qÈÛ|!ÏQ)›£Üñ]Þ+8ÎSŠeLÓŒÑà ‰^ù ‹:.8¡èép µ MžöÂÝqæÂ|<°=Ã)7€yäKlý`—îÜ7 aaö˜³ÜòºG©ì´‹OZðÎ7ÿnyuÆ{ª`ÿ51õ½!ô>3Œ©-˜j›£afuJe|üœgÜo‡ÈÂFÞ,d½çµà:·rÃeJyrÿ‰%ØîÇ UÞJÅM瓚2àZy˜õ±êŽEè ÷Þœõ~Û?b¦Ï+OÛmwyQ[hÌéBxBu£»¬d> ‹TÌýË|™¼æ®q°è>Gà Ÿ”žn½ ÞÜÕz†V¶únᦠôÖóçwÉçxu©øu?—½t~ç)øèU!,A²>GéèøÆoê÷Ædæ ‚6ò‚‘sBÜpºª$‚eºï¸y ¸^äm\]<µs˜ÌÞÝNº§¯Þf”ZLî—O¦ó›ŸB$ùÜœv·?ï³Ç|¬Í?»Õ3<·¾W¿emñ iDrFHÛ¿Ö^’^©WcI7Úøö þ€ sp©1^f$Œ§ä| È ²¾²½š»Æc;Ó[êJéi ù™á½þ–ó¶ò¬Çežq`' Þ®Ūú>4Ù%j‘H‰Û1ÿ*±1 Ì?4EMòrÁŠþ /ù’+£æäl'm_’“ϯ[ßèF„lÓ=NÆ'Âü¾4¶r*õͼï¥CÅ5]V42ª"¦¬çm6¼É‘癦g^ëå²ÇKN\bDôîïg9úšíy÷ièþÆY…¸0ô>m%Wéó°[˜¾ÐXèø\(Â}ýe“ÎÙcÓžò£Ú:¡‡ð$}Äh”øÌ»I¦è€s”³àíÜÔlÕ§ŠhšÜ e©ÏÕ:Ѩ}§¶›Eê¿£¢)êò ŽG²y\%¨¨¨Aµ·ÙBCšÁÏ® ”ºkĤ%F¥ˆf Rùa¦ ÆÍî_ïÄL? Íüj4;Éõ,ì5Õœ7U¥–'1¶šœ”|-`ÑG Øu=@ULbF’aoþ Cˆ®U’ÕÜ£ºðÀŸVXÞZÑXSÑ«Z,Ø™UÕ÷ÀâA]T­uR£eÞ²Þv Çè¼Ë8b— XÚ>Ø„9ÏžO‡õ¶.|ô:>ºÛ{£ó—¬3Ì]ÜÔDÇ‘•bôl?vòi!q¼èg*¯ ?t½÷§Ý­ÿDõ›ÇµýŘì.Ññó}dMO·ËÊû­†ºa¡ÎÎ*¦&Â0‹“Î<ÂFjÛ“žQJ*±ù=„²p91%ŠÑïvNAÒbøŠVy¹¹J“H>þ'DñÄÄPvD)H£r gÎP>tØf„üð‚{­,1;’Crü{éVøèB65Õ¸ÀcõÆá^X(úÙÂdÂí— <³÷.œ›pŒb„ƒ¯Ä#Æ$•´ê½—cUcaõ6HáöÛ¼I®ÜÕZÙ|WiœˆË7)Ê"Ô}N„ã`Ž6á7-ESÝ/ ½@dB@׺Xúõ]p—¾”çUMÌQU”_…–Ô–L#Ê¢#‘Š@8?Íèws|¾±:üt=O@Çîî¤ÁA¢¶f˜×ÞÞ{^“¢53êèÔmzÜ…§¾7¨§yd´A2 Â#JdiR,KÒ'@`Ø ’ØÎ1COfy€€ÿ…•Vÿ¤i^;CkW¤ªÙ•]Û‚ßÎ\'¿PÙ ”8ÎÀßQyôdREÎ1Bz”U¯5k±5y$o9xL™p…P½bØI0pGM†O\`R£êMäW/©Ò °ÃT°ÑÞ{«Ÿøä’“±ƒF¾rŒA;0_eA©ñÛŠÂöòðØ3ÂX‘ÊPŒLóÏ, M !Åpc{+%æ|”}Vú"+Ýe:Î >I™´[¯e/ã.â¨L82íAëœô]µ3ø¾Ÿ@íW;þøXtöNÑAWÎÖèÝåÐmˆgQ jdÂóòúØH}±Ùî\à’¯ÞrV*Ö~¨ár t¡·Tñ¬vw<8òd“ÕþlµV“ºÒõµ©ýêý8eˆðl‘à¡V1èÞ±)½žC§U•+ãÔ'K ÊV£–ŒÚäÜ}¯;4,Õ}µƒ(1¥é_¸Kª9!Ê”•vRvLóΔ&¼ÑJÁºøñxßMúV[8;0¶2Ž¢m3?êkãê]Cÿ~°1кš}×°ª'Ä–“ÈÙœ‰Æê`Û#ü‚h¡$ë”’ÿ` süDÔÿ¿Dÿ\g÷Ÿ"*=>Ë_{ÿoÛèÿ79Dÿ ž2ÿ‡ û_êéÿX›ðÏÝâìlÿ/Ú%3=Ë¿©M`úûÚ„­/Ã-Yíeçï”Ï?}?ÚÂ~þéñsSTó=yõäL<…BüêŠ}³óóZ} lMäL ²}luÄD,luÀ£còàÓ²ÓR4勊v“Yž‘«€KÐÈÐPJJ¬fåjÊi$hífæ&h$ôöö™ öââCׇó¼>úƒT¢¿~3‘LÐ;Ù¾3ø.<¿Eí¤ò}õœŽ?_kqÈÚ.]?ÚÄ ?o™vÄÒ¼.Lä,i—¦Æõ»”ý˜¼èãw®y—e*vH¼D±ÜË5äøø~gï‘Oì`tË~õ~n¹úÎ17O¯‹Ìd„¤¨T^¯ÛÄì|[Q¡js·Ì­ËÊÔh´9¥xo¥²wC}›tÝkž·”å§Û 6/›KªLj÷ÔÚ8wnx“±êœ¿:¬.“ -i~»Ülÿùs=†wmåe å³N÷Úå´üòYnÕƒTZg»ß>B32dÀ›êøDŒ›ãéèæ†þk{©ó¸vÿ§2ìÿéÚý—¶ÃÿÌÒúïzkŽÿ'ƒÀ¿»ŠþjøGÀÄô¯࿪tèøÿ±0ï?Ù€ƒ¾¡¥±Ó îÿKªÖZ þ5Xë?{L¬þƒ üç1þvXuü­kï Þúï.ù°ü¯²¾—²õ_[&&tÎtÿ”°eò—ÿ‡”­¿ïü;Ï‚ÄÿEØ–ê?ÞØÿù~Àþÿr?`g¤ÿ{ßBµ;˜ÒÊò¸þÔl$cŒ‘Ð ¼‡8¾¾“C æÍŽ}Ëa%¶øu—˜ƒ(ksÍ#.8Ýopˆ gDD ë´‹›£C ±ïÔÔ—åÞÆ´zÓëMÏéíKG!çk¡p!±OKRøo¶¸º}0§ý¤ý/*aËå/¿9yï·9o9:æz6ÔpTÚ f>zrJ£ÌT×ÕÞøQ˜,vÇãG—o\‚M-@Ð?vÏ·®DºŸ ë`íÖà‘˜|³Ó3¶»˜{1³þ–Ü<Íž­-|N>y¾rni¢£½(þ׸ÈÂÔ-‘vµ:NyòÇ`îVmø«ŽK#:•h!5êÈÍS>ö­3ë$Þ8)"¯mUš¨g7í>iuÃѾ¾ýƒâD¤±YŒç»S í²7uÆ"““pY|YW«ÕdÂÑ… Š™eÉ‹€¤,9˜Ö%*òxŠxr7Š‚åK‹ç‚€,Q‚4¤ ž ,á˜üÕÅ)r‰åñI@MIÑËòeå‹fd‘WÓï=\ŸÚ/®UV k^¦…;E>|Ï©/?~:@˰·XyXvï]î7}ž5­ ›-õ±FÂŒ>zKy¨píŒì>·_á‚ã!18l÷µ6˰–ØÏ¯ÏL"2ßÒýþçk &yUáh‡ií®†`“£Å"Œ‡‹ð¾Ô3‘À^JwfôëB‚ì>9ŸD¤[¶qMƒÙö®Éê.Iô[7§kú$¢]Œ¥‹´’&œ°a~„.XWábàkuæĘ̀™ŽòG—£P8¨ÕÜxa•ÇÚ4ÀaŽÂÓ.Ù*´üÅ„-¿bÎÔÅPT P35wnôß„8&Ï-S¹HñÛüÂŽ? o+¯¸Cîr¥± ù qŸñÈšõŽƒº¾¥Ú®µèÄ6Û#;¿6²üÏ5yá!qλù~Sß!®4¨ˆY$¦ÝŽf-P]† ®L¾”z‹Z„Ô8†fÞŠ +?‰i¡/ƒäÜ ­º'fó–"IÀŸ s‹´^<:öA~0´F«ZšPrÒ\”Ü€’(²Ÿ°ÿà+[£6{ÃûÞˆCÔ…EDÖ?½Å‚íI8{š¦'Œ›VCòBŽì1hHd]6r â¢)ÔYYN\ ^|Ì€ã21ÿèq&U6‹/õ¢6dÀþgüé>º¾t6í s?ºR—ì^‘ªOþ~[2ž7•qbÕ‰mA`_R'àEüUgô2"ÑdÏD{ò7ü pª’*f„«CéÑæ‰·ÔÞökv®!èS¥ð–£"r‘ å¢Vïk1DNoUf'˜´ð‚möoé]EjÓ@ž²jrË„‡±þSžÆ!¥Ž†çîåe©Kì%‚]Ð̾èÝ0›å´~ñ[Ä¥sdŽ”Ý5Ö4aX o Tq€Ãôˆ³±»Nå‡^ O½àåDâü$^ØbŠb3Ö] vÚ~ß »Zð¹æÓó<„ÁÀˆÍfa,m’¸jÙ‰IáÀøR˜Œ Dg‰.D¥æ8xÜ+êÞZß༊b åx⤅–Ìôœžð†©¤#|3=]Å(äêÂUâīԾ†¯qTȲS|;ìõœÄÀÃ3g;9mºC#r첄; LŠïRE/ØÕã^*4s ÏU³ ZIÎV"óE_éÃ63âØb>…ÖÑW‡vþTÏh*¶ƒµ½_ÒȰV\†‚½Nóþ—ÐÚôù¤ŽºÄÑ2<é/‹ã…ðÝH‘ÌNÙ´¿B=$se5[¬œ¨Sx¤ r“t¸át^¶{‚wŽÖ9»Ö|8h¾ŽXBÁÄâ®?|{Ø(QOÆTv±¨¯ •ÂUæøš¢t;õ¾&óqà ¿qË2n?îV/µfù1s¡å±» ãÊUP¢NŠ£ËèÅûš¬yóB”6Z¥úiœ4¢T4‚ÅìV®4Ö•çUǨ^!ŒÖ6ÌF¬n"½Ô§ÃR[Á®™0#ÃØëøbùµåbMù)Bëˆ. 5£ù?ŸûÕÍð¸Uº[,~ ™.ƒyö’§“§k3ôF °û[B¸¬aVÁ£‚£Ý l-rh¼!À$èÔ$ ß¶GÖH˜1ã-Kød¦¹É|KîfÙû|õý‹}7oÉ' Îb‰â?»³›P.£´Í ¨-ÜLJíLíkÆgµû:”Éô٘ϧ/™2\—p=ÌÂY¸ŽDÅ„lG®7Qzî]W‡J,@Êï;ÌÀOU/@Ê×µ‘1T©P¹‘°îÍ%`!ÜÚ«ë­ñ(éú\íüi4Ðúãß¡FÐ@ˆd?»`t~4ŠI`Þ'®Ä:6§ãè߉”e¡9fm_ò2rÕiDêªW‹¸£YŠŽˆz0ŠЙƒ3“U€â¥4Ït ºÓdd—,æ‘?W›ÉX× 4¤IéAâÔ)àæ•ívAÖª[L×Á¼ô§5Ù7¡ì š¦òÅ-hgòú§ª& è^ópö—í«Ö F“¨’ãâ&­¬VíÌ W÷“Ý(s¢²ë°2BÈ dgñâ¡8â0èÀ„ DR¢B¡³Â…{½Ø.…Bç}NÔ‰ÛùàØFìó(•€?ФƒÀºecD³Ü5Ó xëê ·T³Íy=úUsxÕÓÓ«NË «´ŽŒ,\mrCwÙ‹Ìø«opð” íYÞÚðý„©ã|!]so[ºI½ €yКR6¯wêZ¾È\!h“(õéKNRSòEúN|‹0×dÿGoƒ¶œ¼# %þœü›ñé‰a>oƒ —tLp.·®×8æq"$î±Û@X>ý¡Ðò±4bš-ãBáòwüè€uÆúÝ'óGÜÙ©2ycÓkrœhÄ( ¶»¾Œ¸‚´mBX‰Ã6íð'”p‘ØÎ¡g®ñ]AÏ8®/cÖsš‰·ÎÇõÀw7fOä7FLšdÇËbš‘ÇáÈ>?ó«HHèðÈ( ÓMâqäíÖ÷yf Űt¶Ù¸ ó‘LŠx§®›“lê½ :1ÃmX¼×ËY©çSpœÂ( yá>AUDYs›Çrõ‡Ûz;?v‰éÛVm³¸çoU˜)»_[- .údÕ9A.ÊŽWö¡:aòÀí£kˆ‹8òl¹ßì÷\Ÿ9Ð=ŸÚén4Oï5b}› ªùßÖu ù¨Éê^º¤yÒ1¿«[d¹ Eœ¹6¾ŽK í/z]z0FB§!¬¸Î£ö¾ˆW\3ª“ƒÄJÆ¿D‘ä#æÔ 0Á”-#k£Ê〠ì*›™lŸM½ƒjÀQ…%°:žîû':–ç½Í®Q£ÉX.¿WÒ9gOÙ“I ÒV•Ö4/× »ç¬œ°ËxÀ8Ô]V_cýpfuBv¤ä³”^'_hzïSf¸6}‡5=ª"×+îš«'77× ¤$«ªlAOò # ÝEÃÄ“´01FZCnVS‚ß E®`b ŽÁpaÍK{ƒu‰ü‘JDÊΕKRÌPWÉ’»À­SÞ;ïo[l;ðÇè±ÛÕ”ÆEÙ0¾«“çÝÓì£ÛÀ®c\_ÁØL{ã«æ‘_É…Ó­‰åêÌÏÐTíÂä%ˆ™ÃPhì6ߘ’ƒ2—S±Ò‹Cþ†Õu{=ýÖŽö|ª_Hè(c’rV«µOšì·í¼‚\œ\Oá#‘â÷Ìxë—Buæy§ñ›E?ÎE¿ Þ3+oã%ê¡ÂÖ¼ý6ÔËI%Üàˆ£’'FªVao}å $ º„æ™Ù…Y« pí$Ïà3Û•õ+g·tÄe6cEó陥Ôc}åè=µXb|ôí ™W'¬#p÷Õ®ûs–6fìüçÏ€ؤYˆ‡%Õ,|þ†yöPóÕé-¼.Ù’=·UM,ï£ÚhM*Á”ö{hÖJ^VÎ)SHf#çï5íÁ`o„cprˆ{f¡éÏÆùngcýÜôû ¼¶Bç*qw*Ðc&¬Î-ÙÎ7kâÒñ•"@$8 yF+AQA ›vMñ3§<*Š­‹zYCbH©›ŸTÑ/WâÃ1/‹­­zô3–Í¡·Ò÷%ÕëîHÎbÙÇûõ"+@TR¼yIã³|’ ‚E ¤Ä$ÊX Õ0⋳ºÕíòZJ-,­êWÆ÷…´F,„sâG( Sß1©Ðj*ÃNtÒ·l< ªïžsÍQÖnœßÁ™b1³á¤æqKYh|J’…òècܘãb¢y3sK~i`e ˆpšè︞˜3¼=>¨˜øôÆp¸|?öÞ _Îài“ø%á4„4üÞ­;:Ãö4 %û¬[Flj"pzµèº•³Ú•‰‹á‹hoc ý¥ã¼Ø¯í?ÙXåOØ–ªiP2‚·?¬Åóà™ø&7S•zÍ_¼-Adßv±3ñ¶/S ¤XPÆg¹Û)h¾ ü¹Y,—¾‹2@uŠ*ŠñNrê]G‹ûKÞ•¼»lÔ×]OÖÀ‘í#€^¿ü!™ïqîn‚AT}„È !ÓGS0)…Ÿ¯n»—>:Ë0“±C%‚&Ÿ2AâÓú¢•)£œt×À%œ›|Äc— ò´4Û¼°8:Ÿ8iK$°4çò…›º­M{¬#|ŽV“Mõ®éþL[=95üFB…C¶»so8->sn¶lq:¼]Ö¬ïJß&N䕾ûpùp!v]“wÒ ¹ÃPCîÄZjE‡Ãå‰ãmÖÏ”ÅÈ^ ˆÜ†“&ª¹>_0G\d·mùi©å*K¸/›Ëm6<ç¾hÔ6>‘Z€qvP‘„C±”3¼‹mÀ—‚u" —–èc‡ÓòžvÞYŸ˜]±ådejT¢’š9æ¯RSÃe±í²}Á«o”jë#”CÛÆ²¥wæ2gjÒ¸À(Éá ;Ùr?³³,½_]Ot 6ùõµ ɦ3:h€•Äì¬n~ælXf@Yíï/Ðw! œÓù¾öšÕXíìu’1{ïç7;ëçw?›‘qï°G! ø[Žm!ìS…ü‚wœ×ÀëBªFœpÇ CC-t8ΧÑaQ„d” Š€Ô>ƒoÌæËqU–—N "‹Ò’‡u.! ¡Q«@¢¸È‹?_ ÇBþÞH‡kàeˆ\K¬‚÷T•‚Ø U<•kÒBVÄ[p'ž>Ù šøT\iÓLV„žGÒX”!Íhg†šòè`ðÙ)uŠ–jÛ‘ÿÄRÓiN@p±l &PLL*ù^Ÿ}ÔU¤)‹ðŽscœ”œà~¯¦N5´ G*;Y¸3"^Z$‹–†‹¦t`9awŽ…¼Uøñ>¥P¥PrêO‘6ob¢óµ]ä4ù%Áo8ÿ"eüH¤g¹Š±xAn¡AâÒ]þÖR<‘ŸòÏM% ®<õ…*šºÓ‡‘‹ºPòQ3câ¶ O Ó Ì²¹EpUwv7lL=K(w©~|Æ¡@Q_öe×êß–ìÝ3={âp˜pФPøï}†ÄÇ £!& Úùz¹³Ö欕-þlVËî]g¬âzB;ñŽÎÇ-™Âò¦ÌçÐqD‰Ö^ØÖk©u6ã;q’aüCzo­í5¯hk:>Ç‹+Û­QÅeBt…ohý¾ª-ࢉκÈÁÖÔ€¾ˆ='¨k›;„ÐC¿C®HB'ßžªÄ»~e9Å÷§`2—ßKœ/¾B°o˜W(›=wW@@"dÀœË݆þ’lÇÊËFÊý3ú4•¡h=L(h‘CïëîÝ‚+¡Vú„ø‡ؽ‚[wíÇ"·Tu7BŒÎ-Ó*ç`˜¹í–jÃkVßPþMÁØ0-V3µþ‡ðNÔEŽ¿ýg˜ÍY7m7­`jtEíiWQq'Å2/ÿ ­Fé/ï:‡§×+VšÉzQ¦P6ã2A« •‚ÈxGÝN°óE lî,ílÖÔëГ“Á1’Ÿ0sÉK$!ã‹í4êÊ_}›z°9N¹ÄÄÆšÝüOum?›ÖúT}‰qŽhÏlxäG ³Ð.À<.߬¥ÒžBcZ6E˜˜Ø̆—ùƒ<«3‡ª ¿Q5gÕ”‚› ç¥ 6Ì9 @щ+‘-@t–›·@78…ù¹Þ,d„?j úöLìš;êS^úl謉”TÞç£;D 1÷  øóe GÆk«,Ï °››ÕŽ§Ú­B-÷²N03A'à“2ÄË]òÒþÐUza2”!iDcˆ¯ÝÅé]Üȼ{é_R@/\è«~¬&ºø]™{îT'«'X‚T‹é¹^®;×vÎoÖvÜúÁWë5ùz6.Ÿí7`-©ßÁ 6cçV¨1l˜<7ëS'ëC¯…<_°H.2Ôâ`7ñ"Òù«8êɦ5ÙkAXŒ°dªÖ(؂݇Jd«kŠ?æ kÓúQhå&ÀëU”s}G{¦tš¦pó…ÐSP°Š¡o^ÏæÌ¦‹m­ésð'ÑV‰€·eðE¯o\è|ý,5~ùr¥¢]:5Šnòth•²1½WþìDm+´ú˜}„Ý(ylhxÀOyÖžÎã9½ÚƒT/™ (áèÕéÓ`õœÿx ³œ“Q§_]¢£-¢¶Í—®o” 4Œëã1§z*µŸ¯øQ¹U¨‚²[¿<ÜÚçåGÛ‹(àJˆ±sEÎÈ¡î'uB¢ô` …):8ÈÊ$Ò<ª~˜‡÷1BÙ—0¼ÆË‘ íGÙ86õ)¾ºIgpŽ®Æ(Ê­Éd _á»,·Aºfº§ó6÷Õ³rq'§Z>fHÍþDVÖhXä9XY6Í‘!=øÛ12ÑàM.XÏ‚Yc¤è®køLÀè">±„ñžT–°5ˆ¹ä3sÑ Ý[=3PX„A ªXA„S á­!Ÿ ŽŒ"í#=0”BØÝ€Ù·Y²o »[urÓ´±«‡€ÒôÕ“Ä‹#÷³¯Ø›í6¨}Æ+[ùøÈÛèøÈpï/’^Ç­(8)·KÔŒúð´Ð󩦣d/Í ÍÐxO™õðj²D¾Ù“g7%(УÈ„XÊgý’ "ÄgŒpn‰‰ / gêßÇŸ×ó›€e‹Á‰2»–DÐ0@,®R© ×D}SMÈŸóKW-9Ùjõ?}ÈïØê, Œ ÄŒ¸g¬wÐÙxKe‹öªâwz)F¯¶ÆYI~³“¶Îlª[?ä®ðnoN3ïGZå³7í§n¼O"GK“‡ÑËé'©<[‰Ô\æy'c»§¬bë®g “¹]6ð1¯$Ê”¡„?MÛ,²rÏbdÚëù1Ô±à®;´ÐtwQ°á׉ÑieØ\´0DdÙQoêdjïïg+ßqóm: M¦­E<éˆyÑNãÄâ j3GrY{èK ´ƒîf½þê~6xwníÓ£ó vUF‘çé%b‡9ÙX®SX¼²pYì .›çx¦KAêÓ&ÖEår‰îAÏ#\Ÿ7Û¶„ÏÏ«<ý}ÁeÅqÚߊ2AXƒoZ¿/Q­æ¨Ü/4­ ì9+Åû²¼–šS6nö`õúÚÙÕ–Ãü}ò9)]žéÆà4VKÓnMã½ sÊHþ yO:§Eû”1iPt£#*b¯«´ñ±Î¸'݈ˆTœ¤ñòUjƒ•JéŽVE<.âÆà)´º½þµÈt¯ûI-²J¥@G‘OX$_‰C¢Ðˆ/†;œ èù÷]o—ýŽ›d ²ùxT˜.þ™ù5ýyRè ]¨ù Æù#‘8w}÷Öˬlæù}÷_^Ûi¨ÏY(JX¹FÜ<íÍx¬å‹áSƒ=´=Òró%dçâ”Ä3 Q±¬Æœ˜I/–奉GFoù9! ߣ˜i[ÊîV¥ÙQ4ë "¸¯kãã» »=Ë$Ë:LoQ®–±£y«É(e1_Ú÷#îïO!sÙo’hébHA³Ü¿ í}`”,‘2$k9¯{)5^®}Aì#kÏ3u£­QóÿL$?Y=œªæ2¼|#H¶Œ$âi¹|è3õý~›YšcÕó³­9`çmÄNh"oHiUa±¿%dD¸±e¯½ŸAÂ^ǪcS'v÷ƒR»E îüdo’e?¡ÒÝoÖrnÝ*»p¼æÊ#‹àøÙŠ!të|<òÏù¨éKpëY;6¦þŒÓeúpõ70’aÁ{÷ð§¹ÅÑ~·OÁ¿˜wŒÛ­é¦»èHt‹3`ÞÃY-Ø÷ŠÙü•¸_Ø:žqa&Á`Wm"„7@ϯ¯/À)]i^ÙbÕC%ñu»¸5•ý½²^hrÈד"ú«{7> n_·~ $ZEÂNVî„J2>΅䫳›üCËGÇdØy¾‚~Tš06=XxÉÞ:PØ[æãe ûšfäi¤!¦8esëcíæÀ? ÔÝ“¹SŒ:çV1²g›øn]RŸ¤«8Z¥üÆ„ƒ>°nÔ'ì’‹ðž±a5Tèênå£güO@‘­8F"x|2Šf•ÞwX• °z¢f¢ÚgÎF¢oÎUÈvb#QeÿR~mW™ƒí*å söN¿ÍZþ&ÄÐäÚŒ&­.GÏ7æËU‡"õ‡ñA‘¿;óÙaÞjtìL¹„ÂP¢ ·óWs¹Õʪ¨3NÅ#óÿ“•åß¡°²ÿó Ûÿ9§òß¶ýC<å¿ïhûÛLÈ…TþãPˆó¿ëZSþŸ|ªÿã|Ç?Ïwpü?u©q0þýÀWS:„²qûw¥ùQ*›Õ`·.éJb\D:8Fú'zBB|%5ø'žÕÞÐCÀBAå»*\ražÔ\;žÃ^PÁDADFa¿·…Vv‡dfZb<­••‡BP~°-õxq™VRv³Þ¦›â¾í° ƒ+gFj­–‘Êù âRºÒ±(Óqa_gtïkuRn*ýc´s$7­G’˜I3\lŸÃõA¸ Á—¸þ"ü$|mp`P–!yU¬Š—€¡2Ü}Ù€©.Ä-+M¦Sˆ›¿ -ümpbPÃã½.XM”š,‡øšDáA0|NˆÑœ!]Tþ \øq¼T¯y÷þ%.ïv6*ÿd ±Ày ?älTØhê6Àñºí&ça=^PäýZºë…®òFq«çó›Î ãËÌÍíuŒ!„¡“ÝòÊð‡ó—Ê eB3ØÑAâðNÎí±ïêk(6e§¬æi$’#)MÆãÓa@()_Òk þ3Ãy(A:8ø#$`€cßBÿîê®ueÍÖBœ|0X…Ä¢^ÔÚpo¥÷ :¢ß"ìQPÅo dz=FJ3¯ë Dâ`‹OI´¤…>B>»¬®}È‘_¦O¿DSÊüäë¤rb¦£Ä}Xã"…ÌõìWil¦eš¼º1j@¬a€U߀K=oP ¤É¥°?¬ª†ŠLÖõÄC¨žYÔór C-@U#WpkÌ:4ælè‡üjµ"ù‘1Ý>½.ƒxÎýYP»)¥\¥¬ª˜Ò „jVúÜÏ[‚"æ ¡”b‘OŸa¿œyºªƒpaJ솥·x¶d„I‡¼r»ÒÿJTúû‹Uß°­xÐß#Øõ´Oì³7¥éç%Ý7 )””¸œã¥\àcè$z~ÑÂ÷qÌw^æ §µe9Xøt|=?ÖHjáËNý¹cÔ4ZvÇ0ö’µõ`¾%¼®nMHy¿:ýû² Ù'CçT“”¶Aaú÷€*ÏoîÉk©h­x±:O ¡ÄØ—Q ØÅ”…Wóiíße_}é>üôŸJGꔿ'†X{ºÖéx`µ„Õ¯ò_j~¹Ïb'6¸pñ Äÿ¦RL7%ha»f¿¦Ê°q´ä/VŒŸ?ZXJð˜8ß|šÖXw­‚ ƽ?þ®†Ò ŸTTh/,Ÿª«rh€t="!/ì‚¥N{Ø(ŸPú½(¥=zˆuFò)ž˜Ãò‹Hž+Ò‹%†Œ…½ò¹ð¹2ôù1¢ƒúô6ÕvA¨›Wƒ€¬¾´`uÏ—™ÕÔçWgZî¤l¶‹ÇSî\šì÷‚å‚G£HÊ’Yy1Ó &”ßf–}Ù‰Ñ@Ë“è©7ZÌ0.»Ñýpb¡|P`€ïÅGið‹ºÙ|·åp©7¾Ôš¸œè­s Ô/ñ_{ص³Û©uåosØ3-rÙ¾Í}÷žîF÷}¹k½¢ñÛ×Ê^®Ÿøñü.ðZÙ¢Z8æ{ §+xGH@œ+ y±é;ä’?qÊíÙx¶s þQ­@¥3ýŒ½ŠæEÈ3CÇtùHTÞšÐfæ‹ï¡<¾ùQgÓ©Ö7 ?…ú@ê0å~‚禓¿âç©ÐtPGo,ô{­,“ŒÝ¡8Ib[ñ ¸5ðº%ßžþ ówY"ÒŸ°tÚX#šúðç^oå¡dõŒ`NH±öà0¡Šãë`¸FÆß/ Õ¸Áf0eàê“jD¥)ÔWÉ(Q®³@½'¶`KÂa¸`†.Nј¡Š¼a×Ò%ð…ûAçsöy‰xyÁ©âõð{¶²žXƒ²–Ó>QjN}Üýöª_ó¨c¸RÂwLê|Öà¬P©’Ö|Y$Åo1—eÃÊÛKÎvÚZ»6ÄÙ ÂlfÜÒ>MáÇ¥¯š+"»¹¥%F^øh­eãxm~½ÅºZ­¢†i}à°«d<‚6’3Çoºì¿BVìPãÒîK9ˇ‡¬?$ýÿØû8Ë¿.’:+”Y.k²Í¹/HÎÕ¾  3 ÃÌXÇ’(‰ÈR–(²–lY"!KZle)J$´XC‰çý>g†1îßsÿîïýžçõtß_s]çu]çqÇñYÞïãø|>ÇKŽzxì;oÆä¡oìIíõÞô|«´çë×}>2®îˆN_|e'ÿ¼¨DŸS=ß÷J奿ž}σg®Tw§'çÿ¢R\Í3pg¾{Ñ}b÷kþ«O¶™5b­j57ë½fNýu|éÅOýѰM®ÉžjŸx칤šûÞ*p¥ösƒ¯NxoTéÊeŸ±;¾bÃÛ^˜ð¦3¿ìCµ‡4¤D•¿_Ü6å«qâ®)Ë®¼¾®P©K[Ÿ±îícÉ=­â—šŒ}í»š_ µóùciåõ²ÛÿÛö÷ryÞô" ‡'­(õUó{ÉÛÊjóLüþãV©jßTËßòùÏ+ÇþyæÐæ_mß¿¡îÔgç~Þé®ÞÒ…#»öÕ;õÅÊ/l:×´Æ[-Ï4ºÚ]˜ÕX}dæ´Zßí=3î×I—7_ÉSýþ£ÃúÏýæhJïø¯4õÅu—.ÿ¡Ä]—XW«Äáî¯çpGNþuIÏ-ºÖüøJ½»Ïï»kNéÃo»¡È.yT¥g_í¶hiá¢õû^;òûò¿’>X¶þÃÑ“6ü±¢ÚÉEÇÎ×P÷6i\hHŽ2ýž*ýªþ›4®V镟ÿQ{âÎùÓ'õð *•m[uPÕz¿%>Õ÷BïHÞUFíŸ^¹oÿË*”î³ù‹š‹¿û¾gk§˜Ÿ·fë?j5ú©FÁ¶ÎK}JîšåôRÖv·šö^ž«Ê ÃkxèÚg®¾3ïÊh«Ö/Cz÷u>hr-aÈš^Ÿ=tÅ?›Ûþº-©RHÞ=[›=qæØ.÷%\+ùèTÚŒ…ùg&̸÷÷¥½5¬I‡óG7¶?7û²Ycèw§ý+³Û7ôò£Oxõ£qÓO¦½û§æ·1%f?üC\ü‘8utËǺüy(ÇÙ}K]Î}ü÷ËÆ|9ç»ÓŸ­jRO4ŒÉ9þ÷¶Få«Ü¿eõOŸ;ûÄöi¿s!¾tÝÍÇïlß_ú²ýÇ”úàµÞ¿÷îùØ’ö¯ÔX]dãØWÆŸw®Ä;+{ô«òÇ“‘¹W>;rß/÷~øÊé–mø%×7;ò.øwØ«§~ý¾wÉ®y><¤Òüžy_›¹yÖG+M<ôÅWú×ÛM.¾wήÏÚÞë—;:~ÿÄ©gWW=|hñ¥©—N¾²¯y±‰óÞߦXëg«oMªñDëoç–·ÈÿÁ×ãâ›MÜY­fÎþ—¯ÜߢÅ5vÍø³ÊŽ­[Œ:±=aÍCÇ_´œï¼s8mùw³39 ÿÓ¥ä€ÇÛ>2ûéÑßÄ«W?ˆ¿tab?ï›+Û†ˆ¥®nù¸ëŸ~:øï»Š·ügˆµxáó+ÞÜÙïJ±Õʤ£«”8ü¯ÓcçùwO­{ä͵µ#—wÎ*Q(µÜ -ëð~õŠ¿ *8oÓÛû|Öb×ðEeú¼øìæÉ‡šo/2¸øºø=_?_vÏc}ê¥îlRþ»%~ë•{£øcìþú%“+.Úsªv ±D™}‹Lüôè¯óÖ?ûQ¡ÕO<»©êÅ+T°ó¾œ¯ÉÊSÖª:Û:íZ8´ržrý<ûÕ¥-¦Î+²ì³¦l¹2þüïù ÄGÚŸ¸«}ÞøWžý¦ð+ñW7¬{j½üù”R%ôÏó$Å÷Økä?Ù5õÄüBƵÔJ9òžü´ã©|¾çquX£q³:¿û|dââµo¯¹ÿjþnÕ«Í8¼¤ìš×›Î¨¿ðÀåõj›/_+7×ê´âÃ|õj\ÚU¢è1ãr­k«¬7«\is~^_åØ[pPÃóËĶÉñèÐGvÕüãŒUoþ;Ã*U^|`ÚŒ9µëDZþêïW.nÞ¤v¾ç:^8²³ãÄæ…ö©ó+-ÚQ{Ľï¾n|þÚñ‘g7^J¸òîå‘-× Y»`ö»/®{aû&éJ‘E©?iÙŸ¸úˆµëÕ—Z–˜sª]µ~÷-8öj·¡úž+Ï5zÿÊÈœïWk~µ¿“zÿ òW½Ô Ï”‰ i0%ua¯‹LžûÌŠ«S;,Þà‘ñ#ÇÇ}¨ùÕ”…ÛöмɶiSóú÷Ë ,÷Æ–N;c÷µýâòö¤òO|{yhÊÎ\ó“˜r_í–÷wN‘ÝUd§ÜóÍ—Þ-žÜyØ®6û¦­íõЗ«û=X:åÛ'Õ¿Ç4þ¦H¹7‹,Oþæõ®ivwP–}¯\Ý{åô¥Z³g¬š¿§Ynm¤úá” ÛgLÿÉ¡>k_¯ÚcxÃÄšó'¼g={"—tj@Ÿ+÷_köê¤Ê‹_íÛäÄ_ÅþZªÛ‚˜vÝâw—ðþµ„W{œŸûB³õ‹œÙýw%å* xÃû½ÂüùUnU~ÁÊ\cz«yÊÜÿ]¯žÛ¤Û‰çÎ^óÇ·š8þ£Š•½Ùyy+J|wíÝÓ>¬—¸¿õÓÅ MQ¢ÍŒ};S«nô@ó»û_=;çÙí\ç“ëœs±ùã›?Ÿ{ÕŸG*÷›´öïßÊ^½{ô—Æì+r¾úµ»ÚjÜÿ±RÞO#«6z´JKqóè1˼ÕäîþGw-Ýe|` 9ž:ù·ºe»5–šoø¼mÓÄÔ>ÒC•/¼ÙºÞSÝç-)öbWsâ®ËÉqå_z±ÿ’s5G×<ý“}n‰PvÔïZç‹v¤ÞS÷ÿ9¥©;ýÉ‚*-©ÙuâcµïÜ÷­°¯éŠ©½>šyWéÉËNìOip²í‰%£Þj^§f§+—91Ï?WÃùlHçš_•úù…ƒã®(+Ïmú½NüÙãöY©í\\ÿZž¼æ§‰+û9W,y:¶nŽøUyÓÆ*NóÑs÷š2¼qéêe»º»ÆM~hÅ`½S|ò‡9¹Ü?öœŸ«ïËý,{ûéO‹Œ1óõÄýoô<²þµ¼'ý\‰ëÞÜ>¤lì¶{#Ç·üã…äZ?ÿ˜¯ØëËÎÞ¿cÞÆ¶ ª^¥úË‹gÜôtþ©õ¯–/8µÅmϤ?žì>ûߤæ?—è›ÿÛÁ.hÚöìŽæƒWÿ4·ñïš]󇼯wŠ›·ºzëisÞLX:¡Ú3—jë´éç‰õŽyú̱âêÆº#†t»¯ó¨SÉÓFíßcÀKÚüÒma×";~Ø×ì«ÎlYeÖï…F|rñÊ®EZ|ú×ÉcF%=½åؑ܃JÄ|:ä%ÿŸö'Çíîóù‹Œ­Pªá£Ö”ÑÇ~öÆCÕ¶î¥Ä”5¶­;¨­¸÷•‘9”.Ÿÿ~êÉ{?Ùþè®êŒ¶>¿îT÷`ÍpeÍ´ sß]·¹í—èÕ tÉùÆôØÕû·ï(9*|ÑqLÿê¤ oŸ¬?4ÏÙŸó^Mþù‹Ï'Öë»´jG}s…Ï÷h–û븯r5>5s}Ì•¸®ýºcõ»ýŠj¿ÞóòÊ2‡~=¾X’ðóã^—×ÿXu[ÒÚ?.¾õÊÊ&mëšoÑ/ƒÖ_X]BIõ~lXóߟŸýóÉØoŠÑž©½äõ§Ÿ^`uÚš»Ù’¦ã'U9¸¼ØÖ!>ý¥S·””ÊϬZU¯ý…·fýR3ÿ‹³¸gØÀ·îªüg±’hÖ`¹ª5wÕÝ^XÛvv«WJ¿Xn´>oË “—YúÞ.G›=ñím\PfÏœæ3ÚLxàÁ_Ï;4ñasꈫKWßS©EÅV•&ìßÑë¿7Æ7í¨=’s…ùwÏnØ¥‚~ÂÍ¿d¹ù^+%ïÓG‡¾TåîƒgÞ(h6œñÂw“þWÙy|g͇ۖ©ð¢ªä”p_“…ÍÏ]süíÊOõþ¹Rë×ê yz@ë…õº¤Ô´çïž>0!×Ú–·þ7mèØ'kMü}å›xúî>Ë66ï”Ê'FNâ‡~òÞ—[>Ù–ûèÜŸLí£^›wùÈ`õ†ãûî.\¦ö…6u©Uïçö¹’ëÅÖšûÊ‚ Eß­¶swŸõÿÜÕcw¾AªZs¾~¿ÄË%vô+ñÉ‘†&u8vo­—sÿRµðÔSMÛÎúÞÙÕïkZtÓÕÍ–å;0kþæÖ'ø}«ù¥ó~ëo™Ò*g·OãM_–ûöv¹K/>öÉË¿mÞvàÏ•×lÚ¶Ê*Ú²hðV•'†­T!×øJórŽßpdéθÄQw¯™{eØ,§ìµÊ‡‹õ*ðɹkIêþi•WÔ3uX¼ú›~¸CÌgâÊì*Ó¢p‡Ö÷µùç¯63Çt}©àœûSv'\è Ú]Íœè¸oÜÙåƒ C^îӾ⹶«µeñÃ?úñÁ^Ãî?ô_©tñöíK\–ÒmúKÛk,Ý;åߺÜëÙOæZü}`|_}I‰”%ó*T,ÙlùrsJ‹-Kƒ FtKž>z“É/lŸ:mqÕÓã/X}â‚૯6}µðÒiÞªXþðK³Oˆ¬·^+~þ¡~Só‹ûÆ?–»ÓâµG½Es¿Ø_7­ê'ÇßNÛÞP];ø±áëòl/Prcµ¹]ÛŸ¬P¬×£;Êîm°eõñâšŸŽ•ZÕ°s€á÷Öð{ÞõTžc޶,ôïŸol¹pa]÷Š+¯{eW»Ñ‹G­½oµraïµÙ ÷Ýõ݇ÆëW~?üÝ»ÿŽsç&w|'ûøö¾;«E¿¬9öÅ×.Žošòî¼Gwuß^²ôï‡/þ¤Am¯Z× ¿]ЊÅ'u_ðáâU6t1FývòPÉ»Gn”ðyÖUîñTË6ƒ7üea•žg]~ÿ¼ÔÌw_¶!un›¢©¹Î©6.<úB×C‡&W¬ùÒç†ü:RHÛ›ëµÔ#uþÜ5õ¶Q–ÙýÎ)é¤ûÓ}G¬Ù=?FÞýöÎ ¶úfX~*0¨Þé&jm.êO<ùx¿½[¯üÝõŠ—g¨þÆìÇÿ¹úÕ±ÉcÚ½ÞoC‡”M:æ+ueнUòž/é5,ÿ÷ïtÚ;dÓŠUE*_nøÂg¯7~yÅ€Íþ׉ýcÛ NxµLÇV…ƒ~m§v;«ÝÔ×Ç•zãÛøùƒŽ_PùÑ©o4Ì_þì„Ë}ôÀÎÇË7}nÄ´ñïmJ\ùÏ’¡õªzýrb…Üv¿üüþ‰{>5Ük+…ËÿÜ`Éú«¶]òÝW?LÌuaÑЧ¾ÜS³Ðé˜gfïÎýÍœ¿>øZƒÚ¸÷àëÞ«GüCuO_>»¤Í‘ïF/žùllükïïùôö\õߺ¿Tý±U–~Ù!÷šMï],þÞ7vÖ>sîÒÅÏ.¸öÛ¤3³f Üúå¢Mû^Tà©/¾~>þò£«.•.1agü°—g|Öwʃ¯??¾ÃšÕ;z(m=:uä¡Ü®mˆÙ2{ý+gVþõAò;ñÏ×|¾ÚÔâ5s̈<¶»âºÙÉsÍÿniâ¸Ñ:o¦½*½8¡]Ísã/_þçSõÏ\<¿mYÓE¥ÚËr–Û•óÛÅnÁ_gåuŒ”žßlLè9}Ïè ?}rUâ+Ó7–ÛÕ£O¯o7\|zÿ¤bƒ›©õÏ™[ï{5ø{§;ä‘Y[å/±ærZ3ùrõ…ýVÍ<ÔæÊƒ85:7XüÔ_ßìm¨~ôÉGý>hš$þºäÏcõ'´{fØè eµž»k_‘˜µcg}óþkÏ>qyd‰öbåÑ£Çm‰ûÜÿ ÕÌvCç=^ʵÿ·%¿ú|û Ç}3¹MËÆ3JlýüUãêò×ÅIð™ÿÌëyF}åœÊÓeVŇöì»2yŸ½óÞwï|s–Xòïn§W´*6åü÷'¿Ü>£y›Ô*ýÍé®n—ߊímÑ|õ÷l˜==ñÚïÝâþXôÞ<ƒ…ÔÃgÛÞ2¤\™#I›r=6ºÈÍ¿3k~ñݳ®IØ9.uÀÉ…¥s­Pß:tJ~sE쯓|±´îÿòAõGúçœûùÎóÆ=óyß?ÔûáÐÁs…Ÿ+™´ÐZ=¹„Ôûì• žmÓæâ¡ŽÏœ|¡ÂùÓ}Õig³¢§;O©Ð`Ò±“ *|0ø¯cßu¯uvR¡®—ÊþilRõùMšFúm~Â|ì¹r~eïù–±­Üñ2ß,äÇ=ñó”e_mÜ=vÉ¿Ÿõ_8Þçs+}1úÛZu&õ^´nÔç?Î|ºøS}zÿ3qKû11¯—ÝÝ·EÑ·»vòÀЪwé÷³§‡µíÓkÂÉçvïí1ad™¸Á[Îl[¡e•ϯ,xòÊ‹ßoúáà‘FŽ)£zŒîVcÑ ÿ¤>m[é.ò¦½úG±£_ê7í³)í·Þ¿op¥UO&ÿôöCycæ?Wzéåþ›ói%õÈ Å.uRž|¥ZÄþjU½Cî–ÍŠ-¯]àX¹¤† _Î]GÛÍÙ»¯Gâk[Ö ZÐçß9S;¾3in§_{OŸW`u‰^¯íZÿx±Rª>òêë{µ\8²ýß÷ *¿øÉóïÍSg÷GÛSo“³òÝ]›¯XñÙ§ÿhOéüp‰ã… ~|üÈ}'§¿óÀÀÒ#ÿi[ºÖ#›®å,öÃày·H´—þ·8ë5oÞ¼q£0Ñ>Û9|¢±L3bHê­¶7Õ›·7Õÿ³íM5j{SÎZ,âÆÎ&w427>#ž›—ܨl“’­nnp'’;é›7o=Zb¶­ÇðÂÿÛ[ÊÍGâ-oÙ¿ù£-¿ý`Å; Ï5§\¾>Ÿür½?þ±HçrTè±!×D¿ÏÐ9ûsÙ}~ýãàC}™§ÁÒûÔW¶Îö|Ž?èø\çGâ‹~)u,úÄ‚3úï8š¶÷ý:¿ ¼|¼ÚñjƒN¾½8åÐ'þødýá?U|§RÐä‘QÞ/kc_ùdø¥¯[L.óp¹±z=Ç_—Ÿ•Ž&ì¯zyâg÷ß×Î^üóÎó“žœç}ÔyÚÈ”KÕM±ü>«—N[ôï,ÿµ7^)=|Р£+8kø•gm«÷þïßö<üüµ_/õíÞò¥—ôx¸ò¬Ä•—j]®õùßÿLyúdÑâs^õרe?äûãx‰'ç–ßÞçßíýV%}<ã­¥C>³õÓ/›t›=|åç¿øñÈ¿,±â‡Á%ý/çz·úûcöTèšùÔ©î'þ¢w¾múמ'snú÷ëS®j¶xOõ®kÃ[7ªn\ÎÓôù"©u¾9z°éOB…ç;vš÷gÑMù—(â¹Níæ_)ØÎ¬_bgÁÃÇ‹4Wu­rý˜Ys›ã?ñ¸5ïî+=s›Y¿÷/GŽæØúò×1•^nt´û#- —ý¬›{jÿoži÷H™¡u§ô¾ëŸ¼OÔðÀãÅ—4ürë‰ZW^V3çygÚhig©[+œ}3wë¶uò~´$¨ºÿÉÄêÝ[ |÷ÏúÔ,óÄÜnËVnwïÇwk³FUÜä6-4¼âˆ®¥KÓË6|ôÏç{½öÙ¡`cƒ’›Ë̻Ҽ¾wþIüwbþ©u#zò3¼XS=³z¢g¯œ'Ì5I}¦EŸ“êÂ¥Ÿ7M-¿tÂ÷NÇfß ÁW^­÷«GŠ^µ¡àÎ+ýº´®3î‡Óå»}ðäÌí Ý×ìRZŽü«ßU}Ù/+¾ý#fT£—Lüge®ó3þ8¹¦ù–7*žqËTþ¬Óì{š ßÚ·q…Ä`¥ê/¾ôkçþ[þXûü仯>°ûçÇ.ä•«[››62ëëÓ?öªüû”‹Ëœ®úû]÷¼'géU­'=øCõäÙ3ž{jЙ'òyž¸¶aÛ´|÷Ÿ :3þ«ýÍ»jò…ßsÙ!ozûÚ;‡ÜSø­¢w¥Í®ðH×nê5hÙâb•Ï[üÙpsþÓ ®-sßܺúá1•Ëo½+një) vl±j䪜?¯ø¸Ä—Î+×õþèßæ³Ú?t£³Ë§_*XôÕñŸ¿õþ™9ÍO;ÿ´Útàß Wïóí£;¯TÆ=8fð•uèÆ>|âñ»¦;[Ã_ùwÑ¢#ú|üÍžzþÖ¯ÅÔOw^°~ÎSÏqßÝû-Ïáå]Ö?-–®S_R^-ÿq³7ô¬3úï‘o.ýúö–©kÛüð†Õú\z¦ú™qÅŠô>wiÛö¦ƒ3çÑÖS]~âò µ§óÿ^õJË7›·òhþËZ®Ë?ù¾úfu7FW[Ц_Çf]v×ùø¾EÓGä¿ö?O9þiñ’õ=ß¾¢¿Äý+±õ¨ÖùÝf›*Õî9³ÆðÂÌ<öaÚ›«òýÛyá_cíPðmñŒóТF¹Ÿ±åKrÿ¿»ÅGÔ)һƣ/è-gǽ¸`Ùý «Ë?÷x|C[3qø}÷ûüÊ·KôygÛ3 ¿žÙ¡›RüБNói©[ûÄîvWÛ®sZOœº­¥ Õ?Y±·pâ骿Õ|h_¡/7þY²Ð²Ó%§Ž ØíêίZqx£)ÒÒ÷Š Î|;ûýÇ‹ùo½v¸ßÙ¼¹«oÜÚí ûÙë?yô±Ë…ö5i^ªKʨÝ1uGŒ*?nѷα¾´ÿyÒ‡‰´¹—øï¿–ñ;®~ø™‰“&¾5eñöíMÏ<üZ ~>×'gëm-wM­ÛbìoëUõÓf[76S7”Ò»|õð‰Ø8§ÿ‹%Ç×kÿÃøY>;Xé#5¶È³ÛŠŸ?Ÿzâ‹æS6?·¢ªüÐÑú©—‡N=pöì5w/Þ[½öur%eà?ÖýE–ÍùðÉŸV?ûÄ‘ø'žÙùð¸—âò̪Zl‘?üÝ×’¾wæ¯;®hÛ.;å pjÍeݦ7ú]©Ùc¿“Vo뺼ï} Šü”gÏÔ¶U+>p°_ùv–\í¿5äíZ¿Tð®çÿº»ÒÆ×:|ûÈ×O—þwì¤éã_~sf™¿zo9ãÄò™_Ûµ4o§aÃÆ}÷î„ÇÇ”½0fô½æ:ký£XÚøí§O]{åÞ+vãR—?lT ùéÞ ÊZ\êø‚bƒÞͳuÄS¸ßÿ´úÇg·u¹pâ÷’_¬uüþoìÅ—ÞoºtiÓ’#êT¨_å»ÇS÷¾ôîK3\rTçZ5h|ÿ;oÿ›»ÛáûŠ4žüùO|þņ¼úÊàäÒ¿Š~Ÿÿ¾ƒS´öIöÏ;''ýýôSzõè˜åìOìÈml}áÒö=Ÿ-«ûþ°ÑkGÖô—·š÷©2°eǰnמV­rí˜tºOjõß4>ýϱØyK>ÝÓqÓW©'«Íþ®Ï²ïÎì}/Wχ&àí8¸làÅ¢KRݪBRÚ¥•]Õ åÕ–õî]çä öœ›Øü›£K^®zæ¾OrÄ×>ðL¥£/L;]$qäñØks7Ø’²óÀ›ûçºðÜåeã/ç}ÁnQäèsïË5ïÄëãÞùEyû©YÞÏí­ôÛv<ýRõ>q?T»x×¹ö+垺ò×ýº—kñó¼vI•÷o/ûöƒOv4\u±Ÿ°°Å¶ÙS6'îúúƒ¹ÄC£Š-Ÿ3ãï]^]³²à¨‰uÚ”¾Í1üÝ÷ßÜ·ÞÎî±£¦¼⟎»ä¿qßé_Ò«ÞNH½,æv`ø¥_No,üTÂܦu'Œ<òਲR¾¯úÕúcê©ü{ð±*ï*²<˜øÖCuŸo©8}Ë'úm­°'A}¦ÀÛUJ,‹;öûšÜ3sL~¢ÄŒO´?°½7±éÑUŽêžúkLÊøœ—{«.w;ñp½3Ÿ·ÛcïéxîL·‹CžÛò»^&´ß›ó½]ë÷–»üðÊfK_ÖWå;³ä‰ gü”QúªvëÛ¦¬c¼¸ì·Ý9g\{¶Ë•’mõÎß:~Âñår-ëílÚ¤ÀœÉ§]V#˜3½˜yù/öýÞëx¢ýìb–?·vôQ—_ïóæ?—Y èyp«N%w*W£àrôÛ/Æ®¨²¢\õRåZ<ÜbÍúÛ·ü26Ïšq “WEÞhüÇ7L8UöݘaK{ÔéTÕ~†?á{Ã?U6g—c–6=úÄŽ.}'ô›þâ;–ïžT£Ö Îäø³úk¿Æ÷ùi©ZºQJ¹ û{ŠÃ_qjV½%…¶½˜ºdã²¶Úu_7pAûn.\úö|³:ïMybÖ[ßÇV\ÚáàüÓýZÿžo=ýÕºwz4yå÷Ÿû_~êËc_ïŽåܪç=óÖºß^þó½Óîù±àÊï4)4kMÊk®ì2®ýOüžÒôø¹Â÷L{øívê×ËÏçøú™Šã¦ýzü›¶E=|áx¹òÅúUþÒCùö}ü>«âåÒ9w6å½Væ|ø¾"gbTx¤v»25ê QšÍªµ¢òÜÓÍ(óJÓ/Ÿˆ¥#lÙÒõïÝísõÉU¨´ðÛS¥’Æô<\éCé¼ÐäùZs¬¦O?«Œ>YÆ©àWÞúé°rnÞ"[W©3¿kÿÔçš½Wrï¨f~¾‹—·ù¥gß©ÒpxÎúÏ=·vêÆNs–<Ú!aÇúoöþ4ÿpÁg¯ôŒQ×N^4xVÌŒKßmÚcÂÁ ›™[ó‘ü3&¨—§Ä®¿¾¿Æ½­ÍrÅ[Ô,ÿbß§ÞÊ{_¤‘ûµÁó ?qOÁƒ_µVÓ~ÞÓðèŽû?ØU&¿aΞ<Ê<Ѳíù5ö€¢cæ–ü¥úð™•ßM²b‹úI'Ÿ8Þ𗻬×O¾çÑ+)Ïç}¶Ïk3l~½â?¹º0ecµËož>&1˜Ð¸ÿ¯_õŸ}ôRïe}Ow^ÞüR~ù£N©¿?y_׿*]ÈÑy瀾-ûÇ5mÐÝ÷»·Œ”9«ÕJ{hÚ§çß>·òø „µµV}ÿð¡.o^-}ö³kª¥U\õý †nya^Õ6WSw´P¯ù€ñOŸŸÔkñ …Óv×HûI­ã´ë/½üfþ¸ά¬¶µÌ†q•+þ_1Æ-:`ö;?½ùmõ%O bÞ©9ãV·˜÷PB¾œ£ 'HK.Uúcy`œXWêãz\øgÓ®¾¯¼PfÖ›Õ¾»Öø—÷íy@Êu_ü´ø]O$,»Ûø¥ó/ã—&.Û?µÒÖNŸåüé…ý¿ÄlšóZ™žYÖkä=mkÇœË1±E¹:ï¼^²ƒsòɓﶞ]Ãß²sUê×C†kWú³9ׯ•¿¿Ôý/Jl—kS]wGZó_øë—Ùržfm¯¿õù_íEowiºõL­GìþEÞúgÕÁ“ù߯hä.Ðzÿ=‰Í¾î0¬é§X§±ËÚß=äÍ pì7ÃvÔ»}l‹_ŽŒxcnÁã“»¼ðù¼o‹[mîÞ•Ò£ñüÈÔäŽïÕmúè’ÂÇz~,´ëT¤QûFÿýôÎ>ó¿ú~õC{×½²è•ããåÛÖ+æÝ~šªk7\uqÚC½þIÝ\ö·g÷ xaÌÜígã¯|ðï‚Å·®õágÌœGæÅ_M+Ô&yü³M÷ß’𬛠?|µÜxcmãõJþ~÷ø^çj‹% lŸ¿ï³ ‡ùŠ-ú·ßo?´k¼ñbÚÛÚò/Ÿë8æ“‚Ïì;¿W¬^:{ÑñÙÇâKšá¾¡%òTO<žcQáÂ/½›kmå%;*Ù¬»•Z¹ìƒŸÜÕ]ÛRqu¥÷ïÙ¹fàŠÔÒ†ñäûç.>ÑãïwnRã‰g;yï ¶þïŒíµáHGgé’BËgæoÐà‰Sÿž{ù®7FÔ¤ñš5Ǻ¼±c@¡Þùöo1°êëkÍ5·ïèµÓ‡ú_?µéžrÓÛŒ*ôÓéÜçÏŸ÷ó’oož×ï©Ù V_¾¼ïXÅï·}m쫵GïüJ¬Tè½>ã®L+ôÕØòe†§¾•PkZÐíÿX“­ó-Ü;±ð𴃻Sø¡Î½Šì~÷¿èžžÛqÈŸcq#ÔíjÞӺݓ§ò~¨ŒWsSù|¿òáµý-/þpÿ/5—åž–º£Ó¦µ÷5Y:-ù¹?.©;”»ÿ:Þ¸Êîg7гJŒ”§Ñ†a½Û_MÝ}hP­vǪ¿ÿû¶âS«çÿÆûnÓ_Žœþðâêº{Ï}ÿËäkÜßÞn8õ½2#kÍüy´3àî¦uÉ]õ g®½>bVé–?ŠE¯~Ýåù»Å!k÷xÿÄžB+Ôë^t½òÎüÇÕ:3©ÂÕºcĤï/äië´/Ùåü™Î?÷õØ—O/«¾þþC<Ýä®ñà ß÷ÐäÃß”<ù­¶çëoÕ¸Ö´nØöû—ëW; yôŸ]u/¤î®_àZâÏó4¸úÏ‚y«ªo+53ag×N;ßÛçÞ‚Mk¶Oë™T?-o³¢ßþÓ×ýúÝçÏÖ×°YåN³ÊØ—_.òôÅm·%¬o·ñß}O×66%ý(­]¿vŸ×èÌËy~|xÐ[U­OºìhÑÇ]¶þ|“çùí¾Z7øjì×ßåÙ3åW„Wöø}[­/_-[$¹×ÝU¸öê‹¥åK¹NÈ»»÷:½vógçòÔë»rãÎ/<¶v”ÝÏçû|…œë'Lì9éäÒOÞüòÞªùÊÏöÕ<5ߨôÀŽfÓò”´ªD—>Ûi6Íu­i£Ò‰çf¬}êÉwsmóǤJ¿çé}êÞ[šÌÿ~ÿ´ûê>½vÔ€c m¿òU–S®-õéÞëÜ=2צ÷Nxì—•??RzU³ccÊåíýèÛq=Ê 6éÝœ6õ‹½7í¡éׯ\úþ¡}‹w[²¾ä¯WI½·ÿ%»´\jãkS§Õz£Òšz+Š;½ÎÿRïà–¿Ÿ^XbàØÞGÜ»vTü¤/&U>œ¼ðWë}üÙÖÃÃg½zdáø§Þ/²³Ú_×_ذ©ð}ƒ:\³}êê?¸pè¤g>i«[|né§SöÍË1×}jKÙφü:ùÑJWã¿ÿú»õæýS3çÈSÏ|°czû‹Ó Ej|Ø¥öþfÓÇ]ìûb×HMqDÞïF<÷ÜŽ ­oÒ{ÕºÞG¦÷i³¢²SüÌ…ù¿Ý•4| Ù¹Ó‘ ä¥èâ#tnÐäRJ§&Cg,¿8rèô¿Ÿ|÷qGj©Æ5fLdîÞtà€p¸¾ŸP;)_»E¿Ç8-¼ã—ëþê *Z¼Éñ‚_½pxÊ— ŽGš êrúß§ßîºýÀÆv[¹ÍÁöW?hÙùdÎ÷§Ùï½°`ã«[ŽÊGÏì1½Úµe[ö”95mì—yÎÎZV¿ä'W.%ÌY¼dñÃÚ®¯Æ¿¹«Ô;Gkxåéuè×»ìü+öÎQgõ.Íþ9u!±UÿWî©l¾7å³oƒåæ×ÕfL›»¬ˆ;lóëù’j—·¯ä}§ÙÛÕo>Tíÿ|Ô¦aÖžnpSæTFù^Ó”þg«÷*ò«÷Öwâz¦$0Í©a&ìȬ’Û4&6±g|lÌ3ѰCÎ;äÿì%ÑÊ;ޛؿgþïŠmiùæØB¿q*ˆâýxWn63O÷¦÷Ýóòý/½Pìà=9QW¼X¦ÄGe ·Y‘Xï£×&ÞU÷£<_ŒìôÀ“ÞýùO[‡>P|G“ø’=jOÒð¾û'Ô?pWþ_¶Uj¶:Ç)+®²FYó翃_¼<¨øÈ—Ç”4‹6tZŸ¿´§½W"׸=KëPêë”¡ï”ØÔàÄ‘¿yª™˜ÿÏ´‚smY?ÝÞÔË<¥ÿ¾oåÓ ZÌ_ï¯W&›´«]Áw«´ùkêó F5®òäÖ˜ŽVÜüÙøeÿiZi_¥Š¯ß7qþæaÚæÍÃÞþµ„`¿Ö¸ä„ù ÖØo4hÑ´Å;nÏUø#çµÍ[ÍyýÑ/êž{å‹M—ﱯĿ1_Uªu©÷̶³cÊ<²©T©±ýF¶rÖ:•ʶ+»"ÿ”M©îÝòÙÝ¥¦t©vä€U­CçÍÏýغÂ#7·{MúÖ‡¥~z ù™—ßX2¢öàGw×ËŸoú‘­q ãÖT¿(þþÉCïkh¹‡{ï‹ò¯/{º\ÛµÛçXĸ'ñnqå¸ÁKæèýüG›?¥\üéùÑ+¾ùþ×ÿu¦å`¹i¾Ã÷·è¹â߇ ÍÝ÷Éó9+~ÔlLÕi›[Í>^ïÍßbLÑ^(¸ù»a…l±hâGÈÿкRþòÃÇßJ¶-ïk‡{((˜Ëšüñ¯Ó~ æ—þúìo_þÖtÌÖö§Ztëö`×b‡ËëóÎû[v÷÷ètÚ¯(Ûeìƒ+.œ?}jÅ·Ç }³Þ‹ï­™Y°Ïî½µZoÈýeƒâ+·ä¾ûÑ*K»MÜ5uíï[¼ãþ°fÔÏ.%Î9Øî µÑöÁâÎäqi?WÛôñ Ï{ó;·­÷Æá½‡¶®<0µaUwÌ Åë>¯Ñå›Â©E—­\5`Ñ_ožÞ÷eÒ]Åú¾ònáþ;Ævûk|Õ÷Þ+®ÆýÒÑßÝKþ¤Z¹',¿|\û)U~x{K¹Å‹>¸ªÚ¶,ê£;>_´í¡jãßœº²É³_Ó÷:”kÍÌùÌ·§óÐûŸ:q¨HêÙƒ‹W¬úÁ÷hóÄS5N®¿mìÇÌŸ~Dôý?õ®üôuÂÑøî]øã¼7FÏ6k׬_ïî³Ì~Ÿú¯µY›{fŽòK8Ò’¼K›M>[{憤%bó(ƺ¦ïy|K®oÆ5iº,×^ÿ‹yÖ½cÞ«û§¸êï‘ñErÇN.r×ÑÓöšZ]ö¾¾ÅK‘eîì½vZ¯ºe&t0^ØÿÎæ#¿kVdAÂÒÇ×Þu¾có—&ÞóÆ?¿?Q²úSx¨Wµg‰ò©{³+Þ9éíÍœ©úi›|W÷¬/Æ(›ën¶müE¯ß^¹4÷{ÍÅûOØ ·9úùc3zù§ßì•M½UdG0|Ê­Þª\héýó×,ÿ.ß¿Yô`½Ã?øébÛK#ºMž¼6íŸMefþY®¥œR¨GÇ““ ¼Rûç×ûœmPsUÿƒ+[TÕž/ùu·~ËýÓ‡¶þ4nçÎJ5ë¾$¾A§Us¼˜œ+®>¶vèû÷9ÍufÞéµÿ<>|Èôß®:þ±þŸ¦ôÙ5ý®ßWüµôÙ™ &?S§ë· Ž?vl•?ï…ÉûúUZøó÷ÙT±gî¶>Ùºãeäµ)—¯æ™ó Ê}xá¹wÞùÛÐÍóV{ Á7ìµ'Ö¾wðÜ/c{ŸôáÓ¬úÙ”®Î²´Õ0¥á=_.Ùó‘Kë[½{ÇöÏf)§.t^7ðËC]ËFæÕèWæ·+[5:0u…©?í¾ð“ÜhÙÁÓ÷4yxúÔb¿\ù£Ù{ΗïTëßA×îòâˆúçÛ—¬7§i™Ï•ûiÒw¿—dõùáÞu<ºrœõGì[]ù%uÕ¾âjÍm»Ê¿>î½߬’kÏÌËCë?8uàð:$Œ^Ü3÷ÝçwÈë=ÔuS™ÃO¥UÏÿõ§½Ì¸HÕ<¾Ô_ƒFœ[6—õÉÊÓÇÚ›gæÅµãÿµ.×We^³Éûv ÙúÜÉïg-ÿóê+«Žù¨çØÙ‡ ¾º¸Ý'Ý-~9éL“á5ì_kœ›gÞë+—´N(úõŸÿÝWubÝç&åÚ3dõÂåïÙ—òNêÕ/ÿ=ßný×›ÿ|íÌ€ÓÞ{OðæÎZ¹réÒI3оóØêŸ7üÒç«)[{túyOÃâÝJTK«×¿w1í._ã܇åW;úBÜkŸ/:÷÷¯ŸëO¼’óxׂMzåè’û­áýÝß°oËò›6ŸëU6iæŠIþݽ§½Ôsîä‚Åó½µÀ÷£yUïúá×ïÛ¿´¾G±{÷ßwøàóŠ‘ã¬öÏÔœSFîžrÏK­ÖwýóÃïŽ{v׬/?|à“§¦÷/1÷íU;¨ ¶{S./¯;âå:9&\îúÅÞ Ó—¤ :úÂØ¾ßìí><߾ʃg·NZqßþ‡ç¬P+õ«“µ¦·sj]{¡Q»_‚íK^Ù¬Ð_ê?½NlAñ\¡F W§ýôóðã‹Ï Z•só–»ÇŒh´R/?|ú¬óÎÛ~ðëºØØeZ±Äí Žv¯¾(gi½Ä[›ß‹ýºIÜÑz–¿ïpNµ<÷æº3/͹ë›je·Ä þfĨ«c·¾ñÆúû¼ûïŠâÒ–£#[4(×òž¹-rMéñÁw…¾>š–ÿ³Ý5môÊ EO˜òºòä¨ÈÕ<ýMÚÉ”Éì‘˜æ ©‰qåÝØ>q±©)O†Ø)5&¶gO|7¡_(©7¡”$Fb³(j$ã–’&Vþ´x_M“u#¼uíÎII©=’RoÕE­¢›–f­JxÃÔø¹ÙHrIãQÊé¬7†¯$S‹¨Vzß -l.*9½%]úOŒUÇøØž€¥2ûs«VtQ¬¢i¢Š§¾u+À«™}I6Ëâ'ªª™7º¡¤7 ‰Ú¢ajF’ñŸh"ßOHêQEÌ«[·óß­·—ïp{UÔªX¢"YæmÚ I¾i.d]48sq£åÍH¦\ßnÊU B‘µU±46£¨ÙåV½É¦*º®Cî¤*F´ªàÄ쪢e´%[ÿ èœÐ¥wr\–ù¿©C¯"âÇTbS®"+’!goHSÒÃk^Ÿ$Õ¸>–®eÑTh·ÿƒ"­Þ©ÿ¶H÷ëÃv«64ݪ¢@ą̂AË´1ЦÝ$p~hdô[µ%ß¡-E¶0nº$ß®-EÑnnEVµ,:ÎŒ‘Ñ‚öñaÙº£Ü¡1 ’§(–¥ßnŽ §ÆÍC'Yòí‡N½C[ª!Áü@z¥Û™IWo6?¢fÝÒühwhF6õ*¦eêÚíšQŒlæGѬ¬3T'5®ûuy»e 2dDWuõvvT•ålN’²¸°ùN-ˆ¸Óí$LUE3›ù•ìw¿Ó¤K†YÅPTÕ2nk ­l-¨VÖB63ZЕÿ¸ k×§ã–ý˜íú„ܪ ]„PIŠq{#ª7Ë®¥XQ0ÆÊhÁÿ†L¹Ccî  i·Ee˜ñ›Õò’EíÓq¸˜ÙÄØÁèwhGWá U=ºM;FzOèöÓ»¢gô$Óªd6ýº¤Ýª-M‡âhxÜÛ)ޤèbvG£e³–Ùš»cƒ²aÀÒ…©·µef6[†Ÿe÷6Rf¦üŸ’»ì’ïТ¤®¢ÞÖ@Ãñfó9²)G ßõ&þ3€ýRîТ*ªU4˜õv¢!²’ [ã·Ùg*³ ë?BØnÕ)õ-Òc+¢¡i·3¯¸»•ÍcëjT§®7ñaoÙz$ß¡1P(ƒ5¾»³Ù C¼“­PîЖ*ã°©Û™XXéæ±ƒ|G]Ò‘Åÿ¼—Õ3eáÖýxY½Ê:¤kZ¢¨IÊí,ƒ$Ý L$QRn‡FõL¿q˶T]Ñ2Tù¶ ++7/LÈ’"eE£QÊtÝyܲAJ“ŸÝ(*ºz3KQ4UŒˆÌ>Iÿ1ÈÞ)ùN-þw¥"½3Fæ­ÿ3âæžÜ±±ÿ»~d`aYþ_òEÆuI»e‹ÿwÉ@©²ò#§Ù;#ß©Åÿ»“½!å É21†iè·ƒ%*”7«“Íì¬H3›ø,#¥·‘9ùªþ¿ 6æûr ÖÚP%:RSo×!YW²-hò-– *\³[µ"+xÕ.½ÝìKúÍ Tu9»u–3›Ðþ#PçÆöÊšù¿]D¶¯—[ÝB_E6‹n»ˆ¬kÙ0¡¦©ÑÓfî4X2xeéÚm ·bdc¨J¯‹jF¹S3\JÑ5ù¶KU´›—ÄU@ü(¥ÏlBÿϬë]QïÐŽÀiÜžSR6N¥KY9U¸ht§Û«US¤Ûs.ZÝ̬¬x6lA»S \'Õ$C¹ú“3Ûöùq¶ô;´r\ÅÒ%õ¶}ÀÍo%Ù’å[ Õ:¢ˆè·&«·ÝQ´lÐRQo‚–éBu}6þ£«+öû]¾¿~{ã·×1`HàJ·[¼¹±g“±xsóîàfÌ;4£âv†Áº­d©R6w5!™snü‡µÜºC;W†uѺí•]ÏÍ›ôüÆÞšr‹VþS{kr¦Œÿ€œé+ÜèÔ-Úá*¿¡Èêm·n$)›ZJbºZfŒ]Ç [ýgjÝ¡ =ÜZ°´Û‚I̶´n¥¯¬gJZØFˆÒLÓ@]%E»í¤šÙWoM5{GZ6T¥;5‚¶4óöTܰ²-uB‘£ÛÐîЄªCÄ$1JIJº”›K–Òw:² Öf]¥Œªow;¼’McdM’³7âÔ·›Ý©z̽xÛ­uETÄìžE»e+•SãRRïÔdRÁ(ßvËN ¿qÓ¤¬ßª)ù­È¦TvÀ¼íÜ©Ùð—bݲ•ÿªCÜ…„ˆÞƒ‰ÙF¬›F®7u'y– ýÕ¸@S³m«i76½jÔȌ˾ŒÔ89©SïŽqÉå;õI虩©Õ¸~¤V|RJjz”:<¤&>)ĸÉq±4í^lj\y¯ª,ŠšÑ%4-kø¼AR§Û}þ4)¹|ýØæq­"}Rã#ñý{Æ%'ÇuŽôŒíØ ÆßJÅz2Œ ïŠ^ñ¥Ý;5?Ä«zqýû&%wJ)ÿäõNôÃ( âõÿ": ‹é ¯I²")Çð“é×dXHI¾ùš$˦œýŒƒ¬gû­ˆвÿVáj²_“õèkŠjD]ã\f»¦ŠJtš}?8!Û5ÃŒþ­…wÙÛʉº&EÿV•£û¦Šd¿†º¦IVtFôØ«ôÃÙ¯Ad£î'F&ÛŠº¦Qã¬ÁD]3¤¨k@%zÔ÷L-úY¬è6t=ºoº¬EÝOWŒ¨gÖÑá¨k¦}Í’³=3dÒŒ–C²¢æÜͨç3”è~ÜTÏ~M£ÛЭ¨~¦-–5~¦˜½¸&)Ù¾^ײ_“C¸wÓo-pºìm¨Pßì×ðÈröqQM¸µ¨g‘£ì¡ËÑ¿5Ì(ý5DF8eÿÞ-ôÓ–} $SÌ®3ì¯5.ª©d—+]Õ£ô\Õ­èù0Õ[̇¦G-¦©DɤiEë¥%IQm,DýÖR¢õÍÒ”(Ù°ô¨1Õ =ÊF¨º¢DɸEýš5öŠ(E\ivÿkÑú Ö˜ÝWàš5çtÑ¿eäR¶k’$F=-`Ô5%ÊÆR²³"éFtf”<+:û5¦cE]‹¶k WÔ5-ú™iIJÏ%¨Pöve¢dC‘£åO‘£åè1zü”pÑô¦k’©šÙ®Q·4#û5M7¢ï§HQÏ”5pQQc rÔ8+¦ž]ÆêuMR£î§ÊÑÏ7Ý_#»gß²Ûq‚Ÿ(ÝÒ0ÒQú¦é·xf5Ê–¼D?Ÿ­[ª-§Z”Àµh{¤u?É´²û–ý™iL²Ï9å/ÊG©š…TՊFÏ‘¦EÛ ´›ý<·™]þð|Ù ÇCž}Žè¢žÆ$ªÝèßBL£žÄ>ú~Ö-ô h?jŽ€}¢ÚÐ3JtMŽþ­…ŸÝŒ–C£dÜR²_ãXéjökÚ-Ú5ná ªQ2i¨ÑºoDcj€#ú~f”îƒVd÷Ó|¾ì|@ňË£æ"y‹¾™VÔ5@Ììý€ ˆ+´›]DÌQtßL)º]3‡'GÙbż…4 9Z?Ìì:ƒg‰â"Øgöa|u.áxEÿ6û÷Àß,u?+ª KŒÒ}À„¢ì½,EÙ&¶›cã(ÑýåBMÔ5-ÊGîFÍ9î—Ý¿‰æ#J&½£ûkÜ¢¿æ-úkEɽ,E­3 ])úšmëµõ| Qãp%WqQϬDsU‰Âã°ÎQó‹ç³²Ë†h&gï¯y+¬%Ï0lQýP£y…,KQrŠv£|™¨*Ѳ Aê/&êš-§·5´µ$q=6ú~ÑëMÓ(, F­GHT¤(V£ù¹ªšÑkrô÷p¿¨õDnÌDÙlÕŠâ—\ÌÞ7X¡hî(uÍ”ôì}Ón³Ï¯!I·X R£ÖŒ Cgþ7z­*Ú7Z·X²,= G€]F=pD”Lªz´E Ñ>Ê¥¨kü`–yKMŽMHŒKs¨›% ˆã"|$¦iRRj$#»NÎI9==ºŽiSÝò<=plñMWò Å•u£@w‚À­ÿõ7Ú2:…yÍáÒ¿ Ê!ZBÙ²~£@¸ëÿÿßÿÿ—Ë} ÊJ9¦NÃfÍíúõccûö0¥*=Sþ§Ú ìêªþ5t=ü+Êéïf Ê]þƒE1 òwÑÈÒ]ñêîô_oŠu$rW÷Øä”ØîI·í4¾Ö¹óÿÆýïþW¶dãf•íNIâ*ËUD¨tÆ–aÕH¸+Y¾Û“­Š¥ÅFܤžý“ÃZWZ¤il§„ޱ‰¿\¤YRçÔ¾±Éqøu¸•X5’!B¸®5Ží—R5"ë¯%wŠÃýÃBZpÍIêÝ£SB.NR¿ªf›q3ǰd|ä%uìÝ=®G* ]ááÙá¿"ÿÕù…œVáåæÍÃëx~lâŸfÏJìTÅHz}¯ô/…ß­~Ù@ãØžqÉ´§h¥~\j*,,¬[NnRw~œ"”õZÔiܬe\ö j¤|ß¾}«$§A\ÿ¸*“º?™ñþ$¶G§ú =â2ñ¦á¿Ó869¶{ZAsz&<¥‹bÆ'Í’z'wÄ#ܰMêÚ³w8àFQ®"ëU¹³Ë!‹ë’УqrRÇfq©U#©qýªôLNâØ eK 1ø©—Ð15t ø¢S\çHæÅüiLÃ4\„ÿÅ8iztâW5Œi–ׯc<^´Jk&4äÄØiz÷ÄßæMÓàyz¤°‚>NHIL‰tŽML‰‹4Œé“B?ÂeÈ‘î½q%>¼bVÑpIH¿”ˆ!陨;ÅÓÂß…mׄ@%ôHãÝÒÚˆ‘,ß‘"•¥Ai•¥ˆ4(¡sÛt¯mǤcSq5KIJìÍ­qt³¯´Èv©G\—H §(¶!di!ëWñK~;½#|^1ŽCZ–ïTÎøRØ·°Sbæ£5oÊÊòݬ÷N¿i毥Hl§NaÍ›¶ºÇ¦&'ô‹tìÌ'éïÒìˆI¦JDRzwˆÄvH‰ˆUBKILM ?@kƒ:'%Ç&&¦QàÃfü†/Û¦ÄeÜ SU“}ÆôŒKKŸ¶ÔäÞ˜5ÌiMˆiïØÄÎqqÒèÜS{§PZbn\Nÿ.Dßî˜Ô3!.%-¦tú‹H+\ Ħ¶‘B¥­þi+4Œ §^Û6ŒéÑ/ÆÔñÓÿvLMÿvê\9H&Ÿ›éRÚ0‚סx ae;V¦‹(ø.ß4HªÎ=R“ûe\b¾ÃSða.1b1­"±Éɱý…'¿‚öµŠqz'$vb½4þ¾‹KÆØø=:&ÑòDøt #0G;-¦sRR#ØM ’…ðfôÿôAӑĤØN螓ٟ6Œ”Î=KãK /ÓŸ–ƒi(dô_ìÔ9% ÂÀoµJÿN›ð·b(²áÈEnüÀOë™Ô“-ÚÔ†…Ïvý·oš‹G$¦ñÓBÉé~ÓGjæG?ë—&ɰ’Y>W2?ç_~¥ÿM?—¯,ÉFøßéÔï¦/IY›OHÿ(,5˜>K|‰^¦qäð¥pñ?!]5R¸˜,ó”–Û‡r AÂ!ñÍ"vú<ó)älW\¿ðu³3¾ oŽÆ[E0x™ó„ÎöÃ_·_ÄíqãÃ'图aãnƒÚ1¶c|\§¸> ãø¾E5¸!æ•«HüMøÓþ‘*awÛ¦¹ ƒºÃ7tMé&$Ç¥À‡Æ¡#^ZLÇŽx†[A[Ú=nô_åƒÒè÷葽?ü¤Y$-üÖÎ>àöõÑh–>C‹ƒ{ l&SXù¿Ì¡vbꤡÉô·ÞvHê™Ö;%.9´xS9>)©[¤[¤¾=Ò„Ì÷¸[L³:‘pZFÒmx86Ý“úÄ¥&Å´ˆÜÊ®áù¤ð¹ìÐx†&KL¿ÚC>BË¢‘‹iÒbPZLÓ™ö5Ô8ú0jþÍà xˆŒŽ\踛:îÆ3GRâ“ú2œ”F1ä2iÂõŸ…ï³þðÆ…pð AYz«˜¬oI =mŸ¸pÈ>¦Aá>mºõhHÅ g]–˜ÑÆ/@”#Š.†]Wôˆ*¤O_Ç>É)ø'´/´óa·uÍ‚0ô°™tŸÒêæ‹éN·Õ †BLÏ4öýleŸÆ8¸¢Œf3žßꮦýÃ?-Ò M[ÄôIx©?ni1ȉÜð(¢gÁ–é—ڨз·)ï%¤ôLŒíÿdù†q­š?)”¯On™œÄ‘ôÀ'Û¦]—ßÌÛd¼MŒ‹þ(]\Òd&¡îÔð3®WØlè§âú% â• ÑÉp“ƒ20GúEÖKKëÊoó¦¡:ãÿñJ¢&…h]F×ÓÇ0ƒ–E¿»d*ø [Þ(ýçé·âM³ßH¸~§È;e»éϸg8Èk*ÍzÒ=‹Ïêùn|!]#áŒ&'ÂS¤âaèV2/àÓt/“qAèœÃÚå†ÑŠMK¿}U\bjl(¡»¶3.´â¯¯©AZ³HO!ý s†ÛêÀË™o:¦UV# xÇ´ÊJø".­²¾èL Ç]ÒDü…K‰OK¿–þ®ié?é––~¾iY›OLëÁÍûâew¾T—°Xx-‡¯“xY _B`"鯒ñ*ýã¼JÿQ*^¥ß©šh&Üh¤?ANwA=#±¡­jÖ,ò?¸€÷ׇ‘xBH§PýVȽgJVì~3JOîœoß)ôöÀá7ì=ù†b°BËÔñ0³9ÝÄ<Ó#¡Wï¸ôk!äOË´¡7)H›Œ;|q ØMÈV\Ç $ H‘qõ&l› mÓŒg—ëNà¬bÄÁØtLI¿Mù§d¢°´ôÑÏÐURÇ»Ä%gúJ!ãÁ3¼¿&ÒT°/im2»“–+¦{>XfëáW87@æw®?i†ó Ÿ3.ƒ ¥eŽtø„BL’8>ÌP†õIï!*1éú(·ÉôÌÙnšÍ)×G¸{l·ðRLÀ#îlKì™IÙuHäÄ6²O%?RèL:&¥d’Hcø)G*“Þx†— oá÷KEûáÇ×¾î—Ão4 ç%.üNXŸ:t)‘d £ŽÝÒn€çtëNjïžmB“ħŠdýQ8*¡gôHJå¤ÅTÁ‹ðQ2ïñô‰$dÌÊuÙh{}\Ó:&ÆÁ7'uMî–9‡ Yn“)bì…ð_«`JÏ¸Ž ±‰·WÂfák9“K7Œ4ËòaÍfé?÷â:ÇöNL…EˆO ×/à…û¤pƒt8)4 }Òÿħt ÉAŸŒ¿±!*hãÖ¯Ó8|‘Ü7¡Y\\L~-Ä$Çßt!&1\ Hƒg&ÿƪü71®Kl"^­…Χw u<9nR3>¼”–å“tÔÐ1dr5ûÜòã>™‡èˆ ž|*|T)D†X$½ùzÇÄ„žiéWäô+ñI;C¤1DIBz“™02á…XKO G$|‘H“Ò‘^¢Ì¡Éä°èçúwâÃïÄßü0àÄ~i1ø'ý¦‰‰ýù®ú»ÞÉýÐ+ü›ùâŸðœtºÏ”LêlLͱ”œg² åîÒe[¸é­OhÉx!ÓLd~!Ãöák™F=vï$tí—q­ £;¯eµþ²xÃü‡´4]eB#…ofèhÉ”Ž˜¤Ni©ýz&¥Ä…;ÝSCÃBéÍênÀ‰fBlj,p~&áĆ/¨€i׿›…BŽn|*dù8uàcþ9´y7>¼ã5á–Í陎ùÿðš3œñ€0&vgÐ þ›av®÷•EhÓMM” {L—Ž‘~:‡>©cFýY’6LbçxÝ9M1Û‡ÿ¹I½“€|AõaŠûÀ§uNŒí’Ö8.ÎIŒíØ €«oé³’Ö³_J¤gÿ” üسgr$6d@é09­GRgLAJèÉ›…·Agè…Ê–Ñß‹ôÿ¥ÿÏöɈJ¦§ dþ.lO(»|•NÙÂe48]þåU9’ù¹õyúbXØ´Þ4ðV͇Ï{ãÂv#·lWHéwN¿g¿›ï|Ó/n~®ðWƒÒ„ÌQËh™ÿ“[ À­îÆoë¶cvëg¿Ý˜ ·³ÈÍc–åi­[•Ý܆êÖÝç}î4©b8eÈ –ö»CKO»Y>U!ÅÐF¥¯y^_º¹qIN·\x˜*–·ôLŽð_!½½†1{fbÖë >Ò³ûu˜.Û¥?Yhì’»ÃK†®Lˆ^á½Å¢ï%âLsŸ–Áâ¯?V¸~"r½­ LZé™Ò®¾ÙMü®¦aú2Bó¸~AB—4~«L3ƒNÍ8ÆBÆzÉupÃÌgaÔÑ.'K„ øØ3 †ƒ¶@g>OÆ»~YÞÑËe}—ñ™¾ÍúQÆ‘¬ „tä@ø¢_Æ‹”ð»eú Yš o¢rŽCú×ÂÛ§7’ùŒáó\ÿZ$ýnBÆ·34)½©Œ†Âõ«,·Ïx¢Œ_d~Ê»ÓJ`@2„n..9––=ý æŽ/ÓWõÒÒ×(‚™Ÿ“ÿ/^wî¸Ö))Ä0Y†.s@¯÷›Mß4)×]L¦QÓ%]ÍtGý:Ë‚¸g°ò¨ÂußúÜëN)û¢‡=:eÈ}ÿÍâvC?€‘BÙʺiYákzåÏ2×ó2–n/u‘ì˜7ÝKÆ$… %Ò_„ÿR´¡»A=®»Å¥f>GX&ÊìØ5ÄH|ÊM @—™oâS„›/"7UxˆOJpK›.[„•éöNÈÀ‘iD•œË¬ò›Óˆ&9¿Y„vP¸–±Š”~Sþ’ÏÃoe˜ò´;Ü!‹­Ëø¥å—7ìknÎ28ü:¿š1@éOÝ?SfðV›JË/gy5D·Uá¿Ò”L)ä"*+ügLfú”gˆúÒõAÉq=ãb£$¡ÓoÑtg|)sù)’E&3×ÑC¡¡·b~Ò9îú£ð»NLbBZÌIHNLKÎ|“Ü1-9:1=@RØT«›m/= ÐÛ #ÂwŒí™¥ó)©i)©ÉIÝð¼á¯Óp]5;'$¦…«jY>n(n"¡À=ž5ä<КÐud¾éŸ Ú*¦_újd:6¿åŽ!²~7ü]ºx‰áRs–»^o+6¹£pã–‘,›…·X±º‰ G²Ì€ Db<în7Ojì‘4øÓ*².2d[ú±|«yRø‹ë_ƧY4›ñåÚÌRv’)€oK‘,?ÎüF•‘´ž:‡´Rà ÒÉ09ûú7œHZ˜¦Ý†‡6<üÛ?üÚððoÿ¶á/ü¢Z»ÉÞe}â—˜Ì[ÜXÉ‚Fß!&ó™n|#ë=hb2çú7®?q}´/ ™ \ÃõlœzãËYÆâÆÒß_ÿNÖ>Ù¾týh!®ÿ"&sL¢Êޤ |´›&s=&cƒÛHß ¯f‹,{u½í>7Ðõ¦šÞiüéä£ü–3tSG¢ž[ø/ŸûŽÏ™Ò?%5®; Zø8!;¼¾¶¹Añ¯x㑘,«W逻7÷: !‹‹dDÆPé¸W5#pE¸®ÃË•¥*RæGéFøNF±€ªɲ¤ˆÝ»  $½ªªUUu¡l–Xžòî“ü’±»Ç%'tŒíiûFÓF÷4KꘗڿJĆ)kÊ_¤P»ã`=;U$) tMß³ƒŒ¨HpÆGà¼)ÔðòxÈ'Mb;%õH쟮t “R¹ÓZþ䡲ß<€9à1¸g8JQŸÇvOHìŸñ¤î˜ HQƒ$ÈRì_m™~Ò_ùqzwÏþéM§ý¥_JH úÅujœÚ1þ:žçŠdögÈ8Š0“1“áÕpu }ýÆ×Â÷Ò÷+Ým!’¾ÍwýUÛl­\_½¾-)dìEF®¯j‡rž¹0Jf¤sR²À‰TõHÆa„áŽrxɈ¤KxýŠ®Ebìïð¹{ýÏêÝx‡ÛÕ¿ñßlpýÉ#®¿ƒÄÄÞxgAƒ®¿“ÐÕ˜¸,oåHLç,oÑdB–·¸S·,oÍHLb–·¸s÷oyîP,oÑPR–·h¨g–·èMê·P¶˜~áÛè‰fÐJZx²µ¢F4™'[kƒnúZö=‚Œ÷@ðáÜ“<ËÓõ@WÇTuÛ2Ýä_ÕlÅm[Ôd› ºá0˜ÛwWôÇSñLKDIwmü¿ê’l{¾#kf`ÛŽeKŠèûº¨ùºFàJŽ¡˜¶ã®&¹žªû)’Às<-ÀW ]}ݲ üZrpÙ²Uϰ|•HÃT|G ÇÑ=5P}—)¥j x²ç»ŽÍ2Þø¾«Y^ ººïØ’&ʦªjªoˆ†çÊ’(º’溣º’…+ºbh¦ ¢MÝÕ4Ó05G–™|ÎTf<—!ÙsåMÃó Cbr‚,ªžç¦bøºm¢é˜‚ìxN éú¦I2z¯ˆ¦-ZJàk¨èªëièZàKJˆ’ãÊ Ù,W5EÇõD_pMÉÓœÀÅTˆªe)hM DÇm¿ÑGrlÃâítÉ´Õ@7dã.êŽ¯Èšä Šã:še9U)p<ôG54Å=ÝRlK³d ¬ãK¶î[†¨¢ªhŽéㆎ ²t¥âKªæ’êk†ÎS}ôX²ÜÅWTQV}Ýõ|Ñ·-;0EL¦"ë¢-*šé x~ÉsX;KDÏv È‚la <CaÉžf[*žÛ KÒÐ=Åôð¼ždk†/é’àk²gKŽÊ,×då_5Âñö]T,Eód[2 ô%0lYó8ˆGÙÑ1â² ;–)»Šìê”AÝÀìùžá(¦A íkºéšžbàÁ²í@´lWsÑ1M°%<0Ú7ø5SvLQ7½@1\Œ–¡Kº¥LÁ·KñL¥á‹ŽH¬É†‚{¢g†ãbžuGÔ}ßÒ!ʾˆYõ\Ç ,È” iö=üÈÑ¡ªh¸Ž‚oš®+˜šç®¨ÄQ†LëÐÄ0ÅAó=˜ïº*fÜvUè ´ÁUÝs=Ï(@Œx&¿:˜Ö@smÌ†íØø«¸è^xºhž«™ÚQ\ôÞ±e[1eKò òª Éb[²ïb<×d‘ïX.ôXóMs|üØò Êc²L‹®` !¯º Éž`Zd_„ˆx”Òm[®¯`1¹ºÆÚ|¶‹/AQ$WÓÛ©µ†£y‚¨šŽj覵ƒ9±ô@ªhŠ‹YñÐUIv  Š%™®gÉ6´#p Y’©«ž$A™Ï‰Oa¢XÐMâV®*J2dWLSÇ“C }[TQÆ(:|ÆŽêdÈš`¨’½F!Ý…Ð14¶ q3=Ûs¡±Š©ù¶¬X¾¨j¾(:óÑeG°|ß0|OÄôÖÒ\+€ c¨ bÐXÈ™¯šº£cJäÀÄlª 3=ÜÛu}¨3EôeS±mÿÉh=TÆ—Œ‚ `+Q®*ží›0Ûš&žæ‰ÁuLƒI™&´Ð…•SÑV iPkײMÓ÷C³ ó õ04È®di†‰ïëºÀ<|וØj¨.&'€5±]X+Õ–\E÷L"ë[–-ºP"¨»m@áe=eˆŸ%(°—º*¢ ¢Âvi–W§Š‘´DÉ×u ÆÝ†ñu4–"#¨º iö\ÆÚ„í²]ü ’jÙž¦Â’Š’©<“áH0Cª¯êL ð=X9ßgYfÔ ]  Æ²lxè'ä1D_1a%a‡Eø I—}ÉÒá$ ¦\š‚yvŽ”¯ ¢ -ż0J®D„• ,{Y¶ Š|àÀHã",‹ç¨0Ïðº [ÅÆ lÏPaneÝ:{6)°_u}KÔuh£‡gRaÛmÛÖ5²åÐð(0zè›%ÀéhR6N lXÅ„ÝÑ`¤mÍT$x6ŸOÊÌç̇.é6ì4[4!•&ô^–t ʺ'Zè´\!ŠÑÜK¢%þ°`Îá:uÚO ¤èZ̽„§Àì¾Abù*à…øèœé¸‚ý•$˜ G¨½À±6 PÄå”]ÈÆ *!Ó¦y®AáéŠon*T‰Õ‹Dß2U<î©ÚÔ9s'A”døÉóM5:ƒévìÀ!>ð S„«ÒàËa9 û° ¦)P ;r¹²ª›Œ‡æÖÈ0‚èÑQ`ž]2ÑS1êhØvÉѦ„ÂÙ"ÆÎÔ“]íÛ:`‘B”ì—8Ňí…á‚A•L˜'  '0X”¶ãÁ´jq#>Á¤{°¦ £g@…Pæºg{È®C¤(šÁ/›˜F£@ h „]d³àXÑ &®ÛØʵà¿hUàáDH‰aÀ@: þT Sÿ äè¿Ë"{ßgŸ5x-xâ)Yö€tÐ |¡é <ŸÃœ#¹ŽÙd ,C€e&’m€ ̳…ñCVl®Œæœ“êA"€hô(Ew9Í`PÒ€yÚ†Ö*­‚ä¨(xØ?‚ÄBŠ¡k†äŠt0>ï\Ì{ ØtD¬à¤ŠðºÅr]#°£ÃÈšV ë:4VÅ5ZF<AE7M `9ðÞT%Z*]t1Ã@™@¹x*Ç·}ÞÆ³üRÂWA MØ]0a=ˆTòe@2 ó/h8I䃯˜Ëùv £z¸'`C܃%¨&>ÐÃtB¢Ñ›€9× .š®ÀŸJ¤&*l±ï»¦iIùÀP2<5ˆ 7,,Áe îˆ) Ìê°¡”U4ÑK‚1ce+¨‹ ƒŒiÓ, " a‚ÐÛdX<%öÐ 4b/hU, =Xs |FtK4EUM"žÒ1³°6tÇ…BAÇ=Ú Öz•``a{E>71à˜S þ‡ã)²€F†™îb¢«xL“ @çëÂJðÍ>\кh„iäð–·Ý Q²(Û>@fP±áÄ`-!¬ L€1‚éfŒ-\< ¦‘JŽ;a! n=à1™vØUÉfE3uª Z0'°Ž ƒåA°DÎÓ‡ÄԛłÈ÷ÎWàP8øK Ç&A‚ñ!²¥èY‘G%Ö7@¨[<ˆÀ±*Ø`X€nâLÝ’UHº¦z²Ä0 Rd=ß— 1ÀÐ4 WPTO%Iÿð4&¦ ÂP¨ª`ÉÇ=u˜º6 üN%€Þ82>Vv× w`&¾„aƒœÀù@¦  ”° ý75øè3ñ³aê°a°3"„GlHŸH[¥ª¶ÿjí‹àÐ6‘~ Ó °¬Á?ÂT€Ò¼9œ  ¨Þ°ö§ƒ]Ó‚cz ¼¡¢A()!šÆÔn›ôÔÄ+€(K€†0k¼À7%(<À€‰í‘äâJ6p@+æáñ-@ Ÿ¼ÎSAMU ÔÏF&Ã(ƒ—aÖàÎA\^“½µ@Ì¡©ày¦âj¬£†6aØUA„Rè—g8Qd›ÜN“ ’ôƒ@ –ʼOz&›Ò•0SlšoA8¸TZX„`(i0PGÝU•µºdÜO‚žRóÅp² UzB&@òq¨á™`®¡ú@¿J ÃŽƒD.:pª´,–gÒà ‚ñÙKKZ°Ü~ˆBªñd¥°¬@ÚÀqº· ?…[ÓÁ—àÿuø|›îÎÀ4lxØ Ü@èÇ àÕà G¶€2àË0s¾A çãið$¶ø?ê §oÁfŠ`b`©µÒÅäs\a]ág 8SÀ àW-¤Q0 X}`ƒ7ÂËh œ Ø*à2kPá!ä[c…[Íq5jL›èÛc‹÷²Þ耵vø>Ð ’”ÇUñE`! }üÀ’c7K¤¸À. §€p’@| ð#dp1AV`B‘0Ö0œ%¨€$T¼s¤C ˆÃ<„°È†MÂ@Z<ÎÆ‡D T§ ¢ Q0È"”CͲWºÃ —©Ñt[³uØu@Å@„åô“=ÐaAÏÔdÂ|ÅEs\Õqa³¹Nâ›0È2ˆ~POÖ«H& øð9œ’L ¯%BïD<1±Á •!:¼† „'©ƒW†PAf`•‘dÜæÚ Ý–4Ì/ü$—@žÁ§¦Á`Ö öÀMdÉøBàvHâ² °ø`‚è°Â@´ \Iãʬ(‘ouôˆ– –U¡BAxa>%(»Çº ðdô6àŒ* Ø `0,?ÐŒ X ܰæP,†Œb ·9Àè¸ÇJ¸ÌáÁB™ O°þí¶asb <êáƒõ@BžÎJò˜‹ë€KЋFÊ…Y,8Yp1À"Àˆ¯>ªX„vƒÝ5|¸09˜ 2€[±àTàôád¸ `Ï¡faÈ}€'.ý)àÙ@¶ŘjöFvMšâ‚R‚ è肦ÔtIø«ƒhÀÑØt¥Æ“Þ üç‰>A;È´ê’5Ñ2kn`ÿcF¹Â!Z 0½Y‘`¾ï  \ÇR|™vâæ Îaèa¤0Žj‹ŽÈ:OÐ#@$°/ Œ%Ù¢:J? á@c0TÂs(^Và$æ0:ì¢cíCŸaÒmÂA•ÃZ N£@÷Àbáý@00n°}ÛòÁü\˜Â\ àªÀÎêpªdRÐcÉÌB£@iŠl‘ì{hÔ hhÕ’¡ ÑàtS&e45¨©Y•¡ox£ÕXVÒ€‰ =VX„—wLÀŸ—`>¾!ü З¨¹`—k œ+O³ãó0GžGFÉê@ŠdÀ¡œÂÍÀð+¢µ°@¼!¹ jmªðƒ -(a‘¤xtô€T°<¾ÛêjÀW„ZqÐ#¤ ¢Žaïu‰!ÐW¢×_ |– @Z-xQ8^ª¨[˜V <·­Ây‚ªéÀ©4_,Ŧ4³ê\¸Ð@? àJÀŸÃó×cÐɘÝì_5=.JÀ>Ðøê2¡à’˜(‡ËØ`Ò× Ó BX ,H`'Wè û穨JðÊŒÆ'M¨$Ì€D@ë5ØuF€]s© @ÂÀ_º ¦ <ìiË&|° òlšl1¬À¢ÂÅfˆÀ:0²Iߨ €B€÷\ZUEüŒÞp ²MBM‡8*¦ÀúàkïÁYb GÁì`êTR€_: ©0ñT0‹FÛ³è+ M\…•„DÀ›BEEÅ @Ý0ŽÏ, ÿ;Äý G‚O†öAH0ÁÐo Q‡Ö&Ò #ÁzÁ¿ÃÞ{À¿ÓMI¡˜:%sõ.àNˆÏ*¸q %š XSØ 8m–lU0„rXßæGWiܹ¸$¤B° ȧãA.t@çáa Bgß‘¡p˜LG‚E…Õ„ãõ3]Ìé‚÷«Ü\I€€3‡wÝàÔ¸D&(2:3‹o‘H™è>,¯gAEþ:‚1„u€ÓsX‰U%]P Uè½ óÀµ0äHåfŒaWuEX뀛Yá¬(CY!¼ò:}¹+(žÈ àM(>‰F{¯::W¹_XÀØŠèÀΛÀQ#M†…9Q³®J†ëÓ š"¦ÆV<š…ƒmɲ5(2à^¢F)Ê®ÉUWr0À{a‰k ¢à q?ðl@L08în‹Ütvë¹A|ÀnL ÕòdÁp)ŸÄqbàÅŽ*§ÊНë‘øܺ²4]Ó@=€d€~›FzÀír âæÃÅwƒ(Y®ì¾ƒµ¹¸©¥X¿\}T@$-…›¦–"b(M]÷ÈE[á 8 ƒ–f  à [a¬Y0FPö]ÒN]¹¼¢âIÑüŸ!¹ —YuŒ'`¨Æ>Ì@k\V1h–﻾Hº¨©@ç‡\M*p UnnrD‡±ŽÇunÙ„•¦=b7ðgÍÁXLÿãY¯®§Øm Ö*'É©E‚XÕ ˆ–̤ N«‚©¦ÇE×Q(š¯’ÅP†è'( ¦ ÈN J`Äàï.ˆ-(2x6DÆÄV- ü™k­šã3#뉠n`U\*U=âÈ¢‰§B(ª¯q7ÕáÑ6ƒadÙWÁ1]\„eܘ¯rÆ45_âr4×B0]7t@*A=<îNY ‡3d0~_§˜t´ Èb¹=}Ðu´´ÂµmphEøÔ²l»`"*¹ ¤âÆÀ@û&£ë’'BÆU 2ây:D H0lÅ„`qKÓô¡:¨·lK08Õ!錖 ㊣Ïd}• QedôÖrÑW‡/.fC¶ñ  ˆ'âh ÞS15PB‘< ™ªÇýè"|BÆ€V(FÚš(I¶ )3y ”ç8¢ "m.æ$?×âq `ªè0ªG&5ÃtšÙ\ @èÅÀó-ˆ4· ®ˆ» R:—…Dˆ2—š¡ˆ¤Là iˆ²drÃÙÓd.¢`i\hÇ4Ùa0V‹ÙÆÔ [ðPOƒÕ7]I¿³\ÝM°u÷Ã]]Õg04lZ X—»ßPGAƒ`½jP4›ËÜŠ,b0È2 •{—<ÓI‘5FÄ©Üó÷uÎ0LÃð Õ®àqÇÂ9Ï*xÀöŽ.z†â(®fô3ê;®ÅÉwGSŒ,xŠŽ+.”cçBž¸Y…} TŸ;y.f„ ãs0ƒŠ¯èàä<¶ü]æn‹iû¸¬áx p7š¡-¶ ÑÖS!]–)b~mŸGæ9a„£8‚¯êÈ,OÀ€]â&ežÙÆß0è3ðgå¡Kº¯R",®Û4›"(`Þ†‰†]‰ûኋ‰‡»áR‰ Ïas†ÝñbdÎÇ,Zš³&ÀPù cÆûûïÁĺ¬¼¨Â<¸pF¶/kÜÚ3CÆ8H9Ðð}Xß|¤¼ÝsLZªeR LŒ##ã*=Ïr‹A^&x¸ok†¶%Ýòu]°1#ÃQáÃ`8 +UJ ì3ƆÞfh™&2°K6|Û´%Øè¦éÁ ÀÑÈ ü˜rnôIÑõUXž Ãá°»´ó’«aDEƒgÀW1&J÷\E!y0š2æGG_LKåÐoE„¦È÷+U‹‘n&¤4€¼Ãz`d|U€ã¶eXî’º•„¯2EèªËP‹Ê`HšÉ 9Üx‚·Ã­+Ê‚ƒÞY"cTáXTMDÏaaZMÓ¶rDG§ ça‹:—ým 2Eð:.è²dsÜvM†kÚ¾{Lƒ3â‡{ž ëK L*w EPØ=’'ÃÞ ¦g«…+ï:wìUÏ€ÿðšç£Ì…0Å…¬È. ƒ1)“‘ª ¼>c§Û¥ÓR1ànnJy"4Väö¤n ë<„‹N:ž¢Z¾ä¡@3aTƸÃÚrAIgˆ/€ ˆíiÜKaô‚dL).æÓfp£ÂvuÇ  \éà¹p=ø&º4‹¡Üô‡%“,S¶Ïo‡Ám:ôM¸–Åñ]×¥w”L¿â0Ä l®2Â8ðhX-ËÆ(<¡!ðñ[ÓaÜe ¢X¼½k¹®É‡âap˜Ç7÷$nÝp㜀xA 0:>ÃgEnæø^á@¿UmZ®Ñ!¬ð`†nÂ\É. j…'[Àk¨:ÌžZ ô$GR%5°x&,°Â XxdU L“¶~BÄÀ3)ªç3Ä@…œ)À­)¨ÀA¾«ÃÒÙÐK¢ 2fÀL(á>·Eçz¢¤[˜=˜YC×à`x?¸a¦c@T1…˜lÝ€º2~ÎPá’0HŠîrgÁ8:rèf;pmÜ«7`à«÷ŽT%xiwãÖ -(’É‚E bè `‘/YŒlå†`. †óÁ~H#@Ž ÁgL‚.Ð)h–["TvxFÕĬød’fà1¹Dc‚܆â@T¸aj˜¤‹$kÜ c©%C>nªùÌ·þDÅ…Òx k†Ù`/FÊå™ÂÜ[R}’™ò`ûhvúeÂõƒÝXÌbr Œ­ä)`Уk%‹•/Ü]¢b–7B öÔæ3p8« •éaX[S Ë;ì›Ø.wW5nûÂo…‰D+ÜþW4Ñ„¯€L€N†Ñ²\¶Íø{Ȥ@Z­3\ŽgŒj7 Åš~nÀL B S˜Jè Ç tñÿ†$ðÌ>Ÿ[FÜ*'›e›A>®ØF«EŒÄPC›‘†–ʘ+<Ó-TÅfFž&«™„Â@安PA>@{ÉáaòTF$)h\dø7˜ì¶ïLfÁ¤×%ß 1˜lŒ < £XaŽ`Y lKƒNÀÍÛI*ø .lŽ!zCD\0òàƒr‚ÀYC'¸k®/`2=_Çs9ŽgàsÛրЫàÁp)žÂ0wH°Å‘ÃJ*˜| dÕƒ'eè›ÎÕî »v˜Á›dÁ  šPŠâ¡)Õ'[߈NÁÍÃ@Hܹç~£)¡Àùª£›!Ú75 짪^²ðe‡Öt¢Gpóç –vÅà —©:0.ð÷Ë`[à0ÑÙw4e“ÚÁ¼ ÕclÈ”¦ÃëYð)0<M.´È ~—©š yãÉz#øáøMM&ñÁÁJ6[B@C1z caŠÁca,}†óKðµ2@5L°0yK ‡÷¶0¬Ìð€[ÜÑ%pñ´@f¡0‘ƒ'Þ–ATà5y€¦lË4Š@à&,À¸ákÄu2äÄhÛ¦u…éôâÇU˜ØsÜ€AGj<Í#éà}™Ap¸‘!™è7 “‰û0ï ꨛ¿ é5ØG ˆ‘4-eúDà Q1݆jk1J†qÖ@îÆª'˜ŒêT˜h܆v†€Âê:À¬Î=]P™3å2+MÒ™§°‰sÖÐEp8">†àjÌû²EÉà¡ñ  ÖÒ¤…‡YVT.‘¹¸³f©pàPIu¥‡*¸ri€€sf€)Œ›Ä|ñ™–W `&¡¬(]¿ …*qÕ"LŒdÂ¥ð´Gt•Ù˜ä².|a á^ ߀BC¦ò)˜ŸK”2£0D8/ 2ЕÍ-zbÐ3Ø9„Sb= øA`] º 唥°‚t Jt:d; ½°yxG´ªqm 7÷ˆ·0ª Áµ™†l2J´1>%†•¸,Àt…é¢ ô¯Á´C?™$%Âbú¾•†îShòì^è°Í‚*\†k´Ñ7Œ8Zô! 䨚†^1ãC0ÄCLô@Ü%J1Cƒ’A5»%Ø(ƒ˜ HˆET™† e…{—ÃÝ @%&›X°ó¶á&zwïx\©çî‹H2o«šè Êõ<ÝÔO·d–³Z˜m¥sûØ•ÁI1ö&3¡Ü,1&9\ºç²¥¹0("è>,uàƒ›,ÎKíÀí`¸ÊÊt*¦{šÀ,Ц²¶Sä•€[ñ†ÀR‡›€*•‹€ŒGù„Áa®<:‰þÇ•UF Œ{föšÈQÂ5¹hÌD P2YTÞd‹‡ ƒƒƒ «ºÎÁrÉϹd°Ü‚!rS3mCþƒÐÙyžÃŠÀL.÷f`4‰eBŽI.b ƒt`¦ª*Òar™úν%Öþ™±l/‰Ð"Œœ¥Àîù@šl+ØS<ŽÄ%ûò ݆ƱF c)LøΖ;Q°æÜµãJl¦«l3KŸÛÂb® ãÁ˜Ì0c?Ö¶\Ÿt †U¸$ $‰4Ð’ȬXÏæb¾‡Æ4—DOìšL҆󒧃T‰Dy XCOó^+¬[̃¨ÀÙÃ¸Ò €Zñpu‰{)wNTþÖžÀq@î|h‡,è°Tfd-&’:ëŠ2L.“ô@VnƨµL¸'°™iý‚Í=E ÞS DßgE®Ÿ@ L{烟ÁXˆ"5FT‰ñ,!µñ”aj’¡±´ìµMÎÈ ]U&”‡»à:ÓÊÆ0<Ê,ßbx‚ï(ºÂt*@oÌ%äÍTs<ú3:ª€IiºÏL1•Kj°5ŒÉ‡—ÃÇ‚ì;€®a‚‘öp‰€ˆG…&‡+;j˜ë+3#Íââ·åÑ Z¢&ÀŠd#˜}ø-Q`tx¬²ã:˜nßæ2 äî bÞ°H‘ö®"A”€Q¸’#¯+A? KãÖ<ÕÆ”iWux‰•.$ÙpVÂT€cUÒ¹FÄò`6óõ –:¼*7z 5pºdœ¦á{`à˜#¡ÃZÜ7–½À!ÏÐt ƒñ-ªÅ42X0 +“kŠ#ûÜ­‘Ö|‚Ó0¹jä@kªnPUa’fÎr4Pâ66Ëqà‡úw“Ù¹›±‡€Û‡ñÈ?è? +Ðw>ßâV¬ØmØ:‹Ê`,Æâ@çU°–ˆÙšð½e #Hâ"«5Ù”f—b)s•\Ó0ÂðúP ~X$I0™g`ú‰_8ÀÒ,½a0ÅjNɲt"\•«(’ y‡\Œ€¾p}SeH ˆË­£R !µäÑÉ?£í‰éÝ`"Œ’h01Ž.Ôe¼7ô\ÖbÂÌHLGÑ™%êþÉܯҀElž'oÃë8Ž€7Á ²‹GgA'áz1ºÔ˜”o Å]`h+TœFé2|ÀÐæî˜nc2‹6FŒ‰P^ÀHˆ€/6Á±à»¡I"¨+Ðz˜ÓëC$õÀÜZ vâ)4r² ‰0Ë“H\|\¾ñ­8@|Ø. 2ÓÄ㋇¯Ò@@-~È*Ë eD`p=ˆ ó0û,{` ¶´úŒ²Dx >‰Â:Fœ<À3a=$°FFgà èבüH…(KXÐ?Ø8t¦x™*‰îBq¹ß *9aêc{D“¥Bl`W`B Rƒ‘0,ÃÌð›ðæÞçyôP{.çy¨9{ ¡Ðê@rqwÐD VW€É}Œ<3ê¸ &2I‘y5°<-Yê…‹+¸¹éÁ»(_Ô^Ð1œ°¦)±Ð6Ȥo1Œ ÝŸô˜ØdA¼eº=‡5î¼.Ö²‘€ CgÐ+ÆlŸ‘+"78TÒäņ[™<4@õ\:¸v ³F¨Í¥ü0À@e¸wôå€å[™à ±f …JT%ìP) z¤!˜ÜÔÃø›ÜT“XúÀRX(þÂÖˆ6ð,’êsÃŽ{FH X.š-“YlƒKN  Ý c'mt$#%Ô°Åâ]À¼°ò °¿®«[¾´Më…›  s¿æB1=W.>úK¿ šîøf]dˆ¯ÏšpB\pƒÙ€fKx<Ç„»Ô%¸UR`%•K‰™õE Ù)°4$“Á%. ™B·tß“YI AÀìØØk_pm—5ý£%›«t ¦ ÓÖ¯{,Ëe¾…â‹4Œ t¦×ÓÌÖxŒ¿“eÜ á/L‚Í:‰>+ ‰áa–E°XbXb8G¸f€¬ÀP+a࢑Mƒs0ùÅ€«Ä’I$ ðb0Nsf ³tþ¢€¦¹É£1 &&ÈeY9 !À} Z´¦¦;r}Ú¡Àh°ž&n@0Œh]Ql—5a—ãéÀ§€ïPUÃaV†n1)Ü€!eÉ(øFFÌc8 †­¡³v`pÊ¡Üü¾\“›Ñà ÌиÐ/+¸°w’f0*FÏàê¯ÏÕ<`FÆ^ɬ",2jŠU[l¦à€ðiŒÜd€¹ š0¤h1éC’#®;,%Ì¸ÌkÐXLϦ¡åÚ¢iYд’H®4²b$ ú ŠÈ¥8’$:#Ð?Ö„ÑÁë?Âo‚7K.í´`È6qàr¡Ë\à A'¤pÅMbý&;Lg¸?F˜ñ †®Ä, (­²IŒZ‰1¡7`þd|Cá’ 3–4Ò…€+€ô‚9)’*ÜÀseeÆt1ÒŠ£ÉP<¸¡1”<€å$%E¼¸¯«ªÛS›‰™ ô[¬ $ãr]Ŷ];Â2Âa0ºÍº?Ü ëAp: L•TðFVÿ “ë@Et1D˜KF2B÷à}è"Ëá‰6<;ãäY¸û ð7bÎe)j%‹ÿ„Å&˜Ò ya„?Íš›.7 Ø”(€Gúdî¾®R9†ep)Ýñvlê úcDMÍØ!VáÞ»Ä ¬0lžDÞÄZbœ8¸±@Pc¸ô'K Û*ƒôa2ÕÀ6 Haž‹žqIß#=à9ž,Äa,(+ê&«¨€öF °ä F®$ØÌ·€’1!›§PU٠ЀÌÌf–•µ Ài“ãÏ€AøOnÑ ’)Öa«Œk4†o`08³}Ã*j–dÓm²Ú@WG«ì¢+dÌÒ™"zCÀ¹–€b`èl‹ÂÌæywÅ,UCdÍ8‹…¡`µ Í€’ þá*4°'·‡ì€uRÖo“<…©š× ÎÒ@" _2Ö”ù>C˜á„ð¨tǃyK«”,¨LUÀåEh¼³FÚ)²v³ÃšgQ˜E#l +² ¨Â Ò°‚·Lf‰ú€cÞoÒÂd @ ß×€5¼E–¬ð Íxj€Ž¡2„À³ä·™`xX1c™õsÀ3À"UWdÉõ Ò¬xoȪªèCo¹v —† c}C(k»+¬"ÃúßôiÉ åœ‡ñÑDŽÆ8—‰5H³YR'°üŽnÁj» ¡Bb,¾EÌ8dÛä®ÀÉ5JtÂcÁR‰1¤kq9æaÝ`´U±ÈsXÕá6dI7!¢Àƒ>k½3Å‹‚Ìä"ßd† 3 R‘Xq™K`•¬ò£0¬Z"ÁféeF³¶ CWaeœpiAйÛâ¬Ô¨À’0ת 6¡‡™žÜM“‘ÂUË” ï¬ l ·, °ûU‡Kç\ÉÄ0ˆ ½›ÅÄ€3Êa•¹8RX}] QÀM¦G ¬°¡Úð2Ì*2¬4 U*]8@à'h@ʆ9†Ëaʉ4,nEè¹®‚$ 0/Odøž®ëÐ\4ƒî²> ó°à7$(޶P‹ÀS‰±–`Â6ÆAã1 ž¿Ì]ÓD—ËíŠN ù@»áQ('<ŠÌ¤.éÓ¤aà@1Ð8™{k@ä°±7— ‰NœËÝc‹‘$ˆ¦Ž ?¹cåL:$ÖÎð#b×`ƒS3¹ªÍ8)ÒpXw[a°ÒKój‡e3@8”¡àøž cÌ&Ÿœ\ª/¼¨–5eIlàCõ-®Ãè²Û¬v„1¶éME&cÂrŸ ðX­dÆ]KŒq‡UÍl†n©„špÏ a V¶‚ ,ÒÛ¯2Ñãj;‘n”qï=< @cÕ4ŒËÏ;á¼1°3 g¢aæ.Âkº&é\iÒY“ÛT ĘÅa)vÐh‰E‰ANØX„ÉÁãH\ˆÂ€‚¹ƒ]èÀb•0@Ç“°1îB1úŽõ¼àIÆ×é³HcSà KhJ˜IÍ k[Tâ@ð 7ñ<v Ÿ±¼+mͬ/ƒ¬…ÔÓïa°’ šá³p·%È<äBÓ€zÆ×øÀºÌ2~³cÂcPQ.ÄÜG›yÊLd XÀ/xBX¶Vf˜ü$ãºáKa¡Y0gä6L½Ä€g°Ç„Û£ñôñ%¹â†~U%ù&kÍBóI[âtx®ÔËÂJ“„ì•Iï2`?(‰Gg 6¸ŒÉót‰g¯ÀG 6ì}@‡‡fm @\…g¸b99îù+²Îãm í`W–΄J«Ú^Á Wˆð v[Í¡È÷e„mH7ÆXcžÙ•aU`C kä/ >l]sS®2ÉØ|wa& Ê3W prS$S “ ¸nX®`¨¸¹Ëèj7\IdÓ`uLŒëO,\lÁ¼É,{ £ì±â§ÄúeStE °ˆQ+,™¦‡²ê Ó}‘´°j› 6Åì: ¸;,?$lªñ€ôT6EÓ÷™%¡›|h†µlÀHâ¾oQ3ϰ¦õk‰éY óWað!/* Nsqר†9ª þ¡Y„ 3¡2+¢ÃJ9AX’ÒHXîIŸó€h˜™<+&\c‚„Ö( JsÁx¸ñÏø- l` &8>œ«®ÃAtÐ=p&ÜÅ ´Ðž39˜µPÃí R2)¬Á„j3nº<)€d™&‰Ñžè£Ë¬Ù8)pUŒ»ña)ô0 Òè <Õ(`½0]v¸ùÅH‡€çкkIJÁÃÇ-ÈÍâ_"¸ca„@û0ÐK W™å=Ã8X8Û‚S……ƒ­dP>àÂlA†vAÚ`ž'.¦ ,(­I6þ1å0oø„uðl Î…hØW I‘ ò!±B¯€»2GG1þ ÖÜ]aX’ÈÝBXÙÙ@º¯r»Nô੸èºÀ€JP~“UK%†ö0ö…‰á D@ü`­ðˆ“Loñ&Ônæ¹2³×Gã¶Í}B#ë`”]‰þðmP.Ö³Uȵî˲¾M*'àŽø È6 ·e]uÚ¥À‡Ì`Áàó˜`æ-Ê2üøÞçN¦V˜r#Ùä¡" Z¶àÑ ñÙ s` ±pMš zy]€÷Ó¸¹æèîåãcP= †}ƒfiI2sG ÒÅ0˜µ¦\ 0Ÿ,¨ó̃›V¸¬æNjㆣ`áº.®}²ê/KGJ@¡|¢j±–( ‚=bÀ'k®‚×;<^Çb1s8•0ö‹¦ `@ÜŽÈô6Á'ãf˜§È"‚¾K†0ÂSc^¹ä™¬$?È:ìŠäHËXÛÌD}0óVÀ ®,3˜ùy€Ø.ótº6ÁØ!E5%d­žÆòûŽÀ$Sð&‡DîŽ;ç×FT“éÐ.“{À½¹ãä‹ë ž„½ ;diS€Â|Š"·4&ÒÀ'sµÕañwœg&0ðØbÉÑø2ÆÝ·ædÙcñM‰Û¦¸-D’ž5=òÙ4KbóX±€¥ý˜›„ƸéÖËeÈœÀýs‹Ç£q»]ѸçÀ°‡ š@º¸‹©rù²*5°ä¤M\¦°¡êO2ðÌð,Ø´¯hd¬$ÁT×4-ÆÛró˜¡ã¾†c ÝQWçùa*‚°KטËa;j¸fưX‰›«ï ¿Ï=ÅZ"vÀR÷ÁÈàWͤ¤‡QC#ZX¾€·–˜îÉ" á‘,èÊj7°þLÈ´¶A¸a̹x¯Y˲: >d™CÛ`¸ªÄb¢\JæAu°mLAcV)œ1|©ÀÚ! TÉcÑ®0 3bhäY †ÑˆÀ†#Ð=X=ˆ'¼oúÞ¿+ DÏÐRÓôp‘ËO.‹—ú>}(Ñ2kRÒWI,Í ‘±6ù›£z ½¬cI…Áƒç1Yò3Œ±e±|ÝQ˜œ à(«>0ÃúyV…kéÝŒüˆÈn‡ó1lªÊt‡•¥ià]AÌU“)åÉ[g(ˆÀÚí*ëbˆ˜5×ñ¹zŸsI‡»UuÊ`È®Ás{É£13‚ÂåFê>wÉ\d¸>¹j…G™|BÑ2˳˜ÄÌ0 àbÌ© H›ÆÏC: G@æN3tÂJB "@ÇØ$ÞcJ¹Ð9à6™ÂlF&êûÄc€­ ‘À‹Lž£’A}à–æç’<Ã@9 …ÒÁd)ćžb° ‚,Ïñ¢²€¾ÙŒï+Ö¶MÉW¹"` Ð#¸°dº0§>¶(2W¢uŽ.¬;p?£*Âj¦š ™2ˆ€ÌÃ(T9¬?Í<2Ÿ‰U˜P 0xÆÖ„÷°D Æ´‚§°šä†½èëµ2ó#LüÖXüÃa<Š!„°¨Œî†Yo bäûÛ‚ÆÓïÐ)†ù0T úk3%ÉçÁOŒ©µ¡•hfˆÉ—‰ŒH1à)UÌ7`Æ̰Jý§¸ú@êš©k0kÌôõÈꈊþ€YKXp-•oÍc‚:Ä-ç‰zjz6a`ò%¼WÁY^’ÈÄ$ôÔ“DƒçðÈ:O.e†Û «a:ÔP¶Ö‡¡ &ð[<[€± æù°À<Ñ”»=9,3X3$Æ^²@jtÉwXjÆ–@»àÞU/h‘Ð[7< sB`j&h3>`r¦HÈé²êÌjXº §Ã-2 n)Ì.dÅu0qI`)0=AZÃÒ?Ü*…e0PhaŠ(Œ s•Ó1#Æà¯ccô6 í,Ñá¹qm4 ›Î• ?3ñ΂ò"|÷V0Ñ€þT$ØR¶ÔÑ).¹ù0Ì>ð烡±™Däq% ˜‘{–àÛ©ñ, @Î ÷?L<¹Ã}>X»°À#7X9•|âX.,ëT^ Œ”Þ"0,|KJÂͱ´+2Q%<Í„ïr‡UX×Àä1d*0ÃáûaÀ²X Å p@V\µy3æáÚ= ²¥ øÌæ&†®¹J à·>>q›f(ðÄ50™ ÚÄÌpDå1í0™((`‚²©ÀÖ˜iÀÈ9 ShÙ,üÁ5¶Àf8¨Y›IypYÅS« \~Vû%±†‰xVcë©3¥©LO•ÎåAçÐ{Ífò„hp¿6\&Ëú*LÜw vÀ0:¦‘±Ì`± Câ7 °&3‚„q,IÄs©tÖÿpMö¹MÏUtxs-½Ö¸ÃbŽ|.W¸MÏsûx’©ÖU…á`ñ4XH•ÕN>5‘KÒ¦èä9Ž×ÃS$YpHåŠ :h,oêHjXo[Ê,ñlj† ‚‰à±°šÍóT™*Á4:¼âXy,`d}²©ò„3FGª³h)z"L°„™Ìu8A`ZšÇEw@",ᑃÇO±,Ú¤I¤Û2ã‰íð` 0“1—°´Æðfn«òüPÓ àbÁN<®ß@¨†©Àâ2ß„ÅHñˆ6¾mÉ0d‚ÏS•Kd+ë¸7<óD— h¹6ëÕY†É`tnÉcfeͳWeŠE€¢‡µ½t•Õù@ÍYÕS'P¹icšÜz‡¹¶XMDS˜G뇑{ e¾`‰*÷Õ$øJ‹U(L´Ïz¤pþ,”ͳlCMr(ûàøáaè$K Z(À÷h°¶[亮Ís™ÄÃÜ[°<ˆ¿ÍŠ^À‘3aAvÐ<‰Q¢: 0—áZUæ•ÿ¿Øû·¦]–ì:»¯_±ÿÝ•ç,ÜeUfÚ²ƒa b(¨Kl’5Ù @Haþz?O.{ƒdC°²Û‡Þk¯ï{ß:dÎ9æÌ1Ǭ’NTîθ»ÍjòêðÉÓ56G"*“ ‡N´ÝÞ‡ê’te¡‰ãóôk;Ye5ó{ùû䛆$»¨‰Š'2ŸgGú±ª‘J*üÌEîmjn‹"NP”¶Ð8Ù·÷ÓÕVßDÞ—=lR#y›:‡ônKQ“[JòPÆ%yWe¦ª1é¼K¦ÁÁëÏI§|™ò+79¨ùÍb‘ÒÕå ÄAö±Œ-v²·Í2ø¢öY[)y:.OÓmáÙ½J–׌óQ#œ (ÕJ*ÇÓY‰yéÞ·®Ô¤¨¤¯îò„]@ZðªÎ¢®°®$²ÎÙ|“žåz>V¤ö°I¾›L0…¼ë$1ŒH!/I«ËÏ”O†KR"ͤzå[ dýÒ‰öE_´Œ²AûËgñ)ÔOkK7^òç§Sg¹†ö¶+ÈžPk8 ›¹Æ@ùªo{ìœË³®Ø°°giæ BÔÁÿ›I7S -§Jß¿–.Ù3žd¹ÞÇ£ ðÒQ^ÑòT­ÇU[°gâXµ|òé¤$_LUÛ®‹×C ùT€Su„¨–Ì;ÑqÑv9ït«}qhÜ錻§¬ ™K(ãÔÌ”k—T!a6ñn ý±ÎŸ(sÞÕ\‘—O„ý°Tû‡øCø€¿›±ÝûOCüÆvþ•Ævÿ9[»ðÓøËõS¼ õRþ£’ß¶v¿7S;ŸÒ߃©ÝûÛßü'_óKK»û¿ÀÍî¼È?D7;¾þåÏ&bùþéWö'þëû›_ÿË_˜Ø…¿ú·OÞví§_ýÅoþä/~¶2Ëý§_ý‡_ÿùÏd¿'û;®õ×ã —úoÿôòßÀï×oÿÿÁóçÝ?rÿáoµÀ+Ç/ð¹éa}ÜÿðdN«“О3(æ »£xʳ<ẃšu:4§ç<Ùí{8OÒ­X…¤*Êý…÷ÌUÈÇúbë %îíÔôüh«õ–ÝцžEýB[7Âf’4tãº÷«G¹2< :®l_N]iÁýHÆp.yn°÷zR‘Måš$½ûÃS·9'9èYÀ¯”.[Çr=µùé§[ì¨Ú¥·(:šú2yúQG§0û¥ÖÕ6ÎZ‘9ÒMøPm*ʪr·Jô“òtH¿KÇæ±]Àò»ÌÑR±³CïkÌýUØäì|ÊÚ*PàhïÚ—O”£9¨4(‚¨ö¤äÊ:N蟽Á.«¥çæ°\X|²Q©-»“z„ƒx„ë …iJI:TÒ¹,)5:ZÇ%Ijµ+ mL3t¼Ò¸7ï¬' äƒSe³HqdµØâ¹¯Ï1MŠŽçâ+há°\µŸðÖ ÌÏì.A¶žG[M;ž}Yà}_eRÖÔ¸uÅ©”’3ðúÁ}ŠßÉ )­'Û(rB­žiývê d>Ï–y¹‡”Â6JDi)·VÚ±·|m+ïhÄ¿µn«…bä ‰!ßïktâ'«¤ ãéã«÷QSⓦ>šZDÞêÚÔÛé4%Ú¨’YË‘…ô~:4Pi6ÇÎ5´µM™[†Φñ cé"°dؾšÊÕÊ;XJ“8æ2œ¸RÈa)ÍÉU«Á“¼0ǼºãÕ}ž1KÅú>D~*òY[Rvq¼GAFg¨¶‡"Xoi[ÒÛ:¾E¼â{ùE,8ñxæ*šùèÓ•»ZàG©(Íûj·¶|·ºZW¹«è_B™)Qê²$\·ûgÑâ­,AÇ£>å„<ŒZŸ3î:Á)¤ûµÑ‚2_qùå×Òâ!E–‘J¦îÇ\?ôä¬I<]û»?úØ4 ˆßÉ…²µ'¸žmÅqÇv.g–×#íú3Z,“èðçýœÑ­ò9O­ÏXêYå©ëfOùÊ¿ªAûúA*¦h­Ê‚ª›’Yjë³#µ"LçIçÏJe¿[‹!vzoS[zö}2J†Ò\Ž“=)ÊãÒÚΩ”–ã‰×¨[úä|²ªÓÉ&£\Þ¦Ñ%ÇwôXÅ) m)‚AqÞUpa°¦H?݃íoÉ|þöî íÌô¿Œ|ÌL*<Îá ¡~Ÿ±³knÂzQ?áHƼԨy—ʤ¾w|ey×ÏÙî噂ãœ*d>‘ÛHÛµ¬Î™›üÀ¶Ñã³Ó»?2 «7æ•Ú!ǰW/u2 ¶ |O\Ê‘y¤ühk~7q¾M2}î§Ø:¸)óÙ×'óƒØ‹ï,5n‡uʈ§a¦™“c¯JÞׯ¥[…¼À«Ñ²ǫ̂e»º©ÄºrÞC›?{W¥O5¬¶³¢3¹C–ØÍË%éÞŽj{D©3j#¨Jµ‹Å£c†ckÝ&õ®Ï¶)®nK–ëwæœÙ¤TÒçpVñ=ÉÝChr™’9„ÑͳLž°=j“Æzç$z–³Ú¼_“L=ó™IÑ\ª‡ªJY~ˆÔã˜3¼ ãçÕ÷fÿ凫>4Òýø\É ÛÖzuÞ¯E¯Ò.gšœÝŽ„³0¿£†+O¢óc3~õ©åP S›a\ŸòIE…¦6€R ×É(^÷”æ|€d£¥¦¢°5kúâÜj¾†ªdgf¹•bLËÑs6µ’`¢·¤ìâTõ»mA~„•~ø\—Î ]ðJVWæÿUÙ†«Ê‰ºÔo*mXö<ø§“f×ËjƒPôÚ- §–œõÒ«zsÈAÊÙâþ:ÌA¶© ÈAmÿ.í†õZ.~@ìAŒP—fŠ@i7o<ø*îÜO©*—:>Ñl)knX2pœ‚ýÅsœz’&eMñR)ŒEIλJˆù+Ú0ƒÚ6ëMâ×Ë^H!\y:ÈHAžøósDX"WrÓÒt „pÁ’f}>Ò ì†G§–õ"¸ŸÜßNO "²EBß•ÊbÓçæ5©_¨¤?OLÖh_O›©µzíT›¤uÿX$ctù&eš %W¢^¼…\ÍW”:'Rß—v*sói·ÌNýƒ„ÝŠPßâ)Þʱ?Ô'¹xzR‹Ÿž&érS²³…í«ß&Ûh¾]qOå‹»å$|[ò›KšÚ€WÏC²ª7Rc¾Sí%×Ï:Ú#u}jéH6ž+¡ZUÄÖw¯§å­RB8–8wŸ6Í™ž’_ =Ñð˜sTrvŽröÆ1*Rç:òò°=iÝíæYÏ¥*qíÊÈ`%‰†£¤C+¸¦ÝÆsUõšnM9Ö¬žÝz÷j®U´Ï²½/çeËdkÇ1ª6ˆì O`&›I©y2æC‰¥òž¶ nŽ/ÊÑ7‘ãÔ*R†´šÛGŸ¤ÈÊ»xÎ}Uã e"Ÿ™ ¼ŠB6.D}'χGg¬>Çsz÷-ã_AÒÇõ.åYŽÇ­ŒìG ”¾ CúÖÍXÔ̵"T"ý=Ã9œJí|Qi£¬Z¸ž¼<—JÒz*wùÁÇ3YŸº8=W&0jú%›—§8”9͹ï›Òoë¸KùÓ‹V>Q™wÉâUç µà—¤þÈÃÎiì…"Iºž1©®Zxmµ VÉXVÈ>ŽE}†?ªé©9™gÊý’Ñă+|Ž–IßÖÕÁÊf­âÍÚ,Dÿ¸UÁŽ“ Á÷%ßnEõÕ?»—Xæo»ó5j†KæÖh[]Iî=f,ѬXÒNý=N¢JSšýÖËä>:=!ÁŠë#•ì)¤~:K§,Õ¥ÚI¢@·ê¤<ù‚eVëù»,ì%x.¼TÙN. àg:&€¯˜¢èÉ)o$;ÌZ^+èj‡¡¿¿Nå,Ó{Ìï=,©ØX—ÎÒ„0kuµíÀ6îÕ6R·›,;÷¤ ®f¾š cgþp™KµÉhÚ¬`‚/’ñ4wøö.g ™_îE2ÚÝN^»5¬%½G‡b¶ýžÊRˆšÕ´´"Û}ºO~ƒ¥˜ÏÑáò(-Ûcƾ)~®`š¢;²´D…íSC‡"²=:‘æÒˆà(®ërVtxwõRÖ]Ç”k«±XNEsy*D)¯ ¶<¬Ÿ¥ÎìWŽw×­ž¶TµÍ^mYñtM$HDݸɪՄ¤„ÝRsPbÝ`†UlÈ쩾eq2¨JÅ LÐÉ”àì —ª'LPuS»âž&‰` Àì.Ogo^’+;¦ë8;)AG›Q» Òl´Ç¤°U’ÖÚC5– ¡‰ÅÎF¼H;B°jEÈÖíÎJ4~ÿq¼D‚h#‚Õè±p±7XÆVÔ={.uERðÐüv6/°TfÏüšï<%îV>BŒÅK}<•%Q¢&v£#@ ‹óÎÄ*‚.¢p–Dã"òAIÜAÐe%Rxê*@Òå¥j rWïZ‡Ë¨lë²9;}¿ûà•ðFù»ÓÒ ªj;dI±F.²»nç:lÌ ¢YUÃΑ6U×öŽ=nQH²É¨Œ¢®:›˜nÚKs‡^¼Mò’i2L¯%sºí|à$g#$Çë+Ø©Úä ·¥–ÈgUïÈ dz^)5±TâN‘v; †s@÷Sß–:… P{eµÐO6gZL9É”qA/×¼”غý VKt|ë nÍÁ‹òmÏÃÛÒ8ÅiS^à³·ÛCμ|QT+ |š²ŸbkÅÀ,…^uA7ØžJBÝ\I_²¯“b\V¢Ÿ1hÀOšijaoàÉz.Žôüð\eÊZÔA¯Î0- :'ûœO¡¨a§+Ðð(л•«_ºz)¼¯¨åã\XtÀU0_Ø…Õú–ºe'èW'Ÿí•¼¼ç•õM¯úž8mø€÷í•jöSÔUœáMA€u;TYIMèñ\zeðïs?¶QTw¶îHŽ²ÊŸ¬D ƒvUÙãò¾¬M¬TïR €T„:ÅP ª¤ª%×:Þi¯EK‚,­åøBæ`CU§W ;­¦äslõ2iQuÎW±‚­Ëß&]|ïKi8Ù'ÒÈ$ Hå{RÉ\ r€A«Q„—‰<à 4íqª2i}Ó/•3˜#™õ†òT(WKY‹u Öàá–gõª“,ÂMwôs{æ·còeQYçÈ)½/¥Ô$–Im#úDB@®®¿­s¹´t–Ä£Á“¤+ [•r*H\J褢%„cÐÃXL¦UkÊIò}Ÿ±?%&AnuÚþ-.×db4²å7[q.Ýv—p üObøÈ‡}Ià ¬ï'È æ¹nà(øà펬EÅAóÛÌR«ì§ûSLe°ñíüihª¸uq|žê0ß1)ßÔRÎ`*íàdR[ª¯=jF+»ï;Î[@;KLð q’xDìXw¹”qÞžfTeìFÛoß¼®îK&dITžRoáÄžW?º¬koÉ6’/BÃë°µöMò¡AvT·Í–øNÕ*§¥| rŠ[ÕÙ­uéý¥±®Ä:¹*×/÷Bæ¡z”å{í¥:€« ám{[Û™Ç×AÄŽWeô±0X¶WÑÕÔÃVçÃu˜÷¦m¼V…ÀZÇ)29ø¼(C [j’JHÛÕV®4<âTîœØ”ãeîæ÷ªs *t4ä™Ýz¸Ò$|lTÐBÿ@¶3‰òylà‡þÔåóéW †|Õ°ûV™–ËV­7 <Àæ$À×&èåLµÃ"ØiD`ˆd]M"â­“"i“,­•˜¿’J¦ZÂß*n¦÷Rà–¿vàVŠ*øñ—ß¶¸Ê nQ_—Ÿ"S¾ž=° ½ökï|u'"”Šó¤2­„kçµ ±0né¼ú@|*"+å¤Ú,‰6Ùß\ºßRÐ=¤Ë6wt¬š©Igm³A28ôóp•ÒïÖ.{ɺȗéDÉ][%ô“]•ÎHÇïIìDl)GRòrº]Ã>'ÿ´ x‘ ÷ËÄa'} hè6üÝ3©£¯mDãfÂ7\IOàM]Þ9Xž¬µá8<ûbÜÕ.Ƴ|ö/K¨*ëŸÙºÙc¢îŒU; A‘äè„«7=iLl/ÛóDzBs5V¸‡Ïª9’D®i³© #ë˜$©pÁ0GäµèH~±é̃½³6SŽÞ¹TWu«8\ÐÛ¦…ÂÆ McÙzƒîW©\§ÇÒçÌæú´ÚÕÉîµbÙÚû)I›íqÖ©&½#ëCŸ¼—%ª›Bj’+I… q[;ƒ+¦÷ÉçDGˆî0H=.÷€”h‡)hVL¶ Â%f ¤ì¹lT[¶ÇDÒ’)±¢’ÛÖiM½Zí뼉0‹ £ÿó ô\õóh]ÔØ škuÿeÐ]@S…šy˓֋¬¥9›â©a)j¬­¿äpÁC¥ f±ëAY”gŽ·¨ÀÛ®CBzWÄñôôRÓ’¤)tÔT}·QÍk§±MÈȪ醭êÄØŽÚþ:Ÿ« /€Îž—oáU÷¼“Œ©4“@sR08œIñe@Ce%ÖZÅŒëÌzhô†ÕßëQŒËŽ…îhT ­'=MT˜ZÚ9(«R.›£$Õþ©ÑYÊ:sð‚l‡ÞÁAJJ’ZËZEt >Ô3äVÏ.ÙО;óÚ_ep‚‚—]¥qM×U‘Ùvæï££œ†“dYÿAÇö½fW@ëRŠäôp‰UW"ñÔY:;Üë9r8º[wкI/%µfcöv‘FÉü)-TË7Õü§IGeøíÜ)6û"ÔÛ˜ú Ï8õ)U#Ww²¡¸4”:•)Öv¼Š#QV>oí™y'eh´¶iËZvÇ5€ûQ·*ÝÉ€É\Ét…'ý=ÿ¤óø2ʨä v0¨)OdÈñ",Qü8D[#šÊÚˆIqtÌ *dÝöŒìÿªF¹5Rs†2¬_ 5¶Vü)ehc—$[Øð’onUM47`»aׯÁµU•ë*Ì^ÄTb%–;s¨\¯c[&I‹ûø‘æžÏÿËÏ;\Å’‰K:iãÑ™¡'•A?ÍIn¤pÒNÏNâwÛ ññ‚t)â©æîü µäÕÎÖðlq´vŒ`ù#«¤ó5…U”µêAí- [±¹ç¦Žáei‰Q=!`%’ˆÞä\°6 ,V ùX]Ý‘q.Ï£õj¨lòÇÑÚžÆvÔV†û°hý£Y¨Žt;TîPe¡à`UÄGAUí Ä›úö$Ÿf)HYzÞž—´ÆóΚüÅ¡yúu§êœÉz²V¨Y”ÉûÜM‡ô[m:%)Þ7‘\ÓVOĈ£z5gµx©M©v«’u»ãH/!F@Sœúì¨ã¤>”¯T¯ˆÇE51ÔØQDQ•ZÅC³z´uƒBøÏ_Ã}‚ÀçIÈVr¸\Q üš´‰8:3@íAþmÛÃF¥9(Ö‘³0“’°H1šÓZß{ÉM¨y½9.uø›jvöTs¤2×¼šñ‹úæÚ Mr$úv£ØXS­Ù•Åêj¾=ÞùÈÜä®J¼;ÉÀ |w´oAÅpÌÛZ`…9ªãܘe¥1ס“Ö9z·s; F‰/ÙXOq/¶ßK‰Ís’K§CÃÐӇǪûÇ)aÓµ~¨\ºŠÎëñ%ºª8u«ô¡¢‘Údõà œ¶®(À/Â9ô`ãöɤÿä˜kS.F°_S-›Êkv®¼%eA—޾ ÐWI2’´»¤Š‚d½ž3è*/d[®f…HUôêe“íòÈàžx(2^¥<Ôã ú®eã4"ʾôêH®7ˆ+KνŸï ,j¢2Ø_³f€¿‰ü%­Øà“ê<Å)Ú¡­ðÙ軺M§Ç’hxg[š·gA”ŽêÉî¥{ÕPåG:ድåT¨ÝJûK‹e]$EÀž +SõÉ]W÷ ­Ž6ž;PÃp;[ñhâÄ•uÒ½uo÷Í6;ÀŽ·í”³ÊIü;ÙŒצåïdù±ðØløNêÕóY,XÀ«y3ÅrºÔr-T±°Ob¸|»'ª©}yîfí@¨+Úš,.Eó>•¡%Ìé¬ÒS¥4*6p¿Y·žym£F¤m³®c7Õ’rìJiLÍ(wÕP㙹n8ýÍù%^x.Ë¥¼ÈwΑÃ!‡fó¾g“€{ LÆ¢§fòž$— jŠ?òÏë¥r \°n„àí‘¥ 4-ÅÒŸnl’Tɦ2ÕN|UM@Ü®¢Ï±Šuà_þßPu0‚eªŒæÆ.w›©?¥èLmMðkwno5ÓòÔU; EÊëOo2LÖ¯¿%©]ÃÍSGy&;ÁŽ›'ÿ ¡_šW¡K}®†–1ïÓˆßúY*ýÕ‡p€¿ªvHv+¤¡.9˜ùr„€BJUùåfu_¶7¼±NDH*êÜ“<‚ò¼MÊŒx H<`Ç‚QžEIUˆ%¼F©¿UNøq¸vL°l›ånZ=j¶¸y@ˆu"’PÖQ|ê²dÃ8ñJu½-f)*UÏûÞ(m@]ô#–%c™»Û„ßK"Ú,ÀÃà ½&”£Y:ˬ©0Ô{¦×Lç+U)æ'yDõÞд«kÍ*7{“=<©#4“;Xê‹™_ %Zöà;—AÄ[’V‰)*‡\Q/™É=mz’ÄÝGâ9øû‹Ê»PÂΨ&øCaþU(ž%q z·Ÿy÷¡yO| {W)%Çx ÏÉ 7KSBë–\¤zÿ}ËKr’:¬‹8©»@¤ŸÈG½“EQ"œÍÅ¿T› àc,¡BS³¬N~x.3†7éá ðYovvVü^`rW.½òºj—I0¥®nýj“ª¯½uG9’LºÛÅò€U©:¾M[Gz¡hÊóJLªtðEwßIø<¹3jOæÕœ†Ïoýožè'uñ¨{G4>QV—]eB眈(šQ°š_Û‹^~q˜Ày!Í6oŸ½G'í=,FïĿ엔–‰.Þ÷kAYU¯|Øl…gD¬Œðb«­©ÄGo™n–~7{S=U4áÿµu¿Ò•ÙÍŸŽLD}ø°pPŽì·WyлÈÔ³sj¬¬Øe=dþ󥨑üË÷‘Õæ¶›ñƒ¡ /… [”À";^†Ä¡mž™µÂv¦ŽVïén¯€—4Û]¡\vˆ–”oÁúmzök9eê>Ib…ëcaqaë#EëÞ®’k$yØÿi$åçuæbU†áÜ áyÔ°\3ôKGÕè™j¢Ø' R» ñ©lycÈ.F)% 8X̲3=ÅzX:—ªN1¨ìw+ ¦µôæ )eŠ]Rx°íW¶¥Hcì»E1ÞaƒóÓBë³ÛSì»)‚®1­%oÑÕ”:–šB¡:Ÿ¢?ýÓ@犢’óu.’8?oârÐx”®kRÉé0ó¨Ú¾¬¿ ˆ¯?Àý« ©ìÑ¢ 2¹¬$‡Ú§EÑ9_›‚¿úšKû ´%ÊUžZ„!Cë%Ô¼‹ûÒ¿â~T5úDŸô«PåÃÉVÌšá±}Œ·M½”sËX"e:=lIzêî\EÏêp©â}«¤ÉòrÈÙãX»“¬„!±nI“”¬ßå ÌžŽ*S–¦Â±§6{¥L Õx4M¡F:ÆãÄ[QèÚöÙXSLßö„>I…ß²ûOù=M ¨Œ§e<ëAÓà±Ã9(U™”¾…ÀªßŠË.„6½²uҦܱ%GékéD¡½£oHr»jvž!;"Ð*…þÒ)é=Q]Ï9eÖY L•œ·ý9Š?çqy*¤sÎ^u©çX?¼ßÑsþ ` ]b-ï‰8ª„œ§Û ´e~=ÇS·¨ThP¤‡GËËæ»ûÊqêc7PãæmFõ &` šéß¼žÒ‰—65A":êT™DŠVY $É©wÝ” ]4ã8 `6L¹:ù@z>!jKçp((ê¯ê¬C¬sÏXåW,95:0èJ 4 —suv?Ká4ïc“}XœjWªØuz%¦ òÅ .öDžÖiبÚDVM2uûPÕWjÛ †F¹b3êØ tԀȱ`vJsÞÔ¦(}°´ˆ ñq;… î<²T?U••.[ájYx@ËfbÐáÜ®7#Y¬KŠâ;\­±…úÎM4)ßOó%žÓ~8gñïè0ɪ÷Ô%ƤÙÉù£¿ª=«îËê%0S-*N'Ñœúí<Üxié«î¥-Àœ­ HªŽžeª_Õ1_RŠbÖoœzYŠòQÎ9óÈjZ,²ÓàdrÖlâm±ICr¸|Ÿ´{½”áUÖÔ®Åã8J[ Ln‘–…ÁUí(=èÀ|,£j ØÉÜl=ò€—UÉåØJþ¤ú/³×ñ´ß4=ðŸZï9› µkÿÓs…ÍLyÞE_ÌWU|ò2{UôT—öÕŸ*® î9{âu² PrpéG»n×Å*›EÉHBä­ñ ±6ÛB‰N“¿:—­~ôÂyÊ_-ž¹è»–ªÃa\Zšƒ©AÈ ªr9;ôj[¯§»V£vÒ=±‘©LÈmN°M ¯ë!í9áe“Í£¦,Î!Ï\<”tqزvÞ]ΦSH "¶Åç!÷£‰À{<ŠÓÓU Q|•俎 #U¹gK›´©‘Tº~>k 3/˨~eE‚àœÏŠ‘|µxsØ_êi’ôRˆbÞ­f(’ýžMX—/‘Zý[/‚‘£'.MèéLÊÖå×y%=¨¶´ÙÑ)>e]XE^£>½ÅHgº§|ä½é´²tLVOÊ”‰ð˜xPg©c.cžþ[Ÿl”¨!Õ²»¥ç­¿=•pôÜaz~ÈŸ“n[5, Ê>{¸ÎTóИ}DUåÒ9’2eß¶\Ý2Rµ1•g=W2¼…Ó0%bXÕÔºøßÉ>@K7lþ’PÍ¿¦š—éÀÇ‚WÏ‹u@,jÒæZ»~šfOî"LÉÜúo~çÖszƒí~ÆJÞS‘—®‚²rÛöâÔAMDÖ”©ä_YŸ£‡ÐYÄ6ê³^ãß1¶”û)¾ó9*ÃÖßd­MƒìC²§Ö$;ö± äP ñzx‰ÏéCÜûR!ddö§sHÓÙTY?¯" ²AT´ô\™˜ê!´±ïñ+ ­ãk“ ÌÑAÁ½îŠOV™qëk®Œ‰ 鑺$}`)«ª£ÀVT3ó,)jê£u<‰ˆûÈçC3ü©|¸©þ‡ô@qsVFD%‡ê¨+»ñÎÎmL5u¬€•¡HqÑXFPÝTh•MvË+š°ëòʼnêÓ’Óo‹6){ÎüIàmÎÁˆ_žO-XÞîó±x‡“X«ÖöìõR€F†öW”Z6ø0;«ñ<®ã™ÅPj…PÉôÓ–þ’¤ÃWG„}õ3d|Ë6ñ<ƒ•²Cë£:™¦’NܵOïyå)RÍqø‹¨¢G-@3ÿÞjcPFØ”BÄ `·E¥¥"wÂxæùÜG² By´ç¾¤Z4§?R­éu‚²âééŒðö.Fã ¾E}5ÊUÉ‹eÓ×!- „_ ¥ŸX†Ô?M‰U©×O–„yl•—¨ÑÈ ú€ïn›}´@ë¸Èb*%¨fàcq’zU‹òŸÀ{jȦˆ—>*'Iqc@;Õ¢œ<…© »^ ”¹|eìÒž¨ í>®û‘RÞ³ýíˆ$JMJì]ÿ7þ5É–­¬§5Ï$™œ²>MÏ[Ú×/vèÛd–³¸ú+?ÊáçšÔhñ!‚Ý£o‰‚ýUFC…èü(^‚Æ$C Méxóf¡;®´Ô°pÏKæyÄW7íýé¡h‹gþ’â›+U€ÞY‚‘õŒÚX[|Žo°0‡RÑãT¿Ïw¤N¤ÊGêzÞkJx© ™š^î*lO„†§#‡Ë±§‡’·Ø\ã)«©i¦LÀ Ý*׬ J#ì±Düy¥v‰å£-1•ÐTóõ™íUŸ·{ü ¼¹r‚ñ%gïëP(«”ÎÖZ/KœÇ ÀaW’´ö&=RB°§õ[å™™Þqi‚ùi÷(&lÒ»KÕIÔ Š\u{2»”Çñé’ôªÇœyÁsE+ñì¤÷˜•O~Ô„€$&ÐjXÙ0õ–ð<æˆí*ä4…¥µÁHB&¥†’¯bŸ…'€Oo'oÕÂøvE”ܤއ[KϺªê9=zÌ5OËŒ8¦ŒMÒxü-è³ÖŠ9kP|?À=ßðŒ?¼–¤˜ž $à¸þ‘‚¾µê%bꆻõgxêÕæãj[I°¦>ÛDÏÇì2—š¶"¤No„dÞä«Ç“þï“OI¡s $f³¥™1NeÛ˜#é>S }—¾ôé©…/>¼ùÝ$.ÑÉ®ñŒ@À¿”T[AU~\Ú/ €`@\$™©½|€¯¶ì‘6(MüjÔÛUs;Rß:t½­PÄã,£<$ý³_½y¥ÿʉ$`ð)·`,(ÒåRJk‰áø>P>o‘B²cy5^¯ŠY<µ ÍW9}ÌͲV 6½ªŒºvk­åY§ NÔFŽNòjYH„6¶.³¶žØÊ÷ÔQ´%a9ËÐÌÈË z8KŒ*¦ °×çíÈë¡ôäI‚þz({ŸQ) X7oC9z哸{E0¦—b‘s§üu´ qé[Gd¶ŒeK—­ ÚŒŸ)Úãý4^·ÇŒRfü_0!Ë—"ò*MûÎòøž™4©v_ŸB§ÿððw“›ýÇÿ]¸‡Ü¬õÿ|ÿggëOÿ÷¿üÍO1ýt·?*éJû= Îr™¿7ÉYŸÔ߃äì?þõ¿øÓ¿ü7›èì? ùÿrçÿåÙóNÿ •gÃO¿ú“ßüÙ¿þYC4åŸ~õë?û‹?ýÍo!ÉÚÿùØþcùØÿHõo¡v~ú¿ÿ]Ò§CÞôC.ôwÊvþ.ÎÕ鼕0íÿ•t:; <²wü}¯ZIY¢r\:gÛzª^¼íÀÞr†¡BbÕA¾“‰ZXÜ>Ó¡]&ÃcÙ£T{/mAt“Qd‡Ÿa»ÇQ%®k)w¸LI¾TÂ` YãÖàzæÝ×Ë—/}4Òi UY;ˆ°ž¤ÃyØn¯ýþÙf•ÀÒ€«më×Hññ^žDû&õ×¼ž•ê1„U¬¬U2{Ö.ñû„,Õ%€‚‡Hr¦è²-«çéï³mNÏŸì‡? e°%|ø¨v(¶úu¦Q¹çäèÉçYrq(˜’Ÿm1<œ|£^ßk\"9޲F§ìÃȺ(Î>GaÀŸó©¹ƒíŠÛJÊT´ê€ò)Pü÷Ôòê²¢Ê×LëªR·yí¨tjµúžYH;Ûܯ8¿8¢H›ø6êß’7åüÖ]ÎI%0àôõÄŠ¢Q]Ô ÂC,¼¡Ôµ®lž½–‚ÕµER¿óÂå¬ií®|9+ûÒ¨n`µÎÏSK‹#½ne_´] y‚öt›¿ôåtÜYûœªGö-ý¸ íG_åF(?µ¸§rzŠXQ;»0¢^¶ë®~Z’eåš“çÕ6e…Ô+ã‹…xKÖpH³·[¥æ¦aÛØ{§ð¼Nó5i&°ö$P{Ö"¿ŒØÃví”+O>NFöw:¶•lû¹4½MÃñ>jÓ :ã^JᛚG*¬9;®[¯“BÚñG™¼Öuó; ¤Õ»Ày“Ú y€³Š5Ç)<džJþ‘f¡•Jm ®Ç±óGCh0¹íZNqÓ<À¢fŠª1Qi×~&ÆK¼Ê*eÃ~×ÇÒûQ,ä,(…æýìQVþ>Ïò-¸#}¿c¢WO·6j¼(õàÒ¾ñí¬)µ§ŠìúB±«×Ù’ šÀÔ¶”JS/S÷,O™ûn/÷€ÿV„¼ÈG¥1´Œ8Ê!gÓØ¾ .´KlÒN|2Úìð\ƒKmZÈh¶¢F•›IM‡UT§lÿÀê{5…*ãì7·ÁêßgÀb«ÂImØsãÁÎÂî—ŠÇ‹ÉêÊyæÐÜ;IRèTâEùeˆßK ñ=¸øH<Ñ¢–eJeß´gÓí¥»k)#’ub/úsnåG´ŠMk6â×T}#PSë¿~oGÏÐDcåúff¹Q ¼jWôÆR.”Úý¹\¦(uÉøâÏ …¿ ’M<\ò¦udKßÝÈ2»U‹†Y6ø¸/ÍêWoÝàžÇ™Ú»¿[­Â_­AeUÎöÑNµÙø×úKsdöÂS.±X‡g(¼Œd·LRõœVÙª"¾åÈMäûGj1¹ö/öñKmÐ7ê3ÄBy%t¿‡b»jcï82aÞ);¼¥nCw®>+{Ô•ñ‰Þe¹=¾<Ù7r‰ì¥Ny<R_TN÷•IàÁÏÓ®ÁV+ê”ã~Uío5ÇܼöJoÁ=ß§„#À»òN\N¹ÛÞ¹&?GþS)­ÊÉWçÑŽj8û$GL¾ÊåLpð…\²Óú3jáª2 oÚFÒ,ß¡û)l™ªQ}UóážM]¶Ü ä–Àå™Á<9âñdgf=åöõØî©d.DŸéc£µ•à™8Ç’ç<¨^”Ux¢&€ Ϥbcß7wù‘Çɉc+&|K \„(#aºŒfÞµú]êu8«À2xovœ\Ö/ä“74©hóüôâ½ÕB­ÃLO7¥º‡ñöˆp4”,ž¦›¡D5ËC"ÜÊ;šdÇÜŸ8Þ{m‰Ï}~ W3½HÍNÆ$b¿*Í-£îA‰NòÏÅY<Òú$ ÿr¹… Ž7ÞÍ›œU¿•·‰2¤¶ãz‰œ‘ôW›•…@I1NÍͪ¬afó«¹<*xtþ…3óÞÇéWÎOòͤ ~Yµ‹Ü%ÙfOÊ_!%°^“XHðô`†ÙlfmMÆë9~ÙÆÛ‚\7uV&HàŸ¤2|—>Íž•ÅSÍý("ÕˆÁdÓ¶š« <‡¥ªºÌ ŒÁ6‚Âå"ÚóªSd&»Ìñ‡äùùUy][iNf5±Vc{¼ìmÝ"ãs5^ñä;Ã_ºº¾²ÇÙ.ÎWVÂÛYÐJJHW!Þt|õ9"TW5#ÃHOäqÒ~ë¬íìpøò|ß@›ÞíèDS%W!¥¤žn"ú°ˆ/{ÔOO‰ Í*wÜuÅ,º)žåN:mi—v<¾àãq…xZÊZ¿$ÔOžOÿ–ô6ÞBÆ!‘ƒnMUlUÜ‹góª±LZ÷ØÉ›Uë43Éùmj±ž³¨L#E{’¥¶ƒæu·ùŽ;OéÙJ Mµßê È „-žw~æÑÓSº¼§­»"ZîJRJQûÛSÖ3€Z¬#àâ¾né)äâ0AY‡ÏL§j‰‘×Ïè^­HMÓØŒ§+µáœ ïïò@ƒÍþ†7“w#ïwupÑb`D4Qš^–çùm.€£d§V½/Qù˜OBi'˜}DÖGÝCÓ­„|¿_­ä=*lR¬€¨<ð Æ^Ïpš®vKõ¨#x ò&w¯V÷öÓ)¸mk?ùiGBŠK¨PÖåàt;ÄPîÚg®f©ÝöÅž'G ¥è³VcÍaÿN:°ÒçE¹$PÚ8¼Æc, õ{ÐÃQµ¿Wá…MæÌÙ.#‹›)g´(qTt¸Yú×rê¬ì) WJqS ÎÉ{Ô[V ˜) YùYY\ß«ÄྀÄ<“‡eføÄ÷;håUY?ñ0"’nìÉS9ÕWœ}éž¶m–Æl×çñ·~'oU¦Î„ÏÚ ËYŒMåRRÑ‘Óõqwsåã )Kè’ækñ¹_ÊQ´Ê´C:7ŽúàÓáËÉ®5æ$……óäüš]ÔJ ó`þÝÉcÈíT§ÂÙq€Ô<1µ¦©­È¾~Õ“¥¦ÃÄ«F¡%³ªž\àÃä%“¦ÂŽ ÷íYxîhÚhWÿæ}Ü&?³³³{<9û¬šæRšHíù\MÕˆÏI0"°Îqd‚¨h®ÎÄŸÑ/›¼™D+ÊúW½­ý—mç#ìX^ð*é#øN'x `û°æ‘4½eÄM ·ß.èêÊ€,¸©BT%r¶ûQD¡&5ŽùÓE¶c+&JlpEmÜÊô|Úâü…çK ^ÂÏ]öß#UÌuMå£ää)Šƒ×Ñ,B,[¥d³1ß° Oh¢ÞsÈ@ÉË @wæš*ñrrˆUÃba£o2ØáÄNIèÎÍ„ɤ xþñ:åW…éÁc—"SÊ»7?(#¾AÄx¾éÔìPŒñ9•[·? ¡Æ Ò›td¾ÀJÕt½ §öÐ%ÕÞù’uEb—žÄ¢:äÒõxŠËË¢r¸ø ©Á™‡p¿€YÇ lT4Ë·N³$”v/êKB–g[µØû›8¡ÂÄÖ©]4K)"?ÄÓ§®)I6d©›ÇÜDö ÅæX´>TP…—/¾'eCÌ@ÓQ)m-kx˜¥ì³GëSIÞÁ›ÀÿÜZZa®ìà™ç_GliÝJÝÞß9ůì“£ùýèOj§…Õ«ºÁ’*Û~3làGrdÚ¯l¹'9ï¥ìÝõ}%ö(ÙŒÎ]Þ›ÊÊ\…æŠ[§g¨ZÅ[wPBãX>,µµøªm  i[ñP>ÛA›g{Óå¡è?r8æäsP)Jy('ñš#Õ:â“CB¤½)5:O.`!¼d6lT×ÖéZ·€ÙG nÜÔþŸ:Åìwh7¸êÓ²Óêi(ã4 &/P‚¼…°µhWΛŒ]ôY¸£iDÛ$×JÿÜì‡ýˆ€\ctް{Òºíh:l¼ÓÛsª#¤-Äý£Åžèqh¬ž4°!½ÞUïÅ éôǪçã'É/M:Yšâ’¥.yãá«@È3¨¤FÐU¦:Ó F, ÐM–yõÐÁc«ZÎ&õõ%¡N¥#%R¼ˆµÓy?V$¡d[®© ìë.%ŸJÒ$"í£GÉrq@BŒO ðHVI‚ƒåî6ø—U)&–²è’òN/Øg|æ9¹Ú!×äìR+ÂEÜ\àO›ö©Q-ð l;6jPW•±¹ 3.Ùù¦ÓAé­Qn—ÖW$Ø=žðÓê/Õ¢†ªxJàY¦ðo:9üù| $žVu½RoÎk8â'Æ”ì2n/ Í“÷|fnmb+J²”"¨€”R=ì)2^ÁvSK ¤@±EÍGU 9@d›äÔãSŠŠS±Ä@‰¤YíkÍ,,K?’,kÍá¤æp¡* Û¢=K:g·Þ)3T(Øi0—¦‘‘0t?æ”Ù4Å®ü,¯ˆ±‹}Lž¹†%LÔK»óÎò#xîŽ1©Y7-—ì­¨Y:¥ê5LùÚŽ==(µRŸåƒ]FÈ Ç?$ 9)‰¿æÌPp*„PIb{1þήÿË!êæ»Ìïî$¦çˆ!XŠV4)êCDxœ,_wH‘ â Îõ Šo’E±8,8‚ÏÅ?þu®xýÏiM¢•7¨q×O9Üß # üÇöé3R½xî ~©öœä”î«ö¤ƒ=lŽ)ɲ=ëÒ{í±Í$}ÉÛ“• îÑ d-ëÀ9I?9½ì3¶ÍwÀ$Øå½¨W¥m7eÞN‡LŸ ›,:ÌØ§BSù‘§äÜ´˜î:Y9ƒBUpé—nR_ìó ªÅ§Ý5[2P Q9 }šŒVœd7m>'ï,×,¹Ôá}ïZ»ídUýB%ð 3À²È Rt©ÕÔÔ¤óö¢byEWóPºÙ1N×Öîùä®±8;ïÍmHûâ¹–¨cX" kUö%¼gfgXµ£ˆ‡–Ê‹u~õøOKµm”÷ê[‡óW¯ª7UšeUŸTL‹<^ÕX%ƒÖ3¨gQ™ëûMϧ²êŸ l_Ý9b‚ü§‰btÕCºûX³É•Ôl¥($,]úGÿüU&ó}¡]d­þŠlT[aé LÖzQ¿ªZ‚:ZÓï»Ü’b‰tjž³ÓtЏ_¥ÜDMY27&òV*“Ð@1wg°Üº†h4æÌ–’‹kÄÒ(LHö MMŸ¥`+ùV‰-Å,y²§×¥•!°†¢2WÑÜ®YG«#û¶¯ò6žV˜gF¡Å²Ã§¹ räÊ,Ô<øUþ¢¤©B¤œß[árÞ¶q!a&…éý)~Ú7›"[—Õ!¿ð “ÓìãÁø›¥dgjÑûz¤;Ú±z{x¾·§Aø¹íôf|³Ðkw•kÉäß{ ³Ào\ü­§'Ö@¤ýîÄÙ²«aá´öà?ñ5Þ("Ò´äPa×N)·àÀ …’äÍ´'âZ$ˆ,§q,"fRj£45ƒxÇÃȇ‡sŠ‹NÖ–ŠÅ*uUJM©€à:¡%õòe-Œîè夸yôc€ü®çun³íI¹ Bâ…'Jc¹&dÞ€eÀVgW<çÕ#)Y¤ØVhÇözµ~mN,9ß–‘…D=>£Rigª.+¿þá¾ú~z¼U´?æ¿é¢^É–I¯Æ0Ô<%Õ ßïU®hdªû¨#­R|›rÊð«m…:®WÃ;îž¿{kãØ ÜÏhÈŠ|,{STļïÊ÷7HØÉ݇¾ËjÉìO-7‡©'ÿÂ1¨ªË_W ׉f¶À=U×Å_OÒô Ð\WX•y2–Aõ·ÖÕ~eµÒ­ÉA,©dOÞ Xûó¬Fó¤Œ^WVz5ÙX/z4ìÎßzú•Iˆàî¨'Eר¯öñyòLq*SU—vùHÉ5]4ìd)Íœäô¡D׫€ g«,Û”z{Šç玞«”ð´Û‘64øÙö.1‚÷ÆCÐßÇîŸÒ.k;0„ÊTJVŒµ.§hºEG~†Z¯ÔT— Çñk"¢£zšIC¯‡0§šÞTŽý=_¼Ôba´–Ê,ê £µ$c*Öœ¥¡.q”*ªæ iþ’¤¨÷RÞì­Š¨¶¾¨.³í0 o9¶œòSûéo|Qcgà¼jöc¨ KE¥`HrŒLiӨܸÓn®Jý£(’øëD€öL}JsÒ&7S!¼—ÕšW\î®üI¦YÕãzÇú)Øßz¦Ë±È\ +R&QRRšqÉz£¾Õ´0sï,êI¢¹gªw Ïœòˆwž÷»‹O˜÷À:]åXé¥ÇˆîàáþnåË÷ßQ¼üqÿÛK—*¬”ž?Ê÷ÿiK—?îÿM —û¿ dá5þ!,¹ÿô«ÿðë?ÿí_—%ùùéW¿ý·¿þyHàþéWÿþýíßÎÆ¯ÿ_6~»ÿ+±ñÇ­8:MsX=gzåH$e/2Ô7T^~ØmzÜô™Zæ–\—½¢çjwHLãáyÎxC ŠÀx:Í6­óª`r‰Š­¨qZ±EÇêݤ£ëÚñWt„Jy_3ÎTx¹%J2ÞN}êK^íV'D‰À@! uÄÃù£‚Wú•ùNûÎÀ¿•:sa< ‘tª–¦L¯3ñyÎoëþ^G'õ½]§?ŠÀÜwdÕ†Ö˜ÇÿQ65%€Îª }éEíκ<Æ—'Êßõ»<½àƒ¾LÉàÉTÿ€BÀ¾÷‘RÅ:T¿Á™€KÎÙÎ’{ôak¸€ÑÅù8Ï-©vx h_ ^UKzÕóÐÁNÚ0[Ô@\žJ-ÊÔQ÷隬UŒ•w±Â~¸Tž‘W¹ïà(‰t½kþ„kå`]•ísø8k<ž¹¹–ƒ“›ÔirßWáT§8‡”ˆê¹ ¿Ê¯¸noÙ’h@ÚK¯$}ÀÈu¨ý)»Gm˜ïªz*@OˆZè½X[”*œ…›ˆgoOÇpÌB€Ü#8áleZXß·n\ •^h’¢´ÄQ'§®l„¥­Úï½:•`-óQU½wCS(P®0›Eè™ë¼ö ÞäÖ”´V°zÂe|õ`µPpð&ôî¹Kk¼Uå¹ÞÚe%‡*X_ÌGëä¬X/øêq({¾&ég x.A>§ÓYÇ[:y׆«ÈªDüH;WòçÁ‰Fçû9"wžSuõÅí(ðRÙ튫Lx=ë ʀŎhÂ=’n¥‹ÿ|)õöª>ƒ}9×êJúŽ a¤ÖxÏâq¼„Ô$O×_–µ¡.®„f®ô.2¨5Ô°_ñ¸]NcÏÌî¬Æª ó½Ù^• .¿¼ãêÐEo<•Jmg˜9,ÏŸ«pøPÅ Ø•j-ís¬q^ódHƒ*\*Ãù}[þ%¤Þ¥Ëžó j!Ã)“y:æ']щ7Ü¥‡DºY(%î§ÔÄWy·-ªè½Ûq-”Ô»5â±;@}=œÛêú± kìWê_%<Ùí“g ïí©Õu·Ñ ¢}òͯú£ù0‘*6ÍvõÿâX;*ÑK•Zv;?@à@ÑH¡ÆK£F#T_,RjÂ@È´Ïð£ð“õRXFTéMd¢û<¢KÔÚÏ;gåálŒæY¯cËY-EŽž1˪+ê=$Ê寖['UÏyýH¹T}=ÊŠÀĶú̼jÏ ²¶r½Mº=|·Ólýn2µ=ŒÍu¹\yÌûsÿkQðF–Í ;€Žié`°ä±G…EÔ—*”¹ï )VM²ï¨jöL™ÇŽ˜rtwsÖ¾©Î^ÙÐiR_)Ø!x6ÅCÔ9õØa{ÀCvÍ7ÿ è!”m—ÓÑ{§–ÝRæueø¤Ä¸HåÿY¾O @ò–õwayÝÎ÷ …É=áû¤DpUÊqßÝsS\®\r²#ÙÜuf_ð’“ìübo@^•´7rÁú©FIyÇCwt&]cï¾µ Ýžþ׸x$wõ8Ôåü­Þ~°ŒJÝékÌ¢y5I6þÔ祙«Î‘E®úº$÷–J¥€&ÉjUúÙes¤Cë†Òá¥ã}¸÷è÷¨÷hª¸I¤êõ(,pfm^‰‹[-¹§uÞÌæ.éâíøç½² …ÜYÇgÐa·âÔËí(Ô§vgÔÏFkâtQ7Ó‰L¯SséTÛëˆ 7RÕR|ö¹‡JˆªÆ‘µ#étI3Þñ $Ò¤ü·ŽÂK~Ú-ÅG™TП-µm´Ì ür[lÖ5Ë™·{ÍO’XSF:n-µ–>ÊS°·°eX¢‚öû0Gìfw ;ý EÕú®2E·Qt„ÿôû|eçÓPzßâQ‚]¥ÅOõ‡VmeõuI($*±`~nãAxß®ñ©ÅyöèSºÂS™³®¼í¬2¼Ö{›÷ö˜}8hhÄ`Gluq• ²„÷K0žàÁySü[¢Ó¾¯vÈ\’få[Ò¿];µCU³( îÔÿû뺴ÕhwòK r‘†€gĽYÜþ‰õËwª1V†0c+Ì(k&g5˜_©‚lÕq×wõ?„Šô>àáþn}÷ŸþÎcMÿÊÞÀýþçºñ§ýëÆ?ð¿TòÝõ÷ݸßß[À'õ÷Ð!xû›ÿäkþ¾úçeþ!vRúéWüõoþäçñýœúÕ?ÿí¿ù7?Ë äòÓ¯þõÿûÏþõ¯êÏõ?QøÛz çÏ?ÿë?ÿõ/~"þô«ùÛ¿üóŸÿ_ýú³V7ñ«¿øõÿòë¿©jðÏûKƒÊÏŒŸÿÄu½?ÿ©ñðþ¿;þ—»~–>àRþo?ÿ‰§òßýü'¾áÿñ»$ø†ü;ßðÿüY2Çñÿú]r |ßÿðóŸx ÿäwH-t¾ýüë?±•~õókzøööóŸøöþ ‰¾þ_ü⼌_ÿ⾉_ü‘ëùW¿ø#ô‹Óî›+úÓ_ü‘¯ýÍßU BíŠßþâ|ïŸýâ|ï¿ûÅùÞ?ÿÅ] ¿ø#âßÿâ<‹¿üŹªÿåäªþ×ÿI Ø.X¨ù'€Ã?tÁþ°º`û¾)0À¢]y»d…OÊ÷K9x oÚ*ÔÍ—«§ª1J-ûEIÈ£ôŸ iƒ"Ǣ^ +ÇDL¿ae%¯Ö(=*¿—(óÍAÑᔽTuAt­ä×ôSüðÈ¢VMÃ,·¿7p “Ò.é6¡ÁT bÞ•Aax¯FÕ÷IŸ=óyq©–Q4!ÕßGús‰Yº¿…¨“'ìméÉœíͨ°¯a:²G^T¨:»(š¶,>`)íkÈîœäþQs©à)”âíqøÙ¡pMžeð­ðFåðíõùÐW€üè<ö(?mÿn+«™{ñ<¯ëD$sÂÑÄ»¤/_ÏVUL3±fK±QŒèMW<%~ðJN«u•0´ ]üitW·öª­^ŸÒgÕ‚t9Ê£¯ý2°ÿ+A¸ò¤(å^Ê~kë’0káQ%Ô£ý«Z*°dºB‘eéÌ¿* ZÂ* Ï/íô•¤Kè–`õ "Ç®…3è<Jæ´¨g)¤XVˆ²–w´ö¢l|e+WÕXªÒÆßLÕeÕG¹ÔÊê':°ÒoeÒtc_Y¡ÛÇ#Ͳ¦ül=Š0jlªŽ´7Wk÷J¡ðâ¹1õìuNœR%Q°Ä¹£ê‚‘ZGÏÏš¨?Cqæ<³‰/öu“ÜÛÒGYOzÎŽ¢9Ï2š52ëšê.j7²ƒÔ^Ø" =—×½röÀÚ.K8&Qïçl¤¼Ÿx|} G¡=)³Zgz‹îžÏ«ìÎseiïõ£ò½¥Û³KÙ5Ö×¹0®JÛ6Ö‘¦)™¯â³Ts½=ëÝûÒpìû3*Ñ=•È쎟s·JnÎóijƒeÜ5FöÄè:½[iõ©Ÿs…MÜ*?=(íZ‰I²”F‹ÔîÎd²˜Ê92D¾Ê©WU¡·ªH†CÖÈóKu0ôž Ü 7®Úå»k–˜Y‰Ñ:Ôr©÷0O'ñ¦<®úèrmo ²Û7j¹¥J¼Ò”œé\6,¡>2Àê ð`ÜÓZ »*žpksÚO ÛØU.¥QÒ³ ‘K…ËT©»‰Þ¡9´Ž3ž†×øîdTø«†îÚ»±wÒröžú;îõoX彿w‡{Ɇræü¹ëÐu}?gHÂ5ÈŠŽæËÏ8йq·=žYÓ¥ƒÌ+þ{®Ùê§ÿª}îSw×·ðLJf{£T¡_”cåzT|Ú’ãNS±C¶òFd±Ò"{ž­íšð¸³Ê–cìa{Z’;/-qYó‹­ö}ÚÝhñülVΰáèT&·”54)c‡².Ÿ]”nÚ+mç¯UD_ñ(z;æ;tµ6±u謮œÌ\I­“­—Ž,µ±:ñꊒpM¯–W*áÜïËNþˆ›I¿)GÇÒ½IE··ß¶2Bäò5å¾ToÜ}Ï9í+×§y‹ l¼Dà" %ebSf?é¾§0pK…' m¼ìì5^¶ÚCIÍHž9C²wè„ÿ ®Úaí1¥¦„lÑM’µÎ[ºûµ5‡/ªZùzôò#n =ÓiU½•×á”%šµËK%8§XyŸ§'W Ÿ;Må,Í®X0鞰ȶÒΘ§=˜óåùŽÓá±õ=ìå1ù€×ͬµasæ>)¼+†d\QõÇ\·bA`®¦:0¯Ô±'þU¹”ÔGú•át`±·ï‹1ªù{t9³¨ë€œÌ†üæë$À™Çæã@i³šÆÎ4LíÛfp êÝíGÚß¼e8H®+}ùv™DÌ6/‚‡6è›]bÓP ¬.´.=\+:€srûŸ¤:Õ@dD¶Á¤b%³·M?‘€È®7opJóOhkÄZRW(©mâÁ€LœZyq{‚Të$½±‘‹,thErL¤w Í ß“' ;W^ÙØzÑ(™qéR=Úiä6‡L%Œn5{Nô2éˆ6ºÓK d^¸BìÊn<—ºÕGùäÉ Øå7úè= ‚¯*ÂÃÝsâìÑ =¬Uàìý¨l~—~<¹ÏQa{ÀÀžsõ—‚’¿º’óÿ Yõ›Ó‰1G •í¾$cGuÄ…¬u®ïã&Ð’%ï©Séì&9i6?­€˜š j?{Ñd+¹Î;i­ ®^cTòˆ`þªWá>†ªÀg…qàmR› ×@QW·tMѱ¬ ¼®ME±–³#œ,®uáÔ¡B—‹ å2³rð¤ÌõVJ7Vm¹«y<Ôe[øøñ|ÎÊoucpW]8ÌŸ ¹jòœû,S!­+úµ‰*ÙCGQ4¡¸¥}µä¯.V¼4v¶E.*ëN¦úH$RgÍ•òøCÁ" Ó^çè§vσïÚU=iöVYŸL|köúê uΚ¢’f3aJÌ5ý¥×¶Ga“â% R3ñ›˜ð¨ù£TÌ2µ Pñ‰ÐjýxËâ6‘㜫׉‘'J¾ËZƒ(@ö²uG¥ð¼o5ºÕ²Â˲z™ZÙ*‰¢# @×[Áàî ¯®ÈkQR²$“ö¤&˜šo'Øm:£ºzAKAUéìsámyã Œ˜/‡bÁ¢’†ÅQþëSb œGR ‘úéŽM’ q±YÑCìMÕVߤ±œ%´Jx¾S­ @ÎdËÓ{È"„KòÚ®mÊ4¬úRת¾æò‰]q-u›ô£¥ÌT&ŽÜ?nzY<¨i)U¶¤ÚœÎÀUl×NйyîMUGÀ\Gò¾º¨ðÜRk¼Ûå<+Oq$þ‹¢˜?çI|ójòωôU©fÇØ­µ ·âô±ñ×:1ߎÚRA¦E3ÇAz¿•£“v®Û­1|àyºT¾÷O,“O±¤*RJGUÅk6*(íN92/‚ Õ{D{×üŽÂ%éQüe-PŠVw¼e€{%RÉ‘n4ù6¦7É]ž’Ì_°Å¶›Á>%9’ì¢ ùéáÙ<êÿ¨ð ž"½§ÛÑË{nU@’\õMzøÊvž¥0ë¸5ùº«.Õ’,™/·«KË®Ž{×WóÞ`»À³ñíñР «±¡é]V@G¶)p gÖ.‹ä’pÀ]+f  FQÓBÔv gÖ˜ýèi’¨%€[Ø9TðEÑNBä 4Vür÷ðY›$}d¼Ú `›ví äÊìÙÙ·“SÙœkTIG5S!rV¹59%ÕÞúCFÀ;sõ¤ô%¨°9ºCÂÔÎäTgÙThÜøÑõÐ7øx»'€YÛbbX!]Á@*"Ç,ú v®À| 0j­¥(Ï[¦üxÒ‘ÐZš¬ WÜie­àÔÔÔ.Ikh¤Ã⵺à{xï­*Q÷é¢:š–º¤B9þZBN+içx0ó~ÝÎ’¢³ýŒ±ÈL!*lEU°ÛuÔËÞî´fqÙÃÊbe)$™‡X4nàoA—Jõ,VA¶CoÓ×*§I÷sâ?¤®€gw\<×MAz„ÛySliU=ÔzµBë4ßSp/kV¸€ÃùIºê_a2©eƒç¥Ê§ (ÛW‹xp» ¢×ea¼“‚£W‰Öj|ÀÖ…MÎøÒòŠ26í3-­¾kº —ø'æe“}JI‘TI<ëRD„|竪¼Ø(O>€9ù kñ ëb˜"¨8”„LÛ‰¥žî–ƒF¸p6,%_IS€Oª¤Gä0fZN œHb?ü‹ÿ»¢¯þ˜u ‰Y˜`œ¤YîC¥;ƒCBµ†8:™j¦|F®zÚ$ÇV¢‘4(÷q@ùÓ† °ót‘ô\+NAðŸùjù^Kk§í»or ’Z“@&›ÀQm ²F±é¸u øt9Sé’äÊcQ°/nbxI3ç¢T1[Lm$Qä&æñQ3r¬åX‚2þO¿DˆÀÂ`!5†‡„uV|ïÔê^é?â[51æ,±­õÆ6Ûj©^†ÌrŠ)±›V)R:œ ÒnžXjޱI¬Ñ·(B?ïFý¢z“©ÄƯ@Ä’aõIO|‹6¤S.œl£â±t}“OOUšö*ŸÅ/ßRó1Yä’ù =ä4•ãNYà:ÜNGQ’^öjjòƒ¯ÞGÜaßÜš]y {ú™›â@#™Ç.«ò´…µ… ¾°OmÒÝãr`Cÿ@*]æÙèóyÔó**ÎEÅÇ â7ÉòrÄ‚4)߸Ï"—Ú4>^\?¢–!;ˆUlb¢‘ÖY`H‹ðöC™šÀÙ5›"?­\à[M{ƒ C°*j “ »ãóüǾe‚ÁêK讄ÓôÀ½ã#ѵ‘åÛ]0„ ­=›¸Äý—g.<Þ FàÐ;eËQçeùU—¬³ ½˜“<­¼“9ñ:eëŽBìSÈãÄìr9"²ÓUßü¶;0é±éN”‹Êä]_Ñ™â6í5OR5›ä€®‹Ñ)·ÔV´Š^_ý¨´V¶è¢Ò"‹J’òºO1µöªËcI‰•`Y,Út†‘]6âéƒÃ9|qŒþ¡ =EE‹ˆZ¶£*{tˆ»>¹“ÎX¾Ïœ¬ßbÿE®ŸoŸËJ•q×fé ä“ÎCýDíÄšÜ9Ýx¿ZÕ¨×ùè½ýH"ö[©j>¢bËìÚÕ7|lB¶›WÕ8Ãk‡r¿®GÖ÷5íI›ÛèwI3•û³£½´‡:ù´H²Ö˜2H¼Y ¸Çm*sÙÕÆöüË*ÿÒRM )dwÚvAÔÕ.$˜ŒHªÞ% /G­ 6šì %VÖ†ŠQ:=özNC’ç·-@…ðÞ:ŒìBÌÕàIèbþñYÛiX-a…uU²ÊUÂUÖ|~ ¸A|ÜmílõÓBìyzœ¢ÖúºŸ|éý¨‹¦ãF¾ ݲ’Õo9ö²½R|P™Þ½ã?íÚIžÜ¢.Ã¥û³:¤ëø½" •úÔ[U{‡£¨i÷Ôrì™åOS%w}yúeÉ«úÐòõ$¶3k¨®¸ÅrP[N¼TuO#r4›9"ß^){®Øù—<û”ŸšªšRÚ1o #9HIO:~¦]øâÐÏí‰oÞ¥LyĘ’Òad]µ…¿‡wÇz%Aa”xúäVR8iÍÊ®#MωÔÄá­ÚŒœ píÄ&5{–¡¸m$07>Èi2j€[ª¹b@\à5ui•Χ¦÷òã8O­P¨–l»ü%>`(¿DÐt–¸•ãtë#c‡"·7¡. A†Še^ì•ð™Qå¤ÙÌvüx±AÉßE"p ƒô•6S³\Ÿ'WÏxuM“ÈþIÎÞ MŽGŸ^`ï¦ð4½x”ßÀÒ%g±mÊbåÍs“؆€{â$ðʾì{œøæÍ;â©ÔËž¢6Ó UuÛúdE/¿`ý5@›T{¿:ßFyl¼Æv¬ËB}®¥ýxKÃJU ]¹·äž”j`õ6ÀÁÒGú=VVíø[ù€ËW9Ó©Dâíhô«?1G¿b¥ZT™Î¶É—:Ø’8wP_ÞÑ[ØûâyEŽM…M¿KM+õÎ!cöa¿`…°TG,ª»çA±öéó×µ?½À{ž¤5ñí½÷íôºòÜ곿€ºö)î;,}E£¾Lv€=6#8Tð?I± ú;‹¯bdoáû]”ÕdƒÅÃÕvÜ$`‹,%Éè—sú^½Îb:ÂpS(³lÔ¡×Îø‹_ˆ„Š„2&9hr1ä<ƒ‚ç0—¢ðú n&v”\K÷ÐzÝ纎·;â qÔbPsòÿÙh‚ãV‹Î–ó§>)›ô­ZÌŽûQ¡‘Xž<²œ"ž{W¯È!jëk¿Ø6“]L”Tå6,åÝx}zÉgÀ¥s0c²¿15>Ò²Õ€SX¢ê6O‰º”ŸÑ~Ðq÷âzWM¾Oëc“|ÖnÂT°Ã L§b fQ×ÕÐ=ƒ—U60—¼²œÂRk.–l©ŠõKO ~6ÝÛ‡(/–ôMÕm«Sϯ”)æ•ìâæroÇÉ?»‡ ÚÕâ֌ijÏÎ-56éŒûG7Kò¥r¬‹o^טb;º²ÏbSÍJóÈKì®Cô¢XG½³“³USwO®4JR,%¹*N/Í·¯Ô¾›4O` kUëÚjOûÕ‹üC ì1 ÕÈÃ=h ±–ÊuÛGÙºñXñmÒEgC—ÒÌz<"Paæ)PøFVáܼÕXT¿,É©?d`9¸P)-Jšúbf¹ŸN KyÀÜë«UôKI«‰p¦pzV’ˆÂSp’ê£åeƒ2»š9ÛÍ#0kĬ†6Ïð €Ðvin9Õl‚õY?ì`U¿YŒaœn”JL›ÿ³QBº×2$ßîàÒØÎkR[h«@:”²¥NŠYا#îØ®êÅ.<óšnvü"ÆyQ¯hË(uÈoLý2rút&‚°¡j¢(K¶F•`M+D¶Òc¼]²Axs© ^ͧ¥ÀŽBñëV_ äÁ´¡âf $â:T`èè4Eá•éNWl•x.d!|鯳¨¹ÆÙž¯±Ä/êXýˆÑ„¿Yž, Øxòº<„ãIdEŽšâ­Ê²Þ‰õ³mYH„uG´š’ :ÐñïÇv{YD‹[ÍÌ!¶[ñ] A¶Ð”ª´ôÜǼ3éãQt°49ë¯Ê õôs(€’?Çn=š_iKä¶ËÃ4¥^…·Ù!rà< [™AÖvTýÁ¹® GJãÌ»½äzíÒ·]€uAùFÝV+ßO¸ºuö"Þ¯Ô(I0º§êU š5~…¡¥B%*ÛxyÈñš<mF<9xÔžšžVEA9–áâvS5jÔ®ú†S/´sèì¿‚ÉÎI‘Ü@c¨ÿBW„V<ÆS±‡0¤=ðVÕþÑþå²OSH½ªIH|DŠä6=vKì¦Þ·ÿ¯4WÅò 2}‹«Übp-‰C¨ÃÜšÁPðÃTñ¢pÏRyåQ¡w‘ùÑ”‡euƒQ.•¦ YðUeÉp(Ÿó`Qx~axÀ½ä½[;+@‡òÒÄÄ@µÇˣζ]¦rBÇ×eÄL[o­ï¡8‹ë9hZÃîxhe¼PVk’¨HãîÛ§õém8ÎBRFO[R-Ûô*âB•ù© â¨ÀX\„ª5«þ'J _êdJîߣì]Q™¼Iç<+ /v£V2QŠ{v-M¤þù”ïiÊýŽG§g=nt¡÷\™õ%69w¾äãu[.¯.ÄVë6L,´º‹2QÆÜd=UÁ¯.*&#IOt4`yÏâl:j$Â/ŸBER=²Èœ•b+±ë 2ˆ±omI±:乃}t³º££ÑæÜ¾=P§<SG[Qõ}õuÖ¬ëwè×Ñ÷‘Yåeg«9¶©¹4fˆªéÝnúõ[Céí«²VupŽ|’Už²µóž¥ëÜ«Ô5Eí¨{X´²ÏvCS›át¿,pB™*z$-ûÓNihPM|x¯Þž›•™º@Kº¤9#Ÿ–ÌUYd -H¯' TÀ'™Q!°¢Öq…*†Úá²5¢ º·åG£ ÏøhF;Æ‘{SÃ:s}¯‰NVž®I;¿¨81Þ‘Š¤•öôªŸ'‰À`ÖÇñkþ[U$Š'ýUžûEÍЫíXÏù´l­gùøSÛúÁF«›,ì90‚ÝØÙVüz T,ákžÇÖg² n€%ÏÌùü†èhòŠ’H<[ÖLo¾¬‰­¬˜‰`}žpð2N:‚’Ò7 2é϶‡/”˜ xÎí “Ž¥%^Ö5ܨ¬­gyg¶KIë˜Ú‡©M> zÈŸŸG)êcFP3ÍR\qmnÅÞ„çMsZç6-ë’ê÷S´¹4&A…¼>™÷[Zœmr£G^CƒWûº$ƤÍ}sfØ4h`|2'Q’+IZ•ñqC‡Iiˆ×÷cðÍêÄzÈ þJ;øÌ(Ü4[Ò4,[ãíùuVÔ€Ž°«óƒ;œ›â‰äÍ^Aª©u&ØrÀÂhJ±÷,O+_ rÉé4YyÍ寓¡45+¸jô›@áQœ½'Õ|tsi²ðº¤yÒ/Àtx›"CO3©'‹±ä.ÅQ)ÅíØÔÁnDËÊn¦d‘\ÙùaŠ˜´´J±>sc’:®:ŽdÇH†¬ÑNˆ®·´l½%æÇ‘Í•„'ŠcŠiè¼!jÒÕ8G¦êÎxÊîàÔòŒ”§ [ë°-)ŸôF±:•ÀV¥ƒ%\I;Òc¥<‹Ö€KYÑÔdÚ)EÃP±XÐH3y¶2]´—%åæ+±SØ×Ь²s´=_Cà¥zâA§Mfù’UcÝ÷«P³i`;óud9‘({e+Fù)µcíñ‘öÅÞ¦•£>ŸƒTZ1¯ÑãUíøTíȲ`³´cÖÕ$çS(C(Uîd×=ÊXð³¥uMªry?0’‡ë‚ÍÁrð Ü÷‚«›çV//Õ´dîì ËÓ3Ñ6ï릚È6HÁšòÀS׌ûK–ÖÛ‚&œÒÆqº¦Ì¦"%ôÓéBElÛ›¥Ô¨ýD:â$Àg€Ç ýÉ5è+’Âð¬ˆçâ'Øx@áX†r¯\Hò,ªÙ¯ñ—z;[†N±ë¬ÌgS>¢(ÝJIŸ¤o ­F%èàÙdò<íyŸ2¹õËgmSØßÇoò´H`dœã`g©¿Në•À5 ÿiÄM³“š@t÷¥W¥ó+]Jr‡Djƒ=©w¤H ðb«,òš5Ñ”ºìªž#ñ‹½}BÞ%õ¥(³´¡¢lu¡lÖR¤y„ ´Ëäa¨¾¢Dòðš¨&Ñ‹OËžê©øªíºêÁãèO¥_ALv»X†;еdƵ- W#‘j·Éñ®‡§O_Ö bzœôRoMR îS'Ët®ŽK+/³•”µSçéLö°yn~³:p÷É×tÊÂ9D²5› Þ@újç–¨¬ZöæÖ—=™WË» òU7ÄJ\#ïÚO?lêë$µš8GÈ£øIQŸ ~€ñÖ™½GcG¹Š‡ÁÒì$-¾¦£ðD¿ÝŒ»¹¸.ÏÙ¦IÆ]Ö×¥jh´õͱ÷›$Öm±}Íóv†•`Ka’¤Ú†ë»k›ž‡7)ÑC›_ÇÌÈMó>sG￱‰G„BRûÙ¢ÍÈ „¯—NÚ$¯ûfûk¶I°}tÈÕ`ÂAχôx iëåbù㬇òiD Š‘+ë÷Ór5­TÙW‘ä©=¢^ÝéI¶&€æPÖnj·Ûô︈Öd<ÊMk4;E¼¡B#Ò°¾bd«î¨2XAkTöV]ßC1Tö£e!>û Y©e}:R}‘Ÿ_'™ÊS59–a1(”(SYä=ýõ4Àb§þðþ `ôÞU…Ò´x?©­#±;|7!±J"z^GÂO@¯6’v?·îIm-™ÖŠÏQÆÛ–Ò“ô¸=‰ng™0Ån»”;çUèöþª6Uôîbñ|ŽòŽüÔ¸=ždÝPh{ÊcØ KžOS§[}Â-oE^è›X×¶`UK‡\ÇN‹d¼4I<ãÚ¶áX¬ â5>‹HñÄÄËÃ9Êù>çÆÎí é• “¸™¼“n^£~¼‰’5žæèC,.&™3)»uËÒÐ’ÑÖŒfvÕÖÖ¼–¢{‹‘2ktæän㽟Êzu—§‘ïpúVñpŽ”°w5‡x§rröö 7_b¥U‡öŽc,õÛ6bø¥·…öt*$؇¾8ÓEšˆžޭȘù¬§æ' •æ•>­]¹è¡ðû@ï”-,“ËH|¤¬æ­–FñE{$Æ5wÿcC bÒ#¾k¯ÛU…d—Pðþ¯}LŠWt–ÝA¾ƒR\fU‡fò»Îü/prj²ÇïL¹ƒ*ŸšØÎ”U¼±ÃšÂÙ ¤e³ÆÂ,µÈ/`x G–åÒKö(»ßZ";¢Ùd,×DâNÀ#~œ“ëíª÷¥ÇÝÇ…±bt'¿ÅLõ‘¶Ï€Ÿa(½œ…8$Ó‘JLg«3¡«=8(Šd¨ÀÞ—ÃB POÍD¸¢úY6|Ù†dØI!iCõ h‘ZGŠI‰Ä/ÉîØ$D]žâ/gnbg ‡¹ãØ»]M:™ümÔbo®|.ˆŸ%9µÛÝȦ$Ÿ>¢¸·e;š:ă$?mOu,h’g…]Ë©!îÊÍ13ªÿÔ’|›…d V«§öÙ{Î!'Ñ‘DÌáE=òiåwP EG'."Ï‘6äZ'©tjQähcušfb—_'\qU7õFpDŒ¯æQVß2hHA?‡‰޵Õ_• Ôj@eƒÆ'¿R§ÊðS/àǾÕPïÊ™õ}óïY\¯,‡ã:á ½îDF–};¦Å¹”ÞŒZƒ_J«ö¾‚áyIÊÔXª~ú¬vÞ²MA!ËNÔàyôë ¨ ¬|´u&hwtð3Ë»¢’"¾R[§j#¹«ÀÚ7xŸ½¯§mq®MB*a*}õ Am¾•Ð$ü]öCȺSæoõ¬’lìÌ…]] T"<® 6â¤$™ÿ÷Y6@Ñ8%ÁqºÊ=’{̵¼ÈÄñ CK)½v4n¦v§ÒñŽÁ&ß±Nw™òßùô<˜Ÿ@]A–Fâ|W#"VÒË9rÕ}ÍÙÏ|f©Ù|A¿å¿2œS&¡/Ùfq^ãØ<“|Õµp‹‚P‡ŸÇåÖ¼›ïG§¼3­kfh+~}ËšÏóä±d›ÓÓ1‘ÄóL ¬,ïü­áÙö«øÿcÙJ r„˜½À&‹²3ÅkNá )¥qÖµ]¯†([lêÅ ö*Õ•ÄDø½FóAEਹdB±‰ø¢EÉpöóXÐ5®bÿNWø°¯»KQ>T#Ç]ƒ(´*¸A%ÁcÕ Ü&–ÆÝ ™O)’æ´³ô½Ö–ˆÍGbË?ÝNÕ;$´èm½ÍÚÖâdÛŽéÄJ‘ôãó»(%u5– 2e°oñœŽQZ¡F¡/@ÌV­$–pôÏ\ø­Mé¥ì1¯õ»o½iϨÊÔ=åå•P‚™d ƒ+=p ‘¿ž—/±xp×GJìÒucÿúó¿øç¿ýóŸ_ã†t/ñ?ÿTÉ÷ǹªÿð‹?rÿ쯂ÒïRúÍ?ý#ªb`áüƒÙÕ°ÌoL1ÇgÍC,¯H;ƒ?Ãs9}¯7Smû™TzejÀ ÊH”m:•êÈÙ’ü:–F9–ºó¡&kj\ó^¡(ðÔ(¤øËûkŒÊ·È|”e¤×ð-Wj[2Æ«4LÚKé!JÇGézWe㜴eRÒ}¨^ùì¬vT–ëX"k 8Ùb»F—‘ê”`pviõ¤´§ ;½áŒûåÝvµcj¼Õ\΢~\ÞäÅ¥kÇœ%Žè T†C±ŸÓ(aù¦àPÉ„ªÏŠ+íün[åwçë·©Þòem²¾vøñA+ï¤mª Ò£ÚX¨Û‹õnö½‘ž›•™†ˆJ WÔ[~ŠÓðIŠ»ú5›=R?2ÀBèUiÄçQ‹HqZåŽÖ5‚lxg«Rëž!Œ1ù Ê]µRùHMÆ<ÌKo¸í«P›ÎOâ;¿—rzzìë” ßÑ)Úž¤ú¢fF“ÊüËG;°=j*–“].p.5­^ŸÌàíK7w"'¯7¶£ÏUŠ&e½ª@ŠÍRÝÿw=Âp‰½`¯:~¯ôÌ´¥çØ]†/f:I¶_®ŠeÖïbQèðò9pÞ³ÊXÕ (ËÆœ’!¸×!uÚæ¾lo"ï¥ùÖxÏŒžŠ–ŸMòžês•™->Ÿ`_iŸ'=)×™ûUä†+ñð;c²Èå©,%iË9óׇ]¿à #ÿJ¾d²ÏèôÆ«v ŸœÿˉÒÛl³PKó¡û¹^eöÐ0K?Úû=Ì 'Šd.ꂖؼ DéÞTÏà¥(Ï9¾`;7#iõmË#å)± E¯œ²§/¥mŲ́ʌ|ÔW =—â´2åòÒt;r s76းfÄfžšGù¼mù©YuCâðµÜçl^Ï«‡SŸïpé#†©Hí“\—;ÑèùjzK‘óñæø¦´š^UñQˆD)ƒD¬ç*?C˜»í~Ί7b’ÒäÚ׋tâ>ß3ÖZ—¦àËñÏÓ I_²‰§ò„RO˜%ÛM´ÿ*r¼ìÝÈÛÙãj±fuš–'2¾¾·m_œ–Ïž»¤õDÏÝ« æ¬NÏâsø5õ €Ü‘z¸?î‚ãögz`¿±©…É"ãB©SdkzˆÀKøxÄfª—B´M'†´ðé!_äSiwV§ôæ›Â:ßÒ?>+|EKÁ:4¢²ƒù5>@¥M²ç9"ÖãnF²Ql™Hji”ªÎ‘òm8$”"ùµ– P Q™ð¼xZX}k:ƧĴ¿íùI–•L€v²n)?æÔ×®_Koe/¸ªÖaõ¦¦ÎXQfs¸NïI~䪜ʯGÞdš~æf¡“/Éí"³:˜<æf¿ï¬tÊ´qx¦®—ÞTÓV)¹z×íÜ÷™Q¿oI—¦Æ&9Ãw»tÔÚŒMìo#9®’V8[0‹ÔŽ‘’\‚Ü"GÒzá_ëCæß2”RWŒœõ]¬§•œ°ÒB `Âqœ{]Æ7¶Ö8ÓH=uÂÁ$DG²¬*µ|!ûqêßrbTÞ–Ö‹ïÄ!‰óÐ6a¤s¯€ õΟ8?pËó$/éÓü¢šoì=›rÝåÊlòÙïèXoÒȯIn~«RÁOÏšW/ i-ß©ÌBžzŸ¢2È$¾”R.‡Ø:/Ñ.ÞÆò$Ñ~'Uüt TÇF–1+Hå]:¯y:פQ†«ÕO=»ÛU,Þ`' n§?¢M&ö»®'d¿ü®€õÐJýúRâ–¸-³Ìi†9tÝdeUJT–Ø5ÕìfÅq§š²Uäöøl‰‰Ò³Ii·jÔûV9)ªœ^?*ɇ%q“18vIÃý‘Ÿ2tèý¹Ø|ŸâÀIâh¾uÖ[äU²9[.öFœå6ö§'…!ô‰Ç˜2×ì24Ëú=EÙÏv¼ïÈ;lrTÉWmQ÷ù-sƒÔp¤S¯­~’@*Žñº‡:Îlz"Ïõ°Vyøå CT…VeÖc°«;ôžµºcFÀX "”ŒÞKðµ©îZgÊoö4[£Ôc·^Cù(8X˜ñŽ{>yÞžLªªÂÎk‚]+KIõQÐÿ¸ÕÕmR¸ø´lÕüIäY<ÝqHޤfMek7¹O ˜½¼" ë%ùHKd,©‹š´Dj¾ZˆßEÁN_aëÉÖÏ2”>§Nä 4 Þueµ„µ5 º«²av>æ´Un6qïÛƒ3ø]D‚|2u«ƒ=€ÝQÎëR}†’EÈ­m(K9G-%<}¦H3µ>–#A„àºKD-˜unPhòV™Ôãæú|íå5i¦ ŒÕûŹKyÉÔ³ý»È?@!’¼éW¾Jtón ^Æ4¯“h®‚–QŽH¥œô/ð9[ó:ÆúÁ¸²N¶Ä{ÇÙ5Þa®O…ê¥Ê u­Ž«ª,¸‘nŒó¼ÚqxNê_m )Y%T5Lf“Q±©7ÎCV×#µ²ÔEyTN­Ü·â(@ªÒi£Ô›°s·#±É®ïKŠùÔ®æ¥ðCékëÍN€´ré³±Ñż#á,RL)»¥ŸßÄzb‡ç£TÂ>Õ„”s%]‡J¬3´—ÐóÂ>@A»e¨¾“”•tÔJæ5ÙXâá<_\Y{jù‘Mâ•î {³\õáSZJ®5@’þnÒPù#Ä\DÉ&g†NËòÚ$Ó—¦¸ /"{Ư/pz‚ØØ EÙÅ–½'8Å%!·§òí{ÈàÒôÓP&%:6m¼§Æ§:Y þäî³¢òÁŽSQÿ4)¦Þ¥Ù2(Ëí /«'Ø¥ }»äºȷl&JÕ£££]¶yìÀ€{uêJª6‡¯JWÏÙÒ+)WéPÉf/úY”ѵÊíc®øÚÌ>Ó)?"º>«ïŒn²nï—}AöãsÂúGeÐê;$ÆìH<¸‡<ëHv"B·*‘•¤”ã,j†Yúã›j%“7{A˜¬åIèø\uUØ´Dbm®þIõº9Ú†¼ðþ @/a])KÇ,TÙ£”a‡ 4C+ª0Zyµ%ý~¸²K'…‹Ÿ Ik5Ä“Qè((ëAÉF€ßr>V|iŸŠ ëÛlÆMÕ¶8QÝæxãN/?O‰tAÀ2]èˆKX{¶/‰7áÍŽ mÝnu‚u÷æ¥ðNÕ ¡ò8³wÖ¼£ÀãHš›EÉSmuƒâ"†–õu•ו Sf(EÙÕ?¨AÅ~è¨A¼ß«¤î( gŽ)†ä&*¨.ß}èÄ’.¨Å-J™Q*6k‹L|oE”uY3,<>öæLà‚·­¢°F!:•ùyë<Á[Á'0ZQ!N~ 5ûV(à¨~3àÄáP¯ž„5O\ÚßzÔs)ƒZˆ{â# ÖŸFírb£âà$Í%×öUˆX1½¨Š\¤á߯†¥Ìflû ýY‡r M¡ž(ÉÍTšjª‘T¥`Òž—e))d©— Ü]ÓKïZ?äçȉø¹@˜6MÈSŽ×¤È>­m”hI.òŒø:LD-G±¥„=¯¹_ÄÇ"ûëY?–9s³ÙßHu.½“— ›F¢Ô‰ùvË'uÞ×£€“P›b’{êš1èÚzÜ0¨°€s©Ž Ú1r½éx_â¥ú°ÃãÓùà©àRáÈ‹0ôª4‡ó‡fP]ï8â/{„J°¹”ª&Ñ«¤Û€ú¡@Ü›"…Œ+ceºàÔyž{ÏK£î|óùlë·—ë©çj4N&1 ±ö¦Ä®!è®ÜÚm騕H%¿cgÊA…ý iÔ}ªci ê¢KwžÒÆ©ÔfûQ.Sµ%× Ø@w§‡Õ­¦Ê3/mÑdòjàlßÇÈMÊœ¶A>(üÔ·mëÐTóãñ"ºËÂ5ä°-/¢®aê鞢åcVÌ„oRZ.ÙU°£`ÀP`Ež;…íºÀŽÔ³*ð®UP˜–uI’¥{)¿Ò¤OϽ+fÏGòç›'´õ¾j‘Ìô¨€ø¿>BhR‡. Çlj'îºVÔŸíŒüƒc¼«ÂqÄù+ëÁ`Ó¶Ê/"Ùñ×Ê"'x¾¦#„ BBòÐ!îU?ðs€ÓÅI!'?)9f—FžïËÙ~0% Ì)žåœøZó[’ä–V«ëRíÔñj€˜¦ƒUá3ýÅÉÒÑÖ°Éö(lª\Ii‹n±ÛÃÔ‹üÔë«f×”«ÿðÈ3‹Ea-§÷ɤ ŒaÇ¤ïØ«Fð"Ç AâQ±;q‘NÕ3-½XÆ¡¦Bö¼ËšÛ!Rbo‹P}ž‡j†Å^÷e+z᪮#„ ]»¹C®àµçB|dH +ÊhÐRQ]‡ƒ÷$Ò+(*£jEUì›0ôX~W'ŒP×c²T]]-¥ªv2õЪp€"9óѪ‘èE²8ÌÂF"yˆnZénOaެÿü&ð^õèß`Ykƒïeÿ&kˆ0^³$­oóˆV:?ñ…¸u Ä(×¶ûÀÕÁ¹¸H`¤'zÍê„8 '³w;@ÍãØ /ÿž÷5ì{ÃúìS)®p+væŽ+¬« ¯sˆc½‡âÄÖí±Ê³€A—ŠÃiB£ÌK¼° (×A'Ùƒ'Þàgïö4/÷/ŸŸ(c^N€í-!ÜÄú +¢ÍÅÐ)MM©leÒ¦ @}Á¸~r½îzq^d6^  ÜõléÖ#¨U Tt ¶_¥©zW{;ã|Ÿï*ÎÑÚ†qèüá“vŒÌ6×w˜@vq±nr›ôÔíJ€LãRñRÖÈPnùS Œ%ÁÛnDý h Û´¨¶bCу65JÁÈñ¢Mž¥°U­•.U'5wx;× sñƒOý¨õÀsEE^LïJÐÅïzl"ÖOsÒìÛãd] Í4\Åvþ}°ý舺¬6’µ  ïDŠ˜[Ûƒ›å#äݳ æVÀ„_“b\@/vã- WµÛÓiR©Ä½ جàÇ3e[Ö9ÌI#6² É yq—d/÷ìCÂŽáomòà„J,àw]•p ùßyyøŒû§®ëÏd–sÔÎb<ƒ¬É^•D¯¶½ŠBMºùpN¨ðiFÅPŽ ¦c¬:5±ývUàK‚»&Àlí9´[ùŸÁöñ÷e)¿vIsßR0yq¿,’?9++:=¶Þtb!Ï‘UìÊX©‚½:èŠÉ}ÌùæÛ–æeÞ”,²—Á´¯”‚Œ'¥G,—Ê"–@`¿ø–¯þ¶mªÈ¶-U²üh–¥­¥§¦MǤÇQI¢ gŠûw4âïÅÉ¿$w±¯\í¬}”¸E"8(þ]ru“ÁÃDJ5[9n†+ïK¶;AŽêõÝ„Fö¸®8|‚‰S<ü\‰º ó9µö¦ì<í|{œÅË)i}·¬z5Õ«T¼µ ?ïðv “#{­gã&¥¯Äu÷z¸V}§c¬"Ï9@É,^ y”vêlâW˜J‡¬ÐtAzICùŠ›ú}_ª*š’cAutÖH:еà3žïtƒ“"oQÉnzØ‹ êhrÕÛ¥L÷¥(Æ¡ÒÚ·Ž‹¬¯kXÕSãQ¶NKÏD1ÉæukÂûÚd·³ì,é4t¯÷Kšâ¬ê¸¨å‡C“Œ¢wÆR瞥̇u);k¨9­½·0ºˆp­ñ!ßóšÍ.òTRO™…ñ-©ÍÛ@[Ž[@möfyù‰œDIâC‰$¤S,—ºãŠ%éµ.3Ý« ÉX«A#30º^‘÷ðèe+óBè¯ß;V©Û¬Qá!²:0\TaKSígPUU8‰‹wx¯Z\GÅ3O”›ê$5_¡*4§j$Eªçæië—3ÿ•¿%§‘ì ûž}«ž›°µ+ûðÀXhG‹®±”¼jiå›ï›Ÿ]*±%©ïÒ7r-¼+M[XáÄÚ`³d)˸tÜÚ 9€a_G][æ#+dÁ»-x˜´1ØáßÓºb·eŸkÌå)8ʲ‚؞ʱwõŒu(ýV;¸~:Ö Äý¢X¬‡ö/Fh?<µŸU QVJ„óˆàuZYì—ã>Z&SÛñR’óµv£â"ï®Ú‡6Zö­*YM­àj/8Ä]9žf Ý…tìIåK|…5ÀŒ1†ããøz2•ø·¨ä½ô/W±-v;ÇÚÚ„ƒ­_À¬‘Z) s±Ù<ïW(£I¬hJ\6åYtl±Én²Ñ -,Ÿ¿¨Ë‚£$5™‰š ®>јå²=vÊ—nׯž×äAõ"Ù˜V9ljl»C më…_¬±ÌÒs‹©Ò0K9=ÖÔ @I«¯¬*U Ù0¶sZ:Y{ Ýz_«ÔòªiÑìÍj’„ƒ¬6Á—dŽÅ¿ôýŽ@jA*‰]åÔW¦Âþ4BßeßHÑÄãȶuÌb³ˆ‚Q¯—{s¹¡)³Ÿc’È#£DöB"û‡-ã½*öOµM9¡XMÐbTùZµ#·ºåºµ[¨r¢—#¬5´âpì ”×„:R.PæiîÜŠ~cÊ„PQç໕Õß*:›˜òVq✨ÖA΃lâܶ*‡h4v/Xš3g¨<¡®¸ÇtÈ͹h¥/¶ÀÁ!Iq+›eÊŽÏÀCÌPb_³‹ÿm–},=‚êÚ†&Ö1@7ªÇ¸”U,ž„ÒmmK!^ô fïQÆ¥3ŸuJš+K®úV<…æñœEïTZ\i!°ŠìœÞcÿzŽ»ªà‹ÚËq°këM¥|ÓxÙFÎäÞr¹-µ©‘Ø´æx‰G¾4ùá­=¬ô¹Gçôfç`;O§“€BùVè–¿ Ca^]Ý N`z¸!á%Û¿W‰wÄ D<S,*–QP¹@ýÿUäiV}ß; 4À«Ú)KËPz^™=Éõçá{ùær”ý£æ¼ïÇÉ$}¾¸Þ¨¨/ûV7~áÓKØ.ÎËê"àx2÷U9Žoð6ËMÅC[f[#½SžíŒNòŸîíÁ˜iî„ËÕñ¨Áê”qŸ¬GÂùauEƒ‰-ožHì|ßj¨—W^:kF,î¼ÕÊ1Mõí¨Þ7`¶¼Ôž¸ù¡Ÿ(ø [ÿÌ›÷>¯7ÛYö܆—C6ÎZÍCÔ±¥%þx¤Õ9s¦‰ÂV4¥©r i0ÉõÑøW*'Un˪¬Ç¤±U£èÎ;kk°ÈÙêH¬t,¬/”—Jóg}•÷ì--«•±¦6VuD7ò°j¹è¹7hJó¬5®æèãÒâQ~ nÆh'­yŽÂg!W›JòÕ©çCðLÊyãBÙ§jiÑŠt®7g§5«ò¢[åæ÷>Ø×ÖK‘äFNRS‰?T¸+^ì@+ó(‘Cµ£Þ¡úŽžaP‚_@•¾¿J“P޳ÞúTÝ»^G‡˜Ä¾jË%m´®P;k¦öÈv“ú¨Ýaóätm%^ì/{ò °v’‚twt‡×Þµ~nö·Õ‘zT[lú§©fÃÂÒSš§¦YÉõ¦m–Ç£À'`œÁ¢úTÝÕg<Š]T¬L›5u7G˜ïv9 hù¶ødÉw¶ÐÒr­ãÎ6î({‡GEÅ >‘Ë,í7¯Ïv¹À3]„²âü‚دVV«”`×òm’°VýÒWµ¿¥ÒPT 쇮H?Úì“ÝŒÉ RöË\Ú˜±Kõeûm臹ö2ÑߪáPËÊÙQ-ñ®Í÷œì™ÞülR¾«ƒIöô«_Ëæ8¢1]iHuÒ"ÐÐCIN%2Ôô˜ûávÔT 4†dÝüdÕÅaÔÖ&-Ï%.bÁcycy‚¼>™uO¹&¯¶}ÁðæàÙ²OˆóÁ„§¡“É€XMÊzåK}z¼7‡kÉù<È%Rtò$Ñú@n´¢ÛoN2N•ÈaXÔµ+×$óM¤6c‹žÔD²¬íõ÷ñ×*£QxŸ£ÔGâŒ#°SŠéÇÛ öSY¿„$™óãäÏ-ŶQ |-DyòIT66Yð/ô¯Î˜U\U–<9ÅùäˆMØÛz,¶—nÊ]"eH¯ˆcsåÎ\4͇uiê…‚°kÇ}kè±XÖ65š¶òˆïîÈN½•¡Ô]¨µâe€Ó nº^)«Xϱ¦duŠ5(Á žÀ]¦s(SÑa|ý>ÕeSv6µì2u$-· (7лh¥TŽ5" “¨Æ…?[ÒÒ!eîÆµYï/–Îh¼@µ³îq9NÂê‡ÝxkѦòÉãyT9¼—®î¬d‚5”-¬%B˜Þu ‚2]Ñ÷çèúèyÄT]I”‰Ý ¦EÜâg‹’JÁš{^< V‹¬~< á±¥lâ‰Ò^é­Á;ú|…ÞJh²T/·¿ ÂS^¢}*Ûm:™Re²W3ñí¬µ]AòPqÜâ#¤”Ý/5¶šÃû¬Ê50í}jÒÞ)Sœ0’sÂòX½ÚÞG}>(Ò4ûqh mQ|TЭm>-e(jn—y‚GvÃé\Ë¢P*š +ÈT,J¾ÅÑK^HZ—GQªÈv~=2÷¨þÑã@ë:p*•OÈñ GU|•ëDìæÄ«¹2@ä!_õè+{PÝn;ŠNhâ h,A™Þ{%-žŸ¸ªê ¶xšÑ¥òm/™I죩¢ž˜!¸ÏøÑñ_æ+Ãc |(”.=|Ú' ëœGo‚9Øíö?Z²O?µáä¦fσ“f«@¡¨ }_úmÞîç]H|M¶Šk R»ê ì5õ" h!+®ØôúŽ ÇßhïÈY!nE»)û{dÕw­±S•s¦£»¡äœ>ÕÔˆ^¹ b4—M?Uk¤HQUÕa8î–©‚?#nÒñ†›|©“(Z®¨¶vQðœ)·:»Pô˜±9D™És4[˾ëÝ¡j‹EìÁ@ؼ¦¨Æ¯ aâ4Åp?`XöÄçnÙƒoÏ8x[ýóæÕIœ¸Oq,Õ"«òØ• wéqKýPÀñœë7¢Áˆ…wD@‰Tµž£€“:eäǬ䠆ÅðÎj¤@h%[iø›¡¬}Õ¤çÑV€wM xˆaMH Ê<ö*QkfC]¤zú£“ïSƒÃƒ]*ËžQÝ«¨$$cDEwï–XJÅ™À0ñm¶Iµ b…–;IýþK&¾6áù>ÐK˼sÅbyë’à;ë§Ê?Ìì- ò¡°Ï ¨¦Ú?+E:ÿüʪִ²MOêД¬x:¯”ýBj ’_ˆñ"UQÊs£,ˆç îì`SÞW>{,¶61òUE’Ò°;–ô;åýÅ |ˆSOÆÉÑ¥%xúÊ!Å[Åï;.º:J$qMOäÍÒIA+¨@β¢^²wªœ˜Ô·nÓÚ) ;ï6Û¡ÊÙo²³SÎ)uŠkʃF…‡ªpûpÖC}¼OÆ·¾¯ÜD'-k<忤ø:6ð™(º2g_R…ÂòW©:ëJÃfaíyz›ª.À¯.š6éì­ëk£ËZÔ‘^úLp(ñóù~Ôcˆ¨IduÌÈw5¤6Ø÷ÓƒZy×:a›<ÞQ­°-Ùd:y%[òÃÊ’úܫ轥¨TêÞº\&ûòö—§têïR¹#o%Ò)c²Ô]yQ1˜‚´2X©Xæ­Hº¥}unñῈ"SéN'T„sÕ\}ó¡ß1§QIøàÈK·Xgº€¤Í²¹B†Ò;¼¯Ó·Ñ<™T j+:E˜€ ®n0Ä­+;ì„×ö ç7óÝGe©ôMöÖÜM6KM–åf¹/jÀq´ö/…Ãa^¥®ýGhïÍrp|–°Êz²¸µ¸$ôëî]$ˆBr¹Y¹bðTê6cŽwÙ.¬¹/ªˆ¬2Nf¿r:%y>•nkº@¾Kï>)0¬-6€' Š %;’žV‚p¨•Kâ6€ä‡–X®”¥1«â/¯¢| ©·MN§T1‡ò™H'De¬Qˆœ…\”¯¶ +ê*jãóS±ç7Û¡^6Vˆ| s^? «4aE³ýëŸÏ¼¤¾Xž8Hµñ:üäAmý€–Æ9£Æ“@»0?M,ù U­{Ùë›úŸ qIØ:þò•)ÖváóÈ{4—° ›ÕQ4 'jÊÊ3ÈYoë ¬3*eYðµ“&• s¦<öluOŸ‡h”çeiŸ"Ð$ÖUØ©“XíÒâ? J FKŒ¾4³f%œ³`-Û—éÉ1·|…0‚¢Æ›åiOTÓ÷¡—H‹[Ç'ýE¸é.§÷EÈ2$ÉTïeß—˜GíÇSYIZÈj­/â7™BÕ¯Gõ7¾Õs’c&d÷¤ªêx¬BÑêù®ª½,Ø”aÓ ä«…TË‚5ÃR·›YGŒ8®ìtGÑJ­ÉÙ†½\uÔ~ ÓöuÖ&–tnžÇlZMXÝßuŠœFrö&Éß ÕëïHù–øÇxXcùr}%çeg–ôv¼´ƒ&-GáHÈNWkRÃBHúL%M‹€r§ŒwêŒiAû:Vp9ž-ýAs(Jæ„b=¼p]®g:&F-[Íô‡8˜÷ÍN­_ÇU‰eŠ#ªMNRI›×Èc¤(É*ɯNzÎ" ÞŒE<)o-S XVâíi³Có ïÀJ¹÷sL Ü©¹-¡D(W4“—L8çåo]c-ÇäcL¶€Ù£õ%ͼÊRzj\T žcùót!¤Ô÷Ч¨C÷Ežè¨5—#ècÈTªn6%ÔdàJøà<=•áý¶ÖÙöŒ›½ $•ž$e»š¹MíS<äV[¿=Œ!>‘!^à 9•ziªù.– 5†g©Ó.ïÙäßé¬Ê¯÷˜žºÎÖèGÿ€h;NA óì]Ýc±›ô!ïnigÒŸôCÁ€„¬ò¿±¼(–ÿzB+þ›tùYÚOè˜ÅÜÜufmQ)iT#aTuÝP÷ÙÍK÷˜…¤ÀyÃe÷GçcÝÖÏÜ–sIнG9aÞƒ'[¿ºc’J(Ø‹r€¬@fbáh¹ä9¢ó*öÈn OÊYþõHÂ~‡“Ä‹4(¹ñ·èM¸!Y5ñ÷ Zž“jwÀtWþÜg»¡]u^ÝU@aløAÈ™,¤dÅáWŒò-F²~{"$ßU—W¶‹nðÕ‘õÅÃ$Ri*Ÿ¹¶ÅV‹ÓÌ$ÓI3;ntN. ü¾BiѬ]u>bŸG-|±†£N•ÄÞàü¹öô]ŸîBˆ³á/kŽnþ –þ%´X.n½\¬5çí\¯ÏÛt% Ö9¤ºzxÀB’¤lx-b³Y”zÁð¨G…ä†û Ò§d¼—ÜV<£Ú§ ÑyûD Ï'’bÃE¬KD¹<Ÿ9L7¢*å߉c z4§xìyް5„Îú Ë®K³(f¼~¨ÿŒ—:Ë£ Æ¢ÈMãp@¿ÉâY“e“ÂßÉó€ â£,¼¨Î ‚NÕ–øöNØQE•sUI§f’t0]5ÛI¥1u¼ÏFÙGž¢l}Xã3Ni«¯¾²?,0Y"zBUJ9 M–>递ù -²ÆÁøÚ†<ЬFkÏ÷ìC2kê!®‰íYJN7P7± •"C•÷:„Öh'½°¤ÍÀ0xMh)ô(Á;ÉÑ®ˆnôÏÙѾÖ|x(d›Æu²‰‹ºb{º?;žÿÈÞ’ ±ä[¯zÑI¹Š³ñGç†)‘b˜m~lFO|5³tèæhO¼[Ã÷ï¸tÅ/­ÊC”̾»¥lÛ`PøDks*?’…Óù ÷èTÒ–vËvÛNÖ™Ã.¶ï5¿yxƒ²bª|£ÅcÐÁa“÷}¤ž×i@´,ÿvl ¯l/à1–¹‘àx›öå ?’89SW׈s;OR]zæ€Hæ¥Ã°ŒhÞDÒQŒËï§þÄíT-‘køe´Ø©Ð½RP7¤…Øþ.Oå×kÛJ!"è—Tv.Óƒrâ3»ŸK°'0R3ß?6[b…œ.ó€Žõd‡ËfPãઆíVê7RVw@T?seøÙ#}Vò8txð9ã_ÍiëD¼©ÚÚ³„}Ÿ·»ŽWÛIÖ®V‡é¾|©J3ÚÚ¬™©Gÿ--‚š&|Š\§âf¼Åb¿‰ñUè‚,ø»5ÏrÝäd nª@#[!ɼœEJÁ—»ÚÈÎ%ªw;Ç,³çœUM‡º¤úŒTƒ¼½­"øî‚9¤öØR¥¢Ö(rÝ·>Åó0ýÕ|c1’:U$w5øÆúaÙóCÌÎŽ¨ûI·éÀ[ûšúóðú¨qµgrÔˆd¸Ùw¤ñ›Ýáû¶€ÄYºù©l‘¿³~†@¾úWiüÄ”+íÈsœNª2Z…‡©jE41ÜéxR ê–‡Ì:ЙQ†¸³¶„7ža°’$«Pß>YŽÝä/Ê•ÂÍ‹WÊá=šö {@E‰$Ö‹Ý#§v¹oµª¨Ç‰|sQãvjšgéÜ^$Ž‡ë§¤oþÖ¡·§Zô&@ý9ÓCºÊQ^ ‡ŠèŽþè2I²)j!òý®ÈÒz ÕÕ-žº·Æ´åRh (¿.ÚìïZœ×`)‡Tdªç"ËÛDå¹xs$§¢Á ÀÌËÑ4%J$L£ù†£ÆYi|?q"@½ð×Á ™ÂÊQøðx@Í=ëµêìE¼—–Ï™J¯Î}—ç*NÐpe:­%G5 KÓ]”¨[¨¡>ò•<â™Ã’Äö£g8XúÀiÄPE Á‡ý'ŠRVÔ«Ã[jÈ gÝjÊUçQ?»úKÙÁ‰ÄÌ}Zv*ìiuÑ4U¦®bÃ+ÕRÝì©Ê|¨ë˜Ï$öýk¸§j“G¤Ô:¯ïXˆê?~ˆ0jØëÀÁV^Ž®n1rSÈ”|c¿ÆªÇ ‚8¯…“‹¶~Éœ|ôè!KIš¶ê9˶Lv$CÓÙá@oýzF·í}*G ª"gK‹+¥öf’©cJ"¸Lâ~Éž~éÒíj3<ÐçŸ?¢¸vÚ,§Z¦Ò:̾¾mRxn ”m_õQRޤ«)(„ÀzÙÚw¥åö«±”¨C—¿BöÒŒÜX¹Ñ#Lp¬?²4yà€ÇÚCsƒ”;d+•ÇO1 ! )²îˆ¼—æ¿RqÙE (7®x=x\Ê3‘yD4 çÙÿ1 ©JCH³öS+¢R±dϦ‚]gb5Àtí<5åud#ˆÊÕ±QñÑa[÷42÷ª]QÎõnõíou24cì–;%õy$ôr ó¼4Œ Šbñ__“ÇûOE³îRZ£Öy¾ïùa ”í'–ˆ“åÕfvÂÄfý±,66†Ÿž 8ž%ùDºCJ€;ÏÛí\ûŽíðPtê’¹. ¸Ô´ItW‡§³Œ±YÉ3 žLžÛ”õZ4IKê­ÙÏvíë`!Ùà)™Tã˜À%<¼²Où)É2ó°—¥JE…뼪õ8ö]Äléˆ Zü±yy'CËGžQ~+Qó9<]ñHÇ·«£Ñ§¯¦üG%l3‹˜¥Ã–¾ÈúweE¸ª «:²yÐ{„UtbÙt¹4iä_EíQØlèxfóc׿µK*v̈ºP’ZM77Ã3“y¾ÌÅÊ øä<š…€Dše‡R»me•¯É­ç+9œ‚ŠJé˳c£P}ŸÖ¨Lˆ¬Ž9%½0ªgꉄ:â`',OôÆqxº¯M&¿=e¹NxÛlö ±ëv B )ç&|l¥n|Rwl[5Æô^ fjÞ1mp}gŠgÔzÏ®ö™GåÚ=’Åz%¶<˜ `5wù¸nÕ!<®MeÄÎêq˜ªP$ÈÄÙGQVíKýÀ€Aöë4Í©[ÁÞK§·—|ÎÇŒ:FzHÊjBà8}2 £ÞÚrÅ@(·Ç•ߥëqŒ.:à£×ü­\ÁóYš;»œ,¶^»ÍéSô’?Ÿºw)(°xm/‹Æ±mþ ¿EÑŒŽÂ–k‰Pa;’MØäF¼‰üx°bbñäýÓVV[p2o÷dsêŸC”$ëƒÂÕŽ3ÀÏäÀfƒEÛTõrš…¤•¤ø‘vÃ9H!©ßgèlñÂXGsó…’h‘žÎáüR!Ê3ÏKùÕŒ=üµªxP¤…ÈedPŠó°µD)œQª$ñèrJ‚¿®ï‹h~§J*íè|fE8å=ö3ëÈIžaK’'ôèqMW¹/iÜHÉÜÉPNßæ]ÿK¥F„¡Hf‰{Iüìô8–Ý©ŽtFÕ#î(ÇÚ¡–ôÔ•Ô»í¾~÷¦v’E¢,+pêäôF5qu¾œÂä¸Qå'4† à±è(v´¬ei·ÊÆh@–©¹éGØž÷Å[Zö za1„R&*_JS Š8Ûã8€akXO´Õv/:®× µ3(Oý¬~„HrRˆHnù”eôÕê´µ†TwéÇšmà !c7ÏË/K²ì£‚ªu±ì»HQpÈ/äL°üžcÏÊÝvÔí×ù`ì_b-IKÿêü$"ÜOª™ø-Ÿµh \A_ûv„ˆ8Æö׫­Ùs¾¶d|j±·ëúÜ‹M¥…²{,) Ø8sÏzüÛÁÇ.’ åüË{E5K/9É´Àã©mx—ì¯7émy›ôýxTÓ-†V^}j3eÅBLsPÖ¾[^5‘asÁ1÷—Rä:@,[AЫN3‚õ¿tuM¦mçîüY?-=i·ƒº·Ó¥šPGC:¾“Фj0¦s“õbÁ;=Î/R‘«@ÑT”VlÛbÁD&šÊnïÕ»#­§U~Ìlë´xi—«²zo”j)cG›»H5#iió|Ô8’©mÄ>`«–,ûÒ\"Mÿ[­wªš}¼$‡ÆÏDÌß–Ò=%JØ •–Z»1/Yu4=BÜPYºõØ.šY…¨œKªL˜*ÁØÔ)&F9#§7fÏ™öç Ó÷û=K¬jIÍöH˵½ ‚qóÀ2µÓ’q®­]eñØM'B×õ*%ËKK%×Ò¤n§>ÇÛU<ýŸµúQò‘^ µ/ £Êò”E£îùê«Y=ó¶¿øªÜ!ÿ/7ˆ] S¶¨:ÛÆ]²ë)z¸:½[CFÊ8¢#°:îùd¨jöÐËÍ6€m‘‹`Ëè=Ô_\NCWª>§×(¨ŠrŒAu•HG<ÒâYA’Gr©aqN¾•;¢·3=Î ë"ªßìŽ]Ûºâ¶øŠNY¥Q §:l@Íp5?Ô {HŒ{©û:qÝäÍ©Y¦‚Ú”ð2íQh0ûJÑÞ\I$Ve'4uqÐâ–©mô7¢ØJ*ËÛ_÷ŒÃ>é} µöEÑa Û~¼ôzã~­Öo÷UÍxG2xT,ÓÅŠ·à,vÒý)4P„@W޹DÆe 8ïä  µZ m)£ý±v½¹iíz'mŠ—A:ÀˆÈz”Ù›Ólˆª²‡“@ù®›%˜ðµ§^!yZÿ:#QÙ©T³üéZž¾Î÷† \µùGŠ®3QriöikKQ8aÐü»ì¼+0°.kùKJ°tb…RW:Oc ËNM>ü”ºd6€HüË•éŠp<Îd»ºµF{1,Þ'ô¤Š–°Úƒ?^\[r½D_â~—f~y8l—‰Ú|[u‰ëÔùÅAiÊrH3²’b¸`;ºÄJWNÕ š‚Õ!Û³Zo¼•„Ï ¿¹œ«B*†¸ì€•把 Ĭ•w vn¶õýÞ]çfµs(ÅÀú¼žþCŸÆ¿Ùeµ¢;¸v‚ÂõãGr}߯;—Æl·¨?Óå Êu|*`ŠR¦ò¨ì5u‹4¿ä-?u²ïñϢβg¨R;£¼¬MŒÎ¢c ëƒçúZ]ØÊ§º%_ ^e5u`»‰gLŠ'²«L~uï[1²£IÈÁjµ³âT&^BKKå=p€èºœáNý—$·F™ÜÜ!ø]Š–´F¾Iúj§ ýîklN’Îw¬Ó%»Êݪ(Ðë9»iƳ³t¦QN-À-šG$6yèÓ ûóßætª*ì6™úª’ÎÑ8ª GƒðÀiÌ}AÇÚÒ"´=|¤ƒ:Œ:DÕ„4­Ó޽Ä?¿¯ø€?„ø»¹®ýñó;<×þøÑqí?ç·~ù¯~Š÷O¡þQzþÔð{ö[û½¹­ýñó{óZû—ò›¿ø»˜­ñÿ­Öþw{ýÿ³Ùä5ö7ÜÅþV±¿»gØßp û|Áþ6ﯿáïõtë®ÿz^]mÎõ»Ì·ÒóÓ?Š,HžEåMþƒýÖ˜ýÖ§€‰²59”ëÉüŠqáa>Ufùâ‹nîÌS¬Lù*C”ª®6ÝíêÝeR—øi×a'<95óH°uݳأDb3¡ge™Ôøz^ÉU –&˜ry–((å‡j6ñ‚Å/ Áuë$¡& ÚÌ[…è¦ÿ­Iu\†ã&Ô/’%õÃÒÝ×AñT®¤‡Lu~[¼~˜Ü«Þ ÔMõa‡£¹å»ß!QKBðË“¾©d²  µãÏÄeèV#Ñû©ù‡+Œgô,ÏÞ”„TºF9þàÁïæ!]úß<Ô·³êÁS4…ÓL²Àg¯j‡ÐÚwót¹$Èï*k÷z³û!šr¾®œ‡ÁóZte„§’%²ð5—tµïU‚g¯Aø½ù\[ã¹e¹QFå“vTü ]ÍÓÌ×'‡Çû¨çõJVÙQ•ùïÇùt;ñV=Àm·ô éoè,"T@žÌHÄòK-Õ{<'Z™»ûØ_÷TZmN.¯pB´ËN\ÝóÕ@Ê›Öi36˜2:b±§(KÝNå¦PWLy¹r=zÖãåRŠu•ê¡Mpä>%jÆ}³‰ÕŒP·}{H“%·8~ºÞYžøõõéÔú«;õ+JM›(ጉ7]z²Å°gÁEýìòÞ©‰kîˆÿbéð]ŸR¡«K·ÒG,&=ë¦ò~Î˱£Z»ƒÚíg†ª:Fųy(ƒ§º„è d˜šüÓŸäåE½OK*>é  ÀÇÖa³$ðEO²ý7ÖwÍÌ2\õ¥¦mª"ïé6¦Zëö «ã4žƒÇWó .àõر°EiÝßÏâÒ¾e¿–ßûkcR›UÉÀ,n6 õXrH|ð°ú1Þ¹¹®Ä¦Î÷•+º‡mÊ”Zj±•­’»»:…å’gò¢XIÓb³Ì …t}šuËÉU)†‚<²yêlV§ÊCðŒå‘Ri+æ“Gn—£V‚ ð³ŽëCrÇi(U%v•ÈÌJçË+;FöÝ<<Ö˜µy¿Ù‹†šu9H¬«Î¿îûtÞÁ–ó\™â8|;y´²?¢d\Ⱥ¬»½ê¥z"N¢8M `wheÛf[£-ªNŸß‰¡±^,[­rš:ÄÉí|R ,nBw• |Ö[®šRj\‡zKTκÐÜ—$,Ü_Òís"b#ýéáÄïHGLÊ̦Q>‡•oÕߺ˸rv¼f_ %²JÊlzˆ·¥gOd×.¯S 3’ÀÀÛ? žKmÍ&ðøô˜´Ï @ÑMoxV{ô-Þ ‚å8\Ö¼¿oš”ȧäGÓmÝ’Üo®!›bÖûl-ÈEÛœò0Âé&Ò–E®BÏëÁu›÷&‚(ózèF¡ÒïrEVÙ™‘óp/iÛô’ªõó G’ Rô¾\NgÔ8ê|±sÁ=Äý«Ê…ùŽfV&U©ÖWÚm埨ÍÓ|öo?<ñÕ‹ÉáOKêE±SÎâÙÌ/mVjŸ‡•…º.®G«0gß%ÀQã(jÖ@ý’3x’—æ,ÛPÁét\P |Ç{dWÂEF L¼e”޲ÄÍvhj¶ zç=Úî~Ld ­›v°îï <g€äÖRhþnì rž‰—"qjŒé'ZSYg¦R¦‰S΄’æ’Hìe¶âÖ3³ ¡§áÚÉÎsj^J ¼µ<û¢cÙV~@ˆRnyô›"k¼_>…R5)q7~ZØYÝQ7+…®b‹6 úöÉlmòw÷+€®’´rÜÊã 1‘‚Pc– "ÑÛƒ†åÑ™¶t’±Øª$êôÇû¡µé4Éó28yBõxouļîz+ s£¸§ QLÈÆjnç.@M|Ù%ÑF+Yê.<·OøÍÇÄLâïI—SÚä HiZ9}»² ø?e(.6Ë«í9u>©J/1j±¢VÑÖzFÜð,¤ex8^ 7—dkUµˆä‡Ià$%nž%°¢˜•©5å›ÛXƒ`¡îbaß\ÚîQ%ÑØTÜÐÁ§{8´É|±S €'b<ÿ¤Ã„jû¹;Ù¸U¯"©ÀöôÄûŒWä ¥Àw“øQÇ¥>*7ÀU•GJû(ó_ñhRHšˆWW%Uª*丢š(²Ê»jÀ×à ï§â[˜á£ö©ŒÒdƒ$ÃjJ¯d97àú­Rqb(’šØúG˜UÒºRVÿlv§5„[Xâ“´äÀëÛ U!Se²ÙÈ{Ú—Í%¯Ò•Åè’$Wß`95Ü$·ó6©879’7œ-~9oeâE¿ûr€ ø>ªzkT™ŽlëÛ}ôoÀÐ,¥9ºª*Î2¨ˆ3ãëÿúÚÚrËà-µ%™Ÿ"˜Ý%­CÈ>óɺž=ÇÒÖ[F|~¨|=àƒg°§M‡H9¬³ s3Ré2¼3ø‚·Î«9¢£Ÿzi*½¨~­F²Ú·ÌH@;™ù^ûþª*õHÞ_¥è‚@0ü 2¾Šºj‰|¡(¿®<[Sm{à&)£ð¦3÷=,»#j¶ã«V¯ý Ãìžû'ªp/gM_Ç —>•U`±~h䮡&ï;U¢]| À@ë†yA©w©¡¸Ÿ98ªÄþ3Q’À£ÅŽŠø‘dÈ„¯R¼â1Jzù‡®Í-e\{ºŸ«GÍ=2â_=RXðÀf¹Ôw оÛC<Îàà¢Þ1ænŒÝΚ½lwn'yU½õr9{¿çXIÅ-å‹Ç¢ ~]Ü•ló hk¡8¡r;j)“_SDK¬òj¼Z.ší!í9ð˜ÿ?ìýi“Ùu¦‹~w3ý‡8׌·>,¤ûö™ÝvL>R%qRUQìî’ìtÉJd‚™‰Dã¿Ï³Ý#2rP ¨CKÄàáÃÖz×Þk½ï0*Òiro-aF¦–½áöÄéÛÈdL¡¥&ùêeÅÆÌÊPI„T¡b­K™­£œˆ>Ñl}Häuo-•™ rž«M “ÚUæótzùpŸË@ù%k1i˜Ý‘sº xIÌ2Ë%)v`YÅЦÜefÑ‚í«¶W«™cØXG]=`gÊ€îÕPœ“N9„VB<çyí]±ÔÔê ž¹œãƒ¬ê  G$ªihT6›ÆüÕÆT©KN4‚ ÒÇ4H1òú1×Ò~ŒÖ¾téÉ"`fi• oÌ´&oä^­£*ªi‚ý¤NNŠë)ãZ3–›èƒ\£eZÀO˱˜DæÖ nÛÜlÒEi6¦*w †S‰ïÀ Tc‡¥4CT®¤k¼…©‹‘QAw4OWÅkÔ,›2f˜rJ!F‰ ÓÉ3ƒð"Ç0®(Áhå F1€eùf½6¦,1­jò9ÐðZ ¦‡%°Qtd»wnûŽ;èÕ“-CˆÚ£¥|A–ÍË—5+ž1j‚?×qŠÖS¦˜<±Àyb ›aýL(èÕí¨àDUS«.déåɉ)ˆÜÕ /r“¹¬·í¢¶X©Ê˜¹ŒÖ2ÀZ1ýhQJ(ÀcÑ¢É8èÁJ¼Ü,ùÄu?CëàF+ŒéR“ͪŠÈÅUÈ/Š=˜1oB5ܩ޵’ü 4tcƒBêU°§+õÕq@- Y S™qÆtÔ¿9„“±)jEáÌšDΟf¡æÄ¿š|àpISy\J¦2s7 ª$Ùʉ2ùú±˜µÏÃÔ5̽¶4wz@á+¢ûtZfÏuø…^© [Ý%¥% „Âf¼Å=Y ñà&pמÍB¬J%Ÿ’“JˆÈÙËC:%æ)–µä¨MPÓ‰90™³•w #©ahµ "L©R¶vU3L/lV‘´…< 4º «Q ŒÁœ "’F8óó¯ÚÉÚYgV€þ`L¶¦’‡¸’qdޏ2æx\½œ£ëk#qJtUÜo­.gÜ*]SR3ˆ”3Ô3CNÚšHêd&…„ ®ÜtîºàÉ2£8Ɉ³˜hÂ}É«Ø36UÊneȽ"²&ª`p=¥à1U)¡_«k[3"Íw2¢J*ÙŘ„8CÙ«ó,w]«žwp¯©é]½g^³>5–n€µö ¨LEbӹΒYÒí*®†¸©Eîõ`¢‡bí袑jn‘ž5’”J³6—D¼Sãž˪_µgèq\±¶¢å¬Ì8NÊ' ³†TÄ0%}”ÄáK• nn]¾¶Ø¼š‚$º{í2ã§°l=e–e¦ ½%ÊQ w`™ƃ4åTE7ìÓ†A±Š§¸¸R›ÞÛKMÝ'xËÁU8"´A)€.¾°š©² Sæ»QÙÔÔdc[i0e‰Ÿ¶³8-±lwp“,rõVë´²¨×¦3wC‰ÃRêyDÀÜ1CŠÈ?RJf\têý郭¤ä$tš£ùÃñâƒaÔ2ßF³Môéž“„,}ÁC3Ið7™¼«'7JÛ2ƒx(æH3Ç…Y¹p²¨HÛH<#F˜Ä_e¢t]k?—ÈÅz·Áš~IêÂ`¯¨HÁíMÆë„#¼ô–×%ñOb MüSZÑ€‚ [ÝÀ¾RÚÁrÀ(ûŽ!q  Æ SÛ;›PZTÉá)#Ë;9X *KÕ΀•Ý„Þm¤h‘®w²šš@(Îæ‰h«KUP°¶‘ÆM%»”XaZ,­Õ¹•¤€yç–¦¾Ðy(F²IÊ,ÒrôAʢδ>•¸2SÂ%Hda#{i^•Êfô¤Ê4ZfçÒd­{wÉ _L(Úç2œ…QÖ1¹°ôñ@@:פÀÞ²–Ù N'§#Ï›%± °â÷¹„‰iÇË ¥ã‚@Ïüº”áŽÙJ:(IGJ`ÂÝ&V'¶}dmá;fýDSM-qsœ>jƒtÚ]4£Äá8gÃî‡Ü¶êÀ«›Ô ìåͰ–·æB®Îæ2•¤Ä„ÒŠfòþ)Öã®rEØŸÐ]êÓáJÉÌò\^<7½ 5‰:ˆ=åëi’P&5?UÒbá M¼—‘f©:cç^HÓ$Uù/x´Y;#™vΤUÂýNÊ~MR&–ITVêT ó®³ĵYÕ@è¼ßTÓß™m<ÔÒž«Ï«›¬ùÄR¦GyïpÎÀ™e5¬ –ܘ“ÜY†v5ˆ'Û¨°ìxå¸Y¬uÐBS¤ë¸åÇ NàÐj“ ´¯ÌÍ7ºÍ]ébPHg‘£¹Ôuc@®[óµÌ÷ãܧ™0eévå’Z*Í„‘Ô“h)qóÌ„øÄ¢åPJŒÃlŸ¥°(±„©ót’,C¤¢¬¸YƱ)* Žª,¸ò5rd¦^b>W–Kö²+sw‚pK”<•ƒ/Ç'L1LšÌ/ }:Œ¹èRbVáOzùjTc°r·´Å¢¤&'ÄÔ``L…wb+Y˜ûk–µ);Í®ƒá÷Á½#Àõ.Âß^õ†VT¼äfucÔìn‰¾5År[X ¸õ«jZäi4âsÃn\AÞK¬#]nÞÊÙé–xpÖ¹ÑËÇ9I]ܵªÚ4.¿+N` ŒeÎ:‹«>%z=<°ºL«Ü!U˜Ë£¾7ÍØ(3[Ëï83Uf™ùá¡*zëÊ58§!™’$Ù¥{U‘„ØôXpmUŠ'©?ªÎP©+ÇA$a¸3cãˆ?˜?À¨t‘b®M)¦í™oî?KŠãEBaÓºódŒÕ€b|w'¼Œ„V·¹˜›Æ¬¢î0±­pãSTä0jÛæ XeŠï¯¢b^mF¥«‰ëeÓ«èX£÷"R;w8GB³„(²QC7¦Jøh¥ÓÆÒby_B/ù’™Cªe¯­4è\c¼ 4Oè•qÝÊn͆P½û[›uƒ“Ò G¢¨‚¬´Ä¯U§T0-wGs%ƒ›H‘ oÉVBz£sf§¼¤£JÒ.UŠ_æÖgãi$?‘š@UE7,2£;€®5èúI`ˆäŒ£„¹ª;Hf3)ËÇS­ú›H‘î¡G“V†ž{Ù1Gf|C´ieP– ¹ù0:rk9®#å”*°ä“Vý%vÒLÀÔ«¥V,)Jr W Ö\!M·É@¯“Á`©¤XÆÈ*”ˆ+“² *“˨àRË@èÛ«jn1*tÀìâ¾dœ®áËÒ‡I®*×±­§HúÙà‡. K$IÕl2?ˆý\ª%µ®©Ž£¤€lc½%Cª\(Ä—d“IÛštEUôd ̵‚‡«®ãã ³U;–a@1$kUú—E”HîT*'Èl,x&hèfpµõžDÇ­{û#1¬R¡¥"ÌŽŠxM „Ž~«$˦A‰œ¦p2•w¸µ´ÐâúÉúKK¹Öjð A8Á·Ê^É ‰Zf¶zªÍì¬&Ô cSঠ}Tâ“ß³’BmΈ,.P8ºÃpÄPÜ>¹ü4ÉTK—€à­çË7ªn´f0%ò‰€@®3bi€¦a4Õ‹Ò–Ù슱%ºV&ÔŒ“F6MeÞRÐ2H3j`<%Reƒ§Œ?ÇZew##6± ‘N/Ýb7Aa’?¿4òyO;çæF$©z*Ty។­Ãí©ÏP‘DÑ[£?Á|83e‘åé¬ðÒD¡¥¾Ñr "žsQ¬ÄëfêÂ…ÂåÓ¡h­™±ª´F¨,”¸ŽZp5ŽÅ½ÜL‘ir)(M1ÂaÌjy5²Î*dmA`3mÜmÃPáž’4FZ‚56Uе3+!eé/*š%¿¤èÅ`¥šQ M›úœ6»kkDÝ©¦”ÖLA“òƒÌÀû¸Në½›N²|¡»¹5i-3l¢íHM #zP}™`!·`~I¦š+ë2ìGR»tàá°¿}M€Õȸšà‚ë`'0f<½ª¡M5㎺Õ³Àó0­ó/Ê/$€nÀ8BVÆ[.µ£®˜ Â*Õ‡Gž:5ïέƒ:££2ùF™6-AbPº3ÅH~ÏßYN!îSQ…wµ¥D¥•w®˜ºFˆšæ¼M€/¦óõVcL4šÒÞMŸ¹id‘TÉWÁwô[uj<ïìMH‚tì;¹`€¶Y«nÒà’oU[Û[·–Òñ©ô´–%cGdÀ&À’é*‘_ ƒ#µL#o½²¦™V€e@,þ®VÝÔÒ |oi)/F4ÏÀ¹äáø þÕœ­ZðN–Ç3y¹¤Ö¶š tÄQÎ<$Z1–S"1„ËYÈ*ì[g®†¼–ü[éŸKŒWÈýÑÊŽjad!]Wi•n2*â3*°$˜›ÒU—I¡šÐrÆdkªã€¨T§Ë€ºLž‚‘DÄ’qktT‰Íæ˜i•´HŒ":¢ð|P#Å<µ„"ó{ϳô„˜ò™ Ñ&p‰Ad7Ç”YlÜ“å¡s‘{ݵ©EK…aH;»dÇè’±7Ò.©BöÄT3È·Sƒ•)ˆOÔ •ÊŽ‚¢`½÷…ºPľKÌà ¹ª•åê©Ä „\3&C(¥-¬‘&0i1­RÝ7œ©‚€Ì¬©r‡3ÒŒbé[¢7¿À Vúç–%‚åâg8€ÛIÖΕ ,’ê Vߦ„ƒ®ÔúŠÜÏ&9r,œT¥Jƒ[›H*ÍÔðP·¹Iæ˜6h5o%vÆj¹.‚X¤s¡ë¬µš)ˆ%Džq<^ +T¥Á$ õÖb<É8WªLåÒŠ«='ùoa^dSXeNäWä öŒ˜#ÉjF‹³‘~Î$Ü;Äb¤Q)V˜fpcWàÉŒ»NÙbSGe„úIR÷(Ž¡>ßí9ñP¼Eð”­±sÜMâq+‰n†¦Ì‰aç$Ê 1_ù40OL}VÐGs_ŠÆJÃÙ8«´—j^TC¤¥%ô•½1ÒùURÖ‹G×ïS™VݸOº¼v%K]$—JE[žK åÚ0®í±xœIç\Õ4&µ¹:nÆeFÆàx…ûÆÄ¶Žéœ—†í ;ðýTº«;+Ô.ÿ ­9iT5REÏÊI±Ýë&œ£Ô˜¬¨#¦™. Êך.ú$¢ˆZ™È+ÒÔ}Þö³ Çü-¥¾T“rؘ ßô2ý‚æ%’aT “F++ê[Ur†H¸khÎà©€Qs˜Ì2MkëâÒŸT8ÌùDòr ¶[÷ã&ôµƒÁ ‰ ,•‘˜Ò55s(h20 Ðl–M,Q[)UD –?BuwšeçsçœTcȃ« 2ƒ•òßÖ•,Ä“´NÒuU]¸¹Ô`š˜þdDàKˆÌ*P@&åé ƒ,Ò·WD¾ |#.z4Ì`JÁjÆ–Â#¢ ;€7­\†J¥& æåW’Øã¹yvzÁÅ·`v¬p8'P Ô Õ7…†DÎ]Fo2 ¬D2zU‹¾ˆ™5w©S·œ©_È©B°1D©q×¥-š •c$t3Z©Ã±RaŠSFÅá)ê ´`.×%®´#™„ϲù_ müuÍvQë^›ÜüM&G"#"Õ‡\:5>@'™d×îó2LªV`ŸÏ5c¥T†2!@ÃÑUJ32ò•WmM–Ã2*DâXMcPQ€GP'Û-[³|êœ6àaÀ¾n†ÑûmLap“!M£ ÜÅ÷¼aº3$f³Ôº6(å’bÙ88©M3lç KuF²‰”ÉÎñi2G£R·šgüø©Ð««®3é±ÞF–©fÛ”øG¹rž× l¾¥!*Ù"‰kHe •º¦iŸ‹Î”µ|GÅ(,®¯l˜öÕ—VG1‘Ü;ú|ˆä¤.oFæÒßœ–ê.2§Ý-Le3lD¶y¦F¥t>¶2XË©‹Ã“:Ô¨Òae ´IfNŽiã~Ô0·¶…{ÛYÉ$ºÆÎuŠ 2Ù¤s½Zå€olLòhs«Í†BæñAíùB]fI~GŒq v Î òY}犉؜X{¥¼KÒÓ¸׋³h)y?1t<7¬×`x]Gµ2Kcâ¹Üà©Û(E%í˜;ƒ.³ˆR¦pì²±3Ò)3EJT÷ û&Á.ŒD‚ݵ¦­CJÍÃ!)ÈRfr wÙ Šƒ”PçxœFÛYu bF'fg|P¤}Ôê˜ZXèÆÝè9Šå˜¶éÎy‰ekdSÖᘬPcT0™ÍË <]“W¢KÚÖÈ]ޱRJ¦²æ…a¦?ï÷âtæPã.¤e9³2Œ¡L:p`g¶ZS`<úÙU1ú Ç^›Ÿ"°«-§"Œ2ÎÀpÒƒÀ——ç&8––Ig¡Àû€TÊÂLx~Ë8]vïd2éÌìÆŒœtŒ4B§,q/p´zB¦Ve¢ /;Ås{S|€•¸´.ÌWÕ”Œc躦‰d6š ×¶òív…ë§à1|™)qªšˆd'ÕÒ;‡¥R¿ÏÕLú©Èë:)cuÇ­Úï„f9èŠI$Mi«Š±Bê}1õòŽ€K‚)ð•ªï˜c&…bðÆ­Ä•ǤXßzàKBæÈòL¨bõÍ`‘”Ú:c6`ŠGs²ºÜ|  ¤z‹ª’­Ú›®D.ü\BYú|8@†Šð™‹Z¥Ôwß=ž´kã÷芸œwVu$ÞLeGnTŒKµxV2½›G °q.lºÐÆ›­ƒÏmÊe1;¹ÁCåxì$¬\«­–¸³Tj%™1ü£Ùþ-Ð;F¹&]İ<&võºð*Ü4mªŒÆ««P“XƒP˜œÖ.vrLõÌð|Ìð ©A™˜ ]@ëlRc’a1¦ò¨ 2ÑUÄÁ}ÓWš£myÌuߺ–00\5ê_¡c\Ú±:™WI¦ÍÇc—íE5Ñø­Ä`îa¸ä¤ÑæNÀt7IUŒ›jæp$D®’¸)™§ #œëÍ®ší FA­Þ¶— ˆ¸!¦(ôCOI]k€âøÏ\޳čÙàŽˆ;O-SXJöÛö!&à†&Ìz—™B€©Û¨„5n"áÎg Ü0‹rl¬¥%óÁüMynÁÊ-NV†%†Ôª!È&˜uòY‹«G#&…`$R;Ëåã®rMÔ >«0£X×$('…?‘ÛPÍíÙu<3…4L‹“¬·p‘®‚^10÷§¼zTø´ñƒùÅQyÚ6ù !H%bœu#‚¼Ó܋ԌDÒ…4þ]Òºö©VîBD?Zd8sU™uŒ¥òÞ9lö×4¹<TõVÇ}²æ×Ǻº™è¨Ž,¢ÊvšŽà&c±´„CäÞù„De&æîˆ‘"@áqÚè¶«$›ÄFÒàçöbWÝp•¥O?t­,› ¿`6}“¨˜L`¦W0½-$#Ê'Ë—™è±Ú´À6Èíj’ãTF ùÉŒhÒInÉ^αє3Ÿk°DjÚÞTƒëFvLe­ýž0·LTLî ¢`:ïšËÆ$_×Û”ËPàË*AÌ:Q ø´UX¡T EYlÕèU "¶U=nL¯è3÷‰ûܽ šÖd­ ÞC“1·ãvhÕ2¤ÕNµûߤkÅ LãòëÊv¯F ž«q æ#D絫¹ïT« VÛtíL¤)]QÒ±q‘eŒ„].lÅš’X³ƒi”@³J"‹¼W»cp…,™ÔlΙ{*ㆯZëA1DAnz^)ØW†ZuÊl±ÉLZìw¢‚f/•Mî=ü¾¸X¨ßìBN¯*thv.M­è³®/LM,ˆnÓ˜d© A!.Í%ÇÝ`Ö‰¥FfГ%"äÃGL‘t¿ ‰4LºšÙlþciÞ×pÒ#=7˜q¹¨9˜ÞR<¥WŽ£À;3J‡iMˆqÉršÐ’Ð6*A¶Ä°ø2ÚÄ=cj§² J%Àeùôæ¿QJýíË >RªzˆRªú@J©4üÿ/¥Tõ×O)UýuRJ½ƒ ê!†FÜÂГµùßzþzŠ©£iV¥#WN5Yà3Ö•µc5$4:¸ “V ‹õU±ò(<6[NOHø¶êÛV•µn¨dRhB®¤F'ÜžRú+›XŒq ÀÃÔrå1Í\‰.,¯"Lè•È"Z¯Ô@o‰¶Œ¨GŒ¢ÂcÏfpv˜jW‘¶%H¨mÎ_#KͨÞ[í–B?bgU`éÇPO†¤3±]™Ð45CD–³ÊôÓjNðJËñ¤$7XÞªÛ’àH³]ÕtQI:cPÒ¾s—ÅäÆræîuærQ».ÙVµŠše£Ìk…Ý*ÜD}fÔ1b“’Tí•®®\q%ŽS8‘xŽ»¬fwxÌOs«2ï*ó¥z5(MÏ F‰„¡yâLIeþ'£·’iÖªŠJžÛ2(ZК¨lÛcDƘ‘2Gˆë’Ú„ ÖêmÆa:¦ä¨@‚AjAÈj®vÜ@J¥<“}<§[$ÀÏ*s“,oÌÆ$>”¡ÌBËAâ¯^mîÑ´ÁqÈM>ÏSÙo«…äFy}:Pz@5LSãj°di¥‹–´ölÅÄCæÖ¾¦c,ï¤.]eÎælHpÕ4™3Cc}Ÿš¸*ˆZ¸8 95Ý{wõ·&•}Ÿø6¤ zìAŸ–ŒÒ2ôiî-¨)W¦‘¤kteÝVfÒh¡qg©ViH¥ªá&3à ³Á”`̧´“eŽ"âePnaè%¡jq¼JÄ0FM¡aâF’7lkâN“…$ÿ|²Z*ŒÒ3Ñ"µ»³„.ø§ Ÿa»ˆß; ‰\2‡«e†KiNéxFw4RK.Ë&‹õêÛÔ`ÐZE[q.ËÚÕËÑUâ)1MWã[[]=õÌÄ®ä‡Ý‚…CÙð»È¢<‰R¿’ДXÖfd23&Âü]É®Fí<Èšß„š‘»Ôûâžåâ²*ÌnÒ$ãôW0ýí 'øÀ°5KŠ[³ÔÀ5íï ]ÃfÞ>å~V?+ÿ]Óþÿ¹à5»8ÿõE¯YúW¾Jcûâ€?W6݆\9Š(q ¾þ:çkÎ}z|M“›sÈÞž_mŸ?=½¸AUœ·ë77?.ˆ—ßàžn_|š­ŸÞ:˜Û;¾ô—×¼½wñæôí5¿îG³<×›£ËÓãËkÂàÿ<¼Ïeã3Ÿžü¨õ4¯On~ZÉžü‡·Ç×z‹1šKõðGW\c¼~Çù§ã–¦ þá!¦iþ?Œwš{ùå,Ô5÷òë‡8©¹—¾~ǽ|ña|ÕÜËo¯ßq/ÿrýŽ{ùÝÌÖ ÷ò?¯¹¬¹—ÿuýŽ{yzqüì›íÕáŽ9ßÏš›_äûÜœ mµþâæá¬ÚÜÚïÿCH¶¹«?ü‡pnsWß¼ÝSp/o¹«?x«Q<{¾3#®b*VšnÚ ­Ú¿-þµ-þ§¢é¢ì¹M%­˜äí >lÔ›é‡Ân5Èd/œë!Uëä‹–„Ó©­6ö1]U iè¤"ï¤{™­-¹eº»I‰Ûbž[eRÈlèhJDžvŠ„fjrv…bccÒàTZƒb¨T žˆÏMºí˘î\Ä$@é–Âl(.=“Ô°r÷…©“v{(-JÌ›ã²b$ 7•‚h·ú9a2ù¬|ªò‘0øëÎ"¬ªÈºPOªp5„šFr17Tž“6J¼g­i®¡kªt`e!ÖLÎSu“B–éTD9/õe+%ê—¡ƒ€U† ó°’>$ éä·6 b²¸t˜ðföA‚¦Ã”U-fêD‘ö¸¬¬gMSFb1ÍeÝ2‹¥›]¢ˆÂŠª± 9äU3å\¶f›…œW>UyAšõ*ҀÊ`zzè÷±NéåZ¢‚º°š¤˜F;àKȦ”¯þ4#±VãÙ2½4ë Aä4eÔÖfn4™)‹YQ´ÀK̘yèòÀ¼/¥z§2Ô32` -÷—sfÚe £>37kVKÓº;©Ï³¾µ ±-C"/#70´R·t2•›xQ™hІÜÕ±oêÒõ¡^>šB.æÜabmÉ'Q•½éƒ‚Eî¢r:D²dü©KéG¹­ª¼‘ÉtpÝll¢ÄkªddU&©lyåêWeÒÔ<;œÇZ}/+V«Ñ¤T‹ÿ+Å´ó(¬™F2’®lò4éÛ©‘ËE®\ý:ë¢f—‹:oû¢±8íì£ìKÞá4 Gå˜`¸Ó¶'Y¢Z+S´Ê«Bò{Ë%&°§ff[·ÆÉ†z)NËú4­<Á´ÕCe^È‹_I’7Éö—YpÃ$™j õ§£Áý•†¾è#*™§a¡¿4Ú­Yc³šóJº¤*Ua!ÛŸkñø¬ûˆ}/L&óæ¹"Ù'3/;Œ‹Ù©›ª’‰[ÎeI ‹Ñ\ÜK+ÂÌ85¡º`6ÖUfš÷i—äÀ’ÜÜ,Ú˜MÐc„pXìÝÜÒšuÝsËÍÈéÆ~LfËeq ø±ÛŒY mi“û^§rå©·d6®<2IXˆÈ¤N“Ü)^† Uö%^eš˜Hc°8¥œT“KTÙÝJqÝi´hS».IÙI'ŸBŽ…v‘šá;TX–BÊÍy4;SPOâùþgÎJëf&7F[Ý&\,ÌP«…é-ËÄ(­Éc1|ÅH¬Í‘fBZ à ä©ûy#[kÊÄütʸ„Q Pó8Ó,±ˆIRDÃ5~+s;Gp&¾¥jšUÏ(Ít7 ¹QülÚà{qDÁÂ<æmdrÁ¬‘Õ"÷ºC°I éÌÙŠÈ“©)ÊT©pw×ÜÍ "_“N’œjR&\Æh—ÜÔœl=^ÄÁ,•ÖBçàj¼3¡5Z“UCÈÇJ*ŒT6­b²ç3azbNPkÅȯ´$R^ñì í›ÅÂ̼­ÀGÐË” ôÈ1äî–é?cÒör'Ç"A œ¾)ÑÅ´nÖÒ3õlu±¾¢$¹i™Ò©¥R5]ƒÑÂì´Sè϶«O2¡OˆU/œ¶md 4J–´À e¯… ;R¼JÊô9ƒ©Å•ˆù XÕmÜ×½ãëd¾ÇL`yî®íÜ‹—Q74QµUN–¡ŸHçXñìRãp­AÿÊF;¸7¬¡kÃLS D­¥+P€9Õh-P*eÒ”2Z›ÄṲYù0óÖ$ü¾VðˆY$È eLºLÜßD”†c™d¥˜pw¸c£3i>Êš@ƒ¨f¬5à¬R>ÌAv 𺼙{©!©hdLó£M¥ˆ§¤<¾rªå·‹†¡×Ë[Žg$Ñi ŸM¡£Rð ;ƒN+Dd¢™^´ ÁO&v©Kõã# ‚*‰_¡¦×àm¦vGæè&æq_ ËM”'®3¹IÛž“¤Â¯3˜[ÊÍTWÓ¶ªp¨Ý<ª¿Ë0.ì±Q»”MVá¿•#Î,Ë*5c•¥šR¹’ÌDø&2P––­©å„#³s[’m L9‚5úcÎéÁzhfèÇ&ÑòÎ00@º1:,§!•6ªW³7\GÂ×d•tå<ÆJ·&•é Ž×a.p³€(åÚ"2Vî(´FÛX·Í­¹’Š3(-žÆ„,a1“jï¡­#©L †ÀF7m,l$4›ƒ•1Òídeä’,'5½¥T´¡À&–EÀ)‘r[[ª¡°K†#ÈÀŸ•> —ÄšNœ¢ ŠøüBôÂØXxISdi]Iº.€"Á=Ý7Ìi'Y{ëYÍaeM"§bTYS[sƒ'Z4ë=Ôx¬©ºÈÂ`=}>uU{›2ôã?[ùðËÈM„QåV1¦ƒ‰D al¹4)n› š'‹¦: *=ËX›ou¦t8Y"I13°s™Ç¥‘µ¬²âm jÀ2÷³eöÒ š™,˜‹¥Ôãø…&ªÎôjW„Â88…åÌ£^½ÊlŒ´Î…•™§È†~à[S2*ùä ºŠÜ9y"@♄×Þi†Ÿi„pÕÁÒ½QÒ€ô3­Yí*$ñ0ƒ!±.Ôº 鈫i9}w9I%%%âhEhÆ,„¹&üÊ0´2ôM•wU‚­`>æ“ÑtkÅ\;­ðßµañ2ÁšœŒÉ9{×reô0= ›cJŸ9V“JVï JHE<Þ-ùµ´ÄÜ€C3õ˜n …‘ù7jÜpXÉ8ôÎà¤*Ø×®hæ2TޱIͱ‰Ì;ruÊ×Ê8S#ÐZE0hÒʇ܃ \24¢˜­8(S¹{j3WŒ‡TM€!aiÊóËn«ÐS¡¼“d‘Æ3ªM¹ 3øÄ\JŒ¦ÖýX`*Ýo^ŠžŒF]X{ªãi¥¬Ç‚ õ`•n&\®Éš€Þ—W#‡gV@FÍ¥®š‹Q‚8üo¢ê 3¿µ±¬ÃɧY&â#< `["¡PQSyiò2¬cç2l~*å×*óž”81΂Œ*õ-Ó¡LU@‹žð9­švê05kãtÖJ»¥/Ép¯Xý¬ˆ N‡X|ŸÑñ˜bK¾$B +ÙpºŠÑm”•ÄÓ@;Q¶õ¯˜ Z=Ëq|ŒBÉi»vÆî~‡€¥Å¿0,¦]À`ìãÒ%ЕøÄ ,6 ÎÛ¥øÃaI­Ë;¥WÌ“ÎJßÔ¶à†j#³^êdŸ<*ÐUiÛіͱ`¬lŠü\µò)ˆç}<agÒÜš¤%V%õ ÞŒ®,g‹G `LmµiV©5#¿à\$úPüL™™¢kñˆËÌ 4@~…‹0-ªEa|€á.¬µQ+)h¶-ɪI«|XÝ(²5Ö+‡\΢Ô8£ f¢‰:2A\éÏ’Äs R ™’Úà—¬¿”3ƒ$Ï&&Ž›7šEXÀӳYæÙb&óx¥š±>ž0ú¸ýL®ª¶¨ãŽËar43.ès¹!§Râ•¡©Ji¶ð>–ópaìh"˜‘Ùúø=)ù¨¦^í ABV𡵅¸›˜‚Ø0 ÎÌ †²s,«+ÜJŠwý¥ ÈBæR«T¢3‡‹`£0H²%ñ¡2–BZí.¿&_fA{I»TMQ ªJ¤N•Ž…Ë3Œƒ;Ä•K¦VKYO„6 +äÓÑvŠßIÈ ùO ÛçJ¯Ç`ïró•³N¹9LaQz):,‚*J¦Ï¡·ÚȘK*ïi¡Ð±SèÝU2‘{Õ0(1@Ä"“«ËÄ}—)•«Ö~£Á¨ä¡=‰|ût±8¡# ¿î±ƒL×2!P“ PÑ7Uø&h«uc³t,AQϦÝ)°}Dor:¿ß3áºy,b×+b)IÈÌê ¹Ó5j‘@eŠÚäEl~…äjë `’–µwƒ·¤›Az¹ç59gì̓R€2¿ã)è`]*gpmPjÚ:K"ø,ä(äÃQ>×–±ÓK Âé0ƒÖøÒr¸=ÏÒõšŽÍóİoÄ}ЕÊ¤Š¼1;së³*ÏÞ­LI$,½<óÎe J…YšIÔ|1Þ k™gÌÚ¼nCJÛ–ÕªÛZnIX¦ˆ¢©¼S_âï×#’2²tçRù­Èá£äò¦jÏiè†ò¸g“Ù\ÃRÔ¤aTUj¥Žf)²3 - -#¨O&bîP]æ®8Ø[še°L®ÇNÌFÐŒòˆE,ôì°ç`£Æ ÈAnYi^&KZŠEY‚ÓMÊcÅ„HǤˆBµÊ$æCJi©5Þ"º©6ÙM'‚C bšN' Ó,ŤË(­©‚A¶Ç6«t1á‚‚TŠä€z”€ÞÕji8ÚW•ÜlÅwRl£ 5RB¹ÔqA"w!–jP£¨„sj½*ìäs‰c:£2ÂâÌŸÈ(Ã%WZéRR/?&®WVÞëXƒp,#3Dºëœ ížqËÏѪ•ëPÜ v;Î$9Qï»Cÿ”€)F0»uƒK˜n=š;!Œ€¹ðªŽš  NÉì¯^- ¨¤wö‰EWŒWSWIZ‹Lût Ö¶YêH(äã ¹èP<«< G{! Fšõ5]D‡Ä+ ¢¶VÅ-™¸*U¨[9³±-µ!Z’c“XµþœØš  «Q\”u¬gÆT}—9sÝzt=(ex©Ñ]&—¨§F´J{5@›L¦* ‚Ïò4÷ÀŸKJˆ×! ’ &•±³Mš‰ÁÌ#Ž"®$V9öùNK%!hñ;ÒÈn3˜UaEc €Ä¬«éRy{“k0G*Ö¦OR‡dŽ©£Sˆé¢U>vj™¼éʶ–‘øß¸ÀPT!©FˆÄ¼LE\Éœ2ißjl¥ç!¨KðwX˜Õ×Ìé1`eõw™K…W/UžêÀ¦(Ö.œ«œ3Vt6±Q.°– ×[÷d£Àœº`Ú {q—Æ%ËÌuÓFæI¥ìan“rTfP :”ŠŒq¥™äeŒÅ^]„–›œô+†Kƒ*p 2SUñaôBoRWÙ»& œÌÝsM¸ÉêX¼–™Ò3*ÿ”©´2«“› !Q,ïYß$Œlå™DôWIâó Ñ1EKÎäªæ =QÅ­—–±Nèš²š\£±3Hg)yiéE=rOÁ%„ Kúô±–v)¬PË/¥ 3Ãð`h‰Uè(ŒcžÜ×aL{ËÇÔ³IGøN,ázD ¤‘`Lçʾ4ÞüJ‰9P_6ËsºW„o’+::'ÖÏf:óðs_àõS¦»SE9bÕèäÙiT FÅJ—JìƒbnYš¸êP¨Üž»xìN:ê‘™†{ÄO™I-¯—*Ç8C»Ye‚Ú乬L\Ê) c€åê›å|áRÊ1È;rÊ>ß™ÎtžVõ”–†¥ÏÂ,ß»[•+ùœ>J H ÎõÀ‡ƒ6j0'Ëj4ÇOvº(ˆI=÷±~£‘L­A葊åi_}“[zŠ ôo˜<¥Õâ]+²”Ä7Çý$&NO*̪#èV•2_ÝÙ’m0—¦ \/ø5(œšÃP,LX¢ÂD×QUJU­dÃìm/½õ²ª¥`Èz—+SC4H¦ú2‡ g’ܱÀ{³nÓÙ™逥ÓŸ)™ÞJÜÔ˜Ô:f‘F¹ŽT ã§ ¥2$àO¥3ÕÙó¶ò¬'rÊÛs£S9e1ŒBeàÅR$Ï HZÓÆÒjPpÑØ$˜`È© mg·%E‚³y ƒ‰©tâÄCDà’5r)Oî׬Y°€¡¦h£ÊL••7Ï™…'rg‡Ý­Á¥[,f‡U.-vƒðˆ93jôØHš½js3ÎÈÄ×4JeƒN3‡[-´QÅ“©&é²LX¿¬“î·6¸òR•D¯ò ç¦ü‚å°QÌA+tš05‹Ò÷z0¿S­ã3K â1ߥ«àe3 ÅÔRo²˜Ž’à!ze•]VÈhÙyCgÐVÎ`}2c“à§JñIÁƒfnç©Âq/b­®BÜrAó&¬i %T$0 ÜP)É[7ô­¨I·7šdã°79÷s%tTÚÀE" &Ž6V¾S&ÑdÞ©ÛôRûâ÷‹¬JJ—o³!¦'djÙLøX³6AÈ '¥¤¬¤Ú欖î6®47EÒ¦À4¸õNRrcرn«{Õ¨!ìRøÜ)NQ¸_Ú3+-¨öŽè½©3ˆÌ ‘-5™DªTÍ+RçJ騈åðÃRš3íNgŸX3 óJºÊDG´œCÕ²©SÁÿÎI€|]&‚®ßê/­ æ¤V2R:‹Ê\â\RLºð\Ù,…̺¾Z¸nX «¾Q¤©ååÃÆåÕJå;À ¦÷SrqNðØ õ¬žªð5A­Î!9NºÜ}†R¹  à1©%®•/ž‰…ýJ*3ìÝ#š]€–Tí-pLÙ:kÕ„ë'5³*Kø%Sò“,¡ÛUþ6>‹êÖ™?w7•HÁ ªœ”[›ã­ã–ެÓʱƒ{@•Û䃟©PR%¢vj3å±Îæi‚ÅRì)ÞËNlU`Phy$f S¾x¿Ô´Œ»ÔuòEWŒÜV MœÏ$1 ¤îÆ4SÆCb`©]}µtÝã{cá„<¤À®zj³H‘-ƒ3Á-fd LgÖZ¤­2·*ep!ô f —Ä%¥DwUׯöÉýš!£\MOð>€¼Ô5@°þ(²*j”C½‰±n'ù¹RŒ³¬<šd;‘É~7øÆì‚TÓàV£lóÌé)¯*bôÉbžÔuÑHÌÓ¹e¯³M©Jsqu¿—ÁôYìD=L–& #Í éä‚dBv yçÖ“]AHïHô5&òG6UA‹5¥òƒ­Y¾Ñ^*á±W\RkKŽÅN}¨³4x‹QÅŠâŸgZÈý0)û›±0$1«1⺆&LqÍ8õÓÌ¥íä¯×&`f5‹ÙÄUY¾qER(ÕS#§š'iá㜆¨ñ&>£Ÿõf_%ŠG©ºTIªã €šUGÊL o,µ³j&s])‘öpÈ ¶8¿¹y¸k)0 ×3‘ªtý fPß1å7\vúµ®UÙ+u— Ç2”ê(ÕDµX%sñ6®1îeÇžÌóÊ\.¡å¦‰¤Õmc¾'µâ#t/¡VÉCÆv·åWêô…éX (0Xæzûé¬P,Ã7±šJueL*ê ÿ±;ŽÁp(“-¸ˆÙ4.…ÆdKU·1ÿØÒl'úÎ!®£ƒ¤Ò&6ã=\±qLÇDE| 0ižZSQf«UÞJ”²,˜i³ÎtaólÈ´ÌŠàíhKèéC:·d3\Z`MU6eÈ•"¼3Q]¡Réó:Räõ,\"Q²›cZæA!ÕX…d΢<„S2ÇȈ`gJKûÉM&¨I ƒëÎîߌnAôRtb2^Ùez×ò[2W»'µ¼B>¥1t*&T³ßãâY#;Ö#UCs2ºŸs7üóvŒKôAIIlðÔc ­•JeW'5 ÌjZ˨5tIk iZ+µÀœê˜5 GðÆÒ¶Ô4„¢©É/ÒþÎ*¯ã_$ò®¬¤‰kß­ÜùÊáå´"ø—©º!œKb!3Î~«šRz Åp×uu¬0ÌWî uy&™ueL9û°©¼ÓÕX¹“àV–¡%b!šÈÝ”{W£‹¬$ #ˆ`jå%°GI\’fm+‹‘Ä…ûmVÍyâÆ‹@ÆóîM4îi飡6]¦QLzQFùP»Õ$,î9O‚­ jšjKL£aŠ:R³0#75ÛaPj¯U ½`x›ˆ‚ÍíË;>w%—q媟°b éÔqk$³uÖPVR7ã2¦*¥~¼-Ó{NðgæǨM>$&Ö$8@g©¢JiL*°2'æ7r—ªv‘4©uoT-ÇqŸÍøØ| °ø1OרPv¦£•í„kæZJ¤AíÁ1‘/'“¥¸S­•r"™èe8j‡!¸’TX[¡èX¾ÉÛE (Ë“JUHqO?F¶&³ÐÁê|`¸]ÔÕl=$ѤzÍîÌ&€A²^™p+/c$8*7‘Ë‘ÌÄ´¸„Ö´ J¨=Fúkµ©¹Ñ¸Ij3V¹µBv´†I¾¶[#$bÐûâ2Bk—¥KÉÁˆÊ5iÜÒäº'I Ð!ج±0¸4õ«ô~q—ÕÚ­®Å=+¢[²èU³÷ªN‰ÒÝÀ ,ô`%cn޼Š7MŠï\„pÝ\]¤#<4»—̰Qòòtn×ßFeS¥­Rö­)'†w"DüZÚÖr²V1DZ:›~«R°@/Lé”*´<å´SÈòͪ&C‚n0r2Ã&M£@µëz¹åê¸ Þ&£TÎÊ»3âk ·ôï#Ѐô_ºI™1Ïzå‡%gèGÙËjéÙ¤PWNE/—>F]ªµ¤N‰ˆ5nd[£l]ÌL«0µ$•Õ£àÄžß)Ë£ÕUÀDŒ¸DÇe5Ö,Œ³<ËQnöE˰À?¨[–ÆX̺k¾®‘ᶺŒ°h˜ä«‡¨`<. XíK€XÆêXÀƒ•¦"U‰6G0ÚUê>a²]¸! ^ÄO2)Ì 5™ª¶°¨ NVÍŒWŸó!!¼e¶êp¶D—#MIŒ¬ëkŹzŒ¾‚µ,àc±D{°ÒH©šˆ:©v]”› E¨‰G ~Eä¤åÜäë\ÜÉäowÉ Ó3¶I5ˆ.LÊvÉ2høIF¥]¢ òÈð–HP‘flO_Uf¸™UP§‰Ø|$~ÁààJÌ®%†²HC­ÖŒ;Ôz¬Tæ7F˜2mlî]CïB‚q&g°ð± ø£u8i7˲%Cwõl:š1-±/Š=›«ÀÏ38G¢6" å§ÒÈ’6ÏZÐy•»' `S}ƒæîÌ3R³R ôïÂ`Ót‰åã&¶¶}ê·¸®Bäök9[0 vê/¸Ñ?E¥˜zbâºçß$M+g]¦œÏÜb“­o˜ÓLºe“Çi~YåJ¢bWæ½7# ¿¶L¹RîÐSâñÚjï*'fÏŒ\Å$øgË[6(@HV~«âb¡u=b€'ôN*ëyHg%*­VÇKs›F×À \p™xº/SÇÙ>¥&/¹‚†$Åž2KfõÞ¢X×ÀLÛ(qÄf¶f'Î"CЛavѹ.ZÃ{²j—<칫ÑÑ$õ¼#H …UhÜERpP¥û‚Yar}-k¢º0ÁÝ´J%S°T’ôñ -¬³é9¸wõZuÎm'b &n›'.°0;-}5#h7•)ã_|„53çÓ]ô´0ãoÃôG9îËqH”Í^ž*g‘´ýc¤Q3sp|+­Ó …p·Ž¼ê‡lr½!Ѹ©Ëæí°ÅÒ©tOeľXL®9ž$(ä­œT%c\aº{56Ò$“ê¤Ë”•y“©)N˜OuIÊyRÛ±Ãß(ô,S ÑQ|Š›U'‘ßµIÂ$SHˆ½è´)·¾ {ŽŸ+zÂ…‚±E㔊E4¹Z¤¡ sÚz&²Ô’E”S±þ4—ΰcF×~-ÍÅPФÉ-¶³$°dr`ì@(­é¨*puÖ¤eY¾£•dSËü²DTzÚ`·b~ÉÍï]}SO™³†É„;SçrøÒ‰®¤Õ&×3òséšZ5<$CZ ´©*ÙŒ’ºbôˆ–æ/'õ[ðü–©Ê—:ci¢Š/nzìoFîSEðںߺµÒiÊ'à𤢷ù£É½BcVõ9sDeð²l"e.V3 F¥t$™\²­Œi|Ã8 *’š¯Œñw‡ uçÏ£v¥†£ÑÕì•(.‰2âŽ`;ËB3ùˆãsó;]? æ:+èRÆ´s\G«tk¥¥•ªu̸B…/@i“{òõdmC³˜Ý„ÞãíÔtì$ÏÅo;)§OÏ•²ôcEýHf¢Ýª8´.=c\PÙÞ=£ïp¶2‹*2¶†öuÅ ˆ7Ô~ÓZs^™&˜aü¥ê0õ7ë%„%¶J3 S:g *ÆL¨Þ8'.¦òÜbÂÅÝÓÈáfÀÕc+ãÐÚD^NmÎD¡|°™×Râæ}¢(zjMãkN/c‡æIÁ;ÑœÄQ¥:S±»˜‹Æ´÷…QÜõU·Ålf¯ñiÏät˜Íò©ð¸ªMÐæ óÖ,¸ÛÜ¥ŽÏhɶú¬*3T:“Ò­H/±Ól~&²tÃEmÍ&4³‘VÁ\Çf+ß7ÖÝùQÔ¦ÒLaõKÍÒ, ª>L† f?š ¥Ër ·ÆdíhÒä2 ½ÉZ\?lHg¡C-³ Hjë}•Ê {ò ßßY‡ÊĪ\«†™BæÖÖêÇla³EÆq°-7ûe,3S:kÿUG‰k@z‰Z+ªø\ ¨ì¦Ì˜¾V¯VõS·‹j¡Rë–<³:.tâqm iNJÓùóºg÷AÁ R6×#Ñ3‚ŠÒ1Í-1¸™Æ³¹÷9Ô™ûuÒs—Xw`®0ÜJ%Nr«f¥‰™\œ•*…æ¶xê*º«°Uâ.$+8°‚B8‡sr €½jZ :e"bsƒ.­ëÊ•ÆÙ¢ñRmoùpœÊÔmͦ»! àt'À 7¬¼& ËèF>M&Œ{ð©3JFöndp«Ê”ªšúÓlfX ÔÌÍð‘‰ZCVà1ieP»,Ûø€Y¾u¦ËÎ%q“»úBøÕEöº)q‰Iî—18Pé/¥s+©× Ë–Õ_yØZKW-kþXËœ/Û„Çc–ù¹‹kV»6=Ò$·1O£Ta ãÜǪj<ï€{WY¶a¼†uW±4\þ²9ªX=™ºÿŸOã,b Ê–ÍÊëëÚ\ŽŸ`6±Ä˜ 53¯X-q÷kꬋr±ˆ³•Á\ eoù‹4ºÂÄ-æE 5ËÔši´5b‰‰„8ô‰Åìü¾²ÞA}dPRR)2ìJ©‰ù¼ŽE³Ä„ÜXPÃ,1ÕA£­éº¦Ïñ1-žã-ù.í“ÑÄy³ª$× z“ç– èá²Ùh _Z™rˆ7¢'ÀL8™@Hœ¸äžÉTÏ/óÉ\Iù3¸Ì$=AnSã?ƒöt­MÇ$[ðLHªìdQd[ãõsu±›@䌮,ûû™ÃÀ’CîÐvê0—Θ¾®i6ÆZ¶üZn¾¬¸"Œså¯0542—5 ”Ovd7Kã3ZÌa¾r¬›k‰&¢ã,(›ã®”Ù„RS€? ljn‰JRé$ô®ã: >$1›œ‘\»þ=»-ÑE=Ó(fÞXu:uŒAúšy)5‰üxµŠ’y%ÜØ¨ž 4j½ëGL¤ˆc®öyˆº_µëÖî œZ~( FÝ´ öÙ<êJ.Â2p„‚2¥•Œn ÔÚ×A™Kú–jÀñ$8´ÞÊ:0}î Ñ=’ÊJu®!Ïøy?Êį¸Zé>[Óft¹8øŽQK8¾®\ëTRÐaæCi°Âp²  íÎtN¥@‰¡v›i!LYª[á«è-e>'â=õqss%­.«UuŒŠÄÚom¾AA,kÕˆ‹Ç/_Ž\8…¥ÌâN;I˜Ãè$ÿ——ƒ`'.[p)ìœY/6òÄ;zSW#`ŠÙâIжá' á,cÕTê±ïƒ¸^•>5ßå–=Ê…Yò0¹^¿6öŽŠ• òS›Hî5[©d·¸²¦["Þ̘LÊÂ…Gk†îMÕÄ_ÐYÑ h¯´!J‘¶Bn !âjˆ*¾¯×¶î–0úSwþ‹Œù˜7J¿ÔSbŽÄ*öŽ&›§´¾˜‰ÒÜÞÅV§°±­éi€$ƾO„X&ÖÍZ«LÚ<¿†ÌiÁ¼k•,žAÚEÌñ°s.µ3»*sƒsL|ò(•™šZÜͪÅÐ3&ìÒŠ[âòP´–ci¬ÄÂ`¡ÜŠ„‘\ ´~$—ZKö·½êv±"ëôLj6Bj®H2vxI˜LÕX€R¦¦«æL)økzœI˜™KÞ½t1·œ1U<Ý4ìiè¸Õ$wáˆà4ƃ¦•O:ºk6+#ÙE`—.NÕg¹q‚};)•® 5m È©¹¼® Ã]ON(ì¢hgK ˜ôxjÂÎ鯾ޥX Bb¹Y™Mî4æÙT¸½T)ËSKëÁXLƶN÷ÝTîÇ´`I«Ê9Vãe˜ ÌdãÐcº'³v™ù` @GMã˜!‰a0ÑKp×b‰ôÍQà¦Æ¾Te‹±04„PÒÚ Ûb‰êLxZ%.ªÄ*K©HÌ® ¸ªW´ÍØ1bäÄåKkM.J±#]gól]b¢‰ÍUN¥´Ï*#ÅX-»* ¢ Ü\áæ™ü½ô‹Ì7î°dM’Æ…’L†-›Y’ ²Ü*Œ›)(f“õ®«ð0æ7£Ò"xx,WÆÒT¦ L=F£a|¼sEéþÙ8»’Ó€p²VÍŠ€Q™UW ûð(¶Ýä£(׬XЮÒn¥c3ӨǠõ€m¢_â½®’÷:••fªi¡sœJ8’[ŸoJ—N…ÅèŠL‘y³.ÍGÊf.@´zûLm”,.‘S¥ÁgKÐ[àÕ&yO¡¥{« ¨F.72Åzr Mpï`ÙQZ XÔdîx J:{Û…âZcœ²»š¦[ÒB˜Gó¥>žâr`•›j㚌É…ë!¢tÕ¸Zá¶_Äk’kŸa˜Ö„-¹#!j4†”Ü<o•«qÛ*ÒÜà‡ZÖªYb«´úhfvu]›§â}¯6•¼»Ê ØIË’R¾¦G F‰Õ2l<–wHÅD#…NNçQ%б RV£´©u O,ð,çØÜÊZê¶.Lù*÷Ý%‘F0Ÿ6×åt Z°Uáä•5q4Žœ¢´t&ï¶Eü9(Äšh—Û›¾HsUMCǰo­S`.kGæ¯ì@ÀÒÜL0fŠ’Ç'1 rË Ai“ÌaUƒsFÆhR3–ÄœA\öXO*ò¥’@Ã2Æ‚å95°!v¶¶P=·8Ïy¢/rÙT¤Ñ•©Äey¢ŽQR=cJ8“cˆU´s'{¡kVÎFâŸÖ Yb…NV6õ’³¾óLŸÑ:)ä§9z’¤©'lŸps¹‹Ôôy«ùyf]µ«î4B$ìŠeH 0¤®¾Ï Ê\µÑl|«i0¶±²h–RR Y)*Ÿñqê= g~ËDKHŸhü§Z·C$‹–‹ÏéƒêÉá^/%.a‰ük4‚W>XÓÞ'À 6õÁ4¤ ¯ Ñ8d &aƦnÞ@y<1LJÌsq†3Á¶4À’(*höLy–íµêZY2T¤iáÖ›²ãÖâKB9N1û;óêXÓ£‹õ …ùPUYðñYXõH=€Ï4™®†UÅÂeá-RÌ­¬rñ¼ŒnCéÆ Ž MæHÓg½K ÒÒÀy¢€½5^€ ¶‘]3 ìÊ*úÈOÊDfO ~Žˆá'°1]DNÙz¤A%=ev S˜Ü½&Íð^…<Òêb†”¢ŸÂ(ýþ¬#Fð™:A‰f+ñŒØ2 5æÞ* P©kØ}æj&¾NZw¥»ØqnÔŒi7ªÛ~®$¯â ׊PEÎ÷téØš¤|j¼’²÷R”¶Œñ„Ï1/MQ»v4LVÞå2{›A=X¶’+ I¹­^Gˆmh$¸Hz“*rWJŸ¥5Q»h{ÌàF®av¤2gbU›Š0V®R)<Âe‚ã´±\¼íxê™®Æyö©k©´uÖü7Cen.¹„iŽÀ¢ÉÌsк5O´’¹1 6Óù¼È媒Dða:t´Ú .¹£¤*¯8LRÉÍaÚÄP¡¨e R»ÇH˜ÚT0›‚“¾:9Y°Q©D{@®$²x¦º?=-Șáz{uäÒ|(d1)Í‚.r\k°Šeê€y šqO˜ tЪЋO@È´F>0 ­*±¸HØ Y•J"Ÿñ>bMBK\[í"ƒû²<’¼ž“KÉ<—ÕÚn‹›‡"Ò39üçJ†©eDVu—Ðü&BN.O“ɦf¸Î÷±6Qò7Åaå.ÃýV®ã§­Äë“3Õ¹–7™A/KCÉlþ! YÈ ÂLûÆeÖBªé*jË®s3!jhbªTÁ]»°ÒZjïN‰@ÏÔn&ñÐh2Q™t¼Ù8 A‡ÜÄ'ìÁÐÇJÜ`;Jî_ÑY+[+£?—a*bAs?iâ)#ûI} «‰ø/TJã&I£#-dS4•Ë¥ƒÊÉž ,ÛÔIºWr·{:÷^u´¼,A}\ËsŽe<¨?i\dñ-Ý&KeZ‰¶™ör1#(råÚ÷Áí¹VR;ºÁú™Bžufº«ü.t·×Êôš¤Ô'Öûw&ºZ­^æÃˆ72ç™1³² Á…¶iŒ[1Ø—)›Ê'Èô 3½àF¬©Õ¡MKfD tœF>J^5+ ­i-',¤ Ž|Ð¥¤µ´¯u,­<|s¬›t1†«uLAl]Ðì‹àv3là,bô¶ Úü¤jf¬–î¨(„©mÃ$’4—зnjNCÓZñSÐôù$B‘FŠ^gsB‚ ™¦’eü1væí•q rBÆOVÏ|Kp%E¾5lé" –¢–ÿ¥,L®ÏÇœ®I¥V嚸}—©dB‹@}#°FrŽ6O )÷‰†%¦ª2³êÙug3Ïrw¨0jêv¸¬.sfI+I#9€„»%äÁWSey{.eÕ úkMhwfèJoF,%wJT´Rï+/œ¥÷å”`ä]}‰ëëÕFr‡½”½"X”kòŒ`Ef†&:“\fLÍŸô®‰üöÌ!wEfYfz ý1/jÒfM+Ï€Ò‘GáZÉK,èµÐǬø„Rù<å lPÕ×ea?“ÿI‹Ma¤s™ÝšÍ‰!A†8±2¤U’xt¯Æp &·2nM¹\åi,wŽmb–Œ…Äq½|NjÒ`VÙÄ¡MÑ þƒ{Z½©Zæ~[q l’Ãz£TscíT/Y¹å ¬R¢aed¨JÝ—f˜Š$óP#¹nïŠQ‡_7U«á*XåÔ„@÷hÃö†FIP¨¡æÎ€î}UÄÒÀ_*³Þí2×?ëÚÉL‹U›(‰,û£ 8’‡Ê˜e8f¿VfªÈIyr‚U&*†¢’•ŽvŒË3` ¾%ƒ†0’å 1U–E0¡sÓ+]œÁ#êÇ^YZ$‘Å$ï¾±¹éu:3ꌲ¡Ï]Í‚ÙóXXΤôS àÃa(§4[e(±p±-8f²Ì>ë#ˤɆ¶ò. )€ßò\¹ Ò € A?›p¿¹F \—]0S¯rS`”6ÄL7é¿Üv› 'S;¯ªâ~©YrI#KcUút³ÝJcü¾ )N ·,WU‰¡&¢¥©´:·o†RÆ* ±#±râii)0+Ç⊯ ~©ê'ÌOfŽ•ص *^wêKOú *W­Ã ^”ÏÜê9`  ]‹+¥³këÖÔw1a—hÞ"W©ôHî8Õl1vè÷YbÀ!íÐX¨A!1Ý0IÝ×t -âFe¶gl|Ž]&H”V¸Y••\»SË9ˆO2¤6ƒ(ÛÂ3iŽ ºd@«f{‰ Æ_КÄ1eŽé¬/±¦ÌPé…•oš³Á´5`ž`U%q¹Ñíq·•¸„!Žï«¥8¶èÿ7xG… IïðzÁëÅ…1$s‘[öi2ê9ÄZ [¦ŠÛ/¦JÉÿO€¦–9Ý×e^q˜gfS5'`2UËätÕNa"[Y…pÄøàx›Á²•Ì xÄP£{2}.L×JUJMTŒ´žÖ6e®“°‰‘©R¿“ Ϩ Ñá(ÎPYñ|f`. dœdË3‹Î|U@ÑNcIˆf:­[ºœ¡ÜRä%kèÖRòAóñ¹€´qÿCŠTβ°@Íý,Æì—­,¬VÈÕ–°Ž‘é;(€£‹Œ'Uaí@Û¸BZƒÑC)á’L`Ö—.œ=Øj¶å‘Ë'‘ ±&žš&×uƒLåÌíà¢e[ª‰ÎÊØ<|ÞaP ÍÅ!Ûë‰ån4Í¢~U¶'3Ad313&’Û7„©­‘Y˜,–ŽrynV0w›8Q$ŒäŒÜš¿+•áÄ¿r¥§DC¨;5ñ3“Ð}•¶ê±/â3©Ý ¾Á½³@u.ÞIvÔ™iÅÀRâ â΄bÛØ6ÌM•€r!A9»Ö\*dÑ3²{B¼irW¯[˜Eè.ËÕª­Ö»‡Õ¨SÂÛd‹Î€E&£Kp{e6ò“~"¨eFܯ[Qc§²¤´¶Ò …Ùô+3Ϭ¢i8"³JwÂèJÔYGṩa4mPF‹™ëŸ3±F(Œ\¡¤°V}x‹R+YðÅR)lMË$ªr¸äŽ­æÁGÉW´ú5­Òu-Á­;|.ŒLU$ÝÌÁ9 9™-¯G3ŠM¨‰ZF8h§*—xä6JN2ÐÜQ›Ú*kT ë!ÉåuM'®·Ë,Ä@*´½É' ?Õ!g ´ú‘^hyÆ<¢Ã¬3C8ojAçhÜ…)®­{èbi€ÀhÛ˜1ë•ãË$rtŽƒ‘ ‡ñ®J Xõ¹±§ÅòEóšL`_ÝÌ üæ…†+0V æÖd! îMNè#=Äè6½%€¬"®Æ‘©i 9z«LÙîÛD'&©µé|U\¿gš`³¢Œ‰ØµD& ‘½˜žPUKKÔ‡$þ3uS¥º¨A|!?$ãÏU7dâ^*÷ÕÊ]1bk$‘ÌÝÉS™™u¤æ„¶–â˜#=®/YÝ2«ØØëÎÓÜlc®1ö%èGìSÊ]Bà˜žØ{ù;¬P5 wXø"·ƒ‚•RÄuA$9Ò7‰2T;cî¦ÁI0ÁJÅËÜ;Æ9PÝ”¯Æ2î{h£J¢šæhâFÕk€q™æ§:&óDùdVÐOØŒG¦¥4[GbbÆý¨ ° ävŸsn–ÔŠ…„cÚC)NË­ºµbXa1:î9ˆÒ¤kG JÙÒÊ®õ@ºZ©Êö–¬>oKp&fÝÊRÕ†*wø:Æ5ã Ê+NÇiM¢˜aedšBÜÕ²ä’Û’º75ªe„ŽR ª“El–'ÌXFV³´jâ/ î[€PŒx’’ù,´ïêB ú¤¤ƒ™¥Uâ6^ï~OJ˜£¢OÚ 0Ôä¹´Xfù«ÄEØdEB¤çbSjY ‘kíÞc^§t…МŸGÙ ;‡QË”8Y£ú£$T ›¾‰»i’{Â]™ö‚;'Ö5‡~t7šÀ”AP&”†ÌÊq†tÕ^8Ý4»Þ¬Ò:I¥‚’¡4c¬:®Í9¦X‘É Ú–ðZ!ÒÜ"ìf4à> XRŒ¦l!?áÜU£5BŸZ=Vî°|ëÊ[š«Y΃FzºÑÍ}ølY=·2¹¨î–LçÙFõ=€j ôefîN–LK‘Ÿ 2êÕ)LÈ£Up;qE}RŠ—Í#zž™v4HÛš’\šµn9öVÕ¹˜¢³—éÅ+Œ8f©eb1èÖytȱéÚ»B_­"Àn_’_ÔrEMi n\øo'õSdÂ] ‹¤âf˜YÑ%²/ F©MkÎÏPPËË@ R%Y¬ÀìÜ hÕ\ £!:ÆÆ¥Å®O0ê29—ùË«›Þh·è\haô2_ÄâVÙ¢ÉY!€B?¡(ï<ª™£æíH/¤í#ap!õ¾|xR zyÑ[™#ƒ}ÎuKËìS×eJ³¥Êj# ìMjqOUçe/¬›»› ¹¥ˆöŽÑ—`q-Læ#ùÀyXFÂ\HL*ÌÀ´*æ”óÑ 9»úê‡7ûÓyT|Ÿ]¿§Y.N¾ß|>IÓŒùÿîտݺÈtöìüùÉ#¡¬6ÇÇ?$ Þ•›?f›“³çÛï7Ûï¹Ó£'gçWüdCcüióâü"±‹vst~¶õÃøž“- ²û¤*7GÝõ»š§Ù¿«³ÍÑϯß団ϯßñ»º~Çyqý®Ùýjÿ®I7G¿¹~Ç9ÿùúçüòúçüíõ;îåwûw «£ãëw<׳ý»,åÏÞríÁÛ°9zqð–k¾:1c§Z¬é€)ĵÍ*åáÇHn)©ûmÁ\ ·{²,*-¶cäß Rv7%m¤$›\ï“e{f±Ö¹2^Å””n¾¥ %óß{‹U¡r³‘tP¾aŠu=¡¬åƒ B]jEx0u¬ %™’+9=zk_ú~] GÇ9ª eÒ Uò½»B#yw+íHȓѬX¥^¥W%bH¥ïé¥ #V—–àe"–üv¬s½l²°Äõ™Na{·a³*˜BmbÛHOޱD*Mw[ZLC0,+¡›„:J‚Ö®dæåœnÒ˜+©Ôcãh3K•ÐKÙ ØyVqCâ¡–€iÌZ £+¯j×=›`–ªeÁÝÕsuR°Êý+x'aÖÑKÙ÷Š•&Æ™*@pXͱºUâŽ(+%6vØÕ‰ª‘w$Á#\˜Ü¼˜-¬±@A:FTÒr¼+q1Ƭ*=lb'LÄ&›ŒŠ©¢Q¡°9ˆíÕnªðAQW å ÌçÏhX²M·JÍ7‘ sK·qeL-êedK²"ír‚ÅLáòiñ¡åñ2뺤Գ€ÂÚ#[c–›$Μ¹é f £bzܨ½¡sÚ¡q· Ó@¬Ïœ£%Ôïz|g›sï$ÉV»»û™˜_S ǹûidàëi»2‰I&Cd’ŽaPxT©4*&mß'¹i0©"Ù¦ë(@É6×ÑY0(Ë\"wܱ®Aï\JhYF“óp Qm®Šj­èxê²Bpî™üZ¹ƒéV)¶ PUdì[+¼{IÞ­WÍR5ðt.K«±z)•áѨYËÙ_:bv”*§ª¡Ÿj•z La\‘L—¦êóXØi:c/ëP$Ò5ß«î;Åìeö–½±è±‡ÃP˜,¹L5w¦¡S‹eb¾}ÌíÈèÛ èØ¤Ž-_ËS¨NUθÉä²ëš(„2%]¥,Ò$Í<3zŒŒOÝ(`)O¨Ù&ULkê*ì{d’ ˜Vån’àLš¥$ ”•ߢÓ!ëdºf⤃d_– ¹ÑÎô”¸Vel›†A‘'•j"¦‚»#&ù“JQ5÷'·¦ÊîkJY‰h\A®iá‚ÏÍÜ&º,Üð³0’K¤±¤V­ÆÆ=3Õ§ÒìZ.l É‰õãRÖîJå žeÙ+.ž%{ .>9Të64¢¹‡sî…ë4Ö?[¥ƒƒK½dŠ}TÞ"›1ý}Q»Ö…?B$'ËŒª5 ÖÁºøÒ€òi¶°«•˧’š¢Oû¨û€¯ªÂV½«£½Ú:n"ÈéÀƒXÞÏ)ë`®‰Ä£Q×UëAyùTVuׯU-Î×ËÝÉUa‚‰¹.`2å;YôÆ¢+bv„ÂÑy3¨Ï!Í.N9=Êä1wCmT©IiÕ1þrÏ´ª°ºœé¼´jæ+¦@‡’*æÚ°1—×"‰šÕ–þµ–E¸Ìinš2—2¢á‰\¾4áUP„«u DM 5-Ô@JT÷áDj4ÊK;÷Ìÿž±šk×-æ'c\w²L³ÔŠR`vV~ZL˜ ŠCÓùÀ#ü€Yh£´I.å±]Úª¾XbÒp èI‚­qjfrÁÏÌñ2¯­¬bÀež%äU’|ÊØ1Ù> nA+až°3º­«ßƒi¸ÌîÎ\`œ"櫟‘\6•Ç]^°VР SiXÓL·"a¤önÕ’ª·2P‹àª&9ý,bb0U³çч"*Y}Áe¦>±Îd´&^šµNö·Îj'"ïÀGÅ@'ËûV¥4UE)ãN:é-Y¯r•²û>àXòvjÝnré_n·ïM ˜ÔÛë"ž˜EÑÝUs›Ðæòçæº fY¤E5¸ÙI(b½~'º Œ…•*ygé“_r‚¼ª¤ÈW­Wt› ™;ˆkzž¹5ocÞ¹4X™,¯äÂ]™˜•+¦Bǽ#'*ˆ…ª—ì\UéZ5IDG@Æ‚Xì7“4«Ô¹Sè˜$ËS>•kwlÚVØb®f½…‡•uÁB>ÌlÅ‚ÒJµ¶sŽ™žjÌ^E Wx—©‘Fõ Y~·šäVk%4Hh,ÄɤûʳÜl$K¶S¿™˜jÙ„ƒ …j#[bAnã$Q£µIëÙ²))‹r¼Ö<ÐÂ,RÓÁ˜Áêºy1ZÅ‚•çÕêmr4¨r”çEB ÈÌé…>ŒƒÒ’PÕ3†B½ÎÌ$ ÚÚæÍṲ́Ð Ùà[ÕKåžÒR[ª'¥»½Ä# UðžÒÑ]az“¢Â”R9â~:Ü)NV5p50[-¡Ê.¼š©ÒÀ™0¢Â½¨YLƒ†,&¸1­$”49*–¬'ó¾˜É¦bóeÙ·ºS8º‡ÔÕøx³ÖšŒØprdä³´IÓ„á%öï ƒÍ’0ãv67œØ¶Qq0mK³{£ð_Ewñ`´µY¥½reÒ ‚¹fÑ€ód—˜Ít ´_m¼ZÈØ0J¡Pù[Á‚@aVáA‚WÇut%ªì"- ¶k0öPH¹Å/ö® ËŸïðdÁ-\´L2µ³s‰‰˜`if=åúÒìæ„³BôñÝ Fá0JÀ'ktSÔL8ºDÉ•ÞÌPÂHF¢93cFš¼’pšî’ç§—áu˜˜0æb…‡¾N:5*䣓‚Fö¡A™†ÁnÅìV®áaHÌq°ÂÞYžóȉQ³)¼…ƒ~¨cÊLãâ¡Ê\—dA¯à`ˆ«<ÐͲ=Ò1tÐ('º;ÅbM*ËÒ¬0R bÀ°Ër©=í¬p‹L[ªr'Äj€’|˜î—Htrq„à;™fr]E‘È"ö"°Èк–“k´ˆ4Í£í‚ÿLÒ!“lÏEPLæ€ÕÞ…ðXêHÅƶP̹WáÕ›ŒQš8ݺ¬Y$MTF"Dcü‚PçJ2¯J7`UßDE*š·Q+ÔkI]ð×m)âÇ<‘¨°.¤‰J»(fU¹<ÕêyYû-£Y°tÀ¬ÅHõT¹LÀ󻯟(,ÔGýˆº•è›o‚ŠV™cƒâoã(Mâkój@‹{æ:Òqe–ÍUÌQWY%ëR®ÑÔEñ!³8»Ï-º3áÔ•µÙɃ" C7$sôÒ ¹¦%«,!¹4Ü™ZYQ 3Wûá²s™V:Uwã"Äx¹¹”ç*v1?M}¦TË à1ƒ“!eÖYšÉ|[[›CØN%¤+Líš=3ñl&Kеú®v…\â—> ˜Z.¿­4žN’¬‰\ŠîD.é¢n¦î†Á%uµ€™)%V´-V†b\ÌH'¨Í úD}Û¬Mh\ éÌ©åÜ͈–€e¸^!/UUOkñ QzÙ1e¨µJ-uaR0úÒš%¡”Y` .M½éÑÅKüTç ‘e_2,=_Vºá1ŠÃêM‘~VÈ>Pë¼µ.6•“;òèÎNîÄ*v\N¡®N¦*‘LK¿ó@ÄHàJœR-µóä6EÕšØÕší]:‰¨ƒ¡S|ž\êÇA׎‡œkérz£“¸¤bWç2w9K§Pe–äÀL¬Dý@O®î¬ŒžÉ$ÔFæ”^y…j±´|]©rN¡7ù,7ip2])˜©"A l‹¸pª =‡¦‡d¬MÝSj,ðoÌ&Í€‚RÇÔIWݨ=+ÁY1X¬lXSÑÁÀ4¯ÜDžXd–L SÖ¨¡¸b-8g8LæýJƒ$ŠÉ+fºeû®øEÐŒÚ • β‰ÂúèJfØF^ë鹦q£¾•¯%­cˆª°ÆŒŸ-ú<Ñè›6(1˜i§9ƒ½À±›?Ü¥ó:ë£Ìn#ôÓì¨vÅ]ª¼òD³W¹Ÿ'§oV(ćCM¥H ƒø@— ¤þ”¶2•E=÷Lƒˆ5J\Çâ¿Y¤Yn BylËßêRfOyæ‰éH<„Ô²™Ï*b%Äh¢×®WA$uuX ÎHõ2Y—Й?˜©#•5.–ÒÔxåæzµqÀH6 4Õ8qoMQo*¬`¤òëiXbÕQîòÂ…×2S »Ú¤ri’xTð%^l1ÿ…§éôTéÝ! Ñˮ߸à"Ÿ¹LصvÅ”¨tø¬Ù}‹ñAzÉV0Ž3Õ"féŒ--òÆßb¼JcÛÎu$Åd•ÈMÇœßàž%¬´d2ö¶œoVúZe5®$æì$h˦̨ÍÚ>ÜŽT!û²^uòÆä%7`ÈRº¾A·«¥ä Œ.µmsžÁýÆA"ð‘šÛRµg–.Ô,®¬‹ÜU²-ö-ñƒµM™,Σ…Ü©yä ë„è:ä À[Î*þäÏæTÏÚà2eLiW´klµöÙ:ÝLZ|c‹¸;žƒA¦œŒF«¸ùX:G{“ZCu²ZÜ‘mŸLø ŒÝW`»aÉD ÏC(³#±óL¬Â@Èk¬BÏ‹µ²?ÁmcúÙh¡_ª¨TÛ…Éj¹Y=z57Ùߪq~*E¹´£\<}h“Ò=|½‹@Š›Ž<Œu©b÷®/µEäà(é%«±-)ÂɧÖËå.´n'ÊÞZI(É8±"Æ<2³:±–²%4ù4jÖ­ýïQA¼’ÿeI=ET({¬=—¯£Ì½›ßèsBÉ¢Ü"9¹Ó¬/íÛ&ö¤)Áù,§î”)¢H¨„ÕÜ L×M¦D¥¤&O׊ãrò¤6¨ç]‡D-ŠÖÕ=åfM1+šZG$+tyª¹×%0àž Š3i`2pE¶{[iIœ>YÕ’¹ß0ŽfñÙyŒfÈJWÐé„gõGê/l³¼23i5ï žçÙ2õ¨”AןÕt1E‘¨ˆH9I3æÝ6ŽÊŠ[<ƒ3ïdÞU1Ø.-ñô¨.1°—%‘zÑàd>#,4íÖu§t”r»8áek`ltŽ®Øˆ”ÔWk²šX´l#µÆ!IRH ïs‹AB_)Ú>s—yp±rÑœ‘g±™ü´BðT*݃9¹}š¤%´ó)¥¦'Hkˆ±2ùG%Ãd6w ¡âö àé&Ph4€¥K ª•G"܈5BÎ׎°Xr9<]+ñ*.ߢõšQ~0ÅÂ4áÞåÁ³€3w7GÄÝãçñ ZY‰?] ¨]s$)¤wõ)2%ò¢ ÖˆgEq\CQqª5/o]-'÷L&x„©5 3á  <‚ëë _0¹ceqO¤$ÑH»·nîºÑ')µzÌéäî©@>. UX$õ¹¥wªei0h­\0ŸÉvܪ8„ÇxÆûÉ1%¹²yEê<%¸œ”ˆÒýºÃ„[(ð›Œ$ü|?`‹T}tàžÜ°œX1ZâáVaº1JÄJ¾/ÑÐIe®¨’³-‹„ÕÚYI.eñ™eW½âŒ©Š4‰»7<Ëá «dòžÒÆEO\@(“™™ì“ mCT”¹T顤”¶¿@Hn&S—ZÍ^´ÈDŠ"°JgÓL3V <<Ìã€åžMØlÜ;Áyª.ŽLŠ?àVv2åªíF+ñ2ý”“Õg²¾*×H“öU oÓ(ŒÈ}4®«x ]êIwß¹X œ•¡ª0î?3z7œ¿ìq ZâIðÕæ­ã:jÚÂ>v\ž ÃœÌýœ ‘Á¹VëWÂб—@¬T5Ü?P·êÓ²X_:•'(»‘vZgcÎÅ‚ü!æ)”y‘`³ÅüU²f(M޶þ0H:¬Ø<¶‹‘Ê»óËã jñ9d,§m”êiÀ•–˜‹¨AÁ(kF‹[¬“iÚAW!шã“,ª“r¤2©¹GÓ\»lbVŒ„ؤbdò­Ü¸låSÀJ*Ý7¼I55ÂÔ¸x!ÌØ„à­ËiŽžÞlä$Mݲ*ÔVXX4+M¥)e¾¬iXr|Œš’HÈ#XYX(ñH¬/›P$RPGưE%µD ã¿ÚåâT˜o¾ŒÎµn¯É•r¯‰Aé,Y¨•Y=3ÌJ‹–š%Ý‹ ­Ç¢Ru23Í#­]÷ -“ŽO cöVÁ6YŒ\`îb‡iDÉoüªdᚸÿ\fYÕ혵ØrxDéiÝiÈF—/ä鯽+Ú04rýxÑȽÛE®Ž§ž‹wQ®I@<{#5wÖ´.Ö»ÚÃ%…< ñª˜;€a݃ï¦*tMmãvFá–A×Jc¹Øˆ§Åöe2aúèX*¡Á¤ÂâÉUWk)^p±QG §$°Ò)—H· nT•k:Hî ð6¡¦°ž:3ófP²%ÇÉ[×è‹n‡&· ; EFW»c±¶âã2 Ë`8Yx¡%F ƒê*Ú4´…¢ä"b©LZìAN8l1¨)€¸I`µ‹&@ŒqÛ(án±M64S$O”µÝµÿ`6(vJ¦^Ý 5’$qrñWÊMÝ´2"lµPjâ#ægêòÖ¡$ŠÄQ¨~hQ³tOÑìwrš›¨i¦Z¨ÙzYÄÉà$7ü«¬Ç.¥q9;éÁP:Y¹ Ñ©åª\tªÝz¯T£­H«ÏœKš/«Ú@¿S’“ëB¢õÛÜ©e0µ Ò·ng3Ãizæê,/oCè6ä (µ]*…±«í*›Då+s €£‘]‚‘‘å„= è$^U~MRoˆ›¸HTÞœ¢ªšÌù*X(Á‡‘ìÖµCÔ+˜Â#¹jžªêYNê…¥PwÔdU1ÌæMf¾Ûäf~LÛ2y.ÔS˜¢ô„ÚJµ«è¥' MâVBUÐ|seºæ¶P×XÁjó]z=ÂÐN1„rk%ÅY≩æu.ÿ÷OCÄ“Duu¬År|6Á´k¶gmòØ/rmCÕ$Uí़µ2²A/­Íª„…4SÕgEjͲ¢áèS9§$x(BÒh¥†LëÚµCæ–˜¸¶s’º>Tš”5ru¬fºJS%ƒÜ—ã(8,ÎÌ„U>@\»±Ô;N«¨ÐíÜ3;‘–rÅA•†Îˆ¥¯ÓÖSÙCQu% ¾ºÂ*öôÊ4Ig“ߤ)%Í*få`Ý–¹•~˜yÂk¬GQXùd•”Uå¥2:툭4Ÿ«w ;Lœ ³S»Lq9LÑìºhßuÄxii=.#BMŒ ¦„QÌ·VAîÒRÈ6‰Õ× nÂÈb¶ŸGÕ#ݹɱrÊ÷ŒáÖE ¥›UjÒs3éË& ®£vÝä„GºÒ®vz¡Ü£dKm䙊Ù=å« šð7ܶ˜gëŽ1e*¼X·ˆ ‰ K3¦{ÅÞˆÌܼfäs_ŠØÜS¬5c›•<·l¨ô…<Ã)ÆŒhh4ÇzŽBÖ91jªJvOÈ"2wònšüža§ª'µBdܰ.œ!È-FŸ¯âiÛuö‹iÂKkÅf9ػʽHTh¬n‘iÕé´TuÇ´ôM‚»³€WÞ›Ò*uÛ2—=p*«ÒÕ/‰w³¼!Ú3!xb‚`­€×2tõUKÀ‘EŠpš2EDf* ¹´$>L£/˜¶kÎUO'qVÓH\h¡‡F9Ï.\šv­eV–±‚éè¥Ù²8EÌi\s®({{tÊÈ‚êÌéQZ¦“Ç¿óaÌh6Ë·!.’˜ßTÆÔ]ŒOÝ%j Šh`ré|,¢Àü1›ç®–GØÒÙ§ <–ƒ±ÁÃEX$¥8UP°©€„˜oL67DZɺÿ+(˜ûÛ þNð@ÙâWÛÿ1îë7f"âoêM)‰<žÞ2«tS­ÿ=:=þî¬Éž<ÿöäqò÷—Wœps4o²¼ýº ›Ü¿2ÿÚý›ÝüØ¿’¬ÚÈŸúúËzý¨¨¾þ㟲j“e퓲 –Ú}õU’‹\ì)+¾.ŠMÁ±©í&O7ÜsÞp¢¢â÷n¼.6!çû$û:4~Æ¡¾ëëå×ôWmæ=4ÆñÓªJâÕOÿòîo‡^ãOöõÒ{Ž¡Â²¬ü¬Í7¹ÏÍ_¼ã³¼ˆ‚×iü»ðZMeµ#?jxûu]óƒ,­¬£lât@7qœÐÏÜd>~SÚŠ•WzèOæ…ÉÞÃra™ ÁÁâ®Á¾­¯{ùÕ&¤¥csùS4¶ƒø .ªŠ…ªÍ2wNhú µÆ“?m_ØG›2ßÐI{X_FI“šÈ¯vSú4öv†ño]ºaÜµŽ³ÌÆÕ…ÐÍŒ­‹ƒu÷iœ®a=Š´_gºyô=uB\ÌkoN´×‹Q‹6²\‡•®'þáþóÄgLЇ®g9¨ÑaKŠýß BŒœ6¹LŠ|*™ŸÄv¨<_ð ¯â¤‰³Óø5?’Ý‹â%Co àY ænñ¤ÎÚè¾h—©r¶˜ŒxãE«çŸ'àò8¥¾¨–ç=çyCœvéÚgUçIMMåŸåmý&]ÊØ/ðÚu~˜ÆcÒõȰû奆·ñ¶7¾Hªè¿«h|ôÂYôÂyôœ Ö•ꆳ7ŒŒn8ÿ:Z¬O]¼ïO(€#ëxc‹ýô‡_/÷–5_×Õê£Õ¡¥°^ãñ‹Ýp|C‹V_G8ââ~ŸÑmùC>¸Å –‡¡ŒP¢0!¢<_MÌȨÊd톱*ADDqP ^šý'˜«f¢j±ášÛø]/â_ñéê+úÅ2Æ­àð7ç§ç/w¤_n¯Þ¾áͼ=¾z{±ýÙæ¿~±½Óî·¿9~)ÉÅ&»9e@xzþ&2"'_|sôæâüù[Þ~÷j{±ýãZ?y4ž\^œžn/_‚jŸ½Z¾\þKV‹GOv_F®¿Ý½x”§Yöxû‡?¾¼<þv»9Û~÷æøêU¼…×çßn¯ÎAËç—Ûøá³Ó“7GÃùÛ‹“íÅæÅÉÙóâfúôòÙñé6¾¹Ü^ÅA5üYÎàÕ_—¼¼Ø^^_lÿtòâOÞ%ÿnO/·7^Ÿ, ¿4Á= ñõæè«“«ÓíæÑãÍÑ—oŸþ~ËW¾Ž"ç›G¿8¦Q7ßp¿¯~x³½¸âøÙ7´ùãä¨{{õÊ£øÅobò$Àðo.7ÿçæº)7Gÿ´ýá»ó‹ç—ñÐñ×Ã翚½yóüE n1Ã$}Ò&¹yŸÿðäËåAvߺ¹}èz(Oÿ/'Ûï6_ýÿù¿øá¿ü÷F£n½áñžd7Ͼõ„=O_~uó~¯ï4¾¼§eéZºî³twÒK—Ñó$Ýy×öŸŸ]-£oiÔ_ÿv©ë'Ù5κN¸y/¶ßž8~/7_žœ=Ûn®^m7óÉ¿ùÍÛ§§'Ï6_l å.·Ÿôò›÷0K1Ÿ_¼>¾zÏe’‡/SܽLqó2¿fª~kßž¿Ø|uüf»˜FÛ³«ËOñloŸ\÷vgþ¢ûM7üÓæ‹slØÙö/p½[ú‹í·[ËO7á§›ã³ç›|Óÿ¢ûòÓ_6¿÷1¿òÐ÷Þ||Säw‡Yy{æ^^Ÿžz7ëåq[Ǜߞ|¿ùò‡Ë«íëOÝåíñöÛ³«ã‹u*Ÿ¾oê¾cN=t¹[ÃM~¦Ø¾Ûç'Wñ²‘öeyú£×ÇßlŸ`[žl¿?~ý†Ï¯ÎoõéäÖȜ_rõïoŸw\½½;ª[¦í헽،۫ã“ÓKM·±Ž‘ÈǵÁK>Û^þV¡¸·ªÛ£"ÎK»i½z¼“_?{Å„ùlܾáŠXÃýzò‰¦î­{ºëè®§Ë—Ý/§O4n_5XÌèúݽ±©]¤æ‡Ô_¤·ê;½µÜÒŸÓY{'·;ëúNÞ¨ÿ<Yß6Vý´ä!»Ñܼþ—Szõ/¶—oO¯.p_mϸôåö“Ä…7¯ÞÞ¼úÏ·W›Ë·oÞœ_üÁa¶¿ØñqÎÉ÷Oº[Æñø[¬ãåã—H>E˜ÛÝ~Rл¿Ô­q:}õ9HêS>ËmôñÁ€ŸÕe±yv¼?9>{öРøQóbåÛñÞñ³o„ÑGW¯ßl.ß?xµ{Î[>3ÎòOÙŽ·\á¯ß\1»ÿýø–y>Èßì¯SßÑ^¿9‰`ójñ7GW‹Uy~qâ æ'mÃ[öã¾ü¤—jï5•o>!˜xèRýÉÓÓ/óæÕÇ@7¨7Ùn±ÑíÒ«Í¿-Ë2¼9úíåö×o¯NãbF\ý—ϧßý˜AøÇá˜ãüåŸ6ÿý¿oþ¯ÿ‹sÿ˜¦¸±ºúÐÌò'GvÔ²,«ŽçÏ>ûÒÜŽ÷®¬Æs‡¢uËáx3ÿAƒúXÓþôQ÷øõ£áŸçMòôÑïÖÏÎ/¾a,ð¯u~µ}üòQ“=.švBºùáÑ?¿e,¾~ô Ÿ†ã·É£Ÿ¿=y¾}|âßÞsOÆW.êðϲ¬sù8Ï«*‰g¿¿-ý>^ý˜ ½Ø|¿™ß<Ê›!¿¹û«¬á‡¿X¸;ä8¾Œ×¸ÓÀ_¾}z% ô é›]óþËóó«3ïþAŽå£þüâùö"ùÚfÍ¿9ðOÁy_¯ѱº_ýêæ€9¸,oËM‘{âüѲæOØJ8Úä—Ö}EŸ½”Wúq’…¦Ú”EIëÛ7ôùëí]qÐù‹ÇÛ=ѶMúìd«'Ɋƪô†ŸÐØßr´û-WüûõÕãÏì="Éò4ßÔu–üðèŸÎÎ9òûoÝrøécîöé£óŒw&öUŸñÃìq–6j°\ð‹é_>ÿrÆíüËôÅ—ŸÿúW\-w ã§¿y4¯'zzñÖ )O{ è<Îêºv·«âÝÓË«‹ãgWÀY‘¶|öÕ«Zªå·ßqsë0=ytÇhòèùöòÙÅÉÓÇ—Àv/½ò ¾ã®Îi¦“e¤þôñïc3?{¤9çó]Ã0*_$Ë=rÍó|¾Í~ôþôqásÆÓ¦—[+C ½ŽO_ò<Çó’CÞ¬=ø™oÜÛÉ+^8'ž?zuòòÕgo¼Ç‹.ÜÛU¯’GÏÖ¼ü©]Ê\â:'Ë,Ù®³äÉãÒëõŠó¼Xüws±Ç³ñ†ªÜ.8¾Ør5š†hÆ·<û±ž¾}¾}ÎYOÎx±nR¼ÜuÏIÛçù£«WÇWÜ‚ƒƒiW|´³zÔ¿ûÕ2.¶/t„/lè“ýO™>Y©.jîéWçgŸÅG:ÙuÇb8–·˞ͥÏÎÐ/–5@®ù|Y\î‹õFV‡Ìyüv× ¯ÀÅ'|çç4ÂÒ(M¥å’t{™jÏÎãü9¦ÝžÇëóû[ýÍÃ-F±9°‰ÙÎ&¾zTÐZ/–[ílãÆ{cÒæOŸ^l¿=9¾âüôïõ0{òøM4Êi0°‹tSl¾Ý``™Vî¯Íg˜¶Ð4I™¦ÍC‘ï7ñûプ÷oݽÿЇ}Ì#ø€—Ùßî±¹˜ç×Ëd}Æ<³ñh^_Û…%/øô*ŽÃ§|þ-ö«/ggñÏ/ŽÏøÄöüÕù“e¨w_Ÿ5uVÖ¡¡eVKù|ùÅÝÐkiÁÿšêqÖ†zS渾´¶m¿uƒ9îz/[ÝanmuàÅß¶ºïÙG~Ò9ؽý‹î#‡ÚGvV'œâÏV1(®¶"BÕhÒæÁɵÿþøàå{ð›%ÿðC={uü»ÿ_?`ƒ|½%¡@†¿|¨7®¿_†|V9#>öîâϳÛoÛ|9ð‡ûžmPûƒŽ^~€º»Cÿñ*9¸ Àw>Ù“Ç…nõ }ú»û„ù÷õ÷ɇøžï’‡¾Ì­Uñ8vAžå[ïõûã„ v¿Ûg,n&¦8`qv/ÅÔ.²$ðÁ.½ ¤mHî¹ØÍnô¨õ’‡¯dG†? Þ>yß“ÉÓèˆ;ß%÷uDªwv„ßǹ’¯÷~óÀ-Í;ïo†…垓ݚ/»ƒŽ^þÈfÎÿüfÞ]“TÖ;_^'Î|¹1œ/%Èþ]Ýä÷±›ŠÕ¤ýzUf¦,3lør¦GŒ½€½a{KȤùo²äžËÝìHÚ]ôàõìÊâÏïÊé¯û²Œ3æ¾æÿ¨ó®.ÝT=.LÚ­Êð@7%ûï—nÂî›Ùþô`­µÛE-êy'÷œövwÍîä¯?¬;îÏ1ú³úäún蘛Vì¡öþà~ùP?u£_êªL˜>»ïwývý²3èt‰ïc8~jìcšœkÄUܬ6óûwvPm¾ër•ƒ×ÓAŸÀÍÞMý¡ôÑ@âÁNiêAæîûdí”ü]“e·ö¸5y¤?¸ç2·ûÆáêQLJ¯?¦o>o:¼›2ûï›zéuüÞÕ7|¿ë›â}³,;¼¸î”Wb-?Hnþ ’î'Y\­Z·„sUÉî¹­›}éQI<êxsý‹êËOàœîà~`~«ù›_w²´x—»ßÇæ/WTv÷³4ã½më2Þ£c®×™^¬Kg€ä¬½ï’·ArÖ&ë…¯ñc]~ù)@òþâV0í]þæéÇŒú÷¸d7#BÈêw͈øýÒ%{×þÛeíbiýe].Âç,/Ëäž3Þ2Lµ;ïÁë?˜ËOâÕî¦ý±±É{[?ùñ]C“6vM"û;»Æï×®Ùy÷áüM\ì=³XÓL׈•fõ"™¿¹½Ã¾Ë8}\ ®Îõ2ánlÃçU[Üwg·ìGíîïàõÇtñ'À‡wÓ®¾gmâ¢x0^Mì÷kï|µÙ±×#ÿÅ®I_4é>W–9oî¹È”ï.µ|Tk}O}x7Uû!vèžñœ|ø`o×P–BÙÝ÷KOT»€}ñÊëvAì5ox·A‡|rs¿òÕ£ßÄõ°˜C̬/–3¿³{öGÇ×ÉòúGzˆêôÌÁí ð?(è‹›µYº¸†ªjÞ]øýÚ%{×p³.&híýnÒ/Ý+KíR©…CfSÇÍÍ—®SªÕ=Y.óÎþÙr»þÅGLŸêSø“ƒ;xØß×þɨóuó Zݿ뻠inC&¼Ø’'Îwá¾ÞrÍû£Ž_pS>”½n{&k{n~¤Þ݆«Zï[þ7›|ð$ˆmÜ´BV¾Oâ÷û>÷õ˺Kªü‹u·Íœe’{.pkx—22,—9xýÑ}þü>9¼¥ºü3ÖsצÎlê$OÓ¡¨]¿ß7uþPSÇò€ë¦^KBY¤›{®p»­wG¾þè¶Î?E[_ßR^o¾K>Æ´7}”…8´óìáÜ›ý÷ûö.Öö¾¶ð{ cÊš ~´v²nÖ®…¡N³û.wÛŽ¯GE;¾ûÅÇ7~ñ ÿú6äŸi|>ÿ¬#<5„¾ nÆï×ß#úX‡°ìLè=·ËúÜËG»úƒ¬!d¼çÌ·-ûî¨ãë׃1«O²Rwp7Uõ#œäáwÉGŒ~û¢ˆÐ?Ï‹wˆb_øýÚ;èÿÅÛ³esa1kG|µ¬Hì1Ͼ8#kÛ°¹ç:·zfÔñõëë™O±Nwp7áð_ýôÆ&/Êö]XÓïw½QÜž›Ý̸7™g?OÚ¢ZÎóîÞØu|øúczãSlíî“X•ï°?:Þ¹¥·öH¹ôˆ>þ]="xY{¤|°GnÇKWÝ×Q¡íº(҄ܽð-?±?êøðõÇtѧX¶ÛÝ‘¿ËE|pÝ솪¹Þì¿_»¡ºßLÝ»fz»cöF+dyqßUoÇÄy‘¬×¾þÅGõÁ' Œ÷w°i>(0þÑër»>‰@Õï]ÀÉïw}²Ën§ëþYK Ð÷…Z\s¿±I7÷\òxJwÞ¿þ^ä¡À?<íoéN¯ü´Z.hµÍÞVý~ßèáa´º4úAmØÁ’!Yî»Ôí0a=J¤ºÿÅÇ7ö' Éö·qè)Þï·ïEQëp_64‹4¼µÆï×–7ŸÛ0ð^ôÐÚÞö¼|ô¯qY/1ûfq#w~™®›i'kðÍ´¢-’{n÷Öâ4GínúàõÇØ®úST \ßM¶ë¹¬Ž†¦Èò1ªc>~¿kùkC³´ë¾ù_í-Ì¡I}ÕÖ›{®ukÐï:>|ý‘ƒ¾þ$fwILAþh ÓD SX-ó®Ööû}k‡[{ÉŸhj†âÝ3ÞŽÊêbwÞƒ×ݦŸÀÞÒAhv½¶óg%„ÝçwWcÓ.WÂÎý÷ûNˆ‹@É}ð }OÛxŽäÝö}=*.í_t·|’e ë[ªš÷Ø÷]âlû^ÔIü~mòf…˜V9øµØÙþóƒx_dÔî¹ÎíØkwÔñáë1Ìͧˆ½Ö;и|Ð~ü{&ÀÃı7B¶ôFùpŽúîû]ÜÕ®½ñóíÕâ-c•Å¥U³@PtÏÉn5ùî(ÓØ÷¿ø¨&o?A“_ß´¯K}ЂÃ{¿KÞ×?&äuû ÚœÌ¿±”î Ç —˜sgÅ|Uä÷âf¯ì:Þ¿ü@(§`ÿ°709É胻ÈÓ4vÇï…·k‹6}Ðfì¿?¬EØÜM8`ˆfå}gº=DwG_¿þÐÈæ»ÀŸ5:¯oäñÌ»݃FàGÜäîè\ú¥LNçÙûeW€°4i–ÜóÛ›=ÁA»\¿ü‘ýð nã ËófjôǶìƒ6àÇ–äN÷”¥ÑøwkÒòM~«&-ß„¿Õ¤ýµÖ¤åZ“æ´3«ôáIÙf7KQÖ]³ÃŠ•5„uÀ’µYHÞ“9ê1Ëö¯~äŒý$› »›xo×'©×ZºÕ$†÷äœîRN‹µõ±rG@uþâq^/ÞK •y=x¡RÉBÙÜsþÛþk=èxÿòG{¯O±•p}Eõ‘Îë/fóØSù»}W¾ÏD]{*Úu^&wx³ jÙDZ{õ#;àlÜDñ¾öÿ\­iÿ÷‚0‹–¾)ÎEÝ}}#;ïUOfŽõÝ3Üš'æ?/ç¹~ù#»éì%ÜF¿kIéCçÂ_h;Ä º¤|8u¡Y—fëµ_öÔFëÄ ~#N/ÃÑB[ð8ɰîÝ ÜI,(×Ë\¿ü‘Ýö –QnãpùûÁz¹O.µŒUùΊS¿>^2×âl³f ˜ëÄ™,‹ŠïÉØt¼ù£=ʧX ¹¾&ûØÄ¼­a¸W=Ø/uõÎS¿ŽýÒ®3d·–è^Ñž+3Wùî™n÷ËzÐñÁËÙ/Ÿbe½vòYÂb¸’?×ÛïW~×~)c¿˜×ùŽ~ñëØ/Ôa±´¡n‹äîoo9ü¶XO°õß×7Ñ<”ât£uþ\g¿ï«?ÃÙß`O! ¹¦›â¶0êßÂÔ¿Ò0µøÐ0õ]´vÉ»Èê>­ÝÚ÷ÛK~¿™O\\ÌË…èä4\í‰NÇS«xwv‘‰é-”MŒþÓÝöèŽÐË–Œ¤+«Ý} ^/¼ž<®ö<]ZÚÝïå‡úlY76õøQ$âº|ŠCž‰+ÉŒ‚–¡®¹ÖåÛ§{v¯m¼þ®nâøìøô‡Ë“Èrµ°eí”~¿ZH².Wn½— y×åÉkøíéÕñÙöü­_³˜%e$ö[ŸìñòÑv·=üÓëVyþHÊ‘«Ï.ùŽ™ ;ØÅùÓS.òSo`Ù„½¤u<Úºí×»´Ó·ÛåÉv?z²ÐþúíÅã`€}üfižÊüUŠÑ÷«…50î%-œl¿]ˆßì‰ÇÏ“GÛM³*ÒÞImwbS==¾”xk©]¶ß^Z¢ÛB·Kâùñ…K*LyÍn¤è/yþý>¹÷S‘n? p{0°}ô¯[½ÿúø§bøï^,wþâѳcû#&&È¢¶DBÜÙïcgnm×g|µŽŸ…ÑÍvK}{rq¾Ž˜ÆTÅG+é®ÃéxLCE*3ëÎΖŠ×ç—W»°=-g޽yláÍJž÷øÅÒ¨× ¬?Ý¿»1îZ¯Îßž>wÒš‘·>'`¸^®ÛLÇtêã—k®ý¾Kb!¤rÏ.Î/#·›w Kä‹Güøåv¹Ù—‡óÇùÙWÊ¿ç‡|¯V¾¿èþÖ]Ç=ÝÏo`³£5ˆ,q2TFš¶íž­n%–»mB›¬„•Ç k”m?,Åůö¼|ñ~s…–Y-Ê!£ÝËÕtœì äA\®‹Üó]Èë"YÎ÷&â€å‚Ç›ÏØ¿W–$Ë7÷üîvÊäî¨ãäðõ‡`¢k:¸OÁt}ñXÍ q–°ï•={òRb¾ÉuÌ,÷ráýî}¥†4Ň~\†áÙåÉSbÚ…æ2QE¹Œê×Ç'+ÌŽv1Özv¬Ö«-€¤¨;q‡ÓëxK/öF<îec¸ÜÍ[©·«õº¼|ûz»+5ÜuõvÇ™WŒæWÇ— ÝöûåqªÎ•9ðÙ>_mú£‹·gë´Þ§B-¢Ý$;™Ÿ™w»X‘ó§5·Ê-$›ËCœXN·0Eí:d£]¾ÁÉø{Ï¿+ŽŒd‘qç’&;‹Zÿ·kñ÷…×{~£¬ø§‡·bEþjeã4K®ïä§wì×O¿0Fšû¿Šqñ®%–æýýÂÞ™ìXöK×AZ#R"ñŸ“#kÓ<ž5ùaßqÒ6¦!<úr«´]?ºÞí¿_—諲L²&»믈­R Òï×—÷¥0Üœ*·7iwêÆtLbŒz`óvmu$ã<{€*5¹Ñ‡qdÅ y~ñòø,ú­W UæÍ®ÞXíÚ1É#É×;Zòú€u½=7|W[^pœ¬¯ÿb­Y¼«5.¾oΗ'û9áHÚO#²Âaè1Îwÿ ]Õƒ~)V÷0mù(ï“"Ù$É>Y ò¿¼Ú¾ùì©&î3Лeùî†Ãyá{¼¸»v×;y©þoûpjÉõë{^æJî.žì:‡’xÀñf=ø¾Ô‘OÒ9å;;çúâ׳<¨qüÃ5Æ^`'p0’Öêl.ƒyüüùÉ%œEtï{Ô›'¼XØnìd¹Âíh¢ÙÜáŒÝóhËM¯Ä’ôvoÖ‚gàD¥Ömüø!ã³~¿ðF?®,ÏÊÛÙkׯgý^ããËøÓOØ#·ÓK°=ûK{×?ÅK,P*xMÆ¿þë.'&‰I1ÿ šeyvùM dÝÂÚFo_ós&ÉÉ:I¾‰Õß-v?†‘5øâÜÍ_n½Ùýò:Fˆ0m…b;úò—ŒêPÇÊ6{îÄ~)òÛò·ôr¡]ÓC,¾u8>?¾r,¾¸}ðÜé+jÜ»eAˤoFúä5È;¹Ëﺻgø›×$á/%a^‚Àíééòï°ýþÊíà2½^¼={¶XÃNÇ[RÖþ‡7o¿?Yj)øùÅž¨¡Èw‹z¥]s¾¼~NC±|{æ%òÔé¾4ÜKn)yíݼ8$eù({’ÿ·uÒ?wàœG°qp>-jž×Îî_?»:“æâq˲ë+œ,xþrùæà¯¼ÆÓÿ¶d6{™bÉf=‰«úý£__ìB{O}â©ó§Nîœ:ûoKÓ­âÁ—±…“t·Nñåö9ʯöÉ£èel¡x‘â§q€áz²Ð·Çé¿ë«Ý]™ë×1ñå®­¦Å¯-cùM¼£*5vº3`\¿Õ=þŽ’¶ÿÁocÙÅz×·û²u<Bh 5¼†bñ÷¯w€¸vMu±7ñ1ðXoŠøñx•oXÛö§Ëºj&=̪]k¬hmýñüÍõiŸxÍhþu+}Ó §÷^úôx‡Ãi “ Zú\­¿õ϶WD³. Ô›"/FÕ»ï]fד}“úöä8.ÐDå^»o«Íu¶/®Þ¬úbo/~·[¨:}¾®’-k½»Å²§®‘/.;¨óü@ãz±n~œî‰Äs]ê#Æ;Ð:h‰7³.ÇÇuü7Éû¤6L Œ¢ïÈ X¾Oöú··òoKm´›ý©w#âƒk,[_¯÷ëÆÂ—uÁF¡“mDÿgtâóؽqÄ6«b›íÇŒÞü÷û"Ê‹5ä¸%žQܳ\nÊ[;À%mü·à¿ÒàòCw€Ủô·Ï{ùfûìäø”ÿþôôûåŸ6EU?iÛ¦©³Íß¿½ø~€n¼ø!)ª†C.¾;ñ#_½:Ùü=­ºž†ÑÓ{ÖñüÙÛ×Û³«ŸmðáÉ›Ëä'ÿÇo¾ü¬{~þtû™‚©Óo¾œ}ñwü"òIœ_üló=÷|ÄWço.•Ußþâøìå[žðÛo·§?Û?ëÏ߯€¦?ÿþg±/Üä y<~wé/ß¾ysz²}þÅv1-—?Û<:6zìQÓÙóáüµÇ]þÝî¦sc|¹»ûáÏËÏxÆxñ¾6\é(¾Ã?·žo_,_ÇFå›ßŒóf׸ÄíW[~Âöè—'ÿ¾¥KüÑòá—Û«·o6ü»d³ÉñÊÜÇé¯uqqüÃæ8J¿:âìëçxÝgÛe®-?ÚÄ9“/·²ÞÁ&þ/ŠçÅëů¸~óùëã—¶!¸9{Ë¿üÍ9òÉö’»Yžû[çúþŒy|jZôð—dø½¦}¿¹ºx»Güis²~½ ×«xFwã<äO‡ÏÃËgËäû»äO-¦:^Ô Œ?8lØ›àÁ¸äSðοíîs9ÁÅù7ÛÛŸþ‚ÖŽG¿8抷¿Ys绯ˆ°y|µ.¶mÖ%·ƒflN¼·ôðÓáÕñÅ—à(ÕÓÛçû‚öÁŒÝýüäòÖi~¾»÷4ÿp~qòï_bûü&»}¢kùÍæ×ë­´.³ciÛØKë?Ùhg/"ˆßàÖ¿¥'}yþf¡xa"iuŸ½þá›goµ¯ŸE y0Ncþ)¾¼÷Ð?âcGýîÒ×CÀ9ð'¿uÔ:¨œË«¯—épôåõ-óƒa^l^2×—ïÇ82‡_þÏ:øñf“.œ]m/¾e~?ûöûÝW»3{¦ÓóãçËÛ?n^¿=½¾ÄŸxüó ¢ÌxÈî§öÍùú+ú·ëóþ›S%>K,IØ¿[æÇí6:xô“×öã­t縵¢¯ýK4Ôh#-âþﱊھíW.|g7ÌÞx|uüe´ú÷ÛËíªçËþäêò7Û ó®ÏϘwø‡íÉËW÷|ˆfÞùxÜ>SòT“òo×_Ü2 Ë‡±ïÖž[1̽ãbñIËŒØy¤K‚Á½ =°q Õ½)ÞËãØê§Û³—WkÛÙfû‡Ý±‹á¦^2‰—þ´ÿʃóï¿xùt?žoþhúù“Mìf-Çá/nþf³¹Ï¼ÄF¾i~¾o§ûÞß|wË!ì=ÝÃ.dñ;ûâv«ÇÜlóøÑßZüV‹ÇV¹ÓÞ÷9æ-þ“ÍÓ·'§Ï¿ÂÿÅÉIß­c^žÔôÖˆ»vÃòaX>\2ß–@bceóîˆhÁb÷Ü13¤Ÿ8Hèhþ|$tá“ýqoöÉ‹ÅÖ­O;1ûuÛ7íÂÁô÷ƒÕðõÉÙß,ÖýÚ‘ïžøŸ2žîð ÿB÷ÿ»¨×üÉnþùrûû>c×]ìÀ=æìíå-ðx÷pŸ|÷“ý§Ñ |svþÝÙ ÓMü¹Ù}—Æ ‚Kx.ºú᳈­rýþ_n ߨÙMlãN¡ëõ£Âßç¿ÿdsåOž].¶ü óæ–€ù~`¼ó Gÿ¼B¼ßØñì5ßòžkwŸ=ç#æòóãËWûÏN–Ï^œ÷ûå33K~p±¼þüÙñ›ýÇ¿\>~}F8=áŸý7ß]ÿà»è%÷ϾX—ÃG~é茶ñF#ïáÿn,Þ4•?Ò®ìïìç_mýÍ{®÷ažc½ /ç±ßüÀ?ïÂÛÖý#ó‹Ÿ¿ó²÷<êCþ‘Ïû ×-–ëð¸·}ÓG>î?½óª÷<íC×ý‘OûÌÇ­– WïyÜ]ÃþHoû‘-2üÓ;ïìV“ü™÷öãZí'›¸èw¹}é*Î [ íZÖööÜÚhG>z¦…{{qã0£¤¯¿œcçFÒÍÅzŠtyœõíî9ζ/޹^—ÜÜçΧëc¼9&FÒá>Ç—Ú?¡âåÒ2»}ù‚/^ÜóÅþó6ÙþÓÿºûx{~øÅOâŠé›ÛWý]¼Í“7ûÅÖÝy~çy¶ç÷}÷“ÍÕöû«{<ÑW¶òíÅŽýÚù««=½±Xr{XyÀíe}ÄxˆÐöÈøzifýzñhë›%†M7oÞ.ë[åòz÷ëXiw‘on®#ïàb}̃¥›»Oyyxë8wùn=äpQçîQÿ¾u£)n¶ö #n¸ßîæ¯tç-óýÝCº=u¾z}pÛùÀ…Ü–ºug.¬ßY}påÁ/Âí<ß-~€·ÝÛlw^JñBË\´Ïv¯·ßoŸíb†xoñì÷¬#.ñð﹃›Æ>=ÚƒB—7Ò±Pª¦øzÙ6sƒoŸFKa1—ûµ0Âóçû_ÅøîÎññ‹PVqHó‹Ãn4AÅ@æi7n³¸3³ûèúwwÛg³àô]c݈žàGµùæö¿ |ïiÿëuªãïž½9ˆK÷æöB ³|V®—Ýý{±ŒÑåËjwOÂÞz}SßÜá[Ÿ^ï¯ï?÷íº6wqziŠ@øÔGÿñNÒÊÑ»ÞÀàë¬ìß]ƒ±¸Q®=Š[:‡pŒ_~þºûb“¥éÞÅïVÛ>½ôÏ~7áû9rrçÿò[3Ú>Ë-Å5ë5c#®Üì¶zýä³é×ãg—É´ÿ’¿NÏo­ó}þúË튊wK•ën‰Ótÿ4Ù[<Ïzðº‡âÑû‰qíDZ¼Ë9–þ°bõFÌqøí/À±‡ß-ËhËݬ;;w¶€7Œ7––…Ïõì|~ãÄÜ\~ý„6úú€ûÉíFó»±hvˆ9¯aéAxtóáС,#4¹õ캔 ³.Ÿ'»xìÒö\u=#Üü醇¹½Óø<¾~yí«—ñýúøò›ÿ°{ˆSNv)%ëÛ[ '1 äï’i$·SQ¢¿ú*ÿ¿ÛÿSÖÜX³¿öbùúì~°Ž¿¯³ezÂþÕ¿³@¾þ,¦ Y£™¦Ë_»cöF(Ë:Ð:`ã0d üqssÓâè í¦a2lXÃŽ£Þ]˜ŸŸþðæÕî?»üÆ›}д ª8`ãÊüAìÏ»ë‡å7†#Ú<=Ùe£,—òÌ·¶öw¹ÐÖ)±?âà&8÷õ gûôŸ¿K®?ÝõÈð4^ÝVß7íÚ¸.…?{µÏ}ùCü³?Ê>ð_·r÷w 6>Ý0ŠŠt<ÊÒÍ/=ë?ú×ïý+þ浯j^»¾ä~þ9þ9„w¶–¡´·@7¶bn Ù£Ù#w¿È6`Ư÷½ñ±ÿFKøÿ¦sÄÔƒ#ÚóôøõÑÞž_mŸ?==:{ûú©¹Ž/ÏŽžc/ŽpËÏ芣ã×¼º._èJ÷pLWn_\-¯âGÇ—rùÍћӷ—GÏÎ_¿>>zÅ@Ýžy“óçG—§Ç—qúýûöâüOttõÝùÑÕ«‹íöè]yôâäÛíÑåÉ÷G—…%G*:°£3zÿH}ÆW¯O–W§ÛËË#CN^Fݧ nt©¥‹?=¾:êŽú£áh<šŽæ£ŸÇÿáèó£<ú'ÇÿÑ/~uôëøéoŽþùè‹£/¾:úíÑ¿ý.~ö?ŽþçÑÿ:zzqüì›íU|Ú§¼Œ±ût÷äÏNNž\<{ûúè­(úòÙ.-.6\üíñÑÓ£gGÏxÒ£—ñ»WG'G¿?úæèôèõÑÙÑùÒ²G8º8º<º:z{ôíQ 7޾?úáèßã·ë]\,ï®~…YØþUº¿¶s,Ãÿ9†û(ò˸µwöòèMêÐ9úûB4àX{¶M‹zöÃÒ§—üät»ŸE±c^¾5›øõùÕþ]<êæ»¥Ó^œp‰›÷uææåÑóã—/ÇË?NÏeîx«Û‹íóýá¦<Å]Ö£§o¹ÂÕõh‹W‘ˆfs7Þ,×ßßêòv{ b¿<¹ôjW¯Î߯I¿»ÔnN=_·¡÷_p}¦ëñ³·WÌÍ8ü_œn¿?ZÆâk©WΨÌd ËÕñ3Ÿ!þþù âÕv'<ÒϹ§ãý‡¯Þž½<¾xûúôøíÕÑùK¬Å7GÏŽ/ÖÞØ¾ŽÍõ×2ªºiÿòüâù LT´XrŠ_,å×ë?“'>{{ú¡gØ}vüðáÏ”——'÷þþt¹ôùúÏöˆ¡÷šðôôò}×ÿ·¿KòtÄMtÄ'¯·—Ÿ}qÎYþæÿæßïñ7_üŸdØþÍÿÍÿÍÿgðÅ1F^nËR®Cöls²Óÿq»g†ñ鿥ý|ü>٭Ьë3Ï^¯ÄC=$K—“ôú€›U'_½^Ö¾z~ðMȪ'RÆ„'ÍÍ#(‘e›¯h™X@¸ 铺n7_qÃyñ¤( ^ÿ#?yÔ ÿÄ·ù“²øí?ÿ]8ëwë#†¼ ü¸n\‡È³òIÙ6’£5q9âϹûòIÕ¶§Hß}ÿŸÿê˯¸Eîºñ~šf»ûÿÅ/ø2{’7Åþþ~láöëõuVÿù·ûYö¤”ãðI{ß½¶Ë­þòøÙ+kï7yö¤h—ý,4퓦(×û}¾}³=ûlyžfé]K|–Ññ¤Ì8}L;s–f=KÝWô‹ÏÇi¾öA»‚ï±lûïZ¶µuî»Ü/»8gêþ1íëPíÀáW?Ÿ¸™Ðîo¦Î—3½÷föÞ¹™ŒÓU÷ÞÊôùÏoÑ+òŠ'z¿Ùûü—Ñêåí“z¥dÄ« (ÂÀzóû6Üþþϸkmþ16âƒìÃ=³¤4›ìC.±uïL,ß ­>f&6÷!¥•ZÇ•é.vjšwÎÃæ¤þàègÖ†{ À¿ì?ïþ˜ù&®.,,=_]Ÿœn/âÒÃÊÙàWû×Ì“‡)Qüöÿ¼™Tò“ŸL¿žÿ.YV6v¿L6Ϲvt&YÊ i³ õÍ'/ß^¬ÜjÙÏ–…MÖÖÅúÚ-ÎîÉn®_?@Œó?Ló"ÞÚûG8q²»HY÷Ï%€;‚ìuz$a¼ÃÛ—­LK‘ÓÔÕ‡vã4òÞ/0ñ|˜ø½‘Qäì”ÿ.“ 2옷_¼\(xq¶Ý.„O‘"zÏ“•\ódEJÒk¦ééz(#½ßîÚ?•ÿlÇ1úr7(“CšõDÊö4ëe]­çY˜#ûqdh|B"ë—Lºß\FJHYùèMUæØ>:;?ûlUX¸Áfûj§CI½pM$þ—à/âdzÝiõt%dN® ™ÓCBæØˆ§®ï¾¼f©¼E×¹³”XÙîeB¾ÞÀœaûV~snÃ÷h:ì¨Ã8 ‰oÖƒ«¿…ö;ùÍ.¾ç7?Ž&ár×crGžGÎä•I4!DÏ®u16ø}7¾<  \Õ=BÓÉ"=ðò€å|YιÕ×Çqô¾Øk¸V9oO"-ÝÊžž\³mË8—íç^^3έò†¯.bï8GûÅ/¼ÕçÖz_þLbÊšç}+úîûkþÆ¡o”ñqrþèÙ7Oxwõòß™ êhê ûŽw¯ï qâÆåŸ'Þó!iã:ª=Üo²Üï&2™†bU4þõ…3í…\ÞJe{¼ð{2»¶g/ÝÑ&÷±¾ˆ¤ƒ/ËvºÜòϰ1´Q!%¡â…,¼8xªå¨²”ƒ÷ôœ6üÙã6Ô®çg˹9 É«¨;!»òw´ìϸÔÿA*ñH1½}Ï\ˆâ5ÿ×rκV©æÙóUè7ËÇM$þzrfï'Eyè_n¯"=ê¾q½.@M^å?¼=YI £ŒËf%ŒlèwH ÷¥‘ÓTòÆ—,¦/Q«[Ò /¢öÑmØ…)Úˆàr¥g*(;²Ó“E ÂÓ]¾:`TLJå‰t°‹"’ZFò({ò¸ñƒß,D¬±éÎÑž=ýy¼9o5þ†Î~~¾¨Qh8f×­í«G+aöü,ʉij¼Z¨.¯¹#·«g(Ê|a©Ýñ8ÓX \ƒ«6Û(€±çq]]jÇÂçgoÞ^-¿ZlبBØ c¼Œ]Àß§—ÄÓs ›Ÿ_E·Ÿp§zuqâÐ*´@§«_©Ø‹ªh!À*…ò8_~ày£tÊuŸ-ë.ù1w~ý ;SQß.jLw•¡&"X.¹B°,þHä7Ÿí!€òõñ7¾\íÅ6rÈGºT+?~xhÐ¥›ÃA·NB‰F_¯D£ID '®%òöÚ@«q¹ØÞ†v'{¡‚çBñH=š¬Ê“å=¼£Õ¦ºÅ;jÁßxGÿJyG«ÿdÊ“ïWÊ»UõÄ‘²$iEÑœí³ÈÌ.‹ýñëíåÛsä+ô¹Šüï/ÿ˪cy-D¹8A1Ú›Óãg§<]£5ûÿÿ‹hrQ¸|~þv†Ü_î§+÷øÿþ˪Œøbí¦ïý*¾¥þïÿõ_¢žOT=]ˆc° ›ÛmµÈR:I^Þ€G‹èç2 vÞüd…¼x%Q£<Éóí³%l<è¸E•(öÿ¿>ºdHžŠVÜ [½ŸõÔ«b^¤~û$ªÚ¥Í‚L£ë{üL¨ørý‰muyrå8ú×µQ¶ßûÐÎgÑãd·Ü³ŽÓ‚…ci¸ØÅË;!ÍþùkxQŒl‘¯ÜÏÀ}Ó üß?Š¢ÇùÏû_î•I·ÿúx¯Êò¢~—†Püþøàå{,õ»‡½~ûôÀdßY½Kn¦ûÇnÚí—üI–…üjoÉŠ|±›Bšç¬Êò}<æ:fºÙq­/–v?U’çr$ÛÛn•£XÏù³({ž5i òbÌ[G¶™ÿèùÅ"'w•X¼æxÏ媿U1¯ÍÛµ–ýòí2„·Që'J»Jœùí² ýrÌ«¶ï«kÅß(e‘µ™±Ý~îí¤i—±¶ïªl¹*jFQ«Óxí^¿6Êæt‹{JOþÿuQ°Ú=ê½½êyÜzg/7“„4h 6ε6 ža•λXãÞ1²yµàxÐûv{b±Ê¾i_lWA]U‹v’Íñ!î¹ÈåêâídÊGÑr—Wq9*Æhw—{ï*Á¹¼_xä7_?Κ:Ý,ç{`BíXE'é˜Êuõô!á·ýΩø:þú•ĸô#WŸa¦žüîWEö®uăK{ãÿvm†”|’›qŪäójQò‰ ”‡&{gíHâu2âC I|þ‡Ô ÷¯¯ÿ" ô‹ßþüR…»+/÷ýoO¢IXDê›ÎNŸäÀ,D‡j¤«Ÿ>]„õ.O0 ?Ü ùqòôÆ/â´gË‹²^ŠÆba»[7ðœ™t|ùÍO£jÞæ\>~y×Tlfná·Û%Qxtô[ §,žô8ýšx#WËÇo>;[–¶Ö=éx_eÔF‹ö)Ê1=ß- Å@óÀ>%;ûýó¢´|ý=³üYܾþfÙµY äÎdi2.NžŸ¿ŒÏýrwš¦8£½“ª*w«&¥Ýµ}ôÏ_ðK×ÍO_žƒ^_½^MÞ^j÷®äÖMM'-ÍI²³0/î·0ñG7-L”ùÕ²ÔV¨zŪêv½Ç&Ðþ€ÕÂä5gUZ?daöDåæøºzX‹õ/fa.½X˜ØuݬÂÁߘšäÎÆ=¶&«šÝ 0ÆÄV[“ÕÄ ¡ÚšëŽw¯ë‡·uþR¶Æ+Ü÷ÎÖ´Uu­¹Î:{~{,£’Øà8Ê®e:ÝÇ·ãwVè÷kT°Ó ¾v«/’~U•總R·wlÍ ¹3u²Ê F¶¿×ƒˆy»³uö¬ks÷â±[þ9ì6ãÝd­fuÔeÈ“å“û‡ß/¿X'QYµJç Œý÷ÇëK…¢þ£gÐîÊ» ´_z½é/»ž6/ÖiÃp`Þ´y±yWã\°›7m“¾³yö¸<µ¼¾O¢ë/=o®¯¼Î›(˜?éîûãäàå»ãŸå ÍÇpüs[6êNü³»P›ïâŸ`üÔاD™BDEΰåôvÌ­Žzšýë)¿{µÛÑÄ®èÔÿì½ywǵ/zþ}õ)úžXË@B˜åú¬KQ”ÌkŠTH*qeÙM ´ Ð`=ÝÏþöXCw Ùñ¹<9€®®¹víá·÷æ4\3:L¶ F¢rjíõ|`?±Ò¨M$Wncÿ¡!ý”!‘©€ÜÚ .sõ,çÔ«½aQ÷Î.Rö`jèé‚.à˜âÚX²g',Å٢ĕÒ µD;Ã*{…eh–{̯8#0åv$iI²u¢óM Z78Ø–ô²2 iF2Úµb›ª.¿=ì(s’RWÐ C",¦øª‰Ñ5©%àƒ$:FXßzÍY†§¨c¤Ž˜OÌ.N̹v)×r 3B!„ø2ÆCq&F—ïhL" wOo”JºÊ™¯sQ •§œvür‹v!¶g²–DÕ'SJ¤žŽ6ó˜ô`7¤ŸAšzµ‹kzn_¥;…*ä´‘ý&‰sjˆ{c÷ò±"n:'“m+Ö°A­| çÈmTïK‰b ´¿†­¹Y!¯ýZ”tc—ŽRNé2› Yã?Áýc®9 '°EOF½m ÐÄ5Ù¬èê%ä‹—9“QJh¸+%ç>Üd¸žÇ˜yòáÿùg}¶®.aZçÕV£3€*JRæ)‚Áˆõs¿„®ýrè9vû ý-¢Jšô‚ë+)Œ:½®ˆ¯¢õX­X~'«U˨ƒ»ÉobUhy';S#x¼Y/qÑF”Iöue‰tG¤Í#Ò¾æD¬¶-©9©NâØzŠÔtʬՂß¼ñeãaJfèÈq}Z¯q–Òa‰lìoŽ!‰Æ{6G¼ž#Ê%{X5p~:Qg0,j-¬bù<ì•Øe~¹ýÅž–oºøs·¥ëdäl‘´z%æÈ~ÔÏ™#ûQïÞù[5GöïjŽl ‡ ó<\Œk 3azÕ ~”€p”H˜á¼g5«Lø>fâZ¨èÈ’…Šî4æàM\ÑD*ÐÑñŽÕ0³ [ÊM adÀgÌô)¡Cí6_&c½Lf•WŠŒH£ùf¬:†iÀùçd%›S–-F”,V€h ÊÜä.ÂÒüŒKçšÉK. ¢æ€4›vk÷•ƒÏåÆi—‰ ¿ð…ƒÿÙ—Ûuá´mân_ˆÌÙ’uMlÆ!“”a-›°A̬|`m÷ åãZžU"8Mê2‰Q-Ú$ G†‘@$.,q1SDëYRž–ßQpCŠ»5Øn–£Ø›ƒ¡Ú­éã>;÷ÎòwÖóä³Î—ع¹¡á@õ<í]vî+þ / ;}»7Tתº'EÉx•0¨7 ’¶O+ M&õµ ±IÕóIÊs·W;-Ï,¥ú„Ex„"#b†f®G"PA‹Ö9Ðù.cØ ô ³4ÔÓ›pG¬mÜ”™ÂõŒÉ£1P?õ¤O`Ž Ê7Œ61±À“¤Ïv&_I>³=ñ†É×wM´T¦Ô¼Îƒ“®|%bas0D$ñÊ-œ Eîd]MذFйÊü—ˇп#ÇBèU)`bÆ;‰ŠýFP.¦bYëg–MÑÉÞǬˆ$mgšß%|þZÍno×ù£ç±÷qÏùÛ]þÎç/,ž?iÈ¿ÎÎóÇ8çÔ<ØŠ *}ÈøÞO™sC]Þ«*ã;­žw`'ÞU±wngþ¹õŽ­õ@œúkïcµ‹fåœRrÁkØ%¨„d"Út–'Á­£…sH˜â\‡ †iŒ G‘SL Âî5)Må&™ÆèL°¼ecõ¿>ÊG›¶(Ò‘^© Ié²ã'9Ή=Î °5¼žè!j S®E`k´­&âÁì™z-–ªU²Þ¬Pj2ú"ù°4 -&¸_óÎOcR²Vh“Ä%„ ì(ƒF‰$” mC·»··Ø¼†ê Úd0 æZ°Ž‰ñ¬@K2Þ|ží¼^íâ™8Y0¡'¸°½kV­Tî¿•k Í(uŒí~'uλY:Oì ‹`Ê<òDç çÂÔh ý)aØ3J ×ʧNl-j“¨Kìj ~ïí°"ËsQRѽ¶ÕžU®””¿‹/@w¯²PÛè Ù +þ' óÅÉ#l:ÍC“qæÄóvX옑-Iœg/y›ã]ÞitÄ)ÀUE˜Ì*T]ÎS³ÛÂ÷šMë„Õkt#W_wÒ”o—T°…¶Éº$H)¹ñ¼a=cØàmËžé4»xƒÀn³Gb®jî\Pz{÷,(2[Ëo_ИÔ}þ®;­º`vYԬÈŸm?¥·Õvè[k@}§Uqìë4¶ÚWìs10ÑÇ}C¶å£’ò{†œG” ™«§!wÛuhÁUŒX²# )d×t~hÉ8] [3µÎºÎ¿ò!濬YøzÕð]V;}>~)ûÉÄu‡»'žëÚcѽG…¶•ß3qy1»dâ¸zš¸~«!WwvÃ1N‘x{.ÍžêCŒŠùd²G>öŒX³L1"ß ^b§hì³8Åõ«·&o…Dƒœjõï­P¿U+Ô࿇Sœ/üv÷;YxžqÓJ—=,€Ž¼A„ÙC1ŽÑöÇh=ñ­8™°îÂF X%£„ Û$¨ÄBu݉bžªÔI£L¥)cDPDBŒˆ;MÂxSŒ"P#çbtV¬ÿo÷{U\‚$U`˜àGdÃÈŒ”`Ê·ÑÔƒꑜÿÿ¸òÿ"=EÔJåý[䛨'­ç«Þ8z LëÅ-|CàÕ;ó|s-sfœ÷;Ñ’´iýœRõ† Aò–=ÜÞ§ &²Ó\»?|r|á‘8&®OZ‚*šà™ƒî¼.®íÔX4ZêgÔ‰ÞŠ²ÓÿÕèÏ|^ά(§Pp¢"á[º ¼@»Ù±!|zäw2ZvÓšº°ƒ¯+˜ˆ»4•O¸ðÒ40˜xtpþ™ÈOO¶)­…hÂ8 3·mY—À›?ØrQ»‡ˆÊï Ê§dŸì}ÿ<¦¥ƒê2$ÌÍÞñÔ¿ÄAÞ½þÁmn;8áþÀ--j9ÝÙËx8CŠæº9æjb÷î#ø,=ž•O©ã4wñälçFúéB›3×Ac;o{ÓØi’ -ö8ØÃSé¤;‚Xz1ÐàH¼eçÄDvÝ+ }opfÏâ)—êH*Gö£t´ÕëõWUÑÀvÛÒÕÏ[3,š‘‰¿fG/^þàÚîõÌÖUÃI ‹wúC^IJ@ 2Ș×,åÝrõ&ƒá| CŽ¢B,ÕÙù†•y‹¶%(Æzèî°%c>a+o¼&y8#îžÖÒ€¾9ïâdŒbƒiþžpˆØc`‹Ä' u¤i£á©'“ЉÅ\¢†à²å’%<纴Uo§3„—šEqTõR¶@¬ŸËbáþ+DAõåPîØ.#!tC—.…8áQ–Â2xN,q8)NnZŠaƒ«ì¿i/޾ÕË‘düáééá3w¯2‚ŸÁ•|zòoZêØÿžL,Àæ÷¿ÐšKÐ4{m¶5|RRê\xf–EŸ„J½‚càqäÚ2ˆ„’8‰¢Õ§0+M#3žæxPâ¿0Œ†9Íñ0ÜkŽ«šãágû/¬6 ÑiLP‡™Z£ô,ÜËN‰* é*xnBô-Â$¡ÃsqÈòÐ_–Á‚ã¶Y,ØÀÿòìäèü²&,ÞÔß&ïæÉþ ¡ûa”VcV×¹ª&^Uß¾8xù=@ÚÚË—x]ªPvl}¶Ö 6X¾:®\.çñ*Í^Uñü¢oqM‰Ëçæ›dl¢X[º]ÒwŒùD’°E~Z$AÔrÁž\©¼ØFôaªH`Æ&'¹1S™–ñåÎ=±Ò’ލ]Q“4Õ[œ<ÊH Ä£äH 1Ή2-Uæ'‚4óœJŒ™°ðDn d0”hIôf%m5?Þ–D˜¥ÓyÍYõ‚Jê)uÛ±‹¤ Ñ±K¨VºlÏ‘Ux—â}N¢´Æ3ÍQOÕïº#\€4“-à1Í“Z_ÜüЭd vþ®û«ãGÔÜ0Ç¢»Im±þâcSõÂÇ‹ Ìkä’|¼Ú‡˜°ÓÒQßÇ)+Þ†¤êv1l#œ˜μÝ¥ˆ"Ä~Lx˜‡¨@ÐØ8}°€&W²-Ò…<'ÖãʃÈ6lMùJÓä9’?ú8Üäçðñí-u¼~¸“ѰMsÉ|‹©[¥©ÉǘŸ1”5àÃåJp¼ 3oˆOa•·˜°ƒo¯½2zGᎈùú®¥(,ÅKU«o«ÝÜÊÚçŸzÜPɉ 5¡­fjÁ0“ÒÏÖÀõ³>­ÿ ñµ°àRáÏæòI.³þwÛw³2¡;gÎwÂu™­"NÞ…#DöÃs³µh‰9‡ m+gsÎ^d¿64ì©}µ-öUFhZ‡™‡Ëˆëï7†Æ7.²ÊÞ–!EËZåzÕ +”˜¤h¼†µu˜Ë3 ø›ilqµô€l·X;æ• ( +‚Æ!•;'r Gt À䯾ßåùÙ©åLútù¡Ž§~Ktyº½}!BHj5Lß.$¨ÐñôîDH¦LÝ’.£x1ÍíË+g¦MÃeD¢ª6ß¡ _$8;1GYž(Ê7 _…¡L•¸¼h Á[Œ~Ê\*WÅqÔý6:ÊTêèY’Ñ Õ(¯àÉe-Ìž÷¡ò4]e(˜Ì·_"“z°Ñ0¬dydgDùXjF?óñöRm}3µTR´ž`ÿݸºÜ%»m gªˆTÁOÎX—DÇ@â­&Yã„%PC«/ ý%‡È™ÏÝ!r"V‰¾œÌÈSߌLªÚÈãzµ‡Ì…‹_J¬”õù×zä4ËìvâÛÔÚQ겋$ë+;?Ñè®iÝ•b1N‹±5”÷) š‡„Â÷¸®Z̘²Ëú„ú/Í%& h„ Vv”7[ Œp©æ‘àà› ó!تhm ZÈc¾ª0÷7†//Žþÿ|õªòüð»ãWU„ ðè§øf(\M£-ª˜Ó”œ°ŒMŸ{ÉH¼•$išC×JØd¡vÂaïå{³'öNѰ£ñZ=^~‹0çä@ôãtðdmf´6äxÀ]Ÿø grqqË¢éVml\Ë)§hÍAŒqÆän>Ô–¬‘…ññQ€Óq¶Œs[“&PW2öR7¼]KÒIL7|#g1¤7-tL*RZ³T‹šî©ïsN'S§”òJLÙ8-iLCFGý¡ÈÍVˆ+OÍ kaüËŒUó4c»)› ¦ø =)ûn1Ššü½ ­‡b„ç˜M¡;—©§]Ù¥8¼¬Ù"pxæeš¤³ŠÀfÕ윮Mºg¥QGll›qþwÚQ^‡6aš$öY%76ó È}F;ÂÝR>Gþ±Â >+&џðmÃ…/ü뛣×LœánŠú-Vm¥LêX4r°&.p’ ÊH–ƒV‡B,Ó·éxCµ;‚ÙÅå±T=y`Œ¨Æ×¾èëÒ>X“@!®bx HßÍéX€,ž*R%Ój~l®0S¼ïfeŠ€øF¼]p¼^nç§Í_áLc¨gÑK·U£ÞRx±9£‹4(ÂÈ‚‰[]êsAy!º!¥g⺃»:ÎGœˆ‡iùöšö¥…Àý ³ÐûÁ³%L0ÃÔÛê;Fz8¼@a‰,áí,Î$¶œ¨Ù"'Þ¥á4}¬úÀ"š[OR'jBGýRr@•È%mNõtæb‰Ù03¹}µ¶(…DÎ9b®f¹º/{F–é‘­aáÔAÆ›0bßYa¢X7ÚßyÀ1ù pN˜?¡· ñs‰JÅd\³÷@*TZ`"ñ륃qÅ›õlI ÂX"¬V)½#ùYRDH°!¶" 7¿-piCòˈ}dÀ¡K;ýG+?t)àÐ¥ÜÀ—¶Žx¦‘ÁÞ¦nr9‡Íɤjýb1ÄŒ@#4åC çô–u3_Ñ£ö:‚AÞ®RŠN¼^)ðK§Ù´›ÞN3”+ ÁšÝÖN”+ùü¥mPnŠwN°kÜniMÇüš¡«SA§Îa6z¿Æ€*©dYÀù›NÙ{ÚuçÙõºèÒÊÙíe‘ê¡.™',!V#"¯„z5Šzmz¨×©¨íg~ã9:#ȬËmE×­µüJ›@Z>ÃÆ· K¬EM„•æìEML½zo0úŒšÏ¶1oáõM;–(9oCeu]> v ŽìÁ G*U9fü† µß'µ°œâ*@ü‰Efû§¢åcÁ›6üËÅœ¸Ë/Q€¡ ²•1$ƲC¨æØ‡jÒ³µI÷ä´2 ¼l-[/*deúVCØ¿ƒBqWé»8-îO¸äZ ŸÅžø,>E‰.I²É“d!ΘGÖd°'!ò–|ÍKn8¶‘æ3:œÃžYÄ9TˆSŽqV á´Œ¨²I{´ÖOÁ ßÄcørl± 7#A.·(Ý‘ÏÌ‹XÌÁ¥É}7óÊìbsAFMÌÍ„£urvDE¾RRa³\Sb/YË&Ü7LýNI|®êh,º?¡JW}*KÊßQÝ»ƒ¯4¤.zÖÝ'ˆ)#@ˆT÷Œ½¼ž;^û‰Çk#« $ãÂ"æhCõ8ɰ†â$/{6¢eã>³ð>›OË«›×Þ‰.³¡Ì>5Ö·H5–ø/šõ…&¡Oê{ůZ1±Ö*l¬QVv§O?¸d2¬>&ýÐéå!Á¤ÐaèôüÙÉÑáia{4·Û¦ŠÏ.ŒGʧ8‘˜âcN°ÉD;‹o˜aœÆ«ñO…DÙ%Û>ÓTÒ]ž>?ú¶:@Ù™²õɤø} nPãLo™uœôÀ˜MT³VžpÅ=/Uå²õ:¹†Ìg5µZ¤)”ó¼\0¦‹…­ôÆÆJË™M-ÔmpXU¼lÞ£lb0ÜŠî»×üµÔ&m§È†­C2?·e¯aãµÜE¿êÊÉéáñÙŸ«Mò½@ˆÞ³ã Ø'ØÂÑ,‘èt4bK?‹Ï,˜.D˜'…ˆuÌUÜ騪12NŽúÝîa¾AEÀÚÚ–H*­pÚŽcÊZlÒ÷™©ÓÒz)ÁÞèë#Ô1Òx¥6kleÙB^ÌjWdлO4ë´š%Û-SÖ¯Ii¦²Žó9Ý)öTofOµbǽãÓv¹dy;²TÝn þO?:4¾›åÒ(P\Ê9ÊóWX·¾x¾„½Q'šŒòoçÂ8Õ9З’¥¨¥û=‰‘ª/ÓH&¯ù8^jZ¡ëÙWœ~{ºd½çPÄXfÕ|å©Q¥ñYÖ¾ÓF,ê”oV׉Ã9«¯ ¤L ¥êOre¨…dÆ!c”™#%¬ñÎ¥~Ïã›Ñ¬&³5–o>Lœ6D‡3†ï²ñÚ†\K825ggœ$V‘Âá &ÜA_Ó©@_§éLiBQsÚ Õ-h^}LæÈ›Ihžúùg6’ù»µÝmv¹ÿf Böžœ•ÀÀ‰Õƒ\ÃìIb°K°%¥d¦¤c}ÍñF»ÏÃÐóÖ@câÅ´šP3è´ü(RÄ|hRöf›ƒ M⢲І™xa¥˜Nª)µÊ2?(‚qïUÒïÛÐ#ýBøó’P%\hKùÝ\[ŽëX7ðÿ…Þ1’àu…_j6pݽ¸%´q™!ÍI£-.Éò™.ØcgJYÕGäìk)FL‡ðÜXe0(Änéí§ïP€¹“Êã:òŒŒqå¸>p ׯæ÷òXteMŠä•Š­ýPÉRå±½†„ˆ!ÛC» ŒïÁF8Ÿº Ãz MP¥©È´J“³š×ù–ð ºmß ËZñæˆg-lLÌOçŒbñ÷SD“Š&NhËk]¢¢I±Ø$åØ7â1Ùª7ð‹™V(Ú hvý¢Pë°Õ€Z}®µ10*g››k4P ~”´ÿãtš®3%c7ñbÂ=ßm›º¶‰èÑ\H˜Ôâ3v Ï rkŸ¼Ë]ã ÷΢ã>—±SËÀÊ/Éb]í5yÙãõb]ßk7(ŠíËÅ$ÕùòSÔÃfš£}©7˜Äv‹ãÎÆ+²?—·*¯¶®Ñ6E¢8[Þf·å²]ï4ZƒÖñ´ÍÅŠ¸€í‰"½¾ÄxK!ÄIf¡IY+Ô»~£õEŠove~¾`–ÆOU?Íy 1C ̸*…9EN…ZÅ“L^i„9‘ƒ…"c«^ú—˧rC^ÑV£™û„WÕ©!{…EÁù¾¦FÝqž[%ç²¥EB—Œ…Øc)!‘)º§ºÕÄFã”Æ°]Þò\ÉHo‘¯éC¬_™Ê-‚+˜¹¤„@B+Så%ꄹÁ%‘¦TQá1™ ¼Á*•jɹ<¶æúдWÔQ)lüHýKâ™Se·/Ÿ>?9û}³Ñ®Ó| m¸x~øýCþ½%qvižÔM§ÓÀ̶<ýI8ý¬€,L¨Áu»@ŒN&y¨  !êJ¿=ªmU‹¬<´¸`Λ@Ä™=€ùÞ—&P,hŸ0>®œËm“mFhÜlæ8¹Ó¥ýÆ—ÙÐ`e[óž4-…<­Î®.ÎÉÝ`ñÕäDçÓ‡ Æ‹–¸³""'“+kIΪFÑUPdqáA'a )dƒÉQÏ AyVQgF j×\¬=þdQPvõ6kLlУ̪\àR¶·K5:3C£ròMÞÑÛ.¿É:\jóЏ@_žàC8±ª+èÏüf¾¾üš2äT¯ ËÛ\b ný¡ä÷dú‡­¸ÞhC š".o–§ ŒƒÔƒ¯J9ð5ub=Åh©­.;u¼Êµ%RTàIX> xÀZ õz}u·Æ -LñCî7Ø`£Íøú´òìGRùO©¢*.ª¬Ýñ£T˜Ñ‰uJiµ(À¨½#E´—´ø{¶)Èçãc‰Š&2Êz2­^k¦ «6± "Fw^‰§°@z!º/#>$b¬]dL¯ê[VÃ3³P¦lêy§Ëb4Kç^U|%­5yÜH¸Ì|…ª¨eÄ$ì,³x5>ÐTªÉ-±j! ~Œ†œ?%™šÓÇsŒ"bjè):ÈB<·aÐç±÷q_’«°|1gßgèHÛ{u¤Ò0äVEÚ.³"ã…[s‹L(­á@@Qü©†L3>YHLnq(Ý!×uòÞmwÞë¾Ä/&/%ÕˆÅYO÷BïLq”ev\\hƒE,Üèrû.–Ä#ð„”Càd N˜-áÒê5c¨ÂÊHËà^ü¦ˆçñBDž,$XC0qª~½éýžm…Wt]ÏHöŸ.}(ÃPäñDÑi¨j&«*çÏùO‰bª†’v»…ʸ@L¡iòú'îX6 !êçPRæ©‚Õ좚|Wîãï1Þ%°ûC~öç¨Ý1ï8_}"À[G«×kØrøúÉÙy‰·ûÆÿY^'¯uq0Ÿ£"‰~èI‡ü÷㪢ý°0èÚsñtÎ÷eI%ûšv™–Øæ›B‘TÒƒÕ9tö‰À8d ˜ƒxEbÖ[3n‡P¢ê=«l·fM¾:‰ò¢ø¾Æ™³0¿OJÀ¢7½U²uø3Ü®JÉ YÕÄÉjä Vü1†”×ÜŠ¢6ä GBñâœùüYUûä|™"sD:ÆBÂÈ&i.¶¢n:‰ß×)°¨F•¢=wm|ÙÍ*°COC*5µTŠ•rßó¯­QÄÛî)“IUšØÄV½* qͤ&F‹ù›ƒ b#a²RÚ ì>«0-êä<‹ý Õ­AÏtZìÇKqÝû¤Ä—| D›yãiäàj1Øa¸ôG»‡ ý8:ÝS5Ç{íö¸,nÂ"ô'2š‰± †Ä¨v«Cžßl׶Ѭƒ±‹6Ù/˜F´›Mƒo‡œ9¡GøOkCn˶Œ’™V£ß¶?w<:1Ök…0uü»…[ ¨\Ð$UC9Ø =jˆ5¿LÞÈBw:„Zeƒi—@?™x,3¢¦óÛvÛÓ¹€€ECc͹ #j;Wöü”­ãxÙï3>ClY6X-@—Ы6-¼†®œ¡ ¢¦4΄%&¤õôfÔÃÜôÙݹdõ솻5ýA“‹Â)BÊßë">Ñß…>Aíò.Lr»05Þ6œxÛ0ç6c–•n3„¹•Q‘m7–ÿ³!ˆ¼0¾x¡Ñ¯w¿Ï¤¸ãžé:ó~Ý}›1Né@$þ•Xi:&Ô‘ˆQ©;^Ðaºnù•A0ã£/¡Kˆ¦Árr_ÐNs3ݚܽ%ÌKÙ‚›+nÙ1a`&v¬psôH—.|¨?󷹋ƒ‚JÉŠ·€Œã‹ºâ¸`<Üf§7 G²rm–lRªIIo4A4–_QzâZ[í^#_뎫£Ùíø¥eo´ÛM[³ío» âüjšqfúm ÷Ï7rïêÉ{·À°9ØÂ5à=¼X.]g¼§jôÄç& |ƒ«;*YÝv)³=1…-̶[(.cÇU<Ñ’µáìø‘;©f‡ËËácÞgá™lu¶xÛ/ž¾©²ÔÊ„c·ºêhs€z³Ï)* *X3«+À?%«¥8]¶IˆbΨˆiµÀ/ qo:¯ ^D@Ìç ÊsÔNmrÙ.bÓ°öªpÔÞÆ›U.¿ñW|æg…ž™§ Lˆ@~ƒT¿6%³ËpŠÜSí÷6Ý‹À¦$o-ÆQÅæÉÃyž,¦s¬ÄÀù«sе5ÝŸ¥Ú\‚q)?ÚDb‡2#Äá#ˆJ­HÒ‡A&¦©E ÏRB**ŠÅ{-Ì”ÇK˜f£õK® +À²÷³º¹Ð4ö†â¨ª['ÝŸs‰;¶Î—ùRz–Ä$ÈnuYÙ+êä6¡S”›yP?DÕGNL@vñÒJ-îÆ!ÝøŠ!¼ž–¨¼]êéUâ];²LÁ“¦²J§3ÑÄ‹Œñ(5\o”ö³.éµp‘Åäyi•œÔ>Çùç—™µ¶ùØ£ ù¬BíW’ØJBû§MWRÃxÅ6²¾ª„ÍÛCäØç±÷qŸ ™­å?OƒÜÙ¯A–ÞƒnUÈQ!;/rÒ"#ô ýQñ&wžª©»â KúäN§'Á$o¢ÈÀ€;ý¨,l9Aþ˜«„ÜÙHÀu^°©u‚Q" çR@r'öÏЫ ^Òp¿_¾8>ú¦Ù³@wè¹ Z/Ešº‹a?x*¸7â9ž 1)x‰ã2\n+‡i‡k/Y¼jLœÔ9"o <ãCçV=Ç^êZ¯¯ ÂylUÍïCîÂF3oþÂo÷&Í0Ú ñ£ J$¼˜7†8Ë67‰è—ȼÓ']­ö,€ ¾–`#ŠgçûEˆ+÷Ùmf¼!1V×îVO‹iÞoÙËE]Aþúo’¡§~ôrw£9`q@uêUSyþòòª¦õâñר8 . ¶=`0Lìê3¹¿:c6hœÍþkL›-—EµCo¤<™M› ¡ŠÙ…šXÕ£*&òéÈ6D£î];–’=ξKšöf“²SízÝ(Ú /­lÔèn»ú¾iJPôŒ¶ŒzQƒÓ&ä^:Eþœø炞;|d¹ðjnˆ“ÈDtª³¼vAÿºZ¼I¿vqÏfíÂÕŒ@ ä7—]i_g)|uRŠ)<-3*N•Xp$ÃÄb;=¹ `³D¯ÅPo#Ÿ´(Ê£–S”ta§$@iÖl!j$QâÁÕ¸ÂXö”£¥KÄ,5lFjØֱ˼ãJUw´ñ<ó³ÌÅsÊC0uÑñfa8¡æ°‡3;-›á³ËÁµã$¹‰*ߣ+b³i}¨eç9M®7X5–ŸN‘ã\³6³=臢)ou‰:úP# ·C{ÀØs¤2:ÍWpžœ={xzrÆÓ]…àŒ£ê´Á#_¼±ã“gÅÆZÝæ—mìäy0°·Ð˜¶Õi~‰¶ì¸´- œØê9¯2çWL>}¨ÄRx¸&çýúÄ-:æ6˜FŒYoÜ4ôº@lt‹¡‚© :ÜÈ›ØänÒi‘ŸIèæùø~šl É!÷ì¡ø± l·Z°¸ºhYóÒÅ É"Âí¡É)|Æ”žÇ¤#%„‘Ï+åtêÉ)Ò"ÑÛ\äI¹ÐRãðÚÃ^×÷·k¹»Ílb5/%\†-wÚÀ^JXQÄwÚ´äõæž+±Õ±îÔÞi‘×LÙ(§ÛeÊéü/¯œî ~ú^9ý[UNw>?ß’26-Ügœâ‡Yšé6~†Ïý(à&Âϼ梘 ¬ÈÏ8/é_#¾Ê6î ›u«6×*1 ”J9£4“nG0r¸I„ðAc!î”M1 7 %IÊócBB8²I ­ÙnwM¥ au€æIª¥~Lå·yÜpRfÈ’Iœ™¡4¶©9Œ>æNŸö(9v•¾s€¼é {Ò%šGËOè5õ7Ï¿Æ^–&\&±xÝ /&ÄU%Ša9,‡“›4äg³Pyuª¯)z(M%4õñÑê­ÔtÛR×ún ˆ·R!zcá’Jè¡€¡q$…_>ó¥·þ»“^ºøI/­)È"Ž`ò«€bwQ?ÄÓm#*úlÉ´|l-cckQ*µ¶AÈå¨Ó±`V@É|¢^Ï~ø…B¾“’Ò„GÃ$GHÂÄ'š÷DôS?΀f¼ç@xn´Úh°§:·x³Ù´?0R ¯‰f§»-‰U„ ˆ#.LïÿRû£»ÇÍõ rYÀ7wÂ×€§™’“šÃç °0—µÏ󾜙²4Þ™«œaWŸ°AM x¥ ¤AW–z!KÏûY#pX‰Œaé…lyØäppp®qËw)L Ç™/.È'ä,¸XOZšKâ®æf( áöèØ4 3N’Ø4 lÓ§(–´ÓßlIâY¢JÒ€xq*m,ä÷ö,sª:VxÉ:áà6ÔãºÔ€ ä¦òâôðª+G4W"ø?-}Ã<òC²^t+³y Ù‡X¨œ'Ç’Ù@éFô³R©K¢$)Ë¢dó#Þº°÷-b•v˜1ðyl?š½fŒ°üϽã÷çd“†˜õŸòUE—<Æ¢ÀÁ ŸûB’åbД°ÉW¬<Çb-öɰñ Ù‰˜+=uÅP˜­´jb”WÚÕ™½[â• 6*Cª¹# _ÔEc‘úÉÁ ¤ÖP‘M”Sêpõ®[û•º~‘)¾íÈ@îÖò6x¤yZ ÉŠqR¨xg¯ÝƒaÂÛ«?ìpñ­YÂÔVIéq=›äkh|,85‚$6ôê_#”¢ßlj@ŒôYtZ‹µœ‹ÊÛƒëôA±‘ÖfCr>…Á[À"ЯòÒOú!øÜ3a¾5Ã~‡Ë €óV¾S§¥l„]šÔWév‚x+M”#`-Í”ãåµñ»E4㜎*ök“½æ2ʱ’ŸÔ=´Ľ—ô´©Èmhù:ï´C„,ä–GMï6ƒ—,ã}®œ¹< >´Éuí ¨äâ·°OC hjÔ?b0rŒ%2§òLÒÄ^§•E|ãzCþ¸\Í:^“­•ð…Ÿi猼Ÿy§°ü9‚H¥?åÞ÷ÒËŽI3´BÆ©[Š–=·zÕrJ]÷añfšŸf2h|!9—_ÃÍ8ò¿‚3žâ üÜMH‘r³&†F’+6+Aí£a*înšxyãx¶hn[4 ‰ ‘ãñÖ¯%Hþ>ÇlØЉ'/©&±U¶¹J#U¾ÎW9#Hªh’«Hrdg —Íc–ðŽH<úÍn¤Ý`£<¹™¤†¤I8™ØqiŒEЈais{;Oi’¨ªÔŒ ‡>N$ñ°†`óCKx"&çó&M특‡µ$B3 î÷䀼vY«©b"\Á(µk‡c]®–›éL J^¼$¼m¼¤”Ýeâ@ð$û  Î ®ñŒc†Î*ôªÓìáÉåí-6Ð&2“°|m m€j¤3ÑÄ,+S¢+~‹AËÊ2(à²Ùñº2s=Á±‡Àfý¶öÃÛš\ôˆ¼Õ&;Åm¼ZçrØ$žøQ ‰71·ÇéEW!—y ˆäj”f^ž ?Ú=&ŠJ>ðVäÇ+ôW‘µn˜Â*'*éG HRÚ_áhr:?#6NÇUõebQ€‚ÿÚ`¬í^€13z%‘øß·q–IÚ­F_‰rÃ÷¥B͈Uš¿†K/,O\’€)Ô èÎò²º2¥âØ€/Ï“›ª¸E "¦uiè†o&ñ:§ÞõZ~œEœ× aÅp$~ÎJD~`¹œÔª5|’ç|½ú@1ö¼dc&ï¤f3æiM§‘^f¦7/Î9tÇ›ô©¿3$þŽwn;d(]qºWNÁð~…‹mcï¦d›Vþ^mcîQ¹VÏ y(Ù½z%™ª‚ì^=J÷$¹µÚ%œ¿—ús%üQºNê8¶Ö m»€o¼`÷ÿ!Ö·NO.ðÎ¥§êiiê-yÎ/úp—cÈL_µeôy̱ê_døí}Ã÷Ú§Ñ×ýh•f§Ì4Ö…ÿåMc]´ŽÝ›Æ~«¦±î]Mcø1¿€þ¾±¥PQ²ßVòÎ2}ÞžW”é± à´E ïHV›¢Ö> #ß«Ãï61¸¡`þ< .ÙÉmª¾ÄÆSO§;ÎétUäÏ¥à O˜E»Õ³ZÝÔãÃçÂ.» þý>ÊžÕê…Ú]¥å%é¬'N«;cÏP—-Àju§y­î`Ðâæ¶(uõ¹Óé¢;+Y-·¨tá99žíuÀ/ÿ»º¶â ËÝív­*3 T™.ïÅ,Ÿý¼^h*ŽK¹+›±©$Ö*Kòke_— × ¦Õ˜äžB ²Ug" SÌg,âïÍ Ÿñ4ÐcÚƒ®UcâÎÞ™M\p&¡Rsìé \†wô]ÁªŽVS9çœVyï!9äM鯭6sœ×fÎü½}Gmf³ 7À®ÐÇø<¶÷j3så.å˓뒔^ÜÓfvó&K«ÐÌk2ŸÇëe±y–,С€ð’>1l¶"5Ôl*Á–ª& ÔP÷g.‰²´üfJ¤p˜3pÙ5œ–¸ÈÒѶ͟¦w"…~ÛéYMŽ:RØï7©™­´ÐpÄp0ÀPOí­P,QX?·³¿¿8=t=p±ÙëãÌ–QDN(ãwdUU×4šâ½”(Nƒ ÄSŸ&æR¼G'm§Ù'ƒÌÎïžmÇi¢µí4‡”Å—5ËŠ>D(;‘iejÏÈÌÁgÑ|)qÌ|ì„´p©‰2â(jD!Ž3K'Ë&¡ÞLœ6}*9ú,êhÊÈc´›<¶Z˜`‡±ž«ñ†>î3öì,gò˜O›YbìÁŽû{±gcX’14ýt†?ÁáHôØ^âŒf‚êƒÑÚÅŸµv¡D<† q@1óœ‰Ëe?*d.®Ñ1Q$Ú$½fSt/r•/ Eˆ¹gbáB½ø,²«¦»5F°é%œPêÅQ!íÒ‰ÄZØ‘S¹Fˆ´™ê§$û\Êš¦° ’²:jÑ~X`9­ÑLݼ8Q‰ G1ÔÛ¼–ªÇÎÊ`r•S8 ¶ò†Gëy#“«éÀ[ ‰qF‚Óm…† Ô,fÉ&—ôÍZèø@ò UQ̤ „Üòi‡${‡êyѾåòºM4“©ð^ôf rÝÅmSžŽ<—ü‚Éá_´ÇotòÚ òo8C÷$*ÒÁ‡¯v›=ÃÏÊÉ<çwé–iW»ð±ÝhlÕÙç±|쵊AÒþUÉ_Î:Í]w£¶l•#‚Î첊ßá7üdˆ”8M&/73ñα瞮Ê\4μMÇ›:æG3¶P-„@Ø-{‡x¢'›îÈ]"ຒ ÝÜ®n*e-®ÆY\“r¡´œ»³0BŒèôzw7u»Óh²Ñ´$Õ`oÐŽ¨€¸e[ó0À)=Ç2ÀOâyZ¿'Å4ˆ,“ÝÊK$ÇáÏ\.áv·'oÕjØ“ì¶ûd§,LXE¨ˆås§ æøEÃv‡ ƒ‹ú@í†è¥Úݦ€ûÈšÙíó/[§¡ï½Ñ#ðe·Ó…íne‡áyDÏcþH¯ÿÂSÐÚyêm/'Ôîµû»8!|®Yéã¾,‚;ËŽ÷nï.Y±÷÷nϦÌ{ïÊ•“€H(üñ\¿tL4Ý3ÁÛCÍö¼ùè{RYQ7ÔkŸ¤öä‹uxîr‡aQ6“%ʨ‰™•“Iöw5“HQ Jþì€Pé žˆG©GˆÌÇš Sýï~8ôüÂlòתF¢ðÉ.Fâýh!9S+Å.IXŒRÃÿÔh'‘“xÌÜèÙ×N¿ÅAcÚ.ƒœ"#Ø­³€¿P|ÉÄ¡tf¥óãøkìÞ£¯É¦ŽFÚúZòÕIÄ}„˜â¢XF#YŒ–‰C–æIœÎ)$×T<öüâ¤`Sß>í8l À˜UPöÂIÅË+â¡ÀÛ½ÆPú³…êÛBölì6:[Q¾XÀP±òû¿ |°ûÖ³=šï;ˆuaƒ¬`¨$É[Ázh»·‚ýV­`y½Áo× ¶_ÙvÅ;SØká»8ÞÖëýØógÁµ^n Ûu«Ÿ<ûwÜêd£ Ô df˵NÝxâ>_ët£Ê×ÝòüÙ^&ìu‡×™÷¢^áíNIó>órïQ߃»½a¶M°»ÛS¿Þí“ÂÝ> ïvÍXÃfM‘}œægƪº×û4¤‚ˆ'ä´.(&aе»ÇÆS0ãjwÈ_9ûps“¬WéûîÚRº¿@Óad5~üѽ> ´8A<ÛÜ[“Ê5Ì"ÁîÜë³ò×)jF}w•Ø‹_Ãì…—z•%Z™ ‡Ðò;3–õó+ñ¦„ç¡Ù¤ÜêXé5U߯S“V {´Aަ$ºï˜Òh$@25iIÜë³âl´ð:/©¤å «¹iÑÊÆálÐ Åz¦%•Ì*ºuMJ»‹ÚDLšø'Ü[1š ÒŸX>qà kEâ„àˆšÓ[µeÉÜSGÌl&Uœrj y™ówPú.¾®d ­ˆÐÈ"i¡Ê™)rÒUsY!Ù#â¡›½n‡ƒ+ír<ô"¹Uæ¿!ÿLo ˜®Ì¾’0Ï”ÏüòCŠS–7•ìíØ¾é ­¥)40òÊÃ,n¨|‹| åýú¯úö [ÒÿéÔ+_lñ.E÷+§Ú–÷ªïõ‹Ã…úÕg¶zÓ´Ê›]ûů]ílº.Læµ_þÚ•o7) d¾úëxî—‡ov6Û-RÂßx¼ñÆŽ Ý¡Xn… òÚЯ¶W]Üx}åMøÊ÷JŸd–ðS™Îoüeƒoö†Ùåº5ýçÊ/ßÜÀ‡Ã’O³·þ ðMè4Ûƒâ>6Õ+߬ÜÙ㑘ë~{êÄQèC’ã&žÜ©ÌÁÄÚâ†øúŒät«“ö®Ó²<Ï8þÅ=®ÚüIæ^ÝSè'ž^é'žÀbÏe¦¬w˵Í5³ò”$ä©3/çlµn—¥faÛK>µ®š“Ê%k’ÜÉ‹)Ý"¤I')ÙÊÌDPIX¦(2ý^Geeóù²r‰¨l>OVDeÃÝÙ!*SPTîôE¼U—Å,*sÿVQÙ '*÷Ê£h±Ï‹Êx³Ý‹Ê¿YQ¹ÿßFTööm¾Óû£}Œî SÇA5R‡ÀÄ¥O¡ qÝÒ7ÛõFu&˜(ë«€Q‹†ž¤}åýH=0ÁÔa ¼LK·®Ä[š"œ[ÎGдb™Ñ£ê.Ä׉dSJ×ëžÖx5Gc &¥W5­’'˜æáŽUÎ =ÀX²v.]³’^ Ž-Íä8ëª/Çæ¡ 2ýI]Þ2”Lè¶Xaü-ÏU…5¡ pž©ɦHŠ$Ì0Eqžj÷gš m•Ú|S’I‰ù~5C?qzü=ßd\|rþòñ),|qq|tryr~&ÓŠ–QJ?¦¯ý¾Ùû#È„© TÌžEà$>4Yâǃ™ÙLj /áxÄΙQÔ»°GÛ€ŒW¼ÇrÇŒ YUCsºô> ¶#î÷&¦¼Å-TQÌ1U$‰k?†3%’£Wûb´éX€%CN¾íEã¥eduVéàÆñ ["—ºåêMf³ŽÁl OóÜÖ‚x*Ý®ñÐÚ]Q°P—GÖ ÛØ7d_ lÐé6‡f˜Êj¡»\Å{ nŸ;æ@bMNdA œh9ìx2E³R>m·­[æZdËgÉÓJãêý´Ð5»/$Ý™jXx°©5áh].²TÇMÄoÌm?aŠPS…{—ÒÁ}°i³Ó vÁÌ‹Mû!7 tÔ›xª±îÓö;ó1œ¶·Ü„w‹‘-Sëv·ÚÌY9šæ®M’U²Røl̵/3qËWš¦›YÎ 4¥>©ãpp&Ø(Saúãñ˜4¡<œF0¥y£L ~v×)g]© ™*Vç¯iåšóˆÁƒ7¤ú »{öXȇÉ3ìx„VšºvŒ”JR]Ÿ>ë0”K€ÔΘ@Ã[AÒ‘ÙŒõÎA§QáÖÀPª zÛËâê¦+±ŒAwk…Q‘6ì[졪¦Ÿu¡­õy‚‰æ‹¶ÀÔxÇ“Òøýq¿o£>tzÌ®ö†:̽.v˜hIo9NNäzkZÍVS*ózK•ÙÞÖYsü~”Ü®öË!b7 fBt±¨÷Ê €bVâïxÁv™P¤BøªHTÊ6$`Æ¢ÔÄ3?²?æ”ÂJ"·8è÷ŒÄªñì*нã ñæÛ$À±OÕOƒ—–=êJ ì.§žëGQG)r_Ê>b(;Žá@óIÑ=FÉ4>š½Ùhö¹|@Lr*oñ+4>š=4{Z œ9+äxî„ÆFýŠ:MRyè—±C³÷|4û.B*ýç ¯""t[ÌÞ.‚Ù5õ.ÊÌ8Ê#«à³ïE}u³ÕDóªK<Ö¬‹u /UÚᤸ ©<àmÁU¸ÕEÒ“G¿Þ¶í ÍîV£‡-`bùL5ü¢¸ðþnh¼× ¸–9T,åê!Xw× @κ‰ÂÒîœ[ –Ï¿Æ ìñm·½`2/²¿µ ©féñoÕ¼é c.„Ñeë[HÉ¿,ж7¨,I8+ä*qÉÍ8ô0+¼Å;õ†Uâ †¶ÊTk®Ëê2îE>hv›Cys› F Xó]³®Ó=ŸìÐî*G\˜Þÿ7™ï¼x¡õ4¹%„‹q“9ŽÆw¯¥5òx ‘!ÞÍR+ 37ÉVóI©ªKØ Z5ÉðXÌs£ª—^6Ó"§É%Ñö~˜Q”mNLÈÌíóI5 ÕÓ?¯ýàHŽ—Ëâ6ÌÂñ÷4q 8s¤UEêýWa76<£–c#I|¦©»EÁxñ4pô'R—z,˜¢Êƒ•“™›v{ÈpðØŒ6+¹:Òn¾PÏ?Ê.6©x‘ömàSkÊ€uÊTäJM… ¯U?/O>>oLé7D1¡âi»‹Š@j~kì$Ly=l9âØ‚û¾‰ ¯Û;BHi˜>s¿4qÜé6$]Òä ãý2Ãøþ—7ŒÐ6~oÿ­Æÿm ãÛy›»aÈûì"f¬í{o˜‡!ÏY¶ÙVZdES%6‰§KYñ·ae"²í>Ú¦­òÝXÉ•Q‰p(V¹I>W¥ ÷ú‰ÌÄë¼´©&¤™oÕ¬æüóK$ëèאָÝ™·ítòFymr-[h53›’ŠcSŒ°Äk*1–×l–sßX½”õñGåêh *×Y´õ%&Þ³&ØP1->õ*alóú†à€CƒMí´âp<טrŶÛÍvNSTç cßÙ(N,¸¤K öZÕ[ƒ±ð±ø çßžmMƒÉh:‰ü·Õ!êáÐø3.ý¹ÌìSÓ¸2<„Åá½µ¥0Åk"Ë;©% Ãk5é± /oaB¦œÍãWt\× ^Ñc–¨IÚZ §ˆæIñOÚU›yÆÞò7Œs_“°PÆ3‹s¨…‚V¦†¼àpVœ§ÈiHã&¦¤aT˜6Á·Ñ'Ä7k c´ÿ'·Ê*1{h jl(g¾Gµ.û±˜µ)†ÅDÓ„)AbŸ/t’ ,;3ŽÛë /œ)„¸;ëY#ä—ÕÁ ºÞÕ‚Šæù’BäªÉÑT2¸i`£Ó%Ã*Ô>”@åÅÔ€ðÿ—Gdr·à„õwdnf¤MJ¼{RëìÈG©L‘bœ&%E’lé–®£¾SÑdá'NjëÀ0èm BGª´Aš``b’’žNs'Hs׿þ]Aš¸7võê°'dºFm[NÂÓÉ[ÄT\ê¬ t©„ÑûÊw›l5ªÓf–K o áŒÈÚ˜÷Æ Ò4ÜÛŽ$~ £‰¸Ápàm,ûÞ‹5!a|ØqYŽÕÈx¾W­¼èVšiÍ?ƒÖ/|‹ñ‘oJ4J3"láXÞé1 R’P¾’f;}!¯Ë¼åŒs—Û£™|ÍærÏÞèΧ)qÈåv¿-Ø"§ÙöhC¶öÖ6õ·-€R}¦÷ÿM‡Èëï…¾çLhZ-YxÞ„´7ö Ho²0Iÿ8 öòã8tJ'¶<ú‰ã©0C«ž…-Œ§á»FìZh¶±±-ŒÃØ¥ŒJ|7'Å=6Úåá±6LÓ…†#ÉÞF–é÷®å8ç:Çoù«\pQF$Vnbµ\Ê#kÂe“•3MÄ®fØZ]°Û$Ö Ì‘ãPg¨fjJ÷¼ÚjÌäRŠ )ØêreT`ˆ×;Q\•SÂÇÓ|jb öI• ¸>T•1Æ%肆¡è_t®¤> ÌDÅèuFíãÈŠ˜F$V8± <]!êPrZWPþ=@fûþç&µi ù>n )¿ZoF꥗ÊfÍB à>ŸT§Ö–ªÏ— Î{·ÈÍ<ƒ$‰oRÐÙ”mܪ0ge ‹øCÕf5‹ÚMÊj&Aûè”ÆCÍͼŸ¼æ3¶z\•‡ÁWk¤“[‰°äœ)¾_ ò¢¢ÒK¬ö& ¯H½B»Ç_—h³Î=6‹Šs!iöaUøÝ-ÜŒ-à)ÌšCŒ¿Õ,±]Ú¬{€«I&@þL5ü;f^7¬5¡ÓC_5ÊQ§·ó…²Ìüøg,ôn…´3>¤ìLÝïaN:{Æ0klœŽq©[­K‹*¡NÄræ@A3‘˜§!Ô†Ûg¹v× ‰‚—‡……åf$*X*-‹çJÖMxŸ ÿ™cxq9çaG,lcõ$)[¢")[‘rÜV”SïÂNƒ$Õ|#"¬rrD*³¥•já n•´Îy­ŽÄ¥õcÓLÜbLsR-ÉíÓ¹\;­~a%Lq%¸`^LÁÐüËY/Ä.ŒÊÁp#XdK#þ"Ør¦ÐHŸ’[ì^(SÐ8„‹ñ"`e…±PÄŸa£Ï‹p)‘slŠÁ˜Q'9lÊL1¼3³VèÍezó!ü/¯7¢êü^oþ[Õ›ÿÛêÍ?7öJßÅ^)è͉  0²¾z<-‰ÕjELceÌj™“çÞ¤«º7±F[ùr3õ5ã‘ÓŒͶ Ss‘g§Á½:Q°š ™Ç 2x%b—Õô†Èà]1xØTõ¢ös:ñÀ"dÑQ.Ƴ؊¼9WßÔ—ywê]ð‡w" H&Ö ãËDAÎLç?%iGcþð“›yf´-SŸ°:fK/ºaÙ^À“Ø=SzÍy„aNûTŠNUÔ¤fJË0&³Ó¢z—2Þ½B¬›ÃñtÛE}z-Cé·Ýìv}·»õý$‘¬ä^«0²§«¹1ýqÀ‡%—³ÚL8„fkWiÉgþL½Y¶¾SgXÚ• u,iè6äWIÕÂùIÚ¡Ÿ…é¸RÖ4ËZÍô½m q/mçŽ×T²N+Ïñ?g:òÚaõûwVáÀRæÍ’´ý1¦ SIž­MNÓœ•ô€nwqÊ{Ei¤ÔI„è„Ç T†%*àæ=Íû»§5±›\ù/Œ¶(\„‹3Ü¢žé’o4¯7‡  ¬Ö¼+vã´›Ã÷dëv~î{®1È úz–ëDH*ß©^•*Â÷y€›ÔÒmÃF ÚÆzóm3qFÊO9ÌvúɲéÛ¥tŽkÁÉë þüg6ñzgÜ™PjŸ ©k9zÌ3Àš+âçÔ°hjð|Øœ¡Ë2i›o´„q$¢aAÞ÷]:^ÏÄÌ©‰m¼¢œu¥ßDo¤²¸e%¶ßº/SP~}¦îË ÊCšlÑ}‘š‚t_`CÝ—u ñt_Fowr5tº¯q¨ûr+Rªû2Vù%îSB·'„”BäeRâ{CN,^<ˆã”qA"gt(ñÃcÝ 6‰FsØ2ÜÀ|$àøQ4”5ƒíi4l˜>sÿ^„(uÉ„œI£ùÙŒ3wv‘`Ä£ôX›¹ÍÒã|â)ÄåëaJCBV@ã›% žc+g–1P·•Á¦Vv¹Œ3˱ØD¬0a-1jj5)–‘pzêæYEÊÂxñ]g¦±™]DÂŒl4­–s”Ó”SÓÙß2¤%–›B Ó§“d©Q¦i¡uìE 5îÒ"rmC¦…:Y£C±‚êZÈ—Æ4mDAœÔ|~¢™jubDs³-k8C2‹o«öSפ΋ c:-¾žbŠcBMN7 49ÓðBµI¾"”$òIôÃ…qá@Bå4¹…åGBÖù”*Ø¥ÓÓK }©Õ†RôÒ”$ë€2)oÚ@.mùR+|õý°$tz 1!9õ} S±Ý«ï«êûVã®êû§¤|Cábyß ½º(e;xÛmÜzuÐHn§mSëeâ’™’ixHR îÇM,µ‰?bP"…NÐ Ìâw9ƒ™»¤ ɘx„-xæ²@Þ-õ¦{=ÌóæeQñ4mHë2§ÀìX06äŒÆ¾hâ?Û#É\- ³Óiñ‚îÅ6)ãKZQAÛÐÔÛÀÔV”ΛO2ºgKp‘ML-ʈٖ֘‘8§‰ÙŽƒF•Ô$Ÿ’JÐ2¤ÒâÐr »Æ cáÐÆƒbþl8t1âgâ¡›ÃR$,°ˆøÿÿ&ˆe·Øq^­Ç»ä°Ô –“ ˆå,ˆ­Á+iKKB†R‡d¸Ö –c?ˆ¥!§¹Iú.×Êžfmžªòv‘Xè …€byp36ûíWX¼'ÞÅ8cÛÁæö`½<#©43NØÂZÕ,…C/ Ÿ+5”Ö¸kéD²}@YBö8ŠÂÞÿ”iÈRª©H¥”Ê‹ž#%”EôuúªË¼ÚÌlSoµH ;EC=Ld+ú䣑Ø%§¨É6«˜æéB»C˜i.†Ö6ƒ6gÀ‹=€\d–hr¢ô‰7H¾`4ÃÒ‘œ%©C˜Y¦¨òX3²øY¯(ÑMâÃì%0¢­º6L½ÑÒ;?îaÂw—¿3+žw«-°âFbXrãCäÆÑ7&Y³V¶¹¥½¼Zó‚†=C<÷Ót•‘ÃÎÚ³ÃcR ,ý†¯ª©G΀ ta?2•”Ê-q6¸’ ý¨&Íéï«â“SaP`ˆN“÷ØßÑXG?ncSõ¹ª@Û„ ßnã¶ÏcúȯþÚúOhÙ¸NÿC„ŽT²ÙðÚŽw/ŽË²œkˆ=&qL‰™;È,ƒžºHBÉ•U%Âtù¨Ú`DCA«OÊGìU’_GË I¿ÑÚ7µò2›‚‚èÛæ†µ€íÛìsäsÄçåÊÓѼîø'i@'°vøvSm!ªªÝn5·E¨²P˜àσ ô”&ŠýÆNó|”3C¦DŠp]PåØîRŒ-·Nl__úk„ĉ²b|Enu¦„1Ã0àu¶~$¨ýÁVP‰}îÖªŒ'mOÚî7¶Úʱ@DbýÜûíò¤®ƒŽ'í4:D?ÓÊá¨:'™h^y7OÆS¼gçII×iv‡;Áüø\Àüôq˜ß–JÊï¸Pø6ù}«§\%M¿Õ uŒ§ÿ¤ÑU¶\(&{V¹ÜdÄÓ<žó- í믬ÒëÍZ]ñ¾1t¹ÉBo#«%¬Ì*‘k*§ m².ÔºP ä­¼.´…êÐ{]èoUºþt¡ñí-¼¾¯îí.VÞovŽ*‡Àd!‡C/W{"·ìß"½Ý¼rWz„QÅÐÒkvw·ÃìØÉ‚½Ðå8Ä·¢" À;‘|X Öw’¼ó±’d¿VÑ÷ÀÇìé^¸¾Pccò*ÎÄ:¡÷”6j#&nRQ„lŸ•Và‡™ä¯œ: L‡(é0Д[R£Ò¦žð¾E6±yæj*ò¬m3ÍœÀìG ™Y-WÛ¢‡$»ØÔ€ÃM=-z¢²Â.Uý]"±†d]ÃP›ÍùZ”­.–zÛ¶vê|èylþ5¥+ü§±Më ñV|€+ zWªè¿—â•»±ø;ð æDWÊÜœe››Ä¦NDÁ!³8\ˆÀÞ,"fË‘òÓ&&8Z“ï¯Q²ÊV§Š"r„Ü&îÛ–Å’´¡?¤ÛIH¨wø÷œjU’4bN¿nJVûj>.b—–dxêM9j3‡}#i?^-(³u³Û$¼v–ÑŽOcÎ"MÇO §Jvo–@KD®@tfT±ý¸WtÞU~/§S?¬ïµºm£CbsZiçÚÅc‡HZ8Z‹gSk4ÚL§ÕkÇÞ]ùIرòÐBy‰¸¦žWÄ6(¯‚±ÍfO%âa3SÉ”ö²u§Å݈–œì‰a§…Êhg³ÿ!¼K_Cb¢¹€n#>öoüg¯+†`Çé=P/ëÆÏäM²ÈGã¨Oß4,µaPžó]-C _ dpÒÀHi eÞŠIÛ¤ž-§xpî®%-Q¾PÇ´¡Î8ÊÑL²K‹LhryyZZͯM«¥¸Fž ú‰ƒXfÖm°;à¶moy.Aºšu ½}Pn׿öÉ9 û‹vñ]Ø«]èrÛ —)‰½y‹?p,7¢D¹£|Û†¯_¾t<%BVu!ïåZÀOθ›`:ìA}-IŸW°óßÕDO6c1`å¸f¸½ íoçC’¼ÇŽ)Ê•@Îw0eÏBN9 HZ稓nXóO}' ‹ãqI’“)vìÁù‹«G4 ˆˆ…½Šµút¼náQˆ>’ <ébòÍùÛÕ=܃Ù"’Ywñ:õ— )Åš9 ÕÎp4æq¶vé»<ˆ…Ü©B”ZUÅEìŸ #9Ý-MÊDj,f󪤒¢á“~©E./pw%·j+—ûûÕ«')™Ÿ­§båoÉjùŸVúõê$}’ŽYâ?÷\ÍÿÓ„zHCKï3ë&Ôß—‹–+1ËEAxQ?¤À¸ï»ìl;Ôöñ1X°Çú :ÁM%e"-Ø1û’<..•½ÀûE<²^Uk< òè× u},éÀÇi¶J¦@²yÛft^´½:ëJÃ=Ê_.SÑÄšR_©9×}¹8F[p+8Õ ¶¡D†‰\~Öòå6ÝrxèX¯'ñT-Û†kÛBB¡7çÑÐVs€}hl5K»1}æ&þ­dTº¤0V¿±Ó¢EÏcûÑìÖr冰ÖÙË$i@¼HX눰v“í®ÚA¦®ìnŸ•?×7·7ÄÂÙmÌò2:"k?N)ß©`»Å|L½±ˆ‡ª¤õ¤ŽdfΊcò¥›¢^Ÿà+ïÓ›xBœÄföÚóÇäËJqwÕÄ?Ë ñ5§2!=VÓÏ·Ãns¨DX–f;æÞaÌÚdaer|ê´ŒÆ7í yµ-x(F l2)>±Ì©ˆZ¾.h¨áCžÇÞÇ}Ú@.´¥üö]r²†íß ÒV‘N-IÕ¬³V.Ç3S™8{ãA“f Xä1ºófk îKëô™.ÈßÔr©Ö³Òaèìv¢ûó6^­%Òõ¯]âwî™Âè¹L'}Ü7;Ëï™Îîþé„:Lg·!vóVa:91M'‡YL½”uòmºZ.n,Úù¯¡Ê‰«ç/žœ\HleTDÑ–Må-Ãkà`d³%eŸäñKJ=„7:»lR(Ò„£}ëÜ3Ñ×§pž)²e(ÙÜ€ƾj{2­<ÄFâŔ޲“ñ°'âù;{Öhу’¤hK5, ßþ_“æŸxSãõÚ @ ÞI”éyì}ܽ?Ìîò{öGoïþêq´›¾ ·d`¬b¤ÇEâ§vñ·"TÆZ`’ÏærƒaµÈ‰Lh“M¼M¦"åÖšËïÔï¼xÅJìÑjNœ‘ü¥c²Jk4¶J†mlXà.F Bö¶Zâ t,0×Jƒ9±ÒžR͈[¼uv[cZòà|¹o("¢ì)b&aãÓàD -Å9ænßµ¹ðyì}ܧ8ßYþ.7þ^ d´VŸoü®Üø65G{À±%è.'OxÙ,páoTCˆØ:¼ñ­ƒU2—ðrÓ uêÞäÔp«¾a¯€`’…Ûò†¢N Ðrš‹a¿i5æíßYï8  ánYR<é™Bx™ge<€Úƒ&*~“JañÆ]ÞØcÇn­“å~?ì&é_9Œ“Mw1ñ¦Š†%¡ã5h…jdüL‘#X^53¶É“9“B¸¤™À`Ç,ûu“è£ÀMàù5qÆ ~à›è)4ñh¢’—â®b}6], ·®6BPp¦¥D’ŽÅß—VP7„f^Ø À0 ­Y÷\Rœš÷gÏ[5KHœÍ„Yhì€;BA‹PU$¹y”­ƒÅru£,E¬«‡Ç«æ¤Âå¦ myåÕ”»CjC+„QVð ‚ÀP¦g' q…âõ/ua¼G¤Zë’‚œÅcb4QoËú¹T°7ɘ¼“¦Š\GîS.ŒÔâ€âEà˜öT ¬Š“%Ôì ¡$žku 1®+¹ó’œûRg×¢Aßr})gÂð× öšáC½$_Êl×P&:ëºAÝé÷šea!†âªˆæuÜm'Q>i¸Í‚uD›xNÆŸY:Qžø•d¢¤5`÷”iÀ M<ÑFR#©_lêkHr%QÐ ú  æa~w=)l‰ÉÖ-þ&‘´Ne µ±ˆŸ¸Æ$s‘*"[l¨iq–ßËÝ{Ùèf©ô­Íˆó… æYxtqX=àø>D„`ÌÄ„ŽPÃ]¶¦yC…D é6 ˜ìî ÅÂJ–t1“àò7±gc¥@(rd1Ð µ:®Œ=í2cOþ—7ötÐÞsoìù­{ö‹©¿d¤ãÂöóùÎA<­ô#Ý'±A±bȱN©B¬R0 ™‘ ”q¶-wx=çkKÃôö§¨ÊÁýëEZé“xtìêÅ{8]W5Ò#¾û­ :¥PϘ•„$ßï©rznPØÅ¼×–±zòzµßô•À½ØVnjG¦ä9†T°ÛâÆpF‘ÎÔC¸ mhËwgI4;™£ëy,Kƒ"3qQK [0±Q›BÔ—ÈÕ83=Ò?#——:.Ï[›IÀáU§¬ƒ²>c&…a°¾J"J¡_& ¶ýÁNÑ£?Ðó@Ÿ¶ov³¯ô]6|Ú²çû"uÙ0¬ÙE|õÚX¬ãÈ‹sÚßl÷hµ\Þ@^Y7@ÅS}—0¨SŸ÷}Uyôíw‡‡¸‡ñÓñ1r!ï¯Nžóoœ”œ~8>ÖŒ]-âÓâ9§^A¦í2µM0ÍÆºÒ…5' 1Ðåê,§–Ae~#ç(I!ô×|Ÿ'•·éšX—×È^a5p;ÆÌ¡ŒùX6_6rÿ¦¾ç¯y£‘%Úø@¦¢¡Îš5ä˼:±±Æ¤Û’bÙòuÏŠ:¨“òsÍ~p\‘œ¬ù4«Gcà¯yÑ€ƒg ÁÉ#KÊç,‹4Î9ð³NÀëc^ã•qÅ…™Ê5°q¶9I .ÝU/j’ÞJ8õQ…íŸ+^ãôFx'ÞB±ÊÅDt#Ò~~E0²e“têPH©º>#‘L0¢õPæJ$Û²(<´¢‰»©'bwÅ5¦@:o…-)aš^qâï‹1jß½…ÍE†—#¸®kÁuݳ¸¤B]7.º~çÑu„Ž<ø.ÀÖMóƒˆTúœ=”9³Ëoìò(Œ/¤ .f«ÚDE¤3dXÃ0ºÿèÆ\[‡ÙR¾CùöȦÁK“¬9<ú“‹?Ÿ¿¸ºd%Þ7‚ AwZ#:›‘fÓîÜ2Œëعd‹Ûq³=4ü< œöcIL0èyÛˆö%#{vB‚`ñ83Ûüñ Gì×ïQ*+Cã¡ÐÉÁi‚)ž¦L's2³ÕjT–Tã¡—NÆÈx“!àñÝÎÉø<ö>î3@!³µü].Ä|ˆ K€ôI-o…I¢!š&ÆÁó8¡t)ÄŠ_ä C÷ {È "Þ†hœŠÎMdÒˤ „Ì ŸŠ«¸w®)š« O2ߊEã¬&ÚÎ.ÒPb)M_kxS~ÃF*‚±öÁ¼(4-Ó¶ÒƒJ£"Y/5“¨îX”oÿ܈r } ûeý5KìÚ7sª%½šf6°²Í»ëO eçP2BõÈ(%š MF¶ÍB$fÁÕ7©¯¢|CãØì‡1ù@ :¨æÌ³VMÔ”ß(ÎQe¼do¹°ÓpȲƌJæsM]Öéâ¤]äa$õÙ7Dýíº4ºéãpJE%f'– ùû/Ñëú )ÐèüRŽGÂèIcØŽ_gñV{+€P4Y¾Š(_ºx»œ¿å8×#®ˆ‚a¼g¥££ÿËn0²ê¤â3œNìãCÕ'‚óŸõ›çC*jÏMüè:_!}ãÕʆÆcÿLXP–±f²á$—ëÜ2|À%Ž7$åo'ÄÑ>9>>™þ\=hâÂ~ìuÏΤ@ ö鮸J¢T41¾LD–úÐut’‹¦G¨+ ¿IwÖCÆÝå7êLìDtühKÁ¤C—ÿtuñð‰~Ò>¹º¸üë©f>6^è>¡uåï2SÍ/ó°)È)œ¨y ï·êë`‰øjc*û³I¿byQ‹H`p´æ¹å­¶\¢Ÿ kñAŸ‘Uˆt©L T›R ù˜yN Ita£Ë/õ «‹b ãžÿ”¬–˜n»Óô¯FÊðFäiž&– Y½uÅN²8LHRjg ¨åxP®Ú38ùI $®…í§^(êO9ìgÐ1ý¢ GÇ;oÈ Ü“) ùd jÝhÄN™^½ ÿËëÕ»¨Z¿×«ÿVõêûñJ¡Ãòñ¦'såêø,id1ÉMP`‘‘I·Ú©¢ò]¦¦L8kŽ;‡î¡YÆò·óߥhÜÍ’x+f6œ—…wÈY<\aöÞ•]„PùjI(‘]äVŸ§£ÕÒp¾Oàž Òš#?‘² ÀÆcÑ-O§ê‘D8‘DJW4ªŽlâch*g~œÉ+ãìå£åbœŠboÛ›XlÞVÍLºnrК|zFrøtù×V%³?·P¿ ŸŽ¿?¢§D©kLðé7˜ üñìP~¼<>“—‘“▼.⑾oásnWÉ(e¨Þ‚Ç/.mD޲EZÍF½Õïw»½'Í'Æ¢Hi—ñ$a—²{G¾(—OŸŸœÁû=̃èÕÑôûþ“ƒö@£`âjÛŒ¨¤6–íÂÉ-hž(Øï¦×爌(‹ddÈ$à¢jšdYh5ê†èUÉŽ€w;õÖK”†í±°fqöùùC£Ï ¯.gQÀ2âIÌ3×m·ÚüËÙÉÙÓsx{€ÛìÁð:x9}wv…UÒ û½ŽLo°àÜÚ±ÜÚùÎìL»ÓÎtÝoå:÷¶Úí[aoH`jõú­ÿîu§Ómè ÷@ª‡ ‘6üq¤zè ÕÅòwQìäΕ@ª¥ uŠyO’üv$é*ë9CO;' g(ŸnI4e ¨OE­…ý[ñÉ$´¾à—Ó“³Ð3–ªg¶íøä²˜Já´˜/D°×ÀûkhDâg,P£HàIå">ˆ×³f­¢ÀyŠÐ”“ rELb·üBB–¸N9’ R}Ÿˆ`C„Tt ˆ|ª:«&Êøé„ Tå(AÜZ üˆ$ „Q˜JBQÂW Ä@Êðœãí¹+³Ë™Z§vEK%8óÁSÍpœxa, Šƒa_SJåüRj=X rqÔ»>iÅ™| e—›é o_´:/Êt Dó5N‚f)^â¼u)ŽÏk\Iú%µÌÓ‰<é)¯&¹a-ÈŽå$V,ÅÛ+Ô¯5 ½8sÈÈ;zYnRÓ¡¬Sç÷¹š}Êâ­RnNÍk| ÂŠR{DËÏÆ°íå™ä(qc²°³[nùf*p…›Vó ûú,ÍÞ¸!âÕ„°h&vúÙy>°ù®'Ž Ht\¬'8|ˆÅ©ç]"Ud òŒ,É_+þ7´IØ<ÅjÀ¹ñ^ó~ÜQ˜‰«f•Š •Ò¹ç+_ÂaH"* ÿͯLô†oÓ¥ 0DÖz…µ[ž;Ä7ÑmDÐÌl c€ æþˆ™T2Û‹W¯Ò‰št6×6…ªa¿P ÔDŠÐLTãÍÍMU}æ§šI‘u¸í¡d¦ô‡¶"6"¹6øœÓF1†Š#É %cÕeñBµi¶ñ$hz¼1G^°ãiVž ¢& 6©›Ä2,uJ¶ŽÚŠ&¦þv¢½5­n~éQ<©¬†–ê6¶³nöyì}Üâü7˜ÝE·sm…ÞµyÝiðº$ëéMåðìò„o…ïÛõáAsØ ê5oUC ÓìÖ‡uØèa·LEÒƒÿåU$=Ô’Ü«H~«*’ýP>©Ø£@‡óÊãôzžâi¹Uzä®CbAs·¯=½ûD™°¼¹ë°4~ãïïÊÇo£QHvŸžo+ZÒ}(d¶–ßÞ}Š!}úòÙþ¾K‡š Ö\ý½ùhë Xј­H|ÿVGÚ÷8NQzT‡»óqšç°œàOÿz’ñœ»¯ËÅ™÷ïУÕò'd=ÑH÷l•¹½Ž7$¯] t¦Müø·ñ ô™Õ° ¦wž¾Ã@.`vúŸœ£ CRˆË¶µÊ“:r—pÌY² T³b¦î»àÈÑ5Û쾆!?Û o7Å,ªq§:Äz_&¨ybÍÙ1k °Ë“Ãç8S/féÄÌùí,‘«PZ Íá°+ÞÐÁΠbô<ö>îq¼Û]~φùËYsÿAÖ¡Ór;fä…øe»ÁEŸz»€ƒƒ§íâ–r8÷i¥Ù{Tí¡RôBŒqœ Š‚ÒLVjEós-ž,`1@DC,H³ßBXß3'™XxäРMÇ¿—‹T=Öb,%[ÓˆH*Yң˃Áþ‡»àÌ7<ÉF3 Õ ãlìr‚´¬S;~܃LÝ]~ï²wö'ÓˆËÞöímK(&ù5W¸ÏYÉñLMÉ~ œba?tš$½² {îAÁ´à|h­IqZ\f>Ï$‹Ü}™±1Xæaë Ù¥,®"[%׫ "ZH?G»EÁ/0X5«Uþ÷f!iÊš”‚ ÈMaŒkl•nŸÇÞÇ}˜,(d¶–ß»îàš-‚õá}Б}÷+ÿJ˜áN€+Cïþîí ýÃÉð•"yŸä®„)n¨Ç¿ ^Kx9XõB¾ºSG}O¡1ŽÐtÊ6Öïº@hP õB©Ê[ÒÙÃëàî>Æ-Y¬mêr¸¹VÓ%ì  ygªK§Ît âuÊŽbäÄï‚Îà~;<;= Úº/’ÛµO#ÆH#uU–mÍY¡Ïm€Ó;huw—ß5ìg„¨Ç>èÊÞø[=¢ˆuHC>á ­ã—}ênu£×ú°üº êtgšöøwÍö£j·cØËy4¡•è@ò–ÐúàŠ±Ì¶t© ®®c”òÞR*é‰Û¨X|dmrò#ÿU_.'ëw±ÂMtÏPŸ ä†4»ìÇB¼+Þ-å×K§ï|´^úûe¨>ü­Ö®ý‚Ï­O~kçr‡ò{ö úÈîß0ÔeŸ—èɆB|˜‡(÷8µ”â„i¢¡jÇÉÇ[Ƨ¨Ë˜ᗉM ê\\Úðõqœ¥ä]{šô’4Œ-²ÃΧ@ßcØ —VW“Õþ¡Æ²Ÿ#ÂŒI {èeB Ÿƒ\X—ÝP×MOƒ]j>j4ûøé¹ÀñÑpبFãµvÆ?¡ç±÷qßb†åï,¹Å< Õú¾”žÚŽ%ýÏYQ.éÏ^Qc—4XÑn°¢Äax‹úˆ]žsä§9ãóOòîÖV˜Pþ [3ÿóÂí©·7f´7"o4ìÞ@¦ ÝC Ü$)m’ n’ÁAk€?äw ©ûí€nz{÷F$ÞUþ›ä.‰¹ {ânЂ”í™ìb¦&·‹|Á{d!¢*ìÔç¿_cäÿ±ìqø¶IÚ%\l!ŽãMC×´ì›Än—4OLžDw%€˜pmõúï”Ù÷3¿pŒ}÷qd¸»ü]÷n@Û±`诰¹Ë ßaÍþŽ‚î´p;î\áYŽ ;h©0‹Ô`Z¤t_ûÔÀÛ(Ô“6Å-¼ËŽ1ù|c«pgØÓéî’% =—@÷…ÁÞYþ;f¿T©M´ÛFÔO0ÐÅ ”§nyJá63Ö±\ÔYœØÝ’f‡˜Êwéb§c·qžâƹÂßÁ¢Ìøöà}0ÕM0q·‚«íïFpºÅœEdH4±ÂR¿ö–z\XáÎVš0«t‰´µ¸Ämoò²íŠ­ kÞz~ü°¯[½@“~µÂ´(+cÐnŒ‹öÌ–Ë7Ñ›ÅòÝâ£~ý”N üñùSówù“DdízëáÉÙåÕáééÃyün1hÖ×Éû;Õ°ÿ¯½N‡þí÷zôo£Õ‘1£mï?šð×è4Í.üÞ춺Íÿˆ_¨ý›l¯¢è?`gñÍ2ÛVŠM&¿F‡~Ý¿WãåM¡ëÑ<β¿7›·ë|\%·p>ójƒÖÑ8 S̸³ž`rÈOþƒ¿_/ǾùØKµA½›.>ýãã4Y¢Ðõ!(÷qöá6Y­’Iø+Y ÒÑ{øõIX%Ïø—ìb3O>Öo³Oüüth•,’wBëã+LFéÓÇWñ*¾NGõ¨0KÖ˜ág¬>®—£1œ¿Ù§íð_lnÜ3óŠÈáG—OúÃ(ÁòŸL}|uŠ^Ðõ#‘Z#”Y£AóÕ+(ò§M:zxù‚"RbE@rô=ø „Ç÷Ñ%™³Wj¶ûˆ¨€èÔ½‹3a¢NXŽd]ˆÎ.ŸF0A‹54W/ýf·¬V3’{ÜèÀß ‡SäÁŽ 7 Qt<év©ÊÏuåˆâŒ­£x<^øú(ŠŽVñ‡è"aŒpT¯a [ÿzÝîÓèt¹H¢óøMôd•¾MjÑq<µèùYu»ÍVóS æ „ošCN‹MSù$Á؇¸ÑrØ1YE—#òˆ¨ á$À2W*kóÃïË÷oÑjXóžC<öšíFK횟(º8þóÉåñýŸ/.OÎÏ¢v½YoÖ¢§¢*ŒZ@Ù¸µ²²­z£ ò6¹¹†žCÙAØ`¾ÅÃk 9Z‡¥ì¶À͆«“l´J¯“,š-ßEëe$á€k´»‹Ä(Ê009<ÃP"šÓUÅ|QFr i‡b¡ƒ[L3#™ö¬†Û6ö7nWŽmæ‘â–"8ÈØÉ†Aa‰" ÏŒÀ¦uj¨·³xáJã ®i+üå,"`G†Cs¯4 ÅÃy¶¬™`pÑh¹ÀÄ[Y]þ€&ãõ’à¶K˜¤ûˆwh$©€ßÔÍÙrq@ãñÓ{їՆݵ°ƒFÐÛ‘DT×nŠOç ÛÃÄ3€þ™Ú1zÑè4yp¾€CôD__£Æá1ºˆuóàü–ë´ãÅÐÓcZ?ì ‰kåñ™ROÐw]w¨üin„X-æަpº¸ðølºtºªpc7,d"2¯ÈÀ>M`¯Ñ…m9‰ÖÕ¸g€†¬Ù¼Ó+­LùÚ£›i6•øè‡£#ó‰3–ßÑ%lÏŽ®ܾZVvi|ñƒ‘CzeT‘ÁQÇ‹xþ!KicDꆃSšà,½ÙÌ×ñ"Yn²\ÏÒ‘Iþ¹a¸eMŸáö^°ÿ]YÀ#5ÁQj¢Äê/>¯›ó Ô‹Áƒc Ç0}ˆSOÐ/Æ%“IJ¤òÎÑ5"Cu%á@GM)v  Øub¦#f¥#a¤#{ŽP¿Qp¿šA°Ù,ÁT]CuÓæ*Á.ñDc ï½u]7é\LRÔÚFèÜ ;*€³ó5£Òk4ÿþ¢0Ü7¸`Þ•¸ÛhâtôH‡VË 7É;¼†Éß [ô¶ÁgXÜ÷5Ýø YKÕ,•-ÒJC›-8¼8Q.Œ{M Jͧ(ÆÝÈò‹%.öÜáVDÒË×låSd°0[Y ötÑGï0‰Á8Еô:ã ³€“ŒØ(8­xZpH1îÂYrÃA1`דJÜžœºù L99EÓÛš3Ž^œEÉû[qéÃ~ÚàÔÍÕfA›Àè‘³Û ŸbqôìÂËk„ßJ‹è˜mgÓ’mx}g"ö΄…./^!zz5I‘ °Ʋ㭒§½¼ƒ%ôÎõÕ-JÄEÇô£þöé@ÍÚaSb¡‰kÚ¿ë² qG. îÓq>›úнÿSœ’èPP0æÁÿNzòQQ1ɧ*ÐÿÃ5_=¸£kQi5nkã§ ˆ§þšï7ó ž¬ .BBn橵Öñm"7>\*ä?ôN ó—åíp”ï/œ¤K¾ø .,Ñöõ§ü©•e— yœ'(ºhÃ;/ø >`ÖVoÓäÝ'ºünéMV°ñõ‰®ò,[nÔËur{pýá¯ænlHŒç> Zõ·2 ñA°t äTÐ=¤Ó£ó Ó§Š8žŒH­pó©Ð×tÁ³†x—è–é1]Híx©MŽW~i¯3î6&o²âöÏûÎ O£yPÂ<•ž&Ù)NÐg^ÀºÝpÄs;"þ¹võÇëOÑ5ê ìRÝ‘yàǭ»6”…ûY‰«y l™Ðx`A·nÎѧjòÉ^ÞŠ_ED'Ü/ Ä·zÍÁ>t«Œ÷õ@¸zî˜ÛüšfKËãO5¸d×ézõþøã´¯³¯¿®1{„Mb¹ÍVLª£È2Ñdµ„gÀPàÏŽfUD|v$Ñ…™-ôN4x"4Uâ÷j¼__O>ž¬±]N »ŽÌé ÿ±‚ ÇŽ.Ê¥ÅtœÙujz½…Ð×?yëpìd,oÁÚDÑ즧B‹¯iûñ~UéeÃ#[¿[F¹OFâ÷çm¾"1 › ºãžÀ‘ôLËà^$ UÈ¢Ë/L¬ó)QÔ›ë90f¼ùå)l+&¹·\@Ø´*¡Ö0 I«¦À;yM–¼%¢¶¹c84Xgâæh‡bzäö€qy|:Ì%pðvKšw6 ’îzÔàÛWÂÇs‘Γ÷)KLv;³I#0Ü‘šAŒMÔnh·ßA½JÿšõFüGª;#Оt¾‘¶T»)¯™Ük×üä•{ë9)2äv¾©æ­”‰2æ 6ªq©î^Š%,qav³zÌ ^3Œ/ŒZ˜;ØŒNdIç‘'ÖRƒþT ÷7“‰Ãs-™»´Ô¤qKM$!¨¾¢† ‹Þý²ûJ÷ÿhðP…âùÎ7pݱÎÙY> D¥Õ.6´ vp9ˆ6RA䜠MlКú¹£@èJ&ã:]‘xWù·!vqeO¢Ü·ðÞ”a„¦)…¨ßzýѾ\ÇZ?ÑæêA!²áõ±1Iy­º nm4¯6«ùÇ=‰±ƒvXg$o#lj¤\3)Ôî+&}Ò_¸¾:<¨ÿô‰©45â·pc“@e;I×Éü]üA”Þ6·ëå®PJóà|q€r-êbPÌG‘qµœLø"¯újPŒu ˨l·ýÌëyÔÅéÂôJ¡¾ÂöömËeðnŠä½?åŽö>Å yÊ|ä+¨'™ûœ%KoVòñbgÙò–X€®ÚØLJá¶L“^ÁîÅp |¸AýÀd} ܈³Aá/ɵ°ý+Æ*'à®ùañxŸüNÞÚÑ)Ðþyt¯ÅBO›%zR“±²Yu…¾žËZÌðhyÞm¿DDEO8»é,è¾q·bxÓ‹€¿‡+…þÌ1û”‰åÒa)²rÆîïyšÐ}½R”¹Tä‚]ýóú=]bÉ­¼C NØžŽG?¯ç\×iߪ€x“ÐÆ¹™Q»;±¸ñà§vŠ6ÔË‹Skøl¥teúSŽ8íÿ°Ü(¹BlH+®Eʼnkd5æ0Äk˜íÔÒÖ‚ÿ÷:Á¿Ï—PøQäê㟑¹y·\áÉÿü€l/ìÙt®#ý/.4 ¹æ¯ ´;ÅŸ§É:r£ãßþ¹IEoïú’ !Bl€ˆâi¬WrM°T ÂÛK7@Lê¯w ƒœ^:Ý@íM`§^ðµD*,á¶Sd©Àx‰ªðåÚÞ­È~€‹©¢h¬ƒÎòÙûän.hí„$4–J-ç ôÛ Ý¤Dž/)ЮâÛx•’V)Pf¯<î l’·”^é##áÛ?ð6ùøJÔ³b4Ìþþ.¯gßôÐîXqq:[ÓNÿøóØBÓ!¾ShÙt@d~ceœƬÐ,.¡öèTÕC4R¹¹Ñ{Ì^æ8†…º‰ÜDxo¢EÌ $nEIÇ]_^œ=« ìW'Ïáã^ª*ËÀm©DiåkÃDzO-‘'€Ë²™ ˆ­:Ô ·Ó* {œ-eÉ!äe„ºäô6k#å¿%AÎx¸òEGM=ÖßhôѾáƒà¸^ÞІŠ0bªÏm(u’=ÒP1 PYƒ§lU&kŽa'ø¬Â¹§ºB–BÊ•q°ôÚ˜çÈ´X¦Öij—. ¿Oú(½~]žÖÌ“ó—O£ÇG'hI¬EGçÏ_œÏ3$_~ßì±”E@^ «(¬PUQ±*¯†*)ˆß­ÒõYä…³(ŸAê‘+-æ ¦'ŒTÍþGº \_|£o“2ë:²‘®EÒĘï˜>ïч[Tœ¡6ÁÎÚ)&pp0.ζöjØ`Ö¨ÕÛdAšŠêW€Ð& Ç/Øz€£aRûtŽ: äcñM’±p¤“d×/¿V£Æ*¡8ÜÄÅÑO¾¦ó5^n®ýJ€‰~<âg@ʾ|†ªgÏZPPµÖó+nŸ|‘ o~ò‹ÑÛù‡ü*׌’ߘD(¸á×9à:ÎÞ¸%´KC„ç«Ó—_á1—™Õ­À®üêæ+T½µøJ­§Köã–E5þ¢’©¾Ó !«ìþ3Nã)õFjÛd¶ ºø -»KŠø òd)Y¨èN eî¼Pû[ÛºŽŒ Ck$BÕƒ K¯~×´OÝâª[…ù§°e$>$ÊšÀ·ÕòN0Lˆ‹›9¯ðU„æÁáÍ’—î†Zñëõ.qø÷ -á5ðœoÜÒÀ^ÃmM©TG›y¼bÉv³ rga5Åù÷ÿhr3SÕ®µJÛÝÉ»ã€÷‘Óþ«A’ rD9âØYa‘ÝÝ÷†^>?¦ùùþø”o|¶%y AóûôGÖlûBDÙ|qôUàÎß ÷ä­NXáØ±!F$­‰]L00Q"Рಾ?Á°¢É †…¦yÏÔD]1öƒšaÿ¹IÄÐ —íoélñçè‘5)±ÒÇ ÎÂØ`ÄÉŠ¬Ô ÔXgæ™TDã@qm€BÁÞW“ŒBþDß]T²Ðêdgbu0,Î`7ØÊ…½qp=`ÁnÏæãJFøËR½ n! ×P‰IÞíßý¥ú%‘†ÙÖ…ÄâΠFˆñ¶5|ÀäœÕÂcçcf”øÛ“ÚSÚ)*"^‘œ³]/&-èš²æsǃ­¨ÁdÝää Çï—Ô”s’™!ʈC7É›änßi²¦ã4].Ç‘‡YbóœÔN ¨ v.=ã°.žµÞªICd1†Žª• ææÜ–£×æäè‚c’ã¶ê Åå×0–ù¶í?=ü“§@Æ>( ÎSº†öûøÆ‡“øŸõÙúf*–‹IWÛØL\3Ûwê-¼ìicÅ›õòF¾˜5Ú\âˆvs¨nfø #âüAÃE‰ ï>‚xC»~¸×1Ä+cÄD»5«1£¨À!Lÿ§ßlà«( Psº;Ë÷rT¦Ó¯Ðdù(Í@vöLªÄ®~îráŠzÀ³%žU9øVóö‰êHFknb¡D•¬F¬(¬môÀŒ¸h`QÙ…Æl´#-¡1¼Ñè(Ýu2é:ˆåÞ%žÐ ;}œLÒë/¯‰”y—?Ñú%vÄ$Põ’ù+fãåÿ†µ6rLñHëý3ZŽQáÒA™sSé:@•.´}#“|ráùTó¾µ>qi÷Kû“0°4× c¿°ó2ÂÞ¢ñ§¸r‚ßóô}2> ÊÕ£ëà…ŠÊTù£è{ï> Ïb:öÖz)8x¼go°JÁƒ`½òÐX<óÍDÄžc}ˆl¶í¢¼Zà yê{½‡ ]ÖBœv˜*8à ÐÐN+ú–,~°ØJÇåQ»š(sYn%˜7Õ®ŸÑä9xßfMn<2nœâÛQ”?r£¬ÌÞhÿC=oþŸËŸ–?ðSR(`6ªO—oþŸ÷i¼ü<¤ž>üTÿEñ:wºËÞ·çû=ží!¶°eŠÆ[Ž·@¹ÒãG‡š‡¿ñÌaï–Nn iƒgŸ³8h™P©NÙEç‹$x“¾d¾9H3ð…îFÅP¼–!c™ˆ*'Cjæ«0c”÷Øn껊tïÑf)‹­Cˆr UªÊKç´ç4€¥‘öß¶Sºe¡Ø¨Kź¦R,j5ʯ#+Ê3‡ “Y2öª¸¤é–)W_4E4+\>ƒEUÀÍw“Lã ÃL¡Ò“˜KÒ0ÕÄØçs÷8x-ÜKÄâÑê%¤ D1e' ÷³¥¯d0Âfd9 ɲB¹*«Y%¥ß˜pmõ5_™A ÊoɶTcÊkÒ:¤¹/ò>,`Ú”v†Z3ÄšÙM‡rC×oLíÿùGƒzˆýb "±äVà÷Ï;?¹5nÂÉm^ÜGË„˜ß˜ºRYͨax|o—)ú'ÙŸ¥Á 8D¼Ü ¨ÞKHÄòTus"HCaʸNÛ¤¯RÈì„"ëD÷®×˜8Eé5ù»WŠ(ØH'rn9 Øò]/¦¾ à®¶ÈjÌÉn|û>³”µo`ÈÆâ¼o¡`bDÜf"½ÁÒÄÄ£’ ëÙfñSzË]ˆWÖèlU\GË[¶ã%ãtílÒ¡Ԧ櫋bÝ¡ì#Ø’‘Ôy¼«ªçb³ -òZ«Â+òWs¥6=™Tªò9ËoO< È¡-ý`Œ“øÍŠ‘šá“yðñÕz ­ñ¤£þ€Ý6¥ç£±Õ‚ð825W`'w —à–x eŽÈdêXB6Å~.–Æ”" ¤†ôÆzv~u E+Ë5]aŽÌ×Fw†EqM(¤=¢kx±A‚RjM³wpºZv…'4Zd“àªý´m¸›Å.Á_c|‘μúÁ!·]—Jç_μ¬À¿Ü:#'ò“QÞ²0'äÜ 3ðœ¥gV†ÿ—;³¾™nï‰]1ýb‹°{úóMó}öågtþî¶yç}á–eï•´O=Š<çË…lÄêáÝ2¡Ã ‡9n ÞdçlŠEŒ“AŒr_>ĈàóÉ*w™ˆ»¹Cɘ™®ÔaMùN9y˜ èÿ¥Þ¼;‰Ô ›Gi^-–ìR/~g)rƇà,˜Á¡ÄŒ–ƒâdÛˆ±0c_À÷˜8µ^íNôüúÚ —ÀZ¿‰äÂŒ¹èÉ…?ÆFÑ)#'nWcÁKÑb[24^†-bii’te0,B7Xö»TÓü¤èôä±O4˜¬A_kF?9‚A:²x¡¶\_€XdÙ>a4ðœXMç)Eõ|’ë ˜«ˆÝÈIY&MëµUbâ9‰ ¡™˜‘£‹Ã¿ºPÖaÿåÙÉÑùe-ú6y7OÖ ³!^r56Å’ß¾8xù=±†—/Ï¢Ë0K™è×.äÃ9¦w)‰kô±&2Z+ŽÝ€“µîsÏäêÜÔEŒ{‡±« \²C—XÏj¾}qôXzyy,ÆDœBÓÙ­EêµPŽä_“ì[ÜAàÏ •o‡°)RôŠó÷þ áů&´"–Ú  КlexÙ4šŽórmTh‰6 LÚY/cX°Î±çxMº¯OQtœ¹ã.ÅÌï»&ä“ãv%:`èúñ" `ýÒóné´á(ÀØÃ£5Ó•‡÷)©•W? ƒ‘ gìy2²òÓÏñœ *“| õnš[Õ}ƒìN¢»º!¨ÉKßsª^‘K}Ý‚a3Æ)ˆûpiŒ“˜É ¹ÑSlJžŒ¦>tÁ ©–w‡ÈmÛ䈻S‡ÈÚ묭¶ }‘È(ÈŠ:Ê2»ób TzŽð«±t®Zs¢±„Š)¹“ÜŒån¥ë¤ÌåÎd4Ú_•ü—GŒ¾ªU) #Ô,­á£…{P˜H§PE7 ï8°#ÎÜ\3sïèˆÂPdؾeü1T²‹7Žoz°óz$VÕò”r±™õΰÙÕ¦e[‹´Š>=ÿêp…Âü¤ãÆ%Ñ/y ÈJZP{ëãçYœ¹`5þÈŒŽìàÀN,S¾jlm¿ÎÿÆR“`ýjÆ")uq¼Hb(P0œm«/d&<êgØÁvrÉÇîÃ-6g¾þÓFC1±|±¶êyf,™ "E9E6G£7 ³€öŽ™€'”‹K›EeŸ!Ëbd+ÚBh¶¸]aˆÍÈ1{ÿ #‹1LY"W}bQÅYRp“Ìag¯¤ú.ÑInæCl’·ýÌÃØP^<7­…Äàò5„Áº•¦%GÍ³ÓØIÆÆÐJ6Q;Wñ=»Ï`Bo`’HN<×Ûi§iHšŒGT PÙ¾†¼ ÆWE~™±ÄŒ8‚…]äø6˜‡ÌŸ„AÇ‚¨Ì/x¨6ØG¸Ø”†£|ý»p¢§D¼Y¨žàø–&·4ô‘íH\5²¦h V£±¶¡·Ñ0Ê'K}ž¤ò™àzà™¥ïKˆ‰jamœ|ÈWñB­¡TÌðGöì„)`GRƵ ){é©×uùaÏ\“)øùùÙùóó(zõMä; þ•Pé×WoÐÔÀ>Qðí¿à$œ?;9:<åK~ i@ÿÊw¨RŽ1–²ʈsFoÎGNb5ÆEòðꕹ<=|~ô-×J^²øé ÚÙn8œM~z<;¼þÄ{½à=ûY5‰Š1ìÈkUÿÍ:B ÛÃ)D€4Ƴg –Â>±†²¼O?«V¨ôäôðøìÏ\)ªcŸ_àç£Y‚HvºzÏâ3JÒ…ŠË^t@ëF´'ÇÇÇýn‡iL —4c»[¾Çb²¹h3Um FµYj <¬#ǽʋ„¹¿Ô\à 8 M>¢xò°³HÅcà' ö¶ê#öìôÙù93Æûeóøf4ãÏcïs&öCú€eÜ‘@*HäNJyTe7ehÛtá8z“ùuLÇWîÄçA•²1X†4žÁÜÜ´íÂÊrÔvÑòüŽeN‹ÜS’±ƒD’èV péÇWX!¸¯–ï”þ»+Ài"‰DQ›H%‡È^NÉ1ÒÚÖ ëÓIÕ¢CÚAaþ×[¿ºxy\ÇC#O÷V’µëOO/ë†ÝÞ?ð`TÿSçxªûØ-ÊÖŸ¡À#D9^€FX‰^¾8=¯E_¿ü:ª<%$Ú(Û<æ™÷Yû­Us­õã?Õ©ÞúùEÝûi“k*2 >ÖÍ;ßt(ÖÙº>ù$;÷Öð±æÒ- Ô±¹½•@i¤ã; 5«² ©}·4#âA(z°FNßænEØA°¶œ|T8Ô|yW‘Ma£¬v”ÈÔ7¨Pèâ‰EîæÊy‡«Î)¸Œ>W ótxytrâÍ Úbè¾÷xÕ¼¤u•WÎQ¸x&|Ç?D¦°&6¯ÿ&ǘˋ£‡¡ŠBžÒñ;°GË;Q͆벱^5ÆúÞq¼ÔX‚ ’M<%Žæ¹b‚È·)€Ñ –µQLÌ«µ4Ø šnˆ-e`C¾2ñÙII¼‹¯P >šÿª"%¤ãEÑ+—t ‘˜S§1ÑÈã 4²…Ô4HÈÊ"´]MÉ!ãë†O™‘° 衬 ÷/k íII«Ä#«Xܼz™`´\².Q°¬(¾ÆÊÞi4[©Ç†£/#i첋–î{ñ¢ü£ÀCùdð˜Ë„³ެo¦,?,Ç·Y ;¥<3Ë7ôßn}Øktzlj.aïEÀž¦7››-å›õ&ðlÃãƒ6”Œ›jÛ—oÕ)Í“‰œ÷ßÖ²P÷°Õ€º}Y—‡q:M ”ˆÈìu TEëîÔ¹î tÞ¦àSèü°¥néÇs\/Ën€BÙƒf«[§²/1!΄#Á]„Á vÎåÊÖ;êÆDË\7ÆÚVµ”m×;Ö uü¬û¦%H¾³p¥¸ü Þmô=(ßÏ“ÀsàÇjjù’ñªÙèh3 ),þ•«„UܲϬ#[±ûúÓŽ×k.,×0y»¤ä$­Á+Å>žR¥ ‹\(¨ ‰+9Z‘·VÓCoQÈí1ö§qò<ó‰¦p*m—OŸŸœý¾ÙhÔ©_Ï¿Hß(…2: ¿ën‚ðªu:ÛÖ–“Ï|2]QÈåb;LfYeóÄ9ÛP<ÇÉf®þe œ„ßBR±UV-o# ¤,« ½ˆÑ"²ù qÂ‹í„ø”Š-³Š.l5ÜèÛµB|üõ£èSĤG©li[䘋(õ«¬’9›ßíÅ¢´¨jß9çwŠ§Ò–xÁ%ûF[ø=vÆ–»är-­pL2âéÐ;¹HW\O^òû%´'PsQŒ´ÛdÉAÊI)4‰o(ߺÍ燸ÊOèß*¦|‚½|“âLµÎ’Ӣě(\»DsY‡˜Œ¨nímê«Rã CjÐc¼›µ†‰¶)äÚP¡ØßBÒë”#ÌÇ qýwµRbÙÁj@Ǭ‹ÓC/•°a…±+Nr2F[ÝöÝÅõV¢I„ˆ¢¯¾ùJ*«DͨZ(v^,Ö*)v\,Ö.)ö¸X¬«–Ó¯UîÈq0•èëK¨’=®SŒ Œâ· å¬_oHmöUóaåf{YÝ|T2ö©½š&ÿŒìûò§êWÆs¨b. 6ùW•ÒjªÑï#œÌ?D¯Þ%3Zý #!ûÊûù+—‹&wp=>ŽÿrxqÙ„2H‹T†IÉ»EÞb§·”Âá/N_/l¨$­aš £Z’¿XKdZÏYÒfv|€î–¯Å—y2C(›š¤]dûø÷tåðS»8î<ÄPUÔBÉaü*KäR¯í òi7'~TJš4nÕT¸I¢CÏ”%°sÓÄù!4y="²JT‰œ¿*…(u2Z/ ”?þH_ܱdLó~޾úÃWÙ‹©Lf/!¯)™b_p .¿úáøû«W v­Oj‘þzræ~ýDó•E†¾ã<)²Uê:† VMƒ ±(îáÄ»P=ÌϬýwÐýâ:¡ð(dÖÕ¶+Bù²š)ÜÓ Áµôo´æ“˜±…-–Ö5Äuæ§ÐÿVs ÔÉÉQ“yüÞµf–"F6 såŽG¼öLá°AX%n}ïÙ“[“ Öbôä¨)°ÍBF2‰õç×ÍmLìÆÁ˜ vFk Ü×2M•±.+žRÕíŸOví­P—ÀÐ| jêæeÆFw˜›o_¼8ÌÇ]Z{8ÑìÇéqþð²ßÿäåM³1({r‘TÝavT4 ë#­“úê‡_`Zí¬šÒi}õî‰}õÃþ©å2áär -ÖóŠNƒy¶ÑþðÉÅåÈ+Ya^ÊfEÐü‹³âOŠ£JÅ) )V錄E‚ùˆÌ•!thkr0ˆþ€^¼|õï=hÛè–ÛçÛvC±T¸Üø.\wæ °ÿú ÐAàѧüPð×mÐga·¯òA ® ?%«e!vß.µ5wF4jb»@sÈsºM]T fº»(Á îY ^DT.¿ñW/‚ÈW¢GßDŒç·³8zÿ•Ä–“š“hž,¦°ëPÚö¼Véº'±ÑÆja·+™q´œ8™DŽgæZæç]ý]£‰Ü_KkÞ§÷óã¢À_jÓU½È sZ7,-ü\½8ËžøŸfy'_g$ûDâz  `ƒYUÂ2ï šÖÆÂ‡ùÉÞ¡šãZä4ʃåófîàð¹omj¾ |Kº òlúâ^Áû£ÀÔ^ Àí½ a dF¶Èi5÷a° M"¶‹ˆ /¨îƒøüååUdAˆÜÎÿŒrbÂÇë8›E9x'08«%‘²°ëFÙusQ°jDYf|—øI³¼Xž«„ïô’·áRÇld,£g ) ¼|q|ôM³Rùµ âñ× Ëí.#ª”X/€ˆ%‹·p¼«¼§)yDIwhbÚ7%¦ý€Y™òÜ„šÏžÐÈÆ –0¼KÌÏÛ%Á©µª0YÝÂ^ùyÀN;=±¶Qv>^®³¯P–÷ެ-Ò ‹@K&… Q2•{á›&«U¸Gd:ÅÛ´t¯{+h|’Pã¡ç,‘ ž“…A˜…MÆÎ3ùi“XVÎ{À Á¬UPËJ¡œöéî8”£g$,Û·b#bAÛÌ–§Ž9WaDP …DŽRŸÀ‹™¤0'ÃPý%Î×õ-’‰LJ"ÕyÒin¬‚i~xzræÆüs+9>yö/TBàç±#\G®!?òàògL…ôàÞu?›ä+µfœçß ¼J-WÇ‹ŠÊþ‹*Ý«˜®Iã[¾k„¹-0?ûS/®­ ÷j!êTóKXô«—å ¼oÊ6z–­“·+˜§únV-D=\Ó•J ÆfÅ‹Tøh"uI(5A)j æ•Hÿ> êÖ£wñг{ @f€h‡gÏ)¬Tä-TeRœ+[çÐÆBKV4ËæÿVò¼ä |Oy¦¹¹NRNbÊ9˜Gf×|¾s2î4>¾Ù„Y\·ÞÅÙ*´C3ªLÿRˆ°é%²ªdÙî@ýïÞÀ˜÷Ô?ŒxSÓìS<…zïÅꈻۧWµñé~0¬ ŒòŠ¼È†$1^ÍžÓ¥ îç Cœ êŠ`5+ ÁLNz¥—Ûßãê?̳mhÃ2¾2‡>uŒ <"o·[e”ý%` “÷"(¸l:‡d™Xæ¦ý¤Ìì•\@AŒ¶‚ˆ‚þç­isº O‹°hÞ±1ìO9Mñ5LñU¶©s÷Ë{‹AOò) U>˜·—-77 £ÄÔcŠj…©qÂà1©sx=¯çhf›É¶ìƒCʯ… )8œaÔ3?Ô›/¦r¸csU8Œ¯n‹ºî’ÿ¹¨^¥[Dø´OLëáëcy·4œÌšÙ õ-F˜Ìã½SNxéür: ý¼~õCæyÕÊOãâO#ö°5¹ŸÒgøíQ…̋و‚³ªÆæàâQÃ\·k†måôVìÖ•˜g„ìz¬Øç&ލåé]°CÍ*ÍÕW¶DŸ8÷˜·n²íE„‹ Å^Ô‹ GÞ¬C!Ï?yìýè<`ü}â'÷@œ‡mwL+È]¿c”xù]K3 ¿ÛxǹUH2í Ä^gì|þA#È¥ °E½“p:U-öhû,½Õ¶oyܦ·Œ}K0ñ7)&°àùÕ8ÊvqîÄaî2@O‘RPa^}ÂÓX0©‡¬A_I4ó¦cJVP+®VÁáh¼SgK Ô^¡€¤¢©‰¶s·hÆÀkëLƒšgŽÄ +ñÕÙWÑ”6æŠ)7oxRÊÒæ«òw¨þ£Y:XzCiüØùdmMw668qt'v‰Ü%"vW ßúqÑÀ‘»˜äçßð1Ixç:Œê,±ÂË8%C®Áë.›ùñùT÷(%(a+?THŒ{ c¥Ãqþ`  ˜íK’J±õSňêœÂ^¤‹ ‘½òâ̲‡bªuá÷BÏÜ5r·§Ôló…rÀFÿÆø ÅÑDºLäcõYó.£¸G4ÛËåp€Ï?åó9ð¯ÛÐ0¨ë§ý¬\x}ݱËù_x¬]ô³Y;S`í ¢e¬Ý.ÖÉõîWažvsOaô†Ýü“ºµüû9(ow•Fëý6›3”H\ßu§9!Â|©&]û l3—@â½Ë‹t·]ǃp»N@\_h×™²*û÷²(ÍaâÑ1eHîd%ìù4~\'ã,Ë5@áþóµ¯Õœ‡o{|U$7’kÙ”¶Q2ì„òùæòB{5xiBpŽÿÜ´¨d+®½“RìµåE¨Ó««èH¾Ì¾ožÇ\fE_ý»ç…Ž#öÇI3f‡¡ï¾ÍŒßÂE©(•¦J#m /TJN?• o&ߎâã‰1*“Å÷,ZAÝÏöاˆÔ–î7Ø5Ÿ~‘01[H¸Îݯ&Úf¼&ÂÂ'ýØæý±É‰<ÅNXñ^Û£ó­;Û2@†ÑñÞnwA*Ú£íBûÝ¡PR•O£š‘O(µ{JZùõ§O.uÐÖÛÀÓ[¸›o×€?•lJ›'ÅK®²m(7ЬrÃéP÷ÇO…AGÑÿÄ !Ù®‘è¿ä#Jœ; Ö¾à˜«/PsÈlæ$uo)Ð ­Æ¦¡±Idz¯•BäóœùjU†`"ÝÇ_×¢G_ÓšýøÓ×õÂ]/Ç”2R# S@Jxn M*3ÏBo‰W¡Ù%uÜe+øë=ö.À²£ƒtåçã“g¿ÒÑ~ÒÑ1òi‡ˆ?óËÎ?ÏNI˜ô_ìì\O·q"úÖ2 ¢ÄgLž{X ´)Œ‹I˺³UsSѲ‚&(Ȭ)n>¯ô¾ž‚G›’¡ò³ ©xØÓ]M¡§AiSR­_úOì_ö'I9&‘³BIM1¶J¦â%OÎs—ŒVÓ³,;NWÙñé,[Î4 ‹H¿-`ž¤²‹äVh,~b»µpf gw(üv¬…áÓÞšGR>ì-«'ûëN¥,|Ø[Vëî¯7Óz³ýõf×ZözoÙk-{}‡²ñ\ çý¥ßØÒoöÏ…«|z—Ú§®úéêŸÎo´4|ÚWøŸ+- ŸöÎÞjaø´§ð˜p¿rÆ,;O˜–U¢æHh¯¿b­0`G'í(- S=ÍÛàgwp½I²›Èc |nlöj\¦SïÈò½ÂÛO£Ûí6.µ—ûG"NÉfÇ{Yo¨üzHL0îÀ:WÙ¡Õ´{- Ž™-Wc™¤Âpžê’2’´HºKP—; Þ5ÞýÛ› ÞªÇ=]st»Ð~ŒÇ^æ‹ð);!yà"§r‘n ‰½8邿—R·&oK–C‡NWÝæùhÐÀð­BŒ1Š”IQ¨i9Ç xƒâ ]ðÃã7©@}ŒÄŸ Ð)wª@'³šì+n<Ÿš°9”^äY‘ëQÅ¢\QOôHWJ{#H® ÷½Ì3–PD-‡´„‹@âAãV!öe®%ëÕâŠR·BÔDÞ'YÁBáše˹eFÒ7ž Ø/;M#9nïW6ŽptõúM#Tþ—0ŽH˜÷_Ú6"ãõL#Št1&MÆy†:ÏH[3ZTñæ\í)°¹Èžâ™Sà'T{VÑBõ«Tö†ÕÿBAï ÂY š! %3{Ál’$À cDaÖ±@yüá;|g|ps•P>1¶-ÓNqñÓq‚]¬ÉDÙ>ñ·þZ\I‚òÚ[{„ó¾/¤Õc¨x"˜ñ‡á©Ĭ5çJ.%Q5*¬ÿj+b4(iÌù5Ë ~þe-" ‘ŽW›dóYh#Û£œÕf!瘈0É$bÍ,Ã+áö8ÁeK¬\ïÝŒkrzø ÎʜĊa¨0&\™Êº/}²|^ÀÛö5p'n“£‚pÎdÄŽs« í„xVÏ2cä?@õ³q?3?Àp÷Ç¢gÖ"Ëçy¡2¯ €©1Âa3cô:Ï Á{­à±ï º]ÊŠ=˜R^Ð(4î=)kÜ“PÌvMF¨l ™ú‡È^Ff0ßíÃSú8TŸÍJ©—£‹ånQ•ãÄO 4ã÷  =ÅŒ2d5^2N(Vú`¼,ÚU[²^%O2` n?ãý æaåQYå¹q×x,¥·¿ï(ÿyq´×>g ö¹^4±{X‘ ; `0o àMyˆ›7X¡l5ú…Nû€Nt±z‹åËdÝÊX•ƒYîàSÄÏ1 šý tˆÜgÒ›ÌSPËO£¼ù=½)(Êùç»Ùa•Ò˶ša¹`ÄTO04N½å'QËŸçÝuƒ÷7«åÕø!0çeKceKº¸ Âm¹âHx^\©£||“&üá@ŒöBƒR‘Üëë1þp²~Gxhä 0õ‡ñ•L×åI¨qäõåo±hÑ‚Lóuqx´Y<ŸàãNQÐ/¸áŒ ¨B 3`*E諉b€Hhg$å„BÊ­‘¤pÒ^àóš\sÉüàç5À ñœKÓc*ñʲüĉ"|¢ZÎFî<ïy`È7ã Ä[¸vxt½mÇÇ#ïqŸ¾½ÁRNÜÆªKƒ«îYCiýÃ[æ; ùÅLQa¬žbìõö¼qÛ߉ A2˜½¾ôjB{ùUf2åQ×±šYVÎÞU©%ÿ Ÿ(´èb'yþ‚·Õ›Î»ªˆÏ?YD;Vò9G^ð*EÛúw¤ôÄR5éBºØ¾èÞraõaˆÏíÌlÝÛ^=Þ_ÍœWŸõreþDS謭Èc-nâìù È$´EJù.¢”J€W;$›½(Áß ³fc–»À9c'†ZzÝÕEÂ!ç¼]N¹ÖVÈÄÌ?ø6boWÇ7˜9Â{ǸÛÖYBTx(‰ØíÛmNÔÏïš­m{žv´TÔšÐÚe¬•ÜýÊaRžå} ¦'\ýæ9¶± FÃÿéœJH(´†ëÏ«aT¬aôësm¹;É›;ómáÕåÍÆçÔ0*Ö0úpn;AØbìŸ^ÉÏV¯"ûç¨WŸ"ççkWË0MµõôY°ààÍÏ+íŠâ,ìƒ.;Ì´¯Õeá};Øx—_Dð(§Rɦ Æ–ñY ÇÞ- ÏÜ{YñYÀàeoÇùçAPÀ]šà­,c4…g¦ÐÉm\¨vÒÇ´xÖÎI~#b˜,ÈY· ”öÒ¥Ù±©×iP)T‘gî 8j¸„HG¾}a»Û퇹-âì“£Ñæ¬“,û”Ľ僜„’“ ãiÐ)ÊpèM÷(Ã5ñ‡¯å6ÿ‚–ÛO¦ú›Õrc(;øÿÿÎZnl«ß¼–{ûÅ„Qö,Ò–L—»|„v­Ž¹Ãêìó,r mÄs“Ž;ÊýTƒ—è¸ùçŸøÚÝã§÷Ž{a³…ýênLÚŸ1SYBÀ«œ6Ébà2î¶ÕQt±±ï”Ë“La176©w%Þišjè¼$¥ý½eàá,Ò“ê"ÂDé:HÈÆªÙÇý8.‹@4M–XÙJ›Ã•ÁC×!â$ó5ául¯&½<¬Y‹Úµ¨Ãû»W7wG;Qs8‡t;ªü¥ß¼â^¨ùÇä82rP ~Û"¸xuä9>ñÚú¬:òœ¡8s}^9îQ|¼ŠuüReɼúÒ\øÛÝçÕ¯cñ™uä™Y^ï\GŽáõçõ×ME.½L„_¾pó«dä$K—ðÈA¸Œ9Z.à®7½6û ƒ"\0¦ç´èv «©ËOÍ ó)¤¤®¡Ã·:PjFˆœä™G¬¡ç%t7Bê¦+±JèÙ«^•}b<\-‹d Œ› ýÏ †5¯6«ùÇÙz}ûèáÃwïÞÕ¥Ôr5•8?sõñ,ËÛ„o¤.SQ’nÞHçÈØ°È ìŒy”·äPB!EQþIGˆéeê T6OFiRù¶¤½€lbfh…fñØFl ë‘›7È ·vi Ö”Rf±^}0ù„jÜõø‚dE”ŠZ]à³)4;!…ë­^®3º<`‡¬—x-þ×(«oÖoêpcú‚[ýGÊàŠ÷ß=qñ/‰ðDó”|-¢7 ˆ‘{ϦV¼=X/Æœ‰9Ç,…¥Ê—µ( àΔ“Z6W!›…Ý1ºI6Gm BëЙ¢n" OÖ›œ/¼-iÿKæ°ÉW+ääB¹œ:kJJ¼2t¬¨ÍƵ§ØÝcrG‡ÆUD¨ËM†açP= uL‡j•^SÂHJX';*Ô/ÙD>¸¹â[Š÷ú>Žfñ-Ü×`ÙâµUbk L‘¨A¯õ7´Ôã `Õ&É»\úXÜ1¼šÞ%twŸA@Ÿ#É~ë>ËWú)C¶6ŽÆ{7±zažž©@ ,¹NV+¼¶C‚"œždôZSôT+¾Jnng™øôe¹ rS£Œ.V+G)ÓŽ‰Y³0ÉÖŸY¢s¿aÅlgÊÇX¿[ó‰EÇ­ FkDTVé;¯7,IG€þÙr”’jDDßeæ@³{úã6U&ôq¾d.*¨ogE5XYÅ]áìœÚÔ…ÞM³@QEE5pï£ÜB^~{|z}=¼N³Y°LTÉ¡öáÙi~lWò)rºSî–²ˆ.Ÿ@97ÁäÿÆ”…6Ū¤ ÂäSÅ ˜v¤$aÑž„IùQ~åæÍÜŒ\ã´l2Móérš[Óå` x5ÿ_°Y¢R›Ã<¸‹_Ñݳ#=¸[z¤ûŒWÿ7f¼ú¿-/Ôît=Y>å¦ÃÌÓpá½CrÈž¢”#çBÉX†6Ùz %èþ9*Ý`¬—ˆ$Ò§ÁP€Á˜§ÀÓJên±NàD׉¦é}¤ªlÕÐ*ÛuzÎ_\=¼úöó«`3s~öÉ6l¨aô/_¨Q¶á`SPl=¼MÉ®‘¬ˆ /•—Tü,4¥Â¹K(ž€õŸÿñÇ') 50Þ¿%«å×_ÓnøñÇÔ;§ãè\™_]—})N¿š_È;AÀu΀)}²\Ó&—±hÉŸ1p®0Ñ//ŽÄ"Põ¶;ŒÆi¶J¦Áƒ`„F+@ãKÖƒC}’« <.Œ3á¤Æ”¼|ν\°Îâö´wÝ) Þñx¸¾¹…[8º$L_ç=ð`i=©×<ßiŠ-ò>½Î 6c³=\ÕL3&¼Û>ˆÙÝQ« ÚÑœèy<…©Ùˆ'W‰=R‡j±+QÂ(‰W&LO²šŠÞß*áüUÒÚÄÙïÄHÑÜ„ÁÐÖl:RyAXX÷NÅ EØ{°!pñ6]-‹ÁfyÕj®ž¿xrrA$èv ì8¦Ò¡ŽÍf¸ÀÖYƒñ£¬O3Ss\ŸÖkyV݆oZCË7=ÄúâfJÇCî<´ß†}Cî×Y®S:f¾hV̼¼u7gœÜ×JŸD³d]½Y2ù—=~uÊ+x›‚@0ï_(N·Y”(hˆ7WlK•A2RPôT†¹ †•ŸiÊ)¬ôÙÕåŠãò‹Ìëm2w°þnÝ›³ ]ÿ°ñ÷àlH¶ÐL8e¿`ÓSÏD‹²;¹åÛb5ìÝ%‚:mú-œ|aarØ‚ª$Áÿé÷½ê9*#wÚ%©Ê†y ˆ!‰RR’=i¡¾¡ ¯(—Õ_fµ¾+ Ž û_f^2 ‡ö¸Nð&eÃ*.7 ±4qˆÖÎKXˆâ$×!—WøýÙÅóV-äÿ%žËFÂзËÕ 7«™¼É§Ú˜bg%¡™Ì—ïPû‰Ñ.ð3Â7²Q<·5n’1©ÇmLDgW Ú;_¡A ߯º(8*+Ô·Kø"©™€­Ü¼ÊtÔ"²z·tA2UOQà'Ô€›ÅFòÉc(4¬cŒ9B‘,{;ÒK¤¡Õ#dÄ`_O‡hàÒ9“`X#ƒ÷gæÕ™çÍ[º0†'ÃZ±ý-‡Ü1é7Î%cûÑÅá_sr¦_m¿o +š³êþi?çCJ;ŽO½†ùbË|¦°g8âi’à^ªñð¬÷¨Ñ³p¬ú³0š‰ ›>° :8|•(óFwé&à+ø¨!ùC0ÅRK~$TŒ äÍY¼öÁ3L¥GòŸì¥—]ÜËé)ò=‚Ñ”i•±j1‚¸Ó;¿qjÍÑtíû}Ò‹ÕRe+6$ñ » ¦|›T¶×sÜ3+9(aM¤söAX"`¿|.éÈ!ÓÂô¥ãUŠÛÄKž‰bsáŽ*ï¾ýîð°á¿ÇÇðïÕÉsüŽÜ=~>>®¢1m‰@vvƒZ=Ú@øûܲ™²Fb² øàÛÚÆ¥í ³0’å V‚òüétx¢ˆ6žqcÆ6[;"J€;SB­a²Ðgƒ·yem7‚q2›sø‚Î &¨‘³¢Sh5þÁ(•@í?ìq¤·[¥ÔØ*°*÷³»ã5…z±oˆl¹<æ©mö÷ä€V£„bÿåújX^Ô¹{sSߦÄb+Þ^-ÖÁwŸòfóª(ƒ6[·ÚZe ŽÞ%c³Ä–ŒXw`-ÃøäâÏ ý]FßDØ ™ÝmªHb«$x‘Úkq*11j“ó꾬ÄàX:<—Þ,1 ÚG%Ö·îØk§ë 3ÎÃA¾”Žj½sà#Ò׺kÌN&î{¥qPSÙÌG«øÚüõ ³W“—7¬ »iŽ%ú5g•(²Z.I|²Üέ­¤î§ Š7ïa!¿¡üÜåéáãÃ'QÆð„>R.=AXƒ,²Vkc®1×I‚£kÿ1XEœP€®§µá+†O³o5©{Fw,Þ‘ Žs†ê«èÕ|9ýá#jy*¯`f«›ÚΧêWèä9k5 >ŸÝe›öÔº¦À<7iVÛÚËA'O+Ñéù³fþ9¼xvUëÏ®êØ©zT®¾=>3+)º|~H ôË?]\Uä[Õ=æ÷õ±Ô&Ïž@S&F‰9gÜ$ÄØØoA· ÙKa/— SF6ã²î{‹ãˆ¥¨ÏÆÿ ¤Ýr1¤‹·ËùÛ”3j—üÞ;~ÀŹUVr^DÃ"f[#µÙ¹e( NM-b„Þ¡ö½XkÄU„–Lا1Æ{ñNvåÉñQôçÃï“@1WÕk<¸Im4G4!y$±Êq??\¢~’¿ÒªÃ°þtuñð ýƒ=yruqù×S /ãUÄ£Á% s¨L³„•2F#Ç%¦¨|×ñxþA)#ÝVŒ%qŠeIåêÓŒ_Í‘CÔlß:+Ææì#z”`ìKû0Óx|è û” çiòÖ1ٕЛíïj¼ Å©bÁ5+ñcx|Úù#ñ<¹‰I9š %ß;â§Pq9™hF}1óÀ1<‡ùùVÈh)¾Æá¡EÃðÂ&«SÜKº0º¼D&Ÿ§£Õ6PtrB°ˆLp0äY‚”ŠÂ³‰ÕõETgÄ® {™£Âá!º ]* ì•Ó³V oŒË¿ò¿gæ¿?ªÉ¢í÷³Cþ÷øŒÊÁ^3æõ È·+q¸] DRWåøÅeh þ5ê­~¿Ûí=9höÌe§‰'ý†!#¸Zêp·<³+¿&1\¯ý9eHò>E‹]ÔîÊS$†UsL1@5ÍУèâ9,á7Ôßf·ûä¾9ÕŸ¢¨Ûnµ£³“³§çô½Ùk4¢ïήðK«ßë ¼úhFƒúÚÔ×ñêkvûÖ«¯Õë·l}.^Ÿùè|¯rî·.YÚ‰\ [=-jÄEdÚEG9=9ÓBWõñÉ%Œ÷òèÇb½+|ã%ÿ*ÔÂÇ›f,£û ö8”H(w‰û”8­”Fuõ ,ˆÞÀý³í‘")¸Ó‘ßéB×ÖÝ^&qÊvAËHú ޵!D7©Ëžq Õ:ÈI4]ÆóÜd@ ¯QȪñVË·‰ðÕÜ"ÞÞ;Y1hRƒ8?% L»ÆZ04â>AïŒ@ïÈ å ŒÀj'^Ìß&gµ£–;YÆÄVERÄp•ßÔï´}tµìæ@^˜Vµ·†BeÛ› ï@Þ°OˆóÑ`H\ß[%FÁ ð9=¡—•‘É÷t¤…½Æw É°¦LÙçãZÕÈ>H€â{É'pssƒ&á)ù\©·“-8ö_'ñ€ŠduäÚL®¶¨´¶H©{Éu¶‘fÔCk¼YqŒ}òðs3àj«ýµy5Má£Ã³Ë“èûv}xÐö5bH€ÌÔ‡õv½÷ÉÅÖYX|D ½å5ë‰!’ e¶*XµDŽd¥j’Qú5;ܾP—ä€hϾ=9;>@‹ñÉÓ“£èÉÉSøçåéÕÉñå'ó€„À“ÇÏ={­iò,§ ´=Á ¤d'×]¸A­n9ææ3h¤ÅådMÊìõr9'z´ÉG1ÖŒÇD÷¹wšÈt,7×þöô©Ué ž°{×ñõ5z1Á'üÛéáÕóóóèÕ7.)Ãî ¯¯Þ A^_|ü,zõ_îÝ º‹¯v!ïÕž·JP{Á[§‡ONþ¾➃² ûe÷ŒêU0#­Ÿÿjûî¯J d·&WžY*‹þöäüêˆN~z™Ÿ®¦ ¡ÏÑáêÁ`Žv·ÜöP‰xMø¡Å×löä\älßÄ÷è®34Šîq:-èÞ“¼»6Á¼ŠÇcDã"ÕÅ­üq½}ú(õÓÇÇéõ<ÅÕ»yY›¡•kÿÁÇ!=K¯É éôå³Oæ¸nÀµèoõèqœÖ¢#ø7ÍF³å¤ýïzô$j?çËÅoðšÁ/›èhµü©Ö£g Ä-®ã \x—õèÛøæ&^±o<|>ú}†>Ô <;GSé*Ëàª'õèr ÷f–@Xšªä‘fåëèÙÄÇO5ô\" 8–Tn/OŸÃï/féxÜùí,áÈ:Íá°[÷û—³f/-µŒ(×t[oöEæ"ŸIå Ú‹¼ú©f^.È6H4øÙúLÁä^ †ð¿Ôü6!ž·9 ÃÎvš¹¥ñ{ÊPí`&wv¾Ó|‘¬E!Ó|z¹‹öôwØ:hv›µèir½ÚàñƒÙmEDƒ#Ï÷¿7@Zá§a5D÷“¹ÃNжî$“ÛIùݲsЯ~×}DÖ)NM«t$Ç{¸š.a€Ñ™J¡§ñõ’ÈÄèÃÙéÁ`‚+î·Ûµ]¢An?µ?=0ÞЈð·üîN6Û¢sQW«ÐÏ8¼‚ŠÀ;§Þ|'?¢+´%„½±wû{q>Z/Ëvß÷ žóÊ£û‹ ¬À·4ì9Œ.zß’NÛ_áS:æõ<ÉÞ§^3ðâw1ܨDþŠ_„&|ßnVµèy©ÍsÄñ@™Çu|ûjìíú+ø²AU,=<üër)žö0§O’,¢y6°P¢v© °¯kòMDOnÒ÷þPNކëÖéðèytG†ÝZÏê4­u˜ÓlˆÖ£f·upÐjtk¼í[F ÝŠììam°3¶îðü<™ØCìmpóㇰåˆy²·sœk+±×çS8vS®%«¡D°¯çÈL65šýNõh†§µaì=Ïa·¼€³gÿp3E)h¸8Ù¿Þ˜™ç˜H3:)®zSþsæfp€ËûÙ“sõü ÙÖ”禵cZJÈÛþ´À½³ˆŽeëê©9ýËl‹Nq[”Œ`ßêþ‚Ãø²+Ý‘•n·v·I·Ö)ü/~GDè‚莌©üð]ºÅ©d4yZGBõôe†ãÝ7(ºwu^¢èNÝŠÓ~Ôn`÷ÛáÍÔjNé<Ã'?—#’Ê>™ÿ¸ÿûoö'ž‡ízëáÉÙåÕáééÃ9†e¬O¾\ øëu:ôo¿×£-þn·ýMøkô›F·õf§×ïüGÔør]Øþ·œ£è?€ÀÀ¸—Ù¶rPlòçä·ò'6éóg'G‡§ÎÌ¢rbtzyøü¸Ìsô8ªšß›ßGÑÁÁvÈAE‘u°¥ªPËÃ2Œõ¯h;Šç)P­EG“Õw˜ã<;|®ÇõºTb%`‹zÜø«¡æ9:õP¿‰EýèÛËã«ã 76‹}™ëy±YÝ"œ >~Ãü;?Z%ëÍ Ä÷úÕÅK›Rèò¡‚§)ˆéœãöÄÎëÄÉÄ´œ`% > úl½–´-¨“³-Q¥ªëûï›ôøñÎÇnxœõq.K´Ž6Þœ†’¬‡cîÞ7_âÏ_˜tð]à…õÔê@ìÚœœ]]Ñ99r?ÁAyK£õœF‹—9¬áø™¿¶ô¬/ü÷q-úÛÑù“ã’ÚŽ],®K¸ó»g´çtû ¤Ñ›2 ‡Ùã  ÚßÀ¤×ÿT‡]%@¸=dÇWðÿÇW//Îlg%C]¾<59¶K¦Œ\Ãñüv_¬Á6O„æiÚ*Ñ×ûZ(¹,¡_|ìûׇ_[XÇáåÑɉ†Çew Ú lOz“H%Î½ËÆ¤ Æì‘ˆ%ê Y0€Í‰œüö÷n=+ÐjÕVì0ZEsØ–ªý#g¥u@w=McsáþÞí†C7pªîÁcïÓ1·R4‹¸~ÃFT?öËþÐlµÞó{wÆxâ8„§qt !Ý—‰EgÙ>ƒ±åV°¶ÕlnoÉù‡—É Cz…£©?;®ûQýð øBúáôX:¥ƒÅ¢v«ðòãü˃—óËùemûøôò8œ“V»Ÿ”Þ°dRdQ¶ÏŠøRÓÒl óóÒîSO݉ÓMAå;Ý|ùn{Wù^+_žÆíÏû¢^§|ÞƒÞ=ÞٻDžÞ=ÞٻDžÞ=zg–z·ca›ƒÜ¶º;ìöZÉIÞz\5·ó œôÖ díïºä­V~ ¹Çw; ÁÛƒ·Ã³ ÆP<þ¢džÚ…™ÂÂvŽrtýxA¡íè7ýgO~›ÂÑ6þ­¿˜°‡ÿ³™ãÿ»fÿžÿÿ5þx{¾¸8vqø<º:¾¼jæy|FNý;ÙûÏàþšÀûµJY>`¤PÍV‡¤9ðzv¿û,x.‡»ÐÊ—bww1¨Rê †¹afIæK›lzÌáá׎!jy¿ÇÞïH/['M$ríVÚü—‹“+_‹~ϾVBï7þµwálñl¹8(yïüéSöûuºÒä€K§¥¨ü\ýìüª.‚+ŒºÆC÷Yq×!üEU-µ³’øN•Ä[+‰ïÔ“xwOâ;õ$.ô$Éã]ït$·¾}§÷¯ËÞïÔ~¼µýøNíÇ[Û?Ç'÷½/¥JÞˆOÎ÷½/¥JÞ_Þ©ýåîö—wj©ï‡ïëˆAÂamü5žÚ7OÏ/ž^A#ÑïÿûˆÐ§"Ûr-:âúuÍ~"_’úÓC8èu"!ÔøÏª„Ô*_ûn¿Mnéÿ¾¿þOý©ê‡§/¾=ümìÓÿvš<ÿ×ëÞë•¿ß}?ó»ÈE"|cð;^t·?¯’ZôgÇcÞñu[…ÏC>ãe¯’/2#…PlÔ»+/ªÜÎã5‚Ú"Ô ±Êœ„ƒ* ^!i Ê2¨30@µ?ÐáÄ:ñÿŸ«ëV‚ô÷êâ‚UEä?éŒ~^¢!R^ |6%ÑA1Xl>.*,ëÙ9T5P6úáU­“PœgçØ©“ç';$óBša ˆ¨|¬#[‹`e`ÉŸ³¿~¤ä:¯¦X+Ñvðçíý†Ô‚Yœôû†êÆ¿o¢ƒóNt0¹MšFOáǯ*ø©jh¼TÎHï´ÛÃoh•¯Ò›de¡Ë—ÇGçÀ¶Â>ÃGëhƒ…Ÿˆkö£’‚6§dLÎ:n+X# E¹3øŸ ùüŸº¸ì}÷šøGWÒÊÒÌt"fgÝŸÑ$ se£ Z„Bv\—æi®M§F¨_‰‹›C9‡r:‹§ö#y£%Fõz½ µþ ý=zñò‡ò.{O(]«¿4º#%š€æ5lŽf=;?;–D$Z²Öµdµm݌编ëQÃï t+ttHbì¬ÔÇ‚<µ+YUÃ%Ðy½Þ¤sʉ¬y*Bp®4tº`òѱDçH(þÜpÌNOP»–ŒfK<{‡GßJoâ}{zzøìò›h´2RŸqÜWþ}w…[„«¨BÀ²ª]]äB6@½Žá*©0ÌdÄDnž¼EAëD~m Þ˜ê¤>ØGÎÄæÁœ`5//¹Hš©_F†iÐøÿ Ô¾ò„ Íù]äÿ´jþÓʹõœçæÉ Ö½ó .õ ;c«à{ø~>ÌNÍ L/‰^ÀÂ:l¨í*öÉï<ô¶^ÿÃUÁ¬ZM0>ÏøýÍÜ0 `GÉì©{çêù3[+<^ßL¡gî1'`²os2#÷øX\ï1ÌBðøßÍ‹ý;þvñÿJÎÿÕ6öñÿí~/Çÿ÷z½Æ=ÿÿkü}n÷žÿÏÏÈ/Îÿ-{ùý=ÿÿ¯ñÿ–a ¥€ÖnþJ4|@kù­¿û¿S¸—îå€{9à¿—p1àžãÿwþíâÿ1bÓ—hc¯þ¿ˆÿèv{÷üÿ¯ñ÷e¸Ý{þ??#¿8ÿ‡óžýÿ¢êÿ?œw"L4SÂýGßù•Újˆc.ro¸7Ü‹ÿ²€Åï…€ÿ¶BÀÏ1ÐpîEƒ_üoÿrqò}¯ó¯·±‡ÿï6;­<ÿßï¶ïùÿ_ãïËp»÷ü~FL>âøtô:÷RÀµ#˜Õèà&½ÍàŸU‰Tds§aê4Éœf~ç¿7¢ƒ'Ç_>{„G«ôvýÃh–ŒÞ@ÉèØÛÍÛòjÊä ŽyXîÚ)ÿŸß©âÍçÌÿÞÏï̽ u/HÝ R÷‚Ôÿ¿©;ÈQ¿»¤îÿ>ão—üwÞúî‹´±ÏþÓïô þ¿í{ùïWùû2Òνü—Ÿ‘_Kþ3¿ ¿ßÜÞ‹ƒ¿‚8J~[ä!X‹Ÿ+Ù…B\yÝŸ+ …²Øö>ßËZ÷²Ö½¬u/kÝËZ9ªTºúiæW Û.þÿv:»ý,ï^üW/oÿé5Û÷ø¯_åïËp»÷ü~F~qüÎ._ž=qÏñÿk?MeÁüùb ?àÃx4ÍÞìó )”÷øsná7ârÏcßóØ÷<ö=ýÛâ±ïjÏH²ìÞKüËýíâÿñ6ømìåÿ[¢ÿGóžÿÿ5þ¾ ·{ÏÿçgäçÿñpÞ3þÿãÿ~>)¨úÿy¿¿In¾9øŒ PXÏo„¹ÿU|¿ïyû{ÞþÞ÷ûž»ÿòn÷Üý¯ü·‹ÿ¿|vÒýmüŒø¯Ý{ýÿ¯ó÷e¸Ý{þ??#¿<þOç½ð¥ã¿Þ ±s6×Ê=÷Ïýßköïyÿ{O…ÿf;ùÿ—g_Àûûü§[àÿ{÷ù~•¿/ÃíÞóÿùùÅõÿx8ïÙÿ/Ëþãy:]Hˆ8[ÿÜ4%5Ý‹÷bÁ½Xpo¸ îƒßÒß>þÿòü´õ¯¶±×ÿ·Ÿ÷ÿíµÚ÷üÿ¯ò÷e¸Ý{þ??#¿ ÿ‡ó^ø×e€Ð™Xö píÑÁÍ:|¿*k¿€Køžƒ÷ç]ø²Aß¼`–ûØÜå¥Vþ¥=îXOèl;™“C7_y¬_ïÖ•{aå^X¹VîmÿÿUî‚_ÊË*ïçéèhè›l³¸MV“€þî)òï•lJøÿçÀÃ!ëöÅxÌ=ü«Ùþ¿Ñíõ¡P¯ÑGý?|½çÿ?åÕag«Üg H~OŸž|| ·m}Õ'‘;ãQDäfӔЧlßÀ‰Äc÷1KFK¡Lcø¬D*Iø¥·ÂÛc+ƒŠé_hŠþ]gëúÒü?_U˜±©FüIÀK¯%¯׳Gÿ«à_þá. ÈàvÖ`ÜÐEã|ÉñÛ’ÙÛYƒqs ã¢øªBc»E¿Hcÿ ožè?ÿ~röôü°†|}Ò%ü(Ò—¢Ê®B¸?DºòÕÿÜ7)¼¶»›7néaVè_¿(ÿòK÷T¶ÞîæîÌGÑš>ì])ÞÆZÖxúQ”Îcø M0AÿA`H|wÖ«§b{f4OâÅ#óÿ¬nÿ=þ¤›ÓnôIôG¨]¤lˆähe}õ?±­¯þ—Û—ÆwÉÔ'øF®  Á+÷ï&g÷ŸùWrÿ/WÓVývëEøù»ïÿN³Õkàýß„Võ,~ÿÿ þNj˃Ãñò:=ЈŽ_\>ÅæÁƒ£U¯— ü¾¿OÂÿ¯—·YÏðái¼˜nâir œ30-øéñr³@¹äñòý£¨ÿ×m5¢VK?YŽ67Éb}¹¹½§Éø"É@æ%Ù£¨£àR…BÇ‹1ˆ²X,ÃÚ’iºx±ZΗSý¦o=B‘x„‚öŒzBâCúÒïFãt´F¹„Ÿ^ã›æAôâÉÓˆ$ƒx!œ318¤'Pö$„¨ÙÅWè·K;o£&ŠÚQD%5Z æ­âQœÁ„$ðä!´~ Ã'oÓ ™«„^Aâ^¤NpÛ̸?|Å©©ä=^õИ<8¹‰§8m0oÑb­yÏ^,AX@ñ§)žQ­^}mlBª;}ñcôðÉævž¼Ö«MB>¡ô†ÏF›Õ &™êKè2÷†%>yÿ§_ÒI2ÏóÉMš5v û3Œ‹>EaíïH÷øíÕòM’ûñf—ÊNbh+÷@ÞÈ?º¹÷y¼ŽþÞ¤Gÿõë|º\p¯ÞG³xu TåæF®² ”¢WÅŸÓ,¬ã/ËÕ¸¬Žo—«ô§ËQ<ÇÍ\-GóôöE¼žEç>ºé„½Ï“I+¿?€•¹W,wõuÄ(ƒÐˆ33Aön>¼[ތబ¼½ˆ‹÷ ?”–ûuƒ]-­ÚµÆ-¾¯Þ\Þ7¸¿éÃßy«?¼tÃཛ¸Máüòó'´óŽžÿõ;÷n³JeÒÅ:Y?Þ¾—'Z/ÖCš^úú1ºÙÌ]Ÿ`ÔËjº°ˆQõþCÜÕôú‡­õx h¬jb¿ÑîçÅqzƒ‹V63…B<7Ó Ø»/?9¿ÞÄÐoÍF }C2–\}¸Mì¶§ŸŸÄëø’Èv)áKàô®Ò÷…gÓuö"Y¡ns¹€_(ðm’NgÅŸÿ’Žá|å}Ò È¸H%þaÏÑAúÖŠWj•(±Ïm¾KxÇËM’-çJ=j…Ú[¡¥–æÅ4Çód1]óbât7£äŸR’é.ÌùŽ&ýòI`ɶ_Ò–]M¯u·oD°M‚ò­&R¯xðB• šÐð´»—ubJ¾_r´ÜÞL[‰?]YB$'¹)¦ÂÁ?eÕñÿï§—æ¡0¹%¨7½X«ÅÑnLº’P ˆ×' ¯3CœöžŠào-þí†p·^Bº 2D+‘'aI "`O>=y-ðâc売vlðéòxG™5ÞÞ÷Î2|çÓ̪iì Óe{ÙêÈš=Uäëéö_ž#ú}>mS¯mOŽNžÐ2­”§’´ÉB®XÇ«oØ_ÿ?öž´ÉmÙÏ£_ÚÙÙØûF‚xèrÕTã8>b'±=/Ù÷¢­]J¢F´)R!©ÑLTúﯩc§RÙW—%hô…Fw!òÞŸ’t•Xi YL£bk\Ñ&Û7N¯‹›æKRDyÿSÕ>Ix§šsàs‡4/¶²O[æíôt°˜Eãœ}°!Wh÷ä¥Ê¡Ëw*ÝÒ®^—çP ×KU4Ÿ“ Ÿé¢ˆ‹¦q õ‘‹ ÷ ?¦%×eñ8XèÒ·\: „Ç|éŠU ¾¢h¦%f_a z‰öGþ­¢T“tks«ø»{ú ÍÕ‹ý´T“ÃÔîæô5µ Eó@âÅ |Ý.]ÍC?LÄ÷/Ý!æ²÷“õPõ™ªQkáåa¢~wæI÷P½Ÿ¤cµËd»·ˆÚxH´|˜2ž}w­š6>‹±{éëD,p²˜‡—¸(b|tPóô*,R-äFølÏ*£[f6ÎR¬°Íthh‹L!h³ êVI„—È8Nqrjœ“ÄiF½Pñ¿`š‚Ûàú8ÌèrVˆÂòa åÓírSJÕ̼’¢néÛ,ú«ñ¢œ-X™±ƒ@·AEEMglƒT×Õœ`~ÚS7½* ^¥µ-Ám`Û5ðµ$…ž\|$NÐZ3V§Ž–¹Ã½,#v¿Sµ ÖOl¢«ÊĦm«ª6¬wy±¶MÜ¢í¹ö|²æGw!B+l7Änt¤eYR3jr§tã>D7ì ¢«ÿyz À$æN©Û;侯„$^º¼§H$Ñ+E™Ý”ÃL¹ÃL¿ ÑW©NIYE3‡ö¹YRe)J¹_5«-=Þ#­•Øûá•Yþ®ìŠ@*·¸m^‚âÄf£Ó¤Š—b¿C©"®Ê™ ÁøJôD/I÷-+¬Q0+KÕç¢^ÂëneØ[KåÐÆW×S¦³G»Lç¨ÕB“Jšb¼S ×[k¸,¿Îß,h+Þ³âô«æ…YîaÓÖùzÎiGù„©Õn;4€ñ?¥Ë:>Ä(JŒ?ÝŽÒ~pWĔܮ·º 4KQ±’— •{Z™l‰žü¢Ÿ¡ÇV¾í^Í¿^N…Ón›¸¬–±^Í©Kô2ûÚŒƒ(¦±Í ³0˜ ©3´ÆK(¼¦EõóÑIóùß4óp1uð§•¥³Wó!Çî}s6µè§à 4B8jRWŠ¡`Õ#6¶_†`𣌂ÁÞÉe%ý·+ß@viUñ³¢rl= ±ŸœØXh Qá†bíZ”Å¥p¨i%›»øõ`¦èØa™4–“”ªÔhºn§CùDMjŒ î[ŒT{e•IRÆ&6v¤¨?`ûã¬é­‰³lÇó ÿôGPÇÞ¥]zßU÷HÐæ…†½ó¡¾w‚BÎ…÷¯Á¿Ú¾½Â]†!¥Å{ed¿°+ÂgìæêŸ%í]ø¥Ùi‹¦ øSrô¡@Ìš=Îx}…’l :|-ªËú²šBgƒ<§ÿòk|@ñ"¾YÌÊ<\b¦ñ#n1Ó–†™™ÐB¶¥rƒT©[À¬`#F‘Ú=ÁTku‘ݰgfGlñÀân'Þ’QÇlPi”…ªž.jÙèRiW•‚ñLïÒøþÔ8~gaãçx鶘4ü¶X5œ¶x Ø^Ãÿ <‡‹|ÇÓÆ;øWWý¨d+1^Ä~2Q5Dù-ÂixG8_Œºúžìÿ zv.A‘q0—¿.Ó"œŒb™,ñMÅ<ºLä|ZIˆ¢cèÌá*‡L3 äÚè¡8œ|Eå2È"ÿ$ñå-9Nçó@ÎÀÃñEéDæqãÈ¿…Y*!†Èb•Êb–…¡œBÊitÊ<º–9DuÚ¸C‘G&Ðçl5óˆ¯ðVþº by‰{Ä ¸Ä½±)µ ùT~-ŸÉoäsù­|e/å+ùZ~‡.ßÊïåXø£|'ßËòBþ·üIþŒEÿÿ#ÿW޲`ü),HÎ\ûºTË<Ž¢q”—s¹ÄÄ6«Y¤0jÈ‘ˉå%VÍd$?ÊO2–s™È”*•™Ìe!—òJbÚ/¯åü¨…ŠƒŒï,ÊŒöðÏgf.lîðÂ’Œ:§']É¥œ‚6ÑZä ˜è#8š×Xû¡ñ we-âÐ ê’Kð¶q8O sGPÕ;î®i*\%øON‚ËK0\þÂÁÈC ³pbÀqw=j”£%(Œ‰Q—¬Un˜ºa”oÃ’é<Ê‘X1K—4Â5%=†&üüÕ”uœÁxYÀP$‹ŸÆáµdœã 9Ê`Ü‚)‚1J€Í'È´4Ìò #&ÀQ` gËä2È–ó8X2½×ðIŽƒŒ;"œ“ªþÖôô¹¹L³É¼9§;`xÃþãõõÛCÒ6^ÆwD ‹‚ýдÅ6<¿åw|¸|=o‡Á¦Óê@ƒ~k°ÍÝ€˜{Ëç <žÓò¤´¦Û´ú~‡9œ„‹0i2ÿ}R¸–ºé€Ôˆïî…| Ê }ÆÐë·Ú¾Çô9 €aˆw•îpßku?·7ÝÖà–®às'€ Çé2hG+¼ç×m_ôþFVìzÇïö+•ã³ šŠnÿ§Þ?c#'•ƒ¦=$Út<°g‚Xâ1"° \‚1åMTm¤ØôÀì¢fô”ƒÈùÏt`Çq¹ÇÂ;¢ò`èt¹\iÓ#}Tèø]愸8ŒÜ½7òN¯åܹwGäë1w|/l:­¹xþáâÕ÷/c§ÕwÉ|úî]ºÅ@Õº¥ã©ò=½‚L‚vÜÔ² \ßgþÿöXm·].õ<°gç°Äøú5 QpÑ ïöZ="nwÕFê˜ýì‘êôAô[†ju¼CÊ]3éúó\£ÓmöŒfœ=\èEÏó­0ã Ž¦ |í1wi±é¡ÍzËin÷aGa–×QáÁ=è•îN ^zåÛ{Ê´ÁpŸÛU.¸¼Ãµc\¼CêÆmº.ŒÚÏw›€4çÀpð«¼ìrmÑ„F ·G>h·Æy”ŨçÅ>zˆZqU8ßÿý„s0xŒo^}O6籎Æ ùU÷=J ÛdÞ>%«ïqµçvUruñâ9°à4 =‘fÁ@ÕXpQwÏ_½°åt¼~«w[àc˜­°çp Ýö`Å_ã?ø#qÃ_“e5®ße|.øZx«;Ö¦Ûí‚Û=0NwùýG!búÄ \ù:{"ôƒÒÓø~ÞxO¬€›ú`Fþ.ÃDmZoc§OÞızUžGÊǃÑXV!SjÝIäÁà®®É︿‡kò½.Èp‹szõ–|“7hõÔŒÀït}=z}·–îU*®ÿ; mÌлïо}Xo™{Ͻ}0õ[Q3ÈŽ¡Ô9”«Ü{(õw¤xŽYrIH:m5‘è÷ ¤þvZ»ÏŒaйÛc÷žßÑ?Ü9‡g Àü§ËY€6ÊÜ¡Bòv†ý'C@åU6+Àœü‡o¿0ó;ÿí8ÿe‘O£ËV^ÿ^4Ÿÿâz¾‡ç¿¹^§çxmÇÁóßÜî—ßÿCþNÄØÝò"ü‡xÆa‡Âi¹1¹ŠÜEÞŒ#¡¡jœ@éÓ8y:-VAžŠ‰¾t€Á)m-ÍÂ8(ð¨J幈>tá6³ÑRîˆïY°2˜Ä³tqC+·Âô{§ø ~% ¯ÒL¼n‰o‚ ðÆÄÁa6r>-+Ç×@“BŒIÇ› Iš4Y:Š:]‹*²@'«â¶:“”MÒOtÁ31AYŒGŽE žry*Kɬ)ªIS@Ú7b‘fÛ´9Å\¹XY Ø"…LÃ,M–ã%ÓçX10‘…y˜])9‘ƒ`YÌÒ¬EùëËAþ+^òVÀ¿RùÅ,H>ÑÑ™/²ðR¼œ‰G/¾yù˜Ôô=ŒãYOÊ£~£ _+2JËñŘ”uÌ} ÇŽ¡a: ÿ=v6›MC·^—ÚólãÜ4 0ˆ—a~• |QÏð Òt°.´Z‚áæÖ–ÌÙŸx~Ðr!VQ1£cwÍDcŒÚ МȦ‚Q2Jzÿ¨Õ`±1â]·ä†ËˆIU òà ÊÔ ¾9_ä“”5ͯ»A¯#ŸÍ¦È!öÆqý&@ϧÔÓ☋FGÝâé¶½¥>†¸s‹Ï‡áÉöLÌàY¼øz¿>ìàX#\…x`BD €¯n †ºÒ,pë«%&˨ `kº$^Ç3ÜáIƒœp|…—E˜%dÊ[²¢Ý BΓ$Š×ðÅJoçá|Qܬõê&IÓű3v7Ãhzm b14›ç‡áõ$ ¦À'ƒáËc÷”ØáO$ꬽ tM˜ S>öÆ?öØÇŽEÂâØgé,ŠðwÜÑ`î.0¨>4¡p¯;Hßb!ªð€@€f¯dÀS˜5mrçIx]¬fà’ÏJíVxŽhoƒ²ÈMY£8XûÍ`±Õ;×÷íÆÁ]¢úbO‡”€Î¨ŒâÊ8ÚÐ8K[7ŽŒÑ}{Ó8:1žÊDLûéð`ài ¨òyD-±i”>ÜÕN§ý`¬Œ‘Üw4Å/hO1Fp»0Í‹íÒ$òÍXu ‰Ëå|v„á›ÊÊZ| šÉ3’“ YèÖ0#ÐŽñ1„Ù<-#£}T4½úˆ31‚ˆ½ ¨‡¡£;È}~žëÑÆb|4ŠãëÚýMå~™]×îíúíÚ° èÝ!ë>Û‚Èê øæ…u yÖ(…©ŽžãA¢¾(܈á¢'Ý®ì÷0b°#®¸ïi”ånÿ¤’0>\;†h‘AðM³›SÂTàùèh­šË8Ù¦/@­ô› ‹E,@Uݯ1 nNøÜSwé"L¢Ä9;vGG k˜N!½å¥xTÚêM#mßϳ,ÍNÅ·¸ÛþØ¡H5Åw 6ŒƒÙàÇöý&+$€[±çàˆÃ*R›é ZÂ…àVð =!±ÿMýኲ4E#u¥;£BtbÐ Ãã—\ÜM"˜…€TZ3ýL@ë!oþ2PÆ•r7»ÈÝÔÉÝÜ…ÜÍ­äÀ¯l“ƒÂ*9(¸ÝÜé °NîÒÐ-äØç1½¡ò‘»ð‚1بpn›kõ62ݦJžl]Z~—Ê’– n“–€n‘6³Å- ¾×“µ™áX“Îö«Ä&žíUH…üNq õU]îìN‚gw‘œ#=„YE®J¼'8Î$(„•Ir @LÙUóìÈjË 7.“«uYXk>ÎÏq.„MÇ9^†a2á E'Ÿfóü¼­{º6ÍÖDÐaƺ¡éÍý‚ßÊÄ@¨&йx”ë"ºÐ¹ùËÇexŽíωغô^üš­ò-¬;3öË:teÛ…®¤ž*+³jmV­®úÄͰê´6Ut,›auäW@”–0l5˜l (ÛE± R2†~…|¶,ËÇ `ÙK)µee!æKæÎ¤©G–­êa2P݈¡`5Üû/0¯ÊÒååÌJIs\B(xõ>s±\´LYB¶}®ì :]ñd?Á>˜%90KâฮNKµajØSe…ø(.4Fڵळʓ2‘LR0û¶8‡„€ ðuD´G˜”‡Áœ™ÎiA-¹ÄܼÌCÉR+Ë/øÃô:*©¦¾Ó“ þqu4\\C—á„ prªRÒ=3¡’¸åÞ*VÕYc:9s\¸§—!§ª˜éqƒ! 2¬åìuX@æë‚w³5»Öp“[Yx4u5~sË­R.M'âÉ1CÐ4„¢øøo­K (žã"[{¥»AÿcÈmŒ¬6Óub¨^]¯êÄolŽ5-Ù¢«|3GkR¶¥çHöة߭Á±œeœ&—Œ%8¯ƒâê –¯yf¯È¸CM^‰‹ºˆ8%DZRd§Ç.ÌÚa.Ž;‚æ¸&J¹b´¸=³³[x[-v¥/v ¿Öbw~e·èlµØMƒ¬ÜÄÇj/*§1æÑ p4ò¬Ú0&]ŠrÔ(C5SØÃ˜fÞp ËclUéáòíÓ‹§oÄó÷ïxÿO êrõŒ×À­ H’6G£fˆ“åuaØáÕ` ·í•aûe1:öa0¹ ’qhZᯅ4KSÙâWAnÊ,h4Z™NÔø6võ¬^íWSUw&Î(|ÏNáf¥nV´à‚®|%ç³%Â9Éþ T þ§gÀÔ%Œ‚Çbœf8×?Ö¦áaæ~Dóö8 ®ð·±ð‰D˜ãÊ5ÌäÏùR[•EWÊpUŽyöiLéH<=Qã24oztBÇ9D¹ZX˜D—QƒUZ­&þNiŒÚ5Øë¨3gªæÀu´ˆo Ìn Õ^ôÛÜ‹ºÍl Îiïc„dDšøä…å†eï{HÌ=LªZ÷ì6Ææbº÷Ó­u¥‹r¢Ý@î’)Q÷H¸‡?eø8}Ð׳v½Ú¨—úù¨Î®­>e [ôcÑooѯ°yWè;æ…“Û(<ˆüè»÷¥Ïžˆ‡zÝuÌ\M‡”Õ4Kç3š' .CßýDMÏt6 ¾}”D÷õ˜Üzé<Öö¤{MÎŒ¿f5×gÁBözR»BtƒÊUYµœn«Ê*Ê•@öÅìI9¥-ÛlÉ:CàÕ¶¬Š¥3…„d‘¬«Ý²2z%£’x‡¨Á)IWûÕ3û’ÎXÒUÉîžÕ#,¤r$k¹$-Ô ZÖk|xqT3ªäN!«åQM«5lÛB)sØÕ³J}š |Öd…\iQÔÔQ§"Û #–N¬ü…ç—Û­4¦WÓ?9:²¦Uø4^ç5ôdy•AœâãüÝÊÔ¬ê ëÅÑÁžfOp±Ìñ°¤'ª`3 ³SÕÕpA¼a‹ú¾¡oÈ}Ô7Ü#ÛG™i•éf8é=cŠ¡ë¿ ùd†´›/4øD?+Ëò•þ}ö•˜/s< F,p³AR´¬GÚ8o¸‚)¦ä'b’R|½U ¥Y!Dýn†zDémBgüßú£ƒ^’«(Í:ÚVýÖè ÏìN¢qˆ¹ØÉzÓ`  YÈ ¾ÖCñì½{S9—8¼ÿ.ŸB5»UØ`l.¹=yêgCLŒ!¶I2S[ï”Á ôÄØ<¾$áÙÚïþž‹î­nÛ@HfÏp·t$IGGçúÿ#þçjò9¾ÙøŸ¯}Òvºá ~w®ÞÿK²/w¹p¬³k-nø‡Q¤É¥d]‚·`Nš¼ãÿ?‹‰•9‡þWÜL0¾è›_,š!«°ôÁM~¬ŸJ¶ŸËn5Q›™ûàc]m¦ÝèÛ~|ù‹|¦®©¸`þW{ðfô9,“§M,‡_Ÿƒé2ð_,txŠE©hPõo‹o<‘ ÆªÚãÉâIôûÊÊÔ–ñaFS4°hØgÄÙMí ¯lÚC´A(C9 `Y*HE•þŒå‚\•µ‰‡…žÈY¸rJð‚± @‰É„¦‚Š¡/$rAâÇÇ+{¹Õ‚ø÷w²sHnÆ@ÓÁc5Š¢‡‚Ðâ"]•M/ÑãäûOK d­.gŒö‘xkµ2 |þ×ߤ'ƒæq.¡@«ãf½[M6b7ïÆ5ìd˜Ý^ÿÿþϵh*K‹¦¿¾¹iÀþSf÷ÔyÑ‹÷5{œ“ÿ·´].ýG >›ÏKÛ›;˜ÿowgsóÉþó1>¬˜m×aŸØžS´çD~emeM ±g&ÚKe9•ÄSJbyøœã/E¼Fw£á0šL" EúY­7ˆ:㞨FãÏÑ ºeÛÄÊhNûÅ¢²gØ\´žsWNfcÌ‚¾á?—Iå9{<_rÉ’o_3%îQþ@è ²$¼Ø'ÔNÕ .£©¼!S=dËñìŠz»Ø’éâ/fC § x«PÞ<ćŸb‘ÒÇ †E VRf †PÒµüê ¼7§v¥Ý®üšeœî˜ú7¶íûrÌÙÀ!òµÆšÿ:ÔJt>›’¥acïSBH*±¢†—+ª“†Þò+9õoô@JúU»Þ=m·4Rë°Æ`ùq ºÿè ùÈŸèÿï÷=æÒÿÒ¶Oÿw·ŸìÿåóDÿ—£ÿA²ÿûÝ÷ûïsÿï÷£ü¿?‘þú¤ÓÿF«û{íäô÷û_æÑÿÒsŸþ?/m>ÑÿGù<Ñÿåè?ì &húÐ{ä‘΀5aÓÞ.~_ tÚNâs—NëâÐó6lñFM÷XWM£¼bÍT¯iÐ5ü(ï½ýó}²éÿ#ÉJ[>ÿ¿ý|ë‰þ?Æç‰þß—þÿõ?)'K*4[òcNïõ“äç§ø¤ÓÿÖqëþ¤Ÿ>sùÿòsþïìî<¢ÿñùËÓÿáˆÌó•¦åWl¹¿ðáи Ðèš:›è˜rìt¹¼ŽztÞô0Y  ÇFüAT«€pÜG¿̉ÂeÌwÅl“Ç—^< Ò(FCC± ®9DéÃ>AÝ,nÖ×7Ÿhé_ô“Jÿ§“éÃPÿ¹ô{wgÓ§ÿ;ÏŸèÿ£|xËž´Ú•#+·}JBä[£/Ú±"‘ßµÙà“Þ¸wM#›F2yPoÛ‡Vë¨ò èg·#‹œT`Lõ®](G…€¬•67©(ü¹ƒ ¶B|o ÷h¹Q‡éüp¥yò¶R•àaá_þµŽlÞ‡gÿ$Ç’/ˆ_ÕŸ÷—ÞKZ.)yRz¯h}¢ÌKBà€m/w P ¢a|1?Ñ:úU={Ç€°ó[ ”_u@WCäá 6L÷ñLþÝÐwøüê–C  «°D4”„–ÝFëT]vh¢éÌÜ*íèþb¾è¬2ü':•O'¿Ê„™`ɹÞ~KhkSòˆÌÒæ7å”±ÚìsçÖ>éáBeøx#°±Aàó­Ä@»å@W?¶]¸™íÄK -˜‡Bx/•K`.mån©xÐ-S}ê¾­·L»Nõ"_‚2Ï„¬¤©7;õ”:Û¦p.}ÕWÚix5”ýYp^8V’äƒd ‚@žÈqÞ¬í¤ÎÚö}fm{áYK›©k6*”´–wP°(ôu<Ä’ æ‡gH»4]FbE˜Žd;æÂîLÏsE=„¾åÌãKž¬¼X£¼‡Ågr‡¡.³]‘0ÁqDÿšÅ_zŠ‹Eîx] F½)§;E @k¶)^CI148ZÐÔ]½¢ùÍûÜÅŒƒYÃ?Ó¤…÷Éþqû¨Ò͉U^x I.Ê \rÄjA`$û”•s²ŠÒ~1`¸Žô)C1FUùqÁ\B¸óÜÓÐFÎ<ò¯Œ ¯7»˜ŠD£¾aÉ•cŸUgå)¸;ܺ™ÞĤN¼îÁbÛ±¶¶&(8Ê+apo€Þ„ÌÜWõÚ#%ÈѯÓjŽ˜O…_-š£®N§Õöñ)l°º*j—S܃¢|tʵèoyB+ú{ñ!þл>¿z(æÿ?æñÿ;Ïw·ü?\ žøÿÇøX‹ÐþùO³rT{›µ£Jíí–¥^˜G®ùr¦F¹cßÂ% æÜh(ë™)L¢á‹>^>®1è±ôkA'™ó˜Æ)…0ÓS^R$LÝ ª‚Ëè„ûH<„+oº¹¦äøLJdL.ÖDÏEg‘”añyÌ|eWúW_EGëÕ¡Ç«7"º™x;\p"Ü‚“ °W´ÊEÏ<˜˜Ë+yÂ%o’­¯J·¸ôÐ+=õе¹ØØ+6ö½‚G\ðÚo=9¢S.9óA&K6¹ä ³÷Í+yÌ%G ˜XÒ.ûõ*Gî£zBatã/‘Y^jÁÙ¥iŽ ô¤w%ãa|=».ˆÉìüŠå¥g\¢?"¯/8awÂqùÕ‚óMÒoÁF¶jÃ`±ÐNåÐ £•Ã"yv,Ö耙ƓIÏ® “GU‘ÝÿŠNícBdt~>SÝ^¿s„ad³F(Zý»=À©E0 "úv3"spe²t9îõg½A^PCcY]¿Ä€/Ñäj4èWŠcY[Ëa¥¼ÛlïÖês‰b¿Ù¾Ç²Žzg5må¸1œ_Ë•6Ýùï£\ IUãV½ ~«·³¤*Pˆç°¾¾É¥µèxÑJóø Qs{°ßhwºÑlkþ* ©Ö»¸h±üç¨ÑÂKWúˆª• ©N¥ëTº~Ò)ˆ“v½Vm¤Ìôëþ„·cê|ÚÈwö Dçx§ÙãøƒÍÁFÜìT² çùuF+Ù™ ÑoÚ ‰r2•:è‡9QÒ£SùP÷0 g‡ð'ÁØ…‡„Æï<Ö%²ñ'ÎB O{½iÏôÉØ^¥[ u .ZÅnû´^Ïî¢kÆÛÃñåt`ÜåÔ“ T"¢aÆ,×d[ øƒ8‚ ‚µ­«:<ÑËVv¡&z håAiØuÎShnÔè•(m4°ÿ(¼*›‚®E³¶¸ Í…eA±e,Bм¡zþ¤³†U¬‚€ü²’¶á@h¡äÍ)J‹‹B8§¢ˆÞêE®.‘åªâN6†ƒy{EOœÅÓrR½/£¸Ï±MG“I|Ììô–t„òrÀœ÷Xõ§)7X&È€:oÍ2rF]X#j¹ŽØMC§üb¯EÚõ’ /s—O¬ "]<–´,T½“Uz;@5 €5ÿiõO²ê È®ßʪßS¹UÙœ3iÕ2q?w§™ÍϯßÌn_ï´úÇÙí›úî*”Œì.*2‰„‡Åý 4g؈ ž˜ 8zb(ñ@ÓO#~¡KŠJ«#©Q¯×K«l€U ¡Ä¼‘͗̽ð–ì ¯u°î¸â.'C¼}ºÈíñ]Œ:¶À=+c·r€rºËØd· ÜM$ô®,5‚u5áVÓ.'n[Ê(5\‰þðõ2ø¸£üÐÜa 1>]%/’p5´Aœ_nnÜ’¼“¨hâTd#ÅëÞ-^çœ[\ÇÜcbj.gq?RqþBi€ñõ*>¿r§SƳá FzãxzóŸKdð–Y ½››ù|]ôá†¤Ž€m «T bÖ,¸Q­Ów;P“½?ä½hÚ‹—N¸ÚÅ€.\=@¸Iõèχöq‹ÄýG½Áùhp­Vo<<Áö@±ùnÓ——œ/|‚E`%àv6¤m}ÔÃ2çW°o#s“WàŽŠ¢R¹ÒËç@?*ƒËáuÂA"¾DÀ«óz™"ÖFJ¢½Ámk>PÅq=)ª½P©Di§ ^n¿Üx¹£¶|L??±#voE§(ªÜ±í¼8¢‹*ŒGwÐt„œ}õ…p‡†5T40B=~^åç»åçÏ×r6ã‚)iiöE³ÉÔ®™q»„×Õ‚€›ä~ïÎï»íÝjJýÿjz$Ó[sîv[r·Óˆ‘C'2ß Ýsž;šGØ·Ù}=í ¾b‘].O™%Ã? \´|À@²>×n³FP¿ìr˜àÑL¦“ÒÄæ+éT9 Œ²—³DªÓh8ÁÐ0þÆÃÐ40M²;ØI@0ì×¾Lt5˜½ ©é8ºŒ'x2Ü#ë`¹ÞÅEt>e10¾ŽÿmDÕüQÚSJ£Q.n®­] Ö‚f&×½Á…\À8Ä$›Äl?˜SêšDŽnç½ØÅ `×İ îžsGªÐlé¯55yëòÁÇ·&r°Åúû"Îm¾y||‚åK)êp\¦tòþŒ –×*Î3l•g$‡›˜j¦€½¼QñÞ‹. $nuzøÆbc§És…ú³ê30oÀh©o æÏÅËiÑC}5‰z Uæ“CóP1³fJ¢g¡šƒ*ÍA5kªA —ïƒá©ä&‹¸ÌqË=‚ÎF3 Næn3‘¡ØÎw…Ñ£€};¦dmmZäÄ×;ݵdr-{‡`¢5•¹ëœ¹¨ CŸX¦Íby‡rØP NETzߎ PÎ=⯦=M¸Ob{áL:IZ¢²m‰Zð‚µðzH¬y¢©X }”ëKD’# çË\ní.xô–†à,žQFƒlüPО•…LÒÆï¯‘…ñÞ2K½éÊÜö­áUQLCÄߥÍM{ 6àXw½È›6ûo-[_×t˜ÿ¹P¸Ãwè¯,+p€ k– K²WöA7æ{m˜þ~`‚1ç£ÅçÓ©i±÷Ö–rù|Q}F±i¯zƒ ÌÁ¼¤Î_ÔC 8À˜e’—œ~%÷f…úEK¹¨. ¸> xÙaAÄEhêª7a ¸ˆ 4ù( XiÔïãÍ E‡¼@±—°À*b q·É4LP…ã+ºU¦¬Æ5dgí¥ÊVeî<;³Èv]nmïO¾·¡H¸[R3¬¦¼[F»%YG>%æ×ÛÅ1rI4‰êŠ\pŒˆÆT oušâ±$ó[@ƒÑ¥ºÒUžè&À„m5ú “2F ¾Ü»ˆ(÷¡¡¶ø Sl~¥’˜Îq„ŒõpŠ© ³Ë ›/¢ÛpਔTÜbUà·37MÔ[GЙ—­;2/Ôø±n7+;RYó(œx0ÆfkÁc×-!¿Ê“ÂîBÝqˆÐØ—/¹ty ˇÌí/!m,=¶´±ìKI#diÁ,e×_C¹€ðÑVµfÜœ UFñºŒÄ²¼€ÄÒ$¸ƒ…Å\<>„ÂùŸä• y%*×dXÞÃɃBâ<í&Å ÔœšÍnv=P%ŒZ®Hyéóe^uƒ ¬†%ÌZä,¨eá7‰‰!Z £gE_áB…®•SPÐr†ÒÓhè¶Q8`M·J6àÉ 6Xì¸Ô5n€D.‚›Þ· n´–ÖCˆ5„eÎ㯌%°A½_èi"WË"8±á°¹Ÿ‹“eà¼àt’TÞ¶4¼§O´éi7*r$‹â]/S’‚áɂǫƭã.£ê„ùYä¸È.ÀÏ•vkQ¡îA‹N¦ƒ¶Ø0¢N>·š|p5»,- £E@Ò8-~[iî#h<òš|æ5™? ™q›¬hÒÛë4>uߣ£·6°ÝÇÒRËœœ %_¾›LýÞ–¿w—u0«Tµ„X——Pð–—„«E\ÖL¦O›œâ—ž Ù9|$ã–¨+“>óDÉØõX~(Ñ Ý›Ú>J¢‰ dI›|>)é»#|·ï)<5ËàáGÂKü÷ÂK¼¾Æâa}Œ2µ¶]Ï…1R+å³à˜@Èv15"nÓ€áy¢3¼ÎUñÔßh:†aM¶«øÒ¢ÉèP?ŽÏ?“@®,š …S±C“+n‰S_{‚+í™Ø2‘šj¦eêFdÒ”Àå–ÊÚ’$žVEZ©jÞmX•‘7«ê¶„t)ç ¶q×U‘•lZFaÿm! ºÖ rô;ÐÉt4|¥ý›_LqâÑò"L@(!ÍS ˆ«5Þÿ9œÁµµ‘_ã¶ÖÖÊFö˜RÐ]óŠTEü ¾Na>åô:*+)ÓÚ$5—_ÃÈ `ç;ÂåX4¥Ý¸ŽiK‘*Èo¹ü%ô­|ÞRÌ¿‹¢A«èBWQÖ3©Ñ ‘¯;ÉÅ¢–¯¿Öœ-5•-=•¥9S <¹Á€ªè£ û‹°ök®–˜¹ïŽó“Ö»G˜ ,ìÒT®5‹Ó µƒ£]lG§ÑlÐçsÑí7Ñ?õŒzŒYj¯´Ì#ÙÇÅ;˜Ö»„æÚÓÝ…Œqzôe-¾gp üŒPÏQýúÙ=½¸ÉÀjÑm$1e"2ìaŽQÒ´ìõ-t®­Ù We2™]³­ªmçDå#i´QÐK¢S­iUtï xËt 2¨d€K4%(޲œôáp®iņåäõ¥–/yE˜.ʵEUÕDIõ,åÕ;Á²—©ê­.Ôy­4°qÑ› ¦·f¯ Üžj£*_Ê>ÉýÒe(ø,¤_ÅãvQéìB¦etß>s2;Ç({([E”T\ð˜eâ#^IAÎõ ªß›EΤm§k¦€á\ûdÙcßíaaY"RWÅÛæ=cI78ä9Q¦ë-«–b é{’÷ôÔ¾–öãao0¸-pÌ–„‘ÄÉ”YäQù”rßßqïû,b¡¨’X9Þh÷ÕÓòE¦iù1lôH¼4mçvkZþ*mùˆ\PT´n× –ò þ[H­ƒ"‰»Y\N­ã²=‹ØŒ¥¯6Výð"ª›«€œñÌ{ݸ€KÔû‰‡¨7dïã©ÛÌ`4úéDúIÄ5{Zʹ€¾\ ®Uœ ¥l«¦µÉÁå—²õeÏ~³ÇoX⮕5eÕ*U°G­ïÄÖ-™îŸhp‹­HaÝRF#F°èˆßÏ£ Y€¢ûE¾€–©gp\ݲ¼V£n ÝŸŒtWk¹Fd9àŒ¹.¦N„íuÉíÁ®îõ hšÝø̤åÐo WÐi#Fébл”ÖÓ·ÈÒ%Ì6" mƒÊÉRɤ-r¦j'©iU!´†kIÓÏùa×–6ù og9¿ß‰]0KŒÄfÅ^Û,XqÙîâ¾þ©Úè¢ÙÕ§“Îé›IÂßÑâçÝö¯pJÀ“ôþ7÷ L»^ƒ» àÏß~ C¼¬9áÑq(ê}V¸z*³aQ©Ó1F§å)¡núuÄäœ"*”ù(8CU€¬­Ï‰OÑ´‚”Sƒˆ±<:Dàô ÿ+vÁ#GÒ “Ý mLÓ˜¬ž#øÒ Ko1y3c|í±1ÇMf9™ÒHÍE€Wzd°aõ4øÓÉš2ߢøÚí_‹Í:°êõ°vQ6å,fZµ%ÿpܤÂ,Ÿi"—®t›;åæšf™»ê¶Ó¥º£EïŠcú*6h@€ròx%‡V< ÿ…ºJ˜"frpmœÊ‚—ã¦WÙkUÓr*­³ ϧa±¸Q á¢3ç®hކ¹ÎB£°w;mŽ˜b³w*â¬2 ñ$ ù rŒ>”o±+¨ª¸’7ø¼,ÔùTi´~¾ã?ëÈ Ùj4+õÖ‡ô#W¾¿0o¢ÇïîrjûfèköÕeõ£Ôœ‘9üHœ_E矵¾ÅÜdµ¶e5ì*Úõ``®1,ñ¨_4âšQŒ<6)  Q «kŒ5Ô,ЭºÑ9¡P¥M$í¼TžuÚµgñ  ¿/VÍ-Ÿ…â"u Þ*Åò/àM«\[a’x†ºã Žß¡ø++—h`(4š$*á¤bgneÓMˆaDê/…¨´¤K´%ÛÀ8®“dCÅÕ%À¿UÆûJ´DŽæC8Ž®z0óhaON¶aRù» üËYo 'w¤‚OFsES”%,““CòD@©Íßk§´z­Ÿj“”R7IÚ)eo‘ùè»÷qqø€»Ã‡œº«é'ØþvðÆr‡>›i““êEÚz^-Zr8[à||‚Šƒf†¥ÓÚJ½ð¶¶ÿ„æB&gbÑEPô°3În‰!ƒþ‚†Ar£Þ#fõÅÅxtMëU"M‡¼!’4B“4dD×ýèíúYÃE¢dñœ¥‰œÕWd5ì«©Ìކp)µS*  ƒGÕ#Ò­#Btèé]£Ž/dôÒóÑð.c1ËÜØä± †bN׸…ÈÊBbvs#K :ùx+S˜,S'^™æAnQ@?‹hÏÎ0jÞQkÞñq‡í•F/¬ ö]B¬¾f0\~ þ pb6¤2‘“©“>:íc˜!Ù)P6³æ¼”¹êÆËÞS4±¸4Lì@~!'1Ѹ\ùgœñüµ2_›Mˆ…·€Úš”3`w¬zí¸Íx#Ù⑜G“ ÅÊ`}kŽ|mœî³¹^‹zèDo¸lOònO¶_yö“«øb ­ÂÂýëöVÑØ5ö¢O_£©W¤ÐmbǶóÑ`v=æ–8Q+ õ™vðHÏL¢%ÜyÀѾçåÇ:QÒÈxpD£ÞT|FÕÏu!‡ %?“)…Ji$Ór¡X,æ‰r\[wè±;¬Ýð*ÚÞù°'rœÝTéSavhr5MÇßhðq?î]Žðê‹» €Ëóº÷-w]æŸ é`fΣ¨ZÖZïÛâ¢w>…­öoIó¤êÿ‚ôŒZùY]êa'…w씉çþB¬×ÑØ[ /²QF;ZØuœƒ÷¿{5½†zA¦ˆf]ÚëPý‰·ë^¾Ò#iƒË“ Ž UA°F=§§pÊsDÓv”Åé8ÒÏÉ 'Ú€ŽoÀ¡ð¯ PSºÍ¬†oÀ>sT/ø³³·çb·´ùŠIíto1l•9‚¯½·:íÐý-«:@¶Šº™ÈV[s:H–°pÂh¾Î2\ìæ`/ ~"¶L±Ž=7Ȭubr£[¸çWpÊã!ǧÿDY¾Yì3Š01˜8aˆÉl(°q¥ËTßÞd*ãŽïÛVÓ§'M´¸\=]u¨K·]i¡~}µ»Ê&[{ ày9Ù5ssÖNÒL†e6@Ÿ³ÈŠ[ §4aë¶V%rZ%¹ˆ’\@«œþj+ýÕvê+õ9‘œ”&´†õ°üZzŽÊÀŠ)²Æ§, y89¦²ùLÛß û•ñxìÁÒmd“ìêÿÀÚHLõ}}ã3[u|Þ˜^i6Î’>ÙÏ«©âÞ!+Gí!k äþ†¼(9*Cgm~N%*÷‹ì—º] ï‚AÙÞKy¹5ÈqѬfiZ…¬¥Úˆ=¡0’Ø’‚Mh#ût#gZx+S¹É" ‚FFÑf…a®ÉRÝꈊ—°œœ¥&”è9ÜC Å7Éõè^ð8l£œøWi=8È”ÑiãÉCT ³›…Ë LG¿ ¿Œ€Ά4ü@w-³¹›Þ õ .6J4Ú-5ZÉj)6^3)tA‘˜t¾€rÀKL1®¶ì$}ö‰›§ìÇxÂÂÌÚp÷öší¶»íR-Þ¸hU­VÕ–vaJZ*¼*Éé³gD.•¼úg"ÔPø±*Ú£=$£ð@8çJ”ñàfú‹Ç"®ñúï´L&osd•t©Râ]Y¿CwÒíÄû-ý~+ñnW½ëœV¡á Lk þý†ÆûøCÙÞQjÈËZÉco:ÿju)ønÁv¸XÔ–"EëR{§„bÅ¿µ3G+ÃVᨙØ,X?¶ñÇþØÅÏñÇ üñRÙô%j%JÄ£NكƶŸÜ¬Z0l´úÒî¶:ê eöIÄŠ‘RfÌ`OÚ¦œÌÕ²÷W‡«òšV-óÚÖÒm  ›æ4'ߦ^•¬ˆßL‰ÕßV]!ôo(€~¹É¡ø[©\Ù|vj†Ín¡ÈHc X -þ^>—&ÐðI€f/·«ow¯QÛØ*{!¬öÐ#€,þ`×í:¯R†ßxÕH,ÛÅ€ôÕ…è#Çi!ïUO“¢C¹1ŠË[[Æw_†LÄ«µ=^&ÊÕˆJå—î¶ž£):4áŽK—ßÞqËïle—ß-»å©ÇKÌëúîvr^Ë6¯ËâánØX'K,$”òRé…½Ê;›…t2Ž­°[¯ä^^/•_„wp¹ì¢Ã‚ºÈT·ðÖoá`ﲇ·æ¢>8ìÄoc@Ñh"ûod<‚ÕÎ*Ïüº§ôK5·XÍ-ö›Ö=€‹­ctãáTŠÛpÖš<”$ð²Õ¹ò«-ÏaËz±ýj×¼ØÆ¾l©Ò‰£­Êx®n9G(©ÉP«Va­1­uäÊk§ddI‰‹lóTFÓBVŒ0ƒ¬b©+iÒ„1í1判8’߀9F½³åÅIj=í}ŽÌ¥Iʾ«-åe4£¸`ʲÎÄ-ÎÃi8pp‰ÕƒújbkÐë-zÝmï'ßË"jCQ5©ÁÝmçq(¨e°œÚQS Ù§÷Ø'^lü ýÞ{ÐTûIiÞc`[åÅæ—›3°·í½Ÿ®OÕŸ°Ox“ûá‹Ò!­ºƒ¼©NŽþM•Õÿί?ÿU—¹A>IuÿÂk6±Ö²€tºé@ìÎ¥`Ò†ÈX}{7R›l0±–îà ±“âq;mˆ’ÇàvSWOm[RxEÏ·%w¿7ß§wU¿é–ëÁë¶³ëWÃHÁ©Íö¨þâ£^tœ¶žÖÈÓI:Õïrè,woXxW šAöž†§”¡F›àÇvh)6æ;ÎHùg›‘Ö¡ef¤›z¾þ9ãf%³ÿ§§éðÇö?À넘'k,õêoéÌU)­='`Œ’ž·TÚ+Kp_ î•Ø¢üJL×,i{nÚ±pÜùê}ï[·Ûc3; –ün7ïïÛ¯»ß¾¿o¿îNh¸_?äË={±ð^,†Û¥n² ì<Ü5ôžMþ=¯…K Ó]ú·¼>­“Œq/ ÙQù57´•Å m7äÙVÃç¨p}>»‹jO¡£'Xð{qAßµWwæ¶Wwá4–9Ñ?ùÂÚï}ž/Öàßò4¿Ç‚ø;jË£+LÛuª.CØ·³ûö+‘ð&²œÞvêïÛù¤1Ún²™¬fv¬Ût£(§ŒŽ •“ íZ ‰DK»É“ŠM]ÑÁÇqâèh'Ž{–­nŽÌ"s21#Y+£ÁÅZ©¸[×–&vמgáใjãt“9þ€½á‹¬F^¤ ßrÖ™?»;›ÉV_fµú§÷!|uÈ[gŽ¿Nb‘í$Æ‹¦£6-wðòI›Ùƾò¨H$ÐeÀ#tzE’õlNl0xxÂEæ…¡šX皨wð6z°a”÷Z†bTÁaLÕƒt×{Ù¢t,×QÚ±Ù?›O}š¿¼ÆYFPz~Ž =a+äB/§Öà„}ÂaW7†±¿•|ç9>ð­¿=Ѓ`qN í® +ÿÐÎÔ*Ð.\ôSþc&]CbÓÝ`JòMv놂Ժy(Luò{úÀè í­ÑâðÚJ ¡F°Å2éù¾Žf’v8íIºÉ–n°Ñ\'<¶!ýX`œ˜x =h8™åõM<€ñÓÄË´ƒhzgƒèaHc™¢µ¯½[ä…¸lïJÓ;¦'âC¥yZ%Bˇ&Ö ž-̘¢º0¢ÈÏÜ +³4ùù^³%‚¬×WœëºBûùä¸ÓhíûQ?àßbF*äÇø¯›¥Ýçåç[›ÿ±YÚÚ*o=Å}ŒOmts;¦dß¹ó¼(½|YÞ€Ûâ r3Ç 'ÞN§·ÎM´(Ü­¨ÖDeàèWVþ»v|òk»qð¶ûß++™…ØÎsÕÆ„¢@°38[¯ìÕÛP¶õcŒ­q6#Á 9ÊË4å£f@Ç'gñ/ÎsfRYÇ*·â …‹ÏI²S gÿŒ.0²·=;ú(7"÷“=ðáŒzµ²²!ÜQz.Ùò¢HCãH_4zgpÕ6ã\¡Ä7ñy$Ràa76ì{=Ͻø:ñè t³ :a_¶T>ꯖ’€óh81R³Ñ9]§{jÚžÁŒŒèr‹i˜Æqo0Úÿ:çŸ=®"¶étEn½@1:6†~ŽL)š™xŠ­àÅ`¢Ð×™ …ìH4ìÃSrÁ‚Î\¦‘¼9Á’˜°ÌY±"£&MFÓ¯¸ˆTêN9/\1®º1®¬!¯±ÉD¢û¶ÑãýîÇJ».àï“öñ‡Æ^}OTÅFè "Þ7aíwD¥µG´v£zÚ=nwV~©t æ/ô¢ÒúSµëŽ8n‹ÆÑI³Àz»Òê6êô±¯5O÷­ƒ‚¢uÜ…~4G.ì¨ÙdEq¼/ŽêíÚ[øZ©6šî¯Ôâ~£ÛÂÖöÛ+L0ØmÔN›•¶89mT8°½F§Ö¬4ŽêèÙ‚6EýC½Õ·•fÓçÊñÇV½½·G)ªuÑlTªÍ:¶DãÜk´ëµ.ÈüUÜAÿš…d𠣃©`²A†Ù©¿?…BðRìUŽ*0¶\)J`Vj§íúöðÐ9­vºîi·.Ž÷Õzû‡×¢yÜ!lvê…•½ f|÷P¯áïê)ðŽˆ4¼ò·Û§'(Ìà ´@+Pu°{Ü¡Â2©·E ˆB~A||[‡çmD(aª‚(èÆj]»´ÄI6£D–´Ù8¨·ju|Œp>6:õ<ÌV£ƒÔ0Ì?´zJƒÆY‚~­ÐŸÖª-Ð\"TÙûÐÀŽËÂ0û†\)„´Ú[‰p W"†çéã|,þïº÷9*ÆÃó¢ô™}°6æðÛ»åç~üÿ­Ý§øÿòù/±±¶!Ž`ê/âA„_Vþë>+ÿ¥#Vᲆá|0ëcX’ò }, a+5É‚Õ- ¶"äÅRÕ5Á ô¥1§¦’m+„2Û3uâs0*Ÿõ"Ô輭ÙúF<ÎïÙäŠ`pÎgë6w3èM‘Ì‹£ £~‚t ÄjØW±ïñÙ9Gbš œ¡fú÷f£uú aâ¿#‹7ÂcØH!ÆúÉrT<½qt!UWVÕrs ¥M(5¬~¨‚ŽáoV½Ç ZÇ!D«/QUÁ¤8iÀr@-8Ò« .ž „I4TR÷=ìm‡7Þ0¨Oø' Ä뼌zì¿„Óu|šÞm@ B ñÞOǽ¡Ø¸Ð©‡˜pãrEE.oVöÚøÛñß9ü+¿Bƒç·²«.¼ËÝí74õ]âËuXÑ:° ¬}Þƒ¿áOt z˜ðU  ©Çð’Õ#=œB†Žª¤µ›u@s[†_¤Ä\©ÝßÕc Öîì¾{€F~OiåwÙŒF‹ZK4I¬Ù¼qA!=®ÆÏø¾×¦¯n5"šbè“¥Îlõ.uš¬Q€ç1ö¿ï¯¢ò¢P;9ý; ×wêb(ïU#—ùëhüyÝÑ‘&ÛÆ[(æ‡÷‹/Ë-ªÖíÞàkïv"£Ï‰M™(E°&W½1ìœ/’>Ð…sлÌMò½jñ¶>›ÅJþ$K#V‰l!î䔨¤ò˜íu8Âä¿P†R4ØŽÍ:ïDçW#Ü£¸àÈÞôÆôm¿Y9è¼çãYß1 ÓWŒÄ®b(V›pSÄ÷Ý ~VÑÅQ}KqÉÇ£ËqCÌJSL 5](‚±¡î¥Rã€Öq™„±™ çÃÅaî6õ¼X|ÿŸ z“ÿÎ!EÏ{<Œ¦5N–<Åàóý z„›Ï}Â_y½Þdwt'(³žœ:9ä@E{Š„&éƒèKo85añiÝœiòÞ'˜Ôý  /HŸ_ ¸§p‘xÂÇJ›p˜ú!ãW {ŸlÉöƒ7bcð ‘Å8j)ùÁ% #Ãôåðc>z™õÐu™S6xî虀×ÓëK¨m^×vM׎âËɸܼ†s×~ ƒv^?ÿgñÿŠ |ð6æðÿ»[›˜ÿ«¼û|s·´ o–¶ž?/=ñÿña¢7ºM 5sÀÏ XÜw‚Ÿ†²¢Ø{u…\Y³ì•Ü2¿ÃÚžâÙûC=Rdw£ú²²T%,Ë[jå¿è1–ć_z5y:I–[9D½á+A¿ð9ý¡Z¢/vsb ;|µò_ÿ™ç}Åœ¿>í¨ò®ž-ŠÏ°Ö£;©/œ&÷µø¨%ä³¾|&KP Xõ­_Í7eö•‡Q{÷ ®H¨"HÚ0.c a©ÿtËJ~y…ÏWæý³•v£Ò¦Ójý?Wͪ¦Šm´žUºõV  ÏИ§’ö@W¡ ãk`¯Å7 ”ÓÉtÍ‚ 4~³jwþx-à}_¿ïߟë÷çÁ÷ÿÖïÿí¿Ï?à8§£›; keŽÔ)ªS 4VUà¡;˜—)UI¦ûÖ£ûÖ ~›݇7XvÅR•Œá 2V«û69¼AÚJ½óð€c\z|X'c€Îëä×É!ª×6Æ—žBª’:B÷­?@÷­?>ý†÷Ÿ+öè$rÐf„0nd Â´¤QƒEñ ûF'âŸbBQð¡áY¢3U²%û •<‡’ç •ü7”ü·S2/Q9<¢òDüƒGT>Fd´^îCÉþB%Ï¡äùB%ÿ %ÿí”Ì/: ­ð€¶ô€¶æ4¾¥4·¤ÐÜ’z@º$LÑŠâÐÒxfÖܱ;|‹û>û•Þ™ieÒ8Uj%Á:¾úÏÅ7N`(ÙërÉ [ ú`ÅkzÞ®Wㆫè<ÔÀevNû,_ßàºkÚ¥»€Ë•;Œ¸Ã§¯ü'Zú©š_£ý­óSGH‰3ôæIýx÷uÿo×+{GßÁükÎý¿´ù¼\òô[¥ç›O÷ÿÇø2^H½/±ßhÖW¥V>ÔÛ”C£ƒ•x%Ä~t6ž¡(³ü²@†dv‰–8œ #±µ™|{†oϧ#”)l•JÔÀJ…Õë-ýº,ÛïD7S–JÈ&¶u‘-YÄîÀKçíº˜Ýô18t²#éz·T¨ «Ø*D½u}¯¬—üÚ ¶„õºì×}±¢æƒrü(qñèB‹l_n²]••Ä…5V“Ñà ŠU(›Úˆ\c®¯I¬::Ç„RrÍþ“p:g×Ñ8F? á˜ÿ¦7¸„nöŠ+ Êmy1Ž¢Áí†Îð©­¤8µ yÃH[-2´ú­«Œ ™hŠÇ…ÕfOÀÑÒE}ñ%î‘´úãh<è‹q?ZùqÑÞp4¼½Í Ó›"Þ^M§7¯ž=ûúõk‘aGãËgLО­¬t=;3Ê“þY¹M\M ›÷¹—ÒT¬$¤üB40Õd„ôüù é#Ì“ŠúÀȘÈIi|µ‡UšŒå cYtÈ›•ZXÉQJY’ÈqÚgìË–`Yý0Šúì}Ê…þÈ<ÇÆ' 5¢pe!= u,R¤Ž]Gœ YZë¥tš[é ÆQ¯ëΡ­ }Í †‹‹ø<†1Óڔ䔷“èÚ­¸žÁî ¥U[Ež4¶Ž&z0‘½KJ‡âEÒºD´Žûd‚x½XéÇ„쩞IØž°Œno`ä0‚{A…o/$⯫'+²D¾`¦t2ºŽÄ‹ÍúêhWY»Î2LÅmÅIcͤßa„ª˜Ïo1ZBÞ·¶ÄÑÙí4’Úó^_«¹i¬ÓÞMT„ÕŽy- ž´VE×x6´ÕME©cM{ƒ• I§PcÏ*¥Vë–’Í „.BÎ !ÇA+æp:ûÇp‡à»‰×ÿ›²ÿ0Ku8ØÛIÁIäÕ¥Ô©S„朲íI RµP”DQœ¥â$Ǭ¶ïu£O*—ñD­–÷³øüóJƒ›ÜÔÁ •±h³é€~&¹FÓ„ÎoF#]ô¾_”ŠS\7“‹ø’ÿ”o&¼÷€²”á 'ð R´ÊVV¸ˆì ™®Ï¹á!‚J*ɕ͠‡â+Î4gfJˆè‰z˜™yvfá†ÔàzÉØˆ9èìJú ¦>¥ ¢.Ë·@]IƒÙB3Øí’ø%e\ü˜o¦ÿW@Ùa!èYK”I8%¡»Ñ{º{û¢Î¦Æ˜UØê"¥ƒ^•³v{0ž\1Që4*G8E‘~ù.J·M®%ûˆéZ'”{Ê~”nvlFôU<MF7Wh Ôª¯‰ûD|ƒ•Þ„óÁß z&q^<Åtg0Ar«…ú,Ï® W½‰´~µ‚½-jÀUŽÐR£¿Äç@#OŠâ¸(ª£oâyyw¾CÇzýhìÄI†YÚÜ~½R.íll½(o¼¤G_‡úSg³KÙ–6×’ã·ØzàŒºì@³å¿;;ÏŸïzòßííÍçOòßÇø°º®sZmŸv­º¨U÷:ïÛ9JÃLé—[µ]øÙ>Å?k±Wõ‚ÀgÍ=üyêçÀµ>Í=¨UÃ’ð£ýñ¸ýÝúöUŠfë'‡¥³+›1!bT$@´,/ žqÔ’¸Ó¸ „É©ÀqqêC èÖ^N¬‰Ȱ¨ûò²¯0DS«&‰:&†ûtaë„-Ž&,RÈalEd¡N³5¶6În7Z"Ç‘Ñ^³çÅY î%ñHpCÇßD®øZf%Ý6п£ñhƒcÂu@Éc G4 'Ÿ¹‚1E”xCóó÷€ÇFbY[{«^}%™+™0ó½Äí ú—»Ø+˜˜î}À‹]¨42‚˜cö÷$QÕÔC < ~Ý"ÙØ‡'Y9É>á¥zÈèDï|:#¾”ý&âtí=ɽPÖ Ý}_à_xÍ#œŒfì6hÄìÚ‡®žÖ*<åë Š††Jì+(\#à–å)¡èC³y¢×úNÖ8¡ý ¸lÔ³èJò^Ežö=i1®‘ZÁ«ŠYa—Å+xñÐP]ý՛¨ÝBb®ÚA½ÚÞ£=1´ÖÖÈæòr åäPóªŒ\@rV`ÇÞ³ð…nðRQA-‹÷­&;ˆICÔ7Q“=Ö~a6·‹è\£0¹£ÈÞë¸'Ì;Rhû[ÌzcÔñÃØßÂä‹v„âÆ/‘¨ *ªw~[ø‘‚œs÷Cκú±(Þõ®zÃB /ÿkKä”0èÉx\¤cp=, îrQ| Š¢T" ÃQQìÄÍMQ¼x¾µñ²T.Þ…Œ›ylKýš)š¹µÃ-Lü«o(ĄƀªEqңЛ—VQìcžûa„½º&¶éš%j'•£íbí*BùÅ9í-sS(xw7ëÀƒU©Î¼‚8œÁö#Ý©žà,ᨡmó£#⩇ëSÅÞÓãZÉ P·zºú É ¬S¦Áf_¼öJ6uINMoJʵdÙŒŒH“Yh(¥¨;ºŠ¾› ½ À2÷y$<ñà"Ù P6èöé"Ý4 Ç£¯>ÜÓ"q:\[j¸Ãµ"A²ï9X}¤BGSxg……dEOnåí‡ÈXRš¡9Ç¢Ô>ÉÖçmÑô-žÒq€<Ó›ÍB‡ ³6âÁç;¾u£iÂÌËaÕ—ÖF)c`ðZ¾X`t6Œ…Š1¥€qc_¦Ét<ºú¯õËâKö´«ÛPHVg‡¶Ô]â“l´`g{6äœþêë,ñ`•àµ,CJoÂç„D;ïªÚšÄ¼äˆkòLKNð-ÌÅá63Û.ˆTä` @•œ N<2áèôêÀ‰!´b¾§̾ÀŽ-°áÀppœ5$EN‰÷Z% °ù®{ßr¥B+¯Û…™~­ß–Ý9 ¯ç,Äâ-©íSfŽ5É ¢ô4€ÑS@çûyØòe#s!š8™@ ’A`ûTÅò­-ºÕæ.»šÍ0T `è=¯¹ÚÜ%Ws´‰Ÿƒ¤š·àjÉõVSË ß•’¡û#v„¼ƒÑ¤ •p–×Zy'®Y¹¼$ä‚ÈqÄöZkc;Ÿgù? be¼e¤wئš¹Ôˆ¹“Ù9³¿˜ hìÿ  MZ7b&àñÆô :Ïü ÜÕЀH Hõˆ-6”‡%‚!shr º0Ó—ÑkE–m2œ ïßÅýzŸ_Ñú±HoÌ$¾Žñ”„ØaÌ«¯…u˜À€ãìnÔaüÀiÛƒ¡°xÑ•óß@Å öØÖÞu4•a‡“f’ì7N›,š@=Ç«n³pá×f¡~ÒY[Ëm”ž½Èç]'ëSÈ®Ñ`"Õ¶Ü7’§ŠáÃÌJ‡›ø`4ºqVzõÉ™ä_P\Np× ]}Ñ–ñÆòÂá¡Êx/ËsU_Ñæ°'y§÷*FLXŒ0àÂT¨ÐÀæD(’ ˆ‚åpö£ÇV4†;0PˆK4Q¦:)+Ç2ÖCÑÞ¥£±:ÒŽ*Ÿݶ–+Ú;k× tÎåœí£dX9@0Àù$0Cä¦W¤›<Ž!†üÃ]Æô½VL¦£'yޏÎ0'Œª ÌKûÂD7ìÚªU¦lªU íçQ˘G·ÖZ[+K¼èÐò[àkÈ\¦˜Õ |×Ý£º#ÎqüfíÍëÒš ë¨Þ8È—@dmKå \@¬Ïk2ïIØ©Ž ]þ‘€¿y|Ш¹oÄ­ß>îVºõô5 ¢±×€‚Îi~v±ÒaA4›ø~¸OÀó•2t4ð¶Le¶ ⸹‡Uá×Q:j+ÕN½€?Ô׎;Mú ×à;Ñÿý‚8(ˆ·Ð~–nÁð«Ó‚áDçmcc6ŽZüëþj53€Àk¬‰îÀhñg£Å?›ü븒U½…2ÛõÎ[â— Ö~30‹õo’OÚŸ ÏÙî%s*;°NÒÙiVŽjjê H^õ‚*–Ñ›Žeù¯ûXkVx¢`qá¯N Ù·Zçc儚iwèw§œ…3xÿ¾Äå>ÀÊùToW›•@÷uˆ–îl50h«Ó¨À°¢hÉÍ!ó–° p>ß·»Ëd–P¤ a-úF“ý¢‰C/e2za÷Áw½҂®6W­Ü 9Qlw‹n‰S̽ÆYåø-ÁI„—·•ÖHg¥k›]JT._N”‡Wv•­D•öivíd#µì;~ Ù±ú{¨ÄÈ@ Áà÷¡äu²ÆA7QVeqjaR´Ô.¼ô»ÐÜ;ujÃ4½v)1Œ$òkhÍΛ.'VY»ZR¯®ËùAé]ø-cÞŒÇ)¯‹”ì"Ç@ EiwÓä SŠØêñ,BæMÉÚCyÝ)Ã8@GK l8oœõÀ¼t½' éy“vìýYÒ›F[]ce¢;Zv"ˆp¦z9Ô䳄k͉uÊöZ´Ä†Nk†g/>‚ëøÓ<ÞâÇeç9øD«Ô˜¢©‰F¬ÓioTóp ~#X*õ›I< )ÃCÎ.ÐÁìY2⪋Y)zðõ41!á•÷1_á#ëŸÝ’5è-ʰPœ<ájìÑ!o ÑÅÔ™‘0Ý;Æ‹cyÀ‚ƒIwªà Ë¡‘DCIÐoä6ˆÕ°çKY@¶Çuõ¸ÓZÃ"ë¥@=|Ejpi—Ñ…Bï`v×U;ø†‡ñ“êát±ãab…æ“‹\#PâÐì‡l–ˆ€IGÚ±úì¯*3mPR²ŒK€’¥sdérj^ óÚoºíKC™eÛg#ݾÞxŒéЂ’×%¬ï›;o,Û. ˜¾×âu@þñŒX}•·åv˜ojz#7×t•ȨµF‡š¦˜LÜšÖJb¦Õm†Pˆ»)¿Æ‹.µ-—朌Ñ|ƒ½•®ÉÉbŠA&QÔLÒ.奙ØjT;G­(!vªl/!I“Õ©“å,º@ÿ˜áhh Ù'ñåRp ­áfßXƒT[¦[o[×$Ø7ðw…€#ÎÌWòJv64š4rÁgL÷LOÒÀªÑe< á‘ËïÒÐÖ([ú›AÃW–3"Q7 ÎG³¡Ëa¶´î×”B´àÇxK.o^m?&ã!©:Œ wz؈$Ô½;äô©Ü&hËñýBmö#ÜØG¹\­¶å[‡äIâéÔ¶$íÀŠJï çù&J‘˜¹t˜ã3(`ž¢<Èj 9{…Fêu=ù:u¬ðy”Ŧ…­¥Vä©yaQ]‰MYºe÷/xöt <,*÷†«@‚LÎìö°ôíîC™wÆFI^ä_¼[rÉv;ÊâP’\’€Ô^HªÜpɼ©›7î‚ÖÛ™zàάÏ×*#àŒ;¹^˜r” 椙:š…C Ì…³Ù=³Ÿ¤sä íÄ­ ëV";€×S ÈY(éïòKžÉKÝ:ÔáÂPs‡'Ÿ8ß±Ôúm« Rž·A¬{µr:#7įhºËçAAœ_PKɆèÝó%{@öñ¤µcr«„l⯽qßhý­¢#›ä)GHwùHOHªösMG®Ù9FûÑ^ñâl6¸”žéHVrgñ%ö—¾KB”£.ÒS{­ -î°ŽÏÏ…ÚQ`í¦¨íyíXóæˆË¼Y« (Ãá)(Ö¯ƒ`„(¥gÉ«Ål˜¨ÍÑLÆ8e‰¹È:Œ¡ ÉPLFªgИä ìÙÓÄ…X‹§ug2)áLeA\ˆê M¬‘AØDbƒˆ„ÌL,r[´—’Wy%ûsJöóg¬Mäxëùdùœ‹07Ì£Sç1ɪE¹„¼Ê›¢¦ÜaˆP¸Ýà=,‰NÔfýÉ@­ƒ`ï©7Æ& ¶Â—IÙËlL(Nª©o“ˆ þ$oÞœû»ˆ/csã.£‘{דˆë0ÓjÓ4»³¬»åI|FCË£ýbÔ‚%¤•ÙÙl_cxÎÖÒ¥F,"£_ëR@bóúªÍMŒ:‡¾p­¿ˆ£>·j˜Î–¡Fä`ͳM‘„kžÑ)ÚéQæà ‘yŸ$Éq@¼K¦Œƒ9ñˆ …@ÆL?dêxŽ4_jRù£€Jo,æhõ‚pÑ4›É „Œ¿a+¤µvfã4еvA+þÖ°]׌IIá}@J¸!9«„6Ð/³Ž:a£Ì,WVCXæ–.2åôC>(gÒ°æÖ2‰·kÉv-†Ÿ^wüe™¢Éô¯eÒ ‘©E<¢á*w{K—˜z—7¨jiø¦%ç(DRÄ~ÏúUÕ=£.¯/Ú;˜A&º, aZì©^E¦dQÔÕîÙÁšƒÂšeOÀŸnä~f?ã¢éwÅ¿dZÀ–ðÝà§ ‹R zTRÓ'œE™!˜KÑT)•8Þ4nÜ™4.@YÜȦ‹‹SEM74QÜZ„(‡‘¤Šr)dÑ~û¨T±šFï¶·¿ }¬¦ÐÇe÷w ŠÕª¸L·&…R¼çºÜ­Gñö$Õ.̡Ͻ¸ühNsŸ¬ÝËÒóØùµÄÄäÈ’˜|- ¦üºº0„¯[ЄÄf‚>o/÷²E¼Q‰Ü—]MPcD‚_“TvšYc"žgh‹4¬!¿mp½`Ò>É× +7áÚ©n„Ê…±ÒTÚ²VR¬ó̘›j4ææ‚]4åxäÍ\™SÒ(Eâ#ñÃ@BK¬Ûí§ K›Àó‚W˜¹/سï8^<-·3OK‹/Ûº<ÝþÞ·÷Ì:rŽ,ÿ„:²¨΃;y^ ÖβŠ%­ù·ˆeN¬D÷…søéSk£´Ô¹»çM+÷ÝÎ-jÜ:¹æwÒ”³O®P=‹¡X_ôðÚ(§^e÷ð {x-tt™KÞœ“kásËÜòÔ±µ3ïØ’}õO­ïɪ/t>¦Øöˆ§«azïþTWC],Kaë ÄE<¤¨áq9"­,Ç@'ØÐRÕŠNmÓ2$´…n53˜Ù_×:ÚA+í†LøKÏC.ˆb¦ŠZ? IšnnH’ž8³‡—l»ìÍ̶| îr‰UpìNÏKº‘²¢õ•žl;à/Ö,“abšÉv¹x8‰Æ4¥¬© ±AÏfSN焱+0ŸÄDE½Ir#Æà 'ç¥ç`a!¸ƒaÏ)w™¥ÛË5s)ô6wm²¤ñ,»?˜ÇØÒ‹Mq(½ã€Ö‰)z‡L$ Pø”’­úÏMÛ‡Þ~6óò"Åõ€NG€‹^–­õÒF#,Øè|íÝã@†¯+{ ”V0ü-ûET{ì÷p‡eú±rb›ir ÏN“)Ì%Fw¤Ñ² ÆP“‡mYjÊA„Ïš,BkÕÙ*Ó?²F—J7KI;di—_6´ï(á\¡ ëDú °çjŒ‰¢í`'4õåÍDžK9ºH¥:-".˜IÆup­‘Àè×:ÕD`V‹å¤•tBÕvÖlÀ®ÂÆÊªµ·’Œÿ~yv6î?jü÷­­çÛ~ü÷-(þÿý>¼ìøïÕjHÔ‡z­KAD”Kæ;àRÞ¢Ën8üÉŽÐï3ã¿¿/ˆ ?U$xvþ‹ÄƒGDéŸ^áŽñ&£Ã3^Þ[H„¸øÞQá+ÕœìÕšâFuøŠ Âqá3fù}ŽÇA•L›f0øgj yZo2´ö„2Èq0jcÍ«ÐØfÐŽ·MáÞÉãÁX‘ö(£L•¼Îuob‘L+ñ~ºXÁí@[«²‹õJ­;ؾ*“é Û"Þ£+Ù \dJ¾Ù”÷Þ¯®ÕœàÚ^8í¬ Ë¸”gs‚,wn¢s´š`TyŽ`6¦ð~:ì/bò=G‚_%r]¶aà 0K«õèXm­¾BÛ$„EX”ƒô7¿‡bê=0¡þëõ½¯ª÷g£é• }&_ß'†2C?rB(/ 4B¹’Œ%ýP¡™ýØÌïšKö˜DòÂtÀÙÀO—nÅwVWª6ø…²ÝÉŠ/ÚúŒF‡¡Ñ0×@ ó3Y Þ5×ß®—8ˆÝ”±Oáò)èž®?M”pÃÔ©«0²ÞDæš¼²Ëùü<[/­Çþ@~¾’‹ñöúÅð§l|žåÿñ&þÇŒŠy]øcýóÀM¨ãÊVqeå…ƒ‰!úòšq•jEµôiCÛбv§ ±—^Ù>øP ß§’~ó÷N… 2¨%Æ´LúÃF«„¥qx`‚Vf sùˆ¡iAƒ­Ü5¦Òj:ð%‹àÒ»Žf¢ÀûUéɬ²'ÝDá“ÔÂHŠ•HX>Æ5,ñëxÑX×RSO¼ªÃ÷q­œ²vTN§;­UcAÁkeÁhGËFë\6Tç¼À›‰PïšKFê|7'è®_/X…¦%­Ö‹d­÷=SÏú{'ó½'ó(à «ñŸ@(2E\=Ñê3r‘:ܧ\ öÌì°ÆÞÃz’TlѰžÆGrCÇÿŽŒôGf@ÞX¨ØÀ) I­áx›ñìXûAk½ë]èÒþl0Xå°Òû¼E 0±üyÖIw.°ýïSÒbKóû~ŸVj ï7£É=]ÿÒ#µç-5º©Ž.…'Ÿr¼=¢Eâ£ë.R£`N˜õ^²X ºˆ’d8ùOòùc §rAê”àkNæ4¢KÝ a‡Ú´–!ïïƒÐþƱ77] .>;Ågv ß[”k•µìø ¯Ï˜®³¨I+ˆ›AS9ê (Ÿ4ò 7åŽ'$íê0½Šй*‡—Àâ¶Út‘\?úFޤ‡¥W‡åWH¯Švº2»ʘيO^&Bý2²"RV(rzX ­ ¡]ŠölC¦†›yçX“+¦Þ¶è­c˜ò®J'à-û9UëTÄyÆ—ÖZ›-;t|K¬5¡‡Š•ôØ”5€=Œ[¥Ô—´q<¹Ü±%I#—^ü>}u£œyëÜÐÔ=ó(¾8m%^ìa(/à|¹{ïªÎK5ÖCŒ¯x‡#>,ó;wLðQk2±0б|8Œ¯b4ýÔ^JœäƒáŒ?”‚ç Ÿ ÍåƒÏ‚'Ê;éwŽ•ð)Jra*0Å9bØQ•CŒ? wpÈ`t[Hç‡ùÃJ›Cª@7‰¶÷$a‡#Th9:s¯Ñמ.Œò6[r܇eÀzs£„ãO³ áÜSyl‡œ0D€%*†*Í…š”4ã þè‰éÒÄtÍÌl4ÕÜàО!,륻Âpæ49¿BÅ–£0¶L‘3>ž ©S#‹5ëÅ£Æzèµ?)›ÍÛk½\¼~=:çÃ`¾ÆÓ+)Ø?£lÃê8¹5 ç¬P9|=‰9ÆþéúQ)4™´è'ü}qì7Š™ó½] ZÞ ‘hŠ+á¢Ú»•¶:õØ(< ­´6ŒÕ%¨ÖX—V8•êF–Ø!mDKWŸƒË°sÚ–¦Ã±ÕN,üQÇÇîÿ}2ú,n:}Ñc’ë-ë›ñÕ7ØÕ#§°˜ß×(^>¤Þ)1PhÂïj뱂«'¿ó·¹ØWD„ŒPú‘ú‰Â|yÓ©4°^{µLì µ4lm--e~v˜xh}_ g²°ÞÖýQuX†«JË9'ƒëÿ1ƒûp;€¤ÏQtãÐÊÑ È9 Þ Õf ŸµŠŸZj³ptkjBC`ÎÉg¸àPøæçõϳ¼èÁEÀbª’h@ßdê)ƒ³õ¹ázéUymèÇäœ1D2‘^=ƒkHŰËü*PÕ-€d;«òvøô}®Ôº€y(|¾”˜ê˜RÆÏ˜Ê§ó€Üwc6ÀàRÝY„yUŒëÑ_q•ç’“'¤iYÁšÀ¥UU1°x ;Ë0¬-¸©Òô‘|Ù ì)2°­‡d` ÀÂÎ<ãóYŠMY¦Ivãèt} ®£StÞZøâA˲â<{rù1<Ú©Ç£.ÆïzÍ`zül“ê oÎBü¬ioÛBÎ"ÜP²§¥åø¨4ôü4,, b€‡=YMcËvïÀ–±iê!“$͉dD£V]Ï®¥ ΂gŠÇøÊÓ]ÎÙîÃptUçüø³1tÏïËЭ?GLÆײ²² ²u¥WóXºªÍÑñ<®Yb´LÆÎ)cñvY`ž?¤€…d¥ð#0u)¼ QáG¨†¦-/Bޱ/CNTÞj+wÞ»¦£„°±ë9aΓõ"}v¬a±|P#âÈðµN$¬< ©f¬,dP¦ô² œÐøÈ14ŒáÐ6ƵoƒjÚˆÒ¥JÀ_d‰£Û;•åßíW$ÎQS!yfÚò¡àº2-`厺¦#•Øï°t-½tàè ªíñ»‹†#®2£¡!ƒ^KJÝî$ŽTKÊѼv@óîÿuG"݉vÇŽ€ío"?EQæÎ+G˜LÜ€˜§”°³ \ò\±9ÖëÂõ:Ò`+‹_Ú¶q€„¸Ó6*´˜k‚ L©ÇA eœŠôž`V-²7JÛB¸Åƒ ¥™/ưa­¬55 @ ݪn³–U<Ìâ…5êJlÖ¨á°7øäh} F©]+$vβñ¨{ågËÜ›Îé°6jRÙ¸_Ú·_ãA¾'Á`EsTvõ*’Ã’Ï­€²ZWiÍC‡ëa4wÇUY¹œc wËà㘙\ㇹ5Ço—BT´ÒP&Ò©¡ô†%¯tØ]—Ú£H#h6&g<³]éï•âDk»©DJÈåÄyÏvÁ­£cÁ„¯« ŸvÆn=u«*¨|¢­™‘/È0u-jÅ!3@·nê¢ópâ. 3Äy Ðô3¹ ç­æMÆBH®1Z¥D…𓼻‹3ñë÷ʸx/ìýLUž÷óÓ'éÿ}>>ªÿwig{ûyÂÿ{gëÉÿû1>¼\ÿoØO°Ûì—œôûnœ4>Àw.цÒ{üÄOíë}4ês~d±1;0–µV`q9_>:FyѦØÎÄæVAtß“²eýÅmêÆ¼˜¿xK¶¤¾5 Ëx‡Z†YµÅ­ÝÁ¡üîà0M¦”šx"ìÎã›19VH‰©>‡»1ÞªÚuá(ïqÏw&6ŠÉe¡”6†òúÄ–ƒGizKÉÔo6‘¬¨hžŠ‹ ÆÿV©Èå»×"ès·½¯¼`‡ºóä&u6íÁÚî“G¨Ìòü%WÉç – ¡7:“`<1möÔeæ¬ö0ç ¯äÛvC"¿€ç9.#¸´ç¹…ÆäœŒý;¡ƒâàÇÑ¿f¼Éñ²}#VKìw¼úJÈö|¯ò¾RkÙng9gpŽÄ4Çü~nÚžŽ‡“‹âµÓÉpÙ^ÒW{/‚¥mÜÂ[D¹Õº;°ç¨¢Û¾å¥ÝÃ`KRì z2“¯Ý—ðqÐl»í£ÃöWÎÌ´}ïëÙ`£ùñxûßq¸öÆçØ;ÎØØ·AÂùòšë=ý@ÎÙÕ¢ÐîÙ~HÌM&¶•𒾉¿ŒPˆÞÇ0¯‰p•Ä?ÞˆÀAˆ&½±·C¾ºÓ§ÑøœBµõyR°0±&G’æ¨.âyãùëR {ó²Í=€ ¹Œ-§íŠïõ« 4du—e@!×N¢°ž×¹±ÅÎ'› ‚›»¦èÏrar®Ð·œÃjy­µ¼¯jë¾Nª Õ»¸¨þXUòI™ç¦Ê¢Ê=ÔwZM²e‹ûˆ6[ÇÝFhi®1…§ÔqäB¼Ý'v=¶²Ò©óO´aÙó(}ô•FëC øK¼ÙC­ÎQ³uª»‘äýàÞÿÛH1±£s¸ÐNåC='¶‚x»‡3e¨©ZŤ< ¾Ó¬ÕÞ¦¶¶wÜU°i¾šÙJAB+ÈZc[ضòéäׂ¼±Ðï.¹¤vÚ\ÖѵÒ8ªDµ`S@®v< Á  ·€K Áýˆ(¶ ’êçhÁ) ZŽÚÑÏ0°2=¥Þ›Çê@k9¡¹~©¼gQ»›å”xŒ‘wšôB嫜jŽçù©ÊºIÏUY§±šå}¨ÖÌ‚î§ ïÊyΤ ÕyΤ/Kv&ÕlËâ~¨Ä6¤M8¢ÞÃNâe0Ó<õQÇ»u¢ð åØª´#¦uÛwÑ’–*0ÜgþÊDZa cïô.€Sw=»^µ¬'ëê^K1W$óÄl‰Ù|d¸Cäã‰#¯X£–«Üï,M–_¡+ÀVoË¡~·ô§S”Þ8æIí×RBЬôŒ@\I¦-C6¯kc­‚>ùH¥“ËÙÊø<¼Öô[˜0PP {Äw‘[¼!ž›ž ]X7`¼’¡GõÇ8(¢Ü©µáÇÒåÏ!†Êc!Q¸@טҜ mÓ bä0Ó0ֱͭ3ËRÑ„êCdØÌñüâ „IÜP~Z{ëÆB›•,u[9dÄh3{.Os©V\¬ÕS¼òbñÖHxŽøûp½¹Ñ}šöJiP0ÖX[zËkWrt®\ÖŒ ™,#ÑÿÕEP ÿ˜]Ý#½óf€ #-xNR39¤ö—ô+iqÊê Í‚XtÙ«Ùü½ÁL#¯ÓÄM´ ÒYÁÞgîÎ^tãÎ¥â{mî­÷¤ÿÝZ{ñ—¸‰O¸JÏh]Q0ùÄW¸•R@«óÞl‘iØÅ`ôÕY1æ ûuÕ<¥T¾1ˆwÅ2ýÎÝôqŽœÍ€’ °4þ„áš<̉Í䂚%ð× GÂÞÞ laºBP7äö ôÆG(ƒ+)p~íÔÙZ<.e"–ôÄ›¸ø¼ ÅÉVŒ_ÅŸ)&$’¾…Àl/®*†rUqRÿýköÈúßòîVBÿ»[~Òÿ>Ƈ—¸«ÿ­¿?͉4åo›Âx·?ÖZ{hKÔ¬eªYøñ³é}3u¶ je²³4n‰‰®e´!‰ 뽌vqµ+̺‰zâzÊ!Ãá<&€,8)oI4ì³Â5uƒøŒœžz¤9Âø‘-/T7~Ë!ÓI’ÄÃXåy¢Ô…Ø:6©4.œp£&%ëºGúuAœ_Á¨ÈÙjŠÑ¾) °JY#`ž/Q|£ü P Ü;¿òéŠè«¤·@8ÚB±J±}ß´sq~ãü®ÕräÙ‹²w60€ Z ¥ˆÁÂÜ{,‰*£1teŸO‰gè9ýŠæ¾ú"®“¯Là"Ž@¤ÁT\H ËTbWü!g !(<ʘœ—³°âÓˆû g'MoQÁl3„4âk|HŒf|®BHfi—ÿTÁ½Ÿt»²ùùa·M¬mlÛÕk-wÛ¶mƒyظÛßIëª_Õá1/Vu"R´’!SZúòOŒî¯F³ÆÑâÕ¨‚u?œ¶úŽêj埔˜¾bÇ[G7ùF½¦9Hgô vÚàV ›d²æ?…®™‹7Žòœ.€¿‹B=?ùõÞéd m*‰…‡_(œ§úNÑ{gi¬ç©œ:_ù>£EµÇßG=,ã ?éˆS‚,Bω%ü'Ræ.¬Ê½‡N.©®“M ëëP™—ð´±ò°õžÒ±ç;:euò ÂóóüŠSO 'S¸Y¦­±ÐWB–}JJåK^<£Î1•ÓœÕaßa«HqºK3æk™G1pË6M±‚ÖÖÍ Š›-–5—ä Š"ñà ”¼ƒ´(‡ë(9òäãºÇT‡¿𓯯a!­Ì o-2Lº±Ž< ¯tt@gx‚ÌCmp¬þeQŒ<Žx„y§TCÇ•§•]*)õ–«“ :»€jûF–ŠD#cSÐ{ìRÖC; ø¢h<¦äh}+R³PQ”’ÃUàl˜i¦ ² ÌŠé?wö ¹ÙYÄÿº¹=eÒÞð´ ·$8½y7²“¿½å^†¿äƵ†„Â~© ¬éÞgÛ¹Fµx×¥¿íÞé’já†T"j¥àz²û RÕ6¡[ŸM>ž‡vpM©îÔReHžK>¸ie/Û›Lf×Ê[‘4ünlh1|Ù‚ó2…à¼Xšàè1Rš Œ˜BpÖì}™ÌKüòñéÆ$H¢"DRjVÔB¢Mž¬R¥Mg8rw=&•A—õäàd/¸§‹‘ GÈ=Ej¤³ü‘šR9ezõù´F-Ä ­)•çÒÍÕ ­©å5­¡¿íîé’÷ 5>“ºXàùþºØñ êÏV¯7ÀÎIÃJ<üšx íø‚Ò÷±f‡R”ÆÑdÒå0†u½1*êÄ`4¼Ä™¹bøì ·pmCl b‚¡ì+&ÿOs4^$¥gÖ“'+†?‡ÃÞñiµY'íz­Ñi·î”V\‘ÑXæGË8O aã@Ëæ÷u× äÇv3mÞÛ†Û6<¨iƒeÙ é>”iÃOcÙðdÚðdÚðdÚðp¦ O¶ jÛ ™º×ø”q•o´÷”Ãü“ „D6ÆøðÄÒ0âÉb®³ü“%Ä,!ªe 1?‘î·…@¨û‹Ô $bkê}l&dß Úõ¬$èLá%ü‘£‚F¦ùdiq/K Ý™$z,³€ƒ”Àv—h^ÖÖ€Pçhž´9Ì´œÀ4GFü²wüdõñdõñ§°úpº÷8f1ûyí>~^+¹àŒ BIÓ 'Hš2´˜CÒžLJÜ!?™”ˆŸÒ¤ÄéßãØ”TŸŒJþ#dÿ1¾˜<ªÿùyþ~òÿÿ1Þ®ýG{“U´+­ŽcÒj¿í؆ •}þ~ñF Þ¡XñT~|Âßðc¿ÞnÃSúiˆÏ€ó“Eø‘ãiJŒjc žF>a¾Åó¸ŒÉÄÝbÅãäJÊ}óç"ÈÃrjô€¾Ê/é F7«.Çc_Êl6ˆ¯ÑÂ&Rê!Éi’’@¥v“ÛÉ4¢HxÀF½1Y7ük&c}½Š†²vtqŸÇÈâJmBáÞIn˜NÑñ-žJ?ó3ý$(–O€–OE†”D r‚žÕNhJÓC¹t,fˆØ$Z‡$8Ôcûáæ´¡|B³Ð\Jô™Nò~"‰OÝöiIŸŽgVóÑx×Á挰ű)ÉùþáŒ$&úeÆ"3ºê1ðiIVŽ}"QÚ¡Øp,yiŽÆµÁý˵Qx˜ $`Å‹°Š.©Ϙšg“Ò×¥ØS»$Ž€3‚±5T µ.üúŠ¡ÿ_pZXídü˜„]š^Eî³rpŒ†0À¯ñm‚@¯¿D>Sü¬½€l(¼–ä2¬¶ÕÒ0™²yô¿7¼Õ(&®@Uš2÷>E%¸¸,ДEwàOêã¹>CiÈqbEPZõÈò]iŠe µ-yÝS$ž¥1ÚH°-×#Z ….Ò]“‚"h-Äc{#v²îÚóLŽ|##~Jia4÷A@56^Êió%2«wÝ™ƒ×²ìö-æm»žÙ9* ¶"ñJë¯Ésd1˜êwÓ'¸v|Úê”i–N¿µ~Kký¤SÍN·]‡ßøeÓµà¯2ý"‘ø§wé3ù8yX–ÍUR;¦_գɭ˜ &?&$Í=rÊÜÁxM&…Iµa{² síÂx¢½ ç?‘RéÕV iŠ,›Lš¢*u1kŠõÚz%kòü*ÈeWÙñ«,j»öψT¦Ó b)¹#XV‚1UÚškë’>3N72è©P“ïB„Ï»wÚ¼¶Ö;ÿõ§w¦û°„ß|K+ÝÆ¶e ‡!7¨²†Ã±þ®LÏâ Êú²îØÅ½[̽#«8¾­l§$jÙÙ <ä{dex˜†™Nèœ1cܹ4*èŒH¸™{íÎËXcpüÎÆñ;Â1þÏ3pæegI"ÅBmÙÌŒ¢}"ŸSaƒ¶ŽBYG›DšÕ€”ÊZ.öëAËà­3¸!bl÷[—ôÕ˜I3Í´Ù¥Ž½½éú’< ‹$Î"%a‚·ñ…-¥¼L,ÏDjã(1É`ÇL•ÛCÄŒFB%Êy]µ£Þ„½½) åQΪ,R–-U•E ä Ëî†ÚÊ‹ ZPâ5Uv‚j7>ó£Ñ† '¾iu?¯™W˜¹ˆYzëÎ!ñ+X„[ ¦Ä;½é£˜X Þ‘ìcxŠÞe/:}æ¸ï¶ƒM%džIš*ñ9ž•QÍ¿è†8™¶ÚËCx5?¦Qä•ÿ^÷²÷qÊ¥òfbÛ[(«’b!›¿ ôÒŸŒá™|—åATd¥Í¯8g˜4Ϲ¼;K’UAJ,/,†µ»²®˜•¼Õd‚g±áRÿ¤©I\Vä7Gû¢{¬€Äh1ËY3è…#·¿#»$\µ“Ðú§/p÷H•YË› Ý`P{¼À8¸×G;ÂäÑxŠÖեͅ‘ûT/WLw$זšš¼ªd -ŽÐ¹N`Fi[‡¡qì¤ÁDîIgj{Ò×Zä>æw°Í–[´GùòANÓÿi§ºo¦àÜ3õ0Åz:ýò>›r¬¾ôÙc]ÆJ¸Š–ü"tø.vUË:™Wżä«vúûbJîUáæ‡”ËfM¯%¸ž&²EŠÐ‘Ó{æd¢ZG¡cGhŸ„àÊ3’|úš½|¤oA0}b2!¨H&Д;Eâ*€éypÏÞÎMÀ*BóÐú~óH2«Ò!fÎ- [½AüoKÕ­KkÎ Á¶—Ò 1ÐJ}”¼~0·2<“¸n(Ó¢peæïg²¡´pÔIuÆhï±ÕßÙãG|‚þß3þçnþcÿ­òöNé9Åÿ|òÿxœﺄÿÇ'}_ª¿?­ïÍõÉ Î튃‡úî l1”ƒ=EZ¿Ã¯ß«­=ì–üëwLïšUUD%9À Ó ~/æ~ò¿táÏ_6~išˆÜ# ~šcNºC޳±Ò× ^ºfè“5a@[*0¼ûxù|7_vÐ\Ì÷ N:ö¨È­ŒùÅ8¥7èPœ¤h VA,ØUlŸ&ƒoù§å`$<#¡ÜŒ>ÝÙÏHØ®F¶ÑâDL­ðt¨NìÞ±Iða.È÷ÕuûJ¢áÊLl{];ü @‘5xeb—Ì<Ñ ÌÐÛ¾ëo@Ð%¹eybû‡ø¨´x ›ƒBÏžaÄP+¯’ŽJµºü±dÕÄ\%slü9s)•ÕÛLž¢ÊŽ’CïžE˜?M`Î{“ȳôî ûîT²)î S5uzx³¡Ýo9Zƒ Ç5L$¼ÃàÓ]£NVi5V:ÔÜôc`Üaxë±E)› ëÕ>‰¦SŠmÜÇÚ×xH^¾Z¶—x*ÜDc”H¢†l…‚æ$Œ~tуK&7Ý;?nȾȨS ÐUCG<‡ô¦7™(ŠBñõ*>¿‚}¡b¼ÏÆç¼ YXÚ#W™CWwÄŒFkÍõ«»£KÝRþt‹;Ó-îI‡öžWRD\Ów¯YDZÐ Cú@'ÐTæï´"Ç:¦—‘ÔK²iMTú."k}ŒXLà¸5rûghc6,a§„r…«á˜0Ý€E¥½†ú2$²ó! I;_LÌE]æ60šLM ðJ^Us[¨b ÕÑ4¥{Ns øãˆ|œûº¡6JV+JºZs='xs|rªf@Ê!6ÜhŒúzšeí#a„½RvÞóü7ïëº)æyoÞßqSÌóݼ¿Ûæâ›âÂ3ßÓqóž>›îš÷óÔóœ5ïç§)’®š‹aÞöÙ¼§»¦íx¶w7OÍ{;iÞß?sžk¦˜çyÇLq'ßÌ·ÌÎA}!·Ì%=2…ø›·ÑÄ`ÁÐÛÝP`oY›9æ$è„E¸«زb [géˆ7ô º˜Z‡Ïk¼Mh -R[5ü¶ŒqÍì\Ô§üìˆÇƒÑNIgx³¿úZQDhrŒ˜‚®ÆC7L ÃÔ´–hhldÓi9„µaˆ“)†{†ƒ=FÓ@Eß0Ð76Éí…j¦ÇÁtÐ8CõM¨éµÏ€+NfÈb7À¥¯•,G1 !àCÀ'tàù"ž™óÞ #Ý|p“‘šaµjÇÑÖ‚‰Ÿ=¡e(ãlC£m€$2Xœ‚»•“n ú^Óšï©-A ©\0È}E ÈbƒDµžhÕp…Þzû³sݬCºøÝ°33 Æ Ù[:šýöVFàzw{ÕÜ^Ì6.2¸¿Ú¥–º¿jwÛ_µ»ï¯Zúþªeí¯ZÖþª-°¿jû«ö´¿~†ýåHÙU~4 ˆy±îF@¤FHF`ÙÄ>èËóâÜ+t€2mNàÐŽÎcèz7ÊœA¤XJj`9à»\ÑØ@é|Ž¢AˆÇ½ `žŒ,Ölä€Ö¡L#¯„Uܶ±ub8d´¥Å§Ð>O$Æë§ñ9ò̤›œì­ÂòNd¸cæ­ 5AoD³†ˆ×·ÙMõ¦FZJ{01P® ôf(SÛPv[Ž]&»åz:Š(u£|>:Õ,¥µÑȳ=DîâÈ_[Ä}š_3¡wóü·Ýý% Åœþ3<ý5ß=ßß>FÅ“²—Zz9:’-"»äm–î;DõéLÁ×ÓÛ›Hä´tŸâžZ8˳pÞÕ˜ØÇ¯­‘m#!t*-4å¶vKá~ßʆJW'Sf&¢ QÞø- ó_zãx4 ¨Fü=>IFó0 J#JO>Á+Hqr©¼˜P%nÙ£2¥hz6GÏ$‡–Jop9Ãæº¶cxQÇ{CC™è,„óÔ9NIÉE¾J¹ãÆ€”»ÕëóyÑi šn±ˆj˜\Öé õ&3-ªHŸÓ¯µ¡ ’-èW°n£ñO°Öœ8 ò$¦D ÑAš2¢ï¤Å"LÉ¡e}`5‚7µ¯Ñ`@xµ€àeÊ’LfIùcO3ì+rT¼á-(!§šùB › SÓÆÕCiºá:ÿX@øªh›tXHÈ9ÚÒC®Ó¨åêQ %ÕÝ¢¨ÞjnÐ КüÆÅ4µÖpœ±¤û*-2> TrºÜfÚ0ݸ¢xm™²¿‹ŒâëÞ£|}T)ïyL±0§„7ý‘¸¤‡¯UÃIe鮥î_.ZaÃ\EpwrU»é£0Çä÷¯ž½ æD5w£Si^es’3ÿ¿W߯œ61Ä·dÕ®r%D¼@#­.± ²|z;m°ØûÍ}’56§“’µÏgWp`c•Íyu‚Z¤±v¢±ÍâNvðT§l*üXý$¹öŒéòÙº¬Þ….‡‹€vnÙq™ ¾Û>ítÑãN]hätj/8rÙ (q›Zbp²Å…wTùô;ÉÔ; 7Åe а “’+@{¹åJÊÍI |ˆß>þXŠAášô›#~½8€zužÅôÊ¿w=©è+ÿÄõŵˆg¹ŽËå•Nc*F¹³ß»(¡ÑlÊoT•#.4«™qxE~l· joÄi«Ó­Àµ\B  zé|–›RP†ÍL,ûRÿŽ¥[{õïû²y(w@ç}»›Õå¨ô¸ÿÐéÎïû'È´ÿþ q\‘à/œÚt`šFÚ:¨êÓ }r¿ÖÒ§ùPæä@,YgéÅ’ƒayNF1#t“Z4¥€ÙNðPuB†;±Žû}]s®»Ç¨I=4E‰‹õb’þ'"Òc¯ PZÉLCQË2ª½q{hª%âÁY#K‡gÕ·C[y¬PФ8ô â]‚½(³†;^ˈªÞÐå%îÝ_Ï‘ä‡<ºåR'›S°Í7ƒ¡âpb¬høfòqîgù¢“¯ËSΆ…'ß4óÆ£ð¡‰÷°š oΘƒÅ˜,6|]:cðTÓ™¦pôÄtàÌß;åC¡3”|^Ø·$ÊÝ…•\¯®Eñ®·1×”Ù#,;~ì£I² 9”é4æá×T´ÓŸ„Þ—}b! ÌÏ䜒)"ƒf ç\ž轨®Z±išÁºµÌºNbšŒd?gˆÚD’“Ôì0”jFÍJ>#;ƒ,œä5ª¿­@JšÔ 3áŒ4éùe iRÓˤä£IÍ-“šŽFÕØõkÌÉF£ê½Ô›“ŒFÏÓf²î¼d4ºnƒósÑèº;îþ0+,5M(ͧ@*š»d¢qùb©h” ס‡{Ç©Éiì€ê>æCÄ¢[ÈE%3É1¹a› É[gˆN _²¶pMCý.¦ÅïÍè"_CHÈî`z½ôîm-ß=uã^ƒY5g$|ß³â™f­Y©]"EX/ÌÆÖjÕzÝ^Ú´WŸÓ»Å—Þ×Ý]Ý’+n¡å¶D¿R*-¹Ð\e‰å¼ØËf“`qÙÆ¼3+\…¯hËUË*k¤ô±®q–ÑÜW<2NÚB¢ð7bµNv¥^—¼¤Vü¥"_óÕ<'X cE47Iªèª”Èo`KzQŽÓwy" ZlË•aÐüÖ½.µU·ØQƒ-Ïâ»8~…#ny3£¦&ÊQ!Ã} PΖ–ÙB4 A>ç%‚ÑM] *A2Mp"›ªÀ¥, ›µÔ VJ[를žzb}O‹œÚP·4)œ+ AðÂ\'.7v-Gý{¡=p Tߤ@Vü.‘©Ê+s– %?OØ›+yòEE]êø¡&_QWibªuª m|«¬ÕüäW¤82— Œ®ÅÒLŒ2”Õe^`bw/D4Š¥Õ¢‚þê—$-q“û!o/ÑñGÄå~Ú›Û''ô87½Àz7–§zoŠ,‰ŸS È“¸ÜL²×ý  HÉü?“/›ýg^þŸRi·¼Åùž—¶7wʘÿ§\Ú~Êÿó^snþŸÎ‡\V¾>U[Rhò½ôÇ1¹'“ã訡œ/ çyQfBv²š]ÛD8=“KjŽ5d•«¥ÊùáéV*Áøß7•Š•9Åjÿ´rŠ8†Ñ4sÊÕÂsÜ¥"ìîñ-#ÿ‚ÑY”p…Y[;4&K¥ë-¼Ù —Ž`°t" 3;(~¢ŸUò´kmœÝnP`qp\޲Ë!©û±æìáÉQ\yj,³a œ1y&[Á¬u”ôx´§ª+~ ì԰׎û;²îÁ°[ÃP ¦X’f2%Väža}v˜}útfõØÑåíˆü6„´àüÙ‘ù/ž?;6°‰åôgGç4r—ýôq#QVñùÝàü:t¨¢=óBóÓÇ ªÃ^N½‡÷a©Ö3k·AhSŒ×N0w7ð'&òP~Tpk-ú»GúdDúWÔWö23âÿ»Sñ¿Uøcý]3- ˜ê¥&r<ñ^%£äÛ0‚ó •o GÍç9L—oCÈŸ4ß@@—%ŠøŠ« —hv’=ûËdJð#øëØúžçgVTmݰaŸ<º8|G=1Ç„š “×Þ4èÀûˆÜwc/´{ÝèÅýkNÛŒ°ÆåkÇÕMPZ4àì¨È‹Îlzhä¹½BùôN\Ÿ^»»åÆ÷qËä™ë@ §@:âeýrågI÷Ü$㯫ö¼ž$„ÍTV—ñȾܡ2/ˆÃ!Ø|BW€’ø‹ÉùUtMbR@ܧ8:¦ƒEaq<ÄuѰH¸ñFì"ã–£È|£T@ÆcSk÷•?@wyšèmbÍý±îþH˜•¶áGy~lí&a¬Ï1+mau„±…0¶½R~”¡Ho Šô¶¡Hogטa˜a˜í(½R «#Œ-„±0vÆ.Øa˜a˜aÙ®†QF[caì ŒÝ5àÆ°À5¸Æ×Xàš ([bAì ˆÝmEXA`k,pmP,'nd3ìÁ]®%ðHÁ¥Hg QÇ÷Å×~q„³îód‚´íŒrDäþðˆOÆÓ áhИ"@qh|ø‚ah6ðt£ ø¸b)£ ÃqorÇÜߥÕój]ÚŠ2œïd¦ó‚´}ß§»øã!õRî8éæÊé&Õ)öÊéöÐ)ËéÑ©ËéFÑÊd9Õò8ËÚÙX· dƒ˜V÷¥+Z48LµNšw>ˆ€õp¦)¦mJ·P¢(3ßÊ@ Ö).h^À2%§GzP¶ ²‰¹":þÅ·²&ذâë8¦-\eöê“«ÂÒ]êFì<Š«™™®©— &áþèÉó”*þí|øAÂßÿË8ýûùïöîîî¦/ÿÝ.í<Éã#÷’'ÿ:„Év UérÙß­©J‚ÊŸ‚míÄ>™ô±a_ª©êŸEH%.‘c¡=CšV'‹[ÚöGJhÆäãÖùº÷Í£¹©ºÛ~>ðï–…\7T É—¾â¸fÁCÒ¤¨M—Ì# ŒäÔ–dÞÎî[ÀÈlv_²¹«ì^ î©+w•Ý×í@P#ÏN¦G!ÍŒFWËP¼Æ‡˜’‰ÄÕÕtBHߨûrðJj.š€ÀŽã§##ò…¥nš±–ׯRÑN-V`É$BtéÔšN”4µ“;)‡iò,Á"{•«äÂ2]áš4uªq‰µxø%'䉇Qåª@˜Ü9—”§õ µm@µ0 Z · RÁ.9~¥Í…© žNr7\® C¡ØK©Ä·¹ØÏ³´ÒÉ\§=Ìn²AZèåµj½ªRZ&ÂÁ˜µ»1´¹¡)Áè–É$•ܩ쬙 —Í4¤°’½¶TPS?gEä(‰”?^{QæMÚU$wZ%Ÿ- ÆJ×aÙ½™¯É «±$Œ 2‹Ñ¶EhÀÅR6öfÃɱH5%Úœ¶±“;V¶ÂNŒ²£JäVÇSEÐHÊl홚 µ_G†ô„lLé¤)¹Â|ÿ¡`pr™êˤäR³§Ì|àÆhEÂ#Å€øÚcÄH#T 'íºÄ¨Z†¨µ(oÿ$ó'ð‘ã„MÆäçIÚ–ÁñŠD$»/óKÑj?I—)ø¶¯Âàzqk{7œuú-“Ëi[L"³êÈp÷ «7ÀÄh‰Á+/µ—Î(`ïã©ìÛ.-Jwß¡xž 5ùŸ(Ìn8«»¢5ÙÒ¢‰J;ŸFRLy"h¯ôuhO%X²¦K"ý“üJ°d5ÓÔù~F®É¦;zæVÚ÷÷’³²Ô"Ú¯†S“¥‘›Ï¢Sy6= ¨Aœ­’ȵÌ:@BÂ(qɲ-j°r¶ö|s T N¦9ÅC™EnMƒ (•Ñt¶¶­_ Ït+9Ó^6y=Õž5ˆºX.0Ñí×£}/¡“Ÿk¦4Z‹Ï¨óU•ÈÇÆs*5exÖæ§ÝyÏÍ¿/wÿ~¶ÍV‚,j¼Úúõn{š°Ó¶îÜlfíÔÙi¡mÿz!Û0LŠ™XÖ°¼à|Ë1é ìü=[ÿ9zœEi˜ŠϤen+®°®ý8é˜(>xciü´ò½Á×Þ-'æ°Y‘I(Ä!´aÅ8ßkn¯i’ ç#¿ â-jÌ?Îmf4™švB(Im-Ñq&Õ‘Ü,ÚZ¤ÑP+ãèfÐ;çݘÆç˜ÒšM’ ‡E|Í™#XÉ‚ ×°×[Ðr])uZr]¥ebM©RYd5§‹äÝ‘`Ðj &¶ºZHÈl¬É—ÚšAt1µÐóÚ0«Fè]HÝOæÆl/‚7G…í0(. )ü±/9K»/Ü„m¾HœE2wØ•§P@Ýc2䲜?µeæƒ/¯f{'¤  jÙR»Ç„Ôî9!µô ©¥MÈ÷0‚^ÊôÙA§ƒò‚P×G}g|í•¶ÄÁÖ½Ö]›ÄUdÙP´â*¶'»MÔÜ&œ9 ¨ÍPóõH–ÛJuŸ[d6?%gÓdQÂô)–úd®iºsÝ¥ìŽQpjH:¥+FñHÖ$t«OXa;Y«éãp²+”ÁÙÑ '—Ô¼Fé¿]npéøÃäBÕkãÓ¬OE†”\ÃKGîCwÂk\…ó«•xÎ}\„´®¨¨A^,ÏT»ãçv/[žVQÃ.Šç¬ÅŒ/L°Ê|!¥7(zO\_efR •<â‰5>wKË«d_=çÌ!h‹üS‹)ÑüÆÙ€9ßç[Jîc™)Igåö¤ÛP>åþÈsð1¹g]f 愪«ìNN8—d./lJšý‘÷ðm…ˆéK‹ÏÒå0žÎúzQè'Ó“>Ã`Îs4® î_ðH,Jé³H¸60„UôV{LšÛq4ˆÉ»—žè’8i6Gº·‰ÊD-ï=1à!è þÆ2©Õq|Ÿ•“’YÞSØ"¶ …×’\@Fz¯SŒi˜|}ö|âzÃ[›ç¨ e«2q¿î}†{ÁÅe–ºŠ4…R¦Ÿ\eµ°HYøl)¦RË‹Û2 ¡{嵈ß~/á:0µó¬)ËJ]É?£ß§yÖõÿؤU–èù…Ã¥º$† QTý€uu‰Î q,Ù‘¦½3 ¬S‡™#ÒÊÙç`^_ÁÝû>«ŠS„eÉT­ÆÄuÔJ=‡|*„³nËÅîn•M#ryÐPφj3^Ü]„6›ÿ@ü7­¤Št©9UÈ­\¢ôR‡eË)no9"RÞr“Mªd—ww§“Ÿ{{ÕÉ 3iØh›£¤‚˜—3œÓš'àu¥ñØTÝ!N€c‘,JjwŒAí!þË]$w Åž¤‚Ia[Z˜1@a þ²u1›šKÔ1¾”[éý c82&µUÌpøJS&¶–ËêIÂIœa²®GœS|6f«±$?è|8‰ùH1€_iÞ'³K<íÖ…Lˆ£gM¢éTÚTZfe°R雕/ûl‚™B‡¸•.#ÚåÖ­¦­ó%‚õPz.Ž€#ÝÜ)Šì¬Ä×£fqTMš¶Sò»ò]©€Ïð£ÑÄnl¤¯¹qDXY=`Ùo¥‡ YГÁ?„ÿ1¬\9ÊI&cxW­Ó# H]ì]£·ð«Ñʲ¨?þÈÅO>´?Dç¨ `ÊÊq6'-X ëVαV~sÌ@Y>=eZJµŒÞ.ì;Y;>ùÕÊ!wPåøÒ«à»V¦ãzV#@ÍÊ{ìéƒù`VªÐ šR˜ÐàˆS½1LÇÕ’®Ð9rxÛxh…' ÔM²øp€|j‰òˆ0Lß)Ѥ™‡:Œ#lÞèô>î7¸â}ò‰»¦ÒÕyaHL ³Ó»€##Æ×³k§(o\(ŠDê™Ú€rH®ãå"µ*ɺ M͸·¸»oÅé EÒÌÎi$×BºZ]Bœyío!¯x-áhÙGKç8Z:ÉѲÝ9ÍÑ}òe%:J.‚ŒY2!Ïq ¨ˆíí 3T¥ö£Ü´Ø!Ù@0€:>4¨¤㿪 ­%žû΋½cQÚÔgWDø™“G¥ùaò²Ô9f«ÓÕ* Íðn£uêeÛ— `XlâNÂ(Y¥¼éjaÖ`Z<¡s«8IŠò@[Ô0±ë’ì,ŸV5,—,ÈæcÇî:1ýÜ¡©XrrËËMnm‰ÉµË–vr·ï0¹ÌØ=ðäj w™ÜÌù\,‰š˜Ý0bægTó½X|4^`Ö¥ã'„²¯¥ÄO0-8Œe £b+x† Òzuâyº>I¡¨ÐNz v¾VWysHámù²Á·{ ]ð4-6" Øe?p¯J"óžR=@Ÿu·™Át·Ã=Dqo13›.Y Ô åžÊ>Fjno¦Æ`ç[›¢‘BVáÓÓ(È,jp6D~M?Ââ[›¦¬M0·Ó©¨‹ µï%†ýA@wÓGowÒ»o÷½èûN¨»›^vuêU'°Ã4öö5 îyÊ‘wXR‡Ãáî™’·\Ëê0<\Ç}Õò—3m?¼C‰òÆa •èèMåÆáú¡Šr_Jßoäm/™P§ ·õÜÅc0 K20L"â¾— >mË’Þ±0tƒäÂnž!IÛísÖ%Uöô̽'•wZô>î ?o`pÀóÅàAI¼ƒ7™ð-Äâ¼Ôó`›õ¯všz4»Þ8$„x²[r2 B_[Zu€€H‘R¥ÚÉÑFòB/Rv÷ËL‰Lâ”ÝÀáyçæêéjí"8ŒõÿÜ(ÉþfFi žã’Sœ4<—DZD¯l(¡l DF©Ûx´eðuzl .*ÄO«ÂŒògòA&¿"tè‹Ýd¥0H¬ ‡ñagDv†Ü;ÝÔ%sö‡ÄÝ2ÙKÙÙ÷Í–èNó¼5Ù’ Ê¥A.ŒI`yx²*»ªYð—MÆ<.àšîR¤K"©>YÉ$k¡0(vôP»O$[ììσUÔÆ”ȆI‘½Rƒ%ó¹¤!ò::A/ä€?û<'vËZ+씟á»ny­»Ãlïg 3=™bh ^@¦Å.Á‡œbɼ=8¡àF?ö|$ ¶x[˜ÑMáË~Jó8ÝÒf&«û)É.~²ØE¬­?Ö¹WÊ–a»åÌží[‰ŠÍßÏä…[ÈI„™é”ö%ã>€¯3nŸ’W?[^–¶Cì´lk'½+i8áË ÞÉäÓåÕ*š:Q6.RtÛa¶³*‰ä¡`"#åî++wOÉ$€I=Ð3b~ßÌ0Áø0;þßîÎîîsŽÿW.ommobü¿ÝÒæSü¿ÇøðÊJÄÿ{°€Ph)…µÊî«27eUuSÿú™~[œ°« weÊ: ;˜úÑñPm„Zâ3å-xØ»†ó/º¾ŽøÝ»ô†âmo0ˆ/{Âøuôï‘x÷{Ä@Ø€{h¸Gý[ uœÖ°˜Ù#;¾á‹ôA¤-%ŠS5]L¿R6 @F\Å|Ãa‡3Ú}Z8HcjŸøÏÆÑI³QktÛFÁÛ*öïÂ1;t£YŸéëÒì}’„=ªíä÷MdtÇhŒ‚Qp1?dh^ŒI•Š›Ô'Óô²©ò,X…SÇ™*vÔJƒoù§BRxQ$… $y×H’Ö #;Ó““çÉ ©L(ÙÆŽºµPìGAFúˆ®/dd‰N›:;8K9¿¡ID0éªc:É!Ý¥!¤Æ E"’ÖÍ‚Lm{è®2Þ¼œõàn2Ũñ2Óäq.º™äåp1H¤t#PLŸk*©YÀ¼˜ ¥=¥Í6q¿E;× }»ÆñÆÐ•«ø\Y`Ÿ÷pÔ*›cÚ)Ú@®¾@×siÒl|tÀ³>g»2Ö¡Þ²A_¿›)…rohŠê, ¾k:~/ˆtW|-Là¸ßÆ\IÞÜHÚm|„F7N´% ÊÃdgus;¦èƒ2®çÛI£“6F-Œ¾Ä£ÙÄŒ{ÀNáØ†QbÚ£­>O¯AS>A#‰û [È~К“ÜözŸ¥s×ù _Ó-û2Âå^ÝK—â 4C¨2â.. s4Яؚ^ÈdO'ÑàB Į́óTžŠ"Ÿšìß'Ò©–…?T¨Ó‡Štzï@§Òß7Ô©¸w´SkÁ,íTO$Æk8ÃJ…<•/˜ˆŸÈ §‰LLunÐÓoÑM &îÀTÉÎå­à®L% ËK0¥x0úd•ÞÄæ‹*úâAMõÔC›2°P¬R/J©êÏÒ±JÅ÷ W*(biõ¾Þl09yôK~RçntÛõýßy+Í:êóvjv…"³ Éñ øu pzìÎfb ‡Œ¬`êkÞ@9Mâþ &ùAå¿Ã)ÝÑ:†Ç‘rqÑ¿JPTáÅE‰Ð¨Ä¯À~f5ZÆOÁ3ÀõÀ„ÊãÀþzìz¤™xévA¡›€áœ_¾zánõ‘Ìd®¿u Ž›f6Ž]ËÔÞL)P .E Unz°^åÕ‘ü‰ˆ%‹îw|k˜Ï#öfŒÜ¾`ÖúÕ#v"–ˆE‚Ê>D<Ù‡%»LÙPÙÅ"ÈùîçÑc"tl{¿PÔØ…CƦDŒ}Ðp±Yí)–wn´Ø¥žJ b¡(±‹‡ˆV×7]/V¬˜.¶{uH±iAbż8±n«Ë‡ˆó¢Äú , VÌ‹ë6q—ð°‹G†©ÁaS|ÀÝȰ¶› ¸°L<ØŒP°÷»xØj8ìC½{Ü×̯wöºP ×…b¼.ÞUÌ‹ðº@„—Œà®"+¾kún°ƒ»Þ7®ëýCº>D4×ûr}€®¾5•¥›¹5´uáðêmšŸÀŸ¯ò¡OÖLðÇù‘*Ã]@ƒ¸LñŠó`OOö¬¸[?#¾ë"[?;´«¸gt×{v½[ÀP{F¼ß9¨/Ð5=–ë½Ã¸ÞxwÛ?¦“s(Ì2A[ï¯õ~ÁZ4Rk"LëÃÆh h}Èè¬ ‡f}ˆ¨¬á€¬â>1Y»W÷ ÇzÿH¬÷ Âz¯ø«w½ªˆ 5Éí…j²¤Ÿ$ù*òœDß|4ÎP}- ‚Q§%ìáádFáct¬µ@hmœËF"x êíHÀ't{…óQ‹•¤šÒ(˜5ç€YÈá9\Ú/ð^@Ëð‹üRjá,Ÿ¼ö±/ÉRH©õ²=E)YÀÊÝÂú­Hë~ðªQŠÖRêf-eGíVÆ5Ò£²Œ¢ú^{ëžÑu °îýbêÞ+œî#éªíQËÚ_µöW-cÕžö×ϰ¿R"&§^¬ÝpÉ® ÉùÌ‹™ì…K^8RòCIN„H¾Otä9±‘żðÈ \Ò##‹@päÔ‰s##[A‘ç†Aöc+uËâaýyŸü8%â±Þsâ§;ö«g„<ÎŽs,æ…:^`žÓ£‹ì@Çm£„—ÒA_ ¯Â»al]­¥Êï|Ž¢y±‘U@ä„H5y*Ûv¢"§Ï…"3#Îúò_ s\£ êUIk‰h%G658“1a*<ÍÒ¤n+2ßãrZ&on" ‡¶}æÆªLü¬Id'¾y“h;J-‘ðTFtþTX øX.ÇUB‘Ñ\eW{‰ßj2dfÉHSB·zñZõîY j«‰Îœ0´ Ž¹ˆnmÁجŽ¡5sfBs"Á¨ÈÑéÑXùCu>|’ó¤v8E,kâ§3þ‘áa­ãý˜k‹^¶HŠ¡!w ÙlÇi–€‹Öœ¢Y1ð j¶U| ùni è,båȰX2÷8{ááëéí ¬}mÞ µœ!ÁìD‘k\n³ô¶¹oßäVZhÊm·…û}g(z(ròa¥{àÆŽ­.E£a2âöYÄSÉ*yRH5·tVÁx|Ìn9Ü—?›¯D]cV‘£%C‘ÏÓÞX™fݸƒŒ¹ bpfì ¿§–_Šlƒì­Cû•™(‰g|då~ûÿþw£ô ØE~Dߨx­Ë횺Çдuæû‰äö~K˜¡5£©ø ¦¤³V)H‹íWšÈ3iô•S–Ø£Ät„bWWL.ÉÙg×Dã~c£HìÛ7ÂôÍÒ8âÜ$OgñQÞ&èQÚÝ¡^ÌÆdJ¨ìèxÿ6kªÞL¹¹î¿ÄÙœÂì-s@§pšËžÒj©¥œÒÁ3}ñ3Ú†¾Ä!í͈aÒ¥«×‚HT¾!y#qN~-½Ÿÿ žüúæ8ÿÍÝâ"eáám)8Žz~«$yÚÃOä¤iüš~me’£ap£$¥çp9³¸uŒ¬ ¶ä- ž#ogªYà¬D‡ªmoÁ…8rÛü^œ âlž8›ÂÙ8›÷‰½ùîìMNzâ}Ëç£óMyëÓ.¸?’”'Nü#É-iiœþ覓œT:딘ÊÅI)G•° ÆµÊ1‚kËU½¯€*0>Q0(³T„H8¶óBÅéˆ.`¦†çÒ­Zù|QÞ^L$25®û E)¯ŸÍÑ]Ë¡%†Ò\ŽÆ°¹®íxþÔñÞÐP&: áìåQ¹6Pý%zEÁÂ`b˜7^‹×1hzq‰¤BÅ102å’á… @TxOxÁ#ãÑ<µoÿ“´†¤à =1ί†ñ¿0Ç”•ã 7ƒñ!yÄp"K{<„¬O܉—/ÑúÀ†øý 6Ãï¤I’Z~‚ø—v ÄeaÍ4Œ×óVÚÕme¨}ltê´¶p%ìz—š• Ê3¹ï5Ä"¦Óèú†æ@?+‚5~üQøÚšØÆzï!=‘¶6. ÉĈðÇá`¥+‘Swï]ÖÊ3û'”‹2Eò°­Q§‘ÈE9ÏæZUœ—?“vÜäÒ?ÛÒüG¤tM\¥í\y†4¨ẫûdü§Ø¤…«3 R&ü±l^Á%3 :-0g˜¢ÈLÏh f ÄH‡‡¯\ü‡d?âpš¸ó}°æÄ'1%bˆÒ”cx'½]`J-‹&;\`øk4^- x™²ä“YR~ÁØÀÓLf+uýéñ ;4_¨a3ajú¸³z(ÍÁ´ÖË¿ÿðUÑ6³s´¥‡4\§PËÕ£Jª»n {0@kòw‡ ²c ÇKj4§…Ægâ‘JN—ÛL¦ÛWôâ £“häÞ£|}T‰ªøÂœÞô9NCR«†’ÊÒ]KÝ¿\´Â†¹ŠàîäªvÓGaŽÉ?kâE.ˆ$·ßhUš¿·ÚG$ÊkäƒÚщzP¥ßéˆbAâ|‘–|žÅjð¤ñá÷ƒöñÇî[]!8b¯ë»Öë>ò±¡ãªªÐ–ÆQ°)Ù}(¸íŒìXc…¯»Ù€,\@áça÷ôEFOm¤@Ñ—˜L37‘ª7(]&Ç$M_¿+5ÒódÞ)?fzBKLé"?¨:Q€—Oª–ÑÓ…scR¡j" ¦Ÿì2{œ0‰ vjͲʫù)лeóbþéRb.š2+/äß2­¦Ç[Þ—ø.fãHKͼô˜Xäë…þÆ8/iXà€t)AÍÂ%Ü`GŸÅð´1‡Þ9–§VªY¦2ðÊze¼+äÓHqFoÿ›møäÂ7kPç~ Äó3}j¹£ä¡¦Ì¢Î†Óx€Æ„.ôeÒÚÛ7”ôQó>¥ý¤}Êš’ ´d²BeMAÌN1ËgÝ]|4÷Îúpé@¿C.Ð{&Ö¼cÐÇOÿùó§ý´ÂgLªT„¾G=,pXÑ«èšÔQÅM/­¡lWfÖÏTÒ¨’ê šÔ~]Ý;ÎÚöªÝÌ$LiíÖîÔnv¦Ô{dJU ¯¨9“w¡­²“˜›H‚MÑãOQKÂø>ÙCÙB·7 á  ,¯Jìl"¼Öì¢?O”´Agy¢„¸3)ÅÓVè4T‰^“çãO“çóDšQTUÁSŠ×`àÇdµój‰NÎÆg™—‡ã/ytðŽi!—Ìù8­prº?]ŽÀŸ=7à'=>y.-–#Ð"=˜°Iå•¡tLv+3Ó=ò/….yG€VCÚ„_x—Ž”c j{ËEò ÖÍ×\Ž—ƒÝNÂvO„¬,pß) \2ÿÛô¢ü°éßæä+mo>—ùßžÃß;eÌÿVÞÝyÊÿö^Rnþ·î>¬Ú´tºÉcÚäõ §=Ó^¡¤^ 'òRB~;Ù®­ÒLOÕ•š~KŽG†#¨¾gv,«9üÓÊ åèlyNÔÙ@1BŒ`Oç}ºÆàC?niEš®Q0u˜›l=¾Ð„*T¶›–S¸˜ Ï£óÏpr© V/´#eìA˜ÍèK4e÷äŽå„ã÷ÔÒG=a+`út`ŠZêE°("+êrväìP‹3óà:á±³ccà. ;;:v°‰åCd§„¤V«v^Tjú,š/ÀÙ ô-äµêÖ¦2Œ"m㢉{„¶¦OF|kµo?Ö?ÏæÄ¹þ<3q®¯½8×_ýË=ììæWÉ(Â6 ? ð¡„m ɨ‹Ä¶!¤…Î*lC@³òj ùÈEš‹ZÏÿ2©ý˜´: íü8´8¯G°ò~ûNÓ×4žÆøCÕ*8Abm)ñbÓ"ÅεÇÒ$sâZdÚïɨ2¾M¥ ³JÈ:áôHI£Ê,›Jþ,iY™¨o,-É›#þ–ºgÜ6¡£‰A„Ë;G§(êƒbñìËպǫÕ9Óì“­«H°$…br~×BRÀ~:aëM.7$"¼‰†|Db>é7b2/BrþF”¤ÿ­¢Ä¯Dø#)•³mÍý±îþH˜•¶áGy~lí&a¬Ï1+mau„±…0¶½R~”¡Ho Šô¶¡Hogטa˜a˜í(½R «#Œ-„±0vÆ.Øa˜a˜aÙ®†QF[caì ŒÝ5ؤXà \ck,p͈-± vÄ"¬ °À5¸¶ (& É• ‚3º0F~kMK‡‰+—dæ·_ûÅκbZYtÎ(ÞdDæ®ñ8Ö?Rr„£Aca¨q|Eø†~GHê)’"I²Uìfé_`'ïoƸ€%c€í>nÕ ¶þ0h#Ǧ‹9i¼X&™)`¥ñcN›?ª:˘ɅndßvxÿëïànòîÃ’&h!¨5Ô’(9BÒìK¾Ïhgq²z:^ëÔ*Müõ±CaµÙ³ã2ï>¨ëL*óìdyÂUßSDÙDÕ—«ßHžî$Èë@0êI³HC9öQ¶ÝHÂüfŽñKÂXfžñKÒZfŽñKÂZƶdùa¢M`lQô’ X¸/®åiy?‹Ï?«P_À H?»ÈÑͱb“t3-©ä4„À“Õ…ü«˜yóoÛ–+íTÓPMeµv¸gÉ:ÃÂ’ÉÍ¢1†´âÊÖþ¿û@ºqƒ¶~!…ϱ¨,,Pa}*¶®GÑH¶g±µ9РþªÆpxª6@<÷³ Ê«Vïâ":·8åí<™3$Á„î@f°‡ÄåØcßÖF4ì#µuÏÊÆ­8\!UÎ;¾D;ޤ\WHš&ß-T"|›Ze–TyK>ûè¶Æ÷ º‘! !uÉÞÆÓÛ" 2f Xògø6þÎèß)k”ŒmÚKéð^òï𾈣ÅíMk§÷Û>€Da¼¦ ê:ü¹!J.¦e}:åD·{ší -jCêâ!ÞàO6”9ˆ§ì«ÜÜÀÍÃâ@8o:o­Cürxê+ßhöO°%{«Ë™#¡>d؉C r,H„¥³ ÂÇ×ðuDr24™ÂhȬ»º?Óiø•#&‚ ‹½>ȯekÍÞôÉ”c wŠƒ=;³ä –¤)Ð Bë)ç0‰VÝId¸“ˆ] èIJù}ËÄ­F/îÀ’5!öˆéÅ(ÁYIØ¡I€‹¨Æ…’pt[¶á “IE•±É$•uÈ0å=¾°2,¼÷ã¨×¿åÛñjCkײÇò(ÜÃÝ¿¶7}²”ªˆ‚³öû衞>?æÐÿ/Uÿ·µ]Þ-ùú¿­Ýò“þï1>¼•=ýê<éÿ$ÜŸDÿ×Þ¿—þ3FÞSÿ·¬öoëIû÷¤ý{ÒþyøzÒþÉÏ“öO}ž´âIû÷¤ý{ÒþýÔÚ¿Å•wÍ—\ZUR]5÷Ь9«CT·û¶*û®—î¯ZlõhlÁ?üû„U(bƒG‡p39ÄïG¤~L?é%ËJ7 w'¨Øú˜>ÝúÑIj¿iÝgÏ#â ´•“Ø(H eÍ–Û*%j<”P׬Ô[”8,MªËe´»°ZµvLÑ7H‡¿ëGG­l…ËÖÇ¥tMÇ‹ÔÆÖºíÎÑ_R)û¤“ýá:Ùöþ×ÉîéðÓZxLâ¿#YI U7Óª¢ž‹v,ù›á¬ŠÕ‚#næ«JÂJi?¿ãALJÑ#‰âY,\*é\D {L ™à3Ë”¬èö‘´`Du]³Õª¢ ³$1UEåË»s!ú,³n©éÍëRfÍù­xmèw¿!sNè°÷»Ãyà[ŒX)osŒÏéÑŠP5/„­'}—£„ä:YRtà"¡·Ÿ„GP¿†Ç±UZñ7ÓÇ!5ϨÅO¾æÀK $¨~ÞNÈŒÄ]켡ï.bÑÀEwæ5ˆ»†*vSQqwK–AIÏÊÇYz²tHÌý¡C¬’‡ëIu.Ò*è:)â|zòNŒˆ³ÌÉ.“šà ^¥àg™~n%^—éu™^—“¯·èõ½ÞÚòÀ¿Å¸ùÐ@À åÃòýh8’¾ ÊxI-tF.×—Hg«á€Œ°ÞÎ êUSOœÌ †F#‚">Cß;fæo>7aqpk„g2Å-+ÌmË`ª©tÏG¯Î¥›B_Yƒ8¨ôÃ3M'ß(; ìÎÑÆ!ü^OØ!l©rªÉoýõtX¦žnÑð´w+¥“Åe­;32"°âéóg_ÍËü)öénÜxaA“*Ñ÷ÄšgdÛ¥Ø/dZéþ<ϰ â"J ¡ç›N¹`œ2’H¼·Ñîh:ÄŸ„Ñ¡·¢Ä<;¢¤!‘œ6'²í‰ð,? Í•m•3Ç®Hv)`]”0/JVsÌ…RÌtø³€1Òúau£”ĨÝÒúááF 9xè›ÅËkÏ`©j°Œ`7X2ƒPhM¢GMdìO—ŽUƒ>I'f`Ð’¸¥brïê æ2[Yè¢ÞaŠ“£Ò*‰:)Hóû‚+ãð0¹Kî4wnåÔyóLü¡) ¤±=×$Í·I;œo¯4YKX­Íäg0‰c©(æñ…8¼LQ2;‘,‰u"&Gu¨©)’%¦鄈ìÃv"`dwD‹*ae·˜™°,í\S»E+òTÛU“CK%÷¶³ãÏÝ­íd7²mîd!iy—8ªÒöRmts뵊¹b9Z”°µ>êÕsÈÖª­À¹Š²‚ÒÔ40^6(uÄrz¥ ëgýpᣈ!Mû†œx9ç/Ò­£…²É>¬:ÜWòZBGlHÿ –g& ý2•=,›ÝÆø" xŒÄ=ûpKñ ›l­ºÁµ€Ùì$’bYìE/³p¥Â{O¹`…ƒ1ÃÛ*§š÷üÝ)ÔÞ"®‘fÁ–HºŸ9OÚj;Å ¸ÒÿCåtTÞ¾7üRÊ+æ<­Ñ±væoËbü¥Å‡.é²os°»…ØÝ*ÈkeâfÊ; “„Û2É] ?<øQ ¸dIš¶#¥» ÀZÀ[’T%ãi`{spGè3xk¤èDªˆWÅ2iŒ0PS#£~ûÓhÐQbæõ'TØq² Œ)Ž‚4›‚h³?)•Z<ŠS pWƒèKo8u„#I"åžXÎ6Û7MÁvÏàP7“«ÍèbŠ’ç&æôÃ?Z#ìÊp‚v‚øýtC9´WIì³¾´C›AW,Á³ŒÆ|dXø(‡ñ! ïr„(ñ1à}GéÌaVæ)÷|~uY.?“Þ"ð¥Ø!¯ÉÂ^À(ûCßZá[ƒð­¥μ€º=*š™q -âd•ð-(m h÷ÏÇ?qwtU 4lÆ7ˆ¤¸/Äá€$5 úƒ‡È–”Š¥C²XY5HkLŽ×XŽŒ,²N„^rñ(Ì’H,•7}65ÞJ!Ô™„r+yŸTÒ¹uÒÉè³.ýD-ÃÓ/î@-·‹Zº¨°*‘Ht8F Ç[KãØ# q‹`&Y Ûʘ]qK“,ŒLÉtëfÐ;R©ÒÎbTi{1ª”F‚ ¦O°îlgR¥¥dïΣ ˆb¹kRi÷aîI¥Ý«€—uºpwš ûJzb]ž<á?ëe\~J}23ÿœ°O§d¾R‚ÁAÍåz¢’gmAñìµ…¸{®4@sdζ‘@ࡹ&Ñ)¶¿Ö“ˆ^Pª¿€Hÿ0E Ÿ)Í$_P®3÷²ÄœeãY”êÁÄÚË*²4ÁQ=úˆî"¥ŸÃ†zIýÙbk\Ø’<:J¤ôì¾’¼°@nÁ‹`RþÇdöy@’Wz‘%!uºÇqÛzò8~ðOÈÿwòÈñ·áoßÿ÷ùî“ÿïc|xcùþ¿YÑ=»? &žÞ†2wÒ"$¬‡#¤Z —CªŒ¦ã%ÐÚØ5¬>,élâÚÍ 'Éòa™.'ŒP·JßÍ÷d¶­lóHI>,õ瞉yjC˒ꆱªÛtÐÍ?Iu&»:J#308òf^½§óVor¸xvÁ~?Å[@H]Þ 7f¤2g¡­ô)Q•hTòöL8PÊ¡zùÈ“$mÛ7ꢇ¦­EÐd /îàÒ&–ßZ $´ÂHõöEÖVð´}1Æü/5ÈÇße»swYàK†Š±ó·U1&ôÑYïóãêÿÊ[[[ ý_yëIÿ÷^õŽþ¯^­¼ƒ=w {¯ÓØ«Óh÷ x;¶NaP>à†üðÖüidȱ%ŒÒ"B–$Ü®»²,œÄò½ß‡7·Œ¢ç–T]K”;‹At1Q| ¿D(~Ÿ¸ñ„¥êaHîÙ­ÉHíÝ4GC7˵VY8ƒ™žGZmÁ2ZÖQ@7› (ú`‚hÜK)ú¦·7d^–Ö}ωÿJ¿‚èÐêê ø‚n\_GýõÁík¯Æ ×Hkeþ–hð–Ñ™bK£PõjfuÎ~6¸.V?Þgð‘Í8B~Ä?E::“™Ú{×J?X6/%ãXh2»AmO5ÎìâîZ`a(mÔ‰~€U5œöbè:/]{mùƒoz5kü®q¢Á§?øŠT  i@f,Òªw.QÈ Èa½¾ iÕw6Š©IJ$¬¿ k“â ìØ|¯Þ”¸7›üêê5‘«kD™æ©³<¥·”ôúd½Þ•“r︱Wý¿tLðpøî~XðÜ…Tb Gó£^k%rœ’»·£U[ÃÜZ(!<¼íÔ-Të¶ëjaÍ…ÌSW£i4Tñ‡,È¡åÃY¯s”n€VôÓéÜ3ØhàÜ^HéV’ª¶û)Úêû]8üÛƒ·]‚2%Ø'ü{—Ájü‰”oŸ/à^„íˆÒ¥ªÜŒ•+Í–Q±1 g›æóhZš«vx¿dpJ[G\+)íê9~y¢_ZÌ{²X' Fu)µÕ—£·!ÒhVæÍQþ%typØa ¿,¦6K(ùà°$•a#»µ*¼¨É°P©Ú¿9‘D꾋ªû^†äËiûð†ð=µ}Iõž)r4¿Hr‘§ë Õ È YŽEzUÅ!Ë[‰#°)pæS·ƒ'˜”Ë>UUÖ x£|¿ö¥gx'ï‚×~)<ãX:pëìðRØÐÒ²wÐ/Ñ€ƒÛRØÊ§¬sDŸ{w»¼¸(Ý]Žz2-VT¿ÜG U9‚’˜L£ Wb6œÆtðn>0ÄuYJjá• åØúV"wZbÅœÌ_1ö3׋òŽCBàã•F•˜ÚŃzoL{JÅÛúÃ{c{3  U”HN¼Ë\ÇdwAÛt©Ù²ã# Ñ÷wþšZ\=#æo…Gš‹Ÿn.’=ºÃ\#±ò'$ÄŸç)„×ßVŒçOHþ?xTù¹´½µ™”ÿ?åÿ{”o_þß”‡T«€ÖäͽJ@ðîg\›rýÊãõ+9nkI¡~S1®ËÑFg4ΜÍoø…\} â"O¦Äó0«„Ÿ Ê‘zb_Ç6Ö:OG"žŒ¨ÇfñÊ]H<¯R4 Tv`& '‘"#27Ï[VÜbvY9¼f¹!\¬‡(CGkŠ¿¬ ¤wÁx’в«9Ëñ,ÄîÀ9 ¿®{Ÿ#(Ì-Çöç@4ŽfˆNA½‰¾Ð«(.G~ƒ9n°Y ™ÒÞžf{{ ËbõgçÜRich9ñŒp(²øúf Z!¡‡ªzç·ª¨§F!\c½gÀǤ{®.ÁÊÚY ߥpf®’Ô’¼€¶a„>Úà–C36™Q ‘4o†Fžåa…)'bªU, ­¤vå•Z¶QŠîä«-¯«øÚR~DZZ-§XȱªâÀZ,Ùbf®E–1éæ‚b΃{º7§vりÔxŒ40Ž.¢q„•9ü¼\hÆgìÍsÀaÿ› YiX‚f­bÉBÛjò2Š(N¼V»LfhD{ÕãÔYž€Zæ~„ù¥drâŸâö‡^¯Lù` +Žt—q*®±,éûä^уíâ«g԰™„4DpYW猸HÝ=Éý‘F¾Eß#CIç$ŒöS²Ê2êö,Èn—ìú¦s (´/1¦14OÔoÁDÅ›¤í{^ ä¨ÎÛFJ ¿´Y7DŽŽ œº‚+òº×§D-yt­»â ­uÊÞWÿâtñÞ ˜eò#:+ýI<™J=kÊ’šH´ÁéÄ·²W µ7o"GNt1ùò[¿ Í_;!W(R<"3oM]z‹ÿºeÅö²µ}—·*<ÆIKxQjkþ¯WÈUØÇ8¬d:ò#éû¨œ"#Fœ¼Š…©þx«L1|fbáüÑÈ©§ 5¯«E‹I‘ÈfkÉg X-d#s{è…P…{6_… ˜á!È䎀“ W™ç¡ ïcL¡1²û+ÐÝXt»Õú–!:?‰žX9¡0¥k{fª~Åy]猻ºVÅbòïßD¾è”Bÿâ]Zf0´©†fØ2£ˆ¿nOtv:Ùá=ê²0^¹F™qc"UT»rµ6 7ÿYo¬V©7:Î-«f©ËÉ™ƒõÇÝÏ6~E DAÅe‡†Îc<¿ÅžÌŒÊ7/¼¦Moµû‡uƒ“O]àh§òc5«˜Á¡0O¿*s2ªŒŒžº5v§ÖܯԲs Vž ÊuÛYÀ¸õóåÎý5Á­ãÚqkŽ ¸†7øú§ülWØ÷’\/ÒÇe±Ö~ADþ¯¤¾³TùT’¿Ëô»ÑÊ D”*/pã­í>°ÿgjÆÆŒЬÕÞ*áaŠ » :Êâ½þÑ*íJcµ4Ž*0yJ½] ‘€kÍvxhiôÒBpD?ºˆ‡±’êçhæe8ÑNŽÚÑÏ0¬=¥!˜ÇwÑÐÏWËÿ5êË:ÂÂ%jQ-²Ö~ßK‹Ü\\‹Ì_Q/¡}:ñÖ3G}̪ˆrÉõø (ˆ½¾: ]ÅQ‹°_–Bј惣 +ŽÝ/•úIJœ Ù‚Êu­’QpÚ.ß}c¦YzÌ”K9jÞ‹‡VÿçG)Šskâ¥ÞÈX…ãÉI_þvä¦tr<>6Þ­s9<‘dØ>ú~d¾+Ó—¤ª•{“ÛpÖ¿€µ'œÆBXIà;ñ2ÆéÝ$HZ8%LÝÌ&t»ýÑW•Øj;¬ÚEœ”ÂëЬݦÌC&HÍåá,ÒIKë½Oçœ@‹yN$r&ê²èIeugÅÚÚcæùf¿¹šKu±Yl:ÑSNç‹Ä< ÁyGŽäTàeh¢JÒ—Ù%o–(WƒzµÜ4AÕôy’)+SçÉ~Ÿ9O%Z’27BÚD½KLT98QˆF)IHdìñ$Rtµ´˜ø°íD Íç¥Á—ÙÈ»åªHDï6 /И’4û Æ2ÝЂ"¹Â¡U=ÜV"ò9ȶÄÌ\,2Æ$Ò“ˆ|é#20¤šß×9È‘H¡ ±–D>#3ñ\vñŦ½5ZÀ“J­¯ýÒË ÄÁ\o3žXX²Ö™¿°â>bi)_²Ì¹£ž,¹¨Þš]T¢»”FôœfýXÐ܃”ndvÃ.(—H æcÿN9ÐÇŠõÐ9‰Í—5«ˆ9hºíÓºC©ËMI5²§S¡IÒ$f#t<¾‚¼€ìJòÖ´Íû´\Jòè¤=S\ ëÏ ç–az²ÿz„¤ ®ý×^™óÇ믽‚¨D·rúž~žpøø?™Xjôfâxmïå8óF^ŒÎœþó½üÑ›[Ò l¯,-Ž&I×mqŠ!³BÜ(©*Ñ]Q…"GŸ9Ö, Š\eƒ0ŒûÒûZÀWâý*t#!ŸI­q þó z<‘MȯQ’u-þ¡ pjS`s¦¥DY 4ôítïÐ¥µ<"÷ûÚÿÈùÔÓËí²‰¯×PGÙÏb3KŽâRi2ÙÏ ò‹:nW5n›‘u‡Éc­$¥}~­ôÃæ£-Ï"XNO "›1ÒÁö\@Ô°\¥²½÷‰`|²5(ãVGƒHy(ËñëžõΤ…^%žÏH²Ç'VC<ñâ5‹´[|˜ÇÌÆ³%'Ñß“KNb¢ÙðlúÓ¨Älûà"*s6èþX;º#eG§,'æ•]ÇÃܤD(k½<ŒI¯ Jž\9޹膤|C¶t:`u}ÉÞl”ý]\lܹOI¬[Ý[/å-{Ô2u 7J)»ÐÔ„ Rœ¬y­­µp8Ãu„…Ð?a~GYïÉqW[MÙ²·[1cYâ¦Hïùb+çûuý$«ë”Ö »Žé$'pÿ‰2{ÛEö~)û:ϼN$ÌëɺNÛŸ½'JxBVj^¸ZIª&ÉÒÌÀ+Ÿ³3î¿0„·ŸömØü"ý÷67̳Añ…øúÀ¼> ÀµrË£yØ[Ü2Xüÿ¸ê™¤¯t;oy[aZìioö/`9¿à¿Ua*ê·7ðf†ÿVmS=ªFç–@D(6™—¢<-¾p”^»ÂPqfÄ—\éUŒxß`ø/ÜpIÖÅMÿê:o¥WöÃ2A… ]x-fH‚™åˆÊh@ø½üj˜ ¨ÀE^óÀLA`Fé.!qJ£åg'&7@CÑ«9y#ÍšÊëŸr"“(ìHA_,Üñpÿ…pŸ2‰4ƒežA4sVÃÌY 4©i“¨ŽœA2c½Ã$²™(ìcyÆU4|7ÐŽÙ.l2ùÏÄ4ä¢o=ÄŠÚØ×Ðë]jiíáÿÃü+Cµ®é¹*±‹%þ%Լ愀5""ø7+éy@•°ÞêRÄ—’¦Lÿ<ø¦oÞêRˆ/e Ì–Kh0[ú_Ä—- &Kh0Ûô/ âË6J%4˜ _v\Óã>›üŠ~4M=Î?• ªÂz×¢Ü/ò½:‚¥i*oÁRÁ +tì§u¨q`–è£XŒ¤,ËXŒæ´Í¨Êƒ‘aÑø©3B²¨ QóämÈ*pysC•°¢YiïË_hvX;nZ‡f®7'¦ÊC[ÏÝÙz.ØlÒzn¯¼¬õcá ^ e;hKGÄQR0#=%tžuœëCq@Ò¦i˜GçcÚè ‡ñUL¶k†Ù±ÛrEÓ‰ôéžy€ B ‹FµÑ í<Ö`Û0ŠÂ³®LËó—²X5i„°§ô`¼½œî©nI%º‹Îý‹Ã]Åñ qˆ|Ð_ŒG×,=‰.¦Þ u؆VR¡g†lr×Ë‘·6Ó£yIZi æìAëÊë%mbHmk™Q“Ñý”tÅÙ ä ±@üú†§õÚ¶0Ä‘©-œèa%£YxË,”7×Yk V¯´FA-¶²4™ÍÎK¨e~r¹Á§ž¾â̬—R–P+OáQï.oéQÂtÒkc^c…063‡ªÉõp™ÎY^âŽ3è %³„âè§õ.a%lÂ4íõãòÚ™‡h§ÉÍq´íLn ëvàM¥Fc»Ô£q bÛò‰­ÙÊj|ÞâH[ÿ÷$·‰E?wÉkzu4‡Üú{!‰Ð¥÷BÖNX~þ¦ÌGw¤ÌÉ£;@™å¥7IXìõ%GŸIe\*kHìbç¹H?ÒÅ"4Vv1›ÆÚ§{ÈÎw‘zŒ[$V/»ã¥Í&Â.'¨ï ¨åŒLïü%Ýg¯ü·4ÀùÁŸ€ýϸÿÈñŸž—vñŸ¶Ÿâ?=ʇ7œgÿÓÞ[Ôþ§I¿Ò‰Ð_È>ˆ‡ús™ ¥#þ.öCí=Ë~È"u´qv»Ñšc?´¬égyz2zlã!9™OÆCæód<ôd<ôd<ôd<ôd<ôd<´œñÐç1êJâ ó‰c™Bõc Miü ‹†#©8ŒÓøQ»[vfîî^Mr¶4AQ̾æðz¦:FK§–g×*ð#yÛêz¹£õV~­U-Ht«ê¬j·ïgƒÑùçIüï¨èJ]€ác€¨ªã0n@5‚Å¿fÌ&¯žL€£ë¿–çèaÂ8ÖÅù EXnãØ®Â5&§I"Ù3Å0LÒ|bGÄA…`MÄHDã±­în/½Kä©dƒÎÈT£°ÂXØ,ƒ5ÞømOfOfG ³…'ò.Vfj"ËöDÞÅÊÌLdéÎùdeödeödeÒ-”ñí~¶b¡pwïOëí_3ä–˜öd—‡(¾üØ~÷Iþþ%™ïŽOº¤×=j€eË#¶ª8®•;ïcf¹…-ÓHT déGd™Vmï}‡o©Að²†0ܬÔuÔÅÀxäûP;m×ÂÒÊ4Û¥?WY¨» ‰Õ‚”èoPÀ)KqÊ«)ðò™yù†eÈlxÁщdY]•V!UåkIý}qØØü¬†yº.õÙ®-óºYúx„©Ý÷‚¿™q/cìGS4ÇØO÷9Ü¡{eg#:€KõðŒ{ñ­ ¾çµj/Ò¼ÎÈ*µV†˜Dá+û.-/ `#h”äÁ7NÊw²HëD¼ÎÇ0`”QÂÈc8NZŸœ˜­OªGx‹UÛgkþö±šÚSiyñĤà}“¯ñ#–¡µ]{ùö7ª/˜52ºæHXB^b›šêzACÁ4;Öï±£Ùå]°ß°QÈd_–£”Ï&2,´ýé‰  ŒG$Ôµ^xÍáù¼¶Äky^ýúfXõ¢: Hµ‰1?èžýL¡Ë/2rPUK¡Ÿxƒ%ôî¹é¬œ–p½ý²‡ÑµI-Œ ¨T AKÂH-‘Ï$~¯Çg%ÞWÎa9¦ ÎԾ΢"¿ÊXëÈ飨/òM‰Xz&UF œYšËc¡Z2Š ð9ËÆ•~U–WÒâ© MUÒxm¡R°í±¤–š ”šLŸ ,-e[CôÇÙå§fÌpÛ‰)C 9‡—µøŒ …à×`xû8Z‰5‰š¸K½z?6ćµ_Wá×§µÓÕ$¶+‚ã¢5b%*êpqÕFÃ?f—Ô+ë1àt’2â–zMèÞUš̶,ò‘åâ‹Ü-Rjšàgj¨ ”qzßÌæ U;ît÷“±?Õ=JãáȵBj£›ÛEïGâ¬d¤‘¨øç€kÈow„Íó1Xí‘u¤XIŠÅq÷•ÅàaÐ K»ÚÃùÉB}šÉö®Ô™õ’*c:3?¨p㪹8DÞYKCL>¦qtÝÃü%ã2¥V#ÇÂqhÔèSqj8ŒŸÍRÁÅŠ¦͵÷îi4—´ÿ‚cÿQí¿Jå­„ý×ÎSü§GùðÚqí¿`7aèµ¶kVá'mx»§ÖnûOfþ¥“d18°[exÞ ÆàÑ1Œá~t&6á&Ð9|[´ECKåD´eˆìô‚j·'D,6îïi|Ö6–a²Ës Ïî`IÝÑoJ 7ŽÎã›1‰·t^»aŸòXæPÚê áøÙ 8KQLZ) 2ꥬ„ò ÜÒC‹õÂwÍS©%ŽÿÍÁÕuN½³[ìn·½¯ ­†ºß”9íl ‡”Sq‚s˜<¦’Ï»ÄÀ¸ëÞØâ‰iSÛzÐl"cO·_Át:vCB‰7³lÙpq À…óúÁ%ÕGcr:Æ¾ŽƒâàÇÑ¿f1²~RÀ'7;ÆŒ{ÜžŸŒ¯±j4 »ïžŠo93:lDY4iœw‘¡CÄÉZsíԮߛ¤/¾ï0¯"׉‚oÉAï¼’ì +8[Û!^Æ– Œ›|ЂÒX-$÷f„û³áñq°9±c¤eíE³ ŸåÂ[P¡o¹¨1åµ–<÷ÚÊHê—b—d*ÝÙ àaŒQ¥8¢è²ey™d(V”ZÅIütOÝ @né#;å@o¨Ã:t¤Ã½ò]¥S知ôqV­­#P¹Ó„GÍÖ)>:M? 'Lâ+0GsÑ©|€»ÊVM—´KÄ÷‘š©Ûî`ú¥v§Öüžù—~®ÔK¿R/ýN½ôÛ÷H½d$Åž.‹7Êýa—¡ÖÏ"  .óB0' G“£¤ e¬›Ì¯$ë4~ºKª.ÍX›Cþ§TÛ17ý;çe‚ÓnñÈ<‰sõGêµH¶±ÉWUÉÒNn‚°²«¢A-Yj&¦£ÂÎÞÑ»n6ÄõìzÕ’ÚÕ¿ËT1(|ô›EÊ”Ú"‚r÷Z£–‹Ðï,–nÁ•¥©·åÐ ãKµC’ñε3q«œÃ뺔s²˜“oéêœáC‰È¿³yðyxùè·0ÜÇ Zéh6˜Æè4 ,-¢®™÷5Aª—@lÑ/}bÝU¸æ£Ã,£VJÒ¥ Ú¿šÏÎv2$ujOçôð]PB=l†3¿—é]TÂÙËÓ‚ºË ò÷¡| ÔõÕEûVXCHï·3™CH‡±ÐD4çF¯•”ѸK&cD‰‘$–Œ™—Âs¦ö#ñ » 7…Ns­sšGbØ‘h$¾M‰ÒÏ{³ID>1‰D/œ¿‰Òšfð„MI~]u÷熅­™–3µ‡:‹™¯F5à„‘ O!Ô‡SjMRK:f¹`8ûŒpSwy3F,uC2´Þ$rTÈtXá“G¦®eÃ~E§U¾qsôï~s‡Q?LË‘:‰r2M†¤ò˜ä‰Nž•”|y©âx(÷góaOÊÿ£ÍWþ¿]zžôÿÞ}þ$ÿŒ$LŽü¿þþÔ÷ÿnS>¢öñÇ ÿkÇMúM·²Å€ŸAúßäj÷'/òtÃSXa,ÝSL_“¾ÞíÅEõ‹Ëça‚• lB‰Ù­l¡hÝGú$O£¡´ö@¹î >£ø1=2ñÝÁÙ˜„Ô«œÜÝ#ɘDÊvg‚V ¶f$ª¤&Åyº3úuAœ_Á€È¼ ýpdÂy%å‡y½Ä릲FmJ!}”\Ó*έ¥éS½™Û2–M‘ðY‘’ i–p§Û0ð¡­«”œ£ƒ@±}£V Ýzx‡Ã^:~­’à5¥­NÇÒbP‡Xú õHmµÀ kzÐ$Úê½ b÷¾¦ö)"Å_2Ö\Š ½T={Svî‹Â1ðN‡ón`‚º·áRÀBæÎÝYpì…,Ü_fƒ>înZjoÿpUŽòO ¡ã&”8·tnó8z%L3¸Íé üEß`«Á-sœ&kþSèš¹xã(µÍñðwÑ6…=uÓ;ÇŒZ~°¡FRæ!ҙ Q–nçÊ™‡ÓÆ|?­K–ÃÏ“êåOG{1m\t\ÛÁh"Õ ÌÒÔ|Ô{zyzOéTJäêÎèäA„ÇÛùÞ£ÑMc l¾5±í‡Q—é»…L9δĹ%x:݉~duØY æîÇÒp 8TŠ*¸®9Mm±qÉ\ÀE"Ю°>ºœpYšÚ&óŒÛƶ|/dMœè4šR—”†%"ÕÔŒÐmú3 CÙbSåaHòŸyªZáÔÛ|:Ø¥’iäåZ#ˆÎš¦Ú¾²Ík$p, ÊnnÝò'!ç]Œ…‘ôr‚áî¤Ìu‚“§©üdA¦ ÿ¹³cøcˆG0§¼¯ni çc²™2­<„Ýy‹÷;ÔÙëPîLøKnCš%/»ãPÀÛQS ‡ÓÎ5ò(¤ÆKým÷N—T Ç0 $ÙV+דÝ‘*}]±ìú<´Ck9i̯–úó»nZÙnQô¼Ø—Nünì¹08—C>^¦)3¨ûMèão!ò±fï²dø—OEJ›¡¡†„£KFÄÆ*UJËÏýh4£T Nö‚{ºÑ8ëЗE8J ‰_”p”Ê)ãÐëΧj )G©<—rhŽ)G-w¨)ýí8š©’÷ >“ 2àÇþl ²¿ø'¨ÿ;{XàýßnùùÖúïùViwgõ;;›Oú¿Çøð^Lèÿª¢ôM@æ)ç}´’ÕF(8S–ô‡p»ˆ½èú:àwïrÊÛÞ`_ö†ñëèß#ñ6î÷èȱö&Ð~;ŽúÚ-K×XÌì‘­t|1w,@ ,aÄ;1]L¿¢J 7*“»Ð…†Ò–Ú}ZXsšÚ'þ³qtÒlÔ]Ñ¢” ôÌ‘<éUåÆyR¬ÞM±:ôu«è6@‘§ª#ã^?þ¶¸Æµ'n(±2ÂÚJ ‹ šØåÔ°Ç×Ä.¯†µ´¿J›­†íb€JECûñÅ ¹ÉIj÷Ïn5>Ô…Éë!uD ­ÚcYÔ†lpD.£ý0Z91³Ð`mS Ç‡.z}_o€’î’xü 4ñÚð¥Jc¥ ÅØŒ£É*,¤Ëa ë¯uzó/ /qfn€~#c°Á­(¶1ÁPJöÉ¿ÆÓ…Ié™õäI•í6ø¤Ê~Re[@žTÙOªì'U¶içI•ýýUÙ𵲇~“Íãƒöžr|Òl@¤Ù6*mÀëµ¥ºûI½ý7UoWJ¿í:Müœ nD ÔÕä#ûË}á²oHŽìzUSi†<†EÌ%ŒëIžP9CcÉ–,mïAŠß«ÝBóÚPÆá]©ß`âä|¤yá—½ã']þ“.ÿO¡Ëwº÷8Ê|‡\nwág½Y¯u{€Î^㨠>”â=0hî! ;S´Š¸PMÆê0jïþ8Æhý?©£p "˜…,#ÁÉJ%Mx‘i12—ÑkqUý°žúóC''ûÊ‘@séAUŸµŒh±nóÊRD= ‰ã÷¦yøŽÑ¿_“ Z¬ÞRáD‡£áäöú:Bݨ[T*A¢ø2’°yÂRéÎùÕl̑ڻõ³@9P§9¸µÅç¸ê¨0‚‘é¿ÄoE©«½„=±&BEþ¶Ö]Ëý¶¶öV)ºŽ­f0ÑÖ`2âø– Çê)&ãÂG:θQêXÝŸ R£7“Óí¡¦Õ‚€Ö3!ÓÑDœOÐVÕYêÈß°äP¥¨ñaì$Ìñ؛ĕOAÄÐÆ8î )›/g›8ÇÑäfÄa©m õ«¸Â N/lL³­±ÅR飧ØÞå 6ðº^Ú¼bnôTŠóôJ6ªæ—ÓS}eñÚ~Öð4¦H6Äü$÷RPÚ)©z(îixYØ0¼b¡°kÝ[ ص”ŒðÚ —EEH³ÜÈjmó7r¤êÊ%êÏÆQ^“‰ýÓV­Û8nagGÃÈÒkód:Èa€×pš£ÖªÃäCÛš¤È ëôY¦mÇ‹¼”fƒF¤Î=ZW¶ÞàEê`Y¡ßÓŒÛ[iºûºÕ–Ó*"|]‡~Fö®3×@šÿàìjÁŽ`89|Eï¦cÝó~át¿onú–kUôKRºÜ å}`ËÞj³`ÙbÝ7h=ç•¡71Æi¥Õítù÷•G* •zÛ‘’8ø¿ŠæD ÎïÓ¨·Ûøó={‹¯›ÇY±þº•S(óa§À¿-øŽ°J Ãr+»°šŒZ?AQ^ƒNt¤“4ÌøÑîìQ>­‡°æªÕŽO~¥ÅÕÊ;ù»I¿ßb®âÚÛNý}›‚Ê× \:² E›¯uÛ:jÕN[oÛß¾ZÉJzüÀÑùíÆ!‹°f¥uP/,¥ŸÀüjÉQÜ)usç}»ÄÈr†b=# Ò :fbsró~Bã-/E¿pÖ9E:]S„eè¶åjeÌz O%Î9qëð®_ØlÍ‚  Ö½š:aá6Ç".™cyñ¨ø»ÉºpÇiRº_´CË)äópÔÛ,ó kfT59à5£Wøž’aÁ³è2RÚù_>ªz¯~ýhr>ŽÏ"‡A#Ý<¦€¼†£šä?æ¦ “¨’¸~pRb«!“ª¦'€$ƒCL09Ä0Ø‹ÀµÆpC5ÝKæž'Š£D@w‡ùÓ¶)K>Jœ‚‹>º$æ[¶ Ù÷“Ø–üÒ'LÂåž|u.F8µ]ù[GÇ÷¾i01ÃàÊkØ`Ó Mí%îf[ß´ÑÃ€Ü  ›“KÚ¢À!÷†9f8óÞ´ÌTÈF'ß{ã¼6Ù IfäABÂÏ8Ìç§û8‘{SjaÞÍ5/íû[“_SÙÑÏM/,¸n®Ë¶._¨€Þ„Ì ¢$)ÒÀt,uÒ²–(tà1w7fâ%¼.È©xcÒ^zùÿÙûÓæ6rd =ŸÏ¯À;ñFˆ’(Z”¼ô¸ÛAJ²M›,I¤¤Öô‰s'(©d³›"5\¼Ì=÷¿_d&€ÂZ Imvq¦M‘¬B‰듪¶‡Ú'}ŠTX\ˆ¢q󉾺ÏþÛ®|ò  )[7é‹Çu|>¼L⋚áKt<­¦43 ‡RC:)Ír÷4ñÙeî™¶“îm…o`î±ìfuø{¹4šW`Jûl¾'y#–“x•£žM|”È ‡(#-Ib¬¨4 +¶&iœKO= ‡w(õrX= Ijínú* ̳PžM@ÿdÿ#OMý¯uƒJù@ÈGÖ¡¡mûzgQuåðmƒOyM›!hHÝßâWœ™Õ˜¬ÉS¡¦©± * S+9CO’„,ܬnç÷‹ûµ"²ÚÖNX{Ç)´ÿ'åH*E&Õ@9ÓBÎâÉ,“ ì+"…¼¢7c,ÜÞŸð8qŒŠ[+‰ð\ã±Ô“*]ýÈ]Ž´3«=Úñ¤j%C®çm³¯\m$R„àÍëÎ D{,->Ü÷Ò1ºˆ'ŸÐÆàí/t‹^U!°h3Úˆšþ!ÐØä¸¶ª  •œ¤ð‹5¬÷P¦>ÒG¢©Pc*,Ûò—EÁ x .جkãO¸Ã<䌈¼Ûïìýx>?‡àQ‘îdN.®Ý;ÕâQ…â)΂“‡µY˜åš¿gŽûƒK¥Ð¼¼ÌK}8Ûý+üãº6éÓ ú‹ªEd%V%sˆÒÆ’T"r“×Ú´Ž»|ñÄ”ÍÊËËù ˆ‘ $š}¤–‚‰§Pü4È© ÄŽñK¡j$yPi|KŒê0©_Ró0liMÑÖ¡¢.¿á9ßÀf¹­oh2¢~LŽ‘ñÄôšëô²VWYi‹O«Ý­”…wS¹Ò®JRÙïD$9˜•œcÊB"ÆŠ²„w‚¢Täx=RÛ%ë­sÎPÊùÍ`ªÐ’Ó6ètFQ¤@ S…\’‚3š*îÌÞ&ÙXWÒ,—Ê'XU'°ÜRw¹ÓÑÕ˜]ô‡\5LÑùi`SL?›>гi­»f­ë`Š2 #eGÑyÓ?D…Ä!jWk–tÈ)ömçÄϧa~v¥« 0]V’Ë6iÔC£ð¨‚“ƒñÙÉ9TFg?™—/þûÛ½ÖÚÝÙÝ}áÔzU/ã¿ïã%öu+þû<ÎÏ’Þ7;“†dÄžS|¿n àvp6‘c¾ß ™IZ[A^ç¥2£â±gT»Ñg«ÊŒŠÕfTˆÀíüY$N¥£Sj›ŠÚOÄ}&N¥Ú‹õrJÅTJ­!OD½ìXD;[ÓGu–sTg֨ΖUææ^pLrL?]þKƒ«vUƒ$ršÕ„©6v6`ܨD[ð¾^ÕByŸöÐ)ÙH½§¸ÚÐÌpî™`]ù‹i#³Ž9ѳ]:ª³ù)ø—I I8Ù@&íü¦Q¦ŠˆÑæÂÒ…zzÃI-òÆ6çŸL‘á1ç‘âtiòxð¤é-$ìUÕX8gʑә}”/åHo¤Ì>Zuöå-™z´tÞQÁ¤#kѪWªü¡\¬d ‹wK¦-”t„‰9Y´ÍÊ8’©EÞvò¦-lî|ŽL#+¥ÈÛLVš‘ÅßP0Býñ&•™D>‹¹žAÔïâ=R™EaO ^pö0©Gí•% ý”‰G=ñ{™€ôp H+É0¢Åª]AŽFL÷Ñ/9p/9°.9s/±»Òt/iþÙNØDER³Ù’¿Ï´¿›ðxþÉ^fµÀ{Ñr˜ðœ X/ìë $`½rï]:KÍÖƒ'`ARS¾,,Õfc•YXðz”YXêû4s=jÑh1 æâ©v®âÛxt…¾5 l!5d`Ø1t¥[œ¤ †–45¦½ÛL±v™'–P¯ÌÃŽ[yaLq‰Æé!œCvWÛÚcI¶®€=Ž­?Û î33z´#--ñìEà1Ë&ž¯ªrF™KVæ’ý¹db–Êl²2›L]Yf“…(m,Ê2›,$Ó•Ùd÷“MV ¥’Uõؤ‰´`¯ÀUîc…AbÝNÛ@ðÌ¿¦±¸ ˜‘-–Î&¬LË'´ùR,hÁLwcY2µ_’—dDASÀÅO!(¢çž‘›’¼Ò®uÁV–­Ë¤½Ç˜´Ç¤uÕo‰ÌØ÷Xâ¤`od–ˆþ«T Ò÷¿:þÿ”þ´ÂTÑ›Ä%’‹íIALÊ •9ˆ¹^žü¿/÷[ÿe·¾ûâ¹ÿ·³ý¼Ìÿ»-+ÿ1m:a»Ž!¯-ÿ~ãuÃ&._ñ—(‡O’H#YÙ{mA/•Ãçñ(³òV’q×®ˆ~ÐÇnEth#¬ÿÀ4¦dæÁŸisg+K˜ógÇaÿåoœ"EéR ­œ¨¤.íGö2+°Ž7E” büHƒ¯}Æý›‹«>üM_Áõ™üal|â’žkµT®ÍÌóô.ÚØxϟذz ~I:!/½â² DçþŸóO £Ž„K5êX¡çF¤¤ þCa“u0¿®b>—#aN¡\þ;9ndåzh• £º³r&l—çKزé9%ZæÉÜòÞêIàÂõ»C.æïQÚ½V§:ÓäŽ xÜSjÉ]fkÈœŠvîGàvìÍ©h˘ƙgë˜ÒÞÌ1åcˆì5Cx1”¯?B½;ñIªÜS8R3KÈá=˜Óônb†F;#¯mN{(?„^Wÿ\§qý ®¢,-ö*Ééh/ϼ9ÑT¨J†"²¼Jæsœu‹La×?…]} = üË’sØ]ÑvÕv3æPœƒ\rÏa7™Ãî æ°[M…æ°«Ía·¬tòH³i?H¥˜Š‚é™ù+J03– ú7,Î’Îú~†Ò!ë^IG´"SÌ•àOpÛQaù?s¼¶¯òíø.SúÚkí§„æºÁÙ•-ñYK*ó}V),Û‰ÉæšïáéI˜¢i‘Ù lF/¸:ïIç(HT;v;ˆ£Û*ï:À;_d· àÓIï'݃³½®0Á™„_Ö8“RElïñyß)ðMÍWC͸£,ÞhuïxûœÏà1‡Ñ‡wUŠ ‡Á<®âm3t¼íÆk£¸¤]Ò5/±ãµÛ)ñÚíåâµyOÂmwW_žb×¾¾@t´'²š+Ntt;‰ŽngEGÿâi²ë6ÙMšì­xñ×eÉ‹)Øú‡+y¡ÿ \ÜíB¡Ã÷ûëÆä ¦ë°–Ž™ÀSµ k+î•i›Ú˜Ÿ.2ÜR™tH6fDwòl7xÛúž=Rz—áÕÿ|Â-röˆÊ†$m&”aÜe÷•ib@–Ä}w!ÚÍ'¢ßnª¸Ì ÑV"‡f…ý`ŽOÎî¶¾…ƒ™¬ãí5k?M ërDþ°n ê~úU(ʊºµñ.»Jˆ¼1Û™q#·Yš€äÝÎ!,£·eOÒ#Gp4ÃS†MÃu„#w›´¾îZq¬’µ›kÆ×&w¿UÜí†-y#u:û¥a{‰¦ $uv}k´[d&cȹF»µF¥DüXÖh*!×Í¡Lä\£¨ÖI@d²!W mt%ë®h#(cÊþ-á+ûÛfדñ²° #ôßspÓÙZ‹µòî²Û¾Ã^Åh{w9-éAm+95Ô^ø)“¹è å´Mfë]äB¨à&U¸¢„GdÈž—ˆ|?v®…©7‰¸hÍ‘CάŒ0D¦R«KSÂÈ}:5M!ãÜu7¹HÆßyb€à4ÅÜLÀÞÝýC¶ÈEâšF¢í¡ó¤B]E#N znhðèfÂkÑ-—v¥B}ô=ž1sú7?n‰œ„hZýX¥Ä¨¶™nL’/tÚ8wý”YÅ´ä*ý>\ èQÂ9Œiì¤s-8…̧1QÉö ÎKMILÞd:1µÇ¼!·TÅC¬*9ñÖ3›Œš -+ßÎä.«üûÒÒë*OúOƾ“¶®ØY™–ñòåÝoý·ç/¶_:õßžoo—ù_÷ñ¢ÕaçñÝ€¬h¯j%‚¹àÈ’>8,¥@;ÂåÆÐÄAdb‡J©÷£d”¥Ð\ž ž«$$/#ÕLî–n´L'~©P&ΟH£¹’TÒXÊì"3<öD¶Õ•~["“-©Ú†€ÆXºM+p–Hèð5€ZßÜNÆ_d½®øAÈó6t50º!WÔâ…&Äú…«Ö«é%„dæ¼öhF–j£–rµ€´I(*{'«­•.㯩¸²/×Å ok a\7s´ÓRÁשÀ+¡—y ZÑÁ§ìZpÄ>ýÛÛáwzŒª3Ü øƒÚ6­U±$Þ`û•­úzUuó’6¨Ï|•bõ Ñ¥©Û_hÇDÕõ»2Wš±2¾¶xƳâ¦7PBoR3' îN](I•B=FÛB|%F‚ìy¤hïŒãë`8¤|E}¢áúßú—¼ Éñlp¹Ž6ú ½Ú¬ ‘‹Ì¢…jû¢B„S­amÇ,EwëÕs$—Ò›™ËÙâ½Ä”•Ïã¯Z|®àÜég„“¿Hj,q~„QjH¢ŒÉœ8œV’Ø€½»ï`fì¡|-‘gº?Æé±;À’Ú¦Gü.é.¡Kúø,ט–#ª-4Ïîè”a õÆWGpßîqòX~”Å5ÎØœ!.!ÀäÂ÷ðýÆF®ÅÊY—¯E_a}ÀçãÎŒã§ýÍ[š·u€ÞPd®9ž}vç'nbÚŽRU–.u}ãò¼P‘§fˆ1&&€ÁŒPá@[ýWãxª-v½÷ÑÞO%u’§A‹ZúôÃås;ÉÓÉmj\Ô_L•{£•ÁztYà¹ÒuòDªC®é#[žÒöñ”»3È %$ó8नj$²7-Ñ2[¥Øö£æýÛ)ïÌÌÜ4r|f¾ ÄeÈ:zRù·‰R"H®.JÄq`YÄVûМC­­÷­àoŠ:ü~‘Œƒ³4Íb(y%ލ+y._ð;â›á×¾q¶ÈÍO¨Œj/lTU$ã6fƒ³°ðc\èB¬ÕjU*àÆ6pjòžlÒ×rŒØlÕÍÜʸHÑ §’Ò†‚â%Âb_"¸.?0U*r"f6èÜ8RÔ®âoò\¸×d{½! êD4ûÊåXëZö'Ùöµ¦Eÿôf¨«²§˜Gæ4aCú=déüSqÄߪØoÄ¢¾×*õ†wȺLrxÓûVàx 3n1&Ô\$9 D/öR½Š±Œ\eÅü¿Þö;Hjl°Êv6"—ÊÐ.Ú%?¼T KÞ"½O‹H‡§u÷Ó¼Á3“îròßúàˆV;ÛG/‹h•£q‰hõ­¨`¢“—W„p¥º”)-:IÀ*©Ù{1«Ä£¼Dr]jSZOÒ”ÜM­Üu0!å JíÉ~Zeö¬ ÄÝ*q·’›JÜ­w+I‰»Uâná«ÄÝz8Ü­Öµ'Â^”7¯*' {v¶ƒ éæÃa“¢Öµåg«ÐâšÞšg‰>ŽéC/v vÐ`>ž{Dÿ a~mÃw×WÛÄò ¯"‹oÏC.îê aüÛàõÚÄ‘ÙοàTÅú¨‘ø2ËЮX ¨Ä×ÉW¶~åðj6˜“rª:8i‰ÊW⣥À8}\m•hhK` }üq¡Ï²xÞÁ0Óx¾Ä.ËËô… ËV‰T¶>YN¦/aɬWX²Û™|n"`Å‚¡c÷ÖÆ”i”#?Kr§r¤xfËßGí¼Rû1_.þÛ§éŠáß2ðßvwëÛ¯lü·íz‰ÿv/ZÔ&þÛ»EöY¯kè*Mxçÿ4ÚGïáãÁI#¼ça#\´7lþîzQÜ‚mü èn&Iå‰ê ’ÖaÜšŠz‚p ÍMv"éM!¸¶Mt8o g[€§5+Ô³t¨5` q@EŽC|Axm½lÀ¶‚@m'$™b†³ÛI|‰1q0µ }@ÀÌ`(¼|ïÝ»ƒ^M¾½ë%ÀjpYU³¿U½`nІ²»'ÏHL7¢Œ¨¢…Åø¶?˜°J£Ú¤ºÞï8“Øì+—Óþ=§äK—ã=j`ËMJ‰cˆØ…Ï€{);uðWú,󳄓OÐüºÇ½?66ÞWù¤áÇü(¯"”c|Þ˜jX¹/rFÿ=¡ lˆ š#“ü¯T@iàòdV÷âX\‚8€".öv–¤B#Ö³íy2À“kÙíd|1ŒqŽ*#™¥šlE{ Ë‹OîÆ:M`|˜+·°Š o‹¯-;O›ÞRôLyf}«Îêbwil\x.â|Ë›­±à­°4À•t¤¸Â^†ò–™¯-ŽÔ›Û›¾ƒ¬*% Ò,Nf.ê4‹Sçd)ê4¦N³F÷»ÔÁ×-#Qá€™Š”ÄþðösŸâñ¯âk8÷ÜRoö šè!qô** …º¦¢¦®X½‰Ð#³wA<`‹Ž‰ï[£ø§ü—mZjtñÌœ~·µ)‹Á¡¬‚c;I›ÞަÆ= âÄÊØ>ŠK…šä‡øh6˜ b9oÂÂÆÝ#û£·3Af Vø'Ú¡aÂ%BDÕ° .q-LÈT`‹òGbwžáóù(næü+øð ¿7QoWñbÄýtË —?Öéz8þŠãý.ÏP¾™yò|ëk«ªƒ`I œÉ«ù€pz0£žf$H#ýæ™pl 02°hÀ2–4­©•nž¸E‘fDx#5ÑÖ?Ð j² 챨kjP¯[„XØ ^×O,ß úGjujéÇÿÂÔêÖD[©ÔÒáyz>Ïgá«Xè„Ö…±!Rɨ}Gh¤—€K@¡êiÃ7=½Ìš‚¤).ÌÌ¥çãî[ÌTî`ßû Šå¸[[ÇQ+ôׯ5ÑÀçCAÄ$ §·kÈŠÎŒ žÍF%jnÖ×­ ¼„ÜXrc÷QBn¼ÀGW%Kíø$žI@oð%¦icL_t„z‘5 P3] ‰:‰øÌ—˜Ôè¶òçò‹xšþÁ"NœÈ) 9óé—î@@Kë˜P"§žq¾‰6믩™@Á,ïÞ5MH&uýŽÿzXjÞëw½×ã’ô^ÿ€?8W¢é)gÜm"ã¥XfÝûôWAjdÚåàÌmÙ{ÿ/yïïúïÿ»÷~t1±Ê—þd0žOZæëOŽ…®ñØ2÷¨é½Œ¶÷DãÙü65œÅA=¨PÔKbô0G«Ýïh[€70cPŠ yï°ÝQ-²'·æ@Kà´ÚoOR†Ea ÝÖ»÷'ð~ø;´'ôLªÕžêèV„ïøm¢&xû›;ðÏn˜ÈÕ ÿž&(1T.¦)¾¬˜pz·øp™ïãLÈ".$_àòïˆäòN ¹À¦¢\RØFL0¼œTÅn—.÷ŠÈž¡’À"¡W‹u›;Š¢ˆ+ü+DXñ$Ue?FLƒT\•·¥§sXIîÀUËWǵé¤p%ÙzV»g©íîxÚÕӮ̀uÛVvÜ€'½gÝÔwÝwó¸›:â®;ânŽw=#öôÇŒvÉס­Jfœb¾S‡Cû€ÓàUâ[=–‚®—§#óX8>Æ‚SYkûÒEƒ`3Dô›™ ¬¦VŠg¥¹ ÎJÏZ!ÎV˜(½l ‡bhpÕ€VzÙH+.…dF±`¡ìŒbÕÖ ›Y5Ž6ñ"ÔL ~.i8l‘dü̵ïÃãÆ¼/roÛuo{—ã6¹–Œ_¿¤MkJjÞÉÆÂJ–ÕrIÖïzìGK²„­ õICÊ"Ñ'r­R¦£ qÝ=%Kg'Gw œƒW”M’¤m<Å>wò¤G«f,èp³¦ ³C*iEW-ÉØÊ“¶ÙŸ^%LmF€âðwãƒÙY(¬Pç‹æb|agX'|!£l¾h†ø¢éòE3/ša¾h¦ñE3/ša¾ð6ëã‹f1¾0u#“€ÅG¢Ò‘fÅOªº%Ý_ZBÐRõrTHEŸ’/…yVüšd–·ÄòJ˜ÿqÖŽÖ¼qmn‘qì„ß *Pã“×=U­Mºg]£¸&ÞRÎXçMèo"^˜æŽ”¡I\ÞÌ”,â“Hƒ4EfÐï"ÃÓÙAþ¶Ù'óJîG"[þØ®I{S*Ê @vŠfE½}ˆ y0 FΪò2ßéPËâÛ¬oµ„‰"@õwæÙ«Äz”S¤‘‚k›ól}ÿÒeøÜS¹“=•:P$ÉÇk{kU‹ZⓇh)d¹¿ û¦\AÒׯc¦ín^ÚÒ† ¸Ÿœ@âú|8T§f6¬j±¬ú6ê&Œã!š˜üƒæ ÓKÓg‹1Š•´¯ö>eðd-o²³Œ„X+AÜ»²-¤œ.6[,ÇÙÌaòÇsã‹EXèè2Y¦«w??·Èhg-s+_Ñ#ë¸B`OD¶›ü,ϰÐ\{"±=Ÿ^d/<%VÀ ¬½Ìc÷hɼžCÅ  ÚZE>òø(£G³§F­Ú*sK÷¸w&Ï+È‚Â/Ú5/n€˜u¼H[9Ê%[‹ìÖè-½=.QDf›¡•ü2°h3°EõzCˆB’)eh󂣛œCZd12Ùm91ý•ñC¾Ýλ Hê»“ÊºÌØC[Qѱÿ²ÐNO,¢gBWÍO-Õ”/•øª¹ÓCÛx`ô°®ry¢‡PubçÐwO-}}ƒ±ï]ßM%¶ÓúUßÞqó?Ÿ—ùŸ÷ñ¢%låž© "XdáìOÖÆ—ùù#exJ¢Éc-W~g[çifwRr§Êí¤ÔÎG—Ùy¦evž3;½Éœ.æV’ß·Ê\N¸ª`š ÈÄÂcv= ¤I;ýPdiBîdOoE‹+ßȤùO<¯›Ãù±¸Ÿ©?}ˆÛØøÆEjk£¹ñMf'¸bAI3Ê*±:côäfîöÂ!æw|ºþè›ùFcã;8S6¾×$?ÄÓÉI™,@Ñøßó8ž°ª+¦±ÔŸiÇ|}Gfˈ’Xxç P)r$²ýø`® ÉÛÄœÔ>Ö|i·¡»“ôV_3Båê9¹«HÉ]x é·gd¥©»2s÷¡wõÒöT[Ö®æ>N†¼ÖÐo¥6§IÚe’kéÍdõäfH²@·Zè¢(¼ZRTDw4vó*ÅÌ}À™Ó§ú.Ròí¬J#¹EÏ¥a|ÀjV9*û¬â”Þƒf`c8œxW´¬„¤å"œÑ4ØAo%”í<¾€Ë9W «4åñ?ó9¿X£±ëÒæbƒÙ´rÞͼbgÛØòc&n¯ ÙÚî‡/ÅÚ›W­7df–)ÑR¢Eš¯Pòò¥ùR¢ŒhWÊš#ÍùbœòæÂWEû œ˜âÛiÿFž®”’Èi­1„AªƒDÀŧ‚Ä œÅw é˜Øj0›z +?÷“¢1­`æÿm©±‰_ núüt¢o0?8þvßRõÀ콩qQ¿¯—­&™_2¦àÅí*³6úd‹gЪúoþi'ŸgxÙ iJ'OÏ&דÉÍ\òn& ¤’™ä•â[!.ë–\¶—9yøÝUp¥á§gáëIøe~™ƒoåàŸørðµÜ™ÀÊ„ü" ùj)òòùqòò#KøÜÿ£ Øm$)›'Aßs’±_&èÿ ú'ïÎö¼×çMÈäóûóñÝÛéüõí<ùüpÈt~ËÔi˜4uÃfS*ìðaK¾4ï‹ðÈaÛ‚a“ºà3$â«b\P(iñ÷ëTûQœƒfÐ(…k®F+[ Ëš²#ŠÉ:ꢜsùyÌ•;%¯µ7GÈoxQ{£¹ÑUÊ¿cÞÐd2ÃêD‡*ç•Áë?«ü?± ¨UÇøõŸ°©_Ç`ðz«¨¹-Ó»jRDOˆêʸOÃÚ·†%½+‰õ„_¹!†¹±ÏONúؤ´½)Ó‡ìRÜ£Ö€Õ…øðrc2‰‚1h§ñxÀã;óTrñJ šP{®fÀ¼<›ôGSR©“Gˆ&/ú—ë|>TŒ¿âö›´Èe2”˜`ãícÜh<\®Ãiƒ×é&i¹åËJGßx4“V"éàÇÇ8Á$ƒ0ÿп,ay.gôGß­Ò š¥Š“œ~T©Þè¶9ñ;ÅǺe¥S¤rý ÛÐÈê’À¹rJþÏÆÿÊÙø›íߘpŒOÍÕåÚ¤{%Ó2KkÄ1¬Y àás±ãjZuWt¶V‚‰<0‘V§u‚è!ø‰Ø8"ž€†½÷'#ñû28#*6`täÀaöøÁ*)l˜#Í^Æù[ßšz¶¥ˆžÜñ|á~4éâ&] %˜Û8¯&˜$ö[þ¨pxïDâEýmB<œéÃÇ >iÐv“ ²Úé4Dåz§™G•‚’Y ™’™Â™·JpªT2¦ªPTªØoÏ3€ŠïþåRÏÕ ¹ V‹p{…‹‚È=YÓæÁ6é+QÃç<° ÞúKQð—|Ø/E¡_D~) üR÷%ìKQÔ—A_‚˜/ê Ä­¥áŽƾé ÁÁ8h0ÌbX0Œ†SÁÜ;ŒÏú›\t7 0g%(Œõ#ý±)þÐ~nœ'¨0ô›… ³0Ð J× ðwí«zžF)‰ñ½ð¥6R77Ò.ÓgŒÐ|¬ÖPò{V“JSÏÓ†W™1¦g¿±…Ð\hi 7ò5½óÙÌ7Ÿi—ióÌgÓœÏf¡ùl.6ŸM{>W“”¶Ä|.†Â‚·6†Ó±²6ýMk¡¶*˜–' ËòË*`YT–œ ,”­ëv4Öb Ôâ: Å ÛEÍ]‰ëâá×ÅåF%®Ë2¸.!ÚŠ¥°¬‹HR»SP¦KQHÑ¥t±xƒeé¨ã-‚ç"2Fs±öl-¤å@÷0MâÏã)¸—¶¶0¨¼F_?‡î±Ë<1FÒf @Luì|M“ÌcÄxúZ´V¥ÃÖÕ_ží)ðtß‘áË"µzå Y,a:Ë}6ið4¡ã™ü)×[óT]p°æ›{CW L»è&ðM a·½aÉt=*ЛŒcѳÛì‰@ÂÃ3lÑÊw 2}uc:û6׌ߜ!·­‹­º5ÒÕÝ5‡>ÎæˆÞ¢dµð®U…«Ë«g¨%:ÊÕ€•9§«ÍýÅÏ×q~<‡ 6ëˆp£2ràL9H]jĈ¼\°:4$RÛC¦\”2‰õ‹ý›K/ærí²Ýmöa‚¼G&!Áþi ‡Ø‡nàÎäfÜéˆ1ÉRÞ‡.¸ºÑðŒ#çM%´7±[ ¢@;ˆsK¼uÑiè»Û±mOó1ë#ÚI‘Ñó7ÆÇ ÙâN`$»Ûž/éeÏKÚ´:¨*`Ì€¢u­cþ} Æ|¹0c>_1».c>_5c¾\ˆ1_d0f×dÌ®‡1_Fò2“1u9žà‘ô´w<tÀ¤ö¤º`H“@Ô5Z¾ûÕ8žbÔÛ'¨}Š‘d&ª€ œ(áE4!ŽkÚs·ÔS§l8¸ˆ˜óþ—ñàŠß~EYkªOꢆ‡9)ƒO£Áõà²?š%ú ŸšW^6ÅðÓç/HtîJ®mÉkE0@ÚÅM³]Â)q¯¤èáqØðôÁº´%/õuA»3-Éî½áö@ÛÆ0&Ëñ_Cè#ìäºØö9¾ü 'W£µ9K—4Aaö[Œö¼¦^ÚÇ:RG j][–Dè ¢¹¹Hq?±KG½ "%þlzܤÆ(uç¾9NÙ,_ßä–YçC—Ì1ÂzÚÌA#•Ì•ƒ<Ýyº9ÉÓZy¨e þò‘Ê{€È×5yp!;ûI†¬ï¥X³0?ÁL¯˜bÍükJŠ5óLúuU¶/û Áµ¸¯Âk£K2)Êà€ÿ!ä¹Qœò>ý HóC2f´ý†¢÷*I@¨˜çär­å7ôXøí•†ôˆTúe5Ðg%ôãórñ?_í¬2ÿ€_8ø»¯JüÇûx‰ÊÀ|¿¿Sñ›‘1? ²ñ‘b5ú¢¸1gG˜à1Â]ÌÂTäĉE‘i¸¨ †+(ÜL @ ´5J½±œN È/8ù:˜J0å‚Ȳ¨¾'‰Y¨—¾fìx÷®Áÿ;æçÀ{–maÄ­oˆ§dl¯'ÐÄ>d<¦5ÓR½)Ù­ß ¹¨õÝMM%`üÕDyH’Yý5ïÏV¿ã߬¿ŽjØEñ…¨>p¿ïz#Ë€¿Ä_T&LŸÏf£ý+¥L} t`‚c¦ pz~–ÙÛørÆUýá÷âYÉœFúqýöûú…üæó–Ì, ±jcÙœ I¡±`૚}7¢5 ‰B››!¥Ž&éóÓù…JH]͘° ÉÙ_9?ϸ”­€Õ :ô¾*[×›Q9’ýçv5iœ0`Ô1QˆärÏ=†ìQ`‰1'êœâ™ü³‘ë!¹bB³Œ`KÀ˜%šA¼¶Ÿ&j«îE@”@Si£É€µQ²Ê4¥ÞŽ°ì‘ ’…]õ8 Ф]Ÿ${ã1ì\Š¡ÙÖâžÊàó`k0¸VƒÊ&ǰ—WðZ|ƒ`êþï=¶R—4F¬þÝ:bèJ,ÕþÂ÷¶Åfý9?$¾Àkô;×qùR„ïúAEœP¨ ÆOÂ0 ‹ øR©¿Æö·«üïtòØý¾@7ùþ;ŸÅŸw^óïí–ÀƒØ31«–oì yIu°.VÔ2­àÓ»|i`Nº—k1…¬‰P1¸›Z忼;ñDó¬4•Í 5ËŸjÄ•ºìT#3Š… Z˜uEÚ8?†ë¾pŸ˜Eg7‚ÍøéøGÆ©O ªô Æêaœª/–3/ÎÀVKU€à×Ó\lî ñN þC¸e9è’Ö]ê’}n€dÝܬӡ¯°Œ¿¯{œÐ]øuM¢ˆ¾&5ºpÿ7øF0µùitvz+úY"‹ê-Àl;Ûæ?®©nFž¾ú{ˆë¾¢‘X»Ï×íÀÐþÆÌª@™`ÎÇ¥ øÇxyì¿“«{µÿîÔwëNýŸÝçÛ¥ý÷>^´ˆ-û/DsgÙÛ?°x‘*œù»Cìqm6ΡùŠZQŸ¢€£ÙÒQ­”K)I ­;y” Ü’É6uòLBŽlfc;†§I¨Y‰Ñ{„…V:¨0û{€]¨;´ÓP=I÷a©ßÈš†¨â¢®™td«–`à¶çËR–J]0l„ ©œ.˜CÒaÌ6âS}9áÄC‹¹ q¤®ÎGò@"'T†}¾éÑhÑTúΪϜ•†$™7þÄèœ)lÏ„»¨!‡|¤1NΉ1a J¸qg<ÿô±Ì1þ·Öˆ ´¶Ç&Wû\ãí£ kâII€°ÓÄ45_cmÑ„ìVø÷hQÕ»€r°nÉ <6F 8þ7¶|m·`Oä›?+#8ÕdZvR§%$سeíÝA HŠÙiÞ”w&Ö ™Kž¹IÚ>xySݹØÍ‡wC<PôÄ>`•VŽ«S½Üx:­ ›°‘‰F‰—hµšBJÑ·C>2æ„C“sµíHD˜Q L¡TI‡Æàõ`spÁç”ó­å'’ö3¬Phñ­*fs†¬zbÔ~Ó#N„‰ælãdãlÍh‹&uÚÑì}q@ˆÅ~” „œÆoÊbqBÁÅØŠpá‘/7TüƒŠó`'¨¥H¹BØw#=˜ öð×U\˜±*F+·ReI‰'Ö`¯ù9¹þÉ6ØÙZU *LÐ:•¼@³µÑ8„,Š´dèê:ü_b1÷W¦c±ê„5ð¼Æäý! Ç£?çŸ †Hÿ:HÑ$þf«ÕÜ ²À…¼O[ˆ±¦ÏAUë°šO¸*ØŽŒÚá‹‚®ÏAPÙ Ï4…$mÒ$…gÚË´ kiAJkíñ×x¤np¬k§£ßo¥éj„©À Ûõ;ê ™Byã;ÿm5IÕ²ÏO¦®"Üø@!H)ÝÒ¦K^LÝp‘` ÎO†Å×â(0?vLÓòšI\V€ç×ÞŽ'_û“«” ‚[aÃÿnÚeIä­¹Yó•¹}%Ñ_Šý}³Lˆ-–4o’¸§¬NhמÎL/¾…tªå¦dŠ‘.¬s,GXù’”Ah ½Üø¯á¿ï7ÿwûå‹ç/üßW/Êø¯ûxÑú1ã¿ÚÇ|ív p¼)ñ7‰óê<¦/NuY˜Ý3íc1øòt$ÞËJ»”¾š×°ÃU,ˆÚʰÕýψ3Í‘àüÑXÌÓÜêè‘[9£À’Fµ:ïia+D²¨Ž:Ræ5Þ*¡_Éà=ÞHÅ`èíèµñy\í¯ÜT¹D2‘ä‰Ûø?ãÁUârkóž³½ ¯MÂÕ®yk¿½a£õ_Íö/ÆL…#é y"“ò„#éMx#“B:v"çÅ#uˆG‚‰èpþx|ù«¢ù«Ya#‹DÜ]Ј—’VœÈ_ëk*:d‡ÿý¾R__“IñKä2z4A#[*²-CEÐÚü+,ÿ??U0’„k!f¤ˆ Á½­"3FÂq"÷âg~<éxUö1åÀ]aFÞÞ»³ª‘™w´Â̼¦äy*ºy‚.¿ ¡ãسœqgœ„è_ÆyÆÅ¡¢¹r¥-´ƒÞ>¿¿ë£nOx‡¡ÈÅ’çÄjõetq~ª€&zxm#-%JO´ ¦Ù% ©4»VUfÚIgh*”¾/ý'§Ñïã°3ð`¬7Õ‘Ïæ³m©±mŠVr^G=\Re&ç1°gyú¼TIoÅfÏõ‚mœyŸˆm§ÿ_ß/þ×ÿµû¼Äÿº—ñ¨­ÿ¿MÑÿ”Ä/'Ýë‘YÞ°t(³¦´,d °¨w÷Öx^i ÈÁ?¾5 û‚Ä]¯R¢ÑýgHïO6êL6ê”ÉF?L²Qi6úáÍFw“¯~ŠÉ?_‰1u6-$ÞOîËô8Cß3­NžgÅ¿r¹U†v|µç“o« tŒV¯`z§Pº¬ñµœíí÷·mrÉ(>Š’÷ËmK>4é1$Y™F1ä·£=Ø[ýqµ¡ÕFU‚$BzÛ .t´¯›láàh£—L‹5ËEd×GN'1Ð"ÿNaÕ¾8j{HÌŠ<¦Q¸—¤†Kû&)t.yb¥ó'[±ÈzÜL*¨HŸ‚¬`GËãL’<ß4‡gÅ$ƒ(§¢+ç`*|æ øþr>™€Àˆ½2-͈Œæeo0žEI!ËTÌÒj3O¹EAl—ƒì‘€=œ¡Cvo½ˆ;Ž5m7ðžòß1ûÝÈ}§R—cƒ9V$–¡†l­;þJá„’2V°šn.‡—\¡hg¦Ò 0¸Èå`v¥ sµc‰sPò—6⎠\pìY±Å©-ˆR€M ­ç ›M–uÝci¤8´´Ó-Wô¥à8Ä„dà>PYñºš±´€ŸUï’×2°K,èeTKYuò$Á›ômŠ{$Ùñ·{ä‡yü?Ó»2ü?»õçu·þËöËÒÿs/Z„–ÿ§Wa'ÝFÔ“òNÔ}ßs %ëî àæéw]M D?RoÑÞûF·±g» 9RtrÍ™¤ÑÅ7hÕŒ¾ðFÀ8ßÙ”*45àcº”Ù[êð¯r‘ïbÇh™äWú„G0í{¡üÀ\w=oð/ G'ÈuŒ(€¥@ƒ«øJ`áÔk`1ÆÉä'ÕZ´†,s¦hÀ=¼T¹a gìôßsÞÆ¨5ýTæC¶hG”©²A-®U‰¾ž–D V[Ø‚*3`hþ¿ÿcM.”76ÎùŸb€;~ÿfv[*DGèïµ=¿ÔmÄz-µ)ž·k>o/D§|tž¶±ñÞzàóÀ{„ó":¯&§AœÇ]ßRÄ—yRô§ÂøHþ0~ºwßþêyôo,ç£ÛÇ ?š«5÷äÞnŸ¼f8 -'Bn.ûÉ=«*v!—ñ@Iÿ•¡7وƑ…BÚzô&ÆÎï¿0\ÜMÏ4ÂôíL¾¬®ký}êƒ!TiãÀtyœŸ¦ËçˆÞs8‰ü*3'Wsð)óS“7&¯5Û†düI1x+©ç0t¨üž Úl)9äëf|5Χš'uÊ¢MP‡á0¸`EÿšI’ßLŠDEŒ'{ÅI0 È߹ˇýVäY9$ÏTë͈Y/8Õ>n“Û¾gª;›b¦Ì©V;í%ËíTÍ6ô2¡ó*Á þÁB^ôkàôïEl“>t„ÞÎH T¡OBbª…ÛÝ‹¼Ñ4…%t"ìs@± ¬Q±8 ®QNóxÃi’VþaµÂôVTè¡ «éJ1^ÿJD€ʑԱ¯Æ|ÊFcèØOCJýþ5M)»D4{håÂÓ†ˆm½ºÏ '¨÷nu£Ü¥»¤´§ºHv mö$âY¨Ý½ ŽæJ1«ì䨷6Z5»‡¿@C£·×‡ ¾}¨Ò.Ó¬2þ¹}Àÿþ½×úã LD(|Ï…²Ö»èÞñS¯Ó柂£°á0=­v•S¡`ÌŒ =NýóRãéÊ^»½;àƒj7:{ï¥ã ½ÁÇH÷qÕ¾-e…”ÞV…žƒOÀ9ƒ÷ƒDò<éöøûiÔi§¸´à‚ã.v­ÙØ¿ƒ8§*Òq•QHš“Ë CÂÏ1É<„Q8š6eòYW VZ?ì­aôOîX£ŒØ$'Ö(#6ÉÇA ý7$)8ÓK÷Þ¦qo: ç/ÎíN4T´‰ê²…8$|›'Nª.Ár¤¾|šCíÎDF± 訪0‰€JÅGÞr  ›*lí¤{zPÓzóÖÏHëÆ"”7¿mp²Á*Ä0øáÑó…Úñ 5Ô.iŸê‡æ#Ï´±Ÿ¿HÀâ ¨Ø>V£RδÞòJ¨(ž-ø<¸’ƪ(hЯ¨žXKÕí-@†Šh$ !ðB‰s챇sÄå+Ï I„£Œá'6„÷paz­*È' hÒ”í‘p*ÞÈëš Mý}ϸÂxù¼«k’Îø\h»у½êYòùhM=Š;Jì…KH²ÓÆBBDEü"%A-ªdÖÜ‚MLXêKt•ù Œ\›àÚÙÿˆ¨ÿUÝ“?Ÿä)Þ¹ŽZ¬Ò'Ý5rP µÒã¡ ˆûD™›éð+~ j¸`ÔoaE»ÒüTG)Üzæt³öÚ;Þ¿müC†í>ÛÌ*{íȲ뒮9úy5þŠ«tKþžJ!>_O {Ê™‰ìö³C=„2hXw‰uiAÁ¥8Ö¼½¥µ²ØBywÈNÙ GLìÍÕ +B˜vúd×ȵÖô°#)SÔ a1eÓeʦ˔ͻgʦÁ”žžô‡ š†mÞÃ6M­séQìøÙÕ˴q+;îz"ÜA Ìf§V«£QþÙ‰D”!|Üêä3´†^‰¡®?fþ !ü¿ðµ%s¢„­‹6f(hZÙê ãÎùÉÁ¾þp ØâÛúÿýŸu_³RÝ©Ö_£Ó @n±¦¤ñ­7ä…ÀLüMM8di‘›6õÐ¥ü„öÒ:@nì•Fqþ™ˆn'Ò‰3}©t×¢T¡†Ï t Ew|‘µÑx´5'pX)ý…ÇeÇtYq › ,öΧkÒËFèå ŽüE&%›¹ðØüuè‹ã@ÇçE²C4ÖdI.ú®-H`/ jdS7:w'd6)Ày[[€¢ü‚ù@*âðÐ)k=-É $}û |Ø? h¿§UŒHȪBïd ûºÛÎ×ë|SgoÖÒ0wŒ ïDZkè­©¥cÖ*³W’LÒðÆØùN(øÇÝžP}äè˜E2ލ@L›¹U¤ì{§h¯ç:ªäF¡¼SvâÎãØ‰Í¡w6õm$Sgxžµ?ìŠ*0´?ø*?x÷‡ÝÀþð<Çþùö‡ÜÒEû8SºÐŒ&OEºÐ[Ë}ÄzC%•l·–.Ü™³w{6¨o­“ìOb{ÎÞJÖÜK¸óy¤ŽÎ½Jú—ùN(+Ýit5Fè„Áè“iýŒ na§|Öé½,¬&µÌdv vAj¥‹wÁÉùn¦†Rð‰*ËS£Y˜–OxIj w¼pPø²mËáD´žÎ–?cš/ÿëê^ñÿž¿z¾ýÜÁÿ{QâÿÝË‹˜ßÎÿÚ¯¤f~ñ¯º|îó·F”–um vp`~àãN [$ó‹h¤6"7Ì鉓¦‡ù:‘d…Ÿ£®áó§_{÷éfû ’¡–4´eêÎ.›Äý¡ÌýP‘ÕV’Ž ÛV™9;ØTåÿØæç|cÿ‡Ý£<3Œ›ˆ¸7 %¼Š¡?ãé\éí¯‹”3Œ†SùlZV •.»á3rΪ¿¶ \õå€OÍá°‚îEi8WI<‰¡;ñí'Âo»I… Ëq|-è£2B`Š/*\B_"¼ÞçÓøóxxEpˆ#ŒEõ½J¨ r:U¥r+mk0B&ú›öoš×ßX¥Ù¦Tˆ ßVz*)Œ«²¯8ˆÔº ð•õoyýËϸJ+»ë$á‚ èÓ‚&ƒ€á#ýdw¡x;ªM''ç¾9"÷©ÈMM}ƒq¾~°®\Ÿb:ù#Ä¢4WÀTð3pÔïŸ÷9¢ˆq%G¬SÄŽN‰{¡¼]ë–JÃO|T³Ï\“ìÿÅ›ú!Ã7ƒá ËäÌ ¾ÅC+×Ã1õùvÌçw ngƒËä~pº‚Jðg¡=%ôÊ>ûĉ…¹(Wœˆ3\6WWϦó NøËY•0ˆœñF„f©5‘Af’0² ¾ýE¬±»ñùVç¨Jþ3ùsoëïÛð0Üïø[;ØuŠåT¹Œ_úœQ®ûƒ!ôèsü­Ï÷ ŒHÂÂ÷ô§ì´ctOô­Ê.ø7_cö×hü8`4ɹ¸p×;J”»‡<9ùp#@ýQæÉ©ôÊs¾ˆãgél2þ®B¥W–[v©eÙ§’Ÿ ¡|3á <~w²Ú>ÇWFJ›äô3 BŸ°Ô ˜Ï/„h9yè䳄%¤R¤·"gLEdÜ$¬T½Ý“¿sÙSl!NÛ iW³Ø¸‡­$¿mj&¸åÈjÓ²ܺr%i¥É{¿XË]w1Ówü`±ø­¾½컳mô:í^ëþáþ!jŸµùŸ»âÛ <Å7­›+ôãf}}ccgYÎç=é`O:zO:+êÉÂKFôe`¢P(7Î2ÿE ‹DÕoÀ†h¡13WY„Öˆ› âŽg³ñ‚bDLßΟ_™Oç¸6Q-c;/UÚ"RLƒ2N*lõ¯ú±õg É0¡cSËà—ûïúö¹‰Éd^¦‡m¥M,ȹ-ç¶LìzÎ |Å¢õ:}^7 'P’-üdEV&®ˆ­Ô!¶ô!>dù?c$”yŠ;ŸRë!k=)a¿õÎöQ¹¥-ˆ‹u\dÿÿjAz +ï΀sæõ–¾Š["ôiâZÌžyÒGm;ÒÕ€RM峡B ƒ›ó¢Ò7ûSBZ‡¼ÿÉàbNÆŠ YÊ£#~7'u"míõùç6‹³™°ؼøaµ?ø‚R¦ÁŠ=û®+š•š¯Vi¨æW÷dÞát4`þ„{|ßo7£ö³è ÛÛ×xÆpÿY³Uvò{jŠkJê,Þ q·>‘6Åðndζ0÷“ÿ‡åTàß#zKËÄT˜÷B’h 7 ߸ ›†¿ýŽaÇIsú·"º‚÷£“÷Ý*n×àƒ ö"z£Í9<µ¾\Þƒ£¿ñ-fuózÉemv÷«¾œÖ½£¦å®¶íÞ¾'ùõ4ê4»I¯í㪓üÚ£†Â7öÄ‚Y²Ë@ø/‘ol^W CÿÍâå_Ua=T$Ÿ×<\µ”^\R)šì{ו²³qÞÙ¸/Ü{Íl\$Mø~«˜€œªd)9³•h<‹_Ãï4¡Â*ƒÒíEüi0ÁQø·ßå}¯ÿ†ÊK~fÆš"…Ò _)š3ʪü2ÿk‘bW›¾Æ\œêÓí$¾æÚÜI^{tOåãm2¼|*…h7Xð n„´1”§})9U{ZÕÆý¢5WK‚MÌ„b{>hŸ6kÐo~'¤Só»®ûÈ;ìDÁø-¡h$‰¯‰¯½}™øº­þoå‚âI¢ÝúÒ¹Uwt;Y³ºÂ µ…ŠˆÑ¡U9‡ôYéf˜‘ÊžwclD¡]¸½V´ Hôæ;nÁƒ$å‡r²ðÑ"„Ôçru½Ï¶¬¨Ê*9«8W~g7ãILÎP]¡V¾„»ÂSË;ë„ç)þ¡}QH ÑFF¾xø¼ƒ—¯Eêã (25Ÿ;ýy*2?GJ2ËHË¢M‰3#h/»Þð»æ>õ;YnÅl¡aš<ö„\„ÝÁ‡W`îÁ¸®9¢k$a©9É~¼wv›Ý ø~¶vLs¯g^8?[ù,Ö ]t­™yð u ¢©uï‘›9Áka¬)wX·ïN üVgÄ"¦¬‰2Qô(kÏcbíÀ¶gea8ûžÇë¼Ðޤg52}Š€ÎööV¤J ¼œÓÊ~ˆÎ$üsEþ¼ŒÈÜeˆÿ¯Â\]°–cŽ>¨õpl¢kt–êÿ¶àÊ”ñcb„û¢$l,Ýä_'Ù½&Æñ/fæ‡ÚÈn”óƒ¿5w©g7FtU}üð†óóó×ì`48U媻ìCd ¡„¿ÉàÓ§˜KÆ5r^)Q[´"="`N¨¾n•€ …(&¥¼Ç_¸äfáZÞA„æžj³ÿ Å“lë¹Ú’·v7:¾i÷¤¬Ð‹Æïn:ÛÆŽàYܦ žui‡@bÒfwÇ·n󣌭`Ýîlx¶ÍÜ?²ád}¼ñù׊}¾" S›J­µe´ˆÆi4£ðjèWMå2ê¶Ì‚b]ãGüd§3&@Xԙ슀L3Sì·,~Îþƒà瘕‹:WäןEÏv¾Çúap’‡õt ôÍ6@ŽüM¡çàEÏ ñÓʰrP!¦Áä$Ã)qr–ƒñCÏü<@9’CµFÐígÝCÿò¦Œ³Ï]”¹Bæ£yh.Äã>ðu*>$òN.æi:|nôûþv ôVgõ\½ut¨W-ªÃa\8CaVæ ¿6ÓÏ•¹^øÿ_æcñh«`í ÀžW™¨Ö§×®´pE@„¶¡€Uiq{’mcTIѯ‹Û5pZÂÄIãÔ4#óW$Œ øã&³û#=7Ç]³¸G¥›¸ЬÏÌøgVÙs.¨ C>b…ªÑ’°*‰zžV’’Áñ:,éKüî̇³äs4)•Bd]WŽ×—-²¨0eg ˜`¸³Ä¢AZt-/^)-þ€s"H¹ìÚŠ•2Y…Tqs­¶q­ÖÅ?æRm`™ÝzŽž…q*Ñõn¹KÀ)/˜ü¹\ý¤óÿ‘ùSëÀl%’9þƒµRš*0|K]phéÅéÌãrÎÎF´ EÁ;ð±ÒélFë6É%Õ؊4õJ~éÉð*èïºÎ?Ça²'¹+Íb¢@.kÖ8‡ñõL ëüün2KŽÿ®ï9~:«L~᧪½œ1É¥ÖZúbK!– A‘©%©gY9kÞóu×N×dX‡¦ Ûsžžm¯góڃ͞’ÀLëM¾NÕC™#)2ZÉ6”C’Á*¡?R3n»Ü ?ZÙ„‹%¡êì'Ñ“LüKi(³›n8ó‹*EÌò‰é=i“tæ*3ñÜ£¥pÄ’ OhÞWN>±`P4bNùTã 5â†Mibëêaüs»·¶nÙ'p~ø€²oÚÇ{M²!cü;qH«ðâç¨d€ oGÂʤåö;kƒ°ÏhµùÓ@uÄTˆÁ¹à2%V;“kÈ»½ìýSÞ”G£í/…mý§Xº».þ1~ÙΦl$Hç!òhoß‹~Þè˜?ëÇ|ÇeyÌëw¥óð1߆c^’:õ´ï¤žö°òŸëÜEŸ7Áã”zÞãô¸Óâ™gý±)xŽþB|ºš£¿º%‘Œã_ÿ² ¸=ôÌG?ÿá°(áV.#tJx*ŸŒ°,K­ž%,õŒ2Š:*o»™a,b6QÍX掗öºÖ ÓÐL]¹™j±'©(.¯N¼˜ÐæŠV\²šÄ7ýFA:E³ûÓØ aÈ¡‰Þñ•®„¦K;°‘jšU‡ë ™*è¥f „¶ò¹ÄÉó¤tÏvy®˜çJ£¸îéÝÅV®{†QMó÷Ò°‹6ÀŸ3-ÊËÀ+¤æÏS/#û厰‡l`¹q¬2}<«CyÌxŽf¥­§B9aᘠ_À…ø%Œú¸ÿ³Ã>ª—ÿqz¯ø/vëÛ/üÇWõÿñ>^´ lüÇÞ]â?–ÀôUQàÇÇêØó‚:2¨#\7Œ¿ \GhÀ+e¾he)¨Ž¢_%°cA`Gq ´£;>BLÁÇîDZKo$~—š•²ŠŽî¦ƒÂ D˜„ÕhuUåzá}L%÷”Ðx%4^ WBã•ÐxKBãýKþÀÎÐNǯõÔlgCò=ÛĵÃÿt·»§ ‡çÅuãÏ"™ÓAuûîkC‡mÓÊFp[¶íņ¶3Á½¹¥2‘¥Jh©Ú#Á`—…_Ê\ª‚q.µõ0ìRu¢¢P î ª© HAïOÁÉЪ†€›ºi.]Æ|ÈNÒù #.·)Ü„ èäâ6…g<4S•A#!J6¿RÒ3ùgû§ŠÚ·ÈSs¿PK{{‡Gÿ¬ú0Ÿ`àðv–Æ3&4”‹üÔëÒçÓè]&T³[ÍB‚’€OᆵSµ¯wûW Jâ?y‡º òS üôŸäA¸à§Õ@?-þÄ©z©Á@Is¤êIg]ûZÕ ¿ëÒ$YEp¥T3¾Ôƒ"Ke#Fy ‘‚@P½\@PQiI@%ÄtIU ŸðZ|'½“+¥?3x瀕<4/aŽVsôNÀ‰ˆ’ÂÏÎÄ6°FpˆWY¤‘ÖzÇl=r»r¿pDZ&„݃ˆ÷ŽA´+`/ƒHïÂCbéýXƒH[9„&?/þPhÿ¨¦l‚æ„r*ŒéSBúdõÀôy—ÒGíRÅŸ:5<<çùÊj3ˆÂcßê +Ž­cÆÕYF§÷ 0:¢ó”@tÈþ›1R¢è¬E§ÑÉ ¢#0ÓÖ%…¨¿Ê ¤SˆÏ-’ΓÒ¹‚ÍØ<9ü ú¿ÆøÅ‹&‘ä¥m „ý#j<Š—°i¥§·0™Ø gó°4›ŒáZÐ:pFñAß‚¤R.bØ6)6öÃï»ÆTceõ®Ñÿ(Mz.[*àŒºÑ‹ccï„w Gàˆ@«…£É"b ŸˆöŠº¤šüKêÆèðý3}%“Çv7p-é,Æ¿Hå°qÞ©Ä:eü,”K—‹ …qŸŽÈÿ¤GsJÌ€hVŽ› ®³ƒ]õ{EÌ} ,6•òDB?yaVšû½£Æž‡ÊèÂDâíP¦§¤=Ä„H^·„ËŠ$ëzf§Ñ¢’ŒÃÉšñåàvqSo´_òrn¡°/#ü( ž”S«Gx È·¤x½ÒZâ m¸WÒ߇LTÖbzgÉ;ü¡¼¥[‡#K¹,ÒÒ|a0„4§Óm˜ðÑò'öýÁ·MK²ò™%]U©Ä?81ðð¡3–¤f$à†—HÔ ˜¾ÇXE¼ïdò" 'Õ,¿N§BÛµƒ5µ‡µó¬´ª  ¡ÁåøˆhÂõ¼Ó¥nñ)ªfCp03©•¸FŸYœÉ™v'aZš~¸Áf—f[ÆuÀE[-Ø]©e‡ƒÔƒ.—vhõleˆ`HƒŒ7“—ŽðPq‡þ°„–;Ûòv3••yÖÚY%A²ðpCÝê¬m•¦v ¤ª÷‹‹èÖI3þØ®Ô/A¸vt„~ƶâwêÂ×ÂÍüò³^+÷1€•Â*Ûu`ÊÒH“LŠîéhd颦ŒL]žC†Ê T–¡¤f‰N°PÞö@eO , ÏG+³u»¼ di,ãCÛÕQÆüì#qbBJÞ=`-Ä‚+ ˢ讂lׂñÓµÞ·zx²eiZP1,À šŽ(iYé,­'*W¿Uï\gìЫZ*„)ö&M誓ÏC©hBÇ'md(ÞùY^“¤Ij’Úì¤n».8A©TšJå®’ÏÝ*—?¸R¹k*•ÉÐå’lcøqRQÓYsY[ÚŽuæJøÚåÒMÌV}qÅT?THÉ´$ESjR›cmµ£k«æ½Ë«­sÆ‚³æ:àKäù½¨°Ò&¢2<ßP>C÷„‚y).õZýÖ¼Út2#Ï—Q~;é´Iõ®ÔCdHÓ˜;îÕúÃ*´Z£Yà›w€½i¹6sbo¦îG–¬º½ï.&¥Þ4g¦[Bc± 9—t½-¦žexD:!|MÿtdyÜ~,‡[†$ |ÓO¾…t®GæjËö²™<µ€mÈÒ›¢âX•÷¦+ÎÿÞdu"AO2nMՙЩJK;ÜÚŠì¥Ãínt£?¯nôb)‡® 'åuS¢æáu{yŸ^7—vwåu{›ÓëörIÅã¼nÆîr »\Â.ß3ì2ÿëU~Ðåå^  üc¼|øÏßîÿyçåöÎŽ‹ÿü¼Ä¾-bÿù<ÿùÃÑÙI1èûùAŸ=OêëXÏ©¸Ðâš;Ń>4<9{ HŽþÈçàsÊ.âxÄÕÃÛ!úÜD^ŽìöÏš,}î–ÞÊ–&TihÆ–¦ßHhéÿû?®ùo°s¶Åuœÿû?ø0¥e›3®íOfŸÇ®:Ïà?hi€Ò?9¢´6^QZÎ*ÅÕ<öÁVcR#»Pìíàˬ5j¢`rÀâzÌßÿ‡uëuþßû_¾Ëÿ0ÆUîŽø›…€æ£døwZ‚ÁNçjºÀ¶ÃÜÇB#ø*Ÿé$v­þŒÌ4b„oÅè†z]î…¼‰Á4JUPkTÅ~óKùð9¼€¤OÃÁ'ÈìàDõb·Ñàó`(ûÉ—Ñ|4àÇ—°R!Az]OÆ7„ s[lÈÁäð™œÿLN—ÓaÎÆ 'î6û_þ÷žù éئÉ8 ._"ŒŠ?çAƒküþÁèK…?c}㸾¶ÑôMúÿÈ?¤H3ÿ™Ó׉˜Ó™B&^D;‹¶Žïpü®ÇïrÜÌ=Py¬pãä°±°±¯âY@fÉÁÌI©H]«èâOI\½F›õ×;†!‡ƒŒæ™L)͹“býÁ5É{ƒuVÅ5ÐûmêȺ &ßwgNyº¨ÊÆü¶ `åsþÇ«ùK¹€3e3æ“Û³âœÛ¦ 9õæ¦ sèw߯“›¹€4ži´”å9¦¿3±‰ð×ê hÝÃÆÙ _Òx ÷¯æÃY²;*Boàj>‘(Âözö°¼Fè7ì/1í#õÆ‘~ÿW!`üe]ugPìU0©žÚ⎒J|²_Ã};ŽiˆObúÅ6IlêA S˜r%©ß”ø´RHwc¼j$¡ëõšÐT„lƵýØK¯„\1—”¥s©!|øð–î“oñ^ g”Í|}“xÖ«…áÁw6¢Ç ~HÚ>m1n[rK_xÁ®á*r¸´Ôf'MWèÜU¶ÿF'û‹cuS#ü#6¶µÐCpÎSÆ÷öÍ’ÚÝ£yë!øõ‡*©(<%>øljþ=h£ÝŠŽÒ@¤M<"uÁ‘´Ãç?áï';žÁGÓ~wp|D8Ø-|ŠƒÝnœüκ“n/ ïlïä.ÂoŸF þz!Të%P«WŽVÝhö­?¼«.ˆ\Mí`¨‘×à—HsÙ#]d¤q…௵z«&þõOVÔÌUÐ¥Ûy6Û"¸j’ÈÔËÖï[-AIÓ!ÔÍ·¶2Ü´ª)5-±ÓJì´»ÇN áŸÕ·4Áò%†Ù“Ä0“ù͹ü¨OiE¨tƒtì¤0·ŽœtfòWª8ùg'Ú¬«*ó^qÉ ÎuJ@,½< ÚÔØ~bp|?æÚýçñ똢¡Éx& õÂK#Óˆê¯;ʆÄ_ûÊ€+ƒœTƒÑå7e4¾H[(ݨF Šˆ`OZÀª¡Éûê'.ºX? q†‹RðRJ‚ÛIˆžü"}˶.¶wEPw¯dßpv #L<´îÙBÜäoÊo@±%rEo̦—Ê+¨ W9RÃhdEÏ50„³%ï@ÝÄýº•<¤]ë™0·RÇ)öL¡í€"ÜðLú}CDåÔ¨¾0FD󌫗FŸÍÖÅ õêÎ×ÁûçÉ};Î×p_ B‡ÕœX\uÿ5¼Ùäšãµ0€Ö/¸ ˆjÆ/i1À’¥“/Óâ ÛãOƒK,¡Ç…Èíá=Õ^–#•IÜÏ»Èw&ä.zK¶Äÿ¿'oÿña'à%ïà? ÙY®(¥Kÿ£.Z¼ëäXÈ=ÚÚ‰ý»kx_…f^ƒ†–4ф͖](ì5?NÖx·o­³µeˆË¯g˜2ý9ÿ™*IÀH§Lã[sÚqdfŠ@7½ƒNNx@rÀ7“ÉQƒ‘nT1$ýgkT`+Ðuz{O0þwl ‹m»y-ò#6kO˜µ¶‰$ù–’ï ¸+ÊXþÄ6«‚‚Û?ЄÓ~uÓ|Ÿo»‘í@†H'Ñ?å|Ge,–µ66#qÀÙÕä¾|ò‡FÖh ®ÛTáÚ´ÛÒwØìgÑ$X4*ÉŠhÁ«Gú‡omV˜|²L °ùŒ–ä _®´µËСìQ°œtÌ®ÔîÙ±¿-œúÄšú2âÍ[û%MÍlÄa;õçyÀ-vWGµV¸æ/y¾?}”OÇGä_ß;t=ÓsÄ…¯¶ ½ç½œÛy“'uÏ…è8ÓÌÓN¯OvãTÏ*4ë•÷£"®Ÿ¡-0lkà­åœZ¾à‡ÕþîÙf:Â_5sˆð§ƒ–þM9žØGø{ÆaFø/:Ž;Â8ŽëA:_Òï)Áüçe0ÿOûòÅÿ¿×øÿÝí/^Ùñÿü½Œÿ¿­{;þÿŸ«Žÿoÿ ib?y61PÄ_ñ—Aüeÿ½ñÛ Hý©°†ò ÍàoU¨™ÓrTúF¹Fñ·Ëø7œÙg8½ðٞģËx*H7FP8«Ú<ÔꪨùIÖÞ:ôášïcñDÇAãé&¬¦7 =•ÝKÊACÞ&íü'Îß3Œ©¥8hÙð,£‘ÝQHû€›ÃþtkW¶"[Añ\‹]£“Iù톄b3ôä2£LÁÃ*S0l:f§`ü°‰ 2uÀHF ­‰#Œûoé) 2OÄMl(cýËXÿ‡‹õϱ…@´C½Šªãº³t$·Ê@Q¡Õ×E¬¢Ñ-ÌÁPÀ&‰A¦¤o A4d^;] Ç—ñ©žÎŸî~ý{>˜ ’ן½Öo=ø‡ˆ–Å °¾W!/«Š3TAØ`)ÿ0øVf78½À>$EìBs£Â»±Žýè@?êQs#Ô©¨)TÅ9øGÙÅxTbìÒtRšsçâ'ÕgÆR³DÁšR´Òn}༭qÙÇ]cµÁ©_wÿH¢ƒðÕºÃ|ƒ¬q+ëkžºÏc®Z@ß§S.f]ýªwAo³±¸y9ÝÄä,œà|˜àcÁ…ÆF ˳:ä‚#Ù_0²Ñ˜Å“‰™xÕµþ' )êJ°aÒ@qYOç$Sà¯Üaî4÷%+õeñÌ—·ó e2ªÁƒui¸Ù‡“c •2!0þbNzâÅwê lŽb®"Ä|ÓvÖ£çƒ}®æÔª¦ùŒþ8û]â?õDèÿA ¢G³þ¨¿u8™ñÁÀÍã?yXk$ÔË>5ZÃÙ‡>'.øàz·ýP ß­¢!5~ŒÔ ´&S’žtbOûð]kÏ$ •AO™ƒÌÄŸöïN0à&Ü}Øâ£&4wàŸ]øçyxšVœ.ÄOî^냔©3²†<-ž-PuÕä % åHú#9”Ä)´dÒožñ OHѤ"joÕÉE2«¨Š]äÔàyîü£L1â+ëi0"tªC€S¹ HhQ—|Ÿ7qA%ã¦]û&d ó&ò’·=÷ÜÖ=μM‚Àºk\]Dû„¼„P¬Ìª¤A I¤@ºMÇÇÃé®È–Tø…%ÕÀ˯u®ÌërnG*ñ0œ-¨ðÿa2F²9բÓš w–NÎA2 …ÒÈþ™F¦äïR™s¶PÎlÌq™rV¦œ=`ÊÙ«2ã¬Ì8“mgeœíË8ó ÛTÎ@3H†~EåAŠ… yVŒÓrÔ^ ËŠ85~à8¹jâ΢9e®Ú¹j¯ÊTµ2Uí§LUólP»\öO6’§ËöGv.›•æàr:H-ÊÊC~­-º‘¯*9îø^“ã<ô÷ʳöfü {ýÜL’Ÿ²é*-5ƒÆ1Ž'7ªÅ÷<Þb[lÖŸó]÷ ü·F¿S£ð=Æ£ËM›x€"¿˜?Qz .*hà ßBþÚÀ&OÙ¦[èKø¢þ+ÿÄ„Ï[u̯61m_ŒBðÉEÕÞLOÇ®ð¼ÈßKŒç͈U»;8éá>5ÚGïSCšrÇ`µ]lî¾=J‰•*‹´Æ1]Š …ÝGKºç*¥ùC<¸È•)˜>~´¢¶4[L .Tv+ ÒbZIwß6E{ $C«ÌPÍóè¬`ÝÅ| 0ÞŸ­›-šú¸ÙòY8ÿ©‹ð6éhw`¯Q€m6QxÊ-Tƒ†^®A7U—@¾‘;ÊU…éFí®Q¬ˆ¯ƒ‰iO¿âÊœžúÍ'+…iàÓÉâë­zæsµ|ÎB[ÁÏxùôÿë{Õÿ¹²¿[wê>Uêÿ÷ñ"εõAWÓÿÛ?œ@ÃíxDÖ€·ù­Vbni XyZ³£–¯Ú0@©¾kè˜}( ?ŒaàIç¡jyœD++ô-¡ñÑóHÇ´2ÈxSwQ~§–Çi³±ì¸Jä,s,ƒ9–¢TXiAú),H«M"·/I}­ß{X.ì#X@¤Ý—¢-&ú•KxuN«"‘£##øèÏþZ ²W{GŠšâýd…£TKÑâyzž¡ˆßïÁ"õÒ®7X9YIÞÄÛÜ”´Êoû过i™nZ ¦hÌDΜ ØNÏ곚‡“U{‚…ž¬GNÐ-vx®Ê“ŒdÊWj¦—FÕWÇ/—ûEdxàܯÀô¦Y'q_Òr ¢sø®S¦=!jBG]P<”¾žlŽ$´ÿ+"åŒÙå„÷žÈò'‘AøO LÈåø*6v°;8ÕÛUÅy»œgs}tê¦ÑSNÕD@ì?@ÆáÒxþé3"q{ɘ84jé¤ Îg;Ã…ÞþÆ3Ù¤ƒ@·i" FM.ñÃx~‰«"'_&vè2!f¢¦=$&<ÉwÏÄ(ÜKDú1¦d&“´ž¤ÐiiÏs7ˆ¬ üyP£>™<*>Yát,«U¿kªê~}~æüõ—QhZârŠjã„8sÏ>¯ ª~láÙÃWêVtŽÃ}4^7Xã£ÚÂQàØŒôÈ\f8¸$øbpy»ˆ«¾€•`³[S5»ÕºMÓhÏ’”'Dwòàh>™€¬ƒ4îV’ßæàB dïÇ/Ö-þRÉP<6õÍVÖ0È]–ý^š+iYLb·ìmXr4GXh­½…Ì3¦fQ!2ÈñÓä*ßnà=ŠýbÄJöçbõ:ÊïîK¼"Ôì_þõµ?¹¢heà0€+“Ž„@aàD¤Oe÷…ƒÃ!pÞ˜žšÒ<î{TÍÌøkmЩà D¹}¡ŒN¬èVz‰”™¦¬Äb»Š˜¾QÕÁÑSX°`ùz…õË×ã–.~EpAºÀΨ1û^¿(;yäÂL &ŸÉlb™ëò),¡m¹£ŠONf‹\ا¤õøâ•G@'+Iü<ߦ8Ò’½ÿ):ÒžèËãÿ»Ý½WÿßÎö‹ŽÿoçÕNéÿ»-8ËÿÊgv½€áÒ™b‡ù齄÷Ù¿œ³ñh·0Î;z á~åud€— ^Ç®„âoÇ_â!Ûe\±–)N÷à‡üqÝx!!PÚGr˜è>EÃÐ/ÜOô Ù‚ãáëþj:Ñ“h{K¤ï÷fü)F;üj}~²³šI^¿?±Î¯ÚÍç÷ò­ùÃ: ä‹ óµVé«AQ ë¿jy³]µ§Î÷°xɼÍZ²Ýï‘€H¶Ÿûј|ÏþÓ{q¾¹gçhâåܬûÝ¢ü¡^·h…a«á5¢ ÌŽ—ÎÑG@kÌöÂ!ùµ‡õ¨¢!e'1­üuOU€Áy–âV5~ÿ¢lCxÐã­&‰_5ñ© —kØŸŠTÓü¨0¿+AÕ…†Î¹0<…±‚÷çŪ‘Ùw|'žÞ¼x¼æî’÷µu~xv QJüÀ¼hñ®Ë[À1"oãïÞ1píÛMájþÀÿßÔpj[`ð7ø1j O9¬CIgóÛó}p7C5í@#=þßÉáQ³“êÙ-â†ù ÇG;â&z¿CÁ {_¯½½¨ÛÙ wWA¼ÒunŠzÉùW+HªpÜ×øS` Èÿlžmäß4ï6^ôp“+ÎÄ!Êåõ^PÄÈð†ã>“×zp…¶\@ÅýâŽ+±Oü—À£—ô‰í>ˆO¼ft8…+Ò( Òðç·¤N%O€=VãòÍI€sŠÈˆó*VûY®‚_±U½p2®Ã ¡¡¨(¯Þ­`Uô—ê“¥¸ébÿu¢üRãwg…Ø ›W»²Ñðm3uíš5¼+–kEo|KC¾~+ T ÝCÇÎiÊ^«K†gÔ¶vqÉÕhå4*_&nOžÅ%&Bg…Åšô¨¡ïx4W{{:/Àž#àiø ªÍä¶·i·µýwÓvˆ»<Š*ü¬h”}Ñ0šTçUG¸ˆ°ãÇ;±pÀ¶"(( x¥{b54¤›NúúÂMxüÆYXe¾>Š®„´ì> ꇛ𹸠ÌLÞž¶R;OúBq¹$<°•§]=»×žO¸Pû:þNëkíÜ﨟½±F‰{^ZT+™‡5ŠÈÞãÚ‘b",iÛ=ƒex”<~+"ü¤'I‘‚´\° ÄK‘þ’6b—ͶF¬sBQ MÏš]}@leaUŒ‘Òƒ’ROZŸìKlƧ[œCÍŒ¤kÝgù£®ºiAWl±¸+f…^ɱ{¯óÇ_I×?éá}E¢³gŸyOó@Œ–FÓ‰Q°£ @§’¨èyZCÙÜ"-7‰'iÍ#d¬ýÆ·(³ +Bj‡¤0)bØvÂ[F‚)ƒ¤Mƒ¶¯M šÎ¾1Ú¤[“vàª3Ôû=Èè´àaÕ/€—³æ¼l›ÁfJUºðå3KCUÁ!$®okW1Aß ^Ä vü“ÿïÄÿ˜E ¬øž+p ]¢ÓìjñóÃ…ú`I\­¼6O@PU¸{ß¹|ŒþMy9mi5-fèíâ1C!à‚$‚èÉG Q°Ð+d#X¡Bz þ@¾P!3¸G‹Ê ²» ¾âÔØ§*´ªjéÁBè¾vÃ…|{°òê%X(ÈâÝÆüˆ™õvÈh=_ÈÇ]fÐ/å¡…xÔZÙ´â×ÿyûe4»ù¾9}ÍZr_ƒ_*ÂCðZG äHFjá‰ÛGP>÷N1&)¸ÖòkÀž jºßŒ¯×<ü©ÔØþ䦉Dàšó?ùC¾ .)ðe´NŸwãN¦bIâFà÷?úŸ&ñE•íMÆü¢¾Ø7>̹`Ò~†€µ° ]‰ú%€v"$Êßù:‚^FãYÌê¯^Þ'fåÝÔpvåÊBà•­“ƒÎF–tTM…ï¸áÓÕðïX^Ú»¤›­ÖÊbI$¤x{g„’줅’,Tñù«6:f•õŽ»'+Wé5’RbÁp•ì ÅÔNÕ¾Þ׿Ã3;,!Gª¾iÉ Äà²2g–Ѝuºvp; Ç£µõÄF™KP›KàVdIb Z±-ø•š-LÐ2‚ Äí)Ñ--š@\¸Pô„À¦™1OÐò]íz $åè=ODÓpZDÙ¼S¸î3¤Úõ»ÿ;Êý/¶ïŽß‘OvÏN>ÿ?®é†¿nËöÊÛÕ¹¶ð<)èñî¸o»›™‘HH6£’áb>§‘îsJZI¼¨Ï©¥saÀéÔ2œN-1³ 1¢MµC®§–îzj\Oj^ŽÕóçNÏ;)8\hDûŒ$0úôkÿ”ˆQ zæß5|¸TÏpSœh’XÉ`hÜ®×™7€»Y‘ jìe}L.pÚð.ÿ~„?%›]úŽˆ­ÚˆÊ†ÌIôζui´i_ìº[Xüh‹Æ\†co’B™žÅ1dX˜1~=’•6§M:·ÕáÞ4ÀhãñòÁÐ '=‡™Fd»ÿÈiÂ-€>µ‰°™Pi#·z&ª9`î\çG¥&¤-¢U+}ü˜Ôt¯µe¦÷¨¨ÿæe“S:Ÿ|;¤E(ªû÷µgÏÞ&&)ñ—Áb ÔíV¯èðäà5mĨÉÂùœ QQ o’¹ës©ûûiFž–Úè”ò)}Î¥v·é:,) ,ª8‹éß÷߆ûéwÈ›$ælà‡-!ó„îßá Àû†N»äÁg°¾±±ã¹Nm€cTH£Dnß(Åœ'ý²†õò†Ht$'$wá˜ÔU[—Ä’rb¾‘3fãÏÔ“T š±,Šå.!FN†ÁEŽXÜBeÃÔðRGáz´ÕÚ‚ú]ʼn`U ^Îô <êæå ‡™¡‰-í¤[¾Ê—‰IÙÞV½3êzi++rüXײÀºe°û¹þŸÉõô~ë½ØÙyåøøe¥ÿç^´ÞLÿO÷m¯ÂNº¨‡BNÔ}ßKuÈiÃwõ·ñÛæR|ïÃûšn# {£öÞ7º=#®©¢êkΪ}𦠫˜ "Ž+ßø\fàÁÌ ÖÛäÏÂèE Ò¥ßŠÍ e#³¬xày…Æ]È›Æ9š nn'|¾É¸'\kWlÊÅ ”S!æƒM¿Ogñ L0¤­ôQ‚‹ÿ=ï“1XÚ\ñVÐ<Ë.ÆóÑýr!ÊžŠ_â)è23Ì}Ávà±òi9|rÈ,±Å+¦Ù¨ëòYï6¾nMl–RMÆ¢FðÚ´û®EkP´“Ó&~[‰Æ‰X¶n]‚×olœ$·TNBßk{D¿õBÞÂñä*ždya=ähKsg>}žaÙg6…É­²A-®‘•ÛñO.­#—|PW…º*Ô‡ ×²˜»’>ø4Û`äx+ïÐyI rãmî¿õô_ºÌÚH¡ÓDs0µEðZm´7NõûûÓd½^|‡õ|Ò}› üí þ¶&šr‡[£ç ™`NðXJ¬Œ®;pÌÔû_ÑSÿíÍà·7|ŸŒ¿²è’áò¡Yd¤ÁhO.9~âT@ÿ-Ü„ûvR8¨“5«À¢N­¥ {ÐTän®€Ïš5jÉ%ö¹1‚\Îýsw ¦_mñb,üððqT/ìøGǕ۔"Ëù Èr^£–\²À‹íK‚À¤¼S*O¢+à9턳 ù0ç—ÛÇxq DD2±¹¼ä5¾­kv~Ò== E³É\»çr<™Äü!]ø ÆŸÆHÀ6ÒÆB±Éhþ4ÌæWÊ5‹VÏ©áÍžCæ*8®-êß:§#œìȾÆôFD»zcÐVÍ$89™Á_;@gKßñe«+a].Qî“»nredÆß¾ö¿ƒëp:„•i>\2V ˆ#uqzå–° çÀøÁÜB~çÁ—Ø–t@ÂÐHoE8:‰’CuzÃåj  j“v6+¸?ú®HŒøs¼©&o ?ã³óßQ±]` DsX,ù"b+€Þö¨°ÛZ#á?L"ýÞ_qýI§q.×%ßqІžÈ;\|¼Å—Á ¦a–&ñ5—‹¡÷™¤àÓWN$&é7Ûö"M¥Ñ’‰³¼Ò4œÅs&‚};ù=µkügpt™=ó5ó¾{Ú7¼€7µ[˜ÌãíAmÉPs¡b¼Ÿ„§wïð*±µàì#ÿ£wÀõÜ?Âã<€2uíÞI÷€¿Ãÿoêô¶ƒo#pþ1<‡ìŸv‚ƒG]:ìì ¨*˜æÚ÷EMôøD…›0†·§âŠŠhœý³ÊööñíÝAç¬*¤¦ª0¬Ê­Ñê4dF ÀÓ® ^ðµë!Ûo¸ž«vÝÀjï¯ £P LÀsÔw€…C¸ÐûäëaܪQ3ì[a¸úÀÉ ó¯Lx\Í7üír ®ÕƒÌ›NÖÌÍ8c]¹·– ±tÜ&é·ìÚ·X¡QJ÷^xî}›÷æWîÍͼ÷Ö·Ý›Ïs߬¨´DDH÷m/²±dfM0†sÔ»5š"‰ð¤}•2l+JÍÑ/i¨qgûî¤F'„LÕù-‚†šL¦†›æ ú0½ôÖ*žö6iµòv}Û Þoue(˜ç—€¸¡‹&=}‘¡0ïB5¾úøù4šÇÒÈÂe-X} óò4Âg|XWAÚ–nø1 þò˜Žøª5¹³®n½Š/'qJ¶Îþ ìÒ`jÔ¢ÙvØÕ|‚&YÓð / 5Ýõ=hw5f ­—ÂÂ$¯Bè¶Ç(²ÀÈBzÇÉï‡ÉO탚8ü=5õPR€Kè‰þŠz„ލlϘ-1áøÔŒìxQyÐr W?iënÒ‘‹x«Zå÷ä ††ôCÚ.(.¥5|³Y!Ñ»]ÉœŠ¿íl;KZ#Gíæé'8àFVÎûø3ñ W ‡q|o¬ËñÄŒ¾ˆ“dÝœ! À.ÄI>Ñ`SŠëÚ#©@o¯I$„À<ìÿ0œ ªÇª–ÂâN° üÁ0K/(0'$TJ%ú×\†šd…F€šÇ]E iÖoÈÚŒMÉ+ÑmÊ ÍF„ñä;Ê åjñ=EÈEA+¹3E—&sB:DЏ.u)7MÚn¾o´h[$4'}Ód+¿¯;’ýï|™cZKfûûJNJŸ„§•ªobßy¹@›lÓ¯AˆN{àÈü{°š*w…«¾8Xe$1ŸoÜI%(h=‰_V6i.Fƒ¬>?¥¢ìãÇXöÙÞ™gˆˆæŒ.ØfCñWúÖí³„ùŽ““¬ó$•Òž³†‘6í-2 ^~ÁyCgšz=K¼DfJ%K²´6…<4Þî,ÝÛ°KýhÕÔ÷`ÂÒ9ÌY:í Ž qí•×V]­¤Gü®‡4Au ÂÒâªD»ÝÀjCs$Þ›à>ÑísÉßÏÄM80ë8«=üÝ}›~Êàï{|yã¿¿­6<=þûe}û¹ˆÿ~þ|÷Õ‹ÿýâå«2þû>^´äœøïs¥ôŸìgǧì—]¾©8q.¢](<úûW3Úï¥5$¯ùWtØíT“àÌåm {›÷P¼§4 ?gÙèY/¡Îå~2¸afú7ñ”íÇ77ñj§õ? ¹lû¾?>õ¹"ýÏñÆìýપ©ÞЇþ”?¿ËugDŒH t¯¥öHxÿ%s,ž†*!®Át|=ûÚŸ@éË¿£B„Iã°}¡úzŸr‡íûD¶:GíÖ^ë„EŽAÍnÞÂù‚ûeû‹Äå'|æÇ„ûÕ1éV †åâÔ2AþwªOñù¬j#_…G&û÷Ä;‘K|H’ÂO4¶…Š zÎ[€ú-z>CBlñ§–`À¬&Ó ÎÎ3`˧ˆfd8¤Ê6€Ð0pQ d@3Fs…ÖtUtøJP=_Ú!LK‡Dªù‚ùÃz±l‚ßAl ]Jæ ‘Ìþ*‹>JL% ý†F®EFèñð6)5"Þð•ñ¹.+(jÍ¿ ý)í•ÂÝI>dëLÊccŒ0ü%ß¿…T­1q$Êà>Ì!nA¬ 5sÙŸÆVøqteN%9ÒUo`ÿ”S§†7éý£MHad0'‰„¿zãJ¬G|²$ŠwÁû1¤*¤ðTZzæH±¬ŠÛ§ñ ŒÓS-óþóø«(Jƒ1æ¼Ä=>'3*X*Ú¸Š¯û\I¤G÷//ã[ŒI\r ª0‘C¼ägæm:•+‚æ|ý<¸üÌ96þ‚3DtŸO.‰¡ÉÄÙÇÀK>Ñ1b"£Æc™é7 fÞJ»ÉŸs“?á|çVò ìˆÀÓ Œ7áNÜZ 4²®Æ#ÌPnd¯´•¥çÿűð¢ŠmS›¨ð*ÂòËÙð{Í¡1'ªÑ?ý‚.\Ðå,l\!3…ûgª2mèEqµZ8ºë5g.(U=ûãé,y‚Ó¼´2í™Ohšc‘T¹Ìõ8§ýIŒYWêA]°‡6¤MtÏ ç§ÅáIi&’Y*|Á'àÇÆ¹‘±.¢ ªDî/–•æµ|†Wþä.¶p~WŽÔ.–•ݵTb[<·k‰´®´Œ.–•Ôµd>[(¥kÉl®‚‰\ü%%wê#B;ddpè]…&.™!èaƒŽZÚëq„vùV„BZÔv»ñH¡{hÛï ï©F"jdo-‘ˆ`/產7Å­+òwL@1hç-?e ™·k¿Êuh bVÕm4ôä˜Æa$wj.hߨ0MË#éò!Nù€bØzÔ$·¸Ö5=’žç»ÕÝÛñ×d‡špNüf7€ãôÝ?ý<ž¯àÙ¾fäÇÏ­ÑtBP’=ä9•àOÊ-,u>aãS£u~*Ç43—}€[šÀ 7akS.k ›äÚI<å¼À¿çòõ1'˜v„jüø41Sê‹h–*ŒEEøy¾/—Š ‚aàèú™0hÇZ?ˆk膪€TÕ2­EfÐwlì"Q0Y[2Ö|±µ%ÎÙìåµ—syÑᔜóÞõÕå­ì××Þbëkoñõµ^_{iëk/m}íåX_{)ëk¯\_a}-ž‡œ#™ee!/•€ÌVƒ¼\úq±Ìc–•|¼TÞ1†Gf%Ê߸FÈû R¸‚2V&’ªÑŠ@Ú–½kÊF“¤•Þ_q ¸dOù*êÕªkŒj×âºQV-\AœÃ!lS˜ ËÀn!£è¶;€G`5]‡1kI7ú··1ääñ¶¤A]Oj_$ x/Oø·6¿É„.–6¬ç ‹†òe §¤ +é;;Y˜évøÀZŠ;Ü|1'&œï€÷ãÉ?Ï¾ßÆ¬¢¬°ü.ƒfëdD5-Ûú!¬›¯…å1±ä7åšrÝ'iÿÖÊ–J•¸“vQÖÎcDr§ó““ERþK2Ï=&l{O](€„¡¡Ôäc{UaöL)_p©Ô4XÜä¬ùï–FO8--4pr¾ýëO†¡p Yù³:@àüÃDà—TÚË1¦¨ö±yjÑ0u©Q蹊¿%ÈDŠÐL×ʇæé j`œÃïhhßµ'1¨¸1è¶ô´§öi2W›†x³Ç®EMgÌ úz]›Ø©Ê ÜshÔä.³íi ljüu•|=áA2KŠÊãÊt£ºÄÃ+eƒåwAè ûÛÉ„‹©Ïøq±6à„éìoœCÇü°ä7þFgäh bäÀ š¨³Ë9µœs:ÃåÓ¡cã›þ{2«ŒÀì6öo.?WT¢–¶;Q·wØßÞÍû“þhÇWÓ×Õë4°ªýH/qO€xœ@j„½T ¯o»°N×ÇŒ÷ó“,m0Š¿ÉÊ|øŸ&1ïÊdI Ð £»›„X—vC1Me|%ÃOÁ)€{˜[<«øxlÊîòŒ=›¯Ù¢¬ÜŽ 0CÎÓþDÚ|¥¬ +åÙv–©—ŽBò·O ÏÔȯãí­Ý†Ü›a›€ô¾ …Zÿþ¿[õÿ_•ïÐEú ?­ã8ß8¤á‚Êd|;ðþp^¢bþp ÌíxÆ “±·Ñ%ztÓ4I€—œ¡â9Ó:gPœd\6ZÆæ7¸ÇýAŽ&èÛ7¤ï[=á 8‚ÛÅ~¢Šsõ—/p ×¢°…t]âñþm6‘ur¸ˆÎÏÙŒ÷q6„½"t@Ò,zJKV œÒÞ3=ÿ­·^à¶fˆ ø¤YòQ¤N׫Jú7N~¥ÃûÏÿœ'¿T†|ç¿:ù-ùV;¶¹²åJÿ’?±ù]Z &\]‹qw®ˆ8ÝuBX!ýjä](®½‹ëvš´yó¤9™}Ê=Ò|‡$¢pyA[IxH3èPL²Á˜‘»’l°ñR²)%›‘lŒÅ[Š7w.ÞT”ñm]Õ¦ú&³¿Ôi'b‚ìVdEû„?\ii|m߯íJRaÑəʇ’¤dðßPcƪ$VD-üi#l5C' äBi–„Øz@E¨@É—I|Ígj1”ÀQK”ñGÌ4Ÿê‡‰hEº›žex›ÄМ¡ô‡ŸÆ¾¸nt, ìx”ìLxòóÔ8NÑI—|vÇk«Õv^0² ©'ÖÀ@Í'—<;eGBD¤H«súWÐ%í_­õÏœoãÉMÿÎ8’|&¤„vã_íVÔ=ÿWë¤{ðö_˜û²Î^³ß?ÇÈ8¼"ø,A«3yU‹Tãçℾ,÷©Ÿ¯¡Í¼ eþ hŽuÓ ö)9zâ,X±l…á¿f?§ŽÏ¼F …Ï/†ñVbœÖž®Á9ûè%B1¿‹ÉÅ–®¶À^=”©"BÒô'…èððxôe0ðéÊÉ5ßÞŽ'3¶xÚlø9êìµz­ÃÈÙ+è†Ô û›|Üq=ŸÍ‰[ÖS¹á}÷ ÷ùaø¡ã¤Ìʼyóùú Y‰ç‡þÐÙ£ñ‰‹œÔ_â×|‡CŸ$0/Þ á²ˆ?ÁVÁG»ž¶C” #p‚ö7Äð x´O5ÁÛ~¹Q8œ˜à]Å—ŸGƒCv²j*ÐÆ»þœ¶—á1J0¤ ZV'îÔÂìÔ^|Aüë‚/†a"®p«Ò7@áID)  \CA©ç+ç´ÏßÓv†½ß[½ä„]à„·Ãþ'%J¬‚à,^¸#ög³øæç3Àæ4ˆóW¹_Rä#¿Úê,cµvùFz$¼ãfCBˆC”HøpÝNãÐfÅ*²ã¦Þ¥q^²~|x¨ËÃs†Ê î—‹‡š2%oÌBE%HÔž ‰Z# I ˜Ñæ¨Ò:œn"&¤"<ÕÖBxª¢‰ˆ‚œ¿½aoë´‚ðf¨£+‰o´à ¬éqbÉiL¢#±èLI'Ë”êMJ÷b•SBk&+´òÎ''ðáBŠuÒÐ`ª«½j>¢Í¯Múûl?ìÃ̱˜ó}ÐæÄhÒcO¢ˆZ4ˆ&6ÙGZ‡ù”|Ðb´‡€¦ö5‘®Z#X)±Lç®ýB”›å{ ô$*ZðZ+¾ä‡l£†.„ÉéóÓNë¡à0“4´FHUÔ;4"T oé®Ñ~—éGùP­ËîÖXó»’Áð½f}¡qÄœZm8ÆXÂ9%yƧ5D#’.=34L³¦éÅ ¨-3ÊKh ¦eû£êëVf sê éÙ'Ô8l¯¼Ð*‹º–Ô¿L²òó9溓éÚ "9&ïœ9«\ÍÂD6°•«"¹ž‰gLòÿþÁÛÆi‚…(¿ })_@þèÅq}ø9]«a¶ÿ‡ùMÚØŒN Ñ~=ý£m¸e;ëï€ò<¬ë7?î…çdV2`ß=œa 2…œÁû¨œ>¾‡Ǭüx²DÙÕ #¡éoÕ%щ}T&0å|[’&E(‚ìîñ66Ü"sÇ=WK»¨÷)å¶7f“ÛD-mdáö´û½ÅŸ¥¹|¦¤p/áÍБ… Y7RО[êzA{óPWs”4ë•y¬}‡_Žô á } €mÁÄh¸ÜÉäÃÜ{Î뼓¯®GùÔÉwï¢É×7cß´[4MëDÖôg _Šù¯®N:ÞiL’}.Ü8IðÆõ>¨¹Ôêvv™t‡ä&[¥4®x+/ÝÕ"¦;нi@_ÛdB†¶ Xÿ,ú&7ê…|¿ïØ[…¸ »æI[É%¾2äÖi€ÖÍ5 "¤í½w/õ^£„EÊùñ¶¢@Ú­ºM¡` ,J!†¦•©ö@Ä2£Ì…ìoä)^®Eá-D¬C,]!ïxnß‘]¹BÞúÒskVá yï/î½Yu+Ô4xŠmd•­P÷¾ð/»”ª¾¢瞪‹­0ù0_Õ iH5¶¬ýÃ` ÚÞ'iŸ×¶sþ/ ãæCÕUýàÎ^ÊlûVðVgV˜ÝÇFiJIõQ!½ƒáûÂÝÛ-Þ=©÷úèÞÁ´;sŒÞ×pÓ˜VøxÐÕ ç]•5_=/Ä:û½ËÏ{9ÏûLWãr±[~n*Èh9¹Ìaç|,–.ÊpæÒCjçY 7Tü¨5–^Q3D*ñŸ7¬}Ò_ú ÒoØZË_Gþ\· àЇ†ø™”ç #ƒ A´J¸AtA*©Dà¹rÊhW'ˆ„ºI'¥Ø<‰ =:dä q5Õ“DNŒ40±²Q‘. ù ¶Ò‘½ ƒÅ4$è±m©è0Ý0æÅ­M…mT&8Dhto6 %V#ФU“Õ=÷ZøŒ¬mÖ×Õ\à7Úgš/·¡–4x…,_UCÈöµ`ö:*Å}ZY=.R{.ùI˜O%\qÃÖÀ.XÑ ëYF ÿYF:ÔŸÌÎÞ%EÀ¦òP:ÏðE¥±±g—ÂA7L¢p¤¬ee^¦}.±êÕ%rc«rªAŠC­* (µ=Îæs±a9šÒ½u¶[ ³wL³· þŒÌ~Xr›%])æéßj9Ýýˆ 6ʹ—7M‰Ãí(ÍQñŠèî>ïŽ%%Y "Z[Te q»ß#¾xJÍWm«äZBšž.ˆzô ²ÂÀ¶„¾ÀñB%…JyüjEòàåæ™ ê¢Í.H…€*¢ìËŠiˆ}2Ž¿ÿ&’éú–íw3:l|Vº“yŠäßÿwBû¿;çÝý1\þŸ•×Õë” “,<Ò¢÷D‹8ý$jËÆÂÐR•0EÇm•â¹%£'@ÌÆ2F k݈L(#V u†ãùô» Ã1™C°)r@*„TMˆ¶‚ì“ñDoü÷Kw³þ—ñàŠño$Ä"uVµÉB:¾$¢)Í‚uú«ì°z¸ ý7ã­Tµ*ÍãjVTL¾‡ &<ƒ¾á§p¹r(¸è6öoE—Àávžz¸yw/Ï+uΙg ”‚Ñ:㨦æÞq_Ç^ ­ó{Yúýƒ{¹ ™÷å9ö²|#ê‰KÑd ]–ÏÉ\ÇfŽqúŸ§Ÿ¥Ë0óà,h}ȃ3Ý”zp¦Ÿœyʱœ—õX~†—§þË¿wV[þ%£þËöËW;;TÿåUýùö‹¨ÿ²óª¬ÿr//ZâVý—ã ëÈIãTʺ5«XŠ‚RðÕÉ]÷CÆ-éÅK^êqÉáÊé5;`Œžà¨`M¬‚œJ»îEÒ<ü©•0⫉ê2e„¾µEöÈ7vY» °€²Üå=3ŠXÝÑþ,¾NLm„§t@¹;:v:¶·§Q¸öm‚kçBdÔ0¶ñeb2ZÔ«ÙW"þâàš_÷Û&2Þæ··,7ô1RbýÏ/ðñz JýõMu´u³Y=²`ðÉ7Fcå#»ÒýUo{ðÕq7e"õ§1âHåfk´YM¼; ¦B­½!Ñ}ì²ýÛø?\‡ë“.ÑMçôvdªI–?åFãþ0‰o!‡sDIMóÑ€ï¬ß=•7Q8£Ù'Ú…Ë'ñõ0&L]”ÃßRj¸~ÿ>e‰K‰tttÅuE!Ò;²}>6j?›ïn£J‡sÞºýð)íP-X9Yfؾl¾pÏ:bÇÎLÉc"+oj&åé¿c^Ý`¡´:hF MŽÇØœô-ê$ÙŽE‚±¥ze3PÂ{ù¾R__ãÿîðkø¿÷•¿Ö×$ìÂ_ü˜=¾n%À®ó¾2XÇÜ=Â`™Ü¨Fñ—7¬Å¶Ø¬?çÛîøo~§Fá{´»È]›Ø€2Æ¿˜? ô˯@æKe´õ׿€v7" Q|‰ŠÊ¯°¨ÿüTùÂ7üv«NÕ‹§¼Ä–†f`ê µÁw~M5¹V  AGxp)ðùås†r¤ yŽÒŒ„!ʪˆ¡ªÈBKŽ{„2|â@•}L9ÞÛGïžö ÖCíÚwg Þ}+ÞŽª"¶iU!õ–OœÉŒõÆ0½$Ô»Ÿˆ êyF 7Ät¼máp=è\8ÔΊ„ë¸aen]î°2O\ÙñŽ'¬,¢C?‚Û²‘¤Ì’²ÏPž•ª³R™wN ­Þë»xðþ½Ÿö¨6 >ø‚–î.aÃì) $¿;ãÄÞú¸Éùš­Ca™d8Ý´±!kó^&Wámú%²QΪI£p›¯íPJ Åý¬Ñ¡q ¥‚åxQb¢QÉñ­'µDж®Öé2F²{çÓÛ…Ûùìâ-[õj˜ýÿú^õ®ìï>·õÿÝ—Û¥þ/â[ÿ›¢ÿ·83€Ñ#³¼-` 蘕£Jk@!k@Ç©»e^ ÖG-_µa;ÑyHÀ CŠa@¿Ó°1 è˜6a@ªdš¸¤ßКK AÀBc±€Ä]¯â–¸î¬i“ ,ùÄÊ$Àù‘S 1„Ò§ @zlH6bÒ?¹P‘ñÑó‰ÎÖä-uWg#jJ}?jšx5FÇ/†ãË¿¦ƒÿhHšøj]‹Æ@Ñp³LQ—ý{_:å{í•°¤Ñ™¨7„4|¡ÐÈ,6©Ï•£Ç‡‰96û ÕA´¯¯¯ÒŸ§ ©No膟ÅP¶A¬¨' K{Lç„gL S­ !)Ó’Tš’JSR^SRÀ®ãË¥?>=èþ3ÕîÓâ»A‹äÀÖï½*èëÁBî¾v?¥ÁÊt¾¢ ÿuZ±ÏWb0BÍNXŠšâýä¾,Fa ?àÀAtŠøý,S4éh&¤ÃGä”> Õžfƒ¦+o ¢mvJZå·}ôß”AFÖòŒ™'ŒŠoÄlaçÉ2ö–ïlkl­*TÂ-´iYAeªy8cµ'Xaœ¤ÕÑ>B·˜ñôrÚ,jQëb†}É삪¯Q9¯ðm¶Pñ€¿“‹d©ý Loš•÷%-}<:×x€ïz0eÚ¢&DשèYL þh‡Í2”4F7nŽÙå„÷‹’áe(%æ#ùÀ7P)ìNõvUqÞnçÙ\‡ºiô”S5ÕÂBe¹¬4žúŒØ¯Á^2&Z:éGƒó™ÅÎp¡· kÄÉn$ºM©0j¾u‡ )(»&µÀÔ+MGå™ëe “tÈÅš¨i‰‰O’Þ31 ÷b œ¤d’v“:-í¹cþ8ï´ üyP£>™<*>Y€•õ fˆè×êuãI „èâ¿þ"àCP÷0©èp‰yöy|eôc ¾L·¢së3 ðºÁÕþÒÆ&\ 7¢y¸4ȯބv7a'T_À2°y­©šÝjm‚»iÚÛ™™ê3'éÁê8Hãn!ö‘™~sp‘XêñúÅ\2Ec‰@ÐB“÷f«é·zW#{XÖ†G{¬-ÒîZho!Õ“Âì•}%) ‘L®’ûíÞ£ô/F¬d.Z¯£ ï.°ÄqÂÏ‘¦¨€+¦;þ ‘ík&eZ¾Ì@cR(' ´ûÂ=áŒ_8]1ª°ÛÅRSs®¬Ec°¦`ЄÏÉXS¤ÑÁôÏ,A Ê„Ú É%­æ¦hÄ6¯v&¾> ¦{†*k)_£°fùÜÒå­èƒ§˜Ò5fßë—`k3ÏX @ÆžÉ- ˜Ìbië"ñ),›m¹…ŠOZ ¶±˜Qã9õ‡*§€NV÷ø(¾Mñd%›}t|?/×ÿ7½¼çøßW;Û/øßÒÿw?/Zm¦ÿ¯·Ç—¹æüìvJ2ú€ÿöø†pà:ÿúóoƒá gOÆ ˆŒÔÎä;ÂP‹x}öN4á ü ÿWgù9é :ùäAÒß,õ0ý>Åþ1äÓÁ‰ÿ{Ne$lá ÁŸº¦Âo0•è,°È?aØ WCLW™–æØ>µ$Ji~”x÷ìvðe<ƒËíÚç{;8¬,'åÊü‰>7b–ÿ¥9aðP8\>É+Z€tF© EE— ¯É{Äg¥Íÿ;?îú²˜ªùΧ^{@¶ÇÈ,íbÆ*ƒ--Óþ€k#_UV—î¾p<ÃöÖŸ¨ÙÄ@΃b{ƒËxú+êúupà°®C d .±ñí½°t½í ¢*áþ(Áé¡iÕì­¡Œßòß:P0'ÿÁdÐAiŽ*â—ª¼!1u…Êo©ê^xrð.“H£5FóN”pñ˜GóC]Š»u­éU¸%·ñ°×~wÈd‡ø—†ÊOæ¼èÜEôâáó©?·@üP‹Î~ÙR!¡Ì4;ìhA¢n/OÍ^ÒÖKq²&È7µäKs}$A‘Q@ú˜~4¾7lÐ4lp«0ÙU¶æüª÷J 'Óg‹€-+b¾y“UÚ€-¬V“[iò`<Ø>´$e´Þ®)9j|ß P)|´¼Æ08óÙzN3ÉÐíp‡õ®VÐl8†dÇߨ?7pãÒYc7‹5Ì8kH.Ù¨ˆ‡~íÒ³wyîáÏ"ù ‰!‚UøÓÖ ¬R5ß`ÐÒÕ”ÒÒó(^ûÏÕÕ}Úvv^ì¾rì?»/^”öŸûx‰mÒ´ÿìó#öÃaóªÎü)üÉÿ9;?ÎÒBcŒpq ¿™<~5`yÝû7áw¿lÕ_lmcÉÀ›Û DЂÄ3˜Î¸øÑt¿÷TÌn𕸲¿þß¹,OªDNB pŠ©…§ïŸ Z/©îk?‰I—{µ[hF]羈Õê´BÆg'ÑûLï^Q[×þ~$G—(š(ÜÞW1gQ¥bVéí¯qóÐŒü]E;„IC„¦RÑ‹_Ï€™žE¥Bõ8Œ²£@Á*ØpÈ*v5ø2¸Š·ø[œ‘ 6TzQ×ç½Uùëd0›®¬´e0ü€Á§×z׳çÍ?q©|K9Ø*gëzp ]9ÀDs<_?.?Ã/P¡’«ñ—ñí ¾™ØT|µ ×"¹Oõ;V¬vU† œ‰«„eмª&£z­Æa°ÓÐøØÝÉÃkAû]”æ PëhkÂj«ªtÕ³;ÂU<½Œ©¼äxr…u«OT|¬ub!„6N±ù3Õ!9áÖlË©VèÈŒª™cíA-âWEŸAdÔÙÆÆû*V3<“aãHš/²h»d’¤Î÷Mÿ/N,~z3^QXñ­(Z 5¡®~õ‘GoÇ(·ÆˆÐÖšQq[ˆ*ÃÈMÿò3ªÅÒª;ïOzWƒOÜÙ¿ºz6_pF»œUÉeÈG4†Ø‰ÁˆæUkªšmLÇÉ6Øpðsö¦ó-ÕñÏ&îmý}»*ÊÂ[;Øu*fÊ©r¾ô¡ž5@¡C>Çßú|mc`̪ÆÓŸ²oÒn­º'úFW¿Æì¯Ñø+Ìç$âfx†¦²ËÍ|£®›¸’Jíc1G°Ð’=ë;N C±X¥§¯Í¨éµÆ?…àúŽnÄ&þ„¯#•€\*6®¯eúJ6?ùÕzh:3 d*¸=P×øªn³{쎯רž/¦EU­³‘ÕKþ80M¨ÍÕ}‚Þ ”M뵯™¤ «»ò…•m!¡ʨ‚´ÕM‹*^b`ûí9œ¾²M܈;›=„£Î~ŠVÁPÑÄB¹c×{WdNë. ·äì*th0Õç0É¥²˜Ü7¹Šß`Ú*êø²­ªêOk‚ž<»}¤ÕæenùÊê9ñjF·‘Á*‰Ûh‘®O(šh=Yv5Åk|ß'¢ 0¿™”JÈâ\z˜MÆßßuYO4b8a eyd'¨­ù‰&=H3áïaÄšxô©ýè4þ?­žî¶§Ã÷¤qsc 6Ž„·qçê°ß,.·ªCk¡·fÌ[+OÛ ±zR*õv¬|ÃS;©2y¼ÓXÊ¡¨7’½òôåz¾sÚ€£5!˜Sáñk.þsù(áÓÓðéiZúæ ôŠ×… W©³!šèˆ¾q!8?£quÑÜi³9€HÅŸ¢O›Þ„WCÁ]' ¬m>‡™Þ@Þ}LmV™\𛇠x¿Â\@´^Ž ÎNj¢©4>H yw”F`y‘$éš¼ª²PëÞI̪ºjgCÒcÎ A˜›R½< %-h\­ó´gäê~¯ôD]9úégTüDÈѱÇ1Wc’žŽ›–‰+Ô1¹z#˜n{-e“\YŒb ºWÈÕbÕr)ZVSÑÛ©µ(wÂ-¬-*õ¼m°àxÓbØjÉv%‡i`n@ðx×eò–ÅK]9?/6´Å¥-ŠD5ñ]«þ`›ì•ú Âq<ý Gºü²¡ .xû¢ÉÃFÿÏ6šù6s‚HW”2ÃSÑLÕÜïíïñÑ\áfËÏ.æ~’fƒUŦtà©ïæÈEïç€÷ª2cc"cPØþàËHZÕ"P’ÓG3~siOÚ¿ùµ½Æ=†£ø‚,!N&ˆúKÐã¸Ó¬Ì{ز—·'¢Z**®E‚ť؟÷RæèŠ´@›´î¤Ä؉ªñ$9ÿC¼õè=¢·Czë…'¥ÙþÈ)ùþ4 ÿÿüU§Zmþ¼wOáŸTO«·Wcü{DoÇü ¾!/ÑïSÛàt?¶«ôÞïün¾ÑýŽÞŽVÔ‰ð >†ÛéD'ï»1 ï;P̼%‘(ÕýØl‡g²uU@‰ˆš Ù¯R½,û§ «§qºÂ}Ì"9ãÍî~ÞÛÇoñ½ÓÁ·c:¸w´#Þÿ™¶ø@ ÈòÙ£wœgx?àSºw½kvé½}œÖ¿à˜.ìÀ ´™bl6LfO‹¹ò%ûCQß”iÐÔ=s@…«™¡Yæu2²*h¤ÿªªòò©š—6+ΚÇæM+§%ÅDms¼n£þª¶Íž±¿')BbÅ™—½À«vµ«p—bª”49˜AÐ/è9ôÌ p5…Åzõ]7>§C³È¹@«•M›Œ–"M›~¡§La.zÅéGòçaò§§$rn ž gIêpMêð/Ü{OáÞ: ­"§ƒÒÆÄQÜÞ*’*xq‡ªŠ8w†ºâ©XÍÕS§/ªAú1JíKϺšVA¾ÞC²çaÁYVUá­Z:"#W ÑR,­€?ñ5üN‹[Xî1µï"þ4!èÖß~—÷½þ:<¹`VÌ·éÍxNq͉Š4Šã+Ðlfd$ï¡ö D»éOÙ×x8”C·hpUH4{íQæ {Oõ’,SŠ%¨ÕÂéþ®å¿«Ðó«®„”o­%·ÉÐèTNÉ«ß-Á8Ç_‚Su°VatÊsñ]ìíµõÿöÃr(NÐ'Eޤ͸ª‘c¼yÉ'èÂG[ŽAfLâ ”#½w¶o7’)ëNx?ˆ{F¦·Ò¶(S‡iÉú•š‰ 4)¨†ö%zÂ@óŒ6"Ô5#÷ AÀÜ|^e»ümg“ h½ÖzßüeÝÎÀV´™¿à\%7jâ8õ¹RYçê7»™_~ X:#°tÁIò†$žp¦"0¼hÃBXá²Ynx9à+ÖCpo—ÂóŠ6­A«?\„”ý‰‚¸Écå‰É§ÄþYm×´{fQw'º‡ê¢`_„¸! ʆ€øß±i5‰mÒd ]%ñ„ó=-Çl-5Y¡gæ" òðÄãv¤ž¹È0xäQw/×#“•°A<ÿêêŸq±äß±ýdñqÇ… >ÞMçã^ÉǬäã"|œ“ƒóño#“Ÿ§óoãaø·³(ÿvJþ]í#ï–wðߎÃÃR3”f)â9%~Õ 9ûEˆ³!0Ìû\ ÀŸù;‰ŒVWâžòÇorÉÑfx!ƒT-ý`òÄ‘«R&À „hëÃi/xø®â™Çj¿ÈûLøcNþ4N lï°ÿI‰ë?9;1:‹#í°lA½æ%ì5ª\µ¶ÇhûO¹»,!ܯâ©tzþØ;Ìã'ðí2Kd¡}F¤èNc#eº;OiIT–ÄÎF-‰4Kb‡,‰¼–Äh•–Ä«D®(ÚÉmJìàd íh¬ð*hJä”Ú(Àóö1ÕÉoJtÅÿ‚¦Ä òfÙsS·ˆÛñè°íã¼6˜Naå.sº–š­Ð3ó?Ñ:š:Écïþ‘ú6œöHË–HûJ["]˜ÅÈ9l‰ŒœeL,¹dd|iŒœ‹…ó1pcbgYïˆ]kxÂÀ)êTÉÀ+äÝ2ðþëª`)ÖÄ(·51ÈÚ š;÷£ð{)²„Ÿ1í)FZ¼ùf}ÏÌaäaË(û¼çýOJÜeýÎ’æÄÇEŒbæDÜl>qÕ|æÙhrÛŽ-Æ>Íîgê=Ú¾ÍÜ/ ™Ðf«ÑlŠ 9lŠÖg/zÓk—éõ ¨µä7³ø=BDØâ·ÑAM$ ­R1¶»f|…µ¦n0g¾ê_½}Ø3ªÙtPèÜ~7’›¢J!˜9*Rå‹ù.žIôÓš 6&ëq÷¤b!³æÁfU°£ˆÝÀÂÄýoç‰ç3Äýž 5ûÛJMý¯ê¤Þð†)»‚?½£ö <· ¯‚\½½¶–¼Ôƒ ø­ˆið+ÎIb„NP.5R·æœ]xÞñ.lãÿ)/HΚ݂|©dÈ GöF‚Ó.ùh™’”öh·PV0â¸áÊ/ Jô]T»šJ\ƒ$“Ò¥ÓùõõògC­öòͰkà&EÄmU‘/ •%Õ޵ÔN •³Lò->½ÿ¥?B–‹!Ð"z]c}º>w4¯y[4vQÀfcHP– 8®ðùpæ|‹¶Dê2þÒ’ÓI™Ðxs¼Ñµ¬$qõ¯ÑA©ªÎÇp¿¨éô¿Òµoڭ˜­ŠÅv¢PtYÕµ§¤¥V2‘+¾…—By2Á¾Îÿ˜:Àíºˆ¾.?Õ;€ŠZí5=‹ÿÈôPzk`‘ºzfÏöîaÙ:ðM¦6†~8syì}õÉ>òÏvSyÖ ¡‹¥v³'}W›tµ–k⣔‰çš@E1ô§€ƒä¤Y×á8‹ÀÉ¥G.ÓXŒ‘Ú±ç%¤íJÚø {DY)–ë²*—¬×±˜Jøíä%WcˆÆ”Éù÷t­JÉú‘Kâ}Øõëê=•4xM ÿm²¬»˜«ú}9Ýj¹Ãó­©ñ#áˆ-SÇ‹âAÃWÔ2 a/š».,–³ÏÞ{*2÷¬f‘D­S,rA¶}‚0‘–¬W]KZí·Á¦M׸Z["þÁI…ñ Ñ&_ªiÖrêSûÔ ôIv :àUÓn¨Èµ¶mQ_žå2Œ2u†ñ‹1wÝ1¯ü<‹h;SÛÒ1ǹöÈŽ´½ñíw¾s†OêÂsÁIÕY7H©µ¸wôO±YD¾¾wEÕB˜ggÌ`ÊÖ6sœ™âYÎhß!j ŸäãœXQ©%<».g74Á9NªÀÑ8~Ò%x¿'aAîùÖ®µ°îBvp¹Ó9är ǦÈá‘#V±RÓX­ÞãÌnf|mL?eÝW6â?Ñ2Z9;É1±¹“=Ïòž&B”óBÃ%ÞˆÆDƒ ½—xäž–_™ë5Ò.æÏ]ÇæQ(õÞL1É·c`œŽë&ó«%4‹¥€a·r(dž8ADYi¿¤\kõ,iq~.µ§"bŸ¯·êè1fG[噓%ä©Àù„Öó ùMðZ3ÒZ<[É[Ç©ºýtA~á‹×Ã#g'aîàÜ,ø"Œ=žS„òíôwÄj ÊêY³ ž¹54aï­f¶¨â€¬—°ú3¢3ÎP>‡ä˜¥ðÊõ`FËeO xÄSÞ¦~‚‹óâö;ZÏÆ9¥(]ŽÂØä¨ø 'Õçëhp$â{” Äb2†J·P–N…6þ#À§hÎ÷°¤5Ê”?™!ÙéËZȲwç‘›™-~¿5º\”GÓ—¨ª—x\R¨I¿-gÄ`îÔcó¶t]W°OïBAï¦)èÝl½ëUЃºýê*ŸƒRY-•ÕÇ£¬F¥²Š¯Õ)«Z B2å¤i7íÕnÅ'ý¤6[ª³ž×ãUg-‰¦rš./¾ÀïXm¥Bv£ŽÊ"zwtz¯R]©úyÇS[ªŸ9ÕÏ®Wýt¹wB—™·óf®‚¾ìº:qý>T1ïƒå²i;1q¿¦ª5y–õfG£Sg%jMÇ·ÆW¥Ö¸Ëo2ƈ3 ›)ª±>d,Ñ=*]e8‘Ie¿Š¼b½¡TÜðšüŠÛÏ¥Ys>A=ë^܃b[YÀ@óÔ\‚KécöîþÈõ°b³zϺW†Ý£ ë/ÇѼ„î•¡7YBZÖR5=mb–‚Ì$Qƒ]OÆ7üdùl­1(þê·Y©¬J¤øí·7Xr ¬KG‘ÔéRvèhÉQ‹2¬Z}Ü5³$ªl>5KSòñbï¸!ö\ö1¯Bl.f€³% ’yäS;¦Ú¸ÜŸ.²fÉ«¦°j.¯Z§),ð©ÒÙŒÖÍ,‡”jˆ¨•ˆ¨«‘O=ÂivVË^¡ˆö¯æÖaýÜýêØcD»~—?žÝ¦-š-  ¿ðOºá·DÜòàŒú$õ£÷©”ßœñµˆ1ÎuÒfÙïÔ‘­jûÔ•ÌÕúl• šâ·Í©ÀfܺËI)È“N€‡yž„‚Ó`BA8UìƒâöìæeúAÁÔutæÄR«Æk~­Z ß!eŠ3 ì¢dêvŠÕJ‰#*­€;ȵh;Wswâ<çåîI졸»×©djN¹”#þÍ"l–]9Qß|i§AW”ßêQÕ©o·’1ùô"=¾5ïÌXvŽw®Œ3Ýþqÿí8Á’Ž-—¥KzÌúu9ƒ$‡fô`‘uÊXh~3™…ùøÅ ‚ÌmDaþ È•A–ò•z-a°"\£ßñC/Åå•J:C>sP«’ÏJdx¬Õ©VÖ%¥|ã‘oX°ÉeÝ]X˜ñl·yì¹K 0&µs¸Ýó{aéÄ"Lg¼ã£¹£©È±yûUÌòW¯Ÿý…‘”§xyŠ—§8¾ÊSü¡Nñeèü#Þ^_«íTeÃ'|«>ojÎ:Yúh ûOÛO§±=(¤¥“´t’>´“Ônâ±9ºTÛ¥«ëIȨO]ˆ¼Ç˜A{eY0Uô'´.+´Ÿ=Hðp"òÚ ù=pölwŠõåaf§f$© ,ÃmU±Ìyçh¶ãJ²cÊ[‹øãrÙIÒhf* >/£ŠµÚ»A>lÁ}Šæ¿U…ü䥳«ñ³³â®v¶ˆ·ÝKãüw–¡3t»ïær»³Âžw–×ùž5ÙŒ¥ny×&Ë¡¹[Ý^“žùýô»ÛÆ%ÊUoÝêÚX~£R¸- °Éë‘ÂZ,I¹\®Mº”îQ¹#0ŒB¢Š%§ü÷Î?¸æ¤_(„VåἊ½x¦Aª^Ž'\Ë€Y;…apfƒÙw1q9·âNÞ­X$ $5yÜñxž°‰äS a/Kz;å4um ñÍÓ«€TÒ‡Gs€ºŒe€)îî씇`úD–‡`¹Ô¯ðøWÍoìS’ vai.Q‹RS¡NW ¢^´àܬèÕ>v y%í¬è­ª¢WF±ñû-éÕñ­L‰jÔÞð„c¹{`²v–Úÿ°fúƒUóê_Œ¿p–É:TOñÈ«‹þÝÎ ðdVórü…¶§Þ3Ѧ³¾~G?ñ¨j|.øNüT~Ç ªðöITóêÚ-í3OôDjɰ¶ŒehoPg¬ëÊ3Ó-—ÝÛ þz[Ã_çǨ:L³ØÛJ?±úÞVž€v{ʉœç”hoÊÇh\>§¿CG£æˆâ½,naûXNµK±G Ǿ"ÑD²Z>ÒïZ¤¿ IÅeÕŽýé›&…Pçü¦™&;îák›&=—L“9,¿i²ã:Äo%ý÷ùâ~R«‹µ³çý®‹HÑ‚7ÍqeÌqþíãIšæ”üš5Õ"¹$½bØã›lµ®Äø9CÁGi¿mol¡ÔIÑ‘»HBK²ˆÂ3©ŸÚ0ñŽ`L©,¡"cíÅŠŒul¡k#Z/Îû‡ì¹Šà‰D¨ŠG i¶UìND±;¤—ä¯0Æ{Ë!7 B3˜±‡3asj)È 3ê°õ²™-«¿Õ:[”IŽÒóž¯ Tƒ ‹e˜ ÜÊbÖ›Þc+XÎTÐNC¶o§šš±G§MÀK}6]Ÿ-µÙR›-µÙR›-µYóõsi³ ‘äPgB |U¡$¥îºLXÉšYµd‹.Y•z—øö8½|`†¨v“Cõ¨ž†jÔE}Xžy^f:ÿiL§Á“CxôƒçÛeÞ m˜ª¤l¡_W¤ìØß3t3OݱB…ÃîÌ‘»˜»Vó÷Úí ý,Õ•[PAó•Ë÷OKmó>XÇ¿2ŸžÈbê?¹–ø¦fo\¢ŸH.QäÖG‰dmO²l÷!ßîQ1Ë© ߇Fö#¡J-Ì?£¥F¯§«…ÙaYûzÊüE½…Ky J»OáYÒ;H3m·!D³+‘-¡’åS¦2çVPW“ïò#KÉcѪ‘ùJ%gä…¹pA²(A²(½ YP|:É Âí™§u>¸=óž,¶(Üž®ÅÀ§p{ެúØ‘öŠ&å<¬=ýˆ¬X{$¬†wOSÅTM’ Ⱥdn!,¿UBEç0p,ÝÉ€eš¶ÿ€PÑïtXòÀÉyw4ÓÆSü¼«Â·îJ1Á¹hgÙItâgÀ7ªýZ·îyÓ¨K›°:Μ°“#‚‰¡N{ãB Ù¥ ÚcûÉié9ñ«=„L«iÆ/ϱ^4#ÓöqWÝ áU×ߪhÖqž¤ZÓê‡f"ØÞ(TÈÌž|zUÁJffDfŽ:!Ž¥wÿ½¸›XL!/£ÝeEW¦òcþÙÌ–i™_cgþP˾PKý¦ÂÕËJYlÁz' ŒY5ñRf©ä3Ĺ{,SJY®†;ÕÐ~!æaKií®@x¹»b¾ö)×—éH§mAÄ\ˆŸÎ=ԟɵ{g/+ñŸ÷O A)ñò/ñòÒ‡øS:¨ó*‹2 •¡—õŸµ™ÇúDµ2Jϸýnª••îÓ‡pŸ_•ÎÓÕ8OS|QšßÓþéÎÜT… ×dÁY8މåõ‰•~¯R˜µ¦ç‡fÇzYÍ´@µ•Ç¿>8µuY¡múÁ‚eŽŒžî÷ó×O3|a€‚õÓVOËR¢Œ¨Ú(·æÅ–¬e‹°°‚áu>.^×,2ÄÜAØÂ¥Í– ÊKëÇ_Ú,Ëýî¥ñ®ƒ‰”¯´™¯`Ùþ!{™ÇÏŠ¹ãÙù¬)gÌ`”BK“-QÕlÏ=ó;ï_*jf|U–4+%ÙX’]>+ÃVû ²Ëɦw^‘eµ™nëÈr›Ý)êF~¹Ó:ËÂf?ðñÃE—‡ÄpH@}ºþp„&žjÒEÆŒI•i`ë\r½@Ù` rÏ’'KôO–Ìja¦¥ýtt5fÓËþ‚Á5ŸËx:íO¾«@µiõöÚµƒãZÝñ¾À¯¨‹E ›­wÑiGvèÿÕè×ãÌ¹×æô{Ç©¶ÿ§‹«xstØN„~¤žü&„=lì!ßkÑAm›ÕÑ~me} –4¯–q*ˆQøú‡ýiŸÔzvþþÐÅwK£ôiiY<ÙgóɈogƒ¾'%¥ã¤e§ž¬ujøò ë4Îï&^«îÁÉi7ÑĸÌÃ7 ½w½ý}}9ü÷ýô¯aŸÓ÷¯­ÝÚγ^wïÙå§xú¥v½Úgló×ËçÏñýÕË—ø¾½CŸá§ÝWõÿªó×ö«úóí;ÿµ]¾³³û_l{µÝð¿æÓ?§ØÝô'ÓþÍxºŽ_v½bº<†­…Þi³{xzÒŠp•œ„V÷}/1 ·ŽZg|Ÿ„OMSÝÚbí—Û?²«É€‹l2í"fþa ™ÿœ»Öùeêà|©Á‚<‰G#~äÄq5ùnŸG\ ú¬OþЇñwÔY¢Æ;Öž]Õj¢‘hü%¾¹)3ZéµëñOhcòi~Ã¥§)ÿNgÑÉÁ»ƒ®±Wòaˆñá°Ä¨UkI³É¤ÿ=o«œT¶¡6¹½ÃÎQûà\¿¤Q¡§nÀÆØ¬ÐÓáŽäÉðçÑ|r;&œ…7ô¢ïq’d0ÐCÁ¦ãá\Â,ô•Ü6ý>Å7@X~ÌÇœ.ñ¿çˆÆ uÇê9ßA›èÃúú9žÄü»Á”E[ß·")ûÁ,œã¿MÖçWѯœZtD§O :è©UbØm2ð}ývðeŒú'´6åÛû,ž\~îøöí̧\ äc¹îƒ Õä’.¿aG¼Ûmþß©Öí#ì6»'7óANP׫ˆ2eóÑ`Ɔ㯼5ôIB­bNåCoo_k4êï*éˆ2@ªT79ù¿ÄÒ;‘P]‘;!´ ’b%mråôF‚K*ƒŸàuÉcº ÝÍqx&·Êµ¸VEÆO®è"Ëu"¦µQƒçýã ÛÃ)-òpù?§\c1ž\%*ËêÍPŸdGš5ñl­/ ƒÏø¾‚]’ ª‹²Ê®œ¸ÑT`Q™ž›ÃãTž|§þ–¾Ǫ>­¢ƒ}×·ÁŒn¢éŸr."^A¤˜ä‡ÁúvÔ²èF{ãôW¼9OPøžF{"õÀR‚øÁ)r˜78'rÌÁ0î_Á2J HڧݪF-q‚Þô¿Uêœ2¢}Ø¡°}IQ¹‹¹5© OÅÕË—ì¬yˆƒäc‹¯aÇG»Ëýª7ëÝšû¯ý©¾\ÑvWâ^:ýnç‡f˜*“%Ô>öÍÃÒ ‹zy„+Ox¾)ÙlRíÊ¢…s5ÁÍLp³F-y&úã™`ý¼»¯¡Ró%è}×ó!ŽF¿à7¼ ÝÖ€†7Øâ“Óû§Òƒá0þĹƒõVþaµÂ9­ ª 9‹¿ñ%4üŽp™ÆfëYTô‚Ö1ßy鈛ÅWƒ›¬GÜÍeËnÒ6Qå“cžœ—ãùð £a+úf/]N9øÆÙ ½ó !0iRÅÁùÉA7j´µ~ó3ÿ¤û¶Jï\0;?è6Û Õ`Òr‹óö€sË%{;]Ò飋+ÝVÔkí% såÉÓÊÁ·ø’¯ã‹aÌz|9ÇJì‘c8‰§Duda8Ûû7|:&(ȇѪÐì ¨Û®1Ap˜Œ@N0²ø*J¿eǾ…oypz{!À6tïs÷ÞfÞ{_™*l2ÄDÙ¶oEÍšækÖ$ÄqõzË}ú«Ñ¾$»Œ ž‘”e¬MòËphÎ6×”æçª®']× †=)áHñ¦±A‚£*ü ;U“¶îóšnˆJ:Òð7¾ì&ýÑ$Ûµj†¦°-=7f ¬ûŸ•ª¿ûòéÿW+6¤êÿÏwvŸ?aëÿ»¯ž—úÿ}¼ÄÚ¶ôÿý @ÇŸ"€<ª\ éQ¶ì° Wmzëºn¬§b>Ø{ßè6öNtU_£QNé4ý za‹Xº†L€_‘!- ½"f‡Ó uhƒœѳù0-û–©ÂHh± ~ù:L¥2b@3ÃÁG&bЦ¸ì˜¸³U¥S>åϸ h:£ ᪡¤ ã’¢¨Y¯u ¾òAöZï: ·_ŽGÎ?q!hK\•3Á¾d{ +ÉlböõëçÁågøD\.•^Æ·3°#°©þ7ƒQå¦:ZwõÃ* ²²Åª‘ýÉweÕeÎLsy•ª½Ê'vZÔòÚ¡û/A?!¬¦Ñx´5âÒþŒ¯WÕ ºì÷T÷á*ž^Æ#T_Ð!ÅûÁ„ËjÔÂ,ÀmœbógªCr2ÓÜŠÒl1F¡¨O2©ÜC¨CSv¶±ñ¾Š¢ýYû ¬kà©©¥¿Q×õ‰Þm|9¸¡nĬyMØ}¹´zYúîékS[k¬q ®ïhrXD%½Ï¹½·ÏÒ¨ËÛª8…€=®’´ëΣµóôWëñ‡wôx)XòÕÉÆzv"èÁhl=‘á eÀÖ}O·”>ÜÙïôF€Cƒ\-G—¥LÍÙ‰M™k VܺÁ ò†Ûs,ÝâÜa>¾ðn+yÙC¾ˆM`›Âã²?B˜ëA1@\ß×ç·¬Šþ&Z¶f´íFÛ¢Mk ÅÛzt§fXë8÷šÕôï×DZd§*#û»>ÿ¨tºLæ›Äd2S7'É Nnþ"£­hêë`¯ÿêvC×°ß«èvÖ²)ÒoÞV¨Ó§¬6ŠkÐmÉØ|ò+šD.ͤ(á˰P/X¬\˜MÆßïÚÂÝ‘ОhD@Qrv9HÞ©ZU¬O²˜ 'PÖ -‡\ÔèUëðpþ¾Y—>µ¶NN«§{‡f©Rü¶³®3}c üAuXÿ½·f,¡–~'ˆ‘0UýÁhš,>[š´u£m§…”cÞHxQå[9§´yÃØ‘ëP†½ÄâÑ¥ÆN§+`§ÓµÄg´þ+ïƒµÉ r`w€®âÒŽèŠ yçkZæÙÒö hœÿeÐÜ+ÝÛDp÷éyZôŸÇv“©{LŽ„ž¯M"ÿ"<‹DÃåfñì¤&š ÌcBdyUô«C-ù“\o¢‹«]T±I9ŽC0'׫¨ò¯;§¢ëB‘NJyA/®‰¢lXA.Ñ™ rÈ$J®¥æøõwgòË`ì›ðn:Æ où”~¯Àçžñ>ŸJaÙ`ÓÏèL!/ÐÒ¹$Dè(–ðÄù¾-â³!š ê}-òëßó˜³;h¸Ó)WØ®~Õõ;Û<[@xÉ9TZ$Õ¦€A"Fs$(¬73ûÌŸE†‰¾¾NPzñµA 1‹'“±!³Þ@4å'“¡?$@@ˆÃtοºø.¼‚&]9¡jøÁsëņ÷ärêÀPd"ª¿–ó¹U_7¶½…ùˆÿÂEðÂNç|f½¦ƒþHÄJ$‰žØ‚&ûúy<Õ¬0ô?›+°üeÀé€Ï«&{5Ù´?LQ±’™&ÿëÖŒÙ`†¾@´[ôob¯Þ În~Yƒ&ʱ ÈÙáS!Œ'˺PA,îC5šQNÔ½æ~j± ÈQ)çJ˜T§Jý<þÊgaäóê“*'ï|u ;ÙÆ)jºØÏî&n/&Ó ˜&ƒ[é–¢Ì §*êòUÌÙq(cˆVîn=RîIÍ¢ëHµÀyqÑWù;†Ù·B—!ÊvmûÂcá-Õp Mâuãe­õXv©/]=ý ‡Ô©ma¹=¾—3¹5J´ßµöÌç·Oºÿ¬BnëiC¼õè=¢·Czë¥Y‹£“3ºùLÜ|F7ŸÑÍg½°Ýó|1«™37„ Sè0ÿÿŽ„Þ^Z½]ˆ¹¯Rä=½ó·S•Mƒõz»âý4¥Š/V!Ìü>VX•E{§ðìKQ7­™¨‹QÿÝÍvxÖ)¼Z¤õdäup:Ñ[î$Ø?í`¬t ç«KÜÇUÀ]ª*°¸ª¢†m•êáÛ1†2`jwÚ¢Á(ôªHq© Ô‚ª(ôJïÇô¹Ã¿7Ô ƒ&Ô=1¾ÕÑã+1Ì»­vã : OOôŽ34ïVgï}˜Žø˜ªh®jßæŽbÐäfÞäq÷ÄK–bQ ýĪ®žjÄ€à ’ÐŒ°¿àÃÁ1Kÿ#h¾ú=炞yA® ¦j‡Ýݤý~è4ph69DÆgfaA[<ë¹Wô¬6D/Ï’^ži½<;t[0»y¹Whý¤Í;Áê‚˜Ž­º†°Áµèð¤Vqˆ•üy˜ü™ãÄì$ ãKþL>ƒ†áƒ½t+òBÌW¡Þ„»àÄuÒc†víë3Â’Bt9 #s2[g•Ž[v3¢þ¼á²HQ1b›,Ú#ªÓˆ¸dY¦Lál¥cknÕ™“ºª?÷()Àî ÔX´‘Ö Õ.ÀÉþD²?øPïcñô-žïmëþç…û°Fü©ý´»Š²!t5Á_Rzªø{ט©ø@;„βyb''×DÀP˜=P?(Â! !uñ¿cÓj%è¤É‚gÐÓ÷´ì¶·…ž™ÿ‰ŠiŽó1Á±”¤+`ömDéœÆ»æ«Uä¶FTŠ vÛÍÍnè¸ð4Ã¥×’Ÿ†˜cß\jϼsöïÚlŸ§s¯ÜlÍ×ÓbòDNBÆÑífÆe‹ò×a&½ÈÍ_‡%±§Æ_½‰1sÈ /ssv)7”,~lA–_!Ã7 I ¯Òù½ñà’BgQ¶î”l}çü•-)ü’›¿HR(ùë o›+•Å$…¿çæìÇ&)”,ÿ„Y~I†÷£µ{wÑŽ¿ <ÞŸAdétýóWu³Ÿ¢¯OÞ‹ ëlrIÄfdm¢‘±‚” 1¸&â'®YŸI=lO/`ñ7ø¤“>aÉ–R¬;Å»“¶6•óYÈ„…ú”Çå°0g§ò«Í¬‰{%ž4îxež´(§'-‡x^ŸU"÷éd åÉt"²³µòÚÇwêJ£Z¹ùÅÞ :ù\izFqWZ'c­Ùô,·N>'ZªÐaDräp¢¥°:VsKÓ¹ù¢ˆhÑñˆíã¼Fˆ4zúOÝLF[ŠÏBÏäl´øIŸƒuLŽå”Ô%Ôð,_ÌlªãÖà¹<®´t¦K< ”ܨ½ž"7†› EwÎ;gÿ^¡-÷yî-·W29{šLžð²O媗åp¨¥sÙaÉeæë)rÙÃm¥@Ì;aì<µå¥‡’åáU²üíäBò«ÜòB–õ÷ŽØÚõ'lV?£dkõºk.ËáVË-/”\¯§Èe?ˆ¼Ð(&/ü}yy¡dyx•,;yA·ðø§IÜŸiü]صֹ{ך™œXÄo”e_Oå’´‘l+ź³ˆ§/q`¥vGºÖN‹¹Ör­¦Å¹;•gךõÙê³Ìë§oµG¥Ä¡<[J„›é0@’‰l\L¥Sîºh•ð+ /Ë#^^e‘ú{™†E<\þ%r œäv<.†±ÑߥâúŠü©†iÏx.áåg@s½¦³¾ž]~p™Ô”EÕ8Ei»7˜Ù^I.Llþ¿gp«¸TT |ƒèÏÚ‚è€e`M¤kÀ˜“(8l<Ÿai ,aÿ#ŠãQSÿ«ú`¼aJÜçO洞/Á´÷“ú{ˆfÁÌz ²š!Â|ø‹÷Ù)ºÔHÝâ‹=· !MȲ~f·Ì*}’GìÚŠK>Z‚\¤=Ú]"ÙÔ°¤Â8øß€€CÀfüƒ€©«ä]:Ë*@z¡›1 ›ÂMxd‰Ûªj_Í/c6ŸJÀéc È‚²æ,“ò S®è¯HÔ²´ÁD+J´ª8{% Y‡|]ÃÇ,Ü;A§-"È3o_2ûêÝÚ™q9ÏmŠ\Ä–GâeB/ó±‰=‰ì áÜ~ù—9c³à•­~"ð]¹ [ŠšjÀJú)C1Ê`ïå–|êlÉò Á.Ñ|ûøÜ‚vN*t7ëÆ}ã~'å«c¯øËîsú1FNÿr€{›_ý`‰ïŸSõ–Ka^mD²bîYÙµf%E?ayUæÕR\–v$®œ3%š»¡Så)J\hĉ7ÿ>è#y~‚çR9Œì(á#t ™Üë2õ VHå€Ùñ´àS:Z*ù¦'¨}°€²-ÿµµ©Päݺõu•÷Þ®â^Ù:•[–wž:óálp;ü.wüR¼ ¾§ 9T•ÈxÊ›Mæê”NXP‡Ðn9.pú˜K®“c: mÿ2íZ°÷£Í—¤7¿¤†ÀÏLâÄnµ`9iÏGc–ì›Ô˜çü#¤i97ÎZ9 gø HyeÅb§êÞŒþëªfÒw·•ÖšXù=ŒNZÑé;_Aɽ5òÚ´ó«nY‡è·»8ùó­LY4Í\Í(—™+Ï!ßI3E>åƒ=umïJd[u–§¸™¦Ý¼ro{¸º‘_µpM‚6•>—;KËrªr­;-w¡ør|ÅEÀÐÙÐò6¹(ŸIŽLž?Ÿa›Æ6çŒæ±™çí`i¡“÷?- x8À0‡uœ—µÍiî÷f)8ö$÷•ÙìÂç;J:œÒd÷¤LvÒçi¼šMùò$ÿ?B)?Ô¹˜Ûj1'ƒðšÚ—°®Ì »Zâ‘™S L¢b*…ÏNŠÐV‹ïԽÇ·î–ʼnUØæR#@ÒÚÉ?£w¤ñE!K,ŸÉL&l%¥)önM±;¥)öaM±;oŠ Äî²;S•rñ²REúñU¤UóA©9ªÑB¶÷œjÏ¡ñ‘– ]pýGp|G)(k]yÆvAº ­…ó•{ Bÿi]¾¸fÒÈ7…w儊BN¨Ü*I¦*«™ÅT=ö+©Z°6’ÓHºãJ÷:ú¼Vl™`rVÜmÅ–õ\±ç•ÝtõäòX±D%Ìã›b™Î'–îµ±ž—îœaþ–âra¹½.,§6Á² ¶¼¹å;Øê4 ¶„<Â|ÁÒ´ –­ph*uŽ‘¤DT³Õj²_9âªY%„Ý?ï¬D+a ,E7a™ê ˧¡°¼J +uÍVã¯a\6¬@øuŽy[4¥”^¦€YP"gE„r¶* […“†_e+qÕ°%½5,ü6Ë'Ù³U÷l±@nVÀƒÀŠJìl¡ˆîP_ΓÀÂ΄Àü¬ÀeÀÒ½§+žœlÇ4Ûw,“}ŽÌÞdL^S=;…oN}ªK—n—5x³T›7[PPõ!äžµ|–Pöh¥Ö”Nè¡fO4È!Í=0-m)Ž:ÿóJq6ˆ‰¸ï^#hèîˆF˜{ò@Ðkƒ8[Z®\0âŸ-igË飿‰wº‰œ-g%g…Wpª­<÷‘fÓÝÚ ~H9±‘wörÙ %Ôœ‚|’¡œ®… º,lÓe³.sjÒ¬¸æ¸ÓÈòvÛŒ„;g!Û|‹›è½pÓD;×€»³QÈ„»dÞˮτºu*ª§!£*Ëk+ö ½· ¤êª†ŸÏÔ|ƒ™®ó˜ÉOµ¾/1¤p/W9 Ço‹§•¾c Q?¶=þônìñ9G’/m…öøSÍŸ[ƒË-~ß=ÿ”6yó´É_;vtóUÞYfLI>x{ûepÂJ[ÈܯGx>]sÊ Ý-È3òüÏÎa¶›ÁV¥œ©ñ`±c×Ù8îËѰÍVìhÈ":‰õ™T_h!CiÝ–rZ¨[p~ŽVéºóÅøÐ ~דš Zò7Põ)!/Ü©í ”²ÐÞ¶˜€¶"£Ã» ND”q’».¨°”ŸÆé¼»$‹ CëcÏ\†Li?w)ÝoOJIMéDé~[9—ÂVºßÔí¥û­t¿­Îý–O{J +ÂçrVØ*¡ÅÊ'°¥6ÎGá»Ì™Ã’ÖFžy½[ÿg0%¯¸÷8ÜŸy içööÖR,86vÒ,D6ö@Ù-Åœ£K¸F—rvÛ-áŸËãQËvÝ•Ù-¥7íQzÓÊì–ÇëI󧯲G–óR:Ápä9r†KÃÈ`wèúzÈüšÃí•)2¶ˆ»ëÞœ]‹¢°§¬å­ÚUhc~ÇUýÈ¿Ÿ=|¨ŸÑåÞW:dž”ž“Ò‰Ò!Sœœ™jc!ð5–­0¦â¯±<llµš"ó±ùûöØõ¡üGë}:‚Æ(cÓtýš•óå†3cÃK´eãœD?¥±27Q®©} ?Q•Áö-¥&¸×=E™¸hࢽJ÷/5²pÑ:  kÏà¶L>¤# ^? FÚRªÖâZJéÄâ*W »Vv­çé’¤ø¼rµSF ²ví1¸ Vã*A×<¯'¤i” kþ×RN†Ó;]»ïÔŽ 'ƒ8Ár;| kŒ°mx‚dl°ëÉø†¿‘€™Gæy›&s¹7—~ŽRè^TœÔEÉRŒÔ®(O¡¿áÇJ<)êm(‚òs'¤x/}h¶Äƒ3^w÷Kn{µny{õáÁÝ·áºÄ†³^%6\žA•Øpîk¥jЗ҉‡ý²lìê›§¨•ÙC>šÙÙCÞk—YÂÍ•™6%Ü\™wSÂÍé¯{\Œm?(áæR^>÷Í"2ÈýÁÍ-ç|ógø6¯áÒZY bg¼Za*AìÄë)Øý=·ÓvA»;÷ê.b÷¸=º% ÝÚ•©HM¿ùq’lJ÷Ÿf?¼û¯ÄÈó½§ç®ÄÈû±}u#O<®Dºð5RBå=)¨¼Ò‘fé)8ÒÜ›KT©¯ý¼þ¨t=-Y{%hŸÖ·Ç® • }ûÔ!V‚öy_®ý” }Æëñ»ÅJо;ís¾ôÈÅVkŸÔX':yßµ~BZ}œhýg 9‘.¸¨0ÏtÇš9/ÝøjÎ%jð`%ü†ü÷•KÕ ip滊aÆÓ0 ÕqÏa,Ï`÷Ûð¹›uÜš§¬©¦åÙÀ+ÍÈÝRrœ¨ÆAjJµ6ïåµK¦š#­%ÜŠg«Q awkë: ë]ÅÓÁDø?IÁIÓn`ù”×ôèÜퟰhïÔ˜2þÙwdîþ¹•› ‚z=¯ÄË{ãs"j8›Á›:þêPè! ß«ndZ¹ ŸI§gW=ç€uKcØXMႽÁ> ˆK ¨ˆî´j‘c…{Λϳ'ðaëÝn£HtT¶äU‚rΛ½¬&‘{]T©´Ï^S:ñ½ÛÒÔ_ñÚYU$ÚJæÀ»=ófí°[“ëÄîSÔu·qykº|;´½Ê'ùž´Ç·û˜Ñš׻Ϫ°ZtxR“ ¿ÖˆökÚ—È‘!žÌÔ@×’;«awˆK © êJ»™ü瀫qÐ5üZÆì×|:R5üJF±ð;¡^è_©À:ï§ï6ufÓ7©ûžØŒØÊDU¦õÞ'¬ñS-Ey­nÎ\¥ÝüÆžÔûÜŸ²›ñ¢E‡ó›Ñ”Â\'ã¯ÓÈtAâô~Ç«“œÛªìz0áÊþ„ù9Lÿ5fícSog•ÁuҎׯÖÿÒ ûÃØ˜á 8¨¡ÝÁ_O »˜(f•È òí¤Õˆ†þyþ,Ÿ_ÇíkâíkoçQ^[CÇo*Î)7½;h§»ñŠØwsZvU¾Qÿbü…óMX!"?¬ÈŒÇÏ)Dü»Ìží7<ú·×­ã7&1מähÙ¶IÉ3ѦU©[^ÖmKMþ_æœã”‰—ö¥Îòö%¶*óZ™˜®S*±9=Ä?KÅÔgÁ嚃ƒ&¯À«7šSQ,äp?ÝT^÷i,8=>•ÐlŠ ¦"SfP)5šÄrŸ"y BòC.@¦øŒ^*btåG÷ ü‡~ÐØèŸLoN'3 ÇBWTzÄiÆa¾“r˜Ÿ¾AÇff±S !Ñ—‘3çÊèñ“QeºtøæÁ7“´Ík¹´›`ù³„Y78Yvƒé7©cŰ;![vFÎÞûÓèc8‰&9Ñ…Mô ·³šÁvîi¨ÎfÌÒcÙôÎcéA vß÷t­ó‚Ô[DÓg¡ËÓÊŒò #úîÏ–³Y†¨Í|'‡$®Dâ†Óç¶ì½’cßO¾ñ·õÊIÈÿ1ó@°—×ÝåŠ.&úW¸™L?'º›òa cfìŸ/÷þx€Ë€ícÉ^ñ?–Õ–Ò–©±\ªójC’sÏÊ®5+)úË«"1¯–äòuáÀ¶¥¢Ú^íV •”ZlN»Í5ÿ¤z¥¢*®éZ‘‡ôùI½@ Vî%diKÞdóüŠM(6ʵÐjÉ·$Ò⣼Šé:ÅáÔ|+J);yƒ¤BJ‘{%&£ãâóN” û gÔD¹É'AÿÔMõPò™À) Ÿ0ºœ6üëÎ:ü!y–Úþ!ÛÝf-Øÿ)ù¤8¿ÄÖlwZQ…E[-X $ò¥æ{²Lx;øNy&ÚÌgÍ/S¬A¶¾–€ Êê-¦åªäK+x«õÜm#'À‘Öcz*'¼ñÈÃè¤ø-ü¶­%“T2þÐowqêçã~8_"Ãþæ¯÷/zÊ/Žáô¨Oö|4¾; 瑊ŒñЏ+#‘{ÛÐA@Ÿì¨åeŽä$üÐ{$çÅÀrŽáü‘È™5 ›_Š~»éF¿Þš@à¹cÛ_0ŸÒþWÚÿîb¨¥ý¯´ÿ™¯ØÿN“,ÏþÅÒ¦¿P¤;+âÒ?ÍçÒg,%Å·´ñÑëQÚøN}ùìØð'CïJ꽞I`Ák›_Æf¸¨Íög´¦ÒÅËT2ûP ò/;ŠWY yˆ=m.Í4üñaæËe}öZo2ë"öÚ¢9­?µ¹v {íóÒ^êýÝÚkŸ?¼½6Œ(tG*OŽcö”UŸ[ÑYõì– Ž­à,doÿÉ”—gzX¾ø^á-ïQô¨Ów”žÄÚžîåÈ ¤giÖÊyüÚÆ=EÅÿ$ZF!ÀœGäs:Õ9qŸSfŠã.§ž?ŒyÕ#žçŽ?ï B(ç( ±p :+î†b«(rFÙýI @dõ‰%å…óøšX¦·ˆå,‘Ç_Â2|¬pø@+¹$–-ü³åMá¬0vè²Ú[Ø¥þ\@5`ÙÚA!m9-FšP'òÓ,w¤4Ë£_°ûg •(la­4Çë¬h5[G…ÐKX€êóö‹3äïL¹Ó¼øËOdšw…-q¹Œ…ÝÕdx/Í#׳•„ƒ±Å\¬€€­Ør‰Øm¶¢ðm¶8(~ÿ¿¡ã í??–lÎéY –Ió»av×Aä;*þj…Ù|æNö$…X³Si5ÑÕ=肹„À"°ÖwAy[úóþ\òŸ ¨R €ór E‚¾Â pöÞÐk39[Z"}âœóZÍ ­àœ–s¶ 0}À~¾H©æ#ÌUÑ~‘õÿвä£ÀEOË3(‚‹¾Z¡Ñ½6OÉà¸Z&ì¿/Òí¿‡÷aÿMÏC°3²ÍÀ°›Þ!¸X%àB¦`#D¿S8å‰Ógš­Wç œÜ,¯ÍÙ7ô ܲɇ¾²áç3YßÅàC&ðüõ–;Ë)ÜËUèñÛôi¥ï˜ÒÔm×_®ØpЮņWb×?Ý”ÔâæVk׿{&*mûæ+hÛ÷–c^ ™1%(«x£¨ŠÆrü45“}È3ò…Ì´«(·%™pž*Tt8áªûò`,\ ú>ÝIùªoç_òÉ‚w ¿Â­Ý íZÖm´Ê ÜÞKW¯ê«¢fú2–*Ý^dá"ܵ j¡tæ/C¼HôÅ¢íôZ¥¿êôòWåÕä¼¥ù«Ââ~°t;”¬s—tq±p}NÒ\vMiPwyz®:_ÂïC»‘îO[MéDé•[%M—æVzåÔí¥W®ôÊ­Ö+·”~$%®…¹ýN5¢ÅJ@ä%œ÷·ÖqÁÚPOÒ#êÏ‚)âµK?°n­Ì!š^`=¢/ó‚³¥Ø{ØešÝÆ(m¦˜·tq_©'!J½²½‚üxE\°K8Ù²½yeâÌÝ9ØV”8ó;ØÊÄ™Çë\óæD³G–MSºÅpä¹\7aX v·®°Ea¥,yåvƒ-½bïTÓ[ Ö€=eM¯]â ­¢‹î‰9±ŠÂª±;N£*ÝR?jUé› t¢ôÍ,HÓLå±ËÖSÀØØjõÀSݳ|â£×qrKE÷éåY¨Œ=*/Oš( eì‰xrbš±GîýYf”êÀ8~–T~(ÇÏJå~÷Ú ã'@­±µW¹Ô^oPôØÔ°ªL@Ïä*ÁÔàõ“€©-§8ý(ž¢”N,£@•m B´ã@]’ŸW«sFe< |•(mïWZ‘¯§H*ÝSðõ” mø*AÛ‰·! ´ Ž×ÝpßÉwÚ–“Brhdq X¨ v=ßð·aoÓå5÷öÒéQÊìl ATBKÔ¸¢LHy„®Š"!%EÈmšyó‹¼7<.ŲĨ+“qJŒº29‡^%F½ü¶ž'â%+1êJŒº…“ž’{®X2ÐpÏ…»„ʽP ˜€ó ô¥Ä¹+ÝŠNi.ÝŠ÷£ý•nEu{éV,ÝŠEmT }'^­:•Ðwêõ¤ ïþ¾:軇r÷.}÷¸=½Køy—òhöA.ál|@¼2áé1j9?ROéôÑìçp –èzž×ãtè=jt½w”®¹7ï骉%nžûòïLO 7¯t•%])3ÙJ—Sòz’ÊØàr*áû¹UÂ÷ùî¿cçU ß÷xœW%|Ÿx=´VRÂ÷©×#„ïs¾ôH·«µOj¬¼ïZ?¡›«¾ ~®O“˜¯ËÄÇuÁýÑx¦û¿Ì¹éÆWs.ƒŸ)á9äÁ¯\>©¡}Ì®b`šñtLhuÞs˳×ý6|Þf³æéjª]y¶î ÿÂ5* 霢öá#?ro%©F$kC ·âÙir8D[×'ãU<L„w‘´”4c/ì!Ÿ>¼[?ˆˆÆ\ €™[ÿ¢lè°ˆ:, W¡BóLÏ€®M(ìuæŒÚÍO:™ÒLË= ° ×Å'þÅ ¦5UO´îÔ@Q=Sâ{Nº«—v—£/¸g¢@XÌ”›WÈI)yïy6NecÑÛm‰`º=À»–ˆZZåZN쥬OWt[z²Eð‚Ô?òÄäÝ;ÿ[¢·gfàÔ¬vkrØ}Šºnœ‡¦ì¿|;´ŸË'ùž´çÙ‘ä½¾GÑõî³*¬žÔä¯5¢ýšö%òbˆ3µÁµäËj8È¿¥„Ôu¥ÝLþƒÇÕ: 覦!$ .ìâ§ ©~E£XJP1ô¯Tü›wŠÓ÷™Ç:³éÛÓ}OlFܰ&I®xZï}¼á¬?ìR´V—Ÿ3Wq7¿Q‰§£«1›^òó™ÓšÏÜ(¾Œ§Óþ仺Öu«·×®×êr']à¿6¢n§öî¤Öl½‹N;Ö‰€¤ëµ¼Nºwk´‰.®âÍœœ­¨!zòC~]{ÈIQ‹jÛbÓYUŸ@LÓ{9£ðõûÓ>©õ:íüý¡‹ï–F+èÓÒ4²x²Ïæ“ßÎ7|wIÜ¥Ò3^O–(5 |É¥¡ÆùïÝê§îÁÉi79qø¶2¾ãIïl__ÿý_?îkØç„ûkk·¶ó¬×Ý{vù)ž~ùV»^é3¶ùëåóçøþêåK|ßÞ¡ÏÛÛÏw_¼xþ_uþÚ~U¾ýbç¿¶ëÏŸ×_ýÛ^i/¯ùtÆÏö_7ýÉ´3ž†®ã—]¯–,âELÞ;mvOOZѱÿy…½mìñãç¤Ûˆz¨ EÝ÷½ä8j¼Å?ø¿­£ÖYÊÒ>8>=Øç§?Áøö 7ñÎáÿÓÝ;ŒøoùRç?¿éVHqú™A4[[¬Ýà§òGv5|áŠàd ‚AÌ*üÔ Œ3÷:¿Lhƒ/5Xè'ñhIJ8®&ßíñsŽ /£AŸ5ãÉ_ñ0þŽâFÔxÇÚ³«ZM4¿Ä7 urÖV;H­Æzü¤äüÔ˜|šßÄ£Ù”'6’½÷.§éA×!ŽFjy¤F'ïô+é(Ä'Â#%‘ŒbvÔ®ÖhÛû+ÐYõ1élc2é÷õÕ÷|>϶¡¶dÏc`ñ>Ùâýmò•xÏ<’GìvŽÚçú5 ‘[l¼­ZàÇf…h’þõΆ¢<1!üy4ŸÜާ1üù†^ô=-6ŸÆS6û³ö)»îƒ€9øʶ`|‰/øût<œËïûøË0þ M¿Ogñ p—«bÎ0ñ¿çØÂTô¤Á{uά&¦ø|ýObpfM97²hëâûVÄnú³Éà²ç9þÛd}~ýÊù.àÒšÔÁd2ž°‹ñ|t5F£ƒp?ôpt…OálåÀ&ûÃ)š`o'ã/ƒ«øJ4¸O/'ƒ[r°(J%Ô:ù LÃáø+ÈŽ|À·Slî–„øê5]W¯1 VðÚ—$&1?Ö¥ÐI¦[UV'('Ù`8¸Û’ Ž)û:‘åq]AÃÑÚkÆ@%©t×7ø×Þ:^³1}©ˆ/Ö7€îòº¦§¡ÞPÅih}cãDk¨«7´çoh/ÔÐû ýþ9æã@&xË’±³¯ƒáR°4]që6N&^´!IÌùîÕ ö“€'8÷qÎçJ0¢hAGõ¼øî!/1¦öS“UxËH¨Ê%—†ar‘³ÝöÖÖßíüÑÏÀ6bI®?Ùkàâ$mürÀ¬Ò¿¤5^)ùH¦É6ø—G|‰¶ù§2 Vé®R`ò›ùŒ¢ÇT!À~š3ÆWø<'ƒ¾¡¸ÊKl§Ø÷Û[ã:Aƒ]¤Át|³ÓÊ :XÃEï霨3º1þÆG;ü®4c$­zqBŠGNPšž¢ó”NÖ7lPc‡À]_Ó˜èJ´ãtDÝž\ëDY¹øÆÉ¦7${ÉhŽG¥Åd54!'s1‰/|ƒá)¯tZàò›<Å7ýËÏpÌßÂpÎËiCˆ6ëpŽ÷»¤ÿÚçgûè1¸F ¾;Á¢ù4Ža…$#âûãŠÂ<×Ì|ié{iMÞ|+¼à¹ˆùÌŠIz^Ã=0ÙìÕ.=ö¯Dãs˜&—Ðrqpr‹6_ð‰'S ïØ$¾æ‡Ã9ëöv8 NÜÀ^-'Bì™r³7™‡Õ^rqƺàê§Ú•øEN±\ ÐûÁLôí%2¥¹ˆ¾ö审Mþ9t—OÜ EHA§U ³Ü8Œ=€ïj‡è®‡ö6«“€/¾ÊÆtVóCúÓŒQb:.bÞ÷Øì­‡’ˆŒc~ÿ*ƒ§êz"ÖmÔuûQï–såõ€?û«»O;kI_ÉÞJ[ô\Ì*Ê£Ùä;í `‰Ϫªu£…éçñ|¬¨7dœbðäÙš~ùpææ¡zlã->AXš³þ`ØŒ†ä‹sÊ»ðD Æ‚ÝþÌYå"ŽG¾»ÞãNe‹Ÿø‚À3¨‹ÝÜóvB¨.j S`¬Éø fË!Ê 'z'åáz9¾kMÐ%DŃ`ƘtÓmÕ¾þ§=E.\¸'PãBÏ^õÚG%Ÿâ·•ˆŸ<“þh Róºuý ^Ò‘¼¥rºxO\ü^»xo<úsþ Ïí6¸17Êá ½Eo(Ÿ@¶´]å']\«Š âJRz Ú±¼aÛ‚Ö(cy8Yª?ôM¹m<<¹ê’ïÒ7#cÐwÎ" èƒÐ_}ÐúÔ0òŒnÄB“êƒÂWåÛ(ßÝP5®€6“,xx¦©kˆC[JEo×°#rYë­è+lö7ó) I°Â­Íè;±-h½¹¶ùNƒ«úßD÷jŒd}Ýê²Ú[8ôV°pNéòœÖs!Dò^}SG™N þ-:-èêÚ(®Q“Ø è5I¤ê˜ËE= K‹æµÒ,87¼Wî©+a‰ÓÐ{eÓ×fr ¤Åä`ÓaÜ¿‚í4á Áu}2Ô¨%Îk7ýo•:gÉrou–:ç⺷Ûl%Ùæ­Ðx©é¾8–qêäq¨·!N¥©v,M¹ÐM²4&ø$?]¿…úöÆ)̦’š8wrµÿ¤û¶¦a Ø;5õ9xÊŒ¯V•És†rc“‚ˆëÒâÛÀˆ­B}~J$Ã÷l=JxÊîòÁ#é²—Ò¬2I*¾JŒ"ÌÜ4ìƒÑÓœ¶ÂÞ®`…½­‰¦Ü5†²ŠwIK»Æ²—¶ºø»|CBážIEfÈ»¼~åºØW6°ÄaP#®ð\òsóSlàР7¡mr°žciCÎÉ•+òëè¡ûœ¶eÑnèÝü‹Hž¦ÊˆÊLüÕ˜o³>é3[·Túïýï¼ÑÉ<ÖÏùFFxw9×-HY,ÑBBú©ñ¯ý <Ã÷PË~Ìx:Kžã{ˆ4ží9ÏA  9Ë€ yê{Ê$¾ö/iE†ä‰äj¥Ê¹›‡!ŠýÊÆ‰‰Ô;ñx‹¥_I׃ËWèwÈÚíNвó•„3u˜€­¢¡ŸâÈ h˜]OÜJÜkjÔ_TÜkÖ¨%WØ“ÏJžy=wç•ó0oÃs¸=ÑÊù'­²†ü;öZMuÃØÆhíççu#qA‹V*èBLñéÑp£í-µl0† "º2ÉÐpÛ¹,•µäÀ*`:Ú¼¬c¯^FU¼q¾Þ8¯QK.o '_ç ØíÖ•F4ªyVÒ2¦2ìs‰á¤²uÚߨ;†[Æ1žY^ »íOfƒKòJ d3œ_׫ހ¡EÆ‚r/ Ÿjµ#Lµñ™KÅ_ilê U“_}…DÂ%òeDƒ c†Ž9{åéÄGµ_sœ K<Üæ¯S€ªÞÊyåÏuV:ü¹Å%;qtJû¬½fM±ŒÏÉùI÷ô@Ú PV÷\Ž'“xz 4gÓ%‚4þ\·èÝic!/d2š¥O£Ál~¥ø s5§†&"O3>ç×õoÓC ¤ñÏnLoD´«7mÕ,n 'ný .eô ˜éWÂDìúRøÃ›1b¬ ÑgÓ¡¬‡‚½°º8½ò`^†sÐi=âÁÆA>>˰Î@z+ÄK‚Ûòô¦?U›¤LsBšÛw]úhÀÎÖ¤Íý¦ÿר°]` ð,«È­ ã‘aì*3íäÚÙˆ„ ¿+nLî{–A=º7鸲ÑvEð§©kÛ韸j0ûìÚ™¹¬2¹©4ÖŸáûé:yoÿÆ·`Ö¿ÀáÆ’@Ãk­MfŽÒ$l‹²œ³(‹YmuÍ ?õ/øÞ:3ÁZNd‘ø¾¢Ÿ„ëJ7µrþq©‘3&í‹ÁÃnâ>’¤?3·’ój²o‹—ØÝ\,¾] 7ÌKÏq>’ËébŽèº?Ѝƒíß` þíMäÚS Í©œÈk#ʃ6qäâ^/|,º_¿×—®çèæ'ÔkðÈ¢æp=:†—ßð‚À¶´°‘+½âsÿ µ ¾(?ñ|éçFWÿaµ2Û”Ånâ‘\´{ÍDˆ÷(:b‹4éþ¹ïiF¼Ð"Aqj3ðÙË0 AW=°$ØFp2»Afz€A° â%P4$éZ"'è?/J»¯©·#.¨ªÁp<2‹R‚ÝIBLp Q¤†XEbjJ°™€àÅüháMAª6Ûš” ÒŒ»ˆ/ûói¸™Æ)a`Ÿ&r S§P SZOœ˜vÉéÈ'ë ¸j=ŸP+/ä}4>à¬|ÅyŸÎ?Áy/æ›U¼ôÝ£þ¤ÃÙ{¢¼z¢Y þé0:—5ºÎ¿[Á‹€!kÛ›Ûx5`Hà'#¨T>»[ ko¾kí™=Ø;ls-£ ªF«]eÑ!E G‡ ð£îðwþ‹¸ÝZveî§/˜C¨±ýa 4:sÈã8„D™úÂûµgAwåo­´4ÞOºüèì]÷w™â¡ÌÁ7># h¾.‰ ÓÈÓîñÉw}¯ÝˆÞTñý¤[…<•ÎÞ{qýÁ9'Ud܃ÍUC·¥ô¶7¿!dZ=Ø{wÀ9¼ ïHvþÞ}Û« ߇xïUb@ AùÇÐÅóƒn³Ýðt­5âßó.}”ä¼ÐmE½Ö^Ò N#ŸDï(ãËù ¥éÞŒ¯g%®R¿„A|$&0{ §Ì!U\%ò7;$'Wˆ½ ÈTO´djÓÎ;Ó,QÉ—´jø·µ·vï –üBËÍù3ÝÛEçDü>XÖ©/ÖÍ5=ÅJ=új/ßí" ëàÊ [ëõ¯ùŽ; næ7Æ¥"©í nHÏä¢C2s©N@1@Ÿ·jsÔfù­HÛ•TÇä0ü†h¯}aNì[™‘6f% 1©®‘[ò‚ÛºdŠ“5•CŒ?۫ƺéìä'Š.ìØ]ˆ óm;xý®s=×éÒoynßÒÞoÀX÷‚+QJ÷^zî}›÷æ_œ›ÝYJ!cE2>ò¨àb¿FDàP7êÛÞU°ïdŒC–¶j@ŒÂÆû‡¬¾Í>ÀQ\u‘Rd‹üߊ8¿ 9åCªî#ÊòÈÓ®å¡ßÜOZÑéÑŽ PkÔPTð P'‰>¥±â;_‰.â «õÆ#36ùâ—Ä®›É®Úc‚&ò¸Ø«°?Cw%‡ GaNéÁ±¿û NîN±ÉÝ+0¹úµ;«Ü&—¤­O®jt‘ÉMOÚ˜šYû’E˜ç~´÷Ï 6ô2ÿh¬¤w3ûÙ~ ¦:“ÀÅO]J[«²-;½^$Ÿ`H*Z܇Ä\¶œø" rj%;™Yz&¿ãÏ‘ˆ¾2a“0¥4.…x’ðIð$ƒóo©6¡¼]2:¤ú„Bk>…å_’ëL&_R.cK‹f~Ö"bõÐ縫•cÕ°„°ãƒOŽ|/|žì…I¨~Áî6k6KþjV@ü€éñü`k±õ õ\¾»\«oƒÏÃ{£I ¹š…íAð¾ €ÿú"Ü}½ï{ž¾¿ðõñ嶧מµÔ0<ë6d°õ­N…?ת֊iÕ†Ö 5WÕ2³¯=5B‚´!’l M‚z—Ô¶§Aæ*×ǘauu=7Êê:éþÚºŠ%À½×«O-™ `^Qçôêäð©¬!@ÙÐô¯¢†Ó@)îÙ€ý-åðVýpŽJŸÐ¤w¶;ìt¤úùÿgïÏ»ÚH²waôüýû¹úžµ,„D!Ç*×Z`[ É ìæ¬sûØ* ‰–„‡~û~÷»‡ˆÈ3Sx(©» (3¦;"vìxörÚã E¿'9Î(u1‹T¼4S[x’Ho©cAË”·5{éÝ?òE+‰Ã{ñz††™ç™øÐë„Û÷Ê#m&q7™õæ?jâ±ìvaY«¡Y g<3u}òh’å\i[g0üŒþNé³Q•æø“Ó (&·¤áÂ(N„‚¬ V5œck»@Ï´H„&eDB  &ÅnÁ%©°¦GI7aÕïtKV*3”2+~R–øãASÂ&µ€I³%W¾–øé64©øæj¬Fª‘ÚK‰E8\o?1súÚ‚1‹<“Ûž ˜­÷ϲ왧©öÌ{×&x¯ÛOö̳Խû<µ^ÌsÁÅ&¿ÿ&ŒZ|ûù¼SÀêCßF%Õbªl‡%ôÞ5÷tñ`R§–•ŠÏdeUÃU É„ ~̸šj‹ ó9žÝ×S7ÿéš¡’4gŸ•t ÜNÃñÈòRÊâ¢Í¨’EWÛ©÷?<”—ÿiÅPéüOOv·w*ÌÿT­îììn#ÿÓã§;kþ§‡ø°v:üO«#€ÊÅ%NSrá…¬ý/øñ¯z{j"û$i/" ò ƒ\È@þÔWÇ”l¬u3'íTð£ø¨ £½1žÙ]Èx¨Ãþ  ûñÍM<,ÁÏþ‡a½é‡ƒýQ)úçø?ãèÍàªO–†žÑa wñÕ7œƒÒh­¶Rk¤ó[= 7"Ü4GJÄ|2_ϾL:ý±bÂfûˆ¹ô:å&é ÖItdë¸ÙØkôÀDSœ³×O=¿#…W¢aELÆ€Zü„_rXyš¸ ñ×½°r1WįÙ<`¾Z¶ZÒ 0µ¨Õg¨¡³ðÌ$rBÑñ\‘5¤›¥6Ãt;#‚IYÍ¥†ñvÔ@ñ‹LDÖïQ [à'=ò&ã[ü¶ùxø›É¸É0¡Q߯|bøieýy0¾›ZÍv¹ÃI Ð ºèÇîöx€¶ˆ»WdA]>EȲý”Ñ~_bD¦QRÿ“U¹ö7´ç» ä6v>)&ä$ª„¾èo# †~ÁÒ”"¶m0›ÆÃkÙ´¤G-.½ÈC§ågÔ‹î‹TO9wWŪ·*R½¥9õDN_V½hib=Maæ&ÖSi3ë‰É­-G¯']áb?°(½žÈF“ò\ôzÄt¡VV<'»pcKïÍA¹§ºÖK¼Ç™ù˜ô,=YŸ¹™ô¢û!Ó‹ˆO¯þ —¾>^5UK¿°'›µ5íÎû5zƒWÿjÀ~“‹Ó6JšÎKÐDq—â\ž!?>@>}ÎÑ1ÜãIzeÈ@ˆéàê:íA‹0ŒñÂh0´.cÃà1übüê¯BÙY¬}‘CÜGö Œg¶að€*Áã*x²ò­EX6kGq…2âAf„˸ÂÔ7ØçÇ_,2Fµ$ó´_cv ÇE³Ça2rl^(‘•"›ˆ ûÛ>è«Ø6RlÙ£dbÑÞŽw w“˘ãÙ£–„mËh±ÁÄå¡<\Ûá*ˆçá8\-Áá솫 6ÌÏk¸,©áJ ³è £<Œ† ’ÎÅd˜ŸÆ0“ðgqFY4†½e Cä…Q¡Yê"Ô…ùY £e‰ —æ,\š®pi¦ÂI ç'ÌEM˜‹•pNBÂ(‹“0CB˜Ž0Z#á’d„‹ó.KA¸ûà’ă+ ð˦I[’ipuu\œ_Ð^¦R¨£,vÁbÀU²æ¦\ Ÿ0Z† °·$ àò €Ë‘ÿ-Åû·0埜T¨H.Ï—’=±äi•ERÅj(SÁÚóMph¨V2–ä q©±µ$«ã —ãr\ŠÆqaG9<öÒÆ×^Žñµ—2¾öÖãëG_K3u.JÒiñsæ¦æ\+§Ãɹ gg”ÅÇ™cƒ¦âŒ–bãÔˆ83©7m¾MéÏϺéPmÚ]ŸI¸`ÙTC#ƒk3@°i'O¡ÙLçÖŒ²è5stu˜Y3J'×ì$G¥Â£f•J J“:ÑôÆj®ÝOqœÅÇ)I8Ó çL”m0q† N>N6ÇùT3€±O /•ÒJÒ%š1qŠäá ÁCá±T¢šTí䬙@VüžTR I»½‘3 XɾU±´Nä0ª¬NÔ£Ó¶47êL°ˆú¨æ¤=ms0*3ñ Ò@½ó0‚žhΤ9É-†@5zrð&Œ ˆM.57™*-' ÈÇâLí_ŸHǼ`+ óÿðG¥%ú¦ÚÑ ¥¬&?u‹`rø¶È/Àú¹—‡ìS›R’9d1šPTd”!4…T1e“ƒF:n90}·Õ h¨tÿTä¹–ñ£+>ž}»ÝW THeÈ 'Ìn›`ݰ×q¾6 ÅL”«Ëõ°)ûWFSʪ)By±RÊ>¡ŒÇIÄ"%ÿ¹?A¥}è"LêßD¡” TçS~%$Lj"É^ó§–0 :Î6uи ‹ôçë¿þŠ 0Qˆ¸ð2Y–Q£à— óõrêÇqa©ü){ÎÑ€S²¨i#uMŽ÷H‰”.= ”DF¬$˜Â)ï@Ô#Ć¡UvwËÒžÄè[ÅópÌUËÏša¶ŒÚ]&ÓW %j¢Ö¥ZÇN¥—Ì¡–v™yOcT“Pæ/JÐr‹uUAOÕÚƒ­›sx¥Ž!ÆFÿèM`ëûX(fèqÎþ:†ilzÆfÙhŠ[ÓKæRú]°ÔaPØó7éôß“Ya„žËé°sù± Âþ´Ù‰«]þñZÁÈÿ¡«iäÞ%»HA'}OPx  ¸®á\ªQ%T¶]i§êãêùUŽNÚã¯3Þbó?LâþŒ1ËH€WÍW8Æ#—ãõ"æ®äcl:.HnÙ·´VA{lÉîÖ—Ý›/¢%Y9Í¡ [¼žö'@³¨4p% .ÑDoÏè¬ãÿHBþ±ÅH1omí<ú¦‰Jô/Y…óÿïÿ[®üÿJ0C`ù+úkƒ@Ĥ:êv EÝNPD¤òþDX{çX¨Ï¢sè’n±V¸Ú.'šŠ5iü…iòu·‘ÓäçÁ°´Õ¥‘KÞö»šãκ†uûJ²‚ºU½À%¸IѧÑ;±› DåÉcjèõÝ„_ÐdÒòþu6QQ/ý;Œà]¸‰µ9`ìͳ@,ÍyWi©jUÚ»¦ç_£õÜçX¤­ŠÐé" '§%‚#ñŠ+¿ò^ø×ÿœ+¿Ú9zÖÿdoqP<Ü-y›Â<˗ߤ3OÅaE`ÞÁhõí-q±ÆÈ;P\:lÎ4k#棱 C·çXÝñ0S& Ø ÚH¢E o˜®\– ×Ý—eC™¯-›µeó],cð®Í›{7o "^êëÆ†4t¾JxœZíœ^†X‘*sV+îÔº£KûÀ€ø× †ÑI’8uáoPþ@V^Ý’Y=_@Ó>~K›öÞ5º¤ ;¨ ¯†ýÊ” ¦?zeÄáü³Y|sK} påDôó‰_Š}äß¶:ÃX]˜HâÆÌHq%šx(.l8C“UT7÷]šæ%ãgÑûÏ"ßhA§ÅŽž.óÎ*¾°ªk^X%âhµ³ÿ˜Ž]Í´~?Sb&ÂâÛ®ËÜvõg´Mª«n±"Žü'×]VZf6ßíUÆ-UZ6†m8Ê ßK¥e佡 9ì_˜ò÷y¢Ã™ã0ûë õ‰‘¥Ç£ÄsçhMtEG< K5d“N«þ‡$W-ÜNiž€éëÁ`iàz&nÈ3ãžñ㣇Évkèf˜ì>¿ì´ X˜:÷²w@¼YÔábš Æyé!5ר¤2ORKY]3Ö\o Ì6 µC¡hÍ1ÚdÝÉÕ>-#n©°u¹ÌP3͘ÎC]‡xÆÜIÙ'R&¾°Ý9Üës<½{®†òËÒnKîÀL±Â€ùÃîÉ<Ü ·"Y(֛ɸ-Û׫F»ÖüW»Ó"g^£$¾ØkË/êô3œM†ø"fbü!2À¼Ä÷á\´gÿzÝyû®÷F%ð¶Øª:³’ZÕGK6…â«._ÚQ2ò%ª/îí„/km…?Ÿ¤g¤É^~ZŠôš>K©©.xõùÞ6çg¶Ëw™Ü’·È-t{\øº7æ¥K×þePºÎáœ'«”ZÎqkȵ¼&NÞ–ßZB/v÷šUyñÜ{Oí~ù‹ãò^ –v{Úßòò9‹’Yl‘xû4ÞMbå(³.‘ÃW¾LÐÏŸàñ\Ô_‰¹Ùh‚‡ `Ó:þ}#vÀœ(o…‰©ÎÑ4´Ÿ`äA÷® "BÌΠÁ¤èÿaØžPüDá>]}žr5 £iÆ6éÝh6º¹Ïsiž>|}è=è­yëKóVqiÞúμÀy•„€}g^Òä_ãμêª;w}g^@0?åy«»4ïnÌ«/~=ÝÜè=ìÕy?ò•y‰Å,!U2èi œÄÜp%&_üßÐqÐÖ¶u›Y$l Ôó‚Ó ¼¬)õXÕý·iC\–›z³M¨Ü½…ÊM¿e°¼Ä-ƒRíp¿XH˜é;òö†d[à˜$ªý<öÜ<Ö7ï…nÞ;L,rr“ùÉ ó,ýûßÓ'ü÷Æ;Ÿp£Åï¡›ó’¹Pý½¿¾½lÁÛËÞ«¦ˆ ?|gŒ¾Dq#So‡¡»_ô4ák`².{ÑsI»§Su ¦O¢‘e¬¦T}ŒÌ)ÐÒa¼i[ÆdW9gæ7ss~M»«êÇ¿¬jýYùǽÿkvY]íõ_÷Uà×§|ÿ×ÓÊîöã*ÞÿU}²½¾ÿë!><àÍû¿z{l³Éy›§èCÇàI.wêß}…ýLA$Þ[°TЇÜ÷:Éýrª'úùiøæ¦ôÛ˜|G ]‘ÄRÊ[’V.þªÝdœsŸÈåšø%l£·$ pý–|SÒ̽òŒ’° ¨!ÍL2îw1À'‰”W1`לÈëGÌû.‘!˜nd°¯bPþtQb¤‰‹]˜O3ïfP`²~އQ%ªÃ2Im“d Æ© jxëè=|™>½&·²&AƒTy!ã¨mO™„?fiw‘0»nÙÉÅœ”³¬“’бxò;½èhSmʧn5`ZøTŠ>m(®tÑÒ%œ|k ÙÍ­ ƒ¥¡8~Þáë„`3¥nü½Ö…⪽N.¬:t^†áHQÅ(ÆÔ1K®—’4cÄÅÈŽGD±úM&VVû ¹_À²3æ)K飛 ÞÎñy<àCY hô+ž±ÏáÆ¥OTõþ”É.åu‘tD¯˜·êãè¨ÿa:£û`ÜÓ ìñþî÷ñI$üQüp´– þwq«K´ûéMܧ%gÔèH·ü|»={JOàÏ/ñU,oÝXþôÝPîŠ@ËøÖ{´‰ð?4‹pÍÇÿÎÂÕ•¨—ƒãnILh|ÛµV͇ÅX)Ò9…Ýe÷]혀-õÚþœ8™ ª%\ªxî–3/–¤Vïö©‰’€D‚±e)$ìtºõdÌÃd^Ñ1!Ç©€‘Gt„IþGïZ?V„véÜÕáêÄIÝ®"Öd¼‘1`ÃmiM¤ï¦ÖzŠÍíG½ÿ6ÚMnÊt‘µš•^ ø^FÅë3HŒBÝÁ÷ÞwœÈg‰cxа½ÙâÙû,b§'ôtMà <ŸÚz}°E%ùOª’z¸I=ï ÄÒ=éÑ¡ó(ñ;V|—´{o)­iàñNE¿<<ЏGÄñ#hJñ=5ÊH½#º_ú·¸lO×ðñ«5¬œÙïƒcœ7hžƒ*¸ó`]æ.ÿ6N¤hcÒ ƒHäÔBÝÝaVä0oE*4bÁùwƒþÒ+q¨UâЬÄ!p)TØw°úصQ@™ƒêàeî(mß¹*ò†ñe’ö%O71óatÀ‘fïð z¯…·•ò=”ù&¿ÿ–”‡oïI9QOA˜e8øOYÔ'– îÙM%ÔâO·i*%Û4•fUýðEJ¸-ƒâÕ¾IR¥ÉÖlÐ Ûݵ7ò!>ÿßõCûÿ*•Çÿ÷xgíÿ{ˆ1Ëÿ÷ªZˆZ%×èwþý”.¿Ö ½~«võ½Jwõ¡ÜúòêâèÆôé‘k¬H¢w•G¤É-͸ÏM6ãSåVKsŠºî@ݘ~)«×H&ÌÃõ1d‚þmüØ3Ã3ØÌßÀ¶~´a_ÞŠ9h9¤×ÐJúG¤˜(5BM•@°1ʧIÅêÒÅ–èü ÿ“DM|ç¶gòÑ\‹9½”Î]lž|—wY¦y,oðâ!=– ø+ïÑKØZÀIx3Z Ô »ðTW¡L•é1´o= 9 ó8ß²|o˜®·ò'îÞOù#‚£ÿî“'"8- ˜?s†;é“0a"#|æ@ó ®G·‘†+¡ÐF'å=ì{9ÝÐæY¦`‹QÒwù^wûÏ ÂƒV~5ØTø·"ø¸‚òÁÉ4óøß|n©Wèëàßýî9òÊ­Øÿå+i!—Yþ±’|o•~>Ø4*wÃlWà†[,¤‹ß ΄o¸ßl¥G8!.&N@Š-ÒJ µP‘&úuN3Ønù1Î,·“»Áå'Iq “ˆà—‰my‹aÄ„‰l Hq2î¬m´„®É‹Ú§Z”›Ê•ÆPâÚ|Ô}´éîÃ$„ðò-ÚÙ;ND^¡ˆ9»ßrßhAò ¢+2Ú²-n²¿G¬ã/bûPø‹,_PïÑöL`Â(k··‚Ÿ@[Ù?ÌRåEÛ†5²ç ó=´_‘Ï÷uh¹à°^š»Å¬ìe£€^´p98,«s1o…H‘Cx~á»Q’܈Я*º9èYmÔ%áÆÖúÅ.r;‡?¾`‰Hy‰…•=¯Dì6Ûl”DëiuH|°Iµ}Á%‘뵋\¤Í NX†%sž´ª»y%ý’ ¿žÞ^ÚÒÂ}zw‘†úgo uIÿ)Ómv†7äÛ .ÃJ+)å¦Ï9lxÀ-á†}t¯Ö>ºŸþãñÿM®ÖÿW©loÛþ¿Çkü߃|xøZþ?ŒwXûÿ¾›ÿ¯ójÿ_˼ì~íÿ[Òÿ·³öÿ-åÿ3õqíÿûý™@Ý8?'`$<€Z.tðÂ\€KûWæüá½€‹øÿV€¥ãuw2uX–ë+ò“µZ%±Maú£w°+ßëuº­‡YšÐWùfí }®…x¾vÌ}Ç\çÕ÷wÌí+î}쎋áòŸ"òùÀq J¨ “Þi×vDªD²JÚó(zT–z¹‚ÿ%Ô~Ø%u¤Ù¨ˆÊÕÑ”î¦À˜Ò»Õ‹®+УÇ#-l5ô´y0kƒ D«$M‘ö9¬K¢í-v"¶ëޝ±•‰]@AñwêoªÏÔô_Ò*`äòh:"ázà$¦9Д| üwÇOíê/¼8„žÉ‹hŒåßçLX‚7F‹(·ÝAG?7ÙkdÈ>_ôØ&]p¸yX/{¼~:šPùtåwÂ$$” Ì\¯¬¾1]²‡åJˆ&r%ê»Ô¾CYQ©ˆ’¯-.|GDÛï¡Ë¬¦w}ÅvÍÚåÃòa}S¡ 1•Òƒ¤¦Aw¯l…UEé>æÙƒ/ŸˆNƒ•ÂõfÀf|=Ãù¢‰[+ü¥=Æ]ÒhŠ›PüväøènZÅ’¶)w¤®åÒI NËÇr?ŠFk]Ô vQ4‡+UÚ·ÝÖß-ÙÀÔîÑ£]sÎâŸJ ™âb ZeK2$̰'< šs3;‰ÿ{íôýù?>ÿïàaý¿;•ŠÇÿûdíÿ}ˆdÛÿÛðÄ3OFÓ¥ËøÉ=Á¢Eë fqæu 7Ç0oèPÐ1;„…·‡¿>^$ÌE±Á\|³¹î…máÇñg Í=•–è()žjt©:2dQìÌÀ|øy©zñ×S¾Õ‹¿½÷`ì{vm.á¤Ä»¼²7Ë"hâöÚ.ÙÝLᣓÁ‡î^tF»ûóhºaÏfþÞXâTO& ŽE ¼š¼üñ2;ø9¯+Ó½‹%G÷£+¢R¢é`Ãѽg^Šë¿x W6„€Çäø¹’†<­Èž‘÷»¤÷L G(#™‰Ù-Iz¼´V-.ÏêãÅH*U»Ø®Ë[ð`§l\&bTœ÷Äè•P“‚²ûaË´Ç×"ÿ—ä~ ™ô#%óèßw1_›ÖŸNaÈ_±«^¬zFt…Ìß—°Í–“›¬UE„ ='„n6Êb怾~QßÍæÉC¿[ÌP7XúÄ]± ØrCéìhzÇ2aÿÒOì=ÿ]Ÿ?Mà¢Z@A fS5ù/Âù¾þëy‚Â]HjÊ.kžoß'§¦{Æßu•_üPDš7÷¥%vôöïhHÛ²·ë×ö;ޯ׽„ï¾u¦0®Âs?À úi!¯~WnCºr•×ðårOG<‡‹ïØ|¬ŽŸË—I«H_y :8Ù²ýÂsºöç`\wÞ¹Vj›ž«›Éྔ뿑íúWõõ×gés‚̳Wt»&™Ì|›ÕïGckIè=­±tZ©%EÒk,§hqK>9kâü@@§ˆ˜`Oب|Ç^@}ï§KÍ"-õ´Ej9c‹å¡OYZ´°8€l*’E‘°=aÆïº2”žs!3Æ ëj†ï{Ю4îx ÿMdd=×bö«%5D«YC43n‘ãR3 Ô¥#aì;yœ¹2Ĉ‚£úk=>wÆñNrÓ&pi¹by_÷Æ·ßÔÅÈ‚¿‡`±U*8‰o‡hû‘eŽF†sr¡4øBé#9¹©hú†‚ëõ@c¨È:uÎs·¶h Å´YåV>sÝÊmµ[ÉDéF¨Ëm0]ÍÑnA°ý.ÜyŽÜÚmZ$ðÀ¢B€käDÑ[6Ð’S€2>C uUεªJLŸ#ŒÍuΔâgc1¸X/GMO<äºA «•ø6娱>ú>¾óŸéCólWœóŸ'×ç?ñálŸÿøhéà ÉÔþSí½©uj{†CˆZ™âóÐŽ‰°¹B|TT/pésuk:5À¦CèŽÂœÊe 2GŠ5(%ª‹=íOØwàWoäW˜BÜ ,cÚf Bʔڎb.öTÚÁuT”¸ÐU_+ºõÔ½/׃X#1n_Þö…é›}Ô~ôB“}[Ð­Š ëý½¯I Þï…^Þ/¿Ñ^Þþºû °,*ÙªÏÁPcsä¥Å# m¥Ý ^Š[ñ– $¶ 7¾Q‘ú–(;x&7ßa\/÷\rÁ­ÏÎŒ³³ºÑE¹ŽMë%ì甓SK£ ñ³¯\¡Žª¯ £ê[œ“§£¾÷1Î÷Çd/2f´ƒá¼…AË׎¿_çãøÿ>\ô?=¬ÿo·º³ëøÿªO×þ¿‡øˆYP÷ÿ½®×ð4ä-ÌÝÆþOÍ·ðÏ›Ì!H_vÄO°€ÏRŽ{šû?oˆÇK¨d‘âÓCÙ°”„Ïðl~’!‹[\.ÖIþoâÎ \ø<ÞBìrò–i¼¸¬a}‹âÁ‡x$†šsýWéÿü‡ýyü"Á/o'c05oÀ.À;r†ý›‹«~±^üZBÏ‹º]”Ì‚ª2¯ a§KKí²)nznt oûòDÉ+Ç"Þ³‹q¨UÍ®Eè]Ó\®ÅÙ·[B¥†Ú2ÁëÇ'ñ•×Çx5FhÎGºMè77ñÕöwÃo¿[IŽE’PQèÒÉWLkçÑÍ‘‡¼{Û—¾žžž/†½€65Inš5>¢ Ãùƒpƒ°âÊ]ØÄJ¯ò˜àKÓ;¾ Í £‹q|æèÆ—xÇ94æŒî‡éÃ]¨»®jvó›V g\,ÊÒâ¡~9³ý·0«„2…Y'Oyh>~@çf…Ó$¦»’ÁèÂ*D™¤$ªL? _ú;É6ÂÒ~ÇG/+2;ÄÄ㣗²Ö+µÒ˜Á¹ uÀà]_ˆ0ÈŒœhµÅ–CïõÁٞ߉|†H¹››ÅÄÖBw’ŸoC#òH3è_N¤‰9­Ð¿l´rq³¨FÞ;çºqu¶ö¶¢w0éÃ’–^y¸§-ÿžµ¿ä™ú»Z+:Dëk°EîÌ-‚;mEÕ¨Pyþ¬‚•ÝJ¹ò¸z_±sÀó^õðfòÆë7= {÷£ô~"ßu÷Þˆ£Wê»Nü$þÄWÍ;XÂt<ö“óBó‘Fá¡·Ñ]ÙdÞ“÷Ûãçæ‡Çê¡¶Õq_ë¦åQŸËÿMéEëõ©µù½âsºÄaMÇ•l.ž¤€äMÃø³Iþí¹r#h9'/P~ê#„\Ôø÷kÛë®y«s:ïÛv%é·¤ ^Ÿ|0· ¦¤göû°0ä=:¨¨; ?;À½Ý}ž¸‡É+­ìWÜ1˜~ú º RíÅ×o£b|U êr£"v‹Fž1‹Ú­šO¶Ü»z¶ºGËÃÙŸ`⥧Åx)Œ§ êN|tÜ™~íßYˆGåeõvz³Ín•JŠtð¼jf5ªšÙ(o Uó4뜛±ãð]; r¼˜‚˜[ò¥´CÓ{û®ÉHêþãm[ö»Jö^˜10*GS%û1–L!dözÑ»Û~%@rËîIúûÈîY,>’˜ko‡KÁðšã½síž:‚y"óÆ{•㊄òdBy²Ð¶4/0€Ÿ¦\kÒy4ñ¹#ðgy5±¹¤ÐŸ­BèÏüšø|iM¬TÉT¶óèâ²bR–— V5$ÿÜa‹ÝHƒÐÑ"*ë£ÅþøÎÿ†zþ·³S­>uÎÿvÖ÷>ȇG›}þ×FNÛÆ…xN=³ŽøÈ#Ÿ2ʘârŽÿTÈÀ=ê RrZ^}ê‚ÜBÉ¿8r“Èy¨Žà µRØ‘O ³Œ>SB‰©XJÂ8A¢ðn—ÔàfÀ«ÎÁÒlLÙLÇÈÄ¢¹̬Q¼TÐs ð¿Ëÿ›Ï$†}¤S}ƒ÷^Ãê…„žSJØß™6¾ÐÇŒ¨¬_?áMêG'”æ ²§cÌDúÖÑÔÁ Á²?núŸbA}󅤢¿Š°ôáöGÑà ¹ßÞŠêx¦6Å·S¢±GR¬‘Äj+ì (Ô$¾º»ä‚*å‘û {‡ o7·“1œS]¸¼©øq¬³W–µ8È0\õ,Ì"Ýìß×™ìtKi $ "$¨ÅºydGãQŒ.wÍ´1žQ1v!|‰ØÀÉÊÖ¶ï` 蘯qÜþËJikk«ÔöíòˆˆÃç¶x|äLDzڱkÌšŒïÏw"é’à`"»wb5öþjtfæ‹tžS œç(4€¢€M7®I‘¨—EH‰1‰¯ãIŒ‰VýáþX,¢"¯¼Aõ¥åUO‘׊‚01òÀÛsF¦N¼SÎÏôSnœ4q<Ä NÁ§w—¡ýN vìF­0(ý…ƒw›•?ùïvˆþŒþ²a ÑDã .Wð\sÀ[ºM1ìƒBÆw!²[L7ªÚ0ãØçè²Á«8”^ò jŽ mÈ›t£«ø«'öȯjAGñb´¯ebVJϦŸ`>DZäÁ1§`1?SgQÕàƒ“ï¡Ù=¾y?/¹*Z"4ç(Ù›F8‘]R¨×“I–Í/¤± ìE]½é_uO[˜HE­w ÒÿH[‡)Ò‹ná;鈵_I\¶¡'âAXUô\ÄM.šª$É]méü}µÅ%Ç *Ì_1”†¾QH-˜Ba’ŸÎÄ þ¤ØÞ@ŠÉ‘œáº<ÃÕ•ìIS¥¬ Ä”xüèÇÇ[-Qëìÿ h _Ü gÊÌ‹ojÍWyù%û"¦¡?ÓŸaXq…á{o:¥¨»×|UÛK+Ž^„,wDyœB–QIÛ;ïe]ˆ¾·’ëÍÄ{5ôµ¼j¾}‡±¸éàôm9!÷Õ%í¦‚£Rtôö´ ¯7áÿ”c³Y5)›f÷q6éŠà”lÅÜÁÿŽ«á©5ß —¨Ö…²ê=ø Ü£2öÞ¼â«)áóÇø”vðÿƒ&¾®µZÙ±øIU皇3âEÝS¨:´+Óƒd½½”ÞÞ?m­Æ“u]¼ïºùý·P]ãÒùHÞ)_2¥´`AˆP·öþøŸðƒ¿\`¨VGN‘F«ö]f¨¢o_W`I:ÎÉQ÷¯}4'òç‘,èb·’+Ÿè*¾ŒV–”¾@ZÂt`õnÊQßmD›ü-5*ùú~`Q?#¢iÉÂÒp2ŽhŽðÜPŒ¢—ô^!6vÕy·¨}Á[Ƭ’­Œ=¸¬ÌŒ¥;š‰Â’Å>R&µ÷QFu<  ¹k–@hœcTíüÔ®™Voãi%p:žÖ’#­†ÍÈd;u•ƒ^ª<ßVY9x¦cáßóùçȹ!äÄ"š8n“9åÕÙaóL;«ñ¯DÑõ•ƒQr龜EâÃǨÉU©:ðlXzÓÆÏnÏNÒœj„´Éˆ Ò`=4®ÇfÐt‚&’U#©<À†Š©ñ=6MqŒbÙÞ# PÝý>–³Ð&¬Ró¬$O·uè‹›(áDóOO¿²Z3ŽâIJ­Qj(üT(IËl™³æ(Í`™gN7'ðCÅÆÞ§Éts¤Ô¸­°VÎ8V¨Ï §°í¼€Ó‰`>=2„¼O@Ò´#W›¤M{Ò¦JU MN Ÿ:UžUñÆŠænÔÆ}©S…FAe'¥Ú ¡OÖ×ÿjÓ‘«MU¿6açùµé¹;«’Ö´ØûÊ ñÄrÄ\Å „2’¡€‹iË3¡+è™AÐY>—bè€~w^+ù;Ù˜º)ëzÊ:ý¤Ô)dëäìÎ <ä>uØ1x¨5ð0ÔÀg¾6ý ¤-€ÔMQ7RÔÍTáÐìP€Eª„#|ƒ4‚_v<RØzh†cŸ‚cåùã0¢u~;³ó*{–Åä‡A[Ð*v@‰€JyI¢š%“3ê„:¢Ý`´2=ÞÔ—×êvÌk¶Ló›82¡gîUgú6ÓI2ævʳj1íéNêÓÝԧͧÕmÇÆÒ•DÍš÷›ÆIÂñônH0—qQ‡¾TBÜø¤gjC“÷nHÞøpg[¹=4gmP1;»xNøôjŽøÃëj=KR¢b£œ³o·8¶•^M¥‹š×s×¼ž^ójvÍëNÍëÁš§`Ï#W¯Ì¿Ë($ø§îIs¨´Íü[OSuÖNÔZ‰4ž[ æìž€1ÒÑÜœ¯ªðþ,â?Ú÷á{tÇÒ÷rQE§îd:0Èïлg ¾Ñ#«NÝg0ëOf†¿ûR]~˜ô¯èoÌXƒ…ûØÓrùAÎèá*Rµù–ÅJk…ûúb,CÄ—ÅcOU õÙØƒw{æ8Ÿ„†*¥†6M…Ð_Ø£7ö´W‹Wª>¢n)êCþ£Ì[,@>Åburƒ¤BÔ³ô ŒelÀ÷Ú*BÉq˜ÙÖ›ØÁ=ÖLž³ÑªÀµøM8iE’ž¨#—¾W&W|D!ßÛ3ÞP/ìiÂ'+Ać`ï±gYõ—Ǥ¿¼ét-'@''`7uº’µ}e†³ð(™] ÔŸ§!ýÑÈä÷ÍÄ—ÙK¥þ¼‡jôÔ³z1¹”0 À à¥K¯ÔNp½§SÍýˆì´åLÆØ°ç ,SþMDÕ÷ËJðO{¿ÅõÁ7z”…‹î·«ä[Uz¾’*=lxl3‡'tÎ|£hö3dû?u™3a`W­…ü]¹“Ë5_WîT–“5›»˜1¨TuE• í´å꾓҇zgîx:S”ëYÎÜ©ªZ=ÉÄ;Ek¦£>m²ÇJÊÉd_r‰ÀJ?™Ä—+ï01{O«öÞYFw‚ïÞ[ܘPЦ¸uÄã|sƒ„©ëž .4y/´MÑÿÚÄWSk²Êz˜[©Ž§;»ÞEÌ<èDÝ»’‡V½²8»uÇo\åÎf'Ÿu,-Ýz “²¡;a‚àý6h”:M¬>Nü:S4—ý¹ãz‹èǬØkŸ<£dC›Þü©G"Y£ CLîíè;¹›ØÄTÚû”•õ>êŒx_ßî MÄà:F_J[ù™Ä·.Õá$|jɯÁ7›Œb4n6 e^73¯»™ÓûthOÅÔ=ÅÃP¤ ßM Õβxl\ˆý‰Š.®¢:"¾BtÞ† ލ½/Sµ‚³o݋ņ6M €C“Ұ¬a#IF70ôê¬'»zjvôÞž!ø$c£-{ŽÈ÷2E~¸çÌNºÈ;~‘SªDäˆ` ‹|ÏyÇ+òC4ƒwžxìÛÎøKÂhv휙ÖQÐú6âÓ•ÖQêiã+GrïÚñì{|è‘·MÏBŸQ)R$)ÚCÑ몹\Éêv²gó…~&¾Øuèç~ÜøÏxÕ×?eÅ>}\Ù±ã?«ÛOÖñŸñá!gÆtéä ¡|ô–Æîۢ̚{½×¾¸P{O¥>ÝýF«¤àä‘¡Œ›ûôƒ2ÇßÅf$œQ“ÃH;ü£žTz5|Ž'?Wl©#miöfßJ%D)¤(䄸Gý<ѧ@cÝ2õ`ë:ó¢’2œ Ô@'êHM-È‹/:Ùöô\’zºBQð¿|rá ,D)ž'åd„ÙteÜ%S©&‘¶ân-h;¦ßnnb\ù•€™Pàm)i>uÊL»—ï(Þ†.Ì*tKQoƒc.d¼éð‰8P>ò¢d’~>*œáA ABgllQ pôaðY„gê%sRãÒ&ÊD4'¢ j!ßb·XÀL‹Å7%ñMO}#'€/ãI©oE¨ˆÚû•Õí(WxKtË[ÕÆì £þp:æà‹©¦Š¦cŽëGS˜.1Jör+HLÒûÅô˜ÙÛÛ¸¯âdµh8TL»ªð›;¼â€£‹}¾Ù[zg»ênozÉóFoK¸Ã\4’O–쎡^î"¼A¡?A>æé€ÕNæ$5¢ ËŽ×)Œ(lúü*¾öé˜szwÁ_Ê(¾BãšbVÓT’‚XFq|…äžwS>©æÙ[Œ3¸/p Vµ"ßÚá¨Ð s ™!ê˜MŸŒiâê=|™\ ·û¿]ij>hà—’0áaË—b]¿€f‡»ßMïh°Lâ[ L#P#ÁbLõ(PÖ%Ìz£$žL(„§É'q ºÈ`ŠõLf A3¦Bž]ì‹øs¢Â8®’DÄ5 ªl»^†Ž`‘„E3þàÚ<4Õ‡ed¡)2¾Ú(±Ö Œ\.û°ðÑF†„L£±½Y… ;ß_ÄÃñ©êË1:ІŒga¬„Ü!Jc+`‚el-K!²‡°6^İÆY0Ì)ÇÆ¬»b‡ðež ñ9¤Šˆ¹gæ“Q}IõV@æ¾G÷ž”kOƒ57bVDï;Ýä„Ì^Ÿ <àq„šnX-æc2›j“Ÿmjµ ÷%w#_æIàtŸ3Å–¢¿$M ˜º0sˆ«0ôÔ3z+ÉMË…í·Hf¯ç£¿3‰ ÓMmHØ¥\Þa€ )˜)¬$²T˜è!Ds^²Ø° ¶ëÈŠñåsðñdbÎÔ70aõ?àB€õ¡ý 7íeh _íÂѵ’ßFöY6cɳb[¸…êžDr'˜µJ»Ã+1T~f­±šÜv‰.Ÿœ'h—èº?Â~SzXå>æÇLäêo)º€e^®ÉÆ +Í ýÂn.½Ä&zÉnþŒÚ „—íÍÊ‹hL^ ZÃ<µÆZî½y}prîé«/Ä–o'›>£«ñõu$™…¤gãÚ̓?ÓñMìÛù)ï¯æfõ}<•¯½N|(sÛ+ŒÖ—b_ËŽõK6V†Ó`&Ø'}ò\ÝÅä!ð\¼¦¤·óB“œX”Pà½×Ý9“_†™üÜ2—ÌvÚÉÔg½—‘·Iö"¸^¶S›ö¸®ƒJ19Œçäiï´ƒ»÷F³ÖÝ£Ÿuñó¬+~à`­Ûƒ?Ãukžœtþ «f­Ýë¦5"ÏÈÛf~t:‚ø·Ë}SüÄ/‘.>¥0Æ Ðõøóí;Ì®óŽÎo{µSø—~o¾;J'¢Þ÷ÂJRkwð¨þíAõÆë6ÀÔéÛºøöà ?>KÎ1ŸÁ¶šm/' ÷¢fðøìŸ¶ ŠÆSå}D5V,!ó·ÀÄØAšbR?›ôó ÒQñÌYÂk¡÷Žÿ™¦¸B·ðçtÏðó´ýú¤C?[ø³Û¬Õkû)ÙbVL«Ó¬´ÏÂB†v´_ä'Ö¡ìJv2· \’¹tz^‰dpÂìÇ—ã«Xc…ѼֲH#ˆ•惙 àÈäÓhò¦gëU­Ù=Pj¦U¬|ÏRó­zò¥µKËÖ“¬œ]Ÿ4î¶)-î¸-îäkq'µÅ·Å-îxZì©Ùbž°£äº3Âå069@äQ“=ˆZªx§tp²¥Ý OÀkê"_‡ |Ânez"‡õG‰vn¨«Àtö!ÑhÑÓ¹/7Ë r.öšƒ€è©›67Ñs7-z)è6"Z(ˆÁÀ¢POS/ó0"á>Þδ£eÚÉÌô‰­“¬o2Zm´¤}Y`Ï<çéL™áDvŒFhjþãL÷âÑU<½œ ,ÏçÍ`DÛÕþ ót”ìƒ=€|’d›ßŽ£™^Pâ÷„më—x8Tçñ´ÁÃ#=‘íµgÓž˜Êí:ï§ò\Mî¡ ÆÁ;i¡Ð/sVé¯ÇÃáø‹yRè\hÊKÏÖ†1Á•—Š-& ö5«š±¥l0iÏÛÑfÔ.r)ôÅ#6ÁoÑ#Uèßm #ndÄQn¡µß*„ §'Êà•ÔtO¼÷ÜUðÕâuŽZØaâŒc†"aڠѤ ƒGô‡N—ÆS«þ£ÆÓ3{C·‘”šù¤W;Õå+$‰ßnr–¦,Ñ@)(¿{£ê!D8¥‚L1¿$Å Bl´joVÊì|²„ÈìdæMfÇŒxsïý‘W–,*@n!YG¼³­”G%«­â/O“SÉR è4#Q Ëbðe‘*™rã’+;€ï…4'hê©ùáÛG¯î†C5‘j®Z=ˆÄ1!Q^8«¹ü¦Zþ{·L"§÷Ëí5Æêe›?’`'°*f[•²ç_cÏ+Ÿ¨þCæj檆Ùí94ݨ–·s;Nou¼yfGÉw’‚!¤CZÞ`Îè"ž| éJ*—®TD÷H[>{‘—Ó \jëÓ­=‡ê NRÀßP†­¶(Ñ{rõ‡Æ“ÁìãMIC˜Á`bÀNw0Q×i„GÐFêÒ¥/\ÉDj†Ü¾ÆOÍ#Ÿ`rÇqÍ1ÁÖ3Mõà‹Àìò©vk<ý,Þûkyë…ïhcS9¬DVm++&`IË ¸¶™¡ïͶI#bÏ Š6×x¬¬SX‰Œ³Eê ÂGyÔ)kÌ`s•;Ãútt5NGF©ñõ˜îTBè.‚ÚxÛ2æ0Î+*T°m)B2(S²wlÊŠTݶ³®¡„XµÞ¸~éºÎÒ$pÉ2Ê£¼)~MEÃ[ü­Z!Ü:o)` Ìc½º í³'2Z`mH­ IGb|òÈe¿ñÊ»°Ð(¦¥owÏ•@¿áPòÜ­Œ=\×|6Æ.0NY¿Ú-´iÅ–‡½–ѹ™°ÚÉ2hÏiªGk½mJÞÜüëªQ—Î*ëâYÒXtú¨÷n¶C–ºScPãxãÁíÝqòxÎ#<1¤ì:sVXNu­ÂÖÖ3³ÂNž©&XßàD¼÷1¾ü„³»†Ì è!mô‰ƒOüíyäóÀ•«"#pA¾9L}ˆ|ˆÒ9ÄZ¢lúá#Äædº»”[ád¤ÍU#ÕlÊ Uýs«.u¯VŠ—7HZqÐýù9+|ü_ôþïݧÕÊ®sÿ÷ÓÇkþ‡‡øˆjñ?¼Ï"€û¤{ ÏìáݱœIsA„3+VÆíþøy&o7˜!Ây4ÄÛ¿ƒwÐRD C¼iȬû`šðÕ7©ª¤žÈ?Ö<+à©xÿPD¾ø# a§} ?kÄ *ÌÄ`¨PqP¿,¶ŠÅé*,®Š¨Y\Q/ZsU(®Šß•Q€m{9Àhí>…Àp¬¬Œð“ˆŠ>LÀ4 * [„€<ú7~§Z(EÍ,ƒÚ¢Ân0-é’‡ÝÂâÆXôúœmô™Ü¬—|ò€ÑZ(¢#7? ·ŠŽ¿sVô)3z²%¶â‹°;-R+ì¶.…ö»CjÍŠ±fÅ0ß_³b<4+Æš­"[ÅN4õ’UÐ6${*þð©ˆÒOY¯YëÅ på©èôÚ(6Þ²Ò¾%`«W¼Ú%†êgsÈ¿¹S‘‹Jê³|YÔ,pqrôž¤Hõ.qˆ­¼UFF¼_hˆCcM²¦ YÓ„ü*4!÷âGð–L2c­ÌË ‚vò–Iü¡ç³æYs€ü¨ k ¡aÇŒ&²ƒ +e¥Y?Êî^Þ Ïdâ¯ê†.@=—Ts2‡I~Ì›µÓúBUºÍ•>{¤ âl9AœY‚83q¶˜ ”\#Ö˜ ¥=;§¤~12«Ú\Ec%ÂŽibÅëY¨„Üâj± ÿ¡9S,´ËøscƒsLO„«q²wµrˆþx‰pÜߪîV—ʼß1u š@D!£âÔLúG.û­h& ¸W©-“ÉÀº¬g„[I†F/^ßý”8È"<;A~=Öéí¦Å»#EÃC©ƒÌΓ®›TgOõ¢ùrê$Ç©3 K²0Ã<ãC=ƒkGÏcQÚèEj9ZU%”¤9NŽ¿Y†xì7òþ†oôËþáläðõYÝð·f=94´é€(n¾ ¬¬ÞhoV=jߘ[ïY_c/¢÷z>‰öÍ­÷Ö¶bϯ÷Îà›š$SùôÞ0[ütS'æ¨hMµ¦Žr?ËQG)ÿŒÔQ›wÔæêÉ£6ÔæôQzš@ª.~ˆŸmI,%~Jnžy¦š©p]˜*'ÍTJ“ï Ö LVÿl´ágX½ò“N¥RNÍO8µf“rÚ¶f“RY³I­Ù¤–c“ÒÞhko0®”䢿rà¾r`½ræ¾rf½Rw_©'¯xªˆÎHìë\æ*ÑŸ¨µ°ÕO¢1׊+ѰÀ빕hdàõ]»“x¬ÎKçõËðuQª©›E÷$¿Ÿi¿£`ñ/{ 1«¨…›(ÝÈM –A!öÄ~ ±gnÚÜbGWÁ!æ!D[žCì©_É×b߉CŒµã§=ÎlüâLV´uŒ!YÅBi;æ¦Ó3!—7äURi½rS‹y"Õ‚übKÔÇ­R˜g̪’E´ýà:$û­þ0Go½>pâh„±‡!'¿ÁBa¦«®ø{¦âV-2¿N§KÓ[ ­Æ4{(Ã"¹³Ê±«®^²¢í 5ŒQ¢ ›‡‡À-ý_®Z•äŠޫ鿙–ån 9ËŽÏKü•\óÄ­yâ~tž¸¤!k–¸—%Nï¥5GÜš#îg戓)¯ â¢5A\ä~Öqk‚¸ï@Ÿ5GÜ/É·»Gœ͸¸ ª 6&´0]cVÁ—“* ™—)Ùç¡qú!ãT: ¼°ø¤!âˆÆ‚JÍHCJ'oû&£Æ5Ÿc0Ê&FîÙðS/å~>NdRÑ&UÕs‚!Oò‘äÆ\Ó• ÉCм%ò š@.Ö2¥»ýü.K)ðˆ%î¹eA°ñ•«Ï`Æ»„«ðLšk>—#Ì|I6‚8Éÿ'ÿÜ ¸c%“ {¡çU~Þ1ž{«zªsTáLVà˃«½UMÞªF™~Þ4VÄÈXvþÇÎ'•(ñWáHÌa\®Y×,‰÷Ç’¸óë²$îd³$îf°$Ti‡,)ü‰ï~ÅŸüãáü¼búÇ þÇÇÛ•§6ÿcuûÉšÿñ!>b 2ùÏØK"|Æiž½ƒž¯3^Ôјæµãålü•H¥ÐäĘ‹u±)…#¹=˜Î ™¢ña©™éP2ÏáB4‡økýàÙC°¢‚¤p b6œíæ`ðO-M¯†™ û7Wý Ç?Ö‰Ög¿%²5Ì#á[#ºµ¹¹Ö0„n-×K‘h$« æâ°®õT¤{@˜Ñg ò±îaò€€¹ý˜äËbåx˜yhlÿC ´Šy©¥,FuñµVURƒPMïæ¯étÞªbHY„J›µMžÔuŠIùu:Ãä]ÒÌ,¾9€aA¾¹Ð¸ÉG=—1ê ½< Ý•Ì57¬‚žI²3=9“<Ç”¨Hž&P[çafúÉè–D£ëyí§ZºWþ¤Ÿœ‘hÍôÃp 2¥M€H1ædÎÕ¼VZtSSxc,z,‚qû#êUPì„7·Y’ß®ͥIæÌ`¤l9èƒÁ¤¯ÞHgˆÐ®+ÖLS^ NNmˆ¸1- •L Ø&}1€>Úß`©¥àʇ㈺bYƦ8j¦òõè G&ÁQgmðutmH_ÙúZB:¿Ž:8NU¨ó7¥Ó7éìMyÓ/FÙ£æðrJ„9z¯¡Ñ˜—5#²ft9ÐÛ-i3˜zE þ¯'㛨Û{}p¶÷“±>¤«ç|ô s0>$)–ä{ð=Ð?ü+ú)Ò#ìÕÜ{Ó;h§ø3½ü sƒNÐn=R/d²7D‡{ð_êMA]âÅ_.ÁÛ.IÆhÒñ¨Ëû`çÙ„>ª‚ýÓV«Æ 7›ŠÓ†üšÓÁnżœµ:h}­Ñª½.1¿Ö5Èò ¨|¹ûT¾Þ­äÊ™£•#&/Dïéˆ~/PüZ»ôÕ]|çíÕ•óRÌKK‘•b^RŠ9)楤˜—‘"!ż| ÒQÙ(Ô”E¡06 R,Ì Š0ÃF‘AàðÌAà ÑÏMðÔM{æPhŒÙ„ޏp#iç¨Ñd³ìØÃ‚ÕaͰb¶Ú¿$MÔhå¼OÅÜ0Ú&&f|ƒ©6ï¦ =úGúÓ87û[k¿JXá¶Žœb+N{Žà¦vq~º3#þ‹r Ù&V!~š*$Òôö•4¾ ö¥kfH JÇ7àwÑžàw£†.=ÈrAégQÞ ôBˆÆ_YTzÒP ´6WÄ9Õ_õuüù:þ\ªÕ:þüï.Ïíq1LÇèå3é^õ©‰²XÇ¡?X:/Û®ŒO·v<â==0ÝT³Ÿ*œ.åë ×í‘ô¼l@ûñìKûý£Ù}ÁìËÆ²»¡ìÉî²/Ç. ÎóG±û§!í8ñ@?@šÄÿ†·då2íÙ0àöËÇñPžön¹ñ’Zì»êN‰|Êßt›R6&F£pº½þ^Q¿yÆl pß,èC™§u½/Ÿô¹({¡ÀÊ S\ìt‰¯[›½Hcö³öC‹ÓDtž¿3Ô LÁè%˜øåÒãë03¶6 °¦𼙋ài€@ª²>m¤*\µØÎÔÙªax†,¦H2·zcmõ¬?2ž9"2^nZ/[‚r');ùzâÌÎö’Ñ@Wnñ¡œ×XV*˜½ÅǑԶW/K½™xI‚z¥ÄZZ9Љx׋þ°?ºÜg"ž¸# "xAýà?d &É2cŒ£teY]´qñU³‘-ÏHîù¢?á#4ûs>v)“Ääd­âƒ54;xÂð„2탈 Æ´òC)b>úÆÛ# îëí@[Ø!¤eë-ª¦·È¨ùKãϢ̱hÉζçKþ8Dž)óÇêÂÁ£€ºø- %¢' «Ëî‚êÒqÕewÕêòd!uyœ¡.S]:uyhÉ“œêbÍc=Íà&#DŠõ'ß¼üÙŽ \÷¾Xûì¬ó1Ð@O·m!¤øúÃ1Øgëì¿óÇÿýuÅàéñßW+Ûvü÷ÎÓuü÷C|xèÛñß°ÖÔkÍZ{ÏÞŠ[9r“+E9ö€j…çÑìÂt åvÄÏšðÄó&’wáfD;¡çü£þK¢§tž\”< 9‚nRgä‰P— ‹f–tŽŒc÷Àúêv»¯Úö;ž*±þˆpuÉ•üqVÈUïéÙàú÷+‰®˜àú·Zƒ_\¬jß×v¬îÆàævà s!ÑÌsGû[„ÐOæ(]wÀ’«œ›²¿n”2¯—5ÑK-°šnpNy.0ODgÖ–U\EŒ®I æ %ÈEDàeÀ||ýž±šA?mÉ:Ñ8ÉÅ8°l•tš0ÏUl!šÒÄ¢^À2ƒø»·0.°|•1ùXL/(‰‹XBëâ+#hÇŠþ¿ô?ðdÂA¨ÙL£ÛáþǘL<£Ø,û….¾ rñ<®ãcÔ<• ê$½oéìIÜ]êЗ±ÅÚ ?jsð$—†Âm2Cn °ÅŽM… jºýÖS8tNí_"ÏPâÙà’o׳HfbÌ\#iXIdT2×:È7ŽgÖrC¦n(BäËÇLË©j…W;Kàç–§±äÑÕ_²Ûr/)ä(*§¾´ù†Å™?XÃB)X„½fÿ­Y7TxþK„ùƒ¤H³ñ#ΔDªZC­˜õ#=VØ¥X¤-è\ýMG¢â¥ˆ)ùê‘Ø3©»ÝÈÏ´Ôõ¿'1È"ýR7ûeãàõuŒ±L&gÕ‹vÌߌ¼DŸuõŒæ!/q¹K~,ö’„~Í^òÓ³—ÈnÊà¬Ðó $¾&2ù…‰L~Íø9M@fh†V ćž)Ý€ô2 -at:|€hâú:ŠZaP¢íþ6O„ÉŸPëAôgô—Ýš¿è8×)(·\A£`À`f/Ã(®ØA“ÜñuºÚź%û„¼WZ“Äæ]E0T¦ƒÆŽþííp`®¨Â_Aó-0 -'ŒjÈq‡”ð+ `ü*ŠÓs™Œ¿°Û‡7«W¼Hà·ñb³¯ç¢èÛ“ ¸†²‚X+‘­.ÓE"œÉñ­ø“ 7Ì.òºU"ܹì›iЙH©Þ4Âi¬rBýžl^#±Ïc©)ÉðÞî¦En³66”33W_°5*ô ›"Y\¾³ŠðÌëבNáiÖ£&âԔμš’¤w•¥£+Kgeé, ,²<˜®<²tÅ)}—GÚ¦DîIÔ¾WnàV‘™Üʰ[}^-cG ù6h>­Kƒ Í‘¢nV’²2C„e€A…Èæº éRc†*gÏïª:bzÇ5N´ :kd,ÃzÓÏ–iú™Ùt0 À9) ?¢’‡&yQº HÖÌ>5¹ì°é±¼ ‚F¨½?A›8øû+9äQ?g¨ÌÛ¿3cdÈ \ãËKÓÏñËŸMîbÁ¬õEP3á¦ú[4½écð÷èÛ¬mFÿÈþ; ö߯FÖÅÂfº’ýþnÚûš¦ºÅÛ›¢0+ùš±-ÈØœ-†|ÇP-þŠ™òÐu0C[~:€Œ¨t‰…ÚU¥ç‚ͱ’b¯%„O¸vU[iä{š!!žyo³š2é ¨HptÖ=eIHà …©êf0Ä“=òï¹0 žý¸$½ºdÛ÷³™ìrˆ§Á E2×à ÷Ì,$—iŸ˜…´%’soYËæÓ6}u!7‡vÂi€AÒO9å!g",±Á<·˜@ôZtsüõªÕ—!Ìê<eOët=ÜݪT¶*[U|K ÏN§P…GÑë;ØõHÓz„}5%ÓKèÚÅøq5ŸôL¨ÓÕy*.qd;ÄÂZÁñÍz!Ä€ƒ|!i±Ht|‰3p„ëPC‚*QøR7¢?^OFQx„5rTPVc#³‘’òºlè6Mµ+©"»ÁΚ…Á.3güæÖr©Ó*RA¼Öo M†”îÍÜpKi,@kfUÁÐKM ˆî“ sÓàÂÜ\=æ¦à¶ÜœƒSOó0„˜¥¨ýŸ‡+HÒa>þ<?Ûâ§d\„P³dqjÚtšm8®›Î™‰ÿ‚A{¨Ø3£VIÝÚj´“kÜÖ<™\½{çÉì½î¶k_fŠ ™HR†kÞÌ5oæš7sÍ›y3ù!-a¸KÕ–, zß~rœP’ñ‚–¤Ñ”XåÀ}åÀzåÌ}åÌz¥î¾BÜi÷ÈJ,w!%4ˆŸhS³-°:«À|¢Ä£‡hâQ‡HT4Ot#µOôWò{]ûý,áÔ!a»va,§¦ÒÜ,§¦ÒÜ,§ÏÝ´K²œzøZ—d9u˜Yá×,§¿Ë©N1鯮³n®Aø5èæ×›…J[-ºdb¬ûé6TÊ]+¥Rk1%èSEFVèZ/0u‰ o‡òëÍ36 ö3àb§6Ž&…]MQ)Ô°N—„è.B5Iã‡ÊÃëVÆáIIá7}‡xcE÷{xcƒT$åêã@Ñ˒ɾÿÕÈd×ô±kúX©HkúØ¿}¬«¥±Éê'A"I.6tÖ ³»:Jµù9)¬Üã¤òÂZ°¾åJÆÚ›”ö-ƒ…TÀl2'ØêVñO ¼NmxFŽ=µë«ån­%Ý,ª— ý?Éÿ ¬Ï6OlM’Ø¿äÕí6™¯ÕõÌV×óµÚd¡Y¢ÕõÌV³.Ü;°NÈ“ƒ ˜¬^2fÄîyÍ ÌÑ&£Á¬?ùæ9þÛ2ËIúL0 kNàŸØèfÿuuÆÇ—˜51­Ù‚¶àéw¢ Î\Жà6gòŸAøoOü|â`Ž¥HožvWñt0Q1|Èý"•I82à‘G³áã¼ÌÇæé9ó~‡^&(`§¸†×rÆÒfÕ¡nÌc ø£”EÞxbEŽRˆ‘}Z`'iºI\_l:ÃrÇ˰\4¾\”-9lQØã!a ç#ÈXàpK6ãøtÛö/Ü•>oXQ°g+Þ•¢óâgè%fâ×0¢È¤ö¸N‹·×© ÝRr;!AœSNÚM%’¦Á#×däFGÄßMÅÓ…:‚šÆ E¶3‰Ë †lÖÞè/~ÔȈB€gQ?‚ñ–5†˜h¹ âÜ¢­y‚Z: ë ¶¼CÚèk·<,Ò"mƒÓ²ÃË©°.¬%&yVÁ• ßÙôÕ_;’Ê>SЬ9…æŠaLóPPòGs_8 Ÿ”´ræÁmÝð[v“³&ñfÊ”ÃïÄÃÏ”&ê(‘+L ÒbqÉfˆU²-6R±žQ¤˜ì_BŒ¢)íÔÔdå‘W¡M¨åpŒ4ò¨£çä¿Ï»™ mü¹B˜8Ì÷6ç`;{f‘RGŠ©ÛËZ¢,Äø!vïy¸íS˜ß£|4å<"oûj (Ïà[ÏÃd¿ë«7ó•[- zruºÃ_ïëô fÔÏUͶ@—?Y¤Ë=üô)ìíÑ<]þlÎ.šÖå9ØèŸúêý,µËµÉããžÊ;oaRxç߯‰ç€Ëÿþaxó üïÕíÊã'ÿûãÊšÿý!><Mþ÷×ÍVG=ÌÇî®}¿½/Eÿ,lê)[ðŸQÝ aS¢sëyª<ö@öƒ4çYlá:Cx´/XÀwФߋwÿ9'ï7tw4?o¶Ø‡G¯ûwÓi¹ÕŸ|Ž`ùŠAR7ã«xàýèv2¾Æ7/LJñTì¿ÿ¾Á?ÿªF„|ñl—q EWxò^ü Ûœzñ›å”‹¾rnì/¨Q¨ýˆ¹Ç[â°¹µ¯ÕרóWôsàоv™·é’aZÄí³;¤…‰mü§µy,Ø£¬úLú£OH]¯àŸX„üjW§õNò'²gäc<¹:}òšôˆFÿ}Çn¬‘ßq4æh:˜Î@SJ2îR[ßÿ¾‹±‡î(ÝWŒWàÝ*ÑžP©|å[Iº@ã‹Ì޾quÒt6ÚþŦ=-àØßp£%kÐú“b¡‡›øG¯hÅD¶ÅÈoŒˆ/l€>”I‰ÁG’CsMA&Ð\¤•¤à‚~ñĤi˜ j*¼"|î¶$0à øKŒ,AÐ4¡³ÌÀ¤UvNð¶®¼ƒÑçB}£X¸*ƒ²n&»ÁÞ¶Ær¢è*%í|3[Ì<˜Ù´×9ùi…{2¥°f‡¨VQ#ü´­y3×xét6ZÈw›Æ 9¿¬&s¬ô1Ñ´•[ËÐê¶RØ[ %2É/) anoÉÛ©Ð(:Í*™$4¹z.ø¼Å¥8yˆb;+ ¼Õª±µJîÛã,áG©’Gx0¼if=vå8Tì'°,PñzõBåE»t\F†ã “êVÜAhÏà‡¦ü)+*1©hÿbü™Ýµ…vùxcö+#CùõlDô–Ëòû·ñƃ+éy† ¬€+7éÑúV€4wÞ ïKŽ3¢ÞûH\l‚[ ¿Å¹V®Uþ^¦ ®bXÙÆß7‰´krnòýgþ®^R=ÞSŸþ“H±Ä28Õ›"¦ý¿“R{l“  ¨ô»=GcGjmÂX€Ñ·±‰¹à/ÅvÝ`äáe®-M0 &+ƒ½ƒÁ;ê‚ùI‚«:'¯dì3õ!þÚ9YÓ2i™fþ1tauÔ?/"ÿB)8;Ø'ãË5¨%•½kL¥™¥Šj!*‚oû,ÁÔŒÿ¡›»^ÅvR*ß®ïÂ+>×Åü|{oÿI3zëŒX2x‚ïuz®"·³{šcR‹,Ö Ouùyä)h^Þ øJN@7x+žÁÛ`Å´ß*µ·9d’tÇêl'G¬{F|¶¦Þâ÷騾ňµÜÑêÇZZúfÄüaësD†{¢ÊsG†«¨r §Zܵ~¤"Ã|ç‹òå¡êDùòÈ͈ò…!M)ñ­­YGZŸË¤U7)Ø]¹’îØIíPWö{RîzRvNò¤”g‰æ4FYnøÚB¸ üwì,=>†8[5`ØjâN }µ®QެÐWQ‡¹B_+Õ@ÑË…¾Â&ç'}ÝÓ®·zí3ól'Ö ÛQwò¨X£y®SÁ.j•Ä—õâù#ú¾ßÃÄZ©âS¯Ó®€,xŠ“’û=¤­Vù©7u”xÒ¬o7ËíˆÓ‰”¼ašbc0_Ü¤Úæ2o4\›H-bm – Ps@#.²5ÂZ›!äŒ|Þ>¦W€¦Un«[pùÅ&#óýä„ûö §Jô!”чP&‚àÜCg?tÍõËU%Ø!á$S}aA… AÁ1$/ŒÔ…ƒ*¾eÉÈ'ŽýR¤­¥¹ÅC‰Ù(£ `¥g‹PÆàY *CñÎÍÐ@Ü<«Z# V\wÍØ-4¬ ñ§¨H&16š H{PåVJ¸^T¤Äº+ZJ‡|Ru8½:ÄS ÕìôÚgTDjº3W;c‚‰|5n Ú“.:©I…޶´šƒ »ñ,úV!«IfÍàI®Ä%áØ„ÓÿSb÷$¦¢á,m¿Â¼¯0ꦙ¢Ös2D¯uVp:¥%dYæx¡:éš%wO/YM–áFûÜ|S§´øôÛÌÍ8÷¿Rm õjùû-¬^½€zqth-5 gŸ^[\‡ªùtHÍ,{ãÛoÑ>úSÞ‡T«Å¤£ì Õû—Ÿ¾ô'W6àù¤¿¹SRç$sJ:fNŽc¯°ê…d*+-÷L鑟vP¦>žk3<†¹”5£]â¢|À(Y£|~è‹ÿù8¹z`üÏ“';.þ§ºÆÿ<ćǦ‰ÿ¡øKt¥”èÇyFðgšO§¹™œã‹çÚPÔ±@?(ÈGÜ«É$Åý„2biÙ !IÂç,Z bè¤ÀŤc…Î \¹€B °Ęæ©vS¼¼Öº1ÞŠz¦=æc…? XŠŸV`Z2°@„ìø$qèJ{Dº=ÞÚSmñ©™~ç©b¤ñ—‹ÃÁäL¡F6“¼°¾ø•NÁTY³o·ƒKº•’îFrN?.ôû6Гì­7÷º˜ÛÍø³¼’S @´ëĹMƒæhDzøm¤ò;äí¿Îú£x|7…:Ê«Q ”.QÖyuÃI±ø¦X+žCÓßÈ«™27‡¼º0x odV§Ìˆƒw ¢²èj5Ÿ {èzra]¡É¥…Æ¿)~K:£Ç¨1V 2İœ¯J–$±ázÀØ•¼ûŠ.˜Œ¡"|ÑÒkÄ7QÿOÆâ~2Ö¡o|ýꀚÍW­#ˆ iß—ƒÆyóÙ'¿xA=Ch†½0àKÂ#l¹x“j±Sà¼âžÅÀ£"ôWBëp÷|R)žlÀoà¿|{¾Ì÷ë¾÷{öûk|[œü[JG7Uà÷>ÇL];¹ƒèW`6gÀð9­5iЉ«H«a±2rà¦hbŽò^ÕnÝÔ~bß,Þ€wNèVÑ|¨+&PdèÐ{˜éçABHé»úü„/Ë‘x“¾“A…î‘$䆧8yUƒPè»_/r+ÓùZLYbZî–x?øN]7êæ©n §_6 †ê'ÿÝ+t+"? 3“‘üð0Äûwð–ØCÙxñ7Ðá„¥ëܰA¶ÄÎ.ùèé:½µHþŧüùúp`¼ã‚Jú ù5ÇðOápü¬Ž7ãÛOˆ?†•h*ç± ÌÙѱ̞>íÇ™… ci0³ 6mé›°NÐS•æË.¯†ðî½E.¯ÎÛwÊõï^ ”"$ŽïΉñʸ¸(táÐJ mÍZ§÷Z»Á©ó¶—rýÒ¼2P‡C¾³hô˜¸õ‡úÈ8ÞW”ˆÎ \}Ó7SŽoÆ8¯7Žë禳ñÔò$žC©–9JN;À4FJ©M˜ E?/Vgz>: rE´ Fæ¹i )Ê}ÐÜ´–:N§1Åä=þu¹mˆÐæ¸DXþfy·Í±É-& ºj™c)Eé—Î-ÅËÒžÙº Rri 3":LP†èY˜ë‹Î  Íƒá΀Dƒ«;¤ó¸#Ô§ÌH’“È9Ó€³LÕd'ºÎH ¿ªÃ!°fµàk=Ñ ½E)zB„Kû‹ÊÑG8w?$>î œ<b¨¨"¼ýˆiq.žÖf;'O’òxSN¯DŃ¿¬©xÖT<«¥â©ç¢â ØŒ‚W†Å9¨xêÈ)s|T<Äç&8xŽ38xDÃÜ’]žšƒÇ›‘WVù9xxW±~ÔvÃ~p/= C'ÄÓù0÷L³ãçØiµáÙéxj:?¡öžxvlºž¼{ú“YwÂõ±èxÖ¬;9XwZmɺӢãV©SÙ¬;­9Yw2¯3˜v’Cé¥YwZK°îÿ-XwØ÷·ëNjÒtÖå—›u'-åÊYw(‚¼-ÃÈyÔü‚¬; 3?ëŽÏ¢SÞ°:™È5‡u§^ùÝÉS³—­Ž¦Êíe2áè ˆr²²ûñ…Å+ÔôE¶;Âb°X—¨GÄÍÊ&ä"U‘:&•RM(i)…îŒ>Ô%ûX¤Å¦´g©¹‚aRŽMùxZP,jG.¾®Ð•nI+1#™ ¬q§X I•¨`Cóñ}e:·¯¹yzÛqê’ÚU’ïµÛ$s¬•ºõhšžYë§‚oP~e#ÿóïÉõƒâ*O*ÛþŸ§küÏC|X³MüŸ^²W;ÕP@ðW=…NQÌ·âÖŸ‰öçÇÁþ À ê×znP~ät´ôO3n†B©Û—qqT9¬û¸<¼­ò¨NIþ­îŒ*éПý~¯¶0ZB¤¾‚ÛOeuø«'Ž¡èÖmáŠ'&Q7ûI²R6аŽ`;ò=6Ö r“ë#˜RËê„®´‚[Ü–. ,ÏCn¤!“´«v(ä¼lÐÛz+þÔÞèUÄ>ÑÛ„ˆYlƒÕÇFöª˜CxŸ™õ9Ö‰µÅ›ªÞ¶Êã6ç1ýæ0>×3osù…1âÈLN7’Á‡Ó`̹¸ ÌõŠD‘zÆÛðþÙÛ(v6ô¦ß ¦#†Ø!qþHó¹t©$•Ûæ+…'g°V|³Ø}],ÖZ „•q§ØR<+¹Ql…à«6ÔȼbÌ_u¢BÇ:œuއÕ$¸ñ»YC—˜ÂÄHΆ>°q0‰oawH÷òù(Íú‚ÃM~d\?j²h‘,ÓMâë!m1§Q–¹®ç ‚Ø%€éž/SÃFRöÙ#Û³a—=eÃ祩þVªSÏ C¾º”lѬ/‚K„(¯è&8{‰o (šž¬AÉ3‚êd UÄ”OƒIAKœ{½³Û6×À9~Èsž:p~qxLR¥yái|=¦+Ò¯uȦ^…ÿv6¼5Å7è ÒVÍgªÉgçAg”™¹ê™øN½ü·ã¬™³žYHŸÙÊpGJç'k¼ÜRx9?`Îxãùoâde%Ž@1…0uhöÜ›œá"Ÿ*ï7…êF´Eÿ{Sø´!Ém?ÁsœöF¥9éô/?Â;ƒ ŠùW•#=yaxó¬ׇMÿgüé ´W–½<ƒr§~6 $1.I˜ÃgX}å –±Í¯s•ßñ7X’G dƒ4 1ÏixÎPã§¥Á†Ú‹s=FìÍðLÓ3KЉÁ¢z›áÒØla`½¦EÉðâÆ½ãÓ'IG+p0dpj{¾\ÇžçîØÛ…:ö"Ô±‹wìmùÓ&öÑ­Þ¹ô¥ê`xˆcÿû:™¬ÉÂ_)%¯–dg_ˆÎ®Û}ž³³;'zgŸ/ÔÙ ¹¼rHã=  ý7÷­/èÅw¯ò…+ 0nA?>äo¡;×rܶvìI4ÿ=kÄV‚”P·Ÿ‰KÏ0 €åA[éZ› i\ð"Áy!?ÚuÏœ´¦R³˜‘þ&šæ2ê,AÃjy(4SÔòy½î}3u &™GIzüx òÉzªG/è$ºn#´ò˜xÊK4 •äÇžxν2+í?t¶qI¾íˆ}‚B$=¢¼´DJ0´¶~š®ŸÇykg\ñ“QEC!Ü#qèÐ_úHüoõqÏÿ'ÿ~ðóÿjÕ9ÿ²½>ÿˆcóüŸ¦69Úëóÿ_øü::tþð—Y4êüߘÿw˜=‚>uI!±ôñ?¦Ö=x¹ÿ[âqº¿-Ïö[ÉÉy+úS{CÊþÃ>õüãÉy‡NÎçÇ·«"Lxœwü'ç&J€N@Û6@‡:c¨¡ñ‚Dú§B.ø“P‚Ñ& `ÕÇÿ¾øÌ¬ãŸÚ׊|€ï;þ—ÏPd"ŸþoÏ ‡Í½ÿkIó@î…‡eED)æý=“»|òm¾™ï,´V¨¼h•`n!ó,´eBâû,TLgg¡0Áå= meÀt< ¡ ½Wªš9AÈýðsƒVB³³BàÌqÖ¢¨ÐËœá%uiàLèØß<ëg²UýaÎú<ë?~Xý^Ÿõÿ³þ4Þ Ï.cþ³~/vÙf \î¨MsÔ8ú ÆAÿË_è˜ÿ¦4úaŽùGâ4x¤Ÿ¬ÓàQÖip­p#NƒGöiðÒGÿæiðbGÿj°>üÑÿí‚}Gÿ˜ŽÛ¦£ÎO-LÇÒÇü&¦c±c~…éXóÛÇü«göùóg1µxù5lÀ±?‘ï˜?žå{óÏË\”ql¿ô5=ÄO”}Ì/NFþ˜ŸÕòþŽù}ÎO˵õBºñýgÒ-ωђÇüÈ<8ï jø˜ŸG¡ÆÚå=<ÙªŽ-·Ud¼÷Ð+xܵ4À·e±T䉉aqlPÒ< :~ øi?îùÿôóÕÃÞÿñxwç©sþÿôñúüÿ!>Ná*Xg–%U{¿Jmj%(aòŸÿç+ÿP5Á3ß>[&ì`Ç_ðc:›Ü]Îî&(øç–Û5ü&:¡†îQ¹I§Ä%Ï9¿øˆ´gû¸wäïÁG<„‡g’0¶dÏ}Ê…ÒÓm窸`©U*U¤ëº¹gæÙ¦r#:ìY 킬´Cc»°óhÊWø½ªx…”R–¸‡|{ÐC1]m¢_p ¦£’úzQ#tÕë4£ðÛâuñöö^±X6£.þ€Mµrt4Å#U^@ºµ—Ï…gkËêø?RúýßÁqQn¹¯º^Ã×Dzÿ“W æ-Š{\åÔ99eQBÙ÷ðixÞ1ôC娦(Xº^³Da"!ÊN) ü³ã-^5#JÔþñ½¬µ'Òng'2&Âü:ךCãZÙúV¬§ØØ WùpMVº'Ði;;É{‰(I (!ò¼‚¨ %èïf+¤Á½ä)YËèFǨÃâéN“Ão6ÂâwSSh²¬¤Ã¯œž>·Ëyœ–Bbá:Ë7¦¤‚¯ø5oåÕIuuZ,À’‰îW76Šg¶Ä°à5‰ÜíãÉìã:”X!·~Iå eÃé3¢[ÐÐ7ïíu-+ I³%œn WKI®—}:!¹ˆÑ‹M‡gW1š© ö±îF‰`°µ‘ܨ DÈ7ìß\\õ‹Q,…èë–è­éøor›5ƒ«^)ÔÎäüC $øLÂS Y(ïNr¿Âö ™'êK}ˆN©3ZÃQúcFià—t9Œ×£õ^_ö1Ÿÿçÿ‘ ü£G[¬èX;°º©!tÚòå‹ P'Ž'±Ãþlƽ†wûô?¡!€]e…*õ§áYoÄÁà–ͨ<yWzýC+$*fG9zÒÐy¸  dâ¼_íŠóÜôÑ飴Ñq §(RyÃïV‚6%`¡ÏìKp㑯Ü3O¹g™åž…Ë=ÉWܓÌrOåþ$·ÑÝËut&ÊòHfê9¦o¦<“…o9¢J7#4«×ßöÉÂ¥Lï.P¡gqO/'ƒ ž~ÄFÍÀ§Á¢‹Û‘´­ˆÜ||WtgÍÄez ˜%„YË i:F.Ý8–­'¬Éƒø}@}õD^ú%=¹µ¡ç Ìõ­l¹Ý+ÐìI}ˆ£$tC”Qî·]õ¢ÂhnÀŒtL£Ïg¡ç! Šþ€‘t"cΔØ,$ÀÂû“1LÏ"Þ'0¯µyvóE#–¶o/ñ*n7oõ^è/ˆ m‹æÏ½µYK_d‡§¼þÂZT’0ó“ÚU¬¶ù‹vx({ñ˜Ÿã§âyH$ú¶L¦90eÉ4 …¿yyñß–5°È¡M9ˆ…q_ƒ¡6ºTK#Îõ\jÀœnQFÚDcà¤9¿Ë7+A>¾ ¦¿u6ÌÎ,¦2nñ-¸—ñ^¶iY2™I™¥Èìl2;Û¢Œ´IÆ•™hÎïòMWf'óÈìĚùÅ'lp• //çše…ydv"ev’"³“Èìd‹2ÒØÆ\™‰æü.ßteæB~SËPÒN‘ñ°›maÕw$RWË"0»W‹2QÃIô›ejå_8/r(ÈK7a¯’ŒÔæ~+j'ж~— ‡¡Xµ_ép<¾¾ †Cʇg=k³ƒ‹m]…HGÏa 8ƒz¶DÓ/ý[1q6؃+þ w}cÃN®¬K*§w—˜ïÏä"µ=É¿WéwtÙ¨¯éÜuAãŸV6 Žû—ã ÈêÛ-mùaˆàåß×`ÄÐVÖ•'ot?Ä[ ݾ(Waø”"·ë ¹Þëî¡‚åŽêëXCEy±s³ô¶I& ê²ø»®ÿ­Æ*¾G—øBÂÎÙGÐÆãáÕ”½PÜ VÉ8XгqÌùè5[6BC¿QÖÓx挬ÃèÆTô÷jÅVmïÍÁqײIuæDÇ*Q]%Ú²'% Á6}óQŸÅãO¼t!.RÐ3!€µÚ›þ¤9¡ËÕòó'Q½?e¸æÍøjp û"Ù]ȘŽè×wTÕ7w £xT’÷yL¢îågæhðy€s Ÿ…âÁéì[rɱv, ÃPžŒÂ»ÝÚwÇ_¾«µ{x~ ?NùGÚ9*L–õö>üÛE|Ìa)jïýs¯)oùðu¶ßvZ`(ò.a{­ãiý 6á‹Óö«¦jAÒ”4°¥OÚ­µRê³×¬µ_@MšµÖÞñž’IÙ”ì×Sj—lúº{†—ÆÐÔ9óe”A¬é¼ÐeПû0š®8x– %A\$JJâÀ(M0R¨KÆ g%´ÀŒNŒ@ÁÜÐPSÚy,ˆâé®F³íGŒ¼Ê‹»Ôò;³ó;ËÎÏÁejùØùdççà63p¤»öû¸PÛ™;}b¿?Ž´²í&Î $­8’…Í&®°T• ˆT6 ë \4ɤæÜ0“+â¡­È»Çlü¾BkóxÀY$^óüüq’4®‡\!&²Q°¢Ü"CÂGDß’ÌãCÀé0‡×¡+wg<Ø÷ÄMØçjèíç ±[å~b ÜOBø#ð†e…±1ylˆŒô\ `Lj_jGM¿:´Ì)Ó…£ç&§ûåL'­2{ûÄÕþ^•¹š“Ww‘ä¾»Iø1ý\Ö’^Ê휇³?à±ì —Õ45yqØì=‚ÔÖè´9ÐikXÚ°´_æâ²a˜j!l ¹Ù¹ o2Õâ€9‰|[9;༰¬y@6½ ên f¢‡ŒìõÁÉñ«ÔÛ,‰÷• O>¡í¯Ïb}Êoݪ¾5f´¼] 3ãíºxûðF>q:¹ösxßlÆYüáÛ}q¦%°²Ô öÎ:oKè“—þücØÐ´ ïX_ãȲ­íƒÍí’ø™êÂL)MÅJcx€d…óƒŒ^½í¼ëì—æ†ÅÐ[-T(Z äµ»ÄTCUÁ3W%pÑbàçq«G?»½´î9m¿®v˜ NþÄ WªÕ»°qj´j¯¹’n6ë™+ ‘/sô r¯äÊÞõ`4°²¤ô…¨GÇUð{ á/6À`£¯¨òâ»E PÙx÷Š{âx¸À[½ÎéA‚FX£¡æFCe ›4Tzj4”-” åAR­ÁPyÀPÇó‚¡ÀøðÚ`D ‡\±gÅBÔ­Tà?¹GêGð~;ǪÐ%ÁÇ/|>OÒ¨lÛ0ÅawìpØ5œ3¿Ž{ô)¶À²ÖŠ6¢ˆÖ¦‚ZÁMxWÃBkíû%Ž_$™ÒšÚ|f K~ÂÐ'M"ÐH± Ô „FFB`ù+6Œ¥³n"f¿õ¡07Ör¡GÚA lØ•A.ÖþŒí)"þ,i‚&*X¾Aï^Ý ‡ lCœ¯0×øŸÛÚM"hJŪ¾Ìs;šã/ñ3-óE™Ðüª"Z¬Ó±ø;l>X%K2H0) ¢²šÐ“3f÷ИÓÛ BØß‘W×{—±;PéfTŽ*Iéðl‡;ûq=ÍäY‰î=$Õ'ÙáÓh³ë %Ϧ.O•›$K³‹ð(Ãr¤lu4ò+9‹¹ ÓgDaÞ cê„.ÚÔÆT¨*m£"`…Ë£}·Ã¬É) @žÛC†h@4< ·qmzãc2ÕfCåT3TN3Ç|‹þoŽxÆ™ÙýÒÊo§´Ê©\º¥R#´QKå4h©puMQ+\\¦­b Ô7·Ë‰õfeø‹@Ÿªõ ]ŸlÕ…±>[Tí¢ïÖ‘ækˆ‚Õcí‡HKX5b Øf¨!¼—´[¶BÊsñ´ïPöÙ‘cŸ=7ì³#cÚ®ùæìç¶}†Ù{ì3Ò££Lû¬U>ò.GܬD§¬‘)Dþ9í¼:³§Ù5<1Ÿ{zW6GÖ¼é3mŒ“ÃŽ`ÝJúÉüj³´…5> ]ÕΟ¤5 ÛµÌù†¥‡}ku«ìL]+UÝÌ(ólï¬|âÝŠkoù”7 ¿•ŠÇæÀ Di6GÒË­ÚùØéÕØtMÝN°si4½7WŒ\Êç[9å;-¼( Z\%Õ_ÅÓJHéhMTJ×Û«!Õ™'iª}êtŸÒ°SZ#ä×§8Ï£ªzÓP{v³ ÚÊŽ©aG‰UÛÊ¥a;> ÛÍ¥a)1Çzš_?æâGú8ñ³ËñèAã?*•Ý']þÿÊ:þã!><ìŒøŒd°B(PÖÝ}˜¹ÁDëtÿ,߯qã¬$?;ðî~Þ9퇉ÕhW³…Ò­Žhþ·«ˆª¢£t*¾z‹Æòvô*¾ˆ¶wJQ÷ðMrÐ6o¼ÊK®µ¡¶š*C<$oϹà\бû"²b¿)9U¿T ‹ÆV bEñï²”„ûŒóäþ^˜~®Ø ‘àuÕ¥v˜l!Ô¿Šgÿn*É]›§–­ÒOðÏ‚jÒë¼’àÞ‘ª„ƈ.Š9›P‡HáZÛWúêŒÙ8ÕÖ`×Xê8ܨD¿EUEVsYõYu‹œÆ¨Òá2q~ô¨`®~0ß§I¤ýñ2à?£†3Àï¦Þ~éOÍÑ7‹'—¡·@Gè$Ѥ=ØØŠäoÌÐÖ~éÃ;Ç£x0³îµ{æfåw•ëAu£ù·ÏµIŠÃš BRÏDŽt9;‰)(„Ho\G‚##™ Júô#šúõa Ïà6rSæÒÉÍ9)%‚CÒdk‘­Ú]•oéÑç¤îÜSS{­Ñ>k·Ô}°ü'sæë¹¨¥G•H‰—…¤ŠãÀ©—­¦…è 5úÁï Â|@¢Ç–¢ãIéó‹øCFJ¡#J8áR`Bȹj –¢£Z÷€ÿ­„›Á:¬ ™„–`·vvPˆv¼ úaÁˆ°dvKÂd_!vpFÍû@î¤âOƒ¸7VtÕÀ\7¯â\©cËØÖ‡©Ó¸• h"­~󨑦ñh´\ZÌAÃÑì†iháVanàÓÝàòLë³»Ég%Ø…LÐm‰JLÓÚÐg!@¸U’o'8e§|S,‹W,©ÌUc¨3–û¢æ«1Êÿ‰'cë¤Ã‡°‚Â÷éÄK' .D¢æ)WR‰ŠI$–'G4BÛìÑÄ„•Ñá>­úÔÊ¡P œîÒÈ&–ƒx‰} \U9EÒ fŒüÞ¯cê)ˆŠëèõ)·Øâÿ†ö9.§t½LsÃ@L©ÊÒtTp\Èmâ&òúN²¼%mœ^Íæ#®ç飌ŠXÜú†kÊN p}õ.‡Ïë·QÁqA QhÙ‘f¥Ùæ™6¿â$½ÀžgýOê.2¯é¿IeßÀ_É+“塯ÉèWõP»þßÉõôAý¿;ÛŸîºü?OÖþ߇ø°R›þßÎ+˜'zZ»Ë¯7]sjh¾‚ð¿ÓWù& ‰¡{?áŸWRÓá¿Y|"Ÿµ ™»$Åš'² z¯ºnÅÞbÏFûQ8…_%¿æá2h”Óù•å}khbØA Ú™•^UT³ÀR›Ë¡ #¯²›Œ?k :Ú®«»Ý@?úÑôÛ6¨CPWæ˜Á«åxWòE¢ô.Çñõõ)¹gÒé€D,‰Ã›ÐXÞà*&¯Å­Gã»Ñ“0Êàvñ$q·ËàDY³þfR¸hóLÜѦ\mªÝªµ¶Ë˜8Hj v$), º-µa½ß£÷‹Å^’¤Ð ½¼'^~£½ì±6Vï{Æ‘—#/è±ÑGâÑÄÎ-Eƒ­x‹*s‰žKŽBe¯Ø>½»ðz˜k+p^§g¼§³éêõ–Ò|µt)yTðjqi?ÐQÁòò\üÔG&ùO&ëÌYŽˆ¬9Ñ¿*®•ǤåQ7ȼ7Z‹¾è½Û“ÁHÙòâÑ’w › 7Š:†¼Œlo\¹Y)±¼_XÞoqN®XÐÆ£ü³®²óu©´Gè€]³SÈ‚¡A÷/?&mûã £çò¾ð×FTÀŠþUNÂ倵e²a,½ÇdÉo7›Üii.Ç¼Ý ÌÍ€E ›ö/£%|÷qÒž8“6ðý0Ìî®”+CÐJÇ?<ß஡@í*sý6@Žhâ‘Bø2Ó3‘tÕZf˜×–)pª3žÜäË6gÃõ‚-``ßï‡×!ÃÎx&§°g‡82 +v`¶ï†¤KÝ+§„e4‡"TFÐ@"U„vô)fòwÑÔÔHÏ…uI(Pb]Mo`ÿ†TyŠ9Îdë¾)Ó YÕy¡¿é‚I’òEµø «¢ª€5‹žÔÍAíòCîÍ{ÛT£‡<åb\ÂŒƒ÷h†/rOÒ²ÌwZS´™WX‡d4ñm‘{ ›¹÷,‘Ûö2zœ¶‹fy+ŠqY2)Óòî½K=ë„Çè¯ÏÎæMç µzôdµ³ŠsÒö[Üf¸CÚ%þÙ wÏÞÛÓv¯D`fylÐ>7Ùè¢f·×9€ŸøÿÚ«ƒ ÿ¨Ò¼œHæìx4Î÷OàH6÷aií=´ðMöÑ)ü|ÝkÝý F –ËjoÆÊy#Vð&¬ïDƒ c3ˆïlRùõ ©^˜à)5¿„æE8„‰ñD¦§Òâ]÷TZ&êá±´öXsÉYoîÝë6ZéIÆ‹å$ò£âIü>wbÅå²Ä±yçUwåÇæÚ9H†Þ#ó䮓Šð=GÚ‡}ÃP¢3ó§îyº—Äß­²¬víx½`Ÿ£õm…Zïù’íy“©Ì,¹¶Ï£—Cf4áÙ~âjs,VÜa£]YŠn‡wÓ(‰\¢Œ1Ðq7Ònk:¸†úuN¼>Eö…N7ö…N´ª!å¼h,i´Ìarzþ–—„M“ šµ57 –èaa¸kÀ(+-|§Œ '`MY¥M¼™ön4 ñ®¡Û[ܦ]NÐ"œåS° §x,³¥'“ç˰A\ÝÁzÓ!Wp9ß"Ä®›ðäeÆëñ“—Øèk.¡±~d°·ãÛ˜7ˆP$i‡IE]ST§aˆ yÔU‰œÐ`Zˆõ37x¹L05íØí}’TàsmÕ?â`Þä¨bè_L Ô¾"þú—üåbƒº÷nKÒh—(WÛ¬ÍNv‘6ƒT|O#u_D…ƒÍA7×Á@;¥ )Á>g°Q¿O20Êsnz€ äÌàÔÍ¡êkB¤óÏT9œ´b¿‘4«a5«‘¯VZÅÀ(i”íª5Ê9›gˆ¨aç2w§žL6õ®VQŠ‘où0DÓ¶DÓž¯Ãš®mË¥W.‰PÚv^ŵP5î•Xëq–»Ûæg»7ÎN¤qÖÌg»6ÎN¿ë8sC°ÅRšÏ'Ig~x,~7ìë¹ _}°hõíÀ¯I+Øëó{¹>סžø¾±¨³¹‚Ï7¤÷̬•[BŽ?©ð˜bÁ†ñTs%ÏÀ$”¾bbC}ÈWW —qsž:^m"@¦ÐÂÔK¼ˆ¯ñ–IòƒfX!]gg‘89áð8Y&ã–.W$Û×?sbÖ´‹Cÿ «O2æ±ß´) {Ôs+xòÛd©A¾>½Öë­Þ ©ðãÀ&Jßpuu"Ok^oÒƒå=.XxjœG• Y#ìl*ãô’)&¬ò>ܘ7/tÊ`äSÝPI¯âËILwÜ#»õ O­ð Bœ<£ÞT£«»‰v‘þâË¢º¾‚v6¢Ú,¢³ á–ïì&v\%6TÜŒ±S£÷îm1yÔ<ØÛzjö!íð.1×BLQèéð¡?¥Â{-„ Ô³€»áYÓö ¨rУHó¦@›£ Z³+Æ.¥be ¶zJRfþbsÈ?7­…Ö‚G¾i¹Npé“.ÅܾOÚ~ßlD[Ãx‹7_Z¯ÓüŠàjž–7ÌÎó7NÓ°›(zæðM9ƒohE:¹ž/½“Lê¡ãDs~>7á²Æ2ø&žðå_ôÀ8ßZp ‰ÌãÙH³uiŸ‡Ïv„K„\!xÊæzB’|pÈAFÖbÌ_Þ…‹»hSvP¨4‰ °>0ù —†§±”ÖÆ$eÊ.ÖKm™4<§ k$……R§ Ý‹ŸôN/Ò§ðnÃqo¼ƒa6ŸÒZd3OV²¨úÌf}UUuK^̻Ø'Ï ë‘º=°º#3Ðåi` Î¦þˆ—(+èEAß:ÜŽz<‰P›¢Ò¥bñUùVž^¾¥'UÞžxþô‹Ž2EQ¤w}Ò½ECyžeíY<±6‘n#Ɖ”G6 ÿÜ•}žcƒåvBûÞ:ÁÞEr]~šº.·aÊ¢Û!4ˆz[ŽáŽä{^ù©$dBË£ZÏN+¹x¥GÇ3”Ö4™çÉ￉DÔ†Š/˜.FÔy•8Ô0"7þgúyÅá?™üOO«ÛvüOug}ÿ÷ƒ|XÍøŸîYÁ÷£ˆù°XœÔ8šô@™bdr‡±XÜIZøkJTI÷,­ŸŒ)‘¡ª½µ"Å2šgA0!0‰m¾!Ó%I*áÊõº7£6¨{¡8Œ!!ëÞ—7FÈH†1Y ý™Q¨Å£¢©÷PQ•¯x”@am_n„M¨ yÄ÷cOï7óð yÿÚ9€Æ6h>ÁCV7w´+¤kò¨äÔ=›ÀM´'2cÁ¸þ2ÌfñH¢R½ y=‹~~EÁ%Ü1Â8«À(ÛÚÚ¢1‡UòƤäkH¨®LƒÑ$>ùĈÄHV§§a­ð…ÆXêj×iX/Bñ†v„Â*»78xÏ#¼”¨O#ì¶Q€¿q ßß›äò§•Ëo¥y: [&tî$ôy>d6>rL ¬%ñ(¹œ…e~ýM7y³ÁUt7"oË.ßùÚÃ,¾¡àu‡ó h=ÆÎaBí©Uë´ [öÞA븂®.}_ú3/˜5SýU‘›RÄÎ¥y¨G%™‰zt€’s Ÿ&[Ú…q‹`òæÇ-ê‚`b²oW›o~‰Q2GÉu#š#Ès ÏŽ˜=Gçî1Ý?]Ír‚i§³ÑØ0¢5RLÛ$Hz2‹ÁêZÅð= BÐ|o85úxùñ¿ïœ#¯$š æmž#£k¯eôà‘ý½!vOçFš¢$gëÈ¿×3iø£H»Ñln{ìJ Z5ÅI ª)óûMf¼³_`’u|OþZ¦”EÜ9¯§"U#ÚÒI¬ÃKã/‘k®QgX>â}MÌè€ÅѤ@ ¶ëM6Íö‚y|‘ ]^ã/S¡P½€Ô”К~©±Ì<qUÐÄ7‹WÊSe´Þ{ˆ€2tJÄWN“RËܵžj{|”²Š/#§v|g_Š")Ý­ÔSMÒõ‰2ÕIKT «RÒ²ïµ$Œo ò‰Ñž“™¬Þ¿üÄ[zŽ,Ö¶°§*ŠÝ4Ë ¾²Ç©&ØŸ—Ú￉ʛ³sÛw_O]þ ½¤ý]V8¡¢1â̈F1¬ \ªŒ¸5Oyôž-$•…6éWŠX´¶ÙÿU£FG:ˆJïÎÇó8•»gKù”}þ߯ÊÿT}\uý¿»Õµÿ÷A>¬9¶ÿŒ¾Wµ½^)7 TPïõS'›JÄkdPál‚×¹ýðhOä¢&ÛðÆ-Dç$çg[sw¬Ùž ¿ü{ŒŽ˜ú’H¦šPÚý6”F¥hJÑŠ>Q_Ø~ߥˆñ!Gx›4ù=ý[úÍ……ùÐë—ñT´ÿ@'”̶`}ˆQ!T0×þp:¦s¦§’18ûñôr2¸•.Ç‹Ò3®§ä8oÌî6ž |‹.À÷*[KÅ¡ÃQW%Ù æå• Ž»)MFP?ÝŸÒÅ™M詤èn²$¡öWw—„‚ÜÀÖ\µ6\3¾ÇNdsa ý2f.ò‹:þm2£4¬“Èd<Jއæ¦ ‰ñföelºJeWUI"ÓñM,œn/·Kð'Öœê8¼ëPJn³¥¨ï*§\GéËÛŠÞ"Q "ÀJšµ_)ޝš·ÈÆ-e1ª+¨±ªF&'» ’0°[Lˆs¾D:I[w³Â;slsµ÷£/}˜çGJÑÅÝLèòä|À R•{ZÄF0†Fñ’£Ü¤^›‚¢¢_àX Z":ig‹4ÜÄFk|fÆ™'—˜‚–z’°+íBÇ{hHo‘ŠÔ_ÅøyéD¦¢#¨Yýá%èˆÓ°N9‘ Ö~ IÒÎïhðF Ü_Bw±ÌB:ˆÞ`Û †1§†w&WH çÈ`{‰ÖI?+ñõ‡ñÁzüžÊ‘™dLlLw’ü\ÀØÌ’v…‰(¯§qAa6ص·¢ÃU™t zúÊWM+¢5[k–¿_öùÇcù œv~Ož?œWæ?VÕ¬WÄŠŠù2ü€Æ›œ‚ôLÄì2ÕÎKsóæ:Oåô4¥í6…Eã¶Å:I¼÷¦xIsö]vÏ-Óqsp)êy¸~´´v§vÖ2}õ µ7™ W8âN—qs2L¦vÄéò£f)Â˼’­ælu9Éæ'ÒÔsÉ'åêrR^®j&ݧ.ñ¼ÄŸ>yS®‹ ÜàÍ“ëßBëƒVÝE:ažê—øP3HP֤ѡfq êéPï5né!PGŠ uAÔF¤BI';ôü°ªûå5ÍukÜ÷“„ƒ´„߃ 4ü¾åÔÀëÉ ¨{ÉþœÁµºßd{£¤ ô.·n‘>þ4ò‘ÆŠ.,•- à7Ö|޼•Q—cŠ@4:{òOµYÓîéa×ô°kzØᣤR T®óêX-àm?¾Ôõù¿èãM]´¨ò3§ ?ûtœvUjseú[/ÇwÃ+ ÜR Ø`z5ùë~nÏë´Ò¾àÚŽÆ£¤¢ØLÏB$¡`¹‰Ç=º‰û#v\‹w f“,LÆjÔŽa¾€¬°>¥Ô^0ަLÇõDs{_Ä—ý»i8›Ó¨à:é0Ì©É-“8µ&îÕ/ˆÀ#‡.f{yy7ác^æƒù¨{î•/¤Ó»8‰?$†9@Q,žf³/Íþ˧äY,Àtƒ[°Æâ‚7§«¥žÝkÖÚ¯{¥¼´Öë)µËÍó«~éÂ)Ž5„¿¯Lâ_xóñ¯Œ  ±}íšëÌ:) ZÖv>’ZÊÍ%©Ù¾š‹yviÞÛD#r’ߺd¶s2ÙfÃÀwí$óßzç'¿}"/"¿ˆœõÂ)ë÷R]œfuæÏ}ŽÀeÑàè°FkäQrÊ@~ë¾|Ê/ŸÚ/ÛØ„2à×5Ä ­„0O0=óÞV«÷ÜkR7§¡ž«x=eW=åÞP—EïžzÒäºzM}ÝÇG>­‰Ç<£ËK˜ÛNN“ž^Ý|—Ïk-]r3Š t\_Û´ ݃տ{>üo‹¦ì†Ñ+C‹ Œ¼WwÃá# #hÂü@˜Ÿ¦Jâ  XÁ•Gîßå™Pˆ©F æÇvä¸VïÆíªù¯Ñ ßœ÷M[(Ý$|„°0×Ù"Í7ÆéÎçòi¢-‹#¯ðå÷?'Æßéãâ¿g“ëÅW*Ow\ü÷ööÿýy&þ;1 <·—ÿ\àë ®ºíÙž,”öÀCD jY«þš=†.‘kù–}æ¨BûÐÀ´©c€¡Íýápœ¡yÂ%1§þXl‰ RØZü{~t­†«Å €Öš ZÌd\í½Q<,ÛG9݇o&á‡Ý£ç‘vçi:NÄì‘uø[?]‡åËK§5É—Yr¤“~¸êaؤ h¼åTHËüH­vÕUÐÕxë§ óâ>z6òá¼ðõ~Ε>ñ¹Ò§¥Î•>!-ɧÒ'ϱQŽS#‰/OŽŠ’ØÏ)›ArÚBlæƒÏ|¬ÁuàÞãVy0³‚*´ŠFèû@׿êé€Ïü ›]"¸.ÒduÔ#Ë£xQÖl&Æ›zP¶ãñ³ø>¯;óñŠp. #Sšê(^TùÏm=¾âã2åMSÀ’FWœ¸~æ'I1T=INÛˆ†AQõ„Ž'7¹Y˜  ƒGc!’ÚeĘKÃà”«XX½üâ$HVé7‘Î~M>I œ§tƒ‰d i–|³(n2Rx/ÜÉ ãhp ÂÚÒE ¤ÚÓt+°/ã}nª¤îð´IÞž”HÀ)QHHT°t¼ï&úG¹z^Hr+'RvÞ3ÆÉüŸÅy8Kib‡ÊªnÔïçÕV_¥~^Ë¥(‘{Pô1†9 î>[\ck_(M|Q#uå“5]{Ô D¶©¬a|ÉtÙ]ºìˆ˜@¦•p!?ºÏÿ;}XÿïvåiÅñÿVvÖþ߇ø°ÆØþߌƒ+‡Ò#±“ìÏOå-]2ž²YŠJz1¿r.¶éÅœÌ]É;=)˜.o4§ÆNSùyC…EXîez,¼d5-øÝqÉ[ÌÂŽTIóÕÞG`³7*ûlþ5ã™sǡڞÀüžê•AûB.àÃ^a(uJ,bºç6G™U_™‘yéîXS]×ÞØâýph'ÌBv,š H´ë¼dTüY)´çðUß‹£vtµ†ªö™!Âü;„ÿ£mSOó¢ú]ŸN–ÍÚAûLnQ\«xžRNn44]0QW‰f.E­†30?¤Y–……HD+o½íliߌ¼øel¬çѳóÐlòG3 †¬'Üs ¿œ á¾uQË™(d¸¬£Û¥ÈG"«ª'½  áût+“¸I ^æý˜Â-y’ËÊ£VÓ6%Á=aåd¤÷¶çqÕ/Œ}<,º‘†–e-–kQ;ÏÂ;]g0‹[˜]!$×Á×®kG$èœgú5éY{o[&òׯèE‰×Ñ[HFªWxÒ)¨™3ׯ9)ÐhÃNM3p¤}©6‹¨|ˆîæv=òÄÝzጨ•º¼5¼£WÕ®ø.V³4AwPýx—Ÿ­?>ÿß´ú°ü¿Û;OvlÿßNåéÚÿ÷–ÿo‘yÌòðõニƒþäÛêëK1zw^·úK¹ó„Õ‘¶'\Æ•·=—#¯’ßW];ñÖN¼µoíÄ[;ñVëÄ{(ÿ™o]‡]RxI§[f–w;ÁÖêðõ|>§{qF$iÊk ¼(ªK[yq;mš@ww&é¤NQp ²óø“Gç`6U焳oéÀ\}(=îmMÖ}_ÔŽfñ+$¸0ʈ<€<óÒ)( TAY5 ¡ˆŒ¿†qÍT#¹fJ m𞙆÷N!àßäÆ"2Q¬§ÐÌ €NvÍ”óͽÎÈ'ëS¿¬óÞ¥\-tcPØý÷:¡H‡Yo²$_Hþ* TQ“wYâë· É2/¬ÌKÉÑ«êuiñGÌ¡ ³â£˜*ÛÆ÷™ø3ÐóV¨9Æ]dã²|C/šoôEK@_#Õ'Ç0Œæ‰NeóÆÈ˜©Ï"C2škTFé3º‡±†g$o%Ë¡Ñ= Ò(mœ>öu üþ$ÏMp‘æäOVçJÊêœìY\>ŸæœÒ© Ð¼®¹Š¦Aâ3}^¯ÝTMºIhMÅxÕ²Ÿ±Bì@ϤǂZ Õ²Q6ô \Í1]—½jð,§U+4çy¢ß•€~Ïkžè³“of ÌXÙÆI^£ÃW°s£[_ß+ɸy~ß‹ãÓùÇJ5{uLVÑ\#+Ê37/7¾D³¶Ãc,šw˜e̲Ú( Ž4¬ú,<ØDÛ*Ù.ZÈ(YpØE9M’9ìŒ9Æ_”=#m,T*þ¥¯’ëTÙTß÷f¹5®âÚÎÁøfÞ5Ž6õ1 W°ØÉüNE†æ¨L.IMªNMPµwç_µÊ4ʪ:¹¯J*°;„ó5¦!SÙÍ» û¥ðøaVTY†ôðK«SƒeרÊã{߀î,°È>˵Èu"ZlhG ¯¶‹ð(}Œ yÇ“ä‰Ld"Þ ¢¸XT$¤¹Èæ|7{k7W¿Ë€ÕOT“€"-åyk3ˆuAãù&Á‡xDq ÄÉVŠÆt»3<þVÅI0ó%Äto< />v“\Iÿ ì±Ê±|2"O2ÙêUEN¸ß­—ÏB/ÓuZSD±óóUãs>Õà ÃXݘ<¥ëWíº41E“ð)$ÀG¤YÅ ¦Gû¹òÒîD0óììñ´™dD(éÙˆ{oôœ.’|´tÍG[T/­–µº^Ë\8!Џ©•:ÇǦ¦êÙȦ–D§DòŽ`×íoV˜D1ðí$z.ÖåDZ'Ëü<×1 ¢V×3êOÅíéæ»f?à¬ðéj³²9(ÿUú‹X~ ü3Œªø«üéjã—ƒ?^þõ{ £&g¤r!µÕ2ú‹’ß F…Qé¯MÈ.D WóAIÄÀƒ!‡Î ‡«»‰@˜$ÄNž è!¢ýø^-½áa:ƒÒfƒàû‰\cÏü$Nn‡N£^½ÅüH °_ëâFCŠ6ÌCN©ßÄ‹‹ŸSš%–„ÒR*_-¹އÏr0œãpjÄV¦\^]$2ɼ¶)t\ÉYU }ýéeÌ7mÑ<&Ê:·ËJ›Îíʤu„&~qá@¯Ç¹yWáx2û8Ffy&"•k‰3&À£TÔUHÉ>׳ø8^IxŒ–´z:¾úS>ïœ; “&¨Ï™†o¨ºŽ'ñèR­ ƒhù®?ßâœþ$¯ «³ž….Sñž…Ôšïv«î¶âòvŠˆK\öš+CÞ‹ßsedã¹èŠä;ü0†ðãMtÝ ùwÐ@˜?Ä¿GÃuAŸñõµ—Ö•/Ũ«øjÀ¸bƒC×ü0újÀ×LÉò°lyCñû²–¢·m¹ÍÏ¢ܦ—Ñ¡‡,yéPóí»dÔ¯µ{ç)6>ù m´÷èßÎ;Üét!Ç”›‚jm¼–¡ÞxÝ>…ŸÇÝRÔ¡l:­l³ºµWü³ñºUK‰Áê¶šítfÕÝkô¦>×½FÚë)µËÉû¦ÞëìSÎݽ&üìöN ƒº(fü)^­0з{Òéyë¸ìáý€4-о·JÕï"éT¤.*â½$L™j/Gº—¼À[o°¢„8ÎCž(Ây9wÂrš´9–w¾k ¢2z~¢>§éù-}GÑÑþÜ7Õ(8˜,®Pª'nªsLTá&*ùQ„´x–v]ÑsÛç˜tHî0cÚ[?4{¥õ’Gb¯dç{Ùïøâ%9*ö%C¶ÏÙx»'ãV",šûÁ<9—eAVɺ!¨×ñL]¤ +ÜtÖ‡!›ŒFžh!Cu™I· VÜ`4¸¹»I%ÌÐúKÇòj”ä žŠñ%Îò7L#žñ<ÏÕ†bÖ•åÃŒS™l¨gµ÷ê™ÈD»Ó2ep¢ÝÇÝMN + ;G1Z4ýÉ·¤É¸ôD/Å$ mi= ú÷ØðR´¦Yóæ†gY´󸡯`àP˽’™hÇ(´ÊÁW–¦·Ç©,†$2_žÀÌÓ! ä yý,I Çú#þý,o Ô…jsg¼˜Ùž,šm"zðxMEÅ¡­´íêÐËÙ]k Ѿ.w®9å›í9ÎLʽ’^3'ñ-³µ¥©ÿ+¼~Érë•¢KlÛ[ú;¼KÏÙ|0)hÁÓŽoÂæ< êV޾ő@!‰ÞÝŒì|¹.R\ÞÜ…=`&/c9NeÌž‡mcþMq¹»ÇILšÞÏÛÛÉøv‚;‰á7S^Y£†Ö?=@D¯sƒ'¶vÊ(¯PcÊA‚Ϥwö¨šMq1Ëò8y§¯6Ö:`ÑÄùïvRè;ÿ»zØøÿÝÝÇnüÿãõýOòae·ÏÿrLãù£¦q;]SŠ?ëóA”¡”ƒÚÒwT©Ã¿ðÿ»-î?ÄÙ"-~FJt¥_ÅSæ©gJ·»)EèâÕW1©lþ}¡\tÚXi¯AÁŸ /PÖo°^¡K÷îæV\4yÊŒ¹\Ç}Šw¼F3¨&gƒË­¨1ãXctz"QµØÅL%݇»þ„¤®ð®QÔ¿ºúmzw1›ô/g%<Ò"zkzt1!‡‘ÔÀÊo7\~ŒdÑpð‰Ãë÷PÙÞ—ñ* úõŸÉ¯{åçÛXu&|Q®RÕùúzÊe<ø ›’oäÙÄ}Œ¿ö¯`ûtƒ'“Hþ*ë†ùÕuã«V¾ÄÑ§Ñø ŽéÑx¯Œ×ÆëãõñúÀx}`¼>0þ[ç˜Ã‘ó±R"ãyÃ7 Ñwd¿V6Ä x;#«„2‘2‘ÇÐé2 ÈBddtHéi@2æ‡Ë¡+/ˆ¤ ¿WÂÝÉ{™èOÌ+ºJ}–'uµØ.«Ö¬ ™ðë/‰8“4ª©ŽŠÐþF×½¢å f ßxÏÛ8cÇKZaƒuy7$†½¦ƒÿÄj¬h{ÈÈZ\ü%ŠLE­+Áú•–ÙT[nqAÄöM¨žB¬œñ›ÑXÜþ~ƒ¾õÖ*3¤Ak ^ãíýÆ™L x –/> Ú A~óLŽîI~ð£Ïk”yŽÑI}HˆúÎ3$x8tæåD yÞáOî‚ ¬p‹xí}pÔtæ6†Š GÈ"ÃÆ0CåÎ=lŒÑë›;láa¦ËD#ï:ÑH }X4 ß°Ðô„!‰($ÿ°°ô:|G¨¯Gmkµ]±Ú®¡iKh¿ãñ¬îqÖ{yï‰Ì 2ûmÎ8Åÿ¾Ç5(pTŠÕàäš'§.ˆ—{wT埅›K;Gh¼#d\³I8»f“’Ãü-þwÜu7çý-“¾Û;þ§ ÂÛß“ ¼qýMÐyâ 4Ôxóxp²Uø2a$èßt´oR~m?Yi¼ }áÁ`}×°¾³@ äÊ=¬—E°9k>REYF¯ù–,\ØÉCçÔ_–ÕöÓöç›qýgÒÆ5JòGDIzQ"|ªÈh?}ZÔY¥xÖ16Œ‡¤!6õ K¨4k›v޼áK\Ë•Š©½œaGåØY Ë_– •ec,§ˆ…ªûÙ@UÕ-ï Õ嵦"WóO÷<ÈÓÈßš5ôt =]COzÊfÉ a¡´•íAûZYPÍÊòµ„aˆö¼¼$oÀ/›?%ØuïaÀ® Ѻ¿úÓx´ X“„ á·¯b“—d‚±¡ö€&ˆ,‡­£âN,Øàø@ŒþiËÿØ6úšöçþ"¬¶˜¸r`Á Ê«©¢œD²Ð5€7€7d$†-DŸy(Ò„ÁÀû¿>؇ÿýú øß';Omüïîöÿû Voÿû^®lZûõAp;Á_àŸ³47ÐÙ)ÞÂÿbÒnï-üÞr!Ä"ÎGb…_Õ(·_ 2¬I9ñ~¹÷ç–z%©#ˆO„[ …ŸÏ *d†ÿ. -Æ^àß{†Ÿ¸‰æ8¬( ‚‘ß'`ä)ôú%žïäF#c.xÔ‘|Ål.1MœÔáâ[4¥k;Ñý(tï^&DWA™Ò2Ô¿Ä|Ä­H´#Ì#žõ6ý<0Z!¹ªQƒœÑüÕ3%<õ^w7rP´gžQù±?¼.ocq€£ Ÿ³Óÿë¤Ò€B0ÇF³L`/˜¡>|„Œkº†¯!ÄüYCˆ`ñÀfOäÌ£ˆ'Ù@Ö¨]¾øVnGw£ÁŒcDHÅî¦^´°ýÉ’ˆ·d?M=I¡žh#oQQžlyñ»z.X‹==³î¬Ds†¾?õ¯µ”–©—JÄ<ÌqI㑳º¥jM™õlhíïO.?BG\›îŸ-¬ÛPCÂmC†8xxµ¤ÅgX}$ðÄjš&ÙÆið‘ÛÀ†h ´1 .þzC4SÏ`z -Æ¢HÀHþ€¿ëË(ÓE‚Z7ZI÷:BýñßSü·MÞfD5mÿŽÐÕGHžSôó3žÍçÕÙ#5ý£¹îmÔÀþÝD  Ðl<„irV6—ik%‰k#öÐ|Üô ˆ€T——ñ-NF0ÍJŒ±|!ú ß½Âsl˜ýŸ3Ä„„×ì•ÿÓ/]Ö ôÊ—ÁLóÐtŸêÛ—â²"úF½Å&Iàs1Ñûÿ-ý÷â¿ÑFT2“Aý&1½;˜Š•šOCnåM‘-¼¤êb-Þ²Z„þî.̸øßÞ‹KÎYÉv;ì_Æ%·6˜@Ô¦Ri{‚6ƈè7e‹Íy¨ß0;‡×ù9ðXuòæãèfŒƒàòònB:îQ%cÈÄ3*ì Œ3¶!F0¸®afA+2žb\@T-Šc¢GÝG°IÂIUÀ¥’ŒØ\€ÜKðE à¾òÏí’¼­”—Àþ,šŽoŒl2Ø(-èXG Â3µÆœÛŒŠZëÆqôÞ`úî 9¹âÝ3±—¸Žê‰Ø[Ø_—&¾Úóú®qƒ¨ß ÀÐî ^o€WƒÌ/¿•þ=ºßÜÄCR~ÔE,I—»ñäÖ¦Ž8úÿìˆJ·Ä»i>œ!fãÔ3±?õÉŽmüæ*˜ÍZ4¥Ù=¦ÍN°½hÒÑAêQC<‚ÍD£¹¹\ŒMOÙ”­Â'"\Äm¾žñÀ¶«‰Ãá5¹µ1_8ÎL«¿¸¯Ú‰¤Ñ›£Åë¤é˜é'0înÇÜF›¹X‘=f*Èg©È˜¼õ$ˆÔœê@M!#ËÀ"#~‰¹3mm’žY·’ 3Œv˜˜¾JÁéµÂIG‹C#×Ñ‚!JI޼¥†ÙÂpfP »IÌ­U¸f©HJúÓ&Ó ÖMµL¿cLtñW æ•ZÚ2ÚÏõÅ0åGe&[Eý¤Y€ | ×xµb¦Î§E™Èï§¡ö'éP"wîÍA˜úÐÌFT8ÆVÒ ›„%þ)2 nŒ+k˜Éìq»½ ·Î,\bh;µ0Ú\aq°¹ž‹k L9dˆ@ ‡ÁD‰{$ñeˆ  1ÓnÍ5fü;aÆkÍæAã5Àñ§À÷º½RtVã‡:’Üs\ò¶³zË¿ûoe·±æûâü€4êiÇUøB÷˜_$”dv5‘êQ£×:®¤äsXŠá¿v÷¸Ù襟Ê4›¥œõpqâМÑ\ U¬\tÖ¤³žÓ%½˜ê_ Ѿ÷–ì¯ZgéÀöT!KúٽH—sÕÈhñ0OÀÞù¬ OúAê2/}W|<îä q¤‰nù q÷-žÜW?(M®h5e(šG¿‹vÌ_Qî Ä3å@< QþØN QþÔNe"ÈO0 Çä Ýs Éè!uTI^··-Ê;;ÅPг¦{û^*È[õ¥·00„<üñ:½AVyf¼DRä) ¦Ñ&$˜v"ÿSÌßE¸Z¹î˜¹Ú—"¦FJ„Ñ_óèVÕzf–¹0ýýÊI“[NÌÍâÊ-œŽæÅÕ7Jw1ºÚË9Ø”ÅÛ¸2DÚy†Ž˜ÎH¿)¹E¯ø‹ w$é’ôT 3nùåi }¶Jìù úQJß.ýW狦 ÃDî+L%'ã¹à ¶èEûDö;}¶gIMÑÿ«ÆKÔ·3zý¬©}sŠG8gÒl5G¿Ž›;öt®êøÅƒÖ±?I¬ì,R9^òÍiÂÒÊ"’w6” j§ŠMµ=T$ľ qÀqûf„—†ZÅMÌÖàñ÷n ö/a¢6Žßv@‡¶ÄÒ¨:Éé92Tç„"ó´P •ÀxrÆ.s<¯Õκ’Hú䛨ß%âGÇÈoëU 4\íÒ`¢cƒÑjð¤ÉÃ'°æà¯¶GãdֽΩÊ9 UIæ}3‚9lˆr b\À$€Ó؆?ò÷²dnšÝ‹kë;;^])¬R¨[ûk¦”8»@$±ôÅü†¿²î)NVqÃU¢”‰ÈŽÍêjd¬¶îôï9øß£, ø¤;RC:"¾ðšï»®øopßY´ÔWü·5'ŸÔmGžzµ";î›/}ßI³/Í¿5ó¾Eèì—Á4Ö"¨êç ì¤q³cÈ £ñk79(Ñ7_äµ^ÔóƒGÞqLÞIsRoty¬ácoȉ_Iž¨±Q?W*—ôLúMP~ÓïµæK×[Ò½‰ÚëKÞPïcݨ¸¨²‘#kpF.†–g÷†ib'Ù3rµdÞËœF¹q ü©ÝÞ¿…`z!^’œuà¡¡Ýê<ö⛣ÜÍÕíè烖1Y¤j±àÍס\(dŒUhÒCÿkA¹ãx;Ý@ ŒÒâí¢È(•Ë©ÒtdMD«¡ÛÙ¶ËXUD&åލS±í. >PÛ\&ƒßá[IÆYg8ÞÇþgx!#çvŒï¦tw š3X9LÑ-ß»d3ÞéU Ìpãõ©ÐÛá ü8ÆÓOIJ‚Pnq¬•|´õ~YÖŠ e‚©cFD¿S,Ê•â é1EÊôí-À%ÞðBv?TxO>Çj–4£¼ry¢2cÿæ ò¼“mÈ; ‚Ð÷GSü‹ñ¢¢~ï½1Ÿ”èý/Ùˆ*^£ª;޵\y>|„cͨe}•µ¬¯¸–Gõå£1¿C0æ§þŒÙÏ Æì¯6³ Æ4fXw$³¡) œ¼õ|x®Ñ'ñûˆ¾¬©`Šº5PÒ´®nk–+;^¢nt=óÔ™¶jXÈc¼Æò܈UÈ«†‰ê¹$)W_àê,¸: ®®'-’\QïK\›& ?˜Õd…±Ñòu3Ðô}J éûhùÆ›ÕÀ<5X=Ÿ¤¿ËÇ•h,ѼWðùï He›»1¼à2Dƽ‹—Ñ'Síßaÿƒ_ÒˆyŽjÜçÐ?ð*Óû´ñ´¡¶ß‡å\o4Â=Õ©!1äêÇ´.ŒOáŽW‚3ïθsÊøâ×gô³S?åß½×iº‚/ð‹Ýá^ç-þ+€Æ+ÃJ¾.Y0╈ üðûµËÎùK ëÀzO“@Ë"\”5&FйˆìÄMí¼Ìýåòu.]£"þ;ø—+ìæ¨’ï‘ÿ¹6/¼·Î ¼îm(çûÖæû¢A@©ê)©ž»©ÞkS½ãÄ“<€a…äõ\óAM_w{+‡šæƒ—ÂDŒc¤^½OiF¸#Ag 5",½  ½ø })Zy,C­8Á:èAK_Ý ‡É\²>¢cì %chœŒyEÛU»Äö†.€•±ÊéÂÑ’ýiØ./Ù~Ý"Kx3ÄË´IL¬i¤îiѯ…a¶°Å +'9{jÑzÛÞ„b#ú-ª&óUrßdC¶ó—qtû±?ÅÀ]oŒ/¾ð±?ü¬âÍ…˜aÃÃÆ8ñ /'Uˆ7tË·€áåMMìÿ{*v¬¼Q¥ xÈœÝ7ìÙ4ö²âYYzqT†^ê¦xÅê[Zí0a÷E?ºŒñ¸™Ù9ìÐû„-sŠÁt¾OÉlæËÒù8€¿Ó§Ù4åËÐY¬Ée]|ÄWœ‹\*xnL€©="‡ê‹›2v„$-ÐÉžÐEøòfåÅÈl iK‹n«ø+Hþr0~û¯%GØ©7ÎR‹ÿ¦‰Y\ŠI•Ôí 34à™ÕD)$S?‰~F…Å_dHyýž¤2=@ÉÅ£%—Ð,`uÆÀ‚å´Èù0±Ï&hqð÷Ý/2QcŠš©Í†Å”OtÌóIêKECüÃñ‡n§³ ¬?Hò0ø]žtÚâÃ[à>Ëßî¿%TG¡&„)kG `ðJاfáØçŽ‚1 âgHѧÉb`R%³P0±áãT‹ó¦<óÃqÿ­Sg&6*5æ½”Yu%¤¨aû< *6kÞåø*.)h8ßò8¸!^ªÄÚ²åÎß’Ðå­â…O‰„Ž)è tTïÉ0c|¥2®:ˆ1«´.Mn~eÔå’­ïIɇ實Ö@ç+UòNVÉO¶££d Š<ý½#ûU³#®Æ‘V3í«rØ1¦ê²E¢ƒ‹ù’‘ÓKt´.ÜåŠ ê2¥_9+àôÄf¾t>ÍYär¢r[ŠÉw³"âéS[œu=š­TKVÝ[˜êq éO²FÒ31B|³<~Êdm­‘¸@H¡a.ªwäÎ1ÆWsŒ']DE{²Âlžšþ,àU¸¡|³<|ÀF™•oZ4ïÑ Mñ‘•2Ô¹]nI¤3Ìi%.µ6ÈÔ+¹úõÜÑ—/2§ù¬,œbFî)^üDªõJYÌœŒzUYˆîÍȃ}pú7–ב?´ ˆú…AiPÙ@ÿS«Ð6Í[øs‘ýFÆ>LϦT;µŠZ¡¡ð¾s­Ô×b#ªö¡ß"AÏ0K/ÉPG»Ô ÄŠ¿¦df†¬U¯wẪI=1œi‡ÇJ¹Øò £ó'ßî œ»á•µû±÷üá÷Ñ߯›³ñä[ô»H1:‘7‚®~“‘FÓs*ˆˆÁò*m%XkøH߀ª3Es'5%ý(ÚD4ˆg`E‰w¸Ó“ë¤ÐÕMž»ñP.kJ‘ñ.”¨ÜJ ‡ú7šé¢>bÛem©±êåOIå=;lýûmÜáÓ¸Ð6Ÿ*9ø[Ž»‹²±< vj¾yW5†¦\§µÅ^ŽYW,MvÚËÃm]vñ<™tjö£Tä¼úª]°¯¥ùëÓöfjpdõJ»Ã¾þòa•Ûû[d¿rˆ5:Ä»Þà½î}œ\Rv£²b=µ@ãùfò)Ø‹Œ£ÒV³ßîôT[z¡ÆÀ÷œ :žÇ{ý H}‚# Ñ^¥¿¬Qä@ÝðãB•oSÙ®*[w¼í®öxv<Êšf;nOìo»#*X2l’&.…R› >|œ¹ÝMaÃÛQS¬³µ€š¬'Ôú’ÜÔ›(Õþ¬¹ˆSq¢ÍJ"6%’BV.ÆËJdØŒ¤¾~ÕÊ!+°O>F¨&dñ¸±˜ü¹Ž/?MC6-aE 9I)iRûS›Ê//!+Ÿ ‚UÞ{-ªìoò ®ýÉLeèâ0¾¶Uõ°ÂzÈJ(Œ¾#å鵪­O±›MïeéÈQl1¬YAI¿çÒíæfÅ“r5ê]¹í™vìë2ÿ|Q•«V²h¹­`ÁvÞöÄöKî—­ýÓ!ëv–9ª¯(%Óìⵊ]•jnNƒÊŽä—êдݨ"‡´é“h@òiÆðŬDÿfÄ©ÖðÅ,¸˜‹-ªa‹­¬c(¬™ðr ßœ9,0ŸiX¦¡Ï¨óÛbi¦7ßÄ…¡LxØâ¹äábÖ̵+f.š±|2‰¬ ë¨v?sV¹©-sÌXF:m¾¢Ýbî ‹÷–jÆr#¨My¬ÂÜGé ÿ$!^A‹Ê™Š*6­oÛÓÑ_ìXoVg9+OÜ©ñáìù°5¯·{1KÞMUIw•fÎÂ=B¾”°˜Jq^¥éÊ£uú&ÖÜûM”ˆfªÈ?ÉãéO%m›‚YÝ6Ëâ÷ï‘ätåß#…ÜZsn“"g/¤m…ÜÐ|Û ÝNÍ6Üé9e“óìÇÙäÌ1¥óé³E78†œ~ž NÞíÍ"››mmòÏù­Í¢JíóÙÍ\Ù¶Ft—w†¨nÇm»©Q[šª×¯¡g¢V»j%uµK=OÉç¯Ãvιë¯Vçµ–±Äf¿êƒ’TÓ7¬â:¡˜²£ÍP£Jˆ"Ÿ¬õ¶i—[®¹èw«w«){kkI{¼Üh$3àûAÑHA,’‰”‡ô8 1 È‚U3÷(Õ's¢?à Ÿ,ìS57Q}ž‚T}šƒtd×Kû"^¢n´¥¨¡Šp‹‘}@ŠŸ#†éNÌOr!T,™nz´'W>þöÔçovh%¢°·ž- ZºûV'rl¯×¸ŽHmS„€ ¾J:"hg{1HÐaÒ¦—ös¨·LS4'Œÿ‰¨b¾&ïÜ‹§ùûNWêé° ,g¦´ÑBsã*¥Árx ŠÞõÁ"X0ÐΓ5(hP‘œ` š„ƈð|ê“Ïn] $ê]þt¯H 1ò¾(û:~Jþ˜/,óñ£|RË^ƒ|îä³S]å³)xåü23ø¶Æ >¼ÃŽ»¡ýyA?¿ٓ¦®ù“:Z´)÷?¿KÄŠ¹³ O\Îé/©Z©Vâ+ÙÙùQq?†S±²Z‡ª&ÚJªp¿lbHNµû|~&±Í&±VÙ8ÛLb›.“˜TÑVE†­x˜Ä`¶äs¬‰GÌ¥Kã38‹ù#ȾžÏÃ$Vö0‰Áö¬jègH¶µ„;ÊI[¿ Ó¬=JÉuMMÆb]¸¢Ê Âog99W bˆo/):/-ÚcNd½+¡ ~ä1è1ï‹“Ô£àKQ‚-[µ©. uù’Y@BEwµáePŸ Ûæéž‡¡'[\TnKQq2cy#ÖŠDs™2S£•ªÉª» ÛØ9¦±Í,„!šË›ôš3­Ì2diHC‘|®Å¦"*˜êåãäì%©cKÂnXF‰+A n²®ò}m6¶Ë­´:¿¡[ÏÃ'8åå1ˆ´À"±ŒDÊ}`h ®úOõÓÔÞü̾ òÁ˜ ¸1¾}‡ö8ÀO Ò>v}X?/ê›VÙô¼Uæ:x«øMîløxÙüÊæ|'s"_Of!ß"dÊëñÂ!øÃ1¦NãÄŸåü!ø?xE;ÑÈÌh㻀Þ ññBøxb˜T£ˆ.MÑV‰žw™ˆ–ŠK®ôæÒy> ©PMœÞÌÁRéï&Zÿ 1úi0Å'Û&((û|ï½Ü i‡{qYòhïIþ¨ü'á¨ü\èDÍœ_¸ùéb¦Lâ…щÒ"N(J#×O9¶¹RñÉãU -S±*MÅùŠ!ƒóA‘ŠOæáN8ÅïI¿Üc5[ ìÒÌN¯§f>ó^wgÇIÒñ¥y’}È®[»ÛEÐÜÞJ²Ä¦"%ƒ'é~Ø|¸ÈÍ#¾Ãµ’)'ײLü èq¸äÉóÉ9æ»Õm¯B€dh—&¦•yBÃ’$÷”|òäÇÙå”N9ÒL&è'?*jò¶f9åÔ£@µ­MšGÊÉçÞP–OžþMwjs5ÉžDû&+5Z|ž1[Ù|òì»léäÚ^²­’N€ &ù$Këó´¥õiê©R^ßõ= 7ŸnÏ·søÙÇÖ ¼ O}š§é{ûtdçSg©ªÓÄeñǸä5ñ=îtùÞÓ”­ËšƒM뎀«{°C3# #î­'‹ –î¾Õ‰Ûë5á#RÛ! ž§ƒžž>[ ô´ŠÁD0EsÂÀ¦,§÷ârÿÎP§½ ¨I«ÊfwYˆÓJ®WÄâ üЧg»k„SÚ}Š14'…š†QÊ£¢J´ SRõ{:Éyìg91Q¤ Íïú; ÂèãÃ}ò„~nWùïííÊîn¥ò¿*ðÙ~ZÙÝ~\ý_ðUåéÓÿm¯¶þÏ.ÌQô¿nú“iÿf< ½¯]¯X.?‡U¯{Zï¼=­> ¥„¹äðmý¼´æÛ"î‚›ŸZñøo½ÎŒ10ÎKÑyxjhîŸóT ,4œJ^½•¶z¹5kǵ½£èj2@ØÄ6(ÀSe3Œ¿ŠípðؾAPÉlЕ¯b\âg¼…'”ØX°§-A˜ fÍ€Ôâ×—…aÿæâª¿Q¬¿naF’¡³N|”ýé:à ·9qRfƒ/q)%‘`€m›Ž¸¶É²6B>ª75 I¡¡, ƒHi#Ñ´bE·`^FÚ^€HY˜º £ñhøíwëå³ÐËXc]¾¢Š¨ÇùªqŠ9Ÿ¬‰HÒ¥G^©+»NMLÙ4€¿”¢Rm‘VVJŒ0=[äpO® K^ºéCÞ—±Èu ³ùóe´-ò„åNd¥èjšO3y§Ÿö†^þÛQc">“qBLx¸l†Ž;TvGI(€‡Ý?ã/Ö•å‹ Õm‹„¨çòWyöæ™áÝ͈õ¶™Ÿõ†Ê „¡gÔŸÂD3„F {pòµÙ 8%cÍ6å¿JJ´0À_TxÓÿZwüñrðÇË¿~dÔäŒT.4Ô´Œþ¢ä7ƒQaÄ´[æÖ;àë`Æò¿f´ê`ëy@^ÅÓÙdüMIìĪ9ŒûW¸ÑJºß×–ÈêOôglVDîõùuª~Ï:UèÔÅB:UŸC§ê è¬ëX³D§êºÈ¡Su[§êAºHÕ©ë>®3Q7Ù^Oo‡ƒY´÷q óÿ§oâ…ÁhC®gS‡R»Åâ›b·„­ŸÄ³»Éävñ-Ú;®w{¯”JÖW ’uVÉ:«d]©ä;‘EA*#b®&š:ظf;¦Ë’mô`Ç÷§—ñˆªC«—(ëÜ.+MñÏm½‡2Éš åŸJa¯&õ8§Þ h8YÎ…y$?ºuPJ"v¦šžGÐÔël\KŽVÔør@‡”Ï»Â`c‹:C/ç=‡ØhÂÀ£jö±?‹ÎQ êEl[c+Ðæ¶ló9ޱÑxs vÝèR›¼XÂËiÊùçô'ù¨ÐÊÔ;A¼×–Êv6U¢¦°õŽÓú¸-vI‘LOТLDݮ뒧± `’Mï.Á`š^ß iØê/üA/$JT”eè ³6úØG$D4ãýaDZ®çò§•Ë@HÙõ#ýóÈê›êýá˜fo`† ÙýýŒLñv2ñ@G]—¥ý’qõ!=¾B…ô§‡ñ ÓNájpEš$ËÅ:àyíïVú?©ÖZÛÑ&6gË 6j@- ʳ—¿ j–“²zÁkÖ·¿ðåÑSÓ®˜Uyå¹$˜=ft‹íŽLÏÉ2Fcs›11GíÜ3‰Í`/WñÑ·äÍ1ÞÎÀsm3Ü|ûº±gþ½DŽøóð®ýì`OÆ£ùöë¼ao´÷èßw#Ïýà+èªÈ«»Ñ%{‘Ó*ÖìÖZÒYxðjÓ6žóã”RºwÂ+¢•ãɈ݉%üÙëì—„–ÁÏnïà$Ó…ŸøûýA§Þ¬yKŒ/ïf}Ø2GÝŒå€P7:€-ÈçÏè¶?éß``Ç4¹·ÄjK­’n$˜ •k‚YúÕ ìaÓE;|“ –üóU!Új¿ímDî[o;[VíG|aßü f-éXGÄ’žWFÏOÔ§™ž_Õίq$ÛÁ÷wì÷jé vuN@ue‡8áüÉÛÉÑÔÆ ÄÝ}þTOÝTuNUOIõÜMuމ*\WÕi„ßÏÚi}¥„«ƒÞ olµå‚,ªt÷26;¾º»¤uÛ^Ü·Œže-µ¥‰Ëo­4-w·ùtV6fã½j5:ið;½!Ø ›5gºÝÎWjyNœ‚¥è}®<ñoéïHëžžóaŠƒ&H¿L¨Yœ'E »•7ÔÕ”˜ˆÅ¥"x³Héø(òôºQ¢Þ ÖøÔŽÞξïÉÛññÿ]­ø0ýü¯ºûdgÛ>ÿÛÙ]Ÿÿ=ȇ€}þ·?ç``˜ÂGŒc1i5ƒÀ¦<¤á<šõÁ¡yp(%"$˜":~o®ƒF_uÔù šUÎÃÈý¿õi$¹Ë|ž·«x:˜``´ÞMQ8ÑÕà3b{éÎÂñèßw õÊ!#$n†´×¢›þ'È ä·èf€þØŒ[Þ1÷/`Àb.×Ã1_ x; ž’ƳÁåVÔ˜E_ÐMèöƒò»üHÛ`r&ö£wâòÁ«Á†À÷¯®~›Þ]Ì&`p—ÐcñúA¢‹Á¨õг€XyHF™G4|b€óŽ–÷åÖq‰ýgòë^ùù6FZ_”«Tuv·€T.ãÁgØU#?Öècüµ_nÀ…:Ê_eÝ0£z¢n¥è¾ùGŸFã/¨†£ñh}Äl¤\1¯˜×GÌë#æõóúˆy}ļ>b^1÷/ãsQTJ´[Üp&:g¢—_n‹ýYeCŒîhÜ4¡ KYHQÈcëtQD 22ú¡§¨ óÃå ¨ÂýÆûùèOL­Þo‡Þ?ó¿_-¶‹Åª5A2~Ï.„zô#%ü÷DßhSÆ›¸ß¹+ ; lltÈ^Þa4¦)Ö)¨ªZ4'Š}xÛà/Q€0°´‚´Î§Úƒ‹Ø€rÖsñbåŒßàñðd‚“~<öM®¶I<¤! V¼ÆÎ ú3™ @&<ÝòéÍVðð[ÆÔ(¸“Oƒ;©*ÜÑuXTefýíÌ¡Ày5¸3¯ '%D›Ñã"µ¹3·:]/q‹¨³aŒ8J—[Qå3«Î°:Kg[P£ù4º‘ªÑ ]£‹jtçњ‚‚(¤~‹BÒ4ÚRP•`‡Ô£—µ^®X/×±5Dì¡!b¯î&РRÂBŸ™þJÝkYïO‘cbDŠÉàâŽýÆßDMZýɧèUÿc Óæ~|ÛŸÌHÑ ­>;ÁåT;ä9‚§w—ŸàíÓnížÐjÇ ¥¹ÇÌ_¼w~БG@ǵN­u`è5 &®lmlÂ$¿M?SÏE(SJ´m%2Jd…óÃëš'§–îfwT•p;Z Z M˜ÈR¶š” Þâ×ñ‡§…?*XïõA«Ur1{ÍÚÞñ?MìÞþ^Š~xPŸié%ïN¶Ê!&ìmý›†öM*.°|@.6”Aƒ%E‘Ð뻆õ°ù‘/2[¶œ}y[Ƶ§(aÞhºù·=Y·Óªm#åÖpÉ¿-\RqJ‹Vj>bg&/ž9Õ£Žñ¬c>l<çj_Éñ µfm憉IÀGâ(³›|¨£rì,å_– •ec,ŸiYêC/Ôy1«ûÙ˜UÕ-×WÛïàÊVŒXÚj~'#…ÆîÄÊò5XÔ `åð@KÞèio|wè¬y|%]úk@m: vïµû{04𴦮`= î$„qí¨å‘„Ÿ¥"÷ì‰LÞåÒjø$…þiËÿó¦ÈÄ ¶Å.)P„Õ˜œâÈž†òjª('‘,ÔÆ+ë7°V†Jß*)Ò„ÑÈûߎìÃÿ~}PüïNu·²ãàŸVָ߇ø°ÆÙøß÷r¥éÔÚ¯²œ”=:­D'ø.üsÖ„ÿNaö€ŸS̤Û{ ¿·²8„|$BâÇ«åö+!ƒ5™§¸PD«Y’~ ð‰˜K[)’M&&Ð+»‡»ÍãZ˜ AŒ%ÐÁ‹&>)°(ÒñÄZq B‹ßÿÍ¡Å&30|Á—h@ÆÑÆÐåŒ#¦·ñåàšã9…QrºÔ¨ïM•¸™µ/£+Bc^  ¡3ëùü< Yü¹ªQƒœ-q1Zú;ÿnä`cÏ< >ìcx]߯âFög§ÿ×ãöO-¤…`Žf™@=0ù~øsþ¬é ¼¯ÂüY„×aG§ÖaÖ©¿+@øDd‘ ´{’ ÚFå‹oå‘T¯»i¢ tú /®ž ˜’x|§“† ÍÍR4ØKpÏ|ó«1׋@±iüï;CbÀ“è­¾Àß i¤€pO´!¼hoœlÙ…ë`„o²å+°¦·¥^ž‰ެîyèûSÿ÷ZëÉ&|©úŽç$O+hB©)@p³±ž YÞýÉåǘúÊ0ޱn@E ©· ¹âÈdÓ”,OœÊÀÔ“0"«iš´§ÁGn¢Ò /¸ ö ÑL=ƒé Xµxˆ"Íöü]·5yk#‡®ÑJÞ@ýñßS¿\(mûw|€}ÂeâÉ3?cócQ=Rö î©Ã½ZÙ¿˜ÂDŒÛ‚}Í`Š‚½Îe¬68æÆF¢#$¸ŸŒ¿núÆnƒöm——ñ-ay¦ ªd,5_Ë?Ãw¯ämÍ´-è~ë¾¶9ø?ýÒ…±5€^ù2¸‚5:oð2*Ù¿ï„"úÐCB›ÑÁq7Âç8b¢ÿöÿ[úïÅ£¨d&ƒú)€ïdl…KF·ØEâèåá*²…—T],cSV‹`Zo…ÿÛûo²½‘“"…Þû—qÉ­ &µ©”1¦@ŽB}B“ìøÃ"L™Ã*Bó-êwí8t¦¢%8ðl¡$¾*ºã ¸¼¼Ã `j¥Uâ0† ßý3û2¸äèV˜AâÉ5Ì,¸e‹§wU‹Ýf­µ÷¦ð¨ûh£D- Ìž›gAÒÇ&¡Šþ©?·K<ž9Æ—"-¦ã›P8ÇÔÓAÿL¾a…)½h9·k‰giÐFl³ñ $l=ôyƒ÷¦ {˜Z4;Ø×z ^¡ùƒ£5’G ñ6Áæ:ægóóÒJ>Mh%=‰Â öÇI:t{d•OW¿d?ÔÒá¼FT8n%iKÆÑŸ"ƒ‘xEWdcc"LÑa†š‘&¹øãL}âC:õ³c³!?SL ѰL|ÆA"òÄ#GG" èldó`ý÷X{N²Õ$-¡Ñá£%F6!-¿0ê: ª‚w/‰Ô®5›× ¯ÆŸ½ƒnOá¶Ïjü0¿ý¶³Oo§Ã¸K’{_ÃsðF½É?»Ç)bÀSÒÞ„oôZÇx…üþkw›^¸ÇñeÔ~Tô÷Þ[By¿>he‚ÀS4¨Û;@ì»dxÝ뾫—¢.玈"SÌf‚C‚‘¼! 8ÅÚYÙ>1³Õ¤öß~Ža„@;±8T_«[µ’^‘…¡ãïWNwÜrBmÖÈp¾(0[Àá|ë± q³ÉÝñð3{ëÒ«ÇM^» ¶œ x?`¸û¾ wgܺOðøŠÖcß ž@˜÷Ö¸…”–hÅ,tc©vDC•/󆉡å™ÅÔ|n\j¯Âm¬Y9Ò‚ŽÎ z¼éK=e”lEF©\Žu‘=¿¦Ûò;ÛúµæÊr°­tF|h'VñéxB^‘›ØãÑ:ê2–ü8œ¥ ØÇ‰`£rdÞ4ßÐ&1þ ; ¾|G—¡O «]È ó:„¡ït”¬GßÙÀ-åå_ DÙ‡‡žZì:DúäµëÜË^4‡3¿à ^%cm³Q¶U >ïä¢äLùrpò= ä˗Γ35×C™«ïU1ñ¼«k£¤!F‰«½Ž˜‚[+WXj‰ÎZ¿Åq%o†›d¯¹ÆW³†_”r÷~}ˆÿ7›<ìý»O·wž8ñO¯ãÿâÃêoÆÿy7Õûú¦þ8HudðGø1¼Áy?OTË ã(ŒïëØOBðNæ¼uÃs¦µ/Òæ‹ÓÞ’¸6­.økJ(t?Ûwt„ŒFó{’jhâMb¤ÎûvscØ æâ¤õÐâë+kr:¸ ñ¦‡oðªð¿‘ƒð'Åâ¨r þ;Á51Gôy‹¢ÜÑ[Wc²¸¨j'Þ-ÿ#Š;º»½Bxe_Êà} ‡ Üó¾x²Šp&+ö#G“•bÙð%è['li?W^¶„õZ:$è;Díÿ°AWYAW«ºÚزůb7¼T"0æ÷ɘFf°_‚1h¶¼)èÜÞïX}Ô$3°‡*½Þ†vƒºébÜ*¬ç"S]xÓ4!Mv“‚Ü•=A+Gé,Ð3/=±õäc ]ÝMè2ÙÛßc´Õ¾ÂÁŠ9eNl/¤¡î¥ä-­\qÊ Ê>T¦1Ê ÚàÁlV6ÌQ÷»öx³RlXsœ”f; NlP@r#\'Ñ ˜Ã‰˜À6Æ µ=sÚûßõÚ2ÌAe4Šcs›Æ3p–= Éì0ŸṮÝQ'öü£7ÉÊáv2F½Æ:”ê¡Ã‹ô2œˆ±•⯶)ò©T‡Å@¿ßW:D±5¾\Ø_ØŒ®úÑQÿîú¦?*á?FÍþ… œ_C ¿Ô°ÑnôN NØ“”=l‘ç•Q{5úŒçÆIí ðÁ<î?¡ßSsˆ^¬ ¿V,àd{È_ î¾<ÂýX%%Ÿ£ýVßAòXø !xMÊ¥›7<´è¤ ñø"Ü›=Ä]¶ŽWlÖö^Ÿ,°S?åß½×â'ÿÝ=è¥iAç-¢ »Ð‰)„±ó‚þ@¤µ‡P•V ú“èxµÀ¶ïÇ\q¨¡ @³œ{Ct$ );‚á‹:bN¼{:85B«êê«–ø®¬Éí½ÇlЊҾÅ!C'wYD®³ÎuiÔX€ç ¼ “£‰¼/VØý9A† ô·Fïy‚ÐÓamÜ^–f6 p‰kì{” ÷ÁòÙᎃ¥À Â#>ŠÌ„áEæ#šxÎh4 ƒ–­D,ÀÄ-zu7&GpÉz']‰Úä;Œ¯Dö.Yÿab„áxÖ7ˆÂn)ÙÀ ÕÔ¿½h[,rñbã[|‰6ŒGÀLiwh$#Žã¯yXyqX} ¢M´'‚9ër<¥ÉšcØÙ-Æß»ÎSC‘‡¹_çë`ëƒ9É«9¤úìÕhØWЍ­j2À¨cD–iÑ2 q< …6Yt¼0H^÷Šl3W Ä(&ÇvóÙ>¼]¶10"ù“8I¤oÄ:ƒkwœÆCžÝÚÓ©xP5æ2þ ‹WsÁ©ˆ«KÁüÒ9¥|ž@L`²¬º1È¢ñd³NøBÕ0>Ϊñl;:R­€‚À );X²­‡È ¯úžc“«â¹SR$m‡á¼ÞžT9"e„FõG£ÁÇ^‚WÇ"îÌŸ‡ÚÜòe¸ûŸcØÇ!> Æ60[¦xí/v<;½êÃJª «>Ôãûâ}Z97B²è„!bÿ˜ >|œa*ºýø6†ƒxÀšÎÈÄɬeþLØ,#Ø]¸—DðDHR²ƒ¶ªÅ£ýrʹ¨"a¨š¬à†‘àý¨ŽèiÑÜ´»"‡øùCÉK¢¸÷ów!´nÝ™@¯¤öþ“}õq€rúç­#~Øvl.ˆ8,.BVQ2¹µHKI COÄÆETåÍK8m/b|ä ÁðÑ=Ê–ÿÊ™…-¥Ñ‘*v¥}P:õñ½ŠÁ©êgªjªók̓­v¹±XžôO`^³¦µ>¹×>YÞ;ル—X‡Ó¦®H4¯åbS>ÚÜ…ß<*§'[•²Ê)I Gåïùr ™7—^D…UfR[ô.ÒŽ4(sºtgËPaºê—wJIỉ¨rj¿]ïJ2æ—!¬˜‚ê ƒþÙ M«rI/ÓêïŸ}-Ë\ÿ°¨í%š$~1{WWZ²]`ú\ Ç—Ÿ¦Ùæ‚_`J¹«ÚŠ@k«\´/ò‰,¼*¸ëÁœ’#r¤øÚ¯ª Ê[ …±–&‹w™òçÏK7…u2f´ï`bD´´íÌa5`›«›Í´¨+ëÓîôxäddºd›Y¥f“2†ùÃýÞK êc™I=5—‘­³ÙœßPŠÔœ&¬­3Q¯WwXÜSm¦Šf4á^” §jÊ‚Cª‚©Ð„=Ì4_#$¥‹Œ4—n†™Y–V¹¢úˆM¦M9ù¼ŸC¾jæZ0=ÛgZ÷4ÚrÝÙõuM”Õ;Q¦j7¹‡È'Àg»|˜ÖCèà&QcÂÍT9“Û‹ú2sÐhÁ¾ó¤3°Àù¥)»ÂJ"¦Ìisš¹M Cª$Êú$c†G"®ºcT=ÂÄn/\`‰ž¤í …G-\Ò¬ÿ ÌÞ«ÏýѬÿAaR0ê’‰iN¢/ý©'Ý€=|ÃoL׌K±Ø’²„Ho3ùCåiMêÌP•oo—Ð>L{•N‚"¾D§‹iª†ÒqÕtõT9Š_Pﳋ§A•Ká—áJ'ØzšÅª™SÇÙ4ð®Ÿjô ÞÔ×Q~jØ••¯K9c5Ê/’– }"ÍÍ.cé%¸âÙ<Ê!¡È˜&ðpí¤À§}‡ÊÀWßäàb_ŒÐñSAN¾ÌT€¹<^p]Lµ žÌÕÛzË©™«ÙIKÎvg5úÉÂ;}_³3fB0adˆ¡ùðê/—À\ÛšOq|kìÄ ÓôIHîÍ‚¦t§æÚ›¹ ‹Ÿº]h{D¥;UzN£~á/X Ùæq–zÅ3ºâSâàE|í´¿¢Ë7ñƒQ¤¥çhó(8W ñ~ åSS‹týyÆ|îD⤈;9›x´opaóc®è4†Oaniý¢H3{Ø’‹Ô8p "ipÊ~ùén^ö<ÖÒò{=ûã{ˆRÀïñ9tÏ+^×}í8¾çÙ"ž,–÷s¶X–¡Úôÿž¯s´Ã±EŽ EÁ‹ŸÏ\ô¦Zǃ媲îçTžãx°\±“®æxÐ:œóh°jã~úlðCý<ĉä¼VÁãõé༧ƒÍM[±s›.Q¤ã°–€RE~4UeQÿg¨:¬ ‹µ¢YL  J«iGĉ̉Š´YËDbUæ‚bEIßh&“×IýÚÇ‚;|ª·®Z’‡¢¾ÇQ`î¶>\ÊN_žãƒÐëÑú<ðε31œlŸÞÇ1`åÙrh5öÙ}}ÝG¿îá_åù Nÿ6?]•þ*WŒÓ?D§³²Ó?öñ¤þÉ7̳?-]åyð诺í?ú«æ9æPß<ÈÑ_µšïè¯Zò‘Øå8÷«–RÎõ~©C¿ª~À™ü¹Š#¿Þ'}ÕêCžôUwæ;é«îÜÏI_u7ÏIŸ:ç«î.C‰Øë$Åÿm)ÿV‡ÿ1¾”ÿ±²ýdç±Ãÿø¸²æ|ˆuƒÿñ&í:޹Ùa~9nœÁ_í·V)êÀ;û‚89l®þhÌŠNÑ D¯Þ¬íµ«hpÑ ¿T|õš Í«ø"ÚÞ)EÝÃ7I4ø"ì‘ÿ#Åà$ù¶ÕäìRhB÷Ð]9%}B/fÑI¸B òG¢úDñtF—PO£ØåàvB¬2ÂȇIæj@§H‰ƒ]qMb> ¨DÑÞM%C™y§ ÆËŸ÷‹§H9&¿<~Õ„¯šø•ºIÇßô:¯$SàHÕ“ØÒÄÍDP‡—Å£Ï…ÚÆS2y‚Ù8mL“2ÁÆ n£½õoQºä©ç/ï,N#¸ÌI&Ù½…‚Š# #&Š%¢Ðcš%Ý”ˆ/¹_Óâ Ù{™ïPù¹W +‘%¾[b2MŠÞS™Œ–nRÙ£÷@mY³òJe‹,¹\ttØÙ pûJqn’SLø@ȺÁšUOëœè¥ÞäËÚê 5ÉÓþ,^>¦åCa0»c[ª#Nžü3¹ùöMm£Kã/?B ꌙ’×t6¹»œÝMhâÝ·ÔO»„Þ¸4ˆ’šidCªÙæ}ì¶í_9ñØ´øí¬òM_ºzd¦Þ¹à75Ôí³v &¾RžÿD•7ï­W3•(*iÏ"I1¤HÉì ±ÅU‹?_Ü÷"w#nš,†7æV“Ìj6ß›»\ç§W#^—”µïºRNŸÝ@º¬BihRÍ…ní vº;Þ†ü¨—«âTÑ- ãn…Lg­Úû•’é¬?aW&_ØJø·F¯ þ-‡¯ – ›+7Í~˜ÚësȸçÐBståZrצV˪’|ÛðÊ™å[b øÓê¼;÷O|Æg°&+S„ÈLGhC£eeÞcH©™Û6åÈPìˆ_À ßǵò•¨¤Ù˜\±³ñ­UgV›:,¬3õ%mIц~[)t^ƒ|Z(R†½ÏL¤Qñú¼,— m[Û-À†p“<÷y½q«iHúuBÂ[' ™cå€%ÓJœÔ—9¯è7ñS,jWùJ:Úë‰h¾»W^gJ¼“~oŒCMà-¶y¿¡ù†6 ™ïÌŒÒFàц!`q­#Îßš¢b;!¸nm÷:ëÊ6{ˆ°…D¢²Í)ÍÆ³;s¨°D×}Ò™r˜³Eð›´ä6ðWÖ™îWœªÚýêúÿâß]¬Ö˜áÿ{òô‰ðÿíTwWž¢ÿïñîÎÚÿ÷V6ÓÿwprZ÷8»t³¸Í-%x²HýaJY•‡ŠX5ÛHÙ4†?QËôЬ{møñ†6çÈÚü6— »USA“ˆž‰?ƒ ¶fž«øÚ‡v·UAÛØ‚ó9¬eæšCÙÕ5°6Ü…YO1¾Ä=Y|)õ·óxÚƒ¯þ®ý=Q/†æ¤\ÈÝUÀãLÚ´O—Ã9S_ ¼½Qõß3›¨_IDÉÈíiAÄÇÒè±ÅD«zTB§ ñüŠúÎ=`u=‘–LIqªúº‘›Qk¾[à7å³Ì³½Y*¡õ yXâòâq)²C ˆ.§´0èJ¸°&Ù¯Xã*O±âu6A—o êA"‚±Ec¤L\AàþÿË’ÝæÝÿ¿€ÿ¹þ?Õ­êêþÿ)>BšìûÿSXZÞ×ÏÊ>ࣼöoòv¶Pب?Nðîûù-êã™!9™7Þ‚7­€ù2õÖ:`m«›j`ú#ûììêûk¼“«xH—„Ù/G£[4°b€²xó]:î°Œ ÖÚg]¥"ƒ±¥s¼[(Eûk ä2[9î\Ÿ’Ó´—QTÌ^l.ädrtЭX ¯tØ™f®‹WâÑÝZžÉë±ìÛåȾ6}?Œ`ÔÆw|‘^ºó#ÖcÊn¨yÍ+î¨g.¦ô¶7ž2+Ì»S“Bj§ïF;šk–ÆÔ¸níð\šüvxÒŠXíp™÷-™R¾\r’JbÑи%Ü*gôomGèè ¼©—ZqC××’õ¸1ØË ̺7À¸¢]y »«ñú :/qH†ƒY_¸è™$äµgE½O¦ãÑÝ“A>Êp¨ÁEű'“‹xH ¢i˜êb“cÆ¡W)Ó–QôæÝZÛ+EqýÁ(\›Q8š2•0òU4f._)²ÅL¢")(ŽVK­JÑ’±}J­ÌuÇ——ÉE/îʺd¡U_¯K-k*²›S«ŽÒ \Á&˜iaþÝÝc\£YÛkj 9B\ žù…|÷"Åøè?3Ä ºn2m§ÿã1Xå°±.  \Pl.›¡Ô*ÁªL Ÿ`¾½< àÐ=&r™Œ'S^:C4p Ž¢x<Y¡$o@ÕAà8PØìéHtè'Ðæ ß¹I'69Ö†kWŠ˜óX¢]l£ZüQ<¼4•ôDop5'Óë›è²— „ÿöÁîWñoQbRƒŒƒªÊýA"ÂÐë˜í>ò=í'}ÏÈúdD‘ïŒÖàäéú3©0ð[e»±•¥JîÌ!ºÃt L©ÌÔùâ\ôa.`#„@xÿq¯ KLJ“½öeŠ"s–¡l³¶Ý n£µ»Gÿvk'ôó#á’Ù ›z4‰šMy’9|Ü­§žÎíZ«m :öŽ;pò¡ºÛ|ò®íóÏÆÛ£¬ðŸÂªáóéžt!îЂ™Þ›f­õ-Ô&*$æ`:e®®ìËèÅBžz»D¹³ƒœNwïHÁÎIëm~vp ñ”ÜÏàë2=üÊd> öîá~~$ÖïÀçJPÕ|¤ià"šÆ 4Ahþñv¿÷asƒã!Ë^9°á)X•›@Q+DI÷ô¸­`ËI6=ÏpŽßá¶ûþ~‡/ Û™I¹ýõZ9‘…Ÿ*Xc9]3ì!ùŸiÅå¥$Òa¡ou •Õ2_ãó9Ôâ"nt4Z£¤}!ŒÈðôdI°½Éd¿ÿ5§ßù\'÷N£ù®“jTD{ðYœëg™åT¤ëóã ”Œ¯ÉT0áq©ØÂsÇæuÍÈ/³“áÛi÷ùmŒ Ù‹k´|N1™ö`Ñ+o%–©¼w g¼d˜ÜÌnô:{ùÒ1ú¯¡Š§ßÐFw&ù ˈgYÖö¶¨Ÿ/(…MY=#5?S–eÙµ¨uBœÞN™´`Ž1úd†1j½ñî2n®ÈBÚ^ /GkÃ#ë¸ bª ƈ#ô¼$­G8_¶ØÉ˜úä­’ˆ1Ö´ƒÃWmæ–wå\VC¼XŒ&°iznÍT\H®6uç¼Ó”‹ìýŸ0»¬u ³ÌhM¶[ÖE;ⳌŒp+ñŒ9,F&àq×ì+\öé@&ž¬«[“¦<ªñÏ ùªa«?wžgËÒJmÐi.¸¢p„Xõ Ö„¹"„¾×pXƒ§X×XæðP¬xlšï°é¥,Nwø–ä0é,ÈA•M„ 'Ãd Ò.,ª{Š”Û¹”v±Ö„gnã<žXË´}kÊ쥆Øk3Óå\ŠÞåòSÏCö )Pí ŽKí#ØѲ”šÛîÐÚ=·×ÛÆ¥ï‘Ä0Œcvû°,÷·ãÑ퇃;{p¬ÉéÎûL…_à•ÓøÒ»×¯Pg¬€“îý­Š¡ÉG ±ŒóBðÑÜÖnt`÷‘&$tĆi¼×ö4}zkºÆ’ê̼wº %ùãB÷¿ý'ÿX}þjë¹ÿquÿû$ž îýïî².€£f[ì¢TÃ÷ÿ/º–\h[<\è¢8TC—æ§½LÞ}ÄÛdÚÒ­BèƒÚ'ÉwödŠö&L¦Ÿ ½ðÆ‶%‹~tÉÍ5ý5 FξŒp ôùBá–mI½sU¤r9õ¦xt;J0<§ÉÅfÔ˜F_`î­x'òcŽzÑÕ¬7îsc¯8ø{¯ß6™Oǽ‹ioàÈm=$Ï“!+“ hCCæà”4¢Aò™µÑªOGÇeþõýëÎÆ¯[e>¿Ø¨RÓ/Èݸr'_à,wG&xlÑuü­×‡S'êÐFù«lÒ±š'ÚVŽÎᛯqôyˆ —è)]WD`XAVŸ"àp£ý› ²Î‡k¹Áì/çP|Šã¿W‚¢È²È [ô;RK)NɳSIœæ!¾ëQ«Tª~/hÁÄÄH'¥5£1“²9¤Œaâã ¢ì®LN%eŽ 1&Ž€á‰Ûê·ÆÂ…gÙæ_Á§~Ì ‰ˆç˜íÌ™Ñ6§†h‘²Ô´™íΔò­¼“#\>c$ÐCæÍ˜AáÙÓ^xúX¢&Ž÷™>&_ÈsOkçèÓNŸFúôIÊ-¶FÞ}£‘9=æôhCCsµ&Œ†8 à M˜éMfç~`'þ îð=PŸÇ£¯#ŠÞ„šù¬ÐZÇ‹‹k˜&W×~é›Q¿@æ6|MˆÏþlL¡²DV‚fß«÷0-´ðBF$ ϹŒ`u_^FíÙF¢, ã¨C˜×8ÚM¾Ðõ;["Ñl9½³Í‘‚ ¬ Ò. ïvj\¹JLgŸ‹qBÖ%,NWJQçK „+/9!Í‹ÍîðǶ?ÚøÃÃjfR$   Áa$ a³IäÄíj†a½ T0/2—n‹‚þHÄœñ±áŒ;ÇذÆÝ‚5iXc_︂5 paÛû¦±‚>>ôQ´i/qÀQúÈØ0;È/:þ×ð׌4W(IFãøˆN>ëð÷ŒçÕ[ê|Ì/Ÿ`œ7à ó ®VX‹6dCþQ¸a:x¸a£”ÂS˸aÐ.ô>²m@¨1<°Ž™“'‘éw£Ù$¾ út‡ÛNPvz|´Ç·ãxçÎah¾*ï™™«°ö”€fb¬8µ±;–­´S—~NךÊ]QÏS¨„AnN£i, ?§†Öš;ýsÈi@T[åÔŽx(m•üéøhLMµ @“µXg¬Í!ñTÛT½6C©Í@Vï. ZÂÿŽŸÿû¢új«êá_¾ZáŸâÃRäâ•wF»Öz»PçN›ðZ;ágã$ÖU«w(ºþM›3,~†¶Ï“ãã3JœNC¢eÿ  Ä¿•Ž0ˆ–ªX/ÅÈÕ0¼8¯GÙÉ™ÄÈñP?¢L.ðÇOƒWi+0_/·5xyƒ~jOn3R1sÙ‡Ñ{@SPÙH™Â'²úó»hB™ÝézL$éñ± «“*¨ù%ÒH†ýÎkY…òù0JÚìΦÕsVOùx1± ƒ¡³EÔ• f©ÐÂK¬Sj'¼¶ú ÿÆ8噿¬¸ e&¤ÄµD"#5`Jl5žÝD3L\µñ*&6(°íÑ9^Ê·¥nʺêf$J9 £9zç"³Ñú}±Y•„£TÑ@<¹J±MyB¿ôÆ ¨ÂÑ/W£Qÿ—¨íFÍÿÝÕÚ2· zƒÉˆÏCJ>¯ÅÍèí¸w³Ñ¹¸¾Iút‘­[–üz‰P_F”%h^ÂB?T.„èh f¡I.HN%ce»'ÓøVáô/v Žðô/Ń2½‹ëh6dáè‹îu™K Ï®ÄpzE«î‚¶5I®nzQ¯ê£Ê*»X“怙ÿ½)=bòÀÆ}í ÝIòr\]3¸xõ..fãÞÅ ìÀäbÑMÜ#ØTD‘t™”>áki ƒb‹ÌH=8ô0,c{j$,49dÐxÔGh|a6äÜSq¿è}ÎÃÖ÷G1'yºî}‰9êÙñxŠÉWÅÙr ™S8/ÚÙPmÎNf ß…˜Ú¸t¨Ž†#NSF,_ÎfˆIYÊŸšZî‘:Ã0#ø‹ ThŒ¹ïFŒ³•aX9Í@ÖâXüE‘·¯bYà%ߘŒšç¤TF{ÊbA†õn5Ú2¹N.§:‰5éà*£"½˜˜¿e‘ßïÒ>Éùòž:*…¾Ñ|Ák3g‹‡ˆ™Ðb;‰ñ&$ÌXxS™kÚ#` ÅÕ¿¦í-»_bÎ*6ýš@¿M±·z  L3Uˆñ¸3õ†w’_b¢ŽãÓCGl\®Ø0&·LÚ/y¹ã S]Y" uk)ÔcY»‘ð:„åd—vµ Lª Òm˜M0^¯IÉŒ˜¥ì¯du6£]Ø8üÕÄ ' # bO§¯£_D"ä8´5XؽÈ{(~ÙÏ›þ°S—aZM&Ô8Wñù˜ó ¢;Píöv›UZ޶ÿõªPõèöv3ªlTÿZýì w!Ð_Ÿo:= wO÷í½nòžµ"È¥OnvÑÛÞ-´Îе£è`4£›u |$ô øón’°:d·÷t4ØŒª/ÄÎBwT¡ëð¢ÖxXy‘ÖhmæáûÂðÃ)À€5 õH1YŒŒÁi=­ž™SÖX˜‘7¿ˆÆ¥â‚à€qq=Ä÷zghìft²S¶ÓÙÝøõü¿"hœì¡#а+¿þúŠäŸs£×A%ê«Dláb)Ý)AÞ`ÓrB#O±‹Ñô9±x%qo¼zñÜuk“ûÕ¦©+SÐŽW?£Áö4ZXÉp4Ü@Rº6!ÔNtŒIzF3Ey7¹éõ¥WXKøµPA숢Ã7Àž‹qŒFÓV¯Å“ 9˜®îš†ßí#ëû3Z¦{n÷âo1C¯thú’ŒGCåŽÆŒêÄ&;ìÂu 5€ú­öwÐgz° ›œ4¥;ÈOàðF'Ò\ͨe×Û“<Ï1´ãlØß 4Å- ØwÝ\n€ú"°ð0*ÀAôôäÿ Ó3+i@%H±ÑD¨§€ÂÁÿÊj©úÐ&Á\`x0ü T{‚ëL3úwÔB‹bÙ˜&1%è9@û+_•/á£úÎóß³œö¬zsûïYN{&‰§öß;mÚ,“מž„¿—>šÖo$ÚYp '6‹À9®ꈬV";u/Ùizã‹k´ Øw‚›Ø¶CC¬A‚-ÜH™Œ—êju©ÉÕEbß®¬kœ¤>ò;Ø”ö ‚ï Xôš:c1²DfüuN%ç± Ökõ²‚¸4¾Á¦Â¿- _ÅÖoø1Vb …„ŸñR²«N%«X¯Om±žLc̾ ÓÑŨHж‹éµ!ß[}KnzÖ¶IV˜ TØ #!÷FžÔNÃÜÇ3œœØbÄä*jìrÿ«W>·ö8•¯I6+: ±ß * A 쇒ë„2Áç8c¢¿{—ÿ>ÿ;*Fe»GdÆwióc|Ë­D¥ˆ¼ÎL^Rm±Zª›Eîâ —þîþ­÷é"í“!Mn½‹8 ˆÖT(›½œ…ëÇè—O›çp$CÊwÐvé¸ît@]û…Õ",Ò!O' ï©Ð§.£º¦r$_VãñÈýv§MPèå;´Q©#PMœ^áíÛá´1p>{ÀÖrðhómûþFa#¹ÓÜà9Ú‡Ú©<{íJ)Áx^8dѨ]É.ÑùÜ$a©¦4ÕBGóÁ$!–(—3XK(úuÜ›à J ŽÑAçbÔ•©Ë$A:ÈŽ *‚s¤´¢P˜.gãÙÔ¨˜º½Ibq°Õá¼;úÊ2›bà,¡5D‡†‹ÎÓ;8uÝ輪GB–Ÿ•}w܇†+©ú%E^•Ùfûääb6ÁÙé.tR‘¦iK…¹“Œ3M¨&ÃÄ„_‰¯³|°pœ¦£)LŒáŒ®ÃF—Vu¬XG°ÔÃfpD;‚ë„g,îpôhÏ ã•ñ¨!ßh®WäÃßU¾oGÚåJhclÝÿ$ÃÃ~þgn{²tà³²PiŽŠnˆì€S£ýÒO ¸~f1»“7L„]Þ4 Aˆ/e^ü¤WMÛFM‹8$5HÓ’Ò›LF 9 …¤èʇçiw† ÝÐR\ý!æãì9cvã¾ã CvFåÏ)ù¯ØØۚРMR¼miôì7K4¥à;¬@ŸLB¢½|D±~¾‚b[»¡w*§SÜ.•*Í‚õ0Uúl“)ýN·<ÁL¦Ð‰÷•›¯sýõ ÞQµ¤˜ëM>dëHŸi,™æÀÄH6ãMKwµ˜‰_±ßކ¨w詌$ø¦%ÑÇ}"ï —¤ 4þH òÞºZJ p=4^‰Š–á 7À7Œ›#Ê—¦%¡´$¼aKÂ?/ZH(¡Èc¤â²ö`fdö¥-Ù›ü@iGV±A2vq!âí¼2žøÃ,]Àž’Ü­ˆ ÍöýÅ¿-å¿íL€ç%µ šòµŠžñO‹ž‘!cFXf#ŸŒe†ÕP!3”˜U¶Âb¶ TñOTÑ f‘d ßXV8÷r&@ý(ª ðÞn("ðl™ 8ÔŽÿCG„f½Õ|ÖÚkwvÌwAú:ÓÞ®<óÆVPý5pš~tzã 7ž´A_:}x뻇b(GÝ.:/úÿ‚²èK=0˜B­ÙÜk¼åÈøÓ ®ÐÝëtËÑi^b*!X*¹‹ÀÛí?ÚµQY0û¾½ s‹!N¡{{{ï¥ç޵¡QoòÏ}ñ³sœ¯f>zØ?ÄOþaO‡È$£ãCˆ-¢Ñ=:†…øþõAE‰_…õE?–Š‘AA¤»’.Âuø¯sÜltÓ M‡M`U¾°éU ÷ öI„¦Ÿ6 _?}‰ÎóÃHˆð2š„S,£ ‡‘é¯ëP·ÈøócíXE“È`÷Î{ŒBa$ÑB„ùã— @¦>jœ žÐ‘‘œi«,˜Ûk “%•£írô܈ 17þÄܼ´é7POñò^ØüW *¼0ú¯4ÖÌÆêXN’/Ž8Q°#b𷮜 &}l@%—znä§RäSÔõS·(={úb8ˆ à;ý.¼@ŽFôð"t̉èñÜ}ˆ/²ÆS "Xr‹£&½Å&±Kõé †÷8m:ÎðF5¡HНÁ Mì‚μÍî]ݯÖ]ã ±¥Ñ"çÐFSJ?|ä}opGn¶lªŽƒ_(v‚ÑÌð(ÍÝ3£·J´‰¹âYJ§Uã^d·ä‘³ÔQAÜü- ´¥ä‰bgºÓiî„^1'Ûzæ¸EÚQC×Hz¸Ä€•åGü¨.?âGõ±"~´¿of¿#gŸHÉògŠ@e^Õµ@”ƒZÕ–$sCI_쎼@<*ð*?#¦HÑoÍ<¥5Ó+¥Wé·{§Þ¢—A¿9›ÍY+£ôp*gF8•ÿªh*´GÙ!U”Ã8ã¹â¢ÐŸÿ÷ ¹âÅOá#Æ¿!˜‡š QUW–OéåÓ¦ñÍ â°NOB›¢á¥óGÎ/ÿÀ€.!e€ÔÆÀJ±ûçè ¢+Vo~Šða µq°^Qa``Z¢eHìÚ@G”zßê6Z'ÆÔòV¨¶š³Ú³ÊŠ]e5£ÊÀr |jHËtb,ÙrY¢óê®RHÝR‘–V÷Qh‹TKð:P “!L9eôF°ÐÊ.¬½âM ˜Mäm.LM>L£uX8$`€ÜMY£Œ×Ò­¼æë­J‘ñ×åö†^Âvg_©‰ Å—јøg_Äõ¸Ñ w[}À”A}Jò‹‡ònCÐmùèò1aÂjÎÞVø½—P^µ’;dSÀçÉ#£y“‚rlQi[2°½ûšþõØ7Žn¨‘}è³%~•Ì㻣5í]ƒ=ºŠ=ªbϫŽˬ]D³bï°°72í=æ´`]%ý2:)z)º‰—/ÀÛ[åëæ·â‹Âno|'Ói<ÄK !Š,#ô¶7E'ŸÛDtJ‘ùÿX´˜³+Ú¸lãž`Ó^JÃÜ ´“ý­/jÎõBÉm—>EGm‹•Š—&3EœžlqÄ—ÓE‡@ñѲnܯ »ª/ì©B®daÓL)—×¹¡ V²Ù’¿zó5ÿX?BþjðÁõàû÷;‡’7ÒÏ„HËŽÙråBú…ŠÎýûMˆ9«usáPmê¿æël(5ŒÌk˜Â`?'×íÛn)µßlWç˜9‹ 4ÆZ5pŸ™¶ßô&¯IÚ Ò€!`¾Í!Ñ+”ñÌ×®€2Én Oód¨‚fÖ;U}ÜÇËÓä’À©Hˆ¯ó8<‰ "o<é4ö;Bàuß÷›¢ïÀKΡûR:ÓVs•_˜+™5 Ó­Ax©¡æ²Ã²AµvQé0þÞ›”ÍKQœ£­qéçÔ®êJ dœ4o;§µ‡Œ"ºox‹¬Ûܯò¥8šn#2R!Y nœà_A–$ÞmŸ(ÚÑ<{•<½âá•ÈSdAXÌ¥þjZF„69t‘@f8wä*N0¬@!´99_íš§C$%<œ(ãš/z¡¬ŸGvǰ ±žó!HðåÇZ?­'@ê9BZ(e“F; øNMÚD+¼i‹ºŒ&¸m°†ã¹g’õ‰FøöO¼ j²£õƆ«îFtSÔ {œc¢(DÁ£{B÷€ÞŦdS=TC¯Šµùc혖f¾yjeü̳f¸ùbËb¥õXÝÍÀ™Z‚ºa‰“¨f׌ükÞs§_rgÝpgDÿm/-úo8þï·'ÿ»ý¢ÏÜø¿¯^®âÿ>ŇåÈÿûé‘ãÿŠ™ן~kì×dàÛU¸_ ÷Ë|yÊ(¾8?GßOÿA|WáÄ~ØpbHfïkïkïKJØ*Þ×*Þ×*Þ×*Þ×÷‰÷µØ«Uè*8NE$´Ôñ€*nX3&æYA|^èr¸ŒE¹"ֵ©Mرŕã(é}DT‚=I~%ÍBaàXåÚ€¨2×å^2wÉæCË6ñëG f£©$rl>ÌaºÕðêÆ1Ú8Œ’Øï,ê÷Šì"^Y4¨K–}gÙ&TPña¶É'6Lú­JŽ˜0N,ŽäÂ\D “Þ/†±7‡*ðKdÆw¡ë*ì’AÈŒø¢º|<ä/"LK«žAb¸?œxþ^[Œb½X8p eU¶¸pà–îÞ‡¶ à’ÎnÐ'ÞvÛ*ÂKv —t2?c„—Ÿ"P‹hªÓbiYECYECYECyêh(BØöxÉ(»ª¼Á†lYÑG<Ȥ¢çNëÁ½±DˉŹáXइ°EŒÉâ¼›Åa¹ceå0%€‰5{ÔȾš3’yc•|ú)b•Ü3(ÉR¢¨`Õ*{9üŽqHŽæ¬NQ¾ø#;«$?H’Tñ»w’w{«$‘~¾Š@òãG Y¦k5Ú, aÂÝ‚]iv¨f<‚=û{D}ñ±?åEm̽‡*f¹2&ç=Ës!4]ø3o’<»x H›E˜iÙþŒQÈ¥Ñoð\G·ˆ¶›í-ò® m7‘¬³?i+Û[ú©¿»Dù4Ð{ù?ÿŽþÆÆ4_²ó°l¿ £¿p#·è'rw’áGÄp<†r`ÿùîǦ”?Äý8¥;ßÇù˜¿ð=søóœ‹ŸÀ?8k¥]¾ðó•ð2ýƒ_.Ï?øÅåübå¬>÷õŽŒÉ“Á)“YJ»˜§zˆ?ìÒo¤w)ÃGõòþÞÌiÁ3¼šsx(Z¢‡òêó˜ßÿûjR}RÿïÊË/ª®ÿwõUeåÿýž¥¶ÿ÷ÛNV­îÇ!Ïï:þ¬§ùaÿ<Øs|®%Ä<.ט)){Hu žçä\/0Ñ…<›al„ÝpòOÞ lßÉ4Ž@3ŠÇî˜Ðÿ¤*vy>ˆI§Æ‹Ž~oÜ7}c•ˆ=fý²@2‰j¥oðý wsÞï•ê¥o¢%ã>ÅpªFÚdø¥p²V,ÕJô¹âoMùUs­èÕYÅ·¶×ͪ¿Elj«—¬}+§6æÞ<ùÿQ ¿5øU‚ûêŒë¾î}‰£ó^½Ç_’Ñl‚‰z)3òa±'k¥*^j®Ñ±ãø}·½ŸÃçš{–‰ˆV¿–ŽG¹Øæ8þ2Ó4 êìš×Ùœ®ÇòOǘ½_¯còOWN£H2ËAÕ$ã{ñj7d§ëÑW€k`.±^óÛõ·ö<¡±^çÏ÷™ßÁ·îííŒó«FM­/Åëy NÏÒ›À$D>Ìëôœæþ›êl¬…ᯋ…kŸ%ün¯]eÐðÛS4ÜmÒÎé|—‹äNC`?rع?¡á÷€Ä'k<„ô3¬I¿ínn/ÁåÚL\œ‡_ÎÁƒ™õ0¶ `f_øeëyË:`>ƒ‹ù¡|pz™å €i\RÝÌ}ñİ“¢Y;ÆQÆÊÊ[D/ÈÂÉmã@heØŠ±SøüzX†ÿ\ª­% tƒ%åÐ7ýÕéq=í±( ÿ>ÃWK¥ª÷†,Êï…¬™‡ƒ›bÊt@‡Ò‚_ÇePÐÇä~tZ/wi°;B)Іȸ!{*ªÈG×+V·‹Õ3Šáâ*Jítý’vÒ×Wúd7×ou‡õmìІêöq^-á&"0+Ÿž®Ã÷ÜÉÔ’¸3þ5»¢I…ê1š;(ƒïh¸÷…kóZ¨*·øóX½œ/®zUœ–K_ ëˆIžQu¹¨ì¾@‘¤ÜçD¹—§ÀüÑ„óU4w90æX ‚Õßs)¸WW¬Û¥MUª)oBË[J;ôœÊ‹õ}rèl2ó'Üö4‚ÊëÏeøoéNŽËQ®q9D”W–i¤"chþ¤MSà¨:!p¶¸eQ÷& “‘sÆ d‘ÍêT-e‚,©±b)bîŠE(£³–ôB¹}¯­‚ »¾¼>Àñ¸ò*¶RbSJ_Ä>WW ÊYQ·”ƒŒÊ狺ٗºI. ú¤É›Q(/CÒ'ˆQØ$>Ò/8IîÑèÅyšZ V4¯DútôCì«Bé¸éTœuDèþú¤÷ÿÕêËí—~ü÷íÕýÿS|X>Ýûÿîêþÿ‡½ÿïþ,÷ÿ¥Ò»¬«l|ü´¨‘¯ñKïî‡À‚ €Ä ƒ…yðáŽ/39ß”Gäu!¾™¸:(M;âáâÑËsWÀCóÐ`ç?Éõÿb1φëÿüÑÓW×ÿ«ëÿ…ºÿ×ÿ˹ýÿî—ÿâáÜkÿy÷üóA©·ýçU5(°Á“!àˆ*_})wýt¤Ëþ£#qçÈ—üG|É?–°k¹úóB³Í ¹¶ºø·)þw]üwó_üóÐÏ Ëc†âÑ«‡cÙ• tDßH…ô%þxø%†(zZ¨B1¸á˜NV›ê‡Š$ þx»§o· ád‚Ù¨E°å]Œúñÿx~Œ‹añõ»õ¤Õ2\ͽC‰rC,"eAKkä}ë2¢Mkƒn‡Zu/[·èØ}A™ì=ÔwÈ9ïíµõ;4.3×I>2.<#ãþí½XãË©vd ZÃç51²Íåuº³Û8¬¯KKò|n/å8 XÆ…d¤y}äõÅn]Ñæhˆ3: ‚ ’}á%Úd!4rw6í9·ª;óÛ@ÝßHiIžò~Ç£|CÉ7¯XýÓð‰ÙÔN®®éd_Ÿ>Ñ…Š\4Ôckî•ן×?ŸÃÙJþ’µê£eŽ,,+%’7R™#œ³K¥yeL›9‘“ªb. .0j>9XÅÔÐæÅCFí|¡$ù‘µ©ùaØ2Ô .rp­–Þg©Ê<€,²VÕ-(X^Œ[4ïHG4ï9—,˜ Q[âR>|Ë™1O(çaçré.bAûG19¸™>x½rätÑõ*¯4?òzõüAa#óbux¥§Á ð_– ÿ›ÿçÕ–‡ÿ«VVø¿'ù°¬9ø¿S58ÆkêÅÃGŽ‹˜>«DĶˆ•Ä öÇÉØXè fмõÉ üXG¸³19 Fø‘~ÊÖæÇÊ–‹ÁO%²lBQ·$ê ¯ÁØrÉs Nf˜F¤¦¡‹N1c4q‹e‰ç@€ A±JßÞüW$L"~U7¾ÃoFcÆ ß×ßaÞOñ¢à“"å¦Hr¯QY yÖL(V80'¡tÕ²•Ëÿéà;&úqzw‹&MFƒ/qÿµØL“(Þ©Ûo9ïl¿ÖxJó|‹rGFy‚-òIÝŒî‰ùJ]ÔßiÚËÈq7¶gé€Å ã¸ôp3+1¥ä1Œ–€1Ì@äåÄšR‹˜ˆ<hAñ TW~d G!#l•nG:ž/;ÿkzÿé3Y^ˆ3‹„´›3›KĶüô0»fe™X3?1ÀÚ¸ÆUËÑbkë%lkã·”w·Åkx­S/ò»sSÅŽ˜!ƒ]!áÁ{"dÉßh:4ë×›kE5àððb0“9ÕM2"tß~<™ŽGwFî§„D暃õ¼sÐÛ@¤¨ÔÝ¡HÁÏ”u“Žž3R›Ñ 7#u‚¥7#Ïœ¬ÏÃØþû *¥´[Ê e-Bœ$©ÄZç€iÁÊ@Èj²1­hTÒ>ø—FlëG)±RVS’i{ù­m¼²¹cVäÉE<¤ÑöÏÎ;Ï­–Z•â#ä–&”_匜œñ<–Ñ6 fµ(=¾7Ð[Sá¬æ sXöNµ0@QâAö¬[ëž›ËûIÐsÊŠOu¹¡rL‰ë©ÕCDMÆ}ÌD.ï&¨Î÷ÉCBÖ‹mÀŒJný¿SÓ¶·¢ul?Έ ö,ÑËú0ÍïÅ¡d8"½šì„7á­:¨…ˆàòà»'@WfîÔy,ΫSöD “Žì#ÏØVñ¾âb NÏR‹yÐÀ( ô¿ô˜|2Ù;]F—ç%sï¶k-™!1`a12¤G­½ÆÛïv—‰ÅÓ£Ü-î4°wZvá²X+Óià‘ússvÏÅì‡rmGó’m/ äÿ„Ýiùµ…Û€Ÿ_»ùcæ×^Ôe@&Í^(…ó½ó(çÎ~œ‘ÌB´N¥:–¤HTYð¬œÇ)­Óæ<,òÛÓèû&BÎåq±Ú@/ËïO¯ |uGëš‘/èÖÍ+C—À_óõ·+=3£c¼ÞÊÕcTdÉëö`±˜ vɽÓBÚ5‹¼^I»FÑœ±ò§‡zïâ³r@µÕ̺E†Éä*Á]ItÒʦ…ûjdå²SÃHµ*Þö“F9n&Æj Wè4m—ù×?ô¯;¿n•EØ(üb£JMgpå"N¾ôÎ)äS2À]Çßzýø‚ŒãÐFù«lÒ±š'ÚVŽÎᛯqôy8úŠ6 WøId…YáC4…>d…YáCÒç`}is°þ 9X_Ú¬?h®ð +<ÈàAn´P¬*åÈù(äG%¸<òúÈgÍèw,¯  ‘:½Ði¸Pµ„ÅZ¥Rõ{¡C&&´CèÝ»ð††}LÊæ@r/u72’ew=p*q(›ˆ #1)xˆœºmõ[ca”ɳ9sHˆr;¯,·3…¹mJ³hÌiNYÚ‹Ht{a‘V%ZyåY×âü‚„D;,Öí…åÚ’a6º\[ú•'}¹åÚš^ÁÉó´rÝH—ki;JíF^ÑndŠvÃíÆCD»±ˆh7í%NSJl³h$º±’è%KôèÛ½7¢8ç´Hü¥í.ŒB @³Ñ~a2&0Ú/L&”5¤töôže;²Yßܽ†ç4ÇHcMé+V4™‹³ÁàßUw gja5Ìn`z`sŸZë•b˜¢W×Ñͨ_ ;?¾º@f ÷gã)æ™ßá”6°-£¦}´Þ›@ÍÐ0<Ï“ó[¨Ïåñë¨7þí÷®cؼvc<þѤ…nõ Úäbb\ ÂÓÙÅgxû¤Sã*ŽF}4¯"ÄØÞ›bwð^$c2M¦T#2Ì"œwr)g9ÊáDL5' ˆA 8ô¦`(0ójüBÈk óÙ„t6ºðùh6ìOt¼qñZ´_ÜŽÆS^ Û½t/¾‹ÇE8Öð:áb4·ã¾Ü;úñäbœÜÊ1%‘“!Ч݃ïùú?ê|‰‡å¨ò2ÚÏ£­›±x2|ê÷ʽ\„jƒª°‰5`>7ù¯¶ø!¾ü¸ô8Í %^¾$u÷)1©e:rÛþ£"S7ÄIœãÌoÆ7™àÕÇv11$.hÒ5¾j¾k8ß)¨óÈJ+C+DÞ:°µ• ½×¨Ò¯Œê!zªñ&x¦ÉPOž7’ˆø®m~Ù_6Œ/W°àŸlÁ£¥ž´­GmëYÃzÖÈ‚ú²hÞà«ÑVÛ÷ ¹"ÙP$÷ ù ¹Lòî †ü„!ï.ŠCX%=†ñ]ü¬i€õqo/ð7ŲøKÏÜ¢.Óö µ­Rí`±†_¬akØÅ|L5Ï8oyZÆzŽ~$pô¼À•+hôqĵëÂ{Zü÷«ê‹Š‹ÿ~¾µÂ?ɇ%ßÅrðß0ëßfh©ó>:m–£ÓÌÿÁÏZ½Ó}¿‘Rq†ÅÏ„K•b¿FDÿIÈqƒÍéV%Ùk"G¾@rd¨àØQY«¸o9ÙT3±éÿ ¸ô½ ntD…,¹u~M²L÷)qBvþ’m芢苂žþ2ö üz) ‚ønr¨DPMëQ®fÔ€2zp˜DÉ-àåx6ìošâàt¨Ñuop¹1ºEx`:=ù¿·N™•4 ¤ØhâM®¼kœà_Y-]¡ÉWhòïƒ&ωk˜µUuq‚P[¸i“Ä B½‚P¯ Ô¦„ž6#‹¾¼Š<= /?0Ô´w¾‘`18¸þ²¸ˆû}ѵÑÙ0Ò¦zc8”÷I25 lÛ¿¡!֞ײR”ã òN;4r¶D‰œrºf°®q’úÈï`CtPjm#^Ý4 Ln`÷Ç Zd ˆÈþnîɬIô”ÕKBÉ@ûñß!±É%áð¶~ÃxYIP´¼Uåg¼ß-ªSÉ*>(¥6ŠXï”ER«ã5Á…ö"VZ¬­½êÂ5`×-èžß’›ž¥•‘*~qßäf¢`%öæ+¹MÙFdº%Õ~Ä„Ö7”¨ÿÕ+Ÿ[*ŒÊפº Ä„¡((dÿ™ A |/Ö£½ãN„ÏqÆD÷þ.ÿ}þwTŒÊv1Ž€ˆïŠˆÂ´mнq*òÂ(ÈÂKª-VKu³Q&ÀQH¸ôw÷o­Î%” K&Ñí wâ1bÑšÊúTÉYh¢ÜÄ"7:Ç•Ïæ9,o Í.P¾kdâwÐqλÐ4% *ºá¸¸˜aôw< ŠÖŒ‰§TÙ×äB¤ÎÂܺ„…5Ûxr(£j©Ó¬í¼+¬uÖà|ŒÐ-ä— a¥ŽÒ:"ÁŸä°‹›Àï[ežÎìóKX¨ÉèÆš¿ÖÉÏEÂðŒï°ÁT^ôÆ^Ú¬† †‰gY`NœkÓÑ8=œ‘ÙEùÎ1ƒY…`ÖúpD‹ƒÛycž—áZ>pµ0—€†xg…Fs½ò š®Ñi䥨Sz(NÌ>çxÝœ¹íÉRÎÊbw;*º?ÌôLõ ™ævzœ}–èI©3“ˆÉ‚Ñxz=bÿF[´½Ù.?±¿1_ÄU[ØVC¢-!½6 l5- $u£ h0]$„R&: ‰v޳æbšÝ|š]×CÓƒå>H|¢9E^Ú›šLŒˆ×Ü#´ ÞªPªÏŠÊ\h5ªor$ÍVá"$áÑ dCt7é˜ð°°£›!Ñ'³qÌ-‡ÿƒn_JÉVÂC`-ž u ®F+~g¿Y“^êjñ7Œ*À›0H­¾ð¼@ïþ!3øBÛ('6ÞÁ›TrbãÃï¥uú®ð20Ô¹0ÜeÀߘãJÑ;§"œ­«é¹=JkŽ}ÁÙ£ æÙp»à%éc#âkû ×~@ºØÂpá›Àô‚ ,ލÁ$â w ofƒi‚ 8wÌçÁeÒHA{Û6š!»wKˆîŽlhAÎ`»ôfä«X®Ïïw±¯‡c ñ¿)Hù‚;c †¹ qwiá»/®ÑÃm¢J¼GÉœ]LÑïîš4z¦×í»í<1ÏkW1OXœÕÒõxlpý'«¹Ü?>ù±@Ô†.úªBH€:›. Â/ÑP±¢Ð÷I)¶|Z[>m2%Ÿ-¨^ýy ÓÐJýC¯`Dùô0uŽìÛ=L*Ÿ £6ô/mhl`½6Ð ýOÝöÉž„Lhe<¼&V%ÔÉ¿ŠÎ†‚ÕU'õ¢›Þ¨X³¾> '“Ž@ç ê^ ~mpûŠ"%R_ºª¸ÄL"Ê9ACZ›6ÃÂ…h¨„î\{ž{Žz{ІãîÀî¡Ç-ÃÀ_{w˜×i2À™imÕp R\}&Ü ä’ðÉÁ92B¿&êB”ˆ£Ÿ"ÚÚ “Šu²i½Kyz(š¼#­Õnx§XLÛ1ùûÖ‰ST] Bgʤ#³V’ª‚‰-€ISȲF 2A#JR+Òú¨öI;a|Knf7†J Ÿ[Ú­àÔ2æQã!†Æcó Á0¡Ó)6]<¢a¸oo¢Yس½öû,"øœœ„H“~žÍÉ@椶­û1³ið}Ê햅ȼkïe¶^@¹$å› òc…Èž>j;ïOZÝrÔ(Gåèþ_ëì•£ÖYzó÷Ž;ˆÄé¶÷à'þ¿¶¿WáUúAS?¦ÍÙîÉQjŸÈ 2GÒ:µÓ½B´äÌâX Ú§ã?ÊÑÎÎ{úñnïè´,Ô²0*- T«£•®qT{[ž6õÞ«À˜±O:¨xY¾æ·FA“BÍ Ô·ݬä¢#ñ6I*_ A¡ÛøS†ß£uþ–x©¿~$ˆ•Kš ¨Rè1ð!XONÓP‡RB "»ˆ‡CZÂí?ˆ¨²åþ”»°â’˜Y›ÑÞïÌÇfÜ?\&]eÓà»ïÑ¢}‘_ Ù•#ãÃvßš7ÆnÊŸzà!ЊËÚm´Nöòõ¦…xC_?ކˆ¤×x{ÐÂIs–ÍZ9ºÌ&QEõš™Ñ†Ñ õX‰€Ù{·“d0ê™ÅŒùJ§w#˜Ûb½·WAÚg%.b|_ÅâôüÖ§zµ;Òg/çÔ­ŒÌns߸¦í4²ƒ<ÓV ß©}¿j3ܸoŽF·Ñl8Mh­½½ÅØÅ•=Ô~J߯=,ÿ+ÎIýoqmªÃ1ª•¢OVûè‚·:B¤Õiº É¾"ï{,¨•¦WMte-¯š>Y4è‘&hd¾ ™£Ð:6ôL*x Oàà‚žÜ…6üZ„1ä¿jÅþø„[þR‡EßµZÁîBøø¬(õl»EÊE\y–i㜦M©³Má«+NŠš,Ú‡#Ïžp¥CÏiM‡Ü¹…îDn,—xÚì÷ÙzçSžxç_˜‚x qì³Æó¸(’ ƒ8Y˜åí­¨!DÙZ(Ä•QƒV ±ƒ´4h¤YB¶SÅXuxT<ØO*TÚ÷b+: µ>ПO‡ºÉ œ‡F“âÏUçmhQ˜ Æ벂ñä+()×me'ü¾n£ÉÖç[º°¿([Í:4›u¨u"Ö”jÔ÷CÆ Cãà)í/¶R©{`Ò«G{õ"0Œ/y±ƒ¡VFße_>hi ^e ”ƒöGøò¯”¹sN3w¼)†ÁR ´ÅãwU3W_ƒŸö‡àT&µB€Þ:¯@—KÚÍf»Õ›N¥Š3ÿJÑkL¨c.[tð÷ÝMXÏ`Kb¬6»`Þ!ë6+ªÙT/7`ªã€v2LŠ22¬FÌZMÙsȪUÑ~|1ŽÉwêüN{P÷äµ ìÕ¨?îâg€/‹æ†*Ú.Fµ)‡µ6'ùî¯ÝXÁ°$F± µ4>Ôt?¾/éGͽM¡ïÐS{ I9ÂW¸Æ ,ðä¶¶Se¦[˜10ગ ­6EZ;£º¡žT|ø +$-ukA#©D¦c+7N9¥×©ÞÛd…&È?×Ýåíû¨û> ÇM@-Ò³Õ! _Pø¤ æÏÄ7Åhsoò%ÅçuÚ†¤Z+mæ ­  P›1j‹£Y­K½ªhTå©Wöý,¼£U­´ë[k²âpK%=;'±w¹}_ιӌ”}ÜjCë,Ý&+Î<ÿcx8êh:"ÂŽ³ XkPPäaY—ƒã¦]»‡°xàŒ—¡T¦h©ºdŠmÆûaeÕ:~œú ÔUuÿÁÃEÖ;+€«KëA.ÑÅvác±ìjìa*åNGÉýu)aH%6wBÕ.ýâÜíð4£õÐΨ>4Ô);⯮ƮÞA³¯°oU¶RöM^(iœi¥äµÖ+2ÄoYÛ¤!™Lµ&åø(lh1_ Pp€Ï£îP¸…ÈP¤•ÚZÑÝ$¢%íŸý+)²ÄŸ°žY2¢R™§*³–äCŠ3ƒÃžC%ÁްùÕ7¿šC±] Ã]7’Û&HhÖ¾Ù’!}ô­«z[mÚž²\I; «"¤¶Ê‹_égîl§L²RRY”|ºÅ²}\L³þý™(D}@»“7yS‘ùí}m™Z!óòOÿ¿äÙøÿ/+¯ªŒÿß®>Qy…øÿ/_¬ðÿOñái¬¯4Åÿ$W×½'{»óý24‡ŽvM”¾ýÂέ?áÇŸõÖn'‹Š|çÏÖûöQYÿ‰·À@ƒ®»¡&ñ3ƒPªïA4ßý`ÞG¹'¡”„åƒÞM<‰vã››x€áHzWPyßõƒäªÇè?Fÿg½Kú=:˜š„z¨¿ 'gŠÏ”åå°™Ù"ÓÝá_sû äq)!°ÒèrúCÝàB‚¡غòÓ0Û”Ûg#µMükãè¸ÙØit£Â3˜¼u?¼¨7†|Iþ>NZ,ÓÅQ ¿ÚuýT8[}zˆ‡Ç£øiÎFjŽôŽu„SsIüQy—dTj- ÁøœE F%á†/I专DÒ£äÓ½]J¢ey•Dq,”{ BÊðj(‘ǃ5Y9 ÒeÑÔ¾šåòÆIš/l‰ >5®¦7Ñ“”xÆ’{©l%z4©z¤¨Ù}UmöÙ]˜á.ÿ ÎßÀä¹îáa Cß'ƒä£ðJÞŠ .ôc[¨Ž™[fp6¦Ö>vT5 iÝ Öw¡Áè+"z˜ÆEo;håÞ°o Žu¦¬^øªú6š]Õ|°<…"ÏYçßè&V)l t .;‡v tÀLž£ŒŠd諚"ίV®G_ ü •4½ ”Ñ64M¿íœ8¹jŽzÝcAiÈ»Îà e *»ˆhn{“‰\xÑð3,¹¸ÆxÓ_hx˜ï³ñ…c2€ö§©ªY=f6jÆæq³ZÐÇj+œ%$bY-°SÛHg-/4Ç[û&,å—Ÿ/ø›0òà1Æq_Å£¥Ï`]º\‹üôƒ»M³ï”Ħ5²Ûg¾ð¾PMïT.Ý*!½½j0¯'4­]«%ùpö•y§ƒ¶Áš´vl<»ZO\O‰ºªA€™û(B£1^„Sß$šEÐû äöƒ‹æ¹Â=Ü .¿\to8låäÖ|¬ã>îo÷õ|“›e K§7§tmA79€¹ÊhW79¥²sɤy¹¥—uA n¶ÛƒÜÛ¢û{¸=Ô¹í~m‹º´uñÅšº!Þl]שÓùC{tEóÚèËÝËížlž›Û厵– Ûò×§å6)9 ¬ÚŠõ„·HÚ:Ê,ïjœ1f¨±Y âKÎBÂ˦ÞPK®HÜ6å–ªì>ì·jx×ö×~‹F´µÞ²*Æ=Ñ*µŒKbVqé˜)T4n.Á _˜Ž %.ƒ·2%ª†ëàBòta¥3ú-­:bÇ Aß6ê›]©Þ:Ñäš"¾Bå!2t/ÇÙ{ÚùÉñÒZ€:…ð‰øMd'6Ýþ(æ%ê¢7Sšæ•J&ˆÔ`ºÅí!$`|uN 5‹^Sô‡ÜÕÛs˜ˆ¶àä‘êŠ_P¼ÿž\3Pa„Äú‰êÇÀáTáéHR¸@I"QˆÓ%äÞt'êJêéq7ÏžÑ<'ÏùwFKpñ\Ô»³óÖôî\̱3šçÛù ·ÎHr"Ç?O>}Ú‡Ž*´¦¡†;‡qÖÙèÔź·ái6ÇšJçs<"î®õà fX%Œãæ‘ÓAQ¸n}_Ïtp ¬"©eBm#ÁpõcÊ ÀYŠÑP,›mÀóMbiZ0•ÐÙl¦ ÂdN–;yÉÆøê½ŸW¦éŠ)åsÈÌðÂTvžù¾˜‘i×L™K-½Ç<ÒâKž éxy½§àcJ×ZPÆ*Š oð¬(lM–™Ð0 Y¶@a©Ñçl«P®!7ï3$ï÷­®l¨®”Y:yåPšk2Dõ–ç`Ø"9ÿ¥7NF³€¥Ïã“`fAE1J >Ñ+ 3 å»$]ÍÊZ#G-\Z‰p·tdÐ Ï«âŸE4"dYá¯rB~Ùô‹W-üY郞èy¦hÙ™Õ¤ôôãoÚÿ›„HÉ¢5†Ï6çu >t1VñÌ…†©Ù-s{ w›Ä"ƒƒAO­Ó*­y¾¡¤œ-8j[¶“òë¢1°*öe¢9ÒeÓžÄ(&iÄ_—¡çEûôăoÚİW—I<è«lÉÇD`Ým CSÔ&Skç—dž”ý?çÎ/C¡ý__ì]¦f‚]á$¡wÚvûŸYL«sA\ o9€Ÿ¯†Á‰" ó…—´\Ú:z;cŠArì±#‡a,côc&Ñ&…WMȇÅ4º€,͆ˆ¯4›•fó]4kò®Ô›GWo 5¨+¥¢óMúÖ¨ÝÎÆ¾¨Xʽ†@ž¶dǛĪÚפÒU'o(¿—&%ÁaC$ÐVD.‚™©aU`2¼£ 3žHu(è˜Æ|BFvö/'”G$²ÅÑÆ:17AEÞ=›sY$ºæu¥7¸arݘ1YTÞ\¹2Ñ^û©µ’’_‘ɼ/1>—˜­Vø>‘…NYÐT›h ܉K„$±ÑR¬ŠÕ>ý›ÀHûר ~ r7xpà;;ÐŒ”3¡%4k6­ö§?ÝöÞþŸäšPŒ^G¯chëè``¶¬È¨Ô sZîr;_c,»é&PQk”Ž 2³*=zìMX1muÞ@»ž ÕƒÞcÍÎñ†6Nµ+Aðö>þÄÚ\¢Ôß@{õ@bþœ,¼õë†&Vãá—d<Ríê’ ÓÆÓh÷ýI½¹&rÜÞÛitï[Þ"X «GsÒÀn¿鸜ѥ,HK1SÞµ÷:ïHª(GžC¢tB¶ë·¸ÐCÍJÔk ȇ)µ+P€Õ_â×”d„ÝÅXoZs-Ïÿæ ™rȰnçéBÐý†扡x»ÿª˜‰÷ªÓøâz˜ü}?©o{3è./ƒ„Bh` )«wâ„D4>0!þ<‡Éð'¹;Š Uþù/îIËÂH™i!­ç+&[¿ËZv>6:{$ Û( ûƒÞ•R%ØG]á@íŠhEìM§ñÍ-!@Ÿ âbÿ¥YÄ×/úQøØêMc5wa!=ã6!¡ÄQ>üã²7˜Äi‹UT ·Ï]†äéù 7™byx®bMF‹f36 Î :É';vÄÉM>!ä˜nÀ¼£´­Tk€šU®²ñľ¿G[$¸"Aï %’+ã?äLWI°ÐŠ„É]wÊ ÔØ;™–A¥zšF'&Iy½XNdæ!D·´Óˆ;\thÕ„Œ4ö&¬±µ~ðÚæÈöL=€=ØcL,’{¯DLÑbš„F‡<aHLô®Oj_ãÁ€øj¡$äÚ0™ùö æîfØVÔ¨xÂTBñùF S “ÃæÑBà°±ì>*’N'Z`0¡`Ý–Pw­@)ûå \‘ÍÝŒêwJ´:kMñ^ýˆZ£;V_Ò¡÷yúgâž M—ëLë¦ÝÛôb1-ÓëØˆÊhŸ£Üû¨JÑq`cNOú£èŠNî­~È*Kg-yþ²Ù æ:†³“}µ›Þ ½M>~ìÛ”¨µåy!g­Ðµe¶27\,ëÿ»{ûµ“&Fj  ü‚ †üg/PI«Kj‚x?½ž¶C8Ú=³¿Éê›ÕH¡Ú³ X´±ÈÖ¼2Á婬íU¶µù"»ˆÛy*SÕ…B ³[9òµöŒárÕº¬Ö…‡yH[§‡l„´Ì\½ï¶O:]«÷8Ssõœvíœ=հǾ]Õ5æîÜQíÓŸdSïä"¯_5È…E¯0)‘œ•¯æðã.âi p{gïÃIzÊt2ý“³’¢Ðàoéï·hÅÍpw¬±‡/3°{tœ±€5›â->ö nÖѵ˜eëcû}ëmzÏo¡ª=–Ãô Ñž»¾•£“V§[ƒó»hO`LŽ!ͱa)l4%Û `÷Ã?ñíÖî^È3ô^iä;Úݬ&H¥|†FwþÜ?FíþÏO˜S¶&òTÂo(.é8ú*õ´õnOõ˜Æù“ýçNú˜ÜƒÊœà×ɰ:™!@^çC\žJz‡´0ÎKZÎÅsÜvÝ­T”Æ,×Âä¸ùvoÓßB‰¾•Ónàmi7 EáÉ(öÆn¡.æÅ72z–NÏ(?'£©ÔÒƒ<µ× _CÑ#1t)#špC½/xooúJ-Ódƒ:‘³¤À{)Ê“¹–Qp¸Fƒ!p`ŒÐÐzðqìûyÞÁWïS\ð܃¯«y㬴¡w¸šIoŽÌa€TN²ºï¿œÑw*hR8˜×'ÝRñ­÷C‘¿2 T\N($Ÿã¶\eW•—íjsIœÜ€"ð×.›„a,t"¬Õ<þê‚füûÐóª»V🤠éàü"4ÊÚkFè õ™±DC+Ñú1Àÿb±üSCùSyn©OP6¹•AÑöŒôŸè?57€,ñÜ-1?5€,ú2Pt^fYö_~Ùy‰“=.ÏÏ  Ên‡'@FZ€PV€O´÷É `ŠbÞ´Òæi-»ïS˜qpÝ‹\c’£ÆQIY Øeÿ”ZÔ"ו»¤^IÜ&¦ÅnÌh"CLÈn`z¹ôæm/ÞËÖ)@¸LðëLć•aak éi ˜FòþÒ3é›îš<²¿‰Ök⋚ø†–…ˆÍ*¥ F}*Ü’[ ½2ÂVº1+Mˇˆ`ÉåÙ¶å+; 1 BJmu_«]­=C¿Ò,VæT³ùÄ ÛÐ.j9ú%³ÕµFLk÷ºjv#Šæ¤”'å¥Ìq㜂V9>Ž´¶²-„n„8‡–j­Wdœ*õKµä|˃áoH‹Ošé§li¢^qs-ÿ,´Bð#4ÍŒƒgqÞá3¼Ò±>(Õ\{ùsçÞ©›&¸Š_j¥7ëJiŸuBÙôxúhLÁŸ?s Âo"6}³,b±‘ý¬ÃŸg=Xv+ökPÅÜf8£³})þ÷n ÷ÖÞ×e7ânpxí%Ýo(~Žý£U›7&‘ÜÛh àªÑ©Â!Œµ-/”0vL™‘ûË”°,'{Ÿ¨o|ÚÄyLHGœ”BáÇ”S)Z[îc§Õ*dê}Y é.IÏvMiLÍÚW%¤y!ùÕ[ÿZ÷öÀj°õ·RNí…8ÿêÅÐç£J[@ 9üGáuù È¨h‰7läùF<e `qÃ^VfS-0±àÓ‘„ËP2ábÁf(ºÈ`4›ÜÙ Æ3Ä]°æ%;¤ ñ¬Ë#ðø£Å »Iàù"FQïË(éGðŒ¶@AÞÊFd¶†?Å„ñƒh‡SÑUåmCOTãÞÈ’Zã{D›Ó~ØÍ?ã€l/éZ9-fÕÖzL%²·}ÊÚÛÜE†Õ0#CIæÆ¥$ 0Zâ)þöÂñT{^£óìyóNO÷ßó¢ìMoÞR˜ûX7·\ž]ož XÕèìZ<dô‚>Ò6¹à®™ÚÏp}öNzÎÝ5´1}Ï]3û¤¹kfo›y²è„‘«´?ÊÇÿ?ù²ÜèÿóâÿW¶_l¿äøÿ¯*Ï·^T1þµºŠÿÿ$ž“zûýI·ÑÚéÚ1s²Ú¶V d<ÏDe}š~Œ}:¾?NÈÿ+g_¹‡ÂÇç/áfÜû—&sá ðòl0'<²GåŸáÓ½¨R×ý˜ÁÛÍhíFvÝüÕˆqnÁSiü%àÝqŸ¤æ ºÿ–Z[ÔD9‚aW©“âÎ.™5¾LDCÕáÍe. :KÿÖÉ‘‰ß,”ÁiE¯ÂzÞ&_F”?ñ&ž^úX æ)\jpDR-{@ëvá¿“Ré]™B…™!hÕ1 _mŠW›Þ«Í5£o'Q£ƒEÈE ýGQ´Ð…IxHQ×fÃd*bÔ(Î+§Uv”ýáví@ðÜnªÎ:iT]z¥Š¿Võ;Td²™Iµ&àæd —Œƒqº‰k?] ¯+Þ¸ƒyÎ2;Z8jv´Xàìì`ÌôéZ.®®\›q”͸Í&…´ÎÙñ›•ß'ˆ3}ìõ@g;|s®¨ŒFgúØq½iœÔÙ$$‚…";›ålFVN#‘7ƳIÆŽX}¯@Ï÷ìQ¦d†|VCJÁ2ååÅžÏîjãFP¶Ä?3˜rJe“@jDåw"¢²Œ¥üÎ ýi¡q2Æpvç‹;J1y'3^^–'—þyNÙ‘ðËžØnÙæsò¬NâX‘oµIhì Ù¶˜c5²Ü«ÓTËa™?!ïkû8v±fÖ>ÜÛÒq¸Lq‡ y}|8Ùkÿ‘~o~<|Ü…“}}Aw™Å=LÍÚ^ëTM}g~^d2Z“×߈§|Y¤Ø- q_Ž‹Ñ}Ü^N½× |QKïÞ‡MP44¦‚X/ÀNG`‡ñÒøê4Àt:Æz>bZ•}á—{΀LG¡tÅb³<•A §o_( ttlÀ“w< (¸…„­î˜"ÔÕ5–î5­‡[ÿç\iª pó´¯>L[×*t{ÂEæô5˜Ü|wN£ÞÛϪA ³? ik"%SN\kÖykMÏ7‚{?p©lfß¶ Àƒn(׿T+± ‘’y|'d䫳Éë“}GÌ že¿V¦éà˜Ævî-Wçô'»ã Ýÿ,9ýóœûŸêËêÖ¶{ÿó¼²µºÿyŠ˜uÎýl ˜¦¨œ6\È®Ô5WÒ@æç}‚î2€×\+Ò©6ÿÄ—Iš¹º_z‚açvI®IO’98P‘²w?”½Wòá1rëÁfúáEîº>q0·ið6ÉÞu²Ki¶\ôjìÑ/ÅöÌV#­×£hlh¢ {jrÀѱdúnAp—¢_ßÊ“¢wºêš•#è÷-‡ TAEpòʦ™ü¬%n¹¿“Ì5ê €ö™'Ñîù¢œW}Ñ’nû¢_ø *ó¯ü˜ÿUâ?Fܶ7[âDÞ›rþ]á=mó4s‘&M›Ñû©J€§‡Å½cÄA•ýi  )É®\‡ž`tm‘«Jç”’*1hë3”!j£¯½1†<Ô¹ÉpÖ©+Œà©Ó Ê;S4Ð}&a^/숦~Py¤mÝ-pÝŠ·™H»/ˆk(°ÅhÑéÃ=‡—q\À«½[·íÙÑ.ØÊe.ˆË‘²ÛåO<.ˆ`ë™M9ëΘ–Šhî±êûU°å˜´i2J ŒáWEbH¶ZÖmÊÕøÚ4‘×öÕU†¼ÌK ëCÃE5›EÍf°›Q{Ów[@)’»ÆlPч/F·b MÙŠÍÕÝû÷¼{Ï΢|Ïʪ± ^¹Ûy”ésßdÊô^:à OFe]•Ig±´ÊÖ=ûÜËoÿÊ=ðžs9÷Ê=ížÝ¤¼rì+i;ɲ™S7oºeúXÉj…6¤ƒ)q‘Crõ4iø ™HÅl H AúÅÆ@‚Ôk/Gw5xáäùUÌp®zÌëÁ“Z>3ÒPç–ÏŒ\Ôv"jSBó¢'BÂITï'žýÅÁÎH¸Œ0Ãi÷|XF‹a­”ø€ƒÊð±Vr‚2ìÖÙŒ[”á 1œUP†n©ÏÈʰ[:«) Œ0#k­0D3çjñT¢écHtóBFžð¡rN/žmZMPq¥ˆë’>æG´d%‘ÎÛÁôLÒYi¤u'?tf*K³¶ ž‚\aZîg;ë³YÜI­B¸¤æ62?[tŒ$ДæI÷€³Ä%=±w÷dÈ#ÌMà¨t4’¿+ |ÿ‰œ=ö:´D¼m•ÛÍI³gR¡Êû/„zð*%‡Â­¢»€SZ>‰ä±ü{ýˆðX•0Íþå­½C£/¬Õê>ð(] “鬯$‰|­xá*c4h$ê×·¯|$[¢Láç3‰º&1¤µéÈ3!‹¤“l ç€Œ7±â¾×",ÈùÌzƒ¯½;\Ì'\ª¬Åò l ÎÔÑyÍäjùɹ_Fo“Š‘Ü;gZo³tz†ï\¹½ÿQp:^X«¥VÑÆÕY‹†Ø•ÙŸÜÜÛ}RÚÎ$4x·BÛÍCÛµ¹SÒf^ñ‡èÑ’ÂÍÉ)@ðÉäs󤘆ÿT2é¾pÖ”TBéÙTÂ9TŒ1ýë5·v8êawê‰PMR¢¯@{C¶¤÷¦)jI*­®X:J “ì)lç&bs6•‘x…¦ñEoæg‘Ôí )ºÄ3tº ì´âò€¯¬²ZâÙüa±²Az,sÏÒ= +©txmImï+A<'³+ÜÚ Ú¹@. ñt~EBê§bHËQë=îâ½l,ij»),\ 55 ´BFRç¨'â½yÔ²[,£ @T9>Å({U¨qçøŸºÊ©Ì¡`½rXs‚[%Ð*Hî/h½'^–É ¼xØÁ°óñ³÷ˆ8ü Ã‰9ü  Ã¨ÃtW]ÕÃ90^Õ™E`¼ GkUkPÇdi À|—‚ग़ÕB ÚyVX¾Gô†8/ЛÆFãñ´o¤C}ªjâj}4 Ù³”°ƒ ᄆ·UøjzÆÊß©ÁvÐI1oi‡„¾ @€£®0d@¦‡úH]¿ª¹b×kø°2ŽVˆ~d‹¤öÞñe]¦›­pŒWnmÉÄÚþl0X3`¢_ͨO/ n í´UFöaNß$„f™a1/0˜œ èŠ4†Ýø$lî£d%[¼­1Џ»>06|8m‰ [ºL9º„(Ö²Aâ€CF<;l©©«ò@Œü*Ôó âÿ—ìÿñr»*â?U«ÛÛÏ·ÿÿrëù ÿÿž†þA€Ðz&÷TN9âí jjŸ¾m‹^!ún±Xß ^XŽäϬ56§AêG9¡:Ï%Ä䎂“h7¾¹‰eøÙ»ô†Ñ»Þ`\õ†åèÑÿEï’~o¬ B½ TÜNâ>™[³ü63[d:2ü+½é]ó¸D÷ã“Ñåô+á¿aYA¯„“c·Cf›r{c¤¶‰m7;.¨Ä­[ìB¾B€財fÁt)Õ‚žn±æN ‡^l™~©숗e´Q®*ä]’Q©,š gŽ”©Š<¿N%‘ãWI×’ù–Dr/±. “É,<eÌåayN&]L©\ÝeС§×:WÒ¹é}Knf7éI©åÅV§,ÿŠmnWù=Í‘ÎØ'o+ŒtÖ"ÒîûB|;) “7z£ˆ[7©ÛwJ).F³¡¸@0é/t¿6l¨ö7¦\'*øE{-}¬» 8Ãâ/ÐBï7!ì¿¢"nç}d\‡82Õ»¸ˆo§„ o¨õÕ'>ÏÀ%ƒä|lÞñk“ߢ‰—‘[AŒÈŽ@é·qí£{Bx*—tÑÅnÒ`G0rv!¯„ž#ÛJD'™øK2šMœî\`¶npb»ÒÄÞ°‹Lä<¼‚ ùm‚÷¾úãõ^7á6ßí\ zÉ ä®â!œ eFúŸ(ù'Ž\R ûÉå%4Ž:úkS‚L Ét.e×ôˆ:ÎUQÀ¿*Êïb¹^V{kx‰‹7¼Àc½ä8·K臣º(…Q{`¿6,2¬¾S,‰°õÖ~JÉðKA|Q$wmù^]•ýè;gˆeLú1mèƒPÞÆÚƒM®†¢à‡<¹tJ8•MH¶ô!ŸÆCÔGüîðh<ªëÁª:lØb16¦ym¦Ån’˜Õk6ƒ±Ê‡£Ð»œÆc·áæ á¢MbŽK[w!—¶nÀ¥M¼ü4NmzãYŽS[D.S÷ök$¤^_¿6AÆñ…üÚ(8¼Ú  €¼¢ÎÕËÙMÉryK÷aSÞkr£¸§[D.gKwcƒÏ‹Í¨~§²õÄ~í&c €‹F*´Íô’´öÌ2lŠˆjW@§Ç+sçñ®í7Ñf­Ê;p›q=8çs+5Ošx¶ƒgß¹TßÎhîô켯S§>qç í£ä50û/vÿÅ®ëÊÙéüaaªèÅyOÎGï¶%xž›y/Ãi3z ßæƒ]6w‰“JŽ@Ûñ†‚â¹gj=-—“fZ4êùþ™¯Lƒåó}3]‡Ly©²ˆ[f ìô"™Žf6ëBΘVûäø~~˜vÁ|tQÓÀÚm‚«y†ÂO˄Ћí#!ëð\Ø c_ mœ÷ Šܜ“oE«ôXºŽ†~Mc0mrRËP¼Çñí wÁÌv·Ý\è}ÔàLpqHÌ¥ä·h¤M4|îèÉj‘ÖlïDi›h†O‰ZE)=²:(\Rx*ã4bêÆ)\ ¢…ø’ÕYÍŒMl\v¯·ï°xo:K¯Vrä‘›Kg†oXÚ>! ¶j~çdª†ëàBòhe "©Ò6žo›ŠõÍ®Tëê}Æ ’!#Ûp2#—å èxËiëŒBrñÝ/îÀo";±éöц:£éq1Fã÷ ÆMÑ8ž 1 žÇãË.s(I_ÄR’ÛþlL¦|ÑÜ“±GdÊPW+=©TàŒÖ6FlN¹/ ÂH¥@æ\ ,,·ªB/“p÷»“9’ƒzz<8«À} H½\vؘR¸’×% äAû·À‹ÈSìýõß …)Ë=‡Â”îˆ=Ƚ±@*)Ò|'·"ßþŠçÝÑT܈Ռ_ÉN¹ ?­Uxöu 3î¦ñoË!ªVV&û†ÈÔW³|ås°?ÝM>Êö”okƒºÈuï%àÞæ¶—´mÑ0ÌòÏq<ϹYŽ7>!‹*ðà’öleõ纃N÷ò°nºÞ»þö¼²í;Û³-ÍMI /­$¸hðµÁ¹p9ŽÐà©'!5[‡ß£ûs~OŒæïèF…—ëZé’wìÆ Æeî ¬"ºÝdz½iï§"`€>°ê1“\4ŠÊ#‚ µâ3úyRä _@Ä¢Þ9I~,7­_…‹; {of°Åéa¬è (`eïD`zg'ìnž8g@!Es’µP]ȽòvD^êbö$c€>Ž=’jæ~*Îÿ>A.Áa'O¬m6Tö×¹ô'µÙ¸ÔÛú7.hÿ~ÓRýO™Ð˜÷R¦éŒVIy®°/Œî㨿“Ç?ßXôZp?Ï~Ó_ÊçÔŸáɯ̭óýù#o–² ·ÔJf‰),„ÐQñ.œÍÝ |<½»V8!(eñŒ4ß8¶a[ÆaÖÂf¹wŽv¡\C^6º.y¿oueCuE,$¼é(¡M†€¯Å-’ó_zcºø>ȋ֡J1J >Ñ+‹«¦dÂØUÊ‘‰Fk´Â¥åE]xØ2øÚ9ªÁj÷ç_p><Ÿ(œGá/tHß@‰‚_ìHˆ¿Ìúx§@EŸÈ3E ñ¬æ/ñ7C„„HÉ¢5Æ•´ ÄB‚ôñ2VÑpŒÏì–¹=‰»MðÞ©ô,£Ÿ¹#uUØjrÔF&å×Ec`'JIWk¡#]6íIŒb’Füuz^´N…R{ö ô¹A"GJa¾Œè—îNuÏ@ÓX›â¡2ý$tË)ìùôŒÕ«á]‰§…y’MÈSY°1pšóãLþ3ž†xøŸ z7×åyb¬NÜìjôË[…ôûÅœW¯³âñ”Ý*E˜‹xŒÌIÀý ×R¹ïƒT¶üÈ/^ÓG´óJÁÆßd èþÕ8îMéÎô!àÆ +$ŽÄÊÃ%tóPò- Ö)Ávrli¯‚þ¸œÝ¶´(w4_G{гr9Z@6y?íåë}¹3H_û‹.GÆ ô‹F‡þ²ÉX‚`k]   ËD%zÆ[Váìÿ?•ÿ· +6‘¿¢¿Š´"É·[¨êvœ@{€Äç ¡µy—ÊÍxÁtJ5™­­Ã…&bO}å W¦AIJc ²un©¬bÑÉì†Ö¸37`Û¾¯ mÃ2KG“Ü‚¢âT@'ÊËÔÑËÙ˜ Ò2JÛû·é¸'õ ÞLâEƒ÷?boNQöÙ S4ÍEwi)j)»tpOÏ¿G›ÔؤŠt™ÎÉD -j‹ƒµó+ÃBxÿϹó«``ÿבà/SO=Á®p¼”‹;}- òQAÀÕ¶‹j¤h5ì‰" 3hH* m6£m Mb*tÕT©( /3‰6)¼?°`÷¹4rˆx,͆ˆ¯4›•fó]4kò®Ô›GWo 2ó­¨ÒÒ~“n:j·v—ŠXʽñµ%;(~TÕ¾&•®:yCù½4) 8 jìëam€6 ·ˆˆ†UÉð޲ÙÜÛ— ‚Ž Â¥](&÷W…¢¢†J6Eüba"Ó§vc*ò†õÙœ VÑ5¯+½ÁÕh “ëÆ ¡D ï õÊD{!ì§ÖvJO~E&/1DŸ˜­VžÃB§,hªF²(î"éÞ1JDK±*Vûôo D,í_cƒú5Èm<ÞàÁïì¸PRÎR@í¸Í£×Ê›Z ÏÁn˪Žfl°9-w¹¯Af·ìb¤›@E­Q:¾Ú íh„­ k‘Fz_»ž Õƒq=Pfû£Ùù ÞÐ÷¦™oïãŒÍ$9;Ÿ ÔßÀ«Žôv’NÁ­_74°¿$ãÑjWاÑîû“zs/L丽·Óè4Þ·¼E°@×õæ¤Ý"K‡ˆËAG@ZŠ™Òð®½×yGòPEy8Þ–FV8Øõ[\è¡f%êÕlˇ)µ+P€Õ_âׇ„°²µ%dñ&!OGX/®p©z…L9d8~wÈ çxT<š'†âí~|ü¹àö¢i|q=LþƒÑ ©o{3è./ƒvdlAÊjÇ8auLˆ?Ïa2üI7Bâö„¿Aþ‹{wÒ²0ÚrGHëù ’v}—µ2ì|ltöH¶Qö½+¥J3ªôê;±ÇåtßÜÒ‚ô=§K¾¹ËÐÂÇVo«¹ 鱓؄„W¦…‡<“8m±Š ²áö¹Ë<=üÅY÷ð Xß=æ9»m–›w–‚ÎF;ê¬ðš2îÕcº>õÓfÐX­jfQÈZAp˜µ¿G[$º"íIbà?‹†¤ÍJ'¯ð¯A7=ÎG(§Ãõܸ³ñe BÁH³FéàµÍÿõ':˜zV{<° ƘX$%^‹˜¢Å4éÜòL<„!901;†ç;pøk<_ "óY[&3ß‚ÁÜÀý ÛŠ:•å冟ÿ|³†©†Éá óÎh¡€=©{/÷ćEö[›8œæXúê¾ô€ºk5JÙ7)åŠl®íYhvV›â½ú!üÕîX}I Œ«!î©Ðu¹Î´nÚ-°/3:^lû$åÞHUØsÚ5çTð¬ÏÞ“þ½~È.K§-y³Ù æ:†Ó“}¹›Þ ½Q~·ÃåcÎðßóà ÓÛ,et˜ß DiÙo´jÍ?[í#2æ5Êâ‹£cùE~¦S Å_D"Ö‚Òß§S1*õŒ ã<|Ææty´äîœL H¾ @^BÊxE¼Ÿâ ¢¹éL¢³4­â_ƒ²±¯h¢}ãf„±ËhÁpžÔ>…8ï¾Ç;­Ö(lbšü[]^.:Â5}â¨Ø Õ›PüÀÑm´Nö¬âÈU¤ŽftÒí=3SÙ²žB÷6$A¢}â+È{6-¿EXREõ¾îtЛ¢VVÅ»NIFDî¤îž=ÊÔp¸:{@eÄ:wØÔ¦˜Žâºª”ß›t¨*Dž9Ñ1Xí5ñ »x˜Wæ¢!úÝÕýV{çR¡¦F™¬ö•5~šQ§´ÏŒã[DÇ Ùn-Ö#“†¨ù" ¬xÕ¢¸|7±ˆy/8çÍé &ž«o-¾YÎ2‹0Ñä\ +!&’+‹ä8·ùf L†ùæÈH… ظå]Æ-‹5+;è!}ºóz¤G>ÜDæºÝ*ÕfŒ…kWØ-$ˆŠ¨QdqÑŽ½¼íبx-]^nÜ¿5{Fk(š½èÇëJn.†¢ñ vãÓ·”Pû'¬fÉÀW¢áAQ¡°æRT,ž²ÔHvæÎÑ>7Iû½²´‹V8"mé-¦öØ2Õdb,O7Fe¥¬IHH3J©±¨A½+ 1Àß&ýï]èw…Š’ÓWìk{§½_±½ßP€žU¡½Üò·µÒôëþ`†æ ÜÁJØÀ- Ñ^j™ÝRAÅÅbŽ(¤4ŸÇ’OÁ¦™5}ºÛ¯Â4ëƒÈ† Ô°Ó5è4Êû×5øå«ÔÏSF¥]5FeƒÔ‰pkq´²†îè‡WBæìE@|ã̵¹ËÓÇza· žÖè×Є¥›n)ð£Û|`Û®ÌêÎLÑ”¨káU䧆WA¦d2@|c¯‚U^icÙˆ”g¨Œõšµþµ6,±'L^c½J‹<ý¾k!ÝË|‚¯‡¢‡XïÔ¹óõpÃÛM¢ÐŠH\k¢)¶¼>fM;£ÉzéTþ„‹¤ìBA5ÅlZZæ,¡Ž4Y=ÓÇ︒R«ÕZšÖè|ê¤ ÷⪊Y ¬þ6×"«gAÊ"«–X=,¯Õôåµ%)±"èj±üg*ä4⥠^øË§Å<¯¾Üzîã?^®ðOña rðû!üÃêVÐPE!R˜Ø&7êc¬Ç~U'`£ËLÑ)Wë³áÅõÆaovyïøêoâéõÈÈ.Mɇ1ÕZ„ ƒÊ²ƒ?0‰p0ƒ0Ô(<¬/FÿfW=Çí Ù„´Ot–a$¢{ž’h8wŠa#Î74˜ÅýHʹ¼ºT¡i(›9ò®‰Q5ª7k*f…ŠY¡b–‰Š âböiù(&—U{Fn>ºÌf F r[ñ‰ *ýÞY÷è³›7‹™“¿Ì 9¹ñ(ÄGž¬x&P º9©ñœ&ØIòr¦Ç3i8™òË‘gõ%=]f¢<«CVμ4–†²åÍãêB)órƒ0æa0 Ægž‘ŸóŠ(îIhhY è²B¥-V0þø‘‰(þaò…c[s‹8 Ö#ÿröŽHƒë å\Ç`;M‹R¶~ݨþº±õê·½éÅ5™¸êúèÚ¶"uUŽŽzÓk B© mNà 6«† 6·­­FãÝðÔêÚáa6Ú&:ÊÑ+вFáÛçwNÑBfÙ";ÎuV­Uà·Š–yk«²ÿÿ{VïM÷Àiª.DL8YåÁ&¨[_Ðë£VaçGxü…ò=SœÖ¡xØãxšLcØ4ô«è7üØo§›eûÌGß¾ ØÂ£N- 44tdÚTžàûã°X:Á@ÓߌJÇ0—Oà?ú“œùåÄS1žÛ$Â÷KX@FMŽ/Æq#ܑ٣†! šâ@´niɯàVÕ2Ћ¿¡K8IX9ÆY‰éZ°E¢±†r/3{ËVäc!I¶xS_$2†µFËŸY`?Ú€%žóe ÕrÊ…d€.Þ@@–ø]cˆæTZ›a*nkh íiФiP)–šøžð·?šYó i̓dhÍƒŠ˜Ã4íyà©ßO78ÐðÏòàÙ Îù^ê<ø}c²^ Í… Ïõƽ§ÃgºâNÿf*.‘q¦~¡€‹^¥xuÄjÖSB¢3úX€ö^ãí»n9êìvP#HŸ^ÄY¢.u¼’•øvµå¡ÊQƒ@;ðú4Ô>á¿Nwï8½‹RQ·.¬¯ÛÛn± ²Ô†_Úï?âƒôKŒn7Ýä·[©")¼)Gñ¿£ þ{ŒWX» ÇÝJCP•…b•Áª ¼ÎŽN³vü‡Âý¤B­˜LY¼®ªÍèÅ!¹Ú0 ô~¬gÀÌ…vÁhÃPƒ°¼¥ÐnÍO8â­ø‹ºƒ Î|hwu)¨W¨®+w ²J.:FÀEÓŒå $|gTïÄ —ø®­ó·Ô#ýõR!k©ÁÄV˜µ(„YÛ_³ÖP½Ä}3ššfÊöxq=‘ឃ>c ¼ª‡EÞQäu…· ×ß" ¢Å9¶m_œ«ctyšH£¿¾9ÞTñCi1¿AkÚ`4ºåœ/ey^A:¤¨µ(|¸©¥i*¬¶˜·¿‡ˆÃ?ØŠQ5lü‡Ñ¿q€ ßN•`Ü&‡( •Èýñö}Ô}ýj„h¢M·/³Ž]•ªÃ3Õ@oÎF$a­×$”± »Èª¥9°2]›(usx“²×7Üá8—Å ‘#CØq\¿%‚Dq¼-Þ<àÅ …0; áËD¥oäJˆ×ï¼»Û×ú2@´#‡9—ìÑrìºVÁ1™~™ Óy/jõZ¯)²- "óì‡6#/Ö–«qˆÅêÐ*sxì}¥åã/1ÌÃ깟›o÷6iq)I®¤ †#SôË´v 97¤Û‡’ZíâÌøs`ˆ4 æ|©vih!§x[,I8 ¬ÙÍ—m£)oX”× QfzJDñ_ËâPuú¢}À|ö PÀ³Ô¹e·N4 KèIFmã8Í&QI¡îí;PýKŽSÞŸ]ºåay*ät{&kO™Zü¹¯˜EAI‹ Á^VNOu»e+3Ni7Zîo‡|S@õê^¨äêgCkøVWïÑ.qW¢[Æ›Ö2[éݶš"S¯ì*ho<Œ6¥õ¨â-i‡Ç¨À¦ X#“ÑdVæ»#·[ ¡Ã£ ¶ËØ5”ÿ‘òG€$ H§íþ†:’CÄå ã86îÈá{úZˉwKnªžÜTInªsä&Ô“’óåZ`Ç—¥-Δ’á—R@Ö“€à©ÓbUOW¯šã³±à.#(¡i&Ya³Þ ®Ÿ»ÕjÚ3b7T¢R -“)ow»jz°h *D´|¸1•ª½7¤5×ú.= òì}ô\h0FUéSè¿´EË»%nÐbsÆFåƒ.!I¦ZÕoo@i“hZihò6;d67’nQ&ß¿C%ÑðØÚtmÝ£I-ԥij½å¾ž¦Ü(br7ýè;¬wÄþˆue½Ç%“µ1 ă¢ö:GÏíÖæ2‡tP—N žm¬¼€÷3°e°®ãe§gò¶g³b†N3Óx ãÅ óMýLpÕzêwdW (ÄùKx ‹”_è ` …AÓ5KªC‡þš­‰˜;ñŒ¤[Yù¾Ü°²†êJºÚ4+«¸ WVÖ å*]ÄÊJ2ø"ÛÊú;º̳²Â¢ÞZYYÕÊÚ$§ZY óTkã4§Ãõ•­Õ;4¬l­Öçdzµ’mÃf²j–-]º5mvY-s¬À-Û ¼¾²¹®l®‹·ký§²¹® J®ùñl®Ó1(œsŒ®Ÿ –rv júŠ L£,ì—Ǽa¯;vYñM†iö¥8x Ó¬Ïþ<±iöåÊ4»ˆiv=Ó4»þ“›f©ý®Ó¼ñíb¦Y91Ûlsžm¶™n›m¦™¨Le ´ gZp@•£h†,q‘aŒSÍ' ³eÄ-°7ÕŒ-fÉÆ\:'Hc®qXÈŒÝàHTªÝ7’–ƒ¦mú= vŲþR»üf¥*DÖW‹X…³`#]p£9ÆX戞óD À j²˜²ÇZ_†ì±‘e’%³+pL²úÉZ°!Æ4@õõ°ÍzlÖ Fþ¥À”ŠÒLºëóLºŠUÚ´»žmÚu µÆ—fWuŒÁË4íV+öÞ’aÚcÛý—´í®£m7´íE¦9V[uÑ[U–z£ô±² ksîºi®VòX…¡¹¯”]7¥©Ñ£Út×-›î±X6^=žMw]Út—fÓýWŠM×!œ®¼»ÿ\öÜõ\öÜÆp öÜõ°=÷…aÏ5ŽC¿n¹c‘»g9±{–ñ Äÿ÷Ÿ4þOµúüå 7þÏöËW«ø?OñߎÿÓÞÍÎÿÄ©àš~F¸tD Ñßy¿hz¨öî÷KU*½{œQ¡Ð4â’L³ùÍ)áªñJˆþSÃÖ´ð¸Óú'…­=ú)ÂÖØºJæ´Jæ´Jæ´JæôJæDÉ ±E_1Ô -âÛç$'õªèízr‘”>§B†ñ©ŽWõÑ-¦Z°Ž&EX4fާˆ.’D~Gy³à>æ"Ç:g7ñt £^o•Zu¢UffkRŠs áÇi<‡Í‰¡ë«ªÑ‹[£ÿÌb!Œ1™€*ÕÿMPHí¶*–#}1ôdÌHY9Ö+»M•‰Á¬µ—"¨‹®ç#™‰Ö/RKB4påŽ8¶µ6‚ºßÃk¾x@‡@éäŽRœÅÉŒCd°'í‘"ì È´Ê­2„­2„­2„y *« agN œ`ä›PÆ©9tvÒÒ‹=0ÒMóÃÉ^ûržˆ7l£j|씂ö*i¢;| CºHú=I«N)®ZŸí½WÔ–êaY„¨§ü`Ýöî· ˆ)£‹g 1µYÛk¦wRƾá×B­yò´`,.$ˆ¬ï}ØÜÐ÷â?oU–zE1;ÌÖs·Ó¨ü*©Ø¸5ìëÝåkä¹× µá´ÁÝžD€z³Æ–Öµ²6“GýgÞ‰ò¤ŒøŒ ¿fÃ._oñ+sŸ3 5iNÅä0;—gÍät°Ë•yÕ ®#HV…µúØ1JREuŽ‹À"¥vôŃœA.ÆÐp²‰:"Ò;<Òaß/F}ãlUô&3‚ºÛàkïnÊá°?`=É.X´ÅG¡}ñ (åh{®™ƒH=þ”JÒÝ„‘ÑgGh,·áð6š]]S˜!³¥VCQbwÅIÔ¹×%öóCK”EÓÔ”ÅÓ3­ÑT6C7™>ÑÇÔVý5*Ƥt©À÷tç*(%ÈT¾ú¥ôT0Y1j÷h|3åK—‚=V8z“xJYXä\žDb !äì3µïI´Ë+FuÃm–h¢‚ôYÓƒ?Þµ¿{ëî–± ØoS+á™yÿT‰†eeG†*¯?¦“‡1›ì œ›Â"·÷„H±Ö§õV¦Ì3lxÑQe Àc=~nÀ«¶¤ŠH@Sò:Yžo_•wAFgüÅTqVý‹NgI¼!ˆã¾Xd4Šr6d©íËÛ‹ˆ>ô:)Ó‘×· âéê׺ÄM× Åœwá{'¡fÚÁ.rSO(²,û²õìÐÜ'ѯ ÔÛié#fúX:u¡:áÔ¡RXZ#&RCö±I{Ýpd¦1y¥-æ/§° wF·wö}‡aÜïáV0ÄŒk2HxÀ/F½NoºØ.ÎЍ.J1µŽÂÀ#@;ËØ¡=ú+€B/h$ã‰ðŠÄ™ˆ•jª³ßÉ$v—Gº)Ö‰ÿpD‹(š=/9lpP±ƒ¸‚†¥¥Ü?Ó ;=)[ŸP*þSºµA9ÊhFË,drf2SÎEF6SÜŸãÈ(Ê&ˆ?ä,·Hô†9˰B¯çŸê¸º³7S SÖ³>™uÜM2‡óG[¶s. ëÖÒwaØ- ÏŸpaÒíJö®Ûl ×âí,$¶¢’zÐJìµõH|oÀÞ’?!üßåÓâÿ*˜ìo…ÿû>jÿ·Ÿšÿoý‹ž*'à=±~ûOœPfâAíHC‹ìj}ͦò£ 0ÐÎ"ߘ÷‘GPe~˜Ÿ iÜ'Ià¢)·—œ"p…‹\á"6\dô“•¥k•Îo•ÎO|Véüüt~?! o¯`×)uw•M†Û㩵3 dÃîŒ<ÑZ‘†‰Lñ? ÆLSùÝ¡’à8!è=’ .+ âÒÒ >NÄU.¾U.>“Ú*ß*ß*ß*ß’Á‡Ëð9è=ø=àcÁO€}[1ØÝg¤à»½ý'@ >}þ³8/DåUøzæ¾à¼ùؼý›·ÿHØ<ÉÆɱöp\s!szÐÒ°^i@¯ÈøäJÉÓËÕ²–JC+¼j:‚Ɇ zùýRðUÔÖÿä:ý™óÕ!øP‚‡3º0 ¥BžYâõ÷7“7:~1€ŽÑDðË!™ÍÔ¯wµû4‰úžoù/c¼ézm¨‡FÛŒ>Ÿƒ¦òY¸ã]Â$Žœ ívéBãÔ€D jØ©/¼…ÖÃ÷i-÷Ê:òá/QÚ}û¥×-Ù£dl·F»ìöxÍ`A°â·ÉË£¡áHF²ñò½™èöÈ6½Þó*D­À¡tC1‹½ƒžÛ›Âr¸ ÛϽýÑgzkc.ÍŸí´¤¦cÈ–0>4Û›{›­æ;œ >#Æë¾ó‹¿ΟïÄ5cÎËrÆ\£@Wx£GY>¿æ\DÒ[ž¾T âîÐνöƒ,Ó‹SFCjý¿fP³ÖLc­¨ÿëØµPhcfȪ©ÛâEù’¼× ßecÌ7Cq_Ã¥=G¦>³>—Í[*«áÀhϽÀh÷`íÿÏ?€õ?!üWò´ø¯ííç~ü·WÕþë)><§\üWcþë¿øõS ¾6â+"ÿã4¬*™è¥=Õ˜s„âh½Õ†nYx-ÐM´–¬µJ?[”©s_$— ôKdöaC» ~°›‹>C X2 õ&ŒHÇ£7ô!Å®oAB0*¾õ$¤èË&gæâ©ü¢’‰?°jŽIDÞò¦Âp`\ ²åÇl‰>@Z%ÔESè ˆ0N®’`P®0",÷倫d50†8–ž4ÀIGøR cÌ“IHß~³Ã_xGLJ6GGm3šc ¢±ž údÓ4䓳(gR_î|ìLf\­â‚ð‘yè‘¥€GBبý7sÕ@d§@rç’©ùòu1š ú$(籚±?L|”¨e3ÙÜ åôH‡t¬Êl-7úÇœKCqQˆEŒÕ&ÕÐÀwx\!7»n:¿j‡ôRwïèx¹7Œ¡±Ù}ßÝ‘‡¹Ô F~+£-¹ïwÞÿAIŽ@¥¼>K¼d¬Õ;eÎSŽ(OÂríøóÞ+º×2 Ý©5æß©= „…^ kÅÎu Tbm¶¦VС\s7ÿ'Ïm’«}’nÛ»Š_SÔ-ÆRä¸ A‡3“ŒÝú¦¨;®ºNµ{ qŽ×½Ð©ÿ½øÈº5Z¹ÀÅõ2y¾Ø.-,A 0™OAÐ̸.ŸÔ¸Ô—0.õM¦—ï&ìÉ —})WJµ¥gBˉ…T‡ÙÉØi yTáá:ý‡_ìîµÞ- ™†v\ Ìñ-ã;'Leç-Á;ОåÆx”dF8#®dÙE¶Ý" _øeëyËþË>%k¦-„žì<&zró}{“9˜ ¦ÔeÒÀsŠ(4Wéýž‚•ÛçëT‹22lnBùýd•[NŽå]þ-Fc‘Ë¿íÇ»üsL”‡:têaѽw ƒ¨ª9d‚dch¦ ’N«u2f Ctÿ>Ö_x7‰G¬!Þ¡²ƒ—Å'Ð:Ðÿâ@YH(©kS¤ÞM†Ö}dÍí$7WiaÀæoH#ºa7uzáv[}êT*WçÿÀùwmu5FWYÁ[Y¿{´ëÈÁðÆÃ ¬K¸@t¥Í œ"ps%nÃ5QšÌmT¾·Ô9·|sįú(â·h}êêÉdaju’µ&ò¤ š7LÞÝòQ%r/ žq1çEë¦ñ™º*  œKÔ6é¶÷¨RªátÐʶxƒðîìŽv(w¸]’‰)­¢7Å{ò­Œ†ñ+Ѝß×KX×F{ÅŠr ŒYzU?Ü &Zeª™-riȼGSz¢,,z+þ¦µ%èßkŸž‹é‡ÆÚ{+ÝÚãm°9aÃt@ ë iWßoéê{mg4ükvEÒŒœdÞ^ž•r[¬bözË¥rµ$ãýÀ;Ѭ–YõÊá‡ê!é[¯Xò'¢ê/¾ÙšXö•(zE¼œ¹)…ÖÓ5ˆGï³Â©«^çiÍ"]Xd>PW}¼i˜c~¾87õÀâšÇøæRŽñßgûžƒá}àöýˆÞu¿È^蛦–Ñ|-# Åg‚š9g Чû8w½ ¬2?ãI ;º/ëK9é¯ç>é¯?褿 Á̧| „nd«JPÖ¨ÃõêýEµšgOŸW·Ü³ª HFýÁ yiFƒõl£Ak@Í"µžf`Èe4x•×hÓ mësl Ž ŸÉ`½’ÇhÎ\@a b ÃFƒæ2Œßçòà×G½<¨l=•Õ ¹ö4ûùÕ\õ`±UÎÕ%òPX¸Þe]:„„t£b‰éÆ} ™–ü•Äæìc^ÄÆCmKbºÉC#O£éé?ÀT‘ëºàWÜùaë¢jïëeÐùù½ <üÿåøó’áÿsðÿÛ¯¶ª/%þ¿òb›ðÿÕÊ*þó“|X|-üÿ>† î¶k­N[æÚ¡¿x¹æñ»šö¨ïukb™Z÷ר¼î9>èA HÁ<'çš{0$ñ0j 5šIÝXûŒ£q¯?Švc<ÒIRDÈô#øWžF¤·ItÒNF—Ó¯4ÇÙÕƒeóv<ú’ô¹µ!³MYÎåônYn²]‘ ÊK÷ŽäÆ/à—‡*R¶pßËBH)R‹øPÌsØY$`v3þ¢í¨Þ¬u¢Aò9Vâˆ)NvPýjïcÂaPÑ6¥?L ™ziCuüÒN |ÞØøà5ö­Pü߉^¿‰zƒÛë^©VºÍá ζˆQ\Îãi¯´SæWÑsÂ/b(ÕÜ"¬bÒ‹4üøüà”9ˆ& ®-c·È»a¸‰37†ºÝHDfÆÄ‹ö‹ŸU¬X3GÇ&À·{ÑgAÐ #^ÄÐð>½›éì!†…e¶nÏÝÃõ¸h¡ÛB¸[8D)5j>ëÑ®·ÅŽ,¦T· ¥º¥ÑØ´÷"e9¬Yµ$xxÅGÃàøR ô Þë¯ ì^ zÁ¼µÙiˆIˆŠ.-jñy(0{¥×ž`<*0•3š³²nLj ¶C®¥e& ˜O9ßW·ÜÓß·õËתÆ^f ¶&*<]@R0bE&³s8 € }5îÝ€Gqü¬w™;äÖ{O^]hb¢ höª·-BÁ’Ÿ£b>ö¡úå2ôrpÆà’œ¯Â{ÂäðЋZ¥Bk½R|Vu;e»é)O`[K6~wRKÀO.àœÆçóÀ§•MÐâЈ&ƒf'7=LÛ1¾³ˆ LO¼8 ñAaÇ*7Á$fÿÀ;Ô‚í]c2™Ýp:xW<ží‚wª’À—Äš8WsìSLþäVz‚P˜üŲˆLÒç.«àÎce-h¾ÿ¸ãÛzß>ª5åh·÷»»ø-}“~’dwûVûýÇ¥Bo¡5¯-«LgÔ:¤úmÿõŽ('Æ ZfÆs LZ4ñ¹xkñæPkß=9ô¸0«è(ž{_S¿ äá"‰XÎdâM÷ÚƒD'ÒÙ­í\Šò©¼©¤î&gB«K¾“¡êÛÎBn†L‚xê¸x’EÑsDeV¤´s^3=WÅ9Þ^â÷Ãì÷+$É£º4¢éfY.ú@„–„ÿ˜o¡¡ãuT(ÐzDÞE“.LØR\s‹E;TMI…wMÜRi9 ;&A¸ÄEÚ¡ñåTšU®â!œ*Ê®¢9¢3T°—eþ§šÃ ä£Cùj‘%‡éù¶@:>gü/à› L¨K‹¯ÝáÙ}/Ñ(Ö;¢–Šs^uf2驹ŠÑÚ}?o(•8à!ä /‹iÓ4ó=ðæ¡_!ƒ¶|C[äðX€JvK®©KŒ‚bÒï—IkàmvÛ'{›¬_´ø·Uu‹Å_âaÙ(³_ƒI" Úƒ{ô~·€Ö÷*g«ð¥Þ%cÂDŽŒ M±V÷ 0E–¤P;ìBûw‹AžÕEK‡I†GX[¿üûéÀçÑÎ ¯I—u‚]àŒëˆ×>Tˆ¨ æe\ö˜þv×=üá´Sà-ÿ^Ú­õDÕZujmUÖïSqk}nÕ¨‚¸VØ$¹jÑéPýsª&ÃÃ&^Y¸AÝ"oÈþ,<Ä;y‡xç» ñNhˆQ¨¬?âï˜Òå±®ÿ1‡ØÃ!DiãžgÙ8y¼eãäû/­êü±¿rTïSså GEÕ¾ãõ;§HY5dêÖ o|Ÿ~ÍXt|S—ê#ŽïŽ)Ò_«±ùÆ7¸`x_Ä@ €­Áxã|? fçq5˜‡j0'K]Šx€QpÝj›é ÑýT˜êÜše!²+DuNašX%5·*^¯2… Ïzu²Ôõj1!X¦’“[–¾Z]¢ð³2PTo¼k”£w¸xÁ?]üÙ͈ScD(Gðmøç žÉ$ÌÍ9‰¢ÛüÚÏžmÒæ&0X¼ò…A3³EÊw‚sÈlæs-j-K!àŠDÌ—ǰ òQÂ@Š_߸a¥(+$䇷œŠt ÜúCÕœQú¬À½]$ý%J°LÝÇNtqr)ƒ9’©L—Ò¥í¶—Œ£Â»ršR’qÞ‰hìÿ…gBpeFLèâ;®¿<ÑÐÙ2ñ—A¼1¹N.§´ì&ž^ú4\Gºzáᆞëw·1¹¢ÝŽGýÙ;ÏQš¼þ.åXZx$ÿ^ñy)‚¤ôµV®_#ÁUÀ¨”Þ•Î*¥ŒiTç/ºâ ùª›ñíÛwíÝMù´q‰rýf ³H‘ÿ%GÉÚ°ú%Ë…Ó`o0qÙMÏì]çâz6¦.•6¿Ã&–:¥3nq—þ<æ?åk<”h°Îˆ«³aKþ³ãBäEìпÇü‚3œªwïo‘ù½Á@øCZ”¾A%@ÑðÓÐmÇâvÒ˜¡`4™ª•þ zŽYÿÈK®”eòF’,»Ú³EHU6Å8}`Ç„³ õÙë2†ºÃ#Ì>šbt‚áªÊ6G ™`§T$¤jaÃT)ybæM‚,F2BB,ƒôå¼€UAp XUQË»xp¬¨±ï/¿Œ’>…ÿ¼Œ¾–ÝEÅãÊ6-Äÿ™%ð,Å(9²UE꣚L˜€– RUž²LˆË|Ý€‹›4€ì…ü‰†ìÎ:èÝœ÷{‘ê=SopœÝ\ÙZs¨€Êäî–& óUXƒÎñMTxÛÚ;–Kp­ô ªáúJõ% &×ùKQ·Ù¬›¼KMy¦Ÿ‚\zíáE€\)§±Z¿°¡X·¨úfVª•î0kéŽ]±Œ•ÝŽ…ƒÎT*³¦QáÔOÑAz$<ýd_ÀàdL`jÏëHTð&ê’r»Õô&:¦oÄæÔŽ/_G;›õÍèh4€Õäÿ½ÝüúÂ4þÚOËÑ/µaT\¬N¯o¨™oy[Pü=ÝðcŽÉ/å¨Ó¨E›Q 6ù1ìù°0m±r«PùõÕ6·Œ>··›Qõyec£úâe¦G3?ƒõ›ŠÍI¼ü&ZÛ[ƒ.²øÚsa8¸sãïtô»cëe™”V3Yº±£¶”«¨‰NrLãKÌ+EáÏ0t —³ÌmVŠ~`÷;Œ‡Ä܇EL®<æVoÌïÛ ¦×ö“]ìqÂUÐoÄ)5ŠÒÐóö– yªSÜ hL ~l+ S^J –žåfi›’ò:<={4žž…y:´"/SÏæ0õl!¦Ò¶ä3õÞY¹qÏãÔÞÞÏÜ$Ý N" „yµ6D”|N·ŸY…Ä1ø­ŒO-zJRrqM›XAiý÷rVUÁP)à a\KïXw2I W}å54SĹ…†®W^+ÿJîzKþm¡½ìßo¨Oøº?Z¿áŽÓBt:-½QtÞH¾³F'W¶j;§¶ƒ@Sï6Ý¢”³:!ŘWB88I™äÓ‰«pšÙNæÖdj=.ûDµ{¬‘ëø4ð@ýâšÎH= Ó)Gç3+ú Ÿ;&S~;CŸDÎ`Yž0'çö»M¦$rn‹l·2(×âÃØ]` !üîæÆîÂÃxüÃØõ†ñ8s»iÃØ]Â0v7™RpEø(==}í±ÃŠ¥N, MŒºÜ/ÑäŸôM¨DnJ[FRT:œã[oŸÙäÇ|&"ûܯ7¡täa|D¿Äª_¤N:Ý2K;ÇÑ-2ËP¯ŽÓze KœÕÈÑE,dyûϬ7œÂvO”ÌŒü«¨µí7ÜŠ¿¬ÎŽã[l2¥ß1ü’³NÓ±å ôŒB’5¤L¼Þí8[\PÎ$(g?† Úü#HJÚYអr¶Q9ÛdJi¢r•3STÐHNíø:žÜö.ââ‚v*eº!(zB#Ç‹îS~'å™,ñ•¢8ÛȦÓ#ìÉÑš9LIa’D„‚P)·ŠÎάáW0’`J/R݇½( ÐÇßÄɆîìMcp‡a/@›Æv¯Ì,:T™`¢à€­;A]¼]õÌ€†|p Ð@Ꭲx<ÙJ L$ >ޱ=t(æŽâaúÂ&u^$íH’áªû@0EÇ £!kd¨%A‚AMfp\Î$æóãs)"0 IY›ÑzÂx]÷úd_ @…0‡ìJ*åÍÍÍrë5þ§ç©Œ‰ÛOúˆ€±Ë¯b u¤×’ܬ^ÆMê¸ZC¦ %¨œVü ög]´Jnñ´ÑèÄšn‰7«%ѾÁ‘…ݸì%ØýŸ®ñ­ÌæcÙýÙ˜4œ]Ђ’´Ð0ô}ŒÅbeSª×µz‡ç û`KüL¦r@ 4X†4©6‰Êß,ãcÞ°†*¦EKÄ»U•mÁЇW;i± b-áùÀµ*·gNs¬ e+¢cíwµæ~Y|Nd_0!ÉLÍÕü1ÍÚY»ZæŸxÝü€ÿtvÞµñ'ÞC8Ùkÿ!(„î²Å½wC\|7öíNÂ#øÙèî­Z' G@Ïñu„!@õ'X¦Ó­µ»-ò`ÿ{ÿ¹t:P¶ÇF7¿00!úÂÌp‰ »ï›å¨Î_ÖÅ—uü2CrÊQ§¶„Mîîó¿UþP›Çé]«7ªðjm·R¡é÷*ýŽßï0Á¦˜Ñ|a»íuÞ5öUíî.pruŠo:·­:|ÓÍJ²x‚õ‡ÃJÞ;Âf€ó;ÍZ‹2‰6kG;ïÄ{i‘8Ëîë­Ë™³ õ–(wö€9;í÷ø/÷u‚€Á86ŽjXF+sÖÅ2‡ð$Aî@Ï>´» UÏP…a‰®ä"Ã6‡Ä¡ˆÅ Ñ' Æ¿DjØO¸o¿¢îˆï‚#‘~”ÞÙ/FýØÇYñÞDpKzim/Ú’–¦P$<^4¢7‘œÓ¢Úɦê†É“DÃáõÔc05ÃNÔ.úLáNõv‰/ÉÒ»$‰žfu{$izGš{ÐÜsI>ÎÇ¥³t.¥rél—ÎÒ¹t–Ö£³9\:KçR&Í .…¸Ähç:¾ø¬®v£SP«¸—¡WšÑ*«ÖK[:é<|úÛû°¹¡]Ò(+Iv8ej\èìBC¹ßÙ…ȶÑ|/Rœæ eÛx×àTìSÿ‚ò|™•Fã¥'+»ï½¸ºD7»DeË/ò»&‚¿âåh­âI++±Ç©æî™CîL‘;›KÎgÉ—X“åpÆ,Š©—"á‚ksC«‡tŸxÂð½`ÎF…Öžm Ρžd–›Ó¨†º—è8k½ÕSuÛLÔ(3J‚r¼ÛŸ k †ÿG0 ôµW 5ïE‘!ÃFHÞ£ÞÅ5^쀪2í˜E­u߯;6pn‹¬ŒãÍ)ŒÞíÅCÐÆÍ'¨]”Ô_uý á¤|b›×øTò® »Í÷ìÛ§¶ßÈ¢õ´¢]·h×-ŠÇ¹VË3´¸Ä­Q¤¼U·Þâ# ¼‡ÎgöÛ½Œ7%M?¾O ¬ÒD^è«qÙÅlÑÿY N92„O]R¿~p&pCšQˆð%\vÅHbóq™ÌyÌ5©g\…íì£SÕuë!ï ¤úeåØE&4VªÃ­e8˜Wn«˜.ô.½E>«ßKLÌ.l®fÏÎRs°RÓZºig)MóÚeò3·Ûl†@•;ÐÏiλæc"/›yã’Q!<&Ÿ“[48RZu{]SµÙw‘Êü×-½ºÔ@¼€Zj]L.Ô|ÿþ8´zö8ú%Ã>bz´w•9Ðxs!ºî}‰£ó8F—£Ù°o˜w8?¹Î ÝŒúÉåƒfØZòúë5œ¾˜›öèk ŒÄ×È÷_³ùÄdYÇ-(Þ[†—òZ“ïº.n„Lf=ÆšÙú=ÀÜ8“ÛA2by|Ò;}áw¨jŸEöt }íÝMtnÔÁdóíÐŒ•Õx‚Pú‹X×h\$íM˜£†ýAgñ`Àéžà%.ŒâoÓqo4îS¦6ênªQÿÔèÊþÝô¾%7³#½JÔ×D ÚŽêúF˜vì$¯l¦´…ÁÇ7fúq (-}…*¢w3³®ÖV„ˆÆ‘l>ÎÔäNñc«Dócª°":àºýj‹-kdÕ4ãÖ†·€sÃ;cØ4—[ˆ.ã\µ½‰¹ø¯-“~eË„ Ó2À§û}2¼¶ìè•×°ÂüUþk£R|³Å‰ÿzÓP‰HùS} ë ¼¯ØuljHºðšŠÓÝ.Ñ—¨ÜÐÊâoÜ«—[úKoéû[¥ÀšDŒ¤øƒŽETI oE¡2ޜ֖È_}ßRѾk+º*Ù¸zJãü×CíâF½Ø ´@Ä[#ýŒÄ¿½‘I}.4 ªj…•v8ŒÚÓ”ìÄeÖ øK†76à KùûÀ¹> oßÖpãæ–k˜£Èz=e„ç4'¥EV)׊"ŠùªD0e"䓦òÅMF.Re=Fjç–£¬>ãø6Æ;þÁÝf@²x¿@¡aãKªÁªVÝÂÛ-¹ƒ²^Ú¯FâÆGhÔt!åB"}önwá $n”¸ư ‚eºÄʸR«¾´êë—j^û½Ü@Ž6¨£"øáÝüZ5ërÔ½lþx èú Ⱥ¹Ÿn¨Ýì°¤|HÐVá¸öiø+ëöâ+«3ÿó¯­% ïêêÔ™Vkæú!ül¡®’o­ÑË!Z½ÌÆUs/ˆ^s«¹ÖÄ`+Ö«ewm¹Ï¾°‘o_øq—e{óWûì=·ÿ…DÔÝÛó¨s1‘ÅI*¶!qCxà¿*Îæm£Ð†`^yÃ"²x÷>Õw¯>ÕRj`KYj•¬©¿7“5Ñ í‡o#£¾v5NÞ^¡7ŠŠ±Q :7^{çÉ2¹¹†-¯‚–'©ð¡Úu݈øÆß¦@šª}¾eqÅ QØná@2Í®®ñˆóKr#-V¿X¾Ä]fµÔ²5nlµb£ÜmvN8ã Ãx²Q!?¨àõ4 uºG“vTýÆZbÛoŒWÂ+ˆkˆÊ^C<úf ¹ÌZî–Z#íÔྚ:9S+ëæ¯Ì}5µ²ðìÍx£Jó—²!J®À°0u¦½a¿7îãÕF›²ÛžÄ(³Ð¼Lç/}`ï}›çL»ÕóLŽ»Ý³‡Ú¸æó‡<û¾O\y¤¢šµRç¼ ô¸à}÷¨†a¦„. çYˆS.3:¦ßå‹DýªWec¦£­ñl‚‚9îxã€ÐÈɵyí7?þáA_ øWŽQèÖ1ÂÈ!8åèê+O¬ŠœËœ(å>'²l“iò­¯ŽhõÆšd'§ÅÎÿñRèBÊ&ÑÅ—VÅŬµ­Ñ r¡»Édøe4øOèô™¼ÑäÍ·þMôbÐD„;ƒØþÿ-™M¡é8]qj6ðÀ)ÆôUʺ&™Ï?×ÝQžÇlÅ,j›Ç/ó&MDT¡ (ânR?­MÙæx;J†ÓrJWcϺiûBƒa0±,ù¬QÐ-ð 7¾BÝçº7dHIÁôƽé] “é¬ÝÛ¡‚`Ï3¼¢/–*[À⯂*Úg?&ƒÏÉpƒÎî5…ÚÞqt»ù¢b[—-Ÿa‹Ù‘GÓéèfƒ«ßªÊzŒÑ)†_ õ¢ˆqÊ*uÓQ6Á:Ç9 ÝfØmħ7‰NJ»edì$ºîM8ĉº[({EÄÝ:ô³„-Û-éçIÑ5ŸTª„Àd NI©c;žö¯HpÿEaÚ­T¨ q{ðέ‚/*‚•d4l÷O çB¨¦å×#˜–Ö£êIçZ5XÇk@×ÔX°¦ „2Б.r]}ðúFr‹Ù¤ØÝqmÚPm·R*UבKDqË•¨GbÍŸaþ]xI—ø A´­‡º)ŒRâYÌÛk°6¼Ø"w¨°*&÷9èôº 4Wý1Êl˸7Þ¾½rïÛE,‚þ  BF‚ïŒÑÉó¶7ž&è8†ëj4êcd‡ GS°*“­¿¬Kö>²:V8\¶+ÏÚ~Z£¯Ñ…s|͹<µú¹û>ú—ýÎ{Áý6lË*ûoyuyðÔŒ7Ü‘’Ù{')ùåË&ç¿PÕUX7°)ôÚXi¸r¥sõ=„L2™¿je ¸4-ãg\"ôJU¼S ¾”¢·‡.Ÿ‰N:üEÜ»¢ÆÊÛ¯¤oþË5tøƒèê6þ0j×? P_ºýöJQCMµ¼ìrØË›ÛAr‘LuÜU‚nYÛ¹@ña<7§ÙU»ÝÔE ÑÙ9&á•ÇVá‚gŸ2:ØgêT^ˆ¹#¼÷ŒDA½\4%|t5ìÀbÐÇRßúK3À°ÚØ‚8cêAKn0r=AñæÅ¸x9JëÄŽ\hω:%U©»›˜ Ú¡ölh›¹Meg.EƒÚl\•Z×µ[×Í ÛMo]×nÝ<*vëÐk*Ú²ÒªK‹ Àà€ 8[üB·Ÿz8>Èö€›ª» ¿O¹3cç;¡¼å­AÁVë&†:@ó.ØìÕ™v·.Ð<;,p¹ÜP4bÉe{U°]šŽ-,W X2ÜxgrTÎŒ¶ƒ£æÏ;“yî¬0hìä !/åT3û¸íôѳÌë>uÝ>uSÛÓMëS×íÓ|nŸ¶sL¦³ŒÉô<ïd:sû{–Úֈ⡇»|æv9·×ÏsN¦ˆv«ÈÑ*/ß½  õ­»‘7dƒ‘‘@†1—û×–ÛqQb¬ü;’ŽŽjÂ!-dl#Ô\-—€Ê¯–¹>,"@¥‰…®nñ>ÍÐR{ƒ^9±¬œXr9± yÂ×16Q7ß$C²„úþ»Ê½mÒ…_R¢¡NÅ塸C˜CºʘG:„F?"ÒÕŠ7ËN…Ú38-ƒúP®Rý|/ÿÏ ÷çtÜN0 Å’òeçÿÙª¾zñÊÉÿó~YåÿyŠX/u ðhÿ¤µCþn;ïšµ?)Q\÷㽂È÷]ò_˜ŽDúÑKR“ï¢Që¸$økZºŒš¨ˆ1M!Gá{¡µdiSt1×FŒ7&ÂY\.ñº7î]`Øû ‰¹Š¸ÔþÚcÒЈ„µéÇ'¶[C ¢óÁboŒgƒp^…¬}Z+‹FÈ$ ŸŒ“‚pƒÉi±7Möӟ¼Ç}æk2‰ÓÚD]•½I0,Ð’[s„ ÎÉB ÞŠ2à vï'*&¬DðOî@Å£¿âÿÌØÍò{C£÷gëýŸ²På*•è5î¿QWð ‘ï‹"U,’õ>*oÊT‹•Ê6¾¿3þ5»ÂVÉ'‰›&§…Õÿ²Ñ·²ÛnQPG+8Ì#Ö™$˜3t!Ì‹…‚‰öï‹U±ìvx1l)åì¦B;‘à3›T^:Ý9tŒŽÎ'¶cËzñ“zÑÔ?Ó´1³t¶Væíÿ·0‰Ÿ4ÿ_eëùËm/ÿ|µÚÿŸà#S3ÿß1Hp2ÆRŽÚ1s§* ^žïÊÔ}?ZN¾#tO8¶êžøwšµV=nxòÁà«÷-L•íÇçÑÖ6œÞmš«çByýUéŠ'ðk©ëÇf3ØXSsù…ê‚qš—Êï¸à$ßË©±`DñÏ’2šî6aô¿`<Ðú¬?h·y•‚é¼ÃÃí4W)áÐ]32æÙi¼0e×Ii·tR*½‹8¢.~Õ„¯šø••îÝq·½/Œ¡j.ª>£sÌÕïñÕíø¦€À‹Z±¨q3^Œ×¥db¥í¢‘Ã]-z8~JÉ¢_œ£ðàŸ”¡9š››G«=_¯cqö£>‡zUò-ö! gÛ zFjC`F3äÁp"⮬ sâ¦;dõ ¸bŽ”›§‰E›N5vQ9¢ͬÂä¦Ò©Û´2R5” ­õJñYÕKÙÀ˜"­UíêDF2÷è\lÝF±ø ç›^JEá²3(“Œ˜5¡¡Â×p 0mnNŠ][„ð|0†£ËðÊÈÑÅ €cÌì”~ZKw™ê£ÊyC³Ì›43tËp)tY\Ùš<ÈðUb°ZŦ gD¸‘Ê·4™2cE^Nðgjz×­ÓÖQQB¿øOkO~Ôò#ªÒýã¥AWC’Ù¥xëL þž%ºÕÒÂ1Àç¿gð';Ó6T¦­¶ÁÉf¬å²ˆù“OŽ÷$,#´G£:UŽkŒ8¸,O©Í `Ž*ЩsÖ½ƒö¦ãͪ%wð]\.:e¡³eÄÛL–¢@ð:†v[%8›¾AÝ5܃8|'«¿°ßY!ìåËoš! ­"Í`ÀÏ´ˆ˜sâTzÁ0iýÁ2A(‘¬òþAQÙ›1wœCQX,¤Æäd&ƒ{Ê·uu¯~‡-)«¬6s˜®vw†ˆ£j*r gQð¡Í®†D{yï*~ klwG K–DS ª‘jàÝ0¨"˜„€nýªú‡Ñkà å¨Ç™ ô‚GñbaEÕè‘ÛÌ'ÓJã1Êhü³Q€©Jï']-/µûÐi šA\Øôú_±ú\å>{÷éÓßuСÏé_ öÛ¥=¹ÙO=M&Á»íI¬»ˆË¿\}¶½+8 =U.0ù¬Öboa>xóÁûH™W{k©Âï­™nŒÏ+ªw¨¢¡Bz÷ZµQ‚¢£¿fãѹE´>¶Šiéè•M@•å;úí´°Å†¿ƒ«.:œ«¼Ù‘¹¡!–z å"R!,…¦Fé¸hèµ)Å–† á?÷fÓ·ÿÅ_–lþ›gÿÛ~ùܳÿU«••ýï)>,Ö¶ýoï”b៕m#àGƒWNu P›î¤6 öÇ ,…ßÑB¸¨uOsbžs´-b hþme—6/lË#Œ µc!ÃÞÞ©<ˆRdK/‘&p·L(T0‡=?Ô)Özl'ã BÚÂ'c5*[ŸPò¥!§ükùrUçÎC~šö2 Ù«Í…Ìr!ÓØ þgaÊ™kóJ<º!,G*¹°=ÌN¦4#Ô6î „I¨V–²ÁžtÇLɺ zêq‹6¹‡”=ôBÄɽŒj&!Å4ˆsÎA)2,Ækµïá€B£Kc‡K\!m¯€q KAwKWHÊÉ^\ù÷›äßoþú-…BÓ¥P¨–†=:7ÙªJËÍEK5¬Š_ÇÉtQG"Ê9ÑXÔŸ…©Ü$¢39âybœ¨³ŒÌÝmwØ<îXV<˜ œàn2ƒa5f)îžAX&KV ¶ÚÃ67`x£âÀ‹$&.©šÌFÛÉUÝnጺ¥yMN,Ó8×TÚP±-×7•BPõ&1×I3ÒMùy¯dŸœÚL…94,shÁ²sQÆÓëÑà„–=ÒY·-ógô5Á Ò§çÙ™Iâz4èË{ƒ:_.O¢ó±ØI7.´dÎ$$Egã|´ô›RÞL&OÅ{NRÊÅ,°\C¹À tŸR8ŠâÛP¼Z|¨)×bþým¹™ß2‚Jop5‚x}#"Òí«Àsÿ%&þŒ./7B>êš4¾‰û ¥õjãS¡»#7“$Ö-ýùKßϽhþ?+ýßCMÐk­îY†ºÊújƒ’5Z»{ôoû#Ýçïvk'ôóc–rùjÍ, v‹òä5Þ¶NàçÞqÎ T_›’GÈ$ÆÛ£ZF5£&X® ;-ïÜñbyçôë­[Èô½‹™æ8ÕÜN§»÷¡ ?OŽßvá§øº_·÷3øµ´u)‰ç–ay'éÔ¦v>`Qò­4ã¼²½Da ›k—Ár[Þ½€ñÞ$nÜã*ç4ÛÏ1ó{é«Ü$K¢×yÓ,½rMmš ÜÀ©pé7¦¹ß0ÒIÛ›ó’ŸJë£ôLÀ³¯ëÈô[p¢³0ûìÑcg~=ã†ÁîßÛx ç’hWC²ù…z— a%CL$¡ï’`94_:F;'jú ^÷ð%&ù ˈg¼¨F2)X"EãEýíAQ¾°þªg‚ˆvJÆ}E)ƒ°‡R† šècDPÆðaŒ FolµÆu>`HÖŽÖ³‘ƨ! ™Si áž¶Ca»oñ5W;ä ¥ˆÃL |ÕfnaywRÉjˆ‹Ñ„6MïbЇeVx#±;RÁ¸Õ¡{¹³´D»Vr²Ñ&ƒCG½8K:ÿkë®ÙOÞñ/´©·àYÅ,#Êð$H„–5L; |öá¬àZiÊŒÕãÝmÓ|‡*eqö÷$ChcÄžÊc±>÷˜‡SqÐ`, mªöÍmb}·‰oa¼î[K£“¯…(¼Kbæ¬GžDP\Û •×” _½Ua{ܵšÕ:nÅ^¨ Ňû˜Ýý2Öã±ÄI9w)³õLpÁ)†@ éOÛ$w{;ÝŽñ`†ÑŸ7ÝÔ.¼TÆx4¾ôS±ð+ÔË¿Óuÿ2‘ýH¿‹2ÏéÁ)-X—vá´wút÷M¡ûŸþ“â¿«ÛÕ—Ï}ü÷‹ÕýÏS|XÌÜûŸÝ|@Íì qA5Åφø³‘ÿ§ßÉÞK¦4ŵù"×F¡4œ[®.?ÊÕÒîÃî–N/ýn©¸]¢Æ"ÓSãúñ$ãž“L¡ ßGýäKÒI>@¡ÿÏ ÄAY³6¥;`œù4å3ÐI½UÐç8”·|Æîƒ$#•ËÁˆýì(t#´‹ÆÓäÎæÓèk2¨ÀÖâ„1aCj/ºšõÆÞî'Wˆtõúýg“Ùù= Ëxñ‚FŒKsV;‹´À¡1á%h|fjeîÓE1Â_ÿпîlüºU|üb£JM¿ÍÄ•‹8ù†;2b‹®ão½>mÐ÷Ú(•mC:VóDÛÊÑ9|ó5Ž>9Ãàp4\]®® ÕÚ´º2ŒVW†«+ÃÕ•áÏre˜cÍÄÈ’•2iƒEoÙ¤yn©e•¢å~?Žÿ3Cõ†uJÉyû˜Í‹ÌAÄVôob‹ýá:nà(…ùïT>ßJúX²>ýŽ´RJ·ÒJŸæ)]-µœõ(ð»x d©g„ÄAîŽp7ys4ÜÌM˜5¸€ Fឬpƒ+Ü !º ÿ Ü`Ö, GZ6­ç8ÔòM\‘´q^ÔÕøÍú XqwçiÀŠ ¸»S±±– ta‡)º8CyAqIJÑ@)4ܽE'8I·Bãlq›E¹Â0f`Ó´²t•,¤‰2éxÈÝnŽïü á?¿=)þs»ò²ºåâ?Ÿo=_á?ŸâóÊÅ~’f‚v­õvÏQÌN›ðÚÖàgã$Ã>S«wºïá¥£ÔØ!QæâOë`ªù'AE žj“”gÛ½&3㎲£ fóè<MŠl¨ÏYúI#K'0txù‘ZŠTÌØÄù ¥XÊHõLc. Øy¬›q~gæyˆ ÕÛã#‘¸Ä—*¥ù=çcÀ<#Ù—«f·~$$Iz®fÔ€2*½&Q‚Äžcn‡ÙÐBž ßuop¹1ºÅ <Œ 0+NOþïÀ5yf% ¨)6š„râteü+µ¥+è ºBþÃQ §M{bÉÔ§'áïå8I‹â É‚­ä¹pŽkˆ†W0;”8í4½ñŵfoîضCC¬ûô–…—DÞñÚLK/Î?Xë$ Àéš±f4NRùlˆÊ­àÃ\‹F}ù¡ ãx¯†,Õê 7[Œ £0-tºlÑ(Ð~ü÷ÿm‘õ1&[¿á¼!\Ú­¶ø¯p‹°êT²Šu®ìˆæ½ó ,;¸_lc:ÀTÊj‡·wv]¸6dãÁ7Žˆ©_#\Ëæ¥çèä`á ¿Ú—2>!Ùwƒ„WIcwü_½ò¹µ7¨|Mú°bÂ@L8¹ ÙfBCp3Á‹u²QãsÅF÷þ.ÿ}þ7öËv1›Žï&±í°uüVÚ´yÝdá%Õ«¥ºYÆ–$\ú»û·Þß)‚,™p"²ß, ZcGo ¬\2—„5+ïx%Eù†å8ŘjØ è* <œE§8γ1ÙŽxD;¬)O©²¯0ÏxWÂ亄•u–x‚ðë¨Z×k5иÉ"Ð+šPãÒŠA¯ LÎÆÓÈï[e3cEMžŒn¬ láÅ]Ð ŒÏøLåEoìµÍj¨Ã°NG¿°Šå;7dˆ¡™£S¡¹^FuÍö#¯ mEýy;ëÁDœÆÀêw ¨umDOÁ2ªÏ/îÊ¿àˆîÆ77ñÀ…ïö@Ëò úq4þŒí¥#Žþ¯mÑè#ñnž Wˆéh íÔ) ÌÅŽ5ÊÖ*XÍŽhIsGÌXàŒÑ¢'öGõ¨!êÚh®W–ëÊÈÈpOw]çŸÒ`‰3‚Ó“Po”T ’’á*? ³bîçpö›5‘¤ÖC§IÞŽ¡§G&!Ñ^t^²¯æÚðqRª”;¤æ)¼+îN?¼K¾Ì# D»{¥Ó• ¥£¥_èr(B‘¿ÄæYÄò/ ÆÀ¢A•cv%ÚHõÊø» DÜšY– ÍØŸ*–]ä:wºpiRß=-Œ¦FøB›sX &D2VìÔù®hö1–]¬5?R׋Èï<§+`ºGé֚ͽÆ[FÞâÏî^§[ŽNkü­‰Ý ˜Âß·wç%Éqн»Æw4êͬ»x¡sÌ/ Lp,!À„ºGǘ7þÿµ:ÇÍF7Ûßl–s‚‚Ók·¯ŒÅîRN›dÞÙ÷ÿ @ÂÈ7±ó/£D|Ät6*PñÎûã?,l1ÞÅŒñò Ä4Â4ÀÈÔòw…óÕoˆ‹'4cÈWx¶ú¯Txzû¯4¾O¼FÑ)"(ZO¿‹f¦ô@ƉhöÊsÍÏ÷§PPô1!²F¾›Ó„#Ÿ6ýVº@g³eŠqÁ `×ÔÀjøªCg5ÊÂ`¶]Ý¿¬ºÆ¤ “„€J ®ŽÃ÷o¨EôW›hl8œþ*ÍEnqWÉës»Ò{cj?-=ææ‘33‚˜%±ö†ÜðgÙ義S=ÕKr&-M ç+ [!1ËÜ'¸JF3”ÞPñ†zÛ®1§¢ÉE߉dKÊ熚iâH:·;ánäêɢᴽNùˆhþÔn1£ël˜L9þ'éö†ðÒÅ)Æ<´¤[]×ßyÂe©Ñ|W£ŸÁU§ê¥æ]–çΑ±:=­çŽbŽ«…á•Q2äÛzÁ§ÉhLfÈ›2èm£áÝ@ .àW÷?<Ë`÷x¾ðîqdw  2Ðä _ÂQýÀÙ¬v1pt€´Ð°l²ÓhGß)âá‰h…w5Q÷ÁAàÑ· ÖplËmNIKÉîJEØ$^5Y ÈzcÃU "2]ð`L…(xtRèлؔlª’jèU±š~DËJ«,Œ" ¡ôð_!}'2&O§Lf)ucž."þ°K¿yÞ%wÞY_=ÏL Îfø¶}ú®¾m¾ÿ×Õdú¤þ_•ÛÏ_úþ_/Wþ_Oñaɳý¿Þvº0oº»ž_õã4W¬ŸÇ+O ~Ñ÷…bògy:ÕùƒþšáÚ# ,G“ƒÒF?¾L†\gdÿ ù?ŒD¥-´˜óALÊÚ’ûXµ»2hƒ>”б+ØkÞñâQ’I&Q­ô ¾ônÎû½R½ô°³d« ø$Ã/…“Ré]±T+ÑïE´ÊàoMùU{õVñ½í@åu³úo"}½dµê[9µA'ð&6ˆ‚àÁOøSBAêŒÀºî}‰£ó^¿Ç_’ÑlBAìQ³AÎ"È ”N˜!øø¸ÛÞÏáŽÅ=ÌÄtÛ_Kìon:~AÌ@M&£ãËôN"Æ×#2¯]ˆo,¸­šzÄÃÅ™rWÀCóPß'œt5®såõ½| îãåø¦ãÞp‚KŸ2¸—ínZøÏÞ 9eÜ ht¢<}êÖ/>Ö]öè Œ:Kpt9ÝpºëÑ ž|ÖË CmÃny(أ㶵ŒÿZ‡usiúƒq9zWkJí=3bòÛ„Á{ñƒÆÇ<9>ÎÏ!P Yúþ:„ÿWð?ú÷0Y5|»vï×ñ·ºz7Ôù0®iQ˜Wí²@ç9:¥íªùêò·ÝãÎéSÄ4ü·–„¬ ñm÷}w'!PGo…Úòpà˜cý&iÒø.ðdš¼P…1¡@ô÷Ûîæö‚.®Í _çã¯rC¸òƉ â€òr@ÏÈqù•j!d.ˆ'¶?ÝŽ©®iÐyí€=Ètg:ZâÞ^¨àžIqá/øÕ1G‘åÌ6¶ñÝÎAÊÝÎA…,dFà-›=:ð=eg¦¾þ¡UKísZñ1ê€3ðC_xÆœ:5¦~6×±a %n;£á_³+ ºžÇÖÐD=n %} Q¿é OD'bjN%Å¢%ïÖTx¸±CûªUñ2í™æ¨L؃©6ÓbžYÒà±æï-B‚RÍl¦jsFS%ª£Î†ÕŠg!Uo’ý;}è3Ïš; 9L:nláið¹üYNƒÏë•2üçN…ÃC¶‹—‡ÑaÊT ÊÞ`¹u8lDΓü“Û¾ óæëõК×Ã2ü綇‚Z„ì>< H8=­§<eáßgøf «¤Ë¯…쯇ç˜b|µ„¬µq¨„ Õ&¿ž&fX±¨b• PôQ-äwºeÑáu)9ªó®]U·ýHKÍ;“\Ö|C–êF¬?Kn¾µTµF©kÖ“§Ôê¹ÕŒÝ‘˜'HT3&³[ñàÌ96>2[¬¹3·;œðáíNÏsø54ǽín;kŽËîmwÌ|t˜9é[[¡òúsþ[ò¤—²r”KV7hýž»É¦n28Óæ¯)ýT“’~{úÌÙ-õ¬e"zÒš;ÐaŽù[;N«å ³S-}Yû«^vKzmö/U™Œm±¹†¶y›áó,½Pk†¸„7Ã9j``ƒ LjœÔMÓü õÈ”êÔ^¡Ý´6¤rtcC¨›/Α ¢¬u¯y¥L%‘Šj±'6‹‹„\Í4ËΫ×Z9æ*ÄY•B«×¥vx wšƒ´Ë^>8@ÏðÁó¼;ŠùGê­*ÚVCs}÷¿_–|ý;ïþ÷ùöóŠ{ÿ[­¼ZÝÿ>Ňçˆsÿ{ª®YàëLð©‹‚ óùOŠß¹À 2ge]äyYÁ5ëËŠ²ùötÁôín(¤cÅÙ4î¬CWÚævYjx×Ap¥oo |å[¤›hüªn|‡ßŒÆ|;l|K¬‡AžÄÍiH";œ)¦Úb^‰ë5¾kQ÷ÞtÙLFèl—PÔ Ùþå\w(vh"2Ò©ý»ÛX4v2|‰ûÖ•]!‹»z“GÎ%1½S·ßrÞÙ~­ï×Íwð­$´èƒ.°Y6!w˜Í”’«+çÀ•ó½Ânr¨ÊáTˆ<–.ÓñèNIFýÅúF±žcëyG±ÅúB£XOÅúB£è_Ò3ÜÇ¿«7IØ×öu¨U#…ð/†¤”­‹{¼²È¨»üú?>ϼÀäŸ9ᔬEžÏó´ám“•"^ džcP…êq@ê%l`Ã$ùî¶x ¯êE~÷™‰>kl¹0ú÷ÁTZ<œ—(¾ Å«²øw‡žh*pŠ1ä'Šàk šÁz¡õbÔ-‘¼‰Zn´*.ÈCB¦AÙܹhÃå]7a/´¦pŠu«ÿZn4³ÿAóiuÅŽ%øÏPTRnÆMsÍJLB‚œ!e8DeßÇ;AOfƒ:ˆ§Œþ “ŽlµÒNÃ}Eu_†S}¬Ø_ ‚væÆÅê¶k-“! íií5Þ.¤’†BY ¾gIYØäÊbú9ÈžtÏ“„IÊÀ¿d„7Z æþ!’Ò" ˆĨ™Mï!A‹–‘†UFöy\ç4Zzüœ91s˜Ê>®É½,<§I¶»ÓT0|Ñ ïŠ<]7–sü5__»…¼Œãò1jdkp[ŸÏMÄ.±wZYS“Íñß5tù:fÚ׉¤9~“«W.Ñ3Ë‘µÅÎBnœp#âmß=Ó~ëü] ßzcö@תŗtø›a²7öóÔ¿ŽÐlÃÀ™µÒô8)–îN‰Ö}|dh/b×zJ¬ÞÝqÞµ¡qü±±f¸Ÿ9Ô|øÑwP,iÚ£Ð$ç#îŸ|’Ñ2 LŽÙvú˜¹ÆÅ†§És²vÿAq5(î¦ J5× -{Pr£IòÝý®®þòB÷ý'õÿ¬>ßzµíÞÿm¿\ù>ɇ'Š{ÿ·»´ @Îí«¶ô¦•÷O&ýï¾”L¼[èÚ0TÑcåí[âÕâî?ânѼY$cÿý.í›E$¶§4²B%SŒù‚^ÃýäKÒ笣áf˜ejpjðôZæ¡éR"¯ô×¢›Þg óî.ºI}îÓ-[zç0/‘Êå`Äé`nGÉp ÍÁ¢ñ4¹åwÊymÐx†2Ì¥È(Ó‹®fpì@}PΧœ,¡ÿl2;Ýé8‚¦&4JEç ½S`ƒ´À¡ß_'ב¤ ’ÏŒ;ÛÁ©óiãƒFã¯è_w6~Ý* ¿büb£JMg{på"N¾ôÎÉ'8`‹®ão½~|‘`ºh£üU¶ éXÍm+GçðÍטrC ø GÃÕ…±$²º0^]¯.ŒWÆ« ãÕ…ñêÂøg¸0ÆL•2WŠÞ²ã‡d óB¥¨Ò bÃÇñfú—¨HnÈKçlnX\`"Ö0´ð‚øa¸äTú°ñQ1úK«÷½|š«Á÷«¥–³Š@~ŠwBB4z‘âx„JøøñsŠÁ&!Ô‹0DéÅŒòµÙ €Ô«ÜRÆ!ܽOåÜ[Ä>PP±^ªT#î'Iì&à TâPÆoðÆ–.Ùo0šû•“„x@9î@]eîàZÚV¿11`JLá |ï#sç*±mç•Ûv¶à¶MÉÍX\rÛ ˆn{QÙm/*¼ºØ)_”Zö¹TªD¹½°,[Ã.¬;÷’e“/q¹eÙšSÁ ó´²ì§Ã{6?ÁêF^©ndKuÔêÆ}¥º’j>²”;¤‹ZRÅ: ¦ªÄ6‹i@:+é\¶tþà˜®Ý‡‚ºvW¨®Ÿ Õµ?cÈöh7žÊAÈV½‡á°¡ax¼'ç3¶džËÚQoü9Úï]ǰ²îÆ·½ñ”¤¼ö02ôêbbÜ.ÂÓÙÅgxû¤Sûî³æ‡“½öå¥Í`! Dv°4ðOþñâÏvï @»Wú¿Ô0RßÌfJ Åyá#×Þ‡Í Uª¬ùMÃøf…‡û®x8/£\j"»f †;§9ìùøóL÷¿nû_3µ¥æ~1j´²Æ¸ôC†÷¢lŸPó¬ç!à‹¬4½JÿI˜óÒ“ð(GC§Zõ£¶õ¬m?lX©n+³Â¾œž #Ü3dÏáPr9µœ!c‚mE±}’Û!’ E²q’/Rû°ŠoOwçc@U­\FÅžô£»ù£ÊD³\²'â±P‚S5Ç_ËâO=iuð'µ¤˜ÅÚv¹v°`#P°alØWPØv…Ëèÿ(¬:¤h!é*HHÿeÒµ»+dí?íÂÿ~{büoåyÕÏÿ²Šÿó$žÎ.þ÷“ƒÿÙ=¥í”rf,lfîÀ÷M‘;/èí“AC¨j~⻟*lð5Ý'{­PÃÈPâß‘ŽÈ æ.x΃0H-„&æY%#'á,þ¤‘ÅÊ 49gB‹ÿ«aŰ¡g (£‹Þ ¤’‘l0Ÿäôñ(qBö÷glGhë½ñ¥ŒF‰·â¢Mf~6ÆfˆDKkO®fÔ€²›µ›`Ýç(峡‡ƒ= x¶ëÞàrct‹Ë1x`:=ù¿·A™•4 ¤Øhâ•áôÖþ«kXñ¯Ô–®ÀÀ+0ð ¼ÿÓÁÀ§MSbŠêJòô$ü½ü4.y_x#‘¹B:pqa9ÇeT¡]Ô">™dHYè/®Y ±vwlÛ¿¡!Š ebqx{¢Ý¹˽„Ÿ8]3–ÉÆIê#¿ƒ ÑA©”|´sQtÓ$0¹ /j‘%0ÜWø»¹ß°v!!(V/ ™íÇOB˜,D3mý†ð*Œð<'x»ÊÏx1_„U§’U|Hmœž½sP„He  Ì„ôµ‹X*iŽf¦ ׆œ1û[rÓ³4R5/.âÛ)£®%”ÅÂ{|%Ð÷ßíã÷M2d¥vðRb(ÿ«W>·Ô•¯I–ÔïzC‚‰üg&1,¼XöŽ;>GäsôwïïòßçGŨlƒöÁBŒï&„N¾]˜!ò"ÁUv“„I…—T[¬–êfŽGrpéïîßZÅ‘‰ÚуívлˆË~k°€hMe‘írš("–#~Þæùù'Eù†ÆÎO‹ˆ³ÂíÔ( ½‰nF8 ..fcJ˜Î#ªØaM™xJ•}…yÆ[Ï&×%¬,¨¶ÅXûQµÔiÖŽvÞÖ:kpìC¼2ÌEN¯ò˜/!täMˆGäß·Ê<ŸÙ!Fc zþ5­“ ·‚ñßaƒ©¼è½¶Y  ;ϲ q8Ù¦£)pz8#ûÁÈÎÀÎúiÓ†#ZÜÎ3¨ÓúÁ(ý¨!"Üh®Wä;;PC4ÔM¸jð%Nˆ>¿ŸÊ¡dޝE°LØ Åì,«/´ë™D̾ÆÓë‘d—)c¦ªþÍÖb/FcÿÛ3D\Ï…ìe–q‰´iHÕê,™Ăoù Ñ`t‘è“è|,$ÅMW8¿»óŒ3<Þ4ú€˜Ì‰ ÉTàÆÞÔdB`|xÍ$äîÔØ´PœÏŠxJ9»>,*ñ79’f«#ï&™ÉÜí:æƒ*,ñcÎ7 ¢<£¨´Mš _²'ÎQQ  µŠ‚þ›££*ŸýfÍ~©µÅßÐ÷™·c„/:J7Î ôA²ËõÚð±ÛÀsCÍãÖŠÝé§öTª–Z‹´|¥ ù€ü,$þ ]Å!ò÷…¶þÂ|ßx %E?B^¢Kˆ@†üžž èü´™‚Õr1í¢J]­`g’iÁŠaó"È®ªbg|Ô´O°4̱žŸØb¨ìOZæÓ²:ÔƒÔ€…óaû÷t0÷2»%÷TZÕýq1ÒŸ 0Ñ q4×õ'5oƒ£YúHhä,ìñÑ xœòîÂÀã#—Ô uüQÇ©#ò£@Ž3`ŸV0áŸæããÇ—“§Åÿ¾xñÊËÿù|ëù ÿûž§6þ·½ß14¨Vû]‡U‰Ú>ê Ç 8êÖQI€>áÏOËÌþ^» ¯Ó¿áàþ%Çûý¼G£>ÂÙ†àµfm§U%<%ÞÇR ðÕ{` lbûñy´µ]Ž:ï6MÛÊB à<‘‚‰ÍÈc9ËÀB@^¿9Ø]-¾Ý׿¶]ÔoÉ»/¼Ó[à.8¸Þt‰ùTàî.ø‘’Ð ¿À§º¦&tƒ¸ééE“»É4¦{sF*aq¼ g›ÌWiټŗ—ÉE‚¦:qo—L H^±á  1Н2°IÂb˜Á'¨•|¥C=‰'SOyQâ-dƒsÀ`cd,¢B`å€/:% [üÕ\¸"ÊwZúÎ×hËDz¼%›ñ&Ûûõ[âFÍXøÉ:ϧMцTå⨻îâX; “ô/zBLêÁ²ïu~Ä$,(f>  > X‡uQ|>]|6©¸àš]yEÝÌÓ¯eá)Å–OK`˧M¦ä³Õ ¢?ŽR¹kÒ„6vS†,Ü´‡àeßøÜoRùT€Å¦0õÌ {m¤Lã2úÔmŸìI$ˆ¶QÆô`UBúËê ‚$‡F_LØ…TnzW cÌúj£xS ^Å—ÿ¸¨¨_ܾ¢ˆìO"fQ8VM imÚ ç@y>.¡[¨žµ£NÍ7±mЕw¸08øÚ»Ãõi2À™imÉ ó+ Ù8ÈT¹$‹>'<ùÖÞúVÖ9î}k/‹<¦b"TV³ÚÖý˜Ù4xŒ®uvËBdÞµ÷2ÛF/ ÆP’òË ælMµ÷'­n9jÀÿË2þ=¬uöà_Làs–Þ½ãœê;ÝöüÄÿ×ö÷*ü£J?(ÔÞ§Ãô!:Û=9JíæH\§vºWˆ¶ƒZ QûtüG9ÚÙyO?Þ1,‚Ô²°¤,Q«£EªqT{[žqïÞh’À˜1ì;T¼,_ó[£@¡æêÛnVrÑ‘0*›$•/ P”øS†ßá4Fß/õ×>qðs¡& !Fh±"'ücƒw &‘]ÄpÀY€ × #Èd4ï_~ÙOyË*€ÃCæ¶÷;y·O÷¯Ä ìÁ„ÖÍÈø°õñ€¤×ØÛøS<äÛEÿ"+«7-ÄCùÚÂp4DجׂNLjá˜S7¡‰f0›DÕk"„È%rÇx÷'¼E¢µ½ÛI2 µ|ó2o¾Òé]ƈœÄ¶XïíUöY‰‹ßW±8=†õ©^íŽôIÈ9«#óŸÛÜ7n$is‹¬xˆ¼aÁwj®Ú 7ni›£Ñm4N“š%noñ˜eÏ}ý>›Å|Êï$ ÓUó;œš5žÇÀE‘­Dɉ€ooE !ÆÖ"!.-´Jˆ $¥A#ÍÒ±*Âr¨Ã£b5áðО)™ hï‹­è0Ô^øtB‹|>ê.€°]0? |íðÐýê|®xthCfÂÜ2þX—õâ­TðÿgïO›ÚZ’Eaø~î_Q§ãy!FÂÃÞîã!6b Ü8×!`ê-$ZÆtôs¨yXZbò„º7–Öª1+++§Ê„nËArìíhq3ðfbàjìðG’З‹æUHÓ!oØCÞ0Œ ³;8޹yGQ.\Ü-='Ú~G WxE•ã5á;‚ìß<ÚzO9ùpåšznVÀØ_3ÞÐëÈøÅ‡7¯ï…79+ÍüÆœŒ®ÿwûSÔýÛõüþEâ0vÁ~ïëÜhÈÆsÚê¿æ8B·?™ÀÇŽ7¹?«xƾ´ñ–=‘¶E(â÷˜Ó«KŸ¥Öüñí|+tZM fÇZlÆÄ=å&ÐÑV9àÊ™íQQémyÕý: qþ2_ È‹HùXJ1»n|ÈuF½ÿíSÐDßU äJ)‹nE7g¬9ï‹úk§ÝAÇîÓëbü¯`ö×㎖‚ñ–ôá*‘“/­™ïry‚Ê+®/9ù…“›¤ž8Åhª"Œª n5üU3E¨†J{x¸Ö¥TÔWÃfèÆ)#…^~ãû®Wüó;7ò ê¶¯¸ín·ðc9ª㿹êß?:ì¯ãw‚úi¦eâ8ÇXâLÆ’9e‡é¼0²!˜èoî8`Ú®ç…üÍUs]ϧó7w>jõóX[+v­Î/¬üѧ šuW‡ôŠ7ƒ¨G:‡ÏÂãû¯Y+‚ÖplÝ¿8–«¬CQ†¬1ÉËB+¥¿*ÉóÅ|=‡Þó Š;í¿“ßUÑóÒ‰ª€¢ô{>9D_1½‚Í¿…ã_9èèÉäŽtsÆoÈôœtj¤sU¿…üAãHßB­ ýuFšÞØ­ƒB>û‘Ë.95 OÎ…„Mb¾™†Ò¾û{¥á»»›VþÇkYÂÜ¥õ&êÞ­ ~„óÕ6ºÕÎú&¤XE_s s7vMõ<ê2ùB9p™q;€YXÿŽ¡Èp†’ô*â::¹È.Éo`’î°36ø¥ôß:8aÉöö)èôËŠEhÞÊnó_:=ÝMòÛ[}Ôuª°ƒ«5øo þ{iMºSƒ§5xZ{颳O—^26wºÿ„±œ úÿ’×øÞIÇÞ‡L›߃ûœj—ÒÐéô×ô/}cTŽwvmÓºˆ*שœ+Ž3—9†Br9 T<œ“í^jñ×m_è­—Y¯A×n†]R0,³È}à(§ã ó‰ú°¼“Jáö§ï­ŽéŸ:ÿßR5ÌÿW«=ëŸâ#w‰§ÿºò¾ÞØ«ŽâØNœÅrW§ òÓ)“ Ì ©”¨ŠR„™ôv¬vþ5‚~ž¢„Ý¡ÖxâÕzGÅA•Í¡ULoŽ­DT¨•©4æØH\i^Dc¾jÇôÝÁSHwdšOérq¡L‚* ‡+QâÆJ6:v¯”ˆ3ŒèÀ—*±9à­qì”RËUP€[B˜àwTî‹©ôû¢ Š_<–_Dý¬†(¤ë—°ú'OÝÏ­d1¯‰wß-JgÅ–}ªƒvKj*» 2¨ ½ ¶QàD½mÅâà|û‚¥ô½‹ Æݶu£iëÚ1§€¯.Ê’A Ž«SŒG­§Šß9Wu23PDŒ›œýs#Ó«ƒFÞë‰ó%V43b{ *p¤2JæVt¢ú` Ü0Ç(X£ÊW.ÒÒ픘©õÚ”|R6~=R9;@Ë‘ ¸e›/aá#w— mer·Œîƒ$• AÓêôN®{`b ŽXÔU7§óìEDÄD{‘IÙ Û’TÐ*I8¨ô5v:KÆ@êß½ìý÷h_2Ê9 þ¢´¨N:¿¿ˆºAGÑ P’$—þRó@I=÷¬Í`¥Vº’K¨UƒXx¶»=ˆzu/{›J a}WK©ÅÖ¼WyM°ufö¸y­ÃF¬Q´È],?âÔonö‹@·B—×,¯g_x†nʨ`ÿ)‰¬§Vï†ö§Ók=òLvÛTø0gܓͶ[­KCó¢gµ m‰Î mÝхĽ¨ÑÖ³Ô:s™ÊhkFšo‹mÝ‘N‚jÂh·Ôæ‘ 5§¥Œš¡ùN‘í ™”ŸÂ ¬cÜÝ1º]ÓØ¸‘.®¸Åûq£Õ‘Nx1ÇüÖýÈe–H›/ ;çoAîБx¹¼'õâŒíê˜^ª{ÂW5`­ØÒ7²|R/€Çó²xÙ9n÷0᪙]a¢«ò꣊‚iÐüt2ÙÜsÐ?õyú÷ôïú7ɱçüz¡¢Þ62×â}ä'ôÿѪBÉøÛÊÕd3i·ŸNÿÔU²‘P²!+Á!¹‚n+7Âútz¾åÑö}3 œNäp‘Kr FÍ*.³N_§ÖŽ*ÉfÌaãœ0­ h4…ã©ÄnËÈ&Ù±28ÌN:×£t3cžƒÿÙá!Nš8ð”ž7ÝD^þàHZ?lVfE×Gw²}ñ™Wå†üÂF×çH˜ŸÝ¿~W÷¯XÐÐ÷©Ú7„ÙÚF +=–zk{7òaC066ë­µJÑPŒ^ñœÑö€Ó.)ß묎qxÊq;Q{÷Oç9Ç t¸Föu d™ª‚ò­“EC:YçýTþtwt× `_ÔoJ_¼Éî{A>Î)Ü÷þ ë©Ay/ß¿)R?š$ „þx÷q TãSAÿÊ2Èx!j웤n³Gÿyþ„ï}‡Bk”»:¶%½c6jžJ?ðŽ•0™ øµ ¼—>…r\)Ã`¬àåŠDƒ1\‘½fÓõ’A²P0m»€ ^™¢]¸Â$ãp¥ñhç¯ÐÓË€'»lwLâ~æýu¯7c¹¥¹Ù¨‚ ™QN3L™ÃÊO‰E Ÿhb·U·qŸÓºR\†pž>-;ÜÅN¡ >xMjcÇ›â,Áíǹz‡ ÕŠ„Bµ µ•|ÕDUÍñ}Î3xÿOèÿ;ž>©ÿoõuõeàÿ»ôæÕ³ÿïS|xÿ¸þ¿{»+žã=o`§÷êû?^Þ¾ÇøÐаÔIwÛˆ˜²"Ý`W‹†zÈ–¦ó}…5‚3éôš µj(‚Ç£2Ȉà ¥øÛK`ý‡ qÀmf£R{¬áG¯Çν /»èî˜t_:».±ooÅG´i—É ö#Pñ½_,Ž@¡üuÏWñu…Æ7ȾKkÉñF&g»î#Œ^´ÕsϬ['¥¡º84ÎúJ—æZ€tÈøÐæbo1‰D{mTÖ;ÇŠ»¤AÙ-8ã«°ã®Y"Ñà ±±ªˆ>¼{í6dÏe¦8ãï,€›ÞóáÿP vXõSnóvÓц\d*1 ²C˜¢=¨ŠívÍ S„q¸y8áy¨yš\åo/ëN4n–- âXi9»sÊóÎé*CÓjÑqÀ ˆãÙÙüÝG³j†ü>Üj^ÏUÉÄc7¨¾ï>‡äFÆ?b‚zàÑ¥¥‘YJ¦¼ª?Ì5ùilÍ4j\'S“Ü :¹dŒd0G¡à¤4dÖJ}ôpZ ÿ­•€l¯•ªñÐ‹Œ86M ÷»¬¿ÆËßóbܹîâ+þ7Ã便žwm>ˆ×“iÂW÷•4æªýÿ±êm–¬jTœ»«þ¾UßvçÙI~ÒkA`‹±¾}‹´Î‰%=♣=½ãšî ÷P¯Î2´àq~ ¨¤˜ã¾—PïÎÕpAŠC*e(ó'±ÕÄ3ªUHXkõM¥ê›*»ZŽ9AZzJ²l¡:8 Y畟Å-,g&K«âô·™#mî¬ÕI4j>ˆåFf(Ó©Évkd§Ù}ÿ!'Á=ÌW‘)5V¶÷é!*«• Ç2­i(™í®¶¡”ièOäuëHÙ”k“ú7»S«9M!'Œcœ@±?eÒ¶dŸfÕg?;1ý¤B¥j¥9Wuã7)ÅÚTæ¥MÅ ŽOI9ªsüö•XD?´ Äy½š¤ÍG³ ü#[9VûY?#7‰£•>¬ðrn¿ß½èÒý5ûüý›i™ˆ 2‘<Þæ¼Ÿ4@€P aI}¸¼L …¤ÈЬ"3Sy¯S\D¬cB '"Fׯ0\4M˜î€½£ëJt §UÁóoAøh{>0 ÌÛ´®l,âV¼}'aY'xÒ!‰gè­:'㽄©³š i€°Äg Qé£GøIµ¼Þà@oq^Ô` <äÒíLù+F¢ÿƒ\Þy<ÔÊ8²2QÑ’([Í0Ã0âv²‰ôòÙÀìõcYÇVŠ1Ûþš¯Á^ÅÜoýºX§[‡é"†ßÌÀ—Ål%b·f-„Êa  9#a¼=$Z #ä¯À£9~« {%HƒÉ[NlûQø3/èy*Itbº0KDÑùãä/TˆÕá˜lÆ©žiÅ^¾ÝPõ‰$‘G’4IñÈ]‚èÓ ZÁ݃¬[Ôû;lxŽÞ6¥åëq‰¤b—óHds.—@¶æ½=Òœ«}o"Ir\…¥¹¡T8|o2Ù}ÛŸÎ#”)E*K¼â³k8´üG?É Ì·º÷¦xŒ–/cØó/ÿyÄʨ¾ô¨¬â)Ä11¡v)pÍâ_:‰Õ-œð ÷ÞÐÇÉÁZl•ŠêG€;¥ tÝSîNȾ®jq`AX¡ n(b§è¦¯tÿwGCƒÁ¦`ªÌ„ w *;iÞu¢èrJH]ðËWüƒZˆYøï¯yµÜûL5©é(šv9èRº(–êÏÿj  l@½–˜4bí,ÍE}°¬u"ÿÊ™Áyäv(‡ˆ-Ô* ƒ\¤]¬<."ò;'ÕÅŽ&tZ“´>é?Ò·îM¹Û`“¶0(›øÇløîƒÍ¼}°éìÊglöAUîƒþ¿6Ý}`³°O¼8y«Dð¿t Íè>På’û€v•Ú€èó£¹jl/Ty/èwÞ‘â=ºB¹ Õ.5ãm| ]©‚NшÁ\ÄSºö$®aSzzYdò]ìŠôñ©ª›ÙɶW›Öö*¢½úiO;*DÛ§‚Ðä²®}¼yˆëßœz¶ê±ÿ§/ðÿü‡ÿ¶ðËþ×ÈQ“o´÷V±ÆDßÙIƒ¤¾Ü®c³ÒŒÐØÞ¤Wàÿx¯îï—ÝíÏø"ÝឺÎÑѬ`€•êø+âóþ·UÅ¿;hâ^Ùà«î16êx·; †öf}çPû¸$‰¸™Š*ž3ê)’ÀìØÛm˜þû„vŸV–é´ Ër€+ÜZ‡_4 Læãî^¤/íÎë+M“Fj‡‘®×¤L:èÀ“åvIÚ‚å3ÌOOiFæñƒºe%¯ìÿÊ~Yï§õËjâòqr¶y¢6ãš•N'ƒ©FIÿ©ô PÔº[-í¤äž9‡XR4v–¼¥ˆòßz/EÃŒ"Ü«;ïF7q겫o(…KÔ÷ôƒ+ö\¨(™„r 3ÖBΑHL+ÌšØÆÈ tÖ²~6h¶äÙUnÙî`)ÿ  óPe£aØ ¿h’/ ‡ìߢß@œ© 7jƒL/_µÒËÓ!AnV'+*Îb¨ GT'2¾¸iB«x*ÌqÚ¸ "t³ÞÍ ‡Ï"wë£z£1·Á.q®-Iµ|0ÖyírbÅy‹^¦pbŠIMè3F|Rº9D×Ð3} Àó³BÐÈÞÉã ÎK{? AÄaJöùN‘@9glÄ÷$÷h]7*‚g^–¦Á¨_ÖœÅ\OiW‘†„BÕoÅH]egÌèÃç‚Fy¤|®A¯ §ÎÆNðÈYüwQŒÈ ‚'»ðauHNYM:áÓØØ]!Š&QÙBàÐÍ!2vßÑŠ?ëÊ2âMÆZ¿ + `½dq1˜G›Œ»ü‘¥#ñ4Ô8ßQÛÁ\Õ‹r‰þQ1C€ ÅгÓÖº¬ƒT¯âAʬ–ÿ¸H³¸Áä8#»,œJÐ@¼¼œÝzämăĚöN€ª±¿Bâ-«ì0ÕW¹L\Íüñ}’¦8CW”…›–Äe'J]<Q5ÉÍ;ðÚiÌ­kжR3îø.üÛí…Ћ˜Úyâî›OD÷Ÿ°x(ÿ<Ù±‰+b™xR¼q‘06zkèáÁ¹Á–‚¹™V¤•Bm³8¹™8.i1# ³úÞwdÂðµRE¹]W°!æeKþö¡ÃßàyS ÏÉKÁ_h!^{yeè&µÂÍ\0òú¤ÍPGö]+‹2j +liòÂ>s( â¸ôîn5,ÇÁô^g:¯çp<¾¬ ‚¼ÄycG’ãX9áмD T’DYRƒœ[÷fýqK¸SÔZ¿|'HÁ°T€îr¹X?êqÐÙnÕe1` ©¢ÞûwmÁEKV3ï¡Zô°19u LÅéÏžôC¤Bµ4¼åk«ôNpÅÃ-®f´Wd‡ûŒÚÝæ3iÓëV#mFZô\þì“ ¬½¥Íް¼z8Õ$ 4Râ¾UbÈ_p Þˆ‹AïtVþÌ:l2¶a­°„ô’t÷_®·Ç~Xg‡SÍ)Çߪtü•W›È:CgÉà×Ö¾ÀzTdÛ›ü‡\®¾ çø=â#LU¸/ ­»v)V ’®æw]KßÖð†ÛF÷  ¾z’£ZNÊo»¹2\üü¿öj+/ ºZö°‘ÁOË?K,å>?¡yÀi©¤5äX¼Œøœ$ ìâ…¦ M¦6ib3){g"܈ªí@¦Üí-a Ø„ó&‚uZ€¯™½t#0Þ +{r¾:G¡Ï bègÓ^üRY™¬¥«+µšK²dM¨Q–-èú/ÄJ¬…ªwžEzŽ×ÜÛÓû±„Í”a0è°hµ¦Ž‰ÈäCÃb^Fa¾-^IÖ¸¦n;†჆(¸Ræ‘â8Ö〚Oòöø‘,ÎfÖjÅWjªÿZ-^sZMK|J%ê@ô’oB­ç‚G¶Þ„Ö‰é*¯Ëvß%žçBIUqfW– û¼Q¼z0OÓÈ–$¬/ýê)nÏ¢½fï ÅIåC ¿£qä×óÁIÖ›F˜B¹ˆ|Ö5=1¡¦áñ+ÁŠÊO>2;|.æåêér @ ð±5¿¡¸Ü¹èåî<[ÅÆ³­"4Ÿmf£`íTCÚ\ÊÌ`“ÞHN²¢ ÅÎõŸÇö€÷Ú©ê›Âö¤æód{VÖš²þQ‹…&10!{DŠz8Ó‘¶CFxÅ•Æ+'BLc˜h* Â/n›ð¿ªíaî§²=ÌÉ–‚¨…m¼{ŸÄþ0?Áñy|Æ¢;Èm†œl0 ;Ú@zà }¡ßÞý„ ¤!£¥ 1òþ‡$ïÒ’µxˆ€‚ÆžHX366ÄÜ+r7{ÆEí ºAOÖ‹6sFhÉÈ1b<ˆýb·¤?–Ý"× aÞ°Mbc‚Íbãl…æPÔV.BdÅ&Y*ÔæÿL›“L›iSÅfJiks$±c'× !ýë9LiL7-,õ´>ÝÓpl%6j$­"iØH y`× Y̲k‰o£±*Ï©)áYÛ³éZA6¢“p !4¤`DI†Ìyt7‰<Ùæ&HHÕ— Ù@BsÛ”O&c ¼Â27ÌM2ä¢ê|z‹‰ †y/ƒC¸NBÖØ¤ËÞØ-E8æGßœbÞÌD2%8#-¨ECT$Í1sÆòPµr‹ûf™¼ú «‡o\©Îm¨ºEŒ3¾y'§ÿ‡0ÒÔªê\Ì™ê]5ÕEe­™CkMBN6vÇNÈ< w²½$ îT×;ÚH¤4‘úÅLDµj`" ->€ÕŸÚj““ð-6ÜöºeœpßçÙ¯;ï™p¬qç5Xyd3æG·±#Œ?ïeäñ¡>ÉØØw4šüÞ¢ëœg®)È_¹È2þà+¤´Dëÿþ¹ ?s… ?Íþ~æ’†#½[š¶T¼¶ @FƒP­.ú+•åí½ÝÄs”·Ÿô‹ÿÖ}Òøoµ—/_½ö㿽¬VŸã¿=ÅG’T/þ[3ÿ-Ìù.ÑJá(p Õ©Â5Ý€p ÷سT(84†ÑýÕÌŠÄU·r©LéÆÎŸÈÍ‹áßC®nâ¿™¨Ç·òpx¸kí«ì¤{Ö…™J[8G`pw¸(ÁqÔ+»! €ÕÇ,³>8QbñÝ8ÐIÀÝ‘™‰Þª ‚?KÄ·)‚”Ù¨èB© e¸6!Uì&r£˜™µó‡®2¿©«Ñ<’Þ³öÞl»çÝh’± ‘ÔÔüˆuvCЪ(êvv›‡ [ÇMO»ÎÓh$#Ùù-»áìtð7k-ö›·©O•SMH~(Ý5Ž 3`É²Ü Oµ?æôþT>f„\w Sx~2¸îŠ>j/MòêïBÅO‰eÍѹ“d™œ¬I*gRã!“(=nì”u,¥ÑZ=Ø3±RЇDA( M²R9QMêThouk'2£)×ÑôQIÛvz§ÇˆJ"ãÙK.¬ 8Y»yvò½¬_-:ƒ 3S¹Un¸­hM-#FÔ¦Yß„Ù×+ÒDÎi‡3lÜ Í¹!è»36(³¶áˆ‰eó»Éä"”OÄRÉE©q’™Zìì5|Q±!sŸèª2ËWš•v 'çg¾IKHpÊ54>=(§Ï¸ ŠýÈxè›R¡É¿øá‡Ÿ¼+~ì)ÿ{)bnôÎh}CÄo:íy%w<»®l5Qš‹ÝûÉ„ ÇQ}£Œ=DÌ´þbþ9Ö–Ê-£®Ëð0Ù~›Þ&¶§Åó~yèý_šàÑ¤Þ LVßÞ}gÕÚdwKü$— X9Ùæ¯žî5–$ Áqâ:…ãT´ÑõA¶[ú2çû‡îÈÄQÍ3fS«wË“8~<ç{bâE0™£Ða‚PùˆãB”¡ÍØ-ƒD “qNòƒœðíX'ÂIÌ-xBt”ë=WÛdpçmG`Û Õºðµîûq6ÜQEŽÈñÛä-÷Ìq‚“„%í¸%jÌúSÈí×PdHÖ¨òœˆA⽎ .顟äÚþisš‡Ì6/‘Vá•ÏšË<¾§¸xÂDDñ$q'ÔÀÏv)Ul¯ó¥—H0ˈô’ŒfùGRzáOs5Ÿ>~)&!Á<”ô’sGË>ÓÃÛSèìÜй›±9>óLí=ÁuØ‚—þ:ïž×4Žz=ý,2L †¹“bLQÙå>’‹O®äR@f™Vb‘Ñë~ð=„ˆVU6•·ItÒïeŸÄ–È{0™ß¶G4Ím·óZnºñ`ý¬:ßu sÇîo ûçTÒ¨³Ú~Ïz@)F¼Kν÷ï+ÉD¯C:w!çéRÐ|$Ûµ‰zcG_¡†¯© Ô¹W(÷'ùJZôödB2w#}ùçqÉO^‹,p'2!Eï:oï&½)(…=èÇ92Pôä²eŸ¸ØóPÏ|+OâQoâ9~}‰'æ&*ñ¼&‰çÃM\ÖÍ_ÜË9æÿ;zZÿß7‹o^þ¿µÚ³ÿïS|·}ÿß¶åÿÛÚ]kÛ^À˱¹²ü{øÓD% žÐ%x¹Ä=OéÜæì#'}£L§«³8ŠzOÑe妽…±?_¯¨[>ŠÒßW;㔣°r ¶|…Ÿ…tGaDîmõ¯iÏAcÃîù:/ÂÖuO1A7§ ;¥"wÝ,/Ⱦ“NËÓ{+ïÝ!‘²LY¨9²íl73ÁGùÇõ™]vP«€ß8’*\Ç·qc DݵIË‹Q¶¬\ŽrtÐYÄW±¯Í0%ÀØÍQ[Ì»ì|+U+-S³¨ïï#9ÿ>™näü™Â0åRûdî±9°íœS•œc1{þ…Ëô>XYmm?p&¿”«ëƒø¸~X%çV€Ð>ü³Yo|øôx™øü´{Óù¼ªf&‡V]ˆY~•%¿ ¬AáÐM1gxo\ÔL|*ÿÙöcúÏ.lï.0’î´¦NÊűM™Ä%·©'<ßw‡£±Ì=ޝe•ñ)¹dXœz™ ïžž5Ñ6<&Rç=°mqɳ-*»âcyEzúL¶[ߘõ-ðNõÓ<²æ4WóH’(G¬—âþÞ1óä³{·Èè ={F§Xã…Cãa§?bùFŠ2úcÄ ÛÈY÷'ɃEò,]txÄó–^^ªJ½Iø³ÖŸe"'…ææÝlÉkk³ÉŠ$³pC+Ñä‚ñõ¾Ro÷Jߤ1m>åæ'âܼ¿™D ëæ«ßï< â¬=NÙÝ|I†AÏ7EÁûh˜OŒ íiägªs’9&âTÉ+å;c¾Ð*~êÁm”¸M²(oUËu܆á–%tæAI;œ·&—‚Özb`TR–S¥rfÁ]p0²úFûš_æ`5Ì(GêØ5`VËó4D§N-×FbS=GÑË~tH{‘wó •}Ó ÆÌð?ÆM‹—OxÓâY‡€4Î<Þ™\Ðù›„©8‹‘2À£4†ìø ÿÏës e‰ƒEõìL%<þsh¬LòÍ• ¤øØ£8\FÎé·¹ä#Œ'ä½ù‹RÎU´Äè€w:´í‹ ÏêWI¤2 *Í¥9‘Çž2:黓.2˜if0ÍÖ¼'Çû˜›³VNãsEŽñ—Óx)'5 §d[ðù †ƒ˜à­|OàÇâ~Ü3'ÿPØ´•ÍG`Tòü¯XÐ"¯¹PÐÒ^XfŠi[„$=™~áAt šìÄó<o¢ë܃èæ ëæî¥{x´-ÆÆ¸á£…ûñÐ8®!Óþ¯Ó"r­wßµ¼1ÉË7¾ 9ˆî©Â.@Ù ŒIò¿­ÇPNÃ1µB!Æ›¢ Œ‚Š ¥Ç˜› ïð”ÅÔsÕ" Œ|'O›÷!Ü‚Ê÷à€¢^‹qEÆæC(2~LCÉŸj(©.&,%ÚiþIÔ›3OÃM<¡Pé3'ÓQQ“)ÒÀ³v„û}(+K Gç«–ÎßU ’kºxF؇U–ÌßWYò™Wbqø÷4“ý%ô*Ñ»Áb*ÉŸÈWȸüw¾ ÑþÅoCü~ŸàþÇ(ëöŸøþGué•ÿc Š=ßÿx‚ïfçþG{µÙ*‰vsäâÕæ@ ¼ìÑÜûTíÕÍÕÆ]‰XCz>Wħͪ¾¹¯Å§],Ž·¶à?uísW†”_onæ5Bvþ;'>8Ʋp΂4Qa8UˆúˆÓ*/¥}#%6Zy+…Á®qÄÝ5áì%BܵÏŠZý´Y’Ó㟻%9Ïr®âçó£ç#z£ßÿH+\ºÀ ð}}Ϻè¤.¯’œJÏuÀˆx$;#?ï¬{žA]¼0rcîó¥‘5IJ>`˹r_W÷6ö´3¼ÕpåÊu{p^Ýz—&Ö°•“Áp˜ŸÆ28 ºÓ—•Љ\Üн ùOþýo=î‡Ö`ö ¸‡ü·BnËå øµ&ŸâO®Èœ?½>Íú•tà$dÕ`Õà \îÁ=€½O¸ÜóNÌìμU0BÂ:ô{·±‹5ªŠÚxe«Æñ`|a l@ÎŽ7õדø~Ãõð„àen$F€?½.‹MŸßzCûCêv…\™³Á5 ¯d!~ÜÅàà×x/ç,Xx\ú‹§›ÇåZ” ÐGœõ|4/R™dÆyû– ‰•@óÞBÃÀÊã,ÒFg4t „Ç™‡»ø `Þʼn¤†îø,c.àÑôj8€m8JNqôÕ¦wïùÈÏ•Ìføÿ?¯1k|?¢ŒuV¦+Óð¼®Ø³wàeç4S2³e³þI (ÇÙø&ËúÎêâBøê4^ ÅèâœtFYEÍöÇÞéÝtnGéIF1Wûn.½Ì§`tt‰"ûUBóŽtñ‚‹ÜutçN⹿ûðæá¼µ"µÃÄ 1h|ÚTtûÓ®<zfðê\œtëÊÝ»a$ÖqôÅì*ØJ'KÇnæêw÷5œnÿœu’3ÈÓúŸ³¼¬Ðã(cÅ…½ÝýUuèÝãVàš+pÍk+ïþ×Z¥Ü›tB­"cp‘km[ /r}vÆ_$ýIÎý5{SBÿké{kà õª3SÁÏ0ª[ ·_¢áæîô`ãa¾®GNzxz:{‰Øõð+ôðêÝ’^>ë O.HaÏ©xÔ5ú¨˜ÇÛe‘sêÓæ”!¶lk+ºß†´€ö-Ñ*:ËéØECœ¥ÈÞÆ:seªÎîpj+afÛfH±|c·œÆÿ0ióL£T3ëœ\ØEífÔv’ÄD@È Ý\t¡ª·çÅM·×óN6&Iq´@Eãö*fxÐã[E¸dÏŠ$Gx«û5cÔð`de§EÛž#Ó€´îÐÆÕû™ñë~ûùÓ¦Ó=5jíí(,ÿ¡‹UÅï}ßt9¢âüîô8¿{'œßµp~÷‘p>äz¤ßu‘>œÄ#býî}±~“×3ëwëw}¬ßMaý®ƒõ»q¬ßÚ²±¾À~2‡¥r(l:ÛR]ÈvòîIOÛ€÷_×Ýap#ŸÖ=ä¼J(Ì iAz Y(ÍL—ª¬rCíÊŠv=Rƒä¤“"%JªHð4£'‡TÊP¨bŽ(Äuœ¤8N õ®ÉKƧ‚(ÅxѰV,:+Î:ÝKo°jgÿpƤƓf~¹p5@éF2"Gï6ïà‘0LmCVMÝÄ»ˆw# &â5%ŒwÆ»ãM=é4Œ,2ÂÃäEs£u•IÚ‡XС ‰18²LáYú,x¦ž]‘Ò†ÍÈ 3R﹘ŠÕá(½lÕתwD3臗^÷ß©`t¢"IÓ( €)cîâ²sâñõiFó«úA*;–ïÔSGQÉ`ÂFJß*·lÐïü•õ¥<ûŸoÿ™ûÏí¾o@ŠI9ßò2¶q™˜†zR«»²YÏv`ÔíÎðU@d/¯/ •‚ƒÕ.´3ÌNº(r˜|ch½žÅ ªe Ÿèä$­mlZW¿àø÷v©ÜZ>˜7v­rä ê¾jÅVn£M]©ž‰Ô¢51húÞ"i¥Ñlhùøñ· '°Avéœu{]i«sí¨ÀÍþÕÜô+â„~Ê€~#–ýctÕëŽG aG+*R®¹¯î¢€sÁ¼yUü÷;|éÏ.þmù`½µ0p›è=+îÎU+»³¤ê'sl d^o1Ëë6âZ`C"Û_•íNºà ø1qÅqŒo[üɾ;ŽšÍÃØT švSÕ·À¨âÕT ùó×]脟è׈Ü.GŸÂ|K$†,2^8JçùäGG¤®/äRâ¹³ ¸>Mÿ©¾G¹îE{n/õÜZ±çîÌУ¶9yfÂŠ× ¬´Lá<^¥_ù³ÜÍ2b?t7UÐØ$ŸØÍ”;7“²ÍMò!bdoçQ&Æîá)`ý%ý¨«fÀŠÄœå¼oÅí̃tð!) Ä2ÐoLP¼±;¿±‰«°V’Ò»é®IϵÐ?™–›B\`A2‰(žAT¼ ç@m‡lûÕø0™f…løì°eÑV<‘r²-’¼ŠnÅÕ0ûÚ\»öuŵºKIŽ™ÅuˆSÙ]»ѠÁXzM Nµçê/Ög<>kGì×¹—³øBZSÝŽ`!:$'ö‰ÖDI¸&)4}¦góŸñþðCÿä¢òèð®–‹°oyÅW.ÿºÏœ:‰ì:‡;Oî,Ÿ¦Göƒr´'_Ð…÷uÀÅ£·h¥öE’B1lØÝª´M&æz´7(©-rRºŒ¦Ï5@Ð+çºVØŒäcí4ÏAKìÿˆ£E*¸E½j9kmVð¾=á*áiâ|@6+ªi¥ËúcÒÉéÁ$¥„ISääv1†L1aPe¥=†7ØÍ³*± g’òÄX°{7,ؽü))Ö.s?±A#üB,øóX@L?ü‰åñä #² uAe¹ç "?×'rÿã_Ã'½ÿ±ôúÍëZÿ£ºø|ÿã)>¼Y½ûº¬o/WÈ8pD×=šw¹¹Öt.~á×£–×Ê1gË;Qúx4 ¿è‚Dx÷:Dpµ>€Ïb¢¯8: ¬b ”Gg(ÑÊ¿¤¥Û©ÒêYe±gÆK›¬ÈhÐu}× éTi‚!5± á’tY'¾\±‚¯NCÂ?Bo^^·oô:ÆÆYëéÿ÷O®}ÊÛw„·¸xA:3Â@¢}ãஆ@¡1 Á‘Ý«%»šç8˜Mð4_ø°º }ÍáÓ¤?ñö€®Nè«IŠ }¯7A«ÓfÓÛ.pðÞ·Óˆ±ú$ã@÷sÕ·­£|@¸À¾½[§ôˇÕÑšØÑ½"BãÃê2&j€)•Fœ~_­í:9Z°õm°±× ek¡vxYô>7{ÜiwÀ‚ØVþÎFƒëÞ©u—€§ë*¯QY(H¾– ¤vo‘<%ïýT6W Qúg­‰ÿ´Ü¥(ýÈ 8€wBV¼³‘À¾PÈW׿xà¹íçÝAð*)§Ue¥"õ"j\ÚT#Ó²ÓHxèìåžfö™ÄëdZ@°Å†²*hq0Ä Ü^k„˜×}ãF;àÉÁÚ•hG2éËVk„hîŠi™P "¤"§:ÖèdؽRFãqÖÜ,ø1Èöû½î_@;CLµ$$_7R¢"zÃÐÁ7Ò¾x–:Mdßà4=é⽇µR·òOö|CcBøO‚Ì?YaR«#C{tÞ%çP‹Ð.&vNmÄãË(“¨Ùä»(ØQ6ï2Š0÷QŒÿ\Ñ«(Ô·Ö`Û>ˈ%Žú ‚Kšœ{S®C´¼¦¦o›É™NEŸØ2ahXúÌž‰¸P]kÞG<éâ{úÈßÓ0I>¸é`®ð!¸(&* _yP³ŸÁ Ù*@THî羕M °Gwó»gêQXöé½àì“;0ïÜvZiÍßηô^‘ìž}â‘ÓæøëÙ,‡ÓЬž};É®ÆúÞ±©•`ï¼EFþ Th{Яà®CKžÀuÄYl@U4VÊ$dû­kî¦ëœ%Ù±ÎP8(%¤YÓcqc&‡…8ñ;âS6Eð\ú^ø‹{“’£³…žAØÁ#:Y¡c$=èB”G¨cÿßYE½¬ZôˆüØ{‘½‰uÂóÖ?:¥¸Y•d‚$³l4î^â]qïÀÂ9£Tx©ü| 3©'‹<Ó`'Á4KjJµág«ñ$:;ƒã½@èæmÖCÕÄ®[q>œÊ›Ñ—Œ7s™G5imïU‚N×7Ô– ¤³ä½‹_ªÕrËÛŸ$Hj?1„C¼U÷Ôª9-üëJ|!—èÐB¤A'ûs o#ùù.@¶6¥_ Z"l“Ú€Ó¥ÕmñGÇþ­Z¥(‘rà áÜ2·ºEé=Läz(/æáOÀðòšI0P"¬{_ó1W¸.9äœAæ‡3Xk>lÁà{ž DaÏ¢*%ãV_o~~ÁsR)t»À Väašè^Ý’. a1±D^ýRy–NV@÷3[ÞÇêûå Í~Lç@ü“Ç‘H’@ÍäÌŒ• dI°·u ‘Õ•P7@XÌU œ,„ZÈÄ¡¦€çÁæh–hGÎ#ç°EX9Øm¸<¥!PŽái+{'Fõ+_x9,½;ßp¶éïÿÀ3k©™)'Báìs‚žÜÿ^ŽÓÁJvÖ¹îÑ8Žo½‚ÍÍújëS©ÙÞYmTf˜ÜÏT`Þ¥·ÕÙ/hRøµÒB¢‚‚3 ~Ccf¾ÎñZ“RßFÃ3¢81§…eN[½fPá>&²Œw,– kÐuhŒËÐ=ÁÍéÕeBßaµ>Èd_»ÃAÏž`3ÒtßUko‰P46ëkpÈ}á·»‹âd80³¸t©º¿€”ߊ7¯@6Ù’÷±aÞ À÷j5DÙóÒ[±k±w¡»{Þtû§ƒÅÀÅ»¥è8ìëL"¿²ê±â¯¼I[nƒTæfè‹N?C%çè¢{6N0PÖØ oÞU_!SUjã•;ùÀHT©9h¼ ¦¯㟇‰Ì¶¹ºðj‘Ä8˜Ì]€M)X*·Ú/j©õùV´ºÇxÆ_q9™úîÖG?@‡ýQWg-d¨¾üÿ!`ý5M5ãÕ5a€¹+…jN…NR}vkâèÉ${=н……œÂçìÂ=0›ôâÇ×c¦¤ü31ºRu`Qú˜Æ„^]dÅSЧêý¶€[è#D­4—DE¿ }^‡m¼œÐÆk¯ê« êb~UÏ·W¼ú3h£œ §¼Ày- ¼~™nÀ-/pRAÕÚé^û (ÿ_«Ú«× îföÑò­^yÒOPØÐFf:£9c§‡ùPàm™!!é’ÕÐ í^ã–§ £ ¶ÉväÙÀÖ J¦\²ž÷)vÞBI7¡Ñ9 #ùÆKÜ ‘ñ.&û@+#CäΜlØ@NÏ€êtOP$†-Õ9¿œ$;8S×Q¼s"-" _¿LQ©×oaþ,k4^ŸÀÙP—|—´¦ß&éxóÌ»j#s%m É;’ÔY„KCDˆ¨Iõ¥ÝNbVªµ%S:o°=¨2œcûtì´ðzÖË?íVdÐë+ºzwý"ç޳#ª¯ÑÔV}mW÷¹ñ1ií6sŽ˜ݹ+Vn¥‰±/2}‘-æzÓc6¬Pu*v™;‚£¹{ªí‰ÞF±è¨3NF(‡(Å1¦9þ•é2âÀé XªCŒEÄã€`¢[rNœôe ó0yã‚û£w.œa¯‹FÌìj0D…ºgIŽê¸sò× Z;P1Ì’e÷Ê?±FÚÅUÞåP>~ 6‡$¢4‘Ж £y;[qie|šr«ø$4¾ŠÁš ®n½XƒžöAb×Zµuú&ä…ÄCµÄ¾‡jÍÐÙð3%vòÚaÚä'ùµÛiÍóÚ—l§E™!ŠÛ-™G6ÿ¯æØÔèxE§{Fì8W¢S£s-6â`§Ög/áÿš7U·"ݧâ³$á ›‘+šŸ©€`ÇB¹6ýËžN¬»ñNÃb^çEÜRŒÍVÈ)ÁB+—xK8û⟗ò7)@[³u7ý°²Bx’¦˜[@UŽMÇÝs-¶ýCKgJ²Å„£(¬Éu››A}’”:ä±(U2 ¦*¤)·€ú-˜5ä5¼°öàCÖ÷Õì—ú€LgU£¯Ç„çÿj!µûœd§A¢±ä¡hµá³·úƒ¢Ž¼Ç¾”«¿º€UbÐjÜ›è¢64jsò–Éú¤ˆè<"ÍÐÀµ®|7å¤O» åñ*A|¢²TgV5½–röÖÑ™sHúƒ‰ ¥¦½nÿÖétП§@•‘­5b'Þ~v¦²Ú2 ЋÕœ•T#cgJ§Çœ¹‡Æ^‡1µ3+HÈO’C£ÐjQ"ÙûÄujà‘ejYÖ¤0©J²þœdZßÙa>cXG59¯!þ‹­a[s“R…ã'1¢<¤Ût±n“ÝëdõxÌÁ;•e7X 3ï/¹ ²#^ް«t¤ÿwpõ²ÎÝ¿Hú;£ b2újQ;ÃÈæÆI¥¦%¥:›j¹\È&e%­É? ”Ä’N¢¹9<ŸŠåµæœÏôºÚ€øÒìqÈôzK$çªã1`hK{XaPÿþ¯óåü¸sùõ!CLÈÿX}ùæ%ßÿ¯Õ––^.þŸÅê«ÅÚÒóýÿ§ø0^Ø÷ÿ7ë_>,×11ðÞn½Õ¦„ƒ-}x¿"ê›;kuøg·þ=È'„ÍVã "–W÷ Ò!ҽơµ?'%qœôÑ ¡†2k²,·ÞAÞj%»¼Ìzh»ìœ÷:}±†ÇÛ9šÎÿˆµîi‡SÿZ ­wFÐÿ.œŸdÄÌ‹3°;";¬Àçi(€Ù‘Fƒ³ñ »)œü…>èWÃÁ×î)O;)ÁSáÌ—É1ñ×&´f£¹'Zh¨ºéÈ CƒD*Ä’U:a"B=3 ]##™&zB}¹$Û¦` ²]N“z²;kv–N:7¢ÜrÎõèy Ø‘ÕÉsaºoß 4ÊwÊãQ©>Kÿ|ÃèÍÇÙ˜ÞêÜaÐP¤ÊLªÖbgX*Nè€%8ë›[*2[å-=ÔWãáIƒ0`#—ˆ‰}åTý7™ú^kwÊÒ×¢ÛíÝ 2©“þ¬‡Þ™”ʆoYcjCNβ7@<£³Hç/œù–ÖYop#N¯‡T u:ÒnMwmûV"ÊßÐ(nRå¸i¶:7€)Ä|S/©Äé)/Å»,­åßG·—ǃ^¹óÛ¿óè¬ òmô±™ ÝÂRÔ1Ý1Ä8€N@'Ð.«ü;²n$fËè'Œv¨Íô¾²ßLW…PäÔ€±l“äíµŠÈL#3Mõ•£²±Ô[ûBo Úº@^¢w\Ìn.6r’ñé"/Ašp§W >8L†º üå—Öö9ˆâ»,ÖŽÕH¤™â 5¶[릵 9Mí÷9ǽ¹þ7;yÏ$poy 6žVtÁ ëPwý´¶´$ªÑQc¡ÐøZÅÆ×JŽÏJ•bë>CÜØÌ¢›øÈRŒH¤°;̨㕰M;÷âÆþÂOn~ßnžN[lÞ²Åú°å2.|ù`4,¥ºZÈàìd o¥¹µÚj7·[‚NÞ î~Xf½„ÖA]ž•§ :¥¹W>ëAþ5ëJ˜‰¨x’)wžQ±Á‹ &swÖ‚9wTëxô4™k^9T·žq¢%@¡Y<ýΈ.Pã>ê:Õñ‚+ ——b¶Ø¬¦Y§h—(¡ÎÁß>†­Lˆc#¹•”˜LÌèš %ZêÏ8-N^ӗѦíÜg¹XC¾©ÈâÑ@³:poÝûç*9w1Ò€&#s1CLßaÕ̼{’ \Ÿ†-£'YÈ]‹ ÛžÊDw=ž2 â3.$ò®¹ê{B*µ49Î2&V±!>^úÈsøpxé£üaQ¼ä¸Íþ ?`K¡ê¡»¿=´5ùÖÍ…üCdøÐ¾u3ìŽÇ0MŽöå´s}uJ–O/];Í¡*Þ•¸þ]P™è09ÝÖÄr¯£c§g![ü+˜kŠMšüÝØ…®*³M=dž¨öáÖò«ûˆ°¹·ºµSíúûU当ÈEÁ› %¯ÃÿAdÞÀÿPh^mÐ_ø¾±’¦þy_3vôðÒ;E&69ŸSÄ×,î,Ç:€4tT‰°¯iÛÈ£Ò=áŒtÒ§vóC+Òz$ßSS${ZùþÉžö&gx Øèét†–Zr TR)BÝ¢ô¥ŠUÙ›¾JcF:^%<¥G¹-éÕ-ô‹–<à66s]æ?·ýÜò_¶ú2ÖØØœÛØGsY´Úk¿òÒñ*ZáH…ü U ÕœÄA¹yƒ”’ZÌ„¦´û§ÂUæá#æ·3üea$9Édè [V‰Ît|ˆçŬ‹“‘$DD˜™ÑÔ™¥œþùøÂÜ,—š6©}ã«'ÀQÉvл]e‚fº"&T»‡î ÓÎ;ìpŸ Ÿê–µæAñ­ x4߯­‘=²qàí>ÿð'%îÙ/l)§—Ãx/‡é^í^M/‡qÔ•¤ÃYPDtÀêÝJ¥TBmh”в #×wNO»JǗׇƒ³†ÜÑÄœTªi1ËÌ:¨ñ¾Ç@n5]µ‡™l—¶Ê­YòP’?Ô.Êp’Ãìª×9asÄv J¢$±ˆ*­3Ù·Î pнÎ9Þƒc–oŒ'DŽx?…y?.¬³Ù—7¸WÙpžµ=8+Ò~ß ißĵÜ8Ô! Q«Ôse[%aÀu7ÏUMbر*r~‰¼6ïd.¿ú rb€75€$£Ð“*s¿Îbé œ*œÝ#=@šp™õÔõ'ˆf—PÔQ AÏ>À{]¹À5çÑ’C†|öÞžCëíò”³DQRf•F³<3JhôÙX™kÎ#¿Ì- ÄT[ëÙ\ª-†Vä½,æ;*!Wߩ֒pydwhXæÙl¬;³ÄêÛ/YYÎF6=[ÆÖüp+Û1<8==£‹ òÒ%¦a ñÜÖqgß9aQfpîâ=ïoo€¼¿×ñ¸Þ8¸ó¶Þ÷é}ðˆÿ ¹ó…\TøCû.XÛ»“†˜øö¸´Á½“Èm£ä_.½MÔÿkx2èŸ~9y(°|ÿ¯jíÍ›ÅÿCé_Þ,½yCù_^½~óêÙÿë)> ëë›âý~«±‡ŠtÆöÝÆvkåKC»Ù>`Úù«þ~y¢,~ 4”Íæ§ŠhÀÿë;;›‡JWInØEšQYŸÝÇ Mí—t‹$ϱµ¾Ý:#›ê8raß`öÆŠÂl…±t"^Ò§,¦t¤·ýÈ&»AÏ%57>¥B¥±Ìï³kÊê´'ö~V9ý”ÁFÆX¢«Hö99VD(G²«R}íö¿–ÐÛ Ô˜•®b Æ*’NH•d8\x©¦lÜ®)\Ï¿3Q+·ìL$»¦5VX*·" RÜÒìF¾‘`£Þ^­ !e= íz³õ©µ+…É[+bOóH±pqsJ<2B ÚõO«%±”PϧM$Ó‡x¸0›õF«tþÃòÞnûã Åd†b6–\§Ó2³EÌ,Gq3ËÑÌ,žÖV6Ç”E¢¸ j p’l%ñÞº¸u}ܯ¸ç…°k¯¨´¨XBXшÞt5ÎÈtk C³€„Rνr§M%e|j•mšH^ypUZgt‹u™'Z.?Œ(º ®i£+¦î‘@é´lµÆ§X¾-‘-”ž*;–Z;Oœš²ù8$z}“ü¦³¨êáãß9¹7[¼Àsj=O:Ž<õ%ɈHþcο˜†¡ð¼Ã‚ò°‡Ct®I4hÏÖºÒ¼Íaå\¾-¢)ûÅ5TßüŽ˜ZPU`ÞO©w1ìºñCtÃþéZõ0Û=6ÔiÆ#Vº[ròÚÍ;nVUÚ ò\–g²×tîØ'±šá™lª:ó«‹~¾g}-´U#¬`ðóYyûYñ°’ßE.ÓâJô<~êê·0÷Zü>ù–ŒÞ‰2å®™ RtE¨[“Œ"æ{ÙßÛVü;ï¹° "bPQu<À«¬ý^Ý™q´UVsH,ºY¯!“¼F/÷ÆH;€Æ ÿÏësˆÜqDàèWrÇÑZq¯ôzk…hó;4'ÑõÔ’Šôª6èË(Jäj~0‹™v÷DՇÔ{¢ìcï™àþ¹ø„Åþýa[ìm ›+.OŒíCÒ™g˜t1ê(HÔ¾ÎÅ=°$ñW6ö3ÕÐŒŸ[ÀºpµÐ¨¡ªm9úÿoO¤ÿ¯ÖÞ¼òõÿojÕgýÿS|‚¤ôÿ ÿ?pôþÏJýâŸßU©ÿs+ísvȤ æ´ù÷Óæ“&ÿ@)ò\]ý³.ÿY—Ï`xÖå?._ÑIw ?™6ß(óï®Ë7à c?¥zÿàqÔû¡&ßRøÛ°~0Ý~Ž>0¥ ¼‹Öo’råíd#¡Â<ÙöGÓE_ÀÚºÔ²¤;=xÖŠgÝéo­;=”ŽS/Ø $uQ“ ¡ôAÇòÃh1Ÿ•˜¿ŠóànJÌçÏ?qýïÙèÛ— äDJ¿to­ç„øŸ¯kÕE/þç›Å7Ïñ?ŸäÛ)ˆÿ¹û¾}ðu­•Õ•’ØÙ]m|Ù;ÜY•1ØäwC+Ó.çÓÚ]kûêc‡–l§±½¹úqŸ<É©eŠ-º¹rX´åÕÝÝ/0c˜ÃdEaTð¤ý¥%ÿmmhw't€ÎÅá—½z BÔ¬hͽ5he j©/+G_ö‹éÕ±ú˜Àê—Æç&±¢*–9Óïg]zîÔ~I]z4t*š[9mÜ16ÇCû3w)2 ¶Ää´ÊRí[gÓJ=w?|…>ý”?Ò@:,1XÙµ-ýòW妽ù²”Ê³Š h²5ɬÀ´¬$é-µÄdÍzT\ñ>½q¦ÑÚc­;Åè=øÒÞ«ïax%õåð ¡ýJápÁ)s"Ù!ÿsÀÿ¬À¿+»õ½P¬á{DÝOª ~ÿ8u$kc(Ÿ P´Ÿ•ƒ/„ŒPñ}³UßüÂOäw|ž³$;öµý«Ÿêþ¿±ûeÒn¡B¨4Ê&챘W‘eÚoÁ ,o®ªeA)¢Ùú ~Î}’ßÓójmïìnë*Ëõöê˜Use§ ÄnÝüÎÌÍxêµ7Þ€IfJwafƒz*ÎÀ1ÞŽÑÞ‰qçîä&ô.'ˆ][™ƒaTjín}ÁÞT¸ÕØÚQˆ4Ó-° ÕDZ¾õÅù!À¶äóœ l:ºùåÃîöç½5]! !oè,ÁzÃ'ȧ´¬ MX 9| ‰äÌcYsÅXFù Y°€Âo*Âéy'¡(úgÞšC½Ùlí|iîí®¾GZOˆ|ÉKG¤ Ói™¿~W2‡ƒŸù]Èá8«•7û½Ýýöž3{F°ÃsÑ5X²àÁéjŠÉ¤(698¾´°—v¡æMqÙCH§7ÓÖ(£«Lð*µðïÖ§Š )ß¿äu¦X 6}í¿~þ\_Yù¬âùå‘Ú5(M,3ˆ žøÜßéãÞ á9ÜV‹ÙŸ‹˜Ÿ)æÄogƒF}­6¼Îºæeov!^2<¿N?³Ó¶ƒP­^º½Aߘ¥%¿c—ÙþÊQ°fô°ß†'™.:À:žõÕ·²ú&+sÖoõöÄŒM™¾¯®‡”©GÞdÐÜ4Í n‘"&$Ë ÕHÆÉSQ%,‹"0ÑF…js³ðÞå L1ùb—%û—â f)dnQM°’"šñ3q¥¯y@|oÄnªøáØ«£D•£dÃ$› ÞÛ{köÔÛdÕäsw æÅ^;‡¡4Žt— µWñêVÀ«çm‰x)•lY”–}˜º§×@ó¡Æåù2óä¨ðe„Èyèå€c7.  '–Ë ä †øeMœfWYŸB¤TxãªÆ·WY`r2’[¥Ëjdÿ õVÕ3)$Ùe‘óM@ÉôB¥y]—qi–´…Ñ“†%õCg¸%¿rtüV¦Än,2 ûH-ùjÑ šÑè,c3Š×ŽÏ²bô3E`ÎyÿH“P:Ñ›Œ¤eÿ¥¼¥Ó‰þ@À„é+1ðxvº‡êª'ÔÖø8âØCèjDw-X™ÎÒÓÉRó2Ó îyLxó5“ÑG––Ô…öp$ÕLlýL‘¸ éLÒ¯VÕ$¼9ä|µ! ùÇՆС²0ZSâ:ìŠ]5fÍ0ª“`%•A1é›#§An1RßÕ^àhBWMV¬¦Ó~?©CF¶õ%¡G¾E¬Ô¢¡øÅÔªqV`V{E ò…&Rª¦GªÐC·v@­©kKÑ«ž9°’VµÉZÍÙ(ôrº¦9LêFØýLá*žMÜí¤°“Ì È!¼àJ‰sBš§O¶‹÷—(Þê(vMÖpGÞ¾år„œ/ —äÒž‹ìä/Òåe·Ï1UO†_µÛ‰Ý—#ÑP_ï„×&¯9Äç2ÉÍý@m&»l­¤¢scUÍÇh©Ågq,ÄpýìÝÑóq NôòS6†XW¹Âhw®J2Ž(Lfh (E%w¯…Q`æÐ.žÙ‡=kf©–#î#¤/GV!,”hæd/N¬‰øóxÃ>´,3k‹5ôµqþâb“þâ:þ3q'S›G6Âxzm‰¡¸ 9ÈöCÏ£¢èy4i7Ù wë®ønÐÎÝ GÓíj”p¡8¹Ù”|§?®¸)/Ö†Cü6ìÑ#nX ÚYÊôuŠ {T`ÃòâÐÉiÕõÕ[ýÖ£Wôñ`|AÎÆ˜Ô‡Xs€‘žŒÆƒ«+™ZDoWV?¾¦6Ü]ÔMHIW½ JŒÅùÀd£ß œFtôQì V” q¢ð¶³v(÷a{o[¼~ý:°¸¯]*‚Qg­—–¡-·¤h/QÊØhíáÊVS£M]³ðˆhp¼"ž¢ÏùinŒèO~0| ž(D×Q”ExB[Uð‚BìS(1ô®Çƒ~±r´%š#HÌ$|’·QGP­¬ÏÆÕ3ñ&µ ‚ÚUõ•‚aå0¡)ð!ª§¿‡©Y)wàßq¢ˆzÛ;ÏèÇìß15Áuf$ÎÞ¼½É Všxk 0ǦnØ™ ΀·î})s†±“þX\t1#§~p <™…Ìá2&Ÿ¸!Åó}{½L»^ãÒ¹Gàm&KÆÙd=°·!b[ƒ¨ æ53æÝN±ÉyØs-ÙscBÏ, qÏG©ž}˜¸„ZëhŽ;'Ýt†§f”)³Í^÷:Ö¦Âô‹ÝY˜&ÏØ…¯èGÏ¿¤2—³l¢=¿,£~wë(›ˆÌ ïŽfñœ lΘànÙL`Êc/‰´ºæ;T™ÝŽ~ uó”ºæˆ¶¸5Y[Ì*HïäÑÄ&OIlzN‘nôÇ’[j©–cÚ,}CÂŪ| °!¥é™_s4³*7][‹ 晫Äuä¯êNXw¨ì´%ÙZªcüÏxÂ^˜ôÞ`pE™ÿ(aÍîZ{Áv×·ïŒø·»ž]ù¿Ó'îÿõõ|xóPá_&øÿ/.Õ^/ñß«µgÿÿ§ø¨í‰ÿ²óéÃ.sZÚ=¸±½øïGY|÷CV’g¯ô"ŸßÉ+=Ä,ËC}wï©}¹‹û>ÇS¬®[ TcEÈ«hŸþò6J4áÁ{×XäÌää$ýí<›â|“0'°ƒå̓ÈgX¡zD»·y&yD2]­{ ŒÖ)QËHeËT#!¸Â¥RW÷Óý®;]íGºzöµ?¡/ĨЋw)Ë—†7ÍœFÿÂA~¿-é9½Ù§zeÙû ªãé™U|ÈOŒÿË:—_Œùû?ï.¾fϽÿù ž>óOñáýåßÿ\ÅÔºž‡å« ôç¨ â×8¨Pö¸ Là¡LÿÌøü²`ŒQbœBÊá·Í$êm­L¤x*ÁûTÜc‰{"ÞqRŒ¾Ã’ÇRâ×ë!”À¯ïøÃÏÍöÂÔµ¨;‰AßÓßÍKµÝàJ|\¥}±¤½J} EªÌ¤ê`-©~Äâ„XB æ˜?®¨4ÔôP¥¦Æ'uBÕ>6r‰hÙ—S’`Ù»€×gŠY„ïWÃ.PÞnïV\‘»}q"]ãPŸè©¦¡þ‘~ ŠÎy䱕WùôzH•P#J`«)æQÆ8pÅão@Q gÚSÙp|=<†1tnOHµûïl8ÀIPúdª­ò5Dz9/Èáe_‘#¾†]xû'×CK¶@3‘’ì¸7€“w4^Ÿ@Ï™@’qzÊ@8Ïú°ô=4Ckù÷Ñíåñ ×=ÁÌÒçÑYÄYôc3PJQÇ@$oâ'€N@4†Ð‘nðïhœ„VÅ%&.Tò鯃Þ׌B:âÚ"!7¾èŒe›¯™1Z"2ÓÈLSýSµ)ôµDk_è­Ášc1¯6µ£}Þîsoòæ±]e'ݳ®\ ½Qd¾m¹µp1GN3gƒ^xëÁäÍ—Öö9ˆâ»,ÖŽÕH¤™â 5¶[릵 ¹¾>{–ž¢v>ûÖËÅØâדÀ½åÚ¤( ]º%ê N+[€€Çz j,_«ØøZÉñqZð ClÝgˆœþ†ˆ§Bb|\Æ#SQ^Ê‚=)`‡U‡Ž5˜ãJskµÕFý<¼úÂÅ©å öD¦Æ…ãÀ«2¸™%¥¾ê Ç ZÜl ã´äc „×)Á:;;ëžt‘› ±Èòb1xgÝ!,Ò)Pâ>ñ‹Ð{¶¹8Í@xf§NCr H1q¢¥Ñõñ,ž ç@ˆ¨qùêhÉC Á¥˜-6«ƒiÖ)Ú%ôÛ¹Ë1r=íibHKBædu= €Â92ÓŸqZÀc8·éËhÓÔM‹ °¦Û?’ÖÉ+Íꀡh¡†Ó„ãBR¡®{B®¯àФ“‹ÏQ¼&é>ƒê€}êÃa\lȇ /þuZ¼ô‘çðáðÒGùâx)nºã †fПG°¥PõÐÝßÚ*Tùn›áò"2M Ð o†Ýñ¦ ´ÒÇðkr¢95Õ5*CåÃ;£òá׿ *vµ'jb¹'…qã-0)¨DDv±°B©Çe‘èMh(¤C½qi}Ýdí|$h†Î$žØ0¥y…s‡çjù9jNóôýë ƒnà‡œ˜žþ¦ÁЈëõ§¾ÖÍÑ+îíèôíéœ#ºþHÍÍú„à.ºDØ×´V R“éÂ2XT(¹ûc¶hD̸٢q'³—ÙËÐå“ö>udÆän³îl»Á›ïéø»¤vè¦Ö¨ÄQÂcŽ˜ä¶¯²7})<-<¾%ƒ…GK×üÒ­¼ÒK~iàë°¼ îLK­ùÚ¯‰\Œs­ðG¤Âa^…ªžxNÔó‰AÏIa4ÆÍ ’\,ª3.×DyÆ_`A’dð5‘ëYr“,Ñ©‹‘¢Ïºh£#vò€Ð-’H'³D?•Ò?_hIM铤މrJ Ï#Û¹¾bvjŒâÊÕ ËÊ⽩ÝCw†é=á‚FöN¸OèžµæAñ­ x+½à€["h¼qàmÿp%î$l)§—Ãx/‡é^í^M/‡qÔ•¤ãS ¢¹?î¢BJª^Ê1£:“m9½szÚUÚ&önÌrGV‰vç DO ×—×—&Ô„*Fºº2îj¼ï1DxA}ŽEa&Û¥­rkÖ0b Tuh×=ÔŠÂöºêuNX¿]‚’ÿºÎ†ÄÄ)×}¦èÙ·Î ðr½Î9ú»½ž8d#ô&¾ÈzWòò/V^þÀCU3TjͳNÃBp\¹ Û^ú¹ }uS£ÅºX5‰žpÇÑ@"u‘oíÆ£R˜{÷²Ìý:‹9Š;U^üz€4á2ŸàêiÔ…<ku&Ý0Õ¸wý·b:òd5¨õô}ê­—›ºœ¸Ï,\€›ït8„ J*-?—G΂dž…×…½xêÛ/FYÎC¥Z(ck~¯T˜l*fF³¦ëp^f,Ⱥ–˜U,œr›ÇM æ„EbýÑ¥²_Hnj!— þÐŽ VígÚõn‚Xƒ–nöZ$x€`øQÿÎÿyòTù?_½ÒþßÕׯ^“ÿ÷sü÷§ù(< ü¿WeZYûæòý©¿g']ø¦X´tN¼üœûó÷ö š6õg,Š8!’Ö‰ÅüÊ M%Š>M2PÛc¨Î:¨÷~"PMÕ“ñ¾Sù>Õn”wÌ÷‰Y(çgcV%ýlX :Ÿ3~>güd0茟«“ñó÷¼  kíç'Kþ©+’rÿ®é?Ÿ6×§‚Òãäú´2{š(w›Ü“ã³Ñq5QGT4¹¤ Å <7Öã±Ò|'„ì}—±ìG?ZŽÐÇY%tõI üßk}:Ó¨E8Ÿ3þ™F%±Í¼šJÕX „ш$zÇü«òTÞ¿ïùDA¼æB4+'îPjía¢OQˆnHEÚS‘þ(Ó¸kÓÇÇŽ‰˜ùÛá9[il¥Á!ôóf+ÍÑÿ~{"ýïâë¥E_ÿû¦ú¬ÿ}’ÂÖ”þ÷ ˆþ7/¥Œù<ë}g½oäÞåÔiXÅîäK¢»÷Sì’R÷@ét\µí/£ÖMC7©ÐM„oI/÷³º÷YÝûÀñhÜ}þ“)|Íçî§Ô<º؆íƒ)€sTx¹úÕ²öcËħRzÆRcù=güHJʃg%¥¸›’ÒZLOù`¯ó)(§Òý†*ʃ@·7õ¼ÀÍ?Q4YÏxêt,ÏÊB(ÏʂʃSY×ÿ¾}É@Œèc ½{k½&Ä{ßÝøooª‹ÕgýßS|ã‚øo»ïÛ_PTl­¬®”L.ÆJ‰|w #R ‘p¥vèF* …æ†0¶9¶shÂ’WT΀¢­pꂊL$`G:‡f ¶¡ÒOÐ6×é]+*OÑf(CQÅIÈ¢‰î³–´ÐÔ~I-i4 *Ò-M(m†MN?*w¤Ù±iüs¶2oœ´2JmÒ0`tˆ2É1ÿŠéCÕ6!¼Ÿ¬ÆÍéê~:\Š -ÃD§AuXbø²“îj[j}Wå•̧“/%‘à–˜f˜´ ù£P™Vx‰©•E?*®†^ÿÞhíUdøk•±¦¢²ÏTœ4Ai nP‚ÏŠÌ*³›Ê´¤:(e»M‚¹T¬ÔG“樢ÌLj€4“&ÝnÅÊUS±²Çä-È]æx«Ø/ÓûH§™J£kB‹¿Y$7kVÅMT±òæåÌËÎïUq{W¼ÙyÐá,Qr¨Ñ80^НwbÑ0I é.¬\cïD­àŒ0d„Þ§Ña¹©ÌiT^bðüa©üXï0oQz©ÇZ»[œµH!]ckG= ÊÐL·À²E©þÖç‡lÛ’Ïsöµéˆé—»ÛŸ÷Öt…(„¼¡³Pç Â’,«BC ¾tæ ^YsÅpù Y°€Âo*Âé9#µEÿÌ[Sˆª¹·»úAj=!ÚÏÒ]éÂtÀæ¯ßÕ¤ Çáàg~r8ÎjåÍ~ow¿½çÌž¬Àð\tÍ–ìFÞÉus€ŸœAŠb“ƒƒãK {ijÞ—=„´}z›¦×«p.-c¹ƒ·@ âØ¡øýKÞ!hŠÕðÄÓ×J+V¦=x*¯Ai☕´³H¥ù'žU„q[}Pc$0¿R†1†7Ç  LŽ.ÐKF@P»“óZ¡XV¯FÝÞ o,“’²ËlåX03zàïÓL`)Ï‚úê[YçÐåÊû# ä©Þ^‚Œ€QL±•ÑÕõ°;¸™ð3#ƒš3ƒ¦È-R/„4Œ,ÓpÓFè¥ýt9S,’+ :9¹2sÔ¡ùÙAšOó@%Œw–ÄS«¬ñáÃHa'eÞ8?ù±“ª4ú6Y5ù܈y11{ûäœÏ±Œ°VÏÛ(ñò)q×V…ß1ËâC¤YSgZIôuYá|+G§1’Ÿ‘ÑÓäÐd"Mch÷ ‘§öyÎÀíÓ2–i16‰èøIÇ?‰h=ž˜¥³)jÜqðBCö¯Ü:uªH¥ÒL¯B¼!=xÞÿÒOÞÒ~èŽD à9φâ6;]ÈÃc*J!ìɱw4 Í\BjÊ<í*µ!“X9_94×ÈRâbt¤¦‚©¥¿I©÷’ µGúÕJ¢š¤‚‘7¨M±è`a³Ûᆉs˜¾Þ·b—C­W3 p" Ùpía©´ôr2ä¥!7PõÖïoèøC+VóÛŽ ÙZ<ô„!¥±bí Å/¦ÖŽ.õWÑ‚|Å…ô¦é‘*$Ñ­Pkê"K4tF]‰”f¹ÕAƒT÷4I]Y=EoØx· %—ž2Üé¤èi|²Ë¼àJq⯠MˆI%[ŒÅ¶JáO y»¥k8oÿr9™”Zs<. ºÈNþ ^vûðdˆA»ˆÿyô…:y'j+¹þ!B—IÐåîK\¶?R1ý=¬â°Lö+\~'Ù¹£˜ã𠛀ÒLëj"ƒíÎOìE@C !¹yÍŒ"2‡tñ¼>ìYóJµáÆp»äykJÇ3s²—&ÖD¸ãÓ ûвȬ-–Ð×”EøK‹MúKëH*øÏÄmLmÙèâé§%~âî%Ü ãU 9Š"çѤ½pTd/Ü­»¢{Áš0ÊÿIÜ;šn7P£„ ÅÉͦ5ýI ­ú“/Ÿ†Cü6ìÑ#nX ÚYÊôuŠ {T`ÃòâбiÕõ6[ýÖ£îñ`|A®¯˜(‚øs‹žŒÆƒ««ì”®®€íÊÜÇ×Ô†[£‹z¤©Ô*¢—A‰±8˜,Aã›ÓˆÛ;òÅ›R!NÞvö±å>lïm‹×¯_ç÷µKE0£õÒ2˜E舅{‰RÆFkW¶šm’èš-€GDãñ´tÎO“õWòo—ç«ßDá˜’ŽÆ+ÂÚ:¯€bŸòŠˆÑ w=ô£ˆ•ÞåèjÐz@u ß“dͺTøBvÚÑT› ¨]K ¢´ +‡~[>À”—­ú½‡Yó(%Õßq®ˆ}Û;ÕèÇìß1žöuf$ÎÞ¼íµWšxˇ§ÜÙíðågÀ[÷¾”9qÍI,.ºFžã•ÛpžÌBæð“ÏÜæùþ©vD`ÒkÈ)5ÕÈ‚+‘õÀ:†xmü`‚˜×¼Ø¬·*69g‰Ëî¹Ã5å™’Û5ËAÜõ‘êÚïÙ‡ˆK¨µ¢æ¸sò×Mgx*!F1 àu¯cm*LéÕ…`¸÷]øŠßüK*e9.ü!Z_ðË2êig±Ž²_Èì˜ðîhÏ Ê0æŒ Þá–ͦ¢ô’{ª«›C•-èhÁÞõwT?€ÖxJ•ñôJ_CT|õaBËèèTR›¼©©¤~j9¦ÇÒü..å¯{>~zdGß*§áÍ.ЯVuIv6u'ªûQFTQRÍÛªÆiŒgê î W”<Š2*쮵lÿrû2ƒµèÇ Tñüy”OÄÿÿâ‰ó¿WkµÅ ÿ{õå³ÿÿS|x×{þÿkHàJbgs{rêw1ÁSþ9ó{ÑÏ/ëÃþ`™ß)§‰úñäÙÝÛ‡nv÷œ´îwÌꎕ$C{ŸóþŽnaÇ`žñç\íϹڋåjÇ](&g6¥b&³) -&såE¹ºÂH6C`Tot–+þ;ýók$&±”Ô(q 8ùÖ€¦2EšwÑ;öœØßÙ!z³ÝïÝZcŠt_÷›‰}"ãZÈÀæögw‹Ç@Ñdë ‰ýa²­ÛóN ö±S¯‹ Ù×'%Òþ‘Ò¯§`øcä_€9}þõøbMŸ‚}š>qrôÔ²ý(ÙÑmð§Æú˦Jæ3OâÏÏ’Ä<å~È,æ }–“†ZµÚü6L­ùꟼVí¯ƒ\%Výspåˆð„¢E¬ðv›c]ŽÖË[±r-ÃÁ¿áH윋Šm#Ö‰êÛÀ\‚øy L3R¿¼¢»]˜ÙðJ÷GÈ ·1ÍîŸ ;ÌfkpŠ >Õ@UÚæyÖ6y=6f {%Ñ×z–ZÌÞ¬¡¥ÀÂéÞ#òÑ/Ÿî=-G&îiþ )ÞIŠNC{º{‚wL‘÷Óĉ;8â®—p¸Ì=R¼ãz ó€\š’˜Ù×aý|õ[Xv3’}2•˜=7Õz˜ÝKµÞJöóʯ9)Õú›H…üTë^ Áâ©Ö×V/ͺXý¡²©O™ ýž È[Ÿ}¼õœzœjqêñÖÿ«ýz©Ç]ã­—¼Xæ\}¢ìÅwïíÇH_œ3þüÔAÔ)¢Þ™’ëªHË̾ ë¹%Åt9Ež‡c¬­œÌÆ"傘ۉšÚ‡Ÿvj¿]Žv7YsÄŸ16’GÏÐþLáîLábiן©Þ3Õûe¨ÞwÊbÿÔ”±hûµÊbÿü¹ë'êÿÅùŸNž(ÿSíåbUæz¹øŸW_a¨gÿ¯'ø¨êçZS9Îl7°Dú§F¡§œëO©YŸÓ@MùùeÃ"±Ÿ,ít,)!’Ö—þj_¤ôÿôÿy9ÌçYïÿ¬÷/®÷ÿ™ôú“/‘OPëÜO­O*ý¥Ñ?p•öÏJýg¥þ©ÔÿyÕø¡>à;«ñ~t5¾ÝËCèðsôy…´Ñ¹š¼²öP äѸ>/W™—ÓZ2fºýèGÓ>O}¾õ·ý#éMMvñÔöÖ›>ëM¿¿k¢Þô P8N ö¸é'ª°&+?Bå烎å7[úg fQ ¦!æ¯ÁŒëÿÎFß¾d eô1Ó½µ^â?¾ª½~åÅ|?žõOña4 â?î¾o|AI²µ²ºR²²Ém gÏËç~Ïa™T¾Q˜ƾ`C‡2ß½ ‚«ØËŒè­¢ q”j;®.6+C–lCfqoª”önnû¢­ØÑþƒÜdÏ ÒÜ©ý’ Òh@LÔ¡[ZPÜ2¼ôŽ4{5xz³4tõÓ»bËý& ŠjA}ñ}•·Ë%†þHÃé°ÄÀeßìÕ¶T÷®Ê/*MD¾s·,Lʹ%&&‚wþ(T^_jA××î¥ÅEFõ`kµ°•ð ¢’äÁÈJ@‘ÂᥫÈÄz2mžÌw§óÊQ2ÅtW”" b%Õ¨˜»`R“Æds¬Xi*V^‚¼Ù ËìA;“Zz§è&itMh¦cq˜bkèäc©¸‰&*VF¦<²`eŽ©¸™_+^>Õ<èpþ9Ôh<(/yÌ;±è Xä§²·²Ø¼µŠ›8ËÎâíÝMiK»“›Ð»J°b'˜¬£Rkw‹Ó^(Üjlí¨Dšéd^z¤ì[_œ²lK>O·bu4óˇÝíÏ{kºBBÞÐYó†OOiYš°røPð¥3O dÍ~¾ÎoÈ‚Fª{¤äŒÔ ý3oMu&“æÞîê{©õ„Hwb^LLU<9Åi,¢Õó6 o¼|J¤wRJß-©ØCdS'Iôu÷|K‰“ÀXÁÍÊKæd#³Æ=y¸׊ŽÓ »”ØkEFkŸ %%Œ'F§3“Ȩ-¥PAsZ—î4$™ëLeœr`’ˆü—~rppð–ж;ý€cæ<R¨oÌrb€F7Õ%¶ôÖÏ1vùšmOW-•lžb–Z‘YP¬\„Tqd©HgHÑGRÏÁdÍß,¤‰YÒ˜$ž¯Ä*H*å?FýK”H‰ü3`Cè`M‡é{j+v9T“5ÃB‚÷7”T¶°¤«ˆœyWH%T{£‰ú‡È¬ÅVÓi7” I ãa¥$ôàoIj²h(~1µX4p©ëŠäÛ4¤EMT¡„ní€ZSwf¢·5ZèJ¤`Ë­–ð°QÝÓ<¦êj ¯›üs·ÖQ¹r/¸R‚DËBÊõ%¿ÅX€½DÑÅÐGñAz°†ñ6.—“ÉQ5+âÒœ‹ìä/rÜe·Ï![O†¾µÛ‰g \-“ Ì9‚-¸l­«MÄ9ÍnNzá°J$‘y8'—n,ãýA‘Œ÷YªhwÅ3ÞãÒNÎxoFQ(ãýÁÏNÞÌé¡ÓÉ[ó×y†mA€¾ Â_Úœdò±¬Ì"¾?ÃdÍÑç´- 5ÈŒCΣ¢Èy4i/Ù wë®ø^ÐÎÝ GÓíj”P¡8¹Ù”h¤?)1Qò%Âpˆ?Ãv=z´íj@ƒvÖ†2}bÃذV&ôH«IúŽàvZLÄù,9¶j îy”hÀpHvýÛ{Û˜Y>2³‰Íá½"žvÇù9§ÃçëOþMë|µ(QÔÑ”Dø[Wð)BìSZ!A)jý8w’f2rd|TJ—ŒPÊr%IyV¦ñÂZ MMªúJz]9ôò¥œ:Õï=Ì"IùÜþŽsD,ÛÞ‘dý€~Ìþò_÷gFâìÍq3Àü«M ÃxlÊ?ÚÎp,_ïKï{Û׋‹.&~à„€'s@9Çää##ܲ¾Ç¤—Ôk\º¡pôá0i€0®ëýqÚü Qš¯pƦGسÓq-ÕocB¿ÌŸs¿G©~}ˆè$ 7Ý‘¥08îœüuƒ b”ÒóÇ^÷:ÖnÂ|xÝY€&ŒØ…¯èa\šÄ^Ìb¥m—‰cáÝÑ,eŒ¼ðǤÒI N'å$tT7‡*KØÑ¢hœRË8žPÒ_ÓUšRÔ™ü€‘¤¢d9¦PÑ^â.þä¯u"n>oVãÁ˜ýÉØ³<]*ÆN‘îÌtÃÊ"GoHSãÞÄ3óâ?÷ƒ+JaFyWv×Ú ¶W³í ï_HùÝc6<ä'îÿ}õõ|xóPá&Åx/ƒøÏÏñžæ£vX$þÃΧ»Ÿ-âÈΧ‰ !§|žc>ýü².ÍÚÁ¸\UíNŒùàù<O·a}.V|‡`xÅýp[íͶrÁÝ€ÿï¤{¬“CÊ>ýå­:1(ÂÎênÅq+ºCNËb&©òìi¯îý¶î8žEÒZHèG^ÖŸÙǬõ3|3Ǻ +d$èÝa|MíDdÂBñÎV7b³*cÕtä,·‚*M1[œÒjUùÚ›|d¸çZÙêžûgT¯ü¾‹ -ßà¿sX²ëS•fèqœœÏŽÒ—/¸Wü –lÙS85DK§· Ä æ3ï‹Î^]ÄòWݯƒ1æÈ»„u#<¹¹èöT¶AäsQ~9Îzƒè©>Z~v -ŸuPŒêþ›ëyì-:QæúaɵDOˆÞÈ70\wžk8ªkíd¹³oÏÇ^qJÆ<õr½P¡¹8æ8”ŽQ7Áõä%ÑäÅÌÐocÚ)º ‚Öà5;Ó î>ŠÉ›ˆS½‘JúÈh¨Y¶0"4)¸Daxy;3ÄHCœ@ø%Nù(:*Å:>gätÓRz9"GÄ8X¸?‚ý1D¾¢Õ¨Ç8ÝŽ‡#Eâ€ùèa’JÑn®ïˆ•Ïr”}ÅŠ˜¤ü¯n¯Wñ7\èðy­¹‰{¬GdÊÃZ· ™˜4¢¹%¦˜SY‚{ù/á|ªßª¼Ó},ÙÀº‰@ë‹@²lLŠŠ¡P)Òö[»ìN~áhä ‘ÒÔ¢±‘lu#ÜïiGlØ;b#xÃS: ^È Lþjk½e¨}«å,Ã|r<øÎûša!Ü—<ºçͽxHš6x¼),Ö8Õ0ÍóÏbK•7î"ãVk]s×ÚNëuN[wsr»ÃþjßÝþ ~­MÌ0öMF1ëÇtÛ&g#<À–Q£ž3¼TÒ.ÛA:ž–É#`#/‚ó#Q”}œ#`.ï˜{À#{$Hš6æ¦>¨Æ¬¨8-LslÜó˜jŸ‹'€´">Ÿ Z Ž*6ñêˆðé ª§Üí£F9+æ7‘õX§s>ÜŒ/”ˆ¨ÔýÚE;£lçøVü;¤xÒ½T²~Íú£±ÉŒœ43R¢YW QØÄÊM>é .:WWYŸ ÷Yª¥¼¯U¨ ŽCÙÆeg4B 1Q¼ü<ͬNÍí&©d-ÙöÉàº?VcéŒÔœAêëŽGYfl²àˆ'×=ï@üBRá >5&ëžfý9š†£¢‰¦Ú®>íÛgç!­Éq^Öí—a'î˼x—ãÄ«õIä¨Mm¾pt¥qoކ¥Â%º´ègœ™£„³Í>бJ*ûгùõúD쿽nÿËq6>‘ýwñe­V“öߥ*&þ]¬¾zµôæÙþûÞÞ^ü/åÖ!دãH]‰r};žm¹E>¿¬-7n­UÈ2™6fÝD)yÂ5±“ýRÇUh¼¤Mº–j_£´Ž´_ÜÏÖˆÿ$.yðFèè W3ŸSRþ¸ñøA¬½÷7JËàɉO|_¿ZÌNl‡#Pz{s#þ¡ÿи“µ™ËÔOÉû’&"~†ésäz”©DйܼHŒÂC³BL´¡eâJ÷òúÒ„WPÅJ­£¹êl™WS¾KE[ ²³¸Ï§<;‘‡GÊÕ¬@üË­,U—xP*r9Ò/¬;;ûB5ã×3#"Í‹ü`ÜX,Ü,áZ®üq awMÿ•æUä×Hú¯¶½Ç”Öúné¿0W¥k̪` +_K²Î›ÿ+GLeþÊ—Ožó‚Ï ¶³ý8yÁ1îN®º?W¬<çä?J’0=¢=I˜I_ô`y ¥«N¥³Rõ'%’Z¡J¨A×à"•ÓWûsS[å·¿ë¹ï kóy@8ÜkúaÁ-ÛÚ!p~J6ñû!ð=ò;!ð笳Èçœu¿EÎ:â/ã‰Ë¸Â¤,S}DR–MÛGGWH «Á+#uêßz¼\%^NkÉ÷ö£Më<ôùúÓßô¤/5iáSÛÿY_ú¬/ýAõ¥¢qjP¿À>Q5Yéy*=t,¿Ár?k.‹j. Ñþ15—qýßÙèÛ— Ä‘>&׺·Ö+_ÿW{µø’ôÕÅZmiéåâÿY¬¾©.->ëÿžâèçÝÿä}ß>ø‚"gkeu¥d²´U‚,i99àÂå9L9¯ÈƒxŸÁŸbNÄðÙÄ ÿ*ºtEE‘¯È`ñE[áïö¥FlVü/Øíqr±¢ò„T8©IÑVìŒA‚¹giîÔ~IiL?åFÁ•[fS&%ä½hviñôfQiBùñô®ØrÿÚ¸k+~Ü»/Qy»\bÀà4K 9vÎÆK£ô óÒ•9¥s7]Uå–˜˜¸÷ù£P¹-xñ¨•vB?º—þUÆûo´öTLa™ ¤¢ÒzäÁÈÊÉ’Âáeú«Èdˆ2Õ¡ÌQ¨SRºËtW”<£b噩˜œ2ÒcR¤¯4ù6+VvŠ•±#oAvè2-TÅN‘—Þ:§O]šéÎÈï8›´†NÒ«Š›‚¥b¥ÚÊÛóVb¨Š›D·â¥©Íƒ§ä‘CÝz±µêŒ’Ÿ/íXôLB@º 3(ˆ™*ìŒhïH9ŸÓ»›˜:÷rðæ÷®rA×FÛ®£Rkw‹Â(Üjlí¨DšéX2h"ÙÞúâü `[òyº«Ãæ§/v·?ï­é QyCg‘Ì>A> ¤eUhÂbÈáCÁ—Î<áÁ+k®ðóu~C, ð›Š°GúGÎHm @Ñ?óÖTçøiîí®¾GZOˆÀ³tWº0ƒùkàw5)Ãq8ø™ß…޳Zy³ßÛÝoï9³g+0<]ó‡%»aôóÒ+ŸœAŠb“ƒóáK {ijÞ—=„$üaÍ‚ÍÍz¾\ÈHaË!æN«p¶$c?¤lH'y%°S„S¬ÿ/íÃ:6`r©åÑz+(G¥hl†pê¿G&G±v¢fRÛ!g=“ÀNÛŽ¨°z5êö}LArIv™í¯‡nFæý`x’é¢ã,ÖYP_}+넜\y„a'ÔÛKzYç[QA&L軑Ypͳa3„\ µ‰0¿Y³¦(JÒº93ë+g‰sÆp¼åHmªçîêXâûVQҌ˩ ^ÒG—g1Å(gº“(í;’i‰h—ó’¹çf†LèWÍ•ÈÚ‰qO¾ª²Y‡#…l„A‚Öüô­NšÊèÛdÕäsw æÅÄìÓ“³ÖƲZ=o£ØÆË§$õ$Ïž˜:ÕžH!¯Ã±çH(Mß³ôÉv‚\}¡á$w‹¦}p–L²½Øp£cFÖeþâ°„Ê ÙÀ]bÅ*³…fgÿæ¡ ²1!´‘;yLH-T{£ˆú|pzø)ZN%/60£©¬¨¢øÅÔѰ¥*+ZïÈ4í£[“ 1h /Â4CØ TR¥«$|eT·4þ)º™Â{& ìÜgþÚɳTvÿ‚Ç'Á²Œò_Ém/`^b÷Aü„ˆ#ŒboôP gámP.'ókÃ¥-ÙÉ_UÃ'#ç2Ä:ÝNìâ"g™[N_cñ³ekAm"͹m’´gÑ„óÁ@œœÑŽŽûcQJ©Ût4‘KŠuæM$RGbkJýoŸÜƒfFµ˜¦?:ݽšSªÝQ@ÜOóây° ¥/›ùØkk"~8Þ°7yCÛæéék!¼%Ž%ÍI9.â;R%P×Hâ)š%Nâ>$” +S! "äÑ$ì?*€ýwê¬(öë©æaÿÑTØOMÒúô&7š’lô'%åéO¾@ ð‡ßžG·=Íäuªy¾ôµøö<š¼=yQè<‹´`±"Mi§AÚ1áî(Ù†ã…íÝ…£DýYÙ[¶÷¶ÅëׯÃqèLlžˆÔíñÔ1ÎO?;˜t:_Ó"ò.@;ÏåF„±Õ"ÄþÕ)Š7DxÐrI"G,G-rÉÈ“,’€fÉã…=µÖ¸Ô2Օܹr—,}@êYïa¢Ž1ºqü]aüöޤßôcöï B´¯û3#qöæ¸ôgÆ0ë&ˆtˆ[<2廬ã¶A›gÀÊõ¾”9ÇI,.ºã‘èŽ/†ÙèÂî$î&ç(œt4„ÛÔ÷päÖǃëþé(•ô‘Is"‹¬¼Ö b²5ð¢Tó†kp—Ħ?A¿µT¿ ý2ÇÍý¥úõáQ<à÷OæÛ ðŽ ÁÐN© ¼ƒBÏ&/ÞY Ty¦ý=&7F"ifYŽ…àñ2 +°æ¯sÊ&,­LÀ¿=Y!g‹ÅØ!Ñ™˜n×dgh)Wn719¡‚Gß者dÂLĔҘÒÈlßcÛuÝ¿òQáWýÄý¿¯¾žož*ÿËë7ÕE?þÃ륗ÏþßOñQû=ÿò?i}:gò C@<Çs(úùeÝ•µóp¹ªÚÏ‘I{3?šC°>ÎW +rCÐwqÛ ± ȵÄNÎ&ËFcì¬î¦§˜p"2 ù=N{u/=–T€‚»‡ ›Ë}c ¸ŸŸÃׯZ\èC^½ŸÙ¿ºÊ†3|—ÆŽ ŽÌ÷â¦Û뉋ÎW•âÈÀ /ÓOÒÎùÆYŒÑôËn0ÄTŽJÎ )–êdLudÖÇQÖÛG)\:c®Eôá$ÝÁYw8ˆjeîÈ„Á¬—ÝÌ’&u¶ÀªVm\Ö7,¬}ÙÏèB<–û}Å ™­ó²s+w}𙄛ļrÆÌ¢©(•ÛM°ÑŒuÝy®ÇJUæÖ“¹uô·Fž¨Õ'_aL_ÝŸ4üõØ»ï;Wo nPiRtYÝ´ª¢Û—ÍÔßcnÓgB̧ô¥}ø´>&뚟4¾ãGÖSù›8~_$xœ1>§Þý®©w‹#÷Cd¬%:ðCd­}Œ|¼?Î삜¼J‘“7"ÿ?°ô?Qþ_Z|ä­½yŽÿø$‰Áü¯¤ÿVRôú‹|~Y¡?‘þõÉ$ûï ¶—˧•”ìßOùm$å¨D©&ùßzĽd?v !eâ²IˆÞ§}‰´p°i×a¸÷'4\„õ˜Šïp˜§7Cî…ÃxþüÈŸÿ7ºí\~}@öoRüŸjù?+þÏ«Å×ÏñžäÃÝ‹ÿC–k;ð÷æÎZÝp€õ»q€Ææ½úĸ=Pôð™W,òùeyÅ“Å(…”ç–!IÌk¥Ë&®Fߙۜûûзá×ëáÕ`”á×wüáçÆ••è]4²\{æ¥GÏà*£ F}×{ïV¼}':½«‹yžÔÙå2]ÇÙ˜ÞÎV¸’t2ÂÒ´¶XB 挘/®ˆoôü–rÇ#zBú¯éZûˆV}1º…„v9N9ɽ (x¦XFø~5ìõìön)[;ê¸Nä*4OxnhP€è;†®uÞx£I;½R%ô€"XTŒÔHª‚9Tß#BQ <ÚÙp|=<†1tn`ÕÉ•‹4z0Rk®JË5î^Ê€ì–þŽ\÷=Ü4¼ì+òÅ×°ŸN`GñäHÿˆ-ÐŒFäIsÜÀé9¯O çLàæ?=e œg}XÏš!׫¿P½.@¨wûw5AœE063Õµ:5Ÿ]Tv‚pƒ‡ŽtƒÇà²Ðª¸äPŒÐ3òÝþ×AïkFßqmHM‹#;·Iæ&øÕË:°0™iªªP\Ç­±°\#:© j¨êx›m÷¹7©©]e'ݳ., ­VÈ^£2ÝÐ`]²¡SÀØéŸ_#‘¹ê ÇJÜá-N.uLA?ÌÎ4ýă‘ÓÂÙ ‡×Åßzî±’| ¿^˜d;ŽWjžyL‘îë~3±Od\ ùØÜþì€`ñ˜ØïóG45Šì[w, ´øµ^Ï…Ä‚¶¬Õ¤°Á*§T°\gFQwj¦Þ[8HúôBc¤£ÇèSéÔ`¹‚;`&L8 v«@9I$NœWš[« ëo·„<\úbÖm9;Cí¿­¶2ì2Žá:‚Ëi(Âh© c~vvÖ=é"m)6+c¡Çr.Ér,Nºö‰›#“Jg$N3*†Ù©Ó)RAœiit}<‹§Â9—jÜG§:zã¢Ð35­ƒ)+Ú+t gn zGŸV:x‰G±t©5íöO†¤ì@¢Dýð­…sšÇÚ·bó£QX6*ç®›h·'Õ2:% ¸>O©ãlŠmЬž˜f›R…è.E¦fA|FSêºT~ôº×%êÏÇØKÒ-s5îÞ î¥ga±ñ* ˜ÁûâÏa.þ°EæÙôçqB)”:t7‰‡^ ¥@„Ùæ™H„‡È,Ûaw<Έñó1ñš.œšêå ¢ÜáQîpëß刜#×5±Ü\§?HFŸå¤¡V­6¿ ÓƒCk¾úç¯Uûë o‰•Aÿ\A9b<¡hk¼ÝfçX…£õòV¬\‹Æpðo8;ç¢0€bÛH…3U² Ì%ˆ¥—À4÷È!]t· 3žBéþyá60b ¾Ùý3a‡Ùl Nħ¨ê:Á<_'òz l*ÌöJ¨¯õ,µø ¼YCK‡šI˜¸0"ŒXG«»J˶…„ŠÍ¥Å;P»°Š?âÃÖ>ÜZþbuáÞêÖ@´þ~U]ꊛ 8ôjó"h®ƒ@ºÿ©»õwpÖ+¥‹³ÀÜ#8Ö”î÷ˆ@v'ƒÙ:ÚÍ?o H˜<Ä]m\fÝZ˜0Âq„ ŸÜa–ÇŸ{ˆþaÞ™tÃO‰è­Ë°ì&eÿ‰æ.R{B'Q©Ž¢¥k~i`á°<@Ðê’ìç•_Y ™ %ZáM¤Âa^?€‚ “…)/ SˆÉ'1&CÈË¢R,í‹Iü‚w`ñ7 'øŒ¨á,-d‰Ž|ˆsÖxiýÂÊ" `l®¯˜[£äp5è²ê„¸`ÔôÀ©ê ‚ þ!²¸"ø¯àô‡Hv›ICÖ(ÚÅaº‹ÃX‡qpã´‰” Ô€öÇ]Ô¯H±7¡ë1š Ù†Z;§§]¥h´—+æÕ)¨Ú³Ìd»ÔúµYsÀ‰1PT ¡· ùW½Î «†·1üÝ¿®³!q^Ê¥Œ)Mö­s X¯sŽ×`Çèt|:ÈFx ö"ë]ÉH\x,“b0<ÕJ™1y^ή¸¸lúxälQrKW ç£jÄóÒÝWÞ Qç+‡Ô•ýÃŽ)éNÅÐeîÙ[ìr³S%qå\¦\æ“E=ÍwSÀb¥:ÈN^/Õ)¢Þ™’8–™CRä¤ã2^æf=v Ó™q2ÞB¬-™c,ÕV4$Bn'jj~کŃb 5Í÷DÄþ”T¶5³SðäâÁZ»'ÖAsõmŽÑ¶,稹•±5¿‚‘h¹ZÛ{ fF‘±± +Zbª]±vŸÛäü Û ,¸üßÜib¼ÿB‰ÎõÍC¥Nå“»ÏÑŠ~~Yç°éS"i½hì‚•' Ñm¿°˜Ú°Üö›2'™ 5Àesr‰íZa äXͨîX*3é®o9I³Ÿ±Ô˜Ò8ÈS™’ßžv;ç¥Æì¬tk0 ÑØ¾§`D;“^ªéškà€.£î¿3¼à]A$QÆ*S‡ +,•[ ‘Å(~ss;§Á¨òF›$Ý9‹j\ö£áÒk0ïð$¯& æ³.=IN™T$‡éÆP¾n õíCJúñ0©w²úü\7[ÜdM,<Æäâ'9ç’óÚè’c×ðóÉ;† gD3p01pðý@Ô·ï$ËÔ*R~æÂ¬Jðo‹«óD¤Êƒ«P'+Åç®¶ã4™ïel³ˆª!Æj:ÄP’ª]3õÔ \ÍÑ-0èZ¡C†È‹/­zÚ|¨ž(¹[âˆG wV!¢Q<µ60‰(D`f1óÃNã7C8‘‹qO³Çýñèß¶ÅÞvàn •)º+¯5 ³“îÕh_áž’«TCì'ª¡?B€™àj¡ÙAô·µ.äèÿ¿=‘þñÍ«j ÿõÿ÷I>jC¤ôÿôÿyY‚ÍçYïÿ¬÷/®÷ÿ™ôú“/‹OÐëÜO¯O:ý¥Ò?pµöÏZ}óyÖêÿ Z}÷óóêø~8ÿÁ®ã·{yŽº¯²:WÑWÖþª¸W÷åêúrZK&bµýhÊéÉ ÏW³þÖ $µêÁ³ZU<«U|-×DµêA œì/pÓOÔpMÖ„ºÑËo¶ôÏ Î¢ NCÌï£àŒëÿÎFß¾d MôO³Óûk'Ä|U{½äÅ|S}ùêYÿ÷F þãîûöÁ”[+«+%A¹a÷wV+FØÚ]3QÁ#=ö <‡·7W?XÆ7ËE¢€€‡&Ý! ‡‹VdâÒ¢ qºQ;ƒ"6+³Îlƒö#L‰³RWTzê gÒ.ÚŠYSÇgi¡©ý’ Òh@LÔ¡[ZPÜ2¼ôŽ4{5xz³HœUŒõÔ®ØrÿÚ¸›Vå¸ûâû*o—K ;ü‘†Óa‰ËÎÙ«m©î]9”_TzïBÎÝ”–[b‚¡sµN…JÅÌëK-¨,Éúѽô¯2Em£t´IandÒêŠJiŸ#+sx‡6øsHaîýùŸƒŠLh^áÒ9]Q®çŠ• ½bŸWtêI PìL]MˆM2늕`:oAvèkûV?aÔÊ)ïì£ÈNщçÓèšÐ@Çâ-ÅÖ°+°¼¹ªÎIŽ'mëÓÄ¥lmïìnë*Ë Y5Wöqšœ^ÿÎ'Ž—CÆ}r‹’¾7`âéÓ]˜Ù`왊3px²¤·c´wgbܹ;¹ ½Ë b×F©®£Rkw‹ó—+Üjlí¨Dšé˜Ño"eßúâü `[òyº«C ™_>ìnÞ[Ó¢ò†Î–7|‚|H˪ЄÅÇ‚/ybh k®ðóu~C,0JPEØ#ý#g¤6P èŸykªSÒ7÷vWß#H­'DàYº+]˜NÊü5𻚀”á8üÌïBÇY­¼Ùïíî·÷œÙ3‚ž‹®ùÃ’Ý0ú¹]M19ƒÅ&ç×öÒ.Ô¼).{IøÃšÿî¦mz aý`ÎéFc›þ‘vÂĪp¬búþ%ïÐ5ÅjxÂêÛÝüõóçúÊÊç(28Õj‹*DÆ·WY` aCdª[¦hë(ÂV¥Ò­Kº¢¯Ë´çÛ?œä5Àn”æ« ‹³Æ…ñ°T­¬Ó ¢×á*ÑAZQ•­ÈPí´¤¤ðÄ£ã'¥÷È`¢hzÒXëj"KíÎÕ/Æ€I.-EœäÎ4£0ÚȺÄ3û°gÍ,Õr„¯ÀÃÀç­BX(}ÙÌÉ^œXñ[Èñ†q>Öüû?k ôµÉþÒb‹þÒ:²þ3qR›G6ºx*j‰Ÿ¸- 5È„CΣ¢Èy4i/Ù wë®ø^ÐÎÝ GÓíj”P¡8¹Ù”h¤?)1Qò%Âpˆ?Ãv=z´íj@ƒvÖ†2}bÃذ¼8tÞEZMÒw·Ób"’gɱScøÎ£D†C²ëØÞÛ¯_¿ŽŒÄ,db3EDx¯ˆ§Ýq~Îéùú“½:_m# Ç u4%~ÅÖ•|Šû”:HPšA?Τ™ŒÕÒ%#–²dIrž%ÛöcÔjhjRÕWòëÊ¡ß(媩~ïa¦HÊÙöwœ#bÙöŽ$ëôcöïtÿº?3goÞˆ›†Ý_=h‚PˆÆcS^ÏvŽƒ3`ùz_Êx× Ø¾þX\t1¹'5p<™Ê9&'á–õý ½ÄŸ^ãÒ…ã ‡‰„q{Xl?ˆÓÖà_ˆ¦‰Ð|…»06= {®%{nLè™9tîù(Õ³êó¦;²”Ç“¿n0ÏÃŒ—b–Øë^ÇÚO˜õ®; 3À´»ð=‡ù—ÔãqþˆC4à—eTíÍb¥o—éaáÝÑ,å…¼ðǤ’F Nå¤mT÷‡*Ø‘“GòŽšÆP4N©e|=aTChzHQgòb4’ª’å˜JEû~»Ø“¿Òˆè´Ã¶víÏÆž®àùR1öˆt§¦[VF9A0oXS%ãÜÄsób<÷ƒ+JTFÙUv×Ú ¶·²íøî_4ùmC5<Ê'îÿ}õõ|xóPá&ÅxU­-ùñ^?û?ÍGí±Hü‡Ov?[’OA Bn9ø<Ç|(úùe]šµƒq¹ªÚóÁóyžÆmx*Ÿ`}Ü^~ç\oäpxÅýp[íͶrÁÝ€ÿï¤U'·”}úË[Õ ~°³º›LÂûôQÝg¦vG"— òj¯î¥§š ðøëé^*q¿‡–ÿÑØÈdFPš)Ù¬«¤(lb§NŸÔ««¬Ï¶ý¬ U‡Rä×ÚÔPǃ¡lã²3¡ ™HÞ~žfV§æÊT²¿–lûdpÝ«±tFjÎ öuÇ£¬wVAapÄ“ëž÷ ¡Ó)ÈpPŸ“uO³þ€|QÃQQ¥DSmWŸøí³‘Væ8/ëöË0€w‰e^¼ËñóÕ*%òå¦6_8ªÔ¸ÃGÃRq]Zô3ÎÌÑÃÙV!耿X%•ùèÙ>û3}"öß››ÎééÃY'ÙkoªUŽÿµT{ùªúí¿µÚ³ý÷I>¼½ø_–3^7fíÙn[äóËÚmc¶Ê{bT%ùïgß|*¿î\¯#e0yÇ'Š>c«¢…–žiŸާ#N×ǽìtïŠ÷2õº„x=kë®a™(²½¶ëd߯`›Ë[À¹]dßÒÇÀåc UgŒ†›«t£8¨!°E—Ù¸{2ªÀiÑŒ©µÓì¤{Ùé™Þ4„ÜYYój1JÝ>°«³ þ®ßêÛ{Yÿx1À žØHnXëgÓ!>Ôͽ€mK­ªUéà²UT[­°†““ktM$=¿Î/ «}vG^¸¹0°fÇ®%Þí 1,aKàW;ºÍ»ØVW0ðgèÔ‡¦ËƒR͸Ÿáçy© OÛ³ ¯>ðË«UšÇ×\ÿ=´[8à’T5ŒüP^qáù<|€ŸÎ'ÿü_ª.½yÉçÿ›êËÅW58ÿ_.½|Îÿó$‰­Îù¿¼»R[|!zÙx|­TÄjEìÕ÷?Òßb6Wˆà¤TKãç)æÁœ‰ëoÝ^)iœ‡Ð§_ìh,|ªímŸé¯5¡šöÀ“H2Þ¢‚Ï4Ç`ÄÅdE«ÓÄ2Dè—ô×& ¯pHCï°µNZç8bŒÃìôúDf¨9ëGc˜<,ß Ûx•,K‡<Ê{pbžgýlØéa#—Èèô¥¹¨#¿Fï´Q÷7ðe˜e?îb2›ú¡ÿ;Vêˆë~öè-63vú#|ÇÏǘGþÛá#cäŒË:ø€^¢ãÅÉ6‚|‡Àa_ ¯ñ1Y¡wžù)ðnÃ1û„0`šg0­ÿy'€3%ÅŒ*§çæÍæ¼ÿRü7VxÚØŽWL¶N, 2ýÈvÄí1óØø° «ÃU¾Âc*¶äúç°x ëC¼´Ò@-›ZkÚ¶v$š[ž²9 óƒÜW ûê’…‹!»¨;#Nq@§]€Q¡n¶Ö¬=„í>kõ*<Æg‰ájF~×níoÝqeòö±ˆj·Î7Àd޳þ?dTñÑXU¡) ¾\÷9…Û¿…«RÅ9Â[ÄÓf¤D>O¡¡\'5N—[“c­°ÐôÍ'Ã0»‚a¡ •7Þºæ#g÷uŽ”„\492Bôì¬Çí?¬\Tò£gÀ.+yC'›¡ºíèqï$Æ­†ºã Õ»¾’wþÿv ÿƒƒ½’v‰8E¡ï¶¿ô½…›8|úí,﯇¤ô^ÉÆno$éls*1ô(‚c„³ëÐI[‚ý…w´ª•-%Z®ÈFJŠâ ’›Öò¬ß§†©ûÙDêa7‚$†$Ú1ð6Ø;`'º•®äêÝ98;›ŒÊ#PÛ˜C¯' mÄÌÛAô˜¢ÈbXõÉÅÇ 9…øœó$x>Þ wò­X̓F32ðËùãÛùþ±êíó¯ëîPqC§*ËM9§›a¬ Ø• ÔP¸)§™íal¶}w¶‡÷œíáÌöpÒ³m©Ùz+î°†6ƒ¸góÌi»î«¬Ñ ¦G‡¤¼#—ôb 7ßšÜUm¡T…? ×-ÐÿÖJýãYA=4À÷Ìûø^’&ti]Cš…¥?à—‹Ž”A€U6ý¬1]kŠy1î\ÿ D‚¯øßŒ0õÛ+xsÿÍpu¾KÕèz)–è 3-Æð¦äšÅ¿×vlã«>v<Éàk©ú¶;_%ŸtüE©Ê¶JÝ·—tw•¼æá%¦_™þ‡¸ÆFd×¥î\Õj„~¿íç6Sá"ÿàIš‚p\“)áK3çg;%}<Þå«5Œ¯Þ0è÷„ÙÌÕìùh \;@_9›=CO5}UºSµ¶ãÁyF{†dÐq@Þ°O܃cz©ˆÁþ SfKÌ”<›D+Zê$‰v ÁÓˆ4 ~ÚǽÁÉ_Ø$;êìÅÝrÏ[8ìí?•gàŸƒòþŒˆ“ìj ˆº4¼Ûë]`\Ò2ÃMö€cÅ^³oD|¢%43€Ì;Q“»ñR`¬nœj¾½%Ø ¢?ûÖ³Kz®J¼Æÿ%Ôn. ÷Ãð¿ëªþÏ6-•‚·º”nâkÕj¦FÿEš°ÞêRN_kÈoêÿ¼&T'÷¿i›ðJ¿Å®Äø|—õ)UçJ­ù*§¤@8Ïæ\œ '.oÍh0%.Πˑu†=ϰÖyé@û*"¾N†ÐˆÇÝßdÐÔèúä$ã8:¶oà·úàþFS¸ðÀÜ~ z>­' œ˜ë¦ó¥‘m¡2ÀŠá¢Ã<=‰kÑø9P¬=u]R¿gó•µfê0o7`ŸÉæžë«c•ó˜Ž#V–±hJ «{cåG^î†þ™ª‡{ð$@ ¾+O9ÿûµ'=ÿ«Ko—üó¿öjéùüŠcžwþ·jtþ"`µ½Wõ6È^ÍvýÓê¯Áð„Zz{³aÚÓð 1ÚÐ*‰¥¼kÝŸÌÝíéøŠVMd£q÷’Ø £Ë$KD® ­Vt×užr3 ³¯ÝÁõˆnÓ#Êó[ðú&î›åËøjÛ‰RG‘1Åá,mB úì‚àùÑ`ƒù…›Aâ*eluÇÃÔ׊Ņb˜DÕnºÐTb€U ä)íyÊR¢-U÷×(÷cÔBþVc(; ‘tÎ;ݾšqìt¦$@ÙFKö6âÊŠvÄF¯˜¹pØE†v¤ùûU€4ébœGnÝ e-t-_ëž_t.ùô£nLaǶ:€d€Ù ³-/NônEvÀ)rˆtšžÒµš­ÎðäBT_WDõÏ?þàØÍÎ`GöO²· ®/èŽþþ~{S ÂÅ„ D¦‘LÓfëgêÀ†:Pc0ôNy ïIÚO€Jékt³ƒþ߉RÔ‰ÁŒx|çìàl¼P_½Q}Yœ_ðÏÕÕ‚Xú£:¿ôçkŒÝv‡´5µÍËÁi÷¬›âݤ«a·‡“ÿóO/â…Àt¦SXÍ3‡ê¶#¢Ó60&|Ö|d]€$\Àf¿®€Íø,$ )ɦ‚7ù"“uI‘ÛÕ_A¿Ö÷·v ¢Ñ/ ,Õô‹¦ºÂ/–fŸðÊJ„ÁmÕ•½°Ò” _i>% V¾«ÏÞçí¼&ù> ÞfY¬`Y¼†?ò8!xÈæÙÆ„ 6 熼-“¿Ætaß´1Uï{Ϧ"Ö7ëí½4øêËí2¢íµ?´è0ÙÞ\©n¾ßjÂï½Õ­¼Ë8q ?F²šD»ÑÞßáhàVcMÉœá•n§â—Ï_áËB˜¡õt”dL¦£D¬›g˜J»ÁK€qÖh–%1ÓF¢s Gñåõ匕5«D§X¹ž/{X˜_Ñ8ll6[ô±» ^á½MÙª¥–Û|qÑÞ»üN{÷©öîË{¡ÍËÉhîÔ?ƒ…›TcþT[Vª¤—‘ÛhbB½¶ö–ÂÿQæ7kQJ!@#³Æ³ÁŠ;äÂúᤧa|å4 ´šœH^xouiòKí½ú‡U†`°%æ!¥7?Bî#Ê~øhÉuËÌ„ÌI,mRz/Í’p²/ùtóü ǤͣJ¯î…^¯¦ JÕ«@泉|Þ†‰‡»žøR¹eM± +â¶_%Lr1`2©Š´sïá€@$ÁÅ8°,“)0t‹÷3Eì?ƒþÓÚjo–^þ¯žý?žäÃhäÙ¶[1ûϳ᧠“È'’ìȨӚʨ§Á³QçÙ¨óôF@¼̨Cš×1èl·~,ƒ*°jƒŽž@Ü ólVùÁÌ*ßËöð0–²;<‚½áñ¬ fd@™±‚éìIº­LîÙæÀ«ñä6‡6Ú µÅÑ4ªì“ÁŒ~1…<ºÂ8A>Y] z|6HðçWUjN4HHD˜Ú¡ê=–b=Oq‰'ÎbuXŸ`lPlùül`øeöâDƒ\ò©M ªÞÃÖ‹ìÄÉ&„õ´åvj®Í€·9ýó3Ù æÓJ ×zjû€ª÷lŽe`Û¬-hˆèÿ¯žöþÇâËWÕÚóýïôadñôÿ;5Lܾ¹­²Ü© €ËøïòOhh¬lßpD{œ_Z®•Éþ–ÓØb’¸ÉݧÆê#–KÜßt×@vjâdpÕÅ«¥=ÒJ©TRO5¾Ìkuµ áNIÒ:؈gMX.`@ÈáøtŠWÜrÕVT·¯²ÔI±:La 3µÑÈ{{Ù¹ùùNÌìÏȬûWªuúç׸È~>(¼© o’7§ð6*(oº£ Õe7w\»GÂ<¯©lǺt{çÌya»ÎeÞº×n"ƒS˜ÕnÏä²³Únžñ*ÓTÄ /3$^Ëeè\eÿî^_Ú ¡..Ñf§”çPÕß´ë÷äÊÈúPÉnBÕ¢Ü\Ë fEÒ-G²’ay{•÷¬7Pºß‘Ä~Nð °Ð“Z~€I-/pKá¤\Ù;ô”ÅÍí͆K/7Ûõ-}…6Tçñë°—GO, [HØfŸ/¯Ç”mŽŽb)­S$%§ óʱ‘Ôw,ÄŠ8áêâ¼Èš ±.2æÍĘ_¦Ç,õL8ÖÂ#]Šôez¤ÎX^§ÇòÊÀ¯ðX^ÅÆò:çÞ¶XšÙÞy@7œïö‰ñÿ·OÌÿ¿|õ:ðÿyS}æÿŸâÃøëóÿ‡Ïüÿ]ùÿI¹»ïÈç&ùü\¿OÞØÊ3ƒÿK1øÓd®~æñŸyügߌõ™Çæñ‹òø‡¿Ÿ÷‰ðÿÃ˧åÿ_½zó&àÿ_?ûÿ?ɇqÛãÿw·JQο"ø/üÙý¼½»ñ ¹¬>Íìôý‹/!UÊ×ý;B£Ä™N@ØÝÀ¶aŒŸ@¿£.ªö•·¿äü.¯{ã®öQ}kó$¢ÁÉ‚Ë°Úø\º‘#×·Eº´Ò`ð`ŠàE˼@{Ã?h8ñáÈ©O÷YÃ;†_§)‡Ý/ã »ö¸·ïŽï|¿pØ:%xîtû,¢É5±.Ž<( ÎxŠŸd˜Xö¿ì¾å ~ù¡Ymæ´yð-5ø†7ø<à7üñ7ò€ßÐão<Àø ÔP0~¦ÒîE›ÄÔÊ[åÖS«I¹z+÷4QÄ×[:gKëÙžN²#àÄŽ‚I¦ôcnXÝÚšNœá2©\È®ÀƒÙ¥ß0%D–ޝ‹Æó%’9%¹òÿËã$"ŠÑº5ÇŽGìi£¹ù”˱íã± Õw-§*rÁ!xa:‚™ ÿa†¦%ÓÐ8è¡bmR±üåˆ7ñl62\J’r\rÝ©7,¹E5:gb¾j‹Tž<L;%>åÈN ØK÷@ø¯‚Q„£Oè?ó|SÐŽ¿¤y‘s#µ4<¢7Xþˆ,NZ ÜÝú±ʘü7~bûÏÒËðþ÷ëgÿ¯'ù0*úòßù.6døvHßIlÿrÏŒg¥èJìžLøžöŸÆŒòÛ8œ6Ìïîžëè6âf¢pü²•’'BŒÄlI|"Mü ¯úýü‹Àû[|ÏÏnÕ²wBp¡f˜i0|bö?¹µË¿2^\¾Òñ÷¥º]uß8àÛʇŠ7¿×UmÔíSE')Á·¯·Š;!ž| ü ØŽQùVÅ2-–} Û?òݰHþ¼¦Ÿ‘€ØÀ” Ôäÿ–‡?íÛä´£ÓžѼOìy>à¼d“ö¼=<’ÆWíô+½ wÚâ4;CâdDoGÿ!Äÿ厠Åÿ]^Í·©%ñ¿û’B é:Ì!9ÉëŒ-¼ó²áûM“‚nBÐrÉ‹r¦ßl¨-êY6§ݱ¾îgÿº†ÙjŒ¡M;x†øáxܽãhèÐþ‘ÊAU€¶æTfK^µÃZ‡^­C«VêBeC^+h”‘î7(.T»Œ´¿é$TO¸¬ú1eeE«¬jê\Zƒ 8³æ•‚KóŸJqÊãß=6U/Ïñv¹µþ„W)R7=`ذ@aCÂD áu ÿºé÷ç²ÜOÈÿŸvŸ:ÿ×"¼ ò½yæÿŸâ#·•áùŸ.>éù_«¾®ú¿ÚËÚóùÿIýßêÊbI|l7H‹¿R«ñ•÷ðçc{o{w•~´•r?©JMVþ7[ï·C.â墪Â÷Ûrþ<ïV…à3^0Ö¬ï9ûV¤êpµTÜäc‰ÇJxÁJràŵû# ‚.†ìÊÑÿ×5@ó2_ N+Y$ÿ#Ó³îyÖgmñ0»òöª áx…?ÀöœÛžêœÍM}ìL¾<î Nþ’A× ³QÆè†Ùé5¥îìˆÓ¬ A\Å¡­G…Áö´³ôÃ8 £ºÂ8lP‹'UŠÒ†î¶##VNf¸Ĥ`˜Áþºß#×'©òÑ´ìè†~ﺧ48 Cð‚Ãÿ¼-4ì6> f³P¸Î`„ykå{¥¯Ø=8¡ ÄÊ´’Âênìì«ø"2¯rÐÆ¢Þ¡î¸3:ÉxÍ) ©ŠM9Õ€ç«é!ÎÎæï;ìUqÑÁ$UYp4nµcüÇè@óP>Vþȱ=¥7 Ê„6ߌ7Ê í/é›dµÁÈÚíÝ abÄN˜å1gi²¯|¸xí rg,Ñ{d°š÷\°gÕ­tù)ñnz6-•3ÍÇÉø>Á•æã·£½îµ3M“il_7K™·{¸²Œ±*"0Œ‘seÅþ¼sâ5¹4¼*·Ê½sí‘|J¢wÎAÚÞ‰Ñ%Fk…P¼<*ýWª–ý]ñ¥Eªý¿¿˜–Ì:ÞC 硉m[ÈY…™,Ñ|jr>ü \®Í¦Û¹ÿÜòfÇçbÁÄòÔ·»¯2ÎÁQ·ŸFò´’C“ØÊ¢÷ZÖ—÷lNípÌÚ33³wà¸óWÆÙÌ Ž£â~8NS·)µAyäÛ¬Ë3»œo…²ãÀÖ&ÊæØNþ›Jàù„­½ó]& ÝyŒ—*X „§¤U>‡}MtÜi樜]§w>vÇ—â¬Óíñ*H„Âùês9‹^" .9 ¼£ëc¹½[| 4’;™áñi¢üàd^”ZsÕYLV7¸>¿À¬%âñéÃkM>w€ÝíŸË+p±VÆõÅ#¤{Žÿ ]ÿ¯;8ÞM¯ª"ª®ÎÝ×É®±¿»ùi³‚ÿîì.Ó¿»²g}h~jlò¿­­<‰ ìì¡H±r,nsguw ÿÙÝ¢§øèãÎ6úyw5¯¡õŠÉdC£nBÇ[õ=x¶Ú+µŠhomÒ¯öÖV5§öÅ*ÝÙÂ*ûËÐý»ƒ¡B÷`¢íO¿:UxÓŠt-’ ùŒ£JÛí½ÕŒƒÕÝåÍz^ýBó­OéÑÈ÷ _CÂó ^ÃÕ¹“–Ëìá¹ÁѸFX‘Ë-«'“&c©$“ óÓh‹ì©}€G5u»JÓEàÔ-Y}3Ë´µ üEUÅ,es0Å’X¬pÀUµÍ4ÒY׸°A¬†µÜJ^À9=Ꭶ%휉ò5¿<º¯j~_¯#uÛE+ÿaTŽ&*Ûfßoc¾p̤@eä.‰–Fg*b^*t¹xZ^¥”¬gggXC ÏQ8WõƒY·7¤ê¨_ñZ1çiâ0È( %Kàíl |¹Ð2Ì`iðšû‹ÎÉÉ5°ë˜š¡ŸÝ(5Ù†<¶u_ÒÎ1eãiÉ(¬ô™+5»M   LJ˜tbNÖÊex´´e“!®‚]–iŠóD#Tæ„û,|Ç…à%¶«^"«E/±÷Ž5|I…¸Õšõ²Žû²”ªZ¶Þ·¶lÇž²pkKJ‘VOÈéQGÔN¹F×ç8'àÀ­q5 ³ëÈà³ô“_Ln[ž´t“¯†¯iðöë0³*J@àrÙ= áY$T#‚®] p]ânƽ<—Z]©Õ±²¥”3ëR²ÖVÌPã.¿èo_¢çñ ñÂÚÜ.Éf~Ùìy7¼©Mx"…ˆ´ØœcJ`ªXØ>››¼þ@Z i%˜Ïl"²¹_ ,Csưþ)!}»þ‘ÔE¾° Ùu,n¯êj-›VTÄ™žIuo·è^×— ~¿‘ö„qó¶qƒQû€›sŽW fì7kšŒtô³¾šûc=…fye ‘Ôõœš’êÍ=<„ÇÙE0cÃÅ\skFÉk6¶Å˜ "Šs|€o8°é 5Í0ÌÀ›ÈÞÖþ®½[q™ Ï¥Šht;Á…ŽñÎé?áàÆÏ:Þem:ü­òt8q‚'ÛÆR8jÈÕ¨¬ šgû'“ æ Valo\?®ˆ+¦C@ØæjÈÿ´)pI7—KD’‰fÔ¼5Ä" Ð'È”žúÎî²E*ùÐ0QŒŒEFÕœ«%)™3HYÑgwíAÊ/~¯žL³E¨Å‘x8›ƒf%Å.R¿(MèÝ…Ofm|S5‰rº&UXRã . •žÔðŸtF™F:©íô o¶$­w%² ªV:#iB8ÂfÉ%ë4u‡Ú~Ÿ¦èÀCë\2ñudÒ-’º@é‰Õ×ýq·'6ƒ+Q}µhR¹’€Ã\Kž²ˆÉ9 _Õ ÁB¸§ÍÔ4—\50‡Ã@1¢âÒ¬Iç—0GÁG»2³*— ÊmF—D6ЪÉÌ]‘šÌû¶dõòªúç¦{¬Mî“iÕÃÍ;®EKÜýÐá¹%£Ë’ï,ž“´îÏ„ «¥YùÅ!*šÜË/‘„$d°[¥^]>ÙÍæù(ó¬°/ÔvgÿMF›ô¬GYÚ$kKæd;ܺCšÍGNö1Çòu „íUÝ5ô™DÄõãý}jÑ¡ª¸²&ý¢Ê‘ ÌJêPÿ’õ«’ËŒ}¸&íVWLþïähóÿzó´þ_5 ·¡ÿ×süŸ'ùhbáø½áûŸû{;¨‚OpË[„ësˆ-K3kÛÚb£ÈØJCg þ‹fœt+t@1<&¶7éßÖ>tÎ;NÉ\“œÑ~r/4òjy,ï4é—–„ f)X©{:µñ•PJþg¼tÒ{p€¿O<Ÿ©â…úJ¨"|T_ÓSQžsŒ+f@ŠØßÍΔ7`šp—Ùcí!§-ÿpz|uG»AaEåÅv6FYÎRÙb™ërÑaÎøÅ(­½ ¹©0[e¦JdtôL|@³]M^|XßV{RL¥«1E˜…VBnÞq¢ËH5z÷ †öxÊaè5²ÖÇR·? rë ý;‡( ð?*a€Ã3ôK ÐC¡ Åäx…ßTS|‡¥²3×qÍ.LÒ7¦ÐËúçã Ñâ+®ƒ~¦n suÞl|™¿Ï¯µ_ý;Fðh”Qw– 2"‘™Ìe«—{˜±GÉ)öþ±¢na+æË^’!ÚÄÊ‚ïq2èº#匆òœ]çÙè­ÐYw8óK§3iÊý“Ä=9\‰0¦%ß 3ôaqñ¾Ý3Yˆ€ŽP2¦+ÁÖ«#¹˜Þ u?ƒ““kJÝzUÀÀg”P,`¼¬HûDaw×°u`e bð”gnǧ•wí¹$]Æ‘{¨Û¸¶àCú -.!Ðu¢Üò¦¶ Þ±8ÌSÜÐÐóY—59<‚ñ+”s´šQ“ý gP0à—¢ÔádØ<#z¸4»`O¡#ëtz£¹¤U1¤…õ€±¼×$¤ðpþètˆz°qº2íœI:͹Å+H†[ VÒE19nÆvU–ó`Îèuì6ƒ·²ÐÑÙu èˆ+iRº‡†‹L…0V=õ0…´å7¥"³AÙjet}<¯pÙ퓳˜øïwªøÖR¬?’{´}'Œi<C & Š¥¤V;aW°QHXcðã[dÊZâÎïZ!(uå÷Äâ±Ü«¶ûå"‚ªö¾öðÛþ™^U,Ø«¦—}g·Äcµà K”N¨Gp‘·>Çïegc\!ÖG‰w1Vþqå@îœ7ŒJl힇Œ¯‡ÇÙé4þ㪉쪃:EW—þ€®Ù) {·±{m¨Á'iäÓ¬Ö-ï­€Yñ]éõÖ?fhg7P±qÏb‹µË*Ú°—ÕIØDç ¯`©îôJÞæfä<”cri£ÚAÿD?ïšwáØíœüÅšôÑ`ˆ§éãíýÛ†d¥¤d#¥ê"êò8Kßg˜è”nÏø¥ŽðxO×nǹ{©Üš«•‘Ôêæ#a'ÓÛ驼²‹Ñƒr¹6ç\Ñh#ë< ¶ƒí)œ$’¨ wÆéõÐ=ß«Nú1BÅó yØ’=Ù›0e`Õ>Îà èÓN[Šv`Ý€vä éœã!¿ 6Žü!N†FAlÑÀíÝž1Ë6Âõ• 83±VYd‰øèˈ­R묬µgÊ DØ·çø«ðA « :¨¸l ðÁ•§IØ÷IS @¯ÌÆ(KGô$¸”뇺j†Ðà Ì2!€ƒ öÍ:ôfFè*P.¨ñ•ºèÿ=¯Í:@æNF¡eµ‰ó'¶Û*as*¢?èÏkå¹ËyÒà2>¬¼qD‰–MJ‚r HÀfÛ¬f:WÌA£yå6ÚtO‘•@O¶œ¬ƒŠ.è‡îWè ø5Q#q/¨qªeU¿ÒËj¸D¿]3qÉä‰×äûs_E`â)Ž=p_#kýN…•Æ=¤oŒ¸;¾ãÑŒ°µ¿åÓS O‚À…K›/pÈü?t”ÛÊú¸N ñÁýxPL3ÕŠwÛä´{JÁ>€ü}E¦øiãfÄÆÛ›{‡;ö-‹•Í-ŒެF®¢|å Á¥väŠÏðßݘh!sè;#¢)žþþ‚}qá «(þ”ÿÖéß­Ý97¦N ƒW ¦Î #µx÷ºIÀn÷Ö=Ç•FcZòAÌo¿€?àÿO i˜ÅÄHÑÆEMÉ…ï¨Ë­d•%¿ÊW þTuïu+àÍSß 0jß³A_¤q–â–£¬ þú+Ë®ð՛ؿ˜•YiÓxâЭÇÔÉGÇ7žÎF<Ó¼·l‚ˆ0™ð®b—u¥,Ãifý&GI$%¡…ÑG¶.Q´½¡³­zúŸð+ë)ùì~¦'¶ãµÝRéylÕdÂ%Ÿ7ì&‘$¡Ûà–y~ïÃKšø¿ç¥RŸaäjÃ¥®kˆ¡˜ÎÄÇ/UOÁÎ*qýºfÀÀžÎUò>.ÛV4' Tó8\“ ¡n‰ÕPóMäÜw+`'J®ÀõFÆ ÊHÚ„IÖ1ª*ÛiŒÜûæT×6«œ(ŽÖ:ý~®eùШõøŒ–”•Ö–•Á’u­ˆàžP%ÔG¼îg›•¶Óθ£ÄP`Ž¡,IÂ*©4@!–.Æ(½³žj€’6›*²¯ÝÁõ¨wkolµÑ´3ܨ— EÜѬ&ô© ›¥÷«ã‹¨,“±wÊü¼óèMv/áâ 3ùŽrÛ ÅGe‰ceœWáYV¤±]Ù†‹®!ïÝYeQÿh|™Ñ£*QÙò¿Ùñ¼Ï´±7Z‘­ºØ,[±r=ÎAZ:7<à&Ë“ý7VÞuü²$½­¼1JäÊæ¼=Ïÿ¶4X­JŽ‹Ž9g3I„Պ㕊ëÍ·Á˜àò‚uŸ´ÖBhÃùG†ÅÜÝ7\ÜÊi,éNb{Æã$í?ú«ñÑ]· ÇO=ŸI·rµ€;¨\2b£”‘ì(!Úq!mU]ÿñúû¶à Ø×Þ’æ³Wä…9¹Ÿôœ]ÿäÜé›b|/ô¦¨ÉÉ_E¯ÐÍœ,×÷vm{þøÄüÿþxZÿ¿×oªAü×Ú«çø¯Oòáêûÿä.ðÒ+ÓÓÊ„5ª ?•ê”CàD.•?>¯úó{ó1 •k#{ñm˜0s5fNÑÚ'p×ÃE±œõv&:ë>㬗°rÊc´Ixè}žÔéÑTðj% Î)½öþ`Û6k4Ç71ÊXŒ´-ÅÊ,$/ËtRá˜3ÒÜ•Xžï‹îm±TI9§<¬h5÷´_ö~Ó¹%ïkfþ¤Óg©·Ê c¼¡«|Ÿ±“ûÒã¼³`ÿÜj+¬ÑÚæûg-¾n¤mÐl°°ü– ¸gMv¨ÙàuÎÑ ;– £¦wÌ(®ˆ¥«*o¬I³ÑSy²p{ïS‹…˜ðÐ4»-7ჲs,ô1§Òm‘‹*›ßmû<;ÚòöÑ^¨FM Ýʺý0Š Î%ýCiïø½9·ì¢ÎÞÆÃN·‡bC©5¿1;ÁN”8fä:Í,º Ô‰´[Ж²=ž§‡Ò ?œÏJly"–µÚ³¾£_á1œþhÉÓ_)q«»Û<€KòNdŸRetF®/í¦áøÂ8àI‘¬ÁÙYStF£ÁI—PD;+N1'×c9bå\Œø ¸;ŽÂ‹’Ýp〓B†d¦8 ‹ìt£½'ädßY|ÉÖ1é]nù¡~G×E4¤]ld.ŒÅl"U¤T@;ˆ§ÃýÉ—%5zÛ'‚õÎcã› ƒŽÄT©¹lmµtå™m`Vç-èU¤ #ËÜ€Ô^g= 8¼ÑÞªv?qsæ8.1Ë®2¸ºuç½álCËýJZ“m ðE0„ø0ÄÅ g#ü_Â=ìK¤Œº’7žïôØÑKÛ„pç(Ø^9eVÈ¡G¬Î.èR—°Šµë»û(Þ‹ü3ôab5a&¶¢®Èf&9õ¿`2´I­úvÆvMãÕ2 Þ•yë:×ݘ«¾m¥k'xe'ñÈpÂCV0šRY ­H©+î)=A'ûMë:Bå/@…ø>Œû*ÏUï´‘ m‰‘¢2v)¬µ•ø0NË/:½3Æ„®ë˜Fa…yk\`T8>Ñlÿ¬ÓSyÑê"ë… ’Íâ {é`P+œ•çU6¥#íS{”M-`¼¦ãÁà/¹-=ø£ÛŸvíõܺ&§Vù~.]ˆmth¿¸;×£xdŒ²»¥óÛËÔØ{ŸáÛjóÃÚž¬¾»Åïç#)ï©’µñGZ_¦øRê~þ?ïÏ}ÊÈ¡jþL üåŸ;±Q“ÎbÕ2e¥Ó€Aí´+£æÂÿëûðg;êuºhµí:Œ&Ý/šÚkäc¶s¨Ýš"Qm©Š_>g|wˆÞKÿ¶w·÷Lð^éúÖn7ê›9«û`®qtWùÇA¿w÷¢“|P/9ùàqi×ïì•_—OUªnèØmN¾ú7–?"c©LUOþ^^p|ŸØ¸dû–L‰|¢¬ß­ª.³ƒ¥ZUÞh5¿»¶`"º÷†ÀýQ"c¹$±%nNÇn‰Ì¬E¹,PñþoAî÷Àa~‹Ò¿UF®†”‰ì Ún¸NöüZ¬élCáqëø8âãeœÈÞ‘=XTµ¼ãh¦ÐaÚÞ#’)v3ž8z(æìì0:Òîo.¯C6ÖócÎZ·âY_•uGÇß±Z´0ï³*q–³º6-ç©ug&L}÷ ¶O⥠…½|/££×WÓ õô¤J} ¼ŒDþk¨kÕ,È¡K(‘PýlØéŸX› H.?„'’¬¯W„ß¡èOtfX½u{ƒþŒ~G,¼'n  eË„m+ ›µð­ißITê¿!]‡¹¤„O}L€WTÈæDÎ|#É+âvÙÌü<ðr'ÙÕ˜ƒáy§ûï£Þ¨ÀVl¯a'µªS¶c'ˆ_YðIOGNsYãT}Ò±áFüãp°á^Ê[mÝÙz‡»AÃ"¡¥ˆ¶›&dt©šlŠÛx•ˆã¥]©°Í™úŒ²É·t+U,®¦zSŠRù¦²ÿ%C8ŒU?e´“z¼w¿–i½¡+iqÖhßüx6¸î£¢¬>’’–RKkéqG\’/Yð’SÂYè˜U9$§ST6g¡¨a$’ø ä8Žõ§0.('ëcÀ¹¶jTE­`‰Ã>¥µx¡¤tjlðçd=;<4^àpÙ‡´Ãè) h¼'ÿm¦àG2¤¡À?(4÷oÔ̹åŒjy'˜´œ«Œnm¦ v&ÊA£\ñ]Os7¯“±Te‹Øœóz]r`f„ÜÅŸ‹V¡)€;d£`ÔÀcõÓ¸ÈðŽðYÂTÏô•rcá±aŽ §ÿ6Ÿ£iÛS>¶è9|ÞwQùò¯á¸ÔÁ;´Ç˜ˆ‰è,-V²b+~™®AˆøŠåS.á ä6>o@6*¡L׶DZ§ñ„Vâãl—­¸sšoûOq™5*7ÊíB»C^ßTì«¿%Žywú‘/h E`@½Æw3 ¬™î\i¼¢qÎW~xiÚ ¿ø¡\ÿæÈÁÃcšÖ«åÔ‹Ur£©R#ZÆm¸í”áS ÅW÷à‹›Á¤@«iª˜% rQû€xe„‘­Ü.»]QKmÊCS*åì9o’tÔŠ¢,êBúx×æšˆ½¡ÔhÊè $Yé®Ê@‰ÖÂ.¨²dØUók0½‚~cŰ©XÜcÄÕŸX4åèc}F£ÆÚ+ÐX¤¥ðh Úv}ëðýJzñ©™02І‹mÑ#7>ØÈÈìá;?ì³ôψøaQ*Ïbî20ö4“ÌŸZ8)ìÀ Ÿš+ÉrdÒVty²¬ð±&°BF”ºA7)m ŒïÚÌu>àlóì¨'#pI3w¤?eìåëI¯§yvÕÁ܃ô6ªXXß1»Ø i«VĶûuZ‚ÙqO„»Ë/Õjd}÷DåÀÐz+­ à„qSd3II;)®‡»üÞMš¨’ЉÞ;¿a|R78&t•2B¨ÑÛ-¾H†­HÐÈz¶X¶‘¼Ò$„#®¿cñǽïXDüÿ»ý'õÿ¯¾^zä_zõœÿýI>Œ=žÿ?ê·wQ1ô z»Ùja ñyùáÅ2þZžœ~u§½DsÜö;×ߺ½.É÷?¦ÿæö‡fÃ5 )À0 ôá—L¿,¡×ÒÛ:0HÙ ’¥"ÞíŸ#F™¤ËìÒ@˜·Ë%1yЯ•xäôãÓ´Ño›-´ãÁKš‰î8*'EºÄh¶ h CÅYç=6âò(°TEŸ9-Šå½ì›Œ9·†ÈчE&•Žt”Z+àZÎË)Œãˆ\z×H½°·»¿º Þêij<käÿð*¼¯[¹`*ø3UNä„U…»ï#CA)®”_áèZºNtûâSb yU\gö§0:Ýÿx eÏm}Ík+ÏënÍuº£Nüõ—jë¶µn)Œd÷9>~¿} %¡á5UÝÆ^Ñíl'ͮҞ+ý¦Ç'g|é]POëî™Â3°±½4ñ:ü—݆!†¯öó?Ø+¡1ºÒî‘ÇÝñGBÎÙŸ\W+­Ïµ Q}eªC!»K…+5rÈÓÁD.;ç€æ×§9û›_Õˆ‹Ìqu•È« 8ÔDª³Kß*·³´0¿²~à®$þóí? 9ýçö?r©–ÕRL/¾\Qðàû óò· Ë Ηã‰UðX²‡äù­‹ºT^vN.àìž?Í®²þ).‡NÃÁJFÆý‘ãZÚmHU§‘dèk4±[é߯º_¥¨Tò ÌWjDꔼ#Õ™£eÐÙÔõWšÞaÉ-PE¥àôóÃEývÚÔ²±˜£j¤É?ÜÂ÷vfb¦ÕÖÞš,õ]2îIs‹²¸ü=_Íc?HךӮt‚*‘6ÍÿŠY1…?Sc šn8-·¶wÉõeo·ÞRzÄÛÓ*ÅÔÚkW´‚&¥»ÛŸ÷€ûkín²¯¸½½‡™b0»'úùÔ7ŠŸ°×4,+È7¯BŸ«ëÁ5"³œÖ9ª1Á9ªQocÇí ¾–3¼ÍúJ3/%xC:O9íUT½œyLBloÃà?ÅCùAÕ›[u;óxÒJ;AÅZy»AóÕBí î„X5§Iª_"´ …™B8±¬|†nô”æ`OçÌ¥ÀãÅ3c”V÷#5Å´½BÑ•8»wèJ(Ågäyïy5Ï+á„­ ädc¥ÉUúMîõ¤!/¸‚|É»K¼ãêD™ðÈ*s£³e)P9‘¢0—Þš˜ŸËMQR~ ŠŸˆÄ#–¡QµÆÍ:J»ZLg焇Z¬ h5+R5·¦¾c‰jÂ*¬[äw˜©År£‹s{¡…ÌÊûɱХ\{àóIy¾ ñÍR4PˆgäDò›Ù¢†-‚8]=D\ JAŽ-Ÿ¢8ã?UrЃ0RÄ—dרC˜“”ýB0mîÃ^$.sÔå‹è“"¯2S"ï‚ÌÌ þF–Å4¼ ÞáÁÁúÐ~m  ÉjSbÇç$s^’o"ÓF¦&[µ÷äÓÕ¦1•}¦¢‰ñäN.:} â~ê٬׽ìö%“á–èrÄ´Ûê¯BøEÍpÐÏÈËîWëʘäcdòìe9÷õ¨ÝÊz+˪MqPÆUTUäå¢y5Ùù(-Ÿ*`iz×À4@\/ ô©`ÏF.æ(ÐøÉ½fì¥@þÀZþX§è'u£Ô㕳&"qõ a¾lÓ±W‹NÍ(`EÜÆg{ƒD«JP¶ø¦Y”ú½¢í²€l<ŸiÍEº·Èû›¾õÿdÃ0k¯SgÝÐùùjîÖ—G³õ× n}åv7åî_—6 ÕÈÆ´ªÕõÈî“s,Êõ1»?6}Ýz{ŸÝÿæIw?CfÒî7ð›´û×+6Ü}÷ÿ1qMDâóÕØîÿãv*é%;<¦w?¿ÏÛý k÷»L˃’Bh ¡­$?ÅÙLöÛ/ƒw#dxÊ_™ù õÃ6"A‰ý™H%_GlÝ)V¡0‘Ö|˜ÊA6e¢Á¨$föQ:#ÅÚ LfÐÇ  3-ð¶Œ=çSÊ–#ÅU•mqÕ -g@u8cƒdO £ë³³îIœsà4ÆJZ@ýÒϯ .åÆ(ˆ@Å>¬.°„P¦AzH =k‹ö¸Ô¡#ç`;—¹}òÀº/<ÞŠÎy§ëúÛíJâDʱÀó9‡kˆŸJ6òéÇVZÛZ’½Þ•¤ KŠØø„†k@DòÏù9oqÄK˜çßwº½ëa¦í0Žºñ\”²*¼ºÃ7$ªµH³æjETÔ#÷¡†öYwÕçëùæ…<Ì$` ?Ù@Þlýí¾ò_ü±ÿnŸÖþ_]\Z ìÿ¯—žíÿOñ‘¤Ýµÿ·K¢N'B••UütjõÝD„ Љ×[ÕŸÐŽQ`ê‰Ò´Ôͬa¢SX»Û‡n®W"®Aö¥Úüñí|-ÈÞ*{* ^1ûN©ï®†L³s꜖íUG§SÞr#¶‡aÒWÖÀ—¶Úξ sVz=×–)›è@Lˈ>l ɘ d J-èûCθȻ]Zûèú6mÐWw K’©1!ËâœQÈUÐ:]d|m šø¿k2R·ðßÿ ð°Ž&9þ*_Ï«×ïàÎ\À)û¿Ü„|§šú_—ÑI¿Æ^cuÆÿNv1¨KÌ›`OÖ¬« ÿD‰ŸðJ­“ÅmyŠÖj9­©b5§S» ˆ¹ŠÎÑ¿…YÀÌQWþ“--Y ·U §¢­åÔ +µæ™Áó­ò“/§×½ë‘n*(¿)…ïn[L?&·¥ìËÜÀR†¡p7Š‚æMgÄ¢+ù¶K Ñ3 ˆrÞqr° ¨‰³Úí(gXão ã \f>¦¤àè”7h•ÞxôVX n7$G{2¸îiÛ¿R¤£ý¾"döér9âGÄŽ³3¼Wˆ@Öa5×á8+l÷ÖvWÛk¢„†Õã¬7¸Q–pE'bK¥vxÞ2(£h1¡Òd+Wü“tŒ‡õ½ ºM®‹2jD²`Ùóš±V䀚ip;%úB +o`kõÍ÷yMâ{šà«ü 2>åµ$1ÛªNb#ÒÝ2Y#W¥-c~¥'ch€àvz÷xw!Kµ¯²T”žtFÙ[&}æ„蜌¯)<¡"ªí½è|tOUVA äþžäCÊ2Æ´ |›¶b2¹Îßd]¶õCžö Ï‘w¢n?¨¹W t3X”´«òW-~ýfôPØyÊý@%ï)v¶çi)‘2½³w¤\[ ¤`v†ˆÜUáªN]ÓmнLâ_I”^бË^9=m<Õ.`N`º£1 ™ŽõÛuÎXÆËãÓŽ(—ñöT©>טUæàg¹O—ËË–ó…mË8Ê*w&8ôpŠ:ŠŠýwÝë—"añæ€.[û_ð•1x3¯ßØ*+²ø?ÄL Sž ³“.ß7’—÷OÆ="û}4KY76éùxxÝ?¡ëÿaw|q™¡¤~CúácŽÇ7‚Ô­H$ÅЀu’ãÝ"TòŒ¬ÕSòJ§wÒ¶ rd…¢äË( |ô袛pgZIÀªWøGH"¢»¯oA‹Îð’ä%)\±Ý‚ÕÂÛE„úšg§JÓÃúbLr/èÚRv5ú Â÷Ñ”*Ùªà•é©ï™´éX(½*D›ŽMw/£ˆnó³£ tEÇÏ,”ÂiˆMÒyª*GfÔYg‘3äÛ”5VÕ©¨ (ôÕeÜÌRíçòž^Ô$Š`~–DŸâÊçµ?­ü·„É>Qü{U}ýrié ùÿ,>ËOò‘;Ó‘ÿ>ÔŽJb‹œBÛuô Å¿ô¥ž à±³»½·½w¸³š/ V^¬_ŸãµußX‡\™0'V‡žõ9ø&ÃmÄ,rõ’l,ˆ¸Q®¾6‡B‰û*¸¬”¼?ŒÔtï̆óêOdõ§ÞÕU €„ƒWk³DP]ǃä²?€“z ®eYNY‘­  @¢%V‹›¶¸!®Nù1©I9F•‘Äã½HW.ÛþÀd€8Á¨šÐ^!nK®Á„;÷&´m˜×õªŽyÅì°Ch˜VÕ%Œ°]'œF;.sFã ¤‚@`[(¶µ ãLûfË^Û ?°³˜ ]_Méˆ[ÊC»CyRbklN±)Q4‰ü™ Õ‹,Ë„ ñ|bÓ¹WЀ(Ã>U>Žõ;q“ê–/ÿ,t—Õ VX·®Ô´ëùYÃ@òINÜ3'ø˜Ÿÿ7zZý­öfñM ÿ³øÌÿ=Ň·–ÇÿµAÊÛßÙYÝ6vzD¹úRE,Ã÷eø¾¼„¢Ý>ê¾öñ[òƶÜú„E>bá?¡á ø “VCÄ´–ää \©;C `’€ÐMÁ ¶-ƒƒÔÆ:‰Ÿ1×ë>F\¢p™ÊÝu9ó™+œ}‡¼žV/cæKø²†+féAI|#…ù¬[Áþ”ð}} šæ_P᛬ƒqë}š)/S»Ÿ°£å*ÀdÊŽ–#aNt^ ­í½…©æŠš!|›0€Œ5×Åiæ:]G™åhG7ߊëîSsø䪀]t‹ÊzóI¾ø„J˦mdÙŸåfƒ7Ÿf©¾ö.úh5ûQuøÑžŠUùã,“µf0ù@ÍŒMc<ìôGˆû”A‹2fJ…Ð ,;¦w™ôÃèØëe½±5f(„T¤‚[a­ë½^WÒ‹vžî=H£2Ó„^gn­uïÁò]Ç=hìx0¾0ÝðnŒõä[\–ÝáÉð%7².‰e*3ðȸÏÇ@¢ÍG2Ç$‡€àèh4‹ÉÂo¥B ßNGúƒþ9æï]ðZQ '4"¦ß Í¢*ñÏ‹V¯¹Ï-«O})^E}Œ8Å% *‘ÓœŠ3°!ôšçI—hг֨}Áe91üåôð— ŸÏv†áÃY[m˜üDŒnÞ‹Ä•‰ÓlD Äcí›Ø×íJµÿé>íÒíLµÿñ>íüΑÜtBJYd’±gÎI;9w_« ª÷ëÕ*ÿS£jü«†¿>-Ó;ø§–ÃfÂû«‘Ýn)îRF¬÷Ëðúo ±–¬¼dŠíÔÂñÐ?µüƒ# àWšc'‘4} >ω§Ä3â Ñ|ÒýÓ<Ï{|ð‡»{(¡dûá X2@Z q0Éœ5mŒ´{†Hãûâ{~x´½Hl´½;F{o8æ0ªVáN—²ëS„2I01N½Ü9ý'z­ gÕÇy|¡õA¦ðT8îºul­Z^¶cࣥò²å)ÁÑê5x$æ©´å.ý~Ùöj·æ⯶¹,UƒcyvzêÁñ­¢„¦uM–ÁßÀg­T­@k8äàŽ®ÆûeâÄÙ`Táß/;#ÆÌÆŸVð|£qÕpH5{mŽh€—»6ñnè&péh]¦‘Ðݼ>»bÑYôRÞTw––d…þÇTwV.Õž»TÊæÚ–ÞxHÇVl2¶+i4nÞ®® Äô½”¥6ƒ²–Ê·»ÎÛ]s‰J“§Hø ûú3Âä f{&〲½BY§â4TÀòÿÙÿÏLù?õÿÐÛÿ|ÂËÿñÃèyFóu{³\¯ú¯jêM ³ú “7|_òš šNwÌçW5õF7±‹[Æm¢.û2@.3ÝAÑXQF&8K^`žºìɬƒl`Ùi`W5€Âž· t)jÔ½a#^HÌ`8ÎÎq¯4Ùo -ùDA9©I‚s¶¢< hf³Fñ“sàÁg׌N‘+Ç)[—ãä¶ï6N9c=Nžó½Çɨðb\7a“Ñà_Ä{Éí÷å÷@7“췽ϻÛyŠÄ;1Ï{Ý+ÿ‰·²Wþ“.¿k÷ ñ庚&tµi /Â$t5<º¤¶ϱY&g>ѫբÅ|) É_¬á)Œ5,é"ÈQ¬iš¦‰ŸG5±ŒE»8QÔÄ2‡(NX!¥øè‹ÑMçʼ&>´Vf3×î@|Ô~¨UíQs·Ç:XU-ÌI2q÷‘ð”,úPx$¼¾/&‡)]-ŸÒ9ó©š =úDi±ÒôʧJL¯€üø„ŒÉ%·ø'UÜ¥Vn>ñÊB|ýØ]„ÅÂBÈÉÝ„†B–PYr…†f›žJ9E&·ˆÒÈB0Ãéûƃ !‹wBwBwBB1ÃBBeZ!ä^gsõîg³êUy$Ök~±š4’ǰ”R–«ò¼^®ùÅjJÞ‰ž¸ÕàÀ$»Ux^ʃ88q«Á‘Mö¨ðÄ–qâÄ­æÀ½Ø[’›ò`Ó(ÕUú³{œ¬w½Rùy à^ªŽ;Q™jUQ¢'PÖ]ø¥bêEPÂf#(ÒlœU5)±˜t›Ù<}ŒÙ Di‘-U$iQ5—MÅýW«÷R‘(…~uZ‚T­ÞKå¡,ûå¥{1aÞR…Q€ EFÿ°£~ ç±ì1’coŸ()Þ=FqÜz›yL|ÁÔ¯ÚtC&âÿ7¾|Úø¯o–j‘ø¯Ïù_Ÿä#ÑÔõÿÛÛ*©Xá|w Í}›;kuL’LÀÊ~Eà% ø³¼ºWÏÑíq\ñŸÐõ/’lB^0™äõ@ƒMoãÐÂÉàDØE¬ÓÜ/qRµ®”ä¿›êË>I¯ÏA‰‡<ÝÅ“½-Ì⇢6^ ­F Eg‚zYhõÜ!~£®(¨JÛ#vP¨ˆ¬sr sN¾=Í,.TDuâVÎW 8CqNËGáP¹js)"6!€W*'`GfGÈëÇT  o+\e0ê{X}ÏÔ Ö¢\ÞËo¡-4B—<åòZt]ï‘R6¸ƒË\ -s·†ïå_ Œº§ˆÝ…lïŒ7pìfì í€õh p‹´ƒ‚‘Œá³ ªP®ÕãÌC0+…ª#AðuªÎht}ÉØA5y+›.XsÒÁÎWƒÜº¥><Ä„góaÆ3$¹ªQ¸“ ‹ü†÷bô°òÇPxüH »‚¾4yQHy@;ÊÁê ׉¸%y¨%•Оvû9†ÛmAÖ¸?~)rçÆ—.u˜²Ùútï°\^ð Ó.rtU©NÆtÚ" Ù·«!0;ÆÔÎ¥ŠúØ#dÙµVí{9óQòÃI‘ܬ¬Žkß4Î|ÓÜ?K§&\°ØlØ•pº³ñë°—i½ØH*»«ëW eñE[KíÉj[×½q÷ªHB‘ÒqOvÏè_4TÝÖèqJ¸woã®R¿­&5 7Ó•B‹ªÊÉäÝÉóžK; Æ7 Õhù%Æ—J$éoÞɵåËè(ÃDŽtÆâ€cãÅ„C%“i&•'Miÿˆ¨,£ª|ài 8ycjþ—j:÷'ªÒùôä÷9dèQkp ùUcª)šsiÁ€'·¯kÔrò/¶¬ÎZº3Lâ3/kׂ=Ræ×òj(Ò!§)TÙ“&&*óÃñÀšj`Í¢ã±5e-ÝÖ¾yf¥¨œ:íáë¾ËBjzX»7 Ö2w¢îÿŸ½wíj#W…ÏççWèÃY'Û 6¹Ìdvö³Ì%ÁØÆ6!ÉYg½Ëà:16/Édÿú·.’ZRKÝmn!{ï àn•¤R©Tªëï¿.é¶ï@º'Gº¯îDº'÷Hºm/é¾Z–t_žtw–"Ý}?éba´¢]¥±åòm÷GÄA¸¹K¨Z¶¦K“µ¢¨Àätk‘¿1üŽC¥ÿqJ7ÆÚ,6VnÓ7ÜæíÝÖíåš;é%w’¬ôç}5•®ßt¼’Ù]$ª_Ò©eˆ¢â.{®z¿çEœ¨>˜¨S ˆ:¹=:/jµÛo£j@ÖÉ™ðÕ€¬S«-Kæõ”u€nŸy 7ãŽ"~r½µ S :÷D¸[w"\¯¤sKÂõJ:µ­e ÷ùJ:AÂ}¨Ëeõ¤œ ¸¹ËwRNõŽRNuY)§v‡»hõîbNõNbNõîbNmÙ»n-ë®»|ÝŠwýÃUލÛ~ÒþWÑÅ£ú¼Ø|^™òÿØz¹òÿxŒoÛÿcb›ÛGìǰ]­m#èqó}Eœâ_§¡t ?GNS)ŽCù@[Û:'è©DÉ2>>¸€ÃR:¨ùŠ‘°]â¾—òÑ€eLRB 0åË+ñq2óø?ƒ¤… –ÐU(´¦ÂIŠ­m/ÆçWÕÖ`qq='vÝ›øë„rx^Gó«ÉpMgÁßãÕ`¦ÝB^ë oÐ0Õ„õ _AtåZø;~OÀ_hDÁ5C‡„“gh×|U”é¤Î¨Á.C¨ÏðÁ3EªªÇ6wCïï Ý#|ýL´ëµgNígfgð‚ 3“;k˜Ó˜×L‡–¹éÛ°KöÖ¹†3r"”Érˆò%xÎÅ<¢¡ˆiAØî(³›¶¤+£Šm4òv¶Q.À_pÜñ¯7ž\&t¢×“BY–t^¦¤PúÕsÌ#4D×Îþ^¿ûvC4±>À>MοÀ£óÉÈ¡„¯"™´£¯ÑHl‰ív£·†ÖæÅÍp =¬g‹3Ex°4%kµ×dyDtÉZJ43OQ›óruÍe#ÄRYJÛhM…N!‘K«° Æ-èÂþL3ØÑðµù"Íì5 ÏI á¼ÓÆwÚNçàW³]ÖõàïøzqŸ»– nv%+>˜p˜+P±aèU¿‚»b 0¥3å.a¾`¬¡!#¹ˆÙ˜pˆÌTiˆ–FòÕ`Ò]9Z*‡¬K“êaš ZÛÖÆ¹¶žoãInc`µ EvÞÞ4uqÕg“3ÎÿÐÑ8Nç!QtÜ@~0ÄãYBøf{?éëqh×z õiL5@hËä€Ð©Ó¦Ñ |NtÑ4÷xÅÝbÊ9CÎ(¸3NÎŒŠ Å7#¯‹1¼!…Q#𞟛Ÿ£³ƒ„âÛH¹_»öâñ<šrñЙF$mYDçvÙ”N›] 9)S]Z;ä °ùL/)zt΢ùŸ–S“M=çÆ3¡ÈÖ¶‚¦É°K_ÖÄ¿±º7Å‹p‚¼ñPó/ô—zñ[4µhÔ˜þ^Ü-}©|‘ƒjH¸µDŽ"´„ñ`uôFþ†þoÿJ΄¡Zåª9Us¬ÞVk¯aø¯µ²4fÉ…1;[Õ©5!ú²ìt2Ò²g¤yX} ­*ôïZÖHy‰O% Ò·ÉôË nÀQ67>­t¶×ÔÆ;½‡wºÁ<¯húpOöpõù7>ò—i½¿T ²‹þã•4V‹¿X*Jü ¼~Á:ñ-a +âl176²ë ½ëÖ{Æê/FNÆå(wYïø­»¯/Ëêõåœòõ{ÍwûýŠèí½ïk¯:½à—À¹üÕ½¸øQAøø?ˆ;ø“¿8†{2üŸþƒ›jë8#ä Õëïáû§áé6¶{ &ã$vŽÚÔMóëÒïõžv1ðk·NÿÔ+âÓýú$ú°²Ó€1)%dÀg±¢^ËMáœ~;GÇ/ïöùæÙn7vÞQ¾m¬ Œ?OÇ÷à)iåûãD´‡Í§ü«PeeOOË&þÛ¹cæ¿9ü$œÔŸD:õ}w+ÿOU-A±&Žc0ŠÿIï~¼¯À‹×cÝp< èâ¢Dx5ÇmÞ°gn™kTË]‹£þ·´åà(L¬¤CÙÀgcz+ùz¤2 Çtý¶n<‰rǼŒŒã–^ÃCÏJ|ùlpþåÛ`:”±5çF|´<°¶ØI­¾¾›@10B·}D7ü±VK â²tÊÇ·º~ñÙ òm©Z£× 4ƒ8?¹¨Ãèï –ÂÕQ—“é`w³ytC“¥KZÝ‚tª@1Nð­SD5 g7“ñpÆ é…¡Ã4Òµ`®ÄÓu.t'xâk‰ª°hÎm)ÎÂMœQ- ¸íT;Û m4:»x¥l÷7.({F ÿÒ5Ì%«}w$úètkö´3¹ùnÏÁœÔ)OWSªbPžHFñµÈq`L¨_jA¯…ªÉi'ñ¯SúÓ´’Áƒ?Ȳqü•qÖÉÙ¶ÔÄR6Lî9\I<3 žÑ‘Ó©Â?Ó¿§ÇU¦Ô=x‰žAjhêÕSâl{“ñÏÇø*]IÞ$<òð6WeWÚŒÒ20Ç`¤]©“J@è[„£!‘Œæ[<! ØzC+¯64§b‡Õ㙯v Œ´JÛM ´Tµu†wÞ‹T ŽÔ\òGQ³ >ÑjŒ70«J«»Zïú~û6ì0MÊÞƒçØºš®o’ðOLª®Ð¡ IØ \gšþQ{’u›Õy˜Œ7J&«“0 †‡0žGm¶W­ù(M“¸È²oà–¿g`é†6¿åw­F\Ò9{”*qHŽIoÅšfóm|î5!Ò¼ÝÄoÂÆs ØL>83^=÷û´³Œb a\” 2Ÿ‘º0¾ŠŒX‰™/EùìÔʦ¿²Á=—Y|Ù£ÉJ2ñB¼ Þ2s{lrPjûY2=$j©î‰¡ñe¬œgä~6·^Rìý7Õ{ÀÛ‹?·å~ÂË…é läMg¦É¸Õ(Ãû$8xcäi¥ÅJ?ê7™•J¡y6éšìi}n ²š›,Þ Ôâ¨)bÊ–Dè¤ÉE‰Ô¸&HIWÏX)žgR´¬ÈÙó•Ý ‚x9aHeÇ…­eÜ`RW–Ë!UxW+pL¸ÜĆêþFaùXÞ6<‚LëC#[­à¢£}<WN—-“ŽÓDiNÇŽ„CÚªÜÖ±ŠÍ qEuóÑpéüÉ:zÐÊ’sôZÝh Y-åøŽ+™1²O˜ :…˦K¹-ÞÁ¸|cihiÙº|ìÙ^´tJ ðà€ÇŠª(ô²$¥žB½q˜«Y·rQ™Í¤Ÿ2ïk©’Ô×¼SÕÑiî’IEÓÇc9á¦ðæò¨”_{í^ÂÇp¬_MFÃYÄ)~NàÇ:¶M¿Áž&ø‚4¾TçW†vã$ݦ‡;T¶Ñ»ôKJÏaâ8ÅGm¢ 2a*•á;†Ù©1å­®›†ïáÊ“å”Ñã…ªEݾïgúžK¶¹Ž3FûHN°¢.\à4h<¹É G ͉\OøZž«Ž=Ë&ésD@ñë„R&IÎôý»ž%×Dd AÓ“2“~aœx >»”†ôT®LËÝ|ò¥šzIÞÙÓÌu¿P¸Kùİ$ý†¯{^îkUÂt¸Ž Ö8Â*8î~¦¿hê æP÷A…„\z€µÎ½Ÿò÷4ðªú÷i,0ÄDM¿n|³¾žtQ5»æþêKùzûOp¤bJqä?¨i™$ìe ¾í¼ëÓ|O¾•ÃAøÄ#Z¾+3I7¨çÝi\ñ-SÞuà ØhDO)ÔRç•Ù1{§2²@šJRÿ/VÍ7“gr­§é‰ì²â>’·v|Da·Ë+Gêü]¼–_“¯Y^ÛäW·lý¼ÑûIâ~hAˆW¡‘â :E KP…u6ã ¯ßÐ*[=ÖÉÝÔüêô™Ù‚-&dJ!ß5ìÄkÅ*sÌ{_G㈡üM[Iôä9GÂ"j~ÃnÖÖI”¯Ñ‰]íl[«v€å›»}WÊéƒ6]s3á“ï>#³…àÀÐx #9ØöEÍ Ãl‘]Ø^~EÓÁΤ°¶I²P[Õtpà³äƒÁÑzùA¡¦#΂‹1ÎçÊ Rbe®ƒF×a]Ïú&î(Ðh›‘œnÈ#ÔR@Cg‚8°®>/‚{÷x1'Ÿq2ôïL‡äYŽÉÒöÆÃ‰²sšü1cŠ*åÚ뱉­b/òZü2`æcŠ6þ>V>Zvä²ßƒc¼-múx/5«ؼ”@Û÷r÷pð¼"{‚+5ŒÍ‡dPtniö½‰ö ’áq²M—ž )uãƒËì÷¥e‡ìEäy'9{Ú W¹"ÙÖªr%Œ­k%^ŽpnÛº•÷UÀÔmºŠfšº’ò-ÝmÔò,Ýè±~Ÿ–îxl[ºk~Kw‚A2= •Ü÷“òÑï`·C†èwéë?ÀK¢sŒ3§ÅÌT¦YÂCé|{¥£›—mK¶ñ· 3ëtPe–YMCt‹ dYiNÍ—LtË7‚ôäOÉÿ”¦æ§hiY³¤¥¹eØKˆ„Â$#²ÌÍ+kó¯om.ßÒØÜ2¬½-SjiÑ*ïz©àä5J²¼”…ZÛòr´¾Š×Z6ì²eGÏQK˜ÆÈœ¹ß‚;gunÛ˜l:W[]éÎ×íÄÓ³ ã­»f°Ä¢t6—³mÇÙÎ~»vÇc׎L6#—ÿ)Vd5Ñ_Óˆ\NÛsMÈ’§ØTÝ$ß%åŸÊˆ\–ª¶ø)–7ÿlVâãjKùƲí1e%Î?, X‰Ín þ–]Ïè wù.¶doW̘l*# |w)5ó<㸂¡ÀÉ ~jAxL+ï—¢FÞvž‘·6ò¶CFÞöòF^›Ó4æsE¼—±'+Êæ`ºvIs°}õò1×<›°p6Xþ¥Nø™âí¬ÅÒ.Z®Ù„0“i#Ù8LëÙ–ßäS ö$ßö‡ËyÆá¶_¤á¥®†÷„°ÈÏDÚ<\.d–+ã{§f½SÎ2õ&va¦»\CòÙ†ef<:ëž éü¹›Q71"'6]¿œmõV¶,щe¸l¢ßÞ.ìØoýFÞ²ePJÃ"‡`Š…˹FáB¬ÄmQUjÈzð–òK†Ë… ÃÍñ=†Ë~Ãð+iþ£ˆaØ6—B>†¿¼Wà¿´a^@Ã0ü¨²‘`R ™_ýÃ0fl%ž£²Y™ëc›€;y&à4bŠ˜€)u÷#Û€ËÛÕƒK”Å=eG)ð’à»Z€=9¡ Z€Ï2Ìv€ŸåÎÄdžy¤z°]fq2öíb·ˆNN+à4 Ë(Y«ešŠ1e×=šŠk¯¿ z"AìÒ‰ý—Nsü#LÅÕ|Sq5×Tün/ZjÞ¬´™Øºš™{&m&öÀ”^:õû²·¤îÁ3ù` Ñý=«ë?(…¨'ÿçÿL5ÿçÖ«ç/^¥ò¾zµÊÿù¹ÝìüŸuá¶Ùèôûúñ‰Ä„&¦hî7+b7÷>å…/?e0lxÂ÷?…r…>XXóéd4™†±ø}åõ%Añ´aˆ ™G”F˜PŒÜ“hÄÄ»'9Å2•a÷KÜ¥J!J??•xéT¢ÂÊ&*œ„¢BHÒ(” ²·/Z™%Œ(¾„%@›«¹{çW‹)&nÑw2‹¹ ªT Kd~•€†Ñ€²Y|‹çW2'ÄðÒH"{ÒKÁ’ÀÐTêŽýf2}+}¤HeT«#’ìOrMìØèwOö6ÄkÎ6¶ä,IØèsfÏÿYÄ ˜ÿé4|Û€›ÔÆkÎUf¡Š*Ör£ k4Ÿ–MRB—‡Ä{gâS‘QÙMpHœßÎÖRî» )q‰8og,`^gM»º%ÞšöMãC*bœI º,×^wTb@WÂÍÿaÔ ^”ãÐ#ý ² ¹(÷˜¸™Æpôİޅ(Ù„“&jf?˜‹+ ÏXnGÂp¦N© X7íc²0&m@ Œ5⦳Ä.þ¥ò•AGkò1Ñe²XûÖÚJu¹Ÿ™ê’Ç@‰¦· eSTYϤ_ çÈMMNfžÛ7AÀÃ,B01ý¹'„¾ þnyÉ~eÖݹJah÷Õ®Wœ†$TžšÌÕÆÅ Ìœ.Ûût̬üx0*ì”ê×?‹0*\ndBÛa4;ŸÆ7*4yõèE„5ÉÛSrÜÁ^F@éwÂHÀ—O é‚Âú\09d²8£6(:YC“¼>8t3‘ä鮨RÌö.W¶: B*Æ6˜áҙʌĔq0ÙžQÂ"npZŠ‘Ÿì—âJ¼fqÄOáõAé#gõ8ÉñwåfGÓÿ„èãÜG.ÓÅ„-*••Ê%‘ÊaŸäOÍ2h6ëø¤h¢8ëøä°Žfj4Ú?ÈN>ÍCf[åM¸b[¹%{ùD+äàap~¾¸ÆàÈ$¸Ùíĉ¸a„N(-Ѧ!bªa‰JNP:1áØ±?á)óé5I—’ Ù‹5}Åq>yÑêþÉÀùmwú§ äÝéEòY‰‹œ”–è_lgµŒ+ê ½Ä#.[­<´ñˆsö­^?Ï‚ÀïsÌ¿~±Bñ<šò"ù à9‘@ú3á#1HñUÌÖó+L³n†·ÞÕø5ÑL‚ŒÑwŬµ-¢ql´ðŸFò€©ø‡‰r'êÖqùc˜ÜŸ.Þ+­‰yè–48Ñ}­ý²ûÕdº¸¼âéI˜1ðWï äIC ó6ø2…‰.Fi}Mýs*@£¿µõ$ð“õ Ò|⇠敷¬Éf{™äVÝÀWúj¾ö øD¢1pM"«)àC;`¦\ƒùÃ]1o^šŠ`ñS,šWŸÖ‡iì~ìæ`‘ë. ͵°ßaÕ|MKÓèr0’ø.©KwG±‘XCÞ.¦”^&½v¯Îåq³^ýã¥Øa¤ºëÉ$¼syè‹íîàk<„á¬ëþâèÐ+0ööàlLi‚²ñI¯¡×êÕÍçz0¸ÝÁèæJl¦3ÖŒ ’eþ§Õ‚Ci0“0“úbe†#VJ©1E¾‹Á"R‹“¨l6Õ‘Ä×®܈®Ñ9œáñ;¸ÄTçs1(“’w4Ê¥ê/Ù¼T_ƒáäf.C`°ŸY4ý: ©¶q…Låÿˆ~ Ô RHb77I¶{o…³ Ð8í’êQûãWÆáô`‡}š¡~âyçMÜK/•oe&^&qq 3 Gœ`8ÚÌ4­)‰Y ‰»<’.cöí·Yê&©”|W§RÆ¿°1={mfõ¸Ûèײ:Áçˆ?ûoâ9ÏÁ£D d;ö¥rÞ=9„b:aø§ÿ"õvà?|ЇÿãþÞá1ìž ô¾‡V*âcxr 4ŸlWÄ6üÜÞÆî3˜Â¸Ëà¡ó^ã-z†»Á0'oï°ÝÁñõ0M2tÝïÁHOÚÇÔYMtˇ—›ý'xF]Â*1[Ñ®€×‹Iǧ–dŒ’r2¡ïK¢ȺÎÇì[˜vc·ù>ŒÎ^»q¸³¯L:žüÉÔ¾¢ÞËϲ™Ûî[Ì“Ì)˜þvc×ÿ¾2#ÿÈ\Ι9˜që¸i˜åwn&fõµw–MÆü×">ÿ¢ ©#«²ú¬lÄS sÄõàü ޤê0º‰€Ƥ×B·àŽÎþq,'¢pÂ6YR€Nø,‰gðÍâ¸yxrøLOEôNb×Wn÷_vø„+%²·P@ê0{9îîí4{Í£ŽÑ +øAXW‡ i$7®¦Œ†©kæîHç‰v£ ¦òbAyìÏxuÐçi:•NŽ4– ut]æ,â,¬‰©8£ÃZ<š‡*e€ôPܰŽ"?ClÖl~ج›ìÐ>PúV†€³èkIᆯnÀIò¡Ì”3ÂKœaJCuP¢•MNa ¶D#¦Ã &Y±$mÁœÓ -ÛÛ¦ÎÔY¿gêåP×Àz9Ò‡%a©}‚qíµ¶:!'*P}¿Ô®´«\h]ŽâK<üÅlÂG•akœÁÏgÆb$'È–ÿ°DW,ã G6!½—^$òÇ10gÔ磥\ëñ¾0DC¿‹ñ<ž/$X<³-¡&‹‘BÎ΋9ܿϢóF…­S±ñ¬‡2 ”$o[§©*ÜÞï¡XU‘÷VCÛÓžL¾P1Dî5*\=='}•ù]r…·ù®Ú>Ÿˆåä|j©<`k(£H6‘bѼ°& ¸ð$Á¥ûVR1>í>Rg ¸!ôÂþ¿tµŽ>mQ8ÃÀ˦œ ¨î!%ÐåšÍ–­|à]ÀŠm_y¤ÒúXŠ–Ôò¦E¸Œ˜7$j—á""o~GM“hcÒ`X=ƒš#&ÙùõY wdÐxż˜ ˆÅn">)¾©êkĶšéàü;±2¤üèïÖ¯šmˆ´˜ä„¾Z´ÇÔ§Ð:"ÛO m-ì£ÞJŠý«¾ÝPž×wÒhøÇB0¼2‘o›TVž‘nûGzŸ} û¹ uû¶Çvc× E^!š²T|ø†€+Ͷ±Yƒ›ñÿ¼ $‘Ûž§¼x_üzÛvh5ÕéAE8ß=ÁQþ³ÊqÔF/.à—RÊäÑPí,>xÿøÜ`t¨à™bñi9n`=~OÝç–§n$-ÿ‘?Ë:õA°J`ø$¬”l¥ë7º=%pÆQD%dµTÇÖ1kf£þ†_æRìjÛ_¡äÕôàÜ Ç%…ÍlúWzïïóèFjñgWñ…}2 ¦vÔ_®Ûl¨¼¼íÙ Èü{°9$u¸ySÌ1ÕïyLÉ/<&¾ÑÙcrº?G_@PŒŸÍüÝ÷“««ÓÑ vDe²ð9òÔѬ­'ßn¶‰Lpâ9ò{© ¿°?xBeõºÑ11²¾‡}Ù->ø¹s¬ŠñVú½8U91|…øÖúz½ŒSPøˆUZÈš|‘W–`ÃÖùÏb­,•"úIàF-_ûˆ|Xwˆ¯~t{ôÎ ^é>¦Ê\gµ,Ì­‚³- É0îß>ñtþmÂrÌùÂ/Æh«½+¦¾ÜxÅkyÍUmNRj!WŠ..¢sŠF£°4BÂr•®€äB5àë!û’Ì¢÷mpߨ,öõàK$wX9¤T´ Ÿ<ÏŸ}Š…:¨‡÷)öŸ!9,»´uà ”À´ï4­éX% k§,­ñÝO×&}õÎ<á¿î >±û„5–ûNÄí>0gsä0nТ ¾¾¶ž ZI©MP²gºnþ ›HýQ¯+#AÇ#Šp~I½œ.»×kÉg…½–¡…tV19f’WŠ.apý‹X9wÙ‰ {ö–"E…àXç‹æa…7±³sûZOäè4`ÑØ4T[ïBS¸ÛDlïxg!1‹üÈ%Z¼§Ý«.“¸KÊäÓ¬»kcdS@SvJæ"-³ÔÜ#Z×SÄÛúõu…”?¾”I-ù½Š0C¨M^VÑë€ lñ{NXo gš}ØH3’ê¸.xŽîµIJUà%L.@®£.öþ6ÇZ…o÷”…À•¾5&a±÷u…@• ƒÁ"ù=„@#ý„ù#P®à{I‡x0i‚3Ì; % í×›2HÖ§å .‰,>CdeBÂ{塌>D^Ô"·ÉZÔâêPBÆ4³RìÿáC)²AlwAdJñ #£¯)¥saô7,£ dvÎcÊÄsÃzzv6­ÙJÎ–Ž¯)ÿ_ß©ôÒœ!D­T.ù˜~Hƒ*ýîÛ(Z¨~cþ¥–ÏߌÁ–ë¤2ö*Œ R]Jû ²ú{úH[z!  ¸=à­™î˜òEà×@(ÞÁñDz¶Ö«ʳŠYÀÊt扽íªÍÄLË(c[³J.ïßpÂÃ/¼o9Ýu>¥:ÓVáìîüWbóÌi ;ÍØ¨éœ¦fÐ"qöà¨?‡œ%¥j[Õ%¯û<ÍL•IW‚ Q»í@ÐMÑ ½gÒϪò¼CLM/1H_‚<׃&“&ÆfÍgêù¤ãR CÌpAvºÔR¿Ä#Z艶—’ ½ø“l fŒƒì@ºS©Í®3&Ôû¦;3 )QE¼&¡?Ñê’²91ÞêÎÐJ{Q± ¡'™~üY~ØÖ<޾%ÎÙMÛ”Û6R\%ÑkÝ]N *›ÿÒˆÿõCxò?Lëšÿ¡öjkkÓÍÿPù|•ÿá1>LÚNþ‡n½„0=ÔvE4dr—~ã„<žÛ»ðÏGüùñ³9<`Ά–œ M f¥²b)h Øe²/4J •².ôK ë/&KükPKr(Û©D F–+—ŽÜÏ¥ †µ\F1ʽŠFµQô·þ ÀHŒ«Û«¥q•sÚé‹cC{Íèð¶DE™#Me:ÚìPoµê5„Bã eÆ"kiû —R,Æñ©d_ǰRˆb_½Â_Ï{ øï/ªIЇYr3Ãé²ö­/»´Þ‹à`0î@æß”J°É”Tƒï×ûë¢ˆt>ÆmMØû{ø¯/q¯cr2`¼ÛÛïîÊ6VZ '„ä¹|« ˆ‹ tHSÎzu6ÄžuMæBË+qŠ´Øãi®TD &Œ–ø—÷…fEÆœNüÄÅJd7 ¿ 7*”Ø6#ïÀ3·Ê=¡7Šy»å 3(3M‹òo;ö.ˆR ”úd[í`gE±›`Ì€v½ÌÑPŽüO{Œ…Ö»b¸õû£s`ÝÀP×lP$ï3ÎÍt‚d†£‘½Ò~Q[pÆûzB¾|vzè©¥ËZŒei`íQäÆÝI:ÀŒcˆ*'˜¹±ÁÒÑÌ0q†_ iÁv*kÁŒ$Î\¦×'€c’&{¾}E÷E(¾_ñŒ)•ðB.d_c´ío0¤cq ùã2cÿè;mÐñ™fÖzÈïaÈ7п“žPOoL`ßÜt½–õ]x [Fï]ÿ$–…îFÀ€öÑ0±AÿÛ/ÏE’Ýg“Dà ‹XœŸÆíŒÒGà97,àûŠÿÉ”£"‹ßK?– ˜Lù@üj?’f.dàk©ö:.‘)o*ð7ü…¿×þäß±ŽÝ eŽ ó+_C½R‰×¤- Ç2&éHg»è[<õÂ0·Í`xóÉ%©Z.9¶Eç½” èž Ñ¡ˆØZŸz9 ãÊ]Æã¢ˆLCˆ`cÅPo¬[)vS‘æ*߃vI@¯ù zýF”±c –£Ô€??âÆŒÍä0 7< âÑn,S•‚bn¹nJGZ]ºÃb¼ªˆ/Ió”¼õך@J°ºÂùoíÎÏ®àß«À³¯µìg_ëK[?«{'-‰Þ?\¬É@Áª4¬àPºn´zS!—š˜IÿÙú7ï$îOPdÉÀ}ç¨S-„©è ¾”=Ö3*}p†eÞ×#²ÝÌnrÌÒDR±W«˜C怞“ïkÙX×ïL&8&µp’Ù³³˜gþĺdâΙxŠóÚ³J8­²ÊîùB4šÞ‘bL–ðÝeÑBHE]ãq|£MÒ»frà9S‘^qš ¬åj””‡=ëàwÍÌ‚¢¤toÚ>®{xTp“'Æ—ìÔaÎzG¦™ãs00üŒ“TOÉ?TûˆÌ(çå$,·~ ž°÷ÄòRü.£ÐµˆL™9ÌDüý}´7NHB1 YBÚŒ dŠž<<¤Ò‡ UÓK'ÊÃç”ÀÌFŽËì;Ñ_ŠËç³øÐúÊTŽr¸<©t†Zwª"³­x‰Î%.ñò‘.šµ×¤àS×%"+{r ²ÌF°ÇÊÌOÃŽÝD´û%5èãóÿ>®ÿÇ‹­­zªþÇó—+ÿÇøðŽqý?vWþ?«ÿÇn®ÿÇÀãÿ‘غÅÿãWpÿ8Úîµ÷ú{i’ßúU5äoñã”ij!šÏÑ|óŒsN‹‹Å|Až#LÈCÄvL¿R±orEˆ¾i@ÒÇS¨FíñOv0Y¹“¬ÜIVî$+w’âcÿ‘î$ ¬¼JV^%¿¨WIÈËã¶ÏV^%¹^%?©«DøôëøIh7Cxxò¤å]yD0/wž*õq|¯ž&þZâÛânws‚Xù@ü´>0Ò»ÛÔÕ!³º}Êòçõh6 O‡É¸º(€e¥Ñ¼?‡†IR«Kú‰<–ßÂä!È3ÝïtOˆ3ܾ”ã²>’~‚^~Ç…½æ}ù+õJH9ç4Óc5Ï¥ò­Ìú‹˜õïÆò™ëaà‡“ávP༷ýü=(§‚|—Ç¡ €;Aì]â{r'Èb¥?Èq€eX€wWà¥?iûo|^{Tûo}óEíU*þeÿ}œïÛþÛÜ©•ÄÁÑ6UûP½=,vZ þû¸KÉv~ 0f:ÚÖ&]MŒ0Àóëv ÝÑv|Zâ¤Aègqó/¬œÎ?©ó.b¢—ñù”…Ÿj‡T²KD³y,u‘¬<Å ³˜²äÏUEG©ÖËÝßLÎ…µJ¯ñK¥Œ±Ëéäo„Å oI÷/õThp‹Ï¨:ýŒ€ÜÛ™Ò~µ+XñöŠìÍ–8«ºl¯S§3›ThŽÕ”e’ð=¼™¤Š8·Á%š3ßmóÿŠÙúßâÿYþFÃ÷x ø‘ ûÏœ¬:ÓÓ¦pºh«.¾=—ƒëëìGÖƳ(ð`©°r3•²K5ðú+Kûx ;ÒöYö%®3üI9Õðw5RÄS^ÒX…†“˜±ÿ Ïþß3™²ûÇTÔŒ$Êýs3ˆµIyöh1±!PMô¶ZÇ*bÓáý_,Q:Œ‹ÿôÿ‹Ôúù²D߯9ØËý¨ÖŽZ'ª]Á]½ò¿×àºYÀœè$Øö د31žPÅ&œºNj¹‚ku AeŒ¶/çW¸L¸\/·üà´ ÛÓR¦´ÏU¹TöVdœ&0ä°f£=9á;#Õg4H|Ö\‚žÞÇèÔrÏNsÛ¥ªêY3<îöÇe¦XúŒN0MþEM¶˜‚®¦ëX7ÍzxÒ² Z‡ü@Ù)eg2Ë…ó(VÏ!¬­ p9UÉj³L h-ج]kÿ€–¸±ð}9ñô…Yþ+âíÑI7«Ÿ¤p-‚Æ·á¯çvZ(|Å`·{ö1„eÉ~•V°ò½c»:G]3àîÕ³êÁî´¹H-AéS²¹½~£Æ?T‚\ŸóZûx¿ózMÄ7þ{–ª=j Tͪ›WëÕ[Ä÷¨¿£n†ic 7¯È×|£É)A K"Œw{7³x4'y;(I¡ºFµ©ââEWé¹ÑZò @=cŽe<Û£bP\¥O€R†Î£mªMâ1´H¶„;Ü:™/Ïn¢s¬¾~޾MÍU›ØË.˜Õ«©ŠŠ˜å|=u8j9•·z¾„Õ¸ÐR)æ¾ÎÌÙ—äÚª+šgäÿ#ñuÁè÷=íS¾J®ÖÑSùZ{X@ý±*u„Éóûé¬T‹ÓÿHO«W[w{’ŠZ%i…Q&†× y@Èë’š|+èÁŒµÖŠ¥×šHBö—ža¯ÎO±ç©š<<åQ ½Z¹W_ï¹ Ê³¦à L]Žðä#4óQ1V­«gа‡V½5çÛ«¢àÛl‡ž—¤!Üÿ "qÕ6Žºé'ÈÇnâF;û5År7Rý‰t2ø¶Þª€”2ÒQß—XÙÀü:4ò!»”0Œ:Õ,õ¼·CïiÖáÏ·šru/ùÅ,jfQ+8 ÿ{ Ç1[qÍd:\«‰,&3ðì8’g4%ïØ¶iø€¨*Á\§é÷ú:CX[G¡ÎÃãôë)*ÜF/†ŒÓª/Y8¼Yæ•Ú^ß.§ïâëÕUmªbÛ‡l§rW“dÞj²¤š·ýæÔóa_Vëj¼,ÉÊ­ø`žsÐ\u N»#óKÙƒ¯D=H3w.@x˜P2uß/£|¿¶î¡‰ÑÙ¨ÒÌKÊGõlù(pë¾?)(¥PjwŸä”'&ñÂúNµèÅ$"I r=mé3 S¾f °Ö XÀM¹PQP…ÿȧ‡#Z„ã<»lÌBRÙ½ÈX©5ñÛšZrYþ?íÞfI4ÑòWEtÚð_—L5{øÛ~ÌPí]øgûýò!Ãu¼×… ë»æûã~—~îaÛÝwôþîœÒßø3ÌQ{:Þm¾mÓ¿ë%¨Ø!7¤îéQCañ¢”CÒÏㆤФpó©pzŠm‰i…º0ª$.õÂñ’áòif–² í,é²ä;Œ«¤—–Ò^àê—ð×p׸¤%~×µ¤Ç¿žÆ”c¿ÍTRÑŒìù“9Hq»ÄK@/o(ɵX_Æ7 v•öÍÂäÇã¹Íã›ÑwT0¡ÜQLñ§sU*•?WuýޤË%÷Ð~ òKè3Uâéä¹CMŒš¢WäÁuˆñ6Zþg“ÑWa ÐìƒiDI¦ÏFèÌ#Œ(¡aü TTõ|2þŸ ¿÷~—½¥çW*ÞybÌÊ? L|0…‹Áüû 碞LçWšEUª„·:þ £Œ†ÒI­Tk¯‰wñ×hŒ™7æ\Úì5ç_ЩÈ-L?Ea“·ÝŸV ú.ÍŒL¿Q Uxã;—›ä•¤<8‹ hã}ð§ÄE’#±S¥_{UÒª¨ãYd %¨Xâ­T‡™GÓë¿Ì‰J6F%ϸŒ&@ÜÆépN‹kàHCµÎp¥‡/s¨):¼©¿îÈz°†átÙ°4”ù®áŒ°Ÿ½´I U‹Î*ò¬ˆ#‹Æ+Xèsz;âèòó¶PÆKu€Ñ¼ nÊTè˺t‡èº4ÃO¨[½ñ«˜bÆŸ^Œeòf©hqô"Po?Ï»¦ßÎrhã³&ÃC¬‡Jí äZß®8,ÞAc›)EùŸÙÙH˜³EÃ$f]~ÞˆÍ×¢&˜ ëÝÚkÑÍX;åŸÈ'LxBœJè[:WfSš  óoô’@»·Êþ® h×JT””Ðã‘–.zÔ·}qíšë8³³Ø=U03„=ßôH+ã$Ë“€@^#H“÷Ñ›¥o"4–÷{¹XN'ñ!f…}lØ`ªÆï`..…r+OPÔ>|ìLÓ‘ð=¦¡)”UËûT\‚FapŽR]£»†‡ßdqy%7°¡Ù„|A´ã?x`¨Ú50‰|êõ¦0ÙÞ Æ.>¦œÐ„ô„‡×&×Ùfª¤c…óý!Á´õ‡[ŽúƒÇàTKƒðuß±Ö!ß$§íL”(Rz]Œ˜¿ÒÃÙ]¯)YÀ\>vçß&¼ïTŠ–4 ¸+ÊÈl#óÉ䋸FÙU<6‰b¶8“D•ô I(ѽnႲÁ(Wn–Eb’ˆRÏÈgH|¿É=i´WÇ0§;s¦¤ ôgŒE–ZÝ(S;¾“LÄ(Ëõ80wº3xæ.×#™2‰s(“÷¤ïbÆÓ³#é­¤Zቛ£[bâ4‡™¼ ÓʼnÒh©îÖ)Ì´Ôæ F·ÄL’ÝŒ/]˜ÅWÀibqCL\g†È’€ÏðM” po™× ,öŽÇQ\‘Uq¦ftY_SatW•Ý+@7“Q4Kâ)Î(ø*n®¢"!-âpLÐU¶IâÑ VؤgÑü[¹z'ñ1gSZŒ™±DÃ5×;\ݨ©õâdd°›%ó阱ÀÁyuKÍôòª ά ä\‹Í°\³»³uç(ÐR ­®°n`;YüŸän­#(Þ{€DÝ'9†|R0:ÜaäÈŒz×°óÍüRú𨆟aO^?8þàd=JÌVØën·YãY"@e úëtëáAÛ¯¥{]:ܦyØÀ:>@>Ši %é&Q0’]lZ¡'ÊŽ´Ñîo`Þ6ò‘Ò_Êì_®I]1EHÚíªÓF8µ`ƒzªA7»Á–Û Äê{´ôUÎXŸ+H¶©£±s§çÎÞ wxp%Æ`‹Wž²›üá6áKªÂA`iRkÃW¸ì®j)|³ì™Ó*…†VlÚ‹‘ ߨèìy&F‰Px¿cz2×<«ˆª4)ê÷,ÿ,g±M–Z`‡ŠìÕ—[`ï¯d0†Ö3¹‘™(Ñp;JÞ™NßF:wKk×ÃÀÔ¿–ùGµÅ)¥SЙٓ­,œ¼}LÉC…/b§%e.i`S–h‘ùy¼u>øc7ªY´O‚ 1Þ«)÷<ŽR¥•I¡¦Ž¨aOÄj3Òv¥óép28=E\PsŒh 4¾ø`Ò à°Î8¬ÃÁèAŸ›­¥M ØA3ÕA=gz[ÉÊÏ +ÖF¦5î ©á1–õhzмõÌHœ))÷é0àqÅûT™ávÎp®’´&%hf€]G£”·÷¦8`ên¹ý‘”ÏØ4}vƒÚÅ§ÒØ|Nu†o <ƒ¼(yËõD”8ÀÉ·Âne$+!$¶Žû»S=›]–kÞNýþc|ø}¢éaò´fa<^óîÉÀL¤Áý€2:ù<³^qV;¡ë<`ñ›\³ß²œ©”w=«ëGÐÌ–fˆ¢*R~‚&›),F¦ÔLá6„Ç%Í *E›nk«ûuz>iä,¯:3²¼X«€Á«Æ.‡ïÂsm¶6“oìa ø#ñœ×ì€LRé­.Vk–¬Ù1à½Ø¢uo¹hÏ ,šœ)§w´n¼úƒ·DôúÄ{R ý£¤ÿW:¦ Äç‘6’­Z¦ž¯8‰Î)1.{t-tÁX5lPÉ÷mBé•f¢4°ü €¯˜|úò¸ÏÖ6Ò£¡³¬'³ ªBht¤ñy¦L9#yõg0þeÙV§‚: SŽÑ¸Zt Ùï­§<Ëa—¼Ü¤«<37|ËwÀ‰›t×›I_M’v½-:ÆÛh‰$V!Ðä©òbÓjgRËËT”ƒgEdåV™‘‚Øke¨Lº42L&p|9OEÔÿ^ õ¯îõ¤áþU÷¿?EÜ—Y ê—ÄŽÄPÌ›H"á ëLJZô€¯i…ó¹£ÕBŽ‹õGQ̱² P÷P·IÿG†'±W«$†ƒœ Âø¡K„¾Å¢ØB:}î¡*6¤-ú¦ôîT3ËsG‘Öò°Fè”÷ÔEqåÁÎ*œé\¼í¼«Wß .iØw`V͇/Ö¾«t7}•¦º\I ÄÕÝ®RŽÇµUÄØw½ù=ãz#ï&¹W“ÔmàA{K”—¿ç‹ó4™²uS@º¡¹üZ­„_/â^…>ŸDˆ“Êsu'ÂÔÉä7 µ\“×ɦÆX!éÑÂvÓÅvÓ‹ma ¼V+&µ×ê…Äö'»K-C[¦ù~¬5¨ûÖà'›%{\Bhþ`IÍn%6מÞj[#8{d·ÚVPv«¹}ý4rs­à¥vß—%9û¾´Ôžä¥%Gp®½*"9¸'Ñ9,;×^ù‘Wû}iV*þQ‹M~GªKø1ÖØô­ÌsðP©n-L= Êà€–Ä%¤>’ m[ÀaÀØ X6Ç:‘Át–8éHGw–è!=KžO ÿ¶BGÚ6º·1ݤ1ásL$Üf±R˜µ—/ Ǹ×þ(n*rLB!ãï?rLEÏ=7›âFÂú&[….bÙ‰ZUþ0KaÕc*¬oÚ²V(·êD»—8<üŒà¾øïÁ£Æ?¯½xQwã¿·^l­â¿ã#9ÿÝHâ¿{‡í^óûvùƒ¿ÅIf4òIE¼ï“(ãDo˘nÉ9 ܠqRN^ËfxFó×·ÃÓQáŒnµTatð¢zÁîñÍ«)ê›Iˆux,*›0˜f½épõ$`œú?©Øä'Å£ÇOÜÐqõE·ÈØ{r 'fË÷}ó¯OÉrB_Þ¡ñ<£:¦ xÆæ>û.8Õ›Á-¥ÚóItq£Ãí\yˆÄcz}p>çJÉ¥>ûß{ãCudè`¦ŠU“àÆõFX;Mòn(e@óBEªRUh9_O¿„‹*?VŸ©èFxüŸ¬­ ¿b=˜šw0™1ÆI µÓGu{[a”ž«˜bbk­, æa|þYZ±L'3f¨fÿZ¯æÄþJgbk9ÑT׃¿ãëÅ5úçÊ6Cqüêl2ŸO®å VTÒ±¼!N#åôÞá§ù¾XØ™ìÒã*<Ök÷—”}”ðX[†:PJK„t9\›ãó…М-†ÿþÀ¸ŽŠ å™-FT>œnyÉ)ÀÙÞÄ©0$Ó0Á×]sOìíM;Qh(8íÄ^ðpö‰s&7X(“Ђ}FzÂ'!i XÓ¿‰ò'/#6¥5tàȇäß´ÃIM€ß—µÛílŒ=¢çe‘äˆgÿ,Úo%NvA»}W[ºTbùb~ ’ñJ›(‚Kvíe9FéüÁ^u—¼·«ÝŠiUµæÏñ4­ˆË jüj¯67þ˵ž¦ówG¢O>cþ•#åôd˜è(L…‘’}pÅØÎ1£+«l{öÑþ[HìÌj„$…,s„“Ä ÀäyÌv“ ñäº^0X6iÆìà©Aõ':»e®ö¢øŠtmIñÑbzáë}-Î}‚!SïÒ…q•¼ÕiÃ[ÉMY¹=ÑÜ aÑhÐõ68ò5h¿}-ÐBkBLKZ¨“@îÆjcð¹[ZöM¬Õ`î¢rÓòIì´“ç´«Üç]ûy7Õ+5C/UøÕl&¿æô zb·ó~>LÜÙïYû‚J_Ðgg*©;EÀ·¥WèI‰é u¢.+®Ð²m¿·­¼AÑÜl=p|¡(źëˆËÉ 2¼C9ƒ„t½•"Ò[d§m_hÅòöwXA"a¿gQó¹‚Ö}®]wC®·Ú£V# ßG(¶Ç-kÒe»Ù¾åŽ~¿ØÍðlN­Md>bèUσ>îévƒhò¢ YkA²έðØü‘]óOϨðOÏ ©ÈÍ”ç5^ÊñšúrãoÓ‘·^_Ò§Ê0u üM]7Í0}ü²â—Ý~ÙõíèìP_+ÈWÞßræ¨‡à—¯|ëûûrºn…·É†íšºëå—Ý¿ôb—2ºd¢÷ûFoÃüÃߚ×ÕøâW=3ÌnQ†ÙM3ÌZ¾€P[bIž:ˬùDZ*SÇh¥xh'ú{,óæ» B‘a …’\xs.ÆçWƒñ¥ Ç–í¥mÏëËfæq’ak2Ì®"zJ¼jÉÐÞTÅ9ÙªvÜì05á·ÀÉGpÝ›¦tÈYÒƒ’Ö’j×4Ôòµ²º¸Q÷L[ €;»¾¾ŽWwùŒÚ´P';ðß k@e!ÁÁwªöÕá"–ic©è ]ãHx~ú‹¶eÁ#ÅÅÖx<—÷až<_ÃQèvc|»m•Šn¥6€ ‚l¯´j|kïE_äÊ &'V§Z@š‡ž«žð’Ú¡;Ï/ýNúÖçã½ù çòg>`îïZE9å—GKݨ²s8×2v„¦/Éò˜íÇL&õézMþتe!æ” S®ÐN«ím>ƒaWlcÐÒ»XëOvÓ–œÑŽüÙ“?s½üuš‹îA‹Ú9wY_µµµ©woâÔûzY3 Tô0:æß\V—ëtåð:Rޱ m>¹©'߯6_Sç² 'c&­Ř×Ûûb^©ÐÇ'˽~—Ü«Í!'zí'å`¤«E|·Û´úÔ3¿ô–W—²ö‹é~‘¹8Ótù`ËLó×Ó¼¦™ºý!I±³ÓãßA}ßP™N¯‰]ÔÊoÕ­|‚“¢¡6S'ݪ ;γ“ÑÂL·§ V©ß±!»{øqTäVDýèÈuŽ,þnΕåӓ߯šü¸æU”×ò.„ìÓÂÂ=€ò§îËV¯-©Í-ŠfáC³¡²Õ8c¥îq*OE†:÷¸–V¦Ö`+w ê÷¿¢zÝ·[OlŠ6TÍ ë×e;{^ä®Ñó¥Öè©«ŒêÏ}4ðâ¾µìÏs»vm:|pU{`¿gç®Á7^ú•Äs_ú–úÕ’ á¢h>4Z_{»w—á¹]Ï ­AvæM|ã÷û_ƒ,žëKTÿã‰-BцªYa½çnåÊ&[›K­ÑSç¹[>ág+U/BÐõÀþbËù‚zg†iü™a|ù_†šÿåÅæsøÎÍÿò²¾Êÿò¦O7ÿËnIœ·<Ù_v+ÂÈ·Ø…í°›±»NKee”9ÚÆL,;ûncÇrqGôȧ>7õ$?‹ÆãBf^Q¼#å]Oõø[/“˜%I»îgWf.Ù+¹éNÔœs²”$ï'ƒ¥P°¬ %»X*WFæÛe@‡mÎbU¾¾Ò+)ì njx-n(óRNêëx_cjlµ·8ÅÃh0¦¸VåZ‰`d ìhýC&őÔB¥C¥ÕSÉ8ˆö ßÅo~}¿9wG’oÈlúmcÁ`8ßOÍ{ÆS]ƒ¸N 6`¨Db_KLÁË—‘œ¼S;uJš¶L«òŸh:ÉÌõ‚ $ÞþT¥£á¦0HŒ·Å5#JOžO£ùb:–©;pƒóù® îDp0ê]¾KŸgç/UÕxÀ~Ñ”p=øMSßa#œÅlq}Ã1 ƒ3àâb4áØÜ›I<ž3ÚãùÕu4Ï7Ds.¾ÅpÓÁ¸%ÔG^ÃòRÅ·£ƒÄ%Ì{(†ñe<—ùRÃáo³ÅÙ| Ó¨`þÒbÅÂJÓ¥Ç#0`¹·‚!Fñ&¶Ü¡0Q;ýöQÿ¶#þؤ®è¯:!²‰FýÅsÀ•.þ:8}ƒ˜ü®¢¿°!à"6ÂfêW52„gpqß|‹Ä—1{âŽ'c•• y™HBè4·[¯qXoij“g¯aU‘ü÷0 u8‡ŽéåYÛÓã_¿eä;yêé\RÅv=3APÿÆ@¨;§pÉËݲkYçn ÄCv|µ¼„ÖxÅŒõ„ä“)Z†z÷ÿÕKâ°ÙÁ4U±f$Ò¡@ÌrRu+/ˆÜÂÈV2âZm]3†üñ܈ñ;Œk(ÿ&($ïŽ.'$r’|Æù¿e6C„àðG&R%ª%$•€"7$û©ÜdIr¸Y Îæ·Rñ®“ í–誉߮¢Ý4Ú½"ú§êÆ¿\È;µDw$ÿ.±’¾_ïuI¼]ìÈ>Jª—MyÇ zÎ ßëS2]3I¯Ê¼+Ó‘…õ<*û7†çïÿU“?ëð³{ºMÿ6ùG7˳žŸÐ[˜! ~œ²Æ¨•ŠðƒàЩ@néÝCRn³î©ì ýŽz'Ycá4Ã2!þ5YóéXù.!Òzý¬²;2Ý[†Êg€ïc‘‡î»öÙEÅF÷:@;GþðûpzŸF¨×®Õ±Ù§\^_)­ÓNÅ}?c|Ëç6ØÑ9Y î!bù¬„¼:'B·ÿŽs#`sr:jÈŸñϽL8ðB÷^“*lÃۙୠž¯œc ì]Ç‹ÊÊ´ÐÉ.ñ~tŽƒZ’ÉÁÈz›ÄàN¹v—­ß›zgÚ {7³x4?3Bò{Ñ\å˜OFÑs÷Ùò%'7Ú{N eþúÝÞž é©ã†‡ÎaSY;ì<ÉżÄ<Ö¿ñù©‘Cièf2›Å@E˜èhJcx=xñÑ.òÎ(Å¥kîõe‘mFÝáSVþH×ôNy´ÉÉú]MÝ≻2Ì)ŸXqJ#&Ÿ]U}6­šYVõެ|]LIu gC¾¨Œœ¥”_ö RÑù¬ý,…M­V!<þ@f4ü¦TôÓOÎ(œÂá¾J2’>´š?Èš”5›§ãy b¾å}'i­š ¦©n|ÓƒioÝ8 wÑ'R;%SƒuÈÑÞœ>‹CÌ‘AÊ€=}øŒìihƒÔSCüó›Aæ“æ<¢œ'ë¸ÐÙ`~£Ä8â7Bã.ýb±šb­Ql­‘ɵÃ鮫© ¤øä$–ùˆX4æ áj6ŒX7®L¹ðœU]ê–Š ”5Í&cU‡/MÝóN¶Pn$Þm®L’R[Š“•…%,G]xâ,‚w§G=±¦¨m›7ËŒ™¾SÏÍ⃩CïÎAü>÷Q‘Š}SïøÝÙ´/[€þ³ÝÑ-kÆ&H¾ïn§è?ˆÈ\gÍ—÷€È¬p}Ÿw¦XÒ;óÁ0Ùô`RºÙ1ž-t*;nèb:×%ó÷lLßݽ¯ wŸ7+‰·àcªÂî«OÅËÓº’åY…Q’r'\³0TÛLĵ”Ëb2‚ý£Ph]ñ›ŽUǯ€<›qÅiz®8|XÑ!Ü ñÖG޳臻”IAáÍ\õ„Wçù©'îéæPŒe‹>W줤ÜïÅ:{éð§§¢$O4ÈH$5ŸLÙ}‰¯ë»»ë¥Ž1¹afÔ"–Ñ`d7‘;¼È±³Tb‡8x ¥ºÐ@—f—ÙRÏýž<95œSÕ›ïÿì©ù.Pµ%sk=2ïóðÉ)Úœ*×üÄŽŸš/)V-œëd<³/¹"ãÞ‡«¦.Á[£  ‹§Ë®¾{ßóœîõÔ«3¼T6V#ëlr¬uŒNæf¢Ì¤8 j¿K’Ít(:—OÊ×ЗôÚФ½Yƒb[ j”–ùãué2Y?úÄßwõ÷:ê#„?¹¯£âfÇH/ËeB`ÌÆw²$ÁùŒû& ¶\‰7êÅÔ Ûhºú¦.oÏÜ.ùÒº:nÉæåÙ|A£­`›ªsoÍë…È"îjê{¤Ï‘Ϭ—™)Ð þš§râøŠr=¢¾±ÒNV6FÏÙ*i¼F@á&ÿyåQúÓB$Uëj÷7ÐdàÓùi­ió]§ÄÖ=Õ,u_N¥ Ñ©‰š˜p9˜½Ô`TÂlŠ?ôeËN¦M?R¹#¤T‚Ïh}“§!’“2 “Åx¨ÒçÑêtNOìæ÷ŸHÞÌ£±ÕžÓìJÝ»<Œÿg‘+.¹r¤¤î&YŒµ~Õ|fíRb핚k¬#q°)þ…8t*€t‡û÷ú¾#C"„H¼Œh‘Êdj™’ÙBÑkónÏ$”Bƒ‡±®QŠùd"§Î½”® s{šÆäám°W7VóDwËÁØm^COùš „õÝRg­"=ªUÉ 3a„þ¨„£ï¼„"{sˆôþH )¡ÎR¼ Õ:f,CÚþP&âwÄ0áÍÃÒë×hÓ¦SÖ úeÙaRËÌˈ΃žÃk×­—É;]ô ðÌgᛯ6EÒDRºèŒÙð&JO†'b¤& ÜVû*ú‘¨3/ÚR¢|ßÍîÞ»:)Ò“¥‹¶:“?XÁÐëç)öäKž‰VÜeJ^—‚£Üï2aø¹:m‰>G³-ç—ÒoK w×róçκnþ܃ƛ?þK3dޱŒÛ\ò^¢Rd)ãˆeûm"ãRÍŸ¢jŠß7­fNj#ß÷öûþ»¶Ü|ßæ?ò6dj?VR7o”# å D¦=gér2Ò$ïm>èÒe…êo×®^ûé×®™¹vaõŠ|!¬dáO~¾›ä½úò+œ§„±GTÅð§¨B&“Û_š•z˜–¶|´]È9Ñ9–½rLæX‹È8>離’”ÅÆÆs±˜q¤Ž{Êdv%í©«c¼yFìØz«ß³E´ }XóË-Õ^6FíK‘æÉë]§%š“îEµ—#bUÅS`=…ù=j6– ëyœÉì, ç´-(4Iuêuï܃å|‹Îç°ï·? Ò©¸&‘GpIû•;T›Ú‡™ó´î½¾_D »]ȺR®CÅI¶&úBçP¸Š lBá!*.È p/™ÌŽ ÐDRW…AÅÞ‹8©$ü9ë¾”è:e:¸¥~ Zcßãxü]LÐ¥^F/&¬¾°ÅÛT3¾0ô¦õ5øÒF¤ã9EöŸÆ¨âá÷óÁbIAÁ Ħ8ÆDsRxÔ¬A[{aC»>r)£½s䆼‹½Vï¥,ða²M (M§©\ÅJ§laç¿8_\ºœ\üœrfþúí†{ŸÒ×ÒP)Rk.“Œ†‰[n4sØ~õ“ÖЙª1§¼@ðð+®Ò«bj–RÌÝÑ\(®Tºs¥qÅnÄÒœõ)fèj ìeø0áÁ­-yвM¤ý›ÛNú.“ŸÈO$7Ο¶“üÕ*~u¯(v£±¯#Zï ¿-S'nª?áËö'—Ö{º±f,¨}_ÍJ6'D!ECöÂ&·TÿÂæª2ö÷B [àê\µV·²¿VÖWíÇxó©®lX ‘­ƒÈV@ägnbÁBª‡"»´È‚ß«Æ!3àð%>*I !Å/=.³;enYæÆsûëÎï:wºèÜÏ-çÎWœ[ßo–¿Ü¹Ùx®5®¸©ÿvÒ`²"=›Øçg2û.-‰dy7Ÿ§BO÷â픑Ës÷'Èåy›O:ÿçøòìQóÖè™›ÿóùæ*ÿçc|á;)ÞžtvúÍ£çz%É=ÚjÃ'¸…âj„uÝÌ°Ü ŸƒÅßñ(Æ[ÍÏ“ëç®îÈéÜ !„ á‹àæîôdb`îž™†³Ay8œˆÓèÍȾ Ë(d88gã|5R¿3G”ú±"0~óv:9‹Æñb&¿çZ,”æ._ÄcÌòb·:"©S' Î(¡”êŠZ‘kÐMÜðYÄ92Z4*œØP|!G Äõ__Nn7•:n7šOcÊ養±&Ÿš»&ù&VÁ\S0æR£W>¯­¡\pDN‹ÏŸá<Ÿ]?s-3¥Ô„—Z©­MB(5”þÔ¤(¨¦T“¡ÄE¡¼õBy‹ºÀö^ôŒñÂÙÄx*B £ñd.’jb¡ÕT«WR™ejÕÙâš³MÑ  NëÉ#\}è­ȦR{@œ* ÀLˆ&”LK$s¨­avÆ Eçæ"µôB¹: È9žÍ‘¸%pì­@jM²ÈË­)z7Ñy|GæÆœOPÅjfT•d:˜aRB ø3ÛƒdpÜÎÎ_™‘åR[QRVÅäÌIÎJ`G,ŒAå›Õ½ío2‹ÐEQ+¡×‘êÚÈÐfíôô` ‘A³u²4x‹gø:81;hlÛd¥v&leÒ¤®M–- )¢_5DW«]n”kÜàsu~e1rÛ1Isù²ñ~5àó)ÃÊÈÙkó;8;¾,ʵr\ý 4Žº"vr‘埫_kÿzÿëÍu<.+ŸË_FJ÷ˆ.€{oòHs `]aÂÊ©W /^ MµJ›Â´¬¬v’qÑ졃_Œ ®ù'ýÏ"¾<Ë}n˜Fd|®Ò~þ¨ôctmÉK –ä+oVÌ™††ì‹°ëÕ©^¢„‘ÚÛøÜæi;¬ê” Ð6p58zõ Ðõjϼ1‡fþ) 7GŒ"_RŠZÊ”(W UϨêQtýº0sÃ܃ ºGQA)ÌáËùY €ÀŒü!ìÚ¸mæ ±é"‘ó'x#­µ]Ñ@Z(­ÌàƒVÜÖ ¥(­Šó/ ÌCÓƒjë$Á;ü]Á#…msdÉïæ[e÷K¥RÕï4ùÖ.”0_t¼µö‡ýlŸe¬ð[w…éhHMˆ -kŽÖ°Z¢Œ%†Ÿv\­ìýUrV¶ÚÆDG´d®”оpú0ã~B¥¡æéýuä÷¥¤‘H§ RL> ùË ¶^}4m£Oÿ=ªþ¾Ú¬§õ[+ýßc|)fêÿ4``ƒ”]•Œ†&{ø8º½÷¶¤foï5{…U{HEªèöZº½<-ÝÞJK·ÒÒ=}-Ý^!-Ý¡Zù¢º,Ò ¥X‡–ºîÔu&9$Ô%¥Ôu5…Þš4´†E‡Ñp†‘©uó(ݮٜàðx·ÈäòV¬¯ÂÙ!õVt²ý‡ÐW®ôUâ.úª•¦ê‘4U²&:SÿŒ:+xth=YÚ¨”2ʇš´šé'Ô2Ù³º'-S¢Jòá-[adãð¾µE‡¹kð«i‹l}O\{íÎ^qíÎÞ£iwò?>ýÏü‘õ?¯ê¯RúŸW«úÏòQÄš©ÿéþ_»mr¾Ü=ù'h~–ÒøxÔ9ªÊòn[ýr²dÍd@þSÔí€Ðé–\JÏÓÏÓóôWzž•žçéëyú?Ö«Ÿëµëxce”¨´kêÒˆJã*æw3´’@`tO²Ké$ÕE6à“û½]ØÓÍ?U[YƒÏûD`þG«JîæÏÓöÅá4$Ç@݈êBÅ‹w<™îÃE¤Tkº-Jr`Hmyat,ñá˾b5ð^ àŠT*tµÕ)Å•)eÎ<(u ƒ¹A|öÍFeKúÓEa­\Y#§SM•-Jé…ëY÷­g‘*Û \öJ —ÉI=#ºÑªuOšG^ª“¥—ª±T[÷³T'Å–ªí,Uá’]OMõcéwdB“´^‡?L¡²l6¤jo¶A`þ'-Ü€Jµ¤Ë(•ðÔ0®¨J¥þí”JýÏÕ#Çÿ=^{™öÿYéå£è*Kÿ³¯ãÿ°(%GþãyòaaºõDî?ÅÀ+Ì?c7pF†Þ!èo?/èoô·R3=}5Ó~± ?dPKõ «M…>±ÿÅÍ *Ÿ¦²,1Ìw ³9`ú)É$L0Ön%§Y­7Ì·Þ`jñ×06Ÿ@uÞiã;m§ç‡Užíe,ÖuF¬áÔÝD##Þk,¢wUGšç‡x¯…+üð‚*}´Ê5í‹Fá|*ŒÑ‰] ÃÉcôÆ.ÆLáo8[=†2æE2r ãç?`Ú F6˜ÏväšEØ Á±;ÉÚÔ”ÒZÇqdï_d5°ã‘öpu fÀ´8k<<1Èñ!Â/7ô’Κÿ8²ÛL(†ÛʱM~E˜Q˜pÏoTVn"åᆸúµ"2ø>ìÐ_å)ÃN¤Ã7ØÃ–û®¸]¤¦çç‚ã´ŠJWÓ`óUŒ®B/îX÷nçðDƒ'#59LÓ¢¹ö¼éE Ø³œ|!¥]3Cig8#º÷ù%|ñÎï¿1îB3J—J¢–6îÊ_†:àì(8²°å ¦Û |ˆ[ã œ°R7ÓýÜŠõJ;S6<¯dø Òë/ ì1³Ô†á¹éßaØØë€hâÄ[?Ü 3òŸú¶o(ìUø]7½µ¡MxX¨8›L„¥Pe#ÊüP’Ë ýÁS z(Vh±—,›†ŠÔÀÉòÜ­mþ¬vK mÞ ‰ÅyHª-KkŽgÒAÈh= v‚Ëœ:~ $MÛjEŽ]Íô¬¾ZãªÎtÈ@š[‡ŽA5·ºë}›7/=›zÁÙª’ÛamÖÑ‹!€ýU>€•ï'0àËð¸¼ôÎDÔ© j÷¤IÈš§» Iã"V¾pÛµþíåZÿîš’ÀÃùàT±XsÃ^Ãþ&”EÍ@ÛóA,ù¢÷=ƒ˜Š¬"‰|q>}Mò¥Œ2ÖŒÚÞ1lLþŒBñ dÏ(yöÊ»3Zʲg²Œ|ËZöŠPùry*:›§beÜ{œ¬+Ëž iÙ[õòzµ°­âi.Äí-y%4]ÿ 3^ºoö–¥ ÷iÓŠ#ke¸ÃÏÃ…ìqvš oG?Øg*¶\Yâü–8Oà?r·ó£ÒÅ?ÛÀV˜ dÙÏ,ÙÍ2sºÔ–©±WÀÄåýP÷åŒ ƒË”´4y÷›ai"ÒmÞÎД´]Ù™Ôç6v¦â9öŸRÎóã³ÿ\<¦ý§ö¼V{µ¥ì?µ[2þëÕÊþóE¸pc³m>oÕ1Ñï6:½®mûñ›}üÆž´IP;¼ž-æÑ•GoÑeü®Ñ×Y¢îhnŠÓÁ¿éF³h0=¿;pË‹¦Ò´€L«ÐïE“œÂ1›\Ì¿¡.·Íà~N'_ã!ÖgÎ’ P–iË4|MF“é`8»ÑPi½Ô¸ÄmM\æz†u÷cåÚ|kè’¯$½åš¹Þ>E3×¾G™Ôùö# à«eŒ^oóŒ^oWF¯•Ñ+`ôº¥©Ëct²—f c×Û ±Ë6w1'ZªoÓà•l.m=ÂIFr'ŸóÉøóâr0ªóé`EŠ!Àm<ò©‡wô·Ö“ÛZ ß:¶"ŸP ]Kází¥ÇÀ":ë¥N¹¶ö[]¬ýZzs€ê yë#Øä’ŸÞt(˜=Ë¡È:2âñëo€þ±÷±\ZÚ|Ý©l¾na2-6ùà·Ñ×hì ¿õ¦ó[}Ãnvhj6œ ‡ªW›Î"1G ½•Œ"fžãÙ[¸–ÔCùˆ àÚ€ê7Ûy¶A”€ÆF•ŒÇ \Ö¢  \GLpg[qõ†l¤¸Nbд–ÝJBÆ[ÅIèÌÅ´ã4gó13E)|[M20.a Ì£äý¨FYt`65J\´SjÜ#­HÜ8ëµë…›ÒK&ÐLR+CF]®9$J„Oè{ #ÑQD@è€=‹`ªE:y®(逅×ñùJ‚û=lÙ¿ã¹cg-diekņ|?FÖl3+MôµäÐUl/yÍ ŸìÍwƒéPóªK6cãwC¶½Œ¿Fx DP –ó@Vúr#9´™Ù{Äüð÷mö —77ÅfMlÖÅæ–Ø|.6_È777¬ZMÔꢶ%jÏEM=®mÂ÷&êuQßõ碮ިoŠz ¾·Ñµµ%¶ž‹-õÒ֦ت‰­:|ï ¨âùsñ\½÷|S<¯‰çuñ| ¾O½ ŸêÕ›âEM¼¨‹[âÅsø'J¶8Pl…›âj2Î/ˆEpY:ƒ7Ñ&1ìNà»/€ëÂÝ[z@i¯…Ñ`6çëÏ4ŠÌJÐáÍé‹7JÏ_¿LäÛ—%'âáŽÜÉH¥ºN&Sóôôš ÁÙ0bàÙ´egƒˆË臤ى÷8â[$nFÀðòO’¯™%GT>Au‰rÎ:ÌpÛhÖeQ†%I1ëLäIä#Fûc¢ÿ'o:{ÍÜ@à/Ò{!6yÓÙ úvÒ ï¦ñƒMÞt¶´þÐî—[Ë»¹³õ'Í,LlZû\c0[Ù k<·¡âNC»m9°,ç£X‡bÞßÄÈâ;Ï´Ð5gp"ð¦BRš!_ý¼˜±/SBà´mRR”¼J„ ç—ÑœoÖR#?5Iü¿ó1™ˆ"š%†•Ó§€òOXbX9X@è‹MO/y©^ž#YqÀJóa‚ë´%ÿ―†5{Qó÷’Ù‘êåR>*Я®:ðO8eàáÕ•‡é8ú{.–8ˆQŠÉ=‡_$ì#t 'Ï2Žbëã?Ž­OðH¶>YDzõÉ9ší¿ãùÜç÷{ànÀÚ-Üo!îvà's‡·V©ÝæÀõLæ\ØBâ¡\‘>-¼›Š¶¹·9ý»P޼ Ôwþ½Xàpôl̇£»KÍÃñç=àÒŸà§Žyf¬æ§È—בç­Ù½ð7¹\fGþcÔZT:Ikø4ßÂ?í4ÕÀp:5ʤ٦`ºðЕ‡IE»6yWÔk£ù1^Âì |ÉÛ½^ÂÚg»AI÷9Eå/Â=¢Úx<‰(UD|!ÆZù¤þ Ÿ|ëͦЉ˜Ne÷Žv)‰D]—Ýã‡eýö¦Õk|qß±¸ˆ–Š7¨\EýÑù3:ñj‰ɘü¡Ó­tæRJe„±fvÍ-œ®G‹¤ëÅÍhòæÙ‰2&{nŸø{¶ÜÈŒ~é}»ßÑp€Ò±¡R”XH½46×hTr™Ò¯*åbúåM‹jþ´äDRG{Áœå¨Å|cº|‘?”y(1qxÚØ)R¾ ¼ ›Sú"Ño¢î’oj2ýßóÝß[ÞîD–7±‹2 !r#‰ÿ¿¾__R~|¾Eq$+6¢²ÿËÙO¸uû$«µDÞâ HÕnsø¤g~ªÿíÒfes©„Q‰#lù`—/àÜ.È•0Xß!¿#t4»ð4G*ÙMùgsÏÒ«²îYo“¸}¾‚waÖ áÃÎÂUQó¬|Ú¥/åÏø/:‘𹋤Fá‘&§|ÐÈ•PnÓá%ËêòŽ«áâ€üá݆§A˜ø6™øt•¦Ãù¡¨ B à¤ñÃÓ`“Nï ÞÀ&øSÄ<˜Ç¢GFÌ“£IaRO'L9ÅGåEùç7_ª¾)ËA¥ÛÄoÆÕ¯üRÁêW·:Xr–Èç^íÙ¥ÓÍïèòéú…ã›hw?]—Üî¡€¡ìÜÓY:ge„÷72å/”åø±šz¦lÕåCmêb9þ!™ÇÅ=lø%FÕÔ£ H:äœ<—É«bÓ ½ÏZ™ÌØÆÓSYÜG‘"žÎt…IË^ªá3\SÍæm©fs‰;H†òR”^ñ\ø1‹(’{H+GÌÜäYC¼ÍaQ•™"½Cz<)P ä‰YQfêï”úFkúþˆCoÄø7›¯VT”k?BUñ¥òe FþùMíÁUE`ÔŠ2Ÿ@^Ö¬nYùñôÒÇS|„yÌ£+?„’ÕÝÏ+²”,ñÑž¸Ò£\ûaj'D⟭òL*¾Ã”ú†QW¾Ô1QDûvÿ¹ËxnnÅ‚©÷ý©ó üj!]«:¶S•È÷ –Uâ%Ýç2®›p"ÿÀË?Ë|yOSÞô2„O/ T,§!iXÉš zîw¥]~åðz˜FЗs?Á̃&YgBÓ.ÿ®NÉ–ãeG¬v–3#¢*¤©VR­œ~íÝ‘ècöÈ›NÀ¬¸G=«ºÔçÄÅÜV¾ìÔ¶98+r* '%:Žÿ‘úa4„‡Nö&¸¹¦x‚í½ ÈdƵrÈ»B$¬²S³x%ý™¹;ó6pÑݘ±Ó³úüf\C·,¤JF<yš÷R,y3‡%7²¼¦ t—[î/.½ŠÛ.KæšdÞX(Ža9èÞ ®pÕ 1hÙû™(Lé!±¢šòŒwç¶Œä;ºú%cŠÅD£ƒª)ñ_þ¹òAz·›FP:øÁ² m”G@Å¥q¬ò©.ÁëÚ›_Ò° =¼s3œG³Ù“º" çŸùÀs†¿ ‡Î)f…^J¸—Á3 ²=)qø;œ ¬­"EŒ%0#[? \:ï"›‹šàdC•̳p¶‚a £Œhñƒî~­²ÉDù¯L6ê“>mÑS¼Vë|>I™nóu@ŠÌ`…<§–0ƒ`Ùí_Dªôð‰[pƒLé&›²dˆÇÄãä*þ±¢¸9Uߊ>}Õ=K\>Ý̺Q¾ÆHòðùn‹ Ë ·2¥€rìïG<¾`öVo»!ÔYW»{î•]£éÉ\ân­äƒ›Ró‘4pWY ¶Rö…'zc¥ìS¸¡e1欢ïg/î®êSáþJ:–²8M¢îËR‹©;yR§…ͣͿžœÚïV¼o3y÷øY8H Î+S@ÅXR… sÔ1BÌŠÖ-°&^8ý×Üý?«d¨> Õë oL¹5¶üdèhËâ-Àõ«Õzwðÿ$?_7¶ªbÚ2mÿâÏt7õ©=È2}ÅRô ÖH'™¹‚£T×Ï%X…fF&xô±›\\ˆa<¸œ`ý]‘9 ”匯I>™É2n#ŽG}ž´Ãl#Aµ$e£±ÑÙÛ ÚJ9pø6-ÊF»¿Ñhä½.ô6DD¯Ë¶°{±éúzø" ’]Á{éJ›Ó7.1Î:eˆ™ýf…»å†Â%ËA<*¸ áoù›!}ããß 7h‹æX fIŠçœñ•é3T®+di„Ù_héL©/d’Ͱ*,‡pæÓ̈¡ÕÉgA|x1$'ÿj=,ˆ-‰øoæ,+ä\ɳï^Ya™ƒø–êÞB 处»È3ËéøÊõÛhøšèpò‡.®¹j‚ûÕš¯îHOè¤h¯LOé¨H¯Q¶(2=& Ðë£á@Àæo;z†€]lc.p%±–ØïT5Ïj¶œ±ü–êŠâæñå.Øh_âðT¶ñò²gç­¬ãËŠ"OÓ0^À(^äp¿ëmpebüÊ$þdwß ÒköÚåî1¦…ö– ùi^[ÿ¦•[-î~™ñÊDøòêúûdò²&Â[JÙK—á˜(Ì.åÕ’ØË˧n!f/ËÕYÙ÷à ‚d2 l«`Ö­fY•åÃ[ó¯1¶þù›¯ô…õbyËŸOÎI°´ý/'¾~u´YW6À`ßi=î¢ØÅ¶òºÅœ0ð¯ñŠ ?A§ê‡2Ý’ r yîVÒ\výáû—æî&t./Ï-«}þ´ …-?y€V,biI-ì'nJiY~â+sûO",kn/×*ôïjQž¨d†&w<ª¡á—Lƒû=›ÛW¬×uÿÆvço±O#YïýÕí—H*°ÞVqò WtößÂÛÔJ~ÙÝëŸt“ û½ñS5ð«º%ú¯ÿµúüøÏhp38ÿRÝÚ¨ÿÖëîüv>Œ¯n6.îµMø¼|þœ~¾zù’~nÖùïÍÍÚóZýåÿªÁgóUíùæ‹úÿ‚¯¶^¼ü_bó^Gø,fóÁTˆÿu=˜ÎדYè=xíâ~Ñò$>jÏ6Úçx{ÒÙé7:¼oU"“ãöQ“~4Ž9ñ²rÜèÕªh7Ž;-1XüâÁô»˜Nóx‰Ò×h:‹'cD¶oJÆp2Ž¿n kèGãq4›EQ%ùng0Šáj0Žb;š~ ÁwªKÐi¼íùpcCéL¾F×gÑTÔÄ4ÏÙØ½óÁÖµ1½\ÐU¾SLk¿Ñmìô÷ºÉl“ÉÉwšþÞ;ó !:vÒIc:|÷õ‘§J¿²®YéÎÑáq{ïƒùJã˜_H:Â_S2­À¯oøÃßóʸCÎÓ1Wgú:-ð.ÅW*À=:?U„—¬·ÓÉY4Ž3ùýdŠ€ð‰ˆÇ˜œë»ÓB]Ŧ„^F³¹œÍ&£Å\u‡ÏHcs>¹¾Ecf¯kÌó5׃ù4þ[4àlqs3Š£!ô$åÀo°À×r’»Ñì|ßÌLŒ‰¦&›š«^rù&m¹ü]‚!–(“ëÚ\pq}áѳÃg8¯g×Ï\ù£”ú‚ðP+5 µI%¥ö¬"ž1¨IQPM/¨&C‰‹Byë…òtñŒóÜ ¼èãåæX<¸sGãÉ>¦Ät<˜®£9Èj™r \+fò³càJ‡{–8U¢[ôQÛØÜ+oòÛ¸ñèOK¾Q}·' ®I™ÍèÞ#†5+h h…Çרî5}ö Èu|9Mwº÷7LÉæíb|Ž’‡Ñsûè]sdžMåÔõõL¸c=çǽôgR"6úñbe½Rs (ïÜ7`@U·Ùé5w,LTh…ÐȀ˼w€Ñùb>@u|o>˜GZ”UwuJeg¹ðè.”¶À ŸÏÎÀwøÌ—ð¹§¶•ˆÏÓ…“ì€ï$À¨’Ìek‘ÁÀüf÷n Ê•ÒÁÓÚ&' ²|y¸î½åB¤?*2Gä±LÛÌò>@LÖ÷¨ÓovNR:!U¦íÀ}ìDêÔŽ9ٲì)¥‹ÂNk.vž‡±³ìXÈ[)Ì¢ÃEjÆK`vk ÌR_J÷ù<K…òM63òM%ÏÌÿÖÀùÜNÈÿƒ{BÝàý7Æ]dà À§»Šìg‹oX´—arþšêJ·{±©²û„¶òjñ&Y×V %3wƒÿ–©ç•`2UÿëIMDøãE²ªÎ¨xÈ>D{ÔÑË0Í1Ê^i”ÚyÉD©ßWKl|èì÷pg¾ìú¿ç ¾¶™G(fU‰[ ÏéïÿAØLÿDèëôå[^jýp¹q3’ãrà­,¸ˆÔ±Û©Õ˜œêžµµCȧ—×rfèó. ž9µÚr¦fˆ >Žæ†—,?*ó„ªeãŽÕ†Q__‡ŸAžØ ly\g/æØÌ­•»‹m;¶ Zâ4¡îäдÃQ;¿iLÛà<»1`3÷|‰gÙß ˜ÒÄ2.’EOWð Ù$O 5– Di’ñö Zô™öŽ‹›öŽW¦½Ÿòã³ÿÍÕþ·ùêÅ‹W)ûß«­•ýï1>jcgÚÿzJX@Ë_=H~5ë_XáD“} ã_‰»ZÒØ{JÀ}\È1,Èe¢‚_¾×˳ïõVö½•}ïéÛ÷z…ì{fØêå¶œ®Ã†-dI”Q‹*ŽŒ¥m˳éÿ¤Á&F½³htâX/â)°’Ù⬪í7S¹,@Õ( ãñ¥1~‰6iïÚ`H€7¤£N¥¶ö˜&ÓÈcZvL+#UÑ:aÏàV¶Ó¶sØìüZ¦ óLb›©ÑÄ©þEQ§éâ]RAº¦óÊ\÷]¢ƒÚµ#K»VX½_sÕjA|„ 2õ{bhÉC“£ø´Ðƒïneê|³t–Ò¾B¡×”’i±0eYlœøT×/:Ö¸‡Híe1fh†Søô^åhlRäRÜ0ü¾aÿ(µ1+÷½ëbéX­u¡¸626ùõ­Ü£b¬W\1Ö{ÚŠ1Ÿþgþ¸úŸ—¯6_¤ô?/WþßòQô›©ÿéúŸÝŠØû'è}îªòÙÍÑ÷ì-íëÝJªå뽯A€Õ¹ÛhúyÚŸþJû³Òþ<}íOÿÇjú¹ÚŸ]§ë€¦#­öIûÙ¢vGBÝs f8KcJ4Ö8\³•A@ê³ÅM4­fvûOÕ„GÖà£:6õ úþÕ$wÓ´÷<’†äШ!Q]Ð]$ŠŽí]aéCÒ.)ª5Ý%Y(HM§Fðý=3k±›=©FèþhªE|~‘ËiRº­Éª¥ÖɃǚ=÷”¿… ³QY!„þª¸³àÖò•NÕh¢VÏÁ9k»šÒÏÉçU”»ŠekÊÞ!£jò¨ò}…Ÿ´g¯÷»¾½O,Ø{Ù>X^*×Á‡ öTº aªU[F«€nø•dhú÷¥UðÜÿggÿ½µÏRñßÏW÷ÿÇø(J˺ÿ÷¶Sñߘðj›¼%±ñ(¾"Û%ÙÙr*„Þö«ŠjH ­È³ï× oOA¦;<¤CÆ¿Åó+ñŹÌ–Ð)À|³u ðÂJ§°Ò)½¡ž[ŧ'˜øU}˜– t+ŒNÚŸV¹ŽQeäìàŠYžOÛA×'áó~^¥',.#\Üã‰T®áZ>OšåFŠüþé»õ‘{ï”v«Hî¶ eõEê'ŽX´bè~S¥€ÇB!ßx-›þQÞAÝ).÷±Ý8< Ó<÷-ÿ´ømDQ-°~H7!š±C·7®–— ›fþ¹ñÚ8–jÕÓg©X2º5'‚[ø\ù(’›Ø.sêÈ;\ŒOZ!_+’|E39ë/·@¸wn®çVwýóæ¥gS/8›@|° 1mòpgì€òšDv“mO¹\¬¡ô›GnátIººbN—½í§ítù„>>ûÏcçÿ­o¥ý?_ÕWöŸÇø¨­”iÿYåÿ}¢ù{O2ÿo¢3¼×ü¿½¼ü¿½Uþß•5ç'°æ<Åü¿é=û‹çÿí=‰ü¿>VùÏÿ»²rüVŽVx|++‡  ÿæaãÝ*¯?Ýl±d¼?(ïC&Ó5â®’á>¢Íd• ×þÜW2Üà¨WIpé2¢B›ÓÏ*ù­xêÆ”UòÛUò[ñK~K‚îíé6ý‡cò×I#Ü+žF¸·J#üÈŸýïûãÚÿêÏŸ§òÿ>ß\åy”Ú‘™ö¿iûß/™8Ïø´s÷>þÆÀeL~óL~W&¿•Éïé›ü>þ4&?5ÃΑ4)fúK/oü3Û>¨ùïãƒgIöp>8UlÓÚÜâxXÊ"Œf íù –|Ñûž ÈAL…ÎQ²?âøæ£ïa¢iXf½”ÌšQÛ;#†m‚ÉŸQh8”ìe Ï^ù_7åôʾù ¨WÆM÷’_égµgµ^Ö*KÚõ~d¨ÖßžP|°«È,üe–]0'g‚8ŸL™ÞLÆd Z‡êEXÄ8l‰©ˆ³Å_,߆5dv'Ï/“goUÔo“ñGN.Ã2wn⽕½æI¹g€â+YPŦcièÄò‰Œ2l<";IŸçuqë}"`û%k }Q†H˜v z±”}ËÍg+<Ÿç¹óqÔˆ©ùù 1bùÏ0LjTÒ»"Y—CÒ‹0’^ÞrÑϛѫ¥ò4.7ŸWáùü¾ô¢Rÿ?lIÞ)"¥¹—K7ø–q‡ùÑþ¥ýc9î”. ¼mÛ‹þ/§ùÉŒ˜ðÙ3…¶-»·ò†œØ“r†œŽÅ9–ªeí.Ü÷î+]«/˺s1WØÅ^.=l‘gœ0Ö€—_ê¥ýîXåú®~Å%¹¡šÚü1¾Lµ"ö~ª²ÍŸÌ ³ÂË¥²Ìм²ÜnÑÚË ÕÔ^ÝòÈ­ex ¯ã@-÷4R½3>ÿðãó^p>ê›w–ñ–%êzmI¢®É€·r!cêõ¥RàŠe¡æÛõÜ4‚®?_– ë¹2½„œ-pçáò…v\»<†eñz¾,ž%»Ê±‡ü˜ò˜ê¯2 1>°GÌCÊÑÆ#âðÉÂ9‹Dÿž™ŒXdæ#æáì¼B„3Ïñ+’4¿õßo-Åø6¯ß})éÒ‹oDÚ™ûÒƒ1)»Ýkçz®;ÙýžFƒ[›¹‰£ÅäŽ ]mÝþ"tŸtµ•qß a=Á ÚJy¢åaA£ ÷|ÏcÛ·ð<ëO^ÝÔäÕ>ÿ¯ÇÍÿ òV}+åÿõråÿõ(E™þ_Çÿ¯_+ tqÿ®'™ ºÿ¤rAöxÃçÐý¼ÐýUè• ×OàÂõ9 W.\ö¤Õ…ëf—v˜®d´Vi‹Þ–K'må6á<ÙtÒ ˜Û9:ÿxG§•/’°??ƒ/R+<ü•/ÒÏ;Î"üļ’ŒÔÙ¾¤‡âvÙ³EXy$B9´Cmîè¨ÔbJVí%&YÐ~,òRi'û优rr«/» Ç¥îh±Ú©)'½úÌðd LÐ"ŽŸÒÛÉat?§óS>L;– Çç)'fŽònnNÖ–4??ŸÿS±!—ãø”Ïš²Gy'o'/2?OÊêÖe~?(ÃÏ)#¡‹ÈsaÈÈõ/ìäü^O™Í~:(Ãã)ŠIÜ#VWþO"£x…ðù?\2îkI~)o(Ûãé¡1÷þO~ysåu)Nñ‘³ÙnP·¯-"l²žÕ¹/’tÙ-±´óÒåJ܉>yç¤)ðFº}Qá—.·òÀ‡&‹e|¤ÛÑ]'ýC<ŽŠWÝ诪nüc?>ÿ¯é#ûÕ^¾Hù½z±òÿzŒâ ™þ_]ŸÿסY„ÙGÚùòŸèF¥;Ÿp¡~÷iyŠ n¢ÿLâá`DíÓ> Ëø‡uóüú+ÿ°•ØÓ÷ëþ`ÿ0½'3Äô[YbÞ—’áª#ɮǰNMÖ_ºÝl<€£ÙÕ@zš)Gžl?3õVÐË,y_9TÛ³h®.•ŽÊq6;$g3®t[•0LïªCñ/Ä’tI;4\ÒºäÄ•òC+è— 7¾o„Ü¢÷VGxèsš Œð®…XL2Òk^JÑ$0;7VF½–kÎY¹p÷B¨V‰t'ó—nqG¨ šXN„ùÕZ¼…<¼Óq‹µ\ÅZn=të"ÓÉ,Õ’®8ƒ¼ÃMÈ£Ïë˜GÞxaÇ6iNÖ±"f¹Ò0‡[æpåì'ÐÙ/<ö•§ß½f£`@¼[‰µUþ±ä…šEå:Ü"qÓJ>¦ò"Üu ¿V¾1sï¾¼?0ÍØÁ=,í*«Øëo«Fg§t°ÑÞÛ8 Rª(êm—í¾’öhúùŊ쥜‘þÓÒŠe3å,?’k\!'ÛÿÅ^ø‡Íý•‡§‡ôtËepË éâÖ&y]'Ìë|®]¹ò°ÐNc9®]…à%Ö­ækùi!ß·âl@!¨ ¨çòúË q™”^ïâ¯ÑXÌ¿M”£Í×è|>™ÎÄB ŒzÍM©Íù4ÈÏéƒø(”]’3mû‘å¯Î'×7 åfóWW\ °—ø?ƒ¹´X"œ¿Ö»d\”6ܱݪ÷~W™6ëÕ³ïÕzÚž+­îÝ =ŽëÁhïÌbù†öA#Ó†V "¾]ÅçWäª2c˜÷~ f‹©v7##4ç³F7ÑxÏ¿« ‹8öHlæÚzÇ—ó«ìn>X ~ƒUÈqf¨•KLpƒ”jù4 w o°­ï*w->l¸ïÿÏñuÀìžé·i<ŸGc92ì À$ãñ¹ÄóY4ÿEèûu~»(Õ2°Ø`ÿÖÕÞ>Þaîsÿ˜ûGÿÜ?çþñ>çþqƒA&sgž =¨Y#—qáó~€ý˜Þ<9ÚWÚyÅÝÚ?Ê2Ÿg”wÍðü½‡Eî$r²Ð›÷KÚÀ¯@.cÛ÷³÷Ƈð°5”¼kp±lÔ៊è7NîË"s:x·¤;€u»Gý%\{¬øô8£—ÂîÇÉQ«û.=¸žÔ—3ãó;-âó/’ãÓœ~³^wÒú´÷6j©;&ï%÷¾%ïräê¢Â½íðI<ÞÒ»Kî¬äª#/c0k–ŠJœË–‰Ï­)9 ˆC9 ”_–_ñð-Q»†_T‰J `–Ì+%[ˆ…+Bïíx_õσú>ʱ”bI­\_W²HÄSYד©Ã(?š“ !¿*ëîÒ(—²” ܼ‚åöH‰²JR[W“ Ÿé÷zò{~—²íbc¸Á‹(H¶«‹¨õñÜÿ®ç|ÿ{õ|3ÿ³µºÿ=ÆGòUûþwØ/‰·GÝÓî® óù€a>( ýOwùó¸Ðñä—Cšë²!<8yñ;JÜÕRñ;°ŒÐ˜‹ó€ cì$à tü_MÐî,¢…ÎM'ÌŦ&…!È ¹Aja¹ÿ%‡WÑ,QÌÔeæ!‘›,y߆¯š(Æ×è¾Û£Ö½C´Hb6gî³Àä NY'ÚÅÿÑ^öDÒ³„çL{úßrpÈ•ðïñ½øÁÎ!”¶ñ-_*¸A’Jµ%S7,›aç Âج0—ôÅ𹓴‡;j¶ ù<Ýϲ$*›Âƒ9`¢²t“G:ü»ëŒÁDZíäË,_Œæ8žÇ@¡@ñÎKµ¼áÞHL•ijÞà„¾xŒ©Â0ìà·äÑñ¶æIˆ4Ã%·{|“WÕ˜ów{’Ð8ò·~ɽßÁĤ¥³ru»pdY{?AöɼÇè3­f.ϳtG^l»JB¡-?ì\;ø`'­¶¦jœB“0Þ¤ ’þšbX†ë…/ʯš(ô•›Õ¥dÛ9XO}MCAÙŠhš5ÞÀÚkÑMV²"ÆY«’‘Î"Id±¾|Èê’†Õ°´2[(E³'ÖXá©ûÌÀ‹;wC ñÏ9”¬"D>IúŠ»ã' /|èx™‡ŽmŽ‚JÖ¿Þ=jö‡üøô¿Ñãê1pJÿ»µªÿþ(&bWÿ»W²Óûúµ¾¬À ë~ÿ9Zß$å¯âOJÙ{›,Á@9ª^­‰Kém„sÁRꔆúÖÎXYLí¹„[LÃïÒæehM8¹ÊÀ"¨ºuÖÕ2p¥ LZ¯”+eàJ¸Rþ#•+ ÞJƒ÷€¼@Ò¦$1ëçÔŸ¿¨^·JÍd¢áçÒ¶åÍÐÐ¥™“|4šåÜø3ëÐ~æGÿwõÈþŸ›/kÏÓþŸµ•þï1>¼ýßþ¶Êï†. »¦ûgsOiåß/§ãË+î…Ø`LäêúOwTñõÈsßõã‹ýhzÒÝØñáL´{éû—­Î½z¼;•,J•)JU qKŒ|¿†ËÉ4>·ª±ÃŸ{·*)ÀÎ;Va£ä%t‰“éU‰™îŸ»…`9¾™ÕÄ9Ó—£Œ Gê-ORPlŒÙ ‘=¨{§w…GúVœ¬ç™Ô3«šjÅqçä4G­ÝrÍÒÓÐ6&”Û¸‡j?GPÀ=Ô^òæy‹Ù[ôóŸ@m¤¡¥€>kgÓ1:›×6ì ‡ÖÌfç-%láÅ0öoxq‚KÓÓɵ»Õv®&£hö廓c“Õœ<[§†ø{{½ýL!.¼†aÿVvj}ÕmòPÝÕî©=µ¡ÍÄ=…tÇa¥1 bYýnÏ£ßí=ý®SYÍVñ.¥Ýu_úˆ/íyáy”¯†Ò3¨ÞíYzÐÞãèA•&ÎÖ"œ°æÓ±›±Ò©Gë-I¯xŸ:K{ 4À[ê+µ²’°›§®\©*SU™SRêšLj^¹ïÆŠÉÊ(ÉÔ¯¡%Îp¥¨OêXܲ0“Ri1«,O>Ž«fç·Õ¢¦dΡ#ѵ……«QHkÚ+î÷¸Ëi¦ýõmÈ/m7åµÖ3¼Öv z=úÀ QÛ£ä<[ËQÌz4Î픬m_“\\f1ÈÀ%38~sðNoNAôìÏànÐß4ûÿIáSêúñçfÒV›âãÒ*ÐýïFèÓÿ=¶ÿ_íÅVZÿW_éÿãÃÔçêÿö ýŸrü§kþ OCéw+¾ý”?_¢ñ +û‚¡×OPÙç™ÏÏ ì»wgÁ46² Y›€ÆvMkOAætõj³½‘ ÅŽL!Îá/®em‚QJŸ±]Ö:oFE†“3£"Hñ×éiå #èåi©³tâÈÙI9µÚlYË•Öl¥5[iÍVZ3±ÒšÝJk¶Ò•I¼®te™º²PŽeÔ{v<Îz³Bú/UþÌÕéޫØÐ¾l­—¯J\Ìþ`õÖÊÃïÉ|ú¿›GÖÿÁ·)ýß‹UþÿGùðötõǦþïx¥û{j¿ãeêÇñ:®T~òóÄT~Ç&¬*¿Îz©S®­ýV¿½ëœ‹*K×Qx D*á[<ÃÂ@0²–žá.—ò‘3¥Ü夶踨CÜq)‰§ô‹¿}†éÚ®lµžp&„R}\ý¼–ÃqãÆ-¤a hCÐ[ÍR÷å;®­td+ÙJG¶Ò‘ýü'<È•žl¥'[éÉ<  ¬Ôh«¸XuÿÁN¹Y­¹:ãAa·9H€%Š(óQj¨4mø§ÌÊõÔ°ù|K¥Í)0ÕÛ«ÜâSZ7ãA–âÍØõúˆº¹ã•nnõñêÿnê«ÿÛBŸ£ÿ«¿ZÕy”³Gÿw\WùÿŽÞ¾ííõ'Àƒã÷}*\ï;5ü§ž‘ðô¨û3 ÍJð§P²Œ®Ïñhªû¬Ô^w8×Ußx^{-) ŸÒm÷ü|2E‡£Ñw† ¹’!^üÕ´“Ô#$ | <–qpÇ¡rµkàcx§–¸3A0M$ªŽ4c!–ü.’±p‘’ÁD„dâêÙÒª“3t拆²o$ïq‚`-íUª‡³h4ùF U4ŒqrÉZ("ý¹¯ ñÃitƒU7Çsj?™Î¯&A¡à/TÄÍt2\œÏÜ‹rœÄ£‹Q$U3ÛÞíâËü–±ÒÛçÞ\ @£0*27--_.ÙÄ(ã5±1Ž6TXrì ÒV5`-a½æÅt2f§ËõcQèi1„µ?Ín0ôÙ¥1_w€©$‘~Ú¶ ~¡‘½ðÖÍö¨†Ä·¾8oIÜ©ñÒåïPŒø>„=êU"ë £ù‰Ÿ¹W8‹|Ü¡°ÚZÚÔ"kN [CÎo<™^']Õﵫèo˜¦¯#N°#]:7Ó#Ř·‹)1ƒÝØÌȧËå÷¶•Z½‹§1ìDÒK)ò» T'¶Çƒêà¢oæ“ 1ŒDs̃ø|Àò GÃÁP `<¨ÁëÝ ”Éá2‹qEìð™=±&Fwb‚·`_" ds:é5¤^àÅÃè³9Z>.¿‹ëÉʆë‘Ú»0ºs¶àíÅçÁxò5>ç)lv8Ñ fr7%#À矗Óè =ÀK¹ ¢”F¿Å“)pbÆ´ñOI§°b8ʰ9Q{Å ~”R÷Ó^÷¨‚J´°x¶“<õ*|)xYãkéÃÒõ¿WÒšbnOÊ;ªˆ›X•4Ň,ñ×ÀÌÂXàøo~µ·>eH«Íf–R¹·8“cœ½0H«Ý·þñ~öN¾ÚÐ˪‡Û=ÌÓÝ9˜I rﯮOæÏÒ„ûPÛCUi†*|§Ó=¬WrU⠧⾿”R›!bíb®ÃPU—½¤Œ1-$êØ`ö%©K~¶w3‹G“ñ³µ¤jä>ö]!é„Õ¤*']ÇTûm¡š%Ò²hšÄ]Ü~×xEDvNrâWTúïÛàÏÙqt×Ã[5h”Bp{°þ´,‘Vj³LW×éî*¢¦ê]Kä¾-aÛÎÖ*vù8YT|µÑ-¹AÁ«Ø‚RkÀÖòËŠÅ|û£&¶4ù^¿•ª¹¬¾…7šªX±þФ5CçºùFÝyÃ1CÀçe}Ÿû±/ÅöhQ7ÚýÃ0þh×Jª;¦i”§!ä©?Ë›¼î¼M[¯Kêè`ÇÜáaÒÙ¡îÆÍ֬ʙÒ,;~ãBãæ„qDÐ3E¥ÉÅÅ,š—ã×וîã5GdÒ‹TÐzƒ _[X±Ÿ›OPœ2î|KâYzxV1ñ û …ô K,¸±—kø^ ƒX‘¶1¸óÀã!vÙ”QÂ"¤nÉ&*×îSèãêÑ9k¸Õé ö®#|:Gý½×$^² ÏÉ7Fyµ$K "Ýèû,ž9^!øi“²Õ'¾¸¶É(ð„¯ Œï• <‘ϰøM_¬­¯× ˆåñéÌSô½W\ø|=Á ¯‡Á#þ¸)ZþäIáÙíÉÛÙ\AôÞÈãM3 ›'ø8¬¥® (€žS,Â7 D[n'—\‹Mf·FŸê×u:yy-SðO¾òÕ‘‡C8UX>l":®¯LD¿üÇgÿ™=ªý§¾ùòå ×þó|s•ÿõQ>¼¿]ûOϵÿt¶+¢µ´…34‰ÆÉ‡÷ñÛ¾ý5ìA­m‰˜‘2 !Žž¼q—B¶D?½e4ZÆRÔ3-E³ytƒëPÈb„ àÝE»Öôôa¿ôíÑ`Ü ð4Ge?–“1Úd›ÙÖÖ’Áw4i±´L†¹ý•®Ÿ#öIÓ…ä` › ™{¿Û;<ÔΜb6¹ŽÄù`Í*b¸ˆp4çƒù`6ŸNn®âsøc|F4ux%žã7ã •e×Ã6Ƽ>ìЄ5ÛðÂdÚÄà“¨î€š'—ì†Æ~Ö­m9>¿¹àg]»£qMZÔ®_#vÿMäÈô7ÓèkâÛU<ÂŒj“9ŽÚ¦ëÔŽzá’h‘e¨ãIJr0{Q,«.n‘°R6chnڈغ‹ÑgCl¥lˆ-mCl¥ц±uk b¬ÓÆD—xÚÆÒüò–¾i%߃²å}§UØé¶O[ [ÙH6¤éËÖ>üa¸!œ®‰ÔG7q)¹ÆR·…ÂúšxýÆø£ª~‡K ¿-µä¯ÏRÖÌÖÆ»þFÍ·ŽVøOËÅËq ìsh@K¾ÊËX£×™aI<ëLàš4ÏP#C¦¼.!ÑAu‡‚ tºrõƒ‡ )ƒl*á³P7÷’ÈÜm²Þz¡eÏ3<Iž»­¢VgF9_ú½¬7žT‰µ–·)Ûs६Êp޲ÕW65žèï”±×@–òÀhY^ƒo_ûÞUiáÝUîŠù`Qjaâ Þt«}¦ÿL#¹eÙ¼ÓÈÔº3^\âúùˆh‚‘0­ª9'æe«,ËàxË^nš&¸ãÁî oKÀ 9t!ûO4¤,ËIPZ뿜îô)›às×§{lŽÏ§LÛ£DÖ—ë–€L–Jÿ^U«ÆßH.fñ´g®õ™?™ btK,,s£Â+{Ûue=vÍã¾ã×áš9DfxoiÓj6X¨;»mÂ’. x=_L§è#N•­/DÃ9ªäöS‡•ú“+\X:ªÊrͽ‡Uîæ”³H·•ö ·"±–ïÅ” Ì>ëôG•ÿ¶¿…ÿˆXÖ…DXþÎ+ï,}£9ðá–ÎLlÀÓh„æ_™) l§Kõ°_1œD3i׌GøúWyA$iŽÔªI˜—Ê[dÁ¾+5½gkkÂÜa6ÞØCL^Ӝǹó}¹é.%ÿ™áŠÕ{(W,ÿÏtóQý^<¯=OçÜ\Õy”$zÛÿ§»Y§N¿_¡ŸHjnb.•æ~³"ö‘!Á?§ôå§ µ6¼?áûŸ8~åTiôñ|̧“Ñd:NÄn4àè%DØb0ö[4s‰AB‹Dˆb¼žJæZ,ã[äQÓï—¸gŽwãÄa­J<¨´+°¼„ã$„¤œÄ'ˆ,™ñ% ™³‚‘ÃÏ>®Õ0{©LÊJ ËP“dþè¸PIDŒshÜgûV"7÷ίSÌ0ÝIƒ³„¹²>AƒOëë0ÑoWÑ4‚¿b*r*l"QJâz0šüÖ*²S飰Ǥ„’m`>üîWËî Ÿ#= h| kƒÙ“ÙüNåøf+K9 ˆ¬¢ ²l®†g>âæWèñ#7Ä9´ºŒ¿F,‡+ „°­­ö 0ž_™ 톋sÎÑÆ©!õ¢à¼õ’œ}÷Íû¯×‚*ùþµ¾¿þàä}Zƒ¿èÇú~‚Ë“H¤œ‰i‹Ä<,©ß ߈~÷.¯w„d‘xi§˜_ fõ§ÓðmÄü× ÀZ˜ÄˆyëT£ k4Ÿ–M€˜hòFe7Á!qIwXì •aAfݧ̣˜¯K{[Á§I)Zýð€]åôÕœÓfšÍ`i‡L œ°p4Ãïé=É·Ê‚Kù*Õ^Àª5úºGùž¹¤n‘VÊŠÊ.†ü”Z‘êè6hZ†Dæôš6á,š#-,Úž}„;.Ûh”}ÆâæÈ›íww‘—ŒÝ šÈk»a8¼þz›9[Ìr:Gè€9W+Ö’¬Ž8Â(êØ¸€Ù Pp„ÑwNæØ!q^Fœ×ðnXÄûMüѱ{ÇBÕüÓÞ½âI9û%rÙw\Ǽ9k=‡ÂFª‘[¢œÈìPÍ›RNaßjœ®Xå9úÎÉbA°N:+ÌSb1˜ Ê‚!7½‘ÇEç5lÙ}"ØÅx&sŸ’« NÙÆC‰ö9SšN¹ºÏt‰#à{ 8íÆCN¬ìÌfv>oÔ-‹FN7¢5G›ÕÇsg¦-÷t”EÃvÏå¶Ú笺8sÌFã> §®»øÌºòz¤ Ú§°Û1/Þö9Â~ÈDŽ܀~D>ãËñÚß 8Äï!øœjÜð¦ZKõ-¥¡+é‡z ü¹F+̉ï,(ÀOÕËLK~¢vÅ)gÁ±ó.Sb>úÒ¬’š(ü¤)NTÓ·%(¼7Ÿr \îØÀÞ'F]q~ð©‚ÓtùŸ»8ck—|òVI 55‘õÉDÿ'üåÓš»#¬¾Þ÷×O¤ðx"@«µ‘àÅÂük_`ÊÞÅZË»Ð}÷íóiƒrl;xvÇ3ÆÎp‹¡¹V!nè“í?QE=¯[2p$ù7ò ˆ®JÁ“ž‘¢y‡®4µ5IË$ûG³y|z=;õ§ë¹Ág#¹ÈɘÁ‰v*($P †Å‡lN€Ì•w1 ì©ÌMæßoâs’d`/S:düåå::]Û©Ï©–f¡æ‡91ÂÚ@é]ã\üÏ"šÚ0(q³r™1‘“4¢ôÌ$àÿƒ)Så qkšëA$"oˆ¤¡¸cpvö˜o=jQÑWË«èü Ÿã|oºI\Ý#G­ö,k ˆ"|LÍjžpòŽ%”Éøš–ŒPŒWgÜàü·Ó):P¢‡Ñ%®ÑˆËªIkŠA¸fÆôa¯»Ý¦úQLŽ®û(Ö·ÀÓdpŽ.K÷J~GF0 ð"6á7[¸QÑ&²å`BôR"rÅz!PµÊ×çÆÑ¸ûЉÉ>µ`"{*%Wíu<šH±ŸâáÛ§îPßN›JŽ“™}ªÛ­ ØHCH& {HÙ0–Ò[˜ÈbªîƒðOJRÄL8`¤˜2žsbI©­âGÄ4º† ¯]Œa6_Aàu$N§.gç1$d™%=S$‹»!裮\HÑó+ë.¯xfÊ×?¦œgL=îéˆs·{šÒ²ŒD“£´¾F§e¾6ú“Èïd½DÃ3ŸøFaÚGw!w/ɘßgSØ¥‹¡y­MƒP˜O ø(×\YsiÁÆ9…@?>©Ækr{ãû_&ÊÁ¸G_[W¶4.Ó¡‡¨G€bE€ºw"œ¥vc†éá)&ëdÜÙUÀäà§»|,¶áè° jw0º¹Ûßá#¯ýÁtŽ,ÒïºÛ}¿5Ï3#”àþfÓU‚·QµD{Et7xÔ<‹ mŒCÁ]vˆÚÎjï*¾˜‹¿¶Þ]N¦p–]Săh¾†V1qvdŒ§$o'çTB‚ÚÎX#ÓŽ¾F#±¥Á'MEôšCq0YLååFF£4¤oEE|Åí‰úº¹Œ’ÓöúÕêÏ_UPÓ_7÷æ=OæÙ¸¼„£f†ºÛ½ÁN¢Ýè‚#EíhEf"þxþ;ÌàÕ–;ƒ{¢€Tà… Ÿ‡wÎ'ß6ÑÂü/÷\cfšd&NxË%{aÿ‘bÿ¯.¼q>€EG@ñ8ƒQý ¯­pãÌá¤' nÃR"Uqü+`2b_Çó5dØ>Cc•½ <™7¢fš¬iâ{ŸGRËÒ²\F¸*‡Xák~'ñh!å s°3´>«ócƒ@Îû S×áJŠŸ˜ÍÜnÄàŒZ{:§"žG\[D¬ìIÓûY“f€oÄ‹¬9Ïhk¾NÍ359s¤I «W“s8Å\`v8@ƒî±N2BîÔ²+«0ì7â¥;5VåŒgóÜi³Ýª‘ Õ¿¤áÀ<=hkAiüâ=A6ktÜ/ê[_½ˆ6³Búݧ¬ð%ŠCŠ8¤(ÊŽB2‚ŒYyú§GYC€Ç°Îp<–Ë@ “/¼¨QÛÛpÙÿvOáœÜ…ÿ07E·¿ÛìÁ×,¹[·¦&f1õ!þGQ7è„ÕØÙ©×Ñç¾oížÀ?½ ¶ð­þŒ£…¯¾‡ÿN÷ñþîô=êAÐ&Fû´utŒ97v÷vðß·møwÿÂŒÍííöüäÈ¥,8Í¢ÓëÂ?ï±Í)þÇ_žâ—§'ÇÛ»%³sï¨ÛßSÏ=¥¶w?­×= »l¼T»±×y/Ÿûâ øyˆ€ÈžM?Ÿ€f”¯oÖx—H>¹sü±"O/y1Þ’?ŸËŸ/<=Ý*d­Ñä#Y­y0s”Fa–E0%𥷡>1i¶ÖqM~Ãå ww#[­§O»ä˜ÌT˜áØ´¼'É OT½Áv¦LA_I_ 6èKÊȦüoÊŠ6Ìfô|åšÚ @Ææv¨ßb;0•GÀωÏP€Ë]{ÌQ=¿Å¨צºLyFÕ8?_¿Ãí&#`HŽ.¦$#Îgßnþ[øâ•!fTÇ„XuÌÙ²8Ÿ£bD¶c}xUªÅ¥3è÷ÿNM–/æd_.?Y DMV~á}ùVÝx%}ˆcUÝ7V9^Uþ4}ž§C6Ðiæo¨÷ô†ñpeÙ)Î:¾x²¿‰º}ì 9PÏÁ– ¿-‡Ÿy´9ÃÇãçvSèÙSH΄úºšÄ–}.pþYòT Ëžwavß¶_“±Ò—‰óÉãK#Ê‚ˆ9 yFèÒàB&}5`Ò©¦š|™è&ÎŒµlkëôUmOC-ˆx¹i{0ãˆØÄr¦ëÇ“g£ŒFKm”í£>»¥@¢MA´'“›T£Ý#ñj†Í.i4|ÇÈDv±85¹äP/p|ÎdàyH:P… A;êcšqÜ'çGÿü¾éëóœé •ÔœòŸF û¡˜Õj*gŸÒ/Pò½nk Ää8ëk^ˆ«Ïg³ôû¦? §Ìì’<˜ãI²dTQ-“©¯=å K´øÒ ‹fé¾f¯½„¼âÅâ"žÎÐ%ŠDyÓWöt›¨ø À/)‹È¨ÂºÁzÄèïB—…qØê3oûéà&޾œs¸\̘Ž$±Ê؉ëÁßXn[ ßät0®Àe0䤜ìnBã¹zv|g_nv8 hO•Ä+¬ÅÕ·}©ãuÿ Î x=2'^6 5¢ ‰à¦n—Â:nW_ÇNì†é0i×)%-àQ{G%ß‚ûtgß/4£èì»O±Þ¤•O° ]Ü&½KÍ%2T¥Ë‡\1/º»‹Ó =áø—:_,¤Ðâë83»¿™"뺻·C®x©•” öv½›b㨻¡pÍ”• ~xFÏ+V%¸0´º÷Ø‘06½ÄÿTé  <‡JÃQ&,ÆÃßf7£ØÜOy‹ßb–o;WQâC1ü HGÏ÷Jl!Ÿñ5Tê¥ ÜgXF¼ÉËx¨Àô0˜WGÀ{æUüs1¯"«Æ³êY4Ÿ‡ú(qÓÎþÑš¸ÂȰ ¥˜1F:M8 wº1)C'óùäZDÃK?c¥ñe ±ÿžFqê=2…€ëÞœvw\º$ã Gáe«ÂÇ0[ï‘xüû¹Õ÷o7@>;8ÜÓÈkÓ­Oß«æv:‹Îû=ÝœÛe[¨¹dê›L¶ZFZIìœÓʈ,ÅL‰L–2å€49†áÈ×[ýä}43³³Àò& GÝ]}Ø~FÃqhLç WJìòÖ8úfˆ#Þ³SÞ$oïúzhõXå0SºeÌwàõ h½Ð ÷¾Ä7äoþ÷ :ƒÃBÿÕ³oQDi ¨(¡£×È#Ð%²œ@±£7&Nå<¸Œ­pÆ4ˆoñH9¦DdH™,æ ŽQºù©Ì6Ÿ Ë`³¸Á‹To,~f¿žh¬º¦`DÐ…ãúj]qð&B˜›Ð†óB¶w•ÕN%üª¶¹¹_£ñìt]éotÚH\›jŠÐp›”kxJ³€Â¦s)n¬%ùAR®†Ry‹>ž\“keQ…¸òL’AÀt,RK³Q|yk¿†øáýím<Œ‡s3|‡‘±úd*Zª£/¥o&4‘0éIéCMá­|Hi ääݼ“‚3r Ô_¤5u]~RîÓÔŒ£ ¦ß=®C~Ìë°J¾É±“‘ÄäÐòÈ4Iýøàlò¨’°ÀÐvS )àz>Ä#¤ò›)ÜâáâL9û× iQM®R{â·7ëÉŠ:½€àÊ)›Z[ÐêIe/|NUaA`á²[™½’ÖATÓUÜ, UÖ^Ÿêâ‚:ñ#¼‘¶ëÛ;ØÞouZ–v’\Óÿ&M,{^¸·Qþ˜Ž†“qÎ: Gè3@\FsºG¯éÅè¹×é+Â=†¿”:å—k¿ýáqÿ×$lIøLÒÑÂgÄ.Ãs{$]õ´[$IP{£þ( UµÕ+×xà¬EÍȹUˆÐ„­r^RâÌÎñÇ’xÖxFLô =¢P)4„ÅýÁ6IêÛýAÒU¤‡ìŸm“¦Äõ¼$6.£Y´QI~Á±Ör¯2ÆH97x’µìŠ–æç9¼ÕÒTBS'7ŽßÇS›aÖ¤¼IÖøÃTŠ”üÁêÄJŒuöX¥ŠE„ç„¿)›¨íß9•-‘|„m>½¹>R¡Á×Iì‰×ÑÍÑ6vlbVá»*ýÎù«gœè } íKªˆ†*Ò+z”I… L0‚k©æÊ;{¿D' 1N½0žŒ)ûBÛ’óôP©@¬$gâbšêLJ-l-gR•ÝôÖ UŸ·ì1|B tgåS65·ß´ª§—¤QÁ&ÛÛé~ršìä4èwëtûm4Ê»»ônâì¿×—oW±!&˜ÜÝå_áðØÞ^ßÙ ¶eO_!ÓЋêîž›¿Üüœ–aÐGYBX[OG6KUFòö98ý‚ ,Rì#ϰ^VæQ¡î “éܸ͊Ò~4ºÁ;ç(žÏGQöfe¿_LTÃg‚ÿ-N›ÚJ —ÙËÉHà>u þ8iò²F8Ÿ.B*S3 À½@Òrw|r+KQx •—ÆWeå’1zúdò7wYhN^?m[2uÆG òjÌÞ/ó>¡J¯&Dü|ÓóØ”ì_¤^0Ÿ¾Ì|ìÕómÎÕÏxÊÿ„~`3RF—IÏqχ-¾=£ñ)|eKv%ÜÔ2dh›¨˜µTS'ÒY¶ Á`géæ™'ªÍõ |hÊ&W4àÝÏRáõmqƒbp7%Yi‹è 5—ãÁ<^ ýë¥t!ÖšŸámQ1ÀÁWÔÈ$Ö-,ØÀwÁìeÐû.†ÓÉÍ %fÇ|©»!µ¿|á! "Ôäq»à©¥©$UX'ã¼å¹ªùñÝC¼V½>פ|íÇòíl&ªyNŸÖî ÊÉðÃÔùŸ„­&Bëú³Í&žN´u‚þÎ6œ$Ý”dëÎþ$d:9Ý÷XO™æcœè§`ØPü£”Ø ¶ó~O¾±æXSNßãhÑ¥&g¨Ž™%@©¸boÈG†¾•zz"ïþøšçòß:%#¶ÿab{ʵêsK‚þ" ”Þ{ ïy cÔhB¶Qp+ð‘h ^¸v2æÚgrîÓúÖlq|T3Ál±*åIJâx­2™`(ÖLÂÕójX¶XÊS3©K”d„ÅSÙc|ï|ÍKgä»ëÏE-‡¥¼Õ¬aøÜøEúáPxØ2ã2Z*(¹ºè|¬àÁ¢†ã#‡ êhHF0L„bHæ({À~¤\ Ž!"°§Óµ˜œS‰®uJàB1)HWøåïö༓¤avÙ]9ïh"sõ8]å8"Û±ÁI²êî¦ æž3V¯>÷ùñåÿ®=jþïÍ—µ­Tþïú«W«üßñá-êæÿ®•ÌàŒÜê{p¢½ÿ¥òu{‚„y¢ÿ¥¸l*L™OSO(ê­3p¿/ù3m ñŽrÿ T0¡[øÛ–Î*[j˜†s&¾’Y·–å’M#+§wšÎæF}0yð çfF!ÊÄŠÒ>ÈO³Úzsm­¯7MK0ö"ƒfIh©i‘`7Í mµ9;•®®\è‰þä¯Ny' tÙ¯9Ñ(_¤8B4±¼Êˆi•hÅÌ‚¦‹Ê«Œ}p-‰.ÓRÿ‘?grGg-‘Y×xÌìÛð­”…\†#+ ®àDTÁÅ•I“Ì9jÞ„‚ ÷1nƒŸ¦êØã‡2Ò‚,ÌFÑÉy4\ »%_@c$=³°¶žzò¸®ÞB"€¿TR3y#æÈp覥RC‘±Ýœë{‰\oBH»w"%ˆßm+ÑßJ¡ÿÍ?Ì/“*a}¾ªÌŒ%òé2ÉJ²rtó`v“ÎwÎ?Â9Göë5´UoÕzáaõ<ýÜ%éváùK§nP ÒjUÛ4Èù<ª½:už|_¯ÇC…L²ko3ô^]u ²ÒOêž'©{'RÛÎdÿ®ÕLwo®óøyèÖlàŸuÿí¼$RÓ†>Üúºj¸Ô‹Ñ Ì#«SÔÚ˜Œ©µµg¶Ê]KiòÆVxQîmMøÉÖ½¬ns~a+g9S«Z§Y“Â:ª,¿ØÂ/f³ôò2 z# Ÿ¸€¶¨‘ H’ì–£z¶ Çùcuïêßý¿þ¨÷ÿ­ç/_n®êý oU÷þ_¨`r÷Û…[64¤\hï9·Yïg%3ƒ9{þkøÁýR:  ±OÊ m¾´²~X_"‘ðFŸUhŒ—€"q9p TBÈG,>ÖÛ—%Çú%ž‡RˆÐ|Ö3ËN©Å©l’]¿Ì­g‚:ˆ!†ŸÌÜ(ì_ξöèj‹ª ¥y˜‚àÊ´tö]ß—¥g1Høs¸zk=øsS#±~ç”ç˜(f;¾A+øL&Î×¥ÐRÉÃ%„}"iY6€K§É¬Î³ø:òÅë%H¥,¼Fá±a4‹/Çœ8ëœÏ ”ŠEQ9Ø}ÙÏÑ×^BÉs¥Ç²„Æ~R× õOjwƒ!Î#Z§ ¥ó¤ó £[Lt¾˜ž©Ò£jfÍÙÐUU,JP$[_MnT},Z](ND7s ¥Çùã½ãÈPœÝ(»Ö¼HןñjÂYóšR{; ()`™™Ó­‚)c¶Ò5uJ˜YghœªPñù•¥¨JHÜŽzDZ;yù±þ;Ýê)¿ûPa¸M¿Z£p+ü—‰»œ"q>Ü9YÑ?™C˜MBXS­<(Óx2ÛÞÊüÅwÔÙ–t*3Ñ•¤#vPJ—”Ys5rVk}ÉX(){,ž’uR±+ÓTP9ªý­- Ô^{³iá‡CaäÔb>¹Œ¨}R)“°Ì&\×ÃÉ $Œ°V·SjKÃ.—™˜Šóp¥s¢©© ‹Ïþ*×ȥ皩 cÒᙚ2&Ý9Í¥¬Ý@Áבô³¤ÃÜÊ5C•»o‘î­ŠØ©º\‰†ë&tÈmHÌ8YsªÉ•ª•æ¢d$¹œPxdðxßp†>þôÉĵcN]Qú²Š:£¡®è­m“®fÈ„VŠ“#¿5ÚlrmMß=ìÒÇœ4udÙ:Ú~¥Ú†“ûYˆÐŒkd"É@Çz(r‡ Åò2íQ-?NwBuA¨Ê G¦’²°?S'‹kÜÈb±)^¹¡ˆFÉ¿áˆx¸õÙ–¬Ðf{óm¸ ë˜ º­ ¼+ÀOts¡@KEÂÖìu6Y.— ’p!’¤ªžŽÏœbD­{¤eÕYŒ}'×Lˤ½ íSˆþ,é&u'¬ k¤%œ°'×N­Z`(‰Ë©YU¨GH?ÓÉß”6r-¿jûëuÙd×TqÆ$fPü r–Esf”LbwÙIø¯8µ¯;MýÛ뾎{ûNÇAš'?*k­˜´F£Ðc6S˜"[¶t:Ö »|ÖV;»ÕNŽ$[Øäú@½®zë†í„jDY“÷tÐü­qJëªQy/›#¼¯8)<*7 µ‰c¬¹‡¸ gIÃl¡­ôþÖ[Iÿ0ˆ„ k}ö€LZä*N¨#BÐl ?54 K¢²Ï¨Ôxêû†UAý{@P?A²¸g$ÁŒ:ÐL¿è÷‰—½R˜9¡/‹§ª÷‚X<}ܧ÷Jg\ѲàDT…ɤ]ÌRU¯D-—~¶ëW¦}8­{“*½h•7´K¢—ä{ô1ka‚N9‹t¦j]š¤`¼|C©Àl~É3£׸Ty›#™Qóü;< /Fs>ß9Ý› "™ŒS¨“>¾â“©‚“ÆÍéO©ö¶°H*ƒ;U‘ÌÁx±R’KW’”Õ#­³i™B’Ôbåðâ™Írî.O¢@O—GÒÍŠå*ï£Väg¶÷ú U²§WýÆIx°o`¨½Æ[ÊXƒ?1QOï°ÝÁÆ'm—¨Þó¶G QéßÎÛ#úK³Àÿqïíav•v'«|VViuNuÉž6ÿ{ڪѿõŠt÷:µ„kÞøü„ÚÕªÐSaF>Ïè§p­š#*Uóno¿»K?+¾ 6Ý·¸¡çïè½–]Úéw÷>`5¦“Îá>´‡ñn7v=㽇Š7;Gƒw©Â7ÿ(Ï(;Ú"X À á80ÒryŸŒCôÁ98EI&íl•ª)ã­â¬4@ô¨4@ÏJ´1k¸?ñ˜–F`iÝUÿB2<,,“æ¦é/>0¢ØÀÀèYI<ë>«`}æÔVìÀ¾á᜖)ì*0™º=~»X¡g zÁ0I!¥ûJXWR‹Çt»‚yÕ Š–2ðWK2†×1Ë3ÁvHv̉_(_߀`e—ç4^LQ´*©@g×øÃ_Ɖ¢¼a·`Dš2ý¿“'£@aʉ›áخ˨ÓÞÖ|PÍ©ίPÕ®ÊÎì%àc÷é¼Ê…oöpÏ7OŸi,ó± ïÑÙþ›l§Y>3ðRrðr Î_³—ãîÞN³×<ê]ÐI/„uÅ;äþ†í ±ÛM: ø’ÌIã{`¦÷¤%ÄçH 2ã]Ú¡ÔðL»>zRþº„jô…r=vujôåîãªNj©yS2q½@Ý0‘¹»»{j(*G›9.»Š€$iѺ°Rô0õÀÞ± CÒZwóÛüM"yÀÚhÆì8ÌdmpSH¸¨/ÝrʱÓÉ7°dI6ƒYÝF×íÙMü%ª&kT]opM(>Jí~üÇÉ$UáRHÊÿo?ñ˜4‡¸²fð½G,f\v0x JütÐhjëÐˉ•!l6å lâ™Rú©/ê<Ÿο¸‰œì”m'Ƙ"@é”ÄçcR¾” Z’¨jX®ÙMñï¾rÇ% e®÷c¤O™’j¾¢02Sª±ÍÔËiZ_îbÙq€ß{ k;ÀNCm„*|+ {å—’Ýà£ìÒ+jyS§-‚ÀR ôBª»ÖVñd¯b ÙoÆŽeÅ1i{ûöò$I¼l¨®™vY%ží«üµøÒs›”}TGé¥Ã‘(IÑšL5ÝC4šïzxH—+‡I¦|†É/ÈŒMYn¤;ÜÈ˪Ì#9³Â=ß8Ýü@œˆ ñã%?–‡8éQJÆWéE&5¡“>)±Ê3RÒ ñPYÝÇ/×eÐ~ãÄiæÊhþ¤÷|牫uõ/öüo_Åæ(‘èûVÂÁ"QKDVBh„ù^èÎý<ØU×Hl«»‚>î·œHº‡l}DªÂlÝ v‘ÖÌh¥F°#V TŠ{…ÊNn´©,‘3T‚-휛‘OéaÝ#Ü"ÇþDo].ü{ód/,ò*<øEß4 Sêu%[¿ìG' ÇÙu ြšð¹(Êâ±ô d”:g"»a~ª sVF¾L k|Ø ò>k´ú³$§ðRÚ3á*ÐR$•ª(MSMraÍFƒ3DÄþr%™ÛÒ+Ô=¯à½5|ÝÅ,–dP€WÛÁT ï-ˆ­vG«:Þ+z¥¶>F€Jüc˜þAƦSº !y%¦Œ¬­J×6uÈ0gU±6&”$ðÖý&Ñ9©Ž“Íñ2;‘’\>#ïÚ-‹ü¡ÉG)†X8«xªC™xǘ˜*6óe᳿cÒ·F‚qÍL°e0£º:ËS;@g _÷íaL 7kɲ¼ K^ÚhŸ‚ëä­@¾‹õÕ13ž9{C¤¶¾F»#w¥2¶È§Â[DȪB»Ä»Vž²T÷ä™Hýüž»ZÞ¥³în–3QÕO«Ìµžb—Í ˜RÒ…¯*?a7í%HXœ¡Biž¸ÝÒ¹Ã2¼öÚdáx/1Nað%Â+±vpS…5Ø…7”µýÛU<²ZAžã©ˆ7FOÒv=]³TÒ¯ š†´R‹¦ö‰Í<+Üm©Õ>‘š/þwëqã_¼¨¿HÇÿ>_Åÿ>Ƈ)Ëÿ}°bc«øßUüï‹ÿ½·ðÉU î*÷ÎD´ŠÁ]Åà®bpW1¸«ÜU î*wƒ»ŠÁ]Åà®bpù³ŠÁ]Åà®bpW1¸· ³U îOƒ»eaqƒ{‡³ŠÁå¿W1¸¿R îV¦çW±Þ»qw ÔõÍ»ÝØÓî Á@ÞŠz/c<÷ÐûW÷y^DoeØ» ì]öþÐÀÞà|hæCÏ 5鯂ó1üËåd(°ÉœÍV‘¥Y"F™€'©0eæï«påU¸ò*\y®¼ W«påH¸r‡y#߀*ö3ÖŠ ÐÒS1yò0Wþo }‚¼ÄIP\:_^hÈ„v0´á”ç 6›z€ láËožUö*H{¤½ ÒNÚ­‚´ ÚYi¯‚´WAÚ÷ÐÃ*H›?« íU¶È‰]i¯‚´WAÚžu_i¯‚´WAÚâiio=|ö~|ñßÏ5þûÅóz=Uÿ¹þêå*þû1>L´nü÷sOü70~bèIä÷é’Áß®‚Xˆ¿pìv% àVQÜì%ã·°l çC°OU uN½\ýä뛑td™Œñ€ø‘Â/)’Œ&f¢(È'£å(prÍ :”—ŽR•Ÿ-F—‘€ËÓ<®Ò™%À¹2]‚:¿ºæ¸_Ž ­8>{ÅÅ­Ð(È}U†ŸJ()sz’VPg쇶µÁ(Íó Ioº…¤ÜÌ®4ã–ŒÞJ}¼˜ÞLf‘qìð1ÃK×~:s#eù ö„ Ëæ„<ñ.:ú^I‚CÏ¡1‡~JŽ|FØÝdÇò>*Š¡Á§õu ªod ëÓ «èvÃ*)QJñ2¤v2½^«ÈNã™/ÖæÃï~0üÖT;Ò³€Ærá`s¢»5fïm´ƒ¤$ü¿Œˆ_Ó ­Ð¥ØÀÇÿÆÿ1…¶„Ô±e:"P)Iæ7Ø”ÔñjI8¦Ç÷_¯…@ÍÞ_ëûëŽÑõô¯OkðýXßO¡€ëpkEMçDœ¿‘ñeâ5Ì/F#c‘xiQìþtrx×kéµmGËèFKÅp;£ ÐMÞ¨ì&8$¬v‡ÅaÕ1…á¨jb|ãÝLàÓƒ³!§/OÔ4ÎFSàßÓ{ ®wbÁ¥Âhj¯a@Õ}Ý—k¯;Ì â *é*Vë} ù«P+ІÀØQ zT0$2§×´ 1X_-7Óèk#,@ŸÙÈT¯ÐåŸw;¼_Ó†'‘´,qÊñÇø¼\ˆa¶ îS73ÁëÁߥ¤Áò5nóÉÙ!åþU’lÕtˆCa(r’œ„}ZP0G½Ì´ä'jWœrâ=€OV×êD (ìM2‘¦t:QÍØ_” 0WÈi)f—¹¸Ø3ƒ¢ †‘ã4]þ“Ê5jj"듉~Ž _swä4"» Ó¾÷×O¤ðx"@«µa7±’°x×¾À.þ”½‹-¬ŒÊßÅ´~Çíó •t¦w*É´&F&—ŒøFp€ÿÁ”‡¦´ª·f*ÖRÞ‡d_)Çx»¹áçTÑWKL_3“éUp÷Ü$awî‘s·M;FÓÊ Fg.žéP†j.Ÿ©äwdÉaæ£T¼ƒˆÍר. p£¢MdË+À„è¥DäŠõB ‡/Ï?2´³¯˜˜œtYBì)ýLíu<šH±?¡Ÿ¯Ý¡ ¾+œ6• '3û(T·[ [p²…ð'™(%™ã#‘ß²)@Þ។ ¤ˆ™pÀH1e¼TB1fG~DL£k˜òZ3%‡{-Õ(«¦¡Ø‰ôLQøî† ºr!E«L43 ‘²ÑUäáèžSÛ-¦´,#ÑäÀ(­¯Ñiʼn“’¾ð$ò;Y/ÉdyÉß(ŒC{àè.äî%0³S‰àìÒÅм֦A(Ì'ˆ|”k ®ƒ,9ovæüø¤_;äi¼ûe¢Œ{ôE°eqeKÓèr0zˆz(V¨{'ÂYj7fž² m/2›®¼g¯uï ÊðØ+¢»Á£æYlÐhc î²CÒ‘÷PG.þJØzCiÉ1h~.š¯¡ULœãiÉÛÉ9åÌ¡¶3ÖÈ´I“Ÿ¤b8N$šŠè5‡â`²˜ÊËÍ¡Ô{Ÿßg1@øŠÛ1õ­ È —Fª£?êT«<UA³JÝÜ›÷|dþ§by³,‚)‘,½ ílO[ë¸&¿ár¸™¤<}Þ.É“ÈÏó$ЧzŽ”!‘tÈÿ&]?ϧ“Ù ³eËšÚ ¡LKlAˆ%ÀωÏP€Ë]wÌQ=¿Å¨צºDeÇEN9 ›äØábJ2â|öíæ¿‰/N)bFuÌJT³ùtq>G…ˆlÇzðªT‡K'Ðïÿš,_6Íɾ\~²ˆš¬üÂû ò­ºñJúçŒW('‘Âè ¬XŒk—:ÏÓ‡¡,i ˜¿¡Ö …¼àrÉNitÖñÅ“ýMÔícOÈz¶døm9üÌ£Í>?·›BÏžBr&Ô×Õ$¶ìsðϪ§]ö¼ ³û¶ýšü‡•žLœOcô”Áà´-æFô]\Ȥû@c¯LºÔ4C“ï1ÝÄ™±vmm¾ªmâi¨/7m`A¦¨ÉÔ3å¿de¡Km®TÀS Ñ– Ú©¬9B…v6ûìŠFÃ÷e_ØÅ°rÅ¡^.ÈAžkØ3Ò*Œ¬eíþ†qÜ'çÙ»#ÑÇxE_w¨À˜çLWè„>2(•=(2µjg“ÃÁpNØÖ¸s’äžc–GV§DcµÌl-޳ÄﲓˆÈÊI-ßd{%¶ð^^[¯Óöë³Û‹ØCÖó˜ š! †_ã**bÌç )mÇóxêI³#,¬³ëìxb?^·IÛ5eÄ]Ö|€AÈ—@:â×`z7 E“•ÿç¨\ï}íu\ °¤óÉ}y'ÜÖ­„óÝ×¼4W2 #ž;Nfé÷Mý}N™Ùiw @Šé û‹-v*Õžr+%Ú{iˆEó†7ßš„¼âÅâ"žÎЊCyÓWvt—¨ø À/£1ŒaTáÝ`îôs¡K‚Â8lõ™·ýtpGßÎ9\.fLG*AÜD:Øÿ çǵ&@¾ÉÙ`\¡4B rßb‡pÏÕ³ã;ûIBFÚSe'ùko­ôS3Û¤\NÔ9¯GæÄËæ‘<…5^fÍÐÍ(6$·ÄCÞâ·œåÛÎU”¸ÆßPÌ3 [¼Wb åhò5E/—‹y¸Ï° Œx“—ñP\Dg0¯Ž€÷Ì«øçb^E>VgÕ³h>õQ’õwöÖÌdÆH©Ÿ¿1)C'óùäZDÃK?c¥ñe ±ÿž«yL‘$pÇÅ(ÔxÂQxÙj:Û |Zï‘xüû¹Õ÷o7@<;8ÜÓÈkÓ­Oß«æu»ùû=ÝœÛe[¨¹dÎäRËÜKÝkS1S"SeMçAScŽ|0¥ß/óÆœZ`Hy†cËv°5¤ú;\sòœ®6(á… kö&âˆ÷ì”÷ÉßÛ»¾Z=V9ÌÔnñx=Z/´Â½/ñ ù™ÿ}ƒNà_)×Äìæ…/ ¨(¡ƒ×È#Ð%²œ@±cB¹Üù\ÕUlS.#åéŸñ|ËKrR]sX3˜Å t{c‘ð3ûóDcÕÍ0 #.—W늃7iÂ6­Ý”“ᇩ·> kþ…ÖWg«þ=h ;ý­üOº)ÉÖýIHýºï±$2MÆ8ÑÖnØü£”Ø ¶ó~O¾±æX°bü”ÜBr†ê˜ ”Š+ö†üü`è[©§'ò&‹¯y®²­S2Äú&öx¡\«>'A°$è/Ò¢xà½×ðž§à‘AA&dO·B‰má…k[PáN®!綬¯Å–!—j5Ì+N,K„ײ †â¤$ \=¯¾ lOìLæ¬JæQ’Q#,±©ó5/‘ç.gî N¥Ç•5 ŸI_¤.…‡-ó?£¶Ý¨&TŽö`êü¦ãç…JÖhHÙ10Ôâ °œßìGŠów|ä9€-8®ÅK)¡že/ ÅU ]á—¿¯ÿ£óÛ¹z&2ÏÌ=¥ÎvJÛþd©³‰/ÿ÷‹GÍÿýêùæóš›ÿ{k³¾ÊÿýÞynþïâgÕþÛ>ȘYGVÖ1¥ 5œàÏ<€²ªÌè’ èuJpñÄùåsˆRÈs¤i!dñ“¼r&ˆ+…?Â}G:Ë%ÔÁ˜¼'“ŽŸ”xôÇûÓÄzfôü):ՙ̩թlV ‹yB$FÊÍTöp™Ém¦³ÙbÚ‘¼ofƒFj™sY%³M.¹ Ñ€#iò»JY¥¬úF$3ù¡Ó6FÇi¼|·t>(™ÒVêÄDÙlq~ZbœŸRãT™ˆ¬ jXgŸ RÆN¨AÂ2bÕù•”P6ÉV×]#GOf{É|°8–Å®'Cm.Ó*Z¢«C¡‘…’«u™† pfæÉ9÷Ð`2ð‡¸ ·Pï8} jÁ‚¸áns*[¢'sì ²¦™Œm–ŒbfÃí!=(Êhæ,k(õ¼¡Tlî]›’Q]›Áðëîñ—D2ƈ½hÜH#?ÎuÖy#C½L)ž"[ïÞê¨Ä^V†qOÒfÓáÝé¥ÁÖ&7xë°FD~)y#" QÁa÷¯¢Y¤3ê‘'9au$£NìDmhSuºÅ³ çiÔkÆx·¦iùSq¤ª»”7”óÃÉœ®¼³œ×’||üfö[Êþ(£+jäb…G¸-r1^ãxu—ŠrA²³\' _”kd'%&ÕÐÉ\jø]L­9sÕ‹*Õ µ›dö(ʾý•ãr”©µÄùâ½\LŸÞwŸî‡qü~ ¿Oã˜ø5&ÿš¿4Pk 3%…Ú÷ÅP›&òÓ÷!*'˜©ü4{7ŸØÎÙ$~JS†‰¯’ïfÍF'ß}­!ß))íí2ïÊÆ2ÿîryweÛtÎÚ@ÖÝ{B\*g-/ÜSN¤Ùå‘ts†Ò•c‘#érGµûH°Ù>ÞÇ›{ý†Ê°ÙÝ{Û;9 y“;ícž˜ý:þ†zà^ã-ÅàO ·éíd¦'à¯Û{Œ^¨vò àÿ5•Ùó=Y:¨ÕîœÖ§,+Œû§|H=îuváß^¿ÑÅ¿xgûðõØ»- ˆ¼âOºîÆÎ"i»ÝÂîf}Ù”›¾T¨íÆáŽŠ˜ö$¸”ÏÓýY®'‹–™Êò¨sðΛÅ2H½²{¾ï—(ŸJV 'öÄêß3¿ç_Ýýì¾}G?{˜tv§ß=Ìòýôm7v=ú5SoZötË{qìø-ê ˜ÜÌ›$Ƥ‚Èeê+O‡©ÃèúÏ詨¡Ò´f@M ÿ)0TP$Ùƒ‘z/ÊtƒåR‡Fú:®ê£ ¾1+æPh€3,?«sEÄTSÐãÐ)ýê¨3í[dž³ºëáp88¿"k’LqÍY+È̺іX@I<ƒoöp·6OŸéSŒY=¼G§Ðo²&»v[n‚Rrp 8½ÙËqwo§ÙkuŒ.è|À—º¢Ü¹êc{g¢èiêL+B¾±B&$$}¼pòs¦C->è9[K"T“/SÈêœM*T8o³g»_‹ïôHüžÝËzèXT7^Ã݃Ў³+?!—ë¨éqIy_=d+.ñ 6âÆ ãbõ…§.U†dyœiÁÿ ýlz•M9 ÍË.zßâáüŠ.7pm²ó /׺ñYíw($ë¯0BŠúçòMÔBŽÎ‚¹{$êµM%ÈAäµ*¿Ž,‘°P*𤊴[zF$%•q¬ÉCD:“Ž? /&×n?SBþ£ÅRå‡àKË\\'%6þT¡›Éh4ù†œ ]ÂÕ¥,ÉtƒMAËGš©z^C3«ÀnÔb™ËÌ^iË Á8¿ZŒ¿Àî˜Gãጕt²#”ŠLÑß„h§5\iÏG º¤ž·›iŨíÚbÅ`ãˆÑ‡ÚsµÖå§`²6ë\m$¤-ilË™·N0ÀjGÌ/ÛIÏCŠ£Ï!å("òcGÛ¡$1ùŽ™ïÔB”‡ñù€ò%ÜÀ+sP‰]©EžðTrgÑÅ„ gße¥±9g0‚ûâtÂUmÑ3Rê¤ víû$Y R鯥Ã0ÇÙóM–½ÕvªÈ|¶ø{YavKú›§ÃÓicls§’E¡$Ž:¤TS-% ' cð¬År¦˜Ä1_΀·Ó”+ b7øAÆôÑŒŽvÚ!iŠÍ#ŒŠ•b:™\Ë=•ÜB]¥¡”b4M~_cEÿ·AŒõÂçñÈ’yxÎ=ùêËÉ0œ|sª€VÈ÷ߌ"e›y\«‡ñåµ,?y†¾ž1E1Z_PG¥Ss×>‡l¾äJìВ锪´îå:çzL²•’øZ¥ÂXˆ^ÖÜŒŠØ†“\bK×–.Qt¶ÊÌ}Šñë¶Ë$WB02ß·^‰¿”Iï(™ão¡·HrZH£|Brîœ  { R>¦Ó°X?P"ÒËÊéQ|á‹é¡t¿5? ×å#Œ¦í‹‘!ñ –-º“8™ÃåC:vó…›„ é$—Žú:u”FͯJo, Ã@Œ*é1`*ú­ŒÁÁŽ'uï)IÆ¡ŒïÎè&j„ºй’[Þ¾u'êÍzÆ›[Ö›[¡7Ýù°'<`¦…3Oâo@s£Á 2ñ¤2Ó×ø2‡ð´w³òãõ‚%[äO:î{C–öôŪý¦,ý9—‰çß&Uöq3"vR9Lÿÿ…^®O4â1çÄ¡œd0@N$94%ʱŒ)ÞHØ×Iá£éúZÔÍ„œù¡°*&¢‚jUèUŠÒ÷(‹ ?% !Ud¼WWï‘Ô~o+ç½`.5©ÆÜš•ž•˜ã¥ÝŸ“Cȵŵ”Bˆˆ/Çʱ¼_™¶ÖH\Â?êðGVR¦*x ¢í4š¡ ‹ ¦”x}Ëqrv&œO&œ—R*g04S§lÌ&¤¦¢b÷(³]ô³ÖÔÇXi˵۰UaqÖ`Hºæª} ªÈšËV¡M]q¡¾Ì­î‡Àg Ù@5a)y}=g%“ÖËFëz‘Ö&ý¯e¥0r%È÷«<äuÝW9Ü—lm´ØRi$OÚǃ´:–Ã,›c©e•¤â¸ï²;ör=' –þЮíaZiÊãEtÊwMg¿M£°—ßñø~>žŒ«ãèr§™EaïmP:õìÖäz8’$DIóit™­OQ(гAQŠlf(ÌÞ±ôíb6»e7º d.ZDnÂÒÅù RˆY ÿæ_UÛÀhz¿ë!„!å°3a kr‡g½»e¾ëÞFô'/•FðÛt†î¬ÛÆ@]?“kÝAÇ2¼Ï³n©+ß|¬w òí)œ²wùB=ë ãQ¼!ÔëÆ¡^œ5RT7^Ë«ëŽX]¯Û‚µ¿«{¸)Ôëî ÷0TQWæïÊpc½*wù}´s˜Wd-‹a˜w(æVêV½Dv`ê vÙ¢›Î¡s! u% :©–[îÛƒÎÒw ô!òzÌÚ ¶g»ÀÑÆ¬&ÄVç’8°'éuE5·u÷ǘV‘úºþ ˆ–Ü+3ŬDB;0$4Í_×Ö]dÊPÂèwËjºEM3éúÀ:ƒ²Ï c<Æö3­ëᇚoYÍ·ÒÍ·tóº‘RÆŒ‡ÞúÿÙ{×¶6reaôý¼~…Îþp°í`sÉe†y0—˜‹Ã`sIöY{?èÄØ,Ûä²Îœÿ~ê"©%µÔÝB’YôL·¥’T*•JU¥ªÌl yܸG*ÖPBŠÄ¤¢ÆGˆ"HÍ|;‹ T7gâL¶Ú+–󥟱<‹2I^Ñ ÿÄ;”Uè•FE«…Ó•æÆPÑð­8ÀâųA4õËr¹LÖPé2 cÛË}˜¬¼Ü’Ïdeü~¼6àA¹ùj¯äh>±_ši]O8kANÉAÆpQ±«±myOv>(êu¥{T¡³#%£yÍt œjwä9o^³šŠz»>…­ñbП²Ev£A£Ç+ †Pë,½5d·¶hµ¶xïÖÖ–akCºBkdê¾’Û—GuQÂŒ3Ñy4™ôÇߪÊ;áƒÀïSA~ø‘A¾áÌYR‡"Ò ©²n%šÕÕ Åœ¸—»û“ & –ÞBë.Ù9ä¾Q“< jÃÇKêG<‘ûÝÙˆž¤¦MñÉû š·ê3áÛŸsO«VóVõÂ+ÀÀJáe`µ¼è´\x5ø[6—Äl!ïLvÿ¡ÈÂ8’nX¦÷eU‹"ƒž‡°õÁFªÈš|¬}5£®³ãf.Î †´žŽ˜¸?܇ ¡ëÙ„ý!Ÿ•u™¨?ææv³FÕYÈyvbþ`±õ³²u_›&¿|´ÈBE/Ù ºÍ§­) ™÷Y'ãedzéd”õÚÆ Æ/ÒY¿žQNq‰»Ù ‰)ôMŽ8¯©* ÎÏ.Œä¬qžÿ@†Ÿ3‚0‹úð8t®õyÑå yL1PÃá‡ÊQòLÌ®Fzwø ,þÃu0Rª:÷¸i(lR eüå‚Ó$ͺr6šR«Rª;*Eà®R/ê ë Vj©$®Æ<ØÞ¦ç# Au…w×ăàÊìo mSš¢sÍ!{z bïÖ¦£:¨ÂÖôüæ0L&ƒ(| €\»ÆŒÿ·èÅ“It7¥½µ“ (³ñúõK÷¾º¦Ï.¥èß”5¹¤4R 4ôÀŒo0«L / ²ãþ9ºL‚{‰èkõ,“ºØ’×"Ï(¨ä0xDBÐÝ•idá3#e©Å«Sèmƒ—§¼P@®Æ$¢„—6Ñ„Š¶EŠß ÑM¾Ã”lè¬6ðçǹê“jVBįI¡¾¯zŒÛ@¾¶y[Y±ço„+ã0»=¡ÌSx•ƒ’CeDC—£_óN³òàØ-ø h!ƒ»Û-,Þ·…Œc· o øXM~ ìc‹'ÕÆ½F¡½°Šµ±t¯6–²ÚÚr]oiU+cgH˜SWÑóƒZ͈Ì&ç· êÝ×Z¦ÍÔ&;;@ªfCí ß·F#4®8CK2Ö¼Q9<ºfhtß±Õn ÝÜqÄó8þBÈÖ±T³‰ç+(û‚êez)a„²b³Aõ›ª>ÒaxP> %†d[ˆC€ÙÇæF:¸G°ÛBÇ<×À1ºÞ-‘œ>Ï0‘züÄeÒ÷T‹ÒÑbž‘´Þߣö±tï’ŸxŽÕ6³Y5¿ žkšÅ ¨X¬Ö••K®eêMi3d8uú.‘u3IÏZc);45^æ;âë‰R°\,è u•Èè-gXrè;]°>3C;«Ù#ôOs‰,óh/—˜Å¿ `ú3¹pšÍzç]¯Î· õ=FÒ-$ÇzâÒeb Y›ä5US g‡ª$}¯¼Ëì¿æÍH¯šÄ<Ĉ;ðj·ÁW¤ŽŒÛ'Ö-£2'j8çs"% Ã5ºG²š këüǺ†Aà¥ÿ1Éð|óF]=LGa´îU./$ Ú~R¤al"–à|é:BÒ?]nV͛׳ ™SÐâ=æwõ¦í¨¨Ü‚#¾A»qT£â 28BMç‚©!°pʃ·IV mE÷÷ Y:š_ù2YÚˆ>qÔˆtæxx0ˆ„®ù–‹Ö\ '»`aô€’˜kÍUÅ\3Épôßè,qȉ>m‚ø­ºÿ†µv¤êÜãøšèInúD”:Ôg¡‘n¡&=Vñ¬s=ïB=ä­cÙ¯1õMï±Êr“?¹hv<|w’¨­S|{WG‘6kr}•k¦Ö&Aÿ‰vSmsó|ÞHîÚKbÕg¾ÙÁšðe `¤¾SuüøÙýÐ¥îïv>ˆ‹s)ÑU ìmŸårTt•t»ÝºŒ±o‡Q’+V|÷K7Œxð¡KøØYªípªL”}k û¾šÿË l¯¾Ÿ¼DÙÝ~SY´(Ì,^CÝÎ#PX“ù›¹ÓéVéŠ/G«ÆD–”‰Z…ñ¦lyyk}KB[ñz×;vcžÖïÙy Ÿs ã¹ñCµrÕ'/|èÐrôú¨Ù˜Ëï³ãCWõ™yœ–yò¤ Ð`ÈÜþÐ2™‡¬M‘M-Í`Y¦¶pÐPLËG  b«‘-WÞDÇCÃy5"ˆG$E8B&ÁpS›øÆ@t¯û1ôÀj³PêN3M¨v·òH§§ÝünDjמE\I׋Ñæoª+/’®îÝñæÌä²T3(ùólkÂìza3YNBc9ÕgÄ #ÆÎêûmÁ&R.¹ñ€ïüóêûœ^ûÎ?2hŠTÞÌxþ±*«óO6†ÉkN/xµµ•¦æº£¯‚Òø7·÷6ž0âìÎ!É­ðÞÆZ[ƒÓ“0]”m̶µÉ.ãgmmùç8É}õÖæD ØÚl,äomÅqÔÈÅ‘ÿhELªor§?9VËáñ†–{ÌÉÑ?]MS䯃-âÍDÁ;Í4ÞóÔ¼µ›ßxM¢ÛóÜJî¹ë=¤ëEw=‡‹ïz~ÆRdj¼û¥"DsäA“÷Úõ$ãØx€6ÈVü$}»žžÍª j.<¢2(ËwÝÞ )S‡â zG¤Ý0ÃÎz÷ÞEÞ¦8»J'¡îBµgØ9…wcÈXÄbÖý³@óÕdµÉŠGÚgEæò³î¶âÑ6\‘¦D•i°º|0†è“»ÞÔ û0ÛÎ+ò6_ÏP ‘Ó‡Y611ë,6âÇ'ɬÍZ<ò~-ÈÔ»vRž•X}‚7‘(ïá@ÛîËögÚË=¸2UúÍ¢ÎóAßíôg ¾›’ fBîåç„Üÿa'ÿ÷äìIó7–K©üßËÏù¿Ÿäá…îäÿî®—ÄÑÁÞ;Î÷½QkëÈð'&û>‚ï(­ÄæŸG›ŠÙ>AîÇÊ´Ýz»v¸Ö²¾ÐPª4pYÈ“±Á˜P!O F áÉ“×!˜.Û—8„2d«>{ɬ—dwÒ©®îƘÿ\å‡ßó tÎÄg”㎻¹‰0’'[0e–Ù5q7QÞb˜ÀJz\qrg€þ3Ç2ëʆõÐŒ¦Uãˆ]ì¤ÊŽ¥ç¡Ò0·ë$Yó—ëˆ2§R†éÛ[ôÁ‹Áè ¾Jc«øéN8ŽdPz<˜*:K™“‚«xìxÝ£üØU¡ÌžÓ8LæøÍÊ6Ùs³úªNa>VñG’ýuw£,Ã'íº\×qác$2B< ÓJ~<»îmwg £âÞ\zfôsmÝì§?keÕÈgV"Rµª¾’çè·jx†Ú2n© F µ*gW‘¦TŒo€„¥²{R$oìß/2¡|¬%Qí¡¤A- žSBÃ\˜€úyAkòÆ|mÏ®ÞO 'ǵՔ/¦ã—õük©QýXûtQþ}5þ}õão@{ HC!J5}¤ê7ñ°4¬~œpu[2Æ øO)\]»³E ¯ªnây™Íý§fOßã7Á´®Gƒhòé›,ÿ›ý>1òÚÑ\…*âß{•½9íØœCåÚ¿‰ÿ˜›S’"f×äš ,o^=sâêÔ«D(z×YÐÄÓ$mSsOòÉH³HœÕaÚfíCÄ™¦u¼•‡×ùº¥¸¬ÒPè[ùN-BÌò’tílä:’æ ˆ‘ý›ÆÛ9Ók¹(†a’‡±ÞUèÒœ¼çòÚòÑÎÈ.íz…6½ð€BêQè^\÷1ãA4„ƒ…ؼ°ò&²´R· Ûäü“Ÿä ÛC™¶*Écgí\«ÎÖ{{¸Ù¥”Ÿ}LM®1¦'£÷N¦ ºü\D¸¦ä¶) Ô;‹hçL%P¤ƒ¨5÷²Ž$"v§gêù]6O\\•‹5ši]¬no’ ÔÝÇ+{^Yýœäv”:È}µ;ÚWô¤Ü¹MºT$5 lU4£Ðs"Ñ?d¿p=àçß¹wÕÀ <ØŸý1eA_’BÄEvF±,äÍ ¨snÎ/¨òÈ9ë xa‰bªý@v@_Þ½ªØ w°µSeLVž¦²²ÓyRÞíua|2hNò:ª^9‡¾›ÁN¥«ó,'%ÚŸwŠ~MïÆC¤i€'¤W«4(ÙÞ›XH™3˜÷wJ^ʤc²„}3¾ù߀va8K.ÉÐÇ+ÐLïÕ¿ÔI%æÈ_1ÉÉ5†µˆ»J’“‹á® ™ô‹çÛ ñ¼*)C’àú—ܸñÆÍÓ7F\nlêÀÒ˜q]GU€ã5Ô;y­ˆ]'²QçL‡B÷XL‘œ%AG,£ó KV#B…ãĨªHY®Zøœ°v¼11[•qÓb§²o9Y™æƒ§0”æÛµÖ°µSÐmQ®¤¾E@DÃôu½dÒîº{))Ù>à¸ÈXº/2;2` ªïçdd`ÂFÃb KhpUœŠ8ßϹ˔?:y }gwý?^ÕéÓÿÝ>©þoáårcÅÕÿ--4žõOñ0õ»ú¿Cÿ·vð¬õû9t}¥Yµ|a-_XÁ§NåYÁ÷]|k&¬гN¥Ô™o”_4Cw–ŽYº†¹âÏ?Eê>¦ÊÁ¹ï ÌpjèËRJ2K/åêˤŽå ¨Fì ‹yQúXk”+a¸¶.«Q@fB(5‡µåV‰ CŠ0ì·±n”2üM@‹€ê*NÍÕ³néY·ô¬[zÖ-ýÝ^›øé—ž•BÏJ¡LÅÇN+æC€.¤ôÖ|»Öp•ÆY TÏáÇ<7õ•C~=‚¾Èç/®Q‘R_d©‡ü8êˆtGã|" ÒÁ/®Aòé¾=±þge%­ÿi.<ëžâaÚuõ?ïMý9<=ë€ ?‡"¨Ä™QôþY$ŸŸLdÁ*æE•éD•ÆòLEË4qŒ1 QTJÔ{0¾†Ñ‘§ýx8I¦ÈÒ}x'ÉðìQ¡¢'Ø¿éàOnˆ5•¯d]Fc Ì|ahGd‚Q^?rDArFT¤;9#*‚߈ÂnY†€ÖN™•³4@=EH7ÏkЦŽÑS­Sm”Ÿu[Ϻ­gÝÖ³nëÙoŠŸg½Ö³^Kuý»èµ¾£«D‹ÉÕΨ·Y꫟ÞÉ«ÊïöTzÿôLiýϸñùIõ?Í—K+éûçûOò0MÙúŸÃÆ1¹ø­Ã2[ïஹ¿Žú¼ú†Ê ø?˜ÍKÎíãý6”ß^;èal+¼¥¿ÖéuZ°è6·[¼ê} Âíý5€Ãªhw0pÈ!”:®Â’è¶¡ÁÃ?[ïáë“w‡»¿ ÎÉ#<0fRÂŒÂy'ÁÙaXÄP˜V3$1«±§f„±˜F¸F¼D/LÏ,º+Ÿ Fóg*°<ÝÞ ï¡Ûê·~¡þ v S=öaF') vÊÉ}7XP¢sèEYŒÓW½bÌ 5‰dÄ{:qÜÝœIá=ò³õžFwW×0“FLWí5ñ¿Ùbïz¢‡‚«›¾h×Å æ™âO˜-|0šPTxÌ=_EC:…he‡ìø…ÒÉáÑj(“aÁIƒkÐWuq4¹ƒƒ1ÂÇPm §šÛÑð‚lòŒ/¢¯x.•zÚXU`˜7ý+ï.ø|jg#›L£Û vóœÇ Š+³žƒ,K‡QÒT”úe’j1!¬Û]`.á]eª¼àͱÒ|(~à_ÿÓ£ƒ\é¬,Æ£+Î$þ9p|`ŽJ5?ð/æNìFå¤é“粉Ÿh…§šÙF}¯ԨöÏ€q$Ý›TeƒÑÈLd0F?!ßt˜Á‚Í>vKIð`­U NWéÂ;Ö"d¯µÃª‘é—x‚ägßù¡>c)Ù(À€¥å-«Ï41(š ijªÝn¹Ö˜, ˆVúÚ,­WPc+çV6Ë;Ô];å)Tº‰;Å(à…²€:Yìõg€È‚ Òeé‘S^ ¼­#q\A²—O©Úýã&uM_\F¢ “ö5¾aÚpY™"= wÚR›‰G±Xk”Sƒ+ á-",¸¤ï†ÊÍǤ“ÒÅT]±ƒÖd_7îÓ×tO‡a®ãôMlhî#a ”4ºWŠË•D_º··ñ½Zq›b±%£©L©c·ñçÑTªºÓ»ñ˜ÀIì6‹L…a°̬yݧ埓õŒÒAš;¤J„JÃat5ˆ¯XcûR×a…A×â1YÆñÙZ2Q|»´ìꛢR–¡â„õn(l9ƒî*ôºeÝŒ¦Ø…º[‘[ÙÐ6”dì¹wÔµŠ_ª,'wç׌Ô¥Ã2ªc0Þ€ZL,³$%h tZ™Î"3)·1$v¤$ V~oèé}œ¶}©Ú‡~Ö{‡G›4iCU}Õ ™@D7¿ã7¶/°"EµdíR2;4pX# :a+JèIZÐýÎgç€Ð±Ö37kCØ(iÆ%H>*Ì5vÀËÏD %SÊ(‹t†0xä’O‹P)˜»¨ý‡ön’Fäy)[ø%©Ä· ¨ÍîCjÈ¥³ ~_…>ÁNiäɃ¾C‘m¡Ê/xY \i®”pùþßZãÿ3¤l—†[n$=‘­Þ ϯûÃ+ÇÎm.ßC{ùš¸R&Ú˜à‡âÔÕ°¯ŽJp¦ŠMò¦ÿ•¸0YÆ$éÛ4`H¤ ‰Î‹"½"=L­™ÞK&w··£D^`H F×3#ˆ§æ¦’WF%/STòªˆh¬øÁ¿îúpä¢×ê¥ÏG(×^EäbC†oëœÆWÐ-™ßj+*›0ùpÆ_yM® Šøí@àöÅaãøò~<÷?šO{ÿcayy)}ÿcaåùþÇSññª„ïËâ}kÜ$„ÊçøŽ M¨PÙ²Ä%kVQPmB¥é¡’\'Õ:¼4Jª¢ÅÑ §vrg”ý™”[ã©´@‘Æ<¹æVøSq$U}ý-5­_É»µ?™Àð.dO¸d7Þn|Kwã[v7>|nü[ù«A™óÏǬ¾;‹¦_0΂9d¬´$>Ôà:LËê|0z†ÑåVªËr©ë;6ÂtBOº­-ÑŽñP”µø¾y¡%øztϤ™Â ´q9ÍØ L·M?àÄÓk´ñþµ ÿV`;€ïáß(“> ¨çC[9‚øv„Ù„‹ðo A=†ÛL{mv|h 7þwíû»Ñ´OEZ°mÆ´î¡çžS:"Ò6L¨o¿Þ'ß¾Oû¿ýÀïÍ·‡ºÒ‡¶ý V »_µðØÙÛ-Ë#ßvÓo“º¶Ù€ýÐYš+Ø¿…¿Úf¶.€z.`¸ õжÒ—ƻEÔ£â›&Ž­œš%–Xm‹_öšlnWÞ›%–î)¶ Ý4¾Yáo`jö7jªèk0/JÔuF ´YžÇþKLàgkV­Ú+ܪ½(Ê5³ö¢3ëVíEhÛ;Ñq‰VbÔTÐ#mÂyâÃÆ{$Óv‹ßÓ-]32— Ÿ›¿ÎyÑsþ;¿yêóßËôùoå9ÿÇ“<’GÙç¿Ö~Iì[Á)ÿï:÷6àÇá/z?בG#ÛøaЈÏ(1•s:¤$¾ë²B«Ä™í\ØÚ·Ñ˜îÓÁ¦`ãñMÞ<ªÉ H7wƒi g‡sѬ q c½Y¥(6ët¾ãË*eyû4 (hÿ&ÖõÛßbæ£âo,Âz¿+pKw_v¤ðáÈLéªc>ö™ïZÖ5„}3øâÌç1¾é6a\¤›_NRÓ©·vVÿ2‚CÏDoû–tî6”S¨#B>r0@ŽÈIk÷Õ™õ¢ÇtÚVç×=ïhëί?Bç×ë(Õy÷$–³åö¿•Õÿ–îëúߪ Tÿ奚ԕÏŪʾ¾HóèªYâÇöœèq UëÞÇ£dEðnvr ™äUŠîÝ™Ü( ¨¾{Û›ûû³½¸L(Dœq:C³•ØWWêïë£ÆÉφJË»\1}Ì:Ôí'ï…P{aIì a®²/}¾XÄ_×1¸ŒøbNd1ÃÇ…!âu‡}ëÖB £À¾J­Ê?XšÙ¯2™)©†úC¯é¢‘ç.{¼‡ó¾ÞÂCÈ’8c©¡·Œc è¼e©\L {É3ì ô÷w`y6ÜËó”ƒüåT/VRÇŸ'Bô«À8_@´<÷1}%_d„ M ÷èe -¯<“>¶öºs¡çüwùÈÇ¿œó_caeaÙ=ÿ5^>ÛÿžäajtÎèåÜÞØT«ù˜¬dð³·v”å ´a¥µ[ížèhç¿_èTèI €ãÏÉyQ‚IŸìc³&}U“ã Ì„4&gÊâ'Ä-Ãp¨,{RÃNS]ØÔñ– ‚ªÌ>éH¬Ä×*[£xªBõ¢Ë©ÆñÕõ´.(Îó8ºGhA'$û#œRÍ8 oÉ‹­&¦ý;Ógü7ÇßËèWð>6»=á™ÄÙÿlcǸ¤ª«›âwPŸ¦ýOÑPZtàš¬×ª¾‰·s¢4%ƒÊðãÝF?¢Ëˆb¤È·0€`ðM¡µ2Œs2‰Áç§^$5DCN’™€n–ÀH*¢å|{¨¿mÁ·oïHÝzèYÙîØ:`Y:Šä)¡ëyi-Sý³I —d¹Œ2.á“°å« TÊ5;ᚇsð³Šç¢ [ÇP{[‡É þP#¾´€¬‰äTMÀd¶IìsáüžXðJS£¡ë´¬ÂÃñ‚ %§he&§`vâ×|蜤B>>þ2ާÓh¨| d-¢~{ª­Xd0S´ì9ý>§ná»U( óØ=#eSõNZVô¼Ÿ¢Þ';É{v¬Nò% ~~g‰æê¼_’e“:³þ=1ÖöÞïmnõ2õ{kÝÞ1ÿjyš›ùHß‚“Àƒ_‡™ðfEïëÿÞZk£ëâïV¸S2$½S|&½ƒƒS¼ÒűÏY¢J6â½JËn„[ã3ݾY;ªw6-_àÿ‹¾ìFÀgo•cì{“‚`0¤`“Çuþ,ºB-Üí(Né6&‡Z‹†ÆD1œ”éÊŽî½ÇýXõÚ8v¦¼ŠU3à¾ãq‹í û®o÷<±#°žnq£"`¾°B2šm‹UÏõ æÞhôIGÅ`,ÉáhX£ðG°åãFpl»jŸ¼mïÁ´QëÜIö½?v´½çß)ÿn)è9Ànn¼Ë™9é0¿AÈt0ŽV©ñ¿û\}S®§zG†]¢ë’\Òu¦);¨ÍmS"®UzS•Mf5xXÚ×l$Ý IÖÄuFS}[8¯Gÿ‚©G,ˆ•ËëSŒn£±ôÞ ¿A'ÅããõÎyŸƒÅ£èÄ€G‘yÑçhP7V\ õ†¤¾e ŸöŒtâÍlðEÎÊyµŽ}Æ,É÷å9ü“·e'ú?雈k–Ä\+-‘ÏÙ<š5PéÝD_õ¡–c ±‚ªa¹RñT7¹óõz¯‡šý…œ ôÿ°Ur:Z£sµîìŠ"¤'–%û?Êäœkºžan:£Ô¤´ôÜp ç =93NŠÑ=sR¬ÑØýΛ”¤£<)z.tÏò&ÅüÖ&9~°"Чÿ;{Rÿ¥••FÚÿcùÙÿãI&BWÿ·®ÄµÞáZ„µ7[½ªèöÞn+½à.-‹½ã ¡½‡z¶Öÿü{k5¾‰ k„̰¾+QDøB¬J4Íî“’§F앸¥S¤Æ2Ó.H£êÐŒšÇuê‘n}ZZG¼£HTloçH‰`leäLšÈÇVÀIÕ 6¤ö±±=hØ£ ”>Ä®I RE¡Ö;¼’¹Ë–‚­¤àœ(yd%¹¡2™æ6ÝÖQ¯¯Aà%%*ê1ª.ާáo.îÎ)TE¢Q6!èiž8=Ý‚ž¢ú÷-ÆZ}[‚å\§ÿÞ–>•E $¼,ìo]Wú””o–Hiö3Y‹&—ߌc4ï¯|¹ŽÏ¯åeó*Bpˆt;3X½ñLL‹*ÜÙC.‡£/üÍO®»Ý-ΗM¡'Jní\Œ~¹F~ ÈŒç‚?)?ŽnÙxJÈwYÁƤDóX°â¾SñpŽï1äªõ8l8i…µDö1l\Q$.etÜ ŽŽ«5¡ÇE&1Gzl©pÛ6šœÑÒ¾f*M3ëÆuݺŒºFá]¥WØ,àÍÕƒùv‘`äðÝÅ=h7!ç ݉~íªž„Þ#LB¯N€Œÿ<Šû·•oü»Uy+ý„yD‰8»eÕ7®þ°¾!ŒÔ2±Vµ’EÜÖ:°Kë‘þ@¿ür&]ÿ,z{M‚S¶Ò~§¸Þþ'Õ³ÏjUh½;xOV…}84€ðÝÚFEïÐë>8«s#Ý©™ÍÀe eªÝçLµä¨²Ö&ÇûÐHª*Ϩ {"j1‘È=[¢ÍR›':¬œFSê$‡»“‘Á5™ÿ¤¨:‚ˆJöºMQRYÅ5rŒNfð”.)sÔ.Érv¾ƒäâMaÉž†ÓAÄÓTÊûº£û2Ç•Øfü]–î—¬Žx¶ ¿eÓ-Zã­†õ:óšM᪅amY;-á YjÒñH¬Õ©è,"¥ê®®?¥S„ç„´ˆ8ªcA³ÒjÌUŽÑÓjÂpÂ%–ëqÏGÒpB9ÆJgÆ]÷[¡”‘¸‚µ2z¾CPC}R¢¬½øÊnc‚¡¥¯áxëySøút‚Hi¤ÇÄm!{)ÁÞ„‡Zt¥¬¾äj«‚玀.çüZÙÑ]©"–Š%¿¾H?–n{7HºÉ(ÔT¦G" -ö~ÐÂàŒ(¤/IÃÆ;5*˜ÎÝù†1¡!ÇvA¥8ÏÆ†qÇ{EôæxåÒßE'“RRÏIíUP0¬ÝžH¥tºžê$]>j‰¬½Š8ñ,Þ"òæ¸ÂÁÛ¯À#ý„3Õ.•z§>kªi‚“qט‚Ý) A01 “{Ìõ±å,×â—+¹àªMOvƒ¹$Ì’o‚Ø>ƒSòÝéÿÍ¢]º’}²§{ò·¾-c}ŽïÍ»¾áêíMnw% ϶z˜¿­²»-Nús.½­Î¸AvfÙ yCµlÓá ÒÜÕö8ãîèò¥{lŽzG lqKÿ™[¥Àçöý¾›[¨¤âe8¥ó‰S˜3>Êžgly…9¢µç}ÿ-H/°å›{cÛ#`ͧØöZ†x&‚Zjg¥—‚þλ¡—3®äm†Ë7Ãäf”þ»fí‚Xs9¼®øØ©YØ9:‹´—ŠHŸ{3O¹ô¹]ùÎÄêØÛL޽w¸vŸ½?äØëc;|Woæ]r–ù§¥G=¿œQdðì³Ù›ÊCD†/¹ÜóñÅ "‹urNÜö¾»ÄpŸS²Ú5~†SrA‘!Ùu`±ÿГ²gŸÌ‘î-ø8TÎr}¸pÿU›&CÐó3Û×y«‚‚Áõ ÚyW Í’,tÜ~5^?·ë¸íÙ¡dR¡ûœ·5 ð¹{–=Y%Ñq'õyom5Ú‘ÿϑÝÞlÜ9ÜÚU‰s¸q” ;Åcoªö9Üà.rÌ~ÞTCðF3oSm4ŠÁ ªâÆ»Œ=5uXo4‚;h£Yð°î~Ö7ÜíU¿¿ƒñ;9ë7Þe—Nˆ¹¦î¿ï™¿EîÇ3ÿœyèŸÓ§þ¹òƒÝÙ6œ'¶v7ö›GÐÞƒ©Ég6Å¡SùÞÆï{ÒL#ɸ7›À¶#‹7õ¾?á©ÿÉmãs?ö›ò8ñÈÁ>þ‡hû¹=û³èÃ~þ”gG³›7–s%•¥ïa9o,…‘å_è(Ïûmçûå猳üœ:ÌÏ=ØxÞȶÝËzÞðš{þã¶Ì§´§ú<Ælëy@š]þGYÏÕxþÕ0÷7šÏ =ŠÑü'ßýœðUîøòÍå—áïUïsã¬Ü|#¤m<ó¨ÜüOð ÿŽÊy#ÛhósYÈÓÌ#¨Ñ÷ƲUüKùOzÌþºý_ÂbþggÓdþSŸ}'ækùŸÒ7öþË÷&ófö½ò6ÿiŒæÍ… ÀÑ Üè1‹?Ÿ´h7ofÛ‚¾‡Ý¼é5å<ï¸)ûù;¥{6Õ¬ þO°£?ªýéNä?Â|þ«n¬yGñfö•,±øCÌæÍÅð¸2d÷Ú=1óól­'ÆöÐÿïêió?¾l¾LåÿX\~Îÿñ$SŸÿo›×öÞ®U1[5&G¥ô”<œŒ´räÏÞq:s–Žmq 1–o‘D€9±5ÄLç×C›¼šr%ÑÜ^÷‰s–0›@9¿ü’òoÔî^‚_á_Yþ½ ÓÛ³ÐÏðpŽÅ<ã -Uñ%ž^ókÌY¥R_)QÜ* krMÉMÝJ’“5¤„¢²üýÏ2UX!öÙÉ éE¬ž#Õé$Hó[•`ßÄÓ¸?4²‘8‰ì¿r"ûÁ@P8ilÑJ@ÌQÚ™Ä`‘‚YLÞaÄ/ &'%¿¯@ÎPš J`þ x‡ÑÅÇpã¢%Œ$g…~ó‘¯j —šçÆ©2¡Úá¨8‡¡ËŠ ðáÄ¢"²Lê"ÊNœZcÊ –•¡Ê.5æKZSg9-g„Ô’YE¾Î>™Ž$I'rZ`J²Ó‰œÖŽ'›HƤXéDž2 ÕÃSHÎÛ9$çšDr¤ÜN/Ü=¤ô6慎U±¾ÙÃÄxݵ­}ØjñW~ŸvÞú=†ÃTyšê¶:‡ûM»·¶ßzK¿Þ/†·)Øy6Ú*$¿/ÿ¤^UÕK÷wæ´™ëp,MçÎĺ۾з³Æê¶\«‹¿½s2ZàáUE¥rcLQnƒð„úeìM2Ô`¬ØZCKYúüHd"TrLæ’æwxj’ÉÕ—fW© ¤37Pµ$qCêøý–fmó\“škdae@ÙÌŠHÞP³†óW’ôRR´/Wã¡,—„yræå€("‚ƒ3p÷ôÉçÍ9³ÿfΕì7Ùå,DÕÉéÓtүƊÅgV˜lÿp…ÉßìñénŸTÿÓh¬¬,¦ô?ðêYÿó/&Wÿsð¬ÿùQúŸƒ¿þ‡ÞHÁŒYÃèŠöR!©ÊQ=냞õAÏú g}Ð=ôA½“wÕbJ!( +ª)•BÿÁ*"ù»ùøª"†û¬2âçï¥2úïFï drôWY,ü"CûŸ —ÄWCqŽ \†b2’-ÿ!saëÁ“bÁטI{ªÐa}Û—V?'¸KbæØè_uÎ$h0I<sbÌ*­.xÓtA¨Mx¢Ä Ê`uι=ù€tr‰‹íï˜WÓ… ÏQ[Ù‰A$ ¬Ì£úy;úÛ¯;‚‡÷ob„;~O]œ"õ::ÿ„Ét$v†‘Äný_"qg!ÙßÓ@wQº_l¼Sz J÷KA"0¥±ÝÁ|ëL¯¶*NŽÛÉËRædín+z‹¸wCÀÉIù"^ý¡ï"î_ о+%&¯ j£@¯@âc™Š%K„›IM.ÍJ¨AR¿dUÏDhlzP©ðÈ›‡‡3ªvŸ5»ÏšÝŸ[³û8Š]Õ,ÿž7õ–møñÚ¶”¢Ù®)£`Þ&µÂ? Ma¶ôÇ k·OcLO:t 5鬚 £ê/Lö WžžZh~BøÍÐ}?Dí­(òWÖz|?­·Oÿ;}Rýo³±°ò2­ÿ}öÿ{’‡ÉÊÕÿöJ©”¿V¾_AɱÙ/üT geì¥á†Oð»Òž°ðФ¼V^@i)•‘wÍqT¢œÓHWxÙ§cOqš‘~Á˜êdN{ Œ“³m^ˆþÄÎôúɫś$ÚM™]–²¼VÃY^qN{t=Ù âõ›Òº†äIýª!ùî8WR¹)­S¡™åuÔQ"”·¥¸LоD„¥ãÚôZÞÁvÒcJ}·œIéc!#øöTÀA·w‡ß¡wãÑ—¢]›S}ËWÿÌ!ÜÅ#÷e,{ÏTã…D©tM(7wƒiŒ™¤éÔŽäîKëfÝýi’ 'HxÌ$âŒSô“‘Ø’y^78ÏkÙ—ø<+ÿðØÌ?|Í~НÔŒÒöTî—8ØÇÌÜÂ&/)•ë‚Rf6¼‚¢â—pî™'8Þ×EÈO’Ï—¯jšyJó3ï*«Anæ]'ë.ì‡ÀËX)5‚锼LZã$%¤ JÞåBlÑÍ\$%®/ð'Ljû)´Åz‹P{côï}ˆV{ÛÃr& Ô&GG“©=ŸÒüx7‰.¾sÊa‡ûxL?rp¯û·‘“ü˜vpšcÀZÿJïã’lêŽô†w† ÔÜ\à$±™x˜ÂqD_û(û°Õlh]V–èOða‘ñ§-`Ñ¿îúÜeÄj…Ìn#°ç£1 úv4D‘%–¢«c›Ñr{èÊÝ”&†¸õˆíy©éJ€¤g̤N‹m¬É7zÖ2Šs÷Ü´<&w"?åwÒ>ÿûC¹”ð+•†ÃðMùøV42á0¨Eü?NÁ6š×‹¡9U, ÍIk©®$Æläö:€`98"Îbò¿O;>,4˧¡Ðü$ö`šê¢÷Òɪ3‚ÒI qI–½_‚ë`ë -õ€~…ÇwÜn?ŠÝs{sÿØNí³×> sv(#ölFV.S(µt­ŠÓI{cWë~êÙ€ 7^[ )w-=¡Yƒ`ê*®±¤€/2¬®üÐΗòØ×ýIbš´Ýo©tˆµ$¼ÑCÌJžÐd"l'√8¦Ë×îp…H¾`ûu^îmÇÌ O÷S| Lù^¸ï“7eÏd$é©„>`ÀX¯SöãXÇ ÃÙéh ôæi»ç©å7hƒ³²ßîhh xîØ œªÆ›¸Ö¨Âl¿Ye7œy8—â7«ôeyNŽ=X„,á8˜¢i§F8h×ÂÑIäSSDZ•˜DÔšäD>l}îQH‚v 0™Ï.¾ó4«À?Ë4Ë/Þ|”³NúcàÚhŒ FD°Â¼Á”ë)ÓÑ 2¢ÃIúqâO Å(êIH#gò“iw ‡>qäÀÈ&ï†ׄ¥¤YmÅî$Û3¬>ñúE…›þ:#b?m3 ëÂSÒËÄ©ž³1Ø3†¤æÕÇ¢ÛÑ¥á³}ò“µª5áâØ5¦!™âPR/=7É+¶Ï9{›Ý’Ù€Á%8?1ne»/Ùá ¹qË´ mÐ߯íMm`aà·^:»áyÍÛžÓ5„!tj»ó~©@4‹Hù ½c3P*‹à^ ¬í€7;1q¯M_dlBî Hÿ÷óÏ7Þ|b¦‘­M´öŒo†µOó°U`m)èw~A’hJj;Èëw]æphá ;&kÕoò· xÕDb`I%ÌøEš|'§KøŒ°%W”ÑPRäÇÑé,R‹øiè”kIÊTòúè—q„³k3E6˜&U˜§°(#²¥¤jƒÊ3èÒƒçIÃnG²ÀÌBÔ¸K«EˆY&œyN>—!!F}q ‘rL0œ™!Ç`1qŠ­ô !³ˆÜ"ÑÅù|ÑEdq•\F„äKÿÛ\-©¶ä•~L¨>HI\ßç›·£ÇçÿõõIý¿––^¦ã¿Áïgÿ¯§xxI»þ_§*.ð¾ŠÐK_*Ì©º´½°×nµ{¢ƒrÏßÀ GVÊö3o?üÚ0Æv”;ýæ–3:…ò}‘"—‰§#£Ì ÚOÉëAg¡7—ãшb²ñNÉ@|9Å`´ø÷c”ƒ·!œìûºŸñßÜ=¯á~6/â½Z¾ +¯ËæÝUFi(¥hónáÅŸìùè"BÃÂ[qÝŸHÇ”ßECù‘dùF!%áPsÜ‚V1ÇÆvgâTÏœË$7ß—ßçXñµ‡ úöL‹{«>“§OKf €;vÀ…=,öÙññDXÈu—ÑÐ]©cÕN;ͨk±Ê N&ßž‚οÍvRIT7[ó!ª›Šý‹ÐÙ¤Uíd\æi¢Ú.Iw„[îaé!kqž ãÖ½x@Gy·ÐªÝFZEˆ$Çm¤…n#k‰ ѾòË¡MÁ?M@*‰²°Õ¹7á(âÙÏ ê‹tà ìhxŽÌ,È~”I›Ž‰áÌkÒÚ§3NV!3øC/@‡‡Ò=‚]µ‡Zë´×k¿Eø·ÿ–áß ü{ ÿ^Á¿×?Æ£0B8Çá „c€p ŽÂñëhОÕÛ¸Ь÷¥)ŸÄlv ‹uÛ‰Z;A¾ue¹pæ(#gTUnö沺±.óe3 D˜ÒEø· ÿ^¿×ð¯/ø¶¯Ó4ÑÀ‚˜®¨¼o¶ßÂöS­ß7T–í”ÜÈ’ƒu_—t±aŸ¶ö»|ý˜% ìGC|…oG v\€+_CÞ~¬aã•cŠlR‘ÙAø“ÙëÎ’­ÓÐQUШèXÈkq‡´X|HMR34¤cRp4`ª*aéoŽ›VݦS·éÔm:¸Y à¸jà ¬ˆy¨›I^L&×J¥×p‹6¢M«h3¨–qQ¿\õ‹€úÅŸ õÇ‹VÝE§î¢SwÑ™¶•ûN~\Ä‹ßyÍ¢‹FÑE«(Å`])2á/‹OøLøÒßi—¬ºKNÝ%§î’C,¯‰XļGÌ8^ÂK?5™E—Œ¢KVÑ%,úªá½.NxË@xËÏ„'ë.[u—ºËNÝe‡h OEµX~?.ÿ’Dl]6Š.[E—ÿ!¥"Þ3Èi+@ï+Ïô.ë>€ÞW¬º+NݧVBî÷^+øq?®üÍ—ŽUtÅ(ºb]ÁTäèИáèðVÙËçU&ëþ UvüÒªûÒ©ûÒ©ûÒ]¡÷>g=î õW‰^>/aµ„­¢/¢/­¢/q!9­6f8­¾‚ÕþêyµËº¿àj?~eÕ}åÔ}åÔ}årŠÇ:ÚoNå_áÇWÏŒãŒÃ*úÊ(úÊ*ú ÙGIcÉkà1¯ŸyŒ¬ûÆcŽ_[u_;u_;u_»üéÉ´IËŸðãküøú™]}_ve}m}m}L«ˆ®1ƒ®±€¦£…gÞ&ë>ó¶Â¼íÈÆ"Ž—:\òXpxcóGé,—7ú«7¨÷ Ïìó§aŸö,˜s°`OòÑfõ/>îí¸­ÄÕÎçŸ0ôú'4± MôEh¢‹B]šè¤°Hž øÅ¢×IaK.¢“B'ÓI¡óœš?ÐI!Ñáî»S»Cw6„òRØQW8šETÍGõRà¾Ï´gòfYt«DT,Pa²Q‰ÅFác3Í–4â’¿Cl‰è¢M›-5‹¨yšê”ðÝ1MB K#Eeœœ•ûNŽÞãàãâwœ+·è¢QtÑÞBšENÖÍGu=ø§•DL–-‹J–H ¯‰2¤(°ôsŠ[tÉ(ºdKÍ"§šæ£úüM¨ŠÎ+|P)zL¡OEˆZì†Ë¿]ºE—¢Ë¶¼XDV\|TWÿ\¦“6±‹°‘êCã÷¦z}Ø„+çEà]1Š®ØGÁÅ"’øâ£ýŸ×Ë ë…R¬‰2ªäYíï}yÜ%–¡Ï/Ÿ×`ZÃxÑE_Úê˜Å"ǹÅGµÚ?/×ï»\ImÌúb£Jžµ}ñ±N³ß{…k-||õ¼àg]ðnÑWFÑW¶þu±ˆN`ñQ­íϼá§ã dIb’Q%Ï8¾ød*‘Çe'Ú_?s—ïÈ]Ü¢¯¢¯mëÎb5Òâ#ÇŸYÑß±-[±ÍÉÌ5a/ý(]Úãr°,6ö~á™ÉýL.5 æ,“€Ün©° [EqƒWYQÜNÝ(nžø_WŸŸ4þWcc~¥ò?¾|Žÿõƒÿ‹bKꔪUñžþxO>ðGKüz)}é5`$j„<¼™ò9bö\a?-Ï%?¤CœœÊH^ïg ãµ},Ý@¦ÈKÆ5¢8LëvМG‡hÂ9Ž0«9B8M0ÊHÓ…EãÊæxfä*’ñyìhZ÷ß[Ð\LÛd³Z¯×«CuÞ圢Z‹ þ*Ãë¯ü‘ÓŸºBí|4üxUÂ’eY+|K*± Dj–}p°`¥Ò„óTSmüˆaºuZ©$Û´ñFGØÀdL˜MI”`œ“ˆ>Sš©þM„y-ã!a¹·MÁ0[ÓE|y ôEϰäúÞZ·¡i»uø®·­“ëµ/©ë«*ÞösµAÈ›ÐûzRðkªà‚.ˆ‡Î¯†b2‚ý)#Ž"ªõâÍÆË%ަHMeŸ:µÀeÕ˜/uT~úŒˆV’Œ¿úCY}•cw¢Y!Jª$Þ3=5ªÐo˜:üñð|L¤ƒ~‰®¹Në ç³ðýÆÿ>üßüã'¥è@r}:“•ŒùýƒÇü¾Îp’1ëðej´Äî2‡ÚJeÊ“Œ'w­ Ug8ÉÂÉèlöºR[©½^©k_ek#ÞÙÃè‹è®F@z×{í¤.vû×ý!-Ø:@¾¹‰žè×”*÷êO’€JÀ]o8$"`”èwz Ë–~ÿ2šRÚÂÒMÿüùËmü Y2滩LE˜†Êu”/£3±°XÝ·OŠÌ³ùõN8Y~Š-( K·)#‹q¤1gLÆ*SáÆÂ{i+¯•ÖÓrñ7žÀ_[íÃ®Š©î+ZïŽ:½*eFñ… -vˆku«bþ‡‡U±yŸ·šøþØnâ?øƒSÌg>Ã&<ÅßÐíÍ0þ¶ ü‡mÀÿð Úîú$ ¬¸hžát÷Öö[o«øûà½:zâš9åÒíÎà ¤‚ªXkï¯ÁxZ0^À<ûQºÃŒÝïà¯ý5x‹ÎB䟇=Owtp´‚x€î4ªø³û§Zÿs”°‡ä«îÚñ¦ˆè͘W&9ßÐýißä<ú»µÞš¶x!ê½Ã£ÍºxQhÜœ3vP€ã-M‘GÉPL#ÌÈ×å*¿¢9Rïô'LiI5)ò%uàÅlaì¤ôµU’ÃUél$¬ŠúÖÚ^wÓHÇÀ¨†o˜VKb®;g*R`©š_nZ_òü˜ß¯ÏaçKHŒ%þÁ)ò©žE’\΀‰ƒ:MbSÈK_Ø”aÅwoŸŠ$«Mû½ù¡e|à€[máÞìØ‚70¯Åô'‡—p hVnˆ#³ã ”À‘¯&©)n›ÚXbWå -IŠ?·…å?¾…x7Báoãçíä3ñ`ÜF’W8ýÔF}{³.–ÄýשïÒªÿž¶‚Œ;Ó­H´›_q¿¼_©ñÒo_o‡]a=PÃ'^f0êîqÝŽ9X«‰mŒëØ2ó ûiu…75_†¹ ëçО³§Ë Ö{73“(4µŒ 8 OÀiÞœ†&À@¢šæ8i¶pa*æÖµVŽñͶõ ñª&¶KË…\ÚåŠdÞÌR$ƒR\ì1IýIôÖ ¦ßÄä¦?XWWTC…( 4Ѽ}+>¿MK–yõ¶!iégc¤ô /ðP G‰Ï1 ÍÑ×ÛA|OßXŸ~i†ù¨ ·3éÎtÍÞtmÂ1 f%à¡ ÕÌšð&];‡¦õ’\ªs[f綺)\qà9d?:ôÏÏïðLî–ÁùžbÌåÉTKªžûËœ¸W í …9ÍoŽÇxÄâä“änx/£/ørKC¿M¦VÅ£ÎÖžÞƒD}0­‹É¿ÆÓ¾¯ÀFWæwð—U­}Iœ(½¼ŠO:’- c»YQ°Yt'#ìdÒ—+g§cŠŸ+…ýBoîô‡å,ÅhÁ/ªòâ|½@t¿àò¢›HI¾$§œ²Ÿ¬ 5ñ+³ýþ' ï6Î&¥­­2kÂŒ…×ZSXßOR,Bïǘ/‡8‘—Q¤—à–I侸µå.À-µþŒjéÕçK°³AüˆyEÃJj'…’²F‚‡² Oò/³ëÐô >ÄùúšæÄw¶¶*>ÖCÇ=‡ù ñØ@q¬­ne (©Û©²'ןÚ(<,XRFàa)ŸDG¦w€e1á¯ȇÆÕ}‚õûCßJA=ï1Z:jëK0ЧÄ&4ïòqEâ?@SóÐÒ l¸ì1v —HË•­nIRuYÜÜ ¦ñmæ–!‹ÄÑ$>F>€®˜<?Û|Ù¬¨Ä!꫽X7h­Â„l7ï·Õ+1½Y:kåлV¨‰4‚o»¤„+œ$+Ì·XÛI!`¡BÂL`Ù¨rO!9‡†Øeæ°1PkY‘k…šíÁ—ó›ÍÊ*ê~^m[%»C-mÓ1¡EdZáÈ¿òS‰¡@fÂW>ÙMÙ½7feؘßnH0¼é_ÅC¤œÛþPMf-5ŽÒBµQ¶+7‹WÆ”êNíÅÜÚiž–— ®„ bš5[ã$"Îéöï2f²k/çÕ>ÇçƒHÕ×¾ D^"erV„˜¶Ã.eØ™a¹]x§HYúGãß’ M&mb½6‰®ÊöÊ^ K ¯—YÐçå°TVM £‹‹ 7ö Îw·†ÇÁÌŽ 6ååù1ä[ð;)[¶æ´•kn¶×Å·¾5àÕ”æ¤pú<<:Æ‘¨–eÃ…ˆ9Àˆ†­åYE•ÍYz~Ͷø»[‹`ÍWân‚Þ2Ìlâ ÙOкNƒ^}­íß ˜•'š^xªÐ“†PÖ^j5ÐÊ)æH?ÊV­ÓfUÑ”"ËeåÎZð«MC¶Þ|9#³šØ£ßÍÄÚo\?hg¡g¥Þ|µØxµ¼ÂÔË×˯V–^®¼n.7_­€äµÈýLï|Åx¡Y{þ¡Ð.šþ#´¯#3'µb;ïæé2ð’iÔoÁ9õ¯ÁÙŒ\SZÐdòvèŒ÷…0ô¯í=!óIó7˜“»}Œ¬­ PÀ |œ Yú¹L cmÖ%ªýû*´l%馘RÜXIÉ}XD5a¤ÌÙ(/ á á7F´F·ß ž)»éh€(í…²3¶÷ÜC7ž1Á9Ÿ™Yñ´ªQªoþ[©h2lxÚ(¦»Ý u{ì4ÝsD¿-bXHM¬9ëÀ`W’ÁÕ9q½Pâó¤g,dÒÒXX¼LQ)‹…qÀZÀ‰LÞ "ð¿J6"`õ—™³7¬$äÁ¨Yœ5K÷@+ŸkÉÏá‘)-¼ÿ”ÆáÒŒ841÷Hx[šoËOŽ7¡Ó˜[.Œ¹¢ˆXÎ@„ÖþÍ¢bëüp›Gÿ3~RýO£±òr¹‘Òÿ4ÏúŸ§x˜øýÏ!ßÿ8†­ÿøˆœᯃöq¶b»{°×îQ$Êw{øãˆä±Ã탌Z‡½w{°DñA'ðÿæá!üÜ^˪Õ^ß{×ÚEϾÍS¨Rj·*>`È˨´::8øQcbB1ù«³õîï¡ÛJÐŽc’È0rÕ{Dq9?jvé` x¨ªŒæJ^}á SˆbøC]álª*8gæ5Ϙ6dY$ ùçžü­ZF"ËkIPwM+û „íÙ~‡Çʹ›ÕQ û£º#56°ç]Äý«\TÂzþ`ÛÚbïzâ*þ q‰nm­¾;mï¯õÚï:]Ü_И¿œ ˺uÖI {=ôÂ*4¹Ý .Ä5:ªž¡ÎG»¡Ÿ}£cÂáæã]IáȺV6ù:VþcU;ôïÙ܉§2GùeÔ³7úM"Âîno᯳ÑÝðBc=ÂY0Á÷pÎGÃi?JÍg4‰ÇÑ…¥'KðVÇŽþ=©‹N]ªD¡N\õo'JvD—SLD>ޝ®-šh¨µuÑ×é8BiÛœ™z^vC®u¶ÕLlXØ~aÝÝ0Ÿ<…—­?ìM€î1‡2ņ_Ó·ßC•œq™Ge•ÿ.]¦K)brwì9ŠŽfý3w•‰=r|ˆ‹& œK€L Ȭ\ŠMÊU™ã'·éE½,Ö¦<Ÿ<µ¤r>ŒÎ?™@ Ö>R Ý£Éíhxú¹Éu Ôҟȵn®@º÷œ{SŠ'T—q›XßÛ‡›­v…»"oâa|sw#nãÏ0”>^«CM-Ó^wzçàIô¯»hx©‹<ÄÍSK½v•Q…#½ÁÒ›TÑ·ìËu xꉳqÔÿ„*b\•#FܤŒÇ¨zÆ/q½Nà´@“=}™¼8 în†<ƒfEµ‘:õÑP÷"UÏ(7o©ø§× \]ëMMÏ%Nö-겿éhªu9ØvŠ×ñFäï«~tÔj·³›×n[®ƒ 4ù¥äm0ªÑpð p1€­fÝÚ–XÓ4ØX°7˜ °ÔA]TRró‹¶#”}`lpÔ÷‡WŽà tÕ¦â1,¸‰¼ 1Q@¹Õ‰6«ûjcnÒçV¬êÑ4b¦èAöޏGxSn…¼Ù)397!kŠŸÔ‚¿Û>({º¨ST=®.Ï7ô&`ðØ?ĵ!á÷&0½E›3ÒÚ` FdžP-è<ºhŠ þ;É’D˜µ‡b)’EöNKBdNýš{¼wÃJ”–£ÔÚ0Ù™ÿ{os«W=lo¿íý“îÜÑ•ßñNÖ¥U‹ÊÔ°x}¯Ç.ÕÔÿ 2¸›|ûù«ú•ÿ«¬'ÌC·¨„Kí[Ûщ9†ø¶i­©K6慎i×Z™t­™,_ŠêÜh€º“…tLì–%;âĵÑå¥d¥¸‚hÁÀ׸ô-èRMˆ‚0pþ‰Žlr$  Ä!-ma*yµ°ƒrÐø‚QÞ ;/íßÖãÚôÚ¤‡»ÕXp¾Ô !ÁˆD*.D¹ÍJ/± [Õù5^kKö¤ E˜à®ú¾wÄýi(š•+R]Êe6¾û`¦mSA²ïkªZèå2ñ¢²rÊ"¤à¸é-5ªûÎu†HÇõªAÊû¶ÀZFÀàGÒ¬äÓ€ÈSU/¼åH‰ÍU½~iNlØ1îòuãH[.@’K ›o1œ_[wc)‚êë7k °‡Y;©˜áòÅuFÞàéÊ9E@S4ŒdÊ$4†ôÙDÈÊ“vÞ­€ œ;ž«ªrÜíNYŸðPgM˜“ˆfÅO)Äøa´0é—X(PY\êU9§Ä€ìm ^õ§jƆ£!НÉVˆ x µ¶@àõ§j’´nô•ÊQYÒä)Ï>9ê"Bá‡R-á<}?‘¨^ˆ¿4˜Á†%BÉ/“z¸øDzfÌÃÚ|ƒ”vèœ\Þ H¬±ÍtP‘5q;.Äon0U²ºÒ¢þß©ô»a¤å/Pí¢Ý+&ñp!xÙ—L y’o‹ö¼ ¢è'„9ƒ‚íå®ãcˆ6< 7œKé‘Ñ–Ø7¼Ž4Bjè“x Ç c$)tà ñı±¾8¿Žsë'Ó ÏŒ|`¥ê8‘ǃÈ3È·£/ÑgE"7+ØH÷O¿™á¨hOÓœa’†”„œ$&½ô­ñB44S6Ô_ú’1§‘Æ 1|†wæ£0“pJ8ç»:4™¤v=KÒæ–JX,DQès7ˆ’!?ýKD,ÑLÿÛåa^¼,¾ô1(ÔG:)Ù= —ÓžYíÏ»Ñ4Æø íi¤Äí~3;z1~€I äí­sbpHn÷àí¬Žëý ÛíQP.#8qÊf×ḇ®„¨ DÓ)[ÑÐäÆ4‘˜ÒªÚ–eºkÀN|#CòÌZ³W[?ŠڀU7@I»~dW%Ö`éÅC³â»É0ûýñ¿HÔØ[ïì½è€×2Ë´®Çñd PŽGÑl}ó òû8Hzlv<Ñò{¯Ã¡$…U3¶èÃÃôÈ(=f*Ò\÷MøñöpþÞzwtXo×ö¶²4<:-‡N_nÆäI\=d{èWž[ »„Nä\»FM/o.Ìà†é‰A´ÙÝm“ëlnn`Ô›nï ÙnCÇßþIäÇïñ÷áŸáiÞ ¢Oçúæ6šÛòÍfg~âp\k5²¬³X Éù×Én•7føµ>>ôµ·³Àt6ö6¨Üžü}B¶y²ö;ò7†R‚ÉÌ‚ÒÛ?Àt¬ðÿúTß%„öI·ýa“þ”uZ{GÝ 8ÐÛƒÞ[Äïv cu6OZ{]ú½ÕåÏ[=þ½Ÿ3mb‹@f[[ÝM¨ðnoƒÁo¿×ô;€NWšê×Û½÷UñgUœÈi;¡ù:¡£u–E 6ñ÷û°uø&èCfêÒÊžü}”„ œ„i `·;*ÿn†ñz·w¸ ¨€ß'*êÕÑÆ6ÌieáGݶñ_VöÖö×7Ö€ý¢6XìQe˜éí}x×9„¿Ž1âS·½‘儊`Tû¯?[ïÐåðOê@w혾ínv·²âFµ©ÍîÁF{ °Ú•Ÿ)+Ð%ü@pz<+ÿ^1¶ä÷ÁØZYíuF±¿„ßDÀ­.†DÁèbïÞW¥|“……==)èéMA½(`Çî«çnòÜó6䥭ŠÊ¿…j‡ŒÈ1+¼è,†"#ªŠÇŸQ½ÂÊaK¡®zü x{g¾a¼ÙÛ€=£b½ƒµ;G¥cÄ⥂û„û˜ ŠtÖkÅÆèÖ€¨ˆÎ?äèó(ÚxºWEþ¡ç=XÚäîÈ[ò2M¯òTT¢•#^>ßxÿ;eR°2ò 3Z)x¨"k_öéÉ¿YÈ”÷D´MŒ®ñHq^ [ @Mnû­w ÕÄè® r|DàÓPÁöä¡’îýoò,BgŒ!Þ²}ŽêFÓ-œ‹ŽùgfÌxu²kÌW2m5/i ô  C»œ‚¶3msþÁëÉ p!æÃfd®­ÒÆ»=¼ußp—u£© 9¯Ðl–H©•4«!’yQ-u ¹-³É#¼`6yD¶²4yDMÍÛM&+βPàÁ”•q¤8“׌Ìž å2ÜšM‰>eJl`S%1·G—9ºyÁ•«,hª_2Û‡R£Êàˬ+«œpoêl˜„}£-Ê ´Xá7rÀˆ74mÁ(/ý+6rN¦@}8òÐ+ ƒe8 GG1ùþ‘Ì Ñ^¹(××:uš#ø¸_¶‚1pü5šwC´X´.ºñðœ×Û‰#×ZˆÅ‡d8»Tñ£ÿ±:QVƒ-™bÍe?¢s¤J(@{lM^eq™g}×ô}Çôd”bÝ,½A¡ˆ,2¦O©¡I’Zc @¹SYNe¥Ö6¦´ŠªùXã}®¶´± ýlµF7ýñ'I÷—â“;K²g2`‘«0•@lOò€™ÆWw£»‰¥‚×[ÊùÊz’øØæäƧý¦©Dó8:2© W< ƒ_¸/)¾\ ‰\ºãK‡Ð}+äÎÖªö£¡ÒfˆC¦Ðç±Ä% òV,Y¼Ïv -Rìw]È'ÕµM‰nð„û#GC!çËüUÚûo@`b™¡H{jØX/záÚåazc©¨à/7ä Ð‘ÿìüá˜$é~Ê‘ù:«f°ík[6üÒ‰9ˆ K 60ªrýÝa½Äàæ̪<{cš˜¼hðu…GìPÇ€Ö¤TÓMT©·4À Œmdáì<ܬpÿjV í£T'­Œ¼ýÅßÁdó‘Úî¼¾¨!ñ­6øÂŽÏCÍq @U’Êáµ<}ß+M”|Ážâ޹½g …jýú,ÓE_õn<Ž>ÇÈ;ÌÈzj`´,4ÐVp~7èKIoÿ;rä2Z2í5pÞØóð&Ë6w_LM `އ…{p_4¾6Rh¹éÂ"e†“&]É ñ×¼M˜JZ£¢—™¾è§cd»a˜´EéDÓœFufÉP¹“’Ù¼ùižª]š¤S…{-Ùõæ÷EmÏðo.IûuÙ¢Ç3¯dìùÆÖ8N)ñƒ4™ôooÇ£¯1…&U&'ܶûö1RR‚¡Z7Ï…èÇƒŽ¸)B7ülô–_·‡e8)ØÝyx0ÀÞ)‹ŒÃ­ux ¥oHcר×G°Ø°‰†ÿº#´©£*ïÞ}Ø–€ñ9²HŸÁdrøZ0÷K¤Î3¨¢*”fðÿéǦ'Ê0eLñ‰œ?š>çPÂL}\ŸÖ-¿†ò¨[ ¯ž®6ªí}gApwðæS¸ñy^.‰E—£½fÅ bœŠÿ\D·ÉIÆv-Óq%}õ“¯RŸG¾o|¯×Œå! XáIƒ™àô‰XMÿ0úŠ>Ÿ£Ajö=­Š/•|Ì~|²hXÃCï9c8êûô!WáE9ëk| “”ôª}ÉÔÙ`.[ײ«.1nÑ—r•øk_Úû¦|©oÝf7Yjæv„Šs¥%:Kzêz­_¨´ºäÅ…ò÷||wû60<>…õ¯ð îë«=Âð3QtK=NødºD9Í+¾ ¡Ü{jM÷ y»Õ|ežôåDà„A±– º‰\ ™Ž#!˜”šá¤I£x#•âÐ+Ï@K£ Ôê ®HlAƧ’°é{7œº‹ŒŒóª% °Z Îuäd ƒLÂRsÀ¯Qà…Wdë®Z>î×l¥P_Ûå‹›hƒKM¬ ®áΰp¦ø€'ÕQÌ ÓÓëÈPp†Ñµy^ÜŽ`XGÙ×y~]CµaLÙ£@þDeUG®U}}ó¸%8,¨µ_äìN¬æM8Ð’Ü i_p"/»J%ÅÏ,mѨ$ëܱÏ"ºÐžU(]Ä^æ >vÂÏa„’Îçdl¼{†¾m÷+–UçFÂj„ì+„,‘%ç &Œtõžô™IîF¡s;¥y¡FJ{åÑŒ˜ç2#ðî/J¯¢g|¢„°¸X…4q^bØŽR$ÿ<œš¾Nx1¢ôF×|ß”ˆ÷¡u£…pIFnì|~QUy°RDbµ†:ßgŒ4c°j€ê*Üy% †Æ€yüýZ÷àvRiîÝIvDŸ©—GáfÖ,6GÂVÚyáC–…Òºu€7Ôyu~Wž:9¾ðó}N8sLž@ßüì=nC$_rŒ’eë›P_9V>Л“=Ôq¥|t‹Ëæ=ô…ê~Ï ¥!F&o]yšóZ2P—Ð,nÅ ÇPCìhc†S&uö–}놼C=2öP`É.¸²£¬ñªù®·€ë…v©Êžw³Úb‰vÕZc~‡æ jf–´‹°—0Ï®ÅM?…wÈÂÉŸò~°¡7cñ¿$ÙÃ8Ñ&<ãÎT@¥e4½ªc((5‘äz^,þ(¿GåÓ]ywy‰ò¯:Òô9˜Ê û Ž%å£-jìÞâÝþÇwsâOYÀ½„=Ñ $W×ÐìWÿG+IºÐÀp 9¯g´ºŒ=dʪÜðtï6SD¯A|SdmÄÂÝZ÷RæàkSC/á›FS?%o$$þ£C P-wv¤(Ñ2×Ü83<?l/'ÒŸWªêüZä=dÇú.J…d´–«"CÀ˜êC!0ÊÃ!‰ë! îF ã•(ob82’Kº4¥ñÛ¬÷²¨<çvJÏi—Ÿô™Wh|0Ih­P0"D]_-ÄpËšòÑŠFûV-K¤•%pº??(>xL Û©r{agh-oX$Ž?I]º”'ËE®E’vSŠuAu]>ås5N1'¶O“ÃóÀÖôðRñß´_ùy›ÂÐø¨7Äa^xú(éOÐîíå[¬Xù‚Ç åö6’Žà_Gp↚㛾érBEš±EXRùV‚Œu§Ë‡×̉+—kÆZMÞ†ê×Rš^M¿ô’NÉiˆ¾8ë âù‚­7³ lGB™iT#3þ]85d|®]së{ÐÎo3–&ÌM¼m9oÌãnr÷WîU¤½4¤:w4ö“8j‡¿À*¹$OKç.“à;â%­B-ðMàtwQú[;«RÃc ÌœBÀŽÔÁ' ½Rjx€g?9¹9Ü!Zú()U ?ý°S/ë˜Ûõz•L—†¿DHÚ|ÿܼ6«óÇßeŽç•ùè[\V‡«RËmq8ò\OÂ'¼OŠhYí­úÙ‰oˆä §Ì˜V™5xà±_;*Ð#5µŠlC»Y~«×SfÛF1¡Sð ó y_3í–v˜-ù˜WtcìÕƒ¨®ë’uÒQá…Þ葉“82ôA§÷×Ù1€¢:»ÐˆgÕÙéÌ ¸Ó=-¤¸ËêéLŠ;£«÷ÑÞÍ8e"O…ØRxµY.À~Ô´”C]E—MuÝp 8:Ã,9&Å(ÿ!!—¦ƒlÅ)è`6"ºj^aEvWUÝSš†CúCúžÚQHØq¾7 ,ºl§ŒHgŸoüPÒ§}Ìàc[S›Ü0¿v<؇0²`à~@dðÃü™hG^ ,´!Açõ…Wå+Ù¿QÁ±HÔ€EÇ&‰?¤èëu|Fʓ䴆gOÊ9{>M"ûÞ´†"ò-'¤¼·¬ä!]â (B•ÄiÉߨ:v=íÔ“¹èeëÖ D²¯fHïZö‚ïyÀÉM‘ÅUKVoD Í«eX #ö$J´T@LxÏBŤYôCèãñÉ$Æ;6d”;£ðšâAYÂM€ ŽÑ\?xº ;F£š²Rëhh—7ùlâ%ªäÜ 9D‘u/j˜2DžB3TË£QlÒË™šôùÄóµzPÍ ÆŒ¼,'Ò%†5‰9õL=££GÌ®é*]-bNmSŸ¼œ. ¨2FIÔY঳t°õŒ”#$Ŗ̙İŽ|—‚`&Ÿâ[¿'!ìgãþðÜt}«³Ã[€k Ò‡ž“:àžQ–dYuhp£ßa¥£°1·«’œ£¯Kdø™ùr«`ɶŸÄTFÒ)s„öš+oD k·x³f‹Î3äQПŒHsH#'i^ÓY(°-ŠÄeÏ{Ï[¡º|\|µ%ål/2^‰u( ˆ–¯­>ÍÙŽМDz£n‰’d"öH1¯á¹Óìm+m0IL̳XOf1ž—ÀñζÍÇr[4ùœ˜Éd¢L|Å™¯,+†—Œ ›\ð ªj.ïžÞÃb£âæû ·‡še`bv¬–³,3E£ïN†à®è"–B%ÅþeצQè&ºˆý9xt¥°d±’xH„¬>B8 êäT8ó#=þM̳ãƒ÷@nsóîPƒÍtƒ0b·ZØ]Bö… Ú7b)Dd9±Ð™þ!îÚ×ä¡}oå.‡qXŸ­bdû´èüpÎA%çêÓn< ÎJWy‚ðïy\w™Sh mÞÊö¤¢HœwKÄ#_žRˆ¢ Ž­Íð¥2Ý¢›¸Fjƒ lþl5ùv5ìã“Ùk¢æ5á ^-6Ì’Š)¦C6ÑÒC1U*›Ý jM£Ðo9¼P„sÑ`úW¹ %X%ë¬YM†$Ïç6ƒ7W3Fš0¬yw‡¨h<9~Æî@(Å}0à¯8ÏcËêÚ¶¡—ØOvÆ£Ï1å<@:£{2(Ü8áÂ݇„*÷v:«°Ôéº-)Ç9î_†¬*¤Ãiß§²Bugd@¦ߌŸQÓŸ LsŒžFÔ""[äô–_Æ# º(ÐYà@’ú ܨ±sÚ1'Ã:Ç™`0ñ†’دó5€ó$]ÿŠÏÝñ l~ÕìÔ°@ 6çn²Ïô¬ÒòçßY«ä2Êé›õC…åÁNù2wÊ-­Ê9Xæ‰?x!B?A_‘¡&R¶PnÚ?`¢´v7xîÄXé; úá˜ò~=¦ß#?GIË:ˆ·Þnª9‘©ß «-86‘ÔêÉšP¸Ú°~Ža$¯ÐÊòów#äyJa‚”½Yõ-PظÙi_I5ŸÖutþ) ðÌóa’Û3´Ô›‚Ê.kë¼…Œ–Ä’ã“bsùË@·°µÅMd(¹0lSjVÐ{‚w¦Ìi¢€MéÊó…*sH2Sµ¦ŠçoYÅþ%J_ê☠|«˜•§e0p Þo<&JyQçîvêòª)Û‘M@GÀTža~Hv¨RRýksÂ7¥è& !í~ƾ®´'çÉem+,3Hé£[L‹åDápKJå­‘ÿ5>ý—FP=°ãà©bWà‘B¤‚çøÐ9¥Òê\{ŽÄlr…A)çæŽ¶æ#¨†&F¸LÉsfRcƒñÍÝ ¬ž2mˆŸ5ÐZ¤-a†ÅF¼ã¬…“!]“‰&Så×c­I¦²n):ÏôúŽ8X<ì_DÿºëÓ%¨?`ì—¶˜S±Ca–çÂשÆH1RÛuFÆ¡séGw%Ì$NP‚F¼ \£\Å¿ˆ„Î…í8¼ûÌn¼1¬Š•ä–ýÎvTŒÂ Ñ›jÑ} SÈá÷¡C‡B6Og§¹ž)Ó·VÜehA †ETêÊ!¯$¸€L$ãqÌòz¥“J€´¥SÈîøNZéfÀZ-~~‡êùKqÁwÂdÆö?ŽâhDŠ&š=l×­iÏL€ Zç{2§P×G¬;‘¥, kœb’ QàÔ¾Ÿo>G¬g¢ëʰi’MFåZj5×VñqUÔõ ðóñÝ9öNgWHâ<ìp•\t‘Ö° 3sAxK6’lèk’˜›MöQ ÐFåÀÊï]koaÀ“Ö ý¥?¾Ñ‡å,´:ÍL þD”È‹R½Ëdé Ú-„;hÎ]âTÓ4ÎbT<Õá¶'ØåÆNØùßü ”§¹Ö†H÷?…ê´/€jí°ârö*¹–<‚x@`|C©ûÖßÿÒ7bÈ{º£„Ó0=rŸÎ(sÇg¹ɃΑÌ;µè8ïøÁaRÞkBn˜‹ænŒŽLïn8@âx*ƒ‡Ît—õλ^CúýNX ©¢‰ÑØHŸ1“ëHóÓ‘\„f4yo§`sá~åm$*¾ÒfB 5÷/ÌÙÈ>nR˜æä²:‡Í>­‰ã ‘ºY%YçÆ³ÆG§’¯Ptã¿§SGÜ_½’ÅŠ_À’¤vm1«P–‚Mä¹Ö„B¡eqHAtÜè+s>}I‡ ^Bô^oâ‡xFÊ‘b {G¬ÎSYÚ+E¬ Ÿ¯·ßg›“EË Ù¸4¥«.&ƒüÆk©Áï´‚M ýÌ&ø™/<*rVÅÍØl‘YÕ‰«xú*ü‡Þd<£®wÖªfø6zGÖÑ 0vsŸÜ^åG ÒÿÒ)b!gáqLvºéMeÃh¼<ía¡š&8¨×dÈO×|qÏd2¿€oFBøTÂ>4eZ·z¸2kâéWà¦<ô Ü^÷1Ùï_ ǽž ÅäÙHæ:£*wpPÁ¯é ï½&Ò9tèDBÎÉU<®üõWﯿ@*‹&ù)º+¤Õ¾:óÞ¿¤pù°1CëÄÅ?T›*Ù´¦eSa8p»gtC)¶YV^·bSœ”‘ÊyLj¨Mæ€ù`]á«K¼ÒD¿ÎXŸäôHÆ]­“PˆyH±(ã®`¶F--?f‰,IÕ÷6ëÌ\s„S!c‡Ã9Í:jˆAœÜºÇsr–ÜÀ©P¼x×ɰl¯síÑ u$³áÍ\uÐUg}beš€#Sn`N>G“ðq^°‘[JöÒI±6ø–!½c¤_ÙN…G€÷Mïž´ÈׯÔ*™—@pòÙ–s¿êÐ8™‘rjç É9‘Ï/“ßÕc”OŠr†ZEü–F˜LYw«$ш7G;›ùK@Hõ‰¼î#ëxk¬(bU.Š—9°òNŽú‘Æ:¹óf=¡è2íz2¹»1ÝÐ¥EH½s^÷ȹ´.õÄ}Xg¡Ó˜^QÑOYÖÙ¸þ $yr&óìÍè"¾¤ËÍ—ÆÊu~=Mh©×=&8¶LÒ¥ÏtÂVÏcö‚<ØðêäMN-mEYDf¯qG¦ãT‡9dÆšùï@gj\…­KnÛ7ä9Þ?á 7¤6ÐÕ"µ,Ÿm~”NR& É™¹"P–” ˆfÁæU×°ãÏEéÅ*‚)M…ijv0\CrÃÐ*Êk™”QáU™Ò<æ>ãÙK²†¨áⲚ“ u@„§X'YÎhÍv (à '´ÖŒÆóäÝÒŠÁ Y6eàÁJwOW‰ÊX̳ñÓ³eAb³Òß c¢ý“ÇÜ…“vO’^µ·y»nœí§Ðzˆ$ž°(g)ÌßúgƒŒ—Ç‹B.:åE;Q@kðãá'_i&B¤—Ù<ç ô¨âkR°âC‘œoúµþX€Â!Ñò1­Y *2ÅnÝÕ‡­BQbHù«M2HÉ©ú”ýõì›ÊOùT³ú›£wËeb÷¾s¿ 2÷ JöPM?Ñ×ñã×ÚåW›Q«Çσt{"D]ù!Og&òo„mÔÿË5ªXqT¸xp„ú0ÏëyÎ5R ŽJ J~h°ÿ:ë_üWÈqÎJƒ ;m)íø8ºÄL{|¾ŽFã°gÇXi/ÈÏ ´q‡ÉÈÕiõý¬‚.At¿æ,¢ƒîhÄ) êa3íŒä®³(È©17h!?2l;ï—•çªéSY@\PÎ92>‡éË“Q­&+îwŒŠðáÞ»%$Ôžø¹!]È@Iƒ ]]dcÐ _·[3¶÷Ä@Wun¡{ãQÔÔDêÑðBi.Ò Sdˆ’àeu»r_¢ø~‘tcý&0R,&X |YCýùîÌéh;<ŽÆ’é““0ëF2ÚËÁu&ù‡?ÍÕR:ËU‚Ôp-OÚ;L¡hF˜…åiN m›ö Ï ‡ÇZ ÃÔsÿÇÿ ú·ýóOµÅzóE÷°õâ3ÏŸšõË@ùû< ð¬,-Ñï—++ô{¡ÉŸñ¯—+Kÿ§Ñh,¼|¹ØXY†ïK+KÍÿ#±ÁçÓzñn`àý›Ñ$TŠ]>&R~’‡ ¤{´~øîHk“H§ÛÚkŠ’Ø§ü¹p*9ÅØñ§F0¢Z öùƒµÖ®IÄEés4¦B@IåôªsžZ-Ô¡ñ©àH¼Ó¿‰&b#º¹‰ÐxÔ¿Àý¶ìøª?¬Š÷£ÄÛø¢O¯ h‡âkÆÑÝ_<ÆŸë´úƒ8Î0î‹õhü)Dßê™=êÀIrý4^åŽÅ(…%JÑ4]N¿à+®EÙšø¶, [÷¶ ‡Ñd‚¹¸Ì>e†0ÑYÛ{Ó‹ôÈTŸøÏöþÁ^»Õ¼™3½{Þ ÖÆWw:]º¬Ùémnošp™@€4<€Ö0îžNëtö,ã €TE%I¤œÎy¿Q¢ï“–ðσ»ñ­ NµÊ¿×T,#¼#þÑ3OqPºê*&ð‰ÒP¡'ÏSÒêòUüx‡ŸKxò+¾Mä6 AÆßÞ0"™I9RA­Môs¿cgÒgø£¨/4ñë{kÝÿ\Eÿ‹ÿû£}(кˆ_# •*ZŽ[ãÕ9Žö%ÆV)‚ˆ]V³f쟨õ5sª¤j§œèA6°aƒ¡ù PŠUÒ‡W˜΀¹áb£êÁ6¨ê^NÍ6^#¡¦}„[{7¤{ ߪFÿ˜¼k‰$ÌnÔ:_ã)W‘eŒ)rˆw¨„×Bö€ƒàŽÀæ×èünÚGßïîy½Ô:„ƒçG1¤Kx)aÙi OKíêÊ–òèÄjÈx($l¨ÛòCE¯$CÝ‹‚@Å<ûÿôêQwÿ¼ý¿±¸ÜlàþcËMÜÿWŸ÷ÿ§x˜.œý¿·][U±]­nUtǪÍ?ÙÓúw_ãAŒ!§ý2€Þ½|[[áíL­)sO^Ñ;læ†åÙCZêögââxgØdzÛ:?$r:àëCL’)½{åmÝßÿÆ.ºIÿS¾ØÒŠ&Åþ÷¹Wðe^à_«ú/¹µº•JÎu;á_À;êF ›ÁæTÛú¯l & $/û?GM¡Üpûiè n¾ëŽ¢¯çÑíTÝ#¶Âf›•÷ÂMè¶ewÜq„w+T‡Û—b{uAf¹ouW9Ç^·³º`”Ø2K,Èd¹¼†Ò‡|™ˆ²ïfí—øqK€Úë$m˜GΞÎ탪«ÑP©“[ÜÔqÒ#µAo* @E¡âlTµY"»0ÏGœ,u“SÒ¢„Ðí8B ƒPû_ˆáhH¡[¬ÁixæþK³p7žbòÛhÚæ<Ù‹n±¶\{½"jb_ùËpª’–úƒ«Ñ>ÞàþR»} 6¢’ºØ ß³c‚xQhÜâ"¢Ï6 p¼ Æm%Jiöi§†ôº\åW4Gê^Ä) ©Æ‡Q^Ìv’»ùVI×U²3F1Ê‘dIÌuçL•6,BóËMëKžóûõ9ì#Ð\‰‚)ð/¦<”ÇåLX¡ÓÔi“½·á[‹ô\º—N--0±czpÂä´ÀŸÛÆlláUµmü°­Ùð/ã*â•à¢_´ìb‚áF Ù¸‚¿-e47Ý­Èñé÷Ü‹ô{5(úúÖÛ=k XsÞPã‘™hT­=®Õi¦ÈËl£kï$ÓM«ëqµï"¥µRá |Ë7ŽãT2“ÍBH­…z@êi&RO½H5ÐãAªv-³¨p iX-÷®&¹mãõvòšÖm"ªÅ=é¿\‘ë*¡"9dŒI<êO¢7@ç,É0B‰fD5‘?“Þ9ãíKñ¹mZMÌ«¶ I‚Ÿ‘ŠPûÏ pxùÌa𣯷ƒø<ư³$]N¿Œ„U¶,m¤Ûíš wS.¿¯3œ¤Ï-«Ï¶‰¿§­TO%A+ v¦WÙ»œ† a%ÝV–ˆ+>S-6iÖZ‚¯G7ÍäáÒF&‰,ò}˜±B¹÷íG0Àz—š6‡à”Þ›ZƼò¡EIC¤=m“ƒ ‚1$å÷ø˜4À3ÞÊb(–—z¹µç‘¹Ó‡÷m×5ŠÈšb¹¬A ñœ.á% \êÆ{ü ÷ï÷8>øAï[øFè¼l!Gáççoùxäÿ?²øŸçÿµ°´’òÿj6Ÿý¿ŸäáuïÈÿ€1µ76«ÊÁ·*ŽI>>æDsx ØÛhñ-ÕôAà'ÿ[o××Z–Ó2óppLƒ§±î'›…g÷ÃŒQ3|þ%n‡NÇòtÀ÷wg; |0ÎJª—"ÎøŠˆxo9}‘,ƒÕ÷kgßjåÄ !żTûP¿eO+™i)¢0!Ò¯M=#Þ–Á½oÚ¿ƒ1}Æsü½ô«†÷±Ùí O&ÀgûËu¨}IUW…ò £>MûŸð6 ùSʼOUÒmé4"T}oçD‰AÃwWxÕq:î'ˆb$Ê·0xµJò‘Z+à 'Ó¨Oã…Ïä[îæíxtqwNOŸ¼ÈŸ c4û¿±³r«÷áðÃVo5¤YD¦hYW¬èã«bnoî Möª"Zη‡úÛ|û–ïËï Ÿ©Æ£/Z,VdS¿çùì|4¸»†ÀíÍ N…®·ÜÜűʃëdþ¢£>¾¾¼ G—vW{;º›D¬Ü#e ,£*M ¡…øczû‘cœ|wßu’ïä°ŽaežOöð|‚FdMåÐÑí³ZNþ3¤d‡ìL’¡G˜(m4åðÒ0àm"é06]`²9Ÿë ç÷䄃­x‘#…ª!N¤÷ŒYà\Œü·caÕ¾ià°Çº[’î´è:>l}˜ßãÀÃâ6È™–¢I@2&˜?Z6å¨5°Ñ*²0<;û⪡IJ¦!CÇ áMÿk 3fIð´#x45Œ-ËŽn?¥NÙ`¨,Œµ´_¶Gšç j3Ãõþ„Ý,ÏÕ%2:^*Â^«‹ƒhO#œvʃ„SÐÑèvZ¯Úâ|Þ޾~Ž”JºkOè¢é‘ yg²?fI{d*¯É ºÙ<-µ¿a÷îLÊvF·=ž„­µÓT·ÞѯíÍýcúuØâ_(Aî­µ¶³ó( <¾{]@H¸'üõ}t [%®¬$a crs}[¶Ì Ö8‘C}àhh^3]XìØ*_`ÒÞ I7Àr ª|éF­åpˆSRΛ2¸ ì*LH¦ÒI©¼.è7óØ››Ú`¾ñæFöiE6ü~ìNvI̵ҒÔÉÒés °÷k{Ì"3L Q>¨æÃlbxÕú¤äR…ïð² ~B²5¾Öl r›Î»P^n A%5+ôWÜ › ÎÈáQI¢ž{­ñ™t¿ðlxœ´òÈq+ز¤K]«øÒ¸ÑsD¸Ê\û4JgˆúÏy |H32T3’à9‹È;#‹º÷‰Àu£rQJ!·€ŠƒH Qwšn%lœØt{“I·û>º ·%‘bµ˜¼›…j5ÆÄÎ…ˆµU’˜tºªñd#7‡X+arµ?†õ£þÎêQŸþïìiï.¯¬xìÿKÏú¿§x˜°]ýߺ{z‡k.:ªn¶ðÎCïÝáæ±Ò îJÕ`XÐÜÛ@•!2Àž+±ìmüêÚC”B a,¬TÜM4Š„ÂãBêQˆ7°¥S¤Æ*™GÖ8ªͨy\÷¨Ï£óO–Ö `‰Ším¥òVº%$õ.≠"Þ KèTiM¤ì‡ÀY•‚zñ´ðÙ’Ьá‹õ9ò^”Aó¢¼Ð ³+ߤr»ùv.éúf'H+ã¥9©H´ µÞ1à•L1¥ìl%çDÉ#µËõ)±–×t{xŸÓUèëÑV†¢Ž“ãx,Åh¢5!$R§§[ÐST ¿-5ÊðxBþ{[úT%51%E•WzFÅ·hêŽx]Ãù”€h–ni6C$‡-©g¶a›A58ÄÜ'h£hä9£f’¤Øo^:J?¸”^ú_½\ðly —?b—>†û*w ¶Í¨ËZ{)T¼Ö¨ØË˜²58\äu€Èî·ž½–wÅÈ 2pk5§—»C˜…ûkړɋ۟׿£Úgÿ>qüß•…—®ýw©ñÿ÷I¦+×þÛ+¥L¾,)©EC®lØý[˜pia5Ì®i­}¨‰Ö²Ê"K)ûì,6מàøöS[ß|Ù'kkq4Æ"·X‚í'³ÙbO¤õCFp\h@–ñ_´/ #ë°ç Ù'¶‡mÝÝÞâ Ýýß<Ö5$áNC xb@JúdŒ+¦nâé\áÕô$οÔáǵ鵴ë8vˆ*çÍ•Óù–8ã˜c<â)}ÎÓ»ÃïлñèKѮͩ¾=…=½ Y¹{c¬_?+ QB ™R-Cš D9ƒèî‹Ç²çZ]f»s‚—Ç´;‹°dÑLF®m ì3IŸ?’Izlš¤ š‘-»oÊÓ¤ÎfMeѼ-ÙÇQ]³² ÀKˆåº ÃKÃkZ͵²eËñ÷ݲmÎl¯]Øõ:e× ê"DÙ¨ë”iýR’Ä“Ä0ÜjkW¾ýÖ§ÈcÀsl·°)ÇJŒb¡‘a^ç I(Av=ge[víÉE «>ƒò'4~ íóžEà"ÔÞ˜ý{/¢ÕÞv±œ (µÉRç0k¡=ŸÆE²ïl¸þÉŒ˜2亥üSûñ<=bì]§Ãq ¿o¼Êô§{sMˆÔíÓc²ðHSÂq:sÖ5ÂÝZ[ßÕ$œgf‘Æ– ûó±Û6ßÏÑ“ Ú†¹f¦Áe#TÀŸä‡¡¿ !L)15zÌ?ÚæˆØ*48eØéU³ì†–0}ªIù‡§Bs† ko”z«0mÿ™œžÖþ󲹸œºÿ·üÿ÷I&AÛþÓmíǰ Ë íª¯aëðº‹ôÞ©Ëk¸˜ÖXÎøƒû|qaÄ"ÉS 4t#$˜/°FÙíEk%nn&ÃÌ¡óž}ñQaÐѶ ©’XSj Ì.‚Ñ{÷‚†PO\Œ†¬\À”xè°ÿ"IÚÑGÛËð “R" ÍCè‚«¬QöZ† °"VØpê4 bbhüût[n :ü cy]Þ Õ”ÖªšRJ©2o‘ª†@WhäÁ3 ¡Bæ êŠÈUÃS±ï€IL+åÎô[¢"Iü±¤6œL·ñ»&ópÂðÅöŒbîhUŽ’*ÃÎuÞ¦ë$8 ÔY7º6ùvG£q|NˆVtF:)î5¾þ_ÀçÝ=WtÀkq»FÉ#z͹PKÆ(ºŠ }P®ûƒK©Ðr{ûçë-œ±·ŒÞècÒ!_;f•]Dr®<¬ÓÐõð†ÃHæ{½àQbÀ0\¬:6ÚqõÁxTÃG…v‘ûð†™Ùѧ%ϳ:äË®ªÙ&̇aQ¤~šc2§£¼´2¨ &ÀAãË„s†Ø¦ æ–çYdÆ^ @®«“AãÌ2ŠÊ$­õÇ» Šs³oÚÝéJ(µìykÜB—ÕÖœËjÆ„r ÈàŒ’í‹è‹SÁZH4ù½6t¬ZTÙ†3BJßÚ"±K¦$Op„®‰ÉÝ9lK¼>ŠJyóûßà{ :¥{ˆ«‰Ç@_n‹À˜.p@ÇÐ%Åßû^AÉ f®¥mÞ…-#1­•´vaÕšG]µ‘´P¼±ä¼‚"ºŒ6áß"ü[ g½½Ý9Ú—BvCþn‘èØ Ÿ~ö$Ïîþ|$•®èvÖ2$XN€™£š«&‰c\ºw÷JK™a“dRR`ÞÿÒY­W‰øÖO„EWoè»'E„ÒOß'÷ªT–K»î^VÝ”ºÑ®{”U·™]÷mVÝÔ%6»®_E*ë.e×ý3«îrvÝYuWŒºéoÍmú&•A½g­Q\ñË»†R–ÒuD^%ú¦Àí>õTVë½ WJ!fžiM±*¿â–ïpyê§1â%Q_ëlàMÊÎf}ÀaWÛf”_vˇ:ðÒíƒØÛ¬/J°ëaŸ(Å(º×g{í¶½ ý÷åˆÝÝ3F»KÎçÔÌ~ Zð4$Òêy³9¤ xG^GÁóag£«¨,KL@› +—yùûºèé«gr%¦wÉõ=Ü×Ô$«zGë­ØõšhQVÎ@økcžälÖB-n!é¶öŠ[Hx'(tý¸ƒ•”°Ï‡¯oG¨8¿FíØ­–|4<Þì…? 6‹ B§ž–‚R"‘7CèÌ _‚¯P…¯Ò)BXþPÕZ 5 Ä¼Ü‚Dôÿ¥ͯYu/ñ( ò1‚<Ýg§’s2ÅÅWè]Œ‡©”Ê<’bÈÚ}Ñéwã4TD ¹H=™8Žxh-@w"ùrƒ…?N©nHW²’wo0¾ Œp›‘` BqQ¡0–ôh4 /m8¼Ðq¸?‰&UYv:‰—ŒI4þM”VM¢OSÎ9l;Õ­” Äz@†I4V‚lÍ9(S¼¤ÊáÊ/xè¼²ñƒÖ3Ý%‹ªìNÉDéÞ^qÓÁŽádÝRäì…;Ÿ9½ÐkÇéAå* ã>—¯)ª›ym4QÞçžpêÚÚšqmMÿ]‘aÁb—ƒùÑÝoxº¿çWcï7¦†"³‚îÌ:”%ßP–‹¥éÊ‘_»ê åex(+ɬ´;dßOc3µâÔË¢ƒZ *¥þ ^ L ê•3¨ùÆìÃzåÖë¢ÃZ ’é\é~ŒW lrw]#öļ0Àî¼ìØïÐÓ¡F^4ñÁªÚÎl‘W mŒ4R&BYNô,ÁͤÒyÑtÑt”FI3jHnD2ón£¦"jì.΄ojæM+”¬g I!5ú¦H%(ìª .ßÀ¿}oœ¯±”Ât ü0Âò±ÅFˆ-¦·*òw¢mÎ{·ß‰R~þUW˯ˆÿœÇëÿÑ|\œüÏÍ—K”ÿmáåËÅÆÊò Ýÿ]~¾ÿû$/¶”ÿGS”¤ŸÇåÞÛ85½ò®úæ=ÚûµÔE 6¹ìÀ1x"6"Ø}ÐxÔ¿À‘ém0ˆ¯úêx?ú÷H¼/údæ4íô'Ðþa]|Cv’åD’öh6™Þ$¯rÇ┚G—Ó/xiZ‹nÇ£ÏñÛçcö©°KL°Oüg{ÿ`¯Ýj÷DOy ÞTˆÏ”=[fÜ8õš%göFNÎìSt€9ݦ)@¦áÛÑ}q÷¯FCéâ‚&7 •@[^kü*~To@;” O&¥ƒc·®+m…Æ5Û~’‡›†¿ùÆ{ôúMšÇÑí ÎÓ¼ýúßÉUô¿ñ±'‘º§;Œ¾Ð×xÍð¢?ÎsQѦհ‘‘."ÅÿNÝ3:å»»êò ÆLÆ<ˆ†WÓk}ç¦ËÅFÕƒ lPÕ%¼œšm„ŒµžÖìx¢ø©Ä-a0»QwêPdQuiÊ|¶îÃÝÛ­ÞïPŸ“M¤µ´/½‡ðSöXUT`}´Ó u«@~p$+ý|‘Ãÿ=ûô´ñ?–_žŸÊÿ°ü¼ÿ?Åäâìÿ›½’8:ØK|=÷Þ®UÅúfoM9~þ=\>qáåî:yú|3Ìü/ÏMŒ$OcÀÚ¿)íB³¶¡|GGbÇp§³v1y'”ú®¾]^ªï'9Û~DÄag Ü`†/×nT’‘GS¯ë"M’«X#8¸GòŽ©é 9°â8ôÄõaTÿø›—Ö ݳ!ìXPâaé¦:Ô1É¿¯CÚ£;ƒ=‚Xö÷gun ¹4OHÉ;³åÞch-»ÑÔ^jH"Œc²Àºîà “Qó¼›+Q…-I(Ù6½ªn[ó_+ ùÇ&°€÷ö_3Bm]f[tKkÆ.Ú­E¾åÊÆw uq|».û÷Áw¢¦¢pâ Ô°‰¡J9Ï.¦0^Äf¶±r/Œ§t&÷áTã"$ÆX2LRߨZ\¾ +Ô3‚yzQV$r§ ÿµ2ÏÜùPæ œY4v$ȇ9 uÏùoüÈÇ¿œóßbceiÑ=ÿ5› Ïç¿§x䂳χ*XõAûø]/IÿǧÁVUtÿ^Ç@5>9\{‘Sáôž-÷±›£ý¼ßÁðÐHÅ7‰þuGŒð(€·ün}˜—ñˆ³MìÄ{Êâ)pŠ)m›ô_šf¤Ý;¹Ž†VržÖNPÿÊ^JÓþ'y„Àwz²ÖÄ›UqP‘‘“èÚ” ìpv`k•ƒJ¥ÇïX‰{ ]ÒFãéõÈR^žÃøãÉ”—®þ͈B0WU¾võo4¼ÚÝãx3ÿ&ŸwjhØ1ì‹%@„¶ˆŠ4*­8G*Ê î\™P2T5à9€¢¥×¨/¬%Vàc³L¿eUP#׊’£ƒæÂo”¸ªlS”ÈÆ‡dò°éL¡\•÷N›˜"ª©K" ŒŽ"Îñ/1ÁŸNèÀ’¨Ñk.R¶±HëGy £<îƒä…ömüy4å!&}ƒþJcßÕ’·|äJŸªŸæe<‰Eõ*ðºoÒ_‚)ÝéÂÙQ–úÍ ¹ÔƒÑwŠT—OnO²«ÓcLÁ=ª›“tŸÖ­ÇάÕéI{¯êIOâ'šÖá¡•ì!°Ê?}s¨4é° —.•\À.O¿©•™×|™ÐRUú•Oô 0@Ý= îÞè6Ÿ°Í»k’°’°'£‚TíŸÂeq[lmdOMîÚ(4³áž¤ª×üÔÀÉÌte÷ä~d©qòªVaèTÓ$ÚH‘h7¾‰AÃÀÁ_,j¥g4‚` X"O—fNüo¨qÆ-›È2‹\gâÁ¤åÁÙ8ÏïIþ”e®½Â3îïÉl“Âɽè-éInõìµ7+¹2Gýwuž‰ ,#F'ħ.TGp†!"ÓT}Eÿûx:øVÀ\R0otb.qh™Û/E±H{«âY[Jp¥*ñIëI1eöÀ|ÔUuQÝÇ­’¡™sQEY›—ø¬F!Ý¥Žt’MþÇØE[Ê«¦e8§R+éÍÓ*ßð•§@&ûªºÌÉ W9ûŒÈ0 Rä§p%ŽxîÄœvNs.Z0€¹ÐqÊ“ƒBÖp…ùŠ:"¤†)®jñŸËsEü Z© E h_Š4\4ªtMæ`ÜŸZ&6uÿj"¢ËËè<‰2ÿˆA CÝ €îQ¸-§¦+Mf@ïÒ>žÝb3ë·XÇ)–×}>šÐ…hbŒrti!®ôã;Ë]dt•ËÉC¢>kzP\Ñc[FNR¥½ škÕ“ÄTcI3‰ç[¼w ;K2Ò`b$ôäFî XµØˆF01Œo’-ÛSôD‘)ÝX0*åqÊ ¸šÄÀh«FŒˆù™âBd‡\ vøÿþf›_a…}›îÊ̆Æ5Ÿ_æOš3øÑ"4x.Ò†B»z“ÌÒÕ]oÂÆÀõsÌW [ª”Qeç/¸rreÏò¾r:ªB ©pv/tøÚ-¼Ø6}ÅÜÛ^*DvÄTTƒNfñt ‡ÂÑt0€ÄÏíŠ9ØP{ðåð’¾®-tÔçô%ñ¤Ú ™DE¬™O£¾Eˆ¾ ÷[jñ”¦íŸæ£f^kJ0‹¬LP‚BÏE$!˜âàPÆÁÁÉ£›E {]õVÞ7öwTw7ñG”ÌzùZÔŽ ,j”¡K¿P³BÕkܱʚ™V7Bè&æ%4 €öˆÐOÚÆ¬+$mv×Ù!;Ð5?IzYšøTÀè¤ÅŸiþéù_¼ßü/åοîØ¥Å6zÆ6V´ËPÊÍBØ$Só£6ÑŠ<"Ù,ÏF6ÅgÜO2ùT×È&™ÀòýHfå;± éy³_Å©Ïe?ÅÜ¿üeçþåýæþÕc±‹)ÌÎ.ŒÄ»¿„˜ñú{ÑŒ&“}~3oPQ€}›è’75ƒŠÀë{ÑL‹ Tážü¢ÑüõdŒÆŒBæÏ3ûû ˜|ÓåV´‡4ì·÷³†^'sOvÈi,%£¿ûi,†½Xõ“P zµÎû÷Q~Œ2Á}+IfŸ"cßÒ÷sùbî=yV;¿Zþ¥)à~Rk#_j}òƒNãUàr„ìåÏ&í62àõcNÁ9M>Ý5²‰†4î'î6òÅÝû±¦”Y;¿ÐY§ñú—ýû ®Í|ÁõÉ;Íæ¯%m4ß‹hL:éÌ ïÊâ«tÒònó~ònó{)T›K¿ž¤Ñœ]ÖüYfÿ~rfsvujFlÏð­­Ã§‹‚æ¹ÿ5ù×ÇÿXYIÝÿ‚ßÏ÷¿žâa2sîuÿ¤§hmÁÏnkm=íwÿüo|y³¹á¸²r_Cö¸%ÌÙã´4ãÝ-@2›’Ùg‰R®LÄ䜯¼ÂúĤ.×23š„[Âï+•¦(W°ÀªøŠÎÏe|3_¯×çñóP~¦ÂýA$‹ßÝLþU5oKAј¸hÿlRÂî7¨NŒ[T@ÜáæÀá0¨w8Gzo¹»!¿T îÑŸ¢7Ñd*0gç7}1:© õ¾Ä¹a(&ýi<¹ü¦GÖÀ€êƒ¨NÅè’lk^4+Cí‹%£iMœÆ‡£am]ÐÏãï|F¯n ¿e—&Xe$൹’BL¯íÑë~|Ó¿2ßc¶ÖŠ9ù±Ù9jžº.31QBbòà‡Lrœ³œÚ8ÂÀØoò1©ÌÂq 3‰Ä©ØÛ™é Ý £ÔY#Š@?A|À·W×V¨­îÍ3;_êxÇ^ ¡?tSen§[W2M·>ŸÂI–dL± 'µ>¨ox ïÓÁΡ b »¨RÙñ ÇåáuFìmjòYØ@ÇÅw9eb_ø–#þe‘ùD(M‰¤`ÄÍì'zŠ1^†Æ¨5ã‹h,»¸u7¦Û«Ñ´læ`²ˆ}Š‚AÁ_¨åúhÕÅÉ5Ja[|±x l<¦‹®Ñí´^µ÷ ø¼;}ýŒ‰á«îÚ÷9ØÍvó =/›´7â6 ÿðrºÀi€a[YTòbñû^¹7ŸÚÆÂÁ…Ôæs/ý‰ôÖ.çðuû(†Tæ?Á@€rw é¹Ýp_PêC(h¾ËQÔˆÿê5ÂG½F 3ÙTìS·ÙtÛl¸mZÉX“/ý×wø#L]퀄¿ˆ-ëé¢3êbÓqÈN²¶ó¿h è ³^&ù× ªIÐfÆÂžž|'§6YêÚá#¢weGÃ`‹>‹¢pLt»!þZ=È){  +£cq Ü<)¡Q £PTQ$¢1£î˜ð§•§)=ÉÅ€Ð$fÍ`þôñ›]îŒß¨À¬ž2ï|Ílì¾iòÆ-|ô=9xNõ]ÏùÿÛ哞ÿ—––Òùžó?=ÉÃkË9ÿ¿ßRQ;ðÿ:0†õDÀZ€üt¢oÉ:Ú€ŸT0s¾Ñ£§¡Óˆ %Oª&l—¸íÙtï·T¨ §Ócž™,8þ7›V(è¥ ý™$}4‚€Š» Dñ<°Ž) j»ý»Ë›þ0 ÄLÇ,•¯Gl–Í!»E3Ç}Ò_¥\á0 Ì­Zk 8ÙÂÖã{ú€ö¹ø’“OP†Lý&9”°ÐQ“!P… †Pçð‹9EªªÅ=nËlÈFÊüzNì5sN‹fœ“t—‚ÚkfÃÔç²iU§œxdBœS©þTÙ91ÊMw€N.ß³•š]†OÿL^D“¸*’ôÒuŒýÑYÇ8ëøö»ƒÆJOÚ™Ñ4"Ÿq4'.¢áhyâÕ-úá°©iå,1™x©Õ}ß;ܪ‹ö͸q6Š0ÔÖQe ‹"qìÁ±q )ÉU»w·ý)ãerw¦”?0!%kŽË0š2@oÉš‹rỔJÌÈ[!é†n7Ã͘`Ü$óyPv¬7fA•ßÄÍmâ”áø\©¸ñ3(Û4Å9AŽ:¹E”tŠÀºéoînòxLf“ëÑÝhÄÂó‚ÕA«ºHâ#Ò¤hÄÀ8^Uàd1–fÉL2ÚUýW:ÂY4²·_¢±ZƒoI7-¥ÏºµÜj ^p¾åö]ô—iêb=ŽÉ§‰îÐ4D4S)4¯a äi?–>1Tάï'}Ýj ÛAZÀˆ€Ó]ú‡çDmsWÝ%¦£rDÁ•錨HwrFT)¾yÄF÷.Xg¦`ùöéﻩSv5¬ÎBÊu¶Ù°Ç`)Ì"iÉ":ï`•i·Ù°µ¤ÎÖ®´±¤F†Å§µ²¦¾uM­Ä8±M=«ÀM(²v¢PS éìS=n8v(€¤*ˆ¼#`/¸àD‹|P†5l á6é‰ÐƃÕÔ(|¸j¿§zgÂЭqhÖšÙWok7ÐIüiÍlÌYň ;}v–ªÝÓ”úƒ)z:ôtÞÓÓ<¬¾ZUúYÎê© R/•¾ŒÆŸ&pî²¹ñIµ³®³'<ÂÂ;©3$ÏÂÃc”gáÙòÀÂ¥Ò¿¼#1¿ÿ¿ò—‘>U ²‹¾ö‰‡ý;dH=‹¿˜pèA)ý m|6˜FUqv75²/)j ŒjÈ(pŒ8ô]©b8Y$ß«j…ŒÓ6ìÍöö[L±yÜÓúeûk§dÌØqgó‹2oìÒ?8Ÿî¤"š%Ïn··‰åOÂ8\[ï®!0™­õnš9|w‚Ñì‚XÙhÀ™g£I?šPþ€™øà5ªÜ;ü+­µ¤_¡ðxUU,£7EÃäµZïÞ^¶7÷÷ù×1üB§$üu²öqM×>Âþ~»ÃN~@ªöÍp“Ån‚„”ŠÒ¼®d×S²³@Ó×ùž«àÄ'8\|“&3:Yɯ¥˜ëÙ²wÉ“jw7Hƒ´Ýá=à;§É]“Ò\Cà†é9ò¶±F ëPUâuJÒVÀhÈbÿœW5«‘-[ÐñãApŸh»$·ËKñ>”*ö]ûÔˆ_{Ö÷µ x)oww^nWu‡6=5\õ&4"Ή‚s¢Ï' ÐI.ÚNœF¼dK$ƒ‹b^#H4iþ‰êÔò÷Ø5„ óz4¸˜¤Aœ°Êþ~U°nº{É”G¸]ªM¯óìQºN—†¬£—ǧÔÉÖÄqŠÙDÚŠÑá–Š/h63h5PòÀp˜ ×Ï=Ç,Ùì2«fÝCû†>8 iиy‘½„fƒ“½ñÂa©Á–e•¾tä iÂ÷ô:™³”\Ρƒ5}kfmœÆL]Г®C2N<³ÏFgñDNή»Bd¡†*$Ïn/°žZÓ‚FÂ@¨p/!Ÿ6QÚ$Aûû@í…›6à~â»ì)TÐÔ݇Xnü„ßS—kêƒO\³À˜@šÍJR¯fÂc Í™ü›ý»Ô%4ù&sMa]Íž…`i§¬¿¤YÎS*ÕÈ“êE†È–ï›8Úˆ'6f?9îÛ®ù)}Ê6 Öv|ßI´Yߦ²ÁJÈH ¦2¥‡Ì׊®¢†§€Ô_ºúD-%¯Y©×Xࢎ“ºÑúQâe+ji£kÊ!h¨E3-°k×Á˜’~ÕX3[!Ç7óÕÉœYƒµº¤î%l$6Å_úSÑÓøÆ:ë±ëû1R…ÖX«\!aOF/ë¬[“°³Ž¨v§Äþ¤5Ž9ꓣǷ¶U×Y"2+ÅNrßÚôÄÐË:èïìÔ(©CÁÓ¾döQgǧÈÌ=OöË¥Ôå† ªÆÑùT¹¡Lîm™XÒ£ßO~®g¢ùZûÁÞ‡½B±Ç ÄŽ%-.ÊÁÝ”\EÉB Ó#¢C)z$JôØ^Œ”áÃdF s3o¼šØÚ¡µ,5+ûÓ›ñ9¹öa»C^·sà¿ú¤ªÕvlÆE ís•ˉ=EdKp$‚¾±Ýa‡,^=¾¿w¤ÝSˆ'c¯G†§f|p™×­XŒnD®7’¦Ýð”/‚­Qß]—w“K Žøh¿”ûEÀöeúŠeÚ¾dòÍlÓ×Hy¦¯¦m° š¾èê¦aújøM_ fÔݺ—Á’oÚ†¹[Y¦¶ÓzRžØ×3X¦f0L—QçHË8µë;Gd±p ˆÄ„;í„,Uò‰YÈ4?™=øå¬O?ŸñI’YÈø´khŽiÆÌ‡N“a Ô³Êú+ æïgªí¶£]SÙÕ’IŽ ªSS Ë•0# ^çmcly²,0¦êž6"yƒbv#Ñî®65„cÊRáÄ‚†Ô‹'´ý|*júÙË3ýì…M?{!ÓÏÞ즛Çôæ0ÙÒ:?…,DÂ6‘Ph’yˆÅy˜ÅýŒGÒL2ß°§-`+"KÞ'a[a{O¾ÉŸK çÄ¥=¶¢ù<[Ñ^ÈV„Q S¬°ˆÃèDÚZ4_ÈZ$gÆW¦a•™Ï2%ö"f…Of*’©—p „O^Ob(JL<~1Ñ1oY›CѼalR@^}3‘cÎñÛ|æ-ëP`¾×¬iv¦ÝÇo3úÿ ؈æ ÙˆÚÃG°ÍûmD/¥èu‘­Ð¤e—äQàøôfX…i@üª± ³BqÌWb#„’´UÄ ݶ5¨“g J³ˆ5ˆ2Ç>Ì4¿³^ÛÙ±ŽæY'i©.O™ƒf´9Æ $Ãê¬Æ ³L‘FèSâ‹,E0}µõy6eÍQp`Û.²Šè<´‚CðìF¦Õƒv<¢Õ¨ñæ*Äî(UÅ?tvÔa5ªå[j¹V#8Š»×SL©|G[Œ,±Þ\i‹‘¦´Ž7Ëd´+OŒžÁ‡#½ß2küÇDKÇÿšžMž4þ×Ë…—TüïÅ— Ïñ¿žâ‘‹ÍŠÿÕÃë“|é°w¸ÖéVÅFoƒvÞÒ]Pøw–:‡ÅZÇDQaŽ-)µ°r(\ØO<Ü8ÌF‰ÄS¡hb myé§<·VƒAÆ|·l±syQÆÖK²3glÖTU@)b2|¦¸ãZ03â¢L¾M¦ÑM"böî¯À¢'•³*|ªTz֋ј^¾5^rUŠl‹¹khc‰[ BŒA¥N.A<¬Ê3øšŒXeGnBF§Î*dPn!ÞR½ŒX°«}%B:C8xªÖ”iƒcIKG ‡ PÝä õ¬ShQ†¥>R10ï¿0Ú ¤¢ókh ¤’#b«ËÍ- UÆ;ùª-¿ *&q€‘}£ j682ùQ )áÏ lt}f( æ¼Çsš +p”®&EéÒ«±ó|Œƒã°_ x-á` +åA”ÖJ«ñ(µ@Ž“ÑM$>–eèÂÚCaì „¹>@5+€ûŒÁoÈ"„빕¯Ȉˆö½™Ñ»‚AÀ¬˜-èE,d–ÓÜCk2G’ Ðs{ÖÁV»¸NÍHß–LɾìÔëõ¬¥ õz¡J-«Ò[«Rk4üxwE‡£:@vz¯é‚‰ArNÍÚ0žfÌa¤ƒz}»œwJÝ"Xˆÿ=úK\9 ¯‚Ë€‡àvñ=¶Í¥­HVRí;¤T# Ì7<®+ãQQ;²pÝITÀ ÜØûê9‹”{¬$æj@…“¥#ÝîF!XÉ™À8éN›–äD¦3«›Ñ h×èÅš/3nÛz5|.=ÐØ€pwI0êtSZ\6ælŽ1ƒ qÈȶÍÀ7h‘ùÔœÂF@°uLw9¨{+N¡mÄ…Oóù¸&ÙûZ)Æ?ÇsD£µOåßWãßW?f…å@ ‘¬è#U¿‰‡¥aõã<€K‚Ÿ­ ‹¼àgëu æQëM3X Z_V¤¾q|u=…EŽË%¾ˆÄYP4òG‡;u3Úq3½-ªÄ†nFÀP¶=DŒ-—ˆ !ÛÛ)‡ Ì,´¹ÑÌT®…jŠOk‘a„ËâCE‘ÀRušMÍtŽ,äQp)¬{ßxô5¾ÁÅ#9¨¦ÄÕ c=[vF"Ù>±çjÂa¡3 TÇg%Ç8À?Ztb±rd¼Š2,§;3"¡±jM@”“‡úÄ‚qýªnSg½Gý)‰5ÐI%uZˆIMÚùVÃNÉØ²ìÞV†Í½êVfkª‰ÁNÇÛKÚqÊ”U3Ÿ+·b uf¬þc¶lY1Ù~§IP¶Ú§ªaTúî_ p}ý42Ò†óªØg±5ÁI=ÎFw¨ÒòQûöoØ:XÀK}~0$ð¥Ï2~UŒ°á/ñŽØ–bÎ)¨/IW˜°UFÚ¹ŽÐ(€¼ĹI|6°NH Ó_Dh¥EWH´`™o‰ðª¦ò„`£À®áˆ¥ãSÄà3¹UÓ²>“qìÎúÛª?¸¯¼&ÞË0µñƦ-äë7Þ ÿ‰Ö3úKA›_4«×ëUáDÇûŠËëÍ*ÿFÃ7îbN‘ÿþ8¯€ë¿k\£"ÖøMõcÒd4”æè Œwñ<êd^îQ°‰k죈§Z4@[“ÚÀ‰ ¬$£ÔMn§¾ä^ås «pÈû¥>ÉáêÛæ°Ùÿ¿_K1œèâÕF±4üÿ’ÃCB¡îÐâKdþ9JúFá W¹#/Ä_ˆÇyðõ_I'ÍRóªZ‹C‡›ˆÄùÆ?uµêdNä+VtÛ±#tx2Y™Å-ùDJV¥½ÊÇl@ðTY'"­Ãð<É:M½¥^va/»¸ƒÍì}¬úWcÙo‘z,w‘–b˜¸7ü…d÷‚/q‰‰àd´ÆÚò7.>Jy$ÆìMIÃHŠU$ô9ËS3è¨Úcà:Ð=ŒQèx2¼DzÕa•Ö:~5ÖŠ”F´ƒk¼P ©œ©Aýˆr!›Œ˜ßÀ<_hgþ/HÒ}ºaHé³âÀ÷À:‡¸ ÊD}È"#ÁàÄeÔ§ƒŠêmÜJ£OWÜ—ôú<4”Ðh5­2o—zéÁ¤Õa«“1©F)¿š¨úRÿRåÁ3œ†TdQ’hþ–Ô3Et3—ØŒ’Gã›z„’¼Õ|,ªO Ýñt¡‚½“<™Áæ‰Ã¬¥Z[¾ #/‰3ü«<8d ˜Ã?çP˜åOÿ.¯ùõ +¾¹ÀÌD£»Éà[r]èËH²q]ËeºØp¬Ž¡áX7SÃUsMû™:1a]JQ6§v¨´o¨´”œ¦t?áágÎÓý…È»q!Éèn 2ë”ûÿ1Wº e÷å«}~Åÿã¥ê½`êYiÆ$íKÞ'!Tl®Í¡ÿ’øGFŸbõ4œŠÁÈVVŒ™Y(d,Ðzžô/#œUØÕx±_2/¶éÏ1„:¹vyqCý\Fôccá¾]ÛÛ¢·UÑ;)ž¢œ+ÒÇåT”Ü k´ŽÁ3§9÷Äfí¼Ãà š`Ž:íÚ^@8çïYútÛ­öaªìP¾¾؃ðÃÞf#ž¶;a¤­··;GûU±}øîƒ¢Bõîþ½ê¡Ý»GMô("k §ë 8äCùÓ̸¶­îÑþAFÛ‡yý°q´ïÁÛ÷l ënýfª.޽»·¶ßz›1w=@þ:ª¢áh£},Kç…ÍU¨:U%Ð0–íÖ2PV8úîÚ)EßíÊ€»È ¨;ëk0òíéæ!5žæ‡·=%·—TT^OS÷ŠÇË×Nš…Àe‡å MEæåw©à¼òµ ™ àð„˜ul®áþ¢€ù#ñôéN啘!%%¤Mx®cA^•a#2—P¼‡.Ÿ1P÷q«¹¹®³ÍÕ¹Oì®C/ìÎíƒ5Ž”&"•›“ÈA¤AªÑô¦ñµ;NñVVš.’Ò]Ø:ʹè)(kýÜûbƒÐå;YM.¹MvNeùe·üîFv…·ª¯± YBµ^©ZnöKºaêMhJÎ]ÌÀJ0udߟ«ŠšôÚÐåü¹T™|ÿ¼‹Ï?)ŸX•¥Ñ…Nꆫ㘕\¤¾éŸ_ãï‹è„ndBÉŠà;8ÀWGƒäh¥âPÁŒ¨ ²œ¨˜Å(Y”¼§C9v@çjš#F˜Ã—ôN/+”Síð/’ð‹Êäb­)=9ù÷Ä÷’£u? ThA)ÿ/ŸUY%góÁÝEJ'áz]3oñ^80ìâ–‰õF™~Veǵ¾‚¥-åŒ1;¾ FÒƒe‡6ÞþKRNCÇ$ÿ4c§4|‰a%­¦/x…ž±4‹¥SÛI…¼¡ ?ÅrÑ!7í¡šOÊßÝоí.ëiþàͨë©ßemkš>ûÆr°RC¨ìaÆ­`¥ê—€,µ¯“f’jyã¶+¯Új§²=yÓ—ÇÌ—·uÔ£k½›u†]¡#Œ;ÜçU#IˆXõ=UÆë*¼‚+=³1¡8‡¼ó¤Žé;¸TK¸Ÿœ˜-‘kDJ:3x2tkRAuÇùéeNS‘ìÄÖɘN»Ê§ú¦2Hl§L`R’ƒºá*§ÚXÖÈfdWãÑ8Vµ(3äY6«2i›zbÕY³tâ«Îe€'8?t D§â '»Üt[ o[_[þ¦ÒžÛÎx‰˜p §RéaãéÔ·ÚuhžøR óþaÚsÆ1ëé9”}A5ÉGÖ˜Hb@ÊDze*6-9†ÏpåŠdꤶÜmV)›ÇJ._b¢×ê©ÀÔÞ©{X_G™\“Ä*-ìx¯s ôFäöYb{Éî©u®1â)9P/@§¤“NUxöÝ5G3ªQöw¾Cç|Õ“ðEC©‚”JÀ¿Aúûy '§í‘ç…þd^t©Ð¿ãN8§Ì‘‰ÂõÙÔª­=ØN:’± †3Ÿì¢Åp´mâ¨âh4-”ù¦ChšÆ_êí5vW¼!BHÛ!Z #-ÄK„)¤ÃÕy@ úóE±û°åý;;ÏH(1Ì=$'ñZ>át!“=ägÓžº–‹Y‹Ò´·\Df\qodùI °í'þFg)g£ûÈÞŸ‹‹;¾³,ðú—ö€,ðòç]ã¯Ãk­Mr¡W¥E-µà}KþtGj$æc€/ÏdáïÖöÀü±âIhðùò ¶vºƒçt’N<Ó ’ üÒûó©g|?@ˆ*,¤ÈÞÝytãåý¢›ó«_ráºtZáEü°•J¿.ñûWEvê×¾ ËÎÆÀñCI:`eH×Jpaù\~ØñC"<í磔 3÷ó©ºÔàŸ¾¢Œúÿ-ÆôíESãP>ö¾/ûÞ0ú^ÕîÔtEü&ºˆÑûxMîÓIJ*9•Š<š'›"X™vªo‚a€<ÃýÝ ÎÄ+Í"uÌ <Ù±õ\úUúæ’°ûõÂÔÔ˜HMôYòZçiZ)•D 1CH’åðW%q=H“›ÈQ ÷jÓ™Gݘ)(.öUºÚ˜nžÉ´EêFèøÛóp†SccSú1÷°,‘z¼Û(¯<ïf„à­"L)róϺsÇÝòTûåT³éHMºáÔæhg'“‰˜yxþCno¼{¥|¯ÝÒzë¯(;Ofoøáeû•Þg,Ë[hîjiÐéNVIwá‘ωgÙ¹’K›~W RVas)f NtÎw§ÊþÀ¾j=TÃ4!Š­aE% …còêgAünÑï«E¨hvº0ˆ¢Ôx-"K)—+FãX‚ýÏ£8Ù•\ê)&Ï7É™²Ž©P”t>“ð(@§¡ó²VO•@ë@K3þAdAAÊøvð8-ˆo¢‰v±.´ºðç‹ !I?Y¤+î·‹/¿BkïG.®Ðt'W¼ßp´–¯¥Æ›¡t1•{g#u+yØÉxUùŸkËWà—w2ÌS;`™5‘Ô6- IL%ý„±iŒåÄ.è–ØÉúV„ïÜ&ëû’ëGS쿞>§CEJÞc )!fÒ¿ VÒwaÈE%awÄG}CÊé_Â!3·ÙÜ}/Íx”pZ#•q‘ä0"k3.5+ ç Ò‘æ$ûËÌÌŠ0ÿÊÖ›ÚéN%™!M44ýCwÇÄîÀÁAÙ#ò¡*ËTÍ&Ev¬4®ù5õÄ—7¸•|-×’ßÁŠnn¥ÞÖ²v#/àå ð@ÝðSC!9@šô6U¾5æ?•<ÏbõxÝc(¾Ë½ G$‡¹© hNi€²ˆüÔ ®.ù¬w/ɦô+Ö¬oæ‹NûW¼Âõïãíñ*Æ@äÛzîÛ™æ\ÝÝsÁ„f¼SHùù§6 lß ôµ³âÒ# ìXqíwª¹•Š‘B²“¥µ D&ÎŽÿÓ,-€a.ò(f1Ýù51¹»Áøš0¥OŽÑ"ø|úý÷ÓI‡#ïñÝÜO ·oäܬ­u'cm_2"R:kg·Å6ÚÜ]¶ˆ>D̤A­ˆÈUŒdIÝÅTÂÒn:BmÐeéä\Ç"š¥u’_üA—¬r}‰Ñn4<¢4u7N²FDZ,¢wù.r•(r² lI†nã$to”nk°áï’ œx®6@OOŠÑ B»<=lP$Wu"ÇŠaÅŠÂ)ýž%E)í„R*̔ʕ\œjŠ©5æÛ ¸9Ë!ÿQÈ G¿øÑ·çö¸‰¨äxgÏLÌÍÇÀ¤u¯ˆLž\¥þÊR*1œð­Y_¬ z¾ôÙ¢§/†kŸr àLÖŠù‡lÚW²˜Î+ÏéÅ?v'ˆa̶ñóD(nìÚÞ³”²÷ˆÇ ~ÄŒ¶1«ùG<À$Û-IÂZ锣«³ƒÄ½íAbF“(n¹ôœ¯ï¥Á¾‡ÝGÜÇô#Ç*˜g*dјł#~Ó¡x dLÀC °Qdš(Tô’°™B°d°TÀR!<ÆŠ¥Ô¾/ò좈ÉB±Kˆ<Ó„0u:KËÖÁì6¡©s kWÕr…tÙÀB—0ÆªÊ G±V9Ùóç,«i5†d ?û/M5œKS´#µ£ i»Þfh»^?k»þ6Ú. þPrdÄgµ—û<«½þÓÔ^­ŸKíÕú»ª½ZÏj¯lµ×Ê}?k·µ_Eô^¦¢ÈÑ­üý×ËG@ƒRƒÍªT#ù¬)óâçï¢){2aHÜGeöêYeö¬2{V™=«Ì¼Ï³Ê,‰î›«2{uO•Ù«_GeöêYeæG^žÊìuÁxUÂY €s»/Ϊñ‚å<$ùõ’ä ß0™y¯Õ¬ë\]ˆ5èà¥Àœ™“$­ƒ1ôËñèFDýñ Ž8ÿ Æà»;«É¼¦|u ÊÉx§ PeåÂ@ü*M5'B¡¾©$–I—¨»ˆˆK‰ˆåð·ÿŽàߟ ‡ÔàŸtü6ßÜM0¥Ô‚³sª¨x–ÈÈŒ@)T)€ƒNˆ¤/Õ#УPPÏJv¢M\Hfi٨Ȫh¾[”ÑNK…C#uWüSú 5Ú0åÝOȻÄaˆ6Øó«"âHã`ÿVù É0v9»õ? 5Î×"E.¤†Ž¯†â*þ¬â¡ª ”ta^fv1Ÿ&V-}-×-g˜ÜcY^N„9Œ¾Þbò°ÏD¹Ñeÿn`çu$LÔ‡@Í€ Žu?>‰þ5È\ó,L£«o<Ùn˨ïFºÅl’2N¸~]‡9W+‹–v#¦¤Q˜ˆ&……Z£.Œ®á×s7¦s°Ûy?HppìjÌL3’èÁâ63v¥VqÌ*eÝ$Uñ¬ü7ž…õ™ZðC ä¤üÀ™1ý_ ‚áIœ cHx‘›x®îG ‚ÑäLF5aNE9»AIþ”CÙ-(VZA9 €–‰ CÑ_ÿü|4¾É˜)5Ÿ\.Lá% JÚ?ƒ­W#·D?€ÆgLïù¯;àw¦<9©öàíøXÕÜ¡åßu™|&zÛÝ÷{б:™7\‰¼±ó°Î"LÞ‘ì0\ºcòã›7Ô1 áv4$¤9ãÛLš)™P<³LðîÞpjlF6Ÿ±S÷1öuÔØ|)lR¾ó®·ùF ߀€?E˜$h8‘é]Í$A\‚Âd†)ÉDávp¬Ún.#”%¨cbæfc‹õq}Z·°d!Ñã…m#Ïl"}X®0þL*Qö"ÅŽò92©Ûø3ù¾@yà7’Ǩ´‹ñì™cD©\鯩éšâÚœ_ƒ  (k’X«U½ó=:úQvÔ¼r%J›ðµRW7™SÆGpëÊSvÉ‚ö „¼ b}x(€Ãèææ¦ ´äýsw¡CkwÓŠ™çØ.¦ ¨ŠãÑ .—`ŸÕÅK8hÝÁÊm¼~õº*noÅË¥åÚËå†yGnOµÑ0¤ÍË˧˜ó”ŽÎ0)ª=4H飯Î+ò9‹¦_”1mØaÄ"û>“ùA¤fFÙfy?—9c³~ ™8iév"ÔÑ~»³U{½\_XvÈÓ‚àjA5ÑÐx ­üãé[yNÎûk§myʛʊKà‰DŸ©ƒ ²Mp‘¬Xf¬¬óz+l‹•TF-Ùo”øHHšÈ‚ÕÙzGY°v3½Íýä« Ôs¿öŽºá!­cf ¨t°Ï‘B°«¤ÉÎItxòîpWOU*¹ÜRE•ĤZI=øt`@IwèÞY Zïè—<‰Âïn«IÙ¦ºÝ?ù÷ÉAVv*Ò@gô§Xê&N‘Ah踌ʩÅÅÒ½¹WÒ*ì&ËŸ‡=ïøòÒ.Iå#*Ò››!²Ào¦òcÂòˆŽp°I¤‰(¡‰4˜tìÄ£6 ý%éݺJ öjt¥“5òE<8ɳ5´FÇkq¬›ÄŸÈÕ68cPÇ0pᘭ04s»()cO lßï(¡ë¯Â$[_jkœýœ´]°b6&FÄ yöä8’:2Iué‚`…µ¼SN¨Õš¤ÇC½7sÝ¿EÍ—Lê‚« NĹ«ç T$QvB’«øÒ§EWQÊDy5]uœ'E€RxŠAü)ëßP(ø µOÃÑ<ö¤ ‡ð@¦å:œHàðq1BiZÑoÝÉÃÀ»±>i•»EÕÒO­MÇÀÈÍdÝôã!N+ôœnàVŠ,EuÀúÒ B4Ï[wå#ˆ†•ÝØ]TÅÀâ"­#9G2‘C‰ÑP[¡–É, Ä5U.ïÀ<®POz‡ó²/…ÖלEçý»‰§?ü& rí\ ¹ˆ+©¬‚#ÊUŒ¦<bÀ^<\FcV(™p.ä^ìÕÅQ Ó‡râgKÍ6I|uÓÿ_ õ²wd[½ç(”x¡~£,â8‹°xÒI(¨ãáðú £ŒËäw²] ï³ßrtœèP¿œàò’ Zl„RA±Ð¡+î7;Uè¿+$ՙŨ»í¤çÞBœ>kÊ´1r¾Ç—ÃÛ €ÿÞÈ›û¹+H{¸xºèÏ0€ŒœW"½}Q~ɤþmˆ˺'*3’·)ßvbí€Åi:S„gË/, áÒ°„¤)$ùóI•Ry6ái‡„§šÓºÉ×l5§z÷Oö³’ Ȳ šøÍJ9¸ rè{mdÒ¯u.-½°ÙÀ$íK§ûdQÒ½â.‘8_sí9ËøÍWI˜µ2òù—•Ñ3Kð‡dºx.±çJuÐ[]´cÈj8¢Û‹¥îD’mꦞ&ÙÉh`§–Š3è ]Fn>”Ÿv3™ËÌ¢5.+¡j2¶§NT¥” #€‰ÝyòªaGµhíÉD{ÝkZˆÉ[ÕAsYº:ð¯È b¶ÕöÚH\†Šzyün'Oêÿ³òrqeÑõÿYj4ŸýžâajqüºþÈù2ÿ(^: ·XVe(9رM2É_ͨõvíp­eiælDHì ª2Tn¤oËð"$Îâ-äËàÍ7]3}„Ö¤‹ÐiiFï ™ôN^ÃHÉ݆k‰´6k¬ªHü“ÊYU˜ùø…“à _rURq+³ Ç¨ŒµkRdgoçów‘Ç gᇌŽ/ÞÔ…xK€°k "íÿC‡D…º­rO2húxw…Ò„[ô+QÞBÁö°¦r²È!Ý…Ô¡×2âe¶;Ìv”¤w g¦$ÃnÊ{j”øNÉ!È}ŠYg‘ †ÎIÊž:½†½]žêú.æÝܶ/Ðøl@v€‚'%}Kæ •Ì#É1zÐ=N,œu]ÎÄ‚oQ•F3TJÜÍéT9ÝDoMéî/•è°ÆÎä ÓM¸Ï1 Å)+)«ÎK¸t‘b•S/ùŠ¥ëÞFçñ%:>²þÏWâ8¥HÑö Jà¬böò7Ьãfå”ÙÃ2{ i$Ãô ¦©‡ÖøXÛGû‹×Üžu°U;•,Mú¶Ô%Ä^vêõŒzÖR‡z½P¥–Ué­U©•^`ró@ö{¯é‚‰¡s¿;k©|FiŒtÒùͼSê!Ï*Ú(îÑ_ÎŒ¬íÛ¸ xnßcÛ\Úré±|×GÒçÂ7<•ƒ™ðCíÈÂuǃ…A!cpµjøœ‡JbršíR³yšÆìhfÎW«ÿ!¯Œà²>°a©Ïã{P)Á!¬ü¢Yv ®ZÝjUmŒP¼wlÛ]“ãýc¨B ×ðÇZ⃀{ñ2í2fÂñôÑF<€¾LÞXN*—̧ˆÔPö*Åx_–ò›}„QÁk¥9)ùPü¾ÿ¾úñ·„=B©9¬},§À|$0Êî¯ ǹ'çŽ}ãøêïš ™PЇ Háwù¡üO¸}ÇÓiDÞ\–›<á+?\>ïAçC>I=#ôFJ¬õ©N9ä?³°ãú©») ÕÒ[%@9ë_€tÀûtê ¹àÉQKá(ú #ÁЦþ#[¡¢ø€ša¬—ë¤hk´a$’Ý[ª&œ…lD´/wbâ*;ˆëì¦Y2­ä½¼¬i·eÓ+ÔXh& ÊR`{ruT—ðzÔ ºfœEvÊy%lYˆe…Y<¼ŒÁ#ç_ãbÛÅ*æVõ+³5ÕDƒ`×3ÚqÊ”U–‡&F+ZgƪtQÃ#¹¦<¬œ¯NîÎñR÷åÝ€–¯Yàw*ˆ$h«¢ö‰—À'l^ëºA$2åô“¿©~LšŒÙ‘ü]âAƒæ‘Äß ˆ-ŒE<•ÔŽê˜åQí¬2MhB0JÝävêKî%Q~’—vâ’ÌMË'”œ—š“!¡P÷Nh´À^÷?GIß@^A7ÈmÆâ_œw J¯ÿJ:i–šWÕ*X:ÜD$Î7þ©+¨U'+X)'çév”ʆÝFA žLVfqKéd¦¼9ÑŽL‡e:]‚§Ê¿Oq":œÏ#MŒÔ[ê5`W]U5{«¾ÇÕXö[¤)Ñá\Ñ<!Ùý…àKÜ@b¢8­qc¶ü‹R‰atFÃûœ%5¢x6y§kí ›ÎšIw¦&S ï#‘^uX¥µŽ_µ>¯'S<3¸Æ ÅÊ ™ÔøÇ-g0i7í tÄ»ÁŽq!o£[)Ü&óMÌꆜ>ÑÅ7A©I:êâšK”ža ª´q+µErƒºã’^_ÞÉa2í§UæíRÁ÷Òj¤3h5¶Rʯ&ª¾Ô;È[ï §!õ7|Ax¤2Wõ‹è$.±%Æ71ô9Hªk>–ŽhãL­ÓŸÓV ïÏؼŒ¦åÞæ²9|AF^R¡×CbŠ›Ρ0ËŸþ)<\^óë¼_…i¤úÃht7ùU]ýB7Wf㺖Ët±áX5Cñn8¦†«æšö3ubº”¢ì˜Y8‹ì #9÷‚•lüÌàáÀ«ÒY†XÈÅ…Râ­­È‹úÿǪL¿Me÷å+NF-1þÇ*E°“{ÁÔ³ÒŒIÚ—¼OB¨¤+®ç¶¿\? ª¸€ÕFæ°²bÌÌBaâ2$&ýËg•b±)…Ù܇ŒLâõO™ÔÚåÅÝæ3¢'q":ÿr:,ögÕ)j‹øS"]ü¸œr Î0—@hÁVÞÃi“@ÀÑwïÝv»eÓåVe|¦*;Ë0RTE›-´È7XG mwZIÜÐ$œ—cc¥*3ŠSàŽC1 àÁÏK`ÅÙ½O1ÛP’‚Øç׊Ñ$8ºDUElü°á½uåQëÁåÊÀeDDu×’s{kû­·AS=;àUeô YÚã¯K«:¨:IwÞ,»œÕZÊfuŠîÊ€È ¨;ëk˜¬ßžn‚Dãiî^^Æk@°ÛÐF`«r@°ª lmÎÐñ˜MiŸã‚þÕx„ã4 Áˆ„_²Œ_‚JJìD¦ò]Yy Ѹ’×€f&€À8J`Ö=°¹†wúó|´ù¼¾ ?r$ÅU•ª‹MÇsGsº÷2y÷ª›Ì«c¡@rº[Z¹„bß=”nù€Š[ÍÊmïñ:4Wç>Õ×:u~awnÏH#¦q¤ÔÊ[N»è9ˆ4H+5™ñµ;NñVVš.’Ò]Ø:ʹè)(“öÜûbƒÐå;YM.¹Mv0¬ÜB°¼Š›g…ï¡ P/¤«’ï s–à”¬ÕsUQ³³D¶ÙŸwñù'ØDUct¡ƒáÿ¬ }Ž#Ά>Ýôϯñ÷Et ¢0r‡„TQ°?ç hÉG7$ƒú­JN#ê‚„%*ˆÑ7Éj‘ÍT<®¦YF"Ö[Ò[°Š€–j‡ÿx‘4x€KTñkMi¯ùâA‚®,: ¸ &ºÉ¨®ô¬(€óàî"¥)0] S!]mYذÒÚá-Œ2 ý ˜f½²onX_ aDçàRä/F93ÑÛÀùÃøR;ðc^PD¬t"D]ÒãÝïUÞI3ãJh4äTΣ &Lƃp1š+ÁÎv®•­u̸mjÔæú/Ÿ‹£sÅÊlø—ŒŠq¢-‘t¼"@–IÜL“Ûæ d,b±{£¦«'^ò@¨‚éUˆ_×÷6ë ›¢À§ØWOO\½íP¥ê{ªüB¨]陉Tx±ÜÀbŒí"›AýîÁÒ¶„J‰(2”Pðd(«¤Æõ ^Ó‘ñØ[=½ÄüaàšN8¬ëÐ"Īy‚àPµ´gó «ñè œSZ”]ï,›Ë˜ͧ&ôº·_ãñ)µñhe ©©76¼;>€Ô2rºŸ¦<À¥V¤PÁmWòàg…^cOƒ”G…cöÒS"û‚j„¬Qs‹:†N: C3Ÿ£ˆ÷ W.0&6:„ª»ViÙˆ M|:=q(Ìæ¾7H4å–PˆŒÉñEÍ 1}œ7ó—ÁѶ‰£Š£)´P曡×þªPh˱»â DÚviÔRi!$D d¨!QÁ’©ø"ÏË•G¿¤ð³”) ÈNàæ d÷ahÊŸuvn•Ðr˜o9Ó­²ìû/‹lì. £ÿ•wùW¿ä¢w)½Â àa«œ~©œ¯Šlù¯}7´- ‡Ìƒ®ÈÄ?™ùXŽ|^=ìÛ!žvåQꘊŽÕ %N“X„¾‰á뤨ñ_ãÓ×÷ ½CïØç¾ìqÃ豑­CîÝD1º£ÉÝ`:I 5¨AÜx4`6¨<0êfS<˜~}è?`xf&îf©¦Ù x$j®dXÒTP©²V !U¿^˜#•‰^MFÄòd‘Ê*†˜!~™Ù?Ÿ‚4‘‰¥•pïê¸ù? ¨án<0Qh:›Ó×¼|NE’LÉéìÐþPüO9ÉŸŠf~’iŸRiŸ‚)\Š%|š5ÛÓL©žfËóô }/ÎJ¡ü!ú)žÙéWÉÕ“õݽ’øLÏvtO³çzº]Ìå)dÌþçQœÈŸìˆJîôÈ€t*Ù,‚›=IT:¯p¡ü¶zд´˜ãDô¦Œo߈Ç >¯Ü« ­.üù"CzÒON ªû¬Àâ˯ÐÚû‘‹+4ÝÍ¢¥ShU3sheçÏ"»uäY©ÌY ³¤ÎErf)‰Ýÿm~:­ì\ZI"­#‘–/¬™lOòS< 1“þ±’¾ C.Â(I†Àaª×¤S7vz¹û^VBs2ç¥4Îf\jVΤ£Ü,æâ;¥²§–(­db# šþ¡»cbWàà ìùP•™O6;1ek–©š %ZÕSõƒ<‰LitWKþ\Â*I_¿ŽIã‡ã9‘ÃKAEº°<^ÛI¢_åç‡ ²1vz•­eQ—ä OÇjã'œÆ]j•j"±Î’à)Y:pVÓÏLSD·ÎÔu:þÛ˜"yO®Ð‘wŠÔåÏΩAÒƒ—á4"è÷¼(%ǘÀ¼RËÞÚqnÎrΜeJ°×‹ÉÉ×'ÄåöÚí3 {½8S¯gZ­¾)íKYkÒMÿ\â¿TÞg#4]Íôd çKŸmJúö±ö³jÊ$&­8Õé |¹žEaåJžÃ‡ìNÌ ÃT•mˆàç»ïÍ¢¸=Ah“ÂRʤ —/d[3šĬñ#ƒH,ˆ$Îi½FŽ:TÌbo÷69ˆ­¢¸áAä*is¾¾—’ô¦që‚xÃSž¡Ò|#øu¬Sâ$1Õ C ž©WÁ1špÁ"ÁRe¸ðè×R;¾ÈS‰‹"ZqQDõ-ò´ßÂTk,-[_„:œ:W”°öS-QH§ < ”è¡+ûƒqÔ¿øÆ!,9ÌÕóç,Ã\5†¤ ?û¯5Ü+Dæs/‡³FÚŸØÑ(…TFo¿›Êèõ³Êèo£2¢ð%->ëŽÜçYwôŸ¦;j=î¨õdº£ÖßQw´roÝ‘ÅïX…d(d‚§fõ$Z¦•ï©ezyo-“5¾{ŒNë£^>룼øù»è£ž`ã÷QL½zVL=+¦žSÏŠ)ïó¬˜JB´æ*¦^ÝS1õê×QL½zVLù‘÷ýS¯‹ÜzãÇZâ€^S`(„©ñ‚eDù{¤tÌÎÞHƱJTx‚¥Î’¦q3/Ec‰¤4€i™°ñ¤Ä]˜-kãá0`Øó¢ tãÌO¤¼‚ ›î÷IxD_1â Æ¹&釸rmò¼Ö¹bHç̾Oâq¾'Ó>žRN+NÀ…8ÃÅŸ·ï©þÉ7ZÌ„4Ôöñ˜¾:‘‰Súc”Ôâõ ÕÚ.sNÜ y°:‘NUc§ÏrPÉ&Ó Ž#¥ŠŸ¹{S<Œƒ (pÿäŽÓëQî-'ç–§ÙËx|ŸvÍÐv»:yC‘b;ëöw˜});°Åoo$"Á.ž6ž®•ˆ–ÉxÊ9Ë’7)3'û'õ¡Od›Ôß´Ø’ ÞJHÀ%1×ñŽšqÁ .©Ï€–m‚^ÒRñŸjY2 $à—ù€˜•$ŽTµ‡Œú„;|R`Ø'é–ï9êü' )33*Îv4Ä,Ûþ£)ËÃ(ù ‡ñu<ð„ba©¿é'jd¿xczQc¼„P T¢J6&¥¡¾öfVP߬J~ïÁ l]¨$\Î ”óĉ>Âx¼½©§o™’H£Ž$„€yæ%XýÎ"#Þ¤Õ…²F¥XKEâ­ÑðãÝ»MJÇnÁa_³zµ4µ“A=ÏT12·ãîÚÔ=®è²É±¶d´?ÓÀ öøPî÷ÏŽiq|Tû‚¤[¹¾P¯®»+ª¡$ZI*VäÍ‚gÁ¡çˆRa~–Õ[Ói§áµíø€I¹Ç§Ý´ ¡Žà“Ä­@«½Åµ¼“ÖÁá†Å÷$kÇS8nÓ˜}›|‰•Q 5µÙJPAj3D”´|ÒÌâ½:m_3‹»{úlc<)2Æ·ÉûŒ1³ÓÅg¼€0üp‘#žoúèRØ"Ç|‘ƒ¥0½Dév\{¾‰gr¡m\2¡`’-–ÌK”ú/G,!+þœ±ÿ$­${LÖhŒN%PÂá3y^æ¶H=ÒÒRVTc–ô‘îTˆ¢½M/À‹Q)r2z©—ï“anÍÆÜÚÅÜIaÌ<sÒÛVë0¿ªOH$}5—! è¤ /iqk^2{lÊ͹7Â^¾‡Ï^¾³?>ÿßÉ“úÿ®¬¬4\ÿߥ…—Ïþ¿Oñð‚qý»þÄ12—w'Qœª”(a.(ýöe>ö¿Ã° ‰¡l/b¼ÄXG3²”w0aòÆ2êEq/ãÓÒ¬nÅ2Á†Ú¦ix´M¾M¦ÑMb´Vùi&•³ª0ƒäò '1"¾”¦1´]ª+³xÕ}&Ë” ÇQ'Wш=çúCÇÑ”½u§”ÕŒšWÆ6mëű’•µÊ]1 œó´è"K%2;#£ì°¦lgŸ•ç ~Éž¸F…½fÐ^|‡yý‰pã<¿†–†:'’îN‹ø x Ї4Cö?Ç~z=Ž&×£t”@î†t‰íÝÎ Û ýÏû ‰y’Ê\%*‘Ã1ŽŠë*ƃå¸Ë)(%7ïèrÐdt‰lóŸRÔ*M){á®OYÖçâÉ~ÀhIœg¿—#³9¨ S³å›¤,ë<”.ÊÄ\fé0Mý-@Q}v '„¹=ë`«v)X{ômÉ”~ËN½žQÏZËP¯ªÔ²*½µ*yr›@F{¯é‚‰¡ìh’÷¥1ÒI§õN©[ ñ–pþÓ&Ÿò1Å5ÀCp»øÛæÒ–‹ u o$}¿}ÃãºÒÕ˜Ú‘…ëÚŘ—<ƒB®àžÛñ9‹Ôµ× frÊÅPÞñ²ô½ì±úòölÅõ‰ŸÍ¾goP…|àÅ=k,—Å ¼á£ZÜ^ûqxýß=͘pŠú¿;£)ìÌîÛ1Np4x&w4ÄŒ¹ñ»F«»Bêé`Ç´‘û lÒýÉv‡ yí¢ñ”…é©Ä¯Â7:²nsŒã«k¼ÇŒëŽ‚g…0ß ‚*gT.èÓh¨\Èôþ*~”¯0_vÜ«}Á‰p{¹ '”ê”ÃOf­A‘¨[Ë Õ°ìPÎú@Ž,õ¤®÷®N_¥8}ퟆMt<úßàHÀTQŒUÍ0ÖËsF/Û*Q‰Ü?ˆÏWV a })Ú5«b& k¹"×Þ`——5½xÌ…þ±B6ï)¿eêK ´}T“ì¬7pjÆt5Ž-c[zµ˾“ñýǦßjCºAþÝìÞV)¡êVfkª‰Á®g µã •'(«æmEnÅ@ëÌX•^Âx6×”‡åpˆŠÉÝ9† º¼Ðò5 üN‘mUÔ>ñø„Íëa]÷/ˆ„@B¿‚~RFÔ<ŸqûÔ·†2ÿÕµNJËkD ¿qÜv/4Î2úA§ò8U…ª%È&,s2Ó0à{êž_G矘—$îU"9Ü k"…o@_ßGã‘€nÀaeü-‘‚µÁ‚¸† D7ÆÇ‘Ágd`¼¬ÏêÌÖÎúèMÖ\€W^ßH¿Yb.©}:žÄ÷õ¿o†ÿDß3úKm}dÃ$æ~¶E ápáùoJüCÀõßIZ ÿ–i’&#dv$P£§L.Lr"ËŽöy²‰k죈§Éõ–ÑèV]@“iÊ’€Qê&·S_r/‰ò‡è çÞ*Ëà,$>ã9²+4'CB¡îÐâKDW´’¾¡ëùï«Ü‘â/N–T¥×%4KÍ«j,F#¼ø§® V¬`%¬ÆŠn;¶¯Qˆ'“•YÜRJ~*Ë –UtVOI=bG¤¡G#õ–z ØU× ÌÞǪïè½Çý©§ñûjüûêGv¾ÐÀÿB²û Á—¸€ÄD p2ZãÆmù¥<òÿ³÷æMmdIûèÿó)N̽H 0`w»Ç!6›Mö èÆ~ãýM(lÙBb´x™{ïw¿¹œ}©* ínÕLª²Î’'Ož\žìBײַpõŒ Sæ e«Ð°æ6¬á÷Ùh,é}$Ö«õk´Öñ+ž-|so€µ•€«?QÉÎU0Üã[ê¥ Íîo±a\h4æìNâ`šù&au ‡ÄÁ5ˆÎ>n‚ñE$H$蜸É:t|² c7ÒªbŽiÜŸõ:Ü5ÔFãN\cÙ.CœäèÞjâÞÚu •˯FêyiÅ‘ˆJL§. b 3På-Kynð5Je¨” L¨^‰t ´Œ$ÓQ›¤­@c3%ļD% Î.Ž„/)È+ L¹ù?²¤Þÿ"ÂWþëEDÊkyýG†¸ “ÌL6˜Œ@U`Sã/)ÆõS¾ÐÅwÕ‹)îO¿¸K/®Ùk:.ÔIë»gwY„³*ÁÅÙ¥ä†)=12üÒ’á Âyº¿{w®¯%{ö1‘¥ ìEíÿ' WÌÂÂ{OäG'ü8ü]_Ó{Á8²Ò¬I:‘²ORXv¥vUh©–Éÿ×R ×ñ1#ÈF$T1ø‡¨2VºãÛ­]8×c©E¸_¾-–]ødŒWVSx×ïvuí9¥uÄÆ‡ÊA µ›¦qXûÞ>nžì¼ÊéF3pÈyMâ±É»ÓY#n#jÞËdVIž#Óy[ÎM›wÓ–g(¨9ÛM˜NùéÅÞ)è1‘×M›ìÒ܆Io›b2¢ùÖ\¶&h4òratLìU1'$BÙ1¢]£9™`æQ–ˆxÈ¡i¶Ý®È=ùªíô)õË|lhäxâ©$f=B›ŸˆN2aHÍ Ò×åŸ ¡ý"’ý#o`dîPuH[ö-J¬oa×4ß¡„öê´|¬@sÇà..ß¼nÛ´Ölí®ñn㎭Ô$=FÊø RŠ4+I:UU­¯ý™ðnßÉkB#Ѥ° r´ÎóHnDIJ*`ém¹Nèû[y¯Üô_ÙˆÓõäý[þýÇ»M|‚°% ›<ý®gêY;&¢\áDi _Ka_,•0¬"–jbUxèûd¤–CÊܹ½%rç˜Ê®>CÝv®>àÏëì”g”,†Íñ(€†Ñá gŽHúEbú…Ü GmÐÉPÅûÖ¬4 ¯«™ù1-fµ’ÄvEoß 7xÿòļð EÑ(\îmÊÞÍAµf¸òxÌÒkíúÓÆš™!rŸ9Ù´gìÞä:°-Ø!ºAW{¶åŽÏõoÖ=2Cñ0kJ¸0*)lת C…« ˜ˆÂ°¤³&•Zð"k˜ÆÅ*DÈu¨pƒÛÄFº‰†VËÆøU°Wgi$VÆaí*¿êWdhß­\µt\"BŽ]€ðIÃÚ#°–•'Bg YÏdoî=Pµ¿ÆtX¦Muqár&‹²pbÖ^}O?j¹-ŸÙ/l!„,ÁކrÖGJdžâ{ÈÐÈe–Q ®ã“´à }ÂŒkˆ¢ l·[qÈà† Ïzü…ÇÁhÜ®€å½9_F¼¾ÀÉq:T¥ª|)`ó4Ÿ…0ÿØýE¯Y…&[‘&ß&XlÅÖƒ…ä5?’.<œkR¨RO׋è畎nð èÄsdé)‘mAÃÀG¶ÈÙE«ÁG¯D—ek/0­Gº+—³0U9çnùz|Èž›S ÛClådPBKòžô)wq+‡w =Š tãHc+Pĸ-uÔz=iU¶B§ø0Þ=VÁ"Ú ª=°W¢z…´·I‹×»AHÙŒ5åñ𔘂WTìj™æ.ÌÕI᪟D«œec~ÚhPèÜô{^5hãŠ]–­Ì½´ÇhÙ3ß9C›¡Ù,Shßp›MpJ ÚËԠћ҃–#ÂÞà7suI‡¿X½™E¢Ô¤·jzqa81-8¼A±õƒ‹¯ ¹Ìa?—÷X™§ŸÞ +Hšžköxê¦È脸 ®¹ "kfÙÕgÜ„“›ú¬ZÂìê¿þ»úÉwØÕŸý¸Kö×ô’EO‰\·5é ÖolS…0ä ë°—Xæ$Ù’O㇕xb4¿›¢‘êw±æá;JUSç ø¡wÚ‹Hÿ¾ƒ:¿=+³³úShµýgÞfù)׬ϧ˼~ï·H釪‘õK™=÷×i©Øeîô²,‘˜[¿î<©Âñ ]÷燧(“„¡bGA_¨ˆðøÄp®.Z!â™}NFŸeñxÛÝ‘­®[­¶jöÑ&›]w1\v˜&½ñ(Ð,Ðã±¹¼ j穨îxdÇ«¡_<š=呯TP€@Ê¡'ãÈŸs•aU•ŠVízb{Uíá4ö%ÎŒUQ“F¦˜£ÙÓŒ¯#!s·ÙÂ}/®¶Òž¯ K{ÏÎà\­Eb)©¹••p93ó±Ò½ÎLêŽPè‡d8·SD‹³ý§ãœRBU±:NgæÌ–à‡(ðák"A–Å;SŽ›×&ISK»ýÕUÐÅ!€ÁT`&3EÇc.481ü¿JV†¸p5Í´Q>†Ddñ˜?P¼h¡i˜¥I]: µé8[©" 9ÅÛNä¸ééOˆK ;ÃÁ—Q¤¬Ô‰]Vªd‰*CÔ*?ŸW®êxNtUI Äg?3ca»öÈ«Ád”a½? + ®‰Ö*õú8]Q«DM¢°°–[—H•G¢¹nEXÖj¦ME›¢2/²¿ö p­&^ ÝÿvšÛ]´ÌiA„Ûtí)›BX±+R,ì”sstÆ5-*/Ѹ¥¦à¦;Ä2šAHP1KS*Šdé0»f#ãóD­Cùîw¸n;ZÂ'Ñâòj=D5«J½v¢‹4Ï™~1ËœuØF,­•¸“¯Ìëm9øº/ƒá§h+YÑñ©tmWªlwÐODh÷rÂÄ—²zŒÂ›lÜgÀaRKÂŽÓÅ@ûn¼Vs·7øû¨?øúËí Ævóo6_q0—-Á\—Èx¬›[Ëvi$K>ÈâŸÆ„+•uÅ5ت? ”À‚9Vùƒ.BžÇd ãŒðobW}þšuE8sˆµtˆQ±@D÷sÖWÎ |¡Þmù]t&? P}¯þ‹ ~~Æ÷Ú5P43EçZ1îL–'ôü±TÃ5`^…©"Ñ÷”¸*²‘%ëŒøÿ×é´”v@ÅÄ(ä¼1êÂtRò®Ñ#æ6$‚»¡,ìŠYhý~÷C·×‘)$6¢Ã˜§^ÏMê-" ¤* ª9çTC-a½ªº|Ü.$#ØzD¿¨†E§>袳N«deÉ=xZtà“txIÖÂàÏú¢ºF͵ œÒXMV<™–ÖªLß;ø>S“ gÖY©©ˆýíà?oÅ£CˆhŠ– !¯øAE—?X—% ¦)bCÝÏQ^ß¼ŠÊOaÜÜyù;¡âŸî¿äŸï"„§E«'7C´I”u¾§´ô‰„–öNø.dµ²µÒÍ¡¯Œ¡‹£¦-: 8Ö, Oš9â(Ùú 2&ü„¥«uÛzô2ëc ¬øæ)^aqGÀ˜'ÿG•zÂýÕ§¢ýoˆCs[œ\vP“ZO•ÎP¶}’¸Éñ aA ×ݤ(—EôÿÒS1Ò53€kPå{¬»¬qiÞÝõ¾éþ㈊ß`o†ƒ[SB3Ö_<ù.â·°  S¼µz€ŽA"É.hžr­èÊs´A=dfiPe:`c=ŒšÊ±)½+mSŠØþ{û¨öŸúzcëY`ÿYß\Øãb.ñì?ïN*¢}°»W“V ï­ß¥ hK{4‘w~2ƒ.ÈmÖ*v3g¥^SGOŒì§00÷4'íÔ+ü"²"í4ì¿~ŸÑ¶töµC9ðë5ž8¯:ªj·.8'Ñ^çŠ"²ü¼urúnÍ©ÞÈzò¨ÛVyL}/÷#¢²söîô_û´ÉïÕá4‹7¶æ¿F#Üíªÿ…àÚpT¯l'R|ùÍòNâý§É÷×äËÂÑ‚ÃRŸ›|áÎò›7j‰(,gOcüœŠ0³ËbÇûòT}¹_¾™Ÿ-og¾&Žý¨ôùÑècéá'iÔx~›y%cäM0ÒEs ݶ}F«íÙê˜7+9 ¹ÓXVS3V)»„*'Á„~O› …Ïf¸îdEUžÔv™p•él93— ÜyM?^îüN?Nwø×'„S{Þ˦/é˜*ª8CÏÉAÌ[\Lw)â„Jœ)‹ÎÚëÓ5A‡oüDÈÅjˆ:>†Oc9]ÕЀÓÃ5’êÖ9É Bsl,­œ[p–±Ô¼{òžLÅè @„Í )d•U},û=Á¢| ¡{Íë¬^JÕö¹VrYK‡¿ðeñeɹUPç7þësŽ1)¯£ܨ&Vu°¾ä(ÆFæô¼¢‡€ŸÒ‡UóxC=n×KˆLýiÎÔÓ”C7—ÅçÔ|ŸpKëÅSÙ¸sH^8‡Ötŧ39‡òxðÜ9,ȹü"x>kÀÁ‘yâI8‰NB´G§;ÝïÝ3rʆG½;ù®áQú+´ÿM&ǶÿmÔ}û_ãÙÖÂþ÷/-×þw~ÞP(ñ0¼¬ïéYú:“¯Ý^—|?Í»–góÛ-»<DZ’;}tÍ1)*ðãèœ/áéâ5c—…÷·)R‘eÎé^4ŒàOãfO+|çÀT.Wå’U‘ Ú8…#‡Ú;7ci²„·õ÷-#¥òI+˜&uOY£TuQÝ\¬Q´æ½ê˜_Õ³^e7{¶W«Wi+iWÆÿô/{ƒ«Oœ²y«ÏV½÷ òá¶F‰™HÌ®ÜP–F½…¶´ö]vÕ½A+L-ů¸“«ÚïΧœ&ç„9JÏòsÏ@w¾ôèyß#>qìšÊþ6^³ù-Þ#æU?Œnî1jÉGÏù]›ãk 6ošªtÙ¶Vö_îÊþÍ3˜PK°}Ó·íâûl*éÕ¢^Í¢äa#ÇZUmfÜçU &2òÊ\M®0ácq&ìïÿßÃè¨ ÖŸxp>­ÂHwä :èá„õ¼d`üîö†Y, ÓD€DÎ𔜳ÕiõÛ} ®æÁÁ|M1—&…Xjò®yØN¤µDE¬´9uƒK™ÏÁ’AIÄ5AÙ.8¢Ó™5øž³lÄ1W´­*æ–åƒ_Õ§ã,õê$ËjÕ´·,T”žï´ªÔ»çÕ¤WyíekÒ7‚ƒvùšô›îÑôbŠšô D=vMzsSª(º íŠ~'#+'°V%ƒñq°ˆóP^Z¿c„–‘Ø qjÅà3¨8—ƒ¢(‡¨&.ºöŸØ+RÏÄÍ%*.GLdl Ëk*©âAç„ÌýÇÑÈÞŠá‰$“NÝÉXv¼“¼Š$jyï5K¤>}aÐPÐtMäÙ÷cÁÝéB\±Æ§`f$ÐÉAM”d¾¸Ù•šy Œveh8nŠÞ9ÌY²Ý¥{: æPÑ<Ø(Q(/i鉽°ô=þ³ÿ=rü_ýéÆºoÿÛx¶ˆÿ{”‹œoÿ;YØÿ¾£ýïdaÿû^ö¿©¬ ëßÂú·°þ-¬®õ/bM+eý«K›_ŽÁ¬€ÎÎw2#‚r° »åö|-†±77÷Z¿š åms²bXÇ«=ŒhàcJ iã§s³’Épê@¨…Åp¾ÓǶ2•]œ­[Ôœµ"FÝÿ*°RñYÿsw8èãÔ›Immc1:éƒÖÜ) ‡þ³BŸ¨MÛkÇ{kuŽ•ƒ?^îE ÝaµwãEÕXTWn´€™SŸpŠlžU”¶¡ ߌJâI¸×Á¶SnmËD¿”M¼•¸D þµåYt–Zƒþ*"<(C&ŠÎeÈ<°’KÚ"s-A49ºµø*ï%Âgx3 +Ä'90±ÚPvZi§|¯˜Õƒm´’í8F^˜³|+­ð ½ô€´ôÚ”J‘‰‚ðq§qG°†6°QÛ}(x‘=ùv{=¦˜¥¹¾XD¡ÖB\º’vbᛊç³Ì޳Zetä¸ÿ*Û–+m–UVÊÞÊ«LµöaWYÜa¿2+-²Ê°=%‡GŽ=PWYîÐ oåOu‰þ˜®$zRh¨›¶¼åÔ(‰\XÞüý}]}ûïÝåÕ ÿ¸ößÍ­ÿoãéÿïQ.æ8ÛþûfXÚÒèŽva5mÓ‚@ÁÆ@—§pÏ® ôN¯©S[Ž¿Ÿ½ødpf6BIâB ÇÍV j”-—$t±†Ûæ~v)Ö7j¢}øjíoisÆ‘æQniqæX0y:BêÔä“ËvGLØÛÙ¦ÙÐ ‰›œQ»·eÐfW]P*Ðú MG s®»”ë)Ót+lÜDõU„o­â­‡ø Lãn§‡.øås&®³›.løp²@N}“Q·ÿ^™³w> zÙèÓ7‰ ‘KΗ—_-“1ÿ:^>F|ci…¿–h`З³Ó}e›ìëN9P^xhÃöB>WšÕjMC/½F2AÇ–~mgÄÓŒº•x"*4õ0ø6ýêüÌÏ)cphvnnÿæ=µÇœ.iÛ1§°vKÑ2 ࣠tðºÛy?èc–½¹èÚ}ã.[ämJ—«†cµ]£†ÙÖìm·™¹fìmÏŽ}–c½6°6q·é$y]‚½v@er< 6N>>ÚUÞNͧ¾Hغh“5ÉÆÚe“q=Þ–My×Â͠׃w9 =äd¢aõéz¥¾Ò]• èç•.þ‚‹’ÑW?]Wÿñ¢ûãw²·M„øûØÐùHOßvû•~íã P3Öóí\Xd=ß^“¤€spxóÐÒ7Ô­øBM𥍠¼EŸdá7#:ñFh:Ó,_Á¢Æ2ÏÇÞQBt{ËÉY@QÑöD ¶æAë÷ÖIU96ùOÆ÷°©hÁ+_%;±P4¯!Æ2(3!J6–[Rw9•ÚÏѶ>¤)íó(tzØ^.{=º?¾×£l޵rXÈôiå·˜›×"¢‘!Ï(E+¦“]€FÖÔRÑiäÏCÒËÇòçyMÖØH«VïvñÌ—è`“ÓùsáýÚÍß÷*b#?³|>~—æIó"=íãæÉÎ+u|MûeˆLMÝžÓêià[ òÌœm·1¨û´½3Ï î&Rmœ4_&ƒºµ_&F22XT ¡¥Óº$e%d¤ÜnWd ¥ü¬*VøSj¸ùxá_²î?ÚÍ`÷e|„´žÔS[þS´·ácv­žà±§®¹ÈŒSi´æîÁR›´%Åm§–Ÿ)ïvj¯ÄA5yX BC§kB“U³^H)}own@߀…r;¹]²rá÷”žà* ÌÌhuÈ £¤·x˜7Ôä[KøQ}Ý7ôéXÛVCƒÀ/íÍvµ? í‹kg àçñ¹-p‚Lzã.¢\^~#•ç|)¨é¢šw†b À]e[ËÓÆ’ˆIˆ;«v¿Ó›PÄnûíRQOËvÔwFYþÓ‘t+“=<¯yV-ýHÄ‹â·þ¸ õÚþP­?N¶~ºi8.b¸sþÜî|z† KÚ½«?áC ¯xP ÄЩ GíªƒEU©dgœòDÇËÜ8wAÓg©âBxVLb)“âP‚=Eª,{ày¬Æ(å#ùöùF-eýAâʉõÈD’EÍÚm¤5~‰&YˆQ‘óÚv)ú'8ëXéŸ']È©8ˆ~ÔÞS‘…™äá‘êh!'ýmZ]ÚPÿô) ¡ÿ'ûÏä‘ãÿÏ6Âøÿ…ÿçQ.)½ÿÏ޿ΓþŸ6 òýðQîGóí|?¿ Ÿlçà–iOã’)ï‡Y5yÉÕÉÚ*KÝR‘¬Í®1Ý^÷’0æ;H¤¬Ó¥I¤‡éŽGF¦#åá¡èèa6ºË®Æø: Ðþ2`“å ƒ[™‡«Rʺ1dTl#Ä;ÚGÿŽ+ iº·,®1˜ô¬nÞ¶”Öè¥Ûlß}A4—›ô×r«0"Fò­Y¼]Zû×8o€|8]v¶Œî(iåwû¢£ ø-Ë4ºíôzxØV‡° XN–úÕ" 'ñy¾#§­Þö²$æ}Úö¿^ËŒÔ3åÑiytòÈÑw¨º¤eS›ËjØD(ˤ3|¯¾^csz7ñ=#ÒâþHxÔY—S›¢€žmü‚ßWƒ½C!X ©TEv8§é´+$›×Çæ%Õ-V(ÓÐ!ÕX¹4ä&ÀÍV­AûÍq\õ`SÁ]JþpâMæ› ì›ôUÍ#Ϊû0˜ô®±–ïGÓ¦Å<Œ‹ÈÉ}ú§GƦ¢œ.-ESÓWªÀÚ÷õ5áq°V”gãx—j~ÚM¨µÍ3Cæ0Ýöv*õã1ðz§v¹Ì=ë…+ €þuz¶ðP<ž‡â®8K ?åivÑ/¦©pǦ2qãŠî-lšŸ3e…• d@&¢Št£o#8G-8ŒáN°äŸY¾(œ™«AvsÓÅbßÚXgÞ+8ÒA6CË[vÍ¡ÿØšî5´'Cq9˜ô¯Gò®«O_:ÃkùΑ@*7ÒĨÚý°6] O¤¤E7xâ/kÏÅe7U+©ö¬ø€0Bƨ‰îZ¶VóZ HyÖVÝŸ+`¨m⢋5Ù†…ùç³1?P²À¾kÀÎþý"Õ'ÍK·R§]ÕỖ’–3tÞDPÀ‡›¢* ‰5Ä4 ÷â}9Æûþ Ë%Vjaˆa…£ìIíŸÔ=˜‡‚Û¿ÁcºpzP ^ë"숋°¥÷YÙØÁÝ™åélǷȈÇû÷uHJËņåb)…šÑ/òÐĦTmâ”hmî´í“HÈ:WL߸¤Må½Î•„Œ Ƥê äÁ¸8;=ßShvãáÄzæj0Dw;:• o@¯’šÞG§'\Q×ô…·ÓÞ†ÞƒÊ3¹Ö›‚t«Øt´§†‹úµÊí«Â8¢RD #x†`ó°ˆ!­5wÀ©Í#1Ìz]2wœ­Ó‰9ÃÈüe\zø`~ Fz_0çôÃׇ7Ðíã­ÑèÒô*‘pÎÁ52èC¿tGhüéuHµô”DxµÃ@6YN”ÈèÚw§i^ÈyærûéNÿ›bÚsÔ6‡PÜv>ºAt‘-¾‚Ä× ˜¥–äŸ!§ê /Ý&Æ?•pÉûϤg‘ÙM¶–Â9ÎîH+‚SÄgiˆ‡ŠL>ÅiÏßµ;|ž™ÜŸ¨[ûöBlébÂA—GÄÏüâÏçZI#Ù¶³?r›_£éÜmYŒÌ«Ó½Ü¶Ñ @jã\Ž;¯Ï[g5ò<ÖÄ‘JB8®‰Ö»töÞ´ážöÙé^›Cýšû{uþÑ dÿ¿8JÏÎã$µÍX.õÕ¶*B9c¤‰oàãôý|ŸAç˜S›w^wÜë›îTØ8™¸[BÈ>ÓC#év= îĤ?îöÐêqw‡g·«!ª‰(\Ñ0êâÝköcÊ[ §–îõ¶”fÛpkŠeqâxêŠÕÛ´v¹4Iº1n¥ž“h•×´“è¡4ecÕþrÇ"2K¡1hÒëØTðhß…Óè\Ž*§ð+: ù¯fu\à>ƒ¿lƒ°À{V0~ý®ª”w·E ¼0üGÁ‚t:{Çq†ú¨¡©i×~Öçvðfx#œÜ¬“,ÇúJ£›‚Y°×2j?¤< Õ°Tñ”o@^¶ßx™Á(f|<N+V ]DZ ÷ömÂÒ;,XŸ§ énßÖº8еO`àmDÂuqdš {d5Ù¾Žuˆ¬¡#ÿ[xõ&Ú|ŽVánàü#¸½îßî˜õÇŠj yÔVfõ]ï”}j'1²çasÝ<J{§qGv㎌Ff¢…ps—¯ƒÆ—·çA{ÔV©7°ÏlNKwÓêc8ÇÏgЧÌØõzMnp@kyãGbЧ÷b šÕg%1£ÓCõKN˜–е—gk¼]ÇcµÚj "ˆ“Kó÷ÄÕâbX6µJ„Þ ‹_ c}»ÝúÎTí¬_ê—­ªµm©IgšP#Xq ÊB’)S|Û½±M_¢^•XNR5 wÒGÆÖ!ï3· ó`FÆúYK:ª~ô:»f[t;c´¾£AUy`jˆëÉP–aq¨4ñÂͲ¹±mTEs,ÈF+íhêÞºªXõq8F2 ê|@;ûãõ²ù s¨Y£oÝ9$µ oá7FqÎï®Ñ¬-ìõ7„xßéºqˆBéMdsð§ºPÃúP+š£ÏDЪA’„4.©?¹ —÷œÖ8uï]²RGåŸ+ÞŽ¦‰‡9ôÛäÈׯ·ðÂ8žÈOªb­—­±ãå…w;iëÐ|©Ô¡…æxÙSìV”ZWµ^hw6MºÇhz)‡«´½s<' @& H”:ó8¶öJẊ„¶ù;m€ÃTÒÎ,ft$C‹x"3tpÙ!O 82(ªÅò´¬¨I‰Í‰åýÀÚK}xRdñ!uÚ„’lžLhñRi¶teç`„µd<æ¸Ú1j^J•7“¼La¸•?ª5ÿÀð,¥òÌééØ¿Îe#ŒiäöN¨Ûen,Üg )Vr•BšêÄŽøk¼¢©p°zêë‰}³<6‘ÄzDH}ÃÞ¿Öêñ=B¸ø"’e–‰‡B1§}B°U"UG˜¯¸¶¹l3D½^¤[¤‡F©qà5´,‡#2 ØüTè~ùæ7J(¶sp_Ç%wßla åhO²¾[oÚ²\OÄõ#¤¶*ON¨ôóèl$SéÙÒŠp­‹æ÷'ò!êZÄÊC­œî›Ù"¶ÿ¯0þ4¾y\ü—g[õ þs½¾ˆÿŒ‹—œÿß>ÛOâ¿üh±ú÷¢Þb^7UØÙ Z` TKGŒîzÝq ½Þ†ÅÇÇKƒ´ÈfœYøÈ¨;_g£îû>Û’/31qÐíâ¸I.!·ì¼Ú~Ù>ÓD2¯Yˆ›B¿¨JSôgcAÛJE¦£EÇnÒQanã‰_}é^c8ÎHBÊ0A í%d¶ñpr5ž ³çŠÚùqŽ¿Z'ŒŠ8A+dZ~ý¹©‘êB”pdú-êcÀî“G‰Q]ІF"±gú«·‹(ý5J߈/WJÖŒv#]§ ‘·É$Ðõeˆ<Ƥ§Bäm*^pèt!òŽ-âÇ–·'@Uæ5¸%c-{`ýëøtWfÚTÂâ,™`#É2±?<Én6ît{ Kéaãõ¢0îጆÈ?]"]{pÕ€]ˆ b²\frßËbÛÎu™1Z&¯•kŠ#ÖÉÚ„Õ%¾tæ=yt‹Ù…-©À00Á–¦b¶ÝY‹DKš}ж•@0ºúM"#T¯ªà°36QÉf«É¾v°£T˜ Ïô…x†š>WÐ>¸ûŒêuÿ4🠻´P©ðQonlà?›E7óxóF¹›ù‰Í’”·òÖ&þ³UŽòS¼ùéþó´èf~âÞüì)þóLmËa±mЋøz$y …ðó(iº,&”V@mÁ:8âδ ³ -èl=³o¡)£Y€X¾-as—4¡Nl窃ÃßÙDB[Hèé3MCOçBO·ÐS"ÔAéà¤wp;85í`ÆD2ñMõ¦šc¶`ÐŽç:hói"’@:Hgé cuW:8ýj¸–p¸–p¸–$ï=U"¸9HfÉ vžnÊœ™C2DaCq%2š¼Eif8::. Î|X‚vF-#ù2™Õ/uâ߸…$!s3Q~_O«¿ÅÁ i³Nï;#ý@E8".ŒM>†ãÖÑIMœ¤;Ñ<<œoíC$aIKŽ2~‰ÑÆmP~€bá Ø¤Ÿ6 Îõ]cœo‚5fÅ&aWíx;CƒJ3E Ü º˜ônXá„”›E®ˆ'¢‘FU²|¤æ˜–»RޯѿUzzƒÓÜíóÀ$òc&­óuö±u‚Ó¹Tß%ê­JúF˜¬ÐF Ükºk«øy4²AW¶ª?àÍ*5x>‰?a #ÜNnÁã]`%âÁ‹†Å탎é»áidzÎ‡Ž TÉØá“W—~‘áj´×ž¬–àj>W>Ý:\­ °S,=„åTüL{Ð :è£>cQ†ã¡ÓìªÖ,>O ?_þ¡ü…bSÈ«•mÍÍ\›9%~ÚÜö—ﳿÜs>Î|ðmeî °pyD…¼÷¼Ï·¥â奪ßxË˧»Í­…éÀûyì]›»wýYVÌý¶¬ŠØwص M”YBõÌÜâíc3º}Da&e$x·ÊSß¡3±‰[ÝÏ·‰ÿø<çðÂú?[ÏžúñÍEüÇc\̺^ü‡ŸÙçÃ?*èÁx0Èõ°‹uJþ¬1!Ôóð‹Q-Ä)bE~7¡"D!ÊÀñÐÀÊ7QZ(æÔLDSµV/¿­¶JG–*™íá—m²ƒ3D©SèuVàˆl¹Î(Ð{Ä5o0@cÄq(Ò½Û4¨> \ Z}^ ¼Õ:LžPÇà< Ô|_´ ý B¬nYa h ˆs/…ÈèP–tðqâ0ØeÍŽ¨a,©[íå§¼O520ÛŸõîo&Ù€Yêyý“Ŧ˜!õÚÆS´#Xb1?g0Ë÷œüJPrùP“?p`Möä÷ ¬Á–åÖíÎ-°¦Uû¸äÔ8 {¹Ì°¦ Þ{#C)®{ªâ!8…‘6™D,cÈÈøŒ€C>J‹Yj)D€!ÝÅ`6ΰÈ2Óc¥qnò»Ã¶*‰2Gªk°PV`gWËþÀi _2TãÚƒyS!I¥#]õDa,-?—õ5–æ÷Œ|zª"Ÿ¸±FžÉð‘×ñ&¯ÝQ¤ãÜ0Á&xÃo˜l>µi$ãsÌã |ià ¼a²¥häǽÐãu|ià ¼a‚7LžÊóG»{Û!ØûVs%´Ž†îŒ5?9[ÄLWØàÞÐÃzxCoèá ½§ºÓ© !¶‡7ôð†ÞÐÃz|ƒ" Ð1S†$ð†ÞÐÃzÖ 3Gæjþֿ߯V˜ÿ·±¨ÿþ(—\8žýdÎ~sç¬Vº ótÌi³÷¯ó½]“U GÕ’ÜVY 4•õ‚~:³³3ÐÓØ õ”ø "hOçP˜¾¨:>Q IÁ"wºýQ¼M‡‚º`zI_D’o—jnSÑ@LÆa»y1*$oüõ=04í(í5òçQ ëýmÞÛ¢&oÌî·²J¦ßávøÌnžÚ$¯wr• y|MjÐö’4œ ÀùËÐUБþ’~¬­¹¯]ø½ÿì~ïÕG,µøÓù¿k"ûz•Ý9kÜÒßö—¨ã¾äÁãÑí„€0I’ùlæ,RÙ¬@] Ë>8™Söñgõ·¥:œ’'îÁ&þ\âeÊP"G—ZAAÊ›ÿmVû™¸výâȨMÞ&âì¹åË[Ú$¦Uˆ€‡Ç*˜B–Á®o²‡!©ÅbÓc1çd /OY8¾ž_^hztÓmßûáÛ›”˜üfÀ;¯i…•U|Ñšã¹ûXåP™M£‹½H··;äaè‚ç˜ë¹{ÍÓJÏl ¼G*²ˆ#gìÚ¬]õ ¼E{Á™ ߥKµfTûݯN«®¨}Éy#PTh9;îob`Ì|¶è8z­ÇÖk }†¯prÊ)º“ƒL ך¿Ñq«Cñ8¬pkyÔB­í´¦é[ÛY¦Õ5Oø‡ûÕå±ÊV¶…* œ”]æÇŒÓ²´&¶•-I®~snñö€íp×·­—Ø¥ëÏXAøÀĪ!Û[Raäš1NÒ3SضTßd*ëŒó†µiÙÑÕ<¨#žÅEw’rX6„pέyù±Ê“ãÇž«¡¦î—¶µ ƒ¥lŠjØ"Öà 4ŠT©Îps«bpFe¼ym^Ä¡Áð’qMeCZ4L8¦ZK´Ï]¹•à ayY¶PT×$ô¥éŸ+ɺðñ•Љë(Ž«W &ý§>.jF/jF/jFÿjF?>Ä"ñ“'|ä a|¤B“c*)]q¿T4B9I#ù˜ TNr˜·Fë7)ÏÙÑׇ}\Šuö(E6×M^–ãê6ëôÙÿÓÛ&Lk÷H’Iì*­ Ö=ÂöÔ|Áä\ŽÛÝõÿØNn‰¤™n)Äÿl»*ÈFéòb?i^KO•¸B#ª?Höêj2dc¸];—®Yóò…g4yÂøGX?û2XÕR£ÓÓï l®êŒîG`SØy}ÃŽ ŠÞØ FŒÃµ78Î=>ž̽ÉQðÉ!WñÞ:†½Òé~|Á…XñRß§BÔ·ía•]œ„Nráùö-‰è{g¤â±êsˆ/|ƒœ•d°»º#ËþÃ…ª—Ä€DT ‚k·D1 ÔÇš yO H8g`áù×êvºÔŠ!(ª€î<„ÿ#ìC#ÝÃ&¡"6[¯OOà}ð²u?Û¬°µé»6A&¶OŽ[Ñõó-ǾsÜl½Ú®•-ËîÝžÓºÒɲâýqsGþü¾`çÍ6Œ ý¤‘åÊ+9¡v™t@(–ÑÎ&39'­€ùJh\Jæ2 sÒ¤‘ƒöÌ ¥-å{¨,7Sô£ê-SŽùØ>\Ûo·÷ôœ9õµÔ=òý22té풋ϼ+ Ë\ÃÅ+neˆÉõòÍn™4•·¡FÀäjð8„Érˆ÷— X³WÉ<Ž{£ˆ™™!A¢GQfHæQœ²å?R*3äYä©ýâÇ~  gÆZ_T$O·{lÙâO&å¬Gyœê×ͼP› ¸3ßzß41(3(ókPA£•™a-IÉ_‰–ô¹Ì+ïÖõtU[Ù%¤^€<¥Æ+ugX3u©-I²f#VÙAl¶\ó%ªÚJŠF÷zXWþßÑì8J¤-yƒ²”ãÝ‹) m•ï–^ÏÊæJ]”Ï•2opö Ë©ò¨ž4ßÉ0­‘äìÚDS˜à=Étª¶ÖŠXcb˯yÈŸ¦²¬„í5³ÛÇá#Õ£tƒx u™¸ÔîŸ_nt›[¤»Aî—N²î$YèosªnëŠ{/P¬`yBýÞÛˆ‰—hU¾?%õ‘o9ÞÓä艳×ÿÍ´>¬+Éu¸JSÐp¨®âM‡utûhÔÞÕÃz`8Î$ ñ*Þ—«7¿•Ó†ÚSW(!ª ; hìŽé·ÕkãVaõôh®b7iU«´³¤ø:Õ(âô[ÓV±p0ß$ yW ¦\™í‚-Ù€"IÚŒ–Ûµ%êàu|H \_ª¥¤ [†«Ñ·”vWÑÞî0Cws†Yž9¥sÀÎS‹ñ«7);±4"—Ãn å ÿû“^oI§|ùyu&ýª(£Õê„JÉ󚇵’»±˜÷¢@w«‚{<|?'¾ÝŠlw;'Õ‚Ô\»KfTbó@½µ2Ó †p ;ýE¨Dç‰ó¾ôÇ’¹”#ZÒ`/pÉýæYî~ó4½ß\„ûÍ…½ß<‰™g‰*°ðª_Ò I•€¥Ýïü%w“s6vrGn6ø¸­ÝLx/jŒút¼Ç˽#¨zU¹/¬K ªÞ–°=ç+Ìÿß4·þëÆÖÓÿóÙÖ"ÿû1.fm7ÿûl¿±¨ÿú=ë¿Â¸ ž%j¿')[û5¯l«l/Ÿ0cS"mbÂæÒ,@›*M^$ãP¨àì{:`âö«† º|îWdµéŽuGŠÐ¤Ù\¡‹F1§Šœê½‡Ž?ÜÖ0 R¢Ž³ÏYO4õÛóÌ ÓØ’y4ë j ½&AÂIyˆ%*ùžìXjßÃ>S¾¾_ØÕy%­þéJÄþ¸H–?r‰Ø¹áSz¦’Ÿ›ò!âŸ>ñÀ~ºOüÓ§\äÅO)ÐÅHD“®^tQ‡2ýÈ¡) ,Å–âÏ‹¥øç*RÚJ÷`Q¡Ô_T(uïÿ‰*”ÂÉó«Pjh¤ªŒNáãrü^A¼Óyå°vø“U^Üx€Ê‹ñÑÑ{ÌáJýùáÊQ‹P_àÁ¹§:ÒÁdö_õ[L‹*7ŒÂ-^ÕºgÉÅÖ=J.¶¯äb™f)¹Xr±Nd§Ìij±Ïs±=x©¸y,³Yט<´ÿtËlÚq­¬/1šª·1s8ØS\RÄÿ3¼yTÿOãÙ³zàÿÙxöláÿyŒ‹ÙÒóÿãq/ü?êÿ9ÝÿÁü?eK­Ý£Öš…Š˜çÚù³0{@ßÉcã²-<' ωºþ”•½~âÒUST­šÁƒ²p¡,\( ŠãBÙ µü’3÷ *ì Ú¬ÅIç[Ư/»ð4lpâ´C3°„¶OÄÞN{o§&N·ÀÞ'áÕÑØ€ÃüúÓ;gø®ˆ‚¼S”¼Ãt+š²"i,ú¡ßÚ&Äñ.FóæQ§üFCÝ‘¡øáJ}—R"}¨làäÂœÆ ÿµ¶“„‰ëòO\û‚[“ˆµôž§XoŽ›{­ß• #™Ç,oËiMiÕ˽““™ƒŽjÒˆ‚?_óϳÓöÉ<VÓæ!ó=³U@K×@“ ™–q+zïqAú¥Õ?¡wêtÿ±½SLe§õ-¤¬b<¡uÿ›Id+Ø;³þçîpÐGѤ[ÛÐq^d“4]pŒ+«uüÏÎ7pßA0†¸é Ts&!w²Ûî**P_º× >I\*u«$d=Ð=` Õ®E¤ IÖQ°¬¹] ‹pkÛ7öØm£1½ÎihðÇK䃈—sIL(&â¨ESšŠC óùäSÄ­ìgw¹E2Kø7Èê’>‚êXVÆÕƒ«ØiR+öŽhâ]6äÄ y¤õ û®÷eÛùN(O¨L*9«¢îß!ÔΣÓK”B 3¤…kKSݾ¼®±ÉµM `‘)Ã\xÔc8²EºõÌ$ÃÄzvàòïêÁнÐôµ/'XÂî:¯÷Þ)4³¾¶˜÷xã¡;@×û°që}$÷âRÏÜÄ’ó@¬ ø¤°'ª¾µîñF©÷®Ð’mÅ_çÚ¥„pÙçNl‡%G|KÜ.Äl‚ÂH’–Loj¿|肞‹VÇ Ö-á ÖŸ,fÒ_@ ϸ¦ÃÄném§‹p^ôº‘²&`+`³~í;\Øjü·AÿnÄo’·6è¦FîMòÖè o$ýç#+\7š 0QÅ{ˆGR5IíÛ˜]á¿÷mÍl)#ìUZí ÕŸ "•ÝÞ¿‘¡—èD#žF»ƒ¢G¸)w#_:©öhwõ€W)ü\‰¸ñî u·º•µŽ8id÷†ã¯LL¸äw›(!¡=*žèŸÌnÆK5ãÔ_Ú ³–r–ùZj ú«“~‰©¹Ã#O‰GãÒ¦üs4Ô( ÌÓ1ÉèO£`xP]¯ sh^ÍHuÙqÑ“yºÁò{Þ&\ë‹j£ Cí î¾IÝ*pÔ7`I3jpΞ­/™b/wïƒø]B!à~ˆ̓`7´/¹ã~.#™à`õRÖá߃Xr„6Ö#ìÝ~3¸!±íëK¯¸ Â÷uÇ¢šŒÇY†÷\†2XÚŠ—ÕFª»ŽK¶†Ì•™Ç€‡!\§Ò€±Zr~b6}ì‘<7þ’87þú8çÆúæup\œÍë~âScâ‹'Q{Ž~½A_oÐAòÇ8#6ê¹gDhjúŒÙh6bó³žõRÊé)B¡² ƒYK¨¡qµÂÑN%è`¯-­i–¢Tµàl¨B{£Êæ¶ ÷±‘ÓhQßã,±žÀÒŸò,X¯[zXZ»"›®TÄê5‰ZvHË>ÖQ}EÏ…Œ¬úÙ«ir´ð‘îšÝ¼^Ÿù\3ó¹ða–ÞÆ}—^ÙÃOÙcãFrÅÍplt—c¹óbÎ1¨¬‰.>ZzÇ!w}OqØsŒr»+ý{œ“ònc*y+y.}RŒ‹©)NŠõÒ"ª1ƒˆJI¤Ø©±Þ(Q¡mköSc=k2‚†ÈXi& “û¦óJNÍÆ4s^I,ÿcô¸ø_ëõÆ"ÿã;]Ì>~þGТWükeƒP—%ìf$^hæÄš ¿¦Ï¡’ˆŸ3*?¦ËúuáEscܶ)ùÏ6A!™‚<1qu¤”U‹b%S±Ý¦‚Ñ7)¯6‡ÃQ7áúÍíÂTŽÔƒÙŒ*·9M+½ª§#U@×m4V8­túƒñ÷ôîdvÉ”i%geòrx[¯×ù ©ä›NqŠŸZ"Ûê–x+ŒR˜O@9Ÿ:%žr\œò°™Qëwº ¿kƒv^~øÊ¼ß=oåAÂÖç‡ë3߸éEì9Ûnÿ>_ˆžÇ‰xþ³"òWû • “~>UXPE=ûKìp9uˆuû!C¬9JÇ®(ð§J¯Qk)­¸ÂiíŽéƒ ÁcD©¦K©£°•úò…oç†FXŽÅ¶ù°•¶Ð¸aÎ^qˆh‹ïß`Ïå¶Tµ(ÙâhKEI™Ôô`Ƥ¦ïxæÁH™ææ1Ñ–ÎÎhº©Çh"¥*$ÇýÍQ‹ë‘¯ÀþwóØø/õ-mÿ«omHûßÿÿQ.)Ÿlûß>῜6[íS+U©9¹¯Ä…AIÊÍšûxº}‰SóydŽ;˜%ûGgŒŸœf£ŒRdw@E͆Ҹ„l»à/e‘n“ì^—Ìkƒ›ñ yÀÕ‚ùêXüÔÚ˜AS’"ByÆMÛô9è †ëØÍú0”®ÙSµK¸ûTÖN{JÓ§¢Ïó} œ<6.+nI›1÷ìæO€sc—0ਧ²å 6Ê–/`~ÀNÆVÏbÚB‹)Žb zêI,ô¾ÿ&5gG=¨õ–U­·¤©¬˜‚‹ Áì´,hZÐ'Þ”yš€›­6)ÑZ®´VêÕ' QuzáÚ¥bõ!úÔÆyX³~÷ì‰×Ùè Ä/‹3Wò“²ÍˆŸ'gŽ+[t(ÌN`eýy«¶þüÓj½Jx@3e?gýßħ­'5}¯M[­ãƒöcƒëkýÔÁ¾Õ‚%óZ—Ð8Áwz–¡W$2 ß ODϦÕCk»‚-ŠÄžy|˜éçq@ví8-°ÇÌHj“@¢nŸ—yl'76"¸÷À«€¡(9EË3·³¼1´°op px_± ¿ ›ŒúšøÃúºÀcI þÄ‚^î¬3/9æcšWØÆ2Žl ЕAÙö< &(™ÒpE6~gzœ={oÛùÕ'lëÿQŒª†ÊOÔ¢8^9Âû$žY†ÿ&XþPØ]ÀÚhm¢e²uß0 3AÕÖä³LC(qƒäÞL A†¡š(8äb_ü9mòÞõu±^ë ±¾!Ö7Åú–¼s}]F½.ê QßõMQW_××…ÜhˆÆ†hlІºNÞºð„76ÄÆ¦ØP7m¬‹ºØhˆ0årsSlªû6×Åf]l6Äæ| öÙR·n­‹­ºØjˆ­ ±µ Ÿ«q?ÎÆž ÄɃ5t=ÂqñÜJû¸à\ù¦ôžÎ]ößA$ ˆõ-êp4 ©µ÷«×SŽ? ³LG4cØÑ&+nV6Ÿ? "«¸Ì78péù‘ÒU½Út¦y·yCª7D'šI‹ÃÓ˜¶78p9ï!o é­‚Z_2á³IçRñ”ÛÅkžWh¢)÷åUg„«F q‡3ÁÌ"3¼èóTä™}A›èÿæNo­Ù«|«Dâµ"kîô¨¾`ÃJÚŠ.š8Ys§·¤õE«_.-«íöÊÖW(œ‘XwÖ¹¾”`°Ÿr¬sü•¤ðtŸm D£,wçR¢C*Ȱe÷™±³¤Õ»¾¸À¾F‹ Y‰6”º1þ`1&½4¦¦!®Á–OŒ:ÌnP-xŸ¦Ì™ªrì§:‰ÿ÷.û+{ € g`Šaæô. „ü¦f¦tk=ò–¢©·l"[sÀLóf‚ó´!ÿ怙†9ÛªÇß’û"õ–-ä|`Tà?`&` ž]µàŸ°ËÀ³+÷Ò~öu,¦Ø‡Q³+܆·Š·aó]ÎVì\ñíØ¹’[²såmËÎU°5»{Ûón¸›óÝp7ˆ`}† ÷Ë@ˆûm¸ÉÎÜcí×ê³l¸‘Î<І KH<ô†+ÂÝ"º¨hÉÑž;Ëæ_…jsäe >‹¯Å›cda–ÞýUjoŽ?ï^É Nmó,Xí«ÌWô¢È6Zwߟnp¹/Šo£Î¤ÒNêmpß[3mC/Çt17ó 2C[~ù ªã×`µ°ÖAûõ.†‚¿>=ió*Åœè±oÔÄQäÕ?hˆGÁX˜“¯ÏN÷%Öd„þÔW¯w£­œ{Ä•=A&ðJuÑHWÕƒýG$6ë8›åÐ C´4ñ©‚´˜5"öužG1ã*ûÒQ\³Hí?åŠ"-n´Z]# G^‘Яµ³Óó½5ï6<«ó}jû¤ÁÖWýÌ~mÍi°hÝ Q•ñƒ(‰'¢a> š‰ÝÄ-ŽR»TçV6@‡ºËúdÅô™Q¦2×øík5" ¬Óg«ðe¼mõÈ3 õL=ÞVŒ@}Ó$ƒ»’õôjéú‘行hÌ}rÌôëèÒ©zTÎêbõŸxWm½Zg õWþjó}x:ù˜õPß~$’·¯40RBÏqÃAŸ3F3µ<¬Pg h©Û‰±+öÎ2ö^§’‹)±˜b±(òj‰wº–É<Õ͈¼@_pW‹JTµrJaèÿ–Uõù¼õž~Wî«ÔHžË×èfI…C‚?Vp!¹“Áбø"?Kðacµžb§~}¥î0bŸÿl&M=Ùpž²ž™†A†<8+kVli&‘Š—fEÕŽþX/ÍŠ;1V\Ÿ‚ó¹>ÆŠõæÅä! a»3µ° ¤-{óT›Ñý§˜;›Ä¸Bñg³Rç?ÛêË~° Œ€]±žìTê+æIü²__†‡½ë΋~â$2=¶Ì­?<§Ÿ»B×çtÕŽBþ[– •W„ð¨b ùˆäÕ4Jñ|ÁûñÁ<_¿ï Î"<-k¢Ð­æ$v´˜3¹–Ì]öÄ.ÿ­%/ñ%ô§Á¼Hrf«±,Å_ãáU‚sWû*jK§È¹gFn”áΨ^°®º\Jë!š‚;­§S*»Ÿø,¬=3jÒQïæ½¥;¿¼f½Fj1*:*¹.êž.mi0ŸV"Ê´yÐ~Ìy¨”sd ¡•‡í}úˆþ¯—ŽnF/­¨;˪Ôü"½p Rkg½àm¶D:ªÙOÌkÑÍ$ÕïÇ’Ìw 9hþúDl)rTkûa‹1?M«[Óô¸ÚµÇ˜Ü\‰¾R¯•a_Áös}¶<šš-š-K+Øü06³ü(Èþ»l˜`Ømi¾`†Ý¶0þÁÒ4ö *ÔŸl¼bŸ=W>-ÓJÚvR¨/@Vh®Ž[Ùö¿œª}´,×µ¹¬¶í e‡HyÁœ|_(PÖï9¦óÊ÷âQ«ô™æÔOF&oçÊdÃŽ6¿~Z¶¥3°ïôÌêÏÜãjàËNŦµbò5ð˜´.Ç©GËGSòªzâeµ§v—ËÝŸ <Ùâzà+–ÿÙ}ÜüÏõgõõEþçwºx}úùŸ‹üÏ9ÿó!Ò>ìÎÔÁœ5ÛS>^"íóÀMûìb§9**’çæ¨ Ò8uI/ø³qêöËáÔýÉ“'§Oœ\$M.’&I“?GÒ¤Ëù–äÓzì¾ïb䜪H‚¦”©j3j¡ü,Ù‘•n­[Uó¬ƒÈ¤QwEðõßl80i‘jÈì„H½(ñóbò/q‘ϸÈg\ä3.òé]‹|ÆE>ã"Ÿq‘Ï(?]ä3.òùŒêóE>ã϶Á…×"Ÿq‘ϸÈgÌËgÍ' -\œ^Zؼ¨9§uå±Ë<òº"S*¯+/±u¦L©2“˜ÖÌ|ѥҨʈ®)x&HÏz°ìªƒ¹dWÅòFšÿSºÕxêçÿl6Öù?q1ùù?íHþà$£:Ü^dýù³hšåÔGœ|3eQÝQ"øe?`å½ñí¹xãÿ üÿК×ÿߨXßPþÿÍõ-Æÿ|ºÀÿ|”‹yÖñÿ¿†%R6îçñ.üÓį&NáÛÝšøã5É<¥Ìøÿ·¯iB´s ç9Í]׸$b{þŸê{2¸îÞt³k1Ày¡×ÞV|PÄ7ÀG¯¡ß zïg— 9×DûðÕš­dNåp/çho"ö¦’2AZµ=ö•)鈢)«ó]69꬧‘»ÞÜo^Œ¿¦õÈ@”´îmG{³«îÝÔdy¤1sÝ%Ÿ›ô¢V Ì\}µ?ÞVKC*·öâS;¦õ\›¯-/~_w†Ìk—ˆ÷¡wÛYÁœÂ&FÙ)t¸ ·Ò¼áv¸k¹S;#ž\ÌOD…&ݦ¯œ†yQI¯ý²mtûiq?óÃÍZ«ê¿dÎñËD<âÛ ¢c‰Q(ð7טRè;f1ôq­ûÄy!‰ 4»Û§µòÍ,­8ü©¤ÎÜhy¦cäK¬joz`Õ(÷?ѼßMB+õØÖýí_¨]ÏÝþ¥¶_K>Ûà-^“ÔÝÆˆ¼ß –x›ùO˜ð–Ð÷vç4 àþÛÉí’:VâƒJˆmÿ†'Q|{FზLPäƒnÁø\CXÉ)×Â'¡çÏñX }¤]cìð4~ŸVü–™=štv"1MP­$8“%«'nó(\‰TyÊxÑîOíñ"#Ø ¿:Á±”s\ç!qNýÜMµ™ñy?–ðcFóíRQWÊö¤5HuÁjiº7‘.œ'»IçòÛ}\Ðn:=L»ç5ôÇE\¤ûð`\”3®Ìòš_B£ôºài4_@½%ðõ«ÎýºŸ³áMoðÅé"?õBŽã2·Á]†ô®RÔ>ýuŠ÷`Jk+ZÔ„ŸÍj(Á& 7d–ðnôã±yöZgôPšRÐ%€¶ááH i.7é¯åv>úЉZäg×ÝÎûA¿Ó[H&úƒ.;Úv”4iò‹»}ÑQVå–eéÝvz=<#«cV„¥t‚ö¢oQÍ!rþJü$[{kõòÛj« _}Á™UÝ´ÉH®à ŠSTS¶@´§Î®ü$š6|~˜Ýdì¥ým‘o«ñ³mæ s°%´%w½–»TÈá¤ìóí"û|Ù!º8T¯4·Ò*l"{;|¯¾^#ºünb†EQ‰†ù~ÖÅ âP! èÊÂ/ø}5&ô(ï_C’PÕo+~D²y}l^Râ^ÆæmÊ–•|¦C}±Ùª•°ô¾9nˆ2#p›:? —o2ßL@ˆÒW5kÙ4F¨Ô¥’P?J~Ÿ¡’¨†EDüõÄ3ÓWËwíû:ð@Q›Ž« æø¦qÄ´…œ]1êL•󉨬 :|ckaÝÿëôìq,¼%Ì­yv së®QczP„kïý협”dcf-hÁ~WÆH»'É[Øwè÷`4ÓÓ&8x{š4„ž£Í«d3âûþæ´Îùl â>nu™_pà¾à FŸXC+ßÿVè÷šzªŒ1T¹­{l£¬=æHmíxϱ*[†#=jœ²lÕè"¾°c§Ø1í¢†:^w:®Z@­ôÛ ÜK•Z÷?T´7œ o·†øöIñ5©|«…H ·ûžáNo$:­'œÍ8(Z*Î\m¸í¶«,LjI/WÚ•ƒ*Ú€P‡¢ß]£ß(_‚lTÕï$Žñ"4a MF°ô&£èµÿ\Î×TÿY_ß"ûÏú³gO7žÕÑþ³õtsaÿyŒK®7ßþ³]Ú$îþ¤mD!ôÓ!è#±›ÝÞfpfØÍ:ï{ ä¾‚D÷}§_oÿˆWÝëIq›Ða‡¡ºÙõ7y¦¦µÜÝ CÊjº/†”ݦ҆³d›ø×8à윉j)¡¢øã˜Õ ÌfÉ×µ§ ]EÞ¿§]mô ¸˜øjaW[ØÕæhW+ÁW »š%Žvµ…]maWûYíj5±M1Ug'oÒ*@"h6/Üu†xÕù¨>€¡ÏÄ5 âEµüLþ(ʳT@éÜSwðÀT¾åM°up÷»1ZÕHÔá©í{F¯ƒ.ýävÏíy>×Þò)ÿÚæhMü¹m‚…A$àØ¬¯m‰'Èù ¦èîêü¬¦Ú^:ok©¶“.¬¤æÆ?£•”8ry…r…8vYÕXLçb3]»—Ñ´(­$ÇÂnú§¾Bûïðæqñÿ[›ë þo}aÿ}”KŠÇþ{ºß®Dpÿ`Ÿ~Ù7e.rBÁwa§Úß;=…Ûé_6à‡‹#ü¡ÑxÐiÄiTg€åè÷8+Îóß7¿NÐd­v¿ üç0‡~ ðP…;5•©ØTtoÑlž)‹¢LôÕpÞ0‘aµ²kê‚„›ÉOg77Ý«.*;ÒÌÇõœ`62±"wIËýHdÃá`(.“þõˆ¾¹Ùú±:ùƒ‰€&'eÕ”ý+f÷4þ+˜€mšŸ‹{¡òÇ­µ‘”z2“ØPn®2‡²uצb#frÁMÑd8æÆè}©Ncò½¨á(ŒáÜkCº¯²éHƒ¢eøuztíÓv¬ž…=J5Ç·æô(gðºGx=z$Іý)˜kÿGó؟ÃÐì¯IRáี ¦.q–_úûð°õ.œ”ªfqQTÍ"¨MŸ¦vºº…Ü$¯sÊ\\ÌaX.Ö˜R8,¨Zý"NlJÕ¦I€;ÖfJÛ,m¤YçêƒéÛç ÙÞ¦rnÊ 6ô#Zå¥3W¹iü1©: bîâìô|e ù_‡뙫Áý³è…DࡽJªR«žíô­¾°˜2}`©öôŠÉµ{L^›Žö$ÀpQ¿V¹}UG>#8ŽFc›ÒZsœÚ<Ùë’͵3òŰ¾{ Ápéáƒ=8KáÇ®%¬‡+ÓÙœ@¿÷Ó itiz•H¸çàô¡ƒ_º#4÷ô:¤¿yJšzm²©0/I2š†víišW rÞ£ÝÙq–ö¿é!¦ Hm³Ïý¶ó ”¢ËðìWcݵjþjÀ4}éM1þ«„{LÞ&ÌîlÜ5J (ýwdÈU}ȳ4DÍ=—ós½yÞbǺ3ƒŸõºq×^ˆ­¼Ð–",=‡?å \€9PÈɶý‘Û4øMänËbd^îå¶nRó†ŠÌÚÎëst°ÔÄ!—%ÿdë]ºù{oÚpZoŸîµ9ˆ®¹¿Wç úAÖþ‹£ôÔ<*Pi|æÅ›·5±³óš~¼Ú;ù½f@wH ù`;÷7š¼(é^@ÿü”Ð?Ű×RönܭȳûScfÏ€·ýkøìEÙgëzPïá|>ÝT°n¯9ìŽ=”Ž:4— ëb‹ç!-×/-”eÔý²ó9ô¦õN¼ˆh'ýAÿ¿Ùp`"í@'5CNQY¬‰»Þd$êº×D¨kYOË›¶í ß»u{ƒ¾YX¼¿ä(éûöêHûÝ2?b}ÞÀÇéû'ø>Ý«Ý9yygnÝ`üMwô-o%í¦ø•ùˆwJøLoû¤{ôx0¸“þ¸ÛCëäÝž¿®†¨ê¡¤D›%¨|#´æ¯Ù)¯*œ<º×Ø3P4mÃ!ª)–Å…Ó>B[ÁŽBá·i¹¢±ºÅ\QåÎO~·|'« lœLå úÊŠ4²Üù… ?¼2éul*xï±Et.G•SøÁüW³ºŒ?.pgÀ_¶Aà½N+u¿~WUZ¶Û¢N& ⣠?:F½c³¡>hjÚëžõÀž¼ÞG,ëÈ ç¦¾RÆh´g¾Ä³æµ Å)‚Ó/,A< ¸¢²ýÆK®ÿBçh`§²é,a¯¿Ü·)Êã°¼—?>+NÀ0»о­uqkŸÀÚˆ€ƒëâÈ4˜óÈj²G|SwþKÝ¿ÃëõŽ|9"($­òú­lÇï7m´‡usÝ< e§YGv³ŽŒJ¤“䫨qð-í[ëIên¡¤g63õ"2Oy±ƒ±VŠï2Oï54QÏr&ÊàgÆå—œ&3k/ÏÖxSŒÇ1µU„B:`4'Oìñt§8à&Z%Bo…åÐå']«Ýn}§÷R=2¿$ô[jÛb‹Žá¾»Fé[Ýþ$SFø¶ëxoD½*¡£åLï8¤†Ì’Cô· Y`@ÆZ Ù:ª~ô:»fÛ>;c´S£éQ9H`hˆëÉІ·/ª-'›{ÑFU4Ç‚¬™Òâ¤î¡7† ‡cô°!à–Ægš³?^/›¯'ŽõúÖCRŽð~c!òüî-§ÚMž°! ÀûN×ÑJ;¡º¥žÔíxVEZQˆA~Oÿ¤ Ùª‹«ÖxÏiN÷Û%+u@þ¹âí+!^ˆ¸Mô|Eˆ0ô/Œ¡ü‰ü¤*ÖzÙ;'^x·Ó,q÷Ýa—úŠP˜av—=jEiTUëUbåz"á£d¥Ü®¾ôÎñ.0Ò¹$Á‰< “wfÔå„ëNÚ.î´Î'I[¬<íÐ)­âá!ÇÐÁ„<àHŸ¨ÉÓ²¢&%6'–‡ ‹m±‡/RLè§æÉ„-õUKMuç0Æ2œsmÄZ™?¥E›I^¦àÔÊÕš¯«ÿK©^1Û²%°CŠÇé1£Ø2™5S¦ÕL“Sƒò‹X,¯í»ì óÓ¸¿7ÒXäÀppéddXŸ¸À›ÅŒ¿F8MŒ3“IOªxÖÐ¥ùš‚ 1÷bÍî{ ûÞ¸í³ox‹7lÆ|”-ç •àÓ$œ)\Öþ!˜’²ó®µ£F²¦2”µÝ€n-OüTmýÍ{,4¢/˜ú¦:$x°|éÔ'Q”ýtÿħò9Obæ´'l¥ÙÆfÈxšG²ÓòœîŸâtïì¦9$6EsšDQZÓ½2šÄìIMsÈg’©Lg^*ÓY#Ó¶S™DQ6Ó=™„…YÆ’è†, ^F² $b £Œx’w ’ 5ÞKnÙΉ©Ëzd˜[o$pI# CoåsÔ²ø5³r"ÚÐöÑñ½4(C¡Q¥mz?¤TkûQ:„ÞÑ¢Råª`ʾ®iÔ7÷¥Fb´-p±òÓôGÔMLŒ—%b6C­{ó‘SB®Ù‘K÷zLÕ2Ihˆ{)>DÔF Jo¹Êa~ VÚˆ¸IbªÔævêoÿ†ÜŒ=" ? pÉŽ8¨7¸’wáÏÀ} =ÉœÂÔðPp=¹Ò/ Î2Íå»Ìôš%2{º_‰L?Q”ìw¯Ñ«IkAwÄf5<ס>ÕÃÝó¹™ÖøÓÊV‚»¥ÇƒÏ½c%HÅxB‘F•µ.åçÒ/Õª{ûjîœX5}"Ïó5)=×ÙW“LL¤yÑ™ËÜåZµÎ(œäjCÝÇ£Úg&w<ÚC฻n†çIª±¬éi9ÍV.×xÇsÔ4Q×¾Û­=¯Z«Ú$5u¹Ë¥=ÊMRğנçU÷ Æ“o›†°W7ݬw=R³ O¡×[üýlêØ.–ƘŸ<ÿ8Ž$Üôï‘ý*Ý ×šÇ$YE5Üw°1 ™ö®}*âÝGÛÆ¨×¹½úPÑ)–tâf7Äß_N:ÃNœe×·×Õó¼œúšÿJ™Å}• qð€|xn`úz˜½4}‡_X¯ÿ~öuÌÊvÿý0ƒ¦ ï9¼Ãضh©Þ#¾§Oè2ã©Ì®UÀÚIɹ¥½ úãì†£Ïø³ù\×"¿Öâh fXãý–Û5ë糎® c¹íZ¦uŸˆìÿ÷÷†gÖØm­OCÉf˜(Tá€Æÿóÿ¬Öÿ¿Hl"DUi nƒ¡Ee8¸v¡=Àk.&ý»ÀŠwœæDµ—›5׿‡F&• ÍøÎá.˜:“ƒ’⤢ é>¹%÷ŽíÓØ¶¯4VжºuÒÑqLQâ©Ú‘:WºE½™ ñø¬´½;ÚÀM›Ê(²7ÓÆý§Ø›ÊÞ4tBÓœv—V¬–Ø¥£{zù=Ú¦>Å&íÍè¤÷å°”Dº» ¦¦j,‡ÎÎ¯Ž ‰ý¿äίC±ýßø·nŒ‡†™hW:WðÆÎÕ7c…ýÏ$#é\‘Žã*#ðùª](òaöû(®¥­cÞ«ØÉcé·Œe¬¢€¾`­$Ú¤ÐãÂu¦ÑlÈ ýPš _h6 Íæ»h6Îâ]¨7®ÞTš¶ü‹÷°¢óUåZèÝÎB”´/)ʃ†bmÉEÚÃK¿:Ô¤ÒªS0•ßK“R1qCëP7VD+jb”:“áÓ²°ö‹l;Ž‚ÝèX…Èøád¦1;p~ 3Óddo&’Šò=)pÉ®]éôÞ†°¸nmpjx§o$í…°Ÿ:Û) ù–/Òîxƒ8Mrµ:= ÆK¦Ó4ýFUTˆ:™ÃJDKU¦÷éßtˆ² -ê€o³á*O|«é Æ®rÜü÷ñAëôâßg§{ûÿ¦°õªx.þø¹~ŽŠY1 P.¯Z.ðrP'ìe¹Ëí|ŽHHîc¤›À‹Zƒtˆ 2AàéÑÃ`ÁÊe«ª3ùï©Ó{0›ˆ"h“Ë^¶jŒÓÖÛ5#{_2N뛜\¢t½Šöêž x“QUñ­ß4´Ûc0ëî}z»vr&wwƒáXì¾>ß>Þ‹ysº·sÐ>xÝ „`…\ö¢Ý"~–Üq3O˜[ª¹Üðêt¯ýŠø¡üp$¨©tT÷ýÎ(tP³’ïu€Ä"üa³Gó=¨0ÔŸ³ç\`@éCÌ‹·]LëÃ|½÷(* '(õ, ™8d8¾prúŸ0ãâq|n)ÞþEJ£ý(&úUÇÙÕ‡~÷?˜ ¨I%h¼ìL (^z]S ¸¤¬wÜ‘g]° þ} ‹áß”þ&ªü Ž¿ô!’–…ˆ‰©!­‡J^}Ë“ ;´÷ˆ6ö{÷Z•àle?úQ^$;ãqv{GsxƒÅ3:fÿ¥UÄî—ý(~l –±^»k¦bKH*q„ƆÜtz£,%¬DE5Ü=wYœgÖO v0ayØÔ˜ƒpD`UôtyP”däÁ¶‹<¸Æ'$+7#Xp”¶Q+h†Ša îSìŸb÷/D +"ŽÿP^(¹’@ТƒPbl¦°yMLTøRÆVše*Îm’ʽXƒ‘°ÈìáéAúåMÀSY?Ä^Ý‘}ìÕóÑZ9|îŽÌö#Ç Àlƒ5'Ɉ=‰%StMEʼn#^‡G0%‡vôy žÔ¾dX)ïrbÃWTD>Ð&¡ý‚Gw3l+jT¼à-*±Èèb£†­„©é‹ÕBÀáFp[Dø¨H:l5Ç[zHÝuO¹~”ÃZ]5wMlÓÚ Ó5Õ™ú! ZÝqú’8/Ó?‹÷TjºüÎT7ݸ¦g0ðØ2þYð|î9Ê÷GÕ«åsêxÒˆ÷tâð½jx‘U–ÎZêüå+,˜œ\×nºf›|xÔ‡)?˜¤ÍúÿîÞ~óü!;¥¨>àcY$8.ð’Ö© òþô{N=Âb÷ûI^ßœFJÕ¾šÿ€CY/z&Ú¡2/; ^†õÖrñ;OÏ4ÌC‘\*ÿÄV¡ÖžW_ÆSëòZ;–!íœò ¦e–êýÙéyûÌé=®ÔR=§]»dÏåk8›Û}Õ“o,ݹ“æÅ¿É¦Þ.EÞÜ.ß ‹‘0 H_2Q©«ŒMòÛìéÎÞ¿ÎÓ=8¬ÑÉôßgoßì!úì>ý–¾¿E7'Ÿ¯É)¬<€¦°iL€Ë»ˆù8íõxsg™·þ8}Ýz™îÙÁKxÕóaºÁ’µ å[Mœ·ÚgM8¿ËöDædÆZ¨„L•v€8÷îßxwkw/–ú8S¡T,—×ä©4ò/4ºýïý7¨Ýÿh7ÏN›­6ý†ì’&À8œÔÓÖ«=Ýcšç ÷ÏôœÌ@¥9ÂN's(è|l” 0…wHk1Æ%@…ÕZĪ‘X_ÑÝJ ²0Èer\{¹·îö->"5ÚØÝÊnCeÉyì…ÛBóX€wcõ,MÏzÞÆñ ?ÐØ¤´ô蘺2AMG1—speôýrìÝM_«e†lT'òD Ü—PžlYF`a1`pb,`3ù8÷‘ýté¹7oyá ÚØ¼{ƒšK¯`þ ú¯t“R½×7çôt&)Ž ôÉ´„4|çþT.ºOÀCÉ GÜe«âš·Ê»^Äü¤D©¶"øc˜¤þ`É9‰uT4¾æA=ö}Ãü')B¤]‚~,½]² 2ó1GBC+#¨íô>¦{Òžç–†U“[9CÐ÷(â{ð=‰¯žØôŸ(†ˆW>Äx/¯Ÿ¾8y þ"‚?·ÒäøðÊäéÝ×IÄxÕ—X,p­EŽ G=! =€‹ÃZxH‹ 5á¢J?i$‰ßÄ”_NùÄ„ü¦ŸK7ocúæ©êô#˜÷d°¡Àß»µì5\¾TÃÐoÔéö&C‹[µÙ]¿/Å€6÷9­+Ïz3òÝ,L7%Ç•b·)Ú•xhJF+Ée;—c±|˜ËŽ}H¸P…ÚÔžVÓ@¹/ÝX&ãènÆ#óð ±t°$?hÊOødYl­Ð… ú‹ü|ºœ”Ä2„^YX†Ì6y¸åŸ™Û¶<4®72HÃŽÆèGCJ]ußè]­=KÁ2c¬Í9¨gó‰ö¡]TsÌM ÃÓ·FTlkêªÝ !’ i¤¶Ä±Ò|4ŒFúZÍe?ûÌ£C¨K­•ºiÒ¿4–½Oy2¼Ç”©'eó©9:hð¸½KVVIÓ•‚ЬSÜÚd*Ö‰³ZtêŒË8Ö•‚ë >õȈ;íb "VñƒJsyÇ/¼€¬EzgDBhc/c{©„+Góƒ7xpÁd¯a8úZMâ‹YKÅ9ðƒù½¿ Ä àmƒÞf¥Ç¼sgå²vÆ(…}ÐÕ蔺猬UBõ& `¿¹P¤6³‹i6³‹J˜±` ¬y«RïJ‹ÇÚárÆ·ÌWt2š}‡Ëßà ¤_é[áseö·"ã®~£çjç© st‘6Ä)÷Çd?ãïs÷ÌÙ‡°p£œÒzô=7Êü3ô=6Ê2Pñ¦&àŸ+>Ä}ž/ú{þûú³ÍgŒÿþ¬¾¹¾Õ@ü÷üXà¿?ÂżÝ>ß>}}~vÐÚC¶oÛ%,]‹Æ¶D»¶ 6üzإ̧(„ºN˜Ž!ƒ—FW6¤ùS;úpj¼o¥.}oëшÄ8Ì Èm!p[dñW ¥Ú‰±¤ùQQÛ^ Rsäø×˜dù&*y t›SÎ+lJ .‰oùŠ2T0µCÁóihj .…¢ôï6’Á~!Fô¨ìÓ™ çx‘þÎ bøZÊù" 9Ź7áH [J(¯–Åy ¯ldQ}â ôGèÓ1ÜéÞv¼duñ\v1ÀÓ´:täÉÀEìD*|›ÇÏYA·Û—Ϊ;0;r·Ô3‚d hµž9Jȳa[§XL U,¦C+ÎGÀ¥ëÌI¨ôЯµÁrm )ÜÜ|ÐÜÈËgAΥ˜ێÀ溘¹¥0-è\º\@³ÞJ!éÚ„äŠ N×~>òˆ¦—ÂÔ- Ñ, ¬k“‰aì–E×½_Ê J¬Gnå) ÍØÕ9Eœg[„pkqsò´tan_É7çÃûê513Ư‹ÔYŠÏ]ÀΫ›M"ɳ̠B)ôË| вÓF-L`*‡mäæ°Ù7pZ÷>ih‚2Ñ*]¶ú¶Ûgh –º]›¡Ã¼Ê`ÏÇ,³HƨOR±2Ùô‚S…énüœLy“9ÏÎÎ7¯¼”¼pß‚ÙT4ð<â ©Ü~M„«Éð˜ù„>ÏŽKq^SEãêà¬û†~¥c¿â‘Z9‘]©P­ttWq¬–~v+|¶(àJ?û̵A˜LM…QSpˆMåF ØqDuÞd–œ-fÉ̹)Z¸1Æ:Mѽ±c®¬-²íkÄÍe>‡ªõ—a—êFosfà…kÇŽ–N,8£FérŠCªÕ¶/A‰C£¶r›†Ã=åë†NïU­)\ÎQç6#iÞyïp<£³¡ì”ä\ÃZÊÄ+VÿRÊ']ªèy(d’ÑV0¢^uN=¤žÏQTz@U?•šݺ’ÝÛûYº—ÒÐÌ)z¤¡µ)…e”*o©»IÍ”ÉY §miSÍÖ­L"ÍÞîRN¡ò¨¢éוNïKçãÞÚÒ´µTõ Pmñ½àÄ„ï ŠÛÄcjfqMq¡üzºA%]>Y¸ Ê~U]ž€Ùk ëéþÍ©–‚ µ63Y Ø&3MßÜ*Á•‚ÁjC J;Kʯüh*SÄ©XãYƒ¦yÇoÎ-o—˜öíP°Í•Ø¢kÜN_Ý–.ªŒhª–!©0rÇX#éŠÙ(lÃSB5gX›Òtжe­ù Ô”á)N +ºA,B圌qyÙ„åUÜ-;;é²»y5w5u¯˜nnÁž˜AQ [ÄüëUÑåæøEÜ},Œùµt5†SJ×&cUÕMÕÓ¥Š9¦® ëÂÇWYU¹£dñG€˜ôŸú´º?CMÜ`ð½bDºX—Éò*–ÙT¨-Ä80>x«‰ V»+ÁœP…3¥…:Y”!¸6¾Jºù>V½ñ¶23¯å‘Õôgé}¿;ž\k>£ŒKzYËr˜ó õk•ÛW…q$?“ª†æs›L×&†´Ö;dUõdMöðJUiÇ @ ÛXÁœ+]{Áñj_fWIXBÍ´ƒŸä’·öh˜råïbÏh^K7•¸‚q$#ÿP^dÅ)Ø®‹‹> Ôþü…g4yÂø¡vH^½Ò¼;1‰]óà¸&Z¯9 §Sú€ü©t˜îR“`‹%vÒöÁËÖ9üló.ÕfH㓃þ{ _EšXçHsÔ0#ÈûÒÉÞí9­+#}ÜÜyó–(ÿ‹0fô›×4”œ«[S±ÔL(ŠïÿAÖ5síe2ÒZ‘s¨™ƒ„Fád~"DK52ÈjÁ {KNä­$Cȇü€OlK͇ T¢©7: y0¡ú&æID™PøíÎM†ûÖÜrneΆ[q9>QÜ,ßìÆ/—‰JWaèjLè9C‹.Gpß‚¾ˆSäC’NõðgÙ¨ö)CÚ‹£àg@,½difi8#Ö(ú#¦¹ˆËã°©7ÿemlBã …-Æî»zß41’ wçóÝ×X=Vá§8_zðoE rÆu¬†w}Q)ø­;á|0<;h{ÇûLqhû‹ã,hæŽ"r"Ó½ŒqlŸTôdÍž÷?QÄfË¥^ŒÀ¢(šý\Þß´ÿŽ&øÃQ"OÔF|PŠQr}B›å{ãÁSLCÔM$‡˜78[…åŠQ‰#X–#¶È!MF^d¦ã±fnÀ{*væH[+6¬ô°vd·\ö>M%”ÛØo·ÁÇ#QÐŽÿzµIbñ›Âû¤Ë²¥¶À\T~²Ä“)εp7²¸,±²±ž„e‚oëâ !t¶+¨|2z,‘Q]Ö὘0ÙX÷?‰sORéˆpÒÌ)HÖ‚6hçÿ„™ öt$R—tƒ‡>г¬Ñ¥é;>®Rý>R®L–qlÈØöà,Ɔ‰a¿ÆW™ßºT_ŠÀ·*(¬ý1£.†ììð¯þ¨ïÄbìíDÞ,íOz½%+?ÅM5 @j£Ycº­*?ÅkÖÚíÆbC‹B­x£x˜kN¨êvŽ9ÉÄ7Ó/å&v Òoór6ìôGäÃÎ §AèãŽ~v””p[¹n3-à.Bwa ¸Í˜€ÛŠ 8~ÕÓtCö-$nóûÞ>ðΧ¹rSîÙØ‰­¾I˜©âæ(o0Ὠä`úáô[Èeõbø+Ð$þZÉÁ+šÿ9çÐüüÏ­­ÍÆç6›ë˜ÿù>Zä>ÂÅ«;Èÿœ_hNèé›ß_žþ!7¡ @p:Dt‡C@Ö„ú™·ç•L.M^:ëí Тx9‘þæÃÎ-ìî»ÙímÖ«ÁÏÎû^§/^uz½îûN¿&Þþ;¯º×RlB‡¼ø´›]Cùœ—¼º–Û";‹õ—t'Ò] F‰’®Fƒ›ñÊ÷ÒyŸéôAìv,ýÖnSéTÜd›ø×ƒ“7Ç;gp iÅÐ9¾_¢nM³`šK £ë­9žÖ«ÖN¤‡3CÑÍ397Ùú¶¼Y²ò«¢©Åé—zÚ<º%a0Qýˆ5€òW+“XxÉÄBå—N(>óBEUJÐèæšSO(})ƒ±òÉ„bIÈJ+ÎÏ)U¢+™×à(3þ` * …ÛÎW´ó§Kv«Öã‹´kX,¥Éë\!‹ƒV!šV±o Vüº’ݪr(0ùXƽ(Ý9‘àX“¾ô0ÛÚ7Húoèì_Õ'`ìošò¡«k¥_u°×* Òqv‹S]Ÿ¡…ÁzD ÖØMEæ ^ÓZþrë0XónL™ÃU-^Îãc¥¨%‰ÈàÏßÄ(¨W>Rç62â˜HÌÁGשË ÷»I“a„ñδìxË€‚«;8ÖŸ»ƒÉÈëÎÖ2§ §]O®²`Úevž^I‚¦|„kKŽýˆc¾dèߦ0ËÎ'xÕëtoé@ý>ëÃ9^J§E<Ëç4“Wys£Ž~Á·iF&yw<Êz7ªkfF½\zI§å3êÅC%Õk‹X˜ƒŽ×²÷hRê—·õ³?{J½øñ²êϦɪ?{Ô¬zñ§M¬çä  FjXušl{I(ÏdÇ-ÙŽ§Ï›Žå'Ñ'ÒçÅÃdÐ J¢ßþ¦KWä¶Ô¥*ÆU«ÔÖ«vy 5$"&9Ø1lÒðã=Ðépl£½AáWkhÚ×Ïë}w$§pÔ½žÀ¢¦Bݸ¬(1W™£L8†8¾õGÌÓ^ª¾²õi_¿Íä^¤Mhí—0nX5K¦ÄÉjÚÉA·ZW†É“KðŸ¾Åùû0øâ¡)è­‹…7œ3[ÒKæáW³ºƒ4f%n¨q‰­PaX9ðž*þ‘ˆ¤·‘*Bç"Ö»'ëŒC¿YU¡Q“©ëôØÉÉepæq0tƒi€ æƒj s"¥W9Š!®Að¨ÓØ"Pƒàiq€üa§Û8=¼’Á\a Š0 D9ƒ)1 ¦0Eg÷/H!ˆ"ð÷­³à”‡,÷E-p3Ê̹¼°@ëIB3bLSà`(IX¡ ‘ÄïMv œ /_’(À%(#P‡ÿH‚R8öaÉA#˜‚@’ñ€¦EP¼à ¸?ü@N"z>ø@™´ã$ôÀ=Qî8PÎ ˜‡50+Ì€wòIˆ†¼‰½'¸À½ïË["Ò D¸'À#v%p/ä€ÐQ„Pfíæ@ˆéPîp?´°fl/ÂÑ!¢šœ…"0´€8P€¸VÀÙòŒ@ØÒÇÞ/¬¬¶cò&|Ãk‰Õ23 V ¯çj3ËE(# N» 0A€(ÑkøüZKö£d »#]AeUÃJùº¦ PßÜ—³mŽgQ2dŸê&”õ¥3X½OcØÐ!cìÜÄ ãMdG.Ýk´#¡ªa' Ñ.‚I‹ºå f#´ãÀ÷pfÕˆÌí¨"Њ›O=ד!«e[Pˆ`È  %ÙpUÃ6—Ýgà@ißÑü@MšÒõ èD™£úMe5ª4KäÞ ³2Qº˜êp!BDäÆ·êÆ„E{û7KÂç¡C”ði`q/lˆƒ)J¸(&ˆF¦1 ò€ Ô—¯O% ¨jvbØ¢þ¡Äð§‘D>øÃ©±EË’÷AN ‘à¦ö»êƒeÑnʲ"¼3FúPcùn)"åŸDðnÈfãüäÞT*¯æš_’$(4Øâ~)óäÚ Í"¤fè\òó}Šq”ÓN‚˜6Šîcs–P^dk)ˆ£pﺟA*¼‡ÍyüaÍ:Ò%Ê…9¤˜9S£h=ª”Vt×WšÕ'ôó¼Ê¾€¿‹‰Î%q~¦6­¿ëóéðV¹OܼÀg¦±nרw.ÆßÜZÞÇçžZ,¹¨b/²ªaª+µWÞ ZA®ž®ô¢cš÷È̤^¹5 ±"ðÀ+¤gë·MúzãÀþzníN·Çn(Igý(Ðþñ¢¥ûŸž™ØœX.ÛˆARR­<_Ë,è;e@%,Ñ`dÁlp6…$T‰"~BŒŠA(„P•Ã--É6 ……bP4H‹·¹Û „_¿ÝëHxÊ3Ò|áç„.Y†$'>Éw×¹•šòšÕu5öûNWVuW¤ áMG3m·ÏæJd€aQ#ÿ¹3ÄPŽ0•! s f CéÒ“OôjÒKÓ±7˜aÆ9bdâZñ§•)…|.Z$ÿ|ý÷G8#^Ž*„ASùXë ýR­º·¯æ^ÁIPÓ'òLщéࡦƒÂuöÕßi^tfÀòæJBÌ$Hc:&0Ô}´B¢Æ3¹ãÑÇÝuÑT-zŽqÃÞ‘(â¤;¹i8¢n´]·ö¼jMìH+éZzÜåÒeÈ&)âÏkÐóªçmRñ/zÁ^>×»©Y…§0QCüýl§º' i,ñà?ÿ8tâö|úŽÕ«þ]Ý\ˆÇ$ ¨,Ø8Íõ@îцãJ £^çöêCE'dXÒ‰›Ý©cÙþn¯«çy R5ÿ•¶è*âà'àþ„²TíûÀõõ®(hú@@;ß#Ë‘÷$û:æãvÿý0ëŒÉÝxŸàÆÆÂ’Gâ´Û't™ñT²iß©ÂÉÔÜÒ^ýñGvÃÑ¢üÙ|.öôÈ*q43¬ñ~Ú*/嬣+ÈxÌe£3c£[ýÝÄ?þ}ÝðÑÖú4t"ˆ‰ºxÂ[VåÝÿùVëÿ_ $6‘?¢¿ª´Ž·ÁЀŽ;Ü »Ðà5yÎZÛ»À/{œÅ;ÌËZnª`Õ6?4’{Òà ñÙ‘`:ÈŽ±“¨s+e•ŒV“[’qï8.Ûö•Æ ÚV·¬c :Ž)ãEü!Ot¨?Ý¢ŽÞL†äM‡ù ¶÷¯ãaGéA‰ŠˆŒnÜн9¡ìM³A'4ÍiwiÅj‰]:º§—ߣmêSlÒÞ ‰.LºŒ .9ˆ*ȱj,Îί ñý¿äίO€‘ýßTq¹I0žz¢]aȨ«oƧ)ƒÁEEFzmTh©ê„<¸ E>¬ÐgùPiië˜Ë(6äi z%8Ö* è ÖJ¢M }N`y)͆’J³!â Íf¡Ù|ÍÆY¼ õæÁÕ›Šô¦­V•¢óUùçõn'í<>)ʃ µ¥Áÿ¼~u¨I¥U§`*¿—&¥b5ã†×El ÐV´*ƒT`2¼£ ô‘t2H:vü*íBåwêÀj¨ a&ÐCf&2}š$1¦¢¼¬O œ¬²kAW:½÷ƒ!,®[ÏŒÞéÉD{!ì§ÎvJO¾E…Þ 4©\­N8ì™N[ÐôÉ¢Üû&TêÂH*-=T™Þ§Óñ·Êþ5´¨¾Í†«<9ð™ Ò¦ø,ŽÛ\U<×ù"Ð+l‚¿]^µ‹9¬Ö^–»ÜÎçˆñè>Fº ¼¨5H‡&#ôrg\‹´êÖ»ï©Ó{?„"7“Ë^¶jüv•b„`ïã æfÔ½”;Ÿ¤t½Š®ŽžÊçQñûÑ­ß4´Ûc0ëî}z»v c¬ñ`8»¯Ï·÷âDÞœîí´^·!X!w½½h`·È†*—àf2ž0·Ts¹áÕé^ûñCùáDæZ±ž2Nß}¿3 Ô¬ä{Í0ÇùÃfæ{P`¨?gÏ ž˜°¾¾.yñ¶Ká– /Þ£¨P)oFB&^fÙ`| ŠÇñ¹¥xû—‰ñRŽJCíˆqvõ¡ßý´jR /;芗^vdÜ‚”õŽ;ò° ­ Ä¿/a1ü›Ü¸éô>زú >Í'dÜü¬&ì–þ’ÓR{PàÖ_6¿,f¾Ë—XÄ™¬€ógËO£Ü3ÔaÒÿûÍk‰Ç“ìnÂ~”XNKKç;@ùÛ!_áKdýô´+È}†¦Ú;Ç …¹iåÏ¡_¿>¼þ»ãðïµv-¤Iy¾à³G·Çpmeòàôñ–/C4’› ´0ô­Æè*¤Ä£%þ=œøŸÄлœ­ýZjhÚ e…¼É¼´ÖT ù˜mXƹ×ý/§›K3s-Ã%%žnqem§“:ǘUºIÜí…Ô§)`/—X)¹Ôð×d²œÀ¢|À”å z€øéÊèâ‹òbQ>À.0¿úP<`{¾Õ~Öº«uT‹QW« J ÆJh§æ±iñûcQü±)ûA‘úc$ÞŽÒí+&Uô”ùÎu#%Pócù‘X6à?ìô?­¢-⪋†Ëh¼¿ÃEJ²Ï Ž4#&Áþ"3(è&7&¢­MÛÖEE€i+\¨>H±’†k¶¡403WHÃ.ÛT\æ’@ËžTÓfd[–%5ª´hó&ÙÛ¥òpîÿ²@÷!þûø¦1_ø÷ü÷z£¾þŒñߟÕ7×·ˆÿ¾±¾±ÀŒ‹™ÞÅ?ÛoDä´- ôw]ÜÆp¿Kc}+; XþÔ¶^O…æ]À;f‡šUÛ¢„¿ZØÒŽ-žÇ\í ¹ÀÒƒ !ú%tÙÙŸÂxÖYƒ/“<˜c‰¸!›Ê˜ íç"b”ñE`t) /:%¶¨»¤¬óŤÙ\}‚ÍT1šÊ•Ö¡3„'ŒZÕqö9뉆€3M[’r@=OH|5ókÔ+Øšó°£l2zÎl¬?ƒ¸fnŒAºùU‹c8n|Þ•ÛF×Ù•-‰Çv?ü3º\Ø„pr1ÉlBxa«<`2ûù2_2…ÙF'+ Gù !Êl2ê {”‚â”ݯGe%Ö#÷Ðd£‹¹å’èJ”€ókÀ-ái†žtì!jÉâñøtŸZòŸ\l;¯Tü'!Ï\‘êðŠÜ1·ƒL*:ºEÒýгù _·öj¶¥4êÝ´Î5×#mÎ~á–½SàÚÞaºMY‘¼§ôüÍà.þ=¢”äy;§ôd¦œ’pr:h·š­œÑÙ}}¶£ŽGéªßx—&–ӶҾ˗{'¿³‡ò%þl·¡ùó.ÝC þ×éY´ÉIï#ßS¦*µë ¤7v@ËécYãÈgÁwT’.ëh*pý®¢)ü8Úd›‘¦4:ƒö[ÞæÌCÿ¯I÷ê“BiQ)C¤3׬)m¾Æ`¡æ&è{Õ+uìtžóƵ2*¢ç•ÃÚ!¡[’¬;h¹T2{UÉl<5ùf@Xü@Y·‚§C®zˆ™‘´á“Uxu“¦îËêÔc~û{ÏDˆÃ/Q®4 óº¦“Þ Ó–$ ¼¯_¾gXÀÖùÜweèîáš”¯s¿õ^_‰2‡+õç- |‡þHbG‘Ó[‰.iëâËß#ÃzÜø~”\ÀÙT;O|ÀÜôlkš¾ºC[™¤³RÏ-\$¤ÏžK¡ *¤Ð$3mãIÎV¸­ÛÃ\ø:3õhíKôÕM¿¸‚À\ã¸`q?Êâ:¤1d£A|yYwü˜ô›Ìi¥ÇNx«¬…e ÌB#¾%*f¡A™\™…fÏ«pIä/œé{³Ô’¯3óÙÈ)2Ë0Cl®óŒl¬û7Ë=ü¿ß ¾OšÌaÃþ«ZÌÿ\WÄþ?¼y\ûÿFc³îÛÿ7öÿǹx {ö×û¾°ÿ?†ýÿtÿDZÿ//¿ù5ÆŒî}$9J›ÿ7ælþŸ²ÂŠ˜®ÈÊŸÕToWùs˜ê…Eþ²¦zXÿ^AƒW?šµ¾Ð\oÛë§Ï(Ò^oQéæì»)ƒýœ,ö?’É>Ǫ\`swMùߡ°mP ¶çdlÏQ@Ž›{­ßÕ‘*ie—·å´fóú ì«= Ìâ3ü<;mŸÌÛÈ>unß³°®Ïɺ~ºÿØÖu¦²«qŸŒþ6êþ7“X4\k`H̤¶¶¡çÌè4>¦úPBæúÏ™ÚÖ6ZÔêÇ ¼Ü3F'k7ÄNP‚øÑhóÜ8(3¥>å$Ýéq‚3ËÖ⌴2j¦•O®ÇØÖ4Ñâ5{{¼ ©¿:v—½géÔdl,¡¥é茆¦,:HFL·HE§-^~“yáE™ƒeêêÁt•›¶"åYófSÐSè6LVKd°ôT1@QÑ<çôÍbO`uUŒRqìœn.œ’H¥‹E,¬êf¡ÆÁ]”¦´o€þ8<äYýïaðN´çbÈ>nž#äèæ Eçk»~³u!Ð_ÀD}ð}LԸƾ€övMK„Yíg~ÓóaŸåÖb…"Ù¨}B=ﮜW—ùÇ’ âÏ•ãêÒ2ÿ `äémÎÆ^‹ƒ×_îŠÿF{þ{ç¾àü_/Îpñz÷ÏP)MbÈ_æ4H½•Ã0¿ƒ! d…IOyJ¤éŸ õßÔ@ïÁ˜CÏu)tÑ\FØ·m…;]2N°øØÈ£ødqndZXƾ˜–UÎÂ-,<ª S#ÙÜ%Q¡l2nC¶×仓gØé¯gSY“ ù¥¬.Ë<ô1qÛ™R§ûíš]K›.÷€ïM¤™˜äÑ;ŠjE½ßžCï·×˜ÒxH~´ ´ˆ.vö@qf9§ÝìL=ÿ0°EØTкï'ò­ðÙBàRõì³¹œæÛyšçè.Á{dw·Q2Še+ØáUÞð1ÝéÚ:¥†e¡Š™‚Nlëé}iEœÃŽ6î"bÊöΩ¹¾{ß±r$ššÓN×eæÂ‚~±o<¾_ßRá ÷í[ØÎ{òL~lÁ½yFÎEIDhÛÂ<ôç»ûÏÝÕ ÿÈøüÇgOöŸÇ¸¤¼²í?ov^·l;òø`_,ËTŒ| ‘ãgÕÚ$¢ëñ‰^̓Öï­]½ÿä4v›Š–òU²Ïð¯dóšf,GÉ{¢ìi¬tkšïºzëi¤tk¢ä«zä¯cî{ØÈûÛýø÷ˆæ€8+Á´k,GæÄÏãs[G|2é»w½oèT¥è±¥ªck´šâª8ß¶ÐÎh†D ¸‹j3rMác8’o—ŠºQ¶yf]ÝÊtO¼æŸ'›I¹ôÛ|\ÐæR¦èéÛ<¯!?.âœûZ¨M{bœ“3ô® òš^B£Èº É}4_@%¥8é«ÎÃÖaßô¼di~ê…Ãenƒ»ìè3\•¨1ƪ¢ÁŸ5 ½îãðºL $¿ÜIYBÀó°Û,K)FŽ.¾QËB 9'¯±™%RC¨R9Œ´ÆGerº˜cN90ÿdÊü㘵K£p'Á‡ƒè÷Hí†Ég/¬I;“i”N&ÄMoá´È½BûöŸÉãÚÿëÀþ¿Èÿ{¤KJ>Çþ¿÷¯sÏþ)³ùCýÛ`oÊÊßÓ^ß.g«/o Ç‚y:0UvµÛgýkö‘ØõW;H$ÏoJõ•Im™÷Œ1Ì®'WÔ¬îxñã{˜î²+*–HY_l\ƒÑp°óΈê²Áv„Õ‹»Õõ'£ÿ Ç•&%R:}õÆ¢›üøC‡‰ô˜rp¼½[ƒVo“yóÒ[nÒïËíÊÇ*!bð¼?`۬° é%0Jx[—½Hm£P¶é¥’¯?J4±¡’H¹%"ŽH¥Þr­hµÉ}¨ÌÅMÓˆjBW›ˆi1)€Ç2¶yîØ–‹*RžuûfjÐ_4Ø{;f“&êXµ Zp€îìÿÍh)èíÂÌèùuò“Ⱥ2oøoÕÃ6[äø®¿9­Ÿ• i6ªA‘g¥¤ìwe<‹4‘São;_éw_fºxlTE¦nþfÊø°aŽOÖ­ðÏŠ8p>‡ÞxãÂåoÜ»xxô­M N>ç®á#Û›<¢Y·ye‰–-æŽ b)Åöa±Q8ˆ-± ·¬ˆÆ÷̼Ò36«â T‘£Çêq»éAÚ0€á~Í'L\åÎî" XÝ0jµÚoƒp/\æî,z§“‚ðÏ"cà‡¶g㈒+ϾÆdj%öI5Ÿkv†-ÞiÍlCå*OöÜmú A¿Z™w•Tn®´+U4Àb ýîZÌùFù䬪~'qfî kh¯é¿°×>êÚ‡7›ÿߨªoEðßž-ì¿qÉuìØO÷#ùÿ¾ÿÆ\àOøgïô4Ç»·_/"ÆgƒØ–c<ü@䔆S!#¿÷ͯ¥"Æ÷UȸŽ·à ¬@òF¸¨p_¦²f'Šî-l‘Ÿ3eh•A•:u&-„BÀÇ —Y_>ÝÜt¯º¨MHã hs zÈHlùãØol æé‹l8 Åå`Ò¿Ñ7—p×—ÎðZ~£ãä‘ #Þ›”ï¿¢Ùöû@#\ÁTmÓü\Ä ¦äïfJ±rï±TˆŠ6eŒ<áÄ'¦<7?@Î…œÐ2¸âZgŒô›6™ ìk0q”Š©á)ÎòA)ðÖ‡Fš¸pzP gã¢g#@͈@‰ÀµÓ¸rK¹Îธð\¬1¥pXpÿ%úEN”Ø”ª}…’“¬ý†v"ZfYçêƒéÛç ùÞ¦r®ÎÊ8)Ñá­:yp#.ÎNÏ÷TU¾ñpb=s5¢]™ˆ$4 WI}㣠JuM_Xˆš>°ü~»ðäZ‹Réù°éhk> õk•ÛW…qÄ}š"F,pÞŒÆ61¤µæ8µy§ö^—¬¹gÏqb¢°2[—>؃ìøÞ ©•¥‡+ÓÙ´@óõƒªhtiz•H¸çàô¡ƒ$¡ Òv<½^í0M…yI2ÙŒµ{MÓ¼‘ó¥ ýt§ÿÍ>m¢¸Ýf¯ýmçìÓDÙâ+Èjݵjþj)3}éÙ0>¤„‹JÞ&Ìîl}4z¨Èw#JPJa]l¦;$æu½ÑB™óÜ/ë1—TAoZïÄ‹ˆ¶ÐôrÞ„L‚NLj!•2êÿ]o2R~¡¬(ÍqoÚv"ÖÞݨÛô {³”ÏËÕÒ÷íÕ‘ö»e~Äú¼Ó÷Oð}ºW»sòÎÀºÁ8ø›îèÛL¸·¹¾YÞ¯à3½ 7’¾´ãÁàNLúãnm4wwxº¢ê…ò -7 ‚Ðîì \)œº×ܧ„‰µ Êò²¸!£p¿¡mSu¯Íô%Ñ`c²ŒûªÌÖ›š¸pðç†L¤‰åNd‡AsǤױ©à‰¸ ‡ѹUNáWtò_Íê2þ¸@錿lƒÀ{Vpv>~ý®ªt^·E p.ÖFapt¨yÇtZC×Ô´K6ë€9;x3–¬µßÐSL_©/c483WâÉïZ†Z‡”GÁY *çðdWû—ŒbƧZ`¦²>pißg—°ÜWhª™?6 ÂñYqšpt䮕 PÅn´wk]ÅÚ+0Ä4"îàº82]n=²º`_xÛÑ‘ÿ±ã2?¢Úd"¸œÑ²þXQïE¼“´.‚Wȶ·£·›†$®ÚÿH!º¹n¾ ¥ºÓä#»ÉGF³1± GG+G«u­a*‰‚rØ€¶ÿ¢#WøŠ:¾•SAçÏ÷³›ï)@v>œ¹Ý·€+ íO™oèëHûÅÇ7OïÅ793[Íê‘*¸ù¬d A›bÖ_rÂvÌb± Þéã±;m¥„È N.%Íö{:Ü¡ ØÔ£V‰Ð[a±tc+Èn·¾Ó{©™_Êš­ØµmiL'ŒP™X1 zFö8iÙo»7¶%JÔ«9GjôŽCÚ8Éö9äýëÔ%tÂg¬ª‘ñÒ¡Ó¨êG¯³«aÖ±µ3Fc8Ú7•6¶†¸ž %¢¼CE Ån–ͽh£*šcA&SiÖR÷ŽÐçÃZ“Ã1zØaPõäãÒÙ¯—ÍW˜rËJ}ëÎ!i|x ¿1š\/«Þjƒ7¡ aÞwºA¹TYö[P¡.#)X¹jE“´ùI´)rçhc®ªæ=¨UTÝg—®Tjù§/íÂ\â0Ñz›,ôùºš]KüùIU¬õ²5ö~¼ðn'B‚ ¹C.UD”Lp€™]öÔÄ¥$V­Wº¢M“î1zcÊÏ઀ï\/+5=²èps,õùÒŽè¶cÈm ?V8y¢ÒžF^"Î5ÑìºNWnj@–çÆ•{ašq´ò4®Üig™¸Ìé︙ µã:wº½ôÜ=Áèøà® )2þà—fÂÊm"åêÔœHp‰Ÿä1ÁáÑ@ðù”+4¢yºÂ…ÁBÙz††JDuí¶ÛgÛ8 »®«ýÓ¾‚¸Æ(W™ÇiW„Ë‚03—¡]Hí`¬ò—õñ®ø¹¬¯CèUº\2»¼d"á¡f+÷ÀÀFW²[Š—† {Ø›@l–8Ù×6MnÈ ‚À€mÖlù†/ƒUÍž~M2Áæ¹^ÜzþkÀðߦ5:|Ú€O›Þ˜u6àÓMfÙN÷#´åjÐÿø¾ÒùØ­VÃÍM©Á¹Ã Û7 ÷ÞçzÛx!þYÃVÖ°QøÛþ†ÿlà?õMüÿÙÀ67Åÿ>XÍŠØ"næGùhe)u$_ë÷ç ë{j,?3‡æÁ¡gÚÐ< 6¯<Ð’³)/™y3æÂ}Ói†î‰Õ´Tý攥}ƒeÎ1<2ÐI£\ûwÏ&³ÿ|}ÔüÿõÍ­ ÿcÿú(—dWÏþë{“µ$ ÀÞ¿Î÷v)p_²£cKv. Ó¡/ <,ÀOgV’#c†¯”ÉIóWk8¬î6ÄÙ"€Z1&í÷B¾D[Êh¦âoŒùxeí?½ mÏ €µN`JÇ•Õp$Ùéh8$–Òøw³ÑÕ°{§’þ¢š¾ÑÞ9Ÿ Éz‹mÏ®¥Z[_Ã@Z\¨ÆïÁ&>ÌPm—è—  Õi».±k³Z6ò*¶Ñ-ßT®yú Žò¯ªœ#óå¶|þj¨¬ßØÞ¡©BÀef·pï23º’†ê‡_dL\‚2G?CÁ2gÖˆI$¥ŒáУ|ÅíêrsY5˜gßúJ™Îж–°#4ÂΚHTåë¥IÃn<tn@ƒõÛnÏbÕIx•j”89vXa™b—¢†XQÒ[Ë3Ä ¡ïÂ[V¸î^Q‰Ê«°0…É5í­ç]\h]XÝþU÷–OëÁ5<Œ&åµ§6)Î ±r§ìkâ52âl»’ÆnpÌÆÊbìD­ä¹SÒɱ—(“ç„ÐÈøIèQlžìÆT`;ê—Ïëˆ/ØXûï™÷­APKeŒ«êý@"j+8Zä.$49 dLEñÙ5 ¤K´d²Z|±¹F’ÈHjcAGs%¾áZ¾‚ê…:ÃM­–á¶°m7DÒb‰çîîzHÄ¡hNäÎuzWÀ£A÷ °b˜DW%å>%NuWæ—Ž+Ö*¦ä_˜¸[ÅèêR§–ÔT0éÝ1ÔHÚÞ»ï»dZáAådù¨óæ® ¢Ð5Ѿ»éfÐã åÀâ«®cžMä ´“’î1 n\ÓÔ ËØ&äˆ~™oÁΪ9ŽI¤Ø>zJŒ]MêÐ+äPPL/邪òÔܦ¢ŽìsvóbTHÞø›ì{`è>N“½‰°I¡™ª NŒì‚·Ëïp ;|f7Oí›Wƒ;¹J<¾&5h{IÎàüeh­íH“u?ÖÖÜ×.eßÏQ6 îÒÏâ0«‰ìëUv7¶£ý%›ö×_Êx*¹P81‰† ±Y=lO b@I¯’Ó˜?‹¯N¹H´XòòÌ\>Ü"ÔÕ^Ý™AÅ™ZN̰ëæJ=ŒÓJ-rÕøüé‹A^a#gåü››uÖ¢™¼öZaóÕæhqöªòPZìó´öõ~¶Æóiw0¢>k"j±GÖ—Vö"cè¿Æg&DÏo¨´ý‡BÕ1¥ªE%²{?MÿRZŽ9©"HçãjsÉÂ78Êb„¤~ÇôÔÂdv‹.Ì"íÕ~¡«¤“¢šúõ€ê~›§•&ÕxT$@?umþ¬úÞ"½àT€ïR¶¥<33½ö•º¢Fç‰Õv8uЊ½%?X0ˆ5 5h›·QÿæÜòvÉAMÜ7QÛd÷Ø…3¢ZEˆmµ¤0<&RˆÈ?ˆÛÖ T£d êŒó†µiµÂ4PSÄ€02ARNʆPú–1°.?TâiQ ¨³SÕ"M§{Á°EL ª"ÛÏdY(nŽc7 NaœF§ h84#0î¢1hH‹FU:]¯¦Š-¡^ß•{-ÌB×áøiªkªîŸ+É” ”ÓsZÍÕ€“‰Iÿ©Oc <ÊårG9c„#±”'ä+a#|.J…@Æ´RºâΗh$d’†!Y& 2IÈ ”4rÜöŒDL¼¤:ÝÁzJüU¼¨#ˆp¸¥&rj;rí¯fëõé ï^¶ÎOt1ð6×ã"b'Ç­( ë|1HwŽ›­Woje±H½ÛsZW:Y"¼7wäÏá vÞ¼¡1\Ī& s" 2¦™ªRF;› lV䜨ef$¡J™­Ðx®Ëz!Ç7칦’ Aaò~è¯eC0û‡kûÍãöžž¯BÝ#ß/ƒïà@l 3kŠBœI¸˜Á….žÆL-ß솗 WQßjL¤7Cú-GpÉG1÷”ŒŸ1È<àÓ²AäSFoúDÆêŒßðŠd b6+ZO_‰Öúv_‘ŒÀ‚ÈZŠÌ5Þ7‘¢Â|u¾‰ÚŒQÌ·¶Už±­Ê3ê;ëid6‘.Ìè½BË/ÎÖÔ¿ŒÍ£lžÔ‹eûÌA˜²Øj¹àJ³Å*µŠ¥Ãÿ;©ïF‰ÄwLêëñA)^ìj”ïM¤¾æTÙå³)̪|‘\d´‘á'#/žÓ‰h‰¦;À{¼„‹¶Ö3XaeŇíáOSyÂöØ­ˆCµÑf^Ð Þ«\†-µ Åç’›Ú&×™.Ñ ³ªíïîfDŒþš‘6ecÇ@Á¾EB—õGxo#&Iâ•OCÞInü>š9cGOž„B^–èO g<ƒ ì'‡$úì¿q3äüj¬oúŽñ«°ÀÒŠdɬ{e-v¿Îl«Øâ—Ù«‹”vx+Á –j.o³%ª¥]"|TÅOº# ôGT¤2™öáµ šNl¿‹tpè×þ¤×[²ÒTÜ•&—!/³ ›©RU¼6!’\¬fJaD¨…jsÍ µB@ÝÖO_“³mbG‘¼™8ÃxiòkGçB^TǃØwTR†måʰT¹c!,,-Ã.l¶“a[  ,†û-ƒÈo£dÑw>ÍRØgc'¦ú&a¶‹›ç¼Á„÷¢ÆAÙ·µzõ:‚ü,„îUaÝõ׸ÂüÏñðæQó?ëõÍúFXÿyc‘ÿù/r7ÿ3™ûüÔl~¬¯˜Ál€/‹ ¾ÓéŒ0Ì.¨WBýE¤]ž¨MúH$™]Ø´b‚äB }Ë} ú½T ›ì‚ Ôe°¶æ¶ågxýÉÀ°J•Jþ9ÃãÿÂxReѤ #hm2Sæ8;AÖ6åv ¥~츂ܰ)@“”—&Ô¤…Ówáôý‘¾%:á¼ÿå¹xá˰÷ðÛÆJªî¾>ÛQGÊ´»–îÊiKi/í«7§@®Ý†VÂÏ38ÒÎÑÅŠcXížMçd•†•?[¡È{@<üÕ- ˆ6v˜›œòd³™¤óïá¡5g"××w¸ŸÂý~"AŸzn Õ(]±þüpµnò0Å¡ïÒÀ.¢)ºúwÙ˜xFPÏK¤Ã4,í„` øqkÐ_ÀNº”ÎM_­KC$„ Õ p Õ‹óÊaía.Ƹn(õ»¿ª6ïUµyãÁÑïX“FÉÔõ:düûUÕÝ ëHü :8lð†ç¨~ï ŸÞ·\'`Ãs†õ,*(MèŶ×·#¢_tzF ü%4~u‡Q£Æ§ìxþSöýÆšã yêëðp¥þ¼e¯C¢ ׉b•FPð2£ÉeÜÉ«o+1¼tigÃjl‡5«M•Œ~ÈÅO|ÆÖÏÂÞ«žŽ´è5A«² ¨õtÞb—7£+a…3a‹±,ËPÌ™)iäØËùžÓÍu§uÿf¹ò÷›Á÷I+7ì= +wÌþÛ}Tûïú³õgÀþ[ß\Øãbö÷í¿ ûïcØ\û¯UE.bð HG| ÒÑ”V#¤bõ¿IÉø°FWÛþåX›o ͯ9Ïþ,†Ø‡EZ µnbX›­lσ‹œÏÇp{3ÜFͱ%¬à½àÜô@«Â£ âkNòÎ\þ4V¼nÕNƒ3–RᙃŸŒeU OgeáÉ/û\eî;˜âð¿VºÁ{ÜÉïôöÀ9Ûå¹ûZäÛ"ÇTP„ŒýýÑSf,ájµŸI©±Wåc·s”fÐ sWáÝpp=¹8¹‚¡=¯F .ó³ ÚŸ[ùø¸¯Œ|d3§}c!ó ôBe q¾r,htЖ‡ËîP—uͳaÙcy\]’ƒy\ÆxåŽY+ßaYzØ6%-ˆdØ¨é¯ QÕÜŽØ®”Ñ&> (ñ,£ËýL­d²áö´wÊê#ù¦Udl) „¶0—ü鮘ýgôÈöŸú³z`ÿi<]ØãâõìÛJVù[ƒ~˜ÊŸ0 ¨¹“Sœ@˜aàNé8A ¨Â4BC’(‰á÷؆¤3zïÇ­L9½åêl*{UŽe{•XXœ¦²Wi#•C懵W=²ßtx~É´«å¿@Ç1RÍÍzt0_›ÐƒÖë›s¼Õ£•éûÁÍ:?Oé>ÐZÒŠDÅ4 ÷óâ}Zo’…œ"q]l­QÙ‡¤:öp&•-ñ'fÀ•4i f÷ |%Ûyÿf¶9íÃv$ÛèµO” tJMUÙä&»§¦êxùíŒC í7s‚hû˜•ÞÞ§óf%qoóQ{a>úñ®Àþ3ß4ÕþÓØXß\÷í?ë‹úŸrI±cÛÚgû ;þ!ðÏ›PéN›­£š8{}¬Pâ¶ 7§¯Ï^Ÿ½}³WdÚvºïÅñäª3bsÞ5þ†2ã¤Ó¿úœ}ŸhC|ì52áP\C;Ð/åì@?+t£Ø Ô¤AÀ~”îi$ªð»LåÍHƒ¹²fc¹eôѰá0OÔïJ›˜p¾K%¢Òö£ò¢È®Ôý<ËJˆ¹K£ì¶Øž¦ÉE}³$+¼!MDëÆîåÌÔxíÁ{æ¥Ö¼ÇËîM—˜Ä0º‡„·üz8þp+®±•%áåŽ`D€ÓAù%W2M©‘ÃÇíÁ[cbj1©“µ¦ ìßCÙÏYO4¨ãíùÙßÂzmÉp?„<`[¾ÝÂ)l‡?«œ›±Å™SceÄ Ì¡UÊ6Ó¬µr 3á80¼m„² mBT(!±jÄ›naºÏ~>>IV!S ‹Œí÷¾ñäÐEš†Ù ,¬þ$Û=:^ À„•±Hö(ÉC^Ê4§ Ge%Ö£²‰¾3öaYÍË®öb„ùγŠVDÁqaM®>lèþ [渒rùM…öŒ#PôÈ^W¥`Ó‹½Ú_?p¾øÄÃ¥‹ º†k®ìH*›†Ÿj û²³lýŠç#J¼F&,ü×Ë WÉÄGÿ!§ /ZËçËdñ€Ýõ¨vDn{‹Žª:ˆu4¹¤¨¤cÜÄúÄ$‡®r´Z¯ŽÆÔÏêK± ¸"Þ94AL›N?f3˜6טRh0Uøó ìxœ7ïúc0ü$n~ ƒ+ÙSM…“Õ#æî£BsjÍÓ@ÅÚ¥Ô„[–ÜÞ·š—E,ÚËù9ëÒÖC<‡{ðÖ­ l¼£†Lo~?KÏÙ<Ÿcز#ms€«S6zhöA»ÕÔ–ÒÐÄÎdjÞí9­+m»¹G±™ÇÍ—¿[!›í?Ð(47“>pÆá˃U?P:õOnä™_Öb¯1“g·Øã!ð{Å}âa±×ýo†jˆ~–Œî1Ì?:ߢrð7A7YA†Ò¬ ƒ áTqw‡BZyø ízŒ6°¬€À& Ȉ?|ʳ‚Ì„s|üz§" `B¨ŠgÒ_‘„‡HÚX„*ýF Å/z8xQË Õ`I;s¢J%;X!Žœ;ÙX_O`|˜dál]VÛ™NÔn€+£º$q¢ .‹Ვ²ëB<«'E&™xÓŽP×èÝ ‚DÊœœ9´êk,}8V1¤#g²£¸ödãá]A¸ê=q"v ß³´ϼÞ¥„•ʚɷæ³FÖÁœ}éÜ!øòÈB_¶BCÎ9ÿØ‘š!U •éãy¾{…êœu4sÃ(Fb¿:cï9!°'<ʇÜá^vœr4¯Ù›óûŠ0²#zÉÐ]ÜQhuQˆ3-Ùå‚'ùrñ›É×-m­$D…X5í§¡¨o¤i°†8`8j)¤©´V«ÏIÕO¤|³|â§W€ÓV½h¡¤“ꉥØìÉä|Z«ÅâÉ]…ÎIÙJJÕ]/1öž»É<ØçX¤F@Àq è€öúˆ*Gam þà ¯">º…k)'Gp¿0=óo”òP\6QЮ#Éé/¢2ì|›ˆ'÷è·V©MÜø•£ÀÑøTÀûVoô3a[p]Kè] ŸçvG˜HH­n´VbbQ a}k?pào‹Þ#fôÕ ®á}E¢Þ~›~Ôn z_À0mä [€wØ:йUöœ×P„#ôú¦è2³¾B| ëè¢/%H Š1ߨÛ" RŸ+ÙP¼È 03¼U^4ËÎA'”ÈK­G<Ø€BB¸Ö*†Á/v8†i”[@îŠÖm©†LÛðÖGþë¬I¬oMŸ‹SF¡9&ߊ¯Ðüò§Qhžþ ÍqëT yäš§ …毭ÐÒìH¹¢”}3*5¤8ª“ü„Õ§‚åa\×ÏfVhd´vrè)ÔHo)4ÏÊ)4ôhô}‡ …æ»)4 l.:ÍaÞŠr´šÖ@(ņô¢`Jg­,µ’•í’ÈWT¦o}Žj“|­Øü’Pl\ëÑi‡ªÜK·UÍmR” ú¤·H>)­jf¿·Mh ÑC[ã)z¢ÐOì¹;WÓ©øQÇ–ŒºïM‘íœõà‰;}‰£þIzŠ‚C;AUÙf{+Ô¦@¼§±^ ÍÀ‹0ͿЉÿ|äúgO·ÂüßEýG¹x¥{ñŸnýâ?QŸ?AÔgÉò#‹¨ÏŸ*êscõ)ïZD}.¢>QŸé¨Ï£ÚÑ"æsó¹ˆù\Ä|Z—óy¸ ´ýíïþkÛqs¯õ{ºS†‡2¹ }µ‡§@-J$?j4ms|pÒ“ƒ–SZ“¦¹Æ–þì\úøe~˜ÊËl,.{ 4êþ×<ÛÚF7­ ê?´ñ5·Q›=È~Nÿ9S×ÚF—a]"Pl¯½Ü3}KGÄ’á“>½™ ®Í»Õø„‰¶Ôcy\kÉYiµÞXûú1·"'ìVD#o…˜:øVäÄߊr!¸"æ+ˆ+¼R4ÑP\1C4®ˆä ‰ÉufGt¿È\Qœ+¦‹Ï~ˆ®ˆEé: wÛ’ šÓ‡™„q³BÇgIÂ<ôx6¯®“>‡šô:#% دBŠ‚j¸‹“¯C”°“TH3h­­„`‚;ì—}îôÇú™¨ì?Ÿ·ìôT0ù«…¯X$³íx|†p¢ð¸‚½^%§‘×Ì{Æîðuß¾¦ã1]Í OæK­¥Ã?Â!·"{ÒªŽuÝ7^™¯Ü¨e¾â¡>vf‰`æ+ÍV¢\l”˜=ˆ¯@r¤ŠÃL³g ’o* âKn @ˆ¯ä¼EãLÛ C†øºàîm¹ð!¾îmº™F¾kæé —9‘|M--:MÌ´nд‘ÓúÁ¢øiÙ¨DБýþéb©ùš"I>P†ÄWÉ`$ûæÜ$¾Š“ø*ždÝš Râ+g‰ç,É{rÖø*ˆÆöñÅäh0IÚSF8ÛOÚGA€ö‘ x.^º*šé(/L»™üVÏÖ×Ùbºù #»%eÿ$¦/©z©J”Ò¸Š-íô†YçúèSWCâ÷TÁÎýÑÊ!}s¦_–›ØÃõåbÚ±i×µ-KNŒ¿5}4öü%GÈžÜ(åù‡¿ F ¬ÿeÎ%Ϧ;—D#[c„1dí¯r.ùåG=—L›vÀWnò_s=—ü²8—,Î%~oï{.™2¹Átu泉›è0ÅÉd¥Ä©i—²Qîw.ÉI}ÐÍ™6ÂîGñëôç’©S"øZœK~ðs‰Jª˜ÿÑ$7GÁ~.™gq¤Î'ÅkV¥5Ù¢åÐþ{JBeN³vx–Ô ¾,Vi¬ÿ¨çÉ{öÓ‰3yÓžNõÜÓ‰½ÙÎ?¡…œOFNBK,šëJjÙ˜"©åÔ®ER‹sùc8¸Ñ\Û€«¼ÛäSïw‡E£†„rÚ¼cRLw+õç­ªgj¦Î-qg8¼|—œ-h[á·;VóîzÄ”ÀåÌNpCY_z¦v"úì…¨ÜR-Tj•J#³ÍCü5Ü(:—£J“o®‰.|ò±¹mÕ»m v,ºSÞ‹ºb÷ý…Z×€¿×Њõ¿K¨raRl×Iå¸ Z*þXZ ºs¬»cÙ+dÄ1Y8Í”š‚t g`OmGJÁýzΖa‘Vð4p`üh1[ ·hšCM•ͺ šÕbošùã N«É(‡fÊðÈ\hlVë‰æZ<‘Üa5Åi¾jüFJ³ÔJ8×ík¥‹SW7…q%'bE<–¦t8•Q cYQ¡w«Ö\8vÛÃo)^¾Æe½F±âó¿ZÁe å&à°ÐŠ5³°L¡ú¾–©Ðþ“ýgø¨öŸúÆÖÓÀþS_à<ÊŬçÚöþuZ¡“Û»š1½C{ö»{Á~|/ûO»ƒzWd¢þƲåf±þìÉŸ%Œ@ï*üê©,A0iÆÔéÁÑ©û>ëÓчܙ51¸Cס¬[þ’ +èhÝA*› ŒáÎQ$OØ|¶ABò6 µép­¬4}«ÀÏw¶wÛÐféÆPRQp²ñòøúmœ ÅyŽ-ÌI$èى¾A«>À±c¨:tçêj2ì\qùyxámÖ!TЫºìÂ~á°ÓŸQýV ÙÿƆjÇmç=¼yrMuî1-Mæ­K"£ÛÈìAdžÃlt‡Œ3}*¥]ÙiCÕæqÖÃÌüN¿&££:hæ«qú4ƒ#À :Ãk³Ág^ £%`v1¡KlVÈ(ÆzhìƒËÑéØÊ›Ážƒ1Ûyµwvº‹)¤oè'’_mïäȺÌ`D¤I ³ëÉUƦ3GöÌaî5ÌN…*èÆG ÄOû÷aÁ€/Ùgĺ…•|º@'D²hõÝž$\"…„âˆó„ú fÎ3™µQ“\3ʦešµj±í‘¤›(„vy!–Z£¢ýîvËû½o>.Ëïá͆1´L3@̶ªÐu€Ö„”£ï<Üè'š0 ûø—rjžMp.oĈ»x<Èë`DJP7îkîÍ7ö>±m‡…6_k&ÇúvfÍ£ƒöÀNOSîºSd1J ™McYßÇ«¡¾FíÂ…òlÃn·ØJ<š\–éM&ÞQîáž‘:ЛñpðM“¼‹·=õ†DPòÑò¤U‹°¼´8ê A]¶P %_´W±— † âÕìú<î¾1\Ó²‰¿ÙwÙ/9˜þ%¬¨pHþ)ÖA(É~½‹ñ£|Cg4\u;r#Tív(Ôä–GÁºûï4]j-Éýù]&ÜâYA_Þ­1¥’¦C»¤MšIÜ,i¬åý ˜ÖùÍå{Ûç¡›Ý@ïù§G¦+¦ày(Íÿf‹¼°}׃r5˜ô®c{^2<å.â²BÿPvÕizqªîU÷ÙµÛw}Oöõ¥ÃܨHkáÿ¤ýßÐþ}×͹ét{¼×¿ƒVð>û-õ:3V­•.š¾òÜh)"Ž ¬rM½PïWst.ùbX0h‰©CÑH‡BEº MNh×tø5yî‚|‹²÷„6~þ:ç-¥áYèpEÀ,í½³š<„åÔïcÇ )dCoP*~?S¿ßÛS£¬ §çspp ÌÜË Fü¶•P¢·ÈŽÀ®ƒTQ"\×cÓx,îÓ¿ç>xM¼§rŸ¶±`"_ŸLà\¡[¦tèL LC¦|ÍÞ²¢_ü 1^޼GÂ×øk™ÑlR¯|šì_yçÑÞ¿NÏÆ»)L`±¦ˆFÊõÓ¼SK•C㓧ĤÃ6EZ ÂFdÒë-q²[Í–ÍÊjh[àñˆ,MB°•È]Æ: é®Ò+øN+ÍroÖ‚Qã»R¾­]åÏàÈõ]Ë[–y4~‚KrR'ö!þe™)á÷1— @¾ñKZ¾žD•æ¨,Á‹€x¥P`ÙlGðwë1>àɦ[Ó0%ë$±é'ÏeÉ[ñN*•%4"ÃÕþÏ)#áõg<êQ5^¬VHOö®?G1?nôqèÿÞŒÿýY}=ôÿl-ü?q1[ºþŸÓý¶KÖ:}ÕVë{TÈ=øo8üs?/r”éý½SÐB·é_^ô?cq ü]I‡¤ÿh›ÇG ã=]I8ŒÒ‹¤¼J»ûò—}ý]z2Ê oW¸ÙŽÏjoßw^åa:V¸ÏSy¯€åD÷öns3’A2þp4èM”ÑKe‰àt÷€OØM”Á¾Á‡‚/ÒOg*Oú»£¼Àf¤C*cŒb‹6©{ ʆCtz ÷‚=2— 7¿ Û„¾¡†ŒÆÝ[‚¾‘:jüCñ&wÙP«êå–…´ŒÙ͆d×AÕ7&ÎÕ~Ú1¯8…ß¾§Rˆ¼¶Ý(\n;ü7±Gá2ñ¼ .wL*äPÛìX¤ ª²CW|³NOùRæ«ë¼-Ú;ì¾ÿ€1èÒ9­&ºkÙZÍK¿Š`¸ Ù^“ïžOÜ8Ï4îôüàà±w;ÓÛ­&e ÝÝŸy¦ŒžwÖW˜û– š÷øÐAóáB.š[ž;àÛ¥Y·dÚ SÞ¢0L® îÛelÁ}{)…ô §¥\>aG¼Êj#“}¹ˆ§!´ãž²Hñy’ÒÃr1‡a¹XcJá° ’Aô‹üw±)il¶KÞH9 ¡sõÁôˆ¼ö³•UQÁæ}\%ÀwJ—-F¢ê;r.ÎNÏõN2N¬gܘ Ð/ðUR•úè´ŸkŨýýZÖà0}`9¬Â:dÛ@™|ØtäÂDç^…úµÊí«Â衚q­ª(øÄl"’®M i©ÅwŸ9Bnôè—î(3®ªƒMr&ͦ"Ëà𤙌B#°ÑšæÕŠuè:Oc̃ê•–RÛesÛùJÑÅ©ø J7 Ïï•#L«?w.ËA_:ŒÓ$á’‘÷Ÿ4/ÔJ€•ݽÜ Þ˜”xކTm›ñ˜¹$±óÔ™I²ˆzz¸o/ÄV^!­¢d”x „xjK;©%ÌٹͯÑ\_LæÕé^n{è µ1u^M²ÿ™©×ç-„rÁ쪯Ðz—nùÞ›6–&8;݃Ÿøÿæþ^4èÇɲâÅŽªð’x 6÷à¿w»çÓ&ôxèŠò}Šê;¤<|5I¦¦nÏiui_óâÍÛšÔ!r}3d ÕDóà¤ùˆÃ\Ôœb VJ£ýí[+Yc^S/EGÙ]’ô|…X€!f(€ÀÃäg˜¢@ŸR_ÌÇí#ä?’²¨ä?²á? tÙJ¿†Ï^”}¶žvK–wÛî·ÒmÇ5!pSÞ‰:£Ö¥9PXð ÉÚ¨øÚŽ|™ªƒ×›Ö;βñ¶~]LA¥$ ñ`Ùâr×›Œ$òŠ&¤ÓðÞ´Ñ‹Vß³ ·oiwn2ŒžÁv8÷íÕÑÏònÙ‘ý´àãôý|ŸîÑîÀ"¼C£›Ü掼]Œw,á”hà- >Ó[k#^êï îà€=îöL±†«!êP(¬Ð ºÔè¦ë‘SQ¦pé^O@Σt@”KÅXã¥åéÐ5Ì꾕$E;‘Æzç"=àÂË^tÆ!¬±¶èî»ô¥®Ä‹=¦k=µMžÄ|)J„ÆcøD~Rk½l}³/¼ÛIhJÐBwô¥0F¹Ûz· “¼ì ä%ޫ֫©lÓ¤{Œ„NùC]aûÎq³2öœ$ÐÅŒ£=îx̺ˆ WKíöÇ­wi™´“‘} ]•¡yÌÐÁuC¹êŽp„Pt÷áiYQ“›ËmK…Ì526ʹ%6·¨%ÉÞ}åfgíqÎR„½æé\öš˜jo6š-Í…;Î 4 tUÌĦó4±é רk!Ùܱ'ƒ 8Ìgt ‰÷†Ø¥Q¶Ä@[â¾X["nKˆâ– .}Ýòy$‰»µïo=K á·„ÈCàÚ·!¸¸Ý¿ä¡pùíw¸ö 9:ѵo©s¿$û©Î6®ÈÇëÓ¯ýûr„—`t`.^M;¦óN½U:ò¯ ¹¥Ÿ f*o4µ@ÔÕýšZóûêÉLXª›0iüu]A€dRÉé¾qbÜ'©$Ìÿ}žsúGþûÓz£îç4àöEþÇ#\ÌAnþGû÷ŠŸø¡>~ª´üÄŒùädìNŸOa½ÍÉŠhÿîZ¹¹ ¯Ýω0 H¦¹ŒRx[#@ËXÆÖêå·ÕVY¬w$¤€‹pr.èßmŠ­gJyNw\qº¾_ÅgXƧ¶#ö l»¾C¥4¥N‘n™Ý]ÝÏG†cÿqCü -È&ƒããÄ)—›·É즢ϽDŠ˜÷º|àü\…Â($h‰CÚÛÑøº†‚jâOÞµ6ÌÞw†×¼ö¢™8*7À&6äÜ4DoAõ£±ÿ¥"ç#)îô ““à>¬ÐT–O(Aÿ°‰ß=pØP‰@쌭®¶ »¡HìJð#ßú(ÂÈv=Ê$âk…TÄšLpxË~Ô”Ÿ ‰Lúd·À3kë¡¢•§Ê”°+sÊLaÊÏ=pq÷â( ðpŠ(Âyàw€b5m   Mòx 1Ç%”‡Õ„@´^¿SÉÂŽ –ú£Õ:‹ü2ì’«b›aÎ.œ±c:·ÑrôûÈ'O¢íßçr]\ßåŠÿ¿>.þÃúæFˆÿ½±¨ÿö(—/Þù¤ð~sçìþø²jÜŸG©”µÁP5°&Ì£ÜÜŸ% £‚Cb«då)–´œ$Ì&túŸÊr¢¡‚Õ‰äNöl¨‰AßU¥‘DǪX¡’R‰$žü‚D­P!ç»TºêNA Ýrzn¯7ø‚Z'"9 ‚ùœï«¯aÔ ò¼0À¨zDÚÜÃã¨r…p4ùàÛC…Ä>uZ¶Ku·ä|:ÏUe£‡ÞϺ0!ôC>kOÈj¬©p uüéâät}¬O…žy$í±B Q"Œ3GF¬˜©“ÖšxÐè±®960Õ;Û¦,`™í̯§:j¢œJT™s<¿Òm- !>zwDÑ%c´Î Ø;ìŽøÒ"PzM\NÆö H*Ðþ^O¼dÌÔʦ‡¹ ã^"o;P+Ê fê¯]fÀ4ræ6Öˆ{#FAʽÀ7\ËWøU*¥ÉQ’·l›À ‘XbÚ»»^—çCfãÇÑj$Q‹—aè¯&½NнIÆÀÈnÝq '-L1„ ¼¹:jÒIÛîh"Gc Í5>žú>¸[Î.WØÛWèÍ ûo WX ˆ¤Ae$Zïíàº+Slœ¼ý™-£L±„;9¦U~䔼Tïôþ£X’a§AÛ=îHóù^x1%-·þ«]`\S™Ï­­p_a„Iö¯¸Eòh°Õ*±i80æÓàÍØDŠíÄÞš 7q«å<aÓ=#äc¶œø$9Yå9&6c{÷™±bö+6¯—±ó—˜¿½ûÌߣö#tÌTÊ+ð6} 4#LÐqS [ «¼Óâaa¦­c\TÀ˜ÕRû¬K—£€òý;©ÕO*]~׎»¨J k^l¶*Ç·^u&¨©(ļAÎIqø Õ<âi!sdžÆ—T|ÆYC!ÇÔê="°ç"=¤¿Ô«tã ¥è;ÞeWUe-§E4è\Ï#ȤRÛy€匳?•9¡-ýÀìk$ QL®"¹]_Ò%¢‹Ë¬§<ñhè™3†ôîšò(GüÇÞ‹½ÓÈ‹QåkvpBíò5äëv½ÛÆZH#Û)}â~ÓÎGYY³Ð•0²ìÒqIŽ A½nÃñ¥*©x „£Ÿù±]£À·W;;Þ£›)Ïè– @iÁ³W®U·Å@—å2]üõ"™ÂøŸñðæQãêë[[aüO}cÿó³»ÿSü9Bt’A8­ˆö9Ï<ŸiS{°þ™“Û#uš@1Ñ*NaíRA'ÍhD5VŠY4Ï ÍÚŒª¦À`lUÃ9"˜.¡LV.ްôm[6ót)è0ïNèüªæl¸¡–Ó¬sïÑcõ(³N-YÒùxv rÂìý¤Ù̽&ó”Õˆ}®*·¾ï–spÃ+…XÇ5Ûì2}‚Áy@”öRDr¼TÖ$>UžC"Ya )1ã%€üDÙ°m Î+™oñ“›ãhI±˜‰ÚŒô0fö17Ï­¨æ+c‡ðÔI¶§ cŒQfYFs´÷Žî»ès¸ÅÌ8ÔV6`r×;X¦a ²Î5&¨—…µ£ZÛÂTt1Ìé+5ä¼þèW3BÞ‘l•С-kŒ7F»%)ÑYÇn]¼ðßÜ+ãSß®û¯²:½½öroÔ茳 ¨(a=Yš®8o*g’ÖuHƒwÐâ±_=$#þ¶ÍMéf L•0% tc¢e6½î瘀æƒÒüpWÄþ3j¾ð 'LÙGizã¬ÏÚÜÎòlÝíeÕ&ä£ÕEºÅe6þ‚l2Ž£Ò)…¬UÐUIòS&`îÝ~›ìöÛh·WywkW©û;v÷ß>t÷=vRI†mïs9ö«wˆÚöPmj•xZÈÿ˜·"ü¿Á «WƒþÇ÷¸dè^ç^q;Ë;Äj¤P[“ø¾–°”tos$ÙÙÞÉ›ïcã’´” +anAÎ`Ö óÖ-cR.¯9fÒGkiÏ0ãmäÁg˜¶ÇŽl ³V*äÁ[ûÕ4²1M¡G*bµEõ¶‰¯Wü§Þ†O½õžzk=åäzZZ:M!¦Ò,ã¶B%³‰akz6B•ü„ïU¬ ©½¶Q‘•¬‡Í’W wQ‰oìvÏú;qð–?+íWù‰3zž.xj6âOF˜‚cLO¹£bJ0&öDG$w<6Rýã?~ÌèPÿÝ {lüŸõÿgãÙ"ÿçQ.¹P,ý¿ý†×tøGó ìo~÷Ø~Ì^'²Õ€êôz„òÖj j Šò¥âGŠ "i?»ëpª9|µVî,1c6QÎÃÖiαwÁ<D£4ßøUºÊ<ˆ1,h¹’è~•®Æ¯­¯"¼`Õ…5}»½Í0LC $‚™ÓµZ´MŸxŠÐQ´¼|æxºño'†¥ý†cXèÔb•ËB-÷+ Èú@Ø2hêçJ³Z5g¡ H&V:I¿³3Ò ŒuñDT2qÙ¡_-qŠš:ÛÈŠ8…zÖ%ÂS@YÙå¦èê€;‡žÀpp LDG¢òñ¬D“ƒÎé!soccº#gš~ó¥ä cï5î£jFצ:X–˜j¾qi圦–+ ŠUŸ4‚ØËÞ³Œƒ0 Å<·“Þ¸‹Çô¡®âåD•\z58ªç§"dášœ3š(›Œ\5±©¢ˆ„È w]êöÇÙéGºƒ<£ñpr5ž I¶îzý¦Tæ„gu“Šs}ÜGŽ4»‡ä>ÅQ)—âìY:¤üÍ=K'_mÃhyMRwÃRM½ß–´Jnw‚ѵ)ÂÝÝ-ˆá±œÔË×ékH´—wÞgϱL eÉàÎËÁxŒˆøÿ,€v PE;=”ÎŽ1 µbžNšg: ¾‰3³âQèVq´}Ô“È@Y V…‚ÓazŒlákyÉîC§±ï< kAÿëNŸS±LÓßr%([\#7-ˆ{¾gWlu5ØíAøXic(þ•ô MI¯¼Õ ߟ݈ÔAœwÞGj,íQ…Ÿ;+ÝšŸVT¿¡Š†z¼TQÅ?Iƒ_rqƒdá+¤n› ¸]-m#Ðϲ‰v#È%Sv@‘ç«K9EÆÜ…È£ýõ'Z ÞñŸ(M —”,âšï|o; Â<©kŠ+´ÿÝ~žw@ý/†ÿÓØZà?ÊÅlìÚÿN~·ÍÇo^5yY뀀í½3øHFü„ñ3ØðÂh˜mÇ ‡çžÁÚJ§‚¦‹À9ª|ûÈ:Ô®JÿïàŽ*Q 'TÒü&ž¿Þ݇Îrsù+ls—Ù¸³ü­Æ7ð©–¾æzð%’øT\åú}Ø×%ê”+_–°hÊ:}Üiú–é[W3%¥©Ð#6° ¹ö2Ï`Vd1³ò/è‘QÔ‚æœç-=kQúV§2¶´ïpW*œ<Ñ|ƒö„›A^3z†Ç$l B °1câ+”ª%¹…é¬ËnaóÍZúÍÇüæžzs`œï›ÏûldÒ5k=Û_žñÏšÙ–5­ã¤MÐy¸%na/@\kPý{Y~—åxJ4V¾Ý¼H4‚Õ<¾Ým"¯$^c%_úÆ“¤%HõÈ![ÿщuZ<£>AŒOç–íì‹ÑÉVS$HÀ‘5+Z„ƒèаk½'Ù–óœ\iàP‘Â`”ýg­évz=h¬t ²„“5¡·(?ë¢k Jó'ÝïÃØk”]ø;Rªóm Þ ß4èÕQAÄu?gØŠÿ¯¤lÞ(êÕ5Í(&—à:ŠZ@EŽâ}SnS«@®‚:ð……Eu¹s9âp\yó8¶ãšÐ.ÌU”YŠØÓÕZu¨¸[£øZ®—*ά¤ü£Û]ùbb°Tb¡•'é¹Xãç©'²iyQˆÚOl>-¥Û£’uŒ5ñ7§›¼íEï#°bëðѾx+úY¦ §Ž²1¶ŽR®õo]n*޶ӛE)®z;W½ ¹ªŸÇTßÖLhÐ' (Oî®±R³CF?îF÷•gº·33Ý[ŽçšéųQÓ%2ǧPÑ^åNÈóÏ—,>Q‘Ä¢á™cº8AŠTàhAFƒ_á×#ø?þåÄb(l ø£ñó8Ó© }¡Wa6”þƒÀ} B*“O<<ñ6÷ ]yô¾8½.…vÃY\ ®YÐr-*~Bº¸1 Ëy¨Ðžƒã"®ºu=Ó V6œÜñÖ5FUìnЕá쨠>C×ÎXÀ¸¿ŒÍÔÑ…HpñW°£P Ršm˜§øÞ¦ßð6|ÃÛø€·©§t¶R¶„† ³×ZÙ{<‰ï(¹’P‡«]£ùÇÕLYSôñøLeÆa9¿ÿàœ÷»ÃјCFØ€ÁF w¬i"ïx"à y+Œ8Á¿o8!Ó/Òq¹úÒ!¦J¾'rÃÌ$ú‰¢ nû5ØæeèÚ(|[Qš!Eôjé?íàDÃsV¿uFÇ»Âpâ‡o³dCôø9ÑÓ9 Ц^; òG8’é'‰ïR)=|çÑ‘‡ÙWBwϾ\/hðBŒ9Óùgô^X¦ÆÃ7ÂÒ^C&póæýñ$½¾£>/_T02vO#Á 8GG‘ÉÞÒ“}ˆzxÞzy«âé1ËxŠ=ŠÎ¼jÿ\òÎe?DÜmr¦Òؽ6ª6úm:Z9¤tÿ9Z¬lù¯ä›ñ«¼y•âstá~YúœÁ]~F/¦›ÒƒH3D\ •àήɎÄã"ì®~»ß”Gú¥šI‹p;âÈg%9C7þ0h|)Þ  >L5¦úÐn—}y|•“…Ÿ‹½/lëÖ忣?”Ê_±!-=ŒH2ЄP°É?’Ðúu&¡UJ>¡žy¸â#ÌWNÙèsTEK2¤vÀ 0*Úc¢ a ÇHù††¥ÃùHž°G !SX…ƒùà¢ÌaÁù"3àAö ã?†ŒÿPß|öôY€ÿðlÿñ(ó¦ÿq†èÐØ­ÿ2ñE‘óñ(ÛAMu‚;ŒÓoØéõH|GÓÄw|]ædvñu‰El$ȃP{uŠ,Æx¨ð Ïß@Ž?“í°ïX„w,Â;îÞ±plG†ö;:¶½p›ò®á9DÝ,ÂnJ…ݸÈÇ48¨”3<=Bé5¥Ã.â|fó™yÚòF¨ô´µ”m ~º·Ì1ei…`ìZ¶`œ‰CÇÄœP?8¶3NCpRØpÇ¥h¡=ÅÃVà)š¾c|ÃŒ tBº¹ £EàÁOx0”Eà©G #ðƒòƒ¼HT•/ðm®6Óe,*¬^ày´m*6¹!ÎØ·b€ñnðÁåð— ¼‡Ã³)®ƒ“ÎsŒ¬ O,†÷]wC̱c]ÆÇÙ›`2Ñ¢rÁ²«À!R®Ná ¤¼B(Ë,¾Iþ¶"Ø °ì"{oUÞÛ+Ò¶\õ.å”z!<÷1úÖ˜ï>Ÿ^@Ás¶Ë~¸þ«#ÇÕ)æ!±¶Êqi.£9ŸVÚ³Nµæ¾Ñù‘!u ¦>GT…nNáFk”ðhŠNMQN¤=û>ŒPVÒ8lR:¸¢¤'ò4øÿnFŠÿØØÚj¬ûþ¿ÍúÿñQ.f Ïÿ·oc:py(Ìÿnîkl‡mYAó^ÔÌiÇ¿ö÷NO1Éÿe@ˆÓp¤ºÊGÒ0ãÏR­´Ddl gKº&÷ͯ§0R ¦Ð¥¹¯|šÚ¹éT?Õ$r8æ¢ÂÝÎ%ºßÝÛ»áà³t h5]þæµcUMåzø¸®¡ÇJ?ÝÜt¯ºx —î$TִɵÛ'HñLÆW¶ía3¨Nx6žñ¤Í y—p×—ÎðZ~£±4‘Š.÷gÕ Zž Fd §±—)§žÔA áƒ'•ñû”ô¼Ê°Ü"U‘”öœRdV³—¥lù¢Y‹ø”¹_º#4/ËÔŽ5~ÏGDâ“v~w²lBÒ½wQ[·ÝX^'ZÑ]t(~\­W—?B'Qªtk«Äºõ¼èþãÅÇߎ} •Ærõc5 ó‘èhîßsïÁgpMjá@|‡J°–6•© >-\O›† ñ™WôÔÀÚÚÏ;·Å¡þùùBÝb«y³-´z)¯ªkøþíQJ ^8=(Q»·¾‚бzG“}½2Æí5Ÿ„ö°Éò:$¥‡¥Ð'_bX.Ö˜R8,¨Vý‚ú¹Ñ)U»&-hk7¥}–dÕäóêÞÚT.* l*ãP`F‡×õÎ܈‹³Ós]óXÛzæj0D''b“!tõ€^%Õ¨NO8’ÊôEýÖ}`!õtŒÉµÞ(`íÂêr<Æ*ê úP¿V¹}UGÔB®•¯Ô'f‘tmbHkÍpj3ÖêuÉ9ÕqvT¯ { qâqéáƒ=8\áÇD*M¬‡+ÓÙ’Aç÷ßhtiz5ºÀ=8×È ¤MúÑA_´¯•aE"›l*ªj1Q5F·pbÀÔ4YÊrõêêô¿é!¦íHm³ëù¶ó Ä&ÑE¶ø Û‚n€Z5³‚ÿžÊíçr ”sT΀|ЗUã­v”`ßµ}pvÒ¼Pë$N÷vrki ùßÑnjûgiH…°kQ;•aÓå×QO;÷í…øÿÙ{×®¶rä_ø¼žO¡5obŒM°!Iwz2k™[Ú`Ú†„äyΖÜ16c›\æ<ç»?uÑý²÷¶1$éÁÝloI%©T*•ª~õ,ëàVðº^£óç÷€k¡íø]&ið5^»”Ūù½³›I=Um<tóö›“öq…¼ÈOá@áoâ%LûCº»G]8Õw;»ðÿoìíÖøW~6á¸zž¢;'€]©¹qz„ù·ßÐ/ƒÛ|ø¶|󼉦[h‘j6^W,‹Š÷¾$ÇÈœu[ÃíßÓc@Å+ê±íË#'–{ºY+TÖ·J*_"Fa£õV·DíèÏÈù?¥±4?ŒOÊO‚°Í)š³ŠløEà,€%€5Éw®AÞ/aÙÓ¢ek‚®µy|döºK‡õ¶0¼É?††0êìÃn vîba½Øú¸GØŠ|E£ÎéMûƒxÑFã¡JÙÉ)9×÷ø )oq3¼Z⨢¶uÛ B>ayƒ½{3 Ç#Ãß,æíGº½KÐ\`)-Îs»¤ØþPæ"ÖçuÇß?Åöt¯vÆæ$ä5Á8ø›~æhÃ)¸¹ t›7,ŒóS»°ƒí`~oÄíh6¢YâæÏCçT½P`¡] T°)ZÜ…þ 'Áæ}C ±‡JÕ"Pã†CØ[%ö|Y!j¾cp|bµƒn[¥Ünë”§M%‹%È΃v§ÛaÏ®ÏÃ8BôÊïÀŸˆ?Íï쪊ÂÿØ€Ï:TÈPøúÊÒx]Šà;<>Èôš®ÙËÔ$Ê#͇5:Ûjý\צ=`û£1°f†á¸cÿà 3RÚ á°1Oâ¹ïâ‚ÍbaÍÓà$ ËUsQd·xƾÕt¦Vr|%2ðE䥅ÌîÇ¢ÉóMܱ‘da5ÕñYqHpüÒD$€M{>$nð»‰HãÓÓ`Ö« ö«™DÃ0Ð' ÿ0g´¬7«ª]BÐÇ+ð•òiЄ¤½}ÜÞL®hoj¿\HCòMòOòÁÁêù !Ù˜Ò¯ÅÜÁS¯žÍá¢a¼îa2 ö.1!ÍLœçÌi盌žß‰2æ}ed¸ñÉñ»±ÉeßœdV 3†ˆÌÅÛwÜ9«&:r¬Ìøã^aM‡;t1ç»¶R¤¾U–ÖP/—t¯emºõ“^£zd~Ih`¶¶Öµ…,B a ¤/(#غ¤¹¾¸á\µ™ØKª ÔÆ>í‡dМð¶t :úôYÿª(0rýª¯è¢ýóI¿7e«©ì©Ûدêââvbå%´_C|X’khcE4f‚ì ÒV¥žâí «BÇèaC†A}’AÇïÞ”ÍW­Ý5©™Ñ·î’‡p‹¡s´À‹aŒŽ1Vlº½™À|ì FM"+óÇ^~ê]í¤·Ùš–«…yå´ò©;îV+ÕUþí‹<ZâàµE¶÷l½²8žûSùÉŠXö×ø^ã•÷8é 2ó£;îRýCñº=LoÙSW•¸b5èvôŒÑ S7®z÷Á½¦Dt\I‰jèÄ㘲T=½[M¡Mê p”JšqåÁŒdhPÏc¦\1P‘'ñÕwyZVÕ¤ÄæÄº\LxYRûM¨Ó¦dBß—êµ¥U;g¤cézußÎ24‘!蛓l( ('¹LWÛ¥w+ÿhñ–Rqæô´ñ_—²Ætw{Ôt™swÂ꫱MQ¿hª›á¯þÑB?c¥{’°Gá–Y é“6Äó>‰Dê'NèÛÑ<€ °3DI–)yi¡lÊß"„Æ=ÊÀjŒ+§e›òA‡´ÙM A½Ððò)Ë‘ˆŒ€„º#ù¹¨KëˆË2o–À—Y»eLo8øu=«ŸÖ[u ×Ru]„ôTu3x`6K†#°l,õ—p-Šæï§²õMbÁ’M»Uï£Ù‰ð”ý ý¿§ÿ«ö|=ÌÿµùâÑÿû!^̹®ÿw÷mÔýÛõüŽûo_L /þ…p ´ öýx_gÁBYžÓV«øg†#t÷­ò›ºÞLäþ¬<7hã-["k;žµH1”9­¥ÏR»zö­ÚVM,›íghr¬Åjð- ÿå*ÐÑV9àÊžÛP 7ƒÏc:÷C;Wcò"R>–ò<Þ0>Hä: TïÀ?tŸ¬¬úäA®”òÑVðhë‰ÕçQBÍÆÃº™Œ/nÏé„pÓ‡³á¬§Ë¥-}¸JääKsæ»\ž£‡òŽëKN~án&yŠƒ®áÕÔ¸Õñ]Ýì¼óÀ ŸûÒßXM¿ñ}×3þó;7GŸÕm_qÛ;Ý®áÇrTÿJž¦Ùê|Lã®Ò®“éœëvEÚy}uÏEÒÈ”Ác=ÇaÝTÓí÷ÅYè£'.o'Ÿ¿¹cR³ø›«i=«¯R@ëMbJ€m䯧üÑ=ßÃ{sH¯x=ˆz¤Óí(mߟVÄ?ź¼çœRå‘¥û‰¾Pe¾à~bÑ$ƒ…vJŸ*ŸäþbD¾&Å‘÷L„f×ÿJþ¬Šž—‡5b¤ x”ÞW“$úì¬þ%Œ?%ÑÑÉ¥´õįÈ'zU¢tµæ×M4RúJUè§CiÆðÆ¢ ùìG‚\qjžŒ€„ˆL0γë~Eißýû iøî®Á¦–zµ@%; ˜4ßäC=üÆ(Z¶ž~üº!tÖ駱<Ã%zv;ËÌ1PLÕòtÀâO­9a·C•¤.,¯D­ –Û‡oŽ>fkeljT ×éùUÿšüöa á¤;éÍL@ï È@0vXª½ áÃXnV,A#¡K¿Œ«š_zCÝL2ŒÍ@žöj°‚kuø·ÿ6­N÷êði>­ozCÑÛ€O76™›{ƒ?Ñ$ýç`%0ÑÛÜ”'#·ÿ’°ÛP}©u§WâÿAê*H^©Á¿6ð/ü±?j›ølàÍMñ¿ïÉ]ü…*SþÒ=yÑë=F߀ö£;–¾0FÉ…}C»”†m.ßPå3•ÛøÄQ/Ÿ˜)3¦ì=\›ž:tWl¿RK±îú§ÝF™ G%ߟµOóuܤžk‹ŒwÒlÜýQòÄì¿_ÿcsc=ÀÿßÜ|Äÿx—\,žýÄË^cû¸RĹdq^„å CçùéŒÉfÌ ™”T%0‚0»%›ÿ À§h™º½ÚjœZï˜8öÅÚ»ŠÙͱ–ˆ µ2—Å+‰Í‹XÌwmŒ Àé8r!õ£ 2¾"„Á9œ’]X•¨ãÆNz>ܨ#Rô˜aŽT‰ÕÉ„ý ©Z×ÖЀKÏm‰|½˜q_ÌeßMübIV~5ô³¢­_VÂæŸ,s?lFv:†“w_­,ïûìkN 3m#¥©l’ƒx¦¬©SôšxƒN´ÛV,Eο_°ì¾’á8cÛöP7š¶­}Ò?À°cè¢|2¨Áñ‰R]7X÷5Ÿ² è$3˜ÊÞ)DŒ/=ØFÍ™^m,@ùp(>Žû¸€Lø¾ ¸§ÒÅâÁEõA \0gx°F“¯œ¤5Z)±«d ¬ûBV~;•þ¤î@KJp¸e›0ñ‘Øeb[™uè–èq$Y©œêVox<t,®H0b‘ÉŽq_DB@äÞuƒT-ÐI<¨ì5v:ýÈXÚß»¬ý=¼_²Ruìi+ª¾› çEó"”Jd*ù‚Ì$±à¯%¨˜OD‰8¶—:à »‘Ó¨*U„¬=Þ½=‚D=‚DÝéÎÍ…“±^ô¶ÔRmöžÈíkg…«×vl•ðEŽ;Y>êÔùÕ_dtÛáèòœ…ÃëÝ1<Žnêb5àþ¢7¬1®§Zcû‹ù/l=ñLw·)1‡îü«ÛÈ}­+Ã+Fïæ6¼OtH(xqëR ÷¢·Þm­Ó—¹.n ¥án±‹[—Ò¼QM\ÜÆok³D†ÅšóÊŒ{fÍðžy!t»B×Êq)¬qîD¸kš{n”KæWüÖû~ëÈ '<Ü1¿v½Ì:ÖfŸˆý‚— 7èœzùyïä‹=¶‹cÖªÁ9úªÖ•Š}G•OÚp{C`0xëÔ£ ­q0µz@ñNƒsu™ÜSX çc 4s&gòŸZO~þ{þ{þû+ÿå9÷܃o1TÔãæ°W¼wrþ‘¯ÐH› ¥âoX“Õ¤]z£ ×ÐF¾@ÉŠ¤!I»n8×Âò´{¾djGã‘!»Ù\䯒$ĘZÅu¿7b‹¥Ì™n*ÉjÌfãì0í>Ȩ é©ÄBëÍÈ&/!ÌaªÞ»¦«™1€þ³!"AN,øI?“’bþÆ‘¬~œáìvÂöð^í¼t”4ÏÊò ›Þ~DÁüèö_çC ]Ö§ªß4T³ýViZí7årñ·[v÷¨R‡Ñ{<ƒºÂ^pÝ’~w(GV|'9®'zÙýÓyÏ1ÕÈŽpб壡O,³7—OÝ‚.{ÁØuÉ›Ó/ß…oÓ/2‡ ߯aÙâØ^O3Ksùÿ÷ÿ3-H}òîâ¨èSˆe … žbÞi¼…S1ïQÔ?ϧpÏw*´¨ìh`KúŽõ§ªJÆlFZåkšÿXA)jü—3|þ e¸S†lÙå‚$ƒÔ‚ÄÌ_óIÅu¢äÓÀJ´îðêÚWèd|\‰íùºyyx‡ö©í’©0pâŸìÝ1ºöIsSQG¥,'NC¦L`哆+1˜ðÜûuÛfwȸWWçÿëpœçÏÉÅÞv±](ÇOp’bÛ•â2¡æÇÕyG ÔŠà Ú‚Z5GÐM¹° ™~ÚŸüúÿÎ&—êÿ»YßxV óÿm<úÿ>Ä‹—ëÿ›ãÿä컬‡vD¡¾€«!:¶¦ý\a>\PWwB¼2ËCÕ?€c%)hãy¶Ž«êAïöòº7 ½4±vÔ4çyçbÕ6çj›»?…ù¼+‹ºVþUP eÛ{о/p€?š÷ Ëg­2»…ÚhÅL5Dišåk¥…:ŽÿÑåã¿ÃåãǺ£ZVøù’¢ÏCׂÒ|fo3¦ˆýÇxGpÇFñ‹ŠÇ`Gø^Ì—}Îû‰gÕ_Ÿ‹ªØ"„e¼i'ÿèsyå´í¯‰Vä>œfÇ}6ÒF0#éä3îü¡ø]oôM2…+ÂÙeP[•*Rî |~T­”Oð¨`k¢|¬zÿè-…ð-ïI ´ CÏTàóe, ‚}>iðè){Ž$îR w!|¬†¸né/½ÄìÂõƒ7öH‘$ÖR«”§? å âë¹:™]ÔÒÀ7à .(R§èæOZ\jˆ¬ ºÊJȶ D|¤~³ÊÈÝòp)£tÁ?>ãDw\ŸªjºOXjÒs„ýØ´ŸóW~J?ŠOªŸ.Ç&°õµä¤)CTR_ÔÖÓÚ ñÏCöÙýÄm$»ŒÈê•ÄÕS¤^, »AEý͈¼ØPN£u)ëׂeв—›SÝeТe J ˜eïÃuÐÊZ-g²Y5¹F?þ:h¹ëÀVax0ò«dðO¨]ê¹ä: U¥0zuºZ‹­…¯ýÄÂË6ò—£ørÏ©z©o)૵T£ul”´ˆµï;[ÉK£è\ÑVdVÅZn ÄÝæëß+¢»ûöX_9Dë§¡Ê_d\Ûx‘›r;‡ö팡ei1Õ"eüÛ‡ÿéL¹¸Í ÚøÇþÛθ~=èïâC|}t”çÆV·Õ6ZG¿ÃÑtûM‹s ¾ygruFFn vБ`§Ž¡7Aþ€){w€ÿ1?ÕÁüLäp¼Ãµylȶ†Þôu¹|,ƒšâ`1@ _‹ãÏw”]ë^S?kÿÑ9ŽÔþ˜rñ§J¹x‡«êãÎÞ¼P5Mœ>†0§%N¶Œ[69_Çd%¨²6À£Ö…+•yÅépW‘KJÂrŠ¿Î]˜“ÌÚú÷äÁ°O1ïê"Üg#ÎKvñ“,Hbâ½Áè¢zŠ<‘ªbm<Î9çS +&ö 7&H²Æü`›zÛÆLZå6Þ»«4+©´‹ ¡ÈÁ¶M,(púé‡Gr& Iö¯Ögjž+‡D¦¯YÈô$ÍqO³ÙQQ¡yà,b8‘Ǧ màÁQa}Óæ¯ËV7Coâ•“ k[¥sÂJV TViÊü4-ãË˪V,“¶©EZ@X!â=Šœý@T¸yXÂ~}l2>ëÕäTÓ¼#ÀƒÕZEö#–—G¶é÷+©z™¢‚Œº¬ë$áù”H‚‰µ)Ë’+ÿÄ8ÿ±´ ÛrtpDÐìñRLÕÍ6ó§˜ú››¿Áƒ–ò5 )¶œ2GîGAW±R&~íõî ²êD"ãÄhlói…d“dJ‹ÿ$ŸðiQä ì[,ÈŒ”Ï…~Väfâaí —õ¤|^ä—|:ž-o_2¤ÑcL_ÕåýR.A šbï`(ÊxJLN©ïü‡älÙüŒ“D k$ñŒ5^W‚ âÏËÞíG¾$ç°º}€ bE…€RLò[-Ì2€%Åýþã÷Iá®$W-…ÅQTZxCDÅø]ů£íÕ}-AÂ:B a莯²rIÉŒ§BObjå‰ÅŸˆ®?aiC^7 4$»\#Ï¢-ÜãØ„OƒjèŽÔR¨'±u—'¹tÉK CYÉ{WÊ„Q ê ®‰|ä6Á©!EUÖä¯Ú=ñ™0Èß ¤Ú?«"̾I¥P­¥Äñnf#Ï/ ¼Ü“Q~%ÓÛ3uõ‹¦Â _ ùƒ"=ÌÞ1?êåÛÞ–©³3 "øz鉤•åä¼ûô””·©ô³–PK<Ö IÝê~5.[œïÕó§éGOé)ònß( Fmb4¸ßªÇa¥ãè&×ß*Rì—Ïo)i¬IC}³žî±üÚz:J˜õx’´¬es£Ì0i1«áΈö¥{›ÎHÊb²#¾Tñ'à_ÄÕxx1 ¿c3*Ý÷`©ð é¸"¸H÷'×áà$,sÄhÛ¡1õ–{ç5yA@?WÈ í—nˆ—0!Àøš*º^z"øS$¹\{JŸãßO":&‰'ÃÜSçÜ‘XñGuœ' ¿ÚqÕ||#"#ÓE×92#=ÚI¹²Æj “yŒˆï(‘“—=Ëê[MwXI ‡¦}…´ þ„ºQ€ä%͇…1?àçô±aŽàJ¶³Ôf©³Ôs˜%Ö“²÷á“ÈþªJ;#C)ý°¬Âù&Âmú i¥Ì šAC¨’3ÕÚ*ý„vHïŒIœºÿ<ÏUÄéYº_°Tн2Ζµ3Óó+¥.øCfÏÏ+˜Š¼çÃ!~%Ï\*byFù•Þ¥ý÷6€6Éù,”#¬†¥`ó¶fYNÐ~pdL¬«ö“æ;©•8߆Ù‘nòX$±*f2.{֛̌£¤´ŸúVP}°>¶t|ó©Ji‚¼mÍ3õòµ¼eê oG šz奻6õâ­»hÏcê­y³Þ·ð<åÄ\á—ÏçµûþÊóì¾°¥´ÿ"vßÏæÛ¢ÁMÚ|ñ¸ª¬9íêRØ8çð<–߃G˯]é£åw1Ë/›¶¥5וµüÕâ…T¸*ꡘvñóXtÛÐ*ú¢°Uås•îæ” ¼¬ßÔµAˆ ö_¤`?†ã¨Y²3&ê„o<ÆÙˆ<ä>0Ÿùø—ùÌÇI˱m4NÚ‹—f*δüZlžÿ3ñÁÒÌÄŠÉ;q+ÏNÜJÛ‰[)Ë™½çÆÄk¦5Yú×âϸPX6BM>ùi;å[”“&e³*Gy 0*ÓñÁ2*+Á‘-+ä³Px5ð˜Ñ/6M´\ôA”zÛ M%U ç£Å¬ÓRr¯æZ§ÉΊÁOl¦®µä'ùœ']×WãÖéÕ<ët&‹VÓKKäX±¥?6þÌgÒX§ËÞ‡1C¶plÙf}[¶ùæI”9‡3Rƒšôøˆ ´mû´±…—D½Ü&Á™´‰×ìrª„k¯Ç¶<Ëšžj/YvNË8õíXÖ–°Œ×Ö•i|Mã‰ÓÛ§ëµÀ(¡>ßN®¤aü¨fšÖ¦ñH óXãýñN›ÈÕ&òÄÈß<Îuï[¶a÷û,2ý²UÏ^nÑU2©ËÒ‘Á*ã¸b¿ÞÉjîcžõ<6ñ¯„¤9±!UËùj!Ëys´ËùjÒrnŽLÖñM½Ï- º9¶ÕjëþL%‚Ž;{vAñW ÿgð°ù?7žo®‡ø?Ïñâ%%–‡ÿÓŒâÿdåê|D ¥l +=¦Õ&þ™ Ôt@×…aï§ €Ð´OÑJv¾†¤ÀrýLtE“g†9l–‡§f…£h[wwuÉE­=ÌhÕ#àý(>Üë§j °|TN=ƒ©32¹ >aQ5‚? ºÏ€4v% I"™F)žÉ®"±ÆÌO:AéˆF-%½6Vìµ3£±|x·]:ì» >:‘]´ÇÒÆÊ½@qÕóày§Ø$j‘_³ ]äæ•ºœoQg¤Ø™/q™!†/­ÿ–‚ä¤, ³Fñ9åò <`¸|d3|ÓÞ­ä"š§"Î3,Š2¾¤cì&J}ß„¥o·wOMTz<ø<¦ ïÅE‰7èçEïE(¿CÄx,öçÍñ‰::¥ñÕé© Zæ…Uï¾½—€ñ(‘±ÕsÄV7ç­þãvb{¢‘´A“ΆÆýƒI÷Ýl¼ÓüöUjÑiFbøWvnx8líërJù}I90ð ³ÃÞigãÙ “;Žá×®u†ãY95˜qÌÙ•ŸÎ< ŒÎÜÀw{¶o“/Û|ðpEÝb…øU4Û¿ÂðÓä8@ïÉ{ކc-ˆšÓùºî|Í7cÞ[ÇÙŽD•Ê›ßztœ% o–Q@åRw‹çü´ÐÆ=t™.›ÑÓçcc™ó}IÇ1¢éšoŒ‹zxn¸cUÀe3€ÁÏðÙ|¶îAÛ¡ré:pkÑfK‰¨»uª‰¯ÂÇ\ôi¢ž3‹Œ‡C¶°b¡Ø‰›ñ] ™ Ô}£Ñ[I±ò«Ïޱn:?Æ^[2¢wߺá;¤CáÖ)KV$‘®5­&E=4¼áqÞfßH BöJ““ûZÙ{¯y*¼ƒ­;ø8`‹²ƒq‰@DN5üaxêy:4øÉ®%úTøX´:Ìq ÛLã Œ5Wû7ްâ§p@ ŸÑÔàS™Ï(§z&ŸÌZö÷ãzˆÖ%æ^ñ >ÊkÕoÙ îSµåûo%F$1a²ÎeNZ}^£ÙC d¡a̘¾T»"ÍõU´¶DúcÕ÷! ÝIï!)sÓgµnyÆ7Ñloñå^`ù*ŵ®Ö|gC…8ÁáÃe¨3懜ˆ?/~ž{Î1gNàyÌ}0'èÜfµGcÎíï2moA<Å +Œ,zýì6Ù")e†˜Kô«ß GP<¸ØýÖy<þn¾Ž—¼qןdÞ4Óº2²^ºAÇög¾î+ð4âú¿ÉZõ£éÿ‰.3~>Ò—4O=Ï>D¼"ǃ$”×/Éã‡3¬Ö}Ñö}Ž Áa9ǃŒÀ 'ÛYŠ5×ÞÊ®˜roµý+Ív–µÚzSÒiÒ&ýgUíœD€·sæ9Žÿ ‡„Œ#+ÙG„b‡ƒ» $™Gƒ‡‚yççÇ^,_ÈËøgZ±™ñ>(¬ÑFÆ4·¨ÕV=1‰i³Ê|Ï©Ë$Ý_6öÛ‚§¼Ø$§Û\ø  6È 'Îöû¢‘INXR•âðgü´`"Žt#ü™ŠbÌŒfJ„2q¤J4)qÆ0aJþã…ñhNF(Oò‘8û»ùŽ/Š3¢›HF<’Œt÷CEµu¨Pß:g*ô×w9T$€¢‡Šçt¨ø%ãò!7±åq§ù n«1ÿÏéÃú>[¾ønÔý?âÅœæûÆsͺifÿü@©£r Ð%t«Ä-ÏéÚåLMS'U“L§36‰F·£-Ϋ¢½E±’0wdÄ‘AR+ÏWôÑQôGwEæ.P—I>|¼Bç5XšÓÁ&ãäA3ç©H¼¡KÈÖšl;é´:¿·êñIez"Mä|>ª¶S¨]MŽêë3¹å°V¿aU8nÃLjºë:ùà壧’:h¬ã+QC¦0v³EÖÚ€ó®{_KµJ[çÏ*êûyOΟßÙ S~9—ÿåƒùRæºKÖø'¼Ù¢øÁÎnûÍ’³ì¤œ"—â ùz—Ü aN*&—Îr"S™~’N‘ª¦ŸÉãQ?²)»È†_d– ¸"ôcË ï…{À3ŸËÁ²{Ÿ–ko:k< IKS&å×¥$ RyT¹þ.o{ƒÉt&Ó†âײŒDX꟧N¹e&²¹£«\pf_œ%òÞ,ùnlûS÷b÷å6çÙùLàƒßrϘLªå˜EŽ-Š™9:XÂY‡íÀò´…ïÌÁ5Û!koßPoÁûØ NçžÄ7Їf“ÞhÊÇ?Ý®9ÕØ—u ¿“L, béûÁÛ–hiBô:á÷Z¿¶Hœê›Ö—5å ¡¡G£O©o씯%ܧùÌ䤯NðS5—¡ªþJ)–ªÖ¾7Sy×`9ÜU¿îš³¹jIBêf_E‡÷ÞØšô9Û ÆÇHi0жìKh*ä=:o†O‘®H·¡‡µr—‚щå:”η8:LޤýDKô¤|.û)«"Ô¾el¢ºÅ®¥¬ÝFÊØ% 3[U¢Ì)Sϼ°vœàÊBI ëŠ*4 k0d‘åeÞîպ“%¨ ?†WýæzÕ/Q á“ûß^ñ¢÷É1V‡¦Í'•p¯U&ç|×ÝZ…c ƒmîgQvœv·#‘Âx»Ýy›ŽÍöjÍ™oÁZhﳽ¿ïÔß©ádsj/‘{´nz5k'Lðݵ¢ûä¼z9%üW‹ÿÍyÜ,“G̈W¥}Äl-åˆùcì9î–wÜ7~¹¯}ãǨٯeoo­¥no¶s[¼#¬Œ“»P¨Œk÷ÓŤ,Âô>SþÜã3ÿp©eJ(yi»ZÈ‹«K9|®>|®Þéð¹ žÌÛ€cøžÂ}y<·hw¾y¹´žä“ÂMKïð<׿ø„dE&^æ6ô>ô|‚³Ï¯Ê÷qáì‹¢'Øbç×Õœs®w-v~]­9Áf»¶Ùj q¾ƒ2ud[Ë8Éþ˜Fï_ïÕè][OX½µË{[O¾¯bœO-Ák¹"×S)þBGäeY¬c P­9,P]ô(œi.ñ}Xâ!I©* íT-VM‘Müg;~GcàÄ\Ö×_qÏ’hÇ »$wÔ%ùñõ€¯Àÿ{2=>¨ÿ÷ú³Íõÿ÷úæ£ÿ÷C¼xY;þßî6žð+¢Û€§èé½}zz÷n¿†ƒÞäÛêóõêÞ>5°T]×Å "æ]•tóŽ8¢uOçÃòÅÁ6©äx<ªªÌz É÷sŸüP¿ªÃ'œ †bJÇZjO{kèöˆ ÷¦âb Sç ˜:}\Ç_ðtp § ~Ó›‚^G„yç’§+BžB½S D|}ÚƒZúS‰ŒÖPÀi» ‡²í/|}¤ãËãŠê¶l­ÛpkÄéó«ãA=ÐÚçW8 zöbð=Oû½ó+Ó¶ä:rC#× óŸ;f7ò©vßã ²:˜Ì.©(<µ)Ìuut÷Uª­–ÚˆÂÚ;›–kW7gÃ&Þ8ÑrÍy²wSù³þìK¿?R­ƒÏ2W£?ÝSg¨¾†§tú…+?X- x"¾ûZ€žƒ¯Ú?Äà¯Äˆ(}?×È"ç`ÐoW ª€CÙùµ&]^ïäðºcZŽ·Õ|Ý>9DxÍÝ6ÿýw›?‚Ÿðæð¤rù°ïætk ¼Vãpûw¥Ý…î¨òûŒv ;¶vÙ—jÜjìDj| dÏ‚ž“­ÝLhÊ×ý™¸Y‚Á€ƒê:xz€cxüà¸Ô5n±<ÅOBN¥%<:ð•ä7UÀÑ›£Ál;çú2Æe4¾ Ž‹DÈ0 âµ?QŸ×Ìù ©k¨÷š ~$L´Aœàï²K2²%~ƒu<•ÄZcIÁÇ\œ¬4üž:$]‚ñ ¥é|&ýêµ:ŸŸ¢Ì•à ³G1O kI°÷&,ð©Rû@ë»l“.x5ÂÇk{VwwÍ|.GˆèVL­ÜƒuœaX‚Ñ|9ŸùÓël*ÈwF7‹|žP"Ò"ߦëСIÎd’½D(° É8îœh*¼#8ŠÆ¾½P³P§aJ>6Ë&%èlÔ0y‘ïX°¸Fƒìë©3-j]gZ|ç¿YÿâüAÏÏžç¿ë翇xñpÎÇ»;Û%RZ?PðëNE :;ª>(`‹ÿêЯ´e®Õ‘9cd©æ_#… MÖ)“c‡?˜«ãÖžç”kÁ$Q‚.Ðìvd0ñ®üÝñËDN¯ú˜ï÷`žÃ,rŽILƒ;Zð±?’‡ ˜8NÝ b_ÁAˆ¿¤Í€Ž?i‚á‡ÄiÂŽåù‹ÁHFÿ¾…)…bWã Q<ßµ‹Ë[ 6ž3.Ågëß1”)ixö†SŠ …Sàåø*‹ý¾{ÜÙÁòÛ¿é¿¶ð¯+8PŸá J6a¿=ÇÍn@GcY3"‰[}Âû9¤tv?Sdä'*XßÄõ`ˆa¥ÓÛëV†{gx¤‡ównoƃ…ö&pÚ‡ÞÎA‰žñù^ Ÿ$uªÂ½?Þö&0z38Ré‹‹§pºMzç3:îÒÅ!L°8•é°«@ ¬:¨{|ÖVuˆáàïóÛÈЧÕã ÿùÞü¹]ý•ÏÖø®Z§IkÎdn ˜Ðóþà3èðßÄeo0DŠ®ú_{ýóèIXLý©h#2"äUÄ|ò¥/>aVà‚œû×@àõû¨eïîlP>$^À¬AK_䯢¿OÚÔ­±ìu0 ¿ùÁãÍðaù‘…€ ê×ñ6«•Ö&à÷˜‚j·cx?àœ`X4_ÝÂñƒ9C®J7~^½ì…`ë䯆‚¦£ ¶7KtøAï;NÚTCr4/ÛmÖ IsŒ¶šDˆðk‰g'²™eÂhz®®ô1œ_v`w¾Tk]€¥{ç^ì)xÑŸÎ&ão:«Ì‡8©Yå*©!GILk8žè%øÓ®ÀbUVE¼I1æqV,0U£€—»’ñÄÓïŒ‡á ·×‡¿B,M=¹©6›A›É†b ¬ûùæ¥0m¶Í°ØH<é_ö'}ÚjÊa‹,áœ0ýk\Ó?_‘íÂ!ÇÂå[`J%i²˜Ýæƒ ¸Ç8`H ®UHy[ ø2ä R£j+ò -g6qœªD’¤g^AÇ£#+rFÅš#Ü&‰=àw[üƒÜ½¸AeàîÍpàï`p-–f5Zü3£x»Üv*hg}ÎÚ‚{k¸Za¬ØfZ<>7’)Õ ±j†*Íìõ`4¸¾½V º3U`ߢ )êÏÔte£¾»áN‹”Ö‡+ê!ÀðrYCOhž¨N~C Iûê_p®-y> €“Ãùí°§r1ª‰FJõâ¶ŽK8 1ü!N)¨+ËLµ¾7•—4èóŽrpÐw½¿D¬¯füd4ýÉdŒºòtÚûèôeÒÇ>úʃƒ 'ýWFWLÓ[† áv9¶ÅËáÒJìIrQuŠ®ªNæ²êØëJ³ØºêXXzAuâå3n†jbUl”ÛäÓØ.?Š6P.×…ŸÏÏ~±Óðc‰Ð ^±Å“\!„ÌG8>}ÂûŸX^{Ãb@^½\þ„‚µì`s ÜÔ„^‘-Mw÷*b¨'v%(n´Œá¦^&Uk%"p:sKguJãÈ"Ç×”8ýá»JœfZâ¤Ñ”¤Ði:ÍL¡Ó´…Nó.B§9Ði. t¨<-ÉTùŒ5i½žÃÂ|NËó™”?Y’`Y­np{?Œ,hfÊ‚˜¾Ñ|\þK^þ‹"u9.KO«Ë|Oa`l:Ùýc­ZcL3yè³?iZŸ¸rN® T©" nJ‰P­D8·ôÛÌÒÈWº™YÚ°‹|mñÄ9z$êîÎhzt-(ã·hÌ}fÕtXé]eO/Õäs·ö¦ƒØ%“´"wÍjÚÝ€ýw–RªaÐ-ý’øµ‚P|¸š@o|"àǺþß:#ï0Éq²³6QÂz‘uƒý…¢8ü¸~lOÔîš${i Q\$ÆO9I$T“¦oÑ aØUpÛÇ%% %9¹Où#ÜÿV"¡3õrJ'‚à¸^üËö°`Q5>ír;1æŽa…«`»J|D݃<Ÿ9€Ñô‰9³)²-!q:äÑÈjÝËlÀ—úœZ4_uœï:î—MçKjÎäd‰ SÁ=±>YlG:­–ù/‘ñ’+ìÌ_cm=VeSWÙ\ Ê0ÄÊy§B€ŸRÊä~êÄ©¼¿ôëÞ#áÚ·X»í¹ÉÂëƒBƒ“¥…(nJxöñp8þ‚ç8j\ ØWDœ{·p8…³ Hòñg}ÉZåÉ÷ŸÅ¯vŒÈ¶ôQçhëPFGjsܶ._+Ò³Aî!SQÚ ¡€kq…ƒ0ÌFc¬ú% •~F˶×öÊŠ6²êç•ÒÔà‰5FßàÀy~5˜õ ¶{*•9ìöõ-qÙ›ÎÔTàá1žÝÔÑÉœ:áì|9àûbßë "ÐëCÆD =X•žJ7âËÞíp¶¦&£ÀÈ # ëÇ›BÉ”2ÉCÕ„y±fÏ¿s¿ˆÉþ[såÝŽ¯¹ë/c'f·jª¯d|ÚüõÇþ£/Ö“,j|uÕD$lF¢Ä;5œµbt,t3¼–~9#šLþz²ö·ÀÝÝ÷Ë^ÇøôöÙS^xÊíÎ/|ß¹Vþ‚]¹¾aƒÓP5`ª {ALÎV§üÚáÔ"pïv8|™5*öA[Úö4†V‹7îxîØ®ôX$¢ußUU‡)¹ûA+ꢢÚjaØrÜ_Ñ.ëâ@þÍ«y½E3ñ­ ÙTø’Œ’  ²åöj“Ûª­›çmgülÔF‡E,z‘È!jTaùÇnybØ¿œÉŠ`ýh¾†·opM%˜óÁ:ò8&OòõvX„-gj˜­C3[¾~Í#/qD€3…ºƒVí»G];Öb÷f:ŽGO,fG¢Ð€AÚ–E)á`ìù˼"Þ£B±˜iI =ë²9ˆÀ«ÕŸIƒ %-÷ñt0³¬þ# ±ýnнũ¯ãؼ GGYÛ ’ˆ¦4‘ÊÏæz¶…xN_ÓÙt­”Ò¤âj4Ü)*´P¹ÿ8Õ¨1$ÜOeÓ°CLgƒ»{Ž·áGú£™OFUÊ;?Æ^÷A›—²“"ãès™,Ì¡WÈe´TȈká¿rZ2ˆX)Î7¢"èˆ{š(.„ȈShw]þI '\=ûÉÅ<(uoÏVÄ‘ÜmLÞ5+­ñlÊ›åç ЬäN准Ъd„ØéìûíïV6="&ø—‡œn‘Ý™åß | 6‘Aá×ú ¯Ì’´Ç¼„]åavÒˈô/ÜWØDg7EÏ{Û´Û" 9<&50©‚jÒrêoM!¹ï ë¬ó:f8r‡ ÍvôÇSøãWÐ*QU•©iM­¦ <|³S’þô²i°‚`U¡á®ìIuN”"n~¶Š|äN¯Ò>ÂÞÎJïÕ¢ùvVygè(íöibz3„#žM`ýlpgY}b¶P–„gtå<£ÊnúÔ Ñߘ¶ŠßÑyðùuä fê)©ÈÓÞt:>ЯíªIGáq̧ٙ@ M(W'x4=…}w»ã ©¬tÃMlú¥GØhžï«¯½?ýôzDAÇÏáËX*WüÆÿa‚PL…¼¸ƒPÝtJÀ»¸('ÔgŽÒü*ß%IØI6‹>K)|Špø›ibv)Ùm~¢IOE¾tð‘ÔªnJà'~wÈÏlúò<­'&-u/‚°æ”q4mÍ2‹¦âMñ€úcÆ›Fâ??N4þ³öìÅFýÿç;½˜%½øÏ× mì¿Ù ¾Ñ~½kYUÞ¶àß ,VøÝ<‰ìöp:~Óâ]Û šÝ“£#?x´™õ¬.jÙµšÛÍcÑf/x”-„=i­üyBI­aV¹9T¤ cî–j ,‰j¤¦„ç.rk?Wä)ͤŒ]$ õúºXêëŽ A’š Uq¨X ‹2ÆRV0ê1Œ(Zd¦¹q¤Û…úòб•z 4!ZPÿ’rmNû9tÓL¾ ¦è zI33nι{` üdÒŸÞŒIUÂú¬Ç¬Ð]…þ‘:°¢xtr{ ¤‘w¢NbÚÑ™#ag}RøÐ%¡E sJ)u¿ÉÆåódè™õ'@¨(S½=ùßX†Œ€¡xýp#Ýl½lžÐ_/P€×äØðÍÌ¡ $Ã`Ìzgƒ!zŠ}™ô(©noB‘¸ä…ÄÆ±Ë84ë]†³ßELå8‹=(ðÁ§';>_¼šôßjHh#–ñ¾r(¼ ù™Õ …’CÿÁ®ÈîS^輂nyKuVzElp*ì‚¡‚>Ü:ÆIWãá…Ÿ±h°íœTÏ»Ò`Åg5"9óÎÂëó6 «fÂ1S0ø·ï¤C¾ô$¨aìM\1Òr80˜2®þ7‡?•ŒíEøN>:Ó‹0*¤Íõ.>ÓjÅ †%”u„—Ô|M]$†‚XÚš^Tø‡_zßà¬Ö»ìßz€âD» ›O30øÄ Ñètïu!êåøª cô•eI£/Ç`E¡G…³¸;4|ÄÊ5ùŒGÁ¸áƒËŠ£m"¾þŸÐÁ+˜tÎlnŠÆðºwÑÉXf„éh {““þÚÚj·ž¶w;Ýmû™í«É`:¶};†}}y,BçÝ£ks"Z;ï;íÈ%DÁJ¶˜FË'B¹/ªÉ°€“Õ-„r§>\ü L½Ü+°¶¹ãÆÝÛ°t5ة¹b~ÝYàŠ9rÿ;=èýoýü ñ7ïâÅüâÝÿ6ÛV³qs«õfÙ¯{Ôj{pÀ¹ÌÛÜk¨;ÌŸ÷7Ø÷p ¾4¤ê*GHýMcÌor†öG»|m¶Íåk ZæÜ«ò’4g澊ø¶F–ÙX±†Á Y7  ¸R€Ž±ò駦xüEˆ1;ŒmÝa5´}öM_â^eî§Íã®(ßNð>4R4²ÝÏ”¡1DxÚWq•‡…TœoôÖdì)¤b¬Cê|3(¯sozS‰:¼}Ò><îªîÉþuI`ǘëPx) •A,œŸ.2ÖÁí~éM…ºíN¸æ]ÖÝ×MÑVÔÑ<Câ8zåSo,æ¸ã‰]HU,¶îz|³wÑ´Kðy-növlÖóv`²†–ß96^×îîèßÌvÁ’ñ—6ê·ç” +øŠ¥áù°ÝÜðJ&ÓSu|yÉAiã.¯”¼6zß­ªë´÷Jê9í3‚ÛÒŽÆ®äçÄE÷„­l.~ÓÙ]á•x²õ‡ý¯7l Æ£ÌšÚ+y§&µÐÈü uÃä[¬£Ž&êåÝ5¿ûMm[ƒ•W5<ÑY€Fhú†!FLJ©wgNÓ† bûñME¼ªcm9ULû“jꨈþì<:ì’L»{ìÓCM{ï‚CüdÜk&™÷Xœ„ÿ4·7ì­ºpN0±Åb £¬0v  b?=UÆóš7DJq Ç~k¼ürÖs«5wŒåu¿|€Ò«ã;ÏÈ`ó¨áyqŽÙ¶§Îú÷¯fi¢xÞç\4Fkùª#úÈ®¯Ð÷K6$=uðìÏÑÊ¨Ž°G‘Ô0ÄJªŽíŒÔ¾è]Z:„ÑMÎ\÷>2(?ºiM£w ¤>p«Vjº¥_©ä"+'w‡gd@Œ›[ó•BUYD.d"h¾UV]"’|i¬ ‰+Æñ“g­,4r¢>"®Cܧö´ÓlÚ¥ƒ‰5÷ ƒ‰‘˶ÞçÜ×òCêæÅ¾Ë3 .Å"h*(ÈÅp„Q`^ƒ%²?ñd‘J “ÒÓ¬ mQ›—Tž˜5š…ˆ={比Ì3ÅM‚ª°öüÛ==î`öÊHÅõ´j«PŠ äcTe¾xÖ,Cwx¡:LñÔR±Ô,ôo”ƒ1r¼Üæ¨ÿíœ,ŒÛ[¯¤1®ËŒ'ãm†à+Ét¦LÖQÙ†ûÃÌ‹ov7èg-‹¾Œ,‘TzWË [’ÏUe“ê­ €‰Ø˜[+Ì\YDJ¶&–#ÛÍGi|«V[­BÜ‚áz}Ôlï0ú ôToïtÞfu›¨Ë7äïMù(¥¾íÃÿY•ì ðÁÓíújÓûvçpû÷ƒô\oãX?jô<Íÿî·üÑ.ýN7Í8|»Gx´ÝÓ•;ÝDZ̜<¸d!Êó±ßÝÝ)‰Íèe(FëjÀइ¢Ûèb†IxC !ß"8‰T[%^ja›¾=¦oê}}¼'wéwáeQ¾7‹´·Èá6ȦS‰pøÐà†Nˆ•ÕQZ9‚޶rzè0sÁýòó]G±ú!„‚*»é—¢øÅËþj•5ßДºÓ]Ùe•ÁúmµiÉmï¹ÿEO+¢±º~»»xí2\Ø;MÕ;MP(²(|6'…õ~$ HrG²f;‡lqh1ÉeQD¦8ÖYp̆Û.Œ)fçè%¤’,X³=И£IÿœpŠŸÄíNûÒH<é.ÆZñ5WfØe)eêßAص¸7­5Ââ7-ÐMgq-“5Á#¸¹Z‚„7SBc¤oVu8o¯ê›ºÿͦúfÃÿæ™úf“¾Qt¥ŒI[Â,J÷k¾!Š»_Öi“æQQKÍÎm ¯½yf‰„Yê1ЂïÔA`¬Lv£³¡ Û@Lõ'A+·l‚DvP¬ªÊÈvOŽlµ½"öbb- ØB Í­š[ÒËOHŠ©Â2â¹%#HÏÂÊ#5)“¾‰ü‡-ýæL@ð.³ñÍ áë©]˜&R‚”{pé–‚ÜP7[rƒ.AÛ‚R¢tqÚ$Vuáv5Ñáù&õ ǦÂå†Þg·Òtir«qÕM?eèx–@z"MA AA/s›.žª}(B,ˆôö§jº~nÇ7Ú¶æEøøy‚š}^5ëÎÈÕ^ð~º_ËÛPO83ºKÑ2 °d>å_rwQIýò‘-N‘>Þ?= ‡î§Á af²W9¤ñ˜ï9„`AÁª‰vŠo9Y"®Fð(NnF;éÜtÃþ¤õ'°_GŒÅùp<íW0¥&Ýt{ì&äT©¾á@;虾©ô{‡C‰êYªoxpQËa®N#Ð|„§à ZÆþpzo¡h•Ž,Þ·t¶{D¸\SDåáé…Ò0ïüT|Šé0êŽ7ÙècwÌq—;®ÞxÛñ‡MaõtΖ¸ÏšSjÀ >;no¾9ábІ[àÌÑrh×y ÑZuÙC¤“‚‡™’n_ S¸°hÙdê"¬¡Ê8R±:ê«õ;×±aèð‡…÷–Ö‰ì³Ì%+…ÅÍàó˜fE”ÄŠCxÐÇ6b6DcItÆà°WŠÍ“Ês^ñ|­øursÑ#Ð4iœÃ¤µ#—ö"¼ŽÆ Óàs\ñÒZ¬5)§êþá8^ ßFhVä¡=øx…¥ð¢’Ê«Š£3ŸW»Û87<úr—+Ó.‹’ÈàÈq&Imy ü)Bæ‚è ײ¸Oû¦Ù[âE½mEc¬N¿Mᘎ ù*ÒqÃ}Сj-*)$Þ‰ûæg¼°—ÄÁq~ì8:_/¶¯Çì®òzÒ»®vϯ®3÷²6ˆâ½ mTR’;RDGš5këA!b–Óý*n‰ø&¾‘(µv?¨¾Aíe?±’ …Hi„ÜO ÃmwbRHWG“ýL˜"éjðçª;SP8TRä@\ÅÇ+¬…b‘_Ö'SàLLè¯Å ˆCE,ø¬šEqÐórF~Mö'(»oQ}kûªz [ÔÅà_|¨¨_¾=ef­Õ2E/šˆéÖ ÙV\YÇ!wì°Â˜1‚Íð–ÃXATøÙ¶Ã™¹Á™ Ã™ë©’wBòŒÛ!Kž<ƒ$Vä‹„Ž%ÿˆmBüVM7«ÉÕîðêkþþJsØ%r"ÀBë’êVn¬£Ë±YÁ·~Îå¾4¿ ‡Ýû ð’Q²B6B²´ÈѯpØðÊa(ÜÎ4ÎÑÂÜÛÃ!`æ¸&I 62)à-/‹ž²í|†\˜“qz#,ŒsYÖdVá×]6gg«¬Ñ@þ,–mCeoKá]{–[ãs]c\D’[mâ¾/ëÆ{o„“NN-„œó4žR<® ¤}NÌò4A/2jÍÚ)ڴâ,æ­¾mjÁå@ŠÎ«û¡ è_ßá‰ÿ¸~Xü¿çëµõÍÿï1þãA^Rp¹ñË~ú°½Üð'ù ø×DŒäE”atr !ÒÌø_xøøÂîPž +M®ñš“å‚Ñ™ö©ó^w°2 ü †ƒñ¤Uëÿ¾˜š¬Jk¢ ÌK=5ÃŒ-V§[)50•Ðõ¹7!œ¢éí€HZbG´þçØµ$騢â|x;UîŠPVÚf,®,rÌ„½*áÒét ›}å :ã³[ήÝéßW×p+ȇ*cðì§þ 8R¹ùZy¤0.J÷ž Ž2œË—4%í¦N(UÇ*ì»Ô[Ñ–cDêŸ>^÷@#Gû0÷»‚æuB³i‘4ݱta^æn¨7òW%ôújðñJ_² bÈí¤wþÍvÛ%X’ë~o$‘ùêEaÜG¡'ó\c7vùÀªêœÒ_Ô@N-®è°ªp½Õi©)äÆÒ툹 èö|…Ø_1Ù".Æ}>P_ñ:Î0î3Âva/…¡œÒÙŠ“/ÓYÍ¢±AmæF¸|Ô›aˆÏT\ÞmØU³b<ϧßà1²ð«3 ¾¼Š'8¨‚Þ0Üý›©8_¡É½Ð(M%øDó·\xÑEW‘È®Qÿ‹E ÷øyX'ë©P.6.à.tט£{Ý¢êB~OÎJéÂê€`œR‹q¸’4ì¶öÑ?M^`Ð(e®mz¹†ÂƒŽ±(ÅÑè3ì4© ‹pá^”‰×c IÄáÀ“™ ¶E%ðx¡Nú×À4–ì!¯{‰áJ“ù’”=ƒ˜Ð]S  4® §õ1Ú”4rI† köRüýðv8Àîå­1i€³“&D<°EÆ&›Xåï\Wk@r¼1üØ?›ô} t¥Âq« €_^”0AÜÍÍš¨Uë¿TDãö#¢g¹¹æõ0Þ=Ó·7†ä]gm*!¤6ñºwtŠn³q(öÇ·ä¡ ²,iÀÛoÓœºô¾×Dý™”ñD$Ƶ‚—:÷;™»žnkÏR}j´"Þ”Fÿj¸›½onä Ë™±FÚ0¸¨2`ü]—ÌBþùÕwrÜ«=^'Û[O·»;Õ__Àÿ5YÇɶ•þ´¡Ú¯¿¾°°|§Ä„µ5 Åwš ã«m±à`|×5¶E\#wYÚFÿòr€=G(.ýb8ƒìë}.xݲeJFZ$ ¦/œ Ûúš ¢t9 솋…5 f¸¯c†exZ†n¬†AŠ¡vÖÙí®(Y…£àÓÚ²ãÈqŒn`ŠFR9Uõ²š¨‹Œ//«ªìÉ[p®Su=¬f:¸€øÄ‹?­26⣰ÃN0ÀLDÂvñ£R­ÒÿŸÿ3ÿïÍÕ·ÕþoN$kNú³ÿ3ªÖþïÿ]©è=Ðé¶â* Ô†F‚%Pk‰šF…ý°",Lì#êøŒ:.ñC}%ZÞÔzK€FßÙµãÎÉîZE kßÊ8EP´§m3@„º¡R¯8_—Lɤ‘uI⬠eDf½qÅPûÉT—©jK=YL'Ÿ=€(m»“}¹–æzQꉳŒÉ”µà ÿÆNž¡¼±²OíêJCÞ-Ò;«W¸QÏdÄê78Ó“©ßôÀ'Æš8†‰µªÓ›ó¿oòîãmo‚7U® 3WrLTäD.Icé‚D|1qµÖô“éòß·f”>Ðô3˜bOuÜ•p@²*Ê*\óޏ}Aêê#ÿ#ÿ#ÿ#ÿ#ÿ#ÿwÁâÇG—…Æ\²²K úξ¹~ë¢Ð ðﮈkߟ¯d˜À- Çð)ÞOaÕÝ91@aÚ"Cy?€aÙø\{oN:qØlw^«ìòyà\6×z†»© ÚáÁÍÜ™xtƒ»æÔŠxt6Z­Ýæk‚¿¢ß­?Nv;pÐ{ÛàÏß5ÚÇpZû@Ëjb—ª±ûº‰év ‘k¯Ùécð GîlÉßï²#_wÞ,¯f»{DÅÈõ·Aõµ‰Öl„¯]øÚítè÷ë#þÕéÒïwäÑ{|x”U |]g 0ÆúÚ'/ÖCl¿Å¿ÚŒIŸ®ŽÚôà›½½î.ÐþNŽÐ;ŒàG"·Õ|ÝF”«í® ;j¾¥j:°Ev€¦cFágé¶1ÞŸ‡_uÎÚ£*0z8¹{Ø¢&ºY5ÿÞÙíþ^8N☀/Þa´MÄ7×0^LX„ûZ]X>é¡Ð@_­F»{,Ÿ‹àwQ5ÿñ ꊃ)¿Ý}×@Ä5† †¿ÞòïNg; ²wCþ½/wèwÜ–/FüÁób‹ŽÄÝAÅH4 c%޾òÜG«…r–fÙbž^ýx¢a1>bÕÂ’)|¤ùÄŠ÷g±Eè‹%yƒã3t ª¤Tkù™®ûƒ)‹U}­LæóFÞ”臅êäór[êòú£²¾€iŽtfE©Å*yf*‘êz U$Æ*Á£_Ë ¬EßÑ<ùQÌ$ÄpgeÞú´©>^/Û(YF¢»Ñ!蘖žž¥ÿ³m¤Ýz´]C ÉæžJóÎrxw⾇mƆ¥jžÐ;k$£ÉQнy×W©Àõu‡Œ@°­zSÇü ük*8¶oTK, ÿ·º!šf¸[:n“.’¥ßúGPŠF–÷DŒ'ÆÀ©uë53v46o­`Iœ·'Öô1>ÛNÑà0›Ä¼åЭñÐ7[ö''t¥èLdŠ)[k¿9^S|Jàm®Hi?‘ Áe}RüP…rúéo=© ë~…9h‡þóª5Âðk#þÀºô;Ykí®ÁŒ¥êzá×%©åâxÜi!15Ùx'ÁSþ’[á ¡Â,Ê*OòªüÕ¯R"4J¢ôLR ò»¬újÁ²‡b,-¸&šV)è“Uã'%?ÖÕœ·²_ ÏðÇÊ–ñ×í]öÙ>x{m6¶, @YéiøWùËÈïXM4ñÜô¨R¥dû&+ÑÁOÇ}ˆÉ–øYÓJEUÅÅø'7¼"!äø(´Ç(Â"‡L1îMŸ5°Îw4>ˆžÍ:rGð7X³F—ó±žq» WìÛUhئÎ6 þñŠ6Tq†u(µæ¬Ã˜C6ñŠï8ݪó„¬&DÈÌrѪ,`–ÊÎØKmH–š`!1y¹îH/Q¡Â…Ïm[«îC|Õ kám:tØ7ùÆçCuÔâ§wô°cáŽZOÆQA¥x ¡– : ôwô£F§:²üÊþºÜN××ý ôÍ@˜6YþÐÛ%œ© £ë½‡B¸6BÁiE6½`бUâZ¢;%Í!­$n¦ ‰5»Üë]õQ>'l5«a!ø?ÿ½^XDBÉâ´( 6´«Î'ï{k+ò›º÷OKœ+ 4gõèœÝq]¡µ[GʬâÏ IÒ"§ØÈè6Þf4Âæ‰nÛi,2#̂Ȏ-±\f‚:uT8ÞµVèmRÚâs¨;¬¬„õ1{s}¨ášX‰vÐrB±WVíÆ¾®«¯·»¾™]« \Œ§3Nüq‰cŒrc»«|™8IˆWqsO”ºm„x(ŠÓ&Ûîæ>& §—«‘u|¬y,wm$öX4ÝtªÍ3Ñ'"íy;jdƒ-´jWC­èj8!i³Èjqš_ ÛݬÅÐm?.†ÿ¢ÅÛ Õ5‘B2#WMxz¾Ú>ÉŒoõ›ÍüHU¹máj‘Õ/IüOîoÓÿp1ÌŸùŸ¾£›éçòc½Ó­„MÝn *lÇò!UtÁa‘¥tÅ.ágêð5ÎJæY‚+ /‚Q¯v{€{LÏ΃Ò/M]9£ù†¯Œ÷7òf5éçãkíTGç¡™ÓìÆ„0 !>ÑŠãÐ\‡˜]n*®ú·xÃ78ÿM|éË,ldÁš>Ñqªdh’.Vܲ¬‡Î¦³«IŠÎ’Ö‰¯-Eí˜ññØÒÊýác Ç ¯ð9”§t'ÇÊé±Ä°ëðÁÖ]õª¥·ñYÿT ªì0_ª<|é–·×aã£(}ðÔM™ ÁÎ͎̽‡®æ<…ò¹]ï99Zø«L¸ÛRÂ6*äé2e…»S,‚{ÙÏx°ÚÚ;?OÐ N;ÖSlº|×ò‰Ò†ùîÄÿÆ–#Þqˈ€qÄ™QçO”q¢DŠ™`˜çPž2®ó¾É©}Je=”6 «QË•.Ôp¥¿¿ÉÚ¨³ù^Êtu¸Çpåìó&KÃ#çÊÁexaÕb0Ï”ƒYX¶ŒMò´p3žì¦ x’³»CÃAÅÒ#ÓòÖt<ò¬ÕÇþ€>cÑÝ’t3µ=/¿ OÍHsÂ;"£)6`ZÂð×ÞùÕš¿ èRÍJ Þtì/®ÅäXÙÖµëá9ÎVïl|;ó;E3v~W³: 4[ºéïnæÍ³ž!=B ©i3‹/äl¼²L~âºkÁ” éõ€1kh‡öƒ™U1ÏÚ+å¸év.z Ð\‡Û*V«X®ð¦Ý€ZV F¼]Ù©Ô*d<Ä|¥R[‰8uÒ˜ÿ0K8^¯Q# Ô}2&‚ dˆYµÔ) ɸ[_åÜ;0¥ý•r gD¢B?ôæ|6ÑA1(æÞ”³b+¼kÿIywIm®cß$›Ž­EA@1ù•”-.’ßÕcß¹«¤@ótˆpß!†øî’œ‚wÄ«ˆ—ô×ÁµÂ{@ÿ ;õÅîµ?ó€sÕX(JÖõ˜.¨–¦}Ù3Å+/v½¿¼D-…˜æö –É‹)‚8P‚?%ë8ŒÛJùzáÔ+ÖX:)äHÇ mD Ù;œlæÞ»­Ü0´o²WÇΊjÍì’éÆñ Qþn,Ò^/5Þ•Š„×3 ï8(¹~”pÁ&5åxë™w~9êû+Ú &³5ÔØÝæÞñ.~ßžtŒ§«Ržë*ýLÓ·äGí{šÙ8 AG±a#ì™í¯'—;²uYœ)ù¥ Ñ`·&”¶P·a„1ºs¶“”¢þê×ßlƒ¹+il©RŸ¤Wp4jQ]L›zœLèž4gQP²y8ɹðRŽO6L”¨‹²‡œÇï‰!;/»"Ÿ}%&eª´©œ““E.3 ÍÏõ4? ¥…í’¹-D”ì’Ä’Z“1yذGÁÖ`ûÂG*»)dª vç÷ñ—þg„»J¹±sT‰T~ŒOE÷ÜQLUxèF–ˆ’OÍOešqî<<=>SAÀQæ×ʇR„ñzˆMZÂ0‹Òñ!/ÖcÄ=$•$ˆ´üc•2LÙ«ekR.O Ÿ<•ËÏÒKSº]‡7ð(lšÂÕƒ^“x,A ’©‰Ì;Ò‘ZIo¬Ä±5Zì^ê¼ÞE>ƒQÝøU§†ªyëwõ0DôWuƇm_&`ó>‡W9>û;®L†ù ìS1د"ô˜=tÖaz"A8‰µ@u§ÓçßÄÆs]K]E;4N™2SY+÷JÞh¹”}r?¤Ëêþò»Ì/™V2Hˆ7 ÆÒa*êåØ%º f¼™ EÒñk¬Eç3vÊÕOv•Û®ÖVª¾é½™S»¢Ÿ²ÿ$à?—ÔÁùeT¿}Üò²¶à±hµ©ªXzŸõiºí­ÍNÖRCÔ~Ë%îj¡ü3°‰ê‘)–±&µÕe(|üb§äØn–Í&Zl~F‘AÈFËÂÔ¼4–Š)›¸.dÔ2²x9J™êz†‘¶¿Cí”Ö½w¶eÏ3€5ƒD;´ý‘Ñî|ÒïM5¬†$zŠÚð×µ²ÝéÕÞp Ï’ˆöa›L'øàϧ¶ ïSa8¼‹~F DBý‹Îg®’#´ž³áî«6"AÁÕȦ¿Ô{s,±OSø¹äàÅÛ¶Ì:è}Ç '÷)m"'œ RßÉžby™ö+̼™ÂÚ‚Š>1j¬AxæäÏI¥¢)È~AúHÓÒGâO°ÆÄ¥zŸbC"%Ð%ŸŽ|ËØ”¹åøÝ~,‰iFªW:®¿ìõæY÷!§X¨‘EŠ)ÓQ3Þå(9ˆñI)@H‰+CùésÃ"!øZ,’äû”7`Ì¿Ig9ì:¥K{Fej`ü¤°‘ó>˜B6‰ÓÚ ‰Wp´ ЃK‰îEó–IröF$mr\JìJò 0õrö…‡ã:$a9u›Í ÍdC1òê,coñ±ht“9X˜Xìa 3“ŒD2„ÃJ.$.Y/·«õ+5_‘"à5ŠQCì3<àêÅT­,¦9;ŠŒÍM£ÑJŽ”@¼0uëå¶•S÷7‹ÔZ/a¶øÙe[?¹an'™"tdþ ¯‚%ˆv„ y×ÁžµëíÅY=¬FY0É“ ñ«I” 0Ágð/cRU¬ý0À,ÇïÞ°;ƒ2JÌ Ë‚àiô µ we=K‘ÞfÚ¶»j” mIQIÑ´Îg°Íd—ᲄ…•œ)§Íã,2èìÖúðêr´(oh¬•®|ßå÷ÇÙ$÷˜B¿Þëpö‚À)ºXµs¨Ðþî•@åøu6€ ezV€)KCJilÁÄñ,5_+¼”X·ïŽ–¢qì+‰s W:ð®RÔF¬nL|ª[úmfé%Á+ÝÌ,mC"D¾¶=`]/w~$?! -o!Àg°VlØÂ^Ï+^(7ڙϓýK^J…ÑÇØÑÇú¹¬â?n矤 êÕ"á®aÂr¤8$Õ;HvÛ‰’Í"z9ÿZùy¢~ºÑÅøò’”L}ñô¡æ.17•Ž÷°‹°ë€&ÔÙ)šÜpé\°0H, “@Ϫïºò;v@1Om‚¸óù'C=PļjiF¯ÊåNº»w;r üoiÊ|j»·Õvß.Û;#îÐR:ù“ÈŠ–›>y´Ká«1ñh‹œVe-—*= y±TL*™:`|CFºñl6¾Þ˜H—À³9$ÃŒ¹ãÖtÇj‚UU¡Zµuÿ®Š¤^M¢›˜±d—‘ÚóõౚýØ.~*ïòlä!~¯óÃõÅ>^|Ó"eĽF>&OòÉÛå ËðÚžÁÙ']Ñ]šôõh) IÁxP;² ±Rö>] ¶Þš”†+eòMŽ^Æîª8Qk4²)3Ò“]ÑâŽhü†–ðLn3Ù¢Uoºoñ­zÇ®J‡Ö[þހ–‡sˆîG0Эk˜eÁqz:ù,ZZ&ã/r1Ȭ-{Åæ£’’i‡«¡QŸ¨¶VkX/ZÒVß²•yLf3&UcMªÿ,ð±”sðW X\©½2¶[@çk sþ—z²Rj ñýI_Ë›«jbw®&´bÀ#Ðâˆ8•é¨ÏE@Þ÷˜F/6ŽåôYö-˜pêcW`ÛŒ#­¥öDÑŸEõ$¹ê`)ZŸÉU§?‹ aЪÕ€X–G:PÙ´ÈÓŸ·ÆãO‘J‘¨C¯Ü"6cBF5ŒJ›ì_ Üø*ɜؑ‡dzE>êK¿ˆ`7êŠC‡Ô¨K”}9m$4 äPN ­ý¬°à]L»ô$½5,×üC%é³çƒFK‰Í¡$± S sŒ_/g…’_¿¬Û3ݼ”)yQcPw*êÕ³orƒ¹ è()8n“Ž?·Êª«ó L¿Máð¶fwÞгîÞÂÑÁ^ÇÎ$r˜]Ì[œ³pÀÊ-Cº¡Ç_Ò¶XߎÙ®ÖVùOAë„)xÔ {ý“-Ö ëS}&¤•ÓŽò§¢?Y“´ŸA ¸5yC‘ƒò#„’9¯°HðÅjM~å.®]U&PMH(ÁÖ½´pF˜[(ÞÜt•¹án®g­-¬ukä0©zÇØÞ©EêâôËÆ”“úšÃ&~M6A5Õ#:œ”ЬYöt xuX9zóóš ¡+nURUa¯Š’L¬ñõ*ÚIJh{íÂÁ«+<,¥mÿƒ#5%ö"׉‚¡tÈJZÕóí±N>‡d ¬ÏO{û†}ö=è¶pEžÐ~Öǯi8öxmoÆ\PqÓ°" ‡`ÍŠ].áñä/aD/;jÞ€ªêkÔËaÀqÖ¶Ë[΃GÔ¯ŽÏþªÉ×Pì(hv»Ü·ì±–—pòZiŠ“±ÌQî0š(*¥/wž$kJ ¤˜  f_¸»‘»7äôƒÃy°7‰îèËá¡dÃVàFž-oÑ>m®'U“ò7-mCÙ¢£üÃá.-_[k[‰1kwM®ÎN ÿ’Ðt›G6%J¨ÖÜ¡MIÔPœ)¨-@rf)ƒ‚ÊàM’P½‹:x¤ÕAŸ vðÔåèƒxgQÍÓ 9(ënZaµ¨VX£s!’ɯ¹ÕB¨ =xtÆL¨…¡ÁD,¤Ö6¾ŸfX]¦fHQ1´<ù/¥"Ó ó$êá\ºáž§Ö -Ý;²˜v˜7ÅôÃj-©!&õÃ(g %̪Q ñu¶†øëO !Vc¢Š/Ô©’‡Õ[|J´ÄZ]ª‰tiüð*b\A¬f)ˆ™ê!©õ‹(ˆõ0©Öê?„vˆìwXT;ÜóµÃCW;Ì”ÀOqÚáa-®þZ@?„ÝØù°Õˆ~X õø< …iD?t œ'£‹±F¨³±ò˜ÜÍè][ã£)­²MKC-Û7«­î[¶'¦‡¥û–Í·…mÁɦ´=˜ªL4é7dðÿu¯Câ,RÐý@½Ž6µX¯};8àãqa4ÖþwˆÓ„è#“ˆ á¤ëŸ,=¾T·¦– {]ëïäáu`íoMx˜–± Þ,i¸“H—úÅB§ö,±c·ôü&¸ØzCNæY÷Örå?/%}Mm±k!r‚wÄäÊÐOf,ŒÌ‘?D»Ä »pºcïæ.Å19Ã"ÝM¿ôn¦~¦sG8BßáˆÛĉ¨W„§Øãè6ƒ¹A8‰f°éî„úVþ‚ƒ‡Ñ. ðCq°hNψïÅc±½²ÝHȧžãÚ‹ôQO’p€,ÖL´Õ¨Ý#ªU‹ ”´@lîA,6×P5=8Ì›Žýã1BôçxñŸß@?hügmýù³gaügý1þó!^¼FøÏ÷°äKâä¨õ†6ê¸ð£yÔ|«µ<³#ƒAÓvŠ-Jôp|1¸°Ÿÿ9Z)áX°Ý®£óÈÍó§a ðÑèvm]ìõÏÄúhBû¿Óy#MqÕþœ4m˜í)íMƒ>O8j¬A˜ÅœðÓF‰ òÂUM»Ù‘¨È>¢?ÅœÏ «Á(o&ä¿>Và½#ÎË'F·4O%ŸX«bHÑ S¨`QT!Œ +"õ²‡ŠÅà?Úã­;âIy§|R.£åß·à} ßk̬³oHîqgOÅ‚Ž4ÝhÃd\1xŽÕÔÉ5Ðø¹ÔXYá¡hǰš oƒ©i³7åiDÅm4ì‘TvêWñCY±©ÈV89±©Ý X~êÀü^pfd5Îð1Z2"¸:ù´{¨‡ŠÛ›΃7Áº&ƒÞèã-.†H$×+ñäC>O¨y¶Bao8*ö4ýæmaі׌[TÍè£8EÃãlxueÅ6*n!6Bn–¡ÞÑŒs};œ n† ®‘·NМ†´““#NpÔ[8 IöJŠô?'®±Æ5…ál(:"õçÆµî¸ÜFÀåçW’?ÕãÁã5MnÏg·Ä;û](GØÈÂ¥Ed(Cêw›¥J P¨Ìï¼6­à¹XUÄ™Ç^N`eT<Õ’ Ñl¿m®¨êüY¾ç„ÄiI%›2ýc)⤪$;¹ïf'¦¹¼^n¯ü á…ß3Ö]¹ÍEE4ŽËD´­®Wìh·Õ¹»"AG'GG»Ê´û:ht3¢’˜—’$‘£>towK"žìü!T©¨%…>’Wa‘Ñ]nzçûŽQâ·4ïB'^fÕ6WH™PÞøI;³¦S¤-ZVôlV\ÈÊ4ºé—ÕÂlk»¿èTO—ý£Ä¸ŽÐŽçmTOgòxò–,šÙªp`#ªÅP‡FÍʵž2E쇞*GŠbïcÿ%Hø©ì0:¯Œ!Áf÷¢œ4Ȳ×&KT€ïY’G4½Z1c0yM²_¥c0ÌhD}$|Ó¥¯[&û‚a1 K]Zó:S7Fä{èHVt†¶º)E`h9´«Oû†fÜ”\ ƒ9ÔMHK†çË0öeÜ'ÞAxŸ©ðnà!üÜ˪üuÞo¨¾¡ŽBêû“Tlñ-ž¬8,˜(·-‹DÍ7J0m‘» /ø%#Q¯NY:ž¯Ü¹K…G$vK –yIF¼IM¯æiYé‘0£¢¨ºo3jhÿëÿûöl¹Àûß‹õlÿÛ¨o>«½@ûß³ö¿‡x1s¹ö¿Ý?N¶"@ ­g³_ƒ®CC$8‘oæË{i3 T„è&ƒ3uØÝ5i §Éëëþ°¿{‡p:ø½7>öFñ~üŸ±ø}pÑ£S¥]Ñ~o íwý‹o¸²²¬‰k™ÙfÅ_rû©(%<׉éøröí.¸a  y>.¸Û1{¨MSaÛh’&þ³ g¿ævóX´Q/ õÚ´Õsq»&Gü“Y“?IPç0z·h&éêÎiñÄcÀ÷&ã/V¢r†˜’ác$/ g”=ÇÃÞÓöM¬C‚°¡{¤¿ a©R ¼öeÌÔ5ôñr››MJS2JtKJ^ùtúïɬÔ( *4pž_AWGv& ³­ÈÛ"Pj¬AƒßlAá?ÉOê,7è]¹[‚óg<ê› +:ë™8–@}Ðà€ ð]Ã8MšU¸aÄ/S¦±¶e{åÐd8_)=RÇgô'ÀIê;ÒYÍVìdol£¿m;ä¢/8ªSv!Édí•i ¥½ˆeú(p[î‡ÓK \÷k‰ìªÑš _¯iCªe- 2ø+‹`7Ï"˜U-¹¦h4Å›´æ\ƒ/~Òõ£úzê嶉Mj$P`ÒÁ­?ûN-T^%àÜ^d‡‚ û‚xmÚ9 ¶–®â>¬6«³)3Uì“RÄJ>SþD¶¢šƒŒ§â$È  2ßh4ŠŠµ\ì:¦WãÛáò+Ë£µÂ&ijù§W‹]‰¿šä\å}üÎ8^sÚ6]Ó¦áŠ#_ý«y¬-—)ð+zk__Ö>h¦¦É˜îñö5,×cÐfß´*bú³ ËmLÈV'DDP[xÒõOèæÕeˆ)Vd[íİj¾¦ßw«{rØý#m=Q®;1$à“˜¹6ËК£JS°LKkºÑ•!´ ÅÛ­nͯ'¬—„û õýÍ*Y¢#¿( ÑÁôg+*ûV£yØxm>~S.åtâ„¥ˆ=—A“¢F[Ïø—°ÚB­mvTØv[mjp™ Óm`¹uM°‚m°œd/h:0¢Æ±ÂFÓ‘ó»“£,xƒáƒœ`…”ÕÖ¶ßðpíþ¡¹±Òfзó&4v•wž%V±ÔΛ¿Eè¶h: ¡þý˜¡Ñ´»†ºi8íe‰åaKä¾ Kî;%÷‹–”]¢r|ÀË-%ÇdžöÌ0¬(«íýHÛNÃn”Tj¼‹éâ¼”™™Ý_ h¸¯™¥ûžYwÀmoM+hˆfûÚº 6q¡¡ÅT‰PDáSÖ•:FÅ×J„É õ!îÞòC¥çõg=øèÿkü& ulý 7ÀƉpóF&µìÓŒ˜³ôaH0¦'˜ ð9›Dó÷jlrËî•ì[•ìgVú2G„@‘j÷³hóêôã ÓC{ÇvEÎêý LŽ?´r3TK¤÷ù#46ýŸc^,OÅH? š··Èâk‡ŸÃŸ«’¨²Ô22ežB]f#>Þ‰7Y/·q‚6ÊÉE‹-Wá1ù…|_ņR”è°³îÖeµ'ðíãÕ#¦•eQYAÒ3OmY&E>Mª À2õ|E¼~ƒa[¿þú·œ˜°é1a·)GÀùt»N·Z”WÚ<¶¿ªÉ¯êôUÉʪ8.w½ŠÖQ£,áç+øÝ*Œ.€TE»l1&X’keh§*6ËÛëåíºN’ÆG$¦…ÒžÚ̯ 3]ÞL#ó¾½N‘µÐþªœæú›G"Ñ ܉¿ dÉ}K:5½ÕèÎÛ~8oª±^:°´ËÇÞ×)™°ã=Ë’°&¬_²k÷EY,y`¡|`:çÁžÛ€ím\¢&͂ƾCrÖ<¯ÕÒ®ñ@ç#­ Ä“åÙ ¿e аd{»‡Í¶9é±qÅèzTB'xX~D柰Ž=E‘d¦ª$tó[¦á]¬õæu‰ŸTßeþèÉr U8„e./¿ñé̯ìü,)ÛRÉc®¥†KÓûˆ3àê+gk2:"Èv°9°+÷íqðøú‘^¡ÿÇõç%‡åúl¾xáÇÕá±GÿxI!áø¾µ½?ZG¿7ŒÈ)z|l£¸Ø=†·ïéíû0È«wûu0`Z±Ÿ')`^¨Ö6wþ½çØs8àAÃ1Z¦ë©Ì!ø~Nÿ„÷BÜô';3µîÕª-ÄøÆôú&^¾½áÍU¯Ü(…mOqåo~€#èkš:âQÜ_ÎTÄWúüç¾Ö÷]dtÁ—ÞÕœ}ƒþåu漕eåõ¢"Óh\”Þä”·üDoz“™wSá[ts.zN,q9BµÓ—΋ä;Ž–Â¶ŸÜ>Öü­ïr«šoøÕÄ^ºÖÒ´˜€¡C@êµlNF t¡².yñ\YnÖ¼¶­I%ý.œÂmÎÔõfècú§µBäÑ·É“«7A?î’ÈË…RÁFý1I;ŠH!%£ úŠ(r ùﬕ{/O§–$SÚkÂÏ=ɥЬªÀE…‰MñÃÙÐÍè˜fÐhŽ´ìÁ–BîX$›Ï‹Âf¾±HK‹¼±Hqœòå)¸ ñq—É/è»ããÓàx¾s Ð2U 18‡»4½=[AoÈ“ÞõUî¯X§8ú ÉûËb½Ó{mîzж‡yÓW鱊@åÞÙ´DŠžÆ²xïŒÏ'´/â^A|ròI»êÔâî¤âk±^EÅçw'QÓJ¾Q^Î;§šÓ5.O=A†ƒ¹*.TQcŠÍG‚Rz<*SQ%Yï`Œ¸›ñÊpÀ1˜HC‘½£>|&©žögHRŒú÷.7åg ‹©Þ/ÆTïC¦eñÔ·5“…ô=ÅÁƒâþe2˜Íú$ýX’_ôfÞÒÕÅ5ϽŸçÞ/Ìsï׸üB<÷ þVÍ>')¡`pUf\µS ÆÜ…r¼·œ<‡^¥á1e¾„ƒäðÝÄÒ{N5îßðûà}šæãÝC„éÅ_™‰î~¬˜ÒŸ/†T‡ˆÆœŽ‰3\ôÑ¢Ïü¢¸ÁÄC+e‰‘ï3KÔ¼13hs„–Â9ûI„¶Hd©cfE’ʤz%>O˜B9‡%Úíðc‚Š5âÂÉFÇmwa»½‘º$ª‰7ã²l¨¡ž ’Õ!„>ŠÁyp걄ÿlfòʰŒµ¤G&*ÞÂût ïÃÞǼK=¥óáF„UË ÊDå'õm !CÖÐ#bØE¦ýßb‚yÐU¿ñáa<ž)n_ E>^©ôr¶2.kÁJÍrÞ#™°MØôÂæwðifyf#é%'A²kDc‰ùeÂsãn hzrYjëæË(Ä] |:#pÖki.¿×©õÜÖ¼¬ õ&òŠÞæœ\ªß‡®>^ãðcU(ÝXpø6 ¢Çï}Ì1$BÐæÜ#l¿Ö³'¦adžŒìKa ñž\"h¶ñ¡–±ŠPjÙ‡_[„ %EÕ¾Q³ä¥½jâ—ðÏ×S^B¬¼à)ö²|u¿!Í&ÁœÁJ9qH—üÒká½rþ¡fËúâ:RF5Ê¿WÍ%7)×Ò³¼™æ¶÷UÛûnÛÒjUvž8¡òVEë xy·†ƒS÷³ÈÝÁ„TsÌÂé|ÓÐŒ!â¢BØÉor&í½žµ÷K™¶H¯ñðƒ–pÐ[ã/ μîÀþûbso¿hn÷StÑ,ïÛDý’›C¾ñp2E‚mœ[¢HÀ•û’ ¹K.¿2?î#qΆºd!òëBBÄe›Ìt(wKo2£ÀúˆŠ™ý¸˜Ù‰™Z-w^XýaGîIRÕruÃÄ8.OªÔêE¥Š‹ÛŸ„ä8|û×ò ý?&ËvÿÈóÿØx¶±áû¬¿xÄÿ}³²ëÿÑ Ý?´Ûûü÷ø{òôX¾GqߤÙñí0†“Þ蓨E¼;Æ»ãk¹$¾>a©ñî xÁKƒ‹ÎÊoû: uUùè×ñè×ñè×ñxýÞC{~6ù7¹î6Qs•,zæëSôö¹x5òš:Nþßîû“ž˜B}ÊŸ˜Ìj‚‰ùË{}//ƒÂ%@ºh«M àñú_Óó׿þϽÃný‹; èëÿ;Üå7?Ð]¾“Ÿ}cï]×£;ÅÖ\íH üÛÑ`æÝ"Ó¸·bCyOïLŒ`xÉìzüØ·îf8æ¸ul,tëh_0Ä®2lÔXœï ¼p*EÊÏœKá]ïÇ2Ú aÅþ²þ^ló'«,´m»"mÞ5K0Ë[ÄÈÏ—ÞycuºÐ`eܬ…ׂÂóX`O­L´ëØô7ælûšÌ7ïtÕ–X9Wmyë ã–ý^Ö¼wß_«ˆÂëàÙ¼Ss×ûñì»ð{[ὕ°¯ÂÇy×Á‹å®ƒÂWÎ/‡~¤—‘ûŸËéƒæ¬?_ÄÿnnÔïâÅìêÝÿìÙÙÚß»&þ·±Gì©Ô [øv+ “îPàÇÞn§ƒø“‘ã;!€üc’È0uzqU9?ó\@H Aäĉ“ÑÇ{æÏަžw»ÕàsÜž|»U⾔Ӊą0ˆít;FýžïŠl¯+׈©ßW¸â25¡ÓÑcŒ0üߦpÖ&tc`½™èà´ÁÇÖy¸tÿòrp>Às–´Ë¡"¤muƒÑÃ’ö+*ÒYâùOE2OÄÙøvtÁÉïÎ@ú~éM.ä7&o¦²o+ ’Ì ËË8ìkC!kt¹éƒÞíÎ2PÑ‘µ ÔeÀá'ƒWˆÑ ;Åñ®ˆÁZ͸æ)æwnñlBà )¶hrN×$ KDjþ4ÛÜ ¸VgFv·kɰó:àãÑçRÆ$…y¹àaĺl÷¨íQhÏïQЧ–ìeÉíz‚XYÛD}_Àö½9˜k/Â]Œ`Ï9k¯#Ë pF”ònÚ•Ì•²ÔÊSj×á¦,åZW~šY/E¯]ÞÉÖ›“ñto Ó±·&«ú™ržn‰â¬²UA)0‹'-uj=º[K`ö­5®)ÛS§®Xqç:b.„ìÝRõT…u×ü*ÔU˜R.ªô°äÞa–Ó5®)T¯¨þ¼ä±)Uú K¯ ƒtŠ~ïüÊôïïíZN1aK ýsÈ$6êBÒ÷ò „þéqçd—¼CÈ{k•9O0S æcÁ¼ÝcjJª“®xJodõ……¶é µ bÝ^èŒm2#…]γÃEýª2}+0Ž:¿R¬2»•éª ëZsœhžÂŽ1нë$4³ŸÄt8‘.=,8„ƒç ~}Áü« ˆqe:[5ƒüu4º4½:xþœƒkd<‚~LÑ«gØÃœ¾~ M; d×"}A˜ŒÞ¥Óžè:YÂ@:ÒnôM1mÇPÕ– ìC×½O 6©^d‹¯°hÔªY4qG´Ëed“a/– rs$¯,Í=°s"ð/›Ç2) ³û×Áõíµ¥ÃÁç†v+8µLx–&xˆá¬.˜˜$v:EÒå×Ñ;lîÛ+ñ,ë[ð"\çiæÏï!n?BÛñ»LÒàk¼Au)‹Uó{g7“6zªÚx€dÔÛoNÚÇ™Šå@e mH“¿{Ô­ˆV÷¸³Ûådƒ½ÝÿªÓ/¯<=HOM"]Ê’³[ΆÒ8=z_ÛÛoè—ÉB}øö’Q7¶ÐJ‡)MÚ¾bçpZ’GE^j™”ÇEE=R³”Ä0ÑzÄ…É cÙÞ~ðô0?I¦oÔ ²‹løEæHóüØ+Z8€~€ÃGѲÂ>-\XÒ]¼NöºKONne"'š¼¨ç »¨«E´+ ëÅvßýx|ûVäËhîœÞ´?ˆWýd4L“v-œQL¶‰êbEÜ o§¢¦{Mµ1pN5tÔ²óîÍt0ÌÊâ Æ~¤Û»] „Ðâ<·‹‘ƒíe.b}ŽqüýSlO÷jglÎ^Þ©[Œƒ¿é޾ ·SËÁF¹Ub žÚ÷½táN²óñ¸ÍC´ÖÞÜà ì|‚ÊŠJ´á‚Ò7ÅkÇ‹_eȆ³Çàâ6 ”M[˜ø@”Å©C¥;À­Ž²l•88š3ðEOÍæh•ÙÛÁš­R: 5ëÔA_™Š"D;Á9 ­c·Ãž] žÂppè;ß?Wèß5Ø¡þ·üc „>ëP!£fàë+JÏv)êIqÎÔC)é õͨúT kSE/ú£1°g†áe:áä4Rº›1_âióB&¡ kžç_X‚x Á=v‹gì@M'i`'Çá#)£c'×Ûñ– Á¿‘dc5ÕñY |NxŒû›<[ Šn"ä÷ôÀ ÌyHÚâ s$ðœaè$3»`e­óúTvãÏíaÍEö0dØdxd²0VñlŸö¹§±Ÿ“þÈÔ=ç©;H‡\‡©{~§©£)zQÐ×%:ìs]ϸÎÌ to„q§#¬š3èäavB‰§öxz™Ä"88vm¥H}«,ó ^.é^.Ûtë'Ãôe<2¿$t[ïéÚ¢Štÿp¯]£¬öƒÑm_™ZàÛºT[aó¼Út©}ÚUÈ9aá~ ÚºHôY“Ñ—ÍúU_ÑE/úç“~oÊO§ShƒÔ¯‹‹Û f½@&PxX’khcE4f‚l˜ÒΤžâU+ÇèaC†AÍŒ2ÇïÞ”ÍW­Ý5©ãзî’B„p‹¡Ó®Àn 31hºy™À|ì FMÂh$p,·T’ZèòÂJH;tוàÁŸÔ [iq¯œÖåtïÝj¥öÇ¿W½åõqŒŽÄÁжFc‹ŒçÙ*&/#ùSùÉŠXö×øbâ•÷8m½ƒÑgØŽWÜÁ—š P•aŽËž6µªt©«©@¥rïdá£^¥®\Méƒs³@”ª àÆûaRóµ8ïSh›¸CœL’vXyΡó ZÄÃã©— Tä‰GEUGž–U5)±9±nS'@³†³"™ÐLMÉ„ê,5UKAuŽ'0ÆÒã TT}çÁÓEoÕQp¹í »œä2]f—Þ­T|-ý,¥âÌé)¶¿.e#Œ©ÁöN¨é2æn‡ Ô)Vc;£~ÑT'vÄ_}-]?sÀI”PIhŸpßTéñ`ž­ôx29KLmoPÆc2ÏÚã€CŽ_Å+ö¶ãy&Èž ß¹%Ë”‰‡ž¬ø›„XÒ>!|Ÿ„¢×3$ˆù;Ú”¥Æ¡^hx •åpD†Aâ+Ý‘ü\<Çe xÄ%œ·MàЬ}³ ¢¦7üǺiÕOëM;P–k©Ó¯.Bj«ºì•~ÄâáÀ%,k|üul›êÌßOe!êÚš‚Å›ölß3Ö¨ŸÆ·ýñ•ÿŠúÿ]n@¶ÿÿ³çõõûÿoÔ7ŸÕ^ ÿÿóÚ³Gÿÿ‡xñ’6Wšr±Ÿ*I»ûÇÉîN~@†ÑÕA:@z¿p0@û_ðë_[ínV-ꙵßt+æ-ÞCtÝ -Éß%cD~øAÞK‡'@ExÌŸ ΔÛÙ~ïº?;ýëëþ°¿{‡ þþŽè{p¤~?þÏXü>¸à„ZvEû½)´ßSô7ÆYQk™Ùá¿äö%RQ0J„5_ξ`ž/$½}åìNÝŽÅiØ4ŽÙHÒÄ6ZÍíæ±h£{WïÜÏ!9_U¿HP†aË4;æ×;ppçM«%Ò§»DxÜKœ†œQ1AéŽueP’|³‹.ÉhÔ %9ð‹à(XE¬1–ZA%‹+*´ätáØ±¬ðq—YŽ3Aß2¼#(âñ´M¦«êŠ$õB/wuõ¤l®ÕÄöBµ¡ӀƌYøRPÌ´R'̔ٮ{µÝgËû‚ÂLèíâ¿5ò×°Š®zxS؇)€ÏÃÁÙÄÊo#oºT aÈ ¢Â^ÚÓsõÒ¸ª×# ¢¾«+Ž¿܃óÞ´ï¹-÷Fî ò½>!s©™R°ºo·#›hÙU3NÈ¢†p!ޝ™)€êŒ› ¥o<:†â­òbe÷HöÕëcÚŸ¡9Ûr[Wã/–#!2²Ä*ì Áæ2ëÛÀÛ=8†rÓúpC6æ*4ñ@c&ª‹ç°·$„”Àh€68¿ví¦éáq¿œK>&«(ÃL@'dENyÍÀ‰·š3ØjžH+\%ÄbYt]„$i83ü¸½™ø‚ŒŒP°âùŒ¿3¦Á)¥Ì’Ñ’,ú¬¡Kó59ƒcDΚÝ÷6ö½=vé³xlgìøµJu§„ ûjÀºžÒ²öMÀ”Ìy¡m>]46”Ѱë¡:)yâ‡Llé„‚}OðF|øÍLTvT\á€8‘w÷p¸â‘pbá`¸;ÇÁ-§6K ŠlŽè7¯tV-#ðMM þV4æM-©8šZ^¸[ºt<+¤|>;ØíNqnbñP·»F¹Ý1Àm‘Ø6|¯Æ4ÖÖµC»D^dÛƒÚÄBqmw i ¢Ùü.wY‚ÖÆâˆؤÔ4°j+å o‘´uT˜ßõ<#DŸµY û—3ê ‹M³1 –*c’˜6Ÿªìì·zzŸì=ùMÀîÔŸ Ö[ÑŸ'F… ʸ$–a—ΛREcrÉ_Ð ŠéjLBP èÝÆ5Q3ÜR§ »(ÖoHêÈ)œ}]ÓPßÜFÍžÐÓ«ñíð‚#ÕÐeÝhŠ“Þ3QP^˜Ñô)„æÈÈ0ÞTíÔ­÷bÜguÞ»Õšæ•,DµÁrÉ+Eòš€ù…O`;½D`fâ¤ÏòÚÕ;^Ò÷a*iÁÅ…="Õ?  ±ž’¨0ÉŠ¤üDõã3p ¶r¬#Ná<$]ÜžëMÿ5ÿQœÓ7…T«FÐ,Åã= „zмhÏ;zŠ%ÄzÎæÙ}½k…yÎá)ò‚<ïß)¤EGxzê;Ð×>ŒX!™†îHÆYg£SëÞV”¤ë¹91µt?õûà×=8ˆYV ëxP)‡'ƒuã¶Í%>×C^ÚíóD"l hƒó[ÂŽ`ˆG7‡•ŠMžoަK Ãòp˜u¨ˆŽÉ! 7³ÿ¸v`$†CÊÜ‹!‡Ïyj•J²eßsð›|NïÿcT&Œ}‚º”¡Rž­-m¹]ÄEÙš_3¡‹…gÚ1™²¢b‘™á˜ÚΓ”)lgb-µ5;:çC¾Òvœ7{ ~=ûvÓ%m¬‚RΘ­H[“c/´ hŽQPZjÌ9Û)ThÊí‹ 5ö{NWªº+æN–ZsŒP½å5؃aQ#ÿ¹7Œo#–>OÃkÃPz ôäS}i&L9€ŠSd9ÚñÒÊH„»¥Çƒ/½ó4HÅý)ÈûˆÜÍJV M¬¬¸W3_ÁQ]×OÕsŽ]‡š”ž‹þWNL¤yÑ™ËÎçšóŽÉ§èü†z„g.4La^Uí pÜÍ i ®5õi9Íæ=×jÉ@ÖDލkâT^®X;Õ ÇL©}w¹uOûÈ&©Ê_V ç+îé‰'ß¶‰a¯.ýáÅTÍ*”"ðØ¿O@C} ÛÅ“¨OgÃf ‚›¾ã=r4ErÛó˜è½+ص‚}‰Ítxá×2ý÷dV¡Qg:ì]Ÿ_•tÄ%˜ìºøûëÛÞ¤'šþÅßíuõ2 T¡â7)ÃøÏû< O‹²Ôr³­­‡áûéc8õÃzíñøú_g¬ü`÷?Nú@ÊäŽ#À;Œm•—êýxä¡ÊŸóTö/”×QIɹ¥½ úãì†£Ïø³ùRìê‘UâhfXãý‘ÝY?_t4p“õÀºSð+±ÑþþÑðÌÛÁ£Ôúu(ÙŒbãÄJìÕú?ÿ§Zû¿H"DïVhœŽ¯ƒ¡Ee2¾™ €à5©,J%æC`¾lõgCâºåFEºAv¹ÐÔDÒáý…s¸ ¦ƒÎdÀ ¤8)WX,:½½&÷ óHÛW+ ­fòAt´ÈçD¼“ª©sµçϨ£—·<>ëÚÞ¿Î&=mÙ¿eôèpo¦û/±7'”½y6脦9ï.­X-±KG÷ôâ{´]û›´7Cb“>’ÃRlaènú05+ÆdêìüêØØÿ îüê0ÛÿÍÅÞe‚ñÐ0íJïZì3¶ÛßöI:—äMúÆ #Yðùj](²°ÂUç³¥­cسرƒ=Žî°Œe¬¢€¾`­$Ú¤ðª Ça>͆nâïK³¡Ê5›GÍæ»h6Îâ}Toî]½)5ØkýëÊŠRt¾ª€½Û¹¾/ú%Ey°ÃG -yÇज़5©´êLå÷Ò¤”³DÜPãz+¢å.2í<WÃ; Fè‰u;Ë”í@ÂþŸ¡";¿"š“—Y13ᕜå™Åµ¨Û¢§9—E²kAWzÃã ,®kœ…ïŒd¢½öSg;%$?òEÚ/¨K®V§|ŸÈL§-hºÅ5™•‘/uÐ%‰•ˆ¶ª¾Þ§Ó0Êþ5±j¿¾íOª<9ð™‹8£øLj ­Æ¿ZÍvçô_ÍãÎîÞ¿(^aE¼ïTæÌ±rÖ1¨`.¯Zž=Ð8¨ö²Üa:_"–[Œth¨=Nû!ŒÆž= ¬\¶Òð¿æ·S£v0¤Œ\‡Æ·gÃ~Õ§­Ö5#{¿¤ÇšL9Ã5]TÑ^=T>Ò,¾õBCVû£ÏƒÉxD­ëK®éíÍÍx2;oN¶Z»ñJŽ:»ÛÍnóM;‚%ºz´ ìýÉgÉ—·t) ܲ’É ¿wv»¿?Ô‘ƒ(E™ì¶ïŒB5+Ù®ƒ$á›=A €¡þÜÉéŽÆCƼx= Dz />¢¨€ž Ô³$dâáÜÎÓ… ÿ 3<*­Kñö_áU? &Þ«ÎúçW£Á¿1 TW•¨ãuïú‡âe8 , rXšõŽ;õ°­,ˆÁbøÅ@Ê UþÇ_Þ!’–…™©!­ç pÚÕ·,ɰý®ÙÝ%NØ@NØö>jU‚×µ¨ÛIÄÞlÖ¿¾¡9¸ _q¹ÿÒ*âë— ý(~l –±^» HäŸ[‘Tâß\ö†Ó~JX‰’"Ü=wYœgÖO w2ayØÔ “ðjFp'³0TÁ<ôI†žìºÐ“k|B²\’ût¥mØR£š¡bÜÊæB¸•²ŠŠubܼmôŒ,‘+=þ à`ºJAKÉZm¹ä,ïe¨ž)§R³Lʼn]¥º^¬ÀHXÕäy*âéAÞËëFÞáb”«©h0µ½z>Ú«û/ÝñÙ~Äþ,°¸ó4XsâT±'±$âASî€â€×áLɾí}`Á“Ú—þpHãjU2VY¤ù@?½ í<¸›!­¨Qñ‚·j‰ùˆç5l%LM_|ì, ¥‡ëËnUÂGEÒé$Ö ”œÛÒ}ê®C”rïQö+5EîšØú¦µA§3 kVêG@SkuÇéKÚõ¾Hÿ¬Š¸§RÓå6SÝt)pM/Î`à±eÆ~ÜžÑ=Gù÷Qµ/€95<éÅG:qø·jø"«,µÔùËVX0W}8;¹W»é^˜mòþApðµ•<ìYö"¡hk¹¸±¬ÿïìî5NZÙ*@õŒÒà¸@#ícRäóév:^ÅbçƒûIVß"¥j¿’]À©‹¬ç•‰v¨Hc ±õµgÙEüÎS™º)‰âòOljíÓå«uYÔŇEªvNÙÓ2 õþ¸sÒ=vz+µPÏi×.ØsÙ ‡ñ»MÍÑ9ÙbáÎ6NÿE6õn¡êÍã²%XŒ„I@:ëX‘RME¶¢”ßF €;Û»œ¤{°_¡“鿎ßí"úðý•~¾M7#î±Á¡¾<€Ç:I`L€µZò)b>nmaŒ1óֻΛöëtÏš¯¡©]æÃ4Á’µså[Eœ´»Ç 8¿Kz"s²`Æi¦ÌcÛÀ~ø/|º½³ ] uEtÿèg‘©*ü Dwÿµw„Úý¿ îf«qÜi´»ô²Kº†a¥ž¶»ïuižOÝ·Ûé9Y –ìg8Ì`  ó±QÎÁ”Þ&­Åx•Vk³i¶ý­Ô Kcâgir\{½»îô1QÑ»‘§•Ý4Í“Qì•K¡)€Y=K×g•&õTæô™ÖÒ£cêÊÄ´!Øp„„.gÀ 7õórìÝM_«e¦Ú¨Nä‰x.¡<Ù²Œãb âáÄXÑfòqî#ûyÑÉ×Ï@xáÉ7ͼò$mlâ½Qͬ/‡r@)'ź¯ŸÎè<•t¦)–®œu|çùXf5¿ )r—±2*×ÜUtÜõ2æ’¦ÜòEàýa’„%é$ØUÞøš‚6~ìûº/,ø-©B¦_‚¤ÍK Êþ–ÍË 9åüºìF|ddˆ%8dX$A€Í‹E3(«§#=vÞ$sØð¸¾Èb‘k­rÔ9¢éáEó±_ Ïi1©&|[Tá’F”ø$¦ 3HäCcl² L—K“·1?yêŒ:ÿf• vx¿cáäeñ¬¼¡«£Þ`x;±¸U[Þu{)´¹Ï¡®8ë-Èw‹0ÝœWˆÝæ +QhNF+Èe;c±l¥˜Ëv½•°± -¶¡}=-?¦±ºÁtÝ™Ì]wÃ0Yˆ_‰'Í'òƒ†ü„—%Á Q©°ÒèªO#/I4Kè•…féCYÚ¶ lÉåÙºåá–I7 Ûcu*uÕ£wµw-Ë ±6è ¢ÍgV؆vPÍ1)(WßQ²íAÜSèªÝ !r²Ë“òRa9¯ (§äHm«¸LèƒÅyõÆT{µ¶¢Aáè“z™?£7ô%M…W¸©,>)ÓOÅQDƒâö&.ÙY½“,Z#÷#4Í”¬ƒçJÞáf9s¬ *%—?ô0aÕú‘nwúž)p[ÅJò¶Ÿ|¹‹4ψŒÐ=^:ÆS ×N.Î L÷z¦¯U$$›ðçýÛÁ²©Øk@¹dx›¢·uéñïÝXÁ­½Êd„7*”]qÊs_`ï@kûÞî¤ðÖcܳ¥ÛªÕ©ÒïÚº°ä5=dEòÍ/wPÁ²4œì]>¢¼ña×1y:⢔ê>æžÚOèlEÆ{­¥@dpXUï’´lß”†`jήª\šçâ`³ñßAõo‚÷Z5uqBUŒÈÐX;ž˜*%BÉsø}éee…½¢•¿yd—žo4ÆÒeÙ8°ø°VÔ†“Ù`ªÅl_ðÙX¹ËP†â¸ÍºÈp|;ýæ"LnÑï‚õ.Õ!íÏš<:ž #þxLt×øþ=Æ¢÷y<¸ð‰B[ ·ŠÕ#•Â!O1eÿA4ÃitEݸò‚v]OtjëÞÈáZësô6§ý8²ÿÚ"?ãxì ƒ´NNÂÀnÚ‘Ñü‰Ýí4kwó… +a§¥ðdξ&) ,2ß•µåeŒr‘-/ïàôýö¼ÂGºÜrEö¼<û¯nÑÛ³x6Èà}¤MrÎ=3ÙÏx{î>ºøæî™sÚ—¾çž™}ÊÎÜ3³7Í"‰LÞÈÇLßýâÿO?/ý?ÿ¿¶ñlã9ãÿ¿¨m®?«#þýùæ#þÿC¼x!vO¶:oNŽ›í]\£];'«k a@áùv)çÕ 1ö tüÅd@a_Qœ}-ƒ/ ¯¼*lÜûç¶ëåÜ ðêHƒãsÑð±^6iÚ¾Oðv­ÝÂa7DàŸ´¹ã•Jó¯üܽ¨IB2g_û¯ˆÚ²%Ê ÛÉéë‰Ù¨e5%¬Yú¹EñKüœB…I+{€îïÍófðyL¹¡¾«ñ6£0ƒfô¦SÐ/~c >ç9z †Â ÕIC‘DÔÈ ¦ÆäÉve¢ùÈFÏ”ddŽH6²„³uÁùÓ—QÐ9ï\ÜQ‚âÞ²xe_<%úób±… ÇžºÑØö÷P=¸K<µ j»¨c§4@¤¶ùâ©ù•URœ8e~Å‚®Ýãd<²š‡öîA–^œe" *ìñÇÉnç}ú8Þzwðæ‚í­9£dæ,i¶»í·ÊZÆÈð÷YM5EÃŒxÉWdºÝŠd÷åD-íBNÔs»ðìÁ%)zwÿXÅÁxÄ,Éë:ívw’ÎpªNyI§«óݤuÙgaÙ<_ç ?iQ(]s‹‡<9@Ú;ß½#ÐŽÏQOcË'9r™ÁkÐrà‘ûGØê^É%B]}ÂÜýÄrÑÃ-Œÿy—™ºÜ<Ý;Ûq€­k5º6á"9}f*¼¼»oEÄÉÛó˜Õ“þ,÷ZÛ=2qâz✷ž˜õfÒqïEî’íLÜ®8cÒ-£ëÛœe¶!R/“ù¶Øäuê^ÍGó„gÙ¯µi::g‘¹Í½Þê¾ýÉ.·b÷?KNÿœsÿS^_ßðï67_<Þÿ<ÄK®:ïþ¶ÌNTI-#ßO7ðε%i$óóùë²×®-+ÒµD6ÿÄ—Ifp3t¿t‚aïvIɤÉiÆJÙ»ËÞ«Æá>r›ÁvúáyîºNÃm½Mr7G“ãR™-ç½»÷K±]ºjì9éõ„Íx˜hO=B˜2(–Jß-+Ü!ÐëuR NWÇ6޲€~ß0ò Ær”˜äµ5;çY[ÞÌs§˜[4‰ÿÜ9²O¢sÜó‰‚W}bI·}âÎ~²–ü+?ÿ:?íJÛÀ«uy"ï͸ÅðÀ®Ý<]ó2s‘¦LkâÍLç½3Óâß1⤪þ Æ<Ÿ"‰›‰W~OT[¦¨2©¤Ô„*ç³ÕšàFŽ´âKo‚H‡Æ¢6N6õ;MAugŠºSifyᙆXò¾‘s(ëTT¬=޽ϻ÷ìäÉ fNÖÄÞ)}2½Í¡LÏ¥Š$R6MÙõÌ—MÙ¹gϽü¯Ü#ÏyW¹Wî©{v»žè•û}_I»¹•íTºE³,ÓËÉQ+µ¨:š GHIO»Ž0ó˜ )àH¾Ø˜Ã‘ yíåé®ÖXxé}õ`xW=öõà9†?3²OæÏŒÔnþi›C‹zOĘ“j]Œ=/æwÆðd ùeÄ1<ºóÝ2"¾ޤŒ¸x^¡¯€CBA§ —:wàæqÊð<1<©?‡S†¡4tÏ(æ”áRš7ª §Œ¸'F–¬°X³ ´x(Ö }Hæv9.ê2ò:ÕôüI¦õ•WŠ(—Ìá°¸GKVîè¢L'ÎÊ­k÷ÒBg¦žr8g«à%È ¦R>»Éžíâ^ÞgÛ’Lûl%|vê±r?Sv'ÓN78ïɽ»§pŽ0%§ÒÑLþSkà{ äo†×Kœ%a¶uJ7/»ž] eN&àí?ÑÕƒ¥”šŠ€µV|NÙø”'ÖÁcSÒ4ûg {GV_X«5}àYú8Ìn/4'Q°®EƒFR¢~U™¾G²%ªÌ}~ev%²^»2¬kÍãgò,B'¹ ôÆÅ®ÂaäöÞVåxÛÙå8Þ=zÛåyÛu")SR+oå‡wÐ#‘ó›SyQîàÁ§^¡'ŸŸÅ6ü'«I{ðÅ“¥$+J'Q‰§N±æô¯—Líh<2aw"ê‰TM’„˜+`ÄÞˆ-é½YB-IVcÔGGicn¨ é ÂDÜ‘M$^¡£Dÿ¼w&4tÐ]âY:ÝvZyyÀWVY”6#6HOTÊYº§aå/Yˆ±Òö¾‹çôö#ní÷åÚ9G ùm~öŒyô“>¤Ñ~ƒ»…|.Û—4I7aÁE¨¹GWÓ @ÁNäsy.©¿XF/ »¨¶ÛGï-$|¨ü\W™Y„†f/BèUÓZйUÖ:´Ê*÷ærh]Ð_–«±œ6ŠúÃÎé ›ï?»Ìðp†ï4|'¤áÔpàº«Šƒ®êÍaޝîÌi>‰€Â*­Xý<[\dÚ…AeýA·©ðŒWSÛÝÚá‰'{·ÃáËMTùW³×g}uÐöhU£}˜ÊwófÉsa±/0â>9®+ÊvŽ8¨IgóÐKV K°5 ÁÝ c#ޝ‚³•ØnK—‰£Küˆâˆ bÜ2`ìR ¢«vGùG¨æõÿ_r@¶ÿÿ³çuéÿ_¯oll®£ÿÿsøõèÿÿ/^†ÿÿœ1y¦öTÎ3ì zê½}Ýy'…^FEón>€o§F-¬õ;KÆŒ/H¾tàT´=ÆCç™r1Ù‡£àTìô¯¯ûà üî}öFâ÷Þp8øØUÄûñÆâ÷ÁEo¬­Šö{Sh¸3è_¹5+~a-“";á—t'Ò] F‰îǧãËÙòÿ±‚^åNŽÝŽE`Ø4ŽÆHÒÄ6ZÍíæ1¨ÄíXXì\±’ﲡWbÁ4—FO[cœµéá}‹-§agؘdÉveP‡‚å¦ttIº!š½`†Å4Eì3ÆòO+¨Dxq%B…–Ü)¶DÜ)¼Ä¹€ºS„‰‚L]LéÝСgW&IÖsÝû:¸¾½Nç¢VØœ¶üëa#çfy•ß3à ³xÃð©Û +‹µ„Ø}SêßLW¤É£Qä­›RƒÝ»­¯ˆÛ‘¼@°éÏt¿6Võ û;R®: øy{­bœ» 8ÃûŸÂà7¥ˆì¿®EÞα÷‘uâñTïü¼3#¿ÀIUËW‡ø<4Î&ö-?6ýMLƒDÜÚňì”ueÝ·J¼`ˆ.v“&Ã:‚Q° E%ô<Þ&§D ’éŒo§^wÎ1I7M8 ‡Òôƒi— Èyze4åS´]ȱŸò•З>^_àuÞióÝÎù°7¸¦“ÜÇþN*ý|£¨ÆO¹^ ./8êèlM32]€ fÓþðRuĮ́\%"ñU¢xˆ•ð£¬vŸà%.Þð‘ãÝ.aŽî¢bFýÒ²ÈF}w¥,Ñ껬ý”£Ï%ùÁ …k«ç¶tÙwap†c*ŽÁ¢á˜ò¦o"Ø”4”½ÎqÊ—ÞDÉ`£Ší’­bÈgýê#awXZ_m™Éª{lØb$¦u4“°›ìæM›5°:†£Ô»œõ'>áö®‡‹1‰-=¤M>üsµ ™Z8®MV¡ôúEãÚd5ÖŒÏ×F¨ðz7”¤à­˜ …‚Ýd%Y!oé6½¦6ŠcØ…œ-=Œ ^ÏÖÄÖ7¤·$÷k©!úyW¬ h1^±³F¨ Ùs›aSD¯øõê鱇•½ó×ökh³Öå=w›I:¸¸… Den¦ç ³M€vtÞw´ÇXÇ>'NweÅ—ž’rGbסC`á#’\ë¬è2˜ñ|H ÉàãW™œº³>L†ÎÛa·lÈrbøDÆG Ãu_*¨ÿšÛz܆Î`Ü0Å”Œfù§É¥‡}]´Š “‰z³åÈ,®Æ_¼F½'ò®§Qg©Kæá¦YÂ+\³ÎT8óˆÖÔFÐ à=•.=XH!$‡N\lA¿œ÷Ù•u ò22î­NyÍÀæ@ÎûèÈ-,‚ØGéšt‰UtÅNáéi5g!g,@žAÆ‚é°bå–´`4¥Â}Á¬±Ž*ƒÇt`¹¦5ïM"ß×’>‚< =¡6,m`špdÒ7ƒøÍ…ƒ7MùÝdy§8g}d°žÄq ;,*òB5陵 Ðy1šn«‹„gÌwH>¾kx梑™êH;rºtQdÔùèÇw>žóØv=6ê¶uê}…ù¼ùôàì­Ô>=˜Ê³<‹ÄÎ%c;Å2Â;ïÙ¹hP§9q†½Ô5pÁPήçS}Ç(Î8ï½ÛãeDna¼Œ MqǸÍ;‡lΧ”œ@Û‹†ë&P³žV(H3…FŸ‰Ê´†È¼)£ÍÝ(i×¢a™å»Ÿúý¼àzr¼ñ‰YTa .iÏÖVn;t¯ëvè½oÏ;!Û¾³#ÛRqlšSh~I’ Ðàkƒ3r,Ðài!‘mà÷èþœŸÓ'#és‡w £ÂËu£t©;vkÉÇ%wÉ­B|Ýdvµfïg0ÀXÍœ©Q´Šª#:3”+Oé÷É _hüXLôΈóûjÓú»¬…œÂå;ƒ×·°Å™i¬™ (ÊÞ°Àì››§»uâ%•ìE¶b˜ê\í•7cŠR—«g } 0ÆqjfR¯ÜÓŠüø'(òÄÖnGzãÀþz—þ¤6[—zëÿ@öWmÝÿôÌÄæÄº—²Mg$%չ½0Z$P»H|¾%Œ,X,²ßç— êψä׿Öüx~aû›%Äp[K2‡ Ha!wámî6á׳o7ÀÃÚOJ9cFšo¿ïºpY‡YÇOË¿st šòŠÕu5ö{NWªº+R𦣙v0"l¾‡aQ#ÿ¹7AG—0 t Ð: CéÒ“OõUäUÓ`ʾ; UÊ"Sã­ÑŽ—VmtááòàKï¨Òî_ÂùðlZ"8ÒŸ^EŽ‚?\$ô¿Ìz§@]?UÏ5:/<Ô ðÒÿj0Dˆ‰4/:3`]IËŠ˜I°>ôx¹…¡¡á5žÛí pÜÍïM°V«>ÇègïHÇö€HÃu½•—+ÖÄNµ’®e¡Ç]nÝÓ>²Iªò—èùŠ+8µwÞC°W Ï /¦jV¡æË?žÀ©î)hOfxèŸÎþ:q {>}ÇêÕhЇ®A€ÓÂc’F T$Ns!.Àôß“Yi„‡ÿé°w}~UÒ‘'–tb²ëâﯵ§ßßíuõ2 §â7)`Îû<àÜŸP–ª}X ¶"¿¤ÐùQ`Œú_tÿã¤ß›Ñé]F€wVH‰Êïè¬ÏSÉ·€Ø¦r¶SsK{ôÇÙ G‹ògó¥ØÕ#«ÄÑ̰Æûio¢®X \AæÚ_v1:36PÐßwèßר— J­_‡vÐ1QOyË*}øŸÿS­ýß H$‘?¢w+´¢ RÀn7ÐÔÍdô Ÿ3¤Öö!¸TnõgâLI·ÜPÙÚº\h*÷¤ñ¹² "Át=KQçVÊ*Þ^“ŒûÀÎ HÛW+ ­fYÆ@t´(,H¼“§: Ôž?£Ž^ÞNÈ%@YFi{ÿ:›ô”Ô»Uþ¢Ñû/±7'”½y6脦9ï.­X-±KG÷ôâ{´]û›´7Cb“.}¦ ¢r]1gç׆…øþ_pç×'ÀÈþoà/Œ‡§žhW/åü›¹€–®ò¢$ÝÕ6VjdÅqÔpŠ,ÌNCêPiië´)6*šÄ4tÕL«( /X+‰6)¼?pÜî i6q_š Uþ¨Ù…¿j/*"Tùaâ3™>M€×¢nXŸæ\°Ê®]é ?Ž'°¸®m%"¼72’‰öBØOí”,žüˆr˜¼Dˆ>¹Z°{3¶ éÉ¢<ü&TxÇT*m=T}½Oÿ¦ˆ•ýkbÕ~|ÛŸTyrà3JñY©·¹ñRGÓÒáÙx°»¼jyG³o°½,w˜Î—À³ën1ÒM ¡ö8í_mC;Z°uq-ÒJïë¶S£v×yöb|{6ìWͽ†_¦!Øûøs3œÉOÖtQūޡŠvRAÑ­ß:²Ø}LÆ#j]_ £Ãôx2;oN¶Z»ñJŽ:»ÛÍnóM;‚%º®· ìý‰ ˆ¸¼%×à–•Lnø½³Ûýø¡Žüp(£--Ylà¶ïŒB5+Ù®æ8ØìÑøj õçþKÂ!&¬­¯K^¼P¤#È‹(*T@ ‘‰C†w‡Cá} ŠGëÄR¼ýWè?G!¸=1ëŸ_ÿFtB]U¢Ž×½[芗ávd騂5ëwêÁêZ/Xÿ:ƒÅð/º’·'ü Ž¿¼w'- Ñ–S#BZÏà´«oY’aû]³»Kœ°œ°7ì}Ôª£ªh¡ ¯!ޏœÍú×74‡ÀAÐ%ßÜeèGñck°ŒõÚAz$IÜŠ¤W!ÁC‘Ãi?%¬DIîž»,Î3ë'„,κ‡G4`s÷XrvÃ.—‹;K ³¢ë¢Îʨ)ë^½O×§ÁaÚ5: ,‚¬µ<À¬ý§X'Ö•`´'%Â6ÀóBÒf¥“×þ¯Ñ0=ÎG¨–ÃU.îl¾¬UQia”ö_ºã³þˆýY`pçi°æÄ©2bQbYÄ5:ƒ¦‚įĘ’}ÛgÇŠ|‡þÒi\­JóÙX¦·¡ƒG÷3¤u*'Ê _±þ|³†­†©é‹E¡t{Ò÷^þ ˆ‹·6õFš±ôõ}é>u×!J¹7)û•š"×,´;Òfe¡~Èxu«;N_’À…úgUÄ=•º.·™ê¦Kk|q£`¸')ÿFªÆ‘Ó¾9§†g}Žž ïÕðEvY:m©˜;¬°`®úpzr/wÓ½0åwC®Äœá÷ù0Ãô4sƒóS”–½f»ÑúW»sHƼfE~°}x¤>Ø¢ßéHâƒX‰óFV€uÉÏÓµX 5ßþëuçÍ»ãßuh=Ò±»ù¨Éf@´l©‡6ôE›’äÛN?áƒgV_áíó슬±€‡_T„Mé/”ÚƒþzG éÝ?Nš-…#˜YðAzr`†ï+b?Í£ÃÆ)ðJóuûä°"º‡Í6þÄϺŒ)Ô=lÁW¢³ð¦#8ÍšQ ú_Ý÷°(Ù]¤:† «,ƒÒ˜ÒKÆo+“– Óéi‡þ@œk}¥ÝíV]ÁSǤÀ¡®˜¯h‡“`Ôªº9‘¦‰ï‚vÍÌ&hÎS°‘ÝÞe_à©N¢æ9æ4xÝSÅ]’*ƒZ»ö¦³&õqo-ÿ_ó!-øpm¯Ñêîê©…¿Ãgd$ד÷V/Û;Ä«(À6‹÷æÎ`îÐÜÃ&œíÍGÜö‚êdhÐÔCçrb "(í¬¿”B¸ñ®ÖïXÔˆ§´ ƒI†OiÖžS’E¥ª<L_•DR$£ÒV2h¶–paM±¤Ö’€Ý9ôÇæïQöŸ•9 &;[Ô~Ðgx‘3)NVõ)ûž{Ó”€½…dDÜÝT À¤7úTEcÅù-›Ñ›½h3Rb7TêµeŸ3¬fœWkbÂ*üñ÷ù{ÁÌ9CĔڞèçÜ=äÙU8}ËÌ`çG0ûÏ>àÎÙ³hî€SÕ)áæÚNCjsþ€4`¶]‹‹=B6ËXmÝöø.®ìÙ‚V”lAëM··f¥xÌ'°ð+ÄÿŸ]Ö— ÿŸƒÿ¿ñâÅó:ãÿ¿¨m®?«#þÿÆÆóGüÿ‡xñ²qñÿ÷굫- ô{_{Çpß c½+3— XÿÜ6ÎÏ…æ^À=ff»?Tu«1üÓÂwn#xrÔ48;Œ/ p… +1›[·£ó«êAïöòº7Š ”C᫱….l¥‹B +a?²Ù(‚,´¨s]÷FSJ–Ŋ"ð²…e­èN “¾m@q·Š@×I„a#ÖêîE]ÀY±+«rð1½Û%‚ÒY¼<œÇ™†ƒ¡N‚­yêrÈ4n„ÿçDÞúÇæÔ3-|¦ÀÈáSÙ ‚ô:¾r1“è€wC㣗 F1'8Ÿ]Ñ™f4BŸ]~~Œ;!/UEQ¬>»ut’=Z°oÁ”Lè>=¥2À.06òÄtZÏ@dCdfŽ$‰ùë*_þl´?Íì Cþiе9°ÖèµS»ÊC­r¼=D4Ž6)€…f×ËDóHp¡Ñ ‚¢Ùuxøhó!£9}IÃe£9rÒRCÃHËÕ¹€Òî#=ú'^‘Ÿî’ê0 2wöó,‡³” ˆäaýÑÈë}ð™=Ϙ"v£c¼c®õX°ð„´.V`ž‘=)aäÊuT[qXÿµZÿµºþ\TAdÎί;’›ÞŸmÛÀR+â°7»ÂÐC Ãàkb¸V_ÿ•z4\ƒ˜E5šøÈêÞØê6àпý¦…w$+h¶o9¨ÈÙ7¯h)³ì ›L»Ín»Ñ.ñS+ޱVý{µÕ›2K/`̵ZÖ—(…[ã>ÊSisšˆnòÕE‹" ÏÁd1ÄîÁog@u3æ ñù¨4Z)ŸàPÌ×Dùá ü£·ä„Î@'¦‹î·SÏ—±€ rù„9"&ý:$Ø':yR§Ñ^ʉ=0L 7Ÿº¥Úö|k©´XKZ«Åå„èH‘$ÖÒÅ  œŠX…‘–r‡ 9ÑE-µÝ×Õ¿V´Û{±IPu‡"†Ð¹.¥8…–"ø°ß:"Ò[I%d0üã3þÀ›9Ì>ò©ª¦û„÷zŽîíšösþúÖOéGñ©QõS°~± ¬@}-9iÊ7Ô3ÓÚ ¹ÅCöÙý6’*Èf†7”5Ô+–*Ï£9ä=8¬ Ã>WQsFl(§ÑºÜÅÖ‚eв—ŸäÜeТeP[)·ð‡Yð>\­¬uÐrÖÁ`䬃š\£´ÜuèÍ·ørZ2ø§ª:1¶¢ë@=—\Ÿ…µ€Ñ«ÓÕZl-Ôx-è'^ ¢¼Å—ƒ=¨Éå@õR5ÞRÀVk©FëØ(éGr9ÜÝSô;;‹FêÞm¾þý¸"º»oµí=Z?=ˆ².m¼p‰˜¯¶shßfjK’ÞŠì¹V„¶µâ.‘'GG ¢òß1Ã[E4é^yþ§?@A]äàþuwÒã¦Ô–Fëè÷†Ò^*¢óæüNÄN Y¿Ü»SÇ¿êðWþ€)xw€ÿkøó~~˜Ó±2å#Y‘:TÆ8l7 ÑiÿL~LW—A]qgJ ß5ŽØÿQ¹E.Á f¦&øu…"qú?:Ǒڵ3d¬öÈüoCõµBõ8ióŒÁËê¥|Øðw‰áVÄ*DÔËÏæóåägÒž|)wOZ1Æ›BûÐsådÇOZnan‘Ö\n{9ÎtóÝžqګξ7ŸÓçx¯^Ü‹‡‡¾©]/YDUˆòGÁiój<&Ë:_ÌK» “Z¤¼bž\µx’ëÓ¼†?WkÈžh@\|e›!îó8hªá»ä"q©“da ³ZˆæÈ‚ñH¢’ü®bÑ·¯ûÅ®Ö~á21”Çù©\R ç©j=±Jøµ(›‰(§ k›÷gAõÒP¬éKRg‘Šø6¼Så†ìH-…:Ò4Z´Ó—è’W†2'×ÊR(fG¬'˜&ò‘Ûí_¢*kZµ@f¡’upœ£fæ@ð A'ä­[ä¦_ÓÛ3uˆ†¬ _ÅøÝ’îtpÚ@º¬ýŠ7,ýö(±òU]ÅÁѪW HÒøâß~E…ž²±Š®ÒÿÚúJ>xÄ$Ç”_ÁƒÇ1@Ó†ÛT=-»9UÞØ#OXßZ%=RO$e±=á'7Ê­\]•jˆìź—µ$†òŠ I/•âô ¤ÜX]Ó°ð;¶£‘ÁK…OHwiÅÓ·^²rtO ËI¸žû,×@Q¿Y”…˜~úyŸå@‹—0°25Ut¿ðDð§Hr¹ö”>Ç¿Ÿ„‹¥SÃ}cñ´nšXï;êàGŒPíxª ò ‘±é¢W‰í ‘e²©m<%S+~#±€– µˆ‚nO´ºžÆñV3VRÂñѧ™_¡sÚ Bý(Àò¢„¦oÒ·.BásúØðGpáXˆ_ê¿Ô‰_ê9üëIÙûðIdR¥‘¡|ïXVá|a8}Ú¨›e4ƒÆ³\´Swž©ÖèȼS ö9ª¯&Ÿe±”zîØ¬†*C#Uú JQy,k‹öãØà¨4Ü?ë´HªµÈƒðB³ <U•¹mÔûdǪòï˜î§J›²õzY?_µjI•*ëëÃÓ÷3)$Ú›Ї{eý]•C{e ¤šµzUaeì;ª¯ûOEíì:öÕFó.P1gh^ ÕÒ†Û’e™ðŠGU¢D4™µàXàee‹p ºà(ìcvÃìFÊ>8²N’ÖƒUûIóçÛ°#;òŠZªÑ2Ń„¿AgiËÇKÚŽ| ÖÍÇl¸A1Ëê—aÐâËHË Þ 4hÉ«FmЪnß<-âŸÍlƒÖ?ÑU:Ï R°ýhк'ƒV‹7iÐ:° íêëó«f­G³Öw3k¡˜¬YlI¤ƒŠÃlK7i¥–‰C™gpk»·ÕGóÖ£y+B×êOeÞZ•5Uïß¼5›€R˜cßúD~)£ˆ}KÔ •~Ùö+ØÙŽ’Æ«ÕÂV°£êºø98ˆZÁþRV°ÕL+Øêw²‚)¶ùÌ`­<3X+mk¥¬ö^7™Æ2é?†?ãÆaÙ?4ùä‡èØËJl0KZÌDA£™ˆØÍHÑTv3KÛÌ\8ÓÙ—Z±þñ¡³åZÙ¢}° mDVHUrv>šÇ—5ñÕ4Ê»—ôâßùS_âñiq¼…6}9ÆL_±~‘…‹+ð¬_æ›'QB¬å!ýGWãæÁU2Fj°,"KI e¬–+ÈŒELsÚ±ê1Ó±´iëYô¹9­gD屬-a={®¬g«h=‹Él¡l_õšk73¶¯Õ Ûºá™ÒÆr¶ZÈê>Ó–³uâ>¬f«l5;¢ixvV³Ue5ã–ž'¬f^áôææ¿ÿ¹,f«…,fÍÑ,f«q‹Ù¦e1³”Ùëþ\$ñ1Ž÷êvà :™‚®rî@=+Úåö–Š4no9[2Å㘼¾ÛÛjì¶ßzâ&škè&•_Wèqÿ¾ísÖÁÞt [õÅoòÚ›ô^»"ÊÀ[ý9È?¥©ñ!Räâ¥Æälȱt¤ªœ¥°gç™áÔ†‘:ìÔ|vE× o÷>ÊTËŒIÁ%ÕezËcÂARób„ä‚„Ø(!ó'¤%Īe€ñÆÌv½LȲpB–r?H!  vm    K½(ßÐúãd·ó¾’ ãÀæ·æ».!9àM¡]+äÁ›£ãŠ@M¯½•JŠ4?¬B=¤(*;zNË ¦0ŒB«Ñ}/SPíÕ—¡€n51úv€Y-ø´°ûÇZÕ\Cÿ¼¨º,õŠâØmê¹Û©Z^˜Ëšh’’X^a»»Çûª ŽC¯$‹Rgž°ÅøIŘû)Ò‡þÙw ¼Þ®ÌÇl æK2~$‡ö‚È DR2ƒãøhf%c!‰a¹±TQÐ’Þö‡ÿòĵ·âž“ Ÿ°ïT34ÎôãS‘«Jšb,>…=ÕòÍ÷ÅPÓÃõŠžÃzîF¦˜ôûQû[äA9Ø}¢ÂòA£´iþ¡+´aà@LÎte›QçFV„XÿfWBçMNµ #€ÞÖ[8ÜðÇ™Ùxñp|| ëÒX?Œ±[q35ÆŽöé 4•Ol­¥;–©¹ÕÀ\âRwÕ/鞣*@ üÓ™çä¡S?¼×÷‹¼…ã¼Äî1‰/"H˜ÖàtKòÌ4ÚT)Æ érpïÜ{Ÿ f× >tqPøã‘e¶!#Ù½ù>ŽÌt«æO›‘÷,…šVîgÞåÞAßßG0%Ø~ŽHž{_éí*z‡ä¯v+Ìíž‚‡b«½µ»Ö®Î±Þálðé cƒ\ïXüå(½Ó¨Yk^¹˜Yk\r2$ïE2|z9*(dÒ”§EEW’ §ðƒˆ ô>"Gx‹ÆÅŸ·Ð²ï€eE¸VØmi+êBϲqéä†ú!u×C+bì'c‰ 㥃1¶>³‘^‰Kòâ De=p%µé´oWgïoiß®"¯˜ÿ×àaý¿êõg›¡ÿ׋Gÿ¯‡x1ïøþ_Íÿ¯ÿǯŸÂã«éz| F8þý”¯*S]©ü8Ø Çèg®ë–ã¯ÚŽí­eòä1 ¼^9ÉQo°¤Ï—çX¥šPVÇkéš5ç&v)r®>Øßɮȸ>ý†³üJü#Ò]É马–9v%QO¬s{rë¿7¯'O\(ciÈw¡ßLÖÊ©—Û+s:JÌ‘Leq7‰˜—´þ›-7ЯSú,ÐØ f¡wƒâ°óñíð‚Xå̤G}HõÈÎù¦½[±q¢(ä)òŒ¦]/iØõ‡.@”ÇÔ4M–xƒ~îÎøñîáÑrïÀbˆï;oŽOÔq#yÆOeÐRølûÍÑ{Hüðí²‘Äœ»°Ÿ÷²ë.Üæ¼ÜÜ@¸OtºrP‹§˜)碠™xGèí«>ÔBn ÎÎh9zat%Ýœñ©+_U$E´÷±ÿ]Äèfn‡ |gãÙ ~¡mÁ5"ì aUp;†ÍeL+'=qô×eâRá]×MD —´ÚN¤‘°aÈ–è ûWÂíÔ3·)ZÛE3 k¤­‰¯Âw÷i¢2‹tÓ¡N+hù•ðö}Ô$žV5oTJÒxüгQÓ…²ã–AMW†“4ðln.Ú&i7Êø"K³º“‰é ù»Ê{¶¤[·eªÊj0@è c ¤™y*´Õ× |çµEÙàØôoÕ'°qà·{_Å"åý‡ÌS©gv0Ú½\‚gËXg5Œ‹wf+| ÿC>}Ä !k¢âmfˆ! 9*ˆ"è)ÊÓcð¬š-t¨øf– U÷Ü=_%@èÕš¥’D=/zî” Ï£xç8'¶iµgç#›k~|m7ØRDl©e¬ÿßæ³õzàÿ·ñèÿ÷ /^]¾ÿ_×òÿkw~ïú^€‰¹õ_äH½•ƒñÀ.[%n}N§À.cHL ØŸû08KB4ʈҿÅÁäÚ[+ q´Šº²ZÜKðÑEPý¾.‚ÈÈê2!3“ÁÇ+ô=‚µ8\ –ãDkìj\B¶ÖdÛIwÅùüóbYòNüïõÛrf«séV§<ÿÔc.Ã,QGP²Ab‚ ¿âTÏËÖæekkŠÌË÷†CúÎwò˹\íî×mN‚CäºÌÖø'¼Ù¢øÁÎnûÍárýæRŽqKñˆ{½‹>pð«sRa4í÷ýð!TM?£Ã ¦ì"~‘9|äž…e·Š–ýÅ=-›A›Ë¿®{Ÿþu”¡ŒF0éngʤܫºu&Q´›ð¦Ú£`HGïe…vƒ]ê²§N¹å ,ïBlþèÿy.Ä6îïB̳̃ßfÏIœTË1{[3í}tøÜ"£–4Ìmñû#óApËvÈ ß7Ô]ðõ¨Ó8\øF±ÃlÒM L2€ä‚V…Â)üN2±(¥˜)Ö¦hËÂèõÂï¶~mQ©Bó½ò/¤œ,0D©w_é“éÇ1K“ß®Ð|Vr [ÜTÍe§ª¿$DŠ¡ªµïÍRÞõWoÕï…·æmO_ÎØC˜lN í½ñ3)tö%LpÉzXá5+óô.ZÃGHW¤ÛÏÃZ¹«ÀèÃò òrÞ—.Îh*ò‡ŸÉQc·Ÿh‰ž”Ïe?eU„šwã ŒMT·dÖÒn#eìЙ­ƒ*Qæ”Ñ©™£I_” ȼÒP!"Ëñ¸Ýÿª÷ô'KØÒ¿cõüùçq¬~v_[z מÜÿ^‰×¶Oޱ:4_>©„§²/pŬU8,ض~ÕÅiWúÝy{MëjÍ™X ">ÿže{ç9¾SËÉæ|ZÝöjÖ>–à°;ê3÷Çc$÷&IîÀ{Oò3yŽ‹8(Úç¸ÖRÎqßGè?¿W¡ÿËã9Εb-{oj-uo²Ìâa½˜üv<½Øñ#1}LÊaãl‘òõ–°…ܶº”£Þjá£ÞêŽzËຼm3–Õc #¶†ƒÕúâ|XO2Âm«-3«Éø„d´M“¼´Sc,cªujLN «©ƒe¡Sã‹¢§ÆbgÆÕœ³¥w,vf\­95¾(pj,¤{<'Ýã—"§ÆÖ2NßÇü뽂këull=ù¾[s ôû´-vr%¢¿©ÿÕN˜K0àÆ8 Zsx ºè 3Ó*Z0à;ñÄÓR Ψ¹6Y®£Èûsh Ù"Å]Ä"5»¨Wr÷/ä•ìûÿÎÎÎÇ£õÿ­mÖÂüÏÏ×ýâÅ|lûÿoÁ€…ø¦s¨R ì4¯Éýõ`d™ÏðgÜ‘Q,iqÓù1!CÇè7Jø„˜Œª·Ûu܇n†=ÆYÆÞ ϺØëŸ‰õŠèîÿnÊyÝå8ê‘•O&]q¸y¨ÛZ*¹ŽGøÎÂ<>ɱ: î¨$>âEEŽÈ­E‘J‰¯DŠÙTé¤>¸™'˜ÔšAú\ ȱÏ8•ö°¼åŠ{†³lrÐÂŒIˆv¬ VQ&ê‰<Ôé7úPRH~­2[5¥¢ÕNžXoo¤i¤4Uä ß]²c3,qP¶ÌUU´# ºhÚRN²4xøƒcT‰ëo¬ÀÀÚ- å~˜å1|….ä1-‡-þIˆ9i i¬›0ÿ¾€N÷Òóx®=Áêž¼AÇgnÏ÷‰nâWj D¦nÎô×4»>´gÔ›žô}¾e£¸j‹5ÚÖUÆ£*¥JK·kQè>xÞÞ;…ê2Knz ƒ¦ôÿ)NÛôöÌz ‘¦–ç5n;{o¹¤d:{oE¼½Ó.úž\0 V†Ôÿt±ZcµÖvý]£6þDG\y(uS »+Êy[ÞÝ[èJ}9¥Sg1 \Z­HÍê úgåOŽÛà˜]‚ýÿ¬~ºXùÇ«Á?^ýù[¢¢W¤k!.³*ú“Š_F¥QåÏU¨Îq®n^2Ÿ[˜¸úø;+o!Œ';é{±Žï8ŠÐI_eÆ%88.Æk~«æyͳ{vƒü³vVUí,I-ßlÜéüº‹m9öbªØUXòÛHî§¥¸ØVR{QHÙŽJ›l•£Ý;ðßåŸQcæ„U>êëU¹ªßÉQ½ýæ¤Ý<¦³x›U<ã¸Ñq¿nêŒcð4ÀFw—ÖÒÝn4ÛoÛÐ^ƒ5K¼òBÝÃVûÞžâ§iµîÃÎIÌž{M:dN8[·ñv·$6¢c·äŒÛ ôMOލëícÐO»­ÆáöïꈞNÕHÕUüb½˜#u#%¨æcD™ÝîvºÛ­ec×6š‡xœ >X’ήW{êÇê T\+TIÜ*©|‰xŠãÏ{ÛÑŸavú”¨7G‡ýáQxyé¢u zµ£ÒJnî²/1Ðau^õ¦R>ä.( ÊŽuõ‡Á²Þæ\ÁwŸÂ!¨Ù£°JÙµ“¬*ƒp‰œˆŒ gæÁNvHLEƒ‚*P(šTÓLKáh :¿Þ+Z±ŸÁRªÎ}aVZKUÀÚy€ÏX¸A?º½KPm`é^ß^Ã<–yuR@J›,¬ÖņBë±ÏÕ—ÒžïÆ‚bˆÉAž˜¥G»´ÌⵘA‰ô»ýÛ[8䌆ßpø¸Îòa }ŒZŒ Üiíª}ØëÞØ½iàMÕM¡6m>ìY\¶WR¢#r'AÛww*öLhÃvQ²,ŠÛ,LÊ5Ø~h>ÙJÓæ{y6Ä)mU Ú¾Pø*¾&ì€i™êè%¢¯ˆÁ•Eññ–xÒó…‘¼+1f³f[q W“€Ù1Å]–‘k‰´ D®Àbô?)Ú`Ü?o?Ç¥ú‘Ù`eíGdöý“Œ+¼ÚSªÙÅÏ^Ó±øª=õÎ{˜/×/á(»£ÂÈ2„.Ïõ†wô¬siÖŒ,*ÁÁʳ0”^ 5Mƒü§re)ñhÏæ¯’ˆáÂÊÐTRÛˆX9òqš#£n{¾;E Q i“£KÖ)Õ?ž¼ qð#ÝT{BIyÑà’k‹ì$õ 1]â.ŒvÄ¿Ð]Øã+¼ÿ›\>,þÏFíùzxÿ÷âùãýßC¼xíº÷=½“wí®§¯I@ ½7exÒóíý)> ?öv;xœ~²$}¼Ô/b9Þó]Ò Ó/€P±à •ø–oÏü¹À¡]d]f°Ëi‰û1×µ"°«€½ò3¢Òˆþdç³ñíè‚OÎ@¼}éM.ä7æþñÒ\mi0˜ïL¸$ “äÝ9ð½^ÿòrp>@‰† R·X‰¸ÆÔºV&-BY9ÞBØ&¼k_áÝÖpÝ‚ûšÒŸ0 Þ´ñYÓãp1îSª9øC àI û3uq‚æ6áœõYŸÓzÞyo„E×8Ь¸£¶<¸¦åÞÌÑjÉoÔÜxÆuú3S­çØ¿´”wzeÁ@YÔGû|²â=LÏ#ì•.R:N=¼-þÝz8rvXy¼ˆ\þEä÷AÀ:.Ü"ÁtCÂz¼}¼½ŸËQ¶kn¼®ãl”.¦ÿ~¡·NçèÁi¼iÔ°Ó%~ºÆ5…¤£EõÛ7Ó±[ÜÑJe!$K•!%‡¸·ß;¿2}ûÜG;»–Ó°y)±ƒ1 xÿô¸s²k<¹o­2çãɤ{GA?cSRmüÓéÉ`j»V]HIeúÀò#ì@·Ú ‚ë#±ë‘ë åK‰úUeúV`Q¼PA~ev%²^»2¬kÍp¢Ý™†º…ê9RÝ1Û`¤;$eR…‚C8LÎà×¼A­rˆ«ÇÙà\ãÛ}htmkë.œƒÚåxü2˜¢MiHê ¯£öc3] ó’d ³ÝM¯áT„¨ë”n⃑+ï¾é!&ñUmqÖÅëÞ'Ø ©^d‹¯½ó™&àÑmâaÝ&ò<&| þü‡Ál¿Ás@E»_ä¸]С¡-Ú*UFì”]QЂtQÒþÀÝ#8³·ºÇ]øÿ7övkü«N¿èââô =rã…QØ¡qJ‰weþ]åÍp¼EàƒÇ[Ý¥çáµ}h° wp(‰Ì[AG‘¤cÈ£{Åœî¼TÍÒÜÅÎê‘9Ü)– )}ˆÂ°JEê1Öi}í³¼Ç·ÿòîùšÏý"…<6~ KÆÎÔoVáÓÂ…õ´ÜÁW¤³÷ È›9œG:RÎF]Žåv½„2þº_¦¼ ²œQˆX^L>u¼û>¼³UÌš½X±íh1]™7®í‚dèñbjFãÑú“±9Àc êÁ“ñÒV+âfx;5Ý%ªè`ÇŠ_‡ßö­Ù½™†ã‘f¼õg¸ß˜çÈû£ý¡ÌE¬ÏëXœ¾ŠíéníŒÍÙÏ;™kŠî™Ë‘ h8… .naSí ²*Æ7ìË|j¹>sT/ó mœrú)—÷báiRœ‹j'ÝSEð*ÜO'zâçQãȺŠò$"U *CMê0ÛhÑa)vz¢À|´)ß{v-hÀ¡IôΦ¥ü¹Bñ=øŽq¥Œžâ†l<ÂçJxÌñë:’Ú¥ ¾ÃCSŸ®õÕÔdʃ܇5:ÑëS‰®M£ôGc`Ï>Œ†w8ê˜zàä6RZ-…>1_âi÷â‚íYaÍ¡‘Ö ÞL@ Ȱv‹ò’ƒNòÀJÉò"’?^^M5IhI% &ºÉ€Äõ8ˆ•ˆ ªxÊ:œ†F0k1géX¸/n6øøÜÓÍu™ò{ª_§¦«§Ï#pÑnðЩýï  r ÖÀA¼€?¦Ö›U_ቿ$ix!ˆ»üj³*¡TVÊ|ÚXŠXûËæzò+û¸Ñéþ>_ö>K  ‹¥à½î{Ÿeb’ž›ž:4p}Ï {è𛉂¼þ˲§êOÕ%Iö¬âl=À4EæèEæýrWFG0ƒå߯røûëÇÂ_—Ëæÿ!·²›ûIñBÇQg¿Õè¡¶ŒZ=º1}ß©¢6ï.Aê/ô,CRe2€aKk³®Õ–6ßxð©Õï¼Ær·ãî|K¬–ÚŽ3w“ûìì8|å vÑ{©[H-w»Ïçýgóî‘é¸ë\,o?§¹(º§?wož—ñ_,²¹ÜÃHgïÊá+g¤‹nãvï}ȸ8Œ¿&NB¸^Ìî‹!1lBˆ/ž®A£èxÛ“y쩽‘G&2j+Eê[åÓ"Ô›/›nýdÂϾök e¯SÇÝ3gŸØ)rûÔÜ'?•Ÿ¬ˆµaïð_yӖޱ!|¦_qUyøG.i(ïuËÀª:þ¯XMV»^zÆXR·æîáþƒëœ£(V•XqPô…s» B¸^B_';´´?˜Ž$ltd›ÃËäÐ4gqÇQ+ºî_¡×pŸmqö@G­¦ l4KM1“Ž-›4qæÁ\µ@9çš÷¸Œª¯'-NV _ý|ÚŒ¿œX¾bq|’oÊš™ð„“ŒŠÃ«bÇ~{œmÀÍìH¤²[Ê&ȯø©´lóLÝ>D7îbÑr}ÈŠ R»qgj7ò¨ÉÁo/oð“!oõ옷6B€%W;9é§Ù"¦îÔ7æ‹Þ¡<0B‡n3±Öè~Ê&‚èì 3ó÷SYˆú€×,ÁZOÆÍuö~ É0þë¡ó¿×jõ0ÿûú³Çø¯‡x1ºñ_Vþ÷¥Äýhá]šµ@TÖ\±UVÅøgF¨”“Þ 0q0*BF–}©¸a-ºVt‚W*\He~LÃP)}2¸”ñ"mv˜Ýbÿ`ŠË¨ž}«R`„Œ£BίúçŸX½‡shÀÀ4ƒËoìKª]¼ÝŠ[y Wz Wz Wº[¸ÒWŠÇø9”(òå1@鯠ôT9âϧôf„!²“o<Kn‘¯ƒYÅòÜ_¯ÄCc(Òé»G#˜ZþéÕbWⳘ^lh³sP3ÕŠ»œ÷f½Ü›ÙRW¨Ü½‰ ½ÕÎ/5SØ|®zŸ™‘Ïúý‘£^{À@Š˜±@Š’Œ|XbDùQN÷—ëPŸr˜_JÂ’ƒ 72FÖÒ]à³Ü×ù‰\'ù{ôn¸ÝÏáË?ººE¾§«û¼Õá\x¯È††±<“Ø6ëPÁQâ0ûæ‚û%®ÿ3½fØÿ]QÌØJ¸YÒB(2ÂÌPÔÒ΂K鳚OǼDd$çvøÀe %ªÔèË”­ÅOøffØ¥4a°>'϶K6w{c[ê_+ÏC¿ûïåôzÉæßûï‹›õueÿ­=Û ûo}cãÑþû/^7Žýw¯{(7õNEt›;»•Ø2>¤•Ühýޱ Ò¼*‚×–“-/Ïü[à…bYâÃNg @iM¯qB?OÍa«¹u(ÞõføI§?í÷&çWb›`”¤±*²íÄ¿!"M“ì?§ãËÙŽ'½‹±Øé£ ‡kWt /Þtë·âžvæ‡B¶p2OšM/fÓFö¹«]¼„GTe‡?¡]L‚Ç´·úŸûC±!@#êŠáàS_ó'ê& 4uöŽÄe0\SötX)Êœne•mVýø6ytfFߊáÍU¯¼Å[ëiY~e¾°Mèô‘ä$š18Ik92Õ5rÑHà U”ÉÍ¢¡Ò±=X+ms“tSÕŠXòrCÿÉÅíZ¦÷Àúè|<úó#¼yb’±§ ,»ó™jkïv8„ãôù'X%ÒwLÍ0ž2¡ë ù°€·2Mû¯,3{GTCÃsÌìŒ-ò­4Q‚K gÚ2úèmUL›¾«ÚôªCÒ«×x6i–‹ LƒŒMjÔ{0§hég‡ýKÇ„SÄ&0 èÔ5gúæj‰ ‘”¤iø$θké’.9Á’ÎöKžŒ3ä©Gã•›ã©øQpŒp@p4>ù9œÝÉùÏ©§7Ê_ ;°e¦žß>‘Ó®[2µ•F+2ƒT$RÔVyùT|Xeiô6JÍ.ˆo§®YÙÖåð]³§ Ùþ€¨L6”­ÒꤱYŒˆ‚'€¦Ì6—9wË„’)w´äÝUñÑ¢‘…:!#¥–(‹¬éÌcÞW¬&å«kª_‰Å*²‡W^½Í"•…VØð•n/5¼‡üuÕ· ¯%F÷ÐcCë–K^þl­ÁC U³ç’=ì÷às4J¯¢®='uí$u*£1J ] 4››BÒ›öd½(E¡,à’É:…`ù¼&Þa@¯Ö9œŠ(Nž~ «˜ $ֶĨ³I^Lû3ÌëTDäì¢? é‹ Ñ.—Ú«µ•§u±âlÖ¢–Xýíšw;¤w_»³j0ŸcÇ/úÓs8p°¯cÞ¤v'7Šæ¥|ú®;I-Jë/Û•õ—”-û ~ÓÆOA¹}9xÕÆ.8å@Ï…’v¹ñÅÅoêÑæ¥SÔ‹XLj¤ïuL—ÑjŒ |ÆØ40Ôª©µýdM¢ŽÁáJ^8ÊòÓÍ…œŠðDƒg† ‡ÊÚVÕ&Þ Z{ƒSÛ>vÙʺâäíö†5Ì†Ê 3óÅ7Åñ÷aœ†Óµä"—w¾Usé{3‹¬uØ´wÛÝæ›¶^OmáÜúÂÁX¡#“¸›Y·¯êœtÓ›ÌÜ Xhå±? 8·\+ÏUº?æ d}VBë(Ÿ—¸CÂ>ûä" ýëdÿ>¹ð†ƒÏ{z¹C8Íä¾pÑ?jgÜ=Ä6§!*MoÏàÈw3œô®a§b’h·BqŽ{oRNExm¶Ûk±Rpg&aÑhØÞ)úÏч Ýrºp^¼@Œ yR”Øk²ìGDå`Áë›a_žuå¹¥4HÔt°_üy —ª|x}]¬×Äz]¬oˆõM±þL>¹¾®êªÕD­.j¢¶)jêëÚ:|nB½.ꢾ)êê‰úº¨×àsW§ÚØ›bC=´±.6jb£Ÿº×æ¦ØTÏm®‹ÍšØ¬‹Í ø<¦¦=S>[ÏjâY]<ÛÏ6ásì([=fžüFár5^Lq\¼Ý &ÁÍêlÓ»éÿg<!›Ò3Ø’ê+<—Sþ!†’yfW“~ßVŒ !ª†…œ}ȹl”6_>*ÄzbÒRù/3¥ò;#…»jÚt¦iÛ´ê Õ³fù9Y½Úæí \F;t¶Š aÖ(o¼/}™« Z½3…ë.·'¤Ž_£ñU9[œ÷¦¸l´Üw8ÃQìy _ôyxä_@ýožôÖš½:€ÁŸ…k!Y­yÒ[ ú Vҳ袉Wkžô–´~Ñê—KË¢Ý^ÙúÊg$Öu®_J0إ܂5&Á/¨$…WÐ-[G‰"Ë{)Ñ¡Ä÷Øfž‚!ØæÆ³+^TÈJS”«ÞJ Ãà´l":&ò(jèĨÞÏ?ög|tò|öSÄÿ½—ý•=À„À30Å0szB¾…)†™ƒi€}¶i%¯!ÕÊ&²%p0Ì4o&8Oò-0Ì4ÌÙ³Z¼•̆T+ÏóQÿ€™€-xvÕ€oa— „gWn¦£þ×™˜c#Vú`æ>ü̈Ô6l¾ËØŠW|;v^É-ÙyemËÎ+gkvß{Ûó=n¸›ËÝp7¨ÂÚî—±wÛp“¹Ã†[«ÔÙp#¹§ –¸ï W„»EtQÑ’£=w‘Í1¾ ÕæÈË@}_‹6ÇÈÂ,¼9ú«ÔÞÞ .|%78µÍ³`µ_E6¸¼†"ÛhÍm…?ÉÝà2Šo£Î¤ÒNêmpô}É\Щw›p#·ó|{·Sèæi×®ô>‚[oÞív’œnë›Ý7;¸§~¿é6ZÒ|™¦ŽA•cWä‚ÿ\êPº€Õ +ãß0ì6BÿêkÌŽ0ůwß¼Óa±/àr Ãóf'Jâ=ø›9.¾vÇõ?nÉûZù³9ë©xqPnù(Þ]‘ãm¹øZ„%œ‡;yÞÃ)ofìIX§ìRg~dîzÒãz>wd O¼»¨Ûtà³q’ö½¸c.Ôþ*/èð|8§·sŽö ÿyÏÏù0‹4,îçŒþ:wòs¦sOI”دyQ¸K‡ü·Oc'¡¹ «ÛÊònM†çÔ¶E÷vX°DûþpÛÑlÛ¹ÏuÏØyŸCšÚºœô“æ¯càsF÷•Ù£.ÐõAÂy‡Ø#Æ!Åþ”.-1DøÐ297/z>Vèî‘·:(¾†XNkd|Xã_õHI´zU¬b{ àQUΩ uñf§„®muvØŽb«zu9_"¨Ú¡xê¤{÷ÇÝ>8ßÑÀ‘°ŠÃçÖÃä75ú¦ 8_Åsä³±ZꪖüûÞ>îYoÆòCâ;UžÖf¦³³¤°kLu]W%8m…`-ÁÇYìÎõʫܮ˜›2çÞ°!ÝÞ'2Z+Ø Q*““†/µGûÎ/éÆßAo`ªŒ´u"{Tÿ´ pZT/ôÓD'ÍÊñ Îh•±7G?HÑäF«¬’C…‡5®1¿u…Å –·JT”KŠ=^ [¶¦Š*4‡jbÓGâ×òya{^8ñx¡>//¤"ƒÉÛš)˜±õ…˜ÂmÛpÇœLÑò˜¢6'Së"Ê (•Ÿ§xd^ét’–NŽ*»<uòã‰(ØØæ–QÛ™2jý§Qµï"£Š1ÃÃʨôHdì\1!Uœ+~.Œ¹„Tìó8çÑØb\°mû¡5¶í{ÕØ|Q° ÆV[¢8<¬•iYå7oš½»Lô÷…yebMýËÄù9b™è‹¹ebÆHdPH&ÎÉKŒþ.±˜òV{híÍ—T£½Ù̹|ííÎâê°^–ûT}‰§ÌuYãépwW¸’Ì8<¨ÈZ¾wg‘•3d:oÎÁ?ˆÈŠ/“»ësÁ‡¦ŠÙ÷Ðøº4[rïËÂǵ?¤‰/Ö¢¥ÄkÑÝ¿ãú`1õ`u>Q‹_nîÀ^]«U‚Õ¨ºx°„ôÁBÁj-BÀ%ïݹá'è¹¹!c$2(ð¥î¹Âi{Y'èy¹"²2îGQÌQ÷¤)fqæÉ'§˜æ–TY<©™}=ñ{È©ƒï$§Šqƒä¹À0Ü…î"¥²ö®y8â‡QÑUñPv¾˜â¶ø.¢¬°ò÷`¢,c$2((z 8x8åï®2*µ.îÃ0è~âs— |?9=ŒëÁilÒIßÏ6û~¶ë‘’Y¾ŸqßÏv¶ï§_—ó%ú~¶s|?Ûwðýl×Ãä75ú¦ „ züÙX-uUË"¾Ÿí¾Ÿåú~vœk‹%[†ÝÊÀ0œÕà½xt"›î!GüÌ!eÛ(Uڌщ!C‹]›`#)f­êŠn»%ÙzÛÞ‚×Yþª£DîDöhIþœ§¶Mà·èå1OÁºÙ¡å0Ì{ÚˆC6ïl?Ñ,Û®y¼SxÚ3X§8ÿçÿ’É/Î;é·Ô³GQù—qôX¾ü[ªkÂrX¸]¿#·—ÆÃë? ׿ãá% À¥º0,i÷LD 1¸„í3Ê?s`—²9¦WÔ=[¬³ôÉ;¬S zoöê¬ïOŸŒLþ|+‚DíÇXíZ¹­ ºo¥2"LP*k UÞ›+kjwYD«Œ D÷³%§è>öåˆ23×¾œ±öD·œÃ¬½|Y¸|ÝòΌܮ—åfXÿÎH는ž‘qÙywŸJæ½ùÉ.gKÍ 2îÉNg¤pKÍ^€ëXÛY²c­fæ{q¬õjHûéƒ9Ö&Xì`eeUoº‹.Ìû–ÊÔU|UJ'!¢åá ¨ó+*«÷¢ë>˜'nb§›}2F"ƒ‚ˆ~aŸù´ƒ$ûæÂ» æbŸŒ5w?zî\wïA.Õuc)\lóÎmwæãõŸ…‹æäâe Á¥zz,e͉ Š ÁùöÐóüx;hæŠ{(;ë½x'yøþ-­æœæ€Å\=¿ëš‘̨½µæð^è~"*mpù¼wÍóÞ<…Ó»Ï"Žåßy¿¾ûcû\]g!Góï¡yÞ¿‰õÁœ†—ÂÅ>÷|ïSÔºÃÅß‹I¼ñ¸OÕòÞœˆ—²IfŒD÷až‰rƃï~¹ëåþœŠ£_{H»»À'˜<!r{çoÿë¿ì5ìa~ÂêÆZýi·³ýô|v9› Ö.—ÚÆ:¼žonÒïÏŸÓïõ:¿__ߨxþlýÕàµþ¢V{¶Qÿ_ëµÍÍõÿK¬/•ŠÄëv:Ã$¨ÿëº7™ö®ÇÓÔsðØår‡å‡x1çwO¶:oNŽ›í]\ǦfgèsèóÃÿ´€Ë”–¡Õ8jl µ/J˜áSK­dÈý„²ªí1bìŸÝÎ8ÁêÞ~¿Æ ú<圆‰ßÜ:ïz3ü¤ÓŸö{“ó+±ÝÍú™*j?÷)o}}ý—"D¤i’ÝÃLËb:¾œ}Ád¦¸fzû˜0ñóà‚©= >¯!‘ÇýѨ?öûUU¤¿ßî —ãÉhÐ[ýɧþ°IÌõ·ãáxÒ»‹þ†’ïr¯Ekv±¶¦è”F€3AˆÆäã­Î ÀôëlÕ¦Ká|Êg#‰8‹C;’¹ A‰3c-†‰3p/z)ÊN* üóèv‚™QðÏWvHæ¾¾˜ÊüÈN”E¥IÌÞÓÙ¹„3øb-—*‰/¾¡¤;4u-P'†bClµ]¡XTe~O³«k•zXuÏ"Q)õxef'íô¥ œDmÎö*KÚ\™øß¼‚Ûª`,'o²I;iH¨;ÁF8%¹—ŸÞ'§¥Ÿôл¹Ò‹ ˆÌ=ªz™ÊýV-ú¢)ÍeŽn?cª] áxrÁ™¸í|Ï”‰ûŸ¯Äº›jÚ$¡-špÚÍ/ãW™jZr©õ·]MV¦éJ˜jÚ¤—¯ìjž¤rMŠäšŸÜüÒvE:Õô§ Õ´,ÕÜK¦—¶+*iÚÉ.íL§+?Ñ´•\Ú®e¾<Ó£™ÐÙ®ÇM3ý[n®hY]E:Uô|ùžÝdU ¦{ÖY?uV¿B™ÝÓÜNöËÜ_2ì¿bËñ-ËÁÇæèáuQï}6e¬O¢ ÷YG¨“þ\©jdí¿Â­gz{~ñåíȲ¿ÿ~?¸ÔÙELó :»&bñ/®z˜Û^ †ÃþG õsox뤳ÿ§[É_ƒÊ`…ÖÔ×ÞùløMü§?¯±,2ãœ]¥x@a>ƒ2os¨‘;ïaÞðfc–;¤ùI•“*?&U~Lªü˜Tù1©òcRåǤÊîë1©òcRåǤÊ÷²áŠÇ¤ÊI•ÿÛ“*¿ZÆË¶jÏ‘–Y~;_>æå¤VŽåRNÔu†äHÓ?zVäãŽÌŠ|ÜiF*ž;-ò˜9/áñƒ$3¾CêáD2ã{Ê$:ÎÉú«sß!q/°Ñ“»$î\ Ø8¦`0Ã/{&)¯é¹ç(‡.æ=ÆN+ø¡|=­³MÕ‡³IÈÅ‹à…%ðÅ\¯8†˜7J]ì’ÂFýë¦?ºŒ>Šñˆ—…Cju,†7"y´EÐÅB\1C«¤ïêgpBa’æ%oúdöï>^ÍX…pg8…7C+§JæÅÂåº#w;G ²©«M…švÌð°õ@ßÑõ˨†7+^-Ç5Qý'>UY_©ˆãºzWƒw]~3‚ÒÉbV¡‘]$⣣܄ÈC€|¦¤c@Íñ—©Zò¯Ý%§_Îr=L9ky!Ë’Hýfm,§R·›'NC²Ò¢Ý”‚‘~­ú(z˨Tª(=N²'YCåŒSï}ÍÓ'GG…xº^­¥XsT[­9L=â·]Ãð©’u§”Uf~®Ö83÷ÈÖ1 S/‚ZQ’Ï×ë ²uígàë˜7¯)3PyqæÞ@-nØŸÓü˜ ÊŽÞ€rå‚`º¥bâÛæóÕQ­\@†ŸÄexíþ¹=1‡sñš’Çò-Ÿåkwíìñ|B8èÑÊåøØhŠÆòúœì¹:ª—iÌœYŸG$Lêà-Ü·¶‘ØDóAë}B ¢ÅÜŒê@süÐÌÃ&wôŽ\e£ÈˆÍ(…ØCÝ^àÞYÔsãáv(õH9jù:Ž^[5Oá·T£O«ß´‹9…æÐŽ, ºz¿ûELéwâ$ŠÈ¿Õš?P\A:ðbv—³Lï?0ÁNGr–¢3T‹lwcoæaQšW?‹‹ ýß.l1ù§Å`Å|&ÏO{§Ø|}A&?ø)˜íêhÜW×>|¦‚PL ŽLÛüiMjÇç-9XRÅÃÇWE->æÑJS0>è<WpÂÁ™ÀIˆ†q´ZÃQ@}ÜP ešµì¸¥>ÆB>d,$9AÏütŠ‚4kÃÓ¯ø§;oÄ>~^1ëÜûº _ïWhYúªAt‘öØ?Š?€©ÒòJ$€ß™xü¹my{çMä *GÅ€Eýïã¥dç¨ï‰ÞÉá©AµÍÄ {Ê‘Æùe½màP,w0ä§ÍØÈs[l\KL%ML4ÌRšÑ¡‚Ø·â~æOQ?¢l+r¦Øût¿›14t°É8¢„ßà°ð—x†IŒx Þ%B2WøO8Ù "ÔBh”d¬AW}9Êò”¶JöJµUSÒ^²×è¨6Ï’jæì Ä» ”Â|Ș”Èd•;‹ï ½O‰‚Jì}0½¸kžÜO(b…‹ïwЬdµ‚\$ÏZœö|öC2ƒ€L­íÔ‹«;]÷± ¹Àfñ³É½ùª‡Yk·BZ 9®6ÅJ™LU?ÎÂ-˜_ç1ÄrÙ!– ž 2S±CéÙ?óA"cä‚K=!~ÞcÄOg™{˜HMÍÔçëqâàñ4ñ„™„™{²ÈÚ1”0„Ù§Ì}¤œHÃãÏrÌXp³tÖÈÁÝ!ãg‰·Ì:y¨|“™ÇÂ<ðƒËÉù×·:€üÎEC)$”ò§|Åâ?'ÿ¹ùâyÿ¹±þÿù/^~üg'ÿ)ýkc@ŒÐ{ ýäA5dZœ?(ÔSÕñŽ û ¥Çô—Ç0Ðû ý ƪñ(JR³ ГߡxM¸i*+ÊëZ½†ýùµ«gߪí`†ÑAo¦³ÜòºÕ)ízfžÛ¹E[•(##¼¥œ†CŽn°Š‡-Ê<¯3X’—ýItÞ¿p{ÓÊíM0‘óô&Á‘ÞP¿茆ØiYªk†%Ü~¬qM°@®{_KµJ[É¡Ç×Ç×Ç×Ç×Ç×Ç×Ç×Ç×ÇWýécÈëcÈëcÈ«úü1äõgÛàÂ×cÈë]È+ü;ÅìGµÓzº‡¿¶(6¤÷¿"®µ"§•Çô‘?Ràªz¾µÓÀ0A%Qc3gªìsUöNA¯{ zmí¦âYã¡®êÛœhWÁ7!•dÈ«ˆD½z…2B_ýጼŸ/¶FæŽÑ¬`Dì4'"ö%ùŸHE»öª]uð3EÉÒMØ+ì7v‘lÁt#QE;uõ ¾X­¬U×)+is­òÊãÞR… áËM›6$ÁÁ±ø/1Ü©ÙìºMÍþ„˜Ò±ªw‹U}TýÿÙûû¦´–¬qýû>Ÿ¢ë©§J@ nÔ䜜ÉTj‚Q ÆãÔÜûCÅ„0&SóáïzéîÝo{³Q4&ã>'*ìîÕÝ«Ww¯^¯é6ri.©Ìµ¤ØFa²«u Ò±¤Á2 ]ÊJ*“‰;t §læZËwãòûL§ØúKÂ;Ñ”Ÿ#Û…RF´g„Ëì‡%îB‰…Ž€'$îÌ~ 5ƒŠUµn‰ÙÈë¿Áòj{XV-Ëj&ËEû\ºçL*±>ò×&—‡ û\;Zè­Îï!ûx'÷ÎtŒK_uÕ§ï›Yu|3«¶ofu¡oæÂO™£4‡uñès”2„{¬ÝÇ9h˜MZ„Mæ–þœyvî /µ‡qÒúN¥¢(•ý>xæ¾fwÉE”Ã\xß6'~ðS0⩞¹Ä†<>nHáÝz?›obQTßÔ’ìbd2ØkŽd*^'V^ÿbUv¸ó nŠA7.Üã¤-÷¾¤&+Õ¦Ç"– 5E2ò”n ÚG:ÃÖ|°þ£n Rf°“[°Eü|w†%)­Cs™~±–iò-"^…ÖBEgKs©¦{[.`WRY•Ÿà&qŸeý8eæÕLKùQ/Ý¡…¸˜îÏYÑ"/8™tÜ®n/0WÒŽYçp%õü?? ¾ž?ªÿçöÆËJEùnml“ÿçæËígÿÏÇx˜–-ÿÏ·»Çõœè6vv‹âÝû­öŸpbì6wë=ò ì¢â~P¨uøqÜ”YrÿÏ_¨P^‹ã–ÅŸ­ü+Šï;pFtø×2¾¤ÚŒ(äi™æ]iûP*]«á"úòÎ^•G€1Y*Ñ«’0FècÌH¬0b–ʶ0ìáIÊ‘c¥ÚÈìø"Ý,pÛ<ÌqGÉ]³›ãÓ‡ãfNö?&Ïûq''ÇFÕâ6ã.rùD2ç“«ëô»›M®Ð³PôG#eð9¥(Ç0¯/Ðëop9ǸÇè0{>ŸL•Áh­!y#"¨Ñà;‚È\·x}c{ç.È!…Ov=áh:Z쓇Фy+°sóï×qùz:¹¸9g'`ìôc0*ü7|Õ=ÿ|Cf—}ìÙðßý¹tëÛbè"W-Öòtù’ØÂÐG…ná´PxW¢Fé£*ÕŸ)TQêoß¾ëìÀùX÷v÷è´¬Šõ4Ú T‰oÚ)ÎÅ¢øŽÝ$DaõóÉt:˜]Oؼc>!³q*¾bâ–Pq1¸„u‹Ý0ÇÐ-|ƒnßB·¿Árß¡ïùB—¾’‹ª8Ï~+Íug¶©&™i*+Íïe5°¸'3êúë±¹ô”¦Kî)Eq_b…3q1DïáÑwö$Æ/†ýO´x“ÖÀ4ï’P ”Æ€¥Ñ,ö|E:;Q4ú'Ö×TKÈFÕ*º„ †) Ú>-h@G…?‹1¢N Ú ˆÇ«š¦N6.ñ”8¥dŽ>¡÷]ä,qV²õÈ•ü ǪØA¢JÙžF…7~ð-ƒ6n¶HWžûsÁô@iKgíµšgŸö¡Íñè{ÈZU ô2P£fÔ sã”aÊÑñ±‘eU8îé_Z××¶<¬ås"YF£Ÿt¼ÇéYŽa¿W›nºFf°”Îq“Z¾³ëÁùðr·?š|¢¡.Û­ñá'qËbܪÃÒwÌn[WhX+<-o ×ŠëÑ-óº¶hv–3ˇYí(esOâ½ÔÛ=ç2E¯YߨN‡Æž>¼T§û_ymnU6+¶-ïd¬ Œw „û:òãl« Ðqèï:0“}á‘›°Ñ˜Nð]Þúá½I=ÖUôŽCu bh>ËàƒÛ’ÔÊ Å÷Ö>\ ‡K ápuHÀN^¡÷ÃçþW<°ú#„wäi¤Þi‡e†â#í¸i"íÅâ` Ä€¶Zöâ`¸Tðp`‡%¦{"Ùx=ÔÖ“%4Øk—b W#CHô‰ÜÍì6ÏïÖñ©Þš0`¼´›ÑäµM0_`ÎC¾ìöžA„:O}Uqܔܿ"/š7þÔ] ònbn98Ê“ËveÙäv¬m;°«Ó£n—2@ú|QV“¯À¸LOût%AÁ[‰, 7yµ}õi×>Å`lœj:kšú™FïNýÇͲô±êqhÄ™ö‘&]üu¶VÔµÛjÙt–_6L˦“¶l:«Z6§Î²aŽàþë¦c¬›Îòëæ$îËýð‹NJC¹r:+^9Mcåtîºrâð(Dzµhõ“¯Ê«õÒj™ë%±+ã’‘À€ñ&1C]™á^¬8]è…&Zª '-X˲m8Ôi ™@nf€oŠb5‘W,ë‚a0²ûW-‹"gä¤pÚPe·þ9æÏMÆur~~C‘·&cEMrÀ(סßN¦_f×ýóAÚT)´¥˜¯#+šõHV•VéΡp,¢½{,œò£¸#r/‚»ÓÝÎû¢xßV2ÆC¸.¶v-IdŽ !Ê»ëT>Eô)MàWgàõÐë|N7°!A§ˆë܉œìF\Ç’*dd÷½¤aél_fµ‰þ‘ÍZµ~@¿kÕüïÓÔ] iØ­¥nJm÷-üÜmÐÏ6Â}Ç2ßF þ±¨¼ÑíÔSÚ/Š}(µßIžájýýît‡~c°E4T‚_]9T­É×5èFr;ð¶ýjÕ¸rMVÞi5Pv_ÝãßµÝ^5ˆ¬ÔmR{»€Bñ¡ ?NZÕ“d2ªÉŽ×¡—õ4Š-6ßÁÇ.ö ~ðŸðî$0ù÷pd  ³Û¬¶êïRˆ¾YÝiË÷IްE ¦¨Š§ô:«clýín똮ÌO¶Zëµ4ZU Ó: ÷¤h»ÎâÌ#žMi¯ÙPS!R­u£L`X2óîö/â 8‘«›«820ËP/(/dÅ.∙AËi®K«šÀ ›àw¯gÃÑd ú»Z6ˆ›"^«°zéŒP?°`ü=0óúU.®76V­á6‚¦§W´àmžïêJ–bG¼5´ Pìy¦ÊÎiù¢I«š.¡°.G“[%²ðÀÌ&£¯oKñzxa>x¾.íÅ‘a•X³Þzï¥ÁJDÌ".uû{Ga½d‹wеƒÈûnyXè%ÀÛÜ »Å¨H c5>¬ÇC–VùP=Õ¦õq=F‡Yw3´8¦³N^㞬ë~¨]ÓìIͬ[³êR_ÖuOìÚ[ý”¯ªš^ÍîÈ%©g=P²æ”TÞtµ ÖþÍû±·ÝíÒ’Ú0MU[(¥M&×DĦXÓ4 ÅÃÉg7éø ŸÁò=É|›GxÑåõ™¼» ²‹îULèž~á9îÛvãYª‰Å»t˜6wËût ¹¼>ÆuíЬkÕNrcmÆVm^ÆçÃþɳÕælû½4IÛ0GÐéÕö;,¸aËhµ®·7¬‚þ‚²`(Á‚KÉÌçí{Ñ#Òqß9¡~Ú“qi¦°£çv£6øóÉàòrx>¤‹®èsðAq&œ€öúyøö;Šñú“yÁŸ—KÄ)…gûÄRr©‘ˆ4:)(™”³%è‡eF$3ÄžBÍzuP¢WIkØ­Êâ6\ƒ#~M¢Î)P¾ÈyI4ûб1oÆ|\úH†{¡’~pçóå·öò“rn9|É€jññʨ ‚‚×5VxÞ¸¯³ÆnÚKp,ÞM¨–“ìÏ k¼0#ÐA}B˜ì•½– (TÒ”Õ’h+Pñ¡nÔŒn$u¤*9sìQpë5»…@e·h)¥t@sv4(]´'?EVëL­{¼{Hì·0–/‚‚ìANX RèPs`1þ‚àpf‡S-ŒeYs:,§}©×ì×–ë±ïdbàA/u5¡Áý¥ª×q-¡ÊßÃËNÄ—é'¢ä;öQøÒ8 “ÎAYs7ñøÛáÛ/Üjx²a+å…ßðø I,^æÇ;Ôz±±Ý<ð#rúˆËã™çðK¶›Nno‡3”ÛÉF—ïXê}ü6èûmð½P¹ÎÓê–<ð;üW) 1VtQœÝ\q”äOpÎÃÉù¥øW{T8ä?ó…o¹/žÛ ~¾¼ù+ÔnŽ5¸¶¨YíO¿(ÎÁP™1ŸLÆ¥f}C7òÛ^™oÀI{75—¶?Î_ÉUAœ@²p±ñ7XéÕ†[#…qi‹U¤l{¨$3¨ÿº¦_'°Æ¿e²l‰~­+·Á.óÌtÑsÆŸØú¥!&Cø-3ßÍÔÌ»ezXRðÕÞˆ_ׂ ÃÝ‹ol*["P/Ì5ñW¼&èÏð6t;œ3 {4LAVûz0… Ê™6ƒ'Áxr5÷ï)"öÇ”cQ÷è£`\¬“  ;|ÃÚ1Xfw=Pk¨øË‰µ¿.Ù+ãjM[DÆmPI¼¥\–Lj}áì ¬Ä @Å¿g^¸bñÚýÝ[»bÑòz¼„ÝŒ&W¾­|h…‹%®øÄ¦`‰ÕÏ9Q"MúNu²»t ŸÎ—QÃa"ÃcÈG‚·jýó/Bþ[&AÃØPž­ÊžHÁ:ê)ƒd¬¤ Ïa0 r.l¯G%œï:±ÀxùŽøþ&æRØ`aT*J³CPH¢ÅКèvê¶¶/~UÛ}kkùIà#%¤`¢v†´ïUK’Ô'×ì¸8£ãך€1Šgµ|÷8pg“Ô:G‰äòbã–Ð¥“SކZ¤ËpZwbâŠÂÄå"câ!oKüŽdá*pH•…C©±[xcÂñT²ZIôÀ“ÞNrV]p,›13O Âû_¢ˆ+Ú\< zßAy§?2‡*;ž©ª'†õc8+IdKÊ!5g–ÅV¶¥,¶MKÚ môóÉcK¿ª<6Ê í$QëÙÎrY Ÿ¬ÛíJ²Þ-Ò»~Ï’×gÉ«ÝÿgÉë³äõYòúSJ^£»ˆ^£'&z](IÅÐå\,ò @¡G¯ÿ*q*:r¾B©äLÜz^ÝTö¯õèõþ®Qø[˜!~£Ðf‡-<—Ž<ŠJºÈ/q&^Ýi&BݬDZÂK1î˜eMR½F)Õ-þõBx!¥Å %Q®ÊÆ}õäEP†,cE‚(bš8*úÍ$À{È¢¢ß–—E-’…”é/Y†”49ûx-Òî ðÜà[¸Ø!`£èæ R² üý™·h7ØšHœÜÅT!î<ŸKè vø5ùH\¨‰àéè÷¬t$“RP¬)2H6 J¤Ò‚®Æ;‰F]BQdk™Š’Õ¯˜ìŠãÃ:t®`(0J Ä…º›…Xgñ?‚:âIƧÆd%Aðå¬ U5$ª:Ç^‹ITW#BE½ñ9£;ˆPÒƒˆP;>ÂÓE¨•Š!£Ãp~ï&B­T~”µ²¹pH" ÇY B­lÞO„Ê“ž,Ç ŒcK‰‚±Ðz_ž(ªl-!>­l§ŠOùcRLQ´¥ÿ1Eñ?¿U5þg%Š*¯¼øŸ[Ïñ?ãaºsâžT`‡ª¶{GEúuJ‡H•E Ã#ü ?NSÃBÝý()ÆgÿæÛp4Ę O4ÚgÀéØÄ‹,•íGN8#„¶#Kú x.Ws –bkÖr ž>帙ô蜧9î‡3=çIEÌnû×3Ñ¿ø«ŽN¾Ú¯+Â-ðc49ÿ2¹jkQ”§iÈU+•b­R¡¦8LLR˜+O… gß©¤Œ3ø×Íð+àãsê›fŸè ,û.+Rp«3²Æò¢e‰óþx2¦¨qX»È!«‡³";½ ”E-¤~8 Xâý56Š!9Švd4fhÒoY…wèäæú¢aâ,Žå(7çaVªò÷)þ^ƒcéc^ðùÇ)ý±¨\K¬\ó*/޳Hä.¼Hz&›Åª5ñZŽ)eÏ’Ž dEÅ‘¾¯ÅÅ„vJGå¸ùÓå›ç°:áöO³´¯‚ÅÝ+Ržt¤*ÛòªÈpܦ™e†‘›ªN°¸8n“q¨ª|²Œu—Dᘘue±§jøŽ!{ªe‚äG{«Ýeøµ,ïÝgø5=üÚ*†_+$øG†ïDí:-zA*yUJ­v-èpÃÓ•õÀM(-ˆî¤[å5£1v”e‰,@ØQ™a|§?ÒKi“̸N§+ÃèiFŒžfÆèiŒž0zºŒž– PFO-ŒžšÝD–ö‡ã‹Á7Çôr8Åc>ÿ2å쑛ČËÔM‰Ü$ÞD¯¹e3m€u¸ÜŒ.˜O&â²oÅÈ䇢iúg4‚üCE]> ®0DÖp4*ùÎ1Œ++ò Ç{7S¨;;ƒy8²OSóLEÇà $1TyL‡g7EGy«MÄAÿÓlN!?1Ö*Æ*‡øÜïÞ.ŠwjÈPq7Ó)Â¥È)ÄÝú_X~ÝFàt<ûü»˜fsÍΣÄóQæ8¦³ñZbr5œ+çc¿:2y矻"á°!Zd4ÞWGkA²Ýé"Á©å"º azYÿ¨üg\0öåÀþý7c…Ï?àÜ¡@ߢ5˜ž\ssg@8"q×"Îljšû·¹t¤ ifO:\÷áKffe¤øÃ˜"‹†‹^«Ü-‹Ö¶¹8¹ÁÅ íáþƒ·Ñ§ÁÙ´ÏɾúÓOiØ ÙS|°õRV½¨^_ID?Eq0º¹4UÏûƒ«á90óg£²ˆ~ÿ}³(®¯áíR%úM!¦b!Fõ•Tö‡AW„ Ò6cq~W&T2‘¶ÔN]- `62—öég‚/ b2…æ®fT§;¹œßµøõd:Z°­”~ß*olémxÑÒX´(^EÄÝ\ÍF³ FC”·Ö“éJ9o~{oáªÐŸÓÜŽzJôƒà½|Ì0rO(Ô›$]?”TOË+ƒ×(ŽÜ°cØ®ÜÍn/ ¾Gù´†¾ÜïtÓ€ð¤NÎ{F°ëö:ïÛo‹âãnõ E”€Q±W?B3ç¢Ø=ì¢nC»ãðmM ×írüµä‰ë½ëìvßAOº)„³ƒ°öŠzÜ…V»§‰ƒ¯rË42ä¬"½"O æÄt¿`qòo Á¿’Å-ŠÈ&ß§´“9´[³Z?ü“‚Åuzoéw‘Uï¼ïàß)›Ó ‹ÓÑ AO ‘¦Z‘ 2i‘1œvË‘i eÛ\]!ŒÕˆä-Ü(?LûÆ×qP—/pØÁé„tŽÚØÉuXRf0á`æÓD7ÉZ/B~N¬íÝŒFkœV§HéæP£±AUe0êÅ1“+×ìʰ¶4…°Ì?O³Ï“óÈãP¬dʱ½ž÷á¢݉¯â¹€,Œ€2‡fä˜&‰ƒÙ`±XE‘†ol|Y7"I×ù†4ꋇ-1¤´„­,uzfœhZ¬-ô+ÊȉJJÄjH½g^Ad¦)­Ê€Âm—!Þ²”n N‰ £@; ãËŸ u;¢ðº¢sÄâ?œ aäꈾ—²0S‚¸A»`ñø†1f{™3Ë¥ŒqH‘K\.‚šÃ2ësæxzɸ-‡ià*ôt”›n|ò[GÖy¨S Ö©Ø8cSOU&~WSïzÞ;57°kåp‡ßãc¥ ÿpãaཱÔ=µªÁæFõxFUפ/NQ»žz += B/ iV%»[ßdÑ—Ñ?Æý‰G(íÑæ8mU¤ÅècoÓÊ"W¼lŒñ q1¢¸t/±ºZñ*g_À^‹ÿt+ÑĺøOÿíxŸÃhIår°ôòùxŸýصɋ5©ˆ½ø+{ëÿØÅ#ƒW¬1iÑŽŠg‰´Úß°Žf»|k¤nèViÛë«‘TKG͵B·pÔ]þîÁßù¼sA—Ä“%oÙFÝe«L¯¶x·ô¦\o•\eÓX¥ÐºȉmY?½º”b ŽVg…É­dkZëúÓËäÊÃPݲJ¸nðþiЮH'ýz£$ìPõŠYk½â×[Oª¹eÕÜbëÉ -¾´ê½ô멃¡Eúá.RÎw±ü‰‹àº)‡®0·®¿¨…±®e9ÛLT/nþèí4.ãCt8“0}¹ÿE)ÔèûÿÒyû¿,J‚@;ÀEqv ÂÐ:ꟙ’TÂeüÓyz/‰™ÃMáâô©¹@ããz”ýpc@5Pí€Ú%Ý'‡¯­ªVŒï’Çgqk.œZà4éæB´IñÛ®ˆ\ÊKý/ :Þ¾­N ;®A-øNµP=?¿¹º©„æT’é–R·Â=e ó;?ËbcBd9·A‚æð‹¨7'ã4ëd(ÐGÉ lÐGè£ô‘0Cì~ÎY̦ng8@Z·ý™‘Úè>–º&š¹Ð" ÚtðÝ«d}3Dªª¬•=6b:©ü@#¦ççÎOÈþëqó?GÛ›‘Ÿÿ¹òlÿõâ!lû¯ú*í¿{Èç6šôógÊõ|wë/gÄ¿”XN R—ÍÂ)cÅÅÓNfC/Í1¤ŽeáJØÚË9ú ;¯×o€(¨Oq w«Ù„E:Vö^–rnYR9åæ”‚£ç 9Î+ Ê«„¯púž-ËÌÊËY–=Û•==»2Ç&ݪ,ÉJó—13s°‘nd–„ÿ«3+S¤k’4;ËŠ»dó3ƒó 7ç±e=õëŸyˆ=MGìifÄž†{j"ö4±?ÖŽäpûx0pè!ªpöÑilã£<¦-asew”ÌAÐ5:ÓP$ÛuÆ ÅŽæ‰ùí`0ޭ鹫5™ûÛ=’š =QË;Í™­Q>ë3Ä(Ú )í¬œôÁE ¡<ž¡DJד!²Ú–!#Î¥$iç0Yܹ¦’³N.ů`øl?÷‹ÚÏ©ªdF'J‚ é–· Ó&s!"ÊhA§`˜†t‹-èþ±™6EÙX©;ÿÓŸ€ Õ2RKw2úª¬5Lbí~}EáòTìþë†Y~¡pÎ54\HmðÉœÙVŒˆþÍreóÁìwç,ü`bî ¾q§©^O‡#š¢¢;E·Í9òS$‹hÀ¦o1½[ö|n$…2@4‚XI~·“ÕçwK54z‰HÚ=*k–lch¢—‹*ãÝ[\äJñ׎‚Ý´#!…žÍãÁ·9å9?8±YÁ·¼w4 Y¤°ØE-§2u²„¼½á]ÌüÞB¦K1Fè—Ž[ÄoclZ–©6ÂâH-¶Ñ”ÿ8êie™9èŸý ÏA)8ow“ç ’0ñlÚËÞëdŠ÷G†¡x~~Ðãëgp÷{Lýïöö«ÍmWÿ»µñêYÿûÜ{-ýow· ›ßþûZÑÙc9(vh¯MØ[á¡p Pn·Wõvd4„¼žJO-C$ÉÙìg$U3úLØ0ÐNó;zv†—7ÿЃŠlu!ý“*B‰‘QÂx]Ãò Ì¶ÃZü–›ÑbSB8#NŽzf)°£ñìÅÄÛ8MwHä-ŸÖa³á› ÈrE°Ê4(¬‚n„¿ÿä¡&Š…þnH‘¡g[O5Î!ZᑼÈ÷í³•H.¼;ˆÜ!ûbvò‚+‰ÀR4åR4AämgTˆ½ÇЉ3yœ”Q wËiæ«·:1-C³O‘§ò§,<_ÆÐÞT^‹dmp6¹_ÌP¶j º,ZJg¤/RKÒëI¿èu%ï6°ùZI¯‰q€G÷ŽO:>۪⪇]ãÛ5ª‡¿ðQÜQq:µõZ;ê1 Á]jìiâòÞ@×"üªÂr< èpr5<÷: x>˜­OØ‹QO4rÚÛÎÚÞ¦lïÙp© 3¯ý€¥ƒmå ëÍôVâî›rûr— jlU:¾Gæ%®L§Ÿºàñ§ìÌý|âãæÉaÝÝ«èX!Z¸p%a£‘*ªÙ1Óít8ŸÃ1yö=Ì)$™mýX«­»m­}µ¬èK²óZ±™§Þ0ŒF’ík”\d™ f/5ÿK’otÐK¹,˜åÁsÝ -ë à!Æ£/>ñ@¦€³›s¾;{|¶ „æD87Ì¿ vwÜË›¨X.—‹mbHþÙ`l=w·‘;ZÆFŽŒØ`ßj£{y[RF˜®Žb„Àõn~u3š¯G(SF§‰¼õ˜ÂüíçáùgÍ1¿ÿ‡Eh-‹U3oYt¿šLçŸ'ÈàeîX’ÃÓûùÏæäÒD½\|Í2«ü`ë¿Ä¾üë¿Óì$súTHæô‘̲kLìKØ®±¥H&Å®7W§am)÷Å0Åú½·ð‡êÙaóÿcö eiôu'øµ1bÉÏÃmz ïpÛEÍOÃ<šÜZçZhHÔ@ÇÒ l©›W‰6–¦Që•"ú¬4Ú0Ì>ŠÖ3iáR"Ø •6‘i¿’ó¦ú=ãCãÞ~R2lzŽHÐe8ÂîÎû73û-öð’Yœ%<ßJгÄW"“ѨdG&v!du˜Tmq6Š–b&icYé(-ä‰?b±öÒîRÆäW äÙf6ÿfJ 1x°¶Œ6n6¨ý¬ÈAG q¥XÁùäšùÈó ô|jxý`ä vÀ¼˜“Wâ…mºoh•BI ¡skn®ð#¥BqQ€ÿÈA¨#¿–3‡˜…³Z©ä‹ôi­Æ•Eµ`aFð¯ÿÅý»…YGëð‘÷a o_nÁ@PÝ|ÒaXPaCýÀêYš-„0k šØÄÆ™ï/ /~–mzAêëïä Óˆ¢ —“«BjϬР[ µœò†GjÒÐÉ|.X –ô…}š¨Ã –Ë'ŒHî<ÖdéfrG…ùBΠøt ?׊\E)y‰Ø‡º¬/X·”à¯ú¥«á8'NoØÅ<¸cõz°¶®¾*;Ý?‹æF7szCDOÔLÈðöF‚xžFž ¬œ«ÆQa\É£¨K«Ñ$týø‡ø2Œs1ô¦Š{­(ÑÐ=XŸ1|óO{;4kÔŒ5£†Dù»:¯4ÆßTç‡@¾\Pn èĉü”ÀYÁFeQ"hs„wenù¤(þÔè8€oç_€ÈH/nÎçÊLA®ˆXËtBMü©n–¸XŽ*аZä_GŸõhrGÄøûÌŒÈN–@@RÙæoeQ£½ÎtòÕùþìûÕõ|2žçùòoHq®úPê=¯xR™íª­G^ÙC[ÎÐ4`Á€“a_/ä0-ÒÂrƒWýóÏÈô^ãJŸÅ9 œÅ¯dI’WúKFʘŒ;€{¿=9ãJÂãhÇ]ÊYÝ&×CÝøN+U#¡ÐÑhr;+‹=ÚLnõ[!ãÑ*«*»©#€¤ßìZª.EƇÁCŠºÞ¥¦ÈÓᮟ#ù¦#<΂˜ŒœÈ<vÁxÃ/¦@sák¡ø ²¦iE'^ý°gÎ¥:Þ³dÓÎué\g 0^舒h`!!¬’~YÓ/kü²U4ŒYL—“Bf¾P¨¬Gð3WŠ^Tòr®Œ§McÖµ €“žâM§FcÈ•À²íDrñ"8lÆt=eC)²û4šœ¡âZ‘"9Ùè!à˜IÂgâæšº2AAx3¸Ë°×¨¨š¢Z‘û–WcS{7qòŒ¬Ýâ^žÚà6me¼ÍãR!\ž5ç“>SbÚ@MuÂGª+Õ95̶ad¢‘«Šu±‹zØu±‡^ ¡˜© <µŠd'ô"—‹^ä›…Ãf~ÿê;yœnœíõJT©/›EøÑÉkªMzÒ¿Ñîzf,pbPâ3Þ¾£ú–¢‰ÂâÅŸå{?n£#¼×&krø|Ì5á¬ê¬1õÞŒõ;µÜŽ&ÁÊÝ×2“Í䈉³A4Ц&ñ È+Qï±'Í5Tz>ï³ñȰñ€ÁjÅOô|…ß«È;p:˜¶Hž¨¢Hñ•áÌP CɼP*+g|ŠTv&Õõx ÙÓ!5>ìvþ„™ÿX=d_¦ù+’¿+üû0˜Ë½ƒÝ÷k°ÿÁÿÕ.0ˆ]ÒÊi¢Ö~µÚ•¯ž6zûW’Qµ#ƒ§ï`^%Ñ¡˜i`ËZW£ÞnëÓZÀ¯J"ªÜäI¡Qv«Ç»” %=ˆEbv$! $$5jWŠfr#NjÄ£fçá¢dRÊ ­0Z§C4ŸØY‘–χÄeÜ0$ý¡Pšçšý—<‰?2õ‹ÏJôÝ£rIFmÊKþ&3O>æÀzqŽï€ßöÊÛÉñÔ<© "x¢pdŽàˆÂ‘9‚G ΆÁ#gÅðïÒàEP$§ÀS ðt!@Ș•ì¡2º»íì¡2d °CÉ´[ümj*g¨$2‰a·¼eÛ‰Œr£|´ÊUŒr›v¹m³æ¦`¸:þÉNE¯ŒòßRr› 6iúÎ)ëë›gùÌì`jÑp’ÖµX–n˜”ÿ(Š»ìtɯkþkœÂ5ÿ~äÌ$ýKâ°þñŽ…=lÙ2ìÈvV :4C´a†Àˆ!† 0ÏÞ¨èLS¹°"ÃÜÀÄ €F©özœ7*8“@3 ÛÜÊÔ¦î™ß¼: ŠÂkŠÝm9UWXµ^ ã¼W©p›¼{P¹¡'mo#–»<Âj, l3<ª‡Ø‹twÃ]ºKŒŸ²ÕáÒK›É‡þN2ƒÆah}’ä6æBå—÷K7°Š‚¹‚¹£’èÙGÔÊŸã¶·ƒ±VTú!–pòê´UB˜†Lîa2‡NR @ÝÚ‚º1G„2 éßÎÔ½cfí ´ME9ÿ‘ª•ŒM7ó*!SÏ[8” 渴ydʲÌ '_¡®[gÃ[î(EŒ2tû|r] ÛhèFºö1²:Fð&ýˆ7{›\è}€Z8üX§¨Eã )"Z±ZNGmBpÐ-ûé-¬_'Ù!IÛ(‹ŽëúÄkm^<ò¸û¸-@7½³'“´ªDBær8à»q0ù@—ðò¯zÉ{&0]™ÝI¥žy­¬·Üu⤞±šIÜ;ø¡Ä[éò]'á»ìÖ‚» ?ÆLhÓXyÙ[vV`¸hüyÓÏÝã"Ê ¶5}]¤ˆcI(lóµ;ô õRA3ÎTÑ™OÍ*Ë*;ÖØé"mäm[Æg,Ó†Æw¸#C9‹¯ ¦Ùã¼µ5Õsˆ“¶µù¥¨™j*°G;*´+”Î)aÑØ-4Hú²á6I7fhm’Xè^Ç)½^ï[Œ×tͬè4N£O IÖVåBꘉ™*U TTÇéÑ›…& í|>·ÕõéŽ÷qý4Óƒ“¡‘xk.tàÛg2÷^çÉSÒ÷H¥]†_&ºˆÁÃ&²@œ´/ ¯ãÝ4¨ˆä_^ˆœPMÑa¯¿?l®CÁ¼ìþ™vº¯55¥a©“ KT,ùÌŸ‡¥N&,uÖ¡ ÆR'K^øLë0ˆY÷±ûŠëoàQ£Ð0ÝýO„·@Þ…Úe¤8Ø>yµþQ.=ÔQÕo÷~€J,·I¥C¹Ç>%²oU)¨-º £ÏEY5#ê*>ÊjË£®â ®²RÔéR´BmDª• 0â{}±¯—Aù}¥8{¡÷®&x™k; Ã"~Ø~l¿w!¾ö1p€áÍîwºpç ö/V¶¢m -!ñï 8ˆZ…YÙå­Ô ¥æ…Ú•)IT†bµ×ótÇ«Ž4,ÉÔBº ç&J—¨–\Õ,Câ°¤Û„ÈÆÊú· q× .õŽ$„æ/·¹,\VÍßì–€"txÝ.‚ã.k~‹›ž í c­£ÀO¸³Pž…Г0 )÷Æ­ô{£HŽ¤Ñ­ˆ¼0mWQ ÎöÊv•Ê/¹«¤Ÿýé9™XžžC|À/¿«¬lVµ«<ÁYHÙU¶³í*•À®RYtÓR߸¬È|\Æ3-Š«þ—Æq#ÿ-äYä d‘ã(#Ã÷ 2©  ;e±ÍYWK0KÉúŽ[_ìæe8pjÂÛy/^†ÄÏZéP­us±žÒ½ûr1”šJÉy`ë"Ë€$s†Ç°^¨Vò^ùЩխbñë7¡×¼Šð{LPT,²ÚºJï4îT[tE­Ê¥õØ¿½´êˆÒ€FeU'h‘wõH&™‹ä¤­ <º4v”»i¢ ÀKWÉû* õ½‹Þ21†×H€‘1† þû_ýGÿ¾møñß7_n>ÇŒ‡‰Å‰ÿ¾$½ÿ¾ö¡ˆ?éçk'†7ÕH)¢<#{ï›UúY+ÚÑà? øqŒ¿SÀ( •<ëÖ›qÊŽ÷ý¹Äëïªjݲ¥d¬ÆxV+?`ïG!Ûí^àöŒ=ŠÊž&÷‘X;Ô›ˆgOTÀx.1z{E]ÅGWˆX}"ó9FU9Î1:ì ìÆ€È».%îú~59·ã¾j»çÞvw¨%ä>n'Šyñ£P¢Ç0p²×ƒO†ýQÞ**£qÇÁáæFÙÀ©Ãñ,‡éÅ‚fæì©%µ‹¼ôn¾žPËAz i‘·0¦CCé ¢eF¤“=8´¾«½°òÀ ”€X(<’ #V…NàwäˆJÅ þØ„“ox a Œ°ú‡ ­©ÊÓÏj%6†…‡k™ð‡{­MéOjoþfu¾ u%CK(ÚsÆQ‹¬q&‚]bÙð~ ç"âMü¶©gàr²±¢aâRæÔ{ 4YÛ£\kFÈ~¢"ü¨ª9(·«kJ7èãÿXXú°V¨Ð]u'*à˜;¸€á9^+ÔøûŠþÞD 4â#¡•-™à®ÁBOÔzÖá,È!ÒôÖ>-p\f&š’bÈrp¦H¹¼îT¨ùÿ÷ÿ” ÇÚšÑé(9ÕQx¬5:›OoÎç7Óòço8hjÔiÑ3‡ªÅÔ@jɇjJšªûou³ â¤fñ¦gUìú` ¬9Õhˆõw¢àíòÀÒT…¸d 5 2QÍÖ ÎPNRp;2+ÃWÔß4ó"/ý;ºº8c\Z—ߥë…BE¬‹.þz#Ú°œ¨ŠBj¯x5½†zEõzôºW±ÊÎôÿ-iöhÛ %‡SN¾žz‰ {2ôfU7Þg9ÔB…ZÐ0ºá6¨Žšoª ·„E©ý0›Õý‰©C›µ&ø±é5ênÔH$ðÃ-ht_˜$µ¹iï½Ä/,¤¦–¢Ž…”¤K†©ˆœÕi„8ÀŸH.U!ØÜŒ‹©aòRÁñwÔ¹ j¸sCM ÌõViötd‡¾™ûZíº¡h²È£Ð&qR¨­&ÃM²,d]Y”ÁâE „L5>ø†nÃ9¦%a¯]ò/•ìŒðvˆ¡BÙm#n?‚DTù(R¾Ý)Y1+'LÉsš}/X1Þˆµk¯1ä…œGXô¬ïÛ§Ð7hžÐȼœ.M=2F…ù>˜ñµþpmp£F JîTšécÛÖ!åŒSÛÇ´ÛºAôOVNïe¬ãlÈ:F0Ç u¼$²Ž£ÂñBd¯Y© ¶uƒadeCÖ‚9Z€¬£%‘uqD‘Td­Y© ¶uƒdéhÉé9² j'·:À“N]€pŒ ‡+Z+#hÆ\1P#”ñGç•°K$Ão.nú€¯Òa‡/}pÍ‹ŒcO7·#–å'²ø(Åc¢Õh#÷Slå‘1N¼j ,ýÆbf ¸ýŒ¼7^œ)>ÚDÄ2kÀ•¯åVHBŒL â Ú –LÁ!æàpîº ™4r$é~Ý.š˜3Z®Ü™T_©[„ DBîàé„nÒˆ¡N™Ç(%d‹kóaRq´î˜ŠC,ÌÅáˆÂh„ûåx€‚ˆ>VKàHJMý¥0÷Y8æPŒf‚W!ÓQ°ú^·‰õp]PA`ûu0ýD¹ùΧÃùHHÇÒßïŸOΆ%k©O> æ#Tþ[`qæÄH¾sW̲  S¼}W-™@fý+ŠþŠq@Ôöà‰æƒë"”ûîîÿ4 ö÷j=(ÚM5_hUëïv»Å@ùš,¨Ë×tù¤Ì& qÒÒš¤–ö×25F;Rgo’0ЄÁrAÎ0ïsŽèŠopÌ“ÊÐ~Iwz'”ˆEÓ8Àò0.\\0t+•÷z>Ô‚.¥Šuíb“©%ïJl©•#êú²#’ok°Év««n’¿æƒ{¥ùщuÂ:u\Fÿ„ªüªæ…Ä’­ªµ©Zr²ïºÙ~( ã˜‚Ž›0â1ü¡JF±lRöåxù‰?†}=mâùZSôo5ñmæÁ'þXMüqêÄ&Þèpâñr˜øc5ñÇ)¼‚‰?. ã”õ'^ŽáUÒŸøUçv¢K]ÑŠþ -¾™=øÄ©‰?Jø£ÀÄýN<^¤&þñ²2©$gþÄË1ü¡ó7yïçâH›õJ¡-%|¬-]œ¦Ç¸Ï}?Çà}VTƒw["¼=T¯1r‚ÞÞ,ð7*0¼ot{À×k-`æP\Lê"Î]ýK4yö¬Ñ“cTCË83‡Fl”`$y—'"4b~e熜Oæ{4™\ÏXßI#d~ö«Ñeû"WÛþ—¥ ñ;n§4Æþ3'=¤u£³J?wå‡*‡½L0ûýª@ƒ± ®ƒi°úÊp‰ÆbÖû*¢Þ€9 9‡ãÜ%µRm¡ù]Óc KJµPÊrP²êªh?Dk…j´Y8"S³¨Ð‰þ€`­PSßuñ;[ûF‚UÖ¿E¾NʉNU„ä4íÜÛê ©Ë´3´–IÌ`òg—ßImæ ž Ç,9¤è܈šÞ‰d.5©ÙÌ áûÁQ½ˆråë`$.&í7èÏñ°A½$v}Ã:¯/€^—àsº :Ũ£ÎÈÉnÄu²ESfp8cvâñ×þu ìáán§h:Ëà_if9E±_tT$O@í71.üÛĨY:ëþ€†w;÷ÐðÛj«•f€ÜùxPÝnjx±*…Î…bí#üñ¥#„¢l…â²uaJåë@t0~ÒJ0Y(ÌXý½Œ.ö¶ËÑÆ›MŽ6¶Ûƒß÷ø³Kn¦Éˆê6«ÞÛ•3¢‹Qø8Cxó!Æ€DQ·Ž(V&yÀïé5ItŠ;äXcVÙkf¼1$u ܱîX‚;vÁaÙcÜ‘îÈw$Á¹à°ì‘ Ί§†ÖÀ:'gŽŽh{B}eŽšf€>ŽA½t%ôQ :ˆ€ ½g­ôXo[nùÃ%cÃ-ˆ%÷Ò-ïÄ’k¥ÍÀ†_Ù &w˜VÙC2Üñ½àotð7z—Ú›ß|€ÇÀc Þ¥õ°Þ½âÝUô]GôeBíW³§ã ª¡Õ~†e•-˜wÂSáâ4,öuÀ€Ý^L£Eÿü‚²þÕÝR°ŽÂ:¤ÿ-XlAìÁ:Z«Mÿ[°ØØØ°Gi¸Úùpd^è4ˆs:ù¬üv]ð$oÀŽ!ÌÏ®º"îôÁ|k jŠ’ãÌ‘óöqwE§á"; û©F gªÈ׃o6ªãÜz£ÜÜ-·„矡ÃS1Gnë 4Ei®7lØ~ °MØ>ÛgîÏW‹›f¬Ä†k›fÉt¨ØIž¢ÄÈ? ‘"$®MŒìûÝžIoäBžW‹Ù‡\Z}Ø×ÈIéCr!ß?†µ¶€qË)VšøÞŠÁûVÿû¹Ód!"o ì«ä—¥ Yˆ}¸¾ Ä€Ü< ?0uŒ’>(µ½º¿&ÓðD§bGìgŽü ëܵ¶ìÎÅ ãÅ`6œú‘RDìê©8ö¬Û/ðØéS/8õ9^n NÞk“ût¼¨‡ädM©.[<ÕÉ•ÖFÀÅÕn£­¼[ͽåhÙ½EXÛKŠÐÀÑE=·Ta\À­mÈ&„že¹mj°[” sB)C®*×$z\ÚQu¤æ‡Äô,1fg•[O6[vzP7ÌcP ò:« @e4Œ†3ÎK‡©u¤X&IJb9ô¨dÓéÂ3¨tà/4ž]”qA™Rc=*º{…¡0ÊÁZÜV,(y¢'‚!隆£ƒÝÙ•¥È1ÀJ|Ðå]Š0¢›©ù¡BÉ)žáäiñ#òbÄPLm? Hoh"%Ré GF_¸4Ro¬tÁ²¦æë"Aõ%G`G'åžE:Š×ZãRŽöooˆPh¨8R3·“ÝÝ%aT´ø%²ýQÎp¶Í›ÆÁ³ÁܱFŒM1Cœ4 tâH?ˆ‘/Ý<ù°±Âó±ÓgÊxê¹Ã3äW «ÇôÁÏtµL¹:»Z5BñIR°A’ÄãE(/ h€r©Êo’@±€CÈEV"ù‚¿dÃ<¢³HÂ>TpÍSȼ¶––ËÅÈ#Ï“þG9îʃU…A OÉ'NçãwìÆê˜ÑÀ€½þP#ôÂ…¦ž†~̉C›Ü´…{´˜ãŒ»ù2 ŒÏ›yoÄ&>C'œ9W~œôUÂB,ü|ØR'³y©?ÃLÑÈÛ›ÛÊo¼­´X8v¿š —=`sç’cý-!Y\7Ã9& ùß¹yj—»Ð!=åöËßmFÍ›^8{Ü·m%}”*ÊÅñCöcñHÆø!ÏÏÏý⿌7þËææÆväÇyùÿå1^ìNü—6Ç)Šwï?¶Ú˜’2(³§)ã›;ðZwH=ƒWŠr,ëƒøÖÑ\¬L˜ýÉý(\bõ"!Ò‹ã帩Çx"Uúù¬c´¬:TRŒ82K¨;qutø©ðð,¤h+Ý;Çy9næäPÓ#½wrwïÒ®!‡Øóç*©´éœ‘çÌÌlj…:yïù+•Vþ2¶þ5âÄÉNÉt§d,|†FètçýñdL)BÑ<¯(S ÏŠ,–`·,”ŒœM染D# Üš Q œO»Úóöó€¬}ì°ì46v5뛈ÊuóÂETh&o9¾k»k¯ åVè½ñè;BpF­² ýTA»Åk²8¡Í™E§g]æ@$:yÙfñ×­B+Òk1šú£7Gt·—Ý…õí,òÄ·‚4²²Éð>|¡ç/GÅâQ© b‘TãR!„:¬NÇv7î^œ%Þ1³M¡&ÊÉÊCõKš`”œ%Õ•¬I¬TË^îƒÅ+“Ä#Qîu>ì–]øxôÕxôI–ð‚)¶¤Î©÷¯DF`±‚«ìeü[±Ñ£W€«üýdÓz{‡ÓvØát9OÓ´ÕÜ cDáªGtÜÌ>¢ã¦ãaÖØœ•6FÜ@aÃsÒv6¡D(ÎdQÙÆí"-ÀUjmLâ&²Éæíƒ1b5©×E‚)ÁÐrøu`/{­øÅ£¾?³=_zowë—í¡ÔLó5jÞ"›e†„®$¸ÑâÎ¢Š·Õ”w–˜òN¦)ïØSn¤¼ùÙæ¼s‡9ï¤ÍygsÞ)3$šó,óÝ1绫¾ÀÓ¸ÕrQ¶“ É?$¹ã&›!`¦¦žKþ¦ÌB7q€Qºßøíñ+Öü"ˆ „L¦ ¨°XU+aTè•#ÙF`Óg#0ô|¢™7¼ýe»SóW‰‰¹‹?ê@1ã:9?¿AVI*‚æS`]¨9ÌíäftíÂm÷»˜]!CÙ¿uº¼‡üæ@‰;ý‚Qb¯zu­ÇY$L9!‚™oñÿÄÍp“(§%c»d˜¢gJç}Γ®ö2‚„¥ÙrcÇdvá ҂чC€É#\™pìdÈÞÊýƒ/+”•Æ_±& ÉX/TÄ6XöÙΖAHj'ò=3¸¹¢ú6*’`!Ž…{nÈûv”—[8óúÉ èP&Ò•[3wfÁÔ&ìÈG‚°yª™û‡S¥Rh4+Öè1ý@•¼#pçY¯$n×2¸~"]göðì.pðlÜÁ¿s9Åž—}OzèYÔ«¾§Ö ‘…-·è¬Õ/Š3Úå.—`¶?³í5º¹*5rÿùºV½ù»ëÁß5ú;_(䢌UOAýs72È×¼ô”SD}Õ!R˜%ÂïBü°ŽÖ/|–èöñŸÿÇ Ú?›Ë2—›oŒ å‹@+l¥"{i¨P²UQn»7eÂ6r^$ bDÅý™‘â}ì"´ÿâLäÞDÖ ÄRÞ8¼C7D ’qô©wg”©d$þ=˜N¤Ýç`‚€6 V'¦™±ºÔUs,ú×@$ßxßL§$K¹A½ïÅçŸá„–.†˜ ø|GÔüv 2$ƾŒèdʽ¬ËbÎ< ¾õÏçµúWg}ˆÅmb?r·Eù>¶BìvEçŠep/h¸–+–‘.ª*±ñ5® ÜÊwY.Ÿ.nHˆJ”ƒÌzž޵Æd4ÙY6•k–|äBZ‰^•}øEòðç™üKDÁJqm ‰I^óEü³F1VŸ´ À¥RòO*/Ñ9^ÄóßÔÈ{óŒ|Ç?xaTr|¬äÿ‰[ëløéª_B¯iq:²£%ǯNGö¢%V ÇK¼Z À7ââËt2ÆÖ0˜¼(ÑG²v‡½ëŸ.6dñ3¯xŠ+1#ö (*^ ßø\Çp²š¡SA":ÉàR}Ræ¶OŠâϼ*~ß Î¿rU¨c±ê úN¨¡?ƒ1°vt¬!¦(+ìi$˜A´eàFˆÑ~‘ÙÁK`³ÚÛÙ[¼×5ÞEÌtÜÌ QÌÌWpü£É«?†Cxc@‚*®ÈÁ_ÿ¨”6ÿIÀ˜D*œ¡çR¶šPñjÄ-Oèæ=»aWÓ3 ¤6ýO³9VÇðéèû)'ð¹´µ3À€ftÒ£ªŠF{C÷|ˆ­¨ÛŇ«AŸ4Z¨þšÓ-ý¾‰ß^Ñøx;BR1dumž€ßþ#ú'ʲT§þUXgS”¶óÏž€_x°'»Æh¨©Ÿ·ÆÆÕc6j7ö乨‡/™\ZLÛ‡ñ§¾æµÊ]`ê'@&p0Â?¹ÁÅ MJ`ßC½ÛèÓàlÊÑК} V ¹)¸ÁÖK=àìDõCÈR04¸ŒnÐ6µzÞ¿\ ÏÅáÍÙ¨,¢ßß,Šëkøc»T‰~“hûGÅB ÏVYMÕÆäìÆ™ˆ™ü»¦þˆHÎN,”† j§îÞ}eîdøæ5n¡ŒHSUVƒL’ÝÉåü¶±³:ƒëIljû¡ ¥(‰ß·Ê[‹)Ì£-'HbEÄÞVú2›à‘$õ³ßF mØj¡Šæâ{\ç8‹@:màh§¤öŠGBð^ªØL›¢l¬Ô‡éOÀ†j©ŠÑA ›ØÛ`Ž·]•A(œs ÄR;h`2gjbôo–+›™KÏ‚ƒ~Ý9 ;ƒsVV31w_‡¸U¯§ÃMQ1aŠ š©WÛᙪÖ[¢‡GLw6æç²AnÇ“‘À³¸=A‹'cþ%†F†à!7gKæËÇ(ÊêðŦ¥…VýôâR0ÐP”…£»4µxߪ¿osì‰Ú;þ½³Ç¿»)Ãà ¼ðs¯ÛƒŸMü‰Ù¨ºEÎ+¥Rj&#«ÖxÛþÐ"¯"žP³Ý/:ôSf©ë¶šPJB (ùÿ|‡1þ|W;IDG•å*±±„eçC«õ§L0KG2/¥òÁ,8èÖa¬B£YmÕßÑïÃ?+Éý¬ï¼ïÕåë¤ØÅ¨EY;eL™Cg¼ÝmS¨Œ:…Ðè½Ý=©eDj¯VÝYyL ̤F~ÍÁ!¬2/+ÖD…>V¨‰®û~£+è µwFÙ=·ð±[XµÍ 2.®ìxÖº)Ñ+x5ÓM‹c»GåRd–WÞ5ÜsvƒÒ_@÷–‹dáö­J£‰ÊAdŽa± „h ‘Ø D¢–µ®µÁÄêâ¹É1(œúõM<™×Š.°§-um7Ê;ˆ4“Ó ¢/VËrGÂ~'̧@±·›/œCøé) hÒì ät#a¶Tnò ™·¢Ñ¢oδ‹#˜°—.ÃËF˜T^¼Þ‘—DÄ)ÝWåü!èÏ~þFgt­–ŠEâuC“Õvh|´m@U–åÞ’ð·„;°l4‘v†h"ºÿá^¦…9ºžQa÷†—˜×c6„Äꯢ–˜Lsö·ƒ¹á¡ÒoÞ'[8Õä!|èã#„ó%nðâV‘E˜CbÏ"Z¬t§ƒ6'ßUÕÄA×XœàC/Kc7ÙÁÃï ûŸÝüŽvž/RÒÊÞ}–Ø=ô’º%°·[%䇧¿¡±ÂÜ5œæyÓ :”šnirA)dµ,L±ëÁ‰L,N.±bä`‹Æ¤èÒ ¹L5ýâÍ”âìƒ\˜Lú-Ëp²Yò§bg±Å¹¦ínC k“|D‘÷F‡yd+©ÏÚ­sU_”mü^¯Ý©óp[áE ,µtd#< ªùÀuß‘ ±&n&)^|P[Å=Õu| yŽÅÅ©W/0aÐOˆ)è˜å~¬”/(Œ­0Jè:™eËÞXÈáxXMa¨róc,( €»®R!,%ëÓ-p¸þnæ[‘1ÉaÅŠbb’®&_½ øä¾¿äçŸYE&«æ¢b”*gg 4òŽ®£G›&ªj9h¼¢SêÖ,çl`;dþ÷ïg£zxß7é{×!U7Kw¾œ CUŒÿÐK©í6Ÿ¸ŒñiË›7-A¾ƒÓŸ¦€AfÆ9Àw˜Ô|#¼ÓË‚£QI“ ¦WŸNàÀ¿%1»í_qýEÖy6‰'F+ µj±ã0ËE1›Œ¾:9ã•<0d $„$çx»^v ûAåYÊ–D~W#ôX®Â¥"µRͪT£Jµ¨j û Œ\3ä ½"T·5fa̶#›ëŽ_`ˆ¨6ô¥z‹.@[ê¦à<ŠL»6å9ÃÂ3”J±tJSg´ÿ/£$B´É•µ°®ÝZƒ+ÉoKˆkK!™¦Lµ†ŠŠÚ͉—”óÞ=._™'HÅóMÊ3Ÿì Ú~öý/xþŸß+ëÿ¹Q‰^yþŸ•ÍgÿÏÇxx;þŸÈ+ö:Õv¶#’¤´‚®Ÿuü ?vR=@Q—€áÇþÞÓ»dg§‹—dø•Ò9ìùÙ¿ù6 1øÔÏãJHUÂŒ€‡íû€¢w$ ƒ­X’ÐbHŒ*º2úDwÑ¥|7ë9îaºçæNއ@Uvs<ú@à½â’nœV˜]›y–R±Wqh>X59*´"»,Twú‹¼lÖ;Få]£²dÝP~´æàë`$ØT§"jÍj·($«(s%|OnÇVŠAÌN6‚€ídÖÑ»l 4ïå©&·6€3m!DÀZ£Íp±.7Qhf<5T}/ ^Í;¬åæ.9nTÔ•ayPF¶±¸#;R+B—‚.¬è¸ª3á¡ZS’U-º0笣é-æ±›Éá”Åšé‘â*QÛÏ’¡" qzÙ'cŸsÌ9&ƒÉ¯“áA¼Mnu^…–ñD&)žIu¿fÙшÙ1¾$jÂú§ßŒ9=S³všbÕz…5ưMæ…4òB«äÆU^üÓ&©ŠKRFå]yWU–vŠ/‹Lþ8†aŽ-YÒ,ɬqÉ[šDסŸß•Q¾¶E‹¿³ï°¯ÄéÚw…Ù™´a$¬“³(Õ#ð%Š5¿B©ñ\OŒyÉ" !oE¯Ñª„«Çþ…;¢±¬ÍUÛôVt- kk¬õšY¹´§ˆ™Ü5›Ò0ßtù@Ó]ûÂõ{ýþS¼¡}Œmÿdƒ˜—{Åt€_Ý û÷H”̇P–ð^YøËm¯Ö9<*Èg)Û— fJÊaf膙áKÂ@“#i‘g[ðÎ|c€eî/dÁLfH±ªÖÝ£¦”V¶t=Ÿ£}Ênm(Ò¼‹{”ÁcÉ,‹û5^(™VŸ¸8¹Özk¯úk1ý®)ÊQô/éS<Lúþ\|òÍêRêסk°€9Õ-Lç9·»´¡úƒ»úÙ¯£×¢jÙŠK4"¯"˜ÙgÜ%c?—ðÜz’BÏ¥ GNí,Îß,r£É6¤Ïƒ>l€ÌùàÓwµrÜWžøHºowQ]‚ 7wg¦Ýs¬Ý¤m¹„ K5×1)™xâds-ǵ^ûŠs Ê‡#Xš ,ïš:ñÞrÿÌîœw£Ô³q7Øás©ž,çÊ.’2qêL­³xKJêt__ö8·¸åÌ.Ò'/òfI¹kKé~ÞìqjsË]h'ªº5¦LYëÉC«ÛyÉ_¢ôè¢4Guê–ã<°VõN>ô7sËy·6°= ©y†Ë_ñ s²çMB²©&œŽFl}ˆ­— R€Xv– –ä°³±ì¬bLd6³ÓîcÚM¦’ݥƴ»Š1í– R`ì-¿ö’‡¶—įYÉ Ø[z45f÷VÙ½2A P ßþ?òàˆœË"ù¼Áwê+”¤›£±uÈÕé=<Òi2òÀnFâódta×&®Ã1á4¾#Ó6¿™žÅ×`] Î8ŽŠß°M8»0_‚ÝÈaÎaâ?Ig_ M™ê±Õ=«?fO±ùÏ“« 2¿“›™ê_%àžàø1qõ6°Mœ ^5ªò\’ìȧõм09ÞnÈÁƒcØÿ¯Ýul/;í&V…+SIsnp1!«—øÃÁ"Èš•/ä.lKÀDn6@_ÄÑä6Ó>Aßœ›yxÕø>ˆÎÀn(úýcÖé‰=PÉɼ€7Ú˜…t=š NQb_úÏ'7çŸÛAû}o÷µ,Fñ®ú_0A&¬»G×Eº´ŽFäðo°n`]Ù'ÛA·º_ãU=¤H÷&êcϲ١Ðò´DA;Ë€¨Aì.1Ž(ŒÌ½ezñr)rÉhýÿg%{.Ѹ{A˜>3,ÛÆ$Úy´÷#žØâ)ªø²‘GÅŽ.Ö”D-·O½uþΪ»“ZwW×Ýs뢢‰2 –Kˆìr¹\Äx€ûlª_‘ßXžêödY ó¹æ~˃öCî8qÎÏ™ZªPæS»ŽP¥ ¢ŠFÚÿØeðÈ’½”÷±AyA…*ªÐNJ!3Û@sV°@nJ%KíêR^çÑOêæZÆFAQ‡@QGn0!¥˜;W§Îš¥2Üêž.ã7J„v ÓŽš]¨“dAK'¤<ìù¼/ëÀëM‘˜LQ‘{–“AþŒg5â'¦””®Îªù0FÃÀØ|ƒmõƒKU¯O^^¹Ðôí¹e*Á¥zs6›ç¨QWÛ6É¿äßÃñ|"¦ƒ«þplšsl˜i]áŠLròZVRŸ…š ä¤^)’‰T‚Q†ÏH¸˜ Ì^*˜0á@÷Ã^«ÁÖÛ¥ý¢ž•v?SöWÅӨʇ÷™”övíövµ·g··—ž’¸rMÝ &ÎqxYñÛ¬8|Éëc²fpëŠã ë“TÖ¤£YŬX´I(%r'Ò*3n&&¿rwîä·8#›Ë¼ÚPmeçNÄéZ:ƒ" k>%S)ÉâšIçYdéEÀ+ð]xái±1kO’Yƒ²w”¸µˆ5Y=_’È”¬ž#‘MmÙìH /’…ù5OúLªhawÀz¸OÆÿ×õ ñ¦r ×½X_0Mjl…xÏ806¤mcî’&Žkbßœ$®è{]Ã}cü]²·MrÓ.èͦ´è7wE£n…ûþ2ÔwÂü«Ð û[Jj:‰«D/£?+Ï^F?ò ùÿŒÕÿg{cëÕ¦ëÿ³õìÿó8/=×ÿ§ù(þ?” î'É·ßß ¯QHø‡»ÿ¤ [çˆKq"¼/í”%=ÜrJ©—q6³;½Îî]dù-ïX”ì>t…¾=ãØ}(à;„²¹°«¢3P °@’þÜt*²ý‹ŒN¦!ÃÁ,Ñ©«¦{ëT„5M¿¢û;¡U~‚³JìBTˆˆdîíCtG÷!0ým‘Ñ·e‚K¬,¸ôŠ ïQ¤ŠÂë8èM¤‰È—(Í•(gŒ:ŸàX-ÜPìj$WûnþŸÅD§‡€•Ïõ^¯¾¢ôH²üŽÒ†ôïtÅ’û£ìß,C–²pÖ½äN¢3‘Lmé‘¡ È°ð%Þ{ÜàûiÈË®q勺d–6ÉSôUàû ½NðAšeòAª[õÿ7Düÿûd½‘pc¶NÐ4‰kÓsøI)¼eÞ|-Þ£U^ØÅ.¦{ËiÇ]“Kx#m­¤½zšÏÝbŠÏP} Ÿ¡ž›I26A¸ Y6Ú®-®®yG¿¡ä®$¸ Ž1Á¸•Wî;„ýL̃¹"O¡pÖË9 ¥  ¶"· p’ËŸÂ+-Uy›´›ò]#",ZIqr—ˆæ@;e}@bp³Eª×0ú¥ÖÉv&:ÅD8±r€œËÅÍT…¦7 àý¬}¦ÅüŠ<•x®ÈQ)XwVä–Äx ¯¤´ì®È‰ðsº -¿Ü=’—I3ËrÛ“Ë­ùàËí~nQ<ÙÉ^QÁìšìªD‹ YioP>KÃTŒÌÜÑt7pÀ¥ƒ‡=231æã8}Ê·XÛocO“NªuLK#™ÕqL”Hr.ÿÉäë;—)×±€¯˜ HB’²M{è¼~7ß1 ËR¦²´ï˜ $ìåføŽ Ó|ÇÒÌ5¹Šd“ÒûÍš}I”¼aù;—s²çœ4 p1´Ì•yøúB£Nü듹â›Íàzñ‡äÑI¨mñÃx-Ê=‡ƒG%.S(!áFå è³÷Ah‹ïÉý™ÁNÑ™‚Á™9— èj0›õ?á–3"ç- ¢¦Ê9„±p’Y¶!VWÕ¥òp¶Ö9'ÕÌàW%¯©ËyLѺ[˜Y3à5•ÉIŠ}¢Üë¡øµœ¤œÌaÏé™!=Ó]3Å0œüLN†3Œ¥qÈg#°:î¾Ï†:3rpRt=7¹*i3P@ì’  èOjKì—Õd`z‘a²64bÛÎmå_G[Û¥hãå†L1ö?‰)Á€9üˆ,àù­§Cà$vœ—Mµ£³«)šÈT )Ð,ZUíîòô¥»"îf>AÒ<Ǧ Ÿ#š‹²ØÜÂ,YeñJÏÉþ lîÑï¿ýN è^Á_m+_ì9!bàãëQ…L_ûS:åÕ‡~­ÄÔëïÿÄm;þ¦Yíîöhjº¨4z׿ºêO‘}‚ùx±ýb£Ÿww÷o\Ö…1MåX7‚AáÖ%àœ‚Ì¿ó+Já•É-ihÃZhtÞÀ„[ Ô¶wß7wÉ_ru1‡ j{¥®˜ó{µP<ÿáÿ£¢8JFþŽRÀÇá!+Ê0/€{88†F߬î¶åûäœY²XJo–IŽÕ2’c=ÇŽd„´zGȦACÜb:½à@È2ƒûcöüTOÄ?rë¿Ü?òe³äƒøGzù‘ &œU]éÙ15«•Ëf•nJ‚n“¡Œ õlËW/>|Rv«("Cv«ûd© äJŸ…¬~ªÍŸ¥ªÅ$CÓžßLÜYš¢‚xàEenþ·„D™§¢Ò’†³Ñ­ÅžËÁÆr5=øJKøì&¿ŠxFäyÁ¦„%òÑóÓ6km/®¥QMü’Dâ©ÌÀéGŸ.»åÍ0¾‰€J¢b½T^zÀJ`ª—5ÕÅ:3¶êWÈI*[Õ=ÏßI­êu$×[ É(ü,8MÒâ­á¦¡ËOúHnQã­ø5|j»iÂ\oï34W#ÚëGÇ–!¼§æ¦ÂÞÑ̳M?Á1üz4 ÅÙŠ@>Š”äW8< ·ÐÌŸ¹õ²„%F\²åÉ Ü=MÎ×Ãm!%•UÊy¤~‰5ÚOÍ3›S‡eÆSM¸¡8àa•àèêÆÉXðâ¬(jäDD|ø2Ý2‰¥eÐJßU™xÈÐ;!)·¢\uÜ·N©xo&Í{¦žÒ¡ñIÞRy§R ÜaGË\ÛßÔ„¹¯¥LRÏ”4nm½¨Ã¡Š&¢:-Ÿ«J:Þ§Æ.¦}b¬*þÁ+ÏÛùôæXòÇ™yͳNƒ[^öíÝ2wiN㸽aÀ:4r7IëîCâþF#è¬ÔªÙ wSAóÇ-ú¸í÷N6´ÎŒfËìB×ý@B° -rïK"ʆ˜c9r†½¯Ðø2ˆÆ}DcÛë« â‘È#ݾÑÌ>j×là» ÀMD¾ÜÐÞXaTIT¶Ã¨<²Py䢒û_2|ˆS¶B ±pbëÓ_øá^T\oO5rŸ¨/Ô¡»F~±{5ŠÐRƒ¿9ü±6Û½21,#Æ VbÑž~öQ!)§3à`¼¿k¼¦Ù¸I%K-Á »!£Ó*ÿoá= £'p2XÂèL#©3BÝ$°?`D:Ÿ&…¡èI‚U ’wU>èWÞEÑ«Šˆ@N¯Æ7õ… vì6w8ìbaØrR5*ìµ;qFV‘Ÿf€cä‡.¿t«Nt÷úªN@ˆêè8(´=HÜ!äÌo±/o70øù¥âÎü¶dÜ@ÔïŒ("«„RN§ÝR”ÔïL‘™Q÷nsÏkó÷åqm,¬V U4÷CVcw}Y|ݻٽ@³8|·Í…(“±Ÿà@Xÿï =l¨P.Z'‚a©0"[Ì#adûnÉ,¬œŠ•*ž˜­…A€„PH/Ù™Í9šQæ£VøGk(éx&0‘%=NÇCŒ|ÇyšhÅ#ß³F¸¤Š$9„0bGÝ`ˆÁ*¡–º½Ú,¬yLÎb0Š;Û#VÝ™d %©æÇ ×þîÝéÆþÒ‰*áp&Ñf( ˆ~ž¥“ÏÒÉ´ŠÏÒÉ*Œ¶ï¯” ÂY¯‘&Áéx¢ž`x¼ôàx•"IiYnƒÆPpÆgŒ‹‡Ax#ïÐ^¬)ÒÅrT‰ÅþÝPý•‚_Äò’ž•‹Uî+S¹¯@eÒ”QJ9Jše¹ wÑËLÒ‘_ ô]ô2sè;ÄË«Å÷û¬R‰Õã%µµ; æÕR¨ùm9ÔÜO‘Q豺ƒâŽß–BÐšúýQÂI®H ¡um‡ëIÜ•]Îêòr¶¯®õ к™-+ñ¯Y·ð;]Iå•z{˜Á.{ ݵ{§ èÂÁ&Ǻn ¼â0#AÔõm6™l2ž$Ñq ú¾¼Pºµ ÞNÓE[4æwÌ åZ>Ÿõ0cÖäQÙˆ*QJ_­Ôj£U}køÐàj—ùÜp” ‡è: ©~ŽhŠÓjÖºÊ0@~‡zNú–z}×ÿúûÇÁbŸÿXRê8ýÓŠŒ}þùâG’fóyé¢S,TZ#ŸF–² /1`Ûb·LZõ1P¾Ép/P€„ï pKÅ <&¢\3 b%QŽÈ)‡ö! ä¦ ²­‚„Ë+Gõ{dÝÅÛTö¬»L;™”œ’Õ¹oiÄÓRüª ÆÑÄ»3jh×qtû—ÀsÀšºº¹ZÃ\C´l,Ýûº |>7noøwB„^n’Ž´( ý.MxAl‡ÙÚö<ŒޱÕY éïÌQÇ袯QaÚ0ª]u•t» ì¬ZöÚ²´|²yn |rò%਽œZ¿É7¡Ž#¿kÔ¤Ê$9Ë"jC ŠP…a—Ò®äb{iÂ"!udóùNg¨I¹8|•èÅ® r¯}tóÓº͇×0og˜.ÙÒ€IõN+½q´'±9ËZÑÐ`¦“ ¥æJf¤c¥¦1‹¹†4 ½^ËÚíºÞí}j·åÈÚ{_çŸkÎÀÌQE/d°ÍKq1A5ßlBA(éösÞ¿Áå`¤×0[Pö»éæ4s!&'ÛS4ª'jcàÓ[Z眄Ìõâ¦aS§z¹“Ñ!ɯ€&y š}ó*á©$>‰:+1îsë 7ò£e3`îšfÔzGfåÞ-ôÓ>G‹76Ö´†©öz¾h¼{%ZDrµÀ Qñ<“Ô+xÒýzê•'ÿøúŸéåìQõ?›ÑFÅÏÿ¶±ý¬ÿyŒ‡×›­ÿéìé3GZÿiªMé\ñQ¡/Nð÷IÊÁ³·Ûé@qúi*žuCBé†$–³(‡dJ¸=÷Ôá¼H]Ï^üçR:"+©›®”‘ãŽ.¥=ÚÃÔQ_‡ƒGæpã,ö öªÛþôB¾‰ÕL—±þB‡xç˜ÛƦNJ¤•É…ÆÅ"V@O——CŒñªÒL„²É‹È‰¸‚]ŵZ„ \ ¦×é¢ }6¹âA B¸ô1\ïº<À˜Ë*Lûe‰‹É€ãž_LÄJö1ñ™R1[œ ˜¥Ò¬ÖyŒU†WˆGf l¼eÐ1ýLÆAŽ\”v„ÆUâþåÈøûf‘pM`«l#œÓJ`††!iúN&£$åÃdÛ.\Xq÷¡9üºEM™Ê_bíÊÀ¤»â®ÉgÔîC9ÈQMÆ0@Úa)Ó°@.#ˆ'¾I@&¦%I@ñi£SGj˜œFÅÝÅÇß5ŠiP5ÐG¾ð æ1E¸HßúçsÝgõøãªÇiÆ]]8¸Õ,ˆHÏöœÖ±+€÷V¯#ï[Ôjöêub”ÛòÞØK¹2R$ù­kǼ{§ÉHÜE…n³ÛëìÂoü¿º·ñ¯ ý"ùøÉA2öGãžYW]=¡€ï˜Ò k®{‡­cúÕ=þzë{Ø ¦,£=@¢þÿY‹¾¤=Clý¥´æ÷Qq‡•æ ö÷¦ñÚÝ-ßÿ)iÙuyà#Ò«l»U2DÒwÃèuO²ÖÕ:œûXtöºiÀ!Ë…AЦ¥¢!’üQ‹÷ii{á k—Izæ4“ƒ”È|0ºÚs>&Y@cÌ^¨Z=XMsðÚ>tOB»C|1žŒÿ=˜Nâ«/Z®#{Šy—‘‰,ŠëÑÍ̈E@€Ì`p›»×³áh2Ž÷>ŒSl,âr¤öoŸ¸Šñ=…ù ÷/°½8nê$¾‘9fÝaŒV°mÓA@ wƒáÅ œu†•Ääš-IO ÃSÎ ÉoÞ nPÚVD>%iÀê®|7ƒC…æÄÒZ²vxR®ò"Ü'oà ŽU7 IÇëÈ‘¥ †ØW®–Ð\Ùn2—˜Ë eš7£¾ oãC¸ÀˆþÙ,×?9 ~"Ôå øç žžøG 6!,oõ„1¯Oóê.l÷ Þáf ÓZÒ¿¥¶£KÕi™n×ú† ¡©ªƒñˆ²OY6g.\ÆnQcÅ]’‡S#ÞSc¡> N·—Ä©lýÀìÊ1õ' 4áÌBÆÀ¡àZ‰¹×úømÕóùŠçó -œæŠçòÀ˜ËWw^m ¿Åžd ¯‘¼NT8ÖÕ!öw‰ØE±J¹Ë†¥½ÏB1§Ã îºÌ‚ eˆJ9­€û±F!L'œnèâaˆ2œQÄ{ÃÃcL—G°täØäùï.š~ì¸1¥±”U¸ðøï.·£ÍŒÇÕ]лìÙ~_ôfeáŠò‹©~;ÃÉ“4-)Ó²:ö`á´X›^V.!™úîËRÿ«ŒgÐ]мìɽ*4g=ê3œ-ÎgŸde,®à WJ|\£ 0ÂËa“8ýÓ,ÃoÀÕ8ùgW4¡åðÖùÖ pCL„Ùo]2Áä[èò±lJÎ,AKtÏé’òÚ=‰uÌ/ä7yQ ʬ×ã§ÃX¶·™)„@rjŸv»…€ b]‰!òF“ž4„KebÉD’&Ý2œZ zÝcÄp¿¡–j÷Ž‚a[&­b¶úÒ>’ $Á *˜}¹ A‡]tÕ?ÿŒf±–šˆì¥/%™%Û HyL‚€'®™"…’BCÖS6ûŽi¥™í|Û"x!=’DQö¤Èì(÷1ï‰?ÂÊYŽh=YÑJ¶¦hÉÜ›tçâ‚ 7¨;À\pá¡yïQ2âVHòeø…Cp‰LþcZ‡°²lîc’n š˜ð®“è–…ªcKzÜ[,>æ))IìÈOø†Z0É¡’ŒÝ˜®Lžg’ô娣ÅÞnÞ»·›‹z›Œ×v&¼&úLUÒ¦Ú°±ôGÃæJº4›A„˜”ÊVFtâ”…ÏÐ1V¶V©©n‚–©c‹ÿ~!+Ñ*f޽EqíP¡øìxõßúøþ_pÀ>nü¿èå«-Ïÿ«²ùìÿõ/{Ûÿ«×iäBÎóOÍaënÎVÙBð©â¦½ª’}£ (øgŠÛ \9y—>½ ¾%»% å™`øH¼öçOÕëçpƒ±]N^(Üe=OÞÑlúMn³ø ðT›0,w”e}Pì»´áðÃ|Pr•Bf/”î` ÎÐC*qy3¥ ‡ƒy8š•]DÎϹ³ysÙÍiö‡Ÿ†h¬É(/:ÆádGÞ¿¨…†XìØ î‡ÛeÇPþî@ §Cº¦“;\P2!)ÅÞ`ìG!ÒÎPÒ%¹ ¹#ñú‚Î>†c¤r&‘“³Ã“°— +Dö÷LúÓ]ëΦ"ÎÜÌØdˆ §“ ¿¿žN>MûWb6øD›ákcT›Gè‰)õµy“Ø'ù~¸ŠQ ®€÷m=ª`°°rRuÙO¨Êöݪ‚N¦}Òµð‚¢ üÁûqƒ¨î¡–­VË4þ}”/»l@ô>  %€Jj›VGtBûdÑç{¤xÐKç…œ,»B¯ßÛ ÀaÂ¥:þkVQб¿ŸŒ*¼ô{t“÷$“ö•¸` íèðc¬Ì“MÈ%ć4 ¿‡õ¶g¾Àz[[{ßÃ"˜çe-¢ëŸç_ˆOP§×pNñ¿gi‡ÿJÐÒ¦;ìï 7%<OË¡‡$jTgw¿¤dQx³€ùÔHDñÈ£@~Ïßá@R²´ß¡Káñâ®OíH#£JJÇqŸ³¸ÖâÖLs ®Ï½ÎÑâ^;Ú|¶|Ü¡h¡ŠŸW_ß/q* XÉøÒ«@8+% id+¨ŸID œhãõè5°âˆãÞàÊŠM£êµˆÂµ¤0kû˜©&-À,”?ÊLŒÄ`ö÷‹)å ¦¿ß k.\Yy€(n`>QÀ½Ž•0‰‹@¶˜@Úd'î¤õËH$, Ž{†ÛGÊœ`Ö,”ó×zôz¼€r„Cnü¯hcë•—ÿeksãYþûS“+ÿ]"þׯ!^6ׂoe ¡µŒÌ¸‹ñ¾fv«8 ’Ф‘£í FErê±B¹›OŒ°Æ ] IHÛIbg2ÅÀé«ÉøíÒÙ÷í‘§(vëœøq²s¹ 4èfxù-TeNàÍ·þT…ÙÏ!¬~6Ùý aE1‡žCW=”Ú`¡Ö!Ùñ¤2hm‚a¥l¥Mb€© ú!–ÄoÃŒtp§‡Kõ´uˆTLÓ!ê,¬\6’FÆÃsØD)¾bn.?WoáDWâGMÇ ¶ÂÏý¯©ÍŒ]}Æ’8g {óC%Ç?‘@xÅ!a0£K¨[ÿeòä@¤”%¸ÑJž£“dŠNr/qúƒ1¤Ãޤ#(”_ Þw¾Z(ˆ×ríú:–B)ë]ÄÛZ©ÄùKÉãƒýÎ(¯ß³Ãw•ÇÛ„§¶)5Ã]¼®òåå¼8‹¯¡ê£q ¥¯âé·¥ìVä™ëaÇ|ÍŒÕÁ8Ù\ÆL–Å/h&ÿÍ/7þÿæfe[Éÿ¢íM–ÿE¯žåñ0=;ò¿Þž<`;*‰’\BÕÎÞr¿  %(ÌÆ4ž©ê{x·|‹ôußeµ–øØŸã7Á n©çŸEâ¨Kù"2Eƒ¿eéDrŸäðHþ5›\Îo1@1®42’‘ê©·!™¦E€Ò䛦ôs2šLû±3@”-ùTýNô½ežæÄ.’u®Â®s$ãÚQ‹6{{pźº¢MmFÎŽ@ã d E®wH·›ùSßÌU]¸²Ž¼’{Y.3ÆD@ÌruöP ÂÎ%ª% ŸÛ>ºÕ¹¢®ºQEËÙJZÎæÕ//n>œhóÇä)ZÒ%òÖ ycÙ8»ƒzÒe6[ÙEñÚ ñ@i„øÅÒ®TÌkëÙň…„&ÎÞ¡2“{º+6ØÎÎofÔØCa¡I<Ùõ>a­ìÖëx³ážaÁ§ä£\&û<]Ì  .^‰þ{=ø÷dx+hãõvqã5,'šË™<'F}ç>ÿ< ” Ÿv‡CÃ[‡¹ `.«¹­×/=€ç<°í+åSrCî`š<Õt<˜(ÐvÜBÒhNÙP+£hËŽ—Òµ àGá•Òév ó/Õ?S)m¤{TŽ‘ègJŠ{ÞŸá²Á¥Eü“E–á RIÕ'8þÞ7qñèý—tÖš¹:€À·ýµ6.é,PýÀ‡•´\4a°qIgIë‡V¿\ZFßÍ•­°0±a­sý¨Á¬eWŒ¸ nEµS8íºÜÑ`Ërµu¨íûVŒ¬=£.÷Œ*žæg8hQ!)Íp_ýëFJec§ec9×'-Ã1I„:唟ÒÉÀšªl䧉ÿ;ùÊD!Ð L1Ìœ>„aŠaæ`¡ÛV5¤ZÙB²*’æÃçiS~’†9ێ­¤6¤ZÙFÊBúb²àÙUg~„Sž]y˜Žßæb‰ƒxrq±øÞŽ·¤c8~—r[Oø8¶žÄ#ÙzÒŽeëYp4ÛŸãùÜ­Õ¸›0ºÃ{;â~nâ`îqàFÅè.n`0tàÂ}à ÿ´.*ZrtæÞåp ¯Bu8ò2Pß…×b†Ã1°03Žî*5ÇŸ÷€óŸÄN󼱚O–nQCc4²[áop© …QkRé$u¸·7ð…~ÙMšï?îvŠ¢Ýè¾ßÙá¼äÕ&Sa²´±* ¥ªi/ÌgÓØO)±eÑJ³ „ 4Ÿ¨ñÁʬêïÛû˜ƒæýN°[+7>0gXØyQ:¶‘†g¦Ð !X0”ÿEÚÿkêD¢}ÃÓsnëí=‚6~]šO§PT·[Sк³¸Ÿ|VH `vÞSu…‰|sªŽUËñ¾HCA£:aì Éø×í^)ŠÃºµ{ž¿Ž® çf;bÍKÅÎ?AÔc¡ˆéÉE@“k´m/ 6%â@“޼÷vŠª…Ú¸Ô·—¢˜aÇiã…Ze ÷XvŠ¡H„ËaðÓö‹ R×Ù«B—âÝ Ž.úÄ5vöþ¿õ?øB„Jñp)N·]O´11ß—à Ü&È«2n›¿ô·Ðq Ÿ°oQd¸ 0ø+ä €%·ÿú ÂɬbãÜÁ–[1ŒtFÂg¸ä r¦pË!4Ž×#ÄòÚ3kLþžf,;n)D‡¨™žÃ%·lØö_3·ERdgJ¼›½`y<¾‹VÛŵH^Æ6 §jzŒ½ãÉå-—™ïv«¤’P,5ͨÚȉ>Ö˜Hja”‚¼¥‰Òß±Tq#_½ŠúÁ§.CíÄjF¥±Y%ÿMæ1ö=Ô€«ð|yá »óžŒT6Šñ:w^«Ø ÉA²¡Žc‡á´a6öõöŠ=LˆMÌÇŸëÁæ¶wB¡£©Uu߇kÉÁÑØF'Ñ¡QTŠ„‰€B q~L§¡bµÈßÚtŒ±¨iœ¬Ñ2Ðx…Î$ †"Õq´YD>æÝx$Õ¬XµŒ:ùÌÄmq”0•4I0ÑÒ¿Ö i!ôV<Ìü©^5öÃd+L±óí~75tiICÍ~(Ø6¢…_âý$wâ‘Vx—:’ºÂ¢·]UEp$œõ¥O ïÈ `‡ïû6W”[‹—A•VˆP ¡š‹øcW½{+/>%Öšý\´×ė㨠Œ7ãh™%ÕXp2íÐä·Ê.ÈmÜÿÈŠ ä,~ÀFè|Kdä1ÏÁä³À^ Tr?ù\|ôEªœý4ðŽƒeé€|LÁD³{€qœC€?ës@s;•ììN—¶ûÐœá°øÙö½@÷ÕÓÖn‘¸à«£u „Lb¨§³pnæö7.Që+äoA…ü½n¼/)jFrYÀc} ]#ôJ‰œ{„Áa}Y\$âŠf5«Rv&kë•”G'û%‚øìŸù"‘‚¹àR’ ý¬×ˆ„{Ä]iœ 8M°_ˆÎEÊ]¬lPú—{^&’&‹fŠòÎü·^'žoÉ·‰ÀÉñ0× ^WhxzÝ¿LVEM œxUÔÌc?𪈷‡/æÁ±nÞè׿h¹É«Å—;Ü,ÒN µÂôãå‚™)xüY®w<,­5rð_wÉÈNÕ¼ÛÓwš¶¿ÄGE-õ¨ˆ ؤð/óЂ_š¼ [9q u4ðÄ÷É@÷3®ou9øîY£õ¬:¿ˆk棜¯§ÄÎIŽ6œ‹!E=ŽÃg÷é.ºnÂ, †(ë¢Á=OŸJFçr8οӗ*";†å–Ö‰kW¡{‰bÐÉ[vŒ±Îð&ÁR¬Œs˜*½Š*9úŠgG¬ÛR‘ÀiâÈ.ãÜ ~585[Y$HK0s¤ùÛÏm>æ§î5ÌBih˜€ŒÝ áæî†©ÖÜÚ{”p{nÈ©†‘e±˜ºçt´wŒ®åÀJ‹h^…›¥ÛȲyG7Á$ Œ+nvQ„ʾ>š1ád>%$ ÁÑ„4«'q4)R‚ Å Ñ­17n¬tvýGç!J4›8Èá}ýŒf3Ø}è˜<ƒ-ã‘ä¼Aò <¹\èÙKÎc (õ¶oÈ/ráÝXu O?øídúe\ó meU mÉòtdE³Ƭùÿw2À–,‘EUåP•aîUpû{ÉTh{h¡ÍÜZâ>ÀØá1ÜPŒZˆ;)Šƒjw—FÉî6ÚÇmh¯ÊL"¦%ƒJÝV³ý>žà·ÉlÚé·V⨉'´}ƽ^v«Ç»9±ÄÝ=c¡¦êUŒ‹Ÿˆà¼Û½Œ¼YmÕß-°%¸¢[m‚7¾ä^§ ¿»n½¹ÂôÕ¦Òj´ðf@c0v:+º«’î…à†0€£LpÄÅ€¸.$ÕÏM±”¦ÖÍQ;ú»¼Xço©÷ñ×#¥\˜í€—.:+À¢A'bäEËï;eU…—°¦™$xž¼¾/ý”pËG%¸OÖ…§˜å` íK[¶ã:»ˆÏð ’à´¯x+ofšQ½Ð²:ÀTÊ}Wêsz [!Œ“¥l.ÛBëØóùdª" ö ÄhðÍ— J&¸Gèmá‡ó Å:œ‰ù÷k§;ýÅÍ9ób³ÝóÏ7SqÙÇV†ÿ¦4¼^[ÐÁŽn‚¤ûoÄQ¡W8*ÞQ´¨ÅŒµþ®»{Ô¡n(­Íø¦eÂîPÅw¢y9€‘+ÿù„tXTewâ–D{jùµjÒzzÌ®u[øÆ¾>¹ïÐç|¡GßñUcyáW2PìÌ*¼¨³ªÇe5иw3êr4|Û‡ÞÓDÈE_gð%™úâbˆù[F”R–l-¹6âÃÀg E^êf±üçüDQÑŸq_Ä6b!8t…ÛœÔ*2qÀB<*h GXøŒš#Îk0xP:­uã’_’zc<„s滤)NG: Ñ¡µ³6qžOŽ$?¼õ¤ÚQ¶ ‚¬±eP5ƒR·2¢‡…ʯê³$û”<£+bP÷¦ês JͬBAkíZäy_Î2ˆª wôí&µs‹«Ô qÜ­ œmX°73ÎVkÌî vµÑÐË ¢žãŽjñ¸éö°köpçá9nGwè&ìf2™n¼IŽ&Ÿ†È³F‡O"9ü!žur…Uq3°bäìQçß!fV¾t‹jH;RîX†ø=»š½ò6$­Ò­t8 ÁÅšÅÊü:@ùäX2*ø>´ŠÌ®¬×@µÞú´á §©µ öfÁ. æ§³¦WïýVÆq³,AýŒq‘X‡6Iù„¡Ê·Õ*’·–eVQ'Ó*꤭¢ÎÓ]Ecu–_E'1[vŸet²x%4òcÖQç×QÓXGD¾÷\G²µhiÒøC—Wë¨Õ⢠º[©¨Ì¦·Û ÷mÅÕA¯(4ÑRMH8iæ!˶!à^BkËr3có¢ õ*;üZ5^/-‹fgGà´¡ÊnÿüsÌŠš<Ùäüü†¼?'c‡¡ÃÎÿ—Záìɬˆ;Ø}Föͼ¹á|÷GŸ&ÓáüóOM6 ¦ý+œ‡³þ YvÔ8À½ãdspñÀ?hŸÝœÍæÃ9…›†û-À3(/yä«þ¦Þ.`癜aÖþ'ÜiÜJj)+ rÚÍÙ&‹6L‘:ü7ôu6á+±‘h†˜ÀЀ_õ?Á†bÜíøSô‡ k8ošê[4!Ö’^$÷­ø=OWrÊXZ¶ýçÛĺøÏ÷ÿ”¬á*ІN9hød™:-;¨4ñ^½ÅÐë­ð¹ é+Tʬ*EòG`©RäTº§5VµÙ<.ŠÚûÞ;øÕÜÝëÁ¯÷Çå¦Óxû?uß·vSįEÑÀ]öûƒÿÉ3ðþx¯‰f8d£-°PÏ©ì°>4áG{¯™‚ê°-ÖãZQAç»Øß%­¨œj)£ÈlEUø'ÐÝÛÝÖ±iK…Ø¥vjÕ²©ªÃÔ e˜Ì‡òô,¬ê «zØÂª~ «íÕ$ZN2¶ÒJDZj±kw×úZw^‰š‘Η (ÂÆë•m:eµ} ,ö¸°R¯ _¡-»ŽMË/]Âèm"Ý5Ã|´”ÔÇç’”GƒÍú(žEÂp’$QN]puð-Ï¥2Ú{U ©×Ù•îÿgj)ßÊ ñ‰mÑB¦pêã¨j›Öië19˦õMårVm4¡ š>ãsSwͶ0Bë-m„×…[5TŽ˜Ps’”¹óêeÄß;D ÇêmHmÍ a¶Z4ÀäNÖ˜x–—0®Û=®¯Ê¸Î^(v ¢ÿž®S©l .s’öâE|:¬að\N1¨Ó{•bk ó(Çqó”£ï‹\TÕƒ£ß~ˆ"xa0öeÒ‡µ1³6Ð<47½›Ý3zȳãn¾“âµ%ášÊ(ŸkcΤ‰Îz›Ž“^ŽÃÀQ¿Lc×zPyÏ]вçq@–D— @9¦ôBBXz<›Œ¾šF3RQW {>Û&ïˆkl²<{Œ3ƒŸJ€€-ë}TQK‹ Mk°1¥É¥æÛÆÕ5X¶•†ìkÅŸ¡¯¿m+‰k;Qr³$ñ{ÞåNÀ[½P–L¿ÙR‹§.[™ÑnTô'Ù ^” ²$ºá{Íyá{‚m­†sQ¥ÏÈL`^]× ³µAÎÿµVÈÍP3%ìw ‹mm¨iq)VIɵs}ŸÓc‰åðÉõrÑëƒF “¦â¯<ô¥—D4òù ÓRs·`/0=Ší£WëMþ]2‘šrcJ¸F7pšºÐÜ›­t¥ŸÉvIn3 4¿õ·ÉЦ©äe0^ó =á3{5âß®¥[J¢µi¦$Çb2DÀšRhji¨ÕßÜ ­›Lê“ëï¦%Â7Aûo¸Y±¶4=„l)c^% x±áÉ6†±µL„7Nµ/ùQN†!&ðª8èFªÏ,ICX‰¯¶!ÃLi?‰ã6ä­vqï€ø_2ñ`$Q=åáÈÆßH©{¹—ñ-¢EÀØZ8$  ^!shêMfhLq´O‘š´PŠç"•Ø„ˆäQÚ¯*;'^ð™f®¨á”O8sÇwÇ*'®íÎ[¸¥à*@æ ¥|´&°o‘Ýó ðÕ \¤ër{µh‡ÂÓ~H¨¿o0€:æ $p†íAìFQàlSžáDã{~C[t€·ï{€ÿ¾`õ[¸ ¬º¨pðûjOòƒÆzôº]ä_ÖI¾¶ø(6 è‡åØ3Mn3°1Ê{ágyØóÁ8ÒSwG<îE»„ƒ'¬Ó.À~+xÀ§VV'öºþ?Öß\í˜@Äýäƒ^ž¬YOzÆ«‡!éƒ{løøhf>÷U‹ê YÜa\.Ñ‚_†äŸþQtÓŸ‰<ãéÏÄ©Nÿ¦<…7þ6‘ú¼À‚êºÅ윂[Ã)Ÿ:ÕËq i-=§U–Ø_mV«ÊÁ¤³ ,ìÄ[,b}evëÏ!áÜ'àÿóíqý¢—ÛÿŸÊ³ÿÏcœó˜N3¸E•ˆ,ÇhpÏí¦÷ϵԧ`b‹IÖ?z’â¡ñIWfÞ<¦„Êc5~´<*ŽQ1¼”4B$PLŸúDÃS ÄÙ9 cM¹Cva÷ ËNO®#{ñ¨œŠÛÏÃóÏñVaONÃh¸M '‡6?ZÁŒ•R ´9l* ðq_YÐ4G:ünÒöB¶æf_»}W{^`» îu´™@fƒÝ Ψ]yõ–ægƒù-Ngÿâ¯þ96¢ºbMG$þö†Ûƒßí?äç¦üüKÏnö±Úî¥ÛpÛhÁE¤U*”MÈŒGeT œÎ]d|"ÔiTJo·u¸Z›®‡ _oV;=4€ê¼ï­Ð¶*6¤z(+¤ÄO4ß±UäMaŸ D¦·‹´ÉÖ(69aHš>³ÉIÀ\åȲá®*ó#nfcÜN ÐôñmH¦¨ ¼ò 4mÍE´ùË} ONVfxâÛ˜¸€´Ã†,QŒžK,rQO ÑšH‰6–Ã-Ôc¤¥¥5°y·cëP²„*­È¶kULÊÄ/6 M†2gq/´å÷Íõ‚NXVœ^mZëÅÁ°qÊ„è [§Ý˜Ð¶®6e£Ë° ¦çŸ äž¡óö J%ƒ­ÙmÚÜ/*ù‚Øë‘a‰ƒ½Ä=ç 𤋮‡°x'8ã9¥› ïTºVÛJüû­Ö°L/ÑRïù43Äî@õcÿø [ ¼læ`½RÆH?ލ”;>I}¥u õ¦¢¤ö&âï wI²ÎnÛD¦ÑÀAl|s ŧòS,NíUFÉ®Š\Ï‹©o©Tìzªðe¹Ã·öo[ŒY=?¿6Y+=bœJ·Å‘»2LwE¼—;ò–„/{¼úksmDû¤dyåÉ#È+}ùßôröÈñ¶¶·=ù_ôêYþ÷\ê–ü¯³§C¨Q.a3:`ç]7ŠVÃßðã$5þÏIQìív:Pœ~>é@?.7„Ätæä„xB®œ–eÄ‘ËNNŽ…‘{ñŸK爨å¸gvˆú8Éñ(–’|…ªœ31˜N'Sq6¹_Ìhª5‡Ãoâü—q~ƒÙdt£ÎÛ¾´< 3ÎU·ø>߈HÐwL`Ï'ƒËËáùù)Kh…2 Z;£‹3zšYz^§‹Zk{„^~äç6蓬à-…Èvp@8¾MY£àb2`QÍÅD ¡d]vÈ”Âÿ0»7àà:¨àyLx®ÌûØË ý!™h…,n´kÅ ¹4‹Ƴ¬§×MZ!s:êbkômδ‹Ì;å{T¾PèÅUr½¤ÂuYøQ8`¨!·Ã_ nK`Å8l†­“fE1,ÊŰŸŽ ÆìÆÌ©ÑFpR–}xNŽñœÜ›Ÿ59Fm â­‘ô=úu–˜"âšAm#¨•’?‚“%Fpw¾ê®Ÿ¬ ë'e†äwÙ"‚of& ÅuZ1!Z d°-Ę ŽëŠL('n*§ãTÅÎ:óNìð&°N0L•ŠF7ŸÞu¼`XØ”dÿ²FB‘ð¢ŒÇà9áÓrøÕ£dQÀVçh\%î_𨳪‡€™@$\Â*Û§>£æy4$étß:7æfIÌlG¡? ân„søu‹ñ2€Oá걸¢¸±ƒ »&+U»å Ó8Ã)¡6Œƒ¸<—ÉU>\jRM(ÒD’ (>PgWpÁAj˜RgǙ뿛¦UdYkl.€!f Éâ[ÿ|®;ðœ6gEZ±%¢GÈ·‹G¤]çˆx @í÷ÈÞuúiwè.Ж·æ^Ê…Y‡} ûíÓdîÂõ»ÙíuvQ` ÿW÷v#þU¡_âä s“…'³°zB‘d•ͦס@ p÷<þ¹lî¡1 E¹ÈÝ"1šÅsf%3ëð*KH¡çÉQE–ȤsŸ´7ᲇ>HÕÕž£v%SNñúÏ–yyˆô*Ûn•%’õxŠaàò³Öýݯ{’µîJtöº™%ˆôÉ„þ`Ò ;â l…ñ°ÌußuŠç§x™”tfQZz¹@ÜÞñ*œT:|¼²ìʘ½Pµz°šæàµ}*è~…¡ ÉÎx2þ÷`:‰¯å˜íÙZ´·Bæ³(®G73« PÛH4Ǹ¦a÷z6YAè _&‚Ž„}Zà*Æ÷¨Væ÷/°½ØÆeßäœ{¶ÂaÛ¦ƒP<‚Tºs²CrÂ’˜\sfÊ#<3Çç7o7(ˆ¤°åU²ê½\øNÍI@w-]œŠâĈ¦L´Âå‘HÒÙÉr•‘%¡ÆJä¸SKh2€l· Š"ß›Qß„‚7ù!\~Dÿl–ëÀŸyJ¿ŒŸ}ùþy‚§/þQƒË[=alãëÓ¼ºGÛ½‚wxùðuÀŽÆp&ÊTœ²pJß.44m´8O€0û2^\ÖŒË+ÜÀÆŠ;cˆx¦H¼µ^\°dʇ<óîѰøPq€i€TÍ¥‚nä@Dí$":^{óIާFIt0£Š½w9*~{‡rÝþd´u˜†ª7k!G?f1’xåi. œˆ¡ðœÄC=!ã†}pØÒ75êÂe\4ÖUCUÂ)ùøV²¹á1‡­ÄWæòÐfT€Õ¡a;FC‚ŸáQ±ŠŠÄ&Ì&¨ †÷2#ò|¯î$Ç t÷ÛªþŠ~PÜ Ù¯R‘ýÛ}éNùo¯¿K<$‡·¸3.~_-áÅâéÀB„ç|H®gí¦”æq6Tå1šŒünˆ ¶@DöPâóS‹q0YþËEwœ=äîcïÖtX)¤¿ðèé.GùÑfÆ=wiÔ¥>þ³uYO«•n¸ÑÂ#n1]ngØc—FîêŽ3BnÖÓ,™.MËÒ嫌[òÒ¨K?œüg겞föcç³OZˆ—߸lŠj§O$´Åç‹i˜¼)|ŠYÐ,×ÊêI2—æáHÉš-€·Î7€Ë5m³/³ßºdB>Ïè÷)‡)±.Ð5ÒE¦ß10Hî$Ö9¾ßäEy4(³ž÷SœDÌ>Ë÷ż}Ê‹%RIû´°{Ø-.—ëêj™7šôn˜&\*ß6“4«öÅñÔRØê+ FŽeza©úîx¹7³ƒºáš_·Oã$~Hàƒ G_ÞcPÇa—|ñúçŸÑHtÀ‘½àš§h]MPÒübΧ$‹b´¼c'\Úãš)’y‘7îïe³ï×Òènð3UöpL:…ï%3g¶+^°'½@¦.¹yOlôVÎrDëÝÿW²5…ÄæÞ¤;\¸AݦXíUú¡yïQ•Di†‘$¼r$áZ6¼š<áÙr„Kº)hbÂû{±T°kK{ÙÄ‚ü 5%‰“ø _Ä &IT*™‚-L/.É_Ž?0bìíæ½{»¹¨·É¸mgÆmbbìJzfì¶ ›±èÒ¬"1+•­¬è*Ä5(»Ï¯1f¶V ©Œ¨nBªmS‡ÿýBV¢1 è=»Ng¯û«G òýfƒñ£úÿT^n½Üðý6Ÿýãaâ¶ýº»mX:ïkEåEÈþ­‚}¤TÖÉNq˜\ìPmOÍg§õHÌ–e™oqH¢¯o¯!›œ®P°‚û¥_"€ÌvÎñÿ1ºƒ¦xöí­8¦Q?Î6vw‰9_8¬œÔ××´Oc»GÓÚ=Þ1±=¶÷†ÜUb#vN%™`bhòL+Àd:ÿ<áX•”ŸËTÑÙ–¹¬R¥íÍ)[FJ¬¾·C#©õ¤Ó«s`”óáõ” ÒÎ*¡“¯a*›:]ýÅÙâä52Ü‹4·! v¢ƒÌÉcŠKgÒ¬Îw•34g¸ßhß›.ÇËíŠó1ÁZèK“Òýk:‡‰/ã)o³@¢pÃ¥y‰“6ãäXá$HøpgÅñ±c¨%%ç±ëUFôf¡ hÕ„ax“^‘¢ç¹”Ù#ß{»ï”akFQT¤‹OÞÛ¡ÕØå…#ÊKƒ]FF Å ®©Òज‹Ò7 „G ãB^Óx/²vOcù¨BêìjríR+ŸO¨`ЂÎ+UµlK6¡Kª ŒÖC‚}¡Q/þu3€c…|ãÈ‘õóÎ`"þ¨ìœ"ëØ(¡„P¢†“(Ño‚¡¬:’\ÂåpŠÎ{x̆`p–?š€®àîßÿ$M@ùÎÎEe Œ…Q6û~Jѳ&r–w`Ɯڸ+ÎìÒ ]º»q¡_Ñ `ÿ?î?²ýÿËŠoÿ¿±ýlÿÿ\»¶ý»*/ïÞlµÿ :7e¦uqÜIMÿ¯¥QzQ´Zd¾.½vÌT É žÝ„žˆLþ=53Œ|…çã¿WÝÏ7 YÂH^]õ{÷pGåD€yìyü±““ãIÏ' «1/ç{ЮÉBRMåñ†`ÙHÌäY.Ï/dRbËqÁµØE0ÊèV)°ÐZ™›JÏÖØ)S­ ü1v÷fý€¡½5ú yý]ÌèmœÞÍ€Þé}gÊó‚Ëb(_…VÎu”º¡àAÍ]÷‡¾Á|wa}[&@@jØEjÚØX—ë=Mð— !ÔábŠM>uºMÖÉiƉ65¡¹¾²Ñ÷Jš`”b;6âÇ6³Øð' ¨(ÉxñÁ,ÿ—3ùï-0ô' ‹‡µ®?nfï>lÞ-—Ž|b€H&s„°ˆËÝ6{&csLÚ‹~VÇ´Þ VkéHºàý€Öç0:dÙ#*Zƒl`㘡ú‡"êÇF x’õ S„3Ë&¼þ®»Ûh#NPv\O°/=f|%ÖóôÜoe=µLëý9Te”1ùqg *éd¢’ŽM%áÓõ “ΪȤ“F&IÇ%“N2é˜dô9™g îYœ˜Š Sdf rÀPqúofÀìþ%Y]ü­L*Œ-r/ WÇÊɦDS£R¨’+‰&B‘;»™Ó¤B÷à»Á†êtÇ=oÆoÆæBèèUãO²ì¿ƒ3Ã2“wlO^È·!žF„=£î4òâK˜GkiÛS*ç1‰ÐÒ½ZÒe'sª33ĵnè øÔm!PÝ/°;¹€“@¾Œ½UÖZÒ›(Ð93Ø9£éþùüM(73¾êIõd:CÖ"{+fà´ÛÖR¹dä°½þ2qó`QDÊ>É-ÞoŸôÜE$ØÐ^izzèRjøK¦ÄIr'uÌ™%ùJ<¼«D/³¢ Í cuå¨uvÑ'ó8aØÚ‚ýnŽ‹¡¬ø?_× 7ÿA­ÌÝä ôûkÞ²í¼¡¹üª="˜CÁï­Íz™àDöíñuͲµLpTøªüd¨W<œ¸ÒîÍùhx1€ÁcâOf ÎHÎt…€FÃ6¨§˜üI6õÔƒ‰”ıI=Y`ÚVõ—bÌ‚û¯†ñ­EoQs?6}4&õ#l·œ2›>BÍû™1/P‘z¬ª¸a 9œ§¦KÓ(Y{táâG‚+w\=2Q’•ŹùÐÈs‚œh¤†g×î µ"%1·´xƯJ²@¡‘`þlÑi‚4Ù„@+$Å^:ƒ±b•€*­ zFPD»ûåÂÀ£¼³m0åb¼Ü’£|FÃ|ƒ†}ê8îEŠ;’3tSôOiÌ{o[Þîû ßM[^׈7 cGµ¾¶… çc;߯‰Uì ›Œ‰ZãmûC«ÈÙÅHÝÞl£o§­­}áW«‰…’…Ú'Ø·d¹y}›8ì¼ßIÄÛ],‡-AC­?Àr8ÔzµU=IÆl·(¬í$`Aä¼ïÕåëddn­è@-ÊÚ)c½³]r³Úë`¼n§[oÆvÊÐp­º“F ³íeI«²¤ÕÃYÒê÷È’–Åû‡b«¶yW‹‹+•àZ7ƒ1vH4–ÇK8|®©CÊȇ„Ü×$È4én¾«ø{Dª¸àÿg2m»…gádwaù$+VÛ¨[['š3ßņYÏEÕ1bN@Õ±b>nzfÌ]mÆÌ/—³cÞ9î¤Aì,‚¨£’j­/¹†—0ïÍ~7u?ÔûÔž¼´É)¦žeL¢ÛÕ‡L8g,m¿äŠü&/`a,µ<£Ðò´àâH¤˜X+ã«ÌvÖªíölBë„‹OCæÛÁ\_áP8ï“~\¶3Ź߈3_â+“½qæëx(ÈtS }€ð9žS¼ª{µÚUÛ¶ÂçË÷“Ê|o;Õ|/ÍXZÄ©bÝå…êKin©~›ºk‰l+Ú#£E°ÑÒó“te^84‰?;ÆŠÈG“Ù!²mêNñ¦_< :¾PH]åÔqØn YqÑSð2ÿÉf×Kb–nŽeoÒ®UuiV"ƒX0IŒÏLö{ÀÝn ÝuµÑ¿;¥ŽüÍhä¹H˜&`Ò-—€µöDqmÛjŒn"DôÓ7h‡gïø¢Ž¶¡¶Tb8fC¡Êëvþya¾ãüv•@ˆoÈ»(C|[KÊÊTS“ŽK:`‡ÑRf–‹s®¾&=¡£™%r¥y̵ף¼­i’!uŽh%ÈFÔ:›èqÛ•dïåº ™£ Û"]?|¡: 覇ˆ ÑÁz)*ƈ\d³ð7I3\7ˤڮ eÛ]_+|ÓÝg¾=·Ñ}8õj? ‘™uû‚Ûµt‹lx€èǨ¡Fº'M„EVRMàøQ …JICGF`ö­¾E’u{Œ„»â–°1xct‹†L6$¡#YNWâÂSåû(ˆÐy,ì ŽÙ7Âm,r\¾oò_¡íËô™¶ïHö/hW¨AÀþÿûè‘íÿ7_nyöÿ[ÏöÿñÈaÛÿ£Wf©r‘ž´oÛy>N9RÃߘ$ Õü¿»>1;þemðMŒháR‚>ã‹ÐD8"<,ÜŸù#Ñ6? ë®æ¸M²˜¯å¸múPÏq–3ˆÿ³‰‘À¾â„`h¸{ÌÊ{…Œ3`Óü]ËkΡ' S…J~¡¢©5ÔÎãÔæ8ËUúY#î–L¼]ËØ2…¿#  žÔ’å‡38"ásûC;«µÃmAYmé h'J0Ú’õ¨0öTNb[ ù*’ñÊßàB\wÿëdH~êÇÈIÓ}":±„龊ωV(ˆ·P8û¡ÙdÏòNéºYí's†6wµv÷®Ö’ºJtQËÚU.½ «¸<…H5ì±»9~+K-ƒÚͬG¯y±¤¿]¥äU ,džkyôjl‡‹¦“[ezf *ç0èªS/‹–i»~3øZ¨ꢚ¥#–}ÕéHšXÕ1/N3¢W1+¡V–.°üª– 6¢o)ë€Úݯ-áPÓݯ­ ûµ2ò}êV÷3Eد§&/à}ÕÛŠå¨l+gù¹žÂ@oÛ²ú‰FJ}H©— 1§Ò–ît)¡½¶s@à§À9<$~°]žÙìZêìýÜ'ëõ«+DæA˜~ç#´N3Lªÿ@­ó›éÙÀÏN"=²n¦ˆJÇæÐ9ÈìYï&0>É ÜŒ9üÞ…"Øe³Àf…ñëÚï{äNéw {Êv+Íä.+ƒ•*F´Dþ‘LW¼ß#/|m¥2ÉL¿­ p©¹û¡Õ¤Ÿ¢8ÞÈ'QÈh l½è÷·ÖcF´ËhwÂ$ÈÜc§q¬.ú âà9æ'.”f¶Féâ„jk“‡1*©NN0‰\{_™˜8/ÁÎdSšj$šiðbˆM%äÍBŒ™Ejvõl¡í€„oÆé²ª‡²¥[È…aÖÁô ÃE¹d$!ªÏ¥€FXÂð4é­%/l»å72Z)ã{å×­e5|øÝ¯[ÏÚn¤'ë>f6Ä @8#lŠICDà ­§ÐXÚ“‘f6/ï®wÓ¶øjÚKhÞ»FÈCÕ æyÖ§Zk!–b‘é˜s˜yUXw©^ÊÚL¶IŒŸiÓ€—Ë7´âlƒ s×Ë=)0Ÿ\•̈r|ã¤ò/WQ…æàªJ­êÒ§B-×Ä/߈:¿-‰ýaÂøè&¹ŸVèK|š%K‚À@‘R`"þj`‡ðå?Å:uˆÞ`¯ö±Wûø¦j´ñæ`= 7ºÿ&2õ;¨[Í9[l¯Eªè’U‘dw¤•àê0aU W ¿×Õ>ÄT™À[Õsvq(²Zàæ:qsMÔÕ©9&ªNâÁ(°d4Ä-’Z;GcX—ØíxjW!$“èÚ÷ðLÊTˆ& „„2JjÀ-¾#ËǶŸUŠiîš~ÊoÝê¸ÞD¹¹[¦M!¬ÖýêÆ–ß^$¼•‡Dä¾ ë§vjöxÃþxä·Éã鑪‘78ßöLÕc X‘Šñ¾Y !%èèÌùƒ­u§–md'„$fNiâür P7êŒR,¾¯;:T )æ¤ú‘ŠD„˜­øÒR'Rß7H=Ú°+&$`ñö |_φ–xñ¼áË ðA„ÃOÄ>ƒ¸Äñ±&ú!)ÔÒçÇÚƒ ¥„­\,:BÖàð80ΑtˆÛm¼In×?E^&Ÿ"± `+õAÊÂ-½Ê¦kÒN®žº¡?Õn‡9ã`x>~æ£Á£€Ç:¶Vw8lý¨Ãa;t8¼\úp0å ©'„u@`ÄÒUŸ ,Ð_Õá°v¿ëÅ},:Â@oÒ³wµÞú Žf?áZ¢žý7Íu÷üøÏ¶ºj˜åáõos† ©v©©Îº•4ו †Ï“„K ïëµ%ÏyrðѳšÃgÝ:xžžç£'ËÑójuGÏ«uôü:z~_pôÜéÔyÀCçN­TÖ=œD‰–sP¤K´’¥EZþqUÒÏ“(zº¢­_ãrebäó1ô| -)[Ù9„ ¬ŠuEQàŠ* çðdû?›?ÔÆþ)?¾ýÿ|XyTûÿh#Ú~åÚÿoVžíÿ呋زÿï5*9ñá°ù¾(vhÈaýÿìFü< œ,“G¿ºd°ütƒüìf÷€yc憧rÃÇO¦Òi4G^G+îYF4k¾F¢"jÍjW¨ÙRŽ£O“épþù*ƒ]:b‡³tHyÓ0;•8 K0òF¬}X{ ÍbæešX¦éáKáÄß©ÃÐ5tÌóú=ÎSz‹¶ë@²ã’S.8(·È=M­«e‘f-É^·šj¯2œ¦0“D4®¢kÑ­ìjé26öM˜¯áJç˜O«`Ï–µç<Ùþ961Ÿ¡•è|ô©Êªî·X ôFÓ\8—x—W9q44†V@xn\7ÿB[Úþh6qÀQ¿úö·?›Á^áFr4©‡l¶)v@Üé¼¹µ‘;ÈtøiˆQ(Ž]lQ@dôbÇ\öpp@ÉUíÛVûÚìý!L°¿uà…,¡QÅ9pŽe2dÎIS梌é—’k£æíFëCÀ2²iN9÷÷Wkœdº»£\²É u¼ÚDÕw±¶í-ÎKíØÇÒ4Å&µÌAÂvcÝâ|Æ%˜3ÍrµB‹aùÖ°hó.¶Ô¸RöâÃRöµ l]Q©ªYíUµì=LN…Ìnr·ÀX÷¥·*ú±['ÁeW¼˜NÎHX¦)ÈH&¡%.ú¯è>6Q ¿÷²€Æ\‰œcƒk]ŸŒÑë¿JbÀꀃë8%ÓÝ>)áRe£B*éöCQ)Ó!‘ÃÚß/*$GÑKŸçæÄç ÏsPŠü„çÚíæ¾Š ŽäáÃ_ëÑëñb=Ðý$‘Ú¥ýÔx&8r”X頻ŸÕbü]‚Èܤ„¯i$¹–•YYø„“Qôûгèí)?ùßtø¸ò¿Jå•ÿ£Ry–ÿ=ÆÃKÓ‘ÿuÏò¿)ÿë4V#ÿÓîì¾pó±$€JÈeû⮺¹›ºd@¸„O à¤,ē¹í=ôÄz¿´0Ž¡ü*Â89šgaœ'Œ³içY‡ÏJ¢!üÝ2D¶zXäT4ƒo}"LŸSæ‡ôȵ‹Y¯T^Ê E)ÂxfÎ)•ÏÜÌþcå‚E3èRÒÁ”{ŽÌ ’ÓÙAY¢·¢œþø/Ĭ8ÓE³ºÛ^@[… n¢-4vù\ÓV+p$Ûªg©ã›Ô±Óxìx÷ ¥þyP(W¶Ü;‡óïNñ~v‹a‹+•áZHbYÍ©ø~4Ä䘧ñƒr7áQ±ƒ–eëJkí`gÃdTh<\Æ_‡ÓÉP<8ŠhÁûMx<)Ä=½x_èJ‘úg-ƒv ­eæøðv7(û0Ã(;Ô/Jíx10…^JÜ•Á$&X|ð49µXFTíˆéb!fÄÿžß>b—lFé`(‘.YHH!Ö´´øüf:E†‚ç’%…)‚ —:ƒ9M`ˆÓÕXZ¨¤~È\%H ñl€>tЃg5(q/”ä6©7‰ø4fT!S³Ê„Õdt!ê!È.×üÎÄDôÓå'&;»ÜÜéc»M\m¦8h<_€ë³ÄÞ”"v)cÏJŸN!’r¯ïÓ2Ot ‡ŒÿZÿëŒÝÙèX$rªì;€W¥ýÒ~$Öš¤y,Eú¹ÀÂ\=qÄ ’Áêº\ ÷ïyP…%V¸†²¬¡”xÿ—‘Y™Ði<+Vü„äÿ³G¶ÿ}¹Uñäÿ›Ñ³üÿ1^M®ü¿«Ø6 >Ö5¸·vç]׋ž¼mýÚ‰„ÌJ %‘µ:ýÐ{eBWÅðî›ìÈìû ®ßJÞ†Â;¥*´€ % ) úÜ3>Âíƒã@«¯þLjÓMÂÎ~@ °h¼]Œcp÷ÇR^+±$í °ùsºÎA™«þÅ¥˜@(ÃKŒîÚŸk™¾ºé=UUQÍâFí8Ó—FRâx†TÔY(Bv<]ômjŒì•7¦Ê÷Òj[“-ÒBjÿš¤Ä °Œ Úv¼âYQ ˃r1äÚã„Æ.˶ïàÚU)äèNL0K)…bMP‚F$])hÆ„“U)Ô-PÑ$Ž&¤WUOºR(MdBY JÑYÚžd¥P‚YöCkgìðæ™Tœµ"®€-gBlðZX¹kd6Š ‚‚¯(RzB¨ôÌŠª ©Ò0¼,Š^QsUôdÃñÅð¼Oþ÷t"[™«½2QïÇì>áøá¬ÒŒŸŠRk™ìõ¾†*…~P3ùÕª©ÔÎõN?Ÿûš$_µRµ’º+{`ÂwIÐ)Þ wG½^.ÒôýÕ\žÚjÙ,ØxtÜ/ötšfl%±§ï¥Uë>!­ÚÓ¤ÙˆUËU½¦¨3xAÂÔ•gñ}V}4î³ôU<:K,Å×i2KÅ”‰pp‘ RÎî#J9ò¿ùå£Êÿ67·^FJþmo>Ûÿ>æÃtæÈÿz{ò0è(š7·ÕÎÞrfÀ”ýIPu K?W5©Nâà".¹|Ñby"ãQ„]AQWg9µ±‘¸Â&@I·} × WÜU7*IJ6-¢ók§Š7N¸ùpÑibi“ìF²œàÙú粆^Dʘê°H ×5࣠ÑË¡µ ¹öz”A‰ÖC¦xªñ®„ÆÑ°¿Ø¦Ó½Ce--ö zö¢)ŹÎÎofÔ8;`Ë@³Ìû½RqÒåI´ø±[z[äï>Äåp:ã3C\õ]µò»Ç{ìíçì…dýu0.˺Ÿ†_1±šL£w‹T(¡qÌK#”Dõëq óáž¨ðƆ؈ÄFEllŠ-±±-Knl(XQ$¢Šˆ6E´%"õ®‘©®¨TDeST¶DE•¨lˆJßÛ²¬ÍM±¹%6U¡Í ±‰Í |ïɼ¶¶Ä–*·µ!¶"±U[›ð}ÀGl«¢Ûb;Û±½)¶·à{(­œÁ\GoÄÿk¯•‰¼>OF3ÄK¤6bÝ’›Ü:þÜÉÍ «=ø7&¬æ6^o7^çFs9c±3íýÒüót0ÐÉ;qa2˜2¯Rc9À\Vs[¯_zι:áJZ›¤’DLÉ ¹ƒi®YûU<˜(ÐvÜBÒhNÙ˵I£hËŽ—Òñq1€½q÷À]Žúçdûg•‘…´eöê:ÇüM3uœ÷g¸lpiqž4“2,³ ¤’ªOpü}Ð Ìy Oô\ÒYkæêßö×B"ظ¤³@õ VÒvpÑ„ÁÆ%%­Zýri}7W¶~ü}ÀÂƵÎõ£6³–]1â.¸ÕNáT´ëVpGƒ-ËyÔÖ¡6ï[8FÍ=£.÷Œ*2”H›’9 þu#å¤1Ó²1‰œë–á$B…C?ñi0Ÿ½V»•~²‘Ÿ$þï<æ+@„@30Å0súB~„)†™ƒi„noZYÔje ɨˆfšœ§Mùˆfæl; ·’Úje)èˆ È‚gWøN8@xvåa:|›‹%âÉÅÅâsx;Þ>’Žáø]ÊQl=áãØzdëI;–­gÁÑlvŽçY¸E ŽÑÈn…¿YxÀ¥6>F­I¥“Ô9àÜ&ÀwfWÃ7ßÜíE»Ñ}¿³ƒ™¸;­j“©0EØZ 4Ÿç´ÜP µeø×ƒ'øÇatR ôë‰êöW¦Ô·²F¿ß öíüñœ +74ŠÍME?M¶çuÚ XX0”î»åŒæN$ÚüZ¾¥½½Ò‚“¿£×u¥ ÷_©·æ¼&Ä5#M…5CMHQl¸Q¶BËâJqz"®›£+ü9 7]t&Åx2,†6#kŒç¥(VR·ÑØ¥]€Á®³{ZE˜ÁÛŽX5UNêz0&ÑìdÌkã5HQD;zÓ®¼9°ÏÄë"`A‹ÔRü]Dß•à¥A„Þ{»NEÕ‰Âh\êËO‘Cû6Ô*÷:vˤþzƒãÆ!’äšDÂ%”ª—*eŽ“a¶”ö‹ £FÝ«BŸT Si3T)s¶M,`óË¡6®ÂVþR9ŒÞiÖ¦kcïµ.«áYCÐÖé_ºmDe…Cv'$®-Aû^‰jª\GàÐ"´ù0UÓæÎa+w<Ý<’t9ònç°J4­ÎyjšgYµ‘}¸­ŒK®¤V’È;Pz‘(ýK7òEÑ«¨O|êò‡1ÔN¬fT›UòˆÑEÿMÀ³±opúÙyOΤÅxQ9¯8]ÄÀœíʹW5öͪ]Y~¦JÕbt ~¸N®ü ]ì¼OîÔ~‘v¨ªÓ%42 F‘¼{7ä·6–Á½³zz©ÐÎkÁPÓ>ŽÖ#‹`Æü±SRÍŠU˨³€b`ë/ùyd$Ùþ™Y-…p'g ¨+á<À,q0+Õ>ØÕl$Sñ~©%ä_ºWÇTµn‰ÙÈËK, ¸„}®¾ô>çmtìð=°}&íºµ˜àªD‹B‘\5ñÇ®z9öh<®¹n×\·j®£B¼ÍÒ-Þç(`)b5èã·8 Öõ¥÷¹v´þ[ßCÚ*ɽ‹z‡U·r¬fß±½-{YÊÇm:S0Q»AûÞ&­«Ž+c£†ÏVUÙWî@ö)3Dã“™¡”!¬bå>è1ÃLҰɼҊO™¬§ˆý»&ôµæŽL·¯„¾×ÀvãIÍHF ب/!®[³C‘ÃvLÔ—õßW4«Y•ÔÚ\¿Ã™tNØ”rIæûà™÷IÌ÷]©†I˜M_ˆrD nV6hçK€O¤æÁCø¶ùðƒŸ‚ ?H¦w‘Ì„<0Nâõp½»ráïaØp&b´¼î_¦EQ}SKf¯‹‘É^o8Œ9’©xXyý‹UÙáÍ¿ˆÌ%A‚…7Büò @ÚrïKÚi²Rm q,b9PSä"O鮀'Ä]® ëy_8ƒ…œÜò[Ä¿1,¹HišËô‹µL“ïñ*´ê—‚ÔX©¬ÊOp“Xɲ~ЃrùÕl²~ÑC^&ºC+pöÿ'1Zä¡ôðé¸]Ý^¾ìm'kйžUçW :òÿ¼~TÿÏ—››¾ÿç«gÿÏÇx˜°]ÿÏÃ\Àïóð.Ù_VéÑi_w gsOÄgò|À–Åh3pwçÉU¥‘QNx&¤EŽ“KÄ 3½U?ž ód(VØýFôc(…ôúcø‹ƒy­Êy²(W¶ ‚¹o‡34êƒMc熚ÂN°õ¸‘ˆQcŒ½0M8PÙµgµ¯‹ÙÔÜ8ÐÜ_¥(_øëE…™Öañ¯<Ý£¿½þíÍ_$@hºr•q鯼æ/3~JŸOÝê6å¬cÛÚ@?›í˜»f7b½¥©g»ºÀÒÔ³L]ÂÒT‡†º—¥éá]r'‡íl‰ŠEx!‘ õŠ{½=PR÷²[)g÷:o}¶Mú–ëe¸Ê?P/µÍæâkúá¯|M°Ç»ÿÿ{ú¯ÇÿU6_ò¿n=ßÿãácÝÿO;Ghvl]þ{Õ?Yî×ôí­•¦v%ü,s÷%GB…8øóbp=œ÷ç2rïçþŒ¢NäŽH"U'èt¯¬.Ñ8[Pîâæ\†oñÍfðooð¨´óÅjOMØQ³wjïöFÁÈ¡å«AŸý'1wú=ãø¾|“N2ëù¶à0/ûç¥?‹‰FD…y“¹ N­ˆò§V xݾ„‰¨êÈ4êV|‰ &¬_ hÉ™ÍÿSãøhZVPñeþª¡¨I­‡J#«®†-û.Ϥq5¡¨BW7ý/ÅfÏ9ô4Oýð߃‹äl¤VZ)ÒûFè wÉß·uíÖzý²$¶tKÏ-¬ðÛ!Ü’âë"í…S\±3¼59èphô¯–}” ¥Þ·T7°ÜãGÄÌìaïñ-u‡Î3üÅÓò‚ÊÏx·å¹Ôš6œœ§ÁìÉØJ; “‘½îí=y 4™ÒÆFöžgH]¼¿›ÜÌèè?˜®Í`Wœž\ȼ®_æŸy×17F,ë4'¾à)qû½‰cwóØÃå‹3ŠÓŽ`†°*‘^€ó¿Â"¢|½W¢ €ÍÎÃàD%…BuŒÜ0Vr +·NÛlƒ¾À8ªy/¬7:‰—Í›p|¿TpЉyÿ¦pC_È_k(¿‰›‚¼†ýv2<9ÙIß"+Så[ƒ€žJ>S/n²91†]Ágþü+ÑpYÕ6j >àgqŒûZ<~Žh*ã… Æž#ßœǤìŠì{(R˜0]ψĎKVI ¹gF¢Ú¨“,¦Ïqhv³[ñ0˜Î`û†oŠ0zT;‰–Ëå¢ün,ò,R3tF I¡­WïÖrܧ1•ž}‰ˆ)4âÓ?‡nnðtƒ?´pýA1íؼ:ö­/Êq\¿C’ãúJ²‡…^ÀãFÉ£ª6ß­ÜK;!ãï²Ñá«'‡Æëïé×ÛÝÖ1ýêÔáW³Z{L¿;{i÷SŠFNšé"­°¬ugXëaE`x§XÖÙúp0¥û?æ)êx³&wŠ´½Nʘâ!¹ݾl £j8Z¸%õj¡ß0åËl­³\Ñj­²AR­§ÛŒ LQÛ7YÅüàÁgžÜÞÖlñ¾bXMt¾¹æ'BŒ4~к§(åh†Áe Ô8p9-L+Ú*Ê’­(œ5’¶Ï1¼ 4Xn E5<°òìwÈì;ï;ÞÜY3Àø6³ê%2ïŸ,”>(¿ížúž±FÅ‚9¸6ˆt˜MƒËËkèZᙲ_';¾`±XæÉˆÇ4i¦1& ¡懯µòm8BR¼ ‹iIU‚ ¶¿ŠÙ€(¦á‘ޏ¸Àd>qkæm–â'ÅŒ‘CÉ%MM$¸açÐL%õ=@ʈ¤ð(˜*C‘!V`ò%JÖE­ ™dO jb{x2ä¼T¬Ô>‘}]¥X$•&Bç"¶)šA$÷c A©î¿Ö)Ÿÿ)<^¾pëVD~Ž™+éµÊßæT”ÈXKÄž–ë%o©¾›3’†…@¾`…ëN=gà6¥©4ø‚Ù lMñVIÉý°H7€§Ù³n á ÈÿÿýÈòÿ—Ñæ¶ŸÿuûYþÿ¯ Gþ–ÿ|ßAoþõ )äˆJ'Àˆ[Î4çàYªÿ,Õ–ê?KõŸžT÷3jîv2ý2bRQvi¯Í{ë'í¤=3ÊKQãL^ÙæCÌ¡B@jeg 6¥H±ñ×ǰ·ÔôÍ•ºAöÇ烸V«Ð®U¬äZÖ‹³ãg£Éù—¬çŽÙ¸”ÀPVDË5vÅ¿n0¸'r>×?X\À‡­ h2}0Ÿç7(•¶±6“!ßð;jLΑİÝgh‹t(Hèñ¢%×áx"ÓéÄΓ ‡<ÚÎO#ÒnöÁbäÕÙ +VXôô” ³*j}ÔÚLÆ´a‘“‰LQÀÝ€{8˜ç î:'7›2DË]€}=/mž>Œ'ß¾b—àU·Â­šž6ÔPA”’õ£X^ê¡Ä³"*¹ò³"êTDýдÄòír‰ï™^¸yôa·ógÊM .ƒpü5>vaóBÕ^wÔeñàýa%<ð¬v03¦|ÚµVói†³ù.«FjV;§5Vöèw¯sºÚ¬Ã u^aH›ÕÝöqòPäûP;Ë)³úñ5I÷Æ6§©&"bk÷¨\Š,sð§¨éÒu©ÏNmÓh‡·0ѯoÜMº³`ôUC©U~ß)'i¯¹´Pˆ*°ƒ;ÁÕCÌ3Ç(Ëh‚Fó$ ë iIo·&ÖŠR~CbaWª«;‚|«Ñ'|0K-":F¹ŠêŽø Üm>i 2ª/O3¨/5Ñ„;yïÀÒ­0½„;q/gªÊ3q(ü‘ö\€¡ÖaûÄ PØÒ‘JŒAµk¬gãIn׬ÅmÐqLÄ”fX”s`"áàF/Wòê$ÂfVóf¬>œO.l:§îuÁy¦ˆ}s±›sN>Iê¦ÕS˜ÈøÆ…nœ°]Ï1žÜ|úLŽY‰½Bx¶L òKk± gaÁ$åe{2W݈;ˆx›Å—»v î;,0ÄØ4Ê…µ¯ÀtŸåKpG0—¾Š‰ö¾°½£ð‹0Ñ$UâIª$ORàÎXâ<@ès·Ì}²iT~J$Tñš Gæp>ìFß Y@O©F¿|aQò ŸÙ#¾†Å;¶¼‚™(M378hС ¯Jí“ÇZäç-š98ÐÓZo×l9Û, ¤†ÛBw€»Î³ü—ˆK‡5 ¶Ô žÕ<]§¼¼Ò{§Î]TÞ2Îo¦S¼)¬ÚÕÜðõp}xs?|=vÕúÊÄØ³q’mÙ i»Ð 01¦A#UIäš÷–Z#ÝB`OÙ˜¢r¦O¬†¹Þßåx˜p Òø>À/wÐÆ¸=…c«Ö?ÿrÛŸ^àjéLnÑÅuMâqÂxX¨Æv¤T6;'Þ¨«××£ïÐuØM0UâPÎoÑ$c~ú Æhš8 ¡0éêÇZß/G¬¾œLË£P¤4ÌE–—KiþÅà’TR‹CgÇØTF[JÌ/†ÖÁÄŠ?|Ëi®L&âU1ÀÞ|‰ž ²;‘$޾!S†aÀ}਩\ZgT~•½kEá9XvP»*ýƒÔ„ðÜéL“ê‰ûA]8HŽ´óܸôe}˜7bªx¬ `’3Ý—¸â"]¬‡$à¨Qæÿ¥Hv$1Ÿ€”®obæ< ç3¤mÊ Õ}¶ùµe¤p…Æ ã·K©íY7š¬´_ ³_¹éÀVÙÃö2Ìûó`©ñ}-¾R{Ò–©¯ëOëj;ÿè~³³†û8 Èdx‘®æÞBè,Ôà(9ÍUé]öŠ¢Þ­c¼õUj[Crg ‡”þ·ñòµ„¶ãÀ¨K. ¾ 8kÆ4MÉý0gòp CA:S ↳8gtôÎ%’*Ûg4šiÉM\·ÁR1Ïå`–Ä,Ú ¸»ˆ@ë¦,E«É `¯’ÜcïryXÝRD Ë½ÙÒ}£' ÊÇ‚½ë¢aòXRDƒ{¾”Ò\á™\$ÀÙËjFƒKKT#»Õ nv̘aZ®0ÁM¨‹2Z]>vãh4b?)VJ¤hŒI!Üîª?$¨7 ™Í˜5ƒ©ª&šº8às„šu@QQ"Gzb9bÒMžô¥WXGàëIаu,› lm¸‘ ¡%ôÔä#¡ûÿô‘ïÿ/7^ù÷ÿ—Ï÷ÿÇxäâqîÿçûÿ»ÿwðþÏ7•’£K¾$ :Ï€ŸH0|JWÿ޾ú3!¯èîÏ+ìùîï­Ðç»?uæ—¾û?ßûéãó½_Í£ïï<™{ÿ¸Ú—¾÷K»Ï®n÷þåîüX"îý~—WÛý׳5K3D4Ü)¶˜qïû"éÊ/­m–µM”ÅÖF–_úÝË¿kÀ¥ûÞ2g^¸R‚†+ `ƒ„Àlªl@š·, P3nâ%) X¥$ ó4$ûÿÙãÞÿ£—Û[ÞýÿÕæóýÿ1¹@ìû îÿÇ»õ^1U ð3äÊÁf<½H4[†Ä`2Ö>ž:D€é»ŒñŽÐ|ì°Px‡´Y°bÿk6Ú&kbtGî»Ò‡*¹/†ýOà :ú½&·ÿ#è~ þae”àÔá2–5òš«¢…oÄt.Bwßâïé`vñ±¾È*—.—4˜_ãókN²ØÉÏý¯¥¬¢ h×Gì×ÂÒåÿžå ¯mp#="³N_¾AÕ%úMe)bA(“r¤Üƒ ì˜`ÿ¡[ú[rCWhLhêˆ<ЩéXoD0Ðr˜ŽqÀ‘L¬(Ú0ÓVˆùÝyFßÀ¼hÛ·Øï·¹pcÔ\‘`IŠkŠB aåÊBÍÂ–ÑØ8¶­MmŽé„ q ‰Ì!#u"ª™—Ô.ãð³WÁÈ]؉‰õ™z4tÄÿºÂ*£K¸ZòFï¸ëöIšKÔJSCÄÿZèm@¹É©­×´4W(hSû‰Œ ¡ä –ÈåADqYÖr:cS·7Xœû`®U<È»)|̵Äñ:Té6”Î.tžÇ()`2~â œ·­€Ý= ¢Hä¡×Í¢ÛïK7ô°ȯZ4Š"m^%É*,'o_´åvÝ’¶Ì]"¦­U‡ðÁÖ’¢@³¡ð“SÔ›7Iöh-cͶ[óЪ¹rÑ£:Õ‹zj%#b0( ÂȪ@7´ä7 Bo ü>üEƒ–81KxòÛù%C—¨jVk÷³GñÁä'‰`ò£Dà()‚§åB¤ÈÀ“Äæ+‰nK·Úî¥ÜÑ„î‚ûFTt¤©š¿Gn¹;Ç(®.2ÓM¸²àï£ÎcÅLX±HŸ&Tèäv,Ï€ãP‹[mÃ2öÆÌœÛ¾ŸO6t¸TJ¼ºO`êrÂìJNé"¤^E­¡õo¼º‚¸k­va+9íc¬l\²“Û1Æȶ¤³ÃÂf]Ó ÖÆ–^^ÒÞÐÚØJ]ï%ï!xðv[í %ìTp‡þþPŠtÊÝí„ýÁ±½G½\¸¦ÛÖôá,ê1,j/þ‡p³Í! ÔÇ^Ôæ‡DÎ'Y±_{"ŠýŒO@ÿÿù‘õÿQå¥gÿ¿µQyÖÿ?ÆÃ”êèÿßuèV×ÀÜîw_Fû’­àðx ^B€'¤ãgy„Uûä6üG0†™? ºcN:pµÊ×µ¦Þ¼Ý}GêGüÀ:ëáh’ç_ëfä£ÏÃR¤tciÚÖŒÊ@î“g‹o™áã @Á˜µ‚µ‘Ò°(é9HMNJŽ>p5$\E¶Rœ]O_‡“›ñw– ûR¢© ‚Éüë¦?RwƒÝƒoçƒë¹„gB˜Ýœ©!2^_:‹ú/[È!¯‡Ç_ÐwøÕ&ÅàFlü¯ÞDjdo6øÕ›ŸCc÷.McN ±¤fëYÚËÛðóøVüŒ¸_Zñ%·±å^9Y+ÿ³ÿYãõ_¬ñJa‰Bª.\,íw«R.¥*•+zöSV^µÑÜ ÏòžÞj.k¦ÚKú°àöÙ¤€¾(ÇOoc=I;EËâi¤ ³Z×Düt[©–ðͽ<\Òú±íÕuµ=€Êe´=¿Ùr€lÚž ö»øŸ­Œñ”/ØÛGQ¾¼{Ê—U(\¸¹H3j €×I08œZ r ƒckáã,“þ€%‰û¼àé2*ãôc·ï‡üSY–â(ÁRÍ­&sT IAOcEîY®·UB³8ÐÄRѨhì„”ˆfjl;» ×ËP/~Ó3r&{µDO^eïÉog2Z7ïdŒWOàúV[¯¦äÕR¤˜;T•6ðuF¸áÚÅžU@‰Îñ8îãÈÝH'")pŒÖ‘ñe $³–IÆËæ“JF…‹Ÿ³Äh©@0ÏRpè'§1¤ø4*«Eƒ‘)œtPÉ[©ÜJrqž<7ŽL0\ð­Ãt·86M;›&#Ë¡ÐmÛoãÊsƒ¡ïéZl®0ÒM³ò,¹yºOHþó¯ÇµÿÛŠ¶öÏñ呇#ÿÉhþK‰ždlŸæ‘- ’1 V& j…¥A¤Aígiг4è§•9Á>ž¥A)Ò _Ä\Ð˜Ž¸úB{Áֳఴ2e5|jbÃEÕˆÿîhðWÓF]À×ÈédºÉ·mËJ“oï°ï.Q¥kRÜØ+Ê åcE¤x;ÄÕ.À`š¡%Úkd°HüÕä«ÉQ%îcfãk)yíÑ·áSÂÝûM ý_ÕçSTÿ±+âœÙD(5ö:eœÃ§f/ü`G9csTS >…¸BNY2ª’mÃ+;óvÙœQwh²7Šzum¦¯.sZ¨Ï'I½´: ¸Žù8Ma‡‡sv0žÜ|úL,sb'…PyËß8mF ¿´ Le×4=cÁ$OÞöd®ºwÑ6‹Y‘víµPþí°÷àBÑîñ|—މûb–ø˜JßC˜ö4f/^ÈQøE˜~hŽ*ñU²Ï‘Èæ\pÈp·ÌmÛ¤(?%N9fz·ò¼÷/ç#Ç;½3˜ÕøæñEÞz0 îg@ðˆY-¬I•€5›ž\XhöaG멲Nmúy@?«XiðÛT&pT$3Rå¡d'Ì@]Òr&GÎH[VÔ$¹;BM²t%RWx{Fc½Q“®4׎g;ì?ÝøV&X}Au¼cSò/µ¼KׇgäVçO¬BêÁ) ícœ\øÉííp6XÓº$äyc}R2s+„iÿO‰Ühóþ¨¥&N©á «‹5qnïk†l­>ÿuó íz).0Š ñk=ºÔÎ#o•¥FM¦{¸ Ì‘K}]²(ä$O€ísñdå›Q:HîkºìŸßL§xÙ#*JŒvRÉÑ@ƒcÎmò0¦Ð[?¸/ƹI‡°½º} ©â„iûÔÆ S_G^Ç¥(&ÂúêÍ„˜ÁX$AyçÈ3ù:àä·)Ú¿£gíßS~ú¿Yÿ·ùö߯^=ëÿã‘û—­ÿ;j>ëÿÄ“Ðÿ5ï¨ÿË’ ”˜Üvb2Ð,JÀVX hèI˜¤¨y5AŸ•ƒIËôW¶—T¶]å »<Ÿ•ƒO4ˆÈ³nP~u7Ý ¥Tê¿ä[ó£è++Î;ûËéJ[÷SåÀ;=!:…0´¥†&[tö£æ‚èì&ô¶%›w¥¬cØï‡Bɤ¢4p÷[Bó÷Œ=BXøá±G‚zË{*(Ûf OIA™@x?TAéÐܽ‚2É'¢ d®0¤¡äkX|[JGiª•®r½]³Õ•!•äUI+%᎚E-Ù¥dÕd‹^>]õ$£?A?©õ•fPˆçðÊE…”&ÉÄa6ý"t{½‘!¶ø Œ¬N4Ô‹”ˆu¸PÁXëŸQÆ:‘¼VµAß×µkœ’yc¡¢®Óh“4R‹µ¬l„5€2/†u ÛœLÞT-Î ¿ÖžØúÆx°©ÃIF ñ®qt¯pÔN¦&R3kåê3‰@©Ý¡%Â¥‚dõ#uTuóõÕò HÚQ¿XŒÿLT7ÆZÉ–U61iÉÓÓL5Ÿ5“aýß#ÇÿߪD›¾ÿßö³þï1¹8ú¿ŒyŸžõ®ÿë< þ¹ÈPºIì¿$+;Ï ÀŸH8|Jª¿Žç ø¬û{Ý_çY÷÷¬û{Öý=ëþžº_`åÑ2Uÿ¤ú¿;¤öãÓÿP¿ÀŸDÓ˜œ‹àñ}žDœÿGô|º*¸ðJ{VÁ=%Üâ9OD·ØGðN*¸Õ¹ ¢`‘ÔrãEú8¥( …hlÝÅ“ÐÃeslÝ+ÿ67Á„ÖâI¹ :º+å1–Ì㠱ț,«îŽâu¢öf¼"}]FÿÀÐÛÚSpÙÁû.‚E¢€Ìþ…«ÐØ °DE-Díø@îR‘x'ßÀTÏ¿=õ$=A ÜsN—þôÓGÏÿR©øù_žýÿå‘”­ÿë<çùa¿Ž›ÿ…ÓV¬ â'1««NÿQÏŠöóKrÀÏÎsÀÏŸ$àgîJ{ú- ûùº¾Î‘ëæ—õÓ“–†ó*=ëù¼µùœ†:óK§ƒi<§„Ñ->§„‰qí©:?CJ²Ï]eJÂlI„DŽwM Ó.µÌ¤0íÒ¥…i•Úë÷K ƒ²Cƒ´; L$zéb¤•³²O Våd5i­7ȪÅ&°±„2›ÈW\ÖOÿLüÂ@¹Š¤§æ‰'N²Ø¾÷$æ!_þUyäüï•JôÊ‹ÿò,ÿœ‡W–-ÿoaêšncg¶NµÝ-&8ÕñC}±âò'W˜H¹ÌÚ¾D€–•{Õs ÷þê˜`²9»•е £Ø³È Q'†ÂæB ð-²ßˆæ2hOø¹ —”7uÖÕ©{uêÐΑU§³°ª³–VÚá ,<"é]’Åqœ2£æ ˆa¾‰ª7äåêA’ü¢0Û6wIk_®H3ãò8Ê 1¡Â"‹Æµ}2‹8BS$@¬¶(iRlB«t'¹tGÚŸ@žˆ,­· x"g8Ì;%ëqÉ5‘ ˜¯äWçPV‡²zùñòˆ¸RpC‰¿h˜TW4]Í,—E|Å…‰H)™§eòŽ$¹Ë-ë}æj:ÕÃËÓñ> ¥IÊ5RÅu}5¹^cKIužÝÀ…i0ƒ¾Á» ë]V¬ÔJ™]ÇM-m†­¢íŸÂ£ wUyZĘIñYOU|:geXoY§ ]ºóÁ»uT¨ó&É¿ëعø·žõú f½^&@¾ â2‘žêiÿɵóöIUÌV­•·)lIeÓýCJ=5UÓ%ÓC)ŒvÑ«ªýçVXz´fD»öMt—‚*øï(…E›AXæÕ*•:žÕ)‹8šÕOÆ g2Vñ †ô:ò=Ïq\BÞó€Ý2,LÛGÒ¿5¶'‰m(Ix­¸"öö‘áðak8è•#f¡±þAúš)9‚ÎRš) GêƒTC®§Áô´W \å<÷µÚ1OÃå§*9Z"߈£Z;JÙ+¿r=«£]´‘4‡K¨‰àú@¡ÅHó#ÅÄHP,®„“4-ýe$é`í qÊDE¶~©QAW ãó¦ñÞ^#TõÀ©9UcZ÷uUáEÙ0WžÕ`«a®W/ª˜ÔèÄ;¾Ñ§5[Máø%C¶Fl¸œ Ṳ̀nsÅÔ­—W’¥ ÌÌiƒñhÃs ˆÃ¤é†\ïKMžw%yвñwÆ(éGs»¦?WÉu5TGècP´°¿wUf¸5ÞZÕ)ÎZ r?‰øÈÖr>/€š×t ßFÙƒ‡Á&ð,Þÿ‘OHþÿØöÿ›[/=ù%z–ÿ?ÆÃKÏ•ÿwžåÿñ(~EùçYþÿÈòÿårb?Ëÿ%¼gùÿ2`Ÿåÿ ÿÏ–wüYðÔgÀ³àY°r@xÒýú³"àYð¬xVˆ;(2ø‹üPE€E?!mÀOª€g¿žØK1€0­¢¥(²?QI@Y.¬WÔÏûê †~“Zgà7¹ï6ùª„;(žò 'v-Ht ÷R+<{ d{òÿ³Ç•ÿW¢-xçÆÿÙx¶ÿ”‡×ˆ#ÿ¯urâx·WLZ€ðŠÆG« ™˜ABG)×$_%ð@9FšäiYVeи¤¡âÕ—2‰,Ò Ø)ê$m'%‚ßC²m~D1€0ý¯¹¸Ô=¨‡ÄýVɺ.Y(¼3 SIøÊÕáÕ¡?ªÃð¨ýQêQ½c…®*‡Y•o¥Vjœ\ÒúÛÝú~ ‡‚æ¢D)ÖŠÈ!W‘G:^ ûŸ&xÆ +¯áÛ74-5Ù—2ÏˆÕ C"eѳd™5qJ2`ï[ü{:˜]ûá×Á軎 æbü/h9¤¡cG/"zŸofø*ÎÛ`…Jòâg¯FýŸîÏ >±\U# bésÿë@œ 0\Ì-%€r$è×Rg]ùûñ%)üÕÂrÁ¿%—ÿ+Ž“åuJ§Äó‘Ó§/ÐÒø_E È7€zhêmÜÔ[£K_°ëÉÍ>¥i¢¨³"‹.èÈÑ-Áĸ¡·u‘C5wå{(¼ŠÔH1fë¾ÜÖ;™j’LIÌ—R„ SÿU4qqèv…6‹€L×Â.ÙúµcÎÚœ[‘z†Étøi›™Y_¶ÌÑÃ-ÒU ˜kmî£ç¾-ÜI¶XæNz6Øüa•ò$|±•±úø_yõyhâÁÜ%£ ˜;¿zÞ’NÇÒcÎÜØíê\“gß‚R5-ík&ñYÚ2@›«Y3iÈ*ÏÐÒ¶¸êƒjÚp¡óYÍ®œ“™Ü—,Mœ &æ9d­)ô” ÀïÇÒÛ9ÌÜòz;Ø<µæNn¨ð— †¶ØºÚiUáCù+Þ|]Ñ÷S‡LSbÛù½Úéjl7˜[5#8Y-£®°d BÙ™B»–¦ÅËí’[»½Tú1‘£°R¤¥†Cã*;ÁÄŸþê³k‚«‡‡Í?‹e°Š$hi†ÒbgÓD"J9 ƒ+Ë`ƒ$?®)í1üû¸Zõð >Øj±˜aÕÁ“s–­X›ÌTk‹YH<ŽÝßKß,A$…9LSGÓ Ër¿ê­Jçc$”®g9Ý5~þ˜è?cé²UQÇŸ&n- ”ôÚþ(¼d11R=ÊyðuÙrB—WßCßîéÆW o÷ôç ôížþ|¾ÝS™¤—é–Ï kÂwœf®‹aCSè&¹£Œ9°Y”¼©«–O¸—¿¹½\F—ïÑ…móãRÁ6£M›ˆ³'äk´² ãÁ×w·"eMë'f³Ea6‰ÉzñB+<(<ÿöfÀy¼ä~" ž]¶}#BÛÚwt½ ]º#ÆšG?cÁöcþW~lÕœ°,yÁD’‹óÂäw ù ÄÌ”ºŒ™)ò ‘[G+õŒJ  ¨±£”€K êoÞ˜¬úÿ?{oþÔF’ý‹þþý+*ú½  °»Ýã‰@ca!ƒ¶Ç7îëPØê­ÅËܸÿû;KîKUi1Æni¦ ¨²NfžÜNžås”ƒâêº rè®Tõ¾uœ–’ðw]ÌŠBMpݪŒÊì&oÆX*Vˆi%êÊPts¡ËtsÉb #ÓñPâ)~:ƒƒÝ»X éb­G‘¦$‰1ñ"«ét¦Õ_LÍ3kοëjš©Sÿò·ˆür Œ¦»ž*Âl|4yÌZO‹aÎÂùñ ø}¼çøïÝí§ÿ¯§+ÿ¯ûøð,wü¿^†¥œf‡h¼l¬Àr£Á‘IÌ.#‹ÜìƳbFç(/hÜæâý{|‰öÖaÕ—ÕyÏ.FÊ$ÏËèÌϸg„“yáecæG$5Z zñ¥Ê³Ç@½þpl˜y‹?öŠ9ÝÌþ=‹ŒÿÂü¾/3c½?Gxƒ“†ÈÂ<Ê«߯©ŠEÉîO`dôïÞ¦lnB“ž´ÃßÒO½átL²¯eÕ»QLðôïi·/@©’ôËUz7ôL ãé¥ô¬ã™û &lYý¶–e×%kd%oìþ€þÀ“26ÿæYÇm¤Aù/*ªûd•fÐ,»p¬²V™Â³TƦÖ%;ðΉcK.öVË µÕfw×Éq³yùMÝlœ€u›¿»AêAŒŒ¢5ù¼=ÁT§3ŽGËyÇû‹×#ô£¸×¬Öà !«W륱):–52sá5}Ãä(†€ÑrkÂ{Ø58­/`}~É@ Í×R"gYÌáË4™É–Ìa{ùϱ‹ýS>û_¿zÏøÏOv|üçÊÞÊþw^ÍŽý¯Y]á?ë^ü„øÏÍê ÿùžñŸÿZ{d$€|DAüæÒWÊ6ÏVÐŠÞ z²?:ô|¦¯|˜ÙB¶/R]bÊúï 2 € 2-çàƒG˜¶ín¯~phÜp¿‘l-?+pè< Æ úLJ®½)¯@¢W Ñ?:Hô«ݬ>pŒèŸ5Yd²Âˆþ‘0¢³Ÿ#`ÑXé@D5q{ÑK"ÑXÐpR2H ½!#ç,Tço6-U’Ü´ÕRõ‰¥²tᦗÖõYp«›Õ{¶°„ôÿ߯þÿÉÓ§O½øŸê“•þÿ>><×\ýÿÙ·ˆrþ‡š~àˆŸæÙ?!âçaè÷O²ôû­ûÕﯟ0¾í<ж?%¤íJÑ¿Rô¯ýVÑ¿ wñ»» wÑ!,«`—U°Ë·5.$­E]4¤wgÐbD¥ WOv©(ê°ð›ÊRLFKCuLK56/‰ðœÆÛ›šštãŠ_…¼@žÚI£•ËÃ}¦ÛZö%íïeçeÁÒûî7,ˆ^/Ëb­™)jM˜¼ÎËBmõƒ† }7¸ÚjÐÐÊÀö lK ݩړ"3tÇ;¬Œ$›$ŒARÌ-g—pþOàΫTœLRÈѦnøÀ²˜Žùt7ú´³”w¾ešF(Œ‡Qs™jQ¬PÔÕ… \À¦}àûEõPËhTÏ«¥õМh¸9>Ãq»zk´£Uc?aq­áåÏâ·zÑkY`‰X|K“E œçÜHšU=ɪsN2o–ù ^§â“ŠÙÁm䑪ÅQ/ÆØBëÙÕð:5“Fô›) É’ºl¼>×ڊ퉵&fhkG­¨å= Bºö÷DØÑÍéäÙR‰¶ô êcœL¸Aø–g‘­ôy{x“œ¸HAÒ2Ù‡Ú€ˆl¸ïñmAHʲݰ5Ʀ³r³±aJ]ü:+¥Aí>L}EŸRJqd»f¿G@[ÌÖFïr³âÚþµ©î æÏÝÑõ#“†Ÿ?÷Æé#BÂlPT_Í´_gÜTÄ"+±ûœog6ju¶ãõõa…½&’LljÄ÷H‚îG|'’L÷‰Ä÷ HBN‰ò£àÚ£ƒTsáJÃC&Ý `Èâãäù"”ùè%¿ÎÜ$uîI¿$q]…6mjŸ«Òe™âËC&¬ññ‘ž• 5þØàÏš÷äŸñ Ùÿï9ÿ瓽mßþ¿Êÿy/ž†®ýÿ›d9_Ùÿ8ûÿ?"ãçrìÿ$‰TµlòWÜþß^Ùÿ³ÿ¯‚ÿWž÷à ÐöBóW®?‚+@{å °rX¹¬\V®ºÌCvXñ?—€5×çOê° âÿgšÿWQüQÛ$1gÀ†úpøÏpZÎU¿m£/>¿øóÐmô3éñïËFo›Ý‹êÿi6úä[ð?Kþ¢1õ®!Vÿ ÃêËñA+jÊ/X'#ŒßܨÿcæFØÿG÷ÿw·êáÿïT++ûÿ}|xÆ:öÿö*ÿïÏÿ·½Êÿ{ÿþDfí!ÍÐ^åÿÕôVùg!û£{„|‡¬Ï?"-@ûÌE!Xeø†.íUúßUú߇iîý±Óÿ®Òþ®Òþ®Òþ:å”Aóa§ým?ô´¿Öô åþýAÓþf¤ù½·´¾".3µ/¤éGsåñÁoÑ\¾n?Nâ^7Gí«z ²V=/A/—÷³äÊï“SõVÜT½†Ù1³+!ï ]š%ñnû¾ï>OHÿ¿s¿úÿÊ^ÕÓÿWVùïåÃSÞÕÿïÄôÿÍ• €¿É4ü(V€\+*"VV€û<ß~¿2(z+À,dª @jPäϾÔ÷¼ö§]ü•}wÝÑD¾ùr8§‡}\(š%¹lRëËÁž5WÆùŒ´µ­Œ\ç·7nðI²2n¬Œ³7^LGP|„ÑÝ^ßL¢ÖójÃù;êÁ$-·\ô°dNÓ ˜8@²šN€f窗båAz7Ù*Û‚>üýj0üò ›:ûßÈÖò ä¸Ï±lEŒ ?œý£ý~e÷XÙ=lšÛîa¼l©ðñÐbc†Ž H¯°Z?Ö‚'^ Š[^~õß-ny©Ä&ÑL–—•åEŽ€óê·µ¼Àçx_X7š¶¿¾’a¡‘$Z> +FäÞ,9‘˜ˆŒ€7b.ÃN "#ƒø6vž€Ñ&bÞɲEì<í÷®é¥)M#0!,ó‹»É BÁ„…‰à¢iP‘ýÎ0©ìü3M*?Ô'dÿùû~í?O·w½øÝêÎÊþs^Ÿ®ýçl…ÿ¸ÂÄy°Â¼¯øŽä*älÛYY@VáEÆÿg ïX!BúÝ]!B®!ù³B„\¶ÙêGG„ \¬HF<÷e•<ÒdÆC@ŠlWWH‘ )r•<òÁ¿O°Õ*wd?²}¶Ê9“ øìABWþãrGFçíŠK9¾Ô —ò¡àRΑ;2Ç&N¢?+u3ªÑÅZ²*{8ð– 'ªl?Ï“¥Ò ³\e©üVY*Ï˱›زò`sT¶µ3ãÊyã'þ„ü?þ{¯þÕíPþÏ•ÿÇý|x‰»þï—ÿûÝ]@Ž»ƒ)îª0¿Gð½:Ìçëñ~åëq/Q¼+GU®Ï™È>T—U8ïÊ™eÎ{ÏÎ,ß4œwåÌâwwå̲rfáÏ?Þ™åg _ùÖ³±r{ž.R9à¬ülæ©~6寧ÍÎÊÏfåg³ò³ñ^^÷¯<}~ OŸSû&ÆD؉4`QŸŸ÷?°Ï×±œÆ3MËù'¤ãÂcM»•ó’1ºzîùŠOýo༴$p\a[ù/™Ôï=¯nG[™'ånG^YùFÍéõ>îÕ4sþj„“ø!p‰²k]¥ýË9êýR£‚ 5Ì¿q*Ú‡*ËUÊðp2WK†ü–á0õþ‡t˜ øÿLF÷‹ÿ²WÙÞóü*OWþ?÷ñáëøÿœ·åj¾8m¾vÒÿgé0Ì)hÆÜ€~ ˜óö?Á3Héÿ]¦À/Pbî+í°CÏާ×u1B2ƒ¿A :tø¦Þ—‡çíƒgܨçVt§(»!!1-GU×È3éwï…¦zÁõ["?ˆƒõ¦P.€äÅÝ %K©}2ð)7“qÌËË›¬Ô·ÙØÏæðóRëXyRÍèIõmÝt–ã¥óI¹kigÇýÃÙlow?X²ŒeÇ7}a\nün?v»=£ãL>oOpk›qÞdzÿÞ}¸oûïöÎ^Àþ»·²ÿÞLJ±eÿ==Bû/_3ÐÞ{*6ð3ÜWÎä¾ò£Ûr‹™oÏ–`¯=¨ g%&¸0X°Á¢Ê,jÒ<VÏ(‰d èƒAÌ&)R])Ëh(¸þòÏÛéÕ¸—ÀŒÙí~H3m—ÓeyÓe1ËåüVCòm³ûÃþÀ½ð.ýÔNCö<-†œ0.¥’ÙŒlJ³bá8†µS›T\EßZ/µ6*k«kn=Ë4|½,šÝ"Œ0£Q÷`ÿ1z&‡£ˆåç̱ü [lïq×´²×œí{ÍÙ2¬säG–¬þyuá¡ÀÐÀN_؆S£þº%/ÁÈP*FZÐí­íÃí²ø™é¸ƒDéŠó΂á¤yêz z\NŽ—«”ÿ¦Š/ZGUV¶U@e{®2})zbO󜣆õôʰ{XªÐ"sóg¥EÁç›d¥mÉ>;¯Vå4¬UQï_ P0[Šš¶­wœN4 â ìÌŽ4lHIÿžv©I‚ž/šŸ2–¶äØVe¼¹;Á/i¼]|Mf½ÇÈ.öì&uÊÆPÁš[†*…„Û:»m'È¥[ØVÜ@E-Yí¹ø´Ëävï¨vûÝâF·lZ;Z\±(Œ‡1ØGBl‡BˆfJø©˜©TÁþUÒê_þGÞÁèBfkvÖµ¹Øôl>Úú†ó“ óË› g´óT4·Í1Ýå1­–0 3 ¿jŽçndäÊÄô”x\¬ô”Ù_ÿwÿñOBø¯»+ýß}|xqØú¿œøÓàù“ä‡WÎôQ_N ‡T. åõtË$¾G,‡§$E Eô¤«ŸR[»Šò(åQPÚ¢¬Oéd½tÂÊê™# ”šûþ¢=h²P÷³1Rm A¸ÔâJó9Â.øëúÄ_œ®â/ŠÆ_,°ˆPkžyR:ñ&È?Þjc-øFzÿ¯ÛoÛeá¼Ï($ùÎûZ$!E:¤á·”!ÐbaØ?ÿ,ÑzPÝ:>*?ý0Œvˆ,¯ý½ñ3¼ïXoûÅ࿃C}aŸøßbC3ƒ%§ð’ ã´nâÛ[uTOxƒå`—âVŠ2 atY¨^®«¨dø.X[®mƒP¶œ¯ŽÿjÐç5D+â ß:[‡iz¶Á°`U›Ö½'*ÌÇÇÊE†"g)–MC0M½,|¨BP9 •£%¹Séɬ%€ŽG,KHÈÇÊ$Ì–ß©py:K굜X†„D i!q«‘_ÂsË”˜¹üäQ!Å~‰1ÏʸÿaÃòám4²T¨zhd€ñ5›ˆ…Ñhˆü…Õ\þÉòˆñIu˜Ä2.ÉN¨ê ïxy¨„ô‰C®v¼¹¡ çÁ/ î‹ÕÌ}q¾¥¸ànÚÛ¨ÀÛóV AÞy`xóî¶ØˆlÜ=÷Éq¤?ønœ·¯Ú{j?eXúF»+-äÈLˆ¼´‰/mÐ>[0$è\RÌTý½Bjûïõåõøúê^í¿;»Ož>uí¿;{••ý÷>><ã ûïAí sP—_Ô✑Ù÷ œ ="øç Áqâ¿ð´q– Øø9‚F;ŠY/$‹f2‡ž ‹oC›|ùÉÁë‹Zó09mÖÆk´Àˆ²‡:ê„~^”¸IÙø€o(Ï 6z.3O2ËN¥mžd9cx–ëŸǽ iÝ;o(¤ {†ž~ï¥)™÷àèë£ n-¹ì]÷º†¨½:øÚ³$ÁHê haþƒf#¶²v“ëÞ§Þu*¼ÌˆH“ܦ“Ãk‰|Óa#²C–ŒÌd36é‡î¤÷)Õ…„ebœ”üΑ)«¶¦@x.¨ò7çIw„Ê1¨Û¨èŠ‹÷Ó› ¡!Ô (lDHg”ŽïàOhGÿë–brw€8ö£^ðL»£kàý‡ÞÚBo__?O/'#hSÛ<wÁËÞ€] ؃ƘÐ6'i$ýÞ_l¢«ã‚|·yrZæ_ÿ£­oþ¶M•á_›UZÆ ´bMû4·®ÒÞ§î%Hk7Ý^[ô1ýÒ…‰N(FðšüU¶MN1·yeÊyø9Mþ ?SdÖp€Y :iš4÷;;”œñšóo©ÑHy0®¦£ÌLÆSêù3Ô”y³A—pN^§ãÞ(½¦½„e#YN€×bnû8'¡¬2?Í!ªWÞ„À³"koé1[ ÁWñf¡·ˆ-§dS•¤ÝÄ.IæBÜÙó+íÀ:DN ‰7¥dhÞšA¾›.SÉ) ®Ø7Ã>4bü,d篇™K#æšûO³^`ÎÛÏB&ºÈJwëjäÕå²añ ´¦ë0,ZÊ¢ëø¤ ³î °µK,{ÿÄ [}…Ññùv9pâñ¡ úp8œp6»fÓ-óúðæFöÂ|=¿¯œ`Îgv„Ò…×ýÃä#LëË4`¹Éhø5•ëüBöw†ž¢˜bXãF.PšŠŒ7÷Ì™ÎaPÀ ÉJÁxÚºsÕ!ãˆÍG€d)"ÃCL^{bœ’г"«!ÇȱŔ`iT\$Âàn$OÀô‰WÑA@„ìˆÖœ2ÇXе´ÁzsþÈ.[&rh(ÁeÁñ‚~ÇŒ™²Ø€½9ߤæ2~×3/ʴИÅìt¦ct¶Æ™µãàsÞŽË·xðt­£ÇM=JÿžöFÈÞץߒÖZÂ(“0M&Àzävu½µ¾^ÝrÞm (oxÑ%GØ\5»H­ õøuÝt…¬i|D”lk½T© b~½sÒì4Þ○ä(5_ýQ-µ—øûÊÚš Y r¯iÞݦ·CܸÅ-„)õl_&F‡rÑ<JKeÄÉàiù…ñL°LnïFÃKØâǘçjb§þ†Ïåp2ÞÊâ,'téB6¬YšŽ§xK2|u/€K^KgÑ¥Ô8sfª¼è†&hãŸ:CΕLŠÍʆœ–;0wVSÑ˜Šø\ yÃØ8£xÄ==[Äž-AzK»ÉzÒZs·}c>»/<É~¡á½°ƒ/Àä‚9 *£5'‘Ž~Ɨݯë­E£ø­6Ïïg‘ù7‘Ác¶Ûÿ0$åݳµÇÀ»Ý…–0éÝ5úFÜÄvãt \U™¼`â’²^''¸AM©¢—Sho;„`Cspiâ²H¿‚ rž²S?z†N†H‚î,¨¾ø„=­>jQÅåzÔ ©Ð¿!tH¯ÞÜ?©¿,ãOQ=/1xÙ}-£E]Rê¯OÿCÛçGô³Soòσmñs_üÌ2Ì`Ãs.,>è¼ÅȾ¥yºî×`€‹hõAkÑë#„7= älޝwj­kåúª¾n*Ò–<²³~{HÒl-+\%­Î…½mÙ^t¿¸)\DÜ'4Öñoe£9øg[ýßB¶i…qx™|ž0ù‡à^Sâ“þ€¿[ó np ×[¾’;sÅXzõ]ðyU¢uU¶ksœjd/`-ˆ…FŽÿ€³;‘Ár,áö ”º®õ£œŒ† $‹…kFï£' z#‘ B)lýôCóN-Á'½±CÉ/vÌ œ1’4…é¨+ ïÆ‘`ÿL“VID›8”e[NéøNæ­jñžþNu îò¶óž{ãÃÇpéĦÑl =ýD™§}l;³…Ëɶõõ¡üºÓZÇ".ô·ü=¹:á"ÖQÂ`$U±8êàãñ¸c¿]tõ$~¸©„ŸÂ¤Þà›nE9N®ö¦ A½e´K+©q• ˜p¶¬]O÷)²õ2ÍÇqo“ûŒÚçØFûÏHš(°3=e6ˆù·¦iT¡£×É9¢ÝD»ÝBeÈø¶ ×ìô°;p²iИ7B¶gÃxØÿ$56"u9Â>?`Õ m9'CópKìÿÙ»xp^(6bòçýGÄCø¿q}cÆ9»À{’õ±7kÉá›yàŠŽ]`­WdãÂ÷4~ƒ»<ØHfæ.ß‹’Øè0.åŒÎ´fç5Öñæ|)•dKœ^¬ðvöKÖÌùŽ;2®ñYGI|•‹·s–Õ\kjžåì>¨IõîÀ7{˜¶|%ª'”‡¡%rIì ébbR¦jb½ ÄŽ”P)UÔÈ ô jITEÅÞF…‹ô«  vO;ܸê‘ûq¯?<2J ^Wj ýë^£7ãIþÅïR]OWÇ\ ÕLø§öSfÅ ¸ÒU‰L€€ôìl ¼{ =‹‰âLã5 lˆ*­‡Je6¨gúÙ{~ÐÖ Oir¾ï½Ñ@ÖÁ3Ë›ÔMø}Çþžõbð€  !ލ~à¯ì>²ÍŽí@•Vb!º±Þ éâ#«‰Î"Óá6|ò^Êêä3=œ\ v|_ }—|-´ø¡B/e½+`£¢ÍRØ€†'»©¢±‡^cŶ3¯ê^j't”M'¹N×[É ÂôS±CIo2fa•Ý(Hè—Š$ t‡{V˜¬¢)­ã¶¸-Ù7ìK,“–k,ç«\#ùvÞ% RoR4Ʀ`f(@«bÕÑ¡9®9º×È5E³ÐÅD2›ÕÊlV¡j©º-öÖìÝbì ºjé+èh[1ßîN`¶Ö¶’JtœTQ”EôÛã8_“B . (MûvÝòn×üÁ;¶zÅ:JŠK[ü¡[¤{¨n‹x[ìì‘Pëüàš$‘Uhm€_aàÅbLÖÖvIêüYkõ(™õPÿ_/i"¯ŠxïA&±åUDDä ÒI8€G÷p¿¤,%’t¬Ç™­3¸cL¿oü'ƸZDbLëeR·3_m¨w_qU-<šMb™„/·gj‰ñîûy_¤ó|ÎþóÏL°¾…#=ŸNË| ÿ™ÚÍɼ½nÔç~s6fy+Ç Çq9›©[VKWŸÀ>øJJ/Nž.¹c‰<|è\ *J+ £’;îÊR|Ëý»!òèíš"¾»;ÃÚ¬!AIfü¹{Gþ¾÷¨–¸žl‹@b[6”„FW_½²còQ¤?p¢4.˜|.V0”?Fä|ë42LT˱û­¨Ë…ÖÜßË@ ~õ çE#"×B…kž$†Ð{êõ#ÿ$ÆÊo¿z–ÑŠthå$õö24•ÿÂÖ;Úåà»xš5T^6<©ð›W¯Œ¯ $ª,¤óQo„–É“À<6uœÖq•V$BcÙ\÷®º£†"2³¾BšJóh‹YXÉÌ™§Jm‡ú•„T˜Áð²ôè¹`h<ôYwM‚þ°½ã¨ÅL+ 4äÙ“ÍÐK¨-©]bLÎGoðŸšR›¨\{òW:µ”ÚEÖfËÙrÄñ¿ß/þóÞ“'ÛU/þ÷é*ÿÛ½|x*9ñ¿gfþ·VbXÛøk=¤‹$û[8Ñß1ø¸;˜b„`fáÜÀ… Íø_Á9ÅÉ€ L48ä$eâA»ñ¾÷ç{ÖΊ󥨰²qª:àÑã!…sãq48p¡Øa¤ÃáóÄÁФ¹b4Éÿ¦£áæøcšT§[ì=ŠÑPÍEO”Ìb8Bˆ`#Ÿ‰`äÓõõsñĈ6æØH»)C/@SøÑwFÐ0Ò/ùFqÇÉ©÷ª~‰„½Ü·èˆ ¤ {:žpHJŽÔ±rXKºWöÒf‘qr±~fú¾Ÿ•y:ôn!=Õ˜uHÒÈØuŒÙQäi¦Â·e’g>àéÏÓ½ÅT´µ dž¾¾E㦞-<ÓCQÚ“]t"¿ž^¥“,ÓS÷Iް<&pRtâµ³¸ fÝÂfÒíµQû iÕEë°A.1®-–Âã_Ø9—IÒ!ÝeGN7:²Q/­ɰ·„Ÿ$G°ßv“:ý†=i§}Ž¦ß¿ºšŽºW_Ë¿ 7Ž·’ƒôö6íÓx¼ÝJ^u?ve!އ·ÃÑ_،ֺòÿì$%èC§±‚¯v®z[ä6ØO¶„?õVòiØßJ*"2n%{åäîn+ùõéÎæo¸žuÒ»IRùí·í5Øð 7*ßzÝ»¡ ‚I:ú÷µÞÆÔr''ä~:áxþ7[É ôì\Ëpn]}ôÐ%¸ÞáÕ²~º²¹··[F®}Lû½+ZU)ƃà!àx€G}¿§°ð +U=º!ŽÞÛäžMóDŤ©=í~B±C¨ê™¡ØËŒÆ#·­nõ“ó‘76L¨n(¨îìÃŒïÜè_ª{8FÞl{…¡FbÆ )"Q &ݦ“$Rén4ü0êÞ&xBãçvH7*\(ÉtÀW§kîãØmMÚ§E™ž$¶ |º¦ÆÁY«ìCú»<-ÍÓ1HÇ:ƒð'¨-ÆåkŠAJãÞmåqJZשÚïf,ÌÒ^ncMfŽÙ+ŠtEÍ„Œëˆ˜1ôh ïn„äùëæÉEÓ×%•1EMwÚŸ$bØ.Ä€ÛåÃÓÎúzi³òøW'z\Т ×a,¢¶¹¿jM$|xÖ¦9ä†3#¢×X-”² »Ž®5RO°/ò­ÑáÜÝ(½¢HÙDÈ@ê‚í;oj–Èn°ˆ/Ç%]ûú¸÷á¶û°cM4Ä©W6 ^ÑCÅe6Ú‡€kKWû ×c_ÙMEÏyÍn暬 èÀ踌ègýæZ2þH e— µ¦“ÏÙS¡SyLnhøëDˆgæ´@½±”ðžyÓO̱§«t²E¤œW©ü„ô`lvo}Î;`2ŽíÐ÷1E{Ä¥>xàú›öÈõEÒ5JQÛWsÎåÜ'¸ St¡bc¸5¬6íÂ*Ì·´% FšáK/…“ýwó¶R ›+ë‰IG”³–ÄMЗº»îxœŽ½Ñ;ßäãh8ýð1á~à†O«Ì”cž²; à¨D7„!Ÿ9쀉u·äf˜oËZy£“µÂù|•¦0¹wè"²'Ý[œ·xšÝ­#Ït eç©äQiåâ:™Gìeë }þ2‹—àîU²‰+óm<Æþå² k<ÈkÒ‘Ê¥urØ8Êî—@fmoUª{¹€M†çd&9^“°RLªÔ|ý—~ûõùþyV¨y9i40P¿sQƒÏñ¥ãrÒlâMJJmbos& –8AU&ü ÂÜëæ¾ ?Nâ¬Ý¯uËøo¡};Mú·]Öa÷/ÊÉQ9y õg™õ |~PÜZ9é¼l`©Nãè¤Å?ÞáV3 " ÑÂ7±Ñè-þÛhñ¿Mþñz?ëu({þ²}ØyI²ƒ àzÚzÑ ŒâhQ4ñ<Ž Še´¦pÔ¿î_åg¼?Þà×0õ²Bþ;ÐËoêOÉãØ8j‘_eô`‰ÿr ßUÉ®tî(ÀLÒDt ǵ焨û!íuŽŸ!ª.E³æ~ª×gÌþ$ƹ“ˆn\»;«ÄGçÞ2…TÁ°v€êÂz®‚I¼¼à^[¨çµ¿n7¿^¼õ5J‹DåŸÎ¥éç„Ü›ÁóºŽUžl«Æg Õ#ÔPÀ%xðÕ7ý*›.^Ó)Þóso¬0çÖ|Pa$8uo$Óuþ¸âgTl¦ÅÍòТ5+ x;«È òCÇ %“é²3¤^}S匼<1¾ÞᯫÖ÷xÚ‹àîòQ:‘`Ð(']3‹_<œŒŸã gètoT(ï#›±÷öOË8¸þ`ññ1én@:Ç£;ÁçFxλ'ú¨‚7r†»)ô¢±ö,Ë·°­| _<’ÎYqï¨Dà{ʳ#¯ö¦]»po מ[…JæHÌh j:¤'AÉO¼VªÁ–NÈe¾ÓÛPõ¨ë³° Q-âå@]¾Ž#p€òÚú`8º-™º¾5í¾)tdÏ:LàE2‘¸‘¤½¾.î0:Žçœµ†Çã¬ÅÑðKï§“P”U¿‡Æ.¨¢hq—ú:‹`%©É,[ñŒÜN3Q‘Û‰­ìÉC‹äŽG’®v£qfk0øŽc½è»¶7-Ë‹oqX¬†Ë„¢ŽyîNË'Œ‹ïXÛÝ.3¥ê:îSy‹³ë%üò1^D/6ƒ6+B±w&ÕšPâ–„ïû™qú²ëyüÇbTÄ/IÆ7š–ðM-„×ÍuÕb©)j­Óq¦ö7ºÑ[aµ«!âjZ[çI­ËÞsNGèzC>}°¾ÐŽ"Í*¬ä*ÌPâƒ$!tÐÆ¹Ô]GUzžM¼N5Ü¡AfB>bé šPé[÷> "½Þ2"Ë©ÚçF'å’9?l÷#Ò˜WÔðß’'œ¤ƒõ¬¨Ûf lþt è Dà±"_Šl Š>ŠX-ýЄøÈåC‘ õéÕ_Äf³Óð'«qSפ®†Ó-yœ äHDìÕ¥-xÀ1ß¼ÂÕm-¥½è‘ã—° ) ©€I"m‰Õ Ü¥àAKŽ/r±Ÿp¤õá–˜®FÝ⩵å‰ÍÓzÛØ iî¿Ó»ðÓmTñ>|bïÃô5~ô·¨2*€BÖÚE]‘||è?Žöµî"÷’¨XÝLTìüaôEš_]Wp@m‚¬Ô2Û<{:eî•{ê<Ä'Y Wúýù«WôÐî‹ZB<7È*Œ!ð8KÍæš›Orrwæ“ÍPX{Ýœþ7"ÙÞwÊ› ÍŽ°w S°Z]ü9£nÂ!P§ž8"ðÛoaf4›ab]ô»"÷°Ã4¼ga£Bûd™Jà—°â…»\ÅÛF•Y9ùØ\÷a¿Ã Ä´D®uoª¼26+⺠~ãÕPG¶c²(kAIaIzQ+ OÐå¨ï“wúÉ¡~bOhµœ©öȺr­tÝθè{u@$‡»oID SÿÉfÅ L;±¾¡¾Ædrd’w#Ⱥpõxÿà:1*¤îDüÅÚfäðLÑ»:¥4û&¾±þÆ*2:fÕ,×F5om—éÏ NŸAúÝ­ù(('W‡h—ä¸kDÒšJÉ€ÂÈN G™y¤Èóu2üÜE@viStW °‡NkÒ¡P"x>ÍCÑyöv޳u‚–^B`ϘAkÚÿŠà ØQJ—½ØÞ5ºFñTb üÖEê`‡ô—S$kVEuçÕc¦êÍä$ª¦81Idžª…$ h…3š·ŠéÀ{ÍÆ ¤|æ¼]öX'‰ÀBa˜Tì\c9zO³ÑžÌÑSû I †8k¤¯ÕŒJ6EyƆÂ7£{Zâ-ÄS”%E.j ­%ÿ/õ}VÉ®7~Ú¿DŒ3?¬û•+´$úryra}M *)A‘ ÎSR9CÔ+  ¼‚ÅBåUéSc¬µì|ëô±É QÁ{¤he DqB QMu‘DVðÇ¿:cî®òØŠ¹ì^ý5×’ÂMözÑcX.‚³­ct³—Kl`Øj‘üÏZ.'³¬–Š\-´RØz½ù£¬˜e¯—Jîz ü!¯äêR&®ä'¾‹-±PÊbMÝð×(‘|&§®Ñ´7p½åä„a×.|gˆRVd¸b¸ê!3'%¯‹Ö:Ž™è8j}ð~Eci¬)ºm‘#» ¬ÓB LkÛèR½ºÝOÃÞ5:x‘ãSÀθܡ¿=7Ü}¨n¢¹R$pTÑq[Ü3ÈŒCëû‹'XÓÆ.ã¤Q÷”¼k ;OXr·˜`׿/T§2lNYîNeþ†ÑƒµyùçÏ͆ ô~ï¢{Óhh_óã:,´š{šÙX¶×ò >¦®­¡Ç˜¡seøÀh'Ùb_cp5©Jb #ÖŽÑ ¡1e}Yçv9¹Fã$†SÔ³¶¦i-zCk[CÀ‚f•Ìhí ‡ðÕpLn#"ýf:&Õ¬?+©É;›õ?. 9÷¾Ç=_¢òQÀŽ·N¾E9¦<É œ4ͦ?’DëÄŸ³ßÑz;³rêÅz»¬¬}ëX¯í¸äc.òGXÿ6…`‡¥æ"ŒMèa`ŠUeûó)îè®âS0ðAÝ7o ëe¥Šx¹îWkûô¸ãNɈñ2ÒSR$™¦Ãê®DFÐÄØ-^3Šl‹„bÐŒ£îdh/Üv ª²qÊâ[Ý(Ø6=ÞlYÂ{°V¡ý(ʶúBÍ«[ì«®ü¡SÀ'ãžq½t[â^- b3¨ øFð vCa÷<) 5iHþÍÚY ÈÝÑ))º%η!nλ!æo‡r3tú½RÅöBµnª­p§ÈVH2…¿ŠD6Cóé½î…µÈ^8תþ&»b-¼+ΰYƒ½°Þ ghÔw@_a؃wZ[’u¶B¼) ë Kã¹—”ï-U¾ o@ûb´ÉòtŠ´ä`érù y9_­Ž  ÁMoWÞEFeweþi/*šz{02ɯ‹½uƒªY?ôcC§7Ä_›üFRQ0B=öÜØÛÙM6#T.Ì•¦4Џq¿Ó}nÊPŸ››¨ËqÏ›^é³QÛï#øÃDB• ®›õÇŠ†5KþeØ\ìºãVì€Í*v_À¾â¹›yF’Ø‹•Ä¿’øõçŸ%ñÛ'Õ‰uP¹çÒ‰y,y,êäÄ)E,ðŽ©½Y/3Uù7†YÎ)¯ù‰u䩳j³2Ói"{à•ûf§UnœWùÔåÌó*ôž!Fl=²Þ;rdmVí#+T4ïÈ*r`é ]öyUô´Ò7:yXíåV¢¡îYõ-…óB§bÄi'Y]Ãmû®ªT–™Á´$7½Aoü–> ÉÚÊÙmȧ54I•Sùªôû^ ‚rº-£Åå¶û´nnQ«< yåWžÆòñ^¨ìÞYŠ6ÅFîÔƒìŽBÄ9³%×F©JŸ6Ž‹÷!׃CTyð*f$ÿ°\o’…F•€‚¥Þ`œŽhDÇø¦òSð0Z1‘ÏpÐÿJ “Qw0Vдw¾¢ý˜pl~sB&ÌìJW]òmÞ`cÌÉÓ°¼ 0lÜvµî°Р¿Æš~å ‡€bÔÖðFD$ ŒVähµzÙtÝÑ„؈$–PébÀdk£²©Ò Øó­ó¹{Då ßN˜h"2ÂnYG2Ì1K9€ò¼ä`~Çõ’*)çnEsnÏ¢ Úû’»m¸_ŠNúI Šl´²‡ìkiõ¿2zÝ6+¾g±ð´¯ê­ïÄ —0 ­ØûŸƒP{ý)CÈÈ‘†¾ºíÕáD‡cÐS4yÁ’1ÎÃ@°Œ F?8a 3j¬úqQqÿ³¶vžZ„ÿBÿÿº7tïÿ¿RÝ}²ãáÿï­ðÿïåÃóÐÄÿ?htZû°™¿® ÇMwO¿'tkø)¥Vú h&ì~è’Ú"ÐýØá^Å,èüX6¤>ñ݆ÔG„³»ÁÏÀ~wͲï‘cŽ–ö@®TaÂxvì=þz{›"$wB!U·wýôKò’bÌzÝ}U¤þùÃ(ñL\! £/•¤ÃÈSºÅHÄm´ŒŽ{ô¡{÷HÁ‰1fšÄBCIŒ»DЉÜ'€È*™ ÒÄ<Æ–\bfJ¥žŽFÃQ9¹Io: ƒ}Bfu¯(´rÙÆ&ƒ—+P0¡B‚¶3h:¢}≎ÓG$‘uT(µ^·Oб gTéÎÀOA"Û¤â}”@|`Ú`öüI·[ ½Þ HÄYpø9%¤r f&ó¶±ÎUôB¤Åp¾ º‚ÿ› Ì|ÅfÖ–5‚<⌂P‚É/ñ<4ç A\L±Ô“ñ:Å«ÒDÌ\‘X²9,_bxyçæàMO¨ÆQ&¸Ì[T&”'g‚úyý,ñ– /ÕÛÇîz ¡«Å—³à‚Ú’B¡5Ë‹•9z"ˆ,a¾DLøò|ŠIê:n>¤]°q炘斫3ÌmÙ+Ô È÷¤ñ–ÃçŠ*áÏ aÖž¬Y„4@ïc¼‰ š'åÖšI@uÖå®Þì½Õ¨p _po=ª„IF_sxF‡ •Ø7ÝL4u"ï¶ 4¾&· -¢Âp°)QdˆÃSfð 8Ë3rxngž£‚a2Êÿ,†RlAW2Lqo˜â=qc;Y 4ïà°Þ.'‡#„Éh´ðæ!¹(7Ž^¨\ë(Cl+'¯âý ƒP@Ûµß!ìÙëæýìì¿ ÀaVga´=ĸ¹@Ù$[VïŠ"ÐEáâfsëê3>|Y§¹((7º‰`#™H®ÙÖcèæû¼­Ÿã„ÂÇH…"*éÙÔPý®ìEfˆJÔ1¢,‰A"'#¦ïú6’AWq]þ\b~îdFø¹Wűç̧uô•ß:o_Èhüà }mB=½ò)p&Ä4­³‘Þ„àhBlM  ìØ+g²ŠE@Ð/âo)ç15;½8¿QØÓ–ö€öKþ¸úÿ——£ë{ÕÿïìVžT<ýÿΓ•þÿ>>bÕúÿ£Z­ ËüÍaý\Èøª ÿ]à>€Æ>ü—ñTÏ2óÿž•“SJŒÿ>”LÀË1' ‡2.¦dOLc†‰ÄÀÌ3ƒ» šök%Qúôf‰åŽÕ)¥>•)ÏJÜÆùòÓ$9SÇÒáØ .qhÌ,ªC‹¯Ùx0—jRc…½™œ•ü-ð!‰Ÿ%g yû˜wvþšaóIVjì3Sãä •G§ ¼ cÉtÂØ~gÖëVÒT'Sj–ʧò«°ÊúóÇ”m#’ ”&¹xÆé}qºZTÌ›4°éµ¥~zžèuŸÊÇPyèyM>¿N>.O·LIngU/ÉŽ¹ï§ ]VÖM7íæ«æŒ-O/åä4È™Ä/f&nd† ‘·r‘î×Lò³%ЃÍ(+ohh (c²Rßx2T`–›$^57^]lTØÒø'êPy(2åäQïO¼&!ºØECׯ–}öÔ¿¦•ÞæŸå?QœÜ/õðFÅ”ynþ5]û×óÞ¿ž£2ú¶üçÆ_};u‘ʸÈ(ú¼)¢ñz:ÉM´‡âV¥2ò°,– p‹ ÁhK®:v’F[éâÝF̘_?\ ~'‰ë9¥ÄŽ¥BÍnÆÙÍÀãòÄjAã†OÚaÉ6Q{dÌÿÛ@Žv;‰¦A ÅNÆ3iÖ¹#Õ49+²5äL»5HS%ŒdÛ×½ße©ŠN …™v&ž‚@ÒŠ1õÔfê€7Ÿ©§r¸zfqõô<ƒ­§KÈ{êæ‚=õrÁz]ü]ó9»X¦ÓÌD§¼Q_]Í“è'«tÝgëwÈtzÊtš,/ÕiuëûáÊ–Hjïr^5Ë X6Òª-l^|»ß:‘Ôù^qðçYÆå,‘û”•ë¸ÿ¡r¶†ÿ¡¶éÞëN🋬ì\¯.àr×$ûÂОà¯Mèý!ÛLÿÇÙ׆V´¡ê6´¾Ý °b®TRGoÊfJ©ö9ÿÝ9<I¤–—ªˆ rv kÌ‚ºûä‘TõŒI¤MЬMYé&i>yÎI570Êžž{…O£…qS’¾Úâkœz ÊnÉ íÊlà˜R•ˆhØE+ÌÌWVsZ\;Ñ72IædÐòÓaå%·òÒa½jΘ ëUN­'î (Kã+4,±·~õß:ã UjÔÏT.ª33ÕIÀ"¢øï1凮hùÌÎr¡ì1R¥ÔR„ëáäY™ VÜ›ÛÌHÚ¥YÍŒºá¡3¢Ö¤ˆ”ÍSx¤=¦n’ÅXÖBc=¨X´ÃshÒ‹i¿ÿˆ7–õ‰‡ÊQ’‡×J§ç¹¤Zôƒ”T£ÑX1Ë©åx"²¢á˜E³‡©$xX9þ –Õo‹¸Ñ’Iß§Tyžšˆ»øWÂ×c-¡¦rCh°”ë÷s€ˆpþh ¥;ä™Ëʘ‚¼¶cÆ|8í°*üî¿3Ѧ]dF~«xËÄÂöߢ30æ–ƒVNîúÝAj¤ØB=ŸV`¿àµGMH¸'ïTÀ ¦H@.lµI(‡Ûuú…@+ÏŽ«Ïp¯Ú2[tÎ1r*ïp°=ZÅB:áÊ3voËóò/ݳe€¾,,‹nTž±Lïm™#ÄswËw&ÁïDMKÄea¿€¬%Ÿ¶è©XúªFgå –¦£NÑšq~&ä¹±O_WÖq_×Zf>øWYcø13ÆÙaUF×0™„´XÒ2s¢ÜÄêéj+ÛÄ¿GÃÏvêgU¸¨¾MÕ2w:ニ–÷àók€h+ ª5ë¡ìë1¦» <ÃWù™Ý'øÈìM'„| z{Ù 0ޤޯ%Ãî¾øá£Ð}•3åÀ6ÁÚœîÀ 7Md]$Î-1 ŽÞ”HGc IöÐÝMà!£´Ñu .ëó‡Í$Çô]ø‹“Ö†ú΋¥M$l³ËkrS왆̱ñ=?®b6š›éuAHpz£P “<š”6>ïÅÐKA‚DK,Â’?冿\ÍfSŽv­ðø$‰Aa£2/ gTQ7=ËD?\W‹ '•‹§HtpD±æáÖÉfc#tòšŸÈ‚sÖ[·ÔÛ¸íÃ^Ù[ “ùÜ›|št\Yeu}Õ$sæ¨è¾ ÖAü¿Ø8iâ.Ý`¿ñ ÿ= ÿDGú»‘ö~Y#I¼&ÂÜn*¸•Vl«þS&: ˜6doì°Ñ$x­±!n÷k›Yú‡Xf~=—ßaŒ’ØÒ§c´ÕöŽ þȃf×’ûÜGÐç!¡Ç—‰ßNiò߆hU¡¼lζ Sþ,8“ÙSï˜Z'5B¡$öˆ“%_P‰qÄßüW.ÿõfcì5’åÕm«l?¥Ûê™l žN°™ÔclÚ™M2ÈüØKñslü½³vgÖqn?-ë( ²ìúO ”‘ØôWšÞY›)‡ÍY¶× 'å: ÇRèšip^JwpB]`ñÊ•ÊàÔøFèÏ¿¦kI÷î†äå³¹ð¾ô&ê0 éà¦õá1d2í»j×q Ã&ó£À«võ.Ï…Àë»áú~„WãVç0q)â+I6ØÕ9dWæ/¿ŠïóÈÌ'âRäbpºî‘q¥|{ò3È·B0qøáV6†pyV¾ê̆D”ä»7‹ä‹ùAòÞߤšAÝI¶$|’pk™’pdá©ã> ?3I‘©,øá‹Â›';(•\ ‚[á; ½X/”yMAîÂä ÉœeHÏž`ܤwÌ«`¬ëÛ5XD¨ò[Z™U‹±ðÁȨ)^‚0|ú(&æ=™CÌ+“›é1onJ²;=Ïg¼zÏ|ËØºŠîT¶ˆAƒõd9‚aÍ:‚~4¹ðé¢ráÆ_} I6İJ/ BnAé°ò,O2¬™‚!⺡²Ë”­2–ˆ˜Eèé2U9¤™…ƒ@He ÿ„ÞPÛʯ!ÍßB]Î&¶q°cÓ2˜¹ØA‚³Ë6›ë¨•Ʋ+(;MØ 2¡¿7°>A¦†”½GÙ%Èu÷ƒÙu`›'†77›ÁrÖÈŠ¤Zg/lî óŽuS·U¿³GÙ??54­}NšÊ¥àtÒh¾yÁ —›Ï°t=^:pP­Ÿf¿m=GÃÒreSEv?Š'´£hlXÊ‚v¦‚@Ô-2[†C~)ƒ¼«ÊS”Ó²²å/0Ó’ ZG]Cå‰5ôö^¼oJ¯·åÛ Üpõ’‰®‹IªyËÆ[-‰èÊA†×Ï0þåÄ›i"…¤ÀÀ·¿:L9ôKT`E%ñE•8Ì ÌÔøM±®°4ëÄÎüPÏ*ÃîNÿMÁ©a ?øÍÉÆ b”±33V°Ù‡w_#›&ÌçCš%ÁG.6§Î"'Í Á“MŸâ©˜@9‰ÐŒ´LÊÊê>°I‹õ?Ù‰…2S´w¿ìýVÒI'–§ù¡Ì’È€ÀÈI1Y<Ûr¡ÝŽ)v H‘ÿÁï‡<äÅÍ™½ I‚ÿˆDÏ’§ÎÏ=ûãüøß«áà~ñ?÷*Õ§^üïîÓUüï}|xaÚñ¿°ÎáÄ¡üV(î·qÚxS–ØJm(}qîˆX߇ò{2¼æ¬®nØí÷QÚ¨·ª(΀uE øÕkàÃ^ò"½L¶wÊIçø¥vœš5j¹&ï^Å¢†åÇ·¢1˜%†8T3 ªnèpßxÍvÈñÂÐæ$Oz·ÝܩЂx¢ ܉Èxb'ŠPCÞ!‰ Ál&CéGØ“_éKBœŽEÐ]Ò¼HnºèK×û¯Ì,@A´†Ÿ·_ÈÀÈj9Ž\Nº0¯)6@={ƒO¥ýµµ²r…óº†dBð¨ªÎ®4"Ñà’K¦*—˜¡ëVEÉZ`dÂöHæF6ØèÈȽWX,öq”þ=ÅÜ.žf…c^#ž%×ç7𑜰f=³Å3 JNLðb‘»ŽÍ€BT·’%ÇïÆ*Ɉâ7|÷ …9®C†½µ"#*í¥Øµ,¡õ»»¸ÛETq;]Aéš—}ì=û#»|1ˆe|+­E7øvÚŸôÐ¥v4f[ƒëôÏò}µâs±"®ƒÔºÕu; vIñºµ­DEìºUàÖ¨"0°-/@ö®÷iˆê×k„øv°Jò¯çIÿSO{ÎRùlko0IGW”äš_¢ó¤§ö%±ùÄ&¡ž)`ˆôŽP¶örn ·žå¹ïyJ* ñº½3ePA:¼ífD«ºœ,vz™;N9¸8`¨-ÿq)¼ßK¶Î¢¸³Þ’±‰‚‚I {ú,Ñè4ÎÏø}Ã)#ÕŒ_,/-µÙz}Þ ˆ–’##R¦Jj’öÞqlã)šûCþ,@ê<‰÷~¿ÑzÓBh.h¼Õ9i¶.àÏóhŸHÍ‘<;ûoKÉN3 „†ª:Ø?ÙïÞÁ†>„jebeû¥ŒŽÏÜwúŸ²¸ŠÐÏsÄr=hwêÍ%Æe2@l$.sÞˆI#òÈDä ‹†K‡{;…$‰°C¾É˜P‹*vQ¼ë‡*Šw²ÂÍ ¥]‘xC25'zÐ PÌ‹ „Õqô :׋2ô^,“—y¸@ÄIKö”眱òqšÓ$YZ‡’{õÛl‰!†ÛÌòŽfÁ#voàÈÁávzûÈðm;”7@‚žŸÏzð~iw‘÷fFŸ0z-f¹&Œ³Lf[‰åÓjh„_C„é¡'VD1P’ëµâe3’¦Ø‘È!rçm(¥â‘'+´·[+¿O9õÆû´}°ÌþoÈî¦A&q'ÃöíÉíç‚Rn†Ú˜Ö¦›ÜŒ?Ç7ƪ“psí¬àB°êÆŸ"GŽ3½5Ó/6³,=‰º#ñ0ãù„AÜ”17Úe]9_TŒÄbÕ“D Îì±¼ðÆRN¼sD}tWCLùتŒ{)ÿ=ØÄ(^ œ¥å…ªK&„fÀ}ÖTiòÜR ÷¯ºÞÊɹéî…»™×ÁGE{xþPº—³úüX~"B€Ö^Äø›]‚æd׿o’XƳ؛Áñ>›­ùí|r×}Ñe»?$ßjéï\±î߯|8è}ê]§É;œ •Ç4½(õç5ãaòîmøsÕŽS E¾é?[FŸ†ÿy¤¿%8i¤‡ÄÛTúŽ áêL ':dJ %†±ð×|‡Bãº8ïIåbJjpg §-Üݬ^Í© Æsšâr“©UTΛ¹Íœð¥ !ÔˆÒvà?Å¡œ†R”â›êc)¦¬á¯d  2»E“’t¸²òþˆßþ›þ=½_ûïîÓ'»žý÷éöÊþ{^²¶ý÷ð좔Č¿m‚qn¿~[oÀ¯¯›õLó/«HšÝ7Óh[Ð,{’m™¥~ övÍb¡-„òL?Û3Ú]at52jêÙ+‰ð&ÆÀ8»)7v:¸fÃ8Zëú½K ¤á ' Ørœñ‘€°˜Œý£ N¡ K“!ÖŽUJc 'u® å¹j‘z\N®>B¯(€g2ú*àaeVôÆó*¦¤S:‚»WÝNÚZø™,ŽrÁªÒëóv©·¶Î¨¯ëuLËHñ{ÝË1Vp*JiƒÁÂÜz,‰Ö"ÌL9ê]M˜‰—©Êw©T *Á÷¸{Cüf$Skq!Ù),£Yy1–âü"F )H>  ÅÓ.\#&)·AŒNÌ4±Í‘Ù’Ï)oè1š½+ #˜eaþ¡0ŸWö]·ùhÌ‚Ya0Û6¬ÂpÌ.³If¹pÌßÈk›`åi1[öCÇ^)UæAOüO™6®Vô0^2î¦i³n¤,˜õ9ÚäAíê6Õíf„ög«z>ó PšœÎ3›h’7ühäGí§´ l7¹âw[T‘ IK¨âzà¹M»§t!™ªxé/ª¥LAK¼É~FÀa«¼ã­¸-ǂٙ!Eˆ8T¯M õꊂ$3Àè‰I:eöD¥;@eÍ*‹›öa‰Àd¢5b›g.·KòÄÁ¯Ö¶Ò‡C»#8E°~2a…•­è9cLT6_š±Ïyy–ì9Mٚʿ*=öëG, Wù<9YM|0ÚvÓ/°û_ÉåÜó߉z³ÔÛÖÉJ"g Î'³ IÔ’º/™›ÇÓÐú­KSžœêOçÙ<¸jémÚ§·ÒÉYnhø·ö@ELªœíæ·ÈvóëÌÛê#½ÃŶ›usUþêÍÅßî×ÁxrŸ¡ ¥n@ÑÙÍÍÉ(…¤=¼‰{Ýc0HØïœh·´Ø&ƒ@Ädzl4•`fîy7šJ5Ò5÷ÜFNÃàNS©æî4J¢Á¦^:V; ýn6O•\`§±øégAÞ‹gƒö¿ËåsìO·w)þsûéÓ§;»{hÿÛ[ÅÞχg…gÿ«-Ͱ&ùFÀ¼2¡ú益2²èî‹ãä ½½MûeøÙýЇMîe·ßï}èÊɆÿ&/{×]ÚMBÇÝ1Ôßî¥×ˆuikÜÊl‘itü5·/B—z˜Du<¼™|FÓ.ÙîBîBêvÈZj¶©°å4Ú&þµqrÚlÔçI /kþÿŸlW­-ɰ:¯MkE2‹ÙTÉ ŠdîϦ:pͪç —ù!«µYç}ÝûRÜØÚMîlJúLáÛÒ‹$ÂFØÙ,°HÇ5ÂÎn5 ¿Ò›m=ÿˆ1´bÛ¼îÝÜ •~ŽѺ»ä‡”óÖS‡A&A×j] ‚Dmû&±ÂЮk‹€˜±žh0· J0Å®'Ýkî_·aDÍ1TñêòeiÂa¥<åì¥ãG0‘> z0¯ñ62BÛKÒ>àÈÜÁ¦÷…üáú_ánÜê÷ˆ†´¯ÿMJÔž$•ÇÆ7++öÏlÅv’ Ëm´'2 £AÎÍrئívhÖ Ã®9²@†a¬7Ó¤ýêB›´[lÒ^ªEÛ0hËì˜ß¢ý Ú+‹öÊ¢½²h߯E{eÒþ¡MÚˆµx€±ãÍ×Gíƒw+ 7qb©fîhõÊÎ=‡»¶,Cw~JÍïoéBhÛIåå–”FÞ"qÑ6ÜÌ÷ŒTȼ5ÀCø¥DµÚoeG_ÀŽ®šâ3Ç0úE°ÌѨ¬¯ÃæV¢QRÆng1|±È5üãàõʦ¿²éÿ6}«y÷cÔ·¶²‡kÕ¨6|1Ý´9cCSÕzš4£çlh+‡»Ë+‡äA: Xí»Ú*žûŸðñý?F7ã{ÿ®>yº]õ⿟ì¬ü?îãÃKÜöÿh¿€sû¼½ßêX. ­öËŽé²ÿ‚…¼SAd+œ Â?¨9:€^¶Ûð-ýk¢GeÐy`äß9œFD륊øRðè0ï‰ñ-ÆY<&–ŽM*É–Ñô§ø#>p¶ˆJ_è_Uõ0¹JÜÇ™¼6`®'½[t¤I¥HÈˤç—Ù"“ñ×ñ$%ˆ7ªÓþžŠü:Ÿ?¦ñvzsӻꡠ. ½1S‘7Røìœ)‘ø ^Â^ü¹;ºO4<úÀ/—*`Ʀé’Ì÷M Œ«»¬:ê"v·{8ŽR)[pK&4ךSþœÊ¯¯ŸëWJç±ÂuQø¥Q¸>ü9ý@¨{ò5xb’˜ÁØþ‚Çe?S%”*ùHvsœ°å¤·•n±ÈsS0ɘ E_Míw[¢ ß$t]¡8ÏÃþìý3…°î7„öã9ãÅ (~y@ñ4 ð 1Â/Tüú·€Š—g886ž&®î¸d¼Øf›0añšîìeÊOQ±Þžúó±žoøÒ´dWÞY]y<ƒû 4^l/'%§ˆN½ÃÕä/¡Î–KâKo"¬ú,ÿ\û¤Þ-?ﶘ’Ï”çˆþ,Ž=¡q–¥b1)±h–’êTõóSŠKפò=JK¼?kS7É»óöÅ!nTX|2šï\ G£¤ö„„ «²ìŸVOz´»é¾ˆt‘ª|º’ƒäµBn(&Cc\¢~mrûÖ€Êo¢ü¹ðÐ2þ† =IïH”é%±Qz@rñºGG¢Ð%ü\§2:qßž'{YwóµÀà­9Ú£±¼ÈÜÖññÀúQcœBTƇW­÷Éó€ü2ȘoæiWá{(Z–“»þtœTT3‰ÀÜ'UE™³|ÈjO;¦Ûßáݸ×ô~§N’‘>E•£¼%­÷ëüŠñ}¾çç±>Õǃ¡¾Á9zË{p×iËrçlòÜÌ÷Áç'ê¥Ä·Õ7‡Ã»d:˜ôú¨á¹»#÷šІ(£v DÄ1Z…¶Ì×”Óc MÂyÓ&eöf2¼ãÌnïŒDpŸ?ÂMG¯´?çÌlÀ;±nKö›sçI^:ÅÛWo_oé8šÁ-'÷†Ïíõt]S‰Þˆ|F…Ý×:’Wáþ(7@é^­§„Í5o@b¥¹ Þ€lh6Z­ :u*¶ÄÜ0Má§c®gºŒø‡àqôÓTjLàiïÆÔð$•5‘.Uœ†TÇ1í»¤kñö'ÃR1<«LR]S¯^§W£´;f…fw‚ŠhÔ'JïEØ«†ÁÆ¢’ † ‹æ†*ÚYKö‹@ª‹dÙ1Ÿø´·¦‹bN™øÞtþöõº~„iXø §ö’¤‚E¸Æ`"´‹»kT‡*3å>t{«M‰>ááªòí©Xî<ìµ>Öñcê-îâ×Ç™ÄZå0` ÎëJ,Sü²© AŽn8 Ü8µNuÛÛ þÕH›ž-ZPÆÝwZkþX|÷à~ºÅV‹çNq:Í01Ÿrkö )÷,|af¬$• )§¬UzâŠI—ÊhÑ%f°¥÷–ÉAµXé¡«,g –‚zNI)±m-‰R”[m+HT!+.4t‘A5¹Ñtpá!g#±v± xÆC´!(6>GzØØ‚ðŽÅ›Ø" ~3CLR¡! Z· Ì!|ÎJÆLFÌs훃¾ž Q¼ôvÍ»Š¼…e6Û¤u„Éß–q®z’§}®ª–©r¹‡ëÌQÎÀQ¡¿¹²¯*cdÖDý$tІókÊ}öÎ)m*­El£eàLò’pš϶"98; ˜;ëjBÁÕK ˜„¡óN¡¤ÐA”¨À„à,´é˜b;ýeM(c úL™çg€Lüœ‰bá®ø$"opnVÎdÉ’ARhLùGe:¼ÌC»ûY·ßû¯a÷U¥•Äà ö•ØuV½BB¶´¤¸—æäNF ¿ʳ—ØÊEýûcñõ ²ˆÛ‰Æf´_hÖâ¡Aÿÿ/÷‰ÿødg§ò„ýÿwª»{•§„ÿød•ÿí^><<ÿÿwj+8<»8<ÈÈØÌC€Gºáì’Aƒ#ZÀ?j­l–øíÊŸñª*X}r 4È äÏbá+üÊŸŸ¿2fØkDÒEfÄ#2¬…Ÿƒjêêu ê ˜£iIº÷àÃ<8Š#ábj• ¶“™$þÐ1#ñ ­¤$v·‚¯àžb¼bð[üjDž$NðI"ãOÞÍ€’˜1(fpIñÈAÆ‹/AW*áˆ-À»$]ð ÒeÑàkÙAU¿¼¹ÛºÓÓÄV(•$à ž™Ø$=6Ô Íwzzm»šuA…{n8O˜1.+ &ÞÂâ HÒKD’4Z¥JPXN0ä‹Õ‰‹“ün¡óW°™ U¤Zfâ•Îp Éz™b2ld4‘¹êŽSÇ¥·;¸¶‡’­áª5¸™Ê¡SÝ›Ìv‹ÞjVX1C‰6ŸÎðM¼S;šPu—ÐŽ¾‰àåÆnìªfû8Lóöß¾ÅCòãð³á@‡§Â]:BÍFG!”'œI%h\§7]¸=qÕÝ««ôŽ\d´u-R Œ^ú Ið лîx,·P¼'Ÿ?ö®>ÂŒM?Ñ1ß§£+žÐ¬ì’£¢È­™$v™ÆË ¸š3Öj¦@«âQV …Xá.ˆszŽþêÙI[ ºµbLÀ5ì¸Ñì篴-ÆÀ%PÃTDŶi T|‘+6âÁmyÁ¤f±ÿœO4kø…2Þ€¯§WªZÂAÄo}%b—ºÌA½ÎÊùÂë,ÐÜ^jõ‚KÅ -]×Z¨Ô£k­>ßZ«Ï¿ÖêñµVÏZkõ¬µV/°Öêk­¾Zka­-!Ƽ@xy’a¾Ppy²ÌøòÙCËÐò٢ʓ¼Àò…bÊ¡OòýÛéUÚŠ!q"M Ñ’Ô8‘Ù¶D5ÒT:¥iß#âÞO“î ^Zk(EJ°¢>dM*º¸níÄtȱI©^¡~TÄ êŽ&½+”·Ë¸·rBôœZ³R£ °Þc¹\ï8õ‹,Wñê7$ߢîDkZi}'ú}ÊA€¡Í êÒäRÍ}ID¹®‚ؤftᎀ1–@KZ|óÌ`ŠE#¼ëE" Œ±Öƒ;_H¸.‹ÏWò{~ 8|´©(²ÆZjjZ2Ú¦)ð*rCïÓ„'_ïÒ¤¤¬jðl•ü¶µÅ<®M“ŠÐŒkM£õÒÌÃoZÌä8¼°ºµ©ºUæYË»‹JQÒ òRÜ"Er>uG½á4`nq×þ؇ГK1MM¢W*êjÐQg~m«)ä†ß–º&òÌ/:Ëâ/[lƒ ¶Ö¥!÷fÜ&0Ú´ÄŽôÿßÿÙ¬üß2ìØDþŠþbåïxx뱆²Þzœ•P‘B¸yïCšé$Á0ÛÎú~YxYwø¥±ŽÎEó±u1ô†ƒnr0AI ’^÷¤[›ÞÒ÷ž¢vÆD=/ð8n’û_òVˆ|$æUžìQGo¦#¼€+3;õ_&£®”‰ºt¨Œç4â?Ý9g9¬#è¬'¶œv‘;x¾?¯Mê3ØÎ%=˜Á–bLÑÍãµ²º!XR€Ò„e‚R€¼0…d%8r¯q„Ã…,Ø•îÔØ½ú*u#¸Ò¥´S—„OÒÎ#éðl\4¾Æ  ÉŽ 6Rä&l aqdc%ɬª"Qî,Rù7}+)‡ˆ¯¤œ•”ó]¤kñ®Do.ê”ö9àåËÚšz¾È8?uÚ _6—ŠØÊ½ñ%§áû¾ªÚ—ªâb”7”ßKª’NkaŽíc¥5†ÛÞ8%ØF&Ã' †c.VÍlÓ‘=«>¡Qz#5@_Æ o;ŽíäÉ„&wÃß•©HãÕãlW¢›^·ºýÃ,´[òŠ:Ñè]ŠÎE8[­£•–\ä³ÐSÞ h X¹VoØw€' Ò²©·P¹ Ív"ôe¢¥Ø–ª3ûwå”(ud#ƒúG˜Ãéh“ ¾³q¼äœCsÿf£Õ~÷Gã¼}øâŠbZKž%o?¦Îå+(5B¡=o oK¨D s‰p;Ÿ \>ûMU ®Ö0sb0tÄê‘·~Å*vƒ-·ž Õƒ­äÑ9œ^öÓM­Ï6jWsÁ; ù#<Š¿Šñ%J×›¨âîKÇjáè–tC{}–ÓÁ§Þh8 Ú•Õl<½»Ž&bR‡‰¨™îí‰%²kšktôIL›)æ½Ç ³–9!^¶;/iJTqJœx±ÒaÁ®ßâB-Q¯l˜"æôØÿR°úSú 6<2Òah+OÇÛFšcøøÜ9 '¸ fäÎa9ë…Ñý†ç<Ê!Í Cw?¾ç0͵“ôêã ÷7†¥+RGÝ)ôw˜~PsÈ3)«xìÀ¶X\Âbøƒ"°…–¿Aþ Ó$ ]ˆìã A”·úkÖæPÛèÒLØÁ™ð¢ßý $ àpýôŇ6Åîd’ÞÞÑÞ`°®>Ži±Å&C\ ßb½e¬Ö.쥧ÂÜn2]™6øã¦Û§±ý*)ɆÛ×0cæéõ3'$ÄMæEÅM ã2*nÇFÅÝâË“’’Í»e›HËZ8ÔlcHÝÆ"¹¼ÿlÓ$þ×ó¤´.JÑ„ÿ¬¹Éµ.´µüŒj‡_´>ÌQá÷¯—,»J’Ò:YNdòÜ»ñbÁ¦}ês0âkB½±y#VãÑÚ8~fó?¤JŽ'žzÀlƒ1&É€ª‰w%¦h1Múï&¯„³$ ɱáà`T‚—¸Ïi¿O|5ˆà=ËPŒ§¾jƒ¹'¶,^ü•PWN|>#îÔ•ø²º:!m],²y@ õþ¼}Ñ9·z ·PÏé/ØsQ CØUÍÐ9QcáÎì¿ûƒ´ïBäuqQƒÜgô†¢Wñv¥ŠÀQ< ˜·_¿=<»(cYúiÁÖºt\æ˜Æ?ÎÿszX¦@üŠ3 ‹¿Û¢Ý9#@}Ÿ€X(ûãüä4c³k6E)š™ŒýЬažxoÛ¯[Gñn7Ž ªCž¤ñ‹yoF[VÑêœïÃSÑžÀ€Í ŒÏHÙ„…=—;€iÃ1ãàÓÖÁa(ÆV |ÂÈϳº G¹‡ÎtþxqŠ7„?€v£¹/à7äifOê/ '¿uT+ËšAthò_ÊÁóÌ« ÓÆëZˆ‡9Ðþu’kèRVÛ_/LøR6B€¶¨mJ.S,‚©Ñí#Yç€ýH*2·Ž·ü³Ãƒ†ÇW$ÒB ´ÔÆÒqè#Œe¼ùÜn¤~ÍÃp3:§g¼obN9ÐR¨Â’ò~÷ö„ðæ0K„š¿ž†ÞPåûm‘A “*Äœ «ËaæNGè˜!©aÝÄØàôz à HE§€*O)f™º¦çÎn~‡·™ôr¦A¤tSŒªtvÿéek¼ÂÀ‡qúêÚ`½‚:̤Q ÐpàÙ|ÞÛó,ƒ¾9ÙŠŽZØü²Èí`¸@ð×.¿„Äaì‘"ÙE£õ‹fr’Ðóª»}ˆùyVXôÒE®q5ý.‹kþ»õÌw­´1ÇÊ‹’q– k7½$ÑÜ-”FtÍH #€5N¬Ô2²½­@˜hþ—p¾˜xö—pº˜hò—H¶˜hæ—h²ùÆ÷œ\1ò½_ï夊Qã´í¿›—*F½ëq0?SŒzwÏ^z†EÅ„òļ $Š™'OŒ=É‹%Š‘:bwWVŒÝ ,?Ëè™Eu\ö/³‘=;I\Tª^Ö¥ÛÐoFCù~áFv33_7rgöFÊKý\ÜÌyÙ;>áï’4k. 㺽þtdÌbe¿0«ŒMLsVºm,>%çŸsNÆgb¡i8[ëâïÍ8 ξÐL/6õrÅ*˜t¦ßñTÀƒKTð}ådk8 ¥­Øö#Ó^ûζÎÒBªùçÉ£F8¡•|\qÒYñûâ1_çK kŠ  D=J6Y%( $càQè%ÅØRAYºGÔEþ<þ6¦cÍ è)lÝ®´PÛBÏ+Á/Í¥\ãë<þ‰7J”äÜ…Í‹#AÄ]QÉTÝ™=ƒ=®œ–a^mþI="!ºú,ˆW‰àJ¢t>|«ƒÚjaJóƯ&Ý'c)‡R‹S稘·ÏÚ»Ý÷0(µî?{—Jù—ÐK¤ïŠ4·¡Î³dèrÖòô9დ¯>òšhŸ¦î,f•Øs8Ç/Jûëu7!Y¹ô½*cP*uÞB¥&4îžâlÍ³Í Í1F³5¶Hw1ˆ[¼w-üNMnhò½4f»@[ÑÑ‘îÔdêÞqøÝ Š*nà\µ¥¿½’ÁÒš7‡‹¾£k÷ØÚ¼üºI¨òm^tñœñȯSºvpÈ-WFÀ†˜•¡¯)®¨¾µF±‹ й%Kíã½gý( “²ƒMäJX¢¶‡!Œ"BRöe:èÔOaã’¹‚ȱ{{!›â¢ G1Ï­*Ídk ’áÀ’ꌯ8é Dô` ®Z™_œÐ†ì ô9·âËÝÙc¦0Ó1˜b™²Ó2*Ÿ=7Cvb†`³ggÈNͨdžü ô±¡Dkä vf†Ù0aÍ ô±aa€)0„˜ ú]¼ôK¼~˜ØÙo’P^+¿[þ6œ+¦s‘!mp5ßr9·@ªúdä{ ìÁ¢•™y^]è¼­òŸ¯š·×IPeE>ós%˜4‚iŠ$L0‰„s'ðƳ&˜2(d¦NÐ0zŒp™Bèb®f§ÊP£?K¾ 7ƒÊ°àáfa¨«Ší< \Ç _ŒM£Ï 9@§¿;àÒ/ÌšxÁF¨žmÛ@Õ…¬Ïß ëÀ¼î©`âm—P ì9»èÇQ°sƒ¬g=¶ã¬Í*Ý[$T:¡hi‹ ¹€=¤7k¬´øÌ2íÐ1Ôrñ«ABÚ¼Ý úŸ‰¼KU¤‰±dSr8—G¢8’ñÕÇô–”ÂÀ"¸^q:§°½°½Ø’èÛ'¤¶yž ì¬Ò *«ªÓ߉$|ÞØ0¼~b¤]C0âÖ‰´¯qíBj1Z®' íÁÀKüa-¸{Ç)D¡Ý"# ò'¥mVöz¡nuû˜ÁÎëÉ’ÒÕiI#¦kþØÔg¾æêeœ6ªgN}Á©/88õøàÔcƒóM} gò|¶øjñ¾œÈ‹¦º]þî”6ôÆÆ Øž°DĶx™T”…+J[éí*êvÖàìkh"»'ÇíwrpgÖwþ°ê W˜ÚÆ0¸äº¨[“aP/o)ÎèIçù¾6•5 Bˆ )ðˆ}ô&Ók5çÇÊÎ¥N;ÿõk“Û·|$W©Öt‰™D]“ÒÚrf~lÀ£´ß#í®§Q%±ÂËŽ¬xc™X\Ü>ºÉ¸§¤{j¸‹L'—÷²f‘>¤N:f`ܤÍÉdRáy%&“¶¨qŠ&_Æ@ºîà«)©ìãîWãà¶ûÜúˆ.NôoP Û—Ÿ~r!fgÝ·r™Ù*kö­ØØéø‚ün 3ùtR¡tßûkéçÅ»ü;¯Nƒ-úü cÆÚû %~Æ&›óæ“Ïé°bÂ@Mº—°‹N,y&GéU2Ï¿5uI·5lT™¦ï€è_–ܦ݈ճ6Šwåp’t1™í¥Ú³hk¼ ز§¹Øˆ-vnHÉGjíáfû¯ç-ߘ:ˈÊa äL—ç,mêÂìe*2çKeú°Cìhçr¦¨¨Rf-?O|Å3«©ï7iz»DIäå8 g65Æ c‚<™V5»i„ mŽöw¢…Ç6±ôIJ5ä—(™ˆ\ÓÂÔ·@ ÛSv'»ÍÙhRXË·S„yÅÛA¾vä«jÚ²áDžR쌗ÕÏÁ)¹>Â`Ý9WütÄNi¾Àh}89ýPJˆŸiÜÇÓ(|«¸³ûËp)«ÔuG’ÝxIøiø§ÑÄlvì;Ï(³Y¼p¸7rå…Û)°€èÃÿÊ®çÄ>¥PxâµÆQëâ„à±ëx´ëô~4ZYq¯ßrñÓ7Gí·å¤sÒ2e¥dËÉsV,wZë¼&ÊÇ3¼E^ËhmáÆúëÓÿÈTxô“Fá¾ÊnˆcœŸÐ¢:jîŸa — ¹_ƒfЀ{Š”4­Gž¸‰ÊïÃÓØÌD3Ü+p¨ È@Ä`ýTå@ašnp ¡ÑÒ_ªäE[/ö›Ã-ýD¥&²ŸØ€Ž‹ä>JæM¤^çeÄ— ÁÙéÞÀ.Üôn§·VQ^¸P7©ÇrŠ.ÙE[e‚$Éu„ͼ7¾°ö…‚ïÌÎÇ$æ‚O]NŠsbœ~ì.!§x=iÖôL3çgš9AÓšæNÑ´Hަ¬$Mþ$È%°ŽK@BփȮmG5¸h±A¢‚ ^;l}èI+Æ}´Þ‘xî[^'•msk=2(¿%qT&"ÍZ ,UAÒòt5ÊB5üä¼Ñºp’×½ 7I'a|K/#–3\-„| æöKäan´û#¶¢5Ø[d7±ébÛ)€‰+‰j‘Kd2ÿÆæZɼ@êÐPÌ8¸ÕÙ·>Ãàše«ËÜÝ9—»%®":ÏàfŽg±p.cž„“Ÿ Î%ôkñÞ8¸¯3ã„2ÇEp t – dø¬HŒÇA8œŽø@;Š(„.õÄ8&Z^ÄÍ!"Ûòeƒo'fG»àÛF2 ØdX¦°9£ôKKh³j6 ˜örXP@L–3s“ ?`).”+û…]sw;ŠüÎv¶“Fd[… O£,Ò¼ÁØHÖÖÕWX|g[—57ÌÝø.j3C®{Áa·ÐÀ'ñÀÓ½xóͶ×mß µñÉv ÕU½êVxA_g]CçžF޼ãŠ<Ž7qÍTœéz\•‡áñ®«–;iùá=JT7+hÄÆØy”(77Ž%²~%¾Þ(¶^¡Ö+\×S›A4 ÅË=å$GƒO[åá¤g¬_Ü$U«ÐHìíæ9koUæðäèÀ}#™Òºƒ¿6­ïª‡šå JÜâ›H>q~Sãd‹õWží4ôè ½y\æ´W4Ø-1åD]KZ6€ˆ•Ò~­S¢ Œ…~¬îß2e$V0ñ¸uDÀ¹ùèâQ™ý]‚ZŒ¿b%ö:ÏU –㔓’pDZ`Ïl*´‹R«ñdËëTׯ‘WÉVa½ÕÌ–½0’(ëß‹»Ö¡Ëё˶%ã*€3.ïü[€ÅŸ@++»!IZÔµoJŒ'|DÂ{™"º¸U¥ ã&b)[„­YI[ê$2rláº2UèažÎ÷S¥œ âÿ-0ÿïÉÞÓímÆÿ«Vwvv·ÿoïéÞ ÿï>><‘=ü¿¥.PzdI˸Lb,3Pe½jg8v·8ýXY¤!Ë"”uà„Œ~!ªÑ})»· m¤··i¿ ?»úÝAò²Ûï÷>tåä?Ãÿ“—½ë.‰+&¡ãî*n÷Ò믄mœk¸•Ù"ßð×x'â]ó¸DVãáÍä3á·Á„¸á»f4ÛT¤1Ú&þµqrÚlÔç ÛÀ­€É›¶üo ᘠݨçg|^êU êŠ=Êåèäƒ|d˜Æ„‹¨ÕE‡”I¹J¯ÐI˃QðN‡§^1ø-~5 %]2‘“ó"L "×Ã)ºŸèˆƒ ÀIqÒ””~9c"s‡LÈý!ØáÖDž’ЩŸ³^õ :a“ËZþ æ.¼‹­HÄ1r²í&°KÌÓ.\‰&ˆ/Òh¾.¥wã5Ñ]’RÖ´ý×’é@8EšÒ*ìò_ÑYuS]걿=hÊÇÞ•t½¾êb¯%؛埙´aßú-ô´™YG)P´kÎ|¥]<ùƒñ~w‚ymª­ÕšI|ŵ¢[²ø{¢AàZÝã—Ä…‘ôë:*hxg!2!7v“Ùõ¥œ V®ëzHc7"¦ŸzÃéØéô»ÏN aüÃÔö´‡®› ¯ AC>F—}Áû1»¹~NÑ%“"öº‰p®«~·wK—ûé ©ëðl\Ôh4Ä* "ws£Ž~ÆÚÔD&§ÎÞdœöod׌µqQ“4jRUçÅðÑPýýb1dT¥‰_4ê²QF”þ¹Ð¨ÉÂè¨Æ„™U $â:œÂÁ%!RÅÞÐOHª—˜©,ñSsAR¿d ¡jN,x*u÷âª0/à© cpy&ÀSÂQ§¬¿ qmKæ~/‚ª†6…ÊÄBئª©lÏÌØ¦É·7Má´öÁî´?IJB ‚¥J|Ü8o¾ø£±f¤–GËçš™Ž^2€6Ši†òzBüøtº¨fh^„¢.è÷•œ cˆÆ½ë) ‰2 ‡Ó؃Ðu•ZÂ¥hã¢? ˆjâà¨&”*É.°žYžA‹š†ÀSðxÝרz<8jŠc‰”d`BžB×øö-ŽùÇágWϼíÃØÚÄ„ãªY¤ã3¹6#Ê$±È.bäÉ]櫸OR€ɦ$nÑ¥¯ÓÑUÊ1Á,ŽQt˜¿ªÇ²IR„vø³Ë€žu69[ q–¶Äþ,€6» ¨Ù}l}!”Ù³„Ù¥ÂËfÕ'Åß\tÙ™€eŸyŒ(„*[R6‚'[þœ~ÀÃ[½O\”Ù$höüã³1xÙ$aÖ®uvpÙ$_Ö­`vhÙ$]Ö®b`Ù☲Éò`e—({îC,Ì&›#»(„lqôØZ>vȱóƒÆfâÅÎ[%¶@ìŒØ°Il‘m 6Yva`ØùGÍñVþᬀ°q,Ø…a`ïÞ|‹âû42g‡™ôu¼×ÅÀ^—ŠôêÁ¼.ã5ðºLt×ÂЮË@u º&ËÂt=ÿ¸œëâH®‹¸.„ß:7t«Ü`¨J®/ô&[HÛ/ñáTúâ ~†ÞWú£ yrÂzŒ§„£P×x4ʇ˜½KðpTK“ˆ-ê°{¤<2œ™|„Ê^|I˜5µAZI˜¯¾‡‹ý ÞhJ~lÁÎa⟸iÕ0é[HY©ì¸]¹k²–›…«öLZ¡´VíàY#)lÕTÕžÔEí«3R½PZÚI}iëlAtÞ%ó.†É»ïÜH¼r©Ô³ÖZ½ÀZ«g¬µúj­=„µ¶<Äe[1¥…ò`—ÄåÂ`ËËÀYöP–XÎWNò– \¢âàÊÉrð• hå\0eAYšmŠã({àÉîÈ…PŽà&«Å’ƒžLv_ÏNÎFKNò“ Œy+9)—ÜÖ†}¡et ûTØÀµ¿†{@ç¯4ÍCX–°Êžj6®<u[ØÊ1缬2 ñlƒ„˜è#%=¨f(Í+ÚOqe÷…K › UOSj¶öŒ ÷@.§”p™òî.E˜;ôÔ·]éBh (‡&Î2 f è–¡fžŒè¾¨äh †t°XAE@Æ œXs4‹ ÄêŒYºÖ@¬ƒ «VUlXñì¹bšŠTËEÕVVÐqp`3G&4&‚ŒÄŸŽƒ¾ó¨xê¼y'ƶàÁ¹¬6E•‘Ö@¡5ÄqœëEà›­Fï-ó?›hÏ‚P1Ìç  g)ü€{NL·üÈßR;£5•H $‡fîHJæ$ÄÇ“¯w°”[5¼eñ 7ÒNšÚíæuÀt[w}©ì—f~3FGŽÃ «[›ª[bbòá¦Ao€ª5aÉQøÔ¡°¯ëûO{ ïzr)¦©‰@ôÊÂ5¦7f·g×ø&G0ü¶´“’ƒ†=­4—¾üñgR‚ ´D(ð¥? xgü²¶fßÌüxÊ1EŸÈ3EËY˜YMW±ëô‹¶‹Ò„RóÒÃíNš¥h =tž«èíˆRÜô޹=JQk‹HÕ çì<[Vënz£ñ„›†µ2zågkÆÀŽ¥Ø§÷VgvÙ´Ç)N“ñgeè¹Á­«Õ™„½µ­Ì±ð†Ì&¿œàòü¤˜GÔåŽ'¿À Âö ò=c1n0ÆËmÏG.I,‘*;ß< 4nÍ}O;þ{4) P'zÝïÞ^},©ÈXc§âfW“_ŽTÄ/æºz–•Æ¡ìV)\¥#dÌá•!ýq T¶ý„^Ó‡ ´óN9òµH¿Lø‰Ýÿ0J»òñZ„|Ú˜ÈîBõ0øÐÝ—)%›ÿÉ!âäØÒ¹ýq9»cIeîh>Kgåv4ÃdØâ³µ;’.aórWvS] ŽŒ™_âXóËû>[ëÒP±-°MT’Ç||•Þÿÿg³ò˰C`ù+ú‹EÐËÚ›nwPÕݨíAk¾Ã)ð½çþÖL'É{’Îú~YxŠwø¥±8“†Ÿ99Š©xò†ƒ4E”ƒò¼~Iw?½¥=î=;cbÛ¾¯ m†Eã&…]'oŃn•'{ÔÑ›éˆ\¥¿õ_&#ÜuÕÊP›à!þÓÓ!p–Ã:"ÎzbËi9±ƒç{ñóÚ¤>ÃíŒPÒƒ BÏ 2QƧ¬iŠ%(ÍGX((¨Ûe@Ð÷›ÈÄÃU°+ ¥õUjUÄaRîù;èr¶½%R+ ‚‹Æ×ÈÃÎâ`"Ù75T¢UfŸ‰W@v0VXh"¶¢ I9Cú­¤"¾’rVRÎw‘r¬Å»u¾¹¨SÑ€_ÖÖ¤ÐóEF;«Ó.C?b+÷NüÅ—œ”ÆN}TÕ¾T£¼¡ü^R• – +pl ­è6Â…0 v&Ã' ÂR #Š cÑ)”€Hz#5¸aÞ2Áðd"µªÆ`*Ò8þxÛ¸è¦×­nÿÃp íÖÌn@èô.Eç"œ­ÖÑJšU."C>n0—“X¹VoØ•' Ò²©Is -£IÇB h)¶¥êÌþ]CIÙÈ þæp:Úä‚ïì” rÎEúðÈ[Kž©°_hÜÒÑ{ö¼5¢¼8ÆÉ\¢ÜÎg"Žý&‰*PWkÃ91z ŽÂB¥ÊåÖS¡z?¶@\ ›lû°BÕDðv™y"˜³¶ãt$#,o¦“)ÁZ&‹_¶;/‰ÉUdò‰@…0Â0Dô¢]?÷KÆà£è"êÕm3Ýdøþ8gÇc¿gJ#‹pr<À·=Bd€ù×¢.Ð[PDŠwðÎ7<‹ðdo^’­ûñ] ¤›LÒ«ƒÞߘJ‘ŠÐ8êN¡¸fû=8ò„sRVGÚØIwh|`Šýq Óë2çÓƒüÎ$Æ`FÌGH¬ø<„-økÖr«¿mti&ìàLxÑï~Pg5fÈðãk§"F†˜LÒÛ;C˜×8›à2ð½Á6µQ/èp± )©LK™Â ûã4¶$%ÙpûbcÌ<½~üT’…®ù»ë-#œf®ôI €œþ¯c§ÿÙ†‰>%‹¨wo5³ÝiqK³s6Éøïd›&±Ê H8LøÏ¬™gÌhåü3ÈXbXIJÏòg æûCtÅãg6ÿCŠ–äxâ]¸íñÀ6cb‘ (oxWbŠÓd$]òJ„±À.I&VpøsÚï_ "xs1.Ý㩯,`nÜÁ~#r”Úôø aåkL)G_˜wF …?—27¹— ¾—™~^J–Éò˜ºk5Þ² ÇåŠl® Z`vöµ¹ú!vŒîX}‰B9êŸAˆ{*DI®3ÖM»¶žÃbFÇC3²/-®!¨Â*®æ¤‚×jfðÍYø!(]läeÇf+,˜)\Tlûj¼úÈüQóÉ&dð ?-'fKÍh©É(úÛ=æî £'Òë ÊÎÉȤñù»odbš;-ç\é8 åÏüã¨fA/”ÃSËhiáTœ”µ¨æ%ÝtskƹÇù™¨`§Þ¬Ê4žï­›5 ç—³h&ʬ4”ÿÈ,žv¸¸;ñ½ª×ŸŽR¥–r²qb‘Ï#Ô°ko9ß'¯Ìøt)A5þ¸ÍÿJ>‚LÛc¬×BâT,ÃO =¡bU\¡œFV:0ºýÞÙ©NL|=Uº Ê’ŸXT)ù„ 5au:˜ôú>õY²šË7”‰ô^Ó®²þÙGWÉG#ÉG+:Å*ù¨îòÏ‘|´ºìÁ]%0f/̘ٓ>)Þ›…“./ûè7H=º`Ï9sŽÞ¶Ñ‡ŸeÔÀŘ`¨$$_—aËŒ#ú1½%ÓÔÖ¶“E1bWf’ÑèÖ(ù;¤ù [{ð:kå˪3s?Ū®Ï[õ·KÏ*§!^TK*C[&*Q·OTQ S¨{¾MºR/=éîv9ÌJ+[¦tR (Âc%0ºÃD Tn)Ê@¹‰k“Kí„ÎC™YÖ?!LbÑS!#÷UIOšjlƒü÷ICj&#T:’É3Î ’—‡‡¡•œpÎL”3¦™ÌïB+œï‡ËLøÐ3¾Sý'S±Ì„V©ïÁÄM2¿ ¥e2ß124-‡)+ñïþÊiîù‰s눜斔sÓv¦‹B»¯¾ÏH¼í·„¬ìsËM?çç›ÜT—›þ-'ÿ[ew»ZåüoOá÷½*æ«îí®ò¿ÝLJg’ÿíüEµ”Ä2÷údzÎëN{¦‚BI½ 'ò’ê}3ÙÓ˜OÕM¿%{Ç=ÃŒ seÇEò2bÕá¯Ff(ËZËc"Ï‚b €ˆ…ƒ|Î1°3×#ö^#€y‚ë =G¨¡¥O¤L—ýáÕ_p\ÉÑ•€ÒªLYzf3ý”ö“j×㎠eÁî;ÖèÁ¾°§-}Î-'[B!uP%¶Ž®œ jˆc] ;;@wv ìlì`³Ca/ zš>³âOãµÄ!“„ºƒünaØÚ°'ƒ4UþPp1ÞrY²~5}2@¬é«÷¯þÆ_Ó0뿦ÌúÖ³Vü"8TØZÓÏ|x`“†‹\#Ø$âà 6)Ä0ƒ³Ñ‚M è–C!d!G}1[³§ÕøÏ‚:í‚Í*¤Ù|€Y×Xkný<éïÔŸ :öðùVÙB5ID€`c°¹þ˜‰pÉÛ™æsrªì-âS™[¥Idˆp>$ß©2˧’?3zVzïkOK è}b¯ÝKn» 1hPáôö訜DÝ zÁ 1[x¶Z‡›yÄ˽Xl…Éøê#\ ÉPÜïƒjaÓëDnÐId…î ø¬ÄÖÏ“'(¾{îëÏ“Šv•;ñ³$ü;‘¤mÝþgÃþÇ+0­ìÂ?Õ=øgç‰Oc#‡Æ´²ƒ¯#¤±kÑèVªðOŠtw HwŠt÷žèS,0ÅS,0ÅÓ=I£[©àëHciì"=¤ñ„iL±À L±À L±Àô‰¢QE;Hciì!'{²°H±À-¸Å·Xà– H;HbIì!‰'»‹ðm$n±À­Q@JK¸] $š1ì #¼Ö•v˜öcÿËR÷ïnq¤³áž˜FÚœKŒLÉݵ7òèÑüÇé(Ò˜I^M þÂÀžMÜê ‘4Ù”YsäÊÅÝçód|Ý:,›öàœéºX¶ýgñz ]È]íøþ&¾‚ Ç«73z”…¨ ÑCê|/.ñ<£žâþ`‡írrЩï7ñÇÛ}è Á¾›?—yõFÞR¢2±•¤ çpWn±ü^Ìe­FºÏq{Ý€½¶€‹NÌ¿ uÒ'Ù^ ž3MŽ+‹çú’çÊâû¾ä¸²x¾/¦_Ê› ßåÐbª•g4§Âu·¸5•‡ålÚ»úK¢gÁÉ7é1úoYv–6S’¥%L–üøÿM<µ[(rŠE1÷mD¡NÔŽ¨öLeiYXÂ0±Dn@=i´͸j™mù¯Þ¥[3}YÈxó&Ù„¨,LÐÄøì›v¹ã±wŠi™ ÕŸ²Çr11v€ û˜,P\œº77é•!¯È@áñDA&t£Ñ=&™Åìû®rá nŸp¯[S6o“ãSŸãCôÊðu´‰0‡%ÂÛá£ÁJ¤orS™¿|S—35áóÒøv@÷+ÜC(Ô[«½É×-8¼mLS0ÔV÷Mþ3+¬Þ¿:‘¾/¨í:Ù<6§Òñ)<äóžŸàí{‹Ë›æNn/¦µŸÔ[<§àÕ øu3©ØœïÓ!—¬áryÂРšñ4¤&ã}ìøtS:w8†»ý»;¸GòçBç¥uŒ_¸†4ýSlGÅ\êbäHA6bóØ`€è+¡Aî«î 1xÆoPëÝ–¼:ɰK&ÚÞeܽÝéfÃIì(ì´BüY5Ò«îâîš\3Fpw!`ê饡?0THFc/°;Ç>cU#Abà6"{aG' ÌmZ&s%{qVŒ1ûK²‰¨A1¿ô‚жos©q#/õŒ#Ët0I<s—¤²ÞåÛ'ÓÂ+n·?J»×_ùª{ƒ¾ÐÔ5œ«Üþ‰óöØÛvà·ÝmwWŠš”à¨]ªEiõù‘>ûßèæ^í;»ÕmÏþ·³÷deÿ»¯{Çþ‡:+ûŸ û@ìíßÙþ7«õogeý[YÿVÖ¿•õoeý[YÿVÖ¿•õ__Yÿ~pë_qãßOfùãR©¿U#ÛUó}”³èSA\½»²4.gür£²¸i±›AcþÃßOÙÔˆ*6øê®Çø÷ ™ãš2²KV¥m.Dðbëmœ­ç‡'§ÑvÓ4ÎäAe§$¸QÊÒåa¹Š÷Ʋ̨ÀºæþaëTˆÅÌ©ª\F½…ͪõצAº8üyxrR–ÆV¸C½=•F×8[„5öà¼Ý9ù)²+›ìw·É¶_|›ìBnV: ùþ› Y Ÿz£á§£ª¦UC;-XŠÖÝy”<*[º®ÄÝ7j œ¨”…óË«dí!F(ž¬âø¤’–hß§½°Ë{!ïw$šòF¶e·‘¬`´éÊmÍ`T«†&ÌŠàT M/¯B‚¤½µ,Ó×™¼üõœskqêPÏÞ£¨Mì0×»%GàSÄŸw3fŒÀhDõ×ôƒÄ4“µË2BòG,xâ™ÁÍoÂ= ˜_ÃýØ©üˆ<£ßžèóÎëHÐü¼íÈÎ É<þ Nןñhà¢{¹N Iįa/ÄŠ'QVÌïà`XãÑÓ!¨·1àx9p?+¿†<¼±?¶ö£äæñ†oÌŽ Z‡8žŽÑ£q”9¯¤oÞÇ‹ü[¥w¼ÇUz\¥ÇUÿñ=Þ¡Ç;;ù—9”‰ î|Xþ: E\§t^à­=óË"¤½0¼"Ì·KÍz‰Iêh‰YÀ°È(F–3´ …c–ñs—û_µ*L`ø[T ±¤Á¶€Fî{.{U ÛÈþ‚Ìê÷Rt'DΘE¾QÕ~›Øœ“Ícø¹á𼡗¢œ,DÚXw>W©eÇ;Ô=©J™[qZ+5Í”\ (zþ¼ã’?Äî>€Ë×ÞWÐǤFû»7góÜL ˆ÷B¦WjÏÓ ß þÈMÉszºm• ¢Æ$!w!ÁÄ…†ø3§ë<¢ãÄÃÍÉö#ò‰Ä°;‘éO„gùqh¬L¯œ¿"Ѥ€w‘ç^ä¿f¹ EœtøSÀi㸶Yñ9jÖ´q|¼YA ÚfÈrÁ7Ça©¦¹ŒdŽ‹;,éNH¶ú‚ìI‚>2æçœŽUÍ>IÇg Óbs‹âíÞ¶(ä [Yì¢.Ê0)Ž Ž†ðJ"}N„in[pfû«d®±³_ŽŽ›ãëä> iÀ-Èí\‡4×#í8×_+ì°–Ìà³F{& ãK[ÉñIž\ ÃÓõ¬c!’'¢ß«cµ›â¶Ä;D|#"oÁã°]â»ØÐœò|ì 9Ù%†ŸíhWð=góM¿_ѽca/;þÌïk'š‘íq' ¿;-¤úðî«sÎJÉvÊaÑ]­õVMcvUmìUT¼^¦ðœA#–Só…@˜=Ç…ç‹Ü iØ7ÅÀ‹1ÿ5îH‡ìãš%zùw:_C¦9%8É-Þ—ìqU/5æIg `x—ìã),l³§ê&kÓ³ãTèd±ÝÌ6Â} /=ղ뢻·Szöý](äÚ"‘™fzÀVH³Ÿ9NÊe;â¼ý§ÌÕgY¯mQø7¡¬°$óX¥ ’ëôøo†\º¡‹¶åpw¹»SwJïZÊ+ ó„¤Ú*)] =Üø§èpÅP3ízJ µ‘4OIM¤‚§õåðŽØ§ùÖˆç´U‘ ŠebR0ÐJ#à»Höi4è Iòê*lÑ8…Æ©IƒŒFÁ”Œ‚l3?Æ>R©šãÆ¿¤Ý2<üÉ»åÎ}í–6+ ¦ b¤-@çÞ6Èåðxgf;¤d\Îxœ%üUæl!ÆÍ¼e!Ä$ï[wýîUÝ•öŠíJ»Åv¥Øoºî;»™»ÒÞLŠwë« Šb¶kRåÉrîI•'!Q7Ðß– ºpwš®¥öĸ<9š6ÊØîø”Åd8bùÙs5§Ä·BƒÁøäb>QI‹Ž5· xöÜBÞ=•æÅ9reÛôx¬¯ItŠmâ ŸÑUúôùÇm~¦*?¸!¹ZòëaÊY]X]Ίñ¬ji:íY-Yêÿ`¯î½Gó¨ès$ÃBÏ7ž›ã‰©É££DhÏÕä…r/‚¾þ·Ù§M^åWG"ñêx¼q[ZÅïO(þw|¿ø¿Õ½½'nüïîöÎ*þ÷>>¼Ýøß,@tÇGP€Çw™*T¸þr¿½_·Üö‰ÿ#ûR(’˜ÐÑÚwÀsú[FÀ”¸þË;î4¶âú0DÀ(ö$îqŒc¨%˜Û>Ù$ÿÆç"Ûñ‡tŽº}; YÄ OB,¤Ò¸ü*NŠáÃ4>‰Ž TC¸nùtîÒ«ÞM/ …KžWÁð.ý&åQ|fõºdÞלÂçTø‘.|+YwKÖ‡ƒ?§„y›ßA}¹ñ>R(Û<]§#Çð§gÆ¥6S%Nº˜q9ém¥[e'^!à‡h3CJ©îhlõ¼AÕvlp(à_±DŽn9éZmU~{zA%~Xq8–ؤS ¬8KlRÉ +Ί%6Éd…c¹û ¶« lk¶ á–l„›dŠD׬Mb¶˜Š0¥3BüÅ£ƒû E¹Ó&JÞBƒU+²9ä  á·f’þFQÒß9æQ<Ìv\0w³õú¼!Ówg3œ®û$$øÿ¬É´sòbÇrm/%Bïèðä É“¡vµÎ›j7{ø[|ÕKIé;K:ß Þ.?¯—X†è•3-oìõ§þë¹É3ý¤¾ Eùu¾I”_ËŒòC.FýøW:ÌÓÐêÒNCyëH1fWaea2£˜È!Ù_'9{ËÔä'ånŒ£Ï£…²×øh}g•o¢ð4JïFé¡ ’»ÑðzzE¾% ÝÂZåõŽätЛ°¡ES1D-:áàIÎá´TYƒ[F“lÁÒ_‡ï›â[ü¥¬©|ƤãIÚ½úÈ×¼Ô°ìÔ,1øF—óÎ á¢};¼†ëÏ•”¶à¶q éM¾†tÒ$$®‡¡S¼Ê!3GÓ hmü…šZÖ‚6qîf¡L²îXd{+%Zá[£¿õß~†móDj9 ËèÆB5‰e¨UUµø¦]q0ú?¾¡“# …ûë,M4ÏÝ‹¼¹ëwO.Xí(ö‡ é­á`sJÆtÖÿÀ¦ï¯VÕh‡j~ ^\¥èªcCàŽÀEX­O“;xðhq&œçq{åBŒ;Ñ(D±óoyÞBQ¦-6™UB&³‹Q‘9&OÜÅaNðŒÅÀ«Á_IŠFÖÚ¼ÿa7wþȰut¸­ÃÓÿ§—Ý¿îYÿ¿ãçÿïVúÿ{øðÜ´ôÿ‡µýW°2^à é4il4_Ã?/á‡A>‡™ð—Í›ŸXó¯Xq£E–0sÈ€ ™H4pu'.—X¡ÿ¦ÄdgQèã’’{lèk†£¤ŸÞL’´÷!|J9ß¸Æ •{é Mjx•nÖ‘0‡;…­KSD]_»W©ÒP²†Õ‘ÐÆfý>Œuz&ýþä빜Ě/Q¯,xGRô—“ë!zb|„s¸¬.5··éunÞý¯¿;oœò±ŠP½g\ €o>‰N> ™%>ôz-óuN |9D £ˆøˆj,5òŸ O.EæîmŠ·Ö¾ åO9e=êd­ÑÅ%T`¡+m4ˆ¼Y5˜t{Ðtž·æÜr;ßtÞð&ø¼x°Ù7®ñ~Œ(l EêCMîÔã!)ÜÉð½k‰qsm-ý&é‹ñ ü/°ânÞ-Äbü=¯HrÏ·ùÑsÙjÚ[’™Ì™– gZ©¹Êêü1Ú$Ä:²aÝM`fà0dï øEw6Mø›òI>Ò­²&7X µÌ r}"´¥ÁbÈËÎa£…„ÎÛ‡oêa…:kÉûÂ$H”ƒrh @wŠ08G×üEBßRÕ>—®ýû Їß\Ù~øâs±7Ž^žKœº" ü÷*CÈøð/çØAЍW´ãEÕïÚŽK«ÛY°†óN]kiT½ÍG&˜`gjãI\%~@UÏOÕCCj÷‹u²hÔfRáÓû¢÷&EêmaÅ~Ž!ÀÓëÈo¨4ü먘 ÝSøÃJêwrÖD9ßfªð¨úØ1QK@Ü`@õÿ¦¨êÿ·Zb6Í?^¾¥æßWõë"'ùEüI·È)DQ<2 ½NÎQ£¨zP“R³¸©X4‹G>ºe˜öQµyƒ@ ùbí*·:ðL\!À&ÞÜ6;tIl(]Ö›9”ÍÔßàªLLMtV{õcÑVW ·Ú™Œj( T=|Žj¢›•dº¢³& U,¤ž—˜íH•ý}Y¤Â‘"¨4–àû–dªpX¥Ïðï¬+„KôÕ`|I€¬ª@¼qHÈ“†–ÃOYˆ'6NUøqÛý+•àAv9v¦½ê£w=ôf€±Ý±º¼k¨.GéÑ]‡wX-ì‹Âµ–†[{ c?J¯§W\Ses`Äðˆ0¬„ð¬êƒ½ ›T½æWªÚ<{jø–…URA³³2WH:m[ L¿°4)â+ªž5Oôú„S“í?FžŸDLÊÆÀ ›,þ}Fdaü׉Å UØ|µÁåp£ÀWô÷‰þ[:…øfHnM)Ù…#ðW˜¸ñ+.t@Æ o)œ‰ØIj·ÁSâÔÝtL—“ÛäzøYæ…Ù ›=‘'•ð<Ôs·)Òø$drÈpš _iÊÐ/˜˜žv6‰Aý nÅ“mïfnÃL#~÷)½ëeS¥0œÆh2ÛX±šDæé¶OƒŸÿ¶")È%t<£ô«Ç^ÜG^Q%ø-ÄÿŠäCáÀa>˜ËG³q^ ±ŸS¸å±¿BH`ÇøÿÊã5ÈìŸE£â/{µë÷5° VvãöˆìÐ<â|'KËšÔx…Û^SŸÜ ij?!vçðŽæ éœI m¥Ÿcá Õ$ΔÄvûXÿ}ª½ÏX²Ó>ô®IáòùÛuKbfQÐ~ù_ñ· –U¡èÖ‹}8‚uly—„¸Žƒiäl†O[~ãLÐ=cîºÓí8bÖsÌ1jcuX* c…c0Çf´B"#!!æíEGi$K û(ÀW±œ¢LÒ»Ýã JúÀhX„n¬En¯YÕÊq4Eß™ît£Ÿp•:j)ÛÉõ”°0§ƒëttÓ~ö¢ëÈaZÈäïÒVÚ<—‹Ñ`ø1ò±} ƒÏ -lð§#†/W•'1S[޷ޏ!ĸÄÐu¶x"æ+>¶çyøµùƒe›T'þš˜(O·íö½Xw[MsÇÿù_ß÷¾oGúŽ<9 |OãÿÞà>aD`6Ä3â¡ñzÈQ0òeã¶ÁȶàL.™ãG‚é>#sèRÝmks“ClC®ùÌgfzß‹&þºm.HˆÂs¿ò[ã`n´™O|Û_ïä/|ñr÷Q¾é3G~ðG¢÷ÖÍ¢‚ݕ؆gUëâžr3Ž"Í8Êl†YPL‘ ŒÇ‹¹r¤ŽãKëÖ¬Eô!sÞ¾8´v*ÓýPlšGYû¦Y¾IÊgÇFÚxp¥Ñÿv³Ë«´Zñei2Iy†AZËp€Ò…fv€ øÿ\Wï7þ÷éîžÿ[ÝÝ[ùÿÜÇG,,Ûÿç@e—Þ?åä°œœï_œÑ¿§Œ6üƒ9EÑ;©‹KˆÚµ|Dø® ãE¶ñ¯îv¨?È`Qù;«{ÐAUx£Œ½˜^4 (ðµ}çÈ\…!k›æ²§ „Y#'¡”™|ò÷¶!èYr†ÐŸŒyšhdÆ Ô÷ïçÉ  $zcQ“¦þ;êln“©œ†@(àæ2s° ‘Úôß°"gUWtî=ù…ˆqµC·…OÛC:‹˜ßõôpYF,iÕbO/;£uwd'Õ¶ÜNÈÒ¯ÓJZ"÷²rkW±Ë¦ƒÕ’²¦Èn"¼)&›ù3é+ª<ó€šD…Ý‘“g”ÞôS¹*X ×½^\!®8Q~£OFGÚyê x&±FíüÝÍåæåŒCé.чҫ6<¦îHdóÊÓ`3l^eŽé÷Èïëku"}­¤E}Ç£ÛÞ t[•wLjO^iþ\²ü Ãì9ù^)PÓÃZ¶YñÚ6¼¹Ùœ»}ƶyh4u£²f85VÉ h°Y‰¬Qý&\Gzþ›·Ê»×G®“1‹HÒíKt88%ÙÝÆ$»*·2¦.®¥M­oÚÓ¬nPìæ/à *-ÖXg¢'39låúkÝ“»–rh:£]ô”Üž0D±Çý#VÆ3WNԥЅ—ˆ~ø²7†-úßËÒ`=œHÊ<ÂÇGúñÁ"Šýý^âšÂâGøËÇ®F|¦êyÉë²NºÓ¿A€ý„ÿ=Jô‹êé<™âLß/zÎ,ÁŒ@§)vÚàcæ@ê§&ˆÉ§RåY‘ŸcÒáO\eE¼ˆûÁ³Û5©[¸¥¢¨¹ÏOa¿ BS$$ÈLK´)BøwõÙ N¨ÌωuI„tܤ~òw§fº!·²œ!¼Åžf âí:„z-Î"Îg aÕB5¦Ö\ !ÍÂÊ"CÈþ†°~Åá·¯èc§aϘŽáÚ'Päyú סh‘~éÞÞõS¹ o¡ÕO¨¦ü¶^òïd°öLïV·ô½,ñKü KÈQ-% Ì$…ÿ¦õßš& KOU)EâSÅ S¥ÿøäZ?U¥,Ÿª™—–PdvÔ>‰O;ŠL€–Pdvé¿0‰O»T(BK(2{$>íÙ>¬×ì;š\§ƒáĹ0Då£Ì÷Òà·(‰€x.aáãxÞô8Up¹Š ݳ‹K?^÷#=E`ÇC_£ñî i§–âƒÖÜo¿(ó£‚2—ÿY|ƲÝÁNæv V뻃Tguc.n…@®Û"mè«]„O¼ž¶»—í-Dº¤IXæSêè½=rÆÒâˆY‡ì2Ï;h÷fC›©É„‚.M«²!=¢yëX?êÛã¤QH‘·«o…UÙî0'~”ƒÞ`_øÈ½ oYý‘ÞLœÞ©`ü–oàÒ=×y‹Z› ‹ •²îU&Ž®xg£¢|ÂÙ Íž2S2ZÉP™=޼ ྯ¥J§îÄ™&+¸[ü‡˜Uá’™Á8Áºu^ÀçЙ¡L‹Æ£à Iä$9Ò“„§¼3M.«×0ÚX†çC9ÀìOV‡UWù=œR9sÂë`‚¹c5y^8‰¹óA]„o½9yŠÄÀæ¤QÏOfÚœü¹iÈÇY›S+´9é™(ƒóF'6 —°=y3/wÞ©•~’³?¹ÒáÄ<r9[ÔÉœ[”F¶(qýÊÙ¢NäúTÝÒ§Vµè©•Ä®ÄÙ D5¡õ+eoP/s6¨À9–D+c{RÝŸé¸*¾9éÎߜΠlNÕŒLµüGÜ­â úÀ• øŒ®ïÿ¥òt×Çß]á¿ßˇç·ãÿÑ>(êÿѤñ}à'òá®þ n"íÃMÄ‘9Ù¼üºÙún"ëëç+G‘ïé("Fvå(¢?+G‘•£ˆÙŒ•£ÈÊQdå(bõ{å(²tG‘Yu4ETÊ$x®yg;a~iÇm! ¬b¸‰ì6éÝBc‰ˆÜD«r·…ÁØÏ¬½€¨H zC`œ.ý:¢-SÍÓ[ %G1Žê½ÒÉFkm½U+ +d«fM{»í—ýáÕ_ãÞÓ-[íâ#Dëc@ÁÞ©8ü=Mal1 æx òáõﮊ.&!DŽK`Ž\MQYdWŽõJPeb˜“M2Äp±¹cã4#1,DƒìàÃ$l¨«[¸ôt? `Ö'»;†€Ò{ˆë}aS<“Tò•3ÑÊ™håL´r&Z9­œ‰VÎDß/CÔÙÅaû?ZML EšÍcTn¾m¿z'~þõœ¯^Ÿž“íó¤UÉ,CÙªA)(“½õ63ËTa'&²Ç”)1ñ 93ÕÚKtf:¨QRÓ,—¦8`YˆÃÍýC…ËèxªgÙ®S-Dœ•NM\/ýúˆUÁ˜í:yTúþMÂÞ1Ì”<É‘=A™]O<% Çlü¹7A”'4ËÓí–/yÓüSËy0+Ð4·C‰ñ!æyËT¿®&4Œ9V´†x]N?|¤{tÂiT6™wbdÈ"’ñt, cÍO7CÁ>j‚±G‰¼½'Nux~ d-øZÍá«û¾îÖÑá–î: 0HÖ‰° t~,Ùå yÈW+¡ïxœxº¸¯ì¬7VÍ]g½ ðœò•¢‰± /•IŸây_y‰zÏzƒËMB’v­zXŽwMgb^ÛßQ‘ÿô ;?™A¥ñ¨ì/Ø,*H‡—J†'ˆË›b›9K,7.c±êeú¸^£’­s‚ì®·$ˆôÉ0Èí;œæëXý¿»=¥lÆ~äZUÊv¨ö‚F ÜRG{äào¨ ö“®š¯ö;‡üo%ÞÏýFëMëDå]í4á¿“f뿺ˆv„‚Y ³ÿ.(;AFüS2´HÏÛøÙîÔ›ß UËRM=Z“êØzxN¢^&jåqã6sг û¸¥Ä'c†x×OÅ"Þi<¸\,ò]:ÓðmƼ¶g«PuïgHáÇAñ˜}Ä\ûŠG[ž3#òÚª¦Äù7žšÃöfÌ0x&ï°Ñ 6wšë‹5Üø®‡d&ŸA†¤$ÃWÝé8¥(/«ç¾}žÐëúk½kü瑽À8—"¬¿@=ZÒTÊ ÙCפ¨)ÁiB)3¸ÿð6œGëb_¤•‹…]$vâg´PÂ(©ìØÁ¦xhø"—NøˆYÙ©]nÈ29¯¾ ¹· CŠÀÓ‚ö·PFyä” ¿ØÎ1• 1ÿÉ¡ÕP×_k³ýÏYýc||ýú÷ô~õÿ;Ož>õôÿOWøÿ÷òÛ­¥ÿ?<»pã¿Û”Ò¥ýúm•ÿõ×MúI—±øQòдÿ‹&àoC7tº”J®0—fÑÓçéàë"Ø»=£"Rª³ÆnNm‘h}LɵÂou¸ýÞ%A«tÉñÃg·2™r*gçLÁ|;füÔŠd°6­4E"u¡™SQËÉæË&G) œ饥FÆï^Œ¥Ï/Zdši£¶Š¯F±™HBÙÛk¥^ùϵçíRom}Ÿ~_¯c÷ÝOÐùË1.p8Œ­kKçw*Énücô‡Q:—)üò9…Æ«;;BaP+Ü¡ˆÐA"™Z㈠ÉNaÍJ´Xs?Æ©0¤ ùØ“õaÚyo’r ƒvH﹟\rêtR4&ŸSÆÐü5š½+ȳüˆz_1¿œˆúûRøÛ AdtWË_T³ÛŽ“æi!µÊ÷™+÷±YÂ'O¬>7td!ªþé÷ã>ئøÌ'¸½|M"h;“züúMjÅšTFzV;B;‰U?oËíñÞ3›8þ† P~ÔÊo T&sûÂﶨ"A’&m·“-´Î¥õs8d¨m¡¿¨–r‚<¼|ÆU«¼sà¬-ƒÎªÙ™!O¹8T¯M õꊂ$3Àè‰I:eö¤.82(kZYÜ´·uh±lX×âtàvIÞƒ bA?\õqñCwäÕ§ÒOT®Ä²åHdŒÉÇá´;ÍX¹/|wƒŽ¦òo‡ ¡3«,qÝ}¡ÎçÉɳDWƒÛ6À¿ô ,ÇþWÊ)é¿ùïD½Yêmž¬áÛú ø§ØœÂ;ÇñƱ4~"$ÂÔ÷° 2£…gÍòl2K7¾,§8jy¨Q- =à±t£³‰,¤M‹Y;øhtÌâ¼p¾¥ÝÚËœÑÈ£·ý«xÅh† ÈÐÆÀŒ Új¦w‘öX¬1G!çÉFšºÁ|b4Ø5¬ªœøUÂ{:ÙŽM\S÷r¾õšŒG‰0(ÅxDÂ…³õ—î8CGvƒ¼E¹bSôP8e-œ˜÷L³”ŸÈZÌ4¢hÍhzÛµ¸ºqÅÆ… Ëfß  ŠjE\?º»7j§`ÙýDAÞî÷ÖzáÞ:‚™­]Kc’oš‘aå.<É›z¼²8êÌœ…b]ÂobÒ(=qsÄ«ÉŨö„‰i—k¨ÀÆkýn¶N•”G£¤õ–3ç“Ù†$ª™]NÌõù4´>ë%áû.§úÓy¶®Zz8 JÐæÕ ÿÖ^Orem¿E6_##¨ÚMìã¿üÍcÝ\c~êßî©l‡:ÚDíMÄÛjŒR•X–à{Û1*•PçD+¸¥Å¶Œ“dCÉ ºûÛF¥@xÑm£RôCÍ:wß0¸oTª¹û†’6pߨ—ŽÕ¾A¿[±X²äû†ÅOßt²ØrMgAûÏår @9öŸ½§O)þcûéÓíê“m´ÿìAñ•ýç><•<ûOm) ×­!Ï”÷QF" TâeðR:QÃÅlœ¤··i¿ ?»ú°¾ìöû½ÝA9ùÏð¿ÃäeïºK;¦Iè¸;†úÛ½ôš0º²lM[™-2N¿æö%@ÈãB—%ãáÍä3šp¡"*ØÝhˆ.ÔíµÌlSaËY´Mükãä´Ù¨7ΓÏÓwæMúgW«­ kóÖ®m à">d1«“¯{_Š[ܺÉaÎJ|[šáDØ7›鸖¸ÙÍp†õOZâ²Ípçˆ((÷ÊëÞÍ ê')ÔDXw/¿*~H©Þi1udt­ÖaYTdo2ž’V\ke»˜±žh0· š/Å®'Ýky¡(:†*^B½@¾,­#¬ï&PÄ^:~éàóï"€)bpdî`§ûBÞLý¯I…¸Õï idÿ=š”¨/À”fý² èĽ_?_/½__?—f×F5˜=§?2ÄÓ1š‹vð+)¬Õ÷nƨ·îN’qŠÉ³Ð gAë[—ÏÑÉðŽRÅo±R[o SÕ{,9`áœ`0a[wÜKÔx$у:F½î€2{2¦üÕp4JÇwC¶ …z¨]Êú%Ý£,ºnÏz7BÙΩdÿžB6'Xç‡).ei¥®à„ ÓDRÅ_«"»Ü–ý'ƒT J{E»£ëÞ9’èÖiêÿBÞ'—Iò¿o¯èÁÿþ#IÎåúêµ·ˆ±Ö8Þ *ü#¼À ù4 ÉÆ&›9/¯ŠX4i3Jrñ wç™3]Ùü:Q·¨ñMð LjÛ`’ß’`6'd‹ $Çð,7i8Þ˜[¾:S+£šüŽvÅEѤGØ™äxð_ÐåTêƒq#½žŽÒ5µï½¸hÕÏq'ÆÆ~†L†Æ¨Ú[`r R ÎÆëô &3´Bí–"¡4‚Ù ÀyqpºŒ4.Ô7yžÓj³·/<‹ßø-,jÇþkî9|7*mY•"çGé °sà¦FVÕ¢z®>¾ÉÎ+ʼè7Éš©%ØÌaIã…\¶W/mÚýþ¦ò„I¯×~ç¹k[஺ã”åBâ2m­*¯:úžREË•·4ì=¥^oÙž^[nIJäºO‰ /Ñ©ÅL«ÈO“±/‹ÜZ,ЦD?Æë.s|…Ù,ÓÑe´Œ¹PJ(`pö½·àbßJJu1YÕJÎ ƒk|%FxÏÈ aLõ«áäÌê–¸Û¼7ÙÝEÞ6æ}S~ n”u€psв-YÀo»º;úJIYÆîˆVôDW”A”®Ð,Z;"S…û³XkÖ¡ñ‘…ʯèЕvGq5á.º³\Óñ†T œ3}Hpãšœ-}ŒÖPêNÔnŒÛÇî'©J… FKšlN±RM¬¸f%º|y>A,½‘¨…w4Û5ÅO=ý;O 3é| äˆ7i·˜vè æ=…û³Øžò¦³%HÁ®RùÝ9©­~ÊR­(–ò=ä̶9=Òì;Ây³wÖy³? ‡×fÒl¡*`Pä#& p?m™šÇURl3)v-ª-åñ¼³e­ œ4ú”›ÕÃ)ÏÁiΌۚʿm*½r̽é_°ÌžQ gp0ô? AÎøx›Üt{}‘C¨®19†sÝRc»ý]»}Wž5š¯ÅÕ“ÓMG?ABúH"Ts§“˜<Æ¡Dp¦Ú›ˆúdîšÊË ²Sö8ÙÒ…û;˱ªê؇¸õn«Wä‡ì%NYy{¼Lôr<¼Íåmò™òJ‡Úoœ¢ O‰Ž©Ñð¸¤#|ý|©;Ðüê3q=í¤ 9ronÄ]à:1”±Æ®Jå$Ï [nƒu§4<Âí›Îsqµ![¤=8¤:C¿å.Ýva“P.Éõ”ùÊvÓ­ï둇´r^š`Ão»løç- g_¿h#Þks¿sN?)“(üìœW q±Jv¿uÞ9ÏÒC72IU@þ²#”ÿðLH[…ÿjûPCƒ 5Ûmü÷ |¯¥ñßo¾F#»sø÷þ;ß¿@¸f¤Rÿl´àg†R¼…ØæÒÛ°.YOQŸ*‹Ó ü”â8û'%à5ä‚(KøÕÌi_}úJ•\Û%~6éçKÌ™|ð²sxÖ&Äû:”‹ós0îPAÂÄ?xÝ>z‰/vÞî_ÎÛÃVTþ’3˜•£NœÔÚÖÑaœ;2“‘+»¯ù½˜Õ3“,´³öy#³9d*AU¡åŽ™“b™×":Ù1’¿°TÁ9iéœë"lð3=üÐÊ/Rz2rÉJ ‰·8O@a÷Pƒ64$L[´*‡´çIšãyê§|.ž„à‰ÿ.\yš”}ý=K’ùÜù4‹dE±&ìv¤„XyÖ•Puø ŸóD’º`Ìlx™Âm•2ßÿòV¾÷ì—ä:_z—©%Û‘ *nIu'¼¾.ˆœ®t…‡8G²Q‘ÖtE›òïHx¦¨.&{¸ÛhaªUci{,•Ìòª¡ó«4Ä=èïuÂÂÔû7Ã>œç¶ ¼Œmá+ Ÿû¼èu¥|9ë¾ë.`–&±mvµ¨¡.G׬•Ü’í”_ÂG N«ç,Ãáõ¼¥'*OHû¹¥!”#sÐu8#ID’ˆƒ/qÓó¹hí¥ðT…ªë-Là¹îd©Ó3Ãþ_¡·$uU?ÜqM?—D¢ ;K¬[‡"¦€þÙ½@»„+'ð®KBƒÓ1"ÏuM§5*ÿ‰ÚÜBLŠ%œœ\HÈQ]k(t˜³F“¤&k«ã3~ñiìƒÈ>¾`ó³2T'vBR&f2ÕÊ5.æ™U&œ£>16ÂHÕŽ§Ó¬Žþ$ßÏ_mçáV. zY±Rk^¬¦ c¿ví:í˜N÷§ú(ŸÛ“_åäÞ?(©(Ç MGá§dú®Aƒ2ëÝê÷Þ>òî¶«ØP1Œ™æ“Ù¤þ—¨žIýoÕë}N|Ärôì„W…±›˜¥ë šÇ^ìÃo#„„”*Ï[ú &³ê“3xŠ]H)¨ÒX˜Ì4ôpM’‘3“µ“ýûJúkæ°óÔó¦]X¼ LÁ¢"–b¥Ç4Sè¢#¿Á}mÛÜ{d >Ô;>Ì[#h°Ç™Øp9äÝ8[$–»^ ° ²ûÉ}wA–¤--gFÌA¥¤âŠSV(›ÝfáØÉA4ÂÁƒ0ÒmSE]T¢îèmVëÚî(€Y¢h[35²XÑa†oƒ…Iº ÛÅt«)WwïÈófßb©Ëœ|(ˆDeeR)šœ§é‰_zÓSÏPÚÅ)Ó¶5Z…öÙ‹Áõ0¹ìöán+R5é}‰yܽÇÝ£ö#gÁÚg]+gÅbC3v3¡¸P(2âÎmèã1”=tdðŠx_¾TáÐ@ÅeIÛ ±âa]%ß²%2;}ZãFƒ,tA2Ÿ ?wG×cР{ý'ZUß6pãéÚÖˆáÍrQP¢(:Œ™Ž¢R¢ÙcÑPUÙÁ(‰¿Q†ãf*rÇ„9YñžVñéËÞÝgÅv)2ØÉ*ó¾I÷FYܶÌ2J®Uª¼hŸÂ}iy= Ý£™)Í×…Ùán·X¶õuž@Ê-¬czÙ:áÕ‚ã†w"á¥}K"™ßÄ›bÃÎ —2÷S}ŒÈ£}±HI¢7ªÜ+³QÉ*¥o4Fý2“œ¸BQ¬ ÑÁ–eM¶ûju"Góµ¶¡¡ä¯%4z@a\û¤ £XÿÅùÝ„‚VM-¬‰ ª«µ)k#ÎUéø;ÈÊÝh|ÔH¨÷²Z–©û 7ŽcH >È?sXV£ËjØŒÉ/. dÌÍX}ÆóV¹~‰ƒü’P8«Ÿû2xr:ŽcC×7v?K£Òå&ÛGã’M,ãÁY/Õ[Þ‘qâ"·y·ü˜â9xcx/fçØ¶Ph°‘9ðÀW‹5Ní¿›!(;“E;WlÖ” ïÏ$‚ñÐBm¦¡SÛé€KÒÔ”2¿B•²ª=yƒ'&îr§Ø©Hêaþ4»có2Æ>ߦ¯¥#ÂðGrY´žrS»eՠ‘3,ÎÙÄe®·nÁßMíIŒÇ<õ"ÕEÙœ“ óçû·ÍÊHj¸ØûÛWà+µ€¬÷™¾Œª¶·€€ŠŸÄ˵i•Ôõ‡ù„â¿¿Ükþ×ݽŠÿ½ót{ÿ}^°nü÷»Hxç°Õ9ôãÀã©§^älÒ‡âç;0|œzÏiÅ›µ­Œ|~4bø0ï¶D $œÜLG›~¹ëw<ê 0ÎÒ±ØI 2IîçòRÛݪlKRbs¾ë’£)ZôK]üï)4*ãAÍÀ6VŒÓ;+"MÃó„mãígm“ ’;f\³¬­ÁÚNŸQøµ\Ø´fIÔÁ¶K¢²Ä4^-€¢†¿f¡›½Y¸YÄŒ dàÉc Ì´üŠ ÁF*ç vËx˜|B@Ô~‰8^Ž Ø‡þRÙçI¿{{yÝÅßù+,Ï!¢ú ‚šÀØè–oÉ&P[ÍL‹´ ­¯¿„÷ˆ'º²èu:Ê´ìZè ãŽV‰E î88¦‚†ŠÕdÈ‘6‡Ó«~ï:…c€Àsv—£Èµ1cA ¨›Â¡.@…žÖŨ\~Ž™—E¨2^u ©hn’?‹·)ë]§Qce +»ãä2M&ÐÊ=á©ü@H v£ ’…²4¼óu Ý1^‡IÁ‚îhÎÎH:É‚ÐMÝ7 l·cÞo»dN¢“ðÐç ¶î€ì–Ú{V!*âùéA«XhËí¢ðf3 ¤™iÖàÁýÃÅyÏœN?OÿS…Ÿ0Yªq¦ÊXu«7V]QËà)Uã3ãAÇ´GBÀÍ rŒÀî¦gN„Q¤mqÃÆ›aãÍÅÂÆ¡%qÚí9âÆs‚´wÜò3i¼áþåi7uv3/Hû·É¶O²­I¶sã¾=Ó"Ï´Eã¾çû.ñ͑ފÊbß«nÁ]4:z®Phå þ­ƒ¡•3s3^, ïÙwŒö£kè¾Ô–öÅH#ŒXm'Ü”?híBÜ@^T2š£/î®·²¼Si_ÿ©¬-¬›?ø€EÇgÇ›GÑúyð4 ÌÈpø-5~'Rõ‚‘ëo’üÈu%’„[¹´0w=9ï§Uû*„ý;…°×(DÊ aJóƧ׾e|ú\áéT¥+3"„o¿Sxº÷ …ô[„÷, †ÃvVøzÓÜ–QE†ôæ#gÌ iÚL!íM#ÂnùíÊ%mIíF¿æ [ÏêílÑêött™Ò2"Ö HÖÑ ué¼§›åÉ·¶«´ž¤xEó ¡Vaš±6q®¶?j9]k¬¯íûBÍXËU‘Íi¾£NѰÐî.»¬Žd®»vhݵgYwºÅ×]û›®;)Õ>”u—ÕÛï¸î ÿ×’ UYnZ±{æƒyú¦|\°e솰ÿý;ÙNnFÃ[¥Z";íßS4=º·lƒ#)÷¶C°Š‚î r²U3®£Aè„Ã7õme‘•MäâÅù¼m±]ÊEK(#AìðyTqfÈ#Y¢b’8!õØU¹ûe…ÔçfþŽÒ’ήç1<¢–)ìÝj¶VGízñhÅÌ@ W—"²¾pÆ;Qˆ–/Ý+ôÚÆ˜›tÒ»Z£¼¸šÿâÆ†4ExÖÍt„1Ž4‹¾ÜAËx0€#jû*'h—§ä{žìnU¶·ªr“âcß¾n%GS˜špøœÍ úo@G¯(Hëãð³á˜.fîø#哼LUa>b/S+æLlä<Ãy%‰ 8¸ûö&Ö> á€C·‰®Ð…"8…·¤e‹tÙ­_®1LÀXhÝÑ]z[±Ö¸Mè`ÃÝëjá(ÛJ·`fÃŒ¸Bç ËPíëûë…V+Ì]XŒ¡Ô¢f½©O[31€7¸`rR\ݪۆנ·µáä£?HXx)ÙßúËx^—›ræ§õy©Ý¸-÷ž}L¬¥k6bŽScù_Ó±±ÚM2~ÕÁÏ©°umHÑÚx@Øú5;«—‚AçöRt(~¨x!…:Òö;ÂEs;r€‘·ÜÅYÊ2çc´m‚-¬BnÇ=ÓSgµkÖqÊz!ĶÀ{µ¬ŠÂî*~DpˆÝ—¸Ô :½Ð ¨|IJ5%3ȉQÎRnûéb\ÌÄŽZ¶¿÷íTßt³ÐMÑÇ$#5¢ˆu¼Ëy…RóPjè`[AÕ¬ jVP5+¨šTÍÀªaÝÊ p5æk{®­ÀÜ ±gŠÓð¾ˆî¤I(SÕ_KÙô/€>w-ùJùBo¢”û¥^™ø½MÈ!É¿“c—ÉÇdßßÚÚ*“)Å;JÓð‘äñkÙGÌXä»Ûë%ç­K9ö^%wé ÍÜÝ]¿gË1Ô}}íÚgñéT¨$Y´¹N¿È*à²kÜuMBÈá_ÿ®ù|µË&ò$80H‹öYç*5U¶”2ýxdpÞ›ï°rÿ‡å~”‰büØ#TÓ>‡9¯ Žš^zÙˆ¼‚µ$Ö+ÖàÚ …%iØËøÄ,U¼â›Ïm÷š6šv˜‰9;Ë ©Ð3숿Qgž5¼– ÒÍA@®•rk‰eý/½Û©•FOéÍîåF6!y·ºÑ¨5øxðU •ÜPX=¿È<=q2®’²µ¸É†Õaf³Þ,ܬ7‹5Ë;9z¼.ëúÛâëïá#k¾;^U 镃ã$±C^fFÆ:Uªµ^jm>œ:ƒå:¬Þg 5yÿZom<ñê’.[ ù®PÂq2è7!4øYy&{å<¶ÙËrÅÚlÌ ¶mföÄÑòBèŠ@1~ûÀOtÅÙ2ÓE_ØñG÷‡¬V"U/ ønøC’Ú˸R¯€¿0 0ñò ED•YÓH Ê‹yPTmö²•ÔÒJæfD|K¥ ãjVŠLæ¨äƒ þÕ>V픪Gk<D2¬H†C¹3® ïÀ°j©ýÜð…ºŸ+èB=WWÐ…÷ ]¸èŠû‘€ ¿ÓŠûž …›@xÉu:îÒë²1´—¿·¸£Š“ã×5ÙÈÐy‰2GwoÃD¦ß¦âœ˜Š;SqÝê˜?»áê#&xL”š¡é £~dK]¶n!„xDæcmÛ_”.HG„1-‰Ø!ùo†FérA Ä)3¡‡9©oA+°ÉØärÁ&_}c”ɺ$Š¡Kæm †¤±5¬À#Wà‘Ë|õQ#Wh‘+´Èâh‘1¯6d ï¡s‰sžAc¦NQ´TéŒh é^ëVð–üšoùîçÅ·\}²?>þç‡ñ’á?sð?wv÷*Û.þgu»²Âÿ¼/{ÿó¨Ã§?Ùi[ þ„ö›§/÷£oÂÏag«ž£¡Ã—güAñwéå¥!>hO›©RÔxÚ›ž5Å6Á1å)¡[ÅêÌÃáä±*´óp8k%n½‚c,19; ÊÙiæÁpBoJ²S6§Ñ5ü5†ÂyŽ1prø{¨¾¥Wä}‰ƒ¨0eŠ9mÊâGG‡-…æyÔÑÀ™0eÙ“){ˆHDІ£Ç|£³õûPË”„q#ÿ“Ò~¹Æ±ŠG0™Éä3ªO9’¡C¡=ûD¶ÆÁf"R‘ðu»Ç[÷þËøyeT ëʼn¡è;p¶ÞY¿¾~^†¤?ÏéO.ÂjgTß{ gvm2WÈsdvt±ƒd0 r @_ƽM]LöžâÊ+İUüµªðÑ ùù޹Ûâ1e`ÎËPB,¸ˆ2HÅ•?™çFQáTœQ‡T‹5zHH8ªWÞ«W#.o8äÓET• a0ò©æ®ÚÛšœŸo ¨Áé¿7OÒ.ÂtÒT!ZáÑ}7Ña»HÄ©ÛK\­™q7^öSrG(µOe(x´"ïsEñђ롉ƒæWÎ+IIyz£q­Ó”mçýw‘ö†;·¡MÁia{ah/Ú/茦 ç,ÝJ– ÷•dá}e}a‰ì}¡Ãv&'`6¼ëÙ[Þ ºâ]µ8V+ıZÇ|^+^™ ²0 òxU››Wµ-~ßçË‹À1œK2‚£-¼{õ‘48Ðûnÿî#îr7½£Yû•i“àŽe¶ª±h«4´Ü¦™ï»ªlBøbð‰ÿ¦£¡0¯fc_H4£ß…)Áœ9oZÐDa2ŒZÒœ e:§Í7ec}hSµ]®iF-Ä屈¾L']Ž2"–¦¡CT ±A`ø!E(*^;°Ï &Àì( Îs8vYÀýs­¬šï,QÕÏY°ýñ4@´£þ=,e+šT´ŒGXˆ|)Ê¢\6hÞPµí1UêÀ3Lá)~ÿ˜ŠàqßCË´Gp[‚œûPð„ÄO¼é?»¨3_¥üGµEìevR‹u80wFx±N¯cáà‰½KgíóðÌÉ–!!C:¯Nƒ\uLLÙYA®D{€È– õïçŒre’è¹]‘E5&[§=Ó" lv˜i!)â}®µ=®™¶ss­½%h)p°ÛLt°Žöó¢ã8Ð7˜ßs 4F†–|);¢¶$¡(¸BŽbÁ«lŽÖ>G7*@Åë\$ÎÚ/’à„‚èëuû謽µF½V0#ϬIW#Í Œ‡‚¤Ò„³ézB­9 xÊ¡›…–Z5 ng¬—0ÏË‘€m-kžèa>{¯#j,ãJ<¤¨b¥Þ°?¬‡A q}˜kAŠ™*Ïn>ø|tðF°‰Ò ýó9›ËàoÿNZÀ¡1Ë#Óñ”VfO¤:Iq]:ý¼µQyÆDd»ÔÕö›ÁòÕpy\IÁò;Áò´â‚åw#å"å÷"íÙ>–,ÿ:ðæ( 0ÀM9ü>‰¼š@kÁêŸFÙý*)ñ.†‡j‚ïÿZôývøýß‚ï“]0)}êŽzÃé8!Õäx팧Ô(8fMü$Ýþ@u7Ùe(Ë믛áÓ`ÍyC`q4nF£yøâœýv2Œ¬íÆÑK,Õ~ý¶£“8ÑØëÓs<š_4²ì´P€ "øS«†Îµ*þ³g<›‚ñßó×Q©ÆøJâ[ÄTŠWÚÙ­R±tÞ@ÌsÄG5Ítñ“àŽŽÜ.àb0G o?ÏËbgÑ2À}ÍXç‹D( "z1+â|E]A†ä¤„ñ‘ 9ô¢d‚u °FB3!¶´&½ðH ëÐ}“I· k†4Ú>êµÍüöø.fËÚ™=nû=nëq;³Çm¿Çí=nzhí蔋;Å{˜ŒæÞÅ`BíÆûâ6Q)ñ­éQÂ%dñlÐ*âŠ<‰h(·š¡Pì(øs#û%U);ÈCJš;(€;T[w¨cñÌVA|à!¯ótÉöˆÀC|ä!IEë‹)”­¯h=‰/ϸo è³h#ÍÀ¹d Í´dÓòc„3×}Žû½–ÿÚŽÿÚQ×äZ²|³H“×”ºÄ&x‹5 X L/¯Å€ Ž:ÉÏd€ tëê/LŽE ¬‚%h­‹r÷H@`’°¼$(] «÷ø)‚@ ÈZ@q²Ìójya—Ù"pg7Õ_$‰Ú“p)þf=°æzó±4§Em¾iá‚èi!«œiQ‹M‹š?-jÙÓ¢Ÿµ¬iQËžµø´’ M‹ÚlÓ¾!Ùüû^ÓâT¤ñ3ôã:g©•°T›rÅ«*È/éw¿Âð¦gÅÛÞ¿öÀ¨¦ˆäÂQƒáؘ>÷®É¯…y@¶¾‡¦&!('Ú?`á’£š>êüAÓøßO÷ÿ»·[Ý~âÅÿV¶Wñ¿÷ñáìÄÿ¾QÙl„M<úWî§‘Í4‘°"&0H~¾_É6¹¯ŠïmJ®<ôè^îÍíåÐÞïÙûƈì}ìõâxu ¡‰6¨£'—Ê‹¥fŒÀá—” v˜Üô8U·{$âA‚Û ’-ùM .Z³ûò]?r{º}Zÿ‡!S[¯­‘AT¸ý“oÖ„CXœæXm¹úíðxù•ê·+¿®ï¯E{Òú×-9!ÒqJ,åÀäjú÷´U¡é¢‰)T¦òØ`öá«HV>°#f2#"®0k Â)¡;×8¶D“~»X550±nÄÛø×øfP™Z('…a3(¬[,£=‘ºSè˜fYYó"$‚+Ü Å¡D*VûUfeê^Âæ†ì’ ÅGAб᜖þ´†-Jñ ~JÆ@l|ó•o@¦_jü¶ÅÇFTQÚ"–²ZMÌMAMŒ“_n¦ý¾Ævû%ä2ÓN¤ðˋ鈆_$Zÿ¥,4‹f6ŒæŒf6—ºÙ×bͱ·uqÈ{šP¼Í¨g3ägÞ¨ç¹;’ýz~O–-ƒ£¿{lt#36dz 9š)Ù7_©ze¾r ¢‚‚™ƒÑÁ~@…!Ø¥—~Ò½ _/0·ñnÒâÏ!! Uû‚ ï ?ÓA5ÖèÅç.m¦¡°P—‰°ÜV¯yÿTá³L“š57L*±Hòá%‡ÙA£P“G$ª<PþMç Hˆ:£5ŸRòSó±@Ìy–5¹lBû¹“-k†ýlaôsVaôÖü—õ?u½ElR¿hH½$™1:<QoÔûÒóÙ‹óq Ú[·ÊÓª0ŒPߎ»·RjâÐUà´1MÜ<4lb5‰D !|ëgå?×¢ï›(Ö¼¤}:°¨ÜùÀÕ9r£]y²‘ôÖùw¨È,êÌRz‘—¥|uÓ|Õ ?>ÔW8â>rל¥ã!/ºÞdÀqþص†»—ã’Ú«±µøn“[â ¯O¿\¥w®ËDã‡öÆN·Z¹lŊ܆ýécïÊÚ hú¤$@dóYaÀƒe )¿(À£243áLP“A¨Ýf\uH ‘!pþ2Ó²k»e÷EÌüöwXvvݼêÚEVݵêÚÆªk?ÈUGlz‹ÎCõ ¿è¢cPlLÒ㟉èñë Ñ#L÷w—­.¤‡‡ŽÀÁQä¸ôc%ÖG²Bûø™Ñ>ZŽ€\ѰãQCu]öÃ'¡4W°ÿ<Øó£Ã7õ`ù¢0”0ʇÿz$¤²]%·| â˜2,“…i¸¨IÕþ±)?†U˜×‰¶˜¸ï\ ßÇ”VIV°‰~ ƒI±H†ÔÌ´èž®á29NNÙ_ò´M‚ÍêñJ>;m®ï¯ÿÿìýyW[IÒ ?÷§Èé™3 0lW¹Êý{%À¶l$ƒ”»úôÓG ‹­.!QZlÓS3Ÿý%÷åêJŒ]¨» èÞÜ"##cCB8zé`µ¶ÚÒJ¸@Qiñ`i¦J½çÿ.Ã+<#ý'k_D¾þ7Òéó>ª'R«!˜'T¬Š#¨º!Ú‚°ÇËÚó–…}ÐÊ´Þ\•Ë\Ýüôgÿdb§ÕšjJUôuð¬_¤!Ði…™O”ˆQ%kÄÈ×è:çÊÍ]½0ìBS`K+qy2ê Æ¬c1CÈ.Ï:ç¿!ê|–VRÒŽ|&rkzÞ‹8#¤¼r Ï&½ó¼|è}¼dÐä¤.5AyÝí©Ö>¸Löå…¦ð™ü‡ÿåuè ®½:K–Î@Î )_ØZvùM ÇŠ§o׌¢6ð3K-¼g Á^ŒÿXý§ÚŠ¿ª¥þUH—±{´B}9›–¥÷µÛ œi¹UJtl+ "F¶èŸ ‡¿‰¿6X2àÂ…|¼ÿªõaÀ˜¼šp&þ7pq0ì Êâjz¶OÞ ?Âj^¯~C{ÄɆ8IIiÎÿ¤ùŽê:å#:¥8בŸê(â]´ûúx¿q(Ÿßf*$tÍÌI‡ôfþkÉ´Hénd¾¤…Ò"ÕÚ褋?Zô£fG‚K×Þ-éUšžA_®ñ˘G ·ñ„¹ªïË*}Rºvõà%Î…~ÂdÚìÑ&KùІ¤¡Ê4!7uÑÞI£Qå2ña7÷7u³S)œ¼N€©å;Îã4o§bYœæMâ´`§yS8Í›Á©X§yó7-˜¾)™½I¿AhTYdl±hb§;}ýÄNA^'+­ÓbY‚¤NVN§‡”N_)¥“£µ”Én?½ÓéCz'÷¡üeMþb=®¾7ùìgÌ ÊgkÓáá”Lœ·Lÿ´hF'bUá}üi}µÅ#ZpTÉœp±Ø[^ÄjÞkÖpÎÝa­ŽÌóYAiNö©y7Qý2ÃíM±PÚ¦E31Õ$|kzµèvÖŠmgÞkÖp‘í¬¹ÛY›k;k‹mgÍßÎå„Þ`;—œné‡ ÝÒ_þý>í@æzºº`’ž‡dKX½µŒlK&ÙÒýϵÄÑñ!’9˜<B¾gç]r¥…‡”M‹¦l qÑÒCΦålJWˆ…s6ÉÒ[ÍØKØ4o¾¦0]ÓC¶&5Äl.…dÛù³5Éàâ…s5ydÛr=Ù·ÍFÈdc´¯€×š‚>ö'b. IåVç¤JbŽJíâ{“8£?j>*ó?_+ú·qJŒ»1bÞÞ¬‚ä1 &¨J±± U‹² ·–}*Űi]êÚâÛ¨_؃¨“ÖŠ_.Ïl±­Näµ wú›ä¾ßœV3®àqÛ•N‡‘%6òD¤ 4NkŸ»›Ö%¯yaÓõð™°1¼öÈy@ÃyùÀ{ÙƒIÐØ´l= @Pm‚€9P0µ²´ÙEe/}8R,†&Žx›3.1ç­Mæ¹u­§LV:F¯±S™ä¬…þŽäùSt—–ñLÄSiÂ@© \Xýà?‹€K„è$Ðü(žlŠ7»ìŽ*3™p^ZAëZ"«åAŸlúHÅv3ûß?Šërì W`­Ą‰Î2®Wkíñ³hêÇ‘”Z:³?^2%ºÈ±åÙl-g6kiôÂoÀZy^ÀVÁ„{/þ8%J³Î:çv–ÕÑ–;‡ÓÿÜû»=¢è^8®ªilßtcw–2¼Vk¯~¡[îÌ»±O6“¯ú»Ÿw{--㡈S¾KmMlÊ÷£ÿlÊWÙ\.éƒþn›ö=]˜Ú´BÚ÷ô¦GäÙrfS„öµb´ïÙѾôÖ.™øý0›ê´\ªÓŠPnº³?.ey­ñkE‰ßsî,åÔ«!£(3Ú1w*$d_;b*Q*†;R \™Bàô;VrŸî¤ tþÐûĆ/‰’ò†ž8ÚOv!Ã/6¬q×õ¨cÑï]ödLMçÓ°×…æ]éÖsÒCÈ”O2Eäõ> z½óÎ`bd{¤…•(-$§E4ûâ!TÙÖøÔº/Õ—êÑ—jêÎÁæ¿ÁN‰ÒƼjæ½SwÞ©ïP¶m®š¡¬Û|V&lŠŽÒj‹”³óßh¿,ð¹€ç©øÒ­VÎyÅ"4²î Õ.Ù!b©*aî¶W¥ç¨üµq‹qe;s¹Ë*I7S<Šíì+âq”ÓLœ&ÒYu•·Ü‘–µî€×ëS;'ò }ÀÑ1˜Ò œŒ ^ê+%…™Šn鎲Rä\ã¼ovQÉQIdÓp©Up›bSö¯ü1¤7Sþk©1|-@@ÏŠâg+Ÿ­~¶ âg}øÉ=³3òrqµå’š…@ˆ¤$@"8QøÕæ>Þx¬n~µ¹áWSð«Ÿr®Ò™FÄg<ÅtmáægJ¡åE.ù,¹0µœ•Uš°ƒÀe—ÞÆõÀÖ†Edb_I?¿½3ÿŒ0}Dýð¡v…ñ»H_=!L[™ŠŸž2·~L÷û ØØÎèz£8`õ}«@ëÞïžg•°._§A=§¼‰Õûö½Ÿçé#„Ëk¼sõ×ÝÇuóØèÏyD;Y6B ¤Ä¥dÏ>ý.²gûŸ0ÿ÷ÇîÖ’€ççÿ®T*Û›Aþïí§ù¿ïâ#‰Ž“ÿûõÞV)n,¤ °¼„Ý÷4Sw,¢ˆ‚äh…&÷R³n°J‹e¿æ=Þ]Æ*×´ô_ÐYDQœå0iÏ›A¼g×W-†£ÉÇ¡Œcv¢q·×&”—„÷çB=‚éUá¿# â¯E¬¸ ç`ýBI5”«èHè }ëf SŸXù>8<ºJßô1†õ: %¾cÙí>¬°vQyóῃá×*Ï›4Eùé¼~ÿÚî3÷œΊ«QöIGíã6Á†Öª? Ê}ð¹Gé¤Mú¸³ÌïšðøM´Á]e瘔°½A±º^ø¿“±¢"~~Asý™Ý³J:û6ozÛ¼´¥\üÀGSÌ'ITînø­)¡)t¬MêsÖ“Le<=ÓáÌíìÜˆÙæÏ€Ø`šuÖîàhÈ ½.«Þíntx=e…Ž]6sZ $‡v'nFCëèÉ¡0÷¢Ç 1!u L¨ÛÏEŸð©Ç·o’×Ö¬!áýÒ¨ÿyrP®WY(eºX}À¬ÜZ®(Írí~äÊÕÔÂS…3dÞ(qŽƒ¿7Êœ3OcC:8Ó›D3¬†à!T©÷±·Þëc–µ ŒMˆ’ú½K?0ÝÒýï5õ¢“®Q²5øn…ê.¨L›ºzäF¬£›4Ü!Ÿð¿GüY8 ø}O_dŒe™GÞ|/ÕÊ*Uê§Rå9õ¼Y†ß{œŽÉâ'œ æ=þ‰o=‡ï(÷+§ßCJ"A P™£^)÷dž šÔ€®éžÆyJÒç䙀éÃæ›8¢¼Lg×} x®²/L“gR¼`NÏÊÐhˆ!bìÄþ±¿?}΃ 5ÙL|d^‰2¿^øˆÄ+„Ææ›Þæ9JL*s»ËéÂoÎÿÍÕŧ­¥tñi{)]|ÚItû¸]$Þ°Of9 '”¦Å’¿H“$ޝ Яc—Ãn‰ôÝ–3î¾O=kT:$nsyuþå׿€|­„3Ru˜äkseçˆ 9ì}½¾”$ UÊÑ€?^å¤P˜7ùå³ÀX±Øgäðâ˯ô®ïÁ0ê{F,vð}ðÎ `Æ¿^‹®b¡·¥ÈìzSú"ckîž¼Š™–!ø2ÜÉnvä®ëÈ\u ff‘îÚJÌ3ÆUñM9Ipa=ç6  1 Èëuv §˜ÂÂ@_Û"Pɯ+)‡‚ëžY³NÖHÓ­õÈ|š¹(«ZMÙ\ÀZ…o~ã_mŠ­ ¶ …O©,9‘%VÊzÖ‰UU Qêh|rã~s&+§Y–l‹ž,:–'çzéY6›*¿›lìHæ„['q¦B°úA£û ~"úßQ÷Nõ¿[•­'þw{gëAÿ{>±žþ#…fésë6~ãjàåÔ`\¢2¸µ÷  ~P/AܤôéoÔšÀ£ze/6ùÑ‹åÔAËS7×Ï®×›ŠâE±;¥*ŠÅ¾Ú(ï?‡¡éîY›z v²ôB\Ñ<×A *QT¾Í"ýlðЯ@ƒHýwzi—00­š«˜Ã“5WÍÕ~uO‡šµ.ð¾ÿ§ï0B<!ŒFˆoÍAÅ .zýŒÏí¸Oµ¸xçº)Ë¢ëÛ›ÆRŠÂÆc­¥‡ƒw>¡ kI` È%°O’i€_Q££v4í tÖß&=U é@ÕÍÄ«¬÷o¸éA}<ÇÚH"²l³F€ƒ=•b2j*¡·ìЫˆß¬™Ì ¡(;oºô5 – …0}5×ÄGÛ9Óc>Hö*K&0o—Å\¸ÒbèÔäéù|г» ˆÛ|Ÿ„Ñ~Ì6Ï6>F]Í7g9©À«ïÿ^–ºYúÙhÑéukKŸj˜Ç»ÕÈË ~7Æ©tªðY¹À# —Ïcã,ÛÆ©bÑ"Ïž—ÛHŽ•lÖèÓÖí±:Ç r×ò»…S3ÿ©­rA^c»uñäÆ*5Ĭ|´ó·—Ÿ· RkV@••#¦D™ålÝNÖ¨­u&¤ªøûs‡ºŠ©°A#Õgv¶å˜”¤0+ÓpóµÌ±HÙí4™ˆì¯1ÁNŒf J1îáQ¿Tå‘I‚%QÒLd§.a2Ê×)…¤³¤Ç×1Â6)9À Œ 4¦p!Øêó´\l`¤E°4:¨?°À€é¤ÔÇ|W¼ZÒ“~Æ«ê# RŸ¹·¡c6l¾:S¶ÆöÐPK~Ÿ\¤³Îž•vˆ{±„"È1Ãé‡Iå®ñ/V'Ð5ÃkzïD§ ¸þ¦ÉÌ;6š‡f „ñ®G~/ð=©WtIG„ž[V|"Ž )ý)üN=_ø=øù÷±F0Ú—-³-[¹Û’âüÝòöjAJáe©}:7¬ y†Æ'ê©Q%x9LKõŒüÁL"“Kž0Z]VMŠ@ŒbãÉ8ó6€õÀNûis8.Ðë#µ…œCÅ÷ôÀä`ï‘9t1×"GÒGÀuA:û¡²fôž÷Özg°§€·žH©Ç¨~­‡·ºòÙ)¡ê±SÔv4‘˜ÓÕãÕÓGNTêV)Dz"ê‹(qöÚéSe8­eB&§º ]y(®$€-Ió³øÒ+C»9hÏqL’ÎŒœ+J(`Èžñõ:~(½3×Åé…œRÊÂÔUñVàú»X§6Äi û(ã­pRÂ3RO;ý 5ȃȾv§!Iþu3w >vÒr°(&`žÈ!ÛQ¦D¸ÖI8—šõzm-é$h»Ö)c§ ù²5M½‹øV²åˆGß/°l”ÓæÞ_ö2Zã­IïoUQ²üŽ ?g#¦É>:ôÈq|=¤MÇ9HûúX˜m·i£X· oýÅë’§bd Ç7V’®¾a¯¢œiY›¤^æilÉGæÜãPçnØß»JØV5ãaåà÷£—ÃÑçΨ›³-âÑ.‘T4ßæ½f<·øD(BåíÒLeܸ4ªÇö–ó_yüºŸ’%¼Âž’ý`º<ž¸Fz AE"t„`N| #úØì80YüÉPYgðàOvKŸÐÿëßãOwéÿµµùôI¥¢ü¿*O¶ÙÿëÙ΃ÿ×]|ø„¹þ_oÚ§”§ºJ™ƒO80ýÛ¢éßCI®þw„\5œä¨íSøç„ò¦–Å)¥²Ëi뺗ÍïeVà£*ÂBWXTvÔ;›J«Ú¯ýÎä·¡Ø]vÎ DÏ4`Bá_;FÙq¬ª+êè-ÍÞeo$N³qÖïéÖ/³Ñ`ªzèdñºó„õ蜨#Û¯í‡"«I/N‰$ËÉg´#âyGK5;z]^vÌ!ÏžSžsžíº7ìG.Às„\·=9/²Ýh̘Ùþ+ªf|!ÚõWªÙÏÊÆÖ6p€pë<¶7&XíX¾I+ë÷ÎF¶Öë¼ßcÒ|– ˜ˆÎùùí¦ÞcèåÜ”³¥áO÷Êâþ=¢K¯ËoWÖéW\ ¥º{bœc +›’*/^‹®ß¹<ëvDC|)Ó?Ìw_ØCèu¾þ›v}CÿÏõо4kãð ¾[?Æß›VÝ!KOn{2îðySªAnÖ`¾C£=V`§p\áX—8à¤ÄÑ×§%pUû¤;§\ò?êLÞøGòC]wµbˆÒa@Ž$™J;Uþ?þH—J qªt2K£ãžtäìR"™!œYòäX!c'y°‘ñ“…ÕTÿ©übä(³AV|h†­à)¢ªò<ëŒCí½óBüã䟰ôvÓo§ÿüoe‚çîÕ³k¥+]‰'´¢¦ÃÒ6¼‚º_»tzv˜æ­Ý䔹Lcs¯ Ù+4 _+ì£Æ~Žr²²„ÂÝÙþlnAu­·FÐÈåe¾ÂKnH·Vdàw0]<”8<Ò5L¡¦¥#A¬MtÚ0×R{¸ ¦Ãêœgí:áø½tïŽeñïΜëX-ž\/.ì]œÕ-ž3ÏW§k|uþŸû±°»‡! grB=º„ÍÐÿ›Îùð¬Gè©iâúÎNǰöö«ý£ÃmrXlËzÂ87øýàè%:û\¡óÏ]’¨†:T½§¾¿¿/‘yÌN¨ :ÔHxÑ­<@ûß:WWRuåŸ÷á²ó/ô€­®<–ôð‡Î?KTZæâÛ`–•%%9ø¡š„¨Í”\"y¹ðÍš(èeÖ‘:õÎ$vµ]v> z“©2$ˆ?þ¨þñÇ¿¶°V)W;}ôîÑŠºYEÏ„¯véö¬Xaäg¤QŸ4š¦Þ]ÞôU„Cô™æ×GÝ$Ε úŸƒ„”©£ñJy럢;•j£«~ç\ûmaG¿ÁºD3â¡Ì^p‚ÝóÎt¬oúóC ºádJ2n zðGoSpÚ§oV$I¢K¶ƒ¹#B‡ôÎ æò|Ø'¶ 5‹Ÿ2NìSXt´f˜áî?—㊪a–MùÛÀ­ü’É’Bb}J¢A!ƒ:aÊ Àax…Í(|žˆ¼€,1%¹@ÆFLÙÑAEždI;⼈=ž#Ý¥ —×Í..zç=lG'ÝòŸáCjÓùØBþ0Ð,U)ê;ÿT½A³ÂkL®E0š„æ;<ãM‹°j#œAàôgÖ-¸÷ÍmoüZU³!:áÈ÷ñvHt™ü6~`›­‘©³( ™Ä5Å:H¾ácÖùt ÷„ü¡5™ p÷¸SuÍ9Sàè…†¢>±§F8Ò=~À¾êòÀ¨¾ø‚$õv6È.zÄÊ dhCQCÝ[„FE›•uyž?†EŽhÆQž0˜@öˆ!t<É®DÖ÷KjŸlN’¸t‚ÝΤhÈît©0¥(/+¦ê|xu­ÿлôý úcäsêÑÖóâNÓI@â{ßOÊbÐéù3‘Œ°ÖÚ+¹Ëãߎ§Ä*›²Ø aèÎ ‘¢@_S"ÅLY¼Ê0êáZj›ZÙp‚ƒóÌþ‚+_üº!¡.7TgÏEýzViS) b|·¨+ŠÔ®Wâ͆hHf¸† ²ƒ@¿Cøgû ïà ±Eþ¦? pµ!*Û[[ë•í-Õ¤½Xó Q]lEåéø”åLùÆsÞÙ†9?ÍŸó³Mšó¶7gø£6ýwgüÌúd‘áp 'X…toÝ&êr —´k}Ø:O8Çp@¦Ýk5¡ênCMˆ–öîY|ßY”¿¦õ­ò—ó”–³c–ó\Üu<=3 ÀDwQ=5Eˆñj×¢”T* ÌÓTÙü•fö2¼Õ-ÝЃËQíf™õl|jÓ𚔥Æ28òRG‚þ¿ô‡0XO9A K€Yxï@̺g$ùÓn1ŒU•_5Œ Ïê"Èþ©#ºà~»Ncñ©Ö6–øÞH%L –¥žÂ§òÓ.âÇR-·¼MÓŸëW_ˆG»ž3‹9¼b¦ØˆL%’`(¦I¡j¾Â"ˆG(®–­qé“'/)9öÚY¿€dã÷ƒ—„¾…à†ÀK=®†=)3ì¾;8i4U~jºVüNtR®Õõ$%Vɲf׎žOnW5)ˆeèâïôàºì¨«”ýw•HgÔ±¥i°R0FÄýëÿô^Tž7ÿï]ÁbAïàÃå¯Ämº½œ ‘‹#H\”åæÊjv÷ëp°Jë(ÕV"òcl*ìo,7¢7v™"KªØ"ÉJùÙl ²ù\8Ûê Ϙ¯¬Áï0>ÜÛ´™œ1+®.¥`‡çZ‹4~gx`àN0꟎tò¦èKyPˆwæx¦±s:öátìZ"#¼F0€c#Yß­ZBRr‰dR©çݹÄt!5â‰.…T¼½1ÊÏŒ´Íö¤^¤ê¾Úˆçãi‡Ì9“§$À"Öº0n'”E¨¯™X$Ë£ýø -8 ¨¸á 홥úŠÃÉGH<úÄr+gE"EÀ²7BáB+ÌüQ]ÜýÔããðTƒéÄŽD€“ôíË“ƒQB #isüíǃ³bŽŠ½©¯‰8¦½\¦)ÅbõÅÞjmƒQÃQ*AÍ" $Y0oÌP Á8³6 7¡Ü– fàq¿$$öûJátpºi -…Ò®†˜¬@‘`ƒRj ˆÈ畤rÍGyÛy2½s5øš¡±Ky/ËCyI%²úæA. î œÚ6úÞý÷„t7C¬qZÓ+b8Ü Ž‚:FÞç’"& wŽr ÝЂQƒØ'ÊC%_d'XEÔLMƒjšÂ.rn©€Ý-—œct[6šèKYÞþbTŸ¤ìîPv&JMB n.G|è\É»ôÿŒÖ*ÿWü,ä2` ø{ÂVøG9V£D«Ú$Óv7;‡aYS‰ $ŒåÍ6®°›Òs3ûHŒY0'Œb¹û’–25pBG’ÄÄE9A8úd½A?}™®mâš´Nœ›ï¶²é<¦“¨u€Ž‘è$¸ŸHŒ†?+ÉÆÄ(+i,g÷õ ôu§ýÚ¶Òxè]æh¬6Y‰=±ÖðŠkƒ¹`Ç•8#4iy˨³€|zs KbuêøÔði€OR¢ðh(¥«Ÿ(Ìä˜+8콉t=¸¤.±}3×ÐZYtÍŠ`ÿ¦QDMvT ¾?ã GÐïìò_µŽf® ÆpŒxâšñ½ ¸­Qí¥˜µ½Î[€5§E°¦YkN¬9ÍÁšÖXƒc=yµŸ²ÏÀ]IÆ%·:³H¹Ó5ÊÞŸ"– «¶HAã^×ÞSó©…¹Ú„MRÖsUr–—r©ÇƼ`õ¦ãLÎWÙ]f„TNìµZÇ¥ZýH(ðï ËÖ ù ‚ e®°±Ä»È~CE²…ÅU8Ã1'D"DáAA¦'ݰ½©<ƒ6&Z%;ŽˆáŒp‡Á$à ÝL´ÕƒƒôòãýÃöAÓ–y™¥¢‡zmì‚ÞÔ_í?Z ðgoÈœ-.ƒ7ÍZ LÞ=/œ“„µÜlzPmkZi‰a2÷#Ü9¨p‰äÙv7Å¿Ûbr”]þ@<™TE×)šˆ 'ÃÐÚo·êp>ö,+%]É%Y»þaïWÙŸúƒï=E·«2žxm<‚Ëvø)[ñ @Qµ<]›@ûäjžtO/Y‘dÑ«„¡‘^þ?h™eXž½:€’Ê V>•©;éÎðÿ>•õÀc‘\ZÑc[f>£[§VUà[Ǻ›1ës–MpˉM‘(|¢3Þ<³yó“Àsc·*J]óa€)J¥0Æì ÿæ~­®Î?"Ø4$/¦(YÚc‘ µ±Üõ³Î˜n1ù<´l¡˜dxuÍŒtÿuÿ=ì ìÃ6Dý!=,~“REîêŒüÈž²²Ÿ~æžÿc@| Q§}‚¤´çëœ2 ÉxÔkÒg6mµk]¶RJU„òQç7öh <‘ݹ|¥U ¶ÐÌ6¢ÛÎ2¤×9ïOQöéL'C©2î_¤­Ë¤ ±€øw;Ì´Ýo,¦É2Ç8§…³Ë—«û_”NÊR¡MnP+ì*A=¡ÍRò¢¾7–ÕSé{?å+ˆ]FÊØ*õ3ì¶¡­:cê:ÁµŽ’Xî£çf dV-o}3›Ð`ËÐ&¥qÌ̘Jó2Õ7-T©“PAVEB­nwåú,:s8›ÎÄÔ¯;h©|º†¿œÉû R@2ûrÆÄ,ÚÛB:ZH úÖ6pRç}R@t „«áp„L¥¹âÊ ´TߥZËnaßîDÇz¤APW„ªìXúß\¯œ2¹ä8·a5n!ã%óê×RÁ悆œaÔyCDvÙEî$þ+d]2ÌÝÿ¿N¤ ×ê*jÍ•xÖéJ·51Í¥*p8˜¦îºœ3çP‹C Mìq4E¾²lÓ ÛÑ™$Üá‰4 5Ô‹†­AÜ숫\«›óul±±¾ÙÇ×îßË–iÕ¥iíWH’)}põ˜·šÊ±¡2+µOeÿa¾ÃÄ:Â5pÒ0óÝ::™ãð1ýÜ’ñ§Ï9ïcè3Ü›Žb±ÈŽÿN3¥é‹ýéynˆÎ@¹š †Ò•"胊”zýܰ. >Éù³ &‘ž¾rØ2Ÿ’€T>žbpiSqÅ,7d]ÎÛ«n®ž—Àö^ÓNjc$>@ÇQ.yœeÙÀë ¾îrܤ)Ú{v­ëµG0ß…K4­ D0¿BŽ6ÕüIH]€Rq¸Sé § ,Ÿ½ÚÄð ·”õ»µ$ë¿j¯£ ±»19YžôΓÀÂ……Ö*òÝŒÜp|NÔŽ>ýÐÎQ¨Kõ iò$?wb°U¦×‹œõ0åƒõ™(/÷IŽý²ÈØ›]–—$á`×rzÑyåt;ZÙ¹ßZ(O~§õË#!Ó£”P?HZƒÓGªv8È.ôͱú¦‚Øš¿¶+!“좖Órº‘ŒüXyš+ï;zËp cìHvÖÃuÆq˜+Hšc9ýœ¯PtÖ9ÿMùIž2Kƒð4"ù¿§ãINoh½ì‘÷¢ìL2ê켨&Q"=4“À^çS¾j0ÍG¨ŒGÊG«Ë'N#7¸Ù- GšºúfªsæñRXG) šñÇ/pØ•dƤ)§²é\4å4ASNYy]F52v?ÛÍùèJtîÞ˜ã'Oß)GáÍÌâ?}Hô[›èìÛfð‡«xúܽârëg=f(y+æõ0³óÇøÑnr xÅ&jC¼¶øxàæÂí Ï;ÀÙ^{Z…`ÅY+ãé4YÞ³{ꨰlôØÖ>~þ8$&^‰茌c ûqŽ©83಻ޚé¨îàQõ΄"P伺/b´)@ÂÜÀÅn<¹‹ÉŒÉë16ÇÁ¾[ÑHN0[Ç%:~äwcíp—·¸è¾ÚE¶xƾ>EPâ+Ú˜B|ÊjU<ά¤íèÑ;Pï%ïô_,QxàöTjÃÆZi$œãaf„άor-#<¾„hð,6÷Udâ ׿8е/è]6^JŸ'rq09ÂÉÄJ3ÈsMþ÷ðìy@äŸåÛËáÃ%FL‰˜çéô]ªK´’‹SÀe³lÕhÙ´R";…Yr†ªVËðïÑþ{Léòñ'R!wDø$|ÔüëÝ[?Q~Ý’±ZÉ~ó¸U- þy,=;ËTTä°õ¦Ìz²†ß kÊì o“)ü<ÞoBçâ›Á/ôFyßÞ•ËQ°¾ßja&¼f…Ëd5[òçIÃtí¬«²øÿø¥ÚjÖ›¯d/ªZMõ ñ®³ÞÛIí¡Óý6üýê —q«º» ÞÖizâ }º¿ë/æ`«ZÛ‡æ[üÚÁÖá>vz°Å39ØÐ4ýVM9DëÝ/‡õSøI]àÝö¡ÞÕH1³·¦˜Ë^µÖ†Æ{°0X #×¶ø¶?L÷¯lRÕÌ0¼ 9ÆæÀ£5ËÒؤ~ ŠÀä!ò9õ°ÍVcËÛ4øm¯ #{»€pT—ßšº1ür™Ÿ–½žƒÙÙÕwJäõ[VÑÞ+f¦÷½ÝwX…)ÏÁÑK*ùµè'&Ö‚áv©Lô´{B¿ß?æçí#þù œ¬½w­WG-úÙ88Š´ƒïé9é'Ña—ð~þR=ÄŸÇ­v£lêû„'O×[£Z^©Ž ÞVÛ†˜ŠÔö¥$Sü!+Kʸ߿|¤Òqr[ž²­L½Ñ ûÆ7NußÔ…z™ŽŽórUèO¤J2¡)ìCG3hÙ²ßÀC¼Q5o0­ÞØ/2:r§å1&º¶ß@Râ¼Ñrç‡Kˆà¦Ý’!ç @¯G‡„©R G… ï”$0yæ ù;·QY®>²Ð]ÀJª‚ðŠéñZE0¨©@œ¥ÈÇmúË#œJr2[©É0zs9ÏÅ}G¤–%‰ðÒ‚ aÇ+9%“Äv|Nhwf¬ ¾iÿW¸œ`¢£œŽ½å«ååLîINŸ„n^Ÿ‡ú|ôÙX÷C¤+e‰gALxª[IðÃ7¯ŽÑ'0gô‚žÐÿŽzj¤[U6ÃfŒ2¼×äe ;IwnvËëæ”»É«²%*áV3¶• [(͇w…™}¦¸X²\ ° ¥gRsI °•÷<„K”ç%)ºQdèÄÀ(¬Ç‡v¶€æÑ²ÇŽôGÚž ŸVÐÏÁBýØó±û¤.Ú ëi=Ëʊꆑ™ú¢·[ú7ê‚~³ëªá|´ZcÅô“$û4‘ê>_ ^Öh¯*ȧˆrôŠŒ†SõytW%ÓUP‘ ?¬È&œº^m§ê–? {:CéïÛo)…!ššÍ´%]h°%È¥ ꛿ÐSºkòQjAä@'–s=fÆŒºôKÃo¼^›ªpd`ʯúÌüÞlÄ!õåŒâÆ©„¸ú?h˜wÇûÏEýèÇ»Ä|sÉäP¤”LÊv2ÁEdóÎ?ö&Ù¹Œú‹Å9Ì¥¡Bõ8.ü‘1 pÖó6lBƒ i™wP¸Cïz÷1÷)Ÿ¬)„ÕþöPOPØ}Ìm-¡ˆtRhfÐ/؆YEö¯™îWþUùojUú+¤ºd¨‰è '7™ØÇ‚²¿†Šž²‚6)VörX“w’T= F0Úô¿Ýò¾Í+zJQƒÚ,Ñ»pmŽ• 7ç½ö®¨cwx¢:e`éR©dœçcv©sâ8é¬<&(#ÒGtNÖ5ÃJ}¬yà¤aÝXÉ-ø[¤7Ε%,‰ÿÀ T‰Ã98¨ÃA¶.Á›:¨’ÔÅmW‡4À/}ävøÈmÂÿˆ‡Y)+rÚ(WÊxaÂWІšn¶ª^v±þÛ£*ŸýŠ)ë£ÏýªÕÈ„b R#a—F,¤Sµ|{h^~…Éc3zÍ Sì¨õ²$K”)‡kÐa@ÿ’2 .ëÍØ*u?¤PÅ~€¼UTOÔÑ|ý ÂW³#fGNÔ¯¯/I2%N©ÛBĈwßp«Œ¡¸/„z™iþí±¼+Ý·læ0=ºCÈ#=åQt5ië’ ¹53@%Ä¡’¿èíUòÜÛ=n…=Æ*ÕÆ)nAã8OvÝÕ?Õ•§Ehç±ú“-Z_i´àR)U^R\oZjj6S"çoÊ&KøÎâÿøP:Šl{ÕŠâïZé§0‡]¢eå–ƒA÷Zà¤xã• —¤ºUr¼UƒÖ©±Jˆ$ÙO1žŒ†ƒ}e˧t‹Y—ÓaWdËiŠÞ€üMØNO ©¸ 6íuöߺªƒ_d"w¢ 1ß”–P9WP6üñɦb°þ™{ßÞ"†IBÚvÏyëÓ•®ˆ*Óm–eë ”€ÛˆÙd¬Ë†ˆ¬ßá_yšá_Kôc¹¦­öûè ( ÿªC, ±+Ô¯Dªt&kÍ5–½pÅ«1"¬^åÍ«%~w•ELZÖJp_i„× ÛéM‘Âß2™k¼b ‹/ÒÔ¯_…ŽhKåF¸JE„:lî$qÀ »ÕVkím+uKͲÜcØâ•Èrr! {6²–ªÝ¼F4ýäz]âå1‹è&³é%“ѵK4”âÏŸø¬ô…Ò‘LvÄÆU’,%‹Hp‚/_õsœÊ߃Ѿ¥æŠ¸F{ÅÙ1V›L Š aîXE ‰”­\@¡SºôY–êP̬);2®®²†ÖŽe‘ “›£Û»±i˜¦dJiD¤“ÌL×'ä­CÚJÊŽŒŒ:©Ô¸Š‘fy6¬MæÑ!vPq¿‹P;‹ƉYœŒùŒU"í ú`¾‹þ²æéûC๫T¶#Ê Aw`çZ2 ŒÇ´€•ÕÕ-‘K<ŠÝ†VO m6N Î?×ø…Uò,Aî´‚ç§‘8<Üx]þö˜Ûi}¤åÛ~.Ë·ÿÞz¬ƒðÂZáê‘vèÂŒ(ÖÇv³QOçM`“ žŸMZ*Ì-GXԹ̜ªcü±ÉÛT‡Ïüö÷aJ/<¾ƒ¦{ÂÝÞ˜‹bP¢çæp"UƱ˚2B8¢yNF áÁú8&LžÑHÿ4BTaL!ºxCT9V¸rœD–d96Ørì KÃE,_qý{z²äR¿.ŠŽ8ª¸-CÛ‚ð™éX’™¬3+¿^—›X0Ôšƒ-©™’´Æ8îL³®S‹ÉîI'´Àä3«† —ìß3šÑc"äÊÃØ­Ó"ó"f}Âlòz§c¯r3™ÉE7rµ½ŒDO4­±ü6¼wžŠßá+Øû€&)àIbW-ý^¾ ®lÜZz@o\•¿à ‰™4®þÌ¢9û_S~'¡"`]ˆŽúï(µ;~^†ì/ÜsÎà ©®wžÚ—Ÿï8õLòAá¡´:´ÍB*ÆU‡õfÐ!ñHa‡¤AcŸ"EGÚç«<Ò.[ØÜFmayhùZ¹—eý!ïecö${e‹UiV±@“òöJÅŽ²Kʼ€ÚIÍžÀy292±„²Õg˜ÄÕîÝa˜09¼ÉkDzPñMÿ9ƒLÚ7Ê:c䦆â·,»Röf3˜êËWa>úú+^€þõ<»(“ôl4ñ!”æT;@âûe]`Ë¥XñMæC>ï\Q‘1žúYÖÅéY Ô¨ ÔN¾)¥«ŽÌ}ŒlTSÔǤ?RÁ!ØËe·+EÍQPSôÀ‹ CÜQ+£ëœÕB:rQ&—töƒä’iÖý|‰Ê:;+©I tv<“2Ô;CØhf«´Aí’J­¡ŽŸõì±¬Ž¥¼T¾b“þÏF(éñÜ$n‘¸FøÕQbZzq4–¤µOæç „ti«’M3qñouO¨sÛ¬*†U¶vϨ½xID|¸ÐŠÝBôrÅÚuˆÖð¡6§Ëàr,KD\UIGÊâp©wÅéý´•=ž‡/?v+‡å±Ÿ¹ÙoþÛ#ŽòmI¸]?¶:ø·ü:C æ<ñŠ™'ÂTd™9!é”)Ò©N³Ð ¸Ö5eªV¼“LUË‘õ4;˜µåˆE~Ûy„-R¬¡Fr©¢¿HÞ£ßó“#»ATã¬÷¡àäé ØD0=U¤§ˆÕ*\|ÞáâðÀü k4}ó ÈôÒËZõÃuF¬è´Dw]­Æª°az±ËGÚi5†Ÿ£¤Œ,}¡)³æ9^ˆS=z—ÙËHì°j4ÁëŸâÓ¢Ò`óÍaº*QdëGÎΆ±1$PIàl¬2è*7§„ ¼âŠ*zXªÚt­xs*Gj’²Ž–ç-ÓžGGÈX; È•_E!]9ûÔe7¬Á¥ÝЊ$!¯gàŸmnÆÙFÇg Õ\{»1Û±¹ÿUž2脚â=#:Tµ"œ& år žëÐ+3ÅŸËç>ÉØù„OÕg7Ü÷Šê•jÿf#´³ZÊp;J¾*yª]6üB˜úÎ@çoìÏVSÙÓ#+¬Ï­Z>¼<£Fšþx=aE¯È©iŒŒÜXÖeÉ..Põß©àS+ëu#åFMëcÖ0¯;f“iNA—êîÊsLm¼ªüødK«R1 e+©0õ+ç-…¬– y]í¤¡jUJ2¿‡{Å’üï T•Ì }^Øcæ‹Lú¯PŒ³E…í„1JŸ_K6ï€Cw$³h× ë!ÿ¾b"¸ÂmgÄzõ­#%Éq”eÖ/ªù8šÈúlJ†B³ûÞE:þH´øÂ­X`eðžñõ¸®#;ßMNê/[ñÊ%Π@"¯—AWê8à}æ {ìÚÔã“Iq§ÌªeÈFë¯`)gv\ï{‘L4M–N8­ ðrVÂÔaÀº†¤g-°ÿªÊu~ŽN%¤òíÆ”÷:Êâ–}À´éßÊú ø‡þð – ²ë+žésXÈÏV]_+¥`¢‚ÏïhÇïmñ?ų¶@d{5v•¢k2ëÔ§%–rL*) \Úèn*—óÔU€©®UU_•bSBS~;&1ÊKñáˆ)²#àˆ?B^ü¢Uùï‰ØüçOžË#@„æ©¥;Öô spXÅ5¥.F™®}dÝÑJYH¶oêÍ;¢Úéãp›œ5ÊÕ2óöÚU#æø°þè {uEº).Hâs«bt»*ÑKμO5œ„Mªª5;¿f yì¢Rµ‡\—ý¢/Ïü¥Uárþ¨oMž_c\F¢Ì–s¹L¦ŽÅLce]Ø ¬7Ê›:lfò²$Ð>pNvºL?˜Fò3.…W ÓévYÐqfgqJ–¶|¸›+ ¯°½¹É¾­[Q&”l¬¨*½Z‘¾4l^^•Ð#) gíü³VÀ³æÕ; –8›-÷UyƒÓ4…}ƒã«î7ºo…„ž>nq’œfsZž2+Ó´„D"Õر>\ß䇨÷ÓÎèÑžv»€ê] ÑêìÚ– -VŽS:]|÷pNÓÏyèúúd¸NŬ­ª‰© e9ÆÝÈÜô·’<ÃwÔàwà?ÞÎxdd¬ŽÄH·P†ì‰¶goŠP‘8°ãဃF´Lv+gÑ–exÍäH§½ÊÉye¡/%à– SÐaÚ Áâ!‘ÎÓm.Ó‡º¤žÀG%¼Iÿ:™Ê:’ªÌ#_0 ¼Ø)·”zø#R9XÄv 6àËÉBâÜó±=÷ùÈEíE0{;³·ÌÞNa¶«zàŒ3»Õ¶´ë›G£9›†ïèGW“¤ ”íÅ>&‚âå\!M"½gT í¾@ƒ‰˜hÆQ»ô>‘éòAç†u¥çÛ C)ôúmÑä2)چ͒9÷HìË-ý¥£¥ÐN˜‘8 éÂÝlÅ.ÄлwU8¸™(ÉrçS®'4¡Ø™šSŠö×>ÑJ‚ ƒ,ì N¸|ØÛü"g[í)ÈàŠíx,ñ§*6Knñ¶Õ(fÇÔQþ ³^„ á¾Ã;FK°$öÿ:oûñÕÉí8YÞv„a3övÄ"ã–¸'ÞvìXæÙ^ÄmlǼà´Fh¦€ºu»@•S@¾iÅÖÑÈ!|mì’Ùö¬²C,<É+.AÒ—O½‰eæ<íãD ·U6€ oXsµø¦yîÚ¢¯vø(_‚Îêož¤{±Ûfî>ÂEo‘Þ¥kR¡È$ÒÕ\y¥¢dô¸Zj¶ÊÍqÔŽ}©²¢ýŽYO‡¥Ç0Z|ê û(*j¥!0`=”Xecª‚Éül¬Ó³Ô¤sÜ~nâ­”-/‡‚Iag—l+µà©,rDÅЬƒ÷FK·Ê2íé¡wžj=t½¹ $êT›ñÐ#ޤi®_±«öÕšvÖ†?×,FÝ †GŠXFç½wëýáðjlׯ#MªæÓÝhª'x]ºô‘îÏчôub>–æ­’-#Ò`è7ÖÓ%ÝY¶¶XK‹xú;ýñP×ì:ÖØéËa‘À®ËŽéÇ{v²B\q6øÔ ¤lP¡ùŽÿ ÚSÂ;ñòà¤ýùRr½ÓL™tX@y47ÙXæFtÙ½¦B‘¢Jªj)¬eL‚"kªú–géð‘Úª\hfLž³Î¬Ùg·§x]*ÖZÛýuQ¹;´zšpògxc)iÃñ¥y Paެ ÷ª ²ðÇ^Ò@ä#T27Š,“v«“|.Mˆ*Zo‚m±¥0ÕRøe(Œ\…í¦”&P¼Ö­Ußœ?p(~[| Oõ<õä_ë@Ê}2§²?–'iHé´"6’9œøzãÙ\Ûòxm¬Q‰9 9{6×Õâ,^ÿ´Ôl­q·„ý`/ëA?(H¬ÍÕöAÿPœí‰§#{ ûñôjº[Juû™]Lp;• •Áö)¤ Šïg丄"GÎtø\Ä2€ ïL𠨨ã`4Ë6¡¢¾Dž3¢LÁÓï§:ùÑ~±= ;Up M¾ks"-s­4—ñ?×£lîhÈeøhíÝY ‘t<É®P¸éPúNöBZ÷’é#`V¥fF~/kÍ ß½§Ç|ú$Ag±('.‹òôIþΣ…'šž¸¨àÉÜ’ÊÔlæeÞ«>@žåHÖ¡X}b‰Õ'ô§+V?}v'p /¡nTãæÇ·=:âÝ ¹×BÞàlu%„y£ð ó¿h¨ÁŒ¾B#¤{óT _=8LÅÜÖhR±wýЄ¹#}gœxW†ßO"‘Vì Á$_ú iÅñÈd5 ØÂGeâׇÉàöæúšW ¾ÅÍ×+‘sgåPuÏk^¤å ‹YPR2Çðì[52£„ó.$âj®…/µÞcŽ\8þEòRù±ó½àΆo"ŽÔI¤Ï‹kÅm¹µÍ׋ÈÒÆë¥„âÐ?œà•ºVM“AYd†ãž²D0´ÞµÂŽðÔ_ùõQÀúÔ! ^cb uïL™ü¤3¸T'™¬J¬Ž}ét3β˱¬Ð+óPÈ?Yk(b[Q•’Ï™èãUÝŒÚ猾ùr,ãõ:žžý›²+ã]«W[c†£ÈüYþð5³<íÀÓˆæÖÓZLã![¥^JÚ •)OqN/Zµ:£ ­ryžÈÒ±N'±ø€ÁðŒÇÖd“Ò¬ÎU§7ÀðŽkJ^ãtaG‡ÖꉩR`ÒøIu5UèJÔ*„L¢b T ´Œ® {¥2”Y…n]“ýq`ëfŸ0•‰„) ã);ç)äÜuÊ„C˜N¤IÇ oÌ¡ Dƒßðâ‹þM¤Šû…²±ë8ž̛í†0»YÙvìpö#²ÆéþÈ÷¬Œ•äå[Ä6£ŠÒ‡DËŒùOÕ[¥r3Êël¢“çÕ5{2ûÇ(¢Õ÷ÎÑl­>Å­Ÿþ8ŸÂÎßïR¿|¸ÃŠÙñ®Øuâwµ)},NYiÏ™]tH1ÕÇ\ûÓ¸ÆþTkì“Ó½ÚªÝɺüõ/¼hûc8^pä{ës3EZÇUôïÛ®Ä ™SB·Uqš–êÊõnÒ‰TÆ£ŸÖ߈©Ö¥ÿü®Ü CúWdŠŒþô þ—I«¡|‡º)M¢ÔÜ9J K X­À#Ȭœ„!Ækw|bµ¤2L÷)}ÂZk$ùÇ÷Œ˜/ÙÐx•%»ØÎ˧§;e'0%áÀzíeŸÈ\ç¸ÑG7i¶V™¯Ë8KÙODQªœhgx~ÁK·Éèu7¯®zâ à_ÓX†|<ÅT[ÑLš à&ºÖWÂÃwoÙ§S»Á›?¿ø›š2Qe§´’nf2Æ4%tSÂ'hèD×ø8ÈŽ œ¾÷ãÃzoÑ;™Ç©oÚ¿„´Ü_5N:°:ÈK]À×Ä\"×úœù5ãùESDaæÊr®ã8C*èPw ¸L©­ûï †n¡+àVü¹ªŽEô⹪ ì¹W¨ˆÝ¢½`+ýaâò£v±O¬ùµÔ­dÛëúÅ\iäl¯oÉ«••²üƒŒè‰ LØ1_§”@«èí*Ä©J¸å_™ô5°üFV¨$þÈý„¢¾5sÔbpñ ©+ª‘1ê„Þ2ÂÌç1|ÒwEÌCE&Msù1‹¡³ò¶ :˜×Ò›= ;?æ{«ˆ˜fíÔÒ¬±ÆÓ¬Å¸Šz:à©‹÷‚/Žëe;±¬¸l ÃÏ}‚IÀ#1sT5UÂá”,Ç×$ùí­d(ìÖljP¦ƒuÌd"LÌÝä·ÏM‚‡—Ô¼Yúœ}‹BýR‰ð2 ¬´U2’»TÝmÈ`pŒ÷»ñ½ÏA$±N|;aÞQ:¹*·ÒÄ’ã<·s]dê&Ñ/EcSýÉñÙÞ±©ût8ß:露Y^M =Ç ;™yø°YìHÑþ§ÅhÿÓïˆö?Í¥ýOoFû!à±Å/k‡øñÙf†×*wºÃ–DšÚ)š“^½´°ø#÷UEààñ¨lœUÝù”ý:¢g'§£þP60•c€®±ƒm€ÓÑvYê8]Ý["€Æö‰áNSJCñ“ྦ,а¬ã·d+QÔÌm-ÝêœøÝ@ JS˸lÅb/‡Øt)WHêVýb…î‹l0Îd¥kó’N:*FÊk|?†ýáÊ*Ê–¸Á0pÛ‰Øöu®àÎY)?Ù—…‡n¼!Þá`~/&ñì5snÒ –’›b.¹¦ p»‘³ŒæSç=¤Ô‹X´™\ùš¼Ä#!ºùÑMM‰5‘±EÅ\I‡Oƒì<;£ëô@ÇÈþu9¼µ¦K™ú˜’ì’_²sÌ“+U`Xê(“™¨Ã»gŽ™zå]Üj$†£ØBYeÝ·0ÀïK"„€¨@«]ÆGe•gߤ3þ-p«° ÕêÜà0/¸Ýí"Òó VЧäO‚ºEïòÓïõ. ¶aß_‡Ú&tT:¼b -4Äÿ\­r›¾è„ZyÓ‹crÒ>äM‹…Ìfnž-¹y6sóì¦Ìͳ4só,ÎÜ$4ì6:$nR{°’¡áÔJ`Sâ¬++Q¶ÓéIç…Ç”áãa™oU'‡Ü1—߸X'îóL n]7éÒß! Œc ú|k}l<•·ªNä¼Ê!B[O"hôã³Ü´ˆ ü`ìPnÌÔId«"ƒåæ=ÍÅ j=s”HÜS“¥¢ßã¢{•c3Î M×eÅlé$NÏ^ÉgkêYÄ©d•3rÅ*š²:‘úÐ!ò_ИlT^0GÓu`¼|ˆÙ— šñÆÙå™ÄË>ÆØzM• áD”èNí™ÜfÇŠÈ-a"EáC°dÔ¡ˆ«Á*îÝvbÝm'³®¶B1‡±~"7[”ìæS:^ZB)5e†Ag¯\/d¹as‹Täã¿æŽ|œõ¬ÚÊgz"ËAªü€ò…1Õ±}Wj¬bñþðÊc#Ä®‘KìrœÚæ ‰Ë$ Eâ+qKÄ£ÕÝ|sty.L㔢Q¨ä†úÔ㓽ƒÓébÚwÎ!À*¬“´X k,µH­iEi¯Ó§ï–…F”X¾ ž‹»“57*DG“M,¼$‹ýÛ;,B¬\ƒ=ͦ²&dDÕæJXðŸó(S™‹çÌÅW+/ÖÙ$oÅ ˜ÄÆ”uí‰ïfîã'qC¤ýòlÓ¼ŠXAã¼ã ¦CãËþvDÕý®œ©¶ØÒG’#Ç“z5ƒÔ *;²¤ƒÈ³K쥚:裸૾< [ûÔ68Ça©“Ä2Sç>‘QªáT†ë§fÇü¸kþ”wÞæÌ’2"ÿdOíK¸ ÒF:óh2€Òœm@W¼ÿ§~š–S¹È€w³»,VaGÏ-‘>Fäq°·~M¥YØ+k¯ÕÁO\TÕØÎȕӜ—ïDÆ“öo~¶s>®“•!0 rŒîpœîBrŒÅ´*8k»#›÷Lv”æ=ñ–‘ôbëggÙ’a;‘ÀB|U†­Ëö4ʲÓI±N7åœQ#35'Åßþc—0*ò矅SxüÐÒ Ù±¥òæÊBªÔ±å?få±u´ÄvQb;- Uθ>aC÷yÚåPAUë²LÑû×ne,è:õ(2§/®¦#4s7ärJ5 /ɆC€0+åQ?£2zvõºt]F3Ê%«dédˆ®¡\ĉ¶;;0R&^áóJLs…¤.U’´Xšì‡QÖÑ1bä™$‹ÝSÞÄ1ºÌš4gXyzì¹ØvÐ CÕÅF=¿:¸› ]{ bíX–޶֖®óL ˆ¹Ø³©?8.د(³9¼+Ë9YÝÅ«>s>v•Ó„Ó¼3ïÞéî\K/eò)Ø=7γtf¹Ò‚<“n¥É47iv?àõ9Þ3àKžäfN(ž6»ÊÍ™°¼„ ų%ÌŸ*¡@ž„' oß'ÆA8äÉ!ãÆ¹$Íý‹×ãM‚ŽsBÍ"9 ŠG1ñ™H%Áž™¸óÄ;?: ^ú™øˆ¤Ó:¿Pq]ÑEðIEØAQ'é ¨“”Gú‰vdÿÑ{ Îý‘€ôk¹ˆ˜‹‡n;Óa YÊ}µ¦ÚÉì<$læD7y6©™™í¬¶æS79ñlKé m¤7´ŽÞÔ.šØ½C2ƒÚBÛŸÒ6öl†mì‡eÇ~(jûáFÖ±¾}ëØ³˜uìžÙÇ‚tœsgãœOEQH?±åÄ4w–‡sŽœâVäðPwGsÓaÚ¸‡Á›Ÿ;WhêԖݬî(5qÁŒêO"Z“tHyÌ~©Ò1;1þÀ¾O¹XD8/ý¦em©,?;t‡¦PÈÄÚ­N”pµìØḬ̈N(l±‚Åð£Â¨È*=±^oÙîdw6éÿüºü¹ÅlOEù… ¶ìÝ+x+'cëcƒÂÉ5xƒè°x{ÄÚtxˆ§ê/ün¸ Þ˜„ƒrÉáù­JÆË~¾¥ŸWì©ê µôÒ6¾äT@ 2y;Eiõ¼©õΊI ã>y¢Ÿl¹K°ÙÂsïù)¶ßo ރgúÁqb? p´ðP7‘̧ó€€ðKµÌè+ÝOkÿø¤¥ëƆþ…Æ{÷RúTšçz2ÐÃ}›Ÿ~çªsþÛúöÆÖãvk÷q÷CÖÿ}kãb©clÂçéÎý|öô)ýÜÜâ¿éÑæ“ÿªÀgóY~Ýú¯ÍÊÎÖ³Íÿ›KEâ3ÅÒDBü×eg4î\Ç©÷ോå‚å^|$E:©µÞõÙ第g·náãê‰ºŠµ}ŽÁúºÒý†XnÄL¨‡¢`Ô <×÷BïÓå=責l¾Û…ëâb8ô:¢–Á­×Ç ¸pY4«¯ÄÁ¤«bÝÒQ¥ºH£¯8žm¸p`«£ÓKªO©Ï&ˆšû¯ö[6õÅùËUá#§½:u®c½í½;B¶öwëíú»¦ÀR^ÜÕªX!(•ø76Ò¯êì2xûÖøë þð÷ uåÌ1æ$ÏA@˜¡W&×ÕqdÕçØ«=À'r$=}k,5ZC‚¢Dál+ J6—‚Î9&Ÿ§­¨³êöó·bSØœ·SË9Èë·i÷[uú} xFÝ{ÑÁ]+‹.ÚK¸1nÇwJÖ|Í®17ü7¿ô&übÆÚï±!Ò¦f«.×*A“°û‘â‰5ÿ—e£U4]ç*ûϰ×5Î.0s/xyœÕ%–4¬üäÎRþ:Ss‚t M”õ(cmü$ÿ,ŽÐ(Ó±{± åÀÈಋ¾¸JpÀÅËéˆÂPö2€@¼"÷‹žÀ•çÕì§ bBì M+•rCõkâþçÀÜ”F™2vº³3eშQuö¢í~¼õ#i ùéÊñ…¦Ø$—ȯ½¼üàð<ãé9²ÞX1Ù~þ3>¢¾^ˆõ£yo£#醸ØÁ|Ó˜Ñ/ûÈ@Öž‚·±±ÉŒÎzÄÉ%¢±¯34?‚Y¾.ý¶"6译¯{]BiŒ“¦ÿÏÕÁ’`Þwz+ä:ƉÜG—ºGzòBÔź˜t¦@7?áø¹ÌÄßs8Ò\ƶ)~²¾—Š•—üS©ò¼·N¬è&¿ËU~ÂßÖ*Ï+\Ò˜*™Ê E¬Zê•ù9XÊOƒЭÒSËz±Œ}wêL‚¹÷œ‘…«­jcÿؾTK¤P‚Enlî­m:—žæ`ˆAh|QϸŸËâmzÕz=ÆŸ ÉjOÏ$'b ²ÿfÛ¬Xƒ€ìØzYæ‡eñ~¿U;¨F:®cj8ç€ôƒs“¶'ߪ7Ûõ]Óo£úž*›GçˆñadmO:“Lój3Ž1g† 2ï˜ \GÇuS TÀ¥¡ºÈSê`+MƼƒÐšÿþ–ÿ>XlË*‘:ÄTu ÚîÄ…¾½€IXÃaIŒg؃Ï<Èòë¾…AÊeNÿ (hS€3Ãj)~ÐxÎ7éHÞÚjÄWÙ«:ÅÉ8*³1è}ì¡»‚u4CE!Ú•ëlWFô­#È¿ÒÌè ½ÒâÌ}ü/á}ˆ{¬ ÇFJð£ˆW(©R¤´šs•(Ìe¹‡TF;š“RÔSˆÁ1ÈèéºÏÔ·¾bÄY4l%x?„€hQ©EópØÒ´¡2='$úÁ6ØmOƒ¢Äy ±}Ö[1šÙª­oUv_Æ'&ÿ_Ü©ü_ÙÞÚÚôåÿí'òÿ]|øøòÿËù߯_üí«äŠî™6àeQm@cýìz½ù  ¸¡6Àãíkp¼mÀƒ6ÀÓ̃ÓÈ—WØÃc%@mBX#åo–µ i”M¦#i2W 冀)rV36%±Ô‘êÄÝÓþåPVŸ›^²Ïî貃nŸºUcµYSâ}³&³¿Ù=¨‰Sm,,Zæe¯_ÈÎP’E†:BƒYü>Å| =åõÚýIº¾Ðæ „>Ȱóçä¼ìBÍ.–FƒÉ=’¶»!¿Ò¢¨z(ì(C$(ÖÒ–ÁPd£ÑÐÁ K4¨~Û8K/”\ÇS®½ÆbÕÆœJ£™Z£µÑƒÚ(GŸsðîU}×Ñ´çr²ßú{®¾§'½Î Yý—6ˆëȘ)nóí»ÃcàÌji ‚œ ï¼_ŠjˆäC©ªÉŸÇw¥#’“÷€î ºß¿]Pèr8R±2ç%ºöéÖS&2¼n\Ìxk“zùsÊ’óù¹z™°¾-É›jÿhÃêë¾êÂt[š³×š}-¨ ­\^ª¿gKÑ­½œ­[ÓóÏ'®ˆ“Ävй…ùâÃ[B¹ú$5uf´›áld¨Ìš„ÂCÝÈÕßïm…é/mœ‚5p³†Ž‹¹ðìÐÛˆ¦mä—(Ø~¦Z…Cq>‚åQH+ÚT…Nx4¨?°L¨ã1HÓ!nL—íÇÅ×6ß§¦éÌ´wa1;˜N1æN?|¤ÚÉY !ɯ-‚üÐZ35æøbt~‚ª<©i˜ "ÜÆ†¯jÖ€Õ€«nzNÜŸßÏŸ®^( S½±’Ì_c{æy"*żÒc¹ŠðF Ú¤-³I[éMJÝKþÞ‰¤{¤óǪ‡Ÿû<'Gå_IT8gΫŒ ‘gÆw•äÀÔ4ßãUëîkMÛ·¬â(úÎãv ¹˜¦‚|¿§£2ˆ4+W‰]ê=ï­õΖ=OÉ.ìZ,[%âfišYO•æê‘ pDK×ê5ô@L¨Ú -—2M­–½eBk¹HZœaEý^CÚC.˜6×òꓙɈ*ãˆ­áçϽqöHƒ!c@’^½Qp©ïï¬Ð6e`è²08“¯YÖôõÕi~ño½ªÜI[+n¬××ë5BÅÅÖn¯˜[® :Ã@þ•p|~=b­pŒ"ôìtÂêÖíæ]©xˆÝÛ7AbœÎ ‰Ø‡"*½·áÐ:ⳞÝÿÞijÈ}“U÷ò]Ø—6ÜòÛSŒãeüg6Å|•OÄþ3^²ùg†ýg»²Uyøn>{°ÿÜŇOžgÿiËðÅä4[¯ÛÆTß5×”¤˜q3QwÔCÎùžZ‹v_W[Õ]ÇÃ…À‘#ˆ[Æ$eQbè-Ó®T+ñ ›–Ú\ã…ÅÍGwñ"™ºÎW¤«Â´Ã©ñõx’]’Þ®7ø= B¾3ð '”¹7±ªß–eaGp’ãƒ#ì#`Q‰ÏÙ ¤F–spî/Š4ÁäÑJ¯Oš¹~ø{æ”cJ1‡Ù«{ݬûœ_¬l &˜ön¤GÍG\Ũç¬( õ3¼K¹JŠS8Ikúàbx”Eo#Û(˲9aO0‚/}¦ ?$´ ù?D ˜ïêê{øU.p+1ïŸÝi+ÁÃ$ã³ö·”§ `](ÖäxÛîxÇ)80muõØp'1àÏ÷p_ääõæ´1é7œ Ž7üH‰0çtÀᙪ¤Ä“U_¡l$\Mõ¹BN‡ÂûÕ&3Ä5a²ÔövT}>Û@J†[:x@]‚yȳXÓeîšúU5)ì@¾ö¾€‘˜÷ɘ„4\uŠÂ¦>gpÛTCR €{õ'ïýãïð7¾AC5{®Éº{8V<±ßrÉáDÎb¼ëï7x {q?LçîAë]ð. ‹‰pŠQÐxÕe. o’hu(þ¸·Hg,lãÄ?E†þYšïª…†Ñ掌ܵìl­Œh’%¡hIˆ£Š°•%© ±%öŸ™o µê9÷ñ š>Ù]ôœë!îáØ·k‘ýœX…“켩[ó}žšƒÃ;”™ºTP"ç”HŽw]6vGÁ &' ÍÎÀsŠöB¸Z¡3õö úNGª,†ÖJž9.ýpÕfÑnO.íÐ"Í5ZAƒS‚»Å½ý4?» h pLÖQ¦AA ½ç x7ns°Ÿç+ÁÙ[»¹Ísîm ½ŒMNÜšÜwo5Qb²q3¢TÛ ŽþÆs Iåæ÷îÚb¿ë8¹]ÓñÒ )ú¡ îú‚ ìŒëKyî~WQïtͦôkÀÍ`¡X9ÐhŸVT?¸ÍÜo·ÓËß¼^„Ý‹ö;”Gß’ÜOÔnA\вfê*™[×ïþØùéH‹ã?å iç\!)QA\e.ÿÊ‘M:µ‰|%ß„/áVolîm–­h§¹‚’Î1eq|ØÞK«—j­w¿”I9/ÐÞA?Þ”™ÔÊþ>ØÇ<Æíú¯ûéµV›­°IõWÍüIµðWr¤¦Ê‡`Këüçti‰¤ ÀÏQ´Ù/‘©ìT»¯Éi§ùJÛ[BÏFYwéõZu¯ì7ÏYÍ\ÞDiF¢HY&-)Ë4;eYu¨,3âäXžöŽ[Ç­öÝ07VùVÖ,”ë%DSèRÀ·‡œdJ¼mZ9̨LBå=8~DÎ9…]f¸®@3\‡¶ƒ÷á¾Îoz ÷6z¶­9meôY¢ùAóÀY©¹F¿Ú,MÌ{)ÀÞø>xæÎ—½TpÉqî%vÁµk¢Ûù Ñî«?¡çHz¤­0ìÆqëdߪ-B+à“» Õøe ãeÿB¼A÷ŒXR®˜C€\‡8Ó/OõEÓn ÝwF ‚#4åd·iÆ©JÌ=%R•¡ÐxÇ Žç»Ãøã/âV¸(éUiëWã¡(Çk.8ÞÌœkĨ DÏ3‰VˈO9eÆÌqVšÇ±-¾®/"^u) Ľݬx/ñ}TfH2]Uf'Úcéìfží« KŠŸDSè•fZõ\™Aà î&ÑF:õØü}øHżNñ(™;w%Àê”äÅ Z~?mÊÖY%mÚŠœFª˜NHë|?ÈQÿ=pÿÔÓE“' ,L®¡ª2 ·—âi½°vì=3‰í拆¾‚;IB#tÑâyKm%é~¦W(ä)þ6²£^ö¸ªÅûsöQUÍ:`%ÔÔ\ ̳;üL>¥Ü¤øL_l¦C3”' ‡ólð 1Ó* ‡¢ÅÇ ÿÐ"ÞFt¶|R9&¯Þ‰ãwâIÀ Hä9ÈóàeoH¥|E´ZYšâÙ(_%k!JÖB”¬Ý>JÖ”ŒÌ$ÛÛ¿Mt¯ö¸Mâµm¦ÆuÕ<À^ÖÛR sÈömÔ¢›Íýë@ÔÿøÃkW+Už7Ê•çdÏ_ˆ£Gð²ómÔ%×Ïázl9uZÌ ‚^Z´µÀjûo Ӭ,8Ãß j$M$½Á§RkE‚¥™ ’ÓKNq+×ßµ9¬cÎk‹ÛK¯ËwºŠVÓÜ׫˜ˆÉ‡áO´^k’ˆ„æT…Ï»˜×ÙYýP}¤|> Á÷Ñ‚>¾ßÐu(m6™ÖpïØÚodz_4Šz£·}´ Cï¿AC¡Æð0‰f•;²¦å”¼©Þ–O"h—žÛ°H²çÉ·M+ìÞôq®B?²w~TÀD,X"zErrÜîmÔ°WŽzòcÆu”ð;s D}høôá`¥Ðµ¤Èƒ, ™K÷‘B4Ölâˆ\h@vf‘‡m& &±b1ò° ;ÈC3F 3G FÂÒ‡|ÓÄaÖmõaÔÌÛ£|îÍ…}QšìÀÜ;$ß ØgÓG qO¨‡ýe±ËÈ‹2²rö» =äPCP<¿«BQVɹe=-žê)lÍ9%l.>… Ôº674´ÜÎP¹94jsCóõÞ„O‚D{³ÕÅéø¯öCø××üÄ⿺wšÿoggûÉVÿïÉCü×|øèùñ_{¥ÜÈ/øª……>àGµ™jíf ÌKx¿# ùbàÈb^3ÁˆÛE2.,6 þ•';Ö¾AzBútzB+,hÝuºÅ<ºN ™v‹öÂp´ÏµŽ½Ù¢®Jˆ3ŠÀù"þ é™‚t¦T9v3œÏp̵wKíÓ½TFþm:NÍŠ{ùü±wþþ¸Ær»è̶ÞÍ.zç=ûwçsÌ…¦H=Üs„T—„GN'»Ó† Cm‹“pð̲ ëAÅŠ{ÚYuR+ü¼NÇÖ*æì†ƒ1¹»’ô_æj?‡°¸öáEfõ„EµF‰FrýU”jÈ€y¾Ú:î ¾ÕˆÝÆraèá}Y±ªàhØ9ÿHGëq¾ƒ3¸Éø…]ø«0‹ÀõÕt¥D'jíÀ3ÃRÒŒ~ÚÓÑá AÓôÙM†§Ò=c‰ÐˆR} Ž‚*G™ .ɃJi`ƦÒöCÍ­iÅ Ôÿ«š|¼¤Âc@õÖ²èwÙXÅ_žýÆ^.úCžóÕö¦„M³Iïœ*uSQmî0“™´|9eG|`Q$I€H9Î:Ýîãñô >)sº†`ÞS¿9] ûÛ‡Œêˆמ»Hj߯7Ëüëßͯ»ë?nâ`Ø ~±¾ESg—V€ÊyÖûÔ9Ãêä^gô1ûÒ"DnK0Gõ«šöãLOέ,Îà›Ï™øm0üŒ0Ô^ÜJÖÖêÆòàªwô¦Ft¼Ëg½%ÆÞ]¦X[>˲ Âx2^kOço:löe‡G*6+~c©¾¹(0#h§e5áAÙ ±q"b€^¬{‘TNˆv ÷ÂlìnRÑT&Ìf€9÷ï&Ɔ7ÿ¥ü´ŠKQû½”·ÞÂw"ñ9ÜCtGpnø &v™ù2·ª ÌÜlXxŠÇí’ʺ©–À·Tú”Úƒñ»°Wp'S‡› ,r§:sm{ lc>¦Ÿ_p·«8?ºAéÖe®ŒÜ_¼žÄϨbÑ®[# ù]5·Þx©Ž:ö„²"?š$ÁÄÉ¢·Un â>Ð:F3@küÎc´d— Ý#s¯ÕÇ•máÖŽ@Å v.‡SŽŸ1ºçA–ua3»ÙU6èRÖÕd)]¼Eu,úCfÕtp‘Ü€©l­¢ùþ]m7Úõ_áàæÁéüе*®,CO×*+««[ÎÈÊŒDËÞc sh`ëË¨Ì  Û aö° 5l£ø°†Él–¥€×1wÅà7#8“þµ{yÜž2Í^±Lx¢×À×ü܇¼[!dÀØIÞš M‰Ø†“ÉðRçž#Qµãß.wJÓñ”L ļЭ'+åH¾A‚Ž•»±y\Âð•mi?Ò¦Xyl`F.òkVL }0ôïÃpØuâþ$¦Œ?kùªÓà|Î$³>zˆÐKGè)RaSSz’$½ª‡‹¿Ã+v[¬âŽ6šðS‰JE}çfÏç`Kz÷……÷#xÐ9p=H4RËqÈñ¹Pxût¤=ÜçÀ­}È~ò ˆ=˜N¶øbÝA$Æç4À»9ƒÇ“H ¯9èö8\Pó·/6.šA¼Ös–lŒÚõΦ,ž©Z \ñ«)3’Ù`}·ÀZ¤[ÆH´QËgi$aÄV3¢NrrmG^[:G –Åñ/ïä{ó…?RKôÈ\Z,dŽ²Ó ~¬SøüGU+ðßCþq”£V)`ìüø…þ¤³?øÏDìãNóøu«L¤þåî˜êƒsP=ÐqœÃ/÷ÛÐÁKJ`ž Å\$ì°ÖÚ+ÇÂU ãîáßé'Ì8/ì0¯Xkq‹é°Ä›¤4¿A€§Ù™ѹXØ$<(#ßu¥{ÙX1”„ÑŠAqŸ ÂZaTOeU{Ï £b›…Ÿýë§\Ÿ7„ZÎ7ù$lëÆMLÓí½¬ìV¼r·â?ßÔÿ·|^”O fe*•šÃIöŸ3I™š¸í³ìCo0Àû쯿¨vÏÿŠ*§s¸ø2+ ‰8psDâáVÚZÃ(¾ø»Ï°÷’ω÷¸8lÉ^Dø[mv« z}¬˜ú0ÆS+iz—’eè«+ÛäúkXö“.1À7ŒÛSt+îA µÅô·Bi›ÉW~Iz4È71ìŠþVœ>áÇc—€R3¼¥ öÙÀê#ßIÖ™Çïn&v+Ð#Qè>èQ_Ìð‹•ŽX÷üÌʬt‡}º—ÃQÆJbé¤ÎÕÏ¢NSq‘ôŒ™öÈ;µ¹Ö\ÿ¿ubiïóFA°xOÅ‚UƒÁüxÊܰ ܶ$ˆ£r¡mtxF—µ½Ú\ƒ¿k0d‘ÅÑm¯a›.;à¬$”y°œ±Â&¾?ט‡n”l|HæÃ`Èa£_YSÚ•5Ö­¬9*Ž‚“–}{kTt†^Ç×* ¨©†1Dk¢`#æh-ª±f´7kJw³Ö˜µ(Ù.¥Ÿ·Xx.ܵˆØeðCô)I¤ƒ,隊íNîO ³#¡“disý?qnfšs|üQýd9Û.22&rOŸ£äà‡nš€äàš£R)qÿÔÜ96$j†]ÇBås»BÝeØ‹wŽr;™sŸâ©Ú&Mþ½üþýûçb0Æ”Èó¨cwÞAÃ6ՔĜ]£Þ‡°X¬®Ö<›ìE©ïP¿%5ˆXGu€=iõB'-4fŸ€…$}çF¡ÙG…«¡•ÂìÊúŽ&ÉëÛ«xR„©J3Ê.;=bcý°G.!Ù&u6 èŒê÷tç8 ÏGh¶—sÞã·Wî¨E [êœw·m¼µ_œ9ÿlè˦êÊïÇtB"®ÒÈðä*ø©{š6ÜáìZ[Â’[·¼iÖ‹½g½àùTTÞ ·*HÃJÓŒK!Ò¼¾™še‘fÐýö¾ÂJWAŠ/?µ…‘£9•¿ô»‘––åB§¸`[E^‚ ³œÙ.¾B‚‹x&†{™ábŽ©~‡)."]°ú¹â¶„Žœû(<’ù´€w¡¶†ÇÒfè[ËŽñºã”…0§ ¹3í»K1Çlm=\þ„”B¸úâhµåØsEÉ({Iy‹^$e©%Õ[³–ª£—ÌkB³Ðá<·¼jjÕIïQ¶XgcÚŸôкƞÌ2²t´2c=Jsb–Äž32 P¸f<§€·Ê¼zÂV«C¡ÕþŠ÷:‘°øÖòñB+xRb´{Üè¸Uä?öi«RAJyÖªs烫ﻨHfSÄÃ}ÂBçûC‰ŸGî#u}Ü­i³>*õ[T§ÚÚï`³•ÂLn6éQù¹âo¸ÂaëJJÏ©¶·­wxß`1Ï<‰Åæ¥Ãó½-Ot"Bç‘ðö³‹‰åôÐûJ¼*jž·fAÉ9Zi…I€€E¬ÀÐ#ÿdäÀÊ í.~.L ƬŽè}IÁhN+»–e½ÏgµÖü5¸‘ifksÅ;0`"–ÒÁÅö™ž©<Ô;éëÀÃ<\ÚFÊ…®¾E™¥cI¾TZ!Ø´–HyL«ùÏ£†6zgÓ 9§OuÔ’±x’bl L@“vŒr6 VÙ¨¸8^9ì@®FÌÛÙ@êFËV'(zxøÚ%Ë.WÔ˜ò}ÄòÌT_¬å—­UCiNq›LC3óG5³>dpé©»”«kq€Ü5Q?€Ñ…%tôž8¶jö¨Ã¥'»‡—WkÃÎn¡–q/êê^Ì'T„¶"ÿ±/fÕËšê" ‚`º”ëèo(ëk7Ü×´÷½}A7B”Pt#}Aà­€š‡$xºŸØˆbÙ[roj‚taŸ„ϼ¥Ü›=riÏ…q˹´flG«B=¸Í}y[ZÜ4‹/Nþ…ÛÒo÷Æ÷|»¾ÝoºÕ‡ËßjOºa'+¬ÍP”WèN<ù¸…¼-Tâ&Ôr£wó gHR§/’©¨L¹¿rCsZÊrå¼¥_#3D<€µ%¹4@›)à}WòÝLè¸¢Ý n‡oJ²;ø³Ðþêü’]”Ð,]²KgsÕ´7Næ'ž ¶eV-îΘKÚêü³+×¹´œb ¯Cup³u,=1Yþz–—}lÆ8–š²’›ḇ÷çdÛ{H-6óËÿ5¾Óü_O¶*›;Aþ¯g›ù¿îâÃçÃÏÿÕ¾•ü_‰¿KüuwI½ÚѤ^bñ¤^øm#'¥—œÔCV¯9³zÉw°;«×=Ì'u+9Œ¬ºäËLgävûme6š/ÍÏ™@•ÌŤ˜"œ±“ýØ)áðƒjz†Á9¯ ;t†ÕØr&=äLzÈ™ô3é!gÒåLúÕ•@zÑé‡Ïíô Û«º¼¼¬J¿¥¿) uÖT]E»‹‡ 8ßWúï1ÍÌWÏÇ"_™•ŠeÍÉŲvÛùWj{mØ+9(‹Ý×'¨mJÒˬ,i@$]‹RÒ»ÉYÒ]¤³¶p®‹©¹Pþ•²ÀNR$)=O÷N%+õ×Í2¹Ø1ÁÊÞî;JØ&vÁ…ãÓ¼4.éü/~z—WµÜ2ô‰ü/{-êçO“æ6Ò¾,3ëËCò–y“·ðÞIXÔm²œ$,ËIÃr³D,7MŲh2–yOüT-ŠIµ}^Ê\,ÉrI~ì‡ÈÉÔž‘Ésž|+b‘h’oQ­%ú‹÷ h"R¡¼MÊ)š—’%Mõñ“N)’?$z1¤3±ä9#R:„<+Y‹˜3ª(lPulñÄðmnóNVâ¡'«Í¢Pܦ4±ï€àtbÜó¡7W^˜ÃG·#ÌgL¡XŽ˜™koÂvUæZ:12/=*æ[îYQ\O¤¸RàUÃká‘’Áð"yÜt2·†Ë‘¤yÙšé%ÌQ#–¦FX™jÂU:à/š«&)­O,Õ„H¡Vƒ2\ìè´ÍEIÀŒ 7…¦à‘‚s˜;ßM‘yÌZTÃ' ³.=!4̘'þ—BtQ8±NARùuD2ÅÎŒN£yvD*ÕNº³ÔÍiuf#NÁ´;ñÜ2Âršõ(Dþi× e¸ù)eòÖ“¾* °íØ +zÙ ±„Æ3hDÏÌìá55œ䜓2ß•AÒXºš‚—«ß4â‰æÆ.{Ædvæ¦ifÚ7N3“—í%•dækä˜ù–R̰Æ:?ÇýÎ1óí¤˜yÈ0³Ä 3Ï f˜™ ÁïkŠ™o*ÃÌÝ'˜‰$s¹…\._/•Ë‚™\ên¤Zn&çÉí'r©ç‡ý ùWÏMm’Nä’¿œû’ÇEA¡Ðbý<.9i\üÁožÁåV񵯿Y(]Kn°Ú}ÊÖ’ØØDËÍÖ2H÷&YKqäE¾7@©f'*™…&;«„ô6–À $!³ä)kçŠ}+´Rƒê<ìû‡á f¶ÏȬu‚`ñ-g ŽïÚj·•~ö 'ØY°eQ9GRÙʈzâf"¦RR0­ø!ä¼3*þ4™ŽÌÎ{W#t¯G}ôÌ8lÆ#ŽXùå1eΛ½‚¼ sçά¬ž@èK÷2Å{*ê‚üä<Þ…žêb¯‹=ñË›Õ"VMîµ¢XŽz<Þ™ýX󘘪/”*‰(üô°FëÆ>UhÞŒ`Ø4þ‡l‚áV¥3uL§\LÕ>ÌíçêOÕÔh”˜ ‰“¨ø•ÞD IrÊYɇ’›`æ•=n“Ö\‰äRÐá Ñ |ìá ä–AI“øØP;Pn$øÒzI#÷ Zvèþ@Žô„õ\.SXÀ•‰˜@£PÄ!e {,É­MÕÜ‘C¡vZ2yBL¨¸Sõ•¸Ü úd•°µ|‰[æps·’Fë^¥Ïú*Ù³æÉ•¥®þü\Y9´j¹©²fˆg³ø<Ðôt‘TYæüX¾DT4?VbÜãôX aÙ’ÒcÍ€Ø}ÎŽuS°Í)NÇ1K²ÒU`…¤«F9ßn[ÒjÌ!i9µv­‚„Ä„˜fÃ0¨á¬¤5ìcn-ºµBrƒ;%‡YÛK C6õA$Óßÿ»­ù_×õó{ɶ]‘̬[Ÿ»yÅ´à(Í8[Þ•§˜²Ù2ÜMr½²¸,gÓ|âà‹~áÊ{Y+ à5lÏm{sI¯äRV*=é¢6`ýÎH} Á1ïl pGÜ¢ðV¢ Ý´¨üiöcç&òb#r.•¼¹T@È2áÛöX ©SŸÜYÉ—ž»Ñ³ˆÌݘGj¾zêÆ™jt ƒHݸäÌs8ùÖž{“¸ñ+™zfçžäm\º‘g¦}§á,;!ãz²Gsþ¬†÷VÞ L Õ[4fа¦ž[+žüIåŠ'72õÐñ¸oöžÆ-Ú{^Þµ½çé]Ú{ÈÝ’½çeA{ÏÓòï·nïqþˆ¥Ö}ȬûY÷kdÖ}¶”̺í‡ÌºßÉ'–ÿ÷ËæÿÝz²]Ù óÿ>}Èÿ{>Å~þß÷ùùߞϗø;Íý{‹I#£#Ø9¥or˜t^`&óÅócN3µ3”Csõqz?€ïÇÎXœeÙº«>ðõ”òC½N8ôw9#T4±ðú≅—*µð€ ¾*Þ‹uJþøŸsNá ÜÏ& |&‡2 X¥”ÞHð— …ÿä…­õÚ…Õ–²ÂXobU'.É«H&½ê}¢òDonê)àç?D«Rÿ¶Ä?c)Oþ!p÷­-ù˜ºÅóY¾Ê;¬ò€Ž§gz»PÕÏz—ˆ®ØIgvÚ¤4®öújžp†,,%½eïá|T£á%g2Äí-c2ÁÞ'Bò‰B™È®vÄÝc€ï¦ø'üþkdKxG6y?Ž“Ç—!¤<¤ßCç‡Øá#hß|*Á+«G•G«µØ¾ÿCý¢$;ÞüBqTaxŽ':K3£#©F¬sptw9§o+éô]dvýÐõDî}Æéª¹u¼¤ÈÝlÒé±F±7 üìsÄŸ9¿tnnyºL£"©¤#ù£í.Ц’vóGÛ=ÄRI7×*Ïw™JSÛÊ#‹ìªâÝÂÍLÞsw½±1È6PÂ÷¡£’ù»‰Â€Ozy~©,†Ðl„yÓá ÐÛpkdŠYì¬e°)™¿+ÁeÎ ”1lÙ`ŒŒˆÝú*]NeªÚ‰KU³aü'Ùe4‘öO»kzÔ¹¸„³M·<ò‚ãibè¥æ+ìºÓ‘Ê,ëìÊ[€~!~“¹ƒc ^=´Û–\ÇoÞ[w’Š»Ì¨³ícŸÒlKŒ9‚óÜ1åôiÒ,òWò@Æù:xž—Û Y­Ÿ5µÔ”ÞÎzõJ@W*RŽ‘ÌøY^À¥¸ÇKòÚ…dˆT~ðt>Æ S'”][åÖ^ÛÆè`“k{ßWÊ÷"ôfOŽÉæ”’µŽ9Yù‹húd|‹Í&uN ²•'NëŒÌ˜èÿmïÏÏì¤gÞä.à¯|s“B&™#£s $Azæ6©MéŽß”f¼i¦×K˜¼‹6¤­²h£zb—éåàãþƖëMþKfZ†NŽ·"‹ÌË|ƒ|À3óÏŸŸùÕþÑ!gV®#h‚ŒÊÕã_œ(y+7³òq«ïÿÚÂÄÎÉLÊóf*®ÖÚåÓs‰ÜÄDø¤iY§ ÁðT­Ê¯gå<¶JLºIÿŠ šÅ¸Ì• êýìdP‹äwRø Š<ÜAŽ'­ÉIå$GÓ>--S9Èp3~Èád¡ëC§ÛÈá”ÊÅTÙ ’1I|ȧô-æSRA§…Ôé$eXyl%®IR£ó¨l¸Óõk£¹V±\ýÔÜL¸/ˆbÏ(Ù^Axý8ìwÉz7‘úi¶OÈÆ*~¤ò¼¡Õ%ðÙÓÂ.a8izƒóQVÒ3(ùQÊ”$É¥I×Dâ|~|ÿï¿/Ûÿûà»v—«û޽Á+œ¸œ¸œ¸œ¸ïĉÛ@9댥Röd0ÁßuùZ€e¡ô…cM²/çÙÑœÉGt/ìö`ÃGÙà<KÐ ØêÃT²Å^Ž_gcxx8!7GvMUKŸÌèd{ƒ—a}O>™µ~g¼¾­zQ÷K¡C¹¡ÖÑPT¡¤‘ÊÐŒò3¼ê’guÃ#oØP`NME/gvx=Ùy/(츇hûà‚ÿà‚ÿà‚¿DüïÖ‘]¹Ž;ÎèLGá’äÚèÕCÛ¥]Å „Ží7óõ~põ~põ^’«÷ LI–B‚É ¥c=ž2ûÍÞ­sF<Ì x¨/ï çðr:ÂJYñ†×f{k¼†Xj]¸Ï¦,ž]ód€q9Ì@ÌÈàÜK¯°‘h£‚öt䙲«ƒ¿ß†_>áœàQ[:‹ïo ï`ÒtÖß&°l<Ü€[DÔR=ïpg(ytaio:@ ÐÕ¾êô¤ô÷jE ñ}D„äuiÅ€¬9A k›óDt¼{Ußu‚ d¹Þœ%ÏŒø8øå-þšVØÂ ïÙõ£YÃÿÐ]Û¶ñŸ…ãmÇ‹üÒ®ÿš¶‰ÀDä9½Ž¢á$ÜOù6ÂJ0ÕXÙÜ䬞Œ2IƒS^,ò&)ÛQ&¿>D™¨ò×:Û6Ú9-½‡ ÕÜu¨yÙû0 óI+†y3dÂP•hhÁ¶i— G@D_B’-á×]ebå~d F¥c¬‚öT=]„ŽÉ@^*pκ6Ž­PÓm¿)E·)[‹"w"[G«t§!íö^Õ`¥ƒDmðP!R[}Í,rîÔdæÂý޽ ÎÝ É†ó—þ(¾O‹§Ž‡ç ä–«âø…æ;ø&^æ^Xçx+1ôMã¯þ>;þJŸÍø,o¬Uì˜}gÁZxƒe±Z±Z_+VëÙC¨ÖC¨–üÌ ÕÚž/T+vÕrb|¼¼…‘Ȥnx»“Ð=ú¹¯&S ü¼ A_ }={ˆùzˆùúSÆ|YDhdC<¾í`°_gƒyS ìfêÎÂY*¦ê9õ²(Ñ^VTÙÑD•E Á ôm‡ô—þ¦ž v(=eÚp€ðŦ¥•¶sÂÖÄýˆMÓhÔú5FŽ­ŠLC¤NNxähUüèñƒ4 Ó†Î4ˆr£Íž¦7ñIn´™÷¢]Ô;ŠoFCå4ÈÚ’çÔ%æÞX%æžFößZºEºbŠbŠîwÁ O‘˜ld.ýï*Ø(Œÿù½¿u§ñ?›OŸÀ3/þgëÙÎCüÏ]|¥ÝøŸ£ƒ-_q\=QEâ1<ßdð®1b«LFáÌ ±(•ޝ¨;¡¡Û™ ¬¹D7í#ÊZ¦ªÔ-|oþ×·çðì1éCÊi¯¹MøfÏ>–ýÌò)¤áíª¥ËõT—ÀÝ VÈç§Ó“^{ÙçÉ©üäø%â ~Ö309è87×óÅ'¥ÁúåÊúÄqOAÜÐå.å$ìÕ«9t®²ÿ {]Ä®Ø$œôÍzeV}çA"#¬2F§)+R?–G¥äˆó<_†ÝéùÄJëÝ¡‡áEß/ x´Ãw¹RªÆÛö ÇZÁÔÿX¨Rõ®ø³3ÑâC®Atý΢í~¼õ/”y˜}¹—êL·xòࢾtdžb¡{ Æ9•:|6J)*Ìòué·±Aÿ{]‚këu =DYIô›ôI½,˜÷;çáÞ CÃãpt©{|Íçu±.&)ÐäOøß#~Îâ÷½±¢çŒ ìùÉúž# éŒaÓO@Q~[ë!MÁþ7ù}þ¿¨üÁCü{½B‘:RÃ3dj&س¯j^*¨1M“Ð%ÖSK½׽ȵ:ÃÁnQº¸ÇÜÛô<ªõúR¼¹ª-ÎÜzy¸D¯«Å®ø”¯TÊUê.|¡æplR^ˆ¡ [Ü9X®âÉqùÏ·ž—𥲩°^†ë‚®§4aUÜŽÑ"&7­ãH-»apXc†OÀ*˜ÑúÛµ:ÙIäoMüA  šúÏdÉtâ_ëŽv§p…Å~Õ$õ„¯Q¤Fµbuk{‚p~Ð çOÉzÁä˜ñœ%u Ý}¯‚õé•$VõéHÌI€ˆÙÙ’Ê@«oFY“ÿ/îTþa?”ÿ·Ÿ<Èÿwòa,õåÿ q¬%ÿç¦òø&ÕVúŽ{¤ xYPàÅí>hn/ü9Ë—­àH௫h¸sxP |—Šï#NÕŠòäiºA£/»¦¡§—nN1kN§[5W1ÄÉøôQÓoÀ膇`Ì›cÞfù© Òw®AZn°$šŽ™¬ÿÒ¦zXoQ#„|îžâw)2!2çq¢%É7²‰¾_ŠÖˆDI©6ªÉŸÇw¥>Z< 2(yjª{Ñ·¸«X䜯ƒ2½B³·y!tEbå"¡rEâÝt÷x§Z#,Æ¥ˆNbsÅr=K ³P.ÃWåJložÊ’è’ÖÐ|oáP=Ü2k„f ã2*âMŠ} Ð0NýŸ)¯ÎPœ`Æ”Š‚*g<2 D·ÝÌ À¡éÐVï¨0o{æùXß|Ÿš¦3S€ªaÍ0} &ÏÞh8ýð‘’u$g)„¼,hÙ䇿 ñÅèüÃ‰š†™ Âml¸Àf #¸Œ§çÄ«Zé×ÔÇM/$üInؘfÍ_’ž9»Çrá+2F”ÂCÍ&m¥7)u[ú{'B1ëÄ"~îoðœ\•%Qádœ9¬j÷¯-¡äÀÜ9¿ýæ”%V©=emjw¾Ì@pí:P}[§»Nêzó=-÷1ÂxÅA·š„ñִ]x…cMð-:ëB¿ä±«¿À“à£[Mw»^§Z 5W•/L%€Šh•(Òt4B.›é´ÖœßZïL1l /V<üÒñMäQ„*õµz Ï0ò]žÖ^éóôöø‘êGŸ +ìÀ¥ÎÚK &ÃeZ ƒZ?o®fõý^Ã/W¬¹~`«WˆsϘ±a`xP­sþÛçΨ‹‡f—0 “›)³†P´9ÀSšÚ=iß@ M:ƒoi«Ž¿ªZÂSÛZjîbÒ`Ð&žEàaCa–_,d˜LMÕ4ñíCÂ&O•„;uãO!S8¥u n‡?,¦«‰/4S/¸,wæ·3HßÜ‹÷W¢öDÑ5DsÔ5ÈÃmóÅ'xp6•Q-ê8Ÿ°¬sÔÆ¬ÌóÁ-(¿Í±ŸŠßígßú'bÿ»Ú¾SûßÖæöΓÿ߯ôáSæÙÿRÑÈVÀ[ÉÌ3CááöÜÝÉzˆíµÑf´Jáé«-•tÿ û”õŶùWE1ÝñO`E¤9©¤o/dÓ†mtTòÒbÄc¨]ë'×H†@ßf§L0›á‡Œ4æK7Ù©ùZús» £J_¶•.n¤[zŽã7+˜âXf8~³h†c8w¥Ž^÷°ò“5ȋͲ¿{±ÁæHˆ }¾µÒ!û½ÁŒddÜ·ñœÈ_Ëüy·ÖÍwlÛÔFJJž·k°Q»&&ñaåÇÂéø¸Ó°pÞ^ºYgóv‘Ÿ3ßì²-œ¤ÞØ2 ßîÐÂù˜ÓrIY:õóOZcCך3I—a¬ÆÒ) ¡i+'½PγnÎÈé»”ºØÑ{àk§ƒtbà½éo™îdr-ÓߊýµhòÝ&Eå²M´þþÝé¾ÊÏÂKzèŠj‚æ Õ ~߾崹/ßÔ¤ø ü¿¦¾¨LŨø›U²ô¦UHÊüòý1:šà`'møïøÝa­‘koÇ8,c Ž·äÏvÙ$|mÿRÍ 5XvÆÜf«±•ž­N”K¯…³™×r _-šn–ß!³r`R¦G‰ þ³Y› {ó,ÎôBÒêÌæ±²¶rÃíÕfXȱQ)žÐUÍÉHu&ÒÚ¬3ß\öêCßÐ^}¸ýUìÕ΄s°#¯óÆð“¶Ïi±~zÅr“)­…Gl7S‰SÜ-b­Ì.ÕGU| ŸR¯ñBÙ¬GÚJ‡¡jeGÑ-j­Ó¥Ø=¡jPóËñ÷ä4àUçypRüŽÝ·ÃÒÐhôc-÷ &ºul žÄî|ÝJÍýRj¥]ÿBæ ÚÓškóŽÕÒWqÿêôIÜW=“͇²|ÅÅQœ¬4vx›Þ¬Ú”÷juwׯ¤<2_B5/a‚îÓ4{™×ì ÞšÉ"Q{bXà&,Y*ôŒ¨:y–ôä…•ji+/c×:q=fŽÜEŒû¡ÉË3PU&´j ¢hÊ04NšKN Ð9aš—ÃÎÂq£ŠÉGññ.§+WÛ¯õØí†´,â‹Ö×MiOô¾¶nî†~õà1Fo¥Ð½Ì¼l‰Å^·¾ã‘Î>›áí©œŽÔÅY’NmŠŽ=7sA /$–?òV¢áºÎ.Ü-ì™Òöv×^Xš³’,´§ÓfV§­ôAþ›>þsËàVróøÄ*Dq—¦VžG“XÌ©IH¼-éÜmí&yâ( DĽœ” G‚4²}Õ|lÑ{9á e·Î RJ†©y#Ê<Þ «ÃšV@#’é†Ô¬Vý$ËíÃóCÚb~J1 ‰¤sÄ!pW"ÈT™˜­y©ã¼fÍ5n¨;Áw¶\·Š(©Pþ_IrA_»{œ¿(îæúˆ¹¼‘ÍBÅ}¬Ü¢½XÚ¯‘bë#X1`kJM¼›ù•Öƒý Ù:β¾Ñ^aH½ùÕõ7Nhý17´ÒìÔåÐpNâÍófäÄ)g £Ã6358l>T¨†Åâ–gºâhÖSÚGßû¨õ+aPŸTˆ;ÙV¡¥tó1Àð§€\/l/ÌÝĹm·7óÏoÀNǹîà˜/àÈãa”Æ ‰ì„Ì^m{åm‘µ i ß`œÍ±öÀ“|çu :Ü~p *ö‰ùÿÜqüÿ“'[›aüÿÓÿŸ»øð!ñý‚øÿÀÿ'îøÓEÓ9YÓº#4F|›®@ß”U½µªË[{€ÀÒõºGÙUXp2jª×™VnXÎD/w&Šf#0~Eß¼»}‡D~šÏÈîÀ$(æ@äúûX¾DEˆü™£y9×ä[s ZV‘ô.DdñˆbÃ-³ªúê\±ï ‰Éâ'÷FÝðD'êbëOóÝñþs&Ô$·âµ¹#ú$.ð7fÇ:À‰_1féé€,G1/xÕŸ5|$P5weÙAtÑpœâ­ˆÔ±0GµÖ˜÷Y¥?Ö%#”j¿àÏU rzXöHXY]ÝŠ´F`shY• *Ã:¶DÙð1Î~xŸˆ'ECápÒ"ì êS~bÔ#:U²ÀéW#lå¬iØsп¯’0 â|prómèNAn'–ÉÃé+ÇÔüm窈ØGw]ÿmûÙÓÀþ»ùäÁþ{Æ\ÏþÛz¨ÿö2¾·¶rm¯Åê¿Ý¡™õ[ÏÕP¨þ[,³zç UN¶Ô1 Úý8×” “†M§o¥–è9V×ÀP«“ϯÄr=¸öYÇ7+ÅCÒ,k÷2Ë:ôŠÝîç¡FÛw~‡ÖG:°õØâóx¨Çö]Z·P s¦Úªyk±YGÓVÏÌVâ±ea­"µn…K¯ÐÎP¼-¨uËS¹åéÛâ•ØW¶Å5m9r´ky6¥´´Þúv*³ÝÍ'&ÿß±ÿ÷öV˜ÿqûéÖƒü> ¾üÿPÿíëkò=±‹Õ{Ð,ßïz‰Ú€"É¿%m@¾“vQ ùACðP¬­X±6»õC*Çbmª¤¯©JºíÂl^A¶b™ø–Vˆ­õPˆm>ýT´’ØŒm±b‘äkòåo3÷žn»X™3¿ÆÙÍôm_¹¢Y¼’]N3*³&¡ð0RþL+Qïwù³Ôqy(vÊŸE6)u/ÝÓògžû²¥8§D4xÕºû:o±ˆö¿Ï«3FÊìç3ÊŠµ¶´î]VSèXA¬4·ª&†e¨Ð×/íùº¬bb+ª‚˜)'[¹^11?QKLA%½j!fA¬p 16=ôÎ xü(¦•;÷è‚›ëõu¬ß5ÿÒ½jaÒ8¨>#¿å#|“Âa®'dݺßn^åËÍvYGŒÖ³sêzY穘´æ8R7-Öú¶*¿¡Ohÿ]Œï¶þ×γíÀþó¬ò`ÿ¹‹2×þÓzÙ.‰ãVµÙ&~¦ÙzÝ6– êKúþ­ÖOË“åïå‘Ú÷øüór¿Õ‚×é_iBºŸ–¤†Š¤GžØ#¼¬v›[¨@¡ :D¤à«w›'âev&6_o¿y½akCÒÆ¨Ý×ÕVu×ñ !`çõ–­j7 &¡*÷g»UlØJi«ªc?›e檲üRþY+ñìVsïMD9àKó«º,Þ—x}sÍqEïòjÛÊŠ:iAëŠ1° Äy¢k‡_'Ù%î#¾tˆ'Ë~ŸvX½‚˜‚}ôºÐ ©ZÅÙp:èò“3YÒT>ÉÆ(L(z†úÁaÕh¬o´óÂèÕ5r¬VlŽ«}•#Rý£b/ÍZô ž»:ÜGÍGXß @‰¢f¾-5‡hmb–kÅ{ÿ˜Þ_]=6MJÇ©—wå˯­—w‡ƒO? ïŒƒn¬.æ°GÝl4Ë.ˆg @_–³÷áㄊ:‹1ntYô6² Ö^VIGõoMäöƒ$Q¬ÏÂsHÚ*4R2zz¨l6Ê[´—5•¢¸úr‘u¼Œ,DYÉf'FRp¥C´^®¬žØí;csšÏ®ñ´·^¼\^nÈ®B ŒŒ03çËÁ½½A—ð…Ö̳ÿ‰t.•Ÿ_ô~~t|4ü,zrJŽq‡·(õ“ltXû @æ[lDÔÛ”$ZíjeÄÞ`êÞ)QS©i¸×–€yµ î)„ú{g)óYû߇+r þúJ‹‚Ë&†cí´'€¼jºaW>ï—Ÿ÷ÜS¼:©ÿ9 Ýgu‹u#­Ûî=ÂÒ `zŸUÆ{LxT¢,Gn‚¯(¨]ÃoýB¼?nì«„H“ÑÔjs>2¸7#¸¿q(É6üÛY šÒÖZØQ¬éö‡Ao2íj-é@ÇŽUSZ‘á+ѺÖy~+Gä 9bÙÈ~íΰ¯ àllF»mL/À¦­ßÄ´€éÜcË!6샼2Ÿ;×hE÷ñ¸:—0Ϻ¹`‚.m¯"ËÂ"<;Ã,U2l‹î}Ê|Ž 9™ì^¤ ”‘É\ÈãK`غO¦^`rgp­ÁM í «tЙÀNý´—úE¡¼j7ŒÌ°rÀ) «ƒü‹âÞâëie4ñ ±|ÿ¸Q}¯Î+P%Ò´¾ XÒ+r†éMÐ×wl”]¯Ó¸ËP†˜¬slrFÅKÑÑÚ^€l—#Y±Î³³ˆåu4_dE²›ã_r§Ñ6»›×­ýÜùÐ ÐÕöܱ?€æ;fˆÅÇé­Ü}w‚uàê”Pí-ü¿ÚÞyø×ôúö±DÞAû¸µ?ñÿÕ—ûþ±E?ÈkàýÛä²Hªž`íêé~)Q³p~߃êûÿ—ÅÞî;úñj¿qZ–œIYj&n!MÛœŽ16 Oz#8¡WzÙÔ\¥d[‚»Â•&–2ÜsX lDs Ž­5` >;–i2ÎËwms½Ûèø‘kÍ·T!Þ›»r¼nì¡€u~“m¿‰çÔÐ̙ޓHÛ—E? ׊¶­l†ßn¬¡t߉ÖËvñX%FÉ™î¼Áäø°ñ®µÁ›õƒp Ý¡PXV©%’rÔ"£©äj¬Éò1ðgÇt›UIÖ>Å^h>ŠÃª‰©ÿBÆb0ü' ‹3°ÕÄM¢Œ<_Y\õ§cÊ"'LGv I¸0à ':£ ÞD¾ìWÚ íN༷_Á¾]å&Ö÷˜c†Ÿ?Æñôªö†F˜òdk'rmÇÝ[;ì ¯<×ù…¯3T°©Ë;½ì`8¼ÓÁ¤×GÇÁ«+Êš7B. yRt'nmŒÚoÇuVóA˜èu§p´HÓ·.†W¥ê jþ,Çröyä'/pGP•XFfÕ„eLPŸ±0C&8~lŒÄ뮄ÚíšSaQ%œ©Ép” ³qêØ.àˆ eÌïîð‘E™­O0PÅäRø ÆvÚïØ½ ,ß1GtÎÆ¥üÊõ©ð/‚ÝÊ*þú³»á/5 gø¾35>þuEqãî¬àŠ9™qƒ1jTÓLSŠ^¿n<®eÝ›jÚÍC8 |]ˆ@ 1ý€¬5PÌyWó!@YµÛe‹JØó8žá¼£Ø#àé°G<Ë.(Õ0Êá€A~ºÀíXJOᦠ¤”S5“r _Üž™î/½-Îrˆ"ÏðÉ&9½Åry½«fHúÖš×ÅNb‘áRÍïkv¦­·”âê=9:ílš¦6ý’.<äl‚9=K/«È ­žæ®¶c3W0²wðib!hÞZ yK ¡ËóY΂=­pE°–k1Ú0¡ì«ã ¾âÉÀt>4¸â*í•&KY±d€vg¥Hwk|8¡Û ´f­_L9´ü`lV£mŸ*bÎà hŽÜMƒi¦ð´çÔ•ÖL«›ˆÆx³¢ÝGL„.áŠEóqÆ×{9ðÜZÑM»Ùù(ëŒY¯×™ >Õj–×–èNG¤~t•|ø!w9ÝØ@Û+¢:¤©“ZõîÆø¦uÐEƒ ÑÙ–#@†_5ö7äÅ©uG\¾Â#Æ+ÝqB­g¥8àC§7ð=%Õí R§}½VBçâÌ«˜¬‹/]ýtq»±{ûµ½#¤¡äö.Y'þéçŠn[›Á±· V#UrþµŽyKïÊø±ü¤Á~¶Á*ûÞët“ôŸä ³ân”äR¯ ø°áÖ°b ° v¿ôŽaRŠq—øÕîÁÌX—2 ·uAíì‚\Š|&«b l~R)…PGÊ ¦Úex‹ÖÔ¥öÇ‚åÕÂsÉaL@z$³”à¾LËQrd#æðñè;(½Y€Ó–Þº ô¾^XÎ>Ÿènú*…•–~Y ˜ÿ_à˜Í‡´#÷ã2nÓ€ësoS=³xÞàØ•:wÈ]à®&.ΓµNQ•)uS•ÍÄõª( IïéÖK£1šé=õÿý²\à|ÿß§°:YÿsggûÙ“'èÿûäéƒÿï|Mÿß÷ú|ïìïÍöÎ9á­²ØÕ~ÂÚXº2°?pó_ðã_µæ^;¯#õοšïZ²ùs÷–{h’½f(æt”t?³=g}´‡2t„Òì¨w¦ü‰Þt.³±ØË./³>áê|è—öºÓï÷>t@rüûð?Cñº×í,fwô¦3†ñ[ ,RZ€^L>wF˜Ôþü7LD ýgiÙ1Wm{N…ݶ“sâ_ëÃúnýX4ѦÎÝÛ&Ãù=²%ö«þqÌ6x™ÆGƒýr¤ˆ½”ŽË·æåÍNÜ¢ìgAJ¯RNoWþdÐÉ?ŒÏxzD‡D”äl‚dÄjâ¹ Çó\xÎçBùŸ¿_Ø]ÜÜ]v£|Ý´:ú÷ ¾§f€2 ÞV×e9á®Z _IÔ®Ìn{ZÆL¬©. £%NÉì -ÂÀžªê*ƒŽ•â„Wn™ömŸh”/ád|ì EëÃ÷½~ï S?*´&`+÷L%er…ÅŸý–ŠA}Æä•¨<´p1»œk .¸›óÎ8óüL;ƒ®»•l Ö³Aú©¶N/o:°ç-Wk@ᄈ º>íá%ÇPS'ãAÃÁ<ú\ÎGåãÆ¾j쨨±}œMP;¶‚¬??[^]²X-jÄ2À%¸ô`O&\ùRöÑÍ.: ßðÐóóìŠ8ŒÅ)ñBãÀGj‰çpg^uÆcEX)?Êç½ó€±Ù'Ú!†ûttÎÍʺyÏÁ"dGΊŒŽÍŒËX0$c®xŒâÁ7ŠÄ@*ˆ8½Àz viA_KtTï–Z}Ò6¸‚9üeÒH(ɦµQéSDþÁç“þõFcª3?û…¾ÐvÞPa US7ê’¥r»ºªõ!á¼µ²ìÇ'Ï`8ž˜‚dס†#Ô†2¡r^h¸ ».¼\ PUi÷v]_m>‘ЀšY P€7¡™–öF9vÈ>â>ñ…~Ĭ˜Ÿ›‡ûô7ö)ç#f…úÜ(ÊG,!Ðç1>yá=bV„Ï ƒ{ÄBñ=7 í™3ª>Š—ç9R„ÿûö´±{ÌBfv g[勘o¢8š2Õ†Wó6´p8Ði,âAuçu'Mîd÷‘á—ÒÔø:ÎP¬kÉÐ 7³öóî ìæå£ŸÔ©Ä„qÈ€–u3ƒ¹Äi¦¥e‘­œ±¬°,q Ê0÷УGÀúÉãÅZ’0|5ülè×°ò‹ß­3Ö~üq8íwqìX7ê:„[m0ž"‹dG"÷£ XôÅáo/ê|ìôwvÆ;sÞÁ¼;#¼^±õ6NTZ–²1à|äú¢OIaGqBlÀåêv Mècž‹ì-®ˆI|LøßQǃ ‰0x±}¤ÅܤCkŒ5Ü ,3êa­]rM™U0Í9SîÐ7?gòFž}Ôv 5¾Æ G=k-èe7yÖv;k»‹ŸµÝôYÛÍ;k»ygm·ÀYÛÍ9k»gí>œµ%«ˆS³BUo¥*–¨z³ÕùÂSŬÕ§ ©´9‘…ê=,a®ç29*¥5Hmsç¤`)Ñ ñt9ª‘é¥ý[–õƒN|™Bt.&™¥{³ÙÐC”aW”r‚Ç6¾Ü9‰huŒÏ›Š™B°º+¦QÂå,ôBY)Ûs@ë§ 3ç³,©ª{Ü\^•N•ÖŽÑùHôûHÄ(FR þCU9m¹vÌ4ŒÙù=rö2Óè\]e¬})żží ~ÓPÑÝ"ÓÖ^›Í],¶Ô(• +͉%ÕüûìˆRaëög¬©QÓÑj™¦@‘tÀµ§;O®¯2QÒš]håÀl…³®†Ü¾®m5¸ÔfíÓhîí· |j^:ËZ×Ë*3Ö2u‘ óñ§tà|ëˆÔ.|êŒzÃiDEîŸýqGnKM#õW–jÅj=QÏIɦ¹J2jôÔÆ[+¥*Þ±>: Z—¾üëß‚œÆÈk°ôïr¢Îé7;š¼ò>²F÷OÝsŽ*AM¬R7ûb¢Û ¡4^:;`©Æµ‚ÔßÇäþ%ó:ö¯I‘;½bh2˜± =E›þ4ýfu¸«èçŒè45„¨kà镟¯X;ÖœB;u±Ëí{œ!š¤:^†•¯dµ§,š­U“¸ª‹^Öïj/´Bgñ×ã0·áy4Á¨ûñ䯀¡C¸P Ó3¾Gcd>{A†‰¾Ó‚Û,¸p2ÀÕöâø÷Ѥ4 ‡½~çòücIG=Y”Ч½%þújÚu“,ëþÕ>WÏó2E”ý!en‚ól„ÀL@^éªåU]Ù sS ˜ç•}QéñaùFLetCðmc›³¤h€ ýŽÎ2Þʬ«5Ñè@4Hî-Ý[°²ÛŸãïæs±¯!«ÈÑȰÁwkg¤4H‹BOP×NìãôÇNañ×g6Øn­ß‡¢ÍH&0V®ÄNÉÿýÖ+ÿ· §È_Ñ_+tއ—h€ ¯F=˜àšd"%sók À>È&ÃÛ«U•÷¿ÍÆ&šM~Ž`lIr€ ÄP)fÒ­M/‰Æýʆ,œÛ‚Ì­bð¯ãò¿¿H–ؼÊÓ'´Ð YA™Féªÿ2©ò+ ;’q)rOÓ%þÝÝÓ &pžË:ÁÎ{c+´KÜØÑû½ø}m÷>Ç…ííè $XŠQÆfŽWÊZBp¸­ˆó¹%0ÅxÍx|¯u…ƒ@]JçFìœ_+ÆDºŒ(uIú‘l¯pJ–ÁÑCjÌ@þ³¸x 2ÇüìÞØáÀËNÉì ðÖI¢ §‡ù¸òI¹-.‡:àr¸œ¯Âå8‡÷Õ¹uV§Tå0‚/+ºØÑ3¥o;éä÷¢õû7 þrNà ¿½:äªÒlT°•_‹«RŽFqŽëc4–«Õ8£üoÜ ß(œ‰? °mç+ö†ÁJ"£ìvj€þ OR'ÇÈ4Û—‰ìE¯Ïa»’Ë –ÕéŽà ]ÚIth¡Rt/ÂÝê\­¤°äW>K=åf“'×Y -D" Ö²é7P¹ Ív"ôîc†¢©Á–é;û'íH¦td#«÷€ÃÙh7 ¾s3)œ“ÃAõ_õfëý¿êÇ­ý—ÿ¢(‘ñ\üò1#$‚H§7“êÌÅ[ËCÖÂ>¢{<Ïç2Á—Û’X«9L»ÙÙá4[= ί<ÅÒn°áS¡q08¼ð†Ó³~¶nôÙÖè‚«?Ò ôZî/õÔ]Gw_9ÃJçÌ8'`&е·qðlð©7htm5O¯®†£‰Dêx'ÓšX"»¦}†°˜Üè“D‹édʳ’‹¯[ûíׄ[ˆ îTŨ»ã;Pè £%Çu2äEPÄFêà ÔŸ²ç@ðÈH‡a‚ŒŽ—=ŒÚÅPÜH9`%H-‚™9²0úß0Î#rpbñáþ't÷`¢¹v’ô~Ç_ÝU¢W)¬)L¿GÙ?È› {ÖðØËÿh}à@üë ÿ(šUÚiù„¿4MÓ…)BS!&è3VA½Î#»¿ÔÛû„ Ûˆ /ûš³à¾oµüQìL&Ùåí! @—Â)äuL§ˆ-69ìR\Рޱ>»@K¥¹ÝíHòte"<ðÇE§?ÎRôJ”ÔÄ]1Ì“oaKÞXÖ (Ä}Îú}‚«Õ •ã1*‚ñ4TmÈÒ¦@op®È`ñá·z‰Å`ÌÖwØ<™Ú¾8ì¬Jï7VÄê„¥HÛkÄBÉ1°¾¡å:€V®¹åM¹¢¦»!jך9ttge¡ud=ÚZk9ÎZÒ¡-EÖguÄ+•Œ/™Z¦;W+ã%š ‡GPÉ6òÁˆ5•f«ÊŠ`Ãzž *†â #¾ñ ?¤°%1L‰f.XáÀ|Ì@¬r­ÁéU˜+óöý&Rô–gå×uòô– §Ûeq`oÿeõä3ÐJfP~‘n‡`1šÇÄ1èö­¢í÷~¾™ÈclÍ1\U¢Ó=¶ÚÜ,Ð.º®‚c¶‚177žÌlåC‚šm9í"!¾ ˜‘^xT7¶ýlsû›3` xŒbÐo篟;ûOå–î_3ïN“Xò¶Ü>*‘>üÊÜì]<ËéßF¶¢{ 67–á-GþÚ‡—ä,,)SäÏ´ihˆ=ßòɇ|avýf±Ì+2“†ã­ð½5Ó–Ù²°ínn[§Dεò²dÝ%ÚõŠ¡dM*ð —f•|ޤgNÉ5ßf¤Dº®C´¨C²¦C² „j±ã·˜]B5}i:«„jûCØvV ½ ‘³J@è¶OâÇ.§D¬ÄûHˆE @¸xX¬„R¦ú„kï]²,„Ž9B3™ò[y àÈ—hçM9úTUøª®XÛ$I֤̟g*hÎ¥a´Bλ^!|â4šÁó‘]R¯@ĺÃi¶ LóÖ&°Y`|ó8.(++‚¼3AöÁO+ÅC—ó§È»R€ÓÁ¬ýž]0J ðJ&ÊAz[K+ѸúK3Țθ¤w‡”´¾js1a"ÅÇå7µ͸(ÂʤHä6Œø.%Y,l÷&!~Ù \»¦_În,¼~ÕÝ‚HK*ZM)=îOE̅džG]L&£Ùúö9gÂÎßZ´r/â4+Eó÷»(Å'ü¿—ž—߬pp Ûˆ0Òc”`,=ÿ³—ŸÃ ~r ·›´ž1ç;¤b2T®eTsFÆV9.f”ì§?œŽ¯Ýä£)ú(±| ¤#LXE'-Œg) êežŸ£—ÜPt> {]ߨ$'”g´l­H´‰…%Ùï=y>« ëÁU0릥‹KY–Y·ø¡ùƒ6˜›ðç(|\2"‰ ØCGèrì,rÅ…= !9LªîTqÕ‰¸~ßžML\u©È]]„9P/xþ¿ÚE8bbfÓ‚á,;‹=®‡g¼7¤ã…ÅÒå9ç]š\p|<÷~]–3/ÕùU©_óRÍ×-~©©ò¾xq”?Á'Rÿå÷­å–™Qÿeóé“'®ÿò¬²³ùd ë¿lon>Ô¹‹Ÿ¯þËÑVI4œëû¸z¢¯cK9«XŠNo«R¸î‡ò!²‹—<µ‚Ó•=òkvà#ŽJÉš³Šd”J~­ Ó=þj•p›ê*V‚XìÖ‘C…UÅ(ëôÅ%†Ñêt~U ÉÇ„Ê-ñHŽäTðܨñ€Vú»é³)ãd‘»a'ÁÎOìéTfÛž•éÛͬ=_nE+Á6}ÜìŠ7ü7)“bïÞûù…ÁgÓ«+Œ[õ:Ò¨2þOÏhx»‡j©òü²gÐ+ôW+ìÀñà:ÚŠ8p%_øÏ·hä«7™=¦j1Vå"¢oI°°Ê’¾Ê˜"NÞ™``Y°Á ÷ÓXQÙáau´…Òì XÀ^»Ø kkðoôÕnÓ_Q9Vd‹¢Ú Á ,» [Ó¯^aEZ5Mâkx2jZ+¦Êi’í9¨³²^ðÁëæü;«„mkaÿ°kÔírÁ²g¬Q-1ᣑ˜¥˜ý ¯iMÃÑÖ· hˆÉÿw*ÿWv¶vžòÿÓ'òÿ]|A}ùÿeŽüðÝ©äŠî™6àeQm@íõ  XLЊn¹o¢6 Ë—­ I4¾¦b@‚!G1`·ttó(ìNAD1 d0‹…²»HË‚Y‚yNòå•2QË•à )e™´ïžŒw`ü& <ì3u¢6EåõÉß”ÄfPGªwGL{LbLCO/Uö´fÆÒ­«Íšù›57‡Œ3ñ³þðü·qï?VâKúÔ/dg/È[Œ³Ã fñû4ãK Ÿ‚rQµáËÙjCñI.%êÌ7±½yºK¢KVøvó½…@õpˬš5tPÓ®¨–ûÖ÷AÄbÊÚì9ç#˜1U'd½ ñLÌ:LêL†éøÑth«7Ëó¶g`žõÍ÷©i:3¨Ö 3Ì£ß)ðFÃ釔‹59K!ä…`Aˆ ?t0_xèŒ/Fç'¨Ì›š†™ Âml¸Àfí9 <À”¯jJxéÉjN¢4gÈø27lL³æ/IÈÏœÝc¹ŠðF Ú¤-³I[éMJÝ–þÞ‰¸WÞ‰EüÜßà9¹8*ÿJ¢&:¶7XPV½Nß.!Ïr ºêþö+<0O0zH÷MÁ ê8d_»HßÖéâcºÞ|Ok}Œ^qðâ­¦ßÄm¬á v'–M@x{ û]CJ¨¿ÀcàãZMw»^_C yÍUç 7Î2¦Y²=¿i‘NkÉö±`­wf ôÇŠ‡\*ì‘ÜŠÑ"µúZ½†‡8¢·7*ú4¯%u> –¨A=2õJ´—>É>ëZÉbj6˜ÍÕ|¾ßÁkâöåŠ5·<õ ±íá3fŒc¸Gj²p!ž˜Öð3º‰?r!SEÙ9»9¥«Ý“Æ`ýÒ¦“0èÈU¥­:þ’j–iæQsˆŠ£Áu›ø·Ykî‚,8¸ÖăÖfçöÂ|I½¶&;‰9ŸkÊçÁàš„ŠxñÂÅ3 gpÝæ·š'äpœxÁ寏3¿mœw@ÒæÞ±£Oˆ=Q$ ‘Õ òhÛ,ñ ›MEBå_–s³s˜Iâ9‰{ jû€ Vf÷à”ßæXÏ ±¿ÇÖ³oÿÚÿÆçwìÿûl¾óì[ö¿»ùðsíí]8Û–ñÂÂ9Dç ýÛ*°ÿ:Ó/½~´cߌ¨ˆiÄ¢GKÇ*SŠÐ¤%ðú5=¢cCÐÏi8„Íð¹OToa|=žd”E£Û@É~Ÿr-Ÿ#¨Â((€QùªÐ!Ã2 øò`ÙÃ5’Y‚'©”*Ѽ¸ê}Nðu¿~ùîV+eAƒâpÔ }Gm‡K1â²±Ô·1ÊIhN¥ ¿ÏÙx{ûqÿ ÷VWBWl‡M·˜Ç2ÔtÍ-.Œ¼ºÕJ}÷·vÂ>UùneX€ÓÀì !\ý° ^ï<ÿDR~í·=ªªP¦ÊU½H©O¹WºpBoÂ5 —eŒ°%q­ì~sý·œ([ÊáÏEæ*ú·š.Ós‘c·tˆ…Þ+nç°‰~Èc°!_èaâx Wn±–M\¿ð3ÄÚ5#¬_‡és6ºèã~¸aÀó™vj1›,p†£Þ™¬úp¦,ǵ¡xÛù0ž ”ƒØyˆjq8„¿;2t'[U€g‘Vû¼‡ÅM”3ÀÉeÖ¡Û ¯º ìn{ýÇÍŠøá=??gÝLM}éVâµÀžÿ¢ÂåfzÕÒ˨+\’í›ôÔjõWÍ“FYì—ÑnÐÇûÃ¥˜Nªí_a/Ñ–`ÞØ«6ªïÓkáPíôt¸}Y½Îg^ËMµÖŽ®j†1…Rý©¦v@AìtB†}}òŒðuØæànA?4Ùjx«ì‡íG¤è‚&òÞZöç„ÜB>SºƒZu¯¤·]60ú VS`M+]2‹.˜2³(ng°×d) Ž•¸(Ò!TûZ±ºn#“DÔõ€®pÛ—w‹õn”DÒ‘ÛY'÷†Œ²¤}ó’Î »ÆÙìô¯ëÈѽ)£Zf•¾”Þ¯¡î`Ëò. gyâÎ’)'»Êº ´©p$KŠÚQ¨ƒ3&ä#ΞàãÃ༯ò6¬R•„šªXA}U¥¶*“‘kxÀK:OÞj¤ˆ ^Wæ}Þ1\uŠÍ%·KzǨ¤–J?W‰4HätµÂ°9;¼qMå„íÏg ©—…ã…¬çøBÿjĽoÏÚz·Øz…«%9èÙ/½àÀN"‡à<·T‚ÑVæ8,ÌY¼¤:„ŠuÌwù‰èºÝ»ÔÿTvvžlnþß;úŸ;ùH ëêöàJ~ó®ökÙór‚¿Â?§Çø þKúÞ´J]¹‹çywG=ªu{?µFºŒY'‡K´\Ë÷Nœô2õoüÉÕÕ”¯EjKíÓI‰'´šk[;=.É)/ê¼dœ×銒U¥ º›QJ(®ä+JíÓ½ãÏŽ}x¾Øe²}£ƒ0úFjAŒìÙÅ„6šµ j òrcÿ<ÎCef =fÑœÛÍÆ½V@ìMd…Rl×í}êu³uètØbtÜ´Jg§A˜5J¶Ÿáû жZ¸Eõ ªmÚõW T«i[XétÅvÝãç=rïwüùcïü#>Á‚Ž kŸgWbëz¬ÓÎÐÊ™Ûò¼>±{l„¾Õeå0p*_”*½àÅ åvë ;ESÇNŠáÓ;Urq½–õu¡ö0¬²T®TÏ„ßà"(òöœg\“‘Ôyª¤%9°êµ›€ìㄺ?ÕJà…Þ~•"xUpup*Øg¹äj¯åSte:]]…ã€%O- `D¡QD þp Š¡—½~—ý~¯dÕ_,´‡½€¨Õ!T¾ö°º25Í(?Y}ÂÕaÑ u—ó$î*ì´3ê2º~ ‡LÑév§g€nç“2Ûø`ECtvè P+ït¥þÜ>ÆïT¢ßû¹‹´éý:²èôëßͯ»ë?n–e @üb}‹¦Î@*çYïS BcžpœÑÇìKÎ?y² ± ;ÿªæ¦tÎzzrn\¥ôs&~P…yĤ¬€Ú)5J¥‰ÓÄ|µbk£Lµó¡Ü#»ƒ¢´N´™ñs!`^iŒ`¸ß #N7dWy8‘»ªu3Àê%Ò{“úÓòbRupi%Eñ`{Ý{P7Ù^Õˆ·F÷ þ‡–Ÿé'+©nßèÖî?q;Ã> [®íÌžŠ¦$óL¨È|væ˜Fÿ~»vè¯ÔljñG’T¥SŸR…S4ÈÈ_’ ï%Q”x?ø EÕ¨f÷2+º®°ÎJà–vùaÕâ¨ù¢q·ÎR¼uºùu³WÛkïí¬»DÁ€À‰)Þ§W]©ù q*¤ЄmY áÕ”hÕë)¦ÑÈeý0Ržb¯÷©‡0-[~†Ö[ªe๔vÞmW¿®Sǯû­wåY¹Òð%™O{³lùxÌåÔ‘ ª4oUå6ÿlòwüC9ÄŠKﵫXOèà-ìÊë“&ZàÿX‡*ÕrôÔu|¡½{€å~Ðñÿ=äGð¿a+Å/oOóâvá…ÖÛƒ2ÿlɟЮ–_Hc_o6šôã—\KG£yü«±žÞ­äèç›-íïàø¾$7¥Ê*—|÷”“FɲÇ\żÎAðUYÇvç”¶_rä5—hh2 ¡+ø²‰9Kû…vðBÛ}¡ŠopWT#Õ&2Dw‚Þ¹4ƒ¬Åɸq;L†âKÁ$̯ï̯‘2´éó!é˧ëÏ’þ$l{‚m+¼´’Ú ’²³FK *ôrƒ«/-SS‰T ¡%˜‹î6sçÒöÞf¬-6{Œ; –Üe]‰Û+A"£05·§ø§š¤žãs>ŒRùKá\gÙ‡Þ€²-ýõÕîù_Éf PæˆÃù‹–·ËᔽXMPñ ˺˜âdª$6@Y¢3Ÿ³~_呹"1ÅZÙíE„½6¬`³ÆrëX¹+9™t8¥Í… NëÁz»= A}“ÜébØï?ãzÇúZ*ã\´òýìZRÎ ÷¦'ðUîf@àÛÞýŽO¤µÛ„$2&.XªËðÙ ÆÕñUéEPÀþdÍãw½ZaÖì±x*Y4û}œŽ¢(±òÌNA‡ÏV½¯‘j9úåíÕæ*–>ÙñyñØ6Öß8x$“àÑ?IÃÿV© *!aò÷c𦨄÷~Ì BSänÅ^°·ë0¾_µžJŃ.³-ôÕ­ÎܶkÛ”{CîÖT’œ„•õKîÞ¾Ù;^ÉŒ½3¯†»îílnG9 ¶‡Ø!û#‹3 9LÚT¶ÒºQöƒþõL˜*SlŠdH;¡b(Ì™y@ÜC’[Ñ?sOïÔé_‚~R5»UA«Âl·OA¥!±ŠÂK‚e§‘*\U©j¦r3¹4ýô8BùZtƒŒê-ªZÉ!]è!îqasŒ@ïÓÉNÚD›¥–ßRâ‚ìË}Uc"G^“’BüÕæ:Œµ®Çzqß ¹i¡i>`Mvʧ˦ÿM&æ@hÝÃ{`wxu ÄPHáA™²¨Q21}=ôrŠíþ]žÝflæ-Y73 HEïÕÊ_¶)Xé+ Y† <*v,°ƒäm§v0µ‰n€ÉOuº`±ó{qÇbé9 "Ð(Oû¹ A}ǃú¼qˆyþ}Rð>rïïÈ¥¼Œ#Ȱ9!ÜLÑ^ªa-2¨véDú.p­Go&¿›á…݃L®§ÏyýTŸ²šÛG,­`´ÓÓãl…ñò*ÆZÔ£¬…üèk®éEXI\gñùÜ™•ÔÕþ¼“L@f` ØgpÁ%ĉä°M:‰c!É…Ïœ>ƒüÍÖêLêרõ{D†¬‹—KžÊޡܦ›ÃÜ%R™Aüçx9K Òáæ^.i¡íaÚs¾Ýò'’ßOaçై·>á-u™¶c!Äb¸äÐòÆj3‚@¦tg…4+ ÜWHI„Š•æz)æB˜Ë¡Ñ(16Ò?2sï)Uúà\ó3™ á\ç ]¥H3æ«xª—Î\çE>!¬eÑœË(ÈáLæ|»YAÿ’Â@n³|AÈ–bN¾’”º„µHå¥$Œ ãAÂðŸÞ‚„ñ K¤ÛÒy}‡+?‰ñøNyû³ÿæü½Uaƹ¾ÆþdcÆ,¼ßþ†½ÏÏßn^mÊN@îìÿ¬Œ|+ÊÈéÇc¨’SŠÝ°¥ Fw‹\Ä>+ÞpÙððbÏ©¢Ç|ƒódòõúiÑÂ!½Þn}]fö$™Í×(qÖ¶R`µ)™T䉥ÉÕ&Ç+âÔ&¤I(ºµ"í†6ÿYÁi?ðÆEyãz\¾­ 0Èùœ±C0räY.·dº×Œ¢ËÅhäœBHèÃ:·+Søf¸Ydó†b…XT# ò¦ÊìÜ‘sø\jd)†QöúH^3ì§b‰»ùJïfŽ)u¦ºä&2‡ž?Ò:—ÂGÄ©¼+r–WO îE{ùölòís»÷ˆ[ðð'GœÝ¾ˆ9ÄžýÒü}DÜågkÓyE{ýxMCQR÷º]ÞåþžóYi-¬GÛ~_Fëê"ª¿Ù<‘瀺ˆÊo®ëù¶ Ô¹ó½—Ü›ýFQëéŸüø7¾¿ãßθˆÃú|8pÙéäzÝl0Á¢o Õ8ÃOQ×9©]"\oÊt©6€¬±³9Û5Oˆ8ܽð|ýùÊ$NY3}£±±k|{Ä®q¯ˆ]¨Kw¿ñ%ŽÈ§Ø{U™¾\Ø™UÆÌZúÙcÜ«èš"kj ˜Ùî…ÎØÚcè ¶¾=ÃìOÃìgu¾7V÷–L?÷6£Hì}æÇÞKO„›ßÏêÚ«]<€Dܜۋ2Ü¢({i½hü½{îÀ?\]=.ƒ¿è¦¾Ò›šcB=¼ãüä&Í„›8O~‡ä‹úìrÛÙ)â¶#æóÜ‹8ïÌÚOa08æÄ3»¹m£ˆWi‰£øø4ìIÌÙ¸¹‚î¯þœ!÷3Y”|Ù±£­‹38ß‚úÖ‚î_Òo– Êï ØˆÛ³3ÛoüIƒîç"ÍÂîa]Eãî›w:ÏæzCþcÅÝŸÂÓbh£`à} ô÷4ò~ËQÒ_ß?¥û&#î]ü9t‡b|Þé#Aê]Àfžgãqgt­à¨·w6ö6*ÁÀ§Õf‹2SÔꯚ'š;ü_6üàlìü^Ô6éÿür™—‘7n4IŸÙVWåê9o´ÅçÀ/ß|L[Ùd:ˆáÕ¤w $Û¤PÂLÅœ Þ|„+Õ÷¿´Œ.®µ|Ò2·Ô>[8Š ´÷öìíüË}ÓŸ~`óÛúöÆÖãvk÷q÷C6þ´q±Ü16áótg‡~>{ú”~nnñßô¨²ù_øl>«ìl>Ùú¯ÍÊÎVåé‰ÍåN#þ™Ž'@mÅ]vFãÎåpœz^»X2\îÇñ¸}Rk½;nŸ0ü”}vZ¯ÛF…Q?¬ŸÝÀ¿j®s}]TÏy+º£܃b4D+%øcŒ©=»Và5MôzŸ6ð0gƒ»,+›ïv8èuD-ý–õ³kº2›ÕWâ`ÒÝØ4‡Ÿ²Ë3¼ìô)ÝØm ¦°¡Õчé%0cøN‘Òæñþ«ý–CG`r}´,¹jÝ›é¶:u®‹ö  *‰UM öÞÔöÅak·Þ®¿k Š¡¡QWñ2ª•xtlaFÆ_§£«á˜ò«¼àO›¤ÜôÆÄ`‡ý)åQ¶ª#F¾ñõx’]"Tá~É(ÙïÓ¾£xæ* ùH_­Œ_|þ˜2ø®7X%hýìz½©8^Ü‚÷ôoMtà-~  âàÖ’3>ÆÔ.'^j´¿Š«ÎhÒƒY]õ> ‰ÇÞFX*q0ÉFç; =08ö2S ¹è „\“™ò qÓ>€ÿN¬iÒ´ÅU6ºœNh‘rêe´þÅtЛˆþð3”G½3Y?z¢½ºržnðjx0Nˆ‡ëÈzšûO~…ݨkp@K(i<²vVímSbQ©7€Ý]Qfó€8­Á”Ð?²¹eÑÛÈ6Ê„ÃQ—_’“S¹­Õ ïo/Ħœmé<ƒ3×úá8nÞܼ%ÓÙÝðœÔDjrlk.U¨Ð”‚ÓÔÁ£YÝ@”ÈM VÓ1#½Ãß5OLâöù0ÓY†4@üV_znÄx0–¾F'¬â6zÿé°KiN¸ºz°zò½G(¨EI lLIØ} PÆ„j¨{+°ý¬ÓÅód aÛašµÁ=d/;_J€Œìéõ¯@«hYQš8*c8»]<üè¤kË.ìãÐá9‡?Ù]ÐÁ÷àsglƒ.Ó |“(jOÍ»vĨ•Íf↦l_"Hn6Š,ÀÇÓõø™\·KM¤eïõN×–°Óµ î)²Ó8ŸÈNÛÀtŸcâ­sA.¦}ZýÂÏô‚YÝz—×[‡]êHŠPêâõÑë÷³€æä“a÷ò7¯—fÄë•{dϾÀYê_“»®C~#§‹?˜ì,ZŒ÷M?›d]ö2“è»ê9ì@ ÜeØ÷"=Nû]:•–K¼è‹e|l¶eÿ à=©¼¦g’²˜Œý÷Çû­fõÀš7°Ç­—eþ |ÚûýVí ª;4=×ÑѰå\¼œÎù>²¹—V½Ù®ïšŽAŠô²ÿ%;‡}ÖÏDÎu¦¹ µ†ãlÌP'ÆÛ¾s Û1"Æ@ ƧÂm›(5n†r­Ä0匥5ˆxŠò›lùM€öa XÙ=ÐÝ(Õv'l[+Úö™+š%â ÍýÈ”I0æ}Á˜y:Ž×} )Š:ý+°«`‡ ó]Îi!fÅ€_¶Ž±¢ ›#œ™{g\=õý#3uKïÕVH§ ¸sJî«×®Òÿ²{[\Oõ„ÔF智”bHÀYKú°;Q'LÝqù„Ä6#ñ%·¦lpn¡ÙÉÐìdƒ{‚Ý­ü$zÞ- ÁAÓAÐÊWrÄKÌ s¹´n~s€Ÿ|n#I¡Ú‘Nã—·ße.*@lx|kC9Í{bGž7ÛÑÓã ÙUbO œÕ[ÍŸh©GêøÉ)’‹NQ»Ísw¢¹R&é%¸BC»‘ôTÒ"s¥KuâÛšþM7ÝzŽL<œ­ŸàO¸«>dNR ñô*EåJGÙ2úÁÖì>qÚˆ¦=´å½.áv+¿¶÷L_W6ÜÖc?ÇÄu+Q½ÿQHþDl²óPÛ¹ ·Ý¼Ve³~ ^޲~)ûÙµ’LòÉ­| ¤£X4û]îîoäR{¾½ª¶b ¿À_ÊOôw+NÓ—pT> ‡]4 ¢¿AŽˆÔ‰ñG2H}  &T“;Êqð $å@¬bÒrUèXŽp¿O³Ñ5iÆcš»?ÙB¶c£§@ëNÿ|Šs‘pŒqë4˜Dy‰°v7“0«…:6ý!Î1Ök%D6 Áá‘èC¦wr2” Edƒµðæ²E妖Og[7}:ÝhÛ':oµ¡Ø¾¨N¤Ô޵úqøÎÚ f¶´Ï«:§d<‡ íaÌ›Ÿ¡vâeÓk;c• ª}F½+eMâÀf¿NµŠRr7BÓW¾@K7’j£b®bT;}ËWAÎoì; ܽ„;¿±¹·I/c(þáhAÕÈÃs´Í’ŽØüàÝ«ú®c–G'û­¿—1Öá¤*´ùg“¼ãíµÚ¹~ðŸ˜ù£,š»'øùf+¯›f‹<µ[ok9êpr#VŽÍû‡måaœÜNR¶ç£ÒÞIƒüƒ£ñy-ötèË2=GYfŒ+s¬!ý8"ƒ>…ðå@ƒ]©Ë2ä¡,COË2Ýÿ<⿵¼"»I—½´ˆÇ@ åÛp¼rì ÕýæiŒªÝ×´žæ«ý4üh˜²ì®ì7 W±€ã¡(àÍQë8 –ù| :F)­Gu< èXèòÐä_ ŸÙ€'´feŒCÑÐ~¡¼Ðv_¨âÜÕÆ»Ö7²ž¿ :xçvÐ ^h:/œºsÄSêMò´¾Ñöú³<5³<µfyú.ìÁæi3|Ú'Sd“J=Ö+VjtuØh¾;Þ(À2¿¾3¿æ¹+¦cg}æWÓñ)vŒøG¶¤^¬6÷ÔlÒS<`ù3Ûþû3œr"^2އM#gnOö'ضÂ@()´å•ʇyþvl½×#B^vÈóÝöÞæcš³çzÓã¾9šóV¬S Í[Ïñ9“©s?vmË>ô”qÿj¢¼þ*±3íeLP‰ï\§²F&ã€& üs5æÐÈ('ÿœõûŠ7ç 2íe·™Ä°µÍ ó”;ÖÎúÃóßXLÀˆ,^JæÔrÄ»öûÃÏ”ÇIߣeœ‹¶HKÏ4Ã=²w’Þæ3Üd^ÌŠ¸ßɪ¾û€¼ã´ÓLóx²vÔ1®Žïv/ÞŽ ’¾³/‰§eéåµ÷¨Ì ¦Ç] ŒòBÊdf“≗ÙHOÞ©{*ÜŒº=I'Ùªö©(5Â$ÄMž¨,}ê÷nƒµ)ÖDsU-µÂK†£õ„ŽK^ÏÏ•Ed9g"1Щܿâ«yzó¾Kͧ©æCƒF‡•À³)4¦•øxé9bÚ "wžþT‰¥Ã©ÚuÔ“3®’âĨB v°6}êm;zûĺƒNgãÔV>N½{$}hÒèE<ÿ<Ø•B!Õ­—þÀ Ü^—Ä8›.s6lÆ~ÄF+€®7ÂÖÔ˜ÅGÔHwTéb桜ƒ£X\m_kÀÔm./>7®VÓyG„ª9TYÉ&é†3µ?`ñ7Å©öM(ö}?<í¹ýNþÙi?z÷óí‘"¸ ¸ »i«íœ×–‚›é*ÙBe.Œ›ïpS|¸yÉ7ÂþöEnçiáSñÀí<—ô°·{\në°TçânžåŸ•êWçn‹‰ÆÃ‘¸×¸9›»ù¡0n~%îæ7ÿ<äúö¸›ê|ÜÍ…OÅ}ãnŽËŸç¸,ó°ÄÓ.G’¬’­gÏGg‚î´ã ®-^\ÇEÏ|›fŽù4{ò…$„”I¨§‡%Òë{Ìì’¶¹Ìarp¬‘¿Ù†Í7ÆâÓÉ;×Ú¿@ò±sÍ©ˆYjáS1ŸAª8ªûxn|îµåÖ«ÅIm Yn ˆ'•Iº|lžPböëSù§øàèVM·\W²0îùT¥QÌtk{íÌoºmÌ8·þ$#G·q›FÛ‚Ì“ã8TÀh›ƒNäPX¢(ŒWó°H‹tpTT”·qîa&¢ÞOSc–°Þì¢ËlÔ»‘õ ër¨Íàœúkñ¢>Y§ÕsclÓm>Êš®H¸l}¾\žI»oB·ïûáiÏEîw “ûöÃßÏ)„±«9ÔÅ0´€7Cß=`¨ûù^0ô^q*Qv뇢ˆ÷æ<ÏÃqÁÏÃqùoê\<γÂ<Î,­ÿ-‰Ð§Á‰¼:(G"wØû‚¡̸…yœ ÅÏ÷‚¡÷’hßSÇùñæ<ÎÃqÁÏÃqùFn9͸x>>Œ²ÎÄ:s›r·oÊuãç±SβÁäbXÞa2$i¾é,bY6ÓÜé(SîÉ|¦ÜB'qñ“q3SnÝS®÷w|\Ù¿ÕUN ? WŽúç@nlÌwA[战`up÷vbŠ^eǹK=àÉšQêAÇ´Çg™WâhÚ;ÿMÆPcÆ¡«áxÜ;ëgÎ|>MG³¥ÎãU†IFÏ?bjæóá`<騹.ö1¯gé Úz²Jä ʳQ2¯`^øßcl*_•E-_P‚žÇ:¡‹œæã¡Še˜'Re-Ãé„ÊôŒ°Šø‡¬3É]ýSÏóÅð›¯öaô†¦*Ïýž)eI s„[»DÞ¤LBŒS~L?awRñð"R““Ù¨ ™î´Üâ— Gü2 7ZåÑÉ:<2˜>ä몔ÀM{Áï˜ÖŠÂ2¥ä¦.ãWÇSUšË.Ús9ÄTÅØˆn;Ù¬,ó‰²îô<Ó±Êd¥ùòÒʘ!¬´ O^S¼¬øT$Œµw/ÕÙ¡ö…ãìÝfÍDÞkL¸`U&ŠO>®ž¸{.¿—ÉáèùšˆÌTyËT_­¶ü‡‘êÃM]{¸™_y˜\$KV™Ú¼¦A½xAÞºW7Xͯ˜±ˆ@«?ü,|gá—ÆŠÈMähè»&7ï­2Þ54óÈ-¾…7UI~OÚ‘§‡r7Ž¢/XÛu߯šÎõ†é6Z˜çcvÑèkÛ”+hîÖ7èò Ž»U¡s÷Î+Èì³¹Å GcZ1‹^›·ã9Ò‚hý"U® ›{#¬7Æá¸º©ysˆe¾_¬Ä/LìWº¶ö¾ ÐaÚæ¹ÀNÔÀ4@ЈÔ",´Ýãì!g“±óæN”@¢ËVÊ}Ú¿}¼¼:b>òrsffM“HOÎô tJV'ËW»¨_¤ùÞ¨•²þéíƒ]Çä,ÄUãÄ·W×xñQ]ÊQ¹”Ð÷…Sdp÷ðï°æ—|,SÕ~„¯r„,’ Äí¡™{-zõªª°‰ýIÖ ˜}µj±tâò¨ä•vŒõ@oÔŽ¸ þ¨ÿasÿx¥õVì–ñge«1`÷8GÀý–75!ÉCý„*2â5wv[Âß¶œo£ÓB&†„Y‹9o´’oÑ'9Í%,¦¹¬¥„Q¤Ô7±©Ñ0 ÏNBj²Þ$!*6›™³Rr¡YIÀ¼5ÙÃj¬ýlÎRÌ`.E„F7™91<&n~ŠÏÅYÍ¥\“ñn!Ñ;‰)ÿãò¡X]59{E„O",gÕb&”63vYeiUwk•ÑãÅVýJ±AGQþS,mg)(Jíì­nnØŒ8|"qHÒ|¾(Àê‹Bܾˆ2ü ÕŠÂ}ǃ{® ¢R@ˆŠ>[Tp¤Àpll.¦¡îü3 ¦Èu¦M1HÀaâæÀ¶<`áY¤äçð½Y¬¼˜‹›G Gzˆñó !v’¥ ®~Sýë±ô’M/¸Î)˜¯©'„ïÕOò¡ß˜ö'½«þµ$½È2Äyc ÓH Ê\؃¤®l Ýš8á[ … R° §ñ”±*¾C{ï0<±Ž.i™Ã‰ó2”Ý\¨üÉëuDbÉÅ ( k4°ò0Z@ð™%á»æ>)zê¬è™µ…"u+Ë vv{ÙôD71{[>33{)0´µN£Ðð;ƒ¾k×›'ûán%yÛú ª[-.àDÕhâ+Þ°…0].Úz y±µ‘£Wû–oÑBóU‘óÜž9làL%dÑå‡Í¾Ú•X-Ì\/r6npZf³\í–×Ì3#É/Hä¹HO™çÁíèæŠ¥f1½ëí´KMb,¾#S°žû¦cZt‚j&k€û£fBŃf Q5ï ”YËR~Ê­\è1Ö ¾Óã9gYøè¶òXq»Èy?Ô}RÙ”ë×OñÝš[Pj&†zŸT†w¬2ÜzP~M•áÖ×W&|ÅmI …œŃ”ð K ómñƒt—Ñÿ~7œÿ<7ïìСí¡1_šQÔR÷Z#à9碇ößþDwÜ? £.ýlçЫŷgîç,µt’oܰ-'1ˆ¸‰×¬¸±iCÜÔº!r þôÈPȦ!Œ0TÄz!fš'D¾Vß/_y/fhãEŽB^ÖÉ‹‚Œ¶˜Ík‹%hlÅò8oqƒ»^ÄœAçàÂÅlFÜ# ¬$ÇcT,“+W³Z«ÌT`Š"̹X&N,…U _Û"ŸaxvQŒmE9w1¯K©X’_ÌáXZ|Gæ FsÇCÒŠœ­yÈÂrÔöb)š{±l彸¡þ> Ìè«Ø`± NX,æ¤*P;‹\U µ?ZUÏ"¥}N@| *f‘¯e>)î™äÇÕï6\Ýnà>>¡NWœà'1¹Aäóz7ÕŒŠ\å¨Xm‹Ù|‹îFQ½š¸{.g¶±Ö‰µµ¸›[ƒ’ÏÕð´þä\û/ù˱¿V€Bw5E÷ùs#©ˆrY‹9‹êMÅÍÄ)÷R9YH{ç< TQP‡ZøÚð!êÝï‘kªÎC d•’ÞÌÅX%µ q=`>RšB‘PŠ  Æ’‹[Ü\8ÃÕÙ÷–ž­$:ö5Ô‚y,R¨ÜZK1xCgQÄIXHÝfýD©êNRª:QT[z ›PºÀe-¿˜ó6ŸRˆQ¾žXs¿Á’Ò³\æ‚—ϽÍõò7÷LB(¨å=¹-oÁ•ó Zš–÷ÄÒò–ƒŠò¹7‹Moä“Ôô"Òb}¾Vf®MÄû‡±f.S 1޾´¥˜? ¥æÆn¨¹^ KÖ\Ï'sÑ3á9ÿ‰ÃºóŸ¹|‘ësSƒÁ­Ÿžûc08ñÜÜã$$¬m¼É‹ˆÔ ¿÷…(Ìb,Íܹóø³LKÄÉ7e‰p®ÀÀ‘feóP.áÆ¿ØrÃlƒ1\)¤DSšÖðɃ}åžHO9“x°¯|‹²Äƒ}ÅYÛƒ}%ÎïÙ¾RŒ·Ïõñ™+çrV¹œúbé£ÅhØ}0;ô\Ïë£è†-ÈgGMWE¹ {`º*RÁ´°íªý(G‚M$ñw`Üš•ÇGÜ÷ù [70kÝÈ€3·Éå¶•"ÖÙf—÷øj,!·c yðwÿzVx°š¸ /ø+.¼@Üž·g»¸%ûïÃn1ïÁ™Ç^± kÅ¢1»â–‚–m˜k—hy˜ƒ*Ä©Ê7ùð=ÙÂfšù{ÂÍçLâA3?—Ø3WšÈsfÚE’íˆeJ:"šr'>³o‚ë/|yÝÜ"°h¢q?m ®/ÞÉ<¾ cAáôâ~˜ –ÁR/×Zðgä”—f/(¼gË4ÌÓÁÌ”9Õ%¤Ìy–oh¨ÎJ™Ó¸)sˆ@>äÍ ?’¼97C¾ãBÎ$GRñÌ›ŠgŒ²Y6ù÷<¢[ãÁ©J}RñÜŽb9f‡D<÷”WHÄ3§ü¾¼D<ËóÏWGËë¡°::’ˆ‡/ëLB<ÿöÞ½­­ÙÝ÷§Ð™}žƒmŒƒ Iw§;óHB‚ Ø@g2ϼ} ,'Æ&¾ä2ï¼û³ŸºHZº./C.í5Ó1ö’J·’Tª*ýª.®FÃkø`q+œð4KNñ3¯4â?²º xeŠV+±ÊI–W¬Zùª[mûq}ÕçÕKçíæÙ‡=˜ô›P¾®0‚ÜßçÃú%·ú3Œt{õç]b}=è (ÈyV@Ayµ òŸež#¾ô ŒJ|/Gi«ùÆÎ«‹~¹ ‚i¿Á3Ø {(ú|ƒ óŒ6¯°‡DeýáÿèŒ[ayÏ·c#Ya}ì¡Û_Âw¾UãKà.À·e|‰W!‹ë©úÇ`Hy«²B8ZYVV£•Õhe5ZY~«Ñ­O+Ü#ëùöï1¬p2Íq9p~Ím[÷èÎ v ã}óƺøÑ‚­.-Ü›ìÿ]8ä¯,;~ý5,;+<¥ž’zVxJ+<%z¾ÛÓÕ Oé>ñ”V6”oȆâg^™"VÇ‘ïË‘} IçË ÙI×ì»8¬VÈNáÎúVÍ!+d'÷ùö-"+d§ÜÈNÞY±)*'Ñl÷O•ö/î ÔÅÛîX\GèÉÖŸ^Æì‚7~Wp«ä©¥¢ÿ…R§¼leqÕÁitÄ'Í)v>¼MÄÁ±}°…ÞUJ'h é~ìöúÝó~bõºÔïUè`FEž ‰Ì'èI¡å; 6³P[ ÇÌ5Ž¡¦é×55Ñ”Žg2j­”žƒ›1¥¢:g[`æQ‘äÔêkÝóáGà‹¸¼ÏŠ|œQM˜š»ðKUôõÀÑWVG_áõ\•…ŸÀÑZÆËV\ä• MõEs†1{è”þ¢yký…X– CµÂ<óh¹0Û?xÖÈн‘§wãºöà¡Æîæù<ŸÑ ‡=S-ÉÛc̘ïúòCŠåóïÚ¶æy憫=èí~™û/ë‰#›¯ÚNgH<9¶Þ[éâ`K¼Æp3ê¨ÂãôIhÎôIpÀ²´||:c“¬el’§OÈGÍjÎxò syñ‡»Q{µ7qÒsÄáf>§ûÛyÜGcص‘Ã=ê°E‘|ï›3|ïµUŒ¬fÌÐ2Ûçùiëe܃~"–‡nps9ÍmÞSc½¥Wdûú˜•§:rA V?TºQyÙÙЧØ«b²›»@¾ åŸ-ÔŠr­ìM–‹Rñ'õ̽|¶”»”-<ÜBXêÌ8 4êÿ¶EàˆßLÐ.â‹!6`LœÌ i:g´×UQ3PjfGv^Òð‚¨vp¬†7(¥Ý‘&²½²Ï"ÇQCä:mˆàCñ[Þ~ßvú=ó"‚§Ÿçõº•ГÔqJQâ…«ã?˜£+ ý¾êÌB3Ë+ÅWóëSG [ó÷ã7-ró¾} ÞòÌpˆù›„œMbð,Ÿ“à‚Osãì„f:Gät Ÿ­é㇮tft¿öi‹;Ù[]‰òGhf‹˜ï*®åÖº²ã0ÃÀx4ò-ö(†‡h÷PlmŠ}ªi¡'q',Ø4-›û­‚hmì#³l”épV:ôIîêÆ°Î>¡ÇTûRA•ÛÿT–ex¼çóa~jÔÛ§‘ǿɮ0— ÝnyØ:Ùoî…¯‡•9·ôuëñÄWÜbsq8®ú-KësIâ'·cÒw½æêºEÕuGÚ!(.­ý~¶¯·FÁ(ær»´·ÀÔ +´æ]q¶½¨ÍÉ63¦¥½ÊÐ#“új+[}ÕY“øw¬ÅšŠb¥ÉZi²Vš¬•&Ë*àÛÑd¦W¿ºç·VbÅœ{E~3ð©6Ï<ÚFïó­´U_U[uºxúTXÊÏé[“·c•7}¢í•÷Ñ~-¨Tüñ4a™HB^f†. çfç…ܸ  ¾‘sPä"[T“­Ìwí«ªC÷ØQ+:^™+µb¦Z1ªWÜ^éÃu¿[½âö××+Æ4îFêÏåš)¾Uiÿ/,ëÏ7p+?(ã/¢øýAä÷Ûh\h<ÿ2§úF‡8€‡)¢6MÚµS‹ž§É´–ÿæî¥øÿ5í¹à"îË`qj²ì‹|ל0XtÂ×T„uïqZövn?ÜN {(ëö¾¸âÖF ± ì˜)í^Š=K/Ò(|yì"oÙœåekÚŠݸ˜;Êi„J.qYÌ–˜Åô¬byò³Xlšåý9‡0-fËÓs³\DEn<åvy$r±LÆXŠ|.Þ¹Å|¨q±)—CVyÅu1¯©X’^ÌáIšD¾%|ê|HhYl–)öÖƒ“­ŒËÖÇ‹»êæ`Ò2²XŠ_ŽXL£,P*‹åº«Š¥x¬Š˜vyÚb~r˜ÐqT‹œŒ:|! ãÛipMÍ­ `ô­ã/U´Ë«Vß–HgÇnÈ#»¥ÇÓfU.¡(7;Ïݧ®4Æú ÊC.LÁÑó äØsG; c ðs+«Êgßw´Ã¼úÖ9 |óë\ENµë"q $¸Ì¼À‹Lد,YÝ1Þl†ïó¯@q{Uÿb@6â›RõgIf1L8!¾º 'àøÆM·`וÜ"rk,œ,ß¼ çŽ,3quêKÀÕù97®N=hh}“¸:­uhÁ \Çþ"à:·:T|¶‚ŒJÜæp±‚ìY²g.Î2E6ù=÷i¬µr—²žjÏ×Q=çÔöÏ; _IÛ¿BðÁg…àsgJéY>¸ŽûZé幆ß‚OºIÓr¶ç(#ÇD;«.®FÃkø˜Uæi¶€ãg_éÆpñuQ©Ì”ÈVÒ˜—,¯4¶r^·ÚöÃ9¯gÈ{õoX£ýí8µs~mo…%´$,¡_rc Ý&õ±„¾‚Ju(ä<+@¡8— ²ÂpÜCÖr*OÛœ-;flmÙ;Ú¬ÌÞ¿ìsFŽ…´?„tîfÕŠ™Ûs/™: g1ˆS ¬9Œ_ûWƒÒe2î¤%‰ô,Í .o^–C 2 ZÖhD5K‹ z±…¼µÐB>÷0÷h·ÌñŠœ/ÃõÊ1— ÛÓ!›)°øësx µ±lSò [æAÈÉià܆K„U¡ËÕÉÊåÉ̾’›?Í”3—È)×OóLlèekÒº4æqYÆÎÅÜB–93{xöT4»8(ݶó®A­{,<Éýð¯-¶:7­Êa»¢ØÜ­R«í›Ò xËpòÍØr«J: •´XPTÞPQœÞ/« *­Ã“Šš·•zk·büH¬c¶™|ïJ±]9~ ¼"ÄDxÒ%3ß¾•ØmY]nÜØ{¸Èž."°çÕ• næÓ®BÁ!Ê^¾Õ‘™½z,q`òx=.6,÷ÞáA¼ïu*dûÝûÜ?^Ú¿è¯ÜXعÞâªÛëCáxp1|Làô(¥Ðé@ýp)ÆÓ›d¤Æm,i(WQ{ÜÜo5[Æ1'%Ö²ÒÚ«lª9¨«Fo÷*ÏN*5ï<»‡âá¦ØÇ#'t(QÞð-²OÖ«@â‰þ¶¿·Qå®r['û­Ó=¯kÜúÄëóˆë£+C£²1w嬓3X§ƒË¡_€¬Œ Ód\$ãqwôÅîïÎÎAeï¸R öw½Õnb7öŸµN›Îö§Õæ;ÀÇÏÖÄ '.Sf9ÔòŽú’ÿ\ks¯Ð˪ÓFÕ˜%ÙJ}Ù†Pí¨6ÀæAþÚpâ»í¡%Ôé–=äðc;™LG1¼™ô®aO-’ʨ\MW.’'D³þêöKýª½wrÚN·æ=X¿‡W¨£éœíšëÖOÿµzæ{ú]Ž÷[•ÚƒN{çÁå›düñ]åj©elÂóh{›>~ôˆ>7kü}³º]}¸½ù_Ux6®VnÕþ ~Ûúyû¿ÄæRky¦ã ˆâ¿®»£q÷z8Ž¥ƒdWËí–oâá©Ó9m´OaŸÙãIõ¢€ŽîuöŒgø*÷´Þ9SÒàÿX`q€g¤<áÅDž#m” qPé¥ QKDĈ1y8²$ì<šÔÎp0õÎÉ?þü‹xÝïNÞÅîèº{ËÅämûc ˜|Á_^wߌ’s)"ôrÒåuo$Î’qÒïéÜO“Ñ`ª(t“‰xÞ…³¸ND¨5ü˜\ŸãeûÍÍ_ò´&Þ8ÙO½±èŠñðjò©;JÎ]¨‚¸ ?ö.¹ÙØÄ Öø$ `óO@J3ë¤ßrö ×dô>é'_ÊÆÛa8ê‚4±› hGÔª?“ËJEÖëä-TGÖ¬?BF$ÐÙÖ¬§ãY­Ô¶Êâ„iê­ õIÍœ’ZÖï@ZÁüÚQeLî+oAJïÝ‹‹)éZì×@…z:!Pñg»eqDÿÓ¿…çå—Å úÛ‚4ÇÃþT¥‡ñ"Iôc·?¥>=ï'@þùgØúÝëóË®hŠÏeñ?Òß>“mD<‡"þ.6+z›Úøï ÑY Ö—úèÍô:LÆøc*‹5öwöOðïÖaKÉxû­“½g{mù÷ÓC9ãh*ÉI„»5|S’ÛÎóz»¾s²×.U½‰kU§>u¿Dj³{xÚ8ØGí½ýÎþa ïJRÁ%枀é+ßËŽ&o‡8Ks·©TÈÿg6%JiÒâ^ÔÀê@ƒdôäÆ%È>¶ùrþ ˜a×úåT+3!!:¢ã¯H$뮌vŽø–ÞþÉ]O§PeXJv“ œKÇ—ýÁmX £m-‹q¨†çkg ˜õ—Ó ZÀ^t/†ç=qÓ喝£!¯.cnšþJ-ê]ßp1!rµÃs|M¯N}‹¶ú¨;z/þYýWEì¨ .ºãKž.“ÑUøIm<²*ÝÁ›>¬æ]Ëáeïªäå»É¨;£ÚD¯€¼ñýsû_ØÊé8¹¬ˆ£ÞÇ!Ôk‚+è›/ø#õÈä“dtñJá1¼LD»÷ªXû—lr[*Œ\…/¾¨ú¥‘z„Ç j|cyü!/ôHˆZ+®ª º€ýúfÚ…vNÞê ü7ä c7¹¾NúÌerßþçÖ¿*Š .†ƒK^PSÚ“'o»h#´ùÆlW²Ç#r5í÷”øžÆIA=pSLzÝ>ìGõÏÿ½ûçÉÿï»77ÝB½´[T+ÿR¡êK¦'F/ºâ>>O€snXÖ\$Ü]]Ž3xix‘\NG¼ï^¼í%ÑqEµ‡©­y‹ƒ})Ô>¬C^?Ô]õ°üè_¼4ô&²ºâ=<Ð¥z‹çNáɯ¶êþÌ}Ü^ÃhLT=€нƮ…ÑÉú=T€6Éžý«H¦ûfmvXÚ‰eߤ³hdŒ›Þ×»4ot1ÐcÐã9Y}˜çÐ3<{å C*Q§­Ý½öÓƒÃ?È%gòÏ"MÆäódõ A—ô-qäeÂkiïßÛr™Ðãæ Mj/3ú—/mÖR¾¹j UèÇ4Ï´LsÙ{Ó›Œåú¦¥Y˜îâ†ß-ñ¶À¢lY쌆ÐU]†òäØ ¬eñ,Aæú"¥ð6š—à5§ø«.åøµj=¯ÐÂõX<Å5ŽVGc‰£V_~t¯¡8©ˆªÈ]¯³_oнmÃxÝ››~„Š!ü]}( Õ_݆éss_Õ6ª?ocvX‚ÄQÿ߬ÀD§ué1l¾ÃA²1&ÉW-‘J,$I•¼’Á„»>9²ü¿+×!5’#·ú‹ü ®—³®ü&UþYù­‡¿nlý\¥Êoý óëÓËŠ’Ǫâ0[Þ/‘s¯‡£$å rÝ9nXÊ_WxÄ‹}5Wô‚/)¥ƒAnߊ£àæÖ›B3ÌnØsºÔ]7C˜(0O±'“Iï"ØVë¡Öÿ¬†„ûj­V£z?Lëí5¿•|’ŽéðBW6]ìŒÝwkÑô‰+³õDã!œ0DªN[5à§­íš"#T¨ÃÇ6†PpõѯTåGKªò­ë¼½u~”]çŸ7©Î?›ìÁ‹ôN¶· 0Óƒ£Z¼-QG&uÿÝ97™Ì2VõÙMð¼‡lˆØÔ…ËÁ³v™O}¼î4¦o ÙÞç.r2 ÀRZÌüŸøC§‹~‚âÒ(¹ùº¼/ÎQíù’WzØLiö㦚˜]È‚¤ëÌ%vÚÿ‹}UyK1nù_†SYS}`²êÅïð¼…=R ôNÑ8‹‰ª)îw`ßG‰Mžx&#3qÿ&aÙLøíCiï#’z½ÄÅ„B]F½.Ïæßœœ§ÑœÓ››ÌœÏ¢9Ù¿¡oŸºÊê´¥{á4Ü ‘NùˆÄw²&ñ]ì— ÕΤP0ÅǶõÐ耰ùÏÚ‹±lCŠœÍÀ:]’TưV¯ºØ;_ì> õº×ÇeØd˜yšrÚaœŒ»p†¼‚]tü)InÆ!Ù%Ô8iœI"ýË5ä{ÕãÌ–\ä‚F tV­¨ˆçÐÿ°QAÅ“$Âi)½3|}ÛE/¬ú(Óœ1 õè7Ý–³ÇN[ÏÖÄc+66s½b¾=sèÔO¢¤“-=öÀ4Í3ÚBš-IŽTCjø§áèR6"Øè³1æÈÁʹèMú_ÊОñÖ^>»ë’Öõcg–"¨7èÉó<Þ_ÕÝ¢sÕ,Ñ<ƒNùDÜwæs\`¬Šk•÷|*m¤Žf—ÌqMù»â8©*6³"³ËÃ.ÔNÕrâíìÁ;¸RX·æ%mìhêf>–ÌÂêVa†Ó •ÙÞ«p¯”á0 ©, ¨…nYáŒ;Èf%G\qS~îM,L§ý+–WÐ%ö4~‚íÌLŸ!‰Z"©ó@1dì"š›!T©Ù4ÚõÖ˺©ÇuTª£ÄÓÁý”¤IÌ7fB`‡ç¨°â$¿£7¤OGªULðtx©˜·ünp7å»H,Õu¦2‹4: hÓÅœ³„ˆKvš0TN9–ž(D'•ðìíËçÃ24Š»­^²ÓC½äЍ¸¤ŒOZ0© ´QՊд:ÚËrí:c6i¥;]ÅÐ%—S„ºZu=Li‰ÓBUßÜòá|@k£)†„OC*$!¢ EÑâoØË¦ ) 8£ùa>Cì?ö7t’0[Ö|zv²ð|ÂâRÝ©´E]ö.å ³›B–õ˜ÝÃòvJ‹ 3E©ÍÖGíaÙÓ;5¯c°"ç‰?2ЫRУÅ2@êê ·¯:ÚìØËÍúroÊÆçPA«_õq«XLmFp¢†³v×Uœ]E˜Ø=NrÏ }œp/‘,Œ{¨ äÿÏêúÁ^é´Dí)ý¯“ÿüçψÂðŽþÂZ¡h]±Oƒö2ßš±¦Ï\Àgò[PòŸÍ ŸIqr®¡"æj”$kñUÜÓuZª&CŽ8è‰ iÑwi¹’îá+T÷8¦åj®zã1¬–lIÐÓ#¼¿ÞÜ ²üm"M`ŽP1‘æ É@a*ùW4>ùà<šŽC ÈPJ ¢NGÔ.ˆ•nµN•]O)øƒ“ÚÜŒœÿŽ—6ž_ˆ‚Ï IQI© çJD ¤ÂëîçBµÜTôqŸ#úÚ]p–€è ‡‘/&‹eôìer“ð¹ÛX õH¹íVÑØ—ˆ·p¦}YNN%á?”(—8©Öb—33D°«íNGÒ biÿ±Ó-Â{Ó‹>¬6¤¬AæÍ;H#Sõ"Û‚P°.iç´ön×9¦”h ¡¸¼ñþ¡ú¯,Ï_Ás"ëBÐjŸÜÀÖæXÝ.§‰:ób*^ÖÇhõŒn~Á]ÓÁ×°ñ(@#þío`±U!£G^¤‚z õœÝ›¦Ì¢, ²Í3&”±Nð}&·èúmAÕÇ#UC@å¹]¶vÄUMÎê!%’”9Ïdµe­sŸMÏœ³©j)ddƒÎÒ¹%·ª„íŽbw¿óÄõD¿E ¯ w:ÖZ@2Pffû¨Ú’¥2CêPR•ÊŒÆ(åP¤ö­´öR²Hu!z:›Å_9ö!vRE,ªÁÚ0sê±Ô©yÛj32Õ#™šgE![A'Ä”ÝòîyHg»Œžºƒ#qAxg-k%±×¹ÃI ¹òj!U5œû´ÛLztg«;¯10T¡E_ -Qã1‰€c”YÑ„gZI¬Sk˜Ž'ì¥zü,ƒ…Ñ3>̘Ò}^ZÒ©u •ª\¯’T¤CLDE'” ˇæ_H®ô™ÙÃl¦zžó7¨úþÁak¦+ÞD¥zF]ÿá­LŒëƒf/Ü‘¶H—¾€Xq‘-WÀSÀÅÕYX±¸b¥èÕ»†õ¶ô!¾zɪHÜJ'¼¶â·e·5³¸Œã±Ð'd¥á²å#Z-¿NÛv¶Cur-$áê¤;#Ÿäh¦Æ³Ø„¤bb-`5ùó÷P {÷Äv;…záq¹W,ãÇ»bñ?ÚÀIŽX©èÔî¥ÃáÕ´ÙRŸD AU|ÚK“0!SZ)£ ­7±ÌX0±Ðºç:eW šh‰R_¨Ê)?ð›!4ê ¨M¯á·nÿ˸`¡GØQÜP%tÿ8'r­$7yXÄÆ´.F…Bx†]Ç>ÆŠ&$ÂøŽ‘fÐV)w™~2x§V¨û‘ÓϧûV…G´›pz;á)¨M(°·>›â1./¸Œc-p²ºíwJÑ“Rì±Ñ3ä»ÞT¤++àøtIªƒ~?yK=j’ú;‘š!ÌÓ53µ ËiTØÚ ¬vzr™Z5’fYÃÅ|íÒ2£OÃYë¤ýW¦;âÜ;ÒžqG{!±ÅóúÁÓ²¦NzNþ8”Ùêízsïd¯- ”¢²¹»Y¦ìôí!~Cóièd‡/5ü¢ïê™÷ Z?ööŽ%ð È»µi¶qÛørCFÃêõ££2ý»IÇОzýø˜šU?:¬ó_¢~|X?r¯5öŸ•Õ'Ï÷Nêe±ÓQÂâô;°ÊÑÁ¾}v¨Æáàð=nÿAçlo§LeéA‚2_ºui«„§š{N¡"m‡«éŽLS?­wNÚ°m¦7äÑQ¤ò ñt:¸ }8½âÓ:iï·:û;b·ÞFÛ…•¶Šû-üh`uáo˜»Ìd\Ioº~†•Å[ƒ2½¨Tj¸qPïÄ*º»‹=¿Ûj7k2ÉÞ+˜Ô-èPõøIÌEØ­Ccä[»R줭IåÑ™oÕøëç  S,+¿ôº®3=—ÂxFç¥Äv믎þ̱»sˆŸ»ÀJM¨~üQ?Êj­A‡®[—%Æ,v`!zµ×†rÓ[Ëi†g°·!#àgU·ãEÔÀÞM]U'![cŒl~AÞüB«¶Zç‰Ý½;i‚¶G&z“¨4ÿ¼u£œGV‚º]š®^‚ƒ5 B¡³$=2ËsNþ“2SÞµgkÅM'eG)hh ü’RæÞ"rÜ/6åÓòZ+›r-F¹Ræþ²)ŸÍ¤¼åQn2ÊcCåÙöò6$æ¢*Ð/¨Blf•þУ„ÚyF™ŒçúÙ¯óÙÌJÿ¨´ì=†L"m iQ±ÎZ¢©êe' ªVâͬúŒ!ـɨ3uå€ÒY,æs‹Ù\ú«MÀuhCY<ÊäUsà½÷BM9Ø ÿý¸`ÎÖ£ÝïyÂà…§ ÖXŠ^+‹ Fâ,xÅý÷ã¢8žö.ÞK¿:p|ö”]ΞÃÄ·dg±8PýRtá:‰éÈzcÌôšTûh'D¥ˆÛð åm¬‚¯kª|¤ýýïïþÏø,û¿NDIðyö? ÿ‘¿þç?%þ~ýOŽ,J…¤ ±ÎK:LJÕÎàrcxuÅ.ëÒ1”õa|ûoˆñc»[˜ÏÊ”êò l#ìË.±ýäÒ7^¸R†Á%V~é‚a°1cºyKS»F–ÅÎ(˜šEƒ5lÞ4ÒsJ#ažFWUi‹åÍ,iaàqeŒ¬¼ÿü¿þ“¼Ù}£?I+ºÔèIuˆ7É­¾|œàÉ|¢ˆWÒ½Ežèï'Ú¿hïfÜëkzäã€JE=!sª$$ýË–¦„:Ý«¤Ùô®§×1•Z£ïš4)•ôª«Lݵi‡Ò`¤ÃÚÉðèG´ˆªQ!•L%yVSmÔxˆÒ„(ý‹)J-Íê`–R| úP÷̺¼¸‰ÓáÉÆ£”}Ù°`Lok{(ÑgºÈ8¦®œ´O÷¤Ð¦NíÆïÖô` ßÝ=Ÿb ÁÉöR÷”(LFÝ›äß tûÆlÞ=Õ_~Þ7 gïw¨•‚ßqf9¿‡~ד³s ÎÆ b¡Ö 7å›"f)Udv1ºqnba$ƒãŠØ}…±n=rßä]½ø±Ö0~­²™<žø%PkUo”g Xñ”­¨3Õ€‡„üzƒ >O˜N‰rÛs¥ ‘r0ËÓ:¼¯Ì¦[àæ”$¿¥!ɳÌÊŠ”M£ ÅR[â³ÔMo0­å2ÎÑ%¢ýç6àOv?fê'bj?«q¤¡ãó3ʽ˜1£jw3£np6UW³é¯6›j·šMµ%̦Z|6åš;êzì%JÖTÙº£Íg5UòM•;š)_g¢lÝj¢l-a¢lE&Š LNÇGµ áÍÔ±¢©.ÿ¨ ± 3Ž~#|œé5Ÿ"Îò Ñ™`Æó/ÆGœ{ (F ǶqžýÀÈQ%…8±½ l}4uR¡ÕŸ¼’§!ÝOz¼¶þ¥˜üÔ=’“H[G&Ü¢žh*H#©Lfð•,š¬H9õÓTT¤¨âŽz"¤¸ãI‡z:Y)Xk•ŠÎYõ™9`œTu0MM!õXJÑî„éd/|©çNà÷íÈï#¿?òŸK݉×/ä±-ÔwRÁ‚TN{•Jl”wþGÞYÅ22›åjWzø¯@º0ÀVo¢²‡§ºÇi¨ÎFe «˜ëPÚÿÖ°x‹dlœÜ5ãk>GRÅÀgz×›Ö½žÈ÷èK Ð%­¶N1~ Oç侤ñ„÷ÕÕ‘™Ôƒjƒ“þ Õ@ª$ÿ€4àmNÈ#uê¤Aû!ÎL4ItZETÓо‰cJD ¶¢—…N ÓÒŽIÛ¥ÎÎÉ}S„® ­>èA¿<À|¦ë -R´ÿ—(‰õV¹9Ê—)év@½e;5›Q1ìÛrm„J> Ü%C%Ñ*bã–^ágn…Ÿå¨0­ÐF…ùÍ.õ:5O ì-,§Æ~%ÒÇ™Èè\””c öÐn¦ nŽ„m^ÌsÚšØ9GHö³:ý2ç/Jˆá"KÖJËˬu‹%».lû6*#½Vl|ew±7ä(g©w!ׇŸ6.¾\ Ü[’Š}r#»AÑzh;êM¾TØ•‘pŽ.éÒ%ßs28%‘ÀšMZG¿(ñÚ9Ú‚>è­‘R™–bòZB/¹ŸJˆq¨~ PãÉÔÆD$D¥Ô–8.Ê5¹ºbœSÕâ+åô(A<¦ÔE´ñ¡¯5¶¤nu˜tE–•·ÅÊJv·¡d¼’ 5:‡Úoô{ïQ£ü†Ôëd&å»6E6Õ®'âßvIWêiÂá¼Tèèõ_²ØfiÞs¯)É:0˜@×rµ–ãò²AÖýÖfAüRd¢ ñÁáÁ‘° Æå†^ï–ý;±¯æÂÏt17D8dWmªì!äÐþ@iPÜP¡,dÁú°-t¬Z+ úÊ— Í:6SÛ}´†œu=}Iû¢E}‹=fIôªDu‡ezøw‘ÌdvN„ºTªÉîl¼¤Ÿ3»T·Nòáê5ÒJ7@=bË\'Yˆz,$¥"Ýq*ËŒê—hFîÍãiwÜçý!þ6œî¸ sO[›ÈúP •iÑЙJ*²›«6b_ãXÐÄK5PžŽÍ{.½ÁÇá{žÃ:núï‹Fïq^F€ @0°—CZpBJ2]8ø2òßôœn1°oÊRˆÅךŽU¦`8^‘>Y4SÞDèáòh»,¶K0J©TÉ}ncÅ`…ù@N×ËMT`¼ßc¼Oox»5VŠ‘i!$/+¨VÍøQïS[Ûüã°wkÛl^ØZúÁØÑly…¶† ‡mÄ2͈¼dÂ~Ÿ²3ú,ugŒ¸3. –R`ÄØHM/:ÖBo.ñ…ÏÏö^tΊ抋—yé¡ìª›¶ÿ\›ø?ÄOÑ ‚ ÒÄ;ÿÄ´iÞu•7ÏãåýÌy™ ú_7n þùÙ#J?Ùy?Ëý'¾¨ø?éá’ñ}ÑÙ’ýòšèÌÜ¢ëøw½Z¦ùØM"€ünàñh-F3ý~)}0óž••w:+’Ðë¸fÑ`Ú”š¢,¶Ê:2º_Y¡j[Ã"ð*PÃkv]kÁªÖŒšÖ¸¢µ;¨gÕª'ý³}—­.¡Caôk\M|gìÃCo޼øŒq¿}5©u­PSÄ¥[Zµ4 _dËrìî Ì’±Æ†L–ý€ƒµp¥jót„\GøÂæ³Øœ|á×È$2s˜°zw6NÑA¨­Ëq(Dfµ=“nYÚ¬oÈΉŸ§â;#–3¤8HÍêHì„FÕ_ÝbG§²º,¥èW*âÍPþ¿RIÅ(¾zdk/ù’ý_Ì!ÉCËêþ[]›‘é¸è½îÅ[>¹ÑùpÀ¤RX© -”(BãfÌ7IpH(’P1ßnÄï çü.c¨ô4Ž>ã(Œ' Þ±þÔ]ây¥W<Î[0ä’š”OŒˆˆ™m'5Îva‘;=ó“:Æ$Çá °NîµÍÍM¼%ÇÎ6êeïMŸø’•|È1Ï38´››5¼'…=[–G}÷ Ï?D¡èÐÅ×)QuªÄ¶¼™%)rò—Dë‰E“‡|Ô$?'ð]8­±óÛ}ÊÔ®uË$H ê Ÿä>D”Qx‘Å3%ߘbšÜò`´ò¢oâYšû,”›5fBÚ#oL…–¶¦²¥Ò~óÞ˜êC‹-7®-äFÇÒüà¾"Ž¥ Èð8–ÚMÝ ¼“ºì±ÊâýÐ/%ì”Ò:Ѱ¤iVró3T6Æ%ÙîǤ;1`oNÑCŽ>WUf|¼§äÌëÊ—· ͲǪ¡¨íŽ•¿Þîቑ$MKª¶¬!xïõ¢;' Ñ¥MÐhe![{Ìß }íﲕâO­‡QP;™Ô–ëÑù]ÒÑI BF=Çc°¼³†\‰=§î1¹7âw Ø¡NMToœÛÎ>áéa¸ž‘cn¦Ö©¢©¦Ê¨ÅþUê|nÆþáj¡¢AÅ7a‡Ëý§ÈP¶W ã=@§}Dê^Š¿) /ª5?iù’|þ·t”Ì[P6eô™®ÞúÄ®Þ=“ïØ=` ” g–ŸfòŒ„J±ðmaÃÀ<Î-RO/m&Áš*¼r(9: ×Ó±QÊ~¶V%»-ÁU#u±1­æ*‰³mó¼EÔH©pƒÛQt“H7é K§ð*ZÙ”Mi“qVv™7b¸ò*-èÆB‰ƒoHyŽ5FóŽH½wW t펉¾\¦"[’(™"¡õ¨Õ¿¤{]ä§ÑÞ0óÃ<ˆW>]LeO{g3óùV&vÍõBÛN°î6ù ÝÇê"ê ¬_š+í#¨]Én¾Ýjgx½ Zß^E±ÇyW%Ó¿LñÇ|£—@bÃ}'cýávc¶SY›{ëc¬o­vÇÚ‹ù®Ï&ÒP­`ð–:.¢ÇEíAà5–æ˜O'h{ã`‘~^?QG…Se™Þ< u…‰sûäfdÞˆ³à5@fò?•þÙ>Ù•š>`Ñú ­¥ê¯uéXf¶>"Ë9Ý8béÇZ´wò´F¹üsÝqÆó»[Պ瘿@óC0Ò®V!A3Ô Ìr!1&ÈŸ“ð@JªÛ‰ø†¤ ÙæØ¯„1RL©¨ýGÕ÷pí±hõÇ.û“¤ds1ùa6½aCO€w2‘ÑFšéƒÎtÊijoñÓlÁå¦Ì´ýÉ(ìP`f[ôcG¢,úÚc“Ü)¤;OKr¦Ã}y]œ”hàJjnútX¾Rž’fÞÀÌ8ú%žz¼Z-¡—K!>8)bˆ~X’ ÀÁÔ½x;Žeä;ôÅê½L9"³…¢Ó;ÄFŽ‚¬±Á°ô“ –‡™N¹E(–]—$d/ÀËuzQ¢ÃÝ·ÓI±5Õõ'"œ§ƒ•DFÜé’Ù­V„è ~ÔœÅØÁ!³a2Fp”Eºä䙡jË31i^)¢Yh Ç™cfXj¨A3’‹ µ)š\5Àè b‡ÌôÒôf¤-_†Ü—µ¸ð3c ”d,dé:6«¤°åGpÙ¡¸ÏlI*ßä%´Ó)uZ% &åwN!Gg”wäLîÎHnéÍ2ÔhDZJ{F÷ü™Vïä$cõ‹JE/N&p`ö»øÈûs6Ç”õyEís±MhCöÉLçóJæàû¼’ÉZ‹óŠî!æd‡ŒÕ1s°\&¯d-þÚ¯úiFû…7¦zªˆtDs ¨GÈœ/–¢t‹‰¹1÷Z"æaás‰ÑIsŒ®OÈì£9¸MdsŠ˜Á,Â[L®÷ÆjŽ1·øÞãž9Ç|Öι&Ì7äKZ–¶2Ìñ…¶™Ö®ÿ{ð´mëÙùƒ Fi àPcŒ¿y‰Qù.ųQ÷z£sñöºw9äÂj›"ïLWˆ~HQˆÇ›¦m‰Ü÷ɤr|¬©½Æ©(-ý s¿S¾<Y3o¶8b@̨6ë êy«q6Jož¡’Z%O»>‘Ø©LÞ ªr¼Ÿ¤*§%ŽÃû† ƒ¥uI¿¯±Édˆvzn”2èZ$F‰2óÙ‰*!åRAöŽÒ‡–J5Vãj\£Èý_4±À4©»$ʶi8r†Ç6}°ÍG>sE–R' FüÄîJó2*IUÌIðº´Ó‚ä„7ãu_˜uúX©ËY³·Yœgp”AÅ¥}Ï18ù,‹Kšðõv~²ì}A[ŸEôd¶­OÖ<¸‹h»aLinL,{aS5é®ðOà’nm¶±ˆz3tÒ†þYþIn)†¶[)¡Ñê§þtU͆¦Zÿi¥±áؼ} Ìyº,ÃüxU†µÍ®²Uáœ5 N:Oy@›«S’·Ùï?¡èõªd’ gxuÍ uþ³C´jÔª›[^É8›^óÑo?lQ Èæ¦8ïöÐù Q¥`¹ÿ°÷AÒBß™þi"¼©:Ël§ì)ûÆvÑÓîp»ŸðÇ:Ù˜{oúë膑K6nBM¯º KðÞ‰ºç­2¿ª«ìÈU`jö™bïª0Ah‘ê¤m¢o†*t¢+ªkCL6¼ÍéÖUÛ¬n"Ô5ºaAÊu×;Lþ5QÂT>%=QÜv'ª˜ÑÒš2î¶Íh»Äe›3Š®É>à5•Ãã@DœdM`€Éïà]Z“w3jb:¸5 yã±\L̦ø,jæv¸ÔŽ˜Š$š«‹P†•gYœéÅ`ö›ô[ˆl¸,×åtwíŽ>*K˜a©µ«ºr¡¸мtçŠùù/§FJ™^’ É3H"“W¾–o‡ðb:UŸ‹ ›ÆqßP:Y‡ñ³ì¿åurí°|;¢²®í•qÉø.ü/œÌήʻgÑ É {mï9™ÏYc_•«†ó̲Íû^a:³Ý6œ ÷á´‘Çg#ÊæšÿÖ<| îsÆ×pöpÑ·ãઈ™‹W.+…]<2¬‹¨ÍT÷WÞºÇl¦šd¡´;ô^ùëºy,ìˆaÚ[³*_Ýã×<Œ77¿,̓eåê1+ǽ¸z¸ëÖwïê±,O•£ÇlBßµ£‡“ÐÑ^e(ÛÄâjKa+rúsä'“éÐôƒŸ×¥C8“„]:\¥TŒBµ¶ü9rT9túq?¦3G1Dco]~Õæ¾ÛpÁLB¯€ssA.½K&Ä8@Í›iæY\ Íž÷ÄQ§’÷ÓÒ=}¼‹nŽ“¯¶\yöÏ7éÙc:öÌ=>+çž{sî±ÓK?˜Ý ª&Íäõï°#îÆeGh7²h¨?g¸õ̬gþ d—>Ÿ+$@?‰êŸü"ã–áµ³Yuª“«2yýŠ”QîêÔBNDèi!„ëû",é%Dìıޱ\‡|?'‚CÀèé„_ªA"'Ë™Äh&º¶Ìtboœx²wçiBÓ‰¾ÚžUvzzØÝ§–ÃÅÆïUÖÏÓ·âOL&-¾Ä.Q›VàëãÇfí{ç£Ô‘  êJˆ@ X4سÀ¿„V|õ&{Í—©Üže/öºLvÿqïàŠZÈ[Ñ…\W*²‚§Õ±±Ùê— _е“$!ÈîËä#b¡z+ ö˜7¥•'¼ $êGŒ.(Ã0­ UÚP“køîžShƒß¯Wu±ÒÈNcè åSäRMY¦—oKœ¯$¥UÊŽé݈W•꯿n{Ó-­œœ•´²JÜö¢™h]`Ò!È7ƒØ Ͷÿý¸ Ú EÎ}ÃÀÂ7ÃÞ`BåcÜÒˆù¶Ëa(:ñ¥Âç•ñ¤d),™®ÛCY·m³nt%^~ÚCÝ«‰D´ëmLÞ*f„Ã3ÀŒ¹6›²õé\õËk<½ÀøˆÀޱ¥6É ¡Nh4^õàŸ·ÃOâº;øB a„M®Ã±Œ „îš±¹´¶/°¾=üõ×4žÿ ÝùrƒÃ)ö‰âà ´æ» cÝ VRÛn™Øm"¾MÄÜø™ÍN8Ú¶¹í\Á3ÏÉ÷|Áñ„|¤.}¤ñRìoœ‚~bB"¿LNp W,—ºËé‰^ ùBw³+FÖb2ºX1d0ändnhŠ!|U‹¸%c¤”¢XÔ[¹Œ¬DùÜ|­Z‰q|w5Ä̵méîõoº®bö’Zy)C°_ÌÈzNçðWb‰ª&i@Á»{p8G‰NË¡H¥¹É°Ð‘–02¥ŠÙçÐC4I 9» бêX°Û¿éiÐFBd”!btè…œi6Žb‘±lµ­Ôj°¨IÅ4ü€Ô¯]ê8€¡pho¥´kšvͧìË7£¤+#_ xýTؑУ­Úï­²„:‡^FIdÒíÁ¢‚+u»èÁánj9½”Åu×u'±sœN#aD6w²­ÒÓqtT3@^I>«QìS¨>O€Fe¹€–¡@f† °ÉSÜ6–kUxGŽe*8{÷|<죒SÇ<á¨Èv(&`ŒŽŽIrù˜ÓUI˜DV‡¯í­•©›”ì.»—³ji zº¬×ïÈëœ:ZD=k ¦ÓäA­µÇ‚ã¶‹¥z‰þÚ)RšRoð± (–°ßUºF€Ð *x„Š¥Ò‰A¨mÚ Ú‰zžƒÐohïehTµ¥mŸzý>âžtéDSú0ÙÅR’só|:Á#SJÌÕf°LŒ¨Â9ÀJúiÔ›L@@Ç`Û^÷2c¯¢”©žÀ˜¨y‡b­jaš‚»_Bg%ßÕ,~iñkd9/Éh®Â|«àˆÀ1ÌIFûUƒáDHêB§½&SBKÆéâ… óޱñNU8 ž¥20ùµ¼’*‹%™_M½‰ç˪ƒãŸrÌÊ+ìƒ-êïO ½r¯ød#°üO“ÏÐÚþ})óÙŒƒoÐ6¨‚^R ë1G;‘:Ð^E"w}ê%J½˜“N2²gÕ䦋‡TkIz 2™¬Bžt,FÉE5È0óuÀB‡BÏ JwMú`ŽtÖÃÍ\ ƒÒ1¯W9¾(¶NÇüÔ H€ nt¬N8iÞ ñ0H[ëãÇ„.ºð«VöÄ\Kò%-…çåqûå msL¿t±×«<[CÚ—’xCÐêè4hJ]Ò|ˆÑAIýƒ1`,JÜ¡‰³nnú=ûô×j5rÍT‹½ÍüÔ¬nƒÊy ƒWçp ¸.üF ±š XûÞDÖí1¥=‰>uÕªa þ+¬. Üõ´?éq¥ÏU|CµpXk¬z…hcëƒõNÓfõ1oÔ°C¿é‘1‰‡Cžc­ÚÊvh±ÇÚÖø­ð(vc1•ÝJf¤cѹ®¼Â¦ŸüuÚ›Kæ¼H×V^¢§rTqSLF_xm@}ÖpRÖÔ- 2jÄyb²vÙøÞD •Š™:ö)n˜‡ºØúS*¥=¥—ˆ¬ !õgP‹%bGÀ˜–íj£Õè<1£qDjO+•+°’6š6Us'X y>Ñí@™+£¿Ü. ™áĬ¤Ú\/†7r®É~‰õâ^”„Õ&SAÉKu¨þY¥’ÈE“bî¤4¸0°V=õ‰–Oé×BkÈÀh(2ô'”ž¤#•¥pK¼#?$Æä-™\5RILJvˆQWÆ.Ãþ–TÊrY¸Ô{“IÁئZâïOĦìa’¬ç)–·àm, ¿jnª!aÇšù満ÑY,êWdŒ:Õ­y[UÍ;{uñPWNc¼ŠÄZÖ¤ó ·rÏVBÑÓ5ª‘šÕ&s‚ ~×Óñ„öp‚;kÑæ<žÏ&5µa¡i+ÝçNE7§­)ª=ÅíÀ¤BõÀmÊ猚KjõYïdfoÀ¯d?àÔ•ARa’T ©¨„•‹O:ölÑ´yÎ<Ö ¼YL¹£SêÀç;Å`ÊFˆfšG¶F8Ïdé'ÝKr°Ð¼!ٯˊ€ S¦»î~&wÅ{OMÞÃ~žýž:ügñ—⟧òäËetåö¬‚^¿š4´Ö<ÝžÆ |³L­ƒ9YÇv3; ÷¥ƒÒ)«–ž€MáìÒ~Z1ö²”Ü›ëÝí­ §—Í|Ö!Çí îe¿/>›ÑÅRá>O¤Í,FZˆš]å½o¤ÊÁž…qÂÒñeªÄàSÍ•½z¸d€œ1Õž.aª=­HRþd#™%8Ù”ZΟc³§Q]|‚qÄÈœÕp—šg„‚Óë78“}=G,ÆcDoŸ ØIßèC'=$b&RDöŠ9¦‘Ñäœ\¹¤&ßb}í:g-Y¼†s. Ô>:Ò!£×%óÖÐÉRèö?u¿Œ9„_Ïø¢K€¶ä6pEAIgéi$vNµ¹»eÐf.£CÎ,f8ž¤å„ QJ´¯C9 XQ‘§ÐP)£ä¦ß½à,ÒÔúHç/–Lö›¦ú$>vv­â––|¥ì IöÊwBÚžO,±éõusG'Î …Bc­ìÆ FtreJ»ê·TRLu“;@ÉÚ¤øÚ%ïB8¼aCsô¡Õ_iw¶Ã«BHX§º½èd)Y‰²Í’;VYŸú1‘³³Ü‘ì:{lvæ>z¥Ó&88m µ“=8;·œ[ÎN|pvbƒÓ°g¾ó`£Œ§Ë™GB<:'[µ'4*nfšC§Ú‹ßSf©ãê×PnªïáüGt‘EÐ^­+ –/ôÕ¡~ÀI;¾ƒÉ<âÌvÉWn“:Wù?['dc¥ãÃò8/è»CôHt¿-Ô‹èó´ÈfÞ¿ÁÊ›z—Ê6ÿM’7©LI¬„¦ª|s=…îOªa®Oºç°ŠN,yF2Žç~$/˜û_Q×mí Az¶ã=}Ük]zÒ¿*§+¤55™™í©Z³hi¼Ø&§5Ù¨[ì]u{}é°ù;.¶¿?iùúÖyFT ã•å Â+„ÜgiQ—FÓü¾/2åÇYº7Ê…ÔÌÙØåa{,Ìg®6çwJÐÓ²ÚF'"ÞoK%o»—tT¹ùšMNÎ&•¿;TzrårXT R ¤fÓ©=ååªiÖÛn€Œ|HÍëQ?™ C€òÁ£az­Di¤Þ,ã¡ïÁfz/DI0âqãѸ§oPÓùÉ2ÓÉ÷¨;ê^{ —Ù€¬F¯‘IŽêízsÏòæ¨UÈ•ÍÝõMƺy"ªôÍrWUeÐBÇnÆFñ‡ÏöwêfÏìÀ¤Œ§’ýƒ²h²Ÿ1^®ÃÚÚ>üÞÈìçäÖa»)߆ÜÉ ›è¿ˆ÷^I-‹:’*#uëÑ<vpiïÐ[øØoe8òB=9ùÑÙ³öeÑi™@Ïì}†Á3éÓéà‚Ù0«{:0ñªïÔ›;ÏËøÙz¶ÇŸ'm™~ïtUË¢GäʱlµíLÏ¥šQß@»Ïö€ÃËøIÝŸí§²4¨ÈÏ•¸sôŒ…ÇXµW{íÆA=Pµý,H°æ]„zx¡½ßêìï¤iaƒ­L.¦°;ˆ­ý̽ÛÙü•™~ îT·ðÔ®ñ›½{iæï4…¼Â`ÒØZP%ÑÕS¦éÞÖ3´Wé ñ•¬"í°F±=r­ÀËôª™Xu¹.ä‰A#‰¦òLŽ`b5Yqq¶ !‚Õ_ppkó î΃k¦­-wpk .K[K\Mt‘ÁÍO^˜³Ö%§c¶Ãs°ûjNBò·Æƒä‘-kíZF(,pÁ®Ë×ËÖÊbC^dÔéäUãh –¤b8“ìÈ+ Žg€t·;7©ì+&ˆ£5„Y {…é•O¾Â©¤q%ij„ÏG³!²;àWk¨mØÌ½`•ÜØ¶ ˆ „Ö9ê—Y®³™ü–r™¸µh–r‘"’8ÆX[À’ÂŽ3’µ9ÂZ¸®…é-R3ÁÖ¦Ø,–ð4 xÄ%ï nlû¢XÒ?aò­Í4­¹ nÇ×FÜÐÜ â-@à¤xõͺïêþ0TÇG!<ŽÀ\ž0ó6¦å ÍN:ßÁ*òtÚﯕ¡.f[§9©á˜¨'}ÛºPÍO›í_J‡Èz° R Ú¨ƒrÙ3· {–›mœ¡«õ9ZW;êÞo\&W½‹j@ƒª[shY]Àg8²B5¡³ÖN×Êl]æûÔü¯îð¢AÚ`Cª KÀå-cïÖÕðvÊÌdÖW;ªsKWSŽ1×önNŸ¹e uºÊÔÏ¡T¢ž˜díE.ig‰2Çxºï$ù2ù 6=›guC՞ѫkÆrá¿Þ_³ëÍ_êòµênÖSÙÊüYLåN.+sž p‹£?ˆqˆWc—=2,Ç¥L{†©8Çè´´ÙRá' EQä§ž­Ú-0°ð(… +¡û;]ö:ÈÂY$…S¿Óq¢@훘³®_^&á뤷.û–vKÚOC- Cr½ZÕ¨±ðFæ(ÑÝ,rß Ž£èŸïgIƒ½srK,‘Í^ÐŽþË,‰åçL‰å•¿ë¿2wýŸ#Ë/™§9(ö×Ìz1z›þý@Š­˜ú×yE¢ˆ\‡Ú‹j¦L„˜½±zå tf÷T7µ¬V# eXV-^•XŸ°H„k9¤­À§eçdbÝ¿Š˜Ü¦5‹[i9Ãó¤ÖžîÝŒ{ýáÀQQªâ œD… %+µÇÈÁ| 4!•ï.*ˆÿ´d¨lü§GÛ›Û5ƪն¶¶7ÿéáÏVøO÷ñ0ëyøOˀʅ%m{Tx“jý 6Z»Põן$ldU@%Ü9l 2Ãõiî|dœ=1'ìTôÑxT@hgˆ·suEêE÷„€Ýäú:é—á³û¦ßˆçÝ~¿÷¦;(‹ ÿ=Ï{—]’"LB/ºc(¸ÝK.¿à“kUɬ‘‰oõ‹—rƃ„¼^"P”ñðjò‰Ð`Ñé¾I4Ø6;ÌeÖ)7HW´Nr ›Gû;û' ~hDKÓfù!¼RîŒ3b:dI1À¯²Þ ½&~ÓÀ_ ×%8YŽ]”0îAù%EËPš+IADÎ,¸¦YŒ¾–cÂA hlQ¤1Iär8E{ê?31ÇÄ1IlAÜ1AÎÄ£„¢Ä“ß^TCU¹¤"…ëîg43;Ϊo.,Hûfé."@ é•mœ6Èe°+`éUþdo¦]8¯L’D¬ ‡…äf\”ÍE€2éî¬>Û{K÷cQLÒÅËa}ÿ‚®wú”ŒííAUÞö.”#)…‚ÒPD–·™hÊõjè³¥kfzWBCö\rôíÔaÍá¼Çt3!žÑ†^T-Nâ3§å«/‰È«X¿‰ôº4œs{œIžæH•™ÞqÞH”|)eû±™|I7=%c=êºþžx5µ‹}ý±7œŽæ@»û<àÔ! ÄxÞôÐMððJ4äct@–}?f§½Ožk@÷ºïå唋~·ÇÎß$8䫳ê|½˜"XPW¥GWWP9jè',M32¹¨õ&㤥šfŒ¨·'{"?êžïùëÅí@ø´¾vY(|Ëá»5Ÿ¤ô×Eá·â3fn >=.Ÿ|qŸX|âvp|Jñ- ‹ÂñI2F/ÏÇGˆz—•Îä$,2Ö{Nm°t}ÖCêcb!ä=sOÕgnä=q7à{‚ð÷_pìNûQb€,êì·Ú¯þÜ?iï=ýsŸ|æÇ é„Ñ>V,<¯:€Ši†6yB|¼:]¾vcnhž¿6Þ&Oók9A݈÷.§0€($ªëý‘ÍAèºH,áÇÒvqÒâO8(Âú#ÙãÜÈ T©÷"í‚çÐ×ý$Qð˜øߌВ=0À„\-.1÷5Ž9²ÁõöÌË>œ†­ÕA2Í"_—Qs3’ L‹j"úÑßt_åY’®;lJâøø(1]$|ÑÅ1º•’ÂsY-¶DˆÄe #.qLÄå"Þ qPˆùqo ‚¸TÄYð‡"â‚à‡s!æ‡=Œ`î ï¦opóÖyà‹„(f!žÜ1(f¡ Ú¥.€˜ûP, þðÖȇ·=¼5Þá‚P‡‹£æ8Ì…m8'¬¡˜…l˜4!j(–ŠkxKHÃÅÑ o dx; Ã[Â.p6ØÚ-ñ —WÇÅQ ÝM, PÌÂ(Ì3i2à Å- o Nx{À»ÛCÆÑo Dxûæ-6#¾N%g,/ó@ÞmðvPƒKÅô@—‹0‚\&¶`n`Áe` †áŲOn &x{ÁÛAÞ =paà@µÀP‘\^('ëlI'«0¨`Kúì v†òëS~ŒÚ6a>ÆSÂ)ÐH? ízÉÖÜõÔ$âc‹:¬‰Œ}0 ¨äcŒ$i|J͆Z„£"Q‡Á$û” …¶—S ºhpÏÆ‘JI[ÛºjÕdUW gíG`Z©ZÔõ`®Q*o¶=éb T`’4t+$|Kê¾»´yvKlÈ%ÀBÞòV` ã@ª©²“5×vr̵Œ¹¶³škßÂ\[Þç¢PŸÊgn€Ïe`{zÈž·õœé)f¡zæ8AÅ=År0= 8Ï™ž.j§R®çÇîô;]˜ ÛÁêÔ“ebg¦ÓÍžÖ™Ð)ftæó8>§ÈÑÙNͯR!çš_¥ ºhku #nç}’ÌBõTPžžÅ$è9‘e[xž1ª”' ñl)xã§[JîJs(ñ­§¸€²‘ù\¢ 4u¥lJÕNí×äÄÅéÃ*—·››¡•ÐÃ+=í*G/c@ù*Ö<jÞu«Ù‰Ä% aÚ© \“› P+¯ ¦Pb𣙙xÆPGÍ Jè êY•0ÅõæÔ^äÁ™éÒr¢J:ö`æÈ„ÆDéø%æih: =ÂäøÃ<˜`/ëEQG5„9$‘ qà–Ø¡;y C¥&][5F%¡|8£à¢Ú„5bT˜ŽÓ‘%¾¥WF‹•H $·S ÇëHJ&âëÉ—˜ÚùrY}† i'Il¿có8`:»/v¦¹‡ß¼C¡Æá©Õ¬ Ý,ɘ¼¹éIРjçOºHÂÇî=9ýk޾—«,œ2—î4ÍD¯,zcvNuíTjù•û™Ñm~´"y/}þó(ÀZ äáÂ;ÅÜ@î‚?ŠE;ùFæã)Ç4}"Ï-—Nîj:Š]&ŸS "1”æKk ç(Iˆé¡çºz€>i(ÅMo¸·G jmÑT zÎÊS±jwÕ'\5ìQÛm¾W~\4v¬Ä¾tmu¸Ë¦=NMbÄ—¡åì«vÕ{¶ dÔþ¥¶\B.¼x(þv2‚ÃóbÖ&¨ËOþ:„åä zÇbÜ`Œ‡ÛžB ,‘*;f- TNÍ}O;þ0š¨½ìw¯/Þô%Bc¥âj×ÄßžiWö¿™óêqtxÙ-R‚U_$#ì<àÜïp]5Pª›>HµWõ¡€z¾A–#«~òyÂçHlþ›QÒ'Îmz€wMXª†.ö<á¡dK9"¤7¹[Ú· =nÏnYR™;šÅžîYµÍÁ Þ[»#帳hoà JÉdƒ#cbšÿ-½þð· {¨këÒÐ7`™¨Š¼}^ÿ¯ÿ½Qý?eX!°Šü}+Òfˆ¾°»Ý@Q7£Ô=aù #¥Àמ“ÒA2¯aH:¥zYúóv8ÓXîIÃO Èo*ž¼á M^@y^ ¿¤»Ÿ^Ó÷š]æ°nŸ©¯ nÕ”/p;> «°âyâ SFõÑCjèÕtDŽf0$2ÒVÿy2RWp.ºSu!"¸‰ÿpûtDœg³ŽH óîØŠí";vpÏ¿_›ÔçØ°=`yA(g'ª[ÅT£bIZó–rJútÒóÇU„ñðDl Ã7_|QA}/L¤õÞÕ߬Èpƒà¤ñ5òp€3¤x¼‹/¶äI •¨CMb¢ÅŒ™Dšˆ­;f¹¤ºéwWR_I9+)ç«H9Öä]‰:w.êä­ÏÅ¢z>+'<½ÛâVà#—ro‡Á?|ÉIkìô£‹ö¥ª¸å å×’ªÔ•†°ÇöJÝÆ¥¼§«“áÑW¥EÒ1¯yÐ.”ÀCr#5¸—qÕí @ÀÌDjÕôæ7SQÆñsØÆe3½fuûo†#˜h×&Ê65¢;HW)Úaoµ¶VÒ¬r嘅ñCä̵Zעµ–M—Hškhuço,Š–î¶DïÙ¿é++JG62¨¿NF¬ cš¼U¦@ž&WÂrœŒÔ=¸«édÊCPÌìâçí½ÎsêävrSÞÝ7þå3»|n—º)¢‹,7­{¸Óͯ¿}v<†ñ{LøM0²:Å|Ý£{ó0!ßà\T×ËÓ%("Å;·¸±+œ_˜‹pg?85$[÷ñ] ¼¡+&ÉÅÛAïF#Ѥ"4žu§Ð>œ³ýlyÒ¹)ë-mì„Ø2`±?Ͻþ$sŽ4}ð/ØÿÒ™€ÄŒÂë+> a þ’5ÝvþØïì'l!'<íwß轚  Ô%ÑK§ ¾¿?™$×74†À—Þ~6Áe ás!_aßHíŒé„€H›”’Ê4•éòWœÄVQP·6ç¥óÇ_6GÜ2Ic±S"GÔ)9Õ±CNÉk³†‰>!‹¨wn5#,¥âVÚm¯jÿ6ñªþ.6‰‰u*ÂÉÁrE£2*¨`óÅŸ²âLd,1,bYŒG–2cL!Ý‹Çvÿ‡-âÅÄ;pÛãu0ÆÄ"PÞðªÄ­NSw¶ÄKž“/aH^.I&¢ ôð§¤ß§~5ˆàÉÅ8t§¾²€{ãÖϾæŒOf¶Á”rÔð…ûΨ¡ôçÒæ&÷°Áç2ÓÏËè„‚e²|A͵*¹lÆ‹rUU×¾Zn6ÖâBí8(Fs¬¶DwrµÏ Ä-•¢$—k¦][ÏauFÇܱ-®!¨Ê8®æ¤ŠÇj¾>ð!(lÔaÇîV˜0o8¨ØöÕx+Ò-ó{-Æ©ˆ_O÷[õƒ?[í&éÍöËò‡æ‘ú¡AŸq ´bB$b}‘–ü=NÅ(ðhÿìÏgíÃ?Nžë Á;UgÔQ§ú(Óf@{5T¢-ÝGÁ¢dõ!á¶ÕNøá¡ÑVøú(›Ñøç²0kúKFMÍN¤¿Þc¼¸0º]¾pp™qàT0‡x«Šÿ–+`ÛŸ`ö­BÆý…Þ[$îôk#èMÅs‹÷Ç¡„ƒš ÷*P»>ô[ÞhYñÏþ’áãüxyXâƒT¯?%Zå„Ã$ŸF¨ROÝã|'¼2òÑ)õöoàø:|/Þ‚Ûc”C)bj“•á|'xP“*q‡P0#³ˆÝ~ïßìE'?åA§OÑfG´ÓZ=)4MX&&½¾O}ž°wæô …À»×¸w«°wË{·Šz‰zWMöWQïÒ&ÿQïjËÜUÔ»HÇ|—Qï–öîbÞ507w¼û ~÷-½3P)&)\’…FK~@ Wf¬Å·É5†*›N<2!e Ì˜wÑeP#‘V@óÖv÷0k–«¢3ƒ×ÄŠÞY´èìh·ˆ¨˜O…£¾­â8¤‡O0Ñ]¡±ãÓXEЋEÐ;’+j‰Sô”öVýx{RûQðC×…:W,jnÎ8r±:†G£lÁe¯tSä²cnTÜÈÌ81ÆÌ3+ì‹I%+ö/§Ú¬f.¢ÂÙ#Kª¹ { t¸AŠpÆÁ1=[ÎI¼í·×׬T¯~JóÜHªÕsÿkrQ[nø¯ñ¿ª›Õ‡ÛÿëçêöæÃÆÿª=\Åÿº—‡ç¹ÿëd‡%5µZóÂüÂsÒàNÝég8ËtÑ$Kß­ÅxÊ×IÌàTLÛiÈ =ûž4ä?3QØyVÌøï˜\îUÈ—crÄŽ»pè¿yÁ ¹ oÚS@ôC&Ìuy¹{<3ƒq]$“¾¨‰ì}–;$&´Pß3{6–2='om¨d£Ó,ŒäÛa‹–u9ÉFåqF e¹ó¡µâf”0sBÇÒ£KÇ¿QÊÈà@Wè³øØ¯œÞO ïËâ}QChp¥Ó;#RéT=…aîAØŠãä )9Œœ¡tÌN`8bk<9,Ù˜Áz„Öð§³PO ­bÅ-ÕËüÄè*º¾õÈÿ­lšy%'h7”4Gúâ.*úNVTžEß-TW™™VËwº_g¹2âCîŒcÛ›ÑJðwLÐÓ‰ï-†ë÷Þã…IS —(Dƒ,¾Ÿì§DÅåHã•ÐÅ­úg };ά”'CŸL÷ã°ÇWø™lñSyb—/@X«•¹f5ºc†^ºP‘"É2¯²Cñ²ûf<¡(0ïÈðz4„ïÝ.†DçFÛr~Ïö‰ºKuzti7Æ­{üÑÙøu³*~ù™ÞÀ×OÉe¢bkÜÞëé«9>ù›}ÄI&´Õ£8„ÿ¡D„Û=þw¯®rvÙ;ê”傯f8Ÿ5ë!ŒEDà´·Ûù£~4§WLÔ‡%£0~ï—3¯çH½ë¨çˆ<“'tDrŠe2äi1ìëéó1Q0]?Ž2ýBÖÈRYd’,—u oÔw z€µaIÇL‘{0Æ\ä{ žÀV1šH¿ý›‹Ÿ©"b÷Pl§Ñ¼Å†¨šêç=½¨!tz©Taªð^…̆l3Ü?‚û®ÊZ‹ƒï«5aŒ (îîÓ,A;TåÙ^…J [¤ÒzøYiabéGW/èÕ ïUªY¬†‚­£ËÖ죧jFú‚‡DšUJ¯È¤¨,æ@t>uop{Êߣ34Ÿí;”™¥pVóa¬À‹NO¬D£ ìê»ey¢CÈ>Y “W †Ã®È‹¼©Ò¢‡WÕ÷}úfVâ…Q‰v%vÈÓ–nUJQ¶·6šˆ8°ÎÁI…z;d?åi¾oý˜æ}BÃQ/ bå-6ïcÐv—›Ð E(ýûAZ¦ÞŠpŽÖ‹BçmàDÁ6` á\×}§~RCl ƒÙ,ʵn=¬ºtÓˆ¢ú±%MÁÑ~Tqë2‹’¹¬Ì«I„3ëO_5¸ýê™ùôW÷­ÿÛ|´éëÿ®ô÷ñðìtôOkÑ,û*À°òï»Tù5—¨õ[¶ªïé UßïNɈÅâÚV‘vDKB]U†Ñ483žtÓãøXkÖ²t²î–FÐTfÇ_ jIË„4|ESAeèÞ$ÿ†ƒ3¼ƒãü5ìE7N+R0(”âÐÉú»Ð@¦‘$ÐÑûÇÒ(*^V*¡9ŒMÉ3ÔOÆUj)w5@ÇP5æÔZz¡Öt—¨ÂÌÒ`^#À„fÌ{Ð_. ½¼Cmasnm¡(\÷…&tjÑ-s­³VV7t†éMr†oÒAßÓòÎC„ÈŽÎÆr$Uà Ô?Šu9%€ìÆ‹uVmàÌõ”D,C¿J"GT`õº(âð˜7lïÈúÍ067Ö ³T}ܲ**”º é¾p´]"¤ðzáèݰ^†öÅ® -{@žÙŽþo9¬ô_Mÿ×~:‡þ¯i‡°_éÿn©ÿÛZéÿ–£ÿ³s¥ÿûõ3€¦p~`@!5€•ª{ð¿€ ðÖ:À¥)¿y-`^ýß¼éxSÆNö䯒´hÍfY_÷è8±ïž´;Í }Z–1Tùƒú^ë,^ ù~¥·ûúz»öÓ¯¯·ÛÕøö8çý!У/ ãlã²3øØ *”=—Ój [±õUÚž5±V–búFÿK1ýpHˆ¯Q••k ª([y×H§ª…0/Œ ã¦ê ç€t¤]âQÒ2‰QIZ„ñ¼h(„#+[ OÇÞ–©,@÷à§çú;Õglë6i巨Ĵ^—p=p3Tkº ü}ß¿&Oýòç w*Ø‹µå‡´…©ZKÆ—È]‘ò£ÏuVÒZYŒª¼é¼XÑØ¨úž—¦{¡Ö÷ªß¤~IöPêæklÍcˆ­®}±Qá`ÀB]‰ü®¸ï…ª¨bÄ*õ¯Û]˜gD+¬·›Y+Ìïë‘Ýšµ6^l¼h¬k·HÌ¥ù ­iL§»WµÂ©¢R-óêÁÄi´R¸ßÁ x\Mp½8ÀsþÑâi0Æ(~‡ã8&ÞͪXÚ6­¥4¹\i)©ÁYtµ¤l´1DÍè‰9¬fG i~Œ«Š–aªº0Içj•Z ~ŽÏVh«â|PFU…Ž œË:‰Š-¤ï_IúOH'A}ÒºóŇiÂ1ʺã1,—¬³—û†IˆŠÀŠ~goµÜ©úPUd‡Paräd§ÛÍ€²P k†Íà@hf/‹ï`¿ê¾‘AZéš·l(Y“ÆSîV:}ÇjôßÌÕæ~4övTo2ÖkR8,Î_ç®x(\Àñé^ûÙÚï?:Z÷ýBÞ'?ØU¢ÖËÃ# Àu,o5èNy+¬¾}ö-ôóÍ3íæ*µóðrÎwëõV×î+u­ÖÕZúZiÁK²üåÃ*)Ùø½JL\¿䎲w\qu¿sªïç€S÷ÐÛ¹Nnxž«;žýVêýýÙê}]ßp}nm ˜©ÿJ‘)I&æP T_ ~ÆRä{Ú2É ©’€Ò «W† 0×Z£ƒ˜tÐ)ºD°¶k°1eMŸy¸3{ÍÁ" ´Eq9;+Ã/YÆåai2UŽHèÖ[ÇtÔýy¦BR‰í$l²¦ܧyÇ;òIÈyo\Ô¯•õ­Íš¢aJáaÞR3" Ô!S/Ž2ñÎ<'Y݈Gõ7Œ9!=ö Njgi‘_éFÕѰî o¾èâ‡'@Úa! Xp”ÜôQ”#‰eÏ:aB×é…ZÜôzövé,Å,Ë‚Rûp»6íà’1ÝMV«ŽÏ|ÕqËuØÕ^·YúZšpÜvé¢k(Ó 츚v³Z«E›%ªäm62˜]8&S<”L!¹"jtÉÙÚ šg1'ò°E#ÆJÛP»l˜Bv‚ê¸Æ+¡ˆåb<'4Û­C÷¿Ø€Î.ÉuË`à a¼4xqËpW7Çi{Nuû+ƒSSV”YsØ9Zs˜zlOY¹‡«Ô,κ|î[.,£U}óòX­f´†Š•52«ªÉà ӈC¶ÊÑr=)90ã#9¥WÕZ««Ä˜9Ê(lïsáK)a €Arôâñ(€b ”°[É_3l=û+[Ïÿ„ì?ã{Çÿðí??¯ì?÷òðwí?!0zˤðÙ¿+;ÐÎóz»¾c©¨•*ÃL„Í•½qϦ¢FKŸÓXÔaÓ±åcÚ‡qÞÑ®¦jWâ»ÖŽ!¢¾¦¾ã{+YÝ8hÙ72,NúlŠT\‹S–ˆ†E¤êq=r¥ª)Jun’‹ÞU/1P‹¥J7àTûØÖ»®µÖ[í.˜òEÑI|B‰×ÒÄ'±”;nÊáàÝôôYá<ðÆÌ¿lòhZÆ”µŒ@à twºQ`ié­Š4*²ì¨nAëÛIn›[jh3óÇln+c™e,kXc5ŸÁ´QƑϰ™:<–òLЮµB#ÖXˆ5*L)0b_Ûnó5M&wäû°Žp@“9Í3‚2Ç©Ðb‚Oå2ö 5é ‡F†úh.âäË 9šÆÚ2Âøâ£ä2¨Z¼¢{Î[/ÊZ¿¾N.{pšëùÍÉr$³ÄŠB}‰°‚þ±.N*¸v(#;?Ç|=‡6Y5IƒÈZ,ÈRïà \ãM×sMެÊ/WëD0Ñxʱ¾Qö±†'aŽa|‚AÌ¡1g¦ ÇqÉë&«¹Í?prx“bQ(–¾Ë™«³…¥#F––<å¡ÌøÕ;H ×BÌw©.KŧìÊ4'Áˆ`ü€ Û Î-tMû _=©*rèæŽ¯ž¨Zóê4—v×ÖrÊÀWªw ¾¢‹Ù ŽÕáà™5L*RB¦#å"¨¦Jú üeº­[ìÔþ¦êÏ,:WæÆ Ã¹pCgÝùTÁgåf,8—¨­Á݇Ђ¬R+B¶¸ròlïl'¬G>C/IuÒ›$ÕB+{J/4Å¡yº5ªbN»)-QÅlµrq³¬FÞðs$íÊNEü»œ,ioVF?C>åÀÞÐÙ¯7Å ”ÁzÒnVÈ'ª"j¢Pýõ—*ú±lW7ªkwu`þ½§'•|ÿÙóåvåù©²ï _z©šìT9A½Ÿj®ùX[|êAÃä%8X3  07¦b›d|Ò…´ÞüòH¿4Î;~²NÆ\ÚpÊ/[oR¤Öæ×‘Ï© ‡=sTgcò¤%˜@$Ï÷­¯¤íž‹¹ŸsöÑCÇoRHaߟ¹:xCwS•ßr+IÑÝÒ&5ôQj3“~qÓþ×PÕÑ ·$àÁï.- ¾é MҜğƒÙ¶9\(° ŸŠôÖ-h¨ƒŒžh®ýï@J8-×¥"` ,8òQ&Âï2*lÌÐÿxæ?}eà–ÀØM€²eœ5…EA§Ôñ‰Pþ¥9N] ¡¶ÍêåÞnG4)Ìß|¤+e†])K©U‡R½MHR½ë#¬z§ÉÈŒ‡ˆºb¨ѡـs©¢ÆºÿÿÞø¿ÙXÑï"žêsŒ‘ oh R(xΩp`c`Øäb8@Ý2úà`ýº)plZ?2]Ú§# Oö$¢”ë(ã`…`?‡ëîûDÂÜ|¢^1“¢kz¯@{x~PíŠh ±mpc2¡$4bB²ˆÉɶ_d÷çÅ hÛÉøR?‘ªT*åVÅ)ž¬¾<'’¸I-Há×d±5,² ó2¦ŸÏXéß+Áé,;íþ€ÕXlÀ™Ù ɤŇm:Úe@ãÁ¦¹÷¯ˆ©hÄËL±3FÉU2J0Ó²oƒ„/ƒÜò†EÞž‹\ª[÷\#£ç–t+#r)CÙÇ3m ϰ¦™Fq\Jq–Ã2¡æãéÅ[¨Gw‚‹…{™£^è•ßá”Þä ‘~Å0âïâëñNÏy(x£*ä2@;R`)0;Ó®¡Û·\„tµarÍîs0Ð\vë[Ýßæ¨ð®¨"íô—ÉçÀ %ÇÙÕ¸šôŽ·«] bfôìú©êÉÍó"ŒŽ½HËœŽª.Ï/ì¡ ­ìø<¡ª˜™PÜ£lÏ÷ã™Ü’b.°±~zÛ#nLlG`äÛëî%!ÿ´¤€hÕæ  z’†E½d¸9|ütrÈÏ0>ð‚äùbQ¶I³¯8Çà?³(Ú{õƒÃô1‰Õéô‹vø‚¥ÿñD®ìJ­"‚OÔÊ×ᕯ±VvS³jeKåÑÚ·qooaŸŠz{÷G𩘠“ñyýàé¼ÈŒ˜‡¾> 5F L~÷ð¤,m+ÍuÄ{GÅŠ/Û™2ZÛ§§þêèw:¾ÞèÑjóö‰÷ŸUaŠ(lMô޶\„ÍïÚoç–ñ°²¼A/a…~r²ü¼iºwø™R=‰ÌüKª3{ <ʨ3öv|¦³DÓn xö –ƒÌî ¿xCœè-–gÒ“Éá¥fá–öNp(ã<}IãM–øM/.%ÿó¥ÕÅ»äª@\öÒç¤}â¤ý;á¤j »©[–öC¬T%÷£j4U6Fâƒîß +U‰ÿ«[•Þ—¼$°¶ádÈI/}Nª…9 .ÌI¿ú«)qL“•‰Ì ü¥F®QM‰4ÜD›…\;VY•/e<ô‹7#Ä5ÓïZzäl˜9ô=ÍiÞšW­S«:7ð7ðg¯m«/Œ¾ˆ5ð—PœM‚ÓÏѰr4ìTáØÊP€Í©Œ³»HÁ‰ýÉ΂ƒâ–âÂÇQHøÀ™òëÃ¸Ãæüò’ 2û,I)ìäë8±ÞD^'T¡õ ™bS´„V[ºZmÐëus[­mÆ|Uí–)àPŸÐ;ÃÓĺ¶ó)8âVÆ»Z)ëíVæÛíÌ·í·µMËK‹{WAJ[¶ÿR'ãiŸlù>¨ ,5È„xZ,(…JÑèïíXãË­M­-õøðU€zu¶_!\UÙꤎ\•µ–×="(Ûa$A3çµû.ÃÏZ•Ú˜YjmÓo¡UjÃ)5Ã:Àö÷ lüÓäy¡yÃþnæ©y;Ž¥çæ‡Ú^  Þ¨?€¥¬3°h¼¯Aü,á?ÆïáwÔùÑï5={0=X×Û"j¦l6ß?!ùKãïOº£‰¥T½Ð ŒoFÝËêt{é?@•¯= ´†ÔU¨Ïß=<)þLvêÁ!w+­ìþoÐwëΠ‡H< x¨I¤^‘ØÝûcÇþçΣØÄ¢ÜðϺÍf‚J±c$y(“ÔBÀÒªWh ùËl©tJ¥Ú:Pƒb!Yz±eáwcͧ졙"ÏYM5Ðþ‰w“¬Àµx Œ2ˉ¬#—¾³AúÞt…jüÉŽ•B'Ø1:ß¼­€£ÇZQ=^A –xÝZ΀š<ÎÀ*Öl&k…ÊŒ“0™[ 䟟cücngéß먇uÓ¬Û O‹Ó!ýØkýHnà°ióFcVj+º;“FÜPâœ?mz[6ì׌MÅ>ÌZ¯?sUþtF\üw=E£Ç®ðÍÝ5r×è×¥Ôè×ÈáÄIx9gâÅ’=Ê@ö'Aæ-8Ñ=ÿ@ne]+šk ·ª·ë6j3¶v¶{(·jKªSìD¬vö­ŒÁ|aåV`(¹ÜÐVæ/SµØ^ÈîeÞ*9«Y¦Œ…+©’]…y»üh”\(7MoÃÞè©{šõWÞº•MwñAU(ÙÝm²Šl˜²ˆ—U©'¦š¦‹(Ìoë˜4³&ˬ‡}èiê±µ¼<‡4Ñ(A&Ûà.Ûñ6¤ÍÑgœ°`•›ÌV>áêHI3¦ä@âä¾9ï¤ø±XP õšX{˜j`ðnË\²ç–¯×!ã'Î5²X¯ž¾£d!›Rþ¤øHfÛoÁS§0úM#Ö1WÑHO¤œôÈ32½yzÛŠ ™hÓÆdëD­ö¶ÖÉî€á,Ć2ü²ÎîsV®ñ†M¼á§ôdl¦bb¬i( 2:Óft ÕΛ²h-H—ó›‹‚,QÑ/@^Ñ6ê×_mPµ¢«²K¥}c™@Ç£Çè²k¬öíiD3ÉvYp* ×È$Gév¬ŽO [mÙñº|gf—¿ØñV'³ËÛá.§\i—£çE¼Ëwì.o»üŠÀ[²m{ø)EÞºò¬Z–l•¼­Ó„bzëºtÖôš;8¶B¢ú&ò¶è—˜´gÖ‰¸Hõë Ù'&Zž\ 7×Ö/ó]?L5¦…ë‡þý¿dÙáfÜÿÛ~´ýð‘{ÿ¯V}¸ºÿwsº}ÿo¯C&‚3ôú¢OØ:‡íøwï`çäYè^ {ŒÑOgw¿Yfµ-?÷•&„J8Ø¥,%JÓ´ÕEÂþhd]+¼õ>&£ïëv¡×ßJÖœ—Hö¡ì&ÙAè•?ÏýÀo\#½3¨Vôì;Š<ÄãK{ÖEëZ#²†‚8íTÛ²)@» ªùÑ›ŽªùÊå-g0Ó«=Á÷¼“ïÓrfܨÜë¨[vŒ¨™^ª”‘•èNå`8¹¾Np_u.X’ÿoÜMx\ö^ÅÎÅÛ鈣$:å&£®öå="ºÎ!ïû±Õ'^½’$ÔÀ ŒòÕ†ž/VèÞ§xÓû(¯ä™U¥›ÁzLÜ x¨m‚B–áb©S* ÕR þåDÿ¢fü¡QýT¼?²3üØuã!ßïéŠ1Ìå ¼ãxчÕ?Q?\Ù7on’®¾åhÜZ’WB)f§¾1Eèz¤òaÚ÷6 ¿ººY©3;:x3%~Š“Ê _tPE@²›±ÙMŸÆ°;€–NÞñª'ÖJf~’7&Hù1¾ˆœW„†üùa/“«~— yãé9ÿ¨®]ö¯èâa»Ñí‚A’\"6ãt̶X^€ÇŸAGBOw!ßPÀªv±ï+Eu§0âónÏ{" ™.‰¡Ð‘Ÿh11¥nÞvœ'“.ðÔ§²qÃK âS©aÙÆ(p'ýéxŠ…¡j¡a}€I”ZªGH—‘t±,ߌènE³Ãd“ Ï+]Â"“€s=Ù I÷<Á~G·}¹Òo+ÎV$ܘ5«{°‘©&¸lFND°¦l ’7P™éýg⊒ç@´š™ÝÜU\ø:Z ÿ¬ÉY]'_ÉY‘r‘z8Òöb]e‘¤µJí÷%èß@ü\vG—˜ýoxoñºû^Ý–°9=½çÝñ¶›ÞuÆN².ÿS·ˆM!þåü ?Ó¯tEZN]5.vqv½a„x®Ÿpí©ø.OÇë›~òÙÐþ8WéÝŽ!~ÈqSW‡xÈ&µÚ~ÒßZ×ÝKÆg˜3;KŨMû6µáÕi¾êò(´h¢hgÉ{üÓÛ„.ïÀìÄšMäfâí%C}ù]=z6É-!°õ÷¹÷¿©öÜ¥t8áb“Ëàup7½L+ ¿Ja¤ø›ìú¨ë7£áEr9%E-ê<=m휠 GU‘Àõ@ƒm¹GßïºL.`©€zhInž°<÷åæ"åq÷î+“¼a,©†®ót¬<°ýÐu>Þâ­1Ã_aà \Iœ o˜§åØEÆ«>0÷¥‚mß×¥Äû®X|@Â+ßbÔRFïÊïµ4wYç.ËÌ|r4M~£0Œ¸¬'=dK“ úƒF|]±Ð2Òúø·þh#RtÜ]e«ØÒZkH³¯;Q£ «ÝBhôp§CÙª;†Ó”)lq&£;Áb0ýáà Ì·1lQã«/YeÒÑ÷DTNÚ§{ѽšÐ4†™ ô|Jì)dyù»µ^³îˆbC Ö|)è t8¦Ã‹”Þ– ¤ ²ðE]×u$Š0<@v+à# »©· ™4Hüè,C!GóvÐ ™}ÅØ/óuVã–u²Ø„xK<÷Õ,DgÝÅ,ÌšÁ44MŠ&o.žs¸ÆBM‹N‹¥ÜŸ®Ô¸ÀU(æÇ<ÒÓ«e2AÃÛY ®±)õô°(ñí`…ä6é¡J“ˆ¨Þ‘µšÑ;X)IÈ×W€ sW%ýq’þðK©µ^}de{ ‹Ù›áðRaËÑÕEƒÂr›…© ‹ l.pšqÖY(šÓãÅq¹Üw…îkX}ØqP™8áûò7‰H'gûˆ H·1Åë°v×aŸW]@…É’Ýlo¤PïMRÉÉgC4pý‚£Z2 ­­ýV¸îÜ•±>t 熢æÚÂÑzø.¹êÕ¨ð2J-1K<ò'U*Î~3ˆ0f9Rh²4)ç¿N½ÀÄU·×‡#·²‰(­j]ŠdƲ8ŸNÒ-»œîÓö¶Ë[©Oã\;L’`ýî 689ôwÑ‚.yÓã±’ŒE[  XåÝçÏöŽ_Wü@í±<ªuX/#¯.‡WWB<)­Û•OƒŸñð: j0”ÑG®š±ü`ÑgA CŒFPuñDê#Ø2vÁ2L%‚cÐ%%Öå4!•U Œžî½­ÇF¿™=~ò¬³§–ó¯ ô3ă飊LËθiç´š—ýƒzg‡>òó¬#?ÐR^ïœÀW¦ _z|º×þ:JÔ0ßõÖI'Ë0(?‡øØk·%Pò>n¸òDdýŒBÙQê]1~þ$Oê§ðïh܇m?ãDšû-Hžz«~ðï ”ÖØÖB`ýÚ¿îA©Gg™=tÄî uö—ÃO‚ƒi´NC®<€ä€0/i÷´Y0¿B¸;è…[ òÉüð9°FµŸ–%½ü< ÏçˆÏÅ‹ö4ê»ý vˆG2~î!ÒÏaûÙq›>›ôIs4ƒP»gÉàFõ½ÖYF'“Ç1µ£õlVp²²$Wv³ù­Xˆyì¸}ì–PC»ÉÅð21À† «†*׺#M+E£…¦´°aZøDRyZ?èìi^Ó8=ݳLºµ]ÚJ ²l³ë“ICs9£Åm¿Åí|-ng¶¸í·¸£Åí@‹õ±[ÌK¸HcÅ‘g;ÔGP©ŒbƒRñ6A¾+|hÙ;®l¤kÝ !Âq\(GŠ[™É“’øX²EG͵’–#;2Ü \+/*Ú¸V?ûysãZýêçE Ű#‚œ ÜúmfÔµ@cðlímDÛ3‰þìò$ó›ºg¯AJÜ+°VÞór¦Lª¸'ozƒJ~ûCå{ü7q™Œ/F½síõ@Ïuo@çÂî5)ÇáT—8ÙuQ6IT¾ö³ T çÃOI¿¯aèø…&_Iö*pÑÚ݆§qC¾ãAj,6Hè ©IÎ 5bƒÔð©‘=Hø 5²©‘=Hø ÉúƒÔÈ9H¶‚Áî6g<ÈÏ:šN–Ž!ywG蜬m¹2k!ˆH¼‘û6^%f™åŒ1z¢ƒ4q®¡·%z½!< ¦ÆØ1X!?´Ì»À¼«ÈwëÂ^od8-XÁf„ÓR×’±ÄðU™‚ËÑw¨ø¢×{mDˆ™®­»pÜFw=:Éê,½IŠ±Îƒj³¨[v«aôª¥„Ž[È€ZêjÁTGÙoN꧘)ÕN©ÄëLÕîB”‘ Z ÆúµFAö¾¯¨;édö ì1ÚÊ׫¬QsúáHHLE/{öDðc?©X5óö·Œd±*¹çd­ì´Q~ 45£qÜzº jeª; "‘Ù#ûàÒˆ£}vnf‰J“z©Øƒwíé´ß× ªÖ!›wÅ\„ê%\Ü|_ƒúBPGSúªñw0^ˆÑÅüе$7ƒS1W°Tãý Ç[²õ¡¨Ú4cÕ°;_[Õ iÛ«vpEŸ1LmeRöÖ"˜.¦Òs¼q78OFohU 1¡žÒñÔ9¤–õ¯)¶ÌÕ]kcÝiÜ@TwÈü­ˆÎã×¢ÛÛÆäíuÙp?±ïET‡ðÞHÇ?ñ'‰1/ÒÅÏj é› ìw7O+C ÌwûR¶}ÁuÓàø!|šÑoéÀÍ}G`¤a>»â8™AÔÆlN¿—Q‚OyR¥¤“:Åê^ÙÎc¬RÙ…ª,Ü Jïò€uJE2Y„†J+¹Xä *’ÆÉaÀ°á 7+NM 'ª™E89]¿ž¤—4É@“âóÛì\ûV®ý¹ «š™Ûîí蔂c±Ÿ=ñoÎAÂàVn™ßÙ09;»õS18ÞˆLÚ­%NÚ´Ý)ÛP¼ÒÈ=e?¥!)Ì9aÆ„u çù^ù œÁÙíMÙ9ÏŠnKŠÏã"«¯ŒŽÐÈ+Yߞ̾O&ÿ¬°K;‹È¾‚wfóˆÙÑúFEZÆ0|&{cåójŠÉìèj½ñ¹^ø¦¯ý#û;æ ®"䪸ˆ Ÿæ¬C]6ºq™¡-D6…>\ Ù@»\’¦=”»1Tˆ!x×ìÙêžÅ%ñý#+Œ—ÃÏA׺"ÅP æ](sˆõ£:_Ö;¸Þ´š/(q AvÏ ·sk!GŽSS€¸¤Ž82R\´›…ìéP?>e÷ÿy;’*îÕ;sAÖžW®÷;};|¾5ׂz†m? ¸×ùÁÑCøŸ— ˜ÿ÷ðç꣟]ü¿íÍG+ü¿ûx˜·]ü¿W³;{­Îž)ÔÄÏ"jóÏ 'dªÚ0»w÷ä癃 ¸OqBû A¢[ î[ýš¥j½ ¤ÁP}¿"!óÝ8ÈÈÍÉ©<C§0Nç›0|µ0‚!’`ÃÙ†aÔBœBw]¸8v¡ƒ[(:ÂÁ-'âÇÅ-üM³ê ]ôdªKW¤H!†(ïÞ.,¦xSTVCµ Xˆ"<㊿Q-4ÇÍ,é¤×²1/±FæÐÁr“~ÉÙõ9#œË$7P#uKVcn Fš:XAÅ«Œâ Fq£¸‚Q¼#EÕ+ÅŒâÒ`Ól)ˆ¢“8qÞÞˆ`#Z퀭ü"ѯ¨\Æ` 5´^#M*XÖa) @BzÙXV$H{Ѥ‚0Œ·Q#6né) §[1sMÒ±ÀÆ€.Ctä’K⥿ƈÇ0`ƒÄJå®,{˜JÞæ»dÁ+•uõÛk`ÿ‹¿6»TtÖ"ÑðH {z³Ÿz‘ê]f4 HyYmÀkFõíã±ÂÄ\ab®01W˜˜aLL“†©d b® 1Å s‰¹‚Ä\Abþ@˜¬ˆž¯ï d*Õo†¸­miUªò:"¿ÕŠfgšT2Ï/9ôëê±5dYã¢+ÝâJŸ­™r¶¼N9s:åÌꔳÛvŠ„²N¾ê45goì©Þø‹£¦ö2“& ¥s©²^}TµÊÒ¥Bk?‹h.EÒ¹r‹bD±âýý ÞK}Pó““ Ž•17å‹dÅ3¶€ÂµùÝ«L‘‘8{þ„×,n‹mP«x&5ÎbÃé›·÷‰{ް›úrCHÖ’€‰K”^Ÿ †¦×VŽýö,¾°GU‰o.úl/›ESIű·+TÚ8-¼c§ ”Ö¤aáÓîði•WBtïçÅû¡i¬º‘ɨy,+²Ø<ÞMdg!SózߘØíú©çLA¢µþ(Àžûsó§µ’Kw›EøÓ¤“rÉÜü霨ÆÉüüéM’±šœ?-e…ŸüÇOöË[Á'{ÏÀ'?•*“Ë$Ͼm<6MÈõ:ߌ†ŸaYi¢Ð¹¾™ '½‹¢½r)á¼{>öÑøÊKŽ%¨Ú–'c©Ep¬Œ ¨Q/âåžVÚ!$o•@€¡¥Qi¤ô3P5RÖŽ õ!gÍØ%Néb“DùYžŽ“ÑÚX<›öP[0Nرm»R­Ò,"˜ŸÞ@+šV ÖwjÝŸ{ò³¥À®³|1ž ÛÃÄŽ—Á`Ùy0±3¼ÿ½˜ÐÙKDÈÎÄǾ=:ö úÚkÛ úz}íd[A_ß úÚHÑ2Rð%ê3ÉžŸdÏIræ'9s’4ü$4IT›¯èíG`¶eB]mÜ[Ôã$IîáqˆE’{Hܲ‘‘äÛî ñ\{ü‡'zi˜åð¤Ÿ7"Wäí*w%5oäÆ/ŸwþÈ›öùñÎñóæÆ;¯z|¼ Àó@knxþK˜ÉW€ç_ðò­×‘H¿{}~Ù¢¯ók‚ØùW‚aG);±ÏÂ.{L±çBaç^$È22ŠT<<ö et øˆ÷éƒüF/r#%¦šÆ³ã‹â½d”ÊpPJLþIJ~jÈŸjÑ›µšÞ]­t©ô*QNÍÒW !k÷‰ÆB½èå )\n© §–?U"Žœunâ‘-ˆu›ù`ÏgÌ(¾áv{ô…+™}‰H¸ ÷>qp•—™ºóÂkòï< ¸ß+²­l}#oëè¶w U»ÂfÍÂf£‹šdff¡‹šdâ@£™è¢&‰¿ ШI"^*ó‚ŽÚ£˜4:jR1ðG•·ýç„ÎŒ`ŽjˆÎI@ø³ôA!àk‚-²ãýtŒ¤o-¦1ˆÊêW8ϪݧëÂZõFö¬Ú¿Êš1þôš²hÇÇåw2˜eæªpMl²Á™e7f‡òøÔÊ®Åz¯Ä­KàÈ)O:`ÃH`1ü^÷â­%bÈ4–_2’峌#BˆUVŸvÏÇ:‘MŠëøµYáïOª9ÐO=ÜXb»Û‚Ÿ2lìA&ô©‰kƒÆ¶âüflÛä|ï40fyý¬ß¾Ö—§ 8áÆY¿}ç¬o×Y¿m²þGÍúmÍúío—õ=Üßö2XŸa³QMÐ_ ó÷GtuPT«å_J-›%žnµ+ÈW "e3Ø7\éè>Jcؤ™@ŽPÏkÆñKˆ† ×h‰X1äFOÔýîQ[C{¦plx"ò‰è¡ºÌ §è“âæÝÂ)†k%ö¼©|5^£«ïÞÙÎ_x.€8Gÿ🨶¦+áqÅøÎ󓽿Q†J<ˆg Ä™@pqµ3Þ½Ž#ĉ;ð_[CÀÅé, .^‚¼,¨[bCã"Á…0ÎvO›Í:»÷ød¾:\,8˜\+,¸o n^(¸|HpóÁ-ˆ7/ ܼ(pù@àæÅ€[.ЧSà 5ì¾v9Æ‹À³YWõî –lP—‡56P— 6P×Ï~Þ3¦Ë@éš Òåµ-.E¢k6BW†n…еd„.’¯Ó&øî^™CH ïlÃBÈòÏÑ ²Åâ>äÇ“xwœäFü²A½€aÁû«Æ{ëÞ2t© ~ŽZåCó².ÃwÃæ)(Œäå$oé¯|.£q쮬›™_ºùa¦¬ú }·C:yÑŸ "‚Qµ4ø§´¡Ž;áÂÐN })í†]2úIC;I]aݸÄ%´“ØYA;­ VÐN_ÚI9ZàöÞQ/eGU0—""‚xZ!8-Á‰7f_ ";9'™ÎÄs²™j¥[öÝA-е0 ”tKþú P! ¨ÛB@ùP÷åá?-ÿ$}Åï üÉY” Öžiî%`³ÀÚÆàðNû§·Ã¾²4V|xQÊr£ÏÀ“ŠŽë8oµLZ…S súGrDUÿ˜Æ‘ÂC bÈ›?‹/BøVå|joÈAŸl-©(RcJeAºÄ÷ª,(¬Ø¦ÄÆ AÞÃݬì­ÙM6‡Ablqâò¼ŠHŒ? nPFü¥¶ªÕ–bOs)È'$ÆD ÝDºFï ¦üÖX³Þ….€¦‰œÄNx™Óœíµx¿)ü£½³”¹)l/Û¢‚r­fÔÈ2“.$81ZaÖî¯(ŸŠŒ»œî¨ oà…¼×~ÞíwuìL‚×´¥gÈj°õ¼–f›¹áˆl.X´#ÊèÅ"€VÆ7®_ì„®\ ûÎ4$*≓/MªÀ}üл÷,¹ óͤŸ})[(À±íH…­IãÇŒJè (¡K²qÆôãè'4ㄪYFm¢ªHzœ ë†î±–³þ…bÁýU25 ó,ë· K¿EîñÝšÙ£V×=±¾–T5¶n;°ÛK©FV®õª“Ð9·ç؇›Ñ¤aÐÀðƳ4t+^ŽÂ²£îöêær×# w× Ò£…—€¶¿ =º-ßþ¼œÚäYÚ¡éç{[âC»äé—ÙKAÛ^ Ú¥à—ÛŽì¯K©FV.µ"µƒ+Ò¯sŽ,NåXR_ú’°¦S²r+$q+,¯[8±½+½Ð—²;ú2?0Ñw *tK@ ˆs€Ì†ú8[!}|?Oÿãó’@²ñ?Õno¹øÛ›[+üûxx¢ºø 4êõÖŽ«µ’a:sC‹9W³\{QÜ<èÀ¢hËϺ´ò#ñfÐ`„\z„??IÆð©%àK~×$ÛçA(áL!ïhcT.ªQ“€Ûn#E‰WÛMsx(̳r+ˆhÊ¢`šùK®ü6êÊRÀU^}/è*‡š†èöǸ7I«Þ5´t¾µw}3‚Ù¤ªªQÝI§wå z°UÁºçRÐç\º{^{è. þY,gBÈc7«š˜¥˜9ä­˜Y”A$p{’ i*Íw‡J#Œz}{°4w‰JÃûÕLÄ—Î ÌlÊs?‘Ë öÆy¢}“Kçâ›sÙ뾑‹ ]v:|[âbÃa6ùŽ®#º :˜@R ¼nàkä@My“Ò[5ÜQ^À™K€ÂK0–õè™Ì÷¤¹4ä¹àꕲ"¥èîì0±.JŽÎ[òfó ‡ÁÉçîÞ@n2é]鞟I"]‘‘¸è³BšQÉ\¨C$ÃÍ®å.Þ)¼¦û^ŸÞö.Þf³^ºWnè¡yCÖ,3‘Û–=H¤ýØ‘9Í-.4-ÎÂä^›HÑ"ܽ{Ñ„ Erä Þ>‚.#Ç/ÖkÞ!å5í:²Ç¤Û˜÷¤ñ&¿ê’ ÉûÂ$B2ÅßäÂ|ù7!JcõŠ/qŒ*µ¡üU!¤†=:ãçò]Ï ãÊÒÆÕ ã* ¹WYA\ñ³‚¸ò'Ö7 q¥Ør6ØÏG{t,´Xý¼‚œp&þ ìjvõM‚]}åIð Â^¡Ÿ·5 ŒZàÅžØ;Íý_][FîFÝàL9ð©¦p8ð@Žê…^™z“÷ñô+Ôº'þ.Þ¹­y§ Ü* =¾D 6•Š&êwLN÷­Õ˜²÷6"#Ä»½¾–°¨ˆc­ Âá¼êòºÐ½¹é÷«•RÍG)]7ă”Ñ©QGRNdþ¦gR ?±Æ”õ;—,à¯ïXnÚ5©è¨N)®¡ª ÖJfv§«ê6žµ\9q²‡+¨‹‚®JZyPO¹žïÇó8åÄx =ï÷R5½¦{†…ßëî%­‹-l(sÖÖp ¾Ã¦HviCìÂ{N˜_Ú9øE®ð>ËÈŠkÚórMšßgœ¶É8í§½ã´cŒso|C¶$‘Á7^MÉÆÀ8Ó«#½Ö)-Ȳ +­[­nÃéÀ‡¬Ë$õ!­Å %.eé*uRÕŸ¶ÝQŠS0Hˆ€`Hp˜S¶õ¼¢Êy¨‡1‰$uGã]lòihR7ɘÉ>"!/™¨yIâCóÑ)TY‡A¼2 I3±‚Ës/yÒ—ú}Ã4X RÛãnŠzZ4 (Ⱥ#,ÑÅþ³e ÿ™=ü {,³…Xæ Í#¨(ßÙœ`éØL¦p8Áç÷³¬qß÷V[“½.ºìôóDßSë&› RÎò !¸r±›¿1ò%d$ÍáÅÅt„<>9LFS«|ø¤ð?"Hçø™«;øòÉ™0ßðî)Æ9‹2Î «ê ªÖ\TUKöì¤ /õ¾úTªôÀò»IÂ)âQ ˆÐŠêd«nfå; 䃶”Zë¿ÀÕG+ ×8Ыâ"Ý|ÍI¡ÕpýQÆv(ÝÒ¢Ó¨(K¹OͳòâíàFfI+øÚ¾öétD%ÈSþĦmh~W ~©‘ ªqÑŸ^¢°E“«løÀ‰p¬éJR ƒ¯”¥ñªLGƒ/¬Ñ`¯ ˜ð×½>úÔšïØÅk—dsÝ}Ÿ_"X.úè—½H.ü Ð_í"ËI(q#µTm1Ùt±Õ…ôN†¯…åž–ío¡Ü-ÒÎ’'B¤Ya9öJsòùªÕU.Ú3ûžV_z¹]©V+ÕJ SI—×Ó1TaM<›ÂRR8V£ág’Î$¯§èé'”oA^:]öë§ÙäS"¥ œì̲›#jŸ´Àk{;QW Ï߉<Íô” J>•åË¢øý ¡ƒ•¤)ÅðNEœ.)~ïg6RAÂõý¦év¥Ud©ñì Ð+â®zÖÆ?`¡}Ó#³Ô£ÒÜÝ ùÔ ŽïÌ“·”æ´F9C+X|àðÀÚØâvvY´ñ= ¹òÕ÷1ö%†ÝnÈÏ=ùÙ’Ÿ †xí²ƒ¤í‚h·H¼†&`6þ bÝ :;7z6$lÆÇs… A[ÜBtZõ²VEV#WXÚ+,í–ö-°´ù%mx\‘ÕV·q¸7(½ûÆÀ+åÍ Í-/]Qf3ÉžŸdÏIræ'9s’4ü$5qëpÁ ×¶»sŒ•[ã~ÓX3zy…œŒ|‚¹ÉÁÜC$—}"ÇžÚ!9ý»aü}æ¶(£YÛna3àÒç¹áÒç¹áÒõóÞ.Ýkù­áÒ=Àež%+¸ô.ÝD¢`ˆ+0õªý³‚7áÆ´ƒaJÖ‹qˆoêîä4â8¾g†pQ„ÏãáÎò¯mÑ=Q¤¨<6À÷W12U,Ú…ù¾X!ü¶Ï H|™\õ=Ós+‹ŽrÎíÁöç› C¸ÒtaZþX¢P8.MAú(}„M¡»8ÞN°1w®\P ‹Nº-‰B§|ÔŽ©#^%CÄWø9èÁ7¦,: â0ÊÂtÌN}Ðö0OÍ=PÓ„Ýtñ’a¢½r-BItõB+ô|W@ФâÌtÉòKüpX‡}!¡¶K¡Å€²Gƒ âü0×<ó0,z³éŸd5ö•é2RR2B2’ºE§]6ܹQySkª79£õ.FBGóQLs ú‚ÔFoša;b8äØôfuéÁŽUÀ>l±ÞÞ™XíVÄŒTl=Rh¤Ç䙿Ù,9Â@úº*8 "¼Çd>øŸR8H…Ð@,ð|Î ®Ñ[nïÓœ·ÛT1+4RZ»ylÂÙ®h›¢{Û³w8b~ e”k¨…Ž‹èè˜wt F‘ÕØY;L™±ßñÞõø™oÆ©.…Ý)õüY¼Sgô¨BÀÝÏĹú%”ãàttfv’üéð^¥…ÎÑ #LÎŒà(¡ðs†„Ê{P)tdèíÈäƒr!i[³O×fWð##…#­ä³ÂŒù³Í—±ø*sÆÞ˜ hŽ8O[³6Œp=; Ðmc;evÚžYã°+Ƭð)YC‰›2ÿÀ=Ìî¶<‘“.8b3¢ñ,´)oĦGùGŒƒä8‰–ÁÀ3¼Hx!šB‹D8L¤‘€L(Õ–µFTkwµḦÎ3Gì¥_d¹yno)#ØÒ¯wºHDÆli«ÅúÊš«³Ã¥1†¢=³êŒ0‚ „RÊG©:óð’FPªe¬«HË ´µévðb^}?üø?oú×÷ÿ§¶Yݪ¹ñ¶ ù*þÏ=<̦vüŸgÍ‚ËâÈWï–Å«²ø‡D'¾e}ñtBwÚÜ€8Üz^\B×£Anf§±"Íìœ/=ýJ¦ýÇœ±``¸ÅxØÿHáT¤öW<ëNÇãfwô~øQÀ~’@O]/“¾(@ú¢¸ ÏûÉõc[§D—ÐËá?ÿ_àŸ?ka!Îß! Âd_.ÑmªôY¬‹Fé‹«Púl˜¨jÈ€ãÑ4¥±´ŸôÏ8ò—ô )ðýêÖk®Tà AÂJø&Þ oá?Íõ#‰’èÔgÔ¼Gà]H‚_±õ+Ô®A›‚ ÅRár˜µHœ4HZË™Äe2*ø V¶„¡ÐgGAÉ®@…€(aKxq 4ÔŸ® 9/qiÌðEÄýMš74ƒÔú²âXé#‚#Ýh.%ÊB3ÆßZY1ÏNIxR„~sCÆ6íYhâí3T5Á¤‚ï›\ŠGCÛ^B£•;‰†p4«Ò ö"LxZküíkh'Ø(¨x“B£P}Ü*m :ÎQÑ~ #•ÅzöÄ B5ø»ª@ŠÖÆ éÝóáGö‰.´6ŽŠ“·X…°b’‘0[®ÊïÞ$ÿö.•*°„ éÐ6*‘H » m,ÆÅ®‚ó$kÐ[‚•0¢ø+.Ãj 7¸L`Ó~Ñ@R¯T=çÁ{£þcœ>ËRÍ^ÑpÿƒlÖÄsrÏ›“{Ä_ ±®µ’ ‡`3TúôÚ¼j@Ã5×aÛ,À -®#ü£ÔjXÞ;¼9¶”àÆÓÅÔ±î‘â5R-O= U£<~ªÀ/Ø?þl¯péâ¸t‹"¸Y¼°<·Ç"¼«J¤à6ŽÉð¢GÍ#ÀaÉÁ²„Y ¡,¯· oèÓHeN‚‡³üÍßä:èH‘%x_ô›ÄîŒÄÓªÉæŸ'“á5î7pœ‚!ã?LÉÂÛXü’e—x]¦cÙ=£Ùe~ùdÌSÑï¢è¶@/ùdìn³$ä¿Úß'ÍÐFÀ |xt‚ëðË&zÙÁ'}oaäª*²5üg+C_ÐjlC’îb~Ì£CB*z¶×<#¤#F@RE´@#PQû¤…èÄ«VV…ÂÀ>™DêÊ÷~9ó"ÁOAF!XïB¸ÊæÎºJëˆï¹“‚îHk±s€®ÌÀüð OšœžÜsšìËœåÈÈKÃÚ– e´‘RIn´Tâ8G«½ÞÄò0- :b>äž©žóOÜÈ0£Ñ“+ ” Y&9Çs•µæg *WÖ-7«‹OÀâ@Îí@ÎöqžœÊެBG štì¢F!]x6Ž4cÖnñÌeëh®eËòh±D£Y‹˜5¾Û  ßÛËê‘ïÿóvtyÏþ?~èùÿ<|¸òÿ¹‡ç«íÿCwêw›GÇeúx=ãBÿqæ­P ò¾66ƒ’é ô:…Ð×>ÉÐ>aqo¹NCØÔ!eÑr<†Ž \L¶¯Ðë×c.G!à 8"NÅØ¸1FaPMo‘FÑ…± qð,¤OJf\¶|ȳGú'I+ñ¥{¦ª°ýË{oävNH{_j¨“ôÄá#àdù™ìYº¬É—›ÞÅÔ¦Xžã܌ރ‘d½»}ÖEj×Ã*¸¸{ö3œݰŸ†wŽa~Å_Oк”bªbü”iÒ$Ã骩­N—oÍQe=WñtŽK¥“R½ôZÿ\µYɘ–TLâ¨ÝÝ"Ö b„®Þ“×ùR/ã¤>&:  /Qþ2Ož—¾¤ãqÂŽcÌ$•a9ŸuW/#[—•/QÅzM^Qf4„ºpä¶gèåD\0ʨ›ÌI_8š|Z~ÎŒ…Lôù¦ß»èMÁƒm™œðœ &Ңǡ/{l")zÓj±jàuÕ°­h™^–`ÐJðšˆGèãjé¸?<‡ÿ ðëë"¼ps4B9NüûW˜^šú}¤èAø*¤§i&9xñ¦‡µo›7Øë¬!\,ç5\³f€àäp£¢uZ¤Æq½”—¬È¡þ걸r$©š:þÍI³iŽÉ¼ªQœtØ<Y>ˆA+epv÷RØc·Ä3*ñzJ!¨ÙßøùDªE™œ6¥ª(:’Á²‚Yl%í­×‹öÖëPo½^vo½žÕ[¯sôÖëùz çJ ·rºèñB—Ó3OÇÜöiêÛñâÌˆÛ Å¾GÇ¢ÀìJ¾/C¹F©‡'%†K 8ËòþÛ‡­þò‹·î[^V¿äêcŽÍ-ë¸^}ܪصNUžôðUZØ·0Š%l¦]DCû؃½ 1úX÷AKþf`ÀàÒkIðÉX˜\–À€RíècÒ·ãYVÑA «õ;£üýN0âÒoló7|õD·âÉ&¿z¢ÆðvnŠ"æŠeø¹9¢ ¶ gQÀÕNq9{ŸNnÄ &Bõ‘üÓ¨7™ÀâMn)Å€œÓ#´p¦IÿŒ†Ëöx¼—Ç<#“€"NA§%4‘5lÙ ñš%“„vWk•Õ²âj%¶Öôp/a¸ìR‘&zRåIx­ýµßÔ[½WVåõ-FöõÌ‘}=²¯«™ƒô:k^Çéuhp{Ï1H¯­Az½„Azí Òkk^;ƒô:yfÄÞkž”ã~jóú5ë¯ñ“açh ,ŸŒ|%'{íà8„G¶¯¶3ÏÌ!½ÆD+MÓsshî/@Ót ¼Ž@_]÷:Öu¯ã]÷:Úu¯gtÝëx×½Ž5óõŒ®{ïºLš]÷:ÞuQ_ÅÔ;ÅqV$S/ Hv04?ìUeΰk3=7C8Ïq$°X/xœû$¨+Eü{N{|¸ýæC©h>©@gÇ ,æñ÷x+ªÞˆÇ¹×¹×3ÈmÙfpK~‡·çíÝÙo60ìJœÂÚV¬å@²íÞqek~|o²òÛÈÃÌÑ‹Ñcû™áø‘ÓæO5Ãï51X‹€3¥s¯aúÏòÏáDH¦oÄm„^SªuG¥Q ,&¸Î6ÂF5©Üo$8ºÔž™UÛÖUSæI¨^ê—#Rì0ª ™æd-kè~êxv&É ÞO!å¿T¢aVô% ¾ÇÐíõ5I¹è†§^HsR«­DjÜA¸ÐH@v'•Y^JÏ}¼œ"êÑNwj" º\±çPU>JQ/»˜49Õ>Øh.n½¶ÁÙ«‡7²œ¢èI™ÉJ*Wùcá™5!“©UzÕüIþ ©Ø¥¦ÙE)<­ê)ŽiHŽ¡_#; h…ÿs÷ø?; (ÞÍ)@ÄÊïÖƒ"½Äÿ!wNA[~¿7ù²a‚ר: ³hî3À€.@,C§€$Pƒ]•CØ?M¶³ØØ?âÈþõ‚%€$Ñ”°?&(„¯9Ê@¢^š D×\¸11ß{ÅË (08Ö©úVÀ i¬ú±HãéȈ€ƒ£ü"Þvx@eîµ*©w9EÌŽ)9„*B D-§–3ËX¯ƒr ­¬ð§žC|ƒ¶³&ülÒ Ú¹5VO ‚iwÑ ÒÝ1š?¿$&ôAÔÁ‘ż,žæz+'Ošóh]­ÅѬ xVP<Ë…âiä‚â‰HšW†EÌ9 xˆ)stwP<„ù&1xŽf`ðȆù%û<õÛ5>¡`_åÇàá³È-0xðч÷Åô,ê#!_Îôޏc4ž0O³µO;PÓù½ê¯ŽÇEå1–kʯÐîI›ò1jÏ œg68O³¥ÀyšdU,5œ§9'8Ï [÷ @žÔ†}kpžæ-ÀyŽþà<¬"\œ'3k68VßΠΓ•séàJï‚—\0~ÅÂE5s°«/Œ^¶—…»ÃÀ ÍVþFî”…±—”çntºBåáïTk¥Ï„¿CgÞÏ6üÎѼ).üΆ„H9Êß1Q?TX£{ÀÛÑã}4Ø:8«DSŽ4pJÁ+1 *6«úDÂÀ8@ˆ÷òqª»}s9ÙMápv² €h° ÷g`xíª³$B¯-a´©-Ññ®§>1”ðþ@qÜQg3Ung&B޹Oh½*+;xCÁÄ­¶ (&‘¶ì«+3Ù¨m,Õ%‡–3€Ïè¡ÙÅmŒ¥‡ÅeXbµàÈî@"lE­Èá Ó—6Òš0 Ê)Oƒê§ "mg>0¤Ï ëöy0$†d;ráé¨üWÁv¶æØ L¹Ð*gí œ?곃ãþùì,óñý>Œ®îÕÿ§ú¨ ï\ÿŸG+ÿŸ{y˜±mÿŸ0¶äIýÔð‚oJžk¤“Ìwûóíøþ`‡ôŸÜ@ù=` •6w<#2öºŒ‹ï‹“ï€+€ÛªFµË껎U6]ŽÍø^-ÿšg™Á ºÊBž&Ð~,\‚MR'Ò¬$0þ¶T­˜¬!ßïB@²mXV¬)ÈŒ»ÆI Î°!$‰(À¬ùàØ7£'ئÙ%X^âÈðO2ÂëÐMòBzþn™­ø»‘â¤*Ï€Á&ƲVyRC ñ3ä¬çÈl$Ö#Ô‚mUæ3/Œ˜?Œítv 1eé†ÄsºV>dìG¯Ë`¾ÒCýŽØüzR,µ‹f³£ƒ™~C̾¯×Ì´HG‹‰N†×÷Y쮋5oå„5#¦Ør :–Ql‰ÎW-¨‘bÌs¾j‹BÛ±·z_½³kèCNØ. „½XJ%7p0¤}l³®ÄsSº–ZFÙ(U…îÌ®útÀ‹ˆêâ¹å–ÀwЕëÒÇSÃvù9¸G5¬èVbÌÒ/9š}ÃÍ'WO“Àì¾6{Ìí¦U\¸yâÂm,)0œtqI®!pŸIGÕ ˜YøÌ²üRhù 3ë–êN£Øaó›PG÷<¡^gN¨¿Š‡,dåy=Ô8Bæ+ÑŸ Ó¨Á[Å ›Z Nè:¥iwµt§žÀ‘…¬–3©šDBv°pøa4ÉÚ”M:v!]F2C™SV.sËw™[šÇÊt“¤/¡ÊÅ„±Fg/Ç©M1Xqr?/ÔŠ¢Bÿ{^x_T˜¸ïá=.€ƒòµZ{öºo!M¯HWEÔIWS¤7O^‘žt§]Qñ¿5ó”B/è|M¸¾¼òx~4~—nŸEaÞ°÷6ªH}“ÓrQÕßð/Ø¢ìÃy †¼–¡)¢Îo˽¢†Øå XýÑãædÈH@ÇàêNBR™d`ß„zFвaBÒ²yJת‰¥‘NJcH_ßnH_çÒ›…†ô<6¤ç‹ éÍÆûusXéG=´ð¿ãȇ†—Ì“”Ó¤e5Ìçr˜î0¿Î9Ìícs˜_/4ÌÚ]yé~Œwà`Žñ·—AéÔ½k9u¯¼þò„ä[$:[ޏlGLóGd‹8m¥n:Nš Öt"¤<®L®Ítk\0æà¼nßZdÁ_¼¼Ê'MçVýœÃ=Íá¹jóåz¢4§ŽVì±²¸NS{†áɶ:™WÍ3\Ÿ^O ñ˜,Õ ×EkFô°£²Ž²InIV}˜ÎÇrñʨjØ(íú*…Ž®‰…,('cét$yŸµ,k»a° ÖΊ 4£Šø&sÆÙdþC=¾ýôáÞíÿj+ûÿWzx–ÚöZ=Xh­ìÿ?°ý:fÿ¨½tmÿw¯ÇGÌÿmFà SAH|móS"ýKëþ¦²í7SËySüÝH!6ÂÆ¶úÇ ÿh9o“å|~÷u]„í@–óvØrn{ ´åú˜®GxuÐJ ù3]È] òQ§Dým/€e›ÿC÷-g™ÿCÌ_/±?dþWï°ËÚ%¶þK¯--Ì×5ÿß Ë’@Rlãü»|eàc¹™ÏÞY/T7˰´lˆmïlÚæ+ĵwÊÕl†½Ö·¼öÎæ ð—ö‚öÎ O‚€½óxÙöÎ;EªYÔa~‚¥ î,Ñ™æ(’‘(œäp¦áöÖÎ4&ÛÎq¦™=îÇÎt[;ÿѽóýÊÎÿ Ùù³`3G“ùíüA‡gjðvfþ2Î}šù7(+ÿuyð XùÒ$<0MÂÇ$<˜e®®¥Ixàš„omù·M‹Yþõ<½Ëÿ͂ü\Ëÿ gŽ›ˆ3Gƒß:η¶òÛ΋Yùµ3ÇÊÊïZùÛÇ++ÿ¢VþYX-A+¿ápβòg´|U+ÿ¼àE3¬ö·ìsOE³­üÒ†rÿV~æË»³ò‡¤Žþë±Rø‡ÓÍ€mé–V~Ÿ‰ÜGo#*ªkåçÉgÀu+Уz87Zúº|Ð(5‡ÝÚ t:qM.Ê¢v«8²€hîц{å ðÍ>¾ýüñò~ã<|XÝôíÿVöÿûxx^ÚöÿÎÙnA¼8lœ–ñß3ú÷Ø;pÍ0ã‚„V<¹ÆáZS?8zŽéöNàßSÌÿœáç™ •6Ó“`?Ë“àÛ&²ó¼Þ®ïXè¤ÜŸigÔäzÀn8 ìËn¤>\À!TTê@À?ÌrV q-øŽ ñQDŽ Ü úrZàÖdç>+psK)LØ\ÞÀÖ©·ÃÄåUVc©þºL0åpLQ9Dó¥å8U5ÒáYÉ;Ä.Gþ Óâ”pð`KÝ­–ÐÑ -Á–­•ü{Mýnãqº(º‘¯©¾HÆÚd,“ÚT,ëŒ!å’‰x¹Ž¡òHG~u§~˜7hIMF?ðƒól¡¾Vn¬×è@OúÉ6+€¶ 6÷˜ NšUöC€‘¨Q+¨ ¿˜öý›2ü-5ævYœ:Û«a¿?ü„Ö‡ñd4½˜LGØðÏ ·©ÿEvú>Š¥/7È\XîåóºÇx·‹G=þÄnôp !CöÙñßr¡ôvÓ‹-µF¥Ê|ŸêÑLš-*WaB’–ü¤_Jg ¿Â¥q ’pºZÍbDUæ‚çÁäðr5xXoÊúG¥ëïèä4ÿ9µL.1Rï”J5±.:ø§`}bo:'º8T} ùÊÔb¶‰KMTÅúß3Fþ%¦!^núï_vGh”¤Iâ,,ŠÇ\SêHJ^Y”Q><û4‡h:‘ ¬‚¥›5KYFÈn ršmàŸ­`ñº"e ø'”Øh0YnkK,ÈsÍ98®9›ß ¨[ô™7]Í{Òãlk+M—v%uö‚ìÒ”BWANàßõfŒƒOR[Oºoqõ6ˆ&\(û_Þb›^JÓÝ$Û«*uÂ3xµžÓ^@V¸­rÌ“LŸ*NfºQÙÒr¦:-`§Ä¯»µb±t¶V‘3¸€÷%ÒS»ØÒ¾òò+˜ÖŽÌ:ÝþxÈ1ÎPŸŒév:ήŸæ©(ÃÐ5ŒlYSE:ÐMç jžÉÊu™ ,Ê^§Buºãøª,^ÑUZèy îôƃ}Ù†%$‡ã ù”MZäõi Tµ-›k§k…8ô¼N±;UÈ…ßœ<-ÌsÊ>q3àÉ"_Ñgá¢Ïf}/ú8_ÑÇá¢g})ú;‰6w'áælOÊ—ŠhÀ¢~ñN=Úå%Uú@ xÝ»ú"Ý—’ñôœ}L—ÉøbÔ;O y<ãä‹7õ¶a<ždMÔyäÛðæ¬Û~˜×Ë2zU«x2m‹J'I»}E.Ùçà~¼¿²×^cfÇ‘Ÿª’ßçê·;õ^#QSÌç½Æ½…r§X(§ÏvT ZH¨éÃRi˜4¤üÑí±·œ¤b-°²‘x¾"«¿ãöOò3½|¦N_!­žsâöé¢ÜK'¾'ÍÛ§­ßC‚Ž•@ÞÅ0NuaêÍâ“}*ÔžlFŠ‚£À“Ž:èªUv…‹’b;‰CÄåk~)Nåûyxc6äÈ¿$UÌP¢!gpßñ´!Ò""r7%W ß .ô~ åso5¡N+DÈXˆ`(Mi‹~S)«‚¼;>õÆÊ=ël¡þ;s`ʸég,øàa(xÓ￳@ÿ©þ;Ë迳%ôßY… ’ß²E¿©”~ÿ/ÔÇÎzÏM?fé­ DCàk7ò@ÿ«þ;Îè¿ã%ôßq…°c~ÿÉý¦RúýçûüF»0vŠ0½š¡&[%ö“]oI¥Ç¾òàõÝŠ•Î>÷>Á´H¡âkÂ1:©7ÐzŠhG–/)/ É}¹Ÿ§ºÖþpx#>õú}¢Ã‹ ÓLÜ÷QÕˆÐô|[×Ó@gŒ?uoä:ºÏ`ù…ûûE7O2¸tÂPާè+ߨýªˆƒÆ×èoTøèŸ4ÐÜ×Ç“JÉüÝ!ÃNÀâE÷bx¤¾Ü®&Æ¿1‡ÎÁ~wò)ùMRaçì+éÆ*E£²@?vÓ#îäYç…v¼H¯#Ã*è('ÕR‡$ȸŒ/ß5bïÔCùéj&&îŽX[2y LúvØ¿³ªqUµl&ïD ž±ì#÷ ‘'“`‡©z°w…JER¡^,5믟ïuÂ3˜êÌ™Žt¦†ÎTq—%å|m7úV¤.5Ч¥Lt.ƒ-˜DȵZõ,Õœ>˵_‰FwÌ>›×ÃËÞ­ØÕî\]ŠiâD6¥ª>Ÿï¶“AYü‰ÎE×f±ÛûØÃ¥‡-¨hn|IÆT˜Êž i;õ¯î„ùG½u‚æfø8å,ë+¬¡Ö.üÛAw™eÑÚùÇÎ 2¶ÛM&ù£CŠ'{Í£2qý „Nà‡ÓÖÓÝ‚´)Y—!§ÒN½™QŸÝƒzsçy?[ÏTº€c&‘)»É3j—ÛãTÅ |Ö9Ã(B´òd8œÎëz·> Ä&è‰Ý£|"@FMý¤¬ge¬ÇVà>2 Ï)ÇÑ]òÈQ° ‹§@v Zkì}•×ãÒ wæÒ;›MÏóÈ4è»ôŽgÓó<6gxn»égx„z^3Ú²Žž’ur´­¢¿ùd,OÈzê+¨áXÌöî ¸ó“§Š¿jè:vÊ ÷‹ÖÎín3U¯™GñFÊí +¾$Çsíš!ƒ·“;úö;Ú¨ÿ5ˆëžþµ¤7V¹C@>Ž9[Û„TVtå,ÚÙ5fPE„\î‘Lø˜Vh®-ŠT½= NÁÀ ˆ‡íÉ(oܘ(¾“`ybH:¤ðÌp"è(±ýŒ<v÷"\ó‚žs»+ÿ¸¿ˆÜw‚øMAÆÇ Ck)JB&•Žul<ÿK{‘™½dRÈê°»?“¶SE>ˆš•F×e9¶T3R/Ñ}•s'ùŒ™–V§W3Œ®sš[¿ACë·æO+9ø¶>´÷á”¶òF[Ðm冶 Úéæ;‡Íò £ ¥.çÌl¯µPö9œÞbÞmÊ·í«{^ÍògxMMÇ KàÅží=Í HI°®,²¥ƒ[¼5Ë­i†©t%'WÄþ„v¶sX¼éÈœb~À»QœOmû|ûo òä$yóå®PÐRß±Ì`¯÷Ú‡eqØR ú#8ö4÷,õX!T6w×7)5Z`蛥óQeçwþyzØþ£½[žÛ èÅrýtbþ7Kñ·!n,3ìOM"½ÕÈ£g‡q€›'ôÙÙ;ÉÐÄ!ò^­Íqê .Ís§ÞèÜ5„Ûºïpf)HQ9iŸî¥fõ•SÏÜN=3œt<§žN@·qê 8½ä÷é 8­|zòøôÍëÓ{mpk…=áÐJh)?+D§Z…ÿx™„Â*hþ ôÒ%Àì 6J°…™z£ºéZÉ5Û‘Ç–må箎8wõÒ‘ãæ@kzAoo¶{Ò¾ão´ÖxGÿt-;02Ë'‚œ&ØyÇè h¬í4ÿ -ò º#мhm8Høð×ùi1sKö1LäÂguã°îgŒ‹@7ÃÏÒ›°ÛÓi¿Ï~YðJø_¶KºÍ!wŠªSyEq]LÖ†Ÿ’’ÜàèŽÐøš lK~o¹NÉ Â¶á‚¬ªÑá© ÕçÎï:ÀÁe€þd “›·ÙÝ*} 6D5-Þmñ@¿`W”ƒôrp_¿c×áË-Ï7dÛ›º;Ìî ÎÆu¥9>hRÄ»%ªcM7Ú§jÝòy¥“Li{ŸØCN¦c iL¦XEZF5@UVk¬œyÈù,Ÿ1p¬nÙƒnáU·…«æA )!èÍ‚\àŠ…±ØIàú»ôÚo%I†äôdCF– á®B¯×|š$$Æ7y]:p {áÑt¨{UÑ/³F;­©b»¦ù*Û V6ËU!űî&æLEœ1öé`ÍÅý:+Ì×G<—[0‘xÎÚ.X䡚Òl]%³§¶Ïª’ÆŒ~dOùRxéAè1ëimð™åÀßëĶuÄb5bÓ”4ªKz-ír(o·¡Æ¶ŸLèî#¹T«¡˜tÕ*ÃÌÐ6OqÎJGÕµ˜˜‘~N%ìú,©àçl© )‡ÚÚ»³&å¬Í¨kúÒÞÆ±·q.:¸‘×½¼îì…/¥_í¿X¹-¿@ÃŒD‡‰jMaßãO° ªDצÖ“µ‹×Û¤Ib5C÷ah¾òºÃ˜±8 ç\mÔRsšS95„Ó™³»Iÿ7ç6ûH¹#ÑÌ/ƒ47ªŠL)¤NN59¤Ó¨•u:ZùtÍ”Cìî ­ÜjÙF^€ÕþÁ"P+èü³4Ô³Þö‹0cv¤£úc¶_¡îíLjbÕÇŽ5í‹ÑCæ%<¬&lòð×Ñã”8ZµBZž¹x:HhÙë¥'{ýjÉ^/­ºXue/¤½ˆ^Δ½š/»·)e(g’@zI=ŸÔBÑO Q…àס•²ÊKg} -ŒÖ¬É!"0c¥ƒdÿµYPxÀz¾´«Ÿt î<âC}æÃ}†ãi ¥@“éª5S‚Øà%ÝÛÕdÚª/J¼ qk˜a«Õ€8å‹,q"ØfŒÓBHéz.ú›‹ÁaÇ8žÄø)«ÛûC.~ í)¿—%îî„ú[é´ã3Ú÷4Ÿµ†©ß—Ü?°Î¼(Sí3—÷Œ†ÒŽøRýœÅ¯óò©Ù4džíÙ¢juËf°—©¼ÚÌÃ`[!ÛÎÅ`^ÿGfžïÖë?}<ÿÿñÇw›÷êÿÿsu³º¥üÿ«·ÿ}s{åÿó²åÿß9{±©Œ¶*„ªÎ|6ÏRíùî‘ÿGÍÆÎSXŒÈårwþØÛ; ‡šÈåŸãA/IjgˆV¨sôwD“èë~wò~(vG×Ý e· Äëî›QrN›"E„^Ž’qïº7gÉ8é÷tî§Éh0Uº (>ï¾#i°NDȼ4ðKžÖÄ'û‰ð·ÇëÉ't¶Âé‹¡önFýKnv趃Y§¬›潈a8ê^Bÿ%/b߉õ"oc5rX3ÄUU€wýgÍz:žÕJm«,as¦þتPŸTP+Ï)©eýÞù¨Ëá»ý7°OÞ^ɼþ¶@ƻӅÿ²^vuÕÛ~ç öˆþ=¦ ÏË/‹ô§<¡¹(­@ÄÇi‹ç)«hŠÏeñ?Òß>³ây™b+o¦6J÷fH*Ã4öwöOðïVj7íÏ|ýC^ü8Ó“§É󝥿–>P¸Övœ™Æ\T§éÔÕ˜¯Ÿ¨ª:WAŒ“ŠCغãëAÕÑ»òÓ¼«á, úa½È²LÐokÿÃþÉËy=wûƒs5^£Ô?«X|Ɇto2¯8FœœŒFžF:7Òi}(º77ý^2–p;ÀÅ ‡"}ja?HÄ't!«’PÙT°¾ ­Þ„•Oäeý6¹x¯qx#¥0ž onPCu1B¨^ \¬ÀúñIL¦êövj³F‡˜€4}ÿyrô¯"yRv?v{}2+÷ÄV&Sx2rð_.So–ÿ±»ÿªøÝmçC‘ ØÀέƒ(^),/„á|Õƒ¤jöòqú2é_aJt¢ˆËè #Fr‘„Yù¦—º^ÉŠêµy8òj‰ß­ÅºÀ sY쌆0*]ƈòVå-¿eñ,Á´_äžÒ˜¾QÚûÜÅÎâ«Æ;Ãk}áâ1 Ȭcr­ÁëÅØç@OÞÈGˆCìüdÌN<胘]È‚¤ì%¶æÿ…~x[y;ªÀr‰Š¹/Ãièj„Q üšó~B‡¼H‘?½MˆhÈÅŠg …uMq¤$X®»CuMÀôÈ?³ªå=¾H¢Ã^¦pUæüÓ"}MÑhìDz€ÉaN Á—Þ ü'á›%vœò5ô3ü“Õmè{£Vî³JÑ©jýŽ«Ú<[¤®¤lòM3¿Î-Yg¯’|“ibÖt·9Øoæ®0êf>*'Ï]Œö^ý`ÎûÎÝ‹²‰W¢ »Å4«þØ®uðÖù[ýÏဂŸ–Ä®ú3%èU“r׌꤇»‘ôä'¦´‹@gºìPNï™tÔ{/„7AH ¯úÆH?%É ³ôœë ,°¬'ew3°ŠÕ'Qß-;D*Å%_H‰ÜHÙµùÈQŒp”ÍM'º¤]cÎI EØ!±j*æ¼\až¶|k/#îèyLÅlâÍ| ©¹PRß2 ýèüWñˆ«KàtØžåw¾7½èÃ1¬; h!½¦k£»à¸KCxŒ—VNUÔfrfNžàäT÷ 0 ,n²ˆrª…cB˜L%y*Ó÷*‹ß².<]~Ì_ßÒȹ³œ¯¨Ÿ­q­ûn¯êðo£¿ïüžIYèë#±êàmLƒ^3¢KU7S5Ïd-áh<«–˜ä‰è0èÕÚÞ͸×ÖÔ2‚§êìüœ$¥`¡f©›‡V5)Ý…PEt³@À¼!#Ø×.»[Jáqùmáðù¡ˆ}Ì@Kf”—˜ £>$#fhÿ ^»ØE—€ÃN¡;xÓO ².v¬¸’"iùÍì)™D6ÔÛ%Šç•s´8Qņ¡K+á)ÏA›%óªû5ñÊrYW‹{‰Ž|ÏÜ6à°xì^{±xúwJáÝ{ä¼ü’úâÐm ë—ÉG/kˆçõƒ§e] òÓüùǡ̞^ä°îol–);}{¸k]æ€/¾Ôð‹(þdÕOÞæˆª êG ÐÐc¬T½~ÌŸG‡uþãø°~ä+¡ûÏÊüqòœÀÎvð&Â+&Ó|ÕÙo½(‹öáá %Ä?JnA/¤z ÿ$u7âUÐ'*ÝÊŒ×UÅÒ¸(ÈÉóÎþ3eûJµƒÎË}h"ä>éüQ0ؽóQYìïµÛðç›>üùÁ—â„uþhžøäß_”Å;Lþ²(2/ëÏ÷êè"|†ºyü©ux‚9Å ªJ¡Ì£½]ŸÌlâ\¥Îº%KoºÀPœa²“C¨T»s¶·c)é3ÔŠâi½sÒ.žÌ@ú!–ÍélRâ‘à3*æ¶R‚,X ãÊ.Ň#е;&úr=Šl0B6ÈwNãå¼Ä ¸.ìÓ\o€ù1ãØe»œ,¤ÉÃê38§nÒÿYɹK{l3ìJ§ÉòmÁ½vÛ'/ûƒz«DÒ¾€ •Œ–Ú t¸Ük°M9F{ÅäÑÓ O`1¸b‚ù†4.4ÄÆtÉúaáEý4ÖâÎôF èM¸î€Ú‰0„eR¨´ZœÌ>øgѾ~rÈftúCqM3ü¬µÏë'ÊTòaŠspô0%s!9b—¯™bÁ©)|‹¤T&oý |X?¡EQýµN(S%Ÿû|yËéÞ€b@?Öê뼓Ç”åŸë楾`w«ZñDò—Z~ÈŽA³Œf–7¬BÚ<ÔD Le!-¨}c›LIu;ß$Ûû•0FŠ)ɡҪŸXí±hõÇ.û“¤dÌîØ÷]HoËÖNòí"5ë$ãön­ž™¨$§™#‚ëH™©úO؇‘À¶èÇŽ'Yôåу‡ºÄˆœŠdŽÃ]u]œ”h°Jj>útX4’ü è`æ ÌŒ#^âéÈ«ÏÆz `‹ýIѾôÆ‹Ÿ˜®o‡ˆ³{1ìnÜ{3˜^“˜ÎlƒJ5¥C¬C2d‡ ¶èÐI-3«Ŧ뒄ìx¹N/Jôo¸ûv:ZE©©©®?á<¬$²àN'ØÌní´"Dgðƒ æ,Æ™ “1‚£,Òe&{Vªõ*{2ò‚Âgˆ¸Àè&ÿ “ÏL/‹ UFrc1¡vD“ïJõ”.v:)?È”f¤Œ-P†¼–µ|ð3c‘ ”d,UéJ5«¤´äGc¥lˆPüe¶$YòÚé”:­’´ðû“AH+ir–fÞŒ„¢x#¨¯ÍÞн}¦u+9ÉX}¡‡OÑ‹“q¥À\ïâ£íLÌóÒgµ¥Í9¦6¡ Ù! p™É™cn2G&-κ+à™cT2VgÌÁc™Ì‘5ãåœzhFË…7‚zVˆtür ŸGÈœ–BrC‰9Ö 1ÇR!æaáó„Ñ1sŒ¥OÈì—9xKdó…˜Á›ò&{ã3Ç8[\îqLîqž5v¹gý|ü¤™¿´¹?{”Ú9Z»þïÁ£°­ÅæNo»ñÚ¸eÜúäR<u¯7:o¯{—Ñï½O½@wÛ)pйMøiåðÒ„.¥¬¨ª kj"Ž5¡×¹8¥ÿÞ [æ‰8åÁÓŒµÝ²…[F]ù¨õÍ[׌óJ  ˆÊhŠ<úDb'%v_±“+>ò~’*œ¨s Q÷ KÞ_ë.’~_:Aؼ†¶jn”2xZ$F‰²Ù‰*V%ÙÖ/ûF) Ñ‚OSíã‰ÕІÖ«›f²ÂR]}¦ ÆÛóÁ0Äø,YØI£0½ð# ‘·!óŒÔŒœ”eïdUÿÄ0ÎG+î¯GŸ¤†V›mçešp‡E©¸s KÓÜ’…Ê™cPnŒAñìeÑ“ö2Yíà¡ o1uµ±IØ;[y%ÜÝpèöÑÜù% ¢Ðÿb„™¡ 64¿òOWkèõŸV«…~e¡†½±øw2J6GÕ•Ê®N¸2Ù5 9ufléi£ ¹)ɱìå€ûözLŽþ†3tžÛ <ÏÑVP«nnyu$ÛeŠÉ¤ß~Ø88<$À%Ìæ¦8ïöðªÓpJ—»?l ˜v·³XÊ]Ÿש®2[)û‰'5þˆS¨èéV¸ÕOøc °½7ýõ—ƒ ø²qjxÕmVÂ`SìÙFm²~¿ªè«À÷Ø9ˆÝˆÂ¡E’ÜO¥Ê‚P¬°—Hc„2p5êu9ÎŽ W%›™Óó©¶YÝÄk è©)וÿ”1éßIJ˜Ê§¤'˜Û5݉êÌhCµÑÝ ›Aw‰;7gúL]SxjÕwíZÙ¦|±æËºsAÿ]Z—w3êbZôýº„¬úÂx,³¾éûŠP75ÓK”][uÇcºÞ†2¹rž4±xL÷\‘×SÀìAéÙŠYÒËéRÚ:}T–$0ÆjWu妨íÂVí¼±°ÃüL–ÓÓ!‹Í¤0/Ià$‘Éhyÿ ¬í\œÖ,Kï ­2JØ?„÷„Y˳Á<Å*§ Ë"*ùÚž·‡ïÂÇÁÉì쓼 šì´°°g„ðž“ù"æó‡X¹Cèg–ýÛ÷ŒÓ™íád¸Lj<~QÖÖ4¬‹ÈV9߆KÅœƒñ5*\ô(B% ÏZ»r£ˆY¹QÌê•9¬ü1#¦î¯¼u15É B3¬[Köù‹ºR,ìø`Z?Ó(_ÝãæÏ<œ6ƒ,ÁKdåN᥽{w w)úîÝ)–åM±r¦ú®)œ„Žþ(CÝ%Ò [y3Ûg"?…L§‰ +x~· áLv›04C1– UÕò™ÈQÏЉÄ9˜ÅyÎ¥! ]]PÕå®Ü`¡—µù|¶î#6౩p¨n3ÍßI€Î`Ç?‡EÆ$à f³êT'Weò:ê(·œÜÕ©…¼rÐA×DX.*Òí†(؉c½S º!˜*íeyÔ¼3=jðK5HäàÄ!"€—0VÂÀI"•m/Çñ(/DóâgN43á(µæ4Sò ·ÝªÈ¥ô¥RIWuÌvøT†Kßkš@ák‡¢\=_á Å­ÞküׇÕjí¡ÿõçUü×ûxäZéÄ­Úñ_[Õ̰¦Ø¢V);öä*ì*ì_:,¹È;±`-·øH<ؼQ]ç‹bÇFcÂbµ¸°V­³cꈰiŒØ;Œ [ucÃvî-6l'ö•7ÉdÌ‘sp*ô.¦ÈRàÇZdFE2™Adm åpY$²ä(²UÝ9WPŒ(= )•Al) L–Æ£sÂ5V(:”âM¨·“î{X[5’*ˆÅ5âŒáÕÕ†}ý(-s„QãêúHÆ5¯§Ôÿy¦QyHŠro`T7lX‘ÇÇEµØS¡Ò°ri§Ktð~þךnüÕ°‡9¬Äø:y¬çÖ~òEý÷Ÿ¯ñ£²²œÁy„­„Ï JË·±*óP»HÁë1ìÊe"ðL›RÓÄ ÝÿÜö5K‚æ$Á€v(PWL` Ó¯pØOöR¬uß`ˆ¼Éšâ²Q‚³›™ Í”FÊuM½QÀ_ ?†A­à>®Öpï63§çÄÊcæÕŽ¡z0,²¨&:‡Õš:ñ¦ÝK<…_ЯÔFêu„dÏ“QR¶ÀòÕt—°é%7þªBéë ŠJ‹¡â0¦7aQêÑ0È´^¹Òè]÷²yyY×ù/¹UY$kVÇjt?“×’3°³â‹¥IË[73MZƒWñšÄx¹x"XÅlÖÏ*fóWâÁUÜæUÜæUÜæ»ëïUÜæUÜæUÜæï2n3ªbÝØÍٺدÁ9­©Œâ¨·Ÿí-+”³Œä,9K$EYÚœQ›9^3…nVQ›eÀf ÐìU' ØÌqšeˆfÔíÑ¿#;\³øjÑüášíá³â5sáš³¢5Ë'´Y>áØÍVÖûá,³¯"/{tZÕYe¢ÏŽÖüÈoãÌhÍ¿ š­ÙïÍ|ÑšýfåŒÖì¢Î­ùg#Ÿ÷úN¢5W¿ËhÍbfÀf‘#f³È¶Yä‰Ü,ro†‡vNMŒáËäÍ$ô m–Zæ5¤ÑžEðÙ öL/QHØô&½nãû’Ö±÷æ-  Þ™TºÊó¯ 9g¯vÒSeíkžô7}‚‹„ŠÝJýèôÅ‚`øgík¼ŒÐLÛˆ†üKYt«qÐæ:†#·ÐÀè@©òàEæ*V**b2™ïÆŽA Lÿú)-û/í–Hù;vùFú¢¢AéåŠo>H±œ_ßk8îŸÒ`é+û±o?Ö¢áw%º/Lô]C¶æ¨„Ù ØÊØ1¶?†j…%b=‚ךgÁµ‚Æâh­U‹ÖjkMYƒjWä–P­^EVH­ø¬ZñY!µò³Bj]!µÞ©Õ8ååjM×ÍNk:&ß Nk0Û ¦•~YÁ´ZÏ ¦U=Q˜ÖPÞJ«ñ¬PZW(­+”ÖÿŸ½7ïj#IEïßó)òÎù½‡$$Œ„—n÷xÎa³‹I؆wîí#PÕ£’Œ™3þÅ’{e•J€i»G5ÓFReFfFFFFFÆÂÏ"Jë"J«|QZQZ‹õc¥55”ÿÎ(­3õ0‹ ­‹ ­b¤Õ4ºÒšúi¤U,‚´.‚´.‚´ZRm˜ê/™ÕÇ¿h W5î옃頫‹ ¯¡ ¯úš…?3èk¥òù/‰K¨)¬sLö¿#˜¬=Gn,Ù/˜ìí¬h²ìùö#G’UÞˆáH²nÇ¿[ YÛ$rIV??a$Ùºy¯a."ÉþLO*þëVù³Æ­×_½ZSñ__®¾âø¯oVñ_Ÿã‘ÎŽÿÚ^€n›ƒ¿níSl˜­ü¯QÍ£æG`Iü¾ e·¤ußÿˆô#ã¼Îî•c”Šaš·ÔN*ØÁW_ëé`ÔÇ J}Šú…(Èz›­jÇn¬~:,¼ï£s±º{ÐîΊ-â¦Âzjf¨ã”| Öô.ë9§ªÈ-½;¦ºm¬X³ªse%§-˜ÆÇélrÈÍŠÞ-oɲ[ûêÉþП Ó5ühEí|Ç üC¤&ÐdòFÇêG1J^ ëØ(ÒCÆ’´zP®7@ “q¬ÝTL_+ïŸÈ¨?ñ¿Yõ)E9Xv£Û~¯[ uШstŽ¡["ŽÞ€[Jñðki½\®ê@9©#˜TŸc«YèÍ J=h`E³ x³á«Ø.N\¼wïüQ5ñÀ¸xõ6@îØƒÔ7Œ'÷0îoô¯i<Žú~˜¼ú‚[:\z+d{¿y%šøJQ¤ÝÎ|±×Fã>Ó…™gE¸¡Õ¶ö]X)*„ªÕSA¦JCøQèàKc%–G—ÈŬìë8SN Ÿ 1ªšG•.Iºñ±Šõ;Õë¡qú‰8ô«Ž=4½½EšÇ=éy)ûBý÷ãû¯zzò„ö»É¡ì’)tV^è¶ó·ÝµÝH·›^vãÈLdZhfØ›4†UgªßˆÑÔÅ?à,Žÿ «0>»´}×KÜ §°‹k˜? rGÅJÄáãòŠPŸàlr½Á]ï>£¡ˆbä \¯ñrý7]ûA}#ÝãÞ˜æ°'PÈ *&¹â`’MeMŒˆJÛ¼£j³+‰ ¾«Øæø~!¥)«»<, Âaæl~Éër·ðžeó&',apcx¡·…õfëcë ¬B¸ñWrUu"°émK6e0Æ[Ši†\>M¸öœÐ;Q£Ò’"]SEá±ä/„9¢ìÀ6áEÙñ‚ì¼é ;…ãë¼{ŠÇ ­=Z HU‹ÇR:š <ú)Yw–W«vlžåUGÔRm»±wtó©p'Ô|+W­Š½õÎ6ÿ[Ï“dfW8’L¾4ÚYÿ¸]kÁ¥ƒÀäŽ*7Œ‹zÓŠ½ÅRl¤Ñ&Ý©ÊSCUF°BŽ.¦ ÀÞA?-œ+‚éÂÚµâ=*‚M¹ì‰£‹µö^ž »´"¹ÈÓpOa´î2Œ¬Ëê\úÅ­Ó\ \.e€J¨Ô-ý¥Ä»Ö ú¶ªj¿¸ª`3,€ ¾ÙADðhQ<ˆÏÃñ4¾øÜ|2‘›À©%‰aÚŒRLrgÛœSî’*mÒ9¤ÚwÑP‚hÉëó&¥ t«TÛ*sˆ¿aíßÑx´b«Zë«¢)­¶ÒíWáEÙ´îçMÛÎ —„ 7£F$‘ù!>‚}°ÆŸ~ÛÍ>¾T+ aõÄš}^ˆ%TZðQ´µ\WçR­„à+ÆF|ÇY#ø{˜Âô[@wUûpX[‘8à“Á=Êñ¸óž”+øg¿ìxê>Šm@ï <)/‘⥞¡{™¥miiM‹~0ò»¹¿Äý–@æKbOÅuGÔ€ó퓾Z¼Ê JR:Ù;‘ÇW”« `|!Ê È\|·¶~L­xZÿ;¾LžUÿÛxófmÕ×ÿ¾\äÿzž‡ÉÓÕÿ¶ß£‹l{½ÕátA펻È1œäþwòž—|ö2g^°nÞðÆÏÛ‚ÞS,Ä ú׿Î9pºcš‘Z¦}Ú8–3÷¼jâ÷€*àü*%±úû¾d% M´Q0ï¿ÏV5åÍôÞ´®;XbìÌ¥¥†)“Æ@ ‰<ÞË£´NdÐÉ}Ò=Ný¨²Gª•è_SüöNE}½E——ñEŒgR©ÀøF‘ÍÊe™É4=Ñx<‹óÑccáËsàÚw½q_¾1:t•âIõ¬€™KÌ¡GæÄFF‘bÆ­Gë«‚1¥‡X´†oôkÉyü ]*_©tM•R7«ð¦,¼cÞ ÿ˜^¡L ÛÀ[w ÄSë—qµ€e¥ ¡€w×8-+©Šx%Z©zá”eÌgŒÛ‘Ùö÷Òu'Óó òxý)Ôù-<¥bÙÕâ›ÛÿtÍ=çMÁû'˜ˆgº)xB /n þ7óó6÷¥påñVÃ+Uºƒ §©‡¥;ØXaH:§MK]Û~v†ò"ë"!8¢Ïé™Ä%öÖ®âLˆ+tÂ)IHÏÈÂL? Jãçóàçó CJã…3‚?f‚󬺡·"•h‰P J=N¶A´¡|.ýQ%²ºÆÛ™­R-g?nž—æ¥øÜmŸlëlã©UÇÍ"6Ňøà¬&ꬱ0£5cà}5Œ'Ó¾Vr 0¿hâ,(ÉðR¢qÕ¸eÀ£Î f‘pm`kÅE8õ¯þ1i¶{©Ô\º$Ž€ …8"f†“öD1œ¸\Nt¾V‡°KÓ«ÆSQ®Ñ{'¨=B7¹¯‘/d£|k“ EÚ¶211.¹ÁŒ´ÉÄÀ”ÜÐÍžÔÞktÓ. 6XZ¸é}vJp‘D¾õ0‘ì€ZM¼º[û+\Ý5‡òÚÆ\¹eÜèÉò݃õÏj½W¼.¶ ÷Dæ.‘†Í_‘P^Ãn¬<ãmaè,Þ5É ‚7…<¶wâUÞ]û¯æArn«ÎdìP: ªI2ÌN{;·{T@­=Å-(º¬+=–Þ³€àßnöôlž´ºU¼4ÝU× ­³ìAR"ïýN·½ ½áÿëï·ëü§A0@{Ö¸žìJµðe§›´Â»ú„¿0kEæh 7ˆÓy™D?”$©=§ëó߇ì)ÍSö¸Uº.êÍ|w»&]wæå.Ó£Ðñí¥&v©¸Ì•eÓ—¹ªRwI; ÑkK_æ•Üü®÷¾¸íæWYó«€d5ÈÿƒÝÛ²»¨ü¹peã·Íí÷'¿m¶®–énŸp¼iæÛÝ]y»‹Z_‹„¥&tW”C®Ò—u×tÆh¬Î25ú½cÊZ@ï×.ëú¬Ù Uë«i`^[gâ]`gކx%nNì ×’8‡UN/~;˜&VLT¤½Ò(¯ó˜r•XNO63l»Ú¾‘™ãìrtÉÝ:«Ho~o ÿ½ç\jD[#s’ñ¶Î¿GÖ-.íMÖÅ»rëA¨Úmžç¯ÓöG£[1NbtSÝÞâyæbŒ"'ž ˆJ Þ‡¬ØÕÔ-¦ïOe·I9[£[4H«ÀÉÕfë6~ógµ¿U”„Q³[•™!°eh’¨À¹§¶ã¢Àf½AË~W˜Ð(ÚÀq‚R†04 ¹ó‚:52β®½>t…€ï-vj?N{-uoå"¥wž”h´å ~ü†møá¼L“=Mt–u 10¬3®g8s ‹ŸÔCou·ëÄ (N®Æ"ùÛÑO[T òÙ¼q „Â8< ¬XÎ@.=\éD×j„:#hY¬±ÝK#å`èu°ét°Y¨º'ûP£&ûæ«LmSÍùꘊËöl¬­š’i.n¹åŒ¹5ê÷Ñ)S¸UpÀj´-Y-H@³ÁÿÕ¨x¿¿|*>ù3¨x?ƒŠ_>Ÿ<»"Š0Û@1ÕÝá•ëtг¡ Z5.ÉwŽ6|,SÄfooù¬ö– è'–w6$ÞxñõYY)FÜ^Á;Ô8E¬wqo œ‘ÎÙu¶BªQ­ÆÑÐTÕ~4dÔÃÂÐâ J,íá„u ¦L©,¡Ú°ßg‹‹4ä$¥ÈÉ58˜_d%»Åó0±Jä gí¤ddtRYN fEzÕQ°âÂl !Óq$ "!%$4‰ä^Xëw63²•à–g6DÉV¯uÁ,ú}•q°Ï ›œèÀ›–W€âA€ýHÕ¦‰rÒ‹zYºSHq‘ÚØ%¢$¥ô˜iã†â#D"bœ´ÊœFYWíG㨗ÈÜÚ¼±@ų¼™D¢iX(UáPX‡8H7´VëAºl©WÔáðš4JKgmH.x¦à³y÷ÓażÚß^‘Ò¹WCM!‰òX„[ Ú žpØ}A¾Šc@ÀU/æšw:"pÚЫˆª|Ó&žº9ŽòÚb)Ú“ÏQÛy -].tyÐá¿~8+Ï¢T„óݺä³]òÔülnW^È_Êbe­ðíÖ;¯8qX´°eÆ\vgLrpdÔp2¨¸ø²âáe«É+·áRÃÖ³î\}æÞ«+ ðK4æ ‚ô¹Èxà."Ü;9¡/Tœ¾Àâ0±àÖÅS´¬&(k~,ŒÄØà@¨q`$7³ŒÝÑÔÌÙÂåŽim”Ωûp-­a«Ô—h™npþ>îNz…ÌAJŸÊ©£:¦×œhmÆÛêë§ØVSR¯»­êžérý9 ÂO4«;èk_­¢ËØ> o2öÙ°gC£bù6hÎ)]´¾/‹Q‡|Ä,÷»€}úJ¥M±= $íT4AU*Ý”íA݇oB¢Ð>$ˆÉ A ƒžðŠõ;ÖúeÖI%œ_ÆwÁËFâ,€%èï¯OÑß_ œ¬Ò3ÒúÞ3ˆ¥Éö›Ü »¼Œ³kÛ]ZK )™ãú1©«|­.èˆØg[ìz}5cÑÒ Õ ¹–W%o>¿•hõ¿U¦³Iû½Ñ÷Îãl’öÿH¾>±ûǬø?o^ÖSñ/ ÿçx˜b\ÿÎÇRÐïCyqüh¾¹Žùžp’˜åõ)Çj?æ¸t> <º)geSo‚FVÈȽÊ?Ȩ҆lˆ›É0§Š/>ô¦I£Ñ &mΚ" ÛÞÓ±ë$Îʬ}D£ Ѝ:½XªH[û@ÔyÄ]îóf¦Ì>­sµcC¯]œÑ´gzk¿HÀ9mkýy¬E}£hc( 0o¦t²b#ê‚6篅L¼m8ë+®¸¢­G,†E‚5~7Ž'“h¨, ƒæÐ6Û2ºf›F?‘eyO~°èê°äVVVhbŸ‚N sá8 Ãiçz¤q™Ê |c¿þ¨å$›ZœùRò<{Œ'Ùô’eºïPMŠ\\kñùL¬F㮉u »IËTé'R À6) ÜX4®ú ³®¿¯Qza{ÍYæš³Ö4@þé'¥¸“fƒ,\áL„Êd-drKÏ5{Àþ µ ¼4Uvy„]2ÆD÷I·£‰ÆsÚ{fXjÊ·³4ç1‚ ‡zÙÍîÉûõM8cÈÚg²í+j–ø˜+ªcŽÑ]›¶´ ÜL›¶”Ü6moÌiîÁVi I·J³ÁVfæÈªÏV!i–¾†wcˆšèa*[7ƨâÛ^±¯‚ RR*“Ö(åW¤œˆÒê+¶‰>…ge,A 'ã-îÁ Y1Pr‹î©Çv–kT¿" 2•6äå6׳¿Éª|WHÞ”‘ERI3ðÊ™]'˜¨D7`ÖY5mÌî¨<†“ƿ©Fé~=[ª ï‘íXÈUWóÁøW8%~•9`*xb Öx^3:~¢`…Z’ÝΜXýÂ%ˆP1C9Ô"™P%3ÓYvœ¼Æ?tÃ&4¸pÓ6&s¬Zo‹ehà dq €þ!—ÎNîáï’üZv„«ÑËd Îþæ$;2Z‹=Ï ¤‘m”®5¯»iìúkR^ô7VÊY·‹]ó'Ý5Ù^7ŸhVã€ðcL’ÊÙv3ÎnA£ZC+/û®W‰l螘¼úÓYÁ_cçfKŒqɽ.¾äÂß¿ÛÞï^Boô.¾ðõÇÔ°Ôý':´‹«ŽZIŸ¥÷·WÒF.»Êi'Ë>Ä<¿³>¿Ãós®—jz6Jö÷š±¶íªxÍ!KcJAÂ{иœÌ&Ë8½¦Ü¬É¯)£p§§>°å†Ó#Ç#Ì|)é`d€¨ÞÍ0 X È/¾ˆ6Yk©è\åM×Ãf,ÜíÔt ÛØ$sFÅOªÈ›Wm´bMmØÃÓheÚLt>þøñ9¿÷²ÿøö¼ñ?_­½i¤â®½ZØ<ÇÃäïÛ|.)•Á( ÙKÚŠìG•1a¬` Ù`~èDRóFò´p«„€âñ<%ZÓ—4BV¨¿f¸O t¿M¶ðÕ =íFUY©üH VP“]›u„˪oÍÊm…F÷dÞÒ"úüLÿnˆTjÕÎïkÊš‰Š_D‰í¶?t4t{Ž zV lm2ŽP{ƒdDÖAT9xoEÉÅ8¾Uw²©‹Nº £;¼ªæ¨:î6£?åŠÂrõô“‡¦¥–L×HïGdŸp—Ó„}¿¤çŽmÛ#§¶‡È}'ö¡'*[Ê>czߟ^?ôàf:éé‘O‡ñD@?u|»sé‡\%K†”¡ ü–ó2T¤­Ø²ç@8žpr7r£ª©jF’ÑM$oÅß­Vá+›`ØWä˜ä û Ýä(ð9ó@Ù Ž-‘pÕeûŠ8Ä`~è’QµÎ%Aí†ÃOItK0¾Á¬ä6ÚûOwcfzÇ¥AùeÜbEääÊõ@Ô–ëœu GÇiszâ®Ü{xUçÓ‰  =Œex5Šð͈ø¸†žö¼†Ôšv#í&@‡Hèçh؆Étå$­­…ßR4¶„cà&ƒhE'Ævæ%L| èð-%ò—¡ûÂaˆ%P94¬Þàh$5°œÂö>V!¯ò¬òhñФ¡£”z“,D{ ßV #b$­uÛ` ï1pÀ>´­zÓ6pR¦¬AxôÜßr#ŸkÀ!D“MNÄŒîw˜â"w­xXç§öVN¸n“Ì$OÞ‡Z"¶"G³²ê,üµÍD† Î–Œ?DXgd?°´¤–÷KrÆØ ÛMäDëS±,ˆäF‰eY8\t!£ØÜpÑ¡´ÒCa¥Çâ~÷¡c\Ï;‰³§ð138GèlFZUœ‡€ÜY{̤=KïÝÀßßc ž<~ ÎPçr¶2É’ÇeD$…l=mŶ†WÍ‘Í~kïÏ sïÔ“¶ÿžŒ/ŸÕþ»^¹ú:eÿ½Z_Ø?ÇÃëÁµÿ6{¶á á û‡7¾Î´«¥Ö{¡tΑ-# 1l¶ú€sL’aJÔŽA á¬ÈÖÇ!£a:n±¢ø/õ0ïÝ^)ÓÔpP%e8&G£MpñûüF¸–ù-x€®k{‹@æ1¿ýnñÿR¡þÖ=6Œ¼÷ùæ!†Æ(}žÞ-?°as™ï@.?_¬?mÒòK«›'a™2™×î£ë[>üFò~¯$bügXÍ2pp® smfX88€ò²-‹ רáûÜ }á[¡/ºú‚!¿T¿.} Üù(SusÑcÜw8i殄rÅ_ùâþœûÀ³5Bõ>v9žxþÖ£z!ûí¿ªn?$Ÿew㩃>…výψc(úM3¿gÛPDA†Ò0æ(þ6ÃaŸ‡F©Y¦1ÚÉNCáûY*çPDv }]µ‘¨‰är7°O#„ßä”Lƒxp §œ(OU-µcbÀ…4¨p —‚Q^L´¬z;_˜`>GwèÙÑ‘f¼H°•ÜH+9CUXc2ñT‚ñY, ÙÁMÂe É…C+â*Ë9¤ïF±0S°–Z9—xD Fôóh¨S?/‘¢ ‘¾ü¸Ž€³£Úc9d䟔à+{ä„Às‰FÎþì ÇÃkÀ×ÿθNJ…ô0bÿüTÚâ€íOñ H%ó0½r¡l3S2wTÞ™ÑPÛÖò92q’JÕ«2ÀÀ¡óÁp T=X¬[ñ)Í—º1E¾ËIžbö{8;=µ-gçžÎK…Ýœ—žÕÇù/îÚ\ØïÔWï×L?­?tÈÅòp¾‡WuŽïa¾¦vžÆ¡Ægxâå«_]’^h_+ß9_Nv–eÔ“‘&g#C6 ªü@Ir¾—ëÂwÑÐÎcmC‡)îÂÿQêÙÈS†u¨)ûëÛ­ê8–VŽÊ÷9í6b¢ÂëS!WÅA3dM0¿%²´3–²7–ÑÈxå°½bý2 šû6Â6Œ®Ã’Ö—&žõ°]q3ÕøÅ\öË3ôÐicã™ÆÃ){cÛx¸ÅY2»§ýû_‘¿§~œÐ­ëä©Ë·"ò¤äÓIT^µµ¹Z.ýºÃ^îÜ(Ê“kF"´îŸ&(þó :& jmØÍ»²øJ™x33 fBüÃjbÕkÁ Mö*/ƒÁ€µi•³óœ„Mƒé¸ÀvX`bœÂzviŒÍ£¨¶‹ºïÖ†™c§û…Œ8£W„¨œTàB˜nÓÅx”`ëЖqxñüHO@ÿ—4žWÿ·öºQ÷õkõ…þïY^¿žþï!lÏÓðõ¦ßâAÜßÿ¨º¾Ñö¯¢Îë4~RužGòÎxQå­WäÕ ªñ %ÞB‰·Pâ¥_(ñJ¼?A‰÷\ú³p"åæQn2å ËÃ}ÑwQ$˜:M­àÑË@«Cçy%äìöȽª¦ž¢ò:Áà8a¢â%OM-)/_•)èϬ$ÕSùa\+3Ç~åT8wÚ«ÀT¢›&ÚéhCÿ­•k¹^k-7UÞ2•ô_3bù‰³²K¹I³°D£Ð OƒþÙÒ­=q:"iz÷À|Dk|D.Âr³M‰¬„SB™=ÕWßgÚ©¥ó¸¥òPæ®Èbšêšš^È5šÙyE~R?{qde‹ËÈß' %¥óä¥KuVÖ꥗ü‘ŸŒU)f,L1×ÚùËS|‡*2©P©g­Sñ–ªÈ[­¯2R ¾Î^ÅéÞìŒLθ^UóˆpÒ-ŸÍí¬¾"Wå1ÓãYp”Φ š/Uå¤ ì˜wøë4È| + !qÎÝ&ð¹:땳Pï—‰s™à þ]C€·•°­20Œ¶U6ÝW\FwÕëQ.Æ^ÌA!Ø]Œhà²Oe7.8e'¥ŠP@B-õ·×½êy4é•U¦ZúI²JµŠ)$">¡¦š~àUÁ‹bл9ï÷`˜ â….iôX¬p66v1Rûý ìT0[viØ’`/»¥­í#µ¯ÓQÛ«lT(+ EÓ¿ÔÝ7ݺ™â±»ò¼ÍêRo@¦Ü×–Û–MßL+ë•{<äU8ëgÛg2:  C¨Œ#Šá2cC[oånÃ]|ŒƒÿW¹çÈað«Ê÷]¾›++â`4€…ðÿŠ+Ÿ@œDw½ñ¤*þ¾>ëƒ+ ÓÉõ Ý>°š=p3¹l<1²“¿WE§¹~ vWD ·1Èq°B€!ÖWKõ_߬•ÍýÚííŠh¼¬×jW¯ ˜ÔÀ®MÕfxȽKÛKouxVg% ÷¿ye;eÕNe¶õÁý ¸P?Ðßn?AЍ+äÒ1¯/L_ Ö˜ß­&T=æ$4*ªí;d¢‘æ,¹ÎZÝǾ‚JТ¤;K]J6:#‚ß‰Ô 'ÒfÄJo5uÂË k?ØE;¸©›‡A¡õ¬0ZÛtëáõ¬^ÏæÇëY¯ã@/Š"ö¬bÏæB,íNiÄ>ØD ·>>óŽæ§–…Ã]h8üÍjkS”(zÓásFOálÖd¿…=Úý%¾¸¦ÉusËxÛ8Ú¶p¶é$>Òg SÑ«Þóöï˜1ù¦!Õ|ý-tSŠÊÐÑåúÛ–Ÿ%©Å²Yéà˜ð 3±ü†ûJ‹D;|õNÃy§P¸ãÌÎ|æ009Y1•œ\,óH¸¶„‰é|Ĭ± Ýs2Û1,ÿhaÑÀ;9Û–+9kC Þ¾ ^JIè©C‚ EQ-†^–¼L¸SL`.0J5 €x.rH‹3è¼Ã Ç(ãäɯå À_ÿAëÁ! ‰Ám>c†;ˆ) iXò I ¸æØaž(.Žg÷a"mFÕÚ(²¶gX!í¬0$i…$Ó¨óß#´;¦OªÝ"Ú h.i=)iâ²ÈÒ5ë,é$wÌAÒã)»æLٵϔüÍ(âðÏ–sRq×§â£\*îfQq÷ ¨¸»Â‚TÌ:Á9Ão¦l3I×ᆓ/•§,z“/G ¶x ªá‰ÀîU󱽊ozWñŠuÍ®ïždd×"ªUVcX䆈§¤‚>zÜõ~, ܯ‰ì °\ÃŒ|¶ð‡IBX'ÄL[÷ ¾¦;¬ N·»ëD]Br" 'éLå[s{Çí»£«mkyÁö9œBp òÄV’:ë?ÊUÝý²¿XåqŽ4Ú0ãèÖ%mLEfêM£©r¤i]¹NâÅ_P£nRI}*~AE`Ùuâá…N2+ÀÉ ¢&H«%<¶p/’k•Çú"ÙqÕKê†ÕŽeµ‡ìBÇÙ»0W>wPž©J«S¬ROötµÜJuâ«›| 5kKÓÝhfvÃ9ÈÙpü£GUi4fÍãME˜Óó後ÆÑ71»©Ö’æêÇÖ”=”«¯0$àêuŸ5ÑIü ‰M!n¨Š·d?ÎA:g%³…tìÊyÇÖLÚq(%D›YPH†PøD‚Eâw8¸eÙEµ½Ón>Fm¶çÅØ’%9¾vV¤‚cºìÅþ¤‘ÔZ¹cA ï§c’z¶@Š®ÞÚqÕÓt1š¢ÃT"/~v›d_Q«ñ‹ÄL(;}6³ß‹ñtˆ×a16÷×;]ò¾ôAÒLå8çtÞÀ€Gt M¢ ¯Ð;^àò®×]2Â9Ñ¢èËKytÉËî|4™Œnž'8;ý68쬿ßîžâ"YYÝ^ÖNC!‹‘uÌ(†¡\«â°µ]•ue…`pw¬‚«|åÕÖòjÕõN@¸aüÆ`B´»¸µÜxdþW˜ö³v£ÊÑÐfÿ¨ù±‹ñŸÎæNÿžåÙ%Ÿl·Õ¸CV<Òâ§)M~šï›í6ñþT™>«L€yQ4ñ=G,è× Öét×Û]Ä´‰ÿíTy9äÀÙ…z°­6»ÙS»^‡íj½ÞÀšøšn5ð·þÖÀßøÛÌn _ïS©ÿK_üË_üï~.˜5ªÙÒù×;0‹@qëÝCx±½Ý¨¯ã?Í88Œ lq£…q8ŒþG7rjp½YGÔÀ¿mü€nâÀ6þÅ_óµ‰&`Xb»³Ó|³Øÿ×ñ¿fë#üiÐ’ÂèR¹‹á B"¤}ë7ñ€ÝÁÿÎðÛ|êæMUwý„Ó!ð¿ þÓä?Pù¤Žÿ5蟼aaPˆ“}€òó 'æÖú„¸ù„¨ÿ´¾oò§<"ýÔnd.k2kË·fûXkAÆðý2sxŒõ£Ó†ü«ãTJШžÓû±Îö×?0Àöûü·Ë;Û]þûß·ó8Ï“EJ£¹ßÚ@JUAÓˆTÃÉ©g¸ÂÊðW)UÇ­U&>¦BKÛÁÈeÄãa;Yy¿¾ßÙ^±Þ“õ"R¥¡vò¡vÛ'A vä³Àk/PY`LrÌ”ƒ:ÐþqpH|õž=$ôcPD f*–›³ù˜ka,©×Űt–¥³L,ÍÀÒY6–βFt6KgÙXÊ…™ƒ¥³–xqhe0">’ö5+2![èr®+Ó¶b$‘» Ÿ²·W,Ç@r(!ÊvÌMO³¢òDçWJ!”Ç_)´|ÎŒåÍýC¬Ș!k¼JÕØi¢cR‹ýòñÔç«ñ,¯S´²µCN\™5~I×èæ×¨¯¦«óШ£%Z¢R¾ÉͰž÷þÖ™îLƒ;› îM Ñ——ïÝ ^)I1à¯îb°´hH27ŸRw8Ü¡'¹ꬽPq«õÜäòšµò/IkM7D„^Œk¶sJÏ …›žÛ9²¯‡Ëô:}<ö±rOô.®ñ6i„I à4'lO² ¨¨áÊ•/Xxï„Î1Ý1UYô†—x,}!ËÊw áÚµP®¨èo†·}§ƒ£YâóÛNIºuì¢Ï¢MÕÜȪÙõkv½šx&RÏœÁž9ƒm̬ÃÂû®œz`äÊU‰ X …T?*N»êÚjÚ¼yÉff¼¢’/ñ-ªƒ“It›¸ŒOïÕ6Ÿb¯èµ_V ZnP³ÞÅ#âþááQˆ½ö86É UÆ%Ô^¨ïÁ…!®{_#Î-y9šû–x“lìÄèV+4oFýøò^¦P#ÓÛ»k8>}ÆV½öè.PIYì© oYå´b#Œ¾¥Áy„WHê™o:LcÜ ©5¥xWòª­"¹Ä „oz磯\†Ú¶ì‡&Ró*£mõ&xuõQSÝ#EoZÉË ^Ý¢uÇê^©u³Ž¶¬Ñ`ÀÚ\ø2M"²Fù6÷Fã>Û‰ž}EÏûçfWï¦÷-¾™ÞXqô¦î" *è;¦·î[áIéLŒÎ¦·0×’x|ç$c£›€ð@U1›ž]É4ëJC„GëÜ@ú)w­ñ˜áè±Z¡Rƒ(ç˜ÍÅ1„UWJG;~N½m$l‰:ÎUZ÷ç$™ Æ_˜§þ »ªÔêåw«±òw8R»Pã­4ßzgRGj<È¿}_ï ^œ´³ê ÄE/‰Þp¨áÅ(`>ð‹ŸÌgç:eÞŽlTj{9<5Êq´k‡Ùq¨ŽÏö²zâϬH•íÞuÝ–Tß62ú–.èV:v„'tb¾²WXþG Ë&ª·Tã à‡¿À±.Êa ß…EðM’Fjbv= ðÊÓ·ïÛö\ãöShŽ…pЇ§wFg2úãÔò5²ZZBHO’¸m0nCkJ¸´$Ò²hH¸" ;#„ç´÷ÖJFØÀ;Ú5„hö™ÜgÅD÷ÊÀ½Äz:˜ßödcBgS(Ëœ-›"=Ñe^ᜢm%—[êø`a’„±"ån>óOù96AП\/»`C–lä ’ÛUØ+øLQÑÈP‘;ä"¡&²¢þ˜ÚLNe3Ÿáõ¢bÁt£É5ï)â¶—$¢Tÿ¯h”íH¸Æ4Æ8¨Ú jŠ[üÒ]ãÒí®¶ó$ᯄ¿Iß_¼ïõáôxœŒnWD©IÍËŸvkyôKfeÛbLJâÇ£UBÖ8ºé˜ ¢úÆ‘ÿõy¤º7ò¡”…&‡$sN¨l-ÇÑm„¶ƒû@Œ¹™âŠaåOK&íqˆ¹ÝMôíÞ­¦žK¦H,t¿ Õ2"Á(ÕA»ûA-®ED†õèꮓsס§¹¬=èÙŒ[w®}¨¶ÍƒÁ·ÚAù‰•3ûç4lêÑèò±“ê@7Ý¼Ë ùtCèæw€ÉäØ>Dew±E$̼խïÜ^Þ}¦rf‡˜V3aY$7gï—Êfô›éƒÞ1ŒrfåœÓA•°‚Ærkˆ iÑ~²#3©VÑŽ—0ÌP lXº±z=§µ¬½cÆ»4ÚÌ"´Ã0ŠìÈX"#Ä™f*ççÏÁˆh‰úd`t ",±]Ê• ü³[b™þ-uñ˜y;¡ÑšåÉea¯rJØâ‡ƒ-ÎÉL½E_˜–}Q†ê5™ÕhÞ|¦Iù¬ž!žüfÈã€hši÷­Q˜¦zÛ(ă½Àˆ•_yÈVP+¶üpœØÙãõ~ú°]¾6Yú[x‘>ÿ&ìQ­š²õÂüü¨±Yd†­J5‰ò¢4†UTõîCšïÎß¼V0¤¯3¾ô÷ÚƒèëÕãù~àHl®~í³ajs0;CÝÚÐê]Ñw߆tHÂÞMÃjï žmZÒƒˆš7£y÷0ú6ØÔîk7É—£´5Ý©c<š^]ã9æïñRÉý½ìhøBµåîüÜ×—UG}çmc´SÂ154ÖÌR¹ãèÌ„v±–›>@ÉÓÇ›Pš2aóW5eJ„¹‡¯aËç)ðvEôuþât&õûE3ffcÝâùE3 ¯üÐj·š´ñ![täS SRGz¡ã½Êœi£‰n0ÃT]?xÕGLZ¿d–¼xt'þ±¿Jµ¦ÛLå Q³ÖœBŠ$¿Bׯðë/%S*ßZÎbÓI×Jýânitæ\Zb\k8€’3%gJfGÑ-zuiÉÁºÆÌRžóU¦y›F˜­B§ÃñxÖ3ÁÂ@÷¼RA·åäÚ¾vÖÍSú¸`®FÒ—ž"tï)0(®;å˜á4ä]&‰ð}’p”¯Y‹ÆÜ\¥ õš–ZY9Øþ«Pè>ÌŸF9ÂWÎåͰ³¯Ñ•¤vK¡«Ñxø•Ó­á ì u£Ê›;oý+â“åÄ®_j÷ÿ‡šbŽž#Õ€v‚¤ ;Ïh=˜³ÓB=ÿ]öçx®5®¨o)tYˆPáŸ0æ@:!%Î Þú„U‹·£x8©f 7 &Õrä UéGÁRÝCzã+”~®{C¶p)Ù^£7½«a<™ö£²ûU’(z¦åJ}•®„è§ ”·ýí"’áåM0ZSŽº¡£ËƈÑk 4q5õÑ­?¡¼6œRÇBÑÏJ9p¡R’†\|çZ®H»¥rŹS¬Õ{»îŠOüî%_ÍÞpxr¤j©ÊËÁæ²3E[›¹Í¤[e³"eSTqð1{ëèÔÙ2ÉùñS[7ŠbïÝ=‹óŠÓ£a*ðI:V S]»jìÝÛøÖÐ7bEÒëK_Ì`Ð vƒ±¢Q¿27ø¾ÄC ,ID¥õí#q»òªÞÀ8q΀•äû¡ š ‡à\J}‡œöÍ"7–L0è×ò©ÿᇦð)^ŠðlBV× é;™þÃì•ÕÇ&pjÝ|jšk0¿;Ì㫹Óïã~–'ÅÈ`ôNüH‘vçUÏ1ƒ³rQBÂ-WØõ­"m =q¹SÇ‹*¡2¬“·tºGª¡²©§/üí~nï§Æ»é®ƒUÕ:Á•`e¯uU&­J¾Ï³GEë’þÔ¶g£5ºúxr7šqìÈ;V. Û†€÷¡å@*v­KÇí‹ßN½’}÷ëÜúš’¢\ûÔ®X·ã©Jîqó[àÎwömo†tNCÕw´Îån…éox½KÜô]¯±T{¬á •),Ezž´˜R_ËTolqøÜ›ÛA|Â1Ë+&V7™i9r‹´Ùð©õÓª\0e?0íO°ÿ­ßð ¦Ò%CxvÏ#õ„¤ç$ÐÁ1ø”¯Ž™ªKÁ;6†AáY %‡€,Â÷Kdèg‰,ÝJ¾Ý„S#¤kM³59VºY¶îB2F°©–ä&4°,:†`7sº³ÉgÇŽ[ysfe]5”eDĦb ªKݨÝT—ºn—fUvº„^4õ—3sÑ¥AæüU¾Ù°Fü±±ÆQª¯7Qök¨S³h}ýõ¬\`ú Ò—u{F˜Mµ˜qe&ù ^¶v} °Ø¦6ˆòýZ"ZéhËÝ]nd«`lš×ÈTT¶jw­ß;~ÕÍUå”)¤ç$Z“{ã ,¥ ×éúéfö¦ë ¤ëdvUo ù)Ùfkª~)¸PÎüAžeöTøfù¿öf±ÚÞP)¬«ÿš¹I5*'I$Þ{à 8ÊØY3\™oqd“PIS„.W8Ms¤ŽäIJí‹áLXGséÚji[òµok+~-Rò§1Å䇾0¥Í1û@2í§B âÓ³Î|¦^ô›ÈÑ;³l³\gSU˾#Û\5€^Ã* ·Í¦|“èÍg-¥z•Qq‚™³Ñ[$#ú)hÁO ƒ2# ™<Èxüú[Ypÿ°ª¶†ÑUeúÔ\XðöF£‘:=jï± ]G5ýsnnš”ÞU‘ÀèbÃ8`à…ÍýTopî \Þ-öYAm3%ˆwè÷Nêwļ€?©7½i4BK4„)Ë ®©94ÉÔÁK46DÀ ûÁÒ´¾#wn„òZN_cñ´´ƒSbi·IŸœÒ¤M4äØR¤SÈdÎ#¡å¸±TÙª!³»“4o™{nÑÃwùH Ø„ÌFÜk½ãÔå_nœ” ì„l 2/uÛé‹Çͼ $¡‘‡Õ§ï„¿<&tŠé¦WMbÜb£áqàæ%1¼ ´ÊŸ"éÚ%B¶Ä£< ëÖee#èA™a†œ%wÉA4r/ E{ÂF£˜yIQ· Ús&‰†Ÿ,O]O‹R¡!öe²Rö@´£ u#%(§ƒ?†â—C¨ú•: ©üõH8Ñ¢_«]÷@ЊƓéø<ê[AîFC•;k#WÚ룞gD¦0% -MOY·é.Ï·d—:c±òtÆ(ÅÚµ(\“Ð~â¾CÒÖHl7;”£°t|öq}¿,%u#a¬Òüx}Z§½>8kn¹†].³T½‚–‚ÕHÃJM•"W%U~~ƒõFjdChêÞx­ó}g2‚,OTØ”’uQwI}:¼dÈŽúùýw´®^›û´Ö9ËQ ºy–– ëõ6+ç÷¤Íó™;ÆþBÎð©xÕP•]l“&_4¼†jðÎí5üº Ý^£ ZÒ¼RÇËËêsÓ|n°Îž¿A?ÊË©E*ß5 l3ëZ°‹cá0U%ýLB«raobìÅ ¨˜rÏXúÅ·ß7åûfú}èòZãPZ%‰ÆÚ.6ÏP%­.T³ö ™aíÉý÷/í¾‡*fØÖ+ý?MÄ h7£L“Ë43ËÔmœUyÖ³Fÿ„0/Ìä4êîZf9î L”(¾*¾à'\Û+]ÂPz؃co­—AðÇ2f†ņW ÖÁš›Ç)°ÞR7ÈPw"¿4¬/ ûMÿ¢ÙÐ 6l©‚O¥²es«™ZçÈ$(½9Öªld‘ìæ1ÍjŠ9žˆÙœ¥™ ½¤µ³™z"Øub”Ðbi™€ú\J5©ÅfðeChhé~­74ˆôK¬¢uUbB´Ú ­öãœÕ~œ³Ú¸Ú׉õmç,öuâ~Á"Ü%‚UAt.s%øÜÌì¤*цýFÕL•Î^°N­àX…ž<ö§€iò8Í$E˜ wÿ¥Wa>²ÇgÕ½l¨‚l­†páS3Uª©Kaô.åê`6˜ð+¼Æ$ÊÓKj£n~·nÑ-Ç&MÑíFÃjX‡nÈ[Ø,È–R/–(âi#-z·FãŽNB.¢“žI Ú¼)±”Šœ ~õPkY*êÓðzV yvuß;†“F‰%¯u4xB;]¡™ªÐ̯à˜f2üFø| dðVùÀ)nííü–˜Â2Æds„ÐÅlŽA¦È°Éyf™"h™)23E!›A5–°‰¦pT[ÙVš"ËPS9PàX0â:I¦:ÄÄÚ·5”¤¹ MSU¦ðV× ÊF ó’uc‘÷4œbVîÏè_Sr eqGq–E_pNãbàéÅÐ0ŸŠÉHÅèuJœÈÁƒ.ñX&6HN†é36îT6Î18ütÐCOÅã³fW”(˜<äú\åS¤L\µ9kðÞÅ—À¶èÜk“­ƒ–‡Êª©’aëèµÔ¶ôôíÐÉ0{Ds´ô;á±ÛxºNh!åæ‹€º?£û~çt$tâ{™Ýsû—ª”šÏp;Ëõ§n©ÞÈÑrñZ2 ØP”ôãzÚöÖ²Úk|öN™)´SÑ"ˆÇ6>ªÈ—%¢·Ú5"úÔWàr8wZúiUˆ&£Ê Â:Ë ±±Ï0*ÔÛ2AØ÷{Ð=àF÷U«5*L5kn÷já.¸^V=Êjvš¥i“¼íÞ3” ëˆÛï?¨ªÄdUއîJºë'Þœitãȇ|34Áê÷ K4ÿ*g`0 +{ŽÙ&eû·Ž ÷ï|º ú”­²7L(ùÚJÎzâ—0”³ç…¢2€³Çc',ZpŒÙÂ×LÁ†*òö÷çÉêÁŒÉòº>ÃÎ4»³Š5ò‹/SÁÚ,=al­ÖO*%Ë„n™éÜ-3³ÂÙÞ  ÏFÏúR 쉔E ó•+U¸§yèÛtgÝ­»¬«­s /Ý^ºsá…ÍÍòãZ úˆIic„ð »iÌ4²QÓuQÓM£¦apÓX›eœ$f™- &È—ùYÂ#GcR¨ÐnÛ @»eÕØÈ@¼ð,­/™D)RÖ’Î×YtéwëûÕ'ÍFÁø*Ya¸ˆ3SÚMÖ7ø–o+76ÉпÏy¡üƒ…À=¦wË‘N1püuä_| <Žb>‘„Çö6Ñax,Û̪ÿ+MWØÀ²‘ÔjäBrM›ÿãÉ–ÞRù_dðì“”|ÕÈ®&e^CãhO <$»šÕ½Ot¢Ë6•¥u{Ùg•RÇ3)AX V¸Ô‰Ó­pNºH†~×KÞˆë…FÜ(4âz¡7f¸>cÄKš–¤òz/Å0ºÈˆÇ—ÎÕä§z=óÆQØK9ìOèÅü)}Ï Ì ý”¾B sŸÒ&BáþS#øŽg/ÌŽ%„öÉ,îŸÔ8ƒzkjtôE¨§4­' ŦORÔ8t‘¢¸Ëá8œJãNŒ&Ý¿ ÷?fÂOÄÌÙÌŒŒ#?Ñusx>³YZ0ÎXºóôíÄÚ¸=^u]×yAesAÝ[ŸÖv¯Óõ_¨zé‰îèéÉ:aEŸÐi(/B+ã¤n«#Zuéz —gºR%„ÑúSõ$´<™¶C“y’µþ²V˜¢bûù1ÊXru¾ ê*TË'uú·ÿÄ8v±)вœ°ÐUøG¼ñ­iŸf,·Ü ðý¼Ãš>\~ì–º>QâÛÐáúö£©s³ ”NŠ\ І;Æ¢r†ïÉZ®…Ÿ–s…繄çY’³ã¸²S@löÜUvæ‘™w\y'W`~]`© ŽSn0@NY{šstñÚ ¯ÝYxuühºðê{Ï̃׮‹×n.^ßfA3¬Cg8æø(?K¡ül.” Ëí&çè8öœ@¼H¹óœÍƒ{¿[ïܯ)ôÿò`ƒXtx •hx%¿¦|°\.·ïê ÑÛÈ3)ò_ÚêwåőÝÇ…Üy3Ã5öñ~±Aí\JǺ¶ºð€} ìÚêã<`×ê?ìÚì¬D!*°F‚ÂÂâ)»ÖðvÒ UÂá»Ö˜å»¶L(Öïá%»¶ö8/ÙµJÙÈKvíåƒÓö°:Ï-6%¡0CäjêÄ#J]£i%(l0ñýÛÚ+ß±óò¤6M'ðç;òü ¿Fã«hxaeä°Ÿö2JÇüìL/0œõåt ½Œ«ÃÀM±µöK +~‚¸ú[J“©û€éêÚ ¢Rñët€•Çh\ûõ9RÄ­=4㟗"îåêƒsĽ|²@‹Oš#i*E‹l)ºÑø&ÒÊò—‚!ûm4ó+±ÛÅ ë©ÜºÑx<—ÑP&õÝNb„‹žëÉmïcçý›W,$)霞&õ®Lè©û Y %)Õ]üýíe>ƒôàKmm¥ñ¢ÓÞ|Ñ¿N¢x¸r™]áÏ*<¯_¾¤¿o^¿¦¿« þ¾ººör­Qÿ_uxVßÔ_®¾jü¯Õú˵×ÿ%VŸ´Ï4™ôÆBü¯›Þ8éÝŒ’¬rPìòiÑòC÷îC]Ù?üБۆÎYÍKB] ‰¡Br–Úv­ÃàG⨽½Ùì`ÆKÚ•¨ÇTãã~Iv¿¶Kr •ܘ Ÿš²Eæ|üQ6l¦ãÛQBÁßñÿ3 £µ¦Ô@²ˆ,áh2B[ì¾H0`Æeõùƒóþ ƒéÔ/œ@$¾°¿éôöÈ` iq¥ÒîÈ>uÕ¡È ¾é(§Þyu¯’5)@åb4GÉíhHI¨&¹ÌN]IOûŒƒÂB¾ X ï¾Ážq‡«ôÓ}¥r ßv䝸•+ÞÁ®ñë~4M"Ž/ 2àSr!'e1âZuVu^ŽZ5j6̱õR<¼NÊfaT åwb©½ôV)§p˜Pü–ß¼*ûVµáV J¦g? @ŽŽ×íÌt$A1ò’Ñt|Aø²C„&@?¤¹x(JÀ:?5Ëo½/qлÚÎ%+•¶ØHâÇíß à4©Š8•WŒ½§)QkÅØ»#‰8 T&;ídox…‘l9¯+õ‹Œ6,bÄÔbçQÛ~÷e&1—‚Gv ³I/› aš4¹ÐVddžÛ1æ±ÜsnÕD­ûI*³£=JYµ+±Œ–¨ÖbFQ»¿O–È–s\³–C 6|â•‚½ìáîÂÆÇ}ź?¶eçywSA탪 (‡…@C©UÎ^ÈGaZVÙŽWD¬¨‹‰ù× ôĬ2ÍÒý`P¸ËýQv‚Èmú2O34>=P™Í ¼ö•;¾ aFܰP~èá÷vä?ʰ ;¤Ìæ@¥–ë\þºCYIÌHFæ ƯĆÝÚx¬¿1 Ù£ÊÀFÀ%hÙ ÝÅ#À$‰´Ô%}KñÇ®€[ùhÜçDÎö½‚Õÿ §? kǃ•ŒÒ‡R’KtØÚ,ájé´I^©Ú“ ~PÿŒà¦÷­T‡ŽHøŸÚö@ôº)0˧æÜˆp‘p³;œŒï«2}%¬œT8._qîmŒ­®m{±·m8;¿Y´m(õ¶ýYÓâ66;Ȱíb ˆÂ~}j®ø½ÚDqÕäѤÜí½pb€ÎÙÈ/(IY° ç3!O’J'”[VFo|q‹¦‘˜×ó6Â}f’±Þ•øòqÿ¡³JÒûÁAÆÅ—r— ŽÎ«e=Ëp]ƒ¬…§B±‡UÜï1Ú˘²¿+îJ±abÓ›´|cCIIk¿±Ü奚¡Ï.jƒQó/·™¤w£"&•’2þzwCmo'^8p’Âj Sà*€›ÐÀ!sF9¿W»¶l¬E¢L&š”AP-Åìa2sëÑ6 ÃKˆ.6ŒTðÀb›‰Ç‚­Ý‹à-{É(áhøhž£Dä6 dúH@Fò£Ë(œ©hšh3YR2 U‚µ 벯¹,¯˜ÇqÙûNóÔâ¸AŠøM« R%ÞÅI¤Vñƒy3º²ŠÛÖ*n§Uœ>çý$˸í.ãô8¾ã:n/Ö1¯"ÌœuÜ~‚uÜö×q;k·uܯãƒ{göj8%}#tE[TÛç ÷Ôƒ@¡±Õ„„SRLâ Úôþké8Ÿ"…Ô9é7^«|4‰ú©Ó atq1½ÅÃÀ¥3’„ !@ºA L4%Ô¶÷ú¾¥×,µ–åJKª›YšFi ¢Çi›Á_ªVc¼ÕùÃj¨ÀÄJý¨{©ÊÙ‰]¯˜¥Rj{ÌÃÖâYN\öâ«fÔEïoNŸT²’\ $T`í ›­Çƒû¯î$Nc)†£˜ÙIˆ?¤˜µ"•N¦_ÏA­|g=RðÙXóEpž g5‹°Êû‘“Þö&½˜ôT¬¼³Þ~ÊYo?ó¬· Îz;kÖÛœõ}= Ù³Ž·L"Ÿ{ªÞï3¦(ØþAH¶¢‹âZ\µ¤®†¯{}ÊI2DW¨üòõ/ÿô X%2ÌÛQP‘˜“Ö’…f}íä  @?Œ´.§cܵÒ`¤?žÄÔ{.&¶øWG÷oßl{r£^Fê«â¼‰˜°¡…EN½TÚæ[ý7A7¬œQ¿Òe",F)}«Þ“¶hÒû ¥&ï?ßþ³üŸûÿȽ{ŠÇ¾<ê$1þ޹ \›¡BÕ2ô?Zo¯l;w‡%*„„·²ºµ¼ÊI›@¾ oÎ͘j{t4Å”ù—‡ÝUñ¾}x€ñ»ö·ßãõdëÏUèL~l7?ìtUœ¤Ð]!¬+¾²Üƒÿïã-øjîušøÝýâ^œ†æ‡ÖÉAUluл½u؆/ƒ}úñdÿþi½Пöòî›?íµØØþ³€úõ÷ÓáëîóP²ß ÈîéÖþúfk‡¿­Ž,·ýf¬åÀ!0U¿xNï:ÓsyŸmõ/ m7ÁŸ·ÛûëˆM8ÝŰ9]„ ó×n¶:ÍMp}£SEßÓ`çPºï"L 0‰ôí²6‹(GÉñ˜|šÀ;Qz—ôolD‰Ú€t 7ÊÎöGcÕB¤–*iY¬‚´KÔÜ!±¦Êî{eUÛL⦸º‘_:^²b.0å›Rò¾~©µd9Y¡¡ÚÚxÒ’´%.[2²g% ›sËû8+¡±9ƒð‰Ñ ð@˜È]¸<…ïâLqÅ^ÊB -»¨BÀ´+ˆe-°GVH©)û4¦LåMDåpÄ0 liA9¿áhܦ¡F­!}Dý¦ˆ<ô˹î§²|PUO³<>ó~2ß]S4ÙyeofÆBáØäZápô /$J Q8ÔÜTG. Š·>ô36‚@å*JUËé$æš³…Öœ«™å_ùå÷·v°¹Óã"ÈiëMºîÇ}¬\g")I.ÃCQ/ó ÖSxF…€Ò™9õ6f %”#â »ÆKUæ5²î„˜,0O2Íç]¥$–øŽdæš´½Òå¤é¡_±Æãi|ñEY;‚ôz;J’¶ÃÀxB5¬Ú+Þ3gD{Óè¦ï:HÛLrbí((ˆwr—…^wz— ÆÃøfzc¶ ìBGãè"ÆÃ›)Á¢:›À Z¾ Zê=Ë'ä ÒW^aØwª¦{ÃR”jÏR?ïaëúKË[Ír úÓ±gitY½j…fx’Ç86Ó˜D1¼8Ü7”XHùÌZ›ªTS‡ÏO¥½r(ª¾;²”¡Îz——ñ Ö1ñíÛ9׿ GwêÌþyw…N&Öílr;ˆ'¡XP[(‡Ü ¥àxp‚»æÃG]üã¾ÀéŸ6þÛò`½È·{ûµzY}m/׫{m>Ž’ÁM 9<áb”ê,O\9ÐÅ.|Ójs¶°QÖ2ÕT*Õ°À鹺1†>¾mUñŸ2éz©‹&8BY«HR±@Õß‚ÿ(P)ew†»ðªÀдt æY5D‚æà¾mÙ9ø‘.´(ÆäEbÑü¤cgö0*Å^–c€&ðjl­Ž;2Š[7{dzp 'ÂΫbN—BÛáÓëwow äXa|0/ÛÛÏö¶‡üvr_ÃC?®pNºè_R¦§Ã®â™55ç°8”å |RŒtGÇFfôpÖFß\Âshmoga§$§: 1ë`€‚„¤#¿"âà´ŠŽXº{B ×á1²šÜ<ü—ã屡€sSƒ(D¾ÉVd;z/nÇÑ×x4uí§´rÝ1F“̘.+p*»3·"6©¹ñh4‘Vq£¾¾ñ±úSõ‰( {}ôÃñß4õ›™©#ßÈÅȉq‚ÓŒÆÞë0¹ ^2ô>ýTÃ.Òc¡¢ò«bMö-¢)ÌŽyÄÜèìX2P„WûëœX$ùÉ&%ö¸¿ò,UY¡S+;ë$(P„ „vÚ…Î]ºtî G¶êP2y†¿[Vºò"%wy(5j«VÖŠÏ佄QÔX¡~‰¬×©b§­ŒÙùk3×z]éÕÀb ²boUZË-ÎýÆÚ-©ÖʤôaM_ø6ȤWÈ£Ò’¼S.gªe!éÛ‡Âñ&2øXªnh/ {ÿ ãb@XFÊ-Ó —Éè™;µÌ° †žó óâ7ÒL³ªÛWkpfVUQdΠ ¿Îî‚Ý‹¦Ó‹_›ÈÌï®<ÐÎZØEdGwe“¶Å,l\¡ÚùH-×Üu„ž'u³’Õ·¦r2Ñ‹uæ²Î^Èj±æ‚ø«/äv…Ü~àBnXÈí‡,äúª”Ú|F ým‡Vr}¦/«(¸’ëõÙ}°»á,åzýñ9 çè1kX4˜'È.]Ïe#&—t# ÍruEýTAW×Åxþ¿ÿ?«ÿïËÕÆê›”ÿï›× ÿßçxxáxþ¿Çè^¸Q…exptFî¾ÍýCøg§™rüg9{ÞþÖ™Þb¥³oЇ·?Ž¿Fã§våµßŽ£q¯?[(vŒŸÊÉ7tŽ8blÙ¼gŠ¡„%ºõkØL÷ÞY~¸9µ9SwVâ^WÒÆ–ß­ð\o…¤45¶•òÔ½‹¬3S¥ è 7ž Tæ*wiæÎL¢ÎÅõãDcs£$¶œÝÐÍõ *œU* 5²‹k—RÏ ¥£Í¿¦½$¶œUWJFµÊàQíZ®Ê¦¥ýÍh<¹±Ëž¬ãâ®û<‡z8P=CP›;J&7ÓÁ$VpìåË÷渄 ›8¶ŒeâD¯T_¡ù­Áˆ´Íú·íþG˜—Ö¥A4*×ÈEeõ§FécM¹ªé9¿Ïýñ[Ì´øNWv*Ç€r¼&9>+WºúSét8ÞÂ"å0 ¬1Ó÷í¹¶—Þ íÎëP™ïú‹¥;Y¥• ²™naõ—–e‘Þ +$úB:d@Ú0¥·Lu©‰Uˆ¨¤ $™DÉI˜ÂO ¿ª‹òëYÚ8‹gØm~ØAà|hÿ#·OæóÊ¢¨)0¿äzÇ>žEž~°·ãÒèàÌnØ`“=ïrÌŸg8Þa¸qíz'ÅÊ‚ÌxF[MÒ•jWe\Z„°Þ`õú÷’SX<ðƒaç 87ÊðC,b“ºærýmk…ú( r`ë·Á½§Žàòêie-¬ëÁiaëÃöÆú~UÑÀPÜB‡™LàÕN{Ës§<µ_";FÍpxZôj7+Ý‚‹`E*ëugÉõh:è[î¨<\÷¶ o ÉŸa…îù({骴ï¬c:NJvšø§µâN ÔÀ“œ2Ý?¤ 5Õ‰w6Ø~‘óùÆø~˜žbžK¦WIyˆ([ ê)r2ââ/°õÆ  Ó&©7Q'[4Ƥ}>ÑV(=8 ¢oœ«D DÕlÆM¢ØÙ?K°–°QŽ˜‘—JcbW$å/Ë¢-³ÂØ÷xÛžízŒpˆ…{¾ÇB¹—æv;ÊóøAUMç³ü«/«ª!©=ÝÛù ­âïF®¤a è²¥-•}Úµ–Ñö½!Ã5٣ݔ«"éÝ-ôåš„3,I¤^X.˜&[Ûã¼]¶–aЙ:à°&£fh¾$1k‰aб8€`ø;ªãÒuA2:=†¯o‰ƒ¼9 š™ ÈeˆU‰†w"ù×xRª¥˜PšO)Ô`Ö¬kˆùŒþ}ÈŽtæïH€oAIĬ²¸˜ò]Ȩ€×ßJrƒšÃæ…oÓióFR¼°êâØpZlÑÞµÒá™3u []qûöÑí›'„:PZ8y--ŒVåñÅ–ÝÈ ³©lùÙ"«Gß.¢Û‰vT5æg%`Žoñ/ÿ–WôÖ^; õºSÑ’’ÈÏ™GX;hêÃwå[‡í;.cí]Nä6c „ õIH£ ïÔº²_ nvÐÿÜ .µ†›]jƒ2Þ.ÎVÓ-ûæT)‘€ ãö‚vŸ´»%Ãþ;ªª—ukÏ!ï@ã8×RÅÊiáÑ—¥â¸33Ò@D œ¤„ ¢ ’'©”Z²öbêõ,äf •@)ÎNìR8Š—— [ Õ%…(Ѝ¥KPN¹W£Q_†º‰ ¿n =i´Ö&îŒî"¨-ua¸—~¨×+-o­’žDÒ#ÂP×M(M¿¦ØQ:íÀ&{ƒ¤Ä&úÚÐÆv†æô-õ€…íKOÌ‚Kd'µ^ýî€VhOêƒÇ9°“Æ ÕehÞ˜]'R›Ž¢$Üê³fn´]†¬õp¬×U'ª&M™ÖéÝß}%Aãy|ÄN@Ò»Âù(ã!F’Â*vÍœŽ­Œ†Œ´ƒçbàF(AôȵNê Ôiž<óòüòê4fùæI9fnÿ¼ Ê#í´'¥(ßqOγíˆÇz(dé£@7O®  ËbWè ­tÔ€†„"ÀbgНÙÇ(–¬ óµ¯—&´ œ£¦%Aa ¶ÊŽø"°D™ï÷ø Žk_ãñhˆ[QjIÒpßÕo‰glí¯ïÀž÷5ÁOÇíUq1%É/`oGñpâÕÇò[ñæœYdl7às½ž&ÙòÚ[Ѷ¤=ÀЀ(îâat§ä¹p³U”]H7¡.½Y»ÝAQ¥#WBã šÄx½×F¨ÉO0¿C†"ÁúÍd¼x&>Ò*(_#;„='Ç Þ˜áoÀuâ “Ë<ùRI߈åmIj/©!&DܤþÒŠ .)+ n$jPeÕèå’È7]6€Æ“Kx½„ïñ´<ŽáÒ]œ-ØíñÅjc”µ{ƒÛkXXÆoØŠP€Rákz0*L®z‘Xªc4HÃ[¾ …ýßë “Ô<é¬?õhÚêj 1ñå÷Vdß«#cÜKÝ~ÁÞÆØ$÷$-™’êØhÖW£q<¹¾Á°6Ñ| µb¹]|Š€—¼]L‹TW†´Ø¾F±¦ÁÉs`¬ˆÝÑt,o¤u|½Ob€ðƒ‘h¬UC\YJÆ_¿Öj¿¾|SEs=GyâaÂ8ׯ`ON¼jÛî÷(’°âŽ@Ã(2ñëË_`oÖü<¤ÂÙð¹{’ëóu\Ÿâ¦à…ü BjÞŽG|¨2k„ ÉÁÏ£‹Þ”3CÄCKel'H.@DÂp~¨Ÿ\±”Hæ¦û¹k´Ä7ñ¤>ˆ\öi#Kê«| –ă-µn…l¡·ö)]ÀéOiP $£>–| nz{´;­”=R|)D\²F O û|~µz;´R›P$sѤèï¼@£ "\Y+±k6>ã(†¾}2¥ýáAE8CÁ>vBÛN ž_þjC‘ɦ·ª=èûö³'ê¯ñ®þÚ®îKã+bÖÜíçNw0/É̜Ѳúv°¬~^¬¬u{™kX»]¬b7¥A-ý0O®pð¬½CtZ„)“ÅA©Ðÿ íˆO¶Û§Ðúz«Ûå?gæó"^…ú@d—ݸ+Š«We±œÞÌájóè´*WUjèog»û„‘¯0©…¾¢tæÁ®ÏˆE|Å ‚Å¡*‚Q°xm(šAgŠLî—:KVN&˜pó^š‡ã5hÙ‚pF.[X’BËx…?Z…S©äœè8j°Uº)Ü>^±Ò/fÅ!rF°½¤ý«é%s¾DÞ(Zé…™‰fJEÖ!»D¬¿}(Jèe š6B]ôd$uRK…žÂ78äϳ„4:sÂ1Uô¡³4Ü9Bxì°OLP³ã¹ÎhÁ8EÖ9‰VjhHwª,‰À6÷õUž·ðD(Ðêg3UÒ$Åá‹æèY³þ†Šëk3§?Jw,«AE‘º‹#‚¹kÉÙSføýà†’r¡ògÕ÷§ïÛ 6’ éíhŒlï&D˜óÞÅ—;¼^@M4HÈ‹ÝÈ5$‹hÃiéV¤ *Wl‘D¸Œˆ6À «V©|rHÍÅÅèöÞ‹b4hû¶Áög#öIwîTZ[!T 2u£X9~ÔŒ¦z¯<¼ë~î_Ó”ŒÌƒªí€¿éüM5ܦ|„4µkRE|Iò/ßføxàU›™$GQ)ìý°\×—ˆ8áÿZT'Ê3Ö†‰Gn˜=¬lDMÀÿ•P³¨‘C«cß÷é&ÉR©ÈNä4 ìÂòÉ=/Â'©ž»gÇ‹§á¥“xK”üâo©ò;¢0µ†Í’ß÷ƒãÈfh¡Ðá†EÖÎe¿Qïs_éSÔoú°¤šö= ι 0øôD|®% 0.3kÞÂWãî˜Cã·Ô¨¬~ï å÷é·v±tJ¨ÝÔ1ÒzÒÖC§Úÿ-Ô”j{/¶ ‰ú©¤lċɤЂá˾úÁ“ :~)é`{ÏXVýÞGS²±Ñg“UK4¤“z@C×J2¶”ƒîÃiýb‚Ž,áAˆBɇ~ü8ö†Ïÿcµ¾öz5ÿãu}ÿã9^‚Jßûþ¤µÙEM÷V³ÓZo•¶š­T¬ŽÞôˆß?u¸Ž§ Ê‘RÛo9j]ü˜™9ž†­ý4d^Y ©™³p´ŸêµøvSÇÊ&Ó—À¼¼ä»p;è]ð¹wš÷ÀºÇ½!Že ¥©§6ÉÞ.§xÇ_ ©: ‰›•jÕ—š¤…Fk ´üÓtÿéSž̲›!aÙWýëß+Jýž§{—SÍóõNWFŠ­Õr?Lùb£ñŸÿz¿_÷n¾>åÏÿõúÚóÿFcmíå*ðÿW°,øÿs<¼2ìøOûë¿ØX?øXÝöz ³Â4NÁOOªb}ÿhgþl  Šÿ~žó°µù¹*6¶»PéO ›§–tk¶•ðf2ëÑ› ÚTv;Ìpw{¨£ØŠnn¢çô®Àzwð„x…¶!§£ÄNÜï·íöh¿ GP²ÒÉÛ³Vr{do^¿ÌKP Kd(‘Œ.'wl‡wñ}®nÇ£¯qŸ‡Úuí>Þ3ûÄ›GûÍÍfW´ð&Þl¯òÃ<û³PD…T¢Àn¨‰’€é¹”IäèÉ<³Ö7J6…Éú,Ãe–¼8X¹B® mXABYÙsnK'˜MM¦BÝJëaÏ÷^¼}'к¬Wé'¥õ2ýùVË XLøÇû²Ò« @•¥¬:X‹;¨8M;–`ß}6X¨ Ž9Äqt,#øe=…È RÜP9 1`2èÑvhÙ9Ž¹Æƒ{A¶at95@7ÊïËÞƒç£é°ŸÐ¤èôðPmL†É+Ï Âµîh¥­&$•Býkë_+³VNÑì.¶ÓŽýœ.v]ûj£3OHñ&3·ž÷X÷…®Î{”Ý]®Ú;™8ülð'6xÚU|ÞáÐÂ3—wqÍ»“d1Œ­«I l¯¬¬G=`ó`»E?Ò~[…MÄ]¬Ð·"q©XrÏ¡ÔáN`ƒõTŠzËñÙDCCª‰”•jRlLÐÅ"„ŠÅ\ôq t'Ã:F;èG€Ö´c½ ò-A•q/¼–ºBÀ}BvªcÔËÞˆr±Q}žo¦‚¢æwþ¢Á‚`nE’™Ñ% 37òߤTÈÃ%™–æ¾ ‚¶óªçÒ 9] ä‡[ê³iÆw¥’÷bH¤Í& *æÒ†î˜ŽÕÇéó ×§nËà=ÅYJÕÁiÎè*•rÜVÄ'œT*ä…vÐΰ@à$wÈi*æÐH†9-ÖýÓ'¤RŸ”NŸŽJýpZ”J9Žás8ÖqY„{ê®wˆáÞ›˜E€-Fا&ìÓ®ÿÂ&¾L¾% ±1èéh¸æägŽ€ó0³‘¹Ð Z–Û‰—«nVæGæaîœlün5èawûà¨*:ëï·•uXF.fŠ=Ý„“ò.üŽÍ{øœ·[Ÿé_ø¼·èî܆ÚlC©’gw]¾Ïi1 4[šóI?{üªDº­yÃÉ,œr#wšdÞ9eTM¤!4^;ÓhÈ*Mެ¤2²¦UoÒ¾7T¥;•Í%i œa½›2>–ÖÁÒ™vÙÁÒ)«ì½ý\3î”íõÞInù€}õúÖØÛ_Þ;AƒŒ`µ×~5Üš¥1p°Â/ §yŒ‰uNÞÖÜ´­J‡+–ÒvÏÜŠ³ÌÝGÊ1¦ÐøÍ¢.,HG “÷ %J´ÙáÈJË.MrÀÏâX2.> ¯&×&²ˆTPI¥•̦©½½›PŽ™à©L(ÉEX(¸§î³œ‹vêÙ;áþ‚¾Öœ§Š¤ŠÓ¸jÚúX#{Ÿ½Õç¿‚»Ä ²\‚rZ9 ·ršÝÊ©ÝÊ©iå4LZ8“´o Š„öÀƒ{©ËÉж]œ„aŽÃ½~?Vê+^2Ý™9ä†f¦VÅHùWá]Uõ÷=F-¨ ²¸=Œä°tPi•ÍnN×®¨”“1³í[áÔD»|’TüeÞ.¢o½ ¡½+ôƒŸÄƒ…—#S=ôOd¡ˆ ë\±¶ó> ÷6×XIb³·…yN¬„¶ª¢ sV‡üL¡¥×Yÿ¸]kÁ˶"Ö3#¨Ñ“3j5`Wù°Ñmwž0x]MÁép¾›)Ý)µµ›SxÆ”$‹HŠt˜´õ†t\ÑÅ­(0²¢ª×]rN2Ù7—rbÑX Œ"q~R÷O3n”Òá|f\)…böxwJS—D´=`ÍFeVݺš¥¼û"1ûˆH!'NF#n$]É%¯º§äÉ»…Ú”™1Èr@³\äˆÒ†+ͱ‘ÿÃÞ¤Œ¶”8µNŒ7Wï«h5[ÏíêIº¤Ó(­@ÞßHÁž3ün¼ «©raÁÝô>Éš^E”K“4D°Yì.ïí®o½‡Ç„ÿ.‡õ>?²Ô6"¨ü2/¶RòF¿g!+MB?)²žG?=*^<1ݤ‹³èܨ´–9$Q×ÖÇRs\ÞE×vþÍ;;›šà¼ØÚ×Üõž”Òržeü#âв[e¤”‰ŸaÀ)BÈ] Å‡ÿ¨uéîþê0˦þxtâx~%:¼–Í~Îç ³XÕ6Ç%¹ÖWýøg:ØH«A8änrø[çTÕÇy¼ÁS‡%ê–è÷°l¥ßÂrh„ÃÈèíx2m›!ñ“Åš4V£æsÅÅvjjÕiV–%÷Øx¢ã ^0JÊ0A·%GX¯Úz½ ñ²®‘Ú Æ ­·Ý"­sKÁ>ä¶ž ãMk&üYšc?ÈšM‘5¡´*ý™Åypí);S™£3~ütªb—˜-ŽÙÇ-ãﺊf®áïÍDf-ãgá³~wô÷‡¢‹1> yMjXéËzc þ^ZêZ-Ê ‘L ´AºF¦{/É9,Y­œ¾äÕ]]ÜåþUŸðýïeòí÷èÛ„ó <úÖsFüW¯^­zñ?ÞÀçÅýïs<¼ÄSñ?Úï;ŸGEvkk{«Djüß»§GÛÒ7[~6,l\§ ¹›íßg­*„)èɘˆ“àðªç–fëƒú 4õQ~Îîyëð¨}¨«l¬w¶‡~7·Np ´×Í÷œñSÁÜd]ngQwçu˜iÙM˜Ñ aÕé8úê5lÝ7înFër€Ø´•¸'5#L,­öÁ︒›Šz6ŽÔ´Ä›Ùˆ`Aâ|‘–ü=g‰š#þþ¡}ø©»£+1äuÌ^÷ óÙHÚP…fL†ì>zs:ãDwMk¬è†™ÈÂ~SvOÉÛã,¤@Ñ_óæDåýf«ýù÷f·½ýQjýB‹~ËnJ¦}0ü¦feº}æ7!»ãÌVÞè»í“N×=Xî¹äšß-ÙŒôMqššcp†(Š v€ß[ØJ§xS\¶fáó[­¦Lh›‡ôGÚÁ߃U"EŸÏÛÍL±mfÊbŸ?~ú´¾µõIùðç±Ú(MB‹~[<ðßq}goèNh€€TáB}B³¨¤t“0ß‹’6ž)»Ö*ÊÊíuÉHÄ:úQÇöAݾMâÁhh ¦¤T`—9üÊN°KšrÞÆ‘.:..SõÕ§Šú$+sÒGõö„eŒ¢D‰o§cНýnƒO-£•(®EÚO,ƒ×nÒ,éozÞõu'ˆšFñiË|ðÞÝ[M1öö²Ë’¾]í®õvŽúVÊÙRr0 kkÍ$ ê*Á1ôê,£ÊYf#MšIL½ù2ôÖH¶Yo3«fþîvļø¬§Ï‘ËL3]Àæ¬ùUB­åmgµ|ˆgžMuŠ´4ùJ=>Ž’¸©í¡:åýžˆ5ÿž }žzyFØÜùÀxµ• œFcü°#úÑm4¤hb#ù§D™Èïo£Ôußb ó¥ã ¾¬Ç³U½ÊúŸºïu¦eWÒÌ¿°ÉŒ¿[S‘gò]/N^ª:ÁÞZΖ˯HŸí}¨äk g( ÓcÊíˆVN½˜r¶Äœ.ëî› vYéÛuÉ•þ·úáóçÏo‰öãD Gv4ùÆøZQ%he뤤ôçß¹¥K»ø„nëÒƒñÔ^{ÅÕ‹1_¿F2rAb¬I3FFž‰<Ù3Ûô×")Â,ÔÙ¯¶2ªI^xsÊÉÎÒÜPäï={Êåõ”²çk¶L©­SÞ§Ò~¨¼&÷Ü ½LIçiaT}õÓ÷ËzÅoÍ >µeH€aÇ]‰A²Wb]õÆ/¦fŽÓʱ¶'X/ãI‡˜ÝSE"Úg‚¦îÚƒ†Nš@t%R1åV˰ÏTÍÓ8æjªh‚£ klvöTÊ-^öâ×ËØd!¶ê+4Ñ?£tˆ”Bt¤$1Ýe#øx ™Ë¥¾0ËŒ853¹8±IùѧĽ  9$¤•ÕNð,²ËCê®ðÝ:ÚìÛ2tÅ¢„@EgËŪZâ qWK†â é>¶÷oGÆ-2>)ã¼T°‡šš)ñ›sµvaba¾ƒ4@}ÀCRæZ6½0:¾fÆ#ûеF–9 ïàÚÉ9näÍBºPvP3&{rB ÂÖ—aÀ>ô9¥lYèc6#üÉEþä:‡ü3s)Ì3›`<Õ¯¤P\ÁDtñ"ϳ¢äy6k5œY k®øjÐÎ] gó­J´ÀXœ 6ë즟œ£¬~òO­é^þ köì;®YƒÝ²hú8Çš=+°fyrhw @uMè¶¿ÅŒx>š\“=6†³ÕÞ¯”˜€~I&£Û[™˜NÖîQü|J0Ü1jŸRÃUÅ ‚q52QÚ'w#ˆŽr–7kɬ& ¯<{o‡r»‡âõë×yˆÅ¥í2 *c½´®£ÂÖüE[ 2ÇÍVg¶žÕÛL¾k–@> ¯ˆ§Ês¾.{ùÊÅ,“Ø™::QØÖQ…DC[– …8¡È" ¦“Ñ0D[™RZžµötøV*:|£ž ^Ý-‡õ0aHZCOàT}¥dØ:ÍPøhÔcîbªŠžÿw’Üᑤ¯Ïô¥üwŒ98.%âòÍXÓupûsäHqÜ7?Ý;†x¼¹zð{…cj_ 'âSçÅÓÑAílé1GÀ˜½Ù¦9okëežñ€K£:a tel±›ºB‚¶:ÿB”0P¦’ÃÊîÄØl[vndµ»9£]>q»gYíúqÙ³VרIJc”7s¯L=kaú¸ ˜Ã˜˜møˆÆöüMjh9xæ)Ƨ¨´-c7¾;£˜ ” Áé¼ÃU Lä¥T’@ ‡2’ùÙÊ¡CžSl©€6.W¬X‚·Û„¿¦™,G’)“~j#¤ÅRÅ# üɶ‘¢›k.¨} +_ݱ‹]WOL™îpuƒêº²$ÛQs@u´™•°èl0ÝRP{ 9‹×\–‘<#„¿þ4y'Ãöß·_¯ÆwOlFþ߯›µ×~ü¯×õW ûïçx/˜ÿëèã‡6KÚTtóp_Úr…\÷ñͽ&ÊEžÿ&å4iYæÊóØþÎmØ[Ü 6œkcVØ#²C9¡yý.Ü¡³dI±ì:p^ÌŽºVdXG°¸A·»^$Û]ŠdÛòŽ1>ÕH—(ãD’²$%•Ìjs×iæ$ÕÌ{?žO_^Ktd B/ÞåÜ•h¬Ó°©û/ÒðÛЇ§A›)0IU¦ âÞ¤ŽÐþ=oþçյƛTþçÆÚbÿއ‰Æ÷ÿ¢ìµžŠJü\å„}œŠW¥vÎyŸçxþ²›þå}Vôø$éžeöÉE²çE²çE²çE²çE²çÿêdÏ‹„É‹„Éy£Z$L^$LtõgI˜ìÔ^_¤Nþ¯Mœ™8¹ Ãù{êä Âu‘6Ù€ú ¦MÜrý,y“AÂò*ÎìA:ýÛO–Úx{‘Úx‘Úx‘Úx‘ÚØOm¼HdüÃ':5×ɸ‚ý·â‰Ò–f{^fà(À,ÁEŠâÔX¾oÒEŽâ?}éæç(V+z±¤ñùkdvý›{x{‘{øOÐþçyóÿ6^×W•ýïjã5Ùÿ¬½ZØÿ<ËÃKf†ý¯L3jGQf@ëï‹Úÿ¾ÏÊúËAým ‹¬¿…Ÿ¿¬µÐC³þV­m=I®_9¸j¥ý•ÅgÙ­ËLŽO“ç7*˜ç÷¯æ÷¯šå7E1鄽kÙY~yþ™Y~sH‘áwëÃö–áwû¿2Ãï£2án‡L¸Û?P&\r3æ |tÖÛ§I‹™ÎS¨ûÙ©*¿oFÊœ.íÉ“5˜¥ñÉ“1þIRC˜Š›‰²tIßdƒÏH ‹Ôœó¥Œkê„qM.Ž],)gS¶ñCòE0›^OãÖQ;pÈx` ¿í`ÁÇ·¸H½™Û™EêͳY¬O¾nf®ÔïÁ 6g'ØÜþÉl†õÿÏ›ÿ±ñúu*ÿc½¾Ðÿ?ÇØòÿ-œÿQft,š¬Pß8v6Ç€LÎÇ@6Ç‚P¼œn6Ç‚0ÜœélŽÁpÎÇE6ÇÅ=HñlŽj9¹yEš›MÉŽ9·/ÌßÈŸ¶N•{¸Œ[™Û ;‹£„äåqœÑ‹(“ã"£‹4Ž‹4Žô,Ò8.Ò8zÏ"ã"ãCÒ8nË4ŽÛVÇíbi·í4ŽÛ‹4Žyi«ßE"G¡9j#EÞÆEÞÆï”·ñ¡A·âÌÛVæF0mâuËC»“Û0ȤŸ/_ãvV¾F¿×Á~æfi|pFÆíÌŒŒóv*;ã‘sqÛ˹˜¾£‘™ÿʉ ß-2+ú(\dV,ÔÔ"³âŸ™Y1`bð'æU\¤U\¤U\¤U\¤U õb‘Vq‘Vq‘VÑøcÓ*.²*.²*†³*æ%¿~P^E£ŒxpjÅ”ê`‘]ññÙý޹¹Ÿ/µ¢›Ô±¢²ErÅ%Wü3½K¯XHO+µVcïªhŽ¡c>*³ï‚0²b>ÊhŽ¡,b>..Äž+æcFœÇü+¸?1 äÏâ±ògx Å„ùkTó9fmºñ±¡Ÿ r£¸Ñö•òÃ8f‚ðÂ;ÎŒâøè ŽˆáøèދދދދŽóGp|’T‚Íýõ|«%U §#Í ¼H’ÒÖ`«sj"Iâç¼H’¦”$Ù9õIfÖž+^dz¼s?[2¸N’ñò‰I´Äņµeºè‰U”t‘š"%%%y´ ,‰¬Ú²ÀÎqVríg‹(ÉOI?ÿÔH’r{+ÍÝé]$|äŒè‘ß3|¤¼5ò5²ZÇú×Y˜ý/"Gz\DŽ,ÔÔ"räŸ924èÉCB†J-bB.bB.bBⳈ ¹ˆ ¹ˆ $¦ÇÇ„Ìdò©p‹´†ÒËŵˆAÏ2yÉ®¯£¦{²møðІÙá§ØPíQ ¤¨†éž¹q 3à .šÅôc†Ï1| žñÏ kX\Kèj´ìáÇ iH·S¶ZñûD2üo d¶ÿ½ýz5¾{®ø¯×^¦â¿¼~ÙXØÿ>Ç£ùŒø/G?´?iƲy¸ßqƒÀثи,,ÌX‹<Y3VmTZ©+¸3âº0ai+×ïh(jEbIµQÜÆrF8 ²Y8¡yɲÁ¨GÛí'Œ‘m+1Wx= ¸@g»›Ý{6 µ6Ã2ƒ† "„Œ¶ ÝªNì(9xÕõ^ÜѸîpÉA_`!Œ†ƒ{’æˆv¾Ñ¿d?"ÖM<«°Œ”¤Hr ôbBu®Æ£»ÉµH¢Þ4Œ(F×¢2ÙQ7pÀ¡Qá†L”–ç)²Î<á Ea¤) ˆ"¶ï•s¸õ„¨÷1Š‹$¿~ƒÿ®†ñdÚç#!ääÝ›¡k#‘(¡Ì4Ü9ÝÝu~×Ý¥*Ë(½Këà¡ ß×»šª<Û§,ÛVçwCïþ̸§¨ÖèÀE§T^xˆx¨ÂQ¾_AXâ6þ:ÂHFHõxß ËéV —ÞÃŽpâ­¹§¥B¬Ä÷i,þ¹ð=z˜íäX‰‡(öDsý&`GFƨØO-LçV ›=Ì¥„sÎÁCéL}ßÜJÆ4@ÍL21äbèc)Qd« _b#sŒtÿ]÷`ú‡¬{‰b¨:–hEmë(‹P㱄qÓK<â±%ðµÙD©­Õ¥ÊöZöÅh [€„ÓKÔ˜cèá$‰—D· .¾FÑÍ`¼ŠYÁSûÑpD†£ñà »™E:'¬Ö<Ù=úÚ/™øE˜ßb¹ïòïiõ>A7òú…#3„u”—ää/3@GMiN GÆÂ’êóç³Ø'pþâÓÿÌóãUãµÿ¿ñzÿõYÅ)òÎÿêôß ýñPµ8èyþ²ýŒTÏušÞ#üsœÑgœšý³¥ô˜% ¯‡ N2ìÖ³Tþ\<ãHDoÓºÿT÷¬p’‚êHà'3ÀDæ’BÄiаÿˆ¼Øÿ“ûÞÍ×'ÜþgÅÿX}]¯{ñ?^­¾z³ØÿŸãaâõâXwmî}ÿhgÝìúŸÉ‹ú3Þ‹u×gÆí€¢§ ù Èó—•B+“RPÎÞLT†$)¯Å‡ù§”$>«˜þm~<šŽoGI„ßñÿëE"PÁ†V ‰eRP“–£[™X×5ºo߉ÞàöºGwßë|þ ¯ÀÏ£ ÿx_®r%iÜ€¥i®°„@JHX¶©Šoôû=ýÈ 'ôË:GG C$“¡Hîae ö[öS²{ /¥ä‚•nÇ1pÃxpOYfP7s!ýEP©î™À@ý’ãšÖùnŒ¨?S%´¼ \TmF"Õ—í+Á˜ePT"¨=O¦ãsŒÒ~³K&$¤‰‚á”ZËuš®I|##æ[z'2 ¦©{ÑWT°Ma}\À áÁ‘Þ !ЈºÁ?Œ`7L&ãé´ \Ìý>#á*Â|y†L>þH= bÀÐàþïÜ;k€8ŠáhbFB©~”‹5váÄGè<4¤þ³ÏTqÃÁÜ  -ãá×Ñà+§ÿÁ¹±‚×÷”.ItÆgè ÷Ì€ö‰ëp•kB'Õpµ:+—Ã!·&5lÉmt_Æ0@´Z‘8E%š¿ 0¶SÐØ^M‘iÜöÆ¥ºìñR&Sž&ÎG—€šáÒAâ@ù ÞzöyBvüûñ½öWjL¹Oæ×}0¡'Я•üì~r;@¸øž8²?^‰è[<‘ZüZÏçJÆ„¶¬Ù”™­dò V '®•XwµtÒ#Mƒ¤.ÔGÚ°ÖÕ_®ãö™9$ó΂-+ìZfª„Qo5¶[ô£ÜF†¢ì‚߈.Qo-»Fó­.$™‡¨æ@ž0éÉü_Ë„þèò2¾ˆ‘»ô±Ð”c9tã)úÀ_‡$ŸÑe@“‹\buþ1I”ÜSäƒ8ÒR2=/ã¾pìe…€û$áTG;@<¦™5¬ÏóÍU°Qh6Ý4ZC»0ÚyIèƺ0kJãáŘNæÈ•¨½Ï-*ÌŠjXpò«Š³í¶Ò‡cð@!­›äÒ¨æŠ+kvFӃ߭æCéK·Žª2­' +}9 bó”"ãíÂ1sÿ; toî$@œè¦Z47iN‹ÅŒ´yh^Õ5)LIÝi~˜SwÍeºhªÀìØ4ŠB’î¬K|?%ýa}º5¹¡gDÐ3*]6øF6¥HE:Ë™HÁÒ ¿4H7XžTب5dž‚5_ù5qû•ùŒ‚Þ*œæUð#m+:Ù™r“3¡ XJ‡¥PR“z<£Ž#8ãñØz;J’hÀ Ômr7¡Ÿ~'±#&Q¦™,Ñ®ˆ?")»nk:F·ä¹°ãOoUÖ6ªoG1ëH@D5l6N'ã“»÷Ù#ÿlŠc‰wy“i˜£`§ÙMœ†š8 £‡Íi{QÝ7œÄ¨|g EˆQ“HæD×ëspuB™šGwH#l²k“EL RPïeq Éa©õeÃ÷ÅØêKЊNÀ·ƒÞëA¡lYükI QvBÌj(÷®¸ô®ÐGm‚v¤ýQ” ‡Úu4¸•ÑO¸ðDjíÄhÜ׋ ™ÒÕRv•8m{§zò…YÒiÿ¯¼ÜÈ, ’W¯… -ÁC–o-.9Í reâüÈbl0äèTÉp Õ¤QWLh–Ó ¥ç~K#à?y%çôߺõ_)@¤¨!æ¶‹²ÆÞç4 oÁð‚/~ †÷9“ã Ióð±›Ï~Ÿ‰%*9¿z§é.¬/„TCAûŸ1&\z:  |ûŸúÚë× eÿûrõ Ùÿ¼l,ìŸåaÌ·ÿíœR¸5Û È³ÿu€ÃOó¨ù±Ê©ß(í+à¬<Ž #¡"Ï_ÖH(?MØÄØÊ‡ÃäDä5Û<(hS;W‰bg$)äb\•¹bŒ;«YT:íß¡t¾DQ:ß΋ )R¿Ò¦û~BèGD‘gœ“,öe$!kðÏï0̇†9ó_¯:¯›Þëš[›3zZz›Œqà³ÅÆÃË’øÖ]/ÿç?ëÿÑ—dCNs4cá‚w…ø—Í’@jõ~Ü»âÜê²s1ÞÝY™Ùñ^ èÙ6›!íá°ß«+mèY<Œ'÷”“=”~JÓ¢¥×MQã}‹9 ‰KÇ`˜º$þw$Ö*@¯Ðˆ¬ÛÔ•ñÂraPàt¥ÖJ€–3®Këc5[ÙÄ.óåæ[ÀËܺƒýÖ ü5¹ƒ^ì™ý¥8Ã÷–ž>YC¨©-4ϵsu“íÏ`ªnrŠÞq¾c‚ÈIÚÍýª¹RêœÂÏOp‘£|æ»ÂÑ}ÔìKÅ3/oÌeJøî¥¦¯Srn,Dî•…éÏìjE..ìÎñ•„¯«uÆX÷Ô Ù OŽRšÛ'U&aÇm.Ìš‡`JTÍ´§H# 4ÏCJ,oS\÷0YD<ub]©…uÒœm< f™#™ðœyÓ’Þ44WÞtytŸ«©`úâÌèËý÷tѱ>ÙæÊNÿ¸±ÍÕT@¯âä9æF²Nú…”ŸÂ*zi‹‡!ý! ö;¯¢9hüqƒ~¾U„CzžE„C{Ö5äd.ßVù¿ÉÞån‚qk£ƒ%ÑÙ7Ò2Á··þX&†_—ZKJÇr°’Yê«&H)¿U1A.#ha¹®yRQÕ²²”«Qœ5©Í@ÖÀßÃ~ ËA‡ïü“sº§V@~à­~E?¹ŸŒºL¨Š!…Pì]VÅ ÿÆ·ñ×*pè°F¢Ùºp÷ס²4.ùìL5PŒAç„,ãþ…Ì_ñPvY{ÊÎTæèŒ™glb—˜-ŽÙÿ’÷,ÜËÇ­Õâ‡CÑ=LYÊ`jO’Ψ߹“># ²8½Ü{œÜ/üUäîá²$—@½²Z9}ƒ¤»úÄEáûŸËäÛïÑ·I4Ä$U¾õ˜áÿýòÍë5ÏÿûMýÕ"þë³2{„”l¢j¥e©š,Uc¾ŠÑù+«V>ª•á"ÓG€M™H©jg–Ë^: NA§ªú\PU7-IÕÊ@•·¢­dIU'ÑNÕM2›7z'ÕkU¥¬‘ºzyIÅÞ‰U¯û$Ög7iƆ~5U7m˜>غ›=—÷ÒÕæ·®ÒYÙIëóäÓjpÂEK›GêZÉÍl2×=²èƒß/Â’¿gC±æ÷û‡öá§îŽ®Ä×u>dyÝ'Ìg#iCš1²ûPð¥3Nt{²Æ __ç²pPUa÷ô—œžÚH¢¿æÍ©ÎÓì¶·ß#J­_hÉÃoÙMé´ååÏßÔ ¢L÷áÏü&dwœÙÊ}·}Òé:£g+Ð=—\ó»%›aòóÒœ!Šbƒƒýà÷¶Ò)Þ—-¤ú#ŒžÖos~»L.Vå|BÊŒ Êù‚ªNæî:–+0œ¿Ùã&ÒÚ`!è¶ ?Žr1]ôÄ*JúBMÚd[ÁK%èîó¦Xnû`âʼ´á³2fèÍ*Qr*ÄæçÌìž*grð÷p'é]*h~–P'bðmfÕÌßÝŽ˜33ÏÎJ:iµ|ˆ‡y¿*%÷"™›˜;Ÿ›%’DRv„Þ¼t’ÅsÁy¶“.”z2£îÊÌé ½ëØ‰ÝüŽ{wê Ïí«¥)š1ÓÙÚJs÷EæšSÙ5óz4Óìoÿ[üüùó[¢Ñ8Á\°¿ ™(†¼Áˆ_é×Ä¥Z¥¢q€PJis=ý¬T,yÊH‚"#Z Ù‡:±Nà¤'#ëµDª˜‹ùKƒ´aKú„ìW[Õ$k ¼9åÛÿP¶äÂÛžòÝ:Ͷ8Ù2¥P]´ñ¿óæµç^eù¤É!RÐ ©'ª/°~úÊÑ$ž|VVé°ë™D.ÅXf}õÆ/¦&•ú.5FÁ‚|?KJÆìž*êÑÐ>4uýt«Ó´£+‘š*·Z†GŸjžÆ1«)«¥à½°Ç 2-1¸ÑÙ)·bÙ‡\/ÌÉU!¶È*4Ã7£tˆBT¤$&Ýe# x+œËÉœµZPq¹ÔutñE°WÑ^Œ1¾CÜ Z% ÉVøZ–r6[ÂrÅš^›ýsäÌtÏ!Ä@‚ôtWœ$ÇŽVŒ[d4‘;®Næžnj¦ÀlÎO‹LþM̧–ú€§¡ÌjzaÔ}9êóϦތééÓÔècBÙ>1ÐÇÜCø“›“¦>”0[„Wh:¶§–Š “ˆƒ®{BäyV”<Ïf­†³"«áaÍ_ zÀ¹«ál¾Õ@@‰‹³Áfô“s’ÔOþ¡1ÝËŸaÍž}Ç5k ±[¶MçX³gÖ¬•§>5“É#ºˆqJε.8ËàÆèRχÃî¡xýúu 'f"3ÖSà”ïñôAÎ×edK?ù|3=¢°Ùž£O È-¶F%%¯qBa9…x CRJ¦¬‘§ @íoÉÊšÎ'CKPô l4½NÕW'ß­SPà€ë£T¿‹Ù)2òßq¤Hn‡G’Ŧ/å¿cü®ép)—oÞˆ»FðÚþÜ„#%’÷S™oÛáÒ.Aü^á<‡ɸŽ1NÇGsÐ<[ÊÙ2goéµëzö=àÒtƒC–ÍU•¹ÀnꪉÛêü QˆsJ²ÈJ€l¹‘Ùò挖Y^ç–ϲZöq¢Cêßʼn¥r8ï]|¹ÃHªŒ3J€Ù¦ƒžµª0¶t\†`„¹6|DCaþ&•~Šîcà‡ Ô–±ŽëgïÎÈ¥˜SdÚ}RaY‡eu£K ÐCm÷låOTKjsj$çÕ*º:0{pÀšO™y§Ðp†iˆô)!­‹—%Yá4’å¥ù›•þ†µ€r ÞgXxC&KÂŒaêvÔegÖ3X§ÊÆ8ˆê‘ŒF·˜6¶w:+¶‘0c‚¿ú¾ª®qØþ÷i3@Έÿòòå˺ÿ‹/ìŸáQ+oFü™R/{6D´ÂÀ¤Å¿ôck–_Š>YûVmmZ©+¸3¾x°® ©ðò(ãK™&“í.÷àÿG9½I¥£œãH'íù¾ÆsE,—á3€¹t¶»Ù½gû™Pk3L78ãÏ»ŒLàj˜Ú¾#Bú_! €¨K³&ÞÙÍÔ™I•±jº™% ª4öèoNiµ‘{Y?ùW#45*VC¶ß”sžõä¤÷1 †2ýMïjO¦ýÈä’'ñÂJ¿â:HA- eôké AÉHÜE”c¾w«rÕSÆxŒ¤|óG ù»ëx bR£Pƒbëy4Ýa¦¬$U œîr 9èOüïžÊS&…ðTë÷’È³Ü O]V|̬줕Ê9#û©](u³£^î¾M Y™d"ÈÞn¦‡Ý;<÷<ØÝáQ~’=ÁsÑ>RÓ QAÁ™ K‰Lpt»5/¼¼_G*³H‡‡7YÈ(K‘¥¶Ü‹!Î ù,ªO`eŒ‘xo)³[ÙçR19Ø””å«Óù´~$îT¼ó$úJ¿àß/ñ`Pˆä÷\¤ði§¹Æ]{¬?bÎÃj–=¸> ³£Í„6Y‚[ùßÂyêßê¼Æ}ÙÃpDPå EH¼—­æ¨Š”€„°ßÚeò ¥cðÖÑv±— uÏ_œ×xÏ^{Å#:à4îaj€´¢Î›„Æ·FÎ$Ô2gÁÃnÍW ᾜÞÙ¸µ°XKilÅ£ñh ÈÞ¦aÐ …¿›ìÎí霚Ά;¾‹½×4­e7···žaµŠ/_¿S­UÊ8öoBºíùVF­?ÁªP½žƒ2¼\"®\ bø oã2“ÇïåÅ|ø.<>H°ß‡Ç/çñøå'äñ{YˆžŒÇ/x<‚XvYüòs³ø¹²(ÀâåÅÏ‚Å+leHE¡ÿP,>°ùgsøì %•xˆºÒ¨b.¾©Ô‹âj<º›\«C Rü5Æ«! çüž³iò#¾QçtÊL̡ʜt–u¸Ò):)w#ž|zC:ï_Ã?ò]këTЖïÔðH%Xºé% ^éSKàk?²µSZT{- ûb4ŘΠ§—¨1ù-ž$Ñಊ§¹„_ 1'š&œƒS%ㆧ Gd)8rÒÑåjšj¹úìí„ ?´"Æy¹n¿Lǰá&±Ì‹wù¶˜Z)D6·ö…£ œq_,¨¡ËŽ~ÒÁ9Ê4û^àVIuògåex®'pÿww×ë÷ŸîöoÖýßjãÍšŒÿ³Öxùªþïÿk‹ø?Ïò0Å{ñ,´¥!gqUWäùË^Õ…®­æ¹{ \e}V!TäßOþMšüx4ߎuCðŽ'“S+¦±DLK ›OU¤Có÷kè,;ÐÙ²KH×N®I˜&Š¿¯/2¢o“PÍx®£o„és@ A¤G¹(ߨ’<Æ NÜD“ø"©  iÊlÐúÑE|Ó˜ÖL gTÖ¸ZŒ·%É-+ü»ö?¨hDÃ+a€6x`‰\°Ø×O¦AüQƒ{Ë– ¦f…òWÐVº9™½‹‹)ÚZ‘¦›;`ÚüäaþÆäTqZS˜]ôyKÓ\ÆEk€â:ÙÄÜ žc¦-–ðïs©‰fFŸàó{©ƒÙ¦Ê ùqêË«Uªák®‰OmŸ¹$T­cv/Lm¾OÖ“ÞÿÏ{O˜ú‰žûÿÚËú+ÞÿßÔ_®¾jÀþÿr Ä€Åþÿ ¤MgÿßXß*‰ÎÁúþ>Úq¶?l«Ýßlj½é·x#+ zû ím…÷3µíMùµ•¾>gÇ ¬J•æí3Ö&ãpbF†˜ô¾€\ÒKdÎr<–’•§›¦†ã<Ç7§U™ñe$C?0gæDÙ|ükŠrÁx4šèËK>o'º•øR%nŒ®ð-Ï lYÉôò2¾ˆaìp¶¥CûŠÜÌËaŠ æ)ó"ƒä1œÄ—÷p̾¸¦Ø!tî1ØúذUŒÑ£·Ê 'zÜßMLã¢3ÙŒ£~t‰m¸i§qjÈbß ­µIOm ï\N.JÃCb7h€yÑ›òÔÉ ÀÄδ÷"¤h˜ ==NÊíwv½I«{Ý)Ú†ˆëÞàÒꋜ{ ¦8°! Ñ ‰ÇÙͽ­œˆmöÎko~‡CÖºT3Sy÷‚Hòa|‹'U¤œýÃõÕQL9L2UkVl(Š&%+¡²…l§CöõîK 09>b”šVþ¼AJî=ÈwOñØÌk^,#ð¯ãvw>q…Ë4/E†ÂʱÑñgoWáç‘jǾxKêB¶å_Äò¬à°8²øç÷OéUTèÚ9„ÝöŠtÓ ™Žò2'$¦PLdÚD6îô÷ (½¯¢a4î  îÔ:QÙ:n,]à[|81Aã-…ÑO Ë÷ÐHnr=¢_Iþ™+Á·¬W8^ÂêðßQZx¦–°³ŸéÕ)Z“^\#Ü¿¤„ˆ•6@õ€OFRÊâQ÷Åmoìrçˆè£Ëk0³²¤ÊG‚msózOX6½uáè®ew]õöÈé­ '«ëéIø‡3?>ò«9È—Tt\(éœogŽÀ™ƒNÁájLV[ѤudÝbv1ƒ).d˜…³Ñ!ÁZC'ãzõ@Ý)lI ¥9ØPk£ì·¯Qlfár&W±0çà=‹±ŠF èÚüd¸«o?M‡G——µïÑi¹_áèäŒ>&,ö©$Ò²sAj2…zfÑìñJÕ!Ù?’¿ëŽòðùT‚2i`7µóûÚð\5û:ö¯ih¼§¡ñÝñž>r¼§O0ÞÓãmI¸Þ¬ô^Jpµ„ïcZÊG$skêŠH…'¹uâ²kÖ+}«dÇk¨T/Ã?p\¡ÿ픆çeA-´Ðû€ï?˜÷ð½da¨;ßAÞ†¥?à‡k©µF™Û´³Ãü¯)jbÒ›þ Î_ñ¿%a*ê··ðfŠÿ-quŽAÕ(¦–àÃâ…É»(À$…˜yûUïPÞÉâk©þ6®ÕÉW¿Qûu ¥¿½a&TŽHýŒÂ%lº$ôâkà⿉)‘ ¦¥x¹n¡ïo‡¹`ª\ä7›)›;1%ZiÀüÛQIïFØùjuã«× ú>c4Ë {<)S)ðí{ަk¸©æ®ê~]ÍêdtÑR¡sì$ÅÐÎGnÿ9½T‹ÿd‰ù²uL•Bž<ÈVõ©UÝH=¸š "„÷Äù`tñI6£¶c\xnz ²PûÇÊéüù\9Y²q1»£‰ïl»}Xh_ÅE‚)'°ôË^¥ÂÒ©{õ‘¡Âf,ófŠø°-S:´ßÀ›ëû¸óÞ^Í„AŠÓøâ‹Ôù¡jív”$ñ9zŒ[—JèÕ´*0DH2ôÙŠGçåÐä ¶WZêÊÉ ÅÔ&nš©Ý³Ã¹æ?á8nj{Æ‚GD—ÄRkÄÌ•²KUqP£¤ÝÍüSÚ¨J?êzžX"RåXõkUnŠ@·ùzñ¹H/>SƒuÕ`¸.¦>VÂ_‘DH:_ÜŸqãëx 1‰²C.‰ZKªÛVƒð‘¬Çé÷üEvm–J=íê¾¥£P)ðÎk$¬&:T·2ÌÙu5A˜®nÃxuœ²¸–«?iÝôŒµjMë˹S&$íØST•\ìTb-H<ºBÄãQðÌl¡)Ú Œ «!ÍÆÉ©Û¬ÈÓ¡ä³’¼¬;F‰Ý jŸ¢YK½0<¸…”¸Y½¶uSëÁ0Q)ÎÏXÁÉÐÔ{›^P¤ö{&¼{¤’Ù™þB¬õ(ÈZ«xîÊÆ¯ä®4§aþ",Ë#§È¼ñøf3fßã²!UëÕ,^ú9kßð§+½úÌt¹ø”ù³£–íç‡òEË)R&z-À=B]y S=pÖÕzáuµî6j1ÂÂ(ñzb–Õü«ê{áÅ•˜Šaæó#0ÃÌõ@2×#É\së?92$÷-ÉÉ 0(/ñ=¡¸QD(®Æin3ƒ•{â¨vsÄÑœ<ÌÇg2ñåºÇÆgÊ5y<‹Ïż›£Ï¹Ór±áÜuŹgˆgYl»¨d|ðXÉø±Ü|¹îóó9…ã'âå®,èÜ Ê‚ß…gýÜÜž¤GOÑ_‘—çÊ_%‚L­ÃCÉÀ/æB|†î!ys( ¹È5:¯Y£ƒhÕAˆl5„ðddÙLˆ§ÊWßKßðHyÙš«Çk|}ƒ% ÏÖ8»òÐ9˜3Ãg%³5B‰#6ež|gNÍ÷Ö8ØPÜ Åvl‰l‚öOæQ¶ÿ¿6žÕþ¿¾Öh¤ü?¯ÖöÿÏñ0©ºöÿ›­Å~øHþÍÎø¼ÝéVÅÞzgXÿø3º„.Ìx@ê8¸ÎƒaÏcຓôIû|B\ÉJ^hð£±åŸËræLDÉ$¾éM¤í~½6DË2Ôg‡®*›¡X–Ùx¶§ØQGy:Œ/tpåi‚‘i1Áúer´®Y“׮ʶ§€äÌpd:H±u ò„62uÙÆG ‡"5㊊YÐÙ¶X‡ÊVÕ|¯”Ž¢TåSU]uã¼ÃOˆÀÒÇò úûɆRúÄ9y'DÔ/»ró¡û½ì Ékw|õc–N¹¯ŸEr­Â[FââüÞïÈkV°À‹S$õwõjºÌ’,¤Ê4ì2¸ô$uݧdƒ÷šôL`ŸáÁ€-ÈæVß’[@|OJ\Þ,ª…F wÁŒÌÆ«‹BŽ^FÝÄ¡¡V ]Q4,^d_´FüÍà5ÔwŽÒL1ÌÇÑ×x4MÈA Œ ¯mr@°ìß¡§(õ” ½‰Ë´ÆˆÀÖË+‚ÇJM5½j$-ÇÃx5»ýavmËêJ1£jw1À‚JŒ°*”ìsБãðÅB³žM’L‚”úˆ m%)2–POzW½x¨Á4„›PŠd´f¯.®¬˜`,é}EÿóqŒ–h§?¹‹0O˜ŠÂÍše"é2e/¶Q ívâ«ëÞ ow¸7N(ZÑAˆ è#v¥-Íà^ a1õE_Ü~ûdiuÐ_\‹úk`ý剎vt |kx½­•ÝÝÐßß¶1ðw pNüœ ù9­Ûa¤6 $ºFcò¾Dß´1¯öÛÛÜ$1#  Ú2ØÑðïÄ@Ö7V Ç“kؘG—“•ªø:¬ˆúË*ÐüŠ€?··+bí—zmí××òé‚wukhÚGŠœÃ{}˜¬K4ý+{VœœCQØæ¦4±L\iª Ï-·oˆD‰²8!ÿ~6]³¬Q®þˆóÏä³{rpdèXˆ~áX©¡_4•¿X+?£‘RH&Á¤kòuÐ@©)³V¾ÊU´©œ±>æ³ì–ƒ'üuÑ0PÆ|œýSUìî¯wºÙ}^ßï*qöp ß>8Ê3š Û6¥ÚÝZ7 ´ºµÞ99P§Â´ÅW¯Êb9½)lÂ…9ÝžÀf‹²¾lÁh@F†×UÑi~˜ÓŠKÂÆ¹ÀÌÙV2)áó¹dôWâõ¥¤â›ﮄÐ[½ùE Þ|[lýî‡L²ƒ|8ÝC ÝèKøï üWÇø pFeÑZ~î»mŠºå6¯Hü}³ Âr†u 4¹‚¢ãÎzGllo·ÄáÇíö§v³Û…ϧ ›~–Èl¬ú#Fܶ±édU£ŸK®ºƒÅ[Šf,ËXÛ#öýø¤ie«e\Ô_­º¨²aíªˆŒ=¹k¡ÉÕ3‹4U2:*WÝɧ'.ˆ$Xrʬ¥!ç^ÅÕu0¯~ô”7ç­ñy£ä‹G‡mîô¾LO!7Ô †˜بt ­É±¨î¬7[bÿððHÔL§: ²­Ua0Uâä²áW©†ar^çNrnüùuª*1ÝV*fgê¡YX{Ô,h1®ÈZy“ê´—ñò3©?ÚXæZÚÖÛˆOàNyÀà/! Òª$‚ з(c|mCÛnòd^m¿ÒbûÅBEâíh{½»½EpÅÇíÍîa[lÁŽ» ?V¬ÿÍmØæ>FvK˜g|»ýa[%yVë¹±Êxú5ÕHÇ ¢£Ø<ÝÜo¶>è=F¯ÐÄV"ÊêºUHÆþ?žcñ¿|Ù½œMv¡¥û…ßG’Op•ëµ3ü ‘qq5âÿü´Þ%‹…àe|Sf)O%>³õÅIKÀ“íï:ÖbD0üƒ£} Î™R^tºë¶%zÒ›Ëg3A"ÊßA¸R…èh™E„&erуŸ×E7SãOØ™ÌÍ$ÈÆ^=Šž^ÍÁÆêéý¥V ,ÿéíï¼zÔk•–5j$¬‡!—puû³>›5 Å Ihöæ] xÀÕ0®Ì­ Ÿ­5ÄÿÖä¯óîFÃç½ÿi¬5^§ã?Õ÷?Ïñð¢óî[Ù÷?‹‹Ÿy/~²yðeÔ^\ö,.{œçé.{ ÇµËRÙ>ÉEÏaëǺèAÍ÷O}Ñ£¾èY\·<ïuËâNâÉï$ð4LÙÝéÔ^%f”=„ÅÅ÷¸¢èà ¯¾ð3 Õõ`jbqQô>B’ÌÜ7ªÞ“ßAìYÊ97»öEIhÛíÜ‹f ôç¿ý2ANêÜתÞâÁ¹@84ñ}ó<ýÿíýóæÿzùªÑHéÿ_¿\èÿŸãá5ãéÿq Ÿíª,*ÄþÝø o6wÖÛ뛎Ç—}\–É6óÜÌÊñ°Qb¸ó)üNÅÅè6ƸyR©p=1¹Õ´ ÕÒø³û*ijŠüy£€QƒS|½JÝÖ(wn£‹ø2–7éø“:L?õœì¬7œèÜïÄÒÉ’ ùxBáÖ Zox5ÅYôƒßBá}UxŸÔª9…U' o‰sûõ·GdKð@­ œ¾ÓêʧMHÃmÙp×=¸ÊjÐ5¹ ¬vš—<ã4U1ÊTSkJnnü¹wýÓ?¡ÖûâsŸ’_(Xû6,C= l&¬gŠÓ¾¡ð:W€ç@ººØ@ RÅÃŒ”ê6‘K…Óý‚ôè6ž`t+ )=º'WæÎg‹=§ÚrÿðCsÓÑŠýÎúöÀMkùuº•ïœRB„fص] œ{8(ÎnHè( )FÀ.Ep Á³AAv­+»¶ÊP¸Zðó>ÈÒéïgôøevå {Z¸Ÿk¡~¾ÌŒ>d7÷:»'¯ î ÷äU¨'¯îò½‰zìŸöì‘–ÿû Ž=«üßxÿþßÏó0ݺòÿVócI°¸¿Iiߎªâø'”úC¢¸7ªâ"8 E€<„Ï}Y k%¦ÃŽÏ7¹&¿l:ÜŠyzbYÄ•s¯À-ýú/Ô$©'Äî+9W#j¥¨þ”âµµG€±‰Ø,ÝÐ}2¦\éÑý:å²ÅºÐõ­±7œN®« ˆyf,ŽÆ£«qïæ$ªø8¬4ªâv¥þë«Ù'‰YR«#å”Ù,Pf«@õ˜$* pVÅyU\p¤ñ¾’Ý8ËQô ³Yà +QäÙ¤)êÊ-õá_3úð\B]È*®*Þ?Í¥íCÅ-Ò=o±;}Þ ˆ/¨3Ü/Ħùé=ü´ Kf«b ¨Ë•mR{¾7¯ŽéÕFmÝ{åJ'Ûõ…ØrÚ‚†6Ó m,ûÐtCµt'Š&±Æôù#½ÿGOþeÖþÿz-ÿ¥¾ºÈÿú,Ó»ÿo7¬í¿Ý­ã?¿Øþ¯†U\Øn•‘œ5^Q| eÒzÒÄ50ÇKC$÷7 ŒšL0ðü¼Âv÷Ì/¸ùcü?l‰6Ô¦yÐ=ÜÆÝf(-&æ2ÃÖŒº^ðÞ%G¬–Ü §_¯€.°È®ÜÊJõj½ìgöˆqR¹Ùö=À ÎÙSjXM$ymœ6ØFÎãôà¢;|IÔ ;ÑE³{Iêë]\L)0"j’Ået'¦ƒÛDœ÷ÆcÔF¡è ïÝêþMï%Ìx¨Ä„JL”À[f¾bzÛáE4Hô¡ÊÖÙGSA5{0ë•ÍÚFeã7q_‘Áñ8º`y› &Çðu2 ö3ÄD¿#Ò0šß'cFȈÓHåâNÙ¯šìÀrU«¤z  [¨o¿è%‘²|?TÙîa(* ë9aqh»‰Ue†>œ—WøÏè«ÆržtÝß €5JL "X´@íáÛUoôíz¬L­5ÞǨÉõõp{qÝÊ®>¹œX0ÎŒä7nº›L(3Ì7…f.e”ÆÎÄ“gg}ÿ}|Op^Í—Ä'´EaÊõ̓ý‹1M·ÞÃqõ=î UÑ9€3Z(çøƒì&;Çí—Ë̤<*n¨· j1´s@jðe-€o½œbLý°Î¿0ÿ^#¾‹êó ¨·¡Šm¨RÝ Ç~[‡cÀ‡œcâë;¿ ¡†ê…+ÌË⛩⠀£¤^l½ç¤šn“}âÖû ¢˜mI°Ó°DqäåJÅ8þj½,BÛ϶á8/d ˜­xh/S4EG¥ßAµwÆ *—U9k¸ì-™tëWAËÕªi÷P¹ûDD[ÄòonGã °yëN°;WÑD\NÑ_ïjO3¤fy­ £o1@éz"¯¹Î÷ço+îð|ÄÉAã(WhÞkxbÓ?mø³ÈøP ËiddS£az$§ñÓîú­×Üß‹éà·þÃ|çÿó?«þÿå›Õ7ûŸÕÅùÿ9^4Þùã¬$š»‡èSÑ%¿FèÃA³u„™=àowáîá~Nçöö>GÍTa«Š*ÄmLôq}¿J²Æ í(-,öé°½WMù§õþð'TH„®É Í8…[‰gD ¢]¢ºeûG¥ÆŽƒiÆü<†K¡Î!¶¥2LBIö¿ÄÛ¹îÍ^M iKþÝVü!›t7æÐÖlœQæÚ^q·qåcc}†³ÿ·TãN#çø¤v†‰p$»ú5zx‡)Ã(½K\[rÜzV¹Ðˆ3‰þ=šáGÚiS$aUV›Uc¶«œtHrŸŽ¼âî×X°ç€æò³i@ø¼tÄ ZqKº’²Ô.,)Ž&ó_ÓxbQZÖý¡«@?Õ‚Ïèç„.”$ÑØ{Œ ç@zã¬à‰iv«Ln€Õ@³¼Ù™½ãvH¤î¬ûÁ]ï>±q,ƽ~ü­‚wŒ¨[‰n“x` ãHï0?¦]á©¿ßÆ_G“¿+3¸lj7ÎèàäL“\rD$‰ŠÓ_d€â?ˆí•Jã?±ÇÄ$¿ß Ù&ž|tõ³:¼ébx µI€‘ï@+K´íSÈbp.°o€IQ!ÁÌáÕ“öèщoÜdd€­§hxty9WÛÂ%ðÛQóEeݳ@bÁô†-:ùõÆçñd GbÕëÆôšÃã鎄»2õ†½Ý]¯†°™*ާEÓÑéIp§tz Û+tdX.Ž>'£NõWBE×øà‡¾™‚)Q~]‘Æ"Ö±“¡½hQp>e1dÝŽ†2œ{^‘»yj•iRU§es\ׂŸ}6ÁÆ”vN|Ž~ Vé O”B&»SùŠÝ!½ÙÚ5O?Rl6RÔ¥Xµ¦![”‘ÝAz=Ò&ûAßÑ-I µɵÚ9t®àØ ÆñÕõ$ÐJPæÓƒ{”D¡}Ô§M7ôxc¡¢˜ó{¿+ ÷\LÙÊ'h•5/Îë¤j-ÀôkX?:ü`ÎÒjrc%˜‘ÿ¤„ÿ›…7ÄËxŒ[kíãrërzJ(><áà†Ùáþìq¹çû°= ùÇšƬ`½‚H¡¾Ò’ceµÔ¢‹[·]‹°¸ô‚q‡ii÷H§Wÿ(k¦5Ä|«$_”³&ڙǪd)‚¢‰9jyçñ5¹¼—Š~lï­WHv¢^.£V·%¿˜Ï þ\’_ʾրU7Qo(±uXŽùÌà˜Õ¸­Ëö,u35©0eäBåI2ÅȆ~VÞ|V9"c/õ’O{“k OÞŠ÷롚Ū7=º !­4앾”« g•†çøÉt«¬õè_ÔL<ìGßÒª”IŠ› «§è÷j¦·‰ Ü‘Ìߨ{üéœ>#Ÿ8°¶^ù‰ƒoñK#Lºkþ°°§ïR¬éò—jiÒ\ÿ“·Ï˜CŽâ,Ú¼ öž;A|èЃC–š¤uæü|’0xõ@°$¯ÈÑÚà} ‰ÀœF^}¹›Àá:ÁËÝ$ŠXžâ¯L){¸ÿPÃõà¼=\¹„< ÞàéÔ4¾¡5E,Ða+”JntãF?N&1^(~•ÇœRR†—¨}‘‹+æå¦H¼ñ$Òœ/øqjƒüdm{¤Á•€‹…ã Õh"/{'VeØ Å`¶sõôµ6ü–]ßñTÆÚ:]±÷i^¯>«  Íƒ õ–¸‹l¥ÖœÆÑøÐ‰S ô ‡}u—SÉŒ$"Ž–ÌF AÈÄ54MÌ&~‰ééâ„o‰§I4®]Žá ßÜó~e5„`H_~7·| ®îK½2i¤Q9eí"bȇ}$úª¢½eÑ¿ªbF[ôøVòV!Q0ÒR ðˆoÖS¾zv›fþâpäHCl×=åýŽÏxtGÌÔÒ¥Òø‰ 8VÑâZé•}¯ŽØQòˆXAAþ/YUÃ,¥c%¬t¼^!{tÃZú‘üUç=Ùt÷Б´JHU€Þ©Jµ:ÒÚj-‘XL?W„ÅEh±CvK)‘Œ«@UÇKV÷ÞËRÁاbK™žÅ[ÐSº~ÉYh¾ÄÍ•©t5uMÎr‹™ yèWHB¼önoÇ£oAæQá¶„q¥¥8åIà“ } Ü(RJŽ1¤p“˼tn–‡=¹¥ÞRõ|éÿØ7Äy•.Ë$oÝ•e‹$íE—å2p³ø“kôȵڠ;Z<Šwh )(°plglX4Ìý¿ºñç#:¹ÑR¬(0‡CÚ!Õu¬\‰ ¢¸J"LLtìv¿ˆÞ÷èyÁ)Í+Ò#ç˜W A­›¦{³îkzj•¸CÓj ´–QÔ‰ËA°Ç0±ÒçA®(Bc­?Š8úþ ¦Ûq5úl¢w(tmÅŠÏMÁLÖPZç)UBW”:¯s1ñÊ!$Лôìô`ÿP‹—¬ ‰K=¢Ëªºa2¤ªÉ·J=ûR~Tö>.¡w_@˜[å3¶‚‚Ad·íþZýc1{£ºSÇî|A8š^J²Ÿv—ÇR+ÀÆHê„§Á2K°š£—µ±êè`YJÄÀFúd+ßÄÀ¬Jk÷gù¡p,ðî'øg–û†íbGÿ^Í1J“.ìÈòBZΫ>šÎÎ1§{pT¯ÒŸ‡ Ç %M ~T{ïñ¿Öö'ø“gr¹·e²‘Âm`¾>ȉD™…àÍv$A«d¶‘’øLàG4¸ÇÅŒþu±rØ^᯺+ké0£\·6386÷¡©u;¸ˆgsjÃŽLm]!Ø>03ô3isÓ3ÚjÉ>~«ÙþÑ:亦ÇÛÙ5!‚ŽÌ;¡c ñë†óNN7:¤sì™dY¥c i¿ªDöòV§ 7 ¹ÆE|X-»!k"Ɔîe'Š@>”º9=þ:Çjøñ| ìÐÚtWt¥wùH™/3QStðñ»ße]J„‚@‰P§ÛMû.Áâɘ.a¿¶÷~¹¾òa{…M48n4}FN¾à²ðlDW1ÙÍà¶"Þ@|4¹ßé`d÷T÷÷µÄí›ûé`<Úò¬tQÎÓ²“í‹4÷aÃt9šÉÊiI±<§t#šÈ—ñˆ"`=PÂ)@áåÌ/UÅ Ò=õBØh}•Ël}|¤Y®U"QBF ö·å vŽ a;¦½Ê`À¯S ØE¨j¶ÍÒOÑ©²ßß¼¡q}ÏW¡«+é™#©WÃ~`NßÌX*Ø‹¡´Çí±9$9òàP6Â#èLÚ$ÌÚ›LŽ+ŽFo1´ª³ìºTêçä¶ß“RÙñ4šFxrëõ-Ó=<Òqúº7øšº\ÁGxó1*äZT ,ÜÙH³¦”Ÿ–­¿RÂ"Ç\Uõ/žäó?©m†SŒÙöåAtÚýz§^¨°öpÍZýaCs;Zdh.2f­î -<°0³:ðo&³àM ŠàŠ=àyhÀ64H5ŽQ0iÊ8»þ5ˆyþ…„œ9|‰ꘚ_k¶3+µRµZEªYµf!<ÝNÝç̹ͤé5· S|fÙ¤ ôù‘&8“¿äð‹7û‚Ó®3hÓj¬ŽŒ­Pí£¾5®ð²öVl8Ö$Šn…jÀG&‹"ïà¿de²Â[Á;iIØY~qw–4$ŸÏÀÂbÇBÉä³7û¢«^g™I™ëwõÃÜ]-@Ës²éê/³H--ÑHEúÓϳƒ²y'£Žc¶dž!ˆÈÌ<%ö»‚û]š(åÙŽÙ=¦b¼çéÇ)þ‘ON?ºŒ@˜cãõøßÚ£Ê~”G‡•Óÿ?Gûÿ#60)À»%±ô·MR\é§µý¹ÛÙ\ß_oÿmóà•y£~M—ׯ>nýÞ[+Ã6·¶7ÿ'ô;”ß+†­ß7-ø˜¬ªšnnX ŽÚÛï·Ûª_î˜+KA^÷ë,5T#G ÕÈ 61Y CYü7sÿšƒÈ„Íi~ qš:ŠmăO7Oq@‘xšëh:”°VðG9ŽZñç9ˆÍçŸBR#ú±Ï«XG ºEóœfœ qæ?I<ä‘:d MOÙ…´• Ô’²ræ,ƒÉ9"„%w‘%b†ew1¯øžyŠ6?E~¶/l¦òPѼÀ4äOl¾DN}{¨,þx O¥úeZ~‚R¹uŠ JâŤê´h®UÕÉðÂÙé"™DmóŠàõìóšÜ.9ðžÁMÍáÊ~ 1pÏô«áÎéüV—:=€¹&n)¡‚ÜT¨¡2] §ön›ÆˆLŠì‹›Úã˜lç®wËF=ÊaIÞÃç¬4!õÐŒ,r¨FXNÚmâåÏH&åjì;÷réB™,[É=þ_ Xc63wW0ñê÷ŠWçoøÅÃÐ=Ñš ß[µ­™-¸³9‚ ˆË¥.ÛU€Yœ£•ÙÌ€i_¦­œ’jn5/Ì`n†WªÂ’þòÊ+}07tÂB‰á ™9Ñß«Ê.ç£sÄA,½°ì%·EÉ€3Ü\—©u/Å’‘"ØHãYíO>’7ÎUr˜wÄ4’ )(ì¡ÔËõ—¨kprÊšH¬’Sý-#Ó«’T}îí/×k8rêVšì™Í?;ÆâÆÙ"Èâ_î Äì¯>küÇÆë×õU?þcãå"ÿÓ³<¼ž½ø[«°ã`²íãª8î4Ï(!Çn<Æ´¨ôs÷°½M_:3"÷ÍˆÚøÅj”(áh„>bѰ€|X´Å¿© +e¾éÇN<.q?ø ÍIIvêéC*n­š^Ì-Î,¥Ý²ÊŽÔË Á˜ÜP…LÁ9rþk 3Õ®G:FJ^*š¥Üð/ì’¤îœLC2[¶‹ÖSE͘tœÂ~4±##ó‡õ Ÿ‹´GNÆ÷˜WÍ ”8Ã(=¤¸Qgø!y¢?½ˆ„.QÖA#s ½™)C+4þžŽ›e™'-.‘‡y7’ö³¢UŸ,§ƒÜÊnü$[T®Jrx§ƒ'É Msv2pý\½[v óø·;Á* p8»xh"}dÙXñ°Ó0ž´}ÛÅC‘îÕêeO£ËËÚ1@‚ÝÛ¦hiç˜ûQ2îµOÞñC1IL1Ç=Hûµ E S¼´Ò„hw·i‘ÉþÇõ0+,‡]¾îw ¦èpÓstû’Èró@çéf­½Jò€d/ çØ¥ÿƇ½ŽÏ§ìÅDZàáÙ./E{:™DãPb™Ï¸jEvÏÙ €:pCÙÎúàéyØÚ®ÎJ¦=ÑÏSe"³}>çKß8Åož´÷?îWñïQ{ƒþ¶«˜~¾ù¡ùqsŸÿ¶rŽæX਋j†­Ï¨m8ÚnàŸöýŠ?uè§öv ÝªØ«Šý˜¼c½KzœƒÎV³ˆíÓ·ÎÁð²Îü› ^c•“ €AÐë³ ƒìdÏHwûà(€Æío0—($u¦ç* †Áæög˜­Öºe¡%¶6N«bëÃöÁ…¬Ø¤¯¨Œ¨Ë¿oào§»}ÜÎÃçíöÆþz^‡Â¯) 4Øú˜Ý]ù>Ý΃šLF7jç1JŽºVšŒ#Ëh…u˵ƒ}cvAËLî§i‹ÍL\¬°nxŒcÄ”²6É‘›ËÌyL«ÏÇâÁàBŠ&,]ƒhÒ\2 ‹eÑm¤þ’-„—ìS„¬JŠzçzØ®2Ã=Nîhk«9X|Ò!("­Õ—m‚]&º!£Fœ†”sÆ{б ë¡9Ô8À3  …¢þÃ7ûúd(ÿâ):»ß4‹õà†ð’(3>Æ«[l»•<8¤OuQ°8KMײ#t9Ó¸,{„ºÏTßñg!úíí¹+_F£ÐÂCÕY­Ánâf´ÌמSAï©Ö_§˜é›€ÖaZüêÝ µ3Ìä>Ó"ßÍ÷ÿA#ÇqLÖ&aÍ*¯ÂÜk"™Ã¹üBÆ’Ó2ö?‰åYÜX…«_‚2:WDÑîX•é|S°2Ÿe¬Ê|Ê™QÛ”maKê;eŠ5<‹bÁƒ„.ÅRgzbÄ²Ü ~Í8æhõŒüàp]½Ê¿å®üâioï0 _RÉ_ÚQ÷z/¨ñ Å“$߉ˆ£\â9¿¯ÎN—±Å! ðÐÛ•v8(uJo~©gqyЮ…-¢tg2»œr—Èóx-P’ËÕZn»8óõªR)†o¾Ò+=!6¸–:‰ÔÉÚÕlÛÆ5‡¿Jÿ©ï>è–ž,×mUšLørÀY~…, ŸÜÄ‚KëKœŒ\·Æmµ”A°ƒ*''ʼnïx1çDÚÀ8WïÄZ–ïsߊ4¬JÉ›—SÏr¿Èö¦Ø2—-¦7EÈþ¿þ¬öÿõ—k¯ê ûÿ?éa ôíÿë%iñ¯Ìýå]t{çå¡îÞIÚ¶ý35?­Ñ¿­eô¯øXàÞôX/Ä´´îŸÇ#ÀñxuÝX÷kS»¨Ÿ>EÙG(yˆád»ö †àïñe W÷=2‚°Òh¤ÏqŽf—%–qô¯i¬DY¥#„Ø»ÒéR„îLã†/J,+×RDÈîJÂ4`”*æ±€ÿ¤uªçb¢Œ#Æ:bÉI‰ Ïäd¬ÈD!|áÿŒ0ÿ<k¥lô#å$´{cJÜF R­¢ØPæ¦F:) <¶®øtVo•D­UZ<ƒÐ&ædL£P'”H”¼ÅÔvÕPoàÿ˜3[Vé:¸#ã` ÇhQƒý ›CªÃ/E©§ò,!\úqÍNÇåäõáœ4²çQ¦]¸€ù€ ±l!%¦Sè¡cU;Äv=ܤ ?Ä X‘q–r+¨d?©%v9»$&û­ âØ8²2kºPÆ£ }Fo0wÔyZ?§޳†¹Kl‹Pƒe2™ŽÏg9^.Y ¢Û¥ku©ÚfŽÁ%߇ ƒ¡FñÝ!|ße_Œ—÷ÅsQæ ðp30áý:‰ÐdŽÒ%£±LP5¹³ýb’é¹$Ú'·¤;¹ˆ˜s‘:<£é&Ée‘‰÷XËhîŽoÜv޲NA[¶ý:¦ëC1QJ–ê0N–Êoý R½E(`ˆl/1o¡cÆ qª]“0û• „°àQ™aY”˜A$#)aªp8˜!.îKÒt©–¦hL5‰ôƒ‰:e«˜²ó…ÚÓŠ;eØdeÜ ÊÝ ¼ÚªÚg.oÀÔ«žm¼Ÿï'±WÇô€}-ì=¦`Å üwc8nNÇ>D}ý^Iæ°0?Üïž±MùÖþÁÖ:ÏùßMþƒ¯ðOÞCó8##ñr(vtT×}z»m’åß5ú{ÐþPͶǞ×Nú1ɇj=Ãô8e=‡éñK¿.E§¤J/ðžïÁ%»"‹ì’~±¯_Ì4k~”erý¹-“ÍѤˆqŽ|ì¥ÌØ”Ï)ìd°M¨M“vYØ­mC³dm]Êœ Gn‰1žXîÀYg»ÜZ³häÌ2à‰ší3Ü Ô¯èH¾²~=fúÉ6ê´áá’–Ö‰VUfò÷M&®}¼Aâ Y!ñ=z÷âØÿ]“'}™×9!Ëu<ºÃïǿ׽C7“õë†e=g©à•ÚìØ|¬ûæBgæºä=â¥O€mÕ,ÀXYV ò²Z UiqÂ}ßâ‹®p,Us3Ü(O4ªÎ M¨5Ž—•¯yÞ­ MëóqVÀYëfľH¥év¿åC”`nD+á¥o@ð½HcÕ³¹ìH…¶Åüä÷ƒ|/¸§®eS¬ï;\2ÚÔý  Òú¸i}–Erúž1»»ên‘ç9r¬1«O²ÚÙÜ÷‘ ¶=Òú6Îï%û˜Œ®"R4°ÆM Vœ]õ¥: *±6NÔOêô¥ \éÐìtõE¶~×»· Aå¥*.zC¾”y«î 0†.qŒÿ’êb€Ju¿S×A@÷÷Ryf®Üò¯ƒÌ}ÛÝj­,[uY×$nƒfëï÷xfsÔS]'9Ëp4¬i3 ú:Ïé¶Æ€îýŠXEuÝü£"L|ÿ;…V½@ O®œ„VÅäSßll…â97´ò,/M' Ô9ÞdÝœËTª|Ro{à'ã^<À—Zµ½rèæÊRš\ãJ Ø)–Õâ¦EOQ¶{‰¯¹þN±ÃòÃDy¸²ou 2Ša0ç@+_¾f»€í •½‰€™¯»,ÁÎÛr­áZ_—Qކ© ߀¤Ñ~<ÚýÆ\¼ÇCŠ&Gd °TX“ÿ’§;×Õ-LuÅb_¥dÞí 81‘ùg´ „\í|-n¹î .yÔÀ~í^Q|V°P~cXý½~_Ú‰\G±uƒ+ÔMï–Š™‡Zty º¹É¤ÿÌ{°Pd?u2ºˆ‰xôõ0_çXp.¦‰^eÎè½Ä“ ?ᢸ"†£;‡µ»w”Ë_p:zàRè3¶CÊ^¨oîð1Z<Ú]-Vñnzæ®;­LªÛJjK°÷8V¤MŒ ^ šÚ*mõ›Ç\”ùE@˜Q°#×p¢B-œ1ݹÁ•õ‡ŽÖ^@­h± Õ&¥‡nKëЗÛ{{Ξd]žGJg›šV$€K¥ìL ò†OÎùCûj,†¾wü”a¥€Xë &ÒŸÒºZ@ÜáÜÂòbêu¨ó¸1Oë•Jc¸=l!|YÇ®gÀ,$㱇ï^”ÈÍ´LAþHmhrÈÙ‹ÛnÏbï¢è]i.oWwÎÈÒS.i™¸½¹/¿Y¥—tÚ¬6”n¸O½ÃZPŽpl¹vçâÛä­°æŽ~2lem4(³q­C©  #ìOÈJzç#Ú_ª6çPP¬Ê žå<jÕ{Ù¸OV[ ÙBàÑ“Î)Å”1+fåm)ç•ÈÙjmÙbEv¨T R'ˆP{ŒSݪ¥dQ%×Ý[®¿mùµC§eÓÀj`ƒ‚y%—­é˜âÐu&Ýu÷` °×©ºïR¯’2wg“û[<ˆJT" ðEm‰­.ÞpRñ ´ð›U¼Åiþí×0ØK4ã%Á`|÷,©‰)ÇßÄ9iÚ« Æ)⪃8j¿«ãœ½T¾ k‹…ÁÄ & Æ< °€n„ÀªØn~ØéÊJÁ@°V_YÅð€:nàª8¿dk¾THAªB Â×_ðkNˆAÒÎPv»% a8uèS&¸Bö$]¶%![Šæq]šŽìÂÿé§ÝNUìaZÓúQ^œ@¼jA¥£ÝìÉØD8 ÿ_?÷ó N ÆåÛZÇàx™í⦿¹CŠÌ£SK.¿àTýò9ý›ß FE0$C˜­ö!^BbžÙ'´Š¡èÊ4°}Üîþ@2©X~sȼöë*m ÃF2ppNÈ´Òžª©x2Žiü9aûô•­¾zÀ¥*Hy¸,ê080#*ˆŸGD´X¢Õ,Yg‰Á•Ž”j-8lq8©ƒÔÍZ!üVúwYFþîĸýü[mÙ°y¡¸2TÊRe§s7¢z«¯bŽUé·Kþ5ž”V¬7äªÈ_»QÆœÏ9s BP “Êþb´¬ ýnL%¬R½¢^2ˆŽ:eØçÔ bRÃ3—âÄS…Cö¥¸ù²,'·ð2ŽjŽ¥°G9Â:Úìm4ž2ížýsÕö¾µºBÈMßćä aþ/M$LÛk¡¶ùVËÅßnéÖƒ©Ð”§ ü(ïo375“Ñ B±ÅZ^˜ÀõdûD"g6•ï¦^»ÞÄGhÝÂ{°€íÛ$Œ†Kú=lmðžvþ ”­˜L˜èÎÌéULXeMù‹E[MÛD_é·Æ¸ˆ( 8œu0`tU'œFQŸ%pnïSæk}»ˆn'œ!b4¾ê q¥땊]%9›¨>Zç€XZÍ­Ÿ©TüQ`¾XD€ÏdöÜ 7lçKzÉÁ’Ò#’ úÇ7U0€†6Õñ#ñ(2ßÕdîÇcb½ã†²±{™ë~žv—GI*í%Ÿî²µP|O|é§þkF臦º=Ìô8›¨ì êÒOòtډƶ‘¤9J¡ºlº¼¼M‡}¨¶žð$•Rb]s%\’mÅ™p0wñf¥dœ(oSÎ\2š¸Öš\R˜gКnSåd}J%24*Mì¸9|bÖ–èNœc¶ò°n]á sáîÆ0ô€#|º[ŸäŒ×.÷ú[zaìñ޾l.}Z­ÝðšðWek7°&ݼ·Ê6²?HyF æß™~¼!ê#üSó¢B©·xQ½t×›&ìÉü¬»îK̆K©Þ3#±¬æ…ú;ÚMÃô¦[Ä{ãÎc:ÂÛµf!ˆmîõ/â¨ßßy'd®ÙNEö©—)neu5ÔËt—ìn"Ñf„©RG˜vâL?d8´âˆ öøòF–1&4&™ôtH¡Áé>$²%ò…ú8My‡`ôíœxLB¡‹×^ÀØ]̺+º½MÇê‚áYWrôr:Œ _z‰Ro€;Á…£Pv²g‰º7=¼œRéÍíä¾ìyKŠQ7c•*ó št•=<%‚mvµ¿'„1ÔMŽñn}áÉ«7€ Ý M‹DʬéùŒ "/6 ¶ÁÙ‚^=©ƒëNølú‰7zTq/Ìñ‚^¯1!¨’ªTÃ-õÒ”Z³J­éR{R ¥õÓÆñ¯¨pWn ›ÒØÇ–äÓc’+´MT7qtÕÅ7€(!&ju}t¥ûЪyÓÐo†Ñ·IÕ.†¦ÌÚ’´B¼”v*úÍË%÷tP_ MþnÇðhoîmªpö> ‘DˆÖÝŽû~3UÀ¼7/ÞYŸ%Q…4#A ÕŒ„½¤ÀbÞ¢n„ œƒ±BD×àÞ 3‘]p8Rö.Z/u5R·ÚÆ!Œœú@{j9ªp¦™šžMÕП…[°4¶ŸÝqÝùÖë¥dV̲^ oXFÞöMR†¿¼l ñ” Îù_ L»GiQO)-Îìˆx.Y¥7yþ+Õ‡õP Â+oï8§Zƒª±Y£W3­±yÜàõï–J…Æú« ¤¼ö²67R¾çèüQ¼¥‘8hX£zãêåܣʘéôˆRÚ³yZÅ2ïf[(3”xì15Å€%`¤ &“;HKd=.§Ky‰:Š>ëJÖ¢z¨½eå¡êÝL(§Ö=ºf‘ÅêyÏDó4òÙí=5Åý—–%hÖ Rˬƒ¾‹2Nû/A¹Çˆ-ZD‘q6ñÈ©þë<¾w…ïÝÏñ„üÿÖžÕÿ¯Q_]{“öÿ{¹ðÿ{އ©ïÿ·–áÿGŽêªB{öù*%ó GA÷@4øX8úÍçèGÌØuóËnï)<õ:²Ú§¹=õÖ(D_’ OÛ^ÃY D/Ñž_Z•#}iŽ´ö‰dDjçÑäMÑ9ÅpNàˆÿ…/µ°jïöv<º£OEöK´ùôK% ¥ÃKÀe‡­æ”ñ² ¨'-!G—ÁXgéL¿“É- û+(oe3Ÿk¯v~_у  yðMØxº/¬°™›ðbÔ$`ÁÜ‹›xÐG¯ŒéÍ-«VzçxξŒØñ€ÌT O 3šÄ+ˆC:I£I*ZÞô.®É€‰n|{âjÚ÷E?¾¢8Õî÷_$Óóɸw'l :”Ç/,^ì9 °ŒÄ LÁƒø ßÓoâŠø\;@`üxj>nÖ~]¥Æð[­A먉q¦¦2U¾ˆâ¯½s Û‹Ø£ëè[¯]Ä7½VSUߨÇJ$¾ Ùc8—dŽ»“ç‰I2µSИÆ|•&]òÚ^N¼cp/ zÛ´=ç퀟Z[ÿbþ±óãž(û Ô­P «+¶þ¹§<³¤k䬎ÌïèVçȇ;um–><Þaà ¥‰FÒÿÀc z¤º¾‡su$ºQeéÜ;z5wxGVñÀRµq¹ƒªÃ¡àö2€ÞSƒ´Ë§‡ë8hHï¾™³üPÿ>é°V$Ö 5ÄD£¹²4N4ëkø…4Å<"ÛýÇ€Á&qAi'1בéΣ{e¿›ÚÅÆÊhKVŒ9ìsŒöO†ç!bœÊ”«:5“HGu t5ˆBÒ^Ô¤,×è–BFå’^\îsÝûJ)¾FwhʾÚç°7$Ù‘iÔ ²róqÍÒ%ƒ'‰ ¹Ç{”ÜR\¿§yÜò€°žï®3Ž×Mœ¨ÝÙžÛYÝãÇÒe”’W£ùVú1ùËd&ëy¯¡·!QñYÏo@jšö ×ëthÂ%¿dU ÜÂïâÄö2‘ýÇí+º¤¿ÚC ã%L@‚aE¾ò’A­F!¤½t†ÞlS“`zžK+Œ .nS"ü„3¹¢bÏ¡{†}_EÁ†Î:‘oYÔÑ^©–/ –~‡ÏÍZŒMT&o!_Åþ0½6—Qq'l7c @®£7_ÜT¶S.WölÀŸPDµ‡xXRáÞ†¢¼­ÀÖR2¿G_‘0ðÒG§:ÎtŠÇ•(wZø$±ë±cMé|cg…ëëípϸ»¿gîEØ…S“wÜ×>M²HÐ…ÉöRr˜é/„¾BMã$Ôª7ØÖ»ÕXËî1føú dûùdùñ`ÙVû ÇÇ-–Óê¼Þ;èÛì8ñÀ†H;ÛݧŽjÛi~ø|wöæ nK¾>{ß××çQ>9kßÅ'goVÀZb+÷J³%Õr1ùÅ£úxö˜ô«šüôGE$ †ãë°™4ig®ã«kŽ‹„6¸q{÷¢t»*9š·z¡M!µ˜§Rjô´ ¸¯÷A­HHõ#\í(±˜o¤|£¯AÛ9ʃßVÛvì^Ò`Á¶ÂŸF ºý6*úkM²îüѱyˆB—±úÑCàT3ÊÆ„“¿ßŒt¤ <®hÓl&‡ÇáßÔQ@jQïÀɤôPc§u›êânYLUŠ"˜• v~&–ª$ Õ•¬à±<¤5ó°_ê °ÿ*Ë‘ºt{ÞE o¸tx³FÖ£:ÔŒ¥³Œ8|½X õ*6‘ €Ö&µsC‰‡_Älâ –ô‹º{@¡( Û°YZºL ¢@±ÒUÒA[ŸH ‚ß4+'=0åà•#+3um0’0’È(ûŒn'ñMüo©¼½‘Lsb5¼Ú!O&JëÞ­jÇ=Ãb<*Ú‘Jö¯U§Ù›ï§6K0Fh{ããýˆ®nvíàŒv¾H¾Á)ñûJFò6«éH:}²P»šTõ!BOÑ‘N{ˆ/ñ쀵õ™›6B йÖíš²Z}Õ/Lù sH6ŽÓøð_7ÔëFúuÓ¸ùnD”(Í”‘©ê' ×m¹U×2ÜŒ|Dx{—µïS88÷QE®ål©pDï°O¸JÍj³œ„¯Ѹå“mùaòÝ{K‚\»äRÙM™`R‹…?TJˆœ&#ç…pÖŽâ½ôNµgyfÏråÅcZ}•jõuÈtôMˆEè¦QÔ+I÷Õšü–gÇòx èÙŒu,¬Œl+ºghˆœª_B]BõJ! ¤†å~ɘ< #D‘œˆ§ã m¡z¸IkýøKËLÖ;ê÷ˆN"†9hv­ð˜§ÿöl‚ó\¯Ú”¦´¦…s’.aÛÛ®‰ÿŸ½ïj#W†ñÿϧÐ{Ö»ž_Ýd&³³Ë’ŒClC˜œµßóh 'Æfû’Ë^ûÃÿê"©uëvÉÌÆ3Ü-•¤R©T*ÕÅ]h–•Q¼I·ÏïM“ÄÈŒªß§B™•7_u£*ö(³#¡=Þ,Ÿé”­v¡Uú‡»}Ù:yö^øŽιYæÈÚ Î3„² øÕ¸á<¥ÇM3˜¥ÀŒXáa,F î½³(›BN¯„œH&P‰5røa_>”}ÎAÏJ¨ˆB¨(ÄîJQÓ7-·þ“>!û¯­µÿzE[¾ý׳ÇüÏòá¥îÚm‘•o›l¿0ÎûngÐ4¬¿þÆ\*¡sA.g銖\E¶YˆÅÛDCçì¬ÆùÖLÓÜFE¾o¤Àyˆu|k£“1[yš)jºúZ|!Ûž,—/ǸL?':b_1«€Ã¹ããŠãN×Äßà×k|ò)|ýƒË©Z|/6Ö _xê‹<ÎS(X>·ÈijÇ1šÌÈŽŽyHÓ¹òJq†‹aÄ9‰5… Y̼þ"@Þ‡}Ä%™YY|ÄôÊÿ;`3œ9Sœ>ùK¦W,9î.ÎFéy2S$Ž<€ú%m¾=IæW“s+ßÙ¯}M¯³Ü¸ža™zÙËê 8š¥×7#Ž€ŸÉ4»>˜&M¥¢¨ËÜÐØùшé@Çð,SÕ _í«f¢X¶RêÎuÓ®FEyß±áß&f«N1m§Ëm“2§ó\;¥}“9Æ œ^“ …¸÷$qC?ÅÞýÄX÷µ Sî¬Ä2•;X<µ/`Ò1zª!˜6ªÐÒmˆÑðúô|ø¿mþ[üLÇ’E%é G¦—Ìô"J¾„¦´)Â3Îéñªp-|8VˆÓ-¾Õ@×P^ão?‡Só.ž´c2ûTv«:¡Û¯¡¨ÙËóòž£â|ëlz®°—°` ³"Q0Y Í¿š€zÇ/Í2xil¼ÜõZô'c>“bP›5´ÇòJ-»Á̹ •wæ“ËôŒ®š§)]c½ë½iÚÐoZŸá¼‘þÿ(Â'ÙÁeÏ„öéìJjd óõ2î4ú]‹8,(¥›%Û¸¹^ôë.Ë—m¾ë@(˜]È’¨DOóÊ^ G3*l”­E¶7®þ‡ÁöÛMQ™}IçgW Hc³A&Z<<Ùx¢uÌ€ö/lÊ…&ˆnÒÎÞövwÙ²ëÿ‘-4OÚOíz{ÈâÚ0}Ia †Ò&ï^$1jU÷ç¾îê{ɸ± ¸è¤÷{Wÿ`îy‘-_‡ã…Òl¼BÅm™¾†”¦µ.^¿;êÉ¡ðLë‚ åG"µކµ ÄYˆ” §\ ÛÆÐ0¥E@v‰É¯lNÐy÷¦½m]­Ë…Uç…"mæÏ™´0¾WC-ñ@#à_ùø‡CL‹‚‘À–‚G™A§E¿Žð×á[<ðöñgQF+Š`ºÛëíàx°‹£ƒöÎ!Ì€æ>``ÖvØdÚÝcuoPñ'êÑsQé† Q×G©Dô@ÜÆÌâ­RåØW¼½à ¤)Åó{0¸§Ð§®’®ûÔ© oþ€“²i KÁv ÇÉMYö9F®ÔUúÎ49C&ž¶¬ !w_±s‹‘GUfȯ*¨_jnc‡h‘~° Öâf"ÓQ˜wr$yÃ-ë¤1ÕGú"Eù˜Ê7eÀ_²7!« §‹þ}\v3ù¬’¯Q(kœ¡Tõò¶X$s1ÓY. ÉÈ+O¨ˆ¡t¸7ÌÎ`oã0nÖ…d[%ó°o\˜Í&pÄ rgz3@w]ûÒ‹¸Å0Ãné8–)C—pD±`¿z(¬>E¶ï\áþûßÿýïÿ‘dñ~‚‡f’ÆéfvE4èkBÜYU>óÊÚÿ_¬ag´A—ÝÁàŒ’lø&¦"¯˜;Ùí6u«8Y> ðÀ5…ÔʺñFüÙqž¸ þ¬¡Re š/ï².a•8·ÙmF%F Aeo0oó6CÆ›¥êG}Ã$aÓ·šÍé1p—íšE»Æõޤ«F*ŠWè 3Óë”þà[I‚‡è¥g5 IëåÎ viÞ|O!Ã(\6MÅQÔÜš¡ N0Xæ3]R:èÃÙí*–®†X³{íÖnI¼èÈ-DÙrc;Cð¾-Â,ßÂ6«ÍJFÕVuðÜôû‹Á€Zœ=lm;27Ëfrds2¢?¥€žŸ¥~s íÀAéâiŒiúÒe¥¼ÁŽþí•.åŸ#Ñ¢­ùæ¨åƒ‡Œ2dpXNefÿVSš÷[Oú§×šKŠiòs&Ö‹¨æÕ™qçFU86+î2’á¦ËŠõàvñDŠ{rt•Zæ<™¦ŸÙàÅs«3¡-#ôŒåõÐî’Eïi·­Ñd 8´8­Y;2?p»¹Ã¥ðµ_F÷Pþ¡·¢<Ã]âNÊokal¾ÍÁæ[ ›Æ–ãî\Ùpß¶³Ågb‡ß†—‚aWDŠ6¸ÎåÛÁ®é­8°™q„M v´ÓAlÖ¨Mkcý`íæ‘‰F£…l£QöVÎ fHpaÄòüÀq<1v·B¯ÏH2ÑšGãFë”9ÚŸù!hW‘4CFÃiyp%D1a½¤»uÊuëx È£Ž‘’góäÆì«’Zù·•%©Èï%áG'ªoÄT%ºË&•™…Q¥–•…ÒÐ&zÖ& QWåƒ=ÛÙŽa5¹­V™ÅÀ¹ ÌI3øôî‡ÖzÚ´˜7?E­áÑ ¿ãysÞj úæú›|2aÆN„†í¨amG9’G@ -Û ›B¨Ed…Ù1ë"™ã„>„JO:¬$—ĘèŠ/«k×R…ÄÕ•è¸.ÞN¾$°’ oS‰+œNe˜„5ËTvx¤ŸO..¨CÕ/¨ñ6ª~IøJíYã b7ù2¸àP¿†çë|]ùehÜ:¯š-Çó$‘°ÿÆîúÑ|¨fñÒ%@jŒóÆóCô,¹4®ä·aã[ÍDDIPèQ‡ Pä>…Â’¢,‚Û 6"χV©€tdÔìÔt„_÷;›q.;Œ/ …g¹G?)jTþXQäùÏ.Š<EÔç~D‘tnE¢ã_jge[ Iè3qwb[NÿuCoÖ¬!çk û¸±L« Db¹L$‚b‘IF¢„p$JÉG"Gc±\J¡M”‘•Ä-e"q ±H¬,‰Ò‘ËeqGñ#g~n-„äÍÚ]Dq;iDÜI wIDI±D,—LDáDÉ'âö"Š('¥ˆ²‚ŠÈÕà•WD‘ºÎ|”—¹E¾]&º¼ðÒØ“V ÀˆÕe‘#ƈ°$#r…¡\HÂòŒ(-ÒˆrR('؈Ùæ—ÂÄË%±º#ÊÉ9¢PÔEÒŽ¸?G”“yD®Ø#<{=¾%c—ÌîHI/l]5cLœ[¢¬d@EBH&~˜Bêø\‡ö \º rô¡²ÿë†Ô$fÐfÊÊØ–’Z@å’{ã§õéBjÔ-¾«®± Ã­l'¯[ÞÚ!±Ò­‘i¡íùú•¾¶‹ n ߆ەׅhÀÐãzµÀ¬ÇtYÜvœ—ì͹0d2·å~um(o ­KÃà!ÍlUýa”>ŒB7‡oì}ÐfDç•tíol( ëɰ±ý›¨à»Ú9YÊ­Ñõ€YñF› ñ7Có¹ÌtÎÄaf 7èí®[ïpû4®u Ôüqz¨U#çZçÍJ×:K„Ñ¥¨¾Ý)<—]ò˜V¾…q8|œyÄ»¼à|s‰¢iF“Éýº È›é†3Ó’3m•¸—K)ذœ—H}XK´Ø3]M%+Ï;Ñ‘%8g$•¶_5óˆ·óáû]šŒX®AkruÃ(\Ëß›ÿ“®çqëÝwƒuIÙ·™G-7|R‘³eìòÕÕ‰ŠˆÖÜ ž¡v·›Æ6µTSÐtà|hÞ'K#ßÎôñ BF¾iÖÆ!×B»[ü9ÏÊÆ@GMlÕÁ¥Ü]Ém•eîJV9úºðþ™³yS€jtOcw" 7ááó„<$[©MD ’$?µYØ ™¾çU ß´·zYp·åkƒ±0©YôXÜBHÎC-ëQ¼ ØÐÇʯBw¿ú1¯ãÒ›Ç` öj[¾Ü¸û ÆÀZˆìƒ`ëôò·ÇðÁjÖÌg})†ívìoK9D…¤5…¹¢¹ÑXª~ â'À<°rœUÎÜ ¬R™ßÌó ïåuí*·]·‡W˜ƒ ½ÑòçFAűúD±p¤ãi—Lyº»Ä´ËÜþÿ£ì¹Lý}o—7®ƒÑ/·4óŠ~ù™ÌÊ1_âÏ®¥ñÂã¹~ˆ–&ÞøShiâü±Uøê ‡×Ô'H®@‡ÌÛi‹¤å!èÄ%8¦£«Ÿ1Û(­:º P…X_|_˾xëG™ö•94–0ÿË9ì-WሼÙŒAa -ŽWêÎJ€\µO¡,íéƒJê~ò‘îͪz ÕÁÒÚ Ù¡°& Ç´Ô& ?%硤•S~·D¹]¯hÀ"<–I«$÷|Ÿ ó6º5QZ½&VѰ‰rJ6QZÏ&ʯƬt ZÈ0W¨žË_ü± /S‘ñ'Ÿ¶ì>9 »²=±õy%»”GªËºÛ †¢èâNçëAC¤¿¤§ù/rtbu£wÖ8Š%6³·Ó;†Ð>Š») EY¤à¸d¥æª´>XH åÔU;VL «òra‡g±$ÛYYkW+Pæc¶¬:–?+)e3d–VÍfUU}]®¦åO>[YekW»ÕŒ”UߪQ® ÄåÏ]U¹ºá2 ݬÉrj]þ¬r_ôô¹"¨ÒKµºbéaÉd»î2KÝe‚Ú^‘«ð>2î‰Uy‘¥ÄrÕo­è&c¾3ôÐ&ü`ß™8Î׋ŸÏ}&ŽˆûLP¯,ªe‰×Íbíòj¸-¡c¥ܹšfß.7ωh‰ª¡œÊÙƒè¿/©x¶uݳ(c¬f–fæŒ+[› ®7»;ë™®sEU°>»êã­‡tdZbû]¤l *Xæl|YÁ'¿‚<2[&Ç<2?ë'”ÿåÙƒæÙx½xæçyö˜ÿå!>’Í9ù_–„jýó¦}‘¯¾o¶—ØÈöËl/ñ=f{ÉÍò¢sž +Ë •‹§ß±›ìÅÓ²åæAÑYP*ׄ‘ÖDÔ c¬1;Î^§Ö˜ˆôivñÍk8'aŒjê&LžMTΙ8&Ë$NÂ2×y$þ‹†È•È…r¿¹L(¯¡ ?áWë¹z›t&qÉt&tjšL¾H¥„ÌŒƒ;·ú³“xm}§$ •|iŠ"â;ùðB–þ>ÉÌl «äEôÝHT`ä %¸UŒüÕ#ãËžªH±q2Ý¨Ž•y<0">õQMbְ¯†Ž^bíCçõn¢^^ðÊàö=ƒW³ÚrMmù0kÄ'gd{‡jÁ~Ã5}~ó,ܵ'ò6]‚µÌK°VµÅ—`¡+07:¿kó²c†ä—ˆÂk¸˜¶-Žå]ÖÜ4ôä„ßÙ0X ÃcÈÚ«fÖ2°U£…¼lÆ—§Ž¦ÆêŸñÅ*g]Êv'_Dû•_ú¶DT‚‚–’žó ɸsîQ»xËHÏ‹OYD/«KJùù(ÃÄF@+ôîµÎöö¨ú™>!ýÏóÕÿÄñÖ‹­GýÏúðbtõ?Ï+bß¹£fýi„^·á”J\"à×Éét>Ô½(§ÊÍ>V 1¢,ÁûKòŠIŒŽQßY…´)ÕF›¥ÕFLæ¢r6 3Lÿc$H¤¶&^® üü õúïØø{“ª]T¾â!ÄôjÛ_C}Ì¿­/¡VΡ‘ÆWõwlü½ K½Œ—©ÕÓÓ /«#%ÕÅACµÓdþ%IÆœ¨ !ÿ–U×f "uÊGª|¼fèé¡“ÑÀi¢2„©£[˜¢ÒPNàYMÕ0nÜŒŒt÷f“ÅåÕ\…ï˜]#((™Báå8/Î)–ÂÞ]§X¯‘N‰ YK$_çS8¶¾‰)êÝ€8Up™ü¿Lçùš/þô’‹dŠ$‡Š; $2K¡·¨yŸ)%…œ®\ܶžBJä¹àäU€ÄäP›7“šÙrº0I<Ƹ.¤–…³Ó:Ê#{XJo¤’R‰œiý O'Ÿ[9X < @Û\ó"U®)ð…sÖÚþFH²Õ‚÷ÑÞîðìJ+E ð¿Ä5l·¦‘Rb!ÿ\‘3Êͪž6Ö%{¸ž Êùìl1egŠ!kì¤jÜú$ÒêóúÍÒs'ë_ .+´!ú2ÄqÀÄO<(³‰Â#ŠóK¨þ²Ám+¼™„açöu@ç­OÊó›Ÿæ—?”ì×Êõ‹i}ÓDjOé~z5MãæÆÓçOýõåÕ9FÐøéÆæKæÔJ¹Âæ!.ȵFë·`×Ä?°³‹¹ :M†ÄTfË®¨”ƒ7™êù«VÚbÚE¤{ʽ,¥¿÷VNÛÆ³§Ø™ç/ÅJE1\C7ÐÃGu Ffác1S´úf:¼¼l ®`Ìóɸña8ÅÌ“g‹Óô,óì‚ýãì †C½.‡˜„ž¦#@Ûúªaï’=wëŽÙs¿«n·|âÜšƒµtºØ>ì¾»JÖ̾”×ZäiS N«\½¥õ¶šý]ւ&ðÏϽûºHUûÛ×MþM9wûÍN'’¿cü £ T vòôâ/ùl“mÕE>ŒN NNG­ûRÞÃó:bÿn©nU2Û¬™ñ4ÇÜÆA:®ØÐ#Ég›ê™­[SU¢@ ÆK&˲òº] õÃ0ï³Û<Ò¯…Ý€¢›™µ<ì ÃᬶÅ&YR=W‘'¹†T †4ÏRõÉöƒJ+X‘WºbƒMÞ¬š|µ"5Ž5nJÈ »±úc3xu»º#ƒ\GÕ°¾oò÷¸ðÖÀh´Â@7Ín–hijFFÿÃô@t ë»xT¤Ü•ã$_`öiBžÉ;ú/GAŒÝnzÚÔ–t䲟"r¶½§K½™l¿°raw j\ =_Ñÿ+™ÑÊÇUΖïøä <Á…mÛhªq@Ù½}jÂCÞƒX$(Žl!ì›úA.®œÀ9K©ÿ«¡á§Ü¾&_i,¿Ä’kÇ\;^Ó«|•Ú›\{SÖÞÌj[ýVΩ%ÈlùÃ,·LÆ£pIÿŠMÇ`¤QüÓÀ×³Æ N„ ×q`¹Læ" ¶£„ ÐYŠ›"št åw†Ÿ')Èñ O_Œ&_4”k%´Ÿ~ýÏÉø¥ +'HŒPb…¬ªdLKއÔÖô›Ç»çb8þFgT¥Àó%*¤^@Ö'í˜èÛ¨OpÞ¡“–ÏîS–d>GYÊ,€g³ì-™ «VÑ}–/H•¬Fxq"Db ôŽ€Â7o¢HT^3À#v„J»Î­™MÇx›EO«ÎKD ½DUþ¥§f'á§ér&á E„Y¦w Í. õ#«FOɾºYFR›†y ²5×h]?òž½hB`"Lìƒ1)Ÿäná[ÑžD°²ä»£Ð`'^U-ÚV< í.›É8rò§Ãóô+à~6”ö›¯ap@TñÓM7UKçj~c÷úHÂ0Þ¹¾Á«õ"ZÖ‹¨ ~äp§HEÐTÀÚ&—5yk‚“‡$ŠF\£Y”7Uv‚ï*‘Õ%ÊØÁ&ƒu±iuGÚÚ|ËŽêÜ«ÜG«ÜG·\”ùIûIy0™ÿÃOï óû#÷;KÛ“²Ÿ‹¤5fÊ£ï|jtBܬ€¥CÇÁlÎÁàõ¶½Áì¼v¾{(¶ßQ¹ª™ßUÌN»¦8Úy7+…<0óÓµßmÊw±óŽóz[zåDhQ•µaà‡?¸˜±Îx°;ú osÃEákGìy½mqOÞáywwÝ$Ù õù†Qüu¾ ⊠¡CŸñÖ[ŸmØ,X§zš\¢i£!Ž`}–Ó¯oÅô‡•oº5ÖBãv5œ²Ñs’x—Uð‰Ö²nͤï)Æ‹©jOÆ)nòßܶa·cŒÿMlüæ@ŒƒÏ'_Æ%aþÝôuÍCÅùXÃ1¨4ÌåÇd¤|E•lQè ŽŠú uU(7r!ä¨ä@û®ÔÊn¯¾ÆÕת¯±’^šquÇ(ß²–m\5^Ñ⤘E68½Ü4¼Ÿÿ$ŒPRî$z§¨$ËSVßå$úÚvïÎë{ã5²ÖÂX—¹þÇw9ð,}äfkî.&òU¾ö…ž½CÕ|p;.¿Ñ‰2{(ÞîDñŽ'_o©Úy[žp7Ç-{Z=G\},Ýrí:ó6O‘³nåH^]4ÐéCkžšk†¬ŽÜÒ˜Þ²¡›{´ЂâlÖbé~-‚ZoÉôÙb|扦ìó ß÷h|>QgAKayÓ“%ì‚/Ë8µ>ÿË™/†ìÿ^<¬ýßæó­€ÿç‹Gû¿‡ø05»ö/€_n¿;8|_Ç8 ïûm<¿vŽ;ýºØ>êÁôû°u@&ï nÏ:;ïñºjçä½4Û>âíÕûþà]o~@r<ìàï|8‡»=hìMû˜ŠÃïíwúÝ=‚çÞõö¡ú•ãÇÙ*Þ÷ª‹z…J5Ul«Hï Á˜N-Ë{°+:ÂzËsTÁœU”Lyî*ü…(‚ÿ.˜/œOYç_ýI´"¿¼Wæe§¢;Ä’uÚ'\w‚éT‚ÐZÅ(ó…m”iyòÍ¾ÍæÉ5»ç*7Z¬È®¹bxf–'ï)P˜öó5\¹Ç4BЬáº`+œÑ7Ü–Ú¾™NNGÐø—«ôìJL“.Ò)ô‘”ÊÂô'%’žÜ`óxp´Ü(e×a$~gغq8'››SÔrO“óÅ;Cí7Œ^“ë[”ŸSø>‘%âMDz›¨"w»æ÷G÷„€-)¼N1°Ì Æ{¾®–#Zo¼¯¤ã5º•Äß5éüü±úµÞïŸÐS,5A»«*“À+üK¯lVî}IJOu± ‹UåÉ =%ãËù•èr˜˜Hå2-ëóʦÁÉ?áè-²ôl<î%ÓÉ,S&ê‘-™‹”¹é,l aÈö ظ º#ÁXxžÒ$ì¬3ôáè€Í¯®ÉÃ6)Gài‚‡—É쥩–À*ét6ç—V¥óäbÄγdöšþK'­“š!mýœp‹ý¹^ŒæéÍ(±:ŠF¨²a±]Ï  èÊOo¨A×)³Z-¢Í ™ŸQð!mæÈ]Ê€¨„zÚLO­&´”TK]Í•K?œ'n’)R>—d3`^³´~Yw1mN`‚|žÉ°Ñ ‰’Ådµ-çpê üŽ Z¾HÇçª&Z jr‘c4À¨Á~† Ïëð–¨À:w, ][7aXV’/¿ê¹ä!¢…ù˜Zê7‰i=DÚìèëýʦ28çÀÎæ7.\A9Ø{Kìb2µILö[†A±x™H+ß3ÚÚ`𠙞=êÂÀ$Úo“i¨²¸´—lëvÑÈ+šMæ(ù;€ýÁYô½³$ì¶Oÿd:¿šX¼w/ì ¼Ì‚Œ-´¿0rº\½8ªƒ»ìqù›É:ýû+VšVY¼Z½…ð¸³aõ±øÅbT8XÙ èV—¬{™$ÐàQ)£ô·¬“óÉà$¹B?¯“é%®ŠQò6Aèyú­§mS|˜Û.ÐÚ6Ù4K±KšV‹‡šr[Â~hÞc~ÜÀ,Ø>üEƒÌZ™¹d«š—­•êŒÁê–¨œMcŽ ¶¾‹àöá‚\nFtK9EeÛmÅyºBÀŒ®iŸ­+; ‰æ¦$9F èÌ|1= “DìÀøšÎóA$7C”œ²ªDö·í?ŸW– ÂÞn7 †F`Ió gËyÅ(Òîé­h~ó~áÀJ¼~­DõnfÌG ߌÙ c›0îëÅœ·b‹éšgš¤ãyr9Uù#f‹SEÉ,fæÖl2úŒ›ôðìÐ3ÞNÿÁCÂô<™ÖEºž¬×éj•iRñÛ%yE9=ÁŠÎΖ"Äí‚«,NÝHBš žM5*ž{sÝÇ#½ÚIhΟ¹msÏM²(Iô}‚ªÌG®x9Ó&§ ½ \§cš^æAÔ>üÕÕ»#o³¼«Õ¸™hï£Ä>óh:C}9Ãwcâ> ’÷ùbj÷:cÔŠ=×* Ó— ŠÎët®7“”=^ŒÚtu:–v6’ÊT»j¬X×cô]³‚þt@pc#žs õBšhY­›#æcŒ4„óuE\º,YbÑ®–4=%èAÊéd>ÎM<[ŽÕGíluæñ’» ˆÃSq ÷êÉÒ"Ã¥Ò‚ÄèÒf‘š~‡b$ÑEhBk1æ„=\3|t  E ´Ÿ=™Yì$U¨\Wý«¤@~¢¡¿­YHæFfþÙÍ€‰ã'iß(gêb<7ø8c ¼Ôy¯†+§_3Q¡i“PÙQä„@kLm˜á îðœý|pýïø$»È ®›NÖ¯'ôMúÚQD 4;诫~ªiUßò§5]¸ÙÀ±'Ëã⎜q+Ƹ­™Ñƒ¡~w6-®Çä€7~‚© -¹·!·‹Y»G+…<ËíªD‡£¾0ã¾Ñ®e)tðs61rv3á}2ÜQT0"™™L?Í€)'å\0«ÝÊûÕ®TAµŽ &V¶²jì_XäYÈ'GÇ«Ð:0þJd.…”e°Ø å¹U\ ÑV€‘\Â~¯"še`þP;eîÊç©D÷~áí%¢·@7º¿N84r3nöƒ~r–gœé4·ŠgXèöâ]gðû!Ý^ôêä¶Ó9Øiò]ÿÜæ_‡Ewïae¶ÑêüûXûtãË%Tø Ü,ÐOí}×ב5î†üëÞìÔ¥*NþþUþnr$ÔÞ›º8Ùíµ:Í@ƒ«úu)G®`ßs]¸¤¾—"9PDD SÃ<}‰—«ÐôdƒíNäƒ7ƒ@7µœ• ¬¶îé2€¼ò±[^6Baâ8(7ò.ÒͲå9Çd¥Ž&9uuë’©5W¡Ja@c‘r Gäz­97œº”ýƒi¥"žðµÐ“ºh¸ù;¤í_ÍòûE ǵ)ÇO/´ ƒ5¥]Ä«•óÃ1g Méd4š|¡h™vŸü†'“OŸ’ä_Ýð–T RÅoXP¡£f2Í•S8þÈÔ%ñ­Üùp>T N8?}‘fP÷øešÊU†…øJ‘+XK9Ë#7Óäs:YÌ´Á/­:„÷$´í…Å8$w8R»‹‹oÜijÖ„•§@]̇ީÛïÃäúÀ2xÍó9кvÑý̦ÿ—ÌReß0V!«”\ã“¢IÌ®ùåúξ¿§`Þ$m@ø™+81Œ ðI-Ê¡'e9Õ]´å–'ÆPyeDÁü"\ß(b°?§5ŽèŒ*ãIîà ¬÷¨ætјøÑgoäµê®¼i´Is¿`så=¢‚T)ZØÑS×ÇíK*p¦7GØ4§S¼w»ï`KçÞb ÊMÇ‚²h'Ó£Ci$‡. ôƒÉ|Ÿþ'±¾Ò§`4bƒ—N‘uô{w¢ßÛ$± tÕÔ¢ª}ÊÌŠµÞRÉbjc¬ôZ]4Þ7¾Óv ›É¾?ë †W´ð¿C³ßˆä²Ïq¹+ì}VÌrBr’”+Å8Ö¦ðqK½‹|Ç™CÓeh²ÿüåAí?7£è¹gÿ¹õhÿù &2×þs¥]5ÿ°® ?òyÏÍxRçóú‡b\áŒuZoðg7êd)ÓVÛ˜s_¢[ª8–Xuæk~îßœ±os.5æÌ,>3cÎü+£M¦›°g2 ÓN ¹ŠÄÛpJ`W6äü…¯øYã;ÿ‚>}|š2/ÉÕ߫ڠ¼c…J|šcHÂù4M8¦œ”wsŒàhÖÚô [Çô™adv‹q6³ÛKe1…'SЉ‡P\³> šõÛ3 ƒ…ôM_ÈfZíbºÌ†Ž.„³Kw¾Ü1LËJXÐ=Ú<Ñç¶6Oû\½@­?°®y¬k8QÚ>ÔšSóºÓž]=µ¶W¦íÕYúƒ2n½Ýû̳Éõ)l‘ç뎭Ì|:L)ŒA¥ÛØ_ ™?@*€¹Y¢ŒP2«fÂYSüŽø`:F Ž™k r'£! mѸ¤ûõƒ­"/¢qª`°¦ÑØ$oY†Œ†HQIFðlBcƒ°)?£B[¼gêI èëp m:“&áÄŠÝÖLŸYÐØÉBá\º¶¯…“™Ž)¶/é –ºŒ}PK©åëË ¥fx…!N§ó™¹Tr2q‚Šh¹•;&Nœ›ÜÄgl©m€¹Ž.x¸©moAqY×z5üœhËÿósâ@6ëI§Jaí0æ gé6dw•»¬r™Éäâ¢áYb g³ÉYJä£M—=S¬³Å\âYíNˆg ëy%I— ŒôÅsš š)⳨©ã õ2Ó1š¤Ö“¯ˆ¥OËyv­‹’å6ËZŠ È@lõ¬l9ÛÁG›8‰Ùp‘[ªwsc/ è·Á$´¿ˆÜþ­»[P> AkÁ‰$[è²J'÷Q¹ç̧“o™s„ˆÖ+š!ÙÖvš+%›³PˆÙån¾©9æ1î[;«ak©¬<”…4x¡î`rD¡÷1Ïöj[^\¼çÅå7½aÁXåŽWj°/ØêF҇ܞ‰ é+ɆŠ÷ÁÝ\äd|t/w×m$^—€üäƒXëޖ¸ú$laëBä¬1±ñ¥¾‚³ÍâVo€«2Ó²˜’2v»›ipû6eÕfreömežSÔ|2ùĶ[Ì7M(ÃdÙ±-[ŽŠ¸þãìÊVÉoêæwµ)㫟’Æ`…"”:ñìé#b¶v¤-ìE&I™ t]v¨½‰T[3ƒ€q( ; ï°äËu÷kÑË®[;td5P ¼Ë•M§žof‡€-å ,å´©œp~iŒù6žk¬çìóùªK3}‰¨òžý]f_ ¾Nff{ð?¥»Þ㯇u±¯,è¢CºJËGͶŒÂÿ«$Pƒw@׊Þ‡z·Ó„Þh„))i„×&X¾áé»å úWÚ$pûÝáïp[þ&ÀÞ;@źG{@Šó~—èî\æ§6 ÜtË?´ià ·.ŸË¨zf$ȯÞõ%Út&.Û›HåN†…¿<´a!¢;{F’z¢ní»‘.CῺ‘JÁÃiÑ ´Æ7ý¸¾*tÉ/™s…Á­ÕØíÎȺ˜|„·)ÿä2œSbøÊ¿ØIõ` #˜q´8dÂÙåZ¦íyV|¶G{ø8`¿fvœØåG³³¨Áx%ÃrqRdËfj&-WjŸ€.Õ É(í² ^—3«…ìK͘·Ø…âÔ€¦®æ²@¬Dƒò>˜‘X¾MDÛ0 Û³FbáÔ5û·ËýφLYï·‚½×Wàùt:ÿQ•úàØ ÄÛVá XÞE+[âÍÙl>ñÑ<£~` dMÚ$ÑuˆdÏ{½cü’°ß°5ë¸qÙM…“&°k½µMÏZ¥O›’?Ø5]câ9ôÑâäZhª(/(’„“|=Knæ|w2™^ǸøÞëÅ—R²%>oeg­QT@ uêκË'x 83r €Çéò}ÚÕ2ê·6Ÿ• ÔÔ_ëüákë=kõh&@¶!‹úñý¼°w;Kïm™^(žT¤©Æ{Úm2(k´2ð*~íLóy~—E¶Ú¶ò“¦6<ëjX‘¶7“mæY5òg‰]YÑ6ÕV·Ò¹±_æ2>Œ¾J–GB Øñ6Ѧë¶SjæFÞ¥øÅd1FíYs&µ!XJ‘§¡ùqIvNb²ÅxóSh˜?é,K†«ÏæfGì<_ð,NéªWWNÖGÀ°ô,½© wÃ7 ˜_ì¶ CÚ3…ÔèdöyÇθ-é‹àæç,ŽÀ:´Ã+{ÞsÖh0SùW6ËþOu~XäB)ðÞx­^íáâîú¹#Øö2Š6 –äçð¶rÅ_6BDûÂÞ¿~ñ¶3ÄÜžOî!ËYeß6Ì8Ø+`w%ÔñFªÁý*Áx9$¼CPªÜø²MÏj¿Ï’¡ÚIÏ#5[|¢ÆòŸÓyeˆnð§ðc6 LÓ§R93ò],Î(Ó-¬K.au€£~ò©°‚§Ù¾E™= ½îç¶›ŽÇÔè»Ou`ÕAu»Ú/µ<¤¶ÀÝ5ñQín$kP¹×ÞK€{ðÕÍðxãÍ/ò\u¡Ó˜fòš³=+õÀ^Å}Z Ö‹ ê…*Ù&îTi;XÆÜ·Ê”°·j׃c½½›ÇÆ;kþ†¬›UôPSå(²¤FœÐˆÉ´Ú¯ÚCÜQD’•‡"Yy¨ì•W´3°Þä²`%£ÿZ(;Å~\k#ÝûG欌îå1â«ÊÐß¡šB˜‘¦"]µ¸s:h7T AyÏæÕ¿n¸¯B™‚} µ˜ñ¼Àü]̓BÁ¾7`8óì«“›ËEvþÛ·©-¸[‡;èY ›1¶aØ(ý£—Áãœëy[ö1‡™;Àâ¡ùƒÂ¢(Ыà)žÃ‡xbŸºx¥C>÷@鯡ÂûX`…„¶6åi‚}ê\Ü&œoJ‚З#—nÀ¼÷dÔ?y…hO]ðžns …,ðl,„^ÜBž§CKœs8Ú;Ìú^If ÐM&˜®RÇ¢°'‡µd°›?¨Ùçö§>ì|`Œöyks§¦Ì@Ò©CÅŠ0²”“KòÂiÍ&mÇç+¬ý]~˜7ÑÓmìg¶äûµHbf'ûR˜Uâö DÁɹ‘U‹ý¶äôfesOÒŽGs£Ñ/åhôøù)?!ÿ¯_Ôÿ+ÚÚz¶õÿÿ}xí»þ_ìG»ß4{úýîP9Ô*0ò¤Uz÷Eù³±BÿÏ逸²´Hÿ¬~&ÜÝÿª¬C”åçÔ¯p7Š]£>¬ìöô+Eˆf›¤P|hmÛXÃJ h²+­6Hf²Ì‰qŠˆzTîSF(='œ®Sþ´ëá'Vé" Sm¦gÚfnK‰#cš0S¦†Ê(‘M\ÝXÍhȃ]rCg“¯*Ð+©TmÅ"$éeSä‚dÛÇaêRm1ÎùÚÐ…DZÈ«©ÓJׯ_Ç6 ç‰ÆP­Ëûðõáõéù°Ò^S„FËmüA@MCÐRi¼¡‹‘,*krOðÛ)¨<Ú¦“/êÅ÷HƒïA`Ù;h_TΩ]»¢r~¶‘+¼ûNÞÛ›‡Âm¯¬¯s½gˆCXµÝcV §œc¤Imô®æ›¡‚'YÞe¼R[|s’9Ô°AJ¶ÆŸ(²46 §30Ø$R¾¶ð·MÀW±¢ß_sû§­¡Õ-¤òÛ`\ÈùeO‰Ñ9³D†ŠªŽNÚ_Y¶R33éÈIa’FIBŽíøgÅ|ïAf·L¹£$“çs 2lŽWú‡r¯û·X]´Ù}ÿ€–Ófï C;Ë-€&e-Ãìà2ÄK7@4M*®Ÿml;mB0"ùKÿÃÓ Ýq®£"_+Ç4ž}º´|ÿÖk¶¿Îõ•º/2Gª×ï¬9x ðø'1[-f±]×úÔ€Ié}A´ÈT3ÏsdÑnï ÀÓ.VÐêê˜ þÜwìÅ~ûͰ³Ü/¶ô,*YZÀJ›%Êo2ÃýC/£®Dr]ÁHDAiÄî.Jšw’9èþ­-9‹æYr,[÷ž:þú]ì.÷—t<@S­oê”%‡)ù÷à Xù”LѲW ù×k+B‚1¤v6ǺJ/¯Ø£ïÒÙÃô웨œÂ>M¶‡ÀŸê+víÚ§² µIÝgW´ºÕÝýP\.01öyz™Î³ìLÃóó§°Ï¡¥¹¨l£$rr€1cñ¯ßõ_ÛxóHɱð[l´mƶ<›œ“(€Î*1  Ã~Wõ׆þ˸â@VÜò•‡kzœu Ëãº_Otz…ÓtžÝ¤`s0±)e~c Kl ™CVVc'ŽåuqoM,TÖ6˜•3ŽîSx–ŒFò ŸÀPŽÙ:ºXž¦c´G²&ÀÁ~e8Âþ‹,›‰*½†=?Ÿ$ìUxv5_&ÆÈ†T‡š¹J¾Ï“³ôZIáôÈ'E­×±‰Ùãäë…ÜÐÌÁ/bvf¡vÕº{@¡˜ó@Â@‘ÎèF5 öçÑèŽÑ*_ñiÌ®c~¡­䃅]ônEªJOÁ+GVfêj1’Ð] $C‰0…Þuú/¦Íë›t”ÈŒO …˱éÞJ”‚œíVxÍ|;\Út+æÓºU„ [²ïǾ¹Ô­É8Kßåp@ÞŠI[¸gªåU]9±¦°Â_œè˜Bž’Ý*š@ »@É®®FnÔ™ ¢øÄ—qò¥A÷¢˜nìãÀH5—U;*þ‡î$3Câýì¹PÒ{¡WðéW7<;ïÕßXh3d>‘—Ú†ðö¬F)>¸Á2ùòjŸ&'"ïÈ´þ§iu? ÕbOÛõöZÖ×"g[¿!‚íj%îö<ƒ’¦•µX«VOm"N*ž‘«â…ʆá<ËA[ض• ž;5wlõ¹×ê‹éü/!šÑM£ÐY‘N ù”U¹mÂ+7õKÈÔ<':. Á²æ>sŒñvÈ2<[¿æPz†!…6@•~ˆEÍ™ ™'žÎLBž)rÖ­œæûFóædÉ,ðXÏn_ší³2I§!;hÝA|ÔŽ€29j^,¾‘\ð½B©FäœÃ%ð#¦ŸÜip,Õ·Û@ì4ÀCÓ¼—Ù øÎ‹¯jªh·` qàj¡3™ÜÀDO°Ì¯A2t €·¿+Íž¹¾)»i–˜5Eè³ ,_÷ÔI¶Ú*T¬ª/—¡"_µ_¢ü5·NÿÝL„* ¡¶BÎz(aÎÒÓËmŸ¢"YOôÔ@%¥{9ÒÂΑfW‰Ý*±W¥f݈ÐN)'µÁ­¨Mœubñ…š$ãd^“f‘œì$l~^:ïŠÎp‰ˆø¨S5#^“EÅÞð^µØªfzù· Tš†‚ÒŒ$%rî·ü!³õ$.3h\ºî —Ù®•î2à¼{â‡"ÊìJwCÊ}ú¤¢¸-“¬éÙ%G¬I:@Ëïse“~hÙ$õ§f4 shß› ;Wº†‘ŠlÝ’ÇìÐ:Ó¥ïes·ßŸ3RÇàlÑâ¾viqûÚ§uwë,KROѱÀÉEhOêæ %’±[ß{©s&²š$#Å—ø¦è×wvb.˜;9QbÃKß´ã°^J&w. á%^ /±þåãEŠ…˜‰ëöóðãI$%°7B éY­p?‘Ëš pMÙ³è×9Ɇ÷¹o/†@†Í¿ª!@àþ??èýÿÖÆ³Àýÿ³Çûÿù0Q;÷ÿú¶‡!#áðð®Ýmè6û-}Á˜»]Çðû~· ãýµ87-EÞ¬‹þA‡ÌZí72™cèî¸øšŽRФ÷sZtÞ½io[j()Æ\¾­1„ηa…$uˆû½€*jâV…»@Wúo+ÜúrÜ–ýǽe¦œtx5K€v¯`Pû‚3šˆd%• @ÅodÑf—.j 8 Z ~C Ïí5ÒüÀ v8’—¾o‘<Æ0Ídc+UñoK˜ð„ŠìöDN¾­)_ôŽv×ÅKeç atþ7§Âëf§¿»žUp«NÖUŸðÉqÛcöR·“7ÝCššQb¥]u >ïübÖ¨¬ßò™\-Ðs6±ïu6/À„šQ¡ÑdàiO±®UmB•îGF-æ› Tb-zh`PÖ㲘Íë‰Ý’Lw›Å]Ó g¬âÌ[>Âvø^éDM7CL#Œ!..ß.ÎJd—}‹¬‚®Õ™ª&1¨û’Ê×ú·5ZÅÃOÉØ³ÿþúo8 ýûÛ¿­y$yIÃÌ9”L %‹¯‰ eD"h|à¶Ì·µÎ0»jMeTE1dõÎ©Ž¡pev¬ˆ#7et]©„iœ'7ÉM¨¤öFšD̲TIÉt¾˜žZÔÅÑr½¼º嬯¾07ég©´º,ú•íc^ïT¦g6hP®{¨êOfW“‘âø,uÞkc:V¯ÛÖ­]Ò혯Ùçz®ùoÈÐ%™ËŽ™PøCQêDR—FgXŠÁ…ÖÃÎL´Û¼U"K,j–1~£Úò;©AýSEŽuÀö[hlÛj«û®GÉj½fW¥ÍÉC„oTgñ¦½KVƒ~¡çz³Õoµ¡&þÞÛÃÔHð~¿é½û0@këwhÞíÀR)8±D8¡½{7@_o¢ hƒ~¼ÝÃÃÛ1ù‚3´¢°V`PòºqÝÿ½È’áž 5ûxúãÈÕKïu¤P­‚¾–¶ºè4wÚÇxÐëËüG÷`pAyØê‚ÝòW¶ºP µIWbB¡ mª2íч4¹™)u=nД¹QpNf’ž”БËPzw %¶lõ•\hO¹‚|ÉÔŠ7{è¥N«7£*]«2××#xIE[Pü­h(I­Ú•sCɳũ›¾wf؃“)Jø0¨ÆQd¥ÙÞšå=ŒÐjy©ú®~-Ãë­é7å\ú´ÈcRW7P"òý9Oï¾·² ×3=[*õíÚŸfX£”nÒÆ2ž&m µrù:ŸÂ:Ì.›Óè šèÓ™Ÿ,!Qñ\‰Ð4¨o8-“×>Ûp+ç¡Z#Ê[O‹Iüv9`\.~u…Y{®H „WOºOÌ7B8ê<ïø•§z RUÃç{Ù~Õp9®°y‡ÜÓ Þ±Wžw(Ç‹òìcOyMïî…Ù‡Þoƒض*wƒ×ƒ}äà@7¨ Ü‘}¼øaìƒ1V‚}d¨-`{Ì>öòxîJìã—2s%r¦AÚ¼9ìã—ûdËsˆ´TZ±BöÁE–°Í><É„°’јXÄ8pBUB#“aŒVqTý ¯g(ŸU?óÉÁ¿r¨ = Ôs•ó–z“”)_¦)1²¯èñÙ%N›Nfñä¯EžÈcyÆ6/@n|R×ö.^âÒ}`þEGybæû\<·;ô™áï÷'’ê<5[\\¤è–1— øÌ¯Ôá •¨È˜½Ñh1²¹b,’ •\³»ÎÇ®*õ77X¼áôqûj‚:+ <™೫a'eœœÈ8Õí«äz¤SÄ "$F×Pçb÷ÏQ˜0â„õBä,!,ßmñJk8û{Ãöÿ‹ãeˆ° Üëa:Zp„_º¥µTàJWëÝlK3ÞQ‡ßÈŸåj ´…LË“åÁôˆÀ9ÈpBWÚPÎÖÜZ^Š3ïjáþO‡ÑJÇCëm[çReóíè;Õ¢“‰Ò¼3dÝ|dF«ÑŸÞ.fK Ÿ'íãdÑy”4v%έ\®¶>û)NŸ;ô”0JSI묡÷œÔÁàó£ÌsRØ×™°õýr~ºæN_‹Ì…yÉ7>´="ÜÊç0êìY¤¶å‘šOÙ/ŠÔ¬Ã5ˆJ’êºÑ¶GF¢ôI€ßów¯Ìü¤mœ¿îrP7adÎÑ^êˆxÇù^±@¾G­i rOuª¶W”å °¨òY9™_+VõÝ%aÝ„ñ†‘_/vêéï5Äœ_ïVç²árÍ?ŽÈuà¨?óPºLŸ!J’¡0Vw¨ðI@ÈÕ]aµ‰²¦ÿ\º «ù‹°at=\ WÏó2«§P»ÒËÎG"`Øê]Õ çr ªÁÍØ‹Ê<—EÏW_ Azmˆ±Ú^ Y#Òv-j(ñ}rqá_#ÀsòŸ:ÉXùÃf„2~¥òíºšc•蝹 ½n]¹ÜuÖ³·PU­7»;ëô¼­ªÄòÇØÍÖ…6:cش׎Å+7óæ¦xe)›î¤;›Œÿ¸¬´lãG¤ù Ä…xz@Žù%»„ ‰ªþžµkü²\–‰£»)øøžÚ–uöd¼CµŒƒ¹ÜßÛ»?}`¡4S¬TÒŒîðmõ†&ŒBiæ×Ò..“fÔŽ÷@’̯«poƤUžHï­¡ßkE¢Ìž]ËÐÞ›S N•´_R~Y¦P% O+veùeå—=)´ìíiùe/¸¤¬…WÍ_v £ëábt _f½ªw¿›ü¢¥íe²K¼±õ‡ ´ö]ä–?pc®š+ºì™¢ -³–ݶ”Ø¢êíɳ·y;Ñ-”äZp‰WUžûã34±Å‘Qb_’Ù´KùJ¤ã–ŠÝ¬ÏjÜWFþ ±Vè1šr!mc޲¾òuZÿš®iÕ{åó´þ¾ç(îëAÍ}1òZ|ÍRD@oKëÌvÎ'G²}QÒ4:‡2.r™(«èXSzœYŸ™Ÿ²ê¸‚Ò®R.› 9±ô» …er&Y¾´§ÚyëÓˆKU«÷Q,­!ìÚªC¿G8Qq™%u~42©¡Š}"&lÊUìM®º†ú ?,0\Ÿe`z L¯pSb﾿éXCܳzÁCT‡è†¸gáD[ƒÉ†¸Yrˆ9$òštm{ ÏúQ®ª’V ®Dª/'½¬'¹/&ùUiÊ]^Ø\àCþñjœ  N.?àOÑòÌ ¬Sý)Ã_ø#¹ þÊ/—/æHðÙáp¼p~v¥ ºBËÁêþv§}\!óâ“Lâ(Ëë SW·rˆòö(„.9|ºš±oÌjüUÕe é0 ‹çl(,e+dNj5Ы,â_Ðeâ’Fe¼|ËÙlÚÅïµåôîî™ ÀÇm¯Ù N«#y—íÀxŒg%¼ò|üKÎüðNWð¿ßñþ§9WàEB}^ærþwï•{y[έto¿¸{ûÜkûø—;\Û+в—"òל‹pUô<.äJ¼åç¥ ÚH°åŒTá¶eÄòㇴ»?kü@üÏñÃæÿØxþ,vãÄPì1þÇ|˜(øÇ1Hd†ÎRƒ`¸×>&Žêê¼Q¢p!‡25@V6Jà Ñ,Žc;¯1Aûþ…œuãÆé·Flä†àв¥ÿAGJò²ýGöÝe·á ûÝXÆ\¥®*/&ÛùŸÜŠasüØyÒ üÔþYYûŠŸ€t½½•Wömà«»6[bÉN›}<ë51³BÈkzÐКüÏ|ð—šÆúB·P“¬ŠµT©AK—ÒžVM¾¡¿·3ƒŠlŒ€i¬o=AgÕ [w%‹o{Å/0?Œ‚;à5ÝCÕ¼®²9¬ v/‘q¼ÕjlY¬khh-ÀÁ+i˜y˜oÏF‹se)Úl³õ ª½Ú0ó6l\¤kyÃí`ÿ‚—øÈF_Ñšªb¹@5Žà¸@ØÎÉèÚ;I,!r£} ÄËéö"#¢Í`".“9ßÿ–±% dÔgÜÅ“¯s1ÂC î:* 7áÜnÝÆHL×ÿDOihkU"…›™¨*P•pª&ÕanÖ·¹Ýv?‡Ïlãêm ëÛ}£B«º2¦±=¨n[t‡Ò0¼AÈ¡Q0«-2Ýa® œÛ·õƒÞE…ÙhÀPŸwµº?èVÑá$м*FS&Z}6¤‚C¢Ép‡D²€qgŠŒfCMä+ ãPô_ÏTÿo½x¶éÅÿ}¾ñ¨ÿ{ˆ$P[ÿw²]šÝÁ{Nb‹†H•ó½.öP_ÿbé š/þu‚û:òezŽé‹˜!¾º M™y•H½ï+ ”bò* œ¾Ü&üîɶ˜}Â!xxþdz®d÷Ò2-Ò âCô ŽéLK’E„'ÔXZmÇ2Ôê?ÃYÚ€£Äp|¹@dÊ€«¼ïŽ­+¼ô:áQŸ¶Í§Ãñ쯎ŒüЇIÚ ˜«Åõ“qŠ'+,\çGé¬Î}•½ÈÚG(dî¡¦Š‡!•VÎ(ã<¡Á—2¦01Ö¥=ÎTc–q$É>ð¢²D“Ò~bˆK5Ä"5$‘˜(æ…·ëÅh(Å¡ê®WNÇû¼ÈÃç îTëîëNÒc Ô*a‘ôó¢ÂÎuà\ª¬kÂ2AØ4Žjª3@‚Ä›A£ë癈 à”t×ã ôÁº¿eÙfpx°…Þ î÷Iúù^dñ²ÏbÌîŠd”ÊVÇ •EV Z¨ÈÕ¢°"w·«Àd†ª³³ƒ‹ë¤”X[TµÃwÔÄräÑ=c÷6áß%2…£VîPQùºÃ¶ »‡}E%f裴ÌË£H+» ­ šGô#¢Ÿ± C:xÛÛícŽ ´òþÐ.ó¡‡EzPõ»”‹ ’5‹Éc§ÂèßB©ò¨"6éw¤þˆùü®œ`ý“z΄ÅA u¦Ó<Ø~K‘E»oÁ†#šå Ú]!¦é6¥’ˆÇ1ýî½~#Ÿðïïÿ^45˜3î¾´îhDÛªñOWIܺþ®‡;‡ù%ÎKéšUÞ‹j]²;VöpÓ€M3KÖ¸·©ž¨ ‘½-õdÓîõ(’®-Ü¥(àÙî,æ_&êÀÌÛRKâ!瞦ð̶gY€á¹‡_!cˆÕùUάNíº9Þ7~—w|aw7eÝ ´TÑ] VÐtƒ2â&èæhu€Ó=ú [ò¶ïdos½³kO‹î¥7ì6ö"t?R½Ùd÷£A]ã!{}Ë£ü~×7¥#øºÄ6¥ “_cù•Çl'ñ2&ç$ŽíWr‚ðU¹ƒfÉ-è6Û4<…§p`-F%P3Çó>g<º¶c/誺‘loPRMÇŸÑK‰Ò ‚ô f÷“gU3ï½ìÔäæ›¾—…4}xïÂÂŒ‘ŒhS`Ùw'‚2ŒºkÇ“íXatç»”ve7öiyÓ¹=y½0¬Øÿ3fOÒmñ;VÉ,Îpq€q0üj€à ¬ê°‚RÒûñç³ s´°È9SpgÀoÅ8k°«s_`g¾>±î]Ø£ÃxßÂч†2wpe½ ÒO^W¥Ô œB¬i'4 àê =$þÃeƒ(¦¾ŸHýÊõAIÿÑ0t9 vy*¹×G*ÈâœèØz$“<@´ûŸðe\8ã‰+Gçdn_Ó Å0ÐfÓqè!H¨1üÛ„=iŸ«çÇ.ãËž:ŸXâ—â2S€¥²!]dr1b»œ·*sÇKF…§†‰ ú$B¾ó–®¶ uVÃeý3%JR³ÒæQuÓâïyÆð寅KBÜL'Ÿé*oˆ÷„”IÁâ,À%wÂ[Úkèú“,àMúÿH ºÎ2Ω×[VÏè/9:|¹JÈfŠrgü³ç¯hÜ 2·–Â̤m<‰Ý'62q_ÆB(ßÈ%¾Æ´øÌòbh—¡~¼äÙ9›5]:ÍÙ³ƒèÄ=תÂÏ]—cwÌM D‚³oêؾ£Sïâ‚w›¿=›îZã}o÷½1×ËgxK^5/Œ¤CHÌÚ‡Û0˜·ÀJDã$bL›z}úÐËX½Üp_s2_XQ#Ìsbý2ÎcH 0£H•ôãs¤(À‘67%G’¤òÉ‘âGrž¸Ip1-3bïÇp$b%›¥XIñ„ Oó9Z¼„'‚ÍMûU¼„U…»þ¤üh³?Z&ðÌÄÛJ´F'€·•x ˜SÈçRX‚Ê+n…?cÉy€i¹|K}ÿŸXœžlgŽ&¨PV|#:½VlÐ*n°¡¨F…Ì0*Ë #Å#‹zÐ2Žh8G6j`…j%kZ•»Ûž¼¨£“CU5”†ÐÅí±SxÓ-Pn¨±jl ÕkÎê÷äð[ˆu¥X-Ïã·xY®XÓh3Vj\ÍÏWmÛ„À3þcdß-UÆÞpŒ×1»\þ’°ž¯[ÉÂî¤ß~ £Îè 4ö¡•;c)³ÞV4ß*¨·e×û‘û¤ž›¥;eÔ÷Ró÷[êÝ–»»Zh`ísFD›épzŽnÑèÊnªîܳÑñ.:^Z¤lk‡ ºÊÓÀZzѺ¼#j«‹"¼P è%u‚ºà¨–¡îBö,¯'ËšYI%lÂ0ˆÐmû^ճ¼t¸ÕDDZ3ÑÙU‡©CêÆcÓ¸1dPƦRÅ«/[êË–|SL[ªJiÊàûƒZºA.ál*¡~:„³¥Ÿå÷Q_1ÓΦA;›6ílÝ'ílÚ´“ÛUí™ø~Mçl¥¦b,àuÉ@_†3¹™³Å€ \MND™! =3 >Ù^n@ìÛÿ^Þ·ûÿRûßxó™kÿml=Úÿ>ćÉöÿ}Ãîÿ¦N #úÍ×”)†Î‘ü3É]Í’³ü -€ƒö)„åz0\ÈÅQ»®5îh ܬp?ª2 ÍÍJÀoB Ø!OF*_á+ (¥¹QaÀ9ít”\ rÐû‚B¼ Þxw lœ eÎ.ºÝ~ž¤çäÛð\mÑÆLÕ“ž´ÿ=ûoà€³ÅA¶×“óô"µzA6¸VT1S½áG_ÈŸž²ÿõx2nŒ“K¨óÙkðì 5Ö¹ÚÅ—º Q±ó9ƒV†²:5¼©›FuUB±ÆóÙ=ÄÚnÄ–°<‹RÞn®EÏ ³Ù­áØŽpÌñOM8PŠ•¡ÈXDO™¨×qcX‰ñÒ¬4ûçt^á¢kU„Xi®‘±ÜlqJgSò£ÐÓ„½¾g_\›r6-ÜΔ³¹ÎþþJ›#. Á“´¾n]Ûs…ì–B¶ ÀÂ;ÒŽy¶•‹ó¡\iDfbv¥¬µ‰€9bÃáõMf–}¤ãDHXû ){˜é_0h;{šP¨¯8BÊXˆÚӆ݉/éh„]”–gs˜=/\Å0» ִкZh­3$ƒ¸_åc`ð µÅxÇxAûÈl}¾®§ V~BÊfuZ\¥z†£/h‹H‘6OúOp»ƒµHËÓZTCÉ3²!‡æ§WC޳2g‰‹)pF¨0ú¶.·\ÞŠJF°hº¼‘&.‡a!4aù,Xqzv%Γ ²¾ËL” [høm…½-!9ãÄ\’Ö%ìÛ0Øn™ QüHÉHC£‚{„q0F),ÄÅ|†Ý¡|½% ¸ŸRT}íÐ@¶&kj¥¶x :AL ´²)WdDŽx㈇è⃑VÁk&žhh°z|uqº@CÁ<¾…h­µmŠìÜÇ4åjX*H%€°“flŠ#)b`›2º‘.’¯Ñ‘Ô„ŽO8úÆLjÝ Ùøç"Yiû~'šåq1ÅDšÂ}q©ÁìDˆL( d*jˆj(&ˆA ±C y$`cc5’­^Q’¼¥„  Ô!0x")[oŒ9Dp6qp6Wªi/ RS´ªÕJ#Z[2ƒØ¤=ÿÐW87¾PwM8f"ƒ*4zVˆ‹´=Y—â0z&tÏàª5^›$‹‡¾l¼mqãmã=WžÁvp:ÿM™¤Ñ8û‚y<ùYüDêËâó8‹Ôà=Å®#%£î°k¿l$ëõÑÇ¿GEиëaWÏVq ÇѰЌñ¯ÿjµé— [Ú§"ý¨È] Ù§ÒȲ…5Z´…[íî1=ß…n%-R>´¸Ý–Öo„_Û¨´D ï&üÛ‚ÏŠ¼Ú¯_×ág»W‡‡uñþ}]ô0ÜÐAó„~‘–5EýAñË÷ß¶_c "Ô™¢—ÌrkøÐj¿Ÿ;»ù7°VTÂaŇþA³Ó ÌØm+à ¥ý¦{›ðF ŒðWåzB Ö²—*ê3…:wÿe¢' \Aõô’åT­MÝHÓ ‰ËáŒtÚ ·iX9(5*Änyýëô»iäÜÀÀAäa$_‘)¨6+ XÖKˈVŠ[36jÆnMÓ÷â0™ÎÓS<,_Ø&˜øÅ”¹è,å³8y™K¸-ênËég‹ºÒrúЊåSËb¢ÅóK“WÍ&«{s§ÿŽéo& / ÕÂÀH-ãõÿ«û‰¤XQK9Šõz°>õݪ›dŠjexñ(ÊPÍC ÄXò«Ç¦}JË&&ªjÏNU[¦©‰œž(vóüÄú±±G†“4vñÓoö½«É9ô³³iz çx¶½.>ƒÛ™ 3-"Œ£;<*®Ò‹9lûª¶Œ«wæÈÙp¢ÈxA=”/´» Å„iâ ©ªzJƒ¡zîL÷‰Pv9`Y?E,ëó‚ŠÐF¾УØ|Køò¥é<Ó§ØA1q—dÌ+-ÚÈhIê."¤¾ÝÌᡊ»Då&oH‘áXAvßc·ï‘ĘzÝ®ïüîV¨9#5®°辪l]齯úU…;o‡‡U¹ö1BT(»m­d/Ç<:EaÙj·*7]¸§·6Á¡º@ UÚZ‚¸Å®@/ª1/`è,’ZÁ~X&«CÍ¿CN"‡¢>™}÷‚8©†¨w¾\b V“Z¿ÝÉ<‘Žßx„é»§ O.¢¢ž ýšÂc`ÑϨQûYì‹sf‘+Ý'‘õ˜gâb´˜]±¾Çç‹©å^$„„?:[ÈXªØ©uR(K]ÒLª®†ƒýÎÒÙd µÔ˜OÔŽq¼ÆžÀQü|¤”“31<…‘‘fÕ鉮¤£°ÖQïÈñxyAWåÎjx’¾–3¡ž‘Gh/7ÎWŸœ¤€†jr;"1Òrú “‹4òŠ |ˆÔ@˰†0CÎ_~ä:Óâ‚åE ¶k/ɹ€Ø¨A2j˶4 ÀØýB«…XZ<Èáß6€©UQZ+bQfÿÂSê‚Gêæ¨9=†¯2´q=¶ôU©¯È  ?œÈ=KÁÃCŽGŒ00ʲd@BEÉî9N©X y¥<¦ !ÕÉ µïZKhÛöm®Ãå6ïƒAIu¿íšo°/ðÞi«fL*´³ÒUjýd¦™Äu¬µsÀ´øŽ6ã&Rë[L|©¶2§P¾r OêE+|”¢€Ô§2$3¾`n±@ÉN‰Ô%üF¥NlP–ÚäR[Fਙ".ùp$£–Ÿsü{¾A¥ÐNãy®%YÖ êÁ[¼%õ7å5tÖwþh¨PºxÒ·ÆË oŽ>òzǺ6<+€}fõù÷ZèZ/ÎÖé6‰Ê(éÔ`…Ÿµ«gîA~ø\»?¸wç™Õy²,ìÁ³Pì”{{¥gÕBäDΡ3µ}È2”}0MÊ\u3¬šªVJu;®mLùh,¨½¡M‹ù%i2 ßkÆÄ“‘a¦ÆÌû<öÁ8YÕßä&§“ì7=Þ-Mu̳la­ê Á‰S§`ƒ0[ Ô\ÚZ ‡›q}ø)Á:ˆi#Ró›Ò&ð¡íÕÁ-CèË®Wêò0Ü+!&Eÿ×AZö®µD%½ eùš%ýÁ ód½å-z®äе’vVÏ#pQ‚ÆÅ22å(ÝÄèíˆ],£wo†ýfoAõbá‹`BCE§±GÄáeçbÑQ-³R}“ÙH[e~²;$.Zª˜1qK†×Í žMF‹ëq®k÷–¶ÅEAvÐÇ© Ht†YÝúw²æå˜·*æm_ŽJ„в ¤Š P‹«ýÕÆ²Aõ›hk™˜@½¿Ëz@žs©jƒ^U-Ƴ›äŒLÖ56¸¿wÃFŸÑÑá£tÐT7jêº]"zI±½i®]±]’íö43þÊØ‰ýÉÈK3”«Î:ù”3zXXôI´ò¤…Ñ4wY!h]ìåså^^ôÅüˆ–¡-€Ìs•`ëÇ”ïCí,³=`‚¾ HöÇ`¼?£649^júÞâ›ËÎ!}Ý0ÔßX$òÒüÆy>rÔʦ÷6×eö®å.s©O@þŸ=pþß[Ï7¼ü¿/¢Gùÿ!>r±Ùò?®ˆ£ÃÃÝ·¡YüÛD{´)hDÖ?BØ#üë¸È¬{ŒEÞcá÷BGÀ@*ÂL Ÿ‹±÷mˆ1DG!Ú½Ç+ú†cŸtCw£õÃÖ¡‡Ž9`y¥+¬ÎÞ`BÎ:°\¶àµ÷ã£'Õfíà¼ë„QŠ5zP_9J¿«%”PdÁ¾Ê RòÏ>ÇOª-‚{Œ µ"@አµ aLyÃ\ᆲ¯4Vl4ëÂ×%]ÌcÝXe¬«5˜iâsP‚)ô Á †ß$ hÑ1ìf8Å;ôQ½&&Ž8ž,Q#jaÕ£c$M|ò^=ÁD rgk`=‚°f<:&欌 dÇ?>ç ÿ¤y5õ©ò‘²#Ïl©L*/e¤fÌÆª×ˆ‰×ÍÏ™u*•%`@vÁÐ(œ!Ëöf\¢Ìæò2ê“æ˜UQ/vÓHacŒˆÙ‰ ƒ±R¡Q­œ ÕI°Ub|­ãkÝj|Ì~yîw|ê®–‡XšFºD!õPêôY:¥œÉn¶•#Ýîq™vK*×î±n÷}™vK*×îûŸÀB¾]îqWgXŒGìQpÄ>GìUpÄ~Ç䀿 } Ž[1#ç6PàèàÅ5ë•1ÝïvPü€¢Ü!üÉ_büÓ£˜ÿŽ{€¸Ïø³G¿büÓ£˜ÿŽ{¤Ý&sƒÎÌp ²p ÛœÇñ­ä 7\P»ü&£K™õ_£»¸\Ûx(®Ïÿ¨´8ðâPœI ÆÅ„s;X“lm«-#–&{onV[Æù’+£-®hPéØ I‡Ú ãä«äÑ%%PcHÛ–Œ…IK;¸ùwÈJ®)Zô©ɯ'ãIöœx$MAu×h$;ô»5¨îšáÀ¡Ž˜~̱MZ´ä:`J§õA„OÐ]ë8™hµÃV½l“g͈|Û³Þ¦«zmbH™Ùf+Q]Fâ„¿2ÏCÚ¯P&¥W(3ÚVN^,ÿï£?©þ»ùozûïcüÒú·yV¶À¦j3r_Åê ÚêÂp«ÍM§>-m*Õ³ˆ…_Åê ×ï!‰Ùõ›²• ½l‰g e@ÃDÂ7ì¦l%›€ªt@0ëgÃð!‹Ú%Øv:-õdñ'=%h,±ÀDD‘•}Z ÿi|OCVVåU©ôZ®RN8ÉGcWÇtØ#,‹°…‚ÎbôÅà|_¨…[÷㸠–Ôˆ˜m-c÷ˆ¼º§ð1S®Sø˜ ÷LØ®Q©pVt¬Wt¼êŠvK®èXf ¬héÑ•KšÖ¶¿¤€À’V䚦ÅXÓ±^“æâ5Ö¤¹ÔkÚ¬\ÓæRÏ[ÓKðM‘c¯8U8km¹ÕÚŒWXâ±µÄPx…ÇËVxVóXzV•_à™°vë;“ݾÇò.½`u»Ë˜W·»æyqã*¶Ëª%o®íâ„={Þ¿D—êÚûTÄÙí$ºm)Ñm¢D·yßÝÆm$ºíÛJtÛ·•è|™Í”è|yoU‰îNü?º ÿïÿ—<º»eb%µðÿ û¼K´b·L¬ÄÆ ÿü»ùwÓu‹iʸûG+ î­8—ÿGø^á÷VàøQ>Çï™,?Z‰å÷Vàù|&—Çô;ó|j]Úïç—„^(ѹ|üH iváã øw¬Ä¿$º;Ñnµ¢É–k$RÞ‚¦S½ ÑÔRä9Î[βzx5Gz5šË6 ž°B«Ù¬\Íæ"Ï[ÍQáj^Eš‹¢[Ø"ûÀ–w^[¶´£è–Ç5¥‹îga³6n9°[­ë2À E¹Ð²v»åB«×z(gÍ·éÇf¿œEHÀþc~ñ°ö[Ñ3ÏþcsëÅ£ýÇC|䊱í?¯+Êø»yÐ’a AÀ¼ë”>>a;ðŸÔŠ#×Ô[±ÜÀuŒ: z ð`S•¥¶ß* 3ýÞ–¿w*+šƒ^Kßô_òö\ž.+8â†×§çÃj{M^õÑŠí¤Çè„¢@aöUVÅ)àšLyFX†ý6;ÊšÀÑ­¿sTÿ/#ó!W¼I¦×‹9‡AP6ç~µ§óìÈìô€¡oïÎÚ™ £ý\0[œ6t-àu [HSÿdŒDk^Ø^«Ìm´5t&ÐŒÑZÍÀP­ONçCXNæÍp1›¥hd;J¯Ó± 8‰mcĸ”áߤŸ'äÔMq&®oFéàg:ù¢<ÈÖnÔE¦$Xl0Ÿçt—cì™Öï0FI*2>¨ŒÐ[gòñò~Œ{EEûä=ÀÃÞ‚2q.e‚IÑN†Éƒ1Ó(aK_ÒêƒßÚɃ ûÓ¼+ç€uxž{“½ÁÑ&y(è|Ý–Sµi9Í>™¦óyB« ¡ŒÃpœ„yz¤`Ó—ÑI+IÌevh‰×p0röJˆµÂMX>j+c(í¬1=-äa¼•ƒñp€kRÕê¦ø>‘³œ‹+‰ší%¨ €6áØˆé,E ì–ÖŠ.GƒC1MFZg>ÿŸ%:”o:>OÏ0§”ÊxfG$VŽBÁŽü|’átôM¨ØpëÔGŽ´`Ù^Sê9à‡”CÔon¦“¯)ÀNFßÌxêY‡“éÔîœ;›U ®ƒàbˆºŠkqƒXË =ä·u &¶`—ãô1ž‹‹ôr1Mf24i6$è¾ e–žU£ Œ³µF.VX‰ÂðÞÀÃ!ù³Ø¾ÉÍÌÒ_ðVO•k˜F€ d$n »”ÀψYìE~–dHxq3ž‘aôERÐŽZZ+-*?^?QÿN>õc¢Köÿü¡Ýu¡ÄÂ2Ûõ¼ÝUœ`&Îø=Ò½ð)q¸îÄ£bÎ5؉Ϯ8~ùÙÙbŠ&V2ýÀ'ÌØ1OntˆÚL±f&ä×Okì/B¡€¿¤°8ÔÃuÚ¢•N ­M“ùb:–a´½€úØG Ø÷Ù"Ë UÎ¥ÇðtV‹Êõ?PÇ2JÖi©Vœ•^Á·U<¡Ø˜n¹F“ YÖ¥³Åµö³²² ¸ KüXC)Ìó¹#EÂ83Žò2öÑAÁˆ#F ¬NÝ· MrA M@.×&˜WVW\“ 9¡À|©x#H;ì²¾’‹ü|é:™™EÖGóutD“Þw¨|ýTשÝ1¯†çDÁ@-—0Dh¥ú׳ ÷ó»±{ˆqk:ƒº8lGô3öaRWøyŸ‘r‹Œô}ßYâ·“ï·¢1àÉn¯ÕiÞÊ|Ïp2ýzÁmx ZE½æm**@¹íŠxÂg¬'uÑš]Î saê!¹ÅÝ÷ëæ=£ÖNÊ9Qétå )ùëA z¿áBüq¼®H0YˆKyиµ¨Ü€F¡ðŽòHܽ™¥£Éø‰qÿ:言1¤P =Yl±˜”ãòš %¿k"C_À}éáh0zU÷kKü§ƒ'aF0¡Ë (h6§+:qgö‘$0Ýaä]ÛÁwb£ãAHMj17¸|p™ 7I«§~—¥t¯iO‹ƒ É.l/íRÀ¾EOºÑØëš9‡ŒV1úpRUcˇìOÜÓ¼6±4^Ï¢òVÃÃ\2"øl«Šò§rÜrašäJÕV°Êr|å£,„5kœžo.î,²s4ŒíÜaÃu_Ëüåj„Hà! °Ý*Ö[>ü¼{2ƒVN»ðieM7¨Éà÷]²2U õSS‚µgÀZ‚2¬T¶£óU‬‹)ì^E1u¹5x4s|’"ß:»þlrQLt]-ÙPÖJ¶åß› ¬»¶¿Ü½Ù_åºÿ»~Øû¿Í[›Þýßóg÷ñáêÞÿ€hÖkvûªÛ{ 4;‡o›è`C7€;Guq‚A’àGkwÐ,JKBYSÿ„®ßÛoᤷmô)ù'7ÊI8‘hË? It"îV¹] @2²ÀªCœ&õÇÿ‘??'îòŠ7¨†Bwb¼¿cMHƒo…0CìùâL§?º £vK¼|%†£›«!4Ø„' #Ÿ&süj%omòÍ`àBÀò…¦¸ É>!“Û.*÷ëU¡ÍmÙ.ˆÄ¿¨)•\MÞ{@¡dxv…€³Ü€¬FÝX¯‹þÁ¨Q‰ -"‘©¿5 U­Ä€}ÃFÙº‘7f¨n&Mì|B´Y…WâI÷ÉK$ã̺¾ ™VõVdu½¹xRX}«oãíà%ªâ3§ìWÐ;ßéyÑ«p6KÀÊ¢bMÓË«9ĘÕf6]OÖYÃäÅÎÊ»ç@[î¶åVSŽ«U”»Õd÷i„ÛuUnwN‡¦~Ëtª–æ5µóõN¸¦Z€6Šoqí4Xz»¤uÙZ!¿Bk^[Å-Ýëxò®u{'«Y$R£×¨æ:ŠˆOháBù2«`IЯ“u†$C~uë‘ ù…GÑr(W÷º¬}wzŒî|UŒ;—‡VûnÚCpkÝ-\x,k%_o¦ «s¦¯ æ×¡VJ8r(bÐÁb4OoF0¹Hl´¨Ò úÅ‘ ç©Ùì`m™ä¨ßf!Û<íGË”¦¦“c¤ /LšóD°ŠÈê_#˜±èØ*ìßf¹þ5Zf$·ÍP/·‚½ôÕä´©b‡CýÅ4÷ú òS¦? ÷3h¡Î¶zâ%ßç_ªØMDD Ùß5Ú1W̉zä)¤ÂÖÜeÁ‰Z¾ðσ;Ò5â`¸±®ÑXW7Ö‘ª9¬ ”l‘4IT%¯AÀø3¦©ØSî;kk›k«ŽµËvŒûÖ–µ4¬£ìY-›£gVE‡dõ'Sù=Ñ»,”ïs’‘å“]þò×¥ËÎèòèûÑå‹;ÑåÑ=Òe'H—/V¥Ë_ èÒÍCaóÞàfqæÛ3ßhã;Qyã~©Ü'ßû6r¸ïÒKQù¯·§òF÷]Ö1 òF÷ýuE*GÊ+ºœû6r¸oT ¶‰?9aÞšý6rØïýf݉2ƒü÷–”ä¿Q´*eÆeù¯ù¥àêí üÕ[èþçaóÄ[›ÿ¯çþ_òa2qïú±÷®¥2€´Ttôûú]º…ý¿~úK\O0o¾¶ä‡»êWvëË« mK?›Œ>'ä@%•S³o³yrMÚÑäŸ º…ÈüºlCÑêW`¥ßEÑuß=á—–Û—í]¸É©SVú¥²óJ_Ï®Ú1Yæõ½Ïªê‘=9Í‘ØZùìj’²Ý¹´Ôh~Î¥·Ú_O¡kì¹Åªªs†„ Èi‚èAsiNÝ @èl%ïŒÎxæØy8»•3Œ‰1š¯ç´ï­þ˜œJ´É«@F”¤<èÏëì¥}—„i&Èd\Ñ›;‰’Îð–Μ;œ}NóRmr QÄ  ¤f_·ì‹ß òëÐ /8­rf0O&øuË̇âÁí¿è'f\ÉÄJbg%¤ÇKúä!±~ÛÎü)Ð~ÇKаcãƒx4cÍ h_Ê,hèÊçþÝ9Íj9·@ìvQ_·ï³¯/½ÜÔNy|Þæ’5àôÄ}Ü ô1äê”çñ· ¡Ú»É¦î( X]t<œ”W“Ùߥß-ü݇0ù¸ÙæB¸| ß@þžsInEØ–¬þ5è+™Ûçp÷È;›ölö©©Û>€ŒÆtœ^/®M’£™2ÏõðœøÝR¡ÄµÑšç99&×Ir9LnfUr¾:ÒQà‘u±¼Ü7œ4ä¯hÂA}ÇaŠï¬§‰t‚ľàÝ«ò(KÉ£L¬Yãj_H¬^"VEæ^IãÐïó1>Óù§<2…ÙóŽü¸Î“ÙÙ4=Å/˜m½8`K(oPŒg{]¼Óû™„¾Kø«¥«ûg¥¼ÒÆr-Î%Ãq·eÜŒ‘ ÌÌõ«Ì¯‚ñ ·ðjâ”g(t#^©‘ jçÖqzÕøR2dò1¾N†¶úpNÃ|÷»l‘E…ë{—ñ“·iøÜ†„DþÈÿÙ–ûGêV¿¹ükµßtêìCw¸ÛÔEŸÓU“E¿ßÛºÊ\hjEÓ†¿ŽÃœô3ÀuFYâ0À™ÌÏ´_Á:}Õ´ÄÿN9ãXªQ¬‡РïðÓë?½|O8~Oäg–è/ô¦cÂ*9Õ²:‚h #é5¹Ø¡«Gžsn'Ž·õž Ó ÏõˆëfŽ| …´«Û.{ØÌuo3`1’xß¼Ï.A9¶ÍT =|qÖ ]ŒÓ.ü¬ÂÔyh@L†}$uU«Z8ÿyÏX&Á "¶ Ú—7^wÈ«e®:¡ë¥ß•cÒïÊ×j[Öªþ.ÿ°ª„CW°¼l¢äö9=ÈMH4VÁçÝ©±-b 8{T·ö•Ý×n×Vò2(^ S[s_»ûy¯pçÔ¬!Ç5‘ !ï ™„K2ÓË-kW«- ÈLc\«äJÜËS¤ÆJn;Bï"û¹¬=ÀùäLƒl–'U™çe4ï OŸ0M22ôhÄHÅØ.DAîøÃ ?µÀS+–ÿeƒrõ³ÇE}÷Eb/º1Y¨­U–Ú2î¬ó.¬ÿ#X‚\¢FÈÊ-&1W Kq²ã-Ï¡œ? Ra%°U€ª»óšg+¸™ZíÉ5©Æø^Oj†`ä+›Ö@†Xä?l@¬bU„¹×›ÝõÍÕø‰%ÈIî…üŸ-å_+rÊ|±Q< %B‰Ý‰?§P²ÌBÛ„À¶×KÚ®s"É‹G‘ÄÄÞ½Š$/E’²"IUwç4Ëmî é‚ͱåù'öÎ?+©ƒ ]M#‹@”«ùiB¿ú…±ÈfÁöãÏ”øì?Çkÿ»ñÜ·ÿíæÃ+ıÿ•)Õ:2ó…!—ŸžüÝ–Q_8³4¦XËßÛd¶Þ_ÃX˜p‘%×vY²m•E{»á°Y0µJ6ÀŒ~ºcQsÂ_ò'À ƒÓFV0#>Žåm½´û|“Œ“)`ý_É9 ïj1õíu‡fÎ@„#-zn’ñY:•f½µ&ÍAè:Þ z/ïô%]°1®ì‘$¾2päµ,pÇeú™-oi1à| ¤C'Òp´¦Âq[»Î( ƒspXàŠÌ® 6žn  zº!q9ÿv“ÌÖØöDØÿˆaÁ¿Xü=‰þ‡SRÇþa½üNwH‰ÿ¡+£ÉÆ0Æ÷ôµ¡“%Rå8’/ÿ‡‡Fþa´} àOóÚÎ^æ·}š×vöÒj[Ú]ÇùHŠ›a*ð`4ô¯œt‚ÂÊxVv§÷‰Ì _·F&ûÁ©Ûæ•‚Müýü»Œ³Ì¦ûöÙ1ˆåäâÄÆâ+üÓ‘{‚¦Py™0þïÿm60ßÉ“'—>{™L¯u0ަ1 °aíÛ¥Á8šë °ßK “BLy=,Ô­ÎäÿþßÖ­Q·<ŽÉrÔqLêxZ-b?ã‹w³ÛÔÔñoV®©>¹{~Z«¥U¹­~Z[{J;ä§5¶¿²xRã&{«‹O¯¢:ÏR8ÛÌþ9Wц´šPæÈá\(Ø2óŽúœ&^š+÷¥YhƒPòf™ÌÒÌ£g”\`® +?€„L¼]œ}‚ÒGýæ5ÛC­U­Šd‘å‘íë–ß*f{!¹¶û®w{E¡†Ç_[òëÛþÁZz»Yï߈· h÷PØn²1Ÿ Ý9¬‹pfùЋ }èÅ÷aL‡s\—™0ë2E5üî½Ü—M A=ü=.ì„YÎo÷^ó,1䩱 Ý2ë6˜óÍá#ý+RQ"šYà{$e¦mÖêlaVÓægò;ÕF…Ø­ MÖdOUߘ4µå5¯^é†_ÉbUýÈ*ûEb³HìC‰(±…9ˆjiDµªG†Ž  2kÂØ¾´ÜÖ…³rIΌܵj× „*×Åø~º¸Y`¶°Ã¡äê!¶#îÊy<%™Mµ8ÒñyÒúnræÐJ)£IFO ðäÀÐ* JR5WÊk­å¶Ö²Zó׆^FoñF÷Íî:Õ‚U*Öªoãâ:¨‹÷šÑ+³Uª\FrÆ,¶òD†Òk¤D§še:UFŽ)±î.ºx@V^ì¾äï©¢@V £»¤rݪão²ýãÇÛ]jNúxUhŠZë­LêÑ1ùTþé;»1CQÄe¯!È;„—¯Ä{úëã©rCÀ€yX`>’?p]Ëñgîî0´ŸŠhJõä;óëBÊt^FA™OøùâlŽ£±ÌqžúÍ£65C'íØ+អ³³¸Ã=ŠÇ ëPšm©Dàd{%b§Dvö5`ä} ¦\–@5‚Õµ°Dˆ/:÷Æ\ v$EuËš]ãÚõévY"ÀoW_>ók«UÛÐÈáw?•ÓÎÑ:x]–5ÚË*dHÈÌjÃh"R ÀvçüxÛ†£nNoñÈLjõü=ª|¤:ðó#VúøàqÍ·“Ñd:<Ÿˆ££}ψ‚ˆ%6cñ@q s„ űY LäßÑzèm…›$ëŸmJðCOþñ±Âñ Ë(H8vABHJ‘áîü <ªÈy;oû»PdýÅÍùeL ÃTçà|ð¥õy‚ÒEåÀ¤H£i2<ÿ–Ihd=»†;OHhà°8(¸¾EâÃT^b|&)ä¥cÌßÍMÉ$@89Ð5 &-¾eX!<Û 5O"»R—SiÊœ¯Äú w´».^r\«Åhd\ÍsÄiòÏE:MÎs*¾n¦¸þ’ÚX¨¢V\iÝêÍÇ•z“eÔâ.qÄ‘™”“—ôÊ®¢"¿ùݺC,´·nB(AL¥Là²ÆÚv&¼—KO$±¹Æ?ÃYÚ0Œ6R+qŒOFoÛµèe—£B2Ð .~ø‡Y‰0öNe1UZ}éàå*Z ÈÕôe2ý47Óö£f=@Ïfý2¤Íìc(qz1«”È )Qâƒâ ¦á-^E0r˜l,S•Hüí5ñ7NiÕ¡¡µßh àQ7›²·¬f[ó¶^ ‹çÊXëšp‚F5*¬ ˆÔÁÓeé`›`$ÄùKB8ÍÜplz°=d<èt49û„Ñ:ˆãóáôœ v0 •ÙQ6–u˜##-T<¡·´ 㙌؉& &ÄǺ\x4؃y¢'^µ>žŒ S©´¬´ÍV0²ÓbŒë–b R˜«eJX4 ÀL.[˜%²(C@@W×]3؟܃W1 Ò´õ¡}‡Êº÷¤ò'¢º^¦cÜÑ"dVÇ d0ej@ä˜ÔŽfMŒÁæ³õK³9F›PÈY®¤=ÙÛ X«R3eÍ œQ©¸µY~Ì_u(¢.Y“ñ—'Œx ã#%gÊt·™SÎâW2Кä³—ì&åo½P'íý䣬s›ý䣳Ÿ´½nÕuÜ=hÈ ¤y¶€e7¶bºÉ=ç#‘ŠƒáÙÙâzAV ¦Üгæ3dÒ§I2–¢òùo>D e…S çÖö ’ª>¡ òñ%EäÎä…;̆¯6“EÁ…òoËÈ?®  #/Ëh]`€Á¢X†oƒ°­c¦u%f] ÓGDWzo”z¢§&Ì’1ö6ü=’¸´¹‘ÛDA%ƒô[Æaé¾L¯R‹K†dTˆyWÍNñZ¼~NˆvB•3<²“”ÁÒ  B#0_àÓBAÁ*…ƒz^C‘ cè>œº1"¦Ë˜K ]ÒNž¸‡œ)†¯&ÓÅåO¥'†}c5­…€PH0º ¾²½I£Ë²B®®©¿QóTÓ¤öÖªGHèGÕ uÒ|ê߆©ôä'“EÛ_Ç"5àâf.9®é`“wR_ÌÔ"ÿtB˜7Øe°ø± Í‹«kˆC»»K°HÉ™3w£ì¤³ªZ™&— Ãã!OQ—nŽ(b=»× Ø‹dølÄ_Ÿg¶ÈדsêUЭÙ~NÏá'ìy}À_:]*}ï O'Àœ&SÓðX`î™ÆÆ–îLÜfH­oÉTZ2£jnþÌ™asÎ$LÁ$˜#ᆡA•*UÛÄñ’Mêþ2E߆ښøˆ^‘æz‚ªŽÉ)nÃÃK`&ð[•E¡ã‡ú&«Wb‹Î'7sžB‚A2êô3Çn^!Sù?buƒX¢áÍM&FÃ)X9 Í]@^âüúë c“ún†Ú!}â-oùï ‘6*ßÔá( í½ëbð¡0Vkfô}nÚ|㨉n󸥍­æ ªãϸ¨,…Ý&hOÅ7µP–ÝXßÚ|ñìüÎvæx9‹w«h FwªÐÄîM~И)B㟘̚¢~2û-Aoµé'Zbú;¦¿wÚýmXvleÖ<)¤ÍÐ:¶ãˆ±š¬oÂ?¼3ï ÀU;Z–oPN]´jей½ºØ¯‹N]@sÝ·˜³ þ…TÌŒ^R4c÷¸"6ƒôÓF»ÝÙ~wø;I‚­æýîKƒý×or õoe0¿ÓBWŠ ÌSþ¾v(fWñŽ÷‹ôì“<ˆâÉêf2›¥P¿\€Ú¬EXÅY÷¯PfâS­¾È0ï>ñ:A±/‚ñs3Î)Îà|0%³äÐpÆ™]Ñ M ªë©k'Ñ›|èÐ^-v³ï6‘Øjü]Zçÿeê§°b辯d§pü5„®ûQÈkƒ³øJ[é'sݾqžÜ`&Ÿ1.Qù7ŸQR:¾ÉÝ(Û‡ })š¯w‘ºÚGFlaâBÚDŸ«ÉwÊxÈ¿’q#®ç–¡VªÑ±/4'%Õ Q{q³-’¹tv¤‹h³nÇÚ­.ùä,“ìÙi*7õÑNÝ(A’<*¡,S;¨s1©‡¬ãž“¡e ‡“)©SPÝéf À•~.“(à™k4™ÜØé¼YÂ÷".ãvfgiãF–³&pèÓ%4J‘æ ûJú¤W€ª„l™ðblš€8#ʸòÀ#)")’“Âj„Îé10LO¥¦Ú›Óeƒ„¢/†¤¥\r³Ð¡ Û5È(ìó™¤Ùí<þA8Ä~‡W7tS]T:õNƒUcãär”^"K³ ß§÷B3˜æù̘^uø-öÖ¹lÇ\õâÉàe¸â9ØOô<㱇œÔJà§>Ù£ô{ÏÂè<i5j†B@:«yRdÿáñ…;Ìç Ÿ&gCÌëe€ð2 °Šè CfXÊp¬sk·{Ü1êRx4Ž\Éäñš!9™ †)éG ­ ª0#+cì g ""KUà gÈÝÈa%·ðb`Ã>‚à£bz½¥Ø@fÁ6à{¶º§»?È5ÊJí7b´«u¨Àéþ¬¹‰½VÈZ$7“ò 1m¨? Å)ŒG´kÒñ]'Ë£C–u®ñ&ÒAö‘BN`sÎæÒ=e§‡ð¤Æô8ŸãùQ»¼ ]LàlÆM¹v˜!½¾™ÂQŽu¤ÓáÙ7b_HÖ˜Lo¶.L Ãr˜¾`»©"jÃÞlY&ÜVíº3¿ pø´šƒlÝB³êCŽÕ¸òou=l…zxð‘ÀvCÄßjV±e”5xFh¨òŒêÎTkaµ&Wãÿ‚,!‹¶éÅÛÊ Œߨ‹1-9j—Xd XЇ7 ×ù ‚ç§N#déìðøÕú¤íà­Cãäï ¸”hoÀ­Áb¾²óÀ]²kŸrçz¶a¶ÛI*¼›ÏŠ6tœ2! Ê“ø "ÐRgœ$œ’JIm¬y¶Æ¶Þ}7XËTBŠUûJVíê-°° R¦€ð„ï~=Kn¤†lv•^ØžD/JyuÇÙ…:x éÔüÄo#ì3*8ª}(/©Æ+s¡¸jç›x“3˜ó \cÐÊaQŽ3¾qâ±ÇÛm)Sv;°÷ùãÄúßaœÎ§l¶-˜^m¥³'â|² ¡GiU¨¤ë YÇ$E_N“Ä –Ò~¹_‰.&ó$×Ú‡™!ÂwÅSïƒoiüº¶W7ÎêšïÜx’Ù,E‘1;Ql|‰Í7±eÕ„Ò/P¯²æG­WøyœS>öË{‘$%J#²ê!3¼aDÂO¿½‰ý7ì#á¬F™ú“?;»U¦Åת„;úòÐ\:ã ~H»ï{¹å"”@ Ï‘sç{‹ ¥ñL.ˆŒgBêí*jº=gQ =3X"P«M¯pÁšøºÅì8èÜEý&³ÙÕ ®FÎæ±\¯‰eC’ååŒJ4rJh¡5hŠQþbù(?`¬ìþòÑQŒËœp¹ºFœ1Rï=ˆÁ²y P䬵 _4Ñç@4 2Lxòƒ3÷<ølC õ`1©•á~ž¤öQE]6±¸t=™Í³+§Ùº·MÄQŸyùJ 70·ÙzÝ ZÑ›fÓdæ}ŸqðøÝ±rGÁ²UÙR·»åY]ðp *"ÐIÒDŽUÙYzæ¶gí`jº×Øj_BvëoÚýGëÀKš¢‘y¬rŒÕô÷Øù¾é1f%ùG‹±z‡ßoª÷›÷È•p³íä)=žoxLÚ`¬Z±ÇT³FĜΛA’€[8N4ø“ M¥²æ:s­>³àºèö23 iÝÿÆ=zPDÒ[l¢èì'G’™ëõ!_eà…^…î2 ½ y¯ûA3´;ùë7\‡I].1ª6(êCPŽ0BЧ„ÊÔ¢¬Th;—y¬s¾$.¢Ï„ØßŽ–8†Hp;š1Ñ:Å1Ì÷ð<©‚•vö8æW‡(uÚS‚O—œ‚÷3Ùg~®lúv4TGo±ë¾Ðë…ñ­JyfÞüĪãX3wû¸€Ïá4{{Ðí!CÏKèq¼©w÷Õ`SÂÜô%è&ðœo°¦5G"¦¬F«K,ãÛìÄD†Ø¬ÍÙ'mNì.5A ö_¬î£Y@@8íÓ¥ãt6Ñ㸪HW>ج*2Üó+„QÛ„Ô@ØÕ—»MdK#«¢¾ÉJ¡ž}P•b«]Óˆ,ŸÍñíiPö#âǹ1kÓUpðÊ~m³N–·ùøE^tGufƒXÖÓ8s³ÇjZ57øUJx<7ô ,†±&k›ŠçFÃe}+žÕ£RìÌÍ/á¹q`©ëÖ¹§gœ@mhíÝË-P™Dû •aCH§Õ@1=í9øèÎÁÇÂ9€ÏGc>–™†¬Žœ‰åf¨[õÜÉøuê”—r'ÀJ³dÍ=+ÑçuÑÆÝ˜Ýƒñ6ì¨úŸ‰MEQƧڷàMÆŠ¢ègâ*Q|?lå¹Hßž¨GѦ{dšà‘÷ëa:Z°._™‰qjïñ‚œòšM Ùª4ŽS4i$ažmøÀ7ihô˜ø·•v½íݾ¤ƒPvF÷t™A‹9õd5§¨ÓÕ瓽œ+µkæÉÊRÊÚÝ‚c{»{Ë>™·udycuPƒX|BúŸe׃0Ú5sy3½|i(}fP§OžF,”¨WcEY7(uóJ¤nÞžäÙ½j¤r …ð*ÿdü×®ó¡p¿ìh^AÚy¯4W4Xq_rv™Íµ›ˆÙ]ÐÅtóœw‚¥HLí¸Ñ6PR“a ÞjÌdOrFeÌzh´ÒhGafa<П\8îZ_ÂA‹ðõÑÅ‘ÑÁîG K!¦î^ö¨\…·´•eúžÎ3ñBà‘Ü8ù’¹l´m³i£ø;ë¿â f3Ï=›³Ü¸>oQÁõð‡ç% Äÿ™>lþ¯èE´±éçÿÚ|Œÿó¦D'þOu—<º˜ùK´4(Ž_g~üŽ¿ÿkäôÚ¯«´^4ºß)ÜQ·0Ô_!ðŽ•µkPaàÝ}kUøÏ|6þ{Eö¤µJª.˜9`tç‹3©ÅeE9À0ÎM¾®•ÖbÜhýÞ¨ŒŸj|m¦úh³[í§ši³?¡ç¾y?ˆ†”ÁÕó…:AÌä•6¤ehí™ÈÆ(éu …Îdö&@Þ?ì5áßûuŽ® )ŠYù,¿q¸¬ÀHq­:'8Û€}ë•}2¥Û…ãê zü„ÕáÃÑlbŠô¿ãý´~ ÿ÷Ú¹mIÄ£7»o{;*=NA~¦;ÄÆiJðû%A\\ a»ò1д.vÃl0çZž{<Òâ˜DH{ç*¬«åi¾/þ¦}ø»­R}ÎÄ~Õ>ÕÍ(üZX5ÇUo "ÌŒQB–ëC/šâ¬W$ ëØc&®S`UáÅc;ÒæâÖÌ¥õKÑóœËžÿf÷±ÔÄ× bƒ´L“èÞ[¤ùÞ &r3 ½Ñ9…[¥…£ÖâŒø„ü,^•9mÐg1>»ŽÉ‹ Ÿ$®í 9–G(0r„9! `à •X1-/XÌŒ÷(Ψ'*=ÆhM8öÀj%¬´õ@缜erjǃ{Àñ`!Ž»- ù÷[ â÷Ð híŽO5C×}ÿýúþû:ú{™¤lJ©¹R(К\C2 ¹Z ÷AŠÈ<IÕ¼é-Þª­Óo+ãSE¬t½ücÈPFKºì›^g¡¹8º î…óávºÏøï ¿gWx|žÎTJO¦ZÞ1?Ïå=º áó¹½LkŸdè³:|‡oøwôÿ]‹^ŽI›!ÃòH¯~É ›ªˆ ¦Ã½“ì¤Ü ,F{aÜçÏ oóÉeBó¡µ’[TpŽ¥Ô@º•äÍš‰× ¨eÂÐ2¨øô`cÅeo¬&6S‹™¨È.Úñ ½ämìå+QÉ„’5˜ˆ &ø¿#6Ã|55Þp‹HG#8ÎLU°ûf7ù:DëBšW:êÂd¼¨‹Oðk“Æ (y%â—š4*0µÂù·vçwWðó*çÝç¨øÝçx…wAOæbÒHÅ íÒËÔîûUVœbÅÀ©™zN®Ôhá8Õåz9O.XÅùÖ$k Ä‹t”ðòšHÇoÆf@ |à‚“ûÆ“Ëþ;X9ƒLpƒ±è:Ÿ}lx…ÀŸxp Úx¿H¥Œ‡wÓyJ>¢Å ‚x“ü‘‚\˜¥-¤} ýŸÙ_³ k{¿¿Ž Ìñâ—ßGÈc‰%‰P#Y¥À,“ü^Hj-VƸC§Ã³Odp‚šF ZtÑ2Žà¯ß'"ƒ¸»M漕ݭ³ê…<þs;½Û^Ý{¾yBÞóÒ‰þÍîÁÿ:&úmxš?RícA¹á× Gµá×q o«ºÜ£‡sh„¹Îõr-çKßÙ]·,rŒ{Æ7º˜£ž0"åA6!äpúf°RìÃ爷ƒfeŸâ‡¶ÝÔò}»¡­·˜ñÃÆ€‡Ó'AE*ÎGE<龃^³Û?|×ß…S.œuê¬\nPß±Íz´ÆZÜikâ•%U˲Pý¦¼Ëd¬—´À´£áú u—÷Ët¦ÆRÁS3Ü®é[M ^«Ý“®ŒmßðŠLäÈ|3 Ä†k_ô‡» nÿ—ßý;7ÿ%îýÓàÞÓ½ÿüÖLó»Ýðó«‚«Ú%Wµþý_z=èý_¼mnyþß[ñãýßC|˜6ìû¿övT{ïZ”.î¤.ú»} îuñ¦ypÐäï‡=Jv·ý׸„qÂxó‹ÛÙØ: w¼#üPÁ8P€dú]þšfHÇ*Õ1:1:ÎølÊ[÷µ:ç))”’Ù<•º%V†aî¡YŠÊ8&ÈÉ‘j<`|­cHèñdz]ùºÆg>Ì­5Æ&§“¯+¡ÔA¤Ç•z¼X‹?PörO J›GâÙSx] íøüªÉN•Aߤ‚j¬†,ãÎÌèåÍ ÕÅ™ .Ó„„N=ÿ#fÕ¯âÖ«¯xÇù ^(~%ý» †ÎÊ á4ÑQM|y".‡××CÙŽÌDŸŒgI>àE;©°r3•²C9äð 3Këu¨';Ñ×pÐíKŠL3åÀÞø·)V)Ü _­¬Ð™ûÏÿÀ»<‘q·±ýj5–H¢˜?* æÐb¦ ¦Ìö¬UÅu±‘­þóÉãâpPüÁOþBkþç2lfÊ9 êÌ,œ†J\æZöÖÀËBäfÀ¦ 'Ãñf&wZö$¨‚Þv’ñåü gä„Ó(sͧf‰k=ïä†\_eA5ìÊaŸ»Ã„®þ æ?4—`àîµËŠˆ•—ì2ð2°Õã?ìÜ.•E@å¼$ð °UK eZêãÆËwÈgðRÅ× Üö*à¶'³¥¸–y…´Æ;–¦ÙLk¼S˜Öøm³óº.^¿;굃¥¨gK÷- Û—VHeÜê71í/ü&!~1ÃïÎá[Ìn Ù»~1±{X”˸û®G ììýþµ¥%耠ñ`8hFü+¾õ5¥Ã¥D¸ýö›¢L¸«% Þy7¨/Ol– µ¹$û.àR¹Pwoféh2Î2¡ö±Ä†/c™9"ÙÔËðÜ©œ\g-{ó¨Þ12Þífùéï (êßaÿ¢W ¼ä7¸PÃ;•Yxv“œ¥(8bxóMyƒv‹³*ö1cÊnÇ4Éãõã¨÷£%éû9±Ñ·¥Ç-Î8'z8#ÿ)ô$Ô£?ô†ÎøÓ¯ökÛÕípž¼>æ:8 A߿҃èGU÷u Ʀ•_YA$ûxŸT[•´š¯.·C8ä1«™U\ÇŸY"Ùž?Â~Ìo±^à­<¼¨JôFÕ~TëÇÕ¾A¹hè¾ÄÐeOOÁ>BµÍbÓ¸€b”D¨9Þ~\Š^o³ê]‘†pµgˆÄY[×[÷ß ×ºŠàª(–kR‚y‘œûzYJjHEXÜ_šÞý¼LÛt…¦(ç‹j v°ŠÔº2÷J†fRŽ Îe<+ ªz‰°ú4‚Œ¹Q¿¼RÛöäfã•,I0Î žXåâ\H9G‹†'£,Ûá3e{éÄÊ(«JYú4#k9’JPÖjE•þmÈèÁEÒ²(ÆŠ(3Dά—=ˆ Ó´[åj–°ãŒªÏ‰1§“Éœ”Ç£É ¯aØYïàO6‚0°†·ìªÂª²É†’¨ä÷šjÔ¬Œë,ÍqkuJõ©®³ œ§Óäl>úæôM(™ÏÄž)hx2ŸÈÄ>Yr¹TGÈ1­±Íis¶\%“Édc~9_<ä®%/¡š°Š ÿ1éŧp^ÂiÉp¢E2ÝÎÅðz²Ï‹ð«pjÊÖËñ«…–¬w‹„!9 2Òµó, ¢…éKÌÚ^Ý`jÝb9[”µ…7§Tªü¼úÝ{8éݱ÷u»c}ɵ6iogöžþŸ€ýÏl<ß«P±ýÏF¼yö?Ï_<´ÿyˆ¯Öλ7íífG¼>ênðjWs¿ÛìVvÚݨ?â?Ÿw_¤ÇRÒÐÆràFW® ;7+§ÝÅ 3Š·çè/5C“šÉ(A—.#8úØ6&7óô:ý—²À~ j•‡Ä´8»JÎ>ͨî°;ÃM›¢ŸN)Ž+€Ç4íC=Ì ¶p®ýs8œƒ®@=ow =¹MHIÒ¸™¤ã¹¼jf+ ,úÿ¼Â_E9Ô¯zG»h0áîèÞÔÅÍpÆa•$jšÒÙp† ÉCO÷M»QcÿÓLÚ5¬2(:ƒ÷YDY{<Ò/qìµ¢ÒCÔô/=…‰…q2nÑÑñËðQK{þþ??lþ§­Í Ïþ÷Ùãþÿ yl°ì;ݸ":a¬1üûPýƒv·.¶›Y< þÅhuT\°`±Óœ|˜ŽÌ":;h¢œMOð0Tçô>éB‰Læ` eò}ÈFªC µ$2¿y"‹ Œ+LKÄñT F³„Æ;Ú![±ŠZî^UZ&S7««˜'¡0ô9¡ðõdjz§ ô‘$/Ï/bNù'hØ*(Þl:ôî ¿Ôï„ô1Wî«5£ÊÏþ›’Écí›d rÌ©‘7*ë:ÂÞÝlhŽõ5%¢°k·)¾â < üë¡~”‚» Oð^ÛªÚ_ŒÊ“)m«£ä+Ë`,ϰqfKI>1ÊâÁZ ÊéÃÂ/u G=•ßQø£Î 8òI„mÆr¦Úvٺٲ+‚zë^Ô•M5»”f^ª F8M”+õ”‚(Im– :VÏJ¥×Cô‡EEeï`ež9¥¿DTPó.08¹²€¥ÌZD]u_!ÌPZ…Y³ly37F$èzH:ÀEH™øË:ÃRæÿGËÆ 1N`Ü3ì$ ò ³N¥ÌJÖØá®UéÁ ÅœAF†·RÍhô£ˆì\PR´ÍÂa ´ÈÉìþ¨‚ 8žc,%€.fd‡IA \HëÔ&&Ë·*vâ·Y@«c²Mc…að‚ñdqyE‰£‡Ÿ’B#æ)–„Î`KëEA ¢1øÕ\öËï þVgpÀéió9^’Å Ö†˜F;8¹–Ý¥5³ÍSX8pŒÌ#›^Œnªîœ‹5y0pºÎçŸÄ"ÕtŒ‘æßÄp'Àƒ„:Ñ,ä‘‚&‹G%D}j-@Çb2à×ñ®&sLþ‹Žæ(á Ó‘>R…D:jËèVl‘³m)¿þºÙécù¦Mó:!*çª{]´kIž½ gt†GÆYÁiXóøg÷ÃRØrŽÿþòߣŽ'“– Éé‘ Ãh Ðlq©…z2K1æ ;ÝœNcŠ3÷ Um‹yÖUŸ0ÈÑ9­8{_àm æ†S+ž«9@eÚÁ®*:ª[PÐÿ4™I€Wtù§×°[  ‡¡ïRâÖ8nAE¾0aè2 s¨FhÙDIµ:‡jö·Ù_†¯³Irq‘ž¥ÈíÎÔfB€ä)-á`<¸òàšž+‚’3œøzw‰/¦È5,§ûì*à;Ñj¸‰ê‘Þ ¤‡’#Ü•Ùr'^ t\—ƒ&æ&÷· X{¯"ÙZë6ÓЪw?äLÃÕfKT¦˜b©qE.N°×Ê-A¤ElÂë™Dˆ"Š¡4LeLÊL‚ jÉ”éT0¶Áu‚²ôÿÖ„ÑZFz«Íž5ªyo𣠶Wƒh96—´/ÓJ1ÝNJà ò­OãÉ—ñ …ÍÒ§µQ9dbÐÆD…oÔDB™œu†G3'ÍXõlb±§I7'·¦›“etC§Ð"Ü{›.ÊÖJ”!Qº¥Á[üåX ;D#ÕÐ;Áù$aMüäìlš]ØixŠp$'´µ-fÖ®d p'BË4*œt0ô$5'ì¥)FÊÍsð㊔š2ñ8¾ vl1' Î£:aaâr8=—qüÔ±óƒ Ã8³ªjTÌ.¦¿ Ä9Â|\Œ†—ëÖˆ0†«2ÁóÐD–$„Û˜ÂiépóY‡VMÉ X©õq©l©ŽRÃOð)V0Ádu…¡WC%Áf’¾‹=­ÈŽ/-9Rl¼&baŠáøp}Ytqžž\ ?'ܪkb!DN?È;Ôè¹>)‘óµ<)yMT°“$„:g¨K˜æ¹’áõAJ}ºï»/ñ $¯8Òs<¿ÙM‚ÛWYj ùäK”÷Q„:y©sâ{F’³ÝûŠ<ú–¸ Ú~¾–m…htÛäþ¶—ß•V«»S 7¨X%Y~³¢´ÕÃ=x±ÝŽ ¢ ák,DÍmsÝíÔÀŸø¢ßƽºèÃéP%$¶6þêPg»èxÇäÑwÔŽ"þÙ+ïc*SìÄQ*ö°"þâGq‘ÓâõþÑs‚è9A|œôBÞ‰<+¤-VÙöúš‡±…ªÎúï‚I–¹Î¢”»…®ÃŸcÒÙ6ˆcép$-²,ø¾²ìg)|f3Ïÿ6"•>H–ë Ì lÖÔšäáõFËuIé~ȃ‡„‚â^ô5’PÖ×hå—I"nD»>'n7«Mµ  Ø‡^uÇqà V:c×ÈÎ<ÿ†–þ-þ¦vÌT@fçøÕi‡D ×;ƒuž¾°-(wA¸¯d—‚/åLìIè‹ ž²wüÌL$´4¾|Óg=4$Öõfwgë¢K™ÎÇJ¶±ªÓ{•¹X—åAW©^‰ÁÊ…xâŒìD­~õЪÜù ô{v '!\Œ’·åMUF«¢b^CyÁ`ïƒrûÈÚËIZÔÔ—öÏ@ßÔñ ·ÎOCù c-•T„Ê”¤B Ì,µ¡ØŒtþæy’U?ÉÁTÞzRÖ ¸IšcŒ¿Æ¢ï_ʆíi˜œåÆ'Oa\½ÛE3¹ié2Ì„\]T~墆λ¼: †lÓäEKí©ÇfÏb9-©“Ùi߃ìyî–Û¿q²”PÑ·û.zÊ»t»Ãл‹O{A'UùbÃ)Ͻ÷EwÛ -HæŽ(#ï!!âÒ$X¹~²%§^  êÓžû.s3€¾I *¦Ç¡éjv{ÍæÑô§¾-_qjh{£V0óˆ5Ø`]?‰Õ²õI®ƒØÀʬP„¹¡ìm˜ë,cˆ"Ï÷Ïò¸µPý§á-Æ”°|Æ%c·d`Y‰Œÿq©Pƒ›ðýúD»3\Ìf)egHáx¡¬(ÌÌœ¹Z"¡Qõ]Å’ŒºeÄ4¨^¶æÃBÀ8Ž`#N±ˆŠIñ¬‡§FBA^îiõùxøX†\L¾‡JFÿuœ½^î1oƒóøš n©—ü‰·A!JÔüŸÈùw¤ ™LJð¶…öÐæšP–l7̃<´˜»Óm¦KEû{3Ã#G¡ !·%*ôTé‘übÞÎt’·E`s:ÉcÂÙŸNBû“Èè› Ñ—›®û¨àÜìˈ9ç•ÄĶ´Ð9¹màÉŠÑ6$âà[-øl›Žo!¢Æ+‰¨ìSOšà;‰¬Z5о›ÿ¼BlÍ=Éçh]a·f<ˆ¥_³dYé×XDLw§Ò0cf¨äŸY¢ÆëC|ß¾‰ïF5°{ÏñþÒ…|?²<^غs SÊ-b¤d 8úûVnðíÉyÂv%“‹‹†2»#š·ä\lK‡€áÈaHö0YÄZù+Î]ž %ô"£bcŠžã,ÃmTeü$èª/Ïê)¡Š *F`¼µŸ1Bö«Çýj‡û¥À뎵Ëv¬gu¬êX)u­Ã 8žNÛ(‚K×è<´8 ‚.âu‰0ŒðùÐ$éÖ(ÖŽÂp5®L‰K¾"›¶:½4~ÛyVÀo;·D¿ xP‰®ËX±š˜a±¹†’tä¡MJ98pr‹£?7s—S¿eh澃B ÿÄ/–ë ÚYíÀ†ÜjgµÝ×÷¬N0[ËëLœß™rÊ $º*´ô_Ðm*Û–eU5·¬¡ÃÈ´Z¤lÓFR IyŠ´ªÆ&ÔSy¹¯åJ±™ND5TV=’ÑóJš¹Úr÷Ä%š5 ‘N=eB½Q¢,A©`x: ¡¦OÁðJäŸ` nÑÈD ØØb‹ ¾Nzd¼å’«rX]äCÓ‰’œ±_E}sFøÛéä !AÖ!2•°ÚŠAr} Ë©ÿú aËün„-蟴¿«6ÉëLNíp_Ëë¢x­áôXj)õøQC(¼‚†Ê=Cžäñ~8Fžä#Ńê¾Æ–f´ët³ ¬1?îþ Äÿ˜mÁ¬[e£—¢W0w*&û%åˆhý…Mßfœ¡fô§£ÉÙ§uó÷WÚw·Û»-PxCí™@‰ŠŠ€z *ÊTóé–™ju’ôÃTdÃGMÞ Ábô €¡@Ÿ„=”ØûÒA_d³„'Ìkv3á4ݹH0{º†ìàÌça:ȨHˆò£Î×–öÕB¡J÷€%`^ zL¿É~T¢—pn…}Çb—ãä‹•z\~”¬|Š%Q~À5gLfÉm\Ww†i4¯©ôítx•Í+@7“Q2Ëò®Ÿ9QðUx#8ŠÕ³Oì0€:˶×Txn]KËj£œ½¸9ÇäЊ¡…Ì'9÷BB¨3Uµ NF& »Z6¶ÞŠc3&>wŒ½JÛŸv5Ø™5Z„w¹ÑÖ"»²;rw¼¢ 5U×b5N”þˈ=©Ò²jƒ' ‰Æ²«‘ˆÑø¶ÕÅj8iŒçZŽÐOcxþ¬aÀá »*Ïøj ™½Ú·{ås”m{zav í)”ª™ÅŽÒ™3?=ç-‹S\Å]®ë £üíôêo¯wÞ.Æ›ÙÕŒ–.‡ÓÓá%å7â£Ù†qîÖyÔÕ^cÀЧ5ÕCK1’Ò2È™ô^º£ýRí¯Ž¢ÎJ¬.~í+©K *ŠDÔ¬`€Ô‹ÅˆÂ[YqhþF% sÒX£‘r0Îב „Ñq€C§£Qr g “-©+À09rbMçÙÖ·Ûɘp>MO,'ª€X´Ý.í½dÜØ†³è@o¤C$ìÛý0¹“~¦hƒ¬õEñüÌŽ•¡ÆÀUR ¥ûMYæÝlœŠƒáôŸ°‰ÕE§Õí<íîöúÛ²L` 6‡r@qìœîî›%ásŒ€9u'–WÆ î#N“¤ãñÕÔ‡Q~ÿq×Üãá¿~ûúuÈÑh}Y=²Éö»Ãßì›ÝƒcJ¿M_;Íþ6^8ô(<^t9þîöZfQoVˆç² íu{qA—­b~««ÆdÉ Ç²,ÜÇ=tÄ(ô/–„™Y‘6äƒ×hÄ:)´®‚b;VýðÍ`=dVªØŠ"²ÛA8Qn…Ø«Ð+®°éV¨° Ãî-=ZÒWå¹àÜp;Š; œ†‹»÷Ìíš±F7·Æ‹@“â*¿ºUø«p35ÞÜð!¯¸©ÈÃ7K›KjyhØ_Bödd(ǘ`ÄÙ6ñÚ®ˆ'|Åó¤.ò¶Q—sÓ‘˜“mjÁÔüãS$`Ͼ\»ï³ÎšºæÍ ÆÆ«¥L+î(†g|„RW0–¦¯?OnHkü’ôß²[*Oëp“L$E»ËÆÉžãmVŒ3Ed/¾cVÔmqEß¶e2 B][7µëDV}Á'¡åÁ0Šéh%ìWòÇa¼ÄˆÖ%¬^#­˜ Ƈû…1@œM³‹-# é³Ö,ÆŒÀö¿îØ|‹Ú¶q€ ´½â%ÃÛ̦}n\+h­¥¯¢Ï H•0H¤¬fÓæugFÇ¡ïçÛŸ‘@„øú;ÜœjñÐl²¶ ;#ð¾÷‘†k$5—›Ÿ5 ãuØO+g$|Õ¾ö(¹îf5Uî®x*gìi¾ÀFgµÀÔ†±ô²©ážhø¾U& Û s:¦;Ôö›‡Dv.E.*ÊVãUîøR$R·Y uº/Eu±ÖX‚'lœYÖaÚÓÄaÙˆJbBèQP T×­À§iϳÏÜ9‡zR|8JÛ¯" ZݾÓììªÎ¦œ?çr€¾ ¡w ‰ Wgb"á6såaÖž½"³úµ¼BÆQ¼ä©h¸Á_—(d¶’È*z8î¶rt6¢%4ùƒ”q€6»/<æQÚ¬Ÿ](¬ÿ×F¿pý¿6Ÿm<ú=ÄG2#Çÿ«™ùõ:ýöG¾« ;‰£Âmä¨.Ž$8Þ[Ò§K2¯|®Ó˜v)#k$Ã,Dû¯á f;†ù^aŒm5Sùèà9 ÜöÞÙã‹'SúNµ3?ªü¾(G+ÞB `²å}ƶK8ŒQ§2'³žñ½ ¥[™ªª]ÇÔƒþ²ÆÌÒÇó[\}Ì*“GvœEi*Ëu:OPŠHÑWe†âGYÿ¯ÓoFŠ5²b:ÞQâ¶™JS^¥œ‘mx6çtß•Á•“…Øð(Ѿ$Cjò|q&W¥×”’õ:SÏõg]Y·/”oË+Ô­Éñ*¼.¹ 纱òñü!Âu¿Ñ’O/ G:Ù:Sè•”¹^9 ¬;)‡ZhUI®jÊ I9åX3 SöU ¿|W!c «8 9>ŒáqZnL)3m&n;µ; ¹þ/EþBÒŒ8ÞëëáWÌCc% ÎN“3´ÿÂG§“ù|¢Ú[¶ÞHÉòð:M”I[—ß.w* ùÏ̯%—"]jŠ\jìö|çšq©Qææ°ÑST¦¨ËéðÚì_Èí¦„³ÍŠqž NSÊ&¼³ÅˆDС4ÛxiÛËÚ3?6m2ÄÝÕ™çÈ^@å†z¤$×­(ü¬­a(½(kzu¿Š#ÔTÍ;þ#U©9s:I­U®Ö vðœLM·ßëÂK?ΜåŽ[MNù 5¨+Õý™ì…û%ý \G Í݃´cZÆ›KÑ$œÉØèÿí2r¦?ÃÿG`Ĉ|‹â‹6Lbùn¨õ®&΀Ԥ ÌáÝÊg«‰ñqÆ ª—r6}'.œñ"'£™åýrá*3а×dþÒŒIGñ‚†)qæŠÈõÁ0ô®ÖJQÇ$sÚ‘RŸÄÿnã‡YÇ$›‡ƒ(¹•7j‰5+•<ý¸fEhö³°$¦È¦#”¬HåŽ=K<¼VZÅéEÖ‹ŒWâé3vóIÀ”†¶yÁ[l+à!r·r(<ï’ÑéJ9g±ï:æ~`Ìg³{si¿3wÅgXÈõán3p¶µÌW¹‰ éÑÓí/ëévçñ¾2|%‡6ÌJÞD´ðî»]rr뼆¨˜?æqv“¿wwZh¸Ó>è𯞌䆀øÂ·ƒ"(ó K÷°4yœøc»‹ƒÜÔl²ºµ¿‡Ò×·?…ûŸåÖæ .d蜕 eÝÈ–»vm¹U–ºv=ÔXâÚõ‹_åh‰¯Õ†_¥„_—ö!»“ÃU³¼Ã“Uk2ùÔø”$7È‘5ÂdNG¯ÅM®œ¦º‹×4O‹‘Nÿø¼¦ Dhu¢e2½¯Ñîb €—F…}\i5ë1•Ý1ˆðÍQ¤GwL’಄‘ß&£Ñä ï +xƒÚ-yW«ã²i¥Ÿc]›Sµ..'¨ì{¶±þ_a6ŸÌß¼t´ Ïé©'癲ÁÔ)Aç‹/=ftÆ”uù’£¿óž¯KìÐ+„$„¢› '°ìú€Ç³”/QÖÅkŒ¯çZë `Y=Oõ•!Ù»ÀÌuÝT¬‰§Bq•Ì«Nm¦±P{äú3à°ËÀ}tDTe¥º(•l•q ÝÜŒ ½`‰¢P…Îë— &´üUËk$§7cÕ1â©mï¶1g±¹„jmËÒ¿ÛÉÞÓ’rß÷ì÷=¯þk,° ­v;f5ù¸fvF›XHË'Ý'*ê*ù¢u¤±åQ…woi2•g,Ѳ‹µ”ß>Þo[/,³Ãœ^踯ø—îE¯\/zy½èù½šõŒÛºÉ×9¬¾›oÒžSš²Ag¶*‘q,ÆgW ¯J_Y_jŒ‚·¯¦ëaæGÉ륈N‘5ÇÔ¥7Ç¿rÛoïëú,y¡¼6ZñF"©ÐiÀÔ2ëkÀ†%y¡½O¡Ù\­âæ"ŸH›Ú C[‚•×¼ 9‚(‘,ÓVØ •VŠ«q–xèh¨t,­í¬ ˜áñ\²lìc… r ;i:™l;ö#ÏÆ›ê&²=Ѫ: ðµÍK6 Ò™Ev õ>7AB;pÛ0%¿ŒÏ˜p‚ÌIäñ'Áâû?(édy”oó{ï8ì‹ zè!)°ŠMkHK»'MˆÈ®HՌ⒰×Ê:Ç©u¤­tÌù`Ø:Èè´´*Wû£]u_Žh[þîËßˌմœ»éÙÇnm¸æ²,Oýº¡—nfòrUyN2—gA&ÇLà‹Ëæ–Þú9|Ž„7ñæ“›ÆùäËØæiJ2df^òØ[Žq½¾/Æåùü¬œKº;‘¢áµgþ'å^t@tÂnAz¿3†\€”³‰]ÐwÛSþJ·d˜.,`—>o}d˜wg˜Ï=†ù"À˾Û!óg˦ ÊqM¼ºä‘ñçȘ¡ä‡ŸÌˆ6Y³jÃz ¬cTSb-#ˆŒ·„u²»‚ïåüve'8ü›NOhªûð‡8£+=»+ßá$÷‹µP¹.ÙD¡3NóÑçÏø ùÿœ?¬ÿÏÖ³ç‘çÿýàÃKÖõÿÙ©ˆ£Ãλ€÷ÏN]Ä=à;;s¯ÙÕA9þŒ>8Ûo›½æ¶u‹ˆx‘oC7™gŽF#AúÜp±À&¡2pƒ¶ŠKNæp“ߎå<³#ov+ŽŠÑ²µ)r/ÙÁØçÒ–ÚŽÙ|ž…Ü,UÙJš¨Ã#yʶév¹¡(ªŸP¦¢Ø$×é8½F«|¬µ»8¥çÉpL…JŽ`¤õ<6T=iÀ Ù|“ü_º”Ió£gëŶ‚G(žqY¼©cÇ‹ÌB“O~™¦^Y8¼qÏx¨*òü ºJÓ+æéµÄ¾Läà@×S>‡Ò'æ_ÉtR訃 $Þ~SyÄÙpo‹kF”¼Ÿ&óÅt,½.póùb8òÂi¸¹,ß¡hþ³³„'‡Â?k<`»Ê/õ ª¦¾AF8ŠÙâúFf?:…•..F6„¼™¤ã9£=_]'óôl]´çâK: 4û@ý¦—.¨¿¤h\!.aÜçâ<½é™]†ççOg‹Óù†QGCuìba¦ÇCì‡ {`À r†CŒÒOLlÛ¸úN0`ýõ»þk$jоńÈ6ê·#tãŸ%éçá)ÈôÔ¬¦®’¯CX)PVSªžQ'«‹Sxò%ŸÆ|u2žŒ• IQÆäS"³EÒœ¬f,¯Ä“£'/aV‘üwÑz™p¾”í¤ó¤¨+T&šW•ŸÝÇ‹† ‚ú;Ú‘ÜÙûf™ÛÍŽÙåUÜnº¡ä βÃìWY&99Þl¸®ùõ×õÌY$³|B3 ,P¬ËDäPvo=”Fˆ˜/7œÐiCG™f>C…ô«‡²KiŽNÑBþXòtò#-Tïàõ„[,Îì÷tyÊÉä85ýL]å—Á›`™`ú¹›ê¤?ÞQ'lL>BùÀØ]cF¹Ï®¶Éº0B~±ëèzÊí¢Mfr ìæ³e‘)9;TV?“¯L3›ªMô¡õlèóJ‹ ·Ò_«ž¼j±*·#f“,ïȺäõë%Š$×Z ±u‡{jÚùB{ÌçI%ŸI-üõTôñ†ð¡ß3qIxd9ÇC¸©"ôפ”Å`6ÌÊÁùÌ¢¨äiQh¿ióÛ ™^™|î’r!S«òkƒCÇÕnUîŽ5ñ |!Ã?p¨‰Ìå¨Z×üy—nJˆ¬z±·’vŸ^ba»¬ç›Y7£¨Ú-Kb©íìk5”¿’oG—1Iã(RÒõ!8ì¤Á‘¹$$–I$õŽ•@"×ß±)ïÑÌwæÀÑ<­t1#ŸvS}·S¡c#>}4þ®ÆÁu1ø Nï«YSM¼»saŽÖPð3(ŠŠt"Ý8—ÝÿÔÉðxûàð}$ǨfÙ'Ëãýå–ÂhªÜ®€Xý#TY°Š†¬H—RüŠEÄCÞòñPÝ…á¸úƒ¨®V tÛ|÷£ÒõÞt±Íª”ÐP²ß„¿ëY.‡³Zx*‘&&¶Èí|K–ÌÝþ@i°}ûg†SwËôïÖ–Õ*õH§ß¤ß½ÁŠ$èVª)M²ßóïÝÿî T“\CíU³…4[¨ lÒFëýÝ$”7Ý J¾“x·8Å}_kóë(327 ²—ÚWßÉìygÕ<°˜02Ñ(Ù½™¥£Éø‰a-ÜOæÊz>%Sô¶w+,­wvxïüøÍî:²Eè¸p¡qè‚Cï5«9ƒ'¹Ž§˜ûú~‘ž}’ê'n&³Y T´î™)#M™Í~Ð~_íp΂H¤Ú®{w -ê :Þaä ›pнДC Û¸ñ¢¹c^Äèº ZvTÐlX¤j\Eñ‹ é{è.–HmÇl¹¨w›yz{ZPÿ„È|ÒyâáÒJ!Ò͵PÆGÝoK5ýÆ=w‡ž?hŽîjg#ÙUûÝê× Ô«1º¶ûá"šuäÙþ+ÐbÄæ¤*R"Ó18#57=EÀnEÞÕWã†ê`n 9F¤žç(hÑÙ›SNŽ,év€p÷ò¦R"¹’ ̓ êwÍBÁ"’AÎigH¦äí’㜹›Kã×Z_4Ï`B]²¯2ÇÎâ sb`5<¡ !¼=Ó#CäsÉ\¦ãsœn9ŽS´Iäñ%„Ÿéwè‹Å”«¢eDW…]vˆË.ýíê"±nHˆÅÈûŠs8œ'¬þUWðž4ê`†Ô…ß Œ¥5šº»ìg9ÎZ$ö"óa{úëæy‚%æ®oÎAbXõë„®¸a_£ÊÊÆ¹6c:^sEvwÍgýÅò…K.‘Ãg@Þù¸SWÕÖÁroE/;ÕÙ¹Œ¶2þàqMfʈz]Ä9—ïªVØÝ̳`;m¶S >_Ä^ ¹¼§Ó/ׄÐÍ{áó› md“[¶ýDîv¨%H£FÌhÕ”[Í`/†‘íÑxfsÁŒSÏÈe,&€’Ž晹å–p° ¤T]Æ%yŒž¡á@8›\£éßìÌM÷®,Nˆ*t@" ðNgQ•è!•BÍ~5Áñ™÷t¥ÌÞ¢ãñ@2..§¹…@z…¯k–ù -ù¨Dú¬_}äç=ý¼ªŒ Ñvð£[·õmÃ%’#Ó@Ÿg2ò…LQÁjNFë„Xc!ï¥âÌPHéA3 ¡VBqmù Ëòs«Eó=Ý¥ýY¾³ sˆ*à ·ýaŸë`CºGcbãdVÓïY_c”@Œë½ó,Ä[‘±jöL1áà0Š'¿ü¦Å_8šWXÙ¢ª…ög£?+ŸlçvOd_v½¾(l2ý<¹cgƒ¦_ž¸äDøŽ†00¢8 ‹q1YŒÏ•‡æ9ê®ñê…o#ÿ¥³‡­úìÉ)e ÖÚŽÿ¹HÈz€´ÑÞ~Ö¦sÿ•«®‚·iÆê ¡d³¾“ Cq{ÚâoˆC8¡WZíö62„×-òX@5½ý0£=7pv7è¤T硯kqd>™Èa =Y£{OÃX¡›Ô½u™Ÿüš] ‡c·z„Æ=‘ c8‡5Ñ]«K#bÅ4ûÖe¶=úö§P/á¯O²Êk̃NiiÚ3¤ÖIˆß&DЙ¢?ˆhÑú~'(Žc§¬ó´7Í*Íü04co÷ÖÓ.ª­ãÅQ„Æ«J4ïlQ0^Dþ`x †ƒA^Ç­óˆRßÓ¯ì\R(ÄòàŽyƒyg«±ì,ƒÈ[&8ïÊB~ã®ÄY¦›;W¹§"þ,=ñÇ=!ÉÎóLdh‰  M•˜’bz qBºŸÎLúdZ™ÎÅbÆvîÖVDT;õŸo“´Ý/ˆovn3ÑGÞ<ë©/#y×¾ªÎ_Qf-S[—îÙõ?–¯L⪪-{Ãââ ÝgYÑ@|ŽÒeù®°tld»|õ¾]3[(Ryøaéª{°%…·¢J܇N瑪LPÁž©z‹oùy^->¦Ûn€tWb§é–#ÔŽGè¥èÌ&ëé–¤ÒŒ¬óH· ƒ¬C¤[b$ÛvõÒ-Ó&ë"Ý øC‚`ŽÃÚó€[¢vô­°ñô‚K|o—Ž¿ÁŸ³åZÆÔK+ðŒ³Ý ãŒiæ§B‡4DLFòΖ,Àφc4 S&oð÷Ùp1K¤˜–A0 vÉ„-×òä³ÀÑ6WuXRo¨wVŠâì¬ysA%ÞJ Å|õ:ä©çâ­Nñnð}Ƚµ‹¹B9RÝðʆ†\)#¢Œ.~ÉèŽYg˜°u>EóEHà×g"ó0âÄcÉeûᣂ?)¦,ïqsGsç¿HŒ÷[ò4´æ®#¿ à¹ò¯ÑãâtŒKƤÙå;¦Û‰|ÎÀKm—·Þ+ï´QÞa—¼Ÿ-ò®ûãýlŽKwÆ2Ûb`OtÙUöý—{’7¬SŸLç¡/ãLw»S(u¡p/· žÑ;?³g´ïÿ{=½|Pÿßg›ðîÑÿ÷Ç|˜0mÿ߃Þ`'¸ñÃf&…ƒÞNÄ¿ÐÀ´»³«3Ãþô¼“P{8<λ:Þ"N–8Þ6Wt¬…Y`7È3rUC3 ½¥³¹ÔWS¡ëA¦°Ž`ÈÕ¡¢ÕÚì›kšA—óä&cĉ'tÏ9[ƒWó‰*÷Ô&p˜gúqY4×´È1±žHÝ8ïü ®tkàò<"}žTê¢kñD2JÆ—ó+íGCµÜ[¨ïˆ@ A…GBžòùj «eÔ¢Z7^³û)ƒOÁ`õá‰&CõxÈ3ˆþœä¨2cä@†zFá9IÉ´ÅD7z«ÙÈ¢“~J¾¤3ÓwáB¦d»À0…ˆcÕ!åbˆË!ˆuZ!eæƒ o6Ÿ¦Ö q:~JÆV¤°!/(Ó?£‰akÉ0XUF`-þF´N-|C2MÏp ¨lsCs:§Hš„Üʬà@¾âYfÍF›éÉ¢Ê4¨PFÊÌî<_–2d = Ù#›GÏ ZÓ€¹¢g‹³+Š‘i@H/È0…Ï~Åf8Û<Ý&¾ŠêÔ¬4jq§‰Oï¹kõÞ2V‹›ÞÝ!û0fÅýcdÆýãÕŒÈÖÆ[0·9æïÊ‚ì‘ÖÑØ1d4¾c^ÏÛ')ùRÃö̺i©äŽ•™B.ô˜ c‘8ØõŒqA¾I¢‚ôü»ØXÿ¾Äê‹—5ë%ÖàN®7»;ë„¢œN£"¦Âã&% ‰Ã·ø]¾¢:ö[_–¡”~Õxb¬÷z:á—ÿÎ=㺭ÇåZeiÙº]K׺sÖáð‹‘Κ¾Àb“ždÎ ÖÙ’V;’ëà;3&^§;¦løØM3¸ÛKÌD¼\¿ø‘/ ä.;räô3¹~ªþ'{þ‹âÍØÿ´ùüñü÷^%¯ºÛnÑ`}÷º-ètvÈ©ë‡íヶåwÑ>8ì´·ÛÑÍÒ®¨Mžá¸gÄáâk:J1ËŸç´ˆCÎ?Ô)¬’V9D†\e&ÀúŠGE@µrf–‰Ÿæ‹é5Æ¢˼®™7¼¾¶¹I?Oø€–Œ©d2Mä~%ãS¸¡iC5û³ôòzÈÑfÅŽèüAHš\‘X6”ѦŸf OáP6ú¦œ¦UÞGê£_JIœ£nzQß| 0ÇD†4£ÙÄ %½LÆ™ŸÿÀˆ/@=7c)¤pI#ô ¿˜N®Éñ¨gwRqUùóI¦Gxé…=`"ÈÜÉBn:Ä£ ˜&ÿ\¤°¡½»»Ûxñl í5n†—C«=†³Y:OåM_wØ­s©ºl–Œ‘JÆé'9ÅÐùxîÅÈ¢ÒóSÿd£à<¹bRßäëYBQ˜(Ôˆ å!ÏâëÓ ™~;:¾À³ÖX`†n1žŒxÓÈqàõS,¢ËC×9„Åõ„¢›â¬ÒðêÖîKµø´wx/Mο1°ã Ð̨.þ»•Œ“‹”ÏÉS¯“!L;å“” &pr‹þ·k@5 [ ŠÙÅÙgïYý¿aQ6ÄÞdAî¸*Ú39¼ÏÓ ¨º­rÚ×Åçø—º?«¯XÇåÙ¡n=Š6_<Ýx»Wô<Þb•AH›&7¨»Vì NW懮ˆ^Äl’Hb 1Oç£d}­„^D2œüã6Q#Ý”fʬ´ãX5JïfCLÅÅü*ñ"‰ì¨Ð2•ÛµCúPËô0k´SIתôc~¨àQÈf š2aö¯RLùrÍ cœË½ˆ·ò .w`ø)Uñq˜AÍ`áaD…u$÷o¨ Á/&ZYq†Y0饫þ¡+d/jE™¬vdËa‘ŽÞ‚’Ðîñûf£É—à`¦´§œ7ë<Éd "2 iuö;»]qvµâÝ+A@C{ k dí¹®&C¢&¸œ&d½˜`o“óum=+ÁàÞ;Àê“)† ZŒ)’ Âçohÿ8N’s ï5¤ŽÄ Ìl-©çR1)­j0²ãU2$S\²°I‘P¯¯‘^pg®ˆÈ=÷f¥¢†sÿr×@!{ÊÄ»ˆ~Æôs»;ȧ—V¿y ²;p³#4Í=ìà¯7ÍáëbÿÊêwoÚÛÍŽèÃÎÕ n(‚$`Œ²ÒÚåGëPÍï´û؃ýäÓ¢ÕÒÆ@ìdFˆTOç.ŽÎÿGãÓbío¯Ò¿½ºNÇ•qýÚ§‘ºoÁ—˜„`Þ³£ë _a ¡¾b õ žã¢zk¯YÐ%7£7ØZ—o[2Vú'ÚFYÞ]åâ7aL“ 2>S&Á÷¦û_YûO®'xòôÌúS14þµºyP»k ê¶Š$ÝÉïb»‰A€ûG 7;G»W‰Üiöûïo©O6>> +¿~í·r«`ÈšAÞ÷‘¡—X°D³%Ì´´ }iJBGñEÛhºI‘ÝÏÒ¸šn|OWµ"£¸’ƒ1¬ê¸±'ýQ‘)º´Òñ™\ô¾#¶j” З:;¹69 ß^p0 ëÌ5dTÁ›-ܼcÜÈÈTø"ÔF(S^9Tmå ªOÐìâÂŒ®z{ 2è>EOó0‡… ‚œæL£ªÁ`…9t×^‚͋ļðfBGµ%;R…´g9Ùƒ=ˆuôä†=¿mˆ=óÏ ÌCÕ½Õx‡ï5GœùrHÿ—<¬ÿç‹g/|ÿÏg[ú¿‡ø¨X¨ÿÓ\€U€MRvÕÿc4|4؃{ÐíUÔí5{»ßY³WZµ‡€¦If Ø\EE·»LE·û¨¢{TÑýü*ºÝR*º5óeY¤5òµW–®î€tu&Ù%Ôyºº’jÂ`ŽÒ*òÝh:Ý(§r hÜ®ùRÁa>P¶Ì(—i«XY…ÃD2<¨ë¬lß[YuðS)«úŸJUõ¨¤z %¤(–ÚŸQ]¯¬W¢Hõ¥‡ ¡Æ×0ý Lö¨îIÁdEÆ÷ðV¬+²qxߊ¢ƒ¥sðWSÙªž:"8zÅÎnyÅÎîÃ)vJ~BúŸùë^<{áé^<ú?ÈG­«BýÏÀ°ÿÚékøÎÑ‚æç®åÒ½ÓQ­¬óüt:Ÿ€“öJúŸÁ2ýÏàQÿó¨ÿùùõ?ƒk¢5Xj¢µã˜hÝÖ3{ŒžÙ¦ù–Ôî>ýÏ‹[8º×ñ˜öbÁöþSu)ù=k²‰Ó?LýqêšÛ+RîfèÓ YnÊÍà;jNT*˜|×KéY”œYÕ¦³¤$†ÔQ‘ ×JVXµü‘U!˜Ó8W¤p¡Óª­l)¯j)H@©›pÛ YgѬTÓ¸¤¯aï kæj9݆—ŸU(•Îgœ“¡yé Õì ®;¥û…Ódö$.›eùžô>ò2žÛÐûO¼¹ÀÂ5Ž j¸N˜jJWQ9á©i] TNƒb•S@ÿs5{hûŸg¾ýÏ‹Çøïò‘DU¨ÿyÛ7ô?ÿ‘Æ??ÜòçmÿgҽŠâ/o£ÿ±ëÞöõ?úŸŸ^ÿdú#õ?oûKõ?÷fo#x9ŠR`õÿF½ÆØ+ìÄvšŒ€`²(:ô጖IΪkÃò},yºgÉós¹ô?öéÑ’çÑÝl©ýŽöåXÉ©ì?Ζ§M »žïâ8fÛõáðGÚøüç9ƒå¸s‘¿äƒÙûÐ餜½ÏÛþOgïã~úŸÙÇÚÜÜòó?À¯GýÏ|Ôš+Òÿôuü§£ÃÎ;ŽõŠŸ/¶îÿD ú?c¨™ÙïÄK‘¡ îô©¿,èSÿ1èÓ£Féç×(õË}BF´R»*o"¶Ï: Í ãÊÔËJ}ã¨m¬ÕJ~]b”f!šéÄvôä%ôÀ»PZN¥Vê»bUúžš´~‰`Wåš.ˆF5 Æ¿ÊE4†«ú>Ѫ‚0ÒÛC›¶ðc¨b½Þ>ˆáÊs‘>©@WNt«|8Å®‚Ñ­Ò ^ D}ÍáÓ²XWêêßrÀtŒ"l0ز¾gœ¬#‹vŠˆ½³T—&C‹ù¨º”(^VA°¬f«ß¬?ê0Å_Z‡i4Àç%àMY&® ´Â¯e‡Ú· §%BÚO4rm£ ´“"¨‰”±¬Bš´Õz¿™Óû­»0µ ´^†ª×=ó® ùEyÊ¿2γX§®Ôö{ï”ö<¦rTÉ‚Ã/í#h SkDhBòÜ ™® fÊôŽŽ¹V°¬`§´zº(R }¥âÏr¨Ä‡±G0œ(jûµh™úÖÄÅ‹ͬ(¥œ}±ÚºËS‹°ü—e6–‘G†(EQÎü!ÝäÑ̯ÜuŒÖe©×÷ƒdðÐ4ók š)ºû@DæÕþ¹m(±/ûátàb^#˜ "&¨8@P"¤ÊßCËIb8ÍÞ–·—gak||Å”·Í™Íä¬Þª“ã2vì6¸¦ mO-vï)–K&.9g$ŽÅ©PÓWу#Ä(ŽktKËSNk0ð·¸té—ž×ÀèyþOèþçâAï^ÄÏ"}ÿ=ÛäûŸç÷?ò‘K¬øþçµÚ=øÖ3îr ×;%>xÿ#Am«<¡œUè5êŠÞà|}žeª“vë@|Î)¯g2K0Ë¥ØN0“ª¼J@æ-Ð/e:‘ß'9éAúÍ­Þ UÏëǽX»«+:ï†îõ÷°uÝj¥[‹ÖžÆbÍ|6}ÙiźkZËf¤bÝY×mÆjhÛÈ®¿ŒÝCô“Ľüod³ÿ–fõt…i²Ï9áºEîGã³+ áM‰Ö“¯éüÏ{‰Dl0ãdr꾑n푈zÉÙ\‘âëÅh$AƒñW©kâ5¯dîœ$¢äs2^GH—éçDòux}3Jä˜îž¯gÊ•æ!ö/¶Í?§»kYxcClDb#›bcKl<“%76¬(‚C¼ˆ6E´%"õ:Ú€çV⳯Æ["V%àÜGðÜÞC77Åæ–ØT…67Äf$6cxîîµbkKl©r[b+[±ØÚ„ç^Qø÷*IPïª&ªü&ÜatxªÑlQ Õ¬…¼qœuã~Þ@+?DVA ´%_Ùža¾{Þå1!6=® :^Xójêåfàè¹YÒ¡“bèžôé,ý¥4ûÌ OgIè­"M£s]迊¸•-¿Ÿr)%#nÅ-©“Q2Æ%n$»–µ–oû"FÖ"ÈEDljS`—Lk8;3d4,hfic°¦+±Ð[íÀKq‡¸L渭I,;0‡09€u@§flŒ]ø XtžÏ{ƒ9‡É„Yô^™Ù!’6åW@?àöLñ; ˜|˜U˜.˜@0cN1ü , ¸cî¾ö€Éùù’-àYFûy;@ö®`°>áÀúäîÖ§hG°>Kvû»³3|G^¿u¿¼~“F+ñú/“»qúÜAÜÓGõh5Nï b)ŸÊ¿76¤qZÄé 6$użM)$Lî9Ì;@ïùÌÛ¥v“yÿ–ì"v)ÂõÆÂ ÆAx˜!<<²«ð“C¶y¸….bãC†^*¹= tø6k¿>€#T×AwºçR¤Ë±ü®«;³º6i-£nmÕêïNNzò}žÕW]+èÍŸ6[ЄL«`í»sy÷(§.+¹ETLŒ' ™?¤bŒl‚d õ…ÄlYêÕ†îPˆqÙJAößíЭj¬ƒìóËš.½aµš^\ã3sP™ðêÉ€Nßó'Äï£ìnŒýÀiU^ñ«‹`™©EM×pZ-²–7£É«'GÔò¢ åÎQ¸e˸Àh—ÊÛíŽÎ‡¨³ ‡Z—Hð Í×õJÎ’_´åÞ°ˆPŽ2Fõn77Æ$xeZEÐÅ»¹!0mêØV ž=I:oBàêd=z*b—z½y(´\n¹lNY²¹(³"ב…“Ð$˜•XeŒ—qŸ¬z‚ 9öX½¸ŸcÄ%Ú\"ÏÌC,ñ4¯íUí~˜· õ;žÁ]à©GðùJ’ "¿ñ0?‘“Uþ0ó‘ 36LǺÄ_Š}®DBÑâ)áÏA5oü¹hàþmvkø÷¶Ù-Ü#³È®ÍÅrN(r˜¡j°s–eô§Ôl‡lHOxR…µ¢ÂÀûù@þÕrM‰ùÓÌLC-* )µéÓø;{óÔ>…è4ë^-BCæ£üÉ5"Í©’‹«•Ç@€î Aê¢=í’‘Á ¹ìgÆ·5¿Ø›wb€Â9@ ‘vŽ?Â-‡âDáÐ ¼ïâ})¥u2Cä‚Õ°|”+Tu”;V±%v ŒtnM‰yØí®~ÓÂV䛥 ‰C:BÒÁ› kÑ@QµÛÈÅÕ” mˆðáÃHhšöµ™¯_ëÓ+uŒÀÛÕ±V’´W2Á~¡txL”ˆ²ŽÌ°‘ÓHYfŠŒ4¾gâE>”Þ+•ÜÊüv;"Fž¶—kÅ~?c¾§í#8æ~nóé«?nËžàúóÝô}0å‚Õ%™ri8÷Ìy}j 1ãðyMüŒrj~²êíÇp¿²ê£˜y‹ŠGŽö]dÉ?§üwßTõ3Ê÷΢–áÂ\®$÷£˜Ü£¨öWelQm™žÝ¹:?LSÙæü4t’-<ßcGІÜ7Ò%tºóy{·˜¦ïGòìF÷!zÞ+gGž1Žjiþ²R<®Y,¾.¶eë±ìâ*XPþ¨þx5Ž^}‚ÅšztÄŽÕû–6 ±Ô¬°ú'Ì+胑³R,ç­6%Ü^Z·ŽÂ¹ÈˆUXœa —Ñ*â˽zJÁîíä$JSxžTÐð®'o36XÁOC+'ÑP,—lšû¹-–nïý»Ÿ»©ÿ`‘»6ZF0å… q,ñg‘7rRA5úŸQ%/wÜ8L$7ÓÉY2›ýTg5¤ÚåÛùw`s÷Ð}`Šb6Qh%çöP’³I!"ÜàL 0H )z”¢Ýî2–—ÛqÕëeGÌ\”ä2o€’?²6òGñÈQýSíg;•í×L>Éß 9eH´¥HñRÍïÙd$Å´—9‚aÁÒ·%ùœ;º•eÆÜ¿êr/#(8>"+Pa…q Ú…½2‡Zæç+€¢ŽãÌÁ¼úS—_‹ø=b?õWÄ¢r)AüГÝϳüŒÒËC^l=” òói UÆ·Ñ‹¦Z×,œ,Õ%Ôƒ¸ÈÝã¿‚6ì%ÛÅJóñpº…¥2ÎJæ1¨c¸wýBî. \Ã@*†è• ¨p„¥ Su¥¾ßVÙ°ò8 K$íGMDÖÜJ{yˆ›zªxxÁ9Í“8Åœèl14“?TutÏRTˆ7Š{/Ljáܽ[mÿ«nü·Øß wöZnG<üÎn¶“¯L–;»F@Ñ©ë¶ü{åÈxOóÓœ¯VÖ³Á¢ô4m´Áßu{õmþ òJ<êÛÔNWE øQצ>?Àpw]›\C%tmÀU2m[‘æUüH]ÇOµ#ØüØüöÓiÝnåz›Ä ùyr=Øs*ˆ@:…{wi „êb2¤ ¬u@±‡ò¢\ ›aB²ÿï7ö1å_._‹Ôº°Ò0ç-’ŽΙ——wö:™³bíNÖ(½„©+ÕAŒ÷$ޏ—+öR-Õ0W\`D’ÝmSë‹ ¡’ªˆÔ!ùÖA=i_f\¨-Ñ|š.Á¹ Ÿ¡7¢UàKlÑmØJ‡<ñ˜4)‚Õ½Ìz·¡f}U¤yïÜnÞ];åýÜ“”Y J+ôS“fpëû‘¤Y—Çß• 3ÝAÂߨIT­Hœ!|•¼ü!¥À ·ä¾OJ°ßè6´³[Ú “÷oÁx)’Þ·O“³ùúC-Ä}‹ac2¿¬ß #à#Ÿ}JîyyÒöO°ŸlÔö«·]XAb ’ƒÜYVm©9û /º%K±Î-¸èV¡è[J¥¬h¿Ór» cXMtܫŷC"FQÊ}¯˜0‚ t%¬W·q¹c¦‡9¸¬Æìñàr+úûT[•outùë\$ÚoCǹ8µp›ƒËOulY,ÍcË-)óçÜŠ$†¡ß×¶ðUV¡Zù·>¬ÔV“šoÁpo-?ýðÃJ¥eN,Ë*?åb•”´úb1ÛZùHT€½>¦…<„^ɽÆYÞÅûZlwc «/·[‹?ëžw[².½t¾ã®WtO$r2 æÆhß%ó g5ÿÄy†Cùo4ÿo´¹õ|CåÿÝÚxÆù_<æÿ}$ýâü¿‡ê5Ëû{˜—øw¸øšŽþÿìýyWIÒ0Žþ?Ÿ"s~ç"¤Fx›ö¼‡ÍF,‚–ØÌ™ç=B* l!1Z¼Ì}îw¿±dfefe-bkÛ-uPU®‘‘‘±eDÔOIÌ p…ð&ÈÍJŠk§¾•˜™}_<0î'Á )pçÌ{"Š$ÀÍÏ€ë¦ÀU5Ì$¸iYpóÒàBkç4¼ãLWqvÒB)qOòR➈EJÜEJ\J\™7 ù‘’ã.[î†s¤Ç=)”75lZ¿fÙôÔ°FâQ³_êê‰Þ´nÚ\Ì+“žyš¶ª:51q,§D+P“À¯6À½²Æê´±É¼±'ùycOì® $EÕicËî½+2ДÚG3™Lš ñ¾Äl)ˆL]1€CÀGã¨q?ŸªìO‡ûWC”²Éš AmìµË§T"S›.f&¶Å£½Ô¾kååO0Ir±Ã­FÂFý÷·Ñïo?ý#¥…C·…R0¬~*'šùDÍ Þì´éÌV|ÎV{3–óNd+O§—4êɰҒ]yzù¡RSyÒèh¿È"| ¤ðIÏÔãKÕäÏoak©vŽ1GTb%´C;˜c@]êÉŠ§›žŠäD^‡aߌLŸ–^E ÙÇÁjjiÒØåÎn=svkÖìМ¿ÿ€Ù­Í1;êK];XϘåãç[ùuãOoůÎ:G_X°éË ”-Å©êm¬ªK\i(ŒTR{“Ÿð}(¯ë=uƒ?W¨Ž§Hª¹¿xrIPNbýIÃ!ëv¼Hƨ­^¤ãƒê¥UľOú}9dž…Î^¥wæ»)ø*oðõÕ<±¢G›ÓÏk÷~ºZýÁ§×ðÉ·¬8 .4­öÓÝȸâëOP´¼ý †a.2S¯3žµµí9d€8‘~ u“ÍJG(ƒ>X†ß©4'°–²ÕqaäXkÍݱÆþH-…¶6GÓ­vjT#5ì‹F4éœ-ËŠâ7¼ì³B)ôí¾ÄÊ™ñ/qã¿Év|0«ˆyZÄ‹œ¼é貉žj,ufx’(â5ò¸ç3óœ7óœü fžÔÏþ3}VûÏê‹/^ºöŸõz}aÿyŽÜÙöŸŽ:B›±S»¿ŽÕ']ÑñP{ÏŽ4÷ìÎmëéüÀ¶ø¡½ ´vëN'ϺÓYXwÖߺÓ)dÝy2³F'׬±ãt]Ĭ‘0g$ŠÈØ {ؽGxcÇé£4„‡€—UÝàÿdvŽ«™ýÿUðé#ÛäC:¿þ4Uùã©öÿ,¥;HtI¥û¦$×O¨tW]Ø íJî*®Xk´â’1ªŠÇQT×òÃiØx½ßwüëíh¤`wìf뢼Š$Wña·JÂOj›jÕæQC ·»iÈ!jˆÎÓ¨!|òÿ÷çõÿ @ÚOÈÿ« ùÿY>³åÿIÿOòèþ«ù€Ò”ìZâvîï úñVÜG)ð1O)ðq¡X(~|¥ÀÇŸÆåSMÀpi‹«sýŒ+ÏïüiÖ}R=ÉÇ|÷O§ëZ ¤ÞI]‰‡Âb»Vâ¸a· ¯Å/± ÍVféð$Ÿv#I ½å̆UèÔ$ÿSßtð={6-·Î„ç£5£CïŒäõE£™ü¥ Çj%{FÀ³QÀçËIWà  šiŒ ÔÒŶÆ-6"ÁjVêå…ëϦ^«h§¼…së¹5Ëm§+k½2§“g‰P0߉u_Õ¢ž©û~ç²âƒMóIýk¹œþˆ>¦ñJyJ>‚WàCK¼Ï½î•ÏàÛI!/ÒðP÷MW˾™akÚïãð÷±¸ÃßÇ_ÚáÏùxôÿÓËgÕÿõk/ñ^,ôÿÏòQd!KÿßÙ²õÿ;Í÷dÀø.[~‹¨ QxëW²Èi°Tääl+Ø*É–îm-èl=±µ ¨±€t]RGdèi.»$ªé”*¤$>#?‡§ršÌaP€)g À °0(üè@Ó'7(˜VTãB!ó@3€Ü£@Hï5`®QbÜ€]£mâHš£aÕ)ç”[ä)Ͱ¾y扃b]gt¼⛎“w8N°ËjÀa6uY¬¡Ã% ä<_¹a¶ì ³¯ly ,é¦/çá@2ú…ÙÊU4†³éóJ© û’nÝ' †SØ0l±±…aŒW¢*æžV` ¤L”U·\ ÐÆVI7"„'¾Æm4, )žµB1!$³íGÃDezÛš“3›èÆ@UïFC2ˆÒNÓü…-¬RœnŒ©ˆËÙ‹€Ã2]„#(¶ÓlØyvš­šl õ`¥þgiL³Œi‹1Ûø+šeŸõÜùøòRøÆ‘°—Ì»àaš^’ žžØu m¤éÅ=ýUÞŒb“Êã/úËôù¼š{Ñ YŽ- @a `↣N%»”¤B^*UÜà[lˆ;Ì+à_Ú×óQ'Çd/(Vy¾œæ'36Azr^4ÿÌ»·ò†›”r†œŒz rŒUóš^2¨ïÃWºÌKºs!<íb¯ÍKvrœqÂXž©çva˜ïzS£ñ)NXŠ3Jr16Ò-ݶû2Ö‹˜ü±á—™§JŸ^O ‡†-¼0ˆÚ!«i&ÍïAdZ©gWL¬y‘Š5õ—÷ ,Óχ`õÁ<Þ¼HÔçDê HÌ@lx-w2 ,§ &~Nàò‹¤Óí 7l` Bëó"tËÓË–³îël=³ó™ÏÿëyóÿË$óÿ¼Xäÿy–Ú•™þ_')þ_¿V âþ]j. Î• È0Ãø§êä¥ê,Ò-\¸~®gH´pá²'õ¬.\?B‚!‡úJŠk¥²o¾ŒBV!³6£PÜÌýNþ|G§…/ÒOî‹t>ü…/ÒÏ}<=«Ìæ•d¤RJIr}ŸlJ"]y$Òr*¥Õy £’Ì5ž•QiŽI´‹¼ÔJ©“ýἘrrmÍ» Ç¥ØÑb=µSSNº­9&˜áÉ”2A 9~Jo'‡ÐýœÎOùD0éXrbÄ xŸ§ü˜9ʇ¹9Y[Òüü|þOÅN„lX>ãS>iÊ僼¼4ÊüüPîP÷Nã÷³øA~N1]Dž CFî7a'kËðzʬöÓyDO)јÄ#Buáÿ$2’ ŸÿSŠKÆc-É/å e{<=5äžÒÿÉÏo.¼¢Á#ÅIFC6Û êþ¹&…Í@ù¢Îcù“$Ó0‹¹—æH_éNô‡wNJC…ÞH÷Oò)üÜåZþøÔh1ï‘t;zè¤ÿ£âù-;¿v~ËÅ'ûãóÿ?³ÿWýEðÿz¹¶ðÿzŽ¢Œ™þ_-Ÿÿב™„)HÒÿò¯èFÙ=Ž~€D!Öå)Ö½ ÿ;ŠúœáÏãº0X+Ï?¬µð[ø‡ýøþa­?Ù?LïÉL1]*ËCÌ[(^N<ïúh+Ð%>Ô$ Ñ• A¦öŽf7]éi¦üw²ýÌT©T/³¸9RÛ³h¬.…Êq6;"g3ÎqY90L§ª#ñ;BIº¤.i-òÝJø¡t‹‡Çß7ÂfîÑi«‰#<ò9Í¥ŒðÑr±˜ø¤¿”@@‰ivl¬Œ”-·¼rænŠ´t%ÒÌŸ½Å¡Îibyæ'lñæïðNÇÍ×rkäk¹÷t’µ‹L'3[K2é {4i}þŒÁäj—êÌF#͉:VdçÌ—æèù²Ã-œýÄ:û¥}áé÷¨QÇè2 V¢¼ˆ?¨ÛQTŽ0 Ã=7ý@ÁÇT\„‡Ná׊7f.ð×÷O 3¶ÿK»ˆ*ö@ǺØÛª¶ÙÜÁ)ícÒû£TLE½í²ÝW’MF|±"{)g¤µ°bÙD9XÏãP—NYòÆ÷ë{×8”ŸÉ5®““íÿb/üÓÆþʃÓSzºå¸yÀôqk“´®™Në|®]¹ü°ÐNc9®]…à9Ö-H§kùii¾oÅÉ€PA:äÒàE¡Ÿ8é{?Èßû÷voK£ÜÛ^ýÝÛ ±ß‡3¯‹û´YGGNZ½®])›°ûg‘;‡WÏëž–½”s†’‰ 50VîsmލP¹ÖÙwš+œr?}•óÕ1OàaÖ*îaÖZx˜ý°ÿ×—àYý¿êkk«ë®ÿWðr}áÿõE®¶Zǧ@8viÇž%tìÚªˆíŠØ©ˆV§Þ¢Ÿ üÐßü½Ý*ÔLúwõÇÑ—pü£:wù\­ÔdqF;ñTëzª<í¶éÓ•ç~uˆÞèön¦œ[Ú½›ÙX\u{ÓÑ8úow*-„]1»T/¿W༆:×86$Í×ÑPûÝ1‡Òzc°lÿBÃù–ø7äÁD–äßøoÑŸðêßFm$¼Ã?á – ‚øŸÿ«ªžšîCa„vCü^/cÙ·bULFÒ¿c“j“—Î)Œ®Ã!¹¿8^ʹ ÐasSc%¨»µµ þŽ~F«+èËQ“ÿŒ§%*Q¦¶ƒð6Ó ?Í®»ÓÐì±€;ípð «×ï‹n/º]¼èNñ¢ês<0›ñwjG¹æVûM©Öw‚lœñ×q4†””ÓÓšmºgì‹&a_arì3…;…æ‘5ÜT EZ ò[R4Í6’·Êm÷:¢ç)zh°™hƒ.ÎäM<&G…|æÝu£1ñOý÷]î@ÛÍ…ÔǰšË±GS¦%zÕ±ü»Ù˜Ü vÂi7ØÈon£Qý¦úˆg@5@0‹pvǽÑN¦Ñ91ÂRcˆKõ&@/g½ôº›’çAktÛZ]A߉qØŸõB[4ùL®DÝa/ xœáx<O*’ª %‘DÏ —hH'’`üd6†ã!º@n'Ñå ¬}ÀFÐV‹XF_þ´”oÅŸå¶€BAEìm¾«b€×yÁrWà:ôuƒ¾š® š!÷txtzØ99Ìê‡K@cës;FøŽL<3áÐÜÚ&ã>üjÀÙ¹Mg(È(;pŠîžÀ“853’DúonÇ"MãýÑ&³ÐBgó~ìAsz;x† òÑöùŸ|T¢üÞf¹d¿õh¼€@OKcI,ÄæA”Ó·Ñ IØäŠçÛmWm7’ëûcÑA YÜ›R,m¹ ú¢ö×î{2â^•>ƒ¦Úˆú¶{¢Î­áà:ãÌ M|ÝŒ¿"—€…â'T¹ºmô“>!g:ÀÜVw؇„&ÅP\™»mÁËænÍx²_˜5pø!@ŽÇdKÂaøøɲÜzJaHúÍ- –Em¥€ñ]¶§¿lÏݘ’TzÄ}ž`C<£Ü¹ßŸˆßdòò ð“ã§40Ÿàô½@w4uMÁŽÈØ»A¢ÛëÍÆÝð@pLïÐÝ:±ûa/b<]8ìNgcºù`.®jó¢ö~·Æ4r÷YÕáÓrN¨šØf_Hî×Ò˜J8àÌžRµ"çÎß.~'ŽBŒ˜b¨va=Ý¡§UŒ>".ÊQm)7L—Mp† Ä– ½ B΀xCPÒzA8¾íyûs »m·“Ør ¸£GîÊb€!þ Ô€˜lRøŸ™³V#GÝÏ>Pªå®;4Þg¼6`äùD»Ô^PÚ©´wVhƒpãeQââ=Á¯Ê[¥„%–·Û-¤¬±!é½…ÁXt¯ÐÇõ i0–‘”¶‰C[[Ëm[o¹E¤xÓÛí¶ \òm®ºãVÝÙ!*ÎUw°jê-W82nÚµ[õ¹îqŠrŽÛÛ‰I"zlÉi$æ±M ØÞva@³ÜÚ’Ó”ó4 Hº/QgseÇClâ/[¥‡v[Ì Àùåeâ2[9ed1ç\„CÓ=}„R\ŠùFË£¤8ÊÎlô¸H½ÅÔ –꺳¹m—ÝN/‹p—ÔyV¹Ñí´²L %ÿÍÉJFûjé`åOü%Ô:±L)á§¥ú“$ªÖÛv§“sI´þÃME¶Ó‹H Ýn/c{U¨ØœæãÕä’Øì –„*icó!6ü¾6)B.7÷=%_5Xµíõ—j¦ŒÙ—7Åoy1ì!úk}56Þ¨½ÔÆÌ–ú! v+¨i «t‚äÝ êD {-idbšÔ*1--Ã…é\®Õ‰Jîþ\Nß„²Å*Ö´á!ß§Z”΂…Eé‘>IûÏÝ`ð¬öŸÕ`õe2ÿK}aÿyŽ$i–ýçäðòè}¨ˆFs~~¤?àg» äOxŸßws‡fÆÓR´Ïw…gìQÕÌs‘ÿƒÌöòqž üï£/!H¯_Gêö— Gñ€£„Ó4¦K0ÛQ‚Â…R…¢"|¢/‰«h<™Úª?ZIó¶óÇr‹ÔµR–:v­³% K#V‚¯“V¬VMã¶;@™I$KèØt7Ô¼&M+P_o¢Þ ]ažð=é.÷~vQ7¬ÂÐDNoÐïÂa?ö¾«‹\ø–Ð̽ú7¼žÞdwóÁj*ÕÖ#/ú¥®«0¯ÖWJML‰€ÈlÝ‚­DìûšÍ*N|ð›‡>î%6 ÉÁcà {r).Ãé×0ݽlt@f˺ô¡ÆMƦ’O ž)àù˜ž~ð|LÏÇÇÏÇ7ƒ‡)ï&/Þa°Ã“[Œ'J;Uߎv‰ÅŸk7™Ïbâ˜H’Äz«F½­êüòÀ£òå¢dÃó!vŽ;Šoõ˜ðmF…/ˆn~8ùHŒÖ»÷ô»í3dd¸Ì³¨÷Y’bÓòæ¤`8Ü­Õ"£kB†`Ž^Ž\É>Ü›Òô¤CI¤•«‡£ç`Ö̾”8ï(þ^!jSV )âd5Xr(–ø‹ÔæëæQVAý®“—?Òõy$¸ TnÛ[Ô?lŒºøQø£dê+Á²úÊ YÏ €±}4gØ+­èî’p–'·<µÝlP†AÙi݃ì"iÚ,ÆÈRE8`1"ÜðñÈ·Óg–ÿ^®'ä¿õÕEü·gùHrmËG@ßÞ·Î[;*ÌÛ óöòÿtŸ'öO.]8¤¹ÎÂÍÓŽ ÙÆ_ü’!u5W\7X´„Á0†×RsBõ¡7OS“PTšÈI$:Iw/ ÷·3i<(ÕË•ƒRP®Ôj5ø£YŽ]ʦá5²muzÕ$P4®$ ᔩuZ§»µŠ@íýWtP4Ú5ý?”–¡áýryè[XÇ>=Úçômìè>½¼ÛL) EÞ9R²ÒŠxò;¦ÌûÀ7ÞŸ,–ÖÄRÀ¦6Á]JR‚Ž!ÄIÇ¡Œ³¡d9ŽÐûq DA 5yØO%þ¥ˆ`þ: ü×Ì ­ÃvOÙúT¦ÌÂПGó©ª?á½aª/Vù/|c›mâN$Õð\°óQˆ¸+ÞGóoIÓ.w]{ß©­&]’ؽh}Õ©‡$¯a=VöõTÜÂ$ºÉçÔP~‡ÝUsÞaɈ/i—I¥}ÉFÃ{9~kxî–¯ ÓÝZbRË.ˆdªü3 Ó¦n‰²<ÿ@Î?€o¬&Ÿ‰¤Ì–ÿÜ0úú¡ôÊ])æ[ˆ¿ÈÅ•}´<6 ÷-ÇÃwlBoŠ#“‘—ù8’¾öã]d>æi¾Ó|åïáu 2Øöãtùú¨SL¾öÈߟ÷þ×j°VßHØÿVö¿gù¨-–ÿ›<ßPuõÊ~>™ f2‡°õ1Б¦éÒ·åå`å;ü(ŸÚýŒübO†—D6«×æLÌ`’¨×È`;h0¸Œ¾6l†Ú¯æÿX Œ¦jlƒ’òß÷8 ñD|£Wß…¿|›§ëϼÿc2ˆm5œƒØANýé§ïnŸ#‡…>?èk;c4žÆ*êsåÃÏE¿»PŽâžwì)æ9$7Ì[qn2/ž×Ò-}dKäV|.ʰ§Üçü%ý”û¸pzàÇwþ¯=óù¿ñr5yþo,Îÿçø¤9ûü_ãóŸoü",€M¹s¹€µ.`å¿Ù¬6`p+pQ Œú›‡€¿ðr ÁËòߟ‹ixÌã~>ê‰ÿ‡ý…ñô"‹àùY‡ýyâÜë1L:Æï'µ:†M^­ »Ãʪ‚x·OúÔî`X4CÒsRZŒÑ5giø 0bügôL«\Ín“_àFêG“îÝ]Ø+h ½#ßJ(¬ð´Wxq¸ˆ‡ñX3ž´æ;€ ùh}wUŒUf‘¹Y•µ’UIžÿÿ¹¾|Þø/õ Oþ¯õEü—gù0FÚöß?Þo•¤Ý÷àþâEQÊó?[äÏÒ:>ßnîÀŸÇ‡øÛ³]¡#"·ûÇéîÎOÈ;xò€ÑTbž°øJ€1°Ž2}‹6„¤óœ}Mn•d×äq¼-=[s¦ À‹’°8—ã.úùvÅu8 ÇpfJ»Üewؽ¿FÓ˜:ÖžÌ.Õ¥K¾~p ÏîÂqüt†.‰òRêW*3ÀgìõEÌP4´|i[Tn»Ûô¸ix×|'ÏQ¦ÃÃ9ÛµÀ‹`—p¢õ@wí5jvq:wÖj¥urjv²¹ev2Ÿ°5˧¯ò&€ÝkŒ2䵫#·}p¸rpºR¯¹óúTÔ”.ô*Á ¶ÀÎåÓd 'ö‹LÞ²…NW£°î“7æ{ØqŸg+õ•¨ú©ò -œ6B³DõʧêçYù÷·Ñïoo£aé¶òiåóÀ¹ËkFç17^_ÇK’c…#*TÅì„Ö¦ ¬“Ü+™©ïJfSKi_ÛÉy˜èf+Ît¯ 6¢(å žŽÉ(ЋPQ š¤J¸=ÉüQ*å]j/L«‹‰T-´Ð)i¯ìV)*#ÚÒ}™9Ÿ©iСð¶=lÇàÙ“' Å팎ГjPîMÚ­²aÆ;ÃQ½PŽ<…Ÿ1nF»óHK­²;Žmìc›1&·›Ñd÷ãëWêg;ÑÏö³5Z¥NÍ^¡N}½ŒÃ»A·ÇQŸä´€AØ„qç䀥¼Jb¹5—)t äªV9Ðx“ÿv-C|,ÙŽfÝi £i ïì°XÆÎˆÕî^à 1ßì…\‰ceeP 8f·«ã9ðªÓbºa$¢q (ÜJø{7žÁĹI˳Åõÿ‚#ËÚû18èV>Ñ£Ootæ(Aóþf¼öCÛh'£‘ìÜcÛøb;éÝ"L÷9R/b|ò*ˆ e#%Å È(¾x(¿"øҨî+_œíýåÄc¬š´;ÛYMƒfÛ7KµhÅ+YìUÉH'>›^>`µÈ˰¤Ã›PÎhžÜ4 N­%.îÜ 6Ä?ç´äfiè»?>€8YàØðãE8¶48 ºbýñ~ë‡Ôüòǧÿ ŸWÿ»À³„þ÷åBÿûÆKWÿ»«ô¿›¤ÉLÑú²3]÷û×ÑúŒž_Ù[⎨êÝÍQõj\Bo‹M8²‘Ò–ü5Ô·ˆJ\žuýeÓý%M›—¡4ÛÉUÙ½³^/” e ú,” eàB¸P.”ô™G¸Ðà-4xO¨ÁKIò'Òdýœúú‹êå|P0A ÔL&~.m[Þ ]š9ÉgÓ¡YW 0ÚÏüñèÿîž9ÿ_𲞸ÿÏú¿çøðžrô'Òÿ¿{×ÞíÄzÀý“³ŽLÍs†IzΚA†³ÿ„ú¿,ŸÉ<ª;O{ÇœØ@–v .õ{výWÀe/À¼úÀ#ma7Š\=å!t}Qâ.Ö+‘‹à`Üæf‰¡´RsT©¿i²üÚ1Þ×ßHÔ·$#öz£1j’߹ݰÏLð€BØ> â)-ý!ÃàCeÍÈ-2”%ìÌ&Š&UÇÏ£ÊÄð‚ET™fØàɶ)Ø„øâ*2Í,4Q1ºÄP:aÿvnCt#Åf-¥V¢‡Ëp VTž°óÖ ì¯Ÿ(QÆqx‡aw†S™Áhz3â$4 ŸfWÜGýYoê(eå8‰<†WƒPª.¶¼ûƧÖÉØHÉ}ôhJ^CÇkDFB2çAªù##ÜJ$3*‹Ú0¬a†PŠMæqîUA ,aÕçÕxÄQ¢7—OD©«§Å-”ÿav;£â☯».´*-±·­V?W8„¶¯½å³þWáú³SJÂc€lçØªè€|›5¡äžða¨ÔÛÊSØ‹‹Ü=œC÷¤I»Œ¹¬¶åæŒ`¿ÈIGãÛ¸Ûàɺ ¿Áô}ƒêàZ…{ÄêEsqn)=FG°gIm¤Ðïk¨Ëåv«Ç  4x7ÕD?4Rsv™GB†ªßí‹ý.Œ¶öCnè0?³aE…‚+…Ã^HíÕ ÙÙçP72…9¶7%ß\ Úý.1“)Z‘®¿‹Û8§(wxQ;0ºß,b6ûÔ޾D=žñsG]€‘L.ʵâàû‹îõ8¼„AGP¨+wÚþ ØGäìèû;ô¹ÇŒ)}†´–Qqç°t8Ê&DQÉþ,çsF¹N ±Æ™5÷«ežö‘ÊàG1:ןü:>\ËLÍY8b5F?–«¡ùöù¦/¸ÛS…ÕHWÔú`·ƒšÂFÕˆjÏS0%ÕŸ=ˆô¼‡F')…æÊ0hô©þ”Á$<é`ýÇêžðŽ'’lºEääqB_ùôÿ“gÕÿø4áÿûru¡ÿŽc«ÿo»úÿæVEl¥ÚÒÏu4ˆÍÓgñë¾û5ì[0#e@ý)Ư´ ¼+ñˆl£AÖò¸Ö„y,mÓR0™†w¸…,Ø”írJoGCŒŽhìk¼5èN€6”¦BEŠ•˜¤˜ßÒªv:â7îgÒGè#5”~—]»Hg£ äH …:—{ßÞïiÿ71݆¢×`>òþ,ä(_Óîd:ÝÝ€\Úë{á`@ó†"ÑŸ GÓØ ½aâ1ÃÌöPóÂÚL(€Ícm¬®ÅÔ<üx[r|~ñ_δò@ËŠ4§Üt¿„ì¦ÈaïÆá—h4›æ+Uasëž³1[EîPm9zóüÆ“`¹“«kAûÙÍ<^ƒÎÁ¡©mÅ1«;ÚÂ~C⃠"6TÇèPiá˜wø[+ªgËæ†¨Ãdæç°µÐ¡Ó@îö@üþöí?•gÙêþj6Ä$Úh~#6ñýo •ÚÆ÷DbNHzh'•®Ši¥+)\c½+‘%ÿ«ªÿ$ñ6GZh$d[Š’m™¤ŒèØñe(´5+ÚÛÎ#i²v”$k‰Sˆ(´®­óS6ÍØÅ„†dEQ >Vqi C[!›õØ|«Ñ®®¢Þl0Õv«¿©D¦!R Œœ_ÔzP¾/ñ†S›ÌÄ|Úú…ái‚ðÒSQÔi«W;&ÎDìvÇáMŠ2°ª’Ùö7ÔÆ~E¥ØV „NÆÌ¡ÑYÝ_QaQŒFLA½ "º07• ƒ·öãbšØ8bžÎ¬ë¬$Ípi/.Ô.>^ÿŸñê³úÿl¼|¹–ŒÿWþ?Ïñ‘$Êöÿi­–Äùf³Ó©Ð¯ P‡À»5ö±‡§ü8oÁ¿F†w T¹ :ðó+]°›)üÉ¿ÍwÇÏèd¾ Fãn$vÂ!4þ„®B2†ƒ3—`$°H€¨£òðø}cÛR?[ 2ƒ‘Gã½WâžÉñç¼!=€ôea\Ù<Ç¡‹;é1$,§!áø !1,v"Kft ëÀá‘È/h—sÀ¿V6güVª"Fwx¤£‹ƒ‘$¤•;2{€Ú½›ÙC-AwÒ"-ÂXAPábyàúõ&‡ð ýe†ò*êfÝIT5n–Ê¡”⻟Ü<šùÊÙµteHÞû„‰qñ/–a>Çz:PÿÖ/òZáÁئ##c¨Ñ¸lA_-Œ˜‰™Þ ŸÜ?˜«í:ú±|´d#ù8©ÏMÔ»‰Ã•Ãþ¬Ç«°c(^›ZžËïi·^ß ÷É[ñÇòÞòrTæÿqQ^î,Ó¯åN ËI$¼Ôf±mXî“á+jÖ)~ob÷…xµx¥Ç. &ö§â»Mßjo€×ƒ1qãy©J5k4s&#{òFeWQ'“ÃbϪ ó9±È£qŸ‡ŒqíQ KŒ°£Ý´‘óÔö€ÀåôÕ˜ÒÞšL`iûŒ£n0»ýïÖíoÚl2½ÕHg"êo`@Õ:=ƒîQncâ]áPI)h]ẇ˜j‘ÇjHk4-Ù†æø–¶â$œ":w­6´í£Gi G(èmmòæ§›½w0GÞ'ðj¯µƒ¤eè^×@¾Ø ·Ãë¯wš³Ë,'%qŒþ _£IX±æGà @# ¢¦ ´ïƒ€( ¾s”¸&‰lòzru&EüµÇ·dìޱݒæ 8‚·B¯†xkbΞ‰ó¹‹ì9>gŽÓ#ç°¨%*©«ØÄsÀèh¤LGæ¼;å\öÈ×£ mä‹;L;:ιcU·Î :CÌÓã"@º@Ç`‰=‚Ro4Æ… IßOv¶Û»Aø üivÍJˈ¢ ºeƒ‰XìA ¬í°ß÷i –j÷JQ…î«Ã kÿrb#ÊWåe* %P?²ZCÌðÙj@R3ã6<œXû r6œÈÀ ä€ƒKh¯k‰o!t7•°¼xøÁ©>DRçîÄ~8é£;¥# ¡“<_s²t¹ÄäaÚk‚NêðœÏ½h*éÅgÿ©cŒØGðIÅJÖŸOl‚ *À52¥ñ1Q2bWäëf¼`?ˆ|ŠžãµW£vˆº;>Qð9'æuï<ªÂóÆ*Ç §p ÁyÛ½Ž†(  *~R±¨VEMKr’6ˆŽ’HÿäÅåï2aXœ X^õ&èÀ"«w„ÝÓ¯£W A±=¬ü[”ÿ»3(2A=¼frÞ’cªˆI÷{Gâ†,Oox[-À0v`£Ú” *,pÏ Þ´^b˜ €îÄídz” ŽYŠ®R­Ù»M‘7¹xKfÒ¤=ßZ%E’6©³¾¾!Bô†&D19Zj5Ctµ"!ò–óyW´¬œØ´ boE•êZŒ'ÙNå²^ó§m¤ÛV¾èHá™ '²ô&D‡'îÇFÕ;)*\IŽT/¥M5ël¡Q«¿þA‡6ÃáÒ_å1'0ß ~QI쩆9@ë GÌÍ^<6ì9ŽÙvUó̾07øþqQvÏ3Ò±¯üò©O¥gÕ6DS„òS—çÔEö9•ØxEÎ)wž8 .€Lâ;ž!v†‡šöê`M3¥ÿ +ê}Ý8\(JFeL"I*SGoqgÖ¥£^–ä„Äùp2…£djëå%XQ•ü¾\<´©1ãÐ¥¶ó`šKjJµa¹V ÄW ‘%2Ï·¸Êôû]Ô#iÈ)…yÆ?^,ãE ;0ùe,™Ò,Ô¼€_%º{©†¸>p±áØnƒ‚R+=8q% ;MB œk0å¾)qê=j®áŠTú)¥ëŽÁÙâCV^à=«ŠÖÝ„À óiG»Ø§×%Ôjµ'YSPyhÇYÕc¦¡i V5^hKÆ=,{-‡ k“~ì¶¶)åD‘§úЦ@6ðÔíöÐERÂ^3H2o Ô#ˆÕ7˜¦™¸š hÙ¬9q o„!-Ez!ÐÆÃ—^¢s÷#“Í,ÀDvS FRt§H ÌØ$Û`NE‰cÐähbs JI%ok%[ˆ' {H1i0–Ò;˜Èl¬t:ð#Áî+d&˜¬ÆäÑ%”Šãð&€Dw6„Ù|Y èòRdÓuŒ–Y‚/±R› FOo@„¹¾á™©û=¹cìIéžÎ:w»g))[K09m”–ËtlQÄp£/<’ýN—K4<óoÆé T?¡ƒ”;˜šÊš!ÖO§äÊýÉFTNjSQ…€Y©Ç@R2“¬Ž„ ’ ||Ž×/â­oü\Rèýú_€ ®ri^wÇ}‚Ö õ‰æÚ™\¥‡¾˜d”Áðà{'ÔLέ!üÀŽŠ-8ƺìþÞêînÄÖw8Óè ˆ¼H.ý÷pðcßÅ9 ¡;1î=ÞlZŠ7rŸ[Ãc¯ˆVGͳ¨Ñh# î¶#´aTÛ7ÑÕTü“øÍÁõh çÚ-]_7P+"*Dò<„CåݨG©2¨î„5¬‡!ˆþbM7ss7Ñnl‰ýÑl,åKyµlSúÀUÄÜ‘¡Ö*À?\‡ñÉû:x]­¾^YA[_`nÏGž&ÌsóúŽ šcv»c8•v«Ì×bÎ@·Qd&âõú+˜ÁË5w„‰[Tfû<¼ŸN,ü£WÐGÔiq¢qŸv<â-ï…þöbï”èuaѱ¡h³Ä¨uÓšƒºS8õ‰›«™”HCG€Th¢ÛhZ+Ó ÿ&©FÒBKc•¯½w¾x2oEÝô3¢‰ï~ë…Òvœ³\Fñ5öáj:þN¬ÒLòæ`'è2¤x¼è<ß—îø»J²f$x1«¹ÝˆîÞ<ØýÐ<Ñ4äÔ?ÀneOšÊgMš|+6²æ<¡­ù&1ÏÄäÌ‚¹Û¯ÞŒzp¹ ØáÐtɃâù˜-äN-;q ·ýV¼p§Æ.cCTˆÃ@·uÉ‚¬’–¦RX9+“œ‹µC<õPáæ³Ì#A“ÊËþª¬€âÕjm} eÅ ™óZcß¼ÕØŸëR£ïZâfElmUÞaÜÆ‹~;@ä0#üMSW±AN©ÿÑÕ;t[ÝÜÞtc<†ç;§ð£á§p€¥:Ç'ð‹žÁ¿ó=üÁÏÎÏPM®„mžŸ`œÝmüùî~îá¿c¼©¸Ew›|o1«f›fÑl·àÇÖ9Çüišç§'[*ͤǤ}Üêè4”ž,•û[ÛG'Ëþ[‰óÝ™<ÜÜmžÉ÷¾Ëü> 3È%ç²íÎ鑺è5Þ9bˆnŸ|¬Ès„~7Ï)¶®Éßëò÷†§ÇÜ[¥ËªñåÕ£c_fÏÔ{¡ª¶˜ÙÉJÞ„* 2¹¾AföFZû#IeL_妺¯i»ßÆ1þœhƒþÀ©k2º±Ê’¶þy È*€ g«v©Á‹*n/6­ÚtjËÖÇl`ƒ„qÖê+—*ÆÎ6<”É_œèP@çç%Þ­€ÚUhàx¹»Nw}ÖTÄRµÝ¥Š£!M"ÜœÝaHAš˜!sf,×W,o½ºS§¶´Î’Áè€DƒØZZfªŒ%Љî”|H_…é;»äU„&fs“ Ò¶dã ÒÖ0'–~­¼ h¿®¨Uð”W ØnUá “uº¿á.ή6»$tð^Úvn›b+:à P'¼Ë<s›ÔÁ@t?åX°Oà ‰;”G‰n¡©ÿLi¦iCä×[­{Àsœ„ —Yź$÷¢>;i-Ö–qa~Ã5¡K5F_OŸv6È!YèÊ—c‘ñ|8gQõÞ¶5¹ yŽGjßi³x ‘J„ù¨ÿMÙÆ£Éd„žÚ¼UÛðØÜÁ=ö7ÁA%0Sï#:Ñ%²q¹c"ÑÀÕú=F¥¡q­*Ã3ªÍ^o÷›¼WGž?÷›BÛžB|(ËjköÁÀøwUÈc"ï€ý†|Ù•vGôF3¼RðNt¢šÆ+ä!4@¢ƒÛ2é Ð\©& `’˜ÉrL@Wqf¬*/Ó£ú*‡šñRÒÃîdêfß–NP]òP“w\eë¸Ã~~‰&Qôè.QiçX¼Z…a³ß ß1‰0ÍÄtÑäUB½\Áù9‘wÉ?×iU¨‹­Çt3ÎûøDã †¯W}Ý¡°?Í™®P¡Þ)Rim°º _­[åäpö(ä …ùÁ³Æ ‹n´<²€®>Ö3sËY2bZ¤ìŸÐ=fÏdÛ!’T¿$ðÆ*NۯÎbXÏk2_ij„(Ôí‰&¨¨ˆ!Ÿ/d N£qè«oB¸‡#àûQè&Í1n_Ô*u)ûZ! {ÄÅ`zw!;ÏîpŽêˆ¯>)©¥zßvL69bòÖöU/uÅM‡ 0‰=Ç_ª–,oj³`ÊÄ.ß:ÅKFÉßX¯=ûêS˜ºXç,͇¨”—XöÚûš‚!JWÑx‚Îx”MGK“m›Ü "ƒk‹¯2X´/ ú¶r¹­áWdñ‡_©éžx¦X–Ò_UA©mª@yúU ò@—¼D‡zøAÝiutgZů³iiX5šT/Ãé4­Wmî—Å ^KQl)c¤ÝÁˆÃÆ'+“&t4ŽnEØ¿öU_öÈ`{g4Šsïq)ˆzS:ÔÝqé@ '…—¤ ±<8Cäñï僎» (b§‚;él²öù™ªnÈižíêê\J®Ø µÈESßd²u2ÒG\ ¿Š¨dD®V¦Dv=Õ$U'ÃPÓÅ:ª<ÛâˆâkƸÂ.\Ï$YÿÚ?ˆDcôqm(!0\Ãð«ÁxO) H¸ãëá Í:‡‰:Ñ-{³Ó^Ûh­¶ÌíÏѹJ»C?fXí?Zbò5 )"g¬%ôKx8º˜™Ã <¼û1¢æT\•ÛîкM›lâk4P~!™RF³)ðc”&a,³$ÄÃò40YÜñ·7æ ?± pu²›~²¼·uåxmZ2ŠÒÈ…¹q²8„êáŽ2¾ÑфꫫËðmhçËJ£#¬âÚTè†{e¥Ž5s(l_–üF9;”ðŒ“ÚXôáè–œ‹ªÄ #¼‰Ngµ4D×7°öe„oroå~Ô§KwãÑ—¨«Ÿ¦Bð ¥B:6•+3‰¸IO¤0ª ?´ö!¡z0€“'&x'eWé¿Heêz¨$<©_o÷y‡x+è[½,ʱOŒ„dßr 4*I y÷rô}/ãk¨iÛMU¤+ÿÓq7 –ßAhˆîp„³Kå3ë_+Äu5ùCHõ‰ßì¬?&)j¶S8W˜×ÐêZÿƒ6¯Â= …®ú"¾Á§ÝV!ꀠ£ ó»Ð•~ˆ›%§2†/Ã1­¢èŽ}ô„+ËHgÝþ'`­‡› ö]ôæFêRúèšôŒÚ*\ 0ÑédvîKSv&ꤋËäjËHDN×ZŒŒ©²·ž(¼qœ-“yëºt[:(²µ n*g;eµaŒµ‘;Ö†3Vo©xý,&ƒ§í[Ë…Ü E2D§R…¦˜Bs„¾êI|%tÃ$íßt벦2wöɾûG-CtSXÇÜHìä‘Aà­3†ëU>,ªãÊ%È;cÌÚJáÁfŠ.qe£¥t”Ëã¶üOý˜*‰Ù’`¿˯9&¨«½v§Ñ¬ïÇ ¥ÅµPl¸„__@‚ o–t­èŒ}n1‚DEù"|ýñèîŽÊ`’„¾ƒêßv?ó Õ¶¾=èñã©_®ÄØZX›ì”ò¨üðn#\«Þû"dÊxã‡òýL¾ªzØãƒSàà—i²§*.H¿\\J¶LMæVJ<£/N¿JMBÆLŽãé‹V¶°O~ð¶]…›"×[“B”8^Ò€T·bÔ£TXœ_œ‚¦]­CǯíÁy'IÃlñ…‹d¼±‘Œ•åt•q•¾‹gôh­ÚMKëáËÿPÖü«/êõDþ‡àåÆ"ÿÃs|WÜüõ’y…©ÝªcdüÑ ð/øqöK¥mðÜOçùâTyú-%A{nË3ÝöÜù¾wR†³’?³‚ï)B¤Žp ô} ÿZÓ‘¯å½±:†#žˆ/Hýâx´éÆÀ±¿Æ‰W>ªØŸõÌ(S¤ 5—¥=ä&ã:øhyÕËËò²zȧ>5ªcßòÎz÷Ë(Â+x5PѲ`ïM™Ç¥g5 íºª8žâytDõ²Àa½8 J)á·*ŒÆ*ë±Ä†ra(+¬èåÒƒ‚MBôÃFG.º©BA4G3T0G·šå¾«‘$à \NW2#÷©Xý:Ê$põáu’i>öÇêoêè:2R ã…9ƒ=»}¼MÎõ•}]pµTä“Q¾Ìž9fuÞÌRÃ’îá5Ø~Ø´¥ÈÀnE <%ÌG½°?C8vK.ÁÆH`#gÁ .ר«!i%£œ•n)0JFgÎÙMm@7Ý9mαOݺr%+ñöÙÌ/Ø,¦Òv`+AJù67„Σæìuô;XßmOK÷ˆUâi%/"‰Š#’Ôä™NVÂ¥ ["v³‚=aù\¾l0ÒhÓÊÒü)ö7áúoÏ›„,‚@dk­ìþ7Ñöw%—y*²#HpÉ‚¡‘g’—.Þ¶²:è3æžl«Ü“m™pRtJ<¡ìì“g%žq"o%½8?Ë«Ÿ™½ÒÍò„¢ïá÷ºf4"¾ÏÁútzF•†øÇÀX3¶]~×Ò©ôñ¾} ‚®VÛ®›Š€ådC™—KS&ŠÁ°ïÐv;‘9t"ÌDœyÙÂ{Óp f7æú$ºÇQˆ³³×ÈÊýp]9œ*fèM©5uýKEì÷ÅÊÇë-²•¼Û+˜&Df^Ù‹“Y¢êI‘€¯0ÄiHKÕ¥ûyɨú¼ÈèpsÎÆ—*£¸D±‰sø|• ‘ƒÉnFwJ·¥cñ E±H ‚C§+T˜´ÐãŒa¢ÐÈ)úh¨T ×fãÊŽP?µ„ÆÚ¡‰\ÖÙ]ß½{'. “ùõ¬„;|-ͬ«“o•(‰s¬â4Lo,QŒîvÈ œ“ÎSòUˆ8'@_åÝŽí4]n‹¿™ÌÉêƒ`2†þ…9ŠÉ( |i™Šä}>_¾´Çœ?…“:ãîÒr”tÒr’Ê g‰ÄDeW fÕö1][ÊŽ'm©T²Ê`1”¹o¯D'ò…L(¿]µ@Ä÷€aðTC9™v0ÒdÄyaœØ\¸`î¦NKì0cbØå<S—m»œiÇV³;SAk?Ͼ­Ô+ø çœ6S³ŒI§ÏÔl cÒÍó\äÚI‰ã)S¢A ô»¤ïšbVKÝÁž…½Kdz¬R9sJ#λÑ$W1áØmLw(¿^"Y’º’éäzD—•Sÿš3„äɨO,NBdl½I;ä*êŒ û:)®7QR2½-c])ŠG>Ë4¼ÉèÖ{&@izȲ=úmtMÜ6<˜ÔЄ&Œœ4ñ:ÖƒPɳsfàìÃ3f$ô$LOÿw߀6æ7Þ¥çµá†+å.„weøþt Z¡´ #QfT§7œØ&Î ªoOñ¾»{Üe%™™ }§gåËÄÃTû×E.ZüOâŽifá‹Id[®£ZÁ”¡Än•fºªR".Gß(¬k9ív¹™È³ÍéJÛ €XJ£ÐU!dÒøœœؙw~)§ö…"Pÿv< _Çí–Óq>þ“§¬ÝxHmúÛ;$-O.ÝŒ×ÉlÁœbAÈ®­¯1Ä™]-jÔâñ¹Sm¶1ªJk¿H¤N1?¥Ž~Q¶sûÖܵ̚ªwu­]o¥©ê~ÆØ=OŽZV•f`#ÕeAbyVq¢mª°JÀ›ÄN±&má¾Ú"-È…HÌÙ½IŒâ—`ñît\ ²dîQΖ†º8lšÍ÷ç†^æ¾0í0L5À:¾ñ‚Tç Õ‰!¥œ²GƒHþ¦sôYìjoǰfŒWèËç¹ê}^pžŸ9ðä–îÏóGÅ<Î.;ïŒT¶×¸CXVe’E5YH×µì\²INK UiP­T£vzQT¤“¬DBÆaá*§“×DÞY9Ìä³o)¸¡}Äa8àpÂùfU(úPÆî}§³èÛl0e–ˆXšMÄ“q’æÒÇ—6‘üÕBÿ!­I󠌮9/–Öu2“«ÙÆ\I]©ÆÂiÇ3›ù\vþôÔW[»M;ÖîYTÄ»c_ÖM…öæ;Š„…¿1Xûè°‰1%0‡Vgóà{˜“Cë]›B.ÓÏæ»cú‰ ’öáÿsΩµ}|˜•BkME‡hlŸëäY‡üó3˜ÁÏ 7ƒVº}iëôðýnEå·J=+{•ò@E޶U@U®(|ŸÑOá¬SÛÇ”têýî^k‡~‘îÖæNÅÍI•#YUëüõž~·waÝvŽ[G{˜ÓªÓÚý°í÷ãå®jÿÑêx“â*fßFHÍ÷á\oØ7ïÝŒ«xèm´ŽG|Òû,‘;Ê›¨)5™­UJ2zW¢QÇýÇVGÚXÙrªòy8¹¢xXè>ì&á(>0Zå”Ñ»’Xj-U0…ïÝŒaJÃz ÊñðöÏWèÚQÊd{2\ºXg zÁö1)Ås‹ÉFœnËsoæ~éJòr•ITâψf ­i¦`ƒ­ï–±"È*ÞÞÁah…ŽÄ·4Vn˜.šª€Íã‹?Uݲ†‚7µÌ›Çÿo<âxÈXX#qã—Û9BuP뺯UsêGÝÞ ªðãT™øù¬o%¬…'»¸ßG§GKÊ|¶ñüÐ“ŽªýÍÄz¢£¥øðã ª>}f'ú0z ÓïÜS Ë%¹ÜMòðÃúÎ}ª6`Ú]2ÆÿœÄˉѽoÆï¥Ä÷©aóÚ¶;dÒÏÓÑÛÅS£/dq±«s£/w ×QÁPOÌ›ò ŠÛj™ ËÝnªáĸÌÝ„ŽqAÛÙ“ö€qOÐÚ¸ú߯þ»5¢Š‚5\ö…9W1R˜pZµ6 Ñ¿}o1^4ÜwÆÜbÊê ³žpku®êÏ™ŽÑÀÓmRy‘H:¹‹>‡¦­5â5N§C‚)ª€?œè`΀¦œ@PBˆ†¤Ä%7+¦›•ÄlÂY‹»SRËÅžú’ebOQáXuÇ-ojVåèlEc8 KÿÞg7œ ÁïÔ8$È!}§øÌÔˆÊ KW’‡ªª¸R·«â÷ŽrF¦FV8×=àÞd,A5-‘¨#Úé\…²£Mý[Ÿôñ9oì=ï1ol9]W¹Û˜]ÚÇÜ¥†a=]zƒŽ[ùáÜ‚ۖY òœáe_¼åŽì;ë‚ý€Ô¾gGл5÷´åÜ©•ìà{'0§$[5üËíIi´c#º)œÈ°CT`_9À¡°D¼IRîÀ;$,)cUºT\FvÊëMý@†©b’A#\×wU²S’))1Ns·æ¥-‰”Ÿ”ª”h„˜F°q0¼2éQÜqäµ&œܳ7<µÝB|¬r÷Ý+ùV]LÐãOÞÅ¡`z²£÷&E|8,Ÿ•8Ö#G‚ñœØLNØlF’s<³fdÏMø”h+þniÚ'#ÊÄŠJm×µøá”žr_ö0…ÇH¶YK T |jTUýi´î &5Ôl ó§Ú„E CsÑÓ äS¹•ðWJ0€,ʳΠµ…á»æÁ6èåÚ’óJƹò^îqËW5j=2ò–z0¸â>T£EÔN ø‰q=¸®¦S„Ÿ‚¸þn4žÎ†°ÄƒïJÛ<ˆTû’1^°Ð…îJÞÓ¢D0Ôð[ïø£P1=éQͰ-do?Ñßš‹³>a§QKoR°Húì$$o>õVÍÐŽÏf«›ûçiB †ìd‹‘d9H‚f!^·vMÈ£˜Á˜º 8Ë8¡¶ ´§×D| áx´±‰ƒâ:ãÉYï³ÁûF¼5_‘Ö“WdcÕ×î4Ó î’¼Ò°O¤†Ë¿Ä]6pu< ‹yòì:áR‡âFRü¬K€)MxË D*Ô¤ZHûhžž¹ Ã[úbØìž5ŒócúH毖8TxÒŽáž*Ø’ŠmêÛæžL$ɧ€Fz`ŒUûÞ ª= ±&7_ÁV‹UK€M ¢0ذ¥ùÀ ˆÖoPJª6TÖäN(/À¯<<)ýÀ}þŒg î{x““ž£!ÏÄJúã&¡&æÉ×ÈAf)ó¤Ì†ÒJfŸºB‘èuƒD»…¸Ä•Ø(&ŠÜ”Ø ë7C´b{>á;Ή«%×~1ŸŽYÔËV@:¾îTA»\Ã-—¸íÝHTÖrÊt-YËùô£±ÊPøùŽNㆊ¤`óÆÈmÁ}ˬ뼤@òþ¡g†7çdÞq3!¨;vH V­§†‹Wðóãüq"’{ÔÓš ¤\YéñâDu™7«­t ™ ʃ.õ—¼~)ð¥`©_ü1U(-*jÌÖµÄRïv(gÒçz׳õî=·Å\8Ú¹Îæ©SÍUûó챆ñp‰•`ê'kùgG…DPºNC­w²!žCr¦ÒÍ@žJ©8ãØS{hyUž®²‡l›h¢œlû0v‘´kÃjú#ãd[qÏëñk{t§/ÍÉD¼}¥HçèŸáÕ²[Ô1Ão±P  ‹Ó5ëjú~ {² S¹î*Ðýêv?Iï1FojÏͯh(ï†1$‘/˜]TðšÄ8üÏ ÎbŠ#éj*)²F›aº3ÓÌe¸®í>I.@Niªq´ÚÉ {‰€Øó΋ïzzÎÝCyÙ-㬔EÐ<–~"p€zô#‚¢‡ÂT g¶ xØÔ¦Ö3…¦T×·ÿÑ÷¦Ä¦䱤ð”,.ˆ^±SÖ%ë¢ùLGUäÚ§ÒýƱ Ç›ãev|S¹|Fdä{. þÕ*¹z)Ã4¥AÈDêiî! ŠÕ|q²-Ào›ø­`˜º2%ƒ€à•…Nža¶.øºoaâv3Å'½,¯Tþ¤&"…D§m´‹ÔuºHY§×zƒ˜ˆ½!Û‹ÑîÈ]©Œ-rQx‹Q¢Ð.ñ®•g£ÌÕ=Ý«¢~^ç®–wé,ͦåiç=v´±p‡=™0è»ÝU7ÝÀô˜–ov‰vëi|UÖ¤§ÓwΘW„Ãk¼Ýý¢•GÇ-VI;ù2bZ¯¯7ÑÀªÙÃSõ©ž|_zºfé#䦉­ÒX¯ö Í<ÀûÄ7îßxñÉþøâ?­=oü§õú‹õdü§õEü§çøð^rã?=YîöEü'"¯‹øO?pü§G œ³ˆÁ´ˆÁôH¨´ˆÁ´ˆÁ´ˆÁ´ˆÁ¤Û]Ä`ZÄ`ZÄ`Ò€XÄ`ZÄ`ZÄ`2[XÄ`ZÄ`²ê,b0-b0-b0-b0-b0-b0åÇ`Z³ ¸ˆÁô€lfƒ‰‹,b0=e &ü¹–‰ ¶`jã™ã1ù@t¸¹«Ý[Rã5UT¹Œñüyq›þh­çÅoÊhgØ ?‹ÀN?T`§Ôù¶§Ì‡Þ `Á>ü8eB¶ß½œÅ®0g´VdyæˆSEש.‰PUL_!«!«!«!«âï‹U‹Uâ/²ªÉ4“ÙrÀ h{‰µÈÌ´Õfyî+W½?9¢µâR”ù™‰ìhX"; –áLèr61{ì(]9ãr†âÙV‹¨]ª³EÔ®EÔ®EÔ®EÔ®EÔ®EÔ.ùYDíZDírå¿EÔ®EÔ®EÔ® °-¢vñóEÔ®EÔ®EÔ®EÔ.㳈ڵˆÚµˆÚµˆÚµˆÚµˆÚµˆÚµˆÚµˆÚµˆÚ¥ÖiµkµkµKk²UÔ®µEÔ®ùã‹ÿµþ¬ñ¿6^¾ ^&âÕ_,â=LJw¥ÿkÝÿ N5:­âÈ_ç-ø×ÈŠýe„*˜ëi£¹ß_8xW%Žà¥Âxñ5ÀˈË%ÛyÆ\ç*—GK†ãJ_ÚÌZnP«]xX£!ž’_B +2{3^Wôm!ÌÓQ[dh ”3§F#:Œ»ä)s9\‡$ÈiT¥ƒ[6‡kwp \øôæ–c>©ð;P‹ïœs¯¸þݯ“A‡d+ ?@¼êVAgkk5¬nb"¢>†H@VSyÒ¯¢Ù2¼›ÊWSjn"c^Ê6¢!ˆµ]ãT}2ß&¡qþòyËߥ¯¾ 74qã#1#â %«X-@Íû:P*sœ™‹˜ âHGý»M"ƒ7ÙC].T¸X^$þJž‘Zaß,oJ¥_E•”FãÛrEvMR" Áĸø—ã.IŽõt ¾\Aí”ÐGéò=SŽ“‚!»øÃødº£BE¼ÿh@„c?Eÿ5¹5‚¼liSÆÑ`”²h:r£ ‘õ^-ÇlðÌþ7B nóå½å?äðgé‹òrg™~-w\5Ép/Z¡³r‚½•QDÄŽ6 ŒÕâ•FíLû‡S‘}éÞÈ[¦n"{¬*ÍÈËM F0öäÊ®‚Câ¸Zî°8ªVF™ô Z³æ=Œw5nމÔöà4ÉéË1‹¢§uc #ßå–36ˆ¼x³Ýjw˜ŠPªÖét¿RÓdâ]áPI¯V±jïaT— Õ¢ÛÛ*ˆbܨ6$0Ç·´ñr7Æ:²Ú¸‡_¢ÑlbÞñÚÚ<Ô1†â®‹—uë__eä6«…i é4µÃë¯wš³Ëlg§côæþMŠ5‡ÉÍh6è# ‘·ÓDMV€ º“ÝDˆ­ÊûØuô@(⯽ù¦Ú½c ôú—po…^ º9ëDÈzŒøXt 8KºŸ‡8Q‰®î#j ƒ££‘2q#í‘ÿ~N8«•¸Ã´ƒ¡ãœ;Vuë ¢3Ä<=þ!¼>¸^JV¥ÞhŒ 7ö奩ž×§‘QƒnÙ d"ÇâÁÛGýÜV8Æß^)ªD|%Z©Wà_9±å«ò2Æh‡€@5Ä /­ì(I¤…˜3C†¡¶p³á„‚\E|K—Ð^×0ÞBlߦº´áÈM1——c,P,´ÄN쇓Þ8ºS, ý2 ÆÂ1ºL$žÔá78Ÿ{ÑTÒ ŧ2MY·GðÉ #>±ƒ{P!M“1(‰’w¾"_ñ¶8rYE÷ÆÔ@³ñ‘1u¿í~+Õa‹gI s#*al,U¹ñ€ÊñÒ¢úØau*Z}å \ér”Dú1ŒWÎËÿò…z“@tGÔ;Âîé×Q‚+бF_²O ÿ%Äÿî ¯âåçÈŽ *B-«\áñ˜*bÒef HÑ ƒ »pzSIºµÂ`;#6ªMÙ Â÷¬àMë%† èN<= ?Ý[ÅRtQ´Jî6'Z¥Á’™4iÏ7‡VI‘$¤M꬇¯oˆ½¡ ‘ˆæÐR«¢« ‘·bòŸñ´TMвDÄ' ±·¢Ju-ÆÈŽäææ—¹qÎ/+žŸU.ÛïðøthçEú»_œ¿ÄžÊ‰–—ˆ›VÕ<³/Ì Î‘ûÊî™3ɺMb±¯üò©O¥gÕN Ÿë¥.Ω‹ìs*±ñŠœSRðÄðƒIrÇ3¤‚ïùzL½B¬i¦µò}Ý8\(vQˆiL"mT*SgÆRᙘœLœàL °ZšèÐvbqÛy0M¥kÉ:r­ˆ¯–¦x‰«L¿ß¡f¸ §¬‚?^,7‘ù°ÉZ,™Ò,Ô¼döî~mº—þmxŒŒH¼1•HHs ¦Ü7%N½Gñ¤Ò‡î`$b=9[ܸ’TÑÚ" ?<‘QqqÝÅ¡~\Bý°°Pv\(C°*jþP&`x¨ùbB©s)BÌ}ù0õbõ j©«Ù€6‘Íš—ðFÒR¤-ƒ<|Éñ”ƒ}ÅÈäÄ=bW±1õ7Ñ`$Ew8SßpÔ7w¨Bq_Jƒ&G›QJ* áuåOˆßøFaœÞvîö¡£fš5C§ï§äÊýÉF¤ÒÊRT!`Vê1ДÌBo@d$@ùø_=$ ÉðsI9 ÷ë2¸Ê¥qxÝ÷=>X+dÔ $škgfp•ú²­Wd6-ÅOÞèÞ­á±WD«Æ£æYÔh´wÛ™ÀÚhÄ$~SÁ0hßT4Þ@­ˆ¨<És¼M÷nÔ£øÃTwÂÖC2ÔÅ¡ ObîC7m‰ýÑl,åË#iÊ€¯ß'´ðwd(‚µ ð×F4à×ÁëjõõúË Vs{>ò4ažFž] ¢C Ø3Ðm™‰x½þ fðrÍÁ#a@"¸¢ÊHšß`¨,ü£÷ÔGÔi‘5HUÜG¼åâ½@NBÀJôº3öFІ1Klô1¨;…SŸýÌFJ¤¡# À *4Ñm4U×Ú%ÕHšÃi¬òµ7$Oæ­¨×nEd&%Û]Â&;j:þN¬ÒLòæ`' ºéÐ-€¿Èó}鎿G2Û±©V¦ ª–0ýv¯0>ëÁî‡æ¹ˆ¦2Sˤ–3i*Ÿ5inð­ØÈš3»¤½IÌ319s¤`îö«7£ž´3› ØáÐtßÞ3çc¶;µö^ÎÔÚhý}áN­sc†ã:oÔ% zx°JZšvd^ k^ɹX‹àñz *Ü|Ö€y$hRy¹ÑHy< ^­ÖÖ×ð‘ö’üQ£šqN1Hi/oæ)m¾ƒxi±CQ#ñÂææövèœs;§ð#+PêÎLw€EÉù{¯_1 ‡Qø—Õ†Pº³»?ßÊ4u{×fc‹b[6)¶Z3«f›fÑÄ(ƒÍ³]:Ü<ç‡è¹Ô.ŒàzBíðö´’uùƒ)  Ò‰MKí¥¸@â&O²ø®YܹғyA5¼¢ké¬HÏqñf²gN@„¡¤¡ÙôûÙ¡uêd†¡¾E¨½%×Ic¶±ÂnY(!sjyò©º&ƒ«*i럷Pq â×pò±jc˜B4GTÜ^lÆYµéÔ–=¬y@1Ht8½5No¯ÈŒmh‡ÔÓ-P\¡€Î9ÏK¼yµ«Ð ¿îÐ%ÂßðÂ)×H,UÛ]*ãžD„›³; ÑMG2bÎŒåúñŠå­WwêÔö€ÖY2'* -í2€†ReUÀíR,+»_¢iÙ\çä‚´­ٸǂ´5̉_+/Ú¯+j<åÕ¶[U8èdÝÀÖ8=6·Ÿ¶eFu ˆ1™'`Ý-Ú> €$®P%º…¦þ3¥™¦q ÉèÐÅ¢>x™EQ,Kr/Ú± ×–qa~Ã5qãL{ú¼_h‘Z -^C¤a>ê“~Ƚñh2Át\r«&¶CZ¼Ï9ö7A@%À̼èDõ)wL$˜£Z¿Ç¨T#4®U%hdßTs˜âaû³1qŠÓÉ×»ÿ#ˆq’ˆ5’ž“éxÖ›¢ø.ë±Ö¶*•·ÒùûÿIL–2s²/柬nDMV>ðAÂE’§8ÇÃFF‰¸,`Iï`Å"\»Äž< ¥Ã…¢þ†*í.—ì”Fg_<ÙßD`Ÿ{BÔs²ÅÃ?”ÃÏ<Ûœáãùs¿)´í)ćB°¬&±f \W…<H ò. HÎoȇ]iuDo4¢³Þx"ç©©‘”49Bh€D·eÒ ™R7Lš¿$1“嘀®âÌXT^¦GõU<5'⥤‡]X1êÝ´‰G9?Y1ê…säBã‰&Qó ’³'¦_¶ntØ_†ï O²ƒwXÈ›„z¹¢ÛäÂ~¹N«Âj~Ø©ç}|¢qĕ׫¾îPÈŸæLW¨`¾òš8ÛÒé®xÕ $‡³Ç¹ìÀ=žƒÖŒ3XO¿¯+d¦C Öd”|“m‡ùÅ+ ¼±ŠÓöë°Ã†Ø†ÖóšÌVš! uû_¢ ª*bÈç Y‡Óhúê›PgÇíáø~ºIcŒÛµID]ʾ€@ÈBÀq1˜Þ]ÈNų;œ£ºû᫯/9I²’Ý´»ß}ÕK]qÂ!LbÏñ“ª%Ë›Úæ,˜2±ÓŽóî5ì/ÖgÛ©ðTý[Œ•뚥Ù•ñÞ¨ë¾&¤`ˆ’ÅU4ž ›2*RÔWVT#W|-À¯Ã!ŒaPáÝap!ôÐ )AA¶úÄ[ܽ‹úƒïÐN¤‹ ã‘ ?’×;¾Áùq«Ðo2‘+órFŽG|ÁlçêÙñÍ=¡ó5Оrc¥±†ÓŠ qn&£Ë‰š' õHœxÙüñØšF l7!^ t¶d=Ìç˜%÷£öÇäR˜WqÏÏ0£HÆÌH‰‘çdÃhž'`÷îKåÀQQÎM‘]¬JU7‡â¡Ã’añuZüž–ƒ[y ”ÿDH¦ŒñMáÝ^ȹuÌay˜À,îøêƒÛó„ŸØý$ªnúÉFð¾Ö•ã­iÉ8(J#VóS|@ßèhÂGõÕÕexŒ6´óe¥À‘±ÞXþª&г`áAÍ Û•%¿Q΋ÅOAu†£[r,ª7`@4ò: ÔÒd€óßË+€]¹õéòFTú¡±úh*d$ ©ŽMäJã¬sƒ%Â5ªªDHjª8yb‚wR&'–ú/R™ºž) _•­iHn1¯o}›—E9ö…‘ì[ŽƒF%©!ï^b‚LT§®Ÿ¦m7U‘®úOÇ݈rhßAhˆîp„³Kå+ë_+J5A &?©>ɉm’¢8ž½óÙÁ(Ç š Zÿƒ6…pÄ=AN«§&|ÚØƒbaU] ®räÝÀ‡Eü¡½äj³ÜÆAîy£êê…åm'<ð‡ú’›ÎrZŠÜ»¹™R?+v/ÆB‘u1TJ^^ý¡zº–wmÕ*ìU”ð‡”GíÔÔ{n—¸†:µ¯gÛZNÖh5±–†©PÜGV‹\´‘QÔ#µˆ´$%B’”÷@îšíßÚ|!æûHáζ O]ރÜ=(®Þ¨{NII€Ñà"tÄøÇ˜? v þQj®¼(ÿöÚsA“'ÛLLÒ« é"µ‰‘¸Ùùÿ6±Ïmí™I,rj:!««¸2ñ©È3P©ŠwÎ)” "¨‚ ’VaòBýÁ:˜‡LCD;SÇþ¯ÄÄ¡\çï²¢7DEã{‘fêÔ%:cÑæ»´Á3ø¤PÈ÷@³‰¬9FDÁÙ$ôWeËz2¤ Þ l©Ê¨ì=ÅÒqPhBö~W¦ÍÀ>!χ=‰¸uɘ¤R!Y¡@q:Pœö3ŠÓùaµž5”¼óD®ÒISUÝÀÜÕSc›sã§lg?é Ÿ6ócÓ ÌúØNå­ùÃæü‰E/QÚ w( ¢étú/×0‚šYƒ0ç$ ½)°Çt¤ˆwÆŸ¼ #üÙÁä@††v·×>cÍ›kÈù8û³FÈ™ˆÒÊí`v æ ‘*§£@<>âø$¯#Ê+üµ!¿¢’/GãØh4¡òÅdS wŠrR+®p¾y"ù™T®SÔ߯#-RC2Vä{]t\~¥d ÷ [æŠ@ ‘éX¨\.©)vŽ÷)Z~Â>E›ÁXt=kŠ\lM —áxî"pZpPÝŠf#FãÒ |™vÝ Q ¾.žRç)±c_dܦGH±±þ€¾üÏšÿáåzýåF2ÿÃÚ"ÿÃs|eÜüÅiíÞ»N½EÓr»‘F`íTD§Y·Âñî9¦KŠ“¡?ã9µ‹´òÙrH+6ö£D¶ÏŒmï‰gG°grqOüôį7ÂпµC³Jºß&lK$éR t¬Æí´gOh¨YŒ¾O¡NY9kœÊB»ýŽÑQÛå'ÍÁ&ã¢Î†V¬ý5/æ@ÍÍLÔ¼ð¡fb‡„>Ô”1äLâL.¤¶FYų SÊß‚²9dz9æx–9dzûî¼3½êtÞù9Ý”P†Eu=ηºfÍ÷tŽùžfÎ÷´ ¹‘æ5÷˜Ù£ÉŸÒäõXMžÂÌ•ÇShÊ3Š£û¾6Ý(C õ>F`„æž“¶ëÎrçp²íYÐ?7³÷dCßò󇑸ó½t`ŸÍì³$°‰¬cÜ{Ø×Œ ¨&ZIÀølN'Ñþü, ï©ñ‚xž½ÑÏ ìôl¤?§¹A§³f£ƒN¿Ñ-?(óý"NËÊ2îô|ñ¦eÝd¬æ”hÓ¸D¬f^¸.4ìáÉ:"ïvàç]ÛÃðM{þ…ŠæÖî»öéQ–*ó]ÃßxK®½}?Ž›èÍŽ®M€ íN~íœæÄ¡Å[ëè¿} =ìÃÿðdá.|Ÿî63:ÙoŸC!6UÀÿu¾öý?š¨`oQ;Yæ ˜ÙçˆïHí6wàg»³ÙÂoÔxsëèUê;ØZzCtßá4]í¾¹½`Ü:<Àî Í`Þ¸²ž5ß9Ü<ÚV!üQ\ñ}²Ÿ”(­ËñºeÄiÍ ÑZ8híY§D!2àP8^íûÝ£#Šõ¶µ¹S1Ã×þѪÓïÖ»÷ô»½ÛÉXÆNëèÈ; ”°³–ÍÖòË*¼X˜á;B¹QgéÈM„Oß<&®Õ†·wxžŒE™usjJø£ÀXPøŽ/td¦¨ûnì§k&Ãe7á›kÖó¹é¦ùãšõ´k®5g²ÔàQRTE7[ÃË–œö ÏÚ¶áÉîñ¬•ªm7m[{ж½NçmÓÅœþv}ÕôS¿§¬êÛãÛÖ±m¯ƒyÛt'oxûn8}ë7±ã"3áàAÈ"aKáÔî0½yßñÉ)»"tjÁ£~¿b.aóÓÅëp:%ýe/ÖÝ&a\¤«¼f]à<)M‘Ìê²O"ôκ-ÊB%ÓeªbíP_e7° q9\T:J ’Άlž \_£nï† ’:X>rû)"øxo%u/‰%x²‹¹qtz´¤‰sA!ªÅo²š|§œ®€X–âóž+¨úpŒ›hÂmô@¼®>µ°\’-MŠt‡õy¢wª©1ÍOùV.¹~dÈNèD:^ÉùM…èy\cİ:U(ñì(b”ð›œé$gw»6zWf(‚ôîz a^îîäÆOmWTµ¹ôvO½dWø6¯½©WÁˆZ” ¤Î–l×-IÝ 3–®²*ßµ›e—ůQzCÒ"¤ve.ðb™A·F«þ6…çe¥î ^e¤þ9'Õ£s)q¬2“H“%8͸8z2ªBÝë#½¦`PkbÜ0r5´‚cµI9£Ž?J:0 xŸõðpI±—øCóùèÒBªOtFXæ*À:¶D²û@eÎ £¯HLÐ/.n€ï§)_Ò $ZCÉ’¯„aÔ&Rì»@mÔbšË ‹I“2¯7³ágØÓpØŸ°fTV`€Ræ:úN€vj—¢ao0#©Ÿ®$XUˆT·\C¨8-Ø0bð¡ùB­µl€Â1Z›Éój1jK[sæ­C¿°®c7“óP!<Ðñ’ÂÇú±ãq_¢˜,cÆ¢vZ!L†ý¨×¥H6wPdª*¡+Õø#žªÓ‚œÄex5b‹ëw™¾pÊÁå€ç8Ý=º‡J£€Óˆj;níû(^ ²©x."!g„×[ÆvªÈXãø÷Š‚ìšô¿O¡±ÅJ…2舂üŒ5+ÛÍׯ3Ó[ÍÄä x;9ƒ8&‡„_ä…1˜KA;$Ù„"óØFÅ Ï3n冊¹¦®’­”"´i/³¥åkÎ T4°sž3ÅI¹†Ä-§?úÊ´Yïp€ Ý…0£Æã!ï´Ž»ýèúV&·½D‡WŠerC—jñ’,=éÒ]_ø±Ý›c·V(äÎŒuW¥u'fï7±–`ؼÍ0X`Vw†_Ên°[¬Ãñ‡±¦ëLLâ1­G2¨ª"üú„m1Ê•°ŒŽ[¯`WÊÄÇ÷$ÒqÔÑ[$>-‰>$A>"¶ wNM&&A…¢Bj/`LJ*éâ€Gݪ@ö…UGÒÙüеâa4mß}"â!T ‘¬`‰±Ó}½¤¼ÛY•BÌ…ôDDá"X>*t…UVUTnüg^ g„tG)eH½0Ð¥2f¢>ÍJªÄÎ(î¦^Éê&åRªÔdlжâí[w¢J%׬’ki%Ýù°n/}:©k7™êadtïúǹá¾D×ÑH‹§¾›jÅf‰‘°ÑÅ¥+Lš- §ÞÕ%e"â© ;ý:ª²{¥qõ)õ’.ætùL'6gH‡ÑÜÑ]!œdVŒ Y‚¥wRÇ’” _ uÃW)ë«$ï:f=PQ”…H¯J_”¾‡)79ôÇÀDÀ!ÄŠŒr*—üÇIz¹ÔÀ=jR›SkVzF5Œâ;E•”?Ð×R5÷"¢ëáˆâæï•p¦eâ³ðK_¿ŒV*ý.ðÄ ç#Œ1•E~Íì¾:8Ö°TŸu/a èTð0›ÐqÇ*ê$+$ÍDÖšú(2­ñJý^ôX<I¨£Mï¥(r‡®³dOË%ÉP'P¬#ólø[`³EÜÏrÉÄÿÙÒrÎTÌ­PΊ_£ãöÊÒUîYö=¦÷Duòk*FðéáIÆNåWâQÔ³²ñ™ñ4ô˜W‚œÈ†úÃZ[Ì@± QYJ%Føëh6Hwldé%ûáhX†×8FÈT ›¯F92²k“·ë O<ù’MÇá]ÔOIWà|ŠAQœŠ‚¤PdSCCö¡€¥»ù.d³k¶Â»AWGàÆ4 Aœ¿ …¨•páo~«Ê=ðœë!Lþ1‡& ›[“;;«ìšYÖ•côç~÷ø…/›B–œÒU‚k,°ô:”·#=ë–Xf²Ê ñc¹+=ûü²Ey’ñ0ŠÊ²t\Ù8ÌèKA #H Z)}£XS8LyØl¹¿«G3‚ €¤ñC mþ–NkïAö#u½cÍ:¦d®99¼mŸvßYªt½ºoª*vØE èCGÈOÍÝ7ÕLÔL)xàÊõ˜p€®}¥†‘R9+QØAÂmÔ„Ø¡$öm}Mr]9:¬¡rÀ;Å"ñ)¤u&“¦ˆ°Á¦í#›¦n&£¦°HÖ`²»¬Î€ýÝ·N¢ýì“ÈèÊØGf¥e=æ´êkVõµdõ5]ÝŒk^*_ÏL¤“G“‹Ðu¡ÓÅ8¥b§a”H.(Á¿¤A÷mÂöOX>EÆ7RV@D<žâQ:t¿Û†œ  ΢r^iEq²¢Rɺ¾À©0‡S?–Kÿ %/S¶ÆÜ‡þÉ{RùôO&[Á››v0KVŽ.Ç¥ V⤇Ë.HÄv0Â"mv+#Š*¯g¯¤r}i¤o_r<IŸºRàR¿}9€´!½ñfÐß²Yq£C£^P”-¬Y-¬¥’Á)ÁÏÒ”u"g*Ÿâ ·§5QÂ4^a/œLºãïåWp!ð}"\dâB9÷ôP„:Ë_ÖET³ºº”šª>G] @ĦFo!÷§i¶¤ØU¹W+¶ÛùxQò”ç¨=RÂ'®icfü<7­úŒ ö÷\iÑêÞª>¦Z ­9 ¥#ì˹â[šDó¢ÚžJ<Ó+†²%+”ÍÀ¶! p)¤#»u:eÔuέLt変ˆ‰qlùPïâ>ÔP]ÏF»‹|‚hÔ•ï ÓD»[£êœÈvaQÆ‹\ÊøêTSŸ¾.¢P ‹„Z]ŸÐ)a›u ^r6ŸNAÙm vÒ8¸ýG7ùbÎy §ó­.á[õ§ð­óŸºÅ\É·"ô'ý¼ÌãúD‘c^¿×¡“v xáÒü”]öse¾CE­E½`ìVï9à‡wPŒ´¦ØCY‹€÷"µÅýégqâ©€Ì×óÈCÛÎÒ¤'Ÿ× ]÷G‚|Ž&TŽòébÒE’Ÿ]8Çmñ®c‹ÒÕ¸B!è'š”Uð—Ûœ ée•“Ë *=ºõâÑ(ý’Î¥C¥šÈël¬ƒíåØ ¿„ãk¼„&¦Œvþg)ol·m‘˜¢S­!;  ø‹—«ÓQ#áàJuÆL/… °[w(6o0%ÆÿGt¢É$œEépó¼ ¨xYýúe"ë€ÙL—]ѯ 0krEAGh¦€ièùÝbž©”LQÈè»=tÕ>ï6á·.Jó“šx'ï7^RDÇa2RŠŠ5Nwc¦¡ÏxŽ”¸/j¡³^Õò¶|çÃñH”ðö%àÐ2E4¸Ég•Ò]v/þŒY³¡–³²R\:ä|yÆþ6a5’OÅö/ù±‘Âá§èŠ eŠËÈà ÇE¿V¬áU3ì×vûþ„¨¹ígj»ýµûµŸÁKsûÒ%ÝG_òÚg£t.„T÷˜öÚ)ÖÃú=zXÏê!Õðg;HJBü•º[‰îÔc9}dé¼WÖì«b­³J·‘ÒPPWtþ ÕëþqµL;½ë«NÕô¡þ¡?Yímô‚Æ™®à ø !õÅRA€2”ýêe: `M¸ØÍ,¨Sõ@UGJŸ‘µˆ~؆¼47¯lѲ¾VD´|‡ÞW®²{t%B¼y ½ô|œ˜aÉòx•MZ³‡YϳeÒ{”Žj=Eò´iÄ[Qõ³Èq±À,–®N°:U†ýÝ«I¨'MJéA™“÷J¬[*zêÙ±šñb×)»ÂÇŠ¬r±È…Öµ.@š=Î> yÃ>ûÑm]ˆîÄ©þ5D#¥2…â{7Ä'\1~S×oŸ5âPÉ@>ùçõ“È?ÁªOþ‘4¤òfNùǪ¬äŸl“§—Þðêh+MÍ#,íÚµ Pâ?Üæ<ÛxÁˆ²;B ¢[á³u´¥'fº(Ù˜ïh“CÆÎ:Úòå8I}ZúhsÃŽ6 ùG[qÕsaä­ˆH£MîòÇbµœh¹bNÞ¼ÿé¾B½lo. Þ’\øÌSëÖžyM¤;ô ¹ûMí°‹ùN^‘wøz¦R.æ9ÄļG°xüSX8ˆ%³kñÈçµx QK?µ‹ ò¼¸Àꊌ†ø ܾ¸/ÙŸë,÷ÀÊTéEÔSý©“ß1«?Œ³™¥zãYªŸ§úxòO.Ÿ5ÿw}u}½žÈÿ½±Èÿý,ÞŒNþïöVIœžs¾ïtîD ‚?Û˜øãó`lR¢‡Ý?NwwAü‰Òooïm¶6·­ä+4• M\ò$(Ah0$”°âK¶Â‰RNz,ñ æÉ¡½¹U’Ýqòì’'‰õÉlŒòñÏ·üáç¼’åÑ%¥zÅxÐßooC ”ÈÖD™6vSÌ&Ês 35Iï'ÎÖ¬ƒáHQmÙ±ž‚ѵꡈƒTi 4¼—ëæÑg_þzR*Tìgvw‡þPc1}ÅGq²k×Ú ŠOJÏSÀ`)Í^\ð-Šo`xÔƒßú2(sètΓI{³Ò0vÜ4½jP˜`Uü3Nçz°S¨-Ã?lÃŽ¯³¸ícœ')?lGJ (/­(ŒœÐõŸr\¸Oðûï<ºJÊ$<Пÿc2ˆS÷‘‚ŸA, y“÷ét};+«ªeJ»€bòïÌ-:¬ 7ÌAX•OÃ*Ô+"arÚÆ gí{åÉìoêŠÄ~år¼3ÍŠnÈ]¬4ªû*Ýöþr›òª-'Þb õ” tɰñ*$ýlœ´- ¹ÀX¿/0Öû2ô êÝW)ÀÈ€„ †{DCLè&r~\r·)u2ŠÊöÖ_IGéÓÿÝ=«þoõåÆúš«ÿ[_ ú¿çø0¢»ú¿Cÿ‡‰}ÿêZ¿çÑõ”î«å;I×ò¥+ø” ­,|O¢àÛ<1ÛšGqÖ\.5Wêåß‚ÇÐ%CSnbvôÞçP]’Á”$ˆ]˜)( }YBIfé¥\}™Ô±œÕˆ”"±"JŸªõòò'˜®­ËªP…™-”‚aõS9Ñ «Ä†iŠ0·±”VüMІÕUf;4W ÝÒB·´Ð--tK?®n ï;üBú¥…Rh¡ÊT|ìo'·<‚b¨ž¢ Ö~{¥Q­»ÊãE–(1rø±Â]=¡rÈ£GÐù½5( "ãE–zÈ£¦¨ÂpddËgÒ ü<$Ÿþçû3ë^Ö“úŸúBÿó,FSWÿóÑÔÿÃÓBD@xEP‰;»§2èãB$??˜2ÈjkN/ªL'ª$@X€3-ÓØ1ÆlhˆlØP®ô›FxÚ0ë¹Z+K÷á]-óGÅTžàø¦ƒï¼Ê9MlªÄãð*cã¾=£Cž‘ÙŒòú‘3JE&gFE†“3£"@ñÍ(Ý-Ë`>ÒµSfå,m`OÎóšb§)DhôTkVêå…nk¡ÛZ趺­^·µÐk-ôZ½Ö*±J´™\íŒzš¥¾úᘼ ©üùþÉžJ®gòè¦ãgÕÿl/×_&õ?‹ûÏòaôqô?§Nk³ ‡ckwóô@ÔÁ­Š8G=Çæ!œSàËqë ãV2Ý0ùù´D¾“AA€Éà7`¾RÊ" ¾ójж¤ÇP§Ä=Ò\ùüüʣNKCú%œÈ ìÀöügÖDUC¤|Ÿßá¹?º+uÊËw@ÌHš[îUœÀŽ¡D­Ó:Ý•’wÓ8oñ·´'‰±?±"¢­òrén%úOY÷\ê­D}˜¿Õã»M8jd—Ñ'×GÓ`d#ëW «ÞÁ£†Õ!î@î´Hºyù,Ζ@±lyÅ-а…:rpXmQ:¥8Týà{ö¶¯}v<ò×ôý/qYª—ál–`ÍeiXÿö kðù—üýÕ|˜WتP¤°Pp æöÿ-qà®´IN;$Ò [ÏHS KT솟fטßa:î'ˆÀ27€VyqCÇÀõ¢ÈO`ê‰×è) áêñ‹ÿu4þ<1*,Œ~ÄH clB4… Ð¨0ž<áðÑ!_«oàDêažÅ«Ù€*$¶ú9…[Kx§Êͬ•¿ÀúU½LÕþvY³®·öQ£‰{„’öqAË"rKÑô{ro#xà0€Â{Ø ŠŒ¥yÜÙ}#Sö` ÀõÉ”bÙÆ¤RS<æÕ)ÝqŠ£ä(8k¬>0ØpŽÇ¨f¦Uþ³¯A︩^µ+åÃcˆõ®¦v¥«GTøf I€Ñ»­»Öe¬íæîLÝ ‡'jr‚ôÉm5ÞSöº]LÏ™ÎãïF…ð‘žgˆ¥*^ÑÙ‡atŽN`çÃÈŽÿ¡y܂ש` 1-{v(o… ;SΩ`öÁn™½n¶qb;;˜5«ô»ù^!ƒGíÌV2+gŒ¼­bcìžnv6?œ|¤wg¹aáw;ærIxs«M°ï£7ßÑÁG‰‡cð.ÞnñÖÖZ7Fs•ÃÛÇ”©c¨§‡ƒ¦¸%âÐg:?]¸ ¯Çä |©z3“ÞzcZïSrqÊ‘äÏž Ÿ£ˆ¹äÀm¹Ú[¼MÒŸî—QÔ‰åsï󤬔Ÿo%Š6u ¿~ë”0jTrÜðù°oì©ý´|ÖÀ.©b¸H•R‹aŽS£TÚŠîïcªR¢çY+Éía±”÷4´ô÷òXöáAÚrÊ~ØÓÅû¹J½=Òš“Ä35/ãü‡ý˜R-㤲*d¶õiýÁg»åEÄ$ëìR0ç£È"ý^†©%%éÃ_éåRs¡§¾P˜øVÿõ¢AAìMßIß †(5£*ecuû¤–êzš‘qÝCÖ©'ñ©NL‚k¢æO¼®yPd5)r>³ H¡Õ’+üå²§~’9*ñªÿ’ÜÁÏí¼’6Ÿàù¸¯7sjïP¯Xüw!–Ç\„øïª-ÝçÃ5þ»«dÂ'þ{Åì3Mw‘æ†ô4jï_Ië该ôö”Ë?×sO³Üó,×!Šž¿ÊÔÛ8NQEcwZfôØÀÉø¿ãú—gÿ¼„ÿÜø¿kõÕEüßçø0ŠØñ[õ3òTÜ +xóh ó=Äø·ø ~$wÅIãŒü?ßožtŽÉÝã|³Ùi™iî¾ßnq½èÀC(ôþhÓÓ°ñöéÉ ”i¶ Ô2JítØúcûãEQ̵_"š0CF¾Ã<)˜7c˜)¹ÅëIAZ­„¬†žZ†b:Sà…å™'"±/:­‡NöŽ O|¨~ëê¯Ô¡êàÆi­_Ìò]†Ï¡:Kt®_c;í5…B¼R‘g)’Ýìö2ޱ9}Àb‚ÑìúVRÕ„ZÊ‹ƒH‘,ÿ§LÖ$º¾íŠFMœ£Ãx¥ t‹’ÞP„Ñu8¤„#:÷‘x_åêÂ,*CÑíõf˜)HÖ W5q:™aŒáŠCµñ8œÜ†}Š5+SãDÃ~øMFA¦˜qmlXe%iÞv¯‡ÑtÖç@—¿“3}S“ix7Á! r(šÜp(=(ç¡p­¥n™qÁÜ·ÿés4Z_+¸ÀQ}XZ)æÀüë:…¶tY'ãÑ5Lg} v|Íœ–ªØ üÀ¿T3½² ÕÁGÝpš?ÐOt25Ìú2ªLk4Þ„3IõnF£‰¹eŒñD}ˡ㌠[¼2üX_žN]®Rß;×"h¯³Æ©N¦_£ ¢ˆþ+[¼Äð›¸ÑÁttçKêÆÙ´42¨[—£éttkeáº3ÖZC²@üd¼7+mj&7¹¶*âl½@Sï(\./¡Š8:S„8Mˆ-,»s´È‚ÙdV¼VÎÀu]M1æž„E:ã¸i)4ÅŽ-»Œ33uÅõhÔÝ;X´o2þu‚”YM$§á.[‘øªÕz91¹Òž"ÀR·ô ¶ˆ¸ôéx†ÜMºb'½É±îÜg¬É‘Ó©Ž36±£c,?”Hq§‡¥¨¼¼§I;TÝ<~/nW̶̃¼2¸‹¾Œ¦*e{:ߊIøŸF2–m3ËT¸íÑ 2ÓCÜ¥íõ(«&¹›'$FÆhßge^¢kïh4öµ6®Áƒ¡EcŽ"]ÎÔ®à| “¨§´ê…Qó„Gv+ŠdÔP­.TbY˜b’ÛUÜü ;®rÆyaµ ÏŽšÎò'³“Mf½êE©UÆÌKÝÁD‡ gîXd†Š÷äÍc–™bÃ\.CÍ Éfåûì Ë[öãdÍB—ÕßdÜaŒ©ƒH7¿ã·Ž¥L¢¢Ú²öA)‰3ºqØ#œ œ­ i/—˜P$ü6ƒ:Öá®ùòB6É¢Â\Mbr. å½˜QLFÉä2ÊšPY-8!ÉcÊÃóµ`áàÚÙM܈<"U.?‡"óõY-¨Ãî"±äÖY¿¿…1Áf q¤…èÁabßV+üÀ¡ÛåæJ‰ —ÿçÿ[­ÿÿ .ÛÅ¡˜…ÞëñHd¯³aï¦;¼vòßšÛ·eo_V*{a ý‡–LuÑU¢ÈTÑÔ Öÿ¨0Eb—¨oã€!ð³¼(’;Òó=y–Lfww£˜=TÒÊuœÕÒx|²Zކÿ Ç#1¾[G»”beP’œ’k¡)–± o Yü­¨ÿÖþ£Õ)Ñž–š ÏÅœ{‘ 5ów'BÃÕ(Ê-Kû»ÜòeÏHþŸk­î÷,çøc6šF¸±Iªì©óŒÙAg4ÜÍ[9’e¼âo…ÒŸ7–þú²Š¦ÿn6¦`'øRŽJV[eß4ÏßIb~ CÁñèc¤õA8²‚µIÓï¶–¨¢ÕDP¦½)Øna··á`Þš ØŒãOÀ…îÜD MÝúð[„ÆM8°£¡Yñx2ŒÄQw |¼?ÜjþÖÜmµ·Í2Û7cØðÐÊÙ(œolPþ°aì­(öhVñh³ŠG±oož77)Ø/ý¡üøRâÙ7wOé÷ ýlÓÏÓ#ÖäÕé'Z~³L|­Œ¨÷;°iN¡Ñ“CüEÁïÛäá™d‘¤¥;vS,¿GªR®Ÿ‘«ôáÛ½SIÜ.‡æ„:7sˆþMõö®$Z2ººc%k¡¯é–áÖÓBßÎ-ñ}7ìÂ-§¬ú.3rèm ÆÝë8‘C\3=qDAÁáOi‘ã’€>ÆåsÄ*Aµ ÏSD8x¸&ÞR~aÎŒexolÌ JnO6.·²U¯²í4´ü͵¢4’‹p”:Z[#JZ¤üŠòÌ`Yr]Q'ü  Æ© ey[Š8¥?Ç]F`•ÅÄ[Ï ªò`ÒhÍ„¸7mpÚjl™æ`èmp`1W8lú¡,÷WŒËÂbÐôCh—ÕXé—åDlŒ˜m/»=¸,,g'g¦ kštÎñ+!È{¸M˜ûÕû²xÜA'yZu‚V ¡< ´õ¢ {á— v¿V=·f”gk2 ¤µÊì$¹2VùF£;tÝêŠf·Éã¦À(…ýxüîE_¡BQ¤apβðÜ9¤ReDPV¾”u½*?°*ͳœb.ü¿çú Ó‡;.— ­ÇC9«ƒLS—/’78pÒ7ͱ@?'Èë^;÷ÖÌãÈk=¸ßyTwŽ£ÀwÆ–ÖÓ8YÙjVµ—ÕVÓ{(½’[º‰ØBL£c†yAj€5FÙó9^|“Ãà5äGÖæ xs)‡°%jÙ8+¶¬Í‰œ©=8,nLú•‡äò¨j-“çˆa®¨7–/›Ì*òdô:°é5åsQ«Võ¬ÙœË&âOµì­¯òíýœŸsÍ‹/û=VÞŽ<ƒ|x—“ŒÄ%Ilrh»HZy3—®Æ£[<:§# Ïålå¦l"-Ó¢Tkjê u.cT¶×ÞBorP¦ŠjDÚ‘I$˜•Õ.›¯ʲ ®­—Ï74Ï1¼´Gö€hÈòÒw=I Ë•˜¨l§E'`LâêõÕÔSÑÙýLùÓ÷J6îpcÎÐõù† R‘ÚánÍÒ—ù+õ”Ý-€ÓlØ[H9HâŒM'¿ä¥µxo8¢¿hþOG|Ãÿ;Ö(¥T‘¼´äjh(Mùž´èI¬EAÅŸÊ”11»ûÚ÷'‚·GÜ¿Jà¤XâÚfs§f> ÃÄSj½‘8n%‰ã…Ê>UM2Ëø’î '¢‘¥F™ý/ᯕz¹\^¦: /pI»Ÿ‡+ñ9ÍêÁønÛ ÐðÝ%¹)ì‹­æ®2W®È.—/$„ࢥє,ü´.—¨áxSg›:Æð¡ù~ŒækIÖä’0—áY°‚}¼½²AV-1¯Iëõ›æ;å"ºî¸6)J6U<^È?0vàµç`=î ²ðc-ëig_¬”òoôþèëÐÜêh ¡«Hœ5úo(¶Ú‹R©jiUˆEJì~À\tÉqÈY?þîO[]9”¬õe:›¸3&×öÅÜk‹]jäþËYß¾ÿ_ ’KÕÞ/´óãµ£ý^õíýªëÚŸ¶÷çE„çÞûÆŽWÆŽ— ìxU„óUûÿ?³.H´Sô@µso„lëuHŽ.d~¶Ä0¾P‡ÎÁüTÛ2ÙȲ¿ò—¹‚*â·êR®4´êgÅ®4,>s|<÷?‚ç½ÿ±º¾±QOÜÿX]_ÜÿxŽï'çþGÀ÷?>TÄGºÅÑhnÃßÛdo„¿·Â>£-ÌDÍ­é1<¦^{ðØJ·å†¶üýAþþ(Ï}+!8CÇÙy*6 4»q7è€Ç#6®I¦ír4½¡KÝé~ÔÕžX1¨^~¯\òýö6ÄŒÇì•ÖC¯~x¥\¶É÷_zÂ`C–oÍD|«^•ÿÖÄ;t¶As{%¨ÔjµÊP/FI|+Ee!þ‹?ËâÍ[x"zôhœ%~[å·ºz+¾szÂ%¸tÙ-QæÛâ~áŽ×Û×Ï=»òR)/ÃV£yn›–‡Œý1<]ê+äL»ŒèZv‡'ñã›ìÿãŸÔÿwÇoõ¹ûÿ¯ò)ƒ25öÆ2üA8ý†CËቡùEü'ùÆb#ÊeaGhcøÛ‰á÷ðH¨Ý¼“¶¹Ó]©(· ˆí·ñÑ]ŠRüzR¼uò«ð>zÞÀˆ"ÑÁûùü[ƒëðoþ½úï>¿‹Æ}…cª±mÙÍñiÛ}ÚAEs»±|aÈ/4l;ÏÖPŠº[(üÁ|±Î/VðÅGóÅ·òõ"Sãû‚_À”ªÖ 9i~ Õ©Éκ«À LgÍ€‡U`]؈ ÐrÀÚèÆs\øAÏéª&¬MBkH(Á™+Æð—X\ñðÿWÌþçðÿõÕõz‚ÿ¯¿ üÿs|$°ù4Ÿ6vv+âˆ."Ÿ— ?;›§$îlë«Ør«6¶ÑÔf…ŸH8ØÞÛlmn[n¥8ÿLÑáL‚á(¦Óžs öpÉ‚ú!1âLŠñ-èâÅ;C  1@žÒ´.áÕ€y¨=º¡ÇnQ7á`$k„ùZ“‘4¼š yׂ¢KÕ ‰h Üà 42…¼ƒþfl«=RWÅ´;ƒ©|ÁKü^^z…ç‘í„WWü‹ñؾLpE•Þâe º°CCÁŒØCɨë›~<©7Gp´Š Ò¸²\7¡·bépé Íg¶,¶·-ývÞîÉK8ò}añƒ.˜Û·S·k÷eøÎVZsgNs¹üf _BÓséùÐî处;§\Fµ4–Àæ« (Å5›é5[Kîä¤ ðE¡œÆB}Õy¯3¤ަ|ï%º²Ù(Öœ/zbG”Ü€Y¹ýzƒ$@¡¯ Wå(?²¶Úø”*°^ŽqŠ´`Å#§bk‰ý rµN;Íìv’*p õ38±ÂP\ɰ8}‹£5©gEV3G“zf©€6˜œÙÒf*]ÿaÖ2ê¶ÜºÍŒºFá¥kWÐ,î7ƒgãAÂaÀÚ^Ï øŒgÑçÁSµòNü+yõjta5:5jȘùh Ø[Þæóo/ïÉ_O ãß|,?ƒ؞ƒ²$·ó°Ab‰dmê% ï­-b—ÖSþmòe®õ`s‡Ù&6*ÛV°_Ü\ðƒê÷ç5flŸ|$cÆ;ÖÑÑ|f.óÇ,"‚5‡ˆqÀKN8¬©¡ < ³«¢vܪ‰&ÿmÜ¥Ñú—¸‚4@HÙ˜[Ï[^TfiMU›§@S°“c]) —r¬}‹×+.ªD7`UÍ¢æi}N‘ãx‹x|V—~ÉWñù€x2;Naüâ°_²«6Ãa£©àÛ[ñqã&ã2çÛpüC–Ž˜l(Ðß²kÔ‡—Äv]¤:ó5½)xµU¬(/¡(«Õ‰{\"a®MÀ—Äðœ8«3A«²]_Z>C[Ív€¤ JÌŸãIt2µ‘º«›Ê'Sf¹=pß ¥¿Ä§˜0ò}RšjNód¤nªùn…öÀÎqrõ䨏kÜÞ%8P´\B|@ Â?-ðÒ)à×’_Ê—?Úa©ØñëkôÇRk¤¢`< µ$É™C}äXœy¤i)â)°‰î µ$+À1gsÝ\¥3ûIº^‹êgƒ&-}º^ÎÎoGú»èÊžÞÝÑÊ2õ#È «³Â«ª´qÎÐƒÜ¦Í ª°¡–ŹgO_x Ø: ñó·&œµwѶSlíqÅã§•¬2~»KmÁ„Á•Ö‚‹8÷Xü3¡ÉÙÌGÝÉÉ5¯3„…ò­PÁµL*ˆ÷‰µë:³YÉB = |>þ»ª®ú‰Äšݼ׺æ'œfqd<'e+ÿ¤d$ÚšôçRò¤œóÌkÎsæñi™¥ÓÏ<óÈS'Þœžw¥×ïqÞéÃ-å´[ÿkžv8•Ç;ö§:ñpIWþ¬Ï8ð “?ëÄ{úPï±Þ’Ç_Îgáͯwày©à‹¼ón£àyLJš¼Å'Ï»ôóî…tš…“)|=)§]±5SH¥¿È»Ê'Ò*©5ˆ¥ÖîÓ…Ôú§H­>Ãqaç>Å%=Y1¥×4²à=æ_ÎyÌ{ÎÆìƒà!Ç|<¿Ü3ïñYZÞg|nw?¤4«(ýO$ÍÆglÕg”f•ØêV³y¾{ŸØ>ª’³5ï{bß_&Û`¿üdñuÞ±þªà±nÐJ-Î:Ïä1§<­À«ôCþõB¨},¡Ös¦Èð¼÷‘j›¸œ’­Š9ë®ÜâÈÛ®§ò≤ßç?öî#ÒZÇÞO!Ò’Rš,'žB¤õË®–õ¯|êù‰_wêÕëÅ¥Y}ÊR­ùÌ9öêõÔc¯”mÝïÚwß=•©·õ¦ÞX4>«¿Êä+]çr »¿®ˆ¼M=¡ˆ¼dÊÈKZH^*?Ø´›mÕ¸§m·žb¢xõ؃ÉÎÓZv  û ²ëšúËP~v»îÒãvÓš°ôsšu핞GR~ ³îs²öfØ­oä2ëhÚ­¯§³?‘̧^óé¤à%C ^RrðÒƒ­»õlÃÆ½Ì»u¯âW?ðžÞ¾÷ Óî3z?‹i÷Q-»O¬Ø¸¿mwŽ…Ûî~êù©à«ÜCïå#Úwë/Ó½W½{Xx i5x#¤17SX þ ^È?ƒ°šbÑ­gÛ.žÆ¤[O±L<‚ íÁ®%µ9I‹ögtŸEÞ]˜sÍÎSˆ5í¹Ï'ÄþÖÜçt§¼ÿ¶¼‡=7ȾA~ÉOfÑ VSõ å~‡Y|!Ë>ШdÛ5ReYÃZ2í<çaà5Y,ÎCií}.qxaë5ú~<×5õ>ŸŒûg{ÖC1O¸ ²op¹?ŸÀܬ¥Ÿ‰)·@ÌâQ×Ý-?_Ü»­ØHü× ð–óñÅ»~Þüo/Ö_¬'㿽XÄ{Žï7þÛ{òïÛ<<ÙÛ¤4pœ$ Öÿ*™ß>d¦m3xö†sgix/®Ã!ÆŽÍMÔ`ãxKʘÌz7ØÆ¥5 T¸•DwpwÓ%Ú]Âõ]<{¤Ž’0Ôìó¥ÿ¾Á¿²üH¶\v–0¸9\jŒÂ_qœŽ =ýFù†¢4¬ÖËU9zš ¶!36Ü3MçUæß_PJJÍV_ìaÊ'aÙ.7Ô¸²²ãá|£ùw!ˆeÞ ™…‚ZwsPð2ùÒPc¨& &`r¿¿¥VàWP ]Áp_V|.Z©®ÿus©¡ƒÌæíAœ±€Åæî„úMoŒºˆZ÷ʧW,8?åF tf‰åŒpGFz½9g"ÓQÞâÉQ4k#@þžoƒV£ÙnlÇínnµ1Jé{_xÑùƒµAxò6”—ÄSŠTOÆ¢„,v¦m7·š)Ðò@ ´Z­kÆÐ…a‡TÒÍln;¨°j˜rHb0® ŽîÅv7+"*AÍ*Bº$±¤ù+rYò[Vv>Â9œ -?¤í%Ê«®¿ï.™åt rž”‰›@ÙÎe›^¤Â…oǹDbÔÅÔñ°jÿ #3jŒ§Ú8ìÉTâ@èn Ž÷ŒP‰Ã¹K,¡5¢^O_>þ\q°PŽè%—TíÊxiÍâÜøk™KZ¯Îoù·¯@Ø\qº×WH6ï\9 8æG“)JÚ˜4 D;¬‰ ¶lÜõLp^|r]©ŸyšUYÖ ¿Æ…°çE•ÝUDö&Ó~‰›0Lf—C`íº:2½äsºÓè 0 „g½ï&P8¦ˆRdhb\e…bJ5›Ä/µèÆäŠkÞÿ²šŸü÷¬ò^®&åÿEþÇgù0V»òÿÉBþÿ³äÿ“Ÿ[þ§'”_oX†×DÚc­¶áU h­ÀB-°P ,Ôiµ@çü¸RL7%nÖ ,4"µø/§)H¦èû³5ÿZù ›Xý‡hüäèz(z˜Æ`(&#I9ÿ‰Â¹s•ÞÔÞûR*òçOL»þ§Æ¹ ‚rg•«¢Î¡/ϳ¾:ƒ&ê$¥\,=ŽQ¯V ÞóPôG”3ÒYM@£=[1E‹OÏs#UŸÏèkd°’Ú9Ê€ßÅ)'¾Œ¦VuÎ&xö>c^ ‹a(aGé×PÜ/ÇøÁ7D ÖS,¥T ën½Ä´Q¢Ç}L=Ìø`«UD2I¢ˆ%L–¤S¤î95F …‘,±P=†Âèú" s[Q„@À'8{“˜yÆQµk µM¥ÊUA%«ªðÐí§?~£ÇeO»þfEÁ=+R•`¶„œÐ}©ý™U_'–êë—Ò}->~ýßôYõÁêÚzÒÿçÅúBÿ÷ÞÚ®þ¯SJ¤|´ò= JÌÊÞ©,Ž‚tñð@zédš¨ÑÊÍ`.%²4ΣMìÞŒS§ ¬®º$=t¦i)± SÅÈyñà4ãtl}ÑØ©?{UG“XG&ÓRÀJz@\ÐÝCtâåüÃÓÒ–nÉ“P·ä»Ì¸œÈYfIVfÀIªb [Ù+Ee:åõ=,U§7* º6„”ÒÌ,£SvT¬.wt­'¦K/8´%5¶|cÁ$“m[¯"9zÆ2O,mB”kÑlåv6˜F˜Z”$_Äu_–@7-ã“…2Âcf¡% š ÷OFâÌÿ·Ãùÿʾ•½¬•c3Aå}ÔÉ ºRƒfPò€Ì’>Jæ&™4ð¢R¹&(_ZÝ›BòQÔɲÁ{&’LÉÿèBæIøÈׯÌluù©•†ºxjF'-#@ÝXù3‚–ÔMq$n$ìÞ D„ÒÍ9WÎD_ÒH™)2åèõìÄö™é?Ðö‰Ø‘¶6õIœ4¸q8™Ú+L†»©˜MÂþ'§t“ÇÞ ——ó¦{:YeÏèp§Å¨u¯õ{U¶5u^âÄ£ÁðU}\$¶1R8ð[÷ön²Íf`Ýà“QÀb¾Ž•Æ¥í/áfÀAÁT'*Œ dJüj¶7¨ïFC™@ (º:Ö¹õñ €¡Ì¦´0DÈGlMJ,WÜHrÅLŒáLªÆ.}£W-£Ð}Ïݰ32ÃùSNÐ+]à‹ñ¿?œC _qSÉv¸~ …@þŸÑ¼õÌv¸©5ü?»‚l0os¢X˜ãÞC‰ ÔÕÈu x4€åj¤´#rÛY‹ÿéËŽŸz˜å§®Àüg!ÿdßdÎY :“W¬éWúpÏG±Ë½ß=:ã|¡gsZ.s’¤¦%?ÏÈe e%m¢Á®`&Ro X=N½ °¸Æc+ßÙ¥ž5kÐ-û†±–Žf‡Ab~C”3lŒü¡,á–¬ÇBh¸oit\…ÙÞf%O”!‘nµâ #tqFÓn$¯åêlïq_ç¥mý„ûiŽî€¶~Ç›¹Ño²wÖ<0 饄1`¸Ç¤ý/Ç™ýƒ«ÓÔFÚÝާ–Ç(È\•£FS·f"ƒïv§TUëXí7oÙÉ WäïRôæS…^–—ô÷ÈåA·´Ïœ %ûUšy U…|©w¬å‡—-¬©—‘b’56§…Ý€nÉb,à¹vcþ<éâª{Ì?ÊâÊo>ɵ¦?s*œ%¯àÓÂÊEžg}Õê¸ëKßa…£šîW“:Æ\ÙðRßx ZJ¿Î¸Ì@J >Çd`Èu2§IÚÙì‰vŒ))ðûÈ\Ã1$ï¼èOâq‚”]”Ý’ÉJÄõ’k?bÓ¢s>Ø=™{ŽsIâqp@dÂÙyøÉ8Þ ÄßáçÑmAà‡¯ë¡f#9˜¼#.YC§*æ#ñŸ¬² YDž±Iº* Òª¤÷TÊ*,âÊG‡¿˜¸×Á)2È«ñ¿ …¸ÞÑJýÍg&Ùª6‹z3¬~^‹µå«ŸùY‘qÒÒBT÷‘TsPcAë¸OǘI’÷ç;r£• b¥;³)q²T u6ÏG etùó°sž“_ü0ØÉµ$>*A}õó "›U ¬Œ±4bÔ%ø­¨ X³°ŸÔ†?ì¶W)-\IAÊ”0?Âsüö6±êu‹%¹‡Ô@÷€ÀÌçxâj[w £· †YÒ|†Adíê\¶A¤quþ§¹ŒQ\mÝËs˜­f8-Å!+µûzýñùÿ|{VÿŸõúËõ áÿórcáÿóÞ%®ÿωòHÅ„$‡lÏ  ÷˹ýàÌÓ5³€£ÌÛƒ¿6ˆaG±åúC¿9åœ@Øã>÷2át¤ Ü¢5Œ¬ÚÒÔã¸nE‘ÅnJ澫)CÄ¿Ç#/5œ¶“}uï þ[šûF^âß­“7íÜÛuîÕ:e\„R g“¯H I{£~ˆšå=qÓH߃ßE]¹ d¹¿ öà$s¬ãÓ:‡.ÔoøcA9~0Êq‹Â _µa¿ªoÄû“Éq:ã¯^_¥Ñ¯.HÑCŠì%X5×`Õ^ÄÓ ˆº ?î] #K²Ï”9ôš2B€fË­™Z)´g®‘‘_¬yí™kXr í™ÍL{fó ì™ÁóÛ3cµÚ‘»¢ûäÂ,”AsßÉšœ½ÁnÐ4ÒªÚ7i¥„€¢•ð5HÒ ¦øï4Úà è¢M{‚"R~ðËX4ƒ÷]}ZÁ×µ'\·èšQtÍ> ‚"Ò\ð4i¯i•3x(°þc [tÝ(ºnóA>>XØ4EºMsmõ¹pKó»ðuã§C5·è†QtÃf?׊0ik ›¦x ›æZóõÔø«å5øúâWFg·è £è [šZ+ÂÕ®-lšâymšk÷æÓwdè4 ÀËÅ&Jª$.ºèK[%±VDÚY[Ø4Å©ÅÄùXòÛSïL­m„¯¯uÞê}e}eë׊HÁk ›¦ø!÷ô\6͵g“ëw÷k[|}½ OH Ü¢¯¢¯mCÂZ]ÈÚ¦É%fÊ1·MsýÏÒñ<.ɲiâèW¤èÇ E‰%X5×`ÕXÄÓõÂ6Mî¹Å3¢ß|˜#ú'þËõ—gÿ²º¬&󿿨/â¿<LJñĉÿòþŒò¿ëÄïédކ?¶Å¯’~[ͧ÷ÐÜMÛ2RËùûã¼áZÞŸYÙße Œã!Oî]ìxÄ‘&&LòŽo)Ó%eµ03Bsl )e‚)É–ßkè!":ƒJ­V« 5KBô(Êæ–áû7þCÎwéO]²Je¸<–ü—4SÆ?Bzò8‰ÛELe@˜/1xFÔ#"%—é`ïü›Ì?áå@ÀVˆåU¡5yÚäàŸDóAôÝ"ÊèA$ ;KƒåãƒÁò±ÆíÄ`Ñ[æˆÕbL{;‘ÿ¥7*6™íOf»ÆíÄ“ù‹ ÁƒHבªL廊xO) ;Ow÷ËŽþGË×V~"šÜøh~Ù6¾p€ÿ†p]5ßÁÌ1`åü}áøÖŒ‡ä½gÙ„`Ðe"0?úÖQåwÅ*Û Áá#Gâ¶+„8¼yïér*¿eŒ|I¿Þ ɘ`å½øMØ';ø…2u¬t–;Iy)ž.TïtRFÝY–ESÆþnÙ¬šˆ§‰ãxí¿ŸoxԒËGßYN,µ Z{xNhNB2ø±BÄxŽ˜?èùGã9¢+ü çðù<ÒÉû³ElÎèã‘ÿ†Ï,ÿ½¨'óÿ‚ˆ¼ÿžãÃ;Ñ‘ÿšxy§Ñ†Ó±ÑÞÝÝ!¯ä¿ˆÔÇóšKÔó5ƒp1µ±ãüâ_óLf5²…¿¡â[£oÕ£Ù`€‘òÂé͈×lB¹‰± O½¦ †‚ð¦oá?K £\xó9RáAaÜÕJœ“$ÓLù,«ÍCJç¼Ê¢±ÐÓI#«*í¼¨¯Öê¯6Ö€ËxùzãÕ‹õ—/^Á«À’¬=ŽØyˆÿøáKžÇMÑ“ îSš¹o4óJ¥ÛÇ •ƒœ{Ôhfȧ÷ˆWyêϘ#éÊt@2M &ú›0ÌMC¡’iÑÌþÐ8[©»R,X(Œ®ùÄAXD¿åÆa†PÆ…¬"‰DÀš |´ëf”¸ë¤,a½ßßÂܬ„úØ)ò]Ìp «œ5qÂÎ{±=ºûnP_9H'½…¥I0!ÀÏVU6$ÆYt²À¤åJKìz|AÚø†À"N“CDøÚ,€»ä ‚Â3°Ì³U¥€æ™ËÚ=æb²+93Y+<ÖTqB°­K¸6€åôþ“ §åj Éá2×Ã:Xe-f>ŽÂ2~s!ãÿ,ü?î>¯üÿòåj2ÿÇ‹…üÿ,Þ¥ŽüßÚ$û/CÀøíÂAÔ>9ìwÓi¶Ž²25¡`ƒ´òwóÝqÌÿýÔ‰B¼äwÇÄÅð´Ó9: ~V<`_¬YHípG wÕï`UÄöè$?Ι1¹DÓ) =w£Çö5šÞÀ›q8A99³šÒ`´6AXÅ”öÃïâï8‡u¹ªö£îõh§¡#ºÐN”sù^¿•œ¢uc{ØŽÓÎÜ‚­­0hŠä¤dïзzgÖ—‰:r<»ÖxæI‘5¬«h<™ 2IÒcTÙôFC³9]Ådvé[Æô¸ÿøÔ,‹!j#0 Â%j&¦éj ÕýnIc-ñè–ö;¦€’b˜mtÇÔ®ÂnkDúÕ" r—Ê͆ÓÑ $u¥½Ø þ ˜¶ÿ8Ýlí¶%ìÌv h±Yví½À¸ð6«$@/nº_PgM¨Ëd6´» çF‰É:3hÒQ¯#ÑG geîu‡8TŒXZBîì÷UñF•¡"õ'ðG÷r2 U²È ecI6òO»‘éMw*(KËøKˆYŠÝi“îöz³q·÷]*›€8žêt®±‘ÔŠ jèÏrÕr—ƒQïóDt`˜ƒh:ªñ:ÉÆð/å+Ò|!­œKÌ+àòõ&êÝ@ï—ã°ûuŒ49ªšÛoz‰[`‚ÍD%úMeª#I¬ÛèÇêL¨ÙOÔÒ@ÜLÍ®oÔ³Àn$œöj¬R%BLeªp,¥ Ȭ+[”•|ñ«ò[9;h#²×ô­X}ƒû½×¦äj6 9Ÿ¶sKá:Ò%.N¤k|€¥ QØGÅÝ œN™óA6iúÝf*šÿ2íMÙÀ~t ƒ¸½ óÖl ápýMÅÎM4 ’﨧 ¿u6›Ž†fÅãÉ0GÝñf!¼?ÜjþÖÜmµ·Í2Û7cX5hålÎ7¶?ÛÍ%Kñhx¸Š]ò<éÔÿö8n,÷r`ÁýSUCP ¤KodqIÕ 7—w%ÉGvȽD©[Ô¸¶ç;ô|.кŽpåeæÁu‰cñZûÔ8iƒ¶²6ð0²ã_*"*R;Ü­QWþÔ¬TÕã#è„O}§Žp -,ÖpËhHÊ?V„3©¾y­àèIáî2—×3ØÃiè=0MøNI ä5–YÉ…uv J¹¼l~_©ÃÕŒAP˜+mi2…­v¾ñt×ü[®v­µùˆÚ5ŸþçòYõ?ÁÚz=©ÿÙXä}–ã‘«ÿÙRúŸÃC´E¼k´ÈS@WD ¶iV¦p|TÄñ»wí](~ÿ¿ß<Ÿ»­G²ƒ¦èWz'36Yì461kÜ9{£°>éWÐÙ0Õª$5špú±¯àÃk¡@ÎÐz¨‚)Î3›Ú½Ò/z¨ä´ü;}EqõUY@‡{æ´}§J»ÉgÒWý*ìDœ¥V«U‡bGþÀ“Ñ›èàDûû º…Ó®ÿwq8BÖ9YÆá¢IÓÑu8$v‚Ä Õ¶såå«òjáV"¾ÂÕo*ØìíhŸÈ•EÓˆÕ/×3Dà ÉËÐëÄî5$¢KÂ9Kù½ÑfyòU!ðÛ ~ ¤4ŽÇx“`(ÛS=Hi)‹ëîÛ4¬ ¶€ex¯b„oMìÌÆØ™ºH«£$aæ_˜¸Â‰€ÿM-ßv#ÒŽÐÅ1Ag ¨ÏÝßFýªÔ%BXÞFÕ¯Qz3QIU»l&?ç!Áðì=©Òð‘´…l¡«úÙQ™Uwæî·ZOô,•UªÓÃRT^¦;ðCé‰ Ü;è‡ßÔ°Yþ‘Tzõ˜ãWj8ÚùзZt 4Lô.:ªLSFb4Ëí…j¢ì ‡Ç5fwU#‹I„F{K/²¿ÿ:Ü}ש´ï÷:ÿ¦p³ª=LkV¢"U,BÏÑæ‡On™öÍaŸþ/ùßÊÿRùÿ/`чãÚB JwË®BŸÎ45€$¾†°5'SK‘¢Á-á+ÉVÖÂ_]¡žPÁKíT&ëz¿‰¨…5&Y±´•ARñb’Lg£LtHX)Pu¨’[ÛôA _j¡2uÇ1Yð”Ð׻܊0âJÈÈí[Z*ìÆUõòä*ê Ð}!`øäÒPÁ¥¸TZÃÅE/:F”«#jÞPIäÙ_Ö!*qƒø€†fY¡0´«šMkªÁî”+õpcd¨y5º’àD ‚Ÿ£wÊÍÅÕ¾˜J÷Ra6Üõñ逩ÇEDâ˜Rq‘ßf¢£fô¹š@P‡P{™‚ôãv=€¸OúnQ –m8œ«ÚêH‘íšÍ¦ë¾óZcþ¹xÖ÷ÛhÝÎnÅ]ôe4UÀlOgã[@œÿÌð´¨)“ òàÅ[&®fLŸ¬uôr#$ˆÜuúh¾W[§U±S…Ÿþ¶ZsµÕ,ayðþU\Ó¿K öÕ {=§7óB¿ÿ³é÷É“¹"ö6•Ê.¡ê·ý¦ë³/O€ú`‹TgcÇç Œ_£ÓÒC¾—Í "èQˆ¿¡lÀ+â "š»ï·›xf÷þ„šÃ<>¤—3`JÓµµ¹ moŸµÞïTq°Ä‹Cúû¨Ošç;½,½s¾Èç’ENÀÔð$¤Ç²ßªá‚d˜µR™zý™ñý²§§{݆Õ#ë™RÔFTD7;%tŠG¿O>dVä)V®ÒCõ þû- e*‚ÈY¦0CÊçšW…dŲlCwÞ¢±&ªñ®Tj¡¼R/׎[5øû}§Ö,—©`¬¬– Žè¿è a@JzÂô_¬û!÷U¥‚/eño®Ž>b·‘’WøWɬ'ˆkÄãxM×,“ƒ˜ñ#(^È©'k¡V‚¥4^ä[“‚é4¼Š¿A[Ù‘Ý¡wfÔ.3’SW¾†ß¦f%ÙšªÊöl¨=A«ÜHö#œá±A4ü¬›àÁ·UüðæaÍî DCÃ3—¼c¯oC².FR]‘¤w/H®ú}E=ް¡PâÊ)o¥B°Q׌¬&4âåÕDʈ§×}À.þñƒDo4cÔR„½”°ú€KÞ¹aÚ£ˆî¥V¼¥yÀ8n£ª5 «<¿á LÞðIùo1?qÔýŒNYc)ÅXúéc$ïÜ…“6„ Ó—ëéO¦ÿéO˜ñþkgy0dÈbn:3ÚwF¼qJò˜(aº}/7@<3¤ø8iHßâ…C­Aq&µ–u ­ÐvozpU=„¤µO®.ýªÒ°¬×rœè2ŸxÇñ¶#v\ò H$´6e$‚ Ssß% ær»á¶dåQê­ [žŠÇŽªöÿ^I7º¼x±脇Z&;±\GîÒ öwD; õdq988è‹,m–'^DÖˆk¬Wƒ¶,£q š«áá?“g¤ë” äýDMéPÝ׌Ãnÿ»A·‘¬“Í}øÈ™åe<ú-éJ”be†T„L@ð¼¾™ŠÞ pZö§¤FÝjÁÔ’TÄÍèkƒ ‰ý;¹Ý†¼4—Ñ5œo5KF­ðvôN-‰»¤”…c¥f­ª<ä”jÝj¡fpÈt_Qy'5þò`d-²ï¸°ûv£Aêà76›;5ø†ÈŠ0|„% ðX šÚû]«ân\QëXLNÄiÇv"ÿlã<ál¯y^Ò¯Ähmxz¦# °{íØ½ÒßíÆˆ¼»ïè S<]Mª¢ÈžAóL{Wq«¡Ö—Yè£;Q1…Oàvõ©!QBùC*ºO|N h®ÎÑ¡ YŠ …èüŠ„­"‹ä“² b{¥p™û0»—Ìk4\À™Úu«õ"lAŒ1 ¦à ŒõLò3¾wšQ‹¿)LQZI>W4™Qqd‹C&0¹+ÁæŠUlô¹ht‚J—™N—’”ŸÛ"P‰0 i‰¨` rìÕ¬W” – elmÄQ›Ž?Ǵ´e’ÔUû%^D¬ôžÑ’“G„±^$|NÆáþÙ“Øâæ¥kwP0Í&pZ„ߺa0Ñë;“ÈzIjrLµ¼›å˜q€=œNè45Xµ“pÌ¡0†¦Ín2 ïLþ*‹c"EE+ЉŸµ×ÑÚ‰ëÇ&5¶Kºá™4„¨¹RÒOúµ¢ñ¯?ÚËW&£ÑÚFæ¡Û{ŠqŠnBtì²õoEÇÂe—»©–F'Ù‰;b\» ¡‰¯!q!ý‘֠ж6yXÓa±« €cÄ«Uå‘ ŸÍ)w@œi*EwÝkˆÅmîÏé°h¹àÌqLJñßõÿÄÀåÇ[ÎF|ÿNÕm`y8fíZE]lh8¤Ÿ-úù“úonïm¶6·­ûuˆ%-jîìÖÉh24uMõéd€ÏãÅ™{¸ wå»H^©Š9`ǃƒ®o}¿½ §ã¨ç½Áˆíìφ֙,J0·³Ó#?‚„ƒ`©³ÄšïØ=[0 .p÷£Â"¶ë[¶XrêïM¬¬có‚Ôׯæ ]«ÒaJrôóçʽ´|vh·ãs'8;Í/cv:önL@ŸÝÝÁ_—¨ÅÐ>¨æ’?–/d¼Øoòü"}8Uóµu˜ßVšåî£Ï6WW©)6‘b> ¡€¾žN4lž‹¬÷¢ê“G3¤w, É?¨VÆ; ýë)a?9,k…½³6´å¹„,|?~eߥ‚|¦»‡ÇïÛ–[I váÀ1rVòw؆ö©ôœ€ïBh–ç„g‡m˜»’‘’ŽüÚ×KQ/Ùζ´'ó×–ýU¢øÂµÛØ»bT£SëD K¹&‡Üñ›Ò48Q=T’Ù“ÎŒ \­äÛS[°çú¨½H‹“.gK¿l›ƒq5P¶ÖÊmM«•×ZæEMVÜâ¥Éåe;ù“G §ÜÀH|UàIpæPé7~mÈWãT×h%k[ä’Ó- ¿,ÆÍ¦]æ´”¬iØ¥øZÝh£VM¼jŸÒ“Sk½âwMÃþá¬ËùXFýË8ýÙ n|b yf‡á7'šÒ=´GCéß„9qtX&+ D­ØÛ_x¹ªxûp™zOÖP>©MÙEzj ô4 X¼}ªzêh†‡‰uÍÖµ’oâhý­ÎªR¥q¤hCC“¸ýÓj}ú¿þ³êÿ^¬ÁÓdü¿µ…þï9>Š.Øú?ØÀ­ÍæûÝŠ8ní ã°¡¤(ÇðøØv–°µË1ïâ(‚JÁåD Ìh㈯óÅqhëûß:g¨ãÐO×Ë81AˆFÇZh„ ·Æeð+è7¹Í:ßí¬w#(Ä¥êªn…¡8¯‰ƒ.>ÿû&µ=íº¨Ð֨бQሠñwØŠáÝh<ÛíõzE© Ç@0"’1v»i­‚Rö•GX3V°TÄþlð]P±þúÅ‹jt¢)£Fwôá›KoDéÁßËðÀÁñý .CöŽsUégTõ KBe·j*¾¹®,ÖGábvÏ êµ]ßþ^NCYk4¥d@ÇÄ ö–#ÀºD° @u‹¸õ]lax=9F`¯aÀw:égÖ‡"pUGW2Ê (ÁÁŸ èN…aÈúBFú ]sPÃÂFüfÈâ®Í.M}ׄåßËEZ3Á£ f3y(˜¦Í0¯¾ÀÌ>^‹6õÏ·Ofj\ñ^ û‘ÉoŠQÈщ;¡{ÓÝ1`%è›Ä^XÔ 9‘ôŠýgfïh@$ÜšøJ‚Ь­$¹œ)ì× ¿Ã{ š# sˤã-HzF  T¤®Sã4õUz ½hØzH1ð\™ôB¾NMË\ö……Uø…ðÖgš.¾É¤çkÖ宇ôó”BƒVpªd4ü'ШóýxöWùcÒ< :S B) ­ ܾf3Ý{8•z7× Æp›*øòúÞ›­ÀY_"n-XŽèΘúRVM˜mß$¦ãÛiÇ×îиo%Î1x@7uTC€íBZ9ˆ)€C¹YŽñ.YÉ&·Ýëa4õC )Ü—Nl¥ "¶†b™2IÒÜFŸÙÕU„ÀŽwÂ%R!ö0¥5ß°s.fÒ- ˜«Aˆ~ãn?ú¶|ÛíÝ ÞM¢N=ô(Ñp†s[}ïk¬õÄâ}A,òƒq cÊ6v¿Á<Ìò ØÈÚ/`Ö¡Œ‹&Ó–!e^ëw^|c»ÏGo<™]Ò°zaZŒcUâÛ_!Îq\¯tŒw„âK:r‰4zÒyÜíMá‡r2OE\άÀBÊXнîðÏÃÑWzîÆyXXŽõ$;Á¶ÍVЉ_á ÓëÉ8ÞÌqð\jR±s¤&‘ãÀãOq]`ÖNN@Ë#…›€P¶ƒ“k¤neöÆÑJ„ˆ—·AeM èÜн"Ñëï¼$G±8ç%1âÑ[(ÔêÞÝGß0ü åOè*R¸Æÿý„Ƽîÿý«ü?ý[ÊãÃÞ¯‰ÙÁ'¾<í» *ìÞñ€»¦P~݉Í_ÞF|šUÏKŸÊhN„!ˆCù· &Ó«[Ñk8òÝ„yׄ|DjOè} ’?·V•­9!|”úGAC£¡/ÈNÊ’X\Çß¡Q)V5mTTè´@!s”±‡u{ÆecåIÿ£ÿöŽ®C>| |9…;}ë0çqñ͸¸,Ë¡½ðÊã`t c29A–CÒ¥0 b£3»Mé³áïSE—C¯}Ø»[úêcz|«ŸBP·˜U¾#Ñúáù7ÿΠɹ¤æâ“ ï¶‹H Xi5— Ÿ3F­;LðŽt,ò©×•j€ôì$5ƒâDWÚQC©ÝKQYÏ™¤:^-‘õ ƺ=ç$;pU°Å# —!ðž×(D–$™BÍ%œ%Tqb€IÜKͪA »šè8Q5ÛUÎ÷L ±¼¦ üö³ˆ Ìw}Ø¢ ¶’Š §.Ù|rÞáö¡}~Xl®u’ç†sEáZ‹ëÝ?ƒB\àw*ce5’Â7N»+ÕšÀ4ôé(ûÚ—!äŸÜÍèÕ0D씿Ñ+kÿ51[y¥ƒ¦q„£‡ÇïÞáÏSô“ÞfÅNl`2¥¬&ЂÈ)›Ù‡ÿ·à'Ž~íâ?øÑÜÊh§‰ºæùi:ªmvŽaæ»'íŠx…ߟrlö†‘šÇJ¾º=ušÇ-({úîðÚ‡¨u9DתÓCßE ^ÀMŽ|žéUµszt´I·<Í<྇קls·y–-Õ¶÷äû´û"ÙLEÏu{v)ýòŒqû#xîn]xZºWüN y Ðy´Hž\i'$_-öÛÓ¥Ð+š/²È=€Ør™¹¡ì³L(Tªz§‰³Ì&˜Žä4ÑÈl¢W¶§¹.£ïïØ1õ¶oÂ; Q å‰ ®Œ.ÝÉ€J꯻#¯5;µŸ#—¶–(õlw©ì™‘l4pmb´ªôA¬¹ååÈwÿ¨I2¨ …Î1^Þ†±H…jt#½QIï)>ŠCf0 <ÅdåpHðå½L(A7Gʾu”¾¸o‡§Ë ãW!%?T¡˜à9„Íèñ¥‹ÆÚC‘ZÓ·òÒóÞª©Ù#j6Ôq¹'îä¯|ÔÁƒÚ»M˜°"|òeÓÌ@8•>¨uºM&ìwYíÈh™F†q‘£•­´Q•]E=Òñ¿Iâºk\?xTWßNñBTï+éñ}3Ó¨òvã‹pbqˆ# °%±t²¤™:ƒÌw§|sN•»@y·QöúŠóæ[u…¾ƒ¾9$l“8ò­®”θ™ÿc@Ë…J2Xþ‰ÀDͶ«äî+"h§T§¸¤g‡æƒCÜ\åœvÚ*ÔC[};åoIü• n_S:‡>麋mé—¦)·ÙÚŘ™Ð)¥¾Ý&Z©êÞ…ÊšCè8Q¥?uâso&c+5·”Y9 | Qxƒpx ²%®²|bd‚ÂXŲØ#`rÂÞì‘’2û£a¨6tòV2DŸ–ÐKyëb þK䤎ћù_Ì7#"máêâô¨ k”bVH»‘Î¥€®,3µÞª5’ßOíï;ÇbC^´3œjqˆ>büÈMCDWE½l†ò;UáŒÞŸj—$Nu‰Á¸JT\‘Hµt‘¾"‘B‘*d#­{0L`ïý© І?ª,ˆ,SÍe  ËÍøÙùñ² ømÌ~¬x*­¤U’ /¨bºÔ„“‹uõÍÄfӔ޼szt¾5;ŸR©[¹ü·DÚÎ"+ÿ=Yóâ²Ú¿K'¬åÛî·Òÿvÿ·ò¿—ÿ«î0ûŽ7¼¨ˆ"{!Ç\Õ é©•JÇÌ%3¥ão(ÓSÚoY¶V{‚GV2  ;ú÷ÑÆ 0úi‘JÎ 7ÆÁ Èö mD®¥û™Ö˜K]á.†òôê¢ GzŽ)Û\¬Ë™€˜ªsí{+„&Óñhx1da‡A åB£RÓõ9ÀF˜5òó9êwË Ìk²)×$F1>¥\l‚6#Å¡<,ìØÿ´)#ô¿PA›+|j¼?L¾ R߬ñ›Óä›õÔ7©­½HÔ‘×}t˜a÷Eö‚Ö´/|ÊwëïxpCû®µ|Éãkœš×xAx>”k½jíœaýßܪ(‚Ô¤DÏŠ¯ÈÅC©˜‹S1!(•&)ÊyÝíܸ('¯¾ÅEpïÐCd·…7ô d©˜õÂb DÌÈ«ïÚ{€-½V€Dm#TÎöh¨ÔÞÒ*‹3P Úè§Þ8‰‡:Ô!Ëyyj¼]sÞ6©nŒkvU³æzâ¥Ùkh÷4nתšŒšÕŽ=zw ÖèU³æmÞ¸5ú5OÌÈär[^\ÿ:gõ–éU$ d¦ÐAòQ7†Dñ_02×!)¥ê©Sc¡dQü§CS};5ddü&Õ4Ì_/‚õ†ø\H@Ëe† 8Ÿ¦7$õ¿Þ†Þ» iòÉLÿß,Ù¼`1.ìñ¼éÁκl‚—VBÂ,ºÂz®Ý¸èå·dÐdŠ« €‹W±ižŠj–„7¾:’=Á#þv*Ì:˜Fd•ôÃ2š†y ;~‡Z}ìÂxHŠn|Œoíó‚Ç¢.§RÃ&ymÊÆà ÁÊæ‘ÁzK&6G”©i9lŒÄ„Ì˃ÇU®ª3ß=øÓ_ âmç”Ú9õ¶“ÀФÌ8ì»d‡¾ã‹Utùˆ®­[.Ìãè:Bu¾qǵ"úPì_œª«µúÆj}5€/ê/×WwWVWÝ"¯Ö_¿zýþ­½Z^x‹ÔƒWÁê«úú«ÕàÅÚÆnµ¾a/Ùxù²þ*xõb-Xu‹üÛòÛ }C]ÛxYY_{µ¼xñúÕ ï8^­®×ëÁ:ÎjãÕ«Ä8°ÈËúF°¶¼„yoÔ}ã0¾ÇzZ¢!¦!f«¸¢LD¬9£a £¿üÑBY‚Jï”xW”«ðàH¹Œ `'íªøÕ¹ˆ‰/¡BRëVT váÃ:G¹Á 8ûmLÙ `L‰¸LIK¶pZ “˜%ZðR3M¼â†M•èÀ¸ã'¦Tî½qëör y}Ø Çȱi>TW]ªc¼Äò}²#ŠnÀ}¡–x™µG²Œ«¢b¢–‡ü$Š8ôÇzωB•ÔŒ™-<5‚‚¨< j¿j>Ôˆ¿º‰+Þ³ƒ'›$ªòð…‰‘­Aפ핪g@6tßµR¾ç<¡\Gú )v¬†Œ­ûûÓêûù´î"Kñ.< bß·Ÿ×24Ðâ‡Ä6î¾;a‡¦#qnÜÂ²ŠŸ"ßAZäÌ[3ôÀ̤”vY’ÕmšÊÑ~%´äº+Ékcð‚ƒ:ƒß=Ò®•"Ïwõûƒ¯ÅûóºñÇíä²ï¯4u¶¡ýÿ?{ÿÞÕF’,Ž¢¿Ï|ŠüW>+«TÂØÝÓÛê6‚ªÌÈWddd<‘jƇ­cÚ8m(€<(»âæ7ÓPnÒO§¥z¦¥O^S>X˜„º`RÞ0\“ÛŠ£Œ] !*×4¨ß;Ý•h£ÕA=&w‰ZÕ¢å³YÐ[!Àúî[¹ûk" “»ƒƒÜíÖ¶3F5¨t¤C°|U.]±ÄþÛ2ب„“—RðUÏmPoz)Û~‰et.[ü¸,çV†õO}=j;W3“ÛënKn=ëüË|PÕ2z. €Ãg5©­­­Õº&Ô!À Çè€ÕAS<~þF/‡³‹Ávü—ùtÓii¨í‘µQ;Â?h/x­½z ~¤¨¾$O‹è2\:Z˜Fñ Éq¸g$,»GŠ…Vä9Hš ±˜MA,2RϹÄãº4]_SÇØ@øíîVû #À̤»×õ‡Š·Oëí‰¦ÃÆ»øC]q¸éO^­÷r‚‡â'}P…ñb#8Ð/¿Âá8áÒ¼(Íè>ÅÒÙ€99¡]{íÐOFÍæXquîMg‡d8ãv–‡!V œ¨×^ ™³éÎHú‚xBÀòwq£‘NòQœúŸ(Š ïmz¤É¶1§Ò³sÊ4œ=+#qÖí…ŒµÓ„ÀíÎ S,ÙZ(Ö åT1 Ü«c•%\a¦°€høö‹d½Ê"HGw¦EÝøei:e†bJ[Vw­ ùyë?6eÑÏÏ#~bùŸÒ›ÿi{s+“ÿ}c}ýgþ§ñaæ²q"‰ŸŒ·JÁeõ• «-*ƒÓ ‰ŸT‘ÂÚIüt¸û6“ö‰ÓO•HGK%„ôz±×î«î›îþ!1Ôãg„2ù ¢Ë¹|¢ú…Y¡âùžŠ4Í6Tî(r³B9ÉŸò[¬PnR(@Èæ‡êOÔÕP"Á]¦³áÔ׳½GFž¢àΤŠÂʱð5Ù°xíDޝêÏÄ…ÿÙ‹.µM˜T¹œÚ„G¹ôn }¹Ãd¬àîÿ}HI°»$¬ ªh¯ÓRÍ> ¯È¥Ń’ Ѥwy23yI”W9爯è »ÅÞcvޝaKÀÖφ×7ø Ý@;ðÝ‚ðý?ýšÎOS¹¨†sE=÷J›tW~+ìÞ’‰ò­•DŽÄÚœ7‹£s²¡ˆ½ìû;5m[21É>³MÒez«óŒÑ'—òƒyTÇScœI…°a ®R_F*¾—ÿD‡pã;€qe59‚e?y„ˆÁ\LÆìÝ:éHƒc£¢D¬¸‹!ùâC]Î#vIq²Óqz…N\‚KÝœ-Ä[kÄówh·í œYjìgΩœsê!‰ˆthJ%M<ô´(¼¸Ÿ¨°¨þ”NCdR;åØ×§*È/äY"Õk\€`9¢©lQ_çP»ôÞs;˜ÎšÝF0Ç"¨ EÑ,2¹R*'Âx>ýÊ#ë–J+ãÖ&$ñ¦æÍ±œÿÅ𘛃æ?šÍçG­ÍÉ»ÓÝÞþIl³Ì_t©<Ò×(½lswŠËÍ1æbàp<º >Áñv Ta>"º:,(c>NÐ+7ÚoR醉ù¯ÎþA¿Ök¾êÿ7µ&™Ã+ßBËÔ±8…0C«wêÿ Ý2©›+øôßXäßµSùWuê`¾û”N½ç|:û41£m… –¤« Ó'¨>ƒbÃÕµ…¹”’ð`™dJÜ«œ¹­aþ €”“"GWBIõkDõ~ïYo’õ íMãio’õ¼¼7 …é;ð·Êaj’;–Íäågw\œÕñ9€¶‚ù83é•’hs´ÇÈÄ™~vÕítr§ƒš  ŽÏ>Y<ÒÄÙ…ÞXÏÏ ¼_ª™ƒcvPZzE¹rIiÑ¥T pKºÙŸ†ìÑ[ÍíŠSS ®ÞÕÝ”äˆCÌóÎŽ=k¾WÓ‹zòœSxàXõ[DªñœÒ†D±Ð+ È¢Q€|p¿÷ ÷t*I³kÛœ*RÜŽ2Ç*ÄÜ@xh§—_ýNÕ›‘Ž¿äp†,KÑ,:VÞt2É8¨p<â´}ò®4·‘ßÀùÅö¬Äv’ɪÈ-ÀÏ‘â¸MnfšÌvk+§ –:åo¥À•fZôYF¶ì™ÂÎêüowWWé”ýþ‘§ç¼Â/a.ù{LŸ‹†,1Q L+|É.Æ’ p8 „?‚ŒrM@K-_ód¼®¤wQvŽŸY6~OY6vaoN{ü³ÿJRlè|¯º­^«@oÔà°÷æ ëQªŽ·û½¾$ìp"¯LØå ëÐ úúú²8(º³¨Ÿ%D¦OžÈŒîî±ÿc! 3…PwkC&yEhœ‘Ì"ne Æ5“j„- k~ôÿèô ‡6k^þ“s¤PõoÓ”|kj’ƒ7½½ý—5Õ}ÓÛ‹;b¿õ®•?à=LÛ?ú‰Õnº’ÓãÒ JÈ»EÚòÖ©MNbrŒCŸŽ‹lΤÕ3º#–[ä=‰œ^žôH›¾×9káfi‘x øÀ70ž}ÌH‘ßÒ>ÞÓiIJÚ'$ƒïÞá«> ¶:`¸'0s'¨ßß= ­ÿÉ!0ë°ÓOÚ‡è. Oò¡ôwO) çD1Ñ–Öäd¿Å‘3³P¾!«IdÌgQú~_xEý*·dïÍÛ_Xo$ Qz½]ù~)ß{ò]Dk™WˆôèAùOLÖ“èsÓž¨bÚø¿ ñ‰ç¨u¬œ°ôE¹x)'ÉMÏKÜ 01Hù­MXÇåac+‰êU5&*Þ ò3‰Ão›ÄŒ‡1¿ƒbñ†D&l b/ƒlVàÆ¦=Zå®ÃïôÐ:5 0ß4`“76¼‚¼:¾ByÓwa˜ ’ÿ ƒ£Ž¸uk ¸f¢ºÄE4Ѭ š®éª7ƒ/$JqM§XÃ'ÉJ?ß` I™Øi%ðPö§aŸÃʸOPuç=‰'£ |jgg•)ò¹$™[c¿Òö¢h஥÷úÙ'ÒW,èaŒçc#Îm•lß™„uÁLèE=°Ï/cü0 VCPùi8LïqA̘bÉ9²â´Æ=e‘QžXMsÒ,·{¡©û ÷†®>8™n MoY„¤.D2\Ó ['¿Ház3ÐI3aÞcZЦ§Î„2¬Öð7*äÑ•y㬽–Þëà—+]1“6š+·›¶eùÛ—O¢VýdO_°yõ5Õn|mlëpi¶fý¦¾aAuß”?7«E®Ã\˜@P–%Úße‹Ž1Û÷ìnj2[ f(Û%ÍŸ–?Æ:î‰ä€Hçû1Ô®ùý;cKœÓÈÞuñ—ƧN{7{C':ãù¼Á/âîi@ýV4ƒe#–¦á&»žŽ¯çó,|€£-޼¿D$}¾jÓß)4Sú 2ó#1ö½)ɽµxÏÝ‹Jˆ“7Î_`”\>¼7Îõ˜‰‡)!„s¯3¼ <”ö'¦Bùß ŸØÞãèfPÑxÄa‰‚HùÊÁã3‹sîûl,k´WD4­*´õšߢ|X¦ftgëX$ìGTMܪÙh‡/ÙÄAœð­Ÿáîï–´=!;h2Z[pćãÉ=YÂmì…Û“p\NKá•ïNîæÖÈ›2i™–‚]-×-‰60þ‘çä9N”Vf1I™ßÒõÃÞVÈ/(Œë\/ì]¤¦8Öm²É…²NÜYfÛ®íph•1"2àñ|ñ?!7?›Šæ…ï¦SÔô‰K¿;¬ã—±˜uš7‘b…¥hò”ï$O¿\-ëð  u#[šÃ„7bAÌ‘PS¢ü’•ÄcEv'Ifæ8 aŒ a=œ¨A-¢ *Jô\‡m¥ÃËÔø(‘·Ñ$ðUºA©Pzu·˜ÔÍÍÅ{{QXg< Q·µ[1vu‰8ÄJ @êÙø{ƒÑ%ÂóÇzƒxëÖ«?j6\£r–ü¡²œ³;^?/ï²?aÀŒË!ªÒ¡6]0ðšJº*èeË„.Ô%b‹ ›­ém6žœðoävÈœ‘"„X¨‰ÃJ•öjR­³ ~ØxV]‘-IÓ‹¥“I‡Û?ÓÈY® ï‘ðñPËRŸ›—?œ!Þ 1Dß)-ve9vI_Œ%-Q6hd·Õ±‘#ÎÂÂ:uÂKp"Ç}ÞŸþ¥ô-9?Þ31z.By4x/h:rîÊ_æh;Šof3IÙ !EϦè‡ZchÎМõÜo˜Ž_pÇÑø-ˆë\È$~5Sy!ÃÐ[¤ìœ<ä.yÂÆp,uQü¯ º…³\Ø*VÀ’3iøï1k¨èU·ž\5»£WÝySvâVõĹXÛ¾„ý,Þ³Zbé™IeóǰMÒź¬°³ Ã$!z«ìÒRžÈ>*Æ1CQ {DÍ<¡†>ÒáÔ>¤ð ªa¦%˜u®…ä¶[2àÖ¯fCn²0ŸOÈñä^t,wþN|b‹¿ø¯ÿÁaõù‰ö§?ÚŽbʈ\Åèž½Ò–g>áv ²¡Ÿcâ믒šœy2MH„Ñný™¸žÛÉ-1—vî.lˆ‡ïkpþøó2!–€äÄf. âÄJÄ7à·:^ϾÊñ„"® •pŸ&3t^¾Ê88ç"Gå$@oád;Å•îè|Ç'1+´ôp± 2q–eÇn5í+#u»Dþg~¿ SàmÕJ 4<2b8žËa8+cÄ‚µNLI˼„×"Ýr®h9ЩJ'¦§Üb›ÍäéñHMøOÈÀ:Õ§¶ ŒÉÛª6V["ì—l¸49·d†8‹ ›Eã‚SâÇA,*5¡(â>þñpŸéGælˆ¡å_~ü*~µÅƒ’i¸e½?ųƒ1×zßÉð§ÔÁ ŒÛS€íf¶¡Ü*Q×ÎïžÃäå •E5À•ÃúE¦Þ2U{õ¤ÿ„¹*m¶ˆ«â~f9«¬ ²HÙ£-è#™‹dû¨onA!6‹csNéÛ°udX>†ˆBú“+Ž^’\†ë-ýtä0@$Ý;/·.$¥Ý3:{™ƒò-&âä*“ ”?¸‰ñDÊëcÈÈ©¹®øYL<úœ ñªÆKnôJL\¸³lsþò·uµ;ùðô»­+líoZWìßïm]=Xv]ëþ†Ì0i~Y|Çíà±FŽñ‘žPÇd1VÆ‘ÅaIh„‚©–êüOßåºé4gyáÅ”Ý5ú»§æ0§ÕŠÜ+ò¤@¬;Ö;؃fnTãÚTdø/^β>A¼˜¨›»‹O‹èùŒ<_> ö®ñxïæþŇ7<Š bnÂÓ ïF¾)C w„L{jƒLÓ9š7ú’ œ²ÊÉ1ˆÜSÿìM&3alçŸ`ða“mdÊ"72¼^í‡,ÁÅ^K`>U­—}‚T—ZÑLHŒµH`ÐM"WÏs@ —Ø‘(OÀÖ¨õXÔf®„åѲÛ@6¤m\”m‡”,Ù,gÍìá(ÛEàr§?Êü8Yv8_ú° ›#= 3H²ƒƒý„h‰á¡¯»ªí³²'d†Ù"› .—<'§c` ¶ç˜‰­ZÓ®vC ¨hå8ñc] ÛÌÔäômÏ›+á°³¯Ö´É¿ƒè„zX–*ùpØhЦôJB‰¿MlêWÄÌbö¨(whV)KMÓXŽøþT·³Šæ¶÷)óŠ_9ÚŽpÔf‚H¿ÿ£s×™’‰QãÊ~4Ò³@^Í1;i$Ngßœ?.Q˜PìjÖûlGTaþ­(E_r¼Vy„;çPHwc<Ž$'kE!Í–Û‚¦¸ØØyå³rI{˜0¯D¬È38ûc1ÐIÍÑ€¡8õ‰â‹©ÂÊ»£‘±èAa Åß­\…Ø–=èph¬YD@àÄ"pŒª>2¹^ÉÅZ>F1òƒ«ff{;qËçe/ÈÎ*ÁÉSkRQ}Š<•ØÚ‰L.sßJ5„Æœ KÓn¿¦3÷üÖ+´¦N&èÅ{)…| !}JÉ™u0}å¸Ñî)íÚâ-6¥‰fC*ŽG%ÓðzQ`÷¼£u%[V"¨Ü]¢ÁŸËgó4ÈøÈO=½Œ´¥ ÃZpÙ§Y¶Y–cüŒùäœÎåަi¶Yš‹ަ:ÌéŽæÚµ¶Pò<ÁsÙtúŒ–ˆ4» Æ®2™Kò~¡±R}§n2/¯Z–™Áñ|=Ü "Mž±Ó‰KjÀ¶:ã[XE^ù¦K¢rBÓ‹*zÙÌëåîÜëÑ}ÊO"¤Ú ŠôsÁe&{™ÈÜ! €ßÿÄ;á˜D0OTj#Ôqª°x ½ëXeÇ6£IÍOë¹ÃøUêIÍòd” u)­pLÚeH…‡koÓéünz.Nò)ÑjÚÈò£)?Ç`ô€TÎïæhsr9¹©:ž÷7l4!sÍ Ì¹…† à 4z—P-˜k¸X_šð{kA¦MJDÔЇÙF†²gf[ÛÎaY=…QÛ#ê뾯 Hë׈3“&­§.h?,—9oEö·jÝKìß+ Ø«H¦Ðe›ÛväúÀØ_^!ìZ8â st|¡³ÀP«¡º4{ñ°×ÿ TÞÝ^æ™×ql:O/x$ÿš¦·&c:p•n: #ÁÈX¢J3û!LŒ÷Î~<ÓµÔ™ñ¿ ¸¬ÐØS¼À¥Cú£µFyÓ×µ¡² VØ0y‚{Á‰ÅŠ¡ÚÀ”‡˜/€h_¹*’Õ \¦¦`Eº8_qq1™RЖ^ §ÁÆEž!©ãÆ)†¥ACV`À} £ŒÈœ£%í…Äz6¡c³æ ê8ÚŸ­·õBÂÆbÔ`t¾ÖڜӃrÚÕpò†¿–Ù–Í õú…X+9þíæsVyÍib^ǯJ¬Œ_›D1¯QnÂjé×Õ*+ªÿD i\‰^nŒSÉK\ ¶PwÇáùk¬©N¸)Q2ƒu-HÙ€4K‹ 3/hEc _VV"(E#Á e\;Èì¿çž‘"C$v[§q²Ú{YÁÎY‰È iPÜ~€|´9·¦‘kI,|û—#e)¨.·qKžg­ÃYäGF ñÍùãë™s­ y¼óH0ÎìSÄB²I¤˜Nèè•RŒ;Ç~FAò=0½ FhŸpóc€êÓ§‡þ /apWêŽD‚2XIE‘Iê?C‘¡ù£¹Aˆpnr Ä øx¥=½oÿ‰Z’OöäŒØôÀäY…6ÌTÅĸ¿ÌfÃsŠW4J穉sïrˆiÕ—¶Ù{/µCÉòb!jž¶@œ€‘‚°³9‘‘Ô«ès„‰•5B?N²YµÂ~é‰ÜTfwçxÚÏ]q~Fj ¤˜ÜcÆÖtÏ)`ίïSœ5$‘Ÿ†óYÞ$æs Àyˆ4aé(ù»Açç“ÜcÆ¢*1¯ ªpÙ?é·wûû-&ðÔ˜˜™5`å”ÝXéâUÕƒc |îfw$S@6ˆM[X”JŒ¼Ûã›$Ržx .1ï…ÇšD╹I#¼­!Ñ:o+$çGnN dõè|ò¥¦˜A®œØ´Î2H’ͶHX™'®Ô~Ö"; E¨õ0€ò„’‹’ÚYQlÐ#¹âUsJÇ âõ!ã^ô–9ðŠm}Fl2¡+0ÚáYb½ Ôœ6êÅènóqÂpÆní⺠\®é˜š P½­¥äBÏB0±U ðáÀŒØ/K_ËœgHŸò5"Œ™yòŸ¡/sŠÄ&"ûL6ž ?)§¢f“Éf~¾X=¬­øëÈàdˆ,øÄÙÏ2)|EêwXØGIKY|hª‚sS9þxZÌP'=Alö:´©Ð§ ÏÚÍÅ9n#‚8ÚÖc ­^(è~ذ¶Ê¦îÍÐÊ-ææ1‰èñKý3ØHµáQiŒ³{ïlfÿвçU8ŽË.ÁY½˜„ãÀÞ ‚:¼•ípÌ=ÆÍSıH8ÎÓù}*샹ƒgºù§’’n%Øÿ¢!rÛÇbnÎö8dkC¾Õ£©ŽçY÷Åv*7OcAEšzù½£¿[9I;Ná³HöD'§â’‰)G¢kôhPômb `B fÔq5/FÑ˺A¦pæB{“Ц€ûÍë¡Ü?XtµÆ³IOéú"±D’0€ÓæÞ!ž£AAV„ »ë)Ñ*«U˜wø¿ÁË ì™WŸ«Q*‚%G> ÐCp—p:3œMȽ¥D’¾‡§“£´’•`è½àHS饎|ß ÚxPšŒ‰»tû-i·ó€vëI¦eNü´(–“ÿÊ ]êè.µ±K¦ʰºÒ‚ÒŠ õ¢E-öѼ½ dÜ ËA&9é"À&ÛMé‰ùÛ (Mý©ë›Mìb[Ý}û¶÷æJ˜Ú‰²¦@‘ 5ž”Ë!J' ²tA‘¾Ç¥2[ÑDÔ‰»¤ƒNÑÈu™es–•™€%—¡^éÄ:¶ÑKi—Þ ï‡—óOv]¤S|=÷æÍ„ãŠ&YÈ[bŒNíEoz( ]VEâŠöÝ2gnw¢ÚZ½;ÜãÚ488z|Ç1ÐÕQ,¬g£Ù ¶­ž“¨ÑGªùœùï=sÌï3¸ÆÀfs"ÏHèiÎ@ý™OüÓãn>C߯ì4 JJ¦@[" ¢´À'à)PX8.Yuy«…GŸ>c!)ýè‡ ´®‰úCÚŽPu/Ï Ó<Ã@6Èà\2‡‘íúsÆ„9tÂ,/‘¬?Güç'Ž  Æ’8q~oH.Ì„)É ò/yÏ᥂(’e‘¾å…’Ô Ô+‚ØØ\PÑŽNaFˆ²¥Rúa‰Zoz½^Rãh"=Ì‹p°‹áOvϺ»ÝDÿ“Üïý‚Eóo˜m’ë~¨©#Ê?Éô\²œPJø~Õ6ÎzÑ5Š,ú× ×ÀÈå 2 ìŸô©%›rìîõñg»(u¾†óü¾|sŠæNk¿ÓßÅoTg‘8J1–6(î=uêM§?Sx=×#xùpxyà'ÀééË7üÜÑ™P(êÇÇîq,V™¬­ö ¬pÁ-}Q ª_Óå :±T ƒ dˆv'7Ý€†$Ù46ì‘ êT++‚žy±õÑuO*}ŸÐÐ…G[Íq]Ð&lÖpàY¯±§Fç&qlÌ<5ó5¦—:C)ݨ™9 ØHŒ\ƒ<œk>ð|pñ+]n®®H­PQ(¹ûf¨àžrF(¯Ï2&‚r”öþþ>õºÆü¥€ñâôÿb3’Û`ÂE26†ulwÛ}­žŒô€LjHˆ1˜áYkÝЈJ8S•Þ&nS³‰›$ž¸Vþ2¤_07,`1ZŒY‡›^üŠ1*¯`òîÓKmáFE ’j‘e&,ÊM falöt<Ï„-8ÆId$Ä Å°–á .ȦˆÌ…)+û ü¶æÁaX3YX±mº…™ˆ)‘ížú˜àãĉš†'C:à?×|G¥ãk{-Óšpf\#Ù°.|Õ:þ‚w¾ªQÞð û½Ú-Òw‰t$mñøõ¯WU豘Pv¥cÖ×!“øé¸ÎÄ®,Ð^î{§y©5B®ƒy^ÝUS—Ciy4zJ ! ßìçŒøÞøÆx¡läî £+(â4ýQ˜œ˜NË/l›Ù‹”ÐãîöÖÆòÄùý4¹gcœa -HX²~ÊZ%ÙG8æÂVôš®Š‹‡çcÒ+UÖÆÓ[VY–Aëå¨>ÅcÀÎ-MÖŸ¦øŠX]•™É²OÛö§i¯8˜èÌ;‘œ<0†i0®Žzd—ÒfÀKà þiÅúçT¢¢²&=ŒI£y1ƒ0f ÷pÃIUÏTÌ2œ­Gœ2Lœ?Æs)ì²8ý)LÀ ƒfN6ã*(Œ­óœ»dÿx3\NÈœÍâš6rŸâ^pØàÌ1ò£j# ³€=)!­%£0jO¬ÆóÎcåzñï¿’£˜lõ2i] €šßO´îWe¥Æ› Q­ÞqM²E™“hÛå„´êÑÚvEÅBI• wxk…V1º6 ›Ï\û»bVˆA‚õúj§ çéÌ8ËÑ*²E Ï6ã ŒëŒê:@"{o ÍìˆíÅDmië¥À†NôWlÑãgÖ‚“{²b+¬t¸t]u#x]{ÕL;ÿj'>œ{´°(˜}“,1"K𘫻ùk¡2þ¨²"dôA—¯`¬8±d;’KôoJ]®5 Kyù1„÷“IU°Fgw©”ãk¬g³øg©ó\Hf݆B'ëëRÊ\ötä:wwö\¸ž·}ÎæÔîSùØ¡M KmÍÆãoÍÆ‚­Ùð"„;s;ggraí²o·fÄàŒw¦SÁnÍ^°Œ¿~ÑÎd‹…Ó+½/¸¹«¿*¶/ξlÔü‘â¬nc¹è¶l˜mÙÈnËFÉmÙX¸-Û2\O³-Iµ`_ ;wE¹cð¢ë»ÅÒÁ-W†‘„@Œ;µšά óó¹có~?Ñ*#˜u4RP—ÃKôù¡«&˜80gB”h>d&B fê"Ñ@¼ÜÓ¬ã@N0ôM3rÏW& €‘$*­*øðÀT÷æÄ´rØZ¬¾ðŸîë…±˜CL‰Å[óÎsØ™ª]#2ºÆò£Ë…º£ qµxtÞÑaq9CAÍ¹ŽŒ*¶ä¢Àe.’6.\ApΕb¿³à‰¤AÚµä 8àÆ9'ïBË®ú·2öb¾ÊÙ QFN!á§œáh›øL2…ƒKädF.ò°ýÆ´Ôä‚‚º^j®ÿx2M'äÁâ„£ÈK AáÝÅÌEsÚÆ_Cw³lI¸ÜŒèª”4vª©Í%OÀÿ·‚KKdŸîW6ö®“·Ap¬šyÔ¨f˜gëgNIogÚ2Þ½ÈÅ‘ù‡p(œˆ¼bZ*°¼n@)Dýh$DŽ\ârÏ]ßÜåÙ*ˆ‡‡‚óðŠÔÃg6MyƒÃÿõ ia`¸ýH‚ßzÜ ]-þT®rE|(è({ª_ØÇÕju»èoɈ‰¼Œ ¿VÌ)¾ánÕ¬ƒÌÖôžË Ò×*^ñ‰‡Ń™tîr°Ç)õªZ˜ŽDð<­hs‡ÎÈm‰"Uku VAœÌ½Îá‹UæV¹“ä¼)3Í:H)œÝãâäÖãá$ ¡a¡ä‚(((‘ ôÃ# ©ÿƒñÏz>»è'FÿQôk,~Òè9Póø?µÿܹÓAcÉ¡&ŒqÝDÙZ$°eÑãZø¿«ÁÏfÊU¨];ñør¬|^ZqVD¼«\5.óŠÔ%‰Î;Gt§\I5fC2’ß^„óŽRÇ:ÝÐr2ÂòŸNþë^ðZä‡ôå9`0Ã꞊öþêȾB Èpü-¸®éäŸÁÃÙÕHî_½‹)Ñ€AÁºØ"Ø{ €ãG¹¬Oÿ”ÒƒU'Ü4Kc8?ïu¯øµÕ>fã¬yÓ¢"tB4£e’šßÙm vEfû"šS‘5÷FËqhÝ"œÈ2Ø œcm¢;Ħ¶XV ÷«‰gÓo;èFåñâøpéÜ>6¶ :MR•NXÅ xïì;Þ;¿[ïoÿÄüþñCýI²µžõÿiþôÿùÆëÐÿçµÉñŒÑ@Ú½ÌïÚÙ=)JïÊùaßœì÷<¯nÖÖüÊAôߣ7ÏyüéÓÎ-yS#};W6|‡¨zÔõ]J‚ ‰ò2K3®ód-©#öèb]ް„ƒá€Elº ðt a¥$­»)Ö4#®¹våJý j,õùoêÁ Úȳ…úùW:{%.Åpªn†—uÉ 2“íìëdho²’EïLÑî Ã|¶ŽN ßÕmèøi›ðýÆòmD̲Oþy7˜Úh1Åî@ºmFÇotÁñ³âhȈ͋§¾Ð' ˜œÙKšÿ7y›‰3£ã3m"a³MÚ@qdZÏ͵þo|òïÚ¿éõ¿µu»lù¢©zsu…=ŒÌÆ€½¸–®ñF÷HŒçb!´Æ#41þÌÇÌ €Šž¨ÿÓ^@Á¶x3fúT[Š&bŸŽmë‚ÕüÅòо̓(ê9D;SU-•†ñìr(42¢ÊñÚ‰P‡}:¹¯FƒëŸŽ-`Ç OÂ,è¹By-¤tÆ9âÜS<Ø$‡~h¹z8ÏÚýžÄB?’XœL—…® ·‰²eÁ¿>º–¼®)¸´u÷?@.Ô,èæ›Pä-±ÿ½PÞ·“üYÉÍÁ.`{›·ÑÇB´ ¬s3*Ûöðý+FÃñ¯Ìh8£n9óÍݺ»]³‘~Ú”4xý„2"?଀Mù-Uq÷0Ž™ŠÄ‡G'É N»Í±¸Ec) WKÛÙ­#±Yi;‚l*¥ê¾ Ñ’¸ñc)at<{*Ø®T¦Ývâ參®F«Ò®FUM›S((ûÒQ1‘v‰:SUרZûx™ª«‰v0!¥ÿí=fæÓͮ"ˆàg)än™‹ö#šÅŠ"ñÉBŸÎhš.¿:ðɧåh¢EY©˜=CÂâÇĬX"ì*…åП,аš@îí—Ù®¡­=õ„b_Ég…ì0jêùð6䚟œ¹—Þ`nf8ßÃ?î_Ç {øH"5ÖýÀcǾ3l ‰5-rÙÉ|]a³ßÖA¥ÒFÍA[M´qEÚh/Áû-l«à&À4‹n­}©¥)–‘!@2n:þÈÖk͇wW¯lÆËl–» W@kÂD˜²IVHÙ‚ …’z=cT«¯‘t@nѽ®ëÙÆ´Ì¨æÙIÞØœÖÕI8í\Ä äȰñg¸H@–šë ´acÅšzÍMÁ?=¾Æ±>mùÊ Òí7L…$ê4“ÕÞ 1¤/—®Àœ‡ey0Jä%'iø3¯cÔ,<«Ðh­ûæ×=«ì…ßúá ¿UráyN£Ë®O2þ^ýö…ߌ.¼ûHXúÊ9ŸG¨  ×06‡º-ùümïÄØÞtgQó>ÄÝ“ap×b-Ž7Õ:žÛ(sÜHÙ`0Î 1œ§`G'#¼…QñÛùñ9#óŽgŒÁo5YN[qfˆä¾«ÈTëµÈD½e;s.òæ oKøÊ™æ,g{gx'½!¯E …!ZÕ¬Ãy!r²§ë£p]vü”Ø6Æ2ùÖÜðáeä„[¸Œªšáª$oC9VYæÙÙ-a0Ôãe3‘ƒÛr6þ¥HÑ ñ"yIpàzû;;^ù-0¤”|cf%ìQ&9×áänF 7(Ó‹Ð?‡Ý‰ò7Ù>E¢ÇÊ1© í¡¼ª–鱃|›N)ÜC7‚üÙ<½uÏ«Ì tB–FƒTꀙ­“þþqOúÛ&äódxI),¯F“ûš*˜²0Ÿ7õÑœ[ÂùHŠ" rƒ–+âÀÆ‘®§é`N¡tP*PWV*ÉSÀ%jóUœæéF•B¼ê œ4¬Y@uC›Qü =âŠO}Ÿ\ò¥ -ºeì¨ÖK§©:[SG|þç]‚-íûFubæ¿ïÏÿ1ÍÆŸ£ÒÛÉt®öN6’šŽ>1Ì’.¼ÜÕZ UZcÔcM«_­©×wpÇh c˳­­ïdÄËx¿† þ† MmTP ®§ ’P£ýÃünj ;>ИîÿðtqýÙK\D„Âà¥ãÕö~—Ófmœb4:·jÊV“í´!#wUHg¾c XÏ܃Éëòí˜XïFt2;ªBufr?‰@Ń$æ’°¶¹tb«oúSTƒVü”l7ƒëñp~w™V1òƒÜFйIÉÄèÛ3ÕY·îìsúÂÇ$ƒDc´Õ™rp`ºçH“ B4ç© ?\¿¬Ü .>ቛÞΆ#Lûé[›åâõ¬¯ÊÆëeKWoåFkö¬€½%°Q¨ËØèÝy.¿Z‚«B•²­'Ï3E/ápê¾é›*ÒôXâ%Z’± ¤é*{ ×0íÞàn4'ïs—©?sø/P÷gÄ @X1›Æ(Óaéµß8ü+ŽcÄNfQ W×Ðe‰Ø­4“/lÚØf™àªK‡¦/øB†v÷­(=¹6{[”fXzü¶ü¶ ‰*¾ÆP­Ý7½˜]Q4Ð%æú| útÞ>À †Ë¦s¥i Ò:`QL ®0:ç+v¦IòÄÔpÎk!5çV®AS²n¢ÇòpWʬ ²ÆG‹õP“ßfÓc&“SÙ%& ë`uÝ%l ·­tí3ÛMš¨ `¼«‘z«yõÚ,|E‘ òd7¼${Ø’¢5hQ´•õ•¾|¡ÓÒJèlâp^|Jm0;Äxí–­µ ¬P°î:²Š“’ ˆ'N´@½å\·˜ö ÁËÆƒ ¢Â*q—lú_LCmÖ÷­OìÿãT±3…ÆPÎDŒÓkf $¬)2%ƯÂQY‘ÈÕT[¥\Ü*®VGžÉ3™X#·R`œ'šo*â#RÎP¤zÝÇ 3Ãû"ß¶Lä’[©hƒ…¢¾Ýö‘m‡ðbÊÂï§ü.Ð<•êy^çô?gl#‘uá®pÒ¬œ…Ȥ÷í¼/ —íì¼v°KÜÌÿ$6 ÙÝ÷à½v¶‡ˆ+3Eb[r±ìöè§ìöþ‰É§?Vþ»¾ÑÜÌÈ··~Êćww(ÿíÿß?’'n—óXr׬صHðª5å(DœqšõLÄï¨àÕˆUÊ=lÏ93p{žœàÜ¢giGHÃPz5ûN¢@ñçDÙŸý}ïToE"2¯éorƒ§_kŽ‘«ääÁ›U:{H&žX¿ÿ˜Ö­:æñÈë,!øÐ¼pE UõÜ­Œòðˆb©L?ÇסAKøÉ ×Z¤ñÄ>)ѸAßÍ“•³Ú;} aËO7¬?¬\ð™Ö,÷âAE¢$EeŸ={öP’Åz}Ñ7©{Ìç—ýh-p$Q:Ù=à`Çîé1Œ•þ"¿(eÆòæà Õ>¬ÉwãO‘Þ?’à0°üº*’!ë(«’¡ZÃoº]uãÿHù_’lFì?áû§üïG|ÙCùß{’ÿ½ïÀ¿S’vŒâ-ÿÕ>yÛA:\XZhî· J§Ù;|» j`Â꼆5o´õ²óf˜î@3U¸ÚÖÔGLù ?Ú'§oß~, YçÄ$ü 8í´³*MÆq¡‘ª¬§VµËÁ°ŒÀ4v¦µ©)/˜þƒ0fQ|A^M]e‰†ˆòkÇfèÄ,,@JûÄ5ÌkúG³½¤%î{k‰œ‡2A¬í° ꚢ(âÒnyùíOô9ÍEKÊV–­Ð-$·ëœbNÚó¯Üùýï,1öÍEß—°ì|¿„eg‡x2œ0/q¡I'Ædhsß÷与;úWèÉåöaC>™:ó o”«ï÷õÁ66טôË|šÞxa1M41E ·Û=ÜÊÕK¸½Lºû0nYúe8GÄÄ”!À¡öýt8Ÿ§Úưó]º\}‘xäñЛõsÎaOaÃIRŸYÊHå^$ÄÚ¼8vÄWr!ôªÛ¸:8=dæbš^¡`K(Ða¨ÌtÞÆ°:Ø•”qÙù»‚z™”ÌÔi,ƒ׉Æ@—W“Ø%™Â(ª®nѽ ¯‘ó)‹ötKú#ŽuŠxÿ×(KaÑŠ¥ˆOTÅ'-1‘ ʘ£üA‘¶q&÷Ã&=(l –¬ ©ÿ+xÉànÆÂÃêKÁc]µTêØ;ŽÎЊÞ-Y^š`gD;î÷N,?(:2¡ëÍEè{£*tyÄÞÄÞì~…$•!ÅñÔT%’f¼¬S—Cï-Ö@­ë!^frhÑG©œë³™p F6©W•7%À i¥Škuì39\ êA'ãÉÔ^t} ˆk߃&hhÀ6×Ìþ¥5ñ`Ǹ_H×%Ä¢Çm…tQ.Ãl>·l ¹)§NNzãegfMÏG,\3Ì^æõQß‘[¼\ n˜7‡a—L&PCcH£8W2Õc“^¿yùðÉû'5]Ž»Ý­šJâ²æf\Q•8¦ô­R&Âà ýèFÓä[ðh0×+6žŒI}åÆOÿÈ[¨mÉöŸ®Iܺ{Ñ×"G‰^«bëm¥ççÑ×&04ÃKZß¶õJ{@Îî.`:gWw#bkü„£"»h&qsÁ™W+Y\éaÿ_©ô›ƒM¼ûá™9«áõ˜ŒS´#í˜b]xŸµç Eê¾á˜³Œ¸Vîv¿ÕwÕv z8Wbü7D'xv]óGû‚Ü<ßÊXõ_²i‰‰»:PŸ†£Ë'³ÀVÖ…ÓˆÀ9`8Lš5®bz?òñ'˜‘ `§c~­(à,úÓ9‡å¶lSSzŽ"8t ¾ͳÀ€, hî)Ïî.Î¥Ù™¢_~µÇ’¯' :˜õy˜ÞÓi;¢ ¹òì2ÈQ>@Ú2MqäÃQ¤ 5˜ÉaÉÞÄòÐSìÊ0ËBLBJ2$¹™i…†!ÊŽ¸à~ „9 ˆ$^8Ãç(qg: +y«Mºx1Iìzæ6€ÚÜR€ ÍR…v/£4‡3äÏàj.VX½Á×òü x[ÜÐêçtSò{ 6Ÿ3‘5ÕÞÝMæè5®ÚÚ™Hg$ß™¹€HŒó©±ŽñÝ´¹øOÛÿxÛˆÎN’ ðQãZ ?Y/ÒÅ…9ú¯zûðûÁ›Ó^q…â ùZ;å9s{ðgs±?9t np=×'} càˆÅïþÉQû-z”ï·Ð…ú¤ÿ¶y0'÷;Â~Žß½wù+Ò¢9D/õ—û‡¨©mË“}4±£Ì p³Ú+r8§ .Øã¯³£Ÿ¡ðEY÷ø~Ö>,ÓmuZT®#ßg¤F†è¸+ß$‘DòŽÇD¯_vŽ(ÝÔöÙIûã>ý*¿u÷0]D>èíÛþ+í±ßg{ú>8á¿úüÝ)L_ E›ÀðM§E€à›Á7Ì5}‚ÐiNˆ±Ûk÷©©w5u&ËvFëuF·à"å3ÀÙÄï·ìãAï ,ÐÇ>;@\éÈwQl.*p–¿9_žô{û0Dø>“`½£ðÃ[•ßNg÷øekWGBèPeXÁÃcxÖE«Ä÷h¯ÒnÙ°,V(¼Û{ƒV ½wœüp÷=½=9„Y;(BétmÉù»¿{ªÍçÜÇþÇÈŽþQò¦‡M6-Å aF[Î|˜¼— ˆ/åû€¾_ó'¥u)Ò‘’–úø¡ç ´°ÑQåìë¢ò›^v:ÊÀñÞÃù¬ÐR?½4¹Ö\áµî tì^Mœ'Æâôž]Êï<ÓdÏ‘†ZQ]'ô¦jãÅXù“™?›å\Ûc`lÇÞT¸Î掴u5yÎßÝ*ÉXŽwyF´<­§Ç'µÙ~ø/æÏÈìÚQ'aýƒ·Â ëña Ê&±íï%ܽv'UÃãüËÄ]óE¦"cƒi5|6žØst8Ÿ|Nל¦÷(²û AÁPÝGgµI±)Œo…!òðj›–À¬@Ë´ƒ5h»‹°K9¦‹Êæ¼nTZo:Û! zœ¤s/˜®ÌɃl³"iæôuÜû™£÷¿Ûä)©™¾¡ÉSjòtÕoÒn O¸w:–cqP<¶Úw;ˆ¡n]‰–D qâl¢#õä¸þ'”¢–+ׄ‰£ŸÔÇJRcàU ™‹ýdˆÐ+}d4ÏŠ³†:!#&Xcí Æ¹À]¼sT֜߮aÁþ»5#W£’W39Ìíj½ÉÑàÒ~²úµ ^œŠ‚5 ÕlX|L§+‰µ÷ÎlÃf£ÓÝôº€9 Œw£™sVþ`æuÅq.RZýy'yÏ-:i:Ì<ÊsdQ$q­5ÆtD0"nÙl&³µ˜”ψé2â8ÝüÐh±¬ Ô¨¨˜í}Žì®>Tz)ÆQ¬¿R¿†«$=“k¡¤Q€ø*~2™¯ï&w3OvmÎ/亵ÚÁløzX“ˆ±ÄP8ºÀh¯C­ÎÂH·×‰?æÜÚ’òØÌŒ3‚fÄ…J;¯‰BcÁ —t„±C!ð1¡»QåØìÔ?[ݘ¾Ð’˜ϸ?2JÄlò«xœt¬@3Öšâ_˰±àªÄÀæaFƒóëàW˜,C™H÷›Þó0z&°ºÓOY¬³zÛ±¶¥ám7Ä> k®a¡ªb… 7‚G«l€£…dŠNC¬+<â;FtÍ&È4ÚS ãI8[Ý6V¸~¦‹ÃÓL÷µ,Äï`±ù‚ëw¾CÑvº ©Nö[Ì/yªcM™’TîË5rƒ÷KþPŠ´U¨Î¤ð%PïuïÆ'ÕY™‘zz`~ÞŠ½Áèân4>o†¹ÿ7¶š]öº¸êìGh“g;š÷X#L]#± `ŽðË ö’/ImWB]LŸA'‹ºB ñkÕGÌ#ß0ÛLÒ9«{93Hfæ¶°d^¹³ŠÛžû×*SP¿41£ñ Ú£v®Ý÷eviß±®ˆ¦·šÉEïØ°UœCÞ9 ¼tt³T+¼è›3Éñà¹~ [à¡Ý[Z¼ Éj³‹sÕV^P´<8ö/óT$^§¨×B‡Ã~Å °Óì?ïhÚlnr〖±é‰™|ˆu]f£ñ¶^!išƒ5¥sÿ¯Ê~||ª¡•©³Äg²~´|Á•833kÓµùšg`ÙH(¦eÎÎÖ~‘ÔÚÇÁ†àî¬R®Ðþß«²%š! uzÍr9ã-ç2½µßKͧijû õíýV)§‘•ظmÎ÷i+I.1$b–c3`½ü”dt”~NG™Õt´†ùIÐuŒ-Þ¤Œt¢á¡™3ý>{§•;’Ü× ¦\ÇÎ ·ÀŠ€Òqìš”Fò|ÑkJ¢vì2”Ðp:ÕçXdÒìVsÏ”3¸;ÍŠ<RÐ7º˜pàüi&ŽEþpIŽB:×zœ‰[¨H%>FVéàÄIÁ÷Ú¿|˜B¯P¶ˆ¿Í×cä„?= Ö eÆ6BoÑs´ ¨_¥×ëU]FÌŠ€|g;q7 FŒlõ¾X—xé¹?²ù¶õ4»ˆÐÖ,¸ˆÛÐî{-H1+>ÓLØŸÂYT¥DoQdÀ(ÑÁ’¥ ÞF]« t¡£Ð!iŽ~4Ý”‰¡}c˜pA£zVt âÔÁ VX$POô…¾`¤ƒÕÔNcÅx> ]^âýVFØvR‹ÜI6Ù^ª—§ù=,¬Yn”/£/óÜcÝQòm™{§¸Æ‡¾J=ñá¬&©ã@b(¡<=^‹ò>VDëO ÿY4šG úµœ ƒ8ýäŽ"Ðàe5ôq‡nA™ÌuVz <`K¸ ?α„Q:8¨¾ã¼Æ:@×cÈÁf8 äJ'Jÿ•Ñù¡¢±ž¬¾&æj–ô‹:°Í•ù”>tÞÒœ¼çTGöÄ#¾¤ãܹ$Z¥Bžã°“#rš~aøµäEItßå”ïPùlWÞ\]!K©o DIf¬t88>üµ°z[S-šÏüÓôî‰z'Bà™iÀúM¡âlíO{HbÃæh¼‘Ñš2þ)zéÞ­D„ o†äVoAèNlÄUìÛ5L‹½êÇ–1ÈŒ$<ƒ/ŽÉ}­`³÷z/™òµ'ûa3¡þª÷.®õ–ìaü@btSªAžÖjâ3˜?0 ƒþ£1p‚JˆÊºÄ$X†¶3!‚#aD²¥évŠo×à‚šwa‘¢&UDôuäÉŸì5R 8>šMÄ×\«uT G°füÚ0)jާ |ŒìÎw)¡m©S´‘©Á•Ï)Šyù¹£Ôv l‰ ìÚ s@ñg?ù ùsJT‹:%ºG ´@uC:³sÍ'Öñ’µíÈžðV‰]‰ŒQó½¸ÿ’ÏRè9Ü$®:\‘eg È2SÖÁäMYtÒ¨Fað¿pfÈø,¿v=¬™v~Z0iYÄÜGW?Lq–ñDÑ4îÜëÔX:ˆ„t2£8 \ïa—\‘-Œ'ÆfÉ’#ÞÒÚÏŸÝP³ÝE^¿é-gåô¼±¶=Pè‘–l<ÿ“:š©Šq°žˆG¸ª±c«b>l¦Êb›[BŸu-×qd79(ý/ךÃ*¸ÒÝsvo.x78ç²\3¤ˆN‘ÀmÏ~Èž 5/ºº+ö‹/›ã°^ç\²)²¥·Ó`£¾†=ZÅP“'4»eHÆg}uu›.(:;Fkäçà|ˆW(4y¨EFV+äµµØÆUçg×gój‚'=_~Êë%÷c\ˆ¼×Dpìq<‰øÆàÇ>ÆE*èfc=NNb{DÙ‹žÖ z=dÒÇ–Ú(“æ©ë]ä+«Ýòý¾Ö”ÜŽ0„Ýï)Æ€Ð"öÍrU~Œ'ù¸þ¡C™’%n(;!…_ qAoÒï%“9rD,2§ƒ1€²b°¼/+3YBfzZJVÔÓ¥daNW"[rÉÔ"©XΑ»Í3¢OÍžVhßE4{Ô¾ns˜£s ²@« )^)Xë[3˜lM)LÒ•|8„:äèúO"¹[Ë«ÚÑ’†ý"ö›¾‹=1;ÀÎîf9›®XOáÐüûMJövc®|m+qkS¹·5Àå!¦‘u/aÈdÁÀã€H-àǘq&dfŒaXÞ7Þ–ÚÞpp£#3éôÞtm’ùCJ¿|ž“ðÄÞÖðî ôUâÂ{N»1Éñ®„dºóW‚bVVBª9NÿF‘ÐûÐZM 7½´îÝ@„|5ràån{Å^7pr¡)³¹êvwñAä%“§mš³A&lœc¥T€Œó‰ xG«‡0@‡åÙŒÂדžëœ¢KÀc Fä179¨è€ôÐæƒ·‹Mu¤^$µŒâ×|‡Žø/F•#Dʳ€jR@íCÍÇ µH ™W+"Ql—’˹’ôUk=Z{[+ŠŒq“¯R²Ä|Iâ‚z®œ1#× …Œ¡qAmWĸ¹™-àd–ŒN4Øà®Áqnëy<Ò&ièñœ6€êxsÈ3ûux7΃óá|:_¸ÖdklC–CµÉC/HœFpÏÓ+íÅ2 Jù„^Í…• ÆÔ®F|Žq9(0Íq?du¡#Øcßô§bç8A}Íu4‚3k·èr@÷“!„$28râV1 Þ…rŽEe­Àø{5zßÊ«Ë÷Áæ³¢#iÁñ"Á2¼KaÛ虯šÛœo ÍE4;JGëàLbd\G¶°s†¼d&%T»öc´'Ë(O·fôBöéØÂ]:§–R™hU;÷²³®&`è^»¨þÇŠÖÌòµ¥Z Ÿ¬–}Fq“«tQ®ÞÅ5ËÛ3ƒ5ÆHQhÆÚ`)¥»“òçîöí…{1w˜á¯âlæ6š=e¤mfùD'ý@çæä’cìmj¥Êxz3¬“ga.(›¹7v3rŒq]£šFþ @3ÙBv*@å"憜Òó¤ë·‚=P:tþ¹²Ý#ÌdSÔ„g‚½ ý««‰þ‚ŠÈ -£’|¯.lø F–·`XóîòZ2pÍ g€Bâ?dâ%}Q× žºÂ~™õv:ù<¤¸éˆgäA€tü&9~èl ýèòPƒ½Mž‡$ãäØa,‡S¼ALò€R ŽêΩÙf“Ñ¢$™)ÁL4L9é1`^vê~:ÁÀmr*â?Dyò‰‘'?‘аÃB0ÀP°%™ý56¾°!ÿ6½ýðævp‘s—NKÄq ¼& D>¹2æ£-‡ù»ˆ*£ÍaÙ„9¯°ðçGâLÄÔiai]6—‚^ÜrMÅÍ'Wå¯ Äy¤ (æ­\16,”Òå^04OÖZÛ|Ø}[\;o+1¸¸'hîh½£SÍR\!çQþ퓃¦ˆpFjBáZ’Cú9¸ŠxJùU @Sžãœhµ¡î[NaÇÉÍ÷Îs?{”sqèymxw«b`ž¾àrG½)y§ã²þU. YI#dÉË~˜áol>`˜Âtq^¡|YÆÉ¬ *Áùd*\&Š8“­¼Zª2ÇJr%$ºø‚[ KJïÓ¬» »¯³ƒ%ß's$WžÜ7”/Sˆlô³²UâIs®OÙŒn.oG¢]EOøÄ!ùáI‚k¤Â_µ¼V¥˜Ä‚„´纾_X¿U/´+°å“[L­$>—ÊG#Ëžÿ<šL~ý³™ µœ¯G ï*E$6)Í"§eyñ¤ý„Øl²h@.çæŽŽæ!FaÌ¿‹8!÷„æ ÌÆÄzâéÍÝh[=#¡V¾\ ÐQ[`æ³èýi˜“19¤³¹6ÏptÄSyþ[ÁgþéŽ(Øp<¸Lÿy7 ÷ªt0aŒ¶z¢ãÂ*?Éw4y;EŒ¡Å9Éø/$’"âéJ>u’9Aç¹h¤ÕþF4 ï~PZϧÏò2xÁÚ™ 1aÙïŒa§å0¬~°Æí÷ ¦/ùÒû>Ò 0dÿÃò"ûCXùKØÃ!XLÂb×ô²n×’nDB¸°78/ÒM%€¨D)ìïð nZã¹!ÀFºyq‡RÖ+uɦéùhÆjCçD›%œí%ï×¼e/àL€—Ñ7ø.¡©³Ùñ€ìq ŽHŒBA¾ç²û9eÁYÁký(¤6#…Î×8ž«o3T[»(ã®X3¾±Ó» œÐn?DyØnÆÚ«KÈ)lÂ~ž$;úæw’>×|£ÌÙùýOÆNW9ðDèK!tïÓË<Üข¥v§[‚1!Þ£³”’áHî$‰Q6ïž ä›«•œ\¡·ž«ád6Šri3Eœ) ——F ãnƒÒÃF"V\zª³Ê˜œ©6vñ!!…`ã€OB#ˆäŒo,² ýƒû‡:ÒÍœæã#÷露ÏpäŠË‰\œp œTBѥ嬋®ŸÕ)íÎKwOÈ!Œù,áHô$³;§€Çc*ïNÇc¡AE³9ºÙŸà†µž)ju1@æŽi7lÀÍÏ'² ݈ÔÑNÁáÂýZtèá¶ÍÁŒjù,¼rW£øºIñc­/Ç[,¾­©ßF¥q‘» íâ‡ù÷þÙ› ÏúÇÔms(àBeŽZÊF*ˆt­YT¨HÀ¦YHä „ò¶EB&˜H é¦|Àû?¼@Œz©ð‡hFF>…³Cî.Yú;Å Hy´‡œpV¢þæDìÈÙºf/%ïy/%ì?¥¡•ô?s­KkR—ö[Óè¬#"»aªd"‹ª×¾u êý&JrAÝèªÕÜÀVôŒ,e Àøa˜M€e—\)HþK·ˆõƒJ^QSEÅ0,)/{>SM”k2ä×| vïdø<¶"yó©™}¼hJ¼ô°z~e–ÄÓWŽÁ;|fh7ºý4À„¡ÿ–xxùï§¹w+˜<ŸH¾$ªr·˜.òQg•ÍÃA7²1­áuåßÿîÿûßÀ•¥³ñ“9Zäp«5ŒLö® sù§|e†‘ ¨9²(6Õ¼iÝð¦&ØjŽ“Æä†Òô2¯üÒ ÇJ0GªØU1ª¡4ˆæ”TdéÏ(¼ÓT_ìO²]#宑Π"¸|ócg)é-ÉœØA£Ä—þ‰á‚,Q.œ›ÉçÐù+‡ƒ§ ÑErŸ ÝÌHÏÈÉþÖTýon\&’hþ±ˆ-`Nj­³¿ÆÄusª$ˆ2ÜÓ¼«† ­ó4Þ“‹øŽEìEÐýä{å”í§/Ó‘Â~ä抰ƒúZÀ½cÐSig…G€n]”ð£ÉáÃ^4z—¬ \|Öå<¬:4Nj¤µ3öžÈ÷—‚Å?1þ Ú&Y9G¬¢c‹¦×=¨È4¢`wñP">¯ ™aŸžE¹È^.€µèæh>¢¬““·è1Ô̓ÙìîÆ5?B“%rçEÝ#ã’º¬Y+P“ÉÊÌt®§ù dO¿'O–ž¤ž½™\¯ÈGõÊÙB `]|šLf´Õ×"*8ÖL’ï^6écäãö‚LÖЛpö|A-£E^DÒo›£Ðpj…S ÐŒ%óßÏô¸J!Ú YßÞðà|‚ŽJˆm&)¤‡jE¦·üÑ2IÉš°`dG /)T–™ÿ ªR¡b{=å=ZQŒ ¨*$šXt‚á’È(?Ib7=( ,äàãž3‘³¤hˆæL\Qs"P7™x‰M¢Ö‚Ö|Àr*˜ÖºsÐD>‹\=Œ`p„¬3ðbå¥E·(Ïâ"]ú>/HdVì½0ZéŸ(nœ¬y’˜ÑÞ.:uË̉2v*9Reƒ²ã KòÅc¦³ÅGÿrѸ,ä²K^¶%¤f9v<üY,4Sy¨WØ<'G‹ˆâaÖ„±âK‘¬7ýQ´ÿX€Ì!ÝÑÏ´!%( (d»MW¿mª CZ¼Û„@ ¥PÉó¯:Ç5æd,êï¹ÛB"ö`7‡‡ù9<0¶Ô·Jêøó-ò:þÄ¥v‹«-)ÕãÏ7ÉöÔ" ù‡E23µØ±çàm=00¸å÷ŸPü£\KdŽPy¼ÊiÊÁ‰BYƒ²òå4žS£ÿ&ÚÌ9£ü²ªˆÄŠò‹)]Œ}ÖÔÛPRêÚà 7'Žùòaê —4' -z4Šè§ˆO©Z^à3™» å¹t–‹ :T䓲G†_hÅ3ˆ2;X°2ƒiò` ôjRãÚJxèÛ†ÂTV°ouše衦Å´z)y'­â0;id=P‹•ÐÚ~%ÞͳY-ðjêyñìÈÊÔ•Zô%=ÚyÚnœèldtÄ\g®4@'º®°=)š@‰Ò¦3#ýù|pùç<»¸*F<ÚÒÂñiz…9Çø:ü)Ló ;¦ZxAf6\Âæ3Ö—ÕK4³Êµ"÷šó” ÇÆ_Ë×ÑÁHÖÚ öÙ4. =Ç >À¶ûUm¸êšT–à´mŽDYpMy ªÕ¥âqש<ø°¤°rÆa ¹pdÐHÒÓC×~ 2óg©á›vëî½ö3PDT_âhT¡)5¡z:¾ÔB…Ël& 4ñ't9ö+Ð%ŠÒ–ŠëW…þÞœ¡]Ž1`[ÌeÎÄl{ÍãH6\“K«ø7JÀMŠù%žÿg#›þÇNj~~¡H0L&çÆ Âr™Ó<Û>/"s—÷† Ã$\ÿççç÷ n¿Ö›k§'½½§—˜ÎübÔX»zÄ6Öá³µ±AßÛ[[ô½Þà¿ñ·í­Íÿ“$Éúövs½±µþÖ“­fãÿ¨õGìCîç“U(õn`àƒ›É,¯»zÌIù|xwŸœ¾ì½9º°Oûþd¯ÓPuLI`áFù÷pâÕëÀ¤½ÝÝ;R’ÁZU>§S â˜TÍ’ÌàS¯[@{´?'‘áùWõzp“ÎT+½¹IGÐx:¸wõ ø­áõ`\S¿Lþ5Q¯†—âš\@¯)ÄEo˜^’ïééxøy ÙŒ†p\Œ‡õ2þšŽÒ¯k…=êN>§”Á¦±¾¾³p,@™Y¢ÄC³ÉÕüù3ÜqƒkÊAÄžÎ0lÓÛ~:§³f˜rûT4š‰îî¡êÌ/³#Ó}â_ÛÇo;í½v_uQ]ÌàÝ<Þ' jwz}gRxKÍnÿp¿çÂeÔˆÚÅÐw18±\굂w àzX ÿp â¯o醴êø¹ÁV ¦ŽóŒ6ã˜7‰óU’;²šÁ_”D ™m¹óŠfì‹ú+Ìïpü¹ÒB_Õ/øÔ2ׂ„ºn9AEH¨Ý¨;ûèpÇ&¿ÎPG!Vh‰_vvOþ>»NÿŽ0ÿŽ=2–.¨Æ×Cç6f±ëÑwyF+Ã1Ü…ªz…F¥ónÖ=ìçU&Z>˜ÌQÃ\­Æ×˜éÌß g§™l\ו?¸->²lÃoÆäVòµæ  Š«,N-GëX ê|Î¹Š”1«—Áß!o‡â]÷ø×û_Ò‹»ùM÷Oæp3Û`ÅlŠë‹—q˶ÁCÉðäçãûPi×^ãÝ@~yŠ6ÈŽL^K;·Èº!OZ0r‘ó~ý¨§ÿÂó{{}Ï`€“ÞlàùßÜÞüyþÿˆ#Epþ÷+ê ¦kj臘N€Æ÷ôáoÏ´ÁÝ—áhˆQŸã<€9½bG[éãLo(÷LÞ2'lá9hp8<°Žk‰C¦h³ЂqŒÅ[²L·þ [‚Y…&ÿÀãƒüíþÖÃßä„Ù;YYi`ŠÙ.~ö_3êX¡ü·<84¿­«ÿæ¦lRÃÙhrÎ97hQdŒÉõzõÇ&1«Õê½é’s9Úy¨%™½ã­ÍHhuýp?x¬NStrÑýo_©Ãë’y}ïä§;é¾XwJ¼X§Ç•Cµ6NѲØVX×êZd\NÈ£sìÄ®F“9›‹õÔ­zÎTe6@[‚ûÉôWJÛð²uò®Gž¶öœÖG‚áaŒQùUA ì)œì¡Ý ®ÇÃùÝeŠÄd£Üb¼”÷ô ïÈue}“Úež“±Ä¨“3OØ ÄÄT³ ‡KB bYðˆ”>ïÜá_ÀÄŒ ¢w@;é. ­–>–KÃOÆÈºìòf»é=õ‰8œ+`Üföt"Üw:æóT³ÁU:'Ä­Ü .>áŒ?«„*2iö€MÁ< ÄßT×T²­œ«õ&P¬×¯¤+/ãã’Ñ·¶7EÔñ }»ÛÛ=Þﻼ‡@—’µõÖº!FàX[Õ(&‹ ôÏ ;¯1’Ÿ@)Áâñ›Î›ÃöÞnG9ŸƒvϨ‰p€{oNQCÜÎï)9oWwÿNvØ9 ¾» þþ€ßÐjìN¶ÿֹ져LÞ oSÝã½WšÝû“ÒõF#ï³í´ñ">ž /b Á°{íîIÛ ¡¸‹êñ6ަ¬†Rkû^?ú]CÍF±¯Nvßï+ÿCsíLŠ7YЭÁ|àîAó®µÛßÁÞ™m6ÔÓåØv9¸*'”ìsW1æÍpE=9yâÊÑ Ü—ûÞKŸûþ%¼_Yù­P@% þ)Á@D¼Oå<X6BÐÔ‡[ŒÃ[ofÍ$…Ž®žèçà-˜Ø`;˜‡½“Ðý¤›ñ¾G Nò}À¼Ãô!P¯„yèÀ´o§9ø&NQ„…[Ok^È ã€²5Ò¯‡‰o>=¥ h5.“ÑòUÐþuɺyÑè¢üê¸óÉŠ,”ûŠÇ}µÔòFâ«$ߺ §÷=¶|ìê!þ  ÓúAž*?]-âaö9܃&Ù1M‹÷ZZí­pGñ]#† ~ñø:<¾îâUk>Òª}È_µµjΨâ«Öü!«¶QvÕ]7ŠWíûö8£N;ÐsÎþZ<éÆkï„ì[bäI·\ß;É6 W¹Ì8êyÝðþÈWÍõG5“ÿ|þ±òŸævs+”ÿl$?õ??ä#hÈÞWP°ÿ¹»=øù ý?÷€£ß÷þåA1Ñ-ŒD’Gذ„˨2öD•qbUôýKeI­Fÿ½¤½óé·5?‘«`Ü¡PQ-ñç$_9$üt£¶¶¶V›É«¨/•!2ŒÏ_ÀïêÿP3~¤ß™¢_ù9ý^§B\¡jÞ•V_è/ø’~G ‹Œû<ÕÙ}ÕBIÝB½õåúMè[IV+h}¼‚ˆR »'kóEK‹ L‰A ÇS¾ §ó{ô2vWðÃÃù›Z°¿|ßaý’7¬¯vX¿|ó°~Yc8vXú6¹H÷ïõ^¦×,j2 „Ñ"§Gn´D“D2¿uúöX&ºÆÐì$>º0h)ÝW)(ÒÏ_ò©â(÷Kû!J²6ÇD“?~qÿØsþ@\Ãx:ÜÖ‡6©ÌŒÃ'þ‚O"<ç©C†¾‚Ы+P{)9ýñKÛÀu¢²nŠ~pŠÒÚhŒ;ÚyŽcôüç9 ~Ðó=¹:Ìq[¸¬ÅV„ÿ»û±üßF/3üßúöOþïG|Wþï]„Nö÷[dßñáÁë-ÅÙÅHNHEm ¤„t—âòNß‹âÌçòÆj 1¹aŽ Ég>PwcœµUYÇÀæ+x¤ÏØ‚ŠŽª1F|I;Z}e”„ãȲaäÀÔ$6é¾§ùÿH¿–PcÑ”¨ S¢'/{Œnxg§oÄ1KS“XF/œŸ(^'Ó¿ÐKNªéÀ1g¤ÎA¯OV"n¬?Û¬Ño¼„U]Ð2¹¼\ ;g­E°oå’¼4«¹4ÿê K³¯Z­|¹yéBVv‘Œ3ÃÝ wbàÍK#wSÒõ¶Òù`8šEø 4ÚÜÍèZrs7šù¾à<“ñõôV½nÒù§‰„%¾™\Þîvceec‡CW†¶›Íg›æÆúÆÖÆfSU`ºÕáÚÉÚÁpöéf0&vöÉqAc9ø2‹5þ·BúåÓ! ƃÑ×GcTçpú6ÔÁªè¼[¡`¡'5u<˜Z#·¶5•ì<«©Û[LRonlÔTòìÙºÞ„;uŒ{Žîå×ZãgSSmè¼ ¡©ûICA]êþ-‘—kêUª³mêeÁŒ^“)³Sƒ‹éd†‰FIÛÈ „éàc“!c8X4øu‹Ð FÈtç=°¢oÏùíôŠZé¼W´®óú³­‰ìX[BKis»ˆL3zß6à_þ®´ûø Oúø¨¿7*ãFèØZ`šy\¡©ØˆöuYM&ó çWøñ¦UN '5³J¸ uÆû#b·AŠªg0îf¦¡±¹¾SàûÒØÜx¦5`ùm4bm4¶šÛ5µ»µ¹½¹QÐH’ll.n¤mdŽdcá'°¼E#iÅ[ØÈF´‘u˜#µ½ Ãlnn7 i®—Èf¬º«±³ù >k5Ò\O·²k¥É³M5×·‹–d}«ÄH¶£¸µ¾ƒmìlì`KÏŠZi&Ík²¯í&ÌÔÖŽäYñÂ?KJ4ò,:] ÂoÀe —¿hŸ4aå7’¬G[ÙØ‚!ÂvÁŸ›ÏŠšI%–>‰îù­„O@ÑŒ%ɳí­Dw}²µ X±Ø×xÖ(Ü*Û”%‰îz@`Ks'AD[o°2›%‰îûfˆ¥žaÏš…lk»Ž%9;ÿ–­ ÜùëÏ’‚f6K­~|ço µoâ¦ill5ÒØ.C(“èÞOÛë¸0H/“Íõ‚fž•9X’èÞo¬ãwp@ɳÂmÙhn•™±èæOàÌRÜÄCrŽ™¢ýR†X6¢›¿±³Õ bL3VH“°–L#¾ùŽ5›¸a¶ §l»Qf0ñÍ¿½NŸ ±½à+ÓLtûoÀ&QÄ]$…§ËúVÞ%ºõŸ5á×F÷äN!ïV‚V6â;‰q–'-)"ÉÍí2'e#ºõ©•uÄòæ³í¢­£)ÛÀ=³Ó,KRjë7¢[¿‘ ³Aë²Õ(j&´Äº4£[Nl`}YX íEƒÙ)CašÑ­ßÜØiàú¡TÅŒec³ÌÖoF·>û[H¶›…¼E)kF÷}s׿öbò³Bîb£Ô•"~ìoá±³ƒüÍöN!œ/ÑHΩ¿µMìüÞ¿ •RmD7~²ƒ›hk± ø‹BòRf³4ãgþ‘ä‘G~#)sæ7ãûž ßY ¯.¥Z‰3üë;xN&MÚ’Û…S¶^æÛˆú0]HZðmóYR„È2[r#ºñ;x7`×àE¬ðx)syÙˆîûæîFHc£ð†TŠEÞˆóûÏ»âÅàîRH“2çñFtã'›ÏštêoÓ¦,^ýH¶ßúÛÈŒ5Öiïoo­~Ò,ƒËñÝÏÄ…ù¤Ây½Ì¼?÷qË£ o›f®ˆm”¹‡oÄw?²d ù¾¤ð²_æ˜ÜˆŸù;xo r£° à ÊyâGþ3|x¶MYÑ~Ù*sߌ3û -(ãKàœ,Fã2c‰Ë÷Ö‰¼l’´çY݇øÄé²?ó›ÈÕÀœ“tl»h0@°K Øftëoo!wŒÇh²YxmÙ*³ï7ãû~Y0`‘ñk6 OÊg¥f,ºïȹÀƒû¾Þ•ÀlFw}c° dÓ¶ ¯Í2ז͸„o‡"x£„S4[;¥f+gÛÓ5’8ñfátÁ„–Ø‘[ñ‚Æ Èx¶e„»Ñ}Ì f…V°å 9ýR­Ä÷ýrhÈ$›I!7Êœ^[qÁþ:,ò5ÅGW³ ™ÜŠ‹õ··éèÂáa.”!ï”á*¶¢Û¾¹µIbÊDäF!óÒ(s²lÅå{ÏwÙBïE`_ ùãRòð­8¯¢ÊâöŠ–äY©u‰‹÷HÒLðmÒ,¾~'¥ð8Îë“ 8#$3B¹H©ÁlçÈ÷Œ%¤inm.ÌNb¹Ãë#¡nna{½xï—¡cÛ9gþ3¿ |w«Qˆ[¥g÷w–?£‹kOù¬ŒHt;ºýE‚HÐØ(%5ÖËÈ,¶sd|x7vèòš­K©#;ºù·˜ÓÇËd¡Î¥Qêj¼gôȈmo±Y¬Î-µ[¢['!u.26(‚+I™ÙŠoüM”ù&Û$|+¤b¥”z;9œ>)§¶p2›F¡Ro£ ߺÝ÷›¨ i°Îm½X°]fÆvr”zD#ñ¸|¶ˆ —À°ñ^“îDÈ6‹Æò¬Ì~܉ú Ÿ!Õ|V|ï”QîÄýš,œ²b“2'ØNü†"} –8aÍõ"D"TÅâ¿I¢]º&…Ç$pIeZ‰ï|S ƒ¼S¨Õi4›%ÈËN³ODr›íš…ç×FD~?ó›¤4ÜA|N¶ž«ÚËÆÏâgþ:ÙÖ$ˆI£…ûy ,{—ðm*³ÆeÎâgñï“[xhÀ5«¯(£Ô{ìã]UÃ×DuX’•â^žå\ó‘=Þ&±ÈF¡ùK£Qj,ñ[þ:ÎpYÈÃ&…t¬I~–³÷I9õ õ—Û…Û2IÊ/Ïâ7}Ô±± \›&”a_žåHöq¯&Mì0…*½2w½d=n˳—@Ûõ/T´o”Ù/¸´QÒO-llp¬¯l–b,“õøæOÈ”§Ss§pÞró–#æC. —¶ ïáÛ¥¬FÖãÛ}‡,F!oîlªÛ×ËÍY” §…t™Ízž²Ê¥îbÉzüÊO¶‚ÛÈÀ]¹XZÊ8-‡ ‹Ù¤©+T‰ ½L+9æ|d'Jòý"™R²S†÷KÖã&=;dÈG† ËÙÙÅ¢ýg¨ÊØ(”X?Rfaâö|)öÈ~©o±d¼L3ñ+Bçå6¶³S,$+EÐrLúš[lجÙfRlrS†Lâ6}€Ãdsƒš“¤Y|nn”Ñ&%q«>X”õ6Ghn­oœR–9v} é߈ãLvv œ¤Ô[öR,ü,$žÍróþmo7´É-:v›^•i&N  Äí2NÛV)ÓÞ¸y_BVŠM²ôÙ*¶XÙ.E¤ãæ} j^ÑäIAá‰Óh–"9qû¾Fc“GCjŒÂ¥)E¥ãæ}p-ß@vÆNÑ…£YJ‘ÄMüÓØN <‹ÙÍR'nå÷ŒL/Ÿ‘‚<)4ðÜ,Å@Åü›(K*ІÑÅ>@õJµ×$d×OÖýÍÍBÃ¥F¹C4nè·I ³&é²vŠÉ4/Î ý±œÏ;†‡wS›H¬Ý°OmÔ£vÓ>mÚ§ö醲¹ë=7yÌ7KñÛßc‰ÿK©?™ ZN’=ñ¿ûj"Ï¿ªa}þIÝbìYíºé¸õ‘ßÝ„]þÜlní>uocç¹M3뾤A‘§®—­?ëôfŠfë5Ñs¾é€Æ¿MSM¿©†TÉ6¥™¦Ùz¹·Ýšj:MyM7ü¦‘mZ7M'Ùz ‚N‚¦AÓM§iµbªíY’íÙñÌ÷HNiâïfao2þœNçO#%Ñqý•ul{“[[ü•mSpAa…ÞJ…\̨IU]uÿn7éïȶÓp2è?åT…›ÃƒäDI¸Ù¾ †€A^Çâ#y…©È/†èfËÞÄs˜×ƒa‹ãû`Ž(´ÉÆÑkF#XN$械 å,©'èî™ÂÔÅ-5&ßíYUB&Ë\b% EïÅ„`”å(ý2¸˜Ã† XS^¹JÝ,P†3L}Æ©g\“½Ô €õµuô8~¬¢ úd6^Pzþ‰“Œ©Ë cæQÎï8‚vQ{6¼¹å :ôàz0{Úª»örs@ f©E&ìçK§Ap`æÙÈíÚÿõ'§ºYÜI~>&´ìs¢ Íìs¦f™ç”‰·‘ÍÞDhéõÐ{«Çs|5ÄX¯œOÐI­=Ì©ÀdÀÜÇ ÿqS7ýÇòxCçG9ý™êú‰Äù×#‡Yÿ%ÿaü—FÒüÿåG|„úûñ_>VÔI»…ߜ০ÞS|<øÙß=¥0€Ög·ù†„Ù{µÛÛÝóÜýqš&Fƒ¾§ÁÓXm\©X$òÝÓoHí¬à•ã½D äÜË+K…”ùèÄ $^FFPØN. '÷+‡_;®Ÿ­'$i| k&Rh“WUr.RjÕ5ARàŠfóž>„ƒñi\–“b€¬ùàFóÿ=á÷’i žM‡g¼†¸îŸÇ^,~`Õ°÷ÂQoæƒ_ c…=½óŃ¢zXóƒ¼Âíä‚þÿ¢æ0b¶G"äô?ö>”‹ƒh…£Öqa æ­$.óB=éèÌäÞ°£z}Àæb2º»çë, £ÿ mè<‰ôc»Ì9§[—ZLøøênDÁYtÍW“»Yúi2º¸ñÒã[hQhÊa/«¿½€Þþ°ghßõà]×¾“a½†U.\`ÃÎg$#Õ¼ðŠŸõ-Éì#æ‡a\¯üs!*BׄU¿C6FtHÙžcÓ%¤8êàç5†óWp[)š‘Ì`‰—¥Mž;Úh@È…©Áœ9GêÙ-ˆ/ÅTÎÅY¿${Ú£DèppÝO‡ó9ÌÄùWÓi—ºØä‘šòVõ‘JoÖ^™í1J—xU²C$çØ@{kðófð¥’ÔŽuˆ!:Œ<æ¼™W—–˜¶‚@¡•nÕi^Ytå¸êy¹ØR/3N|r¡sARDó»kêm:‡› .§I™ÂA?¤øG­ôv¾Vó¹ øûh<ùò.ÃÈ\œìþæj 3§ØðF«ë57Êj¸ÍàY0b­€NñG8K™L§£Or&¶W‘©ä¾š Ží´7»y³Êã2º"%) 2xª¹9»2¥ñôÆ, MP!žÓÄ' °ôÆbéÆR>¦eëe(‡©Ý‰š;ÈzLøª‘ºÒÅÕÈš‹©f1"«Ì‚?'>²Þ"ëq YóÛ’IñZ´Ï–AU3ãvb P•'2è©™&n‹Qu%Yý?óÅJÿ0Ÿ˜üïü‡ÆFÇÓŒü¯¹ü”ÿýˆïãPþ÷R3\ýÞn÷ØÄ6°³˜”­ÿ¦·ÿ^ËD4˜KÇä È©}?dš:­ÿté¡™š)=54cùBÅ#+Q¤I¡â¹ã#Š1s6¢eŠÔØJÁ¡Dâ¨;´¤äñe(z<M.~õ¤Ž˜}†`˜õje¥¯æ„!•L8k¸Ê¥X&HÆ%‘"9¸›NazFp½ŒG_eAø:ÊéÎi½ðÁË'€õ›SÏùñdz8 _y´¯žØ®w ë_NéN.ˆT¥Zï:ð*.7V îÙ‚OT¥ï£åä¹ZÔ`{|‰ñ˜aÁ?MîY²ŠKX8‰UîHY­ŒÕ…`Å­Aÿ (6~UIªðhÀý÷ªòkUU€‘¾L/kVO먾¦ópœ/ œ_-ˆF•áV^ÂᇀdØ‚3Ë ÛŠ.gŠÔøê2½B†/Ú‰ý<²B{$p½ÂFÉùT΢Xor@~÷"ä£rà&ÓKÇâˆAôUåýíÈ—Mþý'$AIyÙf$ \ՇЏãÃuEÜZg¢?%DÜv¿©”“îûj¦†ðîaKøÛÑ_¨E–#}_f^ÈFßwÁaG:#¯Ž´€û!“ѯeÄü°Úƒñõ2Gx”YlÍ…ø`¢™°þ#LX9#ÿÊß_­ìñÑÈß{+¯äë÷,XÇù ꨪ;Ép¾­“£hÏK+fÝê_ÜÒK›!ÿÜ/—‘ GFŸ“ r— ¯ ÃxE=ojѤ?JZ¿¬ÂÁjàbÓê÷ðëÃ~ïegw9e—yw7$:H6r€ÈÚªÏÓcÜuµö¦·¦ºü»“ 7ií}J"fý¸Ðw‡“šÜÒTZð0ÿJòKkkÝ7ý5QPè۠κí燕Êum‚g2» ô/,ù ´¹^&!7@òz¦* yæ+ê _Õ`û× ¤#½–ùñàGt1"€»F¤›ŒÉHaúO\)x¤@÷ɦJ«}H ‰WV™"g¤@!ö¯Vhûk-¢`Ûx1ö?Ê•ªwIÜúÚÕ¹ðY;Àˆ55'üŽÒ‡]òÿ^-–!GuHïÍ B)2M%¦2öör¤öÇ~ÉûÃyPŸ+4ˆë¡XÚàHð}‰O™¹XQý'¼°gZº¯Ÿ»ƒä± }±Ð­ÇÑA¯„'"ÁÙŒëhdÆE}ë猋'ù÷ð(Ä+U÷âYÓà™ŸÚKzî£ 7Ù&ãæä÷º `d›×8𽙋ަ…ó±)¾-;zë´„‚k¹øé®b®êÔQâì¡^b³ÂUúõIËo"¤ÿpc£ :Ö*&89h£˜Ý»î¦< Ô^ßN€µ¡·ØÇeiP¨^\ŠåÎÆ ^£$èÉ’4È'AÇC‚ò°J“ ,ÛÊÁ2xµiÄ–£@ü'ÖÙŒQ ­" ô8ÊÕp‰<´üv¬Œ*·5*I}<œÌ"­K…J«c_~ƒ>6¦ÿ›ÿXý_sc³™ÉÿúÓþÿÇ|oBý_¿’Qùñ«Ñ— X±÷‡PáÑ ó¯ßG®¶î[UtžV&²’ÑÏ-£së“Æ……ÖŽ´ñj@ ·>Îi\‡^ák¦ÿM§Æê‹áLDá—h‚œk*h_9z¶ ’¹:\Õ>'UÅ´–¶ï‰@zi E´8Òˆ‘-$Û'_ì›» ›Y ± æª2$ÏH›¶“¼[Ñš…ü,šœD f¾BU ù@¼'–§'‘Þõ¾C煉û²]{¢ûö#Tª%uŒ'·éÅðj(ãgd…áñÔäM éÕ<­ŠvK'oVòªˆ¨yBÜïY içå1•œ|w0šMB!p5¦Ÿ¼x$ýäÔÕO–Ô)zJÀŒ¥Á븴zë!ŠÅ9 uŒ.€("V×IØ“¨ž­¼‚¥˜óE€xzU}ÝÖ^®Õ¾_¯[ ubáÌhÍ%œ°€ W‚—Œ¿Ïè7+óx«Dt7"Îè¡$ ½-;º3«!¸!cX°×ˆP‡ZÆ¥´l15㯨'û5ïüìpŠý3;~,ãDû'r?ðÛÏœ¿Ô¹i:›û+ì8-}guæïL‘…c˜}ܦ{P©ðàÚ¼‘tDräŸãüBC€žœç]|–®&#Xœ®ôËàæv”r:ñ1¬Þ&3 pæpçÔ/ãó•þó¸E8%:ˆ~ÓÙð޶€à<¾ÿ¼ g9Ö¹™\âÑ]¹›ÓúÓÑ2a-o+,,b¸ˆI“äƒç9 ŠÁñs—øü>ïé§S·¢>'êsC}Æ 9Ÿ§îÿ¿¥*s çÿ5ù/1wR)@ ï F©ê²=jzÿk0ù€ü©^ãÿK²{QÝ;Æj&‚V¾›q%$P¼™¬~½QnöµÞëÝ‘ÄÔvvƒ†¯Óq:ŒÃhPAÓ4wkþÚQ¼ÏÔþpuCìùá8P…ÀÏ“çcù“~ ]µ”*ôƒ;ª·¯!Ía>)RÛŽjò=ÉÛîß8C… ú¢­õÅ6àORn™·yEP±®ˆ²Ä¨ºpô¥:«Õ ýZvnocXô$ÿ)R¡±bSbÅZüaݲúŸYãÇÆZßÚÞHBýOÒhüÔÿüˆ£·¯ÿ9iTÔAMÖÔ«š:99nwék÷CVÕ3¸û2 IâõûTúD˜/wh»d„åU.' w`’°Hz6™ …91¦þ ´wnÈ _Àÿ´_‡Jý·}‚§Ü+xB£|3GéE5ÂFn£ŒÜoŒo2´4\AÀÛëLÉòø!–e£ºT’ZRÕ÷þ訥ÑÃå7J~µ,àFIÀ<õ’¹r|y,4X % ­`y‰Ötв4¦Š@§W£É}âr?Ô?ïãùpNþzÓÔF꜠hH"çºJï)ŽÖL+•àˆ˜«ÛÑà&ônt‹!HÓÏéX¿œÏH,FŠÇë»Á”M—ÃkŠƒª——Cd»ŸÎîÎa ËÖÓU{:ÍÃ-jxQ‰ÓeªÈø^÷Øøá•šŒM¯)Ë#‡ã«!ôXOٛυ³€‡†šÔ(ŸÏW™œÚ2³ÈM_Ï£ÿЬ{f¼*ŽÇ±YS¥°D•EŘ€Ð,&à†`|8üŽî¯pß°%; {Pp÷4¯¯Ê­"wš¨¿{«{ $þ~tÿÈ[œ4–‘ZDîÿ£kÿ¹ÝØÎØ6·~Æù!ÁKÿþ¿×þâ—·û5u„ÎÈôÞ ×Aÿþ²‹‚º]Ö-üÊb>˜0b˽d£A£EÏ ½8$´²—³Œ½èn…›[Ê0ÖÐÚ¼ñçÙò.Û‚ þ«mœ¸Ë:ý”ú¿†R¸ I(^·ð¦A¹(¼[%š‰Ž&pÙÌ$+Æx@i(øÚ€àVv+íÚë*CX)kú}8k´jæXü èʳKgÚ9ÚFµŒiJ-cy¢Ë¼B”j\SœV¸0F quE-4ãbC ¢ÅAbÁ1ÿjÍ<„1ØÚ/Ô“CÔRïrPj^N±ŽS,mN•S[eœ™³œ:¯²uìæÔyétÍr$8ÑÏÈð„{ð÷Q'¦tÇZÜ®Sò”2K"ƒòi0º«•°·ï~³ÞRÁ%{ûÑém‰>ÚÅÚqû¨í"EϺÈð*h ðzw 3–\¥S”ö\ò(15î¶sÀ´ãîƒñè†OK5Nî·7̨XhËëÜ"!§°NŽ¥1W‡’2Ä"">¾tÁäPVÿpN˜rꂹ€m{îDI/s ¯é™ ³Æsïn1žŒÿ•N'k.×ìØµÇ}¤¸A׳óÝõà.¿d7ˆ_â¬,§È]Z²‰%¼âÈd.÷@0掻¥v]±¹#!eãwS¦‰s¤uà×ÔìîέÞ;Ñ4Ï}ÿ×uxè§­†5ëR0s(×%hæx­“=¢ï¡R¼Ú"œ+Ê«¹Ò²´ˆ!K˶›cŠÃ|õk`#Ñù²ÿšðo#ìaø|…ŽŸ<1e–ÁÆ5c o™À ty‡ÀGà#”Vá£$c'Çü‡®¶·"Píð¸ŽKZ‰þ¿ÍDóc–- ÇWkNRaà§Žv6¼F÷c¼… Kma°b_Øàµª;èâŒÓPRetÿfá€;â¡í¡N‡:a_¶˜ù[ë÷N÷:È]I¥èÙ༠<á>!Á4X$œ =ãÐaI²FùTͼ´á7AÏâÁ,Õ¤,#¸0féôs:Ób7mÀ¡¯)R’Ö¼ d§Ä{œ3.ÒXW9”ƒô¬‚!U¤qü€‡Î;ÿ3\d»äa•ß©ƒ]h-§WÜtnÇp±œniôÌíE¸ž zaöNЃœ)`aþÜ/¤kš‚ÂæÆ&²òć„ Ê€ÙuÀ˜ßW`dX°\Ü©`}L÷“H÷;q9g0”Íü¡lðP^/;”ØP6Ë¥Êi\ü e;([~Þö×Äõ,5¨­Ø ¶Ëª™;¨Œ|8Ô³üAíƒZM–ÖNlXÏÊk#íH(KFlQ)±;È#Ì }ÔQ«Ê!G˜ºë?Cˆ$:’u>X4P½ÜŒ ”ÌŒ$™x„y3²™»ÐËÌŽÀ•z9±yšN³SR@Œ¡FÄ3%uxñ¨¹Ô”ÄhSRš6mE¦äeÑÀ2£oħ™]]!D ç ü;öç­€ò%™yƒT¿ ±bd1É#‹Ù£Š<¡è˜sØÞÃ7ª˜¿8аå|Œý‰Ú<²ÈÿÆöåÿYßÞn®7¶Ö)þ×ÆÏø_?äÃÛ)cÿÑP±óhÕÔ´wøà8‘- õµèc¬?О¸ÀJ•×pÑ©V çËO×#¸½ŒFÃëÁ¸¦~™ük¢^ /¤ét½Ì ýÞ0½üŠ£Èˆ$ë¹ìr­IvŽ%(3K¬kž\ÍïÑÎ7êƒn§“ÏÃKvÌ ÆíSi“˜Ü>ñ¯íã·ö^»¯ºxcð®È;ß`&¢Îìð­ßhàÒ’hÐÐåÃò†. 46ç(hu9\OÆbÍBhÿÙ ïôEý¦´í_ޤ ‡ ´©+Z¿–Q‹"¡y)È÷?ÃÈî3¿Šzpš’W-èKèÙßg×éßæß±/©v§÷ôšlùç°xƒi{Ñ˜æ« ÉìƒØ!8T—¨áƒÉSŒŽÒñõü“r5Ý­pvj‘¹ÁÆu]iñƒÛâBl¤a?„´óA&¦–ó³¯u(£„Ôe>{¡oìM÷£_`µ,Y–Uƒ‡Ñ›ö¶x¡Y-Ò¬´[ÚÒ\þØ'ón›9ÿ/׬ýçæÆf&ÿ_cëçùÿC>Œ'ÁùßZ§8÷'ïzûÄÀO²yÄ<¹³Oêæ“öÇšjS`[ËЇŽ{ûj&škJ“Áѵs3¶ÌaÏÁ”WŠ\ƒô¹/ß§îÇ¥ø¢ïûå2ý•?kOÑïŒXäZh‚/&ãÞÁ|n—\|ª öÄýc»¬]¦X`2#G@U9yߪ:qJÅäkhNã.zh’aƒœZÉ|2¶¨/â)ÌÛ †ƒè¯É±ë»ŸC¥›ÇÆ©Oà]æˆuÍŒ…‚ÌÜnÍé‘6 €“u—— ÿQ ÊÉÁ?´ÁÅœ^>áÅY4c›”Y¾¬Ñ¨6)¦0“Ìx@n0ÆžÀæNzþp) ;éG •ଙ& {øB­?§•Í”RŸ³,LB³¿x’å¬&‰0i˱ylz±œ„-œE&73„ìÄ_…§‚µ [¯ÙÐQ8ÀXÍ/ûÈUb4ÇõÄÏž;Ø;f8Ê¡õ¼/\YÃîÓBœ§°9/ÓÙ|:ùj̵ijù‰ÌÑXo6G3Âwp$„Ë@-žúË@‰LÃMk OËnĨ‘ 6ï}ßÿ–‘à!rÊûþ0”‰54ÔȬl}:gKº|ÞÜÝx7"À8¨€IÇ›â<°Ó<ŸÌç“]”É0+PçÓT5¶%‰›“ NŸáøˆ§ÓE·–‡ØÙ:¼'HWx"I2W˜cnùšÐÂ1zµ­ªþZõÌC‹¬C‰†æ¡žqú_©Ä D-˜¿` Nú¸_/É]PÎÔëôQƒ{ªcD¸Ã;:T_ÝAë½t‹ó ŒÎ3sžÈ¦Î¿ÚÀ ó¯ùÐï™Än¹pKiþµ>¼ãŸøÚ“¶»o0½M»¿ü¹ù"^þ5ð¼ðSX¿ï°Ôê¶ðßK¼Ý¶ÚÇþêêbÕí¼ÅZ­ÛÃø°‡ñœoç3Á»·¯€_z¹ß/ @W:°ò_‰ðaïä»ÿ- ëëPkÄc¥QûÐn±y^Æš°ÂÌ­T+=ztØ_‹PåÄ™Ó}pYfßpµE¶lÝò–ƒHøÉP/·ÊNX…I÷DÔËò¦åZ €¿ùùª‘xQ@ä¢÷ö9R#yÜsŸ!|iÚÉ铌B(G«¦/ÎÜhÕüÍÅ/ÂN‘VÑ b† yæÇ“Kº‘i&a”~N 猓QS³Éè³f'àépêq(ž¤µ³†ô’œÊ»-2s|j”Å@RÛo6ÖiÓ1…µ¹§ž« ôò™ê,)\é»ZæÑ"Y×â=êÒ½hiaî2¥;ÏQ‚=ãꤙ`è1ð9¸¯‚³ëqš0=…gÈ]ñÕ¶$°Û±ï 2ïß"Ôn Žïöüj½°Z«õ‚j¬·}ìvÜÒòØ+LÇš³[TÞŽÇ‘{BÊQÛªPs,ýáßr¶< ‚äŒ=È‘}’ùsIF¤d)&½* 1*怘g³C‹u×vÂËÍéN±2›˜@¬²áÂk,¼øE«èC,"‹,~¶Ã™˜,ÙU å"‹Ë˨¢ïiî‡~Ó Þ3 Þ[´àÌ? î=,\ð äZð¶g‹–„z­{kM.²ÚÌj7׳ɿº@r´Ð’(¥¥8BÚëw·žÒfs9]"xÐpX\×ÂRñWÃ)°{HyE¦«ÅIã<;¼ë¦Ä#–“`¯y$y'xæÚEºó@ô&ñul 1–ê4VVr= ©JÕ+´ñ pÚÚTò=À_ã¥VQb}¶!ØÙ2Yê%Å2§Â‹µ,Û% 5€ ˆ«<’›c% ‘yTÌõì…4ϯEW´ñ¯àˆüâ½^íG^Yê’TøàècçþTpQ‹у%„^y¯e̽«æU‚ƨ,™ñfz#C6׳vjùæf-{-ûãš›Åô¿ÉŽÿ“¬¯gô¿›?õ¿?âÃøêºA÷M—^dÕÁÛŸ%N¼ÏÿøÊ`gÚ*»ZJ] ³+Zàe4Çã¥ÃŒ1¾Î÷ä}‹4ºãîc™p zØ Hën‚?A­Âoñ¯ëÿà’¼bŸ »0 æÏ‘¿{‚ꡇ¢aÛGkæh< êñ™ÍÁâÄÔˆ™\]NiçvVðÄhùð:’À?ÍRêË_L -Öyž“oÝÍ휂ÃÎØF éç©ß´@b2^­“ ºwZÓù³Xþ#i|iF´·›ô˜  ,ê ¬/Ìå\NÆ©VÆÃ6©éÄ8Ô&Fó¨BcÍ›8h £ggöÃÌÝÝíåÀ†ð 5Þ~Ô4hEÁfÚa$SìÆD/£«û(;ðÏp¦eú¿DJ“C¢…ͪôCW { =Lôz³œ¥Ó×T™óµÉÈÎ6;UDð‚‰Ê4$€.‡âò{7˯!“ØÚxp$ðNØc}‡©•+ (D>c6™Q0òBãV'è™Ì`ŠÆ5‚ãä íö Ubvi¨=êBÒÿPÄs»ÛÃà Ǭg’âÊ•no5©*\ùL8º`hqûÀãàÆÿb3µ˜±5 [Úâ&{¬êkŠCZ¥‘†(l•SIž»ˆ?ª¾1E<£„ÃA>÷Z<%Ÿwr€dpÄØö`ÇŠ!9`´Å–Žýî-$틦5ÏÆÇøHxÿÁl6¹æîF\¢ „4I<ă›œ\]ÕË7ë@±ðÛ•7Þª C·ß:eLQTÉãb‚uöæT¥¦¢Hãtà,Ru"&N„<Æ0å§"åû~Ê|¬aêK²à…#£Á2½†6»éâ>lÌDï°Û+Œ¿¸„-Úqï°&îb‹ÖïfMÚCc)þPó6 °¶D´¼n¯¸B&XრâLèÂo²+K–M¼\_äi`†ç\»M^wGV„×ßóÉä×_Óô_ݲ°–ÝHøæü :µ€üÜNð7“`žâ˜ËY¦0K®sÚš“A@`’vÛEi­XV!iÜÇ‚²|7!¬µX[ Çfþ„=†‘*,–|tô§¼QOúÑ €Ñ&òÎ1cPøv•ÚY1oÐÂŒ^¯r‹+N{­nƒ@AX-ëš™áÇ{¾é>•×øÜXΡϩ4ƒÂPñÝ5±ø][lòÒÓ®&^>\¥ a4Sà`°uբ̧ìJÚŒ¨NMo¼:¶ˆÝ‘8pZ»ŒY"ž>!{D ¢K0k| tÉT¢E¿x[A«´ùû©&šüRtÚôe^é m‘è2sµSlÕÞP}uD}½óÇPû­µY±óÁšXJmF9£&AT«Êq«/¥ñªæ<±ñ·®Bc,Ù)îUk®F­¢Q¯êkÕ‘áT'"DÜ×BDéϤõÖàáÄØ3™‰mNì;â»Ì\ÅÆtêùÓ˜sž½”Ì„ºvjœ•ί‹¡Åô¾ÈXöt<ó7}îVÁ-¢÷Kd«h€o§éí@bÐ=ï DÝímÄ1(Mœ5ë‰UõÌ"cQV†Z%‹&Æ)eS@XE$ÿ ¬"þ÷|böºØþcc}s=ëÿ¿¹ýÓþãG|x'‡ö9èÇ|+ü»Sò–ÜÃøVÅTÞ^°ä¾¸‚;š¾ÙÁùbn}0C’#cK¢oŸfŠ~´a O±6-i}°¿íÙ_å}ᢽ+i’±Oɇ~Ú¨ÈTÅìX`Ú*zöŠá|\ÚÜ¥¡nPTIJÁùýDÍÒ¹d¹õ5.óÉuJr$’ù èýˆ5þ,ÿƒŠ|=«á\±…”¼n7GM¯CˆÒ{p?ø:³-¢èG¹Ô`ÌŠöçZ­…á¶x3™æZ\ŒÐœÁô}¢ÓOS¶ç€MõU$ÚCcØ\¬æ·z~X[ m¬Ã|*™t,Vô{+³ÒzΟúÚ߇¾64í"Ï"±¡‘+ïÀ¡wuÊ0Š‹È•Ýa0½ãɸ.»J+)k^ßÙ`c†ô\ƒaünø¡#]=0lC¹¨ q¥0Ÿ»s´ÄU÷P|¬‹ÉÍ9Îèw}Àóé`H‘Ò*ÝúQ50lÁOØreþ Ƀ¨AR²{ãy­jª†ÔÎ0_LÓÁ,TW| –ô3…ãù臠ÌÄòLlÊ*#³š}õTTÿ§k¨Ëi¥[}™ ¶#+DèÌtŠÈ'·ÇÐöcS檒Ԓª»s+ì%We{:Ò„²žTºÐáXü’Ó2{`¡*¼h' Ç …¼€h@ÍYµ­)Ðã)´•uy¥ï÷YÝUrúƒ(ºÂÇœö,³Â™~ç¬ñBûÃÙ€iÙÖ˜MPÖcRq€ÅS·orÇw#7 ‰Ý¿—ÊüX^,­["TŒO ‘Â<·_u‹!©‚ù<ª'öDÚj̆¤Õ€p‡äú´Á8² kÔÊô›-h±«qbFèà€ˆn^«EX^JªzÍÝèd'•ÖáþñqU‘€uÇ6cÄ ¡ñA8häͦ”žZ¨vç¢.o®5ǘyº w¬dGû/Á§í­0”~%…»óW6oAcë¿èõ@3Ù*²XXÇ=_uh&Œf­àêÎáÊ í1¨ù§áô²<ŒóÓbbg­Å7Ž†æ¶°Ìv§z|‰m¬ È6–Æ:¼…zhžøë‘Á½JëYK”¥QÏ¥/¤*pQ/'œ =D>Ï ÒK`’> ¨Ç9kf·€LëJX†Ü€t¬g,Ñ«,::`2Håãáy CNé^’¸¸¸$˜Ár˜†C¤ßL¤k’C¦IiT`âShÒD˜"Ãɘ5úÀÌScsƹ¢¹x´$|lÍK¯×d5Æû‚åCçGn/Hß<Óë óind­º–?Hªz´Šf¨¹•MÍx´9Ô¦}ßy«›œCA:Ù<³Ë–ˆ|â†Z¨©Ê3Kûö®Éþ”ÞKâÀÑ'³žÀSÌfLs‹{øz:¹»=W=¢GEÛ¢Ø×œZˆ¡ö ã-#›tèŽÈ%ûlð²Àå'xÙß Ur0m˜¤ ÀH}Æ·n"¿ -DPtL>˜)=hã7CTÐLý§ÑàŠ— :èö‰B¾ EìÏd‹–z›F¬¢åáý`zÉǦmÐ% ˜áÅ©ë@ÿ4ø¬]²èË›pl:ѸÚM·Üüïά•Ië¡ûøfÀ÷ØÓ+™CQ¥ÆXÓ/;Œ NvA~L¿æß–u¤À&ÜÓs§L‚Ñr4ÞJá;'U`°Sº)=rR ù¥›PšÐÚy¶AÏ4]ÎÞyj(Bf¹ϳçp·QcnO$ûí*  LL€p™Ó¨&—8yÁ ö··óD@?Í4—ʉ]Sý3øm¿}øª/ÅåÇ^õdã_ƒ…ð_ùZj î,²ó$µÔmTÿM-–áÂÿöä˜~ËWÊl´¯MFùçkþù–2sÓLß{NÐ}\ÇÐÆgz[`ºSþö¤¦^uúo0U7Lâî)üÀ?>&‘¡åìÎMÆM¢o1‘qËR§\A»¥mU÷Þ¼ý…îÉ·1]ÝG½oïMQÅŸ«ŽÁjwŸ*é°4úY,épŽÅêR¥v„ ;&ÙDä #;&Ù$âp^ÐN6‰7Þ4´íO‚×Rf»¥Ív#1ä èg ƒy‡é8Õ."ÂO¡Í¬Ÿ¨E}dÎ ™8Oá#@äz$Œƒ¥E³ «gûc¢m.W8zÐ,>écE‰µ©‹µ5íšÈWfb x[ÌS-ØvS±#‹”c3SgýØÁEÞjw—ªžÍ$¿Ë›HáYc3é…ðjèA¼mx‰V>rsloêô¿ÁlDÚoa‚áÿ´>¹AÝàUÊŠmâ·f^»µ±Á“âàžXVpãô¢™±²µ¶¸ßݼú´Ë6"}=Ñ×ÓP}G—‘P#Ä<‹6l—È_.=¼ÍH/´Ý±ÞÙ³9ÆaáÇ1h¹>P?@WÙ§_Bs#7Ýܲóëà›X‘´ Ê™Ž:¨‡†#íšFøœBlê€̜û·"¥|CK±ÚÑÝ"+ׄþ'›šArµ²)ˆ*)kµÃƃÕCÇÒÕžÓ¨‰ãñ¶¨O2jc;²¨{:„ ~ð†Eç®5:™OF°QÇ6:ð?ÊÉV¾;Ž&c›³X¡òÖñ\˜Ì¼b«¡Ý<$ÞÊ1¥µ¶2 õ+\ÝhÐßz]°q NaBfÿUg’"P0¸Gú⃠­ŠÓT£¦4(=g{a¬j*|¾^i"¢ÁW-Ó"1‡£rºsÛü¼,p½ù*H™6Z`¥…®¸ÿw8Êr¾â t|éw îŸH-Ý+c@DÝ’èh4t?©Ï†V'=ˆ£æPºwhñfðkJ‡™‰Ãïv5X-ÄÀµ!+cw "ƒ›Å£ÏŽ{qL”¹D1öKÒ¢Ñ ¾Òùæl¤]Ôk¢øs5¹£ñÆîŒ-ª¨dnß©499Š œ¬ ¡}ƒ0èÒjhÒ"ĘÝùuçQ*û5(­ÏXd¡ê£ Ã8­£náŽç¤s+þwÇç'žeØ œQû'Î{í,à°ï@ún.K,ÊR+]޼µˆ/Í©ÓþÞ§MܲöšÖú1Oî®?‘48{Xd"µêƒš¬ã-W9œDò‡"ÝÉl6êuнiÿ7»·xÖ‘3=Ò­Cè÷xfO!Þ¤@ÇcÔ™€@µi’~…c&©åw‘û’Ž­†¡g±hP2Vê Â@;ø¶ mê4 ß!%ŠÅ“À%à Ø2P™›í½áhû§á\_¿FÖ>‘1´°0ŽÙJ[dm‰R­Ÿz÷r%oa8xgçã¥ßü©·ct:|rÑ\8ÐÔ—;9„ðÚO„ÂgN<'üPòŠo2GÎM&F*ôÅàH߉b…¤‡KtÐïÒÏ…$vïó<½´†P>öYwÈŃ]0Ìì±™$vÍß.Ê佘Q9¬³ãÓáän&:% yFªR^hž°½Y¢–ÓÌŒñо3<Ǩ‚^².›¹ *ë;8«*ƒRv8¨ˆi曈tÓ\9Àͪ±ê]¥“¦‰¸îà3 ÝygÐZFÅÉFŒAÛë;·æ×Þu“ Â{ºWÛ?x™“˜(Eþ+Xü­–p¡ùÇÝù1+å*8\š¹µ×4öVM ƒÄ Kô#ÞŒèν°”š^7éµ)©K5üR¶TÓ)Õt“ˆ ž_qãÜ‹\J²H‚š¼1:=h=7©;Ù6™%p=шǷך}Ó0oÆé—¹6¨¤«‰)Ó|2ã[òC•½~³oL¢Oß:øêËð%ÂààÃëaæ¿›!ldN‰=gO‡™Máf‘f3†4úÀË¢Œ‹Lo³B𢀴/^8¿ ªÅäU¹R3$¿7›˜°fߺînœD´¡°jJ,–ŽÈ6òÔ·ðr,N1>±×¸žhK k*6IäH§e}ÿ´éQ‡#¼ô嘶º6rE—bn­¦Ò/éíÜb±+Ð{Š tm™6Ÿ¦î•Û˜Pø8±µ NhjÿÚRû/fŒa0¾Ðí$dÎÊ0P¹ÜSÈ+0σº±€qÒ|SƒžðŸ®;sø"òls1QJ¶bXTqÝP¸Pž±ÄúÚÁÅ‘ãc%qd2¯™Ð¬»D^~>E%pxís„œ|ù‘*ΕÑ-òB@:`ŽåŽL¼ÑMè»ÇG˜:xxl*R4¸y¹+ˆw”7Ý ™‹?Ò QÛEaËè–À„|¬¨×—ëÛ1ew ßûü“Ö^¤‹ÇR²‹YÕN¦y?Á±VAMQejœÞ· Ž’ÅÅÙ£º`wCð“—ª¡=‹—qU@Íyn ånÈd¥3úHà…}Ø>OvŸè( lÁ?µ'²Y“Ó†VŒñlY,)@M¤[Û6"‹§èQœ’v1‹Öë'Žò­à íéDÝË”ÄVT,Ÿö`'GÅ•Ë=8Ž5ïttÏ/…à³Mûh![f.=²•dÈV ¦;ÒÌq¶ã¢6ÜPJy6¤͆ÓàÌ×Gýµ>èÍAL²<k\½÷O|ߦ‡wT8¼nýÈêŽVõ^jÙ?²ÇaXŒ'rÒH%v—>uå\±Ñ±¨>?–?ZõÖ•WÆ<Ìmâ}?ouöÐyiža1,Du­sÅåЦš>#ñ,z›ñnúænƒøýl¹¼0?P”XüæÿÑØÞZßÈÄÿØ^ÿÿãG|Ãø9qžÞIx'sÇÐYG‹b+†1‚¸{5Ú‹\$Æ2ÎÇ»…Á>ò'„M¸¤¶+Kø èõ04´\”ŽwÆDÈŽ&å`˜±ãS4 C4ÿÐn‡5´H¦êu6 «oñm îöí9)²gšUÜÞN'·StЦXäÄ"éŒÚšR}g¬¬yhÏ÷æBÃwë )Î —©4M†7ÃZÑÌînnYâ88GIÔÕh¼<¹ÔP)»H:^¬aïéâNùæÑÉ`pñ‰ì@É|| ®aâ.ÕåðšdTTûòòéìî|>\Ìk(…¤t‡(Z8Žqƒz ° wˆs…ÀP£á¯|1ØC„þ€™Éé·_Ìo{êÙ:5E5h´ñ q7"o‹tøyp>úª®ÃöçSúep™^ o#¬¦Õ=£ND:WSçðä>U¿Žùž14 ÁÏÿž$…ëÆê –‘~ñWÒjüU…1CÊ;“Åb`,CÑl‡@¹1ÅßIG÷¬öcñl€ùNñÊ^ÁcãH›9a´É…»À[òÝÃu; Úsâk,˜Ø¾#\5®ëÚ‹Ût½ð&£KžkDègg$(:ˆµ2“N¨˜Œb©5òœß—ÅEÕWQܺÛNUòä=O‰¯¾Îôš¦& n)²µž?2Úæ’Z»û¢|®RmxHµ‹lúØh–±°ð9–SZ%šJ©X• Úìb:<ç<‹ˆø²2%„¹ÃBßVb6¿š¨(tA¾ñKÿy—Žue=v:­2]|]Uwc™UX• c~î¥#f ŸQ ²˜Þ!˜ýÊ`„ýG‘úºt{~9IgÌ~¢›®Ù€êP3ŽRÁ±¶ u ‘Ö)TÏl„2ö‡šó‹3;ó¦–44¦{€¡x™(^X éÈÕÁ(”òúŠhëŒ|±1t½a`HÝMvŽTv°‹âÈMá ‹·¼Ûùðfø/í8!ûJš’t/Æt]s­ÄŠyð£ÉŠCK}OobÃ*îÓšW¤ªêîß'fú”¦·N4Æ<#7Ê…‘FÜ5jëN¦7À©<)vùCSÓPÖ¼AÄÈÄ–kô‹wN1\ø¹ÿks7 «en®,Oð:3©6ÕÓõõµUöÔgÙ¬RÿØç-ï– 'ÕëHn*e›IƒŠY¸u¡¦Ž](±Œ› ê+¸i¡ø°WÁù¡Üó¥uû l6‘ý0[1$´¾õtÂó¥IyÆÊÍA¦»ñ2Pø—•Š€{mÁ¡ÕÒÓøD{H_wí¢ËUYõ«P·7ò ÅrŸ†øC²š<`(R‰³™3Ó[¼þе oX™f°‘ƒp2‘>âä‡=ÿä$HÔ“®™>»°†ctöáM ÅÆùru³@Ïbˆ*›Ñ¬NB6ɧæáS§„­uêTò$ J«ƒý# Ôk§±×º±×nc¯³V¨§N=+Wüây–°xï÷(­é~À˾s†åN Üîä ðµdˆÜ œök6Ê2|àYcÚg”:å}Æ‹5ê¯úe-{éhä•¢8N˜.œ0ô£KÊ‘26-“¶ñ#éâX‡ºøÉ\ÉŒ‡^LrîeÙ.v¨ƒ¦®é+-YqÞEZˆ†¹'Ù¹·§Óðòdœ·â݄ϑ ™ç6q+=®f8.n¡ÀöIÖ©¢edvˆ &w„ƒ2c^bÀ?Úü¡®fÌ4]›.Ø.Y¤? ê»ð}ïÜ&ßQØx»Pª]¦>ʘ¿hTs°Þ¤É$àšâ´žmüÍëYÊà+bE9[ÁR™¶gì*„8H ziBi|¥ýâe!›üšÆô6cúkÁtè®zý`ó´HoýHŽžÿ¿gTF$l9Sã µöFobÆ¡lÊbe¯ãíáð<#•ט£/9ahºõu¯* ìY<ã¶.X“`òg|réÜ,†›%À¾A[Ú7‡üò× ²´wìôN³ZËœ ŠJx:©RN eWš  ½ú- Í(K 4õ{ Éc±­¢·€ŒbMÒ]ÑöXl¾¬½^Ž9 Ø}O®‡d)9’Õ›Þán¿Æ­H3êƒy}øÿ­" ókÜð—@ÉᆳO¢=…ÃM#ñœÐ7ºLáé#ÆÝú¦Åð‘6_¨5@oX#"9XõÝü²WƒÑŒ ;eW“œaœõ÷^5a«ÜçŸê0Žz³NN/<:Øx¢ÕÁ0é÷ìƒX‡“Mjôþ«Þþ>»ÊüßÜÎñî‡v_çn¾À±vwã˜ç)ŸJ3Žä)3ˆÑt}è‘SÊôÒq}8 Õ–7-uØ^­úíLK#|2͵¼Žš“òb¼@åz;q˜†µ¦Þœö$; šqv‹zŒ5ŒK/àZÂÕ°}øsCþô3ØÁÙ'J´¾´)lçÍa{Ï3ÿ”½UãÍ"_ÍüiãÍ¥}Œ•6E‹¡0W¤¼ïâoù˹—²ΓwòՀ﷯ðò÷öö|ÁØñý[*ö–@ôÛüÕ5_x®Ÿqœ|0û½Þ~ÿJáM“š‡ŽžaºŸ6Ý<ÛÝ÷0‡ÎË"·øÃÆéK[‡ä6ø3á/×YîÊ„9ˆb·¶–?~”XËûvv÷[[bÖ»ùHF˯ ÛÃ÷Ùvšˆ~´¿Átødˆ´¬~ôÖzSãq‚¡á¢×®É-Å“¿œà-LûË©ôO سÒDrß}AÙmÉSÜ KŒ’åOŠËãÚm:'ä[¸™ÞÝ C9ì.ul'Èv R˜{!¦lí¹Â_«h¨ÃŠ÷•¬á§HÂÀSJyl÷"_xo’§X d«,”ˆÕæb`¦RÎí`eœ R?ðîæñ©§Êµf"~³g“|ÙS´%¢zf©Â$-oþÂ0!3Ï€ˆÀúf,D2‘š»0mÆ‹!CW×p}ó`‰”9}ŽŽç;ýûßÿýï¿Sö\´Ú›ŒSá[©ÞìÅ-8GŸµ¹—œ—Rû¶×.*ÎS¥S`¬ì2â3íû–I‰±LòUÝŒy6¾" ($¿Æ*7ë•æ n@ô®˜ß™*BÍ PûL,>6Ô]8 ¯Y®‚?WÅÖdŘœTœN­Øñh뿜Nìñ2"N®"`g3¢.†Ûi·¹¡vÛo‰žsSm¶!ZõÏ«¼"üåÖ욊4a¡¡Ûª±òlº5Ä1¨š)Í–9ݺÐ#ú…zÃÕñÏU†Z]‰¸º•º)͘oðO*Ǧ >î¾—~zvÍ~~H‘S¬ô*õÊíúûø0þ¶7î\ÊtîQ\EÞ±Ààìûä>ÍXÁ+ÅL“FywFÈNfÃ> «ãyQß[a(«‘EYõg*¬ÿRVÒ`Pa1Š)‰y(äHÌÊKZL1Š[Ù]EÞxååÊ p7Û‹ØÄp`5H0[Û‹€Ì†_ÙmÁ‘vV|Nµt8€Öªt«ÿÓ@$}Ú@šÅ•¿êwØY®é’.Údý¾aÙ¿iÍóüÇíExô $ŠaЃÑçˆÂK`OMð†ðÈÃL‹þ `«Ì èY7sîAì#š`êP$804#jŽkæ¨ÍœC?÷×6ô •Ï%´Ýf›áYk&i%/8x€kOùËt:üÌþ7xuÖŠq±g|ŸŒ1Ž%vÛŠ=sAÛûá›%ÙN·¸¾Î–1ý•_ ç‘gŠm*ŲüUÏí«œ¹}ÕŽp°‹9;øWmKŒk,~¬)åo«¨:­ãÜÆðÛ:Á^5|X„ qî#½…ú«Ô¦·ÎãP̘nNOv–ø±!lc#›•)z™0~óôÖmTßAøÛËùÁx' Bç†^§ºŸ{‹Ú’N9ÏjK "À+„¤ò× aˆp& øfUºxa 3-Le<µ¼rgþïÙ3Å[ë=á‰çpÌ;…˜x"KZgb¸ÂŠ{[@Û¿î®æóÕ Æ9€(5áÊnÝ;…rΡ̉&Ýœ‹»õB¨E8ÔÌá™ÎÎÕÑhâQrNÍôšvzÍtæ×Ò…Ô¥ÞdM½âð#ND/‰›D²žf(ö6âœÌ<Æ—“«+êÐÊ=*Mœª67!ú‘¡†¼›ÞÏb=ܧákp)êøûÁW§"!D'µÁxž¦û¯j=ãt¶3k]^=üá9¯Ÿ1=‹a¦=,(¨ìCׯtÎ=ʃÏW¥¢KM™ ‚ŸÁé˵ð'ñFˆ–‚]ðlÕAÖÌM}³Ì¡íüQ|ZÛßM7sïÄF²Eß\á·=Æ·Êãf¤+Îäüàc|ë7<ÆcÀì?Æp9($FûΚb‹{¸"KiÕ¿³ÏÃóvÅõgëæHfÕ «Á‚×NB-ËL¨(?¡rn7‹¹ µ÷ Ê2jB-b#æòØåpºèYvŽ‹ÎtõǺŠßU|¸ç-è·ñêa§¼ú¦ƒ^}ÃY¯J÷jñ‰¯ÊúªøÜWÎÑoÄ®ñVø „òªàüWf”ëu‹ºQžP yíL˜Ž 7i1G –g T_ â¬Êå”ë¼™eÔyUŽMPå8UÀ,ìä‡HQeXµ<× Â8¨BÞA±êñ8UމP¹|„"\—PõX‡L¶GÖL³lî‚óë«»ôx ©dŸØSÝeóÆ—ÆË;¢ò 3ͨ6ÿìÆnÂdRµ…»‰#r5›ž¤ÁXàŠ}¶ªŸLŠ‚›4LY@.$2ζ+ãl³Œ“û¹TVw¹¤ò²m”—ù7¨˜ØSû®/«ºL’‚ÀźË\’z$º½xï…hPÑ«£Õlt5·o‰ezÒȹք:TÞo>G¯5©¢HõÚjÛ¶ò´¨„u+ú·î[‡«å—mj!˧ž—•!‹ûÉv>¦Ò“ ¿[½$ûÊÿiTIàV>ƒùi‚ÎXÍ.­É¥;çÖŠ²ß;Ý_óÞ‘¥Sì`#'³m2Œµ§Trfv5;c¦Ú«Ñ" g½”êg‡½«6 bnz9EÅ Gœa®mC±ô†k"±3Z óð? ŠëÕ7Z¨·¦ÍOtVÝf 1#£úÉ#‹ZõãÏ¡?Ú¢š3‹Ùº@1B£Qq ”>Ø…žÄqºÁ]Ö|w‘º u½$R{%r{9fˆ«Bìzv‡¬þÌÆ©ø¸Í,Ænâœih™µÒ/#lŸà~TNî-­ e,+¢ª9p4§ž Ó|ütÙ<)¥õà•ӏжŠÊCüâqe’Å»c{›äŽnã£ËW8>12#Ü(-žqˆKÕ&7ÃåþòédÓ¹û ñ»Q'yq²_DÝŠ±©y¬ë–e]ɸ½þs™ewóî®-.Uz.‰ËM¶r9ôŲì3Mp[®›F;VÒÔQÐÍgjHqØ%¦¼š¦7håâQ_ñÀ‰œÏ % æÉÛ,Ø€“ÍR&Ÿ÷.($hÜfkm ™ÜÖöÀÈÌx£zcÃií6Íõ!¼ÒžÙí•>èàå ËÃKhF‘…¬#P !–†°iãª+iý6–Áêرjñx÷CE¼=¸ï(¥YÇãv·âx€ëϿɇ±Ö}Ó_ôŠ „ÝaŒd5{% K»…½»ofûäïRåjb°}XqÄSdxWLTçÒ\ueÅçÁclªÁÕ=pró–Ñf!fM8µö+¬êޏ=–†2Œ¼÷>«ò)´QšÇ/.Sf‚í( ¶íàÛBýUþdû°}ñƪ^ú¹zvâóŸ;Ž·šÝ :è«Q9mÚCïèe´iËÈ‚aFîÄm´€’‘,9RÈå)œ¡Ÿp†JF¶p³¶ífENÔ9.Ž#{»ýÖ)îQ‚,)°n$¹²3UMµCÀGÝ'Þ¥í㼂ô½’õêPLä@©óp|üC>rÉÝŽZ'~_þçùªû<ÚøÇÚûÉ eåct¢eZ°cÈ©hÿƒœM,N|LX`Dò3œh•»Sã*¢p¬Kó9[4fÛ¸«him;£IzÈ*/µŠFìÏØ´ä*ò¼*»0‰™×ãùéùáäÏX.+wC¯N©…QîZ›•Xùݾ‘úX¹a+[·!ŸL´¼^gÞ5\nàd”)ìà¥÷N»ÿí·¶*ÌØÔŒ¿1z£;àÇš:7Ü0-†Ê„ܦ”ýëOÛEg2Å’!jcà˜1´sÙ|â¯IÁB^Ò³vmfkP‹ÙÙBÈ‘‹œ¶°dNž®slyAàB°øFZȘÜ:Ë %dl¬~ÍNAÍÑÈ\x`êX¬âû@y…^ñ¸‹Œ3ÍK¡ä™Œ,0±0Ø•$Û¿'dç?Mò– Tøm$oÏþ%oKŽH¼À'+ñûí$@¦ðo.ޱ•Pò0±dĉ4F¢¹9ºm”–Q~ Ð ×ó eÚЈ¢K˜*7š[åR6µ¬ M-!kËtᛥFß"œ“ÙÌ•}› N ÇåC9®Ý¡¦ËÎXICÊ™)sš_e&W›·ó*ÆDQ@}ª…ÒOUNªJË@UyÄ·¥K,¦…bÑiL á~ ?ù“~?1ë¢Æ—‘ÂJGò°jQ'wyÝ-fâMV ý´›ÿ"G¬–+õÍòàüyù©p|àÙ°ú6ñ°ZZB¬–«²rbÅ›sÁ.ÞÉ¡ Z —#UËÈéÔ#H[K’˜Òbo¿xØÔlhû•ˆH»˜j,%*åO°$¡ÄÅ*±3\-)2çÏ‚sÛF¹åO!¡û&QºÀÏ¥i¹ —®ûÅ—Å•Œàü{ãJ(×/Ä•%óüYjÛ« ÿ`Q½À/8]Ë‹í‹`ÅŸÉëÕ’"{U,µW!¸W e÷j©+ÜOïÄ…Þ‰Å~ƒ±¾ZB­[æòZ$…WÅúƲwéEMdwÎCÅýªœÄ_©’Bÿœ ðëˆþã£Ë ¶ÔCA¨Ô©¿’¸‰åLy‹dÿj±ø¿±¾ÀWÔQZ¸{ê7vm$ùzõ{÷m$¿‰hT â*™åF±á[fº„.A•åiØýPIX9ÕB¦ìû’ oŒß cPeÔ ni>‘ËßµÝnkÍÊ——¶ÉTìð]  (¡ÓPñá„fCyg@#?îÝãy;™äL»™4œÉè6\¿i2ºŸŸþ‰åÿÛü¡ùÿ’þžÉÿ·þ3ÿßøe òÿå‡oùÑáÿyÿäU,—‚ – pÛÊ’ùþN¾¿†Í÷×|˜šÖ¶¿>j¾?›ãA,—çJ7êç_ë “â¡p–¿Œì¼Lf;“×®ò±ªœDu&ƒ`4÷_‹r™Li5ƒή¾fºP” P7wF³‰Î¤'Im–Àxj½¹Éö' ,ÌW‰ w›¡Ž²÷*Šûñ‚Z¬<(IÅ:Ý…œ$ug&å ÌmÂsÛ¨><ç\¶ñï™sÎom¯T‚9'ÛXÐS7ƒ\‰¼qNí0ƒÜOÇTí÷˜,Î_¢%òÃyë„ ~fð*8Œ RoI¥ß&Ý–wê1å¤ÍŠ Ëä±2ɬ( T,ãÓƒr-ŸáHººßQ/„à˜VŽª+Á7»S4Xéãª;Lª›¬f¯ý¸«4‘xcgcŸ«9"‹üC|e—ŽTW?1)æuqQD5ŒÒzë\Cc±tÜ57±j8†÷жµê÷7V2“6)šíà%œÞŒØƒÑýàë,xM† ”pEÿ¢Ÿð*Eå¸d°€3ôÒ5>x¹ò’´éAùÔ ›³Q27ŒÇHb1`”¡ò/ôV_ÂÍ8UÏyk4X(ÞЏ‰©pRr[2œ®Ö‰ÚN¯ ÒûI¼ž”D°‘bƳƠû~§¾ÈFÕF¡ù6¬´eÊçàˆ¢]C£]#ƒ¸Ã^–ŠºTÏâ& åªEË….mée=V=ßbIdÏ2ƒìL@˜c|Ãb|Î7Jà<¡ÊjV€ç!Vfg¸hÅål醻Il×J ½ÛÇ\ä¯ì÷:«×ÆÌ1K‘…„˜öV쯫ìŠÓ‚Ó´×Mç§,jËyð†-' l¯º“{Õ~áeUyøF-¹K¿}‹.ÜŸfSE÷d¸©²žWÁ±S_´·e¢Y¼! vct#Úš ö`‰ X°û–ØzåöÝ2›®`ÇýŽw˜«¢.PlþTü/ýÄäÿ[?TþߨÜÞ\ÏÈÿ·›?åÿ?âû>”ÿoÁsïÍñ[¸EwáBÝíÑýwŸTïà<Üí¼}…ù£Ñà,ÿÊßn} o÷{Ç5uØ~ÿ¶ß£ï½7¡Ó:¤oø»{Z”b bõöMg®â­öA‡~öHAqD7ÿ©u…ÞkÛ¸?€îBϧ^*M‡žX=o°†ùÓ¢7_´â®4Mõ2êx¿¡{ÓÍT‚ ¢TäW>½ñ÷ün#JQ™ü~·â‹ýµ·2£cÅÌU$ÔóŸåCx ͽ×íÚ!ÿºRZÛûÑWòœ¼o‘Rfl$°w··€KçC£?aÝŒzIÚžs¡²…äM:½Fp~?Q³̲=EŠ<1-aÊ‘=°îÙ 8‰¹ïX^:új"•ßN'ç£ôFÝ^|RÓôŸwÃ)ÀÐ ½&0bÂ'GÜ “[”¸A¯¦„–§S·/Xïs5ÀG)ÅD¿!D{)QM»¨‹:Öc$ Š.Úu€½ë’K$µƒV.]ø q›êï¢ßÍ—UŸIæõ¤¦>A‘Ì0ÅU‡>ð  Æ Àè-²Kª«Ët“s¹V¼´ƒ™ðê³çYDzO*ÃqÕ\J~(#<ÅûÒ)½^’J}LžÀÏþÖÀßÔ9ÝbÞ÷±L ¸…=l¤uWš…à'¨7X¡›ýº. ñ.yÿ)…ñ~|‚÷쀚?GVõî }BÁêŽVT¯>ÌU\[¢>Tü%åÐd=G·³ÊË ¿4ª8EeˆÏþ•N'„ºéh–R_þbÌÛ(g;L´œÞÜο¢I1¢ɶ­*Ò®¬qÏ}©³‡;!ö´¬¹Ng”RÔ×e! áëéðúÓ<k`Íq&¿ƒiz>˜ÍèB!˜ëwæ©Ù+g¼Íh=„žÀ¿? 'pÐ Hg·zø9}­ákFÞ5õŠ4!§\¶OðÐb)ýr;^ 磯\û – ^L°Ó„O…a^O¦€7¤4ÎD3xOùÑ#»NýMÒ×KÀ/½Z—éÕˆb¤'Ãôð2MBÜà-˜—}N8ŒÝº¹͇·£RL{¸ a2"žw†Qõ£Ö^ª¨€¤ÌîàÇäâ⎦…Í. ês¯,øh+ë5Í…&aºî.˜¶£"Z¬hìL¼ùh€d” ÞM§uÜ^ çšœ yËLâ…8nëiŒq:ëO‘ôþ¿DÃhýjȇ ÷bbt½ãý ìT¦Óª”òÏ0=Ü©®¹Á ’:¤ìçÞÎ,rÓ—G/a¤XgòÎÓù}ÊavH{…ºLF—ÞYÁ™ îM篦“~º[Æ’€˜½K‚Ø©Ã+$…€Æ¤ÍDjߨpÕá½Ï@#ŸkEhv7_°æNb…¥áçÞ}:ÉÀiNR¡Á°)™}£™!¦xço¨§¨½‡BuhóÁq ÒñQ•¦-€¢™™r3OLw˜]ÈLcQåJ·‡1ù§0±™d%Z–/ù4˜x)׃†wËèîfìžÔ>Ÿ•1EyºŒ™œæ8åîcõf,§v«’<‡» þ¨úf‘ãÚ£).V0ïѪ çð¼[ ÈCìÙ—áœ;–Éá‡ú`++@oµ€6=pîŽ=ž4¼°Ó´!Žxäƒ2ÃW80Jp<Ì^AC4§Çn?Ê4™ÓP¹ÉÇ·âÃÉo/—{×KãÒ¤ÇYšN|irX¾oXšÎ¢¥Éa2sÛqmšòW¦³¨—º#6À“iŒ–™“)c2½¤ô!k©KÎÑ«™„=mqz 55yN×îÁìB$@‹Hö{ǰ7Ä™ªÇ%÷¨@7yè1´X¾hp oæá9±î‚âÝÉܹ×à5@3{dñ\¦ÃAÏÆw$ ?„ëÕOcÝO^‹ùdò«º .R¾P¸|½³e»´÷¦SjµpÎ·ÎØÇ)¸ ©ÃÜudå.ÑXÙ`óŽÙ„NÛ|ðkÊpá2‡#.5îW³5J„; §EÎ7ˆ®¸¾s,¿wíÌtO—³)ÕÂÀÈɪڙÁ}¶‡Æåõ’@ï‰aví;3Ë!_\"«’^Z»x¼öz~GA¿³T3àÁšÑk,ÓXóÅ’0b‘±ÑõŒZ" Ok€ä}Ýúë Mr÷L­ÛWËä]¦ç$Ô¢îuƒ{u“dHŸÇ»)l¡î"çsÆw¨¹%ÎÄÑP¤|OOJõôä{õôî jE—ú6qaðVM¨Ú5UQ]ˆu,?B¡1ú“\݈n¹¤ ‘<§è(â\²>‚B Dœ¨> Pί€ÓN¯áâ¡Éó·L‚'dHØ.‡¾[òãú\ËsGËþêZï¥ãòÎÄÑÃÿ¾œ/È퉒uµð}+<Ç‹eœ$bÞŽ¤g§{ôó-ü7Çöûƒ3üÙÁŸð¯È £ ·6¼¹5 FÚ;ìöŽ#½Ýÿ³„÷Þ£…u:½ÿ&£»Ûqkí½yû )j{‡¬°Ýëˆâv[¾wjêÃ~ïeg7ÒàƒÜ=Žw?DûžëíÁe(®.û¾ÂmHc…u‘­¥C,âVyê UmÍ ‰ÆìÆÁlàè9æáas*úF¨š(hè&˜c·ƒp²ž%ºB#S¡W\¡V¨°\Øï-=ZÐ×_üR7€±ZÀ>.¨µ¥k¹æ’A´¬ .äb”«¨'¬ÓyRSõ0ò–]zð ²xf¹Žy¬s¸öÿš¦·øê–­CDÅB¿bACb ·ümªúò)—–éÜaUÌ9% t-¼ÀCAæC˜ÕÒÚÞmfóh·9ج ~5nµÑ+©­cé‘#qÁçñøØ<ëÐ3|…O ÈÖ*,p@¹øá=Õ3Š40µc¤c}pPVkâµ£#+qùV…í ª~(Ê3o¤Uþ8éj â´´±7½ñêØ"û’Løÿ ( Û!`Ú:ýÏ0ŨrB&zÝ ú…|?Õ´™_¾”¨¯„J“m=¡€6¼îÌ×fô»f®M[ÛyƃG:¤€DÇ9#©ƒè9#E7ªlo¨ŸtèÉ"ëC)Íxhmʼ¿ÞjÛ³(”Rv‹æŠJVˆ10®É!Mêè3 Âíïa„(c=ûFk–!†—±ß±3næX›iºÀ¤£eæË]¢°ûƒÏ©+qo¨kÞa%§RÔy‘{G{E:+;ø-Á†½ˆsA…°Ã^í†_; »§ã™O'rwî*½Å"»K|;MoI§Ž×}”Ë‹4Ù;ÛÖºaïHÿÑ “¾n辯S&KÏN=aTuœ5 lú·JÙôÇì¿·¨ýw³¹•dí¿¡ØOûïða í¿“ðgBbðÒð¾È¾˜.ž ±¬¢¯"o (0–¢Ãù`ØLü§¸ÿùý€WÌooi;æâËX‚æÉ1;ï466Ýg¡u7 ¸gÜ]æãÙÒæßÛd¶-:$²ÜNY½Ì'×lðE:ؽPÑÇBE²«ÄØŠÍe¡ ˆ,óÌ"©ß5范 ‡½µ¶ŠT´%«ÆçÚ† £Hy2õíaœ»ÎÅn»ž1©„­øUÌ´=%AÈ7©´6•1)+MGy‹Job6{[åmö Ôq³Ús ÇôxpAy}nj¾¹-·” ß>˜Ycbì}²vfA÷×Êï»ùý¡lüœ2¡¯ÌÄ,Ð¥¹Ò'œ„®VçGE kw<ã†oQ”|ƒ bÔV –08dò|w®Y|û޹稛vL}¸ó騏:Tºõ£jDå6\™B*v;éTë¼H#ÉdÏôâC§‡ö5ß®µÓCúè)¢p+¡=—Nq§–ÔÍøý:Ó•I°öñ§¡åïÞÐòàì±WýýÁO#·®z±ç£-zçñ½3ý‘–¡?Ô$tQh¿Å§éÑøö«±¢ú§ÎQ=)°•'?O¸B£?T5 ö!‰G‘¬*­:ز’å¨kâÚ³’bC,RÅZd<ÏÚ·äε<%1ñwï!›xêÃÛa9Œ–’Ȥ)Ëù°´[yÙùöÜx~äö‚4C3mì—á¾Zuǃ‰ª­¢/CneS3¢ X±fÉ>Ÿü8VÉ3”²BÛè9 Ëi.Ä.wtw^—ËÝPsÖ•Ó×(Šôjcͬ'ŸnŸ£+c|äö‰Ì"¹Ì9:s|&³†Ô›8 ± EÑ0ú~0½d2·_;lÇ©ë@ÿ„òvöw%Rà 1 &þwbm°â§ôïÜNºÈø§­ô¶Ò3õÓ\ïñ{ºØ^n¡¹Ü7YË!œŸÆn‰4L9g¤øw‹1L@Á%ìå¬iVŽÅÿ|Í?ßÖüF_0Ú÷5uÔ@k9Õ-Ò±t0óü,°˜Û{RS¯:}$¾¼˜~û˜D†ðÍFt½7ý“9>b1S¯Ô½Wýí/‚Nøå²íþ4Õû_cª×Èt¸Œ©^ôõM¦zÛåMõdé;”‘V?±ÏúYÃíIÕ‹ðº§Ó”Ãtœj‡KaÿÑ ÏÏ=¡>ÒWŽ˜§¹\èäzáiѵ”…Z|5 éøÒï Ü?pZºWƺƒº%!¨Ð¢ã~RŸ ­ÛÜ1>Þõ˜[¼AažUBVý®Ë¡%j(n®éèØ‚ÈàIkñè³ã^l.QÄŒu‰´8Ó\ê«TlF­l eã£(þ\arë5`yg,h£’¹}§Òä¼%"{2lƒö ˜ÈOF7Lë!Æìîœoå·SÉa¶£ÿ£†0Õ‰%—[œF¶7Á—ܱULþI;ž/?€¢6b¿d™íõ/?}Sœ»?êÊOYËjG{ûµÿ :ôy¿HúRήž¬;ÙÕ3ÑÞéJ™Ê5·ÝІÿÝò—í ƒ³F`ñïøkgªy‡}܃gëN¡’ó¾Ô¤Gg<:Ýaò€½O)ÚÌd­â¬‘Y:žÜ]£ ˜,Kö½.¸^0´:~Ñ¢”Ã.$d¨)˜ÌfÃs×Èœ?'̤DïÕžÒ)ÀC”Àÿs:¯ VV«çð£Jú@¸ø+ RÓ+ÍÄ7ÃbJIÆ0źžS¡°7̹óu¼B–AŸ>ê¬ßa ;† ƒ.CÙ óQÈèë':l¾×ߤSnbÞNQï tƒþ/ºnñÇ\ºä—U•É@MrËí"ç%Ã[¤½ÇÒAᜂÌk¾~‹ˆ#W§œ´õNà;¤8*šnÞi¡\¿;,jîY¯#%ÉðÖº·¨<ñŠEzÍLyïMŸL±IÎPƒ ÕK)B¸voe›Èøæ8BgI<6´îc%ô õ÷R"ž= g"Vè¸:N…þ™Û¥ü3¿÷'æÿ¹ócóÿ$ëÍFÖÿ³ñÓÿóG|„úþŸåÊé;tØfo~?©wÞ\Ì'ßìxq¸Ä‰ˆ¨¡sÝ"—ÉW#Ó¼ÀµÐsn,JA“bùÜ4;Ð_|bؽÉêïÿ‘‰¿ˆ`3d’t†#äfóM¶h&=ÒšjÏI,< …ýòÈŠŽ“ðá@§Å¬F¶à$45†Õ»æ…úC ¨.C³Òû‰§0TœRŒƒŠ1|6ªRÜ´A‹š$Nfz’ŸÎ!ÏOàõ 3ò¬èeQ~ožŠ¾umù_Çñƒ³›Qïæµ¸ ó€8·MoŠŒµÑ~LœÝH]‰‹L‡HvèœkئãjØÒXƾòÈOkÌÁk¡ƒYN ß ì!î1ÙˆŒ{ï]ÎÑ…áo«´)ÏÑïù±|¤ V<|ßìQ‡ë:IV †‰“ñ`F¦þŸ¦$†n½ÜoíïÄ»w´:ŠLˆI8Ÿ³eÜq\(±¸÷;KG˜¥NÙYB’û'I"ù~ë®õcù¢t¦b9ÛÛUÛZ¯Lkžˆ]|»lf-J‡× ûŸ_7`7‰ h5Ñ\ÎQE]㉷Tš7À““ühP¶vžf“JéÏ·FÌýÖ¹<£ ϨA9¯EÆœüÈwðú ©s¹ØgËdãs!©Çt$âª\89 bHïtU¦åºz.†³.Ô®#8ž3‘\[n ÿº¤ã¡YŒåzäY¦ÿ åú¿ÂºÝJq}„¨­gG ýlðO~ÔäŸðÇëü~âYòšé ~½f±¯þz[S½Wp‡u’‹?’¹ ÒºÁßûiqÞBûu²%ƒIhu{ÇEfç‘ÂÙ<Èö¦°KÑ“úßÛýûY–-iXÎV:Ê­ôÌàÚ®/e¦½³lDÕwwË_5˜ßMÇHû´†7{G9 )-Öv-‰¯2`©Œ±-NBuÂ;®ÎÊŒP©ÀRž¤{Šþ‹†Œžêk±°Xê±§›ÝMÉXÓ¾ªËoÿ¨bð&ãÞÛÉíü¦ì©…Ö$ ²4¸øª*çp,’a1Pí§ÆÈÄänÓïÆÝfŸˆŠh–º¾L/á,ºέœ`pyùtvw>ŸbÈ Êò!ŽZÑo¿˜ßöPÏŒ ýÕpÚvcë^L.‘c$çÊ™e¦ñÞX1ÖÍošofÏRòÕÎð³ÔòÌâE›/ “ù|rs31Wóáܲ'”šã oÁŒ$aþÊŠ³Ð´¸ Ú¦OÆNt(ÓÅ×Uu7–Y…U¹àp[(ÈÄR†ÀPD¬ù‡ŸÇ(dõ ˜ýÊ`„ýwÂTèÒUìùå$1¿ði0¾N‘ ¨5ó)ý2¸L/†7沄Ë#OŠZ¯ašqÓf…ÔÐ,˜_œÙ™7µ$Œ3Ý Ü™™DÞÝ锢‘Þà::ÝÑüiå>U¿ŽÑÀê =çShëŒìÙ1š9Iz…MvŽTì‚cçe‹& ü§égdß0 ö _1°Âp„܉êÒ¼ûl¬È\óÒ7—·‰å›ËÓ‰WqŸÖ¼"ÎELš'È—èY-±¨“ XåÆ}&ózºjú„ì ?møOmý¸î‚hÊã&=ÖèÊ,uÝ*€mÁ1âiNa?fUuÙˆ®ÄëGâkéïˆa¸ðsþY“ßñp>ä> ûè¨ÂM{û}ho÷‰†Ïdñ‡¨ CƒU8rTóZPY «¹‚eGãl0·¶ï|²ÁV>¦ØàÁ4{¯mXN'@ó)…iÒØ2Ow`*4"ƒ•1_Çë") €ý¿Â»EMÌqŒí$[*h1i£˜}PÁѨ²G§]‚ö*[zOVøoû!êêë,ÀÕ림÷Îò×Ú\MñS¬K¬JÖÏíV;ÓѶíü–³ Ù…aPO•Gê ª»¦B™Ê«ËTƲQ£åº"‘!²‡¨àéhf¦c#æj#ä!¾¹7cÇ€qÂë ùpöÅp#œÊª-5nN1gŸS8Bb•J¨°`Õ¾ã¶G1ÓÈ,:{y.)|^v–¯àj™ØþEdï·BY”ÆPÖyî¡ì^JœÔ06×Ê’˜ДœÙ]”àAry6× Ñì¹(î7âÈkçܽ«V²ÜL$)A,À”»qBý;¼µ›¯£\~‚iAÎy±pæüùrÅ:ËÍJ—ÛÞeß›¹H’„GŸ9ñoYʽÅi°²…»Y­ªŠ\ýWak­¸èûE›[ÊM“ä¢cËÌ|ÆÙ©²   ³=üt©ùøԘ„RdÙ$àgƒ'ëžä#§ŸøðŸvß´öá M9Èí¦@ôx‘ø‡z»÷üCRDììn ÿ½Ä|­öqafnxß“ìPg‘x/¡¦»=|Ø£‡½Ó"@¸5±~7Xfôñ-kÛ:‘{›­EÞwÚù+ädLõ·x µ¶äû|÷Ky ýGxØ0±DXÍòn6]Ýöo¾áÁ@VI‘_u'[uqæ‡d[×ú&ç Ýes8‰:AÄ0™ÑC+¬0ÈD‡Ô&Ã~ÆLT¿¡õ²Öb®y8ÓňXF>ŒÝ3‹Z/[‹ìw0ÄÓ'ÚÞ¢«m××µíJš‰Ó#Œü}¯­4< ó6 ,¿ Ǻ#Ü…%¼›Ð ¡.ntb>{uw›ËpËÔ#ávˆè¢—=_5¡‰Ø"ŠÐ{ûœ2¾×Îã3 RI/ñ¡I²·§œŒ1½S´0ÝEÃ\Ã>É›÷NIš OVM®&àø´>¥PÙüzUXᯬwB«_Áe”¤e,S9\´Bd×ÉïÄòëlêsÌßE+°!ßìjÆšâã=eP"tâ{@á’W¹PR‰²ö»Ý–áí…pEº¨ ^Q¶‰QÌL…CÛN(þhjy#´8û/¬¸ù{‹·ƒy_š"ËøQäž{å¶Û«·x{õ‰"÷"¹(çC(r…‰†J )sï›)sï{Pæÿ (so)ÊÇ,¢-eáÎCP'ÓpvL (sï›(sÏPÖÞƒ(³_ŸèÀoA™–2÷JQæ¬ßj,^8smÀ͹Эz€¯@õ»[{•¡È÷++x³W˜ÍuŶ<|E ’&¢ÞÁ×JÃsW’$Æó‹êØ€£ü ã©ªèâ|7¢ô›og×»S¦Ÿåù¹uüÓu‚%Ü«TFNë!ÂPõÆJȾG–Q²¤Õ_ÇãÈåGEï?Çaû‘;P¶Lö½ô¨¼{ÜÆ©îD£ª+{^“Ë}‘™d=Ü#©Š¯TªøV¥r.l~ÎäÇù÷‚y¢¼~/Èe^•à”Km·¬×’NÆ(„·ÿ«”OÈ<’䈽‹A¸D;ÅX”D|UŠ}”2fÚd”¨µøNùU…`ޤÉ=ù>‘ïÒ¬‘3¢³£œ"†zœS,’eèw¿XrkCË¢ÚzQ_ÛEµ•|Æ.ðjS6ÉQP±èWڶ˯ÄNTe{Ï.V€^muTðƒ?{2üù~\ÄÊRª…§¿Ê2¤ÌI¾qÁ.p’Þý]dmx¼OÌÿ÷Ÿ?6ÿÃÆÆövÆÿwû§ÿïù0.‡þ¿po9}Ûyãèº{¨òq®¼Ž~Ü:äôÚÃï½ßS&ˆ¸ëî½Úííîy 8Oò6fR N¼{2 4Y<Ÿ{Þ¤.ëÏ÷ª¥†<×Úýˆwkþb±Û+vÊ÷{uzF¦‘E!Þ9V{ª"Œ ûØM¦j4¹O§Õˆ“Ù_UòʪQ˜ÂÌQ-!žÕ|:ÏL ñò`Æáiz¹¦:éœÊ½„Gã ‡o³záL$WÖëÕú¯"ã óŽKÑHégwCÿ×wâÿúö‰ªÀ?nyfûªçæçm5žyî„ba—ÜCOæ)¹žhgÂ~¨Ø>¥ÌÕS2Ãè†;ÑŠïûAEèî =]Pq/lñVÜ Z$¿4UfC&\uBybOôxßÃÌ—v1Žõüž Ù,ûðn7O¡­W³²§cVîJÌÊÚŸQ«øzMµÒ›ñð8[SGè!™9 %:›LÅntaEÔÿ§ÉV§q²H1œáìb:¼;>AJ¸#Ѱ®g†ª¬8–†6B7žeüƒ ÐÓB¡Œî~r ³ ä=C㸔’ÁþY€”ž÷ç ¶ê“»' ÈMK¶xµW™ja¿pöÖ¨vnZJ,ãXÝ­Æ:¸Uç¸%Ûš‘“úæÝÆxÙ=l¡v€ ­Ëƒ#á#³‹”SÌO¦—éÔóÁ.5l‡$ØñCç*Ý:o~Úm@\˜etž$k±9¢\v>öýd N )daä9u/š4 Aû{SZ Ý.Û®ûì‰Û+FÉÞœã@ Þr“äö± "#±ÜÐè+º a!QÖ,O'cy®Ñú£VÐ*zîÑËã³°Ù@0¢ˆm°l`ç\=Sí@oëÞNSà%çÃÛÑó”½}â6ÈÇÍ3DƒlmœA{nøÅUɸ¸QÏ_¬kxM)ÊB}Òõ{ÂX*ÎêO»Ì:úéD\•ÙÝy}Ü®§ƒ›5†nI­Ï4(!ÄãÑ!¶ýÿÙûóç4’åüýýߨ!²@’=ãO:l#–=~ñvI- ÙÏþï[™Y÷ÑÝ „%ýÞAWe]YYYy!:¶Q b˜D«eE%˜g‘á2šµÀ¹Wx4™ÚK|j­pû­:ôà ,J(."u}ÛoÍåÍyraÁËûv¾Õ}›²¸×½oR˜½ Ó›iž…ûï~ÆÒ©mµ\C]YÅ»ðv)¿mø»t?×&ÝÏÞ£ûææ<ü±`Ž5ÜŸo ÷slÐ}c–tèþôÝzr¬ñNÑÜ™ïd]8ÇøY`Ï$ú)^šÒ~A ~š×ÑaX'˜~Ì, ûZµÜ…âÞB*JJ)Ï«->«ýsHáˆ!Ýc~Duáøó;˜A+¯!Á»‘%:"÷¡@½? žs0;ÎB4:(­«kd¹}å;aøÝ>'”Í•ÏÑl>Gâm¶»Ñ,F7¯êû–· k¿éÖºRYq@ê¼Ýãÿ’ôõˆo0™2T‰a¿Sb >kÖ!@`k!Ž9{¼QôÀiw_‘'|í¼«Ì™Å'0Ÿïx'èµßʬ™zšµ÷÷í;$¾ ‡úÖ0)N‘‚J*óÿ2jT¢5‘U£þÖ‘G}’ævº³£Ðùô*žG?Òkìúì§×xêOv g‘L,w•¹‘`‚ô"Ð#j¼êz58Æ»D!Öck²åöAx^©êÈmE«{+AöF°Ÿ5€}»ÿû3t_-Óü¸Nóúqiø-ëz<ŽÆ–-:rù!ÏÙ<6݆âr]b—üå¼—_û.JÀya-µÚ-€•Î/r:åPZdêj˜ú -—&<†š`q9›SRXWœZ"×pŦ¢¾!<•Ñ eØÔ µ¿ˆí³fÐŽŠcZ\‘?z‰²Ìä3-ÏÊCšxðs£€?B …ŸpTuø)ÕvCôˈó¶AÞ¡JdÐ*B‘ ×ÊJþÈ‹ìwÂE`˜bÃfÀûýNømkCöÃîŸÂ̘ñ¶;-1­èlP!{*åo·’94Ñóиä ZÞ <{Kç¸aƒ·L‰·ÈáÇJµô ½îZS—iÄ {¾mïù6E>ϱᙳç߆¬óCöŠ™Ík…t ¼ö„*FbêQa}2ÇxȈgÖ ÒðEv mBüÞGo~¼ÝÙúTXréY›\Ü‚pJ¥ð‡„‡ÑÐŽ¯56 œ?²­§ #©ÐLDì¦øÓ§Uœ£,ñä$#•›@Eå àe›;»b8p$—Ò…LvnüÐä:»Œ¶Ê‡56‰Jç¼7¤(Œ`×7ë‘Í^ D`GnpÍzK˜;I–¶É…£N ŒüýA ¦à.ƒ0Â{D4xäþ®›=ŠbšŸ»K7páúS—íZùéYçkï&o^ZkR¾ÐÓõÀT0ãL‡n{c²˜ÄTè‚‚ù  „úÑø%pîkòŸÚF›ü•*%1ôo?„|‡lB˜Þý}´r·:/~ÒßÃ~E;³Ÿþ\À!ûßéRí·vwžU}ûß­•ýï2A’û_ ¢£„Pì+ W%£R5q?:Þ€ØÇÙDÒÑ¢À!L;Ü Í/Ÿ-av‹SfüÝžÙœ¶ËÎ9Bº)šÓcI3Õ`Gt2€ ÜsX$f'ÅpŒ^´Í’6 1â8Û\à S‘æ›M‰ï§tvv³è°8ɽË'Í _…¯‘áj$H – ›’¯B·D‘h&ÎZê>Cô;5`e/ÑAlίúƒ‹q24[j/º% Kã6…äÂïÍ8‚ÉÜ/v"×±–R X¨f&ƒ¡-¼ç윕ftÍh÷]ªb”¿¹à¢/r\‡Îç9›µ÷xkj·º­*¥—ZÓo|Vᇠ\ÉÞ¼*Í«3T^Ø1:eÇ&ƒqòI4ô-â…ÇÀ»RÀ®¨(¦¡¥¯|;mTDb,ë!«“9M ­£B Q%¡Cg‰‹ä{uCW!N/ñÂø±-¹¤ég]o˜ê϶¡Ù„…5¾’tS$®¨Ó¡ãѾÏ×l:¾=784O)@5ñM„Û:ùF¨)7F€†Ó*â6ƒÁ9ººó?°OE2ј Ô[„޾Ç3N.ØnWíßÑ-¼íýŽx « À6Ì ®žãzƒæ“¾Q 3¼™5÷áÂe –×iZdQU|³«¶#U%ضjµÝÅ`á²+ÖÅv¨‹VU£1­‹@6ø(b÷ª[n)ÎÈñè÷”«_÷çºúá¸ÿ%K¾ÿ=å7??ÿë³Õýoá³sÿƒ8d~Ba?MzVYJíÞüfvÞääˆséñgñÞ¬¨½Ù®‡‡]Öö§}H&„RDv rê¡Ô…Õ@È!6F¾U?Þ 14ÇÈóW˜ä¸3’[†››²ð¦’g™ Qwò ÌØžfè‚õ\¬ÊÝyñž›"pYK¦¿‘|§ƒï–a„÷¸xOj2x¿pStûÐ}h 61WPM°¨>¼‘v)¼µÁÀ›=êX°¦¨”r‘·˜%´Ô¹ pþx¡}›fªý˜\¸-.a_<{¢ÛÀ9°„=ò !cpÏÍFÊ t¶T=7¸îÜ\¾¶jÖ”Íf_+µÂ—mÓ\\lt~–Þ6— Œì¯Ïmíù, ÿMNÌ ýÒ'à¶!«üþ¢ÿû‹Oå þùé÷ÃR¤v#PûÓÕ¿×VöU%ünÛ¨Ëú›ÃdóSÉ'\—o:¥R Ñ %õ‡…ëÒP[è×ò pж‰–o$ŽÃàQ)5ü…_Ògº==[ÜzØ>9z¯"–´ž~­“L”Ø$¹zÜ»Iþõ/øì瑆B‹Í·4¢¦{=ñ㪮âÑ2Œã-°#ØHMG­Åð°‡Uc ûõe†Ù÷ÏàE¬²  gOÊÀ=Éî>);*¨޼iJ3T!¡ûˆÔ¶Í\Ӳ𖸴„¥™±Ñ<Õ!Ý1ìê%ÎÕÿÝPÿŸ†.®Ž©‚ì<ôrÖäçBàø,žïå3Ýå ž’Þ™WþÛ³™¡‡?ãmøß÷îÿW–zÿ¯T¶+Jÿ[ÙÝÆûu¥ÿ]Î#è¤}ÿ?­ þ—¬”Ò6…oú9PûR·B.›o&Ã>köÆßêÄçÞWôÔ"V 8(êSïl4îMGc’ð² „û¹}Ç ™ª[gHÖЛ€T+s> )¤øeN@ö„÷ÑEqt9ý wغ½ 8€‚Öç/$]1û”&i1å0£ŸÌ‹;HÀ©Ð–ÁÈ~±Ùuí+ÄÎ",q£[ͨ괒¨j¢£RIÓ?Ûä;=UYýt Ü`E04ÒD,ˈE=±HúüöÎ&¸H¿Á¢(‡4î„»^$ãKÎØQ¾Ðj\;œ~…‹!ðã†oPDƒ[1ÍËÿCq’¦þlPºÄKtÛqûûBƒ`T¥ãMö'®çK¸w 9îà6Üd­M¹ùÊóÕoB䦫Íûs4(?}Æm;}s³É*¿VÊÕí-¼8V~ýuGÜþdÞEÑgÖ¿¾!öGYmSH¦3r’þjC·Í^àÿ¾˜°šš“ Ú6ò9ßïM’õÿ§ •C–' u1"ïøw 1ɒºÄÌ7–×å"%Ýä]r \ ðR³C¼'XKÙ› f¶p-vó"N oDj»»w=TÏrxÇ0YŽO»~‹‰1çÉ‹©Aü!âpDæc¤9ÒOJ—É&7ƒþÉg¸>Ó‘Õc7r’S>_‘C¯:§2VùÙ`tþ³Å£ÌT®Hÿ¯w ¦Û[Å–Ÿ>)|r8Vñ††¼ð×+Þ_~'ݬ{­nóIÆüòED„SþUˆ…Fhå¡kcg®ù­-ÔrADiPÚèëH ¯ Ì'ÞÒâ‡6Y4>ñ‹0ýÀxÑΞ€óÌ~ ì3:µ—ää^Õa3ùóPVéc¿AŸ§â{;= e\Ôâ^µæþë”ÞÐû» Ûj{´dÁݹänŽƒ{¶»·a à;ûžV²}µ[yн%¥°ï—u íTøLä·|-ûyʧ¥*A!ZáV1†¶‰˜ŽS'u„PÖü½ª~ŽÒ– N¦ýëžpZáì#xSØgª^@ê‰å8šæ¿«œ ä„Õí “àÐb ¿”¨¨p!…+ž¹…òt“€Ñ·\‰ó‡fz;bàl‡˜Dª #5öœ|^|W4Ý–c=X>$QÑlC†—òÍ9(oQÛ/3}jÌ ¬R†ìn¾«l賃ì@A°$…«¥TöNNùU½Ã…I”C*.zSˆgö™Ó:( EÄáú•xNôlê]ð‰¼ñÆœ%0¦ÓYp0AÚÃgçdœœ£Õâšš¢¾f¡Nï2É$jå€X“‹;Ÿg€ûDÖ•E¬´0¸–ƒlŠPI§e«¡²H½yç^­É´©b5Ä!R-"œŠmÐw᤺”Rõ‹Z7í6ö÷1òÉÚÄ’Àn+$á Ø»Ìt…UÉRiÛÛ:b¨EÃÜKìyZ-HICV£÷FdÒSÇe˾ö,Â…Ô½ÆùöCég,‚8Âi-Z¸ø‡½ýœí—@ŸVVè;?!ùou©òßíêöSWþ»½µŠÿ¿”GPlGþKÔäÃJì;˳ûÞ·Ø÷ÃÌ2Þª–ñ‚¹FëíäcS2^H}¿æ·â1¿W)AÉX/Á¸ Ï=©Oo2÷ñ""`ä.„ŽüƒçO¢;£à¥ŸJö›[ðK“Ð1Ž Â§} ¡ÔA2©÷SðMà  ÜòðâhXÒïÉ홎Eø¡P-픞–J››ëÒÆ¾E€Ã˜ÿöÏQ 6îÃÅ™ÓÈÃCÎ×Hq ŒÀóü «ÑK²Èbý$IÊÏvw_'ÌNQFvR|/zcä³öƒWü7dåùªõ‡ˆ}!ŽoõZ 鄯‚ â‘=0üë GYÂ7Óö•h0 Ï"Øe;EËM w9À«ÑàbbíÃM-|•!º+0þ–Õ@\ªGcv,΂£ËjÉÁw¬ˆÞ) VÍ‚|(4£%Ȫað !'&)@¶- Jxɧøv8U}Ú1g„Š·êvž´ê­ÿwÕêÕ®oEðD„³Äôš™\õ/Á¬ò”,7gtÕ|Âf_ÂLÇ'ÐY[âìHSqêÄ4rë(à¡SŸH´Ô'}*þ„„ÜÔˆS]6Yè+[[ŸŒ©Ï+ ¿«,|QÂðY¥á‹‡Ï%Ïã·É„ðùOAý&ÏY}ëykË áræt+“ä#â Ì"ò&¨²¥m€ Qd.!Ò.¶Æ7¯½1úï2“[ë ‘vNB °»œþ‹èñ'¬Ð ÐX“³dúâWSÒŠ4YýQâÿý½zM• Êÿ±¦DØ% @eM~]ƒ¼‚˜;¹ûŽùæm›ÿú¶uÐ>HkÇÔ3ü¶ ß84ì¼ Énä£ÝT·¨aþmGÄ”­™U ZàR8`Þ`}G;øÇI ¾ðóß½®7jâs¯ÄŽStŒúÖÚ«¿Â ò_ÖÀöä¤Ä:'.Ÿæî_'‡ñe9(±`Zø?ïà°Àè ÿ·B üh¥ôæ B1ì5 •6â›ÆÁ!ÄOá]Î)iulŸIím Xù¿©É4ù[Þn»¶Ïûò!æ¿;«bY¥;ª€BØÐ¨¶þLY \*¢’„ã÷g.U9Aã2Ò*̪5"XâÓ‰Ÿ,å‰,GÎy3®‚Ç–0=I%IÈ·SF-N`ÍQ‡âðŠMŒâ¿óÍšâÔ ˜!ê èÀªkN¨£…ë¿ è Ø.Upž½¨}PØC jKŒU·Á'ýQUY0ÂRfÇ«ŽW¡ãÕhÇ«FÇ1ø.ÿm;ç`fŠÛ{s¢ÝW¼]¡^ô[†3†ÊY?ÓOôÎ}õA* â3ÊËìõÙ†˜úÃj͘5ê)[Düt\§á°-B|`‚]}]ßM¬3«JG°(bOX(VXg³q¸ÙDd ƒ)°.ÿÊü RDà_^«­•É W@äŠâ/9ÓOEÜ5çKMLt‰Uë•àä¨瑩xÕg½x*_( H!2NPÄ«„_!À§jÈo?xù@e"ÝæIÕÅo°(/ ª»>8ú)Ñ _ê’ø »Ôï—Œ«õ"ö±T®¡^¾ç£Ôn; ²Êp¼‘“ÀŠxQuç탃70£„Ö(ajÅïvÛbP™Ì›¨kÕ¦õEbû$ 5}H ž.ë[ H’UÄÕN¢=ƒ¢tæù[ÍÚÞ¼ÙƒÓ#ЍBá‘Vzß©[ûô»mÐp5f ;„ã#šX*ÚzÅcÙïj–ÆÖ4‹ø0‹0ÆhLiæÈ‹i< Œ <€ÚØãÆjѱ[±c¢û¢ÞZÍ›™T…¨˜P¸ÇÁ}m/8“kúbËB‘‚ûæ„–_Ç4n­µÖP¹Í—…ßv8î"o†±õí닪_ÉQßì¿ñg;Öð£ Ù—˜èõ1é9ûð¢ðw¥ô7ÿ/áÿçÿý]åߪ¥„ÿŸÿ· ÒtÇfªØÂæMV‰PIM8sßÈÅ ÔóÞVSjª’€Àûí€/Z}ˈÔ‚/F‡T‘ ã¢,ÇýKöggjƬôB FñÈ“ë[eÉ8¢x¿úd†ß×ArÀO›úÖFkËÜ„‚ÞÃ=¿*Kѹ´cmNÚ‰7Vß)XBúU”à­–#Åô+à V´•sI¿Ú­ìÆ[ÙµZ š~¸ñô),…ržÃ†iú—~ìï‘…hô9/1å·D½6''Œ ¨™ýEŸô–&uÖkãäÄž á¤)׋–“À‰?Ëöºˆó†&™TÎ"œª9…e›Y ,^ˆAµJó> {z°¡›‰³¤»Ñ˜ø0Ñ×½› éû>|`7ƒÛIhڙɬÁñ9µùë7ßO üW3íN}«EŒhƒ8gèºà•ñ[Ž—0΂y,›âÿHúPT¥‰1Ûœ ò1k« ÄFä¦Éì¿AW HÖhåü=¢"Æ}à¿ át.t¨h¬¦×9¿{N݃¬:ËZSÕÃú¶K¶}Já±`à‹±ÇZ£¯ì¢þý}Ýûfí(yÕ‡Œ;ùÂI[íš2¿ 8v¡5úZƯÖP‚œ'‡"Fñ,J NÆÉ è2€CÀ…É·©¡Räÿ?¶º¤¸‚ý€ ˜¯ ߟ$JÙŒÞè j¶Í¥Ò†%ÍÎݤÎÎO¨†v~ªø?UÝŸ^1¯b·öVÿ¤P;è7(L7z "vdŠžÕ·˜ï¾¤øÒ zÃ4õD×–LÂemõWoX—×fåÑy‡ê3ÒQÞ¢¾r•\°‹3KZ[¦"Wå²D¹90¶fPJ ÌÐð¡V— Ïôz± dŒÁSF>ù©c0”Ó(Ð,ÅX´Ë+=¸ôUoŠùzTóßléI½ßÒ“ó–« §ßuíØ\ÕnÕm7^XÈÙ®{0Ûͼo{íîæm7ÞªÛf¼¨. Û¬T·t¡ êf§;áŒD¹Ð—â0ªY'_'àõìÀK´¡ÊH(Éts¹ûîPÏ Í–ºAÛ×]vœì}8ó¢ŽìMCpFTÙà›þðcI2ºøÃhøqÓ)Z5Òƒ“IÜ 5Ñr rþõɬ’<¶”y™gõD&g°ïß”¼á"¹†¹·7#iÎÈY6bž}ã©ÉÕèv@ ¿ÏЄä”NN6° á]ßÞ’<«s™çûzG°­{‚må5<šDtè…GÄñ»k1¯Lò¯š÷4xØiï3ç.ÙÇÑè‚B0L¦É›ìH{4m¥&á™¶˜¦!Âd…ŽS² _¤q0hgC¶2d®‹W‘€­ š´Ä¡­Ë+´J1®ô˜&wR8?ŽG ˜å&|}1 IÅ(+2äîdÀœœ˜ }Åa|¸¹#õ/‹gÈJ e†Çà±UbÀ£#áñíÅð¦Ç¹ú† »-qŠN2 ÒÅ‚…Ÿ·­sJŸ¶c‡3øLcØú`ŠM–š2G•1aN5 rX#ZTΰâ9¯Mõ=ÍĦD šSÍ‹†O –õ¸=rY]W)î£Çì¦×RÆzÒÔ̇šR<Ùö–õ"x¼ÑcìP˜ºyÖ¬BX„ú(„|7®í†¿qB‚+­L«Db2u·5ø7Çk’? ?}ˆà4OjÌP”ák]¶ÌâîVP!¸*±ÂR%ñÙÏŽ¿ñÒL Ç£áÔ•,À^þ%¤×4•š;¤5‚æ~‰6‡Ér˜ø¾'mDª©"¥˜Nù½áyâZ`ˆ½¤sµß{hÿH 5eA)غý~Çxb0€¤U,VÝâį’ ]‘ÄhOBÐS|zµ’gåÓ»Œ'äÿ»½ÜøÏžñw®ÿo¥²òÿ]ÆC{Íõÿ}¼wqå’œgp+—d6¯»aî–çe¡ßn?Õ‘Âð—x•ê !›„ DííÒ½¦·éfêÈ'J†/5ÉqX÷Žx°ÚŸàµ{Y¦ý|ýÀîv Þ‹"¹ÅDxV‘c"ùeö>B¾Ûá´?`ä^(½V…7\oÕ:ñóñÿ/16jk¤“oV•FÏ©AŽ«Ñ 9\VîªbUN èOâ9+ON^جAù¼˜K|ešYr+)Ç É¯lÉ”ÁR…œÏp$MÉÃÑ$_ ­á”0è F‡ø~áÏw;!'>é(|ÿd×P«™å™lbEWÂë2l>]íÞ‡seiŠ|—j¤K$EF:-…iK9aO9Þ‰ý…ë;ØYÿ£ôß%ÿº\´o¨ìðÿ9+_ˆŒ—².ÚKêYÔØÜšƒÞGÄ&, †èŸðï:Ò&Óþ9+8.ì»ÒQ’ì ²·Mçô®"Æ)4rù1¡{•LF§!öö—¢ÐãIxï'½/ ¹øá€Å#}A‰ ºÞú?KèéÛv·í{†ÎêŠ`ðku×w±ÌòµDïââ$ÐÓóh8 ôÝleºgRÈKrTžè޶0ŸÆÞrW|>ÍãÓ˜?ªe€ß:¨wZµVJ·ð}é>¢_ÎçÌ( êx'¿ÛaNwBê‚á RÑv%$SæDZøm²h»élªÊ®©%¬0Ð>Ó«‹Š^C«!ìl9½—†ô`–a•ÉnhÐÿØÇ)Cäf›asÖ´ÕB;W]’£ Kž zC–Ø®•$½Cë¿£*ýü,ÔãmaÕP L©iõíÚó™1Åôdtn*=¤Š3!öŒT½©„A“w5G¿%Ö'eV~ñf¥\È]1-;©Mk÷F9½Ž–Cx×QQK`+–P¾~æ¿~†¯åÑbIÀ=QÞ‹®Û"A/˜´¡ÀY1MÍî6]'½t÷Å0Þ94ƒG£o—ÒÝœ®¢¡k®vgô§Ê_R³Ïü)3¹Zd¹ûžÙhâlf¤`­Z:ne E›zVï’aœ£½“‰fãQây–¸î(‚ö)’…ÌÓM{D*«ü<Úªä(h£^f%Ñ’ÆÛˆ‹Õ\Ø6ýȵ؉–4Þæi. pV/ìæ†:öÛÍEs› —3ÞM=Í4*#sމ;qg ‰`jÔÃó#LáÍÂøÕ*ÐdJÃnÔÕŠ —Óºç}dw kÚ¿–œþ¦rü&\òpñ-=šMâo%kÌÙÍéÒ¾N:¨+7(€ù= @—ÖR)&ºžŸ÷rUé]@ùyºã þéÒ’&Ð MÞ )t û_™n¯`û‚@$ðÃüA±áX8îá®×Clf†Ð5úŠ­Û†þø‡ YNiZ#üðcSÆ›<ß„ßn'ƒà•<Ђ»ˆÜŒa¨n¦,¤ði–)c¿jÓ\åcD'M7Þ@Ø~ñJºg!*¸™Hþ<,"þIÁ½¥ëX¶/ÆPöG °ÿˆú’«þÅE2µ€ 1p`ÿ¹}ÚÐ.£ºÐAÈ*]MOÚäøÝ鎔±N2HΧ¼s_ñw’L'¹´mZ'¼CèÓóõ@t‡FËÕPTþ¼Äplúµžl²“Aï;ˆÆ'½K;Ήè`ÈUB . ¯§‰¿o²W|Î',ùvž (÷´i€Ùd>7ÈÖ¹S4Á„›¯M‚¤C}òkQÅî©Ó!Šò¯ztÐ]àÄN¸(Ý)‚$µQÃîÅ=x5žù¨ÂšEÍX™v¤=;qmko£骭_¶œ)ð‡å™k9½tÇA3iV0LTG“ Ü)uØœrzèœíþãjHT÷mÖÔøiDQ¬* š•Úz3ˆû5ÈÓÃJñ=6Ê“ŽKô¹Á,ü‚«UÛ ±zeØ%eÑ‚¹PAPV½$@¨ÔvÚ´@ºDé´«)V4Û¹­hBö;Kµÿ¨noíúö[+û¥<¹ûÙÀ8¬y­ 3¸²ßÈÜÊ~ƒE-4Ð61/A/seüs‹ðb*ùñè[_Ø{“J1¤Águµì@Üb”jÐþB»õÞŒ“/ýÑ-Ä$ï ƒ¯¥>%Q³‡˜¡D´BÄLâV™FѾdØFàhÞ€ýAj\s¥…ç#ïalvRíÖ_u;]Ë![¹µb øy”€•ÜbZ{H§îfuQ0q»Èk™l¡•¶ºº…‹‚LSIû¹j”+ªN5wª¨Cþý9ŒB0B~_g—7¡¢¼\Ä<‚W¦++ö¡iÝðʿߣ=®”»Và–O " 4Û"`G´Ÿ/&ö~«Ó…H ¿>©<ýÁ–Г~TéCº„í DÇ·6wŸn£zk’ê¾’üSÉ,£aŽÐ}]oH«2T˜Å6Á³F@xøÃöövzgµáÖ´Íò»¾W+†²\h¥?Öø‚îñµÝƒ£´Ö„N*ø/ÿ¡³þ]”ùT¦fˆŸ€vóƒá<1¨žµà§ˆo½³Éhž#fÎ[¢ãäœo\ª‰¤YŠ&ÈSXâ]¶|`ùIé†éH’ÓNÞ¦ãÊü:ÆØmm…¤#+ñY 8¾¤j'ü¨ÎÒߘÃ&ºìÁž%ý£¡-š¿ø!öªN¥g^¥_½Jµª£7TÐá$÷ž°*hÛ›NÝA’T{˜Ì~·A$€Gn:S¦/E¤nqhª8âYùÓ^0¯j æ”Zh¡Ô€B=X/îyÎû7½œÊÆ^@£Pâè!¸fùÓ^l¦i®QÙqÐ*C«Ô{ˆêTU÷f’HóQÛ"ï8;q¿H\ì–ìm˜ž¢LÏ^È¿ ÔpÉÔì¥B5R§Ä«”½òáꈳ#Ç„lçX·€,–ÑŽðE¯&lO=ÜQRY›jéi1vQ .7qz¯jÕôuÓ´fߤáéw#ü¨gOÓ ²˜¨¨§jܠï9ÑO׋œ´öƒ1Ù˜ž¤þQÝs&¬hh¹g¢¦{²£f"Ö+Ë"É\×Â(WÓÆ"üj,B%ì ®ç´CzÇkê6PÁ“ôHa:ÝD\šëìwl?°'p–ø?Ì'µ"£2XY´dŒIÞÉpœI={U­NOœc±gMPq¿+ÌrlW $Ãá̳>{Õ¢øÄ‡–{šDß„(Ò¹=dI•Èk!s,¿øÁ<áOL%£$3v‰ì.Þеª=íÞ÷AÙùþ¾Mûpa'“þÅ-gš1pWOÄÑÀ»OW—ДåÛ[¨Öˆ¿©Q¸"°ák°š»ý¼@+–– nDáˆd~×Ó°I¿kýìx’p¤Î³‘þ@kD·Õ²ˆ&=­|ê¼’TÒF6M…)ä^Ue‰h)«ÑÐéØ ˆ#<¾Fp€ >“p"@{Êæ¢?Þ´Yq¸bL¢AL+Û&5 ˜/eP3Lƒˆí³Å“´IK›˜íéÚ™™¤™oœÈìºû©ôjfb`6‘=-qŒ·‚ð=ðñLnƒ¡oÈ–‚ãìúðõ úêUä•©‡¯bñx5¸Ê/)ð„Ñ@ôyèXùTR-'Ñç™~ú·¶gê#/òð—þטé7C3½$ût;™ê;={;I”ö£E2q¼] „×·v°n¿úB\µÏ¼e?C ¿DÏœgÞäèÛNÅÀxãìyu¨¤sùDü–ÓÈí×§^Ã]#¾%\ÌÀãi´è³HŸ~ á S=¢«•¼$OPH wÁÞXÄ®RBbôc/BÛÌ‰Ú ™¬¦Û±R!¢jž¬¢&E0E‘8/ºÅ„¬FÉH`ã­yª|¦X‹¾æÕ½V´eÕEüj k¼yÇm>̰Am°_2yÇ…þÕݰ67èï[B:9ÔlW”À¸Oç"|Õ áë~2Ñ«’ñQ€è) Dº*" g%Hõ#Ä«8M¾“ º²åM³&€aVö¡À_<ølNø`)Ý^E’·(u£Yx"d¿,ŠºUóP7_‚•rˆå4åê$½ñEí?‰ Bœ&xÕÈî5­\]CMM²P:%YHp+œ,é¼ÇÓ(kY|³E™¤œÛ˜ÝQ97'*ž¤Ó]ŠáNn;ÂÕó8ŸýçîrãUŸUw}ûÏÝ•ýç2ADûÏ»;ÙÐsÐjâm³i:ÛWvŸy·²ûdsÆí´M Ò5ÕØú#ì@wµèˆo ôS–›`*e°c„{Ìu JAe¹uTü‘ÌLÍFhviFÔ‘os‡Ôztv¢*Ööb«b´'J‘°"ÇÞ—Q߈ÎίäŸfe”·03SaŒ˜iÀ³EÖ¥ÙÆŒYæ¥ó@È´/]Ð4Óì&. R g“ôø3À÷tnHåŠî@³š¿ZUV£8WÑ0Wy¢\Ý{ §t¢¥-/2£/ÝÑ¢ð£"Tã9(‰`àèðî·5³ù`½€’³³úM†|ÅޑŬ<ˆü-mt ö#Œ®®"^3"€—ÖžbÂ×õÀøZa” à ˜ý#æ*à{‘h„³‘LM‹™e ”áŽrÆÖ76ˆŒŽ"¢‚'«4‚#è<…áà:ë 5Cú½?^œîñŽâ)Í`ô¢!"LIåã‰(Góls·mÏ]ÖÌU™ DáXÜÌéЩ|3G1ôÜUSæÎ3ày;¢ë t!“Mf¢.’i+§ 3a«ÚŽŒ\°UÜf¦ñP!þžÚ@³;©……ÑОX˜ Oä:©nTed*j¢·•‹(·¶cUpW/°nÈÊI")F`.p¬;sNAeáSš€Êì`ÆéwTŠFŽ\7›nß5DCZþBzÂbï dÔ_|õÈH¾ê¯‡¬Só }IDg‚fùèL0 È‘ œ²=åÝY<彿U2©«¹olêž±JUg•¶—¹J:„ÏÎOKåÉr¼YMC/§¨‹šsÓI6÷iá®ö<=ÄÔV~àÔÎq å™XóT²õ0šƒ3¬á?Ø!¨ŒlC)ŠšÝy5!ùÿÓ%Ëÿ+Ûø[+ùÿ2BWþŸ;¬‹¾»¦®„þùž•Ð?.,ZŒXéý§žDŸÈÏ4ùœ¦#öO2­[b~¨íJú¿ò» ¬×4¡@Ü— “’‹XM8ÓoTà¦âJ²’ý•dþ±IæWòtCžÞ©½L“«ß!î8ÝÀbâù/G|OsÃŒÿÞe®iÇè ÿwóË_¤€ßìjLö4ƒ>§ÔIØ[RÑ´À†ÌºX|s-9QD¦pàþ.çÉ…§Œèh%Š °°¯C †&5—°¨Ç&+šnNY´y Zöî0æl¢º 9Ýz84sºÔ'C0W±sÉêaZè›W’K§‘w;òJ[*ú†TO A_ )¿tNôÝ6Ñ·š}3TByµ93£ï¼2Ì 潡¯–XVƒlË*³•Ž”2 ¢L‘O¦HÐrH&óQò ÷eŠž< ŠB/õƒHO°rPí(½&Þ@LdE‚ÔÚ“zˆ.†Ój¾±I×}«ölt³æ=.  Hg}Ñl~¬ eïŠU™8õsb”˜Ð{Á§ê¼ØdàÒâÄÐOWþì ÈÿÇ ÿgÈÿ·+O«O¥ügkåÿÕju%ÿ_Æ#è¥-ÿoCˆƒÃ;©ÿù¦Ë©Eß÷ùg³Ä8íØÇÜ„µkÔ|Ù~ïö[Ðï¿G¤ü$Qf,(qN“2Û²dÄ•?Í']Þ]k×ö-9ŒŸ.Œ=.gᣦ™¸£4¹V PE¸íè³3«ˆ¹-Rø¢€?ùûõ|o=>õãÑ”r¸¢t”“Þ€]÷¦ãþ7¾~£Ž$}4GQ]r9ÃTø{Üÿx5ÅÁÁï®’!Î ? Ök$ÙSbkÏ¡÷YS„ßdM+{þ‚kò'Xʯ&Àö<kÅ“b±+åðÆ ;A]DU^>¢®G øœOC2'Ÿ{¶þ¡ù0jÊ„Ðý88íÎ6Öpð¦å Cº&ºqT°„ÐÖ‰=¥„{Pùå+¼¿öƪs$A#>å¤ð¤Y,r ÙäÿžªëøQY÷&Xƒßãà÷8­Ï¿²®áÊFþ)køb² Ÿ×I·d£›œò‹ä’Ô/Á4TËgß9“"K¶Ùaçð›À¿fÎl|YÆŸ©Èº=‹¸sa”òQþÙ÷Q xÓÿ2š !´êÄâ•ù¨q t§!>—>oTxþf²Y¢^õ‚8x¢:]a3<Ö°@ÌÄfß¼Kuñdö$½:>ÆÌQÝ\¤yZ·g8³VÇGOì\ÕuOäGœåÄ7Á<„uf|—æø}=ºè_BÆuâÓ¦_ðó ?ý.wiùÆ£¯ܪç£Áí5§ÒŸñGÀvw9vwG7Ùˆ-±u‰„ØØ“QN¬/a3¢s›oo¤/MæÞȵ²ñžxÕËaìÌÉÌxe÷d>´Tsr¬f•T¬î}­x(Úé_÷Ù©DGŽÂVȳ>çW^ª$MR,¦Ü(Ù†’m€a5¸m¼‘àŸa”zt°É¿^õϯ¢Ü£ ¦ÀÌŸÐE›Ë+ù<œS© •Ôái•¯„ÊïAy“|•\â$naÄaϾ⴮0!È’óy9sÙs~_0a8—:wZ^BÅ ¢d\Š|™/Ê+‚7LÑpI±ÿTž*þ£Rr4E½¨í m³á-ÞÉùe÷£0 “O¾ë—ìšýþ‚UJpWë_ó ØïMÎ8™ÞŽ‘©I./“s•žhÍÚI ‚ݪn˜TâÝØwº‘iádÓ=Q¹ ÷¸þ¥qµ k9ÅÚkîpÏGôøF")Fê£ R¨‡Õqêö$¥ÛTN\Õ=]ቤ–7"C±Æ@aJxF”ÙWO9ïþ‰g5›ObfI{7þ´ÖÝéhÂ0[&’¾+¶>§>5ÀB0ñû:îO§”L•“o>½Q3å» ÛöZ‰ÎƒÏD…ÈV$=´ ÓÓÜ#q×&Aúãïö7NL›÷ot•.ZÜ-Y¦W:§Ê†oeãιRJü×—oJì(ÞÅ}P•X‡>òb¥GÆhtø(Åë€!½Ni¥s{&d¶F;@ïÛ{ZÒù\‚ýÉHâÒ…$hx«´…/BRñé‡Õ”__Øfë ÄãÂIâmä­S„^û÷ö* ]5¡+u¨JGiÃRdEÙÀéUÖºJ¸Ô‡Êáý)¥Õô^H™6ˆmðê„ïö(ÜÞ¶Û^´ª¾¡š(¾ão¥ßu‹sŠ0¶?Ÿ›ñ‰!$-•':Åó÷›­Ã@£˜À–иÀÖH޾F»ÖT¸óî$<½íŸVìÁ%»‰x»Ã¦´æÃ€Yß} D]-€¤¾oÿK°çüZ‘Õ\ÿÕ"소¢6¶„mŒ„ {Aëaùx陪ôý/Lq" tbhÞ,i5{ù«0Eˆz`2•”º)ÔêŸãÁÑ/Xö‰£ ŒjJÏzìX dƒ:À†€f0óÐ ùÍLäÏL{ ·X˜DÖ~‡Ö¾ÿ/?øõß~Ôë¿=ßúgƈf’pÈFwadã)¡N•“ ”)‡3¿˜H)²@´Ù mò¯xe²±®’Ž2Àî|(óôžHÆ/‚d”`é3ÉŃXûgvíŸÍ·ö¿,Š\ÄPavrQÙz\lƯ÷…3 MšôˆEiš6Òé_Ê€_çÂXŸô sÒ‹Jõññ•™Ì‡³ú•ùÌJ6ƒéRŒ`Œìà;xÉ©ùÉÚÒ.9•E~ZüT4›b¯èÑX/›Žƒ²Lô܂٠RÎ- 2›[Éfsç¤A‚Ym=&´û¨1`>®µ’͵.ý¢SùEÝtB«õà¸Ýʳ™'çšG‘&ï*éHC*󱻕lvw>²QÚÕŸq­f3®K¿ìT«‹Û¨Vî iL~·z_ÕêÎãã4ª³óšeõçã3«³‹S­ÛŽð-î:×þAžs!ÿ¯érã¿ílW·\ÿ¯ígOWþ_Ëxç\ÿ¯.ßEèìu ´¢¹b¸=D﮺tÉ™j Æ]]¹fñÚêŒÆd½@jh¶zÿô‡çã¤7A¥ñu¡É;;õµuþÔæå.’h¹ƒ5e˜‰IG –Ø [Ñûi:bõá¾ðU›@o   w"ì 'ý°‹«nm²Óè§Ó…¥ô¯û|FZèTvF³Õbq»š'êØÍa†­$Žø9õ-85¿9¥¬ÒîÍf88H†§W¶‰Ó >e˜ÅÚ˶ô›®átü½d´Á'ó,ÁQ ¡] ÀЈí,I†¢ìtäMŽY·p®\|)ÁŒ›ðŽ0À%ªêΔ_õªú‡¬Ê•Ü$C´ƒHÚrfH0#0W`v_°­ç¹nÏÏ9A¸¼à°Ì¿cÀf²ì(÷i‚úe¾ 2ˆŸ„ ´ ’½[¢½Y€ŠtœáïƒÆfT$w5.ãÌe x Ì%ó=Ù§ÕîñI«›B£ "DDÜ†àˆ­æûëΨ+5¢©£bP€ëîv58¨Çf¾6—á ÇfÌðŒ/ ±dë;¯H®=Ž›êHîÝëÕãõ”mšk Å_Sîó˜UÙ3kK·Ø*WcMÍdwÕ]ã÷ž…^µ Ì›•’Ø ó†ÛŘ0Í)p~¯Êß±Wü&éÜpâ5F‚-9ôûª÷^uHü¡E0¨]Æ6``‚šPæUãÕ+c¹ %ÊAèÀ?(PŸŸcÇÖ]íŠ@—8&x˜È b]Ž´MÐÌ ´¡áu¸^2Ë¯ÄØA¼í„°,ýî $½Õ"e â.z¿‰b"ÔB ]ÝÀäê¡tÁÛ[¡J™&\~c¶I½õ2ù<‚»L»y—igžej<ÊeÚM_¦˜hÀOro.S$˹½Å÷7çH¦}ÜÈÎÆ ¿¤rÚž“ã¬ÄG8° òð%Äóµò¡\ Á‡ü(ø1£ç rûÛV:€ Í8-º•¨J/Q¿×Ñ«‹oˆ.>aFFåƒmªg©Ãe0ÀA0‹4¾ßÆ÷þA&àJ²QRM´¨KR­ªo{Õ£Eí<Ñ™I¦géE5u™s0à *郰і-ô”ЄÇ€¥AäÙ O½­Å"i×-G`‡6á$D2Ü?C*žÆFP—t©‹s*­‘_¶¼šuèÙQd…»(bu·=ôk”Š*úÙõ%«Ô™§[©¸ úw¤É¯£oIËÛ¸óÄX€o’8)YµJ-ªÉ£”’v“ÞñÚ]? ?`¾ƒoNV$?-ø5°#µiÚ|´ k›røÿ1-§æ#Y‡Ã@Ôà×5ÈnrE ôÈs(Äè Æ÷D0âꪷƒÜn¢dŠâ¬»Š9y‡' ÿ›ü½TýßÖîÖ³•þïG=bWÛú¿ÎitïA÷·Ïÿíìׇüãm³sú#>õ~0.y4Äåæï¨|?kLG>ÉB¾I! PÃ1alr> È~lr=ù5)W¼@O_ì P¦X„ØÀXäû‘‘Öá§ÍÍÍ ø>ß±toˆò·¼B‰ Ql(ÛGú.¸X¾¼/ ÓÇùÔ—©Ä. A0Ö‰Ó‘Ûk Xj­áhX&{Óþ—D ãR^S<êd‰õÎ&Ù%_’ì[¿æûõh·"`NHk‰eƒù_Tu@¡äÅ2c+Œüjãdré—¾$*Å"¤¿ÆX•£áà;J\nøðqñ·¯h|¼îh̾åP“Îâ„ïÂCšíÛ DӂОFÃïEÃïà3+/»¦æÓ£•Àe€Mþ¾åS:"ˆ­Ôd ½âø"÷ß_ðù?C¥gÜŸcjð’Ú³dú5¦¤vüûIhxé±éûƒmɘ)ˆ ™zߏЗ6‰ÀVÀIør€Q6¯3Žza/µìþÀÀ¤ˆ¿ÀÂ}ê²C1áÈjöªÈQ!Z/`TbßÏ0*l9<*€EàÏzJ‚ºn‚‘¸…NèGäD©Çi"86ò1Ñ`—¢¾[¨»ÇyïGm¯ó¾¾€ÎlšS ur¯BêDá§ÿž¬ ‰´Ê’  âÝ69Ũà ¤ C7M4X"îuTÿŒ·Øfpæ*Q!î ì&þ]uÙÑœ­¡ŠXè…XçeD!£O˜j≀j*p;×?…óô˜5â÷,`ƒV÷¬Ÿî Üÿ¾T—kÿ¹»UÝõî[Û«ûß2Ii¬ûߟÕ{Yb¯Jì5?«;”3°Ó¬ÁU°Õ.±ýNþjÀ_Gx! Åãê4ĸôÀa€8^9öŽ‚0ë÷gU§R¨»·Ð%â›.x;šþcÒS;¨ÏOåž(M±àD»ÿeì%ÿxÅØÿô/@Ö_ó_pJ8“E×*º2aß×e$zÔ ž¨‚õ–,ˆ÷£ëÞ`*Ì¡óÅ'h]~kóoíu¼F©x¤âž…ñH (ÈoO5ÕT~¡¶53jIÿ‹ØËÂþgξh³2ïÿÂÏKþe43j¢ÊPüÏœ5(Ϋ"ÿ™SJ ŽÓšuc{)ÎÚØ¥Ê½Ÿ*¥Êº¼¶É›ˆq¨bžB¥W³®æüzVÀÕœ€iÒr¥he>âE°NÃÆevöKÐ-²L˜·}㞌ۅá~Á˜¯·Ãþ”öˆ³-̸íòqȆ–êy;OÏs ÷i}ÛìypGÏÓõ—·c …{L{ý½±ÌíU~wƒýq¤û²~Jô&"~3§8ß PMíõÆcÔ9ò£è‰6EUð®Ç>ÞBøÝ‹þÇ>h+ùÝól:îᵈӽÁ øü ý1óÊ⯎Ç|@=áu{ì2ùŠó5‘WcÈ n½s¾£n79õ!«rX¼6ïwÿœîÀ磋„}?Odƒï`õ8ª(§rO’Ü­?¼ìó6%Z¿)Áy¯6ñ­{~~;æý$cWL¦îbñ~'¼wË´â´Ÿ8äƒr r³Â]}~…†¸P‡ †Fü+‹•Ø ÿ™ÎŠ}7ɸ®ÔÇþ¥Ù?<’œ.š}Á+?ô¤juGp'oÕŠóJW½ñ5Ÿ·pk¾ø8î]Üö›ì  å×þ$ljÉ퀈>t War3^PN±”ôrÜ$c~þž‰Hã vŠaÒCÑ I7:½âÐ Ñù£S(5]ÎëZãexpvÓá¼i¦Ñ±[S¡tߥŠ¿‹ü,(/ß¼m§÷Îά9¼&ð¯jœ:ÂIñ®&•ñ9Ï ÄMv·ÆùØF—ÿ^œŸå?¼ä¾âŸ¯øçkþùš6 ‹q3ÐÂÓl–X3}uZ u)R-ÿ·Sùû‹‘(AÊ-€×9m‡ ¦ù,2!y¦ë%hÑ%~¿¬IÉÒKmùJȶ_«¯å%I¬»õ…¸žÂUƒäâp>Žoß`³,î_Ôù']/é (ë’tÛ­P… ¯f¨° ^§VøÝ%ñpM?_×@à÷²f%Å·®xM6©.Ä/ ûœüׯ8×¶{°¬V3ªÁ"¼6~ÀUÁj†…R‹“b^róc² … I—–½‚ö^É/jm_u­¾ª¹©RMKü~ÏÌIfš>Ûlw•Ø]{<|oó_4}„ŸÚÞO,egdí´ßl±#Ñ^b³Û~{¸©_ˆQ‰µô%£Ã&ë+‚ƒ€)à¯k¾ü8&½ÕY(¾öúײà"   ÚзÍññ@€Ã/µRmu˜\{œèàrµ U߀÷&‰³B4seæŒÍà`‹hdò1`t#XGÅÎrbǹ»×>4C­”ƒÄâ/k¡ pG5MP±Î¶Øæ€“„}Tœæ›€^0«/»Qpçi®‹úO€/Nn&$dœ)³FN—ˆ“×èC³hcè"À¢½ÔÐ$œ‚kw·»Á«­G›ªPo;¢Ó`0é8:¦ESCÓÓ–„²élÐ*µU'ÅõÒª’kµÚÙ§C¡ñÔ7í침i´ Ž*’p^òÿÀ‚õýFj:æç˶“†ÔU‡‘,€a‰êÆÆT'Ñþ øV_Ï ð¶.`YØT—„cî±á>X¯¸?@4ˆcCÌ¡±@ÊGÍú’n‡¢µ0'pëq,°Šz-Šžd”=‘…¥®Æ‰Ã Ë©ä£XQ 9cogš:+ÚòæŽþµ¼eýuÔ‘sb‹˜¶‚ÙËGwŽ©3á¨ò9V-÷’×kæ¸,´L»)+’÷ÝÉJBqOàþÿ}¹ößÕg»[Þý»²òÿ]ÊC[ʹÿÿUåwÔn»ÐøÙæd­-8à8ê›ø·ÛN1"áExÕ=(»§ÜˆßÃWþÏûÖ›v3^øÁËB,­)K“;@ÐašPœšIš,œšæ8§(gfp‰EÔ^úPËn£ :C_ÛÑ+ø_æ÷êöl"¿ªl2|I&ÊK±Uó¹–4(LAP>üÇß1¯Jh©ÈF7…nc½ˆ ŸÐâû"üÒÆø0IÅ=˧¹Û€Ëh§#ÄïUj—£ªñºJ¦îRò¬,W6©Uák:9÷ÏಚpTM6 ª‚ €_Ö;5„ ,[£ûÄ ;…A½•é_K„ÀË›-o•¨q~»•-‘1Ú®fµÝ¶Û®¦¶ÝmØmçÕqD¬FduÞùh8íõ‡ˆø,·­+G£fç•£éY&PPØNr*Ò8»Ûžg\íø¸Úö¸ªÙÓãj/b\íM¥ÇU•ãÚcsŒk/:¬ ßÓ#Ey*x”¯„g|&ý‹Ä݃jö²Ð9Ï,ìm"¤ÀÚ*×þ¼îï†[¾54òí'3ôMí·~Å‹¢Ã{ˆ±9Æá@âWn@¤6¤Óhl‰#¦ì||n‡™dâï ‡ƒyoD-¡ìZŠ÷‹XŠ÷›)°ÈÎ̼TKxøs±ïå!$Ž ;ãȪ^AÇÂø$ßçÄÜzîF³wc\Tž6‚ïÀ«ÞîŽØù˜‚¤ÿ1’8¶Äûíà bN‘E>På#ïLbª(c×èš­7ÝÃçàYB33å,ÊdJ 7Ir¶?QüõňŸœyñ{p~•œÖqω_KÆãÑxòã½JY¾V„…’á:°‘å;PB±;¬¿zÝ_;@ †|ÅÚüû/3‡x\1öÀ8ˆã|ºƒ@]ÈžI_{ÒùÅÏG'ð|9N¹vy—O:à/À/g*Ä„CÛ|òn6ZoùïÝÚÛJÊ…€¼ÞV*ðç£ßVù?ïÁm!6x7ß@xì(EÛ«É{ý%>Gº|ãÍ>‹þ»E_R.¯¼Tµj6š¯nóD@íVžò¿Jâ‹úù=1{~„ЪÔR?²ü¨~)ÍÿaÆL ûoNþâ}xsy‚„‘ä 7íAtkCû!ºPëÖ˜ýÐê‚¿ËÁq¾H€ Ôø#µ ¿g!/EK”àI¼]BI^\]iôâþBŸi@ö| ²®ýZÁ UÑÁ}Š®%MÚ®•B2©Ål)*͵ª"N´žmGÖÛággCø ÇàIÆ#í1¨å¿'`ʬ¼ NÖ´…R'ó%:<*²^æáþ¦à¡pôMôO•••/E¡,° §ãUþß6ÿo—âXuy%<å+”B¢Û®€–j¯"ìµý„@Añ†­rNP]¹TÌD™œ"K j¬cZ"òw˜‚ÆíjDôVÿLÝ_Å";ùCTº ¾FŸµüxÝÚSC°<}°"/ÊDhÔX|úF4UKïè¢y†Å|X²0ò~:ÀÓ Åp­ªR+öß÷|ÞWªÿ“ò#õCqtó_\EþOà ü—¯&_Ñêÿ|)òpUP…:Чꖟ@XurºW<-â´Ü7ø9B?µŸlÊe¾¯:Uª>”ª(åÁ‘È$ñ2ZŽl\•§^¬05j ‰y˜ pª…VWµR=`‘m«HÅ„n+}­Òa€V›–’kϘ–=wÃí9íAÙѤ´JôÃD)@¼ ^ÐRa'ÃoD]F:ØÈ«Ê58ÊñÂÕÊÿôûÛ^µ"rÛOfGɶ’ ”lø(ÙðQ²±”mD +”l¤¡¤Q{ôè²PÑ+é²qzNÔmìXHœ¼ „'DäwþïÎ6°[ŒÏQXœ- û’?P~X › -Í@¬á7|%ÀμÌ'òÇ]¸达œ;Œe͵@Ô€ëtÌÕ}M½sn)€èe˜6` Esò@ͪ†aéxk%øéáKHU RÕ€ÄY¹ÈëʃJxÅÊk‹5Ò=ñr/ôROon¦iÀîŦ¹‡ §‰0'P(d0&V)ì+Ä9izMÜ4ÞØÁWUà€Pß}f„¼Mù5¼(IE‘8CûëyD®Ô 2ñÊ»r%”ÁHvoþO˜&—ˆs{äOmÅžZây2&Ì*dM“¸xZ³û†o¼wZ$üækP`t…ÂñåVOöû4Ô±‹[=mÚ¯|<±†a0„vu}ËðS ¼W‡N¨?¶‘ ÆOUc‰lÌ}o䃋×XðÞ;35€õ0Š;œkÕâ\}A°°šG±°!ÖeøpªŠI00XYFÜÛ#¶ÖÁ®ÌfÇ#§3za,8éˆ×£wG›…„Çëz¹íý²sONæœSòïp¡£ÐNÚÕN©ª:¥ŒM[g—o#„¾ š4‘8íÇŽw¶wl´} È"˜tÉÄqLhêO¸%”¢l¨,ÂTž@sV½Mo‡Nd"ϨÁ.×)×þáI14¯e—èèŸej¨¬õ:~ŠT|Á±yWw$8æÙ-™wu‰@V-ã•>2ý{¶Þ0úûvhé×U§¸½Qâþ(ý$3Bþ—KõÿØÙ~ºýÔ‹ÿ°Šÿ¿œ‡PØõÿà”çíIãM ¢@´ö89ÝÓÑ Èªè|{óÞx >û¯kíÚ¾e¼Ô\KÌSãxO GŒS2‹ÓÅÃDðÙ.PÛ3:X¼Ôùz*3Y¨öÿéé´ã„ÿ>ù~}LÇýs‡àà,Eön‡çWåãÞíåu"&ˆH–R”Çxå«Ñå„m»9ÈÐÀà~ú\…yxœUt3ëæÔ›üè„¿áw Ç¿ÎÀÖŒWX{»Vb£±¡8-@!î¨ÂAàP×àÅšÄSÙbƒšÁòLµÈ^%ÄšÓbcÍl ä¦xO ÆjfÃØçuÓïIJ­?ÀPêSƩ͔ãMŸ&°¦B`–‰Ö5èh`(âá"$l ^,飻}kŒ‰[{åJ ÿ€~·ÐufoÓBˆ>ZœûÞUçu£Wtþê¶_n²úòÈMØÙ`tþ™¿‚Hä¨EaÁÉ—dÀÏ×=yµ·7½i"òI,â“\°Öm]˜¹Â”¬ù•†Ài>2Xši+dµ§‹SÞQn |pŠ0îöÍ ,Á˜ F_á'd0VØ [–éÞ¦@c`L.f)íqdÏy÷° Ø)Ó€2 §ñ™¢§(,²"¦@õ?^¨|u­½\°dÜá̈,pr5º€Œ G¦ZÛÄVUÀïAa?ª'}ÁÎÁ¶L¤Œ@²aÂA4“™éŽeÿSL´£¡dDo¿&c¹«ßu7MÇ{Ö*WhŶÐý¤ñÑŒs˜ÄnªmëM@C˜Ï¡ÀìB×lã~,gÖïÕ"4ØGèdÀ½“· XŽ“K¾ÃsDº¹ÙKî^“ŽbDÑ-êŒ(Ow2F”gRB# z Ý»  (²ÁxÁÑ€’v®Pù%dÈgGefû<°Ç`E@’‰{¦ó–o·1ºòØaoœs[†×Á¸@|ª0;fI2ýÍÒ·±G¡˜F&Q[›½ÊN ßõy2{"ú ) ŒCÏäô) ±ú`åÁ‚…Ï¥Ï"7J·¢Y#œ–ø rìôÙÙªvO­áÁNëžnzš5«Ïy­þ»žÖSZâwP3¥ðm’“,¿+µöÖå|·€øn“ v`·£—"óýðžï!ÿ\2ð/ùÖCböO2mŠh_&¡ñ¬VU¶T©–¿(±³Û©±£/ìpõȸz`d»ÒI ÷gô B1m‰uÿì* \¾íó#k@Ï’èý8À¥‡ó*GðI?œ`Œ©cüßORœŽ;ÝC(ÿ.å º×©°Zã’†ì¿iÿ¸õTñŸj‰µÓÚoÞQ$ÛÝ_BÑ:|žSæÄôŽ øª`õ’,–Ò›Y_^Bªøø\aö!Ë¢=bø?õ´ü(YÙw]Ž:F~@Z"\\äÌùm¢º_Fxé§ xâlçE5<ª#Ôc[ 8I’Çœé ‚Ó/¥Jpø…ò?¼ô*‘áú22x{-0YÞqž`18Eà0€Âg½óÏ_{ã‹IIK(1™Âw|0`°y ¡3‚÷ZTCwUäXz^snó¡£!˜|+AÃ1¿ü`NnHRÝÂdbÓ„Re‘ϼé%RòRïDpDpJ¸Å`c¦ÝXàk0Ë/5—¶Á‹–™5ñ‡üœ¡žÂ(L¨¤Ê;»ÓV¹µÇOòÍZë`.E.ÎBÿžcøVqtÈdì¾½e¶´?ºùnÁÔ;8¬’&Àù§{cÚ4aBÅÁ±PH¿£oï<}4ŒáXt×ê ƒ[`k­‘رFÁúÊüŸ2†Ñ-m ÚnsQ’÷ŽôOïdÑw% ÄíöÎ\9 Ũä6SÅÀQwݧȭ6?åLJ$t'A‡¡8RçÚ-ö´Œ_ʱüÂì‘}i!ǃZ£pI¤å=,#æK^Hf ]^–¡òÔ¬ˆ\xÚ™tÂ`hZàâ­|C.RƒªÕ·û”=ÓçÇå4Ü, VõxéxCVż\ªžm3ãxN‰îJ-¨¢æzzî‡}¹Kø|S÷Б–6 9Qºuó®PpÅ—o<;ñšŽ‚c«Îñ‰ý“7Ta%À;æ;Hþ‹r‘´щ¡%¤¥ $ô“X¸}‘Ý %‰Q”—ܤ#€ô©”DÀ0è ­:mt„gS•r%„;Œã²‚BÀ¿9ˆcï6Ò‹’2³/³´´n1Fjc[8”-£¶?ÞJ¤„V0›š¸04q¡¸§ØWX}â@³iŠÑ•´þ !xùÖH´¨éÉ‘˜¸rÅÓ·‹%¨Qzf÷Lt j”ó §Ù!¬)Yòpï|>=ÓýÓ„bAR¸'²íx¶/6?©`AjÁŒ(³.E/W¤ "õWõ.Ú·¾[×>ˆ)h3×@É5Œ:^LµÏMžI‘6“Ü:Ì’ƒ)ég"‹QÝÌ)R)=):§ùÜ“x'X¦j[?ÙM ƒ|0AÚp, fÙã–¨y.0p¾\”Q 8Óñ]¨‡ð.%^ Æ6pTcô×ãã(â17 Ë·N“Ç&œø3XàFÐ×c×,JÀ·Ž¯Jê`U¤r’·–ÀN2 ?§7r¢N:|=‰žuåŽiëÁ¼…ùؾ'ÂëÀ¾0íZùqx¼!w,»ƒ§®ü%6"Î; ç: ßI@ï2§íÓHmec-¯'o¾|ê ‚ÂõçîEkÈJH><ñA¼#©ô[þQ„º~ ÒlCyx.O¯Œì[¿N¶†¨£¶Çgï.kαGÀl¤‰ÂeXó-Mø ±·„v:Ø0E ܬ̹ž@WåÚI%àEðAÃÙ…\ Šˆð–~Á)̱2в¨Òv¸Jð;þ¬—ÌíŠ%tfM]¾ªi禱ÐFÔšK=Ëgš“Àâóçq߉Å9v7ˆ(T‘…Ä•í Ô B«ZÐÊ•”Â]…=h¡È+—1Yh´›ÝxÃç]D‡?6¢‹8OL½Ëd#Éa©íwô;v¸,¿D¼!4HµZÔõÊ&<R) {øˆL„)°”59çbhöDK;eÃ%ÍrR‘ü¦ÆQ/R´œi)A†#€ðȰÙ0YxQߎMëYïjm,Ÿ„Þ‰i³Þú9 ™c"¸RGd˜#GC.Ä•®øPñCúg’áU¶T¨ÆüL2D¹,no°&‘ †äDÁ:r ÀóøAžóE´Ú2z·fÖ !.JwÑpšií)ê‰WÙ´m]ñ(Vÿ’Q9­O Öz9½ ž+åÖžµG{psª· d Y>ÚðY”ÔÑï¶ÖÒÙ"ãÿ:&4ð6ËÌ£%i·û£#è˜yÅOã6Ð’ ¼Íx»'(¼ßú¬ÜñüP¢ù!¥‘Åä–OZꩱ7ý±¯u͉jz±3áIu™¤yg Ylânt“œÜNÑÆ•|“öƘzëÌî„qX£ /FRÇa" Ç?zÑJª=ÆÑÖsI‹‚ˆšË´ƒJUsqLÊÖrAp,-WÕÖMEµ\˜gÊÐrUÂZ.=3Ò‘ïYt‡d+¢^ñµÛ‹)¡^ù‚QZØ_gPBÍ ƒâ4F^ -=Ôqè‘F¾ du”€öX¸‰ÆEÇïÌB†¦Élÿ‘)šžžI XLÏtlŠñÌlÄî1eÓJ×d}Lº¦ùTMåcCMtl2 ÇŠ%ÉÐ6µÊRaé›4À3evÑvf'V¢A£[aª¥þÔDp_ªÛ_®kÖ"Æ4Dé ¢!²ú䨮ZÕU´_,§®hãçWm<~Mц¯(ÊÔ‰­m#pœ¥Ñs8Ç”l<*Mц€T¶¹'6».èq¨‚NÊHßk’™q5AêÒœuF‘&ÉÒ¨˜ ¥9u>Âèv¥Ïñ±RøTÌãñ‰þ!]Ýs|¬T=ú {gAX¦.çs^UN#K•Óˆ«r1UNcvUŽMc |ˆS˜tFœž<f+}]o›X£pZ1Ÿ2H¨=6*öªEt?¨ùÒýàd7Ä/ÙK‰¥©t@÷³‘¥ûiÄt?°å8Â2 7ŒNøÚŸ\Ú±2¡2«ÌFšJGëˆ.Iõó‹Ž*ÉßÊ‚:­øÑ*›0hذ´GZñ³a($_î_íã¨gÂ:œ KÛYíšµÈ΢‡ˆmJÿÎg#—Χ>\€Îg#¬óy&t>¿æÑùØBJÜÔàÝ ÜÆççÃÿÏ×ùð ó©VEÌ߃":Ý›?-Dç£ûÈØ ætÛÚV–vÇgíÄݺ£zgãh¯|td^ºÓnÚBî©wfÓí8Ê…èéŒÊ³Ô B™<_H,ÏfÐüðÅ+ímú'ml¶àšv§Ê˜©4@6Kßà†~r´@=bZ ÊóÏ劯"$«T˜¨œ­*gjøÜõ,1Ùñ#¥²øyÿ} P¦ÐtW¥:WÅÀàSÂJ½4k,!¬”ÿiZ,5þÓÖîÓ§[ÿik·òôY…ÿù¿WñŸ–ò4·â?u«#þ“ŒûÔÁ?àßp̧“ö›î›î_'‡é¹»+‹Õì}‡ PÏÔ†º P"Œ¿¥šÑíE£?µm7V˜mŒíÔ¡àN¢Xz(£Aø3%è_;ÐÖðù1¶ÖˆlAZaZXÑÂ:õÖ«Æ!6V¾&zÑ6äñ2I—JåM°,ïûþôê:™öÏEO;ÐSÈC6¡x-üÔ£°à#›HçÓÏ’éWpS/cƒ"ü½ Q $ipЀd ~;§B]Ùc—ƒÞGŒ©ÔëO0l@èBòËX8¤ |ˆ§A?tä%ì°Nĺ€@E2pÆq£¸üæ”l¨’ntøG”Íb 2O,›Y¨æ4°€à7-™X˜v>J./ûç}˜qÕ‘ÿ,%NJG PEiÀýTÇ•H‚+/ãÆtjÍ˃£BňH/¶¬„çÆœ&¢SûMÖûƒ"n vJŒ.]0žÜeÆï 5¥4è»Mi‡æ´cLjsæÐ©ét_@ž=Ø®ˆ;^ˆ*>¶ü2<ÅP_½¡A…|•FWE¸¦Wãd¢8°k¡Ì¸çüfmͰHt›gZáð|£[Ìü¡¤xöÀ¡ÑÖZ@ …·''jÖó†b`f¦ÑŒP È T½$Š…z“Ï M*ÊŽÌòøF§€Ä‚°Û‹7 gc[B!÷*cÙiÛW¼Ã˽GÖ+&M“jûˆ‚gÓY%ì’Ìw¯º›â•èІ*"ÛFA§‡®-»[©ókGõ„4Aô7”ª„"ˆo޶8K¯FfM6> H>ŠYÛÍÚNpÖäÝ@Èèós÷z# ÜÿΖ{ÿÛÝ©<­ºñ·y±Õýo @pûþ·§î¦SbõÚ+¾…ß´1 ÿÿñ…à­ˆÿû>EJ†1ÞKl*Ç®Ž©Æ8Øž1O¹¢ Èi“4+pŒSdü®™ÁðMÑÆÆ(Ðßï 3Þ*÷:üJ4øײ¡{;¥ùÒòý+~ã´rRTg%1#ì›MbÒ(CŠæöß-›qa%œ÷:è ëPì›üÁg,SY Y¤&_²#Ø#™—’Ò*ÊÁ †£ÊBE~ŽGßú×pÚ¸17Då C½Ù•8 f—4Ù壔B݉³þd¡ŠEßKä°\•ÌøäÆ6ÁÎ' < JªMvÍ/°@Ð-Ù§äF­I [‚Ë>?ý¾—¡S"„»»•ùÑ_ +µ5ÙDaûÑ·õ¤¶œI¥ÅÊžUâ'F+Æ´Î<«wN›~Ç:2sùsɰ·”úê] q¦û#ï§t.áp^ÞŽ‘•ÑÖ þ×¾‹Õ€‡ÿxÅÎF· "Ò~‘‡9jðÂÑ7)ë2þ‚¹'Þ¿ÄFÐð×>ˆº…¤ús} Ë5I.dRRÕ á<Þ¤6°n€œ×¿H@s.d`Å/ ©—L­Ò!Ñ‚@£œ$\ñ«—jŒnƒ/舊[üL³>ëAÜÜÞàã5‰8ŠË°2 ÃT«åùößÊóáÿÀÖì ÿR/ð@"Áåææf‰9!²¿ÁöâµðŒŠáDsŠü÷Ó†®þ.S"«Ñ/¥OºÉd(L}’K¸‰á:"Ϻ"ö.a}bý©˜@Å&€%Ÿ<Ì‘ ¼0P‚R5ùÊ{I½Ḑ(ÀN œ—l¶è†»ï}áÿÿ÷[¡Ïozý•ÌÒðÿ§ô§üÈ‚)T½c4ûšp4ÿ’è¾apøÔ‘'ìÿ`78/?ÿŸî¤YjCV+BqÞá*LâF媂Üu¢B½°Á€Šn;v2£ «4rI™E-…‚MpYŸ„ñr‰®ß|‚§Ò^KR"”F Ï…ŒØ[ì5Ÿ]~®]ÜòCÎì}_ö½_ê‹~3渚ҋ¡6ÿ?@»ÿðj€C"¤åpRZ£Æ"m…gŸKÒç£3T, €;O–øA%ÛsªÃ» 0Ç•à}BÔ+ K¸×áÕX L€3å¨- \å‰$HëM ì‡ùGïœÉˆè _ç åýPº‡.ìÇn+ÊqÅIçÁʳ $’S$>8v™ôðö";·”ë¨+uÇE½ 80 œ–ˆ¶ yÏt`|1ì§™”£¯&²¾Ë”hð§"\[¼%K‰2›KhF²¤ýë>ï5Pzg‡H:¯>‘B #KšŽä¤æç²±ÈyNª]`gðW™NËœüo ØZúö? éŠ8¿ãcè_ßø2$£ÛÉ໎¦ðu$h¶ªåRXh¸/îó†ûªá>6\27p˜‚#ÅU¥$÷‰^ß@YN™æë×ÔûÌ Øœ^ÓÚ~E\î]\H…öâ«s\Âþÿ”£„ñ²MñS“~¢ÿ2$(Â? l+c‘š‚Ð E›DSøÿóTÝ£ë8œ¢Aµº•rYSH³€›wÒ»L`UÁæHQ£Ê“faHPyò ÿë#ÎÉJ;™×Ϥ:?6ûÅëZãå¬90 ~Ý ¥Äð5ƒ…€5@ë Ü.@Wò¶Uï–„½ Û7èü/ëí¯rToíóù!_‡-ÈŠPoÄ'b¯þªõ¶Yb¯ÚoÞ•Qb”´™¾mrÐÝ#ú§“¢»êRî Êéð–>Þïµø¿¼òûŒD‹OkçA­c:8xÃgæÀ´ËÈÊQ ÖMOîĵ÷˜C¤Â€íÅ'ë°Íy€ø;¥Äv7o2 úši0Bè«KU¿ÃE³uÒ R ¹‡»ÀÏK WݵŸž½,°MÞÜ&õ‰ìßñ»s #{†Fqñ”ÖʱˆAø åhºÓxín §ø~Zª‘.à$ù]³õ6 äv¤ •°kå„*ßJkrÇm²ö€åwÝòÇ鞺@r UP(«õ‹¬eZª¨@,­Ã@ƒè-A°ÀÖH»Vbe¡ŒW儊_¢ïémÿü³t0㇥–]hy`»kèºw~ŸÉ g»€§Õ;‚¼Ù9] 4'­"2>ŽÒü«ÃOsÆ¡B.Ë5ò씯NànR>½YédPNžNÂÂL8:Ùk‚ˆcÅ•Ò1·´x*éKÝù¥ip{á]]gCËJÍæ‚ÆÂ&Ö‚–YüSTº¾IÂQ(§° Ã'<. âøãÀÓ2}5c-ÉRùNÓQkfg(1Ó¼ÀPZå#(è÷à ‚-YÐ)ψ«öHÍÇsò À³ƒ7‰zjWSæÍÜìÎÎìÐ%ÎU#ž}'ÆEÞe®W#Ž”À @Öm”v‰q6ÙéZÊ¢GOE—ŠˆS$"cu1„Íá¦Øî Pg_\«=£Æ{tͦ}[ìšÍ0ǽ_ñn^_9”·§ï4ÖÝUÉÀ•6I RDB^p+œ¨ Göt¾7»÷Þôž°G½âü'õ^s…Hyé|O'Iù _føÊKÏY:Ñ1ñ”XqöÂÙ~È“{F–À¯›Ì=ȲƒgÜÒÝ:ª­J°­V¨­pS¾û¡3^D86ÑÅß6ÜB;×7 Ã\OœŠ}‹Gs¢ÖPô.§Ÿèž*n®ŸÖ-Íœ)ÜÍå†K› Q“î;âе©žhê¸Ôz›¨µº¿‰›_*?ŽÆ|”BmI®® Õ%xøž»ær»,&zäÅî©u«SkæuA`„ä Äÿ&Oë~k]ô›Å½ g¢ZÉÚ£î áÉD‰¢ß0€Y/â„+þ~CŸà±*‡»ñÊGÑ‘¹XÃb1µþðQÄ. ­µ»Œü …=:ǤàZh 2Il Dõdñ}ÇÌÃ0h}í‚€yÏæ@æÙ‚ÒHqöý¥± ºÓœ9ÖföeO¥âbûlÔ“Ç<$˜ôQÏ3­GnÚÙ3æ›Ú»9!×îpDÞùØÊBÞý4¾ç#ò—GqD6—D>}¸Ûù—øvÉ·ØÓ%!Ý÷övhw¿?s¶a\‰"$©# nqþž@í@¨+qjÇz±¸c&ïýÜñÐÌ›äÊù‡:7ß‹¢OóœRî˜Ý`ÀóÈzö(qÜŤ"áûÝ?)àý³<ç×/)nd¦pŠ]¤ 2úÊEÅ·!µ<)gÅ„ûºxy#ÖP„QÞKkäðÂÐu.Áa"ߓȼ¤;ˆ½ï‰¾WŒ¾—”¥#ʹN.ú`-8N&·ƒéÄ;¿ß‹d‹¶ ÂFª¼WذÎÅ a_¥F, ¢ÎMØñ„]Ô•RGQþ‰y¹7§QI5„OÕ{_%)ûà ˜ë]p-VfØÛ’}ŠnÓ¢J¯Þ7@Âa6v½ñ÷À¯(¶#q†eòÌ{@é‡pL¢OÛ'x­‰BVa&Ótxºi„tUŒ2·NN/TãÀÂÄn©À|Ìëà‚Š?ÞÆ$äF7ÆZEÕYYLÛcÎC[î.+OΈY 7Á@¯°¯x°÷žC¶zœ}ƒjàÀ®±º!6#~yhI±×à#^.¼”i/ÞKi±øã ®v¨`ænPš%ñøÿêÙb¿[xñû‹LĘ}µ¥.Tž@s@Ö׋FËXD¬ù2êk±Yo¡ *†ü.èK‡prtÏãèC5å1ÖVÈو׊©w? Ø#õoß‘R"ˆþu2QÖˆÙ»þ}’¨ÐÅK6ûvʹ—²7Ò²6KlµûãsŠ ÷­Py>–WâP«xn ú!C»ÒÎî\©" >„Èa##PDH/d °ôL¿æ ðjΣV¿x³~%×8$©cjmSåx:°$c±Ø’LS “Iˆ‘Þž Cl¢DÇðcŸ”3€Ó?MÛRϼ̣È'Á •qvÖé3‰u8ªEM33Èÿ·¦]ËÛÐá½ªŽ¢÷GÅÔÉH +mÎB5ŸÿãÓ<—ï·ÂD#x/6I’¢g0²~Ú‰y”}^Ö/i<µ£sˆB"çgæá™GÐÀf’5°¨¸eJ¢üq¦Ì€Ybƒ\7štóÓ,â¸,!Žxñz ¤±'Zª smH×ÝGâ}FÙüèDÀ yy$ì–c@ÀŒ=ÂY#ob  R7ËÔð&É…pÃ¬ÉØ£©rÄèO€ û`È•âàM£ùc”[9Œ 9)6³!&:“j­˜~®äà,âÛ5ïiÉr˜ñQUm^(í<‹s,AÄx£ý‚)Clymè, ,q0D» ÅØˆÔ3†¬ ‘ ®‘ HÔd½˜Åa(d(W6êß¿ºåJ¹^/S`èÛó½¾Q±ø"F³=Óhf¢S1Jªl®X»ñ}S¬Ì'Ãi¶B>Ùø|í‘VJ9 *#Y޲©ëJ”Ê8‹sI”X¶}Cx܎Ϲ¡ßJ×г$žƒåWt0¥ëð#n²Åq/¹”l½›IõÁî ý`Zçˆì©ð¤ÉuYnE›KÂfQ‡°œ–.cN{—[Ú;‡âƒÍ¬û`‹Qvei@²û¹UìAkÄØŒ œ2Ãw•׳¼"ûµ4™=£3{'KnÏ|Ñ}eg–™e ðY¦ ž¥Êê™)êØÍ™7.¶Fîovò¨ö(ü¸@·ˆ¹'3­bì= AsA44MÿÆ´ÈiFÙ÷F¢ä÷:M²äˆ±J1þr¡Zû :d¼¹}~*OˆÅ¼õlÿÒTcN‡8Щ’éBC_ã¬÷î7‚õê¹Ëˆÿ}q¹ÔøßÕ­í/þ÷Î*þ÷RAzìøßàN|ôf ô>€mÿ§ýºÃÿ9ÀmáÜÉâRÄ(Güõ#Œö À³óµ[N ÎR 6A4zw¨EÌÇѺäŸ)-¿îˆÂ ÔÍÙâ{¼„«2Ök¼Uií(¬—0Bd·¡ŒðøÁˆg„±j^v÷«&³Á³Ñ»¦8&ÇÆô YN&S ï@ø &£¿}š<˾ 6ìj4šHÏéñæÕæd“˜Üž_¡¦ µ$]¯)š¤H·õM˦[ÁäÙ:æ“ÑíËñèš%½ñ ŸPp:ð½=+‹ çÔ3^NxÇ@µ÷xÓùAE¾†‹™f:¢ÓÄI±Q|[Ÿ0ÎN•˜HÏ5¾æ´àËõj|Ýú™6Ê çñ.)þ<ʽû‡ìcÿ‹Ä)é-b3z]¨¢[áÛ:ßÍgòkWØañÅK¾Ý@HÑ/ˆiÉeïv`‡€Æ‰ØrìãsAt£ÑgÖ»â,ƒ€LÓäãw±Ö P×¹ÐÜ®XøÑac€á ïFCIBxº1+WXAtEÆ&š9GX85Øîƒ.WPe £)¡u9 2ƒx¦#Fˆ2‰ÍõœÑŽâ4¥Áÿ{Ëÿ;ýˆ<ü!ÏldDþà&c*£ÝÀ Á‡[^Ø`š ¨ÂËš„jB” zô)}Ø‚b…SõÄÊÞùh4¾0†/l¨ˆ^ùÞ?ÕTÀ¹˜=q¼}6ÿû–SÀ á¦Xj{"lK|¨jž4 cw‰º„T€)ÝW¿ÒCÆ ×íÄR¦“ž†x–@à/ÿŠð.ññ…çž.nc>„›Ñ'ÐÙƒ\(2eB ¬8»åð†Sã`r#5›1~i%”ë??14.ßzÓ=|.Š ±Ýuïsч'§«ª#ÉÂvp õjc¬«¹VÛ™o)Çw ‚Š;ArêBߘÑÍñætÓš1kBM0AØöDšMdN%”Ë=—¾ÔãÀœ\`óÈV0ºõ¦KÌnú_0 Íð ¿!Uigþáçê&VÐU˜n䥸 5‘síË=tý$:jšpÎÜWQ¹ëO²»ñ@Ì6۳׌ í¨ÖmoÄŽ{ù‘η'°%'ÙˆŒø÷^¯ÄÁÃùvMY…@ н¹Ï©a{ôðÊ÷£)Ÿ®Nù×­ ûå¾á_¿&ÉPqšQE\©0s̸ͥLn Áõ 1}ê(µ*ïuÞ4þ<Äÿoå‚Ù*9ཧŠ/«à=Atjº£o@ŒÀw@~‡ÊxàU2LÆ‚qëœ_ÝŽY£«Nhuö2b'‰jÆ“­ëˆkôÄõÒÁdrb ø5õððÒ“ôέ]Ρ×n§#`?Ï¡E9UbŽ›l{‡Ÿá£MöŒß¿nùž­üú˯%vsÞíì–ŸíÊÔÿ­þÏY[ ›¡C•¼&¡=:ƒèéöp(M%`öUV–9o!Þh;!&¾I}ÒãL4ÍQ rÄœ‹ÈÐ}UÙ›:XæfÄYªz³ÞzYþuwskW¢armgõÑ1'"–ø,qÈÿY^ÌÀŹY{P—¾oÁÈ—T‚ð_Ò®ÔJs¶ šóFÍŒ„ÁÄ|aG%vïå^³ÄöNJ줉VT¾ºoùÇIãm§Äº‡Í“h'P‘чwoÚÇj¾RæŠÊíeIŽ©ëño'¿Cs‡˜Üƒâ:È?;ûU eÙéœÒ结ùÉiý „¤LÁ™Öe]Èoq®(˜ÓvVvL!Þ5@5 ®²òÝ”/LˆÝàü¿5øî½8ÍPp¡ŒowpKk”¢ÖÀh #ïè¬QÆ{žëÀ­DÜ_ykò k©pÓ!œ…¤¹áîø-ßw±w &í̆§'ÛkšïËÞ{ÜRL†4™³¿Â—é o @Už·ÀÿoÇ!6¦§w„]«o2×üòÀTÞgÌ)yGäéÌXσXtŽ>7„•Z9@«0m%fwÔ¾H>”•Y°>MQØÎÌêFQN¦Up_“Á46©PKñ‚/õR)÷±:ÂÁv³á4=8¾~²n$Ö¶ùâŽFžßäì­ÃI» Hƒ-­k$&Q JÀ@dDÍ\õn@hä‚À°öCBÉ 6N_¦&D~Ž}í}w}Ïùó1™²£Ñ“×^¼0KQ!ô?'lï;§_“Á üy8úê %ùÖÃð¢Ëo}’ÌMÙ¤T(¹ð0æÝØu¸yÝ¢rG»¯¥'=¦ÛÄ8¹îõ‡°6$ szÇŠ "š>ˆèP:ݱ…ŠY(@ÙÞ"(¡€Ï ¯…$¡l¬äPL©¤·;âdy¼âüå-džü2Æ[@Î'V(ÁÆY¢ò@ÒÓ~‡|3åsÉÂlÉœ9ãþÇ>sâ®á5€I†TõxÛ~k¹\ÖØdo Ï{]dï1„¸$äŸô?^÷þ?àUÒxkëßiÖáØ.Ðù€'¯ž8äX†–FŸ–O´ÕïF‡nK‚d›4H*gÿª³U·°GN¸$L¤ÿ€9 ënð…iÅ!þ*"fÁŽÖuŸƒ…(Úé18-A¨€Ýˆ×8üuÌ õîX€ö-{àõñÏ8€”è¤Ì?€Èâ$ä5#gŸ>EQÕ#«¶ßPèð°¸; ½RI³Yâq`X|ΑàsÂÑ? ÒúlüÏò?e§u“ˆÙ¢¿ ôÎ)k‰½b©`Kî&õ.%ßÔH¦Ê¡kyßDíŠß62Ö¶V_³TÁ¿é%pþ%º(¨ìεtKh b woYdG3øL¨`3m³qkǯ\|hZõ -€,Žò}Ó¡N.¢5ÃDÌ:dļE)žS¸Œ¥d…ÂÞñOÁSÓÓtî¹4 Vú“V6ŸˆÜR½‡¨”½œ{WÞÓ¾Èk©tðò?ÿ6K¥€ýÏÍd©ö?»Û[;žýÏÎVueÿ³Œ‡°Ý±ÿ9é„£u‰ð÷àzt‚fÈ*.`Fƒâ\xlv@*´=bv`ªR„h(ÅK±ÂIœÅZ(£v"Ì„Û,þý¾0£Љ¨ “h6[ç©ÆŠnšXñŠ ZjòÚ;©k­‰‹„Uy¼¬Î:¡2.rU¼ÆD{ct§¾Hø5%Q†<:A9åêû†Èq†÷øaYÃ'>HXòÈ»5õ€šüàn!\h8ôœ@üÎF2jœ2&²Ó:âmîÌŒ ‡·1©Òœ^ñó¬‘6¥w&™îˆLpœƒ; VžCÁÔƒpã3æ4–wW™¯ñŸZϸ)Ý?ƒi{ ÚŒ^äå¼Nاõ’°²ÒLÉsù3ÈIÛ§ÖE˜WšÍ‘“ÝT4a·¥sTùá;(§LÊ4@B ‡ºá:ŒK/¤ƒ>èÓ廿ö 3ÀÛqùpçZ#æëN¥®QiͬÔÕØÕØ ?Ý~„«ƒÞT/˜ 1ŒSȹVŒ¯ Ü…ó¢œú“ÒòWÕ-‚ÖP””xöþRö ¥_†m@Cp»ø´M¥-ƒËt$,BÃS™’a~°QxÓ±)!P@|ëÐ)ê+-Ò9EI±Ù¬ÃFã 23×kªÿ¡³r×NlXyrq ü‚¸þ¤ºî¶ÝÁªù’<ŒŒ}K¤ÙcàÃÌ«`Ã"¥‘" $jjn”— ‡¬êÛ$Ú|n¾é_ÍBœ>©Ð\ŒPü‰ ü } ªhÌ@ù ‹@h¸ ÕaùӺ悑 øU¶ûU¶ûU¶ûU¶{gV…ÝØ¿*ÛýÉ*Û½z±Êv¿Êv¿Êvÿ#²ÝŸ¬²Ý¯²Ý¯²ÝK«l÷]_f¶û“U¶û‡˜í¾~’žñ>> «T÷&ÕýÉ*Õ=[¥ºÿ÷¤º¿Kú“UúŸ?},°lCÊô´ôÁüë`án-Ý›áÿl0ŒÝtèé¦8Dƒ¶Æ4˜h°V={$s¦›`ŠÆZLó«ôñ6}üÉ*}|`5Ù“í®²Á/+Õ-3Z­bAü”ƒ¬:K‡¡íÿå’Ü*‹|¤G÷•EÞš2ÍHpü*†‚l 4Åqæ¯òÐ?àý¸ÊC/Î{4.:Ùü*­üC=k½ Í*)ýÃIJåî–ŽÞ|̳lÿ¿FNÃUBûG¶?V íÐþ$žÐ^¸Æ¬ÒØ?ü4ö¹ËŸ"ß½8OV™îW™î©«L÷«L÷¡g•éþ¡å€d«L÷îd¬2ݯ2Ý[ýZeºÿÙ2ÝWŒüöâoímP¨d¤§·’Œƒ›cùáò‘G“#ÑøH1Ï´\¦ÌüTUa>>_Jz6ã¡s…‘Ž~h-pɵ@h\ ¹<Ùk“•ÿ–Í™ž-nÁƒŽ`ÝEg’¿³Lx•‡þçÉCŸ*`« ô« ô« ô‘E±°k“D‹ƒHÉ8ƒ³Ûñ­sžw'y{ÈdÒÂ\NvÝNa>o:ö¼Ëag]o…x®Œ>»=^%]÷žŸ'éú½°l•n=\z•n}•n}•n}•nžUºõ§»nýçÊ·n=sY7­2¶ƒkž¶Rý—ÄAþ·>øÏã‹åæ¯î>õó¿?ÛZÅ^Æ#™ÿ¹} Û Á^ Âþ4ø?àpR{[bïàû»Ÿ#¤szôf6«˜Š€þLaš Ã3Š0Í|FÅ_ï ÔÔlQ›ÛüÜàÇs2ᄸ4ÁB©¬Í=^BÜ|¿¾N ûŽ[H¦~úÿG–CÚÙwŒX7ž^è× ÁéO1 &å‹ ÜÈ£‚¬íN‰3#Ø©ÄCâ«w"ÒZoŒ£R?Pr«Ìp¤êvH£½P‘ïTl;;ö¦37ii2NX‚‰)ÁwêÞTE%ÃäFú™ÜRœ^ Üéì 4KIŸfn×ôI¶ÛUÑžD"¨a`ç鬼¿xî;Úr<>«¡Ð@GyÕŠ©*â÷æÊŽÉ|§¶Ä^.:gº·Ò{Ï*òµÕ±Y"µI‹ÖêÏí¦·?¦:­¹ ˆòªûa©Ôn³£}b9³~xá ½0+ØGèä·SÑÞS@Ô¤Yö8ôTC˜DkD ‘ Fæl#Šâ¥3¢<ÝÉQžI È]ÐoýiZta“¤I<ƒp„t7“dÒÍ çÒø’J3®â@ñ"b¯ƒ$,Vœë7|§~ ðVqj±œø‹qr3N&g€ò”©ÓGÌù)„_vLžä¢]ˆÇ@ “Ë÷O ²lé;“˜hþN3¹ ©´ð´“$n@WAÞ8‘ÂDSnSMÞÄ£aåH¼`…J©%cŽ ÑøÐ¡ÐÇèô¢[wâaaXž=‚¡‘Eø±›ŒCsn®Vh3ޤ áMy"‚àìÌkþ,„} !p°uÉ:ÔÞÞyúdÔmNÔÈŸI5Äš’ŽªnAá쯞w‡ÂaÀæ!–¡‰±æ+'¾›U€oíyÃ¥£äLnžw|xßöEºD²— 0©&ƒ_…+ÔÝ÷Ç»Mô¹A;$o*û[ hfëÒ@b” u@z©Õeì”C} Áù?°¼›ø¿×¸àµ—!:ÑktFÄeNM|ÉËlڻ巋/ðßÚŒ ·ð;fm¡‹"%aÏãw~è$TýRè )5•,ô)[oå7þ7Ư\7rŒèJ×âºy4YsŸÚaótªæ]·§lhrY°²!¨À-⨫a[–ß–U)\ƒÖ«fL8y­WÑä6E ŽÆí˜ ':š³_‚ Å RcmÂVò4–¦'¶'‡Î ô&“Ûk¢Ž™+÷eXxÝûf¾·ÐxÃì4£ìqÿãøPÂNÄø5Q®*d\¢ÐÔÒŒtš ¥Ñ‡›^JÚø‘[bŠÝ[ȘOs@l¢âxt¨u: æOþ`…#‰tšÜ*y”_ñ!ÄYï‚£#qAžë°a“ðM°‹É·Þ9Òc~ ŽGßú×plE‚N%…•+ õf\dgTâPAâ_Òô›wŒè –1[ÆF5aX[W¦íCVáò²¬6’¹é?•§2§Ÿg`ˆ}"ÎÏ”’Žþ~Ío¼°™‚™à­I$…™ìîTæv áUYÊ06 +aT"L®ŠÿtRÔ[]lZ„ÜyK”Eì=Ä–†Hþ\ÜÁ;4Í:>NÌn+Z~×-ß8¨A Œi†áeãm=“uMƒQ´Éã >˜ß,šÁЮ*°5RꮕXYèâU9a¹bÁŸÑ‹âð4âEAPË|Ý;¿‚ϋ䆳OÀ›j4Îä`ãÑ@sĪ!oô… C|D~*3•³^×kx«W'pGiÞ"b£ ßIà$l!”$>=°4l0x3k‚3%àI—ºóñËÏàö»ô™^ e›Ó14›v¢L£Œð*9ŠA4²¿ ò.ÃY(*³6…ò3((±že«Û·ªî[(t¨ã^Û=¬¦¦" ZVª ÑsåŽÕG‘úúRö OùÊIµ2¶Ⱥ®¹áEëÎP¥¢ìëR1 ¬°n '¼÷%;ªbW¬×l|Øx)®iC»f3Ì 1˜\†¾¯x*¦ßºÒº: ¸ó%‰qÇçOŠ,@\¨áº¨gôÈžN+Ϊ“Áà -“åj*5«d$O÷ÒtÏ›V;š§{μß÷¦{÷Q¤éž=yðÝÒts"¸ýp ï ƒ¸òÏ倷²½˜4Ú§9Ô©80 Gç:–ûsÃLÌr˜#ù+snbnkD¡TáÌÊ{¬’j»]™)ÝÞ«`r˜dJ-”-K7¶å˜y¬mçIÒ óž}¦?‚¼Ü;k;¥âbûlÔ“6ÿ  ÞNžøÅ»¶=»²Nw0 rÖ­Ýá°›ólŠžuóž÷pØýò(»æò»Yˆ-ywþß ³[´$äÒÞV mV™BT ¥ 5‰Éqþ ™[ž¿±^,ä@¶²+§LrÊüC€ïEÑ”°éñá®;;üq>Ï%z»HT$T¿>ã‡Ìˆñ,ÏIôKÏ*2 º(r¥æŸyÒ%“F±/£è¸ dyKÕPL›Å÷Ò~3¼0tE†‹iØoÆò—1®ÌÊC¿{¢×£×F*¢!ˆÑ’‹>·“Éí`:ñÎ`¸ÈÂü¤åG‘Éo¤ãB:1I@e˜i ˆh€sœúÀ}>!M£‹´R¸&Ê?1¯Úæ*¹…¥ˆk¼È˜î¢“wÚF®ð̵ªwsf‚­rǬ—~"©oY©¤²³[åI÷(SQIJÎEID•‘…*o *‘jËË?w™yjÖ´SùsNÍpjé‡*OÎ ±)ôäL1õ€3 -+‡ýŒ)§fÌ75ßjÏi* #’é­%ލ¼§Q4š1Q•Ÿç6WV5\ÄkÅI„»ŸEäªÿŽDAô¯“‰²›ËÞ-ðï“´TX,å*[øf‰­ã]swåKÜ•–·‹¶¿fåìrvA óIÉÖ•‘ªKr·W)¼Ròwéä][F? q‹3•’j˜üAŒ ô.ô\b¡ë«Ü9ÊlÝ韦m©g^æQ”– ÕHY)²™s8ªEM33È[JVlv?:žYWÌh1u2Ò&š…jxäÎÈh+:&{@¡‰JM›žÌ—’禆Á}6$ˆÿ6záAõšÐ‹¿µm|AXe†…ójz(è*´Ë´õ‹Beiê·aÞœ«ùD‘¥nh±©4ÌrTÁhC,5ms ^òâEÌÿ' ÏL. ô·1ÿÂ7!×ü£ÂÞŸCŸcú³]3Zȵ¬Ô¾ÐnŽzw[EÝ} cn§®t²N¹vÎ"+ ];1#ŸëÏ|¥Šß ŸApôùüûŸæ¹‘¾VÁ£y€y‹£~ÒÎ’£ì“¤~IÓàéÓœãz9Y2•<·o–÷Îî zQ)œs±ù襥oĆXB ñâòÐ B¡ÉÕòU˜fCÎì>­è3ž˜660HÞDžkýcýc§²H.b7­lïk*"€Èåy×È‚\X ¬²£ïO€Tû`ÈþàMC¹_‹[9Œ 9¸ =Z æ™§¥,âÆŽ2b¿ºl̲’”C;4ùo´ë$8<õ‡å¦jïIék½  „³D‡½< YÚ¹ó€¬ ‚@å¢í·^¤3޼ê,™’gY èðö–:ÑSó7ÏÒáí™:<Ó–´öÐLÄwž›‡¹@‰üËFJft- yâóµGªå*¥¬9æ¤"Ž+Q'_fyN}ö€C–_,Í”dzדL3φÑynë[XÈŸ!âg3ŸÑ¹äÝl‘7›IêÍî øfZÓ„ü—ºÛ§‰ôXn8›K Îf‘„³œÂp–.^L{—[Ð7‡Ì›Í,öf‹Ñsd ¿³eº¹¥×ìA+CØŒ œ2ÃwÕ²¼ÒÚµ4q-££z'KdË|©meg–³˜eÊnY¦Œ–¥Ši™y—ßÍ'QŽ®‘{¼[ç“Ǽ0@¸°)‰G2Ýb¬7'½‹ïjŒe\MÓý„Q-rÒ‡qVÌ—q]·8bªR¬}\¨ÖFƒÇxnÇ‹Êb¯€I&_$Û%.ÕpÏ¡t¬dú1Ð×” ¾m6ùÀ‚úÎð„âÿþ³Ôø¿[Ïv¶v½ø¿•íUüßeö£ø>ÐØ½Wé† Œ.àúø÷ãáèÛç±BjÿQ‘z$ZSX4óyØH,¿±©×&"¤”‰ô™’î:©jetW~Œfh /òÝJ™a|ì1•Þ›ÀwÄa˜ø»æ÷…Ï ‚eë]Ç«±Põ¿$C©'°ò S[xo¯ãpCX÷Tø½KeÍk NW™‰‹·øƒøX+ñ"·º)Jêh'ÇSÌÇÌ­ü5•+Y`3 Q‚NNÉ•èò&VÑÅœ•"¢¼•&ÉÜjƒ|6Ö¦jÄ.’‘×åšA-#¹+ì`˜ú`ÄUTC%jy¥£Ý›½ãá}ymÖã¿”øÐ7(5†ß¢ß†l}ÓËåÜÆ0º,q2NÂeHà;aJ¤äH˜Y!ž§Àªøï}½f!þ’x›té®éiµgܸN(ëì‡ ÀŒ´¬N›žfúD\Gš"âˆsÕ·#™Hy)öµO:ûª'ÅRyÁ´à(˜ ÎkÒ–èÔsÍ’HëjˆŽæÏ–ö_ð>†åÙêüÏ÷IÁÅ╊•Úþ$îe]ßï¤!ŒÑǦC—}Q‰ï¡¹ËñèZǵ¶Í·ØZÞÉ¡+`€«³Ñ饌Ă”ÑK^FñlpRd7~ÙÍ"ž€üçŸë¥Ê*ü¥—ÿiûÙÓ•ügmGþó¡Y`úÁaIHþ„ôMû Ð>ß„ûU؃ûL HæÃL91qÔ8Ðfjê&>1w'íW ÔenªšßþœS¶Ô½P¬ÿó®šç=™De2áWÐAïœ.*ÎΛv³ýaS ©>4E®àrM9ƒ¸œ~§B9è~hŸ¾ÄãK¼—WÒdÊNLî¾xK<½ðHÍæä ì Mùø~‘’©k0Ñ„8× ËDf È À C«@eÚk2´»¨‡îŽªÊÙö+ì¬âô”ÿ r¸ë²û‚QÈY ƒºÈápRܴߎ¶_ù³U‘—5%M"IãÉ&ûSº/Ãý߄Ч  B“9&³?<Óò,™~b^ã8G8¿ÿÁ¶AQdR½Q1]aãÃ"Ðûs½ò 2SÈL(o+ÇzÉòͧ,,¾P¶€tX‹Æ»î*DI]ÂY-b™M((IÅS—H3XÌ–¢ÖáâI°9Ntîe¶YË™Àô §*@ÏsÎydZ¼ø76T¾žKÊÎ+†T5X-¾H±ªÏ¯ãK é(ħ|Eö%¶‚Cnñëb¾2Z«G·è4ƒkQ» àTQ#Ð+ æ?¯Ó‡æJVöó>¾üïö¶ºdû/ö¹ò¿ÊJþ·”‡6¶-ÿ{û¶*ãX¡«~žî3äj¿›LÏ0Ë)±£Ù—vÙdŒ"Í=Þr8o1Ûbx”†Œrg'è("Ü[,‹9Tâ_­M dÆ6SךöJ8¥“ïbÒÇÛ5J îªh*_<Å(Ó]@éž”FÉ@øª»[tÓiªAM Œ¦ÌnÏ×TC6¥¤¤}aø3<ŒÎ?“G¤Ê©òM•Ð±årÈÒî”ÕÜX ™™ÕZO±LÖí1%ÿùs³àÝóŸÏ“>Úájz:éEZ©E{¼Ì÷ý¼Ó>¾×tà|L¡«2ü o{‹ÿæÈ¼$Ñþ×\!/´gB‰oÙ4Ñ”û5Sù•s§PÍÊ :Õ(YÈ+S¸c­¬´Y)çV=ÕTdv C()ÕÁ™š+ž… -B"D'"=×¢òLÅ’{ÍfLó4cªûI •‘ÍÈËá4C6#•9éÙŒ8§´ìlFºP,IpÇ&ë–ÇVŠíß}ä0MÖ:Ö;œ¡4_zU͈kPw¬'µ¿ûŽ’iÂiÊ#Ä%Â. yÂBzÌv Ã#>^˶ÇõÚ 9†›.]õ –Uf|ïŸæ*VÔ*:ß2VДEâÊÕ•´  ld)ÍK÷l£btAÌ|]ןùR€¨¬æˆfqбfYOHþ³dû¯Jõ™ïÿ·U]É–ñÐ^på?Í•üçÊš+ùÏ’ÿÌ$ýÙ^IVÒŸ•ôg%ýyŒÒ~ ïñno±‚žPKÚaëÏLQ(¶ aO³$Ø}úüºðƒn~]¤ìgŽôâ+Ðb@ÍÎZ1 lÒÿGqää8~éGCXz½¨­=°|GDÇùÑcPÜ6špà†­ öi>UÈŠyuŒý 9„´ K†³R5¼zM]À1°I«sŠÄ˜+CòÄì§¾'£È¶ö„;YLòÞð?[C&þ0e!k-‘qo-UìÒ ˜JbâÈÒ„H$CüëªXÕEhÉmÄÅr=õõ:"GJ|M% júÒä@ÓÂ>ñåúÞFÅ‘òÕÉ!CbJÀeT°E¥’j(@Ô ó$”„ÔÇŒ¾˜KêP={iYdu]¹#Ë™J=§ø‘¹ÈÅì˜Fr‰9þ” “…'¶ˆÑ>Gd}Ìݲ÷»+œAz裙yW@'ŒîæØX¡BÂøt1gWÎÚ)~oê±-‘…ôÕœQâò‹oW¶ˆ ~\ùïèæãt¼dÿßímÏÿw%ÿ]ÒC›É”ÿ¾9yÕm›Üá‰ðû=…ý~*m‹ÃâàŸM|º!ð‰ðÞ=-À»ŒÃRî¶à‹QâüpQ§:ðÏEr‰Ñ„zéâd‘òËF0ÜÅ}ÀØp ¾– ¾ ÏBq:'Ýö»€(h ÊÞÇä9uØŸò?^“3î&þïu£ÈëB\ò U¾²Nåd¨¿8É«ƒºbPg<>©?äs—|én-yŸx0/Ât$¦å7§¤ºrÔ;72›¬%‰•ˆ²é^OlP9$®­b¡µQYRõÂ{‰0t ã¾ÅL¶ÙÃÍr) õÓ½ã{ã·pÎ HæÇ#³»g†kq÷‡ÝãS¹@3 ²OA6Li‹Bëv¼’àžæÁ… îé&ò¸sÆ_£ùŸIœ)6eÀ}’÷¸ ¼ÖJY’`Ë›°´dÁ0~uHذXñ𠞆³‹}ß´_U%úl?8+?3ΕlêqŠxOóŠxŸÞYÄ‹¬Îóñ;Å$,RŒ¤¾çœÊ¤ôÓŒ%K™oÝË{:Ú±ý' !Ø '¼ý)¤¿ôá?UYÛy)ÎIJâ D†6–Ò“Tõw1 “—HÈ’Ùó Êì<`ǹáz ë6ZÇÄ?â2«pÕúýW¬°mA{1êö¶œyݦ>·,PÛPÔlK%*…x;…T åJ ÿµR(’ä‰W\8õ?òÊeøtÖÕÅ‹ª»ÒÃÙq³aÇ0X0rêX‹ÁÎS$;?+_P‘“¢êÚbžJù™±˜;‘ÅDÜÚ¶ÀŠ”Œ!°ÝÌz»éÙ¬æØ»³l‹§±"ù‹çn5p¶ú|Xâÿ¹)?5ʶ}”-ÀDUI:h¡n\ÜXwÉ{H:H_"²A<(V²ÁÙ_þw½lùßn¥êùÿîTž­äËxhÃØò¿&Èÿ(±”Ýv­Õ‘Á•©áþbLHÁá¾ ðN‚C¾²ÊPLX—’q@2D³_†:†d ”ÑÇúJ1˜p²àk á9… *º6„‚;µJvUÉb±kÆ’ü§ÿèPáX?Eê©Å•‹€ûÿy ×NÌ?ÞqÀ|7t¢-Q ¶ÌÔ˜˜áß1¡iDdIHB!éß)éo³HIÿÎ'&-Ô_cŸ‚Å$®–  ŠcWäÙN«€¶›ÿ:Q-a}ž¡â2•Ñ%9™nqu½b|ºE£‹‰¹x/ Töï*Q(ë)4‹…&ɧsG™5µd;O$Æʹq8º]€U8¾BCwqtžÝNmÂ.|DvËóËÉ›N`½³Dßß…ô¨|K¹ËSd òýT rç¤ އb¯ž÷%¤¿ö‹Hé¯Eúƒm%âû9y[âÏzrÇû³k…ƒÿý«µ˳ù¦ý®}ÀùÖ×]ε¾Ó©”GM–zü®_ßæÿíƒdªÄŽ€õÁüwšÂÛ.:ÂÀ½j ‹ÂãS(Àzj}‚ÿP¼§•Ö%ćóªHŠNBöªu*}§”fùÔ¢c7\9 øÕ¦)´_9¢} ôÒ×B*¨QýÇ5*ž†ˆÉõAÊYî¦ÁÜva6Óµ4;nù ­Î®[žŸ¦V§™Ò·_cK3ƒV§yOZ‘†l䀆G„h*ƒ˜ö² ¤ 0¦‰I½e5×ä^40o­Wàp°ªÂ¶:õõm¿hÝVyü>«êÃÚ6w¿uZähz ÆÈì «Ú°ƒP–BIøÓª#ÔßfÝ 6AðZ‰¥O5»ÏNûžPM¥@.90ËÚ>dË+?—]ª[¿†3KGà^s¸ýÜV®½‘èÑy}"nè#ܰòGWóÂÌlC*sˆà¨RYü¨”Œ|>B€ØôˆÜ"‘. á­Q|O0xüŸ V÷t‡¡0²|ÓUTB³Ê"‰¡¥–Sí…)ŠEò“•E™¢ðçhßîI&‘&Ü:!ºSM¥;ómÇù¨UƒèJ”^5a'x›Y—J{~òS³þF¸]Z‰P»G‘vg¢vYtË¥YQZµ_À;ïÔºÉ,´(ê…%2å‘Je¨´t¬š/–Y‡¾D•¯Í•òõ‘>žþwü±:Xnüç§»üÿyk¥ÿ]ÊC{ÖÒÿ’%){µw°iƒô˜TºQ=í±Ø"Tµ:ÐÏÝ4´0÷¦kÇ]§8$e§öëFUŸCHúß­8H€õ׺\eÚkž3E®p8dè†cÅÂQª˜9ÔsÇËvb17î¼®³:~Ìú'¢Ð™<<…ÎâSJÍü[(hø¡·@ÈÃŒ¨œ©É!R9JÙò«îf3¿JàØ¨{ uý QÑ¿S'M4¯Äúó‹æ¹'‡‹ÆajLú°?ís6‚’–ƒ±üg8§1؈»¦áž—±%e©l±½³E4À¹¹6ܱLï5ÈsÕÚ8’å…Ô%”z\£óžÔ¥8ã.ã&7å'Z¿†CàðÕFSƒäÒʶ.ºUÇL‡ í¡Ë—+*èŠ'ì`±€föu§ŠéKðe:*;}»®88>G²ª9M„Ÿàœ”V‰ÉáSöO29¢µmZt[µ`¾ëd‰ÂÑpÜÕcgËň˜4¶Ð£‘†„îÿ˵ÿæ÷ÿ]?ÿSukuÿ_Æ#v•sÿo¯îÿ?ìþß¾¯û?]PîAàZŽ Ú+ÀcôÒÕ¿­®þ„Ñ ºûƒAçêgWwÿÇ{÷_ÝûñëêÞ/žÀ½ÿ¾-Ì~ïÿ Æ3ßû=?ëÅÝûg»óSêeŽJ)÷û>=<¦ÜëÓ³™)‚Ò¬±ô•óö`î;‹P¶qƒŸ³É½ü[˜gö½i®ýhYxÕû’°³„…ßÐaïX ¢„ýBô¾!ÝhbrÎÉ\ÃmísÌ«úó:VsOü%b(ër*35!Ø!ÂþMµô{¼¡kð¥ 4uÊð†ƒ²VS ËŸ–“ôiaǦcI­–;1-91Ÿyw‡%ZÑ|]”íÇ+è÷«B¸¿zj®Q°$Ä5EN Îʵ55Ÿq¶ŒÆŒ˜¡©Í¾¡ /|ËbéN›3Y“’Ð¬ïØ£¾#Õøû¶iªXOKêÄý½½aSõàæ¤ŒeÕþts8‚ï÷G¶Çu ?±^Ÿ,Ö%\$ ‰’X’–{ÅåiXÉé Šn -ÎãD°Ð,¯» ˜Ì½„›²t‹—Î/tžÇ(0`4îìeDŽã€©³‰±Ažxmá*º %˜¹¡% gt®·„žD˃%´»’-:5Ö‚$‚fÃá§ ÑzÝÄåÓŽÙ‰âëö.¸W ¤<îKj©{b°-b``x7”$X yoÿ<‰Ê4gA[ÎTJÈ®{Ø+sÇI”àî*ëÖ¹8º™öAƒƒ@$–‰^e`Y»€¡PŒ° µ¾naþKXèÀí5»IÆxä Ï£²¨V„Ü!tR«”aøôíQ`† È„d…DzD0_`v£érjÎÙß· ßÁšOùÍŒta ßÁmêüvГ!Œdã˜IL6&LL· s4¡`ØÖŽ!É ÁÀXA#–ŒÇ#+;â5¿¼@(˜qýAþŠŠ9%'·„•$h“ìÙ¿9¬Á~Ü8}{Øþ‹ïÄZ«+äA¹ù»ã7'pný¤ùò8÷Ü8¥Àɧ œ¼¨y™’}\P©€¤ü˜SRÄ&D:À4HMŒÕ*ׂÜ*‘pžn–µìQùó|ß_4t2SÌ „§F0Ufv¥ UB=W£+Ì=Æ®K Þ  W¨ ÀØC%‘*)P¹UÇ3F/˜AõñÔ«‹«hÖFÏXcáhÅs†70U¨M¡ nå—rYBΤ^Ö?ÜhŸ‰­"¶²%òöœù‚`§Y`Á<3Ø Æôͬa$‚¢`¹T:cFrê—örè—Ô"†×è^âC8m˜Ã¯d5Y}ƒõy ‰¤9qz~¿Êÿ¢{šüÀ䳆Ñcyu¸yöð­k1T¦è)è‹(™nõ%å½Njôõ­+Ñ–êÀ ŒY…:WýËé<‘¦G6S(MS0–4çÅ ª ±l™Q¨-0¡XÔÙg¦Ö‘ÏXµäú£3&¬]#Á¡™qâ(d•ª€èÑô·ÜÞ*B:³µS)9×T¯ѳ™½èÊAçéÆbm $Æ™frwªÏ¯Kü¿€û·œpuÐÿÔÌHÓµ|‘¦sÑØ|åK; µƒäØw®äßÚì3eíìcKéëí+!ƒûŠÁéï´»‚s×8]ìÆ–‚Ùeìlز£¯Ã¯½ñE¾-ÍY±éÈÞÖùötÆÞˆ—gá½±“º7R¢Ê3;v|:¤0̧e"9Pr7BüÛ4êiæžN‹ÏÔ¾ˆÅŽgb:áã—½©Í/QÎ'®ßß{èúý¬' ÿ¿Z²þ¿R øÿ?ÛYéÿ—ñî:úÿ×m¼çÕ!ø]ýuý§Ñþ‡¤-0<¨Þ®ÕüHÇÿz¡ ù Ë|̱#Xi}ƒù_¾F $|!µu0Z§ #\yÿªŸ/øøÖ)„xsV+P0 Š¢F5å¨Îèq>¥§ ¡–º3ö9>KH})¦ID’72ÝX K¾'7SÏ„0¹=“C¤y}Χ³¤þ²¥øàþ óðÁûÎ?Z¨yàsö~ƒW/*rd/¶èÕ‹G¦´{¦´Ë‘ñ>ôv­;Xòÿ€d”rÿz/AäfÓwD-[áå˜n¬^+…×ãRx¥ð?!Mà~ëõ¢tK©:¥4ÝÙʱ¨Vì!ë®Z¯Üe8ªåZf+¦2‚<{j' † ¸º£ü¾½Ê—ÈÓSHñÎ*U2Ï2ú(¾¹“ŸKZ?ü°Õ®²‡Oå,Êž_l1@>eO†>§õZÿgëb<Ý ôv)º—×@÷²} 5·ábN…g¸ñW>­Ì¹oÍè´ìq’K}@‚Ä#Úðxó$é¿)ÞËȨj ý²\—t|Y¡eà­F9†ìÌ©@³¹-CÌãF£…¢•’A ™)ÍÕØn~G®§¡^ü¢V(äRöl†ž<Ëß“_.e¸o^AÝ È[D¡;¢)xµô(&…ª!ß  7¼È¿ŠcgÔ-,¨; Ww•ª¾~ìRÕÇó促ê’ã¿<«<óä¿•ÊJþ»Œ‡v™#ÿmTWñ_~”¤·Q'þ ð"9‚¿\+Ž™#¿XÞÙC¿6Närþø¡A_šËúúõÔˆ/²Ï®€lÖˆ/ aL@ w܈/rÝFþ«/³Ë…õîœ3ÆKsãeãå‘Çx¹K\—xÝ×¥Q½§TkѸ.ºÐ±5¯a}AR_®ÑTÎ8Ð#¦Zv¤Wë ®¾GŒ*ãq_XŠÉÓ¬ñ±,ÁÈݸ&,&ÆëÈòî6…WùãÆ˜‘Y‚ifÒË0'¶ æï¦à2Zf£b—#"=À'ú%a†ù–\Ì'Ó „“1£Ö¤™ÅÏ`bò‚iÃ|fx3˜iTï&* Ýÿÿ^®ý×New×½ÿïlm¯îÿËxb;÷ÿœÃ?•àAÆviœÚÒá¾i@3, 8Î! h­¤+iÀ#—8‘VÒ€<Ò€ŸÍJÌX ]=ÓL¬¹2{¤æaMj”%0š[D4§-Øž²«¿ë Hé˜ÿ| LðIž8–Ù^³ÂBŸyDR(~vKâ곬XË1Q[¼]Ùìã¾{¸i¡Uåç0VûÙDrñxw±@Óó5“ˆïôÇ›wIyàÝÝé‘p0/¼õÞ”î¾ë0feüEfó=X‹[ütÓ¥è–]zÌÂøUrLÒ4<¬é̺Ê/ç£ <¼U×±;¸Ø[%µ»¶Ów—¹,Øç÷±^Zås­Y~€r ÏÖd8ºýx…|s´“Œ bͼœä8ôÒ²=]Sø c>ž­ÑTvCw¦m¢¹ÖÞs&=Ÿ9%â ƒ E9NÓͪ?D†‹¸Îrð¥ô}G‘¦GñDŒÂ/BøƒkTÕkTÍ¿F,ŸÛhÑAÃÃMjÛFEñ-ºäoù¤™ Éz—SNmñÁŸêëÇgqõتW|‚Ä]AM¬Ä¹±éÕèšÆã:’iN0Ë­÷8î'0©¶êñ± –s Àð¡Ÿ?‹„ñŸ?+a¨Õ–%©?¶J9§Èê#†Ž,óÀ³[TpD[îòÕØ7—Z¸ ›-ÂXõãc/ȹön+š2°N-ü÷ÿ­A¥ œmná¨Pv$Ë…ôE'"‚.j9‹#l*…™#(\а'Xºã2JÓ=šQß¨ï ¥HšS8…6í÷†oýË*!¬ºœº^“§!úZ^†ý3ô¤r‘Gë)ºü”äíCØøíÑׯýI²¦Àój¥Eœ¹eÌ4ÔK"íº?j¡¼YªÞÕlíÛû=CͲօÀ° ,„/¡1¥ö¾Y®—ë{" €?r­wÉšwÞ­ÌÝCŒÍ$Lsíy4'QEI}Ž·úóÛñ®uˆ;ÑèÕ4eÌΊÆ;^7EÞêj¨SVö9QuûR1Ó<¨-b¦> ;¼2PŒ…›Û‘ÁØA£iç 3¹9Έ_S´S§+CÞ‡ýô–¬ÿÛ©®ô?êÌÖÿ6Vú?ö ô§yôy²A"gÛŠ&ƒÌ£lÞM ¨“Ê?^%à¿1dr.?¤” ¥D´^LFÈ•~0–²ñoÓ¶fÔ¶\ý »sWúÁ•~ðgÑZºA©Œß¡—¢¬.Øpý§Ó Þ—ÆîQ%JÍÜ;¼€SC(“/v÷i##v· ½eÉç]åD@1ë„û‘2r©)¹û%ÒüCSà,üðÐAÝå•”-³…‡¤¤Œ ÞUR:8÷¯WRæX#ö@””Ä †´”tÓ·±™ô”¦ Rê+7Z{¶Ê2¤–¼.+Å$¿©æQM¶X9®žl⡫¢¤éè(•¤Ú*#¾ý÷¡`4¦ð“è˜s˜OÇÈ»½QÏyzJFR)*FÌËÙÏT2îõÎ?KÜ>¢¼P46¡ïõ½2éŸâ¼1“1¹q´1ýT¶Æ‘Ž|€¤‡C›aý–¢ÇÝAíéôák­¥¥”ÚG=ØÔáÄ'‡8ó Ð8Š¥šœ]ý¨|ÍIÍ­ƒ»ÏD©ˆt‡„‹qe$vTvóùõìêH$ˆ m,é?£ÊG­£lZe£)-žžò´ñoÕS†ôKŽÿ¾S­zñvVñ–ó¢áèÿrfZéÿî]ÿ×¾/ý±÷ ô³¥G€í•ð1*ûIõ×ö¼Wº¿ûÔýµWº¿•îo¥û[éþ´o`uiyŒ©þoޤ´~øòêøH4ñPõË÷<}aà—è'øpUpá¶RÁ=$\ö±¢‚ËöœK·8WAð,¡Zn˜¥“Š¢Pd¿zЕ==\>WÁVÐU°Úþ·¹ FÒ³å*è认ÿXœÇe,Ë·,¯îã<‚öf¸ }VjïƒCn)¿ÁYï¨éD@FŽ)yü,¥±ë4`QEnDå(xO΂B‘8—§`ª`FøIµHP·JùñCž€þo¼ìüOŸnùù?VùŸ—ò¢dëÿÚ«ü?Lã×¾ŸüÈ.:ýG~U_{ðó±ü,\+7¿Ì°ŸKPôµO]¿xÔOLZ:ÚZ+%_|·®ÒÌ«¼ùñé@ê«” †äãg‹?x=@û1¤ACÛE¦Á™-³ìpÞ” ­rÓL Ò*³PZf¹µq·Ô 4Aù%€$ÀœD7]ˆ°V–Ößi§@ÎY<šõ@ö`Þz,¹¡JIBp“ˆF…=5CJd"¢Ô`C+Nf£!³np©é5€GCK5VCå7ä§^X#¥5~®f{Òù«Û>xNÝâD˜PNª×Þröàù©¡ÉL‰| %¯|C•wuˆP?‡ª1­P‹]¬ØbcÞµçìíÍ ÜiQàõ®&µ'“ð<¸ ›¢ øÍi£ÁÛhŒ¾.´Ùô—´faåýë ¿(u& a^THŠjù¸Ú'9v»)¥³k‘Î.€ù³©ïIï¢?ü˜W׺ƒ¯….ˆFó÷¯Â3èߢÂkáÐ2•x¸2®"ÏVŠ%+EÞCUä]<@E^ɰ ÌÖæ•,kð…èö8gurÂ'\àfÄJùœ£’¡­›Qëj¿ÃG›Òn†R «—Òtc³* 1ÈkI¸š>> ö Ý.3£aÞ$ïÎyK¹‡ *ij„¬*µµZ,OnõŸ£Âk¥´µãÕõâç ”8gqyyºR¦, 2ËÈêÑ"Á—üÇVúåLÒÎÌÑø‘š ¼¥a‰†kº£ž¯û B ×rŽCÞò[f_{­7Âó¯GöGbºÈ4S_‹,EÆUÿr:¿ÌYƒSa8y‹2@á“dª­ãÀb~…ù±Êkh S´;œÅÅ“ Zz”£ÐÐT£ˆ¿¥ ÝÛ‚n¹ú— ª…If=ÖKj·•ažo6ÛRžÆÒ½WovZÉ1 ÚíÈ"JJ|ŠN ÖæM‘¨8Фw¹ÆÚæ}#ªl¬#&sAh·+tx%К–½­¸¸aÖî3G!Õ_'%eÍ/´Vݨø^3¼ O© Õ¯ˆ¬#»þ4Ÿ¨Z\f dõù°ÄÿsVÛ>>¢>ºjê+22ªßCªiú=qâòüî*(È}?¾üÿººäüßÕ­?þÇÖ*þÿRÚ]¶ü¿ éJ:õ~ë¶k­N)â ´_ö³µš\M`ÌDÊÖö%âÓ²pO¢ýÁ½»ú€/0šš}÷¥l‰´ áYdFØGŽÂfCŠüWà¿anˆÍÀÀI‚ï-~ ’Qg-«N׫³ÏÛ9µê´3ÛÁ:kiux;Tä|§(Ž‹©PÇ)3j €ˆHòÍ©z1sRtê’R½\&ÍŒËâLPu fyÔ% Êè¡ÁÄ)˜ñ‰UV$ Fg•nÇK·…Í ¯@ ‘§õ–̈vëNÉ®.¹Æ ]£\„'Ùþýx’ío./{„+Ì6t%úEÝĵ’écf©¹,”+e¦ŸÈ­Wrü›fÉ6s˜›ÕíÌÕrÊ'w¢ùX†‰lëëÑEÿ²¯#å9xvË/LÉ„÷¿‘:eÁJ¬”evüÓÒ–zaš°š¹^ŠpçÑ~î§j?Ã3¬¼ÜG /Žài2„:§Å}¢šô¹_䤌>ì/ö7ï8W¬Ÿ€ÖÚ ­uû +å«Ö\·‘oF½Ò݃ =4­R†>i‘ ¤Cð«j½Ã:…ëåÜ=X=‚eû68Lñ*ðßi K[¯/V½S-DmDa¶ˆ/žÖÑýU;â=-«.!nyœß2ŒO[§Â‘U[“hóJßC+®½ujxyØJ|åÚ54RáH_9%FОI9…ÄH}rÈÝ4˜ž+Ã?ÎóYËPyJ.?9Åé &íÚiÊÈžù•÷óz×U¶bk8ƒ¢ˆ_Aï)ê~Djý÷±Ð iaE 6•Àiá$C¨³Nõ#ª YaŸœy«Ø §zÜ%ŒïÛÆ{{Ë`Õc§jÅ©ªQßW^…÷hÝ܈VƒÍº¹}½hTBÅ£i¾Ñ§5[@©àžÍïh}2Ù7ƒS¹âêfÄÄUˆ¤€V1¯Ð4úhÏY@Ó2AÔÐS´C§`ø¡Á·Öï®:À ¢EDM™¤A@oŠéú‘*cs]¼Æá°e¨_ËoŠïË•Ìý_ô„äÿ˶ÿ¯ìTýøß+ûÿ¥<´Ó]ù{%ÿ×£øåÿí•ü™òÿÙr"¯äÿÞJþ¿’ÿ?,ù¾lÓ+ÀƒU´W €•€­÷£¨söôh¥X)VŠ«üJ ž€" ‡ÇÈUØ‚þˆ6àñ+øs´퀥˜VÑ{VôIšU`.ëvoN½AßoIé ü–ŽÜ–fU#4s(êAåAAœÈÑØC(P ¨î¤AXYí?ž' ÿ?[®ü¿ºõìÙ¶ÿgk{%ÿ_ÆCûÔ‘ÿïµ ìÏÃ}ÎÿçÒ„I‹E^~š˜AÖ„À¥Ü|•À=åYf ~‰#‚«6„%%LHUØ9öQ¨Žº ¶ùîôÌ”ç?§âBÅ ”ê[%»ªd±Ø5 cIþ“7¤“=¤H'á!øC:QCzMJ @q,Wérfë.Î×SôàÕáø‡^%(µÁx¸ 'êYùdjÀ õ/ú=‘Ržó__àšì‰¾lRd/ ]‰}æ- ÿ.qœ|Á€7õJ7õÊèÒgèz¼ Ù§4…v–åQùœ:*$¾0nx­UäD®ÝæôZ%l¤¤Ù*.·õv®š¨î’’ñ™ô]ÌTs•´ú špû‚£ë†žØós)Àœ-9 ¶"´£qÿcŸow³¾h™â”ÑÕ˜[lêOÏ][¸›º,[€Žú4Nüù.-¯£$]O[Îêÿ×å÷¾9!î*ÏM@Ì+TÙXŠË‰–]žkâøËHµ§¢žÝ“ÍÄBK+ƧÍÕ ™Èd•Õ+4¿&MøWPX&µÌbq&âµ4n&Í|ˆ.8jRÞS„À?Oî]?çpx³ëç8]U:Akù_&¤¾û’ËÂ'âCÓå¥+ô~Ž`izl' `º&ûni¿ZœÀVkºDÍJæ6ï$ “³emœUœÁiœÁüšÚÚÉIã/ÎŒ’ÆVFþ³4·Ar¥iÒ )ºqEp@9ïIí.ÿïÝb•¸$X`³qJÒ‚E Œg[°ê—°B«vIžÇY%é¿“rX€ˆ…%LÓã±H"ºwò­L¸cQ}L¨3›¢¾¿‹z·XŠgYÔñvÑ­¡ŠOL£¯7óy2»*úºmO½Ý¶§«ÎÐm{ºê ݶ§ž>N/ÿÔ-_`Ö"„µÛ –¥ŠZZB7‹¦¤á{ý¡8ê[|½üÅíå,zs/üà–ïfŠmYÙ¶‘8pK19¡„p± GO(^eãU"‹óä‰Ò`œ1úô&/žs¦æŒÈf9›s³k¹ÍÏ3Ó¥ÎD°¹»ÏDf\ÑwË +ÚÜûÁaEC±C#V&é–%ö~ó¬´a•(ß:…Tn‘ì|á …¸ÂA t$(`ót¡?ÑØ€êÄ8M‰e8Ó ~÷Æ”±Y•͈ŸÔ5†àÀð¦êýê˜ß°ðVuf̆B]p „ŒÆì.¸“¥®¥2ÆÔÁ­äT) $x òž67=ü£ctC(~⡸4òÖ‹î($éN¡ÏºXk-ÒÆ ċ즓™vS|35N­èþÐÝ4Ó ~÷IÄ¿~;VÓÝO#xj|5iÍï´ŸîN•¢¾aVÀþçjÉþ¿;[!ûŸÝ•ýÏ2BÇþçu˜¨CŠ€úëúÊ(Ó&‰¦ËÈ"öð-€hñg±ñ|ƒí™Z¾ÅO§^í=ûwI~de¢Ì² MNý¬j†w0Ê¥_×Ë"Y¯Îi¯U.5²éFëô±a¦¤½êç3º˜ßËw#¿Â¢mò[=<>k‡:å­ åè“Õ"Ô …¢¨åEÃTñö®RO€ Hj]oÆÉ—þèv‚üŸ¥ºø'ð:ùû¶7ñýÈü,ùvžÜL<ÂäöLTÂ>çxZR­§éìP{Uî|<ü£‰F¾  ^tkuLoPQÃG$–ÎðTŽ5ÖÂê­™áøýp FÓqœÌW«åùMê³›kd˜Y¼¾W3 Ç1Ùžß\gä`(„™ *²'¹ y-g\˜–SÇY–e¸?ë¥ztæ+‹‰•ÅÄÊbbe1±‹ ÓR"å—añúç·‚x´Ö­×Œ8»20orÒ3 æ³fx$† ÷¨X…dš x‚¢ânÏqjTH‘ß^åôŸ÷¬8Ò¡" P„Õ .•îÊïÙ>ÌâÊÿ³˜$ÄÔ ¹M2ÓÇI7£V¯ƒ ŒŠüõȼ ºÐz½Ð”œA AíPëµA ªƒà*¿áaÈó å¶ è`·àô>‡–ö5ùó7ÞlTP†œ¦Y"W*“Sµ²hÈ©?z½rìÿ鞀þoP]vüßg»«ø¿?è¡íìèÿÕUü_=ŠŸ0þo£ºŠÿû0óÿ5NWñ¼UüßQüßùôaÙDs)ÄPh ùÊt„a¾ÿÝÃ|xa[wü¸"á½oÕØ*2°÷¬"g©5V‘Ù*2ð*2ð*2ðâ#?èÀÀê ü/ÉÈV‚ÀÀRlG¡M\Ô/ø^B7ª+ ÂÃzBòÿ¿—+ÿúìé3Ïÿ‡¿^Éÿ—ðÐftåÿ§÷áü/U<|ŸÆéOïñóÄøÍ41~k¹bü•ƒÏJž¿’ç¯äù+yþÊÕeåê"ž•«ËÊÕ呸º„tBÛHk}.Ò¶3¨ÂR|TOw°(´à—ÊBôD ‹Gêè“öH§$œsêï:¤_jàu+~'õÜxöšõV†'¯jé7´.\ʺ%1¥¡é{ìNA e䳆ŸÝ’ê=R'¡õßê2´RµÝ£ªmaŽ;U)Rw ¾ãÀJÕ€¼ 2 ›èfsÍÙ³3~þOù…†ïRq2I&G+½ù÷Åí„Nw#2Ái0ñy(И N<È• æ Ž ‚:ç €½kê;~œ;vúºó/Ì›O_¦ã±Ññ ”êÑÖE¸j×=Àîcßu°¢µ<ÖŽ€1Ç2b$Ÿˆ8ï©“ˆU_ÕÙñ‹Ëü¨‰Þ âHEÓA}¤•Ú‹… };h.¸5ùþ:]$æ>Ò!ïf2ÿgi —ÐÎU¶Bb½I×¶ÛÍeªÞÑýØ€®Ö í¹‰N~là þü°ÀE}ÈÂW<û1I7o·——e8Dú!-E}¨¿Šu·N°÷¥Óh,ÝHzcÐ{Ž•åú†ÉpÑïç$«æÜgoøñÖ—+Ñ¥äH¶Jûû|Ë ½µÑ?+W\­~çìÿoùko|±Òèë×þ$YÃP‘utçÛ3uò)—KYϺt1³ƒ5§›Kà(@<¶–×h‚¥ÚM0ßt‚­'RŽØP°T3 æ[R°1SöÔzt‘öÜxžá%“&|ÉâëäÙW”èþ6¤H]pmiÁ±:lÛTÜ5ögCæY–ýÿ߃%ëÿŸVüøŸ+ÿ¿å<„Žþÿ´±Òÿÿ‹ôÿ§•þÁúÿÓÆJÿ¿ÒÿÿÍúRÔ;š_©4¡ÉûáÚy¾M¥v~ÐCå¼±ª^?Ÿ¦é´£f¦ê9íšJÉdv¥ä_)ùWJþ•’Ÿ­”üôÃCQòçTâ |¡¼—:úøÅr¥¼_”ò¾ÚX)ï’ò^ém¥‰]ÉSãkEqH\¸Rè߃B?5ç"góÎ %#ôÕ5J¥íª‰l‘ÎÜê| ÑÒY5ú,‡Rÿ´QºÆO ó9.yZXsn-²å3 €wuvRçÌ7h¶í ˜_¸ÍÞÑžçëáÙäkƒ¾þÆQ¼}¤ÆÕ™t+c‡b,ið5ó¤‡7ôò•uÏž¹šù½Þùg©çÝG1ŸÖÎoÔ7ê{åJ¶¾·ô§_°Š¾òüºüyƒ†™¥«?æØjs>ùnÌÙÕó¼-Õpšž>­ÑE©æK)K&´óñ•–• vþèäO?>BHÿ¿äüŸOw«O}ÿÿí•þ¡Ÿ«ÿ¿—tà+ýÿCÕÿÿü?£ÿG.£ªùŽÏqý{¥ÿ_éÿ‹+ýÿ×ÿ·=ïü•À£2h¯ V+€•ÀÊ౬¼ø„!ÀcMõù“¬¼øÿJÿ•TãÉËù ÝøOpVΕ¿­™Ï_ô!)0`àv…|d7>–Uæ@s2BÀÀvu0ð! \e|°z¨ã~³J #Ø>]%œI-xú #þëFñö‘†'œ-ÈÐ*<áC O8Gâ@D 9M^Äú“à7¥]¬µ–ÖØÃ‰rxç,…íÑ×yRFüW) U£‹ pØ-Ål†ø†•› °­íÛVŸ?ç²ÿøg©öÕ­ê³]Ïþc{eÿ±”‡v·kÿñaÁþŸ?Üä¨7¼u^•càð}F VF ÷ïŹ2YHË›í•åÍÊòfeyãU^y€¯l~ ÛŸs¾2¶#¸«ЇGaôoÍ]úÓ-(©Ð;­ìƒLèKO_Êâ.æÉlÊâÁ.V¶GsÚ}ˆÛ5ÌÔª:œEüÈ ˜Ù­®²«Îe|ôa¡ÆGÁ%«q(ÚF)Íɰ 2wK 7”bôae´Ø'`ÿ3/7þËîÖÎ*þËzh39ö?]•9þíIãÃ=JûŸ…‡€¡©‘tÛ+5ë¿äqõ¿7gç£árõ¿ÛÕݪ—ÿ{w•ÿ{)írSÿ{²·ÿ¦%ï`swÀ ÕR(°jqúPbm^æ 3@Mýaª}›Ò锟'x®4jû­*8²Þ @|dÿô†~—½LÎØÖ6çÙŽ^oþg^Íqe1L4M²<´BÚ_cþgQ$‡ZÕZâxs{ѧùôʈL,™€DOÊ÷ÆÉyÿfŒò%!™ã$碂©(*¼@TÊÃÑøzŠ ½îäûõu2÷ÏùãÕ¾$¤téOvX ¤å·Z 0ûW£A2ùü]Èþûÿô°=0#| 2ò· ‡obääçäF²þ“½n[úÛÖ†j8(v?å/žÓÐSÞõ/…Úú:Ƀã0Þ9,Õ&çpñ`OXO» ?Nw6}ª¥P5­…6_“Ú^HIjiIcgS*5¼¬° ¹`iåãä–ð¢ßC£?(­€·ÄÔc,iB:Óp,=ü&öËÔeîٽ̥â;ÎV uƒö ˆµ ­Lc¹ 'ŠðÒ´ÔØ@œ#Õ+èÄ ùúñÁFÅRãX6©»Ÿ@vMú^x-úÚ·÷|·†¡Å܃=q9 x[Ï• Í=ÚLprõùb£²Ñ/*}†÷m¡Àæ$%˧òç‹õß_ôñÉUÍ8 ‚£€ ž74œOX›_M ÃÒ§ Mëk÷r`c–¾voS€‚Ø|z%! ˆc‘Û ‘MV€xC$Žß5!EU¨¢¢Ö’‹æˆüJ¬örug»Y,Húž(ÂW«·þl5ץΊ¾¢~ÉBnE˜ESb MÝ "¯/˜¨Â2×vÝ.¶wS—ÊE€ßòÏf£õ¶‚ëêB§öçam/Ãûù ʦèX9ÓÜÜ-%q‚)Éâ)½žÁKš3ð±»×áŸíÎ~c*¶Ú^g*¶µ#´ã¢£dËT¢-D?äiœ2Ô/ž>éø`F¯_8ÑÐe†ÜZ$ÿP w|¦ÏíÜÉñ–²ðäÇò3ˆÍu8~¹(ÍI]¬}{Z8”à´¤I­‰ÚðVhëñ±wz—J«j&;?”G©}Ž2Ã=Ñ8 ÐÀa¢™ÚYÊÌ\kL?íÙˆèZÙÚ¨È;fIŠ$õ„&JDꬭ¿‡—8MPΟæí`ÚI~¿æàíÚºëM,{É) Ÿ(¼›2±„/­Ñ°|Ë™+ˆ)†ÃNw&¶e)4Dy"Ð$T‹4 )BG­ÿk-kœy‡iÚœ.r¤oçiÀeË^#cxxS½Ïá-m!Y«†z/{—eôà̱Už | ¨#¸(MFì+çWÙp4eç½ÛI‚¦Ž—ü&hŸj½«P¤NÚäjìdH;yˆ9Qd Õ3v)‰L5˜jš^›Ÿ¸EAbQßHÅ¡v§èÕÖ}ê[Eþû ØÆ@W\¥Aó“ÀÐ,‹ˆJdðê\“Œ»›{i38xà º’§±êOä \‘ñ´"0Õü9ÌñH^i¡îýñõ?Éß·ËÕÿTªÏ|ýϳ•ÿßRA<-ýÏáéÛ¨þ§$ u?t‡{hº§˜Áéè̪—ÉÖ¹tfT¸ðÕ“r® ƈ…ÉBUðàgê„sÓdxA*0¾áûƒþÙN„É«`©!èqrq{ž`¼Wuz©ÊASq2¹IΧÐF6ø:"iä&Ç=íP%]4!¿ž Œ°® œü=žj…~©ê•sˆ†<ö`z՛꺪{{ÂGQ¼°=ã¾@˜Å~+v ü§«Þ„@Ì0"Q´”î£,›dÖ¼Á>);ŒÏî$*夆û`/äô-Có3¹î  Æ ¾m(&UÙ q ôwëO„˜>ŸîÇ®³RûÜYís‹«Âû2ðœSùÖ@l5ËlºkB¬µ]„Ú†…õ6µ™õ6,¬¸©åWÜÜ=¢tHqÓ‘˜?ƒë“uÓÍ)Zâ(¥§3‹'­‰1è²Iâ…Dy:2PðñGùz“¼£°¸1*x^ÔDp·aÒǰ±Ó‘!€¦^P{%~¸` ~ü ^Ý’Â}±#÷€Í;ÞÚÙ„£+?ÎÈgˆNv\lqbÐd9U¶\ÏŸiòB › é7·üÅW%ƒæX;ójt;¸€°xtx= §"ËíŒ ERC9a´LCÉ7lþXÝÜRK†D5¨[²´I%KÕ´@ÝR8ÈîQ¼ïXLÖ¹:1…Ì"0 GËÉÐi»»Rº,Oérí ¿r,\{’¢*é„T%5Š«m([¢=Ð „]jŽœàF8/Û&üȰwFUçw¤>?šþIpÿªóN£^GšbÃ-ïÈéuHòKþc Jü&[yÙ–eÒŽø¾oÂ3ΦÈÚëètÕ’éÞÖÁhmºOusE·0f]‡6&_÷æå¦âl”©¤~(DåÐ6‡–Ë «Q»ÊO•²¾ŽºÇ]D™,¡ðˆWqÄ•’£{€½tûÀìGl”ºû»…[60”t2?££¿è$Ó'®ÈZ(kL .,eiÐÛ‘A«•&)-Ø‚µVÛnì6Õ´ ËÍ|t§P_/°èø·-§‚¢@£uÕfµ»ÓÆRäÁœÈ¬äÁ |ùïør²ÜüO·v*+ùïzÄ^µä¿í—GþÛj¿îX^/éOøHKFÜ8à0)ÿçåa»Í‹ã¿–’ÿ¡É¼€˜yœ]œÚ-Ñ,‚çÅ8Ô^Ò÷—òü*¾Äñ@„ª{©ÿTÍsœ)ÐÀf’|s¼eýk~h~I¤pV˜{âmpˆ¯hM¾Oø½oýÁz$ùû¶G·“¯Ì„j'——}H@£Ä úŠ Ç`Èá’ r€Þô/x0Ô;Ý/&¢…no”@¹’GÙïûõÊÀfù½^­˜¶ÝL½C¼;v0Ä(±þf²Yrz ¤9²W5žsŽP{ˆEï7EV¢çG,z¾'Ÿ—¶\;¼|®'°z†– ‡Ü±J8×– V@Ü&Œ’5…Ê5Và<Ÿc®q>î8×/Åd¿tg[lºÙf›Ï5ß¼Þt;DBi4ÕP¡° ì™ÑÊü÷ÖPf‹g÷Þ‘ÒNÅbPïKÎZÓw±îP°Ggü…JÍÏûÌÏûM‚äÏð,Nhå¡îƒ3€lRޤw~¥ÇùÅ‹÷ÿ”×…)ôæÇŽ0W¿dï»í·‡2¸Òt|kÔ9Akºip£aS‚_ûdýpŒ±Ð©¡Ç@ÇÖGÎ"Ý^¨³C(\L8J‡À§ ÇU¦þ­óy&Je‰uyú#ý¦¬M{Â)6„yë£(¹çåQV%aÂÝö#T`þ¢Þà+øfp~rÛÕ:¬øÅµ²ÃÙÅå•cQX{g4䃅ðÿºØR‡Á„´Ò&2™PDÖ`B&Í(mŸ‚yÎiÒG­›µ{Ãïjºñ˜æ öÈ*ãº÷™³*Pä?Tâa"ÿ=^Wõ¡P´hVDa&Êw….’¶‰| ÆušÜˆìËɘVlŒñhQ™¹De\èvÙÕ¾CAEí¿R§Ü?³<Å\ß°(  ­ £Œ‚é¾Kí âöl0¯Û‡©ýÁÔö“ûoÞ¶º%ÔObÊ%r¾h”XëC|‡'^¦ÓmvÈJ°öò°BUü@ÝÁûãhÇæê–Ûi¬öþä¯;؃҅ ™þÙÙkþ¹X²Rz²Í¹»ó{â¥xà­´¬yZò#yÆh‡¹³¡T’/³«²HîYá g‹vxð>we'°¡^Ô4Éí—ûÔ$S8X° b™¤GBsUf<$©<{¸wŽ@®]qœ-ª玣~)£“¼V¿¼·ÂKâŠÚ½¦£Éwy@1Wn= \ŒûüÎÀzg“B›ÿ *^úV[/ÂÇûu¶ß÷8進V/(ž¼þ°.ÙZ»G=ÏT/dH‡†wx‡ù@6{Š WДò<Ž8÷ 0o‘ßoŒ»¿´ %Ï2E!0\ú.„¹¼yâ]CùÆþ›·˜m¶x–ðYLèBËñ.¯â^¸˜ +NpªŽ(Wo^«ýÔ ³¼s»[ì8Ô9V®šÈŸ÷DzÃg›OCÙÛðÍtì¾å ïЬ¨$Êe^z’)—ýŒ{Îdé¿7¨¨ÀÚ¨‹TÌÅ÷^{b4H9söw¶t]ŸÜ›:6:ulw NuÝ+þOŸÝ­(\/R%Ÿ©g÷´D™½¯Ä'´a¬Â+û”V†[)‰ãŠCÚ€~+ûô+‹ë÷,eýNøý’b¾¤fRÓ‰6aêÈ̓J|å±ÚÚ@»N±õ\fG56à6ˆdr°¡CÉèµ* müK„2y­ŽIëðRâ雜òÓ~x›H¹K)¿ÔSYaŒÄÙŽmᙄÅ1 לi£„„&/á«®«ªÉù8éMDÛ)ˆ›AjhdŸ©²‹Û±¤Î|PXt7ÔÐö:«‰DêB($ËN@[C¼‹….jÚ]€¤V÷Ý›¢~nÍÄJá[{ ‘ï‚"Ôb0°ÂÛ› z*12FÁó øØëÛÆyLr,U¯T¹ÌsfˆÀ<ÀJFÎÅ_à –™‰§²9=ÃÁwd›2 =%ùˆÞPx–¡Ç,`†å÷’ŠšáAÞ‘ü(ì>ÎtÈ”×|Òÿ8$9÷YÂn'di{>~ZiʼsÐÙ{Õé* ‰Ó§+™„.héٻώdò;”¥ÝèÀ‘Fk`Ï ¯¾ö/Àˆf"âÌ@°çŨpÓñíùôvœ<—¨ÐÁðc˜œØ¸# íuCb,5ÿš¿ Ä:!»ôk4+Ý'U²ùjàÍL H¨Î°|½²Ñ¨6ú¶=ül欞Y¼mÌ:“¼ &b_ȃEzÌ@Þ„âØ|Îf o‰U¾­¼¹~úç©"Bœ(£t›ršPü4 D¢øq’$ìåíc“$Ó^ #-ݯµ~n{Ä,sÄù¬5?l }srå„cÔÈrFR¸A2M.¬‹ÏYB!;i¯\ y°òÙÆH^˜ímÈ{§Õo!I¸A(Œw¶I³l{ÕÆŽúÀ³Gz Lίx—Pž6p†pÜ›jcc}æ$ßz0PÌB0$Rú‚=~lüžËx?p M*~WªðÏ6 =ЍècR…ÂÕmøg'«0ÕØ†ÂÛù Sœwòîü³›òS(ütþyšU˜j<ƒÂÏžÂ?Ïäù\·éåÎÃ7ñÅDLòHáçAÐøŒˆLHöûÿô`=z0ŽmÞƒÞïAo÷™Y— W&ÇölWÁéÁºö`©z0û½€³ pž>S Ôjnïȹ|J#8=À,yV± Óƒ¹îÁôõøŒB¬À…Þ‘Ë3Ì'Í›²ÆB§l1]gà옊LE?s¶ ‚Ù0;¥÷tGü“¹nªˆdÐ`v”!¿÷}曽Èg-Aêr;Ñ{ßN²Ëé‡"#pgá¿17K*‘iè*tt´X«×û gta—Áø¯'j_Å6zl±ø]ü^cii®ÉR!¾© ›'oÙ4áSÁc€ÅE‹†›Q<Õ5*4‘i¡1 {ªñÐGfØÁç%œ'¿Þ¨<–ðßu¸"€·f±Awbâæx¡ÊóëÿÏÖ.hKZÈ¢MÖ=劣¬¦i“^ð’N©ôt¸Ÿ²äó@vä*18]‘‹È€ÊÕÏcÜò£#äGO8=¤ØÝ @±jŽ\˜VkÐúÑ‘õþ¸)mo Í/3…‡®Ž!~qº~þ‰¯°¸+˜÷6cº]öxjÜ7øXpÊ"ü¬tª []‰+ Õ!ÛŽJjdeø=h!*ÿÕ6’E@ai£êÕªoŒYäÅÑ ¯q BF±°9£FOóJ¡‡®ñ–Ü!¡„aqó߇‘ Ül–r`$ßöüþ}ma¤Œ'CÇ1¿xÍ„‹Hü› “*ˆYlåc&M¡BŸ@õT|5!¤iY޵8c°…QÛíeSÛ%"ö½ÓÙ…cuÎ6ƒTÏ­Ž8+Ó¸88ëBH¥²¡Æâã‹ ±;Ë"± ïF\s÷˧¯ÕÀò i5“ 0æ6›¤îIj0z CÓy§¨¸¹…iе çùÿ-6ýÿ—«ÿ3ó¿<­xúÿjõÙJÿ¿Œ‡ÜÑÿ»þgnø?{.l p1îCþŠŸÕ&G>GÀ½ì`zFì¼lþÔ¦VÌ u†^¼;ìN4ƒŒ`á^ÒJòšëÒ*Ÿ}/·r[`L2”×ò?öP¨J F™Œ]f(«†‹M•'”ô²CZ½šŽÑ"Iñ^¿-yJJeè¦xà£K® Ò±àõ Œaf½ !€UM$”)C\ù@,=6;lšèZ)wÑ'QÎ _ê/ŠGЋ¬CªuýÉlô”ºmFÓ3-Bª÷ÇiÌðc~ÃhaéƒaEZäÁkX=K5¬8>X˜aE«ôiƒƒ³‚ÙÃYIL ì¥P¥_XæR…M02ãš`"myâ†W<#"àRÌ8ì0€³í‰@4@{Wè£4%B`žuÒ€â1ôî7Æà¿¥¡DÜÈ¡ñ32LýúŠ GVgèñØ£¥¨K³ ñ¡h“eû¨ ¬+©^2Tq¤ ÌSiCÕ„MX¼É0=xc›j° k «À-¸…·Pàvç© #j©¡«W¡:À€·PàvWÂH7Àê¨0 À-¸…·OÅu¤Ó¿îsj8ø^²Iµ²íM>YgÅ\—Ùá@@ë×qÍ&([+{oIÎ㮊™²°ÀäÇÍþh9sHþûm©þ_Û»Owžyþ_ÛÕ•üwØ)Žü—™—µýn)wBâzçðôíáF•;EæƒA•´0q(9òÅ<:±³˜=ѳȠ# `¨x@ÔÜž51ùÌÓñòÄÄ!Ì•@†#>p–“Ì3,$ d¸çÆ)øˆDñ‡fv‘Ý áÓ3²”«È²7˜àÀE¢y=H&çãþ 4¼€šÞ|·ÀÝ$c¸%âRSÙ wØ#po:äL Í£H,“æAU•BÀÎi/&V³† #t IMÆ$Áo7A|[ ¢_JùÞ»«ïÚh¸05ùŒ¯ü Ž1F/ àM¢gWÀãpdÇ%vÆyèþ¥ÁЊ”#ÉÊL“¡ŠÑY/ÖŠ²Ã´úÆ+© ¨ZSÛZƒà [ØÓˈ慔Ï|z—œñwûn®âºp?§>‡åPé°»kuXL±#¦m{SÆ—”¢>ìª>ßýáyÿ†c'IŒbÞJ%‘Có+,†'ÄJYÔ&{XŽLG¬DŠ@-õÔ Y±yôÆÕâ~/ÿ>EÇ>o„HI`{<;!ðˆ‹l#°Ÿ8gC@c÷XH¬$|ÙgŸïþæ¥î—î–Õ1c@êʪÊÊÊÊÊ«s0´}™ÀTrÞ“˜*5{Û"³íâ†D­uO…oZ™IOH­aêŠPÜ‘j­?ÍÃoËлË‘ÇJÀ«‹+ËD¹´¥üÖºéÕûªxK棼er{r«ŸJÅRúH‰Â€&¹HGæ+š¥‘ôî·œ†]©&Mè¡2ÍPÍ6¦Ä`€zVª‘Ñàu#‡>¬¥´ êºÈ§¨çgó¹ >>—nu}™â|ÄIò‰`W7Èe‰áe‰áe‰aõ,K /ÞÇ™HÍáQ¢K88ŸÛÉEbNÐ!—ž°é+è …É2u‰Ž²]¥5¯7íR;ÉÏÙ–8„£_p6ZÎÛæ?†mì*íÙÄÔŸšZR㉂‰>ÝX€ÂñT]že=–eß61™vt‘¼1>.Þ‡ÿ›ª[`›ÂªÆ¦Ø¼‘xưäðHv{~~3f3¦ª[ªøÂ«ò…gróùôCv?þ2ª)ÆÑ¨>=m®¼ô»¾Þäà^oZ¼²¡œÞ›ÆØ1¼Éõa|²Ûø&ûÛGQ.=Ë•·|¥Ÿýõ¦ŠþPéÿ…• Õ{Ò¾m¢ULñÆ·›” 0_‰øù[˜ {Å/ÀK¿°±*Q·zùFÜkþÁ9Å—Ì\ˆù7ªE¥Ö­\…U·òºìR÷]>s!\Í:X¶üûؽ€ªEù ;ä¸@oîÁ˜™¢Ÿa‹’úµº¯ŽáÞyÙ=Ÿ=–åzô]3þÀWÙÜEÝo*ìÝíµÅ{Eõ¿Õë9£+– «©‹ŸozmŠRœÐOÂ,Éñß»Ëð†x öhŒƒg00]éäŠLeèI¥Ê,#z/ìèJ¥gýPñj†èúïj ý!‘;|¸¾Û:èí¨5³ TÉwDÿÂ%õÑŸL¯¦Ý¤°4<¼àUÎ"#¨^ôlÇ ” ‘":*„ñà‡‰ï>Òu%™¼JFŒÜ:¦SRƒâ…”Å x%Å1([n“R1(O­J ÿÅk毌Z—TMµ;dÙeÄ—*_o|½+a õ¸Ì9Ó­óM ý>½’¹v‘xë+ ²A Î_ —Ôð¹”*ŸÆ›õxÝX1%„®s\S;)Ä8•ä4iæä…ê‰K’ >Ä(™¨˜ [ìù•cD-ˆwz]îßÁ8%¤¤4ÃH9Ø>ÐVùÙ(è̬lTÖiù¨,݃ufvQUÐ^¤¿š=á 6qü¨-_ž`°ô Üê)©ˆ%&±Übüi,ž+1ÍpæxÂé÷Hô(= >Bm".u:†×—Ý#ëÉã¶Ó‘}Æ…¹“ÎêX·¢;Ô·9…ûtyøß­`¹>õ¾Û±—`º=Eå‘mY¾ä³D&Åõè7ãlx¯.9×^ Ʋס¸Š/íÕÑR¤Ò×î­íÕËä®ã¯‰S¾\íö­œé4䙲·F‘XÓiÀhÄtô4x¬ÎóêËÛ+ŸäFhÕÍð,~ŽT*lú޵i5¬¦ë­7qC>•¼%—j;ïH¶`’¿%MÂô‹Õšœ.u,õv‘‘<ª?ªÆ¸ ©‡W‚”p§—þä6–a¶9XWNa60ããBäê¬É‹P”’™Ä ]å`ú»7ƒÁ#jæÆó)Š, 5&!Cáa¡á,äU_äJoTIäxоóöDà¢ZlNIc%´4[#â1ØÏñ¸?œÇKp8¬L},ˆKš® ¶—Þ˜Žý§8÷Òþs§öŸ£Ý‡dÿ)[jíµÖŒä‡yFž¿K³;´¢Üwúµ¥ eiCù9*{=ìhîÜ`íŠUÍaKYS–Æ”¥1Å2¦¼¡ýŒÃè)ØkTf'‡ýo)»¡¾Ì 5pÉQŸÒÂÀî´“½Õähtä}ØŸLM¸ôÿòì—ÞLÃoÄîn›ìÛ蛟^͆|]*ñõú,v HØ/@í4qàÿ‡ÿÂÿÝP`,&ÉÇ«àÁVÅB#½…¹(4›ƒÖN÷­T»DãÅk9£)mVz¹sxX üùŠöþÄioõinš5~—ß™¯FY¼J™d4ôqÁw  ]ñßÍÂt´{ß&†²Ëz…* ’+Ñ0™dÿIE²(8æÒáçl<"(ÐÝ6Lœ÷©Qõ,mH­Žÿ›Žúv”CÏLžœŠT5éUVCYçKv’Þ¾Hõ$_€Œ8²§Ðl*-3[÷aq˺=ÒawÛ»1q×F5~÷à—HKahGJLS *öÖÄç‚7¢†ííˆ,aQ!5Iü¶¨üO9å}8)‰0ôAÖ¹M%ïÓñ( †ˆÛ§cаí=më»DZ3E4Æ^RKêj€GÇ2ÂàQnx/?º£aíf˜!¹b†;ä Å€$‹QqÆ ö·æ?!ngO¹Q0e¹+á©2­µ…Y¹x¼9ãd ”˜§ÿ²r¬"fÒx1ºþ&¤$Oa_oÂæäT»9§¯zD¹8‡;Íð[‰ŒÕïàɆWÆŽw®™8˜ñdޛߩíQÐ6üÛYƒ%0ÔÜ@0ÏíMï…È®µwš”ׯÅJw¹¡š·ÜP|»*âÔŒÍÑb@Ñîxã­ØÛ æ•xÛ­YbØuÛvR²w])!l”ݧ‰pYãNñJPž%5£-Á’š3±$n‹¡q—¥›øÄ xÆ3#¡dÿyüãIYþ±UšÄØ4¶Y Ù*âOâüÃo–Rõ§O R^ÜÃÝ-l,¼ÅÝ- 0÷îöKþÝíßö0<ôJ½¼=‹\Þ~¹ŸË[}óaÝÞ–W7ÝÝ|u‹|Ñ ;Š»Á¯›ôu“nsã¢Ö¨ç^Ô`¨ñ‹Zà i†ó£^ÔõRråæÉBA:ÁÞB°w%#ÌuMÑ\ÐÔ CBãlw4o³ÜξÇÕ, –€í<ãÕ¬^7d«¸ÄDÊR!\Õ«"ÖmåÐDÕ¼¦qª/¹:,z laéêº^Ÿûšˆ™ûš¶ÈíÔ¼ívší’ÖŒî¢9.i°Å¦æ=Í»€4f½¤Y÷Y¯W³oTÕ^°òY•F%ohQž´KÚÜЬd†Z½Yš4æ`#1®º­ÕElÄWÍ[«ç%( ¤Ðã?Œ°…ݦñ8#}x,ã@ÌŠÿ˜Üoþ¯ êeüÇwzxCºñE e’ß+„¦,Ò_Üæ ©&ô×ìQ"TÌðsJÂT¡B·|ÒZE—¹6E?šÊ4S*’ÜL¸HQL?G^’1¯n]Hè›8î6ŒÃtN׎ú­va4G¬áOÔA…2g¥S¸t" ãÚ#jk”Ö|ÐóžúŽ˜ÌYr\&„!‡Èå3C9o/þÄ„SŠâF—ˆ±Ú%×JÇ£¡„cPNfŽA ‡ ‡ ÜmðÆð­l/9ó…’.¯Þ}¹ÝïÃr'.ì‹Ëö³XÇì;ÍãsÜî½]lŸûq©þ»¦í).ÃãUî)å‡ýÄoUXéD¶}ºÀÏìÃÝ»KnvCFÜ$ ÊË ÔC1X ºk\" Éñ–z‰A3‚TUõё٠úÔÕ% …+lǘ‹ƒ©FÕ^ÒQ˜¸cÙµ‚ã¼ý0]ÅèFš”Ì…[´‚ä7±E;˜¦ÒsÑÈŽt~ò ©ñµhya Ö—Xª÷~ÀÇÓÿ]Þwþ—&fû—ú¿úV“ô›õ¥þï>Á—Lýß.å9>ju{GFäSk6u_‰5‚”/›ìâ¥ö%.Í牾Ü`|ì»þ?9J')Ǿ4 å"2õ‚ÏÊ ">&1½ŒÔk£ËétÞÀÝ‚‘êX„®z4ÚBS€"@yÊMSõ9ŒÆý‹Q²•¶ÚSŽ+±åó™´æ’Æï@]^çÛ*8+xI\•ÔWcî.<ÙÍß ÏYÌ€·Ê2h–-dÀÄ€“ò4­Žº´‹êRÄb dK,¶¾û:/kαl¨„•xÛõío‘î—-¿Фñ e‘Zß–kíSÒ]­t×ê+ÉŠ5[*1¤‰qv‡uãwG…x‘NÎõ2+³¹>q Ssˆ^†b ¹Ø°‡œ*+Ï»ÕçŸjõÊÒp0èös:ü5ùô[÷qc]½kÁfµ:64›..T«Î®1‚ãGº[pœÔUD¸7˜ ñ ˜­Ì¢Ó˜»äáDŒN7§ª=2~¤Ö¾Õ¯‰)ÍBh8 ö³!ïíî±Î.1º4á0çÀÓºzêxi;à$,GÁÎLFùÁ%À"}Id„t‰ àz=yg| ° ïTƒ?±”–½ÖLA–ž˜V®”½»#´9¥0DV2Ô6¦tj¢e¾µ<ÖAÀ³7úòVê?¥©†òÀÿàjêÆ?{'ón©¢vœžOåˆE“×LšÀþJ²ËLJÂ@ZZGHèæ€ÄqKé ri!7ǃùðçtˆ—76’z²ÑH6šÉÆf²±%ÞÜØ°êõ¤ÞHêͤ¾™Ôå×õÄòZn4’F3il& ù\¦õÄõ]n6“æfÒ”/57’f=i6’¦’¹¹™lÊ÷67’Íz²ÙH6›ðyÈjK¾ºµ‘lÕ“­F²ÕL¶6áóÿ¹lÒ©ÃâÖa‹\L/Žyh÷“;¤,Ó¿Nÿ3Ê€‘¯ÞN ²>­ìdª¬Xƒþ„hnúqœ¦ÊÙ=³^3˜ Ës«²ùü‰á8Ì\'s‹wáNC°MÙ©žF=Ыî!6‚Œ±EÄ4ÊÏ‘•ÓƒÏQYÄ|þ¼?A¢WÖZW‹k2?óúÜ|Ó¡“bè¶ út¶‚z`+Ínäél õÐî!Ò4z1÷…zü]Ľlúã[Éx³Î½¸oÊÍd¼ÙÀ-NaáÖ#÷’äm_€ÏN-éC 1Ãäl|œh W‡¤w ³vß,r+ºç„ãôϾé”ónY»¼Ü2ÂÂâÖб1váOÀ: ðØ’ì ÖV Ðxef‡HjŠ?ý€W@Ø–äw@#°ø°ª°\°€`Æœd8ø'°4àVŒ¹E$6ä[šöc'€þ.ç°žðI`=ÑÓÀzòNë)8ì¿“áyýæby}“Ögâõ_F·ãôÑIÜ‚Ó׫õÙ8½7‰B>”¿06¤qÚÄé 6$uɼM)$Lîæ ÷8óv©ÝdÞß%»ˆ-D¸:X˜Á83dƒ‡×í&üI€!Û<ÜB±q‡!ׂâËÂì·¬êtðêÝÎQ5évz¯¶ÑõÕÑaë€É$Gó‰æÅF5ÙÏóÏxX^ l¨×yö^¿:>Úùöðgv yµåÂBÌÒ¾!R…z†…ìw÷‘ƒ€ûˆÓ÷"QÀgò#a4ˆ¨gÊIDÏÓ¤À3E9šÌïñ{?yøÖÏ@ܹT¼*%³ã óZ?>:ÙYw^à ¿G‰=7X¤Úì¶iëÖ€D+h³h$+b02Rò8iè<€zEB/ñHƒXÂBòÝ:²‘\¤×é1£!ª5T¦w|ÝF`€uú¬_†ÇV´iÈ6õðXÑЉ9 qóÂÎÎG‡$“#’öú2|‡¹¨¦¯50÷\0T¶ô$ÇíÁC˜Ö;zÝ"¡äõÔµÐY‹>*ID´!i”‡uÔE¯8PŽëIíw|«º±RMŽò¯:üÕã?†Ð:ÚÌh44›¦U4¯’›,8h(C'Œ®“/ÑBmu3ÞqÍ|ÃÚÆNw2”b@Éq„FñI×­Ëè<5Š|õÀ[]*,ÔÍ)`D‰^ÜNj²ÑÞ {Œ÷•Û•Dä‰èF5˜‘2 þXÃ}d¯a ƒ‰A†ä›V‚ µzŒš†õµºE‡Cþ³§i4Ö²aµ2ÚÌBˆÀBîœ%v‘¹KÑH£)n”¦Äã%nÌ@ˆùD¢Äú“¢ Ϋ=ž™Õz¼–€½~ŒIçn+&ÎÑm"ɳU©óŸ=ùåÐÛš½®-û•úšn‰_ë«Ðø×dpÑÿmÈ/X“ãÖïžÐOl–ëºF!ù­ zÊ+·_18|€ï*¥H¾ ?‹y0É×o‹Óy¸¯Ç~g¥Ld¹+š6‰ Úô®ÁqW¦Ë+¾Kd óòD ³ÛXܯq÷òÀ‰Í…y@%PÄÒ37ÊgP(Ø3.Å‹†f N£Õ}òdû—‚Õ•gN):hÿ¹5oçΫzÿP7B„‘.ÑmQwähC|ù´¤uC³™Õ¨”³oð µ»eìYzŸþ“ä¬FQ@ÊûkòͲâ4÷£öPjëlôfò£ýªÙbQ{f.ž~;Šd²±A‘×'¢Ê$G¬6tùiV¹zß[¦û•¬mºäqäòóµzµ ¥¸ÂµC—³PåþÌT¹×TYZ¸p໑®™â'): _§ã½¶…â‚éµm²_üƒyi¨! ÓŸL¼f^;×>­ÒF’v^ŠF—¬ÑZíß· íÐ}91{UlrYIÛeÉòl9ÚŸÏN6n‰ÒE°ä[‘(3UúLê'͑۹YS£I®ŸVMÞ Ô;;­º+w¿Ò÷~Yjq‡YH@®ôâÕe»ÞŸ‘Te‹{äÔŽÈ].|m÷§ÍNŠÿÊî¹þwc«éÇ-ó?ÝËÃ$ïÆu–ñ_9þë.¾8Ù•.«7S´?FÌ—R"ø«ce8uvÉé' ÷Z1‚[<·uS:YU4yB±“Uí–KVõ· ¢zhuÐàç?éx¤££$Ê̸(uv,£ –QPË(¨eÔ2 jµŒ‚ZFA-£ –QPË(¨eÔ2 Ꞣ ŽQ¡?Z''‡ux(‚£ý,£¡~Öh¨ÎwІBåÁT‹*'˜£¬ºMÂt2˰;¥i›qâÚU—áY6<«g‡g‘¸ä%Ž»ºL³ëÁ·ç¨ˆªœ¬¬òÿûBç¨ÃOà“Uþ…D6?ÌË^¥‡ç5s W7èU&Ò«›ç  õêÆýSéš%Ô+âËï†ÇÌB•#ƒÇ£å@w_Dp˜ÄG%‚ê¨z^°Ý-;ò½åãâS€ì÷¼âoM'˜dQÂÓ‚ƒAò¨eÑ ‚) ’ 7W€E™EŒKe.Åî—"üð‘7wƒ:î,&£ósÆdÜçŠÿ¸çúß[õ'~ýŸÆ²þϽ<¼½Üø^ þCÔŸ¯øw‰g òà¢AYð\ƆÌWì|÷nŠßEóŸ9tä¡ÖßyPõÌyÍDzîzUÍÕ"Äk¡TÑa.Hé & ãA èXt3e¸Ë²Ü®,÷2la¶° [X†-ˆ=° [X†-,Ãä§Ë°…eØÂ2la¶ Q± [¸û°3\Á‡÷ðcS‚¥uÖ2èà;¨÷þèå7Ùt›ÀÅ[ÀrV’:¹DFÛ>•moãлˇõWG댅‚‡œ¢#x˜Ê+Öî–ðÈ—ñ˜JOQš'˜ÁF ¶ˆ¢åBÓ|P)³R¾ƒã[u`‡ Üm_wŽ­ò¶ÜÞÒ–ûÏþ;aø~í¿†Êÿ·¹±Eößæ“­¥ý÷>Þ’–ý÷Õ‹WÝJbæý;؆Zx˜W“#øv»š¼{…õæ:ôƒ÷õÿ/ñŸYLÄl …'d@Í3šÚ¦QÄ´ü>Q épt‘]féE2…{\0@÷–ÝÞ7®ýsºLàG¯`Þ[Énz"}5éíý±n Ì3Ù[ËÙY[˜z? O ÔÏb‡ uˆ+V!Ûk¼» ˆ¬µú}Ýq¾­é'ñ3»êˬ~ãô<»Ó@\§Ë\ddjæ´ŠN6U¯ Gã«Îˆ)ó2JS²à"„óÿ9v­W†w¨fB1g˜0 ÞCÓ²‚Av-ô>“ ¢¼©"o¶™aKëOxeñú”Décú±?Õm/TÄ…s!Uñ£ ÿB`sµE­ö*ðÑÇþ$¡z`D…ä"ë ûƒuvÑ#uüÇQÆÆž^ˆDµ“Üq6LúRqÜ5´ú“«þ`€wyy À Ð=©Ô+r8@¬_ åþƒÔ«wkgßjÝ2ö—XÎ×#ȃBFV1 ŒÍAÕ\C³âKÒ2á`ûqz™ŽÓá¹2Fܵö½'9CÜ’ÅŽÒÎnTs÷Yœ¤.¾7‹.>¯‹1š9”ê_’3mÓéȰãòëu‚Ëã Êâ$›È3Q ?L3ôó ‚€v-ü‚û«»¡påø2ƒD‚”ž$X[v¾­3ŠâJY•MA¢bà‚ ñäˆaŸ~³Ì$X HyB«¾¤¿¹ŽK_UÝf˜|¤"1g’=”`/ %R)‡€¸{ŽWi(·øú÷5à­¨Zä“j™ªs»¨†DˆøÈzhX€{aªj’cH¿Ð{st|? ëÚcOÛ<ƒöxY Q°ºÓ,ÐNÿ½Î—¸¥5.Án&Ü „—¸.œJô»wJêåéQ¶4èªE¸ÕÚk¹øûÿ±Fe}¶úޤ7´ÔÌ€;p§Š¿ß1lø·B¿WåÛ+hÑ…Äm¼cê”M#´õƒK)n(¹–8ô¸VMK&.[cÉ—ÔRrm£ºˆ&\·&,G@£tÇØ,^ì~(­)z…ÇQÞ¸ULlíËB&×J]ò94“nF&­šµNÈJ*ÖZ5íqƒ• 1¹€v+½JgUV(QÑï¶‚‘_ ­¨>‰bÿS ­¾† ¶úRÃ~‚úŸ³Å*€ ü?7¶š¤ÿÙxú´¹õd«ŽúŸ­'ËúÏ÷òˆ çêÚ¥@Éí“ÿ(‘ŸúgI²Â® ÛiÿÃäÙ?àâ}è«ÉŸ£ÿŒ’?²‹>±qÐ^Ÿ2eéÅ7äyª¦õÜÝ*‡‘¨ç¶9„Ì1•VœEÇÄ¿v_t^tŽ“.Š%¾d¸T«-ÕjKµÚR­¶T«-ÕjKµÚR­Føý~jµjÒ&±ãÃ×3z¶Îᚺ8_Ô;ÒäUÑ_…ñÅëôø•×Þ±3“ã¶'ˆ&“¤­&tfháæðƒ+Û‹Ò ®ß½ZPüÕfÏLåèÙÖŽÁ°U7ë[¸;#ÉÀ¦+K­âR«øP´ŠD‘««ÈÍ*D´«HªZøãú­”ŒEAîÄ<~4=£¯ÿ_ÞoþïÆV}ë‰ïÿÕ\êÿîã{ÁÒÿíö*¼ß¾K¿ìê4à§¹ËÀzwwŽŽàuú×òúh~d9:œqN'¤Î‘•{Ñà-Év«^*ï*À¥¯pƒ]ý«êH¨Â“šIƒTšdW¨5M¥¦I„rª,¾°Ž~²pÒw©|ᔥ[§——Ùy†‡·¸Ñbls\Cª7$.¡¸$éx ·Ù³Ü`'ôͰÖ/ýñ…øFÇÄ£ÖAj»Ä`Æïï“–îþI›Öçt1é¹ÃZ¼@$5©Ft¶F·T“±ÖÏ„b&,¤àõkÌ¥D«b©›‚ïÅfqÖ*YÁÇ7…;™áÑîÊ„#J†BКÑApF ÛÒzÎ(6Ww–3£äei83º§¸ýÝy¨l÷¡å6Ø]Žv×(KvvøùÓÂç'ƒçÉÜm†÷Sk*³%º?-Jt省/\/žø^¤9ðO€ŸÓu†äã‚?‹Î?´Îò¥-ÆáKÇ2¼iÿü£žçç7… åÍ]ô_¨°FA©ÍwñcdnxŠõè‘UrÙ£ÍùhŒv¾¡é»BÑ_+§í¹07Ós`æ÷ä› #E-)äM8JÉ è¢yÕx|+€Gemóì “© a­Û§1O€•2R;ö'.·Voâ D)ÜØpW¯)üø‚É @hàvµÎ0¸¸Ñt„]Z^É0EE¸wFC˜ì—l‚ªAŸd?G CͧIL&¦+ALZJQÖ óxÒTÃZv·á7…n:³T›í¸WýO À\N¤}>U»égN[Ò õ¼6yD,*âýca«âmÀJO-LÂåáštÜ òyÅÆx`c×=ZkB×·c|#h©á¹ý·Õœ ^Qª7¹JÐl‚£`Žßå¾F}q1˜?ŽvrÇC/¨æ¢³ÆVêÅ«“.ˆSj²ÇeÉŽÕ}þÎë\õ{ÇG;=vÀjíîÔùGƒ~êût?:ê…%Š)r¥uúúÏj²ýâý XHò¨b•Ì÷÷•€eî7ó§°É1þ¬é`г${‰•g0÷mÚîΜbyŽôÌ¿ømO˶­+¤ÞÂHy´{¯¹á°ÍnOXsP™+øöȦcÛ/©´¿¬‡ S³é¾O~ ÕÃÑð?éx¤½™@P%ù ýûPŠª&׃›IRW³&@Ýd-QËòºgRw®'Ù`4Ô‹ùn^RõÞNa¿_å&Æç 4:Ñ÷±?5«í‘¾ž8·U5`Dþ¦}äE§ ~¥?â>SÇa#jC;®“›á4 Êïú/)çc”{PÊCE È?Ô¯›Í¤é ÄóìâØ.²¦6Ü4ZÉjrjnàù@îÅmÚ.{¨®;Ù¬ô²Êòá[Ã,Q“iªI9}jÒ¥–]u´×I`ådR¯ ÄÍ oBÁ{m"Ò?›TŽàW4*ò_­•Uüqº‡¿´Oà»Ö(8Ÿ!~ý~EJ¥öˆúž'VÈOŠüªè òžµtJ†VДõ6Ž€‚ûø2ô×ãêwŽ¡”:¦¨,gÒÅ;Û…põ!O¼[$ìRŸG\ÈÔìñŒ uÐ}(®¬åXd‚a/L Ó&W½ò¦âð’Xý{Ù¥ÌÀà¶6’ýÐàtb 0@xN÷å€f÷; 7Õ¼÷a+ÕÝ7 èß×8;NìSžýÖ8¾^èm96™›º¡ÏªÍáìÃÙ·†³¯‡ŸÒ©±µ…igÉg”<½#lÏ0òÀB=á…ÂI…F–ÜëB=¹ÅBÑ’<ÍY' ’sÀƳï5÷õ—Çë|†=\zÒw Ï:íSw]AX´Ó£X%n€ ƨՋNŸ -Ï"¢Œ)öôLND’¿Ô®SL6¼I¥Ò¾Í,ãGR_IvÅ™K}ìщAêº13î+&Иž² Cú6 NcE5½HÏÇiÂ:Áþu¹¨’“fàèäâfl¤Ù6ª%†꨹’´¦ iù„ÆE¾;A˹(´!¹ `Æ×¸ÿ¯ê¯07‹8ô­½„$á+Üc0CàÉõj•Ž– Ic@À‡~fûn%R¡­!ŠÔM·KÂèsË1¼-“D‚Œ-˜ØÓ\‰t 6t!òÏ5çèð¡ù9âÚ¤fÎs(9ù©V'?Ÿ¬$ëƒtÕù¿9¯Ó +šÛ‹ ¤%äB 1ÃZ¯:Óš”—VŒ®<±É6ëÁ;Z„Š)Ëmiè½¥ƒç Ñ@†Uعܘ!1§¤–ØF‡DiŒ­1À%ª™×ºæ ¾Ø¿åh8¸}Ã,^yYÖ䢄ÖÄÐg8`"xûb6"„ňô©[FÄc!B¨uó8 ŒÐ2Ó˜ZÙÍc2²^äUra¬¼[©º’ø;ØJå‰Ó^YÄièIºöi¨F¥Þ+<g†ˆÒ®däàûÅ•µÕ;FÎØúFäx §‰U9--Î(<Ç”–!æuJ$›å’5_Øy³^‰DSÐÍ*’Ÿ 4YÔ¡‘ðå¿¡(say YsÕøW¢^$%*Õ–ÄE£.x3­ ”P3ˆù?Ï4ƒF 9w1xw¥ÞD§ÿÌ=D»XwýÇ0Pª·Õ î‰ÏõØuW5!QVÚÜ+#§Ùh¤«¤–¡¼¢‰­¼Ó¿?h¨}ò6zÔ#úhwYöëa?Aÿï¯÷™ÿaëÉÆÖû7›[õ§èÿýdcéÿ}/ïMÏÿûTrÌ7';Û¹~à=])0äü+ÄÙÃWx}°3x÷_ðã_íîv/¯½|ç_\KýùâÕák€A¦]ƒø™(ê{ž,SXLÍÃÒß!…EÄ_м?W¾&Ë89jâ=LÏߥàÛ\.þ†¿Y2.ÚcOxþ3šÄ:N Þ‘Å *Û%› Ç0šˆ¿Ñ‰pȘƒÓ¹ƒ’[Å*ú`ÎÐFúªèô›B‹N&ç€÷fRb «bÄr4ª©°õ¦ç¥‹‘†´`"Æ!É¥¢?.Òi?HS’5EÃy‚b ²ÙÊÚX7ð}æcÍx) ÞHæ"µ” …q?¬áÔµÀÈ›fy\]hGÕÖ#^Aï)@X/ÑI0°z½ã¥Û^Ø Ævy¬u¦tXrÔÜn†æ ÅT5¬¸‘Ä Á-7ºp×8§½L(ÇÇŒc « ¥b[²§»yª]1I§SJŽs­¯ð¨ü8úbøÄ!ùŠñ(ÎAXi:4”Æ@Ä}¸6r×ýóóôšüc´2òB5¹™w>¤8F)]0[Ô3À¾ÊÎ?]¦Ÿiyï7ãs&[VgöÉ÷PgL±fÌhÔˆ-t3cÄÍ,á6È¿ˆÄòFлNÏ1rç{)4^VP>ûŽ~AB†ý‰¼ULøë”Ú‡3¤ÂØ+žº8]“¿3Fc¬›sïâÜ»#{|æ â íÑô£›˜Éj!cZ”𷵫𢤏½ ¥§é¡¦¯%µ}=Ûw[ñ7T ­zκHB£1š«inÒ-EÀûÈ—ŽŠJŠ£nU>*¹}DÔ­ƒ¡µ€¨ÛG?Ý:ði1OÁp§¤(âéVÁNÉâê4_”SRèt˧ÄÈwÅ hk#ñq.à—¡üVD¨|Ž­òIsź[ yVXb¾,ˆ·hîIÙè86…ǪüñA¼Û…CIÙüí>ú5a¶*”«ªÏLŸ³42n‰m¨W¾­êã ÊNqF@DÆ>™b(•8‰SgQ•fêƒIÁÛlJ—×kÚi²,,ß×u€æfwªÙHÏH@C¦¨áä% ㄈè£RIæ|U)ºìĆ{1J'º4—4Æ“´ ˆ‰Â`F¾°¾:ŸÖ„(KäݚȣïÈ ,ü2]R6Έä;ü€²ö%B©ÂfxF ª\†L)Ü ŠW†‹›sÕ¡w31.ߨYª0¨·Ë¢K&E1· L8s0àË#p¶8À¤(ðVQ€Iù:ÓGº’šÈjéTK”øjÄÒÙž‰F=¶Þ§4õ«²¹‚CÒ‡»Œq7$ì ÕѦ+òÃ}k6Ã! ¼º?Cÿ¼¨˜dNëìÏ·*òSÎà‡&þ3]2>åža’¿Oˆre¹ÃEîOÞn¸³ƒåÏÃ`´¯Jr‹aë*õ”›ß“â†F„ ŒŠXR­§g ·É{QÆ×Xk½¸óñ™‘{P¹ø½œ =§Lè^bª#{¬«HÓºn›&ÿ¸¹>}ðëé·ë4©(U´²p¶Âš[éfxvYš5¡øÐ×V«ÑÌËošä:ìZÓª©iU™j™»(y:âM˜÷fP$Wásœn:3wïOü€]M\ iŠ^Uh ² «ê¸€ýåh€gîs½ÄáÖRÿ‚g¬CÏ«*pÎý•G¹`UþªfÞK¿¬¬Ø¯×rï¬àx†h©ÜÕ$*]¤_u1”¢Kk š­);&?›ó@õo1¨ó¹¹flú®³ï¨T‘XÁSü›5g¶B´ÑУ¶Î8«>_1Vå7©¨M]6ìIŠdþ¼ 3_±ït¼ø¦º gu™¥ƒ‹‰\Uh…VÿäÇckÃ1òhŠáÍ“é?€BáRÓ†Nßñ9:œ Ø™y¡ÚŒ“hQÿ<ÂÁ€<;¸p¡P.é!yF úWç+*ÆàT<ìFò—7ýq8MÓ‹˜ûêy^H~ÕíRŸ§cDP‚›%H ¾á{CÁ=ökŸñ?L¿NY@Âé§0”ñ-1À§©ß—Ìé:Ky)Ó é ‡úIâAbméÜ‚ù¸˜mZrŽ»šÏUåî ÅŽf †u>[a»]°T?/6pimpf¨ë] f®€|Ð4³Î*æàh]’7#›Àª {zþßÿ·VÿÿªÀ!pˆüýµB‡ádt塘ñèzœÁx€ÖìÔèï=ÍàA:M0Z¬·Úª ×À7šè 34 XWBo9è&J•t¥kûÍñ¸÷¬óƱ}%\ÁØê†®XÇùl$ï„ÈGb^ýÉMôòfŒ—ne<¡£þëtÜWJs:T&sšñ¿Ý9g9¬#è¬'¶$»È‰<ßËŸ×&ôlg…’ `(ÐR‰€ºë–fE+$-)@^-"²@I)@^˜B²€¶Ÿ]FU;Á©ôÏ¡Çþù7­Üý÷MJœº"LÓÍÎ}Àw°apÓˆÆlW’zaCŠÇèà¤)âçúa¨ÛX\ÙÁØIt`¡E‡3ðÏ"å™û®¤¾”r–RÎw‘r¬Í»uî\Ô©´Ø™û+Ö“a¡ç« HQ§‘ÌÒ|+÷Nò•ð$';·>ªk_ªŠ‹QÞR~/©Jú$„8¶Á^k ¯ŒIJ‰¶ Ÿ(ɆÕF4²M? 6ÓcamÞÁÖäLÁAHLL7ó0P¤ýéñ æ'1MoZýÁ‡Ñ6Ú•™Î„&Ñj.Eç"œ­ÖÑJ K~å‹ÐS^bš'±s­ÙÐD*-›êQ–ºaz±@ÑUhKÕ™ý«ò9‘:²±ý#Ðp:®ñBÁg¡j •ƒÖ¿:Ý£ÓuŽvvÿEîü+ÉóäÝÇtÊÕ[¤ŒÎ)eÓ­áLƒhanÑmçs‘IÉnI¢ ôÕÅ=r&†#G¬{ûWìbY6Èí§Ný`9ìŒnÎiMë³Þ-xG!?Â-ì›X_‚tQC÷@ú× '®°$ š XL‡Ÿ³ñhH½+«Ùäæúz4ž ¢Q”îñÄ Ù2Í=‡G:þ,äòfzó’Kíôþ ’h IzA}2 ×îßÂB-ѯ•Š,@"&y´>€T¨þœ>çLÿ#ŠÉbr¼Ê0c? 瀙 4fäÎaÚÉÂè~Â4rÈÁ‰!‡»ÉfSD&j§éùÇaöoŒŸT "0^öo`~Èa¥— 7!„¬à‰“hÏx`Cüë 6ÿ(dPXhùÄ¿0J’Ð…¹c!!ˆj.}Ëc/Þuz;D M¤„ÝAÿƒ’,8ÞÛu¶1Åþtš^]Ó^bYо>Ži±Å&G\ ßb½m¬öîº.c2]•üqÙLÒ¿J*ràö5Ì <½æLb¸©’&óæ1LJ¤2ä<†=;á:_ž Wà” hÞ-ÛÌ©…C6N‚عMªß“ "âþ–tÑ7±B~ëøÅÕ’õ ˜.ÚE&ÏX~`íý‹6nzË&'&Hi¬& 0E¾‚x±F]¬îHTé0Y61oÄj=ºk{Ïmü‡ÔBÉÞÔSØëc0ÖÄP51WbˆÒ¤C^²Ï{r–dÏtmÐà%îKŠeÛÎnÌd˜#Y©ïú“_µÁØÀ“ ÇŠo~JÈ)»XßaÊdrù¸3F(¼Clçqß"IÄ#0P± ¬{4]kÐÊ6·ìUër¸ëIû›­ÉßY™k¢Úž1k.q_÷2ó3ñL…àË}ƦiÀÖÊXÈÀÍô£ªVÀ>¡¦ÂlU_a×+GÏSG%À(ù@—×ø†)lé&¯f6ZaÃ|LáZe[ƒã³ÐGæÝgT½›úwQØ|ØÞÙm`.P! Šâí-ÐG÷˜$Õþ¨lûí÷Á7# c1ú³Š´±Àc«í‚ó*Ùç‘×§¨p–ÛÊÅ5kXíTî}®šø}^ GâË`èêX´u±ÈÇAH-5û㣓ޱ5{ܸ¥fN‡xÉ™‹n8Þîj†É‰KOî°uú/Ò¾÷Jׯ‹$ŸÑ '’:XoTê2ª9¢ø6öèÅΛ“ø öª´×ÿuüçëà @4ø[üý.1àœ˜Ã‡Ù2±ÐfôÍÎÁx‹ˆCsÚßË´õîèU÷e|f—ÐÕÓa|À‚´ãÃ8’ÝŸt{Ç-øVŒ'°&sVî¤$ÆTõi(€£ÿ…ow·wBá™s•õĺsyC€Š'#†A÷þµû…ýìÎAëø¨ÕíÑoˆ»8ÎkJ3íöþT3¦@Ôè7*H»Xwk 9äáM-„ Ì/HDѾÊ%R0ˆ…±d¡}pê<ÌÀ5¤ºqýåκÏá½LÁØD†ÅÞ–:S:´ü69-³©›y)‚ŒÉÅáíÍ)N&T4I©<ˆV›‰`f] ® %Q^ÍIÄÛQï ôÛ»|íH½—žÝ‡¥%“YQrµì‚™rÄÚ‰•5 Îì²$ Þ§¤Ú³€îé7‡¡†–ßÁm.¼2(À”AÊa@½?jl­W8¯V¾î­&¡LZ¹0êN6!÷6åÀ7‰­ì¨ÍEªoÃQ?vñ%„ƒý‰QEˆÖ Ídò¡ï.ûà?IúÑ™îE6’G>2rwPÍÆ £4Rß«dù+~Z|•Å™H4%>5æAúIöåh»,ûñ¤ùÁŒùÑ„ùÑû²Å¦Û¢8žlú$д(þlûÌo[”`ßÏ‘_>Á¾j;{ðPzýÓ@~ý…•/ȯ/5ž.÷Ø~Mºo&˜ 0.f¿Æ.GA¤áŠN‚½ª5‹ð¶ÄUHÍÒX3w ±´ˆ9åÛbùÃÌmJƒ ²9û(åu.t4öÎø{» ˜¼Ês"Ä5´-õ³ÁÍØ c¥Ž7»ŒQ¦I–îËÓäü9'5ÎHŠ¥èp¶ÑÅÛÅÇ$À’Ô"õr¤W(Ñ™n´7"=«ÌÊÚR>£†?ÔHš>m·(m$oi‚$uòoÉ£Î#ñAK|ÂwÑJÂê •þQæ/#» dî2S$LÌÈ©Sœ™:QÚ[²Ö+œRìµðñ09†AïTû® e´îŽ!Œi+} è|éÅŠDú%™TÕUWTLuOæjÎ&I¢©ÞHÐ g|³²¼Éôn$ÜUm*t3¸9p¬Œœü‡ñ«“–~åUqÀt¤R(¦ªZ‚«×Ü<úMË¿„’K¦â¬K3*p*Æíu¥èæ€,FJÁØf‹îNŽ|Ê<å9Ââ•Öê ·ª’ ­ž¡4¼‰¤"§âï!Eöà©Õ‰L8Uš‘xϺ/zj‡Eô¼Q¢cçptÎ/…åþµ8ÛŸ"3vsÚÑæãþy‰Kœ˜Ú1‡˜pf9y´s·pz5¦V™ ûcë]×KÙ+(E. éž\Í-¤³©'ÿÀ‹v|'ÅíKÞ’¸ÅÝË<íEdÎ2ksW›?°ˆÜy!á.NwÕp˜úÌ:T¥gt`Å£ô,Nþ[Iº®aÁ®õ·’Wm\žozI«Ãžb\“Üÿ¬<¯î­°kµtZáÂ_Ž0,üžµ«‹›Àý°êëüg!×Ó¡|:’Ž5TÆ@D–X6”äd0º™|³SŒoÐCƒ….9!å_Ïâ=º¨ 7ÿhDùâ®2øþ}„FIÿó(»Hà™â²UÉ: ¡ Œ {¢ƒÊ¨:—®Ô¶“ŠªCb˜”,š5>G—u>„ýC×äÿ97i$®‚91³g‹„vÇg[Ìôk”É=æ’°ÊÒIHð·Ç}‚9¸.y–¸F}·Cp–+^aÓ’‡`‘êØìס0^Ò˜ÁdéàœñN8ÜŸ}¶ÎËÂstv½Ô-ÎÑøžÐâŒS-}’æ¥e÷ëÊËÌýßÇÏÿ?ù¼ØìÿEùÿ7žnnmqþÿ§õÍ­æÿol-óÿßËÃ;ÜÎÿß3ë¬Úº ¶ÈvnêºtVø‹qFñgÁú*l=”¾t6xéÖa¦´b:zΜï]^+ ½·6&Ñ„ìEÉÖìêXüÕÈEn¹³ÒúHy'“RÓÜLØ¢ªÍ ‡H›dwíl‰Ti"s©Ÿƒ\eW9À0k,ýÛF0Å1‹¬Ì.+&tlæç¼HéŠÃqyØ-…Ú‘Åâ ZpkR#i;““*e(3sƪK¥ó„9qBOóµƒGÆOĽL©Æ„äÝÉNÅŠ@ø-+\‚±®Töfº‰ÉÙÀÊyA-‚ÑiÉÕ2$Yi¼Gæ2™¨“™“Q'³å£ÎÏqLϱÒêÒŸ™žØL‡lBˆeFÎO‹è|žÜÈôØYÿÚÄÈvVäÙÒ7É‘éq8Ζ+Ù$vîL “Íö&fòÃXÖä­’©“M0¡,Êeó'ßnFeš‘]MeÕÌT ‡9¥.6Øñ±üÅ¢çüÎjsÌÅÙN»:ÁÛÙW4¯Oœ´¬e°«Å2˜ægu-‹§xj×ÂÈÁDNìàAóŽÿËnÿ—P %³3”_eCN7Â|83)Ûnõ„ ï „íš|>#„Pí<¹PgÈíD¬¡<·ÎÂEå9Vx+Çü®áqιǫ¢naU8&-ÆÉ|×hr®›É3Z¹Å /8åp—<îårçûtŽîÂ>r9>u1'¹¸_]±—œj»å·-ruSmŸÚzÁ¨»šï¯×€»Z®‹éŠΙϧÍ#ë¬y¤×\×ÖÜ ¨°­¡¨Ù˜ÞnÆYÙseäÖ*_L(Wù—qFåÏÛ’yjëþƒ> n¬„GÕ`½·w%XHÿ³àòúŸf³±Ùpõ?›ÍÍ¥þç>±ý0.¬ÉPm*m£bç VŸ!ëèÔ€Ü%'!vò\ªì'à`õ+„[¸FpI T°Ô`\ÏôãÔuÿDÕaúUVTC(W~p5Ú)ç˜):w®dJøsãý1´p;fΑã3ЧL2Ú´¥(SÖ€³yÈ"Ÿà6%ò¼–~šž´}l憄[vzÍé“TB*‘gµ¾nV‚Ù‰†Q(êÈz6ØTÕ²˜šEĬ’d„x#k°úü†ËÅ_+b-ô—mÑ^&îâ\\¦¨"”Y¥ùD>T]CÎÃÓ?`"•Ì-Ö&¢U³p“”†°”ž®È³*üTzœ¿¡m~%•Š µÝG8°Eø1•¬è^¨-ÌÁ'*†áŽÝ\Å­ÇMʪr“ÚÜdA ÝDétUÍué‚#/Éî¤ ¨>žg×@‘|kúÿR¬©7—<—88dÂb¬¼¯'¯¦ªD’¾J+gK³,•ÊjW†ìÐ6I6£=‹rܬƒÙS#õJªÊ`­næã!g§äKŒ9¬t– ¹¨þÈLÌÆì’Õä˜ÏìT$xf¶j§¨“„䦿•Û‰zËÕJvÔac¢ í«e©ðå>þåð×PƒÌÐçäÓë_sÝ,½¨™£·¬r°‘ñäú¬ñâM¯\ÑÖL–¦|B”jo=,ïÈ|ÃØ¦§”þoœžΤ–Q²Rä`Κ)cj"Ôóv]U®)ÆÌžKX/ˆ'$…Ö Bò‹Ïu=‹‹Å¬$N”îOT6“ŠÆ>—¡hUÝ‚  {™€,Þ.Šeri9K5IeÌž›úÍÖ®“)Ù³ùe(¿b›5R•’+PÉÖz8œsˆ~z¦C‹r ’³ ê’û^.pa¼ÙR9ÏcspòT<]‹-б“Âv¢ ,äãÚaúïI_¨ƒ™üòz]šÑ¾Ÿ-¿Îè}šÓªIúK ›¢ —4¡¸›/TtPlfö4éÓ:séñ„´¥%ï°ä%úSÉô€TL@Õ ,Ý%ñÕ–|u%K)t³Í*ÇNk¬êuÚW€|B»£ ]×uÆÒ¥v…Wz¬b rÛí†KŽ"Žäán°Ȩ|ÍØÙ ¯U™6uÒ¿J‰¿÷?X¤Ï óP&¶J°®cem"c~1q”±n]ùF»Fj¬ ¥Ž5RÞ]î¡ržRð fÑéíü(Ó‹Élú^=QÙ•r…™•ȵo ÀQY•Áœ §ˆqiNSÉØ®Soò‚BYßœRNÙú èéV’O*ýÁ—þ7NKl²Õî£UšßñîPØ—_^Þ,'<‹+Ì3†òë'{•“ù®aç¼v«(ó,¦Ž´"…@!é_­:78hã„Å¡M0³ÌÓ®mA),-OI¯L´µ½ÜŠÑÛ¯ÅÀlé$¿Z¯üùÈÊ­ßö…S­yOŽ0ªÀñ-JÓ£Ó`cþ[CóTèò£Õ—ô„”¦¦Èª™›ƒß–е¢2ZIˆ#¹vž_‹UŒ‹O‹Pm.­^ÕþJyå–Ë.S¼ærق˪'§’rn%¦6R¢0 ;vJ(óÐÜjNö‘IêÉüBÊ*i‰UGÙc”TŽS¦RHz~6ŸËàãó¾(¯Ý—‰€0w?b€öwuÕݽeAdo!œŠS" µª…攥3¡P)bJKý:–ñ ^.š·›ìÃ Ö‡ÊØIáÕ eõÓ¤cW¾÷׊ƒ{#<öB\yõxÅ> ³éÍ…¢9 {µ’h+¶ë_¡yÕx|+€G2XÉ’w.0ë²ÊpM`kÝ¡|óD•¦·l‰ÕJ3oR?Ndý/!¤ô“ÉOëtÎín2]L[‹¢¢ùªd›PŒ‚Ù%KeÛ2B¬jv©zÙsV‰hª*ó•ˆ(íåYää¹OËÅ“èÌaP¢C.QÆ4$àÒ¶z]A£0¼Z¡Q@¶§¨fôáÆÂ€ððœm‡C8÷U½ ´WÛæ?†Yì*íÙºÔŸšú)ㄉ‚‰œ<]¬! p<žvÍzâÕ5,³ùYzÞ¿ñëçéqe•lþÆ9K. jlz͉gKÎdE˪›,hyGºõp•¯‘<ÿáLn> “¾+Ïàû+ »Ô}G²†’A6íT“î+ö#*HÞ!ƒ-eoÚ‹O©E™¨E¶«vçe÷~öøôêq–êÃNÿ=€¯ÿ…SuaZiñ^<éµózÎèJ;c´^¼æ|Öo(¯µLþú¡’¥«Òi›…ü“î›»šÀZgué–à,m¦ DåXez¢¤¥3HjÞ ;,_†’[r×qÙ¸Ðêe‚×õÝÖAoG­…•·"/ ¬z‰i’³kpò^ÿ2Åó +¬Y¯2eë¸Kj=ÛŽÒeÜߥ¿»Ä€öqg<øNF^’Pæü¬³³»×{ôYÖ}~Fßùbwû9’ÒÞ*+mNZZE ,º“iÓˆÊÃY~c=ÿ$mB42[t$ru¾i¡«ž.ÖçÛ¯°t°Lnc}¥áÁ¿ÉÈ9=çŠÿ&Á'Œ Æo¼ ]ðÌð¸Ó=q2Xï2tÌ¿EÇ_8É…"î`X$º—! ゞ >“àýÇr‚8l±Õ‹³âHˆú<ïS™£\t”qÒ#¥8² h³ülœÜ 3G¡„’&G¢PtÖQaXvd„ Öf—0RMO–‰ãúiY‚ƒ!"ÐOÅ Qé)Á†…–ŽÌ‘‹ùç±È•Ä´˜cp“ÁÈdœo0!©-ã…ÏI›dK¹uH™Oê:[mda^l¥¹Í™ß66’N„é´+(|r``"deU}„ï6B̤¹á~¦ž¨Ð ¤¹cŒiÐ 4ò"ÌåˆÄH©Ð '_,®²J Nßñí´Fíübg2‡ gð Öf, ˜P¶Þð.s3î>ª?Š'Ü /á“j'ý#_o$Iï‹¿0XÿG»7ƒÁ##*Æpñ² £ÓÔXeTŒ30,¬œ…|O‹N 7¦°mŽŸ©áajOn9Ñ;='Ð'tò‚~"ër<î'd® ÇX¨ÃnlW)Éß¶rùÛfœ¿úüíÔäo›!þ¶âoÜÕ“ø@v|êú÷Ç|zà›OrÙ¦8Ò©å»}ÑR…µQ2¡_”Grò-âò‰ãêÅ©Ç@ø»]> 'ÿ¹àÐüøÏ­­Í­ Žÿl4šÍÍ Œÿ|ÒXÆÞËÃûÌ‹ÿ\\hNèÑë·/މ㠂N£8[.y §Ã¬&ògÞéS2¸4ú¨¨Sôb„ª½³aÞë_Á9»^]¥ƒ*üìô‡ÉýÁ ûÐV“?Gÿ%d}:¨M@{ý t|”¥ßS毮çŽÈŒb}ŸD|j–(¼j2ºœ~¡È>`(ý© Äi‡ÂoÍ1•ÅŽ‰í¾>è¼èÃÍ ÊÇñýu«ŠãTª ]ô ë•{'0ÇÞkçѼñeà¯L`Ë]©ÀàxGNrÆzÉ&œjU51+~5‰'–8‘áÄóÇ 0 sÅCŠ/F7¨Ô×®.3„Ï[,ÆùáÅ ù…¨ªòU¸uL?êáªÿ5òñòérôØ‘2â* Sdp°1®¢ðâús6º™8Ó9Ǻò´à„˜ÐÅÍyê-{šQ(/¯AK>ÁM&p?aëþ—-ÑäIÙÿ$<ýÎýìŠî¾Ò!\¹år6,*OY¾RéËËKMô ö¦™lÙÙt’.åÔŒµÃê“@d}R>¸> Å×ûüäv±öJ処ã³j{7êHûÕ¶jû£GÚ'Ë`û‚í“¿m¼=Gp(.’ÙVf €B^H¦·‘9ápT½žX~l}$ª>¹›Àú„bëÛßTièŠ8b…ÌçV›^1ª‡ :|Ŭ8"@,â&Go:…~|8}öN4 Ïijòª½:ƒ'b 'ÙÅ , ŠfÒA+•€@sžZ‚…¥?ãWbø~âDð'^?ñW©8÷´vˆ Óâ ð†ÉD\œ(|N^”ìB«hXÌ)ò.°õ®ßÇÑ'É‚:ƘyÃ359½ îšEt{Ñû,òB•«Ö(á Æödvô$ŽÄºD±0~3>OÙ©›ÅrìÔq»ÖŒ­Àœ¤LúƒEd>XDÒƒYò,&Ù ŒL^*ú鼦Ö`‹rx­Uê¤3ºÆšá­,4»AQjƒ¤\vƒSÌ’× )Jmp|›¬±„IQN»×yÒ”Ïd,,™Áüy ¤¯4g ƒÙ²X) $K,—¸ Ûï¬z,gA^X¿Q® (GÔäd*(•žÀ¼5YI fËL À8ù fMJ i#”šàöY rÂÒós” Bަ#Hš‘à–Én—‡àö)æÍ>àÜ…"<"o…o™sàVñø·Ê4à'¸e~{œJ «À­ ääHŠÒ ”ÙÄ9™’Ù’ Ü"Àí’È mTr;žŠ8?™€'ÛÉò3 ,"‰@8@²¨ÇÙq3AÀäDæ!b\o•Æ“OæKÞW,´iäˆlyX'\n¢Ùä]8’cÀO,@¨îƒÉ}e6%]Ù5 2švÍ×u€æfwª%Òž¾¼Áöj8¹¡H.­ê„pjµ‡òc;)n^À7Øp/PË„ò‡H6F­ 6ºwÃj2N'¨åïáFò)æQn ?$e9.nƤÖcA†‚3"23ô%—îÕf88Ü‚Ÿ…öGEqpƒªPº«½|‹"õ›ŒT”ÔÛeq¹#æM!%59ó¼ÿ”/Fßí_ ¶Ÿ—3¢Û§‹H“1¢3CEIAÇÁxfˆ¼ô:Q˜+mEÒBDrAÈe e„HŠ’B”X‡x>ˆ¤|Jˆ#­Ç&Vá—E‰ì [Ð0´á½OiZ”EB¦Ž)2ÝSÑ·•?"fç ¥Žàs“UÎùá¼±à]E5´ÖÄg¥°¶þLDÉ'¨gÔ;“†­³ñ’¥™ß“D$ .pyÄ@Q4Cë[‡´F JÞ"3-èuöØÆ8Ƨ×áTäÁÐW½~£FS)ê¢ @¥µò˜~ž¬°Má@zIÿŒvD*·¨ëíøJšaìÕ¼ºÃP/iÝ,>íŸ9L¿ÙeÖNaZPTÅÜ|+šÀÎå©z=¢„ bWeÂ2AÞ½ªjGŸV<žU_òh/8[õv3TG Î×1•÷³›³œ"£ûço]5ÿøÊ„ÖÄ0 ™:âžBùåØln›sâE™TËÐ[ûci¸ƒ´E^L1¸2f.¬h_ˬ³™?8Z†rw6QOóñUyÿÿßZýÿ«‡À!òGô× †“Ñ•‡ƒÇ£ëqãZw!ͽ÷ì¾é4yáZ«-éÛãFq&¾p"7S¥â-iBÐOår)Ä’ÚëæŠxÜ{ö;À±}%\ÁØê†® XÇ…ß$ïÄÍn õ'[4ÑË›1Yëa=Hô££þëtÜ—2QÿFz_ñ¿Ý9g9¬#è¬'¶$»È‰<ßËŸ×&ôlg…’ @x#—D¢t¨\ÑÚ K PJ‰°,PR P·Ä€,  É\FoFÁ©pR©óoÚl*œÐ“Šð*k®p*¦˽ÂÞ4¢±LqËOCŠÇpǤ)n\¨©,„S%®€ì`ì$:°Ð:a9´—’r(*ᮤ¾”r–RÎw‘r¬Í»uî\Ô©;ýו)ô|•–uÚ ] E°rï„Á_|Éité¶W]ûRU\Œò–ò{IUÒ/4¬À±ÏZamxÆ¢ã2pÃ' &G Çô•¥S(¥ÀSåûC•îÒ”‘‰‰Ô£:J¡HûíãÌ·bšÞ´úƒ£1l´+3ûM¢?Ô\ŠÎE8[­£•4¤üŠty¼ÄD¦bçZ³aw{&@¥eS=’zð-‘!!PtÚRufÿªü~¥Žll@ÿ4œŽk¼Pð™ÒMÒ\ļ•乊SeítnÓ­áÐÌî¼æÝæq>!í–$ª@_ÝQÜ+ib8òR}†…J•'Õí§Ný`Æb¸jlð<è!x\¦BÖu“*§cpy3½á%XÉEñG;½?É Dò¡47…Ó½Ý?ÏK†e¡è"úÕc#ÝDx뜳“ ¬ßsJ‘+[ߨ |•‘Ë$lȸe,›fA)Þ ½O˜Šðd?81$[÷ÑîYÒ@¦ýdšžfÿÆ© TÆËþ Ì÷ì ƒ#Oø¥ du¤MœÔÌÆ$ö¯3 ¯‘YF˜0øÄ¿0““ƒÙ»c!±âËXð·¼íöâ]§·C”ÐDJØô?¨³š‚„dÔÌ…Ó N§éÕ5­!À…/Ȧ´$|/äx¹š¶ê 3¾6 !%Ui+“ý`’Æ8@R‘·/6åéý3gÚëM•ö:™7óuR"ù5e¾NzvêkGd˜¿S²lz÷V3ù´·4Ú(o¶aèŸ#qöïɱȈ}R¡~ü‡BÈžÇ ¥ÞW´HfkUÆÈc-Ëž*7?¤N6=1kSXbXÄBh$Ìvò]€‚™¯1×ÏÞsÿ!EK²7õ.ÜözàŒ5±@”7Ì•¢…4é{ŸìóžÜ‡%Ù3mŒðmÀð—t0 ¼@ðæb\º'7¾²€±q üÇŠ"‹÷…O( ½Xƒ`J9rù¸3F(ü•”¹É½lð½Œ#¹&¦¹Jƒ2YîÑt­@+Û€±W­ËáÚ±væd€ï¬Ì5tmLÇšK4º¿Ôü @¦pQ±í«ñYè#óGÍxÎoR‘ìvº­ƒuIoÖ©Š^¾–´ég1C|XK|‡btøºóö_/^½;þC5ÎØ:'os†2mN’¶|©©pìJ ^Ü´æ ls…?Ÿä2p/?­&æHŸåŒÔD ¼úËýf±/›Â^宩[ál„ü¨÷s$µ/•þ_¯_‰t=Q<”Ï„¯åŒ´t‚{JŒÛVìU¢z'ó}yœ˜^ì½8hÈœø§ÑýØ9îËæ—ÏK.ÿÝóäït·TâòÁ“lwt¥×qÒÝã+_ƨ¢Önc¾sZ•sªTzðp}J>‚P˜q\ö+!²)á”&"üQ3Y•NãS6sÁÝdÿáÀrA`z­…s£Èw[œ¹_iÉ„2eïf8Í>ôYÒû›Û$”ê!ùýݽM÷¿Lï?czÿ;ÈîŸüpéýUrÿezÿd™ÞßL￸üþwÜ¿½Øìþ?j^ÿZA^9b”Õ*:5¥ÊÑJIPu³Yóë‡üìCKöà2é››À®ððšd”l(‰T“ú<ÛjIkŠˆx•Iüqø©†Ê‰ó 5™A|‹Š¤dÞ$¦85©Ÿ¸W$ä·àøõÊ”0&jO‘ÔBã Ð@nÕ€eºþ¼tý§r‚¥Ä38›BP(„Ë߬¢÷<&.§"_†'×A‚Ÿ$9)C9_(& }L:c®P7}’°ŠLn†gƒÑù'86%•ÉXfi¯R®`”ÒÏé i$psé PVRCÇR&_ZJÎ7UÉ«àÎKe‚ñsxYÔô‹¡mníàP^6~ßÊOÃFÏñG;ËZ4¿Ú‚ò™ÑS”Ô,7ǘ ˆRè+/јپLÂ.Slf+ÎÚå§3ÁH±_Ì('©™Ÿwìv3*ƒ”ÐŒì;’™-ÌνP.Ï=‘ŠlnI¶Õ¢üaвçN"v¥Ý?1>>ݦ´û';WS¹ý“ñN?bí’lœ›N&åÝ"t{ô|6èWݪ© Z7M£sÕ¶HßÒ^yòú5ÿ"ò “{{3ÚcfÂj²Ýéu[Ýx_ÛÛ¯ŽåÝ%n „—¨œ‘•¶%¾Ü9| {0æEWºî½9:Ž1jäwÊ”o¶-…´ÀZ!gX_ µøÍ‚’Ëe->6Ïf3ƒAEcL-âŒÚ_NË+õon²óO2‰01`C´ÚúE¡|ÕÚu#×/1¢oUØÓR˜9V[Ý'žTöª{ìöƒöARµ  QrÓšä¦x«qõq°×:àn+Öh³ÁŸ5è±E+¶‡Emœ¿mÎ IC *ay·ÒÇQÛ€îö7b:Î×/_%ÇXÎÕúÜ5¨9àÆÝÙß:„‘(2hL’½µúó.yp¾${.ºp¢{HÎÝÈ”X¿ƒüÈ‘JCâ5 (’Ú­ÁPjt0l®Õs‹þ$Bf-„l¿'Û“tà™Îx(Èã*Ü1›ù…­5’ëÁ:h¶š¼½Zµ\Ž·€¼î’¼÷ˆ–« ËâïÀ‚øHú;½°Ü’î»XÀ@“>a\‘>tÅ´‰r‘,Af”“~´­Ft#§@©¹R›Œªæ†û²8ÕöøûMïû¨FްŸB¡;ãÐÿŽ/ïWÿÛxú´áê7ëËúŸ÷òð†pô¿¶™u©ÿ½ýïÑîÑÿbJéüšQZ«µx0)€K«› VÿÎX1#™­hÆß^UkV†ø{¨j#…"~ZUm /ýCÓÖªkM}íì…‰Ð×P²\…mSØ.HcûT¶e•µw¬…ûIÎ÷ö‚±9ÒÄAk§û¶P+^[òõ°*î9¨„ý}k¶z‡‹ÖÅΑ±TÅ.T{´{ߪX†²­råhyl’ý'9;Ð%rø9†²¢Ãî¶aæLè„=uà %ýo-m·Z :{ŸÂ/w´¢Ä8ÔÐõN;`J€ p®S‹^Rrnžf:™_9¸úiæW.w?¹¾@×d]‚ EªL¸Cy¡¤¢Ï…3“Þž½¶Œ0è¶IµWý‰•Þ‘È «mëmÛ¦î*O]e(imM•þ06±æjØ©ÝÒYkm-_P¡(Zî­í冈UÑ ¹f¼Tcμì£Bi-¸«Ü㥩íµ×ê¹È…ÇÖ Z¨–ÊtXó|•b’økíÂË£æ‚ÇÌå ½œâ4‚¤“Ön€$NÅœvˆPŠ”º«ÃO m¦±f.'IæWç'®FÿGgt#ŽPmižÖ^—ç r?O` B ¶ààÔÚIzoÀ¬gb 8úÒ6óqŒ ´Ä¥Ù´à$ÅÌǬyÏË Æîš8’Pô\(އÿ(iõ k0ŒZRŸÝr¤ýÞµ$¤ÿÏîUÿ¿±µ±¹áéÿ7¶–úÿûx˜\ýg©ÿ¿wýÇÖÿg˜ôk’†þ¾‚(bÎNWtñhìŠ P:û&˜ÆR‹¾H-úÌE@é)[ ¶?1Є ÖÒ˜(éqeÈJ]IEŸ57ƒHàeù8I~¬é±¦¹T • 3Æ%†|¼•wM<ÁªµÁýáôpw¤õ½…¦4¦ ]ˆô u‚)@z^ºX¥çýè; 3üºÍÎ÷Ñmvp#M]íŸ 3ÆÏô¦ÖCßJ¢jF…΀Ô.¥~®œ¬¬ò*쎿¬´ôš)‘¦—{s† ù–ß¶0M¡lût!—ùÞ]^æÙ+1x‹ÒÊRZZ"¯uÓ-Çy>¦7mU§³ŒücÉœJÜÖ“16]Z‚¸õNŒrAƒtmÉÖ8Ã#ä»Bxœšˬ€‘ïÁ|ñàvs‹ùÜvnþ8oI)E&ï¹(E¬@Éh0¢¥&èoÿxúŸëóÑðžãÿ6žnyùßž.íÿ÷ò¦eê^¿xÕ55ȯáÊñ(sA†ò7>EÐáèu]`æM £< Ýfp½ôÏI€½‚©m%»éY²Ñ¬&½½?Öÿç.uI9ÙZLä΢a õ…kR!R¼»×Ö@éwËêŸ2Œô£Nîב,Êæ”ð­pý4Q¯aµ •rN r&]Ü””SdÏ×*S1ôSC«Âëè ã¶D A*ÉŠ––ÖŠQÛ›4{Nø¥‹U·ý‰*ÖEÕ_iÍeÉWågÔ—µ^Û°Ê”ª_­t×ê+÷¬§äȪ8*kE¥žYùj‚ !‹²q¡òC$€T(Ó¾À¨¬-(ôT¯-0fýzý±• Û9KÖ’Ê_µúÊê_€%«þÅ%„ëÿü-ûçoýpàB¨4†µ¿VÌóÊE#ê/š».¼í“ Y/isÓŒ [Ê=ñ¦1SE]•àGn¬¥ "¸a«íÚêtßvUeþ“£œM(Šˆ®Äü©Ô=nuÝ -?©ãóRÌzÎâŽMUÜq¾ÊŽ?»ð¡$– ˆH)C„þÓj²ßêå”bZÅ’­ƒñã@ü<É©~ÅS !¤@öèµÞîT¨‚ÙB5œ¡®¶±¢B|®\¢©@CZ`d©®9!¬I_c­£Þ‹E&ÃkµC6ÈŸWƒJ|Û+Ñ,Ð5 %ß…k3åcpÓ[ÉÒQ¨„Ý¿€DK^É–â*gJQ$Ï8û€3Ü5q!gJÌjlG\ªHT8«{A ª€C—«”ðU¥Ë™Õ¬ë§dkØE•yE£øyx‰ 8oÓìzð M’ä}õhÅRÛ£„­ t´Tv4í¸‚¼lóÄ$ƒæ©7VÅäÁI>*šDÙ9äéGgŸÆIá4sîØ Æ^J·ûý—à ˆŽŠU¿w²6ïr^L`‹]ŒP“=q©uô9>ïß  8ìù˻ʭ~˜\屨[>ÃвU¨ÀêÑù¤V¬ œ+“!Áa§dEÌZÃñ³*ØÙŒø5Å]r(Vc#°Bx˜Ó„ Š›S¡©"h9EtÜ;ƒq‘qo0Ʃ̞8 bÐ<1*2S_W°† ¦Q:„ Á¥Iàïõøúÿôß7÷\ÿ¥Ñðôÿ›KÿÏ{yŸ¶ôÿ;oNý žÞƒRúß·Æž“’Ϫ°ÏSÆ÷fÔÄc,/«£˜ §éð‚m!fAÅ>ÉÓ¼ëê$C©öD}eÿg§7ç4¬l: (üÉÊ=N'×é9U@£¸Š/#Öù­¹YÙÑh0Tõ‹•²ÄF¶ò[ýñäßãi¥E¡R€¢ó€‹!ŠÓ}¾ÏR3i!`>ê[åàm“ ó7„·Ú¢ßW{•¿V(ùáoó#Ö¿Êì´Œ”wzËØZÔKË“¨.‘»$U°P:cÒ_i¨˜\õ¼~ËÛ_l—-Uê9‰\Ì¥qà–Æ‚G_-5þ¶~8¤üÏÓø²tð¶ÞÿÊþÖb”ý­˜²¿'tçXÛ…¸cæ´÷¾½ñ©w©úïÍ¢úÏë‹2ŽÔ2Ëýˆ,x“ „’õõÇäל ’ÇATY'î‡ÜŸr÷¥W‚YPöð î¯ |R¦fü2}ˆ]w+•¦Á–oëŒ\…SÖœS €¸ ^Áy rÄX˜Ý¢æpTdÐòò†Û_ÒßÜÀùA_Uj˜|¤àÓ3ÉŒŠG±†‰À% *+ŽŒÄåJ±òDüþ™ŠM"$&U•i?0ø^,Qàƒôu^xŽÄeÑ¥­¿…ÚÄÜ;vú–‰'îiié FÐ:þþŸ”6:4ôú´_ç2¯+†©ÇJÄžù™è]|VÆ©Y EBžˆ²› ß¡ê§A_õ¿Òï.—´QÍŒºþ›óvàÆ¾E¯Â?kIÇúf×Qøðên´P–±o-~ß)ÏÁ˜"E¡¸¡¯95WV b!¯”¼{7Èk"¯›Ôà•µ¤qßHÌ«ßa’&v K¸(Táë2¯3óÍù'2_8q7[ˆÛÆTk„¨º‹(ÚCb?2­–û¹[=1™X³Lñž^: ˆ·â*¬U»F@ŸOó©e“„…'­VŸu½\ÃÆ\»Mw¨®¥Zr? âJ¯ÒYAE1ŠÑï¶ZŸ_ e­¨>‰‚gs ­¾^¸üR¯ü}_ÿ;¾¼ßøÿÆæ“'›~ý—§Kýï}0¯oø®ÔG+Å´‘§ J«ÉŸÇW|W½£=Ì\*<—™”Ü@ˆIvGåçTê_…ߤ ”†5ó3!`s áËÇt(Z§——Ùy†R…P“ 4—ŸVéˆõ€ìÿ£Á8ý$Gãält3¼˜Ð7gðÖ—þøB|£üä çH×Þ?£6÷û¤F8‡¥jÓúœ†R$,5Ìß_à \gq‹pϹ*0Žäñ{úa9’ç ˆE+bWáêO~ËSƒ0NW1žŠãüìøê]§œ8µ¦2[æÓ¢Ì^ðÊõâ™8ıs‘“’ãtø9]gH>~ð%ø³˜]Bë,Ï! h2Î':¹h7¦ýózžŸSÜ&”S´˜V¦>ç ¢zÅBjç29=>:Ù‘uܦã£ÍùhŒfb´ˆbâ¡uÅ2%üb1ª$§ç¼VÏùý8µo.Ç6ŽÒóºh^5ß àÏu"Ž0ÏÄ3™šÀÖºpónûƒŒ´½}댲|¾p"¸÷#6À]øÁà ú݃ˆ3Àíjr (»Nc„]Z^É0EE¸wFC˜,ñ2˜SŸ$%GæaXÄdBaºĤreS0Ï'}@~i¶î¿™ÙR[ȘÛìpÕÿg<ÁEù \] @9¢¦3¶muеÄûÇÂ\ÈÛ€µ˜ZÞQûzB±L‰WlŒòr*ëþ„a/Þ`ºã븠±ŒçöÜãrnAE7ׯ4[f¡(˜ãw¹Ã¯Q]\ æ£ÜñÐ ªyÆÃ¯Nº Ouà¿ý*cØ—>üûð[÷}|;XsÐ;>Úé±cZkw§Î?ôƒ”Û§ûÑÑ/,–©tTPëôõŸÕdûÅ+ú!c„HÁZm¯ß.6F¨Mµ4·íuþ(«œèªŸÍz«ÄO³'oÒmO˶ý%¤·ŸÑf{´{¯‰ŸœáØÕÓPmf¤PNí‘¡Ä6è&‰ÐnÙ_ÖCÖž‚Ùtß'¿ÎáhˆéÛµs"ˆ$-¡û&gпÜLdi ¨ —iEq¯{flÖÎõ$Œ†š¼™ûå…o©÷vêûý*71>o a‡¾Œý©YmôeÁ¹;ª#ò7mì›™ŽçÛæNæãð™:œQ3ÕÁhtÜ §Ùµ××xe8£‚2ê@@™ &×J%­[ ,g7ÀüŽ(ÕT dÈÕäÔÏÄ„\š¢<ÚºZÝ A³b>Du+àâ†Ö\ÔNzMšO }lÂb8®"µn'•’s('…“¦ 7ƒ¾ o˜ßIÿlR9‚_ÑhǵVVñÇé þÒïZ£à wüúýŠ”íõ=·´Ó9™Ñeà=û§)iVASæÐt8êíãËX(Dd ¤ÿ¡<÷§¨äe²ÅÛÓ…ðzö!O¼ûìPd¡¤g³Ç³°˜òͨ­¬ýY„±-c‘€’:DL6ÍBKlxI¬þ÷÷íäy„˜#‚Ánm$û¡Á&èá`†ðœîË ï0Ÿ¾´¿ï~lYª÷©`Uâ=&¢ôïkÜ'Z 8†ozàŨ{—å€;‘Ë1Ã?‚±nnè¯|Noußê¾=Ôýýµ},`JÃ…/z.„}F|E³ÙÊ©vÐÛq—ïé-_‰yE– £æã--Œ÷ />}sò`ÿÉ-?g½×öe-ħ%kÂ%¡Åd>ËqtQ¨Ãr|~‡]zÒ­­¹:B²»F"pèE°Ñæ‘£¬·Æ¬À†Î7cÔêE§O…–gÌÖz&¥[ƒ/ ¬sÙaÇ’P\À·Ù¥©hIê+"‡Œ¨=:ëHå7æ#ç D 4U§,~‘Î΂ÓXQM/ÒóqÚŸ°^±?E}0ªõ¤m΢Frq3y×-( *áe1ÜPGÍ•¤5MHS(´6òÝ BX²ÈE¡ ÉÅI¾¿{µª¿Â0ZÌè[{ IŠÃW¸Ç`ð¼¨Fªô¼”8k øÐϼ2–¢2çk»ì@]øXrW7}Íð’Mr›'b!,S sš+T!À†.¤Vþér;?\ؤn“–:_6£D`§ZýX|²’¬Òu¶üæ¼NbHfã_ˆxÈ£@će^uļ5)ä­]y²ž “ÞÑr_L×n‹pïmƒ$å>ʼúv–Åk^ñ2±m‰R8[c€UT±)îgt/Cu³-Óppç ‡Xl((Óò²¬ÉE ­‰¡zÏp,À?ðºÈDH¸‘Y·ŒÈôB„6$g몄Ï…ó F š>¬¼]1Á^/ò*92VÞ­TÝëÃ;ØJå‰Ó‘¸YÄAè‰çöA¨F¥Þ+< g†ˆ²®däÌû%쫜X™Tê‘“1œÎ®eØ^ðf§ok†àà:ƒcO/Ä5¦¾Ž.½HÿxmÛ¡Q+2^Ê\HØTäÚù‰®µÀd¨–È ÚCƒ–t2 ¿Ð^*þZk¤¿l‹öï>¦t‰¥Â~SS"£bg©9 t¾N5v 9·ŠXrÂ?\õ5C]%"¤Ð7…K®4x÷VV[«rÀ¼úÆWR%ܰPÛ}„! ["¦PÝ ]–9x¸Ø^ÂÅ»¹Š+Vøj9E|RBŸ,HŸ(<£ª¹.Ë¥¶%ÔÕgÃóì(’Õ/"-«¯]ÑTÈ›KA¥2ai]*vÖ“WHY¨`55†*#ƒe&ËÁ&¿Ld?Ú_¾D¡;ËÛG¸* @ר|B>…b h¾ÇBt4;.€×O¾ôáØ~`â6 ÷·͇‘È£-¨i= É™ÝÚ¹R$!]Ç9CeP**‡À›ëÄj4+Ö&TCc¢ * j¡›-÷Ù¥Òn5¢U‰œ®¯"ùˆùgš±ˆŒ'לùyÓ+HÃÔd2Vö Qª½õ¾ô%ß0¶)ÅäÂÂ]±›H¦ª™lQ&GϦŒ©‰0®d²¡>ß8®A4µz.a{"žÚžz×@a—YJùw\®ëÙË,n”Yö—ÉX¡‘ÒXSŒ<:ìM« ºA%%6Y¼]„vp^f9KÇ #³UÏ¢~'@rvê‘>—žX}™{ç|ÄD°¿«ûÜ2å2å2¥z–É(ïK¤æð(Ñ%œÏ“Rž³ÑËsØÄt Â0kËøÑFÙþµš×›ö—€"™ä‡çl(ÂÑ/¸?gçŽmññÃt•ö‡lJ…Uôø™edóŸÈáÓM%(O5”ÛB=–ÕÚ6¥˜6â³” ÍÇÇÁÙ©ð3[)°M]`œæŽÄ//px$}9‚=?¿³¹Î?Õ­G¥'àUùB„3¹ù€|zéOý³úS—,úˆÅÕ¢Ô±V Úª›IVv©û.Ÿ·.ƒjÒ}ÅLG/°8® ,^©&9¥ ¹X«ûêèî…—Ý“CUP¼ÇEƸ"Ùá|þ]$.¥Ì¤ÝÞkñ^QSõzÎèJ»°ëL°âç›Þkòh§"3\«*B¿s|¬îÒžŠX'õ‡—à,gw&¤Dåde²Bͼª†ç½°c'm`(ù'7p=Æ åƒþÈ>\ßmôvÔ’X9<ä;¢áÀhÓÏœI3)̬ x¢*±1Q‹žmõ2±2X@b@0üˆÁÝG:­SOÉà9c<:-{0càAq¬Â¦Û$€c2îÀ+‚$ˆØªèrF™Ü»Æ·»d EŠ(ÌÈTã|(<š¸)n­¯’H¡Ç`2¼žQë±'k=ª7ëñ¤uI¼Ê£Ó…ÄË3ë cé_†ÖQ OÈÅb|ú€ lb~8j±áJd­ •wMüì$îßÁ%âalœÔ7ÂH)‘®ÙÔ(?›@±Î™‚pNËáè,†JÍ;ú"ÜÅH™#œ\&Ž[¨å7Œ’~œ8ž’3XaaÅMaÄŸÆÂwÓÞbŽ"œÈŽó‚aðYel©c(¼–<Ô?H½‰ê™šRÜÛ‡I˜q:ÛXÚl]•6ÄqtzÛßDÅÑUõ¾Ûq’pUŸv¢€ŽæôR‹'’?¯ŠtFÀg¼‚2×Q ó³¶ûÚŽf뫲›Ów|‰¯aÆ9/I#íHæŒÞ¾—ÚïTp‹Ö摊‰0?¡›¹»Hhg±§‹dý¨ó¨jÓ6é¢V‚ Kø¨J'M¡0G¡âö “ÑÈgÁ t³/ÁaZ»7ƒÁ##ÒÅ.s©=7‡)£]œ1af½P½”B·S#ågØ™6ÇÛÔð3µG?{OØ ÝDòVâxÜNÈH\ Q¼Q~ì¸6lj*ɶrYX¬tr’Ù¿ ;5YØfˆ…mE2„qúã2%Ìô`t@à›Or9£àõéÔrܾŒhíÂÚ9™Ð/ ²¦P/»£¨…9Ë@RX—þÿ9_Þküg½Þlxùß67–ùßîåájÇFÃÝLÉæ»ÈõRvÍ‘àÍ€BJëx8# ÙNê]1m° Oºx„.lžÂVp¡‘}Íî VÒŸMŒ_Fx%er­-0ÙšÛõ7K†VªPòî=¿Ì'fà=œ%«Ð›Ö3c¤³åam‘†3?µØÃö È5üÏ-KÚéçJ—Uh¶µÙûÏ`¶EƒíÒ^Ëå&ŠJ†šÚªW@Ô<Vgs®°/àÿ<ë,|é`Á&×íWÇò67´âK9#)m^íÁਰæü{ wÑšF{oŽÂƒüÙŠYÞ"—H¾wY!ÒPZ(ý„~É*’6ŸÙRØîík–äZçö^À§ð¾[D†@Ðç{ŽáAJÕŒ¬?ß«Õu|f²ç!pŠ{¨<®ûYÖÿS‚ïG$Ã2<"-^RðîhX»ó~‡ŽèöÒúÉ/=0+QU'<ö“Ê^u³ZLq\R ø°&èš<¢ñ’èN§E¸¡nPMV#&Q‘cSW‘¸0–JÕÅoÄo¹XAÓ±ØùE (È(¨cÓœêjõÐH9; zÆ BRÝ¢Á†Aƒáu9Xܺ|?|Ó0TÇú(ØZ{kõç]skjn¸”Kí óŒf™Üœ…­¼—v#uCá‹Û« © æ½@±Q«éë#ØÇt;EÓ‚eGÖyûW¼M×ül‰É˜º°õ|Æ¥W¤‘£´æ?xI77MÍ ÷eqÀìñ÷›Þ÷QU3œ&KUó¼OHÿ›Ý«þwãÉSøÎÕÿ6Kýï}<¼m\ýog©ÿ½ýoÇÖÿ%ñ\…¯¯Ï@ Já«!ͨ,B(ÚÃþ›`§w«t5Õ^–"°õºPýšÓö‡SÄ.,¤>¨ôµvÈW­Ïç9YŒâö ¤¸ ªcKhÁ+jçÙFÑJ;{³¾Ù[kùÃ(XyÙŠÔ¦5¥š |mº/iͪD)eøŽjº² º{ÒÈáÿÝø€ÿöj¹Ã·ôŽÁõÜR¯6“^­sßz5†ÒÁ?uO5G1X¢1~¦…SCÿ”›jŸ½#o­è».nΧ”ÆàDæ‘=Y hW§á3?/ÖÖñ%_*ëHï¥ïøZùåj>âêS퀚¥n0•gõpÚ<}•‰Êƒ•G—+³(ªl”uó•†v‡•‚¤Æ¨ªÏµZ0XöÛÔÏ„Q,ÊP°D¥¨yÉQ²ˆ1te>í˜^GÐH·HRè{û©´B$tÿŸÜïýÿiýÉS?ÿÿÒÿë^¦÷þ_²ØÈßXð`*ÂbÈT¾ýœüô²¦ §‰í—vÓ>bÒNïëDÉ,û÷­Kx˜\·8å-”Ç3©,â95fQY¾ežÒa&•…ÒSX`¬ÊâN¼Í–Ö-E³ú”r¼…ÅÂ4 Åêî´hß‚½pî­VßWü8õû@޹KÝŇnáÄ…ú”$%ªû|~X ƒÉHD´t£ š•­ó—ÌêœÓÍwÍiÓšvÂŽ9bt·\w„> _RÒ?&¶@žCŒ°[ ƒÕ?çDÒ , Áñ1ýy›.†€’[«$zK‡øxúŸÉô²q¯úŸF½Yo¸úŸæÆ“¥þç>ÁnLýOïx·aú 2þyÝî¨Õݯ&ǯT~PôúèÕñ«ã?_ïi…^ŒûÙ‡äàæ¼?au¾5ý†\ã°?<ÿòÜ}+Ehö î–p)®¢èY9=P@1Ó(Vµ 8ï…Ò-•DîË(”ØXíj)Ó ¬G¥¶Òª$\×R‡t¼ÈÈÒeŸGSQô.î™2I¯2OÁ4KÌáëG"ýk’¹0ô0ñbCïr⣻ˆ?¬Ê ¯  ]$…EP3¤D¹`†ÓWÉE£ÌóS¸‡\S¢ gg)Ç&éŸ$æ°¹‰¼u&wŒ¼,+Ø@ãLôù9$$ìÞâ”l~Ù®¨·áóV’ûáG–ÂM¿s*ãt?¬Ùô.­j7Géâ#„󅛚&#ÐÍD¹ð¤+Qß²+·Ð{fûðj•+U[ßtðW¹„ªÕ3N/a‡ Ï1•­9£ƒG^ÚW©3Š“3£2Ã)˜Q¤„fT6 sn.,³x6R•€Ÿ0:¯ÂêØwØÍùGÅw8¢ƒÑ!niLŽûºB'Ç>3ûd;­Ë¤úpÄ…ºv7Ü'>1ºTñ9[MÍ¥a-–eÂpC*á¶öo^.ÿ“ Ûbö, 7Ha0ç)PD0ÿË1Lº«'«¤Ù€su¿ºO¾íY‘k,r¹IÍ]Aà¸Ê†”?G ±²_«¯L¦41GÍK†o<1K5 A)F[ÖœæSŒ¶Ö’¯•ÄK0¦ÆªM(ïFãO å ŸAÉJ:T]Ó¢¶ÏT¿_¨B­Ú| ǘ$C{;øV52ÑCkæöF:O3:›ˆ‘Î3\È…_zk}£Äi6ò,;“fC}Sœw/%Mdò–Å$$Ýw"¹áøêOêV\x6ä`k]YsáÚä¥vfCϯãW˜æöxçPfݤÆ7ªèòú­ôO‹ªÇgÓGÓèÈaØ^·¥4•·Hl¿¾ÝùËr•“îsïпØT¿@UÅ_^½X¨^ýW«÷-«#W9gçבãí{ùïÁE¤?Èþ“¢p Ú’š;”4îž:ÿ“ÐK†¯˜¸Ú ß0ú¯¯‘EJ›šñöØpþjü˜v½š?ŒûoXýSˆ!ågƒA ûÅþùQvÜIÇú,Þ•»zøÇö+Õ˜DƈöÞâ"ðÐëžä)ËoPŠáÅÆ1qõ§áÅ £P”>V…‘­¥F(6xIü7Án«I(ÙÛª‰i§Ï•-µÆ$î2OP \¢C" \zÙCäà ,R7•n‚‹Èê!"c-S"ßò<oÑP9¸vžf8vÄýª:|–oé`kö¥‰m'Ff[Ãuã„ÃJMŒTU†G¹‰>^ųs´ŒË”íÝ0I1±¦…{Ç8€3‘=žIb?¦'j0\ÕYýûn&rLÅ´‰« ·a lWÁê®14µ™“š†Lƒ¬ûÙcãïá4É(M$¿‰ã­"àWºk{+ÏI<ŽÙ æA­×€jŽÿi"y‰œŠÃKôðD44í¢bÆ¡¡“ƒn4F:QüãÉF œ;¦yp:ÑØC©tÁyµOõr°"Êpô…雯>>•{x2¹-/÷žÊ­i>Â9ùùÉRŒ?¼Ê›—þ"(Á%ÃéÀ·¯^~·Fcâ±À¯ì•‹Šœ@ÃÈlT›ü©À›59œ¸îŠ>Y³'å-@qm² ¶yR«g[;ÓdÃê õRl¯Ð¿ÚÙ5²EW$ èoäkÉÏå^+&Ú‚ g×”úÇ$ä{óÅð£€^¦Vé¤o†ã3 —£/›àe{‹h¢´N%ßÚÀp½9»×™sõ€´óõ·9W7ïð\í9ÝŹê§4^ž«òù)ÎÕ=Z} ¤8™ól¥CÒ:ÁÅ'|àµñÜ'þ¹êw㰽幪ž{K¯¯¥×WòÃx}íµIüÝþ`¡±´vºoãØÑAŒÁÝ¡£éF\‡±íÞŸx_[x‰ø;tûу²ïÛ{ìþ«*0”—é49ŒÒ$ûnÛm£ê™ˆæc|ÅcTºÒâÒÿÖÒuÛhÖ©‹ îöúË­%63,ªz3¤ž)mÈ…î[âÇf£¡hpP«Ñ »˜e…kcc#l)8Õ%9~uIе.Ifö®K\»¤Àñ-èf—”÷´KÂÎvEÝ&áråÛFiã™ï’ï]r¿KÌ5t4§^Rì‡—ÌæŠ—ŠÙûyÖÀí±Äüã’E¸È%ʾ/ÈnßÖÖ:?Ý Ùœ?èO$Ç`ÃÉR×noa~öÀIS! [Û_ ;ɤxƒ¤ŸûéºÛåø$ºís\­™ _Åý@á$ì´¨±¶´'–£á>^ÐÖpÖ5²Š8ü¥?·õ’àgV_ =Õ\OD~”ûÁ~Ü¼W"?a î,ŠüÄWÙœVŽ;H2¿o?%<,ø)ág¡‡=§·…è©Ðç‚aÄüÅó¼à'º^Aƒ¶{¡/?·÷ÈP³-ç—ÁÏ-½õ4sý3ü¾æö€ôf™ã›æw÷†,î¶Œ»$?38wðSèâÁOIGóå\w~Š>ø)åúa¼sá'g×ä;ƒˆwr]Bø)p¸t“Øl9‡ØaïË}×ûr_Y1}Ig¨ýÌRP 6Â<®šüø›°{EP8íeù*¡Rà öã´ñ Žðó1--Èòƒ‹±¿¶Gw²œõû ÞÉ_Å^;ä&ÓËR€Ccl?ý¡3¹Þ‹whMX®yöÓHÁ[³IÁ[¥¥à§?ü䞤àb~"?YJÁK)Øím¥à}”õTç–„måäàµ2ú¾Ëe…¥ücJÁ±:¾!s¾¯ô~9¡+Ñ׫}+>Íü{681—jsØs8VócÊ{Oª$lf _ö–`&aøY®0솼/Ô5ëp’ÅÝÑC^$Ç%½±1ƒKúW‰Öóÿž‚üzÏõ_ž4Ÿxþßõ¥ÿ÷}qË\d&.ÕË}[‘zLâ„ö©fòž{V ùúŸôßã{ÕÿÔ›[›žþgãéRÿsÓš­ÿÙysTÍyøú}U«Þ£žùý© DîÓìŠôC4ßPdÎBÔ?€Ò w1“.Gë‚ú¸ eÒ!ÝdȶWMF×È»úUÇ_RÌ:]§ûe6íÞ•ÙDܪùª‚€Ä ¬âû´ÒÕ )\¾ho÷`ÐÂŽ ù-¶‘ßbôâjëÝôÍH{Ib–:ÌDâÍŒ´Eþä`Tᚆ>3}z¿~~3îŸsyYèð*íS82ÈI™ w7;÷‡R*Ð0‡ßXåCã¸ê€žo.¨Ž-†Æˆ UdrX>˜ØxœN®ñÜYë'ãWåuœ–`4–cž¦ Éí«Â¦6”*ÇGrT4tÐ_$°|‡5²4x”Â6tF•bshFk ÑY ?˜Œp”—£h8Ûîýy|´h¯é'€ÜîµáW²$¥€a¤Aãôâæå›™,ÂýÉUw·„Ý£ÏÄÝ:誓ÎìøÛК‹ÌLð{²lLÌë}ˆNEýÉdtžõÅÉ):‘ Š3’¼9 úvûÔSê>úûhXsƒZæM ñ~!ýNZ˜>«&c%ñt%\‹÷#)$fTÕo®ÞZYo¡q~m½æwL&ËñÜ?þ‰ŠŒ<oÛ´r>º\„Ž|„sÉu:Æ-†¥ô¼»SÏâåóìI7ÚÖ*óùÒgÊñ¤ªu¿Åïtô`½·ÛFJË~6àchdŠ鯱î4®ºkêÁò o1 ž€¤rA³ýK÷òïli@MÕPº- †ma£jØÂv†<+@,5„Tèøª{þ:§—Ò©èŽUÅXâÞÎqU]Æ¢¶¶—`–Ã:`þí±üýÖ©]8:Y€ÝB•0Z€õ"7û„©‰$ÄDà,ewŒYÕwQ©!ìÖos[{Ƨu'·µ™–"ðµ6µx6zeF;ͬ92H‚mP¡MùTÇ/§îïˆLZãÊ'Öˆuù$:¿ò6¡7G÷ZÃyÉ”0–ˆ0e›_ÞË­šoGЬ9tØ0²G+ñ@ÈîÍ`Àä»UÍc¥ŠÐÔ¯ã=™Yžâ°0îCjž"YÇ1¥U:G ßÎ’y(ã·böªmi©`_îmÃQ÷<µq†Ò¶X#;ÿ²Êðû%†1«Ú¯ÇA98¨ ‹¬¿CÀ[ÉW ÛÚýüÝFˆ x%hĆ÷2,ɱkúÉ«C¡Z1ü"/ákŒáéýû³ÒáÌW‚“ÑàFê¢d¸.ÖV™Í=)ð~–ê¿s´N¥œ¼cVÓ¸Ñá¥IëˆøòCÊ.`PéxŒÆ ´B°eå Ý4Ð74É4»¢œŸ—B.‘ƒ¿g`¤£°´ è8ûð$h™ÁÙÂU~=]¯:±4¸g{ íuÑ÷=z#”ë­ Žø–.Å%UÂî¶wïvúó8cÇ}°çì\+vÁŽz_Gßž}µ‘S"½z3pöƒ¦o©†m—Ù«jØö:CòÕª§ÖTf3 œú3rRˆK†*&uöËï…ý¤Ú`F}áƒRø9]~N×’<‘þ,fŸÐ:ŸÖ,œ™;»ûçõìø*e¶=­üµ’Tp¨Õ([0ÝŠÑ{XYquþ§ÇG';2Vq:¾1ÚØöz8ó°+qÿeŸ+È3çB$v×s`¾,]ÄØ@<ùML8bo¢¨BóªñøV{xô]ÈÔÜ.0ˆ€kCXrk.j½JGCèàK6IµEÝ>ŠqxÖšPDÁ^@}È‘ ' `ž$£zfµF㺜"å.Pmöæ¸ê‚ƒŸàâ²|¦¥pKsIãöæ’ÅXKÄ †B›üÚ¨ËÔÊ‹÷[§’Úa'gW7W^„.F‡$Æý˜R³ã0îSã’ѵÓ}PÛÏsû-Ù2Ü\ƒvƒ< n8BPéÁ rÈsü.w8ð5êy‹Áüq´“;z@5gñâÕI÷¸Êá”Õ»û>>´6¼ö^Ã{ÈÎk¸uîà³w|´¿ã­Ý:ÿhä\eàûÃÎbri·N_ÿ)ì(½¦Ínµ{”+{FÓRQ€IQVóhJU¾ÏÂwÏùçỂ·Ûeo?óÛž–m[*Pg4-ÀEú.M œBQS¢Öu^Ôf˜$ÆŠÎlbðD~Ú/ë!õjÁlºïÙÑß9eT y …„LÈ׃›‰ÈÒ © ×=Ôÿú©•Å÷Ì)ÌWzýËmõ8ë½:ªƒß¯ æ¢?o 9¾Œý©m´Lê\L̸š_lÄ›©Ë‘u&Vªjæ…ð™bâpbp|w4º†Û4è¤Õçc<­Q:A½ œÚ“ËÌ©s#½á@œÍ.n€aŠ}Ì¿†iïP¶o¡g§¸wèfX³²Š?¾bÔþr¶B@‡á3éH|$õZ)or,]Hl¨çoˬ¨ÖWÛ§¬èÇ(“Óà2³[ÃT Þàï)\¤-’§áïÐÏKÅ}«¡íœ²%I¼Ñ(9xøggÆÈßwNÝA*;JÃ3vÙ3ì„K ‹)p„Ò)ý|Qb£#^ ¾$"_Z ò³ÒV^œFP“Ø¡Jv^œæcªéeÏ !§ëSb¦+1Ó aF¢¥+Þ‰“@×›lèµr“4Úfljfå.o¤öA/¨›AߊÐëcäH•ÈŽ0ˆ ó-˜ìâT²‹6œ±ø®•ÅŒÃñë÷+ò2b¾ÃûZ*2ò[ªM †(îï¹P™º:)hJ7—GTŠKÁýÒТg½@ÙëY?Þê/.Øýʇì»RÁ ‡·&èϳdzôùé,ÛâŽ=ï†m»1"+UÆa>¬Âùª2 ; —‘r¼µpÉôÞqX—Ë`•¸5Æ€ ÉðƨՋ±Z›IÔJz&9‘°ê‡1'å+:ðu¾µ½+“úŠHÎ ÎEêcˆ’Ô(c¦+8ïÑ’•²¬á•´J+ªéEz>Nû‘îdŠš5^_ºHÑ4’‹3ÖÆ|(s¬n¨£æJÒš&W#xKÜåå»T}§þɫІ䂲ûÝÀÍrUu°³.ÄúÖ^B’Yðî1˜aR¤_Sº36à>ô³¡5¦Ät akd]!3‘Ìp®ð¬Zã%Ž“ŠÕ ÀYÖæJÜR³·¡ ®EjŠäñØ6©ýò9(å¤9Õê½Çâ“•d}®³Rõ7çub˜"|Áˆ‘ç‚0 k¼ê0ã5ÉŠWŒ®<Žl¤w4wŽ)/mFûÞÒ‰r‚ CïÑ 5o™oÍ{$žß­< Ì»ïãº.q ¡Ûêýˇ†ƒÛ†‚–,6`ñ àÉÃ˲&%´&†^•JÖ©…È>Ä99Ø‚‚ºyòŠƒÎ8߬çÌÖ"ÎO³ÏE”:«°Ù:tØÌ >"\EŽ”­È‘RhžØein.ýŽPû³…ÖJ¯c]Ân!)!™!=BrÛ I~’„$–'!! |J•”Ë–°k¥Kx½5&MHrò&욉xÌOór'$9évãùv Aìit&R~7sš$S˜ÌÕï«ñü §yãhtÖY=ªCÖ“lŸE8ŽjAƒ”úa€ºQJü<‹mç]Ù2”Ã!6KXnİó™r»¨OàÑ®Öî<4Ÿ@ßÿoòyÁîEù?ŸÔë[®ÿ_ckéÿw/à}–ÿ_ï­çþ'ÝþþF>|wà¾gçz(ïL×{kç3°]èDÆNÛN;Ñ‘ŸÚ*2ï¶Êì'| ºµ³oµnÙ|H®ã œÒ¿mªÎÐSŒÞ8g7mì»â[+ç4‚êÄêK!ú´„ÌMÖz;G3a@MWÍsé’÷]âÄ=}ZB¸²ü‹Ê»»™`¶cc& =ìèq…M a¯:Ó•N¥Öu#UÝõ¨ìXÉ7Æé‡þø‚w$í§›ët¬ú1œúL8þHNôHTR_?·ªLUa;ôÍæðë³WJs _?»± t—FhPÜîn½¿»S†ˆ žS£ÐeÎú,3qî®>2ñÍú–?ŠPgL«àCþŒëÂÑÏ¢2³©® ๒*oºÝ»òDšÝ•DÄâ.Ü—$æFò¸m,"¨¤®Y=/̄ĚÁ&6ù9ãJˆ5Îáhºjx C}êÅÿm>YÞÿïãœÅ¹ÿÞm½8®–Œ´ÔgÖ#ª†P”à H ‰è)¥f°BùÛ€a…F~ÐHB 6TL .‚^ø¼+PFM’¯#A(3¦ÅtT$¤3ˆiIvÌXÄÑЖ‹DßH:,#DHñ‚:„ Â¥ÇÞ6Õ¸–ðDUŽ• F_P$`}§=ç÷êëèƒÄl$´R—Û|Ýãñ@¬4b“/´Ì`^& „mSÁñ‹ú¢½W¿+x—ýØÿ¬êÐÀäDµS‰R!–eW˜¥ Ì„™MÈyDåƒ"_&ž#»Ÿ|é1%f59»™šHP`üƒAòa”2QKº~žŠd¦"Á¢‹+µ_ºpÆY D#V®¹NÔÐ’ë*öp!ºp‹ ý¢/åoøk¨!¬BD{}=Èx=D˜\8œY5hP~3è{ÓóBuœ±¦†$›–PhÒÆL |ö®a5/³”ª‘Ñé ©:¢z•É M“ˆ‘P»¸3w1c¦ÖÉlïÒLwve½Hg12xáa´ æÎæÆ]1·îÜ8&weÞGÏB„]ù„VCn#†•šr–qH±nØÙtþoŒœñáÝÑ6Þçȉxnµp…–nç6KW.^>_µ^FÉ_b!wn³÷:ßBp»ÿRûPç«àÿÛ†ýw´©ûÖ‚YyÃÅ݆ñߦž]Q!;–lÍ{0=– Ëï³{¥’`©Òåu<ÍPWïmY”ecź۠()óŽÜ€ñ݈uÝž •”” ̋켯ÊUŠX¼óû¾Ê´ÄËìÖB.³ÜCötSáë§Ì~ ¡ä¤Šö¯ ˜)úy’o —ùЃž°Rpìë¹¢0(µ¼)³gÜ´¤ì¦laU<Ѽñ.jtøVÖ;h3Ÿ;«w4óeVèöähbÙ¿«îë9£+íqðâ%¯8h½I,€*ªÂ¹ê:$äèó8O&TSsŠl¶bQvnÙ`·’¬w_¯‹W9Ð>±Ûì³j/*ïu±{DÓm2ƒ{Ä/~ÛòY-â Ágñ­8-ï[¡{kâ»>ÜÂñB6…t½Á„Vt/ãKJEní «9†pçâ!¬¥NêcăÊÝAßññZ“¬Ò9Á³V(+À³»”9>-fQsS•Æ ¹Žøo‚QÁBשÅU5s šÜd`f©ïª´'SJ¿X™UûÔí‚x£Ìœ ݶi[-oÄFŒNfÃuFt2IƒI² C}¶¡ääuêÊÇêÌ™}Ùf:!ÂY½Ó©eOºœñÊm°ZiäY.æþ4ÒuëT09K§K%óñý¦ãË{õÿÙxºÕ äÿ®/ýîãá­`ûÿ] O¨/N()Üüe\Ë{·`é +¶GH/žÄ¢XŒªŠ¥üPZAi,w)}Gò}(Ø{â‘á;q_!6û°–ØZ‡M¤?YTK/ÎG´<ŠÅ³Ì¨½,R^ºËOŒÏO³ë.5O¹1Ÿb13ùa~‚!vM—%¶[è=@¶.òËÇ îïé·0¤/}_Kj@]â6ìhÔºnü]uU‘2h›ñ¡ìt¡ ZœçUÈ=õûÆš$Åœ·÷]©Ë¿}Ψ¡èlbFƒWÛB»°iäð5ŠY)b#âLz˜q‰søYW¾:Ö‡œœ¨é''ÒwT >ãCUöªƒ9*œo·Eš ‘à~­É4~;4€z c‚®³(X“Ŷ6¦²d{<ºF÷eÄô–°N˜2îŸÄí[¦izÑ`ŒÂšw‹H/b‡L´8XÊøVÉÖê+Ö îá)â;e&Ig5ÃDa~jªÈT×êîdÅtÔtí7蓆žpCM˜Ò£D¦Ü(=åÆ-§ÜÐSnƦÜð¦Üp¦Üð¦ÜÔSnê)7âSn–žró–Snê)oƦÜô¦Üt¦Üô¦¼©§¼©§ÜTœ$Xgïc <ü¢2äijž¬ƒwP[¿Ä75ª|¿ÞôªF•KpöüpÊ¥þç~ë¿mmÕ„W(TNý³µ¦ÏVvÚÇêS`öEOvæ×é¶]cÅ)Þ–IFQóFO¿j =JL¯‘åw5òÕ‡œ›Úë/wÖé@®ä­[ãôê÷ HŒgfÒé2"j{MÒm›KèY‰è]çHW£Vù)[ °÷Ã]’ÿÆOàþ?iÜïý«þÄ»ÿ7›Ëü¯÷òðFtîÿy\臽ù?¸;¯±¼ó/ïüË;¿=Îåyç/}çÿŽn,6°;p„ïyî«%o];›YlQßÀyÀ!UÄñ__ßÞ`[•Mrn#IþÍ †êÜòöx‰¾É´KfFËP!My”P¦l:QD¨/\ØÐ.±ižÜA°Ð‡ö¼ðjލBˆ‰Q1©Ñߪ,‡¸-…Æ€EGÂGTeÁĨ2Èëái \úˆ¬3`ø ï¶×œ¥øˆ9ËûÞÃ}Üûßxr>¸çú[›õ¦Wÿ£þtyÿ»G°!ãþwÔ{q@Œ¦×‚ÿ)¨éÅ©ñëß|ÍYüíºâL4;\ìz!%ô,7ÃÞéL·@Äuru3˜f˜{2d k2cňcî«ÌjÁA<éúã> “Ò“`^Ŭˆä,«q9ÀrucU/Ä ÐFp¤²K.ÄJ+ãt£H¾>î””]è‚w%3/ENµT5kÑ[¯eC,J;#ðÓGçdŒ”‹œ#„% «ßWK¼…¯€1àµàw* e%Ôqî9ÖFÆnâhOÍÑ–æ-ÁÀ~*õ5º,Qñ>¤âÿ~§èÆAmßâåPEaÒÓ/˜/BØÉЊl\îêôN-œq† Øu0èîdü`­’áàiàð!«R›ú?“쟿%CéÂ…ù’NßT´Èó«Ë IŽßÕ…æ,ØÖÅîBª¦ÎËîÉa5y±½ÓåA@{ÁÁ¿ðÇáÉðéÃøkFÛ_4uAÎm…¿¿Ã{Ϭ&¿V;¤Í[àí)ÏHõ2ê„TŠÚ ^Ž˜æÖžNDÀ++ >–+ÈßÉåv „sþ¦*èhÛÎîG\\Ô8F-i`uÀÃdž]s>¯aÁ@N08õÄßj@üJÝó}$„Wðçª=d¤Füa<ƒ5pÉUÈ©9Õ å¿iB"þ¡Kòy)^Óš8*¿Áu Ÿ2zaõh"²31öþ˜>5/T°]pÊæÐÞ„ðñúnë ·³®?¢qKZ–†Y5kFØ`¥ÔðÅzç´Ne†oa7oø¼ 4Hcøæ¸­1‰Õ£!õð ŒÀxÑæãR[ßÑGLÍS„º˜N¬ºPAHöfŠ¡š¦(kujlQvd®o]MQöZÞLÝûßä,½çúõÍæfàþ·µ¼ÿÝÇÃäoÞÿzí·•dïUû=ÜÓ^¼"£Ùþ6–YEÝþû$ üý½ÈÄa©Í'ì-|1™rüPïbywKt,F<1Ž;·:o‘¥±%Mï¼Z Éû ÷4Ã¥XǤ㉃ì8Í>¤C!ç&áÊCÕàk¸£ð—ÂnÀf7^=9Cü;ù—󮉈ToAns™ø[Æ×™ã ß~u^~{™r½óCÄU-7Œ„|Bi+a’ýá‡AªRúO(©¸;–lq@å"-Ögº2—Šªßß.ËHXgZ·&.x”OG„«|¸¸›Î4£ÝÖ‡q£lµÍQÎfñÂý—€S‹ÂèêÙÚe’¬ Fι*VGš­/³ñd X«Óú2±¬SV zœ«ÆjKx,¬léjµM@ý‰¨á1yn~l/òˆOkõµ¬ö×rç2îdÜcsÙ_µO+Tñû¯_#€‚Bôkú‹šÃí¢2¬þµàÖÿgÕ]²ºÂt¥õfJåé¥úö^C7ca2†nÎeÝ[ÓH>œØœ¸Z†mª• ×vð8¶0?Nu% X4Zu `„Gd€ëÚ)D-,šP¬žñU¦#Ó¶Ç›×›k;¦VÓ/#E|-Úš÷Ñíì«-6°¶È ³\ã;"y'€Ì” 7–Óºê3˜­vržrò`bn¢ß÷sôË®Û92t,ˆ„éV=Ð÷v>ôÑxúq4¤Šõ&çô³Øc•-S™Vïê÷&ˆ£Á…4}à`ú“ÑyF{‚༫d^úe9•óý½ r§—é8ž«spÜžÞ¯3¤ßÉrÊ4n‚0q*Þsìòsff(ÍÕn­±òC¤&œ >Œ€Õ}¼J.ûÙ€¯í@UÀ?`Š _«;º¼¬[¨z=§Y߯Ím?”ºç"ãôÀ²?ìÛÐD/*jpª‰ÖkåÒØ¨úÕÛêS^½ÛÁ2s­îñûqåõE tºÛ”èjûå´CÝCŽJ¶Õ=RÚ¸j²óºWMŽÌÑa‡Ìf»ü³óò°•“\u.•í-“ÑJ×ð’ÉhsƒIJ+zZ½U¼wmWYµƒ?ŽwÞñOLF»°Þ›£pÝÛ§*!šÒÉeùZlPét‰öô |}±ÀÔ[ùA$¤Æªè awÐåL´¥ƒL<Œ OŒç$žŸ«vÆDµûÛù 6Ý({`­ ƒ[t«÷بÎSTø#]²ø®TŽ\?R£t¸ ]¥ï;ߌóRØ»‹?â9r¡tÏ¡v+¸Ä}—ÇmàäŽÁ®yl¿²÷²/a^(…(Óº'Üdڷ±˜ÑZÖ•þeŠù°²«›+½)C›/½–ùFõÊN#@>Æ6â»<3Í÷GšiL<Ôwžé†ÕàBˆÄò•xÍ#æ4Æ:T¶~˜¢<Ó§Jl(=2/,È£ÃGqŠ`*é5iÛA`h· ƒ˜· }û†&æ‘•b¸•Ñ!1Ú°½»Me7„Ù`B¦×FÍçØÒÀF¾.Ú{ø?Yƒùì¦h§î.÷¶‹ öͼ`ó²5£¾ŽR¤º2»* ƒ®¼[´qm›xgá3ÃàçkÊIFXc°¿b¥0ë% ŠR‡$ õ"ö ¯vœ<»˜bÆQôU±àâ@È ëæ;Ò똾ï‘\a‡Ò(ØR0òŽ`’¹É›…]ÝZpÕöÍ‘ÄM‚©*7&‘ CUØ•Á÷R…[ô'äå‚ ôèN8NéO[ãy}=]ñ.1øfc¤hãxeè­!2këælñ M¦fnn÷À0­},Œ >Ë[åyÞ” 1Ä3yi×+û„ì÷[ÿ½þ´Þðâÿ¶–þŸ÷òð6qí%x}9`r òÄóƒN^õ÷ŸÇ.(ñ °3“™0Ô‡2æh-îÊ”¸}ç¶D<÷¬V¨0¿H'Ù¿lJåãŽpÈäÚÓÃßÀ +ýœ˜Ì1iå㯉Òh@|ßà.1À„Ó›«kQ–á ˆ¡\F} N¹eXm“š¦Óì+M³s(ê>“‘ªŠ%*†÷“7ý1™.²Õžë_\<žÜœMÇýó)ùšR‰x ¨<ˆèbm@ï^ÆD8ºJÉ ûÄN6/¨ cíðu•ýSÿú¢ö 9¶"ü Ö ¡sÞ_ÀÊyš}†É7Rkâˆ>¦_ûpwºB»Å8‘¿Ê±!kxblœá÷Kš|¢/ñ%–:I—öá¥}xi^Ú‡—öá¥}xi^Ú‡Ó"ï@£¹æØ‘w#²Ö™¤àúŠØeb±¯§$ß ‰?1ðüEð&‹· Gó? ‹ÎÃɤþ—~¯מŸï9Éï±iÞXíF¼- gÐN°–l­b.èfuSoÛgôÆ`£tYDªýDQ@‚bø7Ê3‚7HKðÆ·AK®±•}Xï[–Õ‘«5Éþ£•¨7œ]l ¢©±àæ$²>0_E¹!³AZ€$t?ŽDQ¶+ÔൟÙ7€qà$¬`Æ7¹á„-le’A\’ðü #ïƒ>ÇÃüeõ*Ã^)± :¹Û cî1žùö%eÀœÜ¢«¶‚CÉ‘öM&×vf&RKHÚ‹™‰Ô†EQ³©+_Ø[ ,‘Z´)赑.}uþþ¾:k–³Î­£…·ÎÁ›“£?K{í(ý†ë·C;prt’ð>r˜*4Š™¥ŸÏl~>/w¢Óq·Ÿí9èúYüÄ D÷ðFEÈ™;oÖk£E“üI®Q$ËoÛ¸~à|d[î ÷ ßì§À‰£ÓþRÂu¤@ý’g# Ï€Ô0{™Äõ—TÑ*h>f{;™ü7QV ñ‡wJ#¦ãb"1k·óFŠW¼ÑuÍ-tÄÎ ›ù:·OÙv±O™šAx”ßÕ-×Çlé"¶tshxé"ö#»ˆ±Οã ð:ºYÔ&^ÄV“/ës?¤ƒÙö‹ûu0Û~´Òyö/sç½úèa0¡»¸…3œQ t_a%3ýÓ•ÿqúœ°[t,|ëtÔõ»¥ÛôÛR]zdï÷ì5§'æd¬9°©CDü É>üMŽ—ÛöÜÜBþ__ïÕÿ«Ù|Rßðê¿m4—þ_÷ñ0ý¸þ_§’µº/w¢ù þÿ¼=ȹп=Á ðÿ 6í¿‚ß}2Á…âp:»-ówr3Л£ô³fšždos“J¤¿ÅÿOnëj†« Ææp;{SáaG|Ðâ«?§sÚ©vN›ÀŠž£z»´wBAUowZ²“ãE„)ÆÎYªpöMdÆÿFÙ38Š0Y!‰õØ¡”IÌF6¼À¬ø*m·p3'ôãøUé—F £àe%»3¬Žp3ôܪÞÏšýÁemt í=|™T`_¼=ù?Ûfn'G\vºsP#û>°ža‡â_Ñ‘.}Ê–>eKŸ²¥OÙÒ§,îSöF™Í·ëM±oWÒ­}«uÙ‹ËZÊì#ÁyòI%ß)KÌúMŽgÏûvX}³tj³ÌùБïõVXòò2,¿=)~ÇÀð¿)ä3_DŠdVy†ç¡bkê4¶}HjêÏ?Âú\Ú*›uó?aPæ»nqŸ°œAb²g8·¥·‚3eã“èWþ;b‚R:«ø^‹+bšÓÀ\ŸhbD”PÞRôã0‡©¨JÃ{Ôše}c`üøï þÛ%m0z¼lüŠ_ Žœ>NP¡Ëßñ98 ªÞ>R'Þ ÊçßîŸQ5ŽTø—LGàÁЋ’\m‰U7n Yýò5»ê[b$yÜœŸ§×ÈÉጒNÖQú…ü7§” ]V$A–’/©!õýï~õÌ’ù`…¾dpF¢ k ¼<âê7L”!Æ ð²FöüwUòßþ«ÿ=ûo²’Tíf0>àºøn6òŽH,í ¼}XÌg+Çâˆ@rXä@"tYxõ¿ÇÿÕr«dk r=蟧U4Ø@Œ¦^C×Öœãjt†®°6Îá¤%¾ˆ´Ì<¢O6ìdcU§ìj„âüüfLÚ7^Q…kû¤Sêì ì9ÀTŽ{ÅÓ :Ô&UaÒyÔ{÷Ld¼ÂãFêàtRu ­ÈݯݿoTyos¼¬§£+k3[7>×ÑÖgü g ÔAX/M“ðÅ Û÷(Gp~½AmÃ[•™½­Ñ~(ê§YËóyyÓ‡8MÕdp]9B/LðÞ"œŸ«þƒjÅ¥ ­\§´ý>bUj\ÞÆŸp<ÀFÒäÿiŠAŠwó\ÀCLGS§–âMÆÇ7¥øp¶Cboªš ¹««ä"õUG|W²ÎÁÚâ<Ö•p~¨=„›8Ëú!ECfmá{µóa~¸2›sûÔ˜ˆ¨Kçù¥›ó2¼ßs]ÞíöcØŒ×#ž,nØ‚?y†r™¿•Ÿ›-nSž)þ® ê/t˜êžßA¶ÖnqˆŸ$eŸü'L¾snáàc·«¹=“­~çwM¶À„}“¡…‰$(2ÏÆ ¡¸&ZëÃT.9ˆ¥ ~à>Æ ÍØ:8Øé¼d§aü)<ŽwzÇÕäm‹¿4ýŽÖšWGÛ@,‚ú‚µ Ý|‚Û†—òÿè´óÌdøBï5¿øî•ïÕÜ9>|µù࿽0ÝÞëƒÎq¾1èà ZÒ¹9Þ0oËÚ$<¸·db Ù˜þnÎÎ/^‘“óË÷E>Ïq$¢kšñ'bÝ͉¸Ý{×z½@WhZ`^ßïèÍR¿!Œ ¨u¯ð¶ô_1 ðvö_é<ÐlŒbÖPL~ó˜Á›ø–ÞÉž·qw²çl\ä¼å6(åüÔme{#¿AÐFÅ\Ëx%{Žíë!^ÂÂKœ÷÷ö=êß8.ªæ2‡¼‰ÕZ{€cX{[Ã/ó'äô×°¾Ñ]žb:]r=hEÀ?Aø¾‡¦µiCu’så{ÝǼgq.·¬ÆõÌîtnGêÓ…'ç<ôb/æ÷“>´½ZsÝQñ„xT{>¦Æ»%svæï ÁqÞpµM^îðîJ:˜Št{ÆKb¸#to@!ÿñ$Ç…ÜíûïîRNüÀö+W~‰ÜŒÿåŽé´¸­ß¹ç?Î’&‘!j<Ý!¶·ôöÛã“´_¼= ²t~ݨۨŸY ?·küÒþñ„—‹EǺÍ$¢\¥NʲBI n«DSªûÕ}ùéoÛ~ú;ì¿íxéß2Á«t¼ÞŽxêÙnéÒ9´È5³Ž³–‘ßôrƒ˜²‚ (¶-ÌpäÇENXmìaÝ/Z# KŽÔ¿‰+šÆ5ª ·Òbg7©°ìçï+øæ€÷s Ìà¯nè„ Íê‰ÒÀ+æ½!Èjš± ¸ æJ8.¯±Ë«OÑwnØê1Ì +>³ ÂíS+ØÔb}ÀŸ˜½'~$E’ÃqÜIªNÁ¢O\η“œù&Er9?ÛX3é$¤öö¾M”o‡ä(:Îá}=»"¬@uÞ̸͡Ȉg}Âu<›y¤}ywØë+t«ý’MR#®§ýž=~³¼„’=ÒÆØ‘a²&µ ª¡Û‚"Šú~çQpÿ’NÐæÜÞkÞdøÅ½;ï^‰oàãÜ”„ú%*“9Ûÿ ¬”²y€MæèbNªE¤ÜPãŽzG®½ÃÅ€ý8¥ 0ÛÃÛ¿h)ÄM¸`.á9”šFþ6õö¨7#?ŒŸÖ5Vá;§ÅÜÏ4J3_Z¤­¬‰gß~4e'Ä É3ƒCk:'_®ö,žWó;ÔŒVÌP1êL¡€ài ÊòÌ>¹—q"‡->à«éU¾^TÖtÇ÷œ5]!ǵÐd– ÙAàitˆ¿]UA8 ?UÝ’“´3¿žxk‰mi³'† m5A¢Ôï*¸òÖ7j@!¬=tuIVŽ£‚ï¬(mEø}ïí¾0†àŽÁZŽMy0*jYµ'‡TÖV‰DOßYëÔÜM•J„äb’$Áƒ»»VµxP÷$ÔЫ‚(ßµ^ü¢#ø…¿“=4Eõz>²”€R$½ˆ?èÒoîŧäî;룭\VÄæDož>ˆ"~üç‡Éô>ã?ëͧõ§~üçæ2þó>¦@;þóe︒¼ÝyqlªàXÙo›ê€6ý†ÿžæåÚÚ>UžÁÈÍ'd“qxQBy,Û¿@–ŒÓdT.¼x›þl«œþ%â(O+<’™â( „zjâECÖ.ÒËl˜MSÒWœÉ7ƒì?ì(LÒXgƒô &°úxí uvÑ_mÃ(¯¢ŠýÆ“›¼Xý¦ßá̯“›óìô"ù(2Ânå>Ùm>•yÛì3ö±ÿ^HAš¹§Ÿ³ÑÍ„’٣܂ƒÃ½ÕÕãՉƯá^´[i=ÆúÔéõ ƒ?Žéä“nI~~ëbåĽ€qŸ"ÈÖ* ˜¬%yY]­Ôê+«oˆ@)„”X®´ŽiÿIćAOÒñçTzOé©b4N‰@O¤T\à’ž#ùAàýáÿbÇF1¾Ó`Ü'5:ý[D7"·h‘Ú^”c«ÌûrlY£l/r”ír¿½ÀˆÌïù©ÿ`2ûE™ýÅdö£™ûH•C³FÈÉM8ÌtLŽ~1‡-ÐvvL)òk»ä‡G I/¹˜™æ%Ž{-†x:jq6„ÛšM(š4%Û À`›1Øf ¶OˆÙ"N«žs2Y†ùC6õáãºË×í(ËÓœ(ËÓäöX°‡0 ×pÜPz¿Ê¯ëÉHê£oç<ÞÐNàß7ÝòæS¼à¼Å'¯·[Ç”ºåµ¬6~šs-€Û&XG…e,~ÑbW^Ô‰Ôážµ×Àÿá—¼ 8û­:Þ+èx•óètQÑvOãÈjw:˜lÿ‡ÖaÏϹýsc~· ñ³}‰ØÝ>h5ØÏöè¥øyüRüä¿{;Çy޶G¯ŽU â…»Ó.Ô‘Öò£=ÕÞ«|7=`‰ô<÷ÖýÐK‚‘m¨'!!lÍ0:…]`¹3ª5á;‹,؇h8æÞaNÝÖ¬n®mn@–uøãåñ: rv§×Ö,N¯x¶R«vN«_üV§†¯¥¹pâ›2Ž³Ê£5ìèYÎãòeïø;•C–Š{°¾ t¯ÍÃlš‘6ÄœwŸ ‘Bx³¥¨¬0úcz9þˆÏÀLwoeØR'jÂè¼7œéR ¤’q(E¯¨àžŒoS: Ž˜ëOtij4² ¸N2ŠPˆ—é‚ E”‰®ûpdT,á” ËXñaÚ†ƒFxÀõð‡•äqÒÐÜJbáZ$„~%×û Þ Æyâ ûƒÏ*YÞ½ò…a¸sjÕŒP¢HtÒ);ƒ)9V0îøÀ@;Å€žˆ; _ý(Z€óÿŠþ¬Û¡xE–^Ö`•z9J§öº1:Œ¤§}‘¤ Ÿ\Gh´¥g¦ãjެgxnÍ«W¹ZY…PK´¾¾¿6ðï:}¸&~4äwÃ}24æLñü½J¶â$@€„’èÆ\‚±·nl^Ĥ®ÒX¤_“,™RLüDX ‡U@¼ý'ÕF$¯‘™„Рbœ^ChÓPÍtÇ”^µþQGˆ Ñóühi85ô$XÉ‹¾H†·C 2Õùç Îy…ï–êOÜ$ÐîœV—ÂXâ³›æT»™N² yñœŠÛ+×ø2G¯qr˜âͳ\`ÀêtôÕ•Ôf4Ž®4Õ´4:DPé͵ùþtt-ôÖ`V}´þëi]ú˜‹`4¥M1Y7wâ8%«í§³Õʧ3 ŒÇ ©)î†4t.¼ iʪÐXýtV«[ñŠà €HúãÁ7ZùëþÂ~2‚Á³Ù€Óô:Æé¿o²±ÞÑXå†A{c\CüÉ>6Twy:'u•G Ó9À ŽjÂøë' øW½BÊ;D æ”gGÕéWg"ˆ:ˆ™ÍØr2×ø5‚®éðì˜îðÌé—4ZY^ö8ÁÊ^#©  áªÄÉ8¥dD¬W£‹ìû{$uøQ1òþе°ÀE'$#dþMpL{6¶€¾D&³·@ uÌÅ(ŒÀ’Æ}IIõÆóáÚU–Dæ´ Â„qÈVHã9·ã ^ÎPäjÚ3q pÏkõçÕa¸÷Iz>Œæ‰h6´K´«„Z*ý tpžMß~Å¢´è?jÄ<3{0b—‰= ˆsÁâ‰ø¿pδ<ÕöàlE‚êpû Ó/’:$úÕ­ *lfÈ%}¼^Ê ÀüŠÛb‚±kˆð°¥* j‡Ó4 Þ¼šó$¯™»å¾´j¡0úáÅz2ÃiˆiF—Y`f…|±Ö~°üéö+òÕè¢ ù}Ô [ˆG|îSáƒBhðy¡€ƒú™t#b¸^Ðâ,ž|‘¹€¸¯‘Œÿ‹(ºœ°»ýʳp ¶#æK àèþ²èAHTOý<Ê0Õ6SÞùè"­*ql0]ó>¸¢ôIZösñΟÒåe±tŠ ½kúTØÎ>ûíc›‚ÖQÇÉ¥³á·èÔe n[Ãû—ñeC4@¸ˆb'”ªC7ŸÀ=*´bæ—<ô5×OiÃöÞ½À½Ò½šðÃþ«›Ïlß&þ´óju¢Å@ö[îÌ0¶¯Vw:u{ Ïñ\ ÄPÞKm=U,©}TF–ËDgº8ù`'ÊÚ%‹®)¤%«°9WõGŽÃT»ƒ“FÃ6)º\í®ˆ*5Ï_íãÚÞiÊöT ë£ÇØ6lx¾[NOMîI^ž;5¤?øêu¯Öá.:ªWë#Õk³¨×'ɾ&쪻%Ô{›ò½}÷5²}ƾ12ã£Z\mf>m9#±,«]hNq@û. WkåÑD›Uoxó [m9»'¦O£G‚!-Yø‚äâÁlEæò¤ˆ Ÿåì2øú))MߢùìW"ô*¦¾ïïMë£ÛLÝÜäæidêÏJ¸l õOˆ£Áçñ´vu3˜fxzŸ¢Àcg‰S¢v(]uI%Ø;\S^’a¿H@k(’ÍþrçHÀ&NPc]”;G9®0Ú®×ÇaŸMA.-ë¶ÌvŽ.g“~%«fõaZuˆQPƒ?‡é×)I"$¶ã²qvÔª+¾Ý© rE0½¾ê±øš1KþbÕ#Ìñ•Ƨ^7ˆ;qľb«í#MÖ££†GÞ¹Õ˜)˜X”è£öi ýÛ&Ñ:×£ã—æ‚טբ1«ˆa°O\w[ÕhýI£–ª¡qÁp.8µÚ'=¹À]Ò|ø^‰wYÚ7]hiŒ!Œ”£kjÏ2W¼?Ù<.™›3ŸS*÷›Õóµ™…œ@è8HÁ(ìy+±¬á™—YûvV%Ä­’0£G£F=—ÍÎdw-ÞÃ÷ɲÂ÷˜njÆ+OâÝkŒk«™ñJcJœÅ2¸Ç£s.,ÏÐ…e¾j1Õgó^V,Dý@—•²W•…]TÊžú¿üM/* Ò®ÆçÂ.)b½‚[¾±ñ=/)ÆE\PA]ƒÙX[zkÞ(§FA.yyo4f•„öVX̽rxhäß?9î!èBƒx>]f=lú¦Ô€ÒßÉG»uuv„ÛÚaLvUºêÝFŽtïÜéúVÚçž'Ÿ—ˆÇËVË Zý=×Çñ¤Qxgh<™Áß­ížãaÓ(ô2hüRÒÙ¥ñ´¤·Ë¾;.ãƒRÞmk.³€ ¥}3ÚV›U;¥Œ^-E «Î€f®DÌÂ|ÍÏæujYÞ#HÃ)%΄H(g^èÆUÏ÷einÌç̲§Éâ7÷ƒy§¬7îÿ$4°Ð”›w¢|ý{¸°;+ív­¨á­Ý\êÕìvn.usÕ£]>X—æ“¥KÔÇE8‰”ôqiI­ð`)'š./sy°ˆ×>Ý©‹ØzßÁƒ…=Ë<•?ö ·ð_‰¸¯äv¾ô^¹sï•fãvî+k"¥Îý¹¯°*«Æå!™Üz!èÈâ‚húWÂ×›E¨úŽ¥ÌpiÉݯû&·½—–€î"aÒlΩ Vf´u §ÕbZšÍ‡êÐbiˆµ~˜þlˆïrçÄÒ½x«„Ì H2›F Lª«µúvŠúyV5Ëdi¾g•æÖÃsViÆbDÔ£NÙæ“‡â¬¢DÓ³éý8«˜÷ÊùÜU67~Vw•ÏzúüU neÊ 31,!OÍ®¬ç#~+ͧ÷ã·Ò|vo~+M?öÊÌ/·ò[¹¥P>“ßÊüâxLÏ×d> 7–ͼÎܯ/Kô¦²Y87•96ƒµ­‚'ËÂo)æaswn*‘Ó~³ñw¿¡ÌK€!Œ;Ë{ñRÙl>,/•Í Ál¬¥ÍÜc)×@q÷^*±-±õ½ÝTÞ]}3䦰™ïÌwRÙ|úÝT6sDy×IÅþS¥‹Á6Ÿmø'T‰TM©Žµ¹Ô–¹—M7×ó&hª©c©a§–ZÈî6=fûÙüeöÔLk9©™k–-Z¤fZóS3Y~"Æ— Ñ€F©™`ÃΙ˜É30Sb&?_S^r&+!-?"{Ò/³¤fªR3Áõ«átNë4:*'%]³f =ú*êß ×Ó–ð›¥Äé¡;vÙ´K[Eš‡-í%K8¦»-›cjË÷Ôq»Ý”pk|:Ñž g[Â^¹})YxŽšSÛñ„›'Oµk;®]jDóæ{²†7ß`p ƒ5^€¦tA\çêE¤’ÜÁŠä '™·òƒàpzOr¶~¿e*M»¦¹kõ’7ùf»ò&ïd»ÚŠX2¶|?Ô{ô—;uÝåå,wêúÊiO9ÁTqm _¤“œ„À"ýwñ33—Å:½c/¸`¶æâ3õÕÿ~okû¨ðgŠŽok¤C>Œ;)åø¶ö©ö©_›ÁñMyzÚno4ÀòNoòõy\ÞÔ×náòFˆB¹ÌMkEžo(®Ñk¦û›˜f)ç·zT¥µ¸÷›üZ›t§%Žlo¨].ÄçmUа•g­³Q;̳.m Ç­ µÛ{½Ñ‰^o5Ô<RîÂë}Þ"“ÁSü©iì;ž=0¼Î•ßî-0œ'’Á¯cááªñ–¯€ùqýÜpjõµ€U¨>›U¨nêÝÜ!Ý¡{ÛÖmãŸëk³™D´ÙÌÆB¹£ÅFØÖÜÐ÷“®I™ŠÄŸµòÐ!nakG÷äú¶5W4*Ó#l2I¨BƒÁ÷ƒŒ?¹Uthýx&f-}Fâ/Îñ D|lQñ½†Hç¹Æ=Ù°ÝPŠO§òÊbXžÈ£â¶v§'壣ŸÄ££KyÄb÷-<âÖ>M•ä:·Gœ\sÜâ¤,Nä´v ï¸'[‹ðŽsÄ¿†ÿfóŽ‹ ‘÷ê÷d–vá÷ÚÚŒt’§ 9mFÿ9¢EÕk¹VvÅŸä—XÌ=×´YÈãÌq‚-T2Úø°„a»Õ“âÒ›þøîír@ì'~Cˆ ä6w…Oòõ¥å|ñÖö¹hd½¼+žd°5ËO«"§ÐVž÷Ó_J8åÍÀówmþòb—/ÁYfŠ1ÒmîÄ9ïÉ“ïÏš‘™kYÌÃMBóÑHžzwqã*IPlÝ“Sß“§?éÝkV!Å#ì276Eø!í•‹Š{ñ|òìû\ÒäI]u…BO$3ˆ~ôAùKÞAù4מSVÃ|Ž‚O7f» üè»kš§!§ù×õ|G§Â£!¬ßxßÅz„+€Kr& ±‘€˜AÞÒ„Ë÷žæ\Pþ.Y®ž6 |}ʤœzZxÇyº9ƒŸO™ÄZO ]+ž>-éãót«¤ÏBR鹨Znbj¥AìÛ ìÌ“åÊÐìÀ•(ŒdMÍOæõäYÞ£HÃ)eÜ„H(g^8©_òýwž>›Ïg!‰½œ)[‰½žFŽï§w¢š~ð^;’é®nå­³Âlؽ…í¬óls鬓W‰Mø¾Ì˜¥Ê𶙡›jµŸ=ö;÷Ù‘Lìûøë°{œø$Æ®ÍwæôÜ1úwÜwŠF°ôṞg·óáYÃâµû)î bÜó#äsÃã¹é3ÿ6÷ã:ðêÂì¿/`ðìvQ߯ÄuPw miâE4úbÏæê¾ÔSJQ<ƒšXãèz愳°?›+âû»ª¯t0GgÏòì¿4–Ž: Ξå ÌßÏO'ç>õËøOå8áRÜù—‡ê£³ð‹×ÃrÐ (¿l,¯`ßÃcç—ºÊEνxìüR€;¿Õ3&ubþÒÈ=1s:÷á±ÙwÍÅaç{o·<Ç/!gŽ_ò¯ñù.<¿l}7ž_rî-er€ab"I¨;°á l÷Ú/{Çf³ÿù_³>ƒþuÿüS­¹ÞxÜ;zñøbröáóúåÌ`rŸ xžlnÒϧOžÐÏÿ½±Qßl6žþ¯:<Oë›[ÿ5õÿ•l,váçÙ$ù_Wýñ¤5šÄÞƒ×.Œ—‡ð0éôNÚG¯N€*wˆ¨€Aì½j¿¯ÂÕéàU½bÐO·J«Îøo»Íåµ`ïV“÷ñý~°ýž·72†ÝWRz®Õ’ƒÖëÖ‹ýäbœ¡³Áä|4®Wà Ú¨$a[Öd·aöy‰þ8ÓÉ$M«ú³ýAv9³~ÒNÇŸà†ñî­ÝÖËä`z±.ó½uGŸÓ«3謩vÓúzÒ;ï€ Zã7lZ—‰Ç^üÑ:j½8Þ9Ò3Ò¨ïtºÇ;/Í7šªÆcŒ±Eøèª®õZãqÿ[hÛ¯NÚ;Éë£^çU7~“tf›þlË?ßUègœ3k¢wßWxD«¸0jLøëë›1È ¤”üþœ$9]]ßLA>IšÁ%ðsp“Nª„üÑ5žšðõ·ªñ{ X·~w¼¸=²ÿÀmoòíê*޳óÚEŠ'ñ”/}ð µè îUh0.û6®~ý­2è_]ôWVÛ«_ד?Ò±Ì1ئŒzýÉ0{гT÷ƒ`ð%î¥*d8±ÉHøšÀ•TŽF G-“‰ ¤Dd%ŠV4 ­ÖMAã·äQ÷Ñs 0Ƥ‰Àd4|ûÕyùmìe±‰\1D$ÐrÃ8AÈ'VÞ7òÏ1±G*  wLØòÀò!´ƒêжrPbë˜`1 åh| …3ÏU× ¨ëæ÷ß’ Ø20‡7´õèä¦*/•«›¯ÐIvɸ#ÌTM0£1½iB:ÓpŒvÖqXæ Û‹d{aƒl›ƒlYƒ| ™Æê1 >²ª*ÜËa ¯®03ꮘy5L`‡ŒÅö缂08ÛåXNLíGO )×¥*(I¸Mœ>aë€ÀÙñEaˆÆ¶NØ4¡üU›~¦5¸¹2·á9o(X€Pg“ÀD¨úc{=AãÈÖ²Ú_Õ¿Ès²’á/èlwÕÿZu þù[öÏßþú5è€)(´ç @Qó«lXràåº}•ÁøšMÿç£á”Μ=ïÌ‹t2¾©Í‰‹X‚Fiÿ/Fzùt­ P¿£âa­. ·oA\í;&®v„¸Îæ"®ö ÄÕžƒ¸à¸Ç‘iâjˆë¬qµ]âjG‰ë,—¸.ûxò$=}/ž\²iòâãN„OßÄ Ùè&m‚iC¯½ÕÕãÕ^g?N§7ã!àíì[²ýºÝ;ÞU´Ù^m¶™6ÛL›mE›ïˆÊ TiÓcç’Å[`¦UWB"èOÎÓ! Î6Ñïû9úeÒ휄’¨û!.µÐ{Úþý ]mõ)ò^HQò1…ˆªŽÉlÚ}ŸÀ¢ÒL“µÑ…­ÑyFú{‚ó®’­¬Ó ™ 2! A”“ràÀ÷§É{¤ö*έ³™sWÎù=n¼áh dt âßðÜ`mŒêÛ‘Ïûu†ô;iœPÉ,š‹ ÞëJ ‘›€!8¸s§¥»¹Ú&ZL“TS€µylrsÒÒäòf@;Ô|áŸô‚&ZVÕKÜ2mò±nI6¤@<'"6¡üî@É.89xb>ÿ Ü—“ÞöˆR+¨„ô ÿñöG¦˜\÷Çý+ r˜è´ó„~ [š•Ô SªON2®^`…H)†‰KCòÏÝJ²Þ}u¼^Ð×_­;t¡¥ÀO\/¸–ÔÑ¢{ cÂã9ȇ×páu1¦b#ú~Ó}Ÿ+‡Çlz ÚÜ€ÆÊ:kr$7ßr›£xDm±p«§~«6·jç´úÅoõÕy¬jÑÈQB|×Í[+…\ÓÃŒÜ.àõîNmdª`º®$XáGjM(Õ{á¼úLÜon²óO‚ý"#f;ÉÎŒW^g·<€)¡P”k?Wš%f¬w ›YhïV ý©¥1µæ‘ ãüÁ_ËÍ]Çü }žs“)œ +¥ùõº±W·±øB]ÿ <e/ü|MU¡rȘfR¿gýgH3)U¸C´"™ÚbœozqsN¶{ª¯[KÊäé¢Ï ¾>äíÝ}"V9[`¿zÕ™­žé»ªžÇ©WçŸð®: µN°šœ£¾•YÿºùŽ”Úéû6^ˆE†‘#æ‡0)Ö›…E¯6æTÛ7G’BÜI‡ð’$NæR8ÛÓ0„½½ìg}Bö¿‹óíÆfݳÿ5Ÿl.í÷ñð–qíÛ3#ûsãïÂ(þê,í‚¶]PbDài&3a¨7eèï܈êgÙvï_\<žÜœMÇ 2WQç€Ñç’³lØÇq˜ ` _/a$ƒìû¿À}pZ;|]å_ÿÔ¿¾¨ý²!ü Ö ¡³Â°ržfŸá^ü4Q8¢é×þEzž]Áå¯rlÇž[59ƒO¾¤É§áè ’Ñp4\Zˆ­–K qÜøúc˜ˆ—6â¥xi#þmÄý¥xi#6:ÿ!lÄ3‰tû0ïÅ®Ü9¾™x&ˆñ õ*]Wòí„è—/pL€:IÎr|1 ¤jÑdŠ bgfJ4!HýÙÌ”h Ã"›Y(Ñ„âÓyYJ´Pe J\ºÌ,]fîÛef÷f 3cºHX3[ûcê€Úý ·Iêgg7¬…;û&FrØJvûS`”Ûéu<%Bƒiö¡ϲó‰¡ëÞ‡ooÎ?ÁÛ'½Öyï¼V"¹Ñ)”ÙôýΑԃ¿nµw,]y…²«"ŸÜØ^Ûà·q/ÒŸ–þXö]ÞsèàÍÉÎÑŸÕ»ñ ÚoHO"bÞ‡ èƒø³‘£$?À÷~ Ï£—;‡‡UŒ}ñð˜çˆ´ý"gÚÞCIàè…BqYêÝy³^î.BàOr]šº˜3Äw«a1\*$9)W›°y^"B#Ípˤ±êy’è™-µ~Zg-“ ÈG‰Ý¥œÖläŒ=Ìê4`ë»óAãë]¹ç``LŒøùs|¾Q “¢|¼ÔäËk êÒYîA8ËåøÊm¿¸__¹íÀ:®rîT»1 K¿ä¶¢ÄЈw3 ñ*¬¥ºò?ÞÃîzѱ ø^õÔõ»%‘úm©.½F²w×P |‘Ó&ï¨ÉqÜþ¹ýCþ_ïÕÿ¯ÙØØ|âúÿmn<]úÿÝÇäïúÿʃê¨Õ}¹St^å\|é {ƒïÂ?oàÿàHð³s‚@zǯà÷â"Vñc·E`þN®ƒ²s4b֌°'áÁ¾sP*ÙfÐ%×…×ë¶>ˆ¸PÂCðöþˆo*<½§DÑßíOµsâhà|š^ä{'Þs–“;KsÇ¡í@†,åçyH=H´œ}ƒ{Czž]RÖ´4#-(JX&¾h ÈëÈñBëU³á9s] 7%á iÂùq|ìhO—F ;èbgË3\ý›áÅz`(náJò±?¸¬®S¡ñ‡/“ ìæ·'ÿ' çÎí¤ ÄÎALýÀS?|Öƒåté_¸ô/\ú.ý —þ…KÿÂ¥aÿÂ7Äl~~oŠýü’aíì[m(éìf¢IbŒzB¡Õ5€ ‰ö0CÔ´Tª(ŒV“lÄÄö›_­s@¡LÒßÀF|K^DT’Áá ·=¶79¾{oŒM=ï²¼Yw;·œN rëqñ+¾pÜøÞ sª’»”ôÎIñ;VHüM­)3D0ó3”»PRŸí:Câz|þ1¥5´$jó?aPÖjt-|ãÖey–ÄUäu JggÊÆ*tN¢_ùìˆ Ê[@ÅwŒ]1"¶ä3¹Q­Åˆ¸xÀßM•ïCro[³$÷?þ{"¼T²KrÑÚø¿@ +ù, Ñ—¿c‰eT½}¤D¼_—[y¤ÜþÙ¸6Þ7È=j ü .K空!Ù7#c1õxô5»ê[׺øŸ§×äý2QÎ=Ö¹ô…\„§øî…¬}J÷ÊAFÕbûÆíâ÷«gÖÝVèKv, z†ÁËHpÿ¾Dò·xYKv^÷üwUòßþ«ÿ=ûo²’Tíf0> ðÝLº,S¸Vr=†k(îpÞÒ,¼¤Æâ«rXäØ$<”ðêÿ«ïG’qbPÚõ žVýÑ`1šz =•åŽ4™ž`Ä£3ô¶¶qGñd¤õVÌ~c¼¿¸‚I‡¤äj„ûáüüKs÷¥UذvWé˜~ÉÎ9¸˜I:¾&ƒW¾t‚ÞÜIcuû uøâÊ£Þ£•*ñbė˾§Rõ&]ÉÁÕV¿oTyksˆ!åøšŒ®bNâÏÿ –gü LíÅll6g T ìP|—ç ˆ{m:š¦õÍÅd!|·M€8$FáNÞØó˜WœX ûë¯:â+¸Dw–áËðE|<¼à©NF7÷–nŽ:áÀf 9†ÏFeúÞthú¾Z0¨s¼{÷Òûæw`(^1éÕºÀÉD¬%d ;ó}u )‡;ŒQOI?æäy3¼p[?fvN¶ü˜yì=U€ƒæ³±Â§VÕ!·"”X­~©ë¹¸‘éKŒ–Å¢óÑEú+]Jª~_%Ý’§zú0@þÑ™ÀºÁL]³Ë:&/À)yéàŸ½×9Ö3|áÝ+íæÜ9>|bà?ø¿Û{}Ð9Žã_`롺:¿xE.Î/wßz<ÇQ†N=hÁÅŸèîæhÜî½k½Îq„îàŽƒï<„Xè£N·×y¡û‹¹“?wj¦vý†°jã-X¾Â4ï¿btÃ{Å¥ó}2KŠI@1zú] soå[z?{ÞÌÞϾ3s÷³ç¾<›÷ó·y)ïçg~«ÞÏõ ¿Ù›÷ç7åÝŸ-¿=„,=RºkV‡~{‚¡oü*\¹nËŠ”¨Œ‰ÁП¬fš‘Óß–õèðÓ9A¨T «‹~9‡;8ÁºE`ŸØ`Ã%¤XîäÞbÌïÆnŒ­QÏÈÜnܧ ODzèE’,½´-/íy¨…ßYèØNda·iÛT'UùÎÔ oÙŽä;ì.¾í¸‘ÝË¿»'¶ôÁÝŽ¸UÙÊÒŸ¯È)nº®Š0ù’?â6 ›U YÅVË.Ýø¢Ètªxód×!C«¨G ïyãoBfÓKˆR9 s}·8^·öA1 ® {U–® ¹¦~|t¢`»ëå±H[ì +¢«ŠÀž4tqñ™!/?Ê·ËÏz[”õ|WM¬ÜtM0c«1hµºë´n}ÀŸX°óê“¿zß±ÞÛ IÜÃ\’«ãVîôÏ_[›À·œá&α9[·_%õ¤“ŠÏû6Qþ”rs§c£|1ÕÈß…ã"E¶õ פlnäµesç0x…*‰/Ù$5‚4Úï‘%éÍUЪ|ˆ¢¹jÓé– h¡Ë32Êv˜ªïw‚Œ”oÎ6{‡+4ïüÆbñpwßÀ+^Êlœ¦ºÍˆK}7êË‹·­h¢ÒCy?%eí¨÷qÜÚ%W ×?)s]1¼°‹B!AHœs‰&–-žFþ~õ6«7#ß½œŸU.ŸJY†…-dzB{UØ2ƒ†BbÐtdÓ¹åwâÐvBœ¡ÁÕk3˜˜bõï­òÍ*,Æáɉ ô¶bFQyÈR¢EùŸÙ'÷ânæ×L黹áWˆï\zâ*F³!+]Åñ=IqUc4ü@ë¬×>¸E$ hÝÒhõ w Æ*¸àÃwTç×ú@m(*·Í5Öíe’ã¨à;+x‰!Xáƒ@ô½·øÂ‚;†Ää]›%ªwÂ"¾xAôdí·µNÍ%¤„|îùL &IB<¸{¸\O™‹¹P÷$ÔЫ‚õ¼k½6öHGìŸz=4E/C>²Ô ]t|‹?èÒoîŧä¹ÖG[EÛ/É ‹;ý¹Ãâ~šÇÿ›Žï7ÿÿ&%û÷âÿËø¿ûxxÛñA…Á¶©0€?vrõ+üä¥÷ÿq‚ó–7Îë¿­#ñÞ,¼Ê÷¶eÛ©Ì §Bîô`ðל°7X–a)ï<¯…Ubä¡f…˜yéÃŽQš%¥Îôãˆ?ŸdWٳʻr4ù›¿Y]=†á¶àÿ7xê—õ"5XR:ÔëbD2% ïM0¾+ü)Ý\_ +e_¢à´ŠÄè¸sºúf±ONtH‰˜'§Åmc`i½§íR°î?Æi{ÑCß!xhûÁ]],6xèbeÝE¿Šîf41DÀåÇ_€ŸLáj›Ñq× ¶Œ¸äÿŠÃG’¾`–s¡jo®ŸEæ@w&W-›Pd«³`›hS<¥hŠÇc‘ˆíüŒ – Gܲ92}Ž.nÆÂ«R+1î00k[y¿ ær ï×ã‘Ä–Zô¼3Oϵº×wtMbý[»o§’ÑöF¶V_±wã¯Æ×kõj¶â0A'~hÖ÷&Êù 'm„ê—7ÉHÍÒ?O÷.FuLïôWBWB(@Ã4U®o“tŽïrù”‡pÞØnÅ<SÚyãò(sVëñiOóX«ûŽM2ÈX$vumÄžO$iÌY|úÁ”žžÅñpt‘]f¬E=Ȇýd¿syÕVá®0$ý3›ÿ“º#vºã7VzÔ79¸¿aN)ö|Ñ¢Aèí¼iítÑÅ𠺼¡ß÷r®!{¨_«óku?ì€.s{ôá>^¢ê9pö·ëø¦]…ÿZèžw@PºxãBkÊQžwâÎáë…ø ´Žì1xôRü<~)~òß½ôlÐWçg>{,¼ÐöùãtÅqt ט5“r{^“DbVº"¤vDQƒ%}Æpž o=r“àØb¸å¿J‚¸¥6¦ƒŠ;èzwë‹Õ(«ÚGNÕÈ¥a~í`g½[ë¬Eó‰ð5‡­õI¥ôÉÑXYž>B‡œÇºsÓ¼¬Ð¢ÀÆÜ_kÁ¯í×¥Cµlp˺0oÉßËA¾²=^킎NŸz´¨Q£û`36»ô¹e¬3“ôkͪî|S£ª$õ»ã®ë 0 º,dÅÐ%ïD ðÏZŒ­Ê#½F§˜û:‚³ù0ªÝ#š0~6yOW:²}o:õœ FçŸ&ÅâBaЏƉ@g«<ŒÊ¡Ì}*øçÁŒ˜ãxæË0©$¨à(ð=>‚)îæ¨€3}Q!¡#ª9ÃésÚk¬ä…99O÷è˜w@èܣו &g/òÃëwœKÓêqÄcÅ“HfY;˜]àIoRÓœ@”à”~šsÒ¹²OÝ~ðHP#çà RÁV(ŠîŠ¡‰ò¥Ê:†Þ³@\J‰©VWkĢϚd"§3àWq 9Û³œe,O§+ÏÍÐÒ$E«“’ö¯ÝÄYpìÖöòVµÀ„jl¸–‹gÒ.ÑZnc1XÁ¬;œ›r)œÖˆbšÁŒ¢,·™ù(w\@ÍG:I¿)àð˜RêŠÊH*S0v÷‰òMÞÝN(®â=MûŸ@|½øÜNû”Ÿ†9rž•7É—þ$Ð.cEÚà'.Æ£}X“‘s„H¥.©¥I#—34äÛU”óò^%sIÂ¥º:p˜æR(kä“§‚(~Aº/îž6•¶Ýà‡ñAk×xâbBÆQ2,‚ÓHÓæÍ}Jê4â"¥|[â‡Q£¼Ý7Ñ<í‚ÈïÁGÏÚ~ %›@ Ô› ›Äö” ®>)¿ÁÅýÖàºr£oÍyæ NOfZdsÂ4»º3[{Rrº‘¹>™û~šmßa®-–8ã~¡÷p¸Œ|JÓkëþl¥áÌg9òF•'¥´ÔÊÿ Vö©¿²‘Y±S*A¥¾3éWþ‚|³*Î zPaúxJ9U¨Ã ¾†ªvŒ‘ë¿*õ=kûÑÝg½·#-ŸÚTdÒϳHàä/^ØLºµþ?¢‡>]‹x¹[“´˜–žÞûá#R  mÑÿ$Ô0:pææÀÐú²#ëѺ4g2ÃgŽWã¶í ³^r˜¢l½^­j|„µ ƶ͡à8‘xÙmOîƒq"ÓT ‹Ã(gÙ±=FïÀ²Ó¨ÏbÚÑ>¢3ZwKóÎæ©C¢Kmù²sžÍÄTà#œÆƒ´óÏ`ç™EÕ4ôYó‹2âBY«ßL®ò£¾påGH÷xÔÃ\o.Èò#´/jûÛóÝœës·×Æ"ß Tª1îJÌüžf 4U³»1Õd0-ýÅ¿—[ÃŽ1EGt<¿)'ª7§êXrj !tq¸WmK×jº´äÜ%DZãÌhÅi¸.÷mÆy`³f=Ý·–†œY 9k.–A’Ät}¹…÷Jv`©Ï«³ŠurO&œ:ªÅê†ä3—GJ?Má÷>£ãKbpÛù¥>“÷K¢×Æ}‚¶äïmÁi²f¤FUÚiÄ|«MÜÃhi¹YZnäƒì+ û½ž,M7wnº©?½ ÓMýÙƒ´ÝÔŸÝ…o¥ÿÕß×rSÿe¦›µOÕ¿juËt†AY=fºa]MžåF¾ñÿgïÝ»Ú8–¾Ñÿ÷§˜•sÖ±FÛ‰³µ’‰@" pü®ý¼KHƒ™m!]ìð¬|øS—¾wÏh2¶´w h¦ïÕÕÕU¿ª² 7F¹ÊO©v›êvØnSÍc`P߬ßnS­®`·©JkDµú˜F›êÎjF›êΗ1ÚTwóm”ɦºûhf½Žnþ)š™ýñâ]M?®9ü×’ø_;/+/*2þWåÅÅÿªÂã§ø_ðá]aÅÿz‹¬¼×©µ»Œþâ8`p‹jþŠáÃIƒYŠö=©mØŒ¼Ï~ÞÈ_9>LTµ/s±£ÿáb”Äã¨Õ˜,ä®Ã…MF“i\#ƒNeUT‘"ìÇ®QF„´ž,FI'ÒJÚáÚÊÙ€420•˜ÝÆŒ6‚À˜Â“ø‘¬ ²À=ˆÔì0/´p2O±Ê$ìhJtì.W’׃(úËâuX(SLçb«ùýT‹™ñ ôk+½-îÀÈꀉù"8®¡nÎa‡Ñg¶ b˵´be¹€^Zì½ÚÖ¢‚¬²<\­Ž‚4ÆéIã ÙUå{\~î–79FÞÉËn€¢­”¹i»ó¸¿¯Q„¨Kû¶ÙŸc £Y mpjÿŽV꣭ü‰±Åé7[ƬJ`å+äHK“p+½gv5´4i-bÍf°?mñȪELß}¦ŒNmsÊÜó3mm¹ Ýk>T˜Âr6ï®X8Ð]ÍšÇ6}%Žó}<Ïù˜;ªYÍ8)ÉCëKÉpg@w™Xb D&Ø¢6.¡#ýgÔæÃîHò)›ë€vv,4›jTgR‹q+íÀiQs¾•€)]aïç¬>KVP²ÆÆ  ;s9ŠTˆ’sà F…Ùâ{}?Lû7[‡8¡;¹cî½· 8#|¥‘Pôôª·­Š‚%?Fù¦ÅÞLBN›G*ÜFÈ›ó4ޝìÛûh•x~Q»mX"~ó&j íÍÊÆóê–ÚT‹±’… 9تCÈĆ|Œ[nÏpã›)âó}$8ÙœQÔ(ŒPSá'EÍ ›V²cª=0ŠZëä‚r·œtŽk-9îv³{‚‰WÛ'ôMú­‰ãE·;'5ʬچkT•aÕ@§¾ÑÜ©5‰“§cŽÓß;GzïÊ,Ø»‡ç6ubt™K§#…É¥¤Ð\j’/ÁÄZú±ÞN-²+ ”xÓ… )D:Í’€OšOÌ’"L­·zØ1žƒÔ°cg+…å©Héç²n><ꊉPጱ¢’Ñš¤÷ïG{­ôJåF†j‡u#³Ãkýa¾…×ö×Q¡@ çä¤5)àI†=E¾¹±!‚œŠZ†¨)$tÀaA»Ÿt(ñŸ}La¾AüÑ•RIÀ@Õ‘ÒèÑÑÑdÂON~'º#܉GGòUŽë!ÕcÎ^|Ž|ŸÒè*£€ÙšW³È©'K§dÔ«ŸÈ"mœ”03³ûlìÜdÄf­vÕ©T|]¡¯ËxrêYvácâ-¯pU^![¬è¾o3”+ãZ-¦45Ê’´ê@´ž~¾&k‚<%¦³^a­žñº£)dmN«Þ ø®ÆD2¦ßÑÒ@…8ûXŲ/—•Hét È »Ž ´ƒ¶g«Õ3ÕjÕiµ]Ù¼OÃ"¾BVÓ((‰Lkp¶qÓÞ uóKZ¦+³3KFw*º?Þ ËüYy{y¸÷U¸Z`<¼+›_p{&m…-šÿ‚ —„W=Ë8ûr,ãì볌vuùÊ.çÕû´\¹Ó¨„Iz‚²úØYëãÞê>>¿XuuSYFõ ®nÏ$è®®Õ×\«dÞ—"ÐËoK.Þ*ßOré}YÉ¥÷PÉål­lˆ(쎙ÂýÖ$ºT—¶ü%˜Ý×%8Ñ,VTûªò`^•IyxÕÙZyÕj$°Ná&7 ¬›S}] ör/Qh½ìå>K½ÖÔjKý(ר¬¥Î)Ù߸¢4o÷Ô aÑ5)†Xÿ÷å4C¡úפ:Zùó·™ãx=Km·}t/&WYÞ´Çߎ2›˜îàh³º¼îïŠp%Xí6øh ­]\‡/G=“ü2šÿŠ4°¢„µŒó¯û·Fìˆ'§ûoöãùÿˆgŸÖ Ûÿ¿ú¢ Ï„ÿÿîö òÿßÝ~õäÿÿÞ –ÿÿA£{NÐÏvç×®öóož6ϯà_ðÏ;üùŽãþd0¨.=š=ô•0fÇ_þ´sÒ;éý~Úˆ†ÓýØÃñØ;>Š‚ÞóYó¶_¼¨äm|9]ô§wèöÿ*è…’î)ŸêÎÁ£¤É¢9¢ ó¸ŠÃ{¨˜|vs—\×öùSm¾³Ìoƒ>b7‹:~S›ÿJ_ÏwU~‡{¦§h0¹¹]Ì¥;Ôd´P1Š…÷úÝl“ƒöÖ&>þc!ýè©´‰™Ø÷JÚ^:°3HÚtmGÿî‘w¹Fâ<4[µFû\ZXÌ ¶¢³[|6ž|.EŸ©?ýÑgÌaŽ>«¡é]6ûD`³™vp{‹)Ò•+2«èú!<®&Sòß .B•¸a>Ç” áµ,ÔiwŽ£GÝß:½B{£øþ,ÖðŸÆi·¸wQ5Ñî”e&ÜTâºAã_ƒÅtJt2—îõbJÔxô}Ęnú%ZHÆWGò®<ˆ°bXÆ…5=‰Þ-+"7¡.R áÈ“©UV:êê²0A²è ìA<ßâÛY2‚!³;PÖ[µãý_ ÏüìÙ†\àOýÑ"–«Å̦›8ÜUò'ÚÙÙ¦Gìï¸eaà·ñgrt—é‹iÅp]†Í[aÏZE—[—¢d+Þ*yÁÌ´Ó;´÷ úcŠÆ‘äViœvi¤w©Ù¸~K8õ›ÕØË´·%Ú6úR³&÷†týg¸áš¹xè¶­Èû¶®8À“øê*$HãA_ïv.¡cWpË_÷gœ¸d¶à¹Z`4UŽâ­«) yõàÜ!Uadämô)Š…Gï-mG>BJì“Ç­YÍB:/S†“ò×ÛiG‰³u0Ú œñTº±ÓA‡o’Ěؾöû“)ò£ Úä8ô”zˆŽUÌŒ”F<¹©¥ïnS¬Í%E³¼M•)µ!ýÉ)ß³8A.|«‘¡x+ EQ‡uiV$ého t´·Å5ùtôNj…°(ø{£j^)·j“•á•+ÆöNíÝÆön‹kòdžWªspÍnûƒ8×ðÚÅÀ’áý‚š¹^¯'£¡%TDŸbâ3¢ý®è€Ù>Ý×BmÚ›ÔlŽv"Žˆ·WŒ{Ã=16ˆ\rÛuë’lF„QpÙŒY÷¿£í×é‡Þ1ð`ÈÚŠý¨N `É+P®D¯yúeà¶$V¼ ÑÕ <“LRR]$裌½¥vË81B.+‹Ðqk𕗫Ѓ1¬Ïä3Ýk®ÍÅöº °]cºª\Á‘U w!çüæw yœ_¸4àž€[l¯ó6ðZå5Éý¶@m.Tÿj.B–ílϯS&j®ÚéoÉ\|)XÈ–W‡_÷^`6H´ˆì%ʦÅ7ØCæ!)É#Ö(Q̪œ0·¢|x}!CßiÝ’Ñ(þ€ÛenoÔF-PÉY!)%R½1$Wx—×$X÷ñŸ@÷03׉^ÊNÀªG1Ô £ËÅÜg@ÂAK¨·6Z9j¼ÐèÏ€nÂ(ÌÀ}UE°‚P¬–`ˆ–@$’úI³×iH_ê`€ñŠò7ÃeÔ`â¶šQ¡¼"½ÁË®,  ÷ÕŒºÄ‹È4àB•]_»q@1iàŸ¬Jù5 ´!ÂÒ˜AjŒä@éáhB3SŠš¬<íukôï»ô®âM¶í÷ ·p1-Ñý¹DWb³õ•#ÂÔkïN×aZµ}ú³U;¨B#]üY/ ~•¥4Æ GÂhN³â„æ¦^Ó ˜ ¾tSGÛ‘s¸ž’û¾ß¿UCÞÔö`´uèV)¢P¿vj Yµà†Nqüs•9Ë©xñaP€É.â€qc©dÄQñâ¶€D›·ì+¿ì»¼e’eï¿ÕËÏ¿¥ÐYœ%â˜z9vØîÇäÖ—ÃJÚ«¨ï$pöD33d)ÜÇK®õv¯(†äèÞ¼25šùbN¢ÞI´»ž‰}>ˆàܺÁSi<›÷Þu‹¤Ž{#v!Ìwó[[´ÉŠq9ï¨{#l‘Ò°©çÀ 1ì¼Ôf’Ž“6eÉDé7å Çr/ñ}Zó]R£Ê@¥(!vk$œÃ4"`¯ô(°rý'8ôífwc:0ÊóÆðÖGo½uF}1€[ËbDAyºït7dZ1àÔ†íOZû„m‰:·AS¬lyyö…\újþ¥ç±ÖÖ7ÖZÆX5ÅèÖi LãHH­3GDÙÞí6ž²Ûî’•ö^ÞÉÛé.š~Dà@²ÚukE¢Úî^¨·]7a†iŠùYIXÊB²A ÚDÏåMÊ¿}Z½#¤êlB𹽦xÙpÞö¢rBbLXÁ†Oi Á$ÔF#sìrs±‰ÜôÌ·qaÅšCöߪ:üEH AÄÑ·½f6,ÆuÃÄ™±¬I““bpœE3 ÔÙÕ±ãÈЄ©˜û¤~¢fÆý9&=1ÚÃJk›Ï ®ôÃdBz!6ÔÚͲKfü³Ê¶Ÿô&SˆR•’6êk¢ÜXTÙ1‰çç˺‹A§CQÚI$h5ÇQ-ãwQOG׋B)nÒy_ÇÅ:Ù_”ƒF¹˜ Cn‡}qî#¬®ƒ¥Ä80žå S­“¿*iû[­9Þ©rÅŒ êîv{‘Œ]ågÏѽ9tô`&^c)‡,áÓÑ:Xu”“[sø%̳³—õÞœ;z0óŽrñïHnúêv=­ƒ‘g»$ë óòHq*Zó{“¯WíäXôÝŽÅëÝó¨?g¼Òí¨?Pp–ÁdHcK1rúhqQ…Î{À¤!”mZgKT2ޤCs€1°‡™çSÚ‚ÕÔ4Ü«Qÿj¦h1‚+À{¢¢Iàj*”TÞaX–ýÄŒgôl70=]:¹ÊKnËlØÀµ«ý+ÔÖ¤ø;¥p% ìg:ò&Àš,Ù•-!ß`f‹ö}€Yï>Ç\G߈U_²Î0»{‚q…¸›Óó4à8*Mô|Î(ãz#û9•{»†KJQž×¥TÒ4à¡d±aÌ÷c@¼ÍÌn/›9ž Å‘4a4&òÄvï!ê0įN`ä/&m{ø«ŽŸ ¤?£|gr6Ò2¨ëXÀV£g=`¸Š\¬Û2´øiÁ‡¯‚ùFŠâÙ<¹éKÐ7žuÜì´À1&¤éÖßB¢p]ÂSnà« !.“T Ç‚”¹h1“fx5„ªÕ³b½xV,öÐÆ·àïþ­Œ¶¼ìžÂ‘+ÁcÕw êt‰²xHz]ìôóS¡¶±QR°`opX7>¨KµÙŸñ’¢è= ´Ì0ÇfýÑ’…Ø™ËüìVÅŠièí3• ã9aÁ íÊ{ p›´#ĽâÌLëÅ«bûÉEð5tÕÉAV ½ÁY1—ÉÍåÖ¢-§»¨\Q;©Õ2€Q(w•‡I­Úuå‰4+üër4;›ÂŠ6늊n£yr;JЮ.P?jõReRø§…kâÓrI,­˜YØ>¡5³ †öì-EÖmZ2P=Ï0›Oƒ¹@¯Ôâ¢Aò&‡¶%m‘ôµp§»ba²ÝDÉ5Q+ï (œ[mFææ3«r€çjÿךíóö±JƒÅ²Ÿ‹Y‹âO¢)=Væ"…îtÆå¨xo\µØ‡y3TC6­|h‹…>ä³ óí¥,:;=…‰æßS $ ëÕTò„L@ô˜Ú ’F–!ÝÚy£íó¦:b!±Äì(™²ö4E´j‘›|èL®•åßLMÑÓZ)éψ‡è þ…eDò”%Iuîª@Ñò¡  ™G+##66§ ³pº$ßÖH/¯}gZáiÉLÿB ^B铨æI ä\7–0?‰Á¤à‡ñpE0’úâ×”¶¯du6í\Næst–˜Àÿo-…äiôÆÈ}c¥T©£-Œ´ÁmÒØ›X¹ÎtiF¨•ÝÄŠ ¨wCçÞq/”ÖDÊQ¿¯ØJP½ æð]12uø›ˆYØòÆ_±Æ\ÝVðGï&e¬iÂÏJ@ù$¥†æžT” ÓÌÇ„ì_rS‰ÌO•±]5ñ"3†©'%fúÇÂï­ o,Ó1ËÁw(¢8Còý³ öÂúT ›Â³‡Ø³¡»¨˜ê ×4¥Ê² `'DÕº QЕíýȳ!si™ë-y üÏ¥À‡;‹xÇR})òÃû«K}ý_¼îðËô;UøÎÑÿUwžôòa²±õ àX‡'{ïK¶ð¤QÔî¿W;=¨Û{Ä(aߪú9=ÔeZ:{; ö¥*á2µj®v æ·Àm¬¤jkѤóvœ|ˆÇtã¡Ëw)š %<†k?dŸ%R°aEŽŽM)×P1Ê qVæÐIáŒbç—è¤(6ØkÍaÍNOÆ£;Wtžö2Ò†9¨­•Tc!õÔ(ædÇì:?‡KµR^‰/®ŒZ%%pX'e;!uz#uÖ¹´aVT+I"agk²‰cè éN=~.ÿÅ[:¿GSfV¤fO±§¨-aðìµUàÊ C›+ɨðßre£ø_.B I鿤¼­üûMòï7ÿý9¥†–[C¡Z—ÿ»áÕó_ªg¼e -†w6tÕÆÀù>O“ù<£ #h•³`¢bf¸˜ ½µY Œ}1ÁQ`ž•Ü Ï-2â›6¯–& MæØd¶€eUµˆÅ4+ÔÖS¶úÃú-é·‹6Ý k"õº=‡ÎTKf§.Í.m»…3Ú–ª,¹ÃVÙÙN¬&sA2ž bnŸ¶©h÷ý=ÚåÄmœø%18áÜž˜zo;µO¦óë Šðö‚»LÝÒ?²[¶R‘éÍ÷Þ¬[¥%Ũ†?› ¢YªçÂõë6†Ð–Cx/ƒ¿H ¼á#Ï3÷0ÿß÷[\Ó/tñb"4«0çT¼·?áâƒu™ÖäÝ_™iUðM¤É}˜À¶º¾ W~޳þL®®ÊÁˆØ:êôoâaBwIÍBüZÈ:3LØ©ÐÊ¿ã×ÕÂâ l©—ž¡wµ<ôªƒ½¨µ{ï3äLIŒÜÀšízƒþíÕÎèçIÝ]¨2KCK¾|{̓öÙ±tï£ê:ÇMÄÏÖÞòÏæÁq-Ãpß=nAëUÑ.ñ½ëž.Qå–Ü×סÚ=9=èuPµ Þ:þì5~ëðO´¥¥j|Wõõ[Ý·ßÉ¡8&ÚÒšb¾×´|jmA©:.ˆÂ”cÛ.ßfµñjÙâ uµU¹­“öô_yµÎK´Ô^Žx8 °DE&£&­œx–ËŸÐO ½‚.lkW`ûNÿoäÕK¯“)¥ÜÓ‚ ¯ÆB¼§\ûO=Ÿ¨µ ü-^kþ“íErô-a^Å|ªy%àöÚLLõؘ°’Ž;ÃÆ„碥Ñìs@áa&Ÿ0€"®7Ü(þXÄS­ô2"$g½=ùuåÝÁ]c„ÐÌÙâæV8´]eb-W£IŽÉÛI‚ÁÓ¨hÁåŽt…Ø£ëøÏþîV7¨¦ŸFòWÙ7¬Çêžè[‰“}Ž£ãÉg\úñdüd7|²>Ù Ÿì†OvÃ'»a`ßµÝpGõíc©sÍ)ZEQXëLÂ]eCh‡¥³Ý ”Xê”(gO`ÊĉЬÕkGÿ¦i´?ÜΠܬ(áÇ—~¯¤¯=KëÑ/XWJéj±VþøŽÖogÎ良8 „mv„j¤ë×Z-©Z‚÷2ÔAOˆ!Ç)ˆúþß"&‘È•ÜOXRlü¶UèqDò7O’G‚-t¢Ÿ€i/ŠŸ°mïøµÿ­oÔÓà¿^³j!`xÏe–¬l½åµ™Þc£ÂªÓ–kdtÿjq†£põú¡õŒ9Á"™öaå¸yÓ…–7HÈdêÄ Liª ›«×XI3®>vT_;R#÷ò £ô„QzÂ(=a”¾F‰d,£d*%H‰zÄ3ôÇJ2é+©-L‰wØÆt3NæxùÓü:YÌbÔj’9£?žQbY–ä¦ñíî­cZ¥vúõÑQ-©‰âŸeùö¦Ièªõú¾Î•°ØÄ@©”K¼„íüNÓ4íVô Ñ­­36¬Êõ8(+Ý5sÿ·Ã€'%“{ˆ¨=U‚É@EÕ ‹ áþ|TüÏNeg»êâv+/žð?ñaâqñ?ïäÕ­ƒ¹UœÃþ.Å種€ŸÍ³ …Am¯Û;—ŽC¾ãâÇÛT“^Åß 2dLf†f¨Uè!˜[ž±ãìøb–yYŠ.Âõ¸WˆÈµ!Þi¤Ñ –e€í…E ]ûs£žASëN€ˆÀ©!ïÈ¢Ìùkû,9c£Rô1¿Äzd‚ +™–1Læ ¾l Ñp®nÔ f”·ÌJ $sz5YŒ=hÌy €@s\÷GW˜i](©áaTz??ûOÀ®—ÙHó'm¶ÊdÙòá¶þ•ÚÓ'\Ð.è ôOÁ·ìŠz~¶üù&®ùFâtĆà4,¸G.‘ÉØ‘S‘ÅÙ†K:ŠúÓÁµDlØçC§,›aÛÑàœ2ó&ÞŒû˜¡4u:C6˜Jó,õ‘?À¦ <ò >jþ«Ógv|­8% U}ÀßMnŒ¡Øb¡Zt2 WвýÇÏðß6i±Ð^¾ý3>@å4YŒQ²ÍϘ®2UçrªXÜÊ„¶Ii baœžOF°]¡%Øb€.\ó=ôOŽ8¦_#{ý`ߊ ²Òk™Ü?lŽïuaG sRã(ý?ýÒ¥u }N†ÀUaQÐ.¹¬àþX¢ iļl’ÞŸ#j*ú«ÿWé¯Ë¿àN[²‹qt[|7™‰3Š5®:'–¨^R}±zª»EÆgq©ÇŠ‹õþÒÂ…SNpJDÖ“’ß, zcÉ p7ÜÚ¡wÌm‘Öe§¨èŒ€À¡âöÂ]tŽë¼˜’‚WTM‡µ}bJ*2ÿ {ŽOÞñ3£€Ï(a}µ(TÑϺÏ@8G˽°Ö늚WV¨`…Ô ô^J~Ù.ñÞf <§Äôœ©€B$냉Qâ9•£±ùœÕQgºqýÀÒ*åÕD¾Ay[(˜ã¹s¯¢==íǸ^ƒØš0ÏÁ¢qÃTÿš€ ØA¸&{©ÑœîJ?PêÄ”‘‹h9ê!–ä}ôb2ýˆý6GÿÏŽèô±x7 ?‚b>™C?uäh“ñ±øßÎvLìÍ]1ƒSÁU1"(ÎPõ¨)œÛlmV¾6xc[?–™Ç«b5ÀèXÈ‹3Ë* ³.b6&›.^Ì'©³â`kí:ÌöAØZ`Ûf‘+ Ïn „ÄÑ.NöZb‚~ÍSIJ•vßTVK*–ô§œ8³WÈnĹބB ˆ{‚„u܈|Ͼ?e¸ЂrÂhnN’¢ág$? ìb<~çúðþgkwI±.þqøŒ†‘[ãçþ¢C̘ý>‘€S¥ò)¨À}xd}óÐç\{öG/j|¾ ñ/t9$‹Èç¥y8T~¦`ܬ:¨qL‡A'¦f{¿ˆ ÙZ»Å!~‡}òŸ1=úè½¥[€[LÃÊõ0ûº–0t Øó°d ‘'S5:A í(ã þñ=A×`ªÖj5š -ÄŸ½F·WŠÎkü­ K è©O:õeœUuÄØàͽl~½Ù=å/NÒÁÍÞñi%£žÃRtÿµ»§­f/[;Þj•rb Ó›¶–ÖhÖóal%€±nl)pËe\Ô÷9à ¼K° j{¶e@‘ÐYËŒbàwñEA«êr`@m2 墨-[h0:#UÓ;qIÐT˜·­·5Ø.J¦øhó@xÒbzç b üÕP›¬º×9S5§P”®¼`¯Xƒ<û bOˆd^á݆%#5’\ߊøN˜ 0FëZ>/KÀÄn{èÞkCy­/øçØÍ$ûˆä( '¬+0c”#6ãZ‡œß±q¿Þú]t123¦yÙÃd%Èk’ŒCG/':ñ³s‰EÊ!Meö‹ŒHÖ7œ!«ºQ©}uøô båÄcøì½g(_âGúÒa¾º¤0°!Øá Aª+Ôî= ŠêyãYpç“ÞÊfÿÍî)oO|b±úæÅ‰xÒ=õ™=ŽMÝÓ©]¢2©-RÈY©œÊd÷þé@xPR{!å† 7ÕûØs åÞÈ…ï7ÊÀh5‰/_ 5 ↹d,á1äÆŠ.Þˆ}9')|j·èâ…ÆU(‚4P•®\äá¡EÚÊÐuy'æ'Ã.ÝOâø{ð“¨z9לöØà>œVMŽ+]¡í%³M[ÌÓ ¨»)<6 ó¬¨ÁÅÓêñ‡7œ»ÛÑ!ŸÇöÀ° Ápùƒjiø.Û‡ÎaTLJÑ!ÖuˆŽA%s:~ð ¼Q]áSK´}xx`tÁ탵;òSÔR´‡TVÚˆDK—Øl–Ý#?"å ‰‰¢P ^½‡)õһؕìZe­¡WQ^ n¤]j¦hø¯Ã4›'c¦ÌÉRâÄ2YCü˜.ýæaúÜ}g}µ›™³”ÿÌpzz÷ zmßÿëÃlþ¨þ_•ÝW/·=ÿ¯jåÉÿë1>¼lÿ¯ƒn¸@ï÷S×ókï4-ˆó÷㊕'n³ûÚ2}îñ/ù½ `„2kæù2•‡ñU2Fd;CÿGÉÿJdHc—£ø+Ñ5ÛC Ê‹²h dWŠ]Êå‰x2 hõ5¡®¨Vü¾õo.‡ýâ^ñOÎ’:)à”À陋½b­H¿«¤Í-ùU {íVñ½@ã{fóŠHs{E«W–R;tob‡(âü„?%ô÷AokgE\·fF ÅÈ[sD¼ º'ÌÜü0w¾Rµˆ< â‰í¥¶oJWÏ´lå¼vȾ‚‡‡¤Þ3]ñ¬,Tð "Q³ð_øÕQY‘vÍVȱ}ç0žsX!-š¨Ç¨‹úþvr0sÿ<×¢„%O9=…ϵ€7“žŽ5R¸± õðÅ Ë3ÔHOÆ ¸ƒÀ¯‡t-Lßý| ‚‘†õWÒ>~¬:D»^™ø4ß9UiÒÕ>¸)RýR#¬ù%Ž™Y°&&)Â0™ò2²QQÍì£êpFG%cU¨OªÞ$Mw:)ë+Á3—”8P2abþXú(‰ùãf¥ÿ¹}täA¹êhŒŽRš{ƒå6Av.GƒÊ£ß³Û¡ íåK»Ð›×ãüçöW‚z„Ó}tä¯Ó=ÝKy*Ê¿ÏñM7Le©zùµ¦õHbSÔ¬V¨ò‘"1<¹öÍ4"ÃÒV(£¼Q ´¯ªÇYT¿ß+‰ñnJòËÑŒØrª2Ùc]rË™µeí5œð@ÓHí®§÷gjOXÆ7˜SYp'l'Ï ¨×K›(µ#±K°|PÍØÊìÄç8¼èNÿÌÝç|dávYz—ï¡îY;Y;\îoïÈâyÀGG™[>p<*¯?–à¿5oyI+ǹhå¨\Éu–¥0¸Ó¶¯IýÔ’¢~{û,9'õ¦=G˜UЮ2{$i<´Äýx2ßË:Z5Ë-j¾ì›U™Œ#±õ Õ\®LwÈ2]å0å ü¯!ÕÁAø_ÿ $YÉ;w³$;-ÛáAx>—rÃ1°A¨sR,YMÌ3$¨¦¸GýeÁ¦]–bÑaŽÓ`Ï|1›2¨b-t--dì^*ªHžæXh×suÒ(º¬U‹g¸’¯>\ šÌå¼—ÔLÛda†ƒvóž æ©ÖR¸heZKö¿Ok6ÿ-µÿíT¼øÕ'ûߣ|˜2ûß¹2ÿ²Àî2Á¦î¿UüÆL‡œ¯mÍöÃP”Åtîs¯ð‹ç+æyuýÙ±€Ñ´P ˜¦ÑRÆp&=6™[о)°oƒìŽøÕžñ~3™²-Ðø–&ûWŒç#ì8tè‹G"’”ê‹i 6Ö£++'™žú£Ùýº #û¿ã_—bJ&"©’´}ÎïncÙÙÉèS<´ì.d0–YsŽ“ ½³g¿å¼³óZ[SÍwð­o$ääƒÌ•,â„;übJÉoÐÀ²†êÏ“õñQc5r|Ãñ\E<•ˆöùtr§ègï[5&ï=`9÷r,ç^ÞåÜ ,çÞJ˹—ºœ{+-§o¯e,ˆo¶5«°-¸{Ъ†‘à_ŒW(Y6\˱ªQfݽfÞZHïå± ¦FÏ„cwIO Í)ä.LšÇUÚ+b›.uÉwwÄk¨yßÛàwÿ–™ms-òŽÓôµ¡º;ÄÀr^Dä°E`l4 È9˜ ã×Î ŠaöܘE\>f1|ú&¹S-†Ë»ŽªYé­‚¿P×¾Bÿ‰gâÈüg¬b¿)² ÷ã&M„½fI&!6/ 9$‡*Aâõ-0”ň%â^Žâ9¾ÂÕŒ'¶li§“‰>£Ì/Ãg~©P+‚=–F\êujm i7šëO¤Á#Ö‚¡ '¶KIh ¨H"äÂòd 32Âé¬ ªqÿŸ[€]¢q^iýd0KÙ€ŸlÀO6à'°hüÉü½Ø€WaL›¾R¢‹Í†Ç›|÷|º|T6T¢9È4þcA!k©9;2oPöì¤ÌЍÈZš6šAaŽì·ƒ³—¾”|ŸŒ~ÁÒêýjÑK̦ç:X¢lée±Íq_‹ÅªÃ} ~ I‚zú‘Z”Åù;ºQðeägž<¾:›¡„…Q7 ÊßeÏñ 6†ÊKDÍQªLüͬƒ¦d\càDRÙÌH¢„PbWiU$kWUâ7hØ%cü Fÿ€ýQj3oyX€W«ÄUÀà<‡8`£ qख़z¾ÍÐ;gËß‘Ÿæ!o$\OP ò7&¤Kä¸ ¿¡ø½ ›À“ècpÍž– €}þ7tÊbým )‡‹Ç'T8Kp2H …3dƒ§6ÏRùlŠÊ± ¹!†iV0»CM†8%@ðwóhbAD‚-¬Qúÿž $BrEøœíŸñZn¯‚ùé·ù³ýU¦ê\N•ÈŸkåq ÷/A~"Iƒà!s dó±ìlN®9EìŸÉMßTH< âÛ9Ã2%€Ã9|&Tèߢåõ&³0ÖãÓi ûì ˜ {ñ xç0ªë­Úñþ¯…gÝgpDŒŒ§‰£… ú #§$¼Kÿ²]â­Í~M°s¸ÜX{Ùº¹#Xžév˜Ê‹ÑØlÎꨘ°cñ, †{m>™ÃL¤h˜Ø‡Yª€8&FáÞØó%Îã.QÀúQS<ñ¹ÙÚ¬¬ Q"ƒ­s‘¡xÇë%`Ý|ž‰ ¦?÷_ …ÎXçã40úœv°LÀnž¥:ß›•˜sA¹Æåô™ôg‹ÿ5»üöÆí„'HØØÂú¢ ´ë’Ùûwo GzˆÉ !$ÕsQH6¶\ÂýêÀ{gyÍhŒAŠ3£¨À~ý¹9 õavJÕ¹qžÉìïöØy»9Â0œøO¹’f¯#MéÚÜS=æ«/pÿ)'¬Š^P{”ùæU„/%e+bƒ%°8,ˆipn:’öûŸ-Î …»øOt¯ä“á|ŽÌŽûÝÇìÕù‰d6̹! roÅÁõÍ{9äb"?êHwÂ< ZþB—Ã%Žüs ¿N~Žc@k­:¨qÜœtpj' _D‚-ÊwY¦Mpµ™},ðR—n1Í-æ[ÇO¿{(~úÝ*øikÂsM»'™šÊWÿ£ÕQ´ÙÅÀã<Ñlú[…M¯5Î\kµÍ4KÕé§€5Ÿ×øë›¦ªïÉüî‹#™ >èõÃ1ÌK!ÊKAÎLú aÚD­ƒ|…ÉÃŨ… Ê¥ùý†eCŠà.òPW??Lí£—€©_ïO¡ FKÕP!´çgˆ„>o¥@¨\ µhÑE+4˜œ³`Ãptd7U±óœéºÏ°4l±žeMì1¯ÓŽ'-Û_VAj\³åXò{bØÍνÌîɽÊïÖtóØÙØO8×?~WÈ€ðøN¥£g]R€;>GÏåB g႟@Á)ï® >v«zBeDpêŠ|+pà hï»'hï·øññ¿“Ùº.Áÿ¾x¹ýRâ+/vþw÷ ÿûÞ’6þ÷D3xt1îü ¥†'?ü³‡?áŸwøóýs3ÀNºBDè¡– Œà=íœôNHµŸŽå­<Ík>Œ&ÓþpÕ‘õOƒ8ßãþB|_}ç^ ë›/0(N Í-M,ͪ˜ö@û©ÐÝNÃÖ„ÈÉ_×-pÛ Ù-p ¸n»d vC+ü®À]^ ± ¦»dµB€°¨ îìn6É~-PEh%'U‰h§m¾C¤ÙÁÙþ]#dÁ8j—/ïÊmÅäé¥E )àÆÍ¢r” Ãü«€|[VÏYËÞŸC÷nç$²Ê»GlÚê’qÔm¶\daff1Û©íK Z×°aOûÔß)ö—T;( âá‚ ;Ð*ü=\ éEOÙç¼eFS´PúLTTc5ˆÜ k…Áú½iŽnã)¢Ð05Á}‚¸˜/!fb2al2¤ÀÙdLª5Õêìš”Ìó>GÅ*´î+×óò5 4 $.Q6R…mÄMÆ8mƒÁd1žoñt@û7Xx8æ'¢¨(pînhµFû\ï®pŽ·¢³[|6ž|.EŸ©?ýÑçþÝŒ ¡é]6ûD`³™ÀåÝÞÆ¦a Uô ý!Ð¬ŠæaÛ7ÌgDý~ÒÖN»sý;êþÖéÚÅwðg±†ÿ ºeï¢.j¢Í+ËL¸)cÑSL°ÉÅtJtÂÝŸŒå”¨ñhߘnú%ZHÆÄî,¼Ì4†e„½¡‹¼[VDnB]¤*2¹ÅžN¦VY×¼? áŠâÛY2‚!+‹Óå]$‘& ~ölC.0kÄj1£é&w•üÉ–£mzT¡P'ÛXp'‚™Ýå@ç§¢«m]:¶Za@sƒªU‰ÕÐÔšÜó¤%[ñVI(4æÚ¬A.‹¹¦cb•ƉQDšQ˜ë·„ßA´”B±a±mÿmMë9|;Ï@ɘX€™ZÉøb!LsÓ´º)6Aq:/ r è,Ãx-è½g–17QI3_ìß|tÇpÕ%UÔFhkD-‘Y*ˆ™Xê¬åéÎ’噔ЈÜ•qí‚Âu'R<6ŒëØôÌÆl´›Pª°û·[Û¥…  ñÁ4!ß+!`ƒqÍ.ƃkôR†“ž¾ KéHªgy:ƒÖŽ%qÖUøØ«vodwÍBvײ›ö-ÃbjÆÎ½/,¦¶Å5ùp—=‹3äÄËí•Ál¸ÐÒ±ÃÊ4k’ƒÚ[àö¶¸&Pïä VB¾óGå…ÂÕCT‚µÛ;5¶wkÛ»-®imø¤v1°dx#¢æàÂùO€ZSΉl‡±nÞD7Ìgj6G»|ñA©˜Îs½»Û˜³=ɶ\ˆºuI上g!‡”Êù`SòX‘)IaMâ‚û”r%bTŸÔu\ň†ÛÝ&ËšŒÏ~ª? Â\°·Ôn'FˆŠeöׄ³™/2>¨\…Œa}&Ÿ%äS·˜Œñ^Iˆ&¼=!»îBÎ1øÍï@ó8¿ˆd„=ë^çmàµÊkºŠØ2¾¹Pý«yÌ^;Û6´Õ˜(y[°æá—ÌÅ—Çžuêù ¤ŽûU‹ofƒß$ŠÍ¡RZ¤U`ÎãÏ­bEZÔð-pðNÜ=Í{Û„!\†äã\¯ô—‹ËÅãÔ°Ë¢DÀDõ“f¯Ó¦Ž`¤Hñ ÌãV¯sÖØ²À*¾ÆOÜ3*”¶7x5Ó•4wâöœQ—¸ða(àí\ï²ëk7NÚRÿdUʯ¸€.T€ÛÑ2—âÊB3SŠš¬ =íukôï»ô®â½ºÁ-³„×äÝæKtA7[_ÔU{wú;b¹~?†êàf½O¶j½j—~àÏ.þ¬g鼉—•øg73Ûm:¶-4Gõš^ðÀ¬°*€:ÚîþžNÖK0rÜLÉ©®”Š[ËVÛë–thÎé†V·Éªm0XplÛ«€ß¶ÊG¿YC`«œØ²%P+;†‚Tv"?˜0˜†ÊèÞ ¿ì^Þ²¯ü²ïò–]G¦ß“îùCAGmØ`#6#ÏŒÝý˜ÜúkXqDn§ kÑ̼å“bö6@—òxñ敉½l@\N¢ÞI´»ž +]ÝðR‹¤¹±HSùFìõûˆi¨°OÑ@N=ê'ßHõc¤ô‚ÔÃSAézI,b ¥(í¯œäXîVv1Ðç)™¥e”.V€'hb‘aö¹Y,fÄ+¥òoøÛÍ®GÆŒ pWcºÈ{Kƒ0-wÉ邪GCž ÔbDùͺï\ÈmD•ÆSa˜£ÎmÐÀS@4±úÕü«Ïc­­o¬5¬=«G4z¬µG+Sº©™ñ±^ÿùÐ6ú¿¦~ïäíwÍcB±J†Ïn­H´ÛuqŒ,Wxz¿Ã™…dÓ(o ‘W9ÿúkõ†Ä¡B¨’¸%VÀkŠW çi/*G ªÈìC 8|úi Mm4zVò·”H¥i¬À@‚,¥ZñÕÜdi\Xм’VeGñËÀ\™mˆ!\Ç0GŸ¯cò !ÕjRì­³h8»º3¶ÙÙ© ¦x Óxó*ºCÃzE#½aU&Ÿc[† 5E¤HÄ ¨n¾c^rV­ó,ÏÑñAÝÄe©PZ-²ET¡Tû‚4„ÖNë}9›TŒØ#š O8Ì<§˜Ò¬ê¦á^ú'4EÕ숣’r Q ¼= \+…¶Ë;äʲŸèAÏvÓÓ¥©¼ä¦ë{+0Ö¤î;¥¹%Mðg:Ê&Óyˆõz;ŽP.yE¶(¸È›•.aḟWšðÁä².§[©hø“î¹é×…ÃûøïéÕì‘ñß;»~üçjå ÿý¦AÿÝy õSøï-ú™6Ï=8“rÈ£äm£Ó×é_Ûk,ÿzqœ'CÁ£'ŒºD>Ñ®R]y:àW'0%/¢·ñe´½Þá¯ÚÝúKÀÄ Õ Ë·J4ç·2гŽël‚Äqa—Åt~«Þ1B@ß7”‰Vï)¬àLœÕ"Ö˜ w±ãX\Áý8—ޝ®’A‚ç™ÄæÎ `Æía#&V€´Äq/Ù(‰Ý @Gýñ‰-EñlNð¬`ȲÃÁXæ`ûh(ËPÌÚo4‰Zå=Æû‡À“§öøîfµ·zpU ׬è±rõª™}G±r߬oXþäX£Òz‹³~—£É࣠‡µC&Öáf1š'QkªÁMPÑÅ:¤ CÁzQ‚N²c† Ö 0ȱ2ËCôw—Èp>ð´ $Êã)8 Ûpi(*Ç öÊÐMíö@S‰hÕÅ`.0>u `iõTCùxÅo¥¸rç VÑÁ`»ðÄRBºaÔ/-Ÿ¦Ã¯†tDé€ê_%îdhå)KÛÝ8}9…F_&5N<šµ¼+O*Ì}¾œj;bó*z‡ 鳄o”ñ"5bS%–Œþk„Ý×ôXÌxzRt¸é™d1T版7lÖ#"À!ï/иÊÜ¿ ˜G”Zˆ8B•™•¨8ƺ2¬kËžpNý™²‚kô­xn¾‰#è€]Qû0IG‰eÇ%ÜF¸]­#®ªÍv!¢K†±.*½3Ã`éÜ¥ìߨøp$: Ìj“Y‹íÈĤÅ ZÕÉ,&Õâ‹ã;5Ýt¢S(pŠ­wÓÿ –êE¡²Ä ïÜ3®¡*õµñÔ‰±€SixŸ%L»±Ïš=RÙI«?“›Å!M âvf€9CžtkÄB&„Ka„Œü{‘u¹{ßèd¦ÁÆçg\ ûR+Zt‚©Õ¬–•;½š_;ÌþÐ ˆ°\G‚oŠ ’¾Rû'gí^‰ðG%Là ÿÕº ømïÓ‡AÈÆV·×i ! þ_{Û¨ð*ý àïŽR{Oj%tÔ­7 ÑNpîŸÜ?¸Éýv•BãQH<DÖp„iɽï40W™>l*.ñ’«!ù=ô9úfÿå?c½—6Å9ñ*gØÀ(´˜0™?¦0 &*§qL|~‡c1bÍ$vK&lª½IÐ(8 ô"ØÓ ÖhVVT·É¬ª oF¯Õ‹N›jZ~LÀLa­kòPº6„kûÆ å0 OíüQeƒUãRR 6é¬#ß”'ðLÉ‹§_ÝPE‡ñ}Y±¨Ò’ô¥ù΢j4\L…³±UK„šÆ™ÔÇohg#ªÍ9¡”PÛh¤œ¹, Y䢦 ÉÅI¾õ.NŠúQ«±%3zj/!Iqø ·Œ9zÆ0Q¥è%óÇ&àC?±á‘–Ÿl(QÅVXÒ—†‰úÕ„À Rh³e1§¸’DÕ4ص Ù•º]¿)niœfk|¸œézD0*‡XÌ((Ùò²lÊE ­‰¡GÀå¸^™97EpÖ%S${3åËÏÖ…é æX |r*m V´.?H—5íb‘‹d).\l”ÜKÄl¥üÄéÈÝ?­ã8ô„tû8T½Rï-=W®%\É”“ï§n—?¨)j¯ÊvÊù¨@íª‰®3´8£Àž)åHj‰5´¤u=\ðQºŸ„|ÂŒO ø3và)\Ð %3«=ÛpŒè^§FʨDý%b…F%…Üøc.²!Èïq™*ËÄL¥®“•Ý™(ÞiE1_yÂT×1‚jAùŘ#í>•yü¶eÞ=m Uo«³ß“¼+iw|U„¤`ip¯ ½®Ã¡,yhVu]"8¥xµå½ÚzfŒù,* f“î}m›®5·1\hç:´5&ÚH­!~iÁ\ØåqËuaNhq‚JªSäç ÎQEÎ[ÿªêW¨Äl+åZw¾±œ0¬fæúá"„I!âÕŠÿÍÐèÿ€˜¿l}xi7mãKWı[°e i¿ŽÝADjæò-àØ—ÀØu5]RŸÞ¸ùC‡ŒžÞ²¯;(×áKÁçÞÒÄ¡çŸ[«fãÐWŸ[z-¹úø\.#H[œ‡¶ÿ!V§°"œ¾j¢äû¢ÓK΂ðt‹‡øÇ #kòh*ìá‡X”¡Ì²FŸ„/Q½ð±ôQ4š÷«®XŒß ³mÕÿFü¤Š€J+lg°«¼J—S»èjãëXýkè0þ+:<¢ÜðÙnEn§7E§ÓzºYqkÈî4öô5”*Ñ¿VO3¦7ä‚°n?à‰`óÕ\1”ÌÁKø'Rñ—õoøêÐ_]K ´i8tB OxéÑÌ|ÞËâ‚üQQ``¤—‹y&‡N9·eËéù  ˆjºèЧ~ù{æ¡Æ ,¹ìlpß^æpÁ‰M”#¥HÐa°„A懹Ü-çµháó¤¬è¥?Rͤz¹½Vg^¿[¹R…ÿvà¿]cÐý*|[…o«»ÎTôwàÛ]¦æ~ò_Ô¬ÿ7Ùð',êï’=~ѱ…/’¾VÒÔ›èÿ`ïJؽöÛÁßðŸü§²‹â?;øÏînôŸ/ÿV³_wUöëõbzÓà¼kÐþ]"®½óx×îy´*ÞՌƗâñøÌ’3Ÿ¹!@ºNÒ^­‰ §î5±²Yq¨jEVqÑçiBº†=¾}‡l¹ºþ¥z±À|§ª«»ç_K[Òÿþù¸ñ?vwww¼øðÕ“þ÷>bw8ú_à'okû=/fWjËšc}(ȃðù[1Èw§LÖs–K¥l…õà§}0ÍݺÔÎßeÔ GTs°BÛW/õ¤·”°JJ9ôãXE@UZZI3Ž•„•ãy4ã 3ÂÈdl÷Ë÷1Á0¡¿…"œf¤ÿÁJä%¢®ó 9‚«¾<è »Bbu*+'é>¢„Ö¥”5Ê£ÄVÒãG9UùÑš´ùQP¡ÏZ†\:}Q kw²Ôú<³UšYŠ×Í—Ø7Ûââ„S7o´ú^9—mËMNEŽ’mäÝx+:Ák$ªeK†xæÚ õ¢‹‘Ògçh´ÓÁÍèу1ÂHU¤=§ °%Ñf*:œ\O1DV$3 ‘¢_|îO1W¨¾©ËÓz>E&˜@h¬GÄvÔϾº&æ vLŸ™Hv‰×eÔèŠEÚÙ¢2© I`ÝCQùb&óìX-z‚Ó-êÜ……OIÚ¿E¥/m·!ITjäT‚Ix[¬(âxE‰ôwβ ˆ–Ú…ºœ™(ž©˜Ðª>RhPjaÌ:f 1¡U³´e°÷ߢI«Ü0ЋT’ʈ/ÁöºŽsêTò‰I䪹‘ÃÜN´±=cCp)Êns+–QV*;²õdc{ õ"j=¶5;˜Îun-~ˆèOʲ’ÐÛg2É%ôåCî„Rf#‘Iöe/©ên ÌnÛŸ]^YzCÃÓ즙Y½=’×Þ¢zªõ~d?\Ý|ëps²ä¦E³ú½Ü°ÞÚlÓ78:v\ߺhu!§×îä5ã:¶[k,+™quO}ƒn>3®ÝÓe³šbÆ Ûn³X†Aš«òŒ/Lš¾Õù)Qoj¢^äTúø­¤í%]]ÖHÝ–ÜÀfÆ9ûzm&¼A¹që Íï;×h½Y³…'Ö $²˜bNmÆŠ<ü0<˜“Õ]GqÙõȳk˜ ¤½¹/C `¬}çÞE«ú‹ºŸâ>Å|Ѝ>óø€Ë0B_"D„îüΖ×у0DâãC‰”~R\Lnj5é¢þxhköR”Z‘‘e™Ešé›Õ-¿<¶¯¹·ãÉXw‡8€Äá“Ú­Ûnâþ˜U¤ýyÊÁ“Z>¬S¨ùW *ìO)v@ÏlêD¢ÕC_Ç8Lz?8pþgF’þ©CÏ[ýÑ~óHjF¬v0XLYß÷"M[å3Ϋò™ f³ÅdØOH²’,Xt !Aeýº¡ü‘3Û'x9KïK­}‚ ½½¾DtG‘æúT¼·,Ê£z=£w¹Át:\&g?¥#ìÄZr±v\OÈàþýð˜"Æ’ápU÷ÃXŠW}hž(óv%hÞ=‘ÞÜçEö­ë[ŽÜu‹¬€üÉ/›?l¦šÊÁßå‡ê øÐ¾‡` eÿd0Ä¢pØžGU†;IŸþ`$DšøÖÅ&½ì¨˜ŸôŒå§2I’nè"šËZ/„Ô¼8hÖô¹+”ÊôœDFndâÁ‘H ~ê%?UIÁCUç0øK»·=­0Æð´Rwœ,BæôùÒÏ¢@¢nN ÷v±BN¸D¨îmJÞc ;L©·Ì¬oê~Ã8… s¾ÔÜøÓ½z¾/Fò…΢%ྈ½›Ž«a?,Ô[,èyW P¬É®esÎjiìàOÿœØ>þw>>*þ·òâÅK/þÃSþ¿Gú0™Ûøß^§îîÙ‚ìÛ«}{yû¾DÀ‡v@þM…Ûf…p¨‹Ÿ ñf°°öÖŽˆá‚°†ŸêÞ†ÃѤç¿zþQæ2z¡Gºø1Góë ?Kn˜ÌdNZ(¸×gl4†E}ý†öé"a`†Úû›… È•¼îÉãþ†™ž²f—,T2î’)FO]ÀlËï[môxÒ;h¥zË6Ö¨ ÷¾yÄÜo‚šz%e)Vû—Râ£N™5Xý+1€W/ñãi ÂÑŒÄG¢`¹“ÍjD㿉qú,úПޡ:bñøg9yÞn˘ÇKõ­5ue³ŽUæÑœ¼ÀPBóÈp05f§J&›×&ß,†§Î¡”à,nDÍQ±Jô½(»’5Ê3E©Ϙ:5_Ö~­cÄ{ÞK‰´ 5îÓ'Øž½º*ß¿g £gõ°·±~¼Y!›ŒÉ6d¡ÚÙZ2c©‚5 jÁµŽ 3½ÖÖDó²3¾ò«hý›>U›ŒDbǨ¼“!¶‚éyRB ¿ƈnÚ¢ÿýZîþk¡¢¨­§¿âj£éŒ –åe:hFåhÞ_€4ò ÿ{ÆÏ…¾O´ÌD‹ÉLã“ñ½0ÆJîð ëõxƒ,aô.7Tù~«¼NÊŒ>§£À á) B2–7}Ik\€èXp+î’>[QT°i_`¾+<ÏrÊqþ¿ö|ÃY³›^Ìw²YÅ¥È?ßTØBžÙþZŠÖÊ»Rôk­%õsKÒ¦m—LÃËv†ë”…P‡I?¿h‚3ÌlVÁÿèßfÆ¥¨uúk®@͵˜MD²±V­óöÀÌ2Ö©f$X³í¨~ÒKï¡´áK¡žÜמ’fNùÆ“‚=Àb—à/”h«Eíëý¤”‚ú%+׌¥ÐÇ[yšظ•4+:ü0þ“Ù½T¨”š›;˜q“ÒU¡¢,ìv~NûÕ$uf­ðŒe¯âqL0¸’ÎÍÐv"ðn’Îì½ìYNG?cGïJžW¡£ÜåÂݳâ'ŒXÿ)0 È¢qÓâ1RÄž‘{D?Ù¦{éG7SSਘå»DP ÷›—¯ ¦Ú‰Åøêc¹ [ n¼vËbqm F‹ÔüùüòY ))ëЩë ó˜y]Å/=šŒ<šibçû¼ëðÖfÅ¢x§©yOÐQi>#Þÿ”#ú>-e4¢›Ð«D¡üà ÌW6Õ¶à0ó-]_ Ù â²9bptOóX·Xš¸ÝK¡EU¿ÁR›ô´)Ì8_–áIa2‹ÝµË’á575»knVó2<*ö¥Ø]eJ|¡I!_I‹fxÉëqÙ;¢Ë£9“L¯À‹»aÏb%“ç)ÎH3™ÂK¾”—ÍZ}NëðÉdpI5Ëø™%uÚ`—Á>g.¡^øTÆ*)3?[5vÕ*,µI,µI,§šÎPÛ¡ê”JªEä×oÕ¢²ÿ^=ªýw·ò¢òʳÿÂWOößGø0QºößÌ€kO¦ßµø_ÅüÖêo£Ü0ÏÖË0VäEÒIöãÁuù¨¿¸ºéS£÷h̵後ÆJËÙÔ ~‰ú«…ÜÉoçɆýdÃþŠQãƒFì/¤Àˆ' "0¹Zºv¶x¥àP6ÇâþäáÿÏððÿ¶ ×r|MÇýÀp”ï=ùÄîß—Ü#ŽF5A‡2€=7’^d´>“ÖE:[Ñ™ìEù§—pÝÜ£TÁè.MѳÂ?úv¸µbàû¥ho#³wùiÔ§ŸP0:ŠÏúã»4‹µéP²’¼žÁ÷§…ñFñ ÿ)l+*ž©žÁô'ÙÙ=÷Ì“^0~Ã,Â÷‹X@†‚ü¨² ÏX%3¼ žBEJWW A¦Ÿ²º¹SáþA·kì‘è¬!_É8p4qC›“¯žØÜ‘3UÔż¨2%ÜP$W‘›¦oÛ½¡Î`U0T–F Ú=7‡{*rüåþƒ7ñ øïcY.÷sMzîéMó=w¨·Ô«øÖ¸üÑW†@X|,(iÆêH‹<ú`YkÄþ¥aÛzì¶ ŒýþE ÕRŠ(P/.#V@üÎÉd±¡%V¯OŒ ß{´h€€ÒÂô6€¿ý}ÐÊÚ-kP_½*bŒ¿ý}в÷)Â>ò>à4¤‚À?ªŒ0­à>ï¥îÚUr#¡—g›•Ð^¨ð^PoÜ{;|$õsp;ø÷‚´z©g+à Sã5ŠZ{–"¾2ÒƒõÔ¨YçW–ûÓ– ÈÇæv– ¡Ñ<øµWŠºóž2œë§¡ÊE\ÛxµÞØãÚ»Rtÿ§_Žàÿûðþlã/§øß~†¶ø¨ÛkàK*ûô4}Jj{ÝV+´éû'-j°ŽØutÀ®Wñ7ôÂîdi§;'T¦÷âÿ;®à¿§•ÀD=Mš­z ]oùt<‰x-£7ùÓx@3ƒÿ^ ¦om^İ¥ˆf²û[g½˜T‡â¿3æíª˜&_ '‚f›ÞÓ¬N\O&¤ý#Ÿ¼Ië†ç§°ƒm×° ¹ÇáRˆµäBʼ—ž˜¢}K\­~ ÀgÌâGÒ®|ƒšŒÑdrËæ’”¶)<Šm¼ªX²¶®…]ÓÚt„ãÏ}-ÁnŠmx“fgEŽöÍÎÂAw7KàU¤na—]ß#¤™Jdû”‹üÞ#¿7±?2—Ôe9ÿê pP ˆX˺ ¥¼ÀYaYʤ©˜5Jº;ÌeQ‰… ÀQ“}´¿yT––<= °óå²AË `„£ BÅ­pGB·wÄG=³tŠ9B^ä+h³3½4½‘ç@M={#¸(¼X†\Xþ¦E´i«CV/¸"XÒöÔvL†¢»Ôy‚‰’˜Ê&°/æç¯ó¯£™t¬ezÃ`OLä¥ÉqAÁ²Ž¬2G§öWÞP±RîüÖAc‹GQ"»0ž˜4Z"¾$Ò Cß6ìö%òa-ü94Éh9 ºuaÍ€†…(ƒ“Ë2ÂrJäx;à³/ûù†êöÆ* ôCÆ%¶zQ4‡¢ ò®’3SÖj jÆ%ÚÀÍ"zØ1þ@œâá·ÅÈO|cÈGØy*ÆöxþøìW9e¾-7e‘FïÁ&õØñy*w°º.yW-ØÄiO8DŤ$©gëtóPñ¿Ÿ7è^‡÷P†ØhÏ#µ€i{.ºÿ¶‹‚;/2d kšAêÛôêœÑ3ÿ\;b•4M¨îu –\ãíŸ0YÚ/¡”×=óó‹>´g‘ª)4øÊn‚í£¨,jr÷™ø†ª0Qþ…Â¥OQ”…fÒV¸™9¼¾0ÂX%B°º•Ì—Ò¦‰ª¯›8ÜI˜¥ ¦GµuÛûp+}#3‚ǛاÝaN{t*øìQè½Èbh)oô¬z·yXóë¹|ÿ]ú«ïë„wr°P³ GG¡>ØOåë°ÓqvS^WOeWÌKoiœXu ¥ÌjúˆÅcãí`ÇŒ×S»–µ£Lj<#pI¬š:R—m%u‡øœ˜ôb¯¥üø÷çèz2Îü¬$û–ò߈ ¡”Ä~´ èg~™SÎ÷$!…)Þ ¤ð¦7H«ê%ÊPõŠÌ%Ï"þ»\¬<§ïñ÷ú°Sat*œoæe#eßvä žÄúrÇ–í’Ûéf-ábbÆj²SÙ ü÷†NæÝ!| .[æ"K{4ε\m¿’ÎÎ:­ú @gü # ›-‡¤drÀïékMž…1­T=Z©­T—ÐJh$EçËgãU–¶f¦˜Œ?°¬Âz 6uq¬ê-ê5ƒÊDÉfÊ•MúÚ9"‘3ÄpêU÷}x¯(Êq)øj ¶U‘eÝ–RËôÔŽ)`ù"´`Ýpßh,=QWp´'Ñ qÖÁìV¥»‘ÿ"|PW /BUEn;~rÙ•0¬.hŽ8å¢qq¤­V‹Á²YÍeô2­I˜•]öX8ÌœQ{j§³»x(ê}“ò}æ´È"ÖÈŠ0üœ¥¼áqŰìî¶[*MVp§Ì\Ÿ7°ËÞ÷§øM${ñÂî…ê‚G—A ×=·ýC›ù|V‡„óCxÚ$ïì6fÈç åèÔ耧'1^,›oêgB(±žú© ”¸ /ǹˆ =ïOç(T¦®âS]Œ¯ _+t’ÛÀîkŽv—­Ì†v7à[”O»+lÈJ»‹F䨽Šv·â Îø»}z*ý,¥^¾\UÕû B¤—©záHiÿ-T½ßžš·ES›ªæÅ»ªTã´ËGR\Û :0¦+{ž”½f¥OÊÞû){Y°/¸6Ÿå¯„¸U’/…d‹ïC‰‹ÞšTôUnE.òå2™á¤Ê»¨þ¨†üáõ|b7Xà rÍxµ¥Ú"Í»9ʯámJUìßVÉûÏÐîn~WÚÝMQ“çA[»Ë{öQ4¼ó)ˆáKT¼ Ìr_jù’L0ü§%­Ã<-)—UsÏg^Iƒ¾¼ÌêÚJU|bè? †~$tÅAräñÍ›‹\}1®Fà%û…Õ4Æ?®¦1NU›zâTñڴÙÊ^CgÍë¿D3|´6Ͱ$òoA5ÜZ¦n¥«†[iÚ2ó¼ ±×L²€ˆrȵR02ô‚ªû5¶tÈV"§j‘£€"9Hž™î †9O€EIPxÓCƨk#Z¶Öù(ØySñL=ò:”*gX_ÝO!-÷æR…4©VÑ}‡Ò4´–øf9á ðõfX!½¹L!I¡åô-Q\ D1Ç¢[F£¡A/CºëÈR_ëytÕ×úI˜ÊëU­/ÖºéBT-¶‰©¥ê¨+f¹#YÂÖPWCÇ‘¡ÝNk/µìJšjYOÔ•¢©®lKUõ&ªªSn@¬/®V<%u ïËõÆ¡ÉJUTŸVtÓJU¨aí¸;ÛaIMÐOJi27‘«°æÚ m­ý<«£nÙ²£Á6zžUTr‹Òé*>^ý)]2)Ùs¹L£Zü7-þ¯ˆè1ا²tÁÂýûûÒfoæÒf7ÇkÐfo¦j³õ•Ƹ^±úõ¥¡ÕÖתJeÛ]©ŒÈ.oÍ*¾¥È.ù>¡ø/ɣƩ¼|Êÿñ•>‚—8ñ_šÁø/~:Ÿ§(0)µäŽóºr@˜¦ÄD˜ö8 5áWÉ8™›©ÃkF8™ÓR›ìR²¨a´Έm†{1²£:Éì×R¥{’«$žI³ûYÚ‡žÝ]¼<è¨7òÓ§¼ÙÁÈ$†[§»!Î…Ýéé¶esf–Æuñ‹Êü“ĬDH‹I‚‹äSɬ"3h‰^D·ë2%ˆôãaÔ&Ù0wg€H>$ÁÔK§È>¸jÌŠ  ¼×ÕÌØæë‹RÃU¯ªÆ¹¦®qk¶£×¨X/6ù~±P/ÎîJC¹Ï‡î™ôüÛL^Š5­ÿœ–EÒ›Ïý !’à)Q¸—üëºN« ùâ•%áñ7íøø_Ú«ùP»1ï·ïzÚ‹9¿³2"Žàšˆ?ðß:9÷Ç™)…¿ õ÷Ln,£ó¯ÝÇ8ØÉ'Çâ‹›_(´¾ :qîÐû×1ÔBÑ3¬ÐF`#Ì+ù˜ø3ÍÓØÕ¤lûš2Ñãý¤®b%Ï'7¤dp´ AX˜ f½/’‰†€Ÿ4ù$ûó„r_¦¶x™HWéå¦ð•Ý!‹!Vˆ‚ÎÈ®fß•;SçFO82šŽ-o"ü Ý<øŠ«@üb!¿±Ra éµ·€Ü¼yHFFŠÏJF&iKº\'xÝÙocN†6ai=ò¥\ˆZ©'+ ë¸cÏU𢗌:½øbÛê†àtd×¢”…"¯uÈS‰þŒÜ`zÎ+MZæù°ºNA*¾¹ëAâì˜ ¤NK£$%¹Õg»˜GvRq×Å\*R2üXt¸tvdÁ¶UI™BÕêî(ó“æ ¥§Çú3ÛöÀòƒ”êM†Œ¯ÚÖ8Wý–o™¬5¸ñîK =Ó‰tª‚XÓräNÆsPcŽYOð-ÿµ`u˜É½‡Mí¨ˆ5¬_îJaÅÏáòã¿£zƒoe¾#AæÜM|3k3˜à§]¬+ZuW„ÄûjY£NÃŽ«›¬l9²)e>R–KÔ¹Î%ËêŸÓhöLzó˜kÓ/­Ù ¶fƒøŒS‘~ÙtÁu>žDbWÚÄf´n@ñÂçh6 /‡Ÿµãd½I>ž~æ'y]i‹Pgœ›â‹Ã;Û›]°,'ì®n‰6Þ¸õVú_›Ï2t&Œ¯ñ‘áU´ûÚMûn­!nö¸öÝ­EÔ' ÎéPØÓÖ~j½žî ®‡:—jêVßdšxi_é/Y4Ý¡›û Wü 8ÒFþ+;7}‹W€&=n¤+¡Ÿz™}CD² ÜRCYý˜zC`ŒÿÑfÕem_ç¦àÝÖsCÈðF0Wß3i¥£•AŠ*!Fêã,ë4…¦T8¡1Mê×r$3#yg¸¢oö6y`! û.ïð;€èEæ ‡ô¿ªì/âÛ|Ûôμ„ñ›£ùÐô;_ä•Pó¶´¤ÑT53k£·4F™¯¹<™]w·†ùg¾+[h!Ó›¼·Ü/Ï»ËôëÊþAËý¦Løür ƒ ë­wtª|õà×4O½L¯—öÈ:ì¤\´;Ž{cx¥ñÁ©ž89ÜpÜ[CÀŸÄ|¶Ú­áUþ[CðœÈ𻱜n~G(·³îò©õzÆA=~È!%¨AðŽð’î?f˜r$ök~ßðÏ þsö¸øÏÛ/*>þó)ÿߣ|˜v]üg×À¶;¿vMè^)jÕ÷þ8P¨˜ƒG„„î¸åA¡]NÓ3³òôˆ¼i*]OT+â·ÇI5-Š5¤æÌJè¥3r°¢O@Ño(Š”£®ñ‚6T6M>\#T ö%åš.‰ä0së­€ŸžÝ‘½-Ñv*hõhÕÞ=òæ‰ 5ª·«aTMP¨Y͌귋™Ü³hl1r.\Ù ü°CCš&‚¸]RƒbÐ#‡Ï;ÑMh,ÏV:u7ÅÌ1Þ‰kZ¼éÿY¨”Ú*—R^ìç~e¦x¸ùh€Ë¥˜Êã ÿ ìÑøE½Ñ>9^/°2 :¹ÐäAƒÐ’0 %¤e½ÐÉ´2©ÐIYÓ÷„‹Tï;Ê.²ãv€%(Ì¢Ý2º÷ʾ4ê¯Ãì~IæÖIg‹g!•©Ë¤!应Rˆ2Õ[ 0îm2ÍEÖH|,ʘ9d…úÎ*·Î\/Ôy3Ó¶–’fÍæ³Ç|&Mg_ \çètØ£ WáÏñŒdË!-k)3µ|tµ„Û«–Å} ÿ>Õ_x–¸c–ÜîPfA“íôN¥Ä?$ ͧýñŒï,n¶U}µ1íy5wÜYàÃÂ6uÛB+éŒÁ´üì3É52Ç­o¹YË BýôQnG]õ©Ð¡­Áç’’•»8…šÊKÉ©ìî“( Ê•¯MRŽí,›¶ª_€¶Vk¬\Ñg3ÍJÁ©ýb$M‚œ‰‘q£—Ô8â´óf*ä¼åÃ:ý·HH$óéq¥XÃm `ñ†Ê°#Xõg‡»#'é0¥%zS¼—ý–Q"­jGEl¢¼Ç SkeÌ0˜½£2õÌ*SÍ43gg‘\Â0xùêx68ÊB¡·ã?•”ðl B·ºß}DÔýÏ >ûò+ZŸõ°:Tk>+ùǬT7/õVJì8èqß‹˜cµ»ð¤ˆ4îÁGthµ7+Özc ©{{&^üë.ýƒNmNž%â€VMof„)t÷@‰èKR^µ˜Æü7ó0ÿÝU0˜©—ËäÒ¼\¶Ör¹ü6Î%XÌž?~©sãÛe¨Ù¯eo­µo&.<Å {ä‹â ë¢G˜ÊŠ"=öLîó¯–˯•Š£„ƒ ¯íLó)qs-×ÎÍÜ×ÎÍ];×A‘ËŽßPPÌÈþØÖ{(`àŠ4ZM¥’¼ Ôøax12šFò]çíÕóÚ0ï®9n®Byï»ë«¼w×|7×Í%7\çšïæºYÉsw͆ș ~€„‰…ï°­uÜa¿ME÷O_TÑ]ÙNÑt+äð£Üx[Ͼ®HàÝL<ÁdkÜϼ7)iâot9^—ž:DåŠEåû^‚3•¿9Ý%¾IéÔ…Ô.Eç-øï¬5ágóŒ’^õNZº®‘Á¦¡p÷´Õì•¢ (¸×:ÙÇ Âò+)L?Òëøf æôÝåÊåmÄü©ÈåoÏà|”@Q ÙÛiD…xÐ×òÕªðt1ñ´ ÿ’Óà£Ê[%UÇ%9f°:Í­(ʉ…ã}(¬TàÖyUå:°qjWêâ݆Œ…|ï˜ÈH´vLä8ù F9ã¸Èáÿ˜i¦´·Å`ÑÅ,F˜.Äì#-f42k+¹_`+|Ý]•'pcL.< <Ïÿ)á] ßi¶ø9¿úýp ëa F…b´½IÔÿ4I†t›¼M>—Lõ p.ŒÙ9ªÂ(Φ'b}Ê”‡*­!FÓ‹>¹Î ß«Z‹˜?vµ¹€K¨þv—rÓØ99+"Î ×6#¬k0XLûƒ»t š]›AEoƒëhv“&[ÆŽŠ1vã8ºØŠŽúøý5ªZj¸‹×U‹×³ï˜fãØ)ñíd:ö»» : 7æ)ì¹$â¨ßηJˆjC× ñÌ9Ç:}¸€K@eΟ^¾Ìá•@Û2Zê•ð&zV{ö:*üP~Ø€/ÊQÉW¯&0ñ®SÁ9=Ç7¡°[4•â,á×ýHjÌn¹I-7Q!-§­Õ›+2Û†¹L¦’~7¼`Yâz¹æuº¸wíá½Nô24µ Ë·„pÏì|f·£d^ž\] ì|Î çÄ¢4EËê!Ç t—AU>¨M‰ú d¼¬âwW§ACo˜³ùÃFžÚÌé¹ÜÈZ”e•È9Má²òbàÇb°n“o[>-ç-»^÷à¡wΖ¿#?Í+Þïo`G–ŒœÖÈÙQèIØvÇ@ÖoOòê¸7Qö¤²~dq<˜Í™àÑì¹eíi $ÜÄŠ ¦Š²­`»Œ އ[4!ÿ†çµá­i|ËìqˆbæiIJ°r`Ò Â™Ocšg©üÙkŠÙKÆÃd€<Ï–Ù@j.q™7"Ÿ(úÂùVçš1]œ[×,[‰þýûÿžá¿mŠ߯XÚ?ãƒ7‘Èðy†°v~Æ”´ÊTË©bÙ*Y!m«£u>Ó±'•Ú˜yÔÆÆf-x}0Y'/Aç¤1úÔL9Ôþ%Òê ?çn'èf2ƒ/c‹ùn@Ȥ’˜}C„ù| Bט>º¤ñ 'S³¤Ù-Zmñ8 Ñ16€ ¬‰ÆÑYë´øWï/³3¹TÃÁ+ÑMܳ`W)Ñ7%{'Ô#Àþ•³ÜíæBL™ÇpÚÆ¨¾Z·ž*¥•P„`<ÃxQµXoÕŽ÷-<ë>‰7Lô¨.WgW6Ï…m¬•—BŒ›e²Anºq¦Ë¯ñÂ5Ÿ¡Üíy:q¬¨3ÝoŠè0GªÐŽƒö…‚ìJØ·Ç´y­mY@Ù±?šM„«çl0Mnç¹ /Eoª¥-qãKÑòéž8f)ouØŒhBô_¸³°2XNpW„{9¶Öá‚ 3À E³¸ÍC âš„wÌeL®x1 ÿ¶ËFÍ}kC¨¼ r6Y(ògséxjÀ¹ûp˜N>?æ’ÿŠMÞ(üwCæ·G~Al¿äŽHN¿ÏêHzCž·&ÇûÓ¯`+-/ˆ¸Ï&PŸô(†?_'ƒkë0g Q£…lÿW¦W(…ûmbMÇe<šŒ?¬ymR(=Ë¡I$«åí¦ïºsÐ x7Û O¾þ0úÅ8þ8<,Èm¿²?™Â­ý&ž'ƒ­À VÅ ª«N4&ðšîaJo©Ùz ×"_;c´¯Q<‚+Ìf¥Ül¥¿¼ƒÂOÆå› ¬Ådœ Œq•hzDleWyL@º1|r=iØø¶aÕÑñýÅ»+:è XV`Sܸ˜ÂÚ3æÛ· ší—u˜†Em4‡xó>ôgñÌÍtøH`\/íùþéø@2^^ËMÿ#²n¨eFtˆb¢]¿y7–§ÔA<]þžG§‡™ý¢m¢ìϸŸ&–žP12ÉGsDmFú§´÷N§“Kò01ÝM¨,\£%/—³Ñäö6ÇÉ\«ú(p”IàÈÞeòÃÄ£¬/Á…ZºÖ@y0\à²bâ§À?€¼%•cᵯ£%Xz`7´B§Ñz[Û÷­κê/Fs ¸µo»¢’ÏÓøº¯ ýÒåðZ> (ð‹ÿ€ç_tYîOà^£Û"F¶ø«ÿWé¯Ë¿l‰Åïà4(ô&)áƒzÒë'¤ÈëÊjc‘~fªV•ÅHy€ˆ“ž­eK¦Êº5D?\-†d(–H"Éœ¶]H1Œq[XCí a ¸qEZ)p’ðQx8Ït€–Mf9ÇcgÇC©â±‹cRåÊ n—£d»Ö ‰w ëåLöGVÅc5¡nŒ”2ŠÝù†Žƒ4'—ª?åÛ2ž8±<š¡ƒ¸'Çqj›U`$a´‘§“Œ²²õupôO‚õ.à·_k-V!‰ÄÈý¶]2â’lSyÞwðW²/c² Æç½8É2Zù–ÄÖÊêÓ96_Á¾!ºóÀ)íýöyçxrò¶q!Þ ÚgñNÛ8hÂîjÖ›Ýý–ø‰–üþ׮ÿdCNŸ æ1š™á¿“·oñ_¶M7OÎzð¯@ 4{ǵwYuôŽ1Ó]ó‚LÃXÏ!üºwˆÝPGí]´2ji_œ¥¯L­wÒj–¢½öI:|C=€až6ϱó~Ú­½m·3šà~¿Uø—«:kaÊŠ£f ª¼ ÿ Þ ú¯•ºŒdF_b=¯Ÿ× ÇÔ¯æái‚PZ£}ž>y¬ÎÏÓ3r5%ùzF¯s‡»÷Þ¯7- ’+Ð&ÌR CÝÀ?HÝß:ᬆy£ÞH^VÙa p†;EDµ[͸1ÒzàŵqJŸg–ö¢Ü8¥›™¥Í€7Ç2À¨ã¦ý·` Ïö‚m³q7½ç²t#³t%Üsù8¥çœn¯Ðét‚²œÑ{öV+ª'5·˜]ÈD´b"ѳ`D^|~ÞÚ‚ÇçgUÖ÷"½¾Œ ¾k10Ÿ‚ÁnØ#éšÒû—¹Z;£¸JÍvmqÍÔÏ Ÿ ×ÅÜͽrWÚXÐÜ‘—Péºjä¥&_¹ÐÅ"Fb"¥ÊÌçü'ŸÔðÅÖÛLŒä[|p_çŽëtlTž+Õf7¹¹%WÉ€#€¾Ѿ±F@ðWEþu†YN “MÄZEÕ*\TÎáöžºVÀeõfq"/åFñøHÙ¸)Å7—RÿEæmyU‚I@e !úSªŒäíádlä!àsz%ìrѳ®ŽC¸ùäT?!©ƒXµN‹–HÝ~#N;Ú šXžEÏhG­è?+ÞY{™‚åèBuéヂ• ¹·W²C¶ßT¬Uió¸Ô+”¼–ÿ°ÝqälóÃ?ädžQç´÷ÎiOŠo|ÖëÐ\äò^ø\Èö¹뙄zõúɰÔßY»Pfªè*“Å)™,ÔWµRŸ¢¬_ÂáEù¡ŠÅª=ÿÊæäžÕÅKð+[±ºÉ$‹|ê Ì»\\1칟ÇJ Tüâ:»ñ¸e+cäÁ•´^Æ~YÕdÑ!Ekî~haÖ„ÀÚîJð/EžoÅ›R3‚z’ùS9šï¦ôm¯U}fGXR‘ž–)ÎàðÒ€8 Š k¨&úà«™Û6<ð‹€5$s¡—Z>C¨'ûà,°ïZ/µØq<ò›ËÓÃpä >•ÌU*™S)ôF)õ°+ˆå*¢¼?ôKÈåÕ‘Ó7ÏBäw[Óè‡óðÌxºão K}›â©¤^æR®_‘uHc¶þƒ»¢þN¯‚ÍÚ)WÀj±)¾igÕ!.‚pŠˆ·å¡"þô¯…‘CoáË›EqbHþM‡ t–ÍŠÂ  a* íjj˜ƒ³òAk%5L”¥‰‰¨ª+ýwCú€hJ°×æöÎÛ›è³pÁÎ~TõúJ Œ"7AÏôÅb,AØC×Mßš1 'õ¨8¨”sáFE¥JÝD5¥ü¦¤-n‹E»ìÛQÿ¡keW(èt bæuˆ|Û/‹©IåÎÊ4Ùëœ)ˤUJýeG‚‹ÂçŒ|=ðvW×1–ytØÐ…CŽÔÇóíÛTšhêé¢ôv ;@2P}ÐŽ!ûË”$ÞjRÏ_lëLÛÅË%b™›æ­XüÕ¶=ÏsG¸ù]œmH3Ä̺á_Û¬”¶¶¶JƒRuÐ×GŸLâl¿P8a2ô§@²Χý0á¦ØKô9†?†)…#ü;%{-;ŠGj‹ÊsÔ>6ûS +ŒŸ9§uŒ[Ì4{Ê ‰UŠEFa •bÂjm´“Jþz0üK@WPÙ LªÈŒVÒ;ï̉ø%¥•PIœüfðq7ù‚%ú–AßâE“ÜÓ÷è™Ñ5¹O)ª“(ÿ*»ÜzHˆÙeì-VÉ?ëÝuðÖöŸé"¸=s}‡pAþ˜•Q¸à$bµÎþcÃÃaÛ\'®óWr†»ô?V³Iô_t¯ú˜»‡@ÔJßuž’çÒ}'Ä*oE˜¹¼‹fˆÚ¸‹®v7k“Õ¤”/Ì6¶œù- ›(|&KážÁ¾:Ú¨4ËØ-12žÕóº{·\©Ë]óð^ ü$’ë™û„¬ëÛ §'Õ¢è ›!™uü”Á)ŒŽ›€1B´™ÓåƒÅÀe‡ÁD}!€7é{ßèóah‡;“º#sŸý´m=îRѰÜþ´ý €E‡µZ_w § Ä[9\ᪿÂ%DÙ+\©|é%>ø–¸RyÐWï³ÄÇÞ¬ã|ï,9|ý™N?¿ÊiVÙY×iÖrO³ ’32‘}ŽTeeþLxÒ7Ïö@Nð¨Aÿ1Tºž§xõGÀ¶‡pJL¦s35VÌ ]oêÅ·}GÖ”0E¶ÈhWȆ€°ŠIç…A:žÐÓlxä&.G¡åÇê„úžmfŠ‚Ì¦ÓðTFë‡F²hj™B”&¬‘µš¢%EÒ¾à¯Ó·„YxÉ~Ⱦ ¹× ï=ô9bÊ:Ö%2óMÓ‘òKôC³|WìŸÔw¥î#-t-¢4ŸB׿üâ¿ÿug§ZÙqã¿î¼xñÿõ1>¼Kœø¯õýlñãÓ÷ "ØOôCV¿—[[ù·¶„î.Àu8ÅŒ_#Ž«öýY)&+͉br¾‡b¥Y’óÔV ê–WвzŸXª²¬]{µZ@Õú¾¨êŸ„9.EжDN¶â!¡ø9b'ÖŒ¸*Cø¨HpÇþ” 9ÀÃ`2þcáWãùõ„ýÐ{J\1j®xËžF—Œ¼€juc2æLÌá¡.i|J} êÝß{:¦0çâ·=üMFGc_z…¦ñpAQX8¼„¨Ãý”2dë5Å%Æ`†Î½wÑMêþl¶¸¹eçµþ%†+°}¤±´áü5ç'Ý“}Ïä~ôaª½aò‚Qéáðùlq9ŸösòŸ \ ¹í2÷±fØ£ú‘uD£ä#ƒ£÷‘Rß•OKüëïú×ýòOÛÔþU®ÒŠ51Ø *`5qò©‰zŒ~2Â]Çö‡ñ y‹É_eߨöç˜à ŒÑùƒãǢ壾Cšúa<‡vdݬ®´—£<‘FÛÏ^kSUx<º ENu^ÖdØH ¡¸¯©uL¦0XÁ0ÃÒ*ª!ÔÍ68àÕx>…Íú^«—ç`æÛ ”åTâíˆXwEm‹Pù”’3ø§$}Ô3xŠÔŽÂ÷üAQØxæ¬|:Ëãám¹µøÇÜÛ˜3×o¥Á8áýìáÀvðˆšsáæ8ÜÅ2¢ïû{w¬´u€)ä LÛEØNr‘µIÎ"¤‘4aéÃŒ=Ç޽Ù±/`¿0„eäss[¹'šÊ‚3ÕfÓk3µ!«39v•ù~ó*Òm¶õÌS|q3LªX~XÄ<Û|÷‰à½íNd½ßâš~Á Nw¬)DÕP`2Å€jÔ5Q £ŸT€œddF/ÊÙ2ÊÌÑÆ¢al(ÑÑ"!Ö*ÂíS,H ¸tT‡œN\mE®ÉÓ(*²¦ÏXL²büÊŠ˜:jLÆŒëÏq•àwo ºgáÑzYUdÌeÌ¿;äS-¶‹£ä÷_‹˜õ/£(DZ}.~J¥…8? Jó#Ç]gÔ@QSªÅâG¤˜vê0›ëæ. “GæF1\P¨1füºæ9m7ήY ¹k:ß i3ÄaÄ-BX}Q2G‚QmìX1¨wQµHGŠkd‚)âÒoÈ+–ªëëø” öwØ]…ãáÏÌ|ùö給‚ٛÁLlG‰sCl;F´Åñ~ð“Ã1ÒªCå O·udÀôö?ˆHM,ñ@)ìÜlÁ娩\Fò‚ >_Žqk•_7r0f&×hšlCôç~l£¹*ßh®q„ëÈÜR/a3½¤-õBrŽU6ñ=šÜáÆ¾íKc0+Á­¬öo%°e›+ïY³©¼É»g›Æ†³êQ$œcÓ6]kWlàà®m.Û¶÷Aj-ÿýƒZÕpRŠ’=B|ûüúÆ Ê÷þoð£@èF\P3;¨ŠË;ºÃ¯A¦Äx¬ñâà ZÁù€¢z’ÓÐ$jB-­×ÇJ ¯„œGûºE¬7u5Õ‡ g´Ó­RHmWÜYìÖ\§Lço3ª5g¦õŒqQßÌ.a¸§¼7·Ú'½-ÉTÓ½þË?HU°[¬±y*+Û)#}`(9ÚÃKBÉñ¢÷Ò­3+àÕÒÀp™ÁàœW|z6h‡kmv.ãEÆ8Y¹zÜäëÚÕd4š|Æ‹&óHØh F}rËaž“É'¥°õ•Bd•IQêÚX¼/ŒÅòjÜŠ&"‡¨ÁÂV³•S0èYTØ¡½Š[fƒ-Éš‹ë»e¡Š»†öwuŒí ¥WÔ)XÄË]JÝAFÛñ]„)ß’y<€uƒæXL"6æÅ¼êÏT7|y‚—'ywÑ×> 2(€à®’2nBudÑ@¨,=y‘(õ–\ŒK *HÆ*×½º8Š›¼ž!3þ5çXn™ëoÙ °11~c­ÜdgööË8æDÂu¬¯ *îöcoÍ)qA›Bãä' ê[¢ŸŽpÙµ&j6}âaÜN'°!o„~L‹É§[Î6õÎZ/DÉÕË€8ޤëLßôídÑ{/ƒì|‚9”âÑ,f:’*M m,Ý–ËÖ—œŽ|MçRÛ® s±™Þ·ã“zA@iEyòñæqœg#OÄSŸ 7‰Ä–Š.ûä&“›T‘D%½Þw[Ø­…,…n½1Dòšñ[Äññ³y´¸RB5-àñM-Œœ•…Û@=sàP,nt (!Ì’dC-ØÇ!ÔµX·&¾ÊÝÀÅ#A'VœjNù>0ã‘#ñ–)}gÉwÉ„G’Ä‹2ND´#½âû§¿"Ê;Æ;“ï¼ÖËפÞUàXªAÔ¿øbDÿp£‚.iÈkGÏ ºKÊûC ø;å×@E«­à²Y|_Ц—»¥­c ³¶îˆ4•Ri™¯Æ © Íø„ä°: |eï¤%¢‰/—øì_aA¶®æÕ–Ó좪BG!œ'7¨XQê›`àl37=TvO1À•$¹_ñâ Œ¾¿ ht=™&¯?›M ÙöM à†Èìƒh­<ÆÕ ‡ «<Œ!cX'×Lç Êá´#ø®˜~›èÂ}†Ñ©]òÞœ°j…ÝÙçþíL‡”èN·#|®‰1ÀìèõzȨ”o¦œ®i¾§Œ 0UA§Cœ¢Ù7Åqgº®|6O—9Y¥xmZÝ 8nòGo£üÞÕÐÁ#$”ffß Ù#1­}~/†Ÿ NuQ;%esè&ò¦Šüëˆþ 6 G·»ª÷wªü…»?Í eHwÓ¬ï?¹i~íOÀÿóÃôQý?+/·_¾rý?w·_=ù>Ƈ·Ÿãÿy"Üá ædÉÄ”òù¼ÿaê@L#xŽ‚Ý;i‘ðw¡uÕÍîÙéi^çQÇiT²˜ãÓVs¿Ù‹Ú"M òíKÊÆ„¾0l|?.¥Æ4ˆ0E%q#ư^!Óc}Æz˜#¹$¼v¬ÌJž¨´’¯ô^n©®{jzÑû¹­t´ÛêŒd';j_¶ï*ÖB¦ŽOiÀu¯3b0é¸cö‹ʇ×}ªª"í}õ®Pa ý™cí·ýdú1‡ÃäŠüeæÜœe¦dcÝtÏn'$Èb}Æk†Ç‹ªO»<)T1ÍùtqCØ/u–g¨‡ìSø÷(žÇ$Ž#J䓯TRûêN4.Þ‰¨ÎÏþƒaÊÐü‡ãCKå@&áVq…_×d™ûôÊ!Ò˜:ÔŸ÷/“b0?O1èÔT$¸eÈÖ \ >Á°ÔqGnw"irå¯Éj*ਸ਼cèɘ*éêÃܳÝÒÌh/öŒF…¡ib4£›N†DGd츌ǰºsâ×N%_(ù:še¥Ë#ÂÂ_Ë¡âû¢£ÂÇÀtô%í Ï œÜh4ʯ^ìº)³1ÙÚ=eÙ-™r¾`ºúàZ\Q¼k&|êF¿=£<ÁìF@¹„¾‹0_¾€šâ?1o“Ho#Öƒï÷/ñN2\ñ½ï¦}V`×`Á“édÌ,†Æ†•p¤´Â ±Y‚ÝÕPåØr8ô"'Eñ@‡ÞŸ—θz.Ì(ºÈ¹ñòt£5»~õtI¾ŒÙY=äì.Œ×ýÑUîÔþÖ iê²AfZ‚¢Õu~+ü+«§DY¢š%n&t!—VÄÇôÜm¯â»kõzK»àÔq÷™~ž&óy,“e?À=7£Çäh•×E×òYgíÿ3%:Ž>†Ë+š°ejL™k¦ùLº–8C6öFó,õ‘?@)V±ßa|C Ó¬@9Câ”È(”~¸KF—Å6W¨ ÅúÿžÀ Ä¾K¿Ð~]e:Îåtˆ6×êžé¢ iê_R¦z™~u>ÅèÆKQÃr¢Òc|n N0o·ÓøS2YP˜Ü‹’‡˽œá„Œl>™ …³±0_Œ¢mœ°cš5×͘œ§Û%éÖ­5Å#`ÀÍÖ¦ôߺp;¸2›é)ϪcÍ„÷8[|B¢sb1‡pœ‚÷÷è‰ùì\z¼m8óD'»0‰ùqœïçÆh„®Ç{³"spË\ð%÷´Ë²¸TB³Tbø—ôø²ëÀ¾Q×¢ëÉHv5ú`ªµ©ž‹Bây1ÊYâ€oí̘ÏuØJS¶îÁä/¦ÂOQùhªEÓØŸÚ|Øé(ѱ„þÏÑJ&ÿ‰adØ3 Æ|l,Ü_ çBâaø‰¶0.0Ü0 ®­pjB”Öut±3äÁÖVýÅÄèsÿ.ý+é´µþ(’Í*L:͈=ÀWhŸ»DµN§ö»µ/¢j1¼+è^£Gé[ôÑen°£’­xË:-ì£}H¡ Ž'ãÿ§Í °Š-jˆü[£jÇ[O®‚n2¦Ü!•ÕbB Ë„Tiµ~%ÚØâ8J„KÅŸðŽ&Èm 2&ëmêô‚ T[r––ê1…*z†\˜V ™ŽÇRô\=4Äš>˜…ÉØEöžþhcÝ‘ DŠB+?íC"ñy¯[¤ EÌ÷ÚÏ\^õà!1D4€åõ¸ÁT-š¶}âñØ’ž…ÈÉ©%@Êï…À sÁ—<²{òk_ͯ]‘¾l+ïæ ÷÷w7kùÅ©¥ò®¤îšbèpÔ[pJ6a`tÁjzÁó-¿ d`/ ¦‡éz +“§ü;ªl—Dtþ. ¸Ç[g(5Jaå… —„ûîyà÷Yik“O1…–Ã×åP߃Œþ_`ýÖ]ç›{ÇQmtÓÆcå„0'Ñqúɲ­½vëy»Ñéî›ïì_O“ÙÈö|gü(ðZ Ÿ÷•_âŸÞëüÞ©í,9£Y,ŸâMÌ8ŽÂÜ þ¶Öê6¶¤ Ka‘Žïo_“Û¾ÖÖ&6nÜ6µ¥W#­H8­‘e«?è<ÙêÿŽŸ€ý??ªý¿úâå‹mßþ¿ódÿŒoiÇþÙK:¶³±SÔÇ m)i¾­I¶ú5Ögx>^CPguŸMé8Còw‘¹˜\oÆ÷ûƆn¶µ‘Ý“ò—ØÏÙv(ÌžVMΉ«RãhÑ ¦¾ã.%p¢ÜðtÂ|6µFV½E!¬'Ÿ¥b¿?¸¶”n,Ñé¶/ï”™Åm>®½köºQAdy…ËM ß/¤z'ËFù¥ d÷TW±‡E½ ¥ë^h±ñÂxÓVÈ&W Ú¶\~öL»º{AÁ|µ «ð-ýûCfßS¿C/.,5µmO°® ð.×ÎØŒžîÀ¨#™é Þÿ,ø–©ž´geL_ÆY0‘™ 6%Š Ú”tÎRY‹Þs ÌB4M7Ož³’ Î?Ãi;XãM©fP™´÷ ï´ñŸ·¬cÇØ–ÕtÝsª‘ž4$8y.ˆ·]Â!ñq-n²/‡0 TPh³è‰B·]tÆMƒ±ëžKýÅ™"y˜’ 1_n9ã½ÍŠ=Ç!^À(´4Å–ž60ÙØ;>晢´y’RªŽ$™¢|¢÷@NgI†ˆ‘½p·M¦D}O´§ðw½N- V\M¼BŠ=„ŒÂÉgÇŠ>Å2+D+ï<™¡Ì^2+äðÑDÞ#jg®Ô'õãúW:Z-‹à¹i…ðÄ¿ ùW%ãzˆ-‰÷Ê¢Iù§ö ÜJ™:J¼˜YdD#^Æe^%ªh ñ½J)ÚkQ°Ï=˜®ƒÓf»ÎADþ½]ïœg ›^¨ŠwÄÏ]ñzJc;„ÿgUr}€W(Èd›~owŽ÷=ʸh÷N÷Ñ_•BŽÂ?*BKÇ?;Á?mÐÏô–)ôf·ÁJñýw‡øúôöBjižXÒ9,Cí7õB´\ž¬ø§¡ºê5˜˜Œ©¨uÏÐѶ~Ò3–Â,¨Ž~,R®³”UöÞJ}ý©×ÞQ¤Óýðô ÷VüìÒÏEZíîײ–h½MiØÔ2-“»§CS¨Ÿš*‰,¾æe·Ì·Ó‹óyl$N¥p'¾Ï­,»ë– †ï —ýÉ(«ŸÖ1ì y¡VÝ”¡VöZv@U–+©Ý`¡êÃîÕ;¹Â¾˜í6~sÚåP†:•é…êO“Y=|±b«^°¨<¹>W ‘Øl/‘xÿ°‡‚Ê‚ÑâBaSƒ!Þ+ÜáA<—ÞVªûUoE'Â×é4P óg†Å­‰®ý9wÇBY9í‡%‚À‰òæ¬#†¥ënÞ¼·w-ÂÌŸ÷6íÏ]ko{-ÓMÝá"xì|„Y åJO6•û¼òIÕ}²+Ÿì¸O^È'»ôDö+-šÐ’ÉèéaňäƒÜîå6á<+r§SŸ· *PæèùWDrì`}´É'R6¾Ù1cˆ† þÔ C{f‡¢@œ zA*°ª2ljðCáé"m§ˆ¹—X~‚ö0ï^Å® ûËoˆ[L…YÄKƒE†•Y!çä¢Lcíq–ü/‡ŠÔÒ9ÅâšOno)ô§üÚŽ©Gò‘D\•îÉx?2ÙžÁú¬t*HùJ§3bSn—½ˆguŒ±AÛ„ç¦ÄeG>Èn¥i5Òä66Ã"ƒzK÷#˜CEáˆîEnÓœ+–11¢Ev#‰þ¹\n‹ž[“É­Ò[YN:~™Ò›CÞ5ÛÖÌQVo Ãà¥àvÏ5Œ®A”<¤h›z±Dˆ’—KQÑ7úáÆ9y‡ý¼í€ÝÉ-éCæ"T·Ä¨ñœœ‹ð¢^¸5o×ÅV5戛³Ãd58H»ÃMۥ࿴£þ äÆªþI4Mfq 3’ÅmÔgäU iéñj 襲˜¹£Ã© çrýƒ;ܦ“ð] Îßnà-¸¢±€û\là)-ã­Æ\0*eã”BpM‰‡—Júó[ái´*¦kª=ß|¡£¯í9ÇC\œ¸êDàcÇ6ߥƒaÜñʉ笾¿zÔà’ãþäöÎò6ˆf¨ Ѽ.cJõFW}ìƒ`²á®à½¦ Ú̔‡}Ùå`Xn¿†2Gâ ÕQݬ>¸ŽÝwZøli‰1‹”·Â19ºM>MhU¢BtŠì^t£é0¢%¸bpï+„ÖIÌ Þº½Ñ¦_ýAÑÝÝøú…@¶ ,áÀ¯øsÆaÝ”š sëŽelËWÙ‘F‰ðñß`pû^w¼Ðãx{MÆ‹r7û «X›J@Ûɇk 0ßaÀd¡ý?½tiµ»kó/N¹"²¨; L±k‘ä‘Gÿ{(Bj„à W²¨/þº©bÂEcEGÉ»›Á- òM`àšú`@åJS |õ­Nxþ(‰‚Ãôرd¾Æ72¡ÒÁ´Sî®o’áÜ6„zŽD|v BJê‰Q#Iš?m{eˆVÞ–ñ| ðµ'ásDJµ‡^ ô…—Ôƒ„ Y|ÊÉÔ°Yï{hÃ.£.+“ ‚³'b=¥®Q8ꓪµtЮUe”¥é¤Oêþø1g()‡_Ç M±ZŠbܱ"_úÞ²YO,ùO™ U°ÈÁH=¸Ê†6.ÖËTaè(Ѳ`R¦d€|>¤-S„ÙXŠe÷œHÜ;¤’| ]¿J‘TÄ/!VΰjÒÄo¦î™WÛN¯—¯¸\DOHÑç>{íFu“¸. lŲ¬ÎB‰þ~dÇJÐhÆ3'M)µýð§€µ—Œ×Çmm¦6À8Ú  ¢ôÜψT2{Àcž³Nz‚¼7%ãòH×:Y^u³ ?rÄExCÉš ¼ î(u“Ç&aº7Z!‡Uv–V¨õWÜÅ@­{•Í&ž\µÕy½WÙõšqÎë¾<®¯“+ ˆc4Ó“*hNQî­âðÐì:x5aZò.ù¨‰ò4êéÁñŒz_pÀßõ§kf¶HئâXÔúŸž­Ùù:V1-fÈeÅ]Ù Êú˜2Þ ÚN§Ãì(pÔ™\.8yy'¾ªªá6er/ Ùñ|p­ÐFÊ1ô—óýV:MhÊe¥yAAr)êPOzæúJ“‡ifɇ›>w¨¯ãq—PÝIÁGZ ϲxh]}ìîJõuòáZ)½1ÀÃbÚÜ™è?Š"q÷Ç"²«ÂUŽû§b¨¡+vÂF’:;§U (Syƒ/©ÅfF6 —¶šŒÜWXŒ™ â!:ð›ëåÇr ñ–h8‰ùjvÍÒ- œƒ¬Ï)[Grr —VÞRgf‰†&µ¹Ì¯ß¦£þÝfÑÕbdF¶5KÂs`Ë:ë½Z³àò»Hv†gÀr„(¡5¦;¾Eƒ ZÜ¡ ªS€o}‹Üt%q@ïÇŸ¾ðE‚ßD=%JÛÇìÎñ¦Dèΰ¨:ŸÞSW¥04`&ƒ§,tìš!mšlg1Â…„B™f)srÍK<ð5dtAB.ŽèŒOpÒ,6¦Ü6\DΉ'… ‹’áñFÆ7@4ï!@²ˆáI‹ùš„=íÔÞÝ’~í4¯ §Å3¨„4ÂjÂ5ýpÌ Ibg UŽ™?2…ÅYdòpˆ•~àºZ ññÚèC|9ís° •j=i ñÑ;?¾*`.ÁÛÛ­¨R®þXŠj‹ìÈÝ-g„ááé±è.7¬½)™<¢ƒþ-ô3ê6kÇÑádA:¨ø˜yI þ¼›%àÒîïùd´U_OŒ`ˆÀÇ…Ì}1™~¤pLé´ò"m ÐÛíˆ“Âø@ ·]²&]L²Xc¦5›ñÜd~ŠDçw›‚ìPPVÌJ‚/\ñ$ǃã'µ'[ÑÙþÞóýn½üÓ+øEÔq¶¯ä}•AªüôÓ+#–댈°²eDqe‡qUM±à¸r W–ØÂMß uÒF|u•àÈ1r°þh4™ïëš$CÞ·¬ó^eµ3]Ît Ó§X«O±VŸb­>ÅZ}еú½ÇZ} gúÎô)œé× g:è-Eš¸—)vnÖÃé.)¬¡œÚï÷E;¼Â¢øço1¨)v3Gg2ã-\Ç#w!2y u¶».pî˜z£Ä…V<æ)lôSØè§°ÑOa£ŸÂF­°Ñd7[SàhÏØÄÐ(ÄQÍïl|TÉ0˜è`Ñ‡É tâ†âD¯VÒYm—ïÁ•|†V³ìºǰÎÝ·ÀT~ˆ2oOÎ:¥è¸ÙîÈœÒËÂÉXÑd¶3°vxqwé‹Ükf•0d[­Õj4(` ýlývÖèÀ¥ï¼Æß_ÔÚ=ôr ¯E5!à:{7š»A1dÞ6;Ý:µ°gK}Oü¼ÈöȪ_éè3Ív÷”вFõµ©¯õì˜4 IÓètèçÁ)ÿètéç!{ǧY•Àã*‡®áè4‡%‘i»Ä©¸KQ›có¦××nzñäíÛnú~!fèÆüJ€âöšmŒÊ²ßñmN›çTMŽÈô©CAL:ø]zÛ舃ïÃ(Ò­½¥*”Ü=nQݬz¿vÝ_KÎSÔ#‡ì į0Ššð²‚Û¨¯Õ…í“>*$M«ÖîöÄ{H3TMÉ}=£w¹CبØ5HQøãœv:û%yÊñÏÃŒ©¤:%u~ÀÏ.†/âØ7œ…¾´¾H7D¼Þéæ_Á™xx¬b 0ÃÙ—fÔ`HÐ(óý†@7£ÁD¾ÂlÆŨ…9“ÿJó™á‡Êl ^*ÀÿøWiTî`Œ’‚­Åwªî÷ºlVùXN˜ :oÆ× Ä£ 8ù²Ø²¼új§¨,4ͱrj’D’³’º!N GN¨¼Ú¹µ¼ÂZÄä¡; ­“ë^GL Oæo›òëí¢¼EËBdTŒiÈéYò?ƒ íVƒíêÞ“l¾•¹.ã‹3ûo8fÌp)Í3ú˘AhbÔh.b™W™>ÛÔðÍ,U4Я® gš\ Ì ÿ#­E³ H¥!ã6É-ð»@(XÖi4™je§’­·ôÜÑÜœîG49çgÆòqØ zÞ`wƒ”8çP­ñÔ7[æ7gds´2%Böl«}ÒÛ’tJ1…l–Ò~&œsÆÀõ öCŠå§ßÕD¤UXu+\„kÇ}_¶F¡¥Úè»-ãLmµ[°biu½rë½åâxÝiag*b(ð—ˆñ•VáK+<£`\°Š¢Ê³eUþäV)‡‰N©•¤ij¬ú*Þ2‡bÌ-¸&ZVÁèS«òæOp~¬«¹je?i ^!ð [fì©nÿ*fýàâFlYªDM$§a®ò9–ÏXLT’üªxÖáö9p¨dC=#ÏÈcL:Á/ˆš6J²*.ÆÿrÉWÌ B üÅ®#…–ϘXë-‡ÜÉ$±Žá,Y#æA­VܬÂfûf*œHg&¿÷Œ¼®¤¿{_ ©9ë2fõG\*äÝÁºì Í•ƒcl¢¹ívU–zBT ‰$HÁª WgæÊÖÜ iHv,m#¯—‘ëŒ*ܸܶ±ëÞ‡w]dl¼]«Ÿ:‘øÃ¥C3žAO~8¼ãŽÏx3¬N°bj)ΊO÷+âI™Gš_aí¯Šã4¹¹‰‡ˆÓÀðA¢ü±s.Š({†Ë±ò_u^òÃQx†VàÐó&ýؘŸ ¹EëÛ?Ú ¦FÔL¿ªO¹ƒ†ü*×Áo5«á(òÂR¹«E](”ìBjÄÁHÙ~+^Å“ªóÄíK˜*t?iͪÁ5£~‡%öH3­F£UÈqÿ­C—¤‚ åä›ÕÆyF#¬žè¶­Æ+Â$ˆhqÑóeîP§ŠÇEkƒþLå¶øÊNg~}LÞ\ E¸'6‚ã(s›Á%tª>y矹H’WVî†Wåãý®«`f˜U „‹Élαá¯pŽ‘oìw%®‰ãÈ;7ßF…n!^ŠÂ}¯íw—¾iJ/—û õµjà5k<´‘Ðk¨uéMçéµ~'øF =çD °¹vC%çn¨äÝ gÄmî³üÈ'÷ß ûݬÍÐm?m†ÐfÒL$clS8R‚œ/ORããf5?öªØ6"ÕÖ¾Ýq¿Å8T»î— Œ­ûÂýö‚,Ó/Å×ê'«„Ù²n (lÇò~¯ÈÀatKÊŠ]Šë&ÐHèbŒîK¤ž%·mBŒc4íö§Ê±GžŸÖ‹£&MΨ¾aóÖàþLÈVmHLnÀŽîCu‘¾æV+„ÐcCÏ!¦Šýq­üV˜Qh]Ç ´ð%ƒŸ£Ï±È¼C¬Ù3å¯GŠ& 0ü7E=t7_Oã'5š-,A­Ç§XÓÂýñ35C+Ž_á{ÈOÉ&ÇÂiOD…êðÅÖÞõ²¥_·ñ]÷V «ìpl«´òðÐ.oîн‰¯"÷Á[w0’·¤í6u'^‘õ"(Ä{ ç=1[ø£H¯ØÇRŠn4ò"¢&†–áöKÎ ¶±Ÿã*}h0˜L‘·ã-V]^´ÜNEB‡yqæ>1ùˆsÝ2¬A BÞPdLåÌqr,r*™¢Ǽ–HÈ?¹º*{þK¢J,ƒÕÈíJ5Ü)s;S—Êvx%ÂŒwäåÝ6?0þM”†Wà2µè¨a—` 7–‰1»¼-ÜNf‰Ù /Æ[ãìöÔ°s¥@gÈM gì>ƺ„E¶%95Q˜ŸS3Ž•œ ˜Èx† è–no§“þàzËÝdc3©6-ý‹­1éIݺ‚!pµú—“ÅÜ…Þ0súéÝái YÓM¿wã¹³Îj…Ô ¤¦Ô,.«ñÆPùÙ¸z¡Œo¨¡yK‚'÷:»Á Š4JæFÅn>mkpË——íN¦É‡7…$µ’‹×íz½uW•ÂÛ¶KõR¥DÊC<Á7J•ÐŒSø;šó? ½åâÕÕÌ@Ú“1@9ÙÆ¸jeCœRÁÎÕMN ‹Q8Ü(AzA]”ñÅœ5ŸO€u?ж›ÒæVqOŒYôoüj&…í0úUd1ÎnHV›‚Ðc• *Ϫ¡gö.ÉÑ<1 ­×»–ssü§"ÞÒ&7ÒïEüÏ„¢™´9á F0Ã:¦ *ߥY,|fhñbþÕ )D3‹KÄ. Ÿâ£0öæ“ôâ0cþtR¨Aõ¼øBä‚Ò³ÙdkÒ9µV0€ñÑ©4R)ºÊÑ ýŒü Ž ¬ŠPÊ ±vCf ÖÔÒu8Rªz$moJˆÃá"Æ;Vð\ê7Ö%³5Ëíæ.ø ;XÙ[ §J‘ðÅm™û éªëƒJëz¬·¡ƒø¼`Òp*åÂG¢›d˜R¢B$Ê08‡ÞSJøä|Ú–“¯À—VZDä[‘’£¥Ä)z®¦ÓsätäÚV2y@’.ˆÀ9ÑtBð3Æ‹ÇÿMÀ{ ²ÅX†áñœu~|Ž?alŸ4¬:»‘ G'Jxˆà¹¡«Â›õí­@ªØ´NÍÏDþX<¼=¹”^¿AâW†”vdçÕë”X~ Þ1j(,ÒcAþ dðUþe“Ò›˜»ek’¸&F6-”!|¦ p>¥ƒ1¢d1õM~ÀéH×D:––ÜÄ™+Ìs®§„’¶Vë"ðÌêÎO*/IÅÙ¿›ÇÞ$"(Õškœ¶C‘ýÇÙHø¾^–Ýqã_pe¢cŽÜ¼ú²GÐ*ÆY2§Î¸1OEÄA"-ÏéŠù¯h祪%”Y;4NYÚÒ2¦½-8³AÝ¥Ìg‡ébŒaáwÈü)ͼdlaý_(›ì½˜»”!Èo¦tEôã§P‹ÖwŒ¼U Ov“Û.W6Ê®~!Ëi/Û¯"Ù}:ྗ*hóGŸ—‡x,K€wŸÍ¦ìPÉûŒoÓëPlFR Q“ <Ô\ÉàU3“/]BÚQ—!ðñ‡‘Ç¡Ó,›LÛÐôŒ,ƒ¦Ýc†©y¥Õ3Öc …k02RkYBÞ]n§lÉ·µ¹|Ç yÃê» S}çh¹š^–:þH37˜Æý™ ¨!:=C—løíF*è”OjSÜ3‹vƒ=éAðÅ!œªHÝ^S ¦‘¦ð.‚‰8 /¸žK…œHÉ9;î÷®hù,ȳÔ1÷š:›Cy%š‘›È>|l‹”WÎ3ÎvvH9»8Û™—wIŒË‹”“Xa¦ù kó²w¹ ôƘ„Ûæ·ÁÓEt¬™5ýÉ#MC ¿Á t.môi£»Èä¢vJW 6%6u ŽIïð×ÍñJ9ò7½³^¿k¿dó%²@1©j†‡ìNŽÎ¸]ÉÑ‘¬n¤ØÅ·/5‰øôá°˜%‰¿Ó !¼?IÄÜy”@ü_éˆÿÿÇãÆÿß©¾ÚÝñâÿW·Ÿâÿ?Ƈ Û‰ÿÿ[§;îUÊz!Cù[aøûßO}d ïAr÷ã°ùg¥ÔøyÚË@ö¥{¬ÿÍXïF¨ÌŒUOê±–Ì0õ‹™ x“Ü`ì×dýÖB—hJ]O†"’·Ï:w4+P8ÕŒ¨!2}Œ+M´XQ‚\ö÷^§ŽåêÝSõÛþv "ïe9"ÜU9ú8_R:ë1‡‚щsD1%"ˆÅ4:4WSWYãûwGÞ$n™Q+ßsä3#\¨ #–±Zcg2=%H¨T—ø“l ½¹âЃÍx4¹q@¸D¥¨VX’dS‘ÌïB)½>üÖÃ¥®,5ÿÆ"èâ$ÂÑ IU ©Ã)ŒK5-À©b*5ª¥qåq0“O Lªàf¹÷Ún~mÆ ÷"ør|Ünd\¶•RWuìwÉîY˲°jÏ»LƂΈ•ªÍ¦×fjCVg„U)ãìqc±¨&—Ä…Äb 13éÁ8J‰è‡†ÊE™\KµØ.W7Ü¢þÔÈP.ÁÙÉÈåQãµÐ”«¨ï¸­1 óuΘ üTÓõ êQkaw¶‹m#cãÏFW¹yü L¾Ô`•8Áo&°ÎÓÜ#õþŒS•:Ð èrÊÉjÖÛ“½_Tôª #ó)Ö‚yG’›%\Çl‘VËÖ7§¤wq†y}_1J V€¦Ä%‘H¨TÅá{†·¾'ÝSÆã¬®Ð XÓö*ÁLR¢ˆ‹TúT âÑ;é•"ÌÄÿ^Ó %écÃÇÇâµSñ³{?éKü -Ðô_Vº×6¾Þ6ÇX¹Zû5Ü{¥h_ü€ª¥èm):(EháF]=™¸S Üð鲿"†~PÑ>ºâï.ÿÝËŠñBvÐÏÓß•CuÎЪXFos‡ððcwô8¦ãÄŸžÉ‘ÂC„ìXo¬ŽÚ,¯Ró@Fì ûáñ:”罩ßžöb×HW{GÏ/?© ×’véóÌÒžŸ¾Sº™YÚtÊ<61˜6Κ_Éöà÷º¶Äãß‹`øÀoH/xѰáý/Þ!œ˜Ï7Ú™Q^¦Ž/Õbâû¿þfú¿ª÷²œX[$ƒ¼'¼Žjtᡎªb¦Ø)Òš–T7ͬ>בðo$Ðp×XT•‡“«+’0iÃóÆ:»Â$1ÊáÀØ+Žo~ÃòÚ¯2*—p ô xüNüÄ•#å¨OïÊg]ñL{Û“SÁsëüfþm½E¶s P àóèA|ÑHK2K×FöhØ{»ØM5Za-¦ákÝ–g}»h‹x< Öä.!Gô3Pâ¨Ál¯'èC¢fJµ\É,]„¯(i7ê}rK:´É|>¹‰œb%Åqf=;­¨UȨ,=…*Û®…X^E×Ð3)R‚¿Üö^³ÒŠ7ð[ae2ßðÛhh>ö7£Ð÷£E’ˆmàì†Ðb öùó ²ð®}8÷µÀalKA—d j¢.šˆ6ŠÎ·›Þ±[¬p£H¨Ù ™°!ÝÙÈî™fU7[´ý8bÇHÁ¿v¼•lÑ„Ê?ºçø§ü‹A4ÇÆŸü\Ç|#º96½Âp Ý †Þì&¦r@¢¦c:ù,6ƒPߢX£Øœ$T’0Mo)Ô)àåÖfýº£–P™· hJ_&“0©ªA¨®ºï .çq~Ù€A•Š­ì· ŸÐÏmú¿’¥D«;oô?Eâžw+5BM4VjBI<-žÜIÍ@u¥ÎQ Â/=º‘ûÌ€ãšÅ|ú2žFmâoœÔfØ&áÆ@{iƒ1ê» $vlEã;±ëÔw@ ´ë€BU<&+ ½lÝSß·&“ìIŽ¥«8"vCLF6Œ›ŸÇÜøö)ºïÁRbB<½$^u¹_€±kaÅê‡bÔ(I]>­941dŸOGJöÙ`À§˜›¤â Ðø±äŽôÝËŒI£­Ä“fõ$å$@¸SŒ[Ëg#É¿~Ü6Wºy%2c¢Ä 9î,ª–/ïÊp•Ä0út»Dñ¡K÷K i,“[ªÐö³»ÜܶÌÁëþlú§wdI`¡ ‰˜f;d‡ÉΙ9`å†5 ]K¶Ò»ë‡¶Ë•M~Ásç×P/`)xÏ uù³=– «%]}fD%«‰ô¡_Y’4ß y´Û!R–MÅ’ 3Q$yÎ,â=جˆGöæjÈ2žhBL Ž~?ÎH ÷a€¸#I›»¶0#ÜÝí¬½…£l&DïÙ[µYœ~˜.ꥆ½a ¼EÄœ³ æ£|JW“ª‹ŽLŸ "§¿Ãú°âqîJ0 2làͨ 'k<ØD%I5bNL2øtÝ;â¾ûÅ©\s“«|S:f!­ì Î_mï˜ô€¥ÈA¿Å}cv±]{¸£B¸w@Óñ–÷&Ðf‰‡†mׂ5KZ´©„ç“ÂŒZ;rÝ Wå”ËaÂqÕö‹{Ö‹§4®ŽKþ²É(vê5»_ì@‹{æ\G~5Õª3C›Àt"R[„åeˆe¼Œ“5Eœž f_Ù§‘}6,;šàh†)ÃÉ1–ãcA†-àœÍoQ9­®ÃUSùo:·õy‹bŒâ‹º<0ö¶dcÆ46´¨Ê¶ _ÿ˜"¨6OÍžH¦Z±§6£úìTsA¥ÿ!g(CìäoãiŠ8øÓCÄÁS%ºdPÇ[—%¢Á¢¼L&dw¡‡I…å¼Ra…î…ØMþ¬,Bé“Gw̱ÐW˜D÷ +;_O2,¯S2$ Úžü›‘òɆÇË8êñJ²á[G6<Î-²!ä~Òá²éÈ'–+©bª|¤ÌH2³rPB<È–ú$ÄrHB´b²G÷”©’Ç•[|K÷¤ÄJUˆ‰d1~|1, –³ÄLñÄúûˆñ0U:¬T¿ éÉï8¯tøÖ•mé0“«p~ë+aùð§ò!œÆÖÌû­äò/†ù©ÏLò¡­à<'*@šª»»´±ö7lMSÐJÝ´PÔ²~³Üêž³&8eépZºç¬¾Í­ NmJ郩ʔ&݆tøy5j?nVWPýH£6u¿Q»zpt ÇëÂx¢ o&㌭8™L íDéÉ•´š°;ÛXK'9ÝöNrÇ>ƒ‡Ô >¤Ð0èo>ˆdpLg‡Lý`ƃ•9$.Z4öó ¡½³LÓb{¿ ïe‰6‚}+Nq††`+t'Óy(*‰öAe/' ¸{åà »” á¡]r£pŒ¦6ûÜ¿¹™µ-ƒ‡{lç¸ZŠé§¯ééö1šAÓ;Yë¾P€•¿bßUDº£ÔÉ É!ý[ ¹–Šv‡J®¼J¿Ï‰.!5SZ‡êäp†TòƒçɘÃ5ô(äª{Ô/˜GûO¦{,þ¶‚ÇbÀÿozõ¨þÕÊ˪ïÿ·ýäÿ÷(&Çÿ¯óÖ [ø=¹ú¥úò­×ow½ÎÛtw½th¸á†¥òNû£òEô1ž–úâîSš`îwŸR°#…¬Ïá÷­;FŸ\£Äçž®Q߸ïGÀïcrõm¹~µãcx~Òªïg´áEÏWþi”~éu›Øœí7±¢ËÄ|"ÃB9? SÃz½Ó‘Ëä©çrˆB¸ùÎÛ¼¸y«½† áu®Y0uÔÓ=°äd:vÄèï…NÏ.D ) qÚ­¶ å{Æ‘ß 5þê~¨qî«,ìàý¡ÜKqÜé nÁmÁ·Yz‚kgÀµŸ Øÿd6ÿYGÄ ©JÄÞó ©lã_ÄáaÚ-¾,wãË`¹_ܼÃ1ÓæÝ™(“ãºØ›¢bûöÝHr>^.EÚ¨¿møõ«¯ ¿þ)Èc<[ Q£+°³m‡z]ýA‰3>€5 cŒé²±`üÍ ‰_±"/Ö‚yñ ¬HöìK¡/oŒ…S€$ârç€Id}§°/ Ô6VEßj ¿äAI<äH×[$ºÀšxªÊÞ$ôN‘þ]9©£“ƒK“„PÈ{{ŠÛdMÃÜ„ç¹äB»¼•{Š}j乃2Á‰n¹_óÅ]Nõˆ4aÛœÓýb_+Ëõé-rîÞ’c-"fˆ‹re>f_›>ƒÆ«S¢Acéˆí¹ÐN¹ûEg4[þÑE•èw$#è ›˜b)< ›îdªý¾v›Q]#ìö…«xñ%a·tÁR­“™âõzAÁ .h6õp.§ÎbœUÁ¦!Ym¼kÐA5zD¼ëîcÅa”«{¸HÁhÉa\¾÷a\N?Œ¿tÈô{9Ý%°OdßùO8‘&ñžž|ïã8ÅùÕãMUq¯ãø;9Œ] ¡s«µXù8Æý¾æ˜æA¼F˜£ÅxòJ8Gæáu âèóua=xÃoù÷rÈ?¬'Z4œ© =çe’µóUšåU—¿‡€®Üx­Î[“¼7Â|ÿõiÍð¯%ø/@w^¹ø¯êÎîþë1>Lvþë¶ïÉÞªÑ߇Ó¸È·Š Ç1JŽõ}Å€?hx`t£ì8ðµØ1œ@ìò¨ÿ켜;€úwÛ{%›YMí€g‹àÂ5ÃDÉ&[­  ‚ɼ›žN™8žk—ðj GXLðæS»ÜZ‡ôØf5¡°wz(õ•‚Õ±AßzoV%"Ô¨V}6`Ú¯!×S/$nDm9„o& ¶9§<Ûœ…ï+l¶ k â(¥4ÿsó8¹º*7jfohá¿5ø£xe5Èã*°Ã@paJ –!#ÐÅ/sé#Øk´ÏŽްCE:YÆE0¿ã¾—r›‹8õàŠè¿‡L–÷’œ’ׂ Äé, O–’¸!­ø€œEî $ÌB4E!ö±‚âO™²P¦ £X½vyù‹Å V‘‚Eœ`Ñ3Bp;£}'°«u…PÀçÑ7 X$´6彂Äs8ÛלÉx ÷I /M:Pdÿ*f÷¾Å¨4_:ƃ<AIl~\ås#Í+³"®¤W¥‚ÂBMr%ê™»•heÃÊT:&¼“L>ÓNšöÇâ’¥™3ÔD.B ù›‰3;Vª•†¥=Ã÷ÐæD\Ÿé”¾Bídbª Í’ÔêwxŠˆµŠ–ûB6ÓÉ‹TÓuB»N/HöR_kNŪO‡ºã?h½U®¨÷”ß0#cëÛÉÔ»‚•¢^$™×nùïôÇ2i¹)Á¥~ëØê?âiᤚ¢ãa73½˜—Îз¥é%‚£^_ݬ¥SLÏt ŽŒO“7’™óÞµˆWh06&ÎAJ™À’ˆØÕ‚q˜sº2òüëé"Ÿ>ÿ é‡êÿ[yñb×ÓÿîVªOúßÇøðVwõ¿õ% à–à·ô#ý¾Òjþ3õÅrÜbšVR‡jVúâŒ[ÛÚUÌõ/®cÞÊKÄj”Å Œ†É§d G…ñ 4I:^Î=J£˜þ´úê2»±z4DÙâæ–/ŒýK C¬åj4éÏQ£u;IÆsèçÉz;>'0¨‰Âl`BšŸ±¾­}Xô§$& “Éœ4±ÃáóÙâr>íæ%tÆÁÜ×WOÆ}ì‡YôÀ©c&RÉ:¢Qò‘}†ö‘|Þ•OKüëïú×ýòOÛØÖ‚_”«ÔõÁd1¢YÄÉ'ÎïHe„=ºŽÿìáéû òWÙ7¬Çêžè[)º„o>ÇÑÇñä3®úx2ŽŸ¬OVƒ'«âÜOVƒoÅj°Œt}UyêÇ\slÈ#s¿Ñq ÏÊ*±Øpô Ÿ¥:äü‰Ž/™¿”yù‹Ç«‡Ì½ýû n\FnŒRH_Bs\ø½’ZÅù3–®¢_²«È˜KTNlF»Å6üÛ.«Ñ†V°Êö¸RÔlÊØ„‘ZÆÏô;¤?:½ãáÏœZ—…H³"<#P?1XŒú(ĘS>KþW{úRk8.’³Ì*hVáœ3V Žny¬p•WÉœ-±«´*’µ«*ñ›ñ$ЧSX”ÔŒ}ÀÁ#Ú‰è€Ioó!.?,VR&l;¼wy'T¨Ò^%©Ç§z)Vúl “¿UJ\÷FRnfÒrÓ$fÑŸûssUjn®œSêØÙ|Qlµ¹2¥š5È›ÏÊ”juÃ"«U(Õ¬Åßy)Õ"PA´9(õɲú·¬¶~;kt~/-µ°Š /@Qì~|¡ÃA<™ZÓzwSk}ÿocj“FF@|–°¿m•…SSüMªm–iÎ0ñ´œ¿ÙtH!.Ø 6x¨b–äc<—íìÀ#8hÂ*û€¥8h4aM[ÍÝ)ŘxF³èº#ñÒ£Ÿ8Í1w•¦QÐGÈF#ºû£m¤áúšªÂæê5V‚ÑC2f$¯í¼¾Üv®Fîå“¡ýÉÐþdhÿö íõýG0´×÷³ í–ýGš;R„©¯`”×=qV8dWEÊ9“uÈd˜Ñuø¤oÚŽ²ÿNÕþ»óêÅîKÏþ»³ódÿ}Œà§Žý·#%ÊN­}Ð0ØÀ9ÜÎÏ`çÃÏ&ü¬íu{'­Œ{æõÐÜ£Ù=;=}²"ˉ͸ö¶J Œ³2*ë û¡8¦¼.b½j¦UÖä{£×f”îh£ôŒR!ÄÃü–i¬…Bn/÷~êm™>ÐêX¶ 1ƒþ•„ª—wÑì„Ä«;4mÄ aì³d†írUÔ ëûdÜôÿo‚Bü[‡ÿàçÿôJ¨!Eû_n?05”8>ÖÙòTMyªìéU _n¤G-E£þÍå°ÿÿ[¾Zí!Ù]'®ve‹Ÿt1íîR(F6<Ø@‰pNQ©ËƒÑR`[ƒÂ&¬¾üÀaRSc´ÌoCÈÜ˵°*ûÿÆõÂVM7¢èé˜åÌ?àf‹jìÞÐM㡱óà÷)Ìïí„Íê¦Ùæ¶û ~Ý7'¬?þXžÂç€óÏÉŒ¶H bÝRXÁ'Ôä òc•ºbOL¶ÌŸ”J ëPZ5qZ&ƒ4z3!›ø¼ŸŒ`žá´Œ~¨ÁÅòstRÿœ«†r\P´â¦´3 †ªçï¹90Á°µn~(a·šãa<ýo2êÀ9F‚ NátM(2A=ùDp8Ã×c܈¸×Ñ‘¿=ÙŠÎö÷ž?ßïÖË?½‚ÿW¨Š³}u Ã ç]å§Ÿ^Ñ0 2eªD¯ƒ<ôóµ …«Æs’¬¨rÿÔËB¬ÄDTg0ãÊJÚKâ8.ƒ„ëâŠP+1ìO‡[æÑ¦:°÷žh…K342žŒËX•nMœHÔOXÉyÒ7º)úÈœö¦?”°œ6A ¢˜ô¯Ââ&|Óƒñ`NÚý6£f’ñU2Næ‰nîšVßí_âÌ1Â^üç ¾eÖ:6CF3˜ˆ&j8!›È5Ô< ·™ŒÕªùª¼ê/FDÀ7}Œóý ŽHæËÕÔì‚îzv©ã±x]q ˆé»î®Ê“[DžŒa;ÁèbáùÙfúÌFšÐÖØl• q2÷‡kPñ¯¬žªñž6¿ÂŸP+ÏàŒk¶¢s’±ÌÄ– ÃVÿ™`®:íA˜ãØ ÉíHð÷¾RxŠ3#‰Ão™z',ëDp›™>_ ë…ÍûÉ…Ï.&dÊŸ÷ƒ xN¹â# Öˆ [ Öø*³xÞ²iÕ>zçlù;ò"í©7cAGðê»jq{cxè šDÅlã=]eúÓÁ5 ¶Vr ûüoè”5m †ªgµµkrkKs¿3dc{6ÏRùlŠÊ+SÁÇ-nˆašp„{xqJà¦þ79¬æe, ±Í÷*1A¾ô» ÿ¶IËŽ ‘íŸñÚõ.ÂϘ¬2UçrªXË·òÈÒú—³Éˆ hÌ'£¤ÈA¬$3›uáÚ8MÎEÑ{€ç7_‡T>³4É åÊ”„‘€MDhRã¸ù?ýÒ¥uØÀ }†»Øu‹‚Øx î… Ê~LÌË&Ùeð9²”è¯þ_¥¿.ÿŠ6¢’]Œ³+à»ÉLp{¶ÝJ;Ζ¨^R}±zª»Eˆ ¡œ¦|õþÒæbÆPTÄlߎúƒ¸ä÷ ˆÞTʈòL?¢É%¢Bí9ÖD×E¤õ ˜F9:„Råö}źš´ ¿.P[u®Ò]ìéZޱõA<³:¸ÐƒÜ`Aa”¿Â%OÝ»£š¸}”~ÀþÕc¸Œ\Œe++IÝÅdúûCò÷ÿ³ãêð¸;"šèå}è^Jærñl>–fÖCuÆÛMxÕ>È!Ñå٬’åL]…¸â:‡ûÁ¬B*&®ÀW3÷gÈMiãBÁ)â““!ܵ&1!jíSí#z2ÜéŽ 7…”>߬Ài—F½ETq¸íõ§x^!ç‚¿xÝ,š5(‡×V‹Tb³;¸ýÜå=î)‚|FwÖBL`òñ•DõC ¼*³B'Ù`1›é<'¼¯ÄáFÔƒw‘¥&™º|Üš³9M‚ÞŽÅ×Y4\&Î16^âWeWåæXÀ€ëÿÃ_ãáà‚ >_⤠Ь5Å#¤›­ÍŠTö¹\Yí)Ðß±‹Þœ/í!ªj-ìpox<ËÇÑj0ù¹1™§ÄE¸›3pô™ày»¼©¬×÷Ð 9ˆ{»¾Ï¸¿p÷¸)ø¢‡Ê”Á¨0‰‹)3*JU“)§x•%ö€ôG2­˜®ÿÙ">)3Æ¢ Ðÿc³"ög¥+¹5}" ÎnCÈTÐY<¿1Ÿ6cø;>@«Qµ¦Tì(N+ê>¬4…‚¾`r€Ê“­xËT­Éįúê~0žŒQ°Ð«Ø¢†}±¦ê½%á’6o>Ò^S-&VÜÔ­§_!¾¾`7on¹ ªùʼ³×‚wö7"lç=]/hô¼`ô,,zÁ‘BHè6Öíp!+QWÝ.¶ŸÜþNn 餴nU‹¢¦J 5=ùü]|šcÛ¦q +ÌbJöã:a,¥¶©ÚÞëψQ“ø3M. ʾ”’¸gZ‰š{ÇQm„Føã¬+e “Ù8I}úI8­½vëy»Ñéî›ï•uáúEö”Tû #+†1¿3—Ú€Y€£ 3T`€ïAùqÅ{Ëœ!6-oˆM+·îæC#j­V£y€:ýì50íªt™8¯ñSBýeù0t~ïÔdÐùå¤SoÈû))wÆ Bo8Î]»ÞÜkñÏ·âg÷4£øf,–NÍÞñ)p«Cøÿ¡ãÒ‘•³·{ÚÊÊÙ»>Ÿê‚I8CÈ™tæ> A¤O­Ñ>OÝŠ>"\ÝñÙ?9ý½dºŒ މ­‡%a—Q.$é“\ï^ÔN×èbBëÍ˼º³‰x+OŠ_Ú xI§ .DØñŒ½ï<+±o4Oµ픢]VºÌO…÷º~C@îPÔ–¯ð†÷_1jaNá¿Ò4c.1¶S̆tè°c´/pPA¡Š†‰ùÖÕæó´ÂO‹óPÔ'&“*³F¿‹éI¯ÐsuYâ³c¼o<…‚¢ÙˆtÚXúó3LÝtîf<2šy¥+P=Sc 6Ðl:ð4'×%äšc7÷£õ@·x†uÂ"ˆºÙ’ôßsàÌJ²+u‚˜…Ü`ŒÑ¤º=ÀÉè[e7»'ߺ‹R%D ôQúiÅ)Éë£Ôùº>JÇz¨¿’ÉjÒ·ä±í¸Ÿ I õ‚ígâDnBÛ™_Õ\ã !¿ o=¿Õ¬†£%»2zrÐò´ˆÚ^Zʽ„‹ÙÉç7ÄÈ3°.?.Rá¯s™<äUüóLxòó¢Ïºý¼¢e'½\—¢“ËÍX#÷QˆÕª;|‚ð¾ä5ð!Õ(ušÙjÐ#Ý‹| m—‹™PäŠÊ™su%û‡¶Tktbñ]ï5ÿØÄSM´fÅ'NŲê+?ö "p®­î†[¥¦lÆxÌq>p¸ìc1›Ü˜p«–ùôNPÍ–qAõ tpëm 8Ù–ÉtÂç¾Ã‰17Isb†x…¬¼×9Su§ð]»-~PR<à›j#Ä‹¼`qŠ·•´àtN¦n­ÌWÉëË2\Ô‹`Üæ( …[ ·7ý.S¯£‚€‡à‹2¶‹pü‡&V•–!Ôë}‹&«å ýX¹Ö" í ƒçÃð²s/†ÆÏJŽw][;Øqÿ2Js«Õ¢h—î eøÓuê5“Ú¥ oiÌk‚=Xß8)C•Ú*G‚'jLB ûš«C)´èDp÷ú¦¿xÛJ¯å ;™W–ç½g x#í ‘£ yå®õHÆŒ÷ó4C¼üvS‚óx§9"WD ®£Ã2"ªŸD;ÛÑaD8Žc/;qÓØõüAµ<| ××C7_öIT…ª°®CN–n'ö•ý(à;x›¡ºÂG€hûð0ðÀè‚Ûk98KzNÐ+zÓ +LÄ ¢%Iö~c2Yq`>¢È(¨k ¼Æ…ál/¥~¡zCÜEí”økšBà¿C§²ž©P&a‡6£ý>E¾b"Îòœ›*?EÿL÷kù*ž÷ŸûãùÿF[}Ää)ÉŒzS¡ôèúå9ì¶«@/øÃòV ÁO2Â?t¾ðÁø>jü‡êËÝ»~ü‡OñãÃ4êÆx÷…â?Xacšok2ÌÁ?8¬ÃcÆqÀ ÿ&Â8¼{¤0µo2ŒÃ“«ê7몊Õ<ù’>ù’>ù’>ù’>ù’>ù’ÊþÝ×Ԇ8ÛÝÊåKj¹{(·Ò|I}¶æÀÈ“Pù:Â]h.œæPÆ«¤†hm‰xNþRŸa±ß’bapòÆ3ô„ŠªEa©Ö}‚#*™Dt]‘´ÕH©_Ú¢èÞró/Û%Û¦?'sŽY‰%ܹ‘×Kdá³_cÈÔêè÷ìQûäáøäáømz8¢Ywlaë¬iÖ.Hô†˜.×IÛ쉕D‰YæÆ„‹Ã£MáL°Bˆÿ xöqà'>Ò-¾<æ[õV´B¢$]üÉÕó±Ò?åÚÀ/Ší4—³,_3£C”ËÇtÅLa󫳩¸q4áÐÉJ•Ê]$ªäWÌíbS³B¨xž­ |b§B &×1··˜–/ì›óÅróÀ@{–L"òdjÁ°t²:áíG\ãñ{¯+ôù^}VòA÷éVˆ½h(ÆÃ¸þ.IÄõ BûžPý¤è…(Þgй`ø÷ò ÛjvdiOHÏ€û#þi±u**UÜÄdÿ6üj£eb êˆE'ôg¥yO#…œaT%1Éʶ~ê ‹øûÞ¨ùêã£æ»_5/û/(­¢¿ž`ú ×K?qýˆÄú|e(~¨¼G¹ß,(?»—„áK©å ƒò«O üu‚òw×Êßù¦@ù;ëå³Ol³ì^u¢Üè|£¯ÞÔz—âõÍòëîGÆæÉ˜)s²Ô‘¹ì<¦K¿™á‹ð¶Ó_ífºðŸ(þwß Šÿþÿ÷æGÅÿW*Û»>þ{÷ ÿÿ¦n ÿÿ;l—BtvÚ:!ù¨†²üÓ ´Æ0¹fýÔå6€ô…‹±¯ßÉà0YYLŽ ì©@1FåJXÓg¯mДFƒÀt0H¢/ p n¨‹À¥ï ½Ψ~—‚ÿSf5s™\†m9ÍØEåŠ>ÆOn#¿æÔ• V+ù`5‡âº©Ô)ð8\Á jc™UŠÎ(ä-CkSèz’g"–€rj[\S ®:0“@ýK!/u›ìâ;¸F=õLÍÏ×l>] (—rf‡ Ȱ·ƒi7åÇ?ÛHZØË™HøÆÐ†Í€ºÕæ`výY‰8‚Ìâ¹bµfû¼}¼!Áü'á®-˜£be¢)=Vf3º"0Â}¤ªêAªrbªT±¯úšŠIlJ‚; ±¢ø³ÓÓ%0›£Z7Q´˜Ú’X–¥ž®7 ÑNp €¿¤ÁZÖc!i²Ä¬¨»^ ÊBŸ8zcZw ᫜ޖý4ÿü¦_Ò*Òz¶ (d †ÃÃ|ÀqD@‡ ¼„,»ë–%…1%\쥭1ЃÏ8@áwíˆy ¬Á¸a3ÅÛftgZáiÉêóþu }&”(É”žˆÃKfÂYÂVJ2‰æ WV$I´ÿ!~f<ó¡^Ê~9™Ï'œtwrkê÷´i§M:®²£ØÄµ¤ËP3Ú0±>°xMÒŒá”òd¸÷\=• – 5ÇÆX\á5u,0r"£!m9ƒ©¦Ø©Ö3jލ )Hø¾G bg±î3’¯ìxêzVF·,¤DÂ>Hø¸)ñ¡`ñ"üÞڎƼ³HM¹ÇQÔ¡k³ ”›ñOºp°£š¡%Eöm(B*®.„ûÖöÍŽl¨ÛI1ÃY¹Õ©Ì]ÑÞ1<#8fwMån/{ƒ1ð íî¥zOäX{½çÓ‡?¾þ7þcq¹^ðýïËÝWUÖÿîTw_T^¡þ÷Å«—OúßÇøð.·õ¿ßÎö `e»¬ö­‘9ÓWîFËõ»Ë>Jÿ íË”6|µ?±u&3UÂÏþ‡ÜÖ~íFÉt†ü}ò¿“è×dØ'íYÑaíw’xˆ i2ÕÈ[™=2õÉ?.K "o–ðžÍ&WóϨhýˆ)Žàø” yØ!E¸Ù§ÜJñÔ>ñ¯ÍãÓVs¿Ù‹Ú('ú÷Œt}÷ý5ÚDGDTR$HQûÝIUw/Ó_wÝ(6ùõظ1täš©HŸ*´Â-ÅfŽÇC6/3MFÉ%%Oíc-Å5ÖAy}cróvÏ},U ?JtÞŒsé¹9ÿC!h¬K€ˆILÚðëI–nÓ8KU‡qÃè/%UmC©®¢0¨<»~? ­;êÓ/^®VÝú7©Hn—/ïÊmŸœ>ã‚ÊÑ™…1>ŸCTH…ßF1ùغ¶™ÑR,'â>evÜø¾´Š¹+§íÞžâMÓ—2k·yGªz»«¨z³š˜¢1EŽV/mJ[ÃÏÌU3Ò•ûAtÄBsÒZħšO¬Z¨4"án¯$"l è3zK"Á3¦+É«Í;ÞšŒ¢<‰eÇ- Á1DaWZY¢#$X Hܯ3z/é'*œDÉØ[f³ëÉb4¤¨3ļ¶¾ ű®%ìZÊ•¸;NèI€i% â+»ˆ®A-6‡/#AüßfO)˜ƒUËw°þí•ÔÙa}õ!ºtª&C¢ÂùlÞ¹݇íÃÅ¿ _”¢3ØÄr5®"Eºì/Èò {{*ïPáZÚ=;îþ–®­>;]QãêѹL#¾•ws_åtnÅ4Fye=3æ*ó´Ó–g¢­‚vT™):h¨µ¡V8ò´¨)ZèˆDK.“¡ˆöôжB9br„ú¿iO¥Œrh@§RÏþKRS–:¿Æ˜VÚçËtЦЧ«ñ[ ÏÝ€Î9£õ_­Ù•AÇS¨~ò¯@¿>Á`øÖÃÚT·{Xö…ª´°ü¡Ã B«z(ܯür‡V¹Ã|åÄp¨_D,â—s‘¿åÃpË©Í X­Úèè´I~„^é¥<Ü ùp|3K™VÆ]L{šMnœeÕO>…fn"jímƒNWoL—Â*Ås(F 2ûQ»%÷ Ææ¤¿ µf|gšþ^Š@{tþªýÕUï†v|$ü"šÎ®÷¦'m›§Óà’­“ÏÜ5òß2£«ëß7ýÕ-Ú àUqhTq˜Q…Ÿlûå•fõË©ÑuyHŸÒµ-Ù²ßõ’¸Sjåó‚Kô§ÐÔìzpg™÷aŽÕ« €ú+¼YøUüwSô«è§ pz¢Ë<‡ºôYÛ«§¶JIbJÑNÑߨbÚ±qLC3$ˆ¿ËØVZg¤dGè’ÒTlYÙw—¹PQ:DÓ;ÏQúú—Í(ðmÐñiðÑÁIï$úé§Ÿþµd’"l:DØmŠñ[ßîWÉ×&WŒbÔ3UÄ£*=*YŽzÅ®SÑ6Jü~ŸmÂì¨øE9jÍÆ Ão ‘"´SŽv‹ûÛÅý꿌Ç4#uNŠörDcþX²›\JËí‚fV}OŸŽsS¬LæÌé"õÝ›¸3—ñgñzƒ35i®Ú¡¿j²©3Þ9°¹‹=çqO¨;oرèVvËÕr°´/Õ/Ï“-ßì=r/sÏÞ#¯ª}]ÁÉ} Ô¦Þɸ³ëÄaõûJí6u5¶`¦þ¾dÀ0ÄSsBG¯¨½m7Ûú"—z¢Ë¡'øõ{êÙ’! OÕÍXÕøžnöLjøMíNq³£7‹ETÖ๼x |ÓZ`1ŽÁú•‚C]CìÊûk]åU¼ÎÉCí`%2Çß°ÿZ³û×2ûÿîËê¶ëÿUÝ­>Ùÿã#v‚mÿ?—q½< €ŠÀÐÊríúN“·ävÒƒož÷6K{ÉUV0KŸk£´s%+“ 9Ta%)>UßO¾’œþO!¤™®jhwa?§¥®G^‰/îq´Jz ]d¤Æ¬3Yèhi†Jn`Xi¸Vç… Ë½íOç<'i¡eS‹8“`ô£õÌrƒ™dÑÏíÌï‡WCZ«îäQ†dYˆÞôÑçÖ½4šî„;ã H²ðÔ½‰Û°çÓ6Íë×Ïž‘ge CëF ÒÛ¬B)Kœ£a6ŸNîÍøÿð0ñM7²“{(Þ÷WZe¢PY)ÑIáç©‘ô¤{El¿²¡RÚ-‚ƒG|ÜÈÉ–©—MöøÃüÚžaªEÖ ¦y§ˆ™t,Â{ #ÛŽ¯®’Aw%]²ÐÞÛ¬nÛÖþd÷³öžLKA®{3LZEù¸ïuê*†:‚š­Z£}îdX€¥âfP!ˆ¾¯“†G,€¨¹Ù ¥áÏ ¯`Iâz„´€ 0XŒ”×±õJÌ 5&–OL¾Í3³@‡þÌÂMü4TPã gP1+ºÁ {;3¢Èøó‰(æj‡±ðœ°•ï{ Ž ÒÆ‡É4™_ßÂbÿ%f bU®®ÊAŒ‘ÌñKšsA8 Èë×Mí!Óªü“ƒj·N.0ªUë·³Fçw;ŠvH¢©e¨ìýÛ«©Ù26×:´Zò>ptrÚÁc/CÞ¥xÖ9ƒd§7)´þ<=À0˜«ÙSúh¬ø×¿KÅ@j¸l®®äËÅ*à‹} WvÒ9èu¬øÙF¼lÁ3æu½³¿f¬lÚà¡e¼@„ñ|¸6~Û¢°K›û®œe×÷Ø«zO¾0´g¡ÐËA¯CÞª§ž1>3´ åŠüÏÔã2+‘z9x cy#Ú@ƒ’~ÍN׌EL.!-­1F’u¢ Ë_•)!súÇ%ãÎç ×óå jUDVð¼\ê-šå¬×)ægSŸk2Jsx]ªö‚„â<×þ©qžíÏ á\3¢&ÿ.¢&ûÚ;”7"3ô¹æU®=0¨r-T¹öÀ Êµ¼A•5©)[ó~K²Ømú?A\EPƶñÊvmÚ瘩t….ž6½3Œ4¬(«šxƺ92·¢7ü½˔㠊ô“–¼ñϲ|UæÕΫõ€×…Ô³¡õ¢|±J¥Ì×t&è­é“®`%3€ó–ùk@Jâ>…o‰jXŽÁy„×â©t5&ŠéS.n‡ªþß:¶‹lFh┸ÄzVìÐ¥–å”ËRCókO§;w)Ò—;£~G1 2 ¡î¦´žÒÚŽËÚ‡÷ Äj|ùU±vᜑštQú­Ž@M‚!˜¦‹$©ÎÖó¯jU Ùÿ†ÿ±ZÝÙöì»ðÕ“ýï>Ly®ý¯žß¸$d+3äßÞPØ´&k%ƒa¨æ•c5>ĨXÿRVEß:l>™cä»W1LÐZ¸ÙŽQù«uŽb =r[L Úý³ßÜFCÖß²£ ¤‡µ\&œSøv’ŒçÐ#,Ï“ôvÎÉ‘‘ë£F\Ÿ-.çÓþ`^Bû ùâ7Ûe2îc?Ì* Nž1\G²Žh”|d!h‰å]ùø´Ä¿þ®Ý/ÿ´a-øE¹J]kÌÊ N>Á=âŽTµØ£ëøÏþn,žòŒÄpîÒ—ñ§xí”$ãx8‹ÚÅb5º™pFS}¶R>zñÝ“!úÉMŸ'Cô“!úɽÔí›ÌR?æ†%cõ£ÛªSÖATdM^3ÐWJθ™ŽZåÌ®¤1KˆÑ/XWJiòBH«áÆ¥‡dx6ºI_ʨ.‡ñÕUÔYÌ瘨JÜœ¦Q—@dqT‡›:r4Öà ºg~g«qD5À)¤>Þí.A%îÒ;í“vdöC¼˜º5*e‘Ÿ* bã`šß#=tÔýCŸ*/9ÝÇ‹­ï B´iaˆòFý–ZçµÁˆ<ÑQu Q“ðCÀå¤pE-(õ´ø)>ÌÐ}ý“Föëp´&€Ñþéï%htìêû h”>¯ô4pŸæôèË@DŸËc cã ðëð· E2¬EŽ~ø0™ ˆ@j‰ZÿӃɳz„ú£Ù„€cʶ»l[ÑÁ´Sî®o’áÿÏÞ¿w¥™, Ãøó÷þ½æw¯T0‚&™Éììµ j†ˆÄ€&™Üë~öõ2’ ¸s¸ßý~÷·}>\\ šd6ÌD®®®®®®®®®]¤ÌTm¼­þ<¢r>óüÒé´Åá+lsaî3bREX…÷dš]ëûjsLjE€#<Ö+ö #KïìRÜ ™9Îe å’¾L$'«cå#Tê­iÿÆc8ÆMú®z¢‰WÅ’Pe]¦EkÀ.À|ž] ´ÅS "÷¥7ôW ðËeÿÃ%ßn-EïììfÜ;ûf;`uq•õè–:¢Š¦‰ª -K_[.%\9»e’¨xý?Š»´-Ž['9b Uè]`K7C®’¯y äžèðžê€Â磌‹p\ö>gœ^5ïl<Åò„ò9PÄ)®¹õ]ÊNnú|Å#jóÂ?ŠzžÖ;MÙcðâf`§\PMéj¹´üóÃ4£“Ç…ôäUT Fc,^4bß6… SÀ©E¼–e’áÏÖhrÏur’|¢ùûlë‘ÝW¹Pˆ…OY dwÃì‹…Ëä²15…E5†ƒG{èŒÈR0rý–e¦ ׋Šîç\ÈïÉY)[°/ÿY6³Ët6Ä;{ö“ ¯¦ˆÃ,Á›$®myŠÒ?¦í-¶Ÿ3®ú2ýÒ‡qÛlïŒLLKºŽˆð¸3õ†ß½äBgWÀ4¶'¾Ü¸|¶aŸ¹e*qǦ¾ƒCúNê+–XCq¬öŽÞ Ì'¼ƒ<˜À¢:#¥…Éóõ””CÑÄÊ1ûSÑÝ»°q ø[Tï24‘€nG·òƒl:}*~‘¥B³ØÖàønX±ˆ¾­Q#‚å;uù†ÕfBMqð!;sÁ:tû¯__` NËbû×'¥*èF××›¢Z©ý ê÷ÍÜ…@ïÜÙôFžÛ+ƒòž#”èS›xÑ»<á(_?/G7tU €¥~o¿Mú¬¹ø¾ 6Eí‘ÜYIPüpG•:ú[éÞÒ «Rclë´_•†ÿ´wË­FªGšÈrf,J›eõÐ^ caE^ý"‘Kú¥ÀÁàìrˆ1îõ0Ï€ì¦8yÞxø¼»[ùí ü_•0Nž[*‡ :Wûí ñ+~ÏcO£JÔå1„ÂVhÝ ¨:ÎþRD.L'Ø„"BÎFCÒç¤ðêgYVyòhÇ_QûÕ¦­(kïiòºðg³ Gà ‚2½I® <Ñ1½ß³Ð”8ònrÕ;W6méWN7ïrG”¾òœš 4i÷ÚÌ<ý!ˆÔþ´oº»¤©Àg{§HúóÓ=xÙ׳ŒýwúPð¹? u\ê|$7Ùáù Þ§ThÜz}¦Bá\õà„¨\°‚È:IB£ýˆ.Šp:Å\]7ÃóÍ*~I¾ËÞà¢ê‹ô½ƒ/E N˜oNþ'âÿœÛI:AˆÍºJ×58ðâ»bAa9>Ò|`#k"ß½"q^òâßí¦2“ÍÈébªŠžÍFë)ÿÚ8DŠ·òNÏ_=?PÔP.ØÂâLŽYT‹N0dJŽøðïÏÚ®SŸF [kËàÔ=zÊ¿6Ø0CŒ¾˜…˜žœDŒ%˜\r"VSÂ߯«{ÄTE­ùÕî3Ñö[Á"µA{Á˸@ѹ!ðÜpîËé*úaeÒ5N.ltÛ”A˜ý¡ÎCž}|ãs¼¤ê_+â»ޏ—PÔ]%þΟfìû-9v ‚ÃÛ0|Ř.O6EÊ6oÛ€ÉDo^j~¥É‹Tæ–]'™ÍÞ¬¼EAY¸ÜŠzÍ‹°ôމàÔ,`WÁsv9sí¦tq:ڴŠ_³ÅJ”|w‚ïXÃ¥O¬á±%3­rå$ÒFÃpÉÉ…C­z…Ù"Mð¼íær>سÔ$@"¯Q˜ØHD·%á3nýÁ®j¾îhî‹’tüD;^U­·×áä?.ò½¬”ÍãÎÉÞ¦óu,o¤y~¿_{ Âôš¦‡:mˆJqä Å%LlðËË.â%iëü!i<†pÉeæ$IC1«Ñ¾âÇ Çoa9J­ð‘´!êÊA…ð9bÚv.‘29˜w×Ò—[AQÈͼ-wsÿK¾;ówô0¨˜JëP‹Å4)E(Õ|ZsÔÎe u$ÖHš8Öý ÙÖm X'lz©4¤ [»Ÿú×R)x¨wKÞºŸ®ùþƒâfÈιçîÂ!ÏW瓯Äñ+±2rŠà.ó²¼B…/ýIf¥­cµ… é¸Í]†t=*®aŸ—&î&ìt nlÖé?òýÞwXî¶‹˜è›%jC¬¦nVl¹¹›n¸GS®RøP´Ä7õ󨲙,7RÝöð0@U1›Ël*j*È»‡C‰¡Ð(ä*L´÷äg8 óÁ~kfÅÙï.D±,,.#’.A—˜üKȸ%§÷(/o®®ùEêe.Å{beçR†moùæ¥eÕ÷=´dß÷¨ïÛ¼tkôÙîÙ×_t‚žÈðל«#ÜúÚëÝÍ#ÍRo3®šB§õfK O³*;!)E½c‹S<š)Ø9u&æfÝ5¿`g;ÈÓm 9ýq¶ ZQæX'=ûÑO¾ˆ@ß}%iCå¡;ØÐÚ ø…>0ðáÛZ*}›ç€BX/qq•m°ð(á3kh|&XqíFöýòeä ‡vói¨q5ãwiü‚št7-ý’¾F„âjz²ˆç›–¦<¼L½ôm9¸;_/¯„µ$Eä ²@¶ÎÎ*[çýŠåÿüz¯ù?·w?Þ òÂã«üŸ÷ðâµéçÿ|wÇù?´•3Oá¸u®Ò~Zi?ï?Ý'NÁ÷Ïöùî/íÓW›ís•wè‡Í;„`V‰V‰V‰V‰V‰V‰ôk•èÇO ´ÙØuŽ8Ne²4—ò„jj8«'›Rg_`ɱÆøÏ L+ŠD6Á¢¶.]Xt€î‹6:¤—Ÿò‚ vê£Ü)(Ažþ±Uv³`–ìÑ•³–uÕ¯m Ó3þ†s>›XÞ ÑŸ9“Ò@f›W˜µU¦[UZB¡L7!Ãh½z•éæ;dºÑeÀ¹ ݳڎZº¼8ùyé>#ä`ñI©¦Öþe™ü­Ž˜S=eL¦óbØXõ­›5 ;™V){¬”=¬ÿ9x~æä0ƒløazéRÄÏ SåZ% K‚P®:Çæ‘r‰¿®»âºPÚ˜íUÚzýXicòòÅróúÛ¢D>2ov’»ÍGr¼×=ÖYIÒ×2ä-¾ç($š…„Ó‹XYFr.†âiGLZª«©Ó‹äâ´*ýH˜]dF:™~d•wä‡Í;B¥W)ÿÈ Ê?ÍC’¦¶LLB¿_ËD%?}’Ÿ"ˆDÕ$qR‰¬²~¬²~¬²~,˜õcጒÙö"ŽŸBÈí2Ìà:–™ "âû©aüºî_8™‡XN>á§ôÊ¥öb“{x ò{xtWmò°$²¦8KHOï“ÓY4+È»Ÿ"+È‚é?Vy>Vy>ÄOç#g{õR€ˆ ˆ3í«” «” !Ô4ÿÐ)A–Ðm¥ÞÐì¹Y3ôçN¾ýéÛÎæ‚?¦FèXÁC÷IÞ¹E(9Wó /ü]çdÝõûAçtºÖµ%_w6ÍÅ6ßk]hó0Þ][Ȩ[®ñ7y7Ó†æ¨ 9çd Ñö€Mp/2:_KwÕ¡6v½ž@ìà ÷öyÃÞ­Ü ÌVµuo´s„Ùטy2”tp¸µØ/<Ú/ñ”µl‚¨a^±¥Â¯Y änhõZÇÂG)–uÁ:‚ìÌ ;A[ÊöÅIŶ¡=»9ˆ‰ô‘í-óm¸…ˆb*f.^©Pèû…îz1¢w׬ð×¹iÌ~RóŸÙDNÇOÝùOŽî$¢£ÃÈ~­¢Ÿ©ãïý,(ôsÔ\$¨¹Xˆðãå…?ú¡B„Ý6D¸){r¤ÍF30OŠ™ÑÄÜ— ¸é0äH{„ºÌˆea-žJÙÄÒjÉ,E¾‰Ë<ù2=¤H>#óÑã{‰¯.Eýî΢¨Ãøß“Ú½ÆÿVíTk~üïvm{ÿ{/æ*7þ÷E·«ëøÏ£Xäo7Rá¸?OîŒÐ[vMaÈÈ[ôîˆ\Å'ãhgÅÅ6J t® X˜iýš¡¬J<ÕŸf¶ïl,3ˆÐfúÏé »B ¤ÐPÞŸÛ‘豆ÃåM=d´Õ׿ÂçƒÞÕéyo½±þ•œ$Éd„ßbòQ+Qkø¹tò`m½¾NQ€þÕRµ¬}Öð©íHÇ »ë¯‚ Hu£¯å$2'ðäÉÿ·ÀŸÒñK4Ø÷²÷9§÷G7,ÆH9~‰v \žVùÛ€ˆÓ‡EãcS‘¢É¸T+³øMa3ÌQøžú‘¶©ˆ_9¢‘¶&ªóv#*B”؈\O<²õ†”·`Fh”-×T õ®È¯ü à &BùFßuømÃ[0…¸ºQkn[´ãÕÍYÇ痣A6ùdÄlOeÄj8®÷=Ïœa‹]èt thl2¤HãE}£¶¸s´Dã{¹'SíÄ?ê-u,Šº'ä-~˜|•íÞÖ9ùäè(Ïoø G¹:8¥ <»LÎë;ZG>£ÊGôÏN ~wßЯî›å:|.×i7ål{G¾¤žyž&1p-=yà8‚d»ïÑûÇ›Ûs:ero¶“TàÑZÜ+s†eàu9‡声m£h[ϳˢbq¿.8;ÌöëŠxŽÑ¼$M¢L}•J׉ÈxžPm={[¨Kª ÆýäúÃð6êäC)}z:,Ã?ª ‰ÀŽR BQƒ¾n¤¾–­áçC|t}½<¡šòs1›×òÊL¼\_’eæ%1&ÁcÅ0:„FM\Ïñþº‚x=‚‚îe™ìáùqY Zn¸1”D f‘FEú9tjú¾û«Ð~âfV'q Ñ×fAîy¼¸hYsŒZžÝ©çhX¹óø&D;Ãká#fy¥—¦w0·Á³KR¡¥9Sýµ—&MVÂÜ-n³0 àbÍZv¼¢<è÷¾à’[h$΂jøä´Ü5•‡‡YQE=騈{"ÛjÂå¶}‹°úôSþ-}¹©y9,4/è8ÓÈ59Ó@Ë'µzl†£î$ùì–=X3F- Ž5oLõÄúX®$‡˜¶Rå´ñÄߺ’Û mlO ¹uç›Ã=rkj[–¬Jü˜;·ÔWZ.Ĭ¢ÞészÈgX«­ {öœ“iÁ9dÜÜViÖ ³uëFi‡Íä­*œ†V¹©£÷¿Ó{½ÿ­ÕàÓ ÿóêþ÷~^Ìÿþýïñêþ÷‡½ÿ=þ)î××ó®2ñëû½†ùwýx±{`l¨n‚Øß a‘ûàøÀ—™¹˜oJEyœÉO&¾2HkŽh8¢ãÂðÔÜ6/òÏvý;_zäŸáú·x¢åÕõïêú÷‡¹þ]Îíïêò—^±Ë_8¢ÖXÊõ.éb÷ðPÞïðï!_ðÞAFŸåÞòÎJÍ4+åÒê6Ø…øŸu|\ü6˜§~fâ;Y‡±=y&˜]•ÝäÑ:‘& gÃÏýñhˆ¬g˜*–ú…ÇOýâàÔàt5ÄYðæÅž¹ø±6ð“ fð&Œ`Û9g¶mR™àæq6Sì÷“êeÆ»˜yÁ ß» ÿêD«^ •'£]¡«˜Šµ°Wq‹›ú\ò˜›Ð‚—ÇÆ8›Ÿ˜Ä9wºœ:ĸìbjbàæåYH ÞÍ*•ƒÆ†2æz˜Ï†¡îˆa–r®è„!ða0 º³,Þ±gv6ˆ4xDw0ب£¦}3Q¥Xïa÷±¡€cî[±÷ÿ  ‘k¢Óÿpi- ÷†pv§Î½L°.f·o„”·<(è£Ù@Rc¸YˆTx|x‹& û[ßåb™"y> ñ“‰dý–É®Y\&3/Î#ÜxÂì2ÀÆd.0×l¡ìy8C) I+ž(¦ =ÞÅåòÏ<)Qeå6r9\·‘ËsÌäl¹\›;mI,]_1½:ê»#|÷»Ö¦«O?m|:…óŽú#Oˆ£Uc+Ì!&é6߈G3§Õ¬™³´4LZTÖš™‹ZQU9̓OŽðrÆ:‹SÝ.SxÍós‘OòÖR6`³<Á 4{T¹¼cfv¥\%1êm%|‡«»V ‘/¹g€yØ a;85e¾€+jêLE \ ŽëSÄ練|9¾…pIøy-_¸ü(¤‹î[Iw¾™Ú¥ÅS¡h):™w,/ÙýoVþ—ÇkAþ—Ú£­•ÿß}¼Xxþo´xã–É[™Ø2-ìT®Í¨³àù¸ÿ´ŽŸÇgÐPCÝ-ö”„¸+Â2æøZ7éçó)|£<Æ&”#Ø+ÌÞ2˜Ø S¤¿’#áÀdHDÛù0â›hû#–•K:»Õú×g%öè[#GCü¨a}†ŸŒÆìüg}Jäü‹õIÇ-J{'ËåÉÖÆÃJ»“õJk ”éSZ…år|úLFÛ¥qúí:S(Ÿ³ó§ t¸´)áyúÑ3 ÷)ï™í§ÆIÒ~Ÿ¢bq¢ˆû_½óÔÁÄÎ+ˆµ}W¾7©‡‘â~VÁõ[z!NØ'ËL7ûSp/L´üaýÅsÜì :Ú’Ml7»ÀÝÏñ¯³<´Š»ûr’<ÒNzù•Óã— ß›ªÑ’¯™7‚„Ã\ E¢çäv1šGô-Wlvµ²xž³uĵù{âÙmùÞ,5ÖøÙ™E"GLŒ˜‘±ÔçÉ{,äðßh³˜Ç[ÖhÖ°bùÙàF•F¶A¨„¶e”ÂçÙd:}³ éÞ§Ÿã|‹±Qt1[Šâ™†?' ß™«³aà =|g¬Š$­8É•–F£ÈâlÌò ý;•U§ýSu¨zQ%·%¨¾#¼€iÔ-•ýùCïT먊Æ5 €ïŸó»vM½}áø¦ï™\¨ü_½¦4“y{½]©ºÚ ծͪ-½* =OYèïí“m p¹böH<{oÌlBS0yö9û:bÒ̯uÌíÃêÆ¿{må«”¾¨è7VEjÂzˆÎ•Ù9æ:·÷ äÀB=§¨Õ/â€E^üþÿA¨[¸cŠxÀYºŠ#ëa=LŪXLÐŽHfEºÏ¢]FXÄd1 ¸¾ÃHÊÍ€ušÑÙvM9Œ(f8r6cWƒû‚«Y‘•’òýóå—3<óo]&ZÕƒ¦;ñò¬zÏÇz[•d‹˜ETD§Vò^óÅOà?o\ ¹¬ËÒØ~—qwäÄ?³úïL·þEªö.- `ñÊ¿©B½2° ,ÔÛú1 õÎT ªïÎU VWjU=€… ì ´…‹¶æ–Z­ù¥VsRëËa¨«šS;7U­ãvÅV_¼ß·Øj¡˜}TzyÑ{Fpð5)IA«nW40"ŸV–šï± ´4öV+àÝìòúkTRÉë`¾Dn˽7¥Ô݉º3 îF Iœ*+Ö‘ Ñ;û¤I]ë‘Q²ÿ¡»•Sÿ§ÍeÖc%m"ååÓa©/BÅÓð¾wžÃc”oÛçx}üË2ä»JçirÀOšµÙ›úÁú7²¶þÍóR Üú„û"Å…mbÎW ýì±÷lPÆYäù`/™«C3A´#ŒrR°z4õËÕ\l§ç¿?™ì-&øÉƒÅ‰í0ØþÄä;ôY±} ¢è$«}§}1Þ|GWŒØýÿùýæÿÙ®í÷ÿ;ÕÕýÿ½¼˜ïüûÿÝ¥9è]NîyÍ•C€th:ZÀ\ޱ^̽?pλ?¿÷€í;À7D…ݦªf^ÕÑþ+=b§óþçþyFÏFC4èРÅM/Ub&4qå=&®zŸÖg´_õçŒö5›z§°–ÊÅ`ºúð ÛNlšMûg »MÅ—þ€K–á}àUïì’¬Xpüpš3Â8Ý’êöÎÏNnNAE8›–‘ X¨òr„QÍ |"6ÀÀƒfúg—BÁƒþ'öC~Žÿ®rxTæ?ÿ4>¯ü¶U–¹ŸðƒJPgSPå,ëîRÞ¦þ1ºÌ¾öγ3²rŽêO…ÂqГ¸•Å)|ò%Ÿ†£/ÈaÃÑp墀¬üAVþ +•?ÈÊdNíï°¬ÅØ¸Õbl,m16nµWþ+ÿ;öÿHYr(ÓFv«–…ûÒ¾Õ´øäC¦ø¶ÖÏ×ÖÛÉ6oâmªbC<^G›7´^_¯}/Ÿ‰ëИÒÓÙ®Ž“²=OpPžï!ÒwA:€t ÒöI»‹¸^%|¢Îó!Qü2±:Q'y·Y”y›¹ÜÛ´ÙWâ³û6‹ó¯ê)ÉÁ.ÐâM¢Å6ðî£õv„q›ss® A™…ææ\ ‡Íæá\ws×EQÎuV2qÎýÁ½Ÿvv"zZ(±¹2pÄ]v"þRù®Q o*Ë_ªkTLÌ_Jõì›ˇi$³¹Ëür ßÓZ¢;1VRHoN¥º4ø†ÏÂŽ?†ó†4- n®`5 ºK°u­¥àÀRüp)®Fç%²nâ£+o±ó>Ò ŽûKBê—@ÞÑÉ‚[ “5ÖøØ·ü-vDc&WägMëÕãÏçÃè¸l‡ ¡oUåWÍ|—ÂÛyêÁ65Äæ ·-ËtRÜ]9)þw‹{):þf <Ô›‰å·‹[_‰?Y+Ëwf]­™6ͰQÓiÕt›….“¼V‚•¾<Ê•ïãù>®#ÏÞ‰ããÝ{=š-4gÿÌq‡Ü]¥¦º·WÌÿóëýú>©mïþŸ;Õ•ÿç}¼xùþŸï<ÿO$/rÔ‹¤0oZeñæÃëàü®7ºÇ¯àïCÒ0Þcó÷sº6÷ëí¯äAjÑ7muQ£ÖΤHPË¡))IuXÖQ1?P9 <9ƒÄ\ާ8Ò}tÉN¨9,ñ¾ÄãÓUõqUÀÄ’1×WõõSE s¦¹JÉ÷rœòÄYoH©N¿‰ ¹0ÒÕAÖ'“vÁ€ÎôÒ›xÏ|Øž“3Ü…ô’ް6éW–ÈÝ:X’ )„F £;· ”Ü„O‘o†ç›Tü\ÚP\ö•Ñu&ÓÀ—¢ÂçÍÉÿD.Xr;iB'±ÙÂKKuÕ<Áwy˜"˜%”<]À·ôn\K¿  æYèX/7ÖVÞ¥?wélɱñºtzŽ:`Æ<*7JÄÏäQ9/®<*W•·ð¨|Ó|ŸG陓ÙϨ°m²Ï”ƒ‡œ4ܘä·ÄOk ©]½ñÙeFUÚU qþ; ålŽm§.1N6ïõ´•#eaïTÞDÞ-’6O’_…lÊ*õ®º®ÉaÚ&W &à&’XçþmoÞ¬ª)"g”ä9øãÏÉÉý òAÛú¿À[@rÊ:Á‹IþŽ7ÆyHõF‘ŠJÅfÙ°w &ébä5æ-ø,Óª¯«òšÆu Ý5(¬_ûW=G•#ýýì,»žrzåváø¦|¡P…);ÏËêštô3rêµ4¯ÿî•O½ fèKÿ(˜” »j ÃýëF2eÌ FÒeCìu~«Jü»÷ïò¿Oÿ-ÖDÙmÆùÐðY™MaŠ ;.Wž,<¤qq05h‘Ç•tBÀëÿ>þ·Ño&\WCÍ®½³,’ HlªŒÇP+Òö“‚ptŠÒÑ¥9ˆ@PänÎ×ëtyàyyrx/¢ž*/!q5Âõpvv3†Ù|ã ÕÔpVO6¥Î¾ôÏdi !¬³ 2¨g“Kô©­ï¶ê‡Ïÿ(=è>€5º6!½|WNJè¦l%Ê’¢þp£øÇV™—6’¯Ðdtå¬eç¸è{ËÁôŒ¿!ÂÔ^ŽÆs¢’`‡ò»š½©M„Èüȼ¯=r¹3ûr•¤¹ÕQYyè9ȃ4ûªfÒÆ %•ò1F ³£¿«glé?W7ä½=¹gŒ9üJ"|¨8[3L#aAMô¹£A¾ÿÝ‘ J¹Ë¾bü2ïÔè…錅ׯ9lú3é8l ¹¥ 2¶rãÒŠ/¯ÝÛ)¾ï7Ò?(.€å› Â^šò9?äè'ý)žúõ×õö‰_·W‰_ï<ñk´“­óh½-ï„H@ˆP‹( W|¿²B Ô9ŠvR»LÔÝ?$)À’u¤ á„¥Yþ03´—{ŒmÖD¯<ÄäÝm3ì¾›'Å®Cð­I¼ôÇjžâ`Œ¹—¤?‡mû–XÅJü¨±ý°€z«E‰Ðší]úí… ¼©ó×ËÎýÁù¯”õ÷Ý}¤ý-‹T¼Åí£ f Ì 7`Æ2OH4°©G˜¹ÂG,(Ì–á#Í¿l’aI7( Ä(2%æðп¥ÇàÁ?Ããÿ‘ÿüÿO¶…=þ³ÚZßI¾˜·< ‡rž²Çð› [yÓòR ÚóóÕדíöy‹ÅZØ_Þ€¼þjÎ7¦Ë" •÷Eù`þ ÂoÏ‚ºíB-\H´¹/JÚ­:˜Š}²Y£-ÙîØò«öZ^ܯùX,˜ŒúW7CôÝ$¢Þ¾çDÔµ­9iU4ÆãÝ÷ñ8 BÉ¢“œ×Ç*dÞw¥.ž N_NÒ†N3|7 yï(åu^‚k2쯲[Gž½‹C]Ë=Æ:ô">eöYEx„”.á17¥ýî=\˜|Ýlª­³°ò”Ñ%ÑžhÅ#§÷ÀœÈw«È{~…ñã‹ÉýÆYòº'&ß&ÓŒ¼}Àa=º B·"¶º}Q&ö³‘ºö›HËýoªÙ‚^Væo컽óõ„tôCÖCµã iöôM6™’Ÿ— ‰P(ˆƒX‚;d>vÝâöžëuß]Y¸,ãéÿ%^#á‘é]ýÍl“¯šÌSòzßsuÓˆàõZƒ&çݦÄ!éB_ØuÙ½J<.î0ï9ÛP :ÌÇŸKþ+Jt•!i‚øMßr|â#~ Ö¢ïùœtwvn•gŽ(…Ž{7;¢â¹~uÑKÑ»ö“¯ï/Âeû6cK; _Eôä–l ¾Ë㮦åÕÍ`ÚG8s“c%ªÿ§Êˆ‘ðw­0uò÷Þ]GŸo/ƒg`»äþ;®R€Ÿ~c߉}3/ûK˜—ýM *œÜ#=Ìô—–Žw÷Ù%ÂM4A‰öÈ¢7gStOB…†Ñs¼xý±»±…ÓT£€ ¸Æ¤~Á]ûÞ¿s†2_˜È»pD^ ˆÚôå @ˆ±TwÓ¡=2¥2q‚Òôy·ú¼ÛdH!}P9"øó8šÆæYé$,=„Ï(¾ ‡õ8Ô8Ù$bCyWú¸&JˆôGôå0n€QR»®T°7¼;îœì)§(`|«Màš‰]IÅðãš·ï ë‡‹í@§ô¨«ÞPÉnεk“ 0°áH§ÔèK4® ã·&묜«ð˜ D.`kÓ%8;i¡¿SŸnd{AH~GÐSÅ®tÓð]v |é}Ãb1“.WgG‡Ó‘ Ý×odøËâ"\;£! öK"}¸Ð‘ÄÓmÑÛf&Šôådf2:›ŽÑ0YdQ¹8ü¦ÉM;8Å ‘;×À!¸È"䔩H;2"Ŷq)›ËM·úÞŽU„ÄPú3”ˆ_k}Xg‚5¾ö¯n®,ÕP×´ÇÁégÌ36ÆÃÍ$÷½8ÏÄN³ˆºü:ê>Ãc{‡÷œCîû½Î«< ø=I'œ$ ù|y’`Žßæ¢_cúl0törñ¡Ðs|ÞEd.OÏÔóW'íã²h–Å˲8€ÿëݽ²h¿O£¿wÔ-‹V÷¸³¿ñÿúþ^•ÕèÝ˾;HbMf‘üÓ­¿Ù+á­îRü‚êïŽþ,‹Ýç¯è™’È;èkƒƒ²D· z£›N2º°Ud"8j'=lé_%‹as{'%ϱg¦Ï’vŠ‘.1Ö{Ì1¦ Ð ·˜ÀÏwÖü&'Ïž41/œýûpén…ßn¬©äúœÌå¿ÐÙïÎö_X<í$]ÓäE½v_‰ê–x)(Ì‚l²Âz±•ó%݆Y; ¿‘/ŽñUû¸Ù>Ù+6š6:ä…{õp4D't㪚*)hc.oW/‹ëÁÍDTõ¨ “ ÷/+e¤žx°w=éFC³²XðÚt{ú!#.Îs{U„ý~›XŸ×àsþþ!ö§Gµ;2ç︪Fâï¸Ô·®Pi›nÂ_ÚBà3½Ö\‚[×Ê­ÑèZÜ §ýZ@¯¯ñ”r6FÅG&JŸ€4Á'ŠC%eý¼Ž1«(›pÔ¨‹uñÎÁîwqƒ Ÿ®-——h¯*£x{£JïmÆV>‡o¬Ëš ÝüªËšw¨tÚ¿ “È8Š)ÿdóAÔÍ gCÁƒmt~ .uàÏ5˜f~W_[Ç_ïÖ€áðÈ |ÖÁ‚ãjðë÷kJ-u1Ò‘×:ËXÀ @QžAÞoÊX©Dkhªéy6÷dð$8%-ÕrÊgÖÅCÛù9›ÈBÈ“à «õç§°{<Í€Š²ð'pœãÔì¾½%š’ÛYÂ3Ù$YÊ@ ¹©I,À¬³ds5Ïñ) œj’ž€Ü£-qC^ݘ„×»…0ðì…°zGûÀuÛ‰RÀü½ÁÀëD¾ZbØñëÆžV¸ÙÄÜÙ2 CQm£s`¡sà s`ÐOi×x´•„ø’IžÜµçÀ<2Qy¢pP1ÌĽNÔã[LMÉ“œ)ñ|hCš5~M,Wò|ScG5Þ ãF]åÚ-ó°•Øn’jõТ¢;™1$X)nƒ€mÖúA¯OM–_ªŒ­ötmIDª¸Õn‚ˆ‚]xˆ)1Øê€åkœ» Q]c³¶Ús©—´c½NV"QÙ'2VdÊAøRmM7=ÏÎÆE~31Ä=u×½&ÎoÆ‘š–øàÃÝXGÛk¢>åìÒ䢞à¥ë»h²!» bÆç˜ã·¯ÖÍW­½M©âзî’>„pQGº“ës4)j#-]]Œzý¡ƒ“0šœe-U¤:‹8zF;ÇAÀWâu'xš.©ÆžÞâê;^s­ñi"¹Ð¥ŽÈ¿7¼åÅ+qüJDü®mGU2CçkAç_zgÌÍå'kbsm²¹ÿ™÷8mÀèüY_[sçH*S(¤@¡Æ(žBµ¡Ô©5««@«r/Aá£a¥Œé®²ä$`L€>†KN²àyQEλ/Ú¢ìàÐ~Ÿ¶\ÊÓgÌ~‹‚ ™¯Æ“ލŠj<-jRbsbÙÖ1ôy2g,e¤.™PNMË„ölgÏaÕ9˜œ¥Kh©úö€§‹Z¾9ép|ÚLò:]—Þ®•}Eý-,¥âÌéé¶¿-c³ aw³ÔXéçfî˜sCDåg2±/þæ«âú´ƒJÃVu+±{²8¤i$yȽRÁQãK%ßHG;m„H ^¶¿’ýÓ¦Ò¿ŠÛaìÈc>ºŸÀëݾ!‡K¾¡¼$õkþ†"îbOÑmE°õ šà9~Ù3m)«ëÖç8WÕYj¦¶)j%â y¥Œ.¦_0Õ Lî#½ iØ1?}§Â>ûIœøÏæáQ«ù¼y,ÚxßÎàíûƹÝñ%ç+ð‹xå¶L³£a~ÙS䮕VKdL?´‹¿åÁoyö§{ìJì˜bò‰Hw䆒$|Á&(<¬&åŸV´ð„Š9x·pÐXVܸMè ÐYo1ú y< ÒÉÜ]–¨žëå®.GÔ‘Û=ÔÛî†ÖEë&Æ͘…/ôùÞL+ ÂL¡}îzÙÚc¶\ìà`Ÿþå¯`]öð.+ƒ)€Ïûƒþ)æaU´•w1 Äf>“5µÌκX|øTšõz$BØw5 Áè zu0Œ³Þ$ó|U{ÃswMÒ+m©Q®Žzl7Ci9TC'–Dá$¸øFW™.{bùZP«SÀc`²!òe7vvÔëCfzµ¼—Ååè‹å攕.d´gL3Ûx»Gîšó÷˜QšêZ.ú@™²>ª!bá’ëÞd¢$0ž¦±HúÙ%fþLÓÃt¿ŸI>&£]<ðLf-gÄLFCØ"8sFáÌ‚ƒ«„X,·"Š 0üBk=(¿ #Â¥ ܳfž’ö‰a–;µé-Ò¥ùZVð|Û´ÇNµOÚ#?û?ñÆhÊÞ ¦h½ÛBÅÕa]OhYûÇk,0ŽÁ|çÚÑE{V]Ù´º®³–'¾Ã|C÷ ]VÏ‘…Fc¼³¥±)ß #î)^8RJÌ –º}œTñ)qû(©[H-¥vÍHýŽaQ^ëúœQj& ×!1ÁPjmå— IÅA¥[dž g9? êVPb 1P· ºeäÓ"AOø^·H¼“˜òtËh'±PÀÓ-còÜÞQÛœd[$á:ÉØÂÔ”°â+… o ´±”yè9ÇÔ’ÖV6È.¸b U³m +CSO펊î>ìÆzªì?ø]Œ0·%êÄeÝŒGe ÂŒ[bV€é4*8F—\â¬xˆ®Î"­r|2$ê†ûàFêìa7¥£ü5‰"9cয›ÍíÔì]1¹¤Ä Ðy Ý4q.îž †ñ"DŒŽ Ï(|pG¦z؉ ÷|”±Ü:ëÝh=tŒ*U¨Ch°t‡ò>Œ<`~MÍÊHŠQ4ôFíù€¼ßŸH\p¡áˆH±Å(Õ{OÉT§$ )TQ9ù 8œjÇ0ânPÆ#”,$á_ó…¸|SyWÍRYBP`x@1+$ðVÑ€b™sǾسbç ³"o(¤HäDp©ç@×\1Ð$jÇCyg}Nl¬·[¡t®_âØ@é~ʲAÄß_Eq–EÃ:Z`É2E÷Òný ¼>È{Ç ŸÀ3DÇÖȤ&Ué<ûj¢ˆ‰¡4_:3`Ù]á1¹ÑœÝ©‡x|Cc×Í5S{ ÜwÝÏdy ž–ߺpš}B¢Š\^(êšÍûå§kÖÄêÜŠ}]Çã.ö$C6IZ†‘¯¹ç/ž|ÛΆ£ºègƒs]øZá…¼øåx zíCØFL1ºy2ý8t*túŽ÷ÑáÕÎ~©Í4Ñ{Z°›û‘®£åC™ük<- Éñiл:»,éPKR1Ú5ñË‹›Þ¸g¢ìü{]=Í‹È/û]Êð³lŒÄÃÊ`0'(W-ÔêVû >€çU¿c˜}Uå;`øÆ 2¾%x·±-ýòP€UH|@§O%×ßÃ>Ñ0K2HÎ-í[0Ÿ²ÛŽžãÏæS±§)«ÄÑ̰É{ko¬ 8-J \AÆ Þ·î)| vª€_>žÙdÛz[†’Í(&0€ªÄŽœÿ÷ÿ©Tÿß2HD‘?¢wk´úµÜˆÝ°fÓõ¸ÏUè¤)•›÷I´•MÆŠu×ëeéù×åFb†w"Α0˜:Ƀ’B¥¼?±éäæŠK±±ßÔGܪ–DG‹üXÄ[©ò‘šW}üˆz! J¨[#Úê¿NÇ=}[À¥#"û4mâ¹}:¡γY'4ÐywlÅv‰;º¿߯mèslØÞ ‰>0ÀP’¥t×LÍš±Ä:Z€:Z$t‚Z€:0Åtsqx‘`<4íD‡Âe(Ͼ“ð¿n2’Ô%y;¿½Æ©ø 6Œ.Ù˜/Ô”AÜÒâ16ëÓQô\c ,s«+ ;X+‰6,¼ÊB:̧åÐMÿ]i9|¥å¬´œï¢å8‹w¥êܹªSª³'ö×µ5¥ô|Uñ&z·s}kôKŠò`‡!'‘@srâKwjUi5*˜Êï¥U)gŒ¸ÇõT0–FËkƒT`0¼£`›¬©'áØ*ìŸðYõ¾9Ôš¼H„,KFëÄÞL$u÷ôpŽ«'9Ì`X½Á‡ÑÚ•ÍD`URŠöEØ[­• –üˆ*}YžäÊuFÃ7•Ì€Úʦ{ÜDãöà›¼"B÷'V(Úšl™Þ³×Î6ÊF6¶ _gã O|æ¦hQ<'5†VýŸ­f»óîŸÍãÎÞþ?ÉÓ~M<o/3b"À@:™”R.ßZ^DÐ9¨öÝe<ŸÊDJnKRU ¯ö(íŠd¬Ôjõ8X¿r›zun?Uê¬ÈSits:È*Æžmõ®y!Ø ù%ä¾Éù%Hç4q”‹¡ô^‹kÑþ€õÁlø¹? ©w}k†¥nGã©dê8ÍéL,Ñ]¦½†`óÈÆŸ%ƒ\ÜÐ/0ÌZ.CüÑÙëþA,QC–8 böT8¯Û¿C…*Z²_'Y„Elö¨­Hý9{J€1äŠÙñªoj™cÝÞ¤¿-0gçêŸnýO˜çQiXz¸ÿ ý€˜xQ;ÍÎ.‡ýax¤•€ñ¢wãC 3èSr òBÈzžxyö¬,ˆžÂbø'EÊZþé//%IéÂTŒ)Šô wËÏß6»{Ä ÛÈ ûƒÞ­Yp´·v;u;"¡Ø›N³«kšC`€srM—Û1­"¾±ÉQ—â§Ø`ëµ ²ôHÞ´»€¤NW&ÁÓÇ¢ƒI–’W¢¤waç™õ³`ÃÃP,šÆPÈdÈi »nÃM>™ýžÚ3ª!@…s;b˜?š?™?™N_µØñ[ÌΦ¯š>Ž4•L_µý5l;+—¾&r@åÙ©ôuÛíø ÈɤK¤ÿ.’I‘Dú6/ͤ¯¬›¾ Ù}•L¯o§’ˆ/ÂÖZGe¤š^>‘—åð–pÂ7>ÍÓØˆÑT†ÃDùd˜ F>š¹MÓHnϤ:Ž.D̓ÍÞïZ ßòxYÞÍÐ5R¯?¸[\¬-ïv—)Æ´¹ÒDZ8K.Î 2㜜Xˆ çÃ.ÝnN,È}1N/Æz3•`:ÛcöF&ZUùUëÚ=Ôr}©[N×ÊÜ‡× C’åø™xÐ| ?¨ËOø8ZlÑÐiUú6ºT²]et„Yýt޶qD–ðæölæŠgT;’N¶÷Æ0êŽêj-F]kïYz™¡´6ð ®Î§_<,¡vdRIR}»Eɶñ€Ã•ùuÏIç)sr;¯¡“êNå¸#m¯ìr¤ŸÆÎƒãäÏä7ÖŸ^ªWú“çÆÓT6¢”±¨ìh²As[ ü­ÞI›—JŽYUÖ´ç”Ìa–òòçhaÂCQÈê¤R“ùC/YªZQÒwOßH¾¯øA©¾þÜ/cŒFºkDvh# /&eÓ)…kif*ÄJ•…3ÆYù#d`‡X^ÿ[º÷6LoOÓï][q³½) h?ml:]ÑbÈ“]`+Á´ÏrWX Á̳Ïnéñj ¬4AßÇúÛvlWòŒš2Hùfœ[¨k3ô | ®ëñQ1¹Jâr”‡¬ðô2®ß™ º’‘¹@Ò.Jvyº¹o™ÃtoÎ&«œ¢çaf© ÜJóõït÷Zu…pB“ŒˆÏ Ùt¼´SJz’çñŸ¥§å—kìU­üÕ#›¹t•# K—gãåâ§°¢>œÊÀ&ç[Ì«Àö%ŸŽ”O (A%Žo å7Œn&ßܬãtÎ`%L H»Ö³ºÞ)èÈ?Q޼«>|†îA#Ñû<êŸ øDew $tekDªB,c‡蠳?êΕµëŸ¢ X·LÏZŸ£·:oÄáÖkËþœƒ51WM„ݵ#bËc‰Û¼¨öG8sÆ6'â¶L™ØaÀE7Á`Uι æÛì‚"o,p´únÛà<Ǿ™M nƒ³lÊv¿‡ñÜ K[g¡´À€ãýÙÛëmh9s/ßTu‹½4½&̦8çP ï¦ùÛi‘”ú¦lcnNýŸéæÿŸ|^nöÿYùÿ«Û?âüÿOª;[j˜ÿ¿öøÉ*ÿÿ}¼˜Ýüÿ]»¢¨kaã‡ÊçœW+´™Ôñçã>…eEóìëhîXúøÂ)ã•„÷þ±íÿ8wRx¥rÏÈäá±·ÕùYviú^(y»68ç'l·3´[¹× ø§•ÚÜq ¥ùWÎæ^T#e2g¹é´e7Tå$rƒ”a“¬Ë´c2ñiø•ÍÒÏEñs’~*!­DÐuâÎëþç•x—£sìF¥ë”¾øu8vhÌž‰Ànþa:Î2¥ø²³Íê£ >Ú’¶‚G[¬±ˆæÿ\“‰)¡e¼Â8"¦DC»ö§2m‰RºÒÄX)YÕ@9(m×MþN Ý)¥¦ü¾^EjUé‰þY3P‹Éf"Uj]ºy“¡YÑ æ\nëfªMÊt=»r6œ㞯q‘,ÙbîDÙb¾\Ùùù—éuìDúlm§N¶S5ÛRY›óS6G:_$o3½ÜÄ|HÒf7có|­ÄÍôòr,ΗÇÙ$Â\Éœíöó§C¶“)§@Mëlƒq“T/”ÛyÁ!Jn–g=¥”ø²¯Ã¬8Ù—:~®dgä¦MN$L¶Ì̜ʚlq² ç§°ÖKpá<Ö:{²——˜˜±\0‡rÙlhôŠfRæh9Ô>­aì›4Œ1ï­ÉïÀùD_¨6_pk³p’‘Ò»¥OåOr«ãmÇAÅÙv|!àÀ&ÿªT×0¼Ï †Ž¢*>É-®’Dѯ±»‹àŸÂøS"Ý ýÅíò‘ÞH§0ݨúò‘FLŸB«2ýt0Í!/óŸ›ÿw>±î¦ÖbÀHv­‡ååvÇeˆ”J¥›Ÿ^¸è:Mçãgç¡ÞrVˤۯô ‡Lª7L$ûE±¤' 2LQƒV¹³=ü0½Ä‘R[ÕîdºÅ)Áà÷St ”‰ z àm úyI”õvC§0i7T°ŸÂ•F¬£xáfrñÓ´óâ¸àŸÑu'gušÊâ_7ç·èM& *žÿÎ^|üsT æüU…a#gš:“S$ ìJLÔKù0zv#'шÀ°3@8›;±ª‡ó^ƥ̺“¸ì?§6ƒYqÒB†JOÜHiû{ vîß&ÖYP¸³ `ì–ú˜`m¾Xg~åE<§”'†˜_±€h÷”zfÒÞ>Ò‹L„$Åb6^ŸìuþLŸÒ[o^Á±Ý˜3”eþøf«¾×~£L‘ÉHùX6EcxÉ—eÙײd÷å„ÿ,´BŽÏsŬðìÁ%)z÷^oVª–Ê’<¥Ó®ÒqÇæGè”gsÚz¶k³nû(l;Ë?9Ç·™( ­«±˜äIizׯ•£ÞÁ–q䦀נåt/"~°Õ=“kƒ†ú€¹ûå&‡[ÿónu¸yº ö}½öÉ£ 5™1ÖhiíÀ3»ûFD³=oV=)qòç¹¾Ú.Љ3ØçöÀ¬7Sz?r‰k*B—=»pΤ[ F×7GÕ×ÙºHÅ;¾ŒûdþkpŽ‚wîx´^užY[[¬£s™Û™wGÝ7?êÍQìþgÉåŸgÜÿÔo×jþýÏüZÝÿÜÃK./ïþö¬?TN­ß6ðµEf¤òó>yŲo¬-ÒP"îÅ?ñe’!nŽ’—.0ìÝ.ñó•ÊÁ¦è/±IÉ»Æ*Û¥…ç¹ÓzÇÉӦы#w·3µ,•er®+°;¿üÚ³“D3ÎÚÝR;8ý”ªÑ-îRæékuî ÎJÇv2cã¾æ|:ƒ¢L ^Ý´K—µ¥Åž{:ťܣ©åçN}®œã>O¼ÒKºÕK¹ØEîö˜þ5¢?f»•'ýg[ò|Ý›ráñ[ûJºÆe´"J6Å«©._g¦Å¿LÄIUãŒ9 Ej56Ũü¸˜hfkYKÊÔ|Rª\µ6ªv®4òF_zcÌ/hìj'áªP0]¦)¨.GÑÜöNš|YX¸éCÄîqÇ‹ü;té[”ŽÖKVÞ ¢¤2§Çâž,y¡‹Ž4]ºhMhÝ“Wì9·X”£ç9 /PîXž©i XnÍõTKO9ô8Aµa®vìJšZ?Rzh…a3ž±Ãþôæ\sà:™¼uùgÐ]J4® ã·t$#¤ª»ç³H¸60„µéñ69¡¯NŸ¼zžOõ$Ž@ÞF °Â†\„¬7øÒû†b2@YæˆÕϰ}xËÈ#SruY\´X©nŠUµ»`½n»uºtw¡¢ÝMW;–ÂÛëí5×çΑNÆý®Ì‘ݶj‚r<ñl@3œòVžx3=ñ*uòûï‘¨Š¹Õ©’&·pðS¯ÐÑϯlbß$$Á¤üâuN’€ÒõOâUO¬9}í)c; B8œˆ #Õ—$"æNx±7dÓ|ošP]’`ŒJãè1m,‹ Ÿ ®Ä¥l’x'gÌÙYï&, ið +.º´ô¾ ìÀò6‚ïÀò0 .@^ ÙÈ=V…déâ‡Ä$#¥~!ÐÉÍÜòïÊósŽêòÛÙ…/æÉzŸt1-‹ö+Ü0äsù®¦I¼)][›;ôD™]>7Ëcµì7ËEaÖVýùÑŸV6{ è/ÿ<[™Y„Î̾%”tWMkAßW )ôw• ÷çòw]ЖÁXŽ!EÝeçô•í^»@æà[¥¾Mîà[%Žd<{UsPW½9œáå«3—¯v³uºµ ã2·F¼€—âàK=kA z^º¼;ó÷%b^†¿oŠŒÖIâ6ÎÀÂäÞ©k»Ý†>„öÈNÄž·aÌØB¼£ÓPÓw¬üUH vÓ?ʹxAB žÆf)ŠúÌãQ=´Ü™ôM®ÆÈOÜú ù ·5¾€§Œ›;vá´¯Ò3ÔBø³aãçY»&¶›¶Ã,öoƒ–שòËf'Ò mmÔ±Û…ò?õðÃR½ý˜ßÌ,gûn$îý“ã$£¬gWá\€N’tRnYb3Aà ýlãiz±R‰í u‘8ÓÄÏ.ŽW¬†dà[†lè¤X0Í¥†ÑÓvgíDFøCGxXv~²d]‰JßÉ]éØtG^fž€‚M8ѤnbÑXþi›/ÞD¨“[Åœ?ì„+Ñ[·ë…BPTü‰¹`Š‚"è¢I—Ê.ƒÞ;½4)øÂUïkÿêæ*]ZÝb`GÚŒ¯)GÞÏòî¾g(!«iÕÕƒUMZæ­}UÊ®'krà«"oÑ”êêú5=×ÄÍPÞØÊ/U«d*ú<…ãí*—}]Œû¬‡£V‘ÎÅHÙgÀ08M(ǯ¡ÈÛ6vF²î6<¶êe×SrW´ˆu8ŠÏ 0AýAÿtl_ùðc“ßÅ$(ˆ­=ŽÈ(@Õ¯Qüѽ|«$ †ãâ0i2¬c…ÂPÌBÏcoòQÄšìst3ñ†s†Å²i‰ h“Ó. óôJ4å4DHÚOø~çK†wxw„—Õ|Qs6èõ¯èôõ!©O„ŸŠŠ~ò˜¤Øð¼qÈÑ@¿P¼bdºÍèO'ÙàB ÍšQ7ôJD¢¯Dñ,áÇ`íÁA:”@o#¼k#ŒØÑÃUŒi"¯ŸZ¦J ß][—ÉỬ ­÷‡ŸKòƒ5 ÓVÏ5tÛ·a‡f*èÁÂáô:3±nJ8ÊQNé8ýý oÒdXRÙvÛV±ãÓlˆêI8„ÖW 3q5/Ö ÇBäFdZ'€3 ¾IßîÞ„ºY„Õ¥ÞÅ4ûˆÛ“¹F.-ÆÖµôà7ùðÏþ&(¸já8 B©ù‹FÀ™VÍø\p”v]ïŒÒS€ô½5S¡PXœ’—ŽvÓqnjÓX0ÚMPpÚÒÞàõhS4¾é»%¹wK%ѯٻf\@Sðš]¤A€dÏMŽM=Và×€Óc7*{ îã7Ñ­Û{®4ãlÒ?¿ DÝnªç ‹;€¦t–9‹clãG§»²âKOI9‹£ÞáЀ/°2%’\ë¬éÒŸò|HoŸqÿChbO3˜ ]&ÃîÙ åDû‰ à”‡«L*¨›kx܆NnXÌI:ÈòÑä«ÃN,Zã†ÉD5Úòq—£/^ð£ÞyW€Ã©³Ô%óp׬SáݬYg‰Ê\èCkmCðžªv®)¤’¾C0¶€ßŒÏ2vDe}ˆÜ‡Œo«3b&£!ììPÉù¢$™£…E%)}Ž.PYvO.IÃ9 9ƒdò 2L‡¸(·¤Åã.M¬¸yÁ¬±¾*ÌtºÆ5"M"ß×’>€< =¡v,MbqdÒ=ƒ`Ï…#=Mû½d{g8g2XO&r =+²TÌŠë<¾MHg*šSÌ èt{]$–³x§XZÎäãÛÆr.Ʃιs¤FN·.šÙËó|‹„È·Ë…°h᥵«‘[k Å{CÑBÇ<ø§z0q-ÐøÝÒ¢òÂØ hQév±œ öæµ[(sŸÚ¨B{-žGSy›V·î‰]Õ& „udô&ì4<ú°f]mã{Çt!»ÖV)÷FÉÖfó‚ì ÌC:¾^±ïc¼,E””aênHµk ±LúÝOY6+*É·E1k,Ðã‚vw}cÀ}G£õÕùÞŽÙ÷õyÏd»y~¸[*¸Ms Í5É)|åp*c’KÍÊ$´M’?º‡ççôJz-Àyc«ð’Þ¨gê®ÞšPr—™kBÉ[C|fz¹iY¦2ë€9æšùSµšªƒ:H”êké÷É_Œü¬'z§´"2µ½ý"¡×¸¼Krgóê6C3¥Us‘dí;L¿¹åµ['ÞÉQrTÉ^|k†ÁÎÔ®z=¢ðv¹ªúÒoƒ 'fVõŠ~W¶²>JFÇ£@±·›¡Þbp¼ž#)ÛÖåàÖßQÐýýY[?=3±9±î·lËIOuq/žnáÿ¼H`¿%2ŒŒX,%€@*– '€6áÎN l—¶„¨nk ç°©9䤓fxš€ÍLøõôÛ5ð³öC]š‘¾œe®g˜uvÜ¿ü{L·ÑÜÓ_¶È æaßVEK Þ¤43÷‡”W€¯ÝDj>÷ÆèTF „GAúÃ\šhš^Y^eõ'ì'ÄISÙeb¼AÚñÖê".T\~|êü@ þó#œ6O'%ÊRúˆ‘ìä.øÃÍîžy¯àL©áx†èx×0©9{LöÕ$%!†Ò|éÌ€uå-1à <ô¨¹RÑÒÍ5S{ ÜwÝÇ{„jÁsLˆö®u¬S&jHQ×±±_~ºfMìD«ùZFzÜåždÈ&)àOË0ò5W jO$½·à¨@ÿœOÔ¬B+¬Ã!~9ùð!h#¦hB˜L˜½€¾cul8Ác[?HüÂ4I§* Ôš©ªdïC™ük<- Ñ”p>è]]–tdŠ%©íšøå…ö*üÅ^WOóü”ý.eJ™³lŒÄNÀ} åªÒ€ª[a*™õ‘5·´oÁx|Ên;Ú•?›OÅž¦¬Gs0Ã&ï­½±ºÂ]”¸‚Œ[btfìÌC¿OÔ_6ÙW!Š­C;ƒ‚˜¨Š‡¼}•Þÿßÿ§RýË !EþˆÞ­Ñfˆ.N»]CW×ã>àƒN|‘ÚÜûàÒº•MÅ{˜’îz]9 w¹ÑDîI£/œAË6©ÓA–ôbE½\)±ØtrsE2î=;O n_‰V€[Õ²³èhQ’x+OtZ¨>~D½¸“˲³ÒVÿu:î)¨w£|S£›ø_nŸN(ólÖ tÞ[±]bÇŽîïÅ÷kú¶7C¢ }µ Q¹›®k…£h£D\(¨èSbD0ùé/Œ‡'£èP8éÊÙ7sÇ-]ôEIºÆm¯q¾’5Ç)Ä]4²1;(©ƒ§¥Åc€§ØV٥Ю¦S`Mµººƒµ’hÛ ÇÝ¿–C±w¥åð•–³Òr¾‹–ã,Þ•ªsçªNIzå|]Ó¥o¿ªð ½ÛI[EŠò`‡Á?BÍ)¬ ¡»µª´Lå÷Òª”skÜ€ã^<ƒµåÞ‹Þ×  ï(›­½MyA!áØ¿´ ey«µQåóMiØ™È)Yoi/®õûç)°×?éZF^að'HyMNj æJNQ„ÔŠ/#Áßò–Ûó·ÍîqÂ6rÂþ ÷AïÕeªBνŽ8”r:Í®®i΃hJ¾JËQ@âçBŽ&¬˜ûB³ `Ò÷Ã$µ¤2-e L²”%…¸{°±8ϬŸ0Ép¡cþÎzÛÀX,I¬('–’ÄŠ®›%VCY×ßÝlçV;É«Q· Ù(ŬuÑ¿@ŽÙˆ-bb™<ö¤D ðǼ)dóªÃk'Öhô$T ãrfžØœ|° hfXÌnôò©Kÿ˜¡E¼œnw>kNã K%†èMÅ,ˆ^“0%/mg+¸(ü% ˆ®JÓlÝ“›ÐXÀÔ¸yƒ¸¢Êâ¯á+¤?Û‚`k9júâ´³0”þJúºÉ?lð¹ŒÃÑ&¥9'¾¾²|IÃu€VîÆËrU¡ë Úƒ¹³¶Ð8dHº5g,ÉÜ…Ægâ‘JU’ûL ÓÅÀµs8Äèáÿî¡Å¿ªr@´o9©â±šƒ"Ãë,|‘ ”6ê°ã’Ìe÷~5= ³e~·ŒÀe™eø‘Ùiéiæ2NÌOEr±ì7ÛõÖ?ÛC²›5Ëòƒç‡GêƒýNC aˆ"瀰äçi(V‡GÍ7ÿ|ÑyõöøÝ :bun€>ê´3Jÿ²º£iíJ¢î8ã„Yc…·óY´€‡Ÿ”…é¯9˜ÚDG»eâç½×'Í–ÊûŒ™±àƒôäÀþ ß—ÅË4Öëï€Wš/Ú'‡eÑ=l¶ñ'~ÖåÌAÝÃ|A:/?t:q³•°ùŸÝ?eZ¢äpí¤ÒùI£ °L ç€6¹Ÿ~ ùszºuöèVýu÷O•%šÞwŸ·j*t,ãóy£Ëæ+:àdòhÍóe†&¾ Ø30›pZRÎæØí]dÏp&5Ï1§Ás(è*î’X™,³›¯:›²S?O­å¯k>¤…nî×[Ý==µðwøŒƒL×õàOk”í]+%«‰KÐûKþJjhúÆÇòA“Y ÐYV>âS¾Õ‚¹7èÿ/ÃK3s-}e~ÚÙéõQLêSVén†Óþ „ž“œ§ÏúÀ^6KJ®ó…ËTÓþÊ m=H÷ôŸ•+<œÄ\ ÞJqõкôP›'/ÕñoÑÅØÜ×0#‰¹qœd$,¼oêïb¹–w_áÍÑKV&\`ü,©=®¯y9½ |¢¨Üõ“ÐzÁöpÜlŸì9Í‘ªÕ¤ÖEFf¦ºå|c1Ý‹IüäV"ÈÛ5‰Þ5§r€fK÷èÎ Ñè©òY/u¹ÿ>?1»| @Bz(µ8Q $§÷íÍ­“¯Ⱦválo~"l/2NÆôL¼¤[Ž›$«:ë/¥0=xWëw¬ê¼¦´ ƒI†OiÖ4QTD„IÚýºûgTxwùvöÖœRF´K‘u‘#¥Ÿ“š’Âu¶’IÉ©sÓRòWÓ,©´$²äÇÜëcÓw‡Iñ­sá4,O¶¬ÌøÁ˜áuD:L¨YÁSæ=÷'‘¦> q2SùãÞðSmg}4lFômHIÝP·× ”}Ì(iúr.Wk^B>ù}î^°NÀ 1¢6ƒ'† HdƒpÆ–›Ôß®~áõŸ!§ÿ­Sú÷§Ñ„þïÔH¤|›'™v:m6'õO'Ŷ¡¸ù±çË‚Í"VÛ¶=¾‹«z¶œ® õæÛÛ?ó’ü¯²üßÅ+Ìÿ?=¯-7ýÿŒüÿÕ'µÇ2ÿÿ“êÎÖ£æÿ߆¯WùÿïáÅ+ÊÍÿ¼[‹(t söÊâ¸~⊓ÿ=ž_ûöÆ’¿Nø®¬`vÖúǶí~®”î…³¸Ç¬pÉÔê³r¥ïÊÌå{ò7²I-nåwî(xb`CÃüÁÊd@™ý„b”¸S ?T B>:Çäêéxz9âì(“þU臣Sг&úç©xý@&ßx ª„Ê$ädyô.S(ý‹ÈKTÈ<d+œêÜe°™&3…yêa„hS£,vŽ¿:¥ÍÁKîxv4õL Ÿi9Ðð©üTxô:¾t3Ý%sÜ-)§½Ü¤ s¦˜³ 1GÀp¾[ŸËJü|FÎz:$O"~–;ªþUŸö+œ„•0“ˆ|‚êü1®ˆÂÔa½Î"ùd—LÕêSS©ü½© ”qhºQÕTíoÔà1ªÒB‡oa©ShVŠ¦Ç´[ͤ¨©k¸ÏÁ€£°ÌÙýÍ €C³.zuÒ* í{ˆ®62žÔ‘>OEüåÈ ˆZâ~eðïs þmÿáÕT“y¯5 _J B&(.J Âçj%„`A‰CÀaZPâ$”4¦„²fó‡Ç G߃}'¹åH-äsápKNSe¿ 7Hn=Wiçþ0œu{7¼Å<ñ^µ÷ÊÒïzK™Ö£ž^Æo«l;çmåxý LÕH<5ú};G¯“£#ØÈøï˜é!Ç”Ð:ú£NFƒæR|¡êï¤CSgÿù/¾a7¦šrošÓ9l?¯ÝWÇi •g>br?nUüLÒ©&åxE³lî5µ7‹ñüTî.ü¤]NÝiÒšËf†[Kà3‡Šöo±ï°æ¼P?Þ­¿O—[õMÿì“J[Èõh2A§*÷š3œ»/}`bB‡w™2§Y¦'>®2YÊÇàÉ®(èíÙ†èEåã½{ÑTWl×€Óšƒ«Á ‡ýË>VŠq´¥Äõ;¬_˜†2Úágs£JuiFå›*‹ ßiž|NÐ ƒÔµÄ ¶=_Ü1ë~}=øÆÃ£åT ]»±¶¢ŒÊ_»sé¬W÷â«xúL®NÄ#]÷¢¯JÙ‰w¢.ãߨ•Õd’XwpÁhWIo ‚ÜU÷~ÝÃ÷ âû™åa ðeÌK_¬Æ0çÏb ŒÇå†;Ï:"¸Žâ¯$Ñ%Ä\DCO'+Jwæ Þ6"üÀž§’¡¶!˜õlºƒ¯ÁR9©ã˜ë0fdí/à/J;NLJ§fMJ…¶ô8¶8Yy3‚V„™Æ\ï.χHàÑ_7¨ÓŸj}Ø‘ýž—íÊð»’…^d»ª¨9Ì@"Ï­¸8²m–qqTcqD¢»"î^©SFž jW¤("šIQDþkÍí1òãjÎ\Î’Vö]I+:Ü–ùˆç'‰À-$Ö7}<{:¬²]Äd‘VJ-›)Y‚å­ g>”pÓü{bL ¤1±1K`†cŽÓbÎèŒ!~GYGXki—BºØ¬j&H‰?îÅÅŸ­Ì|µ´àk+HmZþ¾¢Ço“Ž 4®ü>îðñÿ¸¸_ÿí'ªOÿíG+ÿûxñÊòü?öcþìt·rýˆu…ukòëÚ[Þ!sø€ì×”{â$’ct‘ãr£jMb»ÆÍðì²rл¹¸ê #åé¡ñåȪ+M¥†±¾Ôþ¦¾”cù¾eÉàh½`èQ^Ó6”Aˆ'©JÂ(RL¸pa+ï6 I_eçB±¶º½TY/ÊT½)ÖÊ>gQV½»ò“YùɬüdîÄO&ê)ƒ°ç¨¸G‰°œÞsÊîѽ5ûeDR§­Ý“;„®¬7GA=zí-Pæ•&s\’¼²w”ø£HÁ;F¬ºÜŒªw ný»‚•ïl^¼ùÊß9cIט˭ç È)‡—"i¬Þ,ªÎU ¯°¿Å,w ËÛâ¯ÈOÅS ÊFdùT¶dŽTDüÊKH”NŠ~…ùŠ(aÿ3ç¾:eŒ8áÖSïr¹œŽ¬àBιX`SðDê+Íç{²õ[¥ö[e뱨€Èœž]’9‹»nŒN·çÀRÊâ°7½Ä,Ú¢ÃöÄ`³¶µC#ln?©YX£1.†ênýà  gûÆÐ®aÀ c]çO¿yMK¹m×8¦n·Ùm×Û%~jÍ1×mU+ðÿo8²FoÂî\cêLæŒS]¾Ü½ëKÔÄÆ(CÁ*íVcÑÍÆŸ©¸3%JÊçAÀeÓþ4ƒMÃ<Š!e@ÝìzºYvÏ+ðþ`8úúÙ¾êÒ½è,Ü  eQL#w(Zº·LZªVðùQi¸¶~‚?àø°)Ö@HœÀ?zK!\ëå$PÉ1‘ÜDàóëØ@åC…•‘ÁSë‘}“”Ñ Ñf <{M{I7Çš¥ƒ÷ëÊÒ½•{J\ýÆåŽZ#‰¬uhPµž&ì¦p¡ÊeJ¹Èˆœè¦ÖùÂ?T|-ë´Qœ…éÂõåaìJP0TÖTÑ’=ã¸uòlo¥£'GÿøŒ?Ð*†^Ÿ*jºOx¿¢çÈfÖ´Ÿóå~J?ŠO +Ÿù‚] õµä¤ ßÐX”0LkäªòHr¾€®{ר”jåÄi.6®TÉîÏ€´OÒŒNkr—Mz€ ­#§» Z´ ªkë-üa–¼×A+o´œuÐ:ë *×ÁðÇ_-wzýý­N® üSEm[Ñu žK®ƒÏÂZÀè•ÉF5¶ª¼ô /‡Ot]á] .ñ–~ ] ƒNñ¢õ·ïìbµ´dgØ{Í—Ewïͱv‰Â§1#—ì€[`OT'¡±nyNYeÑ$÷¡—ð?ý* ª5Gð¯{¼w”c⓼ŸbE°Š\XÅÄQ5ü«uòn{:¯ÞRC ×ÛüwXÅŸGÕÈÀqÒ*Ke,‡ »˜ÇAÝÄ$ݵø1 .»âY»atM{[?bµµyÝÂ`~ÊìÖ}݉ù™-î–L˵ò1ï°ý¹½Ãš:E–¼rFëÌÍ„*ž]ŽF”žšS(Hû„Cd¥ÉžX•VŸ­z¿xýÜè–ð¾¥6e}²I€gS9€`…KÄHklp…Ǽ§4á2ÊoèòÄ‹÷'ë9H“‡OÚDÚHª%ÎZÅ2¬hÿ¯ƒ˜÷—ìÔŒ–·­7!V,J7s³oy7ôb9{Ó«¤—*,Ì¥:¥¹'Ú½öSÊŒGAÖÈ‚ÍÂ%ŸòUù[¨QN›ƒ#÷£€$”±ß|±·I‚b]5áT4Ùl\&9$yÖâÔÐ?ÃÇE„Naüzi±)3ÛlNõaÆ¥LTÌH\Ö/fó«…Ê3fÏ ‹=žf<üiû¦xPdŸ>»¾d*ÓDÃwÉÕââ&‘ÂfÙÆq¿I!j©T.…ÝK=&΋ç׋Á;ÎKë%µ€ª¾‹…_‹²˜ˆr™°özwÔ ¾»$nb¡”?`87HG FÓè¡ÎHÀKÞÌxoY&fÂlеËD>r» -ì@T$¤ Q ¤ÕÁêYÉ9jæ‚g!/À"—žøšÜœª+=´Ù”ùVÄ–ôv}ñ²6­ãõ‡or]˜eûƒŠqp´áA¡ØɘôÙIÄÅÏ1{¥ÑAÎOÝ%„ý•|ðˆQŽ=(¿B‡¸Øò§ià ª––[ ïî‘'¬o-Œ’©'”òØÎžðò|´ùÁ0@dÖ£¬&™0”Vd3yª´§O 㾬`6 ¿e“Ù¶±Uø„tA‘+}%£ËHØæH.’þžUéïI:º4†ÒÏ5²¸ù­µ ¨ÆŠLéŠ(¯WÒçøwÄ5´S*k²ÖO âÏŽ:úT:ž:¨|µb®®]tô¤ÑYû"¢Lv¿$·ùÄR½ETt{žÕE1’[Mx¤„äCÂÓįÑIí„?¡qày%@³7ά+Iøœ>6ì\ýb—ZÀ.5b—Ú v‰dÝûðAdR­ʬ÷‡ŸKA8ßDøMŸ8jf•Ý mj¦<Ú­9ÏTªthÞ­ÛÁ«ÊgY*¥ž;Ö‹¡„mÖ¡t’Ž÷O8KXÑQ¼Ûœ=7Ïš Ù „šÔ0Wbµ¶Î]£Ê'‡U‘ÇÔ>ÕÚ´­ÕÖõó Jª­‰äx™‹¡P±,/-ßlü»"ÿ†þÖ‘JÞVè"ÄÖqìØ¨¶å?MˆlÃx©v™·véÙ §=žbÿ'OOÉÿ0>¿×üµÚNõ‘Ÿÿa§V[帗”nþ‡În~ý.Ô ëý¥3BÈñÞKMu±˜·nHg·XÝ÷+ ±r‘Ï_<!¼^_?¾› "±Lò2Âä6øÝkä-ZHÿòY Úx@hÿ•²ÈýY Ü ]UûXUûXUû ø«jÿQÕ>¨¸(¢öÀa$›g{äj·¤™­»¤ª*þŠW¬üÀçHÞF×XÃsÀêbv‰Õ fO09R@þ‘vÃ}¬r‹}Þ\a\/)K˜{@?Þ^o7T r»!M¸Îò•s´°Œi²¾‡Í’a˜ î M_ñ¯› ¦ £ƒ'ÐÁΗž¤±; a‹ƒ)?»ôTº1Õ9ö«†MÉÉ‘¤uåôEw®BÕÓ aGjL ŠÉáˆk¬:‚N =¼àÉT§4V(åëšÜp 4G•ýÅdþ6W>U-™U-™U-™U-™Êª–Ì':˜‘âÀËiš€Š§h½>ÙëüY.’v€­OÍ·]J>€7ñ­]e|;xuÔU!m*j7›˜uù]ßùãð[õãή¬sP–É™—‹Þ%9xÎ_r&FÔV}¯ý&=H•Å€‹asïµb˜](úUÔ½×›s1üó& ÐmiT^ncÏÃNAùÍ\ºØEžÛdp™m(£8ÅßÐ?ûJ”¥`Þ|Ì[¾ïâGf _0c¡4#c‚&rœœK(¾cS::äê¬î$ÕÑ5Q' yÛµZRG üew _3Ã_ðÜG„³1 N–YîA&ô…¯Lv߳ѹuô) zå4:ÖàKïÛ4¸áù€U·ášË>ÚÇÏqжgò‘=‰4âw9þ8f˜03æhÈ’Ã,œ­F7.)#†©ƒ(rì®<(z½D~þÒae‰š^²ø`Êe¤=š*4 ‚Hô‰9E¶OQO°¥>§£2ŸA@¢ò]0•JÅŠ9YG㳌!_øܹÂÙ›dSJqÍ,çÓDH @SÈçˇzßxäÐ.kIŒÚÚmæh‚s*t–¿?ÿÞoã4pŸ¦Wã+sñúY–áã¹ô·©>ýô‰ ÖjrmsâqgVÈC´ÍžC¢]i¿Ûh7d¼ ¾æ°¨ §Âðõ†Œ=¦ßxÔåT9åÔÚßžV(.%¸ü"ë1þá3ªµÜ¾Þ¬¿Å")o×ßø^}¦>ÊVXÚ#“îRSÖ)•{SJD‘ê²\¾Ü6îÀ÷|týͽ½°ìô=Ü †XHe€„"èÇéÉ]o\@]±¨¦Êò¦ïë,Ø_ÇúRlyÀÚê%=ŒOT•O‘íMTKÆJL2_:Ò%°©A…Û Ú+Ñx‡«Yƒc€L>ˆ: 4%åVE¯vœ¢WíwȉݮPZЪìŽZØ¥œnJÙì>ÿïoôO©ôþR‹ÜÑÞå"€€Þ°WzzÐTÙˆT,M(V;d}0¸—äʆÓ;“ Û%Æ#ŠÊ…í˜\HÇP._.Hæö{Wrm>ƒîö䈫¦$Yin™‰ŸÒ{ïö¯˜ÿßÅýúÿUŸ<Ùüÿ¶Wþ÷òbæ÷ýÿö“õŸV®â¾jB•sõÛ¿ÏòPªjPÆ™Èí³o®Ët{ô t«HÁ'öíÃ]Ô‘ŠW‹Š•ŠB‹T‹š·VÔö’kE­<"W‘ôú="£î;yåZVuVuäkU×)¬ëô3{Ö ²á‡é%²«çLWÝdºS¼gµÜçlùžtÖ­ŸÄVÖÏ óýÊ•îÇu¥3PþáAé£)¡OÞ¯ ” [V­°¥ »›ja«ÂR«ÂR6´Ua©Ua©Ua©Ua©%û[.ßÒó‚„ÿQGHöÄø |ç÷¼ìþ¹_–ùîÁãòþK­œcPž˜»©e89ÎöqÜÿñ|÷ïÈÇQ‘}·Ô\þp3]ͤ¥|æRsÂzw8SÓõrèu–œC'[jÚÌu½ Jz%üÔhí¿qû!ŠehÃÀ6 oèJ :TFundEˆåðï6:oöéøÅŽˆì•MQ_–—ä÷S›ËÊq£ƼǸצ™cPût šÊ'".“Lx®1°3ãï î/@Ní9Ä[øA#qã¸;ë­éˈHV´¸_ÃE0h5Þ„ lÂÖ.¶Ì&n^Þ0_“Ê<ZF2yœïíÈx@pþ¤šÝ€eaí§–; }ïnËI3n‰½Ÿ#ÇøËvS]Í–Vþ;Jk“­½Ívei'‡OèJ·¨4ÀæO‡³¥QÍ’*kžµÖ(¿ØŒ<9昰Lñðéé° xÃH£Ÿ–èÝxà–zúAäæS#÷4 ‘úùÇèÙO)gà(s"¶Ð±ð ‚¼ÄœÌ1\>¨R÷Bô·BÆ~2p„O¶h,l•g;½—”—.—µxRº-?Aà"Þnû ¼Ýbþ_ý{ÎÿV«î„ùßvVþ_÷ñbvðý¿š3ü¿þc¿~ ¯¦ëñÕ"ý³¨¯jHs=5~éBy~EÜÅ-Palo-Õ)ªDÆùly¾LÝëì¬чAÉâ)lCv\t1¬ˆ=–l@½ {­ã©Æ0Y;. 1?*¾Ð#O7PölÊÌt¨ ›*"þTžUsøáØ@ÔMfÒ&Èâ%—‘lLB¯„UÒܽf³>çÄêèG“qÅ]Â’Ž_žw•ê&'Uúg ãád2{i‚±Ó“ Èø?ýîfµ@·EÇ$l³Ð±DݱîÍ÷É…g®OžXЧ!ß…Î3…3’Íå+1ËUb)ž1G èýw[Ž ³§t[ ö§¡ƒƒb´³ÑÍàœ8æ4ÓK÷ûçï(Û¥žffñà§‘ËHê1ã ?XŠÂÊCSМtpp„GFú¹[ÆŒ*Ç{‡G˽Պô½»ûJ›ì“wZôP&…o´ž¿:ú³ÌÕMè^ëðͯµênùºÛúy/¯|Ûÿ\7ÍÙ7·È7a¬Þy÷ùePÈíÀÙí,Ç-\C%ë6ÿVäÊÂ×IËì}ÈžR6+<óìÊÜ£é~¡!À=ñsð¯¤p;VçÓØA˜hl an©—ä¡D~%ëÒ…‰ }½kà ö¸|%59. •6¤ámz«éUýê KT-:(‡MÕâ,2­ÏyëÂ}­T_“#M‚8:é2k\âÝÕuÆIe¥)Ïv žƒ†´ç«¶cÎÜÆcmÄtlv®Eµ*¾ ß÷Û{¤‰:Å42L?-‡©œVþñƒuyZUõ£&’úâÖ#Ö¼ʰ‹[–¬uìÝN&QáÃ7nÝn+ nÍÚHn¢œ*ÜyÌßÚ²%Úº+)¯¿ ÔwX‰ÄTG5O…võpï‹¶(P0«öi¤*Mý@¸uv޽¯bE{ü‡ÌS©gváûãuÀä`aFŠô8s‚ÂÄÀ E1T±‡BžæyU“›­˜ÌÌ„ýnFÉ! —xòg+HÒ0¤½lpïÔO"ð±ó~fE¦œiŠw™#Ь*”a±I*cIâÃT(ò²nÉJ“ñý,¿Ê¤Wd2`èåÓA_MúéÆòj?¦'Z:Òi[Ñ­eµI¯jä‘]ÏΆ‚gN{1¥åZ¢&¤W°ö×… BºHlZ“G9O™G„’Eµô'¹Å¤¶é8¤Ô°¼=±¸ÞÉN?ªÞIöhnÿ¥ˆÞ™t`züW×;sJ?Ûâ?R&}.ñÏ…/Uê,¯–¥»y’šv‰™õ)ó·bBÖñÖO¯‰ú.–ÂÒDQT⊦­gÎÖD£@Ši¢‰mÔ¨«©¯+ój¢2$wµîj9sc¿+¤›FÉ©ßWfU–Ž¢”ž®Êêëò'¬’§Ì:kÅy_P™MÌl¼ÓŸBÖLw ¦W(¢ úúlnÅô¼réŪ¥û¥Ò+Õ87ÙLóã+¼±¼áB?ÊyòÈ<º°Â[‰+¼Há}œc]<µÓ ÒV¯{}Åüÿ&÷ëÿ·³ód+ðÿÛYùÿÝË‹WŸïÿ×µüÿÚ?º¾ Å_6þƒüi´’÷ìØ(qïs:v9sÄÄIûwÄÑ$D}S„78„œ½B*9ÜlAö@‹{ ®\uÓïë"ˆ\\–‰ƒ÷?\N)c»˜ôÏ1—§<ˆFËØ`\D›²ï¤»â‚~ŠÇ d ó"UòNüÏõk8Ó6Ÿ—i£ŒLãhê±›aŸ¨G(Y-õì$ïô5–0AM†™ ïé;»ÜÉ/ïºdÖ ï:™b¦gÝa•›ýÃv÷Ú¯—ë^—r [ŠëÜ‹=t–ƒ_ôœ,´Ý÷Ë ¡ ýŒŽq(‹ò›lûMæð¥{¶mmû«{ž6D›Ë¯{—~x›¯:›LÁ¤[ži“rÃêRŠ3©ŠªpÜ„×Õ>—ɦøµl£²Ü —Úì;§Ýr²,ïÖlþ¨ÿynͶïîÖ̳˜4˜k¾IŸì“ºç˜Em“¹A:~6Èì%Mw ~d>®âYÙû†z Þ²žv:ÿ¾Qì@Õ'(‰dPGí ½º?HFı43Âv•e‚ôáZ½Ô¨Ðмp¯Ù—V’²ðKQÖ»Òô±ôC“¥Ip ×l>#9™[¼T™ÉLAˆ;Uªß›¡¼»±|ΪÝgÍÙ›¾¸±é—êL‘õÎx™49û~&¸}=¬Šðþ•šyz7°á#¤$Òµèau½Ž+À(¿ò òƒ~) ÑLäŸÑQ¤{™è‰ž”Ïå?e¼Yõƒuì¢Òà1°Zic·€Á4*„™Ó¦«£_JäÞMéô"Ï5¹}Õ»ùƒ%læßÇõ:]Ig®×îj3dÚƒ»ß%ñF÷Á±Uò)Ø3•m¹€ŸfUt ¶¬ŸEiqú•îe·ÞZcÓºQu&V柿²½Š¿óߪçdw¾‡­î{#oKpØ-u™»ã±’{‡$wàÜ'yŒ™<ÁEüí\k)'¸ï#ôß©Ðÿuu‚s¥XËÞ›ZKÝ›lϳø@H+&—O+v\LÌ“âŨÅùå8ä-a' ymc)‡¼Â‡¼[ò–Ás³6MÃ|•üŃÃÁFma.¬%Ù xÏj·Ìé0>9½‡ÉÎÄÏ‹ùçÅôA°î@ØH) Ÿ=/;-nÌ8Uzg¿b§Åj‘óâ“çÅBZÇcÒ:~-r^l-ã¼ø}Œ¿¿Ý©ñ·ºu_ÆÖƒï»)ê~°EÛb'G:éÓˆ³ŸÿÕΖK0ÛÆ8 Rux ²èÙ2×Z0:à;ñÄ=ãR N§³Œ±F‘=öç:˲Bþ†» ˆEêvQ_åî_ÒWÙ÷ÿžž†÷êÿ[Ý~\­ùþ¿ðÙÊÿ÷>^ÌѶÿïq–,ÉWCUH`·YA …È„†?;ð஌rI žæ™2ôptŽ®£”™‹òbêçíîH׃§NÆ^Á°‰ýìTlm—E÷åF³œ×ÛX’QV>™ôxþÞ»…`™%7¹¢©ƒÀ§mrsj½R¦–ç&un»{7\Tй{7"þÞio}O@˜£†‡4gËÿt¾QeE×öùݤ>>¢®<¦º%ÑÝ%Aí¼‡-ÿî:S_Œ€éÄY}7-ÈXÄf£_ùXþÈñ}}ü«G°ãñÇʧóµ¿?ëÿýÙÇ߀Z HC!v³}¤æWýaiXþ¸à¯êæ3¼•Wa‡å½„3ÊŽ3/i¬ã=޲tœ©º¸”<ÄŒñ›o`ÈY~óì—]'ÇìƒÝ Eªå”í3™ßO±}È^ae„%Ô8XŠËr%ÊL0»½®S̪JÊ€üø€•Ãú÷ÍÛ~uÒnÓ©½Í: ñj¨‹¸¡7u²ˆÖöTÄzwVÓî7ÛoÚÐ_UO¼‚FÝÃVûÞ¾ÃO“ã"5r†öØ­¿Ù+‰í(u–\zq·Ž¾éÉ‘‚Â~øü2þn«Ú9% \Ùo–3Š9J6Âa‚ c6ÚÝN÷ykÙ)nw8?N¢[æk4rG¡C8ª|ä!.›0ÿ¨›ð’0@ùˆš”0)t˜€„Æ H¸Í¹ânyD9¢¤ÚIÈ Ò`F0CPfò`7¿A$¡Nñ¸}­Ci¦¥p þî4!°_ôQîÃε[^%HÕÀÚXBÂg,`ÝÞèp.¹º¹‚y\ÇXN,‡Æ^åÁ™ZçM6Š{a¥¶±›D4÷’¨†Ô»Û!ˆ§8 ßj ò¬ºÑÇxÄ9wƒ¡=u öñ·î\]+=o3. …ÚÆø|d±Ö~IÉ‹ˆ=Ÿ6´H6§Ø3¡ý×yD °h>daЏ.!qÙ°Ñæ+miºâ_jå=—v½ Û |_öÀ°Œ|ôN„·,õÀên!~ÜÐÑúÚ#¾s‘× ÆàÔl+Îa0‰ô5.WiUiR[—T‰”,‹Ü&ÅÆñ è@ŽgŒ1ÍÉb£óðîýóAÎ]Xõ!u‚ëí|„G–ÉH|Í—NHg=¬’‡·ÔpŒÝlQcdÊܯ~†—ݬ°h>¦/z'Eåâ1C[?5™Ó1Èjµ.%íÙüU2)·°*–E'5ÂÔ"¡ÔG¶ç¸óP$ƒ" $m¯“Ê:ÍùǸà×4R>2Jµ%””ÿQ–,¨Yd#©uÚ7J´!þ7JáýÏøâ~ó¿lWñoÿþçÉêþç^^ÌîýOg_ âãN½ÝõT™Foy’˜îqßá“ðc¯ÓÇé§³³®î†$…%¹ç»"—” fþÛ +G O05Ïá‹}ýŒ¹IF)ñ8æºVn î?c^‘Ç£±8Ý Ï9ÓÅ)H·/½ñ¹üÆÜ?]˜« <¦;7[ŽÌ’㙚ù^'»¸èŸõÑŨۦ 9…¸Âb©Ví$J¯qÜÀ¬=hk]‹áÝ B¸Ê@‚‡á “ddcNă7-¼B65ÎGÕƒ?Dž¼?ÓÇXõŒ‰õ­§œõ†Ø¤…Tä-Õ¥Úòö,÷f†VËìNÍ%w±Ž2fªõû—VòNg]pž$Q²Uì5ïácz³™çS?—ÿa= ‡·7èÔ¥šaê> ÄêFjÙ7Rß'Ò°cƒ$Ô»XR¤Õ-™ÝruKv·dn§ÅS7ç'lâÜm¦w‹ å]|(éLRï–0†w› )jDŽTZÑ(‡|V,Õ‡”"âí¬wviÆù9Ãlg6”w%X¥Äb 謌wÇ“=ã|cµ9Çleì>ÜŽ]ñÁþp–êÄvÅ9—rÌŒéبnÎõÉÄÚhbÑ«¥O‰ÆUaüրލ2ž«P˜ Dµ!¬M—à„3º¿ útïÒs„¿c©ÀHï9ªµ pöœÂ¯/xÝZè—”³{À1È7uum­±,.BÍt4„Á~éOФ2 UÒW§Qs²™É†Â|%™Éì“+8P!15Lékܺ’ñ›&7 RÕà²~W½O°y\d‘¯½³©F`u»þýn×g]¬ûWéI@÷—W®ý Ïe}3?ãFžªôBìä\V©è芠ý>=ƽ#8ç·ºÇ=øÿ×÷÷ªü«F¿ÈØýîàî/æ _i×ßQÍVYºU]p7(Ýq£{%\áG³‡ýrjßÒý^zèªú-?Ãæþ/Û™uÍÒtÄWçê‘9.×—šƒOÞ„†!H…ê1´¾öÍEÞãÏÿò—ñ³S>ö›º¿ÿ5lU8 ¡¾‡±¿+ÜXOË-<:û÷šÂÐC‡ ÷¦âtَɲÒê~™º†ÎsM dy1ùØñŽÄ¶'kžbèÛwVí÷‚#èÓ`Ù/†£áÿfã‘9΢Ÿ=êzãÑÒÈÊâzp3U&:ص}a“³½'ö®'ýÁhhos9æ9ºêo¿_ç&Öç5øœ¿ˆýéaíŽÌYÇ;žjŒ1g×#wr#wŒ u÷Ïo`¯é•®"F×ìÖùÎòåðGþæ««õ^¬0Í…séÔÈ!û7‡[ëê8ÚÁ¹7åf¸óæÝÓ¸—ù ’/dùÛ=a¥#óp‹Ð­Ø‚BœÑ({3èÙPðx܇“ƒèNJøs$ðQymÿ|·ì†4@áó&<)øõ{“êbßáÉ!cýÙµZ8€¦<ͼߤ#®VÇ54ÿ GÀ¿=|-× ã8p|*bG˜qñøw~ÎæŸrhÜ„EЦ}è9ÚîQÞÐјÎá5Y¨[DªtK/.)ƒn0ÙMŽû'¶¨Å³‰˜hŠÃ9¨Ss…p’Äz\ʽі€‡¹³ÅYzüaê×»5Ðw:)Bà¡Ám3ÕÔ~wP\oà‘Óü½_yÞ‹+Êaä+lèÍŠLE±¶þŽúÛÞòØ[ÉÎVò+û¸Ré¡>^.å%(çF¢{¯;¤Þ£\ê¥P9°PÁ¿7C{\Ú¡‡Kl òö¯Ë¡' -àóyœç»Jf/¡vUno4ÉžôÐÚE#®æ9ÀJp|а1¹ba­Lx)WKØol[cEhЕeþY—âCß™«É‡ò“5±9È6ùjø™÷8í¼èTϧá5w¿–Çfd‘öûõ½£îzä輡ÎkV—ÁùÙ†KϘ³têÖ=¿w½@Æ ˆOB_8·€ Ý…{¡-ôm¤ƒKû½HÂüEf/¼‹ ­^wuÐUïìýU36sÙ„<ŽÚ xŠ6Ô¥æÇ¢HÂÉnÑ"ÇW×Ò‚0I˜–9vi¦°¬Nò¼ µôŽÌv^#ezœ2æ)›i+,¿ñRv5‚w8\·>Ç ³ûè^,ÆJ.I¨qáíe ¼= a‘œ‰¥OD2Œ¨–GÔÆä„Ìß©½hôÓ|;Ó€j; úé&¤Œ¨ë}_dòí$(]±QËDX’}çdþ~(ÑðV#ÉH¤Îþ_3·Ýê5ûÆÝwýïjµö$ˆÿÚ©®êßË‹W½ÿeÕÿ^Jü×Þuß±Y „eÍreÆ?sb¥œ²àV,€ „Q!2šXVì œŸœè–2?¤ª}ô'al”>]ȸ6{¼6ØÁ—â/* ¹P„ œÂ>Ï.³³O|¨‚Ó%œ;€IúߨT´`Ún+>å/Ÿ´ NZ'}Çà¤D¥ö;(‰â\VáHp¤ïZPÞ¸Þoý‡W—7PþáA±ø¼¦WZPL‰jé÷ÏzScîMm¹ƒKUîêÄÞ²ç—šŽ lM—½ÏÌѧY6ÔñÔ›?W$D¨ΟTÐ]ˆ(¦/—ëD§î—Kpo òòüíù‰™^ýw莉˜ÃùÞ÷Õ_ùæM¾§oþ-ÜëáLx§‰ù cyÈçtÆCíF‰üþô››¤.á5‘ë^Äû’D1 7å}’.'Ê8‘›çÊ¢š®sÜüHÛÙxÌ‹DNqf‡\¦P¢JQ_–ìôN÷Ô{3ì €˜Óºïøó ·ç±SÿUk°|ÏW`ÿ½˜\-Ùü;ÃþûäÑ“'ºþKõÑ6Ùk;+ûï½¼x59ößýî¡ÜØ;eÑmîî•c‹ûÖw½uôœÓëÒ¼!‚Wé›6Ëü[à…b sŽû§*ƒÒ>Ú ^à„~ž˜CV³q(Þö¦øI'›d½ñÙ¥xNy”¤±Ùvâ_‹ ‘ÆIŒ¡“ÑÅô ¨qõ>d*Oa3pKP(ÏØm›ÂGƒÑ¸w>»:Ò¸fp…—puß¹¬ßŠxÚ™ ÙÂÉ<}˜[¼†Øç¶vñM•Mþ„~±XÐ6ÞÊ>g±-@+êŠAÿS¦ùõ“:Z‹:ûGbŸjÙ©Â ¸R„²§[‡Xe¯Õ´]ÃNnßèâ2¸¾ì­ËýöݺüÊ|aÛÔé#ÉJ4ep*’æsäª+d£¡Î'TV6x´–…*XæUà­´ÕMâM ²äl4‘;ŠpãØ©:ßuöS‚åv6U]ìß p|>ûÌ_R®¹´<6Ô{GË’žS8ÔÃÂmäšøŸYæöލ„¦ç˜á{äÛ—ΰe-ôMÐǪ™6y§ZJlq­àŠÎGÈ2UQƒIP G‘¸ˆæYvt]8†œ6tFï\ë¥oD¡žÈîH5yâ\º™nÙá–clac¿åÉÓ|œ#öh¢rKú§5i„ÁYP¶cq§ur¸tàô†³—AÂìk}iä7ä´ëž ôh!~H¤°+HVyõTœ¬²Á$š+OÍ.Ûƒo&®ÕX™Ò%ù®Ø!‰,|€T.Ê^iM-†#¢H‰0 isÌm¦^›EyO^U'5ˆ¬Ï1Y µ@yë@°f1—ƈ¯8L S× ¿‹²©*oÚ¦`¡‰5|¥ûK‘÷¿®øæñÍu=î³.µäOcR¹3{.Úƒ¬Ÿ£Åy³ví9±k'±SlAxPbè žéÜ’rdcè+?)TeK_V ËçMñõ‚ᢰ O6ý  QRˆÒÖÓvyë)UIþ‚ß´ñSÐ>‡îXžµqN;Ðj¡¥Ýnt~þ»z´yáÚ‹Iƒ]˜™4­¼¸ÙÊ`ìT÷ú2°Ú6ez08@É[EÙãι‘O:D2C,$µ™ª­»NP{ý!ãØ>v™ÉºÇäMöšµÉº*ÿó:d…ÎóþŸ:ú̹@+†€ÛœqàÍù [»uGw”|K$ON¥\¹ò#h%YŒ Á[ôÕüáxLe›kó3ÌAîèfìÛßM3XÔ0R¾É¦¼Pg0ÙL.cy‰[1·¸×Ó¼Õ Õá^›>ák\玻*é1‰µ©u—ª?×½ñÔ½N$P;€ä¼2V’+tÌ×ÁúVyâa Ÿˆö¹D&ô/‡ýÛáÂ; >ïé_äåà\“WÂyv²<ÔÂxx˜±œHTšÜœÂ9îz<ú0î]ÁÖÄ(Ñö„b7%Þ•@x vÚ+±Vp+V1'2™€Oa†~ZètSä4è².rì&Bú€yC8×ßÕõ “§cLóØRFê$ÞNH6Ø/þ¼…KV>¼µ%¶ªb«&¶¶ÅÖŽØz$ŸÜÚR°ªUQ­‰ê¶¨îˆªúººŸ[©ÕDm[ÔvDM=QÛµ*|î*TÛÛb{Gl«‡¶·ÄvUl×àó@ñÚÙ;ê¹-±S;5±³ ŸÇt´GêÑG[âQU<ª‰GÛâÑ|Že»ÆÔ“Þ(n.Gƒó ÒÅÛÁ`|Á¬Î3½ëìG}v°=‚m¨¶Æ3;ÑùIÄ@2Òôrœe¶V{öÁæ²^Úyú8Èp¼Ê,‰tþ0¤xWšaT#½šRã 8›–“5€V|H¬œØ&BʼnÑ>Êáo½ 2½–ãμ::9o)á‹>·ŸôøßæX`ºGzKA¿`)Ï>²ØÓ[úE«‡XÓêÅ^ú®"îe'ÄS.%ëÉ*÷â?©“õd —8¬aï¥Ö’’m_@DN½=XîÙ°Œ¦—Ìk8;4oØo€¦>¢gÂŒ¢nJÛì˜w¸ٔσ6:{aar€ê@N-ؘºð¨ä:)ñs“ ³äº²°C"mË·@~ +ì‘’wÀ#0ù0«0]0@`¦œ8øDH+¦Ü²öÔOò·€G†÷S;€ù.gp^ñÀy%wç•·#8¯»‚ûÞÛîPÖï,WÖoÀê\²þËèv’>9ˆ[Húj¹:Ÿ¤1SÎç/MÌGyœVIzKÌGY] o[ ‰³{BxGø=-¼}n·…÷wÉ>ag\o,,`<‚Dz%ënþ$"]î‹Ä¸'KeÃq.OîÆSRÿñ“”fn½z»×Á„Ìt½yØì¾ÚÅH'õûUç°Þ’ ¹é–‰ð”LäFôSŠÔzÒÔ(S4 adhÿÔA“½ÇÊb÷ÅÞá!æ~îtc¤ðÓò¼Ú¢xΚfN…›E¹ã:m¶ä•—|„Y„<0õT¼xu¶ü\Í]‘—¬Ùò‹´Kx\v”Gæ¼. 8’¦Rg~'NzÒMu>N+ktwVÚèÂŽžÏRßõ5æwê¯ò‚^¢‡sºˆÎp[}â?ï9‡æ±€æÅCÑÁáVΡ¤Ë—D‰A×0×réÿö’#ídfÊÈlUv¶&Ãó û¢«lXÂ]ÁíBg—<ÖcbÍ—õѲ—I·Rþú0–ÜÌ$MõÓ= ×W³¶`h^¾aš s™oJæàÃÊé·Ê¡eÆk^òl÷-Ó½ ïqÐ|smrxæa•Õ"-ÑþP¶ší×9U;'-ˆW»%tª±{k4 È¡Ëù“{ЇN™gßÕöЃóޤT<ßËa-ì@~S¥o*ðˆóU,Ç‹|6¥¦ $ò¹¸ï}òñÈ¢©Q,¾âi¤bt¶”Tš®¬a•ƒH˜O$ pYÏ<à6`îÊæÂŽô`xƒÈé­`‡vð¬ã¾ÔÎ;¿¤tý& ÿhëÚÕ¨÷igÉ´þ¨^èцîl‡eã=™Ó1ja%îŽ~†Érên€wXe€³;WAëÒ³³Q"@„ÏLLl` "lÕšŒâSˆ‡ŠAÿ±Iˆ§Æá×ò9áxN8ñ8¡6/'¤ ‘ƒd‰cÍÌ€Øû",ávmxcN–hy,Q%‚5å„@ŒÊÏS2¯d:IK&G]žx:ùñÄljs˧ã<ù´õ³‰§êw‘OÅXá~åSš9({VD@ç‰C>…‹b.û<Î7E4µ,ES;¾oMíøN55_,¨©U—' «ë‡¦PK^ï¦×ÛËCK˜SV5î\ÎÏóÈC_Ì-s(‘ƒBy8'c,I(úÄBJ[õ¾µ6_JÝÖf³æòµ¶[‹ªÃںܣjË;YnI€÷§ºÝRTá22T¸Wqµ|õíÖâj5rÐ(rÆœƒ9~ q_"·×ã‚#,³ç¡±ui=¶ÜÞ•E¡ß§I/Ö£¥Ä¡èáßòÐ|°˜b°1Ÿ¦¨E/ww`­­ƒ‚ÊÀFTMo™tKo'Ψ´]McNúv¶Ù·³]‹´Ìóí<ˆûv¶ó};}XΗèÛÙžáÛÙ¾…og»v ¿©Ò7x$TÌãÏÆ Ô”E|;Û|;;Ëõíì8—K¶»ÀïÁœ×áx t"î!‡òÌ!cÛ(UÚœ­c» 6QD,d-hE·Ü’ì¼mo¿[,} Á($;‘ýYb?ß)£mãwËíyy¬SpwîDvgI…yO1:ä `sÎñͰíªË9…'=‡qŠs_qÎñ/ôûœ“^lK=s•}9GŽå˾¥º ,‡Ûµ[rp{Y¼õ³0pu>^’ð[ª«Â’öÍ4%rPˆ‰¿ÛoœQî™ëغŒm1½šîØB§GÞÚ@bÏ;³Oçuxwzddîç[¼ª?ÄzhW×ÛŸ»V&#’d~e²zÚ乪¦6–E´É!r0¸“Í8Í>w±#G´˜yväœuw/:åfìåËÁåë”·fãvm]n„µàd´¥0ùÑÙלG¶»T.ïÌv9›é jä q7–™8ýx›iþâ»_ÇÙÎ’g5+߉ã¬ý>í¥÷æ8›à°ƒÔ” ½á,º,¬;)ªøš”¾@„ÊýLæVQ6îDǽ7OÛÄ&7óäP"ƒˆf2Ï|zA’y óàmLNó0OÎz»ýö®¹w —ꢱ¶Yç–GµÛrñÖOÂÃsòð²àR=:–²{æP"ƒBp¾Ý3Á:?ÜÞ™»ÚîË®z'ž¿I¾{Ëê½yþ¦`1gÎï¹b$/j—¬9<ºˆŠšù:ï\ã¼3OàôƳˆÛø÷Ý©oÇ<Åx~¦’³ˆù÷Ð8ïÞ¤zoNÁKáaŸy¾óÙiËááïÄ¢5îR¥¼3'á¥l9”ÈÁà 2Q¾¸ï}oæZ¹;§áè×^ŠÜ=à’Ñ+6^ÆíÝ¿qýï°þûtÜ_røüúïÛµZm˯ÿ¾³µµªÿ~/æ·þûq§iòŒs&o^èðÂ)ë‹Ös¿ûbí?EéõÅ*®ÒËg#%¸~@;’3¡êü3U.™Dœ®®a>'2ó>Î<•ÕèEª*×emlY~¡\¸Àûž:§»â&Uâoða4îO/¯r ‚ÿÍ®¯y ‚Ë– •O¶u ^ÏÄéAs9a¯¤´DK?é׌vë#ƒ,ùÊUãszµð‹–#–õuýâ‡6$Üh|ÎUtí­TE÷XÚãovuXSUr¯)»õt8­TÝB±Ãé³d•X‹q/zg0qÌÏdã«þ¾²á&ðÙç ÖÿEˆÖ˜•nýí”L–˜-‡5fM]Yu0p¢Ef?EŠÌŠOnaYˆ®1û)¨1+[5÷“ue=lâ%f²²+ØEŽfW˜µªÊÚPæ+0;œÚ5]m8n}Ùßg–‹•àléj±óu‹-XûU— TºY¨Ì«{|yÅ5?y™”Ì:Y³%ÿ”–tÿCëÉðj(Ã÷>sL°Ò=ŠEÜ™m€” äEµÈ#rãnV“›³3غ/n„–ýýßñûþ…®„Ñgœû•é%0oⲇåµD0È>®Ÿ{ƒ§zõ?\ }ƒz¥3ŠwêR¤·¨¿ lôà6õ7ûäñ¤ føeßÔÖ4#÷® gåòã l|Žrú<¬±¹ÉOþc£03{P$;P"››µ'ž1È£R‡¤2!‰óì:ž÷‡ÄhÈËÂA5žc(–](Ì+äáÉ%f2¸JlñŽr ú9 4Oy/%‹hÖÿp9åíØáTv¡X.¡b¡1ªå¬H˜™N‰ÝÎQÌjS¡® %l^=4Þ“=zXEKöšå¸**ÿÀ§Ê[keq\Sïªð®Ëo†Ð:ÙÌj4´›Dnì•ÏÝŒ’ÿ„¼­:ÙüejÈAKþű»äôËYÎA§‡)Ç 7XQâo&ÐÎÝ"êŽòÄéÇJ¥²è(¥\¤_~ʬeÑ)–QÑI‘I$R™ xðjŽ>9:*ÄѵJ5ŘÃêFÕaé!¿ívOµ¬9­¬6óó´Î-q‡LKYèÆN*DfsõÖ‚L]ý¸:æÔ§¥é4+ÀÔ£Ó–‰ ð=›í•îïìè(Vnº;·ULtÛ\¾1¬®ß'qù]½{^OLaq^õÓ%Ìbø–ÏðÕÛŽõþ>!±fò{ŒX…¢1'sn këŽ$f¾¬Í#Žuâ¬ïZÏHìŸ3ÓRûxš8ö¹ÙÔ‰Çÿ¡Y5–ØÖ8fªE6wÞØhüj~ô&ìÖbž;/ 'L_)FÊcÅ×nôʪzо¥}Úˆhú¦¡ÝÌi4‡^t`‰Ï»Ý+bʾí+]DømT½°ãâªÑ¯·œåwpoúþvàvÆ1c!:”Zd›¸s3‹²Ðœú‰\äèývc‹Å?-¦øqê÷¬ú{,>»˜•bò­Yüà§`ñ˜òï²øAAOÐ)HWÐü#{Âݨþ¼p&zo_gãÛ7¤­‡Ù¾aoø†¥{¬!jdŸýÌ>^o|Z§õ´ö»œ÷ž}*®ªYLupïg ñ0³dž“辸’fí·é½-ž¨œ™£4Á,J-|Œ(Îè,áé3ÍîŸÌöÐÈÝ OÛLÿiÝÞ(` ,Ìñ^¹„{>žXœ?×$Z³?/相™÷•Qìc½˜œˆR)QåÀy33(.WM›¿}ïx¨ÿ´W$þoz}¿ñÕG;µ þ¯údÿw/^y^üßñ‘ÿ‡¶ãÎ>ü8š/þ¯ÀëîCçýA…Æ‹dáèBùÔÝÅ©ÀB⟢ ÄÙ躟MA…ãÑ•[®¯èúʱ6CF]•Ž÷×Ät„éÃóÞø\Eãè¯Öæ‰(,I×ÙG¶éUX!w!4ÏšHBý86øaƒ·‹àsø`x6¨€UÂÀ=¡CôÐ`õéÆëñ(AÉö‰;µ¡ØÑyèéÚÆ£Wà09»™¨˜SGH©ÁIº$ã玪š=˜²ÅÚꞯ_útƒ @ cŒ"ÁN¶1ò‰#Y”jÃÆbËë;pjÖÙ±u¸#”ú 8–>Vªkë‚ÌF‘R×èìSýû³þߟ}ü=¡åC(Õ†•k˜f8oØÌ(±ÃÄØUv™%?YEf­"³V‘Y«È¬UdÖ’ö€Ud–XEf­"³V‘Y«È¬<2+´ÜWHü:αߔÅ˲h¾Ìyâå®XNlíc %Z/±“…ýdOŒÂŸq3|ppÞ#¤³ÿŸÿοdâ,i¦£(ve8Ê”µšuoø¥2ÞÐôÍŸVõ§vxÕ’cÝ„ tOøø†¨Æi €3 ãDg"\‚ŒăÆLdnT‘ ¨Ç¹f¡(³V÷ãÃU(Û}†²‘GŒÌ¯…%hÿ·ö9ýŠºûJ¼ÄÏËf{_7áë—eZÖŸµê€=^Å@9‰XiI -I|yü¹íy{÷Uä jGÍ€Eýïã­äàhì‰ÑIòTl3A"a`=Ò9¿îœòÓ¿fL[‚§-î­&fææ&'Íß ö­Xê´)dàG”IÅŒ™õ>}ÙÍ¡&ò(Ç‚ð¤‰ç†ÉÄ=­ç.!’»žÚH·:- ¡ø¿^’.â]õå0ÏÅÕjÙ+U7LK)ÇÃê<+©9c ÞæCº’£´C&+'ØYÜŸØó>%î €Ø›]Zà»K€ž|™Þüî}-Ä—ý·ŠcδB$«ZŒ›öUõƒç‚Ð9­ÒÔŠë4]î±]·ÀÖ𳉻új„yK¶Lª ¤m4ÅÚ:Y…¾ûz-Xa·ì(¸O9k¨ØtèŸùC¹ÎROˆŸîˆðÓÆÀÍ<(¤æˆ&èÉùvT8XV‘q³"ãfžòö%ú`ö© i Ò„øƒ!Ü¥qðw€øY¢ßòNªúWîÑ¢0üàâ1‚~Áe­?ñÙ¢hDÛñÑOÑ‹ÿßküWíÉ£'O‚ø¯íÇ«ø¯ûx1Ÿúñ_dü—tYÅ€ý1`wúÅZudzœ¿®À©€ævË@°ÎÝ‚ÑcúËÎöýªÇ-vs…Bî]B@˜Ž ZÛ´ûŽ…ƒ•œ¥5QUrB1UºMÊú…â}~ñjeÙܲYºfÝQb(ZÛkþètxX„í7…[묬>ÕkõÈͧ]9ýViÜ€.pS]\‘W¶.kfÙzÁlí¡²^8ëXkÀçVó°GYhp ‹ö"góìÜMkæh‚0¹yF“ˆ±‹Œ†Æ½Àh¤ƒún½ÈúQC3ìàŽc“!Áºê}-UOVÁp«`¸U0Ü*n · †[ÃI$WÁp«`¸U0Ü*n  †ë¨ÃIαì@9c1ºÏˆ8ø÷“oUßÕÒM8:®Er!¾?[ØÛÜ¥ÈêïÊ«zd?RzNøØ&¨$È5;Ý×cÕöVÑw;оkí¥ëâ1w‚mÅå;‹“N ÆÉMfÄÉ=%ÛŸ<ƒµ«ÏÚµg?Sì™õŸá¸É.KQohW­ I­rP[,¸NBÕ0%6C•†Û;«ÿ&„¿~ÝŒ©´™Ã r§ÂæòaÈþ„˜Ö?r›Å.6¶ƒÍ:æ‘ïù’)Æ{vŽÇVÙÀöbnÊ n.—‡BN©€ j w…Æ5Eæé$5O ñ*¢˜¬6»VQ—ïÝŸÆ»%£Ð¹"É—ã¬Ïȼ¬àC­;ÄG5« (6©÷wã–㥬ê|ï\&¹ŸÝ&ßÜ«º]ݸë…bȆiììx|&¿CbÞR,ùŒ–K¹¡š3¶ïMœÌo±DîGŽòÞ;‹ˆ¼ß™ý+ÅøXºòrµ¨5˜Ï?W:XiQΫÐDÍP£bãtU©ƒŸB“:ÈE"=êàÞÔ(Ëbç·û¾aQŽY\•¢`š÷ÈÕœZDE#g"fí[È 9g¶@³ÓW„ÍÁÆ÷Òîäqj¦0cñý@úÝ,ö_DÁ (²ÄwWïn³LîG¶^&´FîAÃs?Eg11½ìM^µ•Ñ´Šþhú¶t4º.óB ÷Ð|"/OHÞYpHÇnóýƒC‚øÙç³ûŒÿ¨Ví<Òñ;[(þcûÉ*þã^^ÌŠNüÇ‹½7ÏK¢ÛÜÝ+‹?^½=lÿYݽÖÞócŠ è¢­~PæPøñ¦%«‡ýW¸Îà øZ¼éà³øóðþ•ÅÛWƒù‚H8„^±‹¼° 7xBÝKX±!§ÐÄRɧ’áD*¢“D’ƒ)2W™È 4ÏN‰"*ø“H,ÆQ‰‘ Œn‰‘¡7oZ%‰Õº.¸›Ì7’Ä›šá$–‚(|“Žã@Þg£«ë¬ª2]aà€è Jø) ÌÙCtÚÏ.¦˜£`Φ£±r²é‰ë^Ÿ‚ ÆYo`¢ JÝò ÆŽa]Ž×ù×MoÒ¯nÞ8ã(#±)Ä!;Øc?ÒYž›~»æL…×ãÑùÍÅü DÌÆÀ~ÿ ŸvÏ.oÆâ¢‡8÷ÿ·7•ÞÜ=å¶OØ—êåÆšq/Á|‰¯×»ëï××a‰½=¢·üLo¢G¡F»/^üÑÙ…l÷{¯ßËúcMB‹lâ«öi÷)*¾!bD7l~6³Éõˆ¯<§#r·£§ÑÕ[|¡ÁŸg°> ò"S—®ë_å/€òW@¿ôm}ýµõ.}$ß•ÕãÑ:žª™¹:¾ÅžT“š‘ «9˜åŒS®FÞ ŠŒ nGi˜/óP›ÝÚ©?%_§ ’[†=±€q¦µ?é¯ ¾iùt-&°ëž¡š‹ÉuvÖ¿è›þ£}ôcOÞæ$mù¡­Ú#cND¬ž–g€µRltϼ¶^Ùrê!)™ÂÑJ_J×x§¡½ÈȨ²”i–Dµ¡XO³$î[ò½¡ötÎ ›Þ8¨kä?øc£º¦#ÆÏûW½ýaoü”hõõü‘ ²¯ùH{O²6ï¬OUÔ ú#ó‘Ô£q±UÇ@gäèx3ÀMè1˜ D=˾!µÚNdâ)×&­=ÄÑ2Õþ!ÜxÇ®³P0`× 4ŽÈ ¥º!Aß‹‹yõrÄ}9P,l}(B‹hðš\´› % \;Z„&GIš„Ô8Z&5Lƒú4ÕbÊÃQ¨@ɇù éWè•|Juû@ÝéO1ÂAÃEQ¬§áè–Óp´ÉPÂixÓ²§áá\áªpf8< V9eîàì—Ï+Œ‡Yyxø *¸b‰"6Qù”žrB_‹ÒÍäv¸o¾ž£ð(L»kãJœ³gOnOL·1ü ]PêWE´%JÙ®†ù§F%ª úµ]úXp@çJ?ەϦûq¶×ÈîK/uЗE31º2µ΀è²B¤‰bHAÁ³¤|xÒ»R²²G»+(”–"ï†3P¸n°ÛDŽ%‘­ËÛ“tÕOx¡Ç¡Ð/[&!C ÝpcÚHqë´‚‚3껫7pÃQÌÔy 5/½Åõ›Ö¦˺ÊHöI‰p°z¾­Ö¿´V,´þ;…Ö'oýwНÿ÷³Öÿ{oý³ ZDÌKtæï 6sËêøÔ…ǰ+ñ ¤ Mözg—ÖYØ?íÎÎn(›Íhè.©J3NIæ@ˆq»ŒQ+í´DÆ/£ñ§Éuï,+$ݯ·×n™aÂaõÅSL8`þA`°¡­Z‹B}Š?ð\x>Ê8Çec†ñB)c„‚$Ö¾¬¾ËÉ\³”mœª [m/Ó”}Êwê%èùÒò‹ ç開댯†_¤»ÌA‰Ž¡ÒÐÞ˜¢1Dm½½Q}º½Þ&@Fˆ."§}n²MMvdW´åµÛ¡vb]¡ñ©b[ŸR0ŒÇɾó!¨Îè Jÿ «Úª›>?i.¯2P)Î'ö4âºSêþ!ù¦Ï[Ž{Øt·&(| g÷3Rbeèù³µŸLúòkf'ß&ÓìJrO Ó ~5æö-–‘D»É¸hmÉÊŒ³¹ÆÒÙ¿nxUÙŒ†‡{™¥) ý5ˆ¢¿Ý<¡À¬ô±üiM|.ÁègBpQxd‚ò¦€ÿÊÚ úéÙÇ<|Æcf‹ºx !Eéø’o @ãUÛçRØlȵ­Í5sµò˘ùçÉ(<0ü¶R®‰§XQbݰRU8> GšNŠ*gcª˜ ¤$¸€ " Æ»Q5êRi›}$Ô&â!Aú(GÕf×¢F{ׯâ"93V]~9!*ï(~ý1».#ž§LÉê9D ý!°¼z ¦}ú%Ëx&‰DÓjÑ5(í–Bâ­tv ¥ðh;Ìd$.t>2š³võTDÖ¨ç#ÅÚ@ÉšäcR±Ê_zcóöíú„7ÞÏҩй¨ÎT‚B9 z §Gld0••럳‚!A ¼êƒD”61^ ºÿªƒþUJiAÞÓ·l™¯¹€BL-X‘çŸ{pù jàVh¦ˆÂÄKÈðCXo6j¾£÷çaû’úËæk„û ¼L…ùÒ‡qIš‘Ìd²k²è~dÄ¥GˆðXp{<'S` ™¡µ{´†ûæ9´°ÎÏoñ’II¤ðÒÀ>Á¼ý „ÍC î§SâìkHK S™)]n-¤z¨†1qr67<*ãgÔ pMZ<Îß¼›{¯-¯õÈÅÿû½Î«²xÕÞ+‹n}ïøOùèQ½S?Üs<Jô0î›[»[Ô 5 ~Çíbž W=Ys\¶Å³<uxÔ*Ó/846[µÆŸ5ü]oÔwéw #÷[úóƒœàù<¢ßG­weŒ.Ç Ù<;@³±÷~î5égÁüÁÎMöçhÂ?ò‘Icð²,^biÝçðˆÿóòmY´á³öÛô|ÕŸ¿ÚÃT«ø ­cüê•JC~L¿›9½ÓÐeÇ?Ú'¥ÁÀØóæa­ž¿oÐcõuùßwöjuþÅïê­\(ø<¸{ØlÊß­ý:à×mì0Æ(‡ÅiÚ÷p.ñgMþjÊߘ״ß½Ãôi8﨣$ÖYúæ­§Æn³þ¢„qË€õÉ!üUÖoºú]ÎHNÔc²³í9:Ë™ ÍäGñÈí¦w¡”#Ø$?ÕIl…§;¿Ñ¼ùTvâívçΧbÚmû«K)‹0…s± cä¼¹Xžn†,°Œ4t]±|à,Ì(Ÿ¯®`T‡nÜ+N±e²û sYQÕ®²—\€FÏ #¹^r¡òëÅ+qŒàÏý,0²£—8QíTGðlË/7ª€ÓAJîZd‡6Hyë&Ýwþ ±o霋Q ›¯:›æÊ=Eg~lxq&AeùHùðª‰!UÉ’ôüUû¸Ù>Ù³–‚Ç)N¼ÌÎ>å8F ¾jØTƒ`æY_>«s£Y’SN>zDqC/9ß =Hóq¤ à|8_¤”èAÝ™A­Z±Ì¿w=éFC€¼®?kô&™éŠÎzЄ­c(€Ã4ŸÃWU2­×¬“ͪ¸gšk²å“]˜ûݲÆK@tãPêof›e‘}=ܰñÍãʆ…†ä5t䆥ãšmW‚ÏH’¢RMºÀ´ XtÀ¹k·/ÐÈ>6ÙµÈb€p.‰mÖN#ùå­Ã/ºýÞÐknㆠû(€Í÷4UºŸAæ|ÌÉÖä YïX¾×Ïô.ùa-øTIPŸ[„Ƕ\iÏü:kÁ¾j=fíÀ¾|Ô··(±ÊV"†ý2ä”á‰kÁ£5ùlM=|ä>¼Û¡5i9äÛûß´7Ìw5÷ÆÆºC€Õ"·ÂvÁ%Že'1ѤsK»õiuѰŸi˜gjüУÈNǦ3-lèRøiîŽ<ÙðžT²¤å§•w¾`cÙ#áµe»²¢«ƼÒBw¯× *á5Ôö”îFpw?õ¯ùÖ ?ÍÆ|7[J©·fùÁ[ŽÕÏtF?×Í[”N×ΗÑÍà–› ÅŒ( qîì¥~xA· ¡ËùdD~@|ax3&Ëý—ËþÙ¥ƒÜÊJ•~Æ2S:îC+ Ý'ÁrlF\Ò h;ëÐ~+ü*ò¤÷í9–ì‘ê¹—¯½ú‡ºŸ…I4‹†‡rò0;êÞ_‘ˆižFAÌ'8CÐ畽àL´·QõJôЃTd€òØK­õÚL¸»„v³³þy¦V¾¢¿Î†gýA™Fûá/ž³µëÇXVa˜¨T"˜îŠk˜rUÊ(R#g-‹£­RéO]P:ŽõmÓPÈ×ÀžÛœÛPwêø¿Øæ¡&)…µ0˃ƺD~]NV¤MLµpA1–l‘öá.`c›Cca-Ô†‡®œñ¹ð5«ž`ðÛÂÇ?eµôäLF‰~HMc(Qöe éd‡›B5”&ÖŽ·—Ú–ñ~?òMb™Që³{hè³{°w—FЛO¢?|Ï˸-%Y¼˜ /Ä¢¸„Õ‹Ôz.X©bQO-B¥¿Ûõ²´?³ï•ŸÐ™iìëŽM"öd­ã>+uÖŠƒ­ÈF›[,ïY}Êe ñ­z (¬m˜wÍÈÕ¼~ÙR„Ü sMÌQpÒœ]‘(=ôì¯QØN›f¢MbŸô={01Þ~…S_ŽÙ`¤,9sÎLƒm+ /oS¯®Û’„Y2R÷6Y 4ê8R™0EoŒ’ͼ®“úl‚Ç‘cÚ¬<3_Ά í¥^—GüDn1);u±—k8ö.—P„ˆ’¶C@¡>\Ø%åyMæ &åD²‚rà{ûë5ßd@~Á–ù60¯TóÅÌÙ†h¿X”ØdIpr¬®^?á#ÒWåqÊLHÜv=° íXÊ V;+ÄpÎuxs9FDÆ™². Û÷U¢¨'âÏÓ@cÉRs"áöF÷_.3ŠÍ›€Æ‰÷ªXq;C/}ŒÃË+Xeý]är‡Nª$¢›•Zxú’­lߪ%¥/HÝh£aÀrÑiU¬kcÃç ioaEoÓ‚×E ³½’\ô°_Òîè¦}]Ò3ÉS°ƒˆWXám:-<ù«4…Ò”~R¨m°‹Æ8Êèän:ѦØà×-ÿQÛzü[aòÜNð—$ϼ œÇÂQñú±R aäù@‘r˜EïCIô`;ÿTþˆŠÙ)l‘ôçÚú×Ò§DÐÿ§g³°Ãã‘g˜êCi®úÍp*ÃàÿsŠŠ`úO Ù°3ûÛÀš¼.G@£áAÞ‚Çb{d›Ü‹ph‰¯’§ûGqÕû&Îz7°é-ÎÎé »šà}P·¬gÈŒ—ö Nźá&ìv{›6Ëb" #±†lêãC¿i]L²qŸ3ê¡.߀äã†ýÏ]—žgYo*od#Ì…Ì38̾Né–{ú¯£Ö‰ç‡˜ŽîÙñàoÏw›kÅ´÷Þ#óÖ;{þ_ð•ùF}>¯¿z³û_V8@ûÕ›½çǯ°ÉÞóÿŠ}Ï‹ÈçëoœŽ­Ï_=·à·^½:*«®›C ÔQgo¯£ðrǼIWŽ CMÊ+º)@©\b%é•O²ªå.‡v9ä˧àD”tD¯àº¤c`‘¤¡`Šz›wB*`Æ4Ö·ì~«ðf`á}°Qä #AñµäË—uôB*túá—µ-Um)…ò‘òÑb(-e$½÷²¶Ëj5¹“âÒ ?_ɪ´¬Úž±ÆfºcH2a24LHS€^ÕÂ,%m†±i¥xÓ¦Õ´–ZÝZÝÚâèÎÙ´éŽt®ëš»%zÞq«ºXgùÝàë8P:É4sÀñ•…ŒBÈÕá =ή³ñôf|Ú³3`Bè«þ°µTª«šV»VÒõl9žV…—Ê;—®:>ó5N.-͹»ìw–Ñ+UÞÜäÃàp\Ûøƒ Ú*°•m¹ 𾋏üX¼áÌŸkðF©ð¨ð‰«ºsë#×â'®êNî>ñhÞc‚oæ·ûQÀ°ñ3­>½k<_™ëoNvPÅ1á!fŸ:û (܉Êß’3ÍÚèä¹Fɸ ŒŸŒÏ<Îå“Ó΋ÃsK\ñ ˜³½Q­¼Ü“ÙÐ-ªj®:s ;Ð+œ]j 0(ç@ñÖ;Ôš ˯ꓘ˜ŠˆŒaDBŽè­Z„; dÛZ.Z”1\ƒ½Å.&Þg T Qb´[ å]áF |G›¾’Ë!PÁgêÈ{¿²••S&ÄäR¸ØÈNŽ|Úo-g¿ó·¬çÕ_g1Jlšíß–ƒ6cñÛL,b–`$/BF£šë…é£âš.IÎÅ”ÂZµ€ ˆ:)ûÓ£®§å†ú ÷/T*éåž«0š¼ñ/÷*U7I3&dT&Hw8e;5 ‰ê…šlTTê¤Oê¡J„h<}¹YÃK3Òa/bqæ }¯[©®Â ä'•ïf€¾ 3p^é0ƒ¹ã Ò;ßöìƒN<À ¶]<À 3W€¿øÅ² j3ƒøÐN>IR§?E–øÞ^{4óU(æàë*ä`rà<¹ 9X…¬B¢Ø®BÌëNB’ŽNZXª;$3JX7ÅÃäæÊRêf™øÅË=þ‹Lß½é{¾ Þ¶­PIè#®ñ!„–ÃfGyîæÚžäËxˆv´¿níq!ÛËr‚2*Uu‚±3ÜO¿gpÆBÁ‰Y[`¬0VÞë/€á6ÅÁÙ=xˆx°Æ½õS†ø¾{?\ Fe@ §Í-5*E5*sjT1:1RºfÓœ7Pô\8PѨºoßq¨F%ªQQ—Ms«~h2¦Õ@üÆ®N¨ ø¦:!³g×õÜû(S®nïñíôã”›Û(†EÒÚ¡œÕ™=PÒpÃAé‹?§Ü1ÔâŠb<»zó›ÇIcähsL¡=í6‘1†@PÝâ©û±¨Š@ݯ0÷Å}ÅÝÑg˜“ nðçÃ>+À0‰–ö±#_n(쉙ž¸n!ì‘C|ìq=ìk3]î2žë¹‰“ò3†ÁZÒ„êš?óš0³Ý·q™éJÈØ½lÁèKÐ_#꫘;ðR¸§+R©KN(eB¨çÄRŠX8e:22wÉΛÌ骜´‰á–éè—ííbË_>]+$Ä­â.S­‘Õk îZØÎÍ _³c0EzonŽhûd7ÑÅ..*ʳ(Q]šþ?òöö÷So €8êH˜ôÛg‹¤‚a "ï )…XºeòÌ9³eúø©$g¥=<ˆÂ8~,Sý8f„g·Yýâ¤Yîùn÷"r ó>(^£Gíç©Ä†fXDÎuÞsÂ=.8÷xh±&ˆY'}G*nµªf®\6{ôe³íG ÌR· &‰M!#§æíH6ÖÙñ"¥Å‹T|5 ‰©¼;]Å·é0r8LdíùóŘâKùâÉ©ÿ51{±}¼p}¤­R¡Sk X^¸–V§¨¿Í$ª(DWëóÜåª_Ïá—¢.¾Aòþ–§jí¤Ï+;‰óJ„>E”S|®6—›¦ŠNˆR¬¥qODz½ÉŠ..‰Ð’"AxøÜ ÇËÙƒtTéô Í3ÈïQ´óX| ªj8ЃМÎ|Eæq+¢h§˜WKí'ËA›±X̺|«ˆ¢ÈŠ˜’ð9k“HŒ]Ä™YÅù_! RÒ^^…¨#(ì&|È#žW,ie¸x“~Çõþj¯AïÔÊöfía·óüáùôCöµ¶y±Ô>¶àõxg‡~?yü˜~oÕøýÖÖ£êNíñÿ©ÂkëIugëQíÿlUw¶«µÿ#¶–ŠEâu3™öÆBüŸ«ÞxÒ»MRÏÁcË%ËñbÖîž4:¯N`ìÓ¿«•ÄÛzûøu™~½§xU¬š½‹V+ü ?^ãoøñ>ǦÝÚ…¶/q{Ã56¨C;þ%­Ý´ê*Ѫ¡ÎÚ»ùÚôѨ(ë ‹ÒçlÓi|èjÅhµ Ä}² Keœ]dc”ðçN¼ 4ù^Y?3¨÷z“õªÍp˜ò¹¶ìÿý]’÷½x–OÝ÷…©û¾ußG¨û~ Ô}¿I€RÔ}ïP÷½MÝ—UQ¤ÿþð<ûªÜ0Ùƒ›wh£¡lŠªøû3øw¾] ¼#|Sà³YÕQÔæï@&zP=(j…= šG=|?Mà,˜b>4aTˤ²®)IÑ’°f ›˜dlìÌ.ƒƒÉd{ êÄë¥vm£žBòõÁzM#èLH¨•Átˆ­§¢{s†Þ 7âz÷ÀÀ^2P§ÊKBo×fYH-QeÚMÉÓÑH\€jGnÁ¡Ò…Ð~'àR'–Ú—ûÂ}uékhÇš2õJâ l2ÐÞ Ï.A$͇€„—‰kI³F`Ò‰1ìärØ üÝ!F¥úø©œÙzrº&h¶×ÐÃ5(£ žÈ¨. ´¤ë¦JKÆ]NUÅI^ œ£õÙºV>ÀIî=ýé7Ùsc$z&S¤=ë(›Ô£¼ïõÊË8£bI'Fº÷G¢t1ý,+«sæUÖ£ƒ%žB§°º•ß¶ªâ×'ô ¼ý’gêØÐäýìfyùz°?„Á¢¬Œ>ÐñÛ»" €ÔÜí¢¼SÒZ`ü!ôMñßµÿÁY¢3S_ì¿«ÿƒJ‚¢çï ÄíÒeŠ8Ì`[9§¹íd$Šˆ{&EŽ[¸Z¼°VAÇœ£öe5î|ÈÇ¡C^cGF;‚Mg8>ÜìnŠÃ†Øˆl*N);Ÿ``ˆ9êƒÙé¸Ç<×ȤÍæ@ÀÞ+Ç w@$⟲8Ü|2ÕÏzçÙUÿ ޹§ÀßÕß~Û.‹ëkøãQ¥VýU¦æ†mSqÙï_IHÆNø¨×½ÎÎúýL#dm)¨ŸçjÍj“iŸOO‘F¨ !FcèîjÂÙƒFÓ/ÀmeC…kÐ ÄÉ!,pQ¿ílníÌ^Äü ÄÌÕQFê퀌p!iëy ›ŽdY|Z‘AËML;ŽÒ¬Ó†³ß˜8ØŒ„à=–3ðl/”ôP¡ùÜ÷G7”‹Ùè:ÐáîóWGÒjÓŸ´êݽcª]GýWïáŒÞý ¬ùGïêª7F9Àùᣇ[jçdÒ9R‹2ßšCùô¬ ¢£z§~¸wlÛ—Jônñ›[»[@*¾Ó¾ØÇúv ¾Ö`ŒÏAļÕÚíçÂïÒŽ†7¤ívó€°èR ŸcR$mÎH¨ ý.ßl·{ÜyÕ~Qo÷ê9f»²hî¢+o‹ x‡iR6^wê5Té:¯é÷.µÛeOþ]é¼K~Á{GyYI÷Ëâúþÿ†v î¶ÚØ´Û-‹ã?:{Ý?õn’d-´[ùhfr8¤Þ”þÐõŽü£±'ÿhv¸yYÉS³‹Ç{hZ¸}«iß-ܼK9ÝÖÇ…[×OZ%Ó®~Ò±Þ#s²÷UnÇû §±ž’·àA¬>ÿCÝ<½ƒUÐvxW~ŸÓO÷æTЭžb^ì"w¾Ø{Ý©ÑïÎküMI,é÷‹7ü¾sü"‡BJâï.h¥»¯:/jþM€aÈ÷‡¼ûÝΫc¹ZÊhIîþ³…7QãƒsÄYŒ Àêf»Û|n Ö°jèεûºs%\vvZ¨Ý)è°ÚĮӲþkÒv½¾éÃK–À†3ðõh2éC{'Ñ`s_U9J»Šo¶ä›¿±<”¸j\Å‹Ü67(Áé;\ ­l‡…@à© ¼B0HëÆøs˜‚I?\?Ä£S˜Q«úæ3ìËbžtÐñnZQÔAG,‡…]ʉ)|Øû ì§(ÏÎÐ /ÙÔÎì\eõ“@Th0aI<Ø¿ ”­E)sÒÊŸ­fÙ•zsµnv­9í«l}Hÿ×KtãóR¦¨@‰^¼qÃm [%b$Œ¿ò8›\ެ‰ã©€ÒlÃ!÷zÚÃkëÜg˜¶! ;KèýèF‹wûËî Ú…&jÞ”åæ±Ë¥hŒª’3¼®"._}†³Ñ}]BþROTÝ]´ —ÕíâH™3¤HÉ}‚÷dãëß^R­ËÝ_’s͇˜+¤&ÂØ‹çÀˆ¢ú´çÞµ}#$ÿ”·@N É–‘ïu‹Út^c±¶ $a@7˜yP¼…$êx4åC‘Ê×Nw\tEhS‘=t§|s\)ëC àÐCé˜dùrãŽ+?íªOM³‘fµh3GÞ˜d]ú1çk“,öµâØÝJRïB¥†;ÑÓ DuÎnŠßÕtÓ*x‚Cë (¿wØñ蹮髪ÞÕä; ‘èÞi!“„ìÀ?^|Î>B9T¢¹§êZÃë*`¬V­¿k9HÐËŸ†ÀËéÔóñ2;õbÏ’ÉÒÇ/ï*Í|r¤ M'=^N/òSæZÂ} ªkp ¶@z‹/×LõÔ±þ»[«þô”ãï¿ÃžQÂÝh]ìW† eJ%<欭9{o»îZf·½ {õ{c‘ ÇÛ.j[,¡]azÊãÞ'NÜ4>Ï'Ðh¸\7f›s-ôèê•×­ëÝõ×1JÃßkkšëúÉrÃ#ƒ˜Så`Ý 6¹å×àA–  ‡ê âSª”µçgÿ÷7âTWÇvWêK65ãÛ•wÐgLQßxZŒKtWg°z•‡Â³êz÷3kÇ?Û¬-0 vón7W‰“ó¯N$ݨÜ–è&Ò<Ûñÿ¡#õ ;s”꥗էpº;Äì8‡ð¦M^[á§k¶ýZ¿>I¹u¸ 5÷?[s”4k/o«$74Zo5Qo­p7 ·›ÆÒ»iWôx<9XW8˜Ï’Ûb¨Ìè.\À ¿»ÆœÝY¬ÒͦxáŒ:{»&Jµr•"½ùÖp:¢ÕëL¯3Ö@Æ5bßZÝÕÏÎn®nä¯äx)ámt§\Éúbœýëö9ö3³Ä[åñ{oeØ„#×B›ÞÏË IvPÝ¿ÎíþµÛýk¿ûYê“ÉùÚûJ9K¦—Ún„´¢SÓ—ÞDLôíóà›uégSP;¥K€^.M:"ÖÂ#¢e<)ÇÉð66xÚ9Pru/<ê9×ÖßàÓ ^"¬G+ŽbÓjÔ¸ðg ~wk5•+ßU#˜ˆc§Å±ÓâØnA·Œ„ykQ¼Q< A7;!çm¸Ê™õç¶œo¥1{æ™Y@º!¯ §¶kÞÓaGdò”ûé–Õ‘u–hW}0óujmûÇ´—:úN‚/3ÔvÛ”ŽÝxí‘‚c{}ËQ‡¦ åÓÕzíƒ(ÌÀ-LRøßâ¸%þ'þ˜õúoX‚öc_.³˜³# `¡½*nÁÔüžþ[³mÿ<NáPj×Ö°™e*Q*š2ðËÍÈÀ0J4ñ©­q­(S ËÆ•&°I_«eƒOTc/Âèl¯;Àd‡Ì[–:X?ii?}? Y’ñCÌ“´•:0y=Ñ=@Ij„Kï¬u^'ù¨ÙAÁóý%‹wþ§ì‹N/ú#u‚®™öj¶ð‚ ç+ZÕÈš¯ÎëóÄaÙZÕö’®Ÿt–>u’IY ~ Y4>ò,‹äœdYŸ†2]:Ž—q*nfœlR¾ H]íÆå}Ñ‘9©-{$©}eÆšø»t›X´™Ùæjf°§Ëæâ ‘é–9¸d×±³À°dÔF]ddlI絸èYQã–:}óýKäˆak¨¾× VY|è&/›ˆ#%€O ;Xô‡¸ètVñ:u¯ofì÷ËÁ©¬'Ãw€Td¯‘6ºn Žc „²ãǦ(תèã¸å&ïOœbÖ&Ê8–«$H H›o x7h&íۉ݅1N˜Dв¿xÝY„û) ¦8û¿6{‘ w£±¢ÆÂÜæ®€ _#×RÌæ;&zê„|ôdI¦ùºZs“wÓ’˜{§8s“°žÅß;)þ&¤g󷬾Få Å»´cÞL2Çzæ­†p¨VìVƒê0q[{›rEÊúcy»œsÇì½ ùNù-曫¥µïFü$òÛÚ =‡ëúR̾ȣJû+Õ£/:ˆr@^R°Áìÿo6Ŭ ì%Ò–ˆ=Ùgñ‡í$rL6:K“p¦û¶·HÎ5Ý"=àk$ºEz°ºFŠwµºFº«Y[ò5ÒÝÏÚ½^#•œ‹$ï©âWIëy¬yas°..y~eç¢ô Æž ¾ýBöÑ_8€ÞÂ{¬›Ù¹'}k?…¬€˜t¯*^&EdÔâêxÒ)¦- »%ÚÓ©Ñ g?Êvˆýzð(Çìà6•á{Àñ »98"ÇžL}97×ùÔ_n±Æ…| CÇ>d²)¿7>G•;ûÚg—¾ÀdoØ K‰*µ øØá2âî¦}ô(¡2ÙžžŽè2Ž\ÞhðEW íª`×nòe­%S±+B½x ~¸í„"­ ÞD7ô™,ªVoé¸yëQÊ é×¥GªY9¹|Ó,šÖkÈøôÌqèG£i*=i4FÁ:÷û ǦçäœPµêÜ ¨Î1ˆ8ýr§ÁÿEœe"V*eŽÝÜÂÅÙž‰à½ÁÌÖFO‚çM™R(0§Göö‘ÐZ¡.I7Fà”óþp 矅F‚&•ó³šD©ôÚ ÄÀëØ\ìœÇaÂàyª“789ÒšTVia¥2Ì'ŠÑ5¦¸ÈŒVw›z¸*¨ú| P-‹f¥ýÒŸdæ‰õ¶ØÕÇ®Ž‹ëÁ$Z$C€…&™~æB/ÉÔÒsÎ,¾6 Ñp@É&ÏèBÅ¥ÕÇ#¡Î$½%µl0ÓKè‹'½7±X‹™<•ºáHdã1'ƒU¯+,øü—û€$"0ªNèÛ‡±`Z®oâÝ^§ÑR‰ú ¥dƌ̖ŘÁMCŒYˆ-î¨ôY4÷+ 5zR¹—=̬óvÒˆ]0ϪO™"Ùœ­<ü:¥³Êà*g¦tV —û”H´B°S.ëÃ"0äeï3,N^èˆÚÇS˜’¯Ùy9„Cq¯-%¾ÒÒCf%Ø'q#fN3”£$þÄÌ«üʼnüÅKÊžkìUs¤´•ßÎÎf+b)5‹'zm½>Ùëü™¶Ñý±×Á˱·‡M,¿ÔØÇ-üÑÞ{Ï9o’Mºc(KÁ8o:K¬×Ã+™Ã’ŸÙÍ(#9®9ÊÎÚ€Ÿ–7¡NviYyßÝ{½iù)ÉD—± :%®·q”?k|”9i(…mEÛ> ۾ƶ2%'I8ÖBçÂMAþ-„üÞƒüÞ‚ü¾8äjÕº˜›ÞrЈZ¢å‚hÍ¡§Ìu_ `M<™o“ó4rWKK̺‘‘ìmê¥ZYÆ|!«”¤ Û¸p*T9O"O9Z3;GðÓc”è5E ެòÒ+/ù’xÀæñeQñ´Ü„©šxÍù@ãÙUyyÏ“‘6Ìk„H·+¼ƒ‰j•µ^ª (LàüûýR- k>ùÕÛ6]ÊI6Y¿­—Ô~¢°A"Ó®à:ÈÓÁ+–Û€3k Ò-¦³T„ýM×q†`S]3ÜZ|2f‘l2‡-5° Y˜„­Y$l©S\ [LÂV [> [³HØ’$lå’°’Л'4 #²á”ò£Ad•ôGR×3²0œ‰•eà„o«…¨ä‚¨º j9 @¶Ùx "Ù˜?öòwØaäæ*I*$èêƒÑ—Ô¸Túi5ÊhØÙsY²„uÖ'E?Í|jöPCrºìdz]nT“.W†UÌÃeýw’e¼®ÝðQ&«Î’ëš²Ò(µEÄ%~½í6½]Èg˜Eºÿ•#ú“ÕŒD¿6´ëÌõ1é~ŽíJœŽ³Þ'é£9ý2 s û#ñùɈ5µrZaJ¡AΔ¢8ÝŽ Ðv5ôa ŸwáÐ9écM”´þ@Ê"ë]âWd#sÀ¨‹ZUk dqÿsÿüàórþvQ®ß–_ûø2Îü`üάˆI¡“nBJÍ™Œ}'ôŽÈ`΢]AòåS0NÄ8…/:ªi" á“+¦ ÚŠ³Þ„,“R¾L®dÍË[5Å`3eDtÝ Ÿ»¿¹wÞ?ç k ,Å‚‘Ëðz_ö˜"¶ªf‰3Ž(Ì;bûˆ‰ ŸjóEIDæå»ÏI±…*~(z+cE­y¨j`ÛºÜ÷ÍÄ!GpW•9͵yšíç×ü17Çölí§"ÃÊO¡ýT”„6¿÷‹Šëá4PY¾Ïià?c5TôµðÓ”ý õ£:ÞrÎ ’ýþ3O (#j?£¦UY¼'ïšÞ«sÀ­¨iWøð"çPÓ§ç²#Ÿ†‡ï7Æ¢ŸÏÅÆÿM²á½Æÿ=Þ®í<òãÿv¶¶Wñ÷ñbnqãÿº{mX•/_5Êž„èîµöžÇ$EZBÔ[GPº&üM)›Žë¶*Ä’ã°,ŽZ9Pްplsß+*éë÷Ž'|ÙÞôÆß0œð‰^˜‡£s¾&‡– §Øëv u*3N«>zä|$ö³S±µ 4~ù‡S ü."ijsb›ÅÔx ô—½Dü»`>á}ÄI)ÏsE$æŒGG-¦±q#™KÖ›NiF`¤K‰<,[ï¢È¿ÇKX›K°D§Óz8fã+:$«@KÌ‹´¤•c"Î^?pB*a`*š²gJõž n¨h €ÏŒc%³5ºï±¥÷p F+þë¦7éWLÌ¢5*G3Z‘‘M'²âl4¸¹ä×Ê©ò=GÙÃ?…ã‰îþl4g“ktÛÿ‡Ýq$ ŒˆC>ÞQ:Ï.=ò\Üœò‡k›¢BÆÌÀЙQ¡ef`h^T¨ `ÓáÁÞfYæBFtæØ×ï¿”>¢JS’ ï#Öoì¯Ë5ùqmí!-¯RKÊk÷çûFBV%–‚XùŠœèG˜yè¬=–u¥¥6Þ`\ø„¼n­QÅè=O#±Ò2±Û¿¸ùïR½Z-7ªÕ5rN.Õkµr£V[ûjO ¬'¬¯åÔqˆÉuoLKª4! X¬˜<4ðBŠ kh¼ê ÂÆCSHÀ½…¨V‰=FØ('˜›8ŸÃ`‚Éõ& ŠC¤øˆ‡é7ÐQõ1B+al9È•ðes¼ÉîüQdäÚ/UufQFš´‹»²SNÌGWzªM0Œƒ¬Úz®õDã bª>òUξt0â’K”ޏ¸òQgMp#Yí6 ò‰f‡57¡3†?¼7I1¹ÿmŠöHd_AúºáKÌÐ1œ 8Ÿ àØNX|¶¬¡{ØÔžŠ’º§£›áùœAoʬՕSŠP 2À¤„»jõimÍï`û©Ø“H{rWo_õSt½{$ )®ù ý#†>SØ qÜ3QóÚyªæ³ÎÃ(¡*-î-ÌèIWôNGŸ³5ðáèª  tT˜­Ù=Ažyý=*Úß¶ìoä¾®4É ÿHŒšH*ÛM´(ñ¥¦^þ2qƒGò{©†Yh;TG+Ü õµC6•ܥϦ w¸AöÛÇ›8`ÚC=K½h÷Eî€?6p3ru`¼^\5pâŽä%¡ÁzdÞT|{:}cÖ`~/:)‚uÔÝÏé–ÆÞ¿4"ÙWþþÇKy03ãA\çµRf'µJ_„¯BéFⱤM‚ô÷§SPCN¿Å1æç'<øAòÌLwœLn‚;!l£(a‰ÜKNmÀj¸žY Œ—éÉ*û"-Qç!ÍÝ2 §sŒÐ‡ˆõ¾>F”ÅÇgÕòææf¹3:prVœ†N-¡³©¨@·a0}é®)–v¼uˆdyG,câ#^·|,5yAá|3 ûyl?µyAéÌNðm<:UFâc+6¼AÀz7gnò ¼û7 ƒÚr2&5†›aІ//Ñ«Ÿ“@Sy+ÈhDô#ðZûaB¸ÿ#¶¡°-ãsæ·¤î9•ÉÔ=±ÁМ,ñ}F®r…!n^Ãì•\Bî×óäþ Ì½¡hS¥)âB䵸…”C„G“épHÿzÐg«€VÛLŽ gR£Êg PÇz¿;‚åÐ%¦e=IMäiÊ ’» ˆµq«‰ÇPß#«‰Nkò»¿ú#sù½R›¼/ÎCï JÞ¾WÒ–ßS¸Ä“¶*öÉI¡Mp-m´T¯|ãå¦Â8´‚µ<Ü|¦¦‡:²è!ÚÕ²ØAþQYuAªsÅ.ccð,6cÇ ‚TÊMo.›ˆc¡Ô4RsjRÂäø€L ã¿GrôR²\þÑÆÁÁo¤QäYIŠ-,-¶éi¶¿5¢ ‹Ö€\zG$M-X!Ô5°aï9Ðh"&Ó‘Tl{ªkЉðß±`!úŽEèÆµÙ`<[º-Äj›‚œI-Œ³ž¢¶ú™*»öß(Ûþ'N0Ù®Jí’"eþ<:v_©”:âÿcïíŸÚÈ‘àûùþ =Uo¶±f€d7{¹*LÖ`;`–ÍÕ½Ïk`H¼16?BruüÛ’FÒhÆcpÙevØ#µ¤V«Õjõ‡—Ó¯˜:q˜tæÞ¤(9)Ë\ц®ÃâJð²Ô.:•v1 ኼµwÌÚNýç =*Hší$9ª×ÔhNÍd8' ü˜o5UÛÎB U•Ê6:}tÛÌ$ܦI¹r0÷£Ü¦$ݦ•ƒjuaÑÙL£rM¤M“J5m—±ªD›+Ó¨µJó‡¼4Ú4ÌÞUÖsiÓ¡R"X/•6—‘ižXRt›ÒËŠ%EÁ¤šŽ%%ï_ÌÀwR[t=ްûÑå`1ãíÒˆ7•Pûç @•ˆ7•„’€ê3‘ÉhT1cN%!ä Bå©Ú4Ò¹”1€qU=ÓZ*ÂËŠ!¥ä.œPøšÙ‚˜yú¹Tq£°ºîñ”:ðëX0ºB¹QbÝ|rËBáåº>u¢6ÇWàÕ¬œÞ¾ÒþX÷«th1no‡ã×>ó×Ó7YúîɃ@Ô> P *Â_ã YË™H˜Q Ãb™þ¢ëáq¸¬¬Îþ…ñ_Ü¿»¨( ,ã`^#O7`$&âF›Ä×)ZðTyΣi¸Öèþ5^áŒ_¨zO&Ö<ÑL鵨O¹“ 1$GZIéÆ3XÝc?c­Ñ=î(ž¸šª÷±f ÄêÜ]±ÖÄ1(X.†ŸIìЄn«pR:-– yÀ§÷ðS…1W—ú.æIKSbÄCùõÖÝ;Z£ü›Hi' ß™ÐõÝ@«-=kG<[\_1¨Û|”àN´ûF1l%W1ZΆÆ@5—ª«Ã[ÊÀ–`ל‘ìZŸt£Iãm ·°lD ŽcM‰áŠÎ °Õ˜"æŠ .¢Ä3†çBÎ:§HLǃ±ÞßI$2ÌLö›©à E°•ÊÄçÍ r3Äû[¤™wlÂâ­-«¯Ê—ûwÙä!q3ïDôD „ŒÐ uˤjæiä© 5–ÆAiQ­¥?È%i ºþFüK|šNÆ…æSÂ!Ÿúº‡oÆðÍ¿mNhÖ¨5êF ‰ò_aøÕÕùá/¦é–ücТ<%pV°QY”Úd”ð®Ê-Ÿ—ÅïGðMtù ˆˆôjq9W¦@rEÄ7‘çÔÄïêH‰‹é($P„Õ2ÿ’ié¶Z²EX9‚¥“E”%¼CM2ƒª¨Ñbo:ùÂF…ÁìëÍí|2^ùÜn(dnPjyRYìS´lÂpåe9CÓl¬qÜ%¡r˜C׋â…¦EZXNbðfpù…Þ[\é(âû¿Ò IY陽`2öp¬nª„@Þž\Ip•ׄz[G.å¬nSê¡n|¥•ª‘0@Mçh4¹›UÅ1“;ýVpÝ®²«$}šÚNb£?u'Tf|<¦À}MQi‰"íëú9‘oº"!TÜÐÄïIÀ.oø…#Oh.ì‘*”(A÷5­²èÆ«xæ\½¸›rïëèsDù Zºé=㥮¨ˆV Šñ %é—uý²Î/ëA¨‰`Ì·‚Ôæ´Š¥R¸ÀÏB%x•z-.ÑuJÐ4æ] $é)žt4ÖH®–SEÈå‹à¸Óõ”É.óÃhrF&ÔŠÔ¦±n@ÙÌí6šy^ÈÄŒ‹[ê \ ÉÛ r|ÿ­ ­«(|)ª±)ÞM²<#«Q>(RÜ&ðc×'9ÍZ*$‚˽ær2`p®¥5å©©v݈ìQj˜í/ɪP›ó¨Á¯´’Uý3‹[îZe²Æ{Q(/ Ç­Òq«¸‰uKÇÝ"N7ÎöfX¢KóÇ­2üèjM’CzÒ¿w½08 (ñïž‚@ZýJKÑDá hæÈÓDEã#<Ùf¡rø|,´`¯ên0õ.ÆúZnŽD“b®èòµœ›39b’l ÄÔ$¾yê=ö¤µAƒL/ç6¾Y6^0X­ø‰þ€¯ð{5EN—GêÂé&áté{BêE‘r9EÓ™x»@Ë×_ˆj(³NæËˆ'­º"D!ß <ë‹°4ñp=ÀKü›8Ô°>R8©GãábÆzk¢eÆhê’0ƒQì·jý}$n}+~«Âï]AµÃ:¥@E1û¨ *J=Ñæ6®þQPú"Lt¥Õ÷h=Ah¸‚5@hÄsùï­W|ŽWV;O/tךEWÍð&:%Lô¿B 1<[U5U¿“Óp/Δ¶îPÃRŠd¢‚ÚÙ3-ô ¯ Úš`ï›àe8 b2…ænØX¿7¹žßÁŽXޱp;™ÎÅi»Ù9ÆðóNukg9…)KI¬ŒØÛ)waé$ùm2ý$Øø{øér²û ’Ngq$…bi<‚§r ük;kʲ±Joþ¦?ª H-½Éè³â?o½2WCÊ\Báœk(@=íµ 7&ÏdÂ@\ôoWÃm=7¹f!ýº7rö£KÎïÇÄÜ>‘Õn§ÃMQ9ϽÚu¦¨¶×}<ÀU‘¥Áø>Vc:g“‘@ñ¤3[2æïQ­ûÜãh。Öå.W.tœ[ö]§‘ÊŠÚN¥éN{m1ÜAtªaÚñÞoµcvtÜ—¿ù;Ìò¾ƒÇ˜‚ƒ}£ Л‡u`ð­òãþÕ£‹ ÏqâÓ[ië”òa:6÷{0>¾ß;m—Q¼2¥ï`líVç´Š,òŸ\2å½ÚY£@Ó™„²zðzò[-ËÜÁôû-ìõNÊÒó¼,% ¼¤¿×=òľ÷¡®UkïýšÙ_|ŸlçAöa6šoaÎ{']"€î“ƈ‚îk9m¶bÐ}Šè%/ŸÜVÒle$У^Ž t{­¨$ŠPÔØ|¶Ãê°œi;ì²­Pu%·Á<»œ/>1msÒß/šøÁAÝKN(Ü%^<£ý_&RæRiýrÔK˜{GS²_1¥œë™¦/œ]_M£,ŸCÉ¥Œ»ÁžÜn}e‹2¸êCS‰ÑWQFhb!¤³#ßá̆|òA4ooýAó”vÁŽl…Bw1ÙÚ,àè4ËõEP¤9%¼?hå¾VV>áŒw(_¸ÀL&®âæ ®¿î¦¿N ΗÉêõc°Æôö ¦¸j/éVðÎ3-Ïô›‹0«õøóö–»#$&Ä >}^v}Î÷´tŒØ øñRÇ”0®&uŸ:x’kŸñÄÖó;ÜI¡œ5¼&é ü©­qïøwh£Ñ†R–Y{,-)^ ‹/f¨›êÒÙÞ–:!r×´Eék´YЊ[¤Ԕà W‰Î¦6ó‡ºYÏÓG,œFK’ì­Ê¥Ì!c©„%*ªCçi>£IAÇW™Û¶29bËØô”°›³è‰u‰é“ÔlaŠ»Ï½b©+ Kâ—)Ò-ÕVÖ‰9)¤&˜TD ž/DA¨¦HJÓß·6¡`QvÿÌËÖ€‹œ²°ÔÍ…¥n&–’R{KÝ\XênBA¥n–†·™yT™Ì¤ "Ÿ€šä}5V·ì¦ÄËT†—€+º%Ù^>(æÒö¯àepÜÎOj}ž Ë{G¯§<³Ðžß“2 Þ&/wlÞá)šÐJ x$öÂ,î¢DÝus—ðÏÉ]²¥œt.¬N×>ÉàOÏ]žgÁxVç.»ù¸Kèá.¡­‚L=‚½ÜJ&«S‚dJh5ŽÁ¬\$omƒO ‚¡/UÂ-D{PƤ”v¹ðÓ7¼\xäÛƒU.ÌѹëSÍí \˜ñb'Vû{–©yÓŠã*'.Tt¡P’ƒ÷Û6aùn@¸ØŽ -½à.¬g÷í¥.”Ù·W&¬ô&²¡ù ª=õ-fÝ!ޤ·Õ]䡲ú+‘% '8ZÂWd)æ&*Á‘õaÉAQèTG¶¶Åy¹É3^1J;´áYBÞJ5ßv ¨ *dz+¹|[Hój•ÈSLå+‹›Á§##«ˆ€ÞÍþ«ô»]9<êNSM}ð—­›eëÙeOh£9â²ú–}µeôŠ_"ývÁ˜ã¬õgΩÿÊCÓ—µTòf<ýÉcþrÛŒÔDF½F\(o"£çç^'ÿÓƒGÍÿ´³l'ò?m¿ÜyÎÿô/2'ÿÓ!0‡ÃwõÓ2þ<£Ÿ'œ£‰.¼ñšÚ¼öÎPD¢œÝתÑϺܘT¨S„?Îð÷Y•-JÊò{¿ï¡ìýýÒ=u&ŸÙ½$Â6=2Ò“5íã®íYÎŒÕÏŠczÌù)U£=‘°é”±GÙ˜²´ÊkÊýÁcWO”ÇÒ=5kS®dK2å‘™E)½«Fz%3©’8-ðp³kŸ¥Xk¾Z†¥ÃZzb'@…%¦ð¶w¶O-ÉTÃí%_‚À™ø6úÏdx5“å¹/Fœ×¹áKÆ-rêp¸&Ë_U:©¢;b˸: Ž ^r;ðŽƒtÖ. oa@džüÍ&DÛ .+{pl}W÷6êTŽ*-!(ì¡2>¨X ð; 7€>ý!þÀSÁðÂdÿZK•§Ÿµ0öt‡k™ð‡«(ËèOfoþau¾óu%GKxiàŒ£Xã8NG¼`›-Àû‘ž‹€ƒ3µðÛ–ž €Ë¡BÇŠ€ˆK™¿PïÒdíåZ3B.nÀOU-@¢]]SºA×Þ/I!§¥Z CRì%x—0.éR¿õ÷&p¡aŸÐ0 ³2µLÊâý¬ÖñD-j­”’Ëõ} â"3‘”–€#/îs–•ýPHÇÊÿïÿSÆoFË2 ÂT‡Ø‹=Êgóéâr¾˜F*ROÓÁ°çT$x½˜æ;‚ü,ø{Œæ!¶DÂÜŽHÉi/ùÖX2[úMiï¸ÐñŠêõ’P—Áô¬ 9¿h)Ýwƒ BáÈÒR…¸dˆ…Zm¨f÷ ÎNAîGG”û¤ Ó*Š¢tÜìéâ´qiY\~c”Þ+•B±)zøëhjï/¢(Š•EA`j…à5Ô+Ó¨7ƒ×¢ uYufÿi“D €Tt$m9÷zæ%*ìÉÐljÏxïd_ !µ aôümP5߯KÝEdöà lV÷'¦a°iM ðc;Ѩˢ‘Hà‡[Ðè¾0Ij{ÛæºøÇrjj+êXJIº¤ŸŠ( Øå½È¥*”ýb¢¢hAÛÛq15L^*8þ®Ú1@y6ÔÂÜl§‘f_‡lÌ Ÿª¼Äœ157£ £X¡*d=]å•Ó'*3p†—Ã9fõãˆ;BÊ2Nàú!š¢±{eÜ~¨òI#¯ ä„,=VKî%+>Ò±qºñö,ÎL„ñ-0jŽJžil?_  „Mæœp¨ê‘1¨(Ü×iP:5ãgþâ4Üä†1Lêxˆ¡9I6•~o˜’ÃÚ§œ€°êñt3«ÍŽnC¨¸6U³³|8;C0g9pv¶"Î΂ÒÙRœ­g™mvt›~œäÃÙ ‚9ɳ“qvpü°Lœ¬g™mvt›œé<Ù‘9”#]1MîtDG¯ ቻŽ×´^E8М Æb FäH+ÄŸN6fg;J‡ßZÞô¤K,áà»lÄnênG¬¼•(ô£"·v³ƒRQ¹]ÇØ‰ððZfÚ`ä ÆAä‚(*cdDA•(ãÐôtp¦èàlœyèÀ…—ð$硃3Egtp¶:8« cßNÒÃ/ªd’¾YÖH:7Ò©°œ8ÁÇ ƒE'ËèàÄCÆ(¼t€§Sœ(:x„”2‹£Ê˜›¤9†_tnÈ$ó|åKÆVêH¥#_Ü.Ïýg%¿^b `t„¢’ÃÍjip…T:°½½Æ°HV*³À?¨Àð¡™tq¯µj‚ÅMq5‰”€».×hÊÝ®7ûrŒj(c?îØˆ©æ ¸(ÕBøF̯ìlïóÉ`&“Û_¾ÒYBþltÙ>»Á©zð)¢LuÉŽ3–ÔE+f š9ùÑÕ¨Ë ^†cQŽú÷HsXhí0–‰|˜[s ì±‘h,ñ ¢‡âé›ó“Òu8.ÀñUßð-½ÔþB‚øB’5·úNRj’PÓëÞŸ¥Z°]:ÁÛ½ Ô ~a£TWßõð;û½|x/¥¢ê½Jȼ„£áƒè1ÎBëAf0ë³ë¯tÁžÔwAWY‹H5¾‘š¥Èä¬ò~5ÇMãwJ$+_{Ã}2M¿Aµï9TY zb‡6;MŒÙ¿Nù×È“ÇÇnÙŒçqÊ¿²,qÊâ°,Žˆ%§·†î èµaî1`=üƒ¿÷0\æ^ï@Ýî»n†%ËÛZ»]+‹îoGeÑëœàSüU{=2¤L %+’¦/¦jæA¾öÒä×­äŽ º÷NíqäÐãV‹~wûo9’h£¿»ïúøNì©aDW ïY«ÃÁ‘b|¦!s½Á=øð‘ªìë@zÒ ‡(Yä(ŸVÙÓ 3Ò'±î, îL‚;sÁaÙ3܉î$ îD‚;qÁaÙœÉíÀ)FZÁØ3ÐÎÙ̯Ô}ƒöz èDÀ7ôI Ú‹€% ·]Ðíì(«‰à¤Ç+Fe]Åõ¥[Þ‰âÚΚ­de+ŒëqVådT½ýÓDØÕSv•Þeöæ§$À³À3 Þeõ0ô ïA‘fã@‚¦Qýª‘ÿk«†…mêk;ÃFÊV¢;qqq±‹t€‘F?¶Ó¦ÿõ¦® yu§¤³¥Žé›' ,…Ô¡ÿ Hl3l˜—´@~ €GæaHŸ¤Ÿÿˆ6¼ß³/ ‹D†«„®ˆœ‚>˜o­ƒ-QqbpôØCä«W L¶KÂ~jAŠG-L{±ò‚üÕ6›ÕV£Ú6Qj·ENEM4)imzœ\ÈamäúB™Õv>Io¨Î‡" v†g 3ämæ …D¥9îC¯sO=´úì)”w)ά>¦¢ÄèCz¡4÷!í„Ö JúMUOYÞLÇ"б$’h BªÏžë”â÷‰ ·HzÌ £¤ê2]_“¨¢31È£ ²@Þ ƒØgؘáå1¨ŠBDÆÀšjP‡žÕ_“ùjÚl¨þÆÄÊšÐôwVs‘5D0ñ ÓGÃú@t]êþ_ ‰.ýY:É^wãM ‰*¶›\6•*c,qY3Õ¢¯e˜´Û1¾1¡e4ŸÒκxÍfRXµ6£I)ö~c³šÌ~,-æú‘”ç1ÉìùÃâÈU4N“{DKɃyy@›üEÈWÑúSÁö¦×}JŸÎ–u„›3jTuáÌ l-Ù”6N–µÑ!/‡äOV%yaQ}à ÂAŠžŸÂ8ÞY«Ã¦…¾eÔlkÛ ;ÔÝqrACý%µ¬èœgw’*zR£²:=î*´ªÓƒ=à ë¯ãC;×G£h4œé| ‰ÔÈúQ ÞðÖ1ÑHZß*á@ÇR$戬±âqàåÙE ”©47ƒ²+“Yñ1SýÍ-–¨e%“ûK†Ûúq«¥áèЋve©“òH#t4d•—Yt;AjÉXµzOVEÇqXüˆ¼Ø[ÍÕ?û"É¡¤Ã1‘©÷uì­D4 ¤ÞX)ŽÅÍ›‰«”« 9;¼.÷,ØÚÒ±x­5¯åhÿñ†…†Š#5óüÙÝÑ]Qú+3ÆC†[– ¿Ì¢i::‹æŽZl•†ÙB¥­˜ë>ËU4~#_:òþa‹dg?{cyéq0·úíÕcLöùÅsäp¸X-È ÑA YˆPÔá/œN‘“ûOØq3È ì‡×ª<õÒ«¨( ÎBöŸÑ–íP úX5·& ÷@¡xC·ÿV®PFOQÀUtЦáÊŸÒ·¡îoÉ84-FuÌ1cÀÎ=¼Qxa÷$ÁV³vH´‡tðâ¾R¶ðaÏav«žéÍÉÞ8ºÄ¬{‚|˜èômzæL%30¬{<ˆdÈ"ú敇ÓOfóÊ`†kµû&·ù‰¹M›õ2Gð«•ÂÏìA› MŽ×0ƒ%ô–?x4ÿ37Oír:>Äg¢Ý~ù³-¿%[’û¶£_ÖWzÜŽÃøàþ·ã‡x<ñ?Æÿc7ØÝÚNÄÿx<ÇÿxŒ‡«ÿ£Ãñ?Êâ×w¿µ;¿—eŠo¶‹³¬Œ­}x-κ¤ÕG¹Ÿ"æÜÆWfÊ‹t *|ñîCá«)‘>Ìg-…<™¤Íèó]X§Æèð\ý«¬3¥ø²ÅÓ8~±,؇àƒcÒ_½Â² ­‚+•?ëä ïÅ£S3ÂVy .U.ii07#󸙙¢Ú SôðÞóWÑå|2•)«å1ÈŒ\ÈI»ÍÃÖ4Îû}9OƔޙç ½Â5!aýÂI©Vzö¥:ü.rälŸMfÀ)Ç~ÉiAض‰‘#;K†£h¯Öcîç`æˆ6¤eÿ°É¡I§ J˜0QÇ´ub“ªÿ µIÂ`³ª¨#¯‡œ8²Ýu‰&–¸Qö´E ‹¬æ’„€Š$ÓhÒ¬oÒD¡W.M€Ø‹–oÜ±ÑØxMÔeŽcž¢^Ñõ{<³Ê*J£ÂÚ-^—Å/&€c‡`žõ8L‘Àœ(çi ZQyaü g0qs¤Hp{Ù[Z_g‹$êŒÔ2f +˜‡ÉQñ‡xTŠç-óÒi^+„P‡ÕfçØ€ÆÝ£nSLÇ\3ƒš(85YÒ£ü³ts¶’t.¼Fã9w…?l_ÉÛÿˆW9éq&2¬hîÞxÚÆÙE_°Þ‹¨ÚWÉTM"Ä™€á;Š} =üã>NâP@H¢.«¾›pìa¤Îb-žÅ4ñœþ¹ V'ý¿Nj’óWmßÜšû^¾¦Ø:3Dhu6¬$5p5í`'{RW üÛ¸€vü. ÷ôýŒÇ—Y=cdßÂ3Sì¬u‘µ÷-öSà ɘ5Êɶ¯åMtÄ SV9¹nd±F^îÊ“l’0cµ¨¹ƒ&‚¹£Ñ葪šŒ@_£ŒæÊý·³=«†vôie¹ì´>¡g­*Cú§ëùç U´£¦½{Ÿiïæšö®=íFV¬iÞ?Ó!nåyïfÍ{w óÞ­2¤ÜóÞ5ç½§p¾‚wV;Ǥ;©Ó’²ÂÞÙL9ˆ·Ñ²‚åó] õ·*(MN¾½z~çúxê‘@#7`Ú ÑÕ›]y`ª–àÐC‰„Îupñ‡cirÆ™aN@ŠôËVc±PT¸X̉®âÓ‹‹ jL×(‹ÅxçG^•cbÔ3(¹—JÈ0ÈõÑЙMCê{å¥&„MX.5ñ²O!'ë”cS–Ÿœ ˜y‰‘”A>M‹ÚQégxrFÌ_èL³ƒF+•ñoÆ¿â·~¨CÅgªÉåå¥xy—:Ÿ.dgÄÝd1ºrÄÎÏÑô«˜Ý íÀýP’ƨ©´Ò–ñkr…Ñ8”òÍÇLè]ACk»ñqrû zgÜh#9 ‰vÜiŠ7¡û…O³”åKQ#\ü‡j˜M1¤ €V™q$¡H:tè.Õ)«(Ò!‚Ï>>´ êQÛEÒ•s·^´ʤÄ+úÃDÄn”[RçÇ!Þp¥_í-òƒ‘Lh/7RÙ«%4•² Ç}ô­ÙS\#,uJ…ÎfXÜ ^:7P‹¡‰¾4\;8×ಊÛþbúDš€hÅ뻄3‚Rm)TÌж]‰“ˆ—h³ Úbj0kØæìZíƒä7Ê™Nm]Ð Þë@v4"æ $ÂÅ@Y0–ŽØt_y¨ªY2¼€•¾Õ£ ›âeª˜!SŤr™\޽[¯E/í^7ïáÔ«vy=Sû‰³2rÅKXáêO$ƒPî0Dâ ,.(2âUtMÑ3ƒ{…;¼ -üw±Qûü_vÑ„¿ëôw±T*/Â"æ&¥(2 MæsÑ ·Ëi?ë;t„sRÝ:â8íyB–¿ûEü÷?ÿµtµƒ‹HFsµ iTh^ǸPTI½´„”øKU”ûó¢ªÐÌrc)îÏŒ´:cK›x¼¸…7‘õ±¤ƒZô«?€VH9 Þ]Pº­‘øO4Èu_¨‘‚œ(A[ ѥФ4NéQ€_Üi|áf´¡Þ7ó~xùhéj8›Юï"šßErSGreìËÐa~ ‚+Õž§èËàrn߈Ñàæâj@Ñ´E(Ü•åË"Zm5Ž{¢ÄÓÄêö4R“š°ˆtC¾ý /±nq-Ìdš²üË%Ÿa‘"Ó¹„(Ççꀎ½GÌ4$‘Æß\]2Œ±Š\ ãn^ÇlÂ!( <^,HÜõ·t;qÊç×gÛŽ(:Ã8Éßçx}ºQbT—ÎPõ\è•EŸ–<¥€¹EøóBþ%‚$€´‡CÞb`á2þÙ§Ãb\Y´G5äŸTWÖî+4㼨&Ø¢:ý`^¿/ì2 ; ËØÇ"Ž}6üp3¨ ×¾x?Ò1³…¢Àøõû‘ÍKHÖEãXÇZÐ:p†Eà¿$g°ú;ÿŸ¦“1v±IåD…>£É(tTüÛ“,‘,ß§ò"4~Åq`)µ”†Wã`®oÕ Ç$"@‘*ƒ=/‹ß‹²¸„rßG—ŸÓ*öˆÉGô}Û9‘éïqë Xæ(ºaQXƒÅh± ¼Ü˜žEq7ÏuTÞÂ,ŠÐŽ®¿`šwjb¬·ßmr¹‹–\QÌ>Ú§6=¼â8ýWaGt‚]h²Š;زñ4…BpQ‹z“ïQ·1T–ïÂ^áäA2Ü Š÷j¥¨Êß|å[ ¿‡a¡±8.ý¾üäæ^¹2t¼úqÅ" Ž+ù@ƒøªXôP‘Ð×2ö1±9R€M[‚‡·ã»2•ùÒN‘ô~€Ví`!c´ÖÁô«™Qr%”Š1 t­tFg€Äbçnãë~üz¯çAè>ÏøDΘ…¦½ž‡¡áÃg:HË$ˆû tì¶[.+<àË0|@«÷dº,rPoá†øêUP¦Sèý7·t¥ø‚ÿJù¯(–®ãi1Ƭ{†SGö=Cö=O°ï÷øRßòÃó^3ͨ[ÿ!+ÈåqÅÖÏZ$áOù¶Jò¥ÃÏ€Y‡+áã9}07S÷²¾ëªøWXÙþw9¬w“Gx­^P8«Ó '¤C^s±à-úBEš«OÄÑàÃlN)ƒ01Íøñ>@Ü0/iÐOÓQïrˆ­¨¥~z ÈRÍúæ_º+?oâ§Wô>ÞE°¤UŽÝG[ÓÀoÿüo|U§~5˜–)?´c‚î²j{Ò0öÖ»*ô¾5v nl(u ÏÝø’¥å6 ŸÇñ¹,­ÃðiW{UÑž'…ƒ÷\œBt5Ccw m´'}ˆ.¦¬·5ÀÈghh™ÁH±õJx‰Ú-æG`9©,ŽF t¤«]®¢›á¥8^\Œª"øùçí²¸½…?v+að“DÛ¿B 1<[U5U¿“C(!µÕŒ­ºz¦½‘œÚ7 ÔΞ{‹ÑàUß¼Æýy‚ÑkÊʼnI²7¹žß¤Xޱp B£8m7;°_ü¼SÝÚYNaDA ÄR+#övªÐ—ÙO½Òîô·Éô“áH<ó§WdY«gH§³¸’ÂM. ÁSªÒmgÍ@Y6VéÍ¿Âô§`Cu©“nÓY˜É[o"ô†L„N ι†ÔCüq!u òL& ÄEÿv5ÜÖs“k2Я{#ga?ºd#\&ænôyˆ|¨v;ŽhŠÊy¦èÕ.¦1稶×}”ªÈÓ`€«1¡‰³ÉHÀþÃ@9ϘÀï˜7PùÞNMn±o0Á²,—™ ¤€ß௃w§Ý,¨AÚîÆü‰¡øl}± ·Bh7®è `vrÚèþ^¦l×@AïÚ{ï:Ä­þ+ÿÞ?àß½tdbVøFê7z°É7[ôó=e\<ê•9Ÿ-'¡ï„é¸ä´»*ù2ýîžôU²Ë=ôÁa :¸ŸJÿÜêtÛ@âüóÝ»~À¿PÆã´óœ+:L¿}Ü„®à¯.ýêò'å鯵3þÙÄ_õ¬Ì›øº™:C5¾,ÌJ¹ÚnÿNùËüw@< ºÎ×îþ»>–kïýÊç~ÇÀs€RŠ)%Þ]9³nF¿sÃ{ÛhŸÜ=Á÷ß6Î÷ÊRl]c”;à¨æ¤Û÷`aîxíY‘äÊteh’ë¹ï;M‡W«ÿj”Ý?p Ÿ¹…UÛ¼þãâÊåb£—›ŽYé/ø^µqR­fyÝ€{Îa(ôнÕâÔ¹}«Ñhb r¹#Ô- ó–#ç„yË [æ WÏ[7“ÍÄàù=Ó#Ì9õ»Kê›x2H=¸ÛJ±fØAx컳Œ£Mëîr¼4Úm+ö;e>ZkÄTÈnc‰düp¤°#áOhOñ±rjdš Ð";ŒŒÑn1òÑ%GÙ"®  Çv«šrC:òq0Ÿ¶òÅõƒK?jìd6ž»;Äaôæ"_Ôš¡ÿòuÝìQ'³ù,ìøŽ¿õ{Ié¶cLhÒEœ9@’# Á’” C˜¼ÅÏâÛH\²Fh>f@ÇËŒ±¨JÉñèÏìx5w‡Ún«à”‰>iN´ë,í4P•;a°¹eü)¥ÃÎl¬^²“#¼¤î¿¿—Y±(OÃËO*’ùðS7Ά tXýU¤ºãlþ6šëër´6œÈ-L5yŒ’Kn0ªãXê`‰Ù|‰2xUd‘£žÁviÄ .lì+ûRi³ZáSùSÎÐ0³Á@yÂÁî"uõäü–Ø/ÒØxç2áV±›œÜå"²ÉÁeÏJÏðr:Út?I» ~ôÆ»ÂÆ¹d·Ó¢–ÅÍ k)OO"Ô‡Ó´¦òCtØM’MÂäìzXòÆÚ2cÿd]qÉ+{B„iðâ·r1Ÿ¸§Ø³Œ„uˆ!O`7<Þòz„ãUWÍ ‘ {2MÚñÔSC²J†Li¥6×Z¹¹Öòæ8² žô œ­„Ô’¦E¹ÐÛ•Ñk³$ŒÔp_t²ÇÑíˈp:H—;:_ÍfvÍ%ÑÁrŽQ… Ëk£²FÙ¼o_Ir/ ¡¢*2Š7¹¾2M.­T«« KGSø“DbŒ?0IÔsD}9IHÚRLÉÐÌ¥6—­Ÿ•e+Éix;Iný,Y´W qBiªô“§+¿ô—ÞdXÖtÃ:çm~º¶ËrÆvº ¤1ôTFþ}Y²šÚ•‰ëqÙ„¢ªÕ»™ŸÄPhÀâËõ11VÜPa"õ ¼{NÃËÅ0%oy”}Â8¸)#£@(² aâ8AS‚1"Kl´YCYc¼õÌEÏC8ÜOeñ©h;™0˜XlyEaVÄêp\äay˜‡yNÇc bü…B]HžuüŶMX›úçb;6´ô‚»T°žÝ·—ºPfß^™°Ò›üɆæ+¨#ÂAòÊËq‡éœKt/E7YYlƸá‰ïÁÌ+ ¾#Kv„ïÊ<%äzƒw‹%²[â_› Œ?57±s%ʯ›&OáµcI*Y•›^º!C 0•×Ixã^PÚ *xi¹UÚ “mÐV Qý4 üû)…©RxSn– ËÆÇ0Á(¼ A/Ji -/¤æ;vÿ"åõìnpëzÐÆ¹Ï8¾µš¥rCB+å ¨—¨»@•ía˜G;a‡Úw™øÜèÁÕNÈÄÚ)uXÌs!à.ž í/[ôeàí&]Ôš¥ÿ¡7ÇN²Õ¬¤UHý´£òâ ?‹æôšº‘R(à7ÔqvøÆÚ+_TßWB vÝ*z[ˆ®ÐèýbÝ€Jd0þ GKŸ57²DÌÉ4ÉOVÅy$Ëb6}¶MzµŠ !R&+d§ÅÙÙÀ§†¢$PænÁïZ@!ƒ,{íºU£N5êA˜h›VnÇ®•_¡-•ëlZC›Ð:Ú„zØ l 8?$b¨*Bì!ªŸ¸dè óéÀ:^Ð0U)Ï9µÈ†r _xÄzL¹zh¾—Jù´jÍõ~oIi—íVÐÒ‚-.ô*6áÿåI;„o¡Ë×)?vkM®$¿m®"®-m64‚sBh¾÷­z Ñ·øù‰…53æ<Ó>C—¹|âM¸XÊßU¹eÝGÊÎì«ì‘xlä$âÕ<ЬxìÃR£Ê®=`ì^‡˜+v¿À8 *ã‚>…ÒAyÅH±¿‡,Î^f±Ù´’AÝ4Õ8StD¯-²Õ/‰=·ß… á·oÔmu¤ã»Vµ¢ÏÑHȪ¢ÞªõªÒ{HJÃÓdüi<¹‹6^.w´£ ±xöÛGÁ0Ý`üàù H5ÙÄðëŸi·YÖ&†‹u¹ ²^2ígôµÌŽ›M£YU¶ËíQÓ(%ò¬/L®ô¨BžÃcD*„A1­|A®Zˆ‹™dÉ“žâ+P| ¦Ì! €MÜM‡èIÆø¨Š-tß§¥€¨ŒÝJƒægäz€j2„pùÈjLQ>O†Wñz4¹Ó™é^Ç“9ŸbfÒF_k I§O¢G¬ÿ¾ôE‘EéBûŒ¥†¹€ ±›Xs ,[;zaL©æ zO[4º4iTÞוª²¤Ëæ§eþÖŸhFΓ™Ö•¯Hzc¯î‡M&ײé–Ô¼Äo|&#yÒêOò&ž}……}C}ŒÕýá ŒÍ”ù<¤‘±†šÊkfÚ„¥¿¡N°ÖØ®$Tñ~£ô5ž7:¸~-sShWÃE£ˆÏðv<×ómžoÉ[(Ái6ˆ]€0»¡MqÌ2,~SØN°š.z?×7(r› ³rå@œ  Y0K2“h Ä؇ÞÙ|åßâ !?Çÿ%?Ç¢PΡ¸“³êÍ—÷èžøjwÞ©K’Ѓû0®_1ö4‹,—è…\QÀHbg? ªíº^rL´„[ À2¹± rHŠ-œ]ΉaVpÏ|1QØÏ‹;TuÝêm÷ì¸ÖLky‚4w,bÌÞ¿pUTúý×Fý˜š799©E ÃmgD›2#mæâÓN×ÒXºÜ0;Ìry'×±¥:„¬£?9ïƒ×°ëšî‡ì%Jž`vd¯)^±öÐL¨R<6ÓHån¢}«@¼c⑞›°ï&à€£°@è<úðU-)ÿá“ÌþÛbáÞ¤/§NÕâ4+ šù<Ó R—NC £ra6;·È\S[¾ Þ3Ü™ ¬€g{tö¼5踴nÔÙ‘.îÇ·\©'÷Œ-Ú‰0rÜÙšŠ6k8°'&žÿ5ŒV©ˆÑÐÇ…Œ”!Öï1ćEŽV¡©ÐÑBÇŽÞ³†¸Jd@:ó¤t/)Q9Fxª|ò©Ì@öR½ãHvÉ5­ùþ0Éú­¸ƒìI¿…ía:Á dJ:ž“—y"b­§»Ã{ëÀð^• yˆhÿ>D´Ÿ¾Nö=D”N>ûëù®ìû׸ÏàétÓXipu ®Q%Hžµqð€µq>ƃ\kcáe×ZÇÁÊ‹£¥Q|°T ’‡~øÈš‡Ø;:ç´K‘üà;õ•à¸z8–ࡎ*…=ú㚘"Çãø8]ÙµIбÐ4Â)}EIp¾˜^Ä'( ðKáqâ`Ò>ðiÀ¼|އ † ‘!Dh8<š>Õc«{¾iÓÇŒ“› JÔ“ÅLõŒŽ-{hP@ŽÐ òL1ZÚW;‡l4P*PŶ|øÉœp¸ œ‚‚Î:Nˆ‡cndƪpP«h¡#M­Ór'ŸSkɉ¥óJC+t‹^\£ƒ,æþÕ”Œ²è lAù¯ËNOìJ)à-œ£cáÔ _kÈ r&dìÔùdqùÑ9~tÞõ¯e1Š<{3øa,àñ,âˆÑò˜JGåÑHÇÂÇóžžmòV¾×l;øV§ð[@Š¢£€à'¼úìƒøsÿëCüÝÃÇY ˜Ÿ­ðï¸,NÊâý~³Ž™vù㻽Ôºa6|8nžñD¡ñ‡ô¦»¿öt…÷ôWYVIvã¡9Ò¢ldµ’;Fíœhà2(“É|»¬£k‚ègo/̺K|ÛècT^8eX®,äÍè:ƒpxG¼bäÔ¨NL ²Š?2ùÇq1äÝþF'öÕŽŒ²¬é‘lWêû|°SC^Hp‰òðª@+½‚œ½åWoûÕÐïèíFÁ~è¸r€öZ¾‘ûvµåó6Ú62"n,©µã©åÄÝhgÐë4¾<ú†á'/„½úlyAì¯"ô‚h¬0ŽÀ̃Uzñr%rÉé/ÿ{¸Ü_Þ6ÌŽ]¦Ù¢“Å%œ{IU•œj8¢›ËZŽ +6ê<.œ¶iç¸ ¬cÃSZk“í[Ó‚K& ’ŒøÑDÏ‚¦i¯ê.2lÄİ­HÕÛÀ7Ü"Ó`ÒjOu]Z¶¥…_<×5žOt*ôn{Ñ{ˆèí$‘²³eÀ;I¢÷„zxhAôfAÂBu(‡è=Ì@/öø0½êmz·©Å4ôžHôšæ»DÇ%xY9NÄI²Ù½v‡ïó@´:,¢¡¹:OYg‚¾oñ–[—lÉ¿J€CúëØãךּû™uºî[¯e‘A^;†:€ñjµZÁ/LäCßœ˜ö¶JÁcù«°ç~‹‘{€€%µ…Éè8ˆ”¸ ᇎ)-Š›8‹½„ýôaèEÓTqJtPi Å*¾êØ)à"rà0ÊŠë3jôÌã´ÓäÎ5“Ðñ¥Ñ¿¦·𴱋Mì¢Jϸºë¥N½z:HbD»®œïXj2Ôߤù@ÀS_ GpÚUÑ8”éP ÚÜ€|쵯~¯õÈï‹ IÜpÉP•Ü_VéŒqÝÓA#¨,Ú0ŠúFˆ±®·2+ÈGòó^¡Cwdt"àîîqwSú@¹ FAohÙ/éryQ¼@s^|)ÓÁ†O4Úê=Yßq{ñ‹ûRÀr©†ó$}fûIÝí%» #´úœ~òˆQÄLÃ7.Ù+.›‰—Õ‚…½›',9 ^mu%#Lv>ôºýæp°»å«ˆ6å<ŠÅÒï’<#{KÞ#´–r-Ã0âÒÚÖ3“l›c•)m<õ^Ôyõø9£!~|qÄž¸ikÕX ¼® )“u,¦­UØ“çÃ9šz©-”®KäßÃñ|"¦ÑÍ`86¢êºNó¸< C@Ms’æ‡4"ÈÛ2Æ$ÔôáùLJéå¤*…ݪ›Ê1ž‰ù0Ÿ+Ëê­íÛ­<¼µTRf¹Î<'9xwµSAÍ•šs²µ¦í¢!‹öëyü{$éJ©¬*«é†Ût#GÓnÓÙ‹Êý^Ó%„0Ÿ„ 5üßTBH¸Sê"Û¹…ˆ XzßÂ%-j ci÷·—ÛQEÌî§÷m;¿ä=ö/)îævRdJë®[ô8ÈìñŽÑã`IŸ“…3{½³¹;Fo ˆßGÔSFEE·¢cJÁ»`ú¸ž¥LOWl­]Ê|ùԤ̗ÏR¦ÕÑG”2­eoʙɢt;»  sç)Ë®jÅv•”ˆ×€v­¶E…Êå“n˰ËÅ/oëûhýÀj=Só#îþBëö÷Z·¿µÐšÞôŽ5íæ;î=n»ñï!®‡÷Uè=†¸N%ƒ%²ñ7‘Ûu'Ó%G[€çnfÊ™Ž„ž^Ö–æ Èk”è3B+ËñKpºLÂvdö¬&W—׿«îvOÍ`VÑûÈêæ$«§€øSHꯞš¤þêYR·:úØ’ºZ ë”Ô]˜?„¤®c¬²ÄÜöÊëèk·|ʵP †)·/Q-gôdßêIV¨•ôž,íÉz$x:|ý#I”Ôv,Ngz¦Ç#ì¯,Ó>¸±ÿdÛ|ªè±´+Ï+Ü*¶Ökô1‚âFYzÊ Áê§6þ|L y×'!?ºø»»‚øûrEñW ¬Kñ¶c•ÌÆÛ+U6Þ´Pšo;VÙex{¥JçÀÛOVÙ\džÝüR·[4s®ws ^%‹fõhîeÎï$‹fRÜËœ=þ)Yt Ž_徺ØöΤWi÷ièû)wgv|…3‰ï§ouIr$<±<ᡬd·”ùäòŸ¶Ä!Z…m¡®ÎgÅóp4rç}MËz›PÛÐèe‹è.”ƒ(Íf&ï ©]O9ŸMgS—øÉõµÿ|4|GߟÚÑðç磡Õч ¡‚­û±(ƒyøU^eò#ÃZ‹Â1Z½ÈdQOêôÚ–gFãàˆ—>úð¸œÝs®qxD(ù€¬xAµ†n»‡â{uû1n¶Ž–¬±T´ÄØNÝ<Äå²-ÃÚ¾³tîù\ñĽî¾ûŽà¹'õAõøûÀ— ùEbCJäÎãì Ý6 Ÿ…MåÇ@þ¤ÓÐ×åApµfQÞ›šn(û¦:>.ÇerS8)‹ÓâþŽáÖ–jãØÍUá\îY@ni™î¸ý¼¥Æ'=1|^Yþ"Ë%CäñÊK3DÂëÁyû-|6¾Ééò“pà³ Lú£9=,Cê“°G[ဒuüXíìKq;ÇÉãaÇŽ¼gìŠ[5óÀ‘ó´ñ7ö'wÉãÍ0—¹~kÿCÓþ¾n^lè#B.Ó¦,Ë«Wþ˱¬^5¾A¯2Ñ& ¢Çëö«hWš Ó¯‚´–«ò܉!á66—_‚ÙË…p«sûnçò\“åêÜ£û|›8‡sA.µuàSÑ>ªŸA•ùŽ]x¹ò9ðݧ¤õø)Û(-íÿvÒþ(ÇuгsÁ”æÒ»ðè²ÜÎÓ‘åvþ,²Ü_À¤>—„˜”²b]Ÿ-þåV­b˜m4šMÓ¨2DÄqî˜M®wœ•bM -‹•TËRÊ‘sÚ9½¸$j'åíţѹ4‡MÊ}ÔüfôÙv6÷4£Ïá k f}RiKœï.žæ@ã³}N+ú''”>)cž8($–&# üÈbéŸÛ~|±TÛ³ø_u*¡ÂP—ʶªp¹à–Ú¸’%ëo|]™»÷å]1 Q>1.¾´æ \ÙÞbÔr0ùìó}Þ_¹ÃûÎ4­±Ãožoú~èKM¿ó —¯î©ý\»˜ù2¤¸Ÿ|ŠÐõ«/űëši7¼èñû„ÉúzÌÛ_&?sØ·¯ rÞÍ-Ü;%W5o_f±žK,÷Û¡§ÏÊ«|£ÛI”ÌÝ+§ k´@×FåyÑñSî¾þžçmä¼Â˜v tòŸèJô¾âטEP “¯“¢j =z0ÿú倸‹)=#ø{/ѹBàºôˆ}£rè,O#œ£Ue²L1¥ë§ñän,nP3;Ö¹rË2)cYed” * xŽ*RÍCLh%rTÉ- ØMYŒ(¶Æð))"æo…cT}-s®Öi4Q Óa4«zòAÞ£˜Ð˜(-`Õ",¤‹©¸Œ'ã!f½ƒU í«Q•²þòPãDïÅÈg-!§1ŠÅoåŒ÷\ĢЅ¥TÔiœaª1U7'2æÛŒgèD0N‚ÖË@EcJmüy2¼Ò ZUŠOàñDfÜ…IG @@ÃÏ0·cÌåÉô&Äû/zÊ/dB^„ò+\E×Àæ®Ä`– 9LÀø/ñi:šcàÔEàô©Ž.–7Eñï˜äÂÉÁcTÞוª²˯HzÍOØJz}οª*ÚùD³q¾¡Êͧƒñ ×”@0çUnì¼,~/ªBGðMtù æív:¹Z\"±Ìï0«°N  Ï öï ¹NJÚäÚÕm_ÅW¥¯ Ç¥‹2¯©áåÇ´)A79µÜx‹ü÷ºî‘ӞƢµ–|a;ù.¹îm ×ùëm˜• •ƒ¢¢\J ,ã%Ü©üÀ24‘ê8ªŒaõT.(=ªÊýŒ€P4^ÿ –§d â¿e‚iÌ…*3B»ˆ7²¼îÓäºnŒÅ ×Â~«bz<+”2ýŸ¤"’s"ûkIL'Ñx¸ÀÄÁË{ɬs0÷v]NO@á€õ”s1YŒ)¬Lm—¢Qbªn̤ˆ½&ÆAygñõ{ØË£Hü+¨„ÿ¦I¿™ðÚŽ‘iÅšd b Û¢ÞªõÄ`ôa¬äã,¦÷P+/¬AÓçƒ×ÂB)0iä Ÿô˜—ïE‰4ör]Äõ7ⱡVÐ¥š9œ6‘™¥¾Œx LV Lȧ!¸®eLè0 G`õÀ„sNRhJTÌBFˆi¡÷'¶AN01=ÒݶS:Ì,½ã”Þ~-Þa"jX&:'ºoQPFj™a½šà—…Ñd\îc4¸ÂäräÃW‰<¹cà²,:mﬧmTÀbC:SžÏ4/°[íLæ° ®q1—ðÐb˜rÖÛ rú¬#†'Ó+N†m1äšÚz)I).ÍÉ‘€›9¾z¬š{t ¬Uv¥ó®Ô T#îÊ%lö7ã¸7&·²¯75§7 é6™oœDÝvÑí°!¸˜R‹ä®5ÙTÎ3ú2]Ë4˜‹îUÜ÷fð¥€ÁÕò®ßg<èÌ¿âxêz<õ5Œ§^%@ñx:j<{Öx^¨$깆µç ó¬ƒø åö(ø`8f‚.â*xWÁ‹8Õ¹kØçrÄ&Í‹‡,éÁN ÖnJ§tG®A*þ‹†ØüÇÁ ø'ìÀJ:Ãß_Ý•¤eÙnUï¹o`30”Ž>^긇ØÉèj&ºåT8ƒËóÕ_-¦8!¼†ñˆxäfuà]ÅËô¤ï­aÒ÷ªÈCÄû÷!âýôE™$ß}=’ý5Œd¿J€<#iÜg$ôå˜IC¤±†‘4ªȳ°ÒâA®…8‹ ÔÕ·X‰+¯ÄVž•x Wb뛯ă5ÌúA•ùVbSÂO›o¦©’<òe ñ‰&…y²û¤¦@B ‹—„æ`Ê‘·àÈ5üp3øß›á¸ð¾(Ýp¦†ÉGÒ mš&©àÛPnŽú /.?’‡•YŸ°"®¸’Ä–£vH§é&ʾÿP º&d²³èl¦ž2©tª6AN`Nf#\t ´6ç‹éE|޾XÌY @9écyôÃû& ’Ê`)Ĉ¡õt Ëø`{«îä·’=5Á¤t:ÖCA‡±C'7<&Mà€™Œ»CÊ* Us€-VA@žâ™ðkYw#S†ŠC"ï»ÉôÓìvp­ÂØ05yP&ul1ÁÞ4Ëa -Vƒã|N#À²äw“[\Î#Öéª5-{µdM§¬e$aüSÕ"IØÌ“œKÖT¬ ,µKz0 p1L¼N§u`gBã„Æhú•élÇã«_ä©tø–„Žg% úKØÑæ‘Ò3É¡Qcr$úl¾ mñ)03$7Úc|0pÔ㉈¦ÓÉÔtÍfƒȶ°?¤tá’2`¶€¯.¾Êñê<­fK_Ϙd6;›/¥Æ‡(Ã䞉–GéÅ%¬»ÙõbDteøhj:« Y{2¬ÀHí,L2ìŽFÑ@-¡Ê9vþÀ$Uº´¢aWºA2›ŠËªø¢!¬=‚1SÂÁb N1+û`8²•!¦J¤Nz €…›þtx!»Þmëq4øÇíÉ õâ³¼‹ã |  o¨ÀšÓˆð^‡6Kä—½Ë!ž}k;½‰týƒwEs\ö•Ÿ·ñÓ+zH)zþüv³Õ¸M¾€ªôæ_G‘¨)õÏŒÊõ&×ó»ÁT“4ª”кLmço½šœ†’Yˆiò~.k(@½¤¦®±Ø×f±ïµup˜n'Ó¹8mÃô‹Šøy»nk¿ ]Ë¥{CøBô_òYðóÏÛØöç!Ngív:áw;e@Ðl‚kP^Ûýk°ÓéLæ‘xµ[¥`÷Ð&WÛk‹>ꬪH0ÀUÚ²8›ŒD–cd(þóÏ/Õ†ÖB€lh#cÖÆƒÑ×Ùp¦ø€wRt=7…]Ðà>G4ȸ“ïOÍZ[VÕd`z9ÕnoGQm·°S|líìV‚­—[ÔåÙãí$ÉTùÊv€f«ƒtcÒŽæ' MâÆ¦šÙxH]•$4™Îò ;V´i4x—¼"o‹ù)ó›‚~Žh*ªb¦¹3©ŠWzJÀŃŸú¹,noÅ+ñ«]µÃ¾Yǃ€€ÒGÔo}L‡¸ï+fÛÇh†œš Û?ÇßSÍL¯Á~ÜÜ ¦(bÁt¼Ø}±Æ[Ö<¬¹ä8ƨ經½â0xǵn­Ý°. Tˆ¤­ýÍ-*M{1~²®)UÛ-’zù¦Ùh¾õîmd“Q·NNÝßaÞá¾-Ëù.nq^áßÁi¨¶Ù}wÚÙ/Kìw­3x…ñ|•u1ß’·Õ¿“‘‘ëGðøøÃìa(Átlí+KŒËX¨¬==xh|üÃr‚-e,i1=@}ZµFçL¾oœÃu¬úT½¬Šeô¦·¸â‹Ñ@2à*Ó]ÉñïeI€e!ã³ÉRY žöš¸+‚¨pé>Œ¯ÛìôšÆ}Ó~Q r(`ô¤Û÷Ž º„ål^=8XFúÂ_Ñ=0õÉUÄúT¼5aYÿV/m`¥Yù‘ɾ jc!µ¥S*²M)ß6NªÓ<mûª¨*±»}ã@íoľKñìJ‘GÙÌj( .Qž¼£(ªw‹l²Eõ]·ª¾zÛ¯îx1Ú1â4ZöiÖ²W„ þÀáø¶]m5ü1ÅUCÛFCzLKkíxjµök8V<©à¶ÙÎàK/„º ¡“ á'/„½úlyAì¯"ô‚h¬0ŽÀ̃Uzñ2›\J¹ &…œU]¥>`jVÓ웉£aºð›N_ tUÏ6PwÍv5=ÕÜ:l½ÃžwTÜ4#%¼óÌ30“K0‡ÉZ³[+ÎBÇ·ÊÈ8—¹vAlðu7œ•+ÒXM—“–ª1.¸ÿþ^Ú…mo„“Åðò“<ê¢áv2› ‰[ým3Éдwüä£+S”ü ,Þü“ê~Îì>n47hÞ§Îþ£ ú_€Ü:È¿d­W×cçÀ´g“‹[^ük?cÇñ¸Dq Q $³Ô¶ÿ½ªé’,€¸.&Ý RÒw$aŸ¬8é{âõg ±‰ñËÔʨÂ.¥á,ãª21#ÈÑ?!Y{¨üÜÜ·Š졯—ÁµIâ$2Ò**ªãÝ&K2 ¬Ì¶rÖMr.a2¯Œ J“‰ÒƬ ­—u×WÑDRJ§…ã¬úhþÚö;Ɉ¼ÛªÜNçÓÅ%¤U¯i(ÇæV¦¶¹-×ÉR'.i›\ùí;Ñ'v· Xdž·£4?&Ù®i4Ò4Ý%èF&h,„žYÀ¾p{ŽÙT\CV­3„‚°»•ÄŸêÝ&Ëžm³ãØ%Ýy¤«°Ñ(¹Brà=–bN\*Ü¿ôâžÜ;I½Ú2à$qBc;49„Bº º‘  aЃ²8Lýlãþ%Ax•Žû‰ûŽ÷'îO\Üó+FöŠ$«µŒÒ´Tb0s{TÒ2{èÜFjŠöS“u¼IÉë!T”ú ]?‘ÕCĉ=P Gi<8‹Ç/LE˜íƒ¾8ùŽ7;ˆÐÿ%Y‡±VP?ËÒn¬#³v#ÜRÈ!aÞ·Ýfd&‘%ŒÎøS‘ð“™„Ô“&ÐÈO–´(­F¤–|1/˜1N~ÝÜÞ«ûv›ûqºíû» DÒ{XyøçXùÑKŸB³²Æ¹å`eiGÐ*èu'ª?FfŠ ¦´³R<…Ÿt8@Hª—¿x¬˜ nÎF±,¦BœG“6åêçýzÀly2 .¦‚[qìƒm ƒ¢W› Ɔ›£.×`9˜rž'ª#xôPúl}Éø?Lƾûvý1²öùÇLk—«·ÎFçIË·ŒŽ¶°Þ´|÷é¿'5_Îþ¯–šOçÚ“C2rðm{bEÄϳ¶Ê«­JŒüYWõ¬«ÊUq}º*9ÐÅ›?ÓpÝ]rÜö$Òt3iÊo³3iš™47¼©47Dv*My¶>þE'Ò¬¨ó·)DxÏɘ/30òešýËÌ–¹ô4º,1&FÚI$Æt&ø1Îçk?ñ>ô¸ûгî:º+œrsq­ó­§zΓ«Œ™ãÜú€ÓEî£EZŒG¿_-?å=줺Â1Õ `¸¤ë?­Öõ{NW<š¦ðóàç\‡ÒÇ ™Ÿs÷;ÏA4íºÒ4ëÀ™/:aÞ\"¿§Ç%\!µeš´Ÿ»Ã«t8-áC;ì`óD!\W¿\ñóîrÆî[W¿s…\W¿õ4…[¾°‚AfXAõ1Ýò,#ä`ëG 9˜ˆÿw{ ìç1ãÿá«­Dü¿­çøò0±ZñÿŽaeà9¿ ÛçéqëzµÖÞ²yÒqYtáõ¾:R6—Åí{bûÚ“+ ^Ó£y;!:‘ -dŠe„‘ô¢ ±µ BÄᯖ/ÈJ1ÿ$ò4:ÿ®0“tH WŠŒ¸}„zÿÚCö8ÂÞê±óxttŸ›7{²+÷¤ñ‚æˆÜ¿‘E¢Î!¥ŒS É‘Aá ÝÙù¨ùWúÒˆöÆe®EÍ ©CäbÆàA÷¯ 3ï®Ùç+†ãÏ…Z±(}XseHŽq[Ê•æŽ\kQ™Gðkx•o¶$”/mVä(¤$¸$r”§)rÑ–œ€©ëmm¡Ô7L@Æÿ-†ÓèêµYíØ6ÜÆ»×B¶÷‹S¢‰¯=z¦—IŽ!¤S„D³ë†ÀpÛlé’f ×i¾F;Ôx2®, ÷í=´ >4↠ÂêÿDG2I6Ç6¬nêR¡³_„)1E`&]|k’—¬Œ³t7œ©ðŽêˆ¬* ψ Wðè},C3©µ9›O¦žj;«›p``t`A_f½ ¯™ZÓ¸A†p²,üQ Š¥?`T³½ ËIGüãÍðoþø%BË…PÇ•?Š 0˜±ëà:,è7TŠrL„{X3Ë=õ¼,Žj½ÿ Ò‡]kvÎ:Ð^å+iõÞk·:¨]=ÇoSÇERÓa©W;kpÚÂ$”5{£î×Úµóô‘‚TÚÞû•¼F;}u7áµJàÊnµŒQäöb%‰™ ö{èßÛk­ÑmµVG Êwõ>^«}tUCÓÄZÍñW%rÝUùÔ|\ ÉL×h‹ …7p(åЕ±¬ÂôBOìRDK"ÊçvMø¸JøIW ·¹’‹+à1%!ÊÁµ² †^ˆrDIrh§Y ·]ågë/¯|,ýþ³¹ñð,²Üï¾u)þtjƒ´.õüÙ ¾Í¬ ¾ã… ãè ®asùfq.±a€åªª{¿'ƒÏ³GAö†œä&‰wr‹À"2Nþ´+›[`ð\ Ô¸b@ÿdq4Æ}škÓÃP”7Ô9Ìí5ˆ°hÙ#ÁÒˆ3×OX*ó®ÂºAPµ|=ÚYÚ_T×8C•Isj“E?qÔ‹ºŒ¾cï„…øn]Þ¬›ê½«ñH›I¿8"|•ꆩ ™rçÓ2{¶£ùð¦ïâ«`)Îsõ :ì^³Î$¾Ÿß(J Áô’®BŽWî׌‰PYxî6] ”Þoäí~ÿ1ûž¼4ˆ)õ÷ gX昂2ܵ¸šàýÐl"î@è¤ãÃå`kÈ6o¶ ®rÙ7¹Ís¼µ'Y¡Šx.×Î%“€Ý¹ Ç u=HqÃÀÞ©VIò4Ú.ùÐ¥ë#¢v ñ<(lPO ô';ìA9ƒ ’ßúMöiFhvT?î ÊÂ=qO3}Ç_H®‰6^\ͳU„ §Ÿ´+ÜòVº‚Hêÿ§×³GÕÿoo…á«„þ?Ø~Öÿ?ÆÃ”bëÿ»šQJ-t(±$ ÊCùŸg0̃F· Åé§µË=ß H¼J$ç¹ Îõd<æm€•¼'T~ ÿL§ÝPLG°ÒµÐ$&ù<¼‚ã)…f䨮kïxØÝ`z%ßÄ÷×±b[ÇÖ带ĦTj(•éRƒ†ÌßL\N¢ëë!†ÈS¡¿}¹e¤Œ}®“Þh5lê0˜~·‡ŠÕÙäˆ uóá&`´ÃºapÊHþEM;¯‰ªÆÄÕ$â ³W1„’ Š@¦”"†tTKZr¸Œ±ÊðñÈ›œ·—ßE3Ÿ3WF|ãAA>ƒD<Ùz–ÝK ©Ó/ ˆêЖ)àÂ}*\*õòý´Â{²ð¯Fa8:ý±ø@gç0AüIn$Eå€k¢¬×3ŽëÌ:ظßXa^ýÉ Î«²Ï·$ßò–¤ôÄ®Iî™è)%1ÃE~³v’ Vùü>C9÷%±Aé1œ¯a çU†” …øÙÞ¨îé ŸÃ¼#ÍEƒËnnnÊyˆ³0O.°¹?‰Àêçýîi#Îk¶0ê\N¦Žφ¸oO¨))ýa„ÔÇc1CÕKzð˜ó"Îr,åT1áÈõB¡ài\î_ðˆ‚‰>`& ׆°ª6Â9^7†¾’â}à„Ø6JR¾4¶Â5ƒGp®šÃ¯;¼oQ1å-æ ¾{à&ìšrI}]T„ÒØd ƒ%^Lá¼A|r…H”Lb2¡0]IbŠ7(]LÃä0÷.¿Õè&V ê`€2å'Lr‡p‘D¾ .çºÏ׫ßïzuÙͪ{—š hIdà5†fG½²¾š]r%KBv?ã¤H!ô½,æOzŸ>Î^ ¶zýn~ãÿµƒFÀ¿BúEÊÖó£o;›û^³vNQy1Pt9¾åì·ÏèWïlÝ—œi×›÷¾VN½6Nµ¼.–Å|½yüËÖуWº\}ÈM¨ÿn5_Hb㵫qŠïý(—±º<ì«ÙUvÝ*9b»‚ºçyëj ÿC.Ž»½oyqÌAY…Þ{dŠD¢‚5‘’OkÛÉ/!©©îy™v™u3áéÍ«AŒyòÐ×°®:˜®Îx¥mœêÇ“ñ¢é$>¢É/Š`˜R%8J3Ó–™áÁ`Û1ïη³áh2Žùo<×ëq9ºòí¼/qã{rU§÷/°½8´Û$>8‡FÝaôµÝµçÖsÿ²ððj[@—ôE1¹ek»sÃ8“Tñ›7,DÖ€h¯¢Ûˆ ¼ÑTX×S|‹†{Ý¢ñz:$·8çFÚºS“޹°¦Ý (¬ú¸ÃR³ä1¤|ÊÒ÷ &Ÿä~y3Pÿ· L(x*‚À.³BþäÀ ø‰ÐX,áŸçE 'ü£LË[=a¬ãë÷:uµÝ+x‡{gŽd1è¦Ýäàù¥—º™{ëÊöÒæ½·lÚ±ËV”®Œ¦2ÔÒm´·Êz ¶sî«¢uÕôahÍ»ï>Âö,Ý—ÓùnŽ=Á?!G©²® {é„Xì-ï¾NïK·ÛÕèýUÎ dUô®ºá®½y÷织ó9I¤2 ÷ƒkCo³h½ÎGÿ:AФœBã¸ØB¶³Ù”áûâ {y2%XÁn“x–kÚæVF¯uÁãX'‰bS‹d)(êtG™}Ê&Àóø.ò…ü¦(ª£¨ÊwÁoœâ´{£7ŸÃ‹öž/ìHK÷¥Æq¯ä9´oª#{Ñh2qr7áR™øŸvãjÈß[¹ºÇ ˆá²@/¬k¿{* „}ƒ-ôõ£Õ—Îûx )Š5R¨áåcRŸfPÇqÝ`úq$"Ö ™ˆì{5ŽfUÑ_†sÆs!ÆlÑ\|s"ƒá‡!Zä1ÊËŽ9/Yþn"µâ‹ƒ‘½ò¾»õl 埔a™p:¤Ã3™ƒ”ŽúI)6§±I„H;CI—dôMÆ;ŒÄKè úqnpÊ-@NÎ>OŽÇ¾W®0ÙÜ é@u ¢3;8s°˜±% !@N'0~;|˜nÄ,ú@\ñµÁ ñ=1¥¾6%ùCR²û«â (Çk[ _«€…}T]ªÀaJU.pèV´?Òe/¨fsø Æ  ’ì}-[¬–iü‡¨òõvÙ,€:aN)„™mZž#q9æÞ9“Yìá¿V U ‡‡éªÁËd`¦œf†¼+nŒ ¡Í¶Síµ¿YsºÍ²„ø--–`.œ°@^b.¬Í‹`‚ ñª&¸{£ËO´í«Íh8§ÀDJb´ã¥Ü|fš  7W'[ëÊ¡û4UTç™YZÎ <.@bf\”xä'¨¹ˆg(ÙaO¾—¬ߣKþñ"§v¤íM˜ÑqG{æ,.y²5G[QCˆs)†ë~Ük熜íñ}(ZzmNÈÛÛ¤|ÈâŠób|™¨@8«¤ñiâe7Ó®7…‰¶¬^ƒd¨1ޮִùÝ8En¤~:ÄT Ya“xd>µ©™¯ƒÁ–3Ê2~Ÿ’ýÜÕA{ˆ"å@•$ 8¦±Î&1´d‡ ¤ãK%œ“H²„8Ln)bŠ©­ðPΛÁëñÊñ´Õ©ÄÓ©fÆÛ⣜‚ô ×HÚ5‡INØ$§Üz{ÙÒ™—ö*äsp¿‰¼jt7Ô_šæö¹ï©ùöé7þS°µ³ó2¡ÿÝŸõ¿ñ0á¹úßâ?ý9”«†`ºGô¥œ‘•VÑ÷Ð7üs4³£ÅÑnT#À HÉV›2bóÒGòJ#»—ßKí¼j„’¤äòmtÌ?êxÍ1>žNö‚ïªyöñX!2†Hã9pF®ÀR¼Ó؆ÙщxÕ÷kPÙ']Ÿ–ªìµ|oK¡>ö>Šp­ªTŠÿ•4÷Þ~çÔÜï=°Ã÷ÕÜÛ„§Ø”šážVé(󾿇Рõ9žk[ùnE@Ég©k†–`l¯bŽ kà/bŽêÑÿͯUÿ¾z¹»­ôÁî6ëÿÂWÏú¿Çx˜Æý_ÿ@î°]•F.«Z÷`5_Ž•‚f”™/T¤ì¦E€²ô›¦ös2šLW±á]•­ùTý¶L¹’ÂÓœØeºÎuØÁÂŽtœ@;êÃrÕfÿÎU·CWµ©¿Èùc|…a,¤(ôéx3Ÿ`ÒŽ¹ª çÔQ¢äAžŒ«Œ1áÑvyu]ÝT‡°[‡j Èçn€nn®Æ«oTѪ·J¬zsë/ËúíTß9Q©Ð /Q´Î÷«ÛËÆáüÕ“m/û£™Ë.KZJ3$G3°‚Ò+s ´%íòˆ•†&îÁ±2™ˆ*6ÞÎ.3êpUXYh$O6¾OEgE뻥¹‡ Õ x8%â1*§°eÅé9Ò1s¤ ¿ˆãÆÕ~‡¼:ò$ú«é†:ã¨À7·£H^Õ`0»—†+P&™kóáïé&^ÞÚ[Ø ÅÖ¶ØÚ[»²äÖ–6õ DŠ`[;"P¯á ˜Jþ0á¶wD¨JÀa! à{[‹¶½-¶wĶ*òøv ¶Cø>¡mÛÙ;ªÜÎ–Ø ÄN(v¶áû¤bNˆ]UtwKìb7»Ûbw¾Ç’Î4š+&N\ºJÄöq2ºšyV)_¼< š®|ýg2¼‚eµõz·¼õÖÍìL‡T£éžœF‘º –qÌ`˜Ÿ˜‹æ²VØyý2á˜71êRˆ*½ w-†j4Fài5n!m§j\6ãhùÇÈÊh6ß”º¥Jö›ÌèqUldÍ«e¿‚s\K’ o–tèߤX º]ƒ>¥ XJ@³»y:KB?´zˆ4VÌu¡Ÿä*âVv’ý”KÉ(p+nIµ˜Œ’!.qXÃΣ֒âmwbd-¢¾\D5Üó.&À"‰ÖpvfÈhþX°“¦Þœv®4¸€­ÂÆA¾÷SŽ1ø!’&øÖ*Ï70‡09€u@§flŒ]øXtž»Š½ÁœÃdÂ,ú¯ÌìIÛò# ð ÛUüh&f¦ æ̘S ?KnŘ[×0¹ºZ²ìÆ´Ÿ¶Äï2vëñïÖ“ºXOÖŽ`=Kvû³³3|C^¿³^^¿Mƒ•xýÝäaœ>uàôA9XÓ'±”Ïå¯Í{iœVqzƒÍ{I]1oS ñ“{ óöÐ{:óv©ÝdÞß%»ˆ]Šp½±0ƒqîgÈì*ü‡!Û<ÜB±q‡!óûÙ¤¾$ÿµjëÝonYtš½wûûœ‘¶ÖâùMWÔtPCRf†ÎÒô ÍÃŒ‡ÇPæ ÜàŒ|è³m{¢·ë»±}·ÿ87¶æÔ ;ÏA×¾˜%šHÜí¶<7·Ì”Ó®ºQ]ñ —:‘z)üô|‡úp…¹)Œ$§Pལ´¦ÈsUÉ*RŽ­tLů÷ƒ™…›ö¬‘÷0ô †`¥@ÝzÝéW‚8"U§Ÿð‚ЕaꬤíØóD4f˜ŒÜqw0ž~Çö­èPì}´³7É'ñÞ®ª: Ík’§Q¤(‹vœ-Ôªb¤ºªS O˜\ƒ5v^„:ÄK¼9‹S›Í" eŒÈ¤ {òx’Ž/×"}õÚ’‘ª™Xÿ˜ÄbH¸ÝÄ„j‚áŒj±¨Ÿt»M<á ÿÛýwtžUŽ—™óZù§ÇÑm"„&zÃû ›jj>…=L fÊÇŸ›Þæ´ö}1f©U qßûkÉÁÑØSF'Ñ ýF Š„‰€’§q~¾9ä·69øã°å¡¬Óü”eÐP‚GÂ`Yzì%ȉð½kEžêLóÐO*b ~o{!¹< #‡¾¸¸ˆ ~‰"x ÊÄ#­ªu$sU9gû¼ / ¦0Éþz˜dÿþLÒd SÓ,¡I^ ;¸èq–Ë)ô$oõ;ßÒô%€˜ryz0U Ä-­äîQ`2)©@]«Å³éw×âô¡KLJ~ßÍãêñp¿ŠªSòûU<»UÅž€[…šÌUÜ*hÍtD"–ˆv©ð ›“†›ÃÇQ?L@~)ó/L å—ÀzÃñ,žh³¾§ŠIe2¦m:¤Ðá#¶.Í!ÍÅ4ºŽ¦Ñø2º²GÔâ™`TH9¢%¦Œ(Ow–Œ(R|#R[jyø’ˆ-µ*Cz‚[~³ºŒý,ãŽþænßÀP-¿ùÙClÄVgKlÄ6e°0ò†ÈÐá5d_ÖÍo_·à·:²UÊêÀî`¨×Ýcè‘R—º/j:á€<¡OÍS­õÙ¶þY­—G3ûz©Í–§»ßþ8ýÃ=‰óÿ6ÏÇÿº½î&â¿nm?Ÿÿãáõ`ÿ»{ï:|‡©¢?Ä¡U¤‹ìs>ÄŒÐÍ2ãæS‹Ûž\a,NJâÃH%„ÅH¦£Á%ÃâWï`À»â º[ÛeÑ;üµzï¸D Fé²Ó8ŸÒÚ„ÿUë¾–8›eIsÛeú¸|Þ#=vS'Ùei|]o§$»IñøÍÕ"ÆA4t”÷2a’¢!y…cÝ@&ë&3øª­œSÆ[%]…ë#‚AW:•mB.ðØÀJ¬L¢1Yi­X$qxœw ì¶·¥âÒÄÑø 8øüæ6[yHK0wàÙ»‘‹¶$æ§î™ËNŠì& ãÿC8¯»Qkƒ ·ñÕÜžq¢i¤Wjz¦î9!Ý=ƒk8°r…3­ÁyÒmmUµƒ<™›`RÕÆÁ6¿Bå_ó«<͘pòª¼z†úïh|¹Õ“:š ] Á„⎆ؘ7P*{^¢e¼ e0šMä0ƒD#úÙ Øm—À;I«Áœ2C“æ¶”og±4=¶®Róê˜K¿(øY´ê$n‰„„»ÉôÓ $é(×rÛ.u¤<Ô”Lj¯öÄ|.þu4>Üɧ›_ Zè°8ÇÀõH~¸O7•$ç“ÂÎË2ã<þ Ò‡]kvÎ:Ð^¥HÌp•zíVç>žã·©ã"±p‰4ˆùî bÛ‹(Â|Mí×04nêHAönïýZÆß¾BmšB­,Á•ÝjkP´ñ¹€ ö»a²ÛÛk­1@p­Ž@ë8O'V0Ó5Z4E¡[JrÕwݪªÂô‚]®ð ß. ?©(”p›«»§>$fñSŒ¼‚6óåõ™¸Ù}SoY§}µ¹Zù©²T§ª‚Áó™íÁw¼èa½Á5lìp†¸YÜÀä”pY„…BÝ{•Ójnœ Ó®Ùt/ˆïr‹´ðêG  mìf›c`8 áÇ#ÊIÈðþÉR{Œ4úºú¶/C÷&¬ê¸êvÞÈlfôZ¨ÃÆŸP“´9éê  8€Ç?™¶(ay•$Ü’UÃ…ÆõFÆ"Š%¾ÜYB…ù%L>®¬|è°×Ô+ñ/µ1ò.Jû˜IÆ8"|å_ f Vî|šíh{1šoaú.¾ SŸÑŽ¡9?íM€¤†âÏÓ“ÞöaIâÃ]ºj^–`#ïúÙý§>fbÕþ'³²Åûû†34s\Á jרÕp²¹ù•Ž7—ƒ®X*×2| Ù’UFbAÒŸ¹¯‰¹rXìдéMFw.ylô9f¨[LŒ¾OµJ’ÅÑÎ˯²ây¿}'úÜ?•(·PO ôçJ„Ç`ƒ­ÄZ6ÐorS­L“LÉ8“¹‡1 ÷Äùh#æ=£T{@AåJ$Ì¢8Wóìá–ËVÒ®†ø_õj(yÿ}¾|ÌûŸ`k;|&ï¶žïãa¢·ïg{ÀŽšûÀ)~}÷[»ó;0ŽF«±×'fßGf?ÎZøþ<ëf°~(Ò…ó lÐm½q?± ¡Uos4REÇ\y“ÓWh’˜`d¬YÛsÆæ Yr}Ó/pût}sÖ*ÈŽðÇnAö?¦Ïß=n}€~”:m»ï ê­^´©]"rÀü¼@ƒÂèzŽ1:Ðäõr>™ª(rØ<`Û`]èÿ-³a%)Ÿ÷ {müpɈvÙ˜½åذ÷\-.ÙH[î]~\LÅõþ‡ÒíÙÍA7¢)üfø¤³#NJýÒI©ˆ÷Grÿ×^ã¤K}PwM<6c<â‹VðºC_‰žätp5V¶{ó ÝLQIT¸‰;ÍUtM·S__«&q’K˜<ã®ô…lŽEák©ôk±Ô§ïøƒ*̱fð+5ž¨+¹KOÆ?è×תSÜ‘õ)V8@G árí–Å|‰E™Wâjˆñ×G”Žlw-}ôÅhrù‰æ¬o`0&—³Xe‹S|®èæ÷8%âq‹JBn%o™`Y”4“,cFË §«D<6­²yÍ/çt3ÿ8áþ3q6±i„d†vË\‹¯a;’àðœÖ—7ˆ²yl›Pe Ïñ­>ß•²ï‘79,½ÇêâÕ”¤ê$ùÎèÀê½FSu<}ôT©›U(:¡=y9@f´yQ3¡#«Éæ1™[^Ý“_Nˆ £hálÇ,GOíp l±ŸµªÔ?ÉRš¶ËTÅCߪ|G1yÖ¼cèæb Ý,ÆÐ}ÒŒ¡k0†îêŒá<–ÃÂΗs†”F¾kèþUXÃÚ8CËà ´ ȺU jgèZœ¡kr†v›‹æÎk¯"ò›^–3ÜPÕYz@¡‰¶jBÂɲ?Zµ Çib&ÅŒíÎhö' Wh÷Èeèk,êv¬ÁåGã¤1˜J'—— rFžŒ‘Ñ„DPÍ£!øH]1R¬Ívì)XÈ]û°Ø‘­‰0õHƒÑ‡ÉÎ07<¯D 09·Óɇéàçé„ðKÚ)ð4}‡NܶñÚ¯f‹‹Ù|8§¿eq°Ä ÊK6r3øÄDÂLï Øëä“ > û§q+Kë°$‰Á93Ž)…ßð?Ð×ÙDè´ñFÆy8(|ˆ0°1ô Å`Çñ§àAú%ÞÔ·x\ÔÃ˾”¿ÒÑkCK‹Ëÿ~ù¯Øÿýúßê÷5¼Ãk¹²a¶±<Í|Ù²Ã{ á]­Õ:+‹ú»þ¯ð«Õ8èïwg˜0á¸Ö„ŸÝæÛ_ñ»Þ»vã,C-_ÍFÊ7ñ¯c´ ÐCôY á_ç¼OÙŽÌ ¿tÔýô§ù– ðdƒöîìäk(„?è¾qMW¯÷è]™ñ¶ C§r¶×E3Ã3‚òôå·¬[–4û¿G¶ÜÛ×W†x²T»=³RÆr[íÕ΀{ïè×ÛFûŒÀ·È”çcÝ&|<Ñ'Ý~*}»˜ÜDH¡Ü½8Xb¸»#±&Í$PßpÓŠ­õø¢Å|u“Ä+)Q¢‹Fod@áJL”m9eµ,⸰ºHÃýZÛž™ö‰º„Ñ=Zàž"=ËÞÐ6{Ô–}rl¦e `5‹C†ƒ:m|æ.®+%†Ç@°¿²`\ΟP9àé)È äΫ—Yò@ìZ-«·Y µ‰kµ„é%Ú|Ëä“&•ï‘-"*,céÌu|Ì{ËÞRo¹"–x¶Ô¨´²Úí„ኲŠÉn°7Ü©„'÷‚ Ïé`ËïT-Û¡Ê~‹¤lЗòƘ­SÊ%ÌùâæÕ,¦t@Ã6òçŽ-–2êÈjfï|NúA¤¶Ócu¦ €…#'Å’î° –ú‚RO,H`;»EcX)Y„×à“WÒ´YØÖÍÐÔü£±$DÎä¿5&ô¿¡¡g̱²þ­™`B#–÷"w(TÏ—ÍbbÀÿJÞÁ»5péñT8]ê±Y='€—d%Fq“ÿ¢ZJMaœ²¬Î›T‘ð<è"7I,ȤïóÁ£æf‡Ø"j›°0C2ê|Ä#/fUNB‚å»»EQ‡xÜþÀ²=Ù\OÚîV\0ÁkcôáöaDIL˜̾ÎàÌþÚ­O¡_^ÓÌð¯"ôò·n±„¤9*aÿ<.¨¥ÂxJÞaÁÈ_òFÅïïJŽžåú·ý*ÁË\C/K»ž>¾XÓ‡aÚ îxZ4pÝ¡dE· ×°ACÔNÙr9w7=¹Ý¿Q<]ÖN¬ö°\!€˜´%ÂO€w§c&é*bq­…^RòHW–ΚEò––¨Ê´óÕY S5ú!\ dþ©†ÔëŠÏË(*I§“sö˜Cå«áç<¨ŽÄyD‘n?cöj-·QRôÅíÕ`îD¹Œ}«óÏúá§å\9Ü¥ûûXåµ †u¤0ûBzú,?²Â†EËøoY?óM’+,­ã¬˜9¦$ y¶³T*]0™baÞ¹,/°€IËã>ÅA€&ÒÒpŠÔ‘ ì„ã²`“ºZ6¬ÈÀõ´œèÃñµé÷Ëã'Ä¥>hé‡ÎÒϱTûräÄIËÎòÏQ_ÎO%0Y„ÉrÀ¸7‹Àù=/„éÜÂC±oÊ-ð‚H‰UIq ­Ã„æ6†—Ëð%„®>³§¼ì‰ÉßbPYÅãÂá7ãf¡—›1 Þ‹Ÿåo3\M‰Içe.á|or˪íCn_]°9~|ÍïYùqØŠ3OèV xãÈd„­¼jÎÚšMí¡$j%ëÐ-³VäÑa kÑÝv/…Á¸ä.oªsõޝøPu„yX|Wü ´#Ù‰ø¼ûjË*äÕAˆÌ³ÿQSžüÔÄcÃ;ß')ë”åÉ—¶44q#ûÇUi±lLsT—ØÄ“dÎ•’U2&ÜT³xÂÞqç;µ1ïqÆ/¾ìIå]â|_M–mއó!7¤tM2½ᙘfŒÏÃúª-*¨qÁä%ñ[³øo:&oUSHBÈø§›—äßþ5ïÓšTß6ª~ýK[P4£7+æI¢Øf'd]p¦Öj<çI´W‰A©þæhßÓKÿŽí(kZ-§Ka\êþ:ŸlŽïîètl¬””Š'ª· 9%[?ôÓ ú¡ÕtCJ1²b(”´¿9,á›ú¡ö¿†_¡‡Ë˜Š¢®?Š¢p-Š¢ŸŸEüüŠ¢ð[*ŠÐn- ª‰ø ”Ã'xüŽ#.Ã?ÏY.m:Ðå¨fÈÂHš2+»°3‰K‹zþ.ꯕZ Òbø}5ná“и¡°ÉIó0ÞxíÓÓÆ?ýZ·±§`9ù°ÃÀKbeæ£RR{—¯RhTÊÑ’µEd~ÞVÁÈš”‰Ë`»ûI6p‡6¾Õîó§TWfŒ2|Ø(³‰,m˜ëÙf“eb¢þùGTËJüghÏ<@ÂU”»RmçS‘iüm(6R8à uxZÿw¤F!Š›™3j×ÐÆ@غ5èxæ’0ld#v J¢-]˼å÷ÖPÁj*êJÂÔ3­¤Y.ò¢LJ I¸±B;ÌܳR´Úáú´ÚR–\A¯5ߦˡÓgþæªød‘t3yGwîàkEt$ÀÈAåéaºÎh9k 5kI!°l΢Ýù9‹af„ùî|Ä=øŠç2#/[YùÄó•c‰æÃðÃUfšvÚ•‚í¥Ö¹©ÖÆ®5³U¾’VZÝñÅàöå¯4=å<öÖÞ0n©¤¡¨Bcù—ÒÜš(5ÍÈÔ7ÿx7ÍÖº“jží©B÷%›’&–['0Z±óÁóÙQûGÿãÙ3o®dϬfèûÙ3»ï‘T×jϼ\.Øx š·Ì‹óÙLÄÍ«™2㔼î”ù—4eÞpl™“ã:ÓL?ñ]àáëg²î¶<Îiˆ®Wúr+]Ú³qùÅ€óxÀ͖ߥ–yo¶ÂŒ¦ý{Z7[9ÕDišJŒÚ·6E¥u©Ã„ºó¦ÒðÌ/Ûðc‰)æsRÂ2AÉÔP¥¯©¸ˆ½¸¼e2¦S¸Ú'óSe¹PÎÁ"P9ÁVš£çVK¼Õ²¹õS ±4àQ‡åÃbEó%?GâçOj[ÿ m'±ZúÐ¥äºÒ•Ø™qP1²jpí"‡KI­kQ¼Z…ëº2z*ÌÉs+b܉l iI?æ•È3G{B-³¯ÓÛ Ó{¼™[Þët>œJð_š= ¼$…¿7¶×û÷FI6OÔb ŠY€`‡TYþ  ð¿­r (LG²½ÈØÊ®Åóð¨[€Kø¦ ½·Â’=c¹RËnq}»Œ’¢ƒW¿3i}‹;5›Î4r.‘£æJí V¢*3R½s}ÖέÌÛã͆U}¹º'ÇŸ–{ Áð÷?­ë^€Ï€~úôé×q´J¿Þ’JÍMibrÖÊ­j7ùêfï-G™šËìÝ­”¬’A«š½/íá= ß}Š —[†ï^ JÁ°SW6ë¸7¤å{EZ¾S-ß%M¶˜××ðÝ7rÛò=ÖÈÙ–ï¦Þm™å»N,3ôÍ%fèA–!z¶å{>;û ¶îÖS£J¡† PKmß×dùülhÿÂ\Ú?-%K˜ZÑ5{bÃwÆkó]óó±[ÅvÉmü΄–;¯ù—´~¯õ»(ê£{  ß¿•VÑg1nZÅ”iXA«àžµŠôüZEuyš÷ÜUøàÙ¬^Ì"Ûûðéÿÿ½Q)ÜMA¼¸KMÓù¹ž Öû¨¡?’­û_Yçÿ,‘xõ—•HÒï!–wj¼åOìGV,›ß„9 Ø;̨ªúë¾Ó·~ü;U… HÄf—¬í{{Œ„¡Ò®l×mÜ[ä²êVå•&Nð·´ë^vmsÏê›AÖ¶‹(ݾÿ½OV¹MËÃ$Ü^G$ÔåU²£_¤]Åñô5Q>W ºGJÊ1¿&ú^ÝWs‚ÓúðÄ ÛšüJ¤WÉ èI‚X­‡ð+ wîëWÒ2¼DòóŸØ@ÑΣø•,Ÿ‰%3xŽÿ¢1Ë·ÄU°çò-áJárg„%¾"iÎ%iåeÈùð¥í^¢Fæ ÔÉzÑàœyìó÷¿=?k|FƒÛÁå§Êv5|ÑëšO£/—Õëµ¶±ÏËúýêåKú½ògü#Ø ÿÀ³õ*ØÙÚ ÿ¶ìl¿Úý›ØZk/RžÅlSñ·›Át6¸™ÌÒÊA±ëõ¢åI<¼®z§õî»SXŸ Zqç{X¯íãÚrû2DÉ þ†̓|j¶ð'n:»§L—C‹ºR­ÚqmïHÈ4~¢ð9šRRS ¾"¼—Kÿt<ü\¥Ü-Ñx GÖ(*ÇßíÁQàz2¢M?E£è+:µ·¢5¿ÒYó:“Ï¥ ƒƒÈKÍUªU™jRÔdjS#)ßÞ¯µnmÏÊgIHø»K2¢ ªDa«ãÉãGi}M{òžXIzìÐR¬—-ióG•ðx1½Ì"#E(Ï3*¦%tžÅ‰`8ÏöõO^Ãÿb†“Ò[NcP9|Rê—NJ%Ì4m¤BµuÛœo‡²²N)É%£‰!%†½9¡”4ø±&;Þw:„XGu™sÆfêðÙðfó8œS¾àùt0ža=Ä{è(ü÷ž3(OnñK\g%w3# Ì›Cq,¨I@çüf1šoG_ñ:w8çѽW§$蘣u8–°.ãÉsØò0 oó2£p8£¬:Œ<7‘7%o­qÞû„Ù/:!±÷=e£­é¯Õu)ãFœczNƒŸ\_W’ÅM“[ÀÄpÖ?ŒåØ5[)iù-§ Ö+«˜ €7bãl㵌ÄeOÎ/NÅV¼šˆñd®êŸÈžud©% °9½¹Ì¿-ÛíW¡ö?Ù´Š'ØõB%ZΑ¦—kÇ2PÆ<õã9fÌH¢úQÖe‚ð‘XÕmãËp.sËëÕ“ÙX™Ó#›`R¨Yç:ïçÁï’\çý*dß ¾@–òœŸ¤â|x-©’ˆ®œMl~œº Nhm]DÑØdC^èNêyƒs9¼Jv⽸û8¼üsé¾›Ý\·Ý¡¶)?µ™—^ÏÎÉfç¤Ê’ÓCü<9=F3ÈÙ³Khz¶R“ÑÀ±O²'££Ý¥êŽƒ™œÏIn8eÚHL3à‚ˆ>jg†8åý½ˆæw8¹ƒ«?—˜ð›û‘JÔêíd8ÆÝc")O%/•9ϰ#¸Åš0$ß&èeÜc ç—a‘rß ¢Ã9×Ê/4Ì`t‡9†©ø,Q^!•ñ ÷„ë! ×„¡/ L7@ WÃk 1q=ÜP%Î+Ìã€M8ßN¦pÖ+Zx Ä?Þ0Bàwçù¹%?KRBA†ån2ý4ƒsH”k™w¤@IÂ%VÏ °7”Þ~¶¸Ä»ëňfË,ð*€³'³G™7 Ñ5~ ÷8XèW( G£è$ Þn&(ó»‰K,âŽr¿O&âr²åã»Üжq;\À.›¼·Ñø+¶WA²¡9‰®Š¿ ÄSòqð9’Œg0E£âÑ×$ÍþY "ägGÆåb:ÅÁhº°¨è"ÂÕJ‹ì ¤¦—o—g¥·gÕPþ<ô¿Õ:ýŒ3Á¯n¤ÿúþháNãÜ—ü©ÙÓ’ªgµ’;}z«§…5¦H§«"O¿îÒ\­JàÅÉöMS$t†py”…M[+ðôÅ5ÓÛu:3÷ÔäàKy'¯ÈÛ“üÄʺmŽD¾³áæNŽ|ÛMßú,‡„W -BkTü!)zÏ×–¢× {“Ú°•œŽ®rÔ j4\•“¯’LÈÖ_T‰ö^€œyÃp/¥­4Ä¿B;I°š‚äu4Ø–šøi‡9·T3´Ëm9¾Û²P|ˈÊcƒgîâ¦ñ¶À¦5ÍpCÿ,dà¿0¬çÖ2üµ”&' -Æ_+ -­eøkIüµ2ñ×òáÏ™¦ÆI•¡xH59£\4a3/ãx²xi÷fÛ%—Nùôÿ~4Ù D˜bSXYwq•DÌ_îõ‚I%-ã€0޾ÌA0GÑi4¹KœdYz¨^§‚=)1ð€ƒ„ì’ s‡Ã‚€xã¹ÂÁ1mB‹›²š4 I/qá²þ;•nœ¦mÏ áŒ2~"0í(^°%ä ì 0©ˆ…Ë•Å2ö.Ë0!`{î+‹¯§H’ ýÚÔ˜5™}/€ùó¬)Ùv >áaeeëåä²Tï‰åÒ‹;cîä¼e…ŠcnûÆg´î±?¶i³Æg¬ÆKŒƒ“ªÃ:íYP”bO+·°}·~^-ø¬±aoç%êmIÐá÷ çMŽìòÄÉ™I »(9oŠË±¾Ä|—Åx¢N³¤°s´åCZÞ„»Hm2ò[Øw£KÈNÃp,.pÀ–‹xv;Âs~µ…jÞ—.D/y'&#ÓÿLv«NkòjxEº»”N®>™ˆ×C(gÎÈGÁ²d:óã¡f~R5mH¸¦:Z$0»6¬æ@ì„®Î~Üä24¦3Mý¬øx,2Z]”±ñ¶b 'ª)° 4 %̬"® .&Ÿ£'&®¡Küöò=­"7ûÊwÙÓ*já/eÐ$Ê=I­ò,©}IíOFÓÁ÷¦è'(¬)ä-Ùgò k®…ô·ÖäÔÿà¢Z%ÁøÇ?9Í“úðÏ.§U¾œæCãä´·rZ¨®HlE»A&ËíqÏŸíqÿ¡I)˜ ûÝ~·‡Ú‡ÙäÈ Ud# Èô ú¡[ÄÍ?¢54¯ŠªFÁÕ$b#À«‰BIè2×F×P,—.¢ËÁDí« Â™!U±ÊðÈ7®6ÂrØ÷"•âT-·ï=E3Ý›UÛæÍ®AoK—M ·¸B–7Ú“7îlçNFØò9že=½¯Nt¸l¸mu&Ú*0*:…ûT¸Têåûi…÷dá_Â{“ñ‹dú¬ªÁÑ;ð‡|ÈîhŽ'ãÊb<œgàÛ˜»àí¨kUa›Q#Êk¼ † À(„Ð!là,<¬FU¶Ì‹K]ÂJ»Ï,;[£#—@uÎ^•}0úTsƗ˾¸æØc¯“ÖÛ8þæ5¯Â4w\™ÜvÐÞ³c‚I˜þ£YŸm[CýÐ|0Ïbóq„ϬM§îóÑ×ÄÂR͘pjÃbk4-ïhvJ‡–ŽÆí˜ 'u4©HSC0¡¸£¡EeÌ×í¡½µŒ"£ÙÄAõ ЉÁlü’`õ¶Æ®åYEK¬±kU†”´Æ®ß‡Šëe\ Bv¢æºJ} C©WRr(ç÷ʹ(‰=Xá| c8¯2¤äPø!ø+x-x „–+ÜÁ a†ÄdH!¬ÇÉŽ &”óÂE63þM™™Wê­ÐÅm½ äßàBš‹[u.'Ói;Ô˜pôŽMIÁïk$CÈŒ±ð’ÇÀ¬úì?‹«Hõ –ò¨b‘‹¥ð«Âý+ Ruk‹0ˆ„kCXUáÔgôÙ É8u`m/s³$Ž  '}fNXqȹ²Ä¹r„KÊÚŸàD£ÈvMÑ«¾.*Bs2†ÁÞ gèa1" ÑQ 2‰É„"ò01Å{ðìÎFˆL “„íG4Õè&~  êìúv3øÛ3ÁEù2¸œë¨ÕtOÿ€í’öLêìó„ý ~$KúT@qÈž¡a²øç¼Mçˆ~ÆI¸Œ‘½0ÜD­‡7&ïÓÇØ8†#{«×ï6à7þ_;hü+¤_/ìü(uxtB_r0ïÕαíEÒêÖý˜¼Ì!ŒÊR¹QÆódûŒ~õÎÖhù_«NÒÌÿïíüà™G{ï×ôQSõ²*æëÍg„¾íp«×Rª aì‚ÀÚ47õ’aªKH9è"HÐqÖq Ó —ü¸Á¤#ƒl¹µ’=L‚T]í#L㵫ðqŠïeu!á!»@HvA¢â4 ä¶ r‰wFÂÃ÷Ôì*»nÒó:t$œ&@,Î[÷çdÝó¼u¯áúо݃Þ7òµ ¬«lÓƒè7“°êf0á¤òSk ý±¹êž—/ÿqêhŒÎòq{Ç kˆŒyòèløqÕy/èl1¼YÜ ñdüŸh:‰© Ã’è&½%jeq;ZÌ ƒyÔ1Œ*aË‚o˜ÂT6ngÃÑdóÞ´Ì"½Á5ÖÃ1öÅ*×À÷%®b|Éøý l/öó˜Ä'ç°©;¼OyŒ­¹õdšš,\D—Ti1¹-ÔŠ¨Z+Ç…ï>¢ï%¿yÃÂg ˆö*ºøèBM…XÐ ñW–1­0gO@-®†ûhÚÕ‰º4YwhjºB1ÎêÙð 'ŸÔOþ¼¨]Œ&<ÑA؃‹Y¡ aù¡²XÂ?Ï1mþQFƒå­ž0æñõû¢:CÚ½‚w(ìGÒØÒÆp&Ê#_¼gµ– 54í,'@¤,Œ:dËc8pâ+©lŽ1´™:ñÄvuÅ:›$äYâ •ìÐ’­Ù¢Ô×Ói(Ë"(J"tVsa<<›MbFè &»I“Íd‘°•Ô5“ìÇŸæç –˜27’&Bcù!ÝøKnÅ©Ö&0Ì¥áàÎÔ@Ï) ›¨ܶÆÚ‘¿ŒƒÁøïMn¤FØ<”2†`8…ÍõsF”K ê=~¹^ìÆHE¹:v3‘þÈDàÚËœHó´xð˜“Ò~Z/¢_1¢RÁ‰•‘ü*Éi)âœ*é”l­?K ¤'J¿~^'©[÷'5×vÊcŒkrÌÇb™A¸l{é!8%ˆ ŸD(=ß<) 1¶ XÓ¬¡Xä œAêK·•Þ*”lçäª+¡,{cI>™(Ë»­•¥K7¯å”¸›ƒ®„ÖumU„Ö¼;U:%.ÝvV£ÄW9™îJ(ËÞx’O&ÊòîS«[«&‰If8ô ÊqJ´&§Dãc¦Ÿž4)Bze3õOg“sV¾06®âÒÕc+xÀmòQÀrMÛÜÉèµ.XôãIfTL¢ØÔXX‡á:Ý£eŸæ0x~á<¾/{!¿)Šê(ªò}å§8íxÃñgyÞ+Úû¤<"‰ÀÙŽ÷%ÏápS ‹F“‰¢ —ÊħŴ[Aûà÷ÞºlÔ=V@à›h:‹8‚!¼°®¦îy8ö-«ÐWdV_:ïã¤(qHyƒdIÝAÇ=Šc6¸üˆökkLDö½'bž¢M5Aióc`dˆý¹œ’^‰ïSå9åÐ×ÌРȃ¸qþ¶ãž®¥}%œÀõµ(OÝõàkelp¹ê{ÒKdÄQø­˜Pý+g5¢Mœß×Á—§}›/é®érK™ÓÊ‘¯ã´úYÌÙáÓ7à]˜¼ÝÓԥʋbçè€ôaIj«,Õ•4ÿÕªÚ4cQ¾ƒ£;0”^¥zÀ虎WmÛÉ]OISÔFB汚¯g«ùúKô|)££ÇU^&÷ð’?æD'±’ñýßÞÍÛï®câ%^a%‰"Zdꌇwx{Y‡Eê¬q <òŒtŸ Œ øŽÎ^ M¹LU›sèÒ|Mì“z0“sº êžÙúÌlI”ÑåÕLqÕ4oKâ¿_ÈJ4TÈ'˜BªP÷ ÷ìôÃEÏÏÉ4f£pXw( âe Û£JðÚ3¢‹uaXÒ^ƒTm¨0|=Ü Êô“.0Òö<茊-WºÀXù ¦l‡2À•'$- (x]¼­[íÐÚ g ^`”H"-QBåªqŽ Hž@êÀ †NÞ"Ó¶°¹bœrGÒR[8‘BÍ *ν°¶Ä?PŸif鹺dè,L–IÌÄ„APxžØ‹˜½ %Ä'k#r¤f틸äh¤§")@s†OŸvèË8L™`€UÞà\ÐÙ@ža)sÀÿMç°Üª8ä6^½àp;eº\f%qÒaœœ)œx9H½÷Á÷™o€ ¯7cßΜ¨ÎC0Ъ Ã}3ËÒeq?á³jc¡÷Ô‹‡¤wá*{-ªäƒ2inЉ-Wg„’>AR<¶Œ;ÌKˆÛQÛ‰òXÌÞNR¶ È©g2%ëŒ24–V¢l»TèTÚÅ´q8Ã’ªZµï™ k\]R$S= \R¤™r¬ÿÅÔ[XŒŠ@v— ‚*M†Bí ïb$Ѝ19‘rL0b…Ùã`f$¢à,^¸ç'|Ócº‰f³ÁixÏÆåGt´R1ؼK[=¯ÔÑ-á¢}ƒk\‰*ÀÈ:°Ð.’/ž<|Àn‡‹™6lËË »°¢ÀùÝ$.I+ẇ'sêæ:H/Ó»\ĦêW·X*…ð¯P ^„òj;q.Åfe׎‹å\ÇÇ*Ÿš½ÇOt¹ÕàR—@/åíÔ/9§“/ Æ 6¤ldÖÃÚI¶M ¢CÃÖ’:ÇAŸ{&£•V¯¬¢dË×[ÄŠœ«ñ‚´KQB°¡q:ÈÇ­Þƒ5•l«È é ~Ñ8®ªó4¼º¢˜‹šZ¤ˆ"I1‚DTœNïP…v²²Ü¡Þ çfP¹Ž bOG0Šâ7{ÚˆYå™ ¥>Þ´_ƺã 4&mý¡wÙŸ=×>F¯€ÅÆ!Þìhš˼üÄz|»¸œWÅoF¤%k´úFÀ\BF˜)ã¦:Ð+[š‚Cýª Úg¯1_IbϼÈÌÈng2Ô7„f͈8  MU™ÉÐI,%bƒ‚Åb²x7^ªAù&Îòµt`Ê݈­ÇË[ÝG©u¶X2×rb!£ŠG6}ÔFåeч¬(Fåu#jœ6º¿—¡Ùf·,z¿ÕÐî©Öé×-«Èòø«—eƒïe>û £¬á_=:*S¸¡ÿê 9i˜•ò%ÃØ¨ÍÝλ.ZoÁ}™…×Áh]€:o—eI.«b½Y![2GP‚ßQ‰âãs(¥ß[ß –ÌÇIןNúÞ •ãpFÚp—I6=DÖ€õ8þ©û¾A0v ×7Ë»…ÏÒ §ånN‰µÄkŽDcÖ¥6Nª•ئ[G²šï8Á‹x@îǶµô*á“|‰¤ð'ùÃ!­»h…ÌÒ‰üÏ92KgÁûÉ€gn=ÙÛJg°Ò’¡aÓäË:Uü«0uWÚuA̾©Ô KÕø{Ž#äuéD—1fë]Óx™ÖB¾n½Fgy 7#?îðÍNÍÞF|t˜m´ý¸ÑkÅYÖ(Ä‚¾°•]’®YìƒÁœ6#vg ÍÄ@»{ílùG¶ÇZu[Ÿ--Às¥¯xtâÞQÏØ ¼{ GJnMYûRÚ¦”à™x,Aoò˜m'ö¾ÌÝÊݪ´gYÚVµlQÂ_É d%fmu’ú{ESpÔ“éåÓ-gäCÝÞv±]8.dÕ2Ë‘3N6HÎô¦Ü![ÂY<ò‹€¹#—¬ùQ^Ž”“L ‘ÿuú#’ôÞÑÃ:‰mÀ#ªú˜™(¯Î?ŸLŒ›9@ÜkºJô Hh¦é“BÒV¹~2â¤.ü¸2q€”êÎj×_‰— §)“¬²@ÅŸCs¥‹þ{“ÑgŸ"ã‘»êEWƒ>ƒC{Tê–0¢=·1òàÆÁ†Öà*Ç¿öÚÖ¬¿òE?„3omMèG%0 Éê( ›1Кµš’Jˆ²"`cˆ ÓðÊÖ ²r˯–^1œ„¥—±Ç¡ÄÜ>LÅ]t·œCªš%É'¶°$¯F¾ˆ£§0Œxø/ðç’ú–Ùä^K |rùÚ—+¶xêÃ9j¬QaÚ` e oj¯6#„€ŒÃ·,„€Ž!Ð1BhÏAÒQ}Ûø¼ÔRÖÐyVx€¥ë “U»kÄ¿2AxX½ß×?ãF<ÈFÙß(ó'2Ê4ßýmŸë~ŒÚÔ’jèñfÉ‹S3{ó‰´]`S×D[ÄxäÈŽIÑ!9SŸ¢GYÜÝ*¬¨Å¦S¾lñ²ƒ›­ ²ÅM1ë €²K|ž÷±‰F»†l-õˆšØäME¶çcL/={cÚIÉwLZ¬ ×ˆ ý%ƒxüÿǃGõÿß vw·“þÿ[ÏþÿñÈekûÿwjRóë»ßÚß½ÎZøþ<ëf¦ÿ<ëÆÚmrs—nïûæ~žâ©…ø9BÕ<ä /ÐWøWhn3ú;ž»£ïB 'ãaöf}S½E^Wúû¸ÌÛ„u?gy§gôáÏ\'S| Z¹Ôé|«ù$5‡Ô çøÞÒú¶Ù0ñ¨¤âKDi%Äž ̳ènß¼V¡«MÑçOÝ£n“[« %›šLúDIŒ2ÊÓÍùœå½þü±§¸ö{üù3{ãi;Ÿëü“0ÐôþÏéÈ_öùßÛÃHÅZ<‹i^bßÌÿž~øýU¼ï“.÷d:ûmý×ÏZ÷&ìómwµ%=4M¶r¾  w‡í›`ŒMÔÙ=Í­ÓjÂq2–µÅc$-1ã$&c¸.sŸL0z™iWfÊ w(‡blyŠr½M›`pÇnv-xAp¶—âtuÆ(Kw]ç©zœµßuj9¯'§Q•QÀgÊ…}%Šé梘®M1~¡ìÏA2Ýu‘L7‹dºk ™®K2Ý$Ó5If©Ó¸Ïo2½8·¾0X‰ ‡¦rÊt™¬†ú[(+åÜ=çw–\ZC=Ó¡L;§ $½…En=óç˜~+W#…°dOô æä:¿$`5‹)…‹Åœh 0ßESt2³1Aée±Si[‚”cbÔ§y‚?Ð~:³iÈçS“ Â&,—š˜¤“ÅmlÊò““37ñ’2ÈÇöÔwý­¤õü…ée†J)é+*ãß& 4‘ç·~aWZ´‹§SÎäòrrµt_#C~)ÞN£+G$ï,6³†~(IcÙÁÚ24ÆÆ_2š)úô|Ì€ þf]é”c¨K`Å*öxa{ŨžÎ™Ä2cUÕôàr¾@—XÊbÆ8Ó—1'Xe¶ØÝ6æX‡²¹_¾g©ìél¾Låïòv6}[Ëå÷¾d[K¸¿K°¾­Ítq×¥V ¢K|PÌ{3sðßÙWÁäumv¼¾2îøÑ(>øŽ7Wd'vÔ²/C{.†×Gÿý¼QZüoÜɳeQ,ÑïÏEË kA“úY{/³p‰ßù&¶Èˆp€ø¹Ñ_Äç Ë)JïüË·ø³Š;A½âáÄ•‹ËÑð*‚Ác’+gKäÎU€FÃH{¾R–Ñ4çWêÁDªÞÙ÷ë;î¯×bÌ‘1^ /98ì A>ïÃAì£dLêo~Iy%“´ëQÑ“ðQ‚šó7\b]’8eˆcÈ91hº4½µ›poq˪jw\}ru•Å¥EßÈ ‚¼Ý¥¿»FÂ51×Ý‹ôÜš×5¿ªÈ¥fŠŸ¢E§)žŠäôg­ ÇÆž€J¶ª´R‰©aìî[” § `&Û`ÊÅT!ýBPŠ9=h NRÇY—(RÜ“œ¡›Š ¿»×PÈoÊègU×;ª ŸÂu8âI¼wmº‡3]ðzåå.veée×<@+£f šNw=¶sÉr¢«7ßvNÛD½³?1AE£Õ¯Á¯S¼ˆƒi”FL­N·Aý´ pßíóÏ€…蟧ÝóàW»Eõ|÷{÷qÕKöþ÷'N´´fw¾ýwý²ÌDM¿G_;·öJ÷ñ˨›Ñï{;þµj'ýnìøìø'r;þ©¶y±ÆÅÕ­÷F/ÃùOûÛ¥:ðÝÇkO7]sÜödŸ¨ßÞY+á¸×ÓŽ{ü2¯çž‚ØÍ‚Ø]QçËÉt4N¦žë³¬»'óò¬“x»m™-’+€âDÂYPdz÷e¸ Š¥^ƒÙ …Çú7»Ì}PÜσP¬âD(²ýÓÀOoBOwVr(Ù>…"ͦ?³ë9 Å/K¿?£ãe(|fщ®a;Æ„úýä` 'Éô]Û¶‘‹^¹ÃÙËþX¯{õÞ·òMè/]ô|XÕk­S[îµ–ÏͲvïHß³xnµÑ¨S(Hr»Lþ¢÷EC^¶àâHd8Á)“×Üžpª‚²Ònáä%ÍBæ[`ÜꔌJãù€ìmTáã{J€ÔóuË , š/qWG[ëãž,Â3Ï5Tãï@Õzm¿ …]Y!– rùÕ™‰Ži¡–²üé>•?á¸÷68ÁI»'Ø—¤YY3%všUÝó„²PiZ¨»KÞÜ\Ú‘=öÝ‘1à|éDħÊܰiÑ[ö [î’}2±bŽ!lénD¨§iMå‡è÷ê2gZn†V³i^"NF¿LU#µö„Ó ÍußÐã5ÑŸP5tmË!žAq1Ã)‹’}¢&’^06ߌ?'ñðŠõñ<æ¬ÐJTXÒ07|§u¸HNTØv‰àåqÙKDkOAGð|(ü{Óˆ}dLP™y-SÚ­N¶œN:m¥ƒàߨ¸›Vè¤" :°2$ ¨§†N:Y%›k­Ü\kys¨ 2š3:KˆS˜`¼o¥OMâýrF•éñ'Ò-WäI¤ð¬&ØÝíWËrN ã‹5:ÛÍ”[¶²¶ °m1íÖc f;W;¸„FúZíÄí®bÇ v1y£è ;×gž\ì/[ôeàiG:vot&â„Û±"HËFëÈPA¦{¤ïSYçWV޲vïáè½G·êxsHØWA›e´üž‚ŸªÌWIÞÈNuŽ€Êû‰²—ƒwã@Òñe¤Ç_gåiºaŸfý/öPˆ²o3Ð…A…¯;eøçK~,T´LâúÓ ¬»,¬Èü±O d‰fæf‘ž YȘ3¾'ž±Ýùñcž¾¶&ÅPç¸fB¼e ÕÚú*ãá|0ýê©ë„Š>…Æÿ%Äå ^ K³™øwÚ}†ýü‹KsÍW=•`ê?²¯BrQ#÷Q·ÝÒêÅ!y5L~ äs䤲pX}wl¾VUHE'Á ·ãA-£§enÚKmíSÛ7SÓN˜íœ™¬Êm*¹×ÀC·Æf…÷v5O¥=ÊW} [U÷”èuÈéÓ¤ §-L µŠÔÚ±iXú×­&ðÞ®Šàã |‘“ñÊ7 ï«¡ðY”¤{C¡G Ð…¯oÇ´”¢e‹ ¨\nÚ{eܵ»jiH#6t¸œs¸oZ-°eU8Týâf,£·:O"À›~öѱ[)l/á¼aYf9ßë•Ìo²êª:ÖÇ$·ÞÎÍ­uËaìÌí—½¡ã¾ôÛ»RûÔxïñ±{b3†Øë”t+Mgggµ}ǧd¥}',L\ñÈ÷I=„ü^É—t±=.ìm] FøCKðc˜Ø5†‘6†”`„ó0ö%¤Ï;$T-²“”‚Ÿ¥¡)œb^…£[²f²Ðs°Ú?ã:/}Ñ!.ý+ÍFÚIW¬É/ëßJP¶(|iD"~¡—ïÇs„Ð;SÆç—¹{áŽÄOªÄÄORG 1›^c£T¸Ýþ_Q£½p¹9¼*"Sä”zS n¢ùðÓÁƇχ{ª@ àiMËý.s¼\î·ZÔ´›yÁgüU§j nazÅ“å¸ÖeV9}Y/íÛ²|îàçÎ/†ÅþGºd^„§rõYI¬Î©µ¶¬G…±Ç2ë Ç_q&˜2º8!˜¼Fø<^Q‚ûëÑäÅ—se?.;ö è-lC^~`ô„‚\žPôZ{b…è-s™·•³HAnÈ•ÎÆkƒ´rg«·ŠNé¾Y ý´¢{vÑ_EaÏ£>{#Lj„õû°ž6BZXõ¼#äÒ¹F¨Šæ!òD!2½ììÑ!m(%¡ÁeÌÎlêL–Átì*•D r<+WþQ‹§ã{ÑéäN9„š0¨Ê% úœêìUEÛŒò€$u_/”wžŽXLjNGrùfÖœ0 ˘Ԗ0©åAÈwÍZ•Å©…•'Oý>쯧¥¾|˜õ5 ³^%@É8-{Ö0WÉ}Ž‚„=ZL<‰Ùí“7ÈÄžªî ªnMJY½‡»(nŒwp”Ÿ“ ”½ùÊêç;{kÀÎ^•D cÐ4#6€Û޳ëã'ÚüsìüO+Y³’C(;òåäæQ6eGzónxøÿ"€ÂA¹ˆ’‰Uˆ'ò”UŽãÄwM~Î!4Ë‚ñ%™’ÞbÌ ñ®w‡7Yä‘ÓÌuÞõ»x¡ßY§òb“žkhœ¿Nã-Zàø¦¢|“qªÀœ”Ê›mŸ>ṂØp¡¼Ã3žwz˜y.ý0¨}ÔNÛ-ú ];Ǹä¹]ÖüîhdÐ\g½X'w®þ||'µ\è|•2zº‚[Z½¶O[Ò=­G~o8OëöJۯ㱞|Ó(ز§ûù]Óúè·“ê–Æô»†É³8%42‹Ôí"*çÑRç1 ßLüc7ÔwüÀ *wJîù2 e;É®û[¯g·.œ.Ô—u!ᢆr9ÞF²õ¹âqt0¶]íÝÜ–¸ÅíºåAR3ÝâÚã{•¬[ÏëR÷s²î^Þv=·ñnù½õM¼[df%²ùËðtaˆè›§];8`°‡ÉHK/÷v÷/ïïèáç?JȈ`Œ¥N.‡ínjd$S AÝ’ÎóÑÞà¨É±Ês;áìp‰*l3ª´£TÅà@IkH<¿¡Ugû™,Irˆ´l0ðÔèì‹PJç¥z|’µlmQR-•[EÕ¤ás@!A ûLw×½˜Ìç“+©•4Ù¹øÿeÝúÕ ­#8aS“ºwô©T/´ðË7bßVD—þ0ü†@ß`;ù•|ZC]‘N`þ…½ibošðå¿Uwèöéûtˆ¯…Ñdr‹G”«oŒ[Æ¡©ÀA*,Š×ª(’§ÎF^ _EÔÐDÑp¬ N’ÜlûOöpjùÀŠÃ·—Âañ9UVë’ÔåtÛIí¢Çꚯ…Ë„ëä2áá2þ’¡Y2ÌÁƒ©ÂPžåøC‹CHïÕĒÌɕ֋†p-hÈ€bs% á h°y“4úN°¦UX i”RXÓ*,îaMÛëdMÛOš5IÚº7kz•î)*­ Ôå7h’̳¬ø$°:øc[ -¬BjCêýúü_Øh[Xº˜›´7¶1Þ§pwZÇܨé'¸ í¬sÚùqv!f6+ˆÒé%ÍÍÓTIî& *¿›ÄwÂ{¾Â•Ù†øÖ—fd¸Ò™¼4Ûø·f¤Oy¬{³äÍYSvI^¥Ýœy[m¾ImõAWg™7gžÛå÷fAø ‹3¨î©õ|s–9´d+Oñæ,åâÌî*RP¸í›0Šà¸ìÖ,үͼá\õ¸Öxmæ’Ìqm–òŽO_bùCö~Ëk³{êý×fG$Ö8xœŠž··T~¾{¾‹ëþ9oÀ^­Sô~õDDïowöq’ÕÆ>t,ßù^*M÷û|-•ºôZçÒÿé‰,}Éǽ–zBLbM7LY#z¾,ú«\ý¼N†ñó“f{Yô„Æz¥ŠïÂ*Öw…óƒKH¹ÇòÃ]¬¸aøŒ{•Õ%>ÿ½Š}q² ÐÓ¼W ¶Öȱ˜[õ©rìïr±øòKáÊ×*¦ÃbæÝŠuµ²ñ îVæ“Û ÇÈ{µ’çneã¾—+™×+BtìJK.X|¾I-øµáˆŽOæ-Kkó;ß³ WþO|ÏÒñù—ð­ÉÛew-?¥Üµßò®¥Œ÷dùïZRü2rÜ‚x\H¾Á]‹/5Àt×òjw-¯žïZ–u3W«Ë[ü³Üµt*­Xþ'3 Y§v”åP–Ù‹ç|ÕêÏ4Ï4øü@4Á:Mtƒ§b¢û´oh€ÿ„ÿ ïǵóŸGQZÄ ÏwAúùš‚uš`OÛóÇ» úžüè Ý = )Ì,WZ×µSªÿäó½S:sÚ]'sÚ}ÒÌéÇ»xúóK?[zZW\?š´¸ö{±#à^Óº/Óäï维䃛ÐËunB/œMèûÜ¥½òÝ¥ý´ä.í^×hßüM†õ[ñ"-Gh¿\¤eÄ÷[v¶<Ä_æ5ZFœ¿'w‹î<ø @xj=ߢ­ØÊt‹–õn¯)Öò×}ö—lõa->…›´ïÝæùúM<_¿=_¿±Ø¿N£çà©=ÿ CþÐj¨ï+æGSÝ<#ô@X1áZø´m‚ÿ"Ñÿ׃ß-„áó¢|þbwŠá:C?‡O%ôszÉ¿@äÃ?‰¸&¬=a¸¾ÛËg¹ùI`í¯qOª£9>_”fî¬ë w>ípçßÿ¢4Üö\”†;)¥¶®ÚIJ×_áåçÈ3ëüýoÏÏýŸÑàvpù©²] _ôº{/®æÓù0¬^¯µ-x^îìÐïW/_Òï­?om[Ánð·ž­WÁÎÖnø·­`g;Øþ›ØZk/RžÞ‹ ñ·›Át6¸™ÌÒÊA±ëõ¢åI<’/Ö»ïNa96põ›°¡œ·à¤´ß¬½¥t†*¢ÌLI«²R­ÚqmïHÈÜ´¢ð9šR’m 'ØÈ*r힎‡Ÿ«¸zûÑxÍfQTŽ¿ÛŒ†×“éx8õhú)E_)!l§öV´æW:Ÿlgò9¢ö!PÓߌ͜/YÔdšk#qíÞ¯µnmÏJÊÌÂÁÉ2¾¤É0F9\_VÛ§O6çK\`8%a&"Æ?ÓÛÉ,2rXó÷Œ̼}»˜G3Nã=F¼Fˆ­˜Fƒ‘L-?™ŠÑäþˆ³Ë#Δ.ÛéÎÐá´¢ÏÑXv„¡¦JåC}˜L‡ó*û¼Ÿ•e›ß!úp,*÷ºÆsÉ "Û».‡×CLþ1‚6¦qžï/¢†J†ežñFlœn¼†f©´=V£L Ë´ø ¤Â¬ß«Ãеñdžì÷x8Ïèm{Ò™Œ+N9ï Ü"X¨# -In?™^a¯­þU±ú?1븜H Ö‹´„öb€d]WC˜u"ŒRnDzDx7@Ó¯œ]>îµÙxóšéƒHM£hp…FHd]4–`ºEƒE’¼Ð(ýì`8¶2ÃãûDeîE™Ø˜aFùùè+“—U=Ù"M,Nö4ºŽ¦Ñø2º²GÓZ:—ŠWM¢rêhhÜ÷ -ÿÜ\ &cà.Àƒ™µ Á¹Ãl‣~ l®ÁlLã s_D"°ŒÔ˜z¾ çL<…¸ÓE“Á͉®‡†Ø…‚áØÅìÕˆ‘Étð!°}@IÙPmžµ£¦.¦w{žª ÒÍàK!€… áÓˆðÕJò4«ïµ˜-./a³»^ŒhØæûàûáµÎý‰qò©2ÿí3ãˆc1¢€‹ÏƒÑ"â.¼YÇcn¡Ç:ãzænç,>þÙnX;kîËádUÝÚßܲö;ÕLkr‰¹ìi¿6Zj½{ÛÜ³ÒØ‹Î»ÓN³õ1`–¿óìÔ‡;ïá¡7#= )Ë“æÞÓ Ê«®Žç0ÜŽõž_g´Ò[\HÑÈhLjΚeÜûÛge™Ü· ¼8ÇðÒ×}@O·Ùé5÷b°íÚ¹·wÑåb>¸Eh6´£¢ÍæRîG–"‰#Î+ WY|Ñ4¡1ç¡gÙXŒ>ò|Æ%X ƒR—ÐÑf–a%kmeå¶×)Øø5Ôx¤ìÅiÈй$uý¶[ÞI]Ÿ•~^§½@yóg[`¬'-‘÷X59tʶk%ÎÈ^ɦÐ4#~] äÔ,ÚG“(zˆMTüï}6x²BÌÈ„ý•ôhWÐâ)œT$´pn»Fj½¿†2®S¹øZéüY”qr4Ïʸ„2ΦgU>®*nÈ8æPÅÅ@þi¢ˆ=,‹8ïÑ—Ê¢é¤ÊößÐ#×.Ô› %áÔaþÕÌ\BOpöaRå.qUýîzÁ2™VæÕriœ›ÇT§[:þóíëÐ ú„ˆV­Ñ9[¢;,«bëÐ!Â!³M:Äÿ‚Øzu‰dÞô¬Pü«)»Íü Ežï“ÅðòìNóÅtŒlÝÙÈÃÒ8vÐÁ²úrt {#€Šf…ÃùW§dºª ϯgbM¤2"ó)#k)ñó±[ì;ì*câ!{Uj"AÅZöU0Z ¨a6ümšðîãÏÃédŒ (\½$™OЄǓBÂЋñ)­¨Ö2èÔÑ4ÕwÝ*~xÛðjºNasYŒ©_ 6\N®"SŸ¥4Y9¬Cb‚uÁ§ÏRA‹U´ÐŽ.ÖOÔÑN™ó±Kf›´1TH»–®ÿ›Nî Eðåb:Eù€ç’•€:À6ê£ë9ª—놳t‡Ê¢+•Be¥E î Ї.ûXO'*Ê£í0nÝÓ›T|3ª©%_Âj::‰õd—ëÉÎÄDz¬åã«¿‹)ǧ9ÿ¢Æ5 _ŒñR‚n l N?·#ÕçyéÓ)D ìÍCZæé:láñ›\°;‹RÎTkgâªrX9¬“2º»GâXÊôs¹É7=qÔ ÒÁúºï] ï¹÷vJ¬q ) äYC>‹^»ŸN§ùcú=A·ù|OðýŸþöÈö¿»»aBÿ¿>ëÿãá…çêÿ{JÂëwkž!èuº¿öb¡£ÎÎ!éîÏq[ ‘ûÒ€f$²ÖwÀ^9zÅË„ž˜a8¹™˜’Ëìë Nê:ŽÔdz£±TƒÎAê¨ ¼aµR©¯¾)s¡; ÞÆjÍGó @YÞa…i Ž¥fVbEZ`s—tÒƒ27ƒ«õ•@Ãë¯Ð³Á\«ñÕ!ð©ÞN•,o4¶1VxWsÏHô‹id^ûï5ôôL‘¥èîSacò |?­ðž,ü«Qxo2þcña0â6à âOr+ƒ$™ÖxA€q´ÄHÛ³áU4+‹a5ª²æ8.År´u·`w¤^•m§ÞÝój¨¿Â…sob‚YéB(¾J¹ ɾò4cÂÉ{!ä½Zr=“:ßåªz²/„²nL(K.„2n¬›žô ¡“ìo}3S·¨xµ{Îz×DÆU§³úâÕä½áНe¶¸:ì† ä®ªÞ¹ÆI} 8©WÒn«¾Ãu•†áœ&\¼¾*'4 ÃñÕðr@aei³6˜›{…e¢~–tþÉ{­hüTn¶8^È»wë.«¼~3øõÞU}S;v¾|úñ ØW¸NJ^I­õnIgê ß=k9Åûþî¨×{+]L=ü®+qwµä®k'Qv‚ì*»n•®Ç^%ëÖóÖýÙÖsÅD²ÒÕZï ]­=±ë4±j¹ªp„t< a¼ä yRÝPŸã±X:_©±ÎÒmX·*^ÝGôÈ¡ØìýŠMþo~ý¨ú¿ðÕÎöK¥ÿ v·¥þoëYÿ÷Ó§£ÿëÈ-£«ÖŠqÇ[ë¬fœãAÝŸµ7Aáe?tª=˜Âï·8IŸg±¨Ý¬·Åoƒ9~ÓfÑ`zùQì/V# SøSžN¤÷I´]³ÉõüV¸nÐâív:ù §ê­Ou)A ,5¦©äœŒ&ÓÁÕDìGxµc+8U¿ÄêêLsN—i2;4ÝW_ÂIà QüEjL  ‚ü°‚³g‚Û¡«ÆÔ^ù˜Õs\Œ¯Ó+G§‘´E…~—‚ð4ºœ«šT'¦N—<éi¹~‘ñ(<:/¯Æ«{‚(Ð#´ÁBJº¹^¹Z¯¾QA+Úœ:Õ%JNŸ"Í 0Šô¡­6“HRHÔX‹.Ã0zµWâÐÿl:š'n½ÕT<Õ~Õ®.‚¿‚RªÓ·é¬ÓÓ):›AñEXµ©}¼ s÷àØ¶^Ÿ6èžê ZÀ“y38þî7•Uäï\påv ®y€\ó˜¹fUÌ;ï>FÀã`VFô9WÒ‡!HéÄÏàæØ_¡}ÌK#8Dí©y”ùð÷-^TxkKlb+[ÛbkGlíÊ’[[ Vˆ Á¶vD ^Ã#0o#ÂP„Û"Ü¡*n‰0€ïmÅÔö¶ØÞÛªÐö–ØÄvß'X;;bG•ÛÙ;Ø ÅÎ6|ï1ûªèî–Ø Än(v·Åî|¥eÍÕ>CI•Hèãdt5C¼ f@N#X“|G“`p5‹û n£ÿL†W°o½Þ-o½‰ŒfvÆÊdZÚƒ‘Õüã4ŠÔµ­ÒcSå%go µÂÎë— € Ǽ2²RÕ¤7ᣵa±x§Õ¸…´qÇÂÞ 1aþq ²2Z ùm9/'(S•ËÁ ‰WqKk^-»œãZ’\ø{³¤Cÿ&ÅÑíôé,ýÀRšÝ5ÈÓYú¡ÕC¤i´b® ý$W·²“ì§\JFÉ€[qKªÅd” q‰Ãvµ–o»ƒMÂ\D}¹ˆˆ!_L€E­áìƒÜ VÒÔ›ÓΕ0£ÈíÉ~ö-„ćhŽ+Ð1ÎÊ70‡09€u@§flŒ]øXtž»Š½ÁœÃdÂ,ú¯ÌìIÛò# ð ÛUüh&f¦ æ̘S ?KnŘ[×0¹ºZ²ìÆ´Ÿ¶Äï2vëñïÖ“ºXOÖŽ`=Kvû³³3|C^¿³^^¿Mƒ•xýÝäaœ>uàôA9XÓ'±”Ïå¯Í{iœVqzƒÍ{I]1oS ñ“{ óöÐ{:óv©ÝdÞß%»ˆ]Šp½±0ƒqîgÈì*ü‡!Û<ÜB±q‡!C/ÕÉ£‹X÷Íè}®)[ï~ktË¢Óì½Û߇ßïºíZ‹'9CÍTM´1.cÖ¾ÔÂÛ„þõáß9þqœ‡ž~=Ñ»Ï5{Ú½Û¬›Ïx²âûO¥)4o@i–>y-Ï©3å6²«n+W¼¥N¤^¸þ¹<ïúßèz¼Á]W7‡Þl¬µ¥@M¨Õ-‹-³OnP¥¬>öÐå CY°Â àn½Ï+A|§Ö¡d·%èÎ&;ЄqeØ>:kÄCqÝFcRMÆLŸ¯éVSžµ:Á›NøæÈ<;ÀfÞìPKñw}W—!$ÞÛuBU'ð¾yM2Êe1ÃÁÓ„Z*p?Ù7‘´d¤gª ¯rV88N„I\;/BFªÒT Sé0T¥È²ð ¨€—!_á&ÉõÈ3z§Y›¶Œõ+)gSVCFOÐ6é_ ºmDå…Cv'$®-A'ý¦ÔT¹®Šƒóº[©š AÐñÅIdÂË'& «]c :éâÓ<4¸¼~öß‘¿ÙV9¦jçuñE{1 íÐSFHfмR+£jíÎô­èdr[æ…”ÜC³‘¼>&¹ªPš7MߪóD}6Öùøü?nÕÿcëåöÎnÒÿãå³ÿÇcM ÈfE§ŽãN®/:r(GäúpkKïû„ˆ1wÃÌ1nÒÇ¥bîí-q±^Þe”@$ù,ö̸!& e^+D 1]T?ž ç„/bÈÃFô}½'–ö:dø«xO(W‰TšKMga Š—¹ ‚Íòî†34w2‚MƒM`ØþÏÈÍäx0™p ²1ô„½¥.f/àvCP T‚bé! µÃòE2Aþñfø7ü’¡åB(„ãÊŘ?Ìø)9¬ÛẩőÜV4DËØøØÜÌÓÄfSö Áò›w=Ä+aÕµÄ+a³µ‚ –Ž&ñ ¬ãû¤Sô[Ù©³HDQ0Töîñ÷H©Ü({e¬]€õÙ6´Y­—ç¨ÿz©-©–ãÿbÇø{?‰óÿ¦ÿ÷¸ñ‚àeàÉÿöêùüÿ/ëüÿ¾{‚öÖá¿_;ýÁr¿e‡hm¯5µág•³/9Ž(ÄÁŸWÑí4ºÌeܾ R´it;\²ÊAÇ z R¢ÑlA¹«Å¥ )Úæ Ìà?Þàîhä‹Ó¾5:Ÿ“ áÔ‰#Å€fo¢{¾L¦óŽ Gž|ÞFQIç™K8"íà0¯—$|ƒ„{~ Œ•ó„›qI¼·"̾·Çš]`[]YˆÞŽÏOÞ̵KÔmI*ù#b ýdxѶ^tU †¿‘/liû›'“SÇö}žgÕ8ËšPT ›ûâÁØ¡d2þ‡­vô‰ÐêA;C£`]å‚ç(Ùå3·¨ÙÞ  _–ÃvckëI†Õ~7„CR|Z$¾8ÅÕ;ÃC“ƒŽ$½¾ÇÃåU‰°`imÕ“Áô+çG"gömómuœ‡þ3üˆ§5;c.ÌóªÉ6k\Oâ {°˜¢×æå G6;°¹uL³ÄñȤîIYó¯“Å,BwÍhº1Ž ³~%S½}šd^drL:ã}A|Âíãîãðò#)gªukI$¢¸›˜ûI”Òõ‰Qzx‰X„‘uJâèm;V +ª7·EܶI_`еb"¤':yˆ>—-¼8>Y*8MèÅ|°(-è ùkõà‹¸)!È).ÙNާ ;)Š÷ªükÐS©×gbE KðöQcÐ |V¡O?ÉVUm£^ \~„}Œ“5‡‡# ”ý1²BõΙpŽ |snì–²+²kìµó/gëQXq©*e!÷ ÁHTUbr€¥ó1Ëjv+€Êbß”aôDTe`ªeùÝXY™fè Œ+âLgÔrÜïc*½ø' RhÀB@ÝNàè„iù å8ô«®Ž@l <@ÖšÉoÕ€¯µóãßËbïýzÛhŸÑ/Ød÷[µîÁqF0Øo Ã"Ç¥l…’_Õ¾·ªýmP(Þ¯êxMIzŸ»û–ãá•%Ô)ÒItRõi…è Ô$毋?º§¥rj£+%¹jo²RÏj,Ü"•R›sdŽæ•˜{°7p§öŒ;h‚;Z’§8 A½è·b\CˆqfLÓ6&ø¢þ¢yÕŸí@gN"„É}È„ø-è×H &U*VáÛêÛ>ùb¦Y>þ†ñ²ïÄ­1ÝøÀ"Há¯ßˆZé˜X}5YÑ ¹XªBì×dó¸çÐm+úÕÓ~àÙÉù¨&ßúC5øÁ»€°8M’¼±A$»Ö0¾=EÀÀòWÑ-”¸¸Ža>qkæñŒÂ9Ä»¼ÔÁd=ÏÈ× hè¤rÚÑ$R!â͈±P+@°%›¢^’;.Åõ«¦¶‡ ´ÈDFí­Å ÒIcñÚM>*ŸM!½÷¢¨IuþµK{wn ”Iø‘Aÿ_¿QÉrð©£ÆMDb¹¢„ê¤ø´Ä†°ã 4ù¡XˆÈÀœ_OB¶˜™‡a‹—騑¯?µGÿûŸGÖÿ¾ÜÚñäÿÚ~Öÿ>ÆÃèèßûõ¿¿½ë¢ÿú)ƒåˆ¾•N˜·šiÎÁ³V÷Y«û¬Õ}Öêþ8Z]äsÔîÝdúi‚E´ ùâ‰:(3.úÍ­TNÄTƒ¢TBÍäñg>Ä ÛD![öj ²SL€Óq} fGM/nÔil0¾ŒâZí&o–‘ëqzÌŽSº^Ì ïØš×ØÊï>Ç@‹¡Ñ,þoÁ„ Çät_¿ð)–wc‹xÇ£¯&örúJk3˜¿£ÆäI Û}†¶H•ޤ¯*â6>¸8ÇM§;Hh\=Ftý ¼„:Äøo³+ØY!ò#ÞԨџŒ‰‹‘<éçPõ‰Ý€5|͇ó¨[¦sž‚3D“N€};¯–m¡ >'_>c—àU¯ö|Eñ|Eñ|Eñ|E!ÄÒÛ‰{ßGø,`ONÝß3ŽWpB„-¯ù[^^àÉq_ Þ÷QÃÿ@Òêd¥îÔÛMLÎäO·êuE«Ö}_绉÷}úÝï¾_oº¥w+~H ¶jÎYúPä{_;«]« ⃓îmLSM¬’åªÆIµXfÁO÷Îżð [o,;ã:¤ú®[M»÷@díâÍGüµÇ1{WëÍãÒ²T'”Xg‚aðœJÙj2éÆgCl”¥†ô¢®êSweK£/N FV=´Õq7 Ï©ƒ]Ó¸›§ßƒ 7žÛ|Úä¼øzŸãâKˆ¿“•ÙöÓ‹¿ßî¶,u(ü‘x$ÀPë¦sn(°`¤cP:ß,ñ$wêÖb4è8&b ìbÄ%z°¹¢«"¹æa³8¸«—“+›Î©;D]plSľ½„ØÍ9§NŸ§uÓê)Ld|*B_<`o Œ'‹É¡&µ—BÈ ÊÀ–‰A~i-6ᬠ,˜¦d2W݈;ˆx›Å°NýµZ?ä J¹P®,¾Й“b Átêž;â1|¨z!G‘,ÂD“Æ“¦ORÚŽíÎHò¤eLé³Qå>Ù4*?¥’Þiš [Üp>ŒF_óz_Ý~úÄ: ”1›ôˆJ1Ç–Ç$¥Y7ÕGMÚ$áU¥s^áȵ€ü¢E3GGJF›º}3Ì×Ý©!€Ðàn2c–_àqé°®ÁVšÔ³zâzO0i€ý÷ÎyQž.Ó)Jó„«v­0|=Ü^ÀÜ_ÝÛlu-âT$¿Žì^DZ³GÓ¾of^_¹K­©îÄý‹ì@݃›*o¦O¬Ö\¹~,þZàaÂ.Hÿágø¿ÜAãq¶­úàòÓÝ`z…«¥;¹C×Ä ‰Ä ãaéÅ­ƒ$uï²/q’uíöv'|ä&˜g(gˆY4é0azVßëÐ÷.ÂŽ;—ÏÆ 2;m ¸É±DL íoYÝ7s\Ý*§Yß”×·BZrƒ Oû””›¸Šâ-ŽÍÊ©±Q8²ò!{CÄÉ‘”¨m*Q'ך)vœ"[¶9Ö£S“«{Egð“ é/ýbúý“¸˜~~åqïÿÿ3[Üÿe{ûåK÷þ{ç9ÿï£<¼ÎʤƒÓÎ^ÿØß;m ~ïoý÷Γ·þƒÅ—áhHWB?Ðý?Žg¥ ÿ½wíãVã¼¼ÔPöÎWº×'dŠùà“¼yŦ¯›.f“Jg$Ì“s;¦Ìú‚uYŸJQ7^q5Y ždž„îi4[ŒTŠI}÷°ÿ¾ Çò@+ú`[€³v¯ª4½—  3“<•`ÉÑxºáôO¶à„öéà‰úW#7tÖB(tµú¾UƒM6ÇMýÊ—êZã+ÕËM{J‡ äj4æÐ¨"q*ÁÝ¡"=nën8á•7Lߎ¼AKcy×ñà‡—ºÑü]üä&I‹gº/þSÛ¬]«¼’ñy{ó÷n!D¯ßh¯AZ«÷VSiÊñÂbݶÒ[RŸœïtú“l»g¬Ì„—zûNôñp¦q¸÷n¿!Þu±x·Ñntú¢ó®/'§µ b Í%æ4±Ðhê…˜Ñk3zrã¼/Zh—Õ~·ßö·j{­½‚F‹jíãVs¯‰zàNãïÿó÷ÿYQ ð?åJ²]j%À+îŠX] ÐÖ¹°TýÐ*wFðþ©ôÿë è{Æ2úØŽg˜í Ëó'ã E®ã°!R|Ìÿó˜OïÒ¢œüOÜÅQNVÚ]*¬´à&²Û¸ôë9ÃÄi‡bÖŒ]¨ia4œÊËÃh$¢hü…Þ]ÆTésãMБ׉Wûî@.k`lQþ]´HMµ³äү驒z^UÝgo9­Õ‘… l0˜E2´ÅdL‡õ1å§b ®š‹ádY+à<Ž|(¿l[_&¤^2oôíås1v®% .uA­‚‹ÆW*”RƒùÂ+ÜÎ Np¢[S¡'Íg@±ýÅäXk…fYB0ÇcÉYr 9Òžð‡„§8ö}¥5ßþ?}ìý÷UbÿùœÿóQ›5Øû÷yÿ„ý¿»dÿ‡]úϹùëçY øRæíú~‚@Û0²ó}®é‚ =·–0ŸÂ>‡ ÝïÔêÀ|ÆUäüIÐÚ>ñ@bÀ¡9Æy³Ÿ¹ÿ[ÃC—lþD.k–’ûÿÕpða½À²ý7LØÿîn=Ç}”Çf æþ¿ß¬½-üù}¼¾»œOTŽî<×ûž4ØØùœW÷ty:Óa„ØšCÒÑ b€†³ÀB0>¦êF2£;ó¯øçðZ ŠÜšÐbw1ή%  œ’nì'2ºü(ú<ÏÉ2·_™ÉËw²ŽçÑhã¨Ï¡Œ²<å ‰}¿ÆjÒ8•±zÿŒ±Aáã?2W0õ0Åp|5¼̱ûî-ur\±zÐßá>eÙ• 3ê¢êª¼–¦ëÚÙídLû- ë,1Sà¹Â‰J$ä.öMñFG'ÚÖ½Ýýq ù»í‚ÕoâSåÛÜÕâÂÉþ_šÿ÷´Óìÿ/Ž·ÌßéÏž?Y ·¡íÀ­J߆)V§“Û6ûÆã¤pšX9L£/Š“$ã7žû¼œ?ë¬ ÎÊW8XåÙU]3Gµ&~Ì›Ïþÿôÿ[ÏúÿïôØ,ÊÚÿŸõÿ÷þžÿü¿ÿ—Ôÿçfþ—Q$P’­ÐA<ÿrêÿýGUÿï?Xý¿ÿ”ÕÿÞýÿÑõÿ;‰óÿöËgûÿGylÞ`ïÿÏúÿÇØÿÿrúÿçÍÿ;nþ?¾Öÿ›iý÷Ÿ‚ÖßÒúï­ü$÷ÿhüùQ÷ÿ­mÏùÿeð¼ÿ?Æc³sÿ§ÀÒí¯¨,Þ÷{ð7.t¢Ašïíx8/°-’r¹ÆŠe Ý_ÅÃK—&¬Ñçõ dï?_ }Ÿ2c/ƒ ¢¸N€ßT®¢[8ºÀÈA0Þ;ÇE;œNÆ8Ô*pÂ(’NXj ®¢Ùåtx+ãü" ¬içSŽ»™¼b {‰kõþŸäïå޽Ò䶪¡ }½Û7{\ZðâT<üù¨|âd<Ÿ–&ã©·7ŠÊsŸ‡0dL¤QbmœÆföq²]QŽña2¹¢Ô/‹9Ý“ÈhÜe+•eÄëÔF2L2z‡|Ó¤¸ñ‚œì„QŠ;åØÒÑør²˜>°ÉÍäŠ@ § öVÍÍ|A§Ôä|9]ÉðR&?»üˆ•3µÇMh–)N ¬IDœÙi8޳ûH?BûÁÄ£ê‘ö3½Vá2¤#ŒfkHK—“1à]fnâF(£É^``P¥Ø1X€nÉæ²LÁB¢f¶a«u{²ÚTÈIêt:˜M²&&䯩7O×/ˆ #ü`¶«8ü¯ ‡žÁèÄ\‡ÃD„š¥+ƒæœ„¯­˜ïqN " ¦k#Âu2õ=’ò/"Êã${Hø3€bì|`Êè¨+s’+¹H@}½*šÚÏôDÃÀ{iê5/ì7P’¯õûN{»öJ!5>’èòæTMS¢Y\†*À9Ó"ggü8øl¦²Ìñ܃¡î)ég2à îŸÌ„GjïËÕjµHl䯸z—¾¶‡õÒ?¡j‹êí‹¥ Ütã<–§¹DŒœ’C}}ŽK‚Òÿááì¦<.¾Ò"úrEW>ê0Cœt“éÑhŽYý­qÚ3ÍåÀÍ¥êbâ•KPÀ1ôÓÄõwþ)e7‹Ñ|HĈ]ç<‰¾]ó…½&N“%çÏ"ÆŸ_«°bVæ?Ø“te™—ëb2ŸOT¤ÚD7xÓc´Î§Q¤ÖÍÕ·á Pv ÌP³¾ÍPÄ—·p¤Û'²ƒ?{ûN¯0H‰"Ï~h¶« ºÒÆÓÁ­]ø¸/º@¾êA(þñFnBðGðòub_~í5`Æ(´;¡:ñ6?K.Á kpÈoŸÐ„^QBAèCôåv4x;§ i ¥ª…R"¨Ù¶=-¬ÀK+ºeœ£hHÁŒ½ØÎ‡`lã2Lȹ;š°H2SÆ/†ÌÃr7Çå`ÑØÆ„‚ Q†ƒ®¢„ùM•ÓnF_"NÇ­wlða¡¸ß­u0{ËFƒ“PÊ+~4?`áØXÑZòÁ-Ä‚qà´ ¢aëw6T:à@rR4é„鯶Ó_í¤¾Rϱï4Ö)è YÙW¶bIÍß4ú¿Åpª¥°¼ù-û”Ã8¤0’Ç<Ý´]`ø;ZÚÄÿ%JI_ƒs¢•%ÑQVĘN¤ö%IEâjSLœäO3Z"Ó+eBà °SYDAÐGÑP*ÀPD‰,¯eÍiD¨U¢ƒJÕcÄØXéDBœ— Å·É™vÎáØ| D‘F·îdÊèªDÒr›T h·ÄfkÁt\ñ’šM€ÙñŸ‹1 ßÓ]™È dã¢Ðh·Õh5Z¤d¥¤v-†ÐÑÝñq ŸP9æ_ešG…ì$çsÙF Nå5â^ 3kÂIˆýÔh¯ßíw›Èx ѪZ‰Än\xC2ª/¤Ý’Îx%S¼Éê2 R«AÉn˜JÏÖQ*—õh¦ï,rþ½§äFŽF~í±*ÛãÓëÄÆeƒÍ½ #Ü K@×{;ôs»ôÝ;­CÅÒKÝÙª1&±Uì=ÿêô)]cÙ ¹ó¤äs_–û¹RÅz’7Úå|í.‰Éaü€ ¶ÊúßOðïgúзá–Í&ØÆïwðÇ.þxéý!ŠRQ#»ÔÓ “ë‰_½—Òª¥ 7^˜AÈutDÖ °Tƒ¡h •€™§Ý0X9"‰Ó´Ž=IÄB,4­5ñŸ&½ ßðHo¥|Ùx¿a…¦i¾Ç‹‹ŸåÍ B·Âu^ëí5›¦°Y‰—؆Iùù•Ìfq™‡É(z,º¯o÷¯¹W!cO³¨?óeâNƒ€æë8ª£U6³“=™½”=½äDKÂYÓ C¡Í;Ëáö¶…ô—ÿ?{ÿÞÕF’< Âûï3Ÿ¢Î<¿s,@`$.îvç,a ƒÀØ¿»ÛG¨ P·nVI¶©=ûÝ߸ddefe•$À´=fÚHU™‘™‘·¸Ç¯¤×÷k0ÀB¬Ë*Õ_í1m½À|—Є=0]~{Ç.¿³U\~·j—§/3µk»ÛÙ©Ýz¸©]wÃÇBXI»ë«Üð£eëÎk©ò‹¹–ª;›žµt6šE«ñKµ£×*Õ_üû¸Zµña@]h¶½yû¡7²·—wÚÉÛs±ïŠåj° Ç5ÝÐÅzÖ~Æs¤~<v±š]ì“Ã!SÚÚ’ªA¥¸O@&¼jô®ú2ØÒ½«mo¶_»éŒ±TÛÒåÝ›oW¼M_—)¼ÞñÜ…,Qà x©Ö¸|÷¦¨Ö¸ ÒÈÓHe¹ŒEéÁÔ0$pºñJóôPit•T(á@üÇ1ÿÌ@q’Hc~¢”CRrm¡«;Ž’ 'ùPz%½jD†ÆèÄìéÙëú3oòå…nzvÞ:̾WEd3/¥ÁÝmë±mÜ_PÎÍN*‡†êÓ;ì¯5~€ÙP­ÇòÀ³¡Èñ=¶U]l`n¹9{Ó:øáú´ÿö Ù¶¿|QZG«î oª³ÓSõ¿ýŸ¿ÿÒen¯RÝ?ÿšÍ¬µ" ¯Ûçù@ÌÎå`Ò„ÈX}s·£6Û`f;,;܇b;;ÄÓVÞ…Æà†s—Om[ñr o«Þþ}lÿÎóp¼ÛÞ8Ïßû­g>òká“-ÿIJ~ò_?ðE7ÃEói¥Ø8zZ)Uºÿ]. ân#»µ› j÷>cC껨r†êm€¿¶CK‘4ßqFª?ÚŒüeZfFÎsïÚŸƒH>Þ+ìÿÅEþø×ößC÷ø)c,õýOù„V%¯=ó‡–©7÷ÕSœ¿[ ¨¾ <&j†dà¤ÑÄbÒТ%ØpõÀ¾<îÁ‚Û]N§gÁ’ß ÿ¾ýº;+þ}ûu÷“æûõ—°´Ü³_Ã/‹áv)¶6ƒ‡ãIïÙäß–G\r#ý7Ñþ÷Ø«W>ñiµ,±Zrè"ä!^F[@9ö¾)]ô1°“~þèD%û¬.py ~/’è»öêÎÑÃöê.dÇ2×ûGWŒû½/÷Åü»^í÷XÓëmyŒùø4vz¾ÿRp¾oÃùîz~ ä°’5[Ûõ4ókA3;‡q *‰²§¡j¶¡ÊfAC»ÙûŠÍ^ÑÇr×hkw÷ž†ÍóX–ÐÖ²¤,—Ñcµ²±[×–(VÏ|6ƒÒ³¦S›Âá{ +Õ‚F~ɾáš3rw6=­n´ú+ÎîCxå<_ÎÏœÌÛñŒw»Èäåþ<BÝÌ›j²boÎ:%:ÏF“P+Te¹­PHí2fÖÔ‹Ò2@óÙ‚aÝÁÏèû ks™aù¤{Yǧ¹ŽNç sçÅ¢ 8ã~¤17àÏró‡údã =×£ÆÿÞÚªdòìlm>ÅÿxŒÚ¡žøè5Z¢D?müoìü‚!:îÿ›]ä1t÷d…=4ÌÔf‘ó‚~KÄoŽáý&üý¦÷w úÏÆãÅnð÷ÜŒýíëÎ"±¿±ÂÜØßunèo;²z_kâènSú}žÁ[ž¹¯‚gmŒÞ&ÛUç;9 [VçMß4`(×Ñp4s¸Ÿ}|VžÕ±Hý¬–ïâ‘57œ8bî÷v£ùú¸^6žp<1óI£yÐx]ož^´=é­Óbõç­=ÕP& ¹Ñ’z•J¶Iz^µšðõŠm•݆éñöOÄ;^}9QÇiE¿Ê ÍeÑm`‹c\k, ,•b€Ÿ)?çy}ц̵•‰¼®J/yø'2ðîŸ,ý?zü÷ÝÛÙøoOñßå£6 ‡þk?Å/ˆÿŠâ¬ÀþÜ)þkûoÿ°÷ö5³ˆžb¾ûc¾¶5æ{ûÞ1ßÛ?tÌwóã»ÿ€øïÛOùßçcŸöýÿÿý1îÿ¿]ü÷ êžå úß6þ{û»ÅoÿñßÛVü÷öãÇ'É÷ƒRóô?ðýÿ_TžøÿGùØÇƒyÿSäÄ’  ø³j€¨÷÷UÅ ©€Uà=Q8Ž&Êüâ>* žÈW!œNžÈ×åÑÄMûªñ¸Œî‡*ÍUþp￯ö‡RÆ6Gz°®¦çߟ缬áËÚhøÇìÕcŒ‡¡–K û;aL)OÌïµÓæ?ÈÓàHe²P©˜ è‰Gq“¤[?…rF!%7ŬŒÇÂIŽöC`/k@µEe¦2£0‘âKjLÔF~R™<}è“¥ÿfãþèQíªÛ»ýÏÎî“ýÏ£|ìƤÿ0Nm‰£Õþ¬ÔvþqìE0]G‹H SºnO3‘bCt1N3d ÍDHïïFç÷fÅ" ­þ,Bb…¹Ô A <Ô C”] Q¶Gq›)plÚáßœ’Ǻ$GMKnü5ÜÅÙY½¥h¯ãÓ04.”¡Ö¨ 93TÌâô¤úSb8›eœ,?É£bö§ƒÍ!˜ãÀ˜ÍÐLªà’$Ÿ"ÿ¥Söþ‡#ýqõ?•Ý­­ŒýÇ‹êÓýÿ^Õí‹ýÖéÅy£YÇÿ¾Þ*ðOû÷“½£S8ªø{£©¿Ÿí×Þèèñi;ëŸ> –¹àùæâ$|´$ܼ*E ´Zh¾ìtÞapþy ¤À@êrpzÃNªêöƒçyZü¸3íÞxÀ›­>äµißóÝõÍ-³ù*زÒÔ¤^7B)¸íCãÀß?Î5“=ÿ“G·ÿƒc?kÿ÷âéüŒ½ÿLþïÓ“ý_þ¿v h¨\­ìj8wÒÿú[ÚÿØ{Rþg–R±ò¿Äf€ee¸òw´üô¨ö€Ÿîmøé‡µôÝÿnÿ·SÉÚÿ=Ýÿò±Ïûþ²ÿ{Œûÿogÿ÷tùÿÅ—ÿÏoøé»Ù~úl?Y6€Ÿ¾§  {ÿ;“ÁçG½ÿ«[•lü‡íÍ'ùï£|ì£!½ÿ "µ E{ ÿ¼Õ}üá´õ6«^€ x@ipsôE“»†L:Xž Añðxä4Àtï{”̈›ÕÞúŒ!þ^,Œ¦I¤Ç“Ñ5Ü ˜²+Öisq*]Fc`[0=¯ÎŠ›F"˜ÅÑÕ¬ODZŠÇƒU3‘x¤Æd¸*s„!­4#¥®*‚ŒQ&æO±`<…F5ô¥, 혦Á/Å…cmÛ÷õ¦÷t6¤{(ͬ¤Ç7nfnü0G·afñ3 ¿ªT_¥Fó¤Ñ\: IˆnD´ ç~zCR|Ãòó„¿RJ¯Œ³ö&QwÚ¿Eö·ã½7ïZeÖµÆý^·7Í¡ò¥qè0œ* º…©–1.é΢àÒÊK:1Eb U*ù£Ý¢Ñ~ Ñ¶batÕgkÔ¯½aˆDen;´2áÿ—x×ÃÊ ®'QgÊy² WhhÙ7Rlg?S‹@Œ{5­3ŒF³X"ã‘ih^õãÎÍ@fëÖìUoʬ|Ÿ_êåƒá‘ÆùÈÚ&d5öW0Ó9åë¦U‘Ín<ƒaïò²Ïf™•—~zÃ/ˆ,XJ€¡RômŒ¤æ—h…ÃÅ­ëI¿FѸ`à Eš^Êc„¤ÌV[:{éηr㎬å„쀭0ˆ0Š Yfˆ9óÐNžý4?d /ǯÏ7JÍ«€¹ýãúÊsÌ8\¸XÇ4Œ¾¥HÀÿÙ18@¥qìÝL?†Í†vÓ´†÷£?žúL¢A‡²±î ¯GCÉê ›°Íi &‡oEY;˜sÎL8…ãàüü]‹ã˜Ø Èÿñ-ˆôPvf{Þw¼3|§±äíq ™fªóñQPÛÄG0Wì$tB4vì\%R]¿¼]¯Jj˜édÖÚ ÎbêçYŒ‚\§ßÎ[''´a•ýžoß^×ONØRrÑ#rwåUúp‹ñ;#èstuÒ„r 0U8ßãqOm9wûpöEE4¨Ž#úu4ù“INŽÍÊ¢)ÂéÞŒ€dÚX1Ž3 ¤4¹kÊši²‰‰݈<™»t‡®€ ÏR…´¤‹« ò¥.¾¢¯ÖäOUŠíKþ­Ûã´i›FÞíÀ( ùlÇ[¯3MŸkÓÞê„éY®‰–rp9ÃóºwÓáKú22Î4<"H’ ‹m}}=¸Ø¢ÜBD<>6}ƒQ<Í¢QI"RÐÄêôúýõÙöðJ£0ø çãh(V#,›Ä,e.‡è~ÙâˆÒúê•úp0àÍ€n}0gº.t@²LO ^‘œl`0FØ@(éŸÊamÞ±£!ÌߨÊȱ»0‘¡°~Jþ ¸@¦‘¡«Ã‘ó`®ŽCMÕѹÖï1ö€†ïÀ%˃mÊiÍ7†9 q$béw'üƒ£D÷§†]…3¸xg}Š”h‚‘a7ây¹5ñd‡1Êz“Ñ1d­që–ª2ÍŽàKÌó³éD/¸zx4/ƒ;Aé„E–c%·õ­• ¡n%_a– ÅÀèóļZc\M"®dáa»\Luó,kŠ (f=¿2š• Þg²"̳!ó)AGסÇk•L ¹³¹‰ËªÙ¶añ pê ÆÖj³ý¼š?çÀ6QÖefÙ˜ÍÊv>€P„¼r±Ìg)Ö,ý ÷‹ ‡¹±QXÜbséðEùŸúY¼@LÞ Ó'èyîÅE‘Ϧó{K{'ñksal¹0vÛóaì:00¼½ £R pk¨Ïί6ˆÕ¹ØHkðgksÓ±»=„Qƒ?»Ì R bסù+Õݼ‰-­­Áþ­^CÜL·4äp±tb ä!‡#K°lËçŠÕÙM¢ ({ºýõåD|÷€I©*;^ˆ”‚îÑžÒü»Üé…cR7ÉPŠp«çîÐÒê*ߤ%»Õø§±Œš0¼Á_©Ê©mB:x®N{LÁÀï[ ~ßöŸÖmS3XjGÚ»Zñíé/w÷mµÊ÷jô—¥Òð»ù¡ýᬨê¿/vwRAš×cnGªPc”òÅLh“‰vþ!kÞaô^ã C‰:döÒiœcÙaöí Þ¶ ” ã^×ç#€Zf»QKŸ¾.£)üsz€¸mž—i\Ø 8*•2Ú€¨ WA¥Í´tø¹}³/í hœ&¸îQúmj |„œâO „a‚ ׉×_3%ó©Ÿþ&3Ö7¯ë[›NZ**ºí+ºë-ZÙô•Å«ÔS˜,B*›eììsšŠÎ$W‚§ˆ‘çü Wþ\ñ5€­§]oÏéNõõÝL²eÔ_¯M¥4LúÒ^‡ÅU"Ú¼jtY™¶¬ëÇX$'´HdþíðÊ£è¨ÝV”վަ¤ÔMë25ç¨v»}¸aÃXpª½ukû1ð0<™5§” ¯¨7©‹©x¿cÅó3g­ÓË—Jíd‘П') mKù©£ZçT l$-“SO©ÄàjÉ`ËH¸’Bˆ‹FMÕ‹Æ-'„wà¬z¹€BèU~Ú…hÿ`-1»õ/sÓ ;bÞÀΩ[—]Ïè’~˜É©K!3;=›6±`8rhú—½}|¸‰Hª‡²¯¾È]î—ÑJÃI¡!ò©¬Ö"b1T¦6²ä_Ó&Q¢—£"øzÓ33tpõpDrdQ÷xƒ;¢Ë ‹#¸ãΗÈÝȬ:Ê8í_HðcØÜtú1êjX$åVn¾y¥9Ï ïòr÷6žŠ¸°OH]¥â­ÂÄIN•ª5éîAØCY/TQ0QšÛ¨=‘íòzÅôuç•R£Ú-^7ú›küßâãÚ&ƒÎ·ÊãúlWv73þŸ•'ÿGù¨Ýï2©!è' Ò*%´ú¬}DN®öñ3÷LÙå,=›8ž¦‡‹YÆç£öQY{j(ø5Ïì“‘©Lw8@O}U‹º"á¢C­Ò$‚[…ø¤ØQ)AHç2õgp'³©CÞï°TšØƒ6XÜqLå F¡ñ!¥Ôê÷šqêºÅ¦Ÿ]GÃÌÛ3?ôÚ™ÆËÙ”ÕMôxÓ»¾é HºPÈøåÓñ^íTTE†¢y&†tĦê„|¦_€–k¥‡m€…>&Í·!Ž1¯ÛúÚr)‡š™I$¦&·5§ë¨2E²â2š~"´ÚëvJÔ û à¿áâçî+ó1°,)3@ÓgIz¬Òya‚¥F‚ hÃÂÊß Ÿ.N@ܰ·ïZhi‚Ч«5SYÒð(Ü‚¸fýãypLQÚH0§Íãÿ ¤qبíáѨOl«DãÐ"~ʯeD$šÉå3ÂHÿJ>³Çç˜è5¥ÿ,G]§bÕáä°yu5€¥—)õú48? ¶65*j§õàð´…Å[õ“z]ÿ΃ú»‹½c,šŒFp¹ÀO…<(+kOEáŸ5ꄞI8ÓÉ­¦j¹ÛPæñT@ÈNQ6UÌÝ·Ä*‚Fú,Û9Š%*›šË8A¤<¨sѶ•QŒ8ÀÑö"8š‹¢íåQ$ÝØž7náìƒðú¿4p4|\ú«ZÉÄßÚ}òÿz”ïÌLl@MÿS¾&Óÿ{ðßþOHý§ʼnX§G4–|RÈä Š(zFO@^±@œ^á$šAŸŒt˜ÒÛ#Ý)™8¢me'’¯ð>F©¸îLB²I@k ï7Œö$ìæÆy뢾íb€-˜l'ú<뙉„Nô­Ùc¡7÷ŽÛPu$!=74p’yéT9hâ×´Cd €ãß° (¶&ö”%ë߃þ×v¥Ä¤ƒæ’ÜSÒ$zmφnÌÿ*u*OÚ öL¿Ž2F®4E€ìk`´p¼i©‰OQ_n® c@ÊÂMl_…ëèà ƒú+Ù/ûF—ÖUÖ}üü\’[­ûW²Ø Y¯y$À›*ý­¬{~–!«)é|0JNÍл´p)©”öåiW‰)cIéÏÉ¿LÙd§«Gmw˜Š:Ð`li4Œc(ö Mµ¶¤ÜK¤æð ”ï)‰iQ‰4˜€ˆb‡äK±F‡›K+Ê+?Q†ùÇ¡ÿN:?Ü´búoûÅÎÆ­î¾¨Tv¶v6Éÿ¿ú”ÿçQ>½a·? #8Ÿ`î7à÷?þñ¿æóÿú{p\^\d;Of˜d.}9AÚÏI&(7¸Þ•}e„=š\w†½=EcåE¿ÄbôÙ;>Þ»øˆéžKŠj—vvy…›u<‹<&E¦Qÿã] í½b|È8ŽÊk |6Gߦ“N `CWn×Á%Ðk*{.Ò%,†Ó`>-Æ•›y†b4²ZÙM»{¼‡¶Ó†a¡£¾ ‰ÅÖv$àÑíËU4ÑæC´“µüJìGßr{W+è]NÝ;tð@7rÀæ$ âîàãrïеOù-ÌÃݧ‚Þ=îäDãü `>šb°8NäÓÀñ8A7hü²Ç>fD©Z®F³‰±‘Ѷ^IX1ÔÖ·ªÅ2ú[R@‚?#„Ãg«C0äT"Ÿ@ñšIψ0Š{ÈšÀê ЦƒØ0N/Ä´à|Ï}ÞwÊ"I0¬þòNÝ뉎Þ*ýÛ²ׄv@&(üÊtÇB„¥®wŒØ8£ÑзßÏ`ÏHD7ÄTÆÍ3E(è!2L:4ÀMïí@8ÄÆ ‘O¤Ì?2¥´¨%ß½Ë?ÐJW]WlÑowP3g£¯ <­‡Óaã´p±¸ÜŽf´º`ýt¿£íÊeÄüæSƽ>Í?‚¡&p5—ˆÜç9^ñNÙa«ö þã1­®®6GÓþè;O3:$Š+ÃïŽ0le_ðoÜï º7eö £ïä/tÓùBSÉìa&:î•u÷WÁb,ÁšlEWlxƒÒˆÿHE6jºžõBèÚ·F2”ÁÛÀP¸º!è¨uð`”Ã?Ôþ*èõ;ÑðËlñ(Š` %£ߢÉe¿£¿üNš>,ÉA¬Fÿëÿ"ö àbÅ’Ý’¾R¢#ú†VJÈ×*0½Gð€ëi|æ9ôHÒ#ŒÌgÔu™ÈˆWÿø‡ºÏ_1„ø2ŒÃ®ÀÃ_ŸFöâ!v¦ô²ò—îø–¿„½/ü%ªÂ_úr™hð+ÜTïÊ|©Ê—-ù²-_väË®ã…<þE¾ü*_TÏ¢/ êõôʨz=ùñ`rÍ_kÆûñ­ª6¾U™Ð,Ê{˜*õxr)_ºò%”/‘|¹’/X0þ”ÇÕ‡èÚ|?U]›Ì.cÁeÜícÁe,¸Œ—±à2\Æ‚ËØÂe,¸Œ—± 0?ËEp{©ÇŸ¥ÕÏÒêgiõ³´úYZýlµ:‘MX,ñħSÆp´€ð‹±á¯Ft¸PhÆu‰,–/TÔXó|Ùû€ªßÿ§tÞ8©·VpG(zTmƒÐÚ¡lƒP¶A(Û ”mÊ6e„Ö6e„² BÙ¡lƒP¶A(Û ´¶A(Û ”mÊ6e„² Bk„² BÙ¡µ BÙ¡lƒÐÚ¡lƒP¶A(Û ”mÊ6e„Ö6e„² Bk„² BÙ¡lƒÐÚ¡lƒP¶A(Û ”mÊ6e„Ö6e„² BÙ¡lƒÐÚ¡lƒP¶A(Û ”mÊ6e„Ö6e„² BÙ¡lƒP¶A(Û ´¶A(Û ”m¦Û ÌÛ¡gð=mmÅ.Émp}yÉ'Üõ%ìþ}žñ—ÉUÌ_bœ+]#þòO¯ªê oVüÂ5¢ËΟò¥¯¾Ðô)‘´I«‘´E1#øå›zòEžPËãZ ^Ëû>)á‹€ï®Ê—+£j_ªöc)Çòå›|¹å/ŸûUùbÂø<ÞRÇWêËD *|D‚Áh"ý˜Xýˆ»êqª~Ä2–ø‹~¢:4•ÂŒw!ȇ/=ë17}-Sq-Sq-¾ _ †¯- __÷ü^ðyÝ#þÂC”‚<*ø"½†/cú2• ž .¦ÖjšÊðäjÀ/ªà”ΆøšR7qÔ#ˆð峺j/å–VÁ—aŠ"80{êqôMÝë×rù^Çš¤¨/BdÜxq#mÜLÔû^W]•ý¡zÒ7åKG¾„Œáµ¢/†×‘|QWåðFÑ0ÃXÊÄc³j¬h±áTÞOÇòE(Ž/æ Çý>?Ì›þ³ôá³ôáó¸*_T>K>Çcùrk˜¨q~žTä‹À˜lÉ—mù²cV•ÎN*ŠšT‰¢†Ó±?‘/]£- þ"ÔÙ•ÐRWSùòM}¹¶ ;ic*_®L¤NèDH—¯jä±ñ­IsN/®¦¡"T¦‚½©¬µñK¢¾$Æl¦@Ïf´öFãkÆÎ¦Œ¿L®«}ù’®Føu)ïoä ŸRøå³úòYª~–2“ª c"¥±46°Hcil ¤±46ÆVc^øEj0Rà 7?–h,7ÐXÝ@ c|¹ƒ_ø¸««HÞ«ûh,÷ÑXî£ñH@ôHGã‘yá¯oüX€؈ÏWúÂUcy›'òx,¹1y,-Ž¥ûcil,€ÆÒÆXÚPç§‚!ôñXNÓñT€ÉA:žêªêüœ0e%4ö¥:ìñ -Tüò¿\Áˆ_¤Ìµ”¹6P_ª5ËXã±@ Ô±@_Üü’‚z|-Õ bÁP,‡ a#_±à (¦ká øÐ‡/ ØTz_Ò忸[Ë­Ô¸•·\ƒ¾¨Â|q(·‚¸[Ý­ŒîVFw+£»•ÑÝšË7¾2õ_®ä‹Âò­Œ÷VÆ{«Æ;½4×ÇTH¶©¬ü)Üè]õå[U¾¨'qdT½Žÿè¨ÇCùr[•/´¹§2ÛS™©éØ$:¦jÔ¯‰”žH&ÒôDêO¸øEµ:áÆÆ´Ç}˜¨‘㮚(¢¾$ÂTÌ{󦺒Ýu%»ëJVËsíÓ«xÀ¥•«é4½(ð×D — ü2QÝQO&fëèƒûƒ¿Á—Mý­b”…câR­.õÎ)úFäø%QîJ¬ýJ…Š*Lª»ïwþñ{ômJ±jôÓÎúò¿þ—àË!{¬ÞOÆ_®'_ee~Kë7¬”Öâg.ôø– K .üRÿ—q¸ªÓÕè5ÿpáÂS†eôžé¾¢ø—0sØ—iW¡œÑUø¥ÃÏ~oøûe$r<>«zħªkû÷¯_;aø'§vl²U]‘'t…¿ê Õþª+üUWø«îµyŸu…¿ê Õþª+üUWø«®ðW]a­ŒHZ¤UÅ_u…¿ê Õµø«®ðW]᯺Â_u…¿ê Õµø«®ðW]᯺Â_u…¿ê Õþª+üUWX+ÆüUWø«®ðW]᯺Â_u-þª+üUWø«®ðW]᯺Â_u…¿ê ÕÖJ€ñÙÐÖJ=¾–©¸–©¸ _ †¯Ê¿ê k%0ŸŠ¿ê ÕÖJ J¯¥Oe–§‚©Œs*ÛÊ"šÊ"RôA÷FQ ìF‘ôåáÛ ¿0ÔEÐUƸ »7²ìndmá—PžLä W®U?"ƒPÀ_RU‹¤1™÷™Î™Å›hšÊðוmwOáâFæôFÍiWxÍîÍX†0–!(ÊFÁK÷Ç‚±tx,K‡ÇÒáql¢zlî÷EãЗ+ùÒ“/\_1¿]a~»Âü2 `|©]a…»Â ã—±þr«¾LòeÊ_XÄ)ÀX Ù©dW¤’ú}OµÅ "‹&»ÂWw…¯–7Ñ?6˜ë®0×]a®»Â\w…§î OÝžº+ìtWØé®°Óux#ïo"ëñXÇòE Ÿ™ï®0ß]á»»ÂwkSy?UÓÀìvWØmø2é*ì~–~2Ë-0>K÷>ßDòEAý,SÅ,yWXr]u¢Â xWð®0à]aÀ»Þ–¾+,}W8ñ®Á‰w…列xW8ñ®pâ]áωw-»+|yWøò®ˆœ»Â›wE$Ü&]WM¤±DKTÌÏtE\Û™kWD­ƒ™ø®ðî]aۻ¶w…mï ÛÞ¶½+l»cÞ½+l{WØö®0®]a\»Â¸v…gíŽMjW×®ð¬]áY»Â³v…gí ÏÚžUÁPŒkWxÖ®ð¬]áY»Â³v…gí ÏÚµxÖ®ð¬]áY»Â®v…]í »Úvµ+ìjwlþ]áY»Â®v…]í »Úvµ+²ð®ð­]á[Ød„S _„Õ„/†ü¢¼Ràcëxî±+übWøÅ®ð‹]aŽ»–¾+ldWØÈ®Èä»Â&Â—ÙØ­tæV:£ø¼®ðy]áìºÂÐu…¡ªWÂÕu…¡ë C׆®+ W®®+\]Wº®0t]aèºÂÐu…¡S0W×®®+ ]Wº®0t]aèºÂÐu…¡S0&Ò¢bèºÂÐu…¡ë C׆®;²ô‹¾¤×ü"~¹‘/LCâ—ÏêËg©úYʤ)ú%§êý@cé~‘vÒ ¾Æ@HciŒ¥_ôeK¾HaãX_ªù±ôCÉþz]Š~ŒF7ž *j ¦ n÷†™×®ðªtñVº’=u%ôJÌœnW8]5=ŠÁí ƒÛ·+ n×bp»šií ƒŠËW¾iö©<žÖ4ûªHsfߺšƒíz9ØnÊÁê“XØß»i5ú-`47'ûJ¾–JeÚ®ÁÐêÆW«“ß»9Íçv5ŸÛõò¹º Åìê&ä·QÕnBs¿]Íýv}ܯzê¢ïÒAߥݜÁ Á,Íݘ³uã­w¶nœÙºqf ~ÛÍÙ,xW³àêîWß îûÀâ¾CaºCaºCaºCaºCK© ç Ó Ó Ó Ó ÓZJÍP8ïP˜îP˜îP˜îP˜îP˜îÐbºCaºCaºCaºCaºCaºC‹é…é…é…é…é…é…é-¥f(œw(Lw(Lw(Lw(Lw(Lwh1Ý¡0Ý¡0Ý¡0Ý¡0Ý¡0Ý¡0Ý¡¥Ô …ó-¥f(œw(Lw(Lw(Lw(Lw(Lwh)5Cá¼CaºCaºCK© ç Ó Ó ¿ ¿ZJÍP˜îP˜îP˜îP˜îÐRj†Â×…Â×…Â×…ÂÉ…–R3æ+¥f(JÍP˜¯P˜¯P”š¡Åw…Âw…Âw…Âw…¢Ô … … -¥f(\X(\X(\X( V(|Uh)5Ca®Ba®Bá«Bá«BK© —ZJÍP8¬P8¬P8¨P8¨P8¨P8 ÐRj†ÂS…ÂS…ÂS…ÂS…ÂS…OŠR3V*4X©PX©0e¥Ba¥Ba¥Ba¥Ba¥BažBK© ã ¿Z€ï(n¹Â"'â7žü²ªl]ý•º%îþÈŸ­÷˜Q”:M•ÒöÒ…CçÅCÑÆf:Žâ§ý6Csºb§bJ¹”ÚïVTé¨Ó§Øà˜þ¯”fã1Æþžho²\öt2A•yÿeì'v=lÃÐmÀq;AØûÒ #Z @²žaø¾hz3 ˘qpA^Lå,°‚² GÃõatMô‚L"à”ÅòÞ_)K²Í jüý¹Ša m ©Ü¤ý“‰B±Iïúfj¤x1haøqŽä·¡‘Ì1g*U¸Â9èszU– ï£1"JÜ–3 !¦3Ïz½±Ó¥ò5ûÓµ; 9¢k ¥'·Á ×Çè¬ñl0æøuK )xÕqZÈñ¨Ç‰V;”55šöºAcÊáÎ)S#,‡A§{Cái:Áõ¬3 ÷×½)ô…j‡áóxv9Åð×eì3¥fÄ´Mæûa‚À0(ý×›[W0‚~ïOŽóWà ùqýä¬Ì_ÿ“~­­ÿºIá¯õ*mcè:§–„µÕz_:—ôµÓëcn¢oXè½L6¥ÿæ¯Ò7Ybn÷ÊQ6øG_qqÀŒTw¤R¶¬lâ2OFw6™ÀÊìßRôŘk¼Ãá™UŠjqMJpJ„ó¶Ìd9\K|Í>®I(;¹Ù³š4ÝyˆÌܽ·@r<]ñ°ÉF篤ÑСVðìâ°ù°Hˆ §ä±.I§‰]’RàÉ>¿Ñ6¥èáòRIK3{†ò<è´˜3Í`Æ/¶»ØÄ.ÖüÈ¥ûÍ©pVT1o¿ó%ŸÏÙén[ym¹hØX*Ñ'hVÁSåtßÀêÿ~l*X¬ç°y$GCž“äítˆ1:'*êÐsœ«Æ=·Ì† è[ŽØVxÑ¿Ú,{n9¾T¿ëËõ{½RÐs³»uÜZpp6ÑÕ•ôܬ>|œôîaÜærR^b:;(7ŒnuÊ ãœÑ! bÏLãJ6-3æð¥³T]¬cz4 iLhÐMê®CP¬âµB›ÛHÕ§(?DÒp4Å„È@BÀÉ/€‘-²Ò;ñLq¢ºD¸ .6’Êh¡É{Ò¨ c´IÕAç[‰òG+ªw@ƒ,8?@D=ؽ?fO‘Mã804!rÏ9‚±æO#â~“ôþ|Cºó4qÝì<½[x½ËŸ¤³¥&éßwÖi‚{É©O£âåѱ®²Sw‚ ‰(@òi© WðuÐ\¡™ªÐ®®6WW«NÝÆÒ öºØ$vW¯($u±³„£°3í(ÑøžÑÍÕR¥¬A í“ãvã|ýe&¿t|úú÷j©ù¼ÄÏ×*+ðq`qÒúDƒÄŠ{`H°Ô8WoïÕ›ï…0>PŽÓ´¨Àâ*£+¥Œ—åDéx2º„#;Vq± —£ét4â|¿s¬æéhÄÒ,ž!u¯hïêÎÊ¢{æ]î–i¼sV¤0¨¾EÙø»®Ê†³,Iy«²!Ër –âÖÓR4–b#-¢8‚Ö"ò‹4Q¹äÉÞÇR¥|Œ5VÜ5©—dó™: 0LHi;X…EàéÆv+ìWhd*laXP0ïº1ÚgjpæØò·Ú/«ÍÉG|ÈÜ’³?m~Èw•‚øjÖ§ gõù_T"Ýë=¦7{ëȇ+f È?`ñ‡pìÑ5,I‚ù7Á+´Ó¿£O<±#¢:ä²»¹†1‡˜ÖaWåÁó°• ^!ñp6¡EuÀ²Å\š,¦N—Ý•ÌÖœÏåVuä…×3jèÍ úÛŠ†eá&A»ÛÃe@wp>X‰ÂË)&IP@ Ñ$ì ‘NBÙöž§cwÍèíPFïÐX±NsÌl}¤ CÅ‘Õ9 ðH0-‚¸4|ÁqV^‡Ñe°¹³ñ€ýLEŸgIgQò2-õô2?Õ[§åà´Y/çDÜz\ùIÝ’É–¨$®ñÍúÚ&UÁôiêÔÅ\¹ôË›‘yñDxÃã2þÛ*¯ïk§Çô·yqBÏÎá9æÐ®XrÊÕ[X‹·á¿ ü$î ¾•ƒ·ðÿ·€NŽßCóÍ$áð,Õ[Б³Óã:@|×>ßk$¾ à`OgPð] `¨ZÔßOùÓSƒFêgðÏiëu“.0¢¶?ß³úÄát¯å÷¬}¼wR{SÆ¿Íö¹*çÉ:h—++¸åÜl„zíÙ¥Î3£Çák vzö‚ß:MÛµcþ{°©þî©¿E*,P?炈âö‡=@öÇzkÿxï²&" ˘¶õ3¨×9ÅÎ6^/™K‘ËP–Bº9ÃBIíu#ù"òÒ$ñ³3ž«\…¼'ž]<³ÓJJnãœÕl µ#‘À,ˆçoêfZm¹Ê¥sõãvÝWû¬°veNíFaíªQÛóz]Copc„4jÌð¾™®.úLÏ,æ¶Ì¯Tu+5‹Ëo¹åI¥’ÚsVM|¦š†þVññ^ó`#-éî&ç¬Ìiñ…¯E`Üm’‹.׿¯¹Ó6šu‚àä;V;¹-¸Æ=\mR (›–pW®šËL{$kY¬IÔƒêÂvkæäT…hÉÌ7süîn¨Ö Öát¹ÞA‰e]=E9˜ŒðÄUºWá¡êÛ×û·D¿I G?U£K`drѪ|Ó'Ô;y°e.à‚™¤%LW]IÙ TÊjn 9%×+dPÀe›kNéü“,;µºÇ;é3=,àÞ Áé|Y víwºtcÓl6”.³å¶‘À:ÇY-\@¶¬ÇuyÜn®b‘µŠ§Þ¯žZÛ_d}Ði¬UÕæ¨µ½¯·Ôë¶]{ÑÝÊ ‘Ó¿…E½Æ%Ö݆ô”þÓvž`çPƒ^½eÔr‹>Ó`$=Š— ëÔKÇ”sô2ÌRt¶5sŽ-^RK±}¹È#Õè-£A­¿mò¢ qZåíÍÜa7Qü0}Û„3ª“Œ¦7$â€IT£h{–0Ä£þ‘Ñp B’Þ(Mú…-Th²áÜ Çõ uþŸâÞu¡ÑX‡#óÙÞ3Â!üß`ßqÎÂ^ ž >¯¦3qM™¾¥'nѹóìïŽl\ªzôO#x±,?ܾk%uЭC“¸• Ó\רÆûói¤pZòáåõjWò æŽuÜPÀÆ»+á òv¹ª=g[ÝiOÝeC9§ A¢ôt`ί âêÉ3m h\C²˜<*Sw±v À^k¢RDÔÉ&ô¥$º¡Åj£@„I úª èDógmpþ¤>Ž{ýÑð™Qå*¸S›h w D²Ç%¢üŸ«ï" 'Và9—B1þ\Óûž+Øš¨œ*9 ÀC=;Ÿ¨Áb`9Ó8¤îB5Õ¤õ²/©Ì,}÷‰_´Ô‹ÕªÑº7}ÊÔh êàÝšÙ37áó¶ýœåbð‚  ê ­¦EÞÚcd šÁí"ô:­¿-«TíGL¯¬.:› ½jJèÙwšÐêH©¬ £‡ëÂskÂŽù’wI5ßæ‡5Y#ýp l´YâèèVÚÑ“ŠÝUÕÙz¦³Š…mà BVB󥫩4½­µ8˜´wn‡½IŒ²ài4 Ímo31¢n$$ÒÊÄHøDîÀGú K¨bï¸/nOö Ó$õRc…é2jkÿÂÁ»`áCâM\b@¬32לËUßË6ª^×ÍyÓh{…´NÓÑHu ñpZŠ»Õ,ìÖBÍRslWÙŒû=2ªJ+VÐ$¶bÖîLa6W6‚6Rt0qPS•REÒÚW8åwÂk°ÈŸ âþšá®ùƒ<¶®bñØÎ¬Îç‚€¹H÷R_¸/ª¶:Ù3@|½sn|þ¨&Ri@¶AOÅÅœX›%‘ù³ÔÚÑ4k=ýžO¾4_¢"ªÊ²?ó¢“ØÂŠ(;ÿy„tàÊ2Ýî•´¦D@縰w6pŽéûÑjŽ«‹PŒA`U*Õ©]Xµ¡ë¾å¦ Xx5›À y*·–ê‰Q÷Ó]+Ò}~ÇñóÏH°žÂ•>NÓ¬„×ÿRýf‚䮣nÔî\s9devŽå8ãb¶P¶¬? ®?žsÈóH¨—†}9¤%·,’‡/‹aŒœ„¾rr)w<•…|÷ÓýÛ>ð( Šúé¶àœà¥Í¤dâ¯1Y dmASŠk(.¼Û«6mˆ#mØBÁ·H§6 š g"1 Bû4ØÙ ލvÙaðq’ ü$çg9ÓD­¹OU[G¹WÈŽO”¦}û×E#‡®…W<# ¢÷,3Žù71îP®ýö­ŸF[ô¢C-',·'lE~aïé²·.Þf2Ë¢ù¦Â'oßæ\Ï Ë|ôÀ¾m²ëYǦŒ³Â2N€Ò,E؉•5ìu;°v‰D&·³…YHShžÛc&V*öpsJmúÆøD˜^G‹²Øó\ –‚}v\…Á.:¬ïZžÊÃ@…£!Ež½Ø ¹„>’Z%T—ƒgïñŸ}-6ჸ’zÁÑ­¥Å.Ò¶:[eðõ!Ù ²æ,•:4~Lï_¯ÿïçÉ£úÿîìnïV]ÿßíêæ“ÿïc|x:þ¿ïZbG{¡F>¬­ üZóI×ó â(jX²Vþjà£Îp†‚UX…wö^Ìõ·fûÿ*ÌiLz krý}¦W%n‚\t]ßGóó}×*òó%¯°²åqš:€À«ç#rÿðúì°uâ¾Ã‡Ý‡—ñ6œIäÒí‘iyMFëñMºÔV¬l‘Š^RèÙEŽPXÍʱšÂz#¿SÞÈg««çòÊð7fïH»3£Œ‹¦²Èï ·a”VðbŽõtL·×‰ ìlòÎÜÎpÁ°ßÀÄ­¨Ïõ{ÝîlÒéÞ–ÿ‰ø8Ú¢Á êÓŒ|ØÞvn:CòØPWćÑäOìFsCùß[A ÆÐnì`Õv··A‰½xº¡ì´7‚/£þFP©áh#Ø)ãñFðË‹­õ_+Àøµ£ñ4¨üúëæŠ8Iü“;•ããö®È!aÚƒ~ÓÓ!¦1a9™7÷£)ûô¿ßÑftŽÊpwuo†=46nEcdZkg{'ë;;ÛeÄÚMØïui_Dè[‚cYžkS~4ƒ­C©¦³Ë^âhN†ß´N´›>×ÇÛu'žëŽý~Ãxí.k8£ø ¬;êÏÃØ‹§2A·rúLAOF_]¸Æêpm9¨þ×6ÒÏìAþ péÃ…oM(4óßÁÁÞš®Ô£3a,4P¶dª+7kvŸþM¿ü7™HЩQ7¡P| Ó NwÜîg°Ñ¼í˜@²s’Þrpp `½D”KØîºL(˜ï ×§x!´+R¸Æ—™û@°0ù†{,Ýs^Œ²‹ïƯpŒMáƒ+ïJŠcÕiZŽdˆnj ÝælÖ0=|+åæŠn¦ù·ÔwØÓíI¿ V‘-+Àhë‚Ib}ØxñyáA'FÕy7•­ “쯰׺'9ñZX9ÄtÕæ.¸šIùxÐSó ç¯¶ÚÜÅV³0´ÐÉ>C5g©Õ²+­& ßU²Y“rûþ®†fö4lÜÁÓЄ‚ކæï 0¶¯J5`×é—úXÙbàú¦ÁW8Õ £ˆ,ïÌ^}Ê,'ºu U¼à²?êþ‰3ô‰ìä¤í%²s…þ‚[›«Í,î5¼WæÙ°( 9`-PþÙ‡U0]`j{ 0Fæìo ÄüT«dDŠ)êÒ š9í—Æ“Ñõ¤3ð’EÞd0"V7G02Ïòc·7Q?ŽEzØ”'à)¤ÎÁÝ;ë:úMn?ó¶ó±®9oDã–5.9/¤¸7è!É¡n=‹ ÚÿÍtˆ…UÚ›Û +Ç9¾¢PAÜ|‡Ê‰,õ‚´hn×eòüôøäâXœ´Âèª3ëOµÝ7˰àÏf¹~Ö^]-­Wžÿâ8«úäç:êÇÊY›û†.¬ÖâÁ—ïZ´n\f ÀëÍQVpWѾF„âÎ?fðl'Q—œeEÇhn8kÁíiY±ÁƽŒKië«qïzÐùб¢:â´+Ý‚j@%£÷±â;sûáPäh©;š`¶Ñ0ŒqNe˜žSÍîæŠ´†ù'ÐE®À:­¹Ä7cìÏhú#ïTh“Tž“-~Ó…ƒáÇœè›A Y«N<5瞸Þ`ƒ@9U©ü”„V¬{‰Gƒ,æ°cÛûý@-Ña©ZàT£ÙŸ#Y¡øç…sUµæ\Ì}¾•\ %nGGÃf£ì윕㎎ ifÔ !q²÷±qÞÒ2\sgíšpT9kûH¸„”ÿwâ8Š=£IO»éÍd4»¾ xxÈÓ.³}å¡›ÓÑØŠYT"*Dnî1û>ðÒE?µØ@î†Y[ZåÃMZ…;¹E°Œytß"çz4goõvž‹wê~æ“jyÁ¤®á…Pšõ×sq òŸœìMó uþ¦—àáUŠk®¼ÆñÍE¶x0¯Kj.¬“zãuñø¸"ks£RÝ1ÀyT(¼& Áñž„ºŒ?¿ÏÏüônýÖéùÞy‘¿y9h4Ð[¿}±ÿžc¥£rp|ŒÿÁ?'e3 ¯ÇÄ Já_ àN°*ü9ÉGíÞ~»NžÙmŒÄÛ>¦[åÔ÷þ°¼.o ý"-4‚5à9¯•ƒö›Æá9ùxŸ4ùÏGüÓ<.rBo4±&vº £ÅMþÑßÓ½¢úPøüM«Þ~CăPÀ{6=Óx˜¹1Ô{«>U/K±‚Þ,ìûo8ýWùÏ»JêÂÞãcX{E8k×ê{h‡rõ§9¤)dÒídɺòÜ;ütû—9„Í¿³nûRþ°l4OÏ7<¡Ø¼ƒßœ…½Ûç8ªgÛkì ¾„o;pBÅ5¶³ÔŠkì¸5TÇȱ‘‘áz·»«JÕx}ž©¡’TºEœÛuvË×µÿ˯]ÉLÚ@m^ÿkv÷k‹÷¾¢gé>¾ùïZ‹úæ§ðç8Þ›.ôiv«ìnê Æ—QÕKç;¼Í*juœÁ«òæäõùµ§¦˜ Î+k=hg\ºÎAúŠià54vl¦v̲Ӣ=«:‘ëöö®"®äuÇl¤éÒŽéX¯ŸTÙ‘ý/OŒÇ[ü¸j=Çë^¹èð_GS ÞŒx<í®LšÏu*ã÷xÙÚ+íÐûÌFìã:ÿÓ6öžŸ?™—|gºë–Î^éŽ ºá¤sÁFŠÙh‚W²ÂMO9ïÕ¡gÿcãˆ, [ÚÂðð™SåÛæRŽË§ÜóZ?¶[WæHþÖ ‚W¡49Çs4/4´OP‚”ŸªVÚ‡3,š’y âŒe;c÷Ÿç  ; ¾<'ßtk6z šÞ§Ç«ºÇ"*j®Òu¦Ï×Ç1³=Ój7C(ÄÝ´²Ê‹.·-ûÌ9› ™ ÙàÁþBå‰èRXÊ¥d˜¾Dð)Q+"¼Î•ée$hª:µ0F-Ì”,º¢+Ô› GCS¸÷®Q÷…†95ûʤl™ózËàH@`²0(*àß‚€NªÁ‚Vî*]v6L5hLDAcU~é ’>Ø~tÝúðÈå}þ µ›¨û'¡Ù4üdù"ê)¨îh6´) <’Cö¦¥-xÁ1Þ2…«›)•vØ##-¥ Òj9ES’Tš«xJA[Ž Ùì'ìo]ßPËÕh[½µŽ‡Oìs˜ã3(>E9Ѳö. ‹äu=û:w¬mÿy”Åf =èë¹yj~1N]…}²TËìŸ÷îi—yXTîEæâ!ÑÉÇx2Ÿ¬ûœÛkæò¿’ÐÈö¹S–m¨k„³Mxõîâωšu3( j׉#ß~õ#ãøXÅ™XU£Æ¡ÈV/A÷WÈÖ*TJ–©>„s,<ä*rUÞdåà¦3 ûpÞá 䪢cÆ«Yÿ:RÎp¢”.{רßb£ø *q$ |êÆë`‡ëú7§k6EmÏkǘ·"çÁ=Š9b’Ó(6D-DDË©Ñä*fÃLmÔ‘ò•ólÙs*" ;AÁNˆå¨^ŠÆ,ñdΞ>WˆZ0ÈY{&³RÍ\êÆ(w¬Ï‰3÷L 2$ÈÊ‚Eµ€öR–‹yŸU²“™¿ÔÀDͳ>,þÊ%Z‚”¹<¹°“€J((RÂe„TΫ†ÆY°<‡y]ÚƒÔ<ÔZvž:c<æÐQ^>RõÒ¦DcBˆ¨cÍH"*ø“e9wwyÞŽ¹ìtÿ¼Ó–QÄMñ~Iç³] –Û/Æìo—¼‰ýÁv‹à¿h»œ,³[*²[h§°úzýgÙ1½_*s÷‹ç‡°äš)S,ùIV ЄņÚ(eµ§®ø1R$_ɪk2ë ]s9Y0lÛ…uF(!eA‘+†=a:eæ¢ä}Ñ\Å9SG©òW4—Æž"n‹, Øe•6¢gYcȵ›ö¢óeÔ Ñ‹,Ÿ<öps‡öÚpÏ¡šÓ•š ‚£ŠÚŠÏ C2v°÷Ÿ.ÊÀZ4w7æSæ±)l=aÑÝ™° vkÙê4†Ý)ËéTæ'ÙÛšM4Jÿ.+ èýÞ5ÆÏ,£‘Íæ)ĵ™h5Ï4³³¬¯åI|NC[A“1 EçÒðžÙŠÉ¾Æ°;Q KòF,£?kJ6bÒúÒæf9Q9‰.½”±ô]+…imª‘J[}á3 Í ‡×4£U´fÁÝQLf#*]f“è vM6‹¨ •;‡ å?n,2²îñ<Ç3_)ré#o•Œ‹æ¨òA¸h޳+ R™ø+6lYÂgp6duôcQ´ÕîÕ½š…¾ša:Àº rÒ3ïì¥Û—µ4€-!*`Žà‡8 •Þó¤¬Ä¤>ú·èDd2`FI¹GâÝÄõ»ˆóC9 Ýpý™R‹…ú$\×GáÖ"G!ÑÙ³P ç04ß>êY¸ŸsÞiW—Sqß*.qX‡³pß.Ñ©<³ÏèåimJÖ9 ‘SRÚ¦Æç2)5UyHÖ€6c´Îô´' iɉ¨Ëåׄ9ð³V¯¡ …ÍÌ©¼½ ÊïZýÓº/iš9ƒ~U­kÔÌj=&10tª¡~­s O`E…ý:cÆØÆnÒ _9?VŽE)æÁJŽù]:æcùxÁ.¦åxäÇ9¸JïÆTŸd> ? Ä׸ºÙ~^Q¿d)Ë,šc`Þc°[‹ñ 8V¼#· ïHƒ;|¢øŸ(þôó÷¢øí›êĺ¨Ü{éļ–2(÷ÊäÔ-E(È\S;Ë2K\Uó9†eî©L÷ëÊÓwÕze©ÛÊöÀ›Wî»ÝVÔ¸q_ÍïdZμ¯|õ 2bmÑ+ ƒ|ç\YëUûÊòwe-ra¥ ]ñ}µèm•rtrYíÌ»¬TGÝ»ê{ç ÝŠ9F;ÁèïÛOÄêREjS\õ†½ø–®G¤må7dÓê[¤Z©mUúýŒ‚6º-£ÆeÐù“Z8ƒ Uv}Vù•yÙŠø,Ôzï¢.6ŸL,T1ógÚQçÒð·rxíGß°®Œ B$z‡îØ~dÄVã\ªû8 Ñú4h8 «}‰úp ìiNÇ(T]&9núðcÉg@Ï`BŸ9ý“xœ«w)AÍ›= 1Êwg@B¡<‡µã=8n6½`ÜçôÞÑá÷TL2…¦ÚGéáG Ìá¼pÇç)¬¯”ªF7DžÈ—4wƒ(”°~MnhN¿1Ò&’®šMÅÉÔá&iÚ¡ï à¿u¼ÎË•%Éþ¨‰½Ñ÷d6¸ÎyýäìaâÒ,{F5Ï»JEû‡Ñ'ç™Îv^Ž›‘à j§õàð´…Å[õ“z󞑹£šçVþ £ð8œ/0 !à¨è1wÏKÿ…½xØyTú¯RÝÞÊÒ/*Oôßc|Ô†2ò?4ÚͽRptºO‘í8O»~öW¦nºÉçÉÝC*¢1uÓÉ’$¡ç6”„L€²¥hC»R ɺñ„njàŸC–U1íëðQh4-X ˜p¤¤.ñ-P(˜Ž% }"%ƒ7³ ×¦™4(JþÉ™ü9‚¸Îƒ¶ù‡C™¦=F n§%Ú³ëÎø™&‚8¯×Eòˆ‡Dñ·¹7N(•«<F ÜF\Vá{r‰ùÎ%êQ4™Œ&å`uâÙDEú&Ê0:!`… \¶±Î‰kt”YEBß9afz1»4îF¦[Eeó´u‚†ò¸ø£ œŠß¾ ªë’f%ZÍ™âþÂêùƒœY€Äê òÌÆ€Ò>…¢,5*$/;Ÿr¬n««ÜDo¨D¤¢“®¤ªI¤2&iÌ0²6¬…¨³a¼©˜ãXK"!£¯Cs ÀÕB¡Hèéb #½OÕÊUéÊà `ûÂç$¢ia ^õ”z™cKÚôy›Ê„“†^–•`Eœ…¸~d¶ o=Úçî~ó¦ÂÑ›oΆóBh „…ö,oVÆè‰rô5ÄL]3bãŠf’†Ž‡i«ì@ÆÞ|6–ë¬mžÙ.Ú ¨t?Aã¶ç]PMÔŸySßä&;8Y±*[RmÏǨ‰‘ØOÊÍ€ ‹Ñô€Ã°ÿFƒ+XÁ•œë&˜øŠƒ'Š“Íñ¶{CC[R˜I§%£1·Á($ŠÊ5®Kd.9*êgŒÔ9‰8–ÄêÑZx_*$I¶;áÛï˜ÒŠyÎ9-zwÈiñó„Ý^Û îmù ^k•ƒzã5†WCÖ²×ɵ­ñú E#n¾.”B¼Í]x*&r³þá5†Ë==> ¿í½C 8Æ^Ãiø^Á|‹F·häâÜ0ÃËî¤w¹î¾¥ä¡µèÀÄq#ȯ“KŸõÚLëÆ}ßJßã‚Â×…"qPCÐÃí»ÚÓ·äÑ«z(Ñj –·$:ŸPøÙTÄ`G€¥§Ü–·Ø 17lñÉ’a‹ß.³Ø|[CËóÖ…x ã7®ï±)Áz›±ÜV’´VVY©š¡?Œ1p¨oxmŽIå]÷R]£?¨×6¨J>›&‚+¿•à·^ØEGƒ‡¦Ë=Gò–GRà}KLõ–:7âW‹¦ñ§ï ™X„Ec!k뛪T,¸, ŽÑGÙòÊ}›.Ùu±/&ã]ˆYû=bΔa·0O§éáaï ¾K ‡îj°²ž GiÀäÖn©ê“ÙÝ—–Ñ-Ýu¯ƒ—f+Õé#‚aÖ=ç·ø®š)á¾Íö>³LüGùˆóaKë÷7S3Б¤ù¸–wÇün©­f —c:¨ßeOdРh³#M½U€ÞÚ€ŠìÉêÃxÆÙ²¦Å´'‡\›S2a±QšÞL"à3ûa¹˜[wYõTží„ž6n?"{Ì—íô¥È Òø›‚Á4Šì[+ªgb­\yÔcáªÞY›ÈŽú‰AuÙ¦ºê½@-½Â[g±ªM@!Õo¡ó²ªݯ' #íï§'påÿ×——“ðQåÿ[Û›[;ùÿΓýÇ£|Ôn2äÿ¯÷÷[°ýß×kç¢ “²·Çðßžh<†ÿr|þw–rÇïÊÁÙ9VÀkÊÍ éÿÓªC +éiŒ0<£‚0£±{O•ÃÞ~Iµ°*ÖÑØÒªºÑVUl™ÕB«Æ3´?§¾Qùw%îãj~ e-¢€³GÆ¢pô—85J ±GF'˜Ö«)a:Á> ì|Žl¿‹/ÉèðeðîtoþCZgßÐÈzÒŠ•}މ3¢„è”þÁÄÁ;*Q«”%³)ÇŠ~÷lµ¦Rª³üßÈ;OdKñµ°ÈúëMĺŒ Ñ Zª‡X|Gý>{FÔéL82GI½ ž5Ÿ½Äx8‹0©éŠßA1y?ìߺ¯Ïä54î{¿/ï/GÓ›‡“-{ÁÒâåE2£ïeSÄ?TÆu7åúÛã%{Ï.eñ{º àLàK7Ò…ûÀ[yè÷öMðó³-ÃT”3Þ·í˘ñDöC^XÙ&ˆ·Çko/Ö*¬]ü婌zìû%vÔõ§™& 4}2 «ƒÊ!T¨Å–NÎÑ?gk•µÞúå?´Ü+õð G˜Çüʬÿ9[ù׫޿^¡`zPþcíϾÿR'Þó$V}>Q·Î&(œwÒFÒ¹‰Ç“NÍSq¿´Ñ{ fX°êèFæÌ°–Å» {ÐcÃÙܼr4×—ls½’iÕZÌK4ýnÁ¦ñú;±Zm\ñ‰N'&é öŸk{`^PªQ;ƒº ÉΞ¢w¢íM“ˆë%ðn‘­>g ؽA˜:s8ëh2ÃûMJUÒdRrùŸ/ŠG *šyˆ<³9äC"‹È³gs0ùÎÂäÙy*ϬKùn¨<;wp @4ì™!þ¦‹e±¹|jûÂÌö|Øv»wÉlUº–Eå_ÚþÄ—Ú>¸_nûê*ÂVgÚ“>D×åyIt-¥`ÙÈ©{oᇽæ9çø§ÆÁ¿ï -Ò&îQJÖ£ ü‡Ö}ü%Fo‘;Á.ŠR³¾½Fì˜th˜‚à¿ÃàèºÏ^l¢#-þwž¾ô¢M· ÷-¿-óÒˆ¾~_6Ó‰¶Îùw»~®ˆ>\fÐEôˆËkIó´  cLjÑ-¢T-Èr 8|µ|‘ÖS¦À»g"ª&FÙ³óLá³ÜÂx‰ŸžzŒK/@š+XC{M‹þu¨Väp ]¡ê…™õÔêNó™«ëùNjÅ9ÙS³©Pç%6ͤB}{¼d&Ô·s’­îºÆ*4-yµ~ÉÖzÇÙIõ¬¿ÓyHß™yHOB¤Ù]_RÑÉo+/‘Ø”‡&/¦ÔœI KѵÊK&’©žå¹ÃkOËþ%ÀïD/KÌôÖŠû´–¼mÒ[+¨ÈÛ}º+Oè²4möéÝ7îÏ€¬/öèqeÏõôEÓÌ¥Ÿ£ŠkLÿfÆ Ø”1´L$&ZGÚfN„µ{z†¸‰­ãïÉè«vÎÙNôƒ“cÝ3w9ã‹‹fæÅæVÒV)E÷­—2Ö#Luìy‡#>ªò;{Lð‘œYNî8ìÝô0\—Žo)2 ›æÞ`ЯK´ðG³SÎ’ÇKg:C7ÔH 1rbF©×ïKD£âƒ({î:à#ô;Oëó‡UGTX~pÒ\ÓÏ2qTIÙá¢G{ÖZé•Í Ãìyó¥F~TÅ!¬¯WÄr"'âT€Ë‰RX䞀™çàËTôUòŸ dZò¢kð'ðESsžÎÍú±Ìmáù ÂZå®0œYufÝ´SãpÍ,,œPš¼Er'G;®oœ¬7Ö|7¯ùÉÙpÎ~ë”zkƒ>œ•½?t²VpÜYe}ݦ ç¬Q5|3PáÿbíäOéÛ†¨'ü{ü7N:ú÷@Z{Þ¨jAé"¬íÖž¿¨µ×Ì[Ãzü”ÅŽ.(†ÁxÖ°Ñ%¨ÖXSÁVöö׋äy#Zºú\|ûãÓåm}ºF›­ÌĹhÖq/¹ï³Ù“øcPèù[“È f´øÇ“jC('¯sìÂ’ç]ÉlmwD½‰o=ã¤õÆ :)¢úÍ¿æâ?=lŒ³FP^Ý´Êzcç-€¶Z!Ú¼·&µ<4m-& 0t”Iïxdü¾²¶î¬£*p?Më*õ¢,ü\€$4ýEcë0e7KOêŤìÿu,D×Rû„s’»“ã“W.U·Æ0C¬ý9[ :—À[”W ”ù… 7ÕLÀ¨ÿ¡›Ò‘?jÆÉtîê\Å# »Ì¯Æ‡7»íÿ gÜbäšßôùý6ÎïËs©¥ î2åëûcºüžŒBô»äà†~)˜Z³Š$e] ½Ð¦ØååàEp]›[å }ô&5ÆZÖk±&üÜb^ÃM}l玢9XƇØ×2Lªrn¤î¾ù-Û.Çwp†>Q<í :žp§J²’ ªƒ›"ñ'v< Óðw¢Ba6ƒ‘ÖQìÉ[zHg±rÀ Ž/‚«Úçõ–ë @®C‡Ï[‡â9Ô='ÿ™ËiÖoH~‚Ô³7üRÚ[Y)kóºÌÐŒ/<ªn³#Š)š\2S{”‰ºj5¬,[c~wpF6И‰Ë«X(öŽq}ža®)7žf…ý¤N1ž%·ç:7ð•,X³åüƒ9ÐÊŸàûyî:zrWÝØ7¯‘/ÞeÜw"Xש›pfˆ§¥½ý:–FÕ³‡àD7w;˜JqÙ¢£BPºjjŸ²I]³‹ ÓXü[iÿ¹NÀƒYÚCÓÜIÌmS\g|– ­åŸ‹ q$®®Úµ䯻¿h]· <®=M,”×bÜû2B1nˆa~£S«üëUÐÃà¦CÖž³=¾ÚÓÚN£ g yR°Ý!=}©Ç\xŽ § C”îü²ufs`B®{†'èžë*Pªº}@A8|¼:^¬.Æ»™ÌÓ¤ìݰØõqþ¼ä?Ë}K¸1n­6ÅQÕ2+/{y=fœïâóø×º<’¿Æ¼8¨¦cùA£¢7OÏä5ÒÔtaÕ¨“Þù¨·ìÿx„ã^»Îÿ¢!ÆP‘'ù£ßk4ß71t £’ž7/àçy¤œCI¶÷Þ×KÁ–3÷p#ô7u²W”™æÝ# ÉÊÀÊv¥‚,ìù÷ñì?eÅZÐßsŒÙÚnµkÇè»É`s|7ïêUix'ÙΊ¼`Q¹©bÂáNnKÊ5‘93¤¢öoTu³îŒªNãY‘Kš!Ø[Ä'1uއaƉqž‡¡ÇõŽ= õ½¸s"‡ØËËôšñN¼‡W\CÀSî6ã8åbG6§KR:u7Ï´o£%/ò ¿Ïü“O4+ bç ®i ³Á3Ãþ­.…¡P”ßÉé.àóÒ"ŸÍ‰ÂµZå™ Áx0g¶&YÞV}3üöÀëFLW½±¼Ž’ì×l(Q×À‰D •[yMÉh‘Ü|­ÐÙníh|î_rú-ÌË«;azü9D÷±íe¦ñ ý: ÔÚ;›+TR—4”®4×Ýä·ü9Âða, ñ8O ÜP«igÎ#G…Ž)Óv¶°,=÷É5YâiÆû0“¸.~9k©Y»6Ш‰g«>C O›Åsy‘™KYxçeôÙ²}˜¼9Ò™#þ=\GO_t®¥í…¢Hä ߀ç¬)¢äµ«¨_uµ9''»{ztk™>[t„ç?Êðæì¾ì€Ø~Ê‹€ö^Ž‚8Xt š‹=ý¾Nd¯âÌ Î³ ÑZßÎgî¾_t[Ï=‚ïµõ·ܱîoc=ô¾ôÂ(øˆ‹¡òœ–¥†¡”"qêK Ôí`jOtW¾ê¾Z &½ ÿó,}Ja£b¹)_àgL’ÈD¸¾“ü‰°PI«XÙt~D¢qUÝ÷D‰r1M5¸«„S:nozv/’æÔc‹9]q±ÉÐ*:·\‰ZNqœ…ÐP"ƒ‚ÈÑvp¾Š}9¯…”bNõ¹)+ø•f{Ѥ×D>i‚ÿŸ¬þ7ú<{\ýïöîζ«ÿ…¿OúßÇøð·õ¿õw¥ OùÛ¢0έÓµæ|==®ªY¤ò£é}—OžUËžkfiÜ = ]ËhhŠòL[Kê]avÓ`È(µgK'ŠaRà®I¾? Y1ŽÚº~ï’œs8sÁ l:œ939‡Å˜ÆÙ« Ƥ3—+•!¶ŽMŠâ%& 5%`×=Ò¯ËAsq“SÐtr«BÅ:òÅ óy‚,1tGEp§{ãÒ–Ôï“úáh³®}ŠúúªUê­¬rØÕ¦e$Ÿ@;z ú,̽ǒ¨9ÂÌ”“^wÊH¼Œt¾K-’à ŽÐá¸sEøPª³ßxÍ…dPX&EåE,ä|Q³†*`ãõ¬lÇ4â>¨ÙÉS_ì—3’è“î ø±‡†€ÙëJhÂ" óOóùI¿{žUÞz¢1§!˜u f[·µp8f7³ æaÃ1'%¬­‚•b~öCG_)¢t 5O?þ·I w%Z’(k÷p´Ñ5ÑÌÚ‚ýÈ„àMûQ³›ö½V“|Ÿ(M èÎ ¹¦=RT·v1òÑç#®*þ›œ‡ølƒR iKT\?ÞÃtŠIÐhÄ PÄK¿¨•296ñ¡ùƒ[ýàó¹â–àœ.öÅ d@þ õHM5Ï kzÐ $Úè½ bö^§,@¤¸+ÆÂš}Éa2ÕuT¨»’û"82îÖ:úpYãDP€K ¥of@dЫ²åIgà^gá¥Õ(1œNc}G•u åß”[}õ#–¤›|œ¨l½f¬0::£o°Óú·d~ž­ùï@×,õÖOV<¡ðm¥º?$ðê¾ó;ÈäZNP˔ْZë;ä}8Ýòk‹ÂÿÞ;0¯'Üíœø³?‘®waMï=T¶À¹}—œ‹¾ £®Š•ïXGY«.!ç)]–†tN'_Gx¯to8MÏ0žËbXxT¸©Qæ“Xð);Ø»fh©º•ÆôÄè°ã¦c)QþaOÙ÷9Šúdë™6Åú[Su›ªN*©4!0³E’0ühŤ¾ õÉÑŠ"NÉxËJˆ×*‰[k»$“ÆúQ™c,™J>S&¼µÈ ‰e`zVé@…®ðô¤Ý•ÁAŽ<ØWEy(êÎ$ÔV)ê 7KeÞjmDkPm×ÂÀPh$pÄ[r3ǮĴπZà\ÝQhÄ÷ $HNv¸Ò N^›gç  ò‰ÒpŸ[;Œ?éaãw sô›!g*ï¤Z &á‚^€¼ÙÛ\‹j'Ã7µm¾¸N²}õéƒ\^«ÔXAÅr€ôÝì.) '½ÖI"+דه Wcãã…ÌÃã…oÿÖDe'KýÅ]nZ,I;q<ˆ¡²hø;µ.ÅøTsŽ›_sŽ›_–>nô©ÿÊ;nVÍ]ùKf-þúø§ú–gá;PjFX:¢y8¥t&öÄ£ž1è0œœê÷t±Cƒ-sÐT¼™¶ïzÐTª9ãÐkÏ=idzOšJuîI£)¬pŽþo÷ÅÎÖÿAê¿[/ª• êÿvv+Oú¿ÇøðêÊèÿöLèÑó•€ó>ZI€j#äu/ÅËèøÎ88ˆƒ¨_†¿ë>–o:ý~ïº3,ÿ%£àM/ìÐqj:êÄÐ~«…?¡P׸QØ#SéøËܱxe°ÔÃ$ªñèjúUK¸e;× vhØ>m©Ù§…5§¹}⯓³ãF­q4‘éË þÎzÕýR¬ÞU§Š­"˜ûéTI¡Š`O§:tÕªèç; à8žJG&°÷mqek'S+±±ÂÚ¢¥ ó*a—ÓÀ"W »¼ÖPüжX{~ƒ>´êØ {WW(¥¨Aí×uÔîÃi ø~Áé!uäE m¿C‘(µ_'TRúT› &&N¬m OáЃNÈãëô±³CR²ÉCo ]_• ÷)a/ŠŸÁBºö`]#W3A]MÐ ¯qfÆpè}#û¹þ-ð(ˆ­~`ˆ~=þ<™–h,¼H*Ï'OZìŸC‹}pz±\ÎZõZ£Ý8mÞ)á°£=•u•Ópo–ýúmw@ËfvÕ— dÆv ÕÛo/Rõv“ÕÛªÝ6”Û’eó¡´Û?ŒrûI»ý¤Ý~Òn?œvûI½ýS«·1ãú‹Ÿ¾n||Òv&Tåë5ý¤ó¾ƒÎ{ÿ¡”ÞóSmþõZo„zžHTüx¸´ûhÇUßð0ë)’ùh€—ð¥DSÑÝ“Ný:uÝ•,r ðëÿ³C4+««p¸•h–´âæYM_ž·þ88}Òï?é÷ ý¾Õ½ÇQð[GÙ«áÿQõùj¹¥Êæ‚M7›9ÐD¥>ç@{2°‡üd<üÆVÿÇz`¾ù@Vÿ?¹ŠÕÿ·º»³³›ñÿ­<éÿåÃËÃÖÿ·áÌ?oí5Û– @³õ¦mìòWøÃ«Ìt„bESAø¥ðÏa½Õ‚§ô¯m¨ÎæAüDަIe‹èÒyv÷„ø&Oã2ó ]*IÏèýT?òW®ÕèaúU7‹«Äc\Jkk=è Ð"퀢µHF,ƒø6žF (²¨3!åöç™ÊÙòõ&ªÚÑÕU¯ÛC"O “ƒGåS¤r*› žò%¬’‰áËK8‹¿v&¡z“†Ç¾Rñ«¥S ¨1i¹K„{&âÁˆ˜šYÔØÜÄxÌ{€q¤hXƒW2C9­8åÏ©üêêyZ¥tžW¸¦ ¿1 ×FÃ?f×¥MªÁÄÊÖ¿UhÜöK5B)‡‚Ò›â‚-½hƒu5µ ÆD(ÚìÓÒþ¸¡úð`®Ë:¢ï>ÌŽw)æáãº0üà>¸àà„õ{NꡚÕC|õ{„Ã"œ*œ«&Ü7x¡0áê ˜¿aÂù‘é®sNi4n{‰ß ÝŒlÃN¢)Ýÿhuÿù3$P2£°­V4Ý¡òwMv«´7\ßzS¥áez&Ì‚Ò8ùø8ù¸Á²8AúŒàÏ3Úðͧ=”Nà †ˆL¢H¢3=¶/nKÊG´ ,åÄŸÈàdÅ 'ÿñ¼uQÇC‹O'3£Nw4™D@i°5lnlJÑ£X#éÑÉ•ŽE¥Ôcà’ŒÜB N™!˜p ‰a‰ÆµÎý[cvŽ~”žöY=5Kâ8ñ@Å>kŸ¯èå>çÖN ™„úްKÓ+‡Á}Vî‘Ñøµ£IhNê/‘KT#=k.  ¯%µ€RrG›êh˜|¦9'gx«QLÄ€ÚhÉÚùÎR‚‹Ë-t~ê€ÿ÷ˆøß*õÿ™á+î5êPåÏ•%Ž)Ø5ˆâi4&r¤7ÅDò8K“è ˜52åyDƒÃ|ž†©÷‹ðØ^;E|ô<‹ׯ$Pª¸žk¹RæüCawà5€©Îó¦U/ìP[‘p¡yŠŒñ)ËyþTÖN/šçe±ÁÑéà[óSþëgírpÜ>oÕ1ò?üïÓ3àŸ*ý!ðÇ·¹C{°¼ Ëf-¨ÒŸ×û'ïËŠòHsÖ3h"{áÊC÷°¹j¶¿Kœ‘¦iq…ç5ºbã!ÑÜ¡°:0>,úµUïú³ïyéÕ)æŽÆè,o2·w|=°,Ó˜'_ ÂÁUóSðÊC¿ GCRÚšyºµ«’“å`ÜŸÅAEw“©xê$n(siö¬mšwÕÇq¯?¦ç ß:AAj ]ŽrR4?­rãy«ÓûçØžãÁ(åÔݲÛ¶gÚÒÂ=¼2s9ðý‰ò^¡òu²Ç£Ñ8˜ §½>JiÆc2£˜ iˆ„0J˜€DŒQƒ³aVÓÆmtu÷M‹ÏëÁhÌ™º>‰½¾ÞG£Þ¼ÂùAÉ6õC©5ÞÑ8bNš¤uaë€)Ô8Þ¯jœ“8Û9šž˜õ\ ïcSIgèéÖÉ<9ÕÓ}4Wñ¡™&=xYŒÅ"™ªfýŽ Å=à¬ÐÛ¯„.+”ÓWVñëÇ•`žíÃ9‡å­ž0Òñõ§aì^e] }Æ÷d¬OÜÞ'¶ó׬‹†&UÃh8‚]ÑÁÂÐ"p‚g ìÝPè¸)ªx; K*?Ï,ä8äÃ9€\‹²Ó0[¼Œ“³û°–\3‡4ƒºmå ¢â«áí®¯F9µFÙškÎ?-V Ë@,âÞúzŸ·oµõ&ì±·îëo¥ó°†ß–]Sݶaì„IÏÖ¤;áÆX{{\j¢aäaÀïk†ÑÓÛ5ÀÙ[2yúHÝÛÎɲ°SÞº±)ËÃIÛw³ÍÇUj··4èšÈ¶ ß\;»óRMhܾ5pû–pK×ù‹l9y²èH­Û¼&Jz"ÑêŒï(¿™R[pÕVfnrŠmº$l¬e&ÔVò€[ãcÀúN`£×º Ó¦FKž¹Iü´ÍýLÌHöÜ À ½á,‰ ¼í]™ž ²¢Ò_ªÛÚ8¢s—dŠ>þÄŒ=b#£Y ª+ºju'Q'fÁegŠBf”Š•œ‹UCébA P’ …Uw} m­{ì7.â")£‰o{k¹h´árA’‰ù¦ó§«é+Ì6ÂĽµ§(,Â-z“\]ŒC{jA2å…ž®;½¡›pGnx`µ}v8Ëô†-lü×:~¬[½©qdÛã,QͲ°‰§º&Ë4¾lèŠã¿kNr.N›RÝÌþöIj^LZPÕ©tü¹z|p?Ú`Ä+§8Ýf˜ôˆo¹{Ê•‚gP¾°2V=”ÊšÐ)+F“rÅ„KeRÒ%O`S!Ÿ,Õ‚î±é¡I$G„§–PúŽ”R`ëT-·ú,H®@V14ÄÈ h<ËǤppã ç ±N1/yÆS´&”7?FzØ8‚ÇRê4&Ør(À´f™ª¨Bƒ´¸ ŒÖ¯ìÃ0쇙hЛ«8ë(jNúj€ŠíÒ‡• +ò¶Ùr‹Ö!&}ˆ{5CyÚ÷ªî™.7÷r]"Ò8«9Wè¯.í«ËYÑ;ð]´þ܉’Í>9UE-µÈ;¨}Ùƒy Íõw9ù;É›Z;«zAÏšIùø.¡ó{ÜBÁBQ  н«Ð†c’íôËZPÊ–\Å›-›Ý/ÈæÃSGa̓'ei~ÿÏ͸<0e,4'žÜ’’ê¬ðÒnÂyÖé÷C¿«KkŠ!CØWòØY]…ˆlѤ¸Ì cr«À!…kúr¨¶p1ýþ\U¢T¶=þ¹6ø­ÃT¦õc¦QóÚÿ{Ìø»Õ[›lÿ¿UÝÞ©¼ ø/vŸìÿãÃk3cÿÿQ/õwõƒ¹~§Œy©à®;›’À`Oæïðç÷ýævK}ûr†TÕk§'gƒ4Ì@þ.æ~ð¿páÏmüÂÐ÷OFÅM[Ê3¼Þ̓½8.¶@«â"aIêGê3’ß u’”Ôé¶`¿!7¡4HíYJo«Ø·LÎE!ÅÍg-ŒöV8‡@à ˜Ãg¿É‰MN)ëj<ô”¤a¤5%ê™EžB-b<Å0°p±÷ТNÎ7 ŒMr{¾šù-4N_ý4­Œì3 Š†ñ IìÔ?ÌC_i¶’å(i xøðØ‚4_Ä3ÓíÌОЎœŒÒªÊªD1¬…4®nLËPÅß…F[u Ò჻•ƒñ£ê^ÓšïÈ– ‚T-$Œ¾À¢d±Ÿ¬'Z5\¡Œ\o8ëêf° Ê÷ë–€]¦£` ¦{KG¹¾ÓÞ*hmo¯Ú‚ۋɆ”Šôî¯@©åî¯ÚÝöWíîû«–¿¿jEû«V´¿j ì¯ZÁþª=í¯aÝÑÇ|÷ò`ž‡ù½œËƒûú—/ïZ^7\Ë—ó*æ9–ß˧@‹`þKgÒÍ<ªwÇÙ0é‚ÒˆÒ“OðÊJœÜCi7Ê·C[¤ ³æ¯-r ¼'5hE¢õóí÷?2t$K×Òå… /++vñõÂOFH§áx†h©PÕDî„Ñ·4ø-"½­0T"Z°Kjs2YìÎÕCLë€ÜùlÌØžDÈÜFÈÕ¢C OŸÓ¬±<ù”º†µ{½òËcbc혣³¡8«Ë†G¸Lò€¿,ÃÈWì(<ù¦îGuÕ‹ú¡2A-4v þy>õ9\Ϧ#žþVè.K8¸éߑà È^&ÀãDß]™[+sï`g€2ígdÇ”*kˆâܸßtoJÚoÐ8¸ÛÕàŸ¯uv³šûêeQ —²Û¤ Ò&ˆ±ÓÎn—® ¼‚ÉT/ø H;"ç*»;4ЫÙ™h­§ëýÛtÒ:¨C—Jì¹›éâþ¯¸›sˆ½e.èJsÙ[Z–ZÎ-í½Ó¿£MèK\ÒÎ =˜ô¡BËbHTÍñJYSÿÖͯ¹wÿý¿àÍ/Ìïþ×7¿Cß×60[Þ¡tºÐb§{+²‡ °kÎ%e3´µÂÑs˜¿z7JVÒ¼A­c †`K¹)LVV0‰ô‚±“$ë¥Jdº eCöGß‹²!àO”Íeó—P6Öæ}"o¾;ySÚc'—o++Bè|ß>}Û)[3Š:Ê37 ~ÉRK£+·¾n:KIå“N™©ü«()1*ó jl¨TŠh˜ÕÅ…dd0|£ ;1æÖL‘mÚ±åÓ4‰®`¦†h‹Ãq#ÈŽý9y1¡JܰGe(¢hz>GϤ†–J§=šÀ昡­¨ãaz2Ñ]÷©u’’‹|UrÇ+ ¨v«5Öçó¢Ó4Ýâ ¨arY§ƒÖ›LD45ª"}Oÿ¦ Eþ51 ßÀº&ë<9ðÌŽ×%ëLQ Ç{¿7š­¿7Î[õÃßÉ[i%x|¸‰¦œƒUŒÓH„öZ5, ¡q 'ÌmyÀý|‰ñ÷ìjD›@CÍQ¾ %.‚áÈ¡£'™ «¶­üo¸íT¨ôZ%ËÑì²­§Âi£u½2w”‰ï­š\‚®£¼º/–ÎÊòÖõ§íõ™Œ†_z“ÑZ×ê­x6&Seã¢-c2‡`‰æ¦Û"š|Q«ãj†‰Èqµ¬®†7­zû ­‡*®‡“ŒC´„Q°Û·°ÐAÊJµkE¯ô¬syì]¨þ½„Ž´iè¿ÊkqÐCwrô¿Æ£F‚§žqBæ0–õ ©Ý'¼à‘ð8¾0o÷“5Åd¢^uuo†½Ïè{®AåÀxÝ™Áøðxé÷(4™*"d}ãÆNò³­™m¬÷.¤gJ/nRD\™øqÕéÇQÞa”¤ã6ße¬¼tÿ,ëv[Ǻ îî6X â-‡»mÛán7˜C21"Ò€eXi3TrJ¦¨âX¹û$cþw°I ÷_¯‚&Àº(‘[þ³âfGV­-gt0µº…‰êúTÆ÷é6e;>)êÅ2`Â3ÏÆ¹Ö˧7Òᢇ} ¨›l¯žæÚÑKÿ>ÙOp4ÍÈìùÀ>sbôÈ“ø$bˆÒĈ6x«,aJŽ ë£äÔ¾F˜xýrfÆLFfÊij¬ü‚±·ö)*ÞðŸSÍ|¡†I„ÉôùqgôP™nØÎ?fM“ %K[zDõ:µl=ÊQ¹"ÝÝöo55h Κ•;#êÑÔÃ±Æ’ï«´Èø @ˆxFšçD&¨òùí´ÀÁÁ'ûIÑØ¬N*Ò~¥¸‚«lΫãÐ"µ2mnìWqOuªi%«Ë±•ƒ,Õ^0].YWÔ;s¸h‹{(F€Ê\hôç­‹ö¹5zÜ© œníG®šá vSK Nµ¸ðàNö>þN2õöBàÓâª9XÒ&'¤¼ör+UÄÍ@õÖ‹¼uú¡þ)?鯀Þ3¤£2{þ~þŸ³z™ØVõW~˯ۤã¸À-|Â%0öûùÉYÁév|¬JÑÊäˆ Çû˜òƒÞ‡Öióuþ°¯¡©:/Òü«u?÷ð+Íöù0÷ª?ž [:Ä=Ǽ¦¨ö0ÒürmX6ì©ý;¾mÔ}žõˆ¼§h÷íw­ó¢¡x@åÇ«‡Á´?|œ{°èäëò”aáÉO›y徉w°ZoΘƒ!j¾.]0xªiM“?la>pæ ¬ò¾(……*.'¬ZåöÂ*®W×¢x×Û˜kª„ † ?vѤˆ ã8T*æá7­hfñ½¯º‡…*0?9 SYip½îVx€Î‹ý´.SfÙºµÂºV®—‚ä°d\ˆÚõLÞÜ„+”½E ÍÈç¢:ì‰EXù`¤¿MO–—ܤ-þ$/ù)[ü9^r3¶ä¤xÉM×’›áEjìº5æ$x‘z¿xêÍÉï¢çi3[w^~]7ƒÁùé]tÝ{¤+,7»‹/¹ËGOv—»$w±ùbÙ]Dþk‡§¹ù^̨æî!Ì—ˆqn!•MÊ£Æd‡y:*g9Vß9n´§Ek¦‡£ÛżÀ¹]döÙ‡„âæ×ËïÞÖòÝn}y ÕÌÜ‘ðûÀˆZ´f•fŠ”h^61V«ÖAèöò ¹ú¬Þ-¾ôî¸îî²è–\q -·%ú•SiÉ…¶à*Ë,çÅ–X1™‹Ë4ž©Ýš{O[½]#ÑåÚ†]©ÖÏ9&ý©RHŒþ*xÖðg•’×'§ÿØS¯™/,ä1" ¦Á:Iª Nä«ä†¶¤G–ØÐ ¢é†Êt¨8½˜:cÃã½3EòÄ äï]«6e“í/ÏÖdfÌ0•¡Þc–úl([vcP¥­š÷>43 xué9"±+[½7RDì¼>†%IxL‘ù3®}Åù6ƒµà(‡}Yÿ8j}¨Y“pç‘ ¸â3]ñ8Æ µèJqoXjᦤï=:WYhu8‡;³ßb'ºª9÷@Æ¢Ð{ ÁJ/ËG+ì !®'ZSÁŠ•÷BjËæF1¸ÈIÇŒ’,äÖvÈt ™ŽÄrŽò;)ÿ0Ë‚Ž õG³øÖN2™¡ 32 í%ì,Ú ¡OÎhDa{=xßE#ÀQÐù2ê…<‘À+·lŒH’Gù\«b6%FÉúWé°n\"l+4ÒÍÐÛiOÓçxeQá!"̃¾@>dùL)fÓsO¼Øçn³ó©Þq_×`v.à ÛGÉc]¸_äú›'OøË®¿…së-rýÍÓóèõÅ“Ab`#Ý—K^Ÿ¹ãô·g_©wGáÜ{tI©ë_yËžîq.’hèã2 eóÿÄ_6ûϼü?•Ên¥Êù^T¶7wª˜ÿ§ºU}Êÿó^1vþŸöûRQ¾¾Ã$‰‰)íK󽄓¹'z“ã訾œ/ çyS3YÍ®i"œŸÉ%7G‹ Yrµìsnuâ&ØþR©è¹Ù5×/o×)ª¸DWC<çxÔaDt5»wrc³R`ècrchß8b+ÿòï$ù´ì!a¿‡j~ä… ðXEø¤“´ =æ”CžŒe6ìYKnÉF$k"݇í…tÅ‚óÚòÝaO@V> öiê‘ÁüªûÍ“@"L…U+ó‡cU_cŸ>ç–ÿ²»zÌÐòf8~B^dþâ°üžÆ—Í_˜ßÛÄòÑù‹Có{¹K|~úØa(÷=ÁùíÈüó㆚Aùéc‡Õ/ „ ¤ÞANVb´ÃbÆ0í&mHñ›ÆÝù‰)<ă øÍ [÷ïOŸ‚ÿrîª^Æú{‘Æúo–ÿX{{œÁ…Ju’Y>x/³ññMÞPù‹É7øãåóæGÊ7!Í/ —ŸB@g%Šõ㋨ Ögqz=ûËäHpc÷ë¨úŽÏgQŒSÒ]\iÈz)Oš|Kã|kèSã|Sæ[ã|cæ\cã|{f±6Î5.2TN†›e²‚È«û«-Lq˜kø›µüm¿<†¿…V”¦ÜBù¡ÒùNSÕÒè¼ê%Y=Òƒ2͇¼òm—åÝ[U ÌSñuÒ£-¼Ï´ÕG[ó¤»ÔŒ˜éŸ&¸¦^2˜Œ—¬#óÌR®Ì¶ýþÈ ï“ÿ>pú÷9òßíÝxæÈ··Ÿä¿òQ›Ê‘ÿ„ÉvÊ]çrÙß-µ§$Áõå€Ï¡ àÉÍñrÍM´'•¸BŽöi²WXM,nhËÿ›R„§Y½uÖïÃôÑ܄ߺŸe•l|i!ûGŽ_æ½ÓT´9x„RÚÀ›)|Ë~ÍÌÔK&w•Ñ+=uå®2úºíiä³t(nYªtÕ-”±Ïq¤T¶paD(NôX¸c/𲕀À1ëÓá™üG›&£“XÙ0ó‡Õáºg]ˆÊ¡%9ӚΆ453[y…iò "»Ka•“pUÙ#Õ8JÄjoø¥¤¬Å"åö=€0ƒs)h…ÖƒÔ2Õü€jy€Þ,H"ZrJ“æ’ÈV¢q\­CPìäMbÞ­ç&ƒî±`ÒJO'd&OS>èåµj¼Ú§ÜK„ƒW0'²µ1~¹Œ0-ÁèV#EÊTµÖ‹Jx‡ËfêSL©^ª¦©›gs/(Q¦(w¼æ¢\Is«âQ©UêÙêª|]•Ù›ù+¿ºJÁð*­m[„6ŒJ¬$a¯61fKOsBÊiC8µcU+ìm¨:*¶àtªS¦r1SK&“!ûu”=>3OÎèFNB0×ÑÇ\åóJónÉì‰%ð‡F¸;Ò_; ™Šû„jáÌ\×åTK µÖEëU’¾o쨯ÙÀûf?Ë ^9ù»tB@{ß›ª¾íÒ¢´÷Jâù 1&ÿ#ÅÒõ§n—³Æ:6àhчJk%ïHIƒ&r¹)ã8VšR•úZM‡Jzoõví-"A*u×ôåjÅÒËèÎ_³G{f/Ùj?Kýˆñv%a¨’Åá´ZYC· èD˜& ëQƒçDwÒK3AÉ?_šê Ì©ŒM“®Ge)ð'+/ìü¨*¾̪£ñÁ¼‚ÕŽÎêÐ×°%èâjQ?k™èÃÔñSÒC1é`âŒeÐ@¤Æ¹ÙM¹“»£±Úo‚›¦Ê´¨¥Ç¼ÇÚ×ó-}rÍ{L8…–>Í”®pcL@¹„¥µ¯M푦›Ù™vRÄë©vl=„‘\`¢ Ú¯?Fû.^|w>ûºL)´—Qç÷%;‰çÜ£”á;Ÿ¶æ=wþ¡Úú‡ÅæX™Ý¿¨]–oëÔ»íýiÆÌKkþí¹!YÌê…µÓ|Ûþ·…̾L09`E;Àð‚KðA¬Æ¤Öù{¶þcô¸è¤áSÌ·$—âNlá±ù8é˜ýÝË¡4Gn®øNÿkç–³m˜tH“$’"Z°b,Bñ¦Üjž$Ãú(jÀmƒ‹s›ÅÓ´_#"™­eÚ!²d¤¶‹²iÔ×Ê$÷;]ÞyDNZZS¢Ùcâãt,qdÁ„m³ë,hµ®DG¶0¡“µ?¥ä°H1j2wKbA«(Øýg匌Ƙ|¥éGWS=¿¥”j*ä®$ëÜÏ&¼l-‚7 G) [þs`ÃÃ-äÇz¼äÕ­¬ºp¶˜‹¸ŒTB°/’|PÌ›î1jYΟÚ2óÁlkº=¼ÒPµâ ©ÝcBj÷œZþ„Ôò&äÁí›—²j¶piá»㨹Åߜ҆ì×àhí…I@l­• Ek©rakÙ±ÝDÍnšPŽ Õ\d”ýQ&tîT~ÌNe𠳡В¹&ç£1òÊÓ-aaÀ™é~ÞKUÜ^)"J|Ì|ƺÚJBM‹æP]¡„Ì–8»žæm1Êæeim½ëÆe ³«T/Œ°0>n0¤ìÂàðÎÂp¡[Ñ.nüéR½ê:‹|úUTÉ ¶ÂçwÇMl³YŽþQÃN‡]ÖWö®Òø‘+åœÞ ë¯4œ¸:¾ªD£*yôbc|ö~&bWD^ ½Šùâ´Eþ­E“hû²ÈîËì<ùN*c•øH'Ùvò›P>–þXáTHY™cvÏÚdÌ åG—dMVt•lj.lJÙúü±âàÛˆØ*QK:ž¥ëao: õ:£H,Vâ&}{Áœ—h\ëÜ¿À#™ªˆÒfQpM`kÃYí=ÒÑN¢~ «;¹‰.‰#PVp¤e‹%±´â:AÜÇнÜ•&˜–‹ø>+''Q¼£šÅØ\@&^Kj¥{1LÃdÆÙqtë oMjcO¶}>Ü?C#¸¸,Ðæ@w@ަlÂy„ÈÖjV¢O_2(«8IÒSŒØk è§fþ31¡´Î{+ÏéïÅ «çÿ 'išîXóŸŠÔ>+(Á/î$鬿K¹ŠohÚ¹„rjÑ$s„R%ó>[ÑL´Í±³rh=X^|º¡W0ˆ:Cå?gËþdØjÑÚKÞw6ѱ×õè”gCÙT„{DW$„#±Ëæ¿ð ý׫fV©¹ÌŒÊ4zrc˽I¶R?™‚Æ»e³ü±]àè„r–¨jRWÞÝGN}îí*§>fbˬý¢iu’ b^šKrKcž€ÐUnÁC Qu‡p8rEÑ'¹ÝIíŽhã±Ì_m=µm Ú$LÍÒÄì§ ûSv»Ùܼ –¥rÃÊïÙ¼‘ͨ©S†›WY,±Q\QO2†FAð“5q~ðلÄÌ…Ä)ÉGBÿ}¥™g×xÙÓÔ>_XœŒÐ+ަSe:iXÁJ¥_Fîë˳~q+]G´Ë ~¦­ý%‚õPyœ9º¹³<`g¶5#£4™¶“«Í“JB0Ã?cLÆÆ÷lUB«ê+}#՛Ϟ¼þü¼Uó1±GÀTLíýÆëæÅ …ˆ®á­×ªÑ[øÓh9Gœ~àâgï_·>”ƒöÉ1€ñ`¨(£Øœ4]‹¥þjžï«òù Êrªôva‡ÈÚéÙ$“ý¥YàÈXe×_2ŸÐ£:Þ{‡=|0Çʽ}èM)L¨wĹ.–ÓòŸä…èœ5¼ŒÍŒ8´Â3êi²êpÀzj‰òz0L×ÓС¥uBžÃ½ãv}#}£ÓíØoì0‡÷ÉçÜ5¥Oº hqàGLÙî\Á•Ñö³U”7.ÅCê¹l@5$Û›r/YIú#XOB3îöÄ13}A-‹s ©µ….‹âœ—¾v·S¼æÉ8´lÊ¡¥s-tèY‡îœvè>y‡ŠeAÁ,¥Æq H„tÏvP£rûQõnZìjÀ¶Ž>´›¤ã¾ÚC“J¼÷­§AeSµ^áß’º*•¯eÅS–š ok¹]²Ð à9o4/œll‡ªŒLMÔ‰?d&Ë“3]MŒ…êMSÈenôÇ£Ž¢8[d˜Øuuì,)V€¦$—*ìÉ®cþÆîZ1ô3^Ù¾©Xrr«ËMnm‰É5ËVvr·ï0¹LØ=ðäj w™ÜÂù\,©™‹˜]?bæg8sý²øhœ©KEðeCË Š¶`BË({e±;N…¶ë‘/T´“=©…PœCmËÌs'æ@ºài^ÀD€·Ën]IãòŽR=@Ÿu·™À´·Ã= ÄàÞ4bav[2ð¨¦ÊU|©¹½™ lmœc>0=²ÊjW`#XYÕ°øÖfZÖ<0·óOQ²ï†ÝA@wóGowò»oö½æéûޝ»›ž^{vu.«ãÙá Z ;û÷"çÊ;ªÈåp´Ž{¦â,×£ª\†Gk¸¯šîr¦í‡|0”¨®UPƒŽ÷HQ®­I¼ùJþ~#‡|E„ZU¸­6½¡U²Ñ^2ù—œaðiéÜ’ôŽ…¡ë$¶óú¨³Ý¼gí£Êœž9û¬æN ì'áŸëî¯ÛC1¸W~oáM%`ó‘8¿êùF0žÍú ¯všz´¶^?*sê'šì¦šŒr ™Ï––%RÚÛo—h¨ £h¡_rv÷¯…4 ˜˜#nžÐg'po>»xVf£IA=Ư˜JˆMØ‹"1PÏqÉ e ìÍÕu¬ÐÀk§Š'm¢Ôk¼Ù È:=´ å#§¥0cü¹zPH®FB/€, ¬ÏÚpäTf7^K7 ºï.™‚I\ÀùÜ>Œ,Ÿ£¹lóò:Ö|QNÌh fŸH¬ È9œõûÏtl7 P&1%EêÊA”OA,!§ó1ú{<Ö繩VZ~·ûïtÃ/Ýfë°h˜ù™ }uâ*-7 >äÉJíÞ åø5ú±ã  `°¥ÛÂ4ny°Ø§2È­lR¹³”âGƒRÄÚúc\y•bA¶[-ìÙ¡‘38ýþ\ñ:ØB4ÂOGç0Ø—V_0³\€…Ÿ-O/+Û>JZµµ“ß•<œ0ˆ€w ItÅUES+ŽÆUŽZÛ¯¾¶V%y(“(È<…ûÊH SÑr/ó‚PwËÎòý?Þø°8þ†ÿ«pü¿jukk{ãÿíVŸâÿ=ʇ×d&þ߃|ˆ€b &JnÉÉ+y—ŠªÚ {Ýü¼MN·UVi·ŠÝ †Ìýèx„¨6BÍò¥8u@8DƒAÔ/ÃßÎu¿3 ÞtúýÞugXþ3JFÁ›^Ø!ÊÃtÔ‰¡áV/ o)æqAXÙñ ÉDþÐ2X¢Vñèjú•â·Á„ñÄ%Û˜ÑìÓÂAsûÄ_'gÇZãÈ ð¼©–ÿÎ!‹C7¦ë3]¦»@ßAþ@²}<ƒüá>r˜Æ€‹-ЪR’êq“:Td~ƒNfTžŒ«p8]ÅÀ·új„– œè’˜¼k„IÍÛfz²òJq/œÁ"1(?œ­nd<–lŒ‹þ·K œx©A&d*Ñ+°Ÿ™†A%Xê¿€·à%ຟÆÓãÀ^Y쫤)xå§A!žà$Â9¿}uÂàê+™}à}­ÓA-8nšÉ8v`“½™S LTŠ =[ÆX¯Šo$$¢G‰Ä"æŽY†Ù¤±?1“`ä'ƒ0Ö¯±Ù$X$ØìCÄ™}ˆ³ËD—õ…–],²,ý¹GTÙ‡)»‡½_(šì¡ds"É>hÙ¢ö„äEv©²/3ˆX(zìâ¡csâÆÖFÃ?f×xyë:ðÆ&Ì ({~sX²yadƒy‘díV—"Ì‹#ë6°|Ù`^Y»‰»]žŸYù‚‘g«iÈù-ý`ÿ‚>zq™ çÁœžâY±·~AØE¶~qØàžQ`ïönEÍÉìüú²_óc¾Þ;Üëý‡w·Mñ×trÎ ³Lp×{Äu½_P×èš çú°±\}\2ŠëÂ!\"z«?pkpŸØ­ç7÷ Ûzÿˆ­÷ Öz¯8­wÑ*‡ 5Éíùj²¤Ÿ$ù'n¢o.§¯¾– yÁÈm {xÏ(ÞŒŽÌæ‰e£MzÙB/D½ xlAOƒµpÖñ r±’RS¦ fM9`.rxLûò´ ¿¨pZØɧ؞TìK²Dj½lGNJ°r·p§~E«Òº¼jDQÂZJݬaج¢®Ýª@Hz* Wj3~¯½uÏ(¼€÷~±wïv÷Îwe{ÔŠöWmýU+Ø_µ§ýõ#ì¯ûEV¶M©‘ϼðÊNdå…ƒ*?D<åL4åûRžF9˜Iy)?ˆrp÷8ÊFå¹A“ÝHÉ¢nY<^r&H²;ïsC%çÄGÖ›bN”äœÐÈnõ‚ÉÅQ‘ƒy‘˜çü˜ÈAqXäVª„WÒAW /Áƒí ·¶ÀÖPå·ÿŒ¢y‘”%|rF¤ê ¢ütf`Ø7* ­q½ß!^sm‘0ÍÆ‘’ž!w ðlFuV€‹í\ÐYøÂ:¦I|ÎñÝÔ' µ|ˆ”#ÃböÜ¡|Ì…‡¯§·cXûÚ¼jY8óE¶5¹IÒ›&ã®}“]i¡)7}b÷‡ÖPÖõPÔäËJ/öÞE_J[hÌéLÐ>7ëêšµ]ÎmO”F”ž|‚WV&*½˜MŽ]…˜Ìš¿¶è.ÉPÂ^ƒV~EZ?ß~ÿ#(ÁAY¢¨î¥?0ñ:®(ø²²b_/üd„W>gˆ–¡.£šX¨0ú–ê*iéµhÍ€aþ&j#Z$ ug€j ûŠTÙlÌØžD(UEK „jÀsN˜ «wW½I<å®!Fmˆ^ùåŠ1±±qéê¬.vá2Éþ² #wBmk£f}÷਀æì‡ZE µÐÛ4øçù˜Þç@¡<›¢¬5žþVèŽa è“eÙÒ^6èG`‘KÅùÝi 3Àíö3ÒøódZ¢Ì2îwÝ›’v*5N'îv5øçkí ðOs_½,JËPv›T‰ºÑ‘+AYGˆ¡=.Êf6@¦ë£úyKŽl¢oSæqø×“¨3%[«û`€o3‚»Œ†ÙÝ—O%«äIQ |dn鮂ñ¸˜Ý²¨/w6_uY9Ž–X |Ÿv&bšuWlàJÍÕ½3cæ‹øgêÔòÏ ¶AôöÖ…¡ýJà˜¨ÏùÊ*}úþßõÊÿW†»Èèo µsf¹¡©ñ¤ýA[gæOµ÷)c†vMƒOcu¯¬,¶Û\)VwÒè+'81F™é :Ä ­.D.ÉÙg:ã>±Q$öíá úfhñ >&7çàƒâ&ˆƒ¨ìîÐ@¯f2%{ºÞ¿M'âLÕíÌÄÍÅ{qÿWÜÍ9ÄÞ2t¥¹ì--K-ç–öÞé‹ßÑ&ô%.ig†‚LºrõZ‰â²’JE¬›_K/ü÷ÿ‚7¿æ=÷Ê[\å,<ä–¼Cá0ùÝ[‘äi¿ ¤Lã·ÐôksC¥Dz7JVzÌ™A­c<†`Kqa(ðéìEæ¶<à~¾ÄT1v5¢M ¡æ(ß/ Áp”ÉVä§"uª'· µƒñåÈ2s4»ìGë©>Ät‹—…¹ûøs÷.Õͧ …ë¨"é‹“¶8€ÑðKo2RëFþ ñx4™§ûÇu?³V½Öh7N›™C°DF æ¦Û"šˆóåÕl:ãÕ²R¸Þ´êí7´ª¸NTÃCC96Úí[Xè e¥ÚMÑì_æòØ»2Pý%zI!Æ`bp8^‹ƒh€óâ ‰cž9L†.Qá<á„Çñ…Ax»Ÿ¬5$EéÓ¨{3ì}Æ”TTŒ×Œ—~nde‡õ;Ùlˆß/a3üNš$¥uá'ˆe—@T&ÝÌÃQ=_a¥ÝÜ µvV®„Ã~çZ“CC<“C§!1Fƒ1Í!,€0+‚5~ô‘ŸmÍlc½wá =S¶66 EÄ•éà!Ã~åVAI:nó]ÆÊK÷O6se®äa{µixÚÜ)Û`°@ÂAÎ6ض³ *ÿlCó‘Ò5ÃJ›ÉõR 0E§*lÜ'UῃMZ¸:!…_–MD¸dêA+ŠƢ s™ùI @Þô‚ñ襟ì'8šfdö|`Œ9±@zäI|1D iâX¼UÞ.0%G†E“®0ü5ê÷ ¯d¦ 9@<ËÊ/x›©”¨¶?=~|a‡æ 5L"L¦Ï;£‡ÊLk½\þ‡YEÓLÌ@BÉÒ–Ñp­@-[rT®Hwíæ`à¬Y¹Ó8Tc8ÖXr£9-4>TQºÜfÞ0íØ¢ íL@#›rõQ¨â s*Èésœ†¬V ?$•%^Kø/­°an"àlÕnþ(ÒkògÍÔÈ¥ö8Ãl׎«’ˆó£§wË&Òüérh.šK²(‘äß2§ý[ñKÌKõú³I¤¥fN>M,òu‚BÿÔ8/kXæ€Ä” fá8ØÑŸÁ д=½sª(N­T3LÿTà'”õªxWH§‘â(ŒN¿—° ŸZøéÔ #(×ÇüÔ Zî¨h¨)“¨³á´×ÏB_&¨¹}}¹D5èSþП èSúМô¡•4—ÄSúÐtÈÿéC«=¹OéCs³ãGÌòéCwͽӇ>\þÐï<ôž™8ï˜5ôñó…þøyBðSO„*‰Ð×ᨇe+z Hµ±éäA ÙU˜&4÷h”T<¨&5_`WN‹¶½´[˜º)¯ÝÚÚý~©Ue"‹ZÒ9Z’™Dó!"EÞ¡–ð}RfR‹no–ýȧ”°eJ$"¼Ö¤¢;G”¡Aç…¢ì‘ë¸+))Ô–ï&”¬°Ù»ñ‡I z¦‚Ìȉ*ðDIc ü5)DÍD‚ZšS2qÆ)Cæ%ÞáØKÎxÇ,’K¦ˆœ?„¦?ÝO—UðGÏ&øQOÝI‹e´†Hc÷fj’„2”‡É¬c¤dºG⥢LK|úk ¤yæ¿‘s˜GvP ÌCÛY.Šþ4¸Þ”1^x+ ܾŠ2Ç}×ÔqÙüoÓ«êæ›“ÿ­² o9ÿÛ ø¾SÅüoÕ;Oùßãà ËÎÿv~X-yIx³·uš×ËŸöL;bø’z-œÈKäüf6²]S«™Ÿª+7ý–ŒŽG†#öhî”KoëâŒXFsøÕÈ e©myN䊠°>z°Ã9]üch'¡G(lºFÁäBO³õ`øÂ4T¡ØnNáÁlxÙuÿ„ÛKfW^h;FÊØƒ0£/Q?¨À'·(+¿£–>Q¸ñ[ÓçÜ2¦¨¥N‹ „cD].ŽœíjPg\+ǵB‹Qëù_&µVG£„çõ¶ÀŠÛ¾Âô7O- {øÔ*[bM9ÁbóÂÄÎ5Æ ”=fl›cšïÉ¢²wƒÊ€l*M k„s#e-*‹ *ù³¤Ye¦~jfI®½/l¦{É=`Ûà:1¦ˆpygàèüDoD,ž‚CµZxµZšy­Ëù«ŽÂ îÞ_HZâ~O+f}šÈ ‰H W¢!ߘ‚úU°‹$ ÙáYþ*¨(ç[9‰_þ:yŒ„m«ö?kö?™³Ê6üSݶv³0ÖæÀ˜U¶°:ÂØBÛŒN¥ ÿT¡Hg Št¶¡Hgg7-0Ã3,0Ã3,0ÛJ«#Œ-„±0vÆ.Øa˜a˜aÙ®†QE[caì ŒÝlR,0À,0À. ¶Ä6‚ØA»Ûа6‚À,00 …„Ç•Š€ù0AbkU‹†é<d¦´s‹#œ5÷Æ4Rè\R°Éˆl]{“ –€lÕŽÎà?@â[`2Þ¾_Ҝ̵ dM¸Ôû‚v7«·ÊA»]Û;Æ?ö`$¬ûËŒ¹¸ÌÛ÷™äÒÁVÂ&\Ã9bÓùj-§’$€û ×58k°ÏÉ3.C±ôI± HÆ’fŽKÆîežKÖðeŽKÆðÅ4Jy_`X¢­YLÉò’ºT`qW¥ò´¼›õºJÔ.¸Ù•Ë\d©ZNXGIª–¦ÒWòëÿ 2’7Ÿ«“b.ãlxÅNõ‰¨ÏL­lZX°°TžÀtѤ6 ´âªeVä¿}Ojî lÈBú›÷Á:T ²°@ã³gªnäÄcÓS9 êŸ2†£ ÙLË@QÐ}L¨§ÎÕUÔ5èq\ާ@Ú(0>Ž&ìÑ,æØ·µý û„GmpMŸ ŽÖ|HUóŽ/Ñ$#+¦ ”F,PÖÛ T"|›Z–Õv9K>‡èÆÜñWx†ë¹"V{ÓÛ ¸2ÇX ÁXÃ7ñϨ°FÿöD _PÂu²~d.¥£3xÉ÷¼?AîG‹Û›ÖN¸SÕO"-^SPu ¾®Óª>]rÁ n÷<3ZÔ2Þ†ÔÅ#äÇŽÎÖŲÃÑÝíÇÀGôç?ç­u„?Ž.\]Íþö£bnu5s$£Ç‹ ;±~d @ €‚Ð!·ª»B œq ê½Û“·'ªÉ Uy¼·; ´Ûð§DT[ ;½P?«ÆDfš»‡d—1Þ…‚ZÏ. ù!6òt‚{Ã9Ê"Vw(î#¢Nt¢ÀÜ®"WЋ;°bLˆ9^zQ DOŠù0c „ê}K+aê9N-[cÐÅ$ñaÌS’ÊZTÀñsŸ YÜNuÂ[fu¯PÇç[º†e•;>ußeŽø¶½éžJ¹Z%¸j¿§RééóÓ|<ú¿ÉÕ£êÿ¶¶+»ýßöæî“þï1>|8ú?´×yÒÿ)¸?ˆþ¯uøëÿ–Õþm=iÿž´OÚ?_OÚ?õyÒþÉçIûª0+ Sû¨zyëóD¤ÔB›£c:óº”eºæÜVœ6ô»OHj:ÌýnÑøƒO*ÞŒãø0.ýûé‹ÀT“¶ËRBòG.–xQƒ›Oü#ñ¨_ýãØªüÃõÅ̇Ò<£?û>Hï»Ì@¼êçíÜÜÁ˜!¸‹=ƒ3ôÝE,¸èÎ\£† Ç®aLJŠÝ\TÜÝÀÁÐÆ£¥ƒWnc"À±ràqV~ñY:dæþÈ:Œ’ëGkYe.žUÐ ô9ÄùtD—Üg™óVfõÀ{ÈÁ¿Uúw+óºJ¯«ôºš}½E¯·èõÖ–þ †À‡ÊO>,FÑríã>j¡ã0rµ¾,@:ñ ÇV„õv™¢^’:’a&0,0¼ú†Ä1ÓÎÈÇŒ#Âbÿ6…©œCJ,0˜ØVqQsÏ=½:-nÎù‚Èê÷" 0Oá8ó4òjj籎Ý9Y?‚¿k®ÊF©ÊI!’ƺëé¨J=;Ú¢áigUÊ ‹ËZ‹ifdB`„ÆçÏ¡ÌËü)vÏܸ?_A“}:ß3kvž9i”c½Ph¤ûó¢À6ˆ?r(eL„^lZå¼!cŸ¹B⽆øsGÓ!þd ˆŽ‚LМb;¢¬!‘š6'2í‰ð.?òÍ•i•3Ç®HuÉc]”1/ÊV³Ì…rŒtø³€1ÒÚÑþz%‹Q³¥µ££õ RðÐ7ƒ–óÖƒ¥ýËæhqƒ¥t‚Ö,/z¯Œù9§k5E ߤ±ƒ´:Ürñqokæ[Eè¢ÞaBŽ)ŒQ< e•Dòœ¤¹}Á•qt”Ý%wš;»rî¼9¶Nî ß”zÌѼ؞kæZ¤͵×ò¬KجљÉÏ<`2×ÒFpt2.ôÀáeŠrÖX‘$ƘÕ‘>MñXâ"ÿ "kÁ#¿}]5±;¡5•±±[ÈÈ.0ììlC»ëñ<›5³ãÊ=;îmeÇŸ»ÛÚ©n[Ü©BÊî.sOåm¤Úh|ëܳBÙÁI9ZôTk~ÐKçˆMU[žK”•©g¼fPâˆåô:A"VÏÚÑÂëENBšöu5ñjÎÉ7Ä ûhß"½²< ݯ>U‚, Î0@›×g%{TM·㋨3 02LöÑ– ›l©ºÎÒ4Ål)™,ö¢SØGà§é©–Ð.é𶪹–½¿D …ì-"éi¦l…$û…ó¤M¶s,€÷Â?$w ¥½öô Há_•°Â¢Ìóm]—~7ÌÅ5èb‡®ú6»[ˆÝ­²â)3l)ï4LBà£j«$tþð@àŸªgÀCÌ´å)1*k-hxÞ’˜ ˆ€§íÍÁ¡/Å[#ï:§£ŠU,“Góµ4*‚Ñ>]>J^|…-gËÀ83aÒÈ[AÓ(ˆ6ócœ#•ÊB‹GÈ ]Õ¾t†SK2’¥r˜Äj±Å~Úl÷â3¥àÙqt5E±ó1ææÃ/Íve£±þ¾ö Àœ³WÄ æM_YŠš-8W2Ž )2ó‘aà£êÇG.'ˆÎoÍeP0‘bÑ>@äï/Kâž·|q¼f ;±ŸÌ!|k„o= ·–F8ÓÂ=*š™pñ-âl? ”7´ûç㟨;â(Ý&[äõ#%ëóQx Yõ‡þà%²¥Dby×*V•»ÏÚ ‘ã4V"CãX§ƒ^Qñ(ÉRH¬T7]æi¼•sP”[YfþQέûŒ>ƒã ÓÒ?ýÁNË­Ç:-mTHUÀHºœG; Ç[KãØ9 q‹`&ƒY Áʘ]qKYe’Ï­q¿ÓrO¥ÅN¥íÅN¥¼#jºž;Û…§ÒÎR‚wë‘WD±›TÙ}>©²ë#u=pBܲBx§Ù0é‰Á<9’VÊØæø”Âd4aú9cjNIy•ƒƒ“«õD%-8ÖÚ‚âÅk q÷BÔ?sdʶžAàQÊ&Ñ-¶ŽÖ²ˆ^P¤¿€<ÿ(Gš_(Ê÷H®”\gàeq9 Æ‹Nª“i/«(ÿ{Gõè#º‹ˆ~eèèe•g‹­ñÀ”äÑU¢¤g÷•äùr 2‚Yù³/<’¼Ê/™8Aæ¢Î÷7n¥…žü¤Ïÿ7~Üø¿ÕjÖÿ·òâÉÿ÷1>¼']ÿߢøè޽ Š žâüT®Âµ7{­½šeÂOˆø‡Œe!Ob –®‚{¬¨¿§G1LH‰Û_Ò½¸Í®O±åûÔ‡)Di(p€£OÃ~€‰íƒ½gòß«´Ç×Ñ0štú¶²òAžúZˆ½¸¼U·ÆîÃ4?Aê'¨§pÕ²3h£nïª©ÌÆŠš%+,¯«WZ“*¾´F]2¹Ã§ð9~–>Ï+YsKÖFÃ?f×JÕÍuPvnÔG ú6&a4qŒÿký™q«-Õˆ“=&.½h£ìø.xlm„¢{)µë[½ŒSõíìsò×h-«Ún/ÝDAÖ­ØïKlÂYÀ­8Ç—Ø„2Ç­¸È—ØSäVŒåÓYØnÂ3±Í圄›¶w°ál‚YÄ;xß:æ;õÃòƒ¥[àÖïl’tÑ»UȳS_Κ ýE9ÄóCÓÃŽ÷Í¥£¿“gô_ìç¨^Îõp¼gþîãæéyCòu-œŸû(!øÿ²Ù³ç$ÂÎK®ý ^y¯ë'ﵞ¸×í·ßÿ îuË»¼- úArø.“¿÷'𱛟¿7“òWÜòJ™‡7¯ú‹lõ¹Ù2³Y|ïåÙ×þ.ž}MÓ³±˜ëÜÇuÞ¤®†$—NJWGÂ0» +ù’é¹DÁ‚½U¢§7²¯ŽùM9ÎpòuÒ#÷õ}¾N?Zå‘`šDãIÃ&TTS0žŒÂY—ìI€À^åýŽälØ›²r%…bWtÂÅ`‡³Re¸‰cþ³[ž ×ÕSüRN¡|Å,ãAÔéÞ0[€Ì ÓKÇ%¸Ñáts#`¨£Øœ®Ð‹F_ðØa0½é­/#'-Bº?\ª‘HÙ§Ú8¶\šë¡ãTvï—|ãÚ-Š,Éòb•ä­¤BÞ}ú}”þÎ6`Οˆ4ÃІ¤ñOM`¢TÝ,Ö´özò'«Üd¯GerÆ2KúÌk÷bÞÚÍo.ØíHêû”çÍÑp}F t–óÀ¡•?ÞTð³O'TðýÌøRª¡:z0¼zš8ØZÏî„óyÀ‘æb![¹ž‡êäY¼çó6¢ò,m²š¬âS“-°µò‘câÄÝæ/Ø ¼²;IÃ(Ú›2lÏÝ žúöOªßÈÈÿ£ËΟ,ÿ¯¾¨ºòÿ­í§üòá5kÉÿëû{oaÇœÂÎi7êt26ŽOáŸ7ÀØ¡ÃOÂ'¼Çíôþ¿Xò¯QPÀé"J9¤@„,HÔÃÒ¿/1(’èÊKK ôqIÈrœÑ$èGWÓ ê]GÃ/'OㆊÄ^,£I ¯³Ï:”çhhg´ua*ìK@÷°ii%KgX4 }<^@¾³@ƒ^J¾?½“ùI^÷%–ê‘ýå ¡UÆ ÜÏeÍì QØ޼û›SãŒkä5„¢>ƒU¼eA´çƒtñ¾êû…Õ9Oðåƒ>ýðx§ÀG5c‰÷ÿåReeî "ä†X*§„bX(žqîz”ÏZ³‹[h„¡´P!òVÕpÚéA×yÝškËü±S#³ÀïÖdö½«<Ÿ†EÚC©î5Ê÷ždX/”x7¡µQÒš$;Æø*°8ò&Æeü _½ª¸W›üê•ôšŽ“`®z¢P3á,%½>Yœ£NBí;Ì¢»ñ—ŽýëÓûÞ ÿûÞ‚;_þ¾|2?º­ÖyRrµT²1œ¥B›v½ÑD@íóVý}Í/P§`ZÂ/L£¡D&1 ûÖ: g¤Î‘µNÐ÷µßIÖþ×T/¿»°½~xŽ)دߜ¿/ A8úßÛü.ûl~Tü—gì ÂHWtÊåŠßS 8š¬TÜÎ4Ükš­¥YÍ8~fÆýÊF­3¥ñD–’ß#ªç—gú¥Ag‹µ‹`ì/%§újô&Dí‚ý9Š€Œ\.:¬¡Â£á¯×‹‰Ð3¸(IüNšHÏcm† oj6^L®&`NˆAèÿý¢¢ÿ_}b‰å$ÿÈ|OÉVÔŸ9™_$»Èóu²(’AFÁ×§Á9Jõö…:V‰ó)pæs·ƒ#¬SË>WlÞ @„Ì@»Â­6¼SüÇí׌±áAËÈ6´,ëý„Í4^ï® LItQ9ÒÇ}{]]¸×ÎbÔSi¡úå!¤©¬W‚xá´ fÃi¯†ÑÏ#\S¥¤P™)G`ë[™œJ™õr6½XÈ/\-â7ƒÇ€‹VUfBhl¼®o ?À'oƒ,8BxgloúáÀ1„p|RƒuO'Þ®bÒÀÒ&]ªG¦`÷Ä]Côû­»¦æKu—Ø ;4;?Ü\d{t‡¹ðhäOÂ>χ¯­ŸTÆþ#|òÿþ£Êÿ«›»/¶2òøó$ÿ„ï'Wþ¬n±fíKö<€ÿé~S‘ëïÝ_¨¿Wb8÷ê ý&öœõ+5ðæ¬]Ã/dÏ_®z“xJ”L(óÙCQR'ˆ{ƒÇ”t…ÎÓQЋG}4Eg Š^HA³¨W<‚f­_)B›:ò,ˆ(‚´Ö¹Ä3´¨»épŠG@­r¼ÁäRÒ¨àßÁì½Xù؃õKÔ8z¼†sqeIÙ§6ŠîìW73gí,ªœ‰}Ú:mYQgxƒº{VúcÅý ÒcÔrH0Áhߣ,£îÀ€lwɬŸv.…ö…å Íõ;àÅ™$ßÁ%œxßS7œny³žžp¿p´ÐLD\‘ƒNH ÁšêÞZ³%8Z㊽¯þÅêâ½0ËäA³V$Üøq/ž*%kÎ’ŠÚ`€tÝqí‡Úƒ/ã¥_ Î1,ýGøï?¦¬ÎàŒÃ¸¥ @žïÇOéÛ´.½ÅÿΫBزéí9oUxŒ“–ñœÒ¦½_o¤0ïpXÉtß÷GÊßI¨› FŒ8yY'¦ôâ­2ÅØ˜£#ÇGC:NMhwàP²ÙÎCYh: iÈÒš$ïÃ&Q… ˜Ú!Èd›Œ“ ß÷™à¡ðÏ ®?2û C)Ð èjÙßõ¡ÌBtæ=±jBaJWÒ©úþ³¢‹àœqWW÷±˜úþ)XÙ°Êþû´Ê`hS Óa«\îº=Óqû5êT‡¨ËAªáUk”©6>¤6d7 #žÖ†áæ¿ìÄLga•z£mñQ@òï5k¢-'ÛnÖ Ÿ'³õÿô‚e‰Ù Mu{xƒ*"sWÈŠMoµ5¸ÁgÁÝ'¬mïýµºUŒî^ž§aµR´•]…k.ìvíøp¯V˜K°ê\`Pîü´UŒKP?ݹ¿.¸yZ;mÎQ×K¯¬Á¿­=öÀ"¬“üq@Y¬uX^—ƒüÄõíÓ½õ·JÍ¢¨"T ú°jfß(Í4m¾9>Þ;©½aŽšZ²¸•¥xA¯ÿbµõÞ>LÆwñû©uÍ˺‹w±¨~Uë…ï¥_=^\¿Ê?Qf¯=Ÿ˜£Xe1}µbûEyT§N_­Z¶R#U°†_V|1¬æ½£ñ«T3ݯTSõì™aOæ=yÕÎZ]!pZ6A}cjRùWT3Ú<5êNGbôÿq~’£R6&^éD`óïq&åöÀ¿Nì,(–«ÂúÛ5.‡µ vE¿OÒßb’UCroJÁ6\¿ÀÚÀƒ_c¡ 4dÈ¥pF$B'‰×†N SãYLÌÉ G_%̶_í‰8©ø×aºvUꞀT@N­ƒî+Ç⺒ɦ–§w‡UbÐ¾Ç „{±»™©ÀÈm˜©cüu_PÝLö0] ÝiŒþ ²›"‚À¼ØÌÂà÷¿nú¦HùÅf Õ,ý’A/ž#oÉ‹’ üêÃE9ò!qà Ÿ—Ë«å°U}èç´móÐ_¡¤âçáÿmÿU/þq|ŒJvÛ«øºÙ±zNÁÊ–g>ýV9'4Ï8ód‘ìI·xì§7wcJÙ/¯s4¦uB²e’6[)ç˜8C¥/‘3%uÜ>OŸ¥ÖgLÙ¥6Tׄ!òùéªE13)hWDüW²GÓªPtãp®àÔ·¬K|XÇÉ4ò4ç%Oœºc¬]w¹娵Õs”ÚØf ¶ ÐXÆAá(̱-£ÊBHQòvr.G iƒ41–¾öU€U±œ†LÔ»Ý ã Hé…Ѱ.ˆ´³<âÖÞR4U+ÄëÚÎt®Ñ\~ÊISj(™láŒâ_Άa4¹ê¾f¼kˆaÚÈdïÒÒ?mœËf4þšùÜæÂàs˜üi«iA檲›‡bêËëúÆkîá˜bgà¸7j½âk{=…_‹,{Leqᯨ…òbÓîßáªÛkZ;Ù§ˆÿÚ^æy+g숓מç4ð§wp—i§ÑCžêþà ‘¯‘6nˆl)ÌÌÅ"cüµBz‘¿ºˆô ©æöur’}hC¬e‘ÏÈ̽¨2ÐAÙöˆÌ#5º²I̚˞VlP|Ì}2B™é͈ŸÛ ¢—Á; ý‰1Ï‚4âNã Úû÷«`X½Xµ”Bÿ e9ƒà_º§$H ,`æ²´ã ‘Ú´ß°¼—vÕ¬{îw´ Qsi»k+»ž~Û€CŒEÌg½tŠ,…–h¸ØºËÎhÝ™ØIµ-³Òú§‰Œ¥$ZÉß2Y¹Só°Ë–€Õ“r ‘ÍDøìÑ™l@dÔ®RÕä»LÐ&Õ`gâäã™DWýHf’GÌ»Ô ½ËÍjLswÜFÁ²Ä}q¯eó]»~VÔuÊ ‚]Ç|d1pAQ~ïa¯¨Þ/e€5×þê‘̯´Ò;: ÏÈŒÉ n¨Î©8{M¦3ðÒ¥ïRQÂŒfø¦”þýïMi¸ÂKD¾Æ×¯Óׯ)Ì¡Úïh?ô÷ _n:i¤ö—º7¼§0©ê´3û „çüïYVÔoÇðf†ÿ=3m¹¨ÝX‚FPl„ÁWÅ蘾5ƒ|)U^ö0Rã+Lü…›¬¨Š¸×_VŒhÛÊ´IÄ=~ gš! fV¢ÃEÂßÕ—Ã|@e~O€hHiA(@|„Â&“Ÿ¥¡¢rL͙Ž´h?ë¦haþ a¾h «Îêµ0³ÖMéœ)¬Üg Ù~ö¯ºØö4|4œ³Ø5 žç¡´’Ñ·Î`ÜdC ×»ÔÒ¾íÀü;®¼LO«=—»Xâ_XBfµ°B‚þ›Uô+))a¼Õ¥4ˆ/L•þs@à›0}«KY ¾T 0[.,¡Áléÿ² ¾li0XBƒÙ¦ÿü ¾lS¡XBƒÙ)ñeǶI Ù4£áhêý¹´Ï>¬÷ÂàZ”@½—«WÙ,†ÑUoˆK·«ZÐ=»¸Øåº5^§Kô'6$ÌJ‚r¬õ|R¥±);Þk–ùÏë$ÊìÉæ„Ãxhó®“;›wy›ÍšwT—5ïb,¼®oø‚V·”ÿØ(+:Q6îº Ç|˶~Mò ©Ÿxæ[Úè ‡½›W¥äˆÙ† ™×ô{½‘ªI%‚&J&eM,œó²Î±\3«_?%o½ÖO•–Ø0'o”Áhp,|å^MFaDWSgtÚ¹¾™UX¥#Os+4×*åtT…qqUµŠ¶ñòd$4GÊH)èuN–Éâð:³Üú)Ué´8KÂD‹¨UQU&–ÅY ,Ï® øÔ¥áË–h¼ò®@Éët‘ð’w– …u+5,‡–áõPö ÇS4`=T®‡KjÎšÈ ÐÑ"lçµ”±ª Ì“ÏkÜéFìN§Œ0Ðs8¥QÌO–:œ²kÓ ‹§¦ïpJW¢ûΛ¼eøÇSfåÍ]wz§ŸÌ9ŸÜé`â. òaލ“;QÙ;ÊsD)ökÎu"ûS+½µª‹ÞZAþÅ8”jÆ·Õ«âêÍœÊs¹×•q<éá/u]-~8¥ƒ[üpz·ÀáT-È6Ë?òÍ$ªOqbþxì?&áãÆ©ìneã¿ìn>Ù<Ƈ÷‰cÿÑ:XÔþã˜þäŸ'ÿEö!<Ôÿ3‘Öa&b‘9Y¿¼]o~3‘ÕÕó'C‘Ç6Q³ùd(’~ž Ež EÌn<Š<Š<Š<Š,g(2ïbFUD¥LãJæ~¦¸]©áǦ¢á`Åpø‰È6í  ƒD¶¶êÉÜ­=¼†3ÉÚÏE ¤›šcm¥Õ1z2µ<H8òYÔõJ'kÍ•Õæ~Yi!›ûÖ’¶û~ÙuÿŒ{I´a‹=€ìc€¨ýá˜NpþiìŸgÌ'¦µŒc ëÂßTø)bL@ñ-€uÑ¡°ÈnÛPcjš’M0SŒÉ¢|mcãF"Rʃô࣠šLìÐU`V:×H\õIïŽ.Tã1ÂXXÏʤûs 2ÆDOÖD?«)Ê“5Ñ“5Ñê“5Ñ“5Ñ“5ÑhMôˆ)ŸÞ]Ô[ÿ)Gb®'I¡TòCëíGõ÷?( |{zvNÊÏ“fH³ bsJA™‚`Z ÓF-lÅD ™2e>!k¦ýÖÁw°f*ÓŠz쇗Áðñ^]ZóŒG½÷µóжSM +VMÜ.}}Æ2\L_<++Aý:Ó1ô”¼Œz 4{€D»zÃ"c6)@¤•¤¬®J«ª2ûQ·±žš_ü¨6]º.õÙ¬­²9ÁÇx„¹Ýw[¥ã^ÆNŒ¦hŽ˜î³¿C÷ÊÉDç@ ò€3ÌÄ·*°˜Óª¹@*ó:£ª´e­Z ñ…¯Ì¸´œgûs ¢¦~q*®Ÿ±S;âmÔÀ€Q #ïÁÒ´³¨7?J[•í³5ûMH"N¼%)0Yüµ7ŰM¨—'ö–¹¼ÙP~`®¸LÜèš; Àøò2Û4­®4̳¬hŽ_Í®oˆ‘˜“FI’É#*(",†&žÅ*¬ùé1ì£8Gû8Íáý”µÂku^Ýúé°^×7Ò¡#P‚¤MŒ“@üôsA—[Ìgr U+¾yƒœdtUxÙil¬–3pýr€‘ä´±-Œu¨T&JÆü*“Á ÷²·6¼\§ÐЮ:Ëñ©Â™šlûG*ò`©ûa…j!C4Ï!ýÌPéˆR0pgiÊN²D;' _ð%Ãj’þìgL“” QYŽäÑ*©ÑŠi°¤”ÏLåÔäSŒËÀÒs:¬]~‘Ž8œ…%Ot!6¼$“ø3´oxed¥€fh€zù þYÞ¯þçüù¸zñ,‹-¤ŠàºhŽXeŠ*[Ü@çÆÀä:vŸÉßü#F$¯1ª,èØ+6sQdc‰Lâsj¦-À¿¹1UrFçü¾Ã¹ãVw?¦ö˜ºG9pY#0ÖEm4¾]”¢ìÛ¿|ì¹§¿mùmv„í¹1 íŒ5<§Ö³çG';Ë»#¯)–HíDægtOJ¶ß| Î¬U¤LÚ™ù ÿ;Ò¥ÌÅE97,%Hó®L¢ASLr'YØÄ:™îp*I ‹Ü3 )`§øa¾áZëàñ ײö_@z³aŠ–J3†X+7˜ÙÅä|ÈŒ¨_ÆöÌ×`j0–ßœiŸv3èfÅÈqˆRnu{ã ‰ÁtÆ«aØ£pÏ©‘”6Fc=‘‘Ô¬Œ3õHE…µ%ÑÖD TPV8½¥‡å”¯ÁwÇJeÜK8º´Nµuy‹}=oŠíÕPwšr*]NáNrzµ„i%öVVR#‘̨Lf`½8mS[}ÐT"õO¬ ßÃDfCÈ=‹ÌÛpe À…Ó}'ë¢1;×nÇB±wŒ“èó¬w²›+¬ÂiN1·çæèj…ùȦ£ÓÚCøÜ¿Šô[˜ îªW)s2ëO{èÛ äbðxÅÕ£Hgá BÿM4¢÷ˆGŸŒaÅ’ç³ÜÚa“oF@uU¡ÀdÈs{z1§§è¹áëis4\Ÿ¹½ÍïªHTo/¤·[Nou×;Ý×÷g‹vþ|nÏÆsnÏ笈y}ÕKâü;¯‡ÃöaÌ$FÁGì4ÊíãÕöÅ |áˆ%£à+Д@¸Û™Åyˆd²Gp^[<€ zú8=5þóÌÞ`œ3ö_^ zT°éÔ2BWÓ˜B‚Û„Rcðø¡6ÜG«ê\¤ •‹ùZv‚g¶Â(él×Þ®d¢Þ«œ9þ+Fesdw9% oʹœAEàmAç›/óŽ\9%x_ç˜2†®˜ääÊÊ\C¹'ëŸô“•ÿGŸg+ÿßÚÙ}áÊÿ·+Oñÿ壎gKþ_wáú·(ÕKëôC …ÿµÓcúKÌ[þÕó£Iÿï›@ŽÁ,GOL¬`…±´Œœ~ž ¾¦œ½[K âa"E仹¶Uö˜’n•ùÊpû½K ÑÒ!û×#œ­KHóÊ)ž;óð˜~LÐ*‚ÁÖR*©)éîŒ~]º˜G›ì­ÐG¥‰>Ìß52Òb:ŒšI?mŒÏ&‚ÐjûýR¯üÇÊ«V©·²ºGßWk˜Þý¦óÀ»‰ÿ]Klè©${ÄhV£¼}.#øÿôk×<ÛS¡ƒ+ð\DÉ)Ì~ã5’Aa™•¨øæqÄ‘LB<öb¢»®g §÷ÁЋûd£{Á%§T'Ádð5â Õ_€ÙëF ¨îæQŸÌ?ŒGý÷øÛ‹_ew×[+êmûIóRió#yæÊÙ5ÏÅòÄg#õDDÑ?}ÿ7žw-rÁ,q²‘ímjA™Èñk v£™×2°ÚöV›|äèòGÉ5í¡âÜ*=ùèÜRÑšÌãŸmPC $- ns^´oE›91”¶Ð/j¥ coï¯è¯jõƒOäÈZ‚tº{C€ÜTùƒÖ#5!Ô<ƒ®éA+îsk¿ð'=:¼™ª]]Jc”š9ÓÊCØ·ôxg±Ó™¹ Õ¾„ojÒ,íº9ßu‡d3ê³CôJT#ëCßÍÞé’²pÒk”¤Û²Rp=™}r%ð>ÆÃÜŸ/|û³VR¦ï²Ô_Üå(à¦Åz‰"¡ Õl²bø;µhÂ@UÖáñkÎáñKÎ ê~úøWöðX5÷X6¯ô¯†T6}õj„ö!’9jŒR•¼¬¿vbT*¾Á©^pO;2N‚5Mƒ¦Ã/86* _ôبTsÆ¡W{nÈôž•êÜsCSxnÔJGúÜ ï–+–”¼Ç¹aá3«"ZìÇT‘yõ?—«š£ÿÙÙÝ%ÿÍ/ª»;¬ÿÙyñ¤ÿy”/ÉŒþgÿA@®Ä<%мV Ú™ÊK1¨>/¢Á ê—áoçºçê›N¿ß»î ËÁFÉ(xÓ ;tòš€Ž:1´ßêE!Åú*Ò5möÈT:ý2w,@,a´ ]M¿¢ª7*FOFh’AÃöiËÌ>-¬9Ëímœœ7jó IAìé™É‘ÿíôjûOе»)Ö†®n €¡±´™EÑaïÛâ·N0¦ø³b!ƒµE GæÕÄ-§†C8®&ny5œ¡ýM\±î#ÊYö®®PÎIn'J»{y«ñ!ÜÓ;BêÈ‹$Ú~g‚eQ ¾Îa™Rx*¨W§ Ö6Eø‹pèA'äñañ@  `HÒÆÐÄhÀ—E›Ârs ®Ø‹âg°®‡=X×ÈÃ`,L53¼Æ™ÃI÷¬Ÿú·A…°Õï Q²ÆŸ'Ó…Iå¹ñäI•i´ö¤Ê|Re@žT™OªÌ'UfÚΓ*óû«2áçÞzÉŸ¾nø=¨þVšMÂÄ“zóîêÍý‡ÒoÚ¦ó?¦‚Q8tágH8à!êï£U}ÃmjÖÛOëñÞÅ@l§¯Kªd*àyR :ârh*ÛŽ¡í{ãähv…¼º §IIa]i``ÞÔt乚àƒÓ'eî“2÷§PæZÝ{ÒæþõÚ\µšRUcÁy¥ÌœW¢Ps^=©Ží!?©ŽƒRulõïqtÇûßMyìÑÿÆìþ7Gÿ»µ³Y­¸þÕÊö“þ÷1>¼ªý/ÜG§ûï1|Êiëþ­×kç–>¸}ІþC þkäk€Äñþk¦‹ öU$¯`8éaPïÔMÐÈ@UØÄH$KQ¨h2*—Ñjz¢õì/Õï}»¤úÁAþn:Ù­þ‡ŒºTº,2{Í˪@~ÃïÓvæ©eÛ©RöŠ.Ê Éj &8Vúv0ˆP[fDT’ñ¨w I—•§=IÄnfŽè|NÿÊKU]ý[S°ª2˜py•(ø´¡Tx×°¤Y6­fÆ}Z=_-}Z]=驄 &áéÇ#qÇpŒîb¢|¤#§â~w 1ʼ;Ó Ž0já 0¨}ëð}<)åü+!SMŽ¡ªú„%‡sœ“êaÄLüÖ‰{±ŸG=hcÒë )Ë'‡¦ïŽ&“(X[¨„ñ¾~ií—Bt²èº#ë])A=§•ý<ƒ.¬O±ÍëneÑRWpA*#¨âתÊR·aÿä (ŸBÑÎ$ì%œHI Û4åÈÿ?Œœ\Áÿí<íÒ‹ÿûF®ËÕ.ÊÇ7±Ö<^¡Hý*pì}š`mÕœ—ÝE4štsãARœž—ÎreõëTs!n Æ÷ÞŽjÁ`~²))Ìæ”tÉÑ¿ÊM΂7–Æg¬ug©ccÔRv mOqU4(ÁU£N&™þCŽD®Œ:¢p6‰Vô¹wxѬ7N›ÔÙ¯#Q%3i{Á(\aÔ… -ëR%‘ƶ*V½º,ÝxŒ44¹Ãi‡Äl¡À›ÍÂ1>…ìèÍa®F›V£ˆíIt(ºi§1ðªîÞ.¬¬ÑŠ_¯¬¬ÂÍô'=“£¡w•EV‰j•©0•žNfÑoAo#Ú \›JC9²¹ ­Ù~diú£á³k´Ïwz$R5ct@%¬¼‘’(Ç=Q¥š5äæˆÂ»ÀiÛI¦€™È  ",ÝÜñÕ­wø¯‚óÖE}#è\Mi_ÁÂ…uRâàÞ„"¯¨î œ•l°¢U“Ù.Y+µ8lc¼¤ËöŽ¥ƒºß_×Ö/Q¸ò¯][{×íÄÓ‚„e:škUÞiôœREËn»_8Øï˜n½i[tm¸%)ñëå1¼Dã3•6F„šÆYšã‘"Ä" Jð t¾îÖÆ*ŒJo™vZ&µt17G‰—'ž7Ðg ¯Î NV’ž'¸Á7‚RM-P½{ ÀྎsÑ >' `Ë»;š=“YÝP<ÌEñ/f.ò¡±Liù@H»@eeòÒª¤t0¸îä–rµÄVðÛ íÖ)¢HSêð¹Jâhv øaµ¬ ᆉÄ[4Њ:“ò3àa¹«9…“™:5AÎ2!BŒ[rŽëµ¤4š4 »1?7/"b†¡‡%M6¦XئvP Ì 1PÛ¦Àˆ\B>Ë6MɦžþDRD’ ç‹'ç» »É°}+Ÿ<†ûïÛ œ•ßœ›×§”jæÆLþN9³mìÞ=iv üy³·V=y³¯G£ÐLš­X|¦ãT`{Œý§LŽ&¦äñ))¶™{ß<[èèydÓÚ¸hÒ[kY §yNwL¸Bù· ¥WÎ3oúl­—ÔÂ;¸ú×# nÁU§×WÙ,”è“Z8l’þÇêo©¹våeãøT±Ä˜C˜8}Íx¥W™‘š§5ݬdé …€À¹Æ•júSxRjKUÈÆÔq°ç…ÃGâ Ïq¦EuÓyl Mp›á2»d‡‡ê%.Yáú.#nsq|¥´Ò£Qj‹Gh£ÓS¢ëh2ºì{á([¿,åìé~õ¥"ñU?‰È'ìÑÕ•¢çÃÀ.äuÞCækQ‘Ü6}ðÿgïßÛÒʲ~axÿ}йk?× IªR•~^P“1 Vºúê»/”eB‚Å!‰½k?Ÿý‡y>,jÌ¡¡»‚À\ó8æ˜cŽÃoÄ×Á¹ZžÜîm婼žj,Ñ\Ry¡ïqn¬À$´K£èÏy^Ùnºõe=òЂVY”%ØòÁÛ®Xþy·…­ß;é ®ëa½{Lï”HÞ»Ç5B–GLRD€­·»ÇyZ](pªrTEØ/ºRiÿÇ|´5ø¯Q‡šœ¨yÐéà¿§ð]º•æ |þð5*ÿßÿGðßqýa™±vø½Ù†÷ev1Ì•·ážD^=8B=<ªŽrðSŠãéJk¤ºDØÌòÐõ{¯þN™’õWòýÞ_`Êäî‹îÁ›§P®ïçÌ1Â_SE@ˆ}çßóø`÷×:ÎËq§{ÐÎÄ¿ãLvBå¤'õ¶ýü =;*cUWñ Gq£DÒÝ7ãèŒ,çi©õtƒŽ;æ‚ Ë¼ÑÉŽû¥… ÎI§H÷ØaCíá‡V~™ @Ö§R —œtªò6ç(ìjÕ ‰×-{µ êÀ“tçi˜ñ¹x²Gá³pÍ9¤äÃèïYR“ÏÃQ¿æUYÕSw;ÒB¬:ëJ¨þ{‚¿3!)}.&6<ËàVJ‰ïøU=÷äÑϦç“ÁYæÈväƒÿKREÀ o® 2¥+]ÕáN‘l5d4=}&¥ü+ž)‹«½ˆÜmŒ0Õn°´=UŠbuÕ0éƒu⌷? p.ýüÅx繫Ʈ`_øJÂç>ozÓ(ŸE^Ãfìf˜iI²Íž5ôå¨ÏšÅ-U¡›ªKúhÁiõ”¥c8¼ž¶ÍÄÉF§3Ò`nHíÈuÎI!„<ø„Ÿ­˜ÏE÷ë ƒ§.T[ocþÎu/iü “ø•þÝöÓuûpǵý\„B;§é,±~O²]™ôg·cþV,Nà]—„¯rEžšš^otžÍÜbLzJ87¹”.pvdn«±ôÑñ*xŠa%1Gª([S>˜ñµÆ§q°2ùø-»Ÿ— Z¸ùH¹2{RTã’ìì1ñõÂb„;‰¦=O§eý»b±Ÿ¿fçñ^Þô,±c•¼XKQÇ~ãÚuÔµîÌQ~cO~’»¾_ÒQ8žš©„Ÿ’í»ÊmC «KÞ{uœ»Ëž`C0&š²+ýC6ÏUýSºÎ ŽXŽƒ‘µxWXÜdßî,]gÐÄõ¬K¾e­V¤ýS™né+ f=&oñtet!µHP§«°'ÓJÄÃ-©‰\ºZÇ35ˆ‘Ï[Ô2R¢‰µç0CÛô¾©Û;kx³"3޲ɥÊ)!U+2üý&.Ç”¾7^ ã4!-A„Ä Ñ¶Ž:¸¢X§’N´\?$ v{D×>¼Ê$øl9è©ÌyOÉèÑ•ãzwβÉ;Ûë"èœWyòSz“öz»aõ3Ήͪo™¹Ò·PÀÄ Ìcß¶ûm'¬)qÚgŠêŠ»MSÝÄUk¸fÅÝ#ÌqH½º/Æóiö~aw¯äq·ÖYó6¬{ÖµìXìh7 7Š?þ"ïÜ–>CÙcGïˆéJ^¨¸,™br#Vý%ÜÓI¶\‰ÌM“Ö¼0À =Ìgã½Ijôú¿£Uõ×&2žžk_\hW-Š¢Ó—íà©T!fzœ:tSn0Šeš–|ˆü± ¯g·ÔO ÃsðÂò°^ìÁ±m9¢Ð`#sä‡P-Ö] {#^u…(˜žÒ©ä$X N’âçñVÛݪn«ª$s>™Â£kâù=J50ºøŸsè"4"לaJØè1Í®œ6 Ïttp¬†"Èn  ª“ð+€€@À àk°+8Æ©°ë%ÚZEþ'"ÿ±ÈPUôÿN*úŸ„d±{ìcÔÎ%…\¨²œ“ÌãRgh#]Ø…|~p°öD¹{÷Yº3rFôhÇ Í÷t*ÑO&ʼnX5 ¿$Ä`Ò4RÏ9®Ê­!œ2mNâ,“Cd _à Êä r¡piõZrÁÅYp˜nr¡b. çYsA#-¸‡Z.è‚l%²`ד·°YXdA€ZàKX~¶‹Ùk>/Ÿsó¦è3Ò#•"wév›©(™¯:ÖæŽ®Ù£:-8ªSoT§·ÕÂCwÉ1¨1Ý$†%î‹!bÔ‡ÓqÅ™µÆjµì⺺öFmϰõR{ßËy)¦ƒmÀ£Ò§›#Çä,Íká´ŸYÉÔlIÜYO¿yB^@gòµ-~„”],Á+ôå tvE:|m p=~±¦ªBÉÌR³c׃¹¨ã|!˜iü€Æów®`÷5ðêå Ñ ´RІ%™Z:9õêqŒ6£Œ`ë¸-Ÿf ßÀ)qN(Î3ç"–¨ºd .x‰B,™ºëé¡—@¹CUG–2i@&ž¢È¿pæ]¬f/l&Ð¥Zú1Ù’Wå¶#ư,mŠHmôi:CHE;9 Y±^ðBmØ;~Ñ%fyd¶<¹K¬ Ù–…f‹ßÄLÂØº`áeL±ýk±S…ÁÌ$(`ìp’ŽO…—’Ã'-±š³~½[ 9 ¢\EÕ Zn-çôh-÷BËÝ `Ü7 çMÁ ÐM¾V€n+@7çµtûÒ€n)뙯:²+p5ÖôÅ‹‰­øc”ÜÛ–Ü·õŠà¿}¸cø·øo;»;w|ü·ZíÑ ÿí>^¼Y=ü·Sv°;d]`'î¨qHºø $åO(Ñq1Þ¾'Ð65AŠ#/‚kã)ë°¶ˆSi~m!lÚaI¶Á;%ÙØÄ´^-‚¢†æ¡›Þ ¸YÄŒ`eà—P3Gåò#:|k9Ö°[Öâ‚àvMÆ! ²xÔAÆKeŸŠaïò¬ßÿù+,Ï!¨æ8µ1=ßR] ¾Ú=˜éZ_-Ö½È_L'TÑ~6«ôîF¨!ã®6‰E­ÙñpL' #«Ù˜#yæçÃA?ƒ…IãÀïìŽG‘qSÆ‚P÷…K]€ ¹•?ŸSžË"HT9zT´‰ w)$Áâ}Ê{ÖëÔÅ[¹¸•÷½©8˲‘ ºrOØ*_!*ˆ i„ä¡‚Üv‡ý¸‚ñX»Ã®Áñ8,6yt2Ea<U4à,Â>§Ì?{d~£SñØ 3ç ¸ÞˆìœÆÛV#$ây@«8 L’°v7 äp\Y“ôw uA±:¤òœ8´ŸT~/;䡿að(’- ±•~ߨ–7§®Ç#Cªø¾4E;÷ìÁ:ÿ Uc#vsjÐ*½i—6ð(D·„G9Ü’U©(s»‡~T)rZ ”%ÍŽMšÖýá–´Ù¹#ÚìhÚìÜmJA$ÈB´Ùùì´évˆi³“ Íš6;mvÚìÜmv¶dU)ÚìX´Ù±i󻃩øë2p¸=º¸¤ªØ]oo$»†¯ÔÄGfp¡x å ¸»C½içÙX ,dÅê°1ìŠ$üB¹€”$IQ „…Hw…àb!ÜîÀqSSfókºÙL•Ñe- $!FТ^Vãâ!ü'G©«°t;Å2zWº“ˆ†¥ÛÜÏ ¶cÎ9ÖœƒÌM¹:^<`¼"Ú¯OŽÓ3é‡{¡ãOMÁÕìÏŸnµÓýÄãË“èô¶#ÌçB/}®‚ÌsÆ}Xï?D¡w^c~ œKŠE?8ÝË©å^ƒÔˆ Xýmz¦Ý¨sz?ú{ ÞXjéIõb×¹?†]×–GKØL8_u¬{"4Ü.'aÁ ø> ãÏI€°ŠtÜ"~8ùaN8ùáíÂÉ¡'éº;7ˆ'_¼½ã—_"x;ø ÷¬ xûÐo. Þþ)Re'¬²cªì,ŒÌLi·¿A8x¡HpŽ×µÜ.|Ù­"»‹FMß(DZ;‰î iíä|˜ ;V„ PðÛŒ'£nè¾–àVvÁD'¬n/ •_‘(îB³sQÍ tN>¸»ÞÎóZ%¾þ]/XGZ%¿ñK®ÏN¸>îLDû[œ£ˆR¼"99nó?£;ßI4}ˈöS±8¢]‹$ñ^ÞYø»!ÏCjÚ¾ mÿB¡í ²CÛ奛ƭ7>gÜúÂÖ©InfE[ß~¡°u-îY é_N>°tZŽÜyaí‡6[FjÐ×<™ê.´¥BÝ-ðýØÝ2Ò]»’ÝQ¤»5®…³çv¹(v—ýɈ i9‘ì$ëd0»rº3Ý ä[×…Ú)^ÑBã§S˜(ÖG¤ÕŽç_­Èµ±æ|íRì3M±Ž‹!›ÐBFŸ¢q¡ÝßvyÉÝwؾë,³ïÌŠï»ÎgÝwJªýZö]Þh¿à¾+ üÜw~¨‚Reù©Áîyì Ðg9 ®ŒÝ”ö¿¿‰mq1_jÕÙiÿœ£éÑ¿ø aùp;vëèˆ(WPKïdš³ pB*œî•ˆQTdf5™C;r/žÛ6Û¥|…"±cQÄ «GgŽ<’'* á…ÚãP÷Ë µ_p˜…¥­œT#NbxD\SÜ+Õî­‰æ âÔŠž@n.Eh}á8ÉC+N2¥˜A¡J“ù+ïs¢É>©KN>‘ɨ”î[bÚÃò:ÈóöãYðH2œ”Qd^ÅVŒ_fOl¼Úd VúŠú±¾^ƒ[€úŒÀ7XIuÛÔƃò‹'™å¨¿îæKŽLœ%«§}6#κ.¯kè¼>W-˜*UQX‹Ý\,šÖ‰ÍAË•ªBN²÷\ÈJ  v,ày¬$âÔ·/Ùý\¼¤³üFÊyänyIgI^Ò¹/¹ùäñ’¥yIÇã%€—ì|v^Ò±xIçf¼¤ãò’NQ^Ò)ÊKvsy ï> gpL}Ìz“kÞW·ýçs Ï ÇèSV•ãšðÃFšju„>?Y7j¶yÍz²ïMaà,H—N>¤Ë1⊣ÆäÈ „N‡#Ÿ®¢‘½bñ¿Ÿî88?þw÷ñ£ZÕÿÝ­m¯âïãÅÛÃÿ^òU½½Wñ%D`h"MïñÈ%×’æãh çHW4ÅßU`qÎÄ«#1â©håNÊ8V<3ôlÅ%ˆxþ%’cÝÐAÄ9íØA˼®%ëÃiiAÀ2QLékˆy~ûŃž_ë‡(cZáªuŸzÖµÌˬ‡YE.¯&@¯X‹ !fðSy‰ósã!½;פ’ÞÃ4¼±ÑQ¹’‹¬ª]׬&°šÓG«æÆÌ¨êÓ’þ¼ ÿJ‚Ú*{j_\B]St„¼œÏT êdüq*1{9bÎ@²c-6*;›” 6;“OïêjxÍÍhœÆéàr3R±{»bŸ¦x]쯯—6«:óô>E™:¸Ï°KÇÔîÒ4ì/e€¤¸¿…»ÁOÎN³a†aA\š‰ì¸),Ã0›l¹ †Oçn”óñŽÇ£¾òèd¶õåHˆ<ôÜãø89°²J¦QÂȘO½sôþÆØl68/SÞ]3ÿòæ‡uÊ0¯‹ùã#‰Š>]AÏx1`F4ûª´oL3òa»[Õí­šbR|ÌãÓ'0ÛÓ5ñ|¤Y‡€ÏÙ…AÿMè9{½´Ü%åNßS¾Ê³LèG™9±k’‘3…óN’ 8Ê}3‡¤Â?% Áþ˜–Çï€0 úPGð”²Ðq‘‡¨=f X-Âý­·•êß….vÜï±i޲­l ((âŒÎb­ï¯×× íV ]ØŒ±Ô¥öˆÒ'ÖLÀ .šüw·vbÂ0ÚÆxö>\$lN>$ê[ÿåá÷SÎÝà´?ÏŒ;¸ãæÃÔGÈFp¨s¨ZÛ¿?ΦÖn·« ›ŽîxNµmZÃ- ¯ûÃ<æf Ó0ëÜ_Š2¥Š¿V¼Bé„ᢠ²†—$ÆYÐré1Ù79mœBþÀÖžÒGªöÍã±™rˆM[ä¹F^Cq·—0²86Ýg¸Õ :ÏТè|Ǫ7%;X+±¢¥•Üö]"Äø¸ Âxv‚Æënúpºv¹¨ê¶¸cW£´²ˆs¤+.¼B©ùŒ(5th­ jVP5+¨šõTÍ ªæ^¡jX?²\MóðµKŸV/0¿Bê7=Óð¼Œô$"Télä÷•|ÙÇKÜÎõ=GFRG¸Ô}hF½4¨Ð|oŠˆø›xIí8#cÿÖÖV…ì’(£Q.‡7_«Ar”Ʋ',ÈÆ½Ápª¦Û¹McWtÖ—žT©]] ®0Bc6÷¥:Ë@GR—ÈòI?û¤š€[ªuIµ+Âið½­Ï‡§[VüÎ+¿oU-ûçšÔUÕSJTƒÄn?ÃZù—¸GðV¡zäÇý¨~õ)tÈ{•ËôЋfâlE88 êîñõ…§TÏ_Y.{}â.m0W汓‘¨Òo8%7£²Û§™ õQ¶9ФJà,±`þip9w²ÃÈâÓ9=Ù;›Âì·Q¡ Uƒ?®åò(ÎÁºôeéYZd äÜõT‘ƒÆõUvWNoÔ•ÓÛu%8 ¿K.çÚæ{èÁšC¿FWMat-æŠV±C]v›Vj:]ª½^jo<*;›ñYô`æÅ¯›€y)âÑÃס`XóÍš/añƒ¶œA kY5¶BÓ¯|d1xÇ´ ù~ç€Ú² J`}¯,K†ç—&sàÈT`~ºK+8²oŽ h¶þV°dNó+X²,³SDzÕD˜]ä ,rà9 ‹ø 5Â" "0ݸÊÚ-Ü”µ;Dp Ùä´ÊÕæ0D^VówÃúû4œTzQvÖðÁ²ÀâB¶ù5èá¥{¿ë÷~þ\C®0þÜãðÙÛâÏUª¹:½¢+ºø è–‚Ÿ ó çÐÝ+Ð[1ˆµ{…2K%l”ì;™}öXb‰îÙɲÒXb‰\¿‘¹ú¼Ý(”1|’eîùn]¹(|µåMŸÁj #ÖÏ3\šºt­·70s"…®–¯+Ô8ðA†]ˆ-~Ð=½ŠŽÝée¹¢¼ÜäDû¶ôô¤1ïb‰1}åÀWŒÄ[NËRK–|`'\ÝoίVM4}[8¿·+8¿oÎt]Ö=zï÷…àý¤–o(2¦Ë!#‰ã§nãQ(?Ù´žË¦NkI«¹Kš·­4PwÐLe¡øbŽ-Þ?á?ýbÕO­otÖã–x„5 0F¨8ã †ð~akÚ÷ Bhƹ 4´º ¼_ÂÛî¸o ~ð í¸/ =ؼˆwô³é`’õ+ZÄ0þöÁæN*N^¾npÀDŽÎK–é®E6ܽ-Ù{WȈ7DFÜùê×…Ô WIà)Pi†æ£!HŒvð+u¹º…nÙŒI®~Û‰ð!2ÓVx‰jø"÷Ù0%ýYXoÚ6 Gš[Ð 2ry·‘¯>3Vä #’_Å0"±† Òb +ÈäÝB@¾úÌØ+ÌÇæcqÌÇ”W²¤÷PÌ9ˆÄ¹À ±Ô h ÝIU‡]ÄÁÛÆplèi“3¦¡U'Lo’X‹py­JÖ‡Î"ÆF‰;Gà+LÆ.ƒ2vÁ0ÂhJjP.£54ü3…ÂxŒ¡Wjù¨œ¼šdçäÿ‡‹¨ñE$й ªâÝçϺ*òiÞ'zÀ„X¤ 6b%ÚT1ž<à;…«aÆM®Iª×1j\”ꕇÈ=b‰ÙG•þœs@*BGBêTmƒcœd€áñ™~a¶;ø7ã§½WÁhÒšÉSŠöë7ëÝõßÖ×+°†ôñ˜>òT0ˆÖjñ7Š‹õíç8#Ç8Ýqؽ.Vƒáw#YF3lšbjü \E¨ö¬áŸ5…Õ¯é”.æ¯,T;B«}wkñ Gà#ϺÒÓ(ohÀÜÃY?¬È@øéG~ÓDÖ|KM|ó‚£ }TMÕÆ‚"Ï^¬ËÚžZpsó)À`4e= ‹ïf™,BP¤Ò¯øjf"F±¯mŸžÈR sáj2>fDF¥çíƒ#aœ¯Ç¼®(F–èm,¬ÄÄpŸ<"JÚßM<ÝCÕwæÁ·é_dÁv0Ƽvn ïD<ƒÎibÂHµPí–¸-ä“ÈÃ|Ê{ÂùÜ Ë/>3Îí\VwpMi¦Æ’³Ô(4KE³Îϱž{RœP÷EóÓ¸ñü4¶øùp~XVX6²ÿXPì1èÞù{ÒÀˆ{ë÷ÈÁ.#F+´x‘À}!Ù=iÞ¤' ÖÂîØÏ[\Ru‡Ø½¨»àßÙd,vùp ÝægéœHðVÞ“TM¼´è%ÎÄ ¼ö“ª³ŒF³©û®öwD9KÏìTñže³Ç«Ð4f±ƒP.¥UÁø]†pD¼/€oŒf088Z§pt² ú{¹¢»€ìPÓOY@ýá@Dœ¢&7.ä€äÙµYpÁP–Eùj*Q™¡êÛjÔ‹îŸÃ¯øý*‚Gö=÷²A.É à솂— Ä#&ÞÅpüÑ!¹V2GÔÉ *6| ‚•ê²Ð_Vª›€<ë:˜g’)Óž{޽qV¯í`(”‰®Ä&3àF]tYp#Ù¨dKÖõ·§ŒndW1ð‡¢Šü­n§ðD%¸ºøDÅNüߊÌT'˜)rôÆ3ÕÙ’ui ¨ØTÙHP] êûNñPQ0—ã]à•X];òŸˆf7ò2ŽØ뀗`|£;œ÷ ,¢x‚þ›Î3ŠVoQ^»^wž¿él•iÔâ‰Ch ÒžÀzh$"Sq~½Ði/žZè FÁi¥vÀ—Y{d…Ùòâ¨(l®¶C'f™ßüfÜç$  lëÊ:¦ØS­‚p_¬+A0hsPÁˆ'UË|¨…uСWýsŽWýý)U"8_m˜Z¡)Ëóéœvæ@B¸+½¡¼ÎN#ƒ~ÚÞ¨>áJT˜;^=Þp½tùZ¼<î¤hùhyÚqÑò»‰òÏå&úÿ¢³-ÿ(Zþ à7 QN`6Õò‡U,zi*G›œœîW¢Ä\ 4¼¹GŸÿ±èóøó?EŸ'ë‘(}èMãùTúpZþ†ÚiJ€”æaC¾“nßP%M¡X9 í½×‡]éµÑdívS"64%ºBóðàÙqžŽÜ>:Íç/Žñýõ¯]ƒ©ÃÉ ^ãÑüªÕ̳æA*ˆ¸@íº4jøÏNzâÙ`ˆÿ¿6`; †Þ‘ß"ÜNºÑnýöJG\ q>ª‰Òå;!á<—H8¸‹!à0ò ¼W$g12À½bÚ¤×ÀEŸIÏ‹B­‘ 6Þcá(–£¯¼):! °hö3B‚ÈE£yV²qcº¤‰6 0û¬@LÚ“A‰—ôê=Í­·©×|s-ûú±ÍÅý ÇìžurGÜ GÜ)6âNîˆ;áˆ;F܉Œ8Ò×f!$ó0ó»‹!gÆWˆùBúP)ù­íwÀ%Tñ|<#ýˆüMh)·c»Iˆžü‡ì3žÎ3tšÆmÐiº.< S¶F’é.†§ Oë R ž¦»Ÿ&ÀìÑ1Ý’„Çt뺥·gÚ PôlsñHà\²ðHÚ "±éx»Á™ë?GÇû\;|l'|ìyÇÔ^r|»È!ï)¸Än¨+¬ùÑÙ\fkÝ.ÔýyW|o¡îˆM¶®?Yc,þ$ßuàz{]–»§õÅ!êlKÀw£Î¤Šî´â=EbÔuµN(zºÚsÁÅn—¼©+žpì«ûÔM-¤7‰ÐüuI?9?8´.R^x6Y4nF~˜»! åøä‘E#E,ùdÑH“E#,ùdÑH“E´ÚY4–# ÷väÎß—"‹#™fÍÒ‡›œ’NBIc~•ê001ì]=§Œ*Ìþ•ª? 2skkëÒ‰õÎg¬zB/ Kï€V“Y)*lp¿’5™ùÇ›± ,@—`9m€Õ«òÇpà9>¬­E]ùLL… £&ã¾[²·c…ë¾–wÎâ.XYkY-)šC«ÛñU”È ‚‡3frí˜bõ`6àØ”Òdä":Ü¥×Ò,iõ b¹‡áç=ø$—yÙuœõæ‘ÅDÍ… l8h±‰s¯~C-‰š÷†– Iöœñ%¨^wÉQ+iU k`%¹Ö‡¯)U±3}³âj…IÈܨnª´Û‰~àJúâB’˜RÃÀ}ºä6 Êô—}K)LEµÅTdÏ 2X~íx­âÍ–ü™´œi’Qìuÿ¡º¿Ubu|Ís»StnùÀÀ½—êÃUk7mWáX†7 å!„:õ¯…U篕ì§ê—޶Iw ³“œ7U‹[Ç‚@pè º¯5äœ>QÜŽ.“†K»ÎˆÔÁìLÇî~QZQ®äV|Ÿ÷±ýLjï„$Hžˆß{÷¯ŽÍÔJGÜÜoz,>\¼é´pÈ¿™ ¥!wáº/}(VéP¼µlcbÎrúZâd,³&±å žÉд‰ 5ùE_lE!8$‰Q!k“j}žª­í׆Rï‚ú@ti»u¦˜Æ£‹¨½Ž¹Ýíd[‘ÃÒ‹zÏ"2ŸHÁ8X, ‹P n»´u»ÛÎcç‡blÕy®y[}ó‘§xÞ²#ÿñF “‡qº¼zã…§ÞÀ¬Ž…üê ‡¾ÆéaU‡f¥Ã¿ò®çEdÞ¿öÀj¦ˆäÄSƒÑØ"Ÿ{Wƒä®AÐê: Û_BS#lËX·Ôª$ãjŸw¿dXí7óŠÄÿ~¸ßøß‡»Ûð[ÿûxÿ{/Þ!^üï©Î§"sÒÑ¿Š_'˜µPÂvc%Q0¾¿_5mêÜ(ß{¨fåkîåàÞű½Úû¥"{O­ÈÞÓddoÇk‚m¼;9yg¡¼XjÉèKzI¹PÇâbÀ±¨¦o<"G Ðvˆl ªßÄ@¤²;–OèfüžûÓ›™ Öú'8l¹¶õÆú'd5½!ù}Í8ôÅëŽÓ—ËyØ`.¯©}·ñËùz}ýíUë×[Š ²iFSÊ78«ÙŸó4…¦=Š%¦›êk p ×2ÑõÈ´q¨ŒÎ ­‘ ¥„áôqm©N ÷íaÓÔAáêȧñÓô(¨B=TÄEaJØ Â«HO¬Ý™)ÌÌLYÅÌE4¢Hkø¡Dz†„YTlöZåêsÃéRy©'QØ«ñ…"ˬaGËR¼¨Ä*›^\ó ‹×m¾¾þb½nè†>7N®éõ3ýÑàǰ/!:ŸŽÑ–¡°”Wif31?\̇Cƒ.öƒÔ6ÓN¬á‡gó -¿Ì×ýCE¦*Él)Ý0’ÙÞêöX‹5§ž6ÑÃ1Ïl‘¶#ží¢›F<ßx ù/ÉFF«Àè/ÝÌ͹Ìñ1cŽŽuûA™V¥Ãv`)(9%h¸X*w½Þî¢wLÞl*¿ó~~Ü¡‚uÿ%à è ^ÅAwÖÅÇngö¡± P?É0d¥}Þ×ß|0ø2¤ÑpèÁ®%E>>Ãâ@4ó u@$"Ê#Á䟕V@´sÚÛ5BÄ›¶òÊ­¨¾Àò¨ê{¡÷&ä?4„Þ~ZEÓw!ôNe«púÛ†ÓËKv(ñD4½LJ½sœR¤»)|tY±Î𩑇P‚‘ßN{—JÚápV˜]‹4|Ž[*¹käF¡Ž2ò“Êïåäó6…C‹Äw#›Ç§nΓ÷ܯņ¬óßè”mõ(“äí§Ý´õB’ÌÕ‹fg÷œÓ1o´ÁlA~ßsB‰{gÓ’æÃØ[üÙá–ü†Âì³OçÙ‡°¦r˜ç›Ë´é6ª¶ªÜ…ÛÀ‡ÞÎFDä“ͰºØÚ¿Å‘H"óÛ 0"Ãa.Ì€ Èàâ1HuY–€cpÐ"wÝOKmµÎçÛjŸ$µw¾ÀVsÛæÖ)²Ó>éÖ±vZç«Üi4M_ÅF =ˆÊo»ÑÐ#ÏÆóøÏAóøq…æ¯÷gZ}8Ñ=ÈqéÆ#ª )±Búøž‘>ÚÞÝ\ÑðVbr¯„ü«0à–+Èÿ<Èãç§{ÑòE!>!q„ðñ@Hu»B²|♓‚mXh(•~ØT/Ë*ÍßT·¤Gä;g°DÒ÷1£EÒ0ÑSip#É«!•0m:‰vk¹LNÅûKuH˜9GýÛHËdG‡ëõõ#"8*t¸ÞXïhåY `´ä®ˆbŽ´K¥Á“ß+ð_™{¤?²6E èëß‘OŸQ8“ Ár Š`ÝR¢€lAe–Ðþ}Ö¾7,¬ƒF¦õ—Pr]s}NHþØàÌì´:Ru‰f}¼ë‚Ô:•PÀ!ˆ’0ê¤)¡ãçœÛ·¯†Uhl©P%-Ï&½Ñ”õ'¦ YåYïü$ÒŠIšÄnM {‘d„œ·GäÙlp^ÆÃ‡Êã!ƒ&!u¨Êãno<šIÍ­6ÀÁar 4Eß(´à?ü¯0$¢Cotíeâ±tÅ0å¬Ü¡«ãS[;.?P§`s”==¹µžéXjÏ=c Ö‚Óøõª¥øA õ!]P¦îÖ õÜ´o XE”æÚ×Jóœ`H;­à\б­"ˆõØâ~6ÿ!~hñm€SÛñöþAëº@0y<áLüo FâpÜUÄÕül y9~£y1¾úí'[ânGJãýŠuÔl5 ܈þaœ#æ(âý³÷âø u$¿ 9bs=Q,¤v>ÒË=ø¯#!‘ÒÕH¬¤A"5ºè¤‹ozkØ‘àÒµ·&½JÓ=hpáF %\Æ#œ$Ĩ¿­(è¤tÝúá3ì ½#p{œÉd/´ )b¨3OÈ…-Ú?iµêœH<¬æë…mbqjßäÁ7¥VîÃiY§bNË8Ý¿iYø¦eÑ›Š7-‹ÝtCè¦$r“.Aè3*q.>qSP§W N_Ô)Àt² n†è:YxN+8§/ç”ÐZš¢ŸÜétîäýÈlÈ?¬Ÿëo º“ý ‚ò· @xØ%å-ÁŸnŠçD‚*”Çwë«·hÍ£‚rÂ~Ä"oyëyŬæœ1ºÍZ™ß…¤9ØSËÂ6Qý]5ÚšâF M7ÅajÈùm˜ÙkD—³Ql9óŠYÍE–³á.gc©ålÜl9þrÞMá-–óŽÁ–~ À–~þ÷ç|0×£õBô¬ –8¬ºvXKjéëGZâØøp’’LÞ B–³Q—ܻ °é¦€M!-Ú“´BlºbSjr冸1b“ ïü¬xM1¸¦eÑšB°¦V“Ob±”B7Û屚dè<¶m9žØF#” ²)ZŒ@VÀc A߇J1‡„ˆÀ?9aÏ9àOIÊñ]:pO§õµöZ…ÿ‘ôZÕE˜S¢õ؉ ¿öz@ÇÜž*%JÄð©n*&|6ì©”\À†t¢ë®Å—Q8X‹Í¨jÅ…+K[l©¨VáJ“Â÷‹hµàŽ0·=érè09QbO䄦iíqW¶y]ò˜6_6…7֜߂Ùp z…½9 6OvÖ‚© ¸6Í€ÙPÐµŠ´ØEï^zs¤D Íq3¶\¸Ä’§nÊ+rêZ+O8V:²±S qÖAoGòû)º¾w†w&âÀ_šñ³Th¢Ü¹úÑÿ-2]"$'xí¿·ÅË=öÛ@•™„ÀBeTñ°®%2Znôá¶_‰$Q|naýo⺻ÃUèp'Ña§Eâ³LëõF·Dò,ú±%!ÕÚP™ýò ”ÌÔE¶-÷¦v7½ÙH“þU3€ZÁ„k/xþ±K²Î:ç¬,«£-g§þ¥×wgáŒ:S÷Ôù¸®º±sۅݽ“nä=µQõžÃ/ô“»Ë.ìÃídQõóN¯;Ã;qΗ©­Ž-Áù~ò[†óU·ï–õA}Ÿ›÷=º1·é„¼ïÑm·Èã»éMÞ׉ñ¾Ç÷ÆûÒK{ÇÌïÇÅ\§ãrN„ëüxÛ•ýéNº‘÷”b~(óûiɕŭœ* Š÷ÐŽ²Sp÷µ‘S0©àHQo zÓe,èþnèünð ;Ä‘ò…ž8¾OV!ƒ/¶¬v7u«S1\dDMïÃxЇÇû¬­û¤›(dŠÁ¼ .ç½ÑÌÜí‘V£¼\Ñì‹›Pa¡ñ®u 5BÍh¡†*Ãi~ vI”6æu»1¯LÓ)Ó Ê|Û6×MSÖéG«û>ŠnÒj_)ßgçÐzYÓçNzÂ9íd*zzΜú156žï£ #b{“ë­â«Ï[5µîùîyV ëðuhæ< ObUÞ>÷ó<}„pe§²¯ÞÏM÷ç¦ùÙjè)÷eD*g n‰w‚}ºÂÎþy…øßïûµ;ÏÇÿ"~â?ÚYáßÇK²5ÿûÅ~­7GRY`÷WŠÔ‹X¢ <¡Aã¾SÔm˜¬ÒÍЯy @úG爩š–Q/̆íùKˆâìšã¶Åx2{?–qÒ ° 1®÷Ú„ “zà‰oÖ {uøï /DTÜc°~"€Mr]u¡÷Þ‚fš3 O„ïëôÍcd¯ÃPu|1Vޮà ›Õ'иáwÐüFõI{‹º(¿ ­Ã'o8¼¶+A4 3 Yq5É>hT\&XÐFýðgAØ 'm çÎ2¿x„Ûo£•ï*;GÃáõÅ{ð"FUüò”úú ;>þ¢M:ëVÞ6Ât„ù¤‰™$ßþ–ÿ4‘šÈZ˜!#€–éüL‡Hc¨µ³ZÆ?1Ï@×HÝÁvzQQµÛÕè}B‚Ž·]1•3Ô²@»ÑÚn²é7ˆg€$1†Ù˜‘’Ž›ÑÖ­çbȦýÔ*céÛàÚš1¤nÑÛê_„S¹YM UJ¸Xb`Fk Q”¦fˆv=r´ª;!õVÏÀ½Ž O+ðÐÃËØþýþ~ô„kö˜xILŠ /ÁüˆÄe"cóÍ{ï¿Ë%f‰¹Uˆ»©Âœÿ[ªŠµ;©âÃÎTña7QEìåV‘(aï D<gñb’Ð_ȃb€€ÉFš«@tq¬ãrÜ\ $ß}rÁ÷a`µJ›Ä}\nDÅüÂl/ö±æÃ{l,…ìúsD÷fóNë„ï€oÏsà–. , Œ4‹õqf›~¥WÅø†ã â¸Ã`ñÃ×Vð3~z^,2;ˆ£¹•¢º›méÉŒOs­ðËó˜ááN£ËOèâq¿pk[÷ëú2²ûW“¡ùº gm5æþ“¤ø€& ÓDˆ¿çœ†¡Ë$&Mòf“ÝÊ)¢BÀð¤oÔhªä×Õ”; ]p›žQ´I¶LS­õ“ù24HrBW5š:Š8€*Ÿü×_&dŠ – ƒ¿®)„È«ÝëĨêD(M4]¹QÃ9•ݬH±EwÝÒ“}=„×t/Û7ë*u61íÈæ„›cq¡:¨z¥þN_ý勞úßZµ¶èwm¯ô¿÷ñâ]íé1i‘þ77oã7®¾›Œw¨ î쯔Á+eð(ƒÛÏóšøé©ÙÓmþééÍó å)ŠÛ›gכ핢x¥(¾cE±8P‹ãmÕ'Ð41ÐS“«Á®C¦mˆ+š vç—vúóT{ñ?YsÕnP^Ww¨^ë4+èÿ¯úe„X!VFˆ•â[3BP⃋Á0ã};Rî.îǹNAÊ÷ÌÍ­íµ©¼!áÃS­¥‡w>† æ¡À0“K`a¤ âM‹¶Ú›ùXب·ùz2¨ìI§0UýL<Ï¿ÃI÷ˇ gÜ£$rOm7Èp¸¯*£¦*…Œ`—ŠbH!~³apÂkê²PëÀ- azÝÔ\¶ñÖc—w¸µ+Œ;?ïVÄK¸ÒPhXóta~Ð/¼ „Û~›œ£ƒ˜m(Ž!>|Œzê.ÎÝÀˆ×ßý½"u³ôÞj‘ÑéE§&O Äï´òÐ×ïÇ8•†_„#žÄ¿#ÃÌ¢=Dî=XŽTkteX;£t-¿»1¬ó´U.ÀD¶Ÿ.Œ¬€%ne壕ÿ|è¾]¸©fnµ2ó`Ä”(1Ò6m¨Gm­3YÕ Z€áš*ò¦ÊIŒs_XYÍ1)ÉÀ"œâö ‰ÐHX‹6È&û „ç CÙì T-6¥û¸Õ/UÚdºÁÒUÒtä.v;& Ñ7 €ÒRƒ£ó˜`Û_sFšS°,õù&´Yl`¤Aðmt>R09©¤4D´,-é@?âQõHiÈÒû c6l¿eÛÌÆÎ³¡†ü69Hgœ ´ˆÂ‚1ý"ÜcÆówï)ËãY•ȉ¶x¬i^ó ,í‚à|²%ӜةÑ<´pïÛtä×ß“zE§ƒÄ™Ã}Ë N¤±1§ÂßTó…_ƒ¿ÿåþ¬ ŒÖ¥f–¥–»,) À_-Òžlá”RpZ*ÀŸö kC„õ‰p|z¨A ¢‘,ô!8€Zr‡Ñè°jSüb”O¦™·¬ïuâÏØOØÃq€^©%dßÓ¡ÅÞ¢pèR®Åޤ€ë‚ 4v¢²T ž 6g°¦@·ž H©Ç(ß­G·:kÚ)‘걓LÔv4‘˜ÓõãõÓ5§ J«”ŠS™M õE»‡µö†”UNk™PÈ©¯CU‰+ cKÒ4Ç"¾ôÊÐnÚ3BÓMgb‹ºsÈžññ:~(ƒ3×Å©…œR*ÂäuñFÓõw±.N×¶Äi ë¨à•ÒðŒTÒN=héñfä@»ÓÐMþuq?…6ä¹=±xM@”É1ÛüðL0ºÖ‡ä<—šÍfc#é$h¹6 ïÓžùŠÕM½ŠX*YrÄ­Àå ïiK¯/{mðÒ¤×7JªxòüŽÖdz‰7§É®Œä„4¾™3¥4›Žsöõ±(Û~B‚N±n*¯ý—W%w¯‘%lß,XIV¸þ’½Šrºe-’*ÌÝØ  K–\ãPûn”Xß»JØV ãaåÐ÷Ú³ñäcoÒÏY±¶G,M³yÅŒçïŨ¼UZÈ Œ—&õØÚ2z–'¯û€.áó)ÅæËÓ™k€×3¨X„Žþˉýs®>¶8BV2TÖ™¬üɾà+ôÿú}úá>ý¿jÛvªUåÿU}¸Cþ_»ðÕÊÿë^¼ ]ÿ¯—ÝSB®6ñ #Ó¿ú÷˜þ=’,íGXZË_ížÂ?'„ÌZ§–—ó¬ë^¶¼—Y—Ê8 UaÒÚÉàl.-o¿ {³?ÆbrÙ;W|=Ó°ë½›dg$Õªª¨¢WÀZ—ƒ‰8ͦÙp Ÿ~–MFsUC/›‰½wp¡ö‰*²ýÚ~,2šôàä<±!e|1ûˆ¶FÜïhÍFƒÈ ÏÃŽ9äÙ}Êsγ]÷ÆÃñ¤×‡ùC²‰ë¶'ûEöm¤™òÕàŠ²%ÃáÐ|Þª›õ¬nÕv@JÉ€æcg‹æ³)Ë’4²áàlÒc‹¾FŸ’Æà=ˆe hôÎÏçh[õ~†ZÎMº\jþt¿"Žèß7ôoéEåUy“þı˜È3ã(•XxM*ͼxñ Ãaïò¬ß-ñ©‚ ¼™ï>±·Ð‹ |ý7íú†Sþ¿6CFøÒÜj[G‡Í½æ1þݶ2YºtÛ“qÿ„÷›ÚP-rk´óí¶l[†ãÍ;ºÄ'%nƒ¾>-q[ëÚeÝÙàR¼tÄU§ßÆ5’Ô)v׫†œHr¨´?åÿÇ/éM ìMeeæËêt }yû„R3†íJŽ>°úe¢-ö!h‘#ÙFù.ûú?•ÛL‹üh¶ÈÈáSð+R©r@ëMCå•y*þqòOú?ˆ°é¯Óþ·²Ðsõê·Ùr¥G]‰;TVÝáË8AÕ°•}‹KýÖÞrJÇ\¡¶¹Ö–¬ ?[evUcGÙHEJ¡no·¶-7W»VkãÔÈáSº•˜Ê Ü’^¬çÀï »¸±ydi*ÖBuKŠXšÜê´`®'¥v€AEˆU;ùÍÚ)Èñ{éý!ó†Ë¼â' Ë«X ž<3.ìU\T-î3Ï•§o\yþ?÷eQ÷ýExžÉÿô|<ê5Cý/{ç㳑§f‡[è6;ŸfdJs´S‘uQªbìü}øæú]¡oÐ=–(=;üæÔN‰¯¯ðOô‡­Hë¯Ï?LÆÅÕàØÔ$ç@8g¤ Õ~F¦öŠ"åðÜK"‘óöfx>„¡Á—s(€\âòç0éõ‘ò™ÁIÖÒÊ?“f“ùùlK‹hNûUØo{ðSy¯íÃ…l¿F‹ß›œ fp à( ‡›Öl:ÛIÎÊíúÌ-®÷DsÄ®É8 Ö ³uLϤvY{Ó‘Þ’ƒsnwuzOõ°2®²QŸœ,Fj˜ºm1š“L‡´ÊÜe=p!Ç»%º‘…¡ÛÑx¦»:¼f$9 Ú1¹ËíÎç¼è MaŽ7Ò¤Óà`® &(‘mYÔL®’uE†GÒ¢4Ö÷¥Om0 Þ0’*ôìK§Cœ7‚=ñnÞ›ôF³,ëCÇL ¦ÓŠs±± T ¦h‹œ()u܆½SÿQ~òÚ?•5š™•,è{£w™FGõ™œ>­ö|(K³ÐI{ÿ óìðõ¯•×§ü³Zr#â«OÌ<>”¨ypp ‰yÊ>ª<´©‘ñ¢wy@öô®®z¥zùétðî²÷/t­—ȃ|Ðà¶Ä¥%ÐßK«¤G)ñ$‘ÿßjQˆkQOÉc’‡ _Q¯‰ƒ^f=©rïÍbGÛeïÝh0›+;ƒøë¯ú_ý«†‰P9•êÚëµ²:YƒÏŒvéý¢M°¢È1÷H£ÞiÔM½º¼èÊ›è#õoˆªKì+O>l4¨sz—£LmT+µŠþ\j•®†½síÖ…Áü6%™‘ 5bñ‚Ñ{Ï{ó©>éÏßègsš)ã•¡h`zxšòW¡{ú²,Yú36-Êà$ôèÁ9͹Üö…eBÅ㇌qˆ}‹~Ø}_Fwí÷¼O=¾Ã[WŠ„Nš$>°ÜtV£ÞÀµÂ†<Í])?;œkk*bo2†¦{ebEª¦D:™ŠxžaPĵT4u² Gç™×|‚#_ü¶%¡*·TeOD6ý:^åSébr·h*ŽÔmÖ[âå–hIa¤†-2“@½cøgç!ÜÛÇ[¢Fî¨?¢pµ%ª;µÚfug·¦ª‘¼ª!i£®¨>ú ånº|ë>ïî@Ÿå÷ùñ6õyÇë3|hÌï@þ^¿–"2l”äªïmÚL]¶á²v­ ÛDæ û6ȼ­:Tßk 2m!e¿‡sË;ƒòÇ´Yû18h8»f8O$Ãݤ62Œ½DoRÝ5ňñh× ¢ôS*®ÌSRÙò•ö3<Õ)ÝÒM+QÅf…Ul¼ówPLÞ¥¦2.òRþé)`0YJ‚À—€²ðÜúXtÏèìv»ã0U)„U32b«Söÿ£Õx?¡ãηëñ<šjõaë_Pé „ ѲÔSø«|uA EŸù©TKÀ)oóô'ºèS±¶·ö„EÌñ ÅæÊT¢ …!+T—ùÊ×#¼®V¬vé•w_R÷ØkïÊú n6~=xHèSN;9<%Ô0’6Ç_~Ü8e³UìE}¾&â”öìÎ(M)ëO÷×B툷Ô,ò…$ úàrçSÖ&Ðôš ²€Ó®¸Ý/‰ˆýºR4]šî"‚A ¥PÚõÑq  6Ä!oM™b¿²‰T®y×Q^vîÌ`ä ~EfhêrÞËÊÈp^ÒŸD™¬>yPJ­{»¶‹®yÿ=#ÝͨÖÅüŠ·‚‚­ Ž‘Á9¤Hœã=/ýð‚IãÚgÊ¿L_d%XEÔNuƒ¦Â*2¬‡ÔFÀÂn‰ŽËÎ1ø-›Ìô¡,Ï ¿ 1®O·ìþXV&J’ –?G¼ë]ɳôÿL6ªÿWü"ä0` ø{¢Vø“DÙVš¢D§Þ&«v?;‡fYS‰8ÆòfWX áuéŒì¸™½%¦|1'Œ¹‡’—27€é„Ф$ˆøE%AØúd½A7~‰æ6sMZ'ÎÉwKÙv~¦¨u€Ž‘è$8ŸHŒ†?+ɦ$(+i,×õ+Ôu»ýÚ¶Òy¨]´ÖÛ¬ŽÄšXkxʼnÇÜiÇ‘8-´©yʨ³&ùôö“,™Õ©3Á§þŸæLðéÏê*<ËÛU@O„3ƒ{ÌlöÁLz\‚Ël_.Õ´V]³"Ø?i”Q³§ï÷x˹h„gvå/ jG3×S8DqBúÁœÖ¨öÒ>ÎÚ^û- šÓ"TÓ.N5§ÕœæPMg ªÁ¶Ÿ¥ÂŽº‡mûÆËý¨‡ÑÅ*¨¤þê`­PÏþ˜åZ/™5è»»[°„uÜÁÍô°Þ%Á(´Ñ’¸dNG8qPÝÛÇ‹­nJz·/ÉQaùIdR \¡P#6›âBç {ÜiÂîØ·l”t —`ÈÖõk¹*†xþé7 r÷½­*¸ÛµáÚñ‡¬ì3×PÔðômæXì•«uÒ5=c%’Å«FFº4ðàÿA£¬ÀðìѹÓ'9 º_ås˜¦ƒr†›÷Ϲ”¦Gžˆˆ¬Ò ,£°3{ç½:eƪƒÌ:ÍÐˌ޳l† N"Šô>á3}ðÞá†ÝÊëîî»TªÍ»:£(uÂ~çz­ªÎßã´é™¼˜ã­Òn‹¼_€¥M媟õ¦tˆÙDZeE¬’ñÕ5Ç6ÒÙ×ÿ}<Ù[mŒº+"yü:âREÎ ªŒ|ȱ¢Ÿþ~ìîþc {=£8ªõ²Ñì®s’¡ª×¤Ïl¾jM¬uÐʪZ ¼õþ`o¢É̃WšP女 è¶£ ét·s¼÷ôæ³±T¯ÆÖgƆT@²‡»fÚ®7–Àd™bœÝBlÙ•ÉÕÙ/J'©Ì&¨2»IPMh¯”r¨ï‰eÕT:ÁÚOùüa·„‰2´JÝ »lh'«Þ”ª®ßÚGÝVÉcàòýUí-Ÿn}›Ï`ÉÐ¥/áÚ”Jý2i=-R®Ó…‚,ŠDZý4íÊñY|æh1Ÿ‰ '¨['QÐR÷ô1Bþ8“§^FÈì“1[´§…t²<@Õ­íߤÊû &5R +®Æã ”怫4ÎRâD¼ÑZ6 ûl'>6 í2¶â ‘‘ÊÞ€¥ÿ)éÍõÈ©;ŽsUã1^²œ~-•kîÔ#ŒÚoHȮСؤEì±C†%û?áÏ™´ßZUE-¹’Îz}©í¶:¦%T5¥©³.gÏ9Ü⸅!»O‘EîÚ¬Â6tfIì;Ü‘F™†:1£¿°µ‡[‚p•Gu{¹Š-!0V7û÷Úõ{ ™‹ÓÔ,ÂÉ”þ·ºÍÏŠæØR KÝSYaøÃp Œ'f¾Û¤]'áÐ{M†¦>aÈÐ# z¸?ŸÄ”ß1ì.‚¨늃ùùNˆÞH¹™ŒÆÒ"¨ƒ‰”jý܈.j~’ýçK˜DºûÊY˼JÞ”QñxŠq§m%ó­!ë3\¯:¹8€í¹¦Ô¦È|€O£Ê[ò9˲‘W|ÝçJ“ øìZ'‚P¾;/MÒtžÂ‚år²‘¤æwBê”zÃíJ½T`øìÑ&Æg¸¤¬ÛýÁºUÿ =zŒ"Ä®ÆÀ²!éœgïA ~?† -Uä·9áxœ¨+¼8ò¡-œ­Ð”ªÒâIyîÄP«DÞ‹ìõ ÂzÍ”‡{„¥GÛ~V¤íÖíÚ®ÈC’‹°±9µhÈ9 ÀNV6,\ï@ß©Aýº&$rJ uƒ¤38]SIÉáîBß«oZøn­ùc±2).ê{ZN5RŸ*/så}'o*a ÉÊØ£Þ4>çê$M1£œzÎÇW¨J:ëÿ¡|$O™Š%ãÁù4WòßçÓYNmh½碬L ê츨œ%Qw"½3““²Î‡|µ`‚Úk¨‹'Ê?«Ï;v#?p»S¶4Uõ7±súñLX[9 šñíWØlLJòÁ–ä)§òÑ¥xÊi‚§œ²âº‚*dní4¾·ÛËñ•x¤ÌωàXawÑ<¡ýs_Øû?Ý}§ù»ï®¶ßÉÛï»’ ºùþ;¹—ýwú9öߩڧ©ý‡¤KÜnÿV¸¦pÿÙ»€öÝK³ýäî;异zÃD¢ÏÚLs›Æc®’ Ÿr2xxWRîýÛ@†JÙŠe=}~_!ZMÎ-¯ÄDm„×ÖOÆŠ×Äât)¢kàP×z©¼U†C"zâ9¦­à¡žƒ×íýº ÔúÊúDÄ»-…x¸3ÈÇ‹ãàÕ¯ ä*èD+ÿ|­¯%Þ7*°ÿú«Ô!=b§üߥÍjù¯¿þå Ë¢º™cLfÍE÷è54@ÎC(]&V •?Ø%‘ŸûóËSñ×_Õf22üwÉ)¯ŠMENÍÝäœBO1ZúxE/Ƴ2òŠ«›ÌG¤–ÒÞž â%Zc­Ìï3¼æÛˆ( #^‘ÙÂÀñó©RÄêðÚDToŠKâßЯáxªœÇõ¢^õ r³,ë£bŠÔ:w•Ô>ÙNýË\ݮȼ‚íõt 5Vˆå±²û‘J“¯{vM=’MØÊÇïÇ‚n‰—°!zã¨#~œDÎ „ì¾7fÚ©»¸S½-¡øù퇞KÁ-Z·anÌbÈ6ÞGg¦äð˜ß›ã`Ý­@$'þ— ãÇ’ ¯ùÕX+Üç%.º®vE‘%^°®p*±ˆ¶¥˜²^Ož°d 9G÷=:óŽT¹äÑ®‹%ªO³ã žê£¶k\¡‘FÎs¼"ÄCèÁøf×2¸ãSHc}_G®pfŒCƒÊ²õ ÈðRº;‘wƒA'û* No¸!Ï+ù÷ñÙ“€y¾WCP0û„™Â"1zLè*Me_j^›CØâÑ8¤v½Pq<˜¨šdeå'Á\;™?jë­vew½½Q­<."T"cçšeXW›Î‚ÄV¦’ƒÊ·yYŒXnP4éÙô¬+c¾ìà '㈪3¨Í€¶Ò¶úD±t>Q”úVln—ã,ÑóɬÊOAì¨Ð!oR஘t l_ú„0 AeêH@‹8C£ÀLÀ:IçšÈTQvåq9<¾ŒÁ-}…c¯$Iœ–ÂÄ¿“Át%ˆ#²„íwÈ«!A5•Øóøo›—?¼zhÜ´3"žwƸâÄLÆ÷6úP”±y‘VUX,é4‡%¹J\kò‡JŒÏTÎnÁ ´ë›u¹óýѬ©y“²ÞŽu'\‰V*†…Hxä‰_¼+d/ŒÜupª"Ë£ÍóEÈ¥µ±ÃK’Œ`6+]7ŠÁ$l9ËöÉiS¶d¦þ’¤&ɦ©ÓðN¬ x‚k1cám¸i®Ã‘[„u[è]̤Ÿ‡ö=±WÜÉß„ºÄ¬è‰ªÆòòˆ‚¼ÍŽ׬ŽaÓ=Mìà—¾{7Íexp¡¨`¬cïÊDRá.Ÿ¿ÐUà.­†Æß•¸-Š™o븎{³é–Œ~’i%#Q—Ôö|D²Y Š08WUlW˜ÍJˆ'a:+¹¿‹ä´²j{ µ9Ù³8}–£µDd-,$c¢ûÒc”ýo¡ƒ“¤ ,S@l:Цþ1Ë®¦[nXk댔û8ÍÏÝ›ËáÅÉGLò˜'QÐ.Îí¢^±/Nj—튕½eÛKvR¶„MÕëGGzó†ß Cß1» ¹! ޫøêþõú•†_w ½×*â }Ü©W¿K·Î ¥9꼬°š¬å×ÂÚ† û…Bir!…÷ãƒÖ¶~‚Áô­¼íîÉá(Ø<èt°›í*Ï]»#ßOZy 'ôª"þÄ¿Ö;ífû¹¬E屩¶^w ×ûÏèy¨ô  ŸŸ¿Æ†á0îÔ÷öà‡WMêž8ìžìùƒ9¬Õðøa‹ÖްÒÃ÷ä°SÓöŸjË&:¯=jžÂ;U Se»GzU#i^ÌÚš4/õFž­Ã¸`Eaî«øÖÄÉyvøº~"½A™mÊÿÂÄã"4ŸÓZ¼é@Ø 5LŒˆÙ‹–³ÝiÕ¼…‚¿ºØ#oæq.¼å·&‹ ®ð¯¯æ Wv.ž¹ùVTpwÙtÔÔt‡9y$VVEAii-hn’ö@M{‡á¬á÷Çü{÷ ¿ÿ ÛªûºóüM‡Þ[‡o"ÏÁ÷ô;é$á×Þ­ã®ìwº­ŠÉövœœ[?§òïôL¬¶Z6¤Näè´.%‰è‡r«L0ã~ÿlMãÒrŸá¥<Òí+²ŠPP[Mi°—"/÷Ñ_×°+ÉÎÔRa:ôúrï‹[€[¤'K’ॠ§;ŠË9 ”ÄN¼Ohjfª ºiýËœ\0QÑnNED€ÞðŽÕðr:÷0§N"7¯Î£u> êl Ì"Òy³ÄãàÄ7ÕOÉé‡ož£`Në?5¡ËÕÔJ?UÝc’áµ&Ç]Iºšp±;^5§\M^Î-Q —š©­thèØ"iÞ¼ejdñžâÔÉr4 *”Km%)½Êew?„ K’ç!)¾Q¤éDÃxA7í,õ£c·©4}¯ ©]S·¥÷aí¶6÷^ãëZBä·LâÞ•Íìó}Y°6¢L¢/ÝáJ­ò:ÿ¡ù„¼Dbé­ãÎÉJÚù<þ5æüññ®¸âìƒU¢rÀJ¨¾|ó&øReoëO Êa‘*W”‚Fj該GðT?˸ú‘Deš/ýä|b~ZGáe"HK&GCó‰û]TDÑ“0÷TLg®Tsé=ÛUç›êX§'­®øÖ¬e{V‡·òk+qç×q¸§Þ˧€“?Æ[S³LWÒ’¸Bï©´á¤~*«T¾7"-+™Õ»¶êç¾REBâ“k«`(w÷ñÕ4å’Σ$IPN ¿Âòk:­H¡VV ‘ª¤$Ucæij2?_&žJ¤ræ“A¥ëñ$&-<dÃÞ©lŸz‡—ð Éù`Ô: ´JÔŒ°“¬¢Mÿ·«àvÆ6àd&s¢B¼¥dW¶\ÌÂB¡D!Sãùâ§E3n(Î/>rS|ÉIÕÿ¨ð3a;8¸?-˜ Úö¿­yßæå9¥h@mo\¸FÇ|€™sŠJ{ GÔƒ,G|NY$$B @ÖÁ7ï³Ksã`Xà&¸8#òGLNf3#ìIE«5rÀNÃT±R&ð—HkgœKXjÿÓP5>ÏÁF²M9½©*¥DÏv=±IúÒ[nï·Ü6üd˜rE±ÓV¥ZÁó¾Â3Ta{¼UÕ²‡)ßÖê¼÷«&KÞ÷ëÖC&¬ŒZ Óº´N!ŸªªáÛMóð«ÌÛÑcN˜do:ÏJ2ƒÐI…Bl8u mt©Ðíd³¥®‡´¦X°·ªª‰*Z®Ôêji¤ÊÒȉú³àñåÌC’M‰Sª¶3âÕ7Å:ÓAx§B•E…ÿz ÏJ·”-¦[wy¤¦<Ž®:m’¡°f¨†4Tò‡µ=Oî{»ÆZXc,9mœãFæ!x8ÎÁ“UFWõ?êÈÓ÷dçgõ‘MU\iTÝRå(õZòNÞ¶tÑl„DÁß ” ’ð%ÿñ¦t´Õö¨Çß³ ¥›ÑŠò·Á`z}Ñw ¦xdÂ!©Ex×£ÐþŸQ€È’}ø‡él2½*#=A(f}†¹ wÇ!fЃ9’°o›îrqD Ÿ×¨2nu]µH€ ·£<%8Å|RZ—ÊÅ´‚Wßn+»åï¹·Ý=!b”$¤Ñ6ñ›s]Äts¥+âÊtšA¥ùt"ÀψwÙlªSˆl8„Ë¿r!ÃO0—è rMKí×1Q ýUDWèA>ý®Òžhm´7øî…#^1aU” š¢%.»N7LU98®4½ëû áM…‘Tß2>™~Ö|¹lö ß^¤_…ŠhEå:¸)IE„9 lï&IÀžMÓZ¯7º%ZT¶Û–ڹ°ÀåÈhr'@V}È©vYð¢Þ'‡ë².OTD?/‰ý£‘Gf“k—e(Ý î>ñQ©¥˜¬ˆí§*Ò ™ÖI¦…`؈ê9N¡ò` o©]Ò¯ä:¦iƒ x¢Á*NHl¤b!ü„¾æÒYj<+SVd2'p˜ÒYf ›3rÂ!…$ᣘN 5No"§ƒ3Üx,Í$ú˜x\ˆýNÜï"¼Îâ„qVgb>ûb…ˆÇ¹‚:Xê¢OvÃÜ}¿ ÜvÕêNDµ!ØûZ2ê‹4€òúzM`@·b?C£§m!N5Îï\`°–Ë ÎVŠ…£¤Ÿ&‹í;y¸§FF‡9ë„`æÈû˜ÍÙÓ‘s Y§ó%¦ø©hÀU éRiÈ;ƒjO;ϰáÎ,U)c ›$•JCm=óÓ¡äKq¨{Å6ýŸ PÒ¹M²"ÉŒð§£À´tâh-IKŸDÜ .èÒN%yÀŒÅ?Ò½û̺WåÓîþ´/ˆù-4b7§¼±v2£%|¬Mé2bÓ ‘ÈEY$$HE\) ®²O[ØãØ |ð±¯8 ÇÍróg1ÊÒ’i»Žlqðmùu†ÚÄ1ñò’'bOdÚ8!y”Iº©¤ùÊ¢Ö9bêVƒ1¦²ßÈü˜=Dbù´e˜Ï ØbÒ(*—jÙ( Érè̈øëØ Ó¤4gƒw{N»Àb¯@}ì‡ò@ƘjTâóçx¡oJ£Y›Ÿ\@âAHjUç ±ÂÍhì:óŒ•-ÃÔb§‚´a2uŸãCR†xy&¤Ìs<0pùç6i .³-L–Ñ}ÃÊ·Åg>³§ÃDZó¡aª*Q¨ê{F[Ã`ºzPzßlªq•û‰“.»wÝ,e`ºV29¥5 «S˜Ëó÷iŠ7oP ¶ÑÄ•;E!9ûË•2¬¶¥¹ˆŠn@^Í .>ÞÞŽK‹Ž«@ª~¹fvc­c+;ÿ«ücÐÁ4%rFT§jDØMjÊ<=õÕ‘—1Š >?6ÏåyRžóyžJΪn8éÃ+5~g4¯Z:p;ê½.¥JC6þD„ú¶@ïÏêV.RYÓš¦ç& _žQL"u:ƒš09‹—¯Ô<ŒÜT¦XÉ..Pãß)wS'ô#™CÍÓǬXÞtË86AŸRèÊmLÛtUýéaM«PƒÛ^©¤¦T´6¯ðo]MÈX ®«à9iŸZ—˜?CнâüŸ R•r ½žÚmæß”ô§ðöfý½sh· œ»:éíóëQÉpæÐ É ÚµãzÄ äNVÛ›0…^½G£HI  âEé'3™jM]ä]Ù-w1œOß+¾pÓX‘þÞÆ3.Áidã×ä@xàg$%÷Ô5/"òtõ¥jvÑGšÇªMj= r£ddîPƒ8C6Ù|C9³ãtÇX‹Ÿ1ÿ±LVÂ01 ÆY¨º€qIÎê_¿¨‚.?G_’òYz‚1⃞2´eïãUYþn8>ƒ!(°|%.}€ôøÑJÑk!tq.%êû[ž´ã×­®ø_âñ5¸«=ûêz¢Ó+k$Sšuoã*˜U. œÙèe*‡óÂUS]«½ 1SΦüvJ(²Ã¹ ÈŠ@ü!Iü ŠáÿêÏÄö?ÿ{öDnb4,¥±æ_ˆ©aeÊ@’º˜d:‘uD+%!™¼©6o‹j_£òѨÔ+,Ök˜¿G õ£ìÕ©¤4ü¤çNÕèt Ñ3Ò§ “JPFùÉίÙt@Žº¨ŒE¥!§X¿Ê=Ÿ”#¯²ÎxÂNDà"Œo“ã*{§9-KˆÉ Д˜Ìí HÚíÄÙÛC9»VÃT€¾F`õç‹Ïq¼X«`_v—‚!ÊX-\èù•¹C£JÁ¿C3ú…&² ѯ«”wýÕ¯ÿõ‚ÉT™$~›KT»cùfÈk5ì‹ ]u@ÇÒwÁ–Ås˜°§N`ÈœºSå ç—úöÑæ^p5¦edÊl0ÇÛ–AÎéY²4&É…ÅÀÔ¡|YS»‘íKê­C¬Ó±`êATÈ8FÇíó5Çé%¨k´åºÝ.Ë ud…ímvi­E…P´­¢‚ôª,=hت¼ÎߣR$ÌÍZ-øg£€;Íó×À+±/5·¨<¿©“Â>¿±¨û®[Q§OÀš¤\†8SÙ©°M_è>õÖk‡79êÕ´ñ9ºó~½Zí\Û¾ŒÅ,¥½Å'ô›z·ÀÕ7gãMÊJm¥?L,'_bÜUÜÍ]EoÉŒéF~¢üÇkxŒTÁéTØ »Þ³{…Èåßõ–ß¡ ¢K» ¬[TàJÓïÆhà˜&ÜU·´C£²uåyz6 ÅZ•0ã©£z’¢“—BaPp§Ô¦‡”†‰ª°^ Le“‹ú «Œ¯™iüªð*‹r I d-„’5—h+H“€ô&oÛœ¦uHýL¥á&•ël.sAªT|²À­ÅÆÎRá÷ÈÞ`ïØ ØL_œˆ·3ò¶ÆÎ²[ãÎéz'—®wºÞIѵ«q`àˆÀõh;ÚÑÍcÎ Šá»õÑIð01QÆdõi”ç^ÍtÒYFqhojKÄ.d‡KåÑdLgú2lj 8b8¡ÇokfÌÍL~!QEÑl†Ì"±/kúKG9¡].#QÒa»Ý‰„¡/ïºp^p$TrïCÎ%´™ØxË)}{gŸè° uq C*ìN¸xØËü4g]í.ÈPŠäx Uï§*K®ñŽõPÌj©+#H 3„ áºÃ(„%ù[õ]µýéärœÜÝr„A2örÄÂàîp9N¼åصZf9xŸc9–N«…vjRkŸwRePf*Ûj!j9œ_›º$hž•<ˆïLòÀ†#´äóÑ`f™m}šˆ˜ó–Êž Â Ö^/¾hžs¶°ø«,Êg 3ø[#mß %ÛôÜ'·è¹àÑ;r ¶‰DnåÒïCê¥v§Òî(m[”ªeía̪9L†qÑâÃ`<ÄÛ¡Ö‚è5ÀKkiL^/ ±ÆjG2ÔÐz|ôHö½C±ÎÇΗ ‡õ 7~o8Ëì˜}Gÿ }9î# ØIÕ@|`à ∳чÁd<"õ‚ ´w<Ñpø€ ë@„:é¾@‘”œì´´_!­0-Æ_öF–}½s¯)C$+’J»G*j| 8šJŸåÙ6|š¶R׃`–ÑéÕ(ûèÖO,Åzj»¾>ªsÇVM3†o†£L]3·é‰7ÏÈÚo/- ßúØ!ºd‚"„‚c£Û¥eÒþsR„ÇåM,qNJ¥ºøñV—òpèm,´¶Œ˜V\î±ìñt NE. ,âJœÁ»?í>&+íüœCj” ˆ?+Fa®í§¼]è‹\é ùíŸeÿfUcЧº—EOB~I˜Ž+¾È¡+¯´ñDÔº’ò?‘ßbì6vÝ~©‹æ(ò½õÊ“ØÚKg~,ýÃÆ^cñ­QDüü^wWµb µâ"-û–\Àœ Ìv¡¥ª¾¨’^w…Óa«£FráqÀxæùìùQJ'æTêœ:BÇÎþ 9NÒ‘¹ìŒ?nž_ƒìvn…ZÏ_6êvã` Þõ”‡ÃZJ=ñj„ßqŠöÑx0Í~`—ö¾X­ò¶šD«_Œ#Tï”#TmŽ«MÜ!KKr…E<¡šæ Õ;å Âb Âá ?()Ë­ˆëSÊRÃÑFgˆÉLÆñu©00¸•®†sïÄd%¡É'îhM…4w¡>’ Ê|êX§ÐI¶„Ùˆeý¿ÿ³\Np¨îéK˜§CDèoOøí”fÿSwMô™Ì% KQÁ<îß$0ŒÛº ›–ñ¿®FcQ-Øl—TPK‹•jã£?-Øoþ-íqQ;dý7¿Hëÿ/›láK…8 ŀ풟òÔ;©iÓþôczÓz÷ ¹e®c>•$[þ)`ËaezCàù‘³)Nõ¦8 - Ü^”´£Í´rZ¡åg÷Z}ä%©&F&·'ïŽk-ÞÙàBDö,ÿüF°Z”w¥µc8'æïÞWè‰Wo],/Å+’ÇgVV{ ®ñ¥2No’+º>ŧU-Ð!òŒ\®USáºÑ[$Áè–xûºš"Gâˆyˆ¦?.?ˆjVoCk±¡°øÔQÔe¸‹…펔fN<ÖÚºïñÍ/Ø?ßÞŽ§z;žzÛñÇ/µå:™=Ù‰oÊ“ôLiÔ›HŠlM,¾ps¶7jž £m3 Z³Kg{S ÍñOKíÎˈ¸Ê?¬kÙ êÁûÃÆRõ`ôUÁPNÜYSX§HÓÕX5®fv1ÃÅôÈ臇ØHÀ†&u OL‰lÒ] JmLv$ÖÁ>sª™fÙåTfÕ•ÍOö FƧ(ËÈÇLôÇñLlF׊}Fÿ{Ù–ñlÎÏ~'ce®¢CµçjiLÓa ˜þÊ/>dîN/ð(¢®õô³À\ȶB©’–Be¼Sò†S‹Ö§.H«Üšg2Ý«SIo*Þa@¼£ñÔÌ5Y¡´ sÕŒ0„ãšiœ*ìàO¢ZÝ1•¾Kš;)¦ O‰š>…°(*ž@E8Ë ²P*Ó˜•œÖµÐ¦°~öqzL´ÃtLAO2Ù;Oå®ãµ&äÁ4óDês ,ñÚËÈ?4ñ/.0QßL굟*«Ú±HHl7Â&³ŸUl_ÈC‘ýM×GŽfLþ.K‘ÐŒªI&âTf ~*G*Ñ“pˆ#¬½‰þœW×ì¯ìo£ˆ*ßÛG Uù°k?=úi)%=ì¾?¥V;xq}?3Ü]±£ÄŸ:.“*NYQψ­ÐQLç±”–þ4ª¥?ÕZúdg¯¶„ª^×±)ÿü/²ý2².Ínä{ëu;å~Z·UîØÃ똓ò¶Su-5•s;œ¢3©€G‡¬¿‘8­SõùU¹‡…ô¦Èzù²é'ü—¡¼„ú[) ¢ÔØ9ÊK  Ä¬Àÿ=Å,¨ÁܵŸ‰YR ¦ë”Î_ ºóÇ׌/ù qKV±“‡“§+eo/u·ñÚÄ(Xçø{ÑK?ÒôÝ”q”²žˆ‚TyËæ»xÁñJ]Î{êX_] F$ >¡1køtŽZ㉄wúÌFpŒ]k+‘áëWìÀ‚mPò—§S=&^  “ö“¤‡®L€„NIxùOºÑ3> rrB/Ȧƒåþq|ôO¯¯³9I›ú”Ýú¯Ûí«‡“žªŽôñL'Ü51•(±>aYÍÈg~EQä'¬ÏWÎQFmê^)µvÿ=ÃðÂzýÕâ›ÈUrÜDž«ä°¦=÷ø‘ôK¥_Ì[~Ò®ô 5ûQ¸a¼µý²Ž^„@c°MyD^•Ëþ›læ‰ÓKX]§„‰Uô`âTahy§%}˼ëGÿ+œ'#þ“û oøV¿QyÁ¨àL+ê QÃd‚Þ(B,ó)éc"æ"aÐ\1Ì’ã,$¶Q±*½Þóç§|ÏS§Zê46ºxê´˜@Ìžj`ÆâðoázØN˜*xðŸ×Døe.Ê06C…¥ QKÉT|M× ÿy æ„ý÷âd>ÚDŒaBä$ “ÿ|.¬PŸðT2 Eû5¤ í2`ª&(ù­(Õ÷Z2Îüýj¼îs¸ÒmNÇr;ÜQ¹.Žji>É!œ;¹þ0MƒÝKÖô€~å‡ÈÐkoÛ4}œotvY„#¯§š^‚ùËJ²nnÄüSlÿQ1¶ÿè;aûrÙþ£Û±ý›ðîØÐïhqüéñvÅ…bÕ{\\ëšX%ê?µz)hTñŸÜWìr*W޵ŠñG56æSöàˆ—pFý"t/…@§×áLÒ›ŠÔhºš¶DlŒí£›¶¼ÿÄ7[LÙ)?ÙÄoÉ2¢˜˜û´tžssƒ›Ob2õ­–-VìÏëNp¯Òe:ïj+üÛ-8µ_Å®Ív7“±QñZvÍýV ?;t¯¸ÎÀ]uƒ§òn»–’š"7Þ(—‘P¼jþµM‰‰âÅx>Í0_f@xHˆWÚ7\¯‰¤ˆâòq2éS‚ HØèð'D¢™±ÖýºÎ²H-2ëƒòß; ÷ü}EœÍÝà ÓL ›ä׋°ûЋ7µ­r°+…Oâ' 7áÆÆG\"¤B“ÓþÿfÇ¿×/<1t’äOqšýåÝhaw•p:fÜcƒˆø‰µk];þ¤£(œ QäYî)ývÉáΣ–Q…vãÞ&¼† /?#Ó†kË\¢¹Ÿ~7"ˆ¾êR+AF=R‚8Â}Úú @#0\SAÈ5Ò|ÖˆgA†X7³ÐÃZAtEíyú¥Ô1ø¿ÚúQÀ‡„]]eÓò9xxFœîDàbáÖâŽzÈZOøîxBÊãóK÷jn…¹§ïöƒ|R⃌µˆŽv^¨¼#…éýà¸Eé L1ÞRCŠ!WR…²%Lˆuñ¤\vÊA;g™Ô¸V¤v•Ôª”ÿ ݦJ:8|¨ýÒ]CebmýOS‰[¥œ‡-¯,í­©‰ŽÃ‚e®àf•ȼËn&Æ“Ùû1W&;¥¡¾6Ûô™uÜé¶ÜM`9‘ ¤Œw:Mº(=ã<͸Áí}ÍGñh<Úä¤00ýJ Uꄊ!ìµ²áTn;ß¼îo6yž"3›fó“áÆG0 Á’n(7„áõ‚ùÖÓ}lóœí"ŽÐmæP±YÈ×ê :Æùµã\o”çU¢±H%¶ÿ¬¬DùB¯$tÃu¼pEBøíúÙŸŠ&'¼ÒÌL•ÅŸô•%Â÷s“H‰]ÚCUIÛÑC Ùšõ”4“8'4áÀVA›?2„3ÞœN¿ðñW=ÔðÊÇŸÛïØàüC¿pÍÌçÞA8æÎ¯Ÿî㙢Իºbn8ÇzØdà:­7²›ŽÌ@§öôpgýÍN™˜ïfŒûZ*ò7;É ¹|eûe:7€EŽûÆS¯Èíü‹I?~©ÂE|ù1*UDks¹m;Û¶+”#5ªñ¸’`ùNó¢372y?>ÞÉuE¡"µEA ÁJE8Þ\N¤×ÖäNIbªTû‹>Q—£ˆB俨‚D{8îÅý(zx%7’gWµ¹NÁygWÁJŸ]I]a´ní|óskÙC+†gäí‰ÃÓCLÜ7ÆÛÙhšÉTÕ¦†“!_ÁÛx8~Gø lxˆ_£þö.È(ùqÌf·,ÜtÓ-ñók1²×,·IgW‚)ExΛ¢¸ÕÈŒWFã© Kó+‹É#eçÙtÚ›\—ÑÛ݇וð Ô*.eÙ!à#™!?eçˆx+u_#ê$“˜ÒáIˆ=GÌ]yw:0ãIl ¬ªZà×% BÀ?”aÕNÅ£ðáY¹7ëMÿ(ìL³åúg»mBÚ-cž¿Â ë”ÒI€¢èI~ú}žä+^ÖýexmB;¥)zÐ"BüÏU&±`A'˜Êë^œŽ“V!¯Ë˜ôc±hóøÎD›Çˉ6o+ÚÆxÖðè¦Ìx-}Áé·çò· õ[ÄåÁ¹PÉH)§åª™¨(°c}&u¡c”¾àa²PvÀ?æsñ ³O3´ÞM³Ë3I—CŒ¢õUêƒQj¡Û´gi[S("§„‰*…à ýÆ’‘…"®«ºgÛ‰u¶,:Ú ÅÆê‰œlQ¶CZO5ÕñJ¡)qµr½å‚-Á.RÑÿZ:ºqQdc0j  ôD&tT¨[²À”Òо.µÖ1øp|å Šf×Êev9lË…=Š»d Eb(sKÄœ5Ý4z’rtš N0㤔Q¤ä†úùÜã±ÛáúÒë#Š;ÓRÖNºYœj hƤֲâ]¯7¤í–uF'†YŽŸž+»ušý¡ãÅ‹"ß¡þ¡íáU®žº=Ù2ðƒRl% ÷‹ù)$â?‰øªüt“LñV¤‰Á)&4µ‡¾/˜9ÆMváÅ&y—‚FyÇL¿Wüň*úÝ;¦Z`KcÁ:ŽÃuµhv,¹ JìÅ »Ô£N™x?ôï’°®lCs|&5ÄH f:—éyBŒR §àª™õNÈâ®ÙSž?z-Úc2Gʈû“}µ*áHÛèÂmÉ”–jãtÅ«ꃰœÊAr›]e±,9ºo p‘'½~ö#*-¾^Yk­¶}âªß@äŒ7íeeN:iý–9—“8Y ¢´è6ÇpRZ,¦QÁ^ÛÙrg²¢´Ü¶u ‹Ä>»Õ¸¸–Ü; € ñE…µâÚ£¨¸t'%6ÝVj ®™É)þö·˜¨„¡¿ü"œ´éä}–ÆŽ-e7' RÙŠ-¯1 œÖÑÛy…mÈ?+#qsÆîóá¼Ïá€*_e…0·×n~+¨:› (g(®æ4s5äeJy/Éÿ…c}u€ÑÏ(žŒÞ”ުшE9d6Ð›ÏÆè JQD Ý›ÙÁJ= yÎKÍÉŽú” Ò^©³ï&YOƒ‘G’LUO˜ˆSô’50g˜é¨Íºµ¥ÿ ö^?“>”æwݨá¬^7y {W½ó?6w¶jº½ÓwÙðÏÚÖŶ± ¯G»»ôþøÑ#zß®ñgüig·ú?ªðÚ~\ÝÝ~XûÛÕÝíGÿClßi/¯9&:â\ö&ÓÞåxš*Å.îvZ¾Š—äˆ'Îëà~Œ®ÁÚ}K 8®Ÿ(Q@ÛTann*ãdŒi+áš‚X}x5Š*Ãïú\|Ø"4ål4‚)Ë*æ»=8®.ƓѠ'œºCÄՅê].g}ÍÚèŠÜ>ò€=táÀƒE¬OÞÍ/)Ï¥æ pÕ=x~б¹?ö_Ž Çá6õɤw«­sP?î«^âªÖE™f©Ä±_Àº†9Ø’âG¬&Ç?Ÿò‹¿çYWî#S†Ž·(œ ý0²WG­ÕŸ` ˜ñö±TdKºûV[ªµ–ì|‰‚çÊj–l) Ý R¨ºZ1nõ-¬çoOŶl°½l¥–;’WoÛ®·îÔû茪§µèáJUD­Du%\ òõˆ`Ÿ¯ÙÇ›º-¿ä§ÁŒ f¬gŸ „mò½êT¯²ãÔ »y%2í¡á²ww¯×»Êþ=ôKÍ!ôÜbû@š»Ä\È£òÏn <Øéš(¡Cù¨£¼•'ëýgñkñÍ?=»+TQ6ŒBå$»ÊK^ 6µx6ŸP¨Ë~30œ–åbò”´¡PcÍzÚSL¤5q §Zi©úaL\ÿêÀ…hUóÓmyÊ„7œ&ÉŵëñÆŒ,€ú¤“Ì'»Õ’ì”X«=ŒÈ<ÁÆx"¦ósë1q0R¬ýû/ø; ÕõTl˜œ›@=ÉÄû"T#`öì=Üoæa³+0ö CK‚bËao!½hþýzù¢ôGYlÑÿ^ Ìø¢„7=†Yÿ~WHNíAïü=””É¡ß'—ºFúå©hŠM1ëÍ'~ÀÿÖøw‰ÝßshòS^}¶R~°¾—J…dþ¡T}2Ø$1w›ËrCÕŸñ¯ê“Q™ÓS®Ã1s´±ÕKƒ ÿN“@n°#:1jXOïâeŸ‹G„0÷ 3÷¬£z§Þ:8¶Ì)«`[ÛÛΦš9c@ ÎÞŠx•îG½ÙŒÉþŸ`Èšºó3)eX¼…Þ¶ªà^ÚyVá·£Šx{ÐiÖ#71ìÀs úÑ9\Ûï4ÛÝæž©·UKÙÏ£}ÄX32³vg½Y¦åµLj¾aÂÕ{æpÖíÑvÝÖ—5Àðz»ÜÕÔÆV×?=âüò5¿<°R|†U"U‹É<»¿P–¨â·†Í’Š€ç¾$ÖX¾Y«ˆMßv!ï|NýjRÐZΨ¥TB×âmØß¤ye«(Ÿg#ÌgÝÌ(1Çhð~€ÖÖ •dD@h©n²¥É·‰ÒÿI=£ŸðB-mØ\Çÿ#¼I†MáX^iþhâ9Mêu­ú\'sY —Ñnë¤põ”m°`ftwÝßÔ·¾ÒÅ4,%¥è(΀ºРRƒææðIó Šé>! Ð?jƒÕö´3JU gì€ubLf¶Úl¥ÈÅîÿ÷zÿ¯îTî÷ÿǵÕýÿ>^¼Qüûÿ³œû¿Ÿ ùÛWÈ}eÚ€gEµ­Í³ëÍöJpm€7uŸ_€í­´+m@ï<[D»(—WÙ{¤0¦¹åoW´}j’ÍæiŽWXùT‰š|Ù““Ÿ˜tªHUâμyþÙXæ«›_²ð䲇ޤú©Öz»¡®÷í†Ä‘³kP§lZ˜æÌÑo^ÈÊð$Sõ„žZñç±Eʶÿ³t«¡ÃÉi½šaµÏÉÚ5;½5&×Hΰ] ùDEeQa'b5±:‡ŒÆ"›LÆÕ\¢±öÌñÆxçðõóæž+ò¾99èü=WßÓ„Þda«ùk®ë(t)IòÕë£cºé$ü÷l(óöNTCt?”º¡†|?¾/‘ìl¼¦`êëíÓôPäï÷ ‹ýT6GŠ"Væ`bQÇ‘ºC$Ò˜Ú.; ¶‹¯l¿MuÓééàÂv–61âçïÞS‚d/…ìך-{ùG³iM×4™cÁhÿ%ˆRÝ0Äy›¹ªÝQŽºù9IZ¿úz tiŒH”dù XË5ЏËJä(Â"L@´H5³Hµô"¥Î%íDÒõÒù°îÑçÁ÷É¥Qù)I 'ÓÌY`…Ï€1~¦}WIBMû-µîº6Ô¾}Å*^˜Eß1݆£‹i!ȯ|>™ €H½r•Ø¥Á“ÁÆà ærà)Ù…Ï¥V"Ia‘¦™uPii¡A“#^ºÑl wcBÕ.èÒr)oõ[BcËAÒàŒ(êWð‚ÒJ¡ ´¹”GŸÄ9# ¸8´ÿ±7é#vÆ?¦Ùšžœ3%éÑ .µãý•ÚÆ  ƒ³B§ó ËZ€~Ä0?ëQåvÚqk³¹Ùl)ÞlìöˆùÉ AhøÅ§¶ÏÅ#Ö Ç(!B¯Q'ШinÞ‘Š›Ø=Mp$Åi„I¤>¼¢R¹-‡4‘žuïþáí¦–ÜзÙPM?Ã>´áßæ˜bæ•)æ+|Eì?Ó;6ÿ,°ÿìT«ùöŸÚÎöÊþs/Þžý§+Ã'” Ôî¼è[Pß®9(ÉUãf¢þd€ÒõWj-Ú{QïÔ÷/šŽœËºeL©±,J<{wiWj”¸‘›–ºœQ†¯8ZÖîãa3õ¯HŸ…0Ç0SÓëé,»$ÝÞ`ôj@å|oäQýy0³’ëVdcO0¨òá¬#$Q¡ÏRkËÈŒ6F‘.V­tü¤½Ç±fª˜¨¢eúYÿ‰à’Õ-TÓ±µÖ^ãij¨‡=ÁhI™rl˜áËIYœ,Mrf1÷¬;_w÷×à‚g]K„“ír„†­>›p8x‚DsPñË==zS©œdûCüiúQ°i>£nÔ4\{îÉÐÝXr5$‡¼èÅ5BZT<¬"™RH…xƒÿY9×ð¥s„‘l 9‘]ÅÀ9 `Ä‹-ÞÈ*ά¤Lv ^ç­?IõÂ*ÌGªxGgØ%ǯƒN»¢à¸’†è ftŽD8G¡2Uú‚¯þNEªL¯†öKî9ýÈÐfÐnM.—о!í A‹aÇ@¸âÚ~^8¿¸SЦÀ1bG%5éUOÌwës6öË2m%D‘"kkW#—yɵ‘—±’ÞÛKã®­fEÌ,nÇŠ[TÑßX‡œ¨Òþ\첎« Y÷ã—>´äåMqÆ30•¥ë]G}¼S5û!´ÚÒ»€¯½ÊF{Þ°ºzå<óu;ϘZþæÕ"ìZ´—¡ÜîÖÀ}E­$ïü;› ÐXݪu*ð÷½‘Šô…ûç¼[Ø9ç\J$#Whè_8¾Iƒ§È"Ñ(',„K½µ}°]±bž– yJºÈTÄñQw?­@jt^ÿZ!=bj ÕƒÞ^V˜ «ÊÞááâ#w›¿¤ÇZowZ 5Ÿ·Oð>u[‡ð)9 RDåÏ`Gkþ—tl‰MH&?G•fû½DºÒ=¬·ö^ëNû¹¶º„þ1ÔŒ²ñVüÇrF±”/Æ™ÑeƒjnÔ÷+¥"|*2“QŽÝ‰Áx*ˆÉ}Üé~g¤ Íã]º Y–(×Wˆ¦Ð¤€‡¹Ê”xÙ´úP såýp¼F.:…‚8A ˆv‚òp^ç?ú ÷9z>Ûpž•1h‰Ç \–Pø ¶PÞ†r‹¸3U)xöÎgƒw”_ÈÈñî%IÁ5l¢ß9 Ñ«Ps$¡=²Uhvë¸sr`¥*¡AFH©ìlCõð³:LŒ-†$ƒþ1į˜Gð€\8S/µÇ£Šiå;-“ÀÛ² 2Ê´ãŒ%æŸIóP¨½ã¶çûÃøíßįðfñð•6mµ>ã,ÊöÚ7lo!  ª‰­L÷ëËŽGCIVb,ý¥eÜ»â˺#ÒöU§š„¸#¢ º÷ ¤^¤=š>bªjÉl?¶€.ŽbæÞ>Ï0?ùù{´t^i‰U÷•¥3„#g9ÕóùhM7Å‚AdÉÎ H!%ù‹’-ן.ÖI}v÷Ms¥˜ÏHÑB?\¢þ!kà þ©»‹&wä(è\KoUeî8^3$Ðz‘íX:g’ÌÍÞnôHr6B/-î·TP’²g~…7<%ÜFVÔ§«[°ßgŸTU¯9Bu]Ík~öÇÉ­”)ÞS%Äëi ÁPOäi’Ã~¶¸‡äŠ7Ã-Ñáí„ôýn+Ú[Þ)7Ù&Ï_‹ã×âa "Hâ†KçÄË\Þ0KYDí´F„ù*ŽQ® I6B’l„$Ùøü$ÙpH2ÒóÄ­! ‚F‚\÷A® ÷ÎyëQÔâäÊdÖ8¤ª!H`Mêp+ÞÝZúXT¶ÚÒÀM[ ÙÇurá—ѦõfRw IÁwx-ÚèaíÉ›$]Ûbë­yˆµlv¥戭רD+5ó7©ÿõ—÷\£T}ÒªTŸéG8,:–{9)sùoëkä­ ›9¢°‡ÝEìa‡ÙC‹ÙC,WAŒ=ì$ØÃnöÐŽ±‡Â‚Äᛄ aiD¾iæ°è4z(jám-_zsç¾(OvæÜÛ$ßà´/æk7d )ùâ+áö—Å#/ÐÈJ à*ôð"‡‚âøþ® E™$—¾ëéë©îBmÉ.¨ËæÍ»D[7–ž }oçY¹ýl4–ž ÏÐ{ËÙ êx`í-V§CÀº«°¯ú‹ÿêß+þßîÃGÕ þkw{…ÿw//Þ›~ü×~)7ò ¾ê`¢‘œ£~øˆyÀ_wDØMB¾*ÂJzó©ÁŒ8e$ãÂb0á_ÉvÒ±cÝ[ÀµPÃZQA›®.bí:1dÚQÚ‹ÂÑ^Ø:ô¦FU•þg€óIüEÝ3 ñLª0rìgØŸñ”3þ–º§ûeTFÞo:NÍ zùø~pþ>\cDººmö³‹Áù¦ýnÂ|¾†(ŸHÏ1'º"ýñ`ÊR}vždØìjJ ‚î¶êàžer~tÌ¥Hh÷DtuÕÀWøz1žO3ÌÌH‡£)9Ã’z Â j=Ç0¸Öáf FDE?X­D¹~¥Æ!7 XW‡}Á·:±?ÀØ@NG=¡§+f5œŒ{çïi b^"ÆD8ƒc‘¬cX…? 3?M ê®3”hG­U€ùÌ05“ŸvÕ´nŠèŽé§©ûìÄ MÈ]én©$h$©!0GAùª‰Í¸OÉJP1S“ië¡Ç­nÅfiøF5{I‰#§@êÌk1ì³—°Š¿<þµ\ ÇÜç«1¬t ÍfƒsÊN©¼ñö‡hgÒ4>edÊžx“EÑ%}˜DÂAëõû¦ó3˜øóY…!x€òFçTFnjbTÀŒ8÷¥ØCVûv³uTá?ÿnþÜÛüiÃZð‹Íu^aVγÁ‡ÞæDï †Ø£÷Ù§0!òl‚>ª?Uß°§{²oqß|ÌÄ£ñG¤€Ñx¤Öâ³ ¶Ö·î.ø­¾uoªEÇ÷|AÀ[0öó"År¨òY–`ù§³ÉøZû>s¡`‹ø¤¢²â'“zéŠÂ8ˆVTæ,Uœà'¤ŽñŦCå×h7z/ÀÆ®&GelFˆ¿?Ñ5¼¸ø/áÓ*iD­ñqm½ó‚Ï$Ös8cèˆOàŒÛò~×gÁÊlʺšY–ÔÐ ä…Ý’BÝTÝæÈÝvü;¬ œ±´áÂEÎH§]oP]Ä`úå)W»Ž}¢‘NQ–²ÈßÅ‹ˆáNü‚:í«5N3ªú6lÔS[šHSäÇŽ$ù8›ó–Ç ûQ'û;ÇÄ:ÜiŒßa–¬ãnè( kq5 O8yáTW‘€p‹Ÿs„ŒQ0²¬ ØÏ®²QŸP¼[N4V›oŠèÄ-êS1³¸¥Ã‡Tã~ŒKµ¶Ž6Zøw½Û:ì6ƒ?‡öáé!ü‰ù¡ãmÀ}„~ݨ–××kNË–Œ É^WàahEÊXËk šmQ³-»Ù–j¶U¼Y#(¶+RÈOZFÑøÍvÂlxín;nwà†?³ó+M&ü¢ÇÀGõ'\‡u[Ab œIù˜f›×Æ³ÙøRcÌÑu³çŸ3¼²”æÓ9Ù Hµ‡åJWfÇÂhl—0@å_5í,ÚåfÎÈ~Êz¡÷½ûNdŸ¤”é{ßQìÏ™¸'_:Ïì+uWtŽ_¹uÂ'¤ÒŸ±¶<ˆÞ’Ûö¼P>;xoi`ÝpÓòMï6’O1+ÝšÒ˜$¹^3d{ü9„ÅÎ:GKoéj•?—]T}ËÄLLÛ‹ÝŒsÔfŒ¥ªáÞ|ÁŠÎX8Z‘èDß Qôâ]ªîôÝÓ}ºñ‚rá»ìgŸÙýî €j.6ýG¢%ìÓ¥ƒ ~žEB}]DÀቪmì‡<ÿñᢸåÞ”±¹12|28›ó}÷LezhሟÏYdÍF›{=ø|c‘ž ÑE½ ìì}¸[# ²âµœ³k;ºÛÒbTŠLL©­BÂ^OGÑêM€GÀ:l´´:Ý=Y&2†û´¬ˆã__ËrË…[Ò“èzg±—9êS'زIá‚ðåÄÀø-/xOc™KF ŒÃ.àíWúˆÞ~ÍÅ-m¡ŸwûøE§B§üËÕñYb×aýPÇ û<8êBÏ(0z“°ÇFg¿’þ¸wôwz‡ç…=Fâ$/©Ã"“á·T¿E`©[®’b_6\¾ª W¾Hà¦{tY±›DÑJlZ6ªósã¶/» "5—»|>ë†]ÒÔ¤Ÿ÷ ÝÕâ(ï@-©¨•-µÇ³ì þÎ */Ø$’Ÿeï£3?üªž{òê™Îá<Ê,‰ŽdØ9÷ °áÖÎZÍ(¡î>3¸H›\…/@HÃ'¹Ò‹ˆ¬ík AŧJòã=µ–fp)Oò¡:I ¨ßTs¤Š²Ä{nË8 ¸q£þz0ûu‘æ™C»ßIÙÏùN†’µÚIÿy2±Œ?ÉXÆî¾ŠeÜÖÿ÷Âûˆç[> µ ŠA ¤}£Q×™’ôÑàdüY_)ÈPÏé>à}CYð"e2ÉÈNö2Ñ( Äç瓤õ Ž/¿E›0Z4ý»zŠn2úzÿê‚Ç ôAïÄ7.‚BëVý€o—ä " uFË×”F'¾[w»e6K¬‘žÂâJQý­-Ü𹕥8’<Ñô uÃæ|“›5Ÿ:êã[×ZÖ±OƒÉ­67%“S;i=XI§zŸÀKá_­û¡“ÖŽ>ù‘tm‰Û[œNX*’Z¢ÿ·…hÙÿ"-n›–…óÔŽßÝ¥Èv±fãX+¦Ñƒ£®´b!«¢ÔGaQ¿iˆ*ô«‘?Ý ‹FcaÔË<,3œÅ`,_‹%òU‚±,ÑÕï%R›+ªî“P‘sÐ…[’q]RÐo¼ Qx áEv8â=£»¢œF@äN·ïÅe‰ÞÚt^¨·Z ÷ªÉpûmò$ÈžgBÕ¶|äÓ¤ ²fÁhi´¥áÿ1bmo¶¢t^B(ìŠ)Ü섆¦JŒ~³ E×ÍU\¾úS7“sí_^×™RiFô™hÑtUÜðjK….ý¸!ü)‹Eýé›õŽã JÆAÖÔ U¤Á@´7è&•õ1 ÁC½Ð)Ü·¼Ü€Lå(e`,ظ5ÎèØß`Ÿzó[zS^0јÇ$/àÈâ8ü…7ʼì×V´µš†B£ý Ï t…â»bǧ ­K]ìÝívHÛ­*ÿ±w[ҧʽV_¼°yàY[ÐÜŽtx@Tè|$éóû“MºG>í6´;Z:”UÝZï`±wÖÛ¨`”‹K­ÖF»ì/¸¢a¸2–”ŠY-oW¯ð¡bîy’ŠM¡£ò½%OTB‚æ‘ñ³‹™å,3ø7^©UüüÞY4KΦP_Äg‰®˜@E „©7FþÎÈ™+… ø¾0!A‹b‰¢ç%…E®¬¯ }öVEY¤ã{6|©”O~³ieTE+R‡ÿ2úw£c7•PøÄ\ÇÏ“#Ù¢¥(÷¤¦™gØgá Oé7îÉ9´—¢¸»9´MN‘spÛ_.ux[jàÈl›¾8û¿é¼ÝùéÞúžO÷çûm—úèî—Ú»ÝpÄAKG¸6(ÊŠ+t%Þý¸yûR‰‹ÐÈÝŽÞFÌß‚ æ¥v_¾«èòfòV( -iŠË½çÝù1²àŠsmÝ\ZpÃ[xÁû®îw gǽÚÝâtø¦nv‡ÿ)¼¿¾üÍ.Êhîüf—®sÕ´·F®ó1Ò‚eYùÆÕsIW}Èß»rœwwãq¨ n7Ž;ÇÐËÏÝå-hÇRSVsÑðg€˜'ÿ’·ÿ…ññbøoÓ{Å{XÛ®n‡øo;+ü·ûx1íùøoÝ‚øo|Ô¥Í26Î9úVÀo˿ݨ[7 ê&nê†ß¶r Ýd§V¨nK¢ºÉ2Xêöâ‰} ++Wý]ÂY¹Õ~[ÈV‹!ŸîàÊà;(+Ftb?Ù0€øB…8ÏŠ¡3ÞZµY ²ƒ©"fÖ 3k…™µÂÌZaf9sS3ëo”<yAo8?±kÐvÖÍ‹ Ú<¢¦¿©µTòL»Šo‰“k)W®föÚb¡SŠlÈè:VÇ]b­€}îØç‹#àÈ"‹Ào6ô›ÏxÓØï­$ŽÃŠØ{q‚zêf%Žƒ“¾ÕGr”z[YÓ']EÇÀàäÜ| !ÝTV’šIºiç¯ãéþI«dA¿Ý3¦¡lº{¯ '„ÐÁãÛi`NiÇÒyÞèäU”@Úév¨ž¯ p‡ë©øåÃþ- ¸£`v¢C½!ÀÎ _ç+Ä×Q§ÉÝàëÜ ÂÎí0vn‹²óeqvcêD@c’P9ÝBP9_ æÌ ræþ!gÂÇ¡¶-î>­Ã…bÙIÍLÃÃõvÑY\ÙÜ Ìæ¹D­¾K·-׬(­'p*ŠÀÐl)c. ÂÕ|6ZŽ jÑ÷:ö]¨RC¾_dË×Þïˆ3ý+8›¯Îfa»1¸Ÿ1,:ô„Ðsvƒ~â)B+zð@r#¿xâ?èå¦H+ÐËó‚@/š.ßrÎNYîÈiä«¢‡«ÿhćkyÌg&¸–Û³t¿<Ë—@gù–ÀYXc^ñu£³|;à,+l–;Äfy\›e)ÿZÁY¾)l–û‡f‰À |”/‚rC j]ÅùåóC 4ó愊™k¦CdDJþp¾5 …ë# ä øßû䳨ôYè$7ÌëkÂ9I,l¢Š»Å9Y0I_ ÌIqâN¾7À©C|,"“Ýu"z›Jà‹‘Ð³ä)k—Š+4RCj?ø›áˆ f¶ÏÈë §Åw¢\@:¾«ªý¬ô•O8µ.š[¾*Gæ‘T¶2'q;¨&RsZõƒ¯õô.EtêÓBd:ê0;\MнbõË3í°$bå‹ÇL”/p^¨Ê‚,;½²j‚K_ºžP(ÞÇJÑä'çÉÐ(ÔÔe<,ñÄ›X^¬‰jruè)ŠÇhÆÃÈîÐÛ†'„ÄT}á] šˆ_O7k4 0n¬Sµ-#MÓ(& a]:JÇt* õA÷XíÃÒ~®þT@­V‰j9DéÆü%š’¤T¡œ•üYr¡YžÛ éGb·5×_"9t¸ÂØ@Ú<º’¬’¤6éŸ‡Ê m6‘5rÍ¡%çÝ¿‚™#=a3WÊÖäʉ˜@£³ˆMÊ'ì¶ÌLÖ¶Õãn¼¥ˆl =°Ó’AD)¡êvÕWâr-è“U§e!~2Gšû,T_ðÔÁZeJýù(S9¼ênA¦\ÏÉ1¸¡p¸5’b SÿÉÈRþ¨(²Ta|ÅÀR7¢²;–Z0c_3®Ôm§mÉëTq³nVjºJ­B·«V%‡Þ>÷M«µÄMËÉ‘l…$nLHiö9¼Õm ëXúÂ]‡ÖF¡{Owêf-C.+ ÅÔÕ•LòÃ|ßó•lǽ’™që}·ì5-ØJ ¶AÍ;ò”P¶ø·AܬÞü.gó|’à‹3~áÞ÷¶Và‚ײ/xî³·¿é•\ÎJÙ8]Ҫ߽—[_‹¯`7™clÞ¹°%¦;ânou´-zÿ4ë±{›ûb+w&d_ªy}©&&!ï’Ù KÛm%nzç.‚=¼sÔCÏ"Võ0Õ|qÐÃ…jt‹‚nzxǘ‡K\pò­=_ äá2õ,šœ¯ñðÎ< í;-g؉;®w÷h/øÕÞ7‘¡þ™/ ¯‡zbW¦žÏp¯xøz¯xx+Sm¯ÍÞÓúŒöžg÷mïytŸöž`æ>“½çYA{Ï£[ÊïŸÝÞã|ˆÒ®0iW˜´_“öqqLÚäÙîFž]½¾†W ÿ÷Ó½âÿÖÖvwüßÚö ÿ÷>^Ì|üß·ùø¿/N—ƒþN±?#èo¤uœv†ôM6“Ææ#¢8ð1â¡©•! YÄöc8@˜ß÷½©8˲\¯†p' ¸Uœhèï ‘* ,¼ys`aþë/¸Ä¯‹·bn4ý…¿3¦pf3¸¸OfïÇA¬‡7œÁ¿Ii …¿ ¢°À:¾4¤°5`RX­)k›õ*öPïâN#¹$I´Ð«Á‡1j^ôJáê ’ó ¼ÿCtªUø¯&þÃKù‡p5èÔäÏT->€“>2ÃWÀà t:?Óë…zømp‰ôŠ•`œ°ÔÓ¸ú€U§3 ÓÌäHzk¼¹?ÐéÏ…:}°Ó®»îÈW 9]7G‡ÜÏf½« ³À1?wü§Lç‚È»7Á’ŽHÛUÅ’v¤íbXÒíê“Ö}bI#þ­lE¯ÈJ*!-\ÌÝ.XŒ”ÅÖ(ÛB5€?; µßEŽ;ÀÌs¡ŠÃcKâ§Òp:dJ(Šld°(™¿*Á¡ÍÈÊÛì60EÃ~ú*›\Î%žíÌšK•œaú3#ñ2™H#©]Õ=ª\\Â~¦Ó…¾é|83|QËvýùDÁÏú›9BòÖD?H€áØT¯ÙÏ”ÒÅ^©Ï†Ë]añÒYê©/ëh‘$&øÀî™Ü ziqe'¹ ã2›šlî3®$ŠQ¿hÙéNñ½ñê‘8]­nÉKŠÌàöžEçËÌH î–’rt¡ B ,<ÁÏc’-=HPÛ h{cC… ðö{—+_0ô=B)Ç.Û„ÏÚD€Vþ"Š¥Œ¥Ø†ÒdŒZÞýXÃ3WÄ>ýÛ>Þ/Öì`5osð)ßö$›($KÀ;Ǧ$Àjîò$u ûøeE üM;=þzò”jÑE];¾c•éáàÏGˆ,á–›mþ$a—¡’ãZdyàÁ·^ ¼¬ÿ–‡…®"5œšãNí<Ç¿uí9 ¯¼,|q½Ñ­ÜØ+H1á/mËdM„†»k]~½ÙÊØè"!ÿÀÓlG-6ó²BÔÛÅQ7}Rô 2?Üð“p²ñ±)‚ug N•öfºv²Èuìô9€RMÕí¡IÒû dé[YR‘¨…ÔätðÒôØÊYƒ\£AƒŽ‚¨T¶Èi7õg«½QµüÿTßL 0\?¶Ä¾Q¤½ÃÅõýxØ'³ÜLêÙî VA%Õ'-­×¾¾è…³õe0:Ÿg%½‚º;Êû$]’äФ¿"Ieæíþ/ ~¸¿H‰Ä ڽ؇݂dÄ@(d³]¯°Ïr¶éìý`§;~N²Éj„ „YˆÉ_ ¹£ÊQ§C5gKt]rs•ËéW¢}}‘ƒX¼›ê ºà]¢óö‘m¢¸êµ‰ +oK¶)/"5¼¿ˆÀý_—^¥[Üǘ£ž½`ÙqõËšŸæ&ûÙt«ëÁ×ÉçêoÍsµõàk|.ÿÀë-,VµW—jM™šSFo œ ïÚN]®DÔÅo†ãýmyPÿ?©±c4ì±¹ëïŽð«v”¾ !ý1Óí­$i7ðòO0Ú‚œUóT¬æ ^±L d´0² ˆ'p&¬A·o½‚®èTž]Ì(>A¹®;±vÁRÑN®K9vnÁ™‚ 8Ý—+¢G ŒröÏÞPðælääê*›[ëØ8äóçÑæ|4ÀB)wvÄwØb&OѺĪ/Ç®³Ø'û%m:<ðÇ0°sw;ôÇÆIhÛôwµÄí`^<*õx™ãë02ÅŠ³&µ½‰å6´23XþN"Û-ðî!ê÷½á%¡êUnê «Q´Å›ïa,(Öã'9DçLèQr>aÆ~J¬©ë á´Ôß&-¸Q#>JÄòBm?æ N¹5¢X"Õ†ñˆ|„ݰtû`«™Æž§HšÈ÷ÇÈ1a^ÕÆ Ô¸7D$²àãm§`ôÄâWð8Ty\´&€.K/ôú¸–§nk©áx/3¹¯ôäÆi×ÃÖõÞ¼ý€saÐ Hí§wùj<ÖOë|¤ò¿õ\†óux¬Ÿ$<Öo:Žïßcn<6]òï9®éoW®é÷õŠù_ß«ÿ÷ÎöîöãÀÿ»úxåÿ}/Þf¾ÿ÷ßïÚÿûð»v—£û޽Á™*VNÜ9NÜ+nëµòá^ùp‹Ûùpû(g½©ÔšŒfø·N} s9ÀYúı&Ù§óìŠxÎì=zö°à“ltžMåÔi °:U‡É‚‹µ¼9zfüŽá' Ãy?²ÇªúlA%;[< ë{rÕl {ÓÍU‹:ïä´Ú”[j-ÅJš¨ Ï(“+âUŸœ÷¨nyËžöìÔ\ôra…À㉙A´Ó’íÊå¿òÀ&q±þwëÇ®<Ç_tæ—prþôú‘íÑ®ÂB¿öÛ¹z¯<½WžÞ·ðô^Ä>РZ¡Ë`9Ø6ŠR•7¤¼ƒUËÒ!Oç `(¡s$S=YÀÌ@Vä–Άãó?`§3D{‡ NκÚõfOì„êÂßTžÍ6º­£i‡´×ì&èQŠ|ä_ŠžíÒI"èuÂÀÎ/Ù‡fãi¬— 'eÕ‰3ëM»!¯†s´"гñ5ŽLÔ‘)ÞAy1\f'gR%Èü™¹PMÙg‡{{fœ|9 –Ó <(ðëÎoÆi†^Í 9¶§”k–¸WÏ2mý9Ï&×Ô÷édªþÏvìŠ(þÄÑó9ÞE\‚¢ÁI Æ$ùJâsx3n5òÿW›Œuâü±:pd£±È&7 ì.g½w8§t7B&É¥­<³8ÍN­[K<,ŠwhÞ ÜAöáÙ|‚'‘2Þ;¬-Æ6zÈùǘv=·Ïæ|Á;»æÎ€Pr”Áµ!ƒ}/Á&¢‹ XÓ}¸ŸlU\|~5ú€}‚ŸºÒGü` wG³Þ¨·ùz2ƒÑàÃã-89Ds$o–ç=® o}ÚËp4@u¯zy›{~EfãûÉ«Ò Ùpb@6¶— è8|ý¼¹çö€S÷æ yaÀÇᯯðÏ´ ¼>:fvÿCt£†ÿìà?»9 ÄÏ.òk·ù[nÔF<"˜&bÏéq&áz*Ÿ#ªaÇ*æ¼È.É™N>XäIâ—ü¶ .Q©°5ò6š7-ǼUì‰zÜõ£y6x7 ±¥•ÀÀ²Š a„J4"„æ¶m§ ljˆB²-áç`efå~ £42Vr{Ê¤Šž`B‡b ,ødß ‰­Ð£;þ£´ÝGÙúyx7òpçMÁ‡ôiÈ»½¢zZi#Ñ3¸©(È›¾f9>ïôÈÂ3…ëkœ«R ç/ýV|W³Ž›ã‡qËQqØÂVû5|Oy/¬}\K4}Û°«¿/»Ò{3ÞËÛÇhÛfßYŒž`Ù*Dk¢õ¥B´¯"´VZòµ(Bkg¹­ØQË ùxx;£+“:áíJB¯è'¾šL ðËÆ%¬b½nëõxêµ õú õ²˜ÐÜ óø¶cÀ~[æJ%¨›¹;_ÎR¡TO¨–›2í» &{sÁd‘Ùàôi‡ü—>HSO2”˜=eÚr&á IKÅ'íäD«‰¯#$M“Qç·9>³* §$µsÂ-— «â[H³0mèÜJOQnÙ£ô">Ì 2ÓQ^´ŠzE±d4BNO¹“çBÊœ:ÝÜK+ÝÜ£Èú[C·X÷*”hJôu'¿ð‰91FæÐÿŽ1 ãþÖî5þgûÑÃím?þgg{gÿs/ÞnüϛÚ¯½8®Ÿ¨„Iñžo2xDZm&£p…ØÀ,•n_³î„f†®i2°æÝf´ï(k¥êRuø½ù_߭ó7uIRFÀæg†ãÐcö½f–¯!5o×P/]nŽàÒu à¨L~A½ôìqËve”lOvåðgÇ_{ð‹î§cPnÎÿ‹¿”F›—åÍ™ãT:ÕD§Ç”°G¯úлÊþ=ô‘¢bpœu*¬5†Ä&˜dŠŽUVt¾,OKÙȆ|¾šŒûóó™…ðÝ› âÅÐO§ küÂwËRêÈÏíA޹…©þ”§|Ë~ËSfN¼™5¹GÇì Ô®Çsaböß¾SǺ›ãõ«;6Üà º jÚRhá‹IGS¡—/J”ÅýïE ޤ%ôe…ÑÒ?õ²2RS{Ð;ee z çÇñäR×ø‚Ì›bSÌzsà·ð¿5þ+ÅïSÅ«yõÙGòƒõ=GÒ^ÂG?çøcc€¼ëßæòü%~Qý>Áøy³JQ8RÛ3f®%ØË¯n UFô07MÑ5PC½7¾È‘¹ÀÙî¦Þuqï¹Wé~Ô›Í;ñì:¬w.¸óìè=°næ|ÅeR~S)·©ûð‹ZÂÉIy$†÷Ù⎠NÇÇå¯<5K}Se ç Ý4jÂÊÄãEÌ00&ZLjZ6Ä`³ÆŒ @UУÍWM²™È¿ÚøF‰¡i6õÇd*u’M›Ž¦»p…I€U'u‡P~Q¬F¬bÖk»ƒ°Ð$çwÉ*àÿä˜ôœ!Õ ýúaãÓ#IŒ4êß‘è ²³¹%@Vß•â vÿ¿¸×ûu·¹ÿ?ZÝÿïåÅ”ìßÿ|YëþŸ åñMª,øŽ¯Hð¬ 6À‹á]iî6ü9¸–ßµb€£‚¿¬b åöa¥ønßn̪ñÉ3ßvHŸtMMÏ/1Äœâ×0´N?Õ^Çp';øÓ'A;Ô#V™·Ìüœ™¨V¤ï\ƒt·“hFf1¯ùk—Rc½BʰûJ–¥ØÈÄ•^­4I~’müøöN´Ft•”j£†|?¾/õÑ̓+“A“÷¡¦ú ¢ûn®Å*Eçë L­ðØ«¼pº"qs‘°¹Ã"±oºzþ+~üdÀDÎÇýÌ Æ¡îÐRƒì¨(ogåùTß~›ê¦ÓS˜U#š!4 ‚ç€l4ž¿{OÀÉ^ !k¶ìäÊ9cÁhÿpÆ3Õ ÓAœ·©‘Û Œà0žŸ“¬jA«©— /$Áû¤4bL»áIÈ Ï’Ý9аˆŒ¥PQ³Hµô"¥NKíDÈ íX¤Ïƒ-î“K£òS’N¦™³À*ñðÚº4Ð}¯gÎ8™ˆl§LG͡ϗ\Pûά¾jÒÙ;u³ý–†ûç¸ìÆ+ÍÂIàØhÛî¼Â±&€ ø w¡^òÞÕ_àNðÉ­¡«ÝlRº††«Ê&¢‰ "#Â@šO&(eÓ §µä·18S›苲G_:Ö‰¼…P¥¾ÑlàF¹ËÓÚ+bžÞ_Rµè³aEX3°Ô^{†e8LK‘ÂÓ ÆÏ‹«E}¿‚$ðËk©Äê2Iîá36 jôÎÿøØ›ôqÓì…! ™2k˜ JO-DÎä)-ì¾´oS M:kŽA‡—´ˆUÇU#áµm 5w0éiÐ&ž›Ì‡= ‹|dù%Cf*­‰o6{ª&\«['¸ q›Â.mR ;|°„®6h§ ¸"Wæ? ¿¹-®¯$í™âkHæ¨k›Û–‹Opãl+>*?.j;Ÿð]'æþ§ÿö´²Ì§ ü6Ç~f8þ÷`?ûÖ_ûßÕνÚÿjÛµjuåÿû…^¼=û_*zyeü,Èü·3í,èNÖC|^ ¡GëξÞQ û‡Ù‡l(vÜ‘UÔÓ=˜¿S+"dàIß^È&Û$è¨ê¥õˆÛP5ºÎÏ®= ¾ÍN™þ 7ãwiÒïÜd§úkéÕí*ŒŠý®­tq#Ýã¿,#ܱD;~yS´cØk¥ž×PþÙjäévÅ_½XcK€#C¯,hd¿6è‘DöÛ}ÇG¾Oóçç·n>½gÛ¦6RnÜ® ÍFíšè—a¼Ç8NÇOÀíþÊÂùù gÅ»±‹ü’سwmá$õFÍ(<þ¸G ç†åþ”²têß?h [hÎ$]†±vK§4„¦­œT ’gÝ\€ï{'pºXÑ[Yç£4HðþüLW2»–ÐÀŸÅþZˆ·Mºlm¾}}z PD∼¤‡®ªGÐ\¡ƒ¿w>3„î³— i~ ÿoh£/*SÞðÇv,½i’2?{»F`Œ”f0¬¤ ÿ¿>j´rí­Ë‡eLÁ›£š|ïV øk÷×z^¨Á]£ç¶;­Zº·4—Š…½YÖr _Ýzö?ÏjLT˜g9¦Ië1›¹n€ÄÊ° ÇÖLü¢8H«nšF5ºè-mϹn)»ó‰¦oiw>Úù"vç-§Ã9Ô‘WyküAÛÙôÕ{~Å÷ÓrL‹ŽØþ¥ÀPÜ%bÍÉKκ'U,…¿R­ñœ×¬ÊFI›¡n!žhË=­!Pì—îƒP餹p¼œìu~vŠ_±[:Ìò,'Þ6r÷`¢ZÇ–á2ìÊ7-¸ígRs„b÷'23КÊ_ÉŽõÑWCêÔIRg&“bYÄ¥Qì¬4Zx‹Þ®Ûœ×j}oϦä<Ó žj ë4=Ë{ì0þ4³Eâö$xÀ‰V²TèáPw°“tç…ŸTËCáÚ$éÅô‘«ˆI1Ôy¹êÊVOMƒ( æw€ÚIËRÉ$&tÉ9ÍÃ¥³hܨNòI<¤C<ËéÈÕvhÝv·%-„XÐúº-í‚Þ×ÖÉÝÒ?G=qŒñZ]äu- [U£Ç­ï@$¤ÓÎvxz*ç!up–¤sFWMÅÛ¹‰„7ß#òF’á¦FŒ Îö0éz«kHܙӑ|ù I§Ë¢NWéuü’>ýó“Á©ä:Ùq™Ä(DqפNžg’¸™s’t[ÒxlÝ6yÔ¨Iˆ>÷VRwÑ8¤ùísæSƒˆžË &kr›,!‡!€K-êñt‹t7¬Öj[ ÎÙ …¤§V:@>(SÉŒ þþ[ïÝ$;«ˆ½É õäÆ9±å(úŒ¾h—¨‡êËÜ#C"e½_aa/ÛãY&ª}aTÉûLäœÀ8>h‘—I«Î9Q€eæˆMx†Ák¨ö9ÜùíÎüG¸€¦d3Òb÷‘[å †êßtŽïÀ)¥[7é¼òR:/pN¡j*^ñXïVš‹ É»J¡„W Q:j£TJ2èÚÁÕt0ÖÊFç™ëa`f÷OàaæT1ÍMü•«]ÂÅ é¸ÈÇs| š–,(({Gª«ÌLz4c¥Ck†š9~/âgTœçgàVo{äú ×€Ð)Àu´ÁzãN-í Ùr+nÞgíj«˜Wíéz<Ï‘(l«§ÓaISyk±­~¡WM–“CðfV«‘mµ25 D½¬ÕªiÓ^ÜlÕ´ÍV­M¹šu9ž ½íÆ«¦e¼j&ŒWzQ›×ëÝ ×­L ÿHO¢&I{ú±w…Q†w qºŽ7N4‹rÁ y„aø;Åýë±ð C6 ¤Zýíù:ác+ÆB½ùáì}/éša~rm´±wt"G¶~µ_¶ïÚxÔù ùØ3ÕV…,›‹ÍÚš¶zf±- U©u+œzÍLíÅÛ µny*·<}[<ÛÍ•mqM[N‡íZžM)}[ï|_™Ùîç»ÿß³ÿ÷Nm;¼ÿ?®­îÿ÷ñâýâßÿWùß¾¼6 ß»Xþ·•6ànü®ïPPÌñ[Òä;i½-¯4«dm^²6ûñ–á*[ÛJ—ô%uIŸ;3›—‘­ßebë¬2±-§ Š¦[îK"Am“…¿MÐ>ýìÍòœùIÎn§pûÂ)Íâ©ìrÙÄP]Ô E‡‘ügZ‹úuç?Km—Uþ³¯(ÿYd‘RçÒWšÿÌó_¶4ç„`ƒG­»®Ë&‹¨&ðû¼Dc¤Í~² ¯X§¦•ï2¥˜RAÇ2b¥¥…T:1ÌC…Î~i××»Ê&VV)ÄL>±ØÈ…ð²‰Aû‰dbjVÒ£bÑŒÎ!ƶ‡ÁY—ßyÃô rûp{³¹‰ ¼–º—.LZ'€ÔYN·ÉæºB6­óíöi¾\˜Ì&R´î“ØËÚOíÀ¦µÄ–ºm°Î÷ïUùí¼BûÏäbz¿ù¿vUø?Õí•ýç>^¼]ûOçY·$Ž;õv—DžvçE×X‚êÏèø·yÔ<­ÔßÏãÆo±üóì Óâô¯4!}–¤–жG±$(<ÏöÚ5Ô±‚ñ1øê5ÌÍcñ,;Û Òw_¾Ø²&icÔÞ‹z§¾çxÙÐdçÜû-[Õ>/@CΪ\ŸeìV±`)¥­ªiŒUŠ‘ç›¹ê|U~&?6JÜ»õÜ£É@6øÌü©›®ˆ·%ßRF3 \1¸¼šÀ²².OZÐúb Ò §èþ!¦×ÓYv‰ëˆÁ1=Û²?ç=ÖÀ ¥`ƒ>ÔBÚXq6žúüË™L{*ɦx™Q„ ÕƒÍªÖ Xßhå…ѽkâX¯ÚBY÷*;G¢4*J%š±èìÚ’~1—.Oz! +=lz\A¬Ý÷Á•f–nÛó? jDë¶­µUpÕu Ídk—emë»ûÐñškœ·Ô^ɽµ'€[;àáœÿÈŽÿˆç£ÐÎéÞÃȳϊ>ü8|¸QôÙêvøðÛÂëYº…+DçY·xì“äBï^`òcØzÝÙâÅ‹º5¸ ïPY'¬«¿ ÈQSr4Vgyø½c¾ÍjkbÚkñ¹j#”_(XŒÆ£g“±qMñ™$H¼Ë¢œWWÃù”Pá„©ÈÎ% G"¦0@ Ðzù°‹t{Ú;À)wPź[çG¬ï3†€íéQíͥɻ+;‘h»îÚÚadxä¹¾,|œ¡2LÞi4²ÃñøJÌG³Áý¯®o‚RʤèÒÚ5ÕŽ'¬²ÍÃ¥aПÃÐ!­Ü¦_•êeÔÒYáìÂÈ¿<ÅAµ_pTéUL>ãK4I”à¸Y°m»j¢N¦E S Àm”I²uêØ`‹‚eL oêð'‹3[¯ ¡Èl»ãÒµ«óaÏ®ïé¸ÚˆÞÙ´Ô?9O~¢¹+¯ãŸo­ ÿh?ÃòNOxªñçßÊJw{¿áÕ&3^-FåiênÊëÖo[tïÖw]›z´ŸÆ°zX=‚àBbêûÕH Sä,Í›ï¤ý>[?š§Á-ö;^ Üv‹gÙAã}(ȇÿÛ‰At ö ¤B î,„ïK/‹Ó‡¦È=|¸M>l1l®·¯Tï€H_Y½óªØM 2ªù{ÃFÎzEUoÉoiw۳ܲj¢?ŸšÑUæá‹¼gdwc í”E}&H#'µ&ªì}Àø¤uÈEO’ Š+|€;üºùéð`Kü‘œw$%`n1žñŽaµ>•Üþ'0ïzƒ‘ïø¨NW¸uÚÇk5´Ý;g^žÄd^X¼ðÒÑO·{»¸Ÿã[ Bz–ÜÚ¥èÄï~rqÎìVÛ¶½5k RçëˆËXzkTÃä7pf[¬Žê§“d0ú O˜²»PRB@N²&ÐÃzDJØP2BÙj2ìz©ŒR pWøÍ®ÁôX§&¡gUA?8ÙJ)"pT¢Šý5ˆùIm¤¼4ÐeõÂá]ÁÔƒÛ *ò؇û¢¢/цZ ÔúX3B8™Àx.9* mI,,%¤/ódŽˆ(%2Ksäxt”ž' Ši /ݺ÷^oŽ,G_Nt}ÂAK¿–áÿWØfË­'Èýt§i õ¹§©îY8v¤.]#J¸ª‰ƒó§dÎSTeJÝTu;q¼*ÇXXNâ—ÑŒ—òƒô‹Òšcf*©0ý˜ü)áž ¼¡tÎqççÖ|8 0P»¤uMPpK,û玈=ÇEΞôÁ¯v4¸àËwç_¿ àë.FtµºH%òÊ ³ÓÖå\Ef;\»‹× ПA QA ‚ËÊç3ì…¼º1À8¯ ™º´–ѽšº6êGHŒVfÿúÁó·“Ø¤¤›¤' ܲ3¶²Îüý@>D#@}PÀ$’ÎÐgFcôEœ¡£þ¿ŸîÖ8ßÿ÷|'ñ_vww?|ˆþ¿ª+ü—{y1éþ¿o5Ï8xsr°¿Ø8‡kt*bOû kw`éÁþÀíÁÛ¿íýn^EªÌ¿Ú¯;­Šù¸÷SB´É =”ï9%ÝÅbäE/í¡ á y28SþG/{—ÙTìg——ÙuõÞ Aò{ÑïzpýûøßcñbÐïÑýήèeo íwàJÈyŽÎ[¹=²=ž\8–HEÁ,Qˆût|1ûØ› ðýùˆU ýgiØ1Wm»O…ݶ“}â?›­£Ãæ^óX´ÑNÏÕÛfÈå=²%õ«úoâ˜mè2M†úõqØ`i»|k^ÞìÄ-*> Rz”²{{ò§N~0>ãéQ’+Pðd#Ö#žÛ¹p<Ï…ç|.”ÿùÛ; ‹Ûû Ëj”ŸœvCGŸ!ÔêTðÞH—y«êŠìp_ P·¯né®Àö.´ ¤ÐX7SUÀL–Ø%³643ïô«Ê0¨u,¹å.`ûGûSiMâ%ìŒ÷=´ò`þcø~0œ!<¤RúI y°ÂÐdR&çQü9ðo©lÔ{L‰Êë ³Ç¸KèÄÁÕœ÷¦™ç—ÚõÝ¥dë²î òOµtzxó‘Ýo9Z3Nh¢ ,Ç—fMˆNƵ‚š;ƒ~ 9å%¶ÊÛýߨÉQSû4›¡†wjÅa¿´<ÅdâZÔ²e@KpèÁšÌ8;¦¬£Ÿ]ôàÎÄM÷Îϳ+r 1V¬D †ŠOÔÏá̼êM§Š±„ÊÇ÷ƒó÷@±ÙZ!ž÷ùäœ š€=òȃAÈŠœó4Z4¶0.ã†!KÅcƸU$rA¤éŒ×P'±ôÙDöþxD‘«õÅ;m‹3˜ÃÿGY& ’mZ •ÞEä[|>^os “êôÏ.ÐÁ a§„ ©›¼é@T—|Ó·3°Z/ºðwÊ[ÁZpóâÆÓ™i!¨^©_öÜØBc,CpVÎ 5Ôoç…—Cª+ážëçÍ›#>Ð0R °áÆ4ýÒÚ(gYG܇¾pÀXósûpŸâ‘>âfÁ>â|Ä¢PŸ[EùˆúÜ"Æ'/¼G,Šð¹ep¸Q|Ï-C{–Œê—’Ù¹ì¿À©ßî*V‰ df…°‡u>d™Ë÷Ãz‰T(¼ê«ásã‘Fy°å—ו´¹’½5# !‡™â£6Ã+[G†t¸ÀRXÏ38_°šgk?«‡xq(\Vôc¶«Fupb¦sL@IäìÓ"?_kqC蓉*Ÿ:µÃyœñÊœ÷vg‚G'>DµMAÊ”–(Eµ“l ´ß+¾àë„"QèÜnÒä>å¾ÈJp«âˆHHÄŸ‰æ{jK° ­@´ˆA:¶úÁTÃT$ nÖ ¾•Á"×TٙϠÙ[Ê}úf{Kž°‹·×^ÁíÅÇ’9á£û«µì%÷×ÞÍö×ÞÍ÷×^zíåí¯½¼ýµW`íå쯽Õþúö× ƒR Ä£ŠE!©·ŠF· H½],êra¨bQ$ê­‚P…T6 /šPý·@èß¹Ä:%”¢‘Ô,±$Mš¾ÑY¡œ®T41µtÿȲaP‰/ÿ‹ÞÅ,³ôdÖ¥³¼ï›e¥Hà¶o×CN"ZµíóB"ªfkE´ß (h× J¹b÷=®Œf¸ÉG™"U׸%8]*í­É¢½31"ƒ¢¸Hº µ e·åØ8Áй9{™nô®®2 Ö‚º”]Oží ~“н"^ÒÖúš½Y ©8*+*>š3ªåîÅ‘£ÂÖ½'öR[“££u ¶KÁ!é zžÎüyv}•‰’Ö¼ÂSΜ•Yqêj°íã×VSKm£ÑÞ8ZrÛè¦æþ™3”M=” S's h'1ÁxóÉ Ó¢fþCo2Ï#jkOøpCPz¢ôâS}©ê &u„ÍÙQ˦V-þ´Rtâ9éÑ šBôóé_¿ r#ïÀÒï•E‘Ó.ü:š¡ò^E×OÕsŽz›§šÄ~öÉD«iZtVÀRWk¥©¤ÉÍKÂ1¯I¹:¿âÙždx¹ÅDôlêÓ|šUÔ®òÌ©k8£®ÑePyR¶vª ù+u©Ë­{š!™¤*R‘— ²*R&»ÖêBÕÅ öµÞžB§ñÃñÔp\¬Í0Š~:û(t ‡%0núÏÈÑÈA€Às¢Ï®àÔ Îì H¦Ã@¯7ýs2+PÕ6ö.Ïß—tt“ŸÛ5ñÃóyoÒͲ¬ÿƒ½¯žä!?Tü&%ÖÀy6ÁÉJ@yy©å=]Ý1‚®ôó‚µeŸª= ÿÝ$ƒ®Ln9|ÂØ&&)Þ#î¡_ÑYÆK™õ•C&ˆɵ¥³ ÆãÏìŽ#Ïø«ùDè™Uìh bØâó´7QÚž›Îî ¾óëÈôˆ¤øá¡™-¶åD{ëסx3² Œ‰+±óñÿŸÍêÿ­‡À.òWô©Làt|L *“ñÕdýZ“¢b~ ”ʇÙL`ø_w½®àú»üÐÔD ¢ιÜËA·1 Pœ”§2éÄæ—Äã~cãöíÍô­jèàCò‰¿JюĹ꣇4Ð ™Ô@™+éxÿ4›¨ô(pÿ#ƒOäl¦ƒû»8›ÂÞ2tBÒ\ö”V¤–8¥£gzñ3Ú®}‰CÚ[!1€EÉi)6‰2îrZ®héß9ùõí=~þ<ùÕe(vþë“ß“o­c.[Ñ¡ôΡÅÞùµÒ=Lຖw.IŽ2ÃmðýjÝ(¡¦ îv–´Žä¥N¡‹=Ú±ì…,¢€¼`í$:¤Ð€‰ó°œdC¾!ŸK²¡ÊW’ÍJ²ù"’³yWâÍgoJuøTÖy‰>©x(}ÚI? ¿…©ïŸ0øG(-/üçuÓ¡$•‚¥üR’”rø‰+j\ÿ£E´\ž¦a¸q5|¢`à%&ç0“m;A±W &ý˜d°R#ô“à8wòTâ8&¦ùÔ>Ld-ÊÐô`I-Joøn<ÍuiƒâPÇ{#Ùè,„óÔ9NIÉE>J½ã¢‰ÉÝꌀ:/‰NkÐt‹[¨ †Åe›zÖ±ÑÖS•ésúgíÄ¥ô_«ö÷@·Ùd“¾s‘~I)á°þ¯Ãf»óö_ÍãÎÁ³QÔGY<¿¾Ïˆp ÒáÌ@—¹´jy§Aã NØÛrŸûù»ÜÇH6†Úã´›¬MËÑ“`ÃÊm+ÿ[~;Uj#ýÈýmq§€£õ‚ ñ¯3Ø ÿ¢ÐTiPåopþ¥ ‘¤,ÄõLÍI=1éugØûµÙ= JØAJx6ì½Ó¢ãøNÍòE±7›e—W´†@}Šcç/í"6¿äÈGñkk°õÞFz$íânERˆ«ã½á4K1+QRwï]å™ý³8æ®Ç7ÅÇ 2³ëâcnñ Ér’ÏÈ\¥mlU#š©bpÍæÀ5e“)y*ÚP×I‰¢<ðŠÙ&S0Z4nÙ¾prËY4‘°PC Kém¶©8±«TæÅ Ì„UÍ"ÿW¼=°]Þœ4Ò†‹Qɦ¢ÁÔ¾öêõho¼|âÎL÷#^΀»ØkMœ*#ú$æD\£3iÊIS¼â}ø –ä¥å}`5‚7µÙpHójUBéqŒ`:õ2Õ(ðì+JT¼á­Zb‹•¶¦–/>wV¥ë†˜aUÂWEۥÚ„’c-}IÃu:O¹v”—•ªêî–h\kiÐ ðšòÆ‘ hi­á8cIÇ‘ŸUTJºÜfj˜n\Õ‹3xm™q,¥P#ljأÒU-{Ñ,¬Ì©âM,ÞÑ÷ªá‹´²t×R÷/wZaüÏàîäšvÓ£0ÇäçGêM`ìVä:@»•Âx¹,ÿï<«Ÿ"„¬Õü`,´ çi“˜ ˧Ûéx‹ýßÜoòÆætRŠöåüœºñ‘íEÏDT¤±NÐØöÖÃüGüÁÓ35óP$Àп±UD(µç,—/Öåõ.v9,Rµs{ÈŸ€˜”YhôÇ“î±3zÜ©…FN§vÁ‘Ëf Ámj‰ÁÉåàÔ¶7û?­ãƒ0Ý6¿AÉ_#Ã׿¼9© Ò»ƒ'™Í—ŽÁú×ñß*t©”âzã_égÛÄ,s¢iëAÎc?nåðžÃCYŠè†£ÎºÎdñkçuûyzØÍçÐÔ“PºÃ’*²¦Š8iwëpõ–ý‰,ØÒ¨ÕŒ”K@Õ”Óª ´Á±¬ÿÂÒíýƒXàñ²`wßtŽóº©*7 îþëÙ æÿzK™[eÐ6ü…ä’®€Ñbi¤íçzÄb\‚Å-@ÖŽ¬»3„ò†›Ã Û{$NÌ–AÙ6P<ÕÈÖýLiû¡A㦣†˜ä6äà4>¢"À#¥•Ö3q”óØS·‡æ±DÊYº>ëùhr_¥ Ÿi;:ñ.›‘K½ž€ÜÔååÜ»G¶^#SmT¢ñ¸ ”Kˆ>6;#x¾˜<‚¸R¸0ü´Y|\ûÈi\tñuyJ/¼ø¦™§³-¼7«¹õ- € D‹bÃ×¥sOO:Ë\KWκS>†¯–[AÕ¯ÀO„L¹KX9•kê*:ïzó“®Ýò$à¯ýi’B„Å%~ý¢ù5Úb¿×|f! ,NnÀÒ”)"! 0ö­Ìô~h˜gY ŸÝË}ÖÉÕs‚<+YÇNífÕŸ¡dÂʾ ‡fåcŽ`§ 'Ÿƒêo;’¥!t!šq!™p!™£A=±ë?±8EƒzôQäÑEÔ³?†Ï.JР—!’UbQ~ýìÃø¶ËIÏËÎð6’žá&Ù\:,–žA)J–µÿ:™°ÁJöù$óy‹µ  п|yX5/+ÁÕ.ÆI…¯½Š=çÁš}ù=Lræô®™±)ÈïßNSGL¼w;Ë÷N^j—Ÿ?u.t†Áç} 0`¥ý†“¹†ó‰EªZS¯ÛKQŸMzNïŠÓÝb¢‹ý$·$½-"¶eû•xhI:[Ldqj.Fbùb —í.;—è¿ ô·®}C-¿§±²xºîOÆ6^÷xd<)›ŸŠµf<'Œú¹êe„áuù3ß”K‚•-œáCÁ’yQK$«fÆ*mmuMNòpxI‡Ûócu_u/'FFlX ±Ö?ñM?Âéµ’‘¿ “)%°¯])ÙÚ-[éEcÍOÇ®Ôk„¸>ì@0*ìEG+.©Gžõð έ½QUÈnú5Ž!®ébr!›J©•ÒnEê°%ï8¸VÜÇ”kÍææ”G._ê“T•*PÞ*¹¨¡°d©7Ê‹Tñ³ïê.åx>הΙÚ87ã¥úúžŸ †L.æò‘³·µ*™ùžÒ ÚÐË…‘S7«DL .iq;ŸÒ%ë îK÷ØÍNn~¶lhß“Ù<ÉJJïÊŠÕîÍPdð¼£tèJayU ˆ6ˆo›ñ¢\`‘dd¢ ¤¶5¨Òýqë¿¶dr¦"½.¤Võõ‘7»DE¶üçli2rµ`í ² rÜE—WQL÷2q£(2ÿ8jͰœE¸ñÈUu7~âþ¡UʈléÈzÊ1)Â5âèÍîXÔUßætØù¬/LîQQœÉ×RL>p†‹²xòÿ{éIåe™}ûUÔDDD”þ›4ÇÒñÞ¸aùàVì‘“ûÜ [ÆÜ^숆ÙX9}Q:Úä8FÎp<Ÿ^»¸“9zñm@ Hxðýݧ0œd<&4ÐËü~ŽþkcÑû0ô|£0Cn³bH劉EMÙ ÕÑU‡uãÊ—ßu Òy›,ª›WÐ|çI  Áæô9—¤oŠÄì¦#¼8¶Inr¦…5 !åIJœT]p¶‰¸^ÞîMp-uYÈ}{9S^äØ[t·ÿbÇ^a¥ÃÂçŠ{‹l"ºEªx1H c¤srÉc39Îx{îQzó)\x~.©ÿü’çg¾èæçg‘ #osRŒDòüY»Ûô òl?z¸ýó<®în?¬aþê£Uþûx1]xù?ÞÔJ¢åœ[Çõ}Y·EÉ2tX},Dá¼ÊËÅN^ñÈöQMgvÈÏÙ€cŒ¸Ò$s*,J’³Tòs˜êñO+…€ãk˳®Ü÷I¶ì¼ñBy0s˜d½¡¸ÄðM W§PpÚí@‹odK2¼çÙÛ’RÒëØ…O&„‘¹eƒ ç;G*•hË‹ž]dåŸ|À2½\d>oê¶ü’„Â7¸€r¿<2îi~u…!S“A¢éÊûüŒš·k¨—ªO.+£ÍËê“‘ÌO-_:•a¬‡êJçg»"êÁßtt uÒ;Ëët¹9*cl tï6ˆòoW$»`]õ w•ý¤'ÕiM¸ìQø”]êAÅÄzs„,q†Iv…‘|#mÁ°­1õ$’”ð ]$Ô$a·Éª{î“] 3†U%ÁíÇÛÏïs¸°‚ÈGÇÖT·,DvKÕÃãúÐÝå`Tjå•ý–§Ì›Z¬Joq›1/ÓÕ’ŒzaT–YS7.ËþB«7ЬÂjä¸Ô`¶d3§cà ÞȦ-ŽöYL:ÆKzùý“_”à,Ú¢ÿ½(ý¡Ãîÿ€ßqÝ`Ǫ©=@5À ÌÝþ¾gèé—§¢)6Ŭ7nûÿ[ãß¹Rüž®éÄ©yõ9\øƒõ½Ä=ü(¡C>”F›l ˜k<•ñgòKe†Oð#~Þ¬RÚžg a\'YvE*¦¨ÁNè|ÒHã·¹Y¤È‚/($<鱓¾"^åœÜÍæ]xOÃ…¿ó¬ÂoGéØrWþÒ­fL>YèêK>ZÆÓ·gDÝžã狆àVÔ«)í«÷›JûYynP­Ð§(t¡*ìSq*zS‹ø%|4øã+´S5Û,ú “å³NrÒÉW¤œ¹°ÒX>ÏFˆ=géÌ00åÓh4x‘õVào¸Y˜´\UÁdo¾Új†±µø/ú‚òré¯(}'Š?ÑK¹`á”=V­îׯ0ƒ©ê&É/ÜÕ­²Éì@êQ»°…`V‚^YüŸ ¸ÙÿÎ(aÙ:X?¬=‚Ö¥`Ø Æ¨†˜p3HtÀÔ½~FÐôúMíËfí¼»Wìþq¯÷¸ì«üŸæþ¿»½Êÿy//&bÿþÿ,çþøÝ©䈾2mÀ³¢Ú€–›9h¥ (® hI—Ü’¨ ®åw­ N´¾¤b@NCŽbÀ~ÒÑ,£°+ tÅ€º›Y¢•]Eââ¼ÒÄ4‹v ÊåÕ qÂr°a”RL]´û™tÁg:&³2¬'U¢&_ÁÈäO~bÒ©"U‰;óæyÆ¥¦ç—  «‡àKú©Öz»¡®üí† Yâtül8>ÿc:ø·¦H¯æ…¬ì)ù<1â¨ÐS+þœgŒÃÖ›NËö¥B‡è•VsMÌ2wÖ°]5zjL®‘œa·Ï˜ ‚pÛz6öƒ½Eê°ÁÊìŠ.áÆlÍ„cÄ™y ”Ýa:gH[¾Vm-©HZ¨IZ©’Vª¤”*)¡ã‰X¿99èü=WÔ„Ýßdq¯ùk·‚·øW¨BYv_É´¯^å!‰´± ÿµšèÈŽßÞ‰úˆn“RÔïÇ÷¥GJ‡ÝÇ£ÐÚ§é¡ÈßïA_Å‹_”äa#à ¿ru–~–úì=mùïÊá¥ê{W_iY4ÊÍWn™Zá±Wñgp¦icX¡¬"ât‡êS¹ú4Ö¿=[ƒ¿ÄZEÞ$7Isæù/éêñŒv~á+S•4\Êê€ç)»îð†3™t¿ùÔ"ÕR>[¬¥ÔdïäMâ$þ&V?OUJlÐ `n¿µH˜,®¨ÕB»~^Ú“S_ù~œ‚¤X‰Íž„cq>Sb ¼£ã´CÝ¡¥Þ®hÂÜY@˜þ¦h¿MuÓé)̪‘$}7AÏß½'tÑd/…ç5[ö òþÆpÈ Fû'( ™ê†é ÎÛÔíÆ¼G D¢±É6¥_˜›nåpçC9›…OšÚ HBò$ÈQ„E˜€h‘jf‘jéEJÎþÚ‰¸ãTÞŽEú<Øâ>¹4*?%I¡{í„×ÚÙÈùz‰î®üÁºD¾E/ã¡ÉA•€@·â¾3¥¯štÎÁ6Ýl¿¥±>À .;tñJ³wn6°€]‰eÂyJo`½È õ¸ |Zkèj7›¨o¸ÖáF&Æ”T¶÷4 ÒyZJ™ltØœ»}({Ä¥ÉC å:Òâo4¸‰#fcH‹vRéó`IT#s¯ÔF{†‡ì÷­u7&í€Y\}­ð+xA— 9b}¹¾L·„pƒ«É1œ# ™cwLgü]­×Ü™iÆâÒœUÈ™9¥öÝ—¶”`üÒ„”°ÉQ¥Hþ–%h­=F}ÔhŠjRülÆš; k\cÒ-&Äž­Ï­…å’fcCVsàÖœ ö'NƒkxóÀ=ˆ›ö(îY؃›¶8Ö>!7ÞDWXãÊügã²²6÷Œåèu"ì™biHä¨Õ[Û–ÀOpÛl+*?Y.ÃÎf¦ ÖIÜáP›ìieq@ùmޱÎ0ûoÜX÷^¡ýoz~Ïþ¿·wû_íñÕýï>^¼/\û_w6¤eü£ègŽMyIÿvaë„Æ¿ÞüÓ`8 Ú7c¤¶5 Qÿp¨ËXcŠ˜4i |©þL·èØaê—4Ââa¼Ø‚ýŸ^OgE a9`R²?çœRÀ?ÆëÐ Þš(Tz]èàX‰Ký޼\àÂà̬¹ÃOöS I…}.®Æ3,îçÁÞ«°R4(Ž'ý0ytÔvxc£!SF«V¢"ï'ÊI’ ç,þ6ØÁÂ'h¸ý¬Æ+¡³}ÃB[ ,²µ]Ó‹;/~w©˜>‹ûX;q* ´22À.‰Œzq‡p.ˆÌ0ËÚà<›þLWð*Úlè_¡ÌHƒHúH¹>³0‚›/'œ–)sðIÚËZñýòstôwÙQ¶ˆÃÇ›ôU>LüæwÕ]æÛ"žØÝ[.몉7Hrß’ˆS¬ÈͲCà¿`r:L2Á|ç°i>f“‹!®Ûºµœi§Ñ›²É{8œÉ$gÊBÜ‹W½wÓ^;"P!ŽÆð¹×«@õ¸ƒUöp¾Ãâêž0†2úŸ\f=:™ð›ÁŠv7Ú®ŠÓ/ðñcÖÏT×ïÜ RÜ¡äå_U`ØB¯Z*ŒÊ»;ò±}™îZ£ù¼}Òªˆƒ# º­Cúp|Ð:ºÓÉa½Qß'“I÷×#xG‚»3G·Þª¿M‰ãÓÝâç+ª\ØŸe-8õF7:ªFœ…Ý‚ëˆ"´i§Œ‡zš[ÑQ—#—9¾úÈ`¯ð’Ù?v×Hü—½Äì× ?ðò7u©‡e*éå—Eë0}’ÎÎDt™Å·2XkRá“TJ’]î«JD­ZUwQ"ÎzHG¶íÓ[c…á:jV–½$ã,©Å<ɃMÿ¹‰RÛË êKÖéKé^êk–—iØË·—ÌAÙeÖ…q¦¤„°=)JG‘ö˜ˆ¤wš×(û~—aˆª$TWE/çôUžU¸<®E7.)#y©‘‹ -xU™ò¼b8ª—-)Dc*½¯‹ÄéªkaqvyáÚÊÛï÷Ò¬ÇY÷ñ©þÓn‰kßY´ôn°ôŠ ÖK²Ñ—²^n{' Ý D6ÁK¹ I©­•—Ø|a³ oI= \Vz’ÿ¸WDÿÓïß§þ§º»»»ý8ˆÿ~¼½ÒÿÜÇKr_Wÿ³ÇõË×ß*ž80—üþ9=Æ?ð_RÒ¦õàÊ]<Ïk¼?PŽÕ¯Sk¤S˜AáääH–kùþ‰š§z™Çê7þ䊧çk‘ºRûtRâ­çÄNK²Ë7u^2Îët|ÉÄvÒpÜÏ ‰³ÉŠR÷t¿lüÙ±Ï/»BktFÿI}Y##Dv1£…fíƒjˆ<áØ‡˜L¤'-Ú`ûÙt0Á¤|ƒ™L”‰Ïõýl*Ý‘;­ ŽÆ±z·ßðý ¯¿úŒªTát›Ï[¨VÓ¬ÒiÙvïãßäÞïøãûÁù{üs Â}ü<»š‘È7`Õ˜vŒVŽÝ–ö‰]c+ô³®(+ÿ©,(UzAÁ-åšë5Aâv+ÁY ˜ÊÔÉ öZ¦y… Ø u´9ÊÞQÖLÝ.Áy Q-Ëržqš@Rç©,‹ääªÇn°ŽªþTw(Azùîºà¬Ô”CÎrÛ՞ͧèžtº¾Û³ÒZÀ„B­„“øÌ%±¼ ûì|%“Ïbî7¬®a="å«ñ“üÒ£s5gœ¤}7PÏqÙ;OWb¥‘÷&}&×wä´)zýþƒéü Èí|VaÃŒhŒ ƒjå*0ûœ[ÇTÒªC ðdî!oz»‰â;ýùwóçÞæOÛ™–¿Ø¬Q×9)%ÌÊy6øÐüÄ{=zŸ}êÁþ'÷“1fÿæ?Uß”ÎYwOög~ÌÄ#ÊlŽ””P#§ÆM©4tš™¯Wm•ɸ=–k„ÛͰÊÓ7qÔ¾r¯ža‡²Ùs[±ß¦Ï“.‘ÛfJ$©+‰n6_kÿÜÁ_]YÉ̓¿"‚¦ƬÄðÆrIcE ñ.9…ɦO 6ÿÉÞëC§iü‚üŠ,R®¯!Ë0„M<«%~ñHH>ªÏ «†îš³hÍ"u£Ä ‡´ë cOü˜HÓƒ ¾œÑ®dñγ·Wª}=2>ä¬1·×¤lÎÙ£/à‘¡Ó“; Ó“-®éoæ3°Ó[3„½Ê]YEKö $à‚„wF—Í.¦ž'hÂ^3»ŠÔõ„¸Nxuút O2»‚¢|L3«…TðK„ _i*๾œoɪòè w=ÔÓí¼ V…Ô”~5±§?ß]ì©"­¦8,©{®éGvÖ5±mйÿáÇÊ#ýK9UíëÕÚõ'ÎV§Ù‡á“»‹»¢9Æ2*ÒŸÝ%úƒQ¾ïÆã¾â+ujbúžn›ÒGiH8׆1ñ‡dÂxé:I²†tFr…œjR³kYñÜTTg³¥ÝB~\·$zü¦ñµÎPo`ëTó7ª¦ÛØïîïA¯ûĵ€©‚¼ˆøäó«¾Ô^LÆØºãkfvWž-láùœøÓ‹9Bad£Š ;˜( ±?ø0À9­Xþ†¿[êa§”†Êvë_Öyã·ƒÎëÊ"L4,ÄÀÐÛË—c)çdð,yûøM]¾uù½Ío¯ùMûc)Œ÷»GuL}sø VåÅIµüðLCÉnš‡9ºæ&èîbfôøÆøí ¼á7liøõÕi^|.è¼:¬ð{G¾ÃÓp´üJZ÷f»Õ¦·_s­­öñ LÐúz(Û8Ìѱ·;ÚŸÁñqI.JÕ&¹Êýý“VITótûºDØÌòN4´¹)ùw£³Oï‡ožÑ{«Eoo$¼ÝÞÑßs&иŒø~+Ö}ÝyÞèðûá~ß[ð}º¢dàsžÏò™·`æ…Ù¾ÓóÇõTTNrï±pË:ÿÀWÓ@ýŽ#¬i¿DC†‰I<–Í„(MÚºA®[ Ž%¸*JÏi3â;A¯Ý ÚA+;n2>ÜŽO¡ÀßRÐ óçkóg$j:”|AèyÁ ´é´K„ž? Ÿ=Ág«<´’Z ŽÑ‘?¶d`–Ô¬Pá'žLu%’ .*A_t…üc;·/]¯4Sm±ÞcÀg¤±ä*ë$Ð^ þ¨¥=%?•ЬôçÍ(¸Gu–½Œ=é‡_ÕsO~ »@™s¦[´ž]Žçì­j¢yGYÖG(“ÿ?{ÿÚÕF’ü £óz>EžÙ{K d$°ÝíÏ:Æ6n$@ÚãYÿ=K@a«[H´.¾Ì3ûùì'.™Yy­*]°±-Í´Uå-2222"òS6±Éh(=Bô&âc2(¼˜[:zâQVV{P¯SU°Ýä³êD…#Yˆ9 ]s-o…õa¼W}Aƒ¬éz4Œ>âx'z[ª`_´ýâ³”¤U{‘Æ x+·‘ x··¿ãiÌ61‰¼ŒºÑ©“Æ™$ÆÑñVé\]$…AÈDñTõFU³‡â±TÑÌ÷±;J¢„F°:>Ùp‘R½è—w6Ú˜Éc×-ä\„6éÁ=÷Âë¥wé>Ç=8LÔàø.nf—ïå‰ 9qˆ&”ÊÏ@(®¯Â‡4+ÁéGÚvh…o á£JØMœ¤?*H§Í:Ð*£6§/ ©¾´£pú£Ðl”gi³.¡ØXÎå¦ð&CKL`y3RÏž‘£UÍÈ5_z-4æ'xk ‚/¸«}1‚+ŸÉŠ)æ.L›Î<úÍØhlܾMk£E6šV&dÚ+´ÑLE©í«…­¢Fš‰:gO<œ¢OÌi¤i W|…¹ûsk #M« ‘¦•)P ir¦$ÏJSxJæ!|+ ©ž=¥¶æ–iw;ͱ6—Ý‹ s&Yt/Ö¤Ünö­4­ ¡EØJÃ2lÇ^+MÎÈ3Ó¬ÀzD›œweÿbÌ_ÀL“Ãüyvš;b~ßF™2{Íükæ0ÿ|vâýwã¤75ø~^cMëkrtHî¼Bi¹cÍÒ|>ÿu9>_@‚ÌÏç9ÆsZ€ÙïÈXó½MÍ—^ sk¾-‚·ïÁ Øjœ¿Ã&$ٮр ÞÌoÅsupá¹ÒtÔê‘..—§£ûüù×ÏÓÑâ@(Š–kÏ“³ƒÛx™LÕ-{ —ÆÁ€;霖$¸"XpæŒà#”°÷IáIˆÑlJp¡cD¯ÿ’0q\Õÿèþa¬5w°ýrZoiá¤ÀižŸ¥¼!åÂÎo E‘bé™§è+`49B/ô+©9|Á‘ÎÐ…—Ð…mú?‚+€;»[¯û¥yDõFá-Ù´ŠAÏjÚ_2,Î?­4YT;Óà÷›Þð³Ì]1QW(«x£†_Ì®¯ûxcjDý‰›Þ‘ÇB¤æÉbyO¦I„OŒK.B °LÚ„ÙûÐë0ì¹ìJ?ÄÍÖ&ó­§…ÃÛìbí‘62á•$u÷Þ×kñºƒ=ݲ.y]‰žcd˜×Ieo<;Ùè¸Kip)ÙÈ1Ȧ"c?)$¥ÝŒ&— ¿¿›X&4ÀÞh` îcžwŶèUL#"ÓÍ[„»Aä‹b;ñ4Ý}Ì|qø@¢ÜÑ?|•†ÿmP*•¼! äï‡èM×NÞû¡8<º›"gã$ô‚9]ÇáùjöžÆÌv0X·‘;m»Æ´©ø†Ì©ƒ#PIjt—œ½ýtîx$9s—¾zìϺ3³™YâÈ'Ú~˜bÇ,.4åy©b`³xW臃Ϲ4U¾Ø(É‘W¹Öv®XÑVQŠÔ‘Ó_¥S½°ú:/ó a +=šsžÙ\ o+_Rø ],û džbξÒ)(¶ ë#IP—ZŸ0Ö'Œõ Ã}z'ŒõY"¾ØV®ë[ZùYHÇ·€àÍÏJtüåõ{#BκþŠýYŽbÆ*¼[~IÞÕçï6¯&e+ ³÷?ª"ß *ò†xˆU2’ §j)“ÑžÅ"±«Š·l5Üߨ³Hªä1ïàÜ™l»~<^´ð^g¶¾®2{–¥Ìf[”¶-K™=SÊìÙÒÊlÈ$XˆlX-ŽC/XÂàËL}q9z;•j‹­Ðz]•¶è/¦ñˆØéj«û Šˆðýd5+ñ:ß•µØY`Y]õþ9 ×¶hc®¾k[ô·£¹ÊU²¨íY®üŒ]Ho¯ï_XWÍ;ÛÌgt.$23äb–žéìƒy» B¸•;Úq–®(â3d7¤î“¯cGÕ³˜k(‚BZc/ùr¶óh@£X‡# QMME&Iv•Qê¤cGºA~TXÆÎœ½-çíÉö†l3–ÇU9`Å€•Z›ír@àX;°—½q‘x5Ûo@¾ÁŒlÌáûfc¿Ì2…îÿÄðVXT+º˜Ê<¥µ"§4aÔBwÇ,ïì°&\µ:•.xî™ íSðúHÑÆÎ¤"ëXm´½"AmBº„‚S+âahóÄŸìöZ7.ªçØqy·.  gkÆ–ÀÈPóB.îÈt¯E—–‹ÉÈ9!¡—¦µGnûLáºáòÄæ’Ç ±¨=FÔM5•9¸#cqµÔÀPREÙ©#ºIäøOÅ gó¥žÍ Wj®¹d™ ™ÃÎ()áÇ©¬-2/ª'D÷¢=‚b{ê…b{ÄÜá=â"|D ÈÇ:æ—/â1{¿²xù©o[¯è¨§¨”ÅcîVw¹ŽçlUZÖƒe¿/§ucÓ_¾Nä .bò›k{¾+ufï¥öf¾QÔ{úƒ/ÿÖ÷·ü» g1bZ_ŽÆCÎ}†:Bÿ*N1ëS5¬ðÓ­ë h—%·Úò« hãAîlç‡æ ¦»s=_¾²ˆSÞŒ–çßh-$ìZßž°kÝ+açÛÒíoÜ“ ßȧ»÷*×1EŒàEüÈ•}z;­Á+½²xâßÔOë™óʾxºØ•ý"h§v¹;¼³ßò{™¡nœ¸­®ÄVö$ ¸¯vg¿w1ú‘·9‘H­Éœè ø¦¾Ì}Ïíúh¼\7M`¾lOÍaÑ;û¦¿†±îòC&Z¦ð¹G!1¢í‡)vGwö[sûmZ÷ýÎ~`»\+;:¯Èý9ârïü4ßwÀ‰ÍÉiÔ ”C@|'ˆ8èÙb€mÇaËñYòXFL¯í×v`ÿÑ»PþÅC­:}?Ô¦­Ã¼‹;Ñ­¬ˆl>ÜTÍ-}{g‰$˜W5‘>=¾êí/µŸ+n*Dß]‡¾ónï>£ýX·w3Je¥vžÉóÓS¹™‚|wû…<§™3ØýÊTÅ;³ ‡Dð(¡2í‡EÎ+¼& C©”J‹[«æ¾[VÐwcMkîY^Çc&3fÞZ]È%žZÁqõ±«ú‡ ]Õo¹›YìªþŽvçµ¥Ã* š5µ#¯ÍŽ¿˜>¿Öæ×Úü2Ú<†œ,rÁo­âóžÒªõßB°Ãá"žÀ|MÞÕã×ZüRZü¹óTH?DõÝ­â$ª¾Yp­B7ô™.%ŠìÒá»SŽ^tj–ú­º³Ü-ý")ìrsݳÿrvüôŒ—­îþJDÕ]²ôókK뻡¼WÞG-8ذ (e·n±g¦By7$‘¥ðVïߨ?\öÆþ’>ç{£Ø;1,«¼Þ?÷ó·­°~&i–Ó¦;Ïrþ&ìÒw¡Í~#Qm ö×·=K6¹'è ‹\¼È½ý, ¶îY˜BéþYèê~F,§qw?Ä”wy?®÷¹¾ßλ¾?GžG£lþ~7æpÎ;ü-ïQ|£ÎÛ¥ç¼ÃßÚl[1aë;ü‹ßá/¼MšRû>ÞáÏ8IÑ×E¯÷•bQ•-5ÇÕ||™´KGrkéEfžÃXEÇ8°Æ p‘ˆé^(àŒ½A2ú¡`[;9á`?Œ²[\Õ=üÞTÝ;rýÜÛ+EîÞ`îÝ{‰°Üåû¹HíQÛSµ‹_ ËkÛbQ…[U/SB/zÿÞ^w‹_À?ÞØ8-|ÑI}©'5Ã…zü…ïàG'i¾Kø0‰óÜÂ/°¢|јAa;»EÂvÄ|‘;b‘à¼ù)‡‚xò‹›>Šp–fYJ^ŒOËìD~Ëé‚ÛëÒ½õÕyå>WEÉV‘#v°tqç[ðCßÙ¥{+–ô›U‚2û»„qw~fóôÒý\ ý €Øµ{WÑ{÷m¼wï':Ï"æVKþcÜ»?‡§-äÐVÁ‹÷!ÒßÓ›÷uË@H}ÿ’qoóÏÙðj$&—½ ¤þ5Læe2™ôÆŸu\ݽÃêþIµæ­|Úhw™¢yð²}¦µÃÿmÒÖÆÞ!Ðï%Pm›þÏ/W¨puãV›ì™]õGqS®îÃáiµÛ:,Þ~yù>84í$ÓÙx(F·Óþ ˆì>@fjéºàÉGºÂ¡ñæ·Nj‹ë쟞uÒ]j–-,E8tŸ?7§ó¯ùQ?ƒõ­jýa·³÷pò.™|¨^¯¶mø<ÞÝ¥ŸO?¦ŸÛuþí<ÞþK >ÛOj»ÛêÙ®íÖwkÛ«íFø3›LAP‹¿ÜôÆ“ÞÍh{^»^1]îÇ—@÷¬Ù9:ƒ³à>-Žs÷é¼ê¦Öƒãƒs9øWÓ6€nm‰Ã¨H¿Š«q¶P1¡r–ˆü1ATà®2¼¦åeÿC×ái2‚¤L’Jú݈QP ‡ýžh&ã?’Aò™vÛvã¥8œ^U«²’öèCrsû$0^àÕªè‚ † mŒßÍn@/™ÀwJ ·O÷_îw,Ãã£aÉQëÚÒjãqïsÑZT%±¡e[g¿qèÈ>8¾S«¸5KÜ:–H[Æ_gãÛÑ„ Yžñ‡¿§IR~ÒÍ&£ÁŒ X@#ë‰qRsòy2Mnª°5%@”äÏYßQêvš|R³YÁ/>¾OÆ |ןL0´uñy«­”eœ‚7ôoSôà-~ ¤â`Ó=>ET˜3]·â¶7žö¡W·ý#Òݱ¶1fYN“ñåûÞd4޵Ì& Á@®{¨?¡Â•vù™8†nÂgF·©Ûâ6ß̦4HÙõ LÄlØŸŠÁè#ú¢Çýëg|õôL5z{k=­òh¸Ð:×ú×'’u7öü «I©®ÉZRIó‘1³jnÛ’EJý!ÌnY1˜©>b·†3bÿÀäVD¿šT+Ä£ñ¿$;§>rZUlïÏĶìMé<³Âûé8ƒ€Õxú–D2«á>©Ž4«²m£/ ‹A¨P—h5õp9VÄU¨H"¦„Ë©myކø™;#ùùr”hP"M·Ô§þ” ñÜOdhÒ[ÄÓýÿô8ÁXØÈŸ‡g¿Ð{Ävúä ÒŒ¥G;Ûb,Ä„ØKMu&`ô®p ¥ô챜ªrM@͛ާR (#ëGÙDõ+r*ùåSÔ¦&¶JKÖë.xŒé€±%×(ê±ií‰ã_Ì*h±;ÿ±71ÀË |“¤h_õ»9'34+ÈN¹ü %ا3§ÌdPõi|†z°]¥Ʋ†7zv›+˜Ýf•k Ì.ö'0»fÐݧˆÍu‰§”ëÙ€Fc¾ðwz!ÝVŸ‡×ß‚™éIÉTºÂm¢?$)lìåN-}ÍëWúä6O>Áú|¦ˆ^KÌV²ì"™‹ûÊ ™&WL”.F’ãªf¿u&¯À䨿åh6¸¢•hDÍK‚>[ÅÇTOö?¯“Ulv!õ$C™Øsºßi[Úlõ§þ úØ›ýNó°¡+Lk>ÀXhà–Kñb6¼ä}ÇÔR:íîÁ^Z1•µìJ.a_ Ñ…µœhmGá4™0Õ‰…qWïÝÀtŒIPñª0N¿mèg|Bçÿ«2ÏÿpâßÙÞuÏÿ»Û×çÿ/ñ‘‹Ü9ÿ?/áµµ3º¼†öU/ÕpJ° 6næãˆ©C?pê[±ì½jt{§æß NAã™2UKB Eç13äÙº%þyVâÆ62íàèFáîl¤aGsšž;ö+€×………×Ë8Ml™À:Z–}†¶^<%YaÁSÒ†¯§8—AÇóý}ÒÅR%%{J @4¶1<–Á»/[x×;Qé\r#›ø9[@ì~|ß¿|OPg5ó2¹¢I@ôùÓ–n*òÚ«°fªjlÁ¡|ú~dú"+êvç¹m|ñ^”ºrð@I]ÇJð\éÏ;¡èTú™^!.‘áh¸5%~ ‹P÷„ß@#<ß …£ýe2¤S Ù”ÖN¸Àzì 9˜#“ØY{®;¤&2ËK¦ì#ÒuzÒï(wh"Î76€uQc?/`PÁÅŠ< ]z=oÔÌcB÷6¹ì_÷‘P·¬=ã즬œ C'3–s†={jŸ¯4ÀÑßoAr8DåãœW¼‹Å§YÔ…ºJš¢1ï7~$iË^Óéiòì§ù£;jÞ&5¬nÚØƒáÈi¾ºd©öPëÎYŽÄõòY rh”+ÚªMt iŒOÍù©K™kX–R_ý’¼áw ÆKw`~î°›Ä/‚b¥({¨³ Š)—½!™Fp¼¹Hòý–|¿¸©Tö7=<VØ–e…·jc¡koß]ÕÙǃ¦2ó»þ5Ó•x©"ØšnN>$} Í`:“™’IqB%«¶Âʪ>ö'Iù¿Ût#‡ú½Šnç­™yú uÅ:}&ªÃ¤ŠÝV\ ÃP_ñ$^ކS¥G„‚|õW*¨Óñèó]›¬[ʨٕ•”r8IÞ^õÌÖ!EÍ€cDÇ k èÝR¿ŒÃÏÍšjú¬`Ó¨rŸíÙ²ôm«lr|ãnô@÷Ö|Þ}`­Ÿ³$ª‘8O½þp’®¼€6éìèVõ^%{¼5–ø¢*¶rÎXrãð‰ëH%FÁJÑNÉðÒ`§³°ÓY•k‚­ý"ú׎„—ä î iå«-ÙÒ Í;œ¡léx` ¬~³Sí]í!*}ºJÛ±[e¦Œ) H¸}cñ=2‹LÃåfñü´*«ŠÌcJgõVûZê‘Zr²‹-†]ÔÑEy{!Ú‡k:Á—½-Ñ÷ É@%}l!‡¬Œh¢J\SÑè¢õ§xß…„5ݳ!ü {ϻĚÌn“qðlGJönûa°M³†ïáHœ/ûè›ù[Â)Vam}8 ³ì,WíÒ8BNHsVÇí&üG7òGpL&L{7žP6ë×ìš÷ŽˆãdÐC©}ñY.OÃÉéÌa¸£ÑU4ó]®îQs¾³¡¦b¿À_*ôwe«è XïF£+tˆbÌ@–…´ûˆÉ{r6½£;Mhê•’¯Á;Z(ˆ‘Cy_1k(Ü gÄÁý9KÆŸÉZ0™ÀÉ÷êó lùÙéžuop9CÊÙL8Ákë’Ô˜dyɰf5Ó÷Лvz¦Ì!M0T[D2,åÿ™è]¢gr:’Efƒ±ðä²·dY¯¦5-‹»5­j´_c·O:ÀPì;T+RÚ8'úù~ôÖÚ0ä’4׫Z§ä ‡ íã•7¡éWâ¶e·j7a³ šnÆý[å)â{Ín5Œ´Š'Ý«Í@Åó¬Üz¬†™ÆMó-_9†³zkß2–è%œùêöþ6½Œ7ÉðË’©Z>]¢ß•ì¼Fã‡G/öìöOÎö;ÿ¬àU‡³†üÑåŸmþqÄ?ºYvïöé9>—…Ϲð9>ïÆMÇ|ç@Þü’ÙW0X™–á_ü¯»—s‡aÒ–æ'ðãL_a–Ù[EnŽg©Õ±½ðƒÿDàŠhïá?(äÛ¬jÚ ÔîüÚ<Ì0iS±ŠkÞ?îªãèt’Á<›•žŸµ(<8èíž×O‹¾"Ñ9*0®ÂW éÇ 9ëé_58’º"oÓÆÑÚ{Eãi¿ÜÓš©Èê*n1 5‹B•'Ó Yæ‹o襆eݪÝ@ËBg‡¦Øù„Ä<¡1+‡ÍºÞ ]û…¾ÁUU:U.dâ*u:yÞõßè:uÈ^ž§½<7zy~ä×`wó¼í¿aô“%rŠ¤Ñ [5Yêí£ÓjÉ#VúëQúkVˆ‡’Vl/ý5­ø+Æ?Ü%[R/6ÚÏUoâ]ð¢[ZÙÑ0;îû97+z¦•Ñ·Ç~Ù3,[c"”ÛòHåì ö+µÞ©)/+ä‡Ù„î:oó2͘s=éḭy+Õ©„.ª§øœEˆ´›_Ž®@mKÞõ‡C<×þ-½äõ7©ˆ]èHaúÀ¡”tñÞÍh6$Bªäãµ0Ð‡É ÿÜŽ@94J ƒ “L¥›ó2<ÎËj¯g’T­m7ùOбæáb0ºüƒ X‰Å©œAv×£Á`ô‘`œô>ZÁ¾h¯¨ô,ó«ö’õ"ôİžacy±*b'“úî?ðŒÓLã]ªP4“1£‰qt¼·;×í8é3Ùû’x\‘\ÏTØôð¡%÷¢œeØä™xäéÎ[iO…ý‘—nÏâ[B¥>¥–AÜæŽȨ̂ní&YÛbS´7ÔPkOcîµçÖIض…<·Ž'µi<{lÖ¡$#LOå®âÓ;uÝrZɼçJ•V1×­µ3¿ë¶•³nÝN–në.¶•'+p¨€Ó6ƒ( ð‰¢0_Í£"µ*ÒáIQPÖ|„µ‡\F]ŠOcm–0Ýì¢K>ë-å}´j2R3œ“ÂëQ=7ÇqÝf³lzW+PÁš—Ï÷Â˹²{¹}ßOw.q¿[XÜw×KD|?K¤Çn´æ8 .Æ¡¸Ùz´æPûó½pè½┡lU‹BIJ–⫨ˆÇwy%i½¾ð³^_ßà–Ó˜K)zRX)ÊsÜÑ’ðƒ Ò%‘•7e½$2›½/ZÀï[X)Zs(~¾½—B{¥JQtQñû.¯ã¬— ~ÖËåÙAæôûâúx7NzScmÌíûmݽï×¾ =c3Ïi“ÉaY‹)IóugWtêaÍìŽòýžÍçû-´_Ëù~ãìîù~¿‹¥3rþIº2LßüÆÂ¼µ%˜@Àg«oƒïDºèd‚œ;ﮬœ¼ú|¸—YI"NfýË?ä¥k„(ºM&ý‹Abõ·Å÷­ii¶Ãw¯³Úx™ ²èå{Äc¾ 'Óž ޱŒ@ ëA¹>õ8eVÉgÌQJ_A øßC,*_•I0Ÿ¢ÏC#;€>”¦ì"Ì™ͦ”³gŒi„Ä¿d^J®êtÿ`†;Ø~¹­·´ÌPàöÏÓÔ—„°#ìD&*Q'A1O¹y3]„®¤æðE —&£ß¨Œšv·ìd™ŠGÜ´¡K6­€w²šö€¼}ïëu B|Ó!Jð;â`1:!ü!±&«ˆuƯNf*7—™Áçf„øÄXˆv;Y¬"ÈÆÉÕì2³‰‚‹?1pÁz`™´ g¡÷¡× &LÙ•"þå|{SÍ¿›_øb¾]¬»F„#MQ ÙòiãÌžsù½D“£ç›"ÐS^Óxv²Ñq²·u®âvv¦bŠ©,9\•æòM3Oà{à$ðõFóaúA(µ£ÂnÊiÌ ÜF†þ1sxƒð®Wp¯¡žvñý ½)«ò3|ŠÔ<=–³q|Á˜®ãð|558âst$?Éô®1m*v4sê@t³9 Êí,Ò™sç$p¶gÝ™Ù̊‰¦‡Ì×éÛaˆøAôà:–£à*™ôǘ|Œ!a¹Û˜½„GÆ2H_‚/Êaâ‹4iöK4[‡ëùKè¸@.ôLbGšÒÔcÐÀ©El»æÙc†Ÿ1 O€s§HJÑgŸ&À-NÇŽœú€œœÜEÀªi”é)šˆ~&‰Nèv2ݵÍúE’–?ǵVÑ?y03âX”ÌcA5vìrtû7>JL9N;‚:ô„ƒç”Ü;þ'ŒùÅ—ËTŠáÒkP‘EEìÚ™Û¢“D ¡²™˜Ÿh¢€ü­U+PáÁ¨x%K¨tCª†¯öÄ5éGƒw#èûû› <8è„v·W¦fA6é·¬® )Î(=#nsŸqJøÛŽõm°{BH$Iè%¼˜ñF'úFzôÉN{ƒi¯j(ž`1óM¨kÔ̽“”Ú‚lµéêMnoƒ’\hU8oSÖ°*Ÿ¯YŠåRdt›•“TÇÄÉ院¸ª¹’m2²†ÖeÍþ¸¼u€L,5¢E*ÄZ-LCŒüGªó"spå\Áê"SS_ >Z,%ÃîƒÛ©`äzVE'lA=;èº*ªÝ×U‘ ¦…}WÝ'؈øέ<q?âÝçsl-áÖZÊ3·Ëe ßJoH¾ÛeïíÚr7žu¼û×ó‚„/«‰/¿öbàÀ ÜÛÃÆãÀÅÝù.î(âþûð[Ì»pæñW¬Â[±è]ñ Ÿ‚Ví˜kŽWèy˜C*„¥Ê7póá{ò7øÅÖ–ù{¢Ígtbm™ŸëØ3ÌŽGä9‘vD°±Ê“ŽBî„{öMhý…7¯å=‹Õˆûéˆh}áJæ¡ô]8 Èûá.X…J½ZoÁ¨)¯Ì_PxÎVé0˜G=þ*.ƒ\ÈœÆ sžd;y9­û™Cr›ã~ÜœeŽ!߀s!£‹GÖP<óBñÌÃQ¦Ê&ÿžçèÖZU©ÏŠçnœ«q ¬xî©®¾â™óü¾: žÕŃg›£åöPØâáÍ:GIˆ’§!®Ç£øÁêV=áE–žâ^[Ä¿gtAõÊT­Öj•óZQµj«níûUŸ×.]”Ìßs {ðÕ{a|]c¹ßχôSaóg#hyóç]b};è(Èù¬‚Š j äVyŽøЃ2:ñ¢l£­þæž/Ö |й ‚ïÞÃ3Ø{(ú¹‡óŒ1¯±‡Dcý÷ÿèŠ[cyŸûã#Yc}ì¡åœ/á»÷Õù¸ p¿œ/ñ.dq=õAŸà ©hWÖGk¯ÑÚk´ö­½Fk¯Ñ÷à5Zúd±Æ=²>÷ÿÃ÷(ÓW÷èçÂþ¸qîÜa·0îѽwÖ­Áîüh}iá‹éþßD@þÚ³ãSìÇðì¬ñ”ÖxJê³ÆSZã)Ñç›=]­ñ”¾$žÒÚ‡r|(~áµ+b}ù¶\ÙÇt½¬‘tϾ‰óÇÙiì&Ö}u‡¬‘ÜÏý÷ˆ¬‘ #;y_tÅ–¨žVE«}úªã<"÷Imý'½)L7ê‹@  ØŠ‡£©éS±- äjZ&:/R."®úš&îäÀRW ²ÁhÒG¶r:NÛ­qflqÙ;[Þ†fïcö¹¤€8-µ6Û!1`íY¶Êç°VQ W¦aËñZBcÅ}iבÎU2é¥s‹Õú,ÿ»¢F,¯tp6Ú{gÖ|Àßa¡\Xw &©Ó ê„Ð\ÈócÀ©E µÂ=4-jØC_P!ϵ‡Î½UrC v?ÔºÑyIì- éRõa¬@öpbW#ÈW¡òùJ­ÈÑkE`h±^”ª·¸¨s÷ò|-w%[xx„ êÍ< 4ëÿ±UàHÜLÐ/â«!6`L¼šmº :›ª©”šüÌÎ+š^PÕOÔôµ´;RÒDvôOö9C8jˆB§ =×Ù1+DTVÀ‹S¬p ¨(¢‘‹U2ÆJôs±ðÎ-æC‹-¹ºº(ª®‹ycHÅŠlðbŽHÒâ3rŸð©‹!¡ei°Y®Ø¥''Û/VmwEæà«td±’¸±˜EY,`T« W+‰X1ërÚbqr¸¢“¨¹0|! ãå,¸¦åÖ0ºï8Â+U튚ÕÄýRéìÜ Et·ôxÀ¬*¤fç¹iêjC!`¬Pra æÈvX± Â^8Ûac€?KÙXEP?û¶³µ·Îå[Üæ* š]Ékx,ÁeæÅ^dÁ~eÍêŽñf3bŸçÁ›Í€.PÍ’Iø20…´*>ʶ*} «bvl´]o\DöUÌ‹ó¥Ø«oÌe`´B†[sGH‹"qÃBÚHÍ´w‘Tµd††^Â"0½²á3„ÞÅàc†Õ≠[Ë)ÞËUèÞ[ŠyÝ› °”ßÎÑâpU¹þ¢Öâ;Èõ·kñÙ¦jÐMZ©µx)æX[ŒŸ¨Å8˜çp%VLž2ÜÔ£‚U¬Y^Êý£äILeF`à W‘ DñÔ¼,2Oº¿”IV`_8»â—t;KT¹ÀÂôIZL¾úá4˺V™¬2øêÊÁóåm±-äKåZ<\x¡-èªX$^„s.âŸÚ?ó¹-ξ·E1ÅEÑ:Ãm×i£cQý‹×GD y¶ ÙÔ”éÕòíùb–Ê9}=4X»]¾ÙCÅÚíbmív‰ôûv»,¥À+EdQÞ\Te_ !»(I‚%Wª„‡s)ñ'ÊnèÞ‘|A95ܵ#+?#+;Åpde£Å“'ëqQ Ÿ «ÀWvuåÀ‰ûD?Ÿ—kqWà¶„þä{sæð¿Ìã:[Â9’ï…Y‡Ñ‡G›íYQýêY‡Ñ=§Hðr¢ø±õkŸ¼>~“\Ü¡c/ÆÚ‡‘“§˜?+@Ûñh¸‚{ÀâÞœ‚tE,™B~Äýð@̉Ã#¼‰^{‚Ÿ^¿ÐÚ@_ÔùŒN¬ ôó~æAâñ=(nY/ŽÇ#DV{߆&_T¡XÞÔ¿¸W¦þ,Í,† 'ÄWw¼÷ܰ»®õÞP%KcádÕqï=ÙÐ8wäÈÅÕi¬WçIa\FÐ-о—¸:íMÁ\Çÿü à:K*¾_AF'–9\¬!{‚왋³L•Mþ]ø4Ö^‡KYŸ5jÏ×1=´öÏ; _ÉÚ¿FðÁÏÁçÎŒÒy>(Ç}«ôêBÃïÁ'Ý€dŒi%;r”‘c¢Äjˆëñè~Ì*ó"[Áñ‹¯mãß¹úº¨VfjdkmÌ{­¨6¶^·Æöݯgè{{lѾ?AíÁ’_[Ç[c ­Kè§ÂXBwgI½C,¡¯`R] 9Ÿ5 P‘A­…üÏJßÌPF'¾NøcúÕßÜ»ãÆú‚O±à=„`{x.[#E?÷Ðöž1æ5RÑ©hT”IÎà«÷áz€ÖD×HEßRѽpÏÌwgàþ»gâ݈&É^è•ÄðIsôe‰´v+­ÝJk·ÒÚ­´v+}Gn¥ek˜$ù¹Û‹á¢Ä·•ôóê ’¾–'oQ¨¤{ïÄ[Â…·”³jn÷Ò~¤¯ˆ–´¾ñEOßH¸ÿÚããSìòø¬a˜Ö0Lüù’y“¿ ïËcÉù¬1–ÖKkÉú:KJ¨µßaíwXC=éÏ·qZXC=­¡ž|ZÝ[ÆêI~ÖPOßÔ“÷e@ãk‹êáiU´Ú§¯:Î#òuÔ¶ÑÙñnœÀ2J°­GSÓ bŸ‡:ÉÕ ôEt6¤œDœõtFÜ•OÄU‚¬0šô‘µœÎÓ6gëŽ[[öŽ–·‘Ùû—}Î( HKðEÈ–ánV혻½°È´a8 ^K@Jp~\GJWɤ?–ž$Vг,ƒ(Þ-,–C-k6¢–¥E½˜ o/$ÈçáwpËœ¯ÈùÒ˜0”WöŒ¹Õ°1²\…Å—Ïá%ÔÁ¶Mu¾(2m™!§¤s˜l¤B;Vª›UÊÓ™}ƒ%1~$ÊÕ3WÈ)×O‹,l ²µhÝ:æ YÅ®ÅÂBV¹3)œ¿Mõ¢ei\Dq ZÝcéI¾ ÿÚjk€ð¸iU:UÅæn—Úß•nÀ[†_ߎ‰[ÕÒy¨¥½€@QeCMñû~[%QmVÕº­6ÚϫƗÄj1fËÕàû׊í*ñ{a‰Sáõ›n5óí QÝÖÕåÆÔC!{¶ˆÂ^DUWЏYN‡ §([ Üיɗ+œ˜"Q‹MË'x0ï[] ÙqwAšûÇKûý'vAî·¸îõ0F8\ކ8=J-t6T_\‰Éì6«y›È:T(‰¨?m´[m㘌‹{YmïW·ÕÔ]£§ûÕ—§Õº÷ >ÏÄ£mq€GN (Õ¼å{.$M6kPÅ3ý×ÁþVIUÈI:jŸ´Ïö=Ò¸ý9Œ÷ç1÷Gw†fekî>=.Ø'g²Î†W#1¹]–É0¹L&“Þø³MïîÞauÿ¤Z Ò»Ñî´â̓—í³–³ýi³ùÞ!ðñË â…_®Pa94ò®ú£ø¹Öæ–ЫêÓVÍX%ÙF}9†Pï¨7ÀÝÖañÞðËwK¡ôiI 9üØI¦³ñPŒn§ýã©GR9•k©$à&yA´o~ëüªuöOÏ:éÖ¼ò{t6šîùsSnýõ/ëÏŸAfæ­jýa·³÷pò.™|ø½z½Ò6¶áóxw—~>yü˜~n×ùïíÚnmw{ç/5øl?©ÕíÔÿßíÖjÛ+íEä3›LAS¹é'½›Ñ$ö¼v½Z²Ü‹¯¢îY³st[Î>¯¯×%Œyop<#Y¹÷î¹R ÿ¿)rJœ“…åŠ$7xï~{û§"£‰NÒ©?=1]O?öƉÀµ ]·ãчþ‡XÅŸ&Ã!è (lfŸôó=P@åö{¢™ŒÿHÉçŠñt4{ XuÈ6ªrôdzñíh‚ÿ/ðW–-ê>Ë„ÖTzX#ª[n&Q‚é*3ˆqÒ`­­‹Ï[mqÓƒ¥þ ¥ÑÇ÷ ¬ ý3Ñ®K&8õÒ9 ¯7qq‘Ï¿67ÿ|úÄ?¶Õ_^ù°À™Pì»!ÎÿÏ´"Ë?ãòâ_#þ*ŸÛ>–àÑ¥+d(ÚL}JfJÀÊ•Ï%FãéûÑNÔL6õ²þ¹]½iÖÅTÔ €` fÁjôºFéãO{~¹ü%,®›!}s&›•…°":¨ã·XIFl]½·ðHÝÁgÉ]/fÐe"Ï“)œN'—ý¿·a'Œ±µ-Æ!Œ. üÄfe,ø«Ù%É®×½ËÑE_ÜzCêíxÄ‚eÂCÓÒˆú7·L!®ˆîð4¦/Ž®±žÆäŽú¸7þCü«ö?Uq0$\ö& ¶<^%ãëÁè£ÚsdWzÃwä=šËÑUÿºÕËgÓqo8Aã‰~¼çýk÷p”³IrUÇý#è×…ç»Ïø%Ñg 4ói2¾|­ð^%¢ÓÿºXÿ9ävS˜)€/?«þ¥ùz„Ç j~ceü)/õ‡XVÜ$0U—t èúnÖƒqNÞå°øoÄ{Åóäæ&0—É-û_;ÿSU\p9^±@Îh;ž¾ïMaŒ0æ˜ÿ‰ÝÉ>ÏÈõl0Ðâ47Xô÷Óá´ßÀVEÿýÿ<†ëäÿŠ?z··½RcãyYI$þ¦JÝ—LOŒ<^t;Ä4¾H€snÙÖ^&L.(.ç™Î=ˆŽ4ºL®fcÞr/ß÷“蕸¦‰ÆÞÃÒÆÑÀºÅɾj ÖŒ!/!jR=ª<þ ý©ì®øt ©ÞÝ™(¼øÕ.ý¯'Lãîèfc6¢öÿÞ ’f”ê? ´?þëôøÊ´`z`Õö`s¥MXÒ&]EccÞô–Þ£¹x§‹ˆáhˆqƒÏÉîÃ:Êðê•“N<o‰’8k?ßï¼8<úM€Jr.-ÓbL>MÇКôIEm‰#¯–¥ýÿXlËm^ÅÍ{š4^fô1Š/œm¶U¾•j]Œ&´Î´:sÕןN¤|ÓŠ,, W¸áß–f[b-¶"öÆ# UA‡<¶DºjE¼L¹>K¼ƒN¦xÍiþé„¢ÿ¯¤Ö«* ®§âÊ8’ކˆ£Q_}ön 9iŽªÊ]¯{Ðh‰×U½mÃ|B½··ƒ*(#ø½öH”j?ÿ¼ Ëçöþ|\ߪ=ÙÅâ ‚ÄqÿߪÂB'¹ô6ßÑ0ÙšÒ«D¤Ò‰GRS¯d0áÊ'G×€ÿ÷¤R39v»ß½ìÃ?0à*Å:ëÎoSç’ßyôóÖΓu~ç°œ!Ÿ~­ª)yª:«åýè 9÷f4NRž ž“Õ¢üm•gü©8PkE |YS:ü­*rÌÜA¥ÖbzfTÂÛâuZR·à#“É,ÕŸç õ ‘[º±I%xÌ®ðåNsö^ÛÿÔCNfEXJ«™ÿoüC§‹A‚êÒ8¹ýH>PÕÛóKzØLiõ㦚˜ ]ʆdÍíÿ‡´ª¾§·üÏ£™ì©>+YýâgxÔBJ€ÖÔ)Ç0Q3Õý.ìû¨±ÉÏt j&îߤ,›/>C/ÑSÚû¨J-/Q8€RˆªË¸ßãÕü‹Sò,Zrv{›Yòe´$G9 ìSWE¶4ÎÂTˆô#RßɧÄ7F.AßYCÉDƒa' µcÛ†8›yºìØØà‘Ædåf‹»ß» x$…0OB°›v“„åüŸ^Tù«dr9îß*‰n3†üй,¹îaøh5ɘ–vzÈÁ7}Ã|?І2I"(¯ œŽGŸú0¡p¬§G‡ÏöàŸýã.(øg÷¤sZj,‚¯žu­½W¥ûÊ.¿îÑQ¢AfXÁ¸ù•|ºLn§¬lƒn:&=éu›ÑÀØ•ÍÏô­?6:÷ lvg¿ŠCTz…¾y&Òa“Ú¨ ß µ2Ô^&rÚzdQA#HhÂÚ#.>Õq brÚûl-à G3zCFíê 25ñg‚”„¤‡Š6ˆ3y1ÓÀT„˜ÇÌgÓ²– ˆêÉu©óÙ¦q ’Õ=W`aÞiÁ›³AèdÒƒ#ä5l¢“Ir; ©.!2âšqÖˆ 2׸ï53ÛRHyFöŒƒV£¨ŠW@ا ãIaÈÀª”2ï/+ó– ­³¢>}§ÇrþÔëùñÔz›)®˜oÏzªO¡¤ƒè,}ÀwZç´+„ [²v:QhàGã+9ˆà Cµ˜ƒ1g$ tä²?|þÆ3™‚èå£k°/i¯Ñòy¨µ±:™]1ǵä÷Šã¤‘Ø,ŠÌ.ϺÐ;ÕË©·±WoàÊTÝž·jcC Ôn–cEÁl¬a5öp4›R›d|&ªTà, Y,Jh„n[·Žàˆ;Ègf%Ç\ußüÔŸZÀN׬®` * "h|Û™ù~†"ji¤Îš!7Õ¹‚–ʯ£ÓhÿÚ0͸ŽEuœ¸k:¸Ÿ’R"+sæ™ØáÚ«ø•¿cH¤_´ª˜,à™ðR0où½ànÊ<±²ÔÔ™ª,JÑè‚¢AL‹Ð"®ØéŠ¡{pȱÌD¡zRÏÞ°}>+à˜<èï’DQÉU ÐnIŸµaQ•h£ª—ah ô”Úu&ìÌJwºªaK®,¦‘Fu3›ÎHÄi¥j`nùp< Ùhj„!Ý3U I‡(IE´ü ÙÔ E ò>,§rˆû'þ~NªËZN/O^NØ\j9•ž¨«þ•œsŽdS3Ȫs{XÒ‰Qb]¦,mùÀùh;¬xÖqçc­æ`ìÈEâO PUêy$+UAôîÕ@û^yÒZî­ØøR€ZÐçW{Ú.—Sœ§á¤ÝsÍf×v“LY8ŸO¦©ɤÑ@ùÿþ·±ÕÝkîoœmÐx6ÎÿÏéÿûï:hÂðŒ~Ã^¡f]µÏ‚¶”oçˆô\ùËoAÅj 3|"ŵùÍ0×ã$y➥Ó24j,è÷£áàs¤šÐ‰ãW1 –;éž½B}qOcZ­ݪ?™€°d?‚^ámøõöMåïéstŠ©t^H ×R\ ñÁ×Ñl #©,ˆP{ UºÝ:S^=eÞ.js/r(þ ‹6^_ˆ’‚ŸEQ)©ç*T(…7½O¥Z¥¥êÇmŽê×!ƒyú¡¯4¾˜*–AÙ«ä6á91ÙX y¤BwkèêKÄ{8Ò> Ï,¿N-Ù?ôR!mRÉb—334°«=Ÿ¥;IJý#Ñ­Š÷g—6d«Aæ­;PH#Kõ2™ØzP°/)qÚûËÇT-ÅïŠ~yü Ù‚>ûä–°v®€t»š%êÈ‹o±XŸ Ï3ºù{tCç^ÃÃ?¦$ø»¿Å¤BE–2:A}€(gSÓÔY”A£uÎeÈ Þ¢ÏåÝx@[ÐP Á‰ÃH­¨™Ð¸lãˆk™ÕC6$©sžËnË^>šž;GS5&²ÇȧkKn1Ô ;Å&¿ó‰›‰~‰4Þ4îÖ È3³wTmÉÒ–!M(©E%g0Ê6é};í½Ô,RSˆÞ‡Îóø«À>ÄÑ©áˆE-ØfN=—úmÞ¶ÚåŒBH¡ÖyYÈQÐ1e·¢{Ö³[AÏÚAv‘¸"¼÷ K’زDîpÒ@®bZÈR ç>4“žÜÙçÎ2¦*$ôå´ˆšLHœ ÎŠ<ÓGbZÃõxÊ^jÆÏòW”™òYþÏÝé%‘N£­„åúÕ¤*Ãa":¡,øØ> ÿRšteÄ |Éñe¹Öuø\$¸!@×Ú¹V¬trx•Öuˆ·21A¼˜-¸#c‘}µâ2[¯€O …«#X±¹rµìõ»Žý¶Ì!¾uÉêHÜG'¼¶ê5·c7·“Û\ÆñXè²2pY ò£–ß§]»O»¡>¹’pwÒ‘Or´ SßYlAR³° MþýÿôQ ûýÿŠÿîuKÒÓJ¿\Á¿—ËÿÕîM kÄNE—v"à ¯g(–F$BNŧ½T1 Wdj+´ õ§– úöñ\§Ü*ኦÚf¢Ìªs*üvƒº†Úf7ð]oðyÒ°Ðc$Óº„Á9®­ƒBlBr1ªÂÇQh8Ðq 1 (t¸"9ÆxŒ ƒ¶J¹Ë ’á;8µBß8€œ¾þݹ*=¦Ý„ß'µ>%µ öÖgb[§¿ÉâÇN£µºß%*ŽQÝÞß®Pqúëþ…þåg ÒÐ#(Ôñ}_ϼ`Ðîþ¶¿h@Ùm´ÇÆ·ü5ÇÇõ˶úí„Óhœðo㣆úîä¨qìÞ#j¼¬¨_N_íŸ6*b¯«Âê|äf‰¿6:/÷ÝZZodÓ­7݃ök|¯sttÊ•ão¤-à/Ý­ƒ6ÿŠ•;õÐæ‰¥åkø[«qÈè¶e¿N Ûo×ÜZä8ð—îÁK*m9óÑ<ìþz€„N»¿áK}]oÿbÌ¿ãÕKùmÿÝÀmèà5ÖÏûãš|ë û[çˆ:øûÅ%÷;”~mzC>üµñj¿ñï˜Ê×Úuõ~{g—mïê¾µý:ÚG§Üè­~ëGw¼õþ©¾ëý&‡,º¿5íç’"‡G/€îÀ*LJçøô呚‡Ã£ßöyü‡Ýóý½ µ¥' Ú<úÕíKG½x¦¹ç :Òq¸š.Ç„Vë‹F÷´ûez=ãsA¿/fÃKÚ€ÓK=íÓÎA»{°'M`°HØþ8hÇGSºt»MVz`ô©¤—\?À@­Ö¨—T«Œ2ÜÝçHðn»ÓªËWößÀZn¯ù¯˜²€¿èb—cȧv§821Ú-RÆ£=2ŸªiןChn?V”z¤ëÎ.¤žA¼´²nãÍñ?+¸Îðg8¨?£ðÇoã¬ÑõÐM늄—åŸ]?oö;Ðnza9-ð¶4düYÓã8E #u«÷ÒøCE$äfLoƒÃ/É›^èËVâ¸Ü{a/}¡ãÕk cHÔ ´ì¼F¸|¬vh•z/>°@ 0KIÖGÎx.É¿Ra*ûàåƒr ¤“²£Ô/4þƒÄ|IkfjQuL»æ³ÊƒvvÍõXÍ´f¦—]óynÍ;^Í-x @b¨2»^™’‚…ÄRÔú-‡­¬Öy5¡Qž&㥞ø}>ÏíôÏNKê1ZI°’6õGáˆpÐH•"hQ‰³æ3†d®F¥«‡l‡Îb1ŸX»æn4ÞlãnÂ*âq&¯šï=cÊUø_OKæÊa1šÏ}Êô ž’xÀÊóƒŠØr‘a$Ä‚×ÜÿzZ'³þå2ÚÎF}厳×0ñ-¹W,Tß”]$‡nbF¯Þz2=&‹>ºÑ–Z6Éþý¿ÿßÿòöÿœŠ ÁÇØÿ>,ýW~ûßÿnð¯ðíËpRQ–#]›ºd˜¤´è ¯¶F××§.ÃAÙ ÆWþFxî˜<µÉÂ|¦¦É«°p0,Â’+cÞXp+ ƒK¬ò2òÂ`bÆTy¢)[#Û¢RKJ­²Á6o¦ï«W7CÐ4º¯ÊJ,ïcIÏžüŒ‹bäÝý×ÿç`•·zÀôÏÆÒ{.-yeFAÛám2Fo/ü¦x"ŸªÊ«éæ"Oôû3V´;éFÃz#äc€z I! ª7Hé—Mëéö®“VØ¿™ÝXu©·e]ô§®  iMò͇ª§ò-8žh¦íI7‘Õ˜z• –T•î‚Ú„ñ\¤+£÷Z¾ÑÖS®ÎZiy4Q‘ÒÎCl8ý—‡(“¢ð§³é+ÚP³Drl3w·Ë 7ª—}!õ¯¨ÛÐvßyi•…ÓQ8)Ùh‚vªtÐaª­R Ð_º ̕έ„W-7Ò:·Ç$G+u:w釆LúkOÛ„ºSÂh‘ü»5ÑGÓÁSë*ýÊäBÐxRŽ€àT'°§ÉåÔ2ŒÙÖXÙ0)ÍÚÑ)-﷣ɤW@Ù™Úû \ÓnU²uco2óóDêÇ©…±w0ÕdÇx ™Ñ†<6LJ'•†ÉÂøû´›Ýà:î ÂJ²Šw#|®7ÜØòi8RW¨Ñ'®‡9Q¾fÆMK¡]ÞÀmªO3Ð/‹«QÂ..ƒkPupîhØ©ÛÎvŽë¢À“°tö’òÝÑÊI5VíJ–†÷þªçk÷ÉOµÀÚ'òHN"3¹d˪ rø”¤ÓS¾fð•lš¼C%¹òÓ·¨I=;Q‹Q"d‘ãE‡8Ù)ðW›‹ÊÎAõ¥N#`Su‚L]C”ÂÖ 3ÀÇ–{i$NàûÝÈ÷"ß?ö¿ŸËމ×)ä™-D;i¹ Á$§Tão¥uÚÚ݆ÿQ´U¹ÂŽÉV¥VAA_àFÚ×¢&žÌx©{œ†vj´”°ñ( ‡Rú[Óâ ÉØ<¹2ãkÍ~Ž¥}ôn@5É-Oäi{ü9;葹Z¿1y¨æޤÑ×ÏÕ™ì~r“4˜Õü‘»_¿&x“ê8Æ\Ðvˆ ] ÝvM4´mâ”R%WÑÃR·ïÒ†I»¥.ίû.Õ>ê@ß<Ärf$ É(ÚþNN6èë!¹7ʇ)éq@¿å8=Ëé’ö¡ÐɇTzðG´Ë8¸•wø¥Ûá—:LÚè0?yÈ­~¢éc€¨ð{ɦèqÁjzìw"8Î:ÆX¡¤Ã¥‡qs ê"HØ—€1§‰cm„U?oЯ!lrþCé0Üä†%hYÊZ—R²ûÂ>m£32ÅÆIve½¡F9’ÞEQ}ܺü|‰ØmA|)²òÉ}ìÁ |FÕEDB}·M.%& wÜCíÓæ zM99Ö¥¦eµê޼û,ïÆðUS}g†2w *â " "ùU5bú2ejƒ,áéŠÖG—Pú¹Ê‘‰ZtE·Š®øÚ’«)+ ˆl2é<þIiׯÌÑô§Þé-SÁR BAHôö× ,T_8ñtf¤¡2hKT]š\_3h©ñµŠa”ˆœŒ9ê Ú`‹@k ©G䮺*^`Ø7÷ŸÕžÊÎ[Vbåä$wÚH²NÞ0…]@ï·ý?МüŽLëäþä«36µ¬'âŸöHW¶iÕ¼RP€Ä_jqÌÒkçÞ:’}`h€ž9-çå×&y>ÚÛ%ñSE{‚æ„'Gb|wú¼*öŸÄ¾i _Ó=?>_Üný)£G^S¿ Ê> •}µ •ÝÀrO@ì»8'j´ÒÌ op0 ÙÈìƒá µÃÑdznFãÏ)-ÚD öИ¥]У êƒ<“ –(߇7–L–àXCxoolÔ%9›‡¿Ò×™$Õ£“üE yÍô‡2ªOÏØ£ ÷I6¢Ik‘Qˆ¸”eAõM´ SódÖ›ôÅÅ`z¿;©ÀÚÓž&ò<”È^Z6 ¦² ¦Í5qèðŸØÐ5Ä¢jžMÌk+ýá‡Ñˆ:»9n†ã‹fÿq\F¸¨0]¯F$pAÊj.{pîe¿Ù]b”Þ”¥ Šo!´Lɨ"c²ÎQ¦¢„0råñnEìnÀ,¥Z%ÓÜF~Áóyœn‹›¿x]Çxž^Øv'j¢ì"m2BH^VMíºñ¥Þ§vvùË`ïö®9¼°§ôOcG³õÚ2 ¶Ët!²È„ ü,>&äcôWê le ãÒ`)…,Œ„Àڴб½)âKŸ^î¿îž—M‰‹wséBA檋³ÿÚÛø?OÁ‚ÑÄ;ÿÂwÓ²›ªl‘Wö—e&|<¸¡ø×'¯RúÊ.û)Øî¿ðAÕÿJO—LÙ‹A”o×ÚÂØä6ýÛ(Á¿›µ ý˧nRäßæùOÖòktÑŸãšeÏ+*ØœíHD\·êàºémJœØ®èdç~g…êm›ÀÐ:6X·ûZvµnô´Î­ßA?kV?éŸÝ»ìhm…Ù¯oq7iò¹O½9órâ3æ}ùnu¯ÐPÄ­[ Z½4_d+rîî Í CƆü•tÀÉZ¸Sõy!Ńâà_ؼ`6[/ü™•äNvïÎæ): õM9¥Èª¶W²C–•­êð†ìœˆ1‰q*¾µ30ü8ッ֬ŽÄVŠ<þüó9UÔÝ'®½ZïFòÿÕjªDñ="ÛtÉWŠìïø– éZS÷×êŒ|›Þï]¾çs‡*UUÐÉÐ;‰ 4ž`&|ÝÔ†ôx"+ª!~Û­ø;h9—éPúŸA&Ó/Lì¯ð´‡º+æ-DqY›ÔNŒäm¿jœì wzâ'[,Ìè£[¬À:·×···ñŽ“œ8Ù¨‡ýw2càC6aðÇ<ÍàÄno×ñÒR¶"ú"ž~¶¨†²S/þ»Iå¨V§KìøÁkV²F~ýWªû‰?Ò{A›ër ®òOâ¾Ag5;b§O…ƵiùIœÞò9îψ) ¯§xndøõO®1}ÝŠ]´ÊbTâyZúòƒqüm™ÔþÁm¨þ­m0 5Ǩ%uãzÕü«Ñoõäz…'`y ϶EÜ kÄ¿1ñ†:0Qr¼;nGqÀû ÏJÓîŒG3 ¦LýLTF/®Ópr3‡w m *O Z¼ØBnÚ²ÃI¹†8 vPïJüMúvyJ­ÅI²K2ùßRñ'9·¤¼É-!#¼õa]={)ŸqlyÀ(_Ìm?-乕M?ÔÂ>y¢Z¤‰^ºK‚=ÕæxŽ$9>wÓqN*2›ÉJð€ÄHCkLw¹zÅÙ²ùKÞêdN¸Å­(ºA¤ŽŠ—aAéôE{ ‡²-½1ŽT—e#. !ïIJ+€.!lð\ð'/¢Æ Eíˆ4l'p©I÷î„ëgَĆ© Z%ù7´ ×M>tíM3˜ñ§Ë©Öiïjf9ß¿Ä1²_èÕ öÝ®>èñ±HDÂþ¥¥RAï6ìáÛ£v€G=Ñrúö«Š=Êë'™qeŠ?æ›í¸ö›î;™ë?—›kôšÊÞ|¹¾5æú6´cU‘ëÀŽüоéÀçEÇ`•a_‹[*…m'*¿Q¼šÌŽ`Èû¼!ÂY$ÂáÚ¡b|굿Q Ë³sô1ƒ7Ê¡*æ‰ÞQ鳨¥°Èì-Ã/ -çf‚BÖ–L&ˆÉ€8@Ï[iá<&ÐŽÎ/ÃÑ ï«•öxwÙœ˜ßR¹ä1>÷1ÇŒã™{zÖ±<_*–Ç~_†ÀÚV(4i!4~|ޏ›¡£È…¡~͉âÉígñd·>_䎬€}Ô?õEæ-#Hg»æt§PgІ© ¡ÂÝ©‡b†0°B7ÔEXá32(ˆj°_ŽQÇŠòÃœÌ xŸßÍxü£¬äðÔ©ÄŠ1†‰‘,¹ñA|í÷‹ËôE3Þˆþ´©ì÷éÃÑ=õ5ª¢ažþ(ÿ•kI[ßà¨m«CðçÓ§fçûã4l ?˜„•°~°lpg‰¿ É{õ$[âË·\Qß¶E½nÓSÇ\Ñ”ç!1ÞŽŠqÝ©°üN{cC®5®•‘g§IBHÜWÉ„8õä Ì[ÐÊ›Ë]åõ<—”˜¤'6 ä•»ï4Úç¹àç›5ݬô¨Ó: ø”T×,ßW7¸à†TU©<på •ÚÏ?ïz«-í\”$X%{Ù, /]`Í!x7ƒÓ ͶÿëiItJtûŽƒoGýᔀÇ':a¥‘ò}sK*Ôá+…»+³DÉRÀ1Ý·G²o»fß0—J¼ý4Ÿ³r,z×S‰U×ßš¾WÀÊtg€so¶eêO¬çº(]“Ù%æ @duÌ­0ß©£v’bôÑX&u2† Oôºÿ¼}7½ág‚ÿ"ÌqTNQd o×½¥½küâíÑÏ?§i‚ì´NŠ9`ßûD‘ß„†Póƒ …‰ÿäŸTRÛ†d™¨l"˜MÄ°Ùø3'Np msCÕ¹zg,M“é‚ó ÿxš^ZÁ†LA2Gæà!ž€‚Êñ„“eK××ÎêP°7FÑb]q¤y/Gé¤ÇƒäÚËy¯8§¼hì‚2Ði´»”ϬÝyÕM³š5^Ð/ðïÁñÁ¹Œ¯ÿßÂÿ쟜í?¯ˆNEìUD Á?oð'üÓM¾ØïÀó&þ¯e ´&pÖbÒ2¶¶Äa㸱÷«¸÷]eÑ*Á˜Gs—á5­’ô?TQœ&C5“$©¤ßí4±:ì÷D3ÿ‘ ’Ïtpl7^ŠÃé•–,mØ=i{©k›V%ÔNŸãw3„ž¤ÂfïU£4ÝïxÄ1H­Ïħû/Í7ù˜,‰Ï„'JåìhQØ8thGtÇåË ô5Ô>ÌsIlˆ²œú=Þd£Ä}¥%Ùiú³YâÎãñ G~ îÉŸ/Ò¯äÏl~‘ï¾)16tºÆªLu<ƒJ;Ú3þð÷¼p‚÷¬Ã3©ðôÿÃÃéH#wÓ®…;™ü¾‡(Дlòy2Mn­@ýM€+’?g|Ñ9õ6ÄØ-›„’Ϲò(Ϩ$mNI.oÒ!¾¡›¤òS˜tqHŽh<Í„ð®u2Ý;,9çdª!÷CnÐJ–Á„0¾áTõ¡•\É Ÿ'“ËqÿV¥x–~ø9ª«×£莨ƒ`v«ŽêNrõ”ß«‘²Š¬~°ÿ BdRgI^.ª•A &¬?è_Œ)”ˆF#"Êxë´x°âöƒ§‚ó vÊ úm¯Lïlô‡Jò‹òÒ]½× Tt •¼ŠÊ§FE³¢½pE{±Š^¨è·÷ ŒwŒ::šòÒ±‹ýÁAÓ ]9™ç”½M’XjX’£`m^̦x$Kk _8§'¬#ªD I?ŽûÓ)0G·G^fLãQS” f¢Á3˜µîPiV#Lß`rãC VYò]Ýâ—6?F¶‘ëñŠ<ò*;¸JªÜdŒ_ NœdŽtÆk2%Œd’N!ÞàÁìð˜SïL%²àU*“דßÈ ®²Éüh6ìO½ü`VXÿŒs]ÞZïIì èðpVêWúågÛ˜K€OT0ù£|ÖGœ Ÿý8mmƒ*Y&忞p–icíWÅr×ÇþDBÜÛ =éœ$)«ß(œ¦PÉ’ô¸e2Y•ŽSé\Œ“Ë>Z¨aåëD‡N }3™Ý Ù›9CZ7s5 ʆ½Y㼤8:•Tóco<${2¸A N¸hÞð„1LGòñCB·gXÄ*Éž˜²j¾"Qxù!ô_NÒ.çL…½–ò”¤ ë¾’•§¹-B§éV²ÎG˜U”LÝ0æ°Äš8ëövЗ9SoPV«‰2S {›ùiX½&£ó.à @aø‰šbµ°÷ý©ìÛcbJ{}ì)©aLþì.LÜÍl0ís§/T^D%8,rBKˆN9&Äd¤wX°ÊˆÆ¼QÃý®OÞ*žyH¶z+Ç¡Õk[ãg$àS¢œåTwÛ03$‹î-på5¦>ýèËio-™ë"•­,¢grVqSNÇŸY6 ½l4­èÚ­dʉ‹Ä¬ÈÚ äàûSalªæë@ظaéf/¨eÔö”Õ#"¬ŠÔ8ƒ”Zl sZ±»^©‹ÄLåé=I*W=`#l4êæ^°ò|¢Ç:vFa‡¹$ áÔì¤Ú\/G·r­IºÄ¨¸­Â“ieQêV«¤rÑ¢˜ƒ;i . Ȫ§!šhý”¾-µGŒ±†*sÙyÿ”Þ'íH)Æ^Þ“/¿Š¼Œ¯·åëjòHbÖd§&uuì ìoIµ"Å•ޛÌŒmª-þñLlK “f=Oã vÞO·a²0m«Õ¸iåD¼kå›r³º6YÕ¯Ê>}jXy[uÎ^=<ÈUÒ|°¢„‡¯¶E÷tcƒöñBîÓJzñ€z¡V²Y‹¹¨‡Ð§›ÙdÊ}¸¨ùó™¹×°Y‹ZÎ \:ÊšºW•IÆÍ¥jªg/p 0k¡~àÖdªpFÏ¥Þ½ú¤w/“ð-ù$øíê0©r•Ô iùiŧ{…è:¼NžêÃ^T ¾¹§ßÔIÒ÷ÊÁ7›¡:Ó2r$0ÃEÈ é]QÔ†æ Ér=>üW¹&`´›Þ' !QüöÂä7¤s>˽pxÎâ)Å3/ä —ëíÉmX%Å&5ëж÷tš€’ͺ³ÎødÏÍâ¤ÄonœáTj- XÎø§UcÏJ9À•ÌÜçè®nq½^R6ÃY‡—LYŸŸÌüc©_œéðBG+Kù]Þ¿']RZ”& kÁW©±‚O/×¶Äp7Â@uÆòz±‚åõ¢*«òé&Á¦ÌoþË_^Tëâ ŒsJöáL†»Ñ<3\^¿ÀÙë£è;ê/úC8à\ÂŽùN.éCj"ƒc¿\`C.È•+òëèk÷9Kd±4 1æ\š¦}D¤ÃNSº`Ç)êØ],íCv•Û:ŸŸòl—Zo,µ5È¥š1Þ¬€1ÞT¹&Ÿ1È1ï2†[»v¸¨|ì©%ÛýbƒCÎ/4±£>VfÉÆÝ±0žÁÌñÇ iÄmo<í_²ÿ©¯ª~-W"½AûŠ Êîø8ÿôÓµVg®OÇg¯gR|•©'™ðö‰–È?´á £Ь>oå™Ä§¿á"!ç mv$à5¯sµYË›ÒïeQ¢+Q[ ÓÉMSYbÝ5k+d0'oN;gûÊú@š°.Cðo“[¤º•FÔ”Œ’ø½ìл74ÆÂþÆt Èë7q2”ˆ¼&Ppp3ÂC>?ôÄd€; »#¸ ‹¨KÓ«¶äe8‡ÜÓC ª8öæ9®6À&™µ0/IJíÉ“›Þ`€Ôuò1i ¶Ï¦ÞÑ@ÉÖT©ÀYêE¶@²î€M?CcÇÅ9¹…CDžJ²»áœÉĪ✭¬!Åø0ût{}Gˆ>Ò“A¶¥Fù!ý<+³»õo IÓR9ο©lðf-3Ra%©nǛ䩫nóÉ´wrjé$’A¼0 ù}ÉÜÏÊú8mŸÞÙYZ°K7Œ¸q¯oéÅý¦’J?k 2ÓÚ,’M$ö.>ÂÙP-*"‹=¢ë^ £¶ÿŽ‚ôïÏÚ¾=tžUÓxme°$û& lé1Ýà’ S̳Q)¬Í\µ]6§§Â¼YæZ[þN/ôµîµÕçŇ÷ØÒÃÄûÞ1`=¾ƒaS$³YË?œZúRB9,*›­ÞæH3¸â¥t´'ë}/PüeÐ ™¢c^ÅBÈÙ0£G¢u¤Q%“‘IfFD«`Ä#ÃE¤PMU3z#àÌ%E÷)÷v:ªî' ®Hý$Ú4Ž„‡cÈ¥'—­¡›D«‰è,ív¨ ûSq™Ý¦lŒvÜErÙ›MâÕL)‰¢÷¬ûSÂÑJY=ñG'ëcà<=s°¯ ZÅϳò‘æ}2{‡[½\ÎÏVñ1ƒm{ãÞ °÷Ø] Ä¢jˆùÊq£Óhí[‘¸œ‰ ²º½¿¹Í€6ÏDþ²ÂFUÛ‡$è8Ü×hþðèåÁžÝƒ½£C8`Tð”qpXí#Ž÷ÅëÁ ­£ßà‰,nuZòi(,—‚¡©þ×q àÕÓŠh`U™nŸ!`çÑán =z ?ÚµÐO~ýøüeç·Šè¶¡šeö?ÁŒàóÅlxÉl˜EžÃ.LF¼ëÝÃFkïU¶_îóÏÓŽ|ÿ ªm•¡ê*±b½íÎ.dœ˜Ñß@Ý—ûÀáüId‡ŸÝŠtxÈŸ]jqïøŸ…N°koö;ÍÃF kCH ó.C”^è´»{i…40‰ÁQ&—³))Ò]„…ÖñÞÞ-lþ“™¾ rªÛx ×@ÈÍÞ ûé Ìßéò*YÇÁ‹’j‰®˜rî­<Õ~É«¾­¾hv÷«é^nÞû2¥..;'#ñÑÀèîƒæóê¤nÃyk¯Xq^:x︴$Pê”›þ°3»±^åÅšÞéäE'‡dßµ<Å3é(dñ¼ÕÂѼîZU˜˜ª¢:ÁÐ7L{ã {b_Y05óä’C˜Ý0aŸ¿™³¢ÇÅGãAïÈ‘µ÷##´V¸p×¥k^*bK^(ÔïÉûÄÑ,MÅöØ“WϽ œ87šì«&V£2†Y¢û}éÕK¾J©´q¥Ä³†ÏGs ’ð­5Õ66æ~°Kn¾Z8Jë}Šë¿¬×ÙL¾¤^&–VͲÀ,RäÇ¡j+XRÙññD²6G…»©,Losš/ìl‹ƒˆ°„O³„‡AyÏpc;å ý¾¾³¾kŠÁݸlô0 ÍM!žñ8>HŠwßìû^ ïB}|ÂݬÕè #°ncVÞÐê¤óH‘³ÁàAÅYê‚´uj‹މzÙ÷¨­‹Íüé°oKÙÙ¶E&A\PŠ=s ²W¹9Æ[­ï´Ñ¶ÚqoøÇÖUrÝ¿ì£4hº5§–Í|Ö#+ЫÄzpö ÂÞb¾×Ìÿjj„…Yƒ]¬¨’lÅ[ÆÞ­»áí”!Éì3J;ês[wSÎ1÷ön~?sËêFr¨_B™D=5ÉڋܪeÎñ0tïH:çåë9l )[Dº¡i Ï赆¸ð<°ûÍ4äcEn¶SÙ Êšü<¦r—U¸Ï¸Å±Ä8Äë±ËVàr¤½Â”@Î1ˆ–[ü¤£(Š àtÃóI» CØðšÞ©Øë–|@ G*h§g“DÿÙ7"ó®AQ#ák·{öH:/B# CcT I5¬€‘9KtGŠÂkƒóÄèúk':YÖÁÑ6…5–Èf/hGÿ)Ocy’©±¼ñwý7æ®ÿ$¢±ü”yšƒfÎì£Hp³éï¥ÚŠoÿ<¯JÑëÐzQËÔ‰š7F¡7¾Bg’§¶èe­#öêñ®ÄhÂ*=V\ÏÔ¶¤‚œL­‹Ù׿ZØf±$É,B”U&ÒýÛI0:vHÕœ•@4ºÓ*˜(Ùß}Fæc ‰œüã`BñŸV •ÿôxw»¾ÃøOõúÎÎî6â?=®í®ñŸ¾Ä‡YÞÃZT!(éS̨…7Çö¿áÇ¿›íçÐõÛ¿IÉÉê€zqï¨u uû*P?Í7£g/.;ýh<*¨ho„ž¾ uuêuï”çÉÍM2¨ÀÏÞ»Ao(^õƒþ»Þ°"þ9úÏH¼ê_õH{1+zÝ›@Ã~rõ[¬U5³G&¾ÕOÞ›9¬È£¢LF×Ó„B§÷.Ñ`C8ì0—Ù§Â ]Ñ>ɉl윂ڣ3M_éW„ðJ¹3ΈéЛZðK-«Àï5ðÃu ~­@‹.JSPþ‘¢ˆe"MIR’Q°Ê£ˆAkù«1&”1¡€ÆEÓ§x+ ßB0qÆ”1YÁ‚Xc‚”Ç %š§3¼´†f yÅnzŸÐ¥íÃ"ǰ!¦ÉB 2ºÛ8ÙPxbO€¸U±kïf=8M“DâJG¥ävR–ÃEP2B­ôN;RLk¡e1Êp2Ss™þÃü¶ô‰ÇÛ‡®¼ï_ª UÊ-¥á‡¬È6Ñ)õzèéehzÏBÃô\qï48Îá¼ët;%àñ–¤÷ðùÖŠù—•ÈëZ¿ˆôê4œ©û\HžÉlšÞÝJä}ÙÑà“/ì¦'r,À@G=7¶¯©öÖú£ÙÄŒ{ÀNapïÄ›ö¤Ao‚§WVAS>ÁgIû ~Ä|_Cº¯ÔûC^l¹ôúœ*ý]2LÆú\<S "U kt} £~ÄÖ4#S8\:I×jhéŒ:{"³'Š#퉻ÛÓöàU¡í­ loi¬=YÓ‹¶'–Ü3fnÀ==‘.âž|ð%1÷Är°{jK–‡Ea÷d5•ç‚Ý#D ½³Ê`uR 3¾ µY†Vë© òqe!„=[Oõgn„=q7 {‚pöšŸqëëÍSQ’[¿T ÿ>ãÁ™éÖ ¢ÊzìÁÌ™ ͉²ÇKlÓ8Ð (£´äüƒ¨N‘ÊZøéì‚°n$ò¡±½/€ºWÔ)© Y TÔD•ÃÍÕn¥|(Qa-GÄw[K@‹}H•£ðO µëh>&ãáãéç[à}„ ¥,š¡Àì&‰ókªôf`¯…b*4åæEûÖP¶ôP$òf¥™½?DÓ¯“EQþCoŒQ”þuF?ÂÔ NJJO>ÕW‘ý †º¾#5káÒ*Œ‚ÜÙ6ZY´ˆ>ýûwQAY"$áÒï~¹…¿”Ëöë[™Ïx¥ë§ê¹F+œ’IMG¨«äSêÕ#&Ò¼hÍ€¤$+b&Áú0œr¤blje³[¦ö8A«*úñV£>GÂT­Þ]÷Ç“)w )j‡©÷+OËÆÄN”—ÊP‡»ìº' ²I¬ò§¹ïªCOõÞƒ£sp¥½‰P /Š¿ŽáÐû4”S´µN¦]ž±Z6œà¡´ï£ K]ÊÎKÓîÀ3NþOKC´YN½›Ë÷%}ÐNÜíºøÛKFþ7s]=Í‚¯¸MJðéËdŒÄNÀ} e©®PÛöA§½®ôó²yדOS> âðߓޔ"b–¡ï0&j°4Œ†>,ìEÂSÉÞkrÈHn5·´WÁx\ÊîXÚ—;›Ož¦¬Gs0C•÷ÓÞXÐ,J \AiP—bpfLŒò¿¥WþVåH±`oÝ:tô?ˆ‰šxÈ[Véíÿù¶jÿ·»È_Ñ_eÚ1&Õc·[hêv܇þ`D*ŸO¤¶÷Ö :L¦â-âl4*2®¶Ë…&rO}dP}Ó`äMYxðÚêêJÉ%;ûì†dÜ[]þ}"ZAßjƇtõTü&Ot‚¨=~D½ž)à æƒTCÚÞ?MÇêÊËeo¦.#7îïboŽ({ólÐMsÞ]Z±Zd—îéÅ÷h³ö96ig†D&]^È)HDÁ_N­"Öί­áý¿àίOŽý?=[\GOKÁ¡04óågeÉÓ÷°DI0ïàý÷íªLÃ1 .ßz‡3C[Ç+øbGžÂÐà9Ò!¦ZE}ÁXI´I¡ÛÖºÓUH³¡Ûtw¥ÙPåkÍf­Ù|ÍÆZ¼kõæÎÕ›’¼/õ©\VŠÎ'§w»@N üHQîí0ø‹¯-ikœþè¦}M*®:ySùµ4)u l¨±£rRõq¡ïÈ€TàjxGAdUé‘õ˜W,hJD!¹†™^Ê˯êf%`f"“iz»škQÎë‡9¾k94o(½Á»Ñ׉šMï SÉD{!ì§ÖvJ–R~EÂ_c>¹Z­ðe.f:mAÓ-’%&Wݱ›H%¢­I•è}ú}EDÙ¿ÆFíïo“ñO|gC+>‹\sÂm®,žêËÐy%½Ódóªq÷…o~˜Ëò9÷ó)æR°‹‘n µGñÛ3ÈÑ—!#¬Eêô"n;5j1Ä(,s4»$[©?LÁÛûøs3é_ÈOÖtµ….’ºJ«®¥·þ´£ý+€ÉðC<RëÚeŽ×aFã©x~tÖ<ÜWrÜÙß;èµ=!X¢ sÑÀn‘ŒÕ¹ëÙtÆÜRÎä†Wýî+â‡:òCK^å7îÈëgvûz¨YÉvS2‡ùÃdÆ;P€Ô’§„*LˆxWÌ‹7}ºFò⊠uÛ<•‘C†s©Iá|à ŠÇᙡx»?’ðzbš\¾öÿÄD(ºªH/{3Š—Avd‡5ëwâdô2>° þ}‹áßäI’^þé/ãHËÂDo1ŠÖó8íýç,ɰ÷ÛAwŸ8a9áÅ ÷N«„t î^9 ñuþé4¹¹¥9¸ònô³Ç/C? [½e¬×.ÒckcW$•¸ º6˜$1a%Jªãö¹Ëà¼týøÙÒrÒ¤Ér‹e¸’\q†«®áJÞ¢5<ÿ 9]½£´™Ð)ÕSRqz¬ƒeÒcýClãê´WƒÿJ~etPÇÊKwe¥µ2ª±4È#3žÈʨ(˜Ò !ñ^?µé²ýˆ×SÏ`ÏöÁ˜«Ê€=‰%×hM]á¿ò:ü¦äµÑd‚ª…?&ƒÑÕ¨S†`2óíL ÜÍd>ûÖ3~Bà0ùF S SÓ¦ÑC¦½^îù‡Šf˜˜A„’å-}Mõ:¥l?ÊëJMu×¾indMy¡qH(c8ÖX¢˜;…ÆgTÄ#•š.·¦ÝÛôb£ëÁÎØç(×UcØ ×˜SÓ>ߦ÷½jø!«,µÔùË&+,˜÷ œl×n|é6ù-¤2{n¥2{N©Ìø­Ð׋ƒvãðßíN‹LyùÅ^ëX}ѤŸñHâ‹X‰õ‡¬ë’ßÇk1<>8ÿ÷ËÎÑo§¯tàˆ®3È©Ó}Ôc3½šê¥M£`S²ûðâ®5Nøâ‘1VøóqvE-àå'aöô§ŒžšDWþ‚éé vŲÏe¦S¹#â£^(Ý\¡üpÿ¶ b—ÊP÷ï(âÞ"i怮Íh^9•>.N1NsB/v÷ë*SÝ›@ï¾ûLsE3®e¥[û!³Õ9Ïò€Ä‡§þ`6N´™ÌÉ:‡¯|£•?Æócþ*ŒÌF§t%¼ƒ#ëèñ”Ø>#¢IS{ÑŒX?‰ÇƒÆ] C„Šy A¥è úÿá =Éø)jø~J¶Ÿ@O¥Ò4et6œö~íódÙ3—o(ãÞM³·Î²·Š,{ë${‘${µÏd/ò÷‘d¯¾êÉ]'Ù‹æ›L²·º,{wb¯¹x>»¹3î}Ù\{÷9Çž^1M‘”,pZ Mbd¸ C/¾OnÈTÝvÒŸ ©e¦Ø‹ŠA•û”æìêó£¬%®ÚÍL”kwo¡v³Ón-‘–P±žK)(}G%nHžJ¢Ç©cϯcª/–ªïX"°(á¦êS Û“þõûI»GÉÏ‘"®X<§Ýœ ëb} Ïþ:Ú‚ÉÐÞè¡HOcnQ<ÈÌÄ0”öÅ,Ï“—çŬ%+É‹SíP3…¨p”õˆH5% °E Ã Ry3ŽŒé©rÎÊ;~å¶|ÍÊ}õæ¯i™'÷ÕúÊÿ5½¬¯6ýWNþ¯ÚvíÑ6çÿzRÛÝ~TÇü_õ'µuþ¯/ñáeoçÿ:ÝcÅM o–Ó¯=­'MîÔ›}‚CM#I‚Y°ô½PާÂy”—ÁLNõØt¢Æ37egc ù1L‘ôZýª¥nV†$£]üÕÈd¹ˆyNÔžMžæK*†•£4 V2Dü‘azöCj(fª°ö¬\ ðß …DªT 8/'*ýˆáQ)#ƒ›ŠAßð§D #MXìò‚ù$77ƒq^&’¨‹&l…Fè¿h¡Á;þölŒeúœ¾·!” ¢YØÉóc‹¶uYÊF÷qfÕ¹‹ŵê”sÂË2 *ðÆ“_èÍÈ„ÀðõA|âwŽîg¥?*ⲆèàN§wXºdƒSoõž¹s áðhÔGèu'€79£têP` 8e]hŒ9ÙXÂzVÖ©yȨ¥v¹ê¶jjþBšt ãÞúüV±€JͲ’t|› \ƒ,}}ý]vTG_¨¯²0IÈß5]óâñC±Œ;”ÑzáøB_G#þa1Ü ÿÞ™˜¦9¥P,!ªñc?&*GGš»„.’5>AÕ°ËŒXH¥œ8ùÕô>Œú|¥Pa˜É¿2žó… KB™rªÙ›0œÓ¥ÊIny ´Õ‰_{ï&SÊèëþ˜¼®Ç#ø»×ô‘ñ£±àhë@Îïâñþ2Qñíg7Iv`Ü®§ÀÝ­Ÿ·kâ§'ôþü˜\%*ÏÆò!O_$êiߊzÚ§¨'ƒDÈ„¶wTð?Ô‚p‹ÇÿÎãÝU‘.ûÇ®aø àˆÖj„â/‰éPdG³§än÷·Æñœ¡1Ñ@–ŒFù¹ßμá#&&F‰høˆ<ž'üê8å7ñò ô2‹šÀl˜ñÇ™Á!È]EþjNi8.DÈa*Jz¢µwIçQ‘{1æ^ä ž²V5†HßMœ}‡‹?S›Äó#±›f[”[Ë¢}NÁ¨!|ú©vaZóÞ„|‡ì8<8†®éZzŒƒÏ[8aŽK¨êÐjAgTõå~•Z »¥Ò~øEïÂjÄÖ^Ó£×Þ£ÔÈX %xf8—£9@_NÍL<.O‰ô5«l¼!¿¢r7šÑýػŽzâÙÏчvàÔÌ,…«šb%>5½(L`$ý|Ñü‚{À·ÛGÕBh#‡W¶%ö‚˜î_׸FÇãè4®™Ö´Šmj›Ç¸2:½HaÛ™ÜVlÝ µÔÅÊ<ëWE½·:#^Ž‰Ò†W‘a³+°±-vE‹ß‰_„‰×ð°ÙʾÍá]Yɹ0â]0qn´2®Nè›#æaΠePÊÇ,3ÝNfýË?`5ˆ‰“Xgò‡SŒc[†§‡}ç@­BÑTÚõ‰qkMÀ;Ê‚ù‚MQÒ€ù û lšÓÛߢs½g(ä ‡€qþþG–¿×hn›rA@µ[¯7Ù’+Ö³ ±ºüZÚ„{O‰­ê¢Œ“cÞ°ã"··pÀØÓØÌÚNíiÛê¨PÖ-¬÷µcÜ!ûÖkÇ̆ý2Œ-vÔôh•(ð´…Òýõ–öx;Dœ,)¬Ç"5ÝhR–Oå4G ¥£4i­6fÅIRÓãÕB«Í¯Zƒ%m½µÎÆ²ÍƒŠœdó/£"µµê~KÛ•ßZ_ö×ê;ƒ¨ZDx·-ʳxxýW§2ÏJ³“.•03žÝ^Qÿ¸×§ÀõÉì"+˜ŸÌ€4+müG›ùЋ'Ç ¨H]3_ DØ ²t;vɸÉîÅÚd÷Ã}ö¿ñõ—µÿÕ¶×\ûßΓÇkûß—øðrwìxéamÿûjö¿Î‹9ì-;ÍýÚþ·¤ýogmÿ[Üþg3ãÚþ÷Úÿr €¦p~T@!-€F-}4ö1áÀ&À¥m€+3Þ{+`Qûß ¢éx#Æ“NöáæŠŒi­VEžcôè78ºwO;ÝV†Y-ˈêüac¿}ï…|¾6ß}}ó]çÅ×7ß=×xû8ƒÔ?Á@ÆG±“Â?§³Ónb8±Ñ*Ïñ "Uó­þ—úá”4\£&;×D›Q¶o’ΆÔ/JQ`ÞÆeÕœ€€t¦ÝÊ£U[°$F'Iãóº©àIŒ·ØÒØnz9޲Luº ?»ÐS&¶‘“$¿UKÌìé‘„ûB̰±iú”øïÿ¦8|W¿c²z¦’ÏX[~Èl˜Ú·$ZŒqܵ©¸8ú¹ÉÖZ«B6 £Mïu:¯7_7·j~Ä¥V¨ ¿ê;ih’JÑ|Ó­yô°í¶¯·j1 ä@JäwÅ}¯UG#ÖD9@.|WD;lÀËí–÷ ÊnÏÚ[¯·^77u8$–Ò|ö4fÉÓäU£pº¨lÌ,=8á„8‹v ÷;€‡ÉõåÅ!ž¥ð—öEà ž:ño8‚ã À»YKǦ͕&—+s% 8«Ç>)mLQ+:EbK«IÔJþ¸¿[j€™ÓcW»a¼Å?_çYkåÇ"SЩ(Ÿ’1bºq­ÖWÁÐf«DÜ*ÜIÍãk«ðw÷ Ùû_Öþ»³]ØŸ¬í¿_âà ۵ÿî3XÆ¡™ñ[‚刾¬5˜ÉYš×0|†ù|‡„NØ , >lü #a-æâ³î¦YN‰ïGW\- ÷L)¦Ã´YxVjP^+´e¨¦Øžõðó ÄëÅ_Ï8±{ç—³ïÒ´¹„‘³' o·EöÐÔìµ]qç˜.“Žûïúx’11íî΢éß¶ë$)±µŽ5L8&´jþýYÿïÏò¯A5eú¹Xòæmµ ‚²Çæ´<“¹¿xõÖÊÒXÀ«qt‹PI(jZT~—ìi‰LU¤*±ç$-kUÓ2sV³"éRívS¥Àƒ#³•KÄê8ŽÑ<¡³’·²¢j+æײþgd‡ šô„&¸øs–pδÞd‹ýŠíôr0+¢ " ¹/á¼­ÄšêuE„“3'‰nÚbž™'ƒ³ê0‹Y¼ûRïLKW»å@Ék4™1MØÐô ›Î1%§ÍüÑx H¨þt¢åP8Îs?<”àäl¿óÏl‹÷o]mï~-ï>W*Õ¯Gǘq!ë(ÞnÒ=òvØ üelØKØä[ç:ÂUZäáè3ßlÀkØD{ L´Ú>kÙhy¦‹dùë52¬ñsõ2q|[’;ÊþIÕµ÷Îi²Ÿ?݃kç>8¥M¤yîn.ûR&ýƒ|“¾îo¸?KÛÿsmþ/(S&龜ú‹ÙÎXó‘|O[&yµƒQV ¬ÁJâÊœ¦¬5ÄõÎ0ô-\í[÷ÌCœI5‚40ÅåW¬œ9,²Œ‹ÂÒëÕÔ&"ÁYnÿÖUwå¹ÒJìa“ÍðýÀmoZw¼#?”9ÏKùõŠ^¢õ¼%ŸÔ- #Â@]rïâÜ)·nîyÈ"#Žúo8pB¶ë·Mê[iSPéVͱªîn?ë$Ç–‡‚%@Ûa% XpœÜP•#-uÏ#a8BWç…núö<»/éEž7AÅýA¸¤M üZ2¦»Éjsñ¹o.n»Ñº:ä6ËFK ŽÇ.ãs º}7ÍÎãJk·i“@GDB­Ñ/« çÄbŠG’)$WDm¸0Û[Ôó,Æa‡Dö±êˆ±Ò.ôî5;£ ;®ÃJ(´b¹Ï Ív›@þ×[@ì )· 6 ð¡ÆCƒwŒXusžvçäQ—^œšú­¢ÌZÀ·ÑžÃ½c3xê È*­8\½Íê¬Ëç¾·ÂrTu0¯ˆ§*g4Ô¬ì‘ÙPOe¸CÔ²gPΖ1É%€Ë%…¼ªd­îãã(G°½Ï…o¤„áV,°ÄÑÂãq÷ÃT(a·Ò§¦¨ç`íßùq?!ÿÏä‹ãxþŸÝíµÿç‹|xá»þŸ6½å Rpíß”hïU£ÓسÌB4Ê S‰á&ÂáJj|aWQ³Ä­Ïé,êr¸éÄŠ7À¼utØ©Úí r„^k ÇÑx þÆç2i²ºqжodxœô™kq=NYn š‘šÍõÌmÔL«{›\ö¯û‰Z,M½Û§¶=öAûÁSkÜ%Sï(;/ŸÒËÒ—Ocoî¹oÏÞÉø.OÌò«v|!‹¨Ë¸€€:˜‘\ðNC7 ,ë½Õ‘fU¶uÂÍá};-ìsKmfù˜Ïmí,³œeMk~ò¤Í Îp†ŸÔᥔ7‚~µhŠ𥿠f©Yåš³ôµý6_ÓerGñþïç1™Óm‘“…9–×y%N‹‚7ðO|!×D~:ä•dŒ'[ìÒ·ò³Åú‹âÞŽG~ÙܬŒ^²Ø¥<Ý;¹¬Ð6/+ £¾ £Œ•wÈ„%ë¶Ö˜¬ˆ¶–¸—KÑ ØlëŸKmåΪ‘ÆŒæÎnPW*þüqܧ{®MÞëÞZ™38Z~ÂF'6tÉãÎmçõñl¹>nרg¸yÂ=dj†û)™Ê14Ë9~œd9ž+Ðit4+ úá’½Ô¬qšÁÔ™p7³z˜½X´:ô!!íw‘Åbø‰ övºk;à÷ñìï.z|YûßníÉ#/þûÑÎÚþ÷%>Rfšö¿—Í:QŽ@¦tžï³X9<‚^€¬Ax)ø²#‚Š|žá%:|þ­á†¬„š6=¤ SIÚ Ïç œÓ˜Ü2¹XÇüã¼ÄÌcÄ©%;™¿ìz"é¿K†rÓáòqç&iöëÿ‡ÍxüEZÞŽG pÞˆÆfÆôn.®zÍO4¸è<¢¤´PT*ƒ—PŒ´•žÔm˜îÊÂô /áám¯OÖ'•ZLði]æÁ¡!°(Âæ²(N?ßRjl,cL4>N®‚¦Å«†í¼µ£¢Õô››äª§¼Áç_œ"DzH¬)´ý˜+7ëÖÑ-P‡Ê²*ßÌ.Ï)`/`LVOÒœ²ÖG6d™}pnðÖë…L® GY¯«m%øÒdÆI¿)á‰9Ÿ Lã3Ìfƒ9§ì0=8¦K^7YÍþ¡SÂ[‹B±ð]Î]›-ˆŽX¥ ZŠ´‡ºä;4û`U( ±Ü•º€. ’”iI‚Áø pž/8O¶1dí|ô¬¦ªÃðw|ôLõš¥S®u×¶rÊÄWŠ"/ÑÅ쇗ê\ðÌf-R[¦I"C#æ¨¦Ž‚¬ž2CØ-ê|õ>3+ÎÕé¹1…Âð?ç.¬Ð¹Uo¾ù÷¼ÒÊ‚ÿæV´G!¸³*E%ešÅ%ÂéËýó½°íø##Õénš$ Ií´¾Ðò…A!eÔ¬œ’kZ¡YÙåâveÙ¢iæºI":Õ½ªø $>œ&ißU=cïlü•€Üï4Zâ5êWý*Y4«UuQªýüS cWvk[µGõ»º30GÜþþ‹SL@~ðòթЇ‡ïÿú ™¯ï Nz¥ÖëÔ AÔO­Õ|ä€í;šÇiò^8|`@>àlLc6éïdÿXºùá±~hœeü׺Yu4ç²€Sy9z³Fmq»øœFqØÏ±D-{'mÁyu`ýyHî¹j£s.^¢ú0Ø2Rãß/]»»a¯.h¾o»¤ìmé‚Vùhm9ÈH?¹ïþPÔyPÓÙ ÷à¡î.½¾» }¥•ÿŠ¿³ýrºP5^|y$N1öW ©)ò¤hÕX³È]ÑÕjg›Ñskàašf±]¹œ÷ÒXyeJ± aƒw§gýyÖOÓýÇwtUÎdgÊÓÐÜA…%’0AÁ Žé0oLõÜ1¨Ggèå<ŠþÚcãÅØÃ>Œ/Å×»)&…âüGÛÁˆyIü`ø1ð¶ŽÁKîcl›®–¹™ÍÆw·#KÊ-w.éï_ݹ …Ë ‹œrEÞsÁðÜ»'Û.aK¼ ¦t\Q¯‚(ZÄïEVð“Œ|¦Ñ5]„öþSQN<\’è?­‚è?…9ñç¥9±Vó(SÛ.‹˒ZYž.ØÕÂÒWàˆý1#**kãýú„üƒ/êÿÛ©ï<ÞöýÛkÿß—øðbtý‡R j»¡O`@(Ér~ƒQa'`†Èsÿé+K:c7*–k0oJ‹‚N!3¨#¡üKwœº @.Bí›+5*M¼õŽhRX¾?ü@W* ÇR‘š š¥Ù›¤ú7}F[õn"9®Æ¤ßy+z•˜d}vÿT÷äF‹e:ÇÀR:ÓdQ×àƒ¢÷µ==!©ŸgÔ³ªrTìÕA¼ÛRlÖS ›æÇ÷}âÀÄþE^½é]ÚO[*ˆJmN ")M‡ÑÒ7Œp†¯Ä#Á`†âLâ,H>‘e•´øš[ nñ±1£ 3ÀW,¢Ó7:€ D(ùÉTJðÇí2‚L•„버k>¨¸BS—¬Y¤H<~p?îç-GÑè<ÿâ(æÂ^|Õ8|1/#–¡?…£ ž¾êìïWDwïðEc/«9zªÜ‘íq ÕFmiŒöhyqxô^¼ÀãBÿ£oOïq[²² üZ¿µáõCø?ÕxØ‚ª©šÃî Â5<¤Ô¿Õ`¨qÿ;®ÇI×8<~…¦œFÚjîŸÂïÔ൱w´ÿ‚ÿ­g4„ÏákÐÚþoø ñe£Õ‚ÊŽåOê:÷<^HtÏ ë0zìÌ);Ý[m¬M^¦÷P¦øçG§;_|,bG¥ƒ¯Ø…2FP8ާñæøŸw–¾Ñ좩 ¹îèe ‡BϬA0Úýåj‘4¿éX%s]eE€x2s\=]¨&Ú÷î4xÄí:vŒ/øÄ“ײSq â(·be/eh¬t¯©‘4ô(§;ð–¹{–‡xBÃ3èöÌè·õ´ñûfäW£‡‡ÂÆ÷ô•—Sû9 Oð"uŽ¥i*dZ¢³¹´înfjuLeÊ‹>â ÂÙ£!&ôRòÅþ0Í åA°¾{/¹+u/ô{«94½æŽg'NŒ5bÜäÄ@`? tÃÔ~è¹Î%0"³FÚyþ€f!$ø¦õ=M£jâIó¢—¦÷u<àD¨  Ÿ—°C‡uŠ<Ù6C:üB)^ªDfùõ™£gô)†„Ï hÙƒ#Ï^Ár’9ä'oŠS§¼ÅÂòLâbr!üªY¸­#œšqþJóMÞ÷mï%çóW‹ÄÏ)<¸ìWŸ“ˆ“î„“ju$S-&–B¬T££ZUFâ€Ü +Õˆÿk;>¼$°·áד~õ9©æ$œ¸0'ýìKS☠™û¢FʨƒAš n¢­€ ×ÁTåÖ¯2½ÆÂ›ÙßZéßZ{”lš%›ôwZÒ¼¯F§¤:ð5ð‰7ÀŽ5Àׯ_ÇøSh€‡a¬Í–µé—hZ%šv êpL2”`sªàê.GðËþbgÅAñk ‡qåã8¤|àJùùQ¤]Flµjµ™Ûj}Û¡ÕjÓi5#ú9Àöß[8ø§(óZó†ý·Y¦îít8—^hZX@¿ÑR¢lV`Ùx^‡ðçþc|ÿ¾G›}_׫÷߇*6õ¶ˆ–)›ÍNIÿÒ8ûÓÞxjU/5Èâ»qïª6ÝþTÆPçë£!sÔŒ¶›ÙÏ$Q˜¬$Ùýï€v›Î¤‡ªx¨â‘®"„üÍìþo{ö¸vÇ•†6m†0_Ø£7öŒWÉWê!iEšCþc‹'v£õllÔ7¡6øA,D3K¶°2|oÈ|*Z)òœõÈ4œzÇ1É Ü‹‡ÒÀ(‹œÊ>rë{[dïÝR¨ÁŸîYoèö â›7pöØ*ªç+¨Ä^Þô¦–  % °‰5›ÉÚ¡6ãU˜ÌíòÏ“ÿ˜ÛYúû&ÚaÝw6mÁÓæ÷žöF9’8lڼјډîÎd7Œ„¸ÀÎZÞÖ‡û9cS±yòÚ‰-W}àŸîÁˆ»ƒÿn¦¨óH ?¸ÜíQ³p~^I~ŽN\•„Å9W^Þ°gªý«  óÄNdtg/>‘;YW‰æšÈÚrd£1ãhóµ€ÂS¹S_QŸb'bµ³ïdLæks*wS)Û le¾˜ªÇöÂ@q¯ðΆ#åÈ3ezì¤$φìòãqr©Â.U^ {£'ò´o¼-t'ª›îႺ°a“Ûd?TÙðÍ2^P¥œÜ Ühú^ì@aþµ‰¯föd•ý°=@?vvƒæ°NtJË6¸‹Çv¼-ésô'¬X®f§˜ru¬´Ss uòÀ\wRýÀœ+¨zC¬?J-0xŸe.ÝsÇ·ëó×ù KlWOŸÑ ²’MoþUñ‘,vІ%¦Naô:Glb©²ñ>Uå¼<#ß7Oo;Q%}Úø€|hÕAjk‹\áN¢.Bl(_ƒo69LÎʶ«¼iWÞô+§÷ÉÙLÍ4ÍXËP6dßÍ õÎ[²è-Éó‰[Š’)Q1.@N^Ùvê7ÞlQ·¢Ò‚Ù†˜ÀÀƒbtù€-Vö2¢•dM‡,8 T×̬ŽÞÛ³ŸVleÏ#ù^.É_ïyÒÉ$y'Lr*•’#/â$ß³IÞ ’ü5ªÀ;ºmgô1EÒºö¼Z–nÕ¼­Ó„bzëŠtÖòÊ/\?;!U}EGôSLÛ3ûD\¤èúZŽÆÉ}V¤TÓ-µóÓ|WS‹éúÊ¡ÿñïÿ%«Nÿ“sÿo÷q}{ǽÿW¯××÷ÿ¾Ä‡W†}ÿo¿K.…sŒ£Ÿ°{u:Þ´¸wú2t/Ð=öèO÷ùA«Â*mGþßÜ$¸;,)^8V<©x©ÆîåûÙ˜³$•º•S®F])ÈûEtåCÞ÷c/Q ¼z-«PWK01*¶(_®Ò½Oñ®ÿA^É3» [7÷˜Ø𡱠Je —7º%¬ucsª¿Q+þÈè~:>˜Œ8x~↉ɈïýôÄÖò%Þq¼€ôOÆD‡kûÆãímÒÓ·ÛLòJ(åòÔ×'fiµü9ëMú[@¯§tVæÏ®NêL¯ ÿÓê)_ŒPMŽ’ÌHcë§9ì a¤Ó÷#¼ê‰=‚–™Ÿä 2–LnGCªNÍ« TCñÿ0WÉõ GŽ¿Éì‚¿T×±J×tñ0‹Ýè6Â0I®¿q6aß- `Åñç@H t^à ØÕÒ¾ZVw #1òö ±VÓ#µù‘¦_¦£7ðÂíûÞËdÚžúX1n~ th|ÜhšÉ·ñÆ œÛ)¾6™!Ga [  Èè‘D©¥~”¨ê V]®È'cº‹ÑÃâ°Ø&À$#K—6 ’i À‹¥žm …¤{‘ Ý1 H_®ôÇŠ««nÌZÕ}ØÈÔ\6£ #)[ÃätæCzÿ™¸¢‹Õs‚ZÍÌnéJ'¾¦VÇ_ëréä#¹*RΣjFŽ´-¬€#€TV•$k ÕÁ@b…þ Ô¯áUo|…Åÿ†÷oz¨Û6§§÷¼‘ï{é]g$’uø_¸El ñ?ηðÕ}KW¤åÒUób7g÷fˆ×ú)÷žšïñr¼¹$Ÿ k‘s•Þ% ñC›Ò( à!˜ÔjûI¾%×ÝKÆçX2»HÕèMg™Þ°tš¯;2 -”(ÚYŠÞ#ÿø>¡Ë>°:±gS¹™x{ÉH_~W½šä–Øú€ûÜûßD†}W”ަÜlr¼î¾/ß%Ð_¥2RþE€þ$êúÁíxt™\ÍÆIY«:/ÎÚ{§Gmîúï1ñ0ƒíl]Gß»J.A<@ÛZ-’&ˆäÜP¤îÞƒ¥¹‘·e­¡+ÇÁ2]« l9tå·ukžð[Ø$×§£[æc9_‘9j ͽ¨$ÕÙßË›RËý½\~H +ßtÔšEÿÚ§ZZº¢KWda¾'9ž%¿PêEåIYѬcF —?.K,„Œ´?þÍ@Ú|T=îf®ŠUm ­=¢×›ªY ·…°}ÜÝPŸêMàe*XÜ€Y‰AND­ŽÄ`4|klÛÒäús±Ìz4ញêiçl¿*z×SZº°xžO†}…!/‚·7ëÖ=R¼ƒ=_ bˆéÀ"5¶åÁD㟨k¼Žæ†hÀ®›}\à`ôa×ô—Y©Ýà&ÄsgΗIÆu™@Í% tº¨„xÚJ<ÓS­Y(Ž|Å"Ì‚Áwºé;)‚¼)J¼¶P–BOËΈ¥NŸJddUJ}’S“´L`k‘Åé¦È¸͆ST¹ëúà@r¢èýw–%Eߦè#1ïÝzÍG© ›BK±¾Þ2*â÷gò x…ôE³™##¦ª‘{µ[R…•Ý yIŸdÕŽfl>ˆÐðq4\ÉQÜ­°°T…ýC²³ûxhœÏsñu-o\3 Ñ•Ä€ÒåÓS •åìÓ²iÕ}Ì$×{pR.ÿkª!×áŒÑ¨¿ãqƒóúêö/ÎÖ~;šôñ8å–D—~߬•·&Soí™5„7ó Ÿ¹T¡"¡Nn]ù)5üçl4íÓÑG³†VN°?z¸ê[³ÜŒáàÚ‡s/ ½-ÔgCØã®£¼›©ºèÕ(urMë9}?“(ÐË@d¼'Fé}õ¯Ä°݇X{WÇ7:®[u¼}„úÇÊ|ht^ átÿ±÷s´LðøÝóÒШ3<6ÕÓa\Ç7¥F7þ›Þ;`“ÙU’ŽNVkVdµ]mS‰h:’lÚ´¥CÄœSœ5œuH™àQËÄ4ñ#˜Å†ë3­³ý@oOÜÏeat«²®€€q'¢ïŽG½ªQnèÈXZµ:)µ:>µÂ'Ä\ruÀÝöPþÄ/?£QŽz:Æ8CLè€?~Ã*Ogðïoèy‡ýÆ+i´á…øô4Ú š€O¡µæÁË6¢ä4éÛ¦üvÿZ=>ϤÐ1Ç48ø äNë°}Š à ¤è€ð£çg­’ÅÂs ©­ùd~,Q !/ÒÏW¶ÅBŒÐwšçY˜C‡=BÕ‘Œ‡?÷O)Úâå G]´è'­ÑŒŠ¢@<+F*:lì·ÏãDæðaGûe^v±Š¬®âóG±œóØIç4H–Ü çÉåè*1ƒ ÷ƒj׺ðL’"¸BKZؘ+‡|©¾hv÷5¯iЧÞóÌzëzi+1ª ÛÊïO¾ ­åŒwüwЏ“9âŽ?âNw#ôÇ1‹p‘&{£°3ŽŽ@LÅF˜âm‚Køô²RÝJe…þÓaøäÉ…âQfò¡$Ø•gY'B3ªä åLNí–Rå¥5›¤ê‰_¶0HÕÏ~Y4P:Âä(ÉÅÀ¤ÐO3Ó¦ƒk·ÒŽQi'·Ò'.O2¿©Kóú¤Ô½›Þà9‹3åûDAv‘¼ë‡¨ùýí7UîéßÄU2¹÷/tH}núC:önȺ §ºôÀÉq5™Iªòí¨?œš ¥Ö^8~L©BÇ/ôÍÊj¯ÇãTsm7ù¼6QRuXå :²Êà"3µ.= Fm—¯—Í•÷ŸjÙp„UÆ Kó–½DE¬B©»h7Úx¥ç±ÀÚ_À_¶€]7Ã[{{ƒ»HLý€ÕŽð›x@á”5úw;Z?öDê~ µHú‡×¢{cFQŽ–M ‰Ó² õëe±~YPtÂÝ„1oµ0¯Ýº8¦“·ø}—ƒ¤ÉwLÜŠ‰þÇ»€}WN/ýŸÝ¥oP¹8–Þ~Wäcéi‰%;äTzWÀ{ÊX¬¥— ~^¾ç[—CŒ¾26X8z˜w׎»k¬‹m ûf[Ã¸ÚÆ—@H/¥. ËÓ¹+%S½E·ˆ Cò>+¥mÈ£ŽV—2)4v7½O*TL€¸",”1Z4Ä¿¸P…«ú=j<ŽñÈ@i†‘µx)±ðd0Óz1<…‡îpBM(×—Šx”¾Æ•ctg‚Ø:(åzÝŠ«ŽY-I²D«åç¹Õz8“üš±¨Ô<Â×@¢—@¢mú¿}¢µÉ†§qC¿ãIj.6IÍè$©FÎ$5c“Ôô'©™=IÍø$5³&©™=IÍø$«õ'©Yp’lƒM6g’ÔÁz2)()F[ùfm‹-jý[„ÔT çp?1“J*3/íxd¤‹•0Ó8è=§*Îå_¡f ŽGO;­B ‡aBUdRä`¼BqtÈÎÍ,QmR‹Š}Øq¼˜ Z j²y‘Ë…+ *¡pó{Ú÷ðž?šÞߪ¿0ñvk‰ùCw†ÜNÇ\ÅRÍ÷Kœo5ËÖU«]g¬ödàk«[Á)íxsÕ Jôœiê(²'‹`¹˜¡F¯ð:Üð"¿#©b(‚0¥ã©»rÈ,ëß!l›Õ•µ1r×Õ/+"ÁyòVôï`Û˜¾¿©1&ö¥%Ð*àÞëd&þ"1ÖE*ü¬’½¹ÄsóŒ24ÀbW#娔›çÀáÓŒ~JnVxèoŦ æÃ¾cŸ÷¬ªÚNUŒ6”UO3òͶšã.i'qµ³´º°mX~E">…E`] >0@Fœ³_øÜâgëQzÓ~hõâ"¹Fʼn½“äu¦GªÛqAR»Q—cõ›îŠá²üß,ØÄÁ|M¸3V]3:¢ôÖ¦Ñ^LmOfà¤y×Lrg@²7MÈ4­®/º˜W`Òû¬¬ÂA6šäq‘ç©„ã±½¡M}©×•œr>#”.$Vä-í,o"»Ÿ¼nh$nhË}ŽžÊhÂwÒµ¤ä7úމá`.dV/ÂÀLŠ›™qi²èæehAîÎJŽGyP =¥=ßé@ø„¶=šAí¾vy«/Õõ%ºÁî½O.ÿ@¹8*ÁÅá¿ Aá¢PQxq2Âh&Î[©¨/WȾÐq o¿”Ë "§Ô…C©ÛË+²Šfé r`„²bef`ë㸥TÌ¡, R+ùQºæ…½ë¼(™Ë:…'Yl¿+_·„ÂCeËÂ=±$…æC2)•Écš)eãzhTdÖðPÚo|Ÿ†3Ól35±˜ GV¥¢©àz–þ¾¡+ ”0k|fþ•_êÀ*uSÊp§﯀Æ«¤1昲«ýƨììÈÖWÁ$üX8k­©×š°ÛãÈ›½Ö¼±1hÚ9\ÀZÁÃf6¤l`l×i›¹LàqAS/4]eh^`€9`Ð3ø¿³sm Xp›:oPÇŒ¤á½Š«š¾9RGQxùjüj‚XøÍüŸÅU[ß0›Ûã"êq´¿ÑãŒÖ ŒXÇþDŪšê-‡ó¹Öj|@á{¾ËêàØþ›@„ÃB„B QÐÓÆ1¤!^ƒ"€`2©M6 ýpÑ^ãr«4ý˜LÆP#†Â\·êòÎвòƒc+—– ÇŸÞu‰ñÌ‹Jæë"¾ì=dp¿ïj¾ —/dSV¸Ä­‡ª8v‚‘•[™âˆ##ÍEÉ,$¥Ct|Áaûó’:îõ;scÖ½®¤÷‰¾>—š² ” Ã'ÅäÛï®!ùîË'„ÿ÷iÅ€Ùø?y\sñÿváñÿï |xºøoò»ûíÅí|JO)¯È´Pt@=ß—?ÏdÀú¯èðà‡@ä)Z HðÀ¢k–5÷.CýýŠh„Ìst©!£4s$¿åz8…ñzî5€á›… ± 1ÌG0 £âºèÂű ÜBÑn¡8ß/ná/š°¢LÚeA¦zt›¡ªˆ î0Å˨²j\X…:Â+®ü õBs\nXOzíËk`,7úœÝŸs¹L 5Y2° 5ÒÒÉÀjü!¯×0ŠkÅ5ŒâFñŽ`Ö0ŠkÅ¥`Ób)ˆ¢“˜ Ž8/5"؈Ö8`û¾Lô#j—¡hB c¥7H³–ˆrXþ´éK80<ËÁŠ„]_b/šµ £ÆmÔˆ;z‰VäÊ!/l"é2ÔEž()¯|¹"žÂ„ ë-Wšìã[ò’à+[©~«§Ø–{ƒÏ¾`â|9Bœ;„8·q¾,!ücuU'œ9)°¯(ð¢£ö3ufŠª†LÙ¬=®ˆú꺥öþ,£««.TZ”#·Ò¿?Ãk§ëþëäÿb£È±Kùy$~Œ­dpoþîu¦Ì@›}ak¶¶U/h‡M-S g¥ÑìÝû/ {¨šúæB'ÖÒb‰K”M„f7V‰ƒ´,>°gU©`.¸l?™˜MSKFOH+ÐÙ8Ò,<〠s֬Ÿ=ÀϪˆ€è">(ºŠBËX‘‘«QëXvd±u|ZÈŽðRëúÀXØ„Üú±ï,AýF{óq€=ææOKzËP—EøÓ¬'å’¹ùÓ9M’ùùÓ[$¹ZêÇù‡GöÛ[£#{Ÿ;@G~!ÍW h›ÛqkºoC |>Xm¢Ô›|¾¹ÂÉÿ²lK.¥„÷.&£:>Y$ðìXÊ©í2D-b_mðá¶„–í2âO©Ð°šÐÁE» ‰FeÁ‘ÚÏPõHy‚^€‚=ãp4e+Mãx6IÆ&âå¬'þIÂAe»ÕZV¡øô‡ÚX´Æ¬¾#Ìê¦ü¹/¶–uV| ¾  ç»ö ¯ãm0vÈëŒüFXn‡&2ö °3ᯗ¿^#[{c[#[¯‘­bkd륭7ÚÆÀOt1_Ù÷_Ùw^9÷_9w^iú¯4ÓW"˜Ù|“ï ‚¢-"µq½QÏ“Läun[,òº´-y}×$^«óB‹7ØáT…žAšf9=éïçÆïÍÈ]z»‹Æ•JÍ…áÉsàÌ{˾8œùO~ÙÂpæ5WgÍòxæ?…™|gþÕñÌWÈ¿}<ó{e¾*s!èü’Þqöúò¼úrßð² –ä!ˆœ ôÙ éª! c§Z#0vn’4üp¡ŽrN;n×õKÈ»ã:°zD…@s nÕëv'¹ÆU¥ìæœuîFƳ,lü›¢°ñ¢Ä½\£Æ§¤\£Æ¯Qãרñ?0j<êq&úã­¶'¯Áâ×`ñk°ø5X¼Oþ¬Áâ°x~C+´kôx‹ýÖèñ>zü£Ðã ¤ y¯C‡Äê76¶4 mØ×l¬æx0â-i*µ7kå@Ìf 2C‡‘Édahz V¿«/V¯;Ôáà´G)U$)A¸QµT²"Ç£ù2š¡L~dn—–ŸB(ð|x÷¸D~¤µ%:Û–b±ˆ™1l"UB°„°­œ&òþV½ÁÅÈ=ކæj†Ï l!s¬nöKj:JÆFõçnÄökVAõÇ<¨É…Ï;Öó€×ìB}Ž.œ«.PðG(Ùˆ³RoÕE®Q9+ý°6«OödfDX'C¸—ÉñÏ… kX}*Îc`´×ló¤Cp‡— AÚq]¬~øº Z?¾Ή ë`íò¨jî| n“Â÷Ë?˜1!w„“îh{ü¼ Ö<,OÌ¥à6öÍ@hs}Þl nÚ\­V‘NÁɦàqHSqHNFƒC‚)d sfÖh«1†ÛΟ{Ï "À ôÌ£ÈàÞÖ)Ö)î*¥Âî:¥‚~RaR!ýÌ—Ra7?¥Â£b)dÏ3Bf2’-¼ÉʶÀÿÿ°bøÿüÿ]üÃÅÿ¯×Öøÿ_äÃŒáàÿŸ³;Fº%:YY'Õ5JƒŸíÑœÆ'뎋Ùÿý€ð+²©U[uÿPQEaí®šDÁô¿ þ9ÚæÁן3ν„¹¢Ùã¯Y(óç ƒÌóÕcuƒ2Š˜Œl "µø5Xø¸Koc%ƒÞÍÅU/оÍMnDàæo †ëH‘¸ ˆ{nnI1 Ä]…›©HÐW pkñð¸O5æA@ñït1Ø *ò %6—ÆEãËÊýdÔ pR6¸úgiðUS~mt‹¦ÜìÕìîz…Uol¼‚N4„Ó³ôQSÈÞ}¤¹Pú%/Uœ-r·àòÁögjPÄ‘9X×&ÆÕ‚X×±5Q ö:gEñ-«å°îdvñ¢¢*PÔ»ÆDUÑMꮯäÙyQ¿%”S9âfчNï¶ôÇÅéŒ#MšÕä€Nf!MšÕÄA'3‘&Í*~ÐI³ŠT©Î @iÏb¤È¥Y‹E¹¥Ô @*Fð'5\ã4 4LXk Øwø3A| ‰±bzCÆœÑ7ÞÒÜ1‡õ-œCÕ®Ñs!‘úc{%\g­IÍX%5þiåw™„‰ sW¸'vµÁÕd57á`äørÊîÅfƒÛ”@ƒ3^hú…-ã‹É÷{—ï-Õ aãÑÑzÅð9ÐmºÌ¡Y4í]LJt’Þ™–7ñÏ>pa•ÿ~V+€Šéaˆ«- ŠÉ¢‡™˜&‚¨ Ú)ÌíüÐŽÉížæ>aÝz vï|v—'8ÆÙ½sçìn÷Ù½c²ûÍîÍîûËîlgìΰٰ&¬…ÿú=~:H›µÊOm› ^n>+XPJß õ.ؤåøK‚YÆð+3Áþ -^ËÔßçP&¤Ÿ¥>ÅÐýLÌIhò›GÚklÙLé²ð$ãW¢§êª äž_…T%ïr/ŒW*ñÑämÖëñèÃA÷Ï÷~lp²*ýÿ¢Y™® Ç ×{¯N÷[Ç&ë –˜"f‚…ÅÍÂx?7Ž"&^ïÁ ¯gUøañäMQAd‰M‹ÂÁz~Öj58Ä¯æ› ƒÕµ »Ï€aóâ…ƒ ›-lA°°y±Âæ… +†6/PØ‚8aQ˜0ý^cB¢pl:”Xœ*‚áeÝçúbØU9hN ÕhNrÔhNOü²ç–“å”ääÏ*nŽS>ŒS«l ã´b'R°Ó! àƒ—NCX^ìAðã¯0Z®Íú>”Çãwo’†…²‘Ÿ€aÂKŽÆsër2ôFI<‰£ƒ|²cóˆæi( ÷ä5$¯rﮢq€§¬ë{«ù±ˆ¬úÈnËA‹¢A%2ZFP:P'êlaü ÑÀÿ cótÒø?RcW€(^åŒÿ£PXÖø?küŸ5þÏWÆÿQ‘¸½÷'#4LÙÐû¦(¢*B8@k˜ŸÀüðÆì«¡QøçÄ#ß3Al¦Z£é‘}³hA‹‚-Œ$ㆿ>RP(hYœ &è ¢y A‹`É`î»Br„’áÂÚ7ýãäOØ,ð€¶µE'8¼øüñýh Ü‹UC€²âÜ3@‡¢“ãF¶ÛS`‰I«qJDMÿHލéßË8ÒxH †Âí³ø"‚Ä©ªgö† šÖ˜J54¡·,Üø^•…—Û”Ø[!(Mw˜Ìú…ýöÍi@Lüre^MEIÄŸ‰7(ƒ"? S­aRìiŠ‚bJbLÕɰM¤22xU1å·æëYèž`úò¡ó²C¯pZ²ó N7’³¾—27åsegTP¯ÕŒ3© Á…ÑŽ(³6½¢|*2®ü¹³.¼‰òúóEoÐ^Jhªs‰pÒ‘¡ «ÁÖCúZZ,wÃÙ\°2ü†ÑÂ"iõÉÄë½ÐÍ\a_­…—Êxâ仵.8øfú#¹ ËåÖŸ}wW(Tª×H‡­ÉâÇŒJ÷üQ5BG0¶dƒQésA^B+N(8“Uô&jФS`Ó°=Ö À¿w*˜þØ%Ó’0ÿ̲}Ëpõ[õÏ=¿;¹µH÷ÌúsCucgÙ‰Ý]I7²JmÖœrø….¹;ïÄ>ÚŽ¾F– o<+ƒ@aqÖ5ÙkÛ«•GPß] ¤Ç ‹€Ž//Ë·OVÓ›"©HO¾˜@ŠOíŠ%ÒOù¢ c‹‚N@ü´ìÌþ¼’nd•R©”H?Ï9³¸”c¯úÚ—D0#‘U\!©[a}Ýí_ƒî…Á”½ñçùñk¾Iì™%qc@#.„‘qž±þüPŸþǧ€dã<®×êO\üÝúöÿãK|X¸ø m4‡öžk“©" ÃëŠ9ìby¡Ã¨ÍvA¦B:ògC:ù£ÁfÔÁ(­.ôÿh~W@$Ó§ö­@Œ-ÅuÓÑ¡B‰ÚgüèkcV°Q“@Tp3E‰wÛ}ç â¡0Cæ•V0ÅTDAó…ÊÛ¨++Wyó­ «é:Do€XºýiÚõžaô´ý›Û1¬&ÕU,N&ÃkуÖ=š’>FÓÝ®°ì¡»2øk¹’ cŽdV=1[-1sÈ[7y5(KàF&Wt®ÁÖ¨4ß*0úuÿ`i÷«\Ä—î-¬5Êk?‘b©q‘¨8âäʹXgAÅ\õ{ï¤P¡ ´B§K\l˜c,&ŸÑuG÷….¾ k سc!ÿ€Äs°ŠÂYìk°«5ØÕ½»úÊŒa¯0äÛb|£xÇ'öLs?”W7˜‘»Ñžö8SN|jÕ =À£F©_¡‰Þæý:ýzÝÿ¿»£ù]£A»[5Üôû|)ˆl*BDw|2æ®^«9!Ãì¼ê ”{ýÖŒÌym©Á)¼î±,èÝÞú‰52i†£ “nâ!EêÖ4ãC©²î}ˈ›3k>²E“í/W¼Åã·¿³NôܬEçþI+àªb¯daw‰*RñJåÎ1ˆ“=EA[¡ÀÃøs» Úɩԫƒx§Ø¼§çñþPš.˜jš2¬ØÞô®H¶q \™#O‡À%ø ‡"Y¤ó•Y„÷–0t ðˆ”ä>›ÈŠS:órJZÞg–ŽÉ,˜¥³³tbÌòÅx…ü;Âá¯õa²54ÎÜêÈ­­9Ê2±ŠÊÔI=Fór1ðÛÉ\Gò´©Tž,Û N:©heûù¤J€WþÛ^êþµ^3Ô9Å0¦U¤Ñe¼M?ŽÌÚÍj̆$]HQK¦jÍ‘ÊÅP{tbTÞXP‘ÌŠ¤[VÁß9Ê“<Àè;ƒáŠ ,ôTiÃñ¸›ž¹¯áæ.;\:´ôsÎÏ—™ós{ÎAi%(æp°|šŒÙW霳§ß2p™œàL¿©çÍ3ÙçY“}à‰O“§.{C$ôE¢ò¬)AÈöø”‚LBЫÜìö/ _ 2æèòr6F7«üÓñÌêkñˆâDÚœÜ Gõ†Ÿ?:«$À,ûŠYΣÌò]á¡:p¨uÕR»)“KC«>6*ëüÛ¬Âiâq  CtVÜ÷kÛYŒu§ËÁ 6Ú›?ÁµÇkhÖ84«b=|ÍB!Ñ·ù8cÓ^Ñ5Ó ´¥’æ³x·™ÙÒpö;œ}1S òŒ€_Ñd›Ú+ÞSê\êN‚n\fW¨NÑâªÞ{8ÃMÔQZé"a´”ŠtUH±ÿÌvŽs€Ó ×ž°ÑüP)–!Ü’ÙÌMï$ø«yp9ÀH "é­ð…‚ka8µË¬ ¬Bé©2¥zã(¿fÐB¨/d2¢¬€¯ìÀK%v‡:«¬©^ËiN>ÝB·z ƒEÇ: íIúÂÐÃÝj­V­Uëø– "=›@ˆ—38þ©3Æçj<úDª˜äµ‹Ñ cç¤ñ=('Ч«>Âi]â2›~L¤j‹ùB’9òõQ«´vü‘+ð"ˆ(vK/ êDécE>,‹¿?#8¯ éØ0â=XK*ØåÜA*ì>˜²?4=®´‹¬"ž–úeÜUÏ;ø Úw}r}6:ÑÁç/ œZÁñéÍ=ñHi-ÀhTx1°‚Å<˜X<°†¬Î‚¬®ˆö>çŠBÁ±ÇÌ&‰é”›òç¾üÙ–?nð"À×ûÚ…½n+ÌŽxMˆküÔº×Øua¼kx±ŸÏ5æõü†ºíFe}½Æ¾6j]c_Û¥V‚}ÍiÀӊ춺ÞÂÔàlèÎ_”÷‚´´¼ÅD…ÍWöýWöWÎýWÎWšþ+ÍBÖàxmIR)H®¢“!ÔÜwšÌóç ‡{pØEÐÃ=4p9>94@9aéïMã÷óî×ßáÆvÝÆr Êpã…¡Êpã…¡ÊöË. Uî|i¨rì˜9~ Uþ@•›(Ðünd^³¿V°Þ&Ô—‡öB‹¯Y;Òå4Uß°Ÿ… ôËÝ—}` ì‡-9-£Ñ×k:-n‰¦üQl” kW`„Š^HÑ~¦Xéf&÷™£Wf©ÝöFQØøU7•ïÍL —+Öl/£7Ø!·3!y¿3RÛ]ÊGAÓ¶ê#M/‹2ÿæ~£ÌËzÖ8ókœù5Îüg>gÞºùhÀΛ¾Y$Š“t-ר­ô±?I\ho ¯U™òÎòÐN%A)ìá)}š#”ôôT¸|V Þ Êã̱¹›QÝÎ’ ¨T£ÿëjð¯È¶ì6©¡è²á®±¹²B#"7™#n± ê´øˆ›y#f¸³tb¾|¤å’Ú"Oçw@ÀÍâð-føáÒ(I|Þ™wäë÷#€5÷8U@L­s|ß¹ŠnGK¤°…ñ×IÀ aT¯³ìÌ‘-€Q#dt ºÔÿ«dÒë«&²“8=,î2°›X¾B6¾öf½¼Y{Œ5âCc×!àÃüž;ĬË{ 2vYëq,ûÈH€ ¢0¹Ñ4"hñÌΤРfRذ¾\4/B|Sw§‘!š›Ad$F>‡‰å^ûТ{¢H‘hlP1¦W9²T¬ tó}¹JxìvA•ø*¹îûflUV=*|¶Ûžo¦ àjÓ¥YåCt«†ÒÉÆ ´°©1\¿†—lœ™kÄÁª'Ý–`P•S¨í„ñ–j2T|…ƒ1|#ɪTF%˜M8ìÁ1à©zšp -^ÜKtܬUQ•^£aH‚å{ÞHªÎZÀ )ϰÄΔp $zõFHPñ¨0Ȩœ?ÌÇu<Œ4Þjy>%Ù呌t„ŒŒðiÝ¢ŒË.AÜè¼iµ uÈ[œÑþ…‘Ð 2D&\‚_¾&3„AM3F Ú‡Þj¡-=x±8à‚#ÖÛ;WV_ª2ã-‰_i4B1yæoµ6e }\œcžãk>àRRD…J¸ùïE…—.]_¶ÜÞg·¸nw©cV¶¡´w©k1ß5(œíж)ºÿ,qjçàåaŒòÒ÷´1´C‹U„¤ý±›·ÓÉ73ö;þ„w=þÌ·âIawJƒs'jEêëA&¶«Ð·ÊèE9¡3‹“æO‡÷ :Çf,ŒÌ39ùFBˆýsfY*zPtd6”äåWraXÛù§k“ü‘É7‚ÉKŠg.aÆ|bóe,eÉœé,ò³ëÌ‘:i'oÃ)×ù‰u–M—”‘+i7·ÇáØ¼Œ$YSIE2ÿÄ=Ê&[‘dDœ±œ7 äA*šéqñã¼3ÎKÏ`àÀ^Ö£g^"’ãµ³úªdD­~WB"'áÍéŒ~ZårrÝ,›Â(#ÑÏw*$"s¶2)Aé³²Öj~† 4mO”á9«ådæ[ ;QÁÔDµÜÃKš”¨ž!'ÖY…V“UhgÛ%ðb9…Þ¬“ }‹?ÿÏ»ÁÍÍÿS‡ÿï¸ùv××ù¾Ä‡—¬ÿçåa«DŠ8ö âÏ+âMEüÓN¢ß¾¿Å|:¡+xnB= ÚÐeÉh’›¼ä4V¦™ç%'ÅK¥ßÈwÿ9g.˜n1 >P:i /{³Éd«Õÿ1ú `oM€R7£«d Jð~YÜŽGƒäæ©m_£{ññßÿŠÏðÏ¿ëA,.~GІéþ¸Â²ObS47>»ÆµOf‚‰aœ 9MK:ãcÛøúX3E°¾ ÞÞb+žJ<"SØ!ÑÂ;ìmü§µy,‘þŒ{Ã?´^Á?± õ-ô®I¤Âpx©½u\ž¾ÇÎ(ܳÙsäªýÞmòŸQÿJy}¡+H Ng³ɤð|®éŒåµx®`AÉëõžàK%)~‹"VmQá)¦ ®ØÐFŸ5¤ÕÕ·<˜9êÕ? ¾í³#õà Må?ÉOü$÷½‰9)ç@¼ö&h06üBÚPë³ó²ª@×Ú„í®+®¼‰µà/í¦Ä›Z[)\Ìþ6luÅo¸ê,wê“bwìwN^(ˆ Žñƒ_;'kô»8úÝ¢8q/¬(î©ïŒM¸ƒs2ºìÓð”X¥2òU§,%TÃ,Ë+:‚Òúu¤º"AÁƒN¯ö¿‹Ö/RÆ9ÚŸSƒR˜/ `NÂFò`Õåð/FÓéè÷8Á”ñ/¦vàm~Ë’d§Ét®!›B±2IæSȯÆ<Íü]´d PɯÆ&›¥ÙþH˜V|'6Êøèøåð¯-Œ„Ÿôw3Q5Ñ߬ã?;çüvs^ ÙæGVÚ;"<¤—û­sÂSbY­`H@#Rç´“…µ RÎQ »ü\𩾒HE0 ÁŽç9 .·š=c(.íc¾¬O–µcmŠ/î’ƒGâÁ²´ø}Š1jq@vat–c£,ý­8LËH(•ÂH(EʼnðV›½‰3bºS¬Å|¨¼T½D^¹9¨°¤1- Y¡U!EǘsU´îªPÑ·¨ ²À¦Ý@ÉÝ@ÉÎI‘’ÊÇk‹1ª²&h Á à¿ã0aéñ1ÆñQµ´j@G5ȺÀµDAdæ]¨Õ#M/º‡•û ºÀÝ6Ò”¾ il®õé©ka;y°Ñ 9שáµ*òËæÆÛôý)|‚µ†!¦-_Ÿu‹mOQ(ùßCÙzŸÆ.R´Âßnoµ—“%ùìƒ=ÅÁ`½xØt5_ÖöpY: OîUà ]Jõœ+ìM°¯*·6c‘êyû˜^‘€­­öqEX|tÈ+É~?uß^¡´DCÀ¶È !VÑP³sESsU‹ÎIüÅôtXDÐ×X¡aºÉª2FkÌ•–K™0ª£±YTæ& fm ´’SžBL4æzG 6>£P†aáøsÝYB°Õú›¥ 9E †|†D÷Fbj þ¢¥é˸.Þ$ƨ0ÓÊ‘’[N1 —×n7]P‹¥—!mBh9gos–d¡ÈZ *’%n:íIœQFO£·Ù»ÉT|®‘º¤ªæèxy ÷‚cûšØ?U¨¹ ¢ª‘ ‹_aÕWxûĈ1qêªxë¼äÍIK’r‹î¯6‰ÓªæÈ°¼ýúœÇn3”q„ž|ž€’ù%ÎÆ'ê«Å[­ð¤Åyë4Â[ŒLÐȼúœ^[œêÅH “½Ñígñ "ob|Õb ’ç9ÊCÍÞå{ã+÷†Ðg䑟})Ô9‰H¡cF~:’¨YJÏÖ±fì€ìÿÌ[Çs‰-+,ÇRò„˜5~ì( ëØõãÇÿ¼_}áøŸGµG~üÏãuüÏ—øð²·ã_`ï¨u|R¡osÀ N2oÈB%oñÅ·Æž²aÆÝÓ  V¼A“ +Òˆ©å !1ˆ!›Ój"†NJÜLv¬ÐÛ÷c®@!à 8G"fÇĸ=G©UÍh‘fÙ…ô sVâ`{Ș”(TΤbÅQdŒO’®W:jâC÷hVe?ÚušMÏ(í¦Ç¾ÂÔËÐ %Œ“]ÀõùÅt[ÓÏ·ýKÊÇMy=È…™u¼3Éö{ûÈŒµÝŒ>¨Ääî]âOp¬tÓŠÑ9†‹¿=E/U ‹Ù^fƒio˜Œf覚´]D6gA¶õJeÿ9ÙØ8Ýhl¼…Ñ¿RcÖs2a´)•ç8ê·*kReß—W£ù‚3c¿¤>”Ôˆ…hŽW¨Æè/¯6>§óqÊc̤Üa;Ÿ4)‚³­‹ÛWh©½¡¨(ÌX3A_8©ÜKŒr".d†Oæ¤Ïœ‰¾O#¿`ÆB&út;è_ö§ˆfÂ>Q~ñ‚& Ò'¢Ïi6ûC"Ù‹Ón±…ámÍðÑhÕnÀ¤mÀc"žÄOj'eøâüW‚oß–á[¢*qê—8¸Æ÷e8€Ï€”ë…Ì=MõÞõ± ŽmóÖ;rÂÍrY#4+¨@Éi‘:Ùµ(ß°²”R²®§âjÄyƒ¤…ëäçxç„Ü´ÑJ')Âc•ƒôvWw?Evv[<§of”ÖšãP0· _I23S`G U•óG2¸@V0›­¦Ôz»(µÞ†¨õvÕÔz›G­·¨õv>jáZ P«`ˆ º‚‘y:·_§NãoÎÌâ Zìá\^”n˜£B)nf$e”úð¢Ään`YÞ°Õ_}öä¾}5ô[®=å|ß²›µ§íªÝëÔrJ¾V û&؄ʹ‡Èpú°—a@ÇûÎ0›¿x8(zÍJÒ¤q2M'w -0ýæfú ìT›5 \ÃnýÿNHé2žlû|ôLâÙ6?z¦æpþ0E Ñ2bÞu‡fMOU0*)v§8›#WŒ€7b ³B55üã¸?‚À¦„´Æ€â\Çctަ Rÿ“ŒG«Žx\YÈc‘Yˆi:‘ È`ŒRŽ(P¶æ¦xËš…Y…W¼H£ š£æÊHtktE1‡‘ Ã“9 z'(,Þ˜e>ÖˆÚë¤æÖºv¶: G¥&ŸÁ¶mY¸oe¹ö:jî¡V[m+çÑbûž¢“L‘Ý*Ö‰QÒF{FìàÁ/ê©R,»òvÎÙ|›;›o³góm-sbÞfMÌÛØÄ¼ M n×&æ­51oW01o‰ykMÌ[gbÞ†'æ„úaEE“™ÒyS6­Ó¥±Eðy9O|ñ™– Rà(¥ÅIÚRÆ•ã…Ò³þ»Eìðoö@ó™ìß$#@5x :ÆC’@}‡#ø§ôzô´ŽW£Û?0€ü6£Iµ¼² ´…ÂÒÈd\ö†¥™qh;HméT‹'h‘ʲYIÓÖ´÷½Þ;B0ËÎÑoñAíUD7š+p‰x±Äu+ x;ltN_™ÿ:G§iüæ +k5Þ,L&³ÞÑX~?™¡KNN$õÛáIkí@ma^|˜Si8óWê€sé:½¸1§Îƒê4£É#°žéÞÆH÷6Nº·QÒ½Í!ÝÛ8éÞÆ†ù6‡toã¤Ë¬3ƒto㤋†0¦A+N #y€iB²ó·ù™â¨+sfŠË‰{ô¢á|ÆÉËb%¼|gpŽ“€µ”pðÁ òaõÞg+ÑzR¹ÙN"'ÿã¿ã£¨y3T"SÕ½uª{›SÝŽÍa·ƒ{Õyžgs°1¯Ì»)doÕ’m÷Oª;óc—“׿ÄFUfŽ^¬>ö‡ñ cô`ýÔ2bôÞ±Ñ8;:×îšfX ¡Jô±e†üHLJØøá1½µécÄ4Kô« n ް[ê¨ ü.­af×vu×”»º—†ëˆ:H®6ÙË:F¥:A‡Ýir‹÷VȘ/bXÃf© ÐNÿÀÄñ «r‘%ìO£”–¤Q[/©yåB£ÙDª°¾”NžûñpšhD‰îôTŒÄbΩU….EƒìfÒש÷ÁAss›õ-.Ö,YÞÊŠ•¢OÊLÖë¡YÊŸ°Éì ¹@­ÖkæWò Y{€]êš]”Óêžâ˜¦äú6Â3ÖÐò9&@‰žqpšðêËávî»”jøÔÌæ5ýM·¦f¨¦ØàÂsÿ6oîߺ¾ÍêþŽ'®v-qÅ-D#§`ËúÖ#§üøŸÁ$ùÂñ?;j^üÏ“5þÏùÈÅfÅÿ€NXRÈ6~´Ïž‚ZãÿÜ=þÏ^ÉŠ“9’8@ÅÃzð ñ(Ü„SЗ?èO?o™à5öÅД,Žû 0 KPã0(  ÔäˆçöO‹ý/6ö8¶¿½äo  «hIØHÂ×g •ò@èºl7ÒcÆâû³xéX¡&ÇúÀÛM}¹à”ƒ4nÿD$ÃÉlläLÀÉQqï{<  S­ÚOç$xk+Hã·€ó´¼ÞUÚòÆ ^ÜiPØÍ醺¾Ÿ17îŒjà3-Óe>7RNoÆrÉ[ù¹ál}†: 'Çbª…½ÅYnJk™dÚÄáPL—°öm˜õ˜€(Ñ‚ÙÞÑ \”»€¹i-îóÍ¢¥%\Šzx}l´9®Ð§v{¶Í±-G º h™cEBeÂ.F¾Ҟ=4Φ"ÌÈ‹e;ĬÂÞVL(CüÅg õ¯fˆë1£`OU‘B)Q¢Ò T™h'çÍ* ¿êµÂ—<`«jÁ×fr@{ áóÄ –ž/JÄÈÜ øøkGbòÈ8BœA,û=cñ´6Û±xÒ’Ç›Jžþ²†âYCñ¬ЧYŠ'¢!J\V ç€âi"¦ÌñÝAñ†›Äà9ÎÁà‘ó[ö1x! —4~EAZÇàá3Ä<øÑ‡ ÷Áô, !æFAÜ1OЧÕ^ާèéüÑ 7Çã¢òâZ£òÄ;Ô=íP9FíYƒóçiµ8O‹Ü°Š§òÁyZs‚óä8µsyRgõÒà<­%ÀyŽp¶í-ΓY4œGÛ]ççÉ*¹rpº|ÞV7ÐyÕ|‡à<À3ß8OH‡ÓÖ®&)Å œ§¹q <¤ÃͅĈlÇ.:µÿ&8Îö›©Ú:eÞÖÀ壱98ïßxlΗøøñ?ޝ¿hüOíñ¶ÿ³»][Çÿ|‰/;þ' QyÚ83¢€à/¥Ç-Q2H曂ý¹?±?Hð’þµY8¨xäL´² Or2C!ÕÝd\|wœâœ|\øW•0ªSQëœQ3ôçÄÌïÕö¯…V ¢§<çé :ŽE‚K°këTº§æ"—&z³‘=äûý϶câÓ =Õ“sÚ8/¨£pI"ŠSk~0€¥=·L’`{ˆ##>ÉH»C7ÌKé1¾mŽâƧ5y” A0$n´û8ÈÓ:Ö?Šæ}ŽÍAbo1#B=8Vå†óÒˆ™ùÃØßgçóÁбÃxN7 Á‡&Ñ+æ2%˜o;B?ã“z ÿ<-otÊæ³³ƒ™qC̾o˜ïb=ZÝt ¼ýò™Åî*±Xk© ¬œœb‹Cu¬$£Ø ƒ¯ÚÐ#;Ř|Õ¥Žã«õ¼ÅZö•±{èÃOØá „#!X3'·p¨¤¤|<³žÄpSuu ”rPª ½1¢–]èp:%ØþÕåt³yO]…1Ýq>5'UŸÃ1j0e·á k,Z4›†‡L!fùô5©ä’f ./ÜÖŠ’ÁÉ0˜äJ—™õ¨T+¨_AVìŠÄ¢X`c-¹pî4s¯øÂ9þ çmæÂùž£Õ@HUæVãlqXnƒ~mB5Í:ü·S†¬¥ƒn€š] ihê8v3·V³’K,œB½³vÍf=v#=F#CsyVÖás«Ÿ[YôVTÝ&I7UB”„ñBóÅnêÞEU\ܯJõ²¨Òÿ^•þ(+\Û?à9 ½aåFÉ›ýÞå{x§_¦ëê´ªk¤'Ï^‹žöf=8ïÀÿ˜' z@gdÂæeáÉóùÁø^†ãV„e?À®ÛߪaíÛü.7Uûƒ­xÈñlPè0bY†n‰?­ôË&—{0dFŸ%ÌéˆÑN,ÐÔœf¤AÈÀ¯…õ’Ãw wÆž*@«n´ŽtQSúv¹)}[xJošÒ‹Ø”^,2¥·[lâìÜšÓJ_ê©…‡ø7Î|hzIy, ñ•JújEMó…œæ¦;Ío NsçÄœæ· M³]^yLã†óý­$|0ཎ,”žo‘Lmr´ ÍŸ-À•†Tèœi2UZËÉ–ˆ¾2Ù63ÄqÁüƒó†8Þ·,ƒ?yeU|š.­è\ TÍGÞY*‡ùò£ÒæOÇÌõT™óݪ}Ã{d»ŽÌûâaP¨¦xJn릮•“I츢3nRˆ’Õ®ÈIíc…{et5ì¡vã–Bç×OBnS®tI‘hmËõnxÝ‚½³råtÑbßÓ¸öŸÿßÿ?þó‹ûÿ?ñüÿµíµÿÿK|xÛþ<¬ƒ´×þÿïØÿóÿGLfÒ€öÿ»×æ#îÿ£GЧ© $¾¶û¿%‘þ¥w[ùö[©ç¼%þa¼!¶ÂÎöúÇÿè9ïç|þ(xÝ„@žóNØsnG ´íƘ¡ÇxÑzAÝÈ u pÈ瘈½3`G¬Úýº·™çþ1cƒø!÷¿z†$ël°÷¿¼ñÖ²à|]÷ÿ`°¬$ÅvÎß1°ËW^1DÌ|~ÐF©ö´UqB"¶´e»ÿ=Ü×*%XŽdZQ?h+ü¥³ 4#’ à=YµôN‘jæ @ˆo;€`%(;+ š9.€X$J§‚fx]:h&Ãåoûù#A3ù¬þeüüÇ‹øù¿8¯ýüF_ÃÏŸ¡8^Ìïç-»p˹ù×(9_ÒÍ¿ý]yùo*Ã{àåJ—ðÐt —ð0Ï%Ü(ÝH—ðÐu /íù·]‹yþõ:ýòžÿÛ§yµžÿœ`ŽÛH0G“Ÿ:ÁK{ùí`ŽÅ¼ü:˜cíåw½ü“U{ùE¼ß›?¸%èæ7bŽÃ…Bnþl´–…Üü+òòÏ d”ãµ_:›Ï‚+Ê÷òKGÈ—÷ò3[Þ—?dåt ZO•Õ>ìœnDKzùˆ&r9½ƒP¨®—Ÿ×žÝôEõtnµõÝù g+êÓZ: t˜£’¿n¢õ¯ ò¦¢¿yT~‚®~Ö?¿-_—ßoïmlÔŦèâ8?ë³~ǰWÑ¥£ÚS(W¡³\Z±ªÎÔÿ=cæÅwˆ—[þôëÉ—äͲâ€ô•8‹›â9×5ueM^[TPÍ>|ïX¢ë‰tÈ`lÝìYÊ2B’ªÓlÿì›×Ã)Á?¡—ñ“åvvÄ‚<ךƒãZùüVRx§8زÏ|¸éjÞ“g;;é{))‰ HI²²© $ðïf+ÆÁ§©Ÿ(Ý·8éz‡D÷ ÊÁç@¤„ƒü¦Eiº›dGU¥Ax¦€Wòœö °Âm•ó¢dÆTñkfU-­`ª³ì”øçóz¹¼qþ *W6pïKdW§qq¤ äw0í¹„zƒÉˆsœ¡-ßÛë:»~Z¦ªœJ70³]+Ös dºHÐjM²«uQŽèq¡$}Ð7X»Hó¥ÅhŠaõ z7ÿöþ½«\iÆŸ¿÷§Ð™óþ¶16¹Ìd6{½æ’àæbCg=g^ ôŒ±·Â^{Ïþ«‹¤Ö­Ûm L’qϰ[*•J¥R©TªºèUÄhâKMW2¼Á§:½$[*‹ºÅB‚ž¥Pp¥7¤rä!ˆŽw¨äS5yš¯w•º}*ºp´ðVˆ=ÏkáÉ©R7üêÔic#&øØMð€;‹bM‡›>žÚôqvÓÅš>7}0µéƒŒ¦¿“ls_%ÝœíI¹­€NãwrÞ©G»±lÒ;Õëøò^º89î'ÉäŒý&LQr>ŠÏR$·g"‰Î½üTÛ° ãö$ok¢ö#7gÓöà ¸^VÑ“Zå¢9´ t¢”è[rÁ> Ïã}øxð­M%ù¦*=}&Z}UO6R)ÅtO6¦ꔢpiŸ¥¨1 Èô[ ™(LRŸèÅì-'¡XSv÷Käà¸ñ“>Lïï‘ÓW+vvÐ>\Ôci·ŠÙ¼}Øú=èXäÝ c—†¾[^]×Z¾„¶ºœÑ¨ö«¥ækÔêN¿ÂMI5‹CÀåk~%ŽäûiãŽÆ-;„è°¤к_@!çnß…ñ¨–¤M@äŠ8Š.AGœë5Úg<5YŽjÈ,0|&Œ´G¿ª’uAÞwq¢Ü³Ž ÓìØ AÆÝ=f…71¡Dš>ÍŽ4;V4;ΡÙñÐì¸F€ ãÓLöèWUÒ§ÙAaš82›»{ÀšV…‚©\Á4;P4;È¡ÙÁÐì F€Œ0b>Íd~U%}šùþ¼Ù²´|ÓKZ_©°ìb[%ZÊ;×wV6õÂrŸa‘¹@å΄m8&è}{MìG–Ÿ(lêΡ›}¹§¶Ðþpx+îâ~Ÿà°Psº‰ëh M‚žo | #¹ëÝJ¹Øb ­ü@†÷VÙ­ .œt“ÉäýÝ{cµþ”q øïýý•÷×ÇŠJÁüËþâCï|x îoi/sv_‚zBûTŸœ¼‹½Šjìx})]T¥JSè—nz»ußw>h§ÚtßÚ7¼›‚NpÒl´·CÊ2»ü¼f~V•£+’X 7b«Åø˜ñzØ¿HØœÍÝ JÖ™ ÆÓÌÅ{ÖY$ƒÞè$ £ð`J}ІœR³\Ùm®omîwÂ3•pæJûºÒš®TsEŽr ¶;}Ò¦Gâé' Éä &rÖ[.ËP4£ßqcé—×b­—°ßåÍð"¾„-;Ë© ,»8¡ßOÕ­ ðèa4¨ª#Ñ9QîŠøsŒ"†O2ñØs|Ÿ&)65aªsM(Ûiþ厔›í.û¯#þ•w ²r­½?;èñò¡*ÚëŸÖwTbÐAe{ïp´@þÕ!Ãîæî~•8€~ £øâ¨ýnG÷ íJž×dÈ1´ÓÜÍÁ§³ÓÜ]ߪâïö{U.à[I`ªnñì {ªœ’ï;ÇûU)arœFguåüº^œÄ&èÔˆäQ¾  g¦®NÈ@Vã**UV«ph†ó“ã*Š^uäëW’ÍSÞEƒö;Puš4à»ðާÃóœ* x.¼ƒéð<§Ë)N /ÝòSœ:=ÇÌ)N£¯Ýò38Ö—ýÊ…½@ëeaÿ‚•ëLUÍä*ßåbèʱðX¤w¹úŽªÀ ð@¥pÊä%M¯G¸¨vŽ7¦»¨f'¡z7žEƒx‚ۉѕ¨PZ2ôä$Ž’ˆÐz]ûP› ë4k¡ò¶û¤,¯{*ÊMïüµÖ±cyç•—Émª)s©FéÕæÂn¦!XwÖ"F? »¯0HE.Tf‘Nï2BEï𥥠uJ¥å¤¿åŠH@Êh--¯½Î÷òk^yE¨}¼B3DÍ›úþƒ7xyÉp³ÃÉh'V\†íôÃK4»>eyI·°Lç1ö’¿¦ó˜Ãˆêìl|7”.,?¥¶ÊÔ Åé,­¡¹u=å¨ËÕZI¹¬Î*ÍÈëm·„¬äšŽNìYC[Pz{â=  bÒxÀÖ»½—ÆJØpstÌšî7± ×°(%ÓÔé¾Õ•Û²qãòÿ¾}^ÿï×+†çÿÝX™û?Ç#åãÿ=ÓZ‹ø1WµÜ…<„\á»Í#µd|WÑäžÏù[ÉIÏôB`oþUÄ­hv¦ÃwÇ4J¾Oø¸~ï§.tÿiÓÅZÛ­3¼†|[íÖö€l¢§d“œíSÔ_}°;–'d3õTáP,¦{wÜ€ù)‚â?ºŽÃ@ã~ÓÚ¹ÝíæZÝëæ~v'åmxÐQ·Éñ\»iÈð䎾£ý6Ú ‡0⺧ÿJ=‰U;ìÇ9þÖçLª*ºr–íê:®PM„\îLx{XÚ]Ü/[Ž©Y}ZD8®‹@lOFy+àÖܸÒÝ’âÌCºÐ!„÷†ÓAGmŽÉÓ`#p/Â=¾Ðsncî÷7ñûN"þ塳ÇJCKp”% Jg:>„ÿÛy‘™”1!äéëB“g° ¼{ë~¯Û|š3YqQ–Ñz•³&ùŒ™'¶õrog<¶ýl¿5ÿXÉ©õ‰ýZNiso´¼Ñænh3¸¡ýþg¾£Ø41Z šrn„½ÖBU¦8ºey´)¶¿ÜÛjö¨}†§Ô$ý..ìýæÁþ»Ü“Ž•5F>õ  /¯ry™r˜‡Pz’ck¢5¦Õé &Þöa(lEv7-“U‰ !Ô–7—©4žÆÐ'Ë£Ú.îônïðãáFuf‡ O볓å‹ó$¾7ÄUŽâÓ‘ÛäݳNN9ÀÀ»]úÝÙìæXÇ0’^ãC¾©ßðɼxšk¯í«ºòpf)(Qëm¦GìsŸ™|¦8ìx>S‚ãàp€)îßpšû÷ñïÙŸÕ¿ÖÚàÒ k&F7«à©ùq¥$:õ:ü Ä È}dx iæïø°^º˜”àƒ>m&jÔ—Ýs]mß‹®–ò$tغ&†­kVö—’é%½¼Ù®J-Ç÷h#¼§÷¶ï©,Û1™åAìÈcz²½„G2èL‹|ƒ® ´©.[ ÞA§ü6t°˜¹%ûÇä!ÂûmRã÷cŽU@·µÓ„‚EØíݤßg-øŸ•þÉg…nwȵ¢î ¯ ®£»ÉÂÎð.!È%NÖoè¸ktª$?g/¹NË*"!,Ã%‰ªAðô\Óç®ï:ÃÁVd€¾ek&7¿d×@zG,‰zÚ:¼[áþÀn);é;!äà~ ~GÒáËÏOä¥7 49wLr†Ggi‡HiŽóá}EXÓ¥ö’[>¯t¢1EÎn{ÈÉt@™É”…HÛ@´Qu’ì•3¹žå?æŽE–M KÝ6JÍ@WB‘4KRÀ•ß CØÉ` ôwåÔï%i†äeÇyÌA•B§ >LR³âg²\Úq {äÑthz¨è—y£b*‡ØÆ´²í ²yîil9á.bÎTÁÙ˜Å~8@8¬y ¸_W…ùúšçr&òÏYÛ мRSz Š-ªböÔáÙýjY!iÌè×ö”¯„E†³žöïYvü¹IlÛÄø?|hŒÉÑ4$i%½Šv1”7ÚÐêÚÆ´÷£«Ôë¡kS_,¹~ Î,” û\ñžÓ±#Z·Õ×yü:+Ÿš]Cæy9]U­¯Ø ¶ê«»El%Ä`/ 1XÎ €}³ÎüÀLçÿŸ|þ}ùYýÿß,¿^ÑþÿõW+äÿ¿²RŸûÿ?ÇÃóÆòÿïXV¶Ù¸Î1üÞ=N-]äëC@þ—šùw øÈåjw>nnTrá/ð —¿µ>į3ôwÄã×Ó~oüÇPlŒnzçêߊ” N{W£èŒ´CŠm¢$¾‰Gâ8J¢~¬k¿‹Fƒ‰‚Ð¥t«wÛß Nȼ4ðs‘ÞdwNÒ‰âo'ÃËñ:gáôÅ4}·£áçø‚»ºí`â”wóÁ¼1ìG½  _„áKì;/ò6V#‡˜a\Uü®Óz¿ÛLdz^k¬TÅ(D•Ѥ†'\’zÖÏF=NUØë_Î0¾¾Iè(ÿ–[Ðü{çç“¥³^vuÕ*FçvŸ~ÐÏÒVu»¼DÊÝ ¥€øqZ±•Æb»âKUlá¯ô»/|æ±U¥<ËËéy¨{3$Õ—v÷wZë­.þÝNßͳn¾þ!/~ëɳËó¯­æ–^Ó3gœ“Æ,T{öÔɘ/ž($K Æ’›‚´.v€(±½{Cþ6/h8Ò¶¹ì¨Sú.pmãÿòƒ²"/ç^Ãê\ކ7¨Â×*o_´$Ýه̛l³SŽY§έtªCÿŒÞím?޾¸v,îHZÿ‘¸CÃDµ„†¬ªy‚°â1¶È«ú::ÿCÇõÁX,¥d<¼½Eë×ùCóär äÅOÔ-ñô<q`ÂÑtýßÝýÿ.“§eïs/îÓñºr]ÁXÊtÌœ83©§Ìÿµ›~šø÷ žËE4àÃ{î|A¹MAœPÌæËŠªÙÊ[i eÔ¿Ä’è^DY˜ÑÑFHI¡³ð*NÝ·$¢ZG–øÙÎ%ÄU±>¨ô8æ”'…K$n«â}„ùjïå²6¹‚QÚüÒCbñ•æõá¾rð³b@ЇrÛÁkÌH3€'oþcD$~”°ƒú7DfCç²!é!{½ù×µëQ Ä#ýÐU üXð>B‡¼L‘ï®#ârßâYB)`Ó¸T’,×Þ¡º`zà[©å½¾8¢Sd¦á¯Ìù“P¾¡ÌµNlEz€ÉaŽ¡À}| ÿd¸fNù(úK”Myè({«$õq­ì Úüʨî?W²=îòÍ2ç¶ÄÙC’o.MLŸâöûä|­Çt³µó•î^8÷.ªfܹ %Ø(§I_TÉ6ÖÁÛæwÍ߆J”ZêÏt€ r׌ê8ÆÕHz &ÑŸZE€˜.;TÓ»o&õÞˆK‹ ”„W}c¤’»(ºe¶Â€ü皨¬ÛI]ÝL¤bÑ$“Å7ªZù‰/£dÜFÙ°ù¨pîv››ºº¥ cÎɘŒ°B"j*'½”°î–|k‹wô<¦b¶ ñf1†Ô\(!ÈO¹€~tþkfñhªOÀé°!<Ëw}srÞ‡mWo@!Œ´0Le£+p\Ñã'k'È*j196'Oprª{ ˜0Yðjª……s@˜L%y*ׯ+ßò.JÝ~Ö}££àÊr¼ª z|¼À ¶Ÿ»¿Šàß½¿úý”ªÐ×N²ÐÁ[6X=rD;«TÓ,µ{,±„ ñ4,±ˆ®µ°y›Äýá`A‰ÜKç×ç")+:—ºÝ±·c¡¸þ§3¸YÁƼ!£0²= ün)(¥·Õ[½Ú´î‰À¨øA”ÿaá'/ŠxÈ5›û àÏeúu€?ðçþ^ì5¡ÀZë=ýènaÌ4Ïþ´Ž—N¸úîI§ÕþP‡{{]ª†½ ÿ`›™_‘5»³ÛÜÁ_hW〲õªàVáW§õ^˜¥v¼µÎv p„²ÝÎǪ€qŒÏFUÑÚ<<„?¯úðç,Fi¬óñp¯ëãðûÙyUüŽÅ·×0Ìvsk³‰ŽÅÇheǯÚ{]¬)nÑè mîonø`þÄŽ~d”:ך:¬Yz?¨½sŒÅº{€ÔaçxsÝ-²úƒõ®Ùé–^¥ŽPÛ')yäÕºqÒÜmžÔñW« ¿Þíì5»tx ƒŽ4…Ÿ‡ÝôèÏ»åã¡ÒÙ@BtÚ‡» o@ZfË,íuø2®ê¸¼\ã:§Ó<¡›>2 ïN³³¾Ã¿;À” 5†)î|l¦as¬VÅžÿhC.¨¾1C';°Pê0>8ÂÎÛcý¶õNèk(\’î#0HãF ×k/à¢Pè² €Ýx‹AdßixUÐÞ¬+É›m^…vEfÓ+ÜNœÝ¢—[ßãiÿhèxZCîíôÂM ¶« ª%™õünÉÅu –õ—>š¼MAÔ¼õâ½v.œ(>þŸoK&+Qat¤àçÞ?Avñû'F#̨.x•èßàõy9\z÷ØnF" §Œ;!þ¡Þó¢B¯’ô*ÁDzñVi”ò-}Tïi•‘X¬*Ýó²‚, —Fs•Y|O&T)YâEÚn †Ö.¯PÚ’\ùÌŽÀDzºµ ÏÒÿ\‡Ã»¥óûs4ÐKÝ ã©êã¹ð… ¨˜úmÐâHmàt®ÐÏ%ôiƒÿ^%x…Â`6^têÚÉ$-VƒÕ[Fè"‡ñï,$.Njhy¤¶*xD£¾ SJ>ÓItè€ ÞÜÀ^ N‡Ö7{¨)ãÑ ìfWuü9A‡7Øu˜J¹P AP±Ùôü'|¿ôS†n} \Øì’HT-Rü©ŠÏ{¾¦å7`Ð%{wrãÀ*2ÿ¹h^÷ [aÅÓÈ´üСÍ1šWÞ b<¾PÓ00‘áaËÌ*,t¤R‘T'ØK€ä™‡tœŽ(mñÉÂV¬rË/D $Û^Vp Æj¼æBy[§vŠ¿,S§ºéü¶Wjýð¬DË8Í”!U†êO:aoB“ׂŸµ-Ƀ/·<ÐR>ä,¤5\PE·BCUQsÑÃJ‘d ë.a]î Oµ@U½#Ö“Ÿ·pà»eû&?¬v\`¦ž_1Pîùp4ÂxI|5˜ÜvÎ<ƒ–5›C|Cç_È KtjS³Cêv˜ÉØâøB(]”˜ðn‘¾¯ÐÏ0éÖ;Ê(©a)ªwE¸J1Dæ[ï{‘GÒN;f>#ê˃øÀ²drDp|E*[ò'£Rùs¦Ðï²uD·øŸ²øÔò" Cý)Å BýÈ,¾!­R¡Xïä”üS–üsJÉ,¹d¨hyRƒŸ)²)Ð’!¡R5­¥‚ä€ÇƒIÙ¡øËìIª¥´Þ©tÚuBï'¶É-ͼ9sNƒ²;A´6©¡©}¬M)ÁX´Ðçàeƒq¿Bï²GÛ™˜æ¥Ïj)›qLm@K’ à2“9rÇÜdŽ\.z8shRÀ3è:`,bÌÀc¹Ì‘7ãqNšÒsá ž"¿Ãç2§†e€œÂPb9!fb†>O„™a,}@&]fà-‘Ïb koÊ›<îÏ ãlq¹Ç1…ÇyÚØžõ³ óÍü'›ûÓGùA+G{Ãÿ>¸ÿµíÖüÀÞáº÷ÝþñH[¦´.ÄûQïf©s~}_ŒE?þ#â è¹Éa¸ŸÂ· ÿ‘!w»@RªŠÖ™°q&ÀÁ ´œË†¢,ÞK´UËݧ| xš±}[ö0ã<-WÞe¾EqÍÞ­¤áÑÂ=‘;OFÖ.‰}Uì⊼¯¤' š™B{Ó–qtƒ7Îzƒó¨ß—nË>LÓiî“:Þ´@Œ"}fªYHòɾ$29ây=ÙHµ;OFWÚR¶¿¿\žeTÔY„;*ʦ]`T Å=јP;3ŒÉ­1&Þù˜´›>&±®úœ-ËM¨Ð¿7ÒL±ÿ¶^ù§k²5,¾úO«ŒÕCYÀ0NÄ¿£ÑPº«9–o@ä”N™|LBNùZzÕèsÛ€dXöè „þö(&É:ÏEž÷{x8Ш/¯x8ÒYeŸI¿ýsigo‚/a5·ÄY/Æ«Ià ]Æþs ý½´kÅRæph|2¸N‘Ê쥤ÏiügPÙ3¬p¯Wù×"¸ÆWýÅíµ%Lò²têxÝíVħ؋úd}1T7Æ9ÁV‰½ýÙˆ]†Â¡GÜ?*µ>±ÆU ŠQT€KÀ(îqn•~Jv³ —Sc¹¾Œ—Ð+ J.*_)cÒÿ.!a)’ž`.izcE¬h‡m£6ƒnw.Oõ*»Gßé)¾w•{t/2Nï%.Àt€ÿ{ŠËïSp1Oð}\B§øÂx¬c|ÓÏCÑ4LPvcÕ„Ç2t rå(iÆÊ1]qEQÏ“‚Ò c%f=¯  AhåôP[À”3SÕ¹[BÛŸb%ƃfg²‚ž yl&Uy ‚ôÎ ˆ\FûÛûKˆ ¶3qÚnUzKh{Qº»þ¼%Lì-Os«œ$,‰L½×ötÈpsø|œºÎ"É‹aÙÉ^ õ„ÞÓÍb6ÿ‡¹ûƒz¦{ûža0S]!œòÏáQÀ"“«5ëZ±ÕÌ·àB1Û@<¿E€}þB§‰PËÂ;»Md™»ML£Ê §úY‡–š^EqÏ:´Ô sM9Ízb¿©ëăÌÓÎÀ4*†{öqgN›AžÀ+dî>á•ýúî®(úîÝ'žÊ{bî<ô];O8“QŽ…K<È,(l{Ít‰âr$‚^ßÅÝ$„3ØMÂ0e±LUËG¢žýˆ³1$ʳìGC"S¸<À8Wd´8ÞÇ-Õfïé¬ñΚÙÙã è§·>k|žñÎô}¨x_=¹ŸŒwEËq‘ñƒsÏõ|sž1¦cÌÌ3wŽùúÎ1vyyÚ¿·­Ã[¦•<ºø/þ-Å©./B§Ó)€úsŠ[Lq¦"ßúl®0í¿dp–1&9^/ËuBÈõËQ^8…Ñi„œpÐß@×{DX)Òˆ Ø…³¨S º¡”*íðd9Ðün:Ðà‡zÈN×"¼pqÿ`Þ6ì’]ì÷³ó´ é½Cm§$»<=ìñÒ(àe (š¸éCù Ť?…2Ñoßš¨Çg#íDamæx1Ô†Ž§#}´Ë!ñ­Þä pYÊ•ÜmCrëmæÊé xIåv¦TÖÄqŠŠ\°yÁqÑz}‘Œ£hD1¦£Ïñy”x"IåÍauŒ3\»ãÀ’\›íË%uzJ‚ MsÜ0@ë8X±Õh)Æ1à—‹õ²lRµ×­Q SèZCêÑÛdI¿äòV(±–.[ƒÉb£þË//=±‘R@N<2Þ^Ù¬ùŽÒ˜YCN–”oÿómYF½óköèÂt3Ãx0¦èw G.³¢Í‰ëÅ%ÂTàœ"€òÈ6ÒИ7I%—¨slIÙ|®J#þŠð~iâ];@J9£Q0eŠ–G¹(ŠV"î"#ƒóh¤ÅxØ,)øÐyo’ œ¨‡ñdgóe‰úˆaý/cŒ e„¶úò³uw09"ñ9ÂDB1 eÿ厦„¥“êO1C 0Å*™aÀ„ާåÇæfà ‘jÀv|.‘¢KdDéÁ@]ų̈L8­™c•)}†À[nUÒRúP«¥b«í½“YºÒ÷&@xžü¡üŸõgÍÿùª¾Üxíåÿ„¯æù?Ÿá‘“ÓÉÿY·óbTæJ©¦…pžtžôo”\°\ –ÛuF>ÐéY=gËZw²†fæE„¼ ¾™¹AUFÐ4Gè×É ZÿærƒÂ:rΜ‚¬ŸOpÀ¥F‰XäfE0¹IDí ¼á¢䉳ˆÖ5q.œ4-*Ð&@¥4,21UšÌI×W£ì@FhŠ˜:îý²T⽫Aœ1¼¼\²¯³¤mŽ0k†Éɼ’æu‡æÿ!·'jAQí%Ìê…+aÔ꤬„;5j ‘K‰.#Kÿï/ÿ½ ;9ìÃn‘H`€o¢·zFýGàoþUÔ¿ÿLyM“M2°²ÁY„½„ßçT–o÷Ôfvž>Ç4‘ÀMS M3 pÿóØ×”-ºš¡ÆA®ƒäÒ¯pØýòB,ô®0EÚxAqÙ(ÂÙÍLÖH#Nå9„®ž(á+¥ŸÂ¬F°ÃWëPá63%“3bå„y5ă  ƒQÂ&Ëj¢sZ¥1Ù›x—øç¤wÛ¼sú–úHTÇpÞb 6œU+кšî2ävÅÍ¿©"¼':©žÚ&«<|éÍJÔrt]’WF­4}Óó¥ì'Â'ÂÕ8ÿá¶ëSƒ"‰ful A÷ýXöžÄÊ–&,OnæM’Áó|½?b¾TÜÌsöêgž³÷/âÁyÞÞyÞÞyÞÞ¯GïyÞÞyÞÞyÞÞï1o/Ú_Ýܽ™Ø¿4ƒoŠ©Ìâ›fóÉrùî4ßof§ôý«2úr._Jë«2úÊd¾”¼×Ã!MæË9|eú^´èÑÏ‘ÊWüêÆì©|íÌÐ_+—ï$ñ•O^._ùd¤ô•O8³¯Uõ¹üÊê󼼜v}ZÛܵÓsù¾öû85—ï/†¦çòõ©Y,—¯ß­‚¹|ý4ÅÅrù¾1êy¯¿J.ßúw™ËWLKç+¦gô’úŠ"y}EÁÔ¾ðÐ*©qÄ+ÂŒ= w+mó"K\À"M줦w¨´ñ8îõ1û+Ùã«kŒŸ1¸¢ƒPé¹&w¸f2[ÔIß“…O F5鲸ŠBån§®XÚ7=˜Xû«>Ez`†mäÊý¹ªº½¶sÈ8†óÆ:‰cÑOÕÁ_”;–Q¬ÕT>]: Kœ#?:Búï¤í"ýR²d´¿n·o”/+ô+õÏÿæSØÊéõ½&kþGšJ{~BìŸËáýnrK"üµƒ|@Âì„ñÉX7Ö>î "b1#ÂgºûàÓÐ2ß³n²ã{ d‡÷L Yƒj#òÈàž"óØžøÌc{â3íÉÏ<¶ç<¶çcc{[¼¡=S±9ì©Gä{‰ì®6ì)æ=ÍgØ“Ÿ¿a`ÏPÕy\Oã™ÇõœÇõœÇõäg×s×S>ó¸žó¸žÅð˜Çõôºò÷Œë9Õô2ë9ë9ë™6:ëé~5ë)æa=ça=ça=uHM¦2ûã¨?ÐПªßÙQêü0ó0¡¡0¡šE¿2Lh¥òù{D%ÊŠî8?ú·?jÑ_}ôÛ ?z;-þ(ßeû–cªë…áØ£6â_-ô¨é9=ªŸï0öh=}¯a>[ìÑùó×?^ü×1‰gÿZ¯¿l¼Qñ__.¿¢ø¯/—ßÌã¿>Ç#¤ÿµ ¢×ëCþº±C±b6Žð_£*Zû­chüþÊnH_ÀÿGøŒó:{¸WŽQ O(†i^ÜR;:©b_}­×µÝáUº (`¸þ‚®¸Þn ií¶ÏÁ é«= Âñ.:Ë+°„}ت™*²ÖSËR·,¥RM/ÒÎ-V¿³­¸sVXTHv7`g­–Ó c‰Cv¶8gE¯-–7dÙõÇ‘þ£!ÿJÁ¤¨áŸFÏU~dtb5–7:vÏ(:Qq•ZÇJ‘÷i E­åz}2ÅúòƒŠÑ"ãíaå#(þ7ÛM¥&(#K4º‡ïT «Æ}@‡gÊ%âhÁ¥>—šårUÎñF0αÑ, @#ˆJ:fѨÝLø*Ö‹'ouÕ¢UŒ“W_ÂæÄ¹AƒbPñø>£ÆýþœÄ£è ›W_@p { o…lïW§D _)Ž4Û™-ÛptÁ|aFê© ;ÔÚÆŽ ++„ÐRÝ 4UÀ—B`)M>ºDÉe4º£cMYÑ(\&ÄÈj'ÚlhÇÈš!$Ö ½ qÈWshr{‹c?Š{ò>¦ÄùˆpvãqVØ=’’.j¶.™‚}xu¤Ûkk¯j¯á·—Ð%½ìQ8Ø®Ðð]Òf l±~%ÁQÿ„Í9þT1 ümóê]/±glÊίaœ€5è2*V"‰—kBý¯`Ñêõïz÷ ìEãì¶áü‹ë¿ê*ˆáF·ÇؤÍ!&0È &g·’HRìdÃi]²`2çÕ9²ëÀYW±)µÝÐ@ JKV·åP„ÃÖˆæâÅì)¼Ö˜2Å /è/´8o¶ÚÇíݲ ÅÆéBªIM/7²©”J¼¤ÍÐÅÎ4ÌúÌ1tJJ[ª_-BǨ”Ïä3„È‘î„Èq"ä¼~„œÂÁqVŸâ18#ÀŽV˜Ò1 Œiý”Œp9‹ËU3°Îâ²¥©¶íÀ9ºy/† 5ßÎÕ«b»ÙÙäŸõìn0f¢Âñ`ò5ÇNóx³$V‚òãºäö*76‹zÓŠ’Űaø€hqíT¥†_•)‚£óɘ‚§wð"€V¤Ãta¾±Ã&Ä?æÀÑÚá.ž“ X4´ÈHI‘ZØehY—m·ô]§µ8Gʈë•Ð~[8¨K‰%=Ö ÞZUÕ~¶­¾i°Úò¦ÇÁm@ñØ <“øüàãÉh€ÒvI Öڿ¤D6oz`|”Té4õ‚×¾M€$KÎëòŸTÇRým»ÌáùKÿŽFÚiU­/‹–´©šöQtS…å´ukë¶mfIrò("™ÌíÉÄÁè¿ÿ¶}|©f@ÃÀÄ}žˆ%40ð¶±½XW{Hm0`Œ•`#¹cÍü>Ìaú-ŠQÕW5Œ¥Hì²Fú7®¶Gå þÚ)[—ý4Î$D€cÛCP£{ƒwµ d$©gØI¦YFÚÚ*¢_ü€\4wÏ£…)ˆv‹aÉÈdãÂÒq›P°ŒoÄXwõC sµ/C¦â¼#nÀñvY_M^uÕIr:96‘Åŵ‰«È^|øÉ(=ãnoü} à¾ýwt™<«ý·ñæU}Ù³ÿ6sûïs<Ìò¶ý÷ð^ª=l¶;œ4èp«c Œ/¹ÿŽÞ±É,_ÖðR8üÀ@{ðãEI\£Ÿ¦ÄÏ3·Óˆä¨å2ùÓš¤±¹ç5¯•ª€ã«ŒÄê÷»’‘*4Щyç]¶©8o wiëqàÀSg&+5LL¡4NH¤™@nÉuÚ0`ƒžHîØ1àÐ÷+{dЉþœÈh¸w* ìù0º¼ŒÏcÜçJÆH Ùl\–™ÜÈ2FÑ8N0’¾<©}×]È7© ]¥|R˜°#c‰ìÈœè(5¤ýÖ½uMÁ˜âC4ì'ði¾-™j”›¤Kå+•nZ¥ÔÍ*¼. o…ׇƒß'W¨gè6ðÐÞñÔöeœm`)I(<Þ5'ÆÖJª"®Eµª_YÆ€6Á؈¬ÕdÛOiëN&gACró±ê|¨5,ÛÝ`;ï×Äsž¼{ ‘Ÿéà‘”œŸ|¿§kÅæ?*(›<ú8²/•e*=Ášþaé Öj Iç i«cÕ ýéÙ&Nü^¤ÉEÌåVuTŒÐÌî„Ó†=‘Œ ”¦ÉÉÐ䤯|š ÂDð§åX §R@è¤ÜPLHe!ö§È‘ºoìJhB9)ý^%ržÆ“™ERMU—&vþ•Ö¥8émê, £‰QÇÎçš6Å›øÃš)¨\}aa™ö'ëÕ O.´£y?k²HIƒ»õk‰ñ+uvÞ0ˆ„kCX5›à„3Á÷c²Z÷¼”Yº$ö€v8G!fé…ïX P`û8--UvV®Å†¨Kë„Ác8çÈp¼‹´áý¶Ï‘«à¢ni2 Eº¥2¥*TrƒÙa“q SJ7;“Qop¯IL+2€Zã•ý¦÷ˆG‚‹lñ¥‡Aƒ$jÖÌpü¶ò#¿µòè%=6Ë8•“å»»Í5/Aâ`^Óãz,“‡H?äÏȨO!µg<ñ í}»iVài÷mU¼ÊÛë˦y¬“ªuŒ˜;”ÏÀšæë˜fëp3=* Vžâ$o4•­>ËÎù8ðw7{xÖ÷ŽÚÝ*|~PGíÓìNRJN÷pÏáÿæ»Í:ÿjÐ/ŒžžÕ¯';-|`iç“pŽ/á÷{L(‘yŒH×a!/3vè‡Rw ·ç >û‰n`8ÍRv¿U.Âf¶óÙ4]væ-ó£ÐÑç¥ås¡8•eýYU©» o÷ÐkÃ>å”\ÿªg·¸ÔæWYq«€¦Œ5èºßFËF/Pù¤pe±â'Ƈï:O~blÓù<Ñ0xZÌ'´ä -ZY ––Ç¢ºØ¼xY·olNé,s£‹ P¶º9ßvÙ¶fŒ^¨Z7XMsèÚ>«•}0à±vºëý•T8ÜlrzïÛþ$1b– }‰ÌÌë&tb7=Ø,°Í"ûFfn3ËÑAuû´"e|ú}«Ó{NÄ¡z´1Lw,ÎFÕ:¤wxÀ8‰¥µÉ8<B.=hƒT«mù¨›ªi;Ãá­˜ Æ1Þ+ÞÞâ¾å|„*'~ ¨J ž?ÔÌjê˜Sp_L@d’1tI oÑ‘¬»Ò´0{¥ñ›U ´¶VQûEKjUæmÀ–¡Iâë¬ÙŒa‹õMû" c¢ô­;Kêðÿ=FñKϘ Î9XÇL')H2Ùã{CœšÕ^[ÙDé%%êm¹‚~Á høÇY™{’èjë‘Â0ö²NàÌI( yR½Õh×…ºæ›R‘®ÇÑWT r’¾± „‚.< ¬XÌ .=\éH×j„4-VØw¥áÝtlY¶ ¡¡1ÙKøc¶ÊÔ6Õœ­ÞQZqѕ崤/ÅÍ>·­>·g ýÞ¡”nì°êm[V 2Ðô0í?ïáâ—ÏÁÅGïdpñËgàâ£çâb[Eé2PÌÜDç7xÄ9é÷L(h2˰#Æ•ãþ,Sdegm9QkËà‰å­‰^|}ZV†+x‡V¦ˆí.ö)A g¨3jÖȪÍ8šªz † õ°0´ØÃJ8åFmƒ)U)«Dh¼¸`râ,AóC æ·]Élñ,JFlú}ÂZA;žŽŒwÊCÞ‚E‘žuÝ€”¸°XBÈ´épŒj­$´ˆå^ówº02•à™f6ÄÉÖº`ÿ¾ÊØ ˜û†ŽÉN´áõµÄp<(àiZÃ$NVºqQ/ËkR]¤6>S’ñyļqCá "±NÖc N£¬«^D磨—ÈÜÖc<@³åx…Š`^£Ó•|±K7#OÒS”ò›²¨õ£Ÿ\­:ÅI¢—, æ²=bR‚£ †!0F% Å• /Mz¢Ü„KeR±žuVdKèSûÔWa¬€À7ш#Ò ëð⫈°ÏÞ„>D±p y¦á^nïi[G(þ®>…ƒóÓíÙrÄbÁ¥‹‡hQ PÖø‰@hqÇ®¼˜e¬ŽiÍœ%\®˜ÆBiíº€ÖÒû–J}X–yeÍ]ÇíA¯ëFécÙÛªcòËÙ˜Ö<°¬¾~ŠeÕÓzíeUc¦ËTôg€_Ѩf¬ ¯]³Š.cÞKx“±Î†o'4*Æý-9å5mïËÔ¡û bÚ³€¹ûòr›˜·$ïT4CU*]­A݇/B¢Ð:$ˆÎàA 3ƒðŠñ=ÖúyÚN%œƽF!§¤Y€J€ï/Oï/vVþˆ´¿öˆB_ò‚ý&wÁnƒ,ã¿Ú@—ÖÚ‚§Óc¾ %uÒ¯Õ so‹¨×—3&-@PÍÐõa›äÓ¿_ÈJÔƒzèÎTæ…‘Ãw©½÷{¾0âßÿH>?ñõiñÞ¬¬¬¸÷?¯ç÷?žåa¶ïtŽKÁ{êÇ·v#÷"EþM‰\’˜vë!+RŽÑþ™sÝ s,p+©.(Ÿú4êd…œÜ«ü…Œ. }׸¸ Qqªøâ}o’$1ú2õc²Îà8¡k)ºí0y»Nù¬ÜÚ‡¤ÌÊ˜Š Àb¡"}ío€Pg£|Á‹«r%5öù–½¾6.ß8Ò;EÞHzÿØÞúÓ¼Q]‡êÔàÜLhw9À°EÔ¬vç_ ¹„›pš5[eÒÞ©C!Á¼¾Åãq4PÞ‹A·j„éa½dºX?‘'zwŸ0Ñê0ÍjµM:Ä)xIa*]³¨ê5÷†O¿ òexé§þîOÄGÙ\a‹BÂaÞì~eóE–{¿Å[¨®ÛÞåÓݳNæ¶{vQ£i§ìÞ„6]ÐM=&—]ÙÛ_׉½°?è4wЇyƒ¦@þeG¥¸“儼faÏ…Æ¢4hZÈ—žk¾yëI4ÐîóÒåÙžÿfILìw2 ÛMŒ. ÏéOšá *ßNwÅÉ2æC6&ïšë°ßǶÏä;XÔíñ!qYb–S_Ÿ9ßÇnªÏœçf7ƒÏÜ›t·ø`¯7Ð ‹{½™„`/¶tK¬÷µF!éíæóÛñHÄ’ú‘V6N¤Ñ„¸Y3šS¢x&™öл{¤.ùæ#þ‰Þågå/AÇà̓²b äƒ õ,ÿ\¢úéð¨´&ϹžùIVe_€@"§Œ,)’KZWÖè¦p‚yKTއa›Xˤüð.Ú(£¡;>ýM5Iw‚äÙP(d¼G±c;T]Ó_Ñ”äUf‡©pàQ q‰Ç5ñ#+Ô’D;s`õ ›!BÅRÎ! Ë„*¥#å'Êsü}7좃×÷a™aÖ:=˜OCN §Sô79u¾uv–ì×6£`˜^æn°¾t‡0'÷Qê6_óR’4²Þõ£ÆõƒÅÜ9) ËVå¬Ó‘ùªù®šìœÏ4–¨qLøI]+-–ÊY>d œvS^y9_wJä£÷Ä¢àÕ_. ~Œ•›==¾Å)÷ºø” þjk¿}ȽÖ;ÿƒ38î†a¾?Ò¡]lsTÍßKïlÖ|'šêRP–ÿIêP½jüýBv;,{Ò}½°¤G£d~^Jý¯M¿m¾d±eêªAÊßб%™É †óû’º&a þ’r:·0u-6,Œ,g°ð¥Œddƒ °’úC†KbÀÃA~pµ@ô9ÈšKEÇ*o¸6b™td´½á¦3K戊'T‘7®Ú)ÆÚ°ƒ‡cÑÊôÉèÿ.Ïú„ü?¾‹øŽûË0á0ĨêV¯<âu,'„°‚ØÇ*WžWM^ñ€4t”RoœÅƒèßáúvÀ„aB ¥wå«äFøË“uÃyšNPªQÏ{„{Ïxüšù\Á Àœì¢"nd¼paŠ‹Ü5b€b3Ú[9àºMr“lµBg›0|óp^§sGê1õ,ØÛ¿Ÿj®=~®ÍPñ9/ó™ptÐ-•;â‡dr…BüG½‡LöÀ‡ÝÓ’>PšÞLŒe_¯‘›€’´ß«ÄÓrèâ9ØNú ³=PÞP3#³?¼³³@@9†: ²´Y·:g»‹É< t‚æ3¿Âl)šŸ‚A‚}7S^…GguH9¢`j?UÃŒy¦_S}éV™%µC rñÔ¯UåG]r=yÐ%Wæ ÿÖ™|<Ó¬i£“Ƶßà\ïœ{JùžÿŒ%™u]òrý2ýÂG\øÈ-ìzC§!ÃÞ1®qÂ,)ILƒÞ±6±D˜A•Fî=±›×Q¥¶x×ffñ¶6ÇÇ“hON¸}\ вUç¶P¯[ !mÊ×,ÉKTºÊ•G¿õLt x6Ø ¦† èf5“1pM."·i™)²nq¢ÎN;akŒ‰­)0ßMúýÃãÏvÚÓì˜ÄVy fôGzþû`#A5C)Á¦º@$FÐà°OGìÉ7þˆÍž=;H_Ñtè.Q:ÑØò¹œn(2ôqkK¡XdX1=ÔUsäG_Àûdî‚ý]=¾ÿ÷xtù¬þßõúJÃ÷ÿnÔçþßÏñð\µý¿S}"•naeâ›w¾Îô«¥ú{£töv2+`êØlà€æ¸$èՌŒÒ!=–½CNôd?D7ðŸõ()×Ôp&å8&{£]pñóìN¸†û-x€®í{‹@fq¿ýjñ¿ûP F–3Ðtw‹ªßK”>Çö—̰€KͱÅ÷ëO»½Ìèíb Öxòø”ž“Ȭ¾!]×;âWÚ[Ôñø#ƃj–„u™ë1Š”ï‘íaymØ_çê>úãQ'P`Â?ª˜ œ/)×óôP)½V8/ò¤ç2” )þÌgŒÖåxìÜ·0}Q¡òÇþQÏBúV6OÌð),ùEC°¥‚Þø5Óä†" 2”(t1g 0ßah”Ze꣙L5”€µluA`Æè×UYšH϶û4AþÓœ•>ˆzʉòTÕZx„PZVž1C —‚Q^Òh?XÁ{;[˜`¾H»ëÙÑ‘¦õ¼H°•ÜH+9]UX}Jã©ã³2ƒ›„˦,­ˆ«,g±¾Å"‚o:äLâ=0Ñ÷Ç !¤¾_&+ÄÂ?h¹Ž@²£Úc=dèì“”â+1²BàÙL#Gz;_y ¾òÒæåW³dcennw~вÿ&Ïkÿ…ÿ}ûïÊÜþû,Ï×þ;å¨Ë 鑪îó]Y‹~IŃt< •ÌÃìÊ…²Í<ÌÈÜQyg†íßËûÎÄÚx*S¯ÊKŠÎÃa,ÐT `Ñ4.Ä{1uš‹ Ük,y†Ù¯qÙ9xSÛ¸ì\à¦óBákÎ ÏzÇù¼Ú\ønªk,n™~ü}èÐ5Ìd½yª[Õ9÷ó-µÓl„œr[/ßüj³èÜúZù 9r²3ã(§¡ŒÔ8kæ÷°ÓQåJŒóµ®F|«ì,N׆³uHÉÊÝø5—µ<“gØnêÜin¶ÕÌ7ˆÊ÷9ív’¥  èS:9WÅn+ä0»§³ôc–ú3nщ¹¶wX3¾Ýš]dF×…ahÜ cÇ;Ù¬¸î5~>“ôÛ³ïÌ<Õ9Ùóg6“Ûœ) =EèÇøƒšû5mâDn•L'ÏD¾Ñ-LÞapqåYkp›mÙÒ¯ëá>làÎÒ‰­n)ÕêŒ3§1ªð |Áƒ‰‚Úkfó¶.¾R.ä, èÏt@Ü çŧM½ƒ>ßkh° Öª4Èβ›Môc›¡€Ip ãù@}lµ™DKÐÞÝ^!wo/ÄX¡rÒ‹ ‘¢Lãp‚i7û1²ÏŸ‡>û_Òx^ûßÊ«Æ+×þ·òrnÿ{–‡ç¾cÿ{ˆÈt,|½É—¸÷F÷ߪ­/G-þQÌyÆwjΓªLÞþð1¦¼å↼zA3^cnÄ›ñæF¼¹onÄ{*#ÞsÙÏÂÉ“[û¹ ”3¼ sìE_ÅÖii¶€NYÚÏ«õ=gÅFÉTMë)~ ›#p'ÌT<­âq¢¹Å»E¬2"ïKë¤Hu/'ŒíYÆýØ©| gV"à è%·i¡oŽvžqß9±ëK­ýÅ–ÊU¦Ýà«ý`,7YVv);Q–hêôQ¸Óß[ ¢•'NA$Ý혃h%ƒÈ&Xn†)‘•dJ(W§ú²õýTß4?w›—{2wˆ@æR5Ù5=Pj´²s ŠüD~æäÈÊ—‘³OJD'fÉEç!+é aé$|ä'cVŠ)SÌ47Eþô_a†ŠŒI*TzÇióT|…©*òf뫌ô¯³g±ŸÛÍ_ÔVpú¢Ì ap2ýÑãîš«n0‰çö™/ÀÖH4Ò‘ŒQ·hÚðe³Lø·RžÈhÅy­%k¨—äòRNÎ?1MÈ ¼é®žÁ¾…• Ë@ÅÕ€}W ¥Ã3}üRô&¸” -FõF¡Õ(kˆ™ø[‚ãr¡s:fqº˜•Ù§ˆ3c.dò»L{ÈOVÞ[Ä»>­Åƒw“igàwQpiŸa½aÊrëãžQJ/õz˜Êu_÷+ÇhÆ÷zŒæžÿ\_Eþû9ÏêÆëeßÿ»þj~þó3­yþ³õ~óàV›½µ*LˆÝýþuJG"­=ø±sn ÏIàGwsަ›;û[ÍÃ*ÿna˜£n³*°ü8Åß§9±­øÙù1?ÚôçØ ÈLnéc¾%I†äf¢IªÌË$]“FFž3ñp•TJÇnsZâÅ­ãFJŒ#}è–×üúF¶ÆÓ÷k†c.âÖ44 E¸Ž¯¢9â%FXi½íÅ#QÚªvËFºÅ-ê›Íú[È#ë+3‘Z7{„`¤æ´‹áä¬-%×ñåXZ7ÑøzÈa|wÓæ¥åƒ“ßßr´ZŽŒ’E(…³JbmèP4¢Û´>’êð+ÔÑfu­üV³+†f9¨W¶*§õJF¬ñ]ùôR ½ß:ÜP¶üKäÚՅ΂‘t0ÅeÉ8I)-Ã@c&Iî'63;Õ9¿žŒ¨'DR‰ï¢WéTNÛ.}ÜçªàÑ)s8ªÛù«bßb; SŒïêw8TÍŸ“^/ùÎúÃó?̈9²8o„ŸGЈ9 k˜ñ‘††Éˆ âKn4 #|Á òR±Â1ZRǰ®°×ïË Ý;âr:ˆ˜’ Ü‹§o£‡ ‹1òœÖószóáÐàËÃÈ*•~¥ð÷²›RòܾzµŠVáÝ&'– /Ê‚ÇS–Å"inƒ½[»Ë.Ç|~Òa[<6%d-«ù ˆÚ³»5ÖG˜x4LóÀ(ÀõªG„ã·|: ´ÓzMÎÊæÇÓ:Ñ:Ô)¡…'4°ÊAA Û±ìpçiPø¤¢€ºÄydt› _äì¬WNCØ1-ë`7 ÜsŠ€l+a[e%l«œÊ8ùb?}QSò£ Tý<Œ/è¬ã²?¼«N™r2–ð  Áê lD—8•í˜å””*B µÔëß^÷ªgѸWV™jé+)*Õ,¦X•Pˆä„jú‚gOŠ~ïæì¢Ýd/t LS ûb„¿1©‹Qäïo`¥‚Ñ2KÃ’kÙ(½ooî«å¸IÛ|n¯²V¡l(éÿR£Ÿ¢u3A“¢ò"}›…R¯OnàcÛ—Û–MßL*ÍÊ=n+œõóÐ2N; C®Œ"Šù2eC[oåjÃ(®‚àÁÄUÆ% ~T¹e¢Ë·b½¶V»Ã>L„ÿ%Þ×>‚8Žîz£qUüÔˆfÿ øt|}C§Õïfwí 2›)ö™ØÉOUÑi5wŇšhƒâ6=fÄúr©þË›•rz6w{[—õ¥¥Æ«×\j`Õ¦jSnÈ­Š…Í…·:t¬5ýû_²Œ²j¥J—õš`H¤Ÿ¨šÏÀEæó¯¥­C’^K2-‚ÚóÍȔݘÒß‘v‹0e7Ä”¹ì¸ÿ¤ìˆ{Å"EÔ´=£»aÜJ7Œ&gïØM÷Ž]sïÈŸÒ£ÅîrFÎíºœ»ŸË¹Ý,Îí>çvk )ȹlû+ŠÓóÓ$;†NÒÜlleµšy9º°!cL(P µ}“ÖC0‰ozWñ/CǬoïL$:Ö`KS)›% ¶BS¢B)½>®b–¬•ŒìÖDQ‰ŒV^Â,¦2›CBØÆÃYcÈŒ½¤V§›Ý&qÑÌ„M¤ã$í‹\ïlgËì‘®;¼ŠÐŸ–ç,‡ƒ1;'w]%iwþ½\Õ(—݉(·dd•†!E·0g()D€ü™i;SëF•£Eë²(Qg;ý‚µ“Sêí *SªÎuòY vP­9Ú´àLù{‘\«aNŸ€aNk )‹aNC sj2ŒŸ¹tÓàmîz•Î ËáÈÜ*xÆ¿H⃾zYn)XÞbæ>Ÿd*Ѝt¨ùÉ R@ü[]¸È*]4'Šô„î;,Q¨éføW¹¿¦“f‹C0Ù,˜ÈY@ª^%þVbGI"J ØÚâ…K¥T ‹V¬‚}ºìÅ}Xàÿ¢ž,µsû‚@ÞMF¤Ñl€®÷m»²uaSÓùp‚ y0ó¡EþKKü"I”/e¶²ß‹Ñd€Ôa2¶vš.ݦê÷‡@òf—Ê}Î)¿Aèiû˜Dcž¡w<ÁåY¬=e„µEµ–§òð’§ÝÙp<Þb­H›HúÍ5|?æ1éÇÃFæ´&·³|o³ã’X †¯—Ìy‹“&ïjÈß:U¡äÎê9ØŽc¶Ó|Ïß½çß]þÝÙìòïc|¸—'yž, ½ …V%Š«†[O¹æ*C[y>¤Ö•U™4™ -l£’‘Œ‡å¤ö®¹ÓÙ¬oHÈ:Ѧ|¨|¨Ýã P3ªYൄ,Ð'ÙgÊ_hÿ Ø%>Ïî’zœÔí‘‚éÅis`¶s%L%õº•N³©tšI¥Ó)T:ͦÒiVN§Pé4›J¹0s¨t¢O Õ¯:Ä1YV³¢²-ç0²t+ÑI*]eá]öæA͸ôG—Eˆ³­Ëã)¦Y‘y ó+yå~çWòžÏ˜í¼µ³‡50dW^­^:jó{üõùè: ÆkW6¶è‚VfŸýÝüõe¿Êw-ÑåÈòMnvv¯ß;§¸S ît*¸78â/'W¼˜R²b&À_ìÉ`0hÑèŽä>=º£F8ŒÐ„‚Ü !kNT\`+pyÍù”¤7¥þAOÆóâœJí …ÚÛÚò] ["èyúx|§ÃÈ[½Û;¿Æ“¢uPBÆ=rPÓ’L°¿Ç"b g®|ÁʳX:?u' šÊª7¼Ämé YV¾ ׬…zEEZKa˜9ß·:؛޿m•䵋=¼“@N#d@S5ײjvÝš]§&ŒV»À·Â¸hø¥Ö¬R¼ÏÒ4°J;ðrJ*˜f†ñMã,O:í˜9aVøF¨4/3 áÝÈC9™†¤4©aᛉ2Øæ!_=ýà¾tíwË|õo)ý(ÚµŠv­¢wÓ't¿qKõQ5l¹k–êK¹ñ 4iN³éÒHéºÐyjuöÔêlcjgÝøÎgu9ˆ¡z®®q#A æGuWÓ¬º²ìßón]²ϨäøÍÁÉ8ºMlÁ§×jSNñ畟—SÔiÐÓì¶öÚ°¥Üۉ׋ûAï¶M2èTzÝÓœhïÁ‰!®{Ÿ#Îy9œ . ð:ùÀ‰á­6hÞ /âË{™ Loï®aûô9õ‡wJÊ£NUxË&§šI02tºžg©Ãd>éHc4¤Õ”âWÉ£4´Šä¶)ø¾é ?sjÛðûKË«ŒžÕãqÔGEL¡G†^ßÈË^Ý¢q~æ^¢©qj޾¦Q¿ÏÖ\ø0I"ò(ù2õ†£ öû ;{MûI««úwÓûßLnŒ8wÈSw0àŽé§/ŒPÇdt&Agò[XjI:®ZÉÕh„ð$ ¼PUÒEϬ”6kkCDGcß@ö){®qŸaë±\¡ ²-P1SŠc˜ «®ŒŽfl zÓ‰×Pu¬£´îŽI2F‹¿HŸú[tȪþ¾T/¯.sDÉßW±§f¡Æ[évµš¦‚Ôt:ÐÝõ½‚81 Ð?ª×ç½$zKÀ¡†€åÀÏf¾1Wœëx[²QiíåÐÓ¨ÇѪÇ¡:®ØËÂÄYám•MìºvK ·µ Üüâ´ü¸ŽÒ‰eø˜^QùŸ•ÓˆEÜÒøÞ£ØöˆuÑÁ ïEÌŸ$kxóÁᇨ|0Ø}‹ðºmŽ5.?…ÆX«xxx§ “U˵tÈj¾†à’´m0mCsJؼ$RÒ²xHØ* uÛ‹ÿÁcÚ{k$làm‚Bt×Ln@²bRz剷DÓ§=ٔЙ$É2GKÆð:£lÃ)œSôPéå†9>X˜4a¬€F½›wÁüU~ÎL«ôë×Ë.Ø%9EŒd£ kï)*š**‡œ$ÔDVDŸ´6³S9Ïð|q±à nÃñ5¯)â¶—$¢TÿK4Êf¤ÚÔ&½@j>2H).ñkÈotŒK§»Úo“”<þ"ïæây¯ §Çkàxx[¥5/¿ú°Ä‘D_°fV6½t\(nY¥d¢›¨™ ŠàÝ5º})ô†.Ò²ÐtÎ1•½@ïÅQt¡¯Gÿ>G.¦8cظÅÃ’É{>îÃ:Þ½þPM…z.›"³Ðù&Tˈò¢L‡Ý÷júp-b2¬GGwœ³ýXÍe5è@ÏܹÃ=µlî.|£ÔŸØ0?«á´õ.Ÿ:]¼Ã ùtCtó`6907QÙ(¶)ÐC:nuã3·—wži€œŠój&,c€äâì|SYÏ€>e±IqÐ+¦EQΔœ³rZ0¨VPÊXn ‘¡-šOvÔ%Õ*ú1à† „ó«×sZËZ;¦¼óÉ–NB3ĢȎz%2—‰`æq~öp<&…ˆè‚Œ®A…%±K¹A~vK¬#ÓÏrP·™·£!:½¡[ž\HPv*{Ê?HqFaêLúÂâ40í‹ T§É¬FóÆÓ$ç³y†dZ8¨›Ù!G¢k¦‰[£° ô°mƒA,0¥#W²,[ ¾9Il­ñz=}Ø*¿4[ºKx‘•>“&,êQ­%åë…›yù§¦f‘6*-I’å1¬¢ªwÒ|wöæµ¹ :ü¥?/=ˆ¿^=^î¶Äéѯ¹7ô‡te¨+z}ãUñoC6$a®¦a³Ž»v÷6my;ˆšOG÷îAôe °©Ý×v/Fic4¼…]Çh8¹ºÆ}ÌOñ2ÉýT¶¬F| Ú¶W~ÆõecÙ2ß9Ë­”°A ñ3M`^8Ú3¡_¬q!Mo äîãM(™0åˆmšJK„¥‡kaË—x³"ö:w É :“ûÝ¢™3³±nñÆÜ¢™…g~h¶Mšß¸ >r¹…9©#oŒã¹Êìi£±0ÃU]?xÔGÌZ?g°–…ŽºÜ©ãŠE•“P9ÖÉSºNÝaÕPY‹Õýϵâxjº§èZTU­\ Vb­«š0iVòyžÙ+š—üõÇCs4ÚÃ;q®O€ÇwÃ)gÀ–¾cä™0}xZ ¤9à«uÞ~Ü<øíÔ+Ùg¿Ö©oZR”—>VŒÓq¯RóßGœü8ó~Ú›¡SWõ­u¸[a~Á^ç×?ë•=–fœ¡2}‚a±ðÇI«)õ•L󯇷½¹íÇç ³¾’ÆÒ&7-Ko‘>{¶Ñ›?<¨ê ¦ÄSJð»/ìú RÊ/²Àóõ<2OH~±vìƒËùj›©P ž°3 *Ϫ+9 d0¾["Ã>K¼`ØVòý&¬![«/Öd_édÙ8 ÙÍèÁºš’ëÐÀ¢è¤ »žƒÎ:ï;våõ©•uÕPÅëJ0(”º9P»J]¥i•-”ðMýåÔü@th¹•ï6¬ úc/ÕÇŒ“(ó5wÔª¿^´¾IþzVž/ýùË8=#Êz-f™I9¨§­Yß] ±©¢\B¿–„Vv#Zr?,6²M0&Ïkb*®{µÛÞï·êzªrÈÑs’¨É޽q:æÃuGºnGº™ØtŽtÝŽL¯êt$?ÝÚtKÕÏ'Ê©ÛÉÓLL…ë–ßqk¯«ítõçÂF±ú/™‹tТr”Dâݨ78‡­Œ™ÕÂÖùÆG6 •T1Eèp…Ó.GjKžxf_ gÂ6šKÛWKû’¯|Y©¹µÈÈC7)f>4ðPÖ ƒ4Ó /\)>=cÏ—âèdIÀ{9vgÖmëìªjøwd»+£ÐiXÅôã¶9¨” aÝ¢û¬aT¯²!*N06ÞÄɾ úEðS  B@B.2^¾þTŒÖAÓÖ ºê¡Nï…a¯5ÞîQß;ndØ:ªþ×¹¹c<»« "Ñ 0ĆqÀÀ ë;68vP.ï”qFQ°´î)âú¾ã}t‚ðË{ÓhЛF#4EC”2Ü蘚C“<À<V»î¢Æ“ÑYta¹Tn«~<ˆlmïí\ö3tGýüö› ZW/‰uŒwºÔ9ÍQ ‰º~êkõú!çödÍs…;ÆþBÉð±xÕP•ml_4œ†jèÎí5ܺ Ý^£àZ²¼âåEõw+ý»Á6{þx”½I*ß5RØfÖ±`—úBaªJ2ú™ „Vä¹^Ç 4ˆÅ ¨è)¹§¬ý"òá÷-ù¾å¿RkJ«¤"±Q_BËÅú)š¤ÕjÖºA 3¼=÷pÑÄ=T1÷^Ùÿi ^@»eZ\¦•Y¦nÒà´Ê£žÕ3ø¢¼H§Q¯0j™å#.(Q|9Tr% O0ˆ¶Sº„¡ôƒg®—P@ðŸeÌÜ6‰5§ÀRk®x" ÙV7(Ðv"?4Œ óMÃ=¢YÓ ÖLk^A ˆ§ŠÒ ÙbzªéÍs”ºkUÖ²Xvý€FÕND'6§¾¡—4×`4½·!†m’ „vJ‹Ô•zTªE-¶‚/ DCƒðñj64ÿ%uVñ:‡ª !ší…fûAÎl?È™íœíM}ë9“½IÒ/X„Q"X$ç"W‚¿[™Hª‡°Þ¨š^éì kah-*ôä;Ì“¾hy.Œ,þ¤Wa9òk§Ó½l¨‚bm áÂ_-¯TK—Âè3\ʶÁ¬1ãTxŽI’ûSj­žÛ×4ø–c“z|»Ö0Ñ¡r&öë²%ï¥ÕEr¥ cšG¾u{Ôíº+ÁºÚ;—èÒõèÒ‰.ìn–GÛSÐ%ŒgÂuLìú”id“¦k“¦ë“¦‘Ò¦±2Í9ILs[Ì/ó²„ÃŽ©K¡"»éƒX€ì†Wc#ƒðÂñ\4>d2¥ð¼%­ÓøÒEkÕþè²f£`|•¬0\$™)¥f*–×ø”O+×ÖÉÑÿ‚óB¹ kLï–#bîÞøóÐ=ø¸Å|>"3yÛD‡á1|3«î·4\aˆ¨ÔÈ„ìê»ÿãΚÝRÝ¿ÈÙG¡KPòU#»š¼(ó*GßDÀÀCÕ,ô>ÒŽ.ÛuV–jÔÍiŸUJmCÒA ÂjX°Â¥Ž,´ÂE,8~‘ û®Ñ—¼× õ¸Q¨ÇõB=nLïq}J3¦4MIuë5¾ƒè<#^rXG“ëõÌGaNå`°?¡'óGÿœA¤3ô£„ å>ú&BÑþc#øŽG/,Ž%„ÖÉ,î-qæsŸjªwôESÖ£†ÓG^Õ]$@(F9‡SYÜIÐøøoŸñ“x㉄Y#[˜‘säG:ng¶H Æó‘§OGÆÂm­ñ u]ç•Í™ul} Xóz®ÿBÕóg$^G÷ëˆ E¼C§®¼ÍŒ£ºY¬ŽdÕ¥ëuv\žz•B(%Œæï´˜ªG¡éɼÌ£¬ù—5ÛÈã(cÊÕù,¨«HPi,Õég~ÔØv±+Т°ÐQø1žø.é;ÍXn±ûy›5½¹<ÞQâÛÐæúö£©}³ ”N†\ ŠŽ;ÁªrÆÝ“•\?w/g+Ï[3)Ï[Ó4gëâÊVµÙ¹®²5‹Î¼e+Ì[¹ óëSiì]ƒvÊZÓ¬½ M×îLtíN£«u¦[€®îí™YèÚµéÚÍ¥ë›Â"hŠw蔋9.ÉO=’ŸÎDra\»ÉÙZ{N ^x×yNg¡½‹ÖªýÑ#ÿÏvˆÁ o¡ §Dãï–-åvl»!Þ6r\ŠÜË/‡êûTJ#ë ¹õfÊÕØÇß‹ Zç<ëÊòüìoÀ®,?îìJý»¹»2=+QH Ì‘ ²ðÜ”]i8+iÐ+ᛸ»Ò˜v;ve%Ô™P¬ßoâ–ìÊÊãnÉ®L1Ê~C·dW^>h2m.Ðæ¹Á®$fˆ®šZñˆ¼c”àeZ *FÖùümå•{±óòx‹¦øs•îažŸ£ÑU4872rØOsù1?;“s g}9éËÛéU‡¾bkåç*n‚¸ú[J“©qÀôu}¢¼øu:ÀÊc4®üò)âVñ¯K÷rùÁ9â^>Y Å'͇<åñ"{EŠn4º‰4³Ü©²ý&ºù•øÚÅ ë©ÜºÑh4•ÑP&õÞŽc„‹7דÛÞ9ÆÎû7Ï2˜H.Qüœžiê]™ÐSãÀr€“”jT~ÿø¯¿ìé÷ ‡,­Ô/:‡ë/’ë$еË'mcž×/_Òï7¯_Óïå^^^yÙ¨×ÿ«Ïò›úËåWÿZ®¿\yóæ¿Äò“b‘ñL’qo$ÄÝôFIïf˜d•ƒb—OK–oâaì­î[owv6ÉŠÙÚØ¬ŠÍÖ{` LoÚêƒÖ·¹³¹Þ¥|¯[*5ê!^̹©{¼ƒ%ñçñ!ý?wÑ6ÅÉQÑc¨ÙÚÉ»gL«Bæô¥éÓu§I7÷`UcrÙ¬‡ ®eÀË8å¤;ÄŸk8íºÑ` _UÓïÖ{ýør8Ä=±þ€é=9U·›ïÅÎøBç¼o?G”2°œ¬çs­&:ç½>°JÔÀwrZ¯ƒl®£o*)b…µ¸ên¾7‹²“$fêIÊ1ñÚ…—æhÔ»¡²³÷¾*½ ²$*ZV…P ¡Br”Í(휑Ú*1ÆTãx§$Qç‡%Ù‡JnL‡-Ù"KVþS6œvÿÜŸŒn‡ c\凿gFo$LÙlÊ×xˆ¾Þ"Á€—qtÁ›$÷èxLVaâ õˆï³Nno ¶‘ÀW*=â–Ä©«6]&ñEGQEðÖ«{• JB(çÃÑ(Jn‡Jr5¦ÈhfjLЍzA?(ìäÛ€òì ¬Iwø»J_ÝW*×ðiK~‹¹â¬Š¿¾ˆÃqÄñ+AÇü}BWÔÉ´VÈ*äe¯5Óc¡GØ[/ŃÛɸœNŒŠå½*Þj'h† ŇùÕ©²cTqI®±fÔ Dczô}²w” Uúz#‹þ 'IUÄ^Þ2b¼M¹nŒÈ‹ÚêÆ·G’¡ˆ“@eò_†ì ®0R.ç%¼È)Ä`FL]v`°où…ÌTfsðÐ ó|6îŃ@â4!Ò&Ó\k5ùçv„yrÇ÷œ»5Qó~ìeNƒ âaJ@Àÿ¿ƒ 0“š¦’Êg`LFf0ä~ݲ¡çáMï"R¡gÓ‰Ë;3Ÿ°Ñø³[iza ì–“†7¤@FxQ¢ªz{ƒ¸ËÄ»™ Iï Ü]û‘+ÇhEf­¤J,£1ª¹‡”QÜîÎÁ£ò-Ó!Pþ♂Xöpu QãxG‰îãC‰<¯n ù  PÔ:H ª@r˜¤1”Úåì‰lIæe•M¹&º0¹`FÝÈÂF )•¾HwƒMá*÷{Ù – —éßË<ÌÐ4Þ‚Êìfá´¯®û›¦ `‡rC—#X‘/Ã*lªJ*µXçrðÛî‚Ìz’öd˜~€Âø‘İÝA÷õW–@ÃߨJá à4LÐöä‘Nf’EÚª‹’¿¥úcVÀ¥|8ºàDÑæ ]Ãêÿ‚Ý¥„µåÀ"ÅÈg2ÔŒlFæ)P«¢iBLÕžDšð œ`}ÓûRª"þÇCy=W2úÀølê°ÝÙ=¹Áxt_•©/÷qÀ`«}Åy»1.» ÒíÄí6álýjðmÊ…·½xä®¶š§”$1ᘊÍë©@Äëc«æb|‡ªhšƒ“ò¾÷ú e:g2?d aA©–†KIú¨yP^àúÞèüÝ*1'èm„kÈ8c.+Õäxg–Ñ#m|w7cXâK)õIBólBÝÔ,œ§ ;¡VOdu(‰ë7F‡Q¶x%-)4 ¦¿èÊ7&Oûú•õ((ÕĈ~fQŒs¹lÀž^EX*%eüöî:†ÚŽdÙÖ·’Èj® sÐ*@›‚o1@ºçÀXñ¼JaË“lɬáI9ð§âÖÊì& «-[0Ì0†x¥Â„á,¶88"ÕX¡ˆßK& GÏGw¥ràì7áÔ×[$2”ÚÂÁŠV:‡Ì–”|cŒA˜`>Â\¼Ð”gÉã$èñŽÕ<5¤i#~ÕÅê‚Lwq©™;“Ü¥óCfî¡1s¿ÒÌõ÷jßÉÔ=´§®ß¯8wçs—ç 1fÎÜ=|‚¹{èÎÝì¹{hÍÝÃðÜÝÝ5çn&Vƒ Ù íumîeì …ÆvUNI †'hÈûç$Ñ–Üco¯ó+ÏUÞ^DÞŽÆ„0EÈKqÕ :2¾î]P®’~?ºB£•k7ù—€Ä*)T*°-é6¾u+4òxOÎ ÄdAåêr2•Ê#ïéIJ½ãbbƒ¿µlö¦å~ÓÑÕ˜ô2Ñ… 5Î G.’"·°š©³º‘):ýTÿUЉUÔ·tÈ¢‹É„@J_ª÷då÷þˆÒ÷Ÿ/ÿYüÏýd‡VŸâ1õö{#`IŒË“ž¢Ž»Ðw¡j\Øo6w7­3¿BÆ«-o..s2'Ð)è“u¢¥ÚÞžOñÁbþ!ÞÚ^wë¸*Þîíb\¯Íwx¬ØÞý@iÁ—‡­÷[]?)tÆóŠ·áÿü׆Ps»ÓÂtf‹ëo6ÖZïÛG»U±¹ßÁ[ïí½CøÐÙÝ¡/vöáGû€þ¸wNüqû0@Í/0 h7œ³Í=$;€lL;;Í]Ìâ¿Û[YnóF¬m•%0U·xvÉ™<‡6ð H›- ðÉæáÚN3±;º§óP‡aü[íNk=Ø\ëTñNj9Ôè{gýSŒ#}*¬ÝÊ"Ê@º;&¥æ ÈNÔØ%ÿ§¾£ÄmÀºDåëczL¬æ•€…´,j{ á5vȬ^Ù§¬j›Y<-®NÒŒX Ìùi)yξÐ^0._¡Û®Zx|íÙP‘ ½X©°†)¹å9š‘è8Ýwð.1%á®H#záôîÕgÊ”+¶=Ï-ôø¢ —¯ Émò”›¼“¼žßY¦òi¤åp$1 xi@]ŠÃÞîÚ©MC]Þu›"öÐ_,æ^Kuu7Uašu4ï«ô³í¢&‘W~hi_(L›œ+œ޾á áöD©!Іúb7Õ‘Ó„âÌdýL  P9‹| j:åÁ\qa¶ÑËs9³ü+·üÎÆÖ kö8 rÚzã×=ÞÁÊuf’’”2Üõ2bÝ£3,ÖÈ©·¹0=’ìRîˆÝì/U “×ÈëJ`AŸžä²Ï«JI,ðÙ0èÌKÒgJ—“.‰|%&ñùÊ ´×Ûa’İ|¤ŒDò9ã7G”°7=<͈–ô9Y˜@H޵±*WYĺw ú`<ˆo&7é² „YhǸyKK°ª—P`0_P-õžõº, Ú×½ÂpðTMcÃZ”j“ÌR_o#Šuý¡íÌf9ÝáØ6ƒ7Ú"^µC#¼MIe,_jL®^,éJ8¤îÒ‹šQ½ÍçÇÒv9mßî™ç`›³ÞåeÜu¬|óä Ôõ?ûAUf½»ŽB;ãT5¹íÇãPŒ¨ ÔCnÐÃo›7<@@ØÁ]óæ£.þ¹Š/ð'ý8ÄŸmÖÛ*~»½³T/«‡‹õêö!oGÉQ¦›p1ôå+PìâÆ×7•³gŒòÊ)¨¼Ä7¤gêÔp|Û®â2mézÞ+¡lV¤© êoAÇ ”gàθF¼,0d-m‚ùWS&ÁÀs°ƒÀ;oÙ¹ø‘W#hR42œÌ‹Ä ¢ññ"#2Û­b;뀮ñªoíÐå»gÏnzÏtç8jANäWÅ.c Él3„}öçïö®(±Âô`Y¶½“} ?`PÜñýnúq†;| ÜE?É€î‡cÅ=?ZjÎ`r(ø¬øŽ¶,èa¯‚¾µ€ûХ텭’ÜœêìL$¬ƒ²BŽþŠ„ƒÝ*^PÀÒX|àD>,0‘2‘ëËR{8ä=J0ðah&×§Þqgr½> k*×ëÏU8Æl]`Õ`zþ ³t=WŒ¤9¦hÖX´O}#W`ÿÖOàþg½ÿûr¹^_qïÿ¾¬×ç÷Ÿãá èÜÿ=Àëû{kU˜Î»û§tÝ·µ³?¶ZÞÅ_qš³vîlœê¥Z^ö Þá½ÅŸ£ÑS_å5ßûÃQïb(6P}=Õ%ßÐ:Òˆ©eÞà=ÕP‚9pAX’H8ÎͼÞ;ínÎ…Úœ¡;-1ÖßIÁ¸w+œ«·BHRó•ºÍ!z¡û.²:ŒL•B0àm¸¾¼-BeΡr—Fî4 pÔ9¿ž`jln˜ÄÆe7¼æz N+Ð>ùŠk—RÛ ä¥›?'½$6.9*TJ©‰–Á£ù¶\•MK?žáh|=ä+{²®kTܾ¢ÏžîÔÇÛ#h&ã›I« p|Ë—ÏßSà‚lâÀpº‰=_ÐÐ|…®»)E¤×¿ÍëDy ©)©ÑHG×XFÑÅä<5DW ÕðœÝgôþà-fr\•­Ê[NË•n…~Uº)9¬Û»0 Ì1õî!ú…m.¼ú:¯ÅeîÕ_,ÝÉ*­Ü—Óá¾4-‹`ƒW!ñ.¤ÅdUSöO¥V!¦’W ɵJ¾RôU(ʧ¾“°Ý6|±…ÀùP/Ðþ1·O®÷ê6pS`|éêß7p<ûôƒøÝކÀHcàƒS³á”š|ó.ÇuzÊÅ; g®¯Þ A1†²à0žÒV‹l®úª2N-"X¯?Šz÷RR2èƒaí- 86ÊDDb×¼­Öbým»F8Ê/ˆØ‹®ï˜uÇ8½zÚè óºßG^è¼ß\kîT Ä- Ìl¯¶7,8wꦶ’KäI·‹žíéL· à$¨‰=åùnu!¹NúÆuTî®}ꆧŒÀ…t¢Fç…”uYú‰Ö1Ý'¥_[-üÕ®ÙC5pG¨Kwöè`N!±j2yGrú]÷¦s71ïJ¦SIÝ(Q~„J/’6ó-5³ïð/!êYçø)Ùâ«ü«h,Ý/5Ü‹å¾÷±&|¯2qŽwùÄTMmç^¥ö…"Dä­á­R\9T¼X¯²°#Eä+ 9S ò!åy7™¼úƒ±ºÇ¹EHNé½yw˜±D"†ç… H`ã³(5îÀœÁT‡e5ºÆøÉù(¾UÇßXÖ‚qõ‡w57ì÷Ñ ÿ«Ooë> jÒtµ+FGNZÛíQˆƒ"úÂùA@RýÎ.àtq‘ý¨ô;[UÐÛH9 ¡4!Ešý¢,ÚNgß=ž&ª§_=F8$¶»ÇB]?.ºv,ÔÍãÂÅS$³îW-9UU¨«õÚ¦»y) =ça,ôx•K{3»èÅ/çèÿ0õ3xÙ`Zì‘sMðd³Å—×ÃàeêÀE6CËIYCÅRÄÝßRˆËë RxÐÎd-||K’âmÌ·üÐ,ì,@¶à«J2¬ŠäÏѸ´ä _)Ò`Ƭ›2í)ý,ºÚœº« ИUJR«¬þyw2*౸ÒÄ æ ‚±àSvZŒqø¥œ«ÚtM¥(¶h®HmïÔ. ©ZÖlÜŽmÜ¥Ò‚ÒÆkkå²*·#¦.FŽþ˜}µoêÃY=úrÝŽõ¥ÕÔMá´‚ï-nÉåïrM/Û…¨Z¬=m©¹>œ¹„ù‚.@ò¦èÞáû-[hö.Çr 1<Ðâ$ ¤³³ åׂ àŸ»xyó6°y‹°±xôRpZ#J¼ìºYY¬DÊ4ŒKúƒÒÊ!”Nú飯^Öõ„n ¦÷§NO¬à+ƒ®^'' Xh‘!J0PäØSˆ+dIäLjÉX[ ÓiÍ $R0¬•ÕæjT#./AW@L 3õÑÒ– Þq/®†Ã ê&|íhºÒ­‚ ÝÞEP[Ú³PÒÓü£^¯´ùI¶íTtCm¦á6-NQÚ±ÀbzƒÎ¤$.´W Ií0 ßézíØÚ‘þž˜)—XMZ®.†¸Òá? G"sp&#š¼ÐÕ1 ^£ðÅ;IÂY 4š¼¶Ö¶4¶Íª]QÙFs¦±wWYÉи§rT ô®p¼úÊ‘ˆ‰ä„¡ŠAD³tcc„!ãüláÞ$j =ºf'÷þjGN·ôòîè ´KL»§'õ•™ïêÍþ>©-¹—øä8›—òØ–„b|ÂæèO@§M¥ÎÕ߯ý¡´€šñvÀ±g|¬åéu›Ä ' y2 !¥#¬[iì*Qz™Œ¤^7‚Þn…ÇLÒ U!=˜ËäïÈèE7ß  ô.ª«Xjb-ùR~ÏÛ S¾Á qJYgpª¨@ÚÔ' ñ¶ýª\I3šgg Ë IäÔ/UÊ´¬Êðgºrå«UJ„šù&„›·¤yÛSI¤X Py½Ãúq±;®…Â"íb–- ‰²XO ¾Õ*J>_“OQÑ!Òi™„ˆO×S ëú…u:Œ×CU]8´ÓÑ1UsÀ…§”¥áÛ]ö;œÝé£o»smÕ9µé .µ:û›ëÕ–þ Uèwém½üâu ÿ¬¶qQÅ}ë“5Иu±+¼­ìÌ@†„¢¸"2 ÅȼÀH”l }´ˆÆ´ œá}MCƒÂlñy`вÜïñAlÑ>Ç£á—"oJRwWë·$3:;Í-Xó>'ø×Áá²8 “dˆ‡¨·Ãx0v»êRù­xó ö)»2¶ô6 ðw½î3lyå­84´= PŸ/TÜŃ‹áÒçÂÍRdP¾vD6upÍêª*9²@¤·B“èzƒ­ñ æ€ÈЧŒ´"“oVë¯PÇ*uðÖ¾ü"Ý]eõAóé€%À :B6ÑÍÚ«eÚÒAg&¥°Riw^4²Æÿå[ÑŽÏðö°;â²3ûÍÃÝŸ……Š:P6˜¡þòÿ‡„uÇ4 DHu×dsG ­‚ÎX鋬6€»õàú$[½šŠt²–SøjõÆ*Õ=Pül2fIÊóX#e)Ë¥'&ôèÆn¢,÷©;ŸÍ+6mÌu(D£´˜ÉŠnz^û0^NñÚQåÁ¨/çè;·gÄ«_<•–Ä€Ìj¿KçÙW †B³A¨ÅFôÎ@ÂHíñ†·H0§ '¶‰K´ ê×(a͉Fq‚'`øHøwȘ äbézxžÙÀ¥ Ä@»m¨xs›‚'Óá\}iøúe–”zýúOz“ñhrkP]ê]Òÿã>SŽËð<ù RIŸpå-Ij-¡!!DÒ¤þÒˆì-9+ .$ªSe9µÅ%‘ o¸L'×ðÖz ŸóányƒÀ¥³5S±Ûæˆ5`ÔÇ(;ìõo¯abEËa#BJ…²ÙíA¯0ëyb˜‹Ñ© OíÆº»7HzPó¨Ó|êÞªã€$¿]“¸WFɸ—¶%ü€ØÆˆ ²û.²–L[uZšý«á(_ß`ˆ›±h½…Z±Š¾.>F KÞ Ï'HEª+Ã[ìDŸ£¾XÑ`öSÍóX4wŇád$Oyv¥‡|¼Ob€ð·ƒ‘h¬TAB\FÆ_¿,-ýòòM]î,E䉻 ýl^Ášœ$x¤¶ÙõïQ%aÄî†Q¤'â——?CÞ¬¸=x"ðB™ð=)õùØ ¯?á¢à!|¡BjÞŽ†¼©Jç)R‚ŸEç½ gwˆ†ÉØLœƒŠ„áüÐ>Y3”Hç¦s¸k<÷ïÇ7ñ´>ꈜö¾£$á*_'qg`I­á[¨ãí ùNöSZû4)5Ÿ‚H¾Žú·L½<šH+£D _Š—lÃ]Âï_ ,b €6jÓÆJƒf.Ú˜8}ÕÙ4ª Â•µ{É„Â{å’paîLi½AxPöP°ŽÑ²ÓÆ Ð/1¡È“[ [ƒ·éëâÙõ×xòVmVwµñš˜6v;¹Çæ%Š™1rVdΊòâf59ìe®s,æèÚ©"šÒ)–¾˜%W8ÖöÚ^`„!“Ūð.úm~‚Ö›ín—šÏ‹~ÂØ.»q3:V 8W¯Êb9ØÌíj}ÿSUN®ª´ ÐïÎf÷ £`í6O(Ùy•Æ;ˆú”XX$WŒ€X¶"‹ç†º»B#˜Æœ"·ù…΂‘W <}/]¼ñè³l@8¥ë[X’ÂÌ8…Â^º9+RŽ{b/l•N 7jFŠÆ¬˜DV6ô]kzÉÝœ-<‘Ó‹v¤ŸÄ038Ñ”@B^”ò-Ô{ðÓûba…^zÐ=êâ­F2'µU*|óžÃÿÊs&ž=BûlfУŠÏRÊh¼È#õW4\_Ëø9C±¬m2%„w&K×’µ¦L¹»ƒoŠw„ÊŸVs®ðX¸o‚ÚH>¡·ÃZ°“lPaÎzçÜáñZ¢AÛ@YlG±!]D;?Ë«AÊA²fª$„ĴiX5J峃7çÃÛ{'¢Ñ°¯}zØÚŽÞ'¯v{©o…P+È¥âæ¸4Z꽺í]wó§MÉ(=hÚÜ=½©†Ý”K–¾ž€\_’þ˧.xÖãbfÌQ\ k?L׿1'ü¯•AÅp¢'ÕáÃmfŽ…lˆÇÄoªx€]wqZïG½:lÑ&}<ê%פ– "4töFiŽÊê–ÜìÐzÕÈÕ[0A{©!X|P+U^’¹³.ÎÏ¥$}~¨šìP]¢¯ƒw`0n³¥yïôqãÄÉ 7xÖøËõ••e7þÇÊ›WóøÏñðôU¶âwGíõnk¯-:­N»Ù.uZm/VGoòMŽîŸ:\ÇSå “§Õ6ÌÀøgf¶xꪾ×!sÉR8Î$u#G«^›OCU }¨œf˜‹—î:Üö{çl'À•éˆúQo€ø¯ 6$íÚir¸Ë úJ¤.“ÖšiWM•ªE–jôè@ï@ÜÊOŸ"¥`VX0‰²îñ€þ¾¢Lôyöy®,ÇhUWFάwª1·ÃšÏ£‚+ÿû½ß®Îz7ŸŸr È—ÿúòë7,ÿ••—Ë ÿ_-¿œÇz–GÎ/#þÓNó·÷kÍÝã’è6Û˜]†4y ¢zTÍý­&üZC%žL‰Ø^?©ŠµÍ.Tú„;ŽõO†fœ.+áÅdÚ£´®|~Xø~è¡}c#º¹‰úèØÓ»êƒÞÂÝåú•|þ{(¶â‹ÉtЇ^íÂö•<|òÖ¬Z.FæâõóÔ¾yT"'‹dx9¾c¾ó?ð¾Öíhø9¾àn‡V]§Â+p&Nügkw§µÞêŠ6žâ§K­ücÚúl?’©KøÀé6q2b=›3‰]˜Ì8«¹V’°)LÖ‰ —õ©äÄÁÊU(pm ÊCŸóbZÁl–dJµá­ôâ@R!'ôƒ¾, ,M:ÝùäÅ!ÊP¦ÅPþôd|é2ϧ§ãK—å?åKŽfEÔ KH¶,VýdÏo‡m«Þ§QŒ€txÝ 6Íw£x<†n²ÝÑ‚3¹½ ×%]]³ò§b¬üéÁ¬ü©ÆõÂÊ$‡éæIC¬õ{:Þmº·K7y36³“QzÜô;7S4WíüÍÌØÜù´»ö›Ñ|Ãîæî~Utšï6•ïXFÖfŠ.Ý‚½ðø6ÆÛø·Æ›íú ooÐÙ›=,U:älÔåûœæâ°:ïå³û¯Jøm=Èuœ²(wZïÛA䧸Žw§çNö\®é—t“ÆCiê ù¬Éž•TîV߸&½CUº³WY_®Â¾½ž«ð®ôÖÎôÚ–ö|¶·wr¼=Ïìí£ÜòïëæÖØÞYÜ>Bw`µ×n5\Œ¥«p°ÂÏ Ÿò*¤Ø9^s¼*+­Xð½8ŸãG™ÑGÎI¥ñ“Á]X6i†Dr£(Ñb‡_¢(-Û<ÈK2‹W`)¸Xý\¯Ó¸#Ò%ÍR2ïv¤Öj¼û„ZÌw ä`Iˆ…‚ûÉîaö„³ÉN˜­ û¼Y±kŒ¹W|×+Løªyë}`ŽlŸ8³Ï} w‰d½!å´ò)ÜʧìV>™­|J[ùf-IZ·ÅBoáþ½´ÖdØÓRk›„‘nx{±2Pqh“Ñð.Cnhjò`UŒÌ{^U¾ï0iA!í¡'{¥ÝJ»œ®ætàŠf7Û<Þ+AIôÚ'ÝIE[æå"úÒ;ªß»Â[òã¸ß§àsäȇ·Y)âÂ:«¬yµˆ{–Ø ’g{s÷©{Z8–ÛŸ4GˆT¨Õ=é¹±§œØqÜÓïUMÒd±ªÈɰ™'+ñú§¢UfÝÊz)å(4¥Ê<²µP†#«Š<ÑÏĺ\á|’ê[Û™-˜]MÉG"= ùå¡ÕZÂÓ r#ã+G‹xÂA=ËU¯¨43T4¡Iê{lo,¶–P—ôº–MÃ0¤U , “*ðÆ“ôoZS|¥†ŸÒ|°X„´BÊ`›Pséøª¿y¼*Ô ¸\AXnuìÄÆ^ˆ| 5/íO@A a‚úh‰%X5ƒéhZÃEaˆe9{àæ“ÛÃðkOî¸\oŸÄ)Và¶âCfAÉQŠM‰Ófq Ù™”‰È¿ìÆï¦{R%…›“€1{º¬KW3eT!g2š‹bÓŠßù#Šúx:ÄvÃt"†·¥fÀ o¥uubÁ_ð• ©2|>1‘ Oô¤ïŒ¬Á_¯Ê’ >®»¯—­×-çõ’];|Nqêf÷ƒ¾Án¬R¶´xpYÿÁÊÍòþÓü>ˆ!w'™sçìÞp_ÂóLŠÒ×c»á!Þu½&¯&YÝ)J‡åJ³"±£”Šwy3îÇgœÂCF$Ô>Q‘Îo¥1—M¯Šñd} 7Y‘ª(¨ß¿#ñªÒ6ëµtnïVEæ,„ÜÈL¡éÖio–ÄJð”­Èã™ëèIcµUÑy¿Ö=ì‘\îi#iZ i«¢‹‘adEU¯»`íb² ®/äħ1,Ebÿx§NSΑü?S’Bq|œ“¤ŒŠÞÑ­X³Q™V·®F)ï”HL?&">ȉ‹“шGW²y«nZwòžÖeª rÐ¥tÓòå3J{Ï딦–²¡ÖIÌæšº‘]£f›¶mI—Œ®©JAã¥ŒÌ þh™°?„`Û°Z*›ü°¨g\©¦‡çeÇ$»¬·wǵÎß‹akO5,cš¼ÒÞuùÔªgËgžï”XOG£ïž/ž˜oüâ¬%7*íEPÔ5­p…,ÛEævщ?:³ÍÃÆ%8(¦Á5w2‡G$d§œe‹t²|¨2QʦÄ÷Ðarggñî?jRÚë¾Ú´²ç>n‘8´_‰6©åt%ç=„œ©ju‡ý‡ÒVëËn4t¤Ý 2ކÅ4,UõþDîgp›a¨·%ú>¬Oé·0áðE»2Š;n?Óþð“%”4I™œéß›ÔÞ¸}9–¥î˜t¢ý  1ZÊ Á»k –a¯>Ý¢ÇF<&j;?&4ulºEZç–‚8ä¶î‹qˆÍî(Ͱd¦ÈPš’îHŠâxé)‘©Ì€Œ‡ÇFåvaNÙâ”}Ü4þª³hêþÚBdÚ4~9뢣?¿ß]ŒõY`§›¦ˆ•÷RÏcŒÅßó-ž¶¢\ ɵ`ÙŽ»eoÀK¸‡© +”ýã\dèÔ6|þw™|ù-ú2æØô>õšÿáÕˆÿáM^ÏÏÿžáaæðâ?¾ëœü†ÖÎöÆæFIìn®ÿÖý´¿)ïæÊ¿ÓiŸ³5ŸöáV'ã1GTùÏúÞÎæÁ#€5Š-±³ñ©(€µÍÃÃß ÇЇßÚ{‡»€|Óù­-¯t¸‰ú@ãâÓoÝf (B“³(ˆVw  lA-õÇÆéoGEŽT¹ú{èÀæoë[¤ÛªP’,‹æ©¹]û!Rƒ¡3ðdÔ:,¥Iƒ3Æ\¼i~fó]–PSHr²Ä#p(£æ­É³z¹òN•ìùðØ£ÜÇßÒGù!›HŸJLVªø—*eô‹åü™ÄºgHöì[Gï7›puýð·i³„ !¡ Þs ÄQh¼¶³©ºn«ý^}ž:–gcÞÞÛ?ÜÓUÖšÍßïÖÆvtƒÃfú9§ÿT07Ñ“,Ú{„I±Ïn"í Þ@«Zˆã-3=热[ãÆíÎMi]v›6’¾x#ÂÌÒ>Üý grKqÏúî¾ú‚¦x+I,ˆ@¬Â’ßçLÑ´Aˆ¿½?ÜûØÝÒ‚rPçm–ƒ>Q>›HkªÐ”Áèã]?«Ÿx™Ïè+^ÒËdÐ ¿© ÓŸóÖ8ƒ(Pô—¼1Uy§Õ><ù­Õ=Ü|‡$5¾¡Iße7¥ Ó:˜?nSS˜ÒÇÃâÏü&$:Öhåõ¾{xÔéZ½g+€žÍ®ùhÉfäå«©:—2E±ÎÁ ð[[韗-ø"|v“æ eÑZߣ_ÒÑ~ïW9ˆýý[Þj–kàÒ¥½ºùÏ›Õ ïÜîiV».ElÁ¬M1*Ÿ¨¤¥<Á´“~ϘDG>.å0Øá!ü‰¾ÕüIÚZ9*â' ?„¬¡ùµŒuìèøî”îÑSX{ 'x‡S4˜»ÅɆ#†2DõiíÛ°Ïh 6Œ¹©¥-Û–«ä³Èx&Ü´,‰ŒÞBR“j-d§R²Äaüa6É¡Eš™ ,hM Sí^‹†Å—ü'íŽê¦ÔébI¶ èNu´W”쪻ª?ÞR„rŠЧR†74“‚?þ}Ó†ý¿o?_îž,Ô”ü¯7Ë^ü§×å¹ÿ÷s<ŠÿñŸöß²Ú¢ÝC×÷v<ÿí †l?t¶0÷J.òü¼’}Î2<”gq÷Ù—·¸l8ù´p8äzrD?y} >-Œ‰à˜Ùñ3 ?”tInŒFG!‡ÖQèHäƒ×ôÅ5m;» ™jøAÊ8~dUñT™im~°š9òšyçÆyàQËk‰vTèÅjÖYЦ4õ™pa±ƒÛ€ÞHX­™r=q˜“Ò‚J`?F[ ­ÿÑóæÿ]n¼ª{ùWæñŸå‘œæÜÿ¢ì¥Ž?ŠJü[åômœŠU¥öÍWæygx~X à‰òþ*~|’t¿2á<Ùï<Ùï<Ùï<Ùï<Ùïß:ÙïÏðÚy¿ùexÝüûex}T&Ôͯ uó[É„Jyô—õôi2#ú©êôv?;[á×MJ˜ƒRQLž¬ÁìD}Ožï/O’"ƒ´Ú|K¬eHúj¬ |FV˜§f´,7eXK' kétaDåbI3d±IR(‚ÙÔêEvÙLá¶L ÷øç©s‘™§^üv(û˜ÉúäófêLýâaž`qJ‚ÅÍ'J°ø?aûÿ󿬝¸÷ßÔëoæöÿçx˜w½û¿…ó?ÊŒŽE“†ÎìlŽ…¥9Ù Bqr>ÚÙ °s>úÙ ‚áœólŽó’âÙÕ4²r9òŒLgl6ÿý9sŽe˜¿‘ÿÚø¤®‡Ë°—¹h˜Y%$'ã,¾¡LŽó4ŽBÌÓ8ÎÓ8Ò3Oã8Oãè<ó4Žó4ŽIã¸)Ó8ni7‹¥qÜ4Ó8nÎÓ8æ¥q´Žˆç‰…Jä¨h4ÏÛ8ÏÛødyªû;ÎܸidnäÕ2Ê·Ü¢[ƒ"ù™ò5nfåk´ð b˜¥ñÁ7332΄NFÆo#ç⦓sÑ?¶‘™´ÄŠ…Žæ™Å<³â<³¢_ôˬp-ø ó*ÎÓ*ÎÓ*ÎÓ*ÎÓ*†°˜§Uœ§U rÒ<­âÓ*γ*γ*†ø*'íõìySûƒS+z6yvÅÇgWt³s+>_jE;©c#ÄbóäŠJ®øWšl–^qºÅUfiýVó(‰ÍL+–4”AÑèßÌùÅ“$P¬™îÎó ŠßÿðÿîǃßÎ@¤=WþÇ•×/½ø/¯^Ïý¿Ÿåá ëø;2ãT9•Úrcî˜\äù;9&Ì2‹§oÈ×aéÌL®»œ˜>e×"o]]ËŠ­¢YZ†IfPꌧߋzç?Ã18O]_ÎÈ}ùµ#_Ìþ¼`˜õì÷A7€Æ”@æÍ Òp9ïx¨rÕ %Æàj,”èœVÊI§¯ó7Á£î„;%ñMŒS-é]FTYA¦1@¾¿GUQÉWÌ®•ÆÌ•LÓæ…OÓÂò]–oMÇž"K«Æ Îè¨åúð-l$à{ò%ÂbUpœÓX¯\~¡@¸uRlè°P~¤X5ù×[—H1¤3.†ÑÁ#<Ú«H£œZ…ô”«œÀã. †w†h&Æ Fu¨sÑЭm€w9ßú.Ê_Q™è·Ãçÿ·²òzYåÿ~µòæÅÿ[y9×ÿžã1£ÿoNlKâhg/#úŸŽê4çZÏ<ìß\yœö-WµÌˆúÇï¿b„>¯[3]YKC šê¨œ^:Ë´P?D¬¿6Øß(‚¦`ñ`¡Ÿáã‚ý=A,?þ&p{í(ço&ÎÿJ¡þÂMáf‚?d…¬ªb9ØÌpïÛ ¨äJnHÀ犷'‘)oÏÂ.3à^Úé÷øÃѾwrKJ2"ë7 GœØ‰ ³#Ä3ÄëÃöž;X_Ë}%ž.B[ÚPkñÛŒ 8cï¿~§n®p—DuæpsëÛä°(ÅÂ×âaÆxŠ3öþëwúù¦ÐCøúq}{ÖàóØÆˆ=y´3Oèíç9J‘j šÔÑím4 „}{XL9ugx7;T‹C|*Î<Î<~#”õéдùù^gÛß=Bcºü±#4~Ý'|þó¬ñ_¾|éÇ|ùj~þóÏ Çÿ¦VfüG}¤"?f_ÓöãìÈŒù¨¢9„’óQEs,%óQùŽ„‘óQFs,eóq~:ö\13â<æŸÇý…Q ¿•¿:Àc(v Œ_£šÈ1»oóÐ Ýø‘íÀæm+7Œc&'¼ãÔ(ŽâøˆŽá8à8à8à8à8{Ç'É7ØÚiæ»0©9ˆô?p"IJ'„NçSIÿ΋$™–Ò$;ŸÜ@’™µ Å‹”®×~wgtŠx’(ÚoÁ‰ùC†v4úÍ\+´ŸÃû9؆PRñ€Š9´ÄÅ…,ë¦_ôÈ(J&KùaWrWrWòÁq%Q4Þ×Y7œƒ"úyJòSRÍ¿(¤\ÂJ³a!/PO9%xä׌)ÏŽ\{«¶ þ˜‘# KôyàÈyàÈyàH¿è7829èÉ#B†BJÍCBÎCBÎCBâ3 9 9 é||HÈL ïE[¤ äÏ;Ô"ÆL<ÍêHf}ìÐÇdÙð‘ ³ãNÏ×PîÓçA ¿¥ †>fvXÃÌè‚ó¸†éLú6ߤ>ÐbøWE5,hïûæ#Ò)’i|ê@†ó8†Où„ýo?_îž+þßë•å†ÿåõ«yü—gy×â¿ì¿?ü¨EÒúÞN'fÌ¥èóú«jçÑJ]ÁÌ…™I{³~E‡P#üŠ×Fq_Ê)ñ4È9áˆ~ò¬‘eƒa5ö7Ÿ0PD¶SÄLaôd„ ˜ùÍn6öìjmŠ uTtA_³B>1Cãà¡×;q÷û⺪(Gz‰0ôïI÷#ÞùB?ÉQ²›x0Ua)½’´> èù˜ê\†wãk‘D½ÆiR¨®E3dš¦nà2%*ŽC£Â ¥aZ"§ÈØAð€ 3EªŠÉú©6c^ÄJwÀŽúõ.Fµ’ôÜ/ðïj'Ü4É/RbÎA/¾ØN.’̈ÊÃÆÆÂõƒõ½Æ•ª,¢Vµê[à¡c÷ÊwÕ«<ývYö]þiȽû+;`ï¶ÚÃ;Ü(RµÉaÖñ@œ|WCXâ6þ<ÄÀEÈïxæ éæž“ÿà qâ̶§å"¬IÄw>ÿZøf_w¬ÄTx¢JºYý"`-F‘¨- çF Ë<Œ¥„sÆáAAÜLú"¾¹•"©œdœ²KÊ ‰b›XÅøB5 ÄÚÑ9ü»îÁðØFÅPu$7ÚŠÛš¨…PÃÑ„qÓK4³%ðñ"2™R;¤¡0•íµ%ìóá„¿„ÓKTŸcÀpœDýKâÛ„;_Žèà0©ÅŒð¨Ñ`Hç‰ÃÑû•Å:Gl2ÖÙÞ4›/Y¸EXÞb¹«9¸zy Cz‚ûÂRÂÖ¼ ¶ËŠròcôÎ2dš›tq4õ*,©v+?úý+?ýÿïþ§îÿ/ßxñÿWùþÿ99½ý¿Úý·3·þóM‘ç‡Ýôg„ÿ®ýónçŸc¿>emí3Õ—™ºq3àvprVÏ:5à²{#zë Ú›†#ª¥ŠM[D)™I#±Ô«µTþàºG`ýOî{7ŸŸpùŸÿc“ýØñ?^Á‡ùúÿdw;þ‡q†Ç¡ßwö·š©pB·¨OðÔ­Ûœ·Š~šë EžVW-²ÌRÈA9ë4q2ä¼6oõŸR«8Q1ÜSüs2º&þ¹Ê¯'‰@óúF$†cÂ’ôGÞʼ¼¶Ò½x»*zýÛë©7ùhý ­ŸEcþò¾\åJÒEKÓXa œ°žS_èû{ú’Nè›&‡G d“Hîaf U\â);Ù½†‚—R‹ÁJ·£¤aÜ¿§,3h¹9—7JÐØî8Ò@ý!²ãšÖùnRûÐÅdD•ЃhQM=<iÜä¨` Æ6ƒ¢’xÄíÑh<aÈö;]rD!;t§Ô^¬Ópã>ß°J‘Ò°—'äú~‘V×,÷© Ë}z0Ë}ªqý‡°É2Páú¢!Öú½Dm%þ°Çù(; µ¥=è,WKõ_~~­à€“Ø®ÀUÜ) AmRª@«Ûé颰¨ÞÜ‹‰X ÿ ‹aïJ¬#  ØŠàH•ì€Z ÌP—ût$Ÿ]ô0†ž. ô A-¸*lÄÌöYªCov‡Hâ MTå½ÄnÐ [/@A…^€ªÞǽækÝK½‘­l]ïó´z0-’Y`»»½ª8ÝÀÖrÿ}  7sF N|S-š4§Åb[ˆ64«éšŒ§d¿î´ÞÏh»æ2]t^`qBu ÉwƱ¾›¢ˆ~± ¯BÙñfDð6•_6íF6¥XE^°KS"K7ÜÒ Ö`y²e£ù Ö|åÖÄ•Wæ7 Vx¨ð)¯‚…[‘ÐÊÖ”›¬ /ˆ? y(«’ÔƒI uÁ¾v€[ÕÛa’ÄÀvï4—ÞmÃϤ­ãw$$Ê4’%ZñK”#eûª›Žâ-e.¬÷“[•¶ ´éÛa̶Ò Ñô‹…Qü}`p·OFp_Á¢ˆ•x•G0Ù”†1 6ñ)»‰O¡&>…ÉÝæT½hâŒc48È}`†ñ#5Hé.®wÁ׉lä|6Þ="upš9X;1b΂¶.CR@OöJíÿÓ(§r_ŒA| ¢h×{Ûï³íÊ–ÅŸ“hD ‰òbQCYwÅe¿w…·ÛÆèSz1Œ¼ÛvõoeL.<––:1]h+Řœë–6)²îãbh“OáÈVi¸Yæ‘­…..ZU2î‘j ©Ë•4r˧ ãs_—zÀ»|ºÆœƒ¿q"ê¾R€È2Ctp•Ü[Ñ4Ì|íüCnIÁúˆºo•“Iö7ó*µ)+á‘„¼éœÛ„êÖûï²[á¨8ÂfÉôïŒ+Øü”ð$àƒ5CpÅbTYj.eoõ×"³k…z(—+Ë­>K“Z{¯[Kû¸Âµ¶Ëêª1çlð(ÓàÇ¢0V »bIÖæ’mÉöµŒíŸ€si7—vÁß…´;ÉwBò<ü Ysâøžä¡ÒÐù£³O‘WõQñ·™†(èÿ3ÂÄLOç”ïÿS_y½üRÝÿ]yý¦Žþ?/_¾™ûÿ<Ç£X×õÿí|¢øl¦wõ·µß:®rÒ·©nÖ•ýÍHñ8÷ *òü°~AùYgÂÆF f'â¿éAÙ@[úŽ0³ô”¼/…nWez˜Ô|“Î)P:D‘Ÿ ÇEÆ"©ÀïFiÝš_! \Dt‘Gœó/öå!kð׫BÐõl†aÑÜ×ËÖë–ózÉ®ÍÉ> ³MF?𠎨‚YdãÁeIüë6ËÿùOó?úl€œ`èõ$ujÁƒBüÍ7Ï’@²õ‹¸wÅÙÖ%r1ݹÚñX øÙô”!ãáà¢7RGÙ€Y<ˆÇ÷”¥=”™J‘Т©7Šz}ã^0 Wÿ;+àQ,Ë·t<¡GدԮø7ã„$0g0€P«Íà2}n¾Ó»LµÛÙÝiÁï4Opð{&¾4ë¦xßcßÒÓçd7µÛ<ÉîµuZ“}-žÁT Þ=.âôÇ‘s7vÖwªé)Rç|ýg7êÚÁl§6G-²xžyX“ž„ÏZ–ôñIÎ …È=¢H‘Y€e¬ÈA…‰A8-ج›†lxGûž1À¼’*Ó,È6fcC07ªQ(j¤«/áP^’€[×=LE•wÿ¿°šsŽ»f•R Ϙ:ý! êÓ†fJ.·ê35Lbœ•ù¡½ÿú.Ú×'ëÒL ê×·™š ØQ¬lÇÜHÖξ¥ó¹§ÐCøZ<Œâ™­_y ÍÀàëôóM!ìÒóÌ ìÚ³N +yù¦JN®Ä¨_ƒæ‹‹mpŒ@‚¬}N?x–™¾ÍÉÇJ0|µÐ^P¶õ˜rÿûåëÆkçþ÷›úëùùϳ<Ì…ÞýïÃw“ßÐnÕÞØÜ(™å½|d9iÖüÇ;;’Yä׫bSÚD‚?¥qŸ«ib{Ô^W7CI#Xl¿ ™ù½¥’ÜÛÙî‹B1ó@xiÝæ§c¹]û!OÇ‚âñÄË8Ã)Ã3AÏÈt®f3žž,*Õ&0¿«ùkò®^çÏqQÞìJýl§€ýŽyN±y›Äýá =¢Z„Yfï3ßÐ[мõn8:tÑñ:yéÕWUtŠH®|” +“z{š3ÆA(Éíd'Iz)0I ¥uôǡå tçf¿‰u…ög^¤%µO¢¬û¶Š>–Ò/zd%»¢ü`\iÝ6…à¤"´×ù´Xnnû`â˼$ã¹ 3 ’é*Ųqó$œTåYö¿ ¶råy‰CóÓŠZéƒo3«f~o#’¾˜šyz6ÕP–J£å=ܵÈSW©ª9àÄÌiàD(ù$ò®¥å楠,˜B.(¡í´ræ} ’5«  f.0fn8 Å ^Ÿ,ªX†Ž¢É5­õ«42QÊ™‰ËÔ_ÿøúÏ“““·Ä‘q‚‰<`ù@÷PŒmƒ½üñÕ¬¤Z¥,£Nï+Àú^òŒµŽùUÚ[#A‘ÿŒ¬|]:16Ød#ßµDîðY`¹ŒJ¶‚Œï7B¤üq¿þÄÿ¡Ê…%ý¶º õ)ÛÓd#-…  ¯ˆû™×£mãÄ(ëÖ™ì”v¨÷+ûGiRèY`g¥˜ß,“d¥@ÊlÜ!TÜbj qiþ äCY²fcªxEC;!hêÌ5xkNó‹®D6§ÜjöTóÔiM-ƒ™Ÿé~ÁNE¹ÆJ^p¥° V…ØkÄÐÍÚŒ¢!þ 1R|4²©ÎáÌg.'³×jÝÃE×Ñù‚¯9°Ÿìùã5Ľ rj…Oa)u³¡ðVŒQ5<§BÎÌúºWH’î£b¥;¶,[Ü"“‰.Ùê„î~SSu¨`sn‚ä`p 8´„îh2çeŠEj²Ë‘J'ßCªú´OOŸª>%€VøË¦îOÂÜœTõ¡ÔÙ"‹ëýq˜3‹ÆÓÕ œ•rúªáÏZ׷Љï—^$葪Nú?x§$ÈÖò/D Ç)…"+§M°åFfËëSZf5[>ÍjÙ¥‰Ž†'†9á¬wþÇDešQlL¤0é÷Œ)…±¡ã2ôÅŸè ÌŸ¤ùŽ#Ê}ÂÀøÇZôÊXǾ/ïNéj0ç¾4qRÑUGWµ"›K €¡ š{Zû ŒÀŒ¶Å™ìƒY¶Àô¯Ì¬QèáÂCV’µ-ÅIv¬(˜?¤ÖdÒÒÌÈSÖ<ÄÜYÇÌþ ³ƒäì—ÑAÝ‚:¯âDx)u©rê¿Ã]t"¿ô‡Ã[ŠàKñ·:5Óë—iÀÝÛ¦Ïèöÿ}Ú S⿼|Y_v㿼~ýjîÿûbÀ@ü™RË v>ÌãkÞ3øRôùa]Zµƒi¥®àN øâø¼þµn£:ÀË£ü-e–LvµÜ†ÿ÷s°ñ²QN α¯óô|]ÿ‰™–ËP [:›ÝlìÙe&ÔÚo Nò³š‘\uS»tBÈ«Y( "Ó¨‰UskêíµT£¦dÒª J#Fÿ°J+~0“~òW©îÕ¨­˜÷©Òí¯£k½‹Q•”9éozWƒx<¹ˆÒ´ò¤¨yákö­)¨%¡VƒÊÚ:P2w¥›ïݪ´õ”<C(ßÀÈ‘åþî:î«`Ô¨¡¢{õ‡w˜+I`þ‚Œ»œd÷ÿ»§’’Iµýíÿ½$rÜtƒ–3+?©¦£ºàœ‘ÿÔ,äü¨—Š@ðÏC^%Ùq òº÷!óÚÝ7Û={ÙÞáæ–=ÂÔrS?QÑÀ™ K‰Litë42/¼¼_E*—¨‚ÇOSŽQ^$bK;^¹<œ³ï\ŸÀÌ!óÞRJÜèòEL%Þ`9îSJ¯Nçcs_Ü©@çIô™B}ÁÏ?â~¿ËoÛÂXáãVk=¹¶ÙÜÄ2‡ 3Û2b}À¾GË$¨k²·ò?„õÔ¿ÔyŽ»<²4ˆ yŠÕx;Û^Ìq + a¾5ËîçÞ÷£ð¶ç¦âb;ê¶;8³ñ¶9¶‹ÇxÀaÜÆœ¾iτƗFÎ ,eŽ‚CÝ%׌(„ýr y§ÓÖ â’gݦc Abëà)þXl<²‘Û.‚œΆ=œî½{§išËv^og>ÃjŸ¾.R?Ö,e»'!køl3#‡×Ÿ`V(¬gà '‰ˆ­‘„þ\Æ›´Ì”ñÛy ¾ŠŒ2ìבñ‹y2~ñ eüvVh¢'“ñ‹ m¿øÜ"~¦‰, ˆxyT4ñŠZZQ¨ãß”ˆ,þÙ>;rI% •4ª¤ÇT_TÎEq5Þ¯Õ&X)þãa’„svÏI4yƒߨ}:%ÂNÆé¦*Ýé,$js¥3sRÒFÜùô´ß¿† 4àÓÙ(ÖyŸ 3nß©á¡Ê¬tÓK<$¡–ÀÇ‹ÈhÔÌe5Tíµ%ìóá£93œ^¢ú û¶xœDýË*îæî\|5Àä›è;˜pòM•yž‹h0$—¡•‡.ךÐRÓÕoGì$¢­0Ö˦ùÒlÃMb™«9îšÚD¹ó…eœr|_,À¡-‹¾ÇžY4ó(à?Œ’êÌãÛIÈðÌOàüïî®wqñt§ÓÎÿ–o–W8þÏJãå«ú<ÿk¼|=?ÿ{ŽGN;þá%„î÷ ÷ÌÏíŠ4ZF¬rGBó $…§m”“¸VyS˜¶Í¢ÝZ¸7"Þšºé#;x€ú}uD op9bôè²ÏVË_”©òÑ`Ý<ì‰Ê)¶6ú~6ê Û} [Nêþ üÓƒoŸøÕâK*:6¿ÇÀÁ©=°Æ E°Ñ‘³ÀF4îÅýDmY7XDL‘AJò¤Âšx+!Á\ÃÛÉõê®:GØ@JSDO{­ì¶©ÉšRþrª$1°´àµ‰)‰þxztŒ¸+$7Žäðòrék *×B`ð Ä¦à•°§2DK„‚œ’*ê™ÆµŽB–~ 1¿*ÒûyHŸäÔ%ˆß,Ý/ ÎTS'€ÌŸ“x¤t¢ •çÏÖ©¬e.U¯ '˜’'53rWÂýT¸ŸB}Ø}üôÈ>~z‚>~ª èc[ÂuF7`»RJ¦¡(ÐÔÜ'ýXsQDf8)e[̲•W±â[½}:À°B¥z~À†­Fÿm•geA-t°{ïß§ïßã{)†Ðν…ò K¿Ç?®¥…õã´-–a-±$ƽɟ°øŒÿDZQ¿½…7ü·ÀÕ9ôU£ X‚;S…' ¯~“ŒZéÛÏzeqvŸKõ·ñRîÙá'j¿.¡”â·7l—„Ê™ŠQ)„Å’T| ’øW1A Ĥ/Ö ôùí L•‹üÊ}K ¢LûAIVê0·_Ò+@ª¤|6Ðøì AŸ§ôf±aöGeb>}ÍÞtS©©¥¨: W£:^E4UhÏ9ö„Â9æ6pòŸÑK5ùXþ[J©œÉMgUï0ÕéAÑMfº¢Q4ïž8ëÏÿ@@R̨å'îqÞÂzÜ~\ù´¿N*G !·xÎ3–›$EhD<î÷' à%Íì ²ª)¶}éÝÜö#!Ô3 ÌªhÈIx#0evu½%˜ bP~›Š¯ú^•x%þ‰%Ô$. ÷½ñߤ®ÿ™®B%ï­.¥A|®`ô/Âx«KY >7P¥Ôÿª‘žýoVN‰gaʼ¹·Ž#2-(÷`ÉJÃQ|Ês·¹±$=þsœCúlÐáE¡‡ )§{l§£Ïp÷é~ò—PÞ€íítóp¯*Њ?ÓC`!¾S½¹L…ù6öæò#c„]QfÍêð~S¦_8|÷Ó9¬7wpg=š9a‚T &ñùÒ>‡f°Ûa’ÄgxáÛ8ÚÅKIË£Ñ&C¡çœì˜\áýf­­ŽŒØK‡$M3-qfÄ Û…g-µM-ÏÁ0îHè’XhY¸£u¡*v—( wk ~,oTå5èzžÉV†#RåØLkTn‰@T·Ù°8)‚Å 5XW †q°)õž¬aïŠ4B²ÏâúŒ+à`_Ç}IIÔ²hIÜZRh ŸäNßïâ7µiæoÿ¦ú†D¥À[¯‘±Zxºá“®«ò–´m饌O¬®ù}u­ëX{©eS}1wÈ„äsˆªRŠ}’T 2OTˆyžšÙ3‘¢h8lLÔ0˜Xui:M>ÙÍÊŽ<INL’äeÈy4IL4¨}"Š-õÂ<ò`zàRâfõÜ ÔõæC*D¥:?e:ÿACï0¬?¡È\÷LtwX%~!Ѻ­UÜweÓWJWê€Õ0ãåÑÆ¼q—ø2Eß‘²¡¦Æ«i²ô$kÝp‡Ë_]aºX|ÈÜÑQÓöä¡òCñ²ÇÊį¤G• Õ]k^5 Ï«¦Ý¨! “ÄÁ$V³Ïª¯E[c*F™“GP†…ë®®ûR¸æÖM/»‘3¸ë Nù‚JqðÀÝQŠE”âjìK›)¢ÜQGSe7G"ÉÃr|ª_¬;b|ª^“'Á³ä÷LÂ;°8º’Û׋SÉ]W’{Šz–%¶‹jƻՌ+Íë®<ŸQ9~"Ynë‚ÎÆ­ .øUdÖ· ÍÍAzôýˆ²ÐàqêË?“ç>Œ™ˆ’q|ÓKßýúÒ½ÈQŸ/zUÙµÅðÌF{…“¢ÐÊ“A|®ã-O V‹Ù+ð^&G;àšKò(Wù ¸95œ¹R¸]Ë-ã>¡ßM]¶q,áP¤\Q¶ÇéÓµ§|UÑ Âç“Àݨ’U>VÕ‘9Ž5|…D+—_Ðï&”ÒGNÔ;– ¢‹²íQWÌñÜŬ7 Û¹£›è"fÍ–ñ;ɵŠl8†‹³{W5¤Û0Sº"K¯Ö«~™YH•i˜epŠI.º‰ÈNîKòß î÷Ù{€inõ »ĽI‰¬ïŒ–š a²cŒB˜–6Ù8X¡†ÝA+^3iPWx¦‘?Ò É®”–!|9(3…,EŸãá$¡Ë’™ˆRsÚ&GËw7ÔÄ¥ž2»áMá2Íb¤f¹&¸„¬×?FHžñ8®µñaQl0Èr­SQµ»`A%&XJ^ÐÄ×âðIA#͆Ìv”‰™«–?å˜ÊV“ÞU/¨N0ßà“A¢ë¬˜3Š++KzŸñnù(FÏôÇßE˜HLÝ&„¦¹TÚ׉[ÔF¿‡­øêºwÃK®{cŠD´Û&þˆFD=é{Ó¿˜@0é@QÆ¥õ‚<³v{£ókQ ï/?ÿ,Éq]‚|œGoE»ö¡¦úéÝÞ!¦ˆÙñÌIV3#¢¬¦¹:ˆÔ"€€ä…­áˆn\÷£/ÚùŒgøím_.D˜ó!ð- ìpð æú® ]C 0_â;¼תâó°_õ—Uàùš€_··5±òs}iå—×ÎéœWl£kúþ]ï]À`]¢«ÐHù¿âàìúÁ>J0¤‰áKC`€}nAqx±#H”‡ ÝÝgW7Ã{•áê?qü™}>íî§|"D¿°¬ÔÐ/ZÊaˆ_¬”ŸÑ©)¤o`V6ù:èÐÔ’ -_å©!Ú5 öd÷òÀþQ‹–ƒ~‚ºèHHŸë/Uvšn6ÎÍ®RU÷v6 ñÍÝý<'«°/”¯¿5S‚†¢ 5;G»jé{hqõª,–ƒMa—/Lúö>^”Þ¥ /ªÔ+À°õ~F¯/ #ä‚0§TÉž„ÏI)µw‰„EI…3žu ¡—úô©Tóé²ñ½&É ð~Ot÷€wÀ¢/áßøWǘ °ÿå¢1ýìv)¢–ݼbñw­CPP241ºd UÄ­fG¬mn¶ÅÞñæáÇÃV· ¯}ôD³±ìöiÛFÂúÙ"U£'%Û<Âj,/–eŒåq?8j‰l™õWË6©LXÄ»* “EîJhpõÈ"O•R›–måDF,YeVƒê(Ö?­ï´Úïõ½‚Wè’+ e î@R°¥É€g˜ü/Åv/§³]hªÃzáâHú Ïr9wf’@¢ƒ!6")îÎFüÏÍø]2DÞ·ds/Ù)hŒVlwEÐñ…” ‚îïîïwÖd¶yÑé6ßoJòø‹ëg–0A&Ê_A¸R…øh‘U„%nÑ ƒ›ÆE7³Ä!2™‹IPŒ½z?½šAŒÕýõµVŒ#ÿq:í®¼º×+•¶Ñkd¬‡a–pv»£>]4 % IivÆ] zAÀå0­ÒSÞ[kˆÏS–o÷ œÿ Ï{þÓh¼nøñŸÞÌÏžãá‰éœÿìµ³Ïæ?³üd7òàÃX|ç‡=óÞGöý‡=d²}’ƒž½ö·uЃ–ïïú Gw |Ð3?nyÞã–ù™Ä“ŸIàn˜Ò¸Ó®½JÂ(» ó#НqDÑÁ^}à—‚Tǃ^¾í ¹ž=ÉY±ãt†jr~~aã×<¿4ŸùäBÕûŠgòÌ”(k¿‘CŠùgJ1| …ççóóˆ¢ç’ef>‰Põžü âC‘©œsâðÁÐ…¹S‡AàÓÞ4¿¬Â%}zbQÄ•3§À-}û'Z›Ô“ ✠_¨{t #ô¯†Ô8jTŠw8ŠÅPé†Îœ1-KÎà)—-ÖÔ7jb{0_W+ò2àÌHì†W£ÞÍ h&Uq<ì×Uq[«ÿòjúN"¤µZ˜óýzÆ÷ß«'M¨ÊdUœUÅ9G#¿P:g0о`Æ 15à °ë{rõ"Ôä-µõç”¶žKI y³UÅ»§9}¨úDvå vN§¿×êÚ7Ä ±ž~õ¾ZVߨÊÚ7äâZe“LšïÒWôjm©é¼²µM‚úBlØ m@Cë~Ck‹.4ÝÐ’DÑ´´ P¾}Â_ÿ£§ÿ2mýÝXñâ¿Ôë¯æëÿs<Ìöú¿Ù0–ÿÃn4~°õ_u«¸°Ù*S9[¼¢ø*Ȥõd‰k`Þ˜†Hîo@TM³ËÀó¿y9„¥ï¿Óop!ûßì­6Ðî{€.ãv3”sœ`‰I†} G/x­“½ VKnлӭWÀ˜µ‚«—ÁR½Z/»B$1¬oY˾¬Áù~J l’7Km°à6n$‘ô,oå/0(\cVp¹ƒU4ë—ä Þùù„&¢5X\FwbÒ¿MÄYo4BK:z¾Ð¹Ü ”oz÷¨%Æ &’a*¡Þ‚bóSÔΣ~_ú‘TöÍ t }±”nVÖ—Ö*k¿ŠëøŠœ‰GÑ9ëÌä9‚ã>‰&ë’Å0ý~<Í„œ5SÍZÜ)?Õ4j(¬ …6óó^)ïõ=•ɺ¢’”°Ý:) ‡>šXUfèÃqy…?†Ÿ5­P²]¤®{£›>ˆ7I)Äž¦=|»Œý¾œÆÊZÓý7Œ~‘\¡S/€¶ç×Ñ­DõÉuÆ‚©q¦$űÓàdB™â¦™zbæBQ.@Y`Ì =yp¶š;ïòàà{‚ój¶ä>¡eÓ¦¯ï¶é'Æ:Ýx[Îw(׫¢³ û¬PÞðùGvC7U¦&ëQñD•L«¤]2q/je|ãàÔcê‹&CŠý;Mø.šÆ× Þš*¶¦Ju×,‡ú® [‚÷9[¤Ö·¾A‡ ……­ØËâë^qÀ²õï¯éCòCÜxWA³Ï" S{^®TÒ ¾ÚæŠÐvr ­ÙÀÎ é3­Áy‚.ç( ô*T[MŸ<Ø8­ÊYÝíì"~4e| ëg:Žì.T+²o‘È¿¹ŽÆ æs½îP\Ecq9A¯{½z¨5-e5ãFÊ ú2}Ô Q 'òØ›á<€îâQ³»ßà !þ êG¹B㾄»7ýÕš;Z@Œ÷ň±øC#›Û˜ Óa9MŸÃ®Ûú’ý}1ûúæüžð_ðöÿgÿ~VûÿË×oê¯}ÿŸ•ùþÿ9žpÎþí´$ZöÖðöE—&³Kì¶Úû˜-~WqïîíäD…>ÜÜÁb¿uL6ªhŠÜÄäCÇx¡£É›ñ]h;J‹}Ü;ܮЖüÕ~·÷$BÇçDf좭¤3’É.IÝ6ïP5ÎŽEi¦ü,ŽK!äÚòŽ2 BIâÆŸÑ4÷z³Sc]BÚ¿7Õïÿ‘ͬ5k§” ·Ø1qòB8¼•9Õõ¶‘2—&‘ÚÀ^Jý[´Kwåjš!uL9v'l@ðì?Úðƒ à·Î¼#oº‚¶‡ãëm~£?'=ºêÃ0ôä€q‡î9äͤ›zâüzs|ÃñÝPŒïo¹Mꊌjˆœ´Z¯ÊX‡ä‚¢¿n¼bÜûȹ3í–‘POè)ô$!:° *Iߛ֊dryŸÇ€)(4¤Çµï®a4`[‹”³ˆ’Õr&2I'³~s-7E­†m9ŽuõîÚÀ|Ó8î÷j½\¥ßòWÅï@¼†‚s˃Á& įÏ÷VeW²:Жµ¹¥¶¬\•WÍë⟫âwüsºf Ö Š1ÊgÐg^ID÷RAÓ‹zôÛDÒÄÂÇo¥öÄí0&N*ý^ÆÀs–ƒð5¼,¯Ò,þ½\U !Õ’£‚‹#Ýoe6/P•=ʨ¥7'|ÂXÅRLEÍÄ6ëKìW%ö«w f0dH…ád Û¦A¶YT ¥¼±káòᬿOnn‘°–\] M¨É@Mâ1×1ôÑLâ‹ÈºÕ­P^‚CÚy.d2±i¯×½þåÒð6¤…h«×¢ZÕÌ TèUÏþ[ha¥Ôxqÿÿ`( ‡ ¼:½Ïè}§mPUÓý0½ ŽGœ K’!£‹¢Š¬ õ[™S)T‚¸E=<0&§ e•J©þVßJÚ}Åw^°·¶™“‘K’ɈI:Ù8Ý:±À&AŽÕ•µÔœù=¡íVE‚Ü Ÿ©Ý¡½¬44uJZu¢H|¬‰í¾ÿ©©0ÙtÅGÛý»©ìG»„ÊO°(G¸Cë— §õùzÅ)÷èouw` #zÁöEu¹½*>L@â60+È/¯_§lôV:ªõœBU¯(SNÖ^èhèüäÑ÷ÀîŒ]<¹PjÑ„ËvcL‚ïˆ_Ôþõb8ˆÞšWEýmj…¡I¨…æŒ-û1/=¬ü,4Ab&2 Pº¾Cƒ—1ˆ3g}î:`V¦ƒ‰ŸÑ}‚•šr¾?†j­§%N¿ëÊóÔTûûú\4•FÐ.ÇÊäÔ,K.L=ÔY¤¶Õdø /€*åê’Š¥ÂêãTÔ›Þ—øfrc¸'ÿÔ>Gýä'ü;¥’žDZz2!£ I'—….T½‹/§Œ6μ3lì‚aÍÃÆÿ)-1Ò(9>ª•a,,ì~·ÀA¾Ãa¤Þ%Î-Ùo=ª‰\GhÌ™D–ü‰Ó¥¦É‘DUYm USw^­à„´CÒûtD{½îÄëÈ8»4–Í´DÏ›!ÉX 7A ’—¤+™uK­Â’ãh0ÿœÄcƒãТÆ”®xª Ÿç˜£$Ó˜kŒ gWÞ2ÆQÁÓôV™Ý€ªfy±K׎ÛÑ=ÔM “Õˆž’Pg²þ; µ¾"áÙUˆ ™0”¢2I½ßy'—˜y$Ñ-©µ³,g.DéÌt>"6©ô¼ÄU»7ñe 䵉Êϼ‰càßÄÕ—ä™'` Ãs#ÚFYDƒ ƒ²û1­0P!™«¯züý„’ zÚÕdœøtfðt0Á ÉÕé%#]ˆ~£Ï.AnäS/¨|ÏL=ƒd&œ¯O=¥& ¼#–¶æwÿ®wŸ˜t£ÞEü¥‚çhC‰n“¸Ÿ:Ì‘}¡umÅŽ•¤ŸnãÏÃñOÊU® ÖÕ#Ø“6$§|‡¾báˆÂMü'•¼RiüGX¾–˜Dà·tÉÄ]®¢¾V3] É<5 ’ èA‰žŸò‡„èüæÉ0‚ ù,N‹&— ¹0¸®ÁECÒzhcÃËË™Ú6óÞ“˜*ëéV ´L{ئÝ[otG°­U˜6ˆ)‡µÓÈDÜžiz¡ÝlHôâ«,‚Jöâ./E®@ê\á,LAü³!F†Üâr2¢ÔE-Tt…7,°Y‹q’§ª ê5é bô‘ ­!£ˆ‚ê)ˆëv8Ýì}fŒÒÊ1‡L’ªÚå¦Ûl­°™{ lLYu`§fÙRDÂ*í=ã±2¤d#•¿¡×éEÒä¢iQøÈÙð8J‰[Í7¦Ú!Q@=Úù“¥Ü²I ÂïKãk †­*²èLÁ1AŒâ«ëq> ZÐäåò€½íC{xA»*lDúxk­{ŠKÎî]T@G9Ÿ°7Oгªó¡jL4ÿ5Ì60gŠ 4[±‘*ÕϤÿ›™ßéÖe³_ö~ÁÜÌŇ©‚]G9±â‚Igªæú QWšZlL–VNeMóÊaQæO»›†õlžqõ÷²>°‘BÊ·KòE9k ­q¬¦€ CM4N·BÎ~9æL.ï¥!^Ì{ë’HÔËe´º¶å‡ôïÿ]’Ê·ð7Qo 7±±™Y§·\fìÖe{†9˜šT”Jõ9èåQ2Áè„.Š*«)=«U±Œ\É»±ñµ†¯æ|»§F±ê cÀÎ-HÑ* z¥?ÊUЕJƒ3ü+E«¬íܨ’xp}ñMcO‚¥PÇïÔô—ƒs\y,Ó=þëŒþE® °0–Xù2Ÿðá‡F˜uWÜ9`POŸuÃå4.ÍÆdYþ/“1‡ ÅQ4e¬7w‚d9ñ¡‡¼24K[æ-íyÒÕÁÚ¸bGc!w)$JsÒ:õå ›ß_“(b½‰»2m€ÌîþSu×S ófwår€8§ÝÎè†æ‰@K¬P:¸áËq2ŽñÀï³Üª”’2Ô¸D눜\1O7­(â‰$±æôàÄÞ¢øÑXêȪ* ;š¶Dþúµ*–e( .7é¶Ñ±Õ.-aÃoùš:î¦Ø‚¦+^Ä4 €SŸÍBÐæn†ÉIÜE¦¡iFgg|h§¨þQ³Ѓ µk–ÃÇÂ4ŽlÌŽA¶Äy3IÒ…ûÓÊÅ ŸÜN’h´t9‚ýöEÿž×(£!C6컡¸å“iu6[ê•ÉJŒ#cå@Þ˜#£W·I¦%‹&î0‡:ŒYì<9ñöä–ÕúªŠïl@ÒýWpØ`Ç˃$ÀHH[ÀC>íöî;èÑm¥ã‡CKb?í ¯q,lFÃ; †}“úO³Õnh´ŠÔÊÖëÞ´ˆ-ƒŒˆ”ùr UM¤¼ì³<È¿<'‘üVwçùh÷ðrg•ˆª­ªJKuä'ôéÓTIIñ¬ Crкa†×–šgªŽŸöY”a:!UOÅ"—º;«æÂ¯‡´yÉVRh¾ÄÍ•©tÕ;ºf]% ¹‰WDBºönoGÃ/ùÆQѶ„ñ ¥ åhÝã!tïØ1¤i“.«qLNóÒY:=ÌÁ-õªg ÿmžÚZìUº,“ŽuWê— –4g`Ë€Ëâ}4J®ñ–¬Ñ›â6»CsHA¥ƒc2c⑞ɫSXq6¤ME Š³7ÐT UQ‘Ê™¨ ŠKà$¢ÄXÇYw‹èµŽuûìÆœ"=‚p†±þ´–i¾Oçý’Z¥âа¦Ú‹¨ÞÅe¿GÔF#Xy‡AÎ(BSíbqtü~L'Öšˆ™LoqèJ͈¥MÁH.¡†ÎCª­ÈÛ—§.\âwÔ=H‰!1éøèÎþ®&/y@+’–ºG—Uuꓲªfß*aöGy¸lþ\v€·Ì{iõH´M| üX5Dl:uDç„£ù¥$ñ41^ÉÝ?; «ú‹¬µj‰^ê/¢ýE©ƒ¹ óûø&aÕWV¸¿ê^ Çðî~„Ó®c˜×:̨ÝË9Žbò _Ly!=áŽ)²3D·éîî׫ô«Áa¾1ÀH }ïWÅö;ü×Þü¿òÜ ·w L6Q¸ l"€ëƒ.…(WͼéCÐS€™M”éÒøÒ€è@“ïÔEmï°Æßwk+~xP®»45¨5ãÐÒöœÄÖErjÃŒ(m˜þÍ;-Sl2¾‹AŠ-µØÑõÖáÿ#Ú{ù6-À±q>¤á|öÓwBÇÚç× ën¼lÎÁ­—ÈM’ØjߤïÉP%º=/O`Êv“—¸ˆ «m6d ¤Õ‚À»|)"І ¥nRN÷¿Î±|n,Ÿÿ?{ÿÚÕFŽ5 ÃßçWè¹×µÞcª Iwz2ï² IÌÁÛšYó\·Á¸clƇfÍöAg©Ê6t÷LÜÀUÒ–´%mmí£=ÂZ€îÉ@¬ô®)+ãe!j–|düîwúVGk±€M"^èuG¿Ö à”p¤¿&v ¥Î’Ûêz¬”ÑòÝþ[:Òöø¼b»2´$¥\@Y¹/KÐfsí¿…ùsM06b¥dRq péFéE¦¯h“ ˜@¾û Õ'Uª¼á½¦‡c¤ŠF,Þë­Š2íå ÜtŽ™7ðPtŒ7¢d&Í‹™•·ù8K´2¤ó5oëö”Ò,Æ#cy³æX.;¯‰ ueÐ,¶·Èá'­¤­3°h2¦98¨î¿]O6Þín°ÙÇ{¦¿‘’oF¨,|êÙÍ€lYðØo(NMÎvºÙ=Õý})ñFçæA G[ƒ•®ÖŠ$ëÆŒú*¤>l,.ç@Y9-ÉsJG)¢)¤AQoQäL"%œ Î<©(öÔ +b£õE!±õñ’\«D.¢„Œö·õ(vŽ a;š½È!À/ì"Ô05»fëëTÙÔ7nÇhðÞóEh‘ËêF8sÄân8ˆÌé«[{1’6²=6Q$Çü1\ÊÆx]¸6 ³ö!SÀÀÊG‘·ZŹæºHêÏÉ}¿'¹²ãy6ÏðæÖë[ætx¤ëômoø)P¨àG]x‹1*äZ«H¸sæM)Z¶üJ1‹UuÖW6ÉÏohœ¤ŽN fÛ|GÑi÷ëÞx±ÂÚc5ohÉÆævt™¡¹ÈX8´ÄZ|`qfwàï\bÁ‡Á{ȹ ŠÐ€m:hb#` ¥)ãàúªóù'.äÜáK PÇÔüZ³[©Ôj-Sͪµáa;‰O™ › ×ka¦øÂò—‚Ð÷GšàܵàøÇ_¼Ê9œ¶pŸA{˜c3z pxlý!Õ¾ê[ãŠ![¯Eݱ@ Yvo¬F#~+y+ò3ü›nÌ6ø(x#­„"'ËOîÉBòé l,vö“D>ÿ°_v× áœ" WGîÄú]}·rW—XË+-dÓÕŸ-µ£‹,鿀ώòæl‚2ŽÅœy#"3ê,ɱ^’cÿ.Jy7Ï™”‹Ùœ<–¶¬‘'ÒH—bÝ%u‘ ž‰e‹uU5Øä“› Óõ<ýÆ9|ÊÈO¦Ÿ]gÀ̱Aùà_ÚËÉþ(/!§ÿŽþG41Pÿ›gâ™\éOk÷¼ÛiÔjí¿4þ^™7êiX^¿:ÝùK`©…aÝÆÿÄžCyy^>u¶žhXð1‘XE5ݬZ ŽÚ»owÛª_î˜ËÏ¢´îçEb¨´@ •æ,6±Ú²feñïÜók…E&lJósŒÒèXîj#|»yŠ ŠÄÓJW“Ø¥„¥‚”ë‰ÿ<ZóÅ·`DìûGÎ.Ö㑈î2ˆUn n K^qV¿I<äÜr&¢·‡ü‘µ•Ôâ² æ,‡È.sEˆsî"ÅŒóîbUö=÷)lzŠ,üb^ØD塬ùÓP<±Å9õí¡¼øã—H|*ÕSäiùåÊ­[\”_Ž«™@£VU ’Ñ•s ’"™Xmó Yð$ÿ¾&K¤gpSu¨²_ƒX <3ýjxr:Ï)Ó³5PK %x¦L ­‘Z88»í5FËd™s±¡½pÈv>÷îÙ¨G9 I=|ÁNÒ©MÁÈ"‡jÄù¤½&*?xFrW®Æ¾£— ¥ I¶â{|_¤Xº˜˜»;˜hõ[E« Ч~ñ8t@´Â÷vmka .Ä|Šàâr²]uÀ˜G9ZÈfL[EZ;8%ÕÜjZ˜CÜ ­T…åú+*¯–胩¡ó1$(Æ š›Ëü­ªìR>ºG¤·•½åv(‰o.[I™šxéì †UFÏjï±Ô8WȉÝaÓˆ+¤À pÄR&'Û(kprÁšÈª’Rý%'C«âT|î¬'U¹ ]+ÍöÍáŸ3±~ñÈ ‰‘øýÍïÿ/}ù"ÙöãÿÁÃñÿ¾Ç‡×Žÿog¨&d>®ˆãNó‚Ñqì¾cL‹I»Ú»ô¥³ rÛ‚¨}¢X}%­Ð@ÃGì š"Öv‹¶§·}`*èÇÎ;.q?ø ÍIIvêéCêílš^Ì%Î,¤Ý{xˆD™ Á˜Üçr¨AfÇì]Ï@Gp‹ž¨v;Ö12Š‚Ñ,†ÿ`÷%»vðŒÈDÖ.šE͘tœº~6‚#.'óƒõAŸ iû<šM¾b^-'PÞx£ôâFá]ýùU&œpy²4[èÅÈ<‘J±ñ÷tÜ$3Èozþ8©pˆ"Ì»Ñpt°¿Ø˜Í­úd•6TvãoÀE¡ O.‡7:xŽ Ú³b'‹®Ÿ«uÇna‘Ï´èÀ¬ a6™h¹A6<lTÄ&ÐîºcÏëR5Yóð1¾¾®®'"Ú¥]ŠŠu™Á%¬ŸMg“ñWíçu¼ ƈàå í˜£Ähÿˆ‘haŠV¸Èì.6­eB<ä1G´Ë Ý`—Oü (ò×ü݇$‚Ü¿EwÔE{Aï€" ù›Ã#Ñö BÆ?qÆao=õ2+ÐJã§Ÿá©1Æq»/:‡Àlæ!4õj{ªÂ©0š f_#“|ôÂóhl@ߊ§$ºº±¬C|_LH¤ô=æˆQN—z»?Ú§¤Ô¨ÎÿÛZcÂÞè«twRïM‘‘%XÆMUr2ö¶jëÅÏ"ÍÏ9ÍÐSt_çÅ9áÕ ³pO]ÇoßfñdJ¥Ñï‘ ®|q7Îhkk]0n­¸Wìë£1O˜Ùð6sÅíûH¶µãåo^ å¹T#£I8&hE‘¯¬ª·Ê-ø™–[åáP–Óœ%1¼)‰ݰu¨#¼!cœª…Â4þèà²"ý?ò™»–·¯9ºmÆõ›Îw›^×ÍUºŸ—П—Ô«ßôèѨ~<¶WßÌõ+_ìV½Ä`ypXýupòW*l™tp?îFÇÀ¾íõÉtTW¥¿2`þF`p—›¬§×½ÁÐÍÕ³´®ÛŸùàê¡LX#uàIR4üЉ˜Œ?«û ã! ÌóR =ò”ÿìݸ_¢{">]Ñ›½ÎžÊC{2¸œ³×Çó†Ï^v}-ÚóÙ,›ÄÂÈÊœ´+z¬{W–``¨K3”íÔþžZ»•Ei£´c úªLT¶àjé›"7ñÆIûàô ‚¿ÚuúÝ®`jñæ»æi〷 ®×X਋¢‚s”í¶ñWûžâ£ã£.=kïÚ«ˆýŠ8x‡ j]’ÅvvRÌ"u@ß:‡‡@Ë:Gð3 ¼Æ*'u€A¿ÐK° ƒìäÏHw÷ð(‚ÆÝ/0—È uæ—*j‚Áæî9ÌVËÕi|8úZ}·{xX‘™Ô9ÔÁN"¿‚ßîîq»` ç»íúA­¨CqÉ@Ì ¶Nó»+߇í<ÈžÃô}x'}2­p‰+9evñ´0áYîõž²¼–”{¦ãÆDç*ë6¥‹&?x×x6ùNšÚ>BÑ~—ì$T¢‹¶VÂl±Â0lêƒmq¿òÊoùåÓÒ­%ªµxÝW‘ºe+ÿl$ênò,Ë*ثڨÈZÏXXö¬"ªRä©ËyçÏWU g8"UfBgB[8ŽU²Vp!¦ ¨¢u\?W¬=ðcSÿoYHíÈœ2"zÒá™Gl·2SW+KLÑéOGšYœ·-' ÞÃZ¬,”:DÕu¢K–&(eÖ™„zcý+«R.9‰ˆß^Êæ€ŠþÁ2¨º*. --ïQÇŒq±X[g»À4§|Õµc6eÓ]™ÿvtmi™ÿ4¯¤òi3¶B¥W23~E«cN/×õ—ªq, TZ;,™¸úÀ¹ŽUG­%AùiíÌ8p?O†Ž/Â"ÞIoôšã MW˜[”€N×ÌÁ#MO–¨j±ÿ¥t¿ÄBâà€3 ÜÌð°d˜X®j¿Ú)ñ[é%'ÿ®²EÄ®~°æÖ`@ªŽú¯µ½Zgµùr³e/l¦¸­¸±&+1Q§dYâK²ŸcÚ„;ŒèˆöŸ¥a±ÅÀÊóÛÖ|â©‚#«D§UI’ÊçüÈN.`LÝ-L;ˆ­W8ˆ´\†Hw}Çl®ˆ? zX%b«¨ˆÍu¼î _s9¼D ë=²bôË…¯‰—Ã÷TŽÁ§îûZ É‚ @Ù-Ò:tm˛DzJëP^ÓÝV‘1¤Få­—Æä$êÓ.ϤWÏ&¾fýo“ÍM'ë1wUU‚Fe—x‘CÒTB“ Ï;è:ã!”ÛÆ\·híÞOÆpàÝ ðr<›ïÔÉc”BŽR Í&™ed‰Ìºå À¾” ¹ m&ÏÓЂC+Ì…ã½Ö‰ )Rbs)©b5àÙmX”"ê¬.$kÂÜ5°&Ígæ"a‘,Ò(ê/ùLøqɾEȪ$wT¼v•îTòDÛÚ,Àâ“A-Òj²n/ØuZ7d§€Ó îxO1VáÏa›C¼C ZÈÊáÖÎ뛡ü·èü~Ó,&Ñ Œá¥Pˆ3¾Æ+M´ÝJ’¡º¨ŒX(Óµî0]Î4®Ë¡ì3èñþålD¿½}wçËèšy¨8»5ÚM<ŒÖ™áÚw è}ÕúË€˜¾Š0`–© >a¶;´.b‚9ý:…Û"ë×û¿#€‘Æ ;&k³f•×ND®:Hæ'p”BÈØcšÇþ‘<‹Ú«põS”GçŠÈš‡‹%6——:(ÿ٦ܩK§˜~‹\.Bš±DD1K™×C?jׯ³˜…ú2Ç@¤WÍõ4÷$p:)+ú×»“ò£>5ׇ´´Ø-ƒ¢¼ºË¬¤Ø{j—ârËUz²f¯7%}•KNפ JöÁR T#ΧJͤ'i=½ˆ5‚« dy’ |&36Rä4SÖç’…Ë9+éhÄ¢Ç}ò͵\=}ä®ãüWÉûŠå“ O!Ü«û:;n…Gjl;¼2†j |$ÒµºâKr ûãb0r‚-2v"…14‚1(ÄcÍŠ³!yëå:Á׫2Ýo–¬Ìw«2ßrÔ6e[Ø’úNw™å^´"lÁƒ˜.ERfzlĺ< ~ιæhñŒüáºú<”8ô–»ò“'½Q´7ô¬¤’OÚY•Ïz/îsE“$ÝɈ¢\ã=¿¯îN׋B ¡÷1ép”ë”ÞßRÎâÒ = [´Òý“Éœrʽ6ÂÏ£Z $·«µÝöp擊dR)æ¾Òq'œ\KÝD²X5Ƕq^, ¯Òßæ›º¥†§Ëu[å&/|9à<;û¥, l`ÁgµgœPZ·Æmµ”Q¯ƒ*'é“âÄ7Ô_q"m `ŒñÉÖ~+ÏÖž©oYv¥¤Íë†IòÌõó­ïwŒ²åaÖ÷¿ÿ'fÿŸ|Wûÿd;}•„öÿ[?ìÿ¿Ç‡W¯oÿŸ”¤Å¿2÷—zìöûÈKuP«iÛö/”’üiþÕh-£ÿ–& ÎôX/Ä´´î_Å#Àñxub¬ûµi^Öo`öõK^€8Ùª­ÏÁpï=Vô` oÿÊ$“ +eCxt¤ÂÌíL²ÎvAÀú‹Ì×{q‹m÷žˆ€ÔUqé›bÐBYõš^ŠwG¤YDùÁqi0Z%˜uü½Žë ¦ù¢|ñ NµãgôKÑB« Åäð ÿ²d:È3¢¨áøÙ¼"ælµ,4aÃlt3»-v²tèdYŸw!@þ¹NÎ_aVÎ)<šfÔžeÎ7à  d[ŠÑ9É€ùŠc¶ç‚S§ïløva”oiª¬Õ'%µ¿Ñ©9„îL†/JÌY+×bÈîÊ…iÀ(»VÌ™ÿ¤5«çb¢‚ëO2Æ:bÉI«ˆ /ädlȤ¬,cÌ?N†^}ŸcÈ<Í0•Û„ƒÑ†T»h`VæAe:|`©uVg•oBíUÚ<é†Ahsû…(Ô‰å$%m1µ¤(Ôøs†cË*5÷`lä-0j°Ÿàp:¼-J=•ÇáÒÃ-;Ý““C†óŸÈžg¹¶ãæ&IJ£”˜ÐCW²vˆìz¸  8`"ã,åVP‰e‚-v=ž¸KLö[/ kÅ2+C£ e2¾sÁ`€aôsG]ä¡õçñÀñr³ÓŠ"Û…*lÙ|r x*ðxÉ‘Ý÷(Õ§ë<µJŸñ¨_Øow™>¬ã Õóoîáû9(dTð/ŸÓ°E€‡»ùŒ©ŸËÓ Íê(ÅÍt<‘IfŸm™éüR.s:w¤¤{z•1…"‘y.FÃ&ɵe’‘øD¥Êiî®iÜvŽ2A[¶;¦}CvPrêÂNÖʇ}¢‚Þ" d$„ÈKëÜeÃ/ã†xÔ®IW”“ÝZd'¨2‰2›°`aŒ%÷¨Âª`¦±HØ(¹~ KÕpcšB\3˜äQ¶ŠéŸ«óªØAÃ^>Æå`mI—¯¶ªö‡37`’Šg'ïgrû“Ø®cj¹¾Î4õÓ÷ŒÀÌwp}œO|ˆúbù­â¬`mþá ûë`ãˆRÍÀÿ;‡;5¾tóÏÿ:*ºg§P-ŽÏàß™·pÿÇ’Ê<؆›ø>ù{‹~¶ßUòm³Wµ™~L⚇ÚH/0C¬¡W0CÞöëRdCªôuΨ—$Ь³KúÅ~±ÐÄùQVÊÉ÷¶R6@“^űG”2iS~¦pbÁÑ G:Má´Ž M’µ¥)S‚¹%ø2Äüœ"¼u¦Ä-k\X¼QÊ}'zŠArä+ëé1Û Ð#ÛÀÓ†‡›YZ*ZU™Èç &îzÔ&q†¬ø=zqìÿªÊ›»LšêÜxå):ÆïÇÿ›x—h¾öêשeIg‰ã•ìØü™ø¦CFuAÕ8¬¯–DÀ¶ª6`"€T͇¼®6CEZŸpßwXéÃi´Äi‰¨¡]æH6­qÄ­|Íón)7­¿ó‚•ZZ[©JÓí~?*† W‚ÑŽ–ã[߀`IºéÙ_v¤€`WÞ™]Õà~œ‚4;¶Y¼ê˺ó4,ke5ïÞX¼ÊXØ«NñœÊfm°•ú±­dÕ3»U0³ö”ª9Ë9?íÙË›øböjèÄ”ØEêê`ªŽðÆÅÙ¬åå¹ÊYd.ŽI+qíÍZ1NTíg pv—$“ÀJ6tˆ[¢@˜£ Ô÷R¦ã«¨þÒ{ž®¢l3Aiÿ¬Ê¶?à'¦ÿK¿«þo+ÝLCýß‹ñ¿¾Ë‡7”¯ÿÓf+É=,Ñæ H^TΊ,ÆÓèEFßzþìúAÖ î+Õ ¢L“²o d´)ý  Òú³aý-‹Üµž1¿»J·Èó 9–.jçLV»XY™²Ý’–Ãq†r/±Äl|“‘`‚%q¥âìæ/ÅdP‰¥áp[™¡ÜR§Z*¡UD¥C³ÓÕŠlýsï«eD*•B(èèX)óZé 0†:s_Iu5Äh˜ºß:ÖýW)`3*·buѱͮ–Ö²E˜¥&YB´X~¿Ï3[ Îê:‰@FãQU›§YèÐê<§Ûoº÷bEzûðCE§øö:…V²D O.À„VáåSh6vbñ í6Ë«Ó u‰Ú«»K™ªÓO¢nülÒ q°¥Vu-¦­²€”f·¸;"vkjCÓF§(ν©/Å~Â8bÅ!£<üØÚ[ƒ@X­0€KX§¬N»‚c …½™€N€,–à„m9áÖpOÀSÌÊŽ?© k@BT¯€j_“XˆëÁˆ"ÈÑòX*ôÉ_ÉÓ]IµCP©XlUJ®nÙ†™Ìi¢mä®fõ·æ¶7¼æQ™µ{E1xXðB9sa—÷ú}ir› ,M­PÝ3¥ëR;hnœ5Ÿ«ûŠEóƒ‘NÇWZ0ZõËê ÎÕ|&QªL5¥÷ÃÁ,J7¸(î‚Ñø³CBÈ <+¤#801ðN ÷CŒe Ô7úü‰œIX•R^¸ûKG+“â¶’"ñö™Å‚´™1(% ¦Ž>[üæeN'ìÔ5š©° ¼¾Ü ‹ÊšC Ç{Pê°!¾ÏôË ¯íßuQ°ïœ1–êó2SrÚ`úp¢¯•€3`¤&OÎí*ý3–>…{è]ËH®’±«ö†³ ×–’®Z@Ü!ÜÃÖá•鬼ãt¹Þ%årºŽÖ4.…K×`2QïëÅØû*JäNºFüH$hr‹Ù›ÕnÏ"ÑbY=h!}V:d$ËÁê•ë ±}@FØ,® ˜Ò‡ö«¤ç…¾SŸ’”c',[™ÝÀö~úZXsG IA¾¿l\ë)hng ’‰Þå˜ÎˆŠM«²‚çA¹Ì†@]Z‰a·á<šôÉ Ã[ÀØûTé²ÔAêßzŒ^löõ/r*6èŠZmS;eV"^›%ठc>ÖÂ/VñŠÓüÛ·"0Ø4 c›`0>£ç‘W (÷Û̹Ú» Æ)p-~“àœm« Ü KŠÆ0†X2à!…ÿs#VÄnóÝû®¬ xÈA«ÉÆ&†Ôñ7íø%_J¥BRj¾þ„_ B ’Ün¸®û¡[‚% ·¸£Î!ý• n)[‘.[ˆDó•5(`݃ÿéÑ^§"ö1ÝerTõ=-¨t´—? @Ä€Ã@ðí~|ˆ¯[-þ^§]ÍoõR÷d[rô«Ž‰ÓGp*~ù‚þ­nì¢"’‘K§ýý©1ÿèZ¼P”@eöàÛÝ?ñK³oã——~]eü¢­\Ø.¿¡ñK+ôH â>Êð%ý}Âóiu¬VàV$è[‰ .Àˆ ¢gÑÑZ,Ñn–¤³ÄàÖ"“j-¸Tqب×Í’Œ<+ýkMFõî ðøù—:²áðBve¤›Êîú#«¯b‹UèYÊÀ¦ÿœÌJ©Ó ©*äç´ÎÝhbΈˆæ\¸Æ(Éîd1*V™ž3«@/«— ¢£nö}4*PÔðŒÂ›hªp¤­ð6_Öåä&‘@.“¬êXûv”£§£}½‘ãÍÒîIÔWig´—­ÕBn¨eHm^BÿKóÓöV¬mÖ@¹`M”n=š"KyU0Ãü.Ñ6£U™‡²-ÖöÂÄžo$Ù§%ra¯ò½àµë5|DûtV ؽŸ†ãÑ3ýŽ6xO'Ê–M†Dt[æ´°*?"첦|b­­¦mf¯äUÜDîî:º¢‘²¬O—¸·÷)#2ɾ\e÷3Îø0žÜôF¸SõNE©¬âœMô-±S@,ÉäΆOTÊþ(0("À'2ûnp6psƒ"msP¤ÐD.ˆ%ýà›Êé?Õf8~ĵÌ÷ô2÷ã.±ýÝqªìç¶ ÝÌC·xä¤Boø°ËÖFñ=î¥?úÏ9!šJÓ—ë6S™”‚NÒtéyŸMlHs•B±Ø0P4^ç£>T«MY_H¥Ô±TRS.Évà¼p0§ífã`ªaÞ¼@ëu”“õ)5ÈȈ+±ãæò‰YX²Ïâ³ÅȘІ‰¥nF9îÆ*ôGòŠt·>ñ/]êõ—pcìó‰¾n(}Û­½øžðwek/²'Ý|¨Êî±?ÏHxFæ_™~\!êã~êF<µÜâMµíî'6#Ø—y;÷Ü—˜%•R€çF\Ù, éw´Âô£›Å{åÎch áíY³Å6÷úYÔï者ÒlD§"r&ÁOLÍÙ…×9Ö|ö\ÏZsÎ:]Æ{ä¬Î?ÄžÙ ¾ fù»Н/QrM§\°È%ðÛ±…æ¤~˜ÃèS&€Üp §}¸cò ÷¸Þ?˜€]¦ú„¢*þö³Œ%qGTíøOq~™A,7Ê¥¶²$¨Ã“<¿¿¿.ôÔ9 ñ›#~ƒl|°…ì‰Ç«‹úNu‚å-/²¡]ÕßË|‚µQ¡ÏÜ#7ÒNK}õop5e‹VNE¹ãGXÜÑýS5:nF¤†ìt×yžGµšŠ¸ÿ\˜É›Ì˜Óõ&eIÏ ¥†edóxÕ’ÌóWŒF³7UMAüÛ®Z\ƒÊíÅ ! œöL¨~Þô_Åb¤E{¶‰§ƒ¶TN@âÀN LýQŒÞ¾½ˆœgêe@­¬®ÆzvÉîv$²Fx*¸Â´3`gú1#Ÿ ‡M°ÇW4²œ1ù£1I†ç# NúàȆ?È òÉ`<ŸJ‚‘·s"1 …¬½ˆÁ„J«Îà'J Áð,•½œ‹•^¢ÔâIpC¡#”1œìÙT©ÆÄ]•SŠ#½»Ÿ}]s˜<Œ%Ù(‹š±H•éÍN˜@e•X°FWûÒxLCmp,wë O^’FV tË4-*=:Í/e´©Ø˜R` Î ´mä$Nœ0Ùôˆzq/Ìõ‚^oñBP%U©Ô-µmJmY¥¶t©})…ÒòiãT„**<Ä•ËACìØœ|¸`˜Ì í•&ŽT]¬Dv1QMôÕ•ô¡ó&ÕoFÙ—YÅ\.F¦ÌÖ3i1x-íNô›ígîí ÙŠMþ^ÇÐhoîíUáœ}Ì@"i9 Z÷:îûFPÀ¼7/ÞXËE“ŒD%T ’ë’‹i‹ÒA¸c…Œ8®áW'$DnÁÑXÙ²h¹ÔÍXiµ Ât8v4ô‘öÔrôà\S3<››¡¯ ·`I.lºãÄù–ÊýR2;f]ï à7ZÖÅ,1ò {Ù+Ä.8÷Í0íu¡E-.ìÈwî² yþ”âÃ$–/‡ðÂBú ‡àTK©›&z5C‰Í㯟["d“9Hyé!eke¤|ËÑù£xK"qZ£zåj{åQåÌt8¢@z¶Ê@“XÌònޱ…2CL<¢¦èŒv!ÁäRiI‚¤Ç¥t¨#è³T²Öª×ˆÚ_WÞ§žfB9¬î“šEK(ðò¾‰Úiø³û¯Ô÷_Z– YƒJ),³ úîÇ8í?EùöhEÆÓüÉ[NÉÏ«øÕ¥?üêþ{?1ÿ¿­ïêÿ—n¾J¶~Äÿü>¼ñ}ÿ¿­ÿ?rüSêíÙç‹©Ì©ºŠÎG¿UýˆÀ»n~ùí=…§^GV;[ÙSo‹BôMsôi»m¸¿¡Ñé5ÚüK+t¢ñ¸ÖÎø’GKí2›}FÓuŽY±F¡3q×ûÈŠ2¬Ú»¿ŸŒï'è·@‘ý¦Ú {[ñ#éqåaK Ê£AÙØÃÚ¯^~­;CPˆ¼LOÙ »/¬°™›ðjÜÏ$`Ã|wƒa=7æw÷,®é]âÝýz8fG2}%$óç«lð©w‰Áb{ƒ!öè6ûÒëgWƒ»Þ«©?Uߨ‘îÁ2C¯–L|±ïÆh%7È7(Ïljg¡ mŒù*ÍĤ)€œxLj_.è lÓöH\µ~&kmQ‰ÈÎû¢dl2P^Œ6ì¬ØúÛ¾òØ’®‘‹:²ºsd¤[K8G®æ´³¹ñóñ.-NøL4¶þ+^Ð Õõ=\ØxºQeò~ud,jŽP‹Gõ@:µaºƒ’#Ám:Þ d<½¯f—‡è8wHï¾…³ùPÿ>é°–k€ó‚ÐW3š½3úH’e…ídÀ`3¸Y´“˜ëÔ´¤“èþšß5í†ce·%K·Ä7ûÙ¡¢óІáy‘§2åzNÍL¥ã9ºf1¡Wô! ÔÅÕ-º®á¹\.5¹í}¢t_ãÏh4ʾח@ë§Ù‘ùÔ’fÓeM¢%Á¦~z5`ŒQr]qý¡¹âÁ¢I=¿\ïŽ7Î`ªNXï¶Ã¹ ƇËh$ïE7z­ôoò·ÀBRò4ÞDîD¢,°¼¶;€Ô4Ñw ×ë|dBo³ÿ)¬<†?¦¶÷‰ì?AÙõxâ$ýÕžcó`\ ø•÷ J;–BÚ¶ƒ4ôr››Ó«(³l02@¸½úàÎ䆊7‡n¶‹.Œœ½!ß2»¢½O-,,ý¿ 1öQ¹4„|û¿Á”ÚÔDÅ‹°Ý†Ôi9 ŽÐ☨l§¼VÞ·!;iw»0x°\M„cŠòb´‚PK.ú~’}€JÒ8×±wœ<hƒw­·Ž5u«n ®¯´}ã²þ–°DxýáÔ$Üöi’E¢.L¶—’ãÀôH!ôj'¡V’²­w+ÝÊï1fòŽú äûùäùñ`ŒØVû°ÀÇ-VÐêªÞ;èÛì8ñÀÁG¿;»Ý§ŽXÛi¾û|wöW \K¾>ûßÖ×çQ>9[ßÄ'gQ0Z"+_•JŠÐ䢠Ù6bЯªò¯ßÖ’`8.›I“$åvpsË1ŒÐæ®Iïê«(]©JŽ&@­žkSHÍΩô=mîËhP‚ÓWR#JÌÂÞÈVÐv޲·à·ÔjÛŽËKÒ&8¶‘ÉÓˆË2ß´¬¿Võ_–ΛGÈ\«=N £lL8ÉûÝXGÑÀ«ˆ6-Àæ`bqˆp¥ýE±üRˆ2‚)ÜLú 5vÚ·A÷ÖÄ\¥‚Y¹â€]Wèg2dNJ‚¡°ZÓ ¼ZÇ$\öK½!ö_e$B—^Þ÷ÇÙ”\º˜Y#ëQjÆ^YF¾ +Òz›˜a­Í†ê 憦~³Sµ$ Ô݃ŠŒ¸± [$QË•ö d%]´uF‚ Ò¦I9Él)‡ïY™WW‘„‘€ÿCÞg|?Ü þ%­÷ƒa&S’+ /Fv8“™’—ººUí8°oHŒëAÅ'RÉ~ZqŠý±ùŽp’¸Y‚1BÛ÷ŸG¤fÙ³)Úy!YÛRâ/¶úDÒ6f«éºŽòwà²P:­è‹ƒº†¢#Üê?^ÎáÅÁh“”ÌMӘł"®‰]SVK6ýRÑt›[1 2‡dã8ÿuª^§áë¦q?ò݈4<(Pš‘©ê'×m¹U·rÜŒ|Dxg—dµ$î,x{ŸVEB*4ÛÀ@ Ñ;ì w ¢¢Yi®åa·œÙ–&¯½·%ȵKn•½ÀûLmþ£\Bä49Ï…³wª¶ã–4jÏóÌ2ž=äÊYiõEÐê˘é諉ÐM#«W’î«Uù¶gÇòxŒèَ]Œul«œì)ºghˆªŸb]BõJ! ¤†å~Ê™¼àP‘%§ÅÓñŒ…vÐ =Þ¤µü­e&ë õŒ{D· I·5»Vx,’a{6ÁE®×©6¥I¢Ö´pOÒ%l{Û-áo4ÇÊ(Ý"Mñ±m’˜Øó;TÈXy“ñU+)cŒí1íéVÿL·hµ­Ò¼ÜíËÐÍÓ²÷ÂwÜpŽ˜#oh+¸ÀÊ5àWã†û”75Î`³â€Ç±˜0¸c g‰™BN’®„œD¦EI5røaG>”}ÎAÏJ¨Hb¨(Ä-Ü•"¢o=Þr+fÿ³ý]í^&›/"ö?/Øÿ|/ßþg›,G›dûƒq¾wº5Ëúç?À˜G%ô-ÈåË#]Ñ’§È6±øh؜Ӻ3Ùiz›(Öœ‡VÇ7F0:¯“§—¢f{¡áZL^£:—+ûß >e: «*ú*¨\oæùMâ¸kâ¯ðë·5¾MŠ|ýË©Z¬¦›–܃•eZøWD ÊÃç9Méh,†ã)Ù1ÀÀ1å`¦<¼ábiNbLaMæÓ ¿ˆà!á,#XfÖ˜^÷glŠs#gŠÓç —Lo˜Ù_ ý¬7¢è$ìÍŽ2 m¾=ÉàºÜwòóýÒ—ÁɆةwƒ¬®€£éàî~ÈÐ3X@2Íjf “–¥¢hËÜÀØy¸»Ó:Ðq!—©WÕ/®š’V,Û¿(Ú†mc¡¢|ï¸ð—÷©Ó »)R›$Tâ)ìk禯2•ƒS-²¡.è=¹ ¡obïáqf»Ž~OaÄ×àÉ‘#ñXѲ¥y ŠÞîxmeÚÌ¥DÛ²*†½»Ë~ï›:ä³ø ŠÄx±K€Äó“Y´D† ’/¡)­¢~aÁ¹&ùª–6ØÂƒcKxÝb)8ºòòe¨-ëMl-I‹FìL3éS6‰:¹×ϱHÉñ—|†¨xÎ::¼žìl@Ë”Dx“™_’+DWЍöÒQ£ÊDë}Dè¬-ç—FZ­ÝIU‹Ñlå(Τ.u|3¸"äd@êíwµnúMû­Ú›Uÿÿ5ØVÐ=h>˜ÞJIRV;âi1¦ßë ‡‹¤´¢d÷4Ó›xÃ'Û²Í7bæ²²$ Wye¯{Ã)¶Ê®'v0®ÎY·ñ~K”¦Ÿ³«Û* ¤ºU%³Žl4Ö²G@ûg6ßAu:¢›¤¶Ý÷íÝ]¶æùdK‡µófWÅÙºëÁ90¿³L0=i׉2y‰DŒæBÕƒ…óT:Üv6ª6àƒ§Õá~7El„ç#dË×ñ8’4oP W`j퇧¤i­ˆ·NÚ2t$<ÓwÑhCù*@”ñ[(QZJÐS®„mcȇHøÊ" »DÌWV3|x×l¸háUá"måÏ©¤›‡÷©I9Oé ‰•ÔøW>þá"R§ ptàu¤{P§_'øëè=^ZŽ:ø³(+E¶ÜmÃÝXü]¼Ü6wŽ`æÀQ{÷ v6 ÀaÒlªÀ˜»¨Yß(_ÍE¥04¶º.¤p)ñõû{%ÈÑ»¿…;õRÅþò TêO“Ã’HÝœP#””MÃЈî¡¸BŒï+H²ûÑP[Úh]Zv…DÜv´ÎH[oØAÁÊ©öò«Š ©ÃZÚÇØZUß¡-;l€5¿Ë¶®†¸ rÄdY%†(º /ò—U”¯š¬AúbÞÄ´é^C=ÑX½(åK–UÚ+®Ô"ŠŒcñYÖ‚P}¼ó„Š$ItK}}g‡÷rUM¬*À¾¥H™Žá.‡ÁÆ®ôÙ?µg€dÛ-WBÔŠüÑípL:¾á€¡‹¸r8°ˆÞ@=dJŸ#Ù÷T{ÿþ÷Å¿ÿý¿).YÔÍŽñâK\7 ç§·äþd´kªò½UÖþS Û¬ R‚FƒöÉeÃú’T=VwŒÖ“:U¼ÌŽx šÂvähBnü®‚?×Q0²Ç š•:¦KX%Ím¶Á¨Ä…±Ž ÌÌÕÛ`Ȩq(_h̓„MßÖ]J¸lË.Ú²Äþr]ax¡hˆV¡)¦*÷)ýÁÚ*‚‡è¥gëª4È—í®yû=…’¢0VØ`6ïžôGN¯3—áÓäçLlQNÍ«7㞦Mx†+ž2ÂÝ–OŠõàvñFŠgRt•r¤ŸMŸØÙs§3±##öŒùõØéb¢º4›Îh Ž'^kÎ ¤ÔÒ~7w¸¾ËèÊ?ôQ”gð +Pw;ü.2<36 ’\U(ZElà>—o«{]őÌ#/ÂjGû Äæ:µé¬gÎiNyÑh´Í,òÞʈÝ-¬gßc:+ô†„İÖ<?Š£ÌËý" Mº 7  2ÔÊ‹+!¢ˆë-Ý*©[®_' @nxmŒ ;e÷v_×Ê¿h5ÈI!½— ‡(:­úªµ˜Ê´î̤2±°ª¬›²PºKÁ…nÀºKBÃGäU9s§ aN §É†Úeçp5°'Í¢Ó»]ZýyÍ!Þü¶j°VøÏ›÷V[V×6Þå/`DØi8ŽªÎq”s  ˆ¡™²V-„Z´¬0óaEd³žuýà@@‡PèI—•솩éL]·–*$Æ(®D´ ñ~ü9ƒlyHÜát+Ãàü”lW¦8Ã+ý¨?¾¾¦•?£ÄÛªú9cµØW²8E-`+û<¸àR¿zý V9~îYÚòABsÖÞh–eö_ÙåÚY4geÀ,*W"Kq^=c6?¶ž%•ƼŽÅ]ØøAó"¢äôè€ ‰¬I} ™%µ²n•Ȉ¼:¥"Ü‘Uó  ¦ÇüúßÙ¼o1Ûa}©*ì¼È½úIP£ò÷eE^þÑY‘—?XõyVäQ†èùºÙ%Ù^B.t‡˜ø'±Ë§ÿ¼©k–³ýn,â†Äª ‘X̉([$bœ‘X‚9KñG"Gb±˜K±M,Ã+‰òDâl‘X™3K3GB,æ=Ä#Ùœùy0’7kaEÄøñ(†D<‚'K²%b1g"–aND"΢ˆå¸±,£"r%x˱+¢H\g?ÊËè!ß.b]^aêÝI+``Äê<ŒÈacDœ“¹ÌŒP®q~F,Í҈帱c# x›Ÿ ,æpÄêLŽXŽÏ…¬Ž(âvÄÓ1ˊБf“M*IüÐlÆÒQãʧCƒ0kÍ™”¿\XÞË3®‹RìÈn]%±Î»Ñ‘%8gª”¶_ëöoçìÛ)Í‹ŒX,AŽKru£$^+<›ÿ›Ôó8ŒÖ‡î†\Ù™Oœ-7|R’³eòåȪ%»­ù™c3ì7î6mj®¦ éÈý*Ò|¸T‰|ÓÈㄉ|ÓHÖÆ~8¯h(†Œ<41ß\\F,1×fØþ=΋ý%†v…ü<‰±Äx\kõÀ½!¯Ç0ö¸„sžÿ”;`Õ‚e«..ËéJz­\FW²ÊÕ×WÀ‡wΦñ¦ÅèžÆîD"lÌç02êtŒ·*›ˆ%–$ùɨÃòÐÝÈô=¯ý¦³5ÈŽÚ¯-ÂÂKÍY/‘Í-„¤<Ô2‘E ¢ ]\(¿ ÝýòE^Ç¥7EÜݶx»q÷«ŒµØ²^€m {¤2¼È?Ç«aXwžõ…vÛq¿-¤%âֿпFc©|ÅO„x`åÔT6nN)ã7ó²ÄgyE»Ê5*îð*“bs¡7Zþàü蘢8†›(fŽ4aøaÚe!S*Pw˜vÙÇÿ•=—-¿oïÒåÆw0úéf^ÉO$³rÌ£÷G—ÒaÓü ¿‹”&ÝüSHiÒ|Øw„â ï/-XGš %º]2&-ª’”‡ •àX¾|ÆnciÑÑc€$¬ÀúâÛZö¥Û¿—iß2—Æ%Ìÿr.{‹E8"ïBö_cP¸„'(õh!@®Ø§—äAKÊ~ò‘ïͪr ÕÁ¥¥A²CqI@Ž'èR‡€þ,9KZ9åwK,wê XÄ'À1i• Ä¿ßçÂ|ˆlM,-^«HØÄrB6±´œM,¿Mé%Ö‚Á\¡x.ðÇ)¼HDÆŸüµåöÉØ-ÛWž·d—ò–ê¢îÖâ C­èâNçËAcKAOó_äÈÅ âF!-q lf&wŒ<"}@Šee‚7à‚š+Òòè`ájXN\µãĤp*/FIp|—$;+‹`ÝjbÂ|Ì.+ŽåÏJBYƒÌ¥E³¦Êc´ª¯‹Å´üɧb+‹lÝjš‘eÅ·j”+qùóXQ®nx®ir9±.VÑ}y®ˆŠtÅB©®XxY²Éîw™…î2Qi¯ÈøŠ>2þEy‘¥ÄbÑoš¬è&c¿³äÐö:ø}gÒ4_~,þxî3iú»¸ÏDåÊ".Z–xÝ*–.¯†Û%dÌbé w®¤9´ËÍs"Z jXNä@ ß/)xvõÙ³XÆXÍ.ÍÄw¶6ܨµv6Œ¬sEQ°¾»êÓíïéÈ´Àö»HØ1:+°zÄÙú ¼B¸ü ò‹lÛ@–_äÇçý‰åyñ]ó¿l¾J6“0ÿKò#ÿË÷øHéåYæõÏ›öEÓ¼o™í%µ²½¤2ÛKú„Ù^r³¼èœ'ÇÉòBåÒêå×jê'{ $t¹yPt”ÒÅš°Òšh€:aŒ“#f‡Báë4c1…>M¯¿ ç$ŒQMaÞéXå\‘‰cL&™x–™Î5ñ ´D.”§ÍeB¹òù¿á8ÑåeÓ™¤K¦39Óéhv0)"2U ê—ËN´ôÄÙIøß( ÈŸ-ßÇ´ Eñ½| ¨†¥¿Mr;›Â*y"}·Xyb #õÈø\YG"H…ŒC`d£:Vz\TðˆøÔW=6HY ¿ªN8zu‹u/A×»ƒ/ ÉàöÝÀ[wÚòMmù2ëÄ'gd÷”©Ã™Á+ª7üÜûX¸kOä)Á궬^®³,¦ó£óû6/;vH~‰(¼±Æ‹iÛâTêòàyu‘3¹'?}¦LÔ—»¾”ç~5D!`oÝ`Ï•/xì׫±êK«:s’®2'„íõÐÜÇ™›ªžœØåÛ C¦Ò¥1˜öÊæÏu¶lµ—ÍÁúòÜ“Ô8ý³¾8å¥lküY4ß8ñ¥ºˆ–XA —žóè’ñçì•ël¦º[R™ ï„I©–íbvF\ú”¢¨Gg|¹Íϱ?/_‹C•uþz2¾ƒž #ê ÎAÉ|ª–ë»Iïæ¦Ú½…aÏÆ£êYo‚ *¯æ—ƒ+ãGÅÕ-Œˆ ‘ ƒ¼ sßQZû˜$»ÛL²ûMEÀËç×ý]Sµ.Uv§í®b+Í—å…ÛÖ™ÀpÎ*¥ïRù|ëµÎ. ËwÞÂø¦è}[$´‡ªÆÁÛÿ¦Ô¼ÃÚÁA"§ø'@¨@ê¥óÅ_òÙÿÚ®ˆ|u¸$ÔwžJÆÏ+ˆýÇeÄUmȤ´vbÔ«$‰ÂRKÜt"Ÿm©g®NUI"U4˜ ç,óhïÊûv-ÖË ÐmóD¿njˆ~gZð°Ì÷Æ“ß[nI)^I^ÚªRvPK )›*áaIj tÅ*[Æ959FkI &×¹)!cñ¦ê­H|ÖFyGÊ¹Žªá|ßâïi¡rÁh²Â@·ìn-?Єšš&VÿãMô@t ç»xR$–ã$—av}BšÉúý—'GÆnסk]ú{¹O9àéBgE^¶žûØrŽcŠ}\ d_ÑM,ÀÑÎÇ]Îòøä<Áíšrªq@ÙuzûÜYxib‘  82pl鹸òâƒäl&\¤%(_@ÃϹ}½|¥MýŸI®rítMïòUjoqí-Y{ËÔvú­|®–(±å“Üe¢5žÄK†š8¢€‘Fa l;àÀh7:6\ÏÏå&›‰ÛŽ2ÜA§<ÑÚ:àÆÓû4üôõpüYC¹SL; p>e£×6,ÃN¡Ø YUñ˜½/ (˜éÔNwû¢7úJ×T%zÀ+&ʉ¤@Ö'AÜ™æè©opå¡›–7j— Ò‘—² àõ̼åa 1bå2zÁö£djtzׇ„HdÞPøL±ÊkxÄŽPÙÙ¹5»é»FOËÞKD ½Deþ¥§f'á§oêr&á"EB„©±Åf—$Ž‹U“çd5_ÞZ†R‡Fƒ ekïÑŠ~nßò3Š0w®æ7õߡۀ\Ö;ß…xµ^$‹z‘ô" 0îõWôE°·É³M*Hpòp‰¢­×pšÁÊ›(“À¥Äé%ö`ëÀŠØrº£.mMÖÚ²?;÷ß)wá”»ðË%9¢´;U“é?ü Þ0½?ñßø³Ôß“Ùç¨/.pÜ<þηF/Î X8t,Múá] Þ6Üfç­÷=x@I³ÃŽÊ]Íô®dwÚ·ØÑ>¾¦H$RÒ@ãÎë¾Û’ïRï æmC:ï$hxeÚ°pC‚\ÌÚg<ØýІ·µé£ð­Çö¼m8Ô“Ox>Ý}oJöV}¹i›Ïˆø,HìÒg½ ög «^f7hSZ­ŠØŸËÉ×¢ 0ýaá›nÑxÜßö&lßœe^ >ÉšéÖTº¨bX)à: öx4ÀCþ«ß6œvŒñ¿ŠÍ_<ˆibüy´$Ì¿Ù.±¹áª8mk᪸¼N%Ý¡UŒ2_¹F™Žàôët–ݱ{®r£ÅŠìš+z×hÛáxò^ Ó~¾–Ë"×àxHA-k¸›ÎÙ:gøU'Æ¥¶ï'ãË!4þùvpu+&Ù?çƒ ô‘$ÍÂö-¥%=¾Çæñ6é¸ZÊ®ÃHÂΰucoF¶8—(úždýù;Cí7Œ^–[ ”õ)ôŸ0I|#ÙM”›û] û£{B@¬–^'”f ãío¨íˆ&Ç¥ÁhT•ø{]:?_”/P~üŒžb©1Úc•¡˜ü^á_zg³ÄïË>›WÄœ,V•·+ôp˜nf·¢Å!F`"•Ë´¬Ï;›'ÿ„û¸0©ÝxÜÿÊ&ã©‘0ê‘™”™í8l¡a È&ȸ Ø#Á8xžÐ$ìl0ôÞð€ÍnïÈ w0U“ !ön²ék[VU®“éŒ_:•úÙõmÉìuð/ðN.P†Dø3Â-öçn>œ ÓQ4B½–…ëˆ%躂 /”ÿ2pãPƒt,Ó9Z3¢-!™¥Qà"mþÈ]2@T2>m¾§vÚÊU[]Í•K?œ7'î³ ®|.ÉfÀ¼gi#ü´ácÚÃ…(¼’!§%‰1µGqê üßG-_F}U-õr‘c´À¨Á~‚/èð¶(Á>÷, ^Û°aY\’/¿ê¹¤±E ó1qdrÓz®iiG°£u>ù•M8} W3Š9¯ œíƒ-v=ž¸KLö[/ kÅ¢†‘v~0f4tÁ  ‰ž;êÂÀÄÚo“ɨ²Ät·nÑ$(j&HS”üÀýà¬ú>ŒØxNa×ï<™ÝŽZ§WNÞfQÂ;_9-®^ÕÁßöÖ¸ÂÃdþí KRËÌ^­ÞB|Üf˜V},~=VvºÕ"«_^h)—‘û[ÔÉÙxðFsâ\¡ŸwÙäwÅ0û‡ŽŠš hð ­ª]S|˜ÛÎÑÚÙ4s± šV›‡šò[Â~hÚcÜÄ Ú>üEƒ4­ϼd«š–œëŒÁé–(]ç#Ž!Àó{ öáš\n†¤ºœ ÇškîÏ|¾ F˶Å7{É B¢)(q‹I:0›O.aUÉ…ëÁø2˜åƒÈî{È-™ª´ÔWé3ßKuÜ¥ýë¹Cu=²uyгÅ4a˜õè” v.¹9Þ`8°ãîz_JI¥eŒù᪚ñ/šUlÆ}7Ÿñ‘Ëì/éx&Ù`4Ën&*ÇÄt~©Vìoó©­½šŽ‡Ÿð0î]}„u‹ª) 3x˜ô³IE 6² éUù:&¥¾-—(ʹ V~oz•1·@ –´2¿ô£iw5ÉÔHx¾í=e]}ôN&†8¶öy2›Hô½L¨¨Gîf9»6êæ—UMàï#šR¦/Ô>üÕÒ¯ˆËnÝr9]OlôvŸk:@í_á»Q“ —q>q{j¯"·B=ÂîM†¬ðÝ“ÅýxÀž-VmÒŽ¤1\Mª]5>¬ló‚u¼îú9FŒ-uú4ê…´ÃrZ·GÌ× ^PÏjAé²dnE§TFÜñ„ sD({¤ãÙ (1Ñ`9ÖutRU˜fKjm ŠMÅ%0<{Ç÷J @‚ eÆ$†7.)Ôk¶'†]„&4 ãOØÃ}ÂwK@ŠDDÏBçÓ³©C6 •ª¥,?QÕßÖ$s#Óð.fÁÄñ÷nŠð'1ª|½ƒ‰qXê|@sWÕׯ©(Ñ´É ¥ì(R¿‹¦‡­“Ã…áÌr»'Qàâ¥#ìØmt:9Bü\œÞù Œw…„¸´?'§@ˆ³|—ÊrkùôrKŠŽš\×®šýmSý‹<ùÆçy :½¿R ã"X0O5ÀÐe=yß·=4hÀd7p–«(fÌß<0 J•ì·?pç>m´½ìúZ´çè÷Ÿüà,5}ÔéÍqs³=àVqóŠi>t="­C»B^];‡;5–áóÏÿ:*’åÃnl¢?Óü»¨ˆ}ÒTàEŽ~ÕŠôS»ÒutDL«»1g¹w»‡‡)B“¿–¿kôû°ý®"ÎwÛõƒZ¤ÁU´”WV´ï¹þXRNK(Ú!¬SËÖ|Ë_çÑŽd“HäƒwÝHÔ6µ•=«6Õi1€¼ò©_^6B¡á87Ò.Òʲí9ÇdÔ¤®9uöë’Ý4W¡JFœ@c‘r Gä» Yy6¼º”ñƒ× šÅ“:çYETýœÒÀ¯fùx>€ëׄcŠ®µ?‚3¥-Ä«“çóM çx8¦è›F*ONÀãñÇYv¯îY%EyTñ+”pèê˜MrùŽ2±ïLú4’ T <Ê¡ Âù &ï<â½xómÄÖn4À Ô™À²²æ>xàYB¿°Üü˜H¡¹â…X×5šÂP¾²žTxg=B |ÊØ¬µ!wÎívüaY|lê3Ñ”Ï6`¤“hxÇð…šá·±ñý¯ªÔñÔ¸y…Œ?ã÷ãÿM<¥ «YôëÔ`™Y B».ÒrÙVÿ:6èR|Vµƒ×sMüIuK,Y«J;«$°ÛÁ£BW`É›z£3èÀ~jåHsWë;\|Cת€Õµ°â ^õz½Å*ic€/Qׄò¥`õ‚¼ÅT0=Íy#ÜL›„oC¬Më÷f=%˜„{Òg e†Ÿ'¹Ë°_4)KÇ#ä~’}ŒçSm½K»á£~ƒ¶£»±‡äÛFÂ]s±¦œ¦fM8¹ ”B=öNiíƒw‘ëÉ •¸Ã÷=G]¢ûi¦ÿ'ca²o™5I®ÑHÑ$õ¼Üßæû1á&n£Â™13ðb/à“õ$g=)‹‡¤â£-·<$ÄÊ+ã¦ñúVk‡sºÎñ½QšäÊÖ½.Z?üüT‡îJ ¡»4÷ W>#J¸ µvôÔup`ûrxÓ›ÃlÚÓ©Œ7Ž=äî{ØÅù¶ØrË3‡,:ÉôèΡLýàe¾Oÿ[¿Ü¥OÁh8^o"Sçc¢Ý%±IsÕÔ¡è|ÂÄŠ¥ØR˜bK]œ”Z-´øÝ·¾Óq ‡É~8ëÀ†—4ó¿C³_Mä¶ÏñŸ+ì½)æxy‰É• kSØ·…®B¡LÕè«?›ÕhÌþó§ïjÿ¹µùòÅËÐþóÕûÏïñáÅêÛ®t:ç_ú•âgÁû7ÞøùÞ¶{ÇŸÉcYƒ–?üÙ:GÊ´Õ5æÜ—è–¢’Vù¤§7çDì[ÆœG 9ŧ1æÌï°2Úäu·à,@†eÚ K®$ñÇ6œØÅʆœ?±ŠŸ¥Å³ÏèèÇ·2[a®Tn¬oí ´#@©{…J|+aHÂÙdq¬9É7çÁѬuµé¶Žáëa¤Ñz\õFlÆöZYÌAáñ„bå!߬Bš~t°‘¾j¥­‘ˆ›Ð:Re<+ƒ,Ó²%,è~Ø<Ñç¡6Oû\½@=ÐuÔBŽÚÎB”¶uæÔVº³«§ö‡í•m{õ -}ˆ(Yšq_çy5¾»„c±¿áÙÍÌ&½Å3(µªûk1“G H °5Í”AJF¦Ô¼XÖ#Ú7¡eÇÔ7YÙhÈAAÓBè&î$é{=Á ªHshl*è«m6ÎÛ~1£!l’±;›Ð؆!l²ÏÃ×–íF\£±G{=Š  @§Òô›H®ßší0;yC(œ?߯µp#ŠáK2F€¥”´ßÕRj±Â}±¡Ô¯®0$Âéd6µ·GUž46Nж]Ùž‰gÏfG?Á[d[`n{ÃkîÀµÃ €¸,›½í}Ê´…¿O”Æ%1ƒ‰ðC;LkY)­"ÝÆì®žçd¥r‰ÆøúºXbõ¦ÓñÕ€–Œ6KL±®æ3‰[uò na-Ï¢¤GºkP$¤Ï˜Ë QK!Ž˜Å–7Lo-”IJFY,ýUúFõ‹âÓ¶–µë~'±å²¯åú w«{ Øp3;*ÿ°b¯ è«E ´ÿ‡<Î{¤+Ÿƒ(€µèä‘É,tY¥»Pî6³Éø«qvP±@À¾Dó+ÛÚNmaR9m˜Eîþ«šK×¾sRZv”ÊÊ#²‚p­]+}L;sœò¬.>ÂÒâ3,]þëŒOž`K ð[×Èu O¥¯¢DòJ²•â3DF^·7p$Ñéå{,¤Px0œ‰¥0 ŒŸÂe’®%ó.ïKÕÞ +µÚÍ5aW˜¼*ÉDÈ!2Êíqæ½ËØ®)‹5{‡/²][–å,ÌxÍÆãl—ÅtÐö^²ÌŽ=»±Å¨H+¿ŸÍØ¢•±®}S{1Vñ,iôUÈú¨k Ϙ¾Â™å¿#­bál±—‘½7d‡JÉkà$µÅ0‡ºS .¸d¹îþzòºå׎])-ˆ'Enà$ò9<Ö å÷7§C@?,â ,âµIœ%~a`øC6’«F¬äÜ8ñù¢E;€ü¡à;;cG˜Næd{ð?¥£Þã¯G±¯,å’#R™å£¦!C§Ãÿ*IS÷ÃA¤kEQêc½ëÔ 7ùírðP²°;úU›Z…z §â—/èßÒ¦G¿À†üM¦~ö@DcÂ<¡ÝgLHv.ó‡6ÜòËoÀW~]¾[Quc ȯÞõ%ÙŒt&]¶7‰Ê£ úÞ„\ˆtóŒ$õDiç[‰.C1»Z‰ÿÁÃÑŽÆ}Ü_%RæKâ\bpk+àº7²æø¢¶ã_‚üIz3JÜ^ú›©tuØ1ñ†DXdëµ½@ÛÏ ª=Òôïá㈚Ýq"—vgQ ñFÆÒâ„ÇŽÝËÄN<®Ä5¹§GQÚ%˜ A—u‚ù²nÍ[ŒÂ‰KjASª3=Õ@´VÞ™>Õ+Ú>4-°=g$N}ó©ýMè6X2½ßŽö^w\ ƒæÓëü…*uØŽ k¨pÌï¢5-Ñfs횇|7«HN[´NœE²¼Þqü‚XÝp4ë`oŽMÅ€&°kÖzkÚ±J&6!ÿ®; Š2ÂÄpèsÅI±Ð$Q*(Òƒ“}¹Êîg¬ÛOnz#Ü|Çzó (Iß±ÌÝEKK º³áÓ ÎŒFÃqútcŸN5³ú&$¥BE" ÷:X­¼çìMá/6eÑ0(_«nà=¢-ûÛÙ“’4¥8¦ÓÆ@Y£ªjøµgÍ—ù]f·5ò³š60kiX‰¶+“mæY/ògýXÑ1ÕTZãÜØ,3¿E«zå•j¼Ï´‰ºë¤†R·a ´¾ÏG(%«M¥K©åiIo§\’xÙbø 4ÌžÁÔäõÂ]ws»#î ž3óKº¤ê]”“õ0l=G*ÃѰ†“‚]ÂQaq{ö¦Ró`ŸOlCma‘¾Š~ÞVÜ‹ìC7–°²Ûí³Dƒ‰Ê¿Ì;?ÕøáŠ %<À7úàuzµ‡›»&|`Ë$Ù,Ø’{œŸÛÊÚŒ-ÚWîùõSpœ!æö,|r™‡4=”}Û´ƒW¯€Ý•PÅk©AØõÛ ýü¯s,<ø„ üxð™CÏi¿Ãœ¡ÚKïÎ#µ[|;@)å?'³RÝÚ/áǘ^Oå_vdR̯(-ìK.át€Cuò­°„·ÙŽBY™=Šß¼ïgÃOµŽcªvü§:j·Ü(w–ÚÒ£Z1àþž¸P'‚~Z#T…Ûu·3 ¬ŠéÝm¼Ÿ 2Îziâ ÿX÷6b`9«¸OkÑziA½X%×”*5¢e\À§ÌvÕBzp­wOÓèØødÍ?ð¢uMÅ`Šh~µ,©QXNèòÃË´Ü)»CÜQ‹Ä”‡"¦èÁ-ä9j†W1”¹¤9—£½#³Ñ÷r–¤!€~Àü{•J–Ä=6œ-ƒýÛúúg>¿õaç#ctï[Ýš2ëL¼U¬ ¬Œ%Áä.©0ĵæ.mÏ·+.ý]|™·ÑÓªî[ïýõDbfÇ|)LñpP¢à€äÜȪÅþYrzMÙÜ›´ç¹\àPôÓ7v(Šùÿüü]ý’í-x÷#þûïóáµåûÿ°?æ~§[kwé÷‡#嘩€È#SÉuÏŠ’*c…ΟßQG;äxh‘þ9sÎ<ÞÿfY‡ÇÏ¥Sân»Æœ­ìöò3Ef›—X|`mW½)žHhÖ)­üˆ1eåìx8E´zTBLF(='œnPR­»ÞG" ûZŒ†§Úk[w#v¾Ÿ*“5eÜÆ&‘~¬^4Á.ù¡“GÙè“Dv®¡[‘ Šô²(rAqm®0Ÿ¥¶$æ$^èB µÏRt¯"8:9¼xàئåü Ñë¡uqß"vÿâ wwÙkjá£akPDOg9TUèb"‹ÊšÜüÃu Ym“ñgÅ¢³žBbð8”½CöE©ŸIéÍ]…¿Óù\™àµØ÷"°®ffû²¹±ÐÍõž Åäë±Lø0å!M0—Aãj¶ù*ØŽcmžæ“à³ÔÝ8Q°1ƒY䣔þV—Zµ 6ƒ«Z[x»æÀ‹¬¨÷×ü>i+Y¥µRöùµÇ(}üäq°ä¡cÈíïZÑÚ=* Õ+I7]`m(ÊW†YÁ­„Ê@(Ó)jmˆ:ÛÑÚ¬ìÒÝòÜA÷Š»ù°ÈwÆ3fmÝyðìlp}kçí ãóöƒƒ÷þþ$æŒË‡ÙkV´œ-ÂýQî»,2áË3ÑÛN±Õ>,°Ðs‹´ººa°-O{¯Ó|÷;Øßí[Ζv|âc¥„ÍÕäƒwÆôl¿Àô,Ƨ+?E¢yÉT(èÀQøÀƒ[Á’fd&¸ÿ` ¿¢~@—­ûDý~þ&öxû‹ú¢ ÏWu;’׺ùzàÕHù„L”Ì«ªüë·5ôñ—`,n›Ítn7·ì‰:Vö¼ú*J—pN“MÅçZõª]¸TV˜ž6Î nùê–v·ÒéöÄͳ÷7ƒ™ÉªÓë÷ŸÃA<ƒ–f¢Ô@îãüc†â_¿ê¿¨‘¢¤Fø-µÚ¶c^ûÄ  ƒF 0Ùp^§eýµªÿ²Dß蜈G¾ò¦L³%á p»süî»±—9˜ ;6; ÔÎÉ/ÌUé ©ÅsÈÊjìD±‚.î­‰¹Ê¶³rÅQ` ¯²áPªv EN˜n +Ýå`„v*ÎxØ/õ†Øa²P¨ÒkØóþ8c¯²«ÛÞè&³FÖ£:ÔÌmö¥×Ï®wÚx§G>)j½‚ML‡]G¨ã†¦~³Sµx½×݃бí% dé¬Na4Šhop­î(­ô9GìÈ8†Ú:#ߌġO+!PêÞ9²2¯®:# Ýh€3D–SŸÝ þÅkóî~0Ìd¦à¼áÅÈvc¤•‚+ØœNxÅ\ûL>tKöÓŠS„ Ìw„ãj´tkR3ãÈ©< ÈG1Iùöl1ža“*‚%|%þâEGÚ ‘ì™P@\Ø5rv}á°bУ¬Å·9CÉ]KRÒ䦑‘j*«NTü;验é¾y.”åì^ì|:%Ä Ïαú mÅÔêyÉ~aˆà,QAF”ÐàÌ–ÈJ}šœ„¼:Û*t4ÀÈhÄy†«{Ú¬4×ò€°ôv=ap¶î«"ØÞRân/048³­oÅZ¹„xjÒòá Ñf¹VmÕšc¢Œ-/›Ê4ËŸšG¶ú2hõṲú§ØšÑM#ÓY’ÆèUù”E°MÂ+7õSÌ9'ª níéîXù^yFZ;d&Ÿ­ŸsVºÁB J?Ä¢?çL†LúMw^B‰ªéÖfNó«y{²dJo¬ç6žø¤- íÞ ´f?ÿÙÂðýnŸ˜þ¯÷}õ/·7ƒüϨü¡ÿû¹?=ýßÓgæO¢YEg¾€ÿ‘üùUƒ>†XU¨0¸ŠâoÕ<Ê&-rþ¬š/9’'Ù ˜''me-bÍÍ‚ldµŽ‰Š4EáTzÓYvo¹Ô3–á"BÏÕ‘I%eྦྷpøk,4Õ yff$L^>“æ·Xöœ‡ª? ñ¯üžšVÿØyÿ›’x FW°T ÓÊÉ‹ûcUû‘ÌëG2¯ÿÖd^N´ÂÂ¤Ž¹«zúÏ9N±Y’Rx¤’ŽWü¨™:à•B©^B¼Á£XuÕ_;Wã I²È…–BãÇ Ð!X|I>¶V5ÿr=gŸhÙ»XR[1h&gÙœf;–‰©f1ÑÑV©ænQL5*]¼—1ùãdûïÕó.¶†Ö¼¯¼¥p3²`4T›«Ð·^¤šG&w«wšI…~¥VŠ·}Œj²× ~}D¯ ntƒŸI¤3Ö¿Û=ËüKJíwu ËÃÈÚôWå´\–-™:‹¿‘{X5Ú%ëì#õ¥LÅ,P‘Õë÷™8¡PõCŒ¬j6l²‰’T›±·- ppGLšáéV˜E‘PÈÎÌ‘òvc_ç7QÉKÉRuSÓX1Da–’:P(Ï‹ ‡•iû,dÆ¥S•ttÚqL&ÍÌ‹ýŠIÝÔ:ëô¸JÎ\"B/0-áN•ûàˆÄýR¯𦽠ÈÁº<,¾ZWE[M#*‡ƒñø&z2‡m~L%;¼ýMIðõUÙA37¬W„¾«Àöõo‘d{­Bˆªúrªå«Nãä¹fÎmþÂÏP§²Óaä¬Ç2Ôål=½Ýö)ŠŽóDoA äH®ô wVÕËåVIý*iPeÝÑ”ÐI)'µÊ­ZŠÕNƒºûBM’Ѳէ&ò›œ+ÌW¨î,ê„ujÝrGõYRì=TKj¶Wx³@Di íÈC"G7¸™=®œ'é2ƒÆ­ëzáÝJ©Ué1ÎÓ¯EiT½›’ï Ð'¿M™|KÏ~,iÞº\`±žW6º²Ë&©?ëVÃ0‘fñ½Ý°§êµŒUÄ㺼NÇö™.ý$‡³xøùl HY‚wD‹§:¥ÅÃêp­ûG·`^’zЦ‰N¡ÈúGÛ}V±o(‰Œõy¤À˽šÈjr)ºÄ×0µ~C÷RÏGß>Éi%V]°ôM;šêm¡x‚xç’^ÒÕð’ê_!^${Qˆ™´ân°?G²vÒj 4=[/ÂÄY“•H}8i–ÔÔÙ`ä¶ÖR9JT†Te>U2)¬dƒ±Ð{Öþ¥ K£lCõ Ÿœ6m0v/u;yÓÚ£)fNšÈUÒ¿_8¹f2ý¦°Àäv^´™«ûÓœjD‰FcÀÓ¹à¨OÝ)]‘¬ZLû¨Ä$ZåÐÀ6 Óãe1›×·%™²ÔÄæÒd¤b‘;þÂnˆWéDMÚ‚¦‚Å07@3çýŒ–™o‰CíIeÎ4P°ƒÒ‘”¾T¾®Ñní}ÌF•‹ø÷—Ãíçß_ÿíÌ )H eÏ¡ÜìuY|©Èu+²@ÝÚï% õ †„Y1×U&Ld–ëê 2Bvg|ªZ“ÑU¥P¥ÚÏ8IiŒ4e˜šT9Ùd6Ÿ\:+‡£¥yOÇÊ)}^bÍŠú•×#•}— ”[Šë³éíx¨(5s‚n@Çdõá?ØÅÜ-€ysCÊå{„ÿ‚ÛmD²™ì˜ …?ŒAdiü…up±[”dã Ðç 4»­î{¥ÈX Ñ_w”øøjËï$¾ ¹û­~ã=4ÖpÚj}hSR’n»ÖRÁGsòÍ ¤ÅÐp½hî’ö¿Û)ôD¯Õ;õ&ÔÄß{{˜þÁïwíg]´zþ€Vá­ö!l‰‚›C{·7¥ºè» Ì,!mÁOm¼D’o÷)C+ /u#€’çÐsèþ¯EO”è¦ÖÁ[G(^èL¯ÓÝÄjôuik‰ƒÚNó”w󪍾 %L~›‡ZK(ÐÚ‚+ñB¡Cm›²môÐ'4»Ÿõ(…8²×”•OðnHržp)¡Ÿ’%¬nYÂgÙê¹Ñžsù’W+jäÐëœv34eºVfê®GðCÖ¡ø{QUÜV¹)J*·‚â¦óK?ÕêÔ²Ë&’8ã©ÆÑB¥YÝšã Äéx†®{uË#ë½í–ä(kêä©+È¿«(ˆùþ™@§w¬1–Z¥ír–g¨äÆ£ñ¸;ÙÌ»¬úÁ¸óÒ¢ðeìʇ3o£^üñ­cû@†3û~\Ô"cƉ®Å¢³xJ¦ä¬AX±´8OmúÊBš|â“Û{8–²(ŽNÐ÷™^6@e÷ ™¬šù (p-êÉáwäŽ8Ì)¡¡*Ž(2O/Í< {Þ”‹t=Ñ>¸öGrçEÝähüÝ z¶Û4$Ê!›t1›HyZLùuÞùƒ _L[Ï¡H!SàM¼«²÷T,ëÈ"åôÀ¬Kø1keÝ?Þ£çeéh™SKÕQ¥¶7"Ñèá"º-ä …>íª?0XŽ£”4` c†fÄ—¶ƒZ¹}½Ï9aæF—ÍiôMë¢i­ìI~zJò±8WD]¥*$\dùèºä#àLø+ EŒ 7TÅÔy<ÆJ'å/ðzŠüYùßBUŒ·ê ÐɳH=_îˆ(I˜òy2 Bö]>ù‹SÅZ›YI<;AUÅ3y-¯ÀØÆ£9ðÏ*úÂÞBe*éåò/¼È:Ê3ëUñÞî­Oƒ¿_ŸyHêªûÔt~}=@wŠ™¸Ægv«._(EÂŒF³±x•Íecq©PÉw»|í*Sss>¥›^·c”Yaßñ(ß…|)9 åàæDF¥~_%Õ#y!!6ze.noñÄ)Ð"-¼A¸Q,DÎÂò­*,^iÅæ~¯ZÜþ_8þ…ˆ›®½í †sŽ´KÚRGŒ!mµÜ͵Sáu8ø&'gô¢-dú“ï0XÞE†wÒªp¶æ× RYê§¿&+]·M3“Í®“oxyT›N&Ä îû‘}FÚ»˜+~Ÿt¯“E÷Q’Ø-qoårÍ¸ÕØâöéÃ@£d0¥Aå·5ôz“2|~b<…«’„£ï7àókþôÕÉÌ—·|õ¬,Âí| £î‰³Ô¶ƒ¥®ìWÅj–áZ‹J_’*ºÑf°ŒÄÒ7qþmïßíe.àçMëþõ˜‹º ÃxZxDûRWÄ'¸Î·‹ò=êìºæ ÷Tç¡jsE^¾ gU¾XŽçWãJU}K¸c·a}§aä×K½zúû:b.¬÷ {Ù[ÀrÍ¿ŽÈ}à‰?óPºHž!–\†ÂÚÝ9 â7!ww‰Å&Èšþsá6,çoªÕõx1Ü=/—Ù=…Ò•¶¹‰ˆAz¬wek9/·¡ªÜŒ»©ì{Yòrõ½]¯UY¬®÷¦iDÚ%Už¯¯C5<'Ot“?lÎ'#ÜI&¿Ú¬¨9Vyê‹ÐëוÛ]g·zõQÕF­µ³AÏדU…Xá[f¹Xh¢…»öš©xãgXÜoaÓ£$`WãÑo7¥ºkã±46F!†ác~2J¨Ë¡êï9§ÆO‹y™4yœ€õÔ.¯³'ãªmÍÙ­høÞÞÓÉ ¹™by âft‡*7´ar3?'éâ"nFx߉“ùyê͘”£ÊcIà½3tëûz+³çÖ²ä€OÆÆˆSåÚ_’Y$PK.äè›V/¿VS+7‡)-ý8ÉC÷æ ºÝ6à ûÃHÆh¥®*ï)7@¹$á|9Q¦F/hT²<r«·l¤¢½„ˆl¬©ÖÐX‘%2qX' Þ—-Ô$èYú;¢[Ð*ú‡=lù¢Ê/àÌ8P±iá„ÞR¹Ø‚¿­{Pþ%â{ÔäŠ( ÕPJ*€ëÆ€C”“ªóÎ;^ÖÅÀRLE G5àüåôJu—ºmÚ`òšo,Ó|j7_0šáÅ[÷¡-±5¸tUpñõ©ÆÚÉé­†E ©X­qöS³Èc+|Å çr«rÖñ~=q <õ|x?ñŒ¬²îz_1NÃ`¤ h²0ü>ƘN1Å«HÔJrЗA {0ǵr£Z/סä°ÐïûIv5`'}™çj6$â ½nÉÄÙ¡ç³É|tEy?z“Áì(&1χ}솔`gzÈúŽT¯¦Àð½i6µf—>Nz7>I”;; C®ã6x­J/Ê>qÝ£™„Uõ‚ô Ÿ4(<—úÒmor7ÄtBŒmç»ß›õðí&â ]=³¾ k«»õ¿Æõ99äg÷r¸¿—ƒú‚(ón$ù\(ݳEPà5ÞÃA±. CÞÁÁ¨”Epì`ùŒßy×Bêð®•æw§lD­qØ¢Ÿçø³?vÞ"gÿºc&ÖÎap¨ `àööAžÛ n¯ôq.wan¤¼Ö0Ȳ|°ó–Tõƒ?Á{!ü¥¦±‹þÒu”6«buUª[×¥´7Vµ&ôwÃ]˜1¦±¾óT/\ù–,ÞŠ+AÐ}w hºâ!x]fWsØAëØiT4ãxËåÔ±j×Ð  Õ]`ÕÖ!0ûÂß] ç}`;)’l­þª½Ù´/ü.lܤkyÃíbÿ¢Š~$£ohO•±\ Z×tÜ l eu탊ú•Ñr£s XÁÉ Î"+rMw,n²ÖÿjÈ¿:òÍê³ôu£ìËL ñ‚§ŽŠjÅÍpøÿ„Ûp1’’‰­‡ç4´µ2-…*<­ëGu?ï–ÃÏz?ÿ¹èÉ_’Œ†é­K1 R^ëÕà¹F¡³vó –tð²V7îå/½*ºa¿­ ¯IÛèÏ%&ªJ5V%žÆ£Fu˜šu\j×èäЙîÞj±ÞèXí2XfˆF£[n8ë¹+ xÝ2^gc£`R[dÞà |19·ïÊe…â¨ÂPŸuuºßm•Ñ)%Ò¼*VS6ZC2K‡D“á‰:åãÎT ЬfcMä OÓ?©`1"ÿûrõ]åéöËW›aüßò¿ïò‘‹Þ•ÿ7Jâ¬Öês[4€êªÜñ±‡zü—JÔ|žö?'¸/¡#ÿžÀ1}3„"ÂWK¡)‡¯©÷¸Ä@)&o·ÄÀéËCÂïž7Äôs.Ö½þo=ÌÒbôá2R7á‹y7MéžLÜJ‚·ÞTZ‹÷F2ìê?ç½é  דÞèfŽÈ”ÁW»¨gïÕáàn0Dñ%x›Mz£é5ª¬¬\‹]¥I˜ÛùeãÑokX¸Â±•Ó ÷Uö´PÈÌ>AiC ¶¼QþÂyB£/ sÀÄ8Æ8SŒYÆ $»ÄëjÌZAŒïIú‰I#nFKˆ!i‰‰eÃü"Cx7ö$ëã"Té˜åtçEî)¨T!¬ÇüínxIP‹"ÈârÏ‹";Ó€sWbE/&„»®âQPufHàœ 4Ruç-Ps¸ëàê13o)Œ9|¼"sˆ¡iÙ ¦riñ¸­«ÖP~¨Øqní¦]‰×"/aSÎãe–Þlº]@˜€ØäÞÊ‘QÈ-Ù‰½d©õ?õ³/n¢Ð s(Ó. ³jk-ÚÙZ>$AlëfEj9]²LÒ'A§é† ‹ZÆn}@‚ÒÅ1F…uˆ”µ;Lz6‹k ”h7ØýôÁº¿˜ ³Vˆ=8ïQÖg ý<&;žùÌGìB¡–éï%âÕ1He‘Uƒ ~õ*.øÝm)0Æx#Âììà†:/‚eÖ6•Ciò#%·ÍtxÔ½-ø·MIMáj–;TÖî°}ÉîQGÇXQI:È 'ÀÏÁ–(’ânAkÝÚ ýHègªB›vß·w;˜?-ÇÏšE`ÎÚX¤ UϱK¹˜ >²xyì”ýÛÈ1ž”ÄýNÔ)ÿ‘ß•s¬^É™¢Øª±Ø©µÃÆ{ŠVÚz§l<ª©]® Ýâ¤6(­,@‹ÏÄÛcâæ Þ”ð>¶çX•á†_!aHÕÝ”?&Í[„£æXáø]êã.tÊbÖRIwÒYAÓU" Hhˆš ë¤ÓNý6ìðÒ~ •½­ƒ]wZt?(Õa«º— K“êÍ»4u+æ ô-oåwZ¡yÁ×Ð%¶)…˜üšÊ¯jCñÚÙ²ÖΖ»v¶Ÿríl¹k'¶/Ú/2 þ2˜±šŠÛ€ê8â>÷¦ò0g‹AùŸtx‡88ca|Þø&Æ¡ýïÍS»ÿ/´ÿÝ|õ·ÿMÒö¿ßåÃ+ʵÿ}Çîÿ;5ŽFtjo)C Ýù;eR“»ã%õùZGmX'u½S#‰aspÔ¬hƒŽGÚ×JܲŒ>Es³’ð»XÀvò“‘ ÄøÇBJ‡nAp—»fw‚œþ>ã!z‡—sÔo•eh½…³‹®¼ŸÆƒ>9ÛV÷]´=Sõ¤wîÿ™þ ’ÓùA^»wãþàzàô‚lp¨bªzÃ>“4ƒV†²:}6¼©Ø†UB±Æ;ÜãDí8aâÓKXž9ɇ×6`ÏhüÓé­äØvðʱVm8PŠž¡ÈH$Ïy!oàù°2ë¥]iúÏɬÄE×ʱT[##ºéü’î¬ä}Fá &{O)–¹6ë¬9Ã~˜Ygmƒ!ýí6MŒ…`ÈIr¿>}s…àºB° ÀÁ5ÒŽ2Ù¶ž‹ç®›]IG¦bz«,µ¹€v1ƒáð>¦À SÇVÒŽo‡Èð¢(¬ý‚+¸gd1ž½ m(ÔW!e$ÄúóªÛ‰Ïƒá»(38Og0cA¸ŠžQ ëù¯?Áü×7’5ÿܯâ­£ Ê£ÉVè½€B’ ¤upu+úÙ5YÜSd+Sx»“ï3H#®8Á—\S‘® ŽO^xÈN È0CŸ{„±2†ØpóÙ=úCùr[ð=¡èüÚAìKÖÔ™ýFÙ˜‚Ù@h¡›iVK‡%н!ÑÇ#­„Öl<ÃB¡ÁêñUÄåI üø[‡h•m;dÏ>¢)WÃRD(‘„›üÐ#Žð£ÛÙ¡Œ‚‘}ˆ/ >¸ tœÃáW&FÖ2Mÿe*íÚµNy,¼J=íñ¾ø+ÀîDlÞm(À(ªz+ xÚm Ö H½7í.6­€Âi§+ ¦=Ø2ÎB€'rëƒ.g⯆ÀÆMgJì„8ª‰z¹\ª&k f ›tçúñç#Òê® ÇN¼b­’ñ£Ät#£dLzo‘G :ct—^ñp±)9Æ&> 6qå™jF{­óâ,3S4ÎÛׇ?НGeQLž‡Š°§ØýcÉH;ìÎo‰Àz{rqñkRK0¼uìjõÅ*N ±ë2šóÕ8Ðk)þ•â_õ&ý’áL;T¤“™ü×:TCJÖ±FÖñq½Ù:¥'ð»Ð5¤NÂ:·[WÀ:Í øÕ@Á#Ji·àß6ü{Qh§ùöm~víŠ8:ªˆããŠhcˆ¡ÃÚ9ý")J €ÅÅò÷Í·œåžèérF® gõæ;ø¹³›¯€½¢ó(Î:‡µƒƒÈŒ=Ô9~ÐPšïZ iÄÀ¨î¦p’±_3/U4h oïþb£Ç« zzËr ךn¤f‡ÊåF:‡Œ’[³¬<”ZR¿‚Tázý®Y¹80Xy ÉWd ÊÊ5ÏöóÒ1„€â×L­š©_ÓöŸ8Ê&³ùä/¹×®&~>a*:ðš¼À%Ü:u·îõ³N]©{}¨§ò©cõPçù¥É+› @ÀJ÷àôß)ýÍË"ˆBÖ§¾;õS¼¢ê/ÁŠ ´nÇ[ DXò«§¶IÝ]LTÕ$)×ms9=Iê=æùIõc?J iâ—_œ{·ã>0ëÓ«ÉàxxÖØŸ€;=÷Œ”ÆÑÁ. ·ƒë¬ù*×-õ9Sd3œ$±^På írBq`j8HªªžÒ‚ÇÁP=¦;´Pv9HY'E)ëð†JÐνГÔ~™Jøò¥íÓ¡xA) q—dlµd´%uRÇmæèHÅZ¢òVˆ7\‘ñø@nßS¿ï‰Ä˜z™<¬ïÕüî–¨9#ë\a-Ò}UÙQËã«NGáÏÛÑQYî}Œ ËúAG+Ù¼1MNQ(¶u€[–.ÜÖG ›ÑP]X e:Z¢¸Å®@/Ê)o`è,-$µƒÃPLN‡jça‡¼E}²ûnR QïüRp-ˆ‘øLjÿ¶Æ³L:oãU ¸ï¶2¹áú‰2€æ[ 7ŒÁD?¡T ãb4±ÏÞ=E6®d–tÿÕ2~º OÅõp>½eY]|ûó‰ã"$„„?¼šËø©Ø© KÙÐTŠn{ƒôNÓðj©:W©ëêŒ=kv¨ŒSÑ»„‘‘DÔ뉮¤#¯VPvÈNí¨\ `«òdµ¼AßÊ™ÐAÎÈ«³Û«CŽN°†ÖåqDl¤ã¸&©æAþWmÃu„sà £ÕÙVÌ/ZP°]w›HÊ‹$Ã4s¤IÖéÛ=ÈÄÒæA ô¶ D­ŒŒÐZ‰²ûGžS‚¥nšÓf„ÒK:‘VRG.Q–r }ÂàXûq¤8"„‘Q¶‘$JŠw—ÈñJ¥Š)È+ ¹¨Ž\Ô¾oñ|ÖtmÔ|§É_ï£Hu¿ÔÚ9:²ß`_à½×V;N˜T8g%‡Ô²G#uÄ}¬%o@´X‡j¨‰”:äŸËuãØÉjbø¤Ì³ÄW) B})Ã0Sð ¦säœá–H ÀEQÂÁoTê2Ãe©-.µm<šÄ%_Žd´ñ>ǧg '…^eHsÈȲ~ZPÿ3jÜÔß’jbÓwþh¨PRi­î"èÛ…£ƒTÑ8ZÀ‹|gZù÷ç¯ÅÔq©Ù§ b•‘y.«{&_GH^#olæ´lÐ}À/Æl¿.³¥A:|13äadšI,ª%·Õ¥–}¹ÅÈžtkpBκՋO2×ížAÅÝyátGÞ, {ð"Ö÷åk£ôì XCÈ œH9t·3“¹ì̾4)s”Ͱhª\"(åFºÞˆ˜ãÑXPzC‡ÓK’d@¿×¬‰'C5ÂL+Ž™3÷>vfÝÇœêïr“ÖIr„‡Ÿ–¶¸ æY¶°Vö†`Ä«Sp@Ø­Ej.l-ÒÂCƒ¨>ü”`=Ä4©y!Mé8k5EôÈZyõF)ã½r¢±a¯è¿,]ËÊJ”×$,_s¸?t¯·xEË Þ'9ëZD—¶©,p±Ä‹–¹Xn¥Û}Øb‹Ö{0Ãa³XõbÑÂÑD‡j¦Á"ŽoË4w!]ÕŒáé;cçì…ùs…¹ýñÉùÄìûß5þïæÖÖæ6Úÿn¾H^nom½BûßôUúÃþ÷{|$¥ðìw€¤‘‡M‡l^ñ§2އô=jè~èþz´[lÚ›<½qom~ƒwƒ––¥O} /‡ñ•–¾8jÄÂ#Mv;d³Ûa£]YlçÃIކ£ön£Ùi~Àت–eï*Ƽ;xSÏÐεÓl½sÀ²©"O#¥ÕᆠjP¨¦‚FŽg,žBÉ×0“æk:½ÀÑ7\. { /Ãtíç²,^IÑ>–¡à,‹÷ ,ÄÕ±(ƒÔ–ÃŒŒê" Žlye’¤ÑؘÚ]ÝfWÞ&¹‡ròØ&J›AÌ{E¢B7î-š¦Úo—Œ¡k ^‡ó»Q ®P·Ssáæ¼Â:( ¥{ˆN-h5Ó9ke“µ8ÆCX`´Ùa«ÝNÍ·=TÁmµ5´² 6KÜ4:˜Žâ›?.3¬'¶EöµtèÓXìÓ¨ÁÈ ‘0+bï!zsePÑ,Œ‘f††ç‰ÎëfL®Q¦lNÝÑ_°H¤ˆØ^ÆØ\_( zßÄê¿ñáÿ¦ß9ÿë«t;Ìÿ,áþï;|xyü_'-‰“££Ý6O¡ÙüÛB{´Y€h¤Ô9A7Éüë´ÈȨuŠEޱðñŸÐ,’ ‚0“ÏïåcìX¢ 1†è(D¡÷tV°c9vIWe?Š;,žæ”ƒZWð¬¹Åêìt-䬽f«PGR/Nž•keԫèKƒQŠ5zP_8’‹[Áþ`à*@ Eo\ዬqë>+× î)6TO…+6T4„U0Õ:s£õ¡»±ÒX±QÓ…/ º˜±Æº¹ÊXWk0S4Ä,r†¡ç5óhL¯Ñ ¨“…ú}o‚:Úa…½æ&N8æ,XZ(å;UNqiâ“cõôË n:WÅzaÍztJì'XAÈŽ_<ý . Ò|—ú«rAa÷Î3»T&×V†O½Glôøî_•Jc¸ãø`h^èe-]KsžoÅŸ«áç™ Q vÁJObõ–I… ƒG\¢¯EßÏ\Ïé{=§ïõ¥ûÎd“±÷´}W:XZÖ"š:8ç…út)µõt0¡<¹~–Œ ÿ4~΋åàŸjøÇyðs^,ÿø`ß.ß.¶j¬q8l¶?añ¶?a;ñS2ôÆ_…¶á§õ”‹¥eã´)Ê”´À†99(<ê¡4öƒ~¥)ü–é}ã,õ²P ‡À# î&‚ŒÞW¦¯£åŸÆ >ÀâûAwÔ·†gñC¸4—'꺔]ÿ-ºíÊ}Ñ@-J¹×ÿ­Tç`x=qYt2[<–ûnp§ÙN–ëV|C À]Û*×-#%ÈEÛJQ¥Ò©& ¶qçté!yåHŽÏRÃái0ñä¶dõTuúk•– Œñ×öbð•pñ ª»F#Ù¡ßU¬Au×ä»îuëSŽ%Q÷6D[îÜ Ý·v’É2ØJ“ml±ólX ß¶·–)¢Þ‘¸>vÆÐRR‘Ñá/ã1Fç ò€ô y4×j%¨€åÿ}òïgå×þMoÿ}Š_êÿö£aÑF˜‡ò \KüW©zƒ¶—0ÜrmË«O¤JµÅ¯Rõ†ë·q‰¹õk²ƒ^¶®C^^Dð"áÇ[žF²&[1P–åv}óØ‹û ²\€m¯Ó¸äŠ`üIËw F«+Pù«åDeŸƒAcnßó••UydU*½7;ä“¢ªé|’šk1wË"®qÀéƒb1¸P“káAàÃØZ‚9,ZÌÎSd¯(ãêWø”W®Wø” ·mؾ‘ ðvtªwtºêŽöF—ÜÑ©Ì"ÙÑÒȽ%·4íípK+‘-­È=M›;²§S½'íÍkíI{«Gö´]?º§í­ž·§à›þ"GÍ ˜¥ðö8Úæª½™®°ÅSg‹G ðOípSóTzÊ,¿Á ûõû[1mßf{/½`wûÛ˜w·¿çysã.v˪-oïíâ$*¿~G—~8ø”ÄÕÃ8º†äè¶£ÛzjŽnó!]ã¡]ã¡]ȳÙ]Èï­ÊÑ=Šþ'¡ÿm ÿ’F×R¿Lª¸¶ú€Ì>ŸõÔ/“*¶1Jÿ“ý®%Qú]óÝj²þùQO¢çG=Í¥ÿI¾W øí(~’OñÛ6ÉOV"ùíh¾¼´3å4Í——~¦ÍONó—„^ÈÑùtüD1ináÓ(ûwªØ¿8ºGÝÑ´£É»‘6k"/RÁ†¦[½‰]ÑÔVMä=.ØÎ²z|7'z7ÚÛ6‰Þ°b»Ù®ÝÍö&ÏÛÍIán^…›K’^Ø÷–w_[´µ“ä×5%QKžfc'Z$÷ öõ2À Y¹Ø¶ö7»båb»÷z+ç~Í·íè¤v¶ßø±ÿ˜]_ûí͈ýÇËößå#w°kÿÑ}Kq²Ñ ¶vX—a€áï~8 ®}HâvÀP+Ž\Sß–¦GzH ½Šp´©’eûê«úÒï†ü½SZѸûVú“þ%µçò¶[ê•sØ»»ì÷ÊÍ5©ê‡+›ÐŽ0™ßBaTVÅ)àšLwJX†óß\­màè6~pRù‹‡÷ˆ+Þg“»ùŒÝì•Íñ¿š3s…÷z@€Ðw´wÿ±L˜ŠÑdˆO™Î/«º‚fWP½ÃƳÔÿ_ÆšÎÕió [-@ Ý‚‰4cE4V3 ³cït9ëÁ¦ p%ïzóéÚƒ»ÁH+Ķ1"Ù€áß>ÉšâÜÝW€ŸÉø³òP¶Z»WŠU¹`±ÁÁèj8ïS0VŽÛfFÃåR‘ñ$eäÖ û+~“ú:îíõ8Cz£ÉäR¸•aXf€†ÛS4ÇlT` 3ë% ¢9@ªkÝõÍ… Äs[í1γ~®±‡1 ŸÆè$ܵy`Õª ÌŒ ïhÍþy2˜Í2ÚQe‡ãEµË[”'jÐîš²:"'} £Š™ ¶ Ðy¯F£%/D ªÀ1ÚQXAioÿØhpæ9³õÌÆ€Û|“‘¥Qª´ÒEH#!1’µ$: ÐmÃq‘q°pú9;4}õÄ$rø•Ùx4`t•éP®ƒQp…¹ƒTf+7 -º…äžV䯑õ&ïBÅÛ ~±7¾ grG)Æ€¦Q`w 9Þ»¿ŸŒ¿ v6üjÇÊ6Î&·Cr¾Ü­òc ‚Š‘*:(ª]Ä\,¹ïÍ%,$± C¸ ®£™¸ÜÌ'ÙT†¯4C‚îÛP¦™áE9ÙĈ!Ûk+QÖ{8%8ĺ‰íšÝO™Çð”BìP@O‰ìFÜCw)Q›³6ˆö+Èpßâ~Ø»"ã<è‹\5;j -Üb ·ßȆX3ò”'½ËiIÌK¿U~CYÍ0Û íYòvw ß–ñfáàµÊ5jTȱ Îï´ïÕÞ'¤Xâ7ÀrOl Ñ˜‡ðÎß”£ŒBtPZĈ•Æ«SAÿ­B“ÜD=OI²¦ÃXU¥¤04^ˆ¨,*zˆ†Í‰¬¬äx?_Ç\Ôgc8Û@÷¤Áµr ª~¬è©=ìn{}ZÁ°Zn`ˆ*Gù?Ïž0rÍÛÏïÆîÆ3=9èVÄQó4¡Ÿi˜(vÂϧŒ Zdìó_¥üJ$5Ä÷í,kTx¾Û®Ôd躪Qj7ŒÁ¹zÕêµµ²(Hå¶KâßžUDUJ8t9?ü-Ïäw76m}¥–rÊ9Q©RåUɽëA z¿éCMÂq¼-I0&ô‡#GhÜZ²Ü`¢l—SWˆg»÷ÓÁpZ§6ÂÙ\– ˜4ÜÜÎ(àºÀ,€0³ƒlƒ%UAX¥<½Ú–Ÿ³m¹šrÜ­"_ Ò5º5Â熪B ËÌ[G¿y¬#µ¸ùZÇ\SŠÔ\´.©Žê.Ô:iÙ·Ú/h!€_ õäÑýÎSê6Ηë9’9\QACšr¨…xN›Ê/³’…:ß`H2(T«’¨ PHüýnç¬*Ü•²Æã×Tò Õ/ž2ú\ýr€Èú†_¸P§+ke_î'pÐS†gS»Ú}«œ²Þ”ý^rlнH˜íæx{JÑvn±|Ir$pÎAú¬î–¡ø—_ÇZY ¼@øÊ€çÃÙà~“‹‹6Òàš~£1râB£Çy¢57šáòô[-xÔ­ˆhj:9š¡yO‹…œþU£Ùk>ˆíÂþm-׿jݎضëåv´—¡hœCìp¬¿X€æ^_:€×12£¸cƒ:ÊiËçžA3ŒðeþøE¡XÝFD¢aþ^G󆜫G*n ¾,8±žÏ¨óàNt4Ún¬e5ÖÒHqÖ†?–l‘¤GT%¯AÀø ^Si Ð÷:Ö´:Ö´;ÖTk.Û1î[SÖÒ°N̳u3G/6ŠÞ’Õ#æ{[ï²P¾¿ŠY–Ïbëò§ÿÜuyðˆuyòíÖå«G­Ë“'\—ÑuùjÕuùSÁºôs¸´7zX<†øVãÄ7ÙüF«¼ú´«<'ªßŒúVs¨ï—Zå??|•Ws¨ï¢Ž‰È*¯æQߟW\帄òŠ.¦¾Õê›°mâO¾0L~«9ä÷if’¼ô|ýO§$ö>Ô+Ò ¬®¢= ß×¯Ò ,îÿõ‡Wêäz‚ñxó%0¿» ~ew°ŽTeh;üéxø)#*)ðš~β;’¦fÿœ“Âøu¹§å/@ž¿ Š¢ë¿{Æ/·/×»,¢É©PªKú¥²¿J¿˜À>Û3}íåõ½ÏÊå!{ri"7°ÕóÕíxÀ6ëjÐR2JøéKo1´ãž@רs‹ÅƒÒЕV ygXwD9juÖ õø~&å—ù^&G'23쉯2omT°}‚âT‘j —¢Í®95$™£³•Ô]ṉ̃)soú g,c4_vêê­~_J´IU #J®<èÏëôµ«KÉk6=WëÍŸD¹ÎPKgÏŠÞ>—óY©6¹•¨âd}O«V}`_®Àb Ÿ“Ñ„<9Œá=™òWײJ8¿ÿ¢“YëÐP%+™›Ý’ž.è³ï‰õ‡væOöG*AãŽßÌ£ñ„ˆ© ý(ýŽ$š1uÑÓ¸rºÎå\±«Eýk<¶½\­éÁòx[V±q†â~íDúsÊóø[„8íõä®ÖV@pºèy>)o'»6 °K¿:8{¨[/ù¸¹&B©|k&ÍÑL’‹¶%«‰úG>Ï‹ºmºD^ÕtÖ²OMÅõûct Fƒ»ù @R"›W¹ëõ‰N-d&œ‘Z­Þ’#r—$7Ãì~Z&ç«-9ŠåÅ.„xP b>Š6ô³÷¦Xg=ɤã#öõ°Ê£l@ebÍWóZbõ±*ŒK¥Ì:6É®a£+:Œ¢S/ ³çùqõ³éÕdp‰_0 wgÀ–QÞ( Ïö†ø Ï! }>’ðWK %V÷ÏðòT;hYpnŽœâ!J9Ú¬Œæ+Ín£q-·øâ,nWÈ,#^©‘ jçÖstÕøîQ’\ò+¾Ëz®aúPàƒ^¾ûÙEdQáûÞ0a2¢0ÕÂ#pc€Èù¿Ûª`¿à*\ïÔö‰õæ»ÖÉa…}èŽvÛÝŠèpc²è;ðPW9€ M­hæðŸã0'ý pŸ­a¾e ”F‘9é™ö+XàO§ÕN üï”3NE  EFX5â§×ù&~zùžprqùÙ%:½k}h›b¼p…JoMµœŽ ZãHzK.vèê‘ç܅ljçmç¼çÂ4&"p=âºÆ‘OA¡Ðx×eÏk\÷¶"Ö#y€÷]Àûì”c“L¥ÐçššDmd¼vág¦.@b2î#©«:Õây± Eös 8g€÷É™Ù,Oþ*3Ï-ÊhÞ/,Ÿ>a›gôhÄHÅØ.DAîøãŠ?u Às+–ˆšAù›úÅMýøMl/2°,ÔÑ*Km[úë<åõI»Q¬²r‹IL¦åÂRï>–·ÿÉd„-­T=žÖ¼XÁØÍ–ê4Æw$c}œ” Á8ÈW"µ-ƒ,¶$JؘXŪˆS¯w»[«Ñ‡‘“Ô é?[H¿V¤”ùl£øÁ”ü`JÜNü9™’EÖÚ6¶Ãþ±¥Ý:OÇ’¼úÁ’ØØ{R–äÕ–dY–$ŠªÇSšÅö÷wÁ¦Ùòþ“÷Ÿ•ÄA–¬¦j"å dþ0¡Ÿ }Ęe³ b;?âÏ|ÇOÄþ÷Sú}í7·_mù’ô‡ýï÷øðNóìeŠ·™ù‹Q[þnʨ/œïº8¿µÌ ×þÏ0&œBd‰ˆúϤ§Tx”½T6µ„ÝpÜ,˜Z%`F?éjÔœð—ü pÄà´Q…̈OS©õ—vŸï²Q6¬ÿ+ëònç“Ð^·gç0D8Òè>] †¢T«ÔפY ©õýøÒ6@® 6Æ•=°’Ö—&c§¼fwÜ >±ÕŽZš´p>h8°½ˆÅÉš åítî¶7¥44ÎyÀá…K2»‚Ø|¾‰ò„äù¦Äåìë}6]c½Àþ.zIÿRñôNú;§^¤ŽýÃyùwN¿H‰ÿ¡+£éG/Å÷ôµª“7Rå4‘/ÿÎC#ÿ°Ú¾ð—ym›—ùm_æµm^:mK»ë4©=qßÈ0,Iý ' °2ž•ÝéS"ÓàëÁÈÄa7dê¶y§`{Cÿ&ãÂ,²é^-;‘™<#DœÌT|:ZOÔŒ*/Æÿý¿µ*æ8yö,’ã&$)ãÉêQ³7¦}¿0¨Gmƒ!ÓÇ?)ÄNÅÃA׊¡Pþïÿ­?]‹c ,F—E¡‹›ÅQýG|R-[ZÇÂYª´ú”ä øqm}P–GãǵµçtÊ}\cKî[‡®D°i“¨Šøø&©ÀUm÷œé?'³R5YðTcÊFÙ› [fÏQŸËŒƒÂKSäŽ4 Í3%/”ñt`Nf8ñ׺üú>°7ÞoUÄñqË ÌoàêqîÑGq÷ˆ³vRè¬>…¡r±oŸ²eVdkøÝþÐ}*{?‚zôkZØ »\Øî“Æø_`ÈSã±Ë5˜ûÍÑ3+E,®¢LÔLP{\"ÊêKÛ£UØzl]›–ÉþT[R¿‚4G“=U}㥩­ê¨yõJ7üF+ëGN‘4,’ÚEÒJêAIC(üÈCT]#ª ªnU±ŸX˜¨[˜ðPçá¥îâ¥ná¥ná…‹•ë^ê^œ"©]$ ‹xƒnÜfW‘õ¯‘]7Šýìz °šÐYË @pÑ&Ÿ‘y„g¡1Ï´ X;(fϬû¦î¿ ÆS·Ó­ ¥#ñ¶æ3w@vÒ^½8+¦k–HÅM߻习kÐjx{«ú®ïÈkyê6„zÅ`J~A(Äs²ô ä Xí‡eQÌå=³H N"»ßŒO7•y.>“Š!&ôÍ’s-ÆeR1[.¿ör«…eí½Iãè¶-)êì?3Òi…¤ÇÞ•• Ý㮉¶µ jFÞEÄŠy,²xúçðgMá4 ä¬é‡ìs£ÄĤ9=i¹Vý\®ÿÅó^gHÌY"ªØ½€†Ê©_#õjøºà÷[NÔ«¡)¬]§Ý扒dË<¨ÇÇV :-@hÔ‡‰8l·Qau£„Ïõ`ÔóðhoCþíI%±¼k|¥i Æö¹î·.¼K|fâïU·N$Ðr]LŸ¦‹[•f ;KÀ#;â±”'°$ñq±©6Ç`tMÞ‚´¿k9¶SŠ™À$‡“"`>0¶Ë¢œÔºÏHåµV÷[«;­…{Co£÷¨­}·»Aµ`—еòû´xÇÄ.äâX¯Gô¸¬—`U.ZrÖ,ÖóX†¥÷Ȫ-Ó©eø˜%öÁãY—È Ü‹Û—ü3Uð*qt/)ðvꄇlçtÇó¦öw š“ªïÜ…¢özݰCmº†#Ê¿}-²">qx AÊõ_¿Çô×Å3)«>F¾!ºÀ€x8`.È×7J®åøË: íµh–êÉ7¦×…+Ó{™Dy>æ‚sÍ3NF2︹õÛWm¼jÆnÚiP¿E›»¸Ã¿Š§ çRj®¶T"r³Mƒ©WÂÜ}-9W_ †Í—Å9P`¥ª• YGK—ËRSTšßØìZZáÕ'¯D@Ø®Vók§U׈ÈáO?•¯Î“:]–5š‹*$˜ó†ZµšˆÙ¹>Ùƒ5/¼ÅŸ¬Ï¢>ÿ)¶I¡ýÏí?'ßÕþg;}‘Fâÿý°ÿù.^Í®ýÏûcØtgµVüuA›àÇû&\Ëð |×sáçóPå‚êÀÏ ¬tñÝãÚoÇÃñ¤×‹ ££}ˈ‚ˆ%6cñ@q s„ u:D2%ØÈ¤õÐû7IÖ?gMJð¬-ÿ¸(qgÂÀ‚Â1 ž]r¥Èpwá^õTä¼ÎûÎ.„{Åü¾ßc~V°EG8¬ÌîgÈùQtLŠ4œd½þWà j£òëgÄ pxd’ßãâÁTÞ` 'ÉPF˜œ›’I€pr k Lš¾cX!Û 5O¨ÚåTÚüí±ÑmŸìnˆ×ïj>Z*{’8Éþ9L²þ/^Å·58€7^sxU”ÀŠ+m8½¹X©7&£w‰#—L%O¾ Wnù-ìÖ#b¡½÷B "*à`5Öt3â Nÿ==‘ëŒÍ8þ9ïMU˘cà$£ —ÑûæzòºÅQ!h 7?üÃ,Fç4 aU:}9@E.ZÈÝôy<ù8÷“œG˜õÈz¶ë/³´™a,&N/æt€yáJ”ø 8’‚ixj^à€^6Ž K"þú†šø+§ÉI*ÐÐÚ/4ð¨e¦ì½³ÛÙ¼¯ôâù±ö·^,Q Ab ŠÚŒ¬Âk€`Û`"Ë Šçׄdš­ÞÈ1 aHxèr8¾úˆ:°£~oÒgãŒ`ewÔ†™ódd „ŠEôž6á|4•Q:ÑD†‚øØ›¦{0Ëôd«ÖGãaj ­)]3Œ 5á^¥˜‚"ë^Ù}Rô=ï0“‹6ãÙ˜€  ¿©UÖZ³Hž‚îÃ-#eúÄx ´Ëµ“ÇÊ!5Š˜ÛÛñd~sËÃSé†álÆŽ´Öb@¨ Äô<_æ<Òèr,’Ëkê/@Ôl ‚lR{kå\è'åuÒ~ëkRNT@yò{1Ñó7°HW ¸x ÆÅÆÂ5]Tòî7êòº€™õÆ÷|ļ}a^‹Ë`Ñþø¸ºXC†Ø½ì.À"%[6îCææ³«Zšd7ÀŸã¥M­.Ý­ˆ £‹Ø.‹óeøl¦ÕŸ_;æ»qvÄ_ 5vzŸ}ø g^ð7艾ô.Ç@œÆÛhY`~šêæ¶îLÜ6fQõ¯ÙDZA£¨mö•L¡ápêM%LÁK 0G Cƒ+ыʼnþ¢‚NÊòŒànSM|å.s7FÑÅøáÞ ø­ƒÍâ¡«…ú&«—Rà…úãûO!Á ¾tò‰c×n‘¨üÿDw«X9`ïï ë 7 åÌ0ÔÎZ€$Týüó+ëúfFÞ1ù`­vùï¨7€U¾¥ÃTÚŠWD÷¬0†«1Ïl{qü5Ñ¿µµSë&ü™µƒ¥°Ûí¹Øæ&°ò¯›Û[¯^d¶QGÅ.êeÑŒŒô±ÐÄnÍ…Ð*Aá”L¢’Npú=.‚v7iÒO´Xï¦ôwJï4; Øvl¡V;/¤MØ(PmÿÆ?c]4wß‚¨oït ÀE¸ú(/Ÿx›ºO§¨¿\àZS˜",„쬯F‘?òL|“ÕŠ [oŠêUÄU"ÇcêÊ)®à~0!“!¤ÐpÇ™ÞÒ Y…ãÆbò=¥FU±eàC‡öÖS?3²õn+’5Ù‹)¡Æ°‹ã7!wþ‡a(¥L5bÑz/ÞÈNáø×u¢ºÖ…·Ô*_`ñ•V€d3õ¾ÚÏî13ψ.—(Ø›M)I]ßäidΡB?ŒÚÛ]\cÍÓC+æ0Q!mÞÏÕä;eøË¿d¨WÈséhï6𿇖Õ‘/,DÊ%Zã%ÄÍ´H¦ÖæJ—ÐaÝLµ‹Ýø“+ÃÙ³ÓDêÃݺ‘ƒ$~TBY$jP÷b 9×¼'CË'GR· Š×;Ì"€;½/“+àk8ß»)¿™Ã"1ãqfmiâA–³º6pèÓ 4Jè ûŠû¤W€ªŒì PÑ5É€ œe©0ðJ ‘„ÄÙ=a5Agóˆ ¦›ÒWSíñ‡€Iy ¡hÅA$“ 4Ô¢"a»ö™}¾ Ó…ÔhãäõzÄ¡÷xwC7•Ø¿tP9¨²8l”Ý 7HÒÄtÌúKÏ3…ižM­ á]‡ßÒ`ŸËvì]¡Ÿ,Z†;žƒ%/ =â$Uu–úfÜw®Þ˜ÑÙ`¨E§…€t/ò¤ÈþÃãk!v9žÍ€%¾Ì®z˜§Ëd `ц,4X2¸@Ò¹½‰Ç=žÉ|$'0\»±Å_¯•±eä5xFh¨òŽëÎT«cµWãÿ¢$ÁÄÛ âƒmç„G¿oŘº¥K̲F¬ïãï¸PÂûÓA5fWéðøÅú$íà£CÝäŸ ¸•èlÀ£Á!¾²ó@]L(6‰Oyr½Ø´Ûm'?ͧE:0NFŒƒ x'VADZ2pFYÆ©ªׯ’ggl­Ý8O%$[uà>BΪA½NAÊ °ŸðÝ/WÙ½”Mo×î'䢗åiõw à-ä`=L¨ñ>Á>£€£ÜòrÕ…R.”–Ý<ïSr$óžaa€k Z9;Êq¦O1N¼ö§-eÓnFξpœXÿŒÓÒÑ5б… Ó[X[Wƒé3ÑωiÄQ:Jƒ à¬Sâ¢o&YæEi÷¾a¹ßŠÎdzp>¾¥<Ó "tãSï£oiüºvP75uíw~œI3KIbÍN’Z_RûMêX„ãBé±F(׊y Ô+þ<Í)Ÿ†åƒ“¥ Y„Ç™FÞ0"ágX‡Þ¤á›.ö‘p¶NFüÉŸÝ®*S…âkeÂý yh® ñ†ˆ?\»Çí®‡Ûìi¬€V z^¢Ó-}ø¯º[æVÈA×€æ|…=­) 5Z\âÜ-ˆˆŒ¯Yš³OÒœÔßj‚ì+V¬î£Y@„9íRqºG‡èiZVKW>Ø*«e¸V«¶ ©Š°ËÝ §›0[ÃTQßd¥XO­>¨J©S‰ÆÑô"‹gAS|w†Ã¨ øñ4fMR…/í¯oUÈò62?IEwRa2ˆe77{,¦Usƒ_%‡ÇsC"Idk²¶ ©xn4ü7ηâ¹Q}°*¥ÞÜüŸ–R·^äÞžqµ¡u –G 2‰*ó†48N¨‘bz.Ü9¸ðçà¢pàsaMÃÅ2Ó`êÈ™¸Xn&¬z©SÏŸŒŸ7Jy©x"¤Ô$qn;¹‰~Z—l>ŽØ}7Ú† QÿG"SIbèTó´é»‘¢$ù#Q•$}²ò©H’>œ¨GÉ–dš,ï·½Ápβ|e&B‹S{Œæäd«Ùö±­Jã8µ&­äìÉ‹Íp°& Þ"ÿ¾Ô¬4 àkºuééŒA‹=õd5§V§/Ï'{9Ÿk×Ä“;eRͺ݂k{³š3Á¢lmYÞ8Ô º>gF=S ÝL››uée¥¡ô™AIœ¾yZpP¢.\-Œ3åhP*¶J¤bkOòì^5R9$„Bx•2þ+ ×y€Ð¸ÓŠ…´U.E`Ú+Í-R@Ô—œ]¦3í&b·E º”4Ïy7XŠâÔL«M %ë2„Ô{ó$gTÎÈœ‡V+Õf‚ð¦™ëåÃñ÷ú Z„¯ GV[fBLÝ=óh¹zoi+Ëë{23ì…2À#¸QöÙ¸l4]³’Fñw–¥›Lf^6g¹1Þ£€ÛôðO(ÿgò}ó%¯6Ó­ ÿ׿ָ?ßãÃ+׋ÿÓÂÞ"Ï‚fþ’Á󺵊x°?~Åß¿þgäôÚ¯¨´^4º_)ÜQ«1ì_!ðŽ“µ«[bà­:}«”øÏ|²ÿkIö¤¾Jª.˜9 Œýù•”ú²``X÷‡«w¥µ„Uë¿VK£êÇuV³©ä>ÚLWûµé÷Gôî·õ‰h¸AÙOPœP¨t8sφ·ì1­=Ùxep7€‰Bç3÷PA ÇÏ{5øw¼ÁäŠbÒ?5ì:—þ]iP®Eí‡â°ÿ½’»'¤8-w˧ÏX|ÞNÇöàWÔGAë§ð¯+q¯áD z‚6Än|‚mö\Ë{R°´8&®½¾ !ëx¦ï‹¿j?ÿV}©>›k‚j_êf~,“㪅Z‰‚3#ä¢åžÐ¥8ë1Ì:&ƈÔ%§ø†qmsñiç…ÒýKÑsœõeÏqû¸ÔdW,7"}tL²{è궬åx¹ŸŒqÑ]†[¥Í¢öß”7õ˜|úd;è3]ÝöFäiÐÉ2ßÑv…a‹£X9¼00p†¿(nL=3峈s$êÉÉA‰5BŽ;Ø®Zñ ×z·éP§LNaWã²û¸ìn0$Àe«.!ÿºtÇuœöåèRhÝß_Ÿ ¿¿n ¿™h$˦£êÚ»€§Éý!#ïØ;zyã H¢ ;ïQ«¶Aÿ½/.ÕB$õò{ŒC*IÙ7¹3¡¶8¢ žm³ÞN®Oøï¿gWx|>˜ª¼:ùüd=—zt¶çS)y=Xÿ(C™Uà;|ÿ“_øïõäõˆ¤2ôê—”®¦Š¨:Ü‹ñB:¨M×!¢×–> }›o2š-í$ÚYçTr$[ÉúhÖLt¬K-W…–AÅ·3) zïÜ0±™Š˜OÉD@EvÑŽoè5K¯ßˆ’a2Ö`"J˜XàWübØáUÓxCò?áz2QÁf\Ínö¥‡Ö…4¯tÕ…ÉxUá×PòF¤¯õÒ(ÁÔ ïßÚ£ßÝÂÏÛœwŸ’âwŸÒÞ™Üön4žQÈH+ƒ´KÜ ¬àÀßšâÄàª(^Íܰrro ¬VŽW]î—~vÍ"Î÷ö²†…x=f¼½¦C’ñÛ±_ à&¾ùlʼüVŒà¼¿ÇX¤ÎgÞ!ð'^hmÏ@RF½ê‡Él@>í¡Å ‚x—ý6>Ϥ0¤óýŸÙ_³{{¿’¾Š Äñú·ë#ä5CÅ’‹P#Y^ú$,“ö^Kj-VƸC—½«dp‚’F ZtÓ¢e)"B_¿MD†ð²ö¬{"»gä‹yüçvz·¼º÷|휼ç¥ý»ÝÃCþuJ.ô xš?Ríc½áW·Mµá×i¤o«ºÜ£‡sl„¹Îõò]Ηþ`wñȱô øau”&$ 0B§ïº1Á>|Nø8¨•ö)hÓO› ß7«Úz‹ ? xÙ|¤â|”ijÖÑm×Z£]¸µÂ=¦ÂÂå*EùÛ¬$k,Åȶª,©šÉŒ@õkR—ÉÙ á €éDÃ+ñ3ê.Ÿ—ƒ©K oÁhpw¹¦µšT«Ó“TÆ®oxY&rd¾ï]e^à £iÿ)¢ŸÕB\Ò£K~Tâ«JšQìƒûù4kÞ£Ë449ІPÁ¸àøu¸g¿<û§ "ç2‰Î%[·þ]„“œ(QR¢¸n-XØ XÏHýƒ§~9i5»Ï (“ÓfVF¦¹÷{ègÒk>+_ÆórÈekwÖlµ¹žÈu›Û³›ËtU•Tˆä 8‹ûß}Vþí¹Äó 2ž[ZÕ¥p-¥¥¹…Š{«ñ5¦ûÆ —æô3—0XHfâ°€¬¼ *îåÐ Ø“8†ÇãZ¯io0¹}RëY<:‡Ô-Þdx$–lÜyÐÉ¡Z+ ´i7æØ¨ÑôŽ$L*™^ävˆúâ5º´ŒFƒÛš/˜ÚxÐ4ÍQã EÙŪáL|‘jô®…ÏäÊÁ'‰®›®ñý.’\óÆzÈ‘KìQ7¤Ò™O­œîœ{zHñ®ºÚzþâŽÒfõç9Þ»UÉ[@Û¨ñ²ñŽñz\ЭÌB¼½_Ýí’ÇEØ„`²E,q/Ô*ŠTŠ,.\OšÑÕÁ yLf1r|ÂÞ‹Õhûbž׮2v@ãaÙ]T̈æµoHt˜‚蜴/¿Òµ-yݲªMß@ö ¾<3j<“BŠ–¼ÖàyØ9„Šíæ»÷ˆUh²¢ÆÜ\¤€³#“¼~0sì5ßæÏõÚ> ×¶ÿ}?oò£°Eñ7ö'wÓ!ªÖ™à‘ÐŒxLsÞYŒ\³#×Z–ÅŽ(hùm¾ Cû?/­ÑÏ’Ÿ˜ýGÿûÚl¿|õ2Ìÿ´ùÃþã{|xÛûö;?ì?kÿñ{€ì,4éù FÙýÃdõ·ƒÝîn¸æ7„.ªºüy0¢é³>*¯P¥óŒ#΋ëùlN¶C H«íˆþ¤@(d}Ö€¤•ôëûabòàä‡AɃ’%? J~”ü0(ù Jò <úî‡AÉBƒ’ßÉJâAfßÅâ›ÙBœVb6?ŒJLy½·J2=xmƒôyVŠײá& ? þ¼ Ð?©àýcÙ-ü±ÍÆ£êÜÂÜ÷³Bð¶pÄ áglàöÙ^rÅÔæÏoS0(°)ø¸>X×4Þʟ¦ ¯ó¹§Ž}n¬?H=ÿë2êùˆË7²XâÀuýñ.(íÿbÝ¿§ù_Bï?ˆÎáéýg&šßLÃϯ Tµ;O¬ª õƒ«ä»êÿÒÍÍdÓ×ÿ¥ðë‡þï;|x-¹ú¿f#)‰½uJ/wWžÝ솳ŠxW;<¬ñ÷£6%Çküghaœ0ÞüëeÃŒ]¡ƒ‘ðHáY ãF’é÷òj>˜!ÛTÇôÄh:£« õC”õ$€Ê¦³”E±ð sM(ìk…œ)ÖÁ É— †'w¥/k|GÄ\\#lr2þ‚°2J5D²^)§@ÅâHü†¢³ß«PÒ¸BOç˜òë¶çÆóWM”©Ñ)ôM ´FjÈ2NÍ”^ÞORE\¹àŒä$vKú»˜–¿ˆ8¯¾ Žó ¼PüJúw6çwSxM¨&>?7½»»žlGf«ÏFÓ¬ð¢ŒTX¹ŸÈ²C9çðÚ 3Kûµ§';Ój8èö E²™p pü[‡±…î»Niã.ôwx÷g2N7¶_.§I#HE,¢Á|…µh¤Ç?%¬UƱ‰‘°þŽùg{‚qñ¸Xþ]ð“ÄКÿù»Á¦æIPo`fáö´„‚0GÐ ¤ý°^"×,6m8iN03¹Ó²'Aôö ÝÌnqFÎ9í2×<÷jæ¨Jö-ÉoU¹ì¿È> íó!Ù•våðúþp K¿¡àù7M àÙ£»¦&šÈtA×°RV‘5¶£¶§QZvp¥ßPÁ ä?Ô a)èj yÐ;x`²Žé ÿqƒ1 ‹@4ÆÓ…@~w ò )‹w)²²x·0eñûÚÁÛŠxûá¤]Ô–¢v^ h, ß¶%ìðt_!Mq½SÔ¾ð›ø ‹~½ÇÌÅÀ<}è4»GEyŠ[ÚÄxÀ)ÜÁ´¶MiåÙ%¨ÝÃ#¼ôuk ÿJŸ@4mRÝvšïZYnWK¼ó¡[YœØ.ksAf]À¥°òœîÞOÃñÈd9%ìc‰ MÆümBÌ­-sá¹Sù¸Îšyó¨Þ1½±Þíš\‡ô·вu8k(UDº.é nÔø©bžÞgWdò0À»}A¦œ@»Å;˜Ge®ã5Éã c¤w’©;9qÏR8ãgêšæ<œ‘ÿzk‚Ñ{ Cgóé”;ër#ž¯ƒùƒbÐñWz¤ì¿ŽÄÏtr' +@$cu5°jËríÄæ+‚ËF ‡BµØšÅ¥iÁЬÌ(BíñvÒ¥ÖëC6ƒ·zW\C¸Û "qÖ6>´7Â7Hµ€b¸*ŠåÞ£t_A”æŽÞ–€’u\EX<ÜšïaÎ¥©ÇôæåsQ-Á V’U&ãAÉØLʤ¹„g¥$å ÉU‡F`ˆõ+(ÕpG › ä’ ÆÓ–àíR!ž²ø ‹öF6ñ–E\8u$&p ˆeúI§e°VFþ+BÙtñ`íÕQ=]p"u%ᆒëaØ>Yr1WGÈ6­ÚñüöêxfžL& Ë…ìY7w—(~ Å„e¤`ø—N”}ŠçØ 'œ¶ 'Q$³ìÞLôîÆóѬ¿ §6o½¿1¶ZhÎz·ˆ’ÓP]†»qš%AÔ15‰];¨M›[Ìg‹åYmÌ)•Z~^Ãî}?îݳåõ»ã|ɵ$i6Œ-ç§ÿÿÞOÄþg:êžÔ¨Øþg3M_ö?ð×ûŸïña pðá]³Q;oOZnóC‹(D§Uk•€%ø‘þùì|H¥û¿¤qã´î^cvhVN»ó)foÎЧjŠf4ãa†n_Vªqô±­Žïgƒ»Á¿”Õ ôÑ©´À»âê6»ú8¥Z½ÖŠ:¡X¯S¹÷ôЮ٪ºöÏ9àmöºõtNÞôäz8&aKõ~<ͤjš-#°èÿó!åD¿ÑmŸì î˜»£{S÷½)C†‘¨É€4o½)& &/>Ý7í:ý a¢î`gAÑ)¼7QgÝñH¿\ÄqЊJi uPbDþóJÆÉ¸EgÈϽ¯´Bš£Y6¹ŸŒ¯²þ§ -najªðìfÒ»Î|Üõ¾Š>,52pá(µØÈ›ðÔ\k¥¦rÝŸd÷ÃÞ•ñœ#·é+2Úy;ž 1©ØÜ‚ÉQÊÖñèŠÍ¯Í#Ìn?èã‚é}ê †8Î% Tp Óâõp]G_h¦ÐÍ>ïSNƆk‹­N¬Eôä&EŠZÉû¨Ì,o£7w¢2ßòƒ?ùÖŸðü޾oþ§mx¸æzñãüÿ¹û߃VZ‘¬1ü;«ˆÎa³Uš‰´“À¿-Y¢Âf,vê˜ÃÓ÷‘©ÅÁZ•«÷Ýs¼`U8Ý㟻P,“=XB™|ó_…‘êPCu‰ ƯͲ¸Ÿ†…i‰8ž Ä(b–ÐøH;d'VQ½ÄÝ+KËdêfyódX@È}Ê(Ü=Y„ÚÞì}*É+ô³Økâ [Å[‚ƒ‰Þ=ã—ú>éÊÝ•¢ “Tú?ÓÿCÉç±ö}6žæR‡ÔÇè%€u—õà¯UµÃÇÆšbWØŒµU_ð*PþøÐ0ªÁŽ[ƒ)x¯m UíÏVåñ„ŽÞaö…ù1æmØ8³®¸ ‚˜˜xF°¨òàšaá—Š†£žÊïÈRgµ^%Á6S9SM·lÅnÙ-A½Hu/*ʦš]PWk†Q#.3åóJ=¥ Šk›fh€ŽÕM©Á]}éaScQÙ;˜@™AN)Ç5%”æ f®,`)³­®ŠŽÇ€¦È¹Â¬Ž˜Ï<‡™!t=\:@Eˆ3þøóÃR¦GkÉk1Ê`ÜSì$2õÀ¿N$ÿJÖØfᮕéÁ9ŨBF†·RÍhô#»ì)=):ƒ Žfá0Úä´Ÿà20£ÉRÌè|J¶ʇ´AmÒm`̰B«b¯!Nˆk8“mZ; ƒŒÆó›[J4Ýû˜1O°$t[Ú(ÂbÁ¯f²_aGøàtŒ’¾’†€c'9´@a­‡i7°ƒã;Ù]Ú3óál;ŽQzdÓóá}ÙŸs±&/ ^×ù.”9Ku0ÂÈ ³¯Ub¹à¥BÝnæòzA“Å£’× Z}j/@ÇR2à×ñ®Æ3LŒŽéÈù `åq} éÚÕ—Ñ­x^&îâ¤ù•)Ô(Un ‰&ª&êÍw­“CM*£Ióùä3÷y8:¦ï|Ï|-l:ì,g×R~ãmí ƒåkîš/ÑmQè«îµdЮ!{¦pm ‚œÑ} g §a- Ÿ­³…°¤ÿçóÿ1„:µž"-’Ó-†Õ".@»Å¨{6`\v´¹ÏG#g.Nuvå]W}¦@‡}Úp÷¾F­抆[+Þ«9Ø@åõ‚ÝSk§â@A#ýËlö9\ÒåŸßÁ |†» ã¶Æ± Jò… C—>C5B[ÍZˆTûäàHÍxÛñŽ®ÆÙõõàj€TíJtèË=? ­ûVð­¸"(‹÷˜8bji¢$åÒ"-|'YŒƒ¤’hÊ.=ŽuN ‡‘:ú\§Î—áÆ‰à`Sn€còBQÚìœ<ÐÖ'>k§W ^‹aÄeÑÑÉ9ä7½I_ÆÜSW¾3†u_TÌ>J3ìf#Ó\ƒE8™À\{7Î(0~ª2Á»ÈX–$$»ØìÁMåðñI‡5 ®¯ã²¥ žÞ=¼=°‚ ÆÔÖ¥\Üö÷h¸l{ú2nØ÷×'6_°‡0ÁÐy¸œµÐôiîo{Ÿ2nÕ7™"§ä™é‹ô\ßRÈñYÞR‚&JØIb½ûË LóLñÏú£>­ÝÝ×xÿ¢þ ®Ó{ozŸápg¶JIm›p€¬|a °rX+D¨“Ê•'ЋoõÍu×+òÐ[àèúù…®"Ç5Èm/¿+õzk§œf‚?P¨I<'üf!e½/Úð¢ÑL "ák,DÍ5¸n£ 5ð'¾è4ñG»"ŠáP%\lMüu@éßIš’‡ÞI3Iøg»¼O©TJU°'mªØÆŠø‹¥ENˆ'ÔûsDÏ9¢çñqÞŽyò¬ô±X\ÚèœÕŽJbÅŒmýwÁ$5OÑio»b•‹IL›%àR9ÓI£y*[h´­§m~éýªN‹ÜóWMxPÛi>EàAåÝëÔ?ç yÙèÊéÌñIóNèVcWÁ(’U,B2Ú…ų/Ñ è*mU%ÒÞ .¤­áN­[óÀÒ"Ï…T¬?HÞ ~‹çù0Ú UÕ}Pƒ'ÁÄ1±UÁeš’oé6}å'üv»O[\ ÚŠ-šÑ!Uè$¦^ÚÀ‹éúì}(kߨ^ùï€ÿ¹›ßYyÙfÓ粪†äHɲL‚6¦­;ãѳ™eIÀò)>ÇŒ+,rIpZèZ0œQÄ6ô†RSoj0ƒûƱ‡¥P—µ<Ú„ÄéÀMnd0ƒ|iYSÚ4±CÕBÝw1iåÁÃ…‚ì^ò%‘P6¼×hµg8?ú\ µrMí(vÖ.ïxĶJb¬ã ÃÝæßÐÒ¿Å_Õé€YÈŒ¿z­âäÆAwƒ§/nÛÉÝcþ+Ù¥èK9“QF;´$´–ÏÙº{~c6ê_¡)³.ÖZkgƒë¢‹™ÂFÇJ¶®ª¯÷2r-²/­•]¥zK VnÄsodçz0hÅ«‡VæFÈî¿Óvkظ8á"bdÜZ"³VEÉV[Ÿbåv4TÏš‹—´XW_š„õMzßüaV¾ÂX]%qûOØ *šäòR`XûsmÈ6#xž›êç9˜ÊÛO ÃÑz·G{Œé—Tt¼ÀGfØ$ÉÛn|ó–ÚÛþiø¦…ÛÐ0¹º¨üÊE-· œw©¶‰, Ù¦(ˆlÚV힥qZP'²×~9ðÄ]îüÆÉR\@IkÖ}2ôv õØ*‡%óö7-Þö¢N§òŦWž£oï Š¬¶ÛL‘GÞÃ…ˆ[“`åúeÈ–¼z‘‚ªO{þ;ã6}“@UÀÊ€B“Z´±æÒhúSkª7b”Ú^D¨4®¬è'©Ú¶Á ÉX™Š85”½SEQäù²à]ªÿ<~ÄØÜ–7ä1R2õKF¶•0ôKÅú=ØDè§'rÈý»Þ|:P&…\/”žBÂ#÷$ñ~ðiŒrb‘ L7<®`^©>YHÍ{)€aÊ¢^a”iø…·ò £xÆ/¼]9iëIÇoÎëî%•*c—½Ê²¥Cjc'ËX!ÜdJmOÈŠlµÈ£ÝA ¬-Úg²+³6~“Rr£ßÔmDH·S~YÜ1/2 .¾4¸Hk‘QÈâmœœ‰2€w Ô¡’C‘ÚI™ñ\æ¥`‘¦vœ9CŠú0Aòæj‡FÕwI²ê.æAåø¶µžhÖuñŠ%TL²gm¼½0ª‚ð‚ëžv_„I]f¹Øt…ŒáëÔ¼^ìï‚ èš n¡×ûyp@!JÔüŸËù÷¸ ™øIÝPÛBghmM(+²¿Y¦9ÚÎíӋצ Yûs÷0Ã+G!#!%*ô\É‘ÂbÁÉtž·Eäp:Ï#Â;ŸÎcç“0ë› Ñ—%]ÿQÁ½9äs.Î+±‰M i±{rÓÂSå¢iqÄÑ·šñ'Øî:~‹š®Ä¢²;Q˜¸ž| §ÿœ÷&ÐûûÉørˆmÂÊmß|UU½þ9‡îwNw8¸AïêVâçíØU|è5É21ûzÏêcà?Ç4$„ £  ,j0ú„Ádú2Ee)9XºUÍØPü55(ÙÐ÷ “Bê·¨ÁãÝõ‹B1}0s!µÎnÓç€8rëý*>cÄ<žIòÃŽL¡ÿœR—û/ŠzÒ¨ÒŸªñ¼‡ÇÓÌêJƒ,È‘¥0²£lr7çÂäfWj¬'kU˜š ºá£gò`*]Üî€ðôÕR |;˜wã©ÖçÛŒo‚.êÛ¼R´ûµã2Í”-£wg;‚’èAþ‚ÙpÊ&¯E»`îTL>HòDký”m?jœ¡9f—ÃñÕÇ ó·7Úg¸Õ~(P„CmÛ@i%ôx@T”©6æÓxL”óðUT¹Ôjc*J )ãfâu½Wpd—ÿT¹íM½ñbÄF@Ú:rS–{¼)×Ù”D,h,¿ï,IJ¡ä’4› õó †¸Ã{Q&¸…ç B0ÿAí8Fìº\‰$Â=M§z `,Þ9ŠÄžN—O>Št¸­p÷ìf, o@Ûý<C…”•'Š‘šo+ûÈ´ªbL¤¤B2&d,ɼC"Z†4ø<ž|$2WˆåsƒfÙåóvù\1b»ìã5ßr&·Ë¢Ô9;% vÓÏ®‡LYiváÔ¦×`OËXG³¥§Âß2±ôÒö™ f6k–#¬8AL¦óK¹¢L›ÀŠ,ƒÅ›§.v1’›JᬂÅFýÁUoFüÔ;\yÏån´ê«ûœzu¾‹ôq™©V7Æ0ô…>J ”Ñü}dì*‚21rÈwdlÍaŒd ®éý˜SpçÜîÝ ï±5ßué’¢¢ʺ;˜ÙW›ƒ*=3@˜€•˜|•m—’×p…sÄ!…£ì³“J\~ï{‰%‘À½e_4¦ÙD‘Uñ†f5™®©tìt•Í+@÷ãa65yÔ¯¼Ž(ø*¼Ü'Åb„ìy‹`‚î£Í5n[GËRÁ¯šÈ+Ïïû˜Ú@1±°dý ´„º7PU§àxhÃp«™ñ´—5Á¹ãj—šáôªNZ äX—ázâVöGëQÔ ¦êZª°nà¤@ƒY1#U:uBgô Qw!û°x)X 6¬h?Èí`4Óç¿><ª½þo°'/„ìž¼«ýa÷dßíIH!î”xŒçÚShT—'‡¼ ¦:<ü¤ÏÇ_}¸Š¿7€·øëèÕ_ß( ÛqewϬ™›Þä²wC9øê´iÝ‹uŽtuFX0ômJõÊ\˜K”l¸ëÂÎu–ê\ç[uåHb9öh_qE2€PQü º0 „•^χÒʉIóW*’†ÕÅà¾Ð‚0RPÖÁp˜ÝÏo“¥ÜÉ{C/æ£u¯¬÷ðhÏ“Áåœù˜KëŽÆ9¡ºª ¸ƒˆètŽ„3£óövŸ( K_QT;û 3¢Ge‰b1p•”ÆBéNM–ù0 ÄaoòO8|*â Þ:xÞÚmw²Ld ß-„åwâ8:­Ýw Bé8¹îݸ:\'4yЍ8L€Ž,=Š‹’üþãÉ·ÇþÂæ;õëˆ#ÓDú²z”“Ƈ£_+¢ón÷ð”ÒÀ7èëA­Ó&°Ó¦äð¨ô,rÞm×jE½Y!¶Ë´×j¦]vŠ…­®Ÿ%'4Ë¢Ð]ô>ÐÑ£Ð×X.LclEÝÞ¢1ˆÐÒÛ´ê‡ïº1SEVÔ’Ñ™['É­ÚŶü %%¸½¥G úª¼1ô™$!ÈksêŠðÆNa äá m¾ƒ67éަJÍ&sÌKX…X§£ß0ž/gcÓp8þ”Yìoø›s:ÕEoÈy>4ÍQ;:8§‡j <ߟÕ`­ªF-2)ûë6T0¼ºWV#Ô÷&«¹l+ËÃòyá÷Û¹_Ô)Ùnˆ«Ç1@žcaÜ* Z?p%’¥XÈQ‡ø7<Xþ½ð¦‘¬;ü“‚ÑÎXî¹ür©syYœˆ'$×7†þJ‘–bcšëEñ™Õ‡|)$û×ÔØZ†ì;ˆnúˆnæù\¿\î¬}µÔYûƒUfà€á~/ô¿Zý‹N;I€V8ëÎÃN’¬ŸV9äIïÀ¶qóè°±pô¶ Â"=ˆJâ*èQ€ ×­@§éÌsï܇9—z|xB€Û‘G¢ :Ý~ÔìªÞ¡œ?çr€¡¡ý Iˆ _fb#á!s`Ö½"±úyyŒ'xÉÑpƒ?/ÈlG8‘UäpÜmeÀè¬& Öäï$Œ«F¤qØ}¥½Â:F¡ðÃ+ìÏö‰ùõ¾«ÿWúêÕæ+ßÿk{3ùáÿõ=>’zþ_5ãÿÕ9<è4/XGwþ'…Ç×IEœv‰óñ¼·¤O—$šù |§1íRFVM–X>ˆæ†ƒ˜ëz…1¶ÕL壃ç4¢e~´ÇO¦ôj?ªü¾(G+>º-`úÜYÉg¬±„ÃuúÄ8™µ­ï…ËPº•©ªÚuL=è,jüÄ.}Úµ¿-ƒ« SÁš<²õ,òHSY®³ ¹—úªL‘íYÖÿëò«•Ú,¦Nw›o§Ø”ª©g‚ë]Í8Ýw©{ëe!¶"?DÜ¡îÚòƒkËцnT‘Îz%×+¯ /å°U ­3ÉUMy!)§gdšÄŽJ˜ï*dag!χ1>NÇ¥€WÊT›»N-ÅC¾ÿK‘¿ÜDñØaßõ¾`.'I°¹ÅNÑî ]Žg³±JhïØƒãJ–—æI¦LéZüv±SQÌfêy-ù+ò‡KïRã¶:×|—e’‡;ESáUt3éÝÙý‹¹Ý,ál³òÏãØçÔ§lþ;)]zÍ À[ØÝ¾é²mƒ`õXgžw£äïDq¥yí'îlçûª^ñZ“yàÕ*ËÝòÃìS6Ô>‰¬bÁ€(ýM8I"yyHÙb}oÃðâ.¹8í®Š²õ$i§Ýg±]Y€7 f¢_oq{÷—­Õ7˜û=8=p‡gœôü ¶WŽoþ7¥Öó’ÂÉÚ†äKLsËùUœ ¬¥iÒó)/ÌÙωÛ,sµ¦¨²cæxb»z„^A:÷‘qr Ôzî39åKÔ ®T ;d“ î—ô1ð-4…Ž®ÛzÞÞfö¬þ¯æ”‘3Íç@@áÎj.rذrÌwC­}t/ñ¡&Âaii¬%–_7¬ÅóZÎZè”…3[ä@4u¼öb.YË .î혿•#cR÷ETÜðŠ›zrý1,y¬³#s06Ž:’+³€XüÙCü'‹'Š÷¢gaSE¼±fM˜i³lcx|e²\çË #TÀ¡;v{ÄqoL%EXýô’ÄE‡·ø•}s^ ?Š˜Ž*´9¼} ÑP°dÍu5Š’¥½H—اRPÀSŽûTÄfÜ„ ±Ù+5dʼn_î*ñäZi·®Mˆâ-³w3wns. ÞØyŠx‚Å\¬¼•œ§dôº’ïöMÇÙ‰Œ3âTöäã,ô/ów°y®/u“Úðœm»È-Ü$?<Úþc=Ú>>¯ä¸†™È›€ˆæ!þÑú°³KÎloá ÂOùGZ MÅ„ï­:Úþí4øW[FNC@¬GR_…b¬aé6–&Ï’plq„;”’Dovvà¢Xàâö§pã{ÂÚZÁUŒƒ›óÅYw±Å.\Û~•….\/#5¸pýV9YàSµVYÂKûŠ=ʱª¶¼c/«úxü±ú1Ëî‘:"i„ ÅŒ®Oóû\¾Ku6¯\ž6#ÝÔñùº6¡Ý‰Èô~Nk¼5JìËzJ»Yk ”ÑH1ˆ¸¦Å*Ò&Ž\pfa¤µñp8þŒÃ»Âd AÀ¿¨ÄI^ÕnÅ8hZøæYÑæT­ˆ›1 Ý^lnü%î©.ówDjâóFráqß l‰b>p¾XÉ0¥;£¬ËJ…ÎÎ1«'Üp(„\Eš/œú€Ç«+-6Ä[Œgç[å `Y=O4eƒä]`¶ºÖ ¾Äs¡¨ŠñžSG€mÔlÏ~´Žs(.tˆ*Sªu¥ÌMUaÑÐ-fͪЎV(ŠU8xûZ ‚–DØZ¬¼Frêp3N‹€ žš®‘nóÛ[h½éXô·Ì{ÚRþû¶û¾Ô‹ÐjëÀ®&¯ÛѦ”‡Ò”òY뙊rJ>gÒ¨ò¤Ä§·4Ê3N¨»ÅêÊ?õÉΠǼ0§:Î*þ¥{Ñ^®í¼^´Ã^Àš ŒØZÙ—ì¾û¯ÒnSš²á¦Ù•H8棫[àW¥Ï¬/%@Qm§íbhü%y¿­“jbÍ3éDîÍó£lãM#ã};€>I@Z(U6+Jù) Ýli“¾*X’ºçš÷§å2.ò‰´Ý´1´½)XÐ̇g ˆ)Á2Uá$}½V©)Œ'‘`g‰†{úÁ#å¡“u3<šI’½ó¬máQ®'í@/{íû(°å¦:€ ‚ìN´ª|ëÒ’ˆ­§tÚc–ÝL}HDt¡úíGˆRX&$L8Qâ$òè“àú9(îdqTí€ò{éxä‹ hè! §ŠMYHêº'MvÈŽGÕLâ‚0ÓÊÆ«u¢­bìù`ØÇê´´ÇY®ö…[u_ލ!wäïEÆašÏÝ ì`·7}³Xæ§~ÞÔ[×X|¼^•Ÿ“ÄåE”È1øì“¹…Z9ÎóÆ,Þl|_í?\š¦8Cvaâ%¯½Ë®·OE¸??*å’nM$hxØzÿI©]$Ý€‡¸û>ïì‡1WåTâ Äö”_Ò ¦O ÈeH[ÌÇÌ—Á|¡eßì’ùˆ»eM߸#Z½ä•ñ'ïÊhPò»\ŸìÈ5¦Yµa¿Eö1Š)±–,&ØÂºŒ ÙßÁOr;JÌ ÿ¦ÛšÆ~ÿKœÕ•¶Û•op“ûÉÙ(‚\”Ü¢Ðé¦ö4N71ÿþ÷Íÿ³½ýòEèÿ±õÃÿã{|x ùþ;%qrtð!âý±S–ãjVìNÁIÑ®µt0ˆ?£Fã}­]k8Z-Ä‹|ÓLÏ 2F‚ô¹Pû:P¨*#U\2ŒÃE~;ŽóÄŽt¾Ø-yNVGÈ–£È½`ãcK»Z7öo?#««é@e«¨¡L‰Îw×¾×7ì…¢(Á3žbbÜ Fƒ;´ÊÆZ»ó«á ŸõFd˜¦d³FZOcCåó* ’MÿÈÿ¡E™;j¶‚;g+h„ì—EÍÞkaL€øy2À(áÊòµŒ{ÊCUI|g·ÐUš^1ÜILAá›LÞ ˜†CfÈ2ÞÁô’”RÞ÷Ä Œ»/úƒàæØÙ¡×ï?ŸÎ/gF ˜‰Ñ„ 3=êa?lØ a#ï+b8øÈ‹­»ïÅÐ_¿ê¿p`SSô-%D6QÞ:¢ÿè*|ê]yÝ…Îmö¥b««©?UϨ‘ÎUÄ%<ùœ‰#åÆ#eÓP”ñé”060š’•ˬâxvòì5Ì*.ÿ]´ˆD"œïã:i<;ˆÔ*IŽ«ÂÝ#ˆ° ‚úÚ5<Úûb‘ÛÅŽÝåEn­XáØ%aÆ#“=LŽÑ Ñ7Ýý²aŒõ ¬| ,¬RŸpÈîï®Ôýj‰¶.–9¬Çªî6Žl`üD שîþ.¥³¹D‹j¸‹Î&ã¯ìÉ_^Ñ»OœµoéÚ’“Æs^ù8ª´”>pyØsÉ!ps|BŽÙøxˆç½uZzròÜ\íÐôaÄü7ЕÛE;¿ìÈÇÿÇÞ¿vµ±+ Ãè÷õ+ô>ã/6¶™t¹Í•µ·sq˜Ø@Â{Ÿá@œ›e›\Ö翟ºHjI-u·Á’éž3€Ûº–J¥º©ê«åå')5TÒ=–©L 2žxM¡u>Þa¤ƒZiWß¿Þ`-Gp f—̿Ⱥt‹3“ø®JZ€­;ÔPãË7:›` ßWzgý!Úø CÁÐï±øDpd¾Åh†`³ˆ«Þ®J®‰›Y6+{×3ЊÂàE® M?½xdzjô™6\¿'GRåå"Ž[‹ò„«‰ð…kþ@:_é•“ÅŸš]kyM´\Ï¿­¢¯Àxm|%f-¶Jç!(tÚ¼—Ϧnå_Ô ñ¨ýOCb‰§âDòú0¶ààèúæ6P ç:PL…ÜGl·Q·Ó»˜ãL8›?*-̪¦¯¾Ûªè‡oç§êpZS%OçuJ5ÑÆ3TŽ"ÕîP 3°…ŠV!¯ëÙêä̺ypøW$Ǩ*Ù#oÖ½bïStmU@£HûÕ¬fá òê þEò¢©!m9;TöœW»ÕÕÅĽÅ&4¾}ˆÍŽÞ¶°Ï#T ¡ó]»·ïs^"ŸZ£½ŽI‚C àq;äÛjw”V4ëSËíÔÝò9㻳·®J[±ß^§ßG·:EÎ" ¥c]ºùþÅ¿·;üû¨£ò_§Í4±¾Ñ¦#vú;Båmë1‹[ùi fáЫ]z£ÔqÙpò-ôÙ½—+íÖ´9 `3a(]ÂQhdûfÜë †j;™(·ÚɰŸŒð¶¨íZahiÛ‰ίßn/!YÌN7.tC0`˜ùšU•ÞÁ/ÇKÌcýë¶wþEª¸ŽÇ=À¢% Ì, 0¥~à^Ÿüj‹ãÕçD±Ô¾ÂÛ¤O}ø„‘V›l°:×H&§ê·]»±†y`™hÃu7’°~¶TÀeؤj^y±óòœ³ðÚQ"¥Ž»q)Pw6ÎèjìeAsa!K+ýD+èõ„†ß”jfúgžGÙIsdP;“ŶzÝn-nQ`VO½ƒk³í/¢IGÈŸDXAú"vQTQöø“Žß©)¸© <¾Òþ»7Ôƒ%äí&õ:G¾ }æÌÞúˆ¢pâãcIwìØ¹ZJ ¤J2¼0OÆS¨Ý2 y‹d€ |N32%Fhz€­®Æ>µ>h <žA„Zä³cÎÙ¦ÄÀ%Àn>X £ZÀôÌø\2Ht²§UŽâä!:£˜0¢3-âýa‘˜rµ‘µŒÈÜ×âKV©áNPà¥RËÊA$FÚ.@¹HX…«Ìˆð=+e”`†”чµû阋…Fî)çYà±½ˆÁ,l¿nÊÌ1·².ĆUPGNàáŠË¶)TV6þú!éX¿9Üj–ôçó.V¸HO‡npãI½¨Žæ{+yù¢–g5¥ªÉDAMçQÎâSÕ ÙZ‚xæ§MÏqª›³Ø"¼ß.ŸéôËuKss&déMÀ¯D;•Øè–ÿ9QŸlñâ¨oXuåV3È‹á¸y<ÛT0â4rE‚„ÅlàQaKÓÌ`¹ æå”‹¨$Ï1s+͸”6^£;Ùƒ­LÌ+Ciœ‹*$Ñ]qñ‡ü;¤C/©jð£™DŒejËï¬ÂÆ‚ 8Ómžîq,b@H¨c,ŒãðÊjã{Ö×%PãÞYóÑV$¬šÎ¬³^úÜf$íÚSÕù#ò¬ejëÒGvý³ò•‰]Uµåh˜]œbøÌ+ ï‘»,?æŽí™l–¯Þ¶k¦E*O wÝ£m)´Š*vBU™d€ žªf6_±<¯6ãm˃ºS‘SuË!ê~ÑKá™ÖÔ-‰¥)Z‡P·LCZûP·ÄL6íêÔ-3FëGB]/ûCŒ`àÔ3ÏU7}­,ëIÒ :)±Ý®7ø" ¾goµ”¨—Và²ÝsCÆ4s¡ŽC:&}i³%/îóîÁ”›ü}Þ½'’MK[0nÉm-e×Bü™G´ ªKê õÉJq%œ“5d˜ó*ñ¦R(†Q43 ,’f® +)Þ‚ ~ï»2ÙÂxð¾üšn¨]CC®”QŠ/R¼Ñ! #¶ÎÅg~ácøµLd #NŒ Ù÷‹ ÙE1yù 5w1wýóØølO ­yêȹ xÿ5FœŸÊ¯`>^œ->1ÝA„8À€—:.ï|VÞë ¼Ç)9›#ò¾çãlÇ“±Ì±è9]r•~~á!OÒrÀ:õáhâ;ñRÊt?›B)ƒÂL¬ 9·m·fsÛöé=Ùû¿×£OzÿwymeeÙ½ÿ»ò|~ÿ÷QFjûþïÁÑ[ EÈ4ÀAƒîˆ£­ˆ¡sjkk[g$}ò7x=î¤jfæ´î{ñaRpñv}Ê‹µ° | òœ®6ˆ®ð\ô{ã‰ÔuS¡ë•H&£ÍÐÕˆŠV‰ómÜ„ÈÚäÞ¹Hnø1&žyB6Òq¾š EW]Oíc‚€Iª[—EƒwAó.&¶"‚€ç¶R+}#ŸÎU‚×Z¡q)ËÈ{Q*¥Í ðÄ(Íô“Á§É•¾kSµ®ÃÐØ€ Å žº ¶.¬Q„.«EµV\µÇ& Áµ°E  FÙåUÃ;œt™eÌ5éRøÛ¤G®0&ˆñæš p!ö{_’o½±y×áR¦áºÄPyW5 u Qß iÚ eÖ€‘m<õ8´ÂqÒý’ ¬hU]ÞDæ}Žu JŽÄª26цoDKÔÃDÍÞ9¢½Ê0Ö5—ðö#¢#7€œÈw”}ª6ØÌ›/ªLƒ ¥èË$.s÷¥ ÈÛ†| ›gÏ›X〹‹Ç·çW§Ñh¡wIŽ,,+ViáÌæd}|Õ©[éNµÁ|L²8ÜŸ3¿Ä1]ìîÖù“áiÒŠÚ'HŽÛ'Ó9scX­f:vpÌŸ•ÇÅšF\GçHŸ“ù–iη%/ù¥n;ãN[%Øp¬Ü‚­ÇÔ:‰½]ÐÈt—ITß`‚ÿËUñÿ‡X}ÈÄMG‰5xKë­­%Q`Ш¸©ð¼IiÃb¿ÕßÀË×TÇþ6«8KAJ¿j¼0Ö÷z9ᗃ͕‰ÝÞãr½Ç²´ìÝ®¥‘'Ó»#qÀÈ ©L`³É›gÎxÜÙóVN;’ûàæ{“|“M*>Ó ðƾÃ2oׇBƒlôE¸E"pK¿«ˆö OVþ$+ÿEñJe俵µ¹ü÷ï˜7Ç­ÍNó]‹œÝ·ß*KÃþþ];!ð°yrдîl4÷››ÍŽh¥i@ÔÏí¸2b÷ö{¯ßÃx,¿´X×·QùåhxM—–ŽÌàN*N­*1LØm f8F‚ôÊ#y׺(¶`£äß·= ðÐÜÞÞn<_[E_›î§®ŠŠÕ€œÖ›ô¤•°Õm—xŒT]vKÆ&ƒ¡¼c9ÂPî(÷b¤Kyk^Óød§ØÀErÙÅd¯É÷ó„¢0Q8îCÊâûË2ý6tp‰r×@`†flb04ÐJÉqàë?°ˆ.#^â×C扫JÓ« Ø»¯ÔæÓ7ËzÉÅnìd8Ó¯‹ÿ³‘ ’ËËÌRo’.,;å+”M AŠˆök5L[t ŒÙÆÕç›#ãúÿM¹~ v‡·t•WE¦Ëò“Þ%TÝT9Íëâkü¢.ku¢KÈ÷4Á[Š¢•ç,¯Áé=‹W¹J' ’Ô{+ò’ÖþúiKDÏcvg$áÐALz“~²T-¡‘d ,z6’§4Vd¥-§ ‰)ˆDÍ·Ò#¦cr•d"l©ð3û[S÷k‡ú¡žéeÚé~¥W]¤[ðCé-Ìæte¶Ù¾êa ’k&ƒ õ"ÚÊ;¸T»ãŽÑPC‡ Ô6FcXBtÿZ c6@;‹"Ô0 &ý‡Iƒ‡Úpj˜u»£ó«Þ(*n ?¥âL¾¡ò U~ßµ~ˆÞ!áczÿ2 ‚Œmc¶¢jÁBƒq ‹‚àTfój#„TdÊta°uo|‹Ýîú—Ô§tÕ'öBÉD¼(“eü@,ÔÑGPâ;}8v߸?üÖŒ•ö”ó8]$)¯Ah@.%û{ûÛ-q~u;øÂ§W‚Ê.h }Mdi§€`ÀkOt5ícr‰ÈÇ„<mr±¤=oe3xövúd„á…nIPÁóOô$Ɇ›FgRMbV_ö´Ô‚ºTRJŒìx•tÉ—¼szˆ¨×׈¯€¸c—Eä‘gV¥¢¦k¿¸o‘] ì]D?cú¹Ùê„ñe£½~¼;P³ctë=ÜÇ_o׈…¯‹üp(«ï¿{ÛÜ„Úpr­û‚>” (A0Fèðið‘>t÷Í6vÏ/up ùv ¥ Ò„莺ªZ•ñ G&¯éGÿ~:Nè8¨‰­üü_Zl Á\=¿@UM´ KŠ£ÞW6q€»Ž„ —ÞtÒ7Ô]¶ÆÕÐU6vkÜPƒÛuî¶ãâ•.ŠÍ.jf[BÞÐÄ"x«EÞ?–à_®îVÇ#þàZöwø |¿È"v'aô3=Ù[Œ=t= W¬Í(¬?ºE0æ ŠU’ÜD÷ã-5Ãá j¼™RÀÖÓ›^9ÔÑã+ ]6<^œwµ š£¢{‰¬7F’b‚¦6:} 4¤)6ÜÍu2!kF쟈èhëüÁ°î™™)à<½ÆëDÜåÌ}W¢2ˆ Á‹ø`// C<:cÄ¢/¨EQ‘ë %«UY>=—H´k¢P¬ ÜÕÆ.–Ôhäÿ =˜õGiÂg, oñã†ØjÀO½Å†-Íõš¬È­Î«P Ï^½{ýÐÞë+é⮿‡Å• a˜ƒ£j&wn$Hûzy³žJÙ‹3¬âÀŽ?Ä•¥jÖ—‡zµ2~%´T™ ¨7üú˜÷u]Œ|[ŸöŸÞyÀ?ðÆ“òdÆ‹4wÅ™ýuÚ_«S-A©U¸ËB­…˜f›™ gm²U]䎛,þa¿o“Á.ë¤R„ :â[w 4ä-yù‰6q•˜©M‘MbC · ]hÆ2&`žT§9ÀZ¤y©ôzmóCsÅÿÔGÿÿéããêÿ—ŸE+Yýÿê\ÿÿoœŒ aÞâMÒwÒIsoþ×Å:9Q®‡ïı+ë/gð¤|À¹‡…4†ðI,ÓÖ)?úJÐp‡„ °\B\cc‡C•l÷pP6€ºR›óf4ü˜ z·cùž3(QäsÉIÿpjH6©êv?R˜aÕå¡#±€üÀ告Cô)dþ ]¢Õq½YñåÖ ÷­][Éø|Ô#¶£’±&Ÿ™{ô‰ `v' ° c®¬WzõÏÕ*ú~¿£p  8Ï…ëSõ…O%ó‚àUÖ¡¶‰+ØJ„— ÞqSòM5½M5¹•^ÙVÞx[yƒºÄÛÜ^²Àpá¸Ã<4 †ÊФ‘…VS­^Eç—Ù6Æ·×ǘfà´`a°ÚIÂÅØ ®¾jèÓ¥ö€8€643$œ„¦¤5HFÖ®bÀþ!EÀþ3³ôB]CïR<Ôˆ&ªqì­ŒS#BY¥[í›ä¼wÙKÌÉú)3ɆDÓî˜ÜÖF½¶–8ì¥û ÄzšÆˆ5ªë§_®«î{Väcô·ƒ‘ª«j‹H÷JumÄí¶vzv0Р‘Taïxêæ-šáëàØì`}Ãî íˆqÖNbÒ3 gãÉpÄ‹Gá£#„ÕÞ~mï¸&=ÅçÆÄôô4sÕ£n`" % OJD ['î”ãWæ;8C¾ÜÖ¢Z¯ñœÜÓIÖâ¨ýŸ_n«ÿ|ÝûçëëÞ 2¨®}é+ N¸à½ùÌ.ɦä V˜õqÖ+(¯Eõ}¬Qµ‚¥KªEß`-¶ª¤$óONðŒ~±|ŠÊMn¶1J.¡‘Á¹rý™Žj-?]OA™'£OÖOÅÐì×–ë¦Ö¿vß`ÖMmz?<Äöæú>F86ðd}ÿxÛÓãôq“÷×Ûí¿î¨76žý6€+Ü íåN“)„4;}üuä]൚ñ– Ëjà‚¾ßH³Pœ8²)Ú/ÓMÆëžp–fÅÓ…pc€º*é•.!ÃNŽ»òî *,E‹v7¾“={Y[uJ-Ї:_„]ç }»iPÂÈÐ3輨<[°yǰ‘Ñ«ð%E±r@¦8¹r Z €ªMQÒìâÂŒÀzwrÓmа–Î „XlŒªzð®YĦ ÄP4¡#ß’ï¨ÚZ ¸"ßr÷Bo{ÃÙ^€6Ä® ùgä¡ênŠj¸Ãçðh›#Kÿ6 ¿W3aÿÌûç™±êEL¾µK¥²‰æ¬ »†o¬ýa·Íßå¬ðw…éhÈLˆÖR]naâtÿîg–(g‰á·ÔZ_ÿlÿUqV¶±z^Z²:g7Æ;_ú0ã~^,•_Dz_I+‰Œw²–/ù€ä—A—e(úó]–}ú¿äqï>_ƒï2÷?—çú¿ÇxŽæêÿ4u`à:)»ê Mö`º½ 7uwÍÞököJ«ö°¡Q’ú®O£¢Û.RÑmÏUtsÝÓWÑm—RѨ•/«È" RV{u`éêHWg œ‡„º¤Œ®®¤šÐ›£´„ʰì0Öa„UnÛ5‚eË̬H[ÅÊ*œ¢ÞA]gq{eÕÁ“RVQë¿”ªj®¤z$%IRoíWTWÁWÖW"Oõ·ÒCù@“Õ0ý‚ &{V3R0YÑó3pË×Ù0œµ¢è p ~7E‘­ê©#€£ÇQìl—Wìlÿ|ÅNÉǧÿ™<²þçyÖÿ ~Ïõ?ñ(TÎÕÿt ÿ¯­}º¾uüwÐüÜW㣮toí«?ާÖùtžœÎÇsI{*ýO§HÿÓ™ëæúŸ§¯ÿéü\­N¡‹Ö–㢊eç»=ÀÛØ¦Ë–Ô.ïÎy™{æù­ß{ܦ/˜·¿«þ$<²u>ãSú§©ó’6«Ú$?Jtà–öUÂjÉ Ó–?¶*xs`EJ’PmKyõJNRqHÝDÜnh:{Žf¥š†%}ôßœ°V®¦Ójdò¶ ¥ÃõŒ™› W¨f/pÍ;(=.\&s$qÙìË3Òõ<òRO½Tû9Kµ2›¥:.·TûÎR•N”ýÔ”A–ÆG¦@ÉjzøaüeB·[›½(Íó×8Ωá^°TK:š …ŸuC,ÍQ3uî¯fòè®ÆíÿgüæúŸGzŽåévÚ†þçoéüóÓ=vÚOI ´ƒ 6Àº‹þæ’¯ÿÙiÏõ?sýÏ“×ÿšþLýÏN»Pÿs/yq—#'yvüŸ4RŒ·Â—Ø>&}@’4r=œÁR#É•týYÆ“§õ°ž;í_ÆßÇ}<úŸñ#ÇZY‰²ù Ø\ÿóBí<ýO[Ç:>ÜÇQ þv xòavvï E€j?ÅPc²ß‰"CAÝ#èS»(èS{ôi®Qzú¥v¹ OHˆ¦êWåPÄþYŸ¸À¡Ya¾]™¶Y©r޵[é^4Ñï¥!šéd;^xc£æÝVZN¥}¬´ïŠUé!5iíÁ®Êujä4†«š]´*ï¢÷õ‘"ÍL¬U¬×Û–\ÝV¤€O*ЕÝ*ÜN~ +ot«Þ%oÂ8Šìð¥(Ö‡ºúüg ™}nF7"ìf>Û²2NÖãÆÈ¢!â_ï,Õ¥ÙŠ¡Åœ«.å+Š—•,k}£½^Ÿë0Åo­Ã4:`¹èQÚ ëm§ÈÆ×2‚Cíù‚ˆ‹»…Ó>í§ðº¹~R9ÚIáÕDÊXV>MÚt£_ Œ~õ¾ÎLÍ­—¡êueÛ)4¿È×Cù׆¼0îé”L”:rgŽiÏÂ+P% ¿´ç %LE¬¡ Ñs×çÆ&˜ü)7<g­`YÞAiõôº§HŽö•Н°$ÛÆ.µáDQÛ«EEê[ÏšYQJ9û|º}R ¿üEÑà£å"ôHe€( ¬âMg^òÐ1Z—¥^ßó¢ÁcãÌË8“gû@@†j?mJËž?¸˜†ÖF¨ˆ*ö ”ð©òwÑ‹’È.sæÈÛ yÛOVñ…Ž9óÑDÎú"³ë伌;@æ“•lŠÊ3_™Æ­a8ê^ ÅV2øJ9í Ö—¸«Ë\ϰŠcÏ˯L šÆˆõ¦Œ «Ð„åX°²¬€ýʺñž*HSE8àÞ›CÁ™®§±Uy¦eÛªÞÌmUs[UÀV5+ ÕíSoJÙ§˜Â”îÕ´N¥[JgÆÀ©bþö‘Y{2>IÇEºÓo›ZhW2Zƒ†ZÔПNÁN¶`G5^do³ÐûÝ@À*Œ~0eãàü4 9Çüð—£áµÕNwc£“u¦e…Ã^ŒæÓ&3-ýéVß÷Uc&îÊ,—±Ê½™•»h-VZµ¨úG,ªÖ„Ó%K-£˾TMW¡bYŒ,›a9õ©ÉË81D;I\ àÿA"0þ?Ò•žLX˜û‚«[(~<8¿ÂPÝ”P=ùÞ›üZ†#"w)Å’cWvE²È#²%ç…ronû}q\̹€¬Š7¼cypY’¯É` [úÔûš â'ß»×7ýDÎ ñëÙRªPY?IJÑÚ|ø=Ù¥eáåe±‰åX,¯ˆåU±¼&K./«¶¢w­ˆhUDêëhÞP‰c̬¯ŠX•Y?Žà½}V®¬ˆ•U±¢ ­,‹•H¬ÄðÞ=SÅêªXUåV—Åj$Vc±ºï3EáYSE×–ÅZ$Öb±¶"ÖVáý?dæš}Øg’„!]"´½ö/ƇöÀ"ûÅØH@¢o’ÿ {À .¿Z«/¿a@úZèÀ²ýîxœÚ(Į³Ð5³ÄFTÛl½^Y}õ,Ó âøôÙ :a¤ wáNcŸ§¡:M§yzM{̓ÚY2ìðÆ< µòó@`åô@Gï í9æ²çÓ“]Òã® 1ÂZWS¯(‰~ö¡÷fIÿMŒ¤[3ðÓÙ ú­8»f §³%ôC»‡PÓèÅÜúÉî"îe5;N¹•Œ’÷â–T›É(ã7YËGí%EÛ¾‰¾µ‰:r‘ØðÈ%ã®Î Íç[ZY: ¬eçJÌ\ÁqE'ÐR<>%ÜÖ"–]FXCX€:€S6†.|¨8N€5EÞ`Ía1a•üW&v¤ùÀp€­)z8‹« ËëfÈ)‚ƒ¤µbÈÍê ^\k)î‡N€ô»œSÀzü'õOëÉ;¬§àT°?;'ÃÒúÕÙÒúj0šŠÖÞÒ'qJÕ£é(}f…t0fdÞ‹ã´ˆÒdÞ‹êŠx›\ˆÝÄÛƒïaâíb»I¼Iv[p}°0qî'È ì*üÆCmn‹È¸Ca”Šo÷(fíü•*%/°æ›ø±Œú9N+âDŠd ]ÌêÚÿeÝëug—.ßxáëõ÷òûËW]ËÍ/•Íë?¦u®¶á\å䔥’{DMÄ`˜ïCïR ^Ó¡>¿-K½^Ö£ 1,­aÿÝ™TcaŸ¿¬éÒËV¯½Ëk|Çüj^/tH Ÿ,áRYܘûÓ«´ï+KÐÂÔÏ¢¦k8=÷oÓžooúÃ× ÇÔómNÏûÇþž-Ï£_*o÷Û¿è¢>|Àúê]!Sh`~Ѩä*e‹Ö¢Páe iþpc„Qﶃ±È0ÁkÓ%‚¬îæÉÀ¸á©c»(dœIÒF`ðf \Üï`DˆØÅÞÌ:ä:FûEîy»ynl.È,€È}dÁÄ·f%Ö£õí‹UOÇ.ë÷P¢É%B>¢àšymwÁž÷–‚~+ãmçy›Áx¾ËÉŸ<Í/t“*<ÍÐ$Òi†ñhÓt\K²›B‘Ï©@(<T¼7&üXPËÌÂÀƒ_ fï°[Ó?´Ãnî!˜D¶lâ(Š)¡CÕáþ±Ÿ—ÑO©Õö9:Q…µ£ü·Ã:ã«ýˆùYOýB-,ôi·éiü‹¯ïÔ¾øð4^ÝA}¾£ü=HU‚°šz4~Τ—.:ÓÌ„Ñe/õ¼­e‹½}':èh:i.#ÜqzÀNäNÍ€ûn.Ü 1m?õBÎ٠ųœz¢j®ýà\ظo@dÿΘ‚n;w÷›îµ"ì“*$ I„$Á» WQOQuÚÈÍÕð”òˆð°0â[¦=íã›­õåµ#д:ÐÚ2híuO°—Ë΀ˆRÖ‘6”%¦HHã#/Ò¡ÞlH©¤Væ§»!1Ò´Ý  ûlæ<£ãÃ;çv°ûÞëÏw%O÷oý<žQÎÙ]bN”K·3cÊ›Å&1öËkâ)ò©áæ¼êÝç0[^uÎfÞa¢bNÑ„—ü5ù¿YcÕSäÿfN¢Šæpf.ÈÉý,"7gÕ~WÂæaÕŠôìŽéHü4Me+B èYÿÁ>I6W¾Ç 7 Ý×èý'!é¾Ñ ÓöV>NφólE³`=gJÙ‘f ¢Z/¼­kEÉ£¹›­h?–Ý\9*;«Ï¯Ñë/°9PS7/º}Oõ¶¥å\(­W ±úL0˜mF®J>Ÿ7Ý’p½ÚÀÛ¡¸ërä®Ep!¦!qŠ…ÉÝFÓ°/3GôE›™ä$Jcxˆ+hdÌ“w™ìàÆ—œ©•ãh(KºÌ½àB‹Âã½=åðƒ‡úOf9phý"„)ÏLˆÙ‘ħÂo)¯ýWTÉË7ö#ÉÍhxžŒÇOJVC¬->΀ÌÍ`ø@Åx¨ÀJÎÎ9ä¡$e“L„¿Ã±À[¿À%ôð ):ð‘¼àÀÕ¨‹DÌ H‚“ MPÒGÖFþ,Ù¯©=5©l¯fÒIþ”K)}Œ¤ÍEŠWj}χ}ɦ-¿ 0†9[ßæä6º©yÆàŽŸv»—a=å©0ÅyÍ‚I¡.¡î…EðŒØÇÅTëñxº…Bg*÷Ô1Ì\¿<Ä£kHÅÍPÉЈrgXZÑÐ0UWêó]• SÏ#Wœ(à´çšˆ´»©Îr5ͨâñç^ˆã;ÖÙœ¢o%ªêhÆ\”—ó„½W„pðìVÇÿ´ÿÎ÷Ü“½Öó÷#ÿd7û +“åÉ®'uÍàÈŸ)EF;Í“‘¯¦Ö³Á¦ÌhÚ耿ïñÍõmÙI„JÌõmêé*Ïumêy2 Ãýumr•еUIµmyšWñ3uOêD°é±ùéÉiÝîtô.YÂI‚7ØÙ„'—Â̯´ aF>u!éÓ?zö:6@AˆÂQn†?"YQÿ÷»˜’/•¯Ej_X9˜C›d_t'LËË_Î 2°cíAÖ(·„©+5@ ü$Žy”ËSŽRmU?U¼Åˆ$c²mSØêËK¡2ªÔ>þÖ=ÏiO¦[¨Íh2êÀÜnŸ[oDÓ´/¡EÖ°©„<ñÿ2jR(«™¬z«¡V}ZĤu߿ۺ»~ÅãÜ•˜Y2JSŒS£¦÷èû™¨Y—âïÔˆ·ñ—kTS"§^%?„¢xáŽÔw¡ùî‚;{wů˜4CôÞ»á¥Hho%ç“¥ÇÚˆ{Á ‹IHüÒqsž;òéSòÌ[qÛOà#oˆOòÜËG ïŠ!ËÕ]®‡Ü3 Óã.Ó{\î„_jÓbàD—ßOp‘`¿ aîëá.‚Ë“[¦CKSl¹#f>ÍSð±PrV„Õßú¬Ž…'(ªLƒ/´óï,¬Ô¦ãšï@pïÌ?ýtaÅÒ2K±¨ò$7«Ä¤éEˆ"dòö5µH”½GSCC¯äšqЇ8«Ív?²0ýv»³øTϼ»¢ué­ó€§^žHÒ ç&Æhß%“ §5Ï$þü¿7šÿ7ZY]YVùW—×8ÿïò³yþßÇxÔp2ع€•…5Í|JܽýÞë÷º£tÀœ Wo²Ü¼¹v\Ùˆ™å÷Ù=ã>pB\¢‘wÊ\¸‡¢L2Üâl¸n:\UÃLˆʈ[”ZƒÑïq®ÃNÓt™f*-•÷°(=§Ç§Çõ§Ç•¹•‘g”(wÑòDœ"Uîa©T¹ÁÔ²¡~Íd²á4±FBR³_ë±Þ´n ]Ì$+£yš¶ª:51‰,§M+Q“À¯6À2Èê²Ù²‡Å9dí®ÉRu Ùª;(ï*ô5uöÑI&fC¼1y "PWôáàÑ8–¸ŸÏ v¯Ã=«¡H™e͆ 6öÚå“)“ÁM3“Üâq^é‚®lÕÅÏ0Iò¸ÃíE²GôÏ×½¾þüg …}·…J æz,L?*óDŠòÎ]G©Ï áwÆãV[FŽu©µ½D¬±?XK©-…ÍÑt—ö;KT#ùE# ZuŽeEñ÷T]\ô¢úv_fåÌŽxW¸ñ?d;¾NJXVÄ4-ÒEÎ^vô ÙD O 5–ˆž,Šxí<îù,=‡å-=‡¿¹¥Çÿøì?“Gµÿ,?{¶òaÈ}í=[Òܳ=µ­§ó„m=ðC; hìÖN‘u§3·îÌ­;OߺÓ)eÝy0³F§Ð¬±åt2kdÌÿ"26ÈV·K¶Š—vœv+x «ÿ±¡{<ßÞ$£FnŸW|xdë|§â×OS•ÏNµÿ³”î Ñe•îë’,? Ò]uAb'ð -[êLuä^Ñ\Õ&ÝŠDÕ’¡:..¿íQ¤;’W`æ¤&õ‹©íõ都Jå j&rU3Ú8âͯíÂ1²çž‘CmH˜•j ô©î΂kË"­†QE­žs6‚4¥¾Ç§])\ÅšµF5ïŒQ5yT<޲º–'§aãõ~Ûñ¯·£‘‚ݱ¯‹ò*’\ŇÝ* 9Á6ÕªM£†@®vÝ7rÔÇUCøäÿëÿ¯FQFþæòÿ£< såÿYÿOröþ»ù€Ò”ïíZávîî úá +î¢øP¤ø0W Ì•O_)ðá—qùT0\ÝÒ*å\?ÓÊÓ;šuTOò¡ØýÓé: Ñ@ŠÕ•xÈœ¶k%޵Ÿt/zƒOb€wÚf+·abOº=I½å̆¨Ôé¤$ÿSߤÿ#Œ1ë–[gÆ ÒšÑ¾wFò6£ÑLñŒBñZÉŸQðìe÷ùuÒ¸H§fš"ƒµt±]â–‘HµêQuîßú+¨×êÚ)oîÜ:wnÍsÛ)åÊÕ§tò¬ ;±Nã«ZÖ3u×ï\V~°!ŸÔ¿—ËéSô1MWÊSr^÷ñ$¥Xzls—Q×eÔ†Óà”¾¡_Їtù¬ð>÷ºW>‚o'E½à¾î›®–}=1ÂÖ´ßÅáïCy‡¿K‡?çñèÿ'UÿGÏ–Ÿ¹úÿ•çsýÿ£–khÁùÏWn˜ {aûʆÇÀ6w9ÇÂÑ/ÌV.{#8¾Ô"¤0ìWºq—€NaðQ6ÆÆF5®õ˜ŠVX1Q’Ýj‰@݈žø×½Ae@yñ¬UI‰™h&*ÓóÖœœÙÄùp”ôf8 ƒ ê$ä/la ß°1¦.>ÞN°@ˆ6¬!ÓB8vR;ÍF‰-Pd§ÙX’MrîÕ¢Ç4Ò˜fÓc¶ñw4Ëx¬Lj—aÆš£’쇇?7Ù˜&›ƒfëWµÛM±ÜÔ²©ÁXJ:1åMÖ|30-=¤ÍܫŨ1£Hâ{žâ"Ïš²‘gûóèY}7móí@Â4Å„%”'D‘–ï=Ÿ•ð|V çãKMáGÆ^2í‚çXd„izÉ.x8·ë@Z éÙýEÑŒR“Êìýyx>/¦^ôR€w– ´0sÃÀQÇ’EÊR!/•*o ð-6ÄÇð/íË験c²«¼ /§ùäÆ&ççEóÏ´{«hÈ©I©`ÈÙ¨¢ÀX5­é%‡úÞ¥£xZÒ]¹øa{eZ²S8àœÆðôK=µ Ãt×›šåˆOyÂRžQ’‹±¶t ÛîË•1ùcÃÏsO•A= „CÞDí Š4ò{¹VjÆ™ýš‰5Ï‚X=¿ã‘å8¯ï@Tx ÉÞž/ýðœ ,ÃçC¼|ooZ¤Ž£)‘:.3^)\„œˆcËiƒ‰_s¸Ìbâ0ÝŽ Ã:^¡ãBž^¶œÏpÁrMû®ÍŽa^<.æÅ ÒSàØC®LÅ~LñóÜ;¹ìó@Çòµñ°8|ò{¹¦=¼šUFX€~v·áÇòA!D"Ï›½Ð_ûAÌɰ¬»žTL¹­(^#~qg.Æ·yýLi—^x#Ð^æîKÄê*«_EPÈúüÄ…e³=5 W–óý®ä 3P%¬=ÕøxµrwAh–xµ’#ï† €Î`neœÑŠ  APx¾ß)«P¾ó¹”s>ël<ç3Ÿÿ×ãæÿ‰—Ÿ?Ïæÿ‰Vçþ_ñ(DÍõÿ: øý^Y€ÊûwýÔ\@'• È0ÉÖø{§ê¥êÌÓÍ]¸~®GH4wá²'õ¨.\?+ÁCq%•µÒYÈ6]F!+ÙΓÍ(”6s7G§ÃŸïè4÷Eöó+ø"í…‡?÷Eúõ¯‡³Ê<1¯$#•R Ïõ]²)‰°òH„r*…êÜÓQI¦Ï˨4Å$KÚEQj¥àdŸœSA®­)`—㸀-ÖC;5¤Ûšb‚9žL ZÈñKz;9„î×t~*&‚YÇ’C#fÀãø<ïÄÜQÞÏÍÉÚ’æóëù?•;òaù8ŽOŤ)”÷òvòÒ(óyRîPwNã÷«øA~N91]D‘ CNî7a'kËñzÊ­öËyDOhLb†Pû?‰œd†ÂçÿpɘՒüVÞP¶ÇÓCCî!ýŸüüæÜ+j)N2ʲùnPwÏ5)l2.ufåO’MÃ,¦v^š"}¥;Ñ'ïœB…ÞHwOò)üÜåJñøÐh1ï‘t;ºï¤ŠÇQùü–~KŸÿÏè‘ã?E+qÆÿgùùÜÿç1…6¹þ?G>ÿŸ3cVÖ/ïïèDÙž@¢ˆÎÑÓòêÞ$ÿö.8ó›ÇŒ=ÐQ‘ÐÑÜ?hîôôýƒŽ~²Þ“¹BºTž‡·Pº œx"Ýõ½¬@—ø“4ô.1¸KàhtÕ•žFÊ—#ßÏH• z¥°ÈÚžec5©ˆD޳Ñ9q¾ƒž•Át°9ÿD(I—¤Ã%éˆüx2~H%] ÒáñÆ÷°U8Btàiá|NSÞ+‡‰CzÁ+¤“ØeÇFÊIÙqÍ oÝJW!݉üÙ;Ü꜖YqÂo.ïtÜ|×F¾Ž;O'[»Ìtr³ud“Ž á°Gòèòg%W« c´ êT™Ý2]vƒ‡Ír0wöèìûÜÓk¦Q§è2 P¢:?•ˆì(x¡ÿ{žPð)u/þ¾Sø½âM™ |ÿåý‰a¦vg°´ó¨R÷t¬J½m–Ö[[8¥]Lz~ÄTQÖÛ*ß}!ëÑò3âK•ÙK#ý»…•Ê'ÊEÀz‡ª0e)ßï8êQ\£|P~$רLN¾ÿƒ½ðû©NééTHà¦ÓßÄ­IÒºV˜Öù\{ ùa¡† \{J1ÀS¬[¦kÅI!ß§òd@¨$ˆ é@ü¬ˆÐOœðÞ‹÷þÝ›BÔ¡„{Ó‹¿£{“!öûpæeyŸ&ëè(H«Vµg–1qò »…s(ápó¸îIùK9U` ™˜N£v‡˜[SDšåZçktÜiÖ8ànx•‹Õ1àatTÞÃèè‰Ä4š?åÿ××øQý¿¢•øY”ÉÿÍóÿ=Ê£ÈØÆÑ»c (Û´“Oâ :vmÔÅf]lÕÅQ':¢ŸMüÓß1ü½ÙêÔÊúw]Œz_“ÑSuîò¹Z©É⌶ҩFzª<í¶éÓUä~u‹óáõÍ­rniŸ_ÝŽÄe÷|2õþÓHkaWŒ’n_Ä?1pdƒ’¦ìÞ@.º#¥ôÊ`åþ çâ€Pÿ7L@4`Iþßâë úÞâBýQgÎ(øÿ„o°Ä×øþ¿ê­é>”ôОˆŸ£*–}-–Åx(ý;Öi 6yéàœ’Þ§d@î/Žr.tXÇœÅX ênl,B£ÿD?£Õúr4ĸߣI…JT©„m?ùŽÍœŸo?u'‰Ùc wÛáà@×ÔïÀx°èFù¢›å‹n•/ªžw³ýðG3¡v$—Üjß{ªõƒàgômÔ›LJÊèiÍ6ã3öõÆÉ…ÂäÔg w ÍÚü¦™ýÆ™n®2…Š[RÚæ ÉEåºû©7@wSt9а2q}&œ›ÈKž ã t»éöFL-Ä¿tÊ3Ül…m·JRaB—c 'L@ôRcù7·#ò}ÚJ&Ý^߯xï†è,uë~¤³HÆIwt~%šƒñ¤7AN ±Óà:Cgçc ’·çWèj7!7„£áut'FÉÅíyÂcë¿ÿPwpžôû<Îd4ŽÆuIJ’2¢ë„K)¤ÉÐ||;‚3¡w)€ÆŽ{ûIˆ6‚†[ĺ*:>ð‡øH9Wü,”êbg}ÿMÝ ¼ž –ïסkôÑôsÐܹ§ÃƒãýÎá~^?\[ÚKÂwNâA 'åÆ&YúáWÌM:8A`Ù‚£sûÞÂQ™“Ð}3•ošoÖñl…:ëÇðcû8›ÒõÁç—±¿~°¹CNg‡Ôí¿«…Y.Ûï}!šoïáE™ÆX ‡©­…öM´N6¹²úfÛMÛ­Œûöè ¹,íMi™6܆ åQû[÷†Ýq¯JGAS‡D}Û=QçÖppñð7Ôfðq=ýˆ¬Jß`„ÝÆ¦ÑOxBÎt*ë­ªžÛBq]*ìy´!ªK­í¥cï6=Šé€›ŽÅ’œÿ:07 ð’ƒEgæ¸å”Ö”œ%þÚ´¯yÒ¶TZ_ÑE{â‹ö\)IÍGÚç!6ÄC1Ê‘¯ý¡øCÖ¨.bä6Y0}K3ñNÝ3ôISwìð{çW(=tÏÏoGÝs`xà˜Ü ³ºuR_$ç=ö¼ã˜uƒîävD׌CÅÕož-½Ý^bÚ¸ˆû+‹âð9'Ó’Ød~^HV×R›J8àÌžR¿"çΟÎ~‡ŽVŒ8`¨vf½Ý¢· Œg>".ÊQm(ÿK—=p† D– » J=g΀x÷BPÒú‚p|ÓóîË ì¦ÝNfGÈ-àŽ¹*‹ƃø‚J·29°GÉ¿oŰ9è~ñ9‚R-w•輡ñÖœñÚ€‘çíR|xAi§ÒÞ©ÑáÆ« ¢Ìík‚_ƒ·JK,n¶Ý )[¬±!Ö½N%¿TîsïŠÐcÈu†è— ~€H$[Ç¡ÕÄÆbÛV^n ^‡×ôífÛ† .ù&WÝr«nmõæª[X58GK Ž@š£–h‰Ö#NQÎqs33ID 9Ì<6 ››. h–ršržfI÷%ê¬×¶<ôÀ&þ²Uzi·Å,œ\^ -³QPFsND8.ýçà¢w 2ó•– †Yÿo”+œÙè¸G½ÅÔ ôßYß´Ën†Ë"Ü%u^‡B.t3T–©²âX#©å´¯–VþÐ_B­#Ë@ ?-ÕO–¨Zß¶#œ"LÎ%ÑúF›Šl†‹H Ýl/b{ ¨ØrôjqIl¶†%¡Jhl>ÄæÇïppr¹À´‡0lô”|Õp`¶×iª³/y†ßübEôÇh9µàèk‹z×R;ô‚„Ü:jèÞœ 9·ŽºÃhKê—”s&uJÊWçK ¤¼p¡Fº–Œu¦’»?ÛP¶ØÀš6<ä÷A³ÒI<7+=Ü“µÿÜôûjÿY^‹VW2öŸçóûÿòH*gÙ÷÷)¿Úûºh¶6áçú~¶Û Sþ‚÷ù}7zhf<­–&BYÎØ£µ™æ"ÿ{™íãÃ4øßö¾& Ð~ª Ø_4Å{ ŒºŸLB|˜`N¤…?¥EøX_>—½Ñxb[¨þ:Êš§°¿Hs+ÅËc×:ÙR2»4beX=iÅ:ZÒã¸îöûPfÜ“%tlºj]“n“íÛUïüŠ®0ùžt—{¿Nº¨&Vaè~"‡º¿Hn’ÁE28ÿ¡¾p@XæÂ·„fá5ÀÁ§ÉU~7ï­¦l[_ú ®¥0¯FµJ Câ#[·`SËÐ{û¾f«Á#ïý&¡÷¤‚IÍArÀØA‰¹÷çü“É·$ÁPçç°¹-‹Òû%n2µ”|˜=H>@ò!’~|‚äÃ,Aòa‰›LAÂÖ± ¹íóîÝ›Ý><9Ú…ú´K~®yd:Èc Éâ)ŒzXE1üˆc²ö°QGbP¶áim [ï:ŠMõXðÛœ>J_ ]ø GoÞÒï¶Ï^‘cSà2ÝöοH2kØœ°ûûÛKQFb`͈ ÌÀË‘+Q‡{SŠÐ“EZ‰°z8ÊYfͬI…sMâïQ•ªbVHïö½ä0P.,_ñ©¼×Í£h‚ê8\'/ï£ëóHp¨Ü¦·¨ØiïƒðÉDµxQ}df„Ç¿¨gÃØ>˜3앯jº»,œå©,Od7Óa7¶GÚF×{£È˜6‹1² Äìã\bûUüw=ydùïùÊZ6ÿã\þ{”G’t[þ;øæÝÑéÑ– óöü½§ü´¿œð牉À“ ‡4×iC¸yÚ‘!ÛÁôI†ÔÕTqÝ`yÐ8Ã|’"˜ªç{Zê,}¢ÒXH"ÑIº{Á‘p}+ …{•¨Zß«ÄÕúÒÒüѪ¦.e“ä²v}Õ"P4/% á$Zêo/Õ*ô¿¡ƒ¢Ñ®é§ø¾² ïV«È[_Ã:^Ы]NåÅžò±î#ÓË›õý6vóèUQ7»F“¡Ñs¨§<PA3ýŸL¦<‚NÁ¼yÌ.[Gj¶ÑŸ Ù–Ùl±PkGnzïDn²½¼ I«–$ÇÐK.ÌZXú*3á‚>L÷(¸Eá9P2ÔžâŠxòûæ½ç›ïIQ—ÄžR{ÀF6ÁIÒƒŽ!ÄIæF‰Œ­ÕC)sÔCçǾ-täa?”XÍüáušœO­™£‹có§l} *S–áWÿWü+²¬Ò޾dØà¿ðÛz“v")…ç²*¤}ppÝwÖÂË]ËÜóéøa/£Õe§’¹¦õZÙÕSqo “H'ßSCqø>»1ªÖ´Ã’Ñ_BK¥™ÆfÓ{¥9ý&-ÖôÜ33¾2,x+™I-º ’5òÏ,L[^¸eÊòüc9ÿltzýl9ûNdÝd6üg… Ô(º/EËîZùpß‚EúúE!¶ì¢ ²Y¾sh¤¢¸ƒÂø¦<>)4yYŒ&á´›n$ó5ÏóO3 *¢{ø‡’EÛ–¼:ÓJÞùïÇãÞÿZŽãgùo¾žËð(ŒÊ‰ÿMÎp¨Þúe?ŸÌ3™BØúëHÓtéûâb\û?ªÀ³v¿ ïx.CM"ËuÞFMÜÂ$QßÁvÐpÙ~+!lØ uªþÿx¯gŶ&)çýHÅwúêÇPþËo‹ôþ¹W Ì©½à¾æ‚S5Èÿýô]GøI1qXèîƒn6©öãmª®>UîÛé\ôwgÊGÜó;I‡œ†äÆx-NM†ÅóµôB÷Ø yŸŠ*ì÷ƹZ„йöaîô@ïü_yäó þΜÿ+óóÿ1žù³Ïÿ>ÿù¢ÀoÂØ½ X pµÿ䳨€Á <$+pxoΚ€zæåê‚AþŸ_‹Q˜å?gzÊ?Æf¼=Ë;öy~Öš¹â'+Ÿwcó“ÊC%/×ÝA}YA¼{AzÓn¿X4JÒgRÊ‹á'ÎÀð­×ÇÈð_Ðël¤.lµº-þ7ÉEoܽ¹Iº#M¡wÛk …O»Æ‹ÃE<ÌÆŠÁlð¤5¯ŒÇ볫€`¬2‹LÍž¬ü²ìIöüÿ÷§ÿ%Z]ËäÿZyÍÏÿÇxä²ì¿½Ý¨H»ïÞ>ü;Æ»£”ç ~‘ÏËÑ»ÓÍÖüùn{¶”"†D·ÿ:ÞÞúyO0šJJü3_ 0ÖA®o1ÃF‚P‚tƒ³¯ÉŠìš<Ž7¥çñÑ”©Ãðî$,ÎÇQý|»âS2HFp®JÝÇîà"õ0üÖ›\ÁÔ±öøö£º‡É·Ã÷ŽáÝM2JßÞ¢Û¢¼§úÊŒað{†3ÔX¾´GTn³Û4Û4<•×?£€SHhV)ªn|¹­þóu¯{ƒÊuýsíKß¹ÒkFä17Û…Ž‘$Ç ÇR¢ 8‹5Ø1­GX0&³—2;ߥ̠h?Mt³Q=ŠÝl¤™nÒUÁFu,HêtIèDéâ€.$Š*ÐÄT’ÀÍrÍfóD©tvÁ–™‡Å¨#´¾©ÙkOì£J¯Š(I÷d&D|§†KD~ÚF7=n¦âùáÂÀBS;#´®‘û‹vœlŒqÇp\pdY{?]°'Úcôé ”ÑfhÞ?Œ¯ýÐöÆÌÉi$?—Ø&~±™uO¦ ©1ÞxØüª‘b¢²…/ôÊÈôÕš]åL³¹»˜yUCA¸óÎ4h6MÐx«”X‹£t%ëb·*9éÌÒDfÓÁˬ#ò¤ò,ë´&”C™'׌‚ÓÑ‚wîâŸs(YY}Òôe÷‡ N8Ö|àxVŽ Ž’ÎT½ÝøeµºåŸþ7y\ýïr´ö,«ÿû=ÊÃøíê·•þw4™­/+0ú߿֗`ôøÊÞ w|OUïvªW+ã2z[l‘±”Fåï¡¾Í ^&qyÞõ—õ`ün¯6/Gh¶S¨ ,§;g½ž+çÊÀ´ö\8WΕseàßR8×àÍ5x¨Á $íLc²~N}üMõr>(˜ Pj& ¿–¶­h††.Íœä£éЬKŒ¿©íW~<ú¿›GÎÿ?‹²ú¿yþ¿Çyxo:ú¿ÃXéÿÞ½yÓÞî¤zÀÝÓŽÌÒs‚ùzNZq޳ÿ‚ú¿<ŸÉ4ª;O{Ç‚Ø@–v .õ{výWÌå/À´úÀC#ma7®\=åavÓû:¤^¬c"Áþ¸Öõ C©½:¨G¯Z,wŒï£Wµð[’5Ïχ#Ô*õp»ÉG3Á‹jÉÅãiHhé÷*kX®¡ä)ag6ÁP4¨:~8U&†,£Ê4C÷I.`∫È4“IÐäÄð#†ÒI.þ´ó¢)5kiÄ2]|LúÀ­aMåþZ7¯³âãwf¬ð$z8Jn0ðÎ`"SM®†œFá/ôÔ슛Ñðâö|â¨eåH‰(&—ýD*>6¼»Å§ÊÙ>ÙÝ335¯¡å5b#!qó Òô±‘@ê%BÙ«Š¥A²„yA)"™Ç½W…²P„•¥—£!dž^_<•®ž·PýÓìöCÝÅ2_w]h5Qúc?v[­~©sàl_{‹‡fýo2®õ§”„-F%ØlPt;>€-šQyùØSÊnåìÅ?îNœ)(CVÉ.#-ëýƒI8{°/ääÃÑuÚU<Ó®’ï0M_GÄ™`G:tVn/X¥lrÍ ¥õø^£ìAR")uôÛ%Ôì¨ÝÆ;D¼™ —ÄEbäÚì2§ƒlÑE÷Bìva<(¾µo€¼qCï…¹ÔUÐ×04½dpžP{KÐìí—D729·×åéŸ] Ã]:ÊÇ´ }ú!®Ó$¡Üáْ؂ÑóR N·Ÿ»ƒá×Þ9O¸²ƒ.ÀHf åZéðû³î§Qò=B¡®Ü9»·À"FŸß =¦B¹`H `üïx Ë…£lÑs®ð³ÔÏ:4SeîoÊœé!¼¢“ÃUb°#®…?cøõn%7×féØÔçØˆMÝ>]÷…k{¨ aµ­vmÔ©u1)éÑANâPn¦îŸJÙË ´T,Žƒ†’¹Ò€b´D*ߎԫ.lߌ{ýá`¡šÿlqìi'¬VTZ#+J¡*d™/¬‰¦©ÃÚ½p’Vb/ñ Ë9˜ Ž;}Ë}Él™Œ@ßl`Üíš„†ÃnÖ")Ï4Qž‰ŒàÒ‚u²Pó–5}IË8b5" «ëät†aSê³nØZ|;Œ…0ªb}o¼×¥2ÑÏÔ[Œ—ÉE“R ¨:%b³Dì”pTòð¼%§Œ‰ÿ¨;ÒlAui¿³t†ŸŒMNXwH ²^Q„„€§>Ö44säMS›væ§L/«cîð íì@wãoÍÖ<Ê™Ò,[~ýúÍ ðÄ ä×+ÃËËq2©õ^]×{ÀûªÈ!^³=.¹œX`D1醗û{óá$…µ¦[ ûÐÁBÝ7lƒ Ìs@¬`bÕ©Q,|Ò°Äe2Ô¹£„YåaÛ1²aVM×dƒ…E„­Ñ_ãÚúïrzÝ@:a~Zï:Û¯ˆã;wxίR2u /](àžú?Æ=”ìÜföI£éã\=¹$x$cšU ¡Âi—²þ¡ÇO‘MA“i«iоr± 0¸˜Â„šÃÍ#ü¸*š¸ä9›À1ÏëGà5ŸYšØ~×G>FbÕˆjÏS0ÃÏD8¡¡ÑI ÐT©>ÕŸ2l„'Ï«¿ñô•/\cì‰ ¶þìÀV>ýÿøqõÿÏŸ=ž‰ÿ¿Ïõÿñ0î¹úÿ¶«ÿomÔÅÞFÐæÐ@ ÖߟÔŬûæ÷°ìmH@ÀŒ”aaôSŒ^ixSáÙFƒ¼åq­ ÓX Ú¦¥`8Ð~tb<¼NÄywŒ)Ê/nŽò5éŽ'£áÍH´çÝÁyÒïÓ¼¡Ho‚oÃIê͆^5é˜af;¨³a½&À$ç©¶?UÜbjžN~¼½ 9>¿²øogZ¹§eEšS®º_v÷Lä0›7£äkox;&ÌWŠÅÖÆgc"¶ŠÜ¡Úr4èÅ1&ÁrgWׂö£˜y¼½ BMÛŠcVw :´mýÆÃ{™ClHŽÐÓÂ+ïð÷6jªgËΆè¤å×°´ÐAÓD^xOüóõë)¯´=Õýåm¿Ÿ’e uúÞ0ŽŠÑü&R¦õÃ)€ss…¯#<á§èÈãºä¯T>iΘ’¼©;Í0Z¼YôÙ_ü°°¸®qþÍ pþÍ5¤q¾¥p~n‡™ÛaìçgÛa´f½ËÛ#üÝî477I!]G{9œüÞÞƒdy­Ó¯i—9|0»L ŠÔi‚¿«†—VÛi`Ê5Éej·vZtÄ2ùbÏø»¬g#ùÔ Ø« ³^ÃxúÃᇙzHÎï †<Ý# ø†¨J·øŠ Fx]&M¦­ Ü£C¿&¢ôÍM€öîcòÙö2öŸ=mÿÙËè ëÏÞ­?Ùfš{˜’•{ª ©DCoöÒÏ3°íyËì•¶¹õ³Ö£½|ëA´Ä²?¼ÚÇUÊ@‘8+9@#ÞÝzåh™ÞªxõÚøÐP3É·ßTöäŸ KÔ&ÊfÖ«ª"ZCºƒ1jÈJrD(B«Ô ËE°®Gri‚J RŒØKXfí,ZLonû’5·í•°µ!ºÊi™£¡¿ke¥îf¯´%íPYÒì ÚËØÒà0b[—¬j|£ß •:YÃJ™÷,¥7¯|e`aöPx’è4éÞVöðnc‰U úcÆ{–¡/ˆH½IÁÆ5Qæ怒Ø`}dÍK{²Hv(ƒh¿‰v!B’FÝÎXÙÒû@{ÿpºÛUË¢ì#±k–Ð6Ubz8„5§)×*m1]ýwC­¿‘[Þ" ®!ŽŸÜÅ,E|‹É$A¯fyºà[K©@ðÍf]ì ‚§Gð¯™ã]UΨü<ÃJgì ò¯fëÍ»Gt1¿ö‡£îÅPl%hü]Ed !f.ÁH`‘Q$wÿÝÛæ¦­ñ4dæt§Â=“ãÇiSz€èË¢¸²EŽ#gwÖcDXN#ÂñBbXê:B–¯Þ'X³C~!;¸œþ'eTAT`¥êbxƒGš¸„çP¹#3œiFº}~u;Â=дNʆ0æÌT8[\¸~»JF |B‰¼–øïÛî¸×0nÊ¡TÒ|Ü<š‹ªuÙµ4kgo" §â_-ƒ%<ïôt þ5¬#^ä´ÂL±}FFF5£qÙ‚¾d8òa8¹B?¹0Ÿ×§Þ×Ä€ˆå£#!ȧI]®zçWiØ«Qrq{ΰc(î—Zž?B÷_¡÷Ákñ×âÎâ_rT ÿuV]ì,Ò¯ÅN ËEd¼PÔf©Qî“q|-–:GÇ @¼JMÙéjñJ0ìLìO§â›u–^Ï+bâ&Æ…R•–¬ÑœM5šF0öÊ®¢2f‡Åž59fXbµ†£ v1ƵC1R‹vÓD΃í+è«9¡½5ÃÒ^0Žr±þ(é^ü°nÓf“©^¬FÒH*c½‚5"zÝ#ÿÏÄ¡w‰C%å’u™èR`ªEÞ'¨i[¢iÉ6$0G×´ÇÉѹkµ¡uèç”únˆÃ½° ºãysä}_ím!i¸)f4Ý»ávxýõNsv™å°"Þ¡ü[oœÔ­9¤QÈpЃ¨eÃ$¶À ým¬E¬¿¼¨¡ìPÄ_;MüÕ²{Çt_–+à^ ½ⵉ9;&»ì8>GŽÓ#Šç€XÊTRq‰Ï€Ñè˜vœyGÊñïŸ@·7°.í0ttœ³Æªn;tn˜'ÆŸ"FªX_7gñÚAå|8ÂÅHWL6šë›~òüùö+¼zìcÐ*„L¸R¯A`gÝÑ ¤ÎÑN¥W§ÛÊðÈið¯šÙ|ò«ê"†([//!6xl5 )˜qaNì Œ}‡y;Ë ’ä¼Kh¯k…ˆoËr‡7XX^<ðà$ yswßE2>õn”|IC'YpÉÉÒ$“Gi‹;ÎÉw8“Ï{I#v8ûNc‡öpŸU|\ý|fõ}\N‰ˆ.(¯‰z“X“_·Ò½ûASñoš%j‡(ºãOÏ)1¬EÞY0<…§Í)+¤%‡_ ÓxÝýÔ —êÚqÝ¢Hu5|É%Ú t¸E"ë¯Ï–¿«„IiÆ/`gÕ7„öW}GX<ù6ÌœøjÁÁjÁ¿ Á8ƒ€"cô0€ùÙ“QA*`&§GrLu1îþH£àKÜxÕÉïU«˜FH¬S›¯I…îMÁ›ÓKô2”θ4‘1»ÐUê{W)2&Ï`·LÚ³ã›ÃQE‘¤Aꇯˆà¼¢ Qä‡fZÍý¬Kˆ¼æ\Í Íªf6§‚ØkÑ ºÓÉ•ƒ|OÞ×ü´tËÊÏø )9³Ø¤g”gè#C¹Ø¨z#Å€KÉmꥴ©cÄJsµúëO:ù—þ2(Œ9âÓù¬žÙGMsP§WÌ^‚|58wœníªæy|fnê3üã¬êž'f\_ùÅc)ÖK¡Ìªmˆ(¦Hä§(%Π³ü3(³ÙÊœAîÜ*AüÏ€¿Ëâ;žv†š|¢:pI3™ÿIêêûÈ88(ŒFD£{HÉdÒè[Ü‘ÔEDUtä×d<#cbëh%(Q<»\ <„©1㥶‹à€5¥Ú°ŽP«âPáÞrÎÞæ\eòã¦wNM ù‹<[DÇy;HõÇTº¤Y¨yÿIôöÏJÑàÀ•&#» P¬ÜµLक(1 p~Á”/L©QïKs=?¤â†Ôê]w ζ°ïÊÔµÆç*æ–O5Òbܤþ.AV«=Λ‚ŠsO»Ìªž2-K8Zâ…Ö¸dÜ¥±×r Pp‰ã“Fè ‹ÞmŸpú;@Í@rèR„\¦Jï·6ö)m@Ò#¯å/TàéÚ=Gw9 {už Ƚñ!P –_aª]jàò¶O›Èfµ‰x% é§§í!<|ÉÙPwg_12ÙLLd[±+Ñ«^(ÅoºGÏ L¶ æH”xMÇ6§¡MòÆM¶…t¢°‡3c©¼‰ÜŽ”^~dØw…Ì“Eb˜=®¤ÀQ÷b”\ÃÐÞ`6_Aö(º<“™ÇŒ™¢ež K,‚»!èQªÄèɈ$Ÿ®xfê¾Fb–1öº§óÍÝîy`ÊÊÊLN•Å*U=Úè a@¿ãÅ ÏüÆ7 ãĪŸÑ#ÊLMåÍëgŒSråøl#*ǰ©lBÀÔ¢è@J¦a–½ñƒPAÒ”·ñÚÈ_ûÀÏ€Þ¯ÃÈà*WFɧîèƒà}€µBF=B¢©vf'é¡/&e0Üû5SpƒŸ=Øñ±ÇX—]¡ºý›+±ñÎ4ºŽ¢-’Kÿ |ì{{ tÇÆ‘ÙÍæHqàF.k`kxìuq´Ä£æY,Ñh{8Ümh‡h´¯z—ñWJâ×ûŸ†#8×®é*‹h¾‚Z=¢òH$O8TÞ Ï)mÕ³–t?_¬èfSîލæúØÞޤ)¯­K¨ºøŠ;2ñJø‡OIzò¾Œ_6/WŸ×Ñ^›ÛsÆÓ„y®úÇÎM*ÛÝœJ[Ée_æî0g Û(3ñrõÌàùŠ;ƒa@æFÙ>ïœO'òÑCäê¨8Í(1:ò–K÷Âþöbç¯#(qÞ…Edžzƒ”%6s× }º8õ‰›[2©Æ$ý+TPö{×½ÉR•ùI5²VV«üÚ{ÿ‡'óZD¦Ï M|ûûy"íoÀ9Ëeßzƒ ÌûGÿè±J·’Ç0;F÷Å à¥/àù¾vG?T¢,#Ù‡YÍíFt/ñæØÞöûÖ©èMNìVþ¤©|Þ¤¹Á×b-oÎcÚš¯2óÌLΜ)Œ»«á9dncv8´Ýc"™t>f …SËO"Âm¿ÏÜ©±ûÐÜ0Óæþ^$YÐý½˜UÌÒÛf޵-¼E…7Éà^& ®b“0N!þ£kX踾¹ÇèÒöÞïmÃvޝÁ–ê¼;„ŸXôþîà~wz‚ª t+ËicÿtïÝ!2ÙÚÞÄŸoöáçþ{‡w×66ö·á7ßdËk§Õ¦Y´ÚGðãëœâ?~‰1­Óãà •*ÐãÆÑ~wÔÑ©=™w76Ïý7Ô¦»?·¿¾Ý:‘ßû.Æñ÷!Ì ‡’‚‹—[ÇÊé=o¼SDÜ<üP—çýnÄRl]‘¿Wåï5OwºÃHÓ‹Œï¶êfö´RwUl³ ’•ÈUd6}…Ìì•´è] %•1ýV[êîžíŠ™FxsbÍùsú˜í¡—ŽÁ¬“:“ÎÞàGêJC§=žã¼Î…ÚSHdÒwäHJ ³ÖöRC_f[I]X‚æÎÃL:•I88éXhžÇc™WO|¼íJ¹Ù4Æ’ï“g[Êá%Èá¥M8'8üO:½QcrÕ4&& 5Ììþw†7©òêc2žda›A%U·À¢ÜˆÏÃFð‰ÓòVö´òF‚Ùç?Ï”Pé•Ħ…¶›³(¿øv(ãѳ×s_5¿17uR¦ç´x+Û³ ' ÆPÒÐpf™.dÎPÊÎRÎß {¨Å%7MSö±Î.V()“š PàÔ5ÝTeI[ÿôÈ1*€ ‡«v¥ÉAgên/6­ÚtjËVÇl`ƒ„qÖê+êÆÎ6Ü— <œèNHLççKô³‡Ú hÚxÑ7¢{+ªFf©ÚîR¥mÆ=ÜœÝABv˜!sf,×W¬h½º§¶´Î’Áè€DƒØ“XZfªŒ%Љî„| H_…©»ä„¦ds³ Ò¶dí ÒÖ0'–~Õž´_ÖÕ*xÊ«l5ณucòåwg[›]2:x/m;µÍ©›á¨¾Ë=s›ÔÁ@t?p,اp…ÄÊ£D·ÐÒšiÇùæ6"xÞe¡BàeE±.Ù½¨ÏNZ‹•E\˜?pMè‚…ÅÕÓ§p@FºþãXd¼ÇÎÀY4¼7/MîB^¦â‘Ú÷›,^C‰0õ(ûÏh8ÑÛš·jf;›û!¾Ã~à&8À’fê}D§÷Ù¸Â1‘h`Žjõ£Rи–•ÀáÕúùù-<ÜoòŽñ°·#â'ão7ÿ%ˆ!O‡Iψñdt{>A1^ÖcímC*q¥SñÿÊL–3s²Ï¦Ÿ¬nDMV¾ðAÂE²§8¦<}m%KU‰0³zö4”ŠúÊ(½Y¶N«B]r|×Aw/ã¼OO4¾lörÙ× û“‚é 蛢ÆÖû¡[ÑÈ*'‡³Cá7(ä ž5fPlë å‘Åt .ÊÍ3ºGdɈo,ØywHwZ=“m'HRý’À+«8m¿;nˆM8`=_“ùJS#D¡îÅ×ÞÕu1àó…¬ÁƒIo”øê›Pg'ìÁø~ºIsŒÛµJD]ª¾€@ÈBÀq1˜ÞMÂη78GuÃW¢SÌcnÓÑØäˆÉûÚW½ÒW 2À$ž;>RKÙò¦Ö9¦LìÒœƒaºd”Ì‹õÚѯ>…,KuÎÒ|ˆJyéue¯½¯ )¢dqÙÑ™‡Mu)ê+몓ë¾`ŒŸ(‚L¿Îº~KFè©AR‚‚8lõ±·þ¨{Ó»èÿ€vÎAº3Id•p®»ß1Ù²F@¼ÉT>¨ƒ„Ò½àx |µÀlçêÙñ­¹Ùá4 =e‹Â¤éÔâÇŽÔƒºá’Pó´‰/›ÿ*?¢Üµ›/…ÿr~¶^¼ˆØ³ñi\§â‚Gí•,ukÇÏ0£hí¸ß¢ æ:….Tva›öNaœ*m7ü¢‘TQÎ È.V%ôßâ?b($Ãâë47ܽ •2kºµ½Id™U”Mlo"hUþr†3cUnƒôË3z^­µ C‹½GŽlcÙ‹Hð£A%| ð(뎖0%/Ú6¾é÷ ®-½š`ÑZ¼èçÛÊ ä¶ßÅ|£V¤{â‰bYúHc|U%6iå¹h‘ºä%:ÔÀzèN} ;“~¼4†5zãÆÇd2 õQ᪭wUq…W ‡gÈi·?äÐßÙʤ N&Ãk‘\|òU_þÈ`;'4ŠSïq)ˆz:ÔÝqé0 '…—¤ ±Ü;Aäñï彎» (0^ §‚;él¶ö鉪nKilëê\JÖl†Z¢©o2ù:i‰#._eT2¢P+S!»žŒpÔÉ0Ôtñ½Ž*϶8¢xåš1®¡ ×3‰AvñíD¢1š4È6T®AòÍàG¼‡§$ßßòõ°×fÃXè–½Ùi¯m´Ö-sûKï†\¥¿ß 3¬ö_Gbü-I(:cªôKê{8º”™Ã‹:c¼ã1¤æTŒëîÀº›mâ[¯¯ü(2¥ o'ÀQ¨û‘ŒtŸËÓÀfqÃWÜÞ˜'üÌn(ÀÕÉn.²à=¬KÇkÓ’qP”F.Ì™Äá4÷·”ñŽ&|-//Âk´¡.*ŽŽ¶‰kÓÈ î•Z„5s(l_–üF5 A“ñŒ“ÚXôÁðšœ軀 #¼MNgµ2î÷>]ÁÚW>¼É½•/ztqãf4üÚ»HŒÕÏAS!xÐR!šÊ•Æ™ÀDܤ'jU…ZûQ=À)¼“‚ƒ²«ô_¤2u=T2ž¿T¯+Ž~ø¼C¼ôÍ\åØ'FBòÂr 4*I y÷ãð+ú^¦×JCÛMU¤kû“Q·×G,¿ÐлÁÞ~T>³þµB\gP“?„TŸøÍÎú1IQ«à\9xZS« hý÷ÚÈ÷DŒºá‹þ…€h«pe@ÐÑ…„ù]èJ¿Dž¶Éü¬¿u 5@.7‹m¤l)T|Ã`µÛþ/)~¹ë,†Šl¡´¾¨/ÏÓÖI\±œi¶¶8ÔM#qðŸásK?TO×Â?Ð5§-“FêÈbr>E ?¤%RÀ‰Òî¡;a«MRRü£Òª=«þñÒs?A*Û`LrFäÊ3‚M Å%H)( ´‰‘nk_Mb–=veý(Ed—…ÎÊò¤*EN„⢠©¶yø¡"ÖÈ™‹þºÖ uŠXCý`4.ôN%Iêlã!Ϧ¦œÉ “¹^­ˆ¥Ënœ,ÕÓ?p¬QZÎëz/•¬¯öõŠQ·Žèb˵‘s (UQ8NAO"yóóR~Ái¡ÿ}ÅÒ¤¦Ü.{àR.-ºâ„Œ„¿*{1Ø7â'”VG’ ¶ æTör á].ô¡ñv{‰vnÊÓY¼#IC$™À …òÀ•J§ÃÛi?§8ÕVëyC):»Õè¦Á.UE70uu÷¼÷>&i Ì âfãêǦòHöÚyQo…N‡£‰!æŠÊNÒ¿Aa´ß›Lú‰ÿB#èÆ-ÙRÆØÂÇÙ¸ yèMÁQ&C8\áx ñÂü°w.[bòàöÞ‰5ÓF»Ûk ³€&÷)%õñgí¤g„“Ñmh€<ÆUÉã¹Ft|Ä]K¾RTkü±)?¢BµGÓØÞj4Q‹Ly7g ³ÅJ+œ®JÞ1ÈáëGMðu:Ò25$ËÉSJާYjk= øZh°ï¢77R—ÊפgÔVaa€‰“!عÏMÙ™¨K—ÉÕ–‘ˆœ®µ™Reo=Qzã8[&÷0Ö%t鸰t\fk•ÜTÎvÊkÓk³p¬Mg¬ÞRé†{^Ní[Ë…Ü E#D§R…¦˜qˆ¾êY|%tÃ$íßtë²™;ûdßþk)GtSXÇÜHêä‘Cà­3†ë5>¬èœ±ªãÊe(:cÌÚJáÃæŠ.ie£¥0Êq[þ·~Ì@•Äí ’`¿˯9ƨ«ý4èNz·~ÜPZ\ Å ¨Ñøõ$òf kEoÙ7á#HÔ•/Âq1ÞÜPr B’ÑwPýëÚÖ·=cü˜úåzŠ­¥µÉN)úÁï6µá½/B¦ŒW~(ßÍ䫪7€=ÞÛ:F~™&Ëã°ÑWhSe¾Õ×Ó‰6®Òç|»oÚMEÖní C–ßÓñ7m!×úkŒ]¬ °”Z¡Á¶N¶e‰ªc >=ÁÑ¢7`ÁP+qSqÅ^“k7 }%óí±Ôga1Bkï”üoü_¦¦c(P‹«d®úDšrO{'º½ÕL{dKV£ ™’EÉ­€GªùZsÍÊêF¨k^.ÐùhÍŽ¡´±ÌÑÚêœÛŒ—|…5…ǦþM˹õ3fçÔH}LwUý İW ås¹ Éh/*ò¢XS¾àúIÕ‹räÝ¿åÏßÀö¹µ†ásªâ‚ôËÅ¥ð°eš4·R}qúE0!39ާ/ZÙ’ Šðƒ·Ýè*ؚܹ¢Äñ’Fà´à ºÃsJ‹Äù¢)xhèj¢¾|iÎ;Iæ_¸ÈÆÊXYNW9W)ì»øiv‡£e»‰™¤xÈ}|ù¢GÍÿ°ü s>¸ù¢•yþ‡ÇxÏÜüQżþÔ>Š0ª þ8ÂÛØMøqò[¥mðe—¥ùâTyúGJúöÜ´gšï¹/~ç¤ 'f!ÞRDIΆükEGÁ–wÎ" M<_‘r¦1ke:uÓ‚ã†Æ:£«|õâöÜŒPE¾PëYÙAnc<Šàpè-Ž{Qu±Y]Tocù6Æ·Fuì[Þwï~ö€èÁ ^öU¤-Ø{æéÝ ºª8žƒéyôKQUà°^ ¥¦íá§ŒÆ*ë±â†ra(+¬èåÒ“ŠôáF'0ºåBA7‡·¨œî]sLh–aøbyª‚’Ì:pH]LÈŒú§bõë• $Ÿ² ÷;¬þ–ŽÌ#£ 2^˜3رÛOãsrž¨¼èë‚#®NF3{ã˜ÕE³ †.ÝÁk³É9 *E v+R`hàAÙÀ>ÅtëJˆïe þúžlæ· x–Rà)RÈËo CëÜ3šÎN¡? þl{ZºC O+E‘JT|‘¬†Ït¾âÐ. Ø©ûìË+®óEeƒÁF[WžFðD±Å— ø&ö|“‘QˆlÅ•Ýÿ!Úþ.°ä"O…ÇmO ~.ú…»ŠÈ‚z!I(Ç"C‚Þø§@=mÔx´1÷Ë-S4U€ö|ïº"¢fÏL}¿ò+Æß¬Ìd-q¯p•‚ÅήmÎ*ú—ÝYZvdäY¤‘ª+øFv÷Åw×GÏ—Š†Úg˜â7nû+T©DûrK¬8Q,‡ÎŸŸóøäÿøQå”õŸeó?.ÏåÿÇx$Ñsäÿø¡îý;&†ÄènMsñý ‡âëä…ïÛÂ^¡ ûßž<¿….ŸBòLi´¥±“C¦ìH \ò`hä™äe K»m†¬Ž$úˆ¹'Û*÷d[&œ O(?ûäI…gœÉ[I_œžÕÏÍ^éf|BÑÿïðŸwÍHF|„õè0* %ð€ùflûøCKªÒ?xû ½Zå»j*ïýȆr/¦&Š´oÐî;–ùt"ÌLŒzÙÂ{âpüf7^û¸wÝGAÏÎp#+_$ãÞ§‡bÅŒçjM]SÑþ}qöñjŒl¥èæ ¦‘™ZvÒd–¨zR$à q’ÐRuén_6"?/2:+Â\'·£*3µD¹‰sè}• ‘‚ŠÉ®†7J·¥ãø E±H#‚C§ëW˜´ÐãÈ!z‰‘Stf¨T"×fóÒŽn?±„¦š¢±\ÖÛ› ÷Þ^š¸4ÉæÚ³ôð•6³®NÐU¡D[Ì‘Šñ0¹²ÔE)ºÛá*pN*LýÉ×(Ò|*ïÇ ì®dd§òr“eüÄ`A~P³ñ÷ÏÌQŒ‡!ð…2É»€¾œj³œ?å“:ÓîBùM:¡œ¤2 Z&‘QÕU•Yµ=@L‡CWžò‡ãI[*•¬2Ð eñ۩Љ¼G᪯—-ñb<ÕPŽÈF– £4rN'®—0.§»éÕ2;̘v9ÍÄÔEÝ.gé±ÕìÎTÐS€ç ŸjQáœC35È™tx¦f9“n"×V ¨L›-Ð§Š.u;öNŸÈôJßÌ)8OG‹\gĘc½1­¡¼{™ŒeYŠJæ’OCºÜ<ð—œ!dOC}JqÒ"ë4³hLè`««s1¹Ð‰p½‰•²)mÓ*½ôHäðJï-¸‡_öØ“¦‡<ÛÃ¾ßæ@×ÊmÃI-@hbȉ’g c=•40?g`žÞ?c`NÂ@O’ÀpZÀiÚØÞ|Î}ÃÕ ] ×Êð}<誴Bckö:Ž¢ÌœNIp8ùMš%Tß°áx÷XËKDs;ðnœ­/÷‚6¯³þY|Næ0NifçKIa[®ZµÀPR×K3¥U¥— þŒ†ß)ôk5tÝLêÙæÔ¥í¦Š@¬¥Zèª029|ÁŒÒIlM; ¿´€SûJѨ;愯ãö‘Ó±çɃHÖhN[ƒžwöN寥éz˜-˜óÌžìÔúJCšÍÕ¢4G|ص¶­6¦@U)®Ò/2éRAlÔÑ_Tí|¾KîšåMÕ»ŠÖî¶RÓ¦õ ?gìžgG-«Js¯‘ê2‡žÔèCë*¬ð©S¬I7¸}‡nHKq)òqrgò¡xDºówü™û³¥¡> ›fsü©¡[™Ž†£RÇ7¦RÐéÌ::ÊøŸ?’,ê7¢OR÷z;n­0ãºB_.OUïe@xzâÀk߆§3Å0Î[f*“kÚ‰N«²Ä¢+¡«XvžØ¬¯¦%&ª§VQ;u(*ºI–!¡c¬¦°”S(€e&§¬‰fbÙ׸Ð>š0Ôo2æ\²*Ì|"ãÿžÿ Zôê¶?aV†ƒSšM¤“qâÒãKòšIìjH‰Jë€EÒ“Ü+[kÄË¥l:c«ÌÒj¶1UÂVª1w¼ñÌf:·›ŸžÖjc»³n'·Ú>i⽺xóÆ—w ¡½þ†¢\áo îÕ>Øoa¼ÌÕY?øîäÇzÓ¦pÊô³õæýÄäG»ðÿ)çËÚ|·Ÿ—kM9{ûh£;zwªcíóÏSÌN?ãÂìXaûÏÆñþÛíºÊ]•z^f*ŸoíþúÁ¦ –êÏ…ßçôS:£Ôæ;J(õv{çh‹~ƒìÆúVÝÍ7•³Êi"ª£7ò×[úÝÞî\vТÙ9Ú~¿é÷,òR!¡‹¿Ž:^Àܽì›Á\ÎÕ…]#¨®´Í¸f‡C»§x¬g=È2y¡¼I˜‚‰Bh­‰Bè» mŒ÷[ie˦ÊÕáäâa¡{¯›`£üÀh•£ï*báh¡Žé‰xïæ S¾(ÇÃÛ=­Ñ•¢Àdb{2\º\Šg zÁv1Ì(ÅjKÉFšJËs'æn©HŠò”IBâÏvf ­e¦Wƒ­î–%bEU¼¾ÃÐ ‰ßÒX¹aºDª‚q´¶Œþ4ltƒv ÞÂ2oÿßtÄé(±°FâÆ&·óê€Õ‘¯UsêÝó+T±§i0-ðóY%^K: X o¶q¿7Ž4”ùlãù¡7Uû‡‰õDG+éáÇT}8úÌN¶7›íæ»–Ñ–XˆZX¬Èån‘—ÖwîJµÓn²ñû§$^Nüí]36/­ ~ ‰×¶]³¾šžhÝ.ž}!‹‹]}¹[8BåA”™7å×·¨&,w76ºU¨†3ã2w:b¤m‡MÚÆ@kãZoïo/ýP|¬á¢/„¹ŠêÀŒã©µþí;‰é¢á¾3æ–RV_õŒkªs ÊT‹žn’ ‹DÒñMïKbÚ²Q“½ÄiÞt¸/Eð‡ù«ÎÙÍ”“J½©ûpÉÍŠa¸sFâî„Ôl©ç‚¾@™ÙST8UÅq Ä›šU9r[|FxÕŸ4¡Êþü‹*ÐŽÎwl’ä¾M|fjD奫ÈCUU¬EvUüÜQÅÔH³wÙ#îMÆ T#щ:¢ÎU˜: ¾T׿õIŸžóÆÞóóÆ–Óu•;9Cûˆ»ƒ$¹@O”ó~Ç5ˆüpî`ÁmË©yÎÞ²+^sGö}tÁn µëÙôÝŠû´åÜ—•ìà['è~§"Û0|Ä­I¥Yv¢[À™ì9Dv•ƒ KÄû $厽CÂ’2¥KÅeÔF ¼Þ´$ñ`*¶ý4Âu_W%;l’’Þ´¶—¼´%“!Ò“l ÝLA8B;Ž|©§÷ì ½Fm¡Ž=U¡û|«.èñg‚êb‡P0œÈÇhŽ ‘‹'ŽãÈQ^<ç6S›Ñ…äÏl„õÃsË=Iep¡[Ešv€FÅeYE¥¶ëÚF |8]§Ü—瘞Žc$Û¬ª>1E­û“j¶‚¹Qm¢‰„¡9(ŽÖé ò­ÜJø+pÑ?„ò¬sÃhah®i° ºF¹¶â|%cXy/è¸åµfŒ¼„¥ ®»/Õhµ3~`\ï†ë„é½§$®¿Ž&·Xâþ¥íDª}Ɉ.XèBw"o „i½L ÓäûùðG‰bzÂËŸØ–‰ó·ŒŸèoÌlÄyŸ°S¤…›TÁ)²þ5É›O½es'´Ó³Ù*ÂæîiH(Ápœl%’,IÐlüÃëÐ#À®1yb3øÃ“œÓRg™&˶}^Àé5ß8ml‷Âxò„cy6yßH‚·â "rBvòЬ-ûºâ œfªÀm’Wšö‰Ôtù—´Ë&®Ž‡a2ž]C'SêPLH qŸw‘/Є·LœAd¡ÂHú¡µ‡´&ìé™ ÀÐ8t¥/>ÍöIÓ88^‰`þj™CE't¤÷TÁ–TÜRß6÷da$I>éž1RTí{'¨tÄšÂèz%[-W-65ˆÒ`Ö¦, Z¹q@4l¨¬)œPQð^yx4}Ï}ÿˆg î{ø¦ õFSž;™•ôÇ(ÌBML“á­Y€ÌR"¦'H¹ …J柺B‘èUƒD»…¸Ä •X+ŠÜŽØ©êC´b{>á;Ή«%×g~1ŸŽYÔË* _M…2ÕDÐ.×tËenl7³•µœ2KÞr>üh¬2Z¾£¸a )¼1r[pß0ë:_RxÿÐsC›ósï ™ˆÕ8$%«FÁPð ~Þcœ'Ú¸G=­™@ʃŽ&ÁˆdN¬¶Òäj((ǹÔ|Äwä­KA-ëLýâ© DiQQc¶®e–z»Cù€”>×»žGoÞr[ìÀ…c©ë¬;Õ\å°?‡k÷X ¦~²–‘vTX¥ëô7tôF¶ƒ#ÄsHÎTºÈS)ˆ3Ž0ØÃ‘‘3åázÀñg{È·‰fzðÁɶcYë°6¬†7'ØŠ{^įÍá¾Ô&“ì^(E:G7ïû ¯–Ý"rÄ ¿ÅB),,kÖÕôýöl¦rÝU ûÕí~(’ÞcŒ^׎ùž›Y½¼»ÅtD>¾vVÇ+ £äß·pSŒHPƒ¤ÈmŽé>Í:3•á^¸¶û &¹9¦©¦‘hÇýîGÄŽw^|ÓsîîËËh9g¥,‚æ±ð‰ÀÁçÑŠîÓ pœØ‚â~K›ZOšR]ßþGß› C˜~Ç’ÂS²¸ z¥Ly;”¬CŠæ3U‘´'M ¥ûMc d:N7ÇóüØ¥rùŒ¨Çw\@ü‹erõR†iJ)‚‘™´Ò&Üñ«ùb`[€ß4ñ[Á0uåJ.Á1* <Ãl;]ðußÂÄíæŠOzY^¨àúYMD€D‡6ÚYpÎëôRo3Ȱ³7Df{`1Ú…+•³EÎJo!#>”Ú%Þµòl”©º§ûPÔÏËÂÕò.¥Ù´<êÓ<Ÿ©ÇŽ6n±'t·›Â¢êv¢tSîÝ~D»õ$½ìÇ*kÒÓé»bÌ«ö“Á'¼!Ýý’ •GÇ$V 9ùâ`(™×·«^ߪyާ"êS=¹¼ôtÍ:ÒGÈM%’Z¤±^íšE€w‰]?vìâùsÿÇÿiåqã?­âß™øÏÏæñŸãá½êÆz°¼ïóøOD¾çñŸžpü§™ΙÇ`šÇ`š*Íc0Íc0Íc0Íc0évç1˜æ1˜æ1˜æ1˜æ1˜æ1˜æ1˜¸Æ<Ó<Ó<Ó<“,óLóL¿Q ¦ ŠóL÷xd3óLüyƒé!c0áÏ•ÂHL°ÓPÉ¢ýõmíÞŒ×TWårÆóóâ6ýu´Z¿)§y`'|æžT`§à|Ûó¡ïJ°`=¿LÈö»—¢ØæŒVÊ,Ïqªè:5À%ªŠéë©ð;P‹ï¢s¯¸þuÝß“A‡d+?C¼JWGgk+K YÝÄXô.0t²²ÊSÍ¢ÉÍDF¸šPscSS¶Ñ€ØÜ5Ní؇·£›á81Îw>Ïù³¼ Ã ÝøHÌèxÂDÉêd;PàG÷ è*sœ™³”ËâHG v7÷ ÞguÅPálqøy^vh…U|³L¼)9”Jz½URŽ®«uÙuoˆ0„¢â_Œ»dD'y§§õå Âh'„>2`Ç€ï±r¤˜Lp ÙÅ_FÀ'ÓÝ*âýJ"û©÷“$ÈË–ÖeL F)£&C7Êy¨åáXžÙÿõJÔþµ¸³ø€þ¬üuV]ì,Ò¯Eã­&îD+tVAð±×2ºˆxűÓnû}cµx¥QûÓƒ‰ýéTd_½Wò«›È~«JSòrFÀÆž¢QÙUpHWËGÕÊ 'ªÅñkÞÂx—Óöà˜¶§IA_žˆY=­Ûù!·œ±Ù@¤ÆòV#¸ÃT4è ¨Ñ;è¾½j1qè]âPIoW·jï`´—:Õ¢Ûá6ˆâݨ6$0G×´ñò8Æ=²Ú¸%_{ÃÛ±y‡loËIyp nºxظ^öMFn³ÚQÀQ—NS;¼þz§9»Ìv¦z‡Þâßzã¤nÍa|5¼í_ ‘·ßD-V@ ºóÝBˆ-ËûÞz` ñ×N“|_íÞ±Þ*p¯…^ º™ëDȺk|,ºÙ?˜Œ$­Äž¤ÍT¢pˆÈÔÁˆhtL;ÜèC;t'  §šÕJÚaè0è8gUÝ:wèÜ0OŒ?EŒWRb×óÉj¢r>áb ò"Ö¹×O’NƒVÙ d•ÆåÁM݃¹®s\¿J¯Þã+.½ZT‡ÕÌæ“_U©0†AÛ¤YBlðÙjÀŽ˜Dš €93aj y;S«ß|Ç%´×µBD‹· ÛÌ©.m2r}@,Æåå¸  -³û.’ñù¨w£Ø6úǤZǼè2Žx:'ßáL>ïM$@P|®ÒÔ‘]ëá>»fÄgvšë¤=bÒ¥ñ5Q/âÈkòk#ÞG.+¢âÞØav(Ø¡@dLѯ»ß+l1ãü"é  HQcc© Í)+¤ Eø±CìÔµêË”Ò剬cè®4„— dõM¡AÖPßO¾ 3'¾Ž# ¼}ø·"!øgx/N÷ìè "ÑrÈ%.©.Æ]f¤€ä\É—°Û&Wõ¬K,L¶-bÚ|M*,po Þœ^¢—¡tîÄÓÑ“`Ó½VìBŦì®r"Qì–I{v|s8ª(Òƒ4HãðñœW4!¿ši5Cô³.!òZŒÿ=šTš•‰þ¤!öZ4¨®ÅôØÑÛüAûr7èýÃöåÅí³Êecøí¿û“䢈~åãùeöQAT¼LÔ×PUó<>375G諺çÉ(!k8‰¹¾ò‹ÇR¬;–B™U;×KQJœAgùgPf³•9ƒ8tà=‰ÿðwY¼qÇ3 Poù:MT'.i&µ òûÈ88(ÖQ¬©{H£dÒ̘C*„“±À)J+˜ÂN\#n»ŽøYñ˜¬#Ôjø…iÂÁ™¸ÊäÇ jW€[²ÉÊøãÙb ™ ›|¥Ò%ÍBÍK†Rï(ø×ºÀ†ÇЈ¦›w‰ 8¿`ʦԨ÷e&”TÜÐ=L<(g[×–êZãƒ!„Ç2Ê-n›4Kï:ÊŽeG%£FM6ÊÁ !5]Ü(už H9+¦¢.@,¿B-5pyÛ§Md³ÚÄ ¼†ôÓÓ ÖC¾älʲξbdrb— ±­Ø•èU¯?”â7œ¯8œ;T¡¸,%^A“ñÍi(E†p¶ò“N”Bÿ33†—¿ßÈ;,ÞÀ û®™``²H@ ³Ç•8ê~@Œ’k˜Z3*ªË3i5²­ØÆØ K,‚»!èQªÄh£’f&[¤uy2ºçlS€)++K09mT«tTqüê´/<†ýŽ+2AúoƉmçOЩ:j¦y3äø€qJ®ŸmD*ž,e¦¥@R2½ÁŽ= Ttåãm|õ0dÀÏ€Þ¯ÃÈà*WFɧîèƒà}€µBF=B¢©vf'é¡/óð{efs¤8ðñ+Ý;°5<öº8ZâQó,–h´= î¶2cµÑŒ%þJIüº2da`¿‰h¾‚Z=¢òH$OñÆÝ›á9Ŧºc֒- y˜r7Þiý@ìoGRŽ<æøøc܃¾âŽLD¼Rþá“øeü²Ñx¹ú¼ŽÆÑØÜž3ž&ÌÓÈ£³MABtø{º23/W_À ž¯¸3˜d0:Ꭴ †ÊB>zX}@Y4á…LÅÍhÈ[.Ý äHÄA. Äy÷–=–zƒ”%¶ôƒèÓÀ©Ï>Cf#Ò¸‘¤… Ê~ïº7QWß%ÕÈš´i¬òko¸HžÌkE×#2u’ý-cW5ý VéVòæ`Ç ®éð.€¿Èó}íŽ~ôdÆ bS­lT-c¾í^b ×½í÷­SÑ›Èl+㥂ISù¼Isƒ¯ÅZÞœÙmíUfž™É™3 …q÷¢q5<—¶b³1;ZƒîÛ;æ|Ì §ÖÞ)˜Z-¸ÏÜ©u®Ì]§Íý½H² û{1«˜¥yFæ™°æ•‹µÏê¡ÎÍç ˜G‚f‘çk±”ÇâÕòÒê ¾Òž”O5"ª ™¶ñ²ÐézA ÓÖø;_/u®onƱηu ?ò‚©îéìr{X”Äwêé5r*…ymè ¦[Û›øó;L5·pm576ö·9Â)¹ê‡Ûiµi-ŒDØ:ÙæÀÄ­S~‰ÞG­ÓãÃ- ÏŒ Ê6w`7­eÜÝØ<8<[Œ=+–Bõ!Rƒ¡Q3È{§ NïÖñ¾C’3ÞÒ!Ví ªv¬Tõ{ÍÓÓ,bž¼ÛâÀ§Þ™BžªØò•ÕUd.¥hsiHEOLÇ–ÿòî”aÔÌöÐxKÇ_ C§7ø‘ºÐÐ)ç7/C6B&æª0ƒQ¶¶—î $+ÖC¹ñY7¬¼a`ÇAï,ôËâ3Í ÿ–6áœÜfƒ«7&WÝAcbÂPÃÌîgx“*­>&ãI¶TRuÛ ú<ü(`ŸÆÔoaO+yD˜Â*½’Ø´Ð^H dnûd‹o›Åk?¹WTSñ+Áa¼NÊôœoe{váDJšM¿¯ªQ'NÖZà›aµ·äþ2iÊ6ÖÙµ %d`N-oï&ZGŠå‚E ‡×á`„tÔÿ!}‰ÏGÃñSmÉ­šÙ¡˜ Sìn‚€J$€™yÑéQd¨Â1‘H`Žjõ£Rи–• ‘›yÄ¡ ˆ‡½¸§8»ù/Aü‹“”¨‘ôˆOF·çße=ÖÚ6¤òV:ÿø¯ÌdY 3'ûlúÉêFÔdå o$\±Q${ŠsÌld”ˆË–ôV¬‡k—9г§¡t¬PÔßPB….ªárÉNitÖùÅ“ýCÄö¹'ä@='[:ü}9üܳÍ>ž?w›BÛžBz(Ä‹j+öÁÀøwCÈcÄ"ï€äüŠüЕVGœoèà·–ÈIjb$ÍŽ ÑÁm™ôh¦Ô “æ/KÌd9& Ë83ÖUéU´ŒÇ¡æD¼”t¿ 2B½›6ñ(''+Ž}f£pž[h<Ó$j¾AröÄÝã ÙÍûÿÑð}!L¶ð yP/—tã‚üAØ·ÖiUÏ÷;KÆyŸžh•å岯;ò'Ó*àïž¼JζtºOÞ°ƒ,ÉáìpÔ.;¸ç 5cFá;½BFjÚ§€>q~A•À7ÙvBÑa¼’À+«8m¿;lˆM8`=_“ÙJS#D¡îÅ×ÞÕu1àó…¬ÀƒIo”øê›PgçëÁø~ºIcŒÛµID]ª¾€@ÈBÀq1˜ÞMÂN·78GuÃW__T’d;»itøªWºâ*C˜ÄsÇ7j)[ÞÔ6çÁ”‰v ˜÷³a±>ÛN‹§ê_c<­T×,͆¨Œ÷Ff÷5!C”,.{£1:ñ°)£.E}e@5rÝ׌ñS2€1ôë<  @„$%(ˆÃV{ëº7½‹þh礋1ã‘ %?”W4¾Ãùq­Ðo2‘êó–øJÙÏÕ³ã[;Bçt =åÆSc §7âÔLX!—5O@ë‘8ñ²ùc¶µŒ<ØnF¼þnÙz˜'Ï(03.J"GíÈ¥0Ç⎟a6F‘«ˆ£çdÌhf`›öîK÷À‘QÎ È.V¥†Š­C1Óá?ɰø:-̯Ԛnmo’ãXfeÛ›ÚeŽ&áÌX•Û ýòŒžW«Aíî;‘ãÝ6–½ˆÔ¢(PÂϲLá¡mã›~ÏàÚÒ+ ­Å ~¾­Ü@nkð YüÁ73Mä‰bY(È™¯*úc\N@y.@ä.y‰õÀ™h»“FèΤo' ¤aÞ¸ñ1™LB}TdÛwU3|1Ònh'JO+“&t8™ ¯ErñÉOTi|ù#ƒAìœp*]ïq)Òp-N8 /IÍÆ‡‚gï‘Ç¿—÷:þí€Â» _ÀTpG#ÍÖ>=QÕí •­“m]+CÉšÍP‹B4 ‡Â éd¤ޏ@4z•QɈB­L…ìy‘ n‡ u²8€K… "Q¼rÍwý…ë‘Ä » |¶D¢»ç$Û W„Ù ùfð#ÞÃS ’ÀïoùzØk³Îa¬NtËÎì´×6Zk‡–¹ý¥wC.ÒßoÐù+…ˆÃ2½KC**èÔ÷pt)3‡tÆC ŽÍOTþðÁPÞmåÐWþ ™R0|oßí$œÇ–§1Ì↯8¸½1Oø™ÝO’êæ"ÛÞ¿ºt¼5-Eiä–<ÂPÆ7:šðU´¼¼¯Ñ†vº¨82Ë_ ºq¦,<¨™Ca»²ä7ªEñú)ðÎ`xMN€eUâ ÈFÞ"§³€Z÷1ª~ÿGác]ä·+_ô.èÂF]ï]$Æêç ©Ñ‚¤B:5‘+³Î– 騪R !©}Ȩ à‰ ÞIõ0±Ô‘ÊÔõLÉxüªŒNr‹ñx…x+è¹,ʱ/Œ„ä…å8hT’òîGL¢€ÉìÔuÒÐvSéºþdÔíQní› ½áíGå+ë_+JGA &?©>)ˆm’¢4æ½óla$dŽM­ÿ^›Â<âž (¨ØS=(VEÚ¥@âú%Gç}XÄÅñ%W›Å6rÇyW?º·IÁý%7ÅPŠî»¾¨Ÿßã™È »î¤(R¯~¨ž®åÆì]Y¶ {%üò¨LÏçv‰k¨Óßñz¶}áçd¦Q#Ùi˜ ¥}äµÈE›9E=R‹%2’¤¼r×jÿÓæK0`0ïÜÿ"…;Û2·µg&±ÈÁ”C"U?6p1dr,R‘ç R)""ï\P(hP&$­Â1„úÁ:”‡ !¢ÍóÔÓ?Òp¯ÓwY×¢®ñ½L3u‰ÎXôG³õ&4x?‚ ùï¨c6“YLj:x;NüUÙ²ž ;¨7[ªr*{O±0 MÈÞnËT±9Ø'äù°#7’ŒIêyÈ %ŠÓâ´ŸSœÎ«õ¼¡'jteFHšªªè¦®Œo>æÆlg?éŸ6ó±if†lyk~X`¼@©è%*;Iÿ¤~o2é'þË5Œ ff!LÒ9ÎÆÈCo Ô1éââÏø)ÊBÂÏ&2 4´»½ö hÞ|DÎãõÏ!g+ •Û Ì"U£@:>âø$¯#ª5þØ”QÉW„£il4šP9eò)…;E¹ÅJ+œ®J~&ÈuêGMðu:Ò25$cE¾×eÇÓ,5ž¦O³äxšÎxrʺ¹ŸœÇdV×2ÌoŸå~ëï5Èýµ¯n//ûšp}O‡¢•¸&zýhW0]>¤ 2†Ãƒ1TQtG>z•eä¬îÅg`üë È]ô0FêRùàš™ŒÚ*DI&î¯ùp÷¦M]â°GDä¬E›”*{ë‰ÒÇÙ2¹‡±.¡KÇ…¥ã2[«ä¦r¶SþX›ÆX›…cm:cõ–J7Üórrah¯Øšä)2::*4…]ðqˆþÓY|å|Ü ÚDI£Bwð> k¹³OvSs …uÌ$‰J«è#‚ë5>¬èœ±ªãÊe(:cÌÚJÎáfE»-«¥0Êq[þ·d ¨ðºAòì—bùµƒÁõ‡ŸÝIïöÂJ³h¡Ø`¥r__A‚ ‹°¦îv,“B¯ueÿ!.FÛ¤±H³Ò8Õ¿î~I¼ÑÜÉù·ŒÎ³žbki §SÊ#ûáM¹žÞ; ¤^å‡òÝ̪zØã½­càà—iF;"…6Ÿå["=hƒ}ηE¦ÝTdíÖÎ0d<Ýñ$Ór-’Æ8ÑíÇ0KúG)¡lëd[–¨:ÊÓ-z¨ Õ±\0Wì5¹Û)Ûå·ÇRÛ‚Å<ê–½Sò ñ™š3¡@-j¬’Q²"èio=íèöV3í‘}S&dÞ%·B©©sÍ5uªÛ‰®É³@£ãQÝØ&Rm ÍmÆH¾Âz¬cSA„æÎÜúShj8=¦{“~õVØÓ¡5œÐ…o2$‹Š¼¼ÔÇ kx¿{Rõ¢yœoq¬K‡ôµ†ásôá‚ô+YÜ3l™OM€F6d¡ò½Óð4ïS´ü$mo`Ñõ¬ r=°5)\†ã¹‹ÀhÁAu-†˜±oH+(e躢¾|Y>¤ÎebǾʸM3Hñú“Òpøò?¬=jþ‡ç«Ë+k™üñÚ<ÿÃc<Œnnþ‡òtzçM'V£YºÝ g;ÕÑqÞr¼·Žé˜Ò¤Fè yJí"}´›)âLȹ¶O0—Ù"Ž‹Ò~!D”Â-yýžW+ÍyõˆY&Ú*ËD[¦–ÇžK~ž‰“ #§¥ &Ouæ úòô¤¨â\)¶Á‡39"d`À4,í¸G‰NÇl‘G†ÒW±ûÃOœÕŒÐÄṸ¬Ò÷*O›Ldl3œ¦ÓBï4(…— 㦃ŒÉxåRÕ*†Ê›ÂíÙ£=ËŒ6öSÌiÄçYÉqÊ›Mjœ U%ì?>¹’'õ2ë ãØõ%iËØc#2ó$×à :â/»£º‰4ö]cŽœÓôW¡ LS9–#ºûtýв¨2N(mû/˜!l¸ÛÂÊšxÏ ç 2ÒƒLÇ6Î F1¶‡áöEÊs–7”¸h(õ‡+~R–Ê×½øÚÑö!„¼È.nî=@?Ìun#‰L‘A[ïöj¥q⌠ž¸üæuûÆ==}Þ ÷mˆ¼SŠFDJ“’Ãî\%ãDGj¤{Õ¾¼fÇýCû·‘²7rüO;l¿=MËÙ‘/’»KÉ!—œÌÊu²ËñRÉÏoQhk§¨¢òîSDþxÌÑé¼G—ªNÂÅ¢Â&Ù“µ•6 /jQQ“&ÖÐ)^k¸,†l»7ƒ£ªÙM2¥VøÊ·°HU—ŽªÍœL0®5wù`ø mõm7ïXQèŽU. 鉊!|1È= ³Ý´¿Öðf¸†ÜVlR)I!ÚzŸHíÆ×-e°_Ñq~Šº,ƒW·ÔØ_Ô©?Jho[á9—Gèx2yPßü7M¸áK÷d²[bZ|´JøG·[­õÅÛå¨ñ¼×œv¤ÿuh?ûâ€RÒc§”®b¦pâ¼ å6–•ÄÔË{‡}Ÿ»cL(ÕuL~—Y®ýІç 4¯@ÛiTo3ëƒ mˆŠ-#ÛçÅÌžIdûÜØöžxöiût&gSà¤'~½†þµ¦UÒñ6aX&é–z€põ`U0†§=cB=Í2\ø”ë•£²¦é+´ ð¶]þÐl6FêíÀеŸ¢ãÙ踞‹Žg>tÌìŠÄ‡Ž2†¼‘}@œÈÅÓ–‰ÐÊÔ™ þWÍyL1¯“ÜyÜu‡pètTÇeæä4]AÙUô8ÇÆŠ5Çã)æxœ;Çã’¤DštÔ|S&&|LÖc5y3×S/ ©^Ê(B‹.ûÚ\£Œv¤zŒ`­'=Ö-‡Z À·v,ˆŸšYwò!îóéýHöéNÀ'Sø$ `"Óß°ý“W’™V2p=)×,zŸž„ð›,‰ß§ù›ø´Ä.ÎGîSš/ÌzP:o6: ô+Ýò½-ß-š´¬,cJOKZÖÍÆaD’žà2q˜yáž\Ø×ýÃt2ÞîÀÏ ¨¶ƒ¡™vbü ÁGÛoÚÇyªöõ7t ã ¸öæ>ü8Øo¡§:º-6´;ýŒsÚ9Þ/ˆ1‹ñ³VÑó}óô° ÿÛÝU ]„ºê]~½¿ÝÊéd÷èÝ)bSü©Ð´èÛÑBøµ³w–g^€™ pøþÓvk ~¶;ëGø‰om¢Ê{ [ 7DwŽÃjñõÍMãÆþvmÆÓÆŒõ¬y{ý`S…3ðGhÅï³ý"°.¦ëæÁZ.üj逴' …7ÊCéX´o·(ŽÛÆúVÝ Mû×QD¿Þ¼¥ßííNÞèx)kÙc-Ÿ»ò¶K…¾ÿSQ–ŽÜLhÌÍÓaæÊlr}ƒçÉHD¨hŒÌ¨)ácA:½¬‘?˜²®¹©®9˜w܌߭YÏç‚òµ5ëi·[kÎ@©ÉÁŸ¤§.´†-9ä^³mÃKÝã5+½OÛOÙ¶öŽm{ÊÛ¦û8ýíú¡é·~/XÕ·Çóµ­½]Û^çñ¶é*ÞôöÝtúÖߤN‰ÌŒó!‹„-…J»ÁôãFøNNÇÕC‡,1¼¸¨›KGØ<Ætî:TN’ò²‡j‡nŠ0.Ò5]³.pž”‚HfÝNØßzgýe˜’)/ U®vI¯©؆¸œ *%IGB6ŸÆ®ÇA÷üŠ †:>røè|<‹×’ºWļÙF²Ü<8>XЋÄǹ ðÓâYM~§ª€XVÒóž+¨úpŒ›mo6ÛÍw-£â °µ°X‘Î*-Šb‡õy¢ç©©`1ÍCÅV(¹~dhNXD:^ɱMyèU¥qÒ—Ø ë”$vØc”ð›gœé$gWº6zNÅf˜pwç aÞìîøÊOmk1ªË\z»£¾dS~zS×ÞTÈ«`4->ÆRïJ¶å±–¤®ÐÑÊFWY•o…ÚͲ;â·ÞÅ䊤EBíÊ\àÙ"7‚.‹VýM ½ËŠÙ+¼¦Hýs¾7ª!GçRâ8^f&‘œ!+pšqqôR$(4„º³G4zEÀ ÖĸaT:j¨†cµI9£Ž?:0 xWuA±—øCóùèrB*OäEXæÀ:µ²yŸ ²b ûýá7$&èó–6ÀwÏ”¯é2­¡dÉ×=éN{Â6PµX€æ2 bÖäËÇëÕíà ìŽI2¸³¦SV`€RV:úL€vjWzƒóþ-IýtÝÀªjDs¤ºÕ%„ŠÓ‚ #š ÔZË(4£µ™o)Em‰c+μuXÖÝb\ïVv*<:URh8B?v*¾(&˘q¦VS{ƒ‹Þy—¢ÔÜ@‘‰¨„®TÅyªN r“Ë![DÈÔ„<×hÈéèÑõS*öFTÛik?†éR]ÄsÉ9#¼ºxdl§ºŒ#Ž×dW¤o}6(mŒ îT’(”±p@Àg¤YÙ‹á-òÚxÆcên«™ô‚œo§gûÆÄð‹¼$úcb)h‡d›PdÛ¨[¡wFÃáµÜ£½b®©«l+•ÚœTÙZò­ g!ê[Œ9Ï™b \C≄s1üÆ´Yïp€ Ýs0£Æã² 龜º½O×2YíGtf¥8%Wta/ÀâÑCQ,Ýõ…ç€íÒ—µNátöd»­;1{ˆ• ³xÀæg¾\Á³ºDøRuÙbŽ-Œ5]Gaél=Sá×'ì£\›‘öà¸õ v•\||K G½EÒÓ’èCäCbÛpç,ÉDà ¨PÄGíá‹ G% ýð¨[Ⱦ°Êá@ú›]>â#Œ¦í»+D<„ ’1u¨*ÊsU)Ä\HOA.âŃRwÔQPeUEå¶ÇµpBHwCê-€.•3+õiVR%vB1h4Q=¯›À…-T©É{ÿIÅÛ·îD•ŒsJ®X%WB%Ýù°n/<à¥Ùu¦ºDYûݤþiÞ·¯½O½>O}7 Š%Ì#a£KI—˜[&Þ~Õ%e’በô:ù6l°û£q­)xóµ|¡›³Ÿ’Þ€C˜Ñ= œd^ü óX‚¥wRÇ’” ¿@ê†_ÖW#ÎÞcÌ h "#((Ã^• Qù‘nièÇÀDÀ!ÄŠœr±*ìc€$\.”GMj}bÍJψr·LP%å®#ô•SͽˆÞ§ÁbâïTp¦{Uâ³ðC 2ѼŒVš*µ.ðÄ ç#Œñ•…~|Ëì^:9ްTŸu?ÂÐI cá7›Ð1Åêê‚#"$ÍDÞšú(2­q-º=³ Éu´ÁØ]Š"wèªJþ´\’ ubEÁ:2‡†¿6[¤ý,VLü¯É– ¦bn…j^l“W–npÿ‹²è1ÜÕ5ʯ¨ø¿Çû‡94:•¬¥£ˆò2í™±2ô˜kqAÔBý°ÖóPÜEBT–R‰þ6¼í‡Y:dÉ~04ɧ>#dž†Í·Dù/òk“7jÿ‚x(ò›Œ’›ÞE ó”%‚¢<%I¡È§†"…ì}K÷î]Èæ×zÖ-#<°Ìd•AâÇrW8Æúô²Eœ{’ñ0ÊʲtZÙ8ÌèCI #¤”Œ¾Q¬ˆ)¦<Žm¶ÜßÕ äŒ8.!iÌ`¨¢$¡-ÞÒá˜õd?P×/vЬcJ暓Ûô¡»ÌR¥ëÅÐ]SU±Å.Ù :ú}0/cÚT+S3PpÏ•ë=0áà[»J #¥rV¢°ƒ„Û8:-¨ ±CEìÚúšìºräWCå€÷…Eæ)¥u&“¦ˆ°Á¦í"›¦n.£¦°HÖ`²»¨Î€ÝݵN¢Ýü“ÈèÊØGf¥E=æPõ«úJ¶úŠ®nFz5/Œ¯æ&É)¢ÉeèºPAçRœRñ}C%² ŠCð/i\Ä}›°ý Ë§ÈøZ`ôs/jäñü&Žj+éwÛ†œ  ¼¢òYiEq¶¢Rɺ¾`ÔS! '~­þJ^¦.l¹ ý“÷˜ŠéŸL¤‚·1< 7_ma¬](ŽK­Ä ‡Â.IĶ0z"mv+#Š*¯Oׂ\_ˆôíJާ$éBWŠ]ê·+‚Ñoý)Ÿ7:4êÅei ÑŠÕÂJ > 6 )ë,DÎU>¥b—DSt%çÉxÜý¨+¿‚3ßgBñ#“"€Êy¥"Ñüò.ŠšÕեѼ0ÌðìPä(›½…8”Ÿ¦Ù’b7ä^­Ûflçñ¢ä1/ÎA{:¤„'­icfú>7­úŒ öçBiÑêÞª> ¦Z ­8 …öùT±+M¢yVm¥žéC™Êæ`Û8ŽÒ‘Ý:rê:çV.ºrBDÄÄ4öÆt¨wvj(„®g£ÝY1A4êÊ ö¥i¢Ý­QuJd;³(ãY!e|q‡ ©Á·/Ë(è2 V×gt dØf‚—œM§SPv[ƒ4nÿÑM¾˜SÈa¾ÕÅÀ2|«^øß:ý©[þÈ•|+B@?áó²ˆëeŽxt§C'vï™SxáÒüÀ.»Ï¹2Ý¡¢Ö"*—Õ{øá—#­{(kðž ¶¸;ý,O<Pã©‚Ýz^yhÛIHzòy½Ðu)pdÈ—áhBå(W.&T$ùÙ…sÚÿá:¶(]+Ô‚~¦IY¹Íé’^V9¹LÑb Ò©[/MОÒ/é< )T™œÍÆ:Ø^ŽçÃÁ×dô /¡‰ š%ÿ¾í)ol·m‘˜ S­!;  ø‹—“a#áà :Hc ¦ŽÂØ­;ëW˜îâÿÞxœÜŽDeý´¨x½|ù<“QÀl¦Ë®ŒèW˜5¾¤  4SÀ4ôüë]c©@(dôFÝstÕ>ï:É÷.Jóã%ñFÞoüHÑÙH&*Ž8Ý™$<Ó9RRj¼¨…ÎxUËÛ ðÿIFCQÁÛ—h€CË_Ðà&ŸUJ-ö±û±ïφu;ÐrV^ú*C‡\,¯ÓØ_gŒ¢Fb©Ôžà%_Ø#6R:´ô]q¡,p99ä¸èWÍ^#Ç~m·ïOvZØ~¡¶Û_¹[û9¼4·/]Ò}ô¥¨}6JBHõp‡h¯r=¬Þ¡‡Õ¼‚†?Û¡@ÚPª8â¯ÔÝJt «á‘…x'ŠÖí«n­³J¥h(Ž¿gCQäW˵ÓÙ»¾áT =öýÁzlo¢4δ†+à/„ÔKÅ1Ê Pöª—뀂u4áb7³8¢ê±ªŽž‘µˆ~؆¼›W¾h­”-ß ÷•«ì^ŠoH/='fX²<^ÄDe³Ö,äaV‹lY¥tÀå…c…Z Hž6x-~9-›ÅÂê«SeèП½š„(kR \ÎÞ+±n©è5ŠÖòã0ãÅ®cv…OYÕr‘­k]€4;œY@ò†ìGwl´u&ºc§ú·=Ž\”ÊŠïdÜÓ}F1•=˜Ý.µÞu–øÆ™¾ÓFRy*ŠÐë U6ntB“Ù&dmN^縉ñÂr 9K*>_h¤0Cº{Q@d±KÓº‡“ÞÍhñë4=°<›jýEy3œÁ3"¼¸»òÕëm1 Ãp¼0\«÷§f¯¨ AHö†ýõ¶ #±Roã E¾«c®ÆÒEF’k®Š×>ÃÇ.Ö„/ÐFæ;UÇŸ½³6 ¯u&.0Ú;¿ãh»Ì—£j. ?¤›ÎÖEQ /;HÒä½*°»Ÿ»ax„؃³6Ácwµ±Ë:{ä}{ Çþ:?ï•Á”8$^>¼·9¼ù¡²GQÜV¼Y6¼©!Y“¹µyÐÙ^éº'‡¤Æ„–”%\Åê¦Øÿ¸–y!¾­N¬x¿ë;ªÑ^à3»hãs~jÏ(ý»Üõi¢ 84Ÿ£>Ž£…â1[ñÎÚjÌLã4ÏSÄÕ`Ì%hY8Æš'3àP‚T£/¦ÙÒ Ve®  å8°b ¢0Ò ´¢bh¹ü&R8ž®«M¢;"1Âa2© 7£‰o„÷züwGïÌ6 ¦îÆYDµ‡U„ª¸<ÍøÁÔD®} ¹Ò¡—Ã-LÖ«K ¯î<ðxjtYmƒôyº=a½4‚™$'ű‚êSÂ…ã7uýöY(•ܺ‡ä“^>ˆü/ûä@C*o¦”¬ÊJþɇ0yzé ¯Ž¶ÊÄ<ÂB×®U€ÿá6åÙÆ F”ÝRÝJŸm¬£5(=1ÓeÉÆtG›2pÖÑV,ÇIês¤6G!0Üãh³¡P|´•‡QT#¿hEDªmr—?«åôø@+sŠæEøO÷…úëÍ`³xSaðnœEàÒgžZ·füÈk"ݾéäQrÇSï>C/{êù\þÔó–2Kã=/"š3ŸNÞéÔ“„cëÚ K< }§ž^ͳ™*ƒâh†Ê <kû$¤ÔŠ.è‘NÃßi’õî|"Š¢Cqz•NŠÝ¥jOqr ïÁ³‰Å´çg‰ñ«ÉfuÈŠ³"wû‹iO[1³Wdq'Ue¤®¸ƒõ)Üoj‡MwòŠ¢Ã×3•Rèt6Í!&¦=‚ÅìOaQâ ž=JæÖbÆçµ¸'Q ŸÚePyZ\`õ EÆC|†nŸÝ•ìOu–{`eªôã²NêAêìg Äêãlf ^ûI¨çÏÏ|<ù¿Ç5ÿw´¼ò,Êäÿ~¾2Ïÿýov'ÿw{£"Ž÷ßq¾ï-tE …?Û˜XäæÙX§tÛoo)‚û ¥ßÞÜY?Zß´’»ÐTê4qYÈ“¡ÁPÂ/™ 'bA8鱤ƒš&‡öúFEvÇɳ+ž$Ö‡·#ŒÀ¾æ‡ßóJ tÄë÷>RªWŒ7ýãú:Á@Œl­”ic×ÅíXy†a&(é]ÅÙšuàñ¯‰ª-;ÖS0ºV#q*Í”†÷bdÍiöåoW ¥BÅ~nonÐßj$úÃoø*Mv­âf;AÒIéù`j,¥åK ¾Fã zð[_#ÃeöÎyb2io^ªÆŽ›¦W ¬Š¥é\÷¶JµeøŸÝ°Óë2nûGŠOÓ´²G®+ÛíG£!£âþÂÌçú†9NOÊǺ‘¬Bøj§"}7 Ñõðòöµ ÜÆP³5Ϻ\Z…—R¾¬”Ê‹Iá›qh|¹Çlås# e% TQí9%t[³¡îXÞŽ¿2_Û‹€[øË0ĽÆçúgô^¯ôðK uý½Õ?7¾\Tÿùº÷Ïןÿ 4´Ï éVM†>SõëÞ 2¨®AsK6 Œ ð½7¡HcÍÖJaUwTnöc\š}}ÉÜlfójØOÆ_~È¢½ÿ°ƒ'ƽ:^X¤Šø÷þâþ‚ö஡rí^'Ì®ÍÉ<²ërˆM%öˆ7;¹pK²©½&D‘­·Ý@i›;’H&š>â¨Ùwš4k!Ì4®ã•8¼K×®ôª*–=…-•ïÔÄÔ9®ºN’4lµjÄÈpþC6Æg64¦6riâ Ó$Wb}¤Ð5yÍ%´-$¢­¡]Ú-ô m{Û YJ–ïÅUÃÜ'Ø(:â…•Å/}žUÚU8#×áŸü$'ÝÈœTi68ëØzí`£í6¥ÌìbÒád|…á¼·2ßÍÀç"Á=%ÏL¥n¡ØÇ„f€í|TiIâ´Ö^Ö‘HÄ~óŒ=ÿ”Ý WåzÌ´/ÖÞns>éMÙÅÊç¸p 4@«=ЮÂ'å·mâ¥B©>åÑ¢…‘ŠþKŽ ÷~þ'®˜„úÓ?&ÃW2ÕIJ7ÙŸNï·][Vå‘r.EðÂâÃTÿ„þLz»ánîÖ’u §«¼dsž vûm˜_¸Ã¢\tT½>uJ:=}7!ÊEçXA²¶¿n1Œø(™ÜŽˆÓÀýŽ1¾ªÖ]P6¼ ±œ±[0í#ꔾ”éÐd ûZzsЛôwa8[.M¸Ç;ÐLéÔ½Ô™È11MÄ4‚½ˆ§Jšˆ‰ÛÕ™žx½©MÀ;¢9î/|Éï`ÞÜböjˆKMeW2®¨ŠM»Ž Æ ­Õ âÐ m”0 ìPèŠÉ3'è°e$¬0w`u"Tþ ÃÕEÆDµ‰_€Ü´ë ¬'³Å©+» `|«éÎ4Ås¨5»*rÝæîb›ò°-f¾Å¢@кlÄØt²~¹û.Ù–n\`¬Þ+ Œ]ªõô5„G9°Áp‡è‰]¦BÎ î6åNFCC±ÙÞ˜ë4ÃOÿwó¨ú¿åç«ÏV\ýßjÏõñðÆpõ‡†þÿݵ~£ë;¬ÜUËwÖò…|JðÀVæ ¾Qð­šm)ÎZ‹•V-ªþÏBw– w¹Ž×Ï¿$êâ ¦9Á…ï ÀLkièË2J2K/åêˤŽå°¬Fì°Ò5Qù܈ª‹Ÿaº¶.+*¡ 3[¨ÄƒÆçj¦V‰ BŠ0·±i”&üU@‹€ê*³š«¹ni®[šë–溥Ÿ£[Âû¿‘~i®š+…r»›™p/3P E]°ê»›µf#r•Æy ÌÈáG»z@åF3ÐùÃ5(2 "ã‹<õF-Ñ€áÈH˜¤A:ü}5H>ýÏGÖÿ<[ÉêVæúŸGy­]ýÏSÿCOsáqAîìŽÊ se|ž˜2Èj«„U®U,䙊–Iêc64@Vm áî÷:†&žt{˜I]­¥ûð®áÙ£â4q|“þ^Ù‚&ÖU2Qr™Œ0*ò…=£}ž‘ÙŒòú‘3 "3£2Ã)˜Q øfvË2”°vʬœ§‘ì)ƒ·E^Sì4…HŒžj­zTë¶æº­¹nk®ÛšûMñ3×kÍõZjè¢×z@%V…6“«QoóÔWOÞÉ«*žïOöTúðøz&þg2zTýÏZül5sÿo5žßÿ{”‡ÑÍÑÿtŽ€˜uŽÖ[p˜â™Gz êàÇF]œ¢žc}ε÷ðáÝÑ^έgºmòëi‰|œƒ‚“ßÀ|%¤r”E|§÷ÔmH¡N…{¤¸ òýûi•G# ì×d,/È›ôïÛî¸×0ÄÛñ1ð)ž+öÛJ§ºxĤ¼ÅóºSØ"”XêoËÉ»iœù{¨Ãq¦GìOÔDo£ºX¹©õþ]Õ=WÎk½ ˜¿Õã›u8šd—½O®;êM®€ñíÁX¿QØöM¬q¢8v§E’ÖÍ‹hi6Š•‹È+®Î€È€-DÈQÀá¶AéšÒPøýiXÝ í¿ã‘×6 ïÿ+Q~ÀfY¬ùXTÅÿø„;xþ[þþf¾,*lU(SX¨;% sûÿ#qলN<$¡‹ÏH_ 4KT<>ß~Âü“Qw0F–¹´ú‹z\2Êú€ü¦sñ?Kô–…võú^g‡ùßâBüoàÿVãì\!çrûQ‘-”Ë’qïÓ !÷t5V™ñL^·á¯w-yPÆ=Y»Ý9j·ÔÈó¬DtDªÇäɯäÂc­…À1 o&R½ãä+j ÞfµÞâ.ýQϧÝÌÛÝ,.ÿZP²·$aåfA…íYP=µâz³ä?­§s¯»Y í XJ”V§ƒÏ€_)ˆ K¶b¸ã´Ôw‚áNªàì*øžµÏ¯nGâ¼;(Ú%:©Yhjf6ó1‘TM«;E°ÊU?Êt–¨%©~Œ`ö²ýr AkÃVK…Ì5>!cfý tîƒÍ~>ê}„ÝÞý\E˜Ÿ6‚*àSÏü£=Uç„^ 9`ZEƒ9 †Øah6}£!E5—T—¡Ì•-½·¦UdäˆCKôÞ^"Ž;uÅ™d. wWä –¼#}£„%}ƒ3~’‰€ê ‚Ž5ª´À-Ñ€¿ G_Æ %¹èD,²´&´¤€†A…ñÌH&€_áY~gÉ9f`¼¼íS…졽’þ60€w›Ü’ZÍ L ÐÃA=o—õæêXj4[ˆó”ÎHÚ‘ÏéM~d‡û†ã0â{éÔþú~+.3–Ö»Îö+™ÌÓ'tã.¦›šà­Î׋!'?ÊŽ‚óÉjRϦˆd4B…2­òÏR±rl½w-¥bð*X)» ¬a5õ­Ó¨W=BÀ7_¼ŒÞ>:bÃHFánm¿Ç¤Þpì¡Î&On£ù–òÚmcr¸£íM¦'ïðw³NøÈ?OsJ•¯ ƒèìÂ0:‡°Ûá÷dßzw_ŸÁ@Vþ"lQF7 (v¢þœR•ìƒ]U–9Báz›&¶…‰X‡J¿[o2xÌÜh=·rÎÈÛš•5Æî馽þþð5¸Õ<©Ë ¿Û)ÿvŸëÀëmŠ} ùÖ5JIœòn7évK·¶Ö¯1šãÙˆ©Ùl‘ž£cL«€ßþ ð)Ú:j¾68ÑÆ“®d4ðx ûtB]ö‡ßRÕßaÛÔ®¦ªsÆ|KõÎúv¨"‹ð3ÔëXC7M[ƒëZ@ýƒRíÚôº'N‹¡C¨jLM5C·fåv£4œ§ä°â4‘ʨEMSi¶T jCÃ,¹é4~ß&ðëhN‹dÌTÊôbŠmÏúx([|Çsòt1ô ¨ù¥ iV¤Dn¾MV¬ïr®7CÑÌÅY¿L»>`¶í_-Fؤ^¡F<>?¸S›š™Nu¿Mê7ý[¦¿ÝàOÔmlg”èfk§[˜Ø2õε 1‚‹)ÂÙ:™,UèDx¯'ŽÈƒæM™S™HA¼%á®–÷düé,IävA£ªÉ¯ÿ òé׸ ñhRÍ¥•GŽ‹ñÆl<æê8öIT¼6Ÿ6â–è˜Ú1×9OQᦦd«"o¥F&£%ö¼‹àá|)ˆß¾lÇ­º‹Ë–1 Qj¤ì[9¼]LvCMÙq+Ä7 wtq"q=@_ÙAù’øæ¦ÃõF»Þ¥´ã”=ÉŸWžƒˆ¹äÀméØ[¼MRŸî×aï"%>”éýœœ'™¥|¾W(fÔGøõG§‚±Ÿ²ã†çý®±§vC™®]RÅp%*‹`öS£ThEww1‰)Ñó¼•äö°Xà{Zø{y,ûð ´œr„ïwÓDò~®RoPr’x¦å¢¿›RªEœT^l¦>­ßû¬´üXDL²Î.sEé÷"Ô–”¤…˳¤¿P˜øZÿõ¢AIì ï¤ïÈ… ”šÑ€ØXÝ R-u=ÍȈï kC‰“ø“à£ùI×µʬ&ÅÔgVÉ ´Z‘§Nƒ¢ŠkP„6‡Ó¯³$›ùÔ_å,œQC.·æ‘èo—cp“»àfòJç°žÉeVߟ&QÈ3@ª?Jœ›¨ïÅåmkÖ]1ÓY'Æî—ÄSõ¼Ë)˜•Ü‘â9´fûÂùÑw‹d›;Ñ_*6KŹéMAø«¤ã˜ÅwvKÏù€:²ýØ¢æÌ<'ø¦¨¥Gâê(‚g~‰ìÇrè@‡M¤Ü¶QDœª‡™ƒ²öFåw£»'jå¥bUŠW>‡æžT¢zTÄݨZE3û VŸTb~¯ãjÕS?Kž{NxKz݆Öëú˜ŽÚï´õ¬X¨7wý»{öœF“Rqet'ˆMãë/Eí}ÁùaÝ¥ î•G<ÍÄF3ñ“;aŒ÷+73Óe1{I¡r¡„T9Í­O–æö‹%ÊÕI”µD cÈ+”DYcõJ9‰2õ˜ÔãI”Ó “ 0PX´cÊ+^žVœ½« Š0ŠÞ`ŒÄÍhxq{ž µÇO9aÓÔÜLEv-íÛbˆsÞýÙ”TÌHŽò<#I5HѯȓŸDÎõöS '˜ ù,äóØh@&+}¿ÊK^J0ÇÓPÌ”ƒÕs6`çs¯3'¤&l¤8X›¶†ùÙß–êzäæ"º[ ¥––¼ýýÄÓô“—’¥wé4ÞáÝSÊ ¸ùt‡}'¼X´øŒ¶`3ÕNa‚j hå5ŒÅĤE˙Ѳnßèï]Öžö|Fö´çs{šõö I?½¯tíÐKÎÐNVVÀp£mÁª•ÐvËòÖÊ †ðÚÔ춪}6+Îû´$ë탎0yï@‡7Ò=ÿeŒtñ“äsBƒ&·.¸õa¥{ÝûÛµ›Á㈭ö‘ÿk‰ýP y÷37 –f²g‹}wស„êWã°ÕP;*16R[Œ°ï+)ÓÆnðÀuÏÁŠÔ:Wå?fåݼ^™ þhÎÎÚ2é°yÊÁÃ^äÉ䤯®AJ—®µRñumÙ-Šê'fmxõ@c†ÆOn+N.·5³Ü”ÆÔXyAÏT kœþFâX¼xìÝ&Id9x˜ýb¦™qž(d –3Û‹s?²ÉÖñè’—öT´-°âÎØšñ‚EÉv¹–Úšñ¢@ùõ»˜nûTÎ.»´Ýê+UE¦÷'qŠçps³µ? ;0]‡ž±?ÿ!ŠNð †îbÞ1%Jr,¢Q81£»Ýø~<γ»ð86wãp/…ë"udð׳™°8zÿ>¿“Ý_iÁJ©Á2/fàðbî`½}B*°Gv0äõ݈÷Sè4Ò>OSm3;§o;š)MÿÎk«€N–ey ß­._ÀÎLÉ:ýuÃR@9Œ8uó=HϧX†ÚÉÕ“ÏÕÒs2>¥SnÜW©,·]H©´~ÖÜ}›cþ|â(÷ô?©¹:ö|é]Û‹Íz?ÓqåÎòû.9*ñªÿ–ÜÁ¯í¼šOüx\ŠW‰›;µûw¨W,ý»Ëc.BúwÖî‹ášþ]‚U2á“þ]3û é.BnH£öþ´Þrão¥ôö”+>× O³Âó¬Ð!ŠÞ¿ÈÕÛ8NQe£wŽÌ:8ÿw}}Ôø¿ñsøÏÿ»?ŸÇÿ}Œ‡ÍŽÿ{¿ã†nÁÀ똨*Æ¿Å_ð#»·›'äEúvý°ónŸœFN×[«ÖöÛÍè³¼„BoÖ= €0ÐlB™Ö”:Av«Ý„þÚ|‡Q§(ZÛoM˜!#¿OƒE)˜·R˜i’‘‰¥ ­VHBVCO­C1L xay¦‰Hìq…ëÇa‡ƒÃÞ’á‰÷ÕoýBýªnjýlÊÇ€ì2‡ ÕY¡‹tU1²S`sh)Ä+y–âáÝ^Lãmކ߯°„˜Pdxûé VRÕ„ZVLCKî‹-±ÿ¿`ÕÆ½O×]Ñ\§è©ÄŸ0^iÝ¢¼8IïS2 %:’ø…ÊÕ…YW¢{~~‹Yƒd újIo1Æp]Œ Úh”Œo†ƒ Š5+ÓçôÉw™Âb¦µ±a•ŦyÝý4èMn/8ü%Fòä¬ß” e’ÜŒq¨bê¯8 ”óÔP¸ÖJ·Já¼àîÛ_p4Z‚ë¸À¿_©Usàþõ¿ŠB[ùX‡£á'˜Î¸÷5qÚñ5s\i`3ðÿRÍœWe¨©îÄCêÜûñŸlW ™Ã¬?ö*Ó M‡7æ¬RçWÃáØˆÿ2Â(£¾åЃqÆÐ­`~­¯`—«rák´×YãT'“o½1¢‡èýG¶øwRøG“á/©gÖÒÈ ’m}N&Ãk+#×±Ö’%â'«à½yiƒ™ÜäڪسQ‰¦ÞPè\^B«ôV xá4Y"¶°ØïNÑ"f“.¡ÌÌ||Õ»œ`ä> Š—ÆÑ×4ÅŽ-»L39uŧáðBto`Ñ¾Ëø×Rf5‘†»lrï‰ÒÚˆª™ÉUðÜÒ·°EÄG‘NgXÇݤ+F8èMŽuë.cÍŽt¦:ÎØÄ–Ž¶<#(ÒN÷+½êâVšJm_u3û^Ü®˜mÉé*Ó¦L?$nz_‡•À²=¹]‹qòï[Œu,Ûf–©tÛÃ~dæIp—¶_j’C±yBbÜbŒöÑZɧ~ï‰4û¶4Z‚Cë8aïã­ÚœoaÜ»€SZõÌÆ(;˜òTˆ•ÅÇ84j¨€Vg*1ŒOL1ÉíŠ*nþ™‘9ç¼°ZgÇ’Îþ'³™oϯ¨g•£*fjêöÇ:€8sÇ"7T¼'ϳ̉æò1Ñ ’lV~ŸºCgËþaœ¬Ÿâ è²úk€Œ^Œ‘yéÆâŸøÇµco“¨¨¶¬}PJbÇŒ€n¶Çgg«BZàË%&„p KΠ#(;Öñ3Ïd“,*LÕ$&óZ~žò ŠÉ¨˜\FU*«'hyÊBy¸`¢,üÝÄÈ#Råbðs(2¿ŸÕ‚:ìÎ2;@neñÏ×0&øÑZB9Bôà`³€oËu~á‰óírs•Ì„«ÿûÿmDÿ?ƒËvq(eá°ç(‰ìõvp~Õ|ròßšÛ÷ÈÞ¾&¬T¶Ãš G2ÕEW‰J Sõ&VØþïD…)†»D} „טåE‘Ý‘¾hñÙ³d|{s3LÙC%­ P÷ÀY0×g)«…ÁpðŸd4ÃAÿ‡u´K)X%É)¹6êb»ô’Å_‹èö_G íi©É ñ\”nªcjæo…†«Q”[–V|¹å«žü?ÕŽº?ú°œWâ¯Ûᤇ›¤Êsuž1;茆»y-G²ˆ¬ üÙ(üæ“ňÕE“ÿÍíˆN€­p¼ïKQ*Ym•­Ó<Çi ú (Äããµ÷“É„D¨Mšü°µDu­&‚2íuÙÀnïq}ô§­Ù„Í8ú \èÖU¤é[¿“|ï‚иvo`V|7ôÄAw||¿¿ÑÚÿ£µ}ÔÞ4Ël^`ÃC+'Ãdº±y@ùdƒá[±ðÑ8ãÑf•…ß^?m­SÈ`úCy¢â·¶ö÷é÷!ýlÓÏãÖäEôíÇy†Â£œØù[°iŽ¡Ñ­Ã}üE!ôÛäJá™d™$§íf»¥Ãžß!µ)×ÏÉmz‡ ðÞ©ã¿Ë¡9ÓÍœ£ÿP½½©ˆ#£Ý±µ¡Çê†át„¢:C*z€Ø…œ²ê³4ñÈ¡·w?%ĉìãšé‰#¢ 1Ÿ)xL‹œ–ô1®°#V Ïmø¯"ÂÁËùÒ˜ð†ò.sf,ƒ„ccNhs{²i¹ÚFÔ` ihù“;kEi$á(u´¶FT´ Hù%e¢Á¤³ä£Nø[xÕ7§£ØH@ËÛR¤)Ýø=î2«,&^{fГ,Ä—åš„¸7mOrÚjlßæêmp`1k|}_–ûƒ+¦ea1è ú’!´«j¬ôËrE6F̶Ýž@\–Ë”3Ó¦5Mºçx§§ä=\&̰ÿêûªxû®ƒ®ö´"‚ÖB+~hÍQYŠ=óÀˆ ;q«žn)çÖ¸OIn•ÙIre¬òí‡7èÖ­n‹3ÆM€QJ.Òñ;¸[}… hÂà‚eá¹!sH¥ªˆ ¬|©êz ~aUšf9ÅTøÇõ¦'xZ®(¨@¨Ç}9«ƒ\SW8²÷@p›æi,Я òÈ rçö›yy­w;"ç8Š}ÇQlli=ÃÚF«¡}µ6ZÞCé…ÜÒ-Äb­H5Ì P¬1:°ÀÈþÓé⛯!¿²6gÌ›3NÀ–¨eã,ÚVÈ7s$r¦öà°¸1é’Ë£6ª™ßÐ<§ðÒ~Ø¢!ÈKßõ$1¸Wf¢J¤0%qQ´<ÝÏ”?¼Wòq‡s†–©Ï÷\Š,ío/Yú2Ÿ{¦ž²»pšM{ )7Kœ±é*˜= ´ïç­ÿ툯Ðbòÿi”RªHÞZr54”¦ü oŽèMªEAşʲ”3q{ó­;º Þiÿ* ”b‰—Ö[[Kæ«81L_¥Ö‰ãF–8ž©V,S±ˆ_Ò­ã,B4ò¬Ò¬²'üU‹ªÕê"­(ÐYøw‘´ûy¸Ÿë­Œï²½Mß]R’›âؾkî*s%ðgMv¹x&¹ -¦dqì§mtEEµÇ›:ÛÔ1†‡ØÍ÷#4XK²"—„¹ Ï¢ €ìÓ핲F…yMZ¯?4ß)ÑuêµIQ¶©²¨àñe~ÂØ—§ãÕ z¸3ÈÕ ~¬†Î¾T)åßèÃos«£-„.4qbÕÞ±±¿×nžÝ“HUËQX¤Ìî—ÌE—‡œõìwhuåPòÖ—élææ™\ÛgS¯-v©‘û,g}ŸÍ|ÿ?7$#—ª½_jç§kGû½áÛû ÷‚@hïO‹½÷ï/îÏ3Øñ¢ ç«öÿ¿o» ÑNÐwÕÎçCd[?%äèBægK ãkyèÌoµ-“ ‰,{ñW^ƒã"WPEüV@Ý@àbÄQtò˜#þ&çþGü¸÷?–WW×Ö²÷?žÍï<ÆÃûɹÿóý÷uñnq4[›ð÷&ÙáïÍ_ð†Ïh 3Qsky Ák[馼ÀЖ¿ßËßäï©o%Ä'è8Û'BŦ„FI·/nú]ðhÈÆ5É´}N®èjøXºuµç#VŒ4b®?þq}`ÞdöJ;G¯‹äR¹l“ï¿ô„Á†,ßš±ø^¼*ÿYoÐÙÍíõ¸¾´´TèŨˆï•^UˆÿàϪxõÞˆsz5æWN‰ Ûàou+ô­øÁeè —àÒU·DE˜ß–÷ Ïq¼îؾ~ìÙÍ—Jy¾·µÝ6Ù‡Åòбû%ª‘í"¢hÕ’ĉï²ÏØçÇ?õ1úüòƒ2%¬78É Éä[’ ,gj$l„ÂgKÜà¿ÈïQî–wpÖñÈòffÈçx¡#ÑnÛÊÈŽÚ3è¨D7D®ï ¯MV{‰[K5s· €oNÀã©· á£ÉMŒ-R¼©ÿø· ÿÖàß3 ÑðÝøwÖ¼‹×I/!kÝÛ¦ñóÃ7…[í=¾‚ƒ¡ùÞ_>àÛîÛ3|{æ¾ÝÄ·pÔ47-Û7¾m»o;lÛ^<3dªø7w+¨ÄDý+~o~±Ê_Ôð‹ækÜÊ{ÔmtL­í3þ¦Ô°¾“æo¡:5ÙY5€`xƃé¬ð° ¬ÊkiZøQ£ m¼Ç•ôž®[ÂÚdt°†”Ÿ¸¢øMEÿ9cö¿€ÿ–WV"—ÿ£xÎÿ?Æ#IˆÍÿ£ù´¹µ]tù„¸døÙY?&1`kS_Å–Ûìàp¿¹Ù숖6+üBÂÁæÎúÑú¦åVŠóÏN$Rï9ƒb÷—,¨#N¤8‘Þ‚./Q¼1 ä Oë’\ö™ÏÚ¡z\à¥q†A²FÒ#_k2’&—!ïZPŒª%h¢7†nFÉš™BÞA 3BÖ©ÇbÒ½…©|Å ü½¼ô ï{z´c^=\ñ¯Ækû2Á%Uz—1è ój$£®oúñ¤JÜEDÀÑ*JãÊbd2Q¯ÅÂþÂ+š#ÎlQl:ßéo7áÛy G~_Zü  æöíÔÍ¥;Š2|g+Ô܉Ӝ—? ð÷47Woí~Wp·T«¨Š&`¨|5¸f+\óhÁ¾*4Ó˜§¯7ï,Álà ßué]Z¬#ʤ óI 0æ3Ì_—¸¦¼2öâÂ33¼Ëxž‹ONñÉ^¦ľønÀ·tø‚ŒµÓ ì’ß{ üCŒX÷mÔ›L`ÆRW kÒÛ‹lɰF„ùöjê+¬›e·Ÿt)…K:5å¸Cus‰ú×k¼‰T‰êꮎº_’¹^R¡©n« +4>È íϼFA1± k…÷Ezq¢¶\7/UÔ–­sFõ]þÅúááþ‡ýí7\qn½Ý9á_›žîô†öíGÉF½ú®'¼Ý>€öÚ)M{AÂxöÛ°œáè÷1z þÞ ‰š©»Åï }j¢/6ª86ÀKÍ”D /5­ñ™ÜfÖݰÙÿƒ/by$iÔÃq°ás8YRÍL>á›ao@ù$äUædp!Â;G†Ù‘|môè=E5êƒômÆN¨Ê5]…iŒ!³—>°b;ž6Ô†X¤ 9Ý6Åk_Os8ü¢oö1VÃ`8hÐõÂø<±¯§;Í}X6êÉVôÇäê8ÿÎXl%GåL†¹õ®`ä¢Ãú&!oxÃ<6+Ñ+üîkýUu)3:’· ¯+rG·”ÌPu@[اÜfåU]v™×áQå@S‘l‡&zX ×Näí~ìá|)ù7,Å(ÁËx|ËuÚÛd$U¾ƒÛ~ÿO¤ãýón_¶sÞå`,ƒ$¹Ú£È7ýäkÒ_2v\ôKüÆdí3ðÄGþ›\•ózDêöt•äûêrØé[7¶ÇD¢Y ôŽFQbÁ&Ì2¾¢’•dÈ ™¦s{Îݺ'~uvp<䥥%ôæ4G ƒ6§¶õQÅgƒ„U-ºÊ‘¨¡‹ j8ßX,ûLVä\#ó ҲǺ±&›ziÌ5É.…†A¹51†g®‰5{Ük’Ž“×D/…XÑš˜ÂþV¬ÅßQW÷Oÿ÷ñQíÿ«khìwíÿÏ—çú¿Çxxøú¿ ÅNb&f¼sÜ<ÚÞì3Ýyw´}¢ô‚{´…÷·|ô_=:Çæ5µ†øçï­=Ôð" *¨0ÃBÄžÁ ¡*Á$uŒ3T#v*܉Ò)Rg¹a¥ÆQ hJÍㆫz$çRK눎0}ƉÒDbYed9M䬕{8‰SÀÎâ&Ÿuü{sqGþzÿú}tübcöªj`\÷~Ã62»ÃÚ ÔKN[èo—ÖÓü‰6ùe¡õ`s‡y&¶(ßV°[Þ\ðDõûÓ36ß~ cÆÁ GÓ™ ¸Ì_·="L“ÛÑ1xÃ1‡)5”xvY,½;Z-þÛ¸£õ/ii€²"0«ž+³¼¨Ì¢šª6O–.`§Ì0ºRÕTû–®WZT‰bÀzšEÍ“x?™ ññø$’~Æ—Áyx,;î`ú@ñXØ_²ë6Ãa{Á·±ÒcÅMÑeÎ+µáø‡*,1Ù‘Ó§¿eר¯ˆÍH„Fû@Mob^m•Á´+{ Å+(šj5@æ^–Ș„kð¥6<%Å#ÎêDЪlF ‹'h«ÙŒáàüE…ùm<‘‘N‰\ݤPþ™2÷ížû­PúKÜqZ #ß%¥©¡ÆàäOFB§ÈÈ œq1´vŠ“‹²cã®q{Wà@Qqñ1ÿp´À Ç€_ ~©]|Oj‡¥¢Æ¯Ñ¥ÖÞ ¢`: µ$Ù™C}àXœy„´éØD·,É pÌ䙫tb¿ 멨~>hBIÕõrvx;ÒßeWöøæ†V–©Afи-½ªJ»æ =3ÈMÚ ¢jQœzöDù…ò€m¡Ã0?kÂY{m;åÖWý»¡®î‰Äš±3ݼ§ºâ'œfqd<'åQñIÉNG´5éÏ…ìI9å™×šæÌã3Ò2K‡Ï<óÈS'Þ”žw¥WïpÞéÃ-pÚ­þ=O;œJ‰ãÎûCx¸¤µŸuâ^iògxàêÍêÀ£Æâ‡;ð6Óu/<ðìã-{üxÞü~ž— >+:ïÖJžw|¨É»Xüwö¼[ ŸwÏ|¤Ó,œMìëID튭¹B*ýEÞU>‘VI­q*µÞâ>K­?Ejõ‘Žó:õ).éIÍ”^CdÁ{Ì?Ÿò˜÷œùÁ}Žùt~…gÞìYZÞG|3nwORšU”þ’fÓ3¶ê#J³Jlõ «ù<ßOlU)Øšw=±ï¾/³‹m°_~²ø²èXQòX7h¥gwò˜ÇSžVàEø9jg%ÔzÎn÷.Rm —3G²U1dÝ•›y›Q@$ý>þ±w‘Ö:ö~ ‘Ö”B²œx‘Ö/»–XÖ¿ó©ç'~qÑ©Eå¥Y}ÊR­ùÎ9ö¢(xìEqIÙÖý¬}÷Ý3Q™zÀÔ›ŠÆ'Ñ+¡L¾Ò®Ð°ûûŠÈ›ôçÁŠÈ ¦Œ¼ …ä…ê½M»ùV;Úv£€‰bê±{“‡µì–8:w;îe×5õ—OP~t»îÂl »¡æÄ –~J³®½ÒÓHʳ0ë>&k?3Ãn´VȬÎд­†Ùµ_H æS¯õpRð‚!/(9xáÞÖÝ(ß°q'ónäµQüîÞÃÛ÷îeÚ}ÄCïW1íÎÔ²ûÀŠ»Ûv§Xø™ØvŸø©ç§‚/ ½ç3´ïFÏÇދ‡Þ,¼†´¿Ò˜›+¬Æ/ä_AX Xt£|ÛÅØt£€eb*´{»zTÔæ$-ÚÏ0è>м;7çšÏRˆ5í¹'Äþ kîcºSÞ}[ÞÁžçßÎ ¿ä³èÆËÁc=Üï0‹ÏeÙ{uã|»FP–5¬(ÓNsÆ^“Åü<”ÖÞLJç¶^£ïÙɸ®©÷ñdÜŸaìýUÅ"á6οÁaäòœ¹7´8ðdÄàx%|^nˆ˜Å=b°'ò[qn¸7©yümŠÇÿíÓãæ{¶/gâ¿=[›Ç{Œ‡÷Œÿí-ù®ïî¬S8N’†!Ì—ÌoïsÓ6È™ß?{Ãû©³4¼Ÿ’Æš-LÔ`ãxKƒºßž_aÇÖ<^PAWÝþÍU—h}ÃÕwñ¬’;J°dŸGø÷þUåß@Æå²³DÂÍáòPcþŠãzÔéíwÊÏ0•A#ª6äèi*Ø†ÌØpÇ4œW™E©*˜c¬"¾ÚÃ.•O³1\n¨yieÇÃ%øNóïöûC˼2 µîæ àeò¥¡x‡a›0˜€Éýó5µ¿âìJ†û²âsùÐJu…ø¯›³B ™MÚ‘ƒ8{!‡?jÌ× ô­7¹2ê":•ΡW.h?åO‹u6‰÷ÕœÐGFJ½)G/SPÌ4G]&5Î Z+…ÄÏôh)<~øäV'<¼íÐ÷£öú›8èðWž¶Þùãꄃ y:~°¹SÇ߇bøÝ::ˆwê‰íã-žE0µîÀà¨Ùj77Óv×7Úô­/tèôˆÚ›٦˓¢*Eв1(ñŠEÛ͹f²ÿ´“ˆ^} à9JúÝIï+0„gç?L p|¥ÔÐÄ:»Ê Å”š6‹_jÑɕ׼ý[k|òÿÍ£Êÿü¿:ÿþ“Æ|Wþ?œËÿ?Kþ?üµåzC¹öAò‰ÈªÀ6¼Š­˜«æj¹Zà·U tNßÕËé ¤@$gÝÀ\S.þÛi ²éú~¶¦à¿k`ËŠæÿÀaÛû4瘢` ÆCIÿ%SÈêñ‘ ‰_-½õåWäçÌÁ˜ü{‰Ós„+N1×@¥Ã…<(Ìúꀫc’­œs`zµ\pªž&âbH p1=Õ4z‚+æ_±“ëù€näí“ð~K€öÕƒ£øC ‘\â—½‰US ^%ç_0郄Š‘°Àsò["®G—c|ï" ë-H–R¬„…·¾Ä‘QÖÇ]Ì1ÌaëUD6c¢HEL¥b÷”*£¹ÆH–˜kŒf¡1º§ÂÈ‚ÀÜÖ!ð ÎÞ$fžq4ìšBmS©…ruP™,«j Zù%reoÖ¿AGAX„Ü“^½™û&j´r3˜+™,Óh;¤7ãÔiFb«Ë. „i(%#¶aª9/xœŽíBtÇv*À/^ÕÑ8Õ‘Éôƒ”°Nˆ Ú¡{‹N|?=-mè–<¹uK¾Ë‹™üe–ðe¦cØÊN¥W%F@ß{ÀÒ½ÆäJ%M·S¨‘\£‘Rš¢e4ËŽŠíåŽîèF‡éÕKmA­XçX2Éd%ÛËž=c Ž'šåZ4[¹¾íOz˜Z”„cÄu_–@7-ã“ÉB™a–Y(E¨¦èöÇCñFæÜâ\€U_‚Êó¼•#3Aå]Ôɺ²Í(eÉâÝ2Kú(™›dÒlÀ‹JÕ%AùÕ"o É;«–e#wL$ÈÿèBã‰$|ä«efF»âÔŒJ[ŸšÑIËÇ P1Ö a!%“Ɖû…w£AtóDæLô%Š”Ù!Ǫ÷]PÚç¡ÿÈC€Ú§]GÚÑÔ“9Ûhp£d<±W’Œrq;N.8!¥Ct<ö ~\«îMâdŒ=¡ƒ› Öý¤¿÷Ge7SçÜGœx¯ß\A=Õ.Ûû)œGò½{}ÓOØN3°®ñ©'`1_7JãÒ6—äß·ÀÁá…E2•ý“š=ŽÔ7ˆ̛]ë\/ÈÃPn'´0D¤‡lAÊ,WÚHvÅLŒáŒ©Æn|¥W-§ÐtÏ=±2 Ãù©fè’.ðÕøßÚ¡‚_qSÙv¸>ÐB,ÿÏi¾Qn;ÜÔ þŸßNÉ6˜7Ê9S,Ìio™¡¤"c5 G°\@;¢°•ô^v|¢<0Ë'R`þYFÈŸì›ÌùKSäukúîI³9»ÜÛíƒÎz2¥å² aj(êtF@.S*Ci v%³’zƒÂêqêU€Å5^[¹Ïö,í¬YƒnÜ7µtó8 ᛢšcc䇰Œ[²O¡é~+Hk c(Ìö†+0+y"‰°ÑŠ@FèΩÝÌ^ÑÕ_°¹Çýº(…ëÿ#ܧý¥w´õÞÒíõñø&sç’$½”0 ý˜5ÿ¥ã8Ña€puZÚF»ý¾ÙñÔòØùÁU9h¶tk&2øndw*Ñ«^#ªÃj¿zÍL¸ò [Wz¯>×éËê‚þÜóD|Æí'€ÉnƒfÞD;FC!_ð¾µ|xÙÒ ›z)> c ZèÐm覑8Æžk6æçAWÝi~*‹+¿xõY®5ýY\á${ŸV.ò4ë«VÇ]_ú<ƒvljº_MèsAfÃK}â=€*'ýuÎÅ~R0]Ÿ!×É&i^ó'Ú1¦¤Àï#sM ͽó¢ŸÌ9â2]”ß’ÉJ¤õ²k“¾bË¢s>Ø=™{ŽóJâq°GdÂÙ³<üdLï¦?úïðóÆë¶ p‡Ã×uß¹‘LÑ—­!ŒSs“øOVYÐ,"ÏØ,]iUÒ{² ‹¸òÑá/&îtpŠò*$…Eü/Ia®w¯½úÂD#_¥fQàϯ/5 ¼X[±úÿ˜9'--Dc ñ^£95´Ž»tŒ™$ywº#W01ªå+Ý™…4H‰³¥ÔEØ<5”ÓQZäçaç4'¿x2ØÉµ$>*A}ôó "ŸU ¬L±4RÔ%øÕT€,ƒYØÍ pÃ{í•FJ WHù#8§Ÿhoë ¾Îa±$÷ŒdpÌb‰'®¶u§0Êp Âa%-fDÞ®.dDˆ«ó¿-dŒÒj«^žÃl5Çg) _9÷Yºÿãóÿùþ¨þ?«Ñ³è¹ëÿ³Íãÿ<ÊÃ;Éõÿy¯"W¨’äð£‚ó™aÌ~mœeXSK“=Ƚ)xÿ+‚’ûQn>ô›£¬Méìóžð /N†ªÀ5ZÇÈš-Mo0ŽËÑðZ$=²àMÈüw9Á@‰ø÷ãçC÷`;ù×ô¾â¿…©oße.Ûñ=:y«Î½Iç^£SÆF(¥ðñvœà‰>"éùð"AMóŽ¸êŽ¥ŸÁ?E¤Üò\]{p’^¯1–ú+öNáéG‹Ë4 ,7~ ¿/°Îj‡JëíXR7—¦rÜHÛ’QåÍ8ÍÌæìÇ€@"z?ð¸ViYU³êjògÒÈÈ—O`Ø;9™ÖÔí¸âæÔ­©2^"è8°Yoå\-äýg‚×.I7 7Ý †Ò¢-kq ~ ÐÖåWǶª]6Ë F À&ºÐ¨JT?PÞtJ`Û߆£/c`3’)½i,#bÌAÆÐH¤5!ÐÁ9R­à¦ÿY–I RÉ×2iÙ"í«‘÷½ YûÎÁ*P#è³ÿø· ÿÖàß3ø÷þ½€/sä¤há[8N …háZ8N …háäåO´ONkUŃw:C§?«GSÍh 4ëfcé¼FFŽº<\Mì¾¶.'òE¥ŠÀ¥Xkðï9ü{ ÿ"|áÛ^g×2‚˜D¢z`ö¿‰ç(œbZ‡z`vÈò6+ÃZF~îÒëjD7Ù"[t4úoóUI>Ïq‘øÿv†pØ_ û+ÜS$/¤5°óÅ Y*îôžŽ-—ëZ(îF‹ú#òêÔÝ™¬”ŸI 3‰C39‰X9g œ¦G3´e'1—Œ­’±*[ó^ ̶bÌXÔ eükx¡”þÝÀV;‘[46ŠÆVÑ8¨6pÁºV¬+Ö•ÇëÉ —\±J®¨’+Ö<»ëàÇü¸òÀëa]1Š®XEiVÏÊ,ÝóòK· K·ú4—îd•K®Z%WUÉUk‘_Ìh‘EÍs枬bÕ§ƒfÑU£èªU” ô¢ ¼,0k€0k¿:œ¬qÉ5«äš*¹f¡V´üX¸…å×ðãÚ/‰jfÑ5£èšU-—ÀÊh å`峿Vž<ã’Ϭ’ÏTÉg6þ†8¯‡Æ_üø ?>ûÍÑÙ*úÌ(úÌ*ŠË•ai£)XÚç€ùÏ瘟Åü“ç\ò¹Uò¹*ùÜÞ#wæÒg»GüÕŸcçóM¤6‘Uô¹Qô¹U—8*#ëDSÈ:/`¿½˜ï·ûì·“\ò…Uò…*ùÂÞ™³ßzgbùøñÅ|£Þa£ZE_E_XE9¢2Bp4…üöôËùž~œ=}ò’K¾´J¾T%_Ú»ÿÑäúÙî~üø?¾œƒ‡%VÑ—FÑ—VQD«¨Œ.$šBêwü1§OŒrœÀ¢0è—mØ/kàáüd"Üß€Îø«GË4úå9)z2¤È^‚es –íE@<˨Ëðqïb‘}¦Ì×”ãb4[ÆhÍŒÑJ£=s…ŒœøÅŠ×ž¹‚%WОÙʵg¶Àž?¾=3U«¸+ºK.ÊB4w Éù ?qƒ¦‘BÕž¸I+%­„q–öh0¥‡h7 ‹Æ6í‰ËHùñocÑŒŸÝuôiWpAÜ¢+FÑû0ˆËHsñßФ¿˜Ñ*çð$P`õi [tÕ(ºjóq>>žÛ4Eئ¹²üX¸¥ù]ø¸öË¡š[tÍ(ºf³Ÿ+e˜´•¹MȘ¹b¾µ¼ŸýÎèì}f}fKS+e¸Ú•¹MS<®MsåÎ|úl÷HŽN <Ÿo¢¬J‚ᢋ>·U+e¤•¹MS¾˜oÔi7ª[ô…Qô…­;\)#¯ÌmšâIîé©lš+&×Ïv÷k[||9'H Ü¢/¢/mCÂJ]ÈÊܦÉ%eÊ1µMsõgéxfKgòlš8úå9)z¤(³Ëæ,‹€xºZÚ¦©ÂÙÀ«¼p6ïn8Oü—O_5þËòZ´’Éÿ¾ºülÿå1F='þËÛÊÿ®¿ ?>IþØ¿^ìøM5CžÞ}s7mÊè-ïåïÓ†py{be—Q.0¶†A¹éw°£!G¥×1áG2º¦dL)Û…™)šãXèè)cLI°ü±„î¢G'l\_ZZª4+BœS$Î1þ¬Âçïü†¥ïÒŸºdƒÊpy,ù#-i¦ŒŸAzò4,‰ïELeI(Nž‰ÄˆÞAIÂe–Ø;çÿ.óR8<˜uâ\y%h6Qø‡ÙƒåC1X~øÁBÙ=(º‚DUgiSP|¸7(>,q;)(t—‚ø-ÆT73ù_·å&°yï l.q;éþ¦J0À Òl¤Ø£|So)=a§ãéînÙÑÿ:òµUæã½Hƒ&7?˜6à¿)\WÎ7ðs X)ßÂK8Z 5ã%Æ yëÆY6‡t™ ̾wTùM¹Êv>pxäHÜv…P‡oÞzú£”ÊoD#_Òßo…7H2&Xy+þvÀɾÆE¡LµÎb'+O¥Ó…êN`ÔEY40ö7‹fÕLFØK&WC^§1å#Æ(œ<õ ã oÛŸ%èQ޼Îé)ò 0îd%æq!_P哼6÷)ÍCü"®BO‡Í¼F¨´ól)~±½X[Îâù˵ÿ?{ÞÕF’4ŽÂ¿oм}î¹–@’Q‰Ížñ¼³Y¶n!ŒÛsç™# M ‰‘„±çô‡c˵²J%ìv÷ôcuPUfäëöæúÖæ³d#ÙÞ6¤õu®£ü—ÀXR=EçJñtŸÒÈc½Yö¶º{ ·ÕÎ1ÜÚÝ‚{ë#â\žÆó.¸Kš Iß]‚>UŽšªÝQ:ɽÁ¬íw«ÍðvK§^R[±k",¢ßJ»SpYãB^‘L‚ `GF1Ú‚u‹Š…àŽ¬÷×06/…ñ;E^‹™,£Så•ónDøù0v'wŸê+ Ò^xwøƒÊw«í:+ mö“D0«ñ27yÓ¿$¯c` çÙ.âüúǾ7wÙ$¥G$`…G¡êZ0‘,3–Ö#Æâ²( FÒ*=–"Ôq@°­+¸6€åôþÀy9I€9\ázX«´ æÂÍÓQúîßý~÷ÿoüDîÿÓÁ·½ÿom­%áý¿µµõýþÿ->¼cƒûo‡ô¿p$¸‡ÒÉÛNÿ8~·wT”© Û$5ß݃cË ÁÃÝv_u‘ÿD 0:âhxØùÜ7_,xÀ¶X²Ûàž( ÷õïdQÄîän~œGcv7Îçxº› ±oÃù ¼™¦3´²“‘5´£·—UL{?þ¬~œÁa8úÖåª~9\OÆ6% —˜ô­„t¢ä=—cx +P×êÌö8™y[tÉõ]•”´mëwn}IØÐ—þì{ýñõ±ïÖÕp:›+R[ÒcÙ\LÆpçæÔ³ûóXß †`úýÀ§nUQ©ÎQ21Ï[èæ÷+k‰ÿ@Ó¶¿bZø!Ã…1˜\! kB² :¹OåîÇóÉ=ÜÚµôb?ù=æôä§ÓÞþ‰Ì Ç™írSìV†]û¨éNÂùv«d¦^Ý >¢Ì*»³.BIÚݹ;&Ü‚–, aƒ! Õ˜¨‹éîœ@™/c I<)!7ö×5õ\— Pe)ðÇà|6!UòÈ enÉù›d~3˜+Êè2ý˜bæ¢Ñ`>„A..‹Ï"xâ\z¨c’¹zÄF¨ͪ#?[(–;M.~™©>Oæ%šO¼N ÿÒö9àKIèBb^S0/7Ëhý|š~A#u@zÕAðV —¸fpÉ™éäCOuÖ &b‘ `ÓG?gBÍËL-S®þ€I“ûëý,ñ¤ó‹‹T‰S™:Kyrë D©kŒ_U_𔳰1ªxM_¨µç¸ß/.€)¹ºÑÆ\NòùRã:Ò}uœ‰i|€¥IQ–x‰B¼Q:Ÿ3çƒlÒü³ÏþÔ ÿeNvÀëá-tâö6-[³=†Ãõ_ùڻŽF(0õë÷ÓO@§ইc·âñl™ hÑ‹î×îrçÎ ´ƒæ%Ü@u…ypSbïX=3v7Ajaœ[© (L[81|r™YÁ¥xܬ´ÄÎKˆ^tŒhSG”¼¡Ès¿¼CTpƒø€¶LfU£0ÀÕ`ó@µÙœrµÙnŒUp_^Ét¢õÍ_ wKƒîâ[L-ûÆ[añ¼›ã3˜r<¤¾."Ç”‹‹ü¶ ;`ÎÕ ‚ì„Þ{È,@?†™ˆ¼´ßų¬øóp¦kë#Eàº`óeß‹ 1ÿléÜÞñéËξzÛÛßmŸ´»áIu;oïoÕÝðãd®'ód~?½Äù÷=ž ­2A¼1ØW£Áõ’–Íßåûÿmò}²j®©W;-²Ëˆú}A¿kË5 ?‘êlìÇŒ¥ñk÷{¦ËÒÔT­ ñ70”mèrM½©©îþán`ößãO¨YÐÍã@êõ˜ÒüÉz¹³ °wßõ÷jŠ8XâƒU‡þ>jÃÓ£îÙ^ÿU‘܈9_äsI£'`jDb½×j„Swµ™Fm›ñýJ¤¥Gù Ãê‘õõ©RôFDwû4GP>dVå«Öé¡þÿ=ÍÎ2Aä¬R¨"mͫ³jE`˜Æ{ôÂJ¢Ú•Jï+Íjã¸×€¿ûnµJ­°ZÃÿ †sÒ·'<@ÿβ2eÕ‚ øRUÿÐÓÕ7Gì.Ròÿª¸õqxü¯Éå99xYC†#Í õ¤J%¨SZâEÖ± ¹˜ÎÓk èö ÚÛ 8<"ãèÈ.3’óð~;N?ÍÝJMWe}6Ô‡– 5nFeÛÀÞ£ƒØh8þÅ€áÁž+ñùænÝß9ˆ†Š1f.ù¶V Q@R‰#©©H·÷è”\Áì_jê t„…‚_xOy!ÁvÓ0²òzïXmmÐYM¤ŒxzƒÐoØÜß>hSA4÷拦E} EØJ‹ =¸ðÎmWEtÇ)µ-Õác¿ªÞ(¼òü†˜¼á“ê–Ÿ8ü‚FYS¹Åxò±1Ÿ»t6D„µ!Guåz.gó_Θñþkoy0dÈ,7¹î{Þ89&*X€<ôeØ‘!ÅÇA;“”Ä5^ˆ0 Ù‰ÔzÚ>(Œ@;ôúદ YmŸ¬.ýªS·¼×ÒO4ŸÏ¼ã˜]‰.ë’™Z›*Á¶+Œy츻Nl¹™•£4:µîÜòP"zT½'ø÷jvr gW¦wÙÞL|:áòC+¤'–uä&Ý€G´“PNfËÁÁA_¤´[žx©ak,WX–Q?P ÍÕðp³ÏäŒ ”ø*J‡â¾Áhš.?;tÉ:éІŒùø¾ŒG¿w»R+ÌAÈ .ž×7suqƒœ¹û‘¨{\)IMÝLRèÝØ?“ÙÝd©%¸KBY8VުʑøF¼SêMD@ÍàŒPx'9YŠ;.ü¶€Ýh“8øî^¾!²âALa<Öƒ¦q¸ïUÜ·õ±ŽÅd ß4B©Ågä„ó­伤_™ÞúóŽ`óÚ±ze¾ûÀˆ¼‡ïè S<]]ª¢ÉžCóÚL{×p«¡Ô—•Yh£;‡«bŸÀpõ ªàýCÝÀÎÚ“ŸG ("lptèÙlE0ÆBô@¾ðEæV“E²IYƒk[¥p™Ç0{”Ìk·qº€3íøuëÍ2lŸ¦`§œõÌò3±w†Ñ‹m_Á-LSZ!Ÿ«†ÌZTGeéâ ÌîJM°¹b~+¡ÒU¦Ó•,¥Æçþ¨B˜†´D.TБ 9öêþ¢,, ålmÄQŸN±´ÂÕ’Ô5ÿ%:%6‰FÏháäa¼Ÿ·Óô£Bûì™Õ¸EéÚNîgpZ¤Ÿa0ÓêKd£$5Û§€Z)ÞÍ™rÌ8ÀÎ't†Î:¬ÚÛtÊ¡0Æ®În6Oï\þªˆc"AÅ"V’8+ꯣ·52®È.5öK†!œÌ !Q )¤ÐOúµjðïr´—]&F“ÉêF–¡Û¯4ã ‚nB4°ö=¤íårÀÆ éÝÜÜFgCÒ;wĸvžˆ‡”¸Ë‰‘ Ð¶v9¬é°Ø×‡ÌcÄöš¶È†ÏΜ ΂û4—«;÷‹üìu›[ijA =œ%Žƒo;Þ4ÜÂng{‡'kO§ £ñpÉÝó¸¹×¢ø$wQCµJ«|«J{qp¼õ†g˜±TlºxµâÎTÓ™©Õ/¹ƒ»ç >#Hš•T¹ão·õ}]é¿ {ǯÕ¨»™;RåËïËQûÏ‹ojÿÙ\ÛH2ñŸ[[ßí?¿Å‡ñ?´ÿÄàçÇ/ûœÑ¸ÿNµ7°ŽE»VS—6+:ô³G?ÿKí7w_íôvv=ÿœ}ˆe5zìlÖÉ3ÐåI0d)צ“'|+Î…À%­+†âRe9àÀ‚ƒÜ·>ßÞ¦óéð"êÁˆpèîφޙ¬*0¶w§ÿ@~'‚'ý',ù¶æ!Á)ÐyRÂÜ +«7+¶â±äÔÞs+¬cõ‚Èë&S×C׫Ô)QIz¿\p®…NËï:>œ˜9Á»ÓÅeÜFGÀÞMiÒïïîà¯s”bTwÉsl!õØÅ~¾È.2†S¬ÎbXy6–û_}<¨´¹ºÊíH¹”ÒùíLXŒ{:ѰeYE+ôgÍëXêR¼S½‚wú§WsÂ~2X6{Óg£h[dòÝöãÏlû¡EßÈ·³s|ØÞõ;r´Ó/`:@Ž‘³’ß'À6œœŠåüHb¡E–‘tN`ìúŽ”5œà×±VÊZ9œ]Ñ'Ë`ý¯Bˆìœ”ncëšQRŒbL#WP,ªlrÇg8lJWYLÓ à÷*’é «—}{ê_ì¹>J/òb©Ëhé—¯sp\Zo!4™¬Þ"h…Žš,¸E§É•?”™Ž ¹QùêÀ“àÈ¡ÒS~íw(VãÔÔèek”›¶¢™Ë·ôüM¡›çÌé Yó°Kóµè F<¬»xurJON½õ²Ñþ#X—=ò± @ãË` œþ·Íºó± ÷™=þ…ß‚ÈzH÷P ¥Ÿªrbï°LQ®% DPüí¯"‚\]ü¤³B­gkh›‚ÜŽæì‰2=u:zº¸£XüäÔtô4ÖÑ;뺬ëeßþ7Gïo}ÖP•:õ#G’˜:’ÄÝÿZIbLþwùMå›-xšÍÿö=þÿ7ùhºàËÿ`÷vº‡û5uÜÛCÃaGHá7ð±'ErÀÞ>Ǽ³Qµ€+ˆXãˆÝÇÙq`aû/;ÇhlÜîîí¿?+ªíºšÿ‰D²$´@÷ŠŽ?âb•‹ShTŸ²vzÍyî—IÆzD 'rI^½ENãN°ÃÚRŽéAàÂ&}vÏU}IÿtÞ=ÚkuóÄ…"X[ËEÐLjv?ä”õï‹>u0vð–2 “á3BÀxùèëƒö[''ýý£-Š=îg£Vk0û…‹G#ß^,x@rXÆÜ FWõÉ]:öÅ2€ÿ¨)¶;uŽ É.§ð !d¥‰ý‰|œ /)%ÞÕhòPsÅ[Ɔ#™MÄU‰Å¾˜ž5É"ÃÙOÔõ4 ç”¨++•æSØÂÔæ=Ê8ÌÓõ*ÌD¢Þ±ç…¡±£¬žüZÅÍn&÷#‹ïöþâFQˆKÝ2vT{¥©:k¨7|þãA–öCT81¨Ð÷QáˆfãGØŠéÝd:W»'ëÍšAO` 鎱—ÞÍ5¼eQx„5­€¥¦^ß>«*6Ÿmn–£MQ1z ßyò\U~Ü~¬ÂƒoÔÚœ§lŠÒßQÕwX*‡Usñ-4eñ>‹[nSË(íúôc5e½ÞT²3˜ÉáTco5Ó¬K»Ä¬¾¤¾ü¬^bx=éclb¯¡Ãw&égч"pÕ'WePUàà²'(ºÓaŠ>¤§Ð„…‘~FnzCbXØáx²ÁŽ„k³OCßwçòÇjhîô† f=§y#\T_&à Ô>Q‚úÛ‹\5P,¦A¨*Š{оâ½þö#“ߥP &„ü¦S ÀJ³ï{åQ;˜Í™Ðg(öï{G"á6ÄW*²´>Br99RzÙ  ù+¼÷ð¨;Á 0W°Œ@1Þ‚Ð3"XH€ P‘»NíÓÜWÙÙkËì Ç—Ã ¤x®Ì.Rv§¦e®ÆÂÂjüÂù6gš3]ìÉdÆëÖå®úyJ¡Ak8TRþ…“i4Ù?/ûküŽ1i™©z§§ ¤"´*á}ÍjºC8•.n®1Œc6U¡éCÊ{ïB³¾BÜZ²2$Ÿ1ý¥ªš0ÛZ2ò‡£3ñíŒáë`ìø[©3 0ÈíÕf€v!­tbÓ¡Í,§èKVñÉãíàz<œß_¦RøRŒØ(JÁØŠeÊ$Épw}†ÈÌáx'\Ò!¬…)­qúœmä˜sqAˆY> 0W£ ü¦ƒËá§•ÛÁÅ ÞƒÒ»ÙpdÒ}•h8㥵¾1eícâŒÑ_0‹¼D'’¯Ø‰¿)e{\gBÍoY4gÍ/` ëe ° e\6Á˜é°„4–&¢ÚïEñý6¿zxãÙý9uë"Í‹q¬K|úßçØÖ«£uÒ‘%2èIçñàb'8”“`<5u~ïÒÀrí¼ŒñÿeaøÊOž‘Uäpíþ •yƒþ VùŸÿú‡ÜÇÇ#8¼fnÿbç阃ªò[ÇîšBù f>y;ä³Ð­zVùWՉеŠ}¨>M’‚Ý‹^ÑïfÌ»fîG$ÖùZÃÍŸ¡ÕZÂçÑ‹Õ7ñ÷¨ j2ŽÙÉY«àø;Ô+ͪæõŠ –(äöÒÊqX¶ç8kKúŒþ{p¼¯ÐåÎ àË)Øé‹€9·Åwlq)Ë¡½Ðåq49‡>¹œ ßCòoa2ÅFçþ6§Ív¼M]­öa;ì¿ü`\ó[d¯~ 9@ÍbZTøŽ®ÖÏ¿ü?p^HÎ…š«Ix·}DZÀjLË€¬¹0|Aì0Ã;ұȧÞ@ÄùÙIÅ^C -v¯ «fÌtK¡ãÕ»²œ¦±iBÏÉBÑlñ¡7ç)ðž×x‰¬™BÉ%œ%Tqšb€IÜKݺC š˜8Q ÛEÎL /x‘¸n,úàåÓRÍ;T½„tEþ4¸½¥F>Òö/¾¯é~ñ‹B™ÏÆØ£ ¾ŠfN;Ùü+x‡Û‡:ôË—ÅæZ§ûÍáRQ¸Z¶Þã3(Ø¥+ëC¹|ã°"֦ᒎ2¸`_Ç2„ü›™Ü¢†ˆ]dM¯Ãï}£’Ëþç÷'r6š<Ï–yAñ¾ÌÒYm1`Zá¨'Á1íüñàtïpÿGDãÅPn1Æ’üë21ŒQë8~—ûз8äm „\a‡)Òè3§”~Àý4™0@žr8GØæDÒÍ+÷v ìå·fdú<¹G•! „0ºÅl4¹»+1Eús5š ðBΟ‹w™þ0ò´y©ÒøB-\kÀ<îp$j½ù(â5ð šM‹¬µö´a¡ñ0µª²g8íÒ«ÁýhŽ~;§~¼º¿DºNQ$V X²q ©k_¦¸Ö~24¹!‰ij$"ݸ‘ù•å‘Ä|Ùr)É1‰0³hRh¿Ê•ÒÝÝŸ†f=E9! ¡XHh±¢¤Ò1Éö Ìú(‹:×WPƒ)_´•öd8#DOä(rA`ÖÑÇÿ<>l¶ôEVöZ%»¬‰üwëü?šu~Íd¨çðŒ5Þ£Ri¡Ñ~ÍI^_§QyñuØF¨û[.ªÇ$ƒãêe<ît:½îaM½Ûáßp€ß™ÞW¤ [saì®·–ñ?ˆ˜øww»ïzЃþññÁþY¦£æƒq$_â¿ýC´Â<Ù»ùVYûø¯‹ÙBÈê(jÚGØ{øw|p€?OÑL¬ÍÚ}ŠØÆdJE Ð~ ‚È(Á¼†ÿ_vÞÀOìüÚÇð£û²NeݳÓ|TÛéw`äûoOjê žrlö¶“šûJ¶º-õ»Ç=({zÐ9Fƒ¶7íJ]:hZuÚ‰9jðîpäóB«ª½Ó££òFˆ€ù¨MÙÎ~÷]þlÁUýh÷•¼Ïó© ˜š.^Ðë“ûs±Ësúà¹ÿòCÒ£âwRÈS˜¯É“+í¥d«Åv{¦ZE³#‹ìTÀV3ÆÌm­Ÿe‚ §B§­@¼+Átdˆv!^ù–榌ñßñcêíÞ¤l€F”gÞTpe4éÎÄзþfØóF÷¸ß¨pÿÙ8òÉË'È{¶ÿ¤‘MB ]ŒV•߉VX^z¾ÿSCÈt¦&z×Áx9è ã‘ t#¨Ð{ŠŒO1Y9|9”„ä9R­£4¸ùØO)–ƯBJÞÑ¡˜à9„-hq+D gí¡H£±¼÷jöÈ„šMM\îY¸ù+uð q°Öd€O>ç±€þé.§bƒR§»Él6„ý.ÕŽÈŒ0ÆEz+PNP”7¼^Œÿy׃¹ÆõƒGMýí¿áŒš}e2=¦–™F‘ï|`s,‰Å!Ž€ÂVÔ“·O Bgûî”=礻(ÜÊ»‹w¯”˜w_hú>ÚæÐe›®#ŸšZ茛ùßÎl…³’ –Dì0Q‹…íª„ûJBíUš—ô]Ç}ÐÁÍU]‡g[‡âÙÖßNù[eÁ}7¥3h“Ü]|M¿¨¦ðºÍÚ.ÆÌŒ”H õ}˜¨¥jFjj¡D {êÌ»Ào¦`+u_j9²6ø˜âåUÒñ5Ü-q•剓 c Ø#`rÆÖìC}˼œŒS½Ù ‘Â}z‚VÊ/?<¿Ô2RÇèÍüÏò͈H/quqxÂ䥘¢72¹Дå^o…ÃŽ^#ù~êß;Vâhç,8Õâ}Äø‘™8†ˆ®«fÕ åwªÃž“$Nu‰Á¸JT\‘ÈÕt‘¼"“B“*d#½{ÐM`ïðÔ‰E݇u¾ˆ¬PÍ  +]ûììxE~;c«‘J«y•$áU¬C“†0cr±ñ @ìa6MËÈû7iDæÛðó)Uµó¨ÑÐèY¤òÙš?"ªóú@ýUŒ°VnŸ*¿~­ýzþ«ö`ö=¼¨ˆ&{)Ç\5é¹—ÊtÇÍ%™Òñ7”¹ÐÒŽhY“¶Öt{†GV6â€Ì ú_¢Ž`´Ó"‘œnŒƒîAtD®ÅüÌHÌEVøC[z P„#–cZ7ge93¸æ£èÜØÞ[Ðl>Œ¯1†,ì0(¡MhtjºKð†fü|øÝS(óšìÈšXãS*‚tE¨mK‹üÕ&q¬´ÊÛWÊ;rT`l¬q¸Ž Oü†“ð ¨Ãáé?lÈ\ÞÙHd‹²6Ìp¦ãÃY´)ïÃÊýO›òk„þW:aw•OÃNöM’û¦ÅoN³oÖsßläBÛÌÔwf8|‘ä½àŽu}‡Oy·^ðŽ;×îø¾Öò’û×>uÝxáòÜ‘5ƒVôΰ„þᆲi‚È r¢gY9Û•š»85wEh’#lw·3ÇQN\ßlÜ;ôÙm =(¬3ó^x „²Œ¼þn¬XÓëH4:BmlŠJc-­±5óOý4'±cBÒt/O·­àm—êZ\ó«º5×3/ÝV“ ÜS ׫šZÇï}د÷™ªEãö{Üë}+32»Üž×ßÏX¼åZ‰"ƒÔ&H>Jà,0$Їž…I9UOƒ˜šŒ/ítÅop:tõ·S玌ß䢚‡ùëe°Þ¹>—’Ðr¹áhžßæùoÐaÈOfúðxd×`1.ìñGôô`c]VÁ‹–0‹\XÏŒ=‚£ü–º³‚@q°qve›–©¨GáݰqƯÁÍžæÃ~;Un L#²Fòa‰¦áºÁ"°ã”êcÎCtãc|ëŸÜíœJ€]òÚ`p`e÷È`9‡w'v/Žx§¦åð12c,îWµ®Ïüðà¹ÀŸ‘Àø ¿,œS‚s…“ÁÐì?ÔqØwÙcÇ‹<¸‹*ÖÇœ(t%ÊtSQÝ#U• (,S/ÜGæÂ½â¿íKFJÎÆƒ¦#m8ƒIÆOP3G%í}†8ž1ŒœßÜê,?ƒÙlx=¦ôpI:Âm8rV£²ÉRÐM}ùçñ ÎeJˆà("ðoúðÙÎPv}©’O ‹tôƒüRÑB ³8ˆuåÕðêŒÛÚ8ó¹­{&ÌÓáõÅùŽkM]B±¿{óT_k47Öšk üÛlnl­¯í¯®­…E¶×Ÿm?Û‚­íõd3Z¤™l'kÛÍõíµd³µ±_onø ÂE6¶¶šÛÉöf+Y ‹üóÛKc]mml5·š­íV²¹ùl{3Úíµõf3YÇQmlogúE¶6šIk#Ù‚qo4cýp¾[9-ÑÄÐ*®(ǫC±ßO=¼Kp@é½ ïŠjþ©V1ì¤}ý¿Ž˜¨ðR:$µ°ª!ø…;MŽrƒ°þ[KÙ  ¥D\&¤e!œ–€à³ „(53ÄËv T¦ ·1âŽK©Â7fãvšþr*qß_¤Sä‡X5Ÿ *€«.âX /ö~Ÿmˆ¢p[(%^aé‘´q•ઘ©!?™"ýñÞ3Gâ£F¢Qcuj$_Œ…¾5’’¨‘|ÔHþ¨‘ÄPÃ~ W²'«$êrøÂÀH‚Ö&7i¢õŒH‡s+e?çå:2($Øñ9y~´ðÒ;UE’g-Dì)4”8ïðªëÀ«â9ª--<¶ÔN¿…ÓN7Cõk‘¯¯éYËDûRán¦ŽŒ™ “¼¸m¥Ìž°Øé#gö+®úý¸iΖÄ<;y)Qp¬¸AÏ:yûM‰Ûû…öW´Î1fÙlÖ &lLùT¨éò‰L´'¸ØZ _…÷mþ°ÌP|ïì“VIYcU {© Þ¨™SÍ €Ö‘ñƒ®íY™1ˆÐLV²%hƉ\†Úí‚fØR%—Us˧$DÈ•¤¨ƒ)êŒ$ÕnäŠ5—móÞ¯ìIõම&æJ𯹄LÏ~@‰œ/‰ó-›øä“•¶Àõš¡n&¥ž×?ÞÕN–ýõj×dzT“0>lÓÆiCäAÙ7¿™D¹I?–ê™–BÔ?!ôõ¨}ä\ÌLn­¹i,¹õ¬ó/óAUËè¹4ŸÕf­ÑhÔº&Ô!À Çè€ÕAS<~þF/‡³‹Ávü§ùtÓii¨í‘µQ;Â?h/x­½z ~¤¨¾$O‹è2\:ö0ã’£pÏHXv ¬Ès4b1›‚X d¤žs‰ÇuiºÖPGØ@øíþNû #À̤»_Ƭº6a²?£ž]Êõ ¤ð¬ëRLKHìâ®X7ÌGŸëúCÅÛ§õv‡DÓaãÝ ü¡®8Üô‹'/áÖ{9ÁCñFTa¼˜ÁôËÏp8NçA¸4/J³º@±t6`NN`h×^;ôÆ“Q³9V\ƒ;dÃÙ!θå!EˆÃF'êµ×ÄBælº3’¾ ž°üGÜhä…Ó‡|§¾ð'Šâ„ÂûE›^i²mcÌ©tÄlÀœ2‰³‡ceäñ"κ½±vú±€¸ÝY@aŠ%[ ÅZ¡œ*${µ3p좲„+Ì ß~‘¬WYéèδ¨YšN™¡˜ä–Õ]+H~¾÷_›²èûç+~bùŸÒošÿik-i®}Ïÿþ;}˜„ùŸl€Hâ'ã­RpY@}e“Õ– †ÊàtBAâ'U¤°v?î¼Í¤}âôS%ÒÑÇ’@ !=‚^ì¶ûª{ÜÝÿ3$†úú¡L>¨èr.Ÿ¨~aV¨x¾§"M³Í#•;ŠÜ¬PNò§ü$+”› ò‘ù¡úu5”Hp—él8õuÆl¯Ç‘‘§(¸3©¢°r,$|M6,^;чã³ú‘¸ð½èòXÛ„I•Ë©MxD‘KïÇЗ{LÁ îþ?‡”ô»KBÁÊ Šð:-ÕìfxE.¥(”\ˆ&½Ë“™ ÈK¢¼Ê9G|E7X؆ð³s| [¶~6¼¾À_èÚß{ð~ÿO¿¦óÓT.ªá\QϽÒ&Ý•ß »·d¢|ëÀÃc%‘#±6çÍâèœl(b/;äþNMÛ–LL²l“t™ÞéücôÉ¥üàÆcÕñÔgR!l¨«Ô—‘Š/Áå¿Ñ!Üø`\YMŽ`ÙO~BÄ`.&cönt¤Á±QQ"VÜÅ|ñ¡Æç»¤8Ùé8½B'.Á%ŠnΖ â­ƒ5âù;´ÛƒvÎ,5ö=çÔ7Î9õ˜DD:4¥’‰&zZ^ÜÏ?TXTJ§!2©rìkŠS är,‘jÈ5.@°ÑT¶‰¨¯s(]zLçFÍn#˜c‘?U†¢h™\ )•a<Ÿ~æ‘uK¥•qëG’xž¬0sâìዦ­ùZcå”[†ãyãd~À¤%±þ•I.ó`ºU ª7ðñ)Ú·&4A«™¦îÇ~ïó e92$u„ -…ÄÜå~VF/›>¦æÍ±œÿÅ𘛃æ?šÍç[­ÍÉO§;½ý“Øf+˜¿èRy¤/)½lswŠ“åæs±p8]Ÿàx;Pª0]”1'è•mÈ7©tÃÄü½³ЯõÚ‡¯úÿ ²Ö$sxå[¨`™:§fhõNý_¡[&usŸþŠE~­ýJå­êÔÁ|÷)z Îùtv31£m… –¤« Ó'¨>ƒbÃÕÆÂ\JIx°L2%îUN%ã[ñgÏ¡„5Ë& šOæ¹ù‡DÕc¤½õq½/Ï0d—ÊÉ¥á./«c?/¿½¹7A =Üæ¦>ícÝS–+QÍO9©?Üš¹Y@lêðÛgöqøeùòÆg)0‹lÐXϡٛs/û¦nÞ~ìÃ;‘Æ»ŽéÄz.XKÚ~@‡³ÎÄ0ÅN¶$·H‹&ãàÖ ‡Wšú|ú§‹”’e=×~< èü4Ð2\´Ska }ÿ ;‘,.BM+N2¸*zæO.†DJš¤ëòVœî‘gq²¸4Ñ+ž ‹’¶HŽ=û.µ4+<ŸÜÕ0ÿ@ÊI‘£« ¡¤ú5¢zô¬7͵ íMòÈ´7͵¼¼7IÂt‰ø{å05Éu_÷ŽO_vöÕÛÞþnû¤}Ü ;ågw\œÕñ‘9€6ƒù83é•“hc´¯‘/ˆ3ý쨻éäN5AAŸ5|²x¤‰³ [ÏÏ ¼_ª™ƒcvPZzE¹rIiÑ¥T pKºÙŸ†ìÑ;ÍíŠSS ®ÞÕý”äˆCÌóÎŽ= ß«éE½ùœSxàXõ÷‰TòœÒ†D±Ð+ È¢Q€|p¿÷3÷t*I³kÛœ*RÜŽ2Ç*ÄÜ@xh§—ŸýNÕ[‘Ž¿äp†,KÑ,:VÞt2É8¨p<â´}òS4·žßÀùÅö¬Äv’ɪÈ-ÀÏ‘â¸MndšÌvk3§ –:åßK+Í´è9²ŒlÙ3…?ÔùßÒ)ûý#OÏy9„_Â\ò˜>  Yb¢˜Vø’]Œ%àp嚀–Z Þðd¼®¤wQvŽïY6þHY6v`ǧ=þÙ%)6t¾WݽÞ^Þ ¨Áaïø ëQªŽ·û½¾$ìp"ÿV™:°Ë/ÖÖ¡A ôµµ…eqP´P?KˆLŸ<‘ÝÙeÿÇB@f ¡îæº LòŠÐ8#™EÜÊ@k&Õ[ÖüèÿÑé:mÖ¼ü#&çH¡êߦ)ùÒÔ$ǽÝý—5Õ=îí¿Å±¿÷Ó^þ€w1mühÒOô¨vÓ•œ•NPBØ{¤-ß;µÉILŽ‘#èÓQ‘í™´zfCwÄr‹¼#‘ÓË“iÓw;g{¸YöÈ |øÀcÏ>f¤ÈoiŸ ïwö‚$%í’ˆÁïÞá«> ¶:`¸'0s'¨ßß9 ­ÿÉ!0ë°ÓOÚ‡è. Oò¡ôwN) çD1Ñ—Öäd#gf¡|AV“È:˜Ï¢ô%ü¾&ðŠúU:oÉîñÛŸYo$ Qz½ùýR~ïÊï"Z˼B¤GÊb²žD‡˜›öÄ@ÓÆÿ‰OñV¸7tÄÉtƒ‹j|Ë"$u!’Eᚤ:!H 7óÛN$ ðSUP„y8‰'”õ‚“±’ ž‰žˆL”»LŸ|]¨TÓœ€g£›W_ÝíÆ×óÁ¶.€qtT³®¦¾³CAuß½!7ÓG®a˜TQ–%›îÀe‹Ž0úì~j²6[³" ð(Û%m¨–?P;.›ä”IçûÔ®ùý;cë¤Óȇñ—ÆÏP{|{CÇBã ¾Î/â.{@ýV4ƒe£¸æò&ã Î çó,|€£-ÎF°Dv¾jS*4Ýz¯2Y"y¼)ɽµxÏÝ‹Jˆ“7ö _`”\>¼7Ι‰*a•s¯3¼ <” '¦Bùß›€ØÞ£èfPÑÍa‰‚ìÊÁã3‹sîûl|o´áD4­*´›ߢ|X¦ftgë¼X$ìG™mºaf³ _²Ù‡>hRÅ"îþnIÛ² 'C¾·A|8ž<•$ÜÆ^¸= Çå´DQo9ñä~n ß)»˜i)ØÕrÝ’üãyNÞôDie#Ñ¥90]?ìm…|¥Â¸ÀÎõÂÞEjŠãÿ67¸PÖ±=ËlÛµ=­!FD<ž/ö£û16#Â#-f’0î°Ž^Æât$k4o"Ù?* ÕÑ6ä)?p5rôrµl`°Ãc@ë$[šC§'±ÀnI$üV†è½¤à-ñø™ÝI`T“™9NÌcCCX§jAP‹h‚Š’=×aG÷Ò‹áejü¶ÈkøoÝ¢T(½º‚[Lêæ+ã½½¨ ¬3ž…¨ï[­»ºÄNâ ¥ õlZ€ÝÁè‚*áùc=d¼õ ëÀÕ€Ž5›®QaMF¡g¼¼~^Þg½ Â "—C4/€ÚtÁÀk*é‹P¨ —-ÎQ—ˆ-&l¶–·Ùx>rBâ‘+&srDŠb¡v+UÚ«ÍjHðÀ®À³êªˆ”hIZ^|¡¼èBÜþ™FÎr]x‡„§€Z–úܼ| ó¨x'ÄýÉ´Ø•íÙMþ0^¥´DÙ@šÝ½Ž¦qž¦Ð©rƒ{9îó¾RHœÒ·päüxÏÄè¹åQÐའéȹ+‹ "fКͮe/„Qœ"Bj-ª9CsÖs?1_鎣]ëº(¸Küj¦òÂ\‡áÈH,8yÈ]ò„áXêb ±‚*(Îüa«XKΤá¿?Ŭ¡º\8 CVg{rÕìŽ^uçMÙ‰[Õçbmûö£xk‰¥g:–MúÌÃ6Ië²ÂÎ& §è½cή²HKy"û¨Ç Eî5óL„úH‡Sg@øTÖ$\(¨†Ù§`Ö¹~Ém5¶dÀ­_Í(†Üj>ŸãݾèXîü“øÄ=þÅßþ‡Õç'Ú/ž¾´Å”¹Š# z¥-Ϥ>Âí(äW0GõëõgI×Î<™&¤Âh·~$®çnrGLÇåÎÝ…ñ} Î^&ÄœØÌ…£Aœ8ÂÀ@‰à¦XÇ0ÚW9Þaĵ¡îf2C‡î«ŒÓ7q.rTN‚ üNÖáU|{éŽÎ·q|2SKëTË ;iYQvìVÓ¾2X·Kä“ç÷Ë0a0Þ†1\©óÀ#S Æô¹†³264B(XëÄ”´ÌKx-Òý'犖ª¹sJpÊ{lÇÚ|ºNê›[T‰MÙÄÕGzÄ6l¤¤a'¢P§þ䊣—$—ázK?$9 I÷Îß Á­ IiF÷Œ¶Fæ ¼F«¬ †}¹ÊdGånb<‘òú2r*B.¤+~f>gà E<ÍñÃ’=„îÀ,Ûœ¿ü¿ÙºÚ|xú›­+lí/ZWìßm]=Xv]ëþ†Ì0i~Y|Çíà±FÁ„#=¡ŽSc¬ŒsÃ’Ñ‚R{ªó?}—ë¦Óœå…SvaéÜVo(pW¬È“b±îX1a¯¢¹QkS‘áxA8óüñbBV†‹èùÑ<_> ö®ñxæþŇ7<Š bnBö ïFþ:C4¤D¦Ý±‹œ¦s4oô%A8e/”“w¹§þÙq&[clçŸ`ða3vdÊ"72¼^퇬ãÅ^K`>%ëm‚T—ZÑìPŒµH`Ðu$WÏs@I¨Ø‘(OÀÖ¨õX$k®„åÑÚÝ@6Ìo\”m‡Ô\²Yζ6šÙÃQ¶‹ÀåN”ùq2q!ô©`6;Œzfdû Ñ:×D_wUÛgeOÈ sl 0à^ó9q8óÓÒ=ÇìtÕšv?A½@+ljÿƒlØf¦&§´{ÞZ ç€0|Õ°¦MþD'IJTɇÃFƒ6ÍY3”øÛd¯~EÌ–)fŠò©f•²Ô4 EàˆïOåq;«X`n{Ÿ‚R¯ø•ã  àGm&ˆôû¯1by)™5®ìG£_ äÕܳ“Fâtö‡Áùã²… Åóf½ÏVDæßŠÒ 6ƒ÷ w†O¡.îÆxaIžÚŠB^J*šA.¶Mq±±óÊgå’ö0a^‰X%†gpöÇb “š£ÓêÅS…•wF#cуÂwŠI"[¹Êvü,{Ð!"ÐX!³ˆ€ÀM‹À1ªFøÈäz%keøPmÄÈ7°š™í­¦[>/£CvV NžúÓX“ŠêSä©ÌÀ¾ÐŽu"p™ûVª!4æLXšv;ø%¹ç·^¡†:™Pð ï¥/„t“’ƒï`4ú̱<¢ÝSÚÝÅ[lJͪ†TJ¦áõ¢`÷yGëJ¶¬D•¹¿Dƒ?—Ïæiñ‘ï~ziK†µà²O=m3OÇøóÉ9Ë5M]m3W7Mÿ˜Ó͵km¡0ä+x‚ç² è-i:v!Œ]e<2— „ÆJõíV¸É¼\sY"lÛ‘ëCc! x…`°kሃÎÑð…þËC¬†êÒìÅÃ^ÿ'hPyw9˜g\DZé<½à‘Œn‹:d:p•n:2%Áha¢J3û!LdwÎ~<ÓµÔ™ñ¿ XµÐØÓÞÀ¥Cú#ØFyÓ×FŽPÙðlˆˆ<Á½àÄ' ÅPí`ʉCÌ@´¯\ÉjP.SÓ°"]œ¯‚¸¸˜L) K/†Ó`ã¢ÏÔqãCõ !+0à>ŒŠ‘WdÎÑ’öBâ_›pºYsuíÏ‚ÖÛz!ac± j0z@ÿsmÎéA9íj8yÃod¶ek]½~!ÖJŽÏ¿ùœU^sêœ×ñ+¤+ã×&yÎk”›°ZúuµÊŠê¨!+ÑËq*y‰‹Áêî8<Í‚5ÕIÈ1MLf°®)fi‘aæå­h ôÇÊJòA) n(‹àÚAfÿ÷Œ 6²»w'«½—ìœÕ™ˆœ`‘Åûà'=À7@›sk¹–ä°ß)KAu¹ËÁ*Z‡³ÈŒ¢ÈbF¡ÉŒZd3“9×â63a^<Á8³O É&‘â\] £WJqÿø%ðÀôR$$µ~>ÀÍA»OŸú+¼„Á]ª; Êê%E&©¿†"BómFsƒáÜä:ˆðÑK{zßþZ’OöäŒØôÀäY…6ÌTÅÄý¿›ÌfÃsŠá4J穉ýïrˆiÕ—¶Ù{/µC òâCjž¶@œ€Ñ“°³9Ñ¢Ô«ès„‰6B?N²YµÂ~é‰ÜTf÷çxÚÏ]q~Fj ¤˜<`˜„tÏ)`ίïSœ5$Ѱ†óYÞ$æó/Àyˆ4aé(.ù»øç“ÜcÆ¢*1ÁÀ ªpÙ?é·vúû{Là9013 jÀÊ-(»¾Òu‚DðÇøÜÏîI¦€l›¶°(•x=¶Ç71H¤<ñ@]bÈ5‰Äpsix[CÂ4tŽ+$çGnN dõè|ò¥¦˜U¯œØ´Î2H’Íî‘°2O\©ý¬EvŠPëa„å %%ú³¢Ø Grū攎ÄëCƽè-s>àÛúŒØ`CW`´Â;²Ä¿¨9mÔ‹Ñý,æã„áŒÝÚÅ º \6tœQ¨ÞÖRr¡g!‰b«øp`Fì—¥¯eγˆ¤O9,‘ÆÌÆ€¼yƒÏЗ9Eb‘}6ן ?)Ϥf“Éf~]=¬ÍøëÈàdˆ,øÄÙÏ2iEêwXØGIÕY|hª‚sS9þxZÌP'=Alö:´©Ð§ ÏÚÅy#‚8Úæ×Z½PÐý¸am–Mgœ¡•›ÌÍcbÕ£—:#j°jâÒ{øÁÙÌþ¡eÏ«p—]‚³"z1 ǽ)ux3Ûá˜{Œ›»‰ b‘pœ§ó‡TØsÏtó1N%%ÝJ°ÿECä¶ÅÜ9œíQÈÖ†|;ªGSãzœ~šg\†óª¬3¨y…>ÍÎUN#Z€Ô3Þýž€ôð‰åÿ¼ú¦ù?[kë›™üŸëkÍïù?¿Å‡w`˜ÿó@dz³CKîvNú½u·ƒ4ó)á™ÎÖIqòˉ<àAéŽüî9òŠ8™_ïmçôºÆ¿¼Üž¤<ž¥yÆ"™zÓ-I;»†¤f"XO£¶ÅÖ}±ÊÍÓYC“¦^þîèß{9I4;Ná³HöL'§æ’‰4)G¦kàh‹´d‚â)`B¾”àj^Œ¢—u…ÌþÌåý6 ý÷›×C¹_XL×àÙ¤§tU“X"5ÀÉú`€Ž ÏÑx"+.ÑÝõ†•Õ*Ì;üÀ¿àå •|/Ñ!'c×4T„àÞätf8›+O‰$O'Hi!$+ÅÐ{ÁQµÒKù`/hãQiRJ$nÓíïI»G´[ofZæÄ_‹R¡9ùÏ\Ò¥ŽîÒÞWì’éF§2¬®ìÁiEÐzÑ¢ûiãÞ^2î†å “Lx`“í¨ôÄü픦þÔõÎÍ&ö±­î¼}Û;~Ò´öq÷DY³§H†"O¢ç ¥“DYº H·åŒ‡ÒN™­è"êÄ]Ò¶hä:‹Ð²9ëÊLÀ£’ Q¯tb¥¯¶ÑKi˜Þ†—ó».Ò)¾ž{ófBE“lä-1 F§v#ë>=”…î¹"]F[v™3·;QÍ´Þîqmœ=¾çxèÖ)VÖ‹ÓìÛ Š‘Ï?‹ù×h„#Õ|Î|‚w¼9æw\c·9 Ìg$à5g þÌ'þéq?Ÿ¡gv š5ÒíåòÓ”ø,HדA_RHVeÞjáѧÏdHŠ@õCZ×Dý1mG¨º—gÒižá?"hp.™ÃÈvý‘9ƒÂJa–ŸHV“ï‰Cþû‡P† c5ÝtþN$fB•d ù—¼Çg ñRÉíH·¤Szp¯b²± ¢”ßn”-HéÇ%ÆØ;îõzÍGNéa^Œƒ Uy²sÖÝé6õ0ÉýÞÏX4ÿ†Ù&öûšzC9Bð'™ÙKÖˆ ¹ ¿_µcbt ¤"«9t4ˆ¦€k`d0öOúÔ’M‚A¹,vvûø³]”º_Èy~_Ÿâ…¹³·ßéïàoTg‘8J1–&”÷€:uÜÙƒŸÀ)¼žÀë¼|8¼<ðàôôåþ?êèL8áäC÷(–«¡LV‹“ö ¬pþŒ.LaAõkº\A'–JaôˆÌÑî䦛Ð$ÛE”Aåê“•AÏ¼Ü :÷;@h裭æ¸ihs=k$ñ€¬×Ø3P&EÂ`lLZ5ó5¦—:Åݨ<Ï(4Æ+WJ_RŽÛÉeJ9âvÂ}r0ÙÛzÃù”VW¹>™9 ØHŒ\ƒ<œk>ð|pñ ]n®®È„ ¢¾Sr7ÎP™?åŒ`^ŸeLå(íýý}êuù=JÁñÅùêÿÅ4v$·Á„›dX ëØî¶ûZ陑c0óֺJ Á˜p¦:¿Mܧf-6H,&ø8q"„„aÐÉhøÁ5ßQFéøÚ^Ë´ÖŸ7P6b¤ _µŽà¯jUüÂ~£·C»€úîŸîÝQ—d¢-ÞÍþõªj5ÊΠtÜú:äo ×qÚ•Ú˽qe5/5véóꮚºfMË£Ñ+\ùÑ`?oýÀËÆÈ Û#w·píDBѵéKuEœE¬ué³üÁf¨½lñ9îïîlÔRœÝ›É[SãüeA²’õÈÖÊ׎¸ü1¶¢WtUô¼iz¥ÊÀxvË0ÃÁh½Õ§xhй¥ÉÎÕ_ñÑ ãȲÙ6Ù0j/†4#ëW}|yç‘“Ȱ Æ©S¯ìQÚ x\áÑ?­XO¤ªS4)*k2â˜\9š3èbú÷›TUðDÅóÁÉú†ÆécÓáÆx.…Yw©ÂT2hæc3N‘ÂÖ:ϹKÆÅ‘·Âå„ ÷,®isþI!Þé‡íÍü"?ªf0 0Ø“òPZ2£öÄ>>ï4P™—HWr“Ub&i§+ÿWó‡ Öýê`H°Ôøm!ªÕ;®ñ¹¨ršÚJ»IöÑÚvºÅBÍ*™(ñÖ ítl@6Ÿ¹ôwÅ€Ã!ëõÕî:îšnÎÓ™q ¤UdÛG (žWÇA×íÖuõDæÞ˜ÔÙëõÝ;V›ÚN+°í‚tÄŒý©âðÐ>^±V:\º®:¹¿®½j¦ÿ´Î=Ú’̾I6'‘%øš«»ùk¡2ž·²"dÞBW¯`¬8±d%“Kô_4^.5 Ky™@„}÷ÓfU°Æ¡w©”ãU­gCÐø'©ó\HfLJ‚67×Ö<¤”¹ìé}îîì¹p½¸9›S;Šåc‡6¦,µ5“¯¿5“[3ñb#„;s+ggraœÀn͈iïL§‚Ýš½`ƒÈE;“½InLS¬ô¾|ää®BþB¨Ø¾Lœ}™Ôü‘â¬na¹è¶L̶L²Û2)¹-“…Û2)Ø–ázšmI¨ûRع+Ê’3M9˜›u¦ƒ[. # öwß5;œYAæçsǺÿa¢!U0,°êh¢ .‡—èÝ8B§BL¡20I`΄(Ñ|ÈL„¶ÚÔE¢xµ§YÇœ`èfäž­+®L@#éböÞ«LˆÇCR ßš½Ëak±Jø>º¯F1%YÎ;;4ÎagªztIdtÉò£Ë˜¿º£ qµxtÞÑaq9CA͹Ž+Vó¢¾e.’6.ZApΕ¢Ü³Ø‰dAÚ‰æÍ7à¾9'?JË®ú·2õb¶ÒÙ ÅPFJ!¶œáh›x‡2…ƒKädFÁ`ûi¨É…¯½Ô\ÿÑdšNÈWÇ ¼‘!–ƒÙ‹‘‹æ´Md RÎ’$ár3¢«R3Ù®JL:—<ÿOÜ .-‘}º_Ù(ÃN† Á±jæQRÍ0Ï$ÔÏœ’Þδe¼{‘‹!"ñáPàyÅ´T`yÝ€Rˆúј£Ååž»¾a1J³UùÅæá3¨‡ÏlBò{‡ÿëÒÂÀpû‘ü6¾õ¸A»Zü©8\åŠx‹ÐQöT¿°«Õê vÑß’gþZ1¤xÁ»U³®2XÓ{.3H¿VðŠO<$L*̤Ap—ƒ}k©WÕÂÄ+‚àiE;¬p&Dn;H‰©*XC¨£è¯ "‚Fèu_¬2G° ȤfÖH™iÖAJáì¾.Nn~=œ$4,”\%ƒ~øh4õ¿1þYoýĽ!Š~ÉÒè—”F¿ÈšÇÿ©…øçÎK®Ca4ì&ʾð8Ð"±€-‹×Âÿ] †x6SVFíÄŠÇ—cãóÒŠ³"Â]å ¨qyŒWt .ItÞ9¢;åÊ©1ï“üö² œw”$×醖“±–¿:Mø¯{Ák‘Ò/ÏÕ„V÷T´÷WGöê?†ãh¿uM'ÿ ή†hBrïx%^L1\ÐpŠÕÀ–§³ ÖçY1ž>þ)y +N"¸i–Æp~Þë^ñk«{ÌF”ó¦EEè„èEˤu4³ƒìŠÌöE4§"5&jî–#îºE8eg°8›6ZDwˆMÝcY-ܯ&žE¿í È‹XÄ¥scÙ(:èJU:a/ìuà§´ïø)ü©ý”bþ?ÿú¦þ?I³óÿI¾ûÿ|‹cvèÿóÚ䳯È'íÞ æ²í윥²å\¸Ç'û}'§­›¡6¿réäèÍóHgú´3ž(C2¦<63’Í$¾ŒO¬+ÖË&·Yí糟ø~;ùK÷U½xòó¿àbŠ{Ík¬‹éU•$hj£ƒ‡!>jâ§Ã«QçÉ÷MõiÌ›éÛñÀ²¡JDÙ‹ ®ïSmHD›Yš @æÑ’9b.ÖåKxÎĦ»O·€öQN²w?ÅšfÄ5×®\©¿£ø§ÆrŸPnÑFž-ÔÏ?Óé+18†Su;¼¬K”Á˜Éhg_'C{“Ñ‘,zgêŒvæã°utZøM݆¾O¶ ßO–o#b–}òïûÁÔFÆ)vÒm3:~¡ ŽŸHCFl^<õ….8QÀ丟?[^&$€MýÄYàñ™6’°™5mP<È#²Êçæ•ÿŸüZû•^ÿª­ÛeËMÕñÕêhô02öb#mðF÷HŒçb!´Æ#41þÌÇÌ €ªž¨ÿÓ^@Á¶83}ª-E±Ož#1ƒô±`…ä:H†ùÛ¾ ‰Úi=äÑÕ4}5 ¦FàuCú*Ó¡*òf†ßNŽ!醜f¦+84&ˆUÑ\0ÜÈDü6Žmë‚ÕüÅòо̃(ê9D;SU.•†ñìr(42¢ÊñÚ‰P‡}:¹¯FƒëïŽ-bÇ ÅÂ,è¹B9<¤tÆ9â+¸§ x°A#üÐrõpžµû=3ˆ…~$±8˜ ]A0Feƒ}t-y]Spië]¨YÐÍãPä-±ÿ½PÞµ›ù³(²›ƒÀö69j£…xœˆÄY{¯ÿÊY£/r, ߎ/ò.ÐxÒ1(N·¹¬0XЛU!kÕ:=ÔßÐ.%;yTÑ J&IÌžFg¹ÛÈßßMêÌc¾TÕ?—!»»Æ¿*n=hƒN)[û¥pm”›‘¥§±môêI-ä]Ú`mO‡r›§×@úì ŽÇàØ%":2‚›f/¥ðDN%¦«rΨ-Ak܌ʶ=¼GÿŠÑpü‹3Î(|]Î|s·îï6ªQ›$o ŸPD䜰é-£ ¥*îÆ1S‘øðè$¹øq·96·h.%¡yi;;Âu$6+mG”M¥TÝ—A Z²2~l"%ŒŽgQÛ•Ê´Û® Aü½tÕÕhUÚÕ¨¬isºHe_:J&Ò/Qgª¢lâUk/Su5Ñ&¤ö¿›¢Ç̜㕲!ÀUüŒŒÜ-sQÀ~D3vQÔAYòÓMÓÁåg>ùÔ \´(³gHXüøŸë@„]¥p¹æ”#V“Ƚ݃à2Û5´¶ç¦Pì3ù¬Fˆ=^Ælø‰¨{é-框óÝ8üã>ðµ ²‡ßHTʺdíÈwF€M!qµE® ;™¯«1löÛ:¨TÚ¨;hk³‰6®H-&x¿eëaܘRÒ­µ/µ4Â22„H&øãÂMÇÙzí¢ùðîªâ•Íx™ÍèäEØ›0¦Ì™R·`ðE¡¤^OàÕ ì$’úÈ-ºÛu=ÛøƒÖ‘å<;ɫӺ: §‹8A+6þ  ÈRk‚¡&6†Q¬©×ÜüCÑãkëÓ=_TºýÖ‚©¤¤fR£ú{!†ôË¥„+0çaY^ÌûyɉRæu<¾‚…g%í‚¢ußxäºgµâ_{á7¿ùÂo–\xžÓè²ë“Œ¯~ùÂoDÞ}$,ýÊ9ŸG¨  ×06‡º-ùümïÄØÚpgQó>ÄÝ“ap×b-Ž7ÕžÛ(sÜHÙd0Î 1œ§›G7#¼…YñÛùñ9#ó¶gŽÁo5Yn:ÖâÌɾ«ÈTëí‘%ˆzË–æ\ä1ÌÞ–ð•3ÍYÎ*öÎðNz B^‹’E C´ªY!‡òBädOׯÂuÙñSßËäÛsÇ—‘“‹á2ªj†«’åXe™gg·„_”¹EnW@\ÈÙø;”¢b7‰ÉK˜€;×ÛßÙ‘PÒo!¥D#3+a2ȹ'÷3J–0¸E™^„þ9ìN”¿Éö)Ñ9VŽIUhåUµLäÛtJáv(ð»äÏæé{^eN ²5r°°èäYâØ­ü,çÌYúÀ)Ñì³0É™W™Î™ý<ÃG@o22Æ<.qöKKd–6ÇŒ‡©'ýZ5;çr”wBòÊÑdrg}ËQm“:A³„â&Ep®ÓV¨¦w6§ú™K:c†Åq w®-³wÄÃOGž¥1:1Jm4ªéܰO^hB` šMŽûMÇž(ñ—8ÌFÙñfáÈkeŸ¬=á¶)“æ{ˆä+¤JÑ4.úâmN §ÒªE  •€ámÜㇲ47wi8‹ã<»öS¯ÿÔöSÿퟘý×/ßÔþ 0jc=kÿµþÝþë[|xg†ö_oÈþ«}VS‡øwZÝJ¬ÄŒ¹Ò~‡ –ŒýÊÐöâèm§½Ûî«.Þ\ÿ{»Øˆ ç§ SfJd.õÔ,c̵ØP«¤Å/¯ÍÕ…Œ›cñAY\fŸooS̃é&iÇÊ&O;º¬ÞYsbÍ£œŒDv-)ŠI„A*uÀÌ““þþQOúÛ&äãdxIé:¯F“‡š*˜2NŸ7õÑ [ÂùH:& rƒ–+âÂÆ±®§é`N¡tP*PWV*ͧ€KÔæ=ª8ÍÓõ*…xÕA8i>X³€ê†6£øAzÄ5Ÿú^¹äJA[tËØQ­—NSuÖPoøüÇ‚-íûFubæ¿ïÏÿÍÆ€QéÝd:W»'ëÍšŽ?1Ì’.|¸«F UZcÔcM«_­©×÷pÇHеåÙææodÄå ŽÁš‚ú*4µQA)¸ž&(H¸uŽöóû©5€8ìø@cæI‡§‹ËèÏÎX"Û " /•(7¨¶÷»ô5mÖÆù!F£sûUMÙ*c²]#ƒ6dä®êéLhæ±(Šëb=s&¯Ë·cb½ÑÉ`ì¨ Õ™És%’˜KÂÚæÒ‰9L¬¾éOQ ZñÓÏÝ®ÇÃùýeZÅØrA÷Z$%CW wÏTkdݺ³{Ì_ [*ÑVgVÈÁéžK4"M.QМ§6€ütp9ü´r;¸¸Á7½› G˜âÔ·6ËÄëY_•×Ë–®Þ.ÊÖìY{K`£P—±Ñºó\þ´W…*e)Zo>Ͻ„é{Ü7U¤é±ÄK´6$9&*b„ âUö@¯aŠÁÁýhNþç.R?rø/P÷#â ¬˜Mc”é0ÈtãwÿŠ#d㱓YÈÕ5tY"v+Íä Û„6¶Y&¸ªÃÒ¡é þ£¡ÝýC+JE.…ÍÞ–0¥Y#–¿í½-H‹¯1Tk÷¸³ë/ŠºDàÏÜ@Ÿ2£!CŸÎñá# j¸Ìa:WšÖ ­ń⠣s>±bgš$OL ç¼RÃqnå4õ(ë&züƒ³ZðPf•5~Œ8ZôÀ¨‡šü2›3™œ¶¯iBÒ±.†P×]ÂÆ0tÛJ×>³Ý”¡‰šÆ»©·šW¯ÍÂW *OvÃK²‹-)^ƒE[YPéÛÁ':-­„ÞÈö(çÅMjÃÙ!ÆkÇl­m`…‚-¸ëÈ*N^Hv+tbž8ÑUô–sÝbÚ+/&ˆ «Äa²å‡|1 µYÜ·^±ÿSÅÎC91N¯™°¦È”¿ GeE"WGPm•:pq«¸Z=x&?ÎdbxÜJqžh¾©ˆŽH9C‘êu/Ì ï‹|ÛV0?HZl¥¢ E}!»í#ÛáÅ”…ßOù] y*Õó¼Î/èÎØF"ëÄ]á2¤Y9 ‘Iï;Ûy_@/ÛÙyí`—8šÿ 6 ÙÝ÷è½v¶‡ˆ+3Eb[r±ìöÍwÙíŸü“ÿN¿­üwm½µ‘‘ÿ67¾Ë¿Å‡ww(ÿíÿß?“'n—óµä®Y±k‘àUkÊQˆ8ã”ò™ˆßQÁ«« ”2ØžsâiàÞ?j÷<9$8™» DÏH†¡ôjö‰ÅŸeFô÷[§z+‘yM‘«´8ý\sŒ\%'Þ¬ÒÙc2ñÄúýÀ´nÕ1G^g Á‡æ…+"`¨ªç®hÝ`”‡GMeúq8¾ ZÂO¹‘Æ›öI‰Æ ú–hž¬œÐÞé [¾»aýiݰà‚Ì´f¹'*% ,*ûìٳNJ,Ö닾IÝc>?ïŸ@kùƒ#‰ÒÉÎÃ8êtO`¬ôü¢Hh”ËñÁÁ^û°&¿“"½ÿJò¤àýW‘+=F´ƒnZA²"OÝL ÒE@“‚ƪ³Ol‚;çôvÊp" V‹š£ãr]E¿{)ˆ8›úééô!ç ª€‘é¢ '>?wQ›\V)ODªÞpt¢a[/rª½¼´]wþbj5Pͧ•f]%+Ÿª"Ú–äV'Çù“7â #5\o»÷šM8´þ'Ò™PÂLHóiRCͯnVà,@û¯)LÍŒ%m>™ÇIÌ`|²)»š®I•|ž¢*ZaáöœíPU®] þ‚ ñ^côf'Àà¾ó›áøÑõ<`&ÀYÄJŠõ#ÎF]ýQÝefÓp4aʤÃÁÝR#Etó)ÊXÓ;Hd~›-QµÊZB;pÜfCÔÉÒKÉçTäu1í_¦ r#*œ L $T½x®©*iÉ­zG› ÂxaÝpìƒ9 0¹E,ñ-ùa_ç³çÀ6¥tš½Ã· ¢6Y—¸Q1õVA[/;Ç»o(‰éþ{4S…«mM}À”Ÿð£}rúö퇢uNLÂ?‘€ÓN;¨Òd©ÊúxjU»ŒËLc·aZ+‘šò‚é/„1‹â òjê*K„0D¤?;~0C'fa’Pâ· ®a^£Ð?ší%-qßYKÜà<, bm‡eP×E—žpËËo¢ÏÉxh.ZR¶²Äh…n!¹%XçsÒžæÎïÿÆcß\ô] ËÎwKXvvˆ'à óRšdqb A†Æ1÷}OŽëHѱ£…ž4(»òÉÔq˜±x£lx¿Ç¨°±¹Æ¤ŸæÓôÖ ‹i¢‰é(½îá~T®þµ„Ûˤ»ã–¥Ÿ†sDLL,Úa?L‡óyªm ;¿I—‹£/<z³cÎ9Œ§­Ú¤¼<e6[¹2t1— Ðçjìê'VÙÿ,ÕK‹š|u>š\üØ”J`¬A$³æƒ™ìuwF¦»ƒ°²Síä.t­ÐW+#ˆšg¶z)]OŽ”ƒ‡Ð••Y}u>M¿Ì`›²˜„&ÎÙ7*zÉf´3^ìéäaöôb2º¿ó zú 9šð;’â…'SÏ)·êy›˜ŽR A@éüBæäÈÃî\ò7ŸÌï³1\C‰ÇþèêÝ~ÜÉ«»¨]Éûs?ƒ&°E*R«Ìñ/2W+ºBÚÌÃ2 þƒ·.¼ªÕÔ {qbˆ½áÕg6§F{~ ;…#x]õ±x NÒúÌRF (÷¢I¬Í‹#G|%B¯º«ƒÓCaæa.¦é ¶$…6€ÊŒ`Aç]`쫃]ùA—¿» ¨—KÉLÆ2èqh tyµ»$SEõÁÕ-ºÀ¢—á9Ÿ²hO· ?ðèX§ˆ÷²Ä¡XŠøDU|Ò¹ Œù8Êigr?lÒ£‚ÁÑ`Éšú¿‚— îf,<¬¾|­ «–JyÇÑ™§*¶ìÛ¾·§`V\`Œ»ÞδcMÈ^±·c·ÝH×@Äî$L4Râ:&aRŠ;ˆ6Œ¸myÈÑiF¤°PŽ,#afðhÒxŠ\gâ F§[hØ@›†\Ы ­ÄÅPÜÝ Ç‰Í¸p$0µÞâ|^FìN'“0)³ HBü§Üý†=UÏœ87lÃÓ.µƒð‚Y­(µQ<ò¬ Üx Ìì\¤S|=÷&ßl¥xhNƒn”ã4àø^ؼÌL¨ °Š´Vðª |Ölr1¤Ü1¤ÉPÙø4qäÞ¿è ï°ú¢‰Y7Ì—ƒøðžÔKãë To3#óÉ]M½HÖñxV¿ºð.TßeBøÎýU¦Ë¬ìtËÌÚYüTýK¸§0¨É*¨D³ƒb|$/v¾`”P賉‹ç!k}~ãâM èÝškÁK³ìŒhÁýÞ‰EàGEGfã#t½¹}oT….Ø›Øû€Ý¯„"YROý¥*‘4ã dºzo±j]ñ2“C‹>Hå\Ÿ­È<€5²ÍÚQUySÌVª¸QG>Ñõ t2žLíE×—€¸pñ=h‚†lsÍì_ZvŒû…t]B,zÜVHå2ÌæsË’›rêd¥7^vfÖô|ÁÂ5Ãìe^Pôy—kÁ-3Çâ0ì’Éjh éoçŠB¦zlÒëã—`Ÿ¼{RÓå¸Ûݪ¹á¡$.knÁ•¬Ä1¥o•2—Hè7š¾ ÿØ‚Gƒ¹^±ñdLê+7~úÞBmK|°ÿtMâÖÝ‹¾9JôZ‹Xo‹(=?Œ¾ÞdC3¼T õ-[¯´äìþ¦svu?"¶Æ@ø7*²ƒfç0œ{•±’Å•öÿ•JÛ,lâݧ€ÈÌ\ ¯Çdœ¢iÇëŠÀû¬=o(R÷ ÇœeĵÊp·û¾+¨¶cÐë|ðÀ¹ã¿!:Á³ûhÃí ró|+cÕc|ɦ%&îê@]Ü G—Of­¬ '‰À9`8Lš5®b‚?òñ'˜‘ `§c~­(à,úÓ9‡å$¶lSSzŽ"8t ¾ͳÀ€, hî)ÓîÎ¥Ù™¢_~¶Ç’¯' :˜õq˜>Ði;¢ Ùòì2ÈQ>@Ú2MqäÃQ¤ 5˜ÉaÉÞÄòÐSìÊ0ËBLBJ2$¹™i…†!ÊŽ¸àa „9 ˆ$^8Ãç(qg: +y§Mºx1Iìzæ6€ÚÜR€ ­R…v/£4‡3äÏàj.VX½Áçòü x[< Ðêç_tSò{ 6ž3‘5Õ~ºŸÌÑk\µµ3‘Î;I ¾3r1þ‘9æScþã»isñï6¶ÿõ6¶$à/QãZ ¿¹V¤‹ s&ô_õöáïƒãÓ^q…â ùZ;å9s{ðµµØŸº×¹žë“¾„1pÄâwÿäMû-z”ïï¡ õIÿm‚y0+÷O„)ü÷~Ê_‘=šCôR¹ˆšÚ¶<ÙG;ÊÜ7«Ý"‡s*pÁÿ:{Sã3~QÖ=¾Ÿµ‹Àt÷:{T®#¿ÏH ÑQW~¿—DPÈ;M¼~ÙyCé&€ ¶ÏNÚöéOù«»‹é"òá@oßö_i}ü}¶Û9¡ß'üý Ï¿;…é ¡´hwöü&@ðæš~‚ÐiNˆ±Ók÷®©ŸjêL–íŒÖëŒnÁEÊg(€³‰¿ß°½cX } v€¸Ò‘ßE±¹¨ÀYþæ|yÒïíÃá÷™3è $…nܪüv:;G/÷vt$„U†<<‚g]´J|‡öú'í½";–ÅJ…ŸvÑ ¤÷'?ÜyGoOaÖ €PB]›DòD¾÷wNµù<‚ûÐÿÙÑËÈ?Ú>Þ4sâpɦ¡$Liˉ›ï$âKù}@¿] æäR¤#% õ)b>кFG•g¯¯‹Ê_VvÙ56è(Çk§³BCýôÒ¤Zse׺o@Я{µé<éìa(Nï% üÎ3MUðIÔŠê:! 7TïźÈfþlšsmŒq±sSa"8;’ÖÕæsþÝ­’hÅx˜fD‹Ózz|R›-à‡ÿaöŒ¬®mÖ?x+Œ°¶ lÞÛþn“;°›`pR5Tš5^eù‘ 0°ØM†è¼ÒÉáÑEF³¬8k¨‚1b~5VbؘË\ÈA`0Ce­ùíŠìÿÔÐ)Bp…0(y5“ÄÜ®ÖqŽ—ö“U¯HìâTô«i¨eÃâcR8]éD¬½ŸÜðÈ6j6ª0ÝM?¡û—Ê87š9g-ì æ]Wß"¥µ¯‘w’øÜ¢“¦ÃÌ¢@’¸µFì1§&І”Gn`fœ 0#ö'TÚyMÚ V¸¤#‹= ÉÜ&Ç&ï¤þÙêÆò…–Ä4xÆý‘ÑP†æ¿Š‡IÇ D0cQ­)üµ  ®Jlf46¿îþ se(è~Ã{ÆQÏÄUwú)#‹uV¯`;Ö¶4¼åFØ’CQÍ5l TUÌ¢PáFðèb•o´°1ƒLÑiˆu…G`Ljn¹Ñü˜Fyja" g£Ûd…ûç'º8<Íp_ÛÀBü›ï·~ç;l§[±êd¾…!Áü’§:Ô”)IåN±\’»_Ò‡R ­:@u&…ï€zÿs¤{7<©NâÎŒÔÓóÓVìF÷£ðy3Lýx±Ðì²×5ÀU`?B›<ÓÑ<¸GaêˆMps€_ί×üÔÌ@ íJ¨‹Ù3ˆàdQW(!þZõóCň7Ì6“,GÎǪ^Î ’™¹-,™Wî¬â¶ç~[e ê—&f4^áQ{Ôεû¾Ì.í;†ÀQôV3©è¶ŠsÈ;g—n–jÝ‚|s&)<Ï/a ´{«Cƒ´XÍ`¶cbC®úÃÊ‹І£‡þežŠ¤ëãÕZè¯1pدxüö™ý÷=M›MMnüÏ2&=1‹1®³‹Ãl4ÞÖ+$Ls°¢¦´\îÿUÙO542u–øLÖ–/¸gf¦1mÌž€d¡˜–99[ûE³Ö> 6wg•R…¾ð¿¯Ê–h…$Ôé5‹åŒ_´œËôÎ^\|,5Ÿ¦©íƒÔ·÷[¥DšFFbCâ¶9ݧ­$^¸Ää‡YŽÍ\€õòSŽÑQú1eV?ÒѦ'AÏ16x“V0Љ†‡ffÎpôûìVnìDHr_'L¹Žœn?‚  ,¤ã†Y5%(5Œ¤ù¢×”CíÈe(¡átªÏ±È¤Ù­æž?(gpwšyxì:¼[_ó°Íöö èR^òNŒq1½¿Äƒ_»×èÙ9ªçæ)Üû.ÓôŽzì'žÂv/‘1‹ò«Ê†ûLž1Ü‹½,. ËÈ ›HÕè,‹©ÖŒ4Šç"’†^E6ªä\ ^MEB`2¶8Ħk+Ç 6i±uK`½!ljeþØ- Lɬ?ÎÍ„ÃÝÞí xÞ>ákÖè×þBe’/eÀeÖ× WXKü–5óË0MpiaÔẄÁÄWÒ×UÊK´â¿wTô #,«Œ¬îƒô-¢¿>RÐ7ºØä¸ùÓL‹üà’…t®.ô8¯P‘J|ˆ¬ÒÁ‰“ïµù0…:^¡l›¯ÅÈ z« ÊŒm„΢çhP¿J¯×«:».Œ˜/ù¾vâ9o.ŒÙê}1.ñ²s`ëmëhv¡­Yp¯? ÝZbV|¦™°ÂYT¥DoQdÀ ÑÁ’¡ ÞF]£ ô £È!iŽ ~4Ý”‰¡}c˜pA£zVt âÔÁ VX$Poê }ÁH «¨}Æ>ˆí|z¼Äû­Œ°!ì¤1<º“l±½T/Oó{XX³Ü)_F_æ¹Çº£äÛÞC_3÷Na=}”zÓ‡³ÚHC åéqðZ”÷¡"JùCdÑPh±ç×rV$ âó“;Š@€#HÊjèãÝ(‚2™ë¬ô@xÀ=ñß‚þ8Çéà úŽÓ>ã]!Ç—á$+(ýWF燊Æzsõ51ßP³°¤_ÔíägÎè¬Ì§ô¡ó–æä'ñMudOÌ1âK:ÎK¢U*Dà9þ:9b!§éÆ_K^„Dgñ§œò*ŸíÊñÕ²”ú–@”d&±HƒãÃ_Û«·õ0Ó¢ùÌo¦÷OÔOR tž™¬Û*Î?ìf ‰M š£ñFFkÊøC¦PèÍH÷î$ ìhx;$¯z£Bob#Ψbß®aZìU?¶ŒAb$áÄvqLŽè‚ÍÞë½dÊ··8Ùkœ õWµ¸wq­·dãÇ™››R ò´VkžÁ|ÁxúK)0b àÄ”•u‰H¬ mfBG¢ˆdKÓíß6à‚šwa‘¢&SDôuäÉŸì5R 8>šMÄ×\«uPŒFÐ0nm˜5ÇQP>Fvç{”жÔÚÈÔàÊçżüÜÑ?j;6Äví–¹  ø³ŒÃŸ|Ðú9%ªEÝ#ÅY º!Š™¹fˆëxÉØvä Ox«Ä®DƦùA¼ÉežÆG½!  R“˜ŽòÞFéË*ðF`¢pÜÝ¥b„ü`9`!çxÀ®õC¶œÒQN|®¤M±]€Êgß™òù{æ,d8«ug¯Ú§yõëIB¦¶åOÃG =‡›ÄU‡ë"²ì¬YfÊ:8‚¼)‹NÕ(Œ=ãÎ Ÿå×®‡õ#ÓÎO &-‹˜ûèé‡Î2®€(šÆ{K‘N¦qGëì’+²…ñÄØ,9@rÄ[Z»ù³j¶»ÈýµÔë"Ýà±å¬œž€×"Ö¶ =Ò’m€ç²BG3U1ÖñW5vlU̇­TYla+Pè³¾¦å:Žì&¥_ãåZsXWºNî-Âïç\–k†Ñ)xíÙÙ3¡æEWwÅ~ñ…`k\ÖëœK6¶ôvlÔ×°G«i²à„f¯ Ix⬯®n³EÇbçÃh€|ãœñ …&µÈ(£À*b„ÜhÔxÀ6¬¢ø>».›W<10æùòSX/¹ãAäu¸&‚cŒãIÄ5?vð1.Ré<7ëkqrÛ#Ê^ô´fÐë!“†<6ÔF™4ÏH]ï"_Yí–?è÷µ¦än„4èü@!„±k–« ôC<ÉÇuêÀ”,qûаRøt&ý­$`2GŽˆEæôñb0PV –7âeÅ`f KÈÂLOKÉŠzº”,ÌéêcbK.™Z$Ë9Rx·yF´ñ©ÙÕjíºˆfÚÕmstŽñ?h4EÀ+k½qk“­)…ɹ’‡P‡Ü]÷I$w¼ª-ièÑb¿é{سìüà~–³éŠõô Í¿ßÄ¡do7æšÁ×¶·6•{qk.1‹¬{ C& Dj?ÄŒ3!3c +Àò$è¼q¶Ôö†ƒ[˜Ig÷¦k“ÌRúéfxNÂ{[û'LÐg ïùìÆ`h$Ç»’éBÎ_ zˆYY A¨æ8=þEBïBk5ý)ÜôÒºwò•äÀËÝöŠn"àäBSfsÕíîâƒÈË%OÛ4gƒLØ8ÇJ©/æïŽV1a€þʳE¯'=×9—€Ç‹ÈcnrPÑè¡ÍoêzѬe¿æ8ô†ùbäQ9BT¡Ü9 ¨ EÔN1Ô|ÌP‹šyµ"Åv)¹œ+I_µÖ£µ·µ¢@Àø/1ùUJ–˜/I\PÏ•3rÄâš¡1”".¨íŠ76²œÄ’qÀ‰Ü58Îm=GZÀ$ =žÓÆOOb¹`f¿ ïâÆyp>œOã ך¬Á6d9TK‘<ô‚Äi÷<½ÒîP,³ ŒAäÕ\XÙ`LíjÄç—ƒÓ÷CæQ:P=öm<Ÿq*vŽÔ×\G£!8³v‡Þ)tŸ1 BH"ƒ#'n³¡à](çXTÖ Œ¯Fï[yuù>ØzVt$-8^$V†w)Ìa=óUs›óm! ¹ˆfGé`œh CŒŒëÈvηƒ¬Â¤„j×~Œödå‰ãÕŒNÈ>[Ø¢KçÔR*­ê`ß^öÕÕ ½kÕÿPÑšY¾¶Tká“Õ£Ï(nr•.ÊÕ»¸†by{f`°Æ) íÂP,¥ÔQwc²QþÜß]¢ý£p/æ3œçî“­Õçß«8›¹…æ_Oi›D>ÑÃIc?Ð9E9¹ä»F›Z©2žÞëäY˜ ÊßfîÝLcXר¦‘?(Ðln"; rsC>éyÒuçC±(: ÿ\ÙîLdSÔ„g‚½ ý««‰þ‚ŠÈ -£’ü^]Ø :ñŒ,oÁ°æýåµ$àšÎEÄÌ Ä+J:ú¢®:¹2æ£-‡ùw"TF›Ã² s^aáÏ߈3S§…¥uÙ\ VxqË57Ÿ\•¿*ç‘* ˜·rÅØ°PFH—{}ÀÈ™#¹ò価|™"d£/˜•­Ošs}Ê&tsy;íš zÚÀ'ÉvH\#þ¬åµ*Å$¤-8×õ%øÂú­z‘]-ŸÜaf Aðñ¸T>Yöüãh2ùåG3Aœ¯oÞ!T&ŠHlSšEÎÊòâIû ±ÙdÑ€\Îí=ÍC ˜q"î ÍA ˜Œ‰õÄÓÛûÑ ·zFB­*|¹@¡3¢¶ÀÌgÑûÓ0'cr Hgsmžá艧òü·‚Ïüæž(Øp<¸Lÿ}? ÷ªt0aŒ¶z¢ÃÂ*?Éw4y;EŒ¡Å9Éø/$"âéJ>u’9Aç¹h¤ÕþE4 ï~PZϧÏò2xÁÚ™ 1aÙßÃNËaX)ü`ÛAL_ò1¤÷Û`H/Àý÷Ëcˆìg y`å/b‡`Q0 ‹] Ð˺]K¶ áÂÞàd¼H7•\¢¥¨¿Ã+¸iç†éæÅ=JY¯Ô%›¦ç£«q8 l–p¶×|×ð–½€3a^BßàS¸„¦>ÎzdÇR°Ç)6"1 ÞûžËîç”Kd¯õ£pÚ„:]àx®¾ÍPmí¢Œ»¢a|c/¦÷8 Ý~ˆò°ÝŒµW—SØ„ü<ÿHvâô2Lï$}4®ùF7˜³óû7ÆNW9ðDèKtÓË<Üà°‚¥v§[‚1!Þ£³”ráHî%‡Q6ﮉ㛫•œ\¡·ž«ád6ŠRi3Eœ) ——F ÃnŽƒÒÃF"V\zª³Ê˜œ©6vñ!!…`〡DrÆ7ÙþÁÃÀ CéŽfNóñ‘ûtNÉg8rÅåD.N¸N&¡èÒrÖE×Ïꔊv祻'äÆt÷SÄp$z’Ø3Àã1•w§ãx±Ð ¢„ÙÝì¸a­eŠZÝ_ ¹cÚ póó‰lB7 u´Sp¸p¿$:D¸ms0#G>˯ÜÕ(¾nRøXëÆËñ‹okê÷Qigd$ÀîÂ8»øaþ½v¼BÑYÿœºmŽ\¨ÌQKùÑH‘®µŠ  ØÔ" ‰^4%\zX=¿2KâéWŽÁ;|fh7º»`¾Ð_%^þú4÷n`“çI—DUîá6 £ÓE>êÌ£²i8èFB6¦5¼®üúkÿ×_+Kgã's´:ÉáVj:™ä]ÿæò‡|e†‘ ¨9²(6Õ¼iÝð¦&ØjŽ“Æä–²ô2¯üÒ ÇJ0GªØU1ª¡4ˆ¦”TdéÏ(¼ÓT_ìO²]#宑Π"¸|ócg)é-ÉœØA£Ä—þ‰á‚,Q.œÛÉÇÐù+‡ƒ§ ÑErŸ ÝÌHÏȹþªþ77.I´ ÿXÄ0'Õèì7˜¸.`N•Q†{šwÕP£¡užÆ{rßÀ¡è‘½£ºŸ|¯œ²ýàìàe:RØüÃ\vǪ¹±2NÀ•¯)·°&9?}/Õœ½Øš ÎGŸ ¸w z*í¬ðЭ‹ò}!9|Ø‹Fï’U‚‹ÏºœÇU‡ÆI´ öb¦ÓÞùþR°ø'Æ¿AÛä +çˆUtìcQÂòº™Ftìî/ÞJÄ'âµ!2 ÒÓ³(Ù˰ÝÍG”urò=£ ’¹y0›ÝߺæGhÒ¢D{dÜ@R—†µ5‰¬ÌLçz˜ÏIÖùtpñ pòdéIêÙÛÉåðŠ|T¯œ-´ÖÅÍd2£­Þˆ¨àX3I¾{Ùœ‘Û 2YCoÂÙóµŒyɾlŽBéEN-@3–Ìÿx¦ÇU ÑNÈúö– €çtTBl39!=T+2½å–IJÖ„+ ;yII ²Ìü^P• Û ì¹(íÑŠbL@U!ÑÄ¢ ÷FDy#yÝô< (°€{ÎDÎ’¢!škx0qE͉@ÝdRà%6yZ Zó JÈ©`ZëÎAù,rõ0‚Á²bÌÀ‹•—Ýr <‹‹tEüéû¼ ‘Y±÷BÂh¥¢p\¸q²æIbF{·èÔ-3'ÊØ©äH=” ÊŽ7,I‰ÎýËAFà²Ë.yÙN”šåØñðg±ÐLå¡^aóœ-"ЇYÆŠ/E²Þô¥hÿ±4™Cº£-žiCJP@PÈv›®~Ù.T†´x· J5 ’çŸuŠkLÉXÔßr·…DìÑnósxdl©/•ÔñçKäuü‰KíW[RªÇŸ/’í©E(ò‹dfj±cÏÁÛz`` qËnPü£\KdŽPy¼ÊiÊÁ‰BYƒ’òå4žS£mfœQþXU‹FDbEùÔŽ.Æ>kêm(‹ ) õŠˆ mp›ÇŽ|ù0uKš“„½@’Dýñ)UË |&sW¡4—Îr±A‚Š|òBöÈð ²xQf Vf0- ”^mÖ¸öã†ú²¡0ÕÇ€ì[fz¨iF1m^JÚI«x Ìn&YÔb%´¶_‰wó,B`V ¼šz^<;²2u¥Æ#=GIöG^„¶[':1×™+ Ðy®+lOŠ&P¢´éÌH?ž.̳[€«Òh$ÁC --Ÿ¦W˜sŒ¯Ã7édšoØ1Õ 23°áî1±¾¬^¢™U®E¹×œ§tÏL86~#_ D#Yk/ØdÓ¸0ô$øÛîWµáªkRY‚[ж9eÁ5å)¨V—ŠG]§"|yôaIaåŒ!þÂ@ráÈ  œ§%†®ýd æk©á›vëî½ö‘3PDT_âhT¡)5¡z:¾ÔB…Ël& 4ñºû• èEiKÅŠõ³BoNÐÎ.ǰ-æ2gb¶½æq4×]“K«›6ðo”€›'òG<ÿÏz6ýÔüüB‘`˜LÎ …å2§y¶}^Dæ.ï †I¸þÏ÷ÏŸï3Ü .~©·ÉÓ“ÞîÓ¦3¿%«¯ØÆ|6××é÷Öæ&ý^Kø;þµÕÚø?Ífsmk+ÙÜØHþÏZs}scëÿ¨µ¯Ø‡ÜÏ=f«PêÿÜÂÀ·“Y^9(võ5'åòáí}rú²w| „aŸ6þÉn'QuDY`áJùã·¿wÕëÀ¥½ÝÙ}£$…µª|L§Å0©š¥™Á§^·€v'h ~N2ÃóÏêõà6©½ôö6AãéàzìÕ+`¸†×ƒqMý<ùÏD½^ˆmr½¦½azIΧ§ãáÇþ±; á¼êe:ý%¥Ÿ…=êN>¦”Â&Y[Û^8– Ì,Qæ¡Ùäjþ€ î¸Á5%!bWg¶ém?ÓÙ SL¹}* ÍDwçPuæ—Ù‘é>ñŸí£·ön»¯º¨/fðn"ï“‹µ3½¾79¼¥f·¿¸ßsá2‚jDí`컜Hú½ŠZÁ˰=¬†_ˆøçÛûé‚zÁ~n°U¢©ã<£Ñ8&Nâ„•ä¬fð²(!·-—^Q}R…ùŽ?VöÐYõ>µÜµ ±®÷œ¨"¤ ÔÖnÔ}tG¸g›ß §¨£+´Ä/;;'ÿœ]§ÿD˜ÿÄSTãk„¡“ H3ƒÎØõè»<}•á.CU½B§ƒây7ížÎ öž+H{>Z ]XƒûÔøÓ›90÷©EæÔu¥•÷n+Ol”iìxLþ#ŸkN÷’øÄâÒÔî5‚:Ÿ†s®"eÌ*eð´CˆÂh_Œípa°ÿ)½¸ŸÐFÿd7.ƒîzËíS_¼u[þ J*'?ñÞûJ»ö/òÇS46v˜qäæö´‹|Y1;ËË—äØ"çÿüú«žþ Ïÿ­Íf Ï`€•æó½¹öýüÿF–àüïVÔAMÖÔîIMïéÃßžiƒûOÃÑÃ>ÇyszÅŽ¶ÒÇ™ÞhiNØÂ+rÐàpx`=ׇLÿЦ7  ãS<жxd™ný[‚z@ŸÿàñÁþõÿêá_rÂ재¬$˜c¶‹¿4 „:ÖF(ÿ‡æ¯5õnÊf5œ&ès‹&EÆš\¯‡P~ ë'c ïã ËsÏ~³eô¾¸!Žå ˜¯™=¹Å±ú^'#¤œj6¸Jç„|•ÛÁÅ vÛ8¥J¼!“+XL–@¼Kµ¡škÐʹZkÕyýJºòâk|\RøÖö¦ˆ:n°owz;Gû}—Ïá˜èÒXÛ_3rÀkpÃò¾æ"(ý³ÂÎÀk Ç'PJ°oü¦s|ØÞõÛ:h÷L”™w·{|ŠjÞv~OÉë8¶Cøw²sÀNð»›ðï÷øZÝ«ö?Áº ×|T“ITÑÁ‘s´ûJ³rïaRº^yŸm§—éñlxk†ÝkwOÚNÄÔq·qä0e5=Ã~êõ# OпÓlûêdçÝ~Ð}škgR¼ÉŠ€ÞÌî4ïövú;1ØÀ³á…zºK.‡ÏAEà„âyî*FÕ£®¨''O\a8 ûrß{Éãsß¿„÷++0¿ŠŠ¤Á?%8ÀÝGdô\΀i#M½OØìÞz3k&)ôVõäÇ8‡h†ÄV×Á<ìž„&å'ÝŒ =:¢hp’´æµ¦€zÍ ÌC¦}sÐtšƒÏaÓ)аpëiõ ¹RPÊEúó°éÛ@`O©š~ËdFT5D´“\sÍ<ˆóuQþ ó¹óÍY(÷#új©!å*Ä1Ö+4}1œvÜ÷Ø𢫇ø3€NëxªüœS´ˆ‡ÙçpÇMLÆbšïµ´Ú[áŽâ»$† ~ñø:<¾îâUk}¥U{Ÿ¿jï¿Öª9£Š¯Z뛬ÚzÙUct]/^µß¶ÇØžsvºâI7îT»'d¤#OºåúîI¶Y¸ŽeÆQÏë†÷%_¿Ö?üýõk1ùÏÇo+ÿimnlfä?­ä»üç[|ÅùÏ» öß#g¸ ?¦?àç.ðpô÷î¡<(&Ò…‘èAò»vrUÆ®¨2N¬Jƒ~ÿ\YR«Ñ'yï|¡:n ÄOä+d·E(TTKü9KçgŽ ?$âžÔFml&¯¢>U†Èl>« ü¢füH¿3E?ósú»N…¸BÕ¼+­¾(Ð_ðÿž÷yªÓúj†=C‘õåúJ([i®VÐäx‘£vIÖã“–A™Ž/¦|w:OçèZì®ÚûÃù›Z°?ý¡üœ7”Ïv(?ñP~n0;}ãŒé˜â=ÝÍô”EM&ÛB€ Zäô*Ñ ‘À/¦]–q6š¬¯.ZJÇÕFŠˆôðç|*÷ÊýÜ~Œ2¬ÍAÎäËÏî—]ç Õ&Ôá¼Þ·I5†`žñg| à9O¥2÷„^]Ú«H™éËÏm×uŠȺ)úÞ)Jh£u5îVç9Ž~ÐóŸç8,øAÏwå0Ê,âom‚áÿî¿-ÿ·ÞLšëþ/i}çÿ¾Å‡q+àÿNÑGèdì;Þÿ9x½¥8»iÄ ©¨õ"a6œîR\Þé;Qœù\ÞXMa"&·ÌÃ1$ Íê~Œ³v«*kÙ|ú[PÑÑ6Æ/Íd[«¯Œ’pY6 ˜šÌ&Ýw4ÿ»ôg 5M‰Ê0(zò²ÇîºwÖúƳ45 ˆeôÂù‰âu2ý ½ä¬šs¦ê$ôú°e%âúÚ³ýÅK¸^Õ] “ËËFØ9kE‚}Ã0—䯠YÍ¥ùWoXš}ÕjåËä¥ YÙ˜±Œ3«Ý c`M àƒû)éw÷Òù`8šExu4ªÜÏè*r{?šá¾àä“ñõôf]nÓùÍDbßN.ïG÷;YYYߦЕ¡íVëÙF²ÝZ_[ß\ßh© L±:lœ4†³›ÛÁ˜XÛ'GåàÈ,ÖüùsDÿôÓÍ! ƃÑç‡`TçpB·êàUzÞ-P°Ðúö“š:ÌoäËÖPÍíg5uwƒiÖ[ëë5Õ|ölMo¼õí:;GŸòk­!´ù¨Öõ ^P‹ÄÔýf¢ .uÿŠÈˆz•ê›zY0×dÊ,×àb:™avQÒN2(aº8ØbÈ~g]ä#tˆÒÜyìêÛ³$¿^Q+wжÁu^{¶Y#kWèq)ícn‘±F—ÛþµààJ»úø¤úëq3n„Žªæ˜GšŠõh_—Õ ’Æîè=J­Ö}ÒŽkF”vêŒ÷5 CÄn[ëÏ`Ü­¦!ÙXÛ.pxI6ÖŸiY~I¬d³µUS[¸[[[ë4›ë‹iEÙ€cX×5ø lnÑH x Y6²s¤¶6`˜­­¤ ‘ÖZ‰lÄÚhB÷`5¶7žáÏg­¢FZkÍÅ­lÆZi1ÁL ©ÖÚVÑ’¬m–ÉV·Ö¶±íõmléYQ+­f«ÄšlGçk«3µ¹Ž#yV¼ðÏš%y®&ÂOà‚„Ë_´OZ°r‹i®E[Yß„!ÂvÁŸÏŠši&ë%–¾Ýó›ÛŸ8€¢k6Ÿm•h%ºë››€ë€}ɳ¤p«l%%(K3ºëa,­í&"ÚZ«˜€•Ù,Íè¾o5±Ô3ìCò¬UHÁ6·JàX3gç?C²¹Ž;íY³ ™R«ßùëHí[¸i’õ¢F’­2„²ÝûÍdk éesc{­ ™ge–ftï'k8ÆmPóYá¶LZ›ef,ºù›pf)ná!¹ÇLÑ~)C,“èæO¶7"Æ4c…4k‰Á$ñÍtp¬Õ ³U8e[I™ÁÄ7ÿÖm|B‚dkÁ!V¦™èö_‡M¢ˆ»hž.k›ex—èÖÖ‚?“÷äv!ïV‚V&ñ¿ŽÄ8eÅIk‘äÖV™“2‰n}je} ±¼õl«hë^¢‘èÎÆ×cñ8Ù¦¯Ãše¦,ºõ[ÏhÊÖqÏl·ŠÆÒ,µõ“èÖOšÈ¬Ӻl&E­À„–X—VtëÃé‚ ¬m! ¤½h0Ûe(L+ºõ[ëÛ ®?JUÌX&e¶~+ºõéØßD²°Õ*ä-JáX+ºï[kĸ¶¶6“Ÿr륮ñcmäo¶¶ à|‰FrNýÍ-bÇàðþ­”j#ºñ›Û¸‰6×Ë€¿($/e6K+~æoyA9Yß,:ò“f™3¿ßø[Ïð„lòµðê²^ª•8ÿ¶çd³E[r«pÊÖÊ`ëñC¦ I ¾m=k!rRfK®G7~²çp»/b…ÇK™ËËztß·¶q7Ò@’õÂR)y=Îï?Cìj/w—B‚Ü,s¯G7~sãY‹Ný-ڔū¿]ÉÖã[ ™±döþÖfÑê7[epy=¾û™¸0Ÿ´^x ¯•9×ãç>nyämÑ̲õ2÷ðõøîGBÖÜD¾¯YxÙ/sL®ÇÏüm<×Q¹^Øðe„<ñ#ÿ><Û"ެh¿l–¹ƒoÄ™ý&-(ãkÂ9YŒÆeÆ—ï­yÙ iϳ"º‡q‰Óe#~æ·«9'éØVÑ`€`—@°èÖßÚDîÑæFáµe³Ì¾ßˆïû dÁ€EÆ#¬•ž”ÏJÍXtß'ëȹÀƒû¾Þ•ÀlDw}²Ø:²i[…Ç×F™kËF\·Í¼QÂŽ)š­íR³•³íéIœx«pº`BKìÈÍø¿†GA²À2ž­¤Œp7ºï9‚Ál Ð ¶\!§¿]ª•ø¾ßFmÙæF³‹“2§×f\°¿Ë…|ÍzñÑÕ*C&7ãbý­-:ºp8@˜ eÈÛe¸ŠÍè¶omn˜r9)d^’2'Ëf\¾÷ y—Môvöµ?.%ߌóú(ªÜ&n¯ø`i>+µ.qñ©BZM|Ûl_¿›¥ð8Îë“ 8#$3I¡\¤Ô`¶rä{HÆš¤imn.Ìvb¹•Ãë#¡n­“ak­xï—¡c[9gþ3¿ |w3)D€ÍRƒ‰³ûÛM–?£‹kOù¬ŒHt+ºýE‚H¬Š’’µ22‹­žÃÉ6]^›EëRêÈߊnþMæôñ2Y¨sIJ]·âŒ~‚ŒØñÅêÜR»%ºõ·›¤ÎEÆEp…#)3[ñ¿2ßæ ß ©X)¥Þv§OÊ©MœÌV’*õÖËð­ÛÑ}¿š„unkÅ‚„­23¶£Ô['‰Çå³E¹†mçˆ÷ZtŸ B¶Q4–geöãvüÐo’ùrP­gŧñvÕávüÐ_ߦÉÂ)+6X/s‚mÇoø(Òb‰ÖZ+Bd BeP,¾ñ[$Ú%¡k³ð˜.©L+ñÏb d· µ:I«U‚¼lç0ûD$·Øþ¡Ux~­—Aägñ3¿EJÃmÄçææ³bU{™ÃøYüÌ_#Ûš&b`3)ä_á~^ËžÅ%|[„ÊÄÀl5‹ã2gñ³ø‰¿…÷ÉM¼ $pÍ*ä+Ê(õžÅûxWUÄðµPV€d¥¸—g9×|d·H,²^hþ’$¥Æ¿å¯áŒ—…)§ž¡þr«p[6›eŽ—gñ›>êØX®ŠMʰ/Ïr$û¸W›-ì0…*½2w½æZÜ–g /(¶%ê_¨h_/³_pi£¤ŸZX_'áX!_Ù*ÅX6×⛿I¦< rL­íÂyK’ró–#æC. —¶ ïá[¥¬FÖâÛm›,F!om¯ªÛ×ÊÍY” §…t™Ízž²Ê¥îb͵ø•Ÿl·7€»r±6´”qZ @³ESW¨Az™VrÌùÖÉN”äûE2¥ævÞ¯¹7éÙ&C>2„X`˜XÎÎ.~üíOž¡*c½Pb üH™…‰Ûó% )öÈ~©o±d¼L3ñ+“ÎËmll{»XHVŠ å˜ôµ6Ù°Y³f±ÉM°·é&›Ôœ4[ÅçæzmR3nÕ‹ƒ²Þy„ÖæZñÆ)e ™c××$ýqœÍíí§YjƒÆ-û© ~ÏV¹y‹ ÿ¶¶mr‹ŽŦWeš‰S‚¤ÉqÛ„ …Ó¶YÊ´7nÞ×$+ÅYúl[¬l•"Òqó¾&j^ÑäIAቓ´J‘œ¸}_’lðhHQ¸4¥¨tܼ®åëÈnⱓl]8Z¥Ô͸‰`Û©“g1;°QŠâÄ­üž‘éå3R7 <7J1Pq#¿de©@EÑ0ºØ§¨^©vâ€&Ùõ“uk£Ðp))wˆÆ ý6HaÖ"]Öv1™æÅY¡/ËùÅc8)q1µÙÃÚ‰}j£$µ[öiË>]·OוMXï¹Òc’YŠÙþNJHÄ-'-ÈŠŒ8ß}¶çŸÕ°>¿QwlVûj:>}ät7a?7[»O}[_ÁInÓ´º/i8Pä©ëÄe«ÁÏ:½Y¢Ùz-t­o9 ñ»iªå7•H•lS˜i*ÉÖÃP½í$hªå4å5øM7D¶i Ü4ÝÌÖk"èfÐt4ÝršV«!šÚž5³=;:Æ ä‘&Înv'ãét84RÚ×AY³7Ù´ÅAÙ6…FYè­TÈ«ŒšTÕU÷{|oÑ÷ÈžÓp2è?Ç ÖÞªp»—°ÙX‹dÚl_#ÁÀ°cñ“¼ÂäCtµe/â¹ÎëÁ°Åñ}0U”Ú¤ã¨5£¬góQ8á †p–TÔtùLa>ãΓÏö¬*¡’eJ±’…¢ùb&0Jo”~\Ìa'Ãð)Õx{Ü`Q3:5˜ç7·é|xá–¡ÄäÔ-Á4‘CîmÌág~ÃÊ&ë~¾ëz#½0ãÉœs θgìýn:¸ÖXCÏTègØ=:œAï(¿‚Î- £ìeêrˆù†ó{ŽÌ¤êž oï87ƒÎ0=¸ Ç~—»— N.5˜¥g±kœˆÁŸgC éÿ맺rܰ~X@&æIö9‘žVö9ÍÌsJñ›dÓBÑqƒ‹è-Üã9¾büYNÔ hŠÝ?æäajã?Näqâ?nÉã–ÿx]¯Ëãüè&§ßLýÞŸHü—ÿ|åð/ â¿4áï$Œÿ’´¾Çù&¡Ò~ü—uÒÞÛ¯é?5õŽâãÁÏþÎ)…ììírŠálp˜?hH˜ÝW;½]Ïõ©iW48à;<õÈÆ¡ŠE1ß9ýòÀÔÎ ^?ÞIÔ@N¾¼²TH™NÜ@âi$x…}áì¢p¾rØ·£úùç:qD’ÒºA±fÒ!… 1‰U%é"åVmŒ’ÿ0ãxùÌÿ!ŒOãr˜åjÍ÷0šøï ¿—LKð|h:<ã5Äuÿè<öâøˆ•àXFˆz3üb,ìéý˜0ÕÚ¯äÝ.+”,à—èÍ0Ÿ³'!§ÿ¡÷á DXD+µŽ c0o¥é2/ԓΓç4WØ«µ¼í™·»ðö?’÷åƒÎL [ª×÷±l.&£ûÛq¸Î²à0úÏІړøGï0ÎËœSqºu©Åt€¯îG¨E×|5¹Ÿ¥7“Ñ%À•ˆ—OØB‹BS{Yýíôöo„=Cû®ïºö ë]0¬ü‚ )88ŸUtTóB-~Ô%³w˜W…±¼ pÎ… èÝ6úYhè=Ðe{‹M—X„âÈ„ ç¯6(!¶ÎBf€Ä[ÒfÎa4 d4˜3·H»±£˜‚¹øè—¤@N»”奸çà­åü³‹Å´]lLñDMyú£Qo· êÒÁ%^WìÐ9ÐnƒîÝ>Ušµ#JˆZùlfÀ±¥9SU´Ò­ú£Ë+ ­Uýa.7êå`ÆIP.tnGŠ6£ñy§¡ÞÂ-sžâ¢pÊ”)ÜCŠm´—ÞÍ5ŸK€ïoÆ“Oá ŠÌÂÉÎï´¨¶0‹Š ]´ºVssª¬Æ™˜!'÷çÂA9½ˆ¥ÙyÿögL8rL¿÷Þѯ^ðHèŸHª”Î Œ'¿e~ý!çA…+kþ°D7,‘±yàž‰®,§‚t¨ÑÝ÷"¸¯x˜üרçc%Á¼ïCùßKÍ õ{;Ý“šÚk÷öw1¡[ÿ¸·ÿNË߈h0—î‰B‘!žýÉêìý·KͤÐLé©¡Ë*¾±Ešš!ž ‘1~E1"fÃF´L‘[)8R”Hu‡–”<¾ Eç£ÉÅ/žÔ³À S¡^­¬ôÕ|‚0¤’ g wH¹Ø‹Eɸ$R$ ÷Ó)LϮÓñè³,__9Ý9­>xù„ƒñ¢rjã9=™NÃgí«'¶ëèzDÆ—Sº‡ƒá "U©Ö»¼ŠË½Uƒ‚»¶àUé;Ű ÌÕ¢ÛãKŒÍ ~3y`É* ,aá$V¹#eµ2V‚·ý;€þ¡ØøU¥Y…@ôß«Ê/UUÆûa0½¬Y}2®£úœÎÃq¾4p~± ’*í¼„Ãɰg–¶]ΩóÕez…$ _,µúyd…vIàú0„’ó©,œD±ÞäüáEÈoÊ›L/$ÑW•ôÝ‘//šü‡$AIyÙf$ \ÕÇŠ¸ãÃuEÜZg¢?%DÜvß\ÊGH÷]5Ó®!¶»ÿzójÔ¡Âò¢cd¦ïÊÌå™é»â®`#8ÔHgäÕ-à.;ýÚ›ŒhVu0¾¾Gæá Yo,VæŠÂƒu0ÎLRÿ+LR¿A€œÑþAäï¯VvùØãß»+¯ä×M°Žs@<Ñ›ªî×ý²Ž!Œ¢=,­˜Žw«qK»:,m†ù]pϨX6Û@ŽŒ>'Üän@ [A¶ñ6ŠzŽkÑ€ÿßJZ¿¬ÂÁjŽð¾ÓÃ_ï÷{/;;Ë)¸ÌO÷C¢wd›ˆ¬­éYØTiµ©!ñjÂ* SäŒÔ(ÄþÅ m©Etl÷.†üor¥ê]·¾vu.|ÖÎ-b,ÍÉ¿cvòa—üï«Å2ä¨éT(E¦©Ä´ÆÞ>PŽÔþ(Ð/y_ŒÐñ¹B€¸Š¥Žß—à”™‹Õ {¦¥ûú¹;H Ò Ý‚qt:x"ܘÝɸŽ>f\Ô·~θH’ßqB¼Ru !žµ žùI¢½è> r“mÂ1nNþ® úF¶y£IÑ[¹èøÕ´p>Â"åÏÁ¢eG¯`–Pp-?ÝUÌU:ªCœ}"Ô+"BlêA¸J>É`ùm@„ô÷7ÖKР#­òa‚“CÖ‹)Ðm°ënËS @íõå(Pz‹}T–…êÅ¥hPîl¬àE/J‚ž,Iƒ|tôuHPVi”ƒe›9X¯6¬ó×rˆ¿bÚ,¢@_G¹.‘‡–_Ž•Q嶦B%©‡“Y¤u©PiuìËo¨éÿæßVÿ×Z_ÛÊèÿZßõßäÃxêÿú•ŒÊhîd¸Àн?… ™]ãjë¾TEçiå`"+ýÜ2:·>i\XhíH!¯¤pëãœÆ•qá¾faúßpv¬¾ÎD~‰æÈ¹¦òÀ“Dãƒö•£g;ªš«ÃÁUísRULqiûþ—¤—RD‹c È/ÙB²}ò…ÂŽ±¹«°™›`®*Cò`´)<ÉÙý¡YÈÈ¥ÉYÔ`æ+TÅÄ;bAà0{é]ï7èÝtòP¶kOtß¾…Jµ¤Žñä.½^ eüŒ¬0<žš¼)!½š§UÑ^êäuJ^5O¨‚û#+!í¼|M%$'âŒf“Ph\é'/¾’~rêê'Kê=%`ÆÒ Á:.­ÞzŒb1FNC£ ŠˆÕ†"‰|3ªg+V¼sÇOŒ7U_·µ›kÙï×ëVCX8Z[ §* Å•àÃ%ãÃï Å3:Åʼˆ·JD§(òà,JrpÑϲã9³‚Òï{Šr¨Y\¨e‹©A=Ù/yg{÷éôÏãø‘‹ꟶýÀw>s¶Rç¦élãœô«0ÿ`J-Ãìfp—ftý:hRØÁµy#׈´ýrœŸãüBC€’œÏ]|–®&#Xœ®ôÓàön”rÚpŒÀ°Á‡»œyœ7õËøv¥ÿ¾NNÀ&Ñ|¢ÍD÷ÿÂ0¨܇Ǘâ{ä&Ç:·“K–¯ôgè¶¥T¡OÜ›zÛøÒXדRµí¨)ߑܯí~Ç*Ñm­,°ù‚?IÑeÞæ  @Åj»"Š£öÂÑ—ê¬V‰ôkÙ¸¼aahüÑ“üC¤B²bS’ÅZü¯vzËêfÉ·ÿ´¶¹¹¾êšPü»þç|x øúŸ“¤¢jê°¦^7prÔîÒ¯÷YUÏàþÓp4$‰×SéaÐÜ¡í¼—–W¹œ$ îÉ$'`‘4ÆQ$¹ …?1¦þ ÚD'"ð‡ÖáסRÿ°Oð$|Oh”Çc1‰”~QT#läv0ÁÈýÆø¶CKÃ弽Δ,!?ù)ŠðRiÖšU-ˆŽT:,,)ìU`II`<­4.„Ÿn &|„¢U(/¹šNQƃFóO1˜çôj4y¨QìPn[ýû~0žçäs7MmTÌ „†$B¨«ôbaÍ´bÈü\Ý0q÷£; 'š~LÇúõà|Fâ/R^ߦ$Pº^SLS5¸¼"{ýtvŒ]´®M‚‹:±DE²t™*2²×}v}x¥&c#(ÓkÇrÇáøj=ÖSvü‘ÏqHQÄ!RïÇ# &2&˜qV°E`Ôéˆäô1«‘âL¦HÏL©C¥TCU`3Þ.nèâ„eúä ÕÅjj4ü…Õ,»$ÐÕ/ êgéäðÊí B ûèöň™¯;B{O5`¥›Áô–Æ-Ü»/®§ƒËûÁ¨¡ŽÑPµRC©Üýˆw>vÍÊú8œ¬‚ï}VwéHÑù€/y3tøŸTÓÁTË)m£ó€†þI¯wýþmo߯Vè‹\ ¡ôÏ ;¯1d®@)-ˆ4´sRS;ÀZKtƃø÷ê¨K?áˆ;„ï¯bwù6JÄdzáEì2ßîö{íîI{×iç%4D§&s?õúËÝÝÌÁŒ`Ÿa¦ïÐ<;4Ï^™g¯Ì3<¥Hæ4.÷Õ{|µó>ó ¯‰X3¼àš‘ñ±ðÂE [í}n5¥ƒ0€à+Ä}“EQÕœAB§Õè-ª"ã4ÔÓYIâ¢LGp8‡;x[¦©Š fç:‰Ø½Êý”Zò‹ôI:‡ÏëT¦-uJ¥ ‡ü’ºé•ØÅë쀧PŒ§açdeçdjVWåAe§O‚[¢^-le7:ÓÔèSµ[°(ÔG)箞ÌÔÎi±8!|œ /ë ÑctÜthñ•J?‘Ń ®Ð×ia0û| tm [°2ŸÂYÀCC Mê‰Ïç«LNm™YäF¯gŠÑEÖ=3^ÇãØ¬©RX¢Ê"ŠbL@hpC0>œ ~G÷‡W¸o Ø’†](¸sšWˆ¯ÊÍ wš¨¿»«» $þ~t¿äŠ'N’o%ˆÜÿ/FßÖþs+I2öŸ­­­ï÷ÿoñœöïÿ»àM~~»_SoÐ"yŠƒÞ1z)ôuð—æí°þá¿P.óÙ„[Î' õ,z>hèÅ!¡í”E8¤eìEw*ÜÜR†¡°†ÖæïGGÈÒwÙT˜ýmOàÄ]FÐé§Ôÿ^fá>&¡xUÃ[ å¤ðn¤h&:šÀEu0“ì㥣à+‚[Ù©´k¯« `¥l àÃiШ™cñ7 ëÒ‡çhƒ4Õ2æ+µŒuŠ.ó Qj ¨qM±\á^u>À¤%Ä!ÔµÐ Š 1 ˆ‰•Çü³5!V ak¿POQ“½ÃA©qx9Å:N±p´9UNm•qfÎrê¼ÊÖ±s˜Sç¥Ó5ËÍàDk<#ãî5>~^Â÷7—ÁÖâv’§ô˜ èX²È”›ÁèJ,[ÂÞþô»õ– .ÙÛNoKôÑv(ÖŽÛGm)Ôf‘qVÐàõN3‹\¥S”]ò(15î¶!sÀ´ãîƒñè†OK5Nî—7Ì(+L"åu(&Ô3dÖñ("êPL¦tXDÄÄ—.˜ *""ÎÑ’C6]0°=Ϩ"éeä†1™5ž{÷ñdüŸt:i|½°@¸6G®ÝíWŠ„p={Þîâø%;Aüg59]@îr’í+!×GsÁ¸ÄÞ˜;î”ÚQÅæŽ8`„”åA —r¤Ï‘Ö€S³û 8“fxEÓ<÷ý_×à= œ¶JÖ¬»À@ÎD J—x ™ãµNô…{•îÕÉæ\_-Ô•–±E Yöl»9¦8Ì3¿1ø×‚ëùãyÙ>ìž {ݔ߻Ä46é'&9žó䨿’1†,<éîð®À@í¾Ò7Уš3ྲxñk˜4=>BI>jfìä˜ÿÐÕvWªÀqI 2Ñÿ·™h~Ìrƒáøªáä~zàhýgÃkt-Æ›²Ô+ü…í^{ ºƒ.Î8 ¥PÆ&À,pG<´]ÔõP'ìË=fþýÞé¾S¹+©=œ÷”'Ü'$X‚&‹„S¡g:, Ô(§©™—6ÜÜ&è5<˜¥³š”e#Æ,~LgZ¤¦ ;ô5å‚ÃH²±@ÃÛ@vJ¼Ç9“á"ep•C9Hÿ*REÇxè¼³ñK˜í"Û%«üNì@k9½â¦s;†‹åtK£gn/Âõ\Ð ³w‚äLy óç~!]ÓÔ67N‘•>&U&ÌŽ Æü½#ÂåbPëcºßŒt¿—aCÙÈÊ:åõ²CY e£ìP’ÈPNã¢Õ`([ùCÙôó³¿&®g©AmƵUvP­ÜAed¿Á žåj;Ôjsùamdžõ¬ì°ÖsÑŽ®dÜ•»ƒ|ƒÙ™ßtÔªrÀLÍÜõŸ¡D3:škþ|°h þz¹A(™ifbæÍÈFîB/3#x8Wê奿i:ÍNI1j 5"žùM³®ƒ0¾i-5%1ÚÔ,M›6#Sò²hàˆ ™Ñ'1$Á)AfWWÈyÿŽüy+ |Íõ̼Aª_†X1²ØÌ#‹Ù£Š<¡è˜sØÞÃcÕGÌ_ô Øòïþ¿Ç'jÿñ•=@ø$[MÊÿ³¶µ•lnHü¯­µïößâÃ[.cÿ‘¨ŠØyìÕÔ{´wxï8š- õµèc¬?ЮÊÀŠ—×pž©½Π4ž®Gpqz5†×ƒqMý<ùÏD½^HÓéz=˜Aû½azù‰J‘IÖ»ÙäZ“l/KPf–X×<¹š? >n8ÔÝM'‡—<옌ۧÒ&1¹}â?ÛGo;íÝv_uñ®Çà]±x¾ÁLDå!Ùá÷Þ¡ËžD@{†.ï—7tIÐP£  Ôåpp=‹5 9O QýG7¼Ó'õW˜Ò=h‡ür$9\²M]Ñ î9µ(š—‚|ÿ#Œì0󳨧)yTЂ¾„žýsvþaþû’jçŠqú@¯É`‹7˜–±GMj¾Z‘üVÐ@?ˆ/òžCué >Wa:JÇ×óߎ–&œ‘Zd>°A]WZyï¶ÕÎFósJì÷2¹4…4µ{ e—Ðz ÌG/ Σ=ëã>õ ,Û=˲mð0zë~Ï–/ô+°Ú%÷ž¶F—/+eÞ=’eŠœÿ—kßÖþs#YßÌØ®µ¾ŸÿßâÃøœÿ{kÿä§Þ>1ð“l1¯.GÁì“Jú¤ý¡¦Ú×2ýá‡ãäþ—š‰æ‚ÒdðDtí\àŒ-sÆÀsðå•"·"}`îËïÓ ÷‡ãˆR|Ñwýr™þÊŸµ§è³F,r-4Á“ñ¿ïa>wÀË .nj‚=qÿXÂîn—)˜ÌȉPUNÞíU8¥bò54§q½8ÉøAN¡—lþf ìQo&WWæÉ~MŽõ#ÔàÊЊà)9]OÈ?Ñvt2ßLœ£­9ÙŽï]-inŒ-êK€x óv‚!#ú 9v}àrÆtsÁ8õ ¼ÃQ0¯™±b™Û©9=Òfƒp²n£ñRˆä?jA99ø‡c‚6¸˜SÀ˯ÁcøG4FÍØ/e–/k4ªMŠ)Ì$3^[Œ½g °I”ž?\ÊÂNúC%8k¦‰Â¾PkÏie3¥ÔÍ`–…Ihö@sy«Í¿D˜´EÆmža›^ !! g‘ ÍL!;ÂcáI`mÆÖj¶t,°TóÈ>BåŒà¨Þtǰëvöˆé6Žlh=ì WÐ0†û4áç)lÂËt6ŸN>óom‚Z<Áƒ9ëÍæhFøûpº©•Sº)Ii¸!àiÙM5Ô¦»ïúËö…£h÷ßõŸø Ìªù# ¶= ›²•éÜ,èvðix{ëÝp7ààfo~óÀ6ó|2ŸOnuQ&«¬4OSmÈØ–$nNú7}&gÑt{¥+Œ¤+‘5®µr´²’¬&+GUÏ|³Èz“ˆOh¾é†ÿ•J<Ò€Ó‚ù[¦‰¡CßôËá%¹jzÀyv~Õà›ê‘ãðž´W÷Ðz/ÇâpÓÊ\²ˆóÏ6ú®Ãhð·L8·\ˆ6Œu´ ÿöÞÿÄ?ñ Ú{¶»Ç˜Š¦Ýß?z‹œtýøÍø‡é£ßuØûhu÷ðßK¼qîµ:ü«W¨‹eT·ók´nÿáÃ>Ä3¶Ï€îtÞ¾^åå~¿0@\éÀsÈû4…úI~÷¿$¹\`½ilìM=j¿Ù-6ŸËXûU˜±”JbEGû˜SN8Ý—]õ K÷ÈÖ¬[Þ²‰4ÒåVÙ«09ÆJ­ÜJÏüŽÛ.c„µ·¶¬V;ëHE!o&ŽÕÜFEa ¢ïC‰º ·‹F¸Æû 9y¢]e ´£Õ—à®v{\Ób{ÖWãÓ¼=Go½kp©!Ÿ¤s`¦sO/½,Ç{®E0ÑøÎÏWŠˆ"½·Ï‘Éãžûøì Á—ö¡œ>É„rìÕô¥•­šïÜXüêéa½ fø’ã}<¹¤Û>ÐGéÇÔp°855›Œ>꣞§gpþYVÔÎÒKrïî‘âS£Ì’êØf³1M›&ˆ)¬EÈ]õ\] çÍTgXHá LÝÕò†ɺËoèôP—îEK #–)Ý9xŽÒãéP'ÅCÏ©À xœ]Ó„©!Üx‘8C¶½ ~ÝŽ}Oyÿ¡vuy·çWë…Õz\­Të`½]èc·ã––Ç^a:֜ݢòv<†tìØRŽÚ½ 5Ç’þ+gË£FÎØ‰ìØ'9ÿ0—dDJæPbÒ«£²á ˆùp6;´Xwm¼<šî+³‰ Ä*¼ÆAŠßY´º€>Ä"©ÈòÐég;œ‰¥’]ÅpP.²¸¼Œ*Zðžæ~è/½à=³à½E ÎüS°àÞÃÂJ~£o{³hé§×ºW°Öä!«dV»µ–M ×’£†D)-ÅÒ^¿¿ó)kÈé©Àƒ†ÃÖºúˆ¿NÝCÊ ,2]%(¾?èàÙá] %^°œ$»á‘<äà™k·èÎÑ›¦ÿ¨`cˆ±T'YY!Èõ0ä)UOVhãà´µyä{€¿:GJ­¢Äú(l?B°³e²Ô9'JŠeN…/kV¶j5ØUy$!6Ç*J"ó¨˜ëÙ iž_‹®8PH@;Œð‚÷xµye©K³ÂGÏ{|8÷§‚‹Zìˆ,ù ôÊÓx-c†ì]5À¨4FeÉŒ7Óë’°±–µ#Ë7۳ײïæ`¿å'¦ÿm~[ýïæÖFVÿÛü®ÿý&Þc¡þ7 ]tçuiVV\@‚XêÅ´æÏ¯ v¦í±ò³¥ÔÅ0»¢^Fs\ 1^Z1Ìãë|OÞí‘Fwœ§Í5ªÜš5Áêê[!ßñhÙ<ý­n Ck`|ÞKu5ÜÊQ ]å[ê Ž´Zp0Ký<‚=õLULꦈn•}¯°“ém•4¾—él85ꥼ‰Ì$Ó,šœ¦¢`ÿ ÇUŽ Í?” ^@êgz½%•úÐ|¢0Ä/ü•à_êœS%÷±L ¸…è¤57‰‚Ÿ fáïñŸk¿pI^±OPŠ‚]Póçx'¸‚꤇¢aÛGk'æh< êñ™ÕÂâÄX‰™\ÝRiçvVxb´ø IéŽf)õå/&Íë?ÏÉÿîönNÁaHgl£‡ôóTtZ(2™¯‡ŽÎÖIÝ;­é[,ƒ’Ô¾D%Ú‡ÛMzL†€¢Í@Öb¦o6—žNS„9¸NT꛽ñj\¦W°9P4¬}iL)­Â4åœ_ìu‰u> ‹ÒÊ(<­x‚>h‹<êÉå~PtdÒïÄŒÂ,½ 1u @õ¥Öæò^ .'ãT+ãa›ôubj“§yT!ix­aDäìÌÁÁ~˜¹»¿»ØÐ>¡öÛší¢8ÚL;ŒdŠÝ˜èeÔcueþδLÿ×Hir(P´À³U•~è do¡’‰^ov€³túª,sÞŒìl³SE/˜¨LCèr(nÁ÷³ü2©­G‚ó„=vÑw˜:Q¹òÀàBà#fœ#/4žáöØ@·ÈdÓ86Ž“/´Û{,T‰Ù¥¡ö\¨ mhH@ïînOp€'x³žiW®t{«ÍªÂ•Ï„£ †·Ÿñ0nü/6S‹ÛX£°å-n:«4wÌÜz5Ç©4Ÿoˆ?ª¾¥E<}„ÃÁ>äö°ÉóîB@ B£ìX1$Œ6ÏÒAâ½Uãs<6‡yÆ=Ö²Gbÿf³ÉÅp0wwêà$`Å¥b–jfruU/ß”Å6êE«[nì´·Ê:e4P<ÈãG‚Eô°áT0¡¦¢átàÌN/"M„<¾)f’UÊæ©DH´ÓÑh$¢V:*Ú;7ÇìâõîË3„Ê1 —X`\9JàE¿«…fSùSî­"@¥å;’eÔ0™%Ùä±°.ц:]ÜuIÁLô»½ÂˆŠKX¯õkâŒ(Ök‰ünX±=6:â75ˆ£iKÄ¿ëöŠ+dÂ>Ú„Î#ü"K´æ²©TƒË†< ÷œK²ÉÔîHvð²z>™üòKšÞá«;­²Óßs?cACgŸ» þeRÆSÔq9¹æ½uWsL»Î¸(K$1ûXP–³ÉÖZ¬À­…c3_aaì ‹%+o`Ô¬~pBZ´ „¼sŒÌ¾]¥vVÌ´I£×«ÜâŠÓÞÞ{·A  ¬Èu ÕˆÌðã]ߨ ŸÊk|nlíÐsÔš‰ƒ±A¥ørƒº[üFw›f„4»«M/íҦ3šp0X¯Ú£\¦¾JÚŒ([Mo¼:¶ˆÝ‘ÈnZ9ž>! F ‹K0k| tɸbþð¶‚V‚óï§šhòKÑ‚Ó/óJOè 3WI;ÅVQž„ʦ7ÔÑTõåZ÷;¬Q¦Ôf”3J Dµª±úR ¯jΫCëªÐ1"B‘e#á^µæê¿*õª¾ ÙKu""¿}-òãpî—þLZ_ nŽ@Œ&“™ØVáÄþÄCü)3W±1:&Iþ4fçœg/%3¡®M‚gå£óëbh1½/2¯=ÏüMŸ»Up‹èýÙ*àÛiz7HtmÁQw{÷pLP›Îšu‰Äªzf±¨+C­’ 㔪þPÂŽ¢¹ÀŽ"¦ÿÿÚ €‹õÿëk­˜ÿ÷÷ü¿ßäøêÿsHò‡|+€|niÞpö̧3ݰ,»ÜàJPÀõë»P,sø“¼1¶ú>c¦è[ðkÓ‚½÷ö¯]û§¼/\´ŸJš$0†Dìò¡Ÿ&™ª˜L[EÏ^1œK›;$ê…,[š?LÔ,K†T_?Ÿ\§$™ ™Ñ€ÞXãËò#¨È ÿX çŠ5ÜPòRø§5­ve¥+öàaðyf DÑ‹’ŽÁ˜­ÏµZ Ãýãv2ÍÕ<_ŒPmú>Ñ)l§)ëóaS}‘èÐ׫y­ž—^FW®5˜ó!•þbE¯·1k­çú®¯ûcèëBÓòn ù¸7hzW§‚Ñ ƒ¸X¤2P-Ó;žŒë²«´Þªæõö‹0Ô g†ñW`áà‡ŽzôõÝösrËŹ?ב*\%Kº˜ÜžÃ¹‡áÀŒžÏ<Ÿ†«Ò­¿©Ö ø [®Ìo&ˆì<%c'žÌª&eHâÃñÅ4ÌB÷‡`ËNâƒ?êµvg#±rè‰|̺E”•¿µ–ò¿F=YN%‰øç«JLÌ™~BP&7DM8¿9F1£üj0W•f­Yu7`…®ªlE1Ö‡Á“J: IqZ«êA‹p{8¦ðäP@¢ô•õšš|¡6ÓÑW–×øý6KºJNcpxD—õˆÓZe–5Ó]¨n}ÜÊ0í1Û‰²ù`“µZTA(18ÐÝÀ›ÜñýÈ §BBØßJ_z¤–Ý,ES ÂÜ wŸu+!!‚9|So˜„P(¢1þUòÝÓ„ñb1Jje:ËfŽØ¿8©¢uwÕü¢€ÕÒp“‘>Vs+·:kEåäpÿ訪HÕký‹ñ£mÍ0’c<Ò Ž¨)åü棪ݻ8Ê»¨áØk2ãu᎕,—h£5q‹i£X åÑHá‚û™Ð"ö/zЖ1€Š|ÖqFWCNA+¸¤ƒs¸×B{ j~3œ^–‡qžbNCì¬5ËÅÑÃ0Ð&ÖÙn ‰/# ICy$4)‡jx?ôp <ñ!ƒp9tÔ3(16Kã›K=H,ìâ[N`oˆqžñš —@9$lêŒ3ŽÌîƒþ’P Cl‘XË2G¨NBj”ÅAL“|ä;OaÈ)Ýš.. fp…J{“8$8ùbœ44$‡“‚ ¬ñFÖ\…pE”1Y!‚¹§³æ sºYı…»$ƒƒ¹ÒÃ6ž D ÍäߌW¼pÐA·O”vWh-Î~$û£ÔÛ:mËÓK>3mƒ.!Å<N]úÍà£vš¡«(oÅa°õDËf·Þ²+°3³¶5®‡òà+ÜPÛ)dŽG}¨ L£ëð=2t8Øe`-ÿþ«Ë -6až;ešUE㮾wRž;¥“Hé‘“2Æ/݂҄Úγuz¦ésönSC1/ËÖø4ñœ¢ÖkÌì‰ô½]¤‰ P.s.µÑÐŽÎû×Óßߺ}7Î[*·qMõÏà¯ýö᫾_”çxÕKtŒß•àoùšj n/²î#ÕÑQÿ¸_ü‡‹ýÛ“#ú+\)cÁ¾6䟯ùç[ʰL¿Þöößq¢å£¢xw6ŽÏÛƒÀ]˜ò·'5õªsÐ?F3>˜ÄSø_>4#C)ʽœ›T™ìßþlÌàâö„N¹‚vK[(î¿ý™îÊoc°¸‘¼{ÇEÁö¾›):fŠÝ}ª¤Ã—èg±ä±9vŠKÙÚ. ØÌ&”^°™M ×èíd“1ãMhAC[þ$Øq-e¬™,m¬‰5†d@?K æ¦ãT»G…–’~2 õy3dã<ýŒ‘k’0>”=’’e˜=‹ØšÚÒn…£¼Ͳav>T”Øê±X î‰d&Š·Å(Ñ‚m0;+H96.tÖä­vi¨êÙlFâP@×Ù§ÈA'`#ë6ÝÜ´óëà›Xz´ Ê™Ž:¨‡ÆíšFøœBlŽÂ€Ìœû7#‡|ó:±¬ÑÝ"ÛÆ&ýOv/ Arµ²)ˆ*Q kµÃƃÕCÇÒÕžÓ¨‰ãñ¶¨O2jc+²¨»ÚÍ›@xâs׆Ì'#ب㠛ÈøådÞ¿› G“±Í= ¬Py›h.L æ ^±ÕÐZ oåPZ{–Dý—F7bô·^lˆ+ÙÿÔ™¤ Àa…ø âª"/Õ¨¹ ÏÙæE`Ë— _¡/‡WšˆhðUË´HlÚh§œî<à6¿EQ/Ë\3¾ R6„[iñ+îÿÀ €²$/ù$_ú‚û'Òžî•1ò¡nI„4ìy˜ÔgC«ežNDŒ‘M(m7´x;ø%¥ÃÌÄVw»,‡càÚ•±;‘ÁÎâÑgǽ8nÅ\‚V#iÑhÿ^éœ`6"+ê²FQü¹šÜÑÖbgÆVOT2·ïTš\ÛDdN–ŠÐ¾A‰siu´ibÌîωüºó(•ý”ze,QõÁí`ÖQËpÇŽsR¾q<.Þ$ÊÏ}˹~_g)¢örâöš¼:û Úñ™„«Ê: \Þ§$¾Å=£þc{ëÅhÔÝ€™€‡d•ˆùPuxÊ å@¥ë~5èìkŠLê&0å¤1MÖlLôAº‹fZäšÏÜŠ†ÿÝöù‰gög”ÀþÀyc¯eàöýHßÍå`‰EYjE¢Ë‘·ñ… 9uÚß½IÑ -kSi-Óñäþú†$êxÀÙÃ"ÑS<ÐdÑr•ÃI$(ÔÌfÃs×a€?'ÌžDáä•^‰>¹töïé¼2@wÜsøQ%ÁÜæ)òÈŽf2õ*Qö’{¸€ÃÝ( {Óß9å#üíÏÀI#wéf©‡‚™aÔO"/>èuнi¯';wxÖ‘Ã4Ò­Cè÷xfO!Þ¤?Çc›€@Éi3…c&©åw‘û’Ž­†!J±hP2Vê Â@;ø¶ é4 ¿CJ‹;*€KÀ°e 27Û;æ¨ì§á\_¿FÖ>‘1´°0ŽØ’ZdmMÍX?õîæJÞÂ&pðÎÎÇK¿ùª·ct:|rÑZ8ÐÔ—;9„ðÚO„ÂgN<'ßø!ÇßdÞ87™©Ðƒ7úN+$=\¢ƒîìx_tjn<š±k|˜çé¥5xò‰°Ï¸C.ì‚afˆÍ4c×ü]à¢L~„9•‘ê1;>Nîg¢S¢°T¤!å…Vâ Û›U"j9ÍÌØ®èK0ÃsÌ+è%ëc±™ûñ 2±¾‡³ª2!e‡ƒŠ˜f¾‰H7Í•CÜP©ÊëªÞUSÚKdnŸYèÎ;ƒÖ2*¦ÀìîYm·ïÜš½|ñ ÞÓ½Ú~áenÆD(ò_Áâoµ„ AîÏX)WÁáÒÌ5QƒM³±noÕ¤0hZa‰~ě݀¹–RÓë½6%u©Ä/µnKµœR-7Ùê)ñðç½ÝÈ¥$‹$¨É£c‚Öu“º“m4YÂ×›ñøöZ³oófœ~škÃIºš˜2­'3¾5Q°5TÛë7ëøÆ$tÐqËô­ƒ¯¾ _¢À î0fj»ÂFæ´ÅsöF˜Ù´\i6bH£¼,ʸÈô6+¤¡ù', ¸Aûâ…ó· ZL^•+5ã`_ñ{³‰Ûiö­ë’Ɖ…USb±´~ØÈSßÖ˱,Ũ$Æfãz¢­5¬ÑØl$Ñýœ–õý?Ò>¦°ŽðÒ—cÂê6"pؘI¹µšJ?]¤ws‹Å®@ï)*еÚ|šºWncDáãÄæ28¡©ýkKí¼˜1†ÁøB·“9+Ã@årO!¯À<êÆÆIóM =ᯮ;rø"ò>s1Qjnư¨âºEGE™±¦õ‡ƒ‹"LJJÓ‘Aʼf°îyuøù•ÀáµÏròåGª8WF·È é€9’;f0ñF7¡ï`êàáQ °=¨HÑàæå® ÞQ0?½ûìÄiÐ¨í¢Š°etk„|¨¨×—ëÛe ßûü“Ö^¤‹ÇR²‹YÕN¦yß}ýH« ¦¨25ŽiŽC GÉââ웺`w"øÉK•hDÏâe\PsžƒøÄ k«T`.q·ß‡íódç‰ö­g;þ©½…Íšœ&Z1Ƴe±¤5‘nmÙ8ž¢GqêØÅ,Z¯Ÿ8Ê·v€+´§›ºèn¦$¶¢byo°Û9*® \îÁQ¬y§£»~)ŸmÚG³Ù2sé‘­f†le°±`º#ÍeÛ8*jà  “gKªÑl8 Î|}Ô_ëƒÞÄ$‹Àó·&!œÕ;ÿÄ÷m pxo ‡×­¿±z£7«z/íÙ/ÙcƒŒ0,Æ9i¤»4Ÿ:r®Øè5T ÉŒ¿YõÖ•WÆ<Ìmâ]?ouvÑ0yiža1-Dcu­sÅåÐá…Z>#ñ,z›ñnúænƒøýl¹ü!É‚¸ß?ü‰Åÿh}ÓøÉÖúF3ÿcë{üoñá=Æÿȉô“ 2÷ù²(Z_%(ˆû±[£}ŽÁEòaü)ã|ü´0ØGþ„°y˜ôÀve©D]ý †®–‹ÒñS…‡ñ_²£E1øg,@¹‰FáÆßGÚ±†Ö.À o½Î&`5ì{|SkÀtÏII>Ólðàîn:¹›¢;7Ū G ßoTâìÔêûýceÍÏ@{¾ÏÕ[ßJq¸L¥i2j¸ŽÐBgv{ÇÒÌÁ9J¹®F¾'Ûõ²K¤óáE{OB´óGsìÛÁÅ Ù˜’iú@]ÃÄ]ªËá5É¿¨öååÓÙýù|:¸˜×PÂI)÷Plq>ãõ@`$J× ¡FÃ_øÒ±‹ý³cÓ_?›¿vÕ³5jо%´ Úx=¹‘£âE:ü88}VWƒáûs“~\¦ÃÛÁ«é?uϨ‘ÎÕÔ9oç÷Áüyì;²Yãí®}¸¸9בo2ºä©u@„®zF£ã4Q+3‰Ò„J„É(–P!Ï_¾ rp@Õ ‡æÈ‚µžAN6†;ºˆOiܵý7 |¡8QSòâd¬×²ÄhÝ`@‹Flܯgp䆩p~Cÿõ’KÌÓQtíµwÂjä­yŽ{ùo¿"tÖ/ï¤äò»®üE랥xῺ#¹ž í~ìƒ^ì[Úט¤·œÜNtœwýjGãG”@C\öîýËú›8h'…0ÉÕ¿JžÈqÀ„>Éâ‰ìà‹#Ï6¥YZíÍ pV‘9ʱšºŽå£98µÐZU_Qi0ë~l#B¬;UÉ£÷<%øa8Ókšš /¸¤È€z~Éh¡Kzhíö‹Rº2(µîùú";=6Ú…e¬,|.ã”Öˆf„RßUå"5»˜Ï9"½¬  a@î Ð¿•˜ÂÏ&0 Ý¿;OÓ±¡gA¤±RTåK8kR›Ç@õÁ%&q™¶¬´¿îBwݯ“‹ã{*ŽßØÛ×$ lÿЪ±–MÈQ "Q™üï¾JöŽþþ'ï@ÜÝšzÃ$á†ñ±EٕѱEÆÞ{£Æª‘Þ<Ƨ¶US'ÝÞÑ"—ZS¬ Õe=j1dçXk3€¬m—Z¸ætIÛŽà»gížµR°„w¨‰ Ü8ed’¥äV€æup=+\]FV«¨klek<Âïw¡oÄïw¡¯pd0‹ý~7ý%²³¹”ßo«¼ß/cûO÷Ë_Ô4ßOÇxŒiã}oAß ¿GQ÷´)†ö“hú&,ýv¨1g±¶û(ǰ‡ˆyÌ&°MrÚ0ÝY sƬ$/ N˺õ·ÄbÍ5Ý‘Œ1ChFU´G˜(ò³–‘‹ò`X5^d3´E‰¼yU—¿þUuxZiË>Q$„¾ GæEoˆ˜\|V•s`ÎH˜œÀSã$abLê ¿ã÷Š·Qü“p+_È­*…‚ibZX0í´íFº!Aý4%ÝL †{*+ækÝü¥…n8gL\°6!¶ChbÈz>™Ï'··“™ö«8έý!6[ƒÃÑÐ=Œd%¿hÄýù,ý÷}:Ö•õØé´ÊtñuUÝeVaU.8Öøú—Ž˜0 |FÁÈbÊ`ö+ƒöqDêëÒUìùå$1zC—\;²Õ¡fÉ¿cn*"­S¬žÙ…&î74 ægvæM-©QL÷Cñ&%0P®°@‘«(Q(–õµÐÖ9cc|y›ôþ‚4]½s¤²ƒ]Pn ·W¼âÝ͇·ÃÿhÁáXRg¤#x1¦ ‹€˜kMSÌ…mVZê¹z3VqŸÖ¼"UUw¿#œ˜íÿ›4½s3æY¹QŠ&©­]«¶îdzËñœŠÀ“b‘?45 eÍË CŒ,qòoØtþðÎ)† ?WàŸcn.’ôµÌM‘Äñ ^g&ÕføY§¾¾¶ùúl £Uê;½åÝä¤zII¤Œg3É_P{ ÷.T§±… –qc[A}ÿ6-ö*8?”{¾´¢~„Í&°Gb3†„Ö¹žN8`¾t$‰7žµ2…séng܃ þc¥"à^[ph¶ô4>ÑÒ×]ÃèrUVý*Ôíõ|kC1ݧ!~“¬61©DƒÙÈŒé-^èZз¬L3ØA8™HÌqòƒšß8‰­¢k§Ñ.lZ€á½}xhyq¾Ý,г¢Êf4«Ó$£äSóð©SÂÖ:u*y²¥£UˆÅþ Ôk§±×º±×nc¯³f¨§N=+Wüây¦°xï÷(­é~ÀËþä ˸ÜÎàkI ¸x%0ì×l”eøÀ³Ö´Ï"(uʙٌkÔaõS#{éHr¬JQœ'LNúÑ¥å26w’6Ä+é☇º.øÉ\ÉŒ‹^LrîeÙ.v¨ƒ¦®é+-Yqº=ZˆÄÜ“ì€ÜÛÓixy2Þ[ñnÂç ™ç7ñ+=®V8.n¡À@IÖ©¢edvˆ &w„—ƒ2c^bÀ_´ùC-\͘mº¶]>°]²HÔw'*àû~r›ü‰ºàYº[(Ñ™Ó@å™EÏu°p:{24!f*Y8ªg3w_N%ÃpÆ»UtEbIìQx‹È‰”¡ÖöÊ’k#Kpα½FwãGlaKz†b7›!ÅŽz ;;:E_N²Ùà^“lM¨]£WZÊøVÒ& ‹Ä\>î6c¸›×9ÞoÌ 6K¤g1#d® «,E¢ùŲèBåù‚ü?‹G’«ŸJQ«Ÿ´?„·ÇhPÅSèJ0Tw˜FšÜc sÏ<ÛQÆDåâíÝŽJï#øÉ‘Úa%•ç´¾ÀÿH¦£-{,qÍfô¦áà ..C/ß°Êȧ˜þjâ¦ôÆQÔ}W.ujëƒ IÌÿcý›úlnl­µ2þÍä»ÿÇ·ø0‚‡þë¤th뤯{ûL÷Jâ$4aŽæ?UþÕš¸ft aˆë­iül®ëE‘3ΫüÍI¯éÏ¥|H¥áJ}YÌ1 ­ƒ½PñNº¿txŽÙžJ $ðÉG¨ûùö6Å€Kj:ÿRÇÐ%,¹Ðñ›°ºS!4»~¸á]l¶…ý¸ÆPhùcûF2íhÁ ÿ[Ý\ꂃ¹gpµ†©÷P³ôWøõ¯*ËØÕ¾þ‹ êj$‘ý›ZkXeN™#(7gëšQn‘ÓYŒ'j4™QŸ®‰Ý ç:ND0Kh&öy6çô¥ó›û™×_œ«ŠÚƒ#rÅù{•åÅ+hº´¢>üs0g¸ê‚œàé!efc÷ï/FÃËt0†ÎMo9¤êsŒWt(ßLÈ)b6œ±š‚R> oÙ‰ØaZUX½+c‘`S»†æÉ8UË’Û¦€š#1iÊ€)ãÁ“²È–r|=§œ¨×°±|¡T»L}_Ò¨æ`½É˜IêņⴞmüÍë™kA†AMƒ6'pÉRr$Óތ݃ïh/MhŽÏ´G¼ü"d“_ÓØÝfì~-Ø ]T¯c¦nåò¿õ=õLÏ.Õ’9;ÛW0!qÚ h`Œ:+´Gë€C×·ƒ¶M.>õ/ Nž¨Ž5(ðˆ!&o)¦M Ï,;P®pô&fJÊÖ/V\;NшÏ)Ò’9b“º€¦Tß«²ˆžE4n×`Þƒ)žñ)¤³¸¢j&û𵟠ù2ø3Y´{vˆ§Ù«e躃nO•ëÐQn F°„«_²„|ä±È@Ó«GZ@›.zˆ „k’"Ë˜Š¶ÇbfÍ÷r¬Åú{r=¼ ÃÉ錮Ž{‡;ý6š¹âޝæõáÿ¯Š»œÌ°q»^íETÎnD• äœ-%ñÜšÐotrÂóB :1õMŒá#m¾P @\X#"X•ßü²WƒÑŒ ;eW›9Ã:9ëï¾jÁ&xÎ/nê0Žz«N>,<:Øx¢uÃ0éìê‚x†“M:õþ«Þþ>{¾üßÜÎÑÎûv_g[¾ÀAtëç)Ÿ#3Žë)3ˆ±u}–å+'˜é¥ãú.ðª3,oiê0ªZIôûYšF8[škyµ.åÅxšöà0= -jMŸö$W Útv‹ú k—^ÀE‚«aûðu]¾úùlŠàì%Z[Ú.¶s|ØÞõg‡÷V7‹üjå/Hïí#”®´)v ý€¹"M~ÿÊ_¸z½¤žpÊü$¿øýö^×ÞžàÏ>€/;¾KÅÞˆ~›uÍ/<±Ï8N>˜ý^o¿¥ðnHÍ¿ííŸaòŸ6ÝÛÝwh!›t^9²&§/u¦âàÏ&ÿ‚qå®L˜‘(vÏÚéà‡î/kyËßÎÎþÞ¦Øøn|% æW…íáûl;MË?Ú_`G|2DZH&@úÊiýŸñ8ÁÀp5‚‹Ò䎢Ë_NðÞ¤]ŒUz'„ì™l"¹ï¾ T·äÛm†%Êò•¢ô¸FœÎ ùî’÷·è» @ÝÂi±]ëæ·^ˆ]›~®ð¯U´Úa-üJÖ Tîîa*¥<¶Æ{‘/É7ÉÓ2²UJdÊšÇj[±6S)gz°Ï‰ xwóøÔSåš6‡Š9³IØìéQÚ_=³TaÊŒ>a˜™gMD`}›"™HÍ]˜6ÿÅ¡«k¸|y°Dd<<ÇÊó-Ÿ~ýõï¿þ“²ê¢ ßdœ ßJõf7ià}׿^Ò^¾ÂKíÿI l¯]Ô œ§J'ÄX58ØeÄg"ç÷Í”šÆLÉ×{3æÙh‹$Rl«Ü¬W^p˜+¸áÑ»b‹gªÚ5g0@í3‘ùØPwà$^³\®ŠáÉŠ±?©8Z±ãѦ€9ØåeDœ\EÀÎfDÅ ·ÓnsCí¶ß=ç¦ÚlP´êŸWxEø—[³k*Ò„…Vog¨ÓÊ3ðÖH[tÄ j¦4›étëBèê Wǯ« µº;pu+uSš1ßàŸTŽMA|"Ü}/ýôŒœ1ýbXySê•'ÚõÏñÿ`4noܹ”éÜ¥(‹¼baÂ9ô=öÉ}š1‰WŠ™&òîŒ5œÌ†}VÇó¢¾»ÂPV#‹²êÏTXÿ¥¬¤)À ÂbaÝ+òPÈ6˜•—´˜b!·²³Š¼ñÊË•]àN¶±‰1àÀj `¶¶™ Æ<2²9†#í¬ø˜jynm¯Ò­þO‚Hú4A˜Å•¿êwØYé’.Úd!¾`Ù¿hÍóüÛíExô($ŠaУÑ瑈ÂK`OMð†ðÈÃL‹þ `:«Ì èY7sîAì#š`êP$804#jŽk樭œC?÷×õ •Ï%´Ýf[áYk&i%/8x€kùËt:üÈÎ8xu¶ãbÏø>c&³ì¶7{,.æ‚¶=ö÷Q²ÞãRø:[ÆôWþ0œGž]¶©@æËò­ŸÛW9sûªá`s&vð¯Ú–¦Yü.2X;RÊæVQu(Zǹ!Œá·u‚½jø°Aã&ÜGz õW©Moœy¬Ad„²»=Yñ‚¨ýÎÝvʉÌ|Æ™1ùœžì,ñc«Ød=›£)z™0NóôÎmTßAø·—„%*ðN„Î ½Nu?'µ%rž '–@D€WIåÛ aˆp& øfUºxa 3-Le<µ¼rgþïÚ3Å[ë]á‰çpÌ;…˜x"KZgb¸Âªv[@Ãî4óùjã@”¨pe§îB9çPæDŠnÎÅz!Ô"êNæpLççêhtç(9§‹fzM;½æÇ&ókéBj‚Ro ÒP¯8 ‰› @â&‘¨ƒн¤8'ÃŒñåäêŠ:´ò€J§ªÍTˆNe¨Óî¦s€X÷iø5¸úÃà³SâÇÚ`±§ºËæ/ËwDåæ36šQm¼Ù Üôɤ j wFäj6=I7‚±ÁûlU? *&LŠ‚›BLt“B"ãl»2Î6Ë8ÉËŸKeu—K*/ÛFy™ƒŠ‰=µcàÚ²ªËf³ D±î2—$…î‰n/^Å{!TôÃÀPd5jÍ­Ç[b™ž$9ךP‡ÊûÍçèµ&U©^[mÛVž•°nEÿáÖ}ëpµü2¢M ÂeùÔó²2dq?YùÂÎ'ÃTzRáw«—d_ù?I•ônå3Ø™7tWÀ¢hviM.Ý9·V”ýÞé~Ã{G–N±ƒLœÌ¶É0ÖžRÉ™ÙÕìŒe˜j¯FD‹(œõRªŸöB®Úh€Š¹éåA#qN¸¶ ņõÑZ0˜‡ÿI(ެWßhuLÀÞš6? ¼N\ÐYu›i$ÄŒŒê',jÕ?‡þh#‹jÎ,fëÅFÅ%Pú`zÇézw5ZgðÝEêz€Ôõ’Hí•ÈEìåtš!B®> ±ëÙ²úm0§âà66³»‰p¦aϬ•~aû÷£rroi)cÉ]UýË£9õT˜æã'ÏÎàI)}¨¯œÆU¼±UT†â+“:ÞÛÛfîèÖ1ºp…ãó 3ÂõòQ"Ñ⇰Tmar3\îï Ÿnn8÷Ï#!þ"êf^Ь¯/¢Þ‹±©y¬ë¦e]ɸ½þ5æ2ËîæÝ]÷¸Té¹$.·¹™Ë¡/–eŸi‚kiݤ.Ú’n¤Ž‚n>SC Ë.!æÕ4½E+úŠNä|^@(Ù1OÞfÁœl–2ù¼wy@!@ à6[kSüä¶¶ö@fÆÕ“Nk·i®á•öÌn¯|ÌðA/ÏHX^B3ˆ,d•Iù³¬°0„MW]ÑÈÞÙïcù¬~«fvÞWÄÛƒû^€Ršuhï'3”•щ–iÁŽ!§¢ýr6±8ñ1aÉÏp¢UîN¨ˆÂ±.Íçlјm{LH஢¥µíŒ&é1«x´Ô*±?cÓ’«È óªìÂ4ͼ­ÈOÏ'ÆrÈX¹zuJ-Œr×Ú¬ÄʇèöÔÇʉ­l݆|2±çõ:ó.quº“Q¦°ƒ—Þ;íþ·¿·YaƦfüÑ Ý?ÔÔ™¸á†92T&þvˆ0¥ì_¿Û.:“)– QÇŒa/0—Í'þš,ä%=û‡`×f¶Vµ˜-„¹Èi Kæäé:Ç–ô.‹o¤…Œ Á­³¼0PBÆÆê×ìÔ Ì…çF ŽõÇ*¾”Wèë°È8Ó¼DJžÉÈ c]IsëäàÑÜþo“¼e„~ÉÛ³ÿFÉ[Æ’#Òßo/ðÉJü~? )ü»‹cl%¤²O‚üoy¡Æ÷üXㆼof·e³È`)¬¬·­,™ï-qò½%6ß["ùÞ0ë©mÿüªùÞlƱ\ž7*ÔÏ?ד⠡p–·Œ$¶Lf3“׬ò¡ªœDe&ƒ\4÷Ûe–1Y³&jœ]}Ît¡(œnî fIM’ÂÙ,qñÔjs“eê ,ÌW‰ g_7C%†UEâ§GX)›¤,)™¢ìÌ$™“Ùlòl&Õ¥2ŽešûÊÇ<ø»¥Ò‹9©‚¾¹ùÃJd sj‡ùþIª0¦O¿cª0oò—Èæ­‚øž¿©àð(H¼$•~ŸdKÞ‰¥Ç”“4)2,“ÅȤ2¢@±|?Êt³|~® Q/äÄfx+EÓauà7Ó',òw…Ý&ÑIV.—>\‡UšH¼¯±©GÂBîDn¢’}†/lÒ‘j`èï§¥!µ¬..jˆÄ¨l¡·Î%$IÅ[¥ƒÿP'î¡mkÕïo6¨`&iN4ÖýK8m±£‡ÁçYð: _èÝŠþC/>áUŠJñH]3ôÒU=¿\yɪg­x.ßzas6FBÓ"¡š± ÊÐòzH«È/áæªç¼5ú îEÜ´D8)¹-ÎTkÄl§Wéýü^Ï J"ØH1ãWaÐ}¿S_d¡hc|VÚ2å30DÑ.Ñh—DÓ-¼,s§žÅM@ËU‹– å:ÖÎËz¬z¾ýû’ÈždÙ“L8„1>±_€óI œ'TYÍŠo<ÄÊì í]”·¸œ-¸›Äv­Ò»}ÌEþºÁ~¯³zm̳ QHˆioÅþ¹jÁ®8-8M{Ýt¾ã‰‹m¡Å „ñøÄÜ#[HŒ$¼Ì}î¿•™µ/Ý-6iÆ€ºkÍÊÊÊÊ•DªYCÁ÷ÒÒæ]KxÊ¥‚™!8$`%ÜøÆÁ"7~U7WA=8<¼’f„à€(%ñ'ðw|Ø€RX&>îÑà‹þ³›×2¡cIA+"êÙÏâ-¼{%º{'ûÕ3~¨\XÚO»Ñò¾ÛA¡üHÉ𮯮8. ”üœdól ¥ý' ’#{«ËtòXŠÙ×1›^BÎÞ °A„IÎRŠØç{à+UAFšßk’¿ ¿«¸ÇW“ñÉ0½d_/§l’þ}=˜¤˜¶ 6Ä¿‚6„Ëì…ñHpx彩”¼â°OIîÞ‡G”ùýmKÄHì€.¢-çˆúXÈåÝiqv¡ƒVØèÌ;üà6Ö¯ƒ8ÂK«ODç¤Â.x¡€0Fiæc IeÌÅ™€’iûKª‹³tÊs¶š½´ý©àý¦/|3w´6MJƒÑ2¨9˜øÁ”0øï#|]æ%û,ñŸ}ø«±äŠßõ L¨qÝ"ß?5liÍ”Ž@óc6—‘ÓÄ?×D“ð…J~½Hù|?, Cèc÷'Àú\/ñ¢Kh^È®qEåêsØiár›µEêƒÅ·0#IÇ;­ZfþGŠK¨ŒàÙ?édŒ¨›§)ŽåßÊX3@s0ðžÓË«Ùw0PAY©VEé•UÎ~[2¡’ª“›`ÏNDëçƒÉÚz@!x=|¼˜E±†¯9lãáøô³2¿ÄçýéìF "]€V°MŒ:µT0€•SÚf¸‚žp¿{…OøA$ ^ñ¦_RȦÍ_ò®²7(Y?¢²=lìÒoWÃÁé`6üNµÏùð‚g6†ÂÛßÁÁòi~O8\¢ze0Z£¯˜m™sdS{“ôäÐK«ÖYz>$5 jW Ù´“ aF(Èò,¸óçÈv DîŒgÆXxÁTé+ ‰Ö¼;#]£ãñk~5ÁI*ÇIk1?³«aÿ4¥Ë€É“+QtHÛo[…`(k¶¦~@pÕà€ièÀ†¡'°°êñSÛ¬ÿ9¥  Á2»3.4W£4Lûˆ;û%ÅÅ—€®°¾3(ÇÿîhÈtŽÚ¹¶‚Jx‹XI Ø[ÛpÁ;d¦& Àè^g‘\3ÍÆ !ƒSÈdLcК°„x< '|ŸoS“"ÿ$ M*åeÁ†’y® Kòn‡!‚â ‘Jâv¤.æÎíÏuD¥Þk9½c˜eIIMÈÆ ­ ˆY°uÂàBéscYfLu­4­1ú¥ëQ¹ôlÙáQÕm«ZùýÓ¤0V5=nd:¾@ÅÂTâ9 *wœJk.Ã/¡Õ-5*,¹€­$7™ø4Ì)‹¡&/š•Z*õÁм?üƒ¦¼}â¤=È"ïq‡©€<ÇÊgd3 V±ˆ¨xÓá#sÌ´ó·í»Äa öF0k0MsŽ"ÉP˜ '×DqPWûgÀn¤gÚš®–ÍwÓ«OnϹ£x7r]è*Ö¤H…,0'²žR 8¤g•#öï/ù°~)Ièvœæø4sö±?9A1œ/¯),Ü®ª4!òµ˜DÁÎÉaÁ1¬0dt Úˆ+ä(”àZ "²GwXht‡÷5ºâ†ålƒ•™r~mPE³^ï³Î«vTUÐõfbÉf@ Výç×C¤C&i‚/0Žpà«HÖ©[úBTÇ.ú CgœN?òk$º™?œf8Ù\Bu6°ïÖ>¾ìÉ5.õ›kÞ{77”:îŸËPMä æ Y¼moÉÏcÐò$C6þØÆŸûü§p!k¼{u ?[ð“ÿË2vèð[ܬj3í¾îtÛÑî~ãP‚[é¡ÒpƒÞ}ÏѱZ;Ü~»ÿ'*AÛÝפ Ýn ¥è3ñûy…½ßínµêodšß®¿Ž=j™Oe0&yãp|å·‰Úx_l- ÅeЧ¦ÀR×|Á‹èx‡ˆ(Î…zøº·JÙÏlƒAIdë*ìZ§íø^²BÍ«ÐÍ®°îV(‘ÌÕ->Êë†Û]Ì ¥N|‚¡ZœÌ©õTÖ2MÛœ¸6N] C(WbK¤/Yª°ª#GÈYí+d±L( #ðL'üZþ9M¯àÕY^õVüE;(Fá´ñj MäÅ^^Åec23ØuN‰&d°¸`ó‚Äc%5©Ï$Ón3°YgJÜj€ICF‘3âÏ!6i[=ká3xOU“;ïÍö8©‚Rü¡Ñ§\ôpŸJˆ LõàˆI¯| 燻åŠð°1P¨üN‰töËvÐ Ì­¤Iþ¼2KB3€Ó¢Ï€Í®UGÑØ—xŽö2R§|Ý^sL[Ãÿ©MázÅ©r‚æo'VMú¥øýDÒfz¹%â3R¸I¶%@9Ú»N<«§;U°V#Üy3ÌkJwmÇâÍ^ÏQpc™lùä“>ɳì¥ µ½ ‘õm_Úu[)d¨®œhájÆ4çC ¿ðDpò»Jˆ –í 6yF!ˆ?×W0–&fcb Eàe.‘;üþ—Ô`˜7ÎUë°§RÐÑŒFG{I :Qlü¯:¶bC9Ü[µkvm‡î¦6ˆî.ØUr‹v—lp’^¡¾®ï 5Ò^S,¬{ë@,¬¦üRÓ¾ªȱp^§$˜, jB¨jÖgØ_?½»?ø²ÿ~ö ößëë뛾ýwR[Ø?ć°ØµÿÎ?f> 2›wYöÅxé±Lˆe` y]ÚÏ8%è3×Yo†ÌÄàöçç1/©¿öóŒ´ sñy,ÁóÄ—w+›îWÇ®u7Gq˸;£™Çs›?C³m¡“BËí”ä±® Ìlü‘ ¾PÛÇ÷ClTètyE´«„X ŒÌeyA!2™Eb ºá9ÌÛÚ>Z+cÁ>­_HJ^ÄØã‰mcÜÇN‡|âzèžI%ߊ߅1´§Äâ&•Ú¦2$åEp·¨´Ö!d³÷´¸Í^†zïfV{fƒ>îŸb–ËŠmG®ËÍe—cÃÇ!«LŒ­ogæ ïn­üîÅÈï—²ñ3ʸ¾SGgJÈipŠÒ.Y·QÔÌe‚PÝ’õa“C"É×'ÒyŶ;¡ÝzºnÃxÐnw6ésÖƒ_iJjs9 Út;.Í.€h {Ÿt"õl¨ù$RG€e²q Á—]»œ›iå4>ØÓ(ö hàÅ@Ži tCöXŽeì}¸‰Ie`v £Ê»5ª|u|«ûîÕMŒ4ãËûHÍ4 ¯n¶™æ-nën·2û¼o{Ï{7ô iË?Ô(ú|Á®¾+k g,ü$hV“ vô·äWYðKZvˆ±K‚A|Ë «Ù]3Mˆ¿V ¦aˆi›ŠJa]*¬FF3ßZxGÜ]‚V¤(R¾÷’¹¦©ŠKÞ#ëJI)FÜÔ1?N¥‹þð\!™cBsG*s._Ð"µ¡NyQ0rþÚŸœYv‚Œ Ÿ7èǨk´~²yò;E’B 1pÿ“˜:+¬XØ<ÿä6ÏY–½ »ç»ç è,Lõn>º|»¹\³¹[YÍA; £·›D‡Å,¢ø½Å…ÅNxÁçsØÍi­ˆåýÜ£ŸûÆÿÂ_ûÝÝwÖ¬Õëdé1Z«„ÿ̰œÛÝ?¬°7­W= ¬pÿú¦pkcºîÛ^†éœj>`99´ºý[ßÿ³–1»œßïÂdï¿Æd¯æ ¸ˆÉ^Mõu+“½gÅMöÄÒ·0“®~¢ŸÕ䳚9’ ëÁÇjœrLT^§£T:F Ö óìøþìpùv‹Ëš¸:Øìà•Û»th”ÿH{±2¨qÞFúm'G!ß½rŠkó9ÐÓ;©š û°¸Ó½YiçÄææ‚~dUüÛŠø¨ßí8¯„o¨x+=E—å‚ú¶wиI C+$îe¡%2¢vCæ4‡}8*l(` ø){³ ÔÖüü?‡RláŠâñZëJ×Ía­›Ãêx òË ¥Ö£0 '¶åOÀÒǨD&½?Å0:À1"wgÁhƒcD*ÅjIÕp 8âº!c7K b¼¡q&X¦¥Ë´¼2k~Â.ÛfK£È!ׄuZ"ÌDlN=áÍЄÙ@¯µªåa7B‚J/ð !â¼ÔØDÐp_·ôì­×›ÕÞ±vhôA•‹G­–ÌÆCº\is´ýChŠ<'Ä»WÓÁpó«¥~‰ºZ³/®˜‚ŠþSÕ©UøAˆºŠ¤ g+ k×ôãœmÿN¢ eVP"IÍÙà\\GUóËš[iê”1“”Ä5¦‡=™uOÇL%‘±ïÈŽ»o”Vt5¤£3{P|âö³#G¥,(pX"ÌXM|W§-”VwAˆA÷qD=^‚ Î*AVí¡:Ë!¥e J®ÈèÈA`òŽ5{öþ¼ó#pÍD¤.eÁ!zœJ.õM*lGµÜ äÞà þœC:ÚUÎòNIˆ†%£cÇÒèÄ%Äñh<ÆûW£¢+)],®Cš…Ó뺕p•í¶ºèNGJÝÐû„ŸJ³Ý4Œÿ›5ÁT'š\>¥Äµ°)¾Èö¸ éúpÇãe)”Æìg$;Â=Ãþ±S¾ÅiüG•ÙI&ɬIñ’÷ìW|@{ÀûR>ädÍȇìEèÆ+¥×*Õ|fVTüïS›qyæñ15l¾?¿6@M3xݳg@#ømÍ(Tîs=ñ ¸Ý€ïÛ)Ø¥ø–gÚ+¯?‚˜,Mö­!˜Þ{”l¥v!-Àx:œ˜Ææô9$&E´h½Úf2i©Óð«H×ÿžÌJýr¹¶rÂ,£~_ü'R“s˜ÍØ6uâÄS>A5p)ÇBîhˆs§ëx ­'1}yzÝÔzƒ.¦²í泯ÊPçÖx»ü è°Å)æÕô˜®àÖÞu‹>êÒ%þXa^ÎX”ëhn8/1½•@¢j(íŽ$^soG\"‰¦ðß.Åa±Äñ²‡bˆö‹7/­a¥5oMÞ ö¼„·nQuÏÚ ”DãV»Ñí¼bÔà¡U,0jbÊ»o{èL¯XÉŠú.þà»S¹åTneV.v\HJ¬>’ï p86=Ä.¿)ï=!’"ï My} Ûct&Э/tJ<ÇSâ·ÀµÁØähñáG´O7c¢9Sô'}ð3xÞ{4õ³Œ‹ÊEÑ š¼›¼R‚S ZÓdÓ¡ˆ.*¯Íé·Óôj&¯À[‰‰‰`#üOÖ…R½mÝ“$ÄIz²O‡Š‡{dÞ]yOÝ•—-ý²¥^&¾ô$4èk¡Qg œÉÐê{¦h‚ˆu€ÃTùi¶«ÿvw²Bö¤fçb¶^›~¾1SÀ ×LmôSØ!E+®Ç9ÃuªM-mh®$‚0íè/'±¢íKpQx¥*×Ð9 Y&«BrßÚËfŒ#þ¼½l žèÛ’¸þÓÌI£y+-$¡¥U ŽÓ,òR4i4Ó,ª³šäp$Só!Aχ¶-먨ÃÒ™« \ÌÛŽMˆCìŽêT‘ˆ82x ȇsq9#1N¿€{Ìùg\Û8ß’Èånmã` ֲ砹þlÀ„‡*ö!‰LÕÙPÝ£pK7W²_ oŽ&8M±!ÅpJ®w¨½—á=S3™[¡eVh øi>ûeü4ïëòÿ|þ°ùÖž>«-ü?ÐGPFÇÿ³¸Ó;þv…0úc&Œÿ9e7bç¸F‚Â,›Èœ«Ð§áj¸#g×Ù´“Œ*ÓóŠë`ÉZa;u§ñ{þ4æÝ;?l¤Ù†½´â¨@ÜH{ è÷ò3UÑ”m°[OÑt˜â+Ø#ˆûSt¸˜ ø{gkwg÷yxxa§«f*™PNó¸ì˜­„âÝß2­;€L«(d€„Þ3`DÔß›ìB;î/H˜JžÎçÆ²î¡ëÁÛËmÓM,AáP¼î˜ã±x½`¼I`+‰äNšŸÆÖ’È3N<ô»yÝIê'ƒ’ŸÛF×½mx]‚h.Ý£ÓZx¦èMÛ ì)¬ÙØfÅ”ÌL‘Uå—!Ò„É KÈ™íD˜¹0 ¡^ߪÅ%ê‰0ؘaq†œ]ò£Ô‹j`Ú„‹²œ Õ@<ئeÕ¾û_a¯¥Š¹`ï òëq3ÁŸ5úIÖé'ÿ²'œ{Dïà׉Œå¯ý dE¯˜É¤ïÈF]zÝ ß»wi­¾¶ïh‡ÆpØé¶³LÖ…ýÜÈnƒ°ƒÑz÷m¾~VéÍ9Òé ƒJÍh¥ßlá¯ú\&ÞÏçÊzp=8ýÌY€Ùõd´OZpXÐkF”YR’-mb[Ý@R3Û¼-Tϱa ê¤q$…I*¡×®Ú kúmÈÿõ]^[+5XV¶xÓë zêWUñ×§e®$š1ïÕè‚~ÁPòòK”>AêŸ~g¥~,¢Q2§ÚO”ŠÊ´&â÷•õ¸ÓöO/ŠHã—>ûxÝŸœñ³èã`¦ïñý³³'Óë“ÙBú”¶÷xßæÔ ÿúSýµ :j8`ð[ÍèÛŒÏ{:>Î.§šQ†;r­¬¾VÕ_’?&Sô•NòÓTOóÀÂ¥˜˜þñl6¾¼««ÃÉ`¦YLÑq±8D’O¥ÅM`–Ç9N!¤= ˜;Ò!oˆ{Ëìz$ ÊWå”Âa‚ i8V6Ø F¬š¢ßøÉ`BPkè—úC¿ŽB–^†‘ŸÓ)ñ ýÑÇÔ˜Yë`7é·þYz:¸T—Xñ$«÷ t!™5i’ˆMød§hQX¦†Ç1t|­ <º1(†I-£u4†#yÒÒ×”}qÖ9xÔ§¼¯c´…‡hêTDél4±sDeŽ]üØÙÚA óÿ$ýì$©¾¤«T Û@QZ:ä/FÈ2+K4õ<³MíuTã¦A£,S{:ñJæÓŠUĸpI#õ$`T±×"žµq2q–„™±£ÑtŸ®¨1{BOköÓZC>®šM¬‹ÇëøX #n^©é’ÁÙ˜#œæTöƒ¯æó£Â"¯ƒÞŒMÒ(âÖCíòŸeþO› ³Ý0FC®úÛíñþêK²}ŠB ?dP^>5¾ MC­/‰’´Š)ø5$Æ3kÛŽ+d¡acŠ@¼ÐÛÓa3 ÏMT(#ÐÈ’2&ÛWj ÃL™¾Ãúœý?‡»EE˜*”Ý%Y9Hñšê#›}`ÎÑÈü£S/Ac…¬Dœ'eú®ÿBD]ÙóÙª^Uå­÷ü,ß“¦n²ˆmآ݉øªø¦|æ°Þ@zxü¯È‚ø CM=a=¨æT7ÍŒ¼Ê+óT†²Aƒfº1¡³…¨¿08Ö=pl„ÜtyoîÍÐ1 \ˆàz‚þŸ=aôá‚rYU.R!G¡#Ãܳ֨CÁuÁ;'ðÉr³¯ö„½škÍÏ«Œì¿¾oP_]ªkì<»^t­æW2MsÔ¶={¸Ø4)sÑÁbxgÏÙØOó7¶rsH=¨Ñv»õôÇEC9¢§ñÝö,·#˜íÑ"Ü`Ï"ƒy„u¼“†ßZ6‡FCñ0ŒÒ¥Éª Á) „ﻞQ·®[ì¶G¸H7:»¾F·çQ‡D7V¾8YõŒrJ¯+‹¦ÂÆLÏ-c¦;²f Ùÿô6þûF­¶îÙÿ<][Øÿ<ćʵÿ©kûŸÃvë°ñ33Pø ã?Àæ…ÿx×V:NWLk¡™¢4É=ÞŒ ¯“H›¢ŸÇ´èn‚ºÛ¶E:’û­XŠ„!:(`nT4 ;­Œ Ä^Äf¨i…a7SÍ“oKë&Ëà §hY=å™<íz¡Üe"_I6EGfõw=ó[AÓ)Y¡ ýÔ è³³Á—Áå(=þ¾æ„ÆMýÓ ! ¯K©…‡z¢5à"âDéðÝÎ2…š¤ý¡ Hª-†:Rº-ÔŸ¨)"q*°C‘#ÏÏվ忢;®Š=5Іkøq<á-\†êx/óáñ_²#¬Cþï]1¸‡öM³‹±aÖâÀ#bk{¨‘Á ¼~wm‹áÅë:b´ ®U²‡*´èö+m@”~»NvoùvUqÝòmã¿g„7JÍeFU,ö{Ä–>™¡ß‰åD~»ì\^_Zi tÁ© ÃI’GQÀh”[Ì&©Ô"wèíÍ£Î{¶wR”n´–³PôóKÐÏ«Hm¿S4̼ÆÌ@ÔB¿‹u ½P)ˆï·‰;þß.bÌÛ\eî16» Ô,3¹d*{ÅÐÂ#YÍ‚ ;l1·k#P4Üq5 Gõh¬ÃùŠØ EVOYVì"°O #6ú!¿+“š#1¾lÃ"ÛœèHò®A™ÒެXŽ&á±Ìˆ\+ž±í‘‹:=7­…‚†9§©²æŠîy£aú%•6œ|:Ž\×#ÒÚíA«!Ï\®ÉÉk´!9S²T¦u½[¬†Pº‡ux×[²W-£îq)"¹"";Ef”’JNâæk±™7QÃÉH9åM ¸ bÆ#On(ÂV°@ V`â[ïZlÙDb¬ðùKv>'¥áøãÿSc¥Î†åeÇh°¨Í ×{ Òc㊙ ºë37Ø‘·O^@b¿e•œžÀX ƒ3‰ä„Ü—¥Y>P¸ÙW r>»Z9D=2þ—/ñ“e°Õ¢gâîèœÜC£\kCv˜¦ÊwuhÅ•Ÿ‘£ÐúÞËÚö"v‡J .«ith™â:p)fÕP1Ȍш±æ‘Az%˜™Û©(DYûÀƒð Ç<—¬ù90±>0C2Íi_®•X§“qGûaD}|¶"üŸað5Ìç9È‹úžEë~ž‚\.„§Æs O·«” ½j4£3ỏ®!‰@4)þF¤p~þT™†à°õ¡'*„K¥†³y›,ùìI \}( |]1ÂL±™±!¹>ÆÍ‡ƒ\hÙ02…*óA d» ë nA+>ÿΡ%<rŒNJOa§²Vò¾mÊæyhPëÅâ<+wT½Üðþ ?ˆ_ÆBeEæÍ pÎpn‹$Ïø¶áiçíÎ.ÿúwô•ÈP°ìqþáÿʰwôC䨿mw yüÎ$Øi´3Óó÷]‘×”iÞ‰ØÂ.<ìâÃîQVC°û ü®‘àæÃ>©æ2;vƒTüïZø é• ¾‹ÇÎSñû@üîrõxnD¡­õâ¾Ù÷ˆ×Íð!¬ ?^õ¹_5?ÔòLÖº•GG}Þ ýNfBaMJè!µ@a,c(£56a&è´ÀäTªW-œé@$%˜vænÙùMNµíŸâÑ’4bèHƒã5iÐ"^d”…eC|ßKÓËð@½õ#RŇЖ¹ã!Ìá’¶ãUa;Ž $ g×WQ~Y€·a]ŽDLÃñùŠŠ5‡ÄPßë瘞î¥xm<>†¨„øªÌÛÛÌHÒ=²H Ñ]°S’xóî•1D”®ò'+*9pxÚrŸbldz½":(Ó/ߤ|§W‚e'ÈŽ2› Xh3 ‚A؆À(Ò…*ãÕ:IGæÑøŒd™BçiÝa*jBT›aØsSf/ÃNèÅ„s“Ϻ_!{:I7üâlµŒÆ·Ù vÊOÎ$Mȯ€0F]ªÓ⥴ÓMóß 2óÁºÁ B¨ªÐzõ‚—$Ê0ØG¤“HêÆªcP€SÉœ¼.zÉW–d§¥ß# xïý´'«Z׫ÈÍ;¯ò?ÍjâñŠÝù aì,^·ª™ÁFiÈÍAœu‘[Ä{‡¬Ž±ÇØ|DY9c¨ÔMàò¡3Z‰ÙÓ>Ì´á!Š3ëÞ†dý$ƒGü#ä2à³Ë16¢"î¸$ç¯jT@3QAàYñ\’€&¹ŠluZ’dùPöîlÔ#ÀŠeß\;Ö Àj å7? l &•ˆYÇ‚7²Ôyv]…ÊÀ™ÖMPÆëØŸSÖyïUv-€þ:Ùƒ˜U} òš·Òrkÿ òªÞ &ÑcêEB' ÆÑç>‰Ø¯‹ûfØÖ¾ÞÙQ¼½ \!J‚—•^ @=Pô¸a$ý¡¤Æ7‚ûoà ›¿+xñ†÷¹)²¸?EîšWn½½ºùÛ«{G¹ ÈY‘ oB‘K8I° Ê¥ÌÝ[Sæî}Pæ.ýs(sw.ÊÆ,¤-EÊ› Ž×±?§Êܽeî*ÊÚ½e¶ë#ø”¹¦)s·eö C)Ï:œ3—VÑ”ØZKýé T½¾ÒW u^.Ã]L_a6×ÙÖÐÍÉ’rDþŽÿ*×,¯f&²‚è¨Kp±a­W:Š#=hYš&¼8_O& ý¦ÛYËtÉà†g1ç¤Ö+ûô€G-ç@q÷*Öá3Ç–«.Â`õZÙeßË(2Ä‘¤Õ^ÇvàòÂ÷Ÿ¶Ûàä—ñ/sý7’…ÿïƒ|hÛ¹þ¿üŠu´ßzk¨ª:Û 2nç†ÆŠÿ̸ ‰ƒv~oÿL™nà®»ý¦Þ­o[¶'ñ6dý œx·XÏm ¨óúó†½j±#˵v7àÝ_,r{…AÙ~¯ÆÈÐò2+#ÀA–ce¶§*´Q"»ñ„ Ç_ÓÉrÀÉ,ÇW=´*ïò'‹PÁl6é¦*0õlŽ î$=[e­t†å¶ø£Ñ˜Âƒi¶7ïÉ÷zÕþ«Ð‚ò9 ÛU°§º Ìcàÿz ü_÷—X‰ÿ£ž§z¬Æ>ûËá¬h‡äËwÉW>’YŠž*Ò™°çêà0«2Ålì»üA™ÃE°â»žS‘·ŒOs*n»=@Åm§GÄ4eÿC6W°ìs˜Êù¾S& [z1ھDzú~}Ý瀛¥¼¯7±+c"ÖELÄÊÿ€to•í¤——ÂQäx•5û|„h\)(Ññxò†Ñá+Âþ¯u²oí _ÂåMO'ƒ«™áB¤°¡€;0 힦¨JÙ°uÔQŸ±ðÔóÎ@OÝ FÂ7÷“Q˜¬0¿Rk÷Pdðàÿt)-ƒ=ÏKÁA«K×K ÈUOºƒpµUªjî¸,Wب',(Îdúg×Ô=ÜMsôYÍ.^ê¬$hÖËGz$&è{Î`)lÝ,ÚZ²¢™Gc ´Ôù¢È>!5·ÕiZù!:³Vº ‘s@:öØþ²SÙ²8#áVK>K?¸ùšÆ68:ŒD ÀòÒ€T?>ŒîQAhð‚™ðˆ áh«fÀa»àxÁ‚a{kGǰc Džcug948Ç­:⢬kNç È 1S}ÀòÈwεcw: „ŒèOOSJy>žœ¥Ë;:Ucëë9ó•:UÚ丫8!ÖÐx’¬†à‚qì5 ví@ûF  QH·sêΔnAú{cÙ/YÉÛlˆŽÿ*ì¤-8ÃDF¬%F§ÉkNÂ3çÒÌDs=Ãïà}6à‹âo‘us<2æ#ØÙCt \9ËUºÞ šƒ +lêk8‹ Áèî/æuÝ«IÊùÄÙàj8 TûKf‡t”l³#±Fרé3Á.–°’ç‡#¹&Mña6…¨´ÉFÐe â¤+Æùm¾›´ L²Tš^Ÿ,ƒ{ÜÇIÿr•Z×dE×'ú’ ²ÑìÃFYÙ¨„Á.L‚Ô±"]X¸\æ-jáUOgö²X«Ú=R‡xxQE Åd®i÷È\Ò‚',°¤G7[Ñ£Œ½ì+‘®îŒL?¨¢‹…÷×íœåRÛg;¸nº²ŠeáíF~cðwãv¡Í¸¿·Íu+x€cÁë¶}³uÛ.°·}XÑu¢ûÐwЬëFÙÜDz<œKœ¶ÛÐCïÅsSŠÁ{›y}ƒ„µcÄy9¾šå‘wHRQOúLùl­qHž N!õ†ú޹*5„oÑï`i­“ÏEÆî¼‡<”õþ€zÎAëø#Ñì ´®®äbü•cÿè»}ºN½VVnMó¹5‰·ùMóø0µÞ¾nlÛÝußöê=•t=ìãtx´Å’Ôto°Êғħ°}Xa ¡k7 °_çN|¶vx§èäÓí½&gøzx\ß¿av—»ŠçôÄ…ì›~'ÛÙ5žúÁ!ÉŠøR™3¤>¢ÆëžWƒc±Ez;¶&kî„s—ªŽ\U´º·4mkÛyضǿ=ÇðÕ2ÝÊUì ¨«˜n¿#p]ÏÇQ ¡E_± ?ä9»€Ç¦{P\–+윣œ€ãòë`ªÓ‰v^ZK­v `¥óD‚SN¥CÖ´†5Òri%d8º ¶–³9U!=uÅ r*—ÁQÜ)êBOuP6@¹þH»¤ØnqíHëåD>ô(™II:ž!‰´"áçF Š„úÃQuÈO©®º]F"·mþvU€ûNЬ¸†\ò!/²}.Óë¶I0¡o†ßvVä8ìñ)̌ه»Ðèht¢Ð B6(vå3ƒ[Éšyh^rRoRžI§sÜ0Ák¦¤ZäðcœZúkäÆŽ²“2Cê–àøãgà;øñjIpCtO )d²ˆY’!«T1+P;Œz úú kßE¢•òfÿêjø™e7ºˆØ€àGfï?µûj¡mV[l3s©˜gìkgžëghVü¥„»fÿìl@Ñuu¯îÃizÀW‹(F]ŠotÞëÅaÜÚ,kw3ƒ;Û€Ýl+ë“Юº\;QØó]{Ïw)by Ïœ=r™Dæv¯} î`á°ª‰»¨CD…ÕÈ æCÆ7ó4HÃïrYuð{­ðvkdqSáÄ¥ónzv Â)iLÂ?$0ŒFnvܹ±á_’oõd7… ±wâŸÃñdQwñÉ9 /INÓ R¹)TTÞ^²“ë†ñFr)mHÈÔæÊ)®³ŽhÃXc“¨žöGì1àf½#2˜«i‚èLÕ N£ÝèËt'ùÎ:y‰4(±¿?(ñÜe°ðî¹Ïu·{QLós:éΡ]¸þ4d¿V~rvøµŠ/ ­F‡/Œt9 fœé0l1&‹IL‰NI (˜m‘J¸!©‡Æ“À¹¯Éf]r‰J*b>èB#„Ü“lB˜=üm4¤·/éïa×¥ùlŒ6Æ¡OÈþwö ö¿k›ÏjžýïÚ³…ýïC|isì)¢‰hBaº(²–  ÕFZðèLxâ{œgIP‡bœˆf Øám~9´„Ù-‚Ìø»;·9mrn†t\ßÀcÆs³Ù`kt2hAxN°HÌOŠáÃh›%m.b„†¶ãÝ2Á»ÍE¨tv·è[9͉ìËÎnØ¾Š´##ëÈ&)®OшöÁž(hÎÔYK=ft«¬ì%:ÞÎéÅ`x6IGfOÝ»î‰"è¸]!¹ððk5Ž`2÷‹ˆÅõ¦ª™É`hË{;g¡aCÃÚ;ÎT°ò× _¼«‘œ7 Dtëó®íú{¼}u;= ¬•1JHÝèw>¯®±=µÞ¾Æ¾+ØÑMtÊa§µ´ŒŠ %ÀDÕ†Žò%,’6 ‡8½Ä ãaW>ù¦éÞh™jÔ®¡!……5¾’”Tä¼HÈ?Òq¾ßæk6›\Ÿ)š¶” È §ÂÞ|#ÈMã át€ŠÑ`pŽ^ùüS™ŒP&h5É¡£ïœÀÛíšý=Ø»ÞsÄcXMhlż(k7ZOúF5ÌHlìÃ…«V[Þ i‘EUñÍ®ÚT•ÍvU¯Ýü! W­¶bC솆¸bU8ÓÞdƒ_e^mÍ-ÅY@ =ϸBö~Á+dàþ—>ðýïéçÝÿ6÷¿‡ø>;÷?ˆÕCf,¡ÔtþguÉÔáÍonçM>M‚@œûÈÝ<÷f½DýÍw=Üí±Áh0@N"”F²Kw¤N­ÂrŒ2ö­ýñNˆQDÆžôÀ‘¼ØrüØÜ”…W}`ËLˆz'¿Æö4C¬b¥P~Ï‹÷…üÛ—µtöo¥ƒ/àløÝ2°ð>n |$u™>@¸)ºchÉ1´P+Yh ¨n¸«1¼•ö-|õáЃ@,X[TʸÈ[Ì’Š¯j6¹ íüñRû6ÍÛ¨öcrÛí˜íöÙ™ÝFO ì“7 {.7Rî 3¤jx òߨ‹bí×-Ðä›Í×+ðEÚ4#›˜ßs¥‡Í¹Zg#³ë [CAþˆÂ7“êÒ ò 8)A¤’ß_~ù©šàŸŸ~9ªDj·µ?­PýËpmeƒUÁ¯á¾ºl°:JW?Uìp¢$\m9šÓ -  %:}DCƒQé²2Ò–ûõ"è4ÒGÃn¢Ó«ÔÇOpH*mÑþ_Àçºï={ÝF؆9zg-E¬m=Üa: PY“œBìIÿ*ýg<8ãÐ1ÎÝ -6߯ˆšîÕO„±«¹ÊIËxŽO´Äö`#µÕÃV)ì×fßU<£±Bʪ4`Pœ”¡{JÝ(*¶μmJ*T!(|T»íB`Ye#–ÐÄ£436›§:R¡;‡M½Ä…Æ¿ÿÓÐ¥Ô1gƒ§¸‚@ÎÚü\9‚}Ósà£|f#¢»4RÒ-#cÊŸ=›KYºû+ÞtŸÐ'pÿÿ;yÐû’Ô6žÊû²¹Ž÷ÿõdsqÿˆ ¥öýÿ Aý/Y;el ßô |@ šÚ–ºr÷|; X»?ùûZ'Doõ¿¢×¡ túd*š¢1õOÆ“þlû wغý)8‚Öá’®˜cÊ’´˜r˜ñólÌvRpN´e0r\l~];Ä ñ‰óKÜèV7 Tudªšê¨TÒ„Ð6ÏŽEUUvƒ› XA1 t‹&2bQ_F,’þÂý“)îÒo@°(JE;¡Â®Ggéäœ34„/ô…:׎«_áò<´qÅ7(¢Á%™àò?'iæCƒ6ž£û/ˆ›ØßgºÙ)FUj®²w¸ž¯àn2⸃Ûp•uVåä+ÏWw² ‘›.V+ìÝxX}úŒ?¯Ë}uµÊ’ß’jm} /—Éo¿mˆ¢Ìü(ÆÌ—WÄ")ëo ÉtBÖÿS¹Enx±ÿûlÊê &¥}´‘ä0ßîOÓåÿ©„‚@‡åÄã H]ŒÈ;~ÀCLra]b&×å,ÅÜtÎÀ.&«&µ ™Ü!Þ‹¬¥êÍ_73_¸»{§…¿7"²Ý̪ä9Åc,Çï]¿Åüœ7IÏ©›øCÄØ2È9Æ?s$›”µ“M¯†ƒ’ÎL}¦ã¨Ï®äî"Ç}¾ »^u¾÷eÈô“áøô3&—Gy¨\…Á?¼½þ9˜U¬¯•;N øð—Âo‡cïhÄ ½àãåwâñÕ²×ë:‡H:á—/"œzð¯B,4F ]sÉom¡žK"zƒÒ4_ŽARxá/8a–Vé8µéò£ñ›¿ ³Œ‰Ìî>8Øl×[œÏ<¬¿"GøÆë¶øvÿ¾y:ÌýÚnÑïñ½› 3.j ̈·×Þ~“1z{a[}ëPتt{7’»9Nðù.ᆦßw>Hò‚µëyÐ&£°ï»µ#mP8$Jò[±ž}§=å÷R“M!s™ˆPªÊÛDLÇñ“B(k>¯©çÑYÚr¡ÝélpÙŽ-|ƒ} ûìÔ H#±œK³||•ÃXØl­‘ðK…Š 7CQ8ñL)”7œlýÏõœ8ï¡cfדäÁ~ø!‰A¤J: cÈÉçÙwEó—m1ÖƒåC]Á.$šÙ!ÿAŠf3µ}7³Ac°È\²=¾ú®¢®¡_²%Á†|`Šv™â®qrʯÑèA.ÌD3Äâ¬?ƒxfŸ9­ƒ¢PD®_‰ŸDï§þäÕ˜w6ä,>Ng‘öpèìOÒS´H\R€!êk:쟧 ™#L£krƒçp†vŸÈº²ˆ•×ÀrƒM* âô]£l-T©7Üë%™½U¬†8Djel'‘b úNM87¥DC=Që¦]Ëþ^"&=]šZØu…$¼{—™î²êï2Y!­{[GLµlx‰{ùEj%éGiÈaô¾À¨ Azê¸u™Ó×ÞG¸zÔo?¢Î"ˆ#œÖ¢ƒ °ƒØÛÏÙnq ôA²@?È'$ÿ­=¨üw}csÍ—ÿÖj ùïC|Uwä¿Dq>,ľó|bßûû~˜[Æ[Ó2^0)Á(¾ƒ|nJƋ©ï—üæ<áw/%¬ ë9×á¹' êO§ãÓ^öQŒÜ™Уâ\hÅ“èÎ)øEé§’ýüzcÆQAøÆ¥ ”H&õ~j¾iX £HB ×^<Kú=½>Ñ1 ?”j•ÊÓJeuuYÚBƒGØà(æ‡O-%ÀnŒ¿¤Bܬ¥íJIe½²‰Í’LÛ9˜ò—ØxRûÅ÷ñ5ˆ‰ÏÓIEÂO/°YMY{‰à÷ƒËÇhiò‘ÿ_H,BT@¼áøãàEe“\®9ÜÝå¼h‰"WAc0Â<½Àjô’¬¶Ø MÓê³Í Æ× ³ST‘e‡l䣳þD ýà†ì>_µÁñq Äñ~gJ'0X >9Bh†½â(Kø†sZÿ¡íFËyB^¶Q¶œÏ¤ —7r1žM­½·ª±2\wsî`Y݈K òhLÞÅYst³Q=Mð]*"Š‚5³ ßÊ Íè ¸ê68P@ø‰‰ D#ëV#J¨ÉÁz=š©1m˜¡âÆ»Ã'Fçÿ®Y£Ú´äÛ¼áü0=e¦ƒs07Ü$$ã-™µ˜Ú—<Ó‘Fg Ö–D;RV“!ÏŽ6THÒ ´IÔ–øíÄ^–‡òT–ƒ#ç´ztâ«¥×K_RIþ-Ç”Tw'Èæ¨Ã ñöÊMŒâÏù/ÙšbÖݘ!èÆjKN˜¤;׋–Ñ Ø+%g/âßÂÃT‚ZcBµµ@àJV5ŒÎ”;ðZ`à5x-:ðš1p ÜËŸ­œÌÜSqGoN@ôûš÷+ÔŽ~ÏpÆP9ë1=¢wnܬR‘¸‡(/³iÔg+0ô‡Õ›5)[Fü Ü¥á°-Claj»*ƺ¼"ºXfV•C5òìˆ=a¡8c‡«­ÝÕ^$š[¸™ëñ¯üÀ_!þEÍkU¤µ2…Û-ò–Êâ/Þr M?SrÏ„;Ÿ–Lt‰UïI8jÅ{™+^3š³^<•/d' âEʯàk5â·¼| ’‘nð¤ã7X”‘Õ`½•è…ˆ/ I<FÀ.õÁ{²ã4ãjÃH±Ý”J7Ô¢‚ÐÃ÷f1ŠPéìJÓY;  Í•‚VŒÀ‹È{Ó18xÝ!¤°f  ÝÏí¾Å:¡’™7QתM닎'ÄöÉv,Ôô[Ríé²¾%$Ye\Ý(mŠÒ¹ço-okxp³[‚GQ…Â37¬!ô¾S·öÙwÛÐa7jä@ö ̓šX*Úzå¦w-O“kšK|˜Ks´¦,3 dÈw3Gà6ö¼±ZtîÖ@ìxêÁ±¨·V÷föT!ž&îqp_G› Îä®úõ±ÈKÁ…sB˯c·–:K¨ôæËÂow‘7øüT_^_Tý¤@}Ñ¿Á’äI²ù´J‘ß2pÒ0®—«½îÑî*fÑê3‹óÚ Í¢Õ4ñÉ(gÍMÇ—¤˜¥Ó™ÎU "ËïW)Kž’ ýl|}b5q:>C˜hÅX@Ïê«:§…ðuSÂ>ŠcæÒž"ö¿`^–þN*ó)ÿŸÿû»Æ¿Õ*)ÿŸÿ[©¿c› ÜA™ì¡¿B澑DÛÅ{[˨©NujÞ¯üêkFœ£|1\¤ 2Æ%gU!윳¯™£¶J]Ê@ÞX«JfEâøÕ'û vð²±¶ÒY3·²0¡÷ ›¨ÉRt–nè¢L… â56ª6–žŠ¼×j¤˜~|DëŠö`ˆé©ÝËf¼—M«— ‹›?€ÂgÁì) Ð|ôÁOÙžÖ€ó?°IôÚìï3J¤  û\s'–¿) Ökeßp8•ëEËÀI&ˆt`ÄŸU{]ÄI€AÆš³ôåwm‚°jSMk€Å 1ÕVi>æd©wVt7q6z3š}Ù¿š’^òÃv5¼ž†ÀÎL@Äajó0;Ö;ÞO üWvAÀÁZ™7F´Aðt½ã•ñ{Ž—ŠÎ‚yl¦âYIbRV¥‰1û¦s «¹b8³¶ª šX‰ÜŽ™½óWèzd7’7[ ¿²GTļwü7!œµ *«é ÎÞŽSw'¯Nà‚ä®õà°¾í^nŸRx,øbì±Îø+œØgìïËþ7kGÉë™8d\à ‡sµkª@üVàØ…Þèk¿ZS r˼1‹gQb°?I¯@ÿFRL¿Í 5(ÿ¿i Iq‚〇Ϧ¸‚Ʀ©RŠ£g=¨Äm…85‰’tCêˆÒqç¾ ’rçªËG‰ÿ¨æ>zÍ¼Š½ú‘~¤P•è”>¨0F jdŠž5Ö˜ß?Ò‡Ji¾bš­¢\nM&³¶úë·¬Çë?³ò£Êôª×h—0½HÏ8³ÈÌR»¥Îš©|V¹;QÖ̸°i ¶3´Òp(sNs2¾6,SeÏ%x'Hy€¹_>ög†C–¿ ç𨣘/粃Yh|n%zÈbU¹÷,"JBjÄ|é€-{Üõ HcàÑ!¤T54œ²pŽŽ¯ ]jú •RHp‡ Ñ,GêUjê5gS/@£=ªâmàd|Mù[xc—×§ì#êp'¤¾Ý]š:§´ð0è¯{«`þAþÐ@BtÓ‘?¸K ù{¡ÈL1Îù;°²0ð ó›"z y{žÁ‡mÒiO+êž’b÷¬­y•¡ÇÕ×»«  ,#ÀÂåq(‡ÂzèÚ5Èî®&».0bQš]}F2àp3‘#K•ü-–qËk8x"…àúÄK>1O‡ùf±8Í“I0}q<ÞN‹”ûVäÙµ±«Iöê9MŒ3q%©ÄrOA³g8ü€/àߟà/ÓZ€ksâ…³ÄðÂè‘5|kÈ›ð™?ñ†¨P! Æ)²†T‚Ö8¤—Ë5 c|ÒØV$£‹Æ£«NÑš‘Ìø†ƒ+¨‰Öfãp@æŸä}¦Lâôõ5ɳ:—y¾¯7Ûº%ØV^ãID÷^xH¿›óÊ$ÿªyOƒ‡õ?sî’}Ï(TÄt–^¹É´wÖz Y*`>9ÎŽiÎ"Ìlè8%›ðE'ƒ¶AdßCfÅx Øç N¼!´Ïy–4Æ5€>æ…É çÇñ(óᔯ/fý"©eC†Ü¬Áþ¾™ÀXÆ»«ë1RÿJ±x†¬PÆcø<¶ª@ xô`Ã(<¾½Xãôq®¾aÂnKœ"¤“Œžt±`!Àçu뜧õØ!Å >Ó˜¶>˜bÀR s¤Q9sª‘ÃѢ‹æ|| °ÿÑ`&6%ZÐ5/>)XXÖãŽÈeu]EfxŒ³›]K ëIó8KèJñdëkÖ‹àñFc‡€’×Í+gÂ"4–@!ä»qmWü\i`‰ßÈÔÝÖàßPþIùéCŸZó¤Æ E¾Ö…Ú–Yë†U«(–±B"R%ñ» (㥙‚4NÆ£™+Y€½ü<¤‹5±¤5‚îžG»ÃdŽÙ9L§ß+8¢·U^³ŽÔ‰ö7-yçšöj¦E ö·€íp†ÆÚäôÀ‡X2ÆGNìRŸJ18òû£ÓÔµ9‰IOl¿!v×~H 5e>A)زý~Ãxb0(¥S.×Üâį’Ý_™ÄhOB­gø'k%ÏãöOùÿ®?lüÇgO×7|ÿß§ ÿ߇ø»þ¿‚§-/\’‹Lná’ÌnêºA˜»æy\¨ãÁw²Ètª0|'^gzF`X'áQ?zp¯éuºñ9÷þŠáKMòV⣣³,ø§x]ÆQ6„™?_?p‡»ž€'£Hn1^Vä¤H>šýžïz4 ¹J¯UáWÀ[µA|r< À+ ¶Zéä›W¥Õwj㪕M¢€ËjØUU¬Ä¾Ñâ“xžÊýý—¶4èeP/n$ b¦Ç’I™XHdKyŒ,OYÈÌ GR'G›ü3´†PÖ£ k´Þ!ñÊÂoïzJÎzÒÛOøøÉ! &0äul®8ETÂÄë2T>]± ¼7F³‰´EÎJ5‹¿%¢!“™•†´£©gÄÁõšÇìdðQúã’¿\¡–´¯§ðÆ+Ÿ‰¬•².øé™ Šjn¯aÿ#b–ÃrŽøwcÓÙà”•7ôMéøH:÷ümpˆp¤Xq*‹ÜBöŠ÷.ÒiÊèñÁQ”•c!ñ´ÿ%%×|#Œ¯øHN"„®—ý/ãÖypÔíu}ïÎyý:±üZÛô=ãG#³|@mGÏÛ¸v†8ôÖÜÛý/;¹.–Î’\•÷"º”Ý™_â†]¹)~?-â—X÷ØfMŸF¼qaªÂ y©­AÜoAžVŠïÁ°‘štä¡ß+ÌÂ/¸ Qµ*«W…]R=˜ lÊêC6D/©!TF;}ZH ]„tJÕ «’õ·* Ùl<¨ýG­ö, Ø,â¿?ÈG ©cÿ1';g§5Ïd*öù“[Øo°¨…Úf fâ…"'f£Œbn±aVŒ@=?;Jbv)ž4Øâƒ¬–AC×±Z´?Óî²W“ôË`| 1Éû#ÀàK©ËE DÔì!f(­1“˜ÓJ"×H"ÚŽmÎà-ØdÆ2WZ{>Û>Æc'õÿnãuo÷°g2„ ¢V äA^´RØýá5¦µ‡tZà"¡Û©Ý¦Ü~;òº&[í¸«¥[=+Ét”äÌ-UMT¹Zf¹š(G>îÃŒ`?Ôå§,/qÏ<൉ €×Fxü>íALÜÕþƒ;:X(üu3¶æCô_,~õvç°~{’<ýÁ0’ þªÑ/iR¶_[Ý|ºŽjx¬I*ú$;P36N%óŒ„ÙAïM£»#­È aÏêÛÃëëëÙƒÕ XÓ6g(˜ú^­6ÈB¡“aœXç ºÅ×v Žºz~ì'øaÞæþ6J{*S7ÄL@g9?M *€g!øç¡qZÿd:‚Ç„™·–(Ä$=å—jbi$–¡ññ“xg­îX~4RŠa:PdÅŸ“·æ¸Ò¾ñp;k!iÆØJRA–Ž¥šo„rT[éïF|`¶`Ï’žÑг–Í'¾«ÿVÍ©ôÌ«ô›W©^sôƒªuGÈÉ·§¬†Ôº+Wr'iHLíi2û¸ W<6«0˜*})#-p‹C7PÅÃÊG[Áйª'€)õÐAé/þ„F°\ÞòœÖ#îi¡v’•­€æ, ¬ÑSp%ÉòÑV RŒ4Ô¨ÔØéT¡W=D3ª*ú3Ñ£ùQÛ¢è<ãþ€¸Ø9Ú0=…êž­_'´PÇ%SÐËjÕE‡^¥ê•CèPœ²^`Ý2WF;±šm{jàC%}µ©–‹±‹2p¹à ¼ª×²×MÓ€¾I'Âàw#ۨϖ¦d#0EQŸ¨k;€¿D?],o²úÆ"cH1ü£º&$¬(`…!Q×#ÙPˆÊ²<2×Àµ$*Ôµ±¿‹„} 5L“Ò{8^W·Ý”ò¥€ün‡ü ‡Dg Sâ¦âRÛ`¿cÿ=Pâ?V˜OjEVd°¦èÈØŠ|áøŠŽ[5­6α̳@TÜ ³ºÕÉ007YŸ­ZY7øÄo­0˜ÄØ„_$Ò¹-dIeÈk!s,¿xà\ð“DbsäÆìÃÅ{B¹^ó±§Ûÿ>L!{Þß×ãÙ.l“t:8»æL3¬ à‰8øðéê9PQ¾½… ø›:…é[-°úª»ÛÏ 0bi3‘àF‹Hæ7=Mš¤ñ›Öc‡À;- â"é´:t{Í ‹ˆÐaÒcÐʧÎ+I%mdÓôQ˜»{’¶± iY€Y®¹IšùƉ¢®‡ŸI¯æ&VfIÐÓ ÇxˉŸïנ꿆|!› ŽO°ëÃ×/¨Q‘W¦¾ŽÅ¡ÕÍ%Ï3ÚÆТÏCÇÊg’j DŸgVDøé¿ÜÚžI¼ÈÃ_fØ[ÒoGf*Höéz:Ówzv4M•v¢Còk¼] ÄÖ·j°n¿úB\³Ï¼e?ÃFŸGÏœgpôm'ñð `ìäø{^*Ù\>¿ç,rFûõ©¹oÓˆë3àv­ÆÀ,Ò'¦ŸAøÂTèjR”ä ô.8‹Ø%$@?¶"´ÍÔfÈ45Û^Õ Uódu)‚IEâ¾ì²%g ·æ™ò™r=vúšW÷zMÐ"”U—ñ«-¬ñàŽÛ|Ž6Ã"µÁžçòŽ! ý›»amnÐß¶„,tr(h'aJ`ܧ ¾Zðõ¾F™ŠèÕÈÈ(@ôT#Dº‘03 DEý1ÀúMS§–ï óNÖ<0kfeVøÜ#€ÏnHZJ·•Hò¥n…g!Böü®¨[­uó%á X©†XNS®NÒ_Ôþ‹‘È !t›Ó¯Ù½¦5«k©IJ‡£$ nÂÉ’ÎQ<‹R±ŽÅ7[”Iʹ ÈèÊ ¸ù“Pñ$ë2ì7nm/²ÿÛ|ØøOµÍÍ€ý߯Âþï!>Iû¿Û;kÐg§ÓÆÛLÛtÚ(/ìþŠLna÷Çn· Ð63HSÔPcë°ÜÔv€c¾%ÐÓJYî)Ò•Ê.O*P *Ë­£b¯ˆÄv`Ê4Fã£s3‹|[8¤Ò£°Tq‹§§£Q¸ùecõ¿ŒF¤k~˜§ß8h•¡×™ £¶ ñ[̦MX†ÓòL ‹Öʵ)¼ECYF…áfÏ 1L!IKüÙñ½˜Y»šèŽÚµì¢5Y”bEC‰`tï}²‰ŠÖ¼çFÙ¹¥EÙF¿Ù¯Å³SAѱÙïknó1Phy­äzÁ¬¤~‘¡®C1Vdñ=+ÿ¿@I]µ@½gF•ÞaÊœÖAÂ¥qÇøš0J„^ãæðˆ÷ 8Zž¥ßlSP1ƒ«‡› n{¯`HqÓ/_$² {Ô›.ð:;[Ø…_çZ³¤ßQ³ÅÙ›ãU¿Oìf†àu ©ÉŒ&Þe’²éκut9€«€ „Z¸;Àé(0¦b€#G| ºZè<ë£Ñd<ñ†{1äH°•DH–­¤…2”€­fÙ3ò_Öp™Šg @ü=/´‚*i;¿…ÎПX–} KÔÚ¯­Ôdô*j"·Y!·öcUp/°lЕ‡A’‹,p®7Arç  ™flrG¼­È`ä¸Uíæ“Âõ{ …([ÎJÙFŸ°Ä3b~欇N7¹g¤›ôWCOÕ©¹“½ b,AƒÑBD&˜ø`O…ÆXŸênÜ9Õ½·52 «¹glž³F5gÖrtˆ–_•À“Áp»–…^ EwÑoL"Ù w±ƒC€6ù ½ÁT°æd‹ß5ïfA°# ÉU2äó›îÏ?ï'$ÿúÀòÿµdÍ“ÿóG ùÿ|;]ùáð ú–í~´0u!ô/öYý㨻ë?¸Dÿ©'Ñg%òcLÿ#õÙ˜ý“NÆË–˜j»’þ¯ü>ë5K) 3Æ·ÂdÏ"æBšã T^HöïV²¿Ò?””~![7dë‡õWY2ö[Äz‡˜¿›î#Ê'Ø0#ªûaÿœWÄÜé\QÀŸþ}úÀ«aŸƒ~2žQþO””²IÚ²Ëþl2øÆ×šÀ¨éÄQÌ—žÏÀðþž >^Ìprðïø"!dø³ÔZ"© [‹xýÏ"X<“5a®ìÅK¶_®ËG°”_Í»7i°^Þ/—{ò)oo’²}Ôu@ÔÎÙÅø#êzÄ„O9ÓD9|lhýCð‚fÈ„Ðý8ŒíÁ¶–pð¦ãMCN†&½qV°„Ð×¾ RÂ=¨üj‰•^'_û“358’¾ŽŒ™ï³_úÒõ•9†¬òŸû¥Ú2þJ–=ëæ·xó[œÖj?YÖíÊNþ©êö°KŸ—I·d£›ùYzÎ ê— µêÉwÎøÈRF§]h‚¸°Sø‹Má§™?_Vñ1Y¶¡ˆ;fùŽÏò]2@!ãÕàËx&ØjlëUæ&Æ- ЦPú\ù¼’ð:ƒÕtµB3¼èqp_ :as|¬i\™‰Í¾z›êâ“;’ìêø1–àÕÍEºIïÖǙμÕñ£{£êz$ò#Îr⛂°Â3¾Ë?sü¾Ÿ Î!û¶¡‚)´Ïøy0˜}—;ƒ´|“ñ×)eO¯/9•þŒß8F°»Ç±»7¾ÊGl‰Õ¨K$ÄNbODZ:¼„̈¶ØÞÈ^šÜ½Qheã#ñªWÃØÉÜxeäfh©`r¬fI&VF>Š&Š.CÈT¡#Ga+ž8ãÙŒ³„EôtqVSâxƒ/pd#Zf¡ë\48´¢48æù#É_²Ì½WxÅÃ#™a<˜ÜßôHr«gï½yÑ•(ê?«á_óÃýIj#0{ü e("™Âºôg°O³á÷vÈ 2mi nåÄœøáUzÊ ÎÜÊŒÃñ].ŠXZäòÏøyb6SgpÄDùvùAžõ¿ºðRi’b1åFÉ.”ìBFQƒÛÆ nñ9f©g›üëÅàô"Ê=š-Üɼƒ!Ú\^ÅçáœJ=¨¤O«|*¿åMòUq‰“0l {þ§u€ KÎárâ²çü¾`¶á\ê\°¼‚‹DŸ(”ù.3_–Woš¢ãŠbÿ©Š Uúñƒ¥¡N3†JåÄ%QÝÇ>Hªx%²²k ”¤‚gAÅckå'ÿŠ)çâÝ3‘æ[´‰ìÚ@°ÓYvAІ©uL| ÖjNYê€a`¾÷u2˜Í(á&'ͤ QÐEjñ]Ðd{}Ä€A8g.yd› Ó>ÚˆéÁ ÐöI”µJ-ýñ’û'”íû7ÒÊ›a¾ÙnH/’Úãã1’9™ÌŸgõ“›1˜I>ƒéRŒ`|åà;xÉ©ƒiÉÒƒ]r’ E~:ü$šÍ ±WôÑب›ƒ²LôÜ‚ùMdœ[ªäfln’ÏæÞ fµó˜hÐæ£Æ€›q­I>×úà乺é„Vë§ãv“gs#NÁ5"M>Þ%ÙHC $7cw“|v÷fd£&xÖÎ#ºë$¿=ÚÕ¿ãZËg\ü²S«=.n£–ÜÒ˜xÒ™ƒßÅ_ZxÒñùÝÚÍøÝÚ} TkÓ¨ÍÏkþ,«3>³6¿8ÕºíØQãâ®vÝŸØÓ.äÿ5{Øøoëk®ÿ×FòláÿõÂK×ÿ«ÇwÚ:{í(Íi¡n?£wWCºù‡Ì9Ж㶮\;sym'dá@jh¶º?£ÓIÚŸ¢ƒÒäŒÏº48烫žÆÒ2µy¹³4ZngI,Ab=ÒcC‡6ÃVô~šYc4…/|Õ¦0(Ó {ÃéàŸìâjk«lÇ4 :ìÁÒ—‘:•€Ñl­\^¯‰:¶C˱•Ä¿ ±Aóo§ôŽUÚÐ|†ƒÃtôqva›AíÈ VVyV`¶Øzf“ï£]À“GŽv…va4 ÛAƒ¶“4‰b|‚³±³niÜ·øòé6ÿµÃ¨ª ¿êTõY•O*½JGh'º%400#¨W¢/ÙÚ ŽP×§§œœ_qZfß±`0Y|T A•/‚ âÆp†–¢Ãaú±?¤@dh‡ ‡»-Ί÷A#4*ƒÛq¦³¼ã ‘ù>ì‚£j¯¹ßéeÐ%ˆ{Q×! b§ý¾ÂzAc4Jh@欔à¼^ Nê±™µÝÈ c5fÆ ÐX²ûÆÝŽT$Ñ'Nud îë5âõ”Íšk$Å_S>í˜yUÕ3w˶äªÖb]ÍeÕ[â÷¡;7Èê@¸8+Í­.·‹0͉”L8Ïkò9ŽŠß0;îB¼ÞÈfDF`ý¾æ½WhÌjW±˜˜ &”ÍÓxõÚX.C¹²:äwJ4æ8°eWë"Ð%Ô|Kä±.MÚ8‡´ƒ¢5¼&7*fÙàUˆ·`˜òŽ¢eßiä±—¢Z¤LIÜQwâb9QL„ÌÂVC×Êp&SЮ¯…*åšvù© hEëeòyw™6‹.ÓÆM–©õ(—i3{™b"?qº¹L‘ÌÙö6;Üß|œ#™ p#;/MübÊi#xEL+Œ³áÀ‚hÃçÃ×ʳr1†Wª9äGÁw½]Ã_·r $qZt3ºQ^:¢ž7Ð˯ˆ!>aF–Þuªg©Ée0ÁÀN031¾_Ç÷þA&Ú•(d£¤´¨K|¬ª¯{Õ£EíÜù‰‹çE-s¹0˜cIö$l´ewzJhÂã ÆÒ ò¬Ð‹§ÞÖb‘TÞV{^ÃmB D²¦?C*fЃt;iˆs*«'5;²Q0²½È ÷PôênúÐÓ(Uô³çK\i0O×2qAŒoO“+$^{Þ’>.o㉱ß$q"R²f•Ü»«.÷2JÚ]zÇchwý€aüx)Þ Y‘â´à·ÀŽÔ&k7£yÛ”·ÿ/Ó¢êfÄ âðö"jðÛ‚äw¹ zæeôã„b3âꪷƒÜn¢d†B­÷kÔ×' ÿ›þý ú¿µMøÛÓÿm,ôñ;ÜÖÿ”@÷÷tÛüçáv½µËµaÄÇ Þ楣äú™2Œ)ßR;ø~Þ˜ŽÈBÖI¡ PÛ1elz:¤È~lz9ýµ*¼@__òKP¦\†xÃXä%û‘‘–áÑÊêêê |‰ïXº?LEùk^¡B-Ql(;@ZnºX~|/ àã< êËTR†M0Ö‰Ó‘ëK X*®ÑxT¥û³Á—TL&ãÍRÍ^SÌd…õO¦%9$—_’{¿äûuj×"`Î`Dk‰eƒù_TuH¡äÅ2ã/Œýj“tzé—¾¤*Å"¤¿ÄX•ãÑð;J_®8ø¼øÛ4?^w ©h uo¯CjCá§ÿž¬ i¿wªr·{áÝ*9ehÀé¢ C7Jœ4X"nª*þMo°µà&MU¢ªBÜ—8Lü»,ê²'¢787C±ÐK±Îˈ¾AvF¿.ÔÅÑZ¨«À-\? çõ1kÄïSÀâ,îSÿ•ŸÀýïKíí?Ÿn&îýo½ötqÿ{ˆ¤FÖýï]­Ä^UØë {ÃÏóCÊCxØ®ÃU°Ó­°íÃ.üÕ‚¿ZðBŠÙuØóÒ‡ â|åÜí´†y÷¸w5þuF!ð>^È·:KáíxJºXŒIOÁï >?¹û¢4Å‹ýþ‡±Wü×kÆþÒO€ô¿áO$œ£k]™pìË2=ê‡'ÎHTÁFGÄûÑe8 æ‹Pxq-Ëo]þ­»Œ×(Tܳ0©Ñ òÞSdYõU _¨mAF-éÛ`YØ_&ðE—Uùø~¦òØ(#È(@U¡*6ò— 5(Ϋb#™ ¥G°æÝØ^ 42/Uîý¤”T’eyU“7îPÅ9…J¯‹5V+ÔØ›"Õ 6F‰¦qe>"E°H·‡Ë”×^Ëæ:´­½æq²ú1î·ˆÚ qã³^3Âg…Íëòãlq=|5Ânl„‘á"ýíš# î²› ñÕõÃÓþ`h#»‰òõÑw7HG–ï à”»?1•9øÎhRº èj«?™ NOìTÖ(>‚w}öñBâž >@›ÈïŒ'³I¯3œ ‡ÐhŸß!Ê>fC™@|ÔÉ„ƒ„"0^·ÏÎÓ¯¯©¼ÒBŽ@hâjØ?å;ázx5•hŒXcww—·ÅkóqNéîz:>KÙ×ñäóTv1üV‰ã‘ŠH*÷É£óïS¢é[‘¦›j8d£1ßr§§×>®a:5°|:s‹;â}Y¦úž¢]÷Ô™ Ÿlc•œ•ÞB8éÓ 4”…²8e0â÷OY¬Â†ƒÏD¿·Q$_àºÒçæøð˜p†hޝê0’š5Á1©ç•.ú“Kœ>ïáÚ|ñqÒ?»îWÙ[@˯ƒi Î Óë!b®Âôj<:£<7b(å¹J'üL<Ñ¿AD>£´b˜’îtvÁ[ƒDäF¼ Ôh¡vÞÔ[¯²Ú÷ØÎfv;o;»YÍ蘫™­ôŽ3'Å_ƒÅ|^+¯Þu³š÷¼ysuLÔ_×9u„á¸.•åùÌ>Ä;·ÎyËVÿ«ýÎcò¯øŸ¯ùï×ü÷þû ÿÝ‚ÌRÔŒ›i>ív…u1ûÖ!´v­õ(Â,ÿyØx yÂ{w# ‚4XÐÞáA7Ôb–ÿ]&Ï•>½-·ÄïWu)z¥íß@ Ù÷U⼸ˆÕcWã¡ShéoDÎÇñbàì‘Å‘‹Ú 7â¤ë•"Ý@e]’>»jPáõÖ¡Â›Ì ÿ²‡$¾î¢iæ›:ê^Õ­Ä¡øÖ‹É.õáúûʰ@à¿1 ¬m·^Y­nTƒExc<ÀUÁj†Q‡“b^rõcº … •–i½†þ^Ë/jm_÷¬ ¾®»)QMKùAßÌfš&»k•XV{>|oó'š>£®÷èKÙ™W»Î3[\H´‡—XíuvWõ 1+±–¾DSb˜'\-HŸ¨Ð$‰ö]‰-í4‰éô)y?Á¿þñ&+.k¼¯ê|"«î{ ¼×u÷ Œ“\Øc2Z±"8 ÿõ¦îË}cRWQÝ€Bù7–€œ•Y4Ú¢] ú¶3>ˆæðÅ«@­L[&×\®¤Ï²Óþ4uVh‡ WeΜÑL ¶ˆF&ÆW‚uTì,'vœ»{ã£A+0åЊ@9H þª€;«YŠÊn~5_r’Т_‰Ó}Ð  úªmî<íeQÿ ðÅéÕÔi gFª¬m§GÄÉŒ¡]¶ƒ(ô°Á²½Ô‡ 8wë^o…W[Žv•ÐhÅ Á +2pt‹¦€¦OWʶ³uB«ÔUƒl•[4J«J¡Õêæœ…Ö+P»¬tóaQ×MÒ‚:íiê ÷• âe'´Û§…;–6\Q*ΣïþV(²Œ° ø-d€+Ƚ”é;æ;xÝ+Lâzÿ©ú5ÆaÔæÏ<òR)Úí!Íl#Í=\áí­ÐßÝ AÜšsÅ¥ÃÆ[á˽äÒí:Daã=áÏ|C”´ç='º\‚š+¼L¹N'Îz‹2oˆ0p»=»TŽÅbˆE©ÒK—qžwàѶù$;/af)x´­Ù §f·[^³VÔìv×kVÇÙ™ÛB2|¤+0í4p!ɶ1a` m-J¼b(LEÌ„aX¨ŠóÁ+‹“íÖrÚ…¹d·û:Øîú¼íh­o´{¦ ôR(¨M£H£cU q@àô`ÜmcJÙwµ‡PÊô_¯Öþóimsݳÿ¬-ì?ä#ÐØÖÿï£ý'¥ø®°fÂÿÕ*¬±ßxG6Pç5•³Ã©Î &Ô$™{Êí•÷{]âñ¾ÌUH™¾'²f›€t4K'§ýÑG4@´³œ‘J0u ÛL<$9£Ì›)gÊTʶf¢l›(»­ß‡Ùb,3Û¿î$å–mÏ&W½u1 ÙšQ~Ò¯f3tQb². [Àar³tr ¶þì®’rQkͤ¼ÑØ_’Zfœ.nÀ,ÍVø„ÏÆ#©¾àQhý;í«û½0¡Y+Ã}v÷r̈•s:òœ NÓ)æbRšreL;1©„žšíx›Ç§>Ú›:x4¡ vÔ-6¸¼™ŠM†´­EJs4Ü5À!ó Þ­ñ+Œ…Â_šO™4Ð ð!EZ_ÛRc)•Šj ÛZƒ=wWÙö*;¾ès2Ï<2•˜p>ÀÜ—;éÕlµbü{s4þöñW‡õûÑÐÌ—ò4Ôð`„3’ÿËÆ÷k©§ÉÏ”u)† ©Cv#ÙárÂÒ4Œ©A¢ü𭱜CÔmûMÀ²° 'ŸÇܦá>ÖHÜ  iÈyk,J ; ‡—ÁNÈ>4©6kÂ@Ôí³æö™¸}ZmôËplúÊ—ï†~„ Feµ\hغ^ ‡µ¡('2ºë:FD²E puà³RÈtÕXãÉ @^NœDã}ئµq=3ŒYÉò¶ Žzô%\Eë`N@Ïf,°†z-Šîç”Ý—…¥.À‰Ï Ͻ PòYH¬¨…œq×sM`íx°#D€Ÿ–·¤¿Ž:rJl³V0ù(àJ“Ž6^`Õ /Yp½æÊBË´™±"ùqS÷fÉ÷ý Üÿ¿?¬ýoíÙú³gžýïFmqÿˆm/çþÿgßQ{Ý:Àâï.'q‡` ÐÃŽÓ¤¼ÙŸ½n†Á/«nAÙ-åFú¾òï;o»íXxÙŸ^ž fh,KîAg  ‚$ AC`Žs’Áy$¦¶J4†2øÞõZ%1úÚ-‰QÁ×ø2¿/ѰçiüYcÓñðK:UÞkLµ:Òè0½98øÃß1÷Æ`d©cÆW¥^k¹Œ‡hù}žt1–©¼eù´öZpÑý$0Cü^£~9ª¯kdê Í"sJwÕd•zÅÓ ÍP´¾ÄÎÒÑXÚ{Ï&ýѦèY@€B¤ïzÇÂB Q|RáVE]8^8ú*¥¯ˆ0ôVÅ/…VV!•Nqzž¡uCëºCsF†ëÅ-d L”‘Ãåa™÷c=0,l ´!R¼"Ý- ä)_Óéédp×”£jºJí Q$ øÅ°PCÂò3zL¼°( ê¬ÌŒø"Xâ^Þìy­BËðË|éŒÑw-¯ï®Ýw-³ï^Ëî;*ªãÈW‹Èêx§ãѬ?M!â¯Üª®ºº©MC–šRéí;‰4þíu‹Î¥ŸKמKÍ"oz.Ý»˜Kw•šÒs©É¹l±‚sÙŠN%Dž·ôìPn èÕ áõ!?ÓÁYêî/5ó­Üd¼ªý³O/8A·(„0Ú†ø‰œâ¤y ü¸qو⣡Ž^˜Aó9¹.ù¹2î÷ ¼·¯–Jöª@þþ.@þ~[ €Y’B §’«C˜}¯Ž ) èÌ{‘pãªu,ÌŸ¦`ÿïœtk/܈änœ‚ä"8þùŽºèí˜á0OÓ‰T+|ŒPÐvÆpDÖBØS Œ|0}ˆ…¡læ¡kvÞöv_€÷AfÆY‹éŒŒÖ¯Òô 6ã`ªøâ³1§ÝœéðGpz‘ž~Ö±«‰ÏJ'“ñdúã-Û+yöä–÷|Å0/_ɳ/¯ Q…í6^¿ÉŒÐ®Í¡Ã¾bmþýùÜîû«ÁpœÏ6"où1éY÷ß¡yoþÁ—f¿ÛãCÞ?›r~©jÕ ®Úo“÷f»Õ9âÏ{õ£$ƒ‘'Kò£$œÿ=ªñïÁ´=6y7f|xî( Û€+Å{ý%‡=]¾õv›ÏEáâ/—N^ªV3»Á«×Þ­ö’§ü¯Šø¢¿çMÌã>´ª‡õLç€<Ûxª_ɲ‘Ÿ3þáöÛý?ÁŸ°ÑoïFÞa$ÙéÏú¡ØÐ`Pz¯Îì­.Há+°á‹D$Œù«uxž‡¼ ­P÷'ñ~ %yquш{ýÎjdËoDÖµðFB+˜£îÙ£Ÿ˜CѵCIÛµbG&&˜/Œ~Bá}1‰X§&býjh;òÚC~¦qÖƒ¯±pž>d2Ö^eZ†»æ®Òâ|I[Q!u2_¢1ú¨"‹à%î]ª=ƒÎˆ~ÔXUÙ»S$ÁK8¯ñëüß&ŸES ù#<å“¥$<èuÐ4m%¦×úoÆ*oÕYIb&AäYZÙbÓZ¿Ã˜þ4oW º ·ú15è>‹ìä€P)Dh}ÖòãAkKMÁòÁʼ(¡ScñöÐ~¾­zzoäQ0š.‹p&`|ʧ% #遼·8ÃpP ת&%¸bÿyÏ×é}RûKÊ}Ôƒòøê?¸ŠüG ÝÁÿÃW“¯hí/ŸCŠ|x5h u`Lµ5?®»°üãt¯xZÆ?h¹5nðs„uG6å2ßל*5¿•š(åµ#‘Iâ)d´ù¸*O½XaêÔ@!áñ0Ú©Q$Q]Õ ×EÖ­"‰Ùº­¸ 4h•7hõi)ª¶ °l¹ÖèlËé‡ʆ&¥5¢&JâµñZ€†€ ;~#ê"0ÒÁF^P®ÅQŽ®%é7ö·­Z"rÝOHGÉ®’­”lù(ÙòQ²õ0()úˆV(ÙÊBI=£ öèÙå¡¢WÒoÈÆé¢ îcÃ"@âäá9!"¿çŸr¶]cŒmˆž1älÙðœªðÃZØõh©b ?¸á·aìÌKÁ|"܃»ëž”8`,k®¢X¦c®ákÛsK5ˆ–è°k(º“×êVu H—À[ƒ,ÁOÞºl©fµT3Zâ,o¹ÌëʃJxNÊk‹5Ó-ñr+ôRƒw7px10 ÷ôF& … ÆÁÄ*…}U˜“‚ÕÄMã½üæjª9Õ@hì>3B‰ü^–¤¢Lœ‰jók8"Wj™xåÄ®œ„²ÐÈáÍÿ ÓäÒh¢ÂÜù MlÐÏ“0«&qñ´ û¦o¼wz$üækPbt…Âù–åVû}êØÅ­‘ˆ>íW>žXÓ0B»º¾eøáâß«C'4žÛÈãQÍX"sß9½¢k,xå0Š;œkÍâ\}A°°šG±°!ÖeøtjŠI0¬,#îm[k"éß׃/ý!ˆª7`Èw|žlf²*QÅdŠ#Ls&‡è‹ÄaQ6½•ÓcaÄL!œsØ6à˜/%4üåÓ «€ª­ß  ÄVj‡`¨ |­b³0<–_¯ØŠvX‰È`%¬P9ôô z÷tíß1ƒoEx5P÷@¬Ôî*ö59# U”õÉÞíÑ»=ï^ Œ¤`¾¹*™Ü¾‹ÝÍÞˆn:4zP¹$@èÕ#ùÝ™‘Åz»éxÔS]¦,„/lžŠù¦¶˜zGOÇ:§B3IH„ÁÕõ£[7ÆAj)T°{4Ö+‹"¡K Ýk³j[WœÀ$w e¤t“~S{²)óÛ³›÷Œ•ØÃ‹‹Q»^ÃHÖ†çà`Œñ4­ñ4½ö娄)v0ÃÜo.ÃÎw°Ú^qì+¢‘Â>—  Ç®c¨ø,p§2ÀÅ,ÞLÍoFqPs4³î7#Ø•¹šÙð›‘àŒ^KBN:âåèÝÑf!áã‚Áº^®{O6îéÂÉœsJþ.´aÚȺºÂ)US§”±I`ëlò­`„GD“‰`o: Ø_Óè» È";˜8 ÉD3H&têO¸%C+eÙ)PÞ° ÿR¹ÞÌXóv t½:‘‰<£»Ú 8öø‡O$®U—èèDzŒÑj¨¬õ:~Š$¾àؼ«;óÎ숖̻ºD «–ñJ™þ=[o˜ý}=´ôëšSÜÞ(qŸ’?$ªÂãù„ü?ÎÔÿccýéÚS?ÿ׳…ÿÇC|h+¸þœ‚í·ÞV Dg‹“å- ‚¬“ŽáÛqÌ{ã'õÙØ~SïÖ·-#0˜¦ä~bžÍ-1uœ1‚d§‹[‡‰àÐ.Qßs:X¼Òñçû*Ú/Y´þéë°ó“”?Ÿ~¿¼Lg“Á©ŠÃí,N¶®G§Õfÿúü²ÑDÔD)d¼òÅøŒr‚‰¾ »;ÈâÁ=÷… óð8´éx–! ¨Iù Ãs ǾÌÀfŒWX:Zª°ñÄPÀ– ) JTa‡Zà­.Á‹%‰§²Çuƒåw˜ê‘?^eÆ’ÓckÉì ä¯xß ÎêfÇ8æeÓïIJ­ßÁ°Ý3Ʃ͌㌃ ,‡©˜w¢•:ÝC3ýp ¶/–Ðõ¾³ÆÇ­jRÁ?`ÜtÙZµb€–è¾wÕ)DiÇHɇ‡öº¯VYcyĦìd8>ýÌ_AÔkh¨EaÁ[é—tÈÏé-Þò2|¯¯Îú³Tä¡:‘XÄ\²ÖmY˜ËÈJ|¥q– –fÚ‚YíérbjÔ•[_Æx¾º‚%˜°áø+<ÒIc…ݱe½îm 4*ÆT–ògö‚{Ð ;eZP¦åt>Wô…EVĨþÇK•»¬³U¨-ã67" ź›^Œ¯‡àc¶#Óq­b¯ªà÷0… 5ŒÉ=„ÀÚ`£&Ò Ù0ÛA4“Ëšrü¦ÞÑP2b´_Ó‰ÜUÃïz˜fÍ-k UÚD±-t·i|Ô¢À&›i[|³¡Àp$°9€ÄuÛË™õÃx¯ÆAÄÇãƒèö¸_ršÀ­VŠ“ôœÃ~tŠHÑ07xÅÝ_ÒÑ@Ì(º-NÎŒŠ%4£ ·1¼3 ‚"GHøi­,ŽY`gÌÎVµGjM®­GºiT_ðZü¹œ5RZâcÑP 3qð[lšAŠ+­e¹ëŽï`ׯRK]WÀMéeÀÉ|ÿ¼ç¸/¤èŸ+Î¥ßúHÀþI'ãUáË$.ž•«Êœ)Õøgvr=3vñ™T¯Ù¯ô]Óý}ˆP¬[a‡»ïzJblßö’5 gw’ôý>Àˆó${ð›ìc\©&þã·Âæ~†3Dó°· å3®š[‡uh¬ÞÚ‡DÛo[ØÍ¸íÔðG­ÂºYŽCÝ·ÇuNw™P…Cç ˜˜Þ4߬^‘Å2F3¯³Ìë]H¿¿ÞëÌ6æ¹cþ£‘•s#/«ëðÑÀCHuƒ‹‹8¿ÕA$·Ó‹ñ/÷Oœç¼¨nêuÇ Åm(NF•äagz ø¥ô¼PNW‚^¥2LÂ`HfF¯&›;4Î,'Pø¤úùkr6­ˆ£e&#xÌ'ž;º"x…†êèþ¡Š4¥—ê%çð8ï9¾‚°é· $ª›ðKæd†„ÅLP5K)ýùÆ[-˦DJ^êXDÔIŒ„ hâ4͸âèö_ƒ_©¸´°^´Ê,Àïòs†F ³0[%Õ_ìT;ÕÎ?½WëU¸ü´z, ýšð-qtÎd¿¾fö´=¾únÏÁœÔ1MVI àüÓ£1m €0¡¢¡)ØÇôíØÓ_Úb¸Ö©9ع%¶ÔëÀK ¯ÊT14³èiÕüpƒ‹’¼cÒW袂 îìŽÎ\9 Ũ7ÓÀQw9 ­6åÇ„$t'†nBq¡ÎõZìi³²Â›Ã!²/-6ä|P‹bŒÎ ‰´|„UÄ|É ÉL4ãóóªb"Tî3ƒ‘ O;“N A œ»•ÃÆEÊ&¨f};Q92m¡Þ¬fá`õªçKÇ«˜²*æÅ¿WõlÇÓJ Wjµð@5—³ó lË]ÂáLÝ tZGZNØ0âDéÚÍåA_½õüóÄk: šVæ¾ýÈ›ª°*àƒs$ÿe9‰H*„ÑØÄÐ ÒRŽú‰ܱÈá„(J‚KnÒ@úLJ"Ú0è ­:mtlϦ*Õ$„;Nͪj…þ€ŸˆcïV²;‹’2s,ó´¬a1Fêc[8”-§¶?o%÷ RB+˜OMÜ64q¡X§8VX}â@óiŠ1”—´þ+ ¡öŠ­‘èQÓ“=¸jâéçÅ’B«QzfL jT‹ §9 ¬)Yòðèü|z¦Ç¦ å’¤pOdßñ Rìæ¤‚©3"˺½šH“E¯]tl;ž®}S fj\:ÐJ¡i4ðb¨}jòLŠ´™ä.بÃ,9˜’}&²Õ͉Di èÜÕ7Jà`™jl <²»@ø`jiűHl̲Ç-3Pçœa€|¹û(—r¦ÿì»Pá]J¼Œmà¨nbÄ×f3ŠƒxÌÆ£êµÓeÓÄ€}‚uhÜôÚtͨDûÖñ•T¡VE*'ykÙØ~î"çìNöÕéc´_÷£'DÃE¹&m=€ûHHŽ›ö=^ö…iËÃæŠ˜\SO;9]ù$6#»cÙα: eCǹ`;v: ¢-¢ `¬å%åÁ˧ž (\~á^´Fü¨„„¶S¿‰c’Dñ_e¨ë— 6‡÷çêì¸Áùuakˆ:j{|öî²&Œ=f#MìN” aÝ· 4Û‰¸%t³› SÄÀÍÊ„õFŒ¸ª(÷ÈN$X¿i8»P €‹AŽè ‚°ÀÊ@Ï¢J_Øà*Ás|¬—ÌíŠ%t ¦._µ¬sÓXhcjÍ¥nå3Á$°øü³ƒŽ»Çbqšî…YH\Ùž@½`k5«µj’Q¸§°§=”yå*& Œ³ïc»‹ˆðM#‰ó©“ix•l*y[eêû˜žã€«òKÄ{B7c6R«•u½ªÙ5R›+{øˆL„)°”u s15{ ¢¥²á’f¹@©HÎLc „¨gšMŽ´”Ã@xdØì˜,¹hlMÓÚÖ»Z«ÍýÐ;6ë­?‘’9¦‚+Ñ|DÖb0f4´ßB\éŠ?¤“ /YS¡%ó#0É䲸½ÁÖ˜P>‚ê‘ëÈ/^â/ò´ß)£u–ùèxɬAB\”î¢tÓÙRÔ’y²ÙàÒºâQ|þ=$£¬O Ör9½Ï•jgËZ„½-¸95:%²x¬î­ø,Jæìá©­©t¶Åõ߃‰¤ ¼Ï*óhIÖí~of^ñ³¸ A#´d/‚{sÞî©>n}Vnx~+Q@AÎAiX1½æ@Ë„‘š{ÛŸûRÏP Ћ€„'Õe’6…µ°g±‰›ÑM²=C[FTðMÚŸ`Š­K0¯!`2:K‡Iˆt;æ1º’¼™°R.ðèiD@¸f|×y)ö\ÉùÞ~87‹¬VuÜñ°iûBåRá@Ñ¿ ñ±‘Ša•~lBy@Ã}½ô`Ï]£›P»DçžZº ðbonIêÛ”Iõº->o½è%Õãh빤EADÍeÚ>eª¹8&åk¹ Gž–«f릢Z.Ì-eh¹’°–KCF:þ=‹î|EÔk¾v[1%Ôk_0J ûÛJ¨9tPœÆÈ ¤¥‡j†nYä[4„¬ŽÐ6…[i\t|l24MfÿLÑôó陊ÅôLMCPŒgLd%v‡Œ)›º&³ÑǤkZ¹™ª©Ú4ÔDM“i*–$GÛÔ©Jm„¥oÒdH4ž+³‹ö3?±Ê à S-=ñG &‚ûRbl¹®y‹Ó­d+ˆb„È“£ºêTWÑq±‚º¢•__U´òø5E+¾¢(WO$¶¶Àq–FÃð YyTš¢ÑRÕæžØüº Ç¡ Ú¯"}¯KfÆÕ©KsÞEš$K£b*”n¨ó†þó+}šM¥ðIÌcs_?ÈV÷4›Jգϰc«…‡Ôå|.ªÊiå©rZqUN+¦ÊiͯʱiŒq “͈ӧˆÆ‡ÙJd×»&–Ç(\€VÜL$Ô+‰½jÝj~Àët?ì–x’¿”˜EšJt?+yºŸVL÷ëP#,³pįýY)¤ý+*“XeV²T:ZÿC”ðT?Ïu’HÎVÔÙhÅVÙ„ùC«‰K{¤?+†òH6òüþÕ>Žz&¬ÃY±´=‘Õ®[‹ì,zˆØfŒÿè|V é|£;Ðù¬„u>Ï„Îç·":[H‰›¼¸ÛøübTáÿ|/:ŸZMÄÞ)£s½ùèNt>*ŒÑ`‚ÛÖîtò´;þ<‹hw N×-Õ;+{[Õ½=óÒuÓpO½3ŸnÇQîÀ,ÄHçTîœdeò|~!±<›CóﺷµB꟬¹Ù‚ èÚ•©¬†ì&,}ƒ*ÊÑA”ˆ;Ô%/>W_ DH–Ô~˜¨š¯ªæjøÜõ,1Ùñ=¥²øyÿ} P M¡é®Ý• ¨)®ŠÉg„¡zeÖøa¨üøO³“éƒÆÚÜØXÛðâ?ñG‹øOðèoÅêaÄ|ôàƒøÂ‡¶Ó¨¿æ„÷mÝùÿÍâ¦Û‚ŒÞqê)RUo?êdßÀQ6Hœ E“Ú‘`ë(2Nðp'³wS{×eno\ýý¾4_()Ž2W÷x¤Ø!#b…‹×|_•¿qÚ8-Ÿ0P²ú’üNE¾ø•2¬âѧ¥Ê¤a2£v],²÷@ Fç'°Ê"§.co°^F&n~n|CÄ8vàÆ<ªJ}Á—è¼P­O)& ¤2*â=4c¥~­ˆ,±cÑ*ãòŠOD¼ø¦´¥V3'JÀ€™¤SPl´:aZÚ3°ñ 3µ‚©áú×´v„P‚4Õ0H“Ú]‡|=ßa2[Œú¤›7#Aœ#™¦´T/}ª|‚‹ÊšLÇ—)û´,‚?Lu¢Uþ ׇ@‚É›ûáOTò[¸B"*¬™A®î;)ÊŠÚqûxNHæ0%IO')­u5PÚØº;²ôJ™øFcj§•L¶yÙ©Ô3*-™•z±Û±ÛãѧëxPë%3Û–€BÞhÅøÚF{ 7Ì2– Ò©¹].¸ªn(D´üãEʪÃlÀN )¸Cüú¦ÒV8#!T…ÜÇ@`)JThzÛ2g2Àû…W`DÈÁbS@R; :Âlˆ =´ò;AÄDé»HÖÜ)Ô–f¼Ëä iY¢ÜƉ$eœÆ x¿Æ(êNX´xä®-'tW/3xœqÁé¢ÁéŒQ(3vVÒt˜e( à'[oD›3Û¡–ÝÂFH¨-Ö‡Œ tmj…©s(ráóÙJ²2¨ ò^/ à ñÖæSõóÙòï/¿¿ü”˜‰7¤ZA|5ú„Õ/£Ò¨òi…7§Ã_mÀ‰¼ðW[«¢)¾ÐZ7§z¡`mYÚ0¯=»ÀÉìO¢üO88ZÀ©üu2˜Í88ùn'„'¦ƒ}+šµ¾'²Ók¦„Qþ×à `‚5“ܸU2Ü9Ey²C JÖ` èq1©¸¡« ¢œ `æ0’TägÜdümp 'I€CðØ–)å)ç-¯W`1™ÚŽ4¸¢É( 5ªBk¢ÙrÊŸ,”°èµ™¤Þ2I3cÏ»Ólv51\Ä i¯¨>Ù%¿þ8I9X&”RIr—`ÇBft>à§Ù÷* J„5Úî-Ae~”W‚ÓÊìMv‘`Û~d5 ÔŽTZ |¨ÿ75z1À:7Tÿ5_ü­¬\¿c«ú¹bèÕä´.úgˆBœ‰þÈÇ)ˆx;¯®'ȈHz?kß­êÀ“¼`'ãkhÈÃùß0¼@ Ì[šÃGF^0ëÄËWØ:þ:˜ò«ñ”X•SŒÝŠ,Ô4=“áf •4‘ Zß Î8ï~–‚¦LAîÎ/ü’®˜T“:ådà‚_¥Tgt[~AƒcÜÖ'"hÙIâ#õ‡Çœ,^ ™ˆÏ;`¦FáÛ’£¿@§p‚©xØûÕêêj…9¡Ð¾Áöâµð7(á´rŠüçÓŠl\ý]¥eV§'•OºËt$Tº;é9ܬp‘‡ ]ùúç°Ç>±ÁLP± ±‘5’—JðYª._{/i”ˆùíiÈ©áó†íÒÝØ`÷½¦/üPÿ¿•üæ6x™TJ£ÿO¬b®rB5:Æ›f_SŽæ_R=6 ü÷’ò„ý/Àq…ó ðøõ ÍR+²ZŠó׈+É_ª‚Üu¢B ­íÁ€Šn?vpe£ GžLRfQK|hDpPŸ„’ºB×ià™”ËKJ„Ò…ÑiªG‹£æÐågÙÙ5?ØÌÑ䨕7ó> ñW(iÿ´û_h¾Dð–iy;½Qg‘¾Â³O‚õðÙ*VÀl+Oœ ‚'O8ÕáÃ(wŽÉ&µ÷ Q¯2ªà^‡W%®“£¶$pÉI–5šØðG+¬é˜è _ç3eèþPº® 7n+ŠYÎIçÁ+Ê¿$’S$>9vžöñ6"·”Ó¨+ ÇE½>M 8PÿÌ*DÛ…üf6†f|±f$HÊYŠWSY_ÈY*4yj'+h[¼E1LÌ9t#YÏÁå€(H­ðC$WŸJ¡€GЉ%MGrR÷ã[ä¼ Õ.±ø«Ê '‡UN þZV–¾ýÅ$]çc>‡Áåõ/C:¾ž¿k¯™¯cA³U-—ÂBÇÙñ€w|iHñS?Ä9í¼…´­z{û(œë´¬›1ŸÂPëï1ªy Û‹k·Ëy€@ó· }nÑ §ô±¬`½@¤¢¡¯.!TwükÌÖEH×G%äî?C,%\u¯Ô~6FöªÄVyw«4&²sÀöàZF”T(ââ)­&”6 &á7)gÓƒ6×î¦pŠog ¡É‚€ÖQV“ëÁ&ER©ºôg±I¨ò¬.7Ü.;aKY~Ó-ßÜÉ®ðÔ­RI¨‚ßX­ç²–›Ûî:»Ñ*†6`‰-‘zv©ÂªB¹®Ê ó«}‰¾׃ÓÏÒ–Z` ¡ã9ü9-Ú§ô²z¿ÏÒ+ÎvO«wy-pº0jNZu$r2¾ fÄOsÆ[…Ü$KȨWûp·)ŸÞ¬t2(c^jN¶m¤¸ D)"Žå?¬}«µx*íŸJÝù¥ix}æ]]£R¢AkjC1i)¸þe”!C_Æ30†STš8‚‰Á^(抰 ¨x\”Äñ Æ€§UújÆzHB9JRùÆñAN`*µâSéT÷ü© }/¾àAsµ"3®Ù35?ž1o =ÛIWÔSû¸–7s³;;ó.q®Zðä;1.òv(s÷žŽR+²n£´KŒ³É3ÙQ:=*"fL§Æê¡«âîªØ^r¬™]ÖI®ß£ >íÛrÏì†9nŠwóÆêÀPnܾ¾ÓX7vWõWÚ45Dü“!êò¸ kˆîÙà|oÏLýž°G½âü'õ^s…Hyé|Ï&Iù _føÊK¥ÎI6Ñ1ñ”XqöÒÙ~È“37q3ðë&3BdÙÁrÇ ânÕWì«ê+Ü•ofêÌŽMtåð§ ÷‡ÐÎ%«Ð͵¼ö×§â#ßÁÑœ¨5cËé'º§ d€›ë§eKg wsd¹éÒ&CÔ¤ûŽL„l½C—Z¯µV÷7qsãKåû‹`l)Ô–äJàªPW‚óÙ˜ï¹K>!wÈÐ0 /öH­[Z3oB#D OÀÏ[˜0-û½õÐ>÷&œ ˆjkº“‰‰¢}84³\F€+þ~EŸ`™,§÷¯zmΣìÈ\¬i±ÀĘZøUÆ! ­µ‡ôð޹úâˆN1É›Z‚L{Ñc`=Y|ß1ó0\Ÿ˜º €{>r“-(çß_ ¢;ÍÏ(¿ñ¸öT&.°ÏF=yÌC"õüpbzæ ;¼x[a ˆœK·8"o}l?!oßóùüQ‘í‡?"Ÿþ¼Ûùy|;ƒä[ìéŠî{{;´»ßï ˜­W¢ @êH‚[„ߨpi§vlwwŒðÞïÁÍíÜ$WΩsó½(ú´È)åÎÙ úô8¬gÇ]L*¾ß©ñ ¼VäüzrÏsH(E¿Ã3“.ÈË€¥QFñ(¤–'嬸¯‹—7bÝŠ™‰ó½´./ ]Çáöò=ƒÌKºƒø0ú¾{bŒ½¢¬Ñ!ò2=€…à$^gSïü~/’jØ‚H¨ò^9d@ð'Ã:ƒ†}•6±pnÂŽ墮”:ŠòOÌ˽ F%Õ>Rï}A”PKùoDhÀ\o“ˆïrѽ-iÑ7¡è6-ªôê}$¥`cן|lð÷Šb;BgZ&?Á¼(ý°“èÓö ^k¢-«0“iÚ=X5BD¸*F‚rÓëÕ*¢ú•À!„B>ˆ«c&0?æðAÊ_¯dFã­^ŒtK«c³œµÝœí¾o ÃLžœßí…–a[qdï÷²J: õÂmäŽGlPü]敲 ‹-¿2‹FW9çÝ{)MzÕÛ ŒÙ]&ÈɆÄèGÿ ©GßmCì»TGƒ`Ÿ”»3>M3OÓÜãͧ5%ÁV@˰1rhuæ–jeMl£h¤ˆDŒÇÂeæÝúEö}x3«cìý^9™ÊL(ÔÂ3w¦DÆvÑ9Ù *+:jTÖ¨‹ìY #«k 9)JdôìøV2<ù^ B ¼§Õ¬ã'Øð§å2'€NChF†B6 b‚¸(`y&õõU¢>ÄØçe£d,lÑ€¡öðQ<6.ÿ4 e.fšÈÂqG»Ûˆ#Ùh¾gÅ= ­{ÑEÿ¾/ÀáÜ-+’‹Ü^ܧs­¸t‚q›‰­w!+ær„6lkŽØµ³â#ìYñ•÷*¹•Š ‚‚`˜-]Ìç9¤'~Æ~•Rè_eÓëKˆåƵü­ôÙ°G?ŸÿãÓM®÷GÂ$xó6I’N¢™h0FcÖ‰¹—^6Î žbÓ9Da‘ó3÷ð,"Ê`sI3XT ÁreY t±³$…®B;èN¨ïgÄwYÂ"ñâôLȹ¼i6Ýä>ÏèwÖ… ˜-行¨ä>x$Väb9a"üØÍGxmdU,‰WæÞ™é£4=~Ÿu¨àl«šÍeoq&ˆoµ#2¥ªÁ„}‘e´‚‡_\(T\–¡b\f! ¿VXI"AC#A™Êr9áPÈPMVfàHó“qù¾LÙÁ°‡7žzc%±'ø"fS›k6sÑ)‹ ­X>“¬ý¿)Îæ“á%Hb!'pü|í“Ly<*«\޲™늟ªÅPÁ"²§<ƒŠð¼'wC¡–­¡Ï± ¬¸f…©°ëžv…Ý53SHÍÂæÔ´°y•-ìú¦žÈ¹*ÙOŽ”˜Í£za7Õ¾°90¬¸†åŠ®s^Ï#;¾ž…ÝDÕÂîFó–§p)¤A˜GcÂzŽÍ¿ð`¿­J€Õ ,å¨ùëTÌ×$ëÞ‘Îò¬ˆŽ€Q°<]3E)ë›Ö‹h†ƒØÂ¹LƒuzJÞAXÔðó?Ђ¼Þ@@™£R3"ÄYŠÉ0F؇06¿7Rz½× ½${AœZ![[úXdœä…½–’'ijËOþ†¶‡l¦9ªC@è\Êu¢¯ÑèÛ½­Cm=üC£oÿøO þ÷ÙùƒÆÿ®­­ozñ¿×y±EüïøˆnÇÿÞ÷ã½·[hÐ÷lùøî›CþcC ð_¸!‰@†d¿~„ѾCa‡Œ¨Ý,¥@,ƒhôîP˜Ÿ£uïÉ?3z~s( (Ñ0ç‹ï½ó nºˆ¯u¤ÒP0a8:‚Hp#òƒÿcÕ¾Þím×L~‚g£ß÷àD1-ŽMêÎ༚Ngáç…Œ÷Aê9ðäø&8¡‹ñXeÌž¬^¬NWyéõéÚuÊÐLÒU›"NŠ Sð‡ts_U1>tØ &UÓ1¢Œacžê´?R f¤×'UôœFÆË ozjPFó„@?8?¨È×0c9``ð(ùüÀ›Ø/·ÊGå”–’™÷>vu€öªWéäòzFMâšðký*kãçA<+hMÌÝÊ”®ñ(æ‚^ÎŽË ;°,#Š+yÉj/Ø+ €«ØÙ‘tðÂÿ‡Uá’ëé6l”.Œ3/–’±òä’Ó‚d,cÔ’qºõ?2­TSÎQSüy[>ŽØÇÁ‰SÒiZÄrô†PÃ0¥oË|7Ÿ@ˆ°MaˆÅ/ýv!H¿ ¦í¤çý롱:âØÇaAw†ãñgÖ¿àü"ƒN³ôãw±Ö  …HÓ¨ÎüXøÑac€ ÆCO®`šîjÂJb(2–QÁ¸Î~;ÆóÑܧ¹hPe av9Ù1}f ³5ê£]ÄéH‹ÿ;âÿþ%"(œÈÃ(ð0Ò">= ºƒœàÃ/l0QagM‚4%Š„> :Ž>lµb…“Q (*!?ûú§ãñäLdjÀx¾°9 >"t \çû'üœUÓ‡ó/<ýøúƒæÿ}ͩ۔ðN,©=yÛ*ªš§Ã8^¢.!`DïõáŸ-é-ã„åvb)Ó)NÓ:I!˜ŽíNEøøœÂð¦+ЄOájzZ ò² òýbPÓ} bÉ)]þët”N#vxzq=amŒ®:¥ÕÙjˆƒÜ%J=žLM6íP°ý0«©ïv€½Ë (4À¯»»»”n¤jírÞzýz6vòz„Sön<\eëü|¯²gü>uÍ÷lòÛóß*ìêŠ=ÛØ¬>Û”iþSûËY[Ù6'B»ççXP hÞŸ@ôt{:8þCÀ«¬|’ξÖB¼ÑnJLy›0z¿Ï™b‚Qr¾œŠÈÐUÙ,oæjÌÙ¥F»ÑyUýmsumS¢a*ðP×wѱ "V8”xËÿz¸˜‹p»þ~§!}ß‚‘/©'àϳ®ÈJs¾ š7š ƒ‰ù¿ ¹g|”[í ÛÚ¯°ý6š6òÕ=â¿ö[G‡ÖÛmïGÂ…œ1¿í6¼2`Eå6ʲ$ÇÔõø·}£@71 ‰Ã+êzÇn×0”åááý>ÞÏÊ5‡òéŒñBRfÇà̲.ä÷x£(˜‡ÝP[ù0…¸„èµ€ZÈÊwS^0%vƒó_üvà»÷"˜K 0B™ÞÜàvvÐ(ñcNîÜCyçf­*Þᔘnâ>Ê{“WRK‚˜á,Ì }Ì wç%ÒÝ‚l¤(öÝÆŠ§nÚj›ï«Þ{ÜRL†4™³¿’WéJnL šJ^tÀPþ%ïç!6¦§Êƒ]«o/—„:•GÇð;9óCWœÎü€õ<ˆÅàè÷Š0ÚBäh¤¥¶ìïŽbɇ2ú Ö'…;¬a”%0­"€{øš,' »°aƒZŠ—|鬗JŽÕ±ì7¿¶×ޝÝksƒŒøÔ°œ÷2òü&goNÚm‚d+ØóÞ²Fbí¡D D@ÔÍEÿ „@nÐ0µXû!¥d+ØÎ@¦D~Ž}íw}Ïùçc:cÇã3&¯ºxI–¢?6|NÙÖw8N¿¦ÃaõóhüÕ›Jú­=àå–#Þò*$›±3Hë¨Pr5`ÑoÀÝØu¸yÝ¢rG»¯‚ æM§†I éËamH´åŒŽ? AD4=Ñ¡t>ºcñΚ²!¨ ÀΠÐ^IBÕXÉ‘©nHowÄ3ÈÚxÁ9øókÈ$ùd†×€œO¬PÂŒ“Tåu¤OôòÍTO%OÐ’9s&ƒ8æÄ] Âk“|žNè¶}d¶s&.¸¬µÊŽJÏ{Ydï1„²$´Ÿ>^öÿðùhÙÚk‚:Û%:ðÄ[Ò}‡œËÐÑèÓñ‰¶znqè¶$H¶M€¤röSŠZ–‘.I i”9–æ_Ø—&â¯22`fhC9Xˆ¢6Á¥Â@ì0¼žøÄá¯&ƒ884º¦hÚ· ‚×Ç?ã dD'eþDvû!ŸuÆàoQTË®G“‡‹»³ÐK •Ä1›!vÅçì >'ý³Ä[ZžÿÙCþ§êôn1[Ülýð€Ì¡Ä^±Ô†F°%÷@“z”ŠŽoj$På‰Ð¼o£¶Äïë[j,Yª]Š_ˆô8ÿ ]T¶f§µtKèb woYä@søL¨`3m+nkǯ\’|èZ +€,Îò}Û¡N.¢µÃDÌ:dÜ¢Ï)\ÅÒ¢e…ÂÞñOÉS»8÷\«ãɪ‡›"wÔèq#ª‡r”7Þ•÷´/ŠÚùì¼ú×ÂÎ'û°ÿ¹š>¨ýÏæz?sì6jÏö?ñ¡ÝáØÿ솣{‰pùà9´†¼¸*.&zâylv@*´ž U†Ð ¥~VCÄy¬…mÔ÷…ùp‚ſߗæ´ÚØ aÍr«óBÕYÙM%+¾SjKÍ_@Û'õ±uqñ°3,£1—ÕY'WÂEž†—˜˜o‚ÎÑg)¿Ö¤ÊG'(§Ü~ß9NðÞ?ªÊàùÄ7 Ky§qC#¤7¶k/'¿ãƒ†Œ2§Œ‰ì4xû;1#ÎáíMª@gü|k¤Ué\I¦;"sçøN†¨­ç­`ªB¸!0åéÃUæküNë%W¥÷f0µoI[²‹<ž—)û´\VV#‚”LHW<㜴}*`]„9¦Ù r²»“Š&ï¶t”*?¼cå”iA™–ÓPÚ¡.yŽãÒË„ªÀÐtY¯»#à ðv?Üy¥ÎX£ù²S©gTZ2+õb5¶c5¶Ç£O×᪡7ÕKf¶-…¼ÑŠñµA„»p^TT(? ppUÝ"h EIŒç/eÛPúhØ4wˆBßTÚ2ı åÇÂR"4=•YàƒýˆÂ«ŽÝ 5„Á·6¤¾#S”;˜Ï:l<9#ã0s½V¡ú:sw}ßn+–¯»\â—Èå'µe·—è®U]Vä1`dõXbÏ>·c^;¹*4Òx0 !SðP6^f;|2}Pñ!ç óÍàœèâðF¥8ÍbãO|VàX%EƒÊaøïH -·…RmTý´ì5ó ›‘JúE¶ûE¶{=“E¶ûE¶{ëùU²Ýï/²Ý«‹l÷‹l÷‹l÷?"Ûýþ"Ûý"Ûý"Û½lb‘íÞ£ë™í~‘íþgÌvߨÏÎx‡Â"ÕýO“ê~‘êž-RÝÿ÷¤º¿MúýEú_?},°lCÊì´ôÁüë`ákÞZ8Ø(vì0Œ|tèée8D&ƒ¶Æ4™hìT=hvOæÍ6Áu™æéãmúøýEúøÀj²['Û]dƒ¨T·HÌhµÊ%ñP>ÞdÍY:ŒLlCü¿(—¼8àYä##º¯,òÈ4#Áñ«Šy-Љ3‘‡þ'Þ‹<ôòqÑ£ñ®“Í/ÒÊÿ¬g­w¡Y$¥ÿy’ÒGùÛ¥£7?æY¶âß_#§á"¡ý#Û‹„öwÐ~?žÐ^¸º,ÒØÿüiì —¿D¾{qž,2Ý/2ÝÇdzÈto™î™îÍÏ"Ó½ÕÙ"Ó½j`‘é~‘é~‘éž=ªL÷‰‘ß^ü­ýJINzz+É8Ø(¸9Æ‘ã®îé€7ÿ)æ™–üT™ŸJ*|S(–’žÍ¹@è¾a¤£Y $N -Ú]H.OþÚä%¼e7ÌÏînÁ“‘`Ý»Î$k©ó"ý¯“‡>SÊÀèèó¿È@oÌV$`×6C‘‘)>p$ç÷ã›'>æ<ïNòö¦•Â\»a§0¿i:ö¢Ëag]ï„X°œ1»#^$]÷>¿NÒõ{;oÙ"Ýú"Ýú"Ýú"ݺ7èEºõEºõŸ(Ýú¯•oÝúÜÈ>k‘±œ µí"’ó~ñŸ'g›ÿ½¶¹æåßXKñŸâ#Ȇÿ¹»#á ðÁVµvøpP©UØ1|?þ5B:gGoÆió¹ P¼öç Ó\¢1<ó®ÓÌ!*þ:.QWóEmîîp*ÍÃtÊql¦‚‹QY›û¼„Äù~y™B¶ ÛLõ þC¢Cù×ÉwŒp7™]Œé锂æ f“òË@nd“@¥ÖyÄI™ïT¢¢wøêXDfëOpVBh*k•ÉÃi\µºÑlÏT¤< ÏŽÃéÀ†"3MgQ Q@&L¾Óðf* )212ÐôšâôbO'xg [J5w¿¦³Ý¯Š%G;ÏÈÜ{ø'Ñ}G[ŽÇj5"šÍÐQEaµâ«Šø½‚2‡c2ß*¤­hb«P:gº·Ò{OR*òµ5°¼¨­@9²"·úð\õöÄL§57¢¼ê~è*µÃ술Xά^l#H/@Çãƒx*Â{Fuiº=I!…ÕgͨE32›‘9ÛÅŒ¢¸ę̀ÈprfT(¡¹ úm0ËŠ.l’1‰[²n?’4ºÙã\º^QéÇU¬Ãj^Dïu„ÅŠóyýß©G˜ Þ*n7¤:G,'žb’^MÒ)Ä" \fêÄ0?€ðËŽÑ’¼BD ‘(`z>¤€þYA–-ÂüÓBÐß ’wJ OÓÔ ú*H'RX"‡PÊmªÉ›Ø`4  \ÐÒ/Y)©td\²]ÑB)/$2:Ãè"¸[UG'/F`dQ~¼¦“œÍ mÀ±ôM!œ!0g!ß.ȨN¼îOB8aÑ”Ò{—,BýèF “Q·9ñ"ß&ÕM;*:zºÕ gm5¬J†Á›GX†€aÁ¨ ¾D à«;[Þé˜8‘ã˜OéïëH—HÖL¦ÓlÅà?áJt{Ü?^ņþ 7Hû‹¦²ùjßcö A $: î|hH/¯º\ðVß@pAþ–tÿ{ƒ‹¼’¨} щÞ@ CÏ!ÎrJ©Á7 ±Êfýk~[øÿ–þe¹…瘅…..ˆˆ„1_Œç"ü Ð@¨ú¥4‚_*YP¶ÞäßüoŒ_¹lÄùÓY‹NÙ%ë’r›àÑ ä„zþ £u? M´5°'?¨6PW4PdÂ*¾ÕŒpë’W‘އk6þH7 eŒáìØw4=¸2k…·Hq$ó‹ô<×IhÈgõÀ¦­¥ öš·ó¹Zû,éƒ(-¿ ®þÅKþ£ÊÞ•—ø¯ãò»%c²@òÕi¯®{ƒáðâšÎèÚFBº €È܋ۧ7â‹°Iy\OøŸµÔ…Ed_°ðÇ¢´/$• Y†þ÷eƒÿÛdËvU^èÌopYµÀŠ´0¯»Ù  ¶ð%¡—ý¬˜è† ·ð¥¦mA´’ßBŸÙ‘ºÏT2ª¾Çì…mD,êОq‹»)~e¸üëÑé¿lˆŒìË »±ÇÏ Œ; ×½lìW´¦3 ‹Ä~5ƒ½:‘`ç‰ý æzr½µÿ&ôÆaG_ï¶ß¡©û굎Bzøgû]V/ók cÝyÛ‹PD_ÅBþHæƒ:wôSq@ ÙÚ„‹Ô…ü€©í~wfˆÕ·å¦r‘b!ŠœÓ`êÅ+®’O7ŽÅQ jÀΖýânfÞÑÁƒl ?_}õ¦Ì Û~WbKfz0δ4 ÅnC棭cþÝšj˜ù[Sšìc2DQµÙHÄ¢°ø`Ž©ã£9Æ^rè4¾¼Á´¸íL?”×éRD„o>ÄwŸ1 .Àûq—µŒ… ÏÇ6¡â7NÀœ‹P4ªIH³¼+ß¼4[pK¯˜ŒHêŒVêæO5Ð%¾¢(–…¥„†iÄrX£ÏZN¢ýrõcA4½}á7d¡ZÏijj"0m>Dc׌…PãåÈ—1bw@.î«1!öç Ãܨz7ýÓÔrZÉñ ,J8 àµè´¬÷°¥ˆi£Ö{9ñ‘ÍàÛµ ¬MYW,“…76g5A:MÞUDŠ cwå²kšs$Áà0ŽE8cC-[ù岆=õ–CÂÔÙ8À»§C¼²°‰#âzþIoà,ã8aœ‹þ¡Øˆ{¾Qű9Zû4Œ¢£qû£o€ér>ÜÄu¹Åчþ5•°RË…±­b¤:WâÇãJÑãQJ7rŽGTI.9”“zÑ´sÀæéT+º,nØÝùe¬CöÓµÿÛ¬=[_÷ìÿjÏöñ!,víÿÃÁðDªŠŽ¾â½—Qßâ”IýŠÄ ¿€Á  ¡l+B˜¼€XFâ'„ä]Z Otüû}i^³BÆò{*%‡—oYë¯ê¬ìfZß…L”Ò%Ø(¼ªliÛSS@Ü‹*|NŒœ5Hè¤u m[Eé™ÇBõ?töúºÓVaSÖž}¸²`e#P“[GQ Vö¬¸-«RÊ­Wݘíµ^ufSØ58w`f;ÑÙd˜ýÒÌVÜÙàî7Ö&lÕ(O`ùÁÆ6pè@á @:½¾$ŠÈ8¹/ÃÂËþ7˸𽅺yÆØY†Ø“ÁÇ ðL„‡ñf¢ÜSÈø·B!«¥éè,Ic7í”´ñ#g?Ç.ḑ¹6U¡9¼A9”Ä:yc'XãçÈ Ý×*UW<oâ¤ÆÑŽ8Ï3×°Oø&XÁô[ÿi-?,'ãoƒK8’"a#Ë’zÊ•„zÓ™‰8$˜W4=惡Fû‚…A¬•ÁNÍ6¬m)ÓöáÑ~^U›ÄÜПª3™ÓÏ30Ä1§gDEG¿ä7XØ(ÁLð`Iá…¦Ñvo *sž œVfo² ÊS¸šÔŽTZ |¨šE:¢ëÜPF}p35·O€´wùôúÂxœ_q§š~Ç2§ægÚŸ¡{5­‹þ¢çÆ?ÊTØyÆöͬÌýÇ #{5ò÷â”ÿ79M“M ^]ðF ¸~ºTØXÇï™ÏsJÁ{d t2¯;½HO?ÙЖúH@¾×` ÷O:3> ~+áw{Åí*.ÁÈJïä[§kÇð ЪºŸq]§[ÆnÁlv:oH^>ú ¬òNð/õ¢`2vË=Ý)òŒYˆ«¿uDÃÿˆˆ†ºK•¥}l¯Dò‚©™aм;öÏa}bƒ™ ¶@¯¤›ˆ—€²ÄË.Ýïr”ˆù:³Í3™"» ]írp”E&u¡ãMC’rð¢Ðc{Ñß_Ò@DÞô•¤‚ÿWÒ,µ"«•¡80èøƒ¿T¹ëD+!ÆJâ÷cæ9òd’2‹Z OÇå“%1ÞË9€g^þUipæF!ãk‘Y¡«ÓÃ[Éáiì`ØÃ"ÉáUbxF‡§(ó¿€vÿ Í—¨L2HËÛÉè-7½ß9û$XŸÑq›R¸`rË\¹„òôszð=ü²NS{Ÿõ*£ îux5Q’”Üdö=#EmL8r€ÿ”a¦ÎTaŠÌ9ãôJDŽÓëÄê’ßÇg2ƒ§$’S$>9vžöñŽdµçRà£îb4õú45঳þhV!Ú.Aä‡ä Í*ì„÷:°¡ˆWSY_lD0j'’/Š1–‘OúE„9çÐd=É(H|«!’‘¼¤tÁ#èˆÄ’¦‹ }Þ…Ä"ç©vI†­ÿGþý žÒ·¿X€¤+â|œ‚Ÿóõ/C:¾žrfUÆ„™} š­j¹:ÈŽÑ„Ju<ÀŽ+æSp¤¸ª”DãÑkâ(Ý‹ ÓkVn²ƒ`szMkûq¹v&pq¦æŽK8þ?T†K(Û(ë•€ø/ñ2&ÿ,°­ŒEj B'Z({9‹$‰qãÿºzv¬¸Õ4ÕrèV1Êe €›wÚ?OaU1䣤FümD€dTðç&É98±Qi'óú¹TçÇšQSdo¨ˆµe8m[UÏcF0=¦„>R¯BqEñˆÕ5ÓÙ«èÂζˆ#Ÿ;Åɪˆ,eýŠb}U0¦&WŇêªv-ÖÑ/Ê"ö"?C $·°ÅcMÇ牙ÇÉ»"ÒÒ‹ÂqÓmj³¬›1Ÿy-Ø…É:ì(¬Ý.?öÍÏk0^ß:¬0þܦã²M¼”É“hôeÀ\)¨T ¡äã×V£ƇTEH+H%ä¶í C\$Ün¯Ô¶ã)­òîViL«õÎÎ*=°×2ŒÔ5¢ˆ»¦4.W!ò°1 ¿I9›´i¼v7…S|;kµÈHþ´Ž²š\6)ê×¥?‹MB•ïdu¹ávÙû¸µhùM·|k§50"F{÷õLÖ5 FÑ&€èZ~·hC»ªÄ–HI»TaU¡[Wå„åŠÕþœ^»/ jeG±Ì—ýÓ ø}–^qö xSæÀùl2jŽXu$¾dfÄOeÆ[å¬×åžðêÕ>Ü@Z§w ‹(ÃgRs²m!ˆ$>=±,l0x3§3¥àI—ºóñËÏðúÌ»ô™^\c›Ó14•v¢L£Œð*Ù‹4²¿$ò.£K—(H²6…J2ÉErx”§îØjzl¡€Ì¡ñQTj Cm°–™ŠT4Õ±Rûˆñ›»¨p¤;Šs7:­o€xÊWNªÉ±Å†¬ëšƳAÁU¢ˆ@¸»ÓÀ ËrÂkp_²Žª)öDyÍÖÙ±€÷˜âš6D¹gvü}¹¡ùhêÛ*&¦bú­+­«›€;_šw|þɈ 5\5D÷lpZ‘Lüf$g™,WóP™Y%#yºo‘¦û¦iµ£yºo˜÷ûÒto>Š4Ýó'¾]šnN×ÞD›DÂBà ®üs$±.á­,d`/€ƒFûCsc”ÖA¿.þ~ÅL›²[ *øks nbnkF¡TáÌÊ{¬’j»C zÄÂÚ¾¦nIgÔHÙ‘hc[Ž™ÇÚz‘$Ý÷ü3ýäåž'ÐO°2q1€}6êÉ›ÿ ^¡è¿›¶=»²Nw0 rÖ-Ýâ°»áÙ=ënzxÞÃa÷üQví‡?ìžþ¼»óy|w‚ÌVlÑŠK{[5´Ye¦OU0”PÖ$v$DøAÄ~¶=c£¸“ÙÊb™ä”ù/u¾EŸ9oÜé.;;üq>Ï%z»HT&T¿>ã/™vâY‘“èyÏ*˜2Mº,R e&‚9 é’I£8Qt\²¼¥êVL{Ä÷Ò63¼0tE†‹iØÆò1®ÌÊøûbÔ‰1j#3ÐÄhéÙ Ú&éôz8›zg0\d>YyHdþéˆ0˜MMcÐcæ@ÚÆÁjDtÀ9N}à>Ÿ’¦ÑEZ)\埘Wm€JÆ@.B¡T$â/¡»èä¶‘+¬ ¡ÈÌhgoÆüV¡„y»"Æñ*ëTqÖ­x ÎÛ¦ž—Qq¡;„5Æh¶"cXbT91Y’öÆàŸp²ôÀ¨¦BZš-ø@1H»Ä­*óQÜRŽédG%ÅL6m…}õJ~†n³!?W÷/“l;š qïâd–’J[…S*˜Pº}›tÒ¢/´Ès•dv¸]Þ/ rѰÜ<9";ÚoísäÜv^våËmþrÿî¤yÛw+ēͽsš ÊB8Z÷ëRüùA ¤cyÙÆÄxµN¼ZwÉŠÀá/ò§¤I$!àóÚ_e喇3ÈÌt3Ô¢@è²£Ó Ý-OÒÙW æõŽÓnlç÷?Øš#(2éÍÜ‹é:Ÿ 5·˜ë’-°Ì !% ªë"Ë·+œj°ø‚Ø‚ÐQU,®O„Ýt gU´c21_þs}]{hûŸ§5Wþ³¾¾¶ÿ<ć–ÿÕdÜ##Ôѯ“À{Ž\Ý·“é&B%6}iK† RõÄÛ9Âì|-8ßZ2*šÄZÇŽ°,æR‰_µÆ-ÙLcjÚ(á„NÄŠI¯—(1´«Æª|áÓJ¥;R!§«áB,ÊU§«u54º2‡}³®Z²+%%#ÑÉp|ú™ÚTnA•Ÿ¨‚nkИ‹¬€,åVY­’Ù;­õËdÝ62ò_¿0 Þ>ÿõMÒû3"\ÍN'|[+¥h¯Á ßÀÏ;ìãx]‡Ç)hS†?á­aoë;wE/I°‡óuW°ý™­Ä·ŠìšèÈý©üº…ÓlæeÙ¼y’Íx-z½eª¥¼ÔJgU#Ó„`þi(qÑÎ[™¾)ž© ÝÅÅ[\µE §»ÊEK5ŸeD0МIŠî'uPNÆ/ÏÏoTv[d¼áÜÑCg¼Ñ…b‰\Ì)6Y·|b2lRøî#W²â°Þ!„²ÜŸU5ýáX… j÷ÝÕ².×ÒÄC\¯…½x„/Õô1û5 Rø|-›×w.äËk:Í4 4¡°,™?8ºBš«XûQ«è|ËYASv…+×PÒhe…$Yö9zd+‰1ù†®óåËhD-`­@Lá¨ðƒSŒ…APô’ÿ<¬ýO’Ôžúþ_ÉÆBþóÚ®ü§½ÿü@ùO{!ÿùQòŸ¹¤?ë éÏBú³þ,¤?EúÃñ-~ªmÝ­ 'ÔS«¾Ûy—+êÅîHØÓ®v„>‚îô°×…§w)û¹A ê…èn@íòX1 l:øGÆÝãä8}LÆ#Xz½¨-°vFDGøè9(UþøÏ°­À1mAR „,fø—×»Áè½gF+® `Èa'S««×Ôm8ÖlNbã‚"1æJÅ<1ûÓØ’á?;[ÂÍ(&ù€ oø%-!c˜²¥ŽÈʶ”)ö@i L%1qdiB$’#þŠ U¬ˆ"ôävâb¹}c¥È‘Qɂھ4Ï‚‡œhÖDø‡¾ÚØZI _2$¦\F«¡¨TRMˆº0OBIÈAcÌ‹¹¤¡5ò—–EVו;²‚é¶ Š™+¼›ÓJÏqà —Ÿ±aòðÄ1úÂ爬¹»BŽã~w…3I`6sï „1Ü»+$!$Œƒ‹9»"¸pÖ–È0€óGÓˆm‰<¤ÏÈàÎÑN_3Ä·QÛµÅçöWþ;¾ú8›<¬üw­¶éËkµ…ü÷!>´±LùïÛý×½®É)î ¿ÏØûÒ.5,þÕ„Àw ÞÞ›%jð¶Ãp”»%xcb”0?tÐs–žcÄ™þTºÄ…Füâ ÃC±06ˆïF¨¯BxP¬œÃÃý^w‡]OA,´„¿eÿcú‚ìˆÒøoÈsÿ{Sâ(ò¦”€ë§S¾¥Ê'ËTNVúw'yrPW ê̇Bì Fvé—ÁøÚ’ý‰†µŸXþít‚TWŽzëNæóƒ´$±QVÁë¾ÝTDâÚ)—:+Éò“šêI„øGÈöhe¶``˜=ÅKah\˜öÖßk½ cV@*?•=$3t‡»ìQÈ…ÈX8k]‡B¨v³’ÔYçIíÁ*6ä j爹EpžKº›+Þ5å»’ï~rù.x0Uò¤¼–gYå…¾tš5 ~þÝŠ~çð:›_¤û¶ûºÖªÐïîOgÁgÆ6’]=NñíAQñíÓ[‹o‘uùùì÷0'Æ™ð"Iï;§,)ô4#cÉIGp†ÖŠž|v¸ôi*RÉ÷…‡7EI—~Û*k7/Å9CIÐA0£‘¡aåƒT5ýÄG{B|äåu±ä±Á´/2Y »qî¶HÅ„60KŽ(Ì*\³ž ãžª+h FÃ6BÂ{æ1w¬¦Ö#MQ·ï=Öë¢ßW“ þ´Ü‘T‰W‰Üùôy…2üûê"EÕ]Éàü¸Ù²}Øï9uü»ÁÎ$;‰\Ÿ/è-h͵³<²1c17"‹‰¸µn5û”°?Ôl⢛Yo3;¹Ð ¶Åæ<Ûâil†Hþâ™5 œ­½Uø?7!£FÙ®²%T$êÆE‰ —¼‡$ô%"÷Ãb!÷»ÿ/ÿ»|hùßæÚÆS?þÛ³…üï!>´Álù_ääËO,h¯[ïÊ`pJ¸m†PÈ \PH€ (&5ܾ›Rp¸mÆ‚»•௬2Ö¥$G’ QÄo—¡q„QY@eDƒ±¾RÌ|í€á | ‡® ¡À¬’=U²\î…±$ô/Nš76Èzjqåß"øúèoÞÃ¥ópßœè<Ôƒ-35¦ÐÌèï˜Ð4"²$¤ÐB!éß)é¿ç‘’þ]LL:_¨·>Æ=ëI\-,”Ȯȳ›Uí4VÿëDµ„õE¦ŠÈTLW$0ÝñâêyÅ8¸E§wsï^hlßDþ¢JÖ§Ô.—Ú$Ÿ.‰LÔÔ’í"‘øîPÎsç´çr|–àø ÛÅqyr=³[¶àc²[žONÞv®€ }ø>.eGk{`‘»<-ŠZŠogZŠ;§`Ø@<Wó ¼-iýµ]FzGÝeÐ7Ø2"Ö›“ŸãÖáÞ¬OáØov­p ¸ÿj-ÁÃY¿zÛ=îîp>t÷Us¡oá´©Q€¿ë7Öù¿mLUذ² 8ƒ¼ê]G¸WÍDÎ| XO­O0bá‰÷´Òº„¸²pBÉÐIÈQu¤/”ÒXBt†+çïÿÙ6E˜ö+G´¯[#}4éë?áäT«QýÇ­5*ž†Àõ›”Pîeµ¹î¶ÙÎÖÒl¸ås´:›ny~6˜ZvÆØ~‹-ÍZö=iuD&²ÿ5¢© b”È*‚BZ$ ô–Õ\szÑIÀtµ‘Àá`?ªÁ¶:ðu¿hÃVyÞùØ|¨­šßÖº¹ëŒö;eަ`hÌž°šÝ–cìÉ2( ÿtÅ·Ý0¨M°y­ÄÒ§š=f§OȦO gÀ˜÷˜Yk2¤€ÆÇ•ŸË!5¬§á¼¼‘v/y»ƒ@»@»¡$ó:—‹Ó†ˆIú7$…|èj^˜™aFe‚\UªŠ`IÅÈá"‚@‘+"2d!¼5Šï &ÿXa Ow A!ËW1ý@‚*‹$º+µœê/LQ,úPœ¬,(Ê|…ö¶í‘äè­¢;µLºs³íx3j5X!º¥WmØ Þ&I6¤†Ò†Oqj6X ÷K+êw/Òï\Ô.n¹4+J«¶KxâƒZ¶3ݘ…îŠzáF‰€žþwò±6|ØøÏO7×Ö¼øÏÉ"ÿ׃|h[ú_²\"eo3ÿý‘ù~Dõ´ÍŸ/<ÂÞtí±Kà,G¤ìÔ~ÀX¢ês‰‡R¯R!%iÐéƒÌ G¦ ÆJ+ýّÆ`J¥zi³Àü(â‡ðgOEI¥\ýë݃֫ÊÈ»PTÜ¢J6ki«šó¶¶¶ûŠVsrAhí”·Žü8Íû —SU?¯ –Aª.Œü0¤mLŽÃ¹K¸¹}ŽyU^ÆêöÄ#Y"hÅ`od¦&lv„mÿ[õô{¼£Kð± tuÀð„²˜V[LËË~6XXÓtu¬¨ÕrÓ‘€ù̇;ªÐоäë¢l?^ø_—ÂãÕ ¹DÁ’×@+4•K 4ŸZFgFÌÐÌîßPžÀ¾cN±€ô AÇn˜¬IIèÆÖwÑÀ‘pü}=€4U¬¯%uâ^ÞÞ°©úp»RƵjº9œÀ÷û£ ó㺆ï[¯÷ïÖ%\$ ©’*XR—{ÅéXÉé Šn -ÎãD°Ô®4—ÝdLæ^‚mYºÃK—:Ï‚s0ž >F2"G3 Dêl"El’û^_¸ŠnGD æîès:×[Â?OºåŽÛ’Úß ±î:5Ö-$‚fgáOI¢ï²‰³¶K•—ml¿W ¤<Ö+jyb°'9Ba`Tø0”ôW ùh±þ{?*ÓÌCOÎ$äø–=,•9⤠Jpnɲuæ¯fÐÎ`#›ÄHr°)‚EØhC¡­|gyÙÂðW° 0€ëKv•Nð8¦FeQ­ 9BèV©Áð3°g™€ ã‘^i µù³Í.³Ppf_§|§jäßfD ³¡ñhø\¨N¯‡}žHvŽ™–(°3±`Üf3˜‹ öæ IK¨ Œ4féd2¶2^ò‹ „y™¤0äh¢˜/rzM˜H‚6Ézý7‡8øÁ[G»Ý?ùN¬wz2TAf@d›7ßîÃ=·óSäÅ£÷•» ¢Ü:  ÊwDù®RáåJöqAuÔ’Lð£MIÛõÓµ1n«\Dr±D¹{°ZÕ²GåÛOíû®ý¢£ý¹âä¨ <5‚©‚(1s(%©’ê ¸Ò]an¸,ñ&£BÀºMP²¨Šjª°*£9g$ƒ9TO½º¸Šfmô’5ŽV¼`¨S•Ú 0àV~%—%äXêe÷Ãy˜Ø’!>«Z"oϱ/ØLë ¯G0OÄ ¶‚ž²™ŒÄK8—Jç@¤ ~i«€~I-bxî%V„Ó‡9ý$¯ëÈê¬Ï+H͉kÔ œxTþݡМ®ŸupÝ8—×»«Í°·oC‹§ˆ¡2ÅJAwXDÉl‹.)Ëu‚Q³ ßoC‰­Ô^‚ÐË*tx18ŸÝ$êôØf ¥ Æ•æ¼D $–-7"µÕL(.uúÌÔ:rˆÕ*®o:cÂÚ5(š™Ñ'öBV©ª.šþ–Û[EKg¶v*#·šU ’63££×£Q¹æ<ÝX¬/¤Ñ˜ÓLîŽRíÅe…ÿ ¸‚ÛÈ Wý£nF®‹:͘‹Ææ+—XÚ!©$DZƒà¤øÖfŸÑ˜(og7-¥¯·¯„|Uì+þ „¢¿Óî ®up·[ ]bgÖ=}íOΊmiÎŠÍÆö¶.¶§söF,Ð< ï̽‘ažÙqä«0¨ …a>}¨É’›úàÏØ¦QOs÷tVy¦öE,ŽçØ1­´¾Á|¯wß ¾Úz0/Ó¯#\ùàbP,øø&.lPñPS|Îy½@mÀ4(ŠšÔ”£š£Ïy!”°‚[êÎdØoä -Aö¹“ˆ$odƱ˜–~;M¯f¢=³…éõ‰œ"ÁõgEýeKúàaðð‹ÿê v‚Æ­ý^½LäÌ^®Ñ«—@i÷&KiW Qâ}èí:sZòÿ€d”p¿®ÞK°ùô]%QËVx9f …×Báõ¸^¼MHÓ¸ßysWº¥LR–î,ªcñe¿§ŸY{ÕyÃèX®ÂA,W3_5•òÙS<=lÁå%àðíu±´žžJŠV)›5–±HñÍ­<]²Æá±vÕ=”ó¨{žÛ‚€bêžNçþgkc<í ŒöA´/o~íË]h\¨»;/TpvŸêàhUÎ[‹6ÐHNK§…$JÜ£ ÷J’ÿ›¾œüª¦Ø/ÏyIG›zÞk´1GÇŸGhV Óeh€Ei´X4©”™"ÑBmwåzÅsµB!§²gsŒäYñ‘<8•á¾yu- q5Òv†n€¦èÕÒ¤˜ªŽ|…n¸x‘‡ÇΨcXP{@¯n+W}óß W},Ÿ€üwX{àø/O7×ñ_~Їö¡#ÿmÕñ_~”¤·U»IüàV ¹TsG~±´Àó‡~m<þÈ/äüñCƒ¾´"è èÝ3#¾Èqº‚³y#¾($1RøâF|‘k0ø_ÄxO¾\XïÂ9b¼´1^1^yŒ—ÛÄu‰×ýáq]Zµ{J»ë¢ 5-¸ÌôI6D|¹DS9ã°Ž˜jÙ‘^­ ¸øÒŒUÆã¾° “§=Xã¦+îÁÌݸ&,&ÆoÖ‘äÝ6l Š®ŠÇ1#³SÎd–aNlÌÍMÁe0´ÌJb—N"";ÀO$ôK0 ó-¹˜N¦'cF­É2‹Ÿ'À Ää³…›˜áÝ´î0ÀL«vÿ‚’ÐýÿÿÚàW?þKmqÿˆ@~çþ_Шø—ü”±]Z¶4@xªß4 –4 H: iÀBð¥N¤‡…4àW¶3BWÏ5k/ÌéyØÏ&5ÊÝXDtC[°-eÖ8>D‘R“?nñþ$a7ð÷ÝÃMû¤¨"¿€©Ú¯&’‹Ç¸ý™†×\"¾ƒoÜ%å·w§GÂÁtîðÎ{Sº{|ÈtÊmD”-òGYη`-Bnñ;ÒM—"WBté Ÿã×Ä IÓð°¦3ëz$¿œŽÏððVCÇáàb¯UÔîZÏÞ]æ²à˜ßÇFi ”ÃZ³üåž­éh|ýñùãè ÄšyùÉ€ôÒ²<CSø c>žñLCÀ6ÕÜGg듞Ϝq†ÁmE9NÓ­i0B†‹¸Îrð¥ô}G‘¦GñDÌÂ/BøƒkTÓkT+¾F¬˜ÛhÙAÃÝUêÛFEñ-ºäGhæB²þùL„ŠD‹C|gð§úšñY\q nêð¸+¨‰•87Æ/üg› $Óœ`V;ïqÞO¨¶j³)ƒå4X¾ ôóg‘<þóg% µú²$õM{¡´‰c3CV1sd¡˜®˜Ý  ‚3Zs—¯¬ÀÞð¸¹ÔÀmØl¹ƪ7›^síÝ 2U`:ø³‰?ëPiá¡í"Ê…d¹°“¾DÄ>ÐE-gq„EeS9‚òÁ¥[€¥kVQšîÑŒÆJcK(E²œÂ)lé ?úxí_P aÕ…Ômà y¢¡åA¸28Aï)y´ž¢ÇOIÞ?D€ßý:˜¦KJa<¯VZÄ™[ÆLÃH½$‚Ð.û³Ê›%¡ºáCÍ×Þ¸£ß2Ô,K=ú ‚@øšSæèÛÕFµ±%²ø3×z—< мë´ðneþt 1¶@#aškÃÑ¢Š€úoõ§×“ \ëw¢Ñ/j%œhÆœ¼aгÕ¨¡NY9àDÕ[HUÄLS𠶈™ú$ð lÈ@1Vl®Gb@cSM¦ƒÎäæ8 ®µQíÔÁÂŒ÷ñú¿¿‡¬ÿ[êëÿjÉBÿ÷AålýßAk¡ÿc?…þï uý_‘lÈýv¢É ‹(Û·SêdóW øß’ ²D¹˜¦”-¥DT¾›Œ ý`pƒþÊúÁΜúÁŽ«twåB?¸Ðþ*úAK7(U€ñ;ôƒèkwl¸þËéïKc÷¨¥î ]À ©!”)»û •»Ûl½cÉç]åD@1ë„ûq2 ©) Ø=tËÀ…˜"¨»¼¥’²cöð3))#ˆ÷C•”Îý×+) ¬ûI””Ä †´”téÒ·®¹ô”¦ Rê+W:[¶Ê2¤–¼¬*Å$¿‘QMvX5®žlãËŸWEIàè(•¤Ö *#~û÷¡`4@ØÄ$:& ‹éù°W"Oß’‘TІŠsnr•Œ[ýÓÏR#·(/mûJc«Jú§8oÌdLnœmL?•¯q$…#ß ‘ÁéÐfXA¿¥hÆqwR[:}øRgL)'¥öQO6s:q@ào  3[±T“ó«•o¢ ÔÂ:H±ûL$ŠHwjñI¸XWFâ@å0_\ίŽD‚ÚÆŠþ3ª|Ô:ʶU6šÒâçÓS´zÊø'¤ÿ{àøïÉS/þÏÆ"þÏÃ|aqô³-ô÷®ÿëÞ—þXË{PúÙÒ£ ÀîBøX€ƒŸIõ×õ¼º¿»Öýuº¿…îo¡ûû/Öýý¬¾µËcüHõ7HJë/ÿ¡¾DÓTÿð~‚?EøôüyUpá¶PÁýL*¸ü5b?‰ .ßOðF*¸»sÁ ªåFyú8©( Eök] ÙO¡‡+æ*Ø º Öºÿm®‚‘ôÆì§rttWÒ,Îã2–ç[VTw‡qA{3º#}šVæèƒSî(¿Áy'ï¨éD@FŽ)Eü,ïJc7hÀ¢Š:܈ÊQ𞜅"ñFž‚™~€9á'Õ"ý„¸EŸöÐÿM<ÿG²áåÿX_Äÿ| \¶þ¯»ÈÿñÃ4~ÝûÉÿì]§ÿ(®êë.~>†€Ÿ¥Kåæ—öó}Ý×Ç/õÓl&+m§…’ÏÞ•‹t +Hc‘Ä|üjño£è>†” hh{—)A²U’Þ4%H§Ú6“‚tªMJ Ò®vVn—„€2(¿˜@tÓ…keiýx ä˜Å£½Òdÿæýh4È’ªTd n Ѩ°§nH‰LD´“z@ÛЋ“ÙÃèȬœEf:‚ÇO;ø%ä*`ݨGóÞÞq‚î$øÈù„îÿÿ£ölÍ·ÿ}º¸ÿ?ÄGìçþ¿ÈÿAíýxiÀýäÿÀÛÔ]§ÿXHÒü<iÀÂä· 4à×1ù½u:…ɯø,L~áóÈM~sBþ„/wØÃCšüvé@~LÈŸŸ^HV<ÌO$‰»M˜Ÿnf§õö]‡ù)–Ä€Ý=…ùéþ¼)J~Õ\$Ä[ä"ù‰lŒ ¬ûIlŒóÃüÌŸ‹äÆ1~P®ý¤¶…lŠ;Fš »â¶ˆý¶ÅÅbütà GIŒ[§a½‚³æÅþ13ŒÌø'¢=™3ψÐùè˜?bNw‘s$8ÍÌiI‘üÆ›ìiGB¹Fn™OÄTa[á®J,’3·5|ò"úÈÊaòŸdZKÕ•§ã"i¹ÐÈï|9éFöŠ.¥aDÜ]¤¹O@ÿ7{àø?µZˆÿ³±Ðÿ=ÄG![ÿ×ë–ØÑ~ë-²­¿ˆþoûM½[ß¶Dn0Å áŠÅLÕàO¤ìYqHˆÀã‘¥ +¡Cå7â'cX#¥5~®ÆGrøg¯»ó‚†Å/‘PNΗŽ8 q€<×Èd¸D>ŠW¾¥Ê»:D¨_@Uˆ 1­'P‹]NlÑ2Ú vtu÷d&‡x¬K­Ê4 —)ãä¸ÿvúhñ>Zã¯wÚÇ|úKZ³°Îò~t…_” ް-ª$å´ü¸š(9_»+¥³ëÎ.€íó©ï†iÿl0úXT×™S×AwD£ËûWᙈò+«ð:Dt¹J<\ W‘g+ÅÒ…"ïgUäý„мŠaA™¯Í«XÖàw¢Ûã\Óþ>¸À͈•8ò0{C[7§Ö+Ôÿ!ŸmF¿…”bÑLÆh + 1ÈkE¸š>> öÝ.3£^’/ç|Œ¥ÜC•45BV•ÖR†Z-‡§°úÏQáu2úÚðêzñsPJ\<‚γ¸¼¯E–—úÖcé2.ç³°Æœ;0˜q“÷(cDÐ1>MgÚŒóà¡(ÌOþ^C72C³Ây¼,<Á ¥JÙ É MMŠø[ê².xᎫ‚ j[˜”b6b£¤~;9úf·å a,Ýkq³f%“¬Ý.¢ÅèÇ`mà ‰£›ABq+œk-­Þ7Ò¡FÁÆ:â3ïí6…¯ŠÓª· ‰‹f]áA³Òþ…qRR×ârk5ŒÄwœáCxJC¨…ÜEd9ô§‘ö‰ªÅu`BÖ^Œ*üŸ«³ÒøØõñUÒ5Se‘«“qV=i§éKôÔ‰‹ô{‹¸ ?üãËÿ/kœÿ;yöÔóÿY__[ÈÿâCÛÏ–ÿ·!¥Éacg—ÓŠn½sX‰8m×í|Íç#WȸõÚ¾D,wîI´]¢vo¯>à Œæh_')"mÂPxYA¶‘å°ù”2 :À†ø\|ïðk™Œ:Kyuz^mÞÏU§›ÛÖYʪÃû¡ $ <@‘]L…â8N™QS ‰ˆ$ßÕ˹“¢Ó”êå243.‹ ê,ÌŠ¨K@•ÑG£Š0Qâ€U–&- Xg•îÆKw…] ¯@ Q¤÷ŽÑ+™Qï–’=]r‰•zF1(xždÛ÷ãI¶½úpÙ#\·¡7Ñ/&®UL3KÍe¡\%7ýD¦^Éñuš'ÛDÌIn^·3W³)?…ÍÇ2LÔa+_ŽÏçm4)Ͼ“k~‹J§|lüݘÔ,w¬ÄÊXZÇ?-kyo¥ û¡™ë¥8·¨–s;SËéŒa%å6Roq¼ÎÒÔ9(oE¤ßÛeN¦è·Zïí;XïíUlÈ÷:,ß' …ö?¥Î²}&UŠUk/Ûˆ5§.éö„~6MRŽé.•F»àKÕy ‡o˹u°tköup’âUàßA‹ÚhÜ­J) á¹;U…:zt"¾xZD÷Tçˆ÷´¬º„¸µqþÉ08íçUm¢M*Q^½¸RõÎáÙa+6ð•#Y×­‘ÚšôRbݹRØ€˜©ß¤œr/«MOi•ãçù©å(Å<Å–Ÿâ`ެŽFí cfÏüÊÛE=ê’µØΡâWÊ{Š;…Ê‘DÿÝJ -|Ä£8-cu–©~AU!+Ô“·ÄÖ05jà"a|_7ÞÛ[«6ª‰SU£¾¯­ ïц¹­Û sûz¨„NGÓ|c(No¶D£PÁ½™ß¹d2²m¤råÓ툈«ÉhZŹrš¦Ùšöt-³‰:z§€:èŒý1¸ñÖzîÊÿÍÀYDÔä‘I*ôðHLwL™™ëæàu‡-C…ZÑS|_f ÙCò߇¶ÿ^{Z[ÄþA WþÛ]Èõ,~Eùow!ÿ}Hùï|9qò_ÑÞBþ»ÿþxùo±là ðO%î.À ðB¬?778»¹·½/Á A°U~!Ÿ€ ¸€‹ÀÛ‚Þˆ4øñ ‚ùgo;:K0 mZEïYP< inTHŒñ÷­W8¼Ê~OJfì÷´çö4¯9 A¾ð¸—ĉ7ƒ¢€ùVä…™ö¯û ÈÿOVþ_KÖ’Ä‹ÿ²¶ˆÿò Ú׎ü«[bïv·!øn-@˜Yäè—‰c`”q—òU÷”c"¬ˆ/˼*ƒÆ9NîìÓ’P$Sƒ`ÖßFi;*üÁ’mó+˜)èAÅ…îA~PÜo•ì©’årÏ(Œ%ù#oJû?zJûþ”öÃSÚ÷§´¯¦ô†´€ûX¢uÒ-ÏVjœ¦®ááëÝ-ð,¼HQüƒÁTAÈÔ·Ô¥:œ úÔ„ÙxÁŸ¾Ä5ÙcY¥! :ÉQJ!’žÆE×ÈÇÁ$^#‡Ù^ñwƒ/éð»–¥36ú›÷Òà‹‘£a½‹ë)¼Òü­ 9¡àIã MavÑŸœåjpSÔȨ‹þ—”¤#dZ|ŽfW™O ߣn–FZuÜ to¨û`ôÊžûóë¨o¡ôöÔw ôö”Ø9JoO‰£ôöôÖÍìòOÝò%f-BXí úZW²ZB7¥æ'á{½‰­8z]ü„GùÜå< u/üH‡Çs:LÖm$.žþL'”,¶áèŠ^ØÆè…ÈâÊs·Aøð_E¼½µ[õßÅ‘•‘2#É34:ðÓ­nã¨ÇxÓ¨räˆ¤Æ x3¾QIÖÈh0/Ó¯3ŸíÅ ˜ÑÍÍÝ¿ç1‚ñ+ܵíKq«—ÇgíÒ „v¡f9úäõµC¡(jÿÑð UÿýË”ÔY 2”Úø«Iúe0¾žâUÀÒž üxþ}ÝÊÌFL–~;M¯f¢=³…éõ‰4¨#„}Áñ´¢þZÎÒñ¢¶3‹L~ñùð_mÔHóeu´£ˆm`b„DMUÖX:Ç…=ÖY«wæê ”)wkÀƒ8mÇë¶X­Žçt« Ìo®“cfóæ^Íluÿv½Ôƒq1 Ôä¶ ‰-ç\ŒŽSÇYЇð‹×Ëó(Ìk3 ‹™…ÅŒø,,fàsƒ ¤ʸ­åXÀ¼ùõ­`­õKç #N­ ̘zŽÁËͬY‰!ˇZXåš x’‡Ÿ$Ǩ‘޾½.XÁ³náH‡†`X‚¢¬NíòWÙ1<Û—yb<ü*&)1MRaÓ¤Ìô+;ç|Ö$ot“¦iÈØ?ä@ª ùÛŸ g,GçÍfç ¢jþ:o ªèhQÕwó/´Éý_«¶ˆÿ¬gñ ÆþÿÙûó¦6²äo¿_EÅÜ_„%I`w»§'B2à‹l#°i?ñÜ …-[HŒ/sŸûÞ¹œ}©* !c[5Ó¤ª¬³äÉ“'—OÕVøÏ³þßÑëþ³¢·ÂþÉñŸçs{åƒÍò{‘ý‹˜o„iXó.´dÀ/mûÜ>24 Øûð€­¡¹‘+dèïÅ :Y!C¯¡WÈЋG†>|ÐÀÐGµ ý‹TLVÀÐ?0´4Ã14´É‹ú2ñ¢ïú¨¶òüØWÈþÿŸåÚÿŸ<Ý~âåÿlo­ìÿ˸xñºöÿ×÷‘þ‹º~àŒŸ£×?}ÆÏ°ïgÙ÷Û˵ï¯|V†þ•¡eè_úw­R]V©.«T—UªËqŽí&å\íÊÐΠψî‚^=Ù¦[ÑÒ…Ÿ¬Wâ@Z­ãhj²³I$ç´ÞvØñt´KçªøÇKãi·Ú9™<Üg:“eÅNñôuZC¾å&Ñãy[FkfrƒÁ¨ÑÏÓŠ°öý IBß ÷WMZùàîÑ·°ÄšÍ™‰;†Þ±k•á Ý„”„MJ³¹õìöÿ V`•ŠI*9Ú,‹é˜wwu O2˜õ<:×kNÆ$òeªEPÑ"Ú((ÃÇð†Ü9¥'™;§‡šþ@sz–ÒC{p¢÷xGyõÖhG»É†Â+ÛD?ôÙøm‡´æÇZxG,½ŒÕÉÇ¢Î÷ÜHb‚šæ²Úœ\æ±™‹éu*¾2y8¸ø£ë”O„sÝd'ºJ*l4©‘™PBø~iÄ’]÷y{z“œ´HCÓòã‡ÚÉl¹Ïq¿0¬ÆË²c°5†Ô®Üh­›j_pHg 4è ÝÁû©oEâmJYì²á÷RËÔZï]lTÝí‡CÀ#xó—îèêêIÃ/_zãôa¶(§¯iºì3Ž*–/?9åã™ ÇMA½@cØ£¢1IfXEâGV$ÁàŠŒGB,’Ì(‹Ä´HB±‰ ·à·G'©é¶†§LFXÀ”ÅçÉ ¿¨ð)0g‘9á:¸l‡\ÜÜõHÇíefüÿÿé/Ùÿ¿ódåÿÿ^óˆãÿ}´òÿ¯üÿÈ+ÿÿ‚ýÿ¯Vþÿ•ÿíWóÿ³£ÞñKÇ Øw÷ÎÃÒ”Þù~—œóÆL>xÿ|–7ÔFÍÌô…ÚšÞÉâtåä_9ùWNþ•“_\+'ÿ²üø†_8ï¥>~jY9ï弯­œ÷Éy¯\Œ¶»Ä~ÈsãkGqÈP¸rè߃C?Šs‘YµÅ3Cu&}Gòf»"ÛD3·;ߢ²´ GßɹÌsë¿>Š8\ãû†yV<¬9:ŽÙ…ù ß]ô7Ã;HîkïˆJãõðb нƒÿü)¢|ûƒ Ôfr ¬J @nTÀCöʳÞðÉWË^Š}âzå›ÝËOÒÇûœŒxÚ3¸ÞZo57ªù¾Þj0Õ~Áîùê³›OëÜÍú¬—.Ê-_ɘ2á™Ï”ˆ²¨=óÄÿúè%„üÿK®ÿùdûéSßÿÿtåÿ_ÆÅ<éúÿï¥üÊÿÿÃùÿþŠŸ‹ñÿ“NRÓZʧ¸ÿÿdåÿ_ùÿ×Vþÿèÿ?ñ²óW>àd° X¬Ôµ x «,þð£–úüIVYü¿¦Ó•Æõ÷Gêrü¦ ÏàŸßéþ€‹r®øm¿|qþâë¡ûåg2×/Ë/o»Ú‹8ç5¿|r_ üÇ{לz×y¿J«iõ•ø¤ußK¬“¾Æ{wäÿd•‘þÿѲëÿnUë~ýß'+ÿÿ2.feÇÿ²ªÿûs×ÿ=YÕÿ]{˜ñ'«ú¿šÞªþïOв®_¢,ÀÉkx`Uà¾âNVåW嚯÷Ç+ÿ»*û»*û»*ûû@œ•»ìïÉC/ûë;*2}¦¹ãG*û›Qæ÷¾ËúŠ·ÌÒ¾”f¦¿š¥Ž¯Èd‹ÖòuIÏQ¸—óýʹòódƾÕ@^a¦9-\¸×xýÕ{OVÕ{ù+dÿ¯/ÙþÿÄÇÿ­oï¬ìÿ˸xù»öÿzÌþ´rð'™.€Å P_y¢àôÝÉ»•@Ñ[y~\/€ewŸ†4÷ï½ö§]üm·ÝÑD>ù×p:N? û¸<ôävòˆZ_ öìhåߘÿAÒlåßXŠƒwŽ{ño`>äÊ¿ñÓù7ö§ ì€ˆÜMû¶š`* Íî˜rî¨KLàr­ÃJy•N@D.Þ@g€fç²—bånz;Ù¬Øú<ü}8~ýŒM‚¯:{r·Ü³„¢œËføD|}ÿ»=Þ­Ü+·Çáö0¶,øøÐb_†ŸiÊ5p¶A¬O¼w¼üæ?[ÜñR1ÑLŽ—úäx!…B¶§®ƒ†pkÙ¡øV¾G†GF’hû$¬ôE{n„fY8Ý!#×ÁMtˆyt¢¯Œ$:dd9¸)Yžõ^?¥ ÷D×ms$=70-žëÆ7‚X°*`"úc:jd 2\5õ{rÕ„ìÿÿY®ýÿéVmÇÃÿ«¯ìÿK¹˜§\ûÿëþß ÿù`…ÿwÿñý+ü¿þßlâ_ÂWþÎ~þ+`@§¯+`À0 _+`ÀE{/~t`ÀÀ1ŠôÂÓx_V•ÍÁx€'µ`àC \U|°ªï“—óëL¬“lÁ“׫²3ù _?HÃ_®l`”oPxÂÙЄVð„žp޲Ä@r˜¼°êφ܌×èÛÚ²^öpPï\£ðdøež…‘DÂUBõÒEžVb6¾aõÁ–'<Ño«LÐ_ê Åüw©ñµ­ªŸÿ¹½½Â\ÊÅ‹Þÿx·àüÏïrÐLуWüY K ™/ÖãÝ*Öãþ³8W±«X8Öc•Ι}ýQ,«tNùÂ9sQ,Q,­¢XVQ,«(–Ÿ#ŠågO ^Õ«qrsžREÞ¬læO¸6ïd€M}`³ °YØx¯2ÀW!>?EˆÏŒ¥]ƒê‘Ü5ØçÝ*ØgìsÁ> ‚£U¼I}éåH“8’Å<•J“8ªÅ*–hÎX¢wñX¢#³TªÆ­ˆï"û­«j©s½[h0QŠ$P05NEÇe…AæjÉP{2ŒÞ­Œäˆÿ™Œ–‹ÿ²³µãã¿lWWñ?˸xM:ñ?§ª üÙ«£—Ž*÷CÆÿ,†‡F™Å"a@? ÌéÉO¤ÔÿS¡À/ðÄ\W16:`‡¾8‘:ü†hˆ’ü”ü`h‡ïúíü}z²ûŒ{/BfÃ’ÀaHHL«‰µ2E&ýá=p¤pã–ˆÀ`D½)Ô†3 yv{ SÉJxŸÜ~*àd‹òò˜•ÚÁÓà6ûy4ü²Ðw¬"© ERÝc˜Îb¢t>«X-ŒãD€8ëÞqEÀ‚`,‡¾ ãŽÆö×n·g œÉØce3NFÛyÆ™ŠûÎ1§çÁç¬ fVÁ9«àœŸ08gáÑ0󆤜½z]\8ÿH3ª8™A#2p$-²Üþ¾²@L}83½>âÐŽ×'?¸>ͼ¾M x?蘎pÔp$‡m÷Ôo»Ÿø NŸ¢×£™¢7Bñm“â™ †ä„‹xá9á"y*,r¿˜*êá9÷LÇÌ!Ì!¯c†7/¾h7DâõQÀÁŒ{y›ÆmE ;›­·x¶™^ /¥7ÏþZ'ôÂ÷£Î32'ßgdB¯]ÜÈ8«`“‹­(‡hºø#LNOd„ ÿþÿ¨z/4Ç¢š×ýš ç)ǦA¨hAîÄpOfD‚Y‚ÂJTüÒE[¤Þ"U¶‹Úwõ\>¹²™SۃѯÜhUãÙµAU3!(Ð%á`ÓëX$¼cö^Y½È’ wQ³?r",±¨Œ“5'yYs°Ù–Ç ÝÛùÔ$Á„ÁDm •äîÙÍÅ­i=L·ï±L@…m„¶“ÎQãy»†I­·}´j¡ôƒ^BïŸ&ûéE²U•íà¯Íÿ™×s\ÄYŒ̓ÜV‚Ù÷þã?‹#9ôVí Ž¿®YmšX‚˜)IÇhè“f¿QzÙ»‘ÙIì@ä\õÐþ!ýA%6×#‰êÆ`8º)ã­Â};þvs“NF½KÔùà±Ï)ûYz“4¹@.†óéíׂÌóÃ~:þôM˜þ{ÿíÒû0ñ Íågh$Ç¿ŽÖŽÐd~ÉklêÕ<=‘y¸êYà/з÷a5¶šþ¹Ô(—Ùôì/’ñº ´Ô;Aí¡ F}#yœ”hÒaØMúE\·³¹M-¿©¼(R²aNÍ/Ôr†ÆœÍ/¨ìB&jfX° »…hiãx ¼êuÉ÷ïƒØ~vËz=¢;MJšŽånߤv™.˦ÝʨSV™í: †’§i?y˜³M:Q&—Q©Æ¢åSÏšƒ!À¦öÃÝõªå¦¾lrs?¢›]¹øµhkϲá[ôÝ' ge×Áõ°ß‡w=s¼+<Þ"êÓÕzu½·ñ±òuÛ³RÁÉþ–Ÿ®Êÿü³÷Ï??º^Açˆé("ÄÛGšÎGzN!¥Aåã:PÓnÙfÌsË67)ÄۀᕜCËÞæ—4‹Ç¤„‚ß´À$§’–Ö4‹W°˜1|¡wØÎR²OP¬=VB­Ñj¿i—¥›Šÿ$—’ÅÄJèŠW‰Ž#ê Dýb,x^(Q¿dt)Ö×ÚB[iI¢ñÜIýçÔS?¥£(”6Ð^¶áûnïDª;Á¬i¸ ™`sko}‹ïÆ¡?ï˜7mº¥zò\+«¼ó9èa uðiDÄŸ ‹÷Ä#ñó ~µÏŽ£]pS CMè4Þì•’ú2²ŸáëÆy¼¯ ?ÿKâÙÑD¦"oÏhõ YÒ ÅÓf~žtž-ГÖhvàI»U+B'.:¾´\_ÙBÜ@žc)ÇËâ¹wgÌúÅÝŠ2éP(ìÌ!‘ÑŠÏ͹»ø1:^üXî]†pã±g.Š»AÔÅÞo P K–ñ™¥ ¼…—ö½{­œ§f±ó=¹}Ú{'33žÀSÍÃ( f™©s¨ÌʵÆðóš-¡É€‰íõª<3V¤)@JO|E…EµðóðgÙ»á:žö'=Œk„ó*gÊn6±l%H(:ì`öŠŒÄ?ÚÃÁÆ”(Ä£ng'Û¶î¢Üxjk< F‡G­ÿûQ^?‹vÓ ]dOÏæïi “ËíÞQN÷èäyŸÝ[ÚDå1¬êê½0ì]¦ÑË‹3ûV}LôQ¢^ ñ4&_@_MÃIrÙŽSŠb¼†SžÕ~êO1 kÜH[Ðg(-P 9y˜‡•%–ÈËbߥ(ÁÆÔÀ¡æ€§aÇ]"–܆|›Ôî½x™œ¾Lj[IDý…Ú ÔÆ@S\ßSók½ð( D%Ž_uŽFÆyÍ=¨Š n<$qÝÉÝ‹UõÇòT†Ê´[1™Zñæ´%¯œIîòý?é¦ËõÿTkUÏÿ³½µÊÿ[Ê%„­åÿÙ{}õÿàaŒ}?|æ{h¾ïç˜á#ð¬~™|ŸKgF‡ Ìž´… /OX1ýöà1h“tpÅ.0Xð½~ïb„;H‰u°4ˆô(½š^¦„ýªv¤"]9¡1JÇ·éå_G _†l¥Ü„&ë¼)™¡‘ [ö˜ìˆÌä@“áø?£I©QêUzè^¹D4䪓݉~V5¯)Røí8i²I÷O¢¹Ö ¿Ö:%øèCwœ Ñ,1d³´´î“]›í×ðžp&0ºã¨%”_ÜÃHya³ožŸñM·ßGC‚<`hÀ²IÐ1©n‘Í!b—ࢴ¶ÞX˜ì‹ù~ìgVnŸ¹Ü>Sš xßË3Ì0ê[·Ý,³ùn¬A°æsn›$ì·iÌì·IÂŽ›FqÇÍÝ¥CŽ›ŽäöœÌ'{Þ[f–S–T¤žIN'σ“Ev„¾BÅTR0‘À M" ö=z/¿Þä„(z71}•ö‚†z¤=‚ -*D½Øø¿¯=§Á/˜˜-Å9ÞåZB²Y}l\Œa{âÔ èl¬XbàfËV‚”µ2þ.ûˆ¯[”<âÄ›ô7SØ4髊!C¬U÷a8í_!,oF#wÈÊ7û—CƤ"¥›0žšÔ6¿¯o O©âô-YÞ¤ŠåjZ o) ²{o{'†É:·C'æY„fáp´ z^Ÿœ®œ.ËsºÜÁ{Gˆ…{O2\%«¤Á¸Ú†³%Úý‚pæÌA‚»³òe‡vaÝN¯ZpæéÁvôߔ֯Úã4ëudD5žÚL“^‡-¿|ÃÿXŸÉ·ì÷D¤˜Lzcî«H€³%²Áö´®V1³Ø:â¦ÛÔ2'Q4‹ ì:¼0ùö²7öd7çZãžjÀêGFT ¶y´gy± £°ê%«¢°«lè㥻íðÁ™É2 ï¢y•z\­8Ð…Ôj¥Û†Ä¾ÄBi¹Ÿ[¼eqCB–Îįºèø/:é$ ¬‰#¯6ÊÁPBóʘcît=Òi5Ól¥E[²æªîBº©WK²\|¨#wJ­2šxQý¦ßmƒ<ß(^‚lTVïl0\»;lI†=„ÌÊüÝ/ßþ;º/·þãÎÓªÿV]Õ\Ê%Ö¶eÿ=Ùï8ößöÉ_+ `ŸÅY5Švá*¢ÿìïœÀíô¯ðÐlÈ>?@Œ<. m›§hÃóbûü÷¾ü€þÄù™@ÔªÜ׿ª×Ï”¸c3Y¾o“Þ l²ŸSiœ!¡d@‚í&ãoc8g•¬K¸ é¦]>Í|AŒ~:½¾îaÁeF@3XÜ8ŽtËÐ&—^q¶¦wí!’äb8\Å]Œ+¾Q9HåZXe»ï×Ô+ñËŠz½'~Y3/.»™Z9BX»ärÀ£’ô6ÓÍŠÓ†æØaU.¡šÄE盢 +Óófz¾§œ}Û®Ÿûý‘n‚3fäZ™t8íª"§´³”8a›$k‚7’ìý0ÆøÒÜq|÷Åï»#,WþÃøÂÂô†ØÊ[©š¿Ç7¾i” úçVóó¡êÎý^Øhujo9¯8sÊÙ ÃØ‘a÷ì+Ÿ”“óŒÉù&SòÇu¢Ÿç¯ ܸͧ)ÐØÐi«'Iv/?è¾}ö ÿÏÑ]Šˆ6oLlð¸Öur~zr¶'q“&£©ñÌåp„žwô/c*ä^%t®VO(߯è ﺼõ¼5gz¥öád1é(¿ õkƒÛW†qDEHU}u‰y~"DuÓÄÖ¦=à ;‡n=2w½ZÈêNìHYÆu‡ö©fQ·ÿó1@'ìã²´68w¸‘u4º4½RÜ…sp ÐADÿg$:T'ÅËA› dR•™´¡~ý®,ÕZ»E]/ /$GAutnyÇñxJ WÔ”c< »x3¼Î4Æ*©³LÐhÏ Œ‡»+ÚîS{ÇMX¸¨Ã³Í7^¤0Š)\ïŠ:åEú˜ˆÀè”§ZÄE}òá)±ÞŸ‰ ÛÙJCK0:5 á:?” ž=4l^G*–Ó¡û-¼x›GEHÞ€»ËX(yÃ/²ç –þ}ÛAΦõ–(³¼vî½Oô¦y@vÆýí-ý¬/îÍF:´…»ºn|C»ÏÎV”®& #õôž¦(·õÕø€äTxfŸðÌbw«±]¥uœà‡0³Oî0³4O3æÏIÎô'è·ŒÐ$5X˜wÜpxRG.r¸«lÔö:Åô€ÄÖc™@l+È­³È²¡MÉhµº1†>ü[D2u­Ž)ëèPâoé› a·LSio¹ —ºªeK$övzÇíId9ñÖpJ ¤¬0y53’ZY=z•^ŽÒîX€ÌNДŒÖA£PL-¹šŽ @9óêãÍ¢¹¡ÕËICIF!yï=.¬»X좆 Ù@>a¾}¹¦¿Â”eV¥è[{ IïÂ[øAЄ³Û+4n*s1!Ö`Þw{và]"5:q;*OÕ±4™¬dô@Â<¿û$\H—²5#[£rK·KÍR ’M]è¢üÓ­úê§oû™íM2ˆgëY„Òw® ßÅ'åd³Ÿn²³áOçvÚⲟ=GB]C!Š;°Â𣲭K…­l¼ÊÓÛLštÖábf}[{gy rK"t¶±ìËsªŠ‰SYÙ¹­6À¡)j[G0:z¡•Û?yi:¸º€#-,QÔOyZÖ处æÄ°øcY™È< ¯k«õW?ÑÏ…:lhÁÖk£‹°%Lñ4Ñ_,œ¸˜’®'yÂSKoË÷(€Å2Š3§£=ÿ¾ˆÍÒSµíÍRµJÝ—»cÎL•œÉȾø{¸¦rb¡ìT·"»gXGBtØ’QÓ)ËGLð† w’<ôó9ß«óiB¾Y#FòáM’ûØS’à¶’°•¢á9¾Ì™þÓüËbŸj5OÍÔæI1ZµB£ÅËmM Z`°°±è÷™zP+ (/kf\Å:ÑÀ'™q@(1C¹cÕÝJ ð4ôjìÌ®!mYºFÜS_=²XÉKO†UÛ(©,¢ !­8¤Êɾ6µÍBïÇ'×ËÅÿx²]¯úñßõUü÷2.f;þ»sºÅÿxh±Ú÷÷!ߢ_77”‡A Íd† ÐÝd|ÛïMbæ Ÿ-ŒÜ!Úpjàärùêqïý€m§i2sÔååpðQx:¹àJ§Ó|Ñ9UDR§MdmFT0)°ƒñ€©8v¸·Ñ"¤#ž0οúÒ»ÂÀŒ±Àa‚ÛI(b“Ñôr2¥Ï$+t®ŠêÑzw «IŽåןá맬 ŽK¾ABŒØ|\ãx¡#Ò¶1‰„žlܬb´jŒ¶òè…EÛ3H›d"ë"@#’cÒ&'Fp¶iëxþðc¥Í ð+O”àů”miiRñK?°X‚-$M“ýéˆ0+vÓI·×—è:÷­]8®-/¬m¾¨6Mä_6‘ž9¸rÀ. Ù:.ØšÓO'镵JéºHÖ‘×Ê…“ª¼^Bo¢Â^h îP„,ª†H`lo?“¡»ö¬‚æô&EûŒ _~€&‘]¦ß%pÔèàT½Ï¤_»ØQB§°øü3yŠ:ÆŠ=“x/¸õŒ«UØ«5ü§ž„.%TJüc\Ûkuüg;ïf~¢Ž7׋ÝÌOl¤¼ƒ”w¶ñŸb”ŸàÍOvðŸ'y7óOñæ§OðŸ§rOnÙòÆJç€E|5ƒ<BøY4]CR% ¶à?]œ.q·-ènC º;OÍ[hÊhx ¨oOw.Îk§ª‹£ßÝF:;HçÉSEBÍf}[Žåî1Òé"tqÊ»8‹]œ˜.Žu‡¯ #"Xˆ¸‚&z[N0 š7dG ²Å4I :ÒÙF:8]Š.N~îhá-D¦Žd¶‘ NJ÷ɶø'wÞÔ-R)ÃÑQ9pÖû‹} F-%é2ëµo—XJîÃ.£8'a¬éœ’+ªfeèøsp°ØèÉû„¼é 4/Æ’þ½àšÝ+ü› ÿÎß÷Š£­‚Ê´Ç7Á¢2bg°¿VÝt0‚*.yÆo‡=ÌNÖ¬pLªH›‚2’ÇI-cB³=/üf½úlP¡ËxDÀ̽µ#>³67UŸÝTà?ÛJ­#2±€2G‰lT£· q—è @{dp.Ÿ¦!a6¤ž‡ö"×rE Ûp Žëç%lëƒ £œ/61ïl¨ <“—¦õ6|ûÁõý᱌á<ÀŠ®îºÚ†ààtóì#̰8+˜ç6c¸]õxbœ7à,4e9*,ÃÞ{q%’ÚÖûà ¢z¶ŸÝêâá¿OŒ‚x³ŒuôžºŒQ„Û)0ìhWÁ %á°8Ížæ‘Bw]ó#2,§ž`ƒD€êñ¯Ç‘hÐ<Þ8(À‘°ìáü}cq¤Äޱã^3ñ" ÿcôíIn…>³ÇI±OàñL~5)dy­ŒQ޽qF˜¨…IÛú²¥íûÞåì¹:gƒRÏ}œxV–úpxÖ¥)eC/‹G/BÄn/KÄ>,6¼›p-°Ý/_¾Ö"z@R„Mk¹J€1¶ù"u;(Rƒs …`;·ŠsÁ{3±ö¥ƒÎW_úxüÿŸìþÏ­ÿ±óÄëÁ•ÿ 3¼ãÿwsš\ø7‰=¸õ°~ÁÏ@=Ÿp-LÍÀN›!Và°ðBêLL·ñÎ4Ø™x %ÅaÔtE;ɤ½qñm£]8²€0©Èv ¿4ÉÀÊ£JbW*ªá*¥ð×1Â@ý˜ã„‡¯¡ñ=$À´ú¬â9,Uð0!Á=¨SW\w¤ õŒnaÝ` €u/…H¨P†¸ó›ˆX~l vØ4#*UæF9z)ÏMŽ Lõg¥/èIÖPvj^²Ø=¤.C›hjfCÈ ÿc3|À¹¯„(• 4÷P+²ç¾o`¶,3°âpwaíÊÇu gGaØÃEŠ….ðÞkáJ¿² Ì© ‡`äbÆ™d"QlE0ãÂ3žƒ·”0.áì• ·Ì ´¸"s£ űÕîoî»C7i*‘Â'²k°J†FH_O ÁÐj _žTáRdYQ3>F£bÕDa%?—žÞ÷ {y"Ã^¸±Z˜‰è—9á/íðŒ$'BúaŠ7Lñ†)Þ0Ý~bÒˆFgèÇkø8ÒÀ¦xÃtGÒÈ{ Ç«ø8ÒÀ¦xÃo˜>ÇŽN聆ÿ­b‹gÛ(~²ö‡¹.·Á}¼¡7ôñ†>ÞÐÇúOT§c1‰Ø>ÞÐÇúxCoèó ’D >CO’ÀúxCoè7<¸ÀŒ‡– PP%ÖÕ"#–Ž ¢ üx„&ô`‰ÀQ… zÔ]"Þ$³F:˜•§³´¹G–.÷H³‡N-ËM3qúdAÊiGžƒå!¸±ÆÖ Âðü2êQ¨WåLÎ-ky<Í-׿ü¸qùÍCµ-‡ì¿_—šÿUßÙ~Z÷ò¿¶Wõ?–r‰äØAøì7žŸV Waæ¹zö^Ÿííʤ\A²ˆä5ʂĩ¨òÙÅÈèžÅ)"ågj>™µ0õ¬Òñê„Ä)ÌU@5ÎqîÞ²TpÁÔKcwüLñ{fuQÛ‚…éUªš’ìöÇÔqQèDPwÓñå¨w+«ƒS3›±‘Üm:ÂÓRz%;ÕMŒvÇ5‚ç©=PVxE‘XYd UóvMs1°Z=0Œr”lßAŒ‹†Ä¹ ¿0_üU¢¿”¶¾·R:ƒSÃÄÔ?¾ÀÙ“dŒV ²ÜmªGWÐýplÇ•ätëÞµAÁðŠTˆ#©âLÒÂ\è”×k²Á<ûÆWÒP³†¶ý;B#lqÌ/#^/,~–á»Ô½†ÛvsËX{ANRÀ¥“ÜÝ«“Ä;bØê›³PŽz¸ªz°zƒËÞ-p'[’b™KÍ‘ó`+¢‡Ç¬§JÕfò¹ As̤¬TšC-÷ô Yx/¡õäKCC1êJ…òN‚>#s¡[||L0X¢ ˆ iÆÔ;h_‡ûK¶ÙÁ{ftc亘àz?Ly½H_š©ÏiÖ¤œµË*I¦º"és¶4o‹™ÛÞ$±ò”¡©ßp%^1 ¨/Û'×ܵ2,ï7ðÛ‰§noû¢Š˜¨p¡p¬¢T‚¨!µaè/û¼îåTbnHz=þ qª½ 1óŽeˆ±d ¥&î†áHzf))FȸÙE˜3©±ð±õÞ÷zccÈLñ¨õæ.H’I® ²s vÝK©T—+=·©í’³\㩘¡¡2¾SuÄšTu‹‚ªïm²ä¼@ 岿²9–¹ÄÕ>zDµÍ«ÌX…Ù}ï¯EA^0½¤E"É¿U즢ý˜lÇfóBTHÞ¸;ê{`èa'G•¾ÝoòÞ´ˆcægr#jç¹nc‡OÍæÉMòrx+V ’Ç×Äm/JÚœ¿= ]áN„ÚšùÚ•Cügwˆo,±Ûå¯$é×ËôÖZà†ò¶ÿˆzíŠ<ÝL 4ĘËcÖ ÍòtU¿œ‡)x?Õà~TG¼Ö¨ýI!abŸL2þà/ÔS^¤:rtþÒðêÔµLf”Ì„YágÊÊ'ŒÃ"·w“ˆµÛ¯zg’˜=‚!€²˜Á ëÛyû½IȆ¨"Z… ‡¿¬3¡7¼<_þø:{y”¹ïÑ·}ïÁ·=4)!áÍ €w^i£ « ²2›1Ç9BwYU™MC+=W«7;d^è‚'˜«!ùõÓRÃlGJ¢ÂUn뙬]v üö¼Ó¾Kª†R=J©´[´R^AË’õF¡ Ð²¶Û?’¡6ð©¢ki´[oJL¾ ‹Z¿( Ru @^küA­.ê°ª­äQU³ŽsÄš¥ok™ZTd×áïozT¨Ä¨i×±ê'pZ™½eŒf%iJ’ðŒý{ØÊ…dgGR`O±½Sþeø«nÒî€Ý>݉i¹46(™ÈÆÒNaé)lOÅ•MÖeyÛm·éÛàŠñvp‘6üÏ4§‚xž.vfµÄsP%—0ŽdÛG²——Ó»ýÛºTež•/Ä8ãé{”Ç9ŒýôËpC Žn_½Ó³¶Êº—MÁèÕº%k*@½¶íq×9ú=<žâ½Í±ñÑ!—Qà*²½Ôí}üá›ß—º±âŸºO®7Ía]œú¾ŒbAûæ-‘˜|k¤Âì ˆ¨Ï}ƒ˜•h¼¼#áþàØ " ">F%¯¤¶…%Xq+lËWêwG„£V ËS¿ä¸·“çðA%o°EÁtçü‘#jñ6t¯Ñ~yr ‡èÖ‹öÙ1•ŽF­Cßu‘ïø¾ ôæ>ê;Sçv§)îË«ó¬nÏh]á]5[ü|ÝiRFŒ ý¤‘å‚1u÷™Š/µÍGä¬dæ+ ~È\†ÑMªœ.2 wÞ¾¡|¢x)fŠn¬½aÊѻÇ›û£Îžš3«‘¼G¼_„‰>úû‘¡Ï¼›äý…‹WÜÊ(/‚ëÅ›íØþ"É2›CŽ€ÎààqðS:Äï?Òõ™½ fwܪÒËÿÈÉñÒ?òòE¼äü|‘÷‘Bù"OO(4þ»÷˜?3ÆÐº" $x’¸ÝaË6|¡2åÆ×û’f ¨Ã嬙oo‹é•Fµ‹[_iz„Ö$$)\:UÐç’™¼SwVãõAE—ºÆ  B/©q*†iÖÌÀmêˆC’h ÞÄìSt›-Ö| ¡‚¢ÖĽN]&÷ï`NŽ;’™œA©‡¥@i{‡ÐNñÞ(èô¬hÕyñ *ýkÏ0|˜ªp¹€§<5vb›­øš`b¼'šdÕQZkL¬b¹EáøÓXîUbºÌÌö„áñHõ(Ü ÞBm&.´;†ç—Ý!¯éãv ½Ç…¥“F]¬ZêÛŒmº øŸ(V°,›úï­…ÄK°ØX€Ÿ¢úH€·¬øîY2÷’üºãÛq1|P•’ë`ƒ ÉÅÐåP]Å›ªèùQð²ëÕ"Ørœtâ=â”ÿ.V£{'£;5¹§¬SvTNwjÐÑÝ n«ÓƬ:âöÌ'™Ù”F•>3eНUMß±5m«¦zóMÒw%oÊ¥ÙÎÛ’-˜d/I“1ý¢¤¦d£Ck½m$ª*1iBæárð%BÜeŒ·=ÊÐÛŒQGNá0sÖBìêÌÉóPæ Öa¶„ŽrÐýýi¿ÿH¥¹9vŠ#sÓ\NÈô<§yXP¶ŠtÏ o7ªa‡ƒö3¢Úxv»#pPÍÉ×5»¤G%4Ô[# 1žl×é¨;StJpž8ÕK},˜Kº¢ öÜnžfn7OâÛ͹¿Ýœ›ÛÍ“”y©mÉÕíc ‰¶¤Íï V‡w÷åtbeŒ\GLðaS»3˜ð^TÕáx«:;'Pù:*ž[m4½‡šÅ=ÿåçO®kË­ÿY¯n{øŸõju•ÿ½Œ‹ÙÙÎÿ>ݯ­ê~ÏúŸ06¨g^íOí”B Ekf•íåó&f&¹H›˜—ùh M™ /R¡'°Ëâè`Ï*R…Ðu8ÇUwzcùøtpÑ^¢#Fò£ ‘꿇îN>ÜT0ÇŽòŽÒÏi?©%p ï,&ÓÏQ‹æqÐ`PS zÅ÷5ê+¥!”…äú«CyG|{Fùú~eA7•9´ñs}¸ø•¹0èÂP)kÈHy…E?ñÀ~ºKaÑO™‹Ÿbh‹ %Uº8Ú¢ŠVzÈÑ'+ň⠢øsU·lÇ{°*m¹*mù#–¶„£å+m©iÄÊSÎà·²|NT@¸<ÓYé rðËþÕïZö/Ü5µ#¬WŸ¬¶ ý`ø\h½©C]A†øÐ(fÆ5Xõ¨Ú‹©÷×^B½¿j‘zÙ×sµZU+cì{´ö]"ïÎ˸âÜú£ñÔÚ÷XK-\ž2VK­>w-5Ød~>OÉÏyü?£ë¥újO«;žÿg»útåÿYÆÅ‹Ôñÿäs¯ü?÷êÿ9ÙHþŸ¢¥ÖîPkÍ?Ìròü,ÌîÑ‹²løµ•eåC¡ë§¬ìõ°³Å3“Ág(\5‡/eåLY9SVÎË™ò|ˆô NÓ'P°WhÌNŽ»ßRs}у§aƒKNº)K¸ÕäÞ­2—Ûüï§Ú}y5^2’’mCÂ"“± ðT–LàtèÖS¥êYËæßÖº¹ÐÔµ/&X`áZ¯wÞ™(f}i0+îñÚ½×Bo û¡që÷Ý3$÷Za©§obÉÙJÖ‘FxRØQVÝÙr¿sÓ’÷®·hɶà €¯3åCt¶ôsw01‰Þ°P‰œ@7¿JA$ s£3µ_>ô@%EëàGFP VTëOÔ$_@aN¹ÄÂÔléM·‡0[ôº±<øc+`³~ì;\Øjü·FÿÖÃ7‰[ktS-ó&qk½|¡6µ…}l$h«F:%J pñAª&© "*¦—xïÛÔ[Ê{U¡V»BGö§N¤Ò›ÛÉ7² à€hà›‚ÃÓÇøtPôš6æ å«¥’]w7Z¼JáçzÀ«‰w×åÝòVÖ:¤‘Ýk–‡52á‚ßal‚„¹èQñD—jz=yTÑNeVÁ£Ìôa¾µ‡ƒé ‡$äŒáR‚ä’"Få15XßZþ„¤ÝåZN—Qå.…»Ê¼Önåüöf´“G 8‰@?ý›ý”fukÔ‹°Æóáí7¡%yFúj'Cófì¾êIìbnÕÃw%  …;[Þ¾f^bcÆYD?`îk〒ÂáßÖ:¬,1Bõ­sßÞönˆlàêRk§N ºöX”£ƒqŸ ª~ÇŧkaÈ_AõX-}=žxKöò‚~%Þr«è¾ºi)Ù«®‰Ðh]§‰Yç—â‘ ¸HªG´€HªÏ$’ü¾Y"†Ú]”oâË‘!˜£Î‚„€ÿ³äÇ“¢òc§°üˆ‰ xØ-Hd'O~<‰ËÿÁ°–ª?}𩱄³[ØYx‡³[˜`æÙí÷ì³Ûo|:À\óÐ-Iôðö[äðöûroÕí‡uz[Ýôë~à£[ä‹éPÝ ~]§¯ëtš{µZ5ó MÔM=40?êA­V-¤Wž ª2öŠ¥8ë(a®cšPˆîဦzRg;£yœåtö=Žf³,çfÕª¡[Å5&2– åªZ0]´”CUWð˜ÆPb sµXõ£…/tWïÐÕêÜÇ4˜¹i‹\Nõ».§Ùiõè*šãKlbžÓ¼HmÖCšu™õx5ûBUÏ Q>«Ñ¨à -*“rH»—ZX”ÌpB«Ö ‹‘Úb$&5B§µj-OŒøæ ùOkÕ,ÄDÿa¤…€.ì>Ï9Ñ›Ç*äA^¡üñrñ¿à[~þGm•ÿ±Œ‹§›ÿ‘®(­lê²€Ú „"ÍRIè¯Ù³D¨âç”ŠŽ©"‡nø¤±†ásMÊ„4 kH&'U$™Ž¹ RÌVG“±o]´è›Ø î7à T×Aûfn6GìÁ_6©ƒŠlÎÒJ§ÐéX̵[ L0V+­þ`>½;š`2KfÉi‘† ÆV‹µ@ C,ÿĤ“ŸŠâf—ˆ¶Ú%Ý ç£ä&¡„sPÎfÎA § å§ ÜoòÆÂ ûÎVΗøB@Îk÷_†÷»ç­ÜKØúâ~Œ}¯Ø=§ÍΛŢö,'Œúg…êÉ/íãU*{ýÄ*·zŠ|ö·Ð¡}æ¸íÎ}Æmsè1Ž]PPPÕ]­ÐRNqèÒ×-“‚LjREÕMGa+4ås×~$Œ¬°ca ¦éTGFGí^â,e×¶óîÍt¡ hiRÿ&6i9€7±I;š{0LCç¢#ØÒùÙ+dº_Ô¤e¡Àä‚àƒ”X™ô~¢Ë³ÿ]/ÿ¥^ݮ֥ý¯ºSö¿úÊþ·ŒKÈ+Óþ·Oø/§'vçÄÈ‚jÌfî+p¡EP²sg“}<à¾À©ù<և̕}Ûà''é8¥DÙç ¨¦#a\B¦]ð·"ˆ·It¯Gæµáõä ràjÁ¬u,xG@jmÈ )H¡,ã¦iúö‡£îÕ0ÙM0”¶ÙS¶+±õö™¬æ”ÆÏFmžç»8Kxx\“Ü7cî/ìæ'À¹1‹p WÑBõ¢… ˜°Sž¥Õ1—¶Ñ\Š£ØFЀ¾| »ï¿ÊBÍ9•*%&þìfŽõ7ÏöË^àœE`|ÂMY¤Õ·aÑʳD%íµR{½Z~\KÊVlkT¨8Ä€:Ãè›ÆïŽ ñ*_‚¸eñeKz’:¦å£ Å´q1cƒ ªá+m=kW¶ž}Ú¨– ¥è`ÒíçtðGòéÏöãÚ¦º×$‚mTñAó±áÕ•zªµo´àô‘~­MHNêÊ!ü6è Éè­ÄQhô‹Cò.a#"ᦥêyöÈ¡]ë½æHi±AÍaH´ÛðznŸjt‰áµI‡¥î0ð*à¡–Û 'i9Fu,šö »K&£A—CaÒ±ÞLÞßÂCXðw"ˆÁŸXªËžkæ ËNL³ ›UÊÑ‹í!ú™Rh"™‡4ÂSš(ǘoM%ü¹÷¦A_~ÂFý‡b@ÕT8ðΦÞ`ø³·w X-å0ÈéåDn‚X´0yŬY‚Ñ/'û,¤#! ä¥M¤„aþ8@Hl±ÿc°K¥ØÌ‹?'¡/nÞÚJ¶ªÉV-Ùª'[ÛÉÖŽ¸skKÒªV“j-©Ö“êvR•_W·+j¹VKjõ¤¶Ôäp°®U7v¹^OêÛI]ÞTßJêÕ¤^Kê~Jæöv²-ïÛÞJ¶«Év-Ù®Ãç¡x¨yëÎV²SMvjÉN=ÙÙ†ÏÿG`Ù¥GÄ!¯Ã¹ã¸8î¡}\O¶ø’úK÷6ýï°‚dõHjÐïifÇåÅêwÇÄs“£4UÁÖ™õŠÉCž¥ígO<‚LÇæÌ-þ ·BlÊ—ênToÕoˆõƒèslq`jÅûƒ•ñ¥^¢áˆåüewŒL¯$¬5¯–Ôdyæ_ô¹y§Ãÿ&ÇÓíüé,uÁRžÝ1ØÓYê¢ÕC¬i¼Å\êòW¿eÛo§XJÆU~‹{§\LÆ5\â”n]r-IÙöäìÄÒ>”3H.† lj×pvHc§4 á÷ é"0£›°¯ÑN8J¯qï{ŸNwËZåŦæ&F†S 6]øF†Æ `GŠ7˜s˜L˜%~Wv8Huñ' ?Œ+ ØŽ”wÀ#0ù0«0]00À±¨5s8—L¿G2ÛÚ Øëqe’¡V›|ùiV½úЛ¦åjÖ6_r;2åùzµR„S\åÚáË­Y¸òpf®<¼o®,¬\$ðýh×ÌñノoÓQ„_›ÂpÁüÚ4Å/þÁ²4ô *ÓŸL¼n;×?­ÑBšvD£+?Öi®—­h;|_LÍ>\K„š\TÓvE²E¤¸X޾Ï'[wÒEˆä;±( UúL1ê'-‘›™Ys£É®ŸÖLÙ Ü;;¯º3·\íû°(·¸ÍÌe WûÉꢯ>œ‘UåK”ÔŽÊ],•m…Nõ…ó¿zK®ÿ]«W½ü¯Zu•ÿµŒ‹ÙßÍÿj­ò¿rþ×}¤}1Ø•.±7o¶—x¼@ÚWËNûêa§90Gäy•T†KÙ^G2…aª¢>Hņ©Ú/SõS¦O=´ èó§M™¯[eMýYSƒÉ*kjæ¬)›ß ;¡Ø{ßø3YNÃ, ”^ÿaÒ£J½J¯,çYÅüZYcö:àë¿éh¨ó¢ä™Qj¿Xå?­òŸVùO«ü§UþÓ*ÿi•ÿ´ÊZå?­òŸVùO«ü'ûZå?Y_g¼eæü§S4"ÂÏ£ÆÙÙ1%@‹´¨À{VyP¿jTë;åA¡ñ`"¶E…樅-B3‡p‡œ0Hizbœq=ª«Ä¬›˜Õ±³H]ò`ân¦ýIï¶ÿí¢Jgå5þñÿ<׈tøÉ|²Æ¿Êæ'xÙ³ô3¼fNñjS¼Šäxµ³BS#I^íxd*íB³$yE¢øÝĘ’§²³cp{´B§âaà‹H “ãÏÕš?.4ƒ©VjRÛn®U;/×J?Z³+`ˆœd«Hè|0ƒ¤Xà|­GœøÁt1.¼†8¢šÉ$ã©R ±Ä&ƒ¬SN.›OUФ]zS6[öÏVvöÉ+Ù©|Õb¡—2œ¬Î8ºS cÁy]§´+örKf³åûDÒƒ‚ ` M-7…ÆÜ²Ó†efMÖ;‹¥ f8”¶³JºQ×÷Hº1g©XÒMVÜôœ™,yy3qõÆ~­JTÈy_~¦Ž¹¶#¹3?ê‹Ïù©/YAÊóå“äÎU\Õ å äsG^¶ŒÏ^ËM@ño(•øÞz÷”ÈPGгÒìîÒ‘'WŸl¸˜´i:i$‹Ržœ’Å-‹È 0L¡<¬<¸¹R+ŠLb\+s9ö°ëd'ޤ¹›ÎqoÙ­U6Æò¯PþÇ’ëïTëO¼üúö*ÿc/87ÿ£Èÿ5Àç+þ]àZeƒ<¸lE<—"ó;ß¿Ÿbç÷QçüWN y¨õwT=s§_3f³œ.¨¨¹wbê¿B¥P*5dnM³ñÌŒ.šN˜îª*÷wÏšà²U¾‚ød•¯°ÊWXå+¬òVù ÚVù É*_a•¯°ÊWXå+¬òŠæ+˜y >½‡Ÿ„°˜ª+ó`³VÙß!Û@ÝòW'û‘m÷8øã0¥¤J±ÑgŸÊgï”ÜйÏä†Í—'›< 9¹uFp35 VlÄ-Š/!=Oqú%d™Á¾ v…¢ƒB·Ó¼Ð(S.þ‚Ó;½ÀθßwÝûhwâvVNÜêòü¿CÐ’—ëÿ­>…ï„ÿw{k‡ý¿Õ•ÿw¯UËÿûòùËv)1qÿŽváŸîò•ä¾Ý­$o_bí¹ýàÿÿKük1;Há 9P³œ¦¶kT1=¿O”¤:^õ®{éU2^·ßÇ€—çíDnûÝK:eàG/¡ßO“ýôt}ÐñþÚ45é™ü­Åü¬ „Þ“ÂÕwžC?‹6ôBœ±ù^ã¯+q‹È[«ï×/ÎöÕ"ÿ$ —önºÛo”^önGt2çl2W=òÁwZ‰á§¤QÝ G7e P£XE¸Ê…‹f„t¼\/ î@u…Ò.C îCG6²„yw H“˜Q^_‘Œ×ÝžáYëŽyjñ`•Ã_¼hôkH¶Àóbç=EÑFóôe8ú4=(²X}­-¶±–xÊ|HÊYÿ9õÔCðü~G“R%y·w"÷Á\Ãß²;.Ç7hä¹–Ü|C;æy%9l¨Ã\h¿$þ=^¼'~‰Ÿgðóø¨}²qh÷ÎÙ´;7{¥¤ˆ;ȯBST´¯ ?ÿ+ÇÀVd*òöÜXS#ŠpÊ„Ÿ'ç0Èl Y€®Ñ¢K³ÂOz¶µ³€mïŒÀŽf2©åÀ<ƒì?E­Yž%Œ„9>Mk9öØÎÝ`¨o.Ü&w%Cl™ N“äÝÚxî½ß –p›ùO–#ð^TØ÷î5l°°¹ßLoÉs>(7ÆÐ®¨y¥šcnµErcB^$è Ïd§dŽ,D‚ùà³A›“¯Ì¡‰øŠ Ë/‹µñóðìâ·ÌóÁÌ¥c‰J¡a<2:d·’˜‘–KyÒ•D–°á`c JÑ£Šè¶8êÆ²t"âÎIÏݯ­‰$è!ýûQ^GŠö£=Ô^±hWâýÇy£+g¹] ¤¹í?Êi?î§ý‹žŠ£<žR}Y0O˜[Œ9¯>&2(Ю†x´“/ rñewŠnÔÏéèº?übuŸúSŒæ·Å^’ô®XÔÓÜ5‹÷`Ø5ïúJ4T7=RS‚}vÜ’è/< ;ËšpäuàÛ”œtñÅËäôeRÛ Ì*Ô¡šbí6ŠZURsFù9#8Ü9s!÷dƒî°DÄt;$7ÖËãNEFb25OǬð¸¶Âûößô?Ó¥Ú·žÖ·v<ûoíÉÊþ»ŒKËþ»÷ú¬dZ~QÛf«/+õͪ›i’ßèʘYm®yöÔÎŒÆT˜ ]'e4üBãÂÁIÉz b~ »Ö$\±]Öo¯ß»¡ê"‘¶ÓQ¥WÓK8ÄLÆž,C:%Ê©¥ãÛôr‚o¢ª/C¶+mb ¯Uc['!÷Çdþé”ze²ôŒÿ3š”ÑCrùú>ÀÍjò¡;ÑÏ^©P~JçA ªDþˆÄæZƒþZë”à£Ýq2ÄÓä ÊW½îû!œ479v‹¬±†=aìO``ÇQ¿¸7HºÒ†Ø6Œºã›n¿G?yzРÔ-ØÕ-²9D@Ì_Ûîƒ1«¶7.¾m´‹0ÕœVÙG“Œ` ŽZ%0QtsÞ̺IäƒÏÒët”.•ýù¾¯9x9‰+öȵ”Ñn«’¹Nȱ M±Þ¤¿™‚¥¯*Æê1iŒ?P )žJV¦©…BDÜõÄ33ËwóûÚˆQ)®äZVáÊܱˆ!• Ãâ‰Öá0f©$½„Ž—×'§Ë±W0zÆÆŒ‡ ÀùEEé^q~÷wB&?’>–Ñ0§û=á5V<’´°ãÐïÞ¨§§CxXðª­>ÜvØÈÁßÿÕ*ë³]<î&-ø¸¦µ`&Ü’„[üÝøŽiÿ%ú½"ï.{#@“.4hãÓ¤hŽ1RÛ<Ú³l¢†Cç€ÔÚÐZ‡+ÖX“Å)µl»h- W­ËP+Ý6$ö% ÓºŸÊÿjN†·ÂåœÝ]ƒBûº€Ð±µÁH5{p§ë‘N«‰f£Š’’5Wu»ÝFc¥=D.àÝR§Ô*£Åµ%úݶ/ñâ%ÈFeõNâ'ÐÐVßÀK}f¸˜+hÿ¹X¬('þok{§ö‘ùçi}§þtí?O¶VöŸ¥\bºöŸfaPrwðe#ò¡_@1'»)6á8±›vß÷Aÿý ½÷ÝA%ù{øßaòWïªKbß$tÐ%d˜^zõ ¥F–©i3³EwÂ1€ZîŠ!c¶©°á,Ú&þµuüê¨õ¼uš´Qñ5É•YmeV[™ÕVfµ•YmeV[™ÕVfµd±fµJÒ¤ø ÓãW36Ι¸¸PÄ{²äU0\•ëÅÛôø–WÞ–2Ä]á–'¨㤠Oi?ÐÊôá7 6eܼ³ ø«Éy*ί©ãBa©àØlmî$‘_`ùÒÝå•IqeR|(&Eâȵ5e%âØ5dUm^\ˆqóNƼTf’¿€‘Ñ·ÿ®—‹ÿ\ÛÙª×üø¯úÊþ·ŒK,Ëþw²ß)pŸ9 xŸ~Ù×0Ðç™® ­÷÷NNàvú× hqd9;˜ÇœœuTæEd7X…Û¯xPÎ\€S_âöõ¯êÕÀB%îÔL<àÒ¤wƒVÓTZšD¶Ÿ‚w…yôÁ¢ÉÞ¥ð¢ ¾ŽŸN¯¯{—=ÜïÅ S[ãö2½!s Ãí8IG#8ý^ áÄ;¦o.@´~鎮Ä7:'­ÒÚ%û+æ÷~XæK˜€&ÍÏùüðÌa+^ ©–Ì'ºÛ*Ídlõ3©˜èu”»|‹À:4–*x_¬Ç˜~«òÓÇØ¾ œûL¸?ûU&ah2 ‚VŽ‚=bÚ–5,·G±æ¸6µŒe ^Ïb§GKJÛÞ/ÊYû-}㲿)Hù#cC‚φ~šÎ¸_Xïs«ùùˆæçyˆæ>yx‚:q„s±1^e@Ÿ/`LÎ7™’?&¸Ñý<{~h>åFI0ÆJ[+mži÷òƒîÛçÞ¤rŽ.«6ô#i…cOZíÝ1)[ Òí«Œ£ècŒÐ©ñÌåp„¾º!— _%›eGrvF_X:é>°0{ºÄôÊÀ%#¼IG–a¸¨_ܾ2Œ£ò‡ˆy~„ñÄ$†´6í§6A4ö{djìŽ]é«îÄ, \wø`ŽOøñóÙAñêã²´ö$PéÝ*]š^) îÂ9¸F†èà—Þ­ý.élŽ"†N“L*ÌK‚´v¡<=Šæ%È›÷hnµ|gƒojˆißRMö¿Þt?âAtùr¢ Wͯ†HÑÓ»vgD¼%âþSá‡bvg›¦Vü@Ñ¿%û5¨ç#ž¥jëìÈZ¢'&tÔ:Õ¸ A/ ÷íÏd'ë0–‡¢áâfD Íó%sú6³9ð5šƒóÉüu²—ÙºHÕ ˜©ç/ÏÚ µ*ÉÙ#Uû]¼ù{¯:p,ìu8Xª±¿Wå5úA–íóÃh«†RM£qþêo á[ƒ´Š Ö8<~³,l¹ÑKæG'ÉpþªHùP·:î ®¼À³û3ãäαû»ÿìyÑg«jPïà€<Ù_*@¯ÓvÉg Ú ãbcܹllßd"vö—Õß)§7íwÉŸ­z0ü7 u(¤¤“a,jN•ä¶?'UÕk"ÔNÖ5-¯:¦“tïvÜëza±ÜÍÂKQ÷íU‘ö»5~Äø¼†Ó÷ñ}ªW»C} qNŸªÁ8øÛöè+Úeð+ýï ð™ÚkQÙÑpx›L“^Ís··x¹¡ÞƒZí@ÿ£5ÛªB =k †÷®¦ vQ45áDÑHÖ’s«}„¥€û…7i¹ µ¶ê¿XÈ ²FîñÃ…°!±†É|n‘Ò…r]Ó±÷’@?Šéûd"Á‡i¿kRÁ3k¯Œ¥Õ/Æ¥ø}†üW£¼†?ÎËÀpøKäÞkµ‚áéðëwe©•Ú-êzQV¡(Š™¢cÇ;¶®)ZQSÎÙt0îâÍðF8’G48g ¤Ö1AÃ6³.žÍ®D«Oyìa•¢ú<䢓æ/¸Ú;ãŠ:†È êG“"Š{‚ÃSb½ß2[ÛÙJCK0ø0 á:?” ž=4ìÞVý>„¥TuïpF@ÿ¾ÎÄ9.â P@IôŸ&9º[¶ÍÌí-ý /ªÍæÍ9´šs¨›ŸÒ®±³¥iCó<½§Ñž¡å‰zÂ… µ,YêD=¹ÃDÑ”<͘àÆsß2‚WTß7_œnòN`éÈÐtkDŸö:Gz<6FÑžLkb¥¹uh@6´e­V7:ïTÃò[D•1ÕžŽ)‰Hó÷·ÚMÊXé ¦©4:À·=Ëi‘TË3Uì¹ôŽÚ1È,7bÁ}Ê:¾SVdÈ®fÑ©•Õ£Wéå(íŽÙö× MoÒ5½–\MG"²yQ‘#ÑÜЋêå¤1IÈš',.òÞ1ú!X§°ØE ² *f|Œóÿšþ aŸXÅ¡oí)$}oá7ÁßÎn¯Ðr¨l±äÁ¼ïöìЬDj"t¢5T‘ªÂ`ií lSÁÓ2©A¤ÈØŠ‰­Ð8+•N‚M](üsÝÙ:|Œ+þ«Iæäl5‡p¤ÏµÙø±ø¤œlöÓM6ÕÿéÜN;¬Àž¶'AhK(…@c†¹^s4¦u©/•Wyj“펃{´ 3ŠÛÚÐ;ËÖ΀¿‚@+fsÍ(;³aNM-± ‰²[m€JÔ2)Ž;tÌA±ÊÑtpù!GX²(¨ò´¬ËI ͉a/ïa[@ˆàéKø”XYŒhŸúɈz,´QC µNg0Æ"ž³©L„J  :¦#ëI^£ÅÒÛrÅÕÄßÂR*ΜŽòúû"vCOÓµwCÕ*u_î–83EÔp&#ßï®®­î1à@«[‘í1Œªà -É(¢¼”•!!ÂMò`BÍö^oVÃFbã# ¾Y#FòA“Em þ«Ž2'–çÑÐ5׌Ïq&ªyZ¢2mɱ¨ ^LkbHC=ˆ…7ÏÔƒZ=w1ãîj½‰FvÌÜDÛXÊ´ßû¯áˆTw«ÜSŸ«±ã®z„TYép<8õÈB#[%=‚ŒLlãþý±xˆz€Ö'o¡GžOöWµ›~½+ÿýu™ø;;ÛÛO8þ»^ÛÞ©>%ü‡zmÿ½Œ‹×»ÿ}.¥ðÞë³½ÝÌ8ðŽ.! þ•Aâá+"F8¼ýoøñïf{·“õ¼¼çß\Iýùüåñ+ Aîbhƒø™A({ž¬ ,rºæÒÏa Ção´£“¤Â,ž1tq¾¦XiÌÌØ4ûÞÆ¾·‡vûÌþÆšÃɘÉzBæþ4š—µk¼½+eûé õ°!-ˆ;î[É7 ©Þ ‚~¯…†#tSßd¨‹ Ž©/œ•ä%FÝ='ªx:T2_FÔ“¡‘µ€¨»g?Ý9ñi9OÁt§$/ãéNÉNÉœùN Huš/Ë)ÉKtºcŽSb`\qð(úi ‚]‘TY´"†ä=‚dg…w‘¶õb:³fÕkhArCKFBšãœnŸŠßÕm6å#|´ÿèdˆhU¨åUÔcܽ‡RËøI|†ÞÊg«5-ê+Dg$Mt íã âA)%†Î¢¼ô~H*Õæ£t0½¥%+ôÀ”}ÝT¨oöKµ¸è`T!2二§¨•è,'DoƒJëæc¨€è"²c›îÕ0ë*M‚ÐwQ|ˆ¨A6Š%€ùÕØZcâ&Á5–ÛÚ‰C@DH¸0äfìénø!v¥´AÁƒ¸ÿ~(œBæ~ ‚Ç«é¥z¡wêy0߈ØEªFP/‘93 $&yy€wJLîš8sà‹=#p¶Ü¿$/ýïN™Iv á]0K Qzu³¥vùsv”¢Qv«ó)Mýâ[îæŸtá bà ͸DåÒiYž?øÝÚ™Ítȯνð~žH‡€·w‰ûUe%£ó¡»¿lBÞ‘jßã}M®‡!ø}ÂaVQ’c\`vòRÂU#ÑïN&£%xÄ‘ëS4[' >¾Oª ¢]P0ChIsœbZšrÓ|/Ç~ßêʆêJ…¹“%‡Ò}{<©òì°ȑÿÜõ†Ó€MË]ãc?W3”(5ùD¯",½1›Ò¸ùõ°ûæ3=­á§¥}÷I‡Ÿ9GIŠÿþ˜P…]•>Vz”ºK¿”Ëöí™—wJUô‰ïhà ÒÖÚžaNw‰˜8ÿx¯yf“MÀÁÖº4¤lF1iS%ŽîüþßêÿW Mäè¯2m€ãá74 ¨Œ†·£´x͆.çYîŽÒI‚bµFE„vø¡±N,CÓ½u¬ó¦ƒNcÀ ¤8ÉP:zOoHƽc›4¶í+´­jœñAtQLEòV¨v¤ÎUŸìPG¯§#<8+çmï_'£®2jÓ¦2ìÍ´qÿ{sDÙ›eƒŽhš³îÒ’Õ"»tpO/¾G›ÔgؤJz0é1,ņî6…©)kƒ¡µóËcCdÿ/¸óËÃPhÿ×>­ëã¡I&Ø•î%¼±{ùM_ÿ3MI:—„»¸^fŒ>_ ‚ E<̾i·5´uÌNê"O®ËÙ†™ŒUÐŒ•D›zY!͆\Ï÷¥Ùñ•f³Òl¾‹fc-Þ•zsïêM©ÁAÛ_±Æ +:_eâ‰Úí €Ió¢ÜÛa(~ÁÓ–lì=¼Ô«}M*®:ySù½4)'6ÔØNtmE4"%Æ)g1ÞQ0c «„èÁ6c'ØuŽÅj´ûM$US€'13MÇæf"¨H_ÑãW‘èš×•nÿýp‹ëÆ„*¡†wZ2Ñ^û©µ’’où"ìŽ×á$V«Õj¼`:eASo”åg؃Ñ8¬D´ÕP¥jŸþCÅ~Hû×È þø6mðäÀg¡*rìJGµÚ'çÿnžìíÿ›BõËɳäí‡t•VdœŠÆ‹²yÕj—ƒ:a.Ë]nç3DI²#Ý^ÔÆÃb CGy V,[YÇÇ}O•Þƒ©U53œ^ôÓ mœ6Þ®ÁÛûø±YßÄ䥫 ´W÷e›ˆ¤ oýº¡½>+€éàso4ÐÛ•{k<½½Ž&Éî˳æÑ^˜È«“½ç­NëeÛ‚%r:š‹v‹tôYpÇõt2en)grÃ_'{¿ˆjÈÇ^¶žÌÔµßoB5+ñ^ c,À&{4ÞƒCý9}ÆýCJ¶b^¼éaŽ#&/¾GQ=A©gHÈÈ!Ãò‚“+Ðý„£3Cñv/RÍGq0Ñ£:I/? zÿÁÄHE*BãEw ýCñÒïnÅê eµãŽÔ<ã‚ñï X ÿ¦\@áJåOpü…÷´,SŒi=Té[–dxþ¶ÕÙ#N¨#'ì÷»ï•*Á‰ÜnÄ£¸H"v'“ôæ–æðËItõþK«ˆÝ/úQøØê-cµv7u ›Pâ*$xàënœÆ„UR’ ·Ï]çéõ3"á¶B$Læ%L à2(aÇ%Üä’ƒ›’Ì;J›€–ZÔCň†­»ŒúW²EŒûÏ?“6–(`ÿ¡$Yr% E¡€ßŒöê°3˜¨>𥈧ÔË493IJ÷bF “¤‡§á‘×ãNDE SxõÆæ±WÍG{ýà™=þ!ÛOr0ñlö|`Œ9±HìI,‰˜¢5h2.9äuxSr`Æè—àIíKŠ5Õ.¦&²åP–ËãýxêÛ/x4p7ö¢FÅ Þ ІÎ7j˜J˜œ¾ðØ-¡vÔ¶A„ФӉƒP²¼¥Ô]«ð”íG9¨Tes7“æ7¥ ZYSž«¢žÑ«/ñ ó"ý3qO…¦ËïŒuÓnmz±-“ªLN„þ¨j™ã¢cNOúÃä=8\¯^d•¥³–<Ùà æC g'Ûµï…Þ&ïõ~ ÕEi³þ¿»·ß8;B`O¡ÊøÁPæŽ ¼¤}Jj‚¸?þž‡p²ûÎþ$«oV#…j_Î~À¢lå=ìP‘—x/à d™¸§gjú¡@®’{b«$¾ÖžUmÆQë²Z:!m² ¤eêýéÉYçÔê=®ÔB=§]»`ÏÅk8ƒÝ~Õ o,ܹãÆù¿É¦Þ)D^ß.Þ ‹–0à_•&QªÊüMâÛ¶ìÉó½×gñTèdúïÓ¿_íUdü-~›$nFv_ƒZy±fôÎÖÑ‘¸‹˜“`š˜I˼õöäeûE¼g­ðª=æÃxƒkçÊ·JrÖîœ6àü.Ú˜“9kj1ÕWêp¾Ý¿ñîöî^(r®‚›X.«ÉRq(ahtçßû¯P»ÿ7Ðn5NOíý†ì'À¨¤ÔÓvçoÕcJùŒNAþC9 Éy·ºÁ^×Bc˜ƒŸüœt9\@Y®4¬’ˆõíR£(ƒÔÅÍ{›¾„÷p~ñ™€¸[ZECØ3ýi·P?æ¡û=‹Ó3ž7ÑM4%I<8¦¶7"s•ÿx-C·¥îcooéJéÒdƒ#0ྈjdJ*ÂE é+rƒc"ëÉǹìÖE'_ÝO`Ø…'_¿æOGކ&ÞÕLz9 3Rõ(Ö}uwFçéIkšÂHXqâ¬Á[÷‡€¯2 T]ò?ä6ceWÜUtÜÕ2æ'&·iÀ»Ã$ôCÒ $§¼ñÕš¨ï¡ïk®°à?IÑÑôâãÑß @ ‚»ÌÑÐJ£^¡Ú—}üz__v:Å®§‡¹‘>¾lm;‡G·BÛG‘í£`øò‰m÷‰|,|ùè“À£yPøòÙßügóð}0ûâHøêÙÙ+q‡pðÏ@ø «Ã„/­™–ÜØ}…Æ7a`]aÅÂÖXߨmT#bÐÁ«8¨øç¯g¬'½ÍþÞͩܮ % }BÝ^:2ØU™ÔÕûbh²ŸÕºâ¼7'ãÍÃu3²\!~›¡]‘‡â­ 2ZA.󸹋eëÀ\f\ëTà¢J8Ô† â4”†Ò5iÇ)i'vC3™~ÿLµ‰â>F–¶D(ÜE òE><)¬%D#ôÊ€hÔ8`¦9Czæ'Ù`ÆÝz%0ÌH‹A0\ÔVöµÎÕÞ3”+=ÆÊTƒJ6ŸWa#ÚEGß$ÑL]KCÉ´ôpW¡¯fo’$ЇFŠKÍ‚B“h¤¬UlþsaÎ:&ÿaüê ±Ò¯<+™–´çÄ ;Kõ7·rÁÓò/aŸ’˜U .BÃKÉ8x–óŸaaÇ:¡Ôrm è.#V§üH^X*~Pj¬=wkI ‘ÊbÇ+H`JþR\á \Uâ3 é¬Ÿg1XÄ›· ¼ØÙ}Jr÷ÖHQíNP»H²ÁI´e·ßDžââ1›Þ “Há}FY‹àS£S¥1†!6Þ¶=ˆ\Á#rBÈZäšYî pe©3Ù[z@UãC%®WŠWÄÅ'”{,¨tQ ‹Œ?öZ­öÀ$à°Î;’î‚tj×d†h`Ö*“e`±ÉßIsu=Vs­¿•j‹Ûâ‚ÒÆRЉIŠþý»ô¬rPæÈf3ذEô°;ÖA(nj¿‘ya•ÛÕ`!§¿Ï=ʪ ;¬ÐÂé§ão6ªÀhб¬bÉ©ðvVÚ1xƒé‡C‚P»éÁ÷—½3LºŸ‡½«>‘ˆ „QV1z$Ë„r"ƈÆ6 ¨^.#™íðUîÃðýXþ¼Xô÷<ü÷­§ÛµÆZÝÞÚ©!þ{íÉÓþû2.æqÿ½cÖî´ÍMvmšq4*øÕ¨G¹NAu•"B/Œ.ƒ LHó'f¼áÌxßR‡ÎúnªÑÄ=D¹óÀ¶ tmƒ,þj`Q[Q•4?2NÛÉú#èéQš‰„,^Cõ^AŒ6IQå4†€Ü(–>µBŸVXRˆJÿ6‘ fäðÈ"*ÑEE‡NMÜÆ«”ôyÎÃ×RŠÍ)¬½GÕR瘜UéÊÄU'‚y„>1УyÛÑ#£‹g¢‹j¦Ñ¡#yP°a9‘ßeEísÐBï¥c‡ì ÌŒØ1Õ„  K­¦A ’ãìÄÓA"Nf#NfÃ#ÎÆ¸¥ëÔJŸtùÏ„§5ápM 1dÜlXÜÀËçÁÆ¥ËFk€qmTÜ|¸?—.ðo6¬\“X­3æšÏ1ób¨¹9$¡sM2!Ý¢ø¹wëQ‘A õÈ.±¥P{*}ˆSjó`lM"vú] ËV¼9ÀW-ˆ¹Q|m8Î|&·Q9|®w‡ ¸Î"#ª ÅP.³Ñ>‹ŽMò37Q-‘¹jc;WͼÓÍzwI7K(ãÌ¢Ò³Q©oz†°`yÛ3¹ÙÏŸô6{Ì& d†šyc>#cM­69Q˜ÖÆÏ‰Ô6‘Ûlíy‹Ê?É ë͉•Eý."Þ™±§+¢æ]EÄÊ,&ÄyžÀ\Š÷š).WEj‰À,–‚Àæ‡ÅÁÂa[a^±¸­x¨W~à–zvÇ6/úJ=ûÔ¶@èŒFPù!T ö"¨2£QÌh‚0f:ï0¬ý呞s]—q?`—µš¢zc`ûcÇÕ…k|!Üê/£•Înrà¹mÐV‡Ì9™é² CÊ¥¶.?‰ã"7q“†Å:Åk†Îîl­HdÎq÷&%9Þ}o±;㳡îk•ãÜÄ ÊÄ(Fÿbj']²Ô¹/a¢³Ѷ7¢NeN5¤Ž7RžQî{@e?¥‚Ü´¢ÝÛûQºÓÍôùy¬À•…”,ÿn(ºQ”É«?£ˆmáÕŸQÉÖ®Gn®ÿ\ÞìRFyò ŠéV OJÝþ—î7F¾5EiûQÙ%@Å÷¼³¾Ë/#n– )˜ù•Äy„²kézUtùLaÃ*»u…íR|;{a5ýBÂXõR°¡ÆN&Š›dfé›]!Ø¢’[,Xî†^™`kI¹ƒ^üŠ1šh˜£lüaÝò÷# ¦½é+¦™rI/ªÀ팥mé҈ʥjXrÃy´ ’®a´öXõS3Æ´!ì¥hPVßPΗ³bÕ¯¢Ë’Á¢!TËI[”×t,RV¹Ý¢S¯¹›UpWQw*éfVë Yå°l¾N ]nŽ[ñÇÞɬ˜]HWáeXutM2FIÝX1]*—£ûg˰||Ù%•»káÞqˆIÿ¥Ž¨ûsÄõß©D$p‹U,§\™I…JÑ’ñG ãÓ¶œ(oÕØÌ •7“ ¨•cé#kã«„/îcÙo#oóJUux–Þz“é•â3ÊÇ´p—•‡9/Q¿6¸}eGr.ÉRh.1ëÉtMbHkÓávlóXkïŽ]i¢îÄç4™ Dz.”P4ºÉ¸RßÚ¡A*» Kׇ’ÛÐ]8g¾ÊÈ&£HrÁòÈö>«”\¨Fò ꪀÀ|Õ Gdæd.$Ó Ç$~r„x!W (¯RFé {¢‚a›Q^€œèÍ(!;ªS ñpõcb@xÆþ¼ì㪔úŠí˜ò/ÃUu“vìñ%Õ£Ùý+V¢ËK)lgý²®xáË•}‘^v§~ý4Ýòv’ÞØ£aÊ¥“‹Ý¡Y-ñ|SÉ%Œ#YöG²ê"+NÞvm]\ñi(÷ç/Ä8ãé{Æ÷Å»<yùJýî¾t xtÍÖQ%i¿äØž@é9Q ,è Þ¥a p¥fëEû ~vx—ê0žñq “à«@óï @,î‹Ã#;·g´®pàôQãù+F>~MÈ0úÕKÆ]¢ôÝŠ °fBÁÈ´{ˆ¼®$0Á^Fï%9+¶š9(QÌO„y)GYÍ»a+È6"?à‡Rý¡ÄÝÜouöÔ\XÀ Y¢zˆ‰'ÞÑ':Ýë÷7,¸eÝÊœ ·âr|,¹Y¼Ùj.ª.cÓåèxt?@]Œà¾Œ‚®È-=ÞãÏ¢¡î3Æ¹ç‡ÆÏiz'PÓ TSFŒQtGLu—‡Abcoþ=ÈÚØ„(ö [ Ø#vu¾i`øî.Öç»/±t¬DW±¾Òôàß’ä üXöï$ú4¢BðwÂ+øaxÚjŸ9èÇûLÑŸhû C/(æBŠ"Ó½qhŸPôDõž÷?–Äf‹¥žË")êý\Ü@F2ÿf"¸ÃQ yÔZxPòqt]BÛÅ{ã VÌœ1ÂÜdŒè7X[…á…‘Ù$X–ôÈ!¢KÆN8¦å© ¦sÀ{Jf:IG)6¬ô°vd¶\ô>e™$¦ßlƒ Q"±_#þ¥—Ùâ6…÷I›e m™ ýd„'SœmL¶7²°,±Rߊ‚6Á·µ­¤:Í*Ÿ / B¤•”×ÔGxo-$Lê[î'aî‰*Nš;/ɘ@Ðͤ ?IÁœŽH>“JgpàIq–þ4}Ç§Ó *Þg#FŠ•É2ŒÚ¬Å˜Ã0!pØð*s^UÅñ]Cä ĉÚ³sÀÃF0aŸ‡‚êÍäÞÀü?ÚŸöûŒL;éı f’©¶ÊL§aXg·ŠÍ 5Œ¡­±ŸFÔ§Ý8åD“átWœä›ÐqÈKĉÌËé¨;“÷683œ÷ >»øÙORP¾ídÊ·í¸|;÷åÛ¹)ß¶Còm'$ßøUOâ Ù7ºõïy÷À;ŸdŠM±¤+žú:b¥ [£œÁ„÷¢>’ø‡Óo`™Uó±@‘øU$ò+˜ÿ¹àÐìüÏí:çÖjõúöæ>Ù~²Êÿ\ÆÅkÚËÿ\\hFèÉ«7/NÞŠ­'ƒ‚œ &Ý¢ÁP•DþÌÚé &—F/•u „žÑŒx1Næƒî ìé»éÍMÚ¯ÀÏîû~wüÕí÷{ﻃJò÷ð¿Ãä¯ÞU—”“ÐAw />é¥WßP*g%¯nf¶ÈÌbý-Þ‰x×¼Q¢ôªñðzò…2û@ tß§*Q»J¿5ÛT87Ú&þµuüê¨õ¼u §v§ãû%êV ƹT3ºÚÃi½rízøðÒ{ä\#›7þF™ø+Á[ùU*18þ"n›G½à# 6ª1Vüj$'N.q"Ó‰çÏ'd@¿[\Jñ¼ùÄ‚‘UœRœP|‰*h^SÍäƒ.¹€nº_Ñâ¯Ü-[/RNb5ª” $‚sŒ#†¨y’YÆi5¿–ñËRz;.‹¡ÀÜc#ÕèH~c9™„¯ÙTÄAüC·ÿ†: c{Д=U2ý²‹½–I–Û;9öZè¦Ç”_ýWTDšà á9wX#6o'”ø7ÚP2×b;>aZ![‚ˆˆý#{eËÇòGæŽ9¼å8;ÙŒaÿ3v“&Ã8ãœhÙuÖEXwq¬?÷†Ó±ÓK,iNNºš^¦Þ´‹rí<½‚Mù–û1G|IÑÓMÑ–ÝO"2ð²ßíÝÐÙú}:€#½< Î6Š*‚–l:­òúGý‚oSŒL¾òÞdœö¯e×ôŒ:©ôI ›>)žPŸÜWN½²ù)èx­Ù:£~­©žýÑ3ê“URý IõÉO›WÏ*.Œt³ò,Éö‚P(²ÉŒ`2;Ξ×ËΡdÏ'÷“@ŸP}ó›ªM\ÛªÐíÜrÇe£$šØËf 9$"¦¶Ø lÒðã=Ðér”£¹AxX›häWÏ«}w,¦pÜ»šÂ¢ &ƒÞ¸ü(1—©¥LX69¾õ!¦é'N¦~â%ëÓ¾~“нHë Ú-.`ܰ®–È‹e·)2“Ão•¢ “9!çà>}ƒó÷aøÅSP[ o8H¦¦¤ÌïfuCiô:‹ÜPáR,J¡Âsà=Y%cIo#U„K¬tOG—)³ªBÁ¢:W×걕˜“9XÂÁ"À fÁ5X ¨JŒB^&*ú°Þ£Vcó0 ¼§Äò‡™ucõðN@ E1ȃ0HŠ¡Ìa0 ~A’apzô‚pA’‡]`¿uØ‚âˆÉ@ æÇ+1{‚МP³¡XÐR (ˆäð;3Ã&ÈJß$r` ò°äÉ?‘  yR²ÀfC d‚YÁ$o„ îŽ>‘Šž=P$ñ8 ;ÜyàŽ wø;ÔÀ¼(Ι'"²fõŽØwÊ»¿¢€&pG%v%€p'à€ Ì€$6 ÈÂÍ@ Hf ¸^ÀÝÀ$R@ ØN”£EÎ ðt8D 1``aœ€ä.P§8Ð3€`Js³0Ž®Ê‚É;ð5¯%VÈô€T¬žË,P Š€<çF°|¢D¯áwðCr-™’ì–™Y +åë¦"@}³_ªµÍŽ>˜Éej0žRæ—ÊbuÒ<µICű¯,Œ7‘Ût¯Ð‚„z†™x6B‹>$lé†d”ŽÑ‚ßÃiô"2´£~@Hn>q\MGd¦mA!‚=¢ó¿rt¥dÃU­MbØ8\vŸ…eGe}ðaDW/ô0Ežê7™Ù(GP/‘»aDÌ !µ0ÙÛ\|ˆÀË#†ìæ†xφ( Þã°ÉüÈ­ªºÈéÆ ²`4À—«IEà"˜rjBÈIøC±ã>$ÙÐ'ÚþLbüÊ/Ü)ìÄ~[q0¬ØOiš‡!!"BH(b"ÞmáDÄ|²!ˆÞÙTœÚKäUœBóK2Å[Ù/D–|‚öA½©Ù-—¼Â|Ÿdé( &¢ËXŸ"¤çؘDŠæÈÄÛÞg ïa[ž|Ø4Nrq¡'zÎä(Ju]ô¥Fù1ý<+³ýÿÀbI÷‚8?•ÛÕ?Ô±tt#]&ö ÞLasÓÓX5ëoOºÀ“ovï£3G!\T2YY3Õ¥Ü%o‡¬ VOOxÎ1É{¬gR­ÜóŠWáyÝ¥üõ’³ÕÛ¦µe`Wv·×gד ³õOhÿü³­úŸ™ÐœnÓvARRªÿÊ<ØÏ‹@J¢AË‚ùÀ(L A¨Eø„:åCP$fdUD ·•$³Ø€TŠ;Q-ÎÎn2~=ùv <¬¢_à)kÌHç…Û«dج€$×Eg?ThÊ+F×åØï[]ÙP]‚„7Å´½(†EŽüçîÃ7üL?´Å˜Ñ ¥JM>Ñ«ÏLoÌ`Fç°‡±ŽAh‡Ÿ–Fò؆!¸Ùµä/TüÚ?Ìuõ, Bªâ¾R€]¦#<àÜŸP–Ê}X ºåƒyM&ÐÎ÷Èrä1I¿Nø¬ƒÝ?J»r1Þex‡1‘°Äaxív ]¤<•lÇwÊ29·´WAÜ‘­[Z”;›Ï’=5²RÍÀ ›¼ŸvGÒ39ïhà Ò^rÑÅà̘ØVÿÐ1ÿØd×{°µ. vb¢š<æ-«ôîÿù7ªÿ_$6‘?¢¿Ê´އ7ÞЀŽ;ÞŽzÐà5qÎZÛ;Ï{”N’w˜–µÖª~h,ö¤ác3M!Þtã%Qç–Ê*™«¦7$ãÞq,¶í+´­jØÅ@tQêKòVœ è$P}²C½žŽÈƒóA*mï_'£®ÔƒºSܸн9¢ìͲAG4ÍYwiÉj‘]:¸§ߣMê3lÒÎ %=˜t \pe`cY[¬_ÂûÁ_û¿.Üra<<õ»Â€Q—ß´+S€'%ÝU/3ÌRÙ s°ŠxXÂÎò¡ÒÐÖ1•1©‹Óšò† Ip¢TÐŒ•D›z¬`òBš eÜ—fCÄWšÍJ³ù.šµxWêͽ«7%áGÿZ.KEç«ôÌ«ÝNØy\*B”{; þâkKÃk÷yõj_“Š«NÞT~/MJÆg† 5¶sX U ©ÀdxGAà#ádt̘UÚ…RJôTñ8ÔP¶L‡ÌLdúÔYaLEúWç¸WE×¼®tûï‡#X\7&š5¼;Ð’‰öBØO­í”,ž|‹ 7¼F`R±Z­p¨;3² ©7’E¹ÿ-‘é c¡D´ÕP¥jŸþCÅÜJû×È þø6mðäÀg6D›ä³H 8nsåä™Êˆø`ðmóªLÌ¡´æ²Üåv>C„Gû1ÒMàEía<™`0ôp;ÃZ¤QÊÞ~O•Þƒð!³1œ^ôÓ í×0³¦$#x{_07ãÞ…Øù¥« tuôeŒÙnýº¡½>+€éàso4ÐÛ•K㋇£I²ûò¬y´&òêdïy«ÓzÙö„`‰õæ¢Ý"ÉüëédÊÜRÎ䆿Nö:?ÔŽE¡ß)bóí÷[£ÐEÍJ¼Ws˜?Löh¼5†úsúŒÐ9€ «[[‚oze òâ=Š ™æ¦%däád“ GÞ'Ìð¨xŠ·{éè.鈠¼Ón2I/? zÿAxVE*BãEw ýCñÒïÁŽ,ÂZ²ÚqÇ´qÁ‚ø÷,†“GHxOøáq'- Âc#BZÏà´ß²$Ãó·­ÎqB9a¿ß}¯T Ê%’É5W΋8p2Ioni®¼TBöÜeèGác«·ŒÕÚAúJ„‘Ø„„W!ÁCöýqVII6Ü>wœ§×Ï (ÛÛ e;™h;)€µM@ÛIÇFÚ)F†W=%ç©w”6±®µ¨‡Š`ºø9pºÿ•lã î³åðã?”…D®$´„ô%N mU8ƀ͖•OUd ARc[ÍÒ–fqHøÜ¼¶A(´ÐBÏìñÙ~’ƒ‰g°çÛ`̉E2`ObIÄ­A“aùÉ!¯ÃC˜’3VÇÈæ†þ’öû4®9&S^«">x~üJ~ФŸq $ ñF$bý! -ñyœŠñÂW­7ÿ~qòòíé_ê`¦3VœÓ|Ôc3Hšò¦º£à«DóáÆm«ŸðÁŽÑWøóI6!c,àæ§•Äléo-5ný}¹ ùEóT¾@"n„ÁùRxús`è¿ÿ÷«—±':Å÷5±Œ–ÆÓ'Þ¦ÌW¸øÐ~|ðq˜nì_ÈKä,›(d9$Âh^>™IFêù¢G`g>ÙÝzTdPB=²E&Š˜áP ‰®HÅ7·äÛZ®˜âæ¹ÁÅî£tü'Ow)ÿÉÆ°s*ò‘ðô(/ùÀs3ªÄ£¢ÂYÄ ÝÝã<ŸÓùe{¯bZBƒîLÓË\±]ÐwtPž½zŒÀ¿4‡,OäÁÁŒÎĘ_2­N»ÑŽ¿«³ûòTVâI¸I‘ÊhYaçዽã7@°m^t%íÎë“Ó`£~?¾§HyhÛ5H¬-p†»Å°ƒ‘·€ïÌ)é\ÔÅ“ãtñœ43xP”÷Å4Îhî´¸µ—‡þõ´wùI&€ÑÊ©mPÖVm.PGp}ô ‡Z2ÇmbÛ÷$ѳÒAå€ã|Ð!H¶´Jiº!¥)žd\¬u cwÀ•7h±ÁŸðÆÍزqþrÌoØw $=+huåÕJGúµ’Ðq¾~ñ29År±Öç®§@õžxý­ó’ð ´Žqr°^}Ö¦0íá—äÀ.ìè²s;Ò%6è |v¤Ò“xtޤmo@S6hc£¹^Í,ô““—5òùùŒAîÓz«Á:è§š½½Z¸\î7‡½î“½ˆ—+j”Åß ñégdzá*¸#ß·±˜f}b>qÅúðÂèH›CîO’E!(Œ’|Ö>«º–QÕœ©í-ªú–{³ØÕøûmïû¨ ¶°Ÿß‚{·+`ÿ]/×þ[{ºóĵÿn×wVöße\¼8û¯íc]Ù—aÿ=Ù ö_„ Î®%¥ À±JR‹7“¸°ù·¾`ó4’ÙŠiü”¦Z³bÄÏaªøeMµìú‡f­Í5ךöÚÙSa¯5¨ô2 ¶½˜ÁvAÛ‡d²-j¬½gë,œOš°§7dˆÍÐ Ž{í7¹&XqÛ‚Œ¯ÇqÎA#ìßLÓ9=é/Ú;s ÆÊ»PSìÉþ²M±LeWáõhlÜûo*0D0RÃGèIm7¡çÌè4>ºêTAF úÏšÚv­@U7…?^ìiC‰±©a¬ À¼ÿ`Ppf ‹žR—r”n–e:™ß8¸öi–W®t?»½ÂXd]'‚" \‚þPµFž(ièséÌd÷ƒë )S ÚM²A­Ç Ecu÷G¤&ÃlÛvÛ¦i»Ê2WFZÛR¥?Œ5@̹j¾Ô~Ò™kn%h_Р(ž•DÍŒjPò"Ú¨}‚9|.•×ø|Ç_ÊÖø§Ÿå « Kc³†4tJh­Â¤~Ñ+tþ/÷ü÷t«VóÎÛ[«óß2.^õîù/ dŠÄøeNƒÔ[1 ‹;Â@–˜ôŒ§DªŒü™À¾uéã>Œ9ô\U@NkîÔ”p³CÅrOŽ|4 DV'G¦…Å«ói öv9Ñq%Ñ•Qõ]úÅ$c7ësÓ»£§Øޝ§3Z£¸Ø…­6¿Ü÷Añnßé²Ï÷yµÞÕ#êä®YË+Ó^´ëñZíßýŒü+Å$epØ1zñ!C«h¡™Ð2=€Íá;þ³¹X„òÙ§ 9ÀwîóÏ‘@8‚wHí Î¤µ"ŠN7CqœácºÓ6o uÊKæ jPjµîŒy±»ÒR¸mh;ÑÊ5Òõ[í ·Ïávjn,2ƃyãÑÝú‹7¸kßüvÞ‘SòÜÜsqŠ˜‚8gТ•õç—½<ûÏíåp°äü¿­ª‡ÿ¶½µòÿ/åÂÌ´ÿ¼zþ²mZ“_Áð( CàÆt<¼B ®+„ÝĤ0m×¾õ¶ß½$~ôºö4ÙO/’­z%éüµù?÷iKÊ@n1w Sè]8'%²)Å_÷ªÄ(}oQûr†=ê¿e6§¤p‰ ¦!‰ê– * jHP2éb«dœB"sD6¸rèŠaŸXg‡˜Ã%jR‰Xôº4ÊF‘n¯Ó9á—RV¯íŽU¥.ªFKs.KÐ úå_Ñ^ÖxeÓŠXaÚk¥özµü¸¶d;•`A6¿Q+*7ÍW“5YÔ‰ûˆ†ÝW®}1в€ °S½²ÈŒE5pUø›.'–p/YOJ7ªåµ0(ØþR¯ò‘ËWÿùgïŸ~ü#BáÈ¥Pª 6>–™Ì‘&ó‘È äDÇÚåÎ/ï¤DKZÄßô‚ä“2u^†a*D¾€¬qs*MÁÅøX-ÅF«ý¦}¬Š5óŸœÁlRQ¢B¼Jôþâe¬_CÓŒÕçx/=¡Rc]Ujœ¯Lã¯ní{( q•y®%u‚ÐF~^IŒzPÌŸX_ q´'~‰Ÿg¥¬¸ ¤TäèÆ›½•#[¨%3ü*´FûÊõ–r,¡AFÖÝZP€èŽDñô¢‰Ÿtž/è®Ñ ù]K)Éb|&XVfaG¨É.Üj)7CꘑHN“NBõhì÷ÛÃT‚Ã’U%¿d™2É}ÍÞÔŒCÍ\(™³´Ú ×åʪ^‚‚ªÆÐæ’#|ôh3jšuœ”b _Qadñ(~žâœäÌãiÒ»íCw#EV=*[æ9£•°ÔcIŒ–iŽº7$â…‡gî˜ÐÜõÚšè| ñHçßò:Q´YvÐÙ»q–Û@2œÛö£œ¶²á~ÿ)8Êã£|ï½L€-»œ†W”bWC´X‡\+ã‰/»S ï†5ÝwòRù©?ÅH®q[ì%HŸá EÝ*T- íå¼S+QÆÁdJ°À.Yý…§aûYb|C|›ŽîršUm+0C¸™S„hŠ‹ÈÔTE³ŒŠ8î9Á8¼¸§c×FaOGÐíÜ1J…(Xv&S+œ†›àÊôÿk_¾ý?ýÏtÉõ_ªÛ¾ý¾^Ùÿ—p ¹nÙÿ÷^Ÿ9öÿ@1½eô_¶Åž™³쳌ñ-ñXKå ÆŠ(ö“tpž³šb‰dYÞuu’4¢í²ûžÑFéÕô’šÕ›Œò~ÒñmzIåÏ(ÇâËm›Ð~ )C%¿Ø@;ÆÑè•ÿ¬>ÿg4)5(m †èòŒÅU•ɇ.Ÿé1é!àØ>z·Âãm’9óO¤·Ö ß×:¥e?âéȶX‰”@ÓH¸ƒð¶žð%0Ê㨽‘_Ifaa€F`é¨ßtû}<®ËÓb€,—=UêÙ928™+çÀΜ Gß--þ¶Ý8düϲø£bÙàm»ÿŒýÅû1cGNbNp¬6Ü2ñí5n/pz£4ýwòLÿYd±ÚâPM§\k¸ÜAî˜D”¯;z/¿fÔG~7q\•$JvÂèK{\åihQ! è´Ã/ø}‚ñËp| V,Å5KFF²Y}l\PHpÊ–sŠéœ)$7[¶«¬[œÚ ‰WÞõñ&ýÍöúªb¬<“Æø%–^HáúP"‡5•Hv-Qˆ72˖˾Êîû£">ŸDHí©$ E?d„>Șæ…ã® Ò(kýÌî ¶Þk¶¯óþ`Íw’ž–•>§-Љ{ Óÿ›Ò"P…ž?ÐÞ«\"âUÉ0 u؈Ø1?oŸ ^ÖÊ@žÒf$œì÷D¬Š0õS£oº_éwWJÚ _T£ªÿflÂ|XÓ§"ãVøg=iYŸCïZj<¼šbXA¬ÃK‹ïwJoðH‘¡Pœ¸ŒÛœz*k3‡¯þz?ƒW˼v²·¬'µebVm“5ñ²?Œ¶~ayJ…3~ç¯þ¦Ø.ú!óH»Àk¯Žß,6ÿ§…KšÛ¯:UFæÔ¯æä¼xÓìLúÙó¢Ïþ²ÉÏè=Ù_*x“ӻꚸ –†¤r‚ØÎÚ$–(ûËjÈ““Ó›ö»äÏÀÆ9v]‚zH†Z2òým:–%Y$¡6‚ǽê˜yW{·ã^8ÐìÍÒ/+5KÝ·WEÚïÖøãó>Nß?Æ÷©^íõ¡À9 ªãàoÛ£o¢¡Ì·]™,Çá3µ9Õ¢.¨£áð6™&½>Z)noñhp9B-u.´]€62F««þ$=W ÷®¦ üN.jôƵäÜGSB)MM]ǬꤗYù¢*HqÃÂ-j½"+¥A†>6i1×èYµ¡dŠiÞd­@£À´ß5©àé± wÒ½—NàWtÈñ_òþ8/³á/Mx¯Õ Nbǯߕ¥~h·¨ë…œ…Â(€Œï8öLi³Ššru¦ƒ!pooÆ¢Þ "k: ñä¾?Aƒ,³-ž’®D„²OyìÛ`…¢" o@~6ßx‘Â(¦|n+ê[iEìgÇ<#ऱ³M=×Ëžëý‡‡öJò¢=ÌAcw¶’ÃPcŒÌ C¸Îe€‡˜W o:-XË- M& æoA,jè° ïßá@–Ž ÙAÏ«Î~l¯SôìzìaóØÑ!V [gQ dCû›Ñju£óN5,¿E0SYë˜2”N ¾‚° Ât‡lKÂpßö®MCKR- L¡)Ð;h¯#ÓÞˆ·œPЭœ²úE¶9‹N­¬½J/GiwÌöÃîm½h¾“þØ‹jÉÕt$0Ò-* áfÑÜЋêå¤1IÈ"(¬6òÞ1:3X²ØE ² ª“|:}ûrM…)²¬˜Ñ·ö’‡·ðƒ‰ñ¢Š¨²çÈÕà}·ç•Ÿ5_Ù%ª"6ÀÒ»ÚÁÌj&€‡lÒÛ< i™Z˜ó¸ÒAÕØÔ…ÖÊ?]iç§ûYÒM²FgëfÚu®­ÎÅ'åd³Ÿn²¥ÿOçvR З=þBÅC*>Lóš£æ­K%¯l¼ÊÓõLštÖûb6u[…{g; ˨çÕ¢³¼Vóª—‰í›H”‘Ùjœ¨¢†Mq>£sš˜ýc™¦ƒ+9’ÀCA–§e]NJhN s{Ûò‹Â%ÅnDeÖOFtz¡Bš³uTÂBå"P³ûLô {+¦ØëI^£ ÅÒÛrÅ=>¼…¥Tœ9û÷El„žzno„ªUê¾ÜÝpfЍ;àLFö¼ßÃqȉ…’RÝŠìŒa`…ê`IF>¥Ì"±œtJ’‡žbÞ°÷z³­YlÂH¾¡²T #YÀ~‘°¡¢a&sNy uÍø'¡š§>*+œ†Z¡aàu´&F#0 ؃Ú"zP+ ßyÈ]57Ѱ™[gC(KBy/ÕÝjßöôåjìd®!ÝU:ÜCK0†;a–æ'Cx‰mcÔ¿?Qªf½å<4m4¨þP¡Ï~üïøó‚Ãsë=}âá?Ôž®â—r1§Úñ¿7ÁðßìÒ_W£æ±ÿ\‹,þ¨- ÛycW‡¶ã_’r¬˜x ÙÐñèDzž,ÁÀA9í‹oí"˜ Ɉè7Ô†A–ôo3éq&Š—2StôԌ΃S7ªÅcÆD€æLÇlÇQñzÉYÅ‹bTg Šãƒ¾r$Ÿª¨»~&º>5g)œPtûA¨½]+¶oA"|—⦊‘Pñ™dç–½¡²m"&TL’1j¶ÉéùÉbƒõ¡ÍåK3ž×Œ 6)<¬`âH5+ˆ8/Ü1ÒjÇ;ÎUlÅ´æ€VgF;Ñza¼êU¬ÉtÒ4¹Hþ︞ŽÊá*t{ý1ôÜÖæU˜hÏÄ™˜|pKs/¤X» ,u,2::8 ¼€buZ(ÏV¶ÎMè—­f§©D0)d×nz6 ³˜ë):ZáËÛ{+ z”:lf–€÷©à®ÚO'2oÅÒþˆŸKnñø}±^vy½Bõ&î`C/?¤73 Šõ¨;ÑÁ¸,2p4Ò¯]lšØŠAù€Û®˜yîâ _†Š)º}õšhnÅ3µ²»Õ*üWƒÿêðß¶1:Ý|ZƒOkÛΘuëði}›Y¶Ûûm¹>¾/u?öÊe€“îö¶PÜìaí›ú»î3µaü™ü/ld[YÁFáouü ÿ©ã?Õmüÿ©ã?ÛÛÉÿ¾§ˆÍŠáÁY:úîÇ+P¨BØü ·Ÿ3ží‰6}Ì“gYcÒLàÕ¬Ò0¬ù‘ž7m4Ûw ­f¨ž˜ál^Q8CÉoÌXÎ5Ûeœ¾µJuÞÄŒR!ûÏ×¥æ×kOŸn{ùßOvVöŸe\‚oû,ô}8OV¢Yà{¯Ïöv)¤[ð¥eUµ.™(.rc(_¼xZøgV#£‡¯ÉÊó–‹Ù³!-­DØbÓÀ; J¾DsÊx® ` xil?¶ mÏL?(¦V G×@Uîa$Ùíi,D&»ÔûwÓñå¨w+Ó¿‚ú¾Öá9³É’‹mO¯„r[ÝÄ0QäTæ÷`+硨ˆ;U œ6>­k½fr²uÐiÝŽkú }p⯲˜#ýeS<ÿöCJG*ì61÷i¿¿HÍV`xémªGWÐýp+M% ÂPS0Ì™bAAª8úH'j§¼ÖX“ æÙ7¾’&Áš5´íGØakAÄ ªâõªa6Ž;נǺm7g±l¥>3Ä&l±É‚̱‰²ÈòPÕ7e°²<ƒ÷p%õ€ë{ƒËÞ-p$Êt§æÖ\È‹KnAœù0fN÷7“—ÈYhl3mG*;ß² K“°´‘]ÊLŠƒ] šA"Â_¡[||Lqj¢ èÆbeÔ;.’ÖM¾taÛ¼gæ6A®… .›÷C£,Ühu;€Ô,nm¬ ÉHW$q.ÐDŠJðÅö&‰-е‰M’ø†+ñ * i 7 ´\g×ÊŠ¶ÜÈ€$vº½í ð‘#F±˜Œ;×í_ûyÝËanHz2ÿò qª½ô¾t¥Ü0–)åyÂÄÝpèAOU³4Ä¢ÇîMx¤ÆÂ¸Þ{ßèýcåÅ£Ö› øH&$¹¾‡Î-pØu/%üWêzþKõ,ûûx*fh¨ì˜”_A`“Š¢nQP ¶&!K¶‹tÆî•ͱ,Ÿ £öѢͧˆYa¡ûn‹‚¼`zI+L¨žLÅn*šâÈ g6/D…介¾†0Ò0™•šš)‹¹„Á6w# Ü·±Ã§fóäÆx9¼«Éãkbƒ¶¥aMÎ_ŠFÙ®°LBmÍ|íÊöý÷Ûã)|¹?IoàrÃO㌓n%“œ@=¤í¶IÁ´uS{fP-f§•/k»²bã´R‹l%={úBˆFØÈL¶I;}EÖDËäMÉ€ð^VùÅÊg…“{¦IÄÚŠÃ(å¸;ÓêL®Nc‹Ü¤›<Ëfçµ""E@`Õ)ý/0~î+`üx¾üt<†òpŸÃ';¥4·üíýŠi9ú(ŠHXœNªì$_)Œ cÖ£úÓ“k“y+´6sµWó…¶’NŠ6jêWCªî¬Ÿ–šT{èäû%Œ#Ù°‘ìååtÄ.4Ƕ.•†Î³ò…g<}òxùú«F¾,܇™£•<ˆP j´â"†ÊWêwÇç„A먒´_rTÑÉs,°Ã_…ëø‡[*IF9?.Euãál×zÑ>;VEž;\(Š«JÁWæß@%!P¶;¯Ä}y@•êöŒÖ6ÖˆŸâçëÎ+Š=¦Â\Õ¨"R|3âžî3h™ ;\–䬰df¤Dao2[¡å\ÕyBŽónسÁ9yäÜØ^À ?$ö…7÷G=5%Vƒ¼G¼_ÕÁØŒfÖLrábOT5-fjñf;–¸H”· ë–# C¹yüØn1‚û4|sOÁ0ï9£È=>-%>cˆx~Tù¶ûH``ŒÎ¸ / – fs¸¢ÍóE0Vo÷%Ɇ(®Ç\ã|(™¸P¦ÖWšž]¬/zÖ1êõud½>ug5N–Ä+õ9¯ãò›õ…1õ/Bó(š'ôbÑ>½Aj‚è¶Z,¸èd¡‰Báþ ÅwG£@æ‚=&Õ­ð €åuÕŠ÷&Ppq¦t‰óâéú –ÀA°¿ˆ.2ÚÈ2ôN¨¦ËÌg€÷8¥g°ÂÊŠ U߯-Ó7b¶" XF›yN3x¯²¶Ð6žKnj‡œdºD3̆2¾Û›IX1li YW I cú§¨¹¦>Â{k!I.…éóNtãðÑÜ)9jòÈ­9S㔘6„_/“gÿ•a æW¡XÓw|ˆß@d1ŒV$KFoÝKk·+¸…G³XÅ0¸Ë\]¤´³ÚÓF¶~ÔzT±y›lQå éq£2pÒPè£; âô Ñl§Átaó]¤‚C·ö§ýþ##ûÄ.=¨&=3s ›)3Pœ6!‚Z¨.Fn(¨íp͈5b?íÖÏ^t‘“hB'‘¬™8ucrhçBÔ“;a‚»Ž аL+›$Ê“aç¦Û‰°ÃÜš7a hƒÀ;ŸdJF!ëÓ‰L}±Ú…­sÎ`Â{QáÀÇ›J½|A]æbS¦à¥úù“ÑõRóÿªÕúÖS¿þë*ÿo)sƒÿM‚}0%[ïë)dX™àÉ BÒx: ³ êQ“ŠT¦§ »/Rˆf—5Œ¨Q+¹Ì@_²ß€Îç$Ú/3|’"XK [rs{~20¤B…RÀèé_O¨(šPnd¥IfÆìV+ÚÖ¤#3>°ÐÃö¯ô é¬x…}ecaõúàˆôþËòþÁ—~ ìÒÛ}y*OqGޔђÂî»4Ž ôÁÁ¸s gºÞ:¯OÂüÕŠâÝÕ´Ýû¬4gŠÕùWßd[šÏHiŒ9K2½?ÏáS¸ß-FA$èóǰ-¥jÏUŸlTuN^r๱‹hœ¬ú?¶/¨ï#Ò}a‘&øG{8ؘÂ~ ¿Ã‹èIJ*É :Ð+Q#Üö³ÒA們 &¸®)ùw°!·è ¹EãÁÐíNƒÆ†^ƒf˜ %Ù6õòŠÓwD€LŽ'L½âOˆÎ· z^w8ºA½Øt×¹V#t‚Í΃žqœ©jñ`ÍàÁð¼-n^¾ßxS3œ¡Ž½#gi¬WŸµÍ¥EC3å’8¬µƒÎ:šEf<½{›x!‚,mGF@Ô„Xtê "â ¥‚›E ­G_À:¦)𯑄,_h<µ~Åðèº_Ë)1S–ž/¸ôŒÔ2Œ¢üOéöS}˽Yl0üý¶÷}Ô” »I ÑluÍr…쿽¥Ú·ž<­oyößúöÊþ»Œ‹—kÿm­ì¿Ë°ÿ¶lû¯QfË5øú¶ $¢ ¾gFÃRÑÑÜß„h½_£«i³Œ‚W¹æ×ŒgCìÂÒ«ƒF@ßPk§±ÙŠöÜ3öÄÙb ·G!ÃmÐ[À ^R«ÍN 3ŠßÙ8®údoÍåc`…Áë•ÍD)m)Õlà[û0óó|kò¥±Žì^úŒ¯_®å#nž1ÍhiPæÓxV W²Ì²W™CyT~$Æò¨<‹¡Ê²v¶ñÁ´µ‘QÌõ¹6 Ë›ö™ðУˆ2 ,QC)Z^2Œ,¢ m‰¡³ëiç™Src»`=Íe ÿÇË=ÿ?­Öýø¯­ÕùsŒ{þ/X‚à'¶<˜Ê0ʵ›O.+M0Lh·p¨˜Ž“>{ß–€$ ¢¬/Û–ð0¸nqº§3™,☠³˜,ŒØ2Ïè0“ÉBÙ),2Öd±pà¯Ùྡྷ™k¿@!·{1R,ÌzÐZ¬Mà^Kv-8òfi•º¸àÇ©ÞúÊ}Ú#(çFáa?\¦KiL¢ŠK ·Oý2A‰TAËʄౢU¾’YrÚÙá8MšÓV8G´îîk1bíK ÆÄÄ&È ‚±“`ct´ö÷œC ì ‚`û˜þ¾KÃ@ÉÍU\ÆtyöŸñ亶TûO­ZÛ~âÚêõúÊþ³ŒKˆ!ÓþÓ9ݯ™ñh ^µ@±;i´+ÉéË#•î´½:yyúòôïW{yV¡ç£nï}r4½ìŽÙ„wM¾¡49î.?€gßÇÊ${ çL8WÐô[1;PÀ0ÝÈ75h°ß9¥;‰Jü.£P^m­­µO¿0%Ôæ ›’p^ %Ò¶#³`È~Ôû<œˆ¢gñÈ”qzÓó L³ä¾z$Ê_‘.†©‡‰—{º—3ÝGþaE&û¿2ì ÐtP “ zHà«ï¡‡“7ÉÅ"tò œOn TØô\Âs$û“9|ܼM&&WŒž!£Z¡HÅöMúßxfsH¨Z-£ôVÕà¡RÍ=ò`E¥QHô(Ê@NŠ4'§GE%Ô£¢ spai½‹¡BüÂLçX¿r«"àƒ¸ª¦—4Jì`8ÀâC\ƾúªD»Å!l-‡ä;­JvØÖB¯vœ->ñp©‚c¶išËZbʤá¦TÂÎk­YûýlL ¶ˆÈ‚Å¿ú)4à2¥Byøè?Å ’öÚÙY6`ÿ<¬R<»AGVÃZz\VPKQP,nzÂdCW:ܨ–ÇêŒcÚ%g7| MP†Ñ†Õù £M¦äF%uDÕÖl†x;}J{zÃ*ÙMu­ƒCæîÃ\³iÅ–Ñ@ÅØ¢ä„Ûþ·ŠœC¦™Ëù9íѾC<‡›Ý; +›c‡f·:톲NÌÚnÖ¾}öò{'ÃäÞ¢Ÿ}±±˜(UÁ_^>_¨-ý7¥ƒÄ-jWØ¥óÛÅñðõ½âôàÑí÷þ›¢ ž%Óv|‹Î•-RZÿ“ÐMFL˜8¶‹0PèooQDJ?š ñæÔùqi%ü˜V½ê?´ß_³ÞO©„„óÀ09Êñó³éø%-ë³ø«ÜÙÃ?v_ãˆÙ‹0’(ÑÇÀK\$z¯'½ÉЬbD«qî[õéVxrÃC(ÊÚª¢·ÖT£ÞL°$ù› ØZ [32.mVù¤¶†pÍ®{£1jýkT]H--G‚ƒ¾{……É&2pl1Y5Ädlá`.û¼ÈÃ;fnÌ ®o§N˜ÝuÕ½ŠN“åS@ÚÜ}éÞ"@êØ@H5Â2Î8}Ô‘ŠB ”‹˜éã1»w‰Š–qh²£Æ)4Zcï8°' rÀ=IìËŒ8 ¦¥:3¢_ÇÅD¨¿·Vs ¤ç*Zíu¦¦s²¡)S#«> i<±= ·‹ÚDò§ØÞJ‚~©½~P~Fêq$™Vzzx`É3M¤,‘]qd‰nžÈz¦U”/84u ÄæB'J~<Ù*0æŽ{Æ<بí!]:Ô¼<¤º+XYc0üÂüÍǟ˽q2¥-O÷Âh4/„ü–âa)—Ÿ6^µK•à”awàÛHô®C¿½Amâ¶À¯}‹›Àƒ‘Þ¨g²»wnÈî`Çõ«è“u»SÞtp¬MQA£mîÔúVÁìÌ“V_¨›‚lk|…qԆʮ[¼Š” ý¼-Ð ù¹\kùL›“Ü﬚¢Ùýf}0_®>*è%á^•ÁøfÚ=óp1þ²^>o1M”×ÂÙO#\­ÏÝ_d_="Ë»»¯îü4ûêö=î«-b§ûØW}hÜÕ¾*¯_b_= ÙÑÛQŠË˜9÷VÚ$­\|Â^ÎVÇ8ñ÷Uÿ5ŽØ[í«êZâ¾*Qsî´µ¶‡‰Ü]i£IW»+M}ÑÝÕb{‹B0,Éß]£Ïš{ëNdoµÏÑ']ªÉ+LãTã+x£m\X´Å“¾ ·Ó˜¢Ë·Èœ µ}YŽKF{^,€ò*¶dÜ{¯1Ý•ÉÊìDN7úPè) Yëz ð¢Í¦ÌWF¥§…á}ÐX¶ #[ʈÿZ2þ{mgû‰Ÿÿ·½ÂÿYÊÅk̉ÿ²ñßçˆÿZE}= ¨¯‚0󫨯'꫾Šúw­¢¾ŒçWQ_«¨¯_,êë°r¸ŠùZÅ|­b¾~Œ˜¯ƒ&#Э›ß!ü+Ô¶£Æ^ûM¼3†‡1¹{ #ˈ.Öéü'±…¿Çб= {Ù±c˯ÀT^¤“ä¢?JãÞõ³í&ž‰Ù©ÿÐÆ—ÜFe5 .ýg—Œo¢S§*Ò¸››/ö´ØPÀ°4çt@o&p+ýn9>~ž5E›ƒöŠˆýØY6·Ö¶¶Â~ÒHH]’U—ë’dæØºÄ ¯KrÂÞ‚AvIñ8»$j—÷Ú$\ôz×(;sØ]мKBÁw‰9‡nƒæ ÁKò£ð’Ùñ’@It?Ïj¸Ý–Xt\²ˆ¹DyÀ;ãÆí{Ú——Ãé€ùýîXJ v.…™ìöæëåG… ½q¸‘Iñ¤ÖO?wu†ËˆHtŸÏP´z*"µh“pÈ¢í°Ÿ=±Â ñ ¶Ž½Þ ŸˆÓÌ;FGðu× ¾f”Ð]ÍŒCäKÆÝøþIä+AaÒ%>‘¯ø,›ÝÊIæ¬à«@|_¢,t³çŒµoʸàK¸0÷â.øŠÎWЭ۞‰Á×Ýã1To‹EeðuǘGÝÍÌè ÿ]sÇ?z½ÌˆLó_…Ìm‘`I¾fíäxðU0Ìü93؃¯ü¾ ~·ÆÂ?øÊX5Ù¡ âžÌ€¾rÂ-]Ø1y¡!‚v8öòн<”L–Ï_2ê0#³•œ…0O &_~¸¦ ìÔ%v{Y¤J˜Ô°ƒÝþ(í^}ƒ-ürDÓc+²|ád®Й,c>DÇþF†w«8f‡‚dšbZrÆÐ˜;JGèŽ92™±‹gMX¯ùí—Ñ‚wfÓ‚w kÁO-øÉ’´àŒb¾¢?YiÁ+-Øíí]µà#”uWçÖ„íhåôàõ:ú‘ËE••ücjÁ±j½b@æP„ýHéÃbJW¢W‡Vvšù÷ltbÕf³ç«æËÔ÷ž>TMØÄ_ö¦`&eø·LeØMx_h0:[Öa'‹£‡¢EN@zmk†€ôŸµÞ¬ÿ=-wÉõ_v¶k^üwm…ÿ¹”‹YÚŠÿ>…EQÂcîn%AqÔ~yr\INàÓÝ;E}¯ 0_åª÷ã[ŒNß1Æ{WTÙ+™aÞ³Ô€Á ±C¸GéeÔ>ŒÖQex6í‘€·¤ëvV7ÃÑM¹X]YŒ—¼êuß1>…wQ¤¡«Â„JÓïrõQÛƒ*}ì®™Õ`DOtA˜64©„ÕÂå2îfå˜nrÕƒ.Nhä‡á•Žò´úT‚]7©uý–4©´å¡Œ6?שe»¥ê³vÙÌ/ÓSgW±1F^¾Kv~4{ðÛ-ƒ…~w5pÊçÚ%Ǹ¡¬%_z*w"úìϤtCµÎ¨U2ƒÄ´Üð×pcÒ½—|s%éÁ'+Û6œÛ6aÇ¢;ލ%¦pßÿ¢@Ð ð÷&˜þ÷#T¸0ž_´ë¸tTý<Úôºs¤º£Guö*õŒêâ3µ(¸ÊÀuù ¹j`…–ð0@©’+‘ÑÝ…¶‹ÒºØ¦ ·MmÃN‹¿?ÆÕ¤ÐÄ:7ëéò°lTÃMÕ¿?l¡[¾nµ\¶»ž )´NoùZêá”UuÁ;ÁXö†¥(8ùt©m‚нZ´åœQž÷9ÇWÏ2Þ‰KŽè¢0q¹^®Û’´Xr pLhjq1¡ìùLE¾ý'ýÏh©öŸj}ûÉ–oÿyº²ÿ,ãb>µí?{¯OJ°°_½«h3Ð;´F¿û! @Ü}ê]ž}ˆúÊßYˆù†´Ä¯˜É“£mAÝ>œ¢zïÓ‚ÈXI†·(÷º”{Ç_RÖ:³»He6ëž¡9ÌDœ¶ù˜ƒ„Ä lâs¶²Õ (a¾hîv ÑÂÛ e5>#S¾EëÅQس˜¹ö’Å,s˜9‚ˆ×3²ùƒV}€#FÖtéþîååtÔ½äR³ð›´KÉÉ cõT»ùÂQwð>¥Âm@sðM>ÔŽ›î{xóôŠjÚbH_DÆ7郎Féø·/;kþdf«<¾Ó G²Í“´ ºÝAEÄÌtÑÓRá,JΑ†tGW ÌŸ œSØ„.¨‚lÏh+!†tûã!¶òz8…ç`Ì:¿OOv1Oíý’N~%ÓE #"\9Hb”^M/S6Kè92gS07“ÛWÐ󒯾 ámNü%ýŒ˜!7°boAAèã|¿×À#à LCÇ1G~à–8,¡"¼‰ ÛŠ0{\)Çé¬<³YÎ7B’KŠÎn#’‚rU›-ô¿¹Ð oü›5_¨>ZÆÝKl/l&B^¾³sý‡#à@5[Òǧ¸Â7È1Û¸—Ç0N[Y} È êÉ]M¿Ù†ß<à‰,Љ K°³,ìvkA£¡°Ûñv»ö„lSÁ¥€6³tàbXP·ƒæâÜþ9Vc»‡l?O/ÓQîážAЛÉhøM¼›©í¬*Dš2W*­­ŠÃý«k§¼b"Îçj³"ü>9».»ÛoôW¸h¢[ï\½¤5ûKü%fõEbü+Ù%úõ.Äâ ÝñxxÙëŠ]Q^´õ¡ˆûÅs|ì¾Sw©ýHlÖï¢X!0ç‡Ì ñn“)ý‹¬3]Ú2MÆLâÎIc-îG0Ûo¯ÝÙpo Ýü–{‹Ì¿2=1 0Ï|!ÿO4jdEvÛ®•Ëá´Ú*ð!%·é—:ŽÒË.¬HÝ‹[P|/{·È®½í•2¯/]æOKÚôŸøm%ø†Î›]HãºÛëó¶ü:ÂûôØëôXµ×{hËr°Åˆx 7°ÊõB¾_•g¯k*†.èu0ü [Ãö9dyb€Ò¸ã›ñù댷| 3S3ˆ;{§u¸Šú ØwBŠVö>×iòoNåïwvÆHkÁÉÙ|ªlÑ<™˜¦IPÀGˆŽ€üa:Ha¬jº(@ûé7™O{ŽçéVæÓ&Eàkívñü'tËŒ>›Y‘1ȤϠq›PÔ‹_ !ì÷ü m}å‹á4b¯|í_qÿÐÞë“ej87ùéÆÑHÙ®˜wr©fû”"s/¬™9Ž•d È>ô¹R|»¢e¬4ù™¶v<÷²(ÂAlÆùFõS@tœ”¨²!ZãíL™7d|WÌwµ+½Á½kx%ª^X§vÔX‹•.²' ñ/kL ¿yex2 Zšõ8¨ûm[‘ùwød+EáŠf[«Ÿ¿Û qϵ؈Y†)Ù"qM?yv(CzŸÇ²$| 0\ÿLs.0NqƃSíªòSÔdïºsäTµÔ’uúÕ]ÝügÔ›’âòæÌ~ùþŸÑõx¹øÏµíjÀÿ³³òÿ,ãbζý?'ûÚí“¿:R8ì‚ò¹ÿ5Q:À?çøþÙß;9ÉÈrhâ×?¢Ï(Ã)Ô]#tGÿP³Ä$É#„Ã%œCÒo´»Ï¿ÄÇXz–öÄ4'ž·)þüy‰û3“ x$éÝÜŽ`dÇ"°QÄއý©´Wɤ œ¬>Ì2»{RØ+øðE¸CàéTÆ×Éó:bœÆH‡™0XÀ^ù¤Ô˜œ/`LÎ7™’?&¸“ý<×Mh>A¦jqË‚˜ÓÝ˺G|L2Ÿ=/},'%lÞÇ Âÿ¥4ZÑbo$Ê® ÿüôälOfNFSãÛ·û¾Jì—­ösݹ?\ HvÝ–¡Ò½/ÚªÄ{xĤ#ÖúuJÔ¯ n_F·©+ ªí3‰º&1¤%—Ý]æ¹q8¢_zãT{¼í­›dMšIE”DàIÓ›ùȱъæårz÷¬§Ñù-»EHã@ªÉÑ7ÝO°1]œŠ¯ „TæpyÔîîòXŒÇC4b ,¯ŒzêA˺¸ÿô¸q.¹ViïfzãåÖb†Pâñ:6c™VûÞ|ªƒèƒ{îÛŸÉŽ² ElÿYDÜô‚(¡÷™´Eæômfsàk´Õæ“ùëd/³=tª/"oâù˳öi…Ó'»ý.Þ´&ÜönóÁÞ+8 îᡯsz²¿ãÿû{UþQË8^À÷Ç­Å `7Î_ý-|!^7šB¹žÑ=”—0’‡GM(©ÈûBíY8äö<™¸—Ì ™Ý, ™ý›ÿìyÑg«A#èŒî8ÜÞ§{€Á¯qc†Ðª®Ÿ‹“…øpϘ$†L䫸²2‘æô¦ýŽ÷]FU‘§ ÐDH1@À?ξ¼íOÇ_AR=¯:h°÷A‘Å÷,)Ì[:ÝëýíØë¾½*štß­ á¢?¯áãôýc|ŸêÑîPëžÎAÃÌ“ùÝxtEgbL³,„Ï”¯…!½ñÞáðN]“^_ÃM_Žp·Fím°k¯{N%¡jkïj rÁñ9 ëPoo`´¥8SèÇ(Q¦¼†?¾bþrQ¦À Çèhy¤ÝZ`5Þ*d6´Õ7%ž©õÕî9ë1kä)'›ýt“ ¦:·“ÀØ2öà AŒ2”Y˜ã5G¯KQ\6^åId“&Ý£¥sÌHi Úw–í“ABF€Žéñ†y×¼›@âÅÎÊÀü¸ý.në§:} ýÐ?|h:¸l(‘È– î<<-ërRBsbØR©ØœB$Ë>ïC‘-¨¨›;¯ØèŒýÍZ‰°Ïì,bŸñT0{ŸQL©ñ€Í§C›ÍÌá#«È–²ÙRòÇû ¬3ÇÍ©ßæ}öšZ9Ö!ìÎ@Ia¬ƒd¸ƒä®ˆI6èAÃ=HˆŸ„ ’bèûüÁ“è©9!ÉÀAØ7¸ÍO³°’ 8„ý8¾¡ˆ=öDêï&ÎX8Âìl®~_‹ã%$ ½ÆÕËh¯³Þ¨6YO³ý-"qÔÔHi¦¨¥ŸßbËy_>Âdˆõ&†âØH¤ü\4®ïd_[w~Ƹ¾¢—ÿ7þ¼àð¿<üÏ'[;U7þ¯·­âÿ–p 9kÅÿuÞxá2ìï'Šá»‡ð=ë¡x0]çg`‡Ð ÄN;ŽNÑQœÚnM…(âÚß6ÚEñL\Ç8§›TKœ)a¤ÝqÉaÝøf|Ÿ§ÐÕÀêŽk¡f5„~OÑ6’3€ê®êç*$oiyâž½.¡ñ±b“ЇÁ™dvcQe&Û<¼ìq¿û¹M"áh;3ÄNA躬î”ö,Qú¾;ºâ•Gëfz›ŽÔ{Œ`?“Žß’3ÝÞëc«JH ;Ð/?R.ïgÏŽ–.1€öÃ2Ñ]:³]Bñˆ¹û"üîÁEšJ ›zbtÒ˜ÑÅaOä¹»vÍÄß4´XW£üA¤=#”‚OAÆ]áÃ=Œ«ooŠÒ èhyDŒ#¸À⎷ƒ³Òð?„‹†clÊŒvÑËÐE‡Q£¾ŠÚÙ¢tTÂÏÊbœñô=J³ž-¾- á£#8˜ìöKÃ>+¯ôoÏÆE[ 4…vG¶&†Ú]qoÏh]áè€ç/ °â¨ñ\WWTDøqÅ Ȱ«ÿpQÌh.fhkö&ª¶|`¿”l¶_žnŠ[9¹>±ŸÙ¢a/ ¯:?”¡î>2C(Ãïþ³Å‘,â@Þ³ÄAœƒÐosâ‡)Ü!HB6… “ „VFOã ‚·Ö„õ8¦mï=—€Ž!¼–d1ŽƒÂë ïx{Ý•¬Ñ 30³—J( gw*3âOÌ䦩‹äúß A]}¤ õåWÆÌ(DižYcHï®H¿n úyÀK—H4ìs÷$mrr8Û.f5½‘`Ñ:‰Jë´èlœ±rþcÃŒöedûå±éÆÕ™vÙwÚ!ÂhÜéÄòë\Ïxœ6DÍ4ʬn‹¹> ˜m ÿ’\t¾Š.z—ÿ3]/5þgëéÎÖ¶ÿS_Åÿ,åâ%hÇÿÃŒHh,N€nþ2®Å£[°T†•Û#´&OSR,FUÅBq(`T5–»”±#Ù1=ñȈXVŠÍO™Ö›ß°‹ôÈj‰Œ…¦sï-bù,3ZG󌣆môç§Ùm£šÈ§Ì|O±| Ohü4?AÛfh’†ó¶Mmëüò¡×O™ÒŸaJ_º¾Ö €¶Ê]XÅhÕÝúYma‘òhÛñ¦ìµaiZœ…èe( õûæ$Ãì«Ë®àåŸng´€´¶%áå®°^l«†[E®³ˆ1:¢81.‚ä"Æ«e}È€GuðHÿÝR°~ƇªV q/œowô… ¤_7$4à5 @aÐõ·`Öe®mÓ³;Þb؃r."d&ÌÓÂÐý“$°}Š5];šŒQpó~ÒËÞ!W/6–PäJ½õjÙjÄ= x ‹xO‘NF ²fè(ôOuµéêzÕí¬èŽê®}}RÓ®©äJ¤ËµÂ]®Ý±Ë5Ýåz¬Ë5¯Ë5§Ë5¯ËuÝåºîr-Þåzá.×ïØåºîòv¬Ëu¯Ëu§Ëu¯ËÛºËÛºËu%I‚õ÷>¤ ïJ³õt0ÕÜ|±·I›upx5D´jMØj§WˆD@b\Ô“V›bã3NÚMsjïGQ"Þ®±ÖU+‚Õ‚ŠK‡ÑûiÆ¿È8ÿkË=ÿïT«u÷ü_‡ÛWçÿ%\¼Xó–¤úaOþîÌß©­Îü«3ÿêÌ¿:ó¯Îü3ÿw3 £"—; skœÁ½ŠêýÀ‹¬—zØxj8|‡…Í*ôLõŸIïŸ&jéÂû‚AßTo4/ò+ÖZIß•…b"ìêz!“RëEû츒<ßÝkó¿ ®=çà_øãøìäññü5£0 qráïq:j4»•èYhV7`£²Þ-ðD•å¸z‘N4¨•â:Eƒg‡3³9W¶£x†EQÄÇr&ù;™ #UßTä:«·5€Sî#ŽQ§ÄÈ/‰G£ëYÃçU#ýØ [׫ñ-U/’nÁŸkv“‘+ñ¤ñX4ÖK®pNSRþ›:$°ð]îσx5J7ÄÖø ™hÂäá…Ù£ŽÈRÏ$Ô»#öDÔAFi¾5ºYÍç ¥FÍ7ÛulµIÌ5¹‡H Æ~3ßK‰ÇN’15wz-Ðtrâ…YBŠ9SíÔ2ýܸ¥yosýÈôÔäËP1_CCaóÚ¹›ßµÁŽ×y^¡—ë|N"o‘\tÝvÅÛOw|™21 1ñ®wßÅ›©ûBÚAHä ðt«è;}8š|"®š„áìl–è«°r"Anõê}g’ø0ì_Iç§Aº<^öˆ÷‰ÎÛRσn–]Pøïïdbó(½NGéàRí0ÉÝçýÝ&SúùN™—M昊û¿ü Äüd}­½Q+ÿPÄ4Ný÷Ccn’ën¯ÏÇrà$nïJ÷Þ¯¯7‚A,T#Ó«^ׯµm_ÅsÕc˜aù>|·aeþ^–S´ÐTm¿ÌÃÌØªvÔ»ÚM^¾Ýòqöé» õ›õïe ´Ú»\µû–°ñжazm´O”µ­’ì½êT’"srÜ"7Ø>ÿl½8nd€´Îeš½#¨­ /j›™@2ƒA·óm4æé‰4ìâÓ½×'üAm–÷Ñy}ã½;$ ñ”©åcˆ>e³%ÞÓ7ðq¶|Ó.å'Ž™ª$¨SR„ý‚6#ÚN,ô¸1&=Ñž³lz>æíŒ€·‡»Ùl» ^Ú”›Ð¢Ÿz‡U¹‹jüÈV,¾+„µëggN‘¡£ñ²qeœ›Â]<ù ‡·¾…š;§sØxVB‰{7Nû€ƒƒ¯æy°cÉÞÉw ÷A¡2½'°Ã']+‹­å=é^§ˆ{Õ»™ÞèE Ú¼é•Ä-Õwh? “|ŒÏˆï²Ü0'âý q¤FÑÄ-A}ç¹fØÌ-G,G‰G8N#¬A¥ê)ê3]ª¬&ˆâÖ#|aB?ŠÛÜPíRàÙ´¥9b‰¡_‚6b^6ô¬ê˜ÇV’ˆLF›|tÂÆϻËT¾†d6šð€MÓËe£ÇçXÒF±+šxôð?òúòÞMÑÿ昺«Ü[.6Ù×ó’ÍB}Fûo¥È7tvÍ_y'dcÚ5Ç•D€ÁÏ×UЋð¶àûò¼lg$ eeò i@êF|'ÜÚrðˆ÷JÆ1ÜU°€b_è ›æ=2ÒX}ÿúÄNû£ Qˆ¥`¶Ñ$w’× »º5áêÙ×'rlBLÓ·Ñéˆfª¼®º×*}¢;¦Ê£sà(¥?m æííhx;³Dÿ›="y Ç+=o5‘E[;c!ˆ[¨3æâv7 Ó›Çʸ³¼TÞšûM±´BÜ“W~»ûºBþ¿«åÖ¯> àÿlÕVþ¿e\¼¬\ÿ_½¡˜09øôü㨕Uýý×ñ Êq£3“›0ôå̰rÜ—+q÷Þ}‰¸OZO¡ñü*÷F¸]ö&T>žéˆàL®==øÏfXÙóDgNÉB¿M”aæûg>§7·¢Ä0'R¹î»”Âr;ìauNz4ô.±Ò4Š¢}4ªj\¢bx7y?íŽÈuÕ{ߣÚvÝ««ÇãéÅdÔ½œPÜ)•ˆÇ„Ê‹ÞC¬-ÝkÓ‹ WI#é÷>qÐÍs* ¹qüªÂ¿þ­}¾ñ;¹"ü`£FMg<`•Ë´÷N0ßÈ Š-ú~í^ÁYë}£Dþ*Û†t¬æ‰¶1òï—4ù4ÀXâk,±’®üÃ+ÿðÊ?¼ò¯üÃ+ÿðÊ?ü“û‡CÒÛw€F/sž‘¸'åIÈXsKZmµ,V˜àÛ é+DCŽ™hlΘEÆJ2&l¶ÚÒÈ9¿Hæu'8 ð{58ß<á|nIþ…yÊ‘Çkkí(7dLú Ö“5¬ç¯Y[Cˆm[¾Ãۘ쟑EìÙMÔ¬'¨V#ÜT Aûá6>ÝYz¨ihìÚà²LŽœ­qï¿:!‰Þ†½¢-œaB@Õ4&|¬Ò™ºËLÔ z6I‹¤®Hâ'ƒ¡(îvƒü÷¢n4Çð8ÀL‚ÒòÆS`a/“LÖ’Œç/y¾ó¥b–U+L»\`´2—AË\¢=ó­E*ÊÊ0rraˆWͰNŽ<_gv ðhkf&µa˜™I­fX5 “ººƒ½Š2©Å›‚_ 0é*VççÕY·‚uîœå(¢uŽ^Ÿíü]8jGÅëÖܸZñ€“ac<‚ûi“CxÐèȬâ|f‹óy±w|l¯Ž‡ýì>Ï®_$HÜ@|w”„ž¹÷zsCD´ˆm’?É Š ûðB°ëGÎG¶çÎßðÝ~ŠœØ:í/%]G Ô7y>ÂPó J5ó !—¸nò*€ê!PÝÇì?à@ Sþ&Ê+!¾#æ0óJ©Å´" ]Ì$f x^HñÊ6º>º5-E±5Éz6‡ÎS¶›S¦zn%ßœ¸íaÑv§´¤HZf”ÙœAb‘ά¢ÄVQb«(±ï%ƪ8Ž7À7j÷fm›Ä=2Û†¼Y—“û!cÌvŸ/7Æl÷9ðJëQ8ÄÌíkôô£o„@wq Ç[8­@¿Ä¶eú§-ÿÏH9á0·h[øàé6¨í¿–ðÞ†z¥÷|û’çtÇPŠP ›:4D4 úÃßdºí.;Ò-ÿõu©ñ_õúööS/þ«¾ŠÿZÊÅÌæÆK¹}Òh¿Ø‹Šï×ø üóæ(Ãðæ «lÀgøhçô%ü~ì‡ ‘§ÓÚo™Ÿ)tÌÞ #™è5¡IöZ àq&¨¡ô7øßÙ]CÍpDÀØag¯KÜìH Z|öç N;×Áic˜ÑK4‡ŽNC*hΉNKö2¢ˆzé\¤ºß2þ7Â@îÁ¾…À…tÀJÆüiôWˆŠ¯ ½EœÙ¡'®ŠX¿P3@µ4“(Ø]`u„éÀ «zx@DÙ|èö¯7†·©°ö×I ÖÅ›³ÿð…f¾¤õˆËQ·Ž6(DÏû°Bñ¯hKW1e«˜²dS¶Š)“#¿Š)#ú¯‘ü8¯×ùq^I{ãâÛF›#º¬±'D`¿ãΕÍÙZ¢§¯3¢´¸¯wÉ×›Á7ËÍ/òƒ³ÞýÌER~sþÜè)mتAf™‡ÜÆbð÷7%²ÔîjÇÔ]~€y¸¶í5›Ø¶BC¬n[cˆk€õR PôÂ>,£œ®#Û:‹~åw°%:(µ­’XÝ´by¢‹‡„pI1ŽÃP&¢ú ¯?«—UŒöã¿gøo›LÁñ²õ~~8 ú8Ck.ÇûÚ,Cõæ‘ÚñD§Ý½ º©ˆ)™ û S²Ò>m­S?ܰ½åkï¦k©‚esy™Þ¢d†=GNX[ãŠÓœœ¹¬Iaý^Jq¢†æö¿º• KoƒYùÒ»‚=&Ãiàæ!W¹aF -z1ëä0ÀïqÅ$ÿ§û*ÿçâÿ$å¤b?í)Š÷öÆBgpÀÒÁÀKSEŒZÙG‘Í¢ a¼BÂkÿçôÿhÝSŠ,Lò¸íw/ÓŠß|@´¦º!¬ÛÏðC^í1‡“dò7çˆÙx`/ ßªZc7C\——Ó™ÛxFÕpXK&Ð˾À:c…JáÔƒ>Ž1p6©­ ΣÎ#8+¢PQ6šP » # ÿ2ÀŠÂjñèü¯­ ¯gÎÙÙ€íqxc-`ëÔæ÷ÀüŒ¾aƒ'ÝëœV’7 þÒŒ#xS^žì³î Östñw¨ã=þÑjf¹±ð†Î+¾ñíK?J¹uzü +ìÁÿ2È´;¯ŽZ§ÙΚ££JÁ`åø{„¯ZÖáÆ½9"PÈô³/?IAË/öŽßäÅ0g bçtÝtø“FÝÁ8ìtÞ6^-0´™&˜ç÷;9ó‚Ôw'%Zä-¼,ý[ *¼œý[Z]QôšŠîÑï¢3Dß1ÚØ‹Ή6ö‚‡ó¢wÜ E?uŸ²£‹_#LP£’¬E¢Œ½@u1ê¡ø\…Ø)~ß›3Œs䜚ӊVs|lÃ:zþx‘Ý!ç}5ëýÊ3˜V›âˆ@* úgHß·t¨ÖmªØVv}h› e¾x[™·¾RÛ@ i`t§Ë²²%¼§¬¬á}P¼ûà ð…Ñ· ÖtlËQqËšÝ9䊰µJÜ ÞdÉõÖ†»¨2‰ð–˜$ QðèDè„M-ÕI5t«`Ê·W†¼h yá¯do˜¢v=°”‚’§½ˆ?Ã¥ï<ˆwÉ]wÖG;™¢ˆÿÌÈÄ<ÿ5jøùŸïÇ“eæVë[Oê~þ'|½Êÿ\ÂÅ,nç¾èœ–’7{ÏOM[ì[‡MÓÞФßðßó,l®Ýs•àÌÜüqR6y,p\”ÖCûƒ%ó4y¨Î^¼I6¦<Êó·d¦§2:Kw3s $z"§âLô¼’¦É§ ïÆøKŠöó>é¡óŸ"»y¼A“Ôô²…h.?˱aµ²¹ÈV6ÜÊÃæ32¿CBæ§îƒMÈìæ%dv›Ù&dZ"#Už-í‘@émÒaAcJñûÈ9l¨‚¦³J¢,×tY_*¶:Þ’Nr=²ÐÌÚ3œ0]Lëtì?b &75šT4;ÊQk.`ÔšCàä ôtÚï+O˜Ú‰Ð²E{¼}—bâ•ÌDeÏ(xCôdœ²QpV]w¬³Ÿ¥Ï¾MÒKÄÁ_ÜLÊ¿VKƺîÉQ±„!@±òÉ´Ó½ö0Öë ÊÉ㤦¥•.ĵ0HÙü2Ln?tǘàÌÅ>tûŸUR²]c<®éÌNq¤¦s!M8$ÂBmíÓÅFÕZˆ7D§LÒõ¿ÑÌߦðÏŽçã!4~ÐûÐë3BW Ç(ýÏ´7Ò+«Ü0i¯ÍBjˆ?9(‡ê¨¢,ÃH䤪0’ÚEtÔ#<~ݤÿªBƒòñåÞQqÞ«žˆ¢Ntf¿·ìÌ-ÞDÁ«úéà=¬˜ö ÈÌÉ—4X(/ °rPKJs8*Çd”ð1ëÍðªwïk4uÐøÑèú~ÙšX¢cÒˆ‘2ÿ&$¦Ýû¼O_‚Ù[¤*â;ñFhÉhÉIƒõÚ³ÁúÍM‰Ä« Ò„vȧ‘Ú3~Ž+x9M‘³i÷Ä¡Ào^¯>«­ Âo§—CAÉx< ì%ÞÕÑÂä”~>¸ìMúßþÀ"³pjäH³x0rI< ‰K!â‰ù¿0®z’Fjy0Z‘à:\>ƒô‹ä9üè§*|`(%`øx¾”ƒ€å?‹H#×±à–žtªü+ˆ¨NÝ4dóZÆ•¼bé–yÓš5üýáû¬Ç“ì†M0‘»,{ÆVÈk8˟àŽ6FœP È†áõˆ÷=*¼Q‹‚‹1 ó§ÒOUJÌBm™Z.73&Êg4kŸ<´¦’–¬Áâ\Ó9VÍvÕdèrc‚t|#šÔ¼ôw·6ÖÉRv  X=Æwàƒ5/ØËySß$Ï­ ä?øzëÁF‹_ÑRoµ>Ro­ç½õÉVr¨»â. uß¶yß¡{jÙ!7ãÐh™ñÑFÜlf^MÙ#1-k”ŽhvqB‡.!k¬Ö‹¢ˆgÖ¼æÍ×|j;/:>1ƒ =î)0iÉÂ'$s‘ÌN¤/Oò¸ð·ŒU_?e&¥ÎCãÔèu9¯¢ë‡þÚ´>ºK×ÍEŽdžFºþ[Oaþ I4¸`?žlÜLû“îÞç¨pÅÄY┆Ø8–±½d’‡Ñ;^Wa•á@JÖPê›IüÅÞ‰ M’`ƒmQí ã¸ÑfuCHòTäÔ²mË|αåñEêlÒ-õ*½jUØ“F•bTÔàÏAúuBš©­ ¸ì1;iT•ÜnU;‡Rž·¾f Gß’lzÄ ;>ÒøÜKêI'ÎðYo‡È“Õh«á’gnÕfÊ>Ö-%þØø´Ž1 e“h›ëÉé‹Ë Áë,jÑ™•'08Æ­½ÎOmé#ú“<"' ;·C]â€á±kŸtçgIóâs%žeiÝôè@Km á‘A=zC­Y–'ÔU}åPso4@!˺ Ø9ioÜ¡Þm½¹ØFhtþûYˆœ4ܯ2CÀÕu Ž¸dA—»<ì:[ë5hÁ¡3Úí¶oÔ¸Ã÷–lѾ‚ûNP{÷¨dœ§dÃNÕ¶‹ŽäõЀQp÷/E={PËë|ûäTõå4Öm¿³Š@nktd›nuEWÆU>:«Ã ´Â+¸4>nÜ–³Êòˆâ¸“c¼‘J¯ÒwÆ" ?ø{@}0ì‰=¸ÒVf‹@el22|é`Temò†Éc˜¹ˆª Dé‹7%6BÊ~ÕXi£ˆ1`µS–“‡yòU”ñD ƒµ}"ZÙ,\+ˆ1^*PjÔ{ÿaâO8%¿n%Gb‡mDtO½“P÷+òì°q„#  OñSüÐzÕ7‡BÛ‰f{̰ºÁaæ*0X š|HQHÙ‰Õ$¿è/?cÊ*…[X%‡Éø“ ³«|ó]+4Rk!ùå* ÝÑD¹Tr8«Ÿ^»Œ…\Ue®b–ÊÛ¡²=:í4EæúQP`&yK4ñØT¬Rf7âÖ™8õh½:Ç“Îôʵz§(Ã]š³ðò¯ÉmHïB~¯xdO^žŠs’<Ú8GæÔ<½ÒÚ"*Ö¶C£S+œ`_­Ûig™¶5w€[5ăJ¹>(FF݆ d I«$,èÑ©QÍ’e³ ™ÅGó”÷ðyGЬðy'f›šñÈ“xçãXãŸjf<Ò˜g¾îÉèŒËoèÀ2ƒ\µ„êoóV¬ú+E* ;¨ÝõÿI* `Ò­ÆíçÂ)b¾‚K¾¶õ=)ÆEPjA[ƒù°Ú·jÕÌ}+Ó½QÌŒ:ƒ&\ðð^«Íª ?쥰˜3{-ðPË>rÞC0„ÇYÄ ´Yô°ë›°e¼“?ìÖÑÙQn7Žcª°kÒU÷Ö2´{çÔHÇ·Â1/vJð’b^"/;9!/èõ÷BOœÀ“Zöd†xô¶{16N„M-7Ê ö{Á`—ÚÓ‚Ñ.‡n»Œ E4­¾ˆÈr<ŽÍhZϬ9£SÈéÕP̰æ4höàLÄ‚!Ì ‡ù·yƒZ4î‘AÃ.5΄X(£_ÆUÍŽe©oÍÌr ÙâO÷ƒy»¬îÿ$Ô°P—ë÷b|ý9BXN€•fs#ïÁ;‡¹T+½»…¹TÍY¾òÁƸԟ¬b\¢1."X¤`ŒKCFtˆlí@K1}Ð y™+‚E4|ãÓ½F°ˆ¥÷"X8²Ì3Ùñeßp‡ø•HøJæËWÑ+÷½R¯Ý-|e]Àå,/|…MYœPÒÉ­‚,.‰º$üq£Y„©ïTꬖÌõzhJÛ%„´l ³f}N±r£Íhs¨9O-& ¥^¨-–…XÛ‡éÏšø.³ÏÁQZJ´JÈ­€,³ý`¬ÀdºZ¯Î᧨ÞSdU½¬óR‚Uê;/X¥ËQ—ÚeëOJ°ŠRM/&Ë V1Ï•ó…«loýªá*1™õôÄ«ÒÊÔfXBŸšÝXÏ/ŒÄ­ÔŸ.'n¥þÛÒâVê~î•Û˜ßï·rG¥|¦¸•ùÕñ˜2žmÉ|a,Û[YîÀííUËÿŸ½oj#Iú†áëïýó¼ñZ #>Íz"Œ@ ðøŽë~BHé±Xl³1þÉCUuºÕñŒ´;ÔÕY§¬¬¬Ì_f- Æ"Î3ÞãÌÓbYO*Û¥çsR¹'H`Û{Ös@²,ý”¢o6SIØí·Ë÷Ê}Ðgƒ±{ù$(•í­ç…RÙöô—ãmi;u[JuP<>J%iIìüh˜Êó;«oû` ÛéçÎtÊöëRÙNQåmŠù§Jƒ_l¿Ùtw¨ ©šÊ?"US /óRKæIR4Ínï› ©¨¶¥²™Zj)MxÜôL˜ígûíâ©™ÖSR35‹†/Z¤fZwS38íaY¼À Oj&X°Í{&frÌ”˜ÉÍ×”–œÉHHË‘=éí"©™ŠžÔLpü*[úÓßZ/5…ÉÉ’–~É Ùz”BõoëiGàf)qºïŒ5íÒÎæ<ËÃNŒJJ8W›5ÇÔŽ‹Ô±«Ý–¸uÞhÍx”³á¯Úp¹eå>ÚX¹)'„*ÎÍÜÀ ’“X¥ÿ!8=sYR¥Œ‚ófköî0S_éo€{[?Bƒ?sœ¾­“ ¹™Øì ðmýKñK·¸ðM!=MØ50;èM¿äM5yý7Ê@Œ²enZŸ‡|C½pŠéð7ÑÍLà7Ïð¨ JëÉè7ù8v Ä•fز¦Î©r)˜·u6)ÂbTFœõúf±™æ] ßÝ„œì](>õF&¢ÞŠhy€Ay ÔcÞ:ƒ»økÝÙ×Y<0¼Ä·º=Y`8wƧƒk“ÂÃÕË;®æçŹa×Jë¯Pi1¯PI·»ÙMzDxÛÎCãŸK당D´þš9 Ù¶sÀvîý4éš”«HüYÌí³éÎ}Û£'‚¾íÜ+é b2è†Mîw¼‚?xPth©³³•¾D-q'§³w .~Òé4hÜ«M†2ßùôQY4Ï!*êwz•=:úUrtt&Dœ¦v?·þårª4×{#â¤âš‹“º¨?‘ÓúÐq¯v–Ž³Ô¿²TÿCÇ%)‘OŠŽ{µH »ÀÆý`¶¾ €NÊ4¡§-ˆŸ#^Tµf{Ë|GIÁWéW,眀sº5WÆéíÔ[þÂkd4ÇÃP†Í·^Í¿z`Ûmß“Hü$Ÿ†ä!g… ¯Òí¥Ù°xëG|id);O آNjM »ÐNúáÕÛ  ¼dÞòŽÍ?!(/éð%$ËB1Fñ;Î{õêÇŸ³æ±.æŒM@ý‰þœzqâÊÈP £õD ¾W¯ÿ¡g¯E•‡±³œØãû¬WöP< BðÕ›sH“;uÁVhx2ƒÄŸx£|›¶Q¾Nõçdµ0?PðõæbgŸ}u-òñÚ‡øx~\O¾Œ²ð~ãyï#\ƒ±$0¡g‹MˆIQä K¸,÷:å€òwÉrõzkÖ'KÊ©×sÏ8¯·ÀùdI¬õz.´âõ댟×;1>KI=÷EÝå&º–™Ä‘IBûd¹Ò´xp&æF²<̯î‹äYʸ'vÁ«ãÄB)ýÂN½MÇï¼~s?üÎR{Y]6{½Nؾ_?ŠiúÙ£vÊÓ]=­³”‹Ù°zc4ž5XçÍö ¬“v›À¾,˜¥JCÛ,p›zk)˜¸íŽÙ‘BìÇàu'¾I×z™{"w´ú-øÎ¼¬0Û==>.®‚@9<ÞýT€£V㸀(Ä•àÒªì"8ÿÝÝåë¸`­‚OÉò¡QýÄâÉþ±Ô¶‹Å Q9©ìýq„à„1œ Пƒ?&èÓ–„e\”߆Ñ× \$p8 '“0,ÄßíuÑÕh<ŒºÁn8þ'’;:ç¶*AcÚßùáZ£¯áÍ%TV†T«oc#h÷ºà‚ÊøóŒ=I2QÙÞï•ÓÊ^§v÷(Q¦ÞêÔôu551-–ª:nCe<îÞùšpZ«4¬A¥sÍ£€Ý¥?wåŸ9ú™,²Y”QÙO9nQ'Fµ =™Ag!#æ{þð÷Ä Aots;›‚>/AÁ¡ñkw0 'üÑ-î²ðø® `´Òyëp&ˆÓæ ú/œ'w77átõŠýwî)á ½*Ó%œ7 ð6Ò@ºŒ…ÌŸto.ûݵünþûFð{8–9 w)_w2‘íãä2ŒëA2Xˆk)ˆ"ìØd$°)p„•­ƒ£¦I9@È8¹hC´³P¾¤+&ï€Ãx$õ FÃÁݯVáó¤ÂØb}pE‘A³5ã )ŸyâÏ£™Œúv›øfÃÀœ&¼)ÕïÊF‰¥£“Ŭ•£qH ðÏMç  ªHæ·÷Á¦  ršÃ-} :™AWå!tbTó*‰®xìhd :™Ñ˜Jê”.c:Ú{Ø,½‘»ËläîÒ¹«7²b4ò%Hdj+  .ЧœÝíI>çXµÖôʇ¬Š±Xòœ{dÂ’egÔt •r. ‚{´ tù1(ìxWìßÔ¨PÛ6hu*§× ¨³›!3%¬j“žUBÑ‚‘Ð u' eÐ L–mÎ elÙzTü³ð'¡+sþ‚€¼›î÷œ¸Ëàßÿó×B &¤¨Ð:ÓýI¯ßDÃ܃37ÌãNÀ÷hÊãß §´—`ïy5öÃÉt<ºS '1_ÂnOñô[õ!Hý†Æ‰õ’ ¾» Cí>2Cí&0Ôå½jw†Ú½CÁ¶Ž-‹j×ÃP—j×f¨ÝD†ºLe¨«.î0A;>/OnÑ4Ø»äÿr' Dÿ¥¶Nfjmçó|»€½‡ÓÙxãvy´OvÛ}Å»KàÇ]æÇ]æÇ]Å‚Dn'š ­H~t¥ LjD&~ `ò¨õ–ËZ{•§Q/"û=ѹÈEk4z%(at CPͤ^7òÝið y`7}«o$ô¹%ûü Øp4v¹unØÓÄïÃØäÓSú,N¨\DÆê“ ʵ$' M Àœ œ¡ÃÄ ÞÊ·Ä¡‡&Pg O³a~A§šÌz ñL®fZ}zS˜ŠQ!žÖ®ÐKƒë.B ‚h0?ƒŠM̪SùÍ¢‰þsBð@ÿüzýŽuíîà3¬îéõ ,ôhÀÊ4pâWLnm¿&> ùUQ* 1VÕhßAØaYËÿ>p¶z™Tý~Ô'žõbÐú«õþoÔj­‹­`»‰B¯„Ѝg‚ÕXù› „•«w,ú±¾‚FGIO!yéÌ ]†t¦„¸Æ<~[þ Gæ9al®¿oxèG3¹TÞ/㣖#L(ÏGfí˜Ú8>¨ï™'UÊX] Ãø§äóôymOÆEùNÒ|”®·ª5ú÷âôÈsx®}>BÙŸ {lÝMkX£]iJ{]í#´¦e<çÇ)µ´g—Â^¡Õã!Ä\U–=úÙ9­âÏNíÃ)ÿ<…çk§»Š·Æ°7›váÌ´§°F”i@%¡}Ž—? Âà¶;îÞ``Ã$N5OÃlK½’–iÊÜɉÅU6ú€¢¹µäÖ#ÿÜÏ­ãÎFNPß8>ݰ*h½@¬^H-i—EHN£Óíi¤Ó+ÛôZG±™X~Ë.Ï·…'¿°í¼°Ë/P[ÙNMàÿë;öë¨.#qŸ˜ÿ­×î[»üÖnÊ[oÝ·>áK%n«š4Gˆg­´¹Rƒ«£Êj%6Z5ϰ‘{‚ù:¼`£l£EaTåü¹ô™¹?Ì¢Þ!~Qƒ°D—Z\+ϳ}%€ )©Pdk7US%a¯v­ÐÚÍi6PÃêiô#}(´ýÍÖ÷8ÎWؼpŸ›LagÀø¨x7´µZÅ JñŸ 3QßÂï×Õ "<ÓBæÞOlÃôYEp Wˆž#Ýâ‹ý û³mØö®¾aL)³§=Œ¸OðÑHco÷që…YeoAü樨ÕÛ¸§…¸52‘Þ¿ÃûjƒŽíz… ‡6Sýz©©«çNÍq!éÑ?¤Ia¯N/ ~5GN½ûáTr‚‚»Ó¾q «>}*¬å©9¿ÎŸÖ÷µúøýý%;ÓýåòVÙñÿm½~½òÿ=Ň—›íÿ«.èLðÑ…ü*â¯úÊ/hú刈qZÈMè«M9ú”è}~®Äê3ð%JÓW‚/1³3Qܳ:Éìå³ õÃI4F  ²Î&84A?úаYºdm4üÏ ØU™cÄ8£‘!­XpÓý´`%Ý7Æ·c7nù¼Ü½„•Fƒ0ñ]f·£Áåôj8zA}|‹`’ÐèÊ Ðë]Ó!˜Œ‚ÝàóLÜ–Ö>3¼¼ÛᅵÌ.§cP· h¯Àhõk`†à2v±: hECÆãKÁ úÂØá=\‹Í“ÿúGüë^ñí&V†Tð‹b™šÎÆ•^}…3õY±°E×á÷n?ìE7ÀAÐFù«lÒ1š'ÚV.á›oaðe8ú†l4 WbãÍ•‡8Ùùús¸ˆW>â•xå#~Î>âîÊG¼ò?Wñ‚NâŸÝ?Ìk®%Wˆë&ž'à0¦¡T àš#åh‘³Lç¯ÒšX,<ÕxZBõ•ˆÈ-™3 !³ÑB÷) ‹ùázpÀ’gÏàÁoø¶*¿•o%½qî¯vßÉ·èêïV>_¶„à¢èÀ Ó Ô<x4º£³Ÿå~yÀÈÜ`hK j£M¶7ÃxGsˆ'À·jG Ú°¥tî6d9Ž"¬/m–à$µó‰¶ÍàF™$ B’º"‰ß WxžFŠ²ðº¢ºË= °\ V®º÷´X¹ê…ú ?TÎîj+IÊ »­)54!cµU¼›C韖ü?+ï~¸^b[P}/8 j¹Õ’J õVT•ÎK²v¨¾„Ý&m«I VW¸Áû~|ø¿ïOŠÿÛ*½z½iãÿ¶·6Wø¿§øð²±ñå&wZiÔæíu)‡fÚ?`Yøç¼ÿ4ƒŸõ3$ÒîÃïÍy9DŒ$"âÇ~…Èü ƒÚ`§X3D¯yýHÂBô7S†´¥ÄªÈóÂóõP "N”@>ø!ÇÝ›Jõ=œø1'N€zÓ°ŸŽN|â,'–æ¶R@† Ãi¯;¤ä°\ÞÁ™#ìEW”e-ŒÈ‚ŠÚ™>^ÔŒtýÏȈm²Ú—ѰO`®+SXHÎσ±£5© l ƒ-/qögÃþ†§)ö brÝ\G·¡ðÀà «ùüì=6òÔJêP R¬7Š ™úùDþ•ÖÒ¾p…/\á WøÂ¾Ðf¨¾ꟊ/ü HÌÇü}˜ù †ÅË»âPòÖl³Áí‡ÂÚ«%ýdši˜ZQÑ,Ѩ€{fÉ&“ð?3Xƒ»`/ÁTém¾€ð‰¡ú‚ãû -ÞûNŇ »rŒuÜÇ_ñÀ‚ô‹‹lN}æÿ^ë=)ƒïÕܱÁd™r‰º“ZÿJs3¡3¤rwǽëæÊЊ±mÿ††£Þ2Æ—%뤤r¢O‚m¬®i£]?K|äv°.:(5ùœ €]Ó¢®ägrê,z‹qHàðüוL>ÓÈukô’à)Ð~ü÷L T¢+‚hmþŠÐÃJ˜¥3túò3Ö:ªóJMÁ3ròl#Wv/' …ñœ@¨)È'8äôBu²1O4Úbºêñè{tÓ5Žt`ëõÂ[B¼L ÇØg¾xŠeûòŽS:"º¶« þO·piœ `V¾E}Ø@`" …‘Éþ3ŒèÃØˆ±Xj'íŸãŠ þêþUøëò¯`-(˜¯Aû@ À²‘„&S˜Up;†ã#®^^®‚,Rm±”LÙ,3 TÎÿÕù+>×H¡ˆÁd·ƒn/,¸­ÁDkJED$ËU¨ 4!dG—ˆª6Ƕ’·Èß•$ŸV¾æ9:IRp3Â5ÐëÍð ¬4¡j4Œ÷qL¿E=Šޝ@°àQ-œ j;(çÛJsï÷Ü‹ö‹µÉY/[4O¯a¤ÉLÂ Èæ¦ß6 ¼œ94ryMF7I`ð‰ƒ9ƒéßaƒé}ÑS´ ÖÏÒð¸Ö¦£)Œt|âÐÅŸIXõ š$ìÎkë󇓸`¼wü¨.Áá·ÞX… ¬ÂžC¸Àk•[î>íõ6Zi=ËÌó^Œ¯âNSG²4¨r<’\ŠWÇo‚ÀPÑ9Ô8j=C̆¡2  r‘·sy…+Lâ—Œ¨äàÝT2x(*™¡Æ*™'Á\Es†@ãòh¬Æ36ž¡L¢!1Þú t¨wâì§ µ¬ðôFýðW:Jܺ2‚Œ§ñ²si€f3"iÏÖºHˆ³ÂŒ—1^Á‹ï/f°ÁqK"+¼ðbP\0ÐÆ„WZý€1Áø³SkwØø¼Â瀎O«T:{\ÐàÇU „\ãõÝÿlŸ¤ø³°ÀÅq Z®wš'xÅ üþkµOõNòXcaÏh=WàòÞ1–jÍó¹øåä!CˆúTñ'â»íŒ‹íöEå$Ö\Ç;^Ï7<0ѧõV»¾×—àhæö¸„ð3ã™Važw‹hÕðZq‹ÔLžHÑ)"(ZO¿‹f.€=~ –ÙÁ&ÏÁ2»Ðä9XfŒ¼–ù•ýz&,ó÷­ XæÒ¦ûÚ‡0ó‡ì`f…‡”Ť'\ðÜÒïw>?C`ÿyýG+„¬XÉ…tCëüõÉûÈ|=²êÛ1žˆ*a|êgH•.³j!RèpgXAkÙW&Yÿ%О? p¸3÷¥km+—ÒroPöÇ¥§m:q!+̵¹¾/Z Á|Û¶€uùAЦSM'Ò¡Ñ o™°ðƒ¿«(Ü ÿá¸j‰¨­&L¼±DØÍƒXÃI×FŒ‡,!lpl=VWejTLƒ«ÐÆ‚"oilRÄ“'ƒy4{aÜyÎß -žBÔÊa07ö+0ÆÆ:ð f!•a­Ê‹ŸAjÂ_^©)‰wNÏm{¾iªDbMT•#‡; \\aÈÓúmÎ@MWÅÅœ…À¸D›Ž zÄB9ŸD­X²!èÆüA;"ÌAÉ»0yg)ÉxqÉ®Hܪ79í¼Hþ8‹Ájn`m{ {kõ8(mõ€ŒzÎÓ@!ëZ§m#ûu¨ Ïm™¨oøVÉ­Í¢¦nnmÇh’øMB-¦b÷Šr¤Ù&Y•¡P¼®Þ©·²„§Ðáå®_Žªç5¯ 哳)ÞáÍkŸ"ÎÎâ q`c7ÕiFê[‰`åTY\5b?ˆK›ò|ž”&µ®Êc»c¬h®L2‡ôuMÃEÏ›5BãœÓ—ÄT¯ó»‘¾^ÅêôÈ|ó§BwO¥.ÃÊ–…‡ˆ±¦ÎS!5h:2ùÜ@ˆX¼d(óý³ š!¦Dý'ãfäbÉä@ ì9Ïé1=УoòD‡Œh‰òO¯“k±®^æbºö½µéÞñ^¿rÔ4ŒFC6ºŠí{2“㦠Æhø™\:Æ^£bç±$ ëN<¬Î¾uM†ñ \ðåÝÔk<RÛ@Š.Ìæ[ÒÍi’íÈa™5<Ä-ÿF ê><ô<К`·!Ðe×v†{Äë~_5ëm½^´) <ïIž ‡îa]¾™ ‹©T%U_Q!z.*'Ú©‹5âr¯3L‰‡!w°Ô=oûx†+.y˜Ü%{Ë5¾Ú™·ü‚Ô ·俯MÇO›ÿ}{»ì‰ÿ*í¬â¿žâÃeÆy§Uýx ÔROóüIKïþógñÌñóp^÷j‰õaé·`Z€ ï› pÎίØ|d#62kê}}þ Ö^Ó‡qMð¯NE¾ué}§ïÌïRbJÀŽH\Šždà“–NGœã8Q-ýÙX õâcò#æTrR”‘“$ÆHš^Q[-kmÅ’S_âØ'Õi¬²Z.¢Ó¬h½´f®º_µÇë¥B´f 8+f$£Xû(Õ€zì‡÷Á hÁ]‡»u £JZöñWBK‚â¡a*àÔ$œúãxl$É!& •¢k¢!lù£÷Ê"r;!_ãîœôÖSÇ£è/Èø†ŒŠ¿ZæÀÐ8ŸIvXàòágsõð"À·æ¨]ElwkDÃ~78êήnºÃèûƒAÐè^Êøê(€­Þªw>é1?¤Nà †9…k¶W¡Aq­¨ÔZJû€ÎæôûaÊQâ-2%.VðÈò²:¤/ð TJ¡sTm–° ¦Ý„ÿWÐÕ *-<5¡ýý4 ÏVkž,iÖ¨œ–cvz ~vÄOþ»]C¬Ùéq'¥7˃U`N~l’Ñû¢Õ4¯;ðeŒc#‚Ž"#V%o ÔÑV¢ìÙÀ6`³U -QòWÔœC{‘ ª Ú·ÈðäBš^ã6ë Û"ð55s(šˆ³ÇÊY] ¦cÕdä—eFà.ÅýåÑœ {ÀUÃÓ ‰#÷b}M#ŠN]M’M…ÖBêªHgt‹…è%P^áð3lò­S:ZÈèÎð;… –Þ–ß{h¢‚Bÿ'$„±þMhA¾FçZA„3ËÃA)ÈÛ$¿ìUh—òÈžjõcP'£çŠ´Çø)^v‚}¬¦°*:qò_3Ð19còøGÂã% ÒN`9wZ§Žëê…¥ý5” ÑÄŸêqð6†"€,+»™¢©¤’ùVºd¸”EŸ«x³©VAE°ÇO‡lû!æ-†¢¾ç؅òxîÔ$ƽuÊHM︫dY‡u SÝá0ºŽðš¼‘I~êàÆ7 ^w¿†pLAÓ8¤ÕJÃïNDeƒŽ§ÍA¼:AkÈ‘º‚†ZÒŠ%v¾£ŽÅ†×ÃRªuV}PcB /•§m-i,ºäðއ@åAGŸ¯§ø–ÿ½jxÂ’Å6f˜V¶ØÄƹ›üDX9" ¨ExNB{ÒHÉ ®m”óGÕbŠgU4‘°6 fpc÷~ÔDt´‰h¬ÛS‘aøùC¯Äð,V³O!´iÓ˜€ ¸õ~°ú8p*ýsÈÊ -?ì;v†8y¸XzE¯I½=í•@Ž0ÌtNhí8DeÖôy„Ó}ã# ¶€}¼8¶üWFbléÒ`7Ú¹RÖxOUG(©Ê©<ÌŵV±¾ž°™èŸ¹f‰µ.™Ž¾X–)・° §‰®@_49šX˜Gë[ÀðëGÅræÉPo–ùÍ’pQÉß³Qhù>í¼®w«Î¸µh9£ó`âȘâÒ•–I•é¬_Ü*Ä•oÇC•‘ûív—â°Èpƒ•4L‰ìþYO«rK/Òîï—¾–â¬x¨í-šFürúî®´e»ø+õ¹Œz_&óÕÿ€)æ.k;í­rGоÈ6ìü½ww?Xpä8öÊϪ ÊÛ ,Ç[0EjœÎ‘L?@Uh‹ÚZ`÷Ç>–×i1Ö§uÚá0‡têÖk’J%“²ùÃó×Iåiõ±ÔŽ’I¤³¬7Wx%›„ÖtO"Jqõj?[÷ؤSuŸ’¦üà  rÊÆA¬‚o¡*z8W rnVÑìžsÔ¥ÀÒ˜Š%5G¬ú¬K!òqñUèžï³ž¥MO½%÷mßÔóf'˜ËÚ ž!:‰³âØ*¦ÍZi¨ñÅõÔq&ëÍåÜE£M˜ãÉÀ M9ÖÛ8ÄÔƒUY~gá­Ü ê «ý0GÂcz¡ºFP¹Ç@°Ûh”ÒÎvÂp•\Ó´ûÔ×þ×îpÚý¬pÇ™9>ߺÏ{Òwœ|·"Ä ±%#e ‘F]2;J—Fªd(ËÒ›ÔóÒŠ’»$૚같¦r(]8UNgOEQü‚|?¿zZT±ï¿Lnt ¦&)Vž+Â8®¢Ž— ”ƒ—´xS‹Ó•*åd•R6~WŽ36£HAi/´>Èæn‘Dz îð¬e¡Àèúc—Ø¡RÔÕ7Ù¸8ßjRW.ô{n‡©ŠÓ«…&Yï0õ®dõ6ŽVÈØÝ„¾¾º÷ùÜ×Û9r”A8¶ê`’ôëÿ‰ˆ pù†·ÆùÙHØ.rä‰*QŸ”FÐL'*÷ÌìkwfzÅvLi•öΠ›û6<ÂZyLœÞáAƒ=Úã)àPÜBìï ˜ðu4µc¬œÿ¼´÷¬%®>£¼\MxóµÉE:ÿ¼Iµ{ëZ¤ wlÿO°C÷F·w ( ` {i’Ó°Ó»2à@*d-úW@/&6œ¥€Þ0ô¾Ôd@.z—Fãès¤ád`{ÕNÛN3K›)n-•2 «jšwĪzS°å„˪9N ‚ ±b™Th„%(—çÙ1 àÙ)—qíĘϽ;åÍ•{çîiC¢Cmö²u^ÌÅã5à+ìÆ³ôótðó,bêñ:z`Ùò“rÃ…"²^z™TãGiéÆŸíÃ"7Æz{Iža…Ø+Uïwr.ÝûýØYäºJ^3Æc©™?Ò „N Bô8n ¢ ¿¤¿ø÷l“£ù1îãÑßß•“h×»jyrŠe¡tqÈVqOµ×xuåÉyOŽåÇYЋS¶!OíÆyfEœG‹îî;+GÎ¢ŽœÆºÍ ™U С/@¯~Ké¾6«¤JžÈ…SB³XIÓ|îåÅ‘ÚÏ–À½/| 4éc‚_J ¡_‚xn4ÕÇka þÞœ-vÀÜ€T.H?˜ƒáµIF­<7+Ïü øòØ~“Š+×Í£»nJ¯ÃuSzó,}7¥7­tý}=7¥·Kpݬéþ,– ןeæXšë†m5ižYÂtÜhï•Þ&úmÊ›~¿M9‹ƒA}³|¿M¹¼€ß¦,½åòS:mÊ[‹9mÊ[ã´)ogqÚ(—Myû!ù¯:§qõËÌõOÿ8ù¿®Æ_–œþkNþ¯­W›¯K2ÿWig‹ò•¡ø*ÿ×|xEù¿öqèœVZíS™Œþâ<`pkœüŽÉªÉúYvki©XœÏ^ÖÌ_>˜LÚ“7âp’€ÃÙ ‡A£;ü<šÉý?N6ŒÆÝ>H0ÌC9–¤ˆž"ìM–F$·It¯h &£«é7 kÄÕ…ç'8ª}…Ý›ZëËm¦·)-ÏY!¹[F4Ù®À ñNN|æË?Æ, y’  6PYuÝj‚{t–ò4m¡Ìh9®”ò í-’Þ¬~ ÁV° ‡ø`} ;br¢=T™N÷O(¡W¦/¡%܆ctªOÈë$€w‡_ŠÅ/ZÔ¬ÿ½àÝû ;¸½îæ+ùÊ X%—á´›ß×bŽÆÞ’/ò»$_UIÏi²ñ!ÅÎrŠ6NQÀN`Ìm0,bò”âÐÌÐ&T Jõnü"Ÿ¹ªzÝIÈqÂÁAP##ŠNÂÞ©ùÚÄ$0'`ôhf>N؆±Ä-ºö/Z€ÁÇ9JÉÖ‘¯ÑÈIošéÚŠé Â62‘½1¹ {˜©A!¥6q³†?2Ã5ˆ÷u™iahâä·êZËÊçñ²OqR!Ê3{A †=0Ù¨~/ÑÛ¦}<íÚHn@ƒ00 ãg¥gÃÞ5ÐæÓ0s͆Æl™¦VÌ,¿O-¶^-kÑ ! ™&gMâð$ÉÏèª÷;üþÔ~_—YGd,Ú 6Ʀe‹'uàÞ£ŒR—æIµ;ÅÄHÏõ³‰í;Z¨}ŒÔrÔ«ÝìU3ˆ@'ªÊIVÈ™™FþZ:/L245I5"e=ñ_œmñÈ "†ï>CF»¶>d¸&Í'6[Ê sUÆ*íYŠ“QaG«õf­Õ®·±méâ¾ÍÛÙQŨú‘¸ÂÚ7t©êøk$¯+ØÕ–¢Éis¸A»T2hñ¦v$å‘)®ã$vfŽ4“;Tc¯«<âZZ©ŸB9ÛèÃ.°FH]³fœwz#YYsFöÃp‚yÓ5nùô]ù€#ä&³KPàAÅý<îÞl”ˆdè“xöà¹õ·ó â¥B0DF‰‡W•6yßü¬e>ToæM;*ì].(w³TˆEöÌõ2/Ÿ_Ðêk†Šƒß¼Zù\k½´ö²¼a¥-ÕR)’…^kÐ:®¦ïò•ñ“œ¬ø¤¢«ì|¾È¢Þ¦bŸ1£¥´&+üx3ªé)Ô f~µfTk_ÐÍǧÍJCö»Uoãµ­cú&ùÄùŸ[§Çº—³Ç¢ÆÊžF=×›7jÍ&ÞŒùfí^fZ3oë~3¦•¯KŸº8k˜œJJÓ¥ù“X¬ómQ‘DŒ”P¢¤ G VâKzL4„|zä·‚ª ‰Ö³ˆŒ³Çg?^d´Êógv¾Ô(ß§æÒ=„FÉÏÒ 0”ÑVÏÊZž¼pf÷éåÅ¢³›(2Ê8»¡8»F[3Í®WX8_z˜ ž~Ssqfù~šKçq5—ÎC5—³¥Š!ž hf‚ô[’êRž[óc!³­sp!¢1øZ^­«ÒƒeU* d‘UgK•U‹±À2•›Ì,°lI¥µuy,ð0íÇ;KÖ~:iûãÓ‹V9¯¶HüÄã œÍ,õ?åá)nÍòÄ˽T¡åŠ—ûLõROP‹Mõ“£Ò¦:£^d~c3ˆ²¼ÝÓ.„¯.É0Äö¿Ç³ ùè/É4t´öç=n=Ãöz–Xoëè^B®4¿jG¾¥Vÿ0ÛÁÑzy> nï‚p!Xì4øx ©^œ‡ÇãŽÎ~)Õÿ@XPÚ'yªb¥qÝ-LËà:1Ö?HøHf]‚üYðˆwä9âÉ¥ðÔÂ禨ÃË”? ±Á\´à1ïÈ>æ= f²b>YŽÍÊæ¹e­|ô—dµZO3W-rv\ªZ•VóSIµùV  Ð`å±ÅÚ¨=PÈ-цõCbù:V†xtù¶\†x ºµl‹V >ФµÌË¡ý Z‘i-<åÁïQ„Î-[?vÆ—«a-4ãOrÌ[XªÌµoe‹Àß×òH¬ðÿ6'þÿ¶7.9@zü žmÉøÿíÍŠÿß.½ZÅÿ?Ň´ÿ²wÜ’8ðH¢“BP?©ŸÃohá.§ð¼ÊÙ‚à ý`¹àK4$ Î™Rp|xäÓ‚âÍÐwADì¥äYsÔÇÐ>Æqb¦aÜk•Ó|;èö(²¿:†žïûáe°¹UÚ‡¿ÇxëÔ0zOø;Å»ËÑHŠQÒ×u×F}‘°y_]09š¯s¶Ÿ¼ÚÕ|5ŸˆÂqÙ¸þ´ {æ¡ œL£›îTÄIÃ^t;¦xÿ†1ãÕŠàÈ\|ûs©8oÖ°hWÄ·« &”X0ƒ2J.˜M0 M¦§£ÿR¨.G&¾ÎòÕüY>ßÁ4ü»7ðïÞèæVf€&wN÷etÓPµœ€—™åÍ‚v~ÍUÖÖXMòvÉ8ýZªÎî„§”r¥½ r4Í0Æ:ýµÔh«é‘ënts¾¤ë~mo¤z?„ž &zv?5|Ú­Ü:¡.¥ 0CÜõ°nž#ŽTÊwÐT+½@·à¨èÓdÇò7ðÕ†UùªœQ3¨ÙއÔévb—+øúoS&†þĤ•¢§BñÖìZ( rœPIÔSUœs3L#¼}Ì™zA0é$˜÷´Ù ÎpØ8.ÿä5ê8K:±d|ó„ÅP0xFÌ×Q£ƒU“¢á4sÐãDu`2ÏzÓÙ˜lÕb¨>vÝÐs–"- süí!fY!a'ÓªJ¼Ú€’mi“Ê ¤ìØp„wu¿Tk»Ro·š*ô™ÿä$:%{DUqÿX.ÄÕgÀûb?=EqM³‰˜L`êÃD¾-ç[bs®ûÞJçz ÷w}T=‹ V,áɬ׃½üj6 `X½À¿©@t¥b­"Žc¥›NºBø×] ¨¢Á ü óóµ;˜…܈÷ËøèûûϲzvrR“i«}»=êmp­¨àßO<˜Ø Ò.æ(íÊy-ly;ó\C]Ié+°¨i§»>B˜*Íš|zŸª€J.™¢ÙX(èsN4¥ÒI2 ßÁss‚*â‹%EÆV !|µÅɃà }“¥a©&Õo KÍ?,©á×!´™r'“êåhŽ9D]7h3zYÁ5ãÚ*íÿÝÏá; ÛÄ#VUÝÚ0Å[Fðÿ[¹t™Dì£RG™QŽÇ%—µî‰¢y¦#E=Xã,œÌ¬xpºkqì¥}@4JküS êø}É›-Ò²iÚjab÷¡Ó”¹‡FaÃéÉèsÒedÓßuŠX¬Ë4ÌåÔ,™Â('„©£ýD˜ NÇEñ/¥ÏÖ¦MXÞDÒ¢Cù¤'"£ô¾Ø(x;)°Ð7$~o,xmšš¬ãÞ¡v‡* éë/ÖP‘Å?Ió±fL‹0ì¢xÖl%ÝÁíj[r¼Jwuž•ŽúÞZÄ—jU³­k0¾9®c!S[í\á 9°`‹>‡C:!ÑA¼ŒnQ–á½ ñ0DkÝÉR`ÙØ”q £l<{k›Ž(6~ŽMJæw”Yoôh8¸³-AçI…‘7ôN™I34Ã1O BN‚•˜aÒ±J9o<º1j^Ú(¿MÊÌåµã <ùMe2} ’18k%ènéX÷˜@[´ÁÝûÓ¼³ÔÈù¦FL&yÑNЊçSÔ^¸2\Õ° "Оð–ãµüŸÐ]xPÉE…?×È`[ú÷ûèßïÿü5Bæ+ç‡Å?×:¡•Yñ˜S{! 2ƒ´û6ަÓpˆÊŽàOy½_?èÏÆÂV­ãÅ®2»¤}‹ëåûÐ;¬ K,Nå6™Á´**b2u‚Ã:ªÁF{Øî5‡“[Ô‚ Á*‡¿‘ ÷ñß~»þíõ7a?¢³d,\*äméG}šuYŸ¼ÂbãÇZañVÐl7^+¬fwÝ,h6Ù‡Ú`ñÆ®O)z#+Žõfå#êËÕýÛ©œÑÏ Ò¢Û@2ÍBÛB÷ïný u?k'íBpJäN›uÐÌÛ•}þY?h¦ÝØn6€ÀrM´žÖ¶•æÞïüÙjŸÌ1åìâË0íŸtNÑ´ Þ*þìÔ>œòOô“--½aûÃiç‘ ÇÄ[±¥˜Ï) ôô„¦mY™Žsâeʱf¾ßb³ñbÙssµAÜ´I»w§e´:ϱR;9Aúã%™LNôš¬râY+¥³¯mQ<Œ °á¶t¶n­ÖŒKnö;*TryAHAÔ`Oè7­ïûr˜ÌYú$‡é†p³á¶ÞÞ5žôa[˜L»Àæ1³p‚¼Îq¸ºW »DÃèfv»<@ªé…NЇ»s\‚Åb’/ññŒe#7I'/ê‡Uš“DäĨz&ˆÄ÷ú¢ôWj^ÄZÐctppÚ†!ªÝñ]Üe×ÜhЗæ ÛŒ‚ª‰²œ’ð·V0’@ó2íYÂÂÜbg uÇáfID3cÓv_ò`áûöÚ‘ÕÐ0,F^0i:îzÝϚ´ ?Ê ·—æbª>ÀÇ„D|8îճË7¼ôÃI4Æ5š"Z¯ÚëGx±Í7œ@þ3Ûð¤‘L^EóäbÐ’/@ 8ïÎ&„oNf7·|øï^g"•«Á¨;E«åí(»yéÕpõ µÓà[ÂÖF¼íC‰&lSíŸgÝ1¡¨ûÑg¾—·ÛᅵÌ.§ãnoZ@ ÿ¯ñ¢²ËhØÅvè$  ÄqG½ë@Òà»ìpZö—>›°`é×?â_÷Šo7 tá\@_ËÔôÞh6 Qé…ÑW8áÜ‘m[t~ïöá,†W¯A寲mHÇhžh[!¸„o¾…Á—áèNýp4\ù W~CN+¿a°ò®ü†+¿áOá7œ'-ñú˜R”»5G`Ò 7&Ž4±Òš0ýÊȸÿÌP«aQŽˆhÊœI AȘŽVðoóÃõ87°•’'“Uëà7¤•ðv9ßJzÿ<Ãû®ÿqî§røU¾…f¦|¾l [¨ž+Bÿ†àÅn ¦8@mðŽâpPïƒM›§…O$:!Ô.Ð’Ö› ´¸F1{“è¿¡ZfTv”ôuCÚRHEAçØ¥F¢_ȇûmd’´Å6GíH’øÍp„ã1¬Ð´LÆö h™ÂÁƒ02î½äã Ýúç,vnÈØ0Ɉî’H«¢žuYÔÓ×E]_¢A÷[ußÊ`½S]T(Ѝ)ãÚð0wÂû[À¥;ù–‡Ië s©¡ˆ#ôâ\j´Ã`©E¸ÔVÌ5•K æ ›KlÚ ºñ$Ðu»ñð;?œÕNÿ(dq¤À7h±##ÙÖhH;”K±Ý¬à Â=š pêÞßî!‘Ø•bKXS¬}Ø( èƒØ"ù›>ä‰ð!^÷›hgÍã· !'LÇ:~í~ëzìbä†KW'- 繬ÃЕRNÉ-Ö–­ºl¢ý·°a3Ö„ÉÇgôÈʳμ3ÇÕëñ±¼@|þP1¡oÍáezuE°¾8ÅÒW .„)ªÎÇ©ø[É…»=,„@ ~)¡'+ Ò ƒ¬0H?ƒDj–ƒAÒ …„D-b¥Ú'I‚k`60K¤áa72Œ8šâù/&ðûh6 ÑRI®ˆîprE×Ù“27oÇptŠt)•“~jHcÿ,ÊÒë:£«Ú«{°‚ë/2—•p.G¿_Þªš†]dÕÚ[‹[ñP­§AQÅMÓ×ËhRj¹£ê‰JL ê©úÜ`O>üÏ÷'Åÿl•J;Nü÷ööÖ ÿófFÿóQžO+­ƒš¥<œÃ9û- ð³~–bƒ¨ì¶;ÇP¨é‹?ö+@&™Äß 2¤ fб©Qè![±fz~H1Ê<-Eá|Ü+EäÒFc¤Ñ¦¥‡÷£B‚ZLý¥F§×¢Ù^5TŽ eQ¼#ïrDY»¬‰c¥R•Ò¿D:ѰŠN`NºH&½S?6†x8S3*@õ7(¤`L¯F³¡9÷¼ ×ÝÁUqt »7< rÀïçgÿëq¦VR‡Jb½Q$ï7ÈÏ×°Ôð¯Ä–®pA+\Ð ôwÆ7ÌU%sƒžŸù¿—I’ˆï%NG0>¶’×Â% 3C*Š/ÓÏIÛLwÜ»I†õ­Ûöohˆábl ;Ì$wqý “žQ«kšÀ¨Ÿ%>r;X”ÛYÎ>­™çzúLn@¦£ó‡4¦Ïø».i1-[( ‘$åâwK與öã¿gøo‹,^è^ßü -›Ìh-Ùäg,Þªs9T¬J¥'›í^N@ìàfIþëéhK(«íÝÜÖã—+C>§~çŒcq1ré÷zá­H+}´†WþAÀ¦XVË– c7ˆXJj[ãÿé.få[Ô‰ ®{(ŒLöŸ™`DÞFŒÅ:ÙEñ9"¥‚¿ºþºü μó5Îh‹e£‰ØsØ"{+í¨,wY(¤Úb´4nù§Å¡ çÿêüoî”*9Â!™pâö‚Û|A´ÆL’ç‘\2Ç·±*ïX’"ƒ8N0ái/Ô< „ÊÕ gË)ÎólLf žQ5Æ’ §TÙ7Xg¼«aq]dA…%œ ¥+(ç…©úEû(ÛèÜý˜PýÊH¬À„ØÃCÆo›^Ï l§ä”“ѱ€ ¡#€ùßaƒé}ÑS¶ µ¬†Á/¬}âûí2ø‰ ˜Á¹P[¯‚ÝxØ›8_½Ð0êÏÁ¬ qÂPÿNwŠˆ8'óÞ]áœÑj*ÈÀ½u ò|y1Áö€èƒÿgK4º)ʦALPBLGShgœ-Zv¬N «@š5I¤Ù3¦I'8ú$ôÄþ¨ÕÅ#Ð[ëõÒrÁ­ÞS×rP®Œ¶l®-v±FM¡óMœª€ÃÚhØTl²Š€«/a$,ܬICAh„›ñ¬¿rE)Ö5°#Z­ °]L(°©¶ûHÍÐl›ºÍÀÐlAô|—§· Ŋس‘9ÈppOpü.8>Ÿ|3rÓÆSo„N2’â$? °bN}ëðéWcI•-üŽ4¼CO›Fÿ¹½È2丯´ÛãP©{HÇS8?Üšž=¬9q¾q2ÂgK¿¿‡¬¸r2‹$Ê.4-Þ A•ãÕ´Æâí7A@°ª±B,†'õÖeù ó  Þ›Ëö\cöý‡§Ð©ø‘‹ð‚9s†@1v4VÃ_&B«ˆ±¸BfüLÄ¥&ª4µú# ñg§Öî‚ó «£=6åãÓê¼ìÿVò©ª†a¬ñúnºõ½ZoŸpÁ‹ãdìc½Ó<)¥Ð9,‡ð_«}Ò¨wÒ-ÙF!#2¹:áÇc¤Œ*6NÑd÷ÈÿnȽã“? q"¬d„än¢·6`ß> ·•9«Ý¾@/ÐÒ•4³<±?[ÉK1.!|5h"Ex]ºE4*¼Ý"õ“³KtŠŠÖÓÉÜ¥äÙHyž-òt@›s@žÛZyí)¼(úèCëY-eÿù"4Ïn+mì§Þ25pÞ `3‹±¦ðT‡q0t‘€g°ÍêÞâÏ&,Â)€!F¾?`ìjÑ·&Ñ4X¦ÿD€kV`­1ºŠ_·ÍJï‘ü¸ô¼kMke>$ÜžeçLYÓA×&ƒ'½°àsb=Q6fñƒšúÎÏ(nÅ©us˜(X¥—s ´vM|§ñkü/WÌ‚óøOÑÉšÎ(Yèë‰2󜊟7´oÎÐÈ~~敾\\»mG½ }“«8eAˆê ‘êC¤Ê‘¡IåÝÍ\tÖ¼ç‰JÖ=S²€ý–Æ ö#?žyy¹xYÈjˆÙšl‰‡G«ƒ3«Ùðµ¼X5Àµµ¨å<ô-Úø, ž%0-<?‰rŽHجá"Ѱ»XPdDR"é_ì ƒ¢ ‚^+´øk‘æÅñ8$ÄT·ý ,¥Óƒá­ÍÝáIƒùW,¨-ðWËÃm’tçôLQNਘxNß^‘‚ÜûrbMˆ‹ºÖü« JÚµGr~KVR;Á`‚ék„¼ÌÛõat¯ ã5¾ào¬m7Œì¢‘ž°¬¤‹A†¼‹KírrîÆÚýZë6vnBÅ@¿ ͹L!ð\tÚzù3Ñóæ-1I´©Ôv‘ƒÈø†o¿*o¦5 –œ>F\‚o´x€ÝO »‹Ü¬\qJ.6˜ðkÿ‚ ÓZHw_xµ õ¼ö»òÉneŠÿzû„—'>1D}ýâX*Ô0ˆ朾øû© †8="¤p`í¤ð©ÜbHˆ“öV!’ÀP1Ї‡k+çÖåÃÙÁü‰æÏ#Qvî\VâÙ¦&}ž6ñ¬[»BßK4dßµ§ p þvS}l4üL.YAÁƾÆý÷/$ض7ƒCÞšfÇðEMàòÍÒð%¶­Í¨Š—‡H냂 úpjíÈa™5<-ÿ®%ê><ô<К`·Á˜Ž-¹)nÉ›C®ðmDQ“!%ÖëE{ËÈøÀ¨g`‚ÀGÁ¡{˜@÷ÊbSÒ©Jª¾¢‚)/Ð6Ò*³F]h4üסO› ´Å“2Rú`)ubž®!þð W\ò0¹Köº3¾ÚN½”ÿL xúøÜžVããÆ}žLŸ4þ«´ý~wâ¿6Wñ_OñáµiÆ´; Y:œØ‘_»'IIœžP¬,y›Eß—vÓç.ÿ’= f@È&N,S±^ECD¹sÀ ú¯D¨†w9o¨³h-ïcR^Ôo  Sîbß]žˆ‘Á.³ò‚žTA íO•üwø~н¹ìwó»ùï´%•'@¯sÎwÖò•<ý®.ynȯøØ©·Œå¶<•ïêÕÉëvóF«¾t%±A”D ~Ÿr²Ëˆ­ëî×0¸ ¡øí8üfJ€ŒŠ,(×H Æ$ NN:§û·¸‡©0öw(œy­"À˜LJÇ—ÇD¿U±'¾1°¹jÝÑ.ö”¹žš‡FIካp«h©-uŸ`)%¨²@(BÁì¦íÞPøÆ "L'*&hטï'ºÃa]egÞ ®Æ£NÒ~=„“/± aP.BÝ@sjì†ð_ÃP¡ ¥Ž+ü‘¸¾ãlà¿WòXãÅõ)$%ˆßÎ1}g''i°<„Âá±DÿÂ_GðÿþGÿ¥hXºråwñ·]ümÏ—Z0VùH€1kžÓSô;vø¯ÎIû<ÅÄžˆ[2¶®zÜIî‡DÔa!_K#³,ç4×1ÚKƒ?éæ4Üÿu`ý}ÐÙØZÏŵéÉÉ|©õ–œHÏ‹ ÊÏ%6;<ǯDë#‚xbF®íéÔ‹X²ŠrÌàá!™õFÜs%ÜsHÌý ¿Z¦.²Ê™†<ö &ø…Kd}3“ûh´èÑ¡ƒ';3u÷ïXu0t&«¥ðÙ¥ðôá³ï±% ¶â¡n›x(y–ìÑpç øõŽ~É«Ÿ:ÐS¿ÝKúÕ›ª¢CôIFó¹R½M6ÞWE&cª„-Æ$1S_¬ˆA 0»¦ü£ˆ¢DªèmT Ni¨oì²éµäØPUI²'³r¬ö¿°Yùˆó+ãæágæ/…/’™¿¬— ðŸÍÐGG¬ŠîÃà(¡©²÷øÞ:èÇÅ€óV9ü{vÛ—éÀ\íZónX€ÿìÖàLP‹p¸ŽÜyÚ¥§» OÅ»ðïK,ig· E—‹ù,´G»˜`ž5RG‹á~ÌÔד˜ ßFCµ¼§~EwdA~¯Sý]—ì—¡±äNËÊÕ´ä’Ó©¥­5pOÕÈk)õ.§õ†djX§×„SQH'¬'K'¨Õs«÷ñJ>(§,e®â”3l^tna¯sÞ²p¹û·¬x•ï¾îlY[i+\®ogËâqÀGG©KÞ³=åJï¾à¿%/yÉ+ÍL¼rT,eÚËŽ7\¿IËWç~ªIq¿¹|æì“ñ¢=[˜ñ¢I2½'I•<´$ýx0•ÜKÛZc‘›å²ëVTï¤l‰hʲuºCÖéJ‡ ៚VáŸîFHº’³n§iv±n‡á¡#œ£Èy6GÏ¡ÆIµd15OÓl€L~—ÚËŠM«(բà »Á®^03ˆp¬tÍ}I[½ôªbycaAÏÔHíÕyµ2ÃÖ|ãÍȤV(ǽ FÚ['+ûÐ|°uÑÿHô²ÂAëÞ^Vÿïë’Ýsýå’“ÿ±¼³Êÿø$æËÿw®Üž[`w=7Á&®¿UþÆ\‡|§Û’ý‡¾,‹É’é^éμçÕŽ‘G:qFÝCéq`êNK™šìÛänÉŸcßùñ«]í;üf4f_ ö- öï˜ÿGøqH!w&‰lSª-ºW@øSؾ®¼œäzê&#Œ‹(¡ŒlÿrœmÊ)‰{š¤ïszwÊÆŽ_þáƒ!‡¡ðÌêcd¹©Ì®YÊ*³õ.ö¦êe°Ô3I9ù w%«#dN¿˜ðæ3q0ú< ñgå}|Ò\œßp8UYO$2~:Ý)žÙ}NäÝLán†)ÜÍ:…»ž)Ü]h w§pw¡)týµŒùpݶ: Óƒ» µÆpü‹q Ç+à7åÖÝý{ßU+@러Ä=†àg®sBM8§—Då$ð–B2ᔡzœÝ<6°ns‘,»%Š¡•}wËþ-o³MœØ­8}Ó† ÄT8ƒ(¨Å1àó¤QÎÞ¨¾³vDL­gç2â÷=·/úwÓ(ó Œþ÷íÖ´[£¦km‚xƒö“<ÄžEøÏPåS¬äoÇM [ÍÚHD"\2¯O«õA†uÁ*Еـ;%r]Â)ƒ¶üd†#S?4¯˜ ¾¡Þ.Sf>Vj¨Ás31uN+-™,ÀùhÕêËG$Á–‚¡'–KAX˜,(Hâã Òõ¤ /RÒì, ŠqÿT=I™u¸#ùÆÄGHž³Œe†™E΃¥çq™“»…©ì£Pî¦ñb–d›1­ -zZCÄgéº5¼zÍÖ׎Ä2ÆÆ Ü­å‘–QU £ÝúlÐ~óÚyÎgt/t™qª©Ý»pîPM+ÃâHdp>G(²D—ŒÐ˧ØòE%zR`ˆÒn´¡…5Òü]ö;iñJ4Û.Å^%üM3B™Åeb‡ßhxa”Ç‹üDzŸ­åï<1v†û80?´ ±~j<òÝè©Êv¬²&‹?&¼ 72‹šë­'ú–…Y,K6\Ò}âBf´–Ųäœm%Ï™m#\lz<1g/î?)ö@§MŠ= “RÎ4)ÍeOJfðC6×Õù*>ð‡~|þ¿þ“Æÿ•Ë¥íM'þ¯T^ùÿžâÃkÏöÿU—æ R¯œügúå ˆ¡YÈMè«`‘{ÚžÒ•XMõ%²Ië™ûuO"™ðïçL4=‰HÈov©§å׉¦˜ÓBûÑרÏ9è{£áfxáÐà3(ÍÓky%I‡îtJ.Üt¿-XawÁM4èsŸnÙѽ„ˆT®#¾äv §Ð|5œF=P•§|Å šX£"M£¸\¤|žÁéiôA•ŸrêüþËÉì4­ŒZ¤ÐvÜ\‚®íÐI@ ,ðýuÔ»$`}aXÕ.–Å&&úõø×½âÛÍ‚ˆÅ/Šej:›­`Tzaôµ{IŸÑ[t~ïöÃ^„—G@寲mHÇhžh[!¸„o¾…tS²ßp4\9ˆ%‘•ƒxºò¯|ÀIS¸ò3™•xå~tð<¡ƒ9ëK:œ¬9rÇ ·§DiM].‡‡ÿ™Q*[¢"GDÞ'”>" #!ÓÑB7(Œ‹ùázpÄ’§Ï„Áoø¶*_Î;—±Åãë}£"çU¾Åù`óù²%Y€EG’à˜n &"@•üŽN| ø•¿:!Ô’0goFwy™c<Å î+¢êèJLüM§AÃzª6O í¥f5Ñ.WÂÍ%2I„$uE¿AÇ.9ão0ùgl߀®9••p5KL:Aç9};…dúçú©—ó/”¼[Ïʼõtî­ëì+t?ö­ûø—õgfH9É΢¦Dö0¤zc xq‡øØfÄúœ¨S6™Å9Ñh‡Á6‹p¢NÅåó¬œh0 `Ê œøÌ1Õ‡BbªÏc×ï`bZ>LL낉ٟ1MsP §2™»ð²ÛÅ,¸Ð0T¿ÆÑåŒ <—R{mvÇ_‚ýîub´ÞvÇSbC¼±‹‰Q¡W½‰f^=‚§³Þ(}Ö®üØ / itõævéPÚçòÆfmý¡×´5>œÕNÿ(, ‡î»jðŸT]t¯ÛÁ´{¸ŸÒHçÊÁÚníÃFQà „Á߬ I?šä\2•x·U ¯ðæSæ•ëÄ 7Üo½·4%^¡“œó\Öa9Œr>\AB›5’e«¶y—°Ëˆs$ møŒgT³Ž\ Y¥%sÇÕëùŒx%ù²ŠK–·F˜ ÖÅú=Hn%tôaw“œWçcÚTü­|¸“®†îð,8ÃÕyü±¼ßâK± éª@Üér⫵‚ø3^SqÒµªõ×êæ{uóÅ4oÍ[Aóæô?š§Tà„íö7xopàã`¿0š½ƱRØ][ÁWðÀ<ðŸ è]s¤ƒ±±cÛþ 1DyË@Êá$ñÎDŽHz º°º¦ÉÈúYâ#·ƒuÑA™ 6çâ×D7u“ØÔÐ}ˆCÓý×·V,$ðÂè%Á ýøï™@%DW„ÕÙü ‡°+x‡ý&?c1¾ÈPË¡wÅ'Î6.Ïî%è@¤-4…‹õ vÒð9Â!ƒ¿ºþºü+X ækÐ>ÂX6’ÈTŠóÀ»ÀzJÙ b&A ©¶-›EàBAÂù¿:ÅÚ¼”£YnÝ^Xp[ƒ/ˆÖ”Šw•«PÇÎu`t‰ ZsÌA]§»ã¿+Ö¥Ç$C,Wó(PnÜŒp ôz³1]̪FÃX1á”*ûËŒwž!¬­+,¨°…‹ý œo7*ͽßs/Ú/àHˆ'N{  Ïô&FExþm³ÀË™c“`2¦ áßë×8ÓØ#˜žñ6˜Þ½1E›ÑP1`Mñ, †km:šÂHgd,™7³fÀª¹Ð$á`w^[ç¾ß]"ãGuñTàzc½ô ´8lp ªÖö9†ß5c|—€oóþ$†îx/aÎ8ææZÐ|ÛûŽœ®w˜5Úø>éDôþÓ]ãrÈt>3UõŠùþÖÀíˆEøÒü¶ âs 4iHíêS€«‰™ßÀÈ£Í`Ô‹îHt.rÑچ͠?ToM¢µ> q¢c¨¯;ÕÁ3?,6 š:Õö-yû»Ùw^VÖÆ‚%ü.gRoU¤]µŒ@v1{Çù˜ R~Ì—KGÏ(=êmS„$—’³³Á’T0Ø-mùÓ¯†Š[øC!yGFØž¥wãºÀÄ!G`~¥=» c®izÜZ±A=û†DÁñ&Îbç ÇÓ`ã;ñ{8­+ã³ÄÜd—2lÖ A•イM1äùMlgp»Å¼òÊ;˜šyÐÅùÎ qá“Â\ž;6úãC±ÑÁFîkZ1ÑX7ŽºŸØ\Dk–Ãi¬ ÑϽtDtv¨r¥Ñ¨ÕÐmT¥Ÿ²|^á¯]ö¸’~”òÇÇG)×}I<–Ož ?ž `f–ˆK×#Zdf·ˆF…Ê-RÿyS.Š!‚b¸‰ÜÕ€ÍJ;Àç9@é­¼ö^ÝðÁ]‰,ð{~†(çóF<ÊQ‹md°BzÉ1óV [q@zU%󎲘ö¾ K,‡{Y[Ìót†ýIº©Ïöõ 1gÙ|œø=ñézã^¥·äÞàãKO¨Ù´ö*¹æR Ås)¯ñ hâQ? À?å#¡€Ó0¿Íà7¡ì€ߦMj…öýÁhßÄy.PߨîÇl÷Ÿøqñ¿ã«ÉÓâwÊå-ÿ»UZáŸâÃKÞÄÿžî·5-¬uú{›Õ‘Ê>ê1'u89ÿ|ÄŸS$Ö~íôŠÓ¿¦Vâ…óþ8osÔG!ÛëÐÖnTöZeY¢£–%|u C²쇗ÁæV!hþ¾¡[j‚gÉJ£ŒC,§ÂcgXÎ Ó·šw_¢xc\oŽÅÀÄÎÃôî«28ø˜ãn-„ôÎ ¢Ð9¿ ¬§òSºA¸yºÁän2 ÉoÎH%|ôlÉù&Í¡½Qxuõ"´ï §B•$ }AlíDÈKŒ‡b?6#êCCت,3øõ˜ot~ 'ádJà  +œ»£B`e†.ª7ŽY¬Ø@Eäã ´b:œ6®Ñ€g/òBm„ì$ˆK wš!1+îÒü|ÜmHO.¹ë,´‹’®‹w!¬dNhoØ$pGìŽ}—”“K“LÉÜí‰þ< ’o>åNIKYÛA£@Ó.f€–}cë€NåcdLnêÊIïðšÐ˜úUð±szV“è;`jíÁƒUX»ùÓè #‡Z_tœ…ÜþoºŸA¯˜õÕþ 0¦¦ŠQ(ËsÔ¯"·oMdö&†ðÓ‰(ìjL im˜Ωß0SZDþª®±‹Nõ’؃SPƒ«ÍFŒ|ëÞ¡dš pYÛ0¨óŠ€B3ÎU ƒ‡p®‘Ñ:H{'e|Coµ¥‰!Og Š€ù0Åê…+š,a 97¼SCL»2A» sÁ™Ö‰.²áudvSãB—gs¿#5b(ºq²/Ã^kV>ÆÝïÑÍìFÓü@Û¿¥} Tõ1ÏÒ5wš'ÌSæ;qaÓÅco¦2îÛ{8U¦Ä>ÕNSÓás‹|g‰„Ž[µ4:ðm™sÉ,–}-™Ìï§µÔöP.#‘Yˆ“gjïø¬Õs1üÿ¨€‰ÚàߣJ»ÿâ5Ÿ’»Q;iÃ)½Ý9­ÁOüe¿VâeúA‰Þ>%¶žŽðsø¨]9¯å‚-ï,¨|<ùš¶wL?ÈÖA0‰&ßøJÆñ•] †Ë ¥å‹H<Á íänÓëYÌך‡C6,Ä\‡Bü€–½Ê‡"Èš˜ƒ!p@¸«¦¿âÀ@)&Ï<úfv<äðÚÊæ€k~ÍÆht̆Óh€‡óÛ[<ôƨ† Ò…¦PG&hX6`ï2v´â¨C(!vAÁ¯ùà£Ñ>r!¢˜&øË®òâO¶§¶ÖKô·ÎØa{áå"ìîlÊÿh¡¯uZLÇ6æ–¤½ÞìC6Õ› "h ™ º:<>F qc„Zî~]ƒ)æ¿*kyüñq ˜ ÙeVpÌ>þ´&D³E*ôMäcûPLš(NŸ6D ’Pg5ùj?Ž€{»"*#Âb:¦&6~ÂÝ2Ûâ1©ßgû‘KyâÜ`…¢&;â˜L½ÆËFQ\îÜf /€Õ·6ƒºàtCŽðôÖIŽÀvœCNª 0Ûl%²¸œgÿ”õ™+)Õ-ÝÙ Ž|…OÛ' áóñHvxøHë€þ©c¡£#ûk¨q[ Ï‘ AñTüû:׉^ Uæ?:äE«ÛžÂ²Áõ„Ë6Ã?B°noÆ\I¯7õHkê‘ÙÔ££õ£bI4´m G¼ìLüwûÜ ÿ6‘ß“tÌ™1ØK†_+¡˜’@9ZgGH·ÏãTÈä‰pÑ”áØGÇÈhQ ù ðÐI2ëÆjj/ïŠ-Íê¤$–É n+ÑÓœ •I üVÂrE·:t}¦@bÞF_Gdz®G„3’øKa¦¨Ä(%‚UB««ðߥR´‘­êF0KQ´ám¼Ðú|äËIg“.½û³•nC8$O»ÊŠ€\å•#ô/M˜ Çì!n¹j"Ì -NJÕqJÛTÂ1*Éq+ã_帽!oHvЯqŽÊC2²*€ÈrúcD¼šñ¿=>AÛ¬®#Èu̺NáyÁ׿5¶¾ÊùûH8ö90ö˜L; ƒË“b‰+‘“¦ÏHê´Ì²–˜ D7ð™:&=ݘ5“¾ݰÉÙw€è¾Ì¶Z:[uÑ®ª/š|ë¾Hõ‚Õ/TÓpáÆýeMËÄ5$âžuû…Ó»Šw([‘Ö&?TÍ})|›K,ïUS aψYÜ ÿ^ü¬ŠÀL#¥¨·©¥¿‹‰M´­úU$ÿŒÿŠF{·%³¥ÎÐV£×E£“Zº^²)¤7[úÞ*пFKS†×Ž0Ïï‰J0ei¬ê¤D*x‚“8.&”ŒëÜX‡Ž©üfQ"UÊM6á«w2ƒž“̶[PÝDv8Œó’‚ËÙ4U*GžÜm²æIIJ¤äÈÔÁõ,hîû÷Ìg†=4¯ &½ëð†0ý0†pÀw§q°oŸt“Ç÷.vX(¼CJB½]ФÌ;Q÷QQñKw ªIŒl{§ö¹n –o© ÿmÁÛZ§»eø¶ ß–·­¡ènÁ·[ÛÌÍÝèO´Êÿ­¹t··ÅÈì¿hØÌU=ß)­é}ð°ul^[ƒ¿máoøÏþSÚÆ?ñŸ-üg{;øßG‚’?×,jm•Em¹xà$(ðÒÁ· [ë¢oÿž@Û×±!õÞXÙöy°(VVbÄR"_ºå 7}’™ü)¶8ùS@é8[M«nÛçÜJžMƒôm‘Ma—OÙ ƒ»ßO0×þåïDSwûü¹Yº}öß§¾ÿokÓÍÿ±³³²ÿ>ÅG¬Ëþ rf¿²×)dÎbxˆŒ%yñ‚ &ùéŒÉñ˜e2)i=¤äpìÁ4vË2;ÿ”Y?€ÑäÁm×@<7ÂÞ0hP:æx³Ê`GSia!Ë8ñdzXÆkz†‘ÑÐl9esÇýˆþVàºCp0!û¯HV"ÕpÒG·ò@ä=TįDr PcÛé.=,WÚÀÓ>ò}ç ¿§?XÈŽd4åK²æ^ƒ>[2Ùô¶ô¤™õydË4²x­‰8ܾßJ`œª~ÒÏ›*Ï·™¢Jç<3oÇx¼DmASÛl?‚fj´qW1ÇÅ6l+óF]·©ã:0ìî(J: ˜sœO™ès½d\Ê@Y1¾uAØ?Ç'x¹{@˃àóˆnTŒ{Ä~´Õ~v'q©¢‘Ó“Xà‚¹Äc4ZwÅ$mmÐJñ¹T%èÖIA|6‘×u-Z‚Ã-hnÃÄ{¢˜‰mŽÐn‘çÁŸIAÝêz³A×éØœdEç+Šd uš_ˆ„@0×/ßÕ Ë’ PšDxPZgtꂌ‘°¶V4XûûèGŠMq˜FL›\ìú<6Î sb¡{’D:û‘9ÌnÝèÙÑ„v»Ò­˜FIT6dcåc[¥ˆZ¥ˆº¿oÍL&…cjÅ÷-øø“0•šÆ³/oIÁzY䊕1›nž’ÈœF;!Õ?ÜùçÝ–;º<›îðZކÕè&¹Vu±ÀG×Õû±}q—­%µÉ{›”]Ìh÷|ç­ÇckŠJ×Éhùn]¢Ñ„Œ®[³u®ØÏ꺵üµF_rÝÆ-u¸Ù\·fKçj‚ëÖï¯Mk.*3™5]Oóâ‰ï29–ŸÂ-¬RàÝ'ù]=vs£DŠÏuÙޛ̎lovïlêvb3휛~D6v ^|\¡q æòÖQ{¬¿Ž×TE=¶D’ ëZA?’£(Œ¸±aÚ0ë60ýÚÛ^Â÷€"¾èÒU7*S£àujöEvâÒºUN@ùYå\åü䜇íyh1”p#îl|öG|\² •_·¸&’IFþt‡}ÓòFP DBÚE‰„ŠºnñÜpß§Ýó·v8Æ Âîx6±±$6$¶½7aw¨®Ûöo*‰dâÍÆØaZ!È …í)øR Ä#›8]í&H³^w6I&3ådAøŸž=ädœž®ëM&áfœïÁ8’ÉŠ›ÒÕÖHGʼnó¬|#hØdöó öC€ù’‰.! ¨¤W”=[fëUÉm©´ŽO›ž#£#¥llµOD¹y™Uñ”ÖeÁÅ)2égû„îáÀÕ‚‘c:>‡øÏžcTêJ†7Ðu›ò ¯E]Hxg!HÝ={ÎØgEä-Ç›àsnô\Á÷Ö}7{ªL5”‚ÿ-p{d\ƒ`’÷l lŸL€˜AúÁË Ìp$ÇïÍ~hA ÷mL¡ÖÊS•瓞±þT$MÒNW¤Ýmèd•Šš“ûÌ>{†RДnR¶éò‹$ƒƒ÷BÜåð>^ëI:¬yIgpÈK¿´9¬ÐGÿ°RsÜ+âeµÃ:ºOt\¦Ê‚Óÿb6¼Ððhæ5TÎõš^$gÜZqy•Ý4L5ãË#>×í®Ûlý8‚w»´ܸýø}\Œ´óíEsÀwzÙ¦Ââ*AÙ÷+õ†H >@ÙåI«‹kíæÖ8Ïl ˆvuWáÒ>.þw:î?)þ·´³ ÏœûÿVùžäÃËÈÄÿvN«„9èÖÊÙó»·ï1>´<úu"Ü6-…CUü¬‰Ÿ0‚¹Å°¯0°õg„5”øTû´íϾ #ÿUqøG¹Ñ¨@‡ìøCP¾¦×#þ~ÝD0˜Ñ”¬\ê2^Ò×ÞÐo' ìØ¿Yº€L—×­"îù…g Ò£fõ&HdÙEcÌÂ:ƒÑ–ß[~Û Ùe¤Ð4J“™éèQÉò]׊¾Æu Êk¬^ì^J-’¥S0ÚW`Ðnxž®øÆ‘á`jõFtÔ5ÏM¶QôÅ)ÞQÜ ˆše¶•ˆ{ñî\O–ãÆR£œ2\jŒŒ5ZÅlù¼~"éUªem,CG>^]ïßššÖ‚w˜Ë5~¼^"Ž.d† ÊÙ½?a--ªÕÞy r“xå)}61ñ‹x ê®tTŒNN%±Ôý’>‘„âqRJ*¿ç†ˆbÚ ÿýžÉý{®¤¸=¬¿ã £«~ïÿÎs_ŠÁ´;íâ+þ÷‚Ÿ Ÿ |Å:M& „¯Ú÷Âa+WþWd¦wÃ5òœQY®¨ô+üVze$v> ”^|_­ð Ä»Bq“â}Õ;µÐêæööã]Zãq–CŽãÿ£ÇÆÈm\èb¼£õ2NEöñ¦@dí塌Þhì+¿WÒž—~µZAsÓðkü=57ùŽ3¼Ü¬„ÿÑ¿õ”3Lãä÷ XêKñ¢ˆûÆ•Óýý¢±ÓrJ^%»’ªÇäJòµä¾î•$ïÊ3¿ì8³>Ò][ ª?6*a\ȸnưïã!:É+¬(ê¥8|?üÎÒ‰ åJ…úzÉÌg\§«Ð-Qn 3?ßüU'ëfðLôdø²ÂaH¨Ÿ6’,¬5 ½:F×Åxé[Õ¿|÷Ð*¤ŒÀtMIi½^,Épߺ¼——¾çX¥×^³jÀIÀWãôÁ £+·˜.šzGHúË(<»C‘Q؇n'ÿrÒGëµCcðJK‡ºt0wÁ»÷bà*4x´…às'w-îZua}×ÇŠwì'Îïub?bÂ-·€/¡€ÇåjØãÙ+–˜€Cù=ž:‰û*ÚÿŸíÿ¼‚—•~|IÙÇÝdpto|ô•ÃÅ/¹Eœj„AjØsl$¿È }œ­ëËn¶`€ÚNñí+8³îÒ•ÃjM³z"æÚv¸4Bû…`w¢°qÐÇ_qÛ׊Ϻû$¯¶VP0.‹=ƒïOrõüþš×F?V=ƒÿèOòAr˜ï™£±`.‡I€åóø‚LÿøEݦ˜Ö ‰éü6€¸-‚㜂B¹àeòÐÅ—‹ˆ'¿ó¥´XÑœJËBÖ'‚ †Z<¹ ´ @Aià?ñ2€¿ÝuÐH[ cÐ}Àñ:(‰u0|þë a®]…}âuÀ×™ ÿ¢n„ix×,—¸hUÉ…Œ^œ¬—|k¡ÄkA•¸÷røB6lïrpÏIt‰Œµð …»q*EÓ?k? ÂÆn4Ïóßóct 1,„#vi×ê¿w A»vÞQÞw/}*$߈ ø ¬ãõ2‚3Lš•…àþO¿Áÿ÷à?üÙÂ_N𿽓óQ»SÃB˜ûä$yH*»í ’&ù½ãUXÅ î*uWËøFvŸ¦™¸O/èEÞ‹#ü¯YÂOJžz$Å7Zð¸òQÚšA)¢XJk²_é dà þ{Ö½¥E&Ã|Éö‡Óå¢hƒ”ÿÎ0šýEa4uؾ"¾PšcxNŸ±9¥w=‘ÅÌzò$ EµhRáL#¬Ú:ÎaNJ5·hÉ·Ù‡ž2|Ë(ߨäèÁàè¯Içô Z2£Ñ-»© RÛ¦Äï¨f´ð¨bèÚ1Þtu—Õq´?÷¨·„ÝÉ·tôN’³$¼r´§76º#8Y‚Ì 8#5 ›lÇ !Ï”3N]Ü^Òî 'ñG>w­’ªL&ç½a.=F‘_9&¡Œ8*¬Ké¼ ³³E)nKY4báEâh½>Ú[?*Jw`< °òå´A‹ W ¥²òBÈ´I¶wÄ[=‹tÊcBQj*ø³5¼4¼”M-{/¤(, o0L¿#ê4û‹$D—UABhxß4£¿-¿£h.5Eî`âÍ5¼Ö&E°'ÆÇó Öe~Â`Là\™coƒBdï˜_9]E¢ÜøƒÚ ޼ìDb8Òy´@rI0¤Æ†®ƒÙnKàbcøs¨1 ³Ñ|´ih)Ñ€‡…*ƒƒË:Â|Nä(íÉ Ûùžh;}•ò9ú!s€Xòg(ΡxeWÁ)c¶7ã­áb­ô¬·#ÖëþÒ¢g‡ž§€Öå#l<½ÆN}þ¸âW¼rÂr[.Ê<õÞÁ^Æ}Çç‰ÒÁhº”LZˆ‰¯œ°ˆ^“šdÞÊ Bõ&ùÚ`>•Åa¥ãè&WOeSôÍoI’X5 µÌrrÅc­´·aZñĦ¥­(Ï¡§3kÌ­Kõ¶”¸B\ILv±wRþòû[p=ô'îËl$ÿ¾å–( a”Äv1ègî;'|Ç“Ä%–.Q„@Á›þ]#«ªƒt”PEÕ*r—¼ø[lr¾ô’¾Çß=ÆÓC\aÓ þäTžàI­/žšº½‚ƒ[Íl£'\ ÌP v¢XâÜpšzvðo(žÃ–>ÉÒc-gÛ%’ñÃQ§Y_#茿¡nd`áó¡©ã4—Ìø=}ó†ãaÌÄ+e‡WÊÄ+å9¼âëIÞúò…g{•o#“†_sHIO<̦Žåx‰:Õ 1QŠ™biþ…zŽHåô œjÙ.åòâ=~ þªÞºJò]»¦Äw:jÅäðý<Ôˆ_Û¨/AËÛÛã`Gìu0ºe³ä„ÚJ¡ ÊsÕØðC—‹¶†a|âõ'4.ŽâJËå¼÷Ý´êRZ™T%ŒÊ6‡=¦Žˆ ^ê´wçÝ÷ ß§‹|ÅèYºŸñ-§{yœ1|w{Ó~+IW°‡LŸŸ÷0óÊ»Cü>­Ø1[¡šàð¥Wõ÷mwÓf9Ÿv£CÄwE8Ö$gïÖ+f˜çuåèDk€c'Ñ õ’ñ3¡”OÝŽTÊ@œŠD¨äT䙞vÇÓô'L¦¶áS´¯5?þVØ$7c¼µ­YÖ]ö2kÖ]O€R6ë®ð!+ë.:‘ƒÖ"ÖÝ’Õ9íïÖɉ Ö”v|øjQSïo‹žgê…-¥õ·0õ>?3oƒ†6ÑÌ‹gUiÆi¤º¶î‚L6ö­Œ½:Ñ•±÷~Æ^¶ì ®)gùŠÅk¡nd!Ÿnñsq1ä“^}Ù‹r¹Hn8iòΫ?ʾ úx<Ȱ›$Œîy,x¶¥Ù")D:Èná­KSìßÖÈûϰî®ÿTÖÝuAÉ ÃÎlÝå5û$ÞéÔð9&Þ/æòÅ@‹5\ÍŠ?º 6þ“BlÃ<)©¸W}ͧI½Á,êZÊT|äèo„@?¶b¯M9pä¦O̶½gÃSÈ,°˜ÅøÍbãDc±n'N4/Í:œjìÕlÖ<ÿs,ÃGK³ K&¦áÆ<Óp#Ù4ÜH²–éû­O¼¦D”Ó²ùŒ‚fTÍ'¨±aCα9ÑŠx É^pìÈtfÐìÈY²(N‚—×dŒú°5¢aZ¼× ÏÔ"§A‰z†ñÕý ÒBp¯Ï5H“iÃwØ M]kˆoæ3ž_¯û Òëó Ò©ZL^YÁõ@s¾ºy<êëtÞúÒg» óu<޶ù:~âçòj9¶Ƕé\PηH¨%Ú¨Kú{Gò ÓB]ömGšu;©¾Äw²TSÏ:‚V‚¥º´)MÕëhªN8±½¸\rŒÔž¶Ï·û+ÑP}RŠ«V¦j…E¬ãöh{”%5@o•Ñ:alÛ`ÍÔ5k­ù<­¡ö»EË‚­µ<Œ4r‹·=Õ'|6}›lÇN”ô±œgÑöMþ{ÿW@üèmŒE,Y±°ÿþ¹¬Ù뙬Ùõá¬Ùë‰ÖìøH£¯ØüúJ³jÇǪRiÓž©”ô0û:‰Ÿ;=Œ/ÿKô¤ù_Ê[Ûðÿe{uÿÇ“|„\±ò¿Ô½ù_Üë‚VY`¨dÎãºpB˜º™TFöЛ ­âWÑ0šê׎W´t0òÎÌØ}—pKf{ᛵõt/Úí«Ö%÷KH©Ò¾ {ÑUN¤‹‹c.Í Ðl.$â¬7òÓ¥û·½YJ´O#ƒ/ ‡ÖÓÉÍúÈÌÍëâ¾*Gð§Hð²@NˆL&”“'Æe ‚N"5iIuƒH&§ Ç‹Ål¸´Jž/Ф§Í§`æe^p<'’ù0]ÞkÕ>vâÈåìʈ>8‚£!þÀ«dÜ©5S¯&~ÙîïyI²Lë¿ô¸bo#WÁÄ ×)'¿ 4±ÎÍ{×!P¡ŒFº -™Þ´+å˜yhRt±­’IöÝhçªJ²<ÝaÁ² x¡`ü9ûÅ¥¤>°' >éø< |0s{¹ttm貯–Í!/!ÄGÞdÛšoë—‰ã½'ì dž3nvoî|É6>ZÇE®p$*| Þì¾æ‹7 ËÈÓB ãQI¹‘ÚÐ(— XÄöÛ/@±ˆQøRòd§Œ+ ߸eŽUÀ¢s©u bqgÓhm†ÔtdRQBq?¶ÏS ¾v=«H•–©g<ŒfZ JŒnGØ :æéz‹5PÒ’lòéaåy9¹V. &)±+qžu^YºÕ›òb EÕ^Qú')(+ãÏtë¢Sª5)/®9;ƶƥ\od¸ÁÎét_nè˜8NäS•¨À–#{0^Zžÿ »mt:ÞRn1/9¼¾›Må(”=/{¦ðK8ð¸eTk°Tj ,çfbÉ´Å ;}W«ÂK+XtUø'Äùj^¥VÅVx›$6Í”0 Ó%h.sÊÒÚgUš>’Î8fÅäÉKª6E¬™À=mW¤_Öm@‹á#Õ‡ÄUìVÓj×àwþ}4z—!¶Ú ¬^§¸N÷Ê(™mÃgó@ÓÈMˆ¿Î~{ÍaWFàµK7'èOÜñR÷Æ\ëÏRÐs:tñIåõõšU»¡¬>iä²vC¬EÔ'ˆÎj?ºÖ|jOÿŽû—èÞVߤºui]Å_²jºE'÷[ýXÚFö#4=Ç#@B S<~vv+aŸz•~Bðd¯òœÓW½I5ЧœÔ㇜xϯèŒð&ÅáFÀúßòi||øÏÉÓâ?w6Ë%ÿ¹µÂ>ŇyÚÆ¶5ügëô÷¶ŽÝ-êî?Jcð„ÐÝ×¼ (´ÍWöLŒ;{Äjêêž ’Ço—/Ø`´(RH¼;0íâ@çj# +ºŠ>w (rvZÃ-8 6Ž>_#„ Ö%]^]ÅLRž˜=³!»¢îDÐê‚hÕÎ=îÍ7Ô¨.†QÕA¡:™9Õç‹™Ü5øjh%Î` fØâ•xî½X]2ƒb¢íÞž¢iPY–—I9ãfŠÑbŒ-2Rž»é~Ï• -uRVìç#?0 S<œ‹¿|2Àå\Le³Äÿ»ô~Q­µŽ›ËV&A'—š<¨Z†¡_̲\èdÒµ1‰ÐIIégÂEªò ŽÒ_Ù²_q€oPjD»¥4ïµyhŒ;¾ ³ý˜0ÌãÓ …DTfüNR®M÷> 5Q^ï–ŒÛÆ“©¸)‹wô{c…¦ùÑxo™÷»<Pç8ÌtßZÂu0KvŸmYî3é:{,pe;<Н~=Z³ þœÃHÖì³ò±•2ÕÊGGH8Õ°iYœ«ðï“ø Ç×dmíõtÙžAëÔuƒø‡ä¡é¸;œðÙľa5>Âèþ¼ŠÝIn,Èaáë¶ma•´ú`wZ~vI˜d꙾7ß­e$¡vº¨G»¡¶ùTØÐ–à‹³Yɸ¯8›ŠsÙ©h¯“ ‰¡Š¥ÍR–ï,·ÊÀ[‹UV̉Œ³©n%ïÐ>K“"§cdìŒ%Î2-zÀ²™^²J¹°N·)‰ä>m–ò\±,J¨[u„(0žâèpsä &ÔD%E¹ôR!DZUŽòXEq—A§¬ÖzÞÑ߀Îì©eÆ;åT7ƒ¶×8)%4‡—kŽW©‚ƒ4z+ü®´„KPžê~û Q÷KÜÿ!øâñ7Vô¿è 94_¾(¸Û¬4+Ïõ– 8èlq?‹šcԻ牤b(܃·hßl¯—ŒùÆäR÷Ú÷t¼øúUœXÜKÄ­ª^OÛ øîÑcr^9Ÿ$ü׳ÿíE0˜‰‡KäR?\6–r¸|ûÆ,æ÷7µo<_š.ñúöÖXêö¦£áü!Uœ°G®*®°.qEQ÷=Uú<âÑrþ±RIBá¥íi.'®/娹žùعþ cç28rÞöëK„˜“Cýv \Gˉ\’µbŸ!ôOFJõÞì½Ë<½:QúÙ5ÃÉUB(ï}v}õìšíäº>ç„kC³\×KYήé9]!F‚— Æxabþ3lcgØçiè~û¨†îÒf‚¥[!‡ŸäÄÛxñcUçdâ(ºXK‘~ú¹Ii£Ãñ²ìÔ>(– (Þ÷œjüÍ.ñcXâ)›R”ÚjP1™,›øÏvðö†Æ Ù]ßâž%2ßÚÜþ›B›WŸ ÿ= /ÿû¤øïRigÛÁ—wVøï§øðÂ7ðßÚî§\pZi€Œ>>­":©UÎðßY!¨ÃÏú]€Õ9nPJ»ZŠønÂËí“F½S.àÅÝÆñ&–_qJaú‘LãÙ@Íé»7ÅÒ›â&bUóý³êAM‚F1Mfg«äÂ^7Ö»…§‹§iø—UÞ(¨:NI“Áê4¶Jî»:1q<¡…µÓ„ Ü:Ϫü#NlœØ”ª([“¹ï™Ö̉FŸÃ!Á+'œ9F¸Ã?ú•€kÚÙ`él"dbò…&³;èÔ öHCà†¯»ƒ«âiŒÏ…çAŽÇù x†Ã2õB§×À¿Ÿ¯aÞà/¤ ½íŒ‚î×QÔ§SæÕ`ô­ #¨o@ra.Ï pfqq’=‘T^¨®8Ä,{Ág`×)aã»CE5wéÀÊ¡:gp8¿Ý¦{jÌûù†D¦6! l·×›»½»4 ˜\ëÉFof½ë`rƒ&kƆŠ>¶Ã0¸ØŽºøý/¢5ÕìÉk«Éë˜“×¤ÑøVJx;Oƒ½ö6¨”"¼y k. ‡½0¨†·Ó¢‡ÐtBü£0@É1…FÎàpPF]ôí«W¢hYs£Þ/*/Þ¹_*ƒÁ/kð…Å9ê"Ö« ¼TpN¯žcIxÙ~5‘ã ¥ØþHnL¯¹N5×ÑP5'0­Ñš!R놱ŒÆ’לà»$õ2ë.5q÷.ØÅóžh¥oh?C“o ížÚ8øLnÑ´8ºº8úìÖŽEWÍ£C.ƒ&f|LD:R‹íDÑpè·g§F]¯é£ùËZjúð\ idLÊ<"rL“z8ï}1ˆcÑD·.·˜–ó†I7úþÌÿ½üÔ¯x]¿‡•WÐî±FyÇA—ȪfŠx³ã(“Ã.œD9bÊì!Ù`Ô&Bs„–±vap±*A+„'ê`4B¼228ìoPÇÿ Ï ~iA©qxÓb°b–]$š8,va›6õ³ÄGîèÕÅèEÃ~ÔCÙ€{Ȥ'-—8k+/áx«ýK.¾üZõW·üû=¶ÿ=Ã[”û½…¹´Åïq«çÂÚùsÌ"Cu.‡Šu¨dVB¾UÛæt;_w!µè –¨ µ/t*9(ÞÀ>aÒãhÆœRÿù³×rS# -™À—¡!X´p@QHº¦ž|»… ªÃ͸c£±NùtƒfX<Ž|¼‹àEÕ4ùÃà¬q’ÿ«ó—NG¿v\šÞ Hpv‡¬´•ŠCŒ{C­ÝJé_óˆv”ç¶©PA¦!ìäß°ª­“…$‰§ß€3©F¥ðàæN𪻠œo7*ͽßs/Ú/@Å…†-ªÊÙ™¦æ„§ c#¥PË&©b««e¬®Xr*Ì Ñªé»‹=KÅMÅ…É1QÄç½)Î~ügn3¸¹ÃŠƒ5Ù¤…i,¹êÝÁd$Â5'½qt;[x°y_.lmˆSlæ7(n‰å‘:“ÖQK„ˆ*D;ññ…= ™¦Ûj»"KÓû fb¼Å]Äꯛò!'Ž7x&Áûˆ)´.D‡ÊÓVQ£Ü5˜]Ý} G•wçö§’¸ jüxôí¥pü)p-÷çš¼£e‰ñ‚Ý#9ä®#­ åœv¬N—ÀFÒÝâ­= ¿]G½kcsfÍ.Fÿ˜q«Ì'¶2 çÒÈŽËp0~^òÜ$pw&ÑBƒH^ÈÛ %žQ§ÜyòKP€ùg·<Ê2óKš&fÕ87 MÕ„Ymê/¥ÛƒÆNœ÷KkÆu"ä— á;ó–za½Ÿ%ø»²I$œö6 *®•—%߬âo¡‰0Eñ’¯2~´öÞFÇÃÁ¶b…0PH+–¥º’ä>v93¢@'ÑPn-hHèu‡¸|Á{T»Áí8#˜˜f-Q ÒÖ©\w¿†Žl §<ëû¶Ð+¹/’}¸ðd;¯®<oé/%³ÝV~á«Ræ†Ë.ç²”`2ºÁƒ’ÅÎfìBÝhÀÒøýŸCKÃkåΖT,Þ¹eÞ“/~ë]°“ÓV塎óƒmJ>iÍ£;]&f‹19ÁÕ ûù3Çiw“ a\¦ÑWüͲL˜²Â«+h#û5ù†L "i&ŽÝ.­2ÝI: ¥ñòŽn—R'Ô*hLä^S£>Ð( ¬×¥}èýl~©2@ÿ­lOJCÆp¾ §QoÃ3ƒe1ƒê¸Œ`á¿#ýßÏ@É5ÕïàHAŒãZRÌO&ãªAp Y/ëäÂ{Øy`ìáhX¼Á\Œ†QOëW†Gäá˜wìÆ‹Cg VO@O'kŸ Ú) ß›±)0£½î 7ƒiÑÄ•‹!¬¼`Y}¡ë}^c@hÜFcˆç‹!¯ã^wNìª< Í‹óG¯ÿBöø_çS¹é~Aq T&´)û8&ØÆþëç[¹3„ãÉõgéYìox _D¼Mœý ×ÓhÄ1FÙxޏM»Â)©ÜÉxtI1Þ=f¦»Ñ Û½kôšàaq2ÝÞf"ùcR•Œ")é«L~˜y”§Ä;Qsç8º RV ü$âgб¤áb("ï㌆ÍÖNpZkìWöØ# ª«îl0ÅÔ~›á¦­¹rŒì±¿[¸ü_¦Ñè4ñVºú¹k‘Î!üšwˆÍ@£…)Ð.)TZgÉ3Sé7ê…`·u| >€®@7OêçMlü)?mWökÍVJÜNø· ÿ2©³^/qToÉ úè^ÐÄi$×övõ¬Ù¬ä(ç¨Kæ©d¼îûJ­užO}ÛÉHc½]O}[ONãy,“ñXàGÑoZÿ¾~ Áðb×[7;\“[.ß®¥¾]ò·\>Nh9_ ˆGåÚxðÇ–ÈA¢&´øU¦ÚÎ(ïQ½•C_Y½ô¹â3Z˜¹º×öìj“˜93QÍŒTçã†@„È@d0™¸‚ÿäÝ¾ØØ¯ÀÀHYÅ›µöuæ¼KMx¦«0ÛÑÍí ºŠzœ‰óßµ9€¿Jò¯3üË*Є–¬â ŒµO4•‘@Ý ÜÚUÇ8ˆÞÌn@Í%ÀÚ ~Í¢øæRÚ¶Èý,D0h(!ÄQwLÄHÇî†Ú=¼—C«„ f7Λ¶þä$~Bš&™jœä 5šý^ìp´bfy¼ ÀÝ8EÿùÈZ»(Œ@¢o”4vÅ=<™’ϰõ¾dÌJ‹§Àæ^a´5â{%ø3[ë,™!W ˉ*¿AkïœÖ¤øÆ·Ï¶¼…Ï…¬Ÿ‰Ï$TÏi  ë^V¥þN[…ò&‰¶rAœ B£3XŒîkQ3ôÛŸI' è~xy¯Z?ýÿ­ãóÚ^çXf ä«Y1¼­l\MŠú!| ÝߔϗÍñ§Tû0&‡ð¬* Á¯Èlùò:³,Ê=¢ãw9¹¢/Ør÷ž)ÕQñ‹ŒÆý–Li=÷ΤQÛe· •œå¤ܰ–)¼Å³í”gܸzÃ\¶â!·¯~¦‡‘Ñ9j•¶ÔgÊô´»㉰’H)Ÿq¡TP› ú,ô¡¶¢:’a„l¨(Œ¸JyÕC”ôõ3û]àÒÔÚa=<ÓžnYO[ôn<›æ«ú›ÛÎC½V[šµèÝx^Óvâ4:fëí6­w^Më·Ùz»ãFëç\5DjìEƒ¹œ ö‚4Ï–üëL;wâ_ áªâ@µm|ißén¨Žv´®r 4%Fó´áÈb*OòK­xþª‰¿<ì+K·ŒÒœcÍäß*¦^UÚ¤»áêVGM‘Ô¨ }rÝ»˜T¡øïdÊ3fëGÉóyÆ@¬…ó†ËÇçgóV©ïÊ÷,-Ø`óœ±6¦£@1 ó) Ç0Àá¥åGQ] M_õz³rcO,ø—î•Þ„hXV/ž-ôâ™ßN€Òþ´L4Pñ_gâ´Ê‹Ô»B?Ô£¼Ôñ>úK°íKò2à×øÔܶ¸%òphD)ó;X¢H¯:\bž‹Í8lãT “T×Õ ÅiBô\Èó°hõZQ*Eö²âqÂ}¹„ϲ>#ÂgÙç–«Ò|Èçš©àkJB~’?¾»Éà¤ß”'}IÌ.#Oü\ðp×xî\µåfV8`,Ž6“Áoš±‰?ž3V݇„Xì0Äç)oïä¹Êû0á|è·I+s¹{÷Ÿ¶ ám—Yè°,xÞ œ#—{Ï´gÀôæPßܳ—¯%\Ô9Ágw‘CXàžÃvÕyªÄìCXàžÃŒ÷’bA̼ÓÉ‹ÞlH±‹p‚97·w†Ú^Ç„ Æ#Fñ3Ô4@E)®šé‹ÙP¬ûv¸¼1b˜ÌMÚQ±S û*BŒòÊ”ºŽfJù; IKœóæ»ûƒîgBÎʦ Ðj@ÀÂëå6Ö_C“(•k²sz¦<“9Ôú‹–ø÷YÜSÚ+««˜k<8¬Å…CÎ¤Ç s?‘'êñpÑTÚÓ` ïõcÈö2'‰RujùÎf\@÷]¼š£I•¹®ŸŠUÏ_oºÙíœÐÕaƒ“ßÅÙštCLŒȵõRacc£€Ð'Eƒ¾Fp7ÆO’dûÒrô£I¯;–ý>wýŒ›à/‰Èrü1lLá?¨Üz,ÅkÑ2gÕc·?½a¤ÙÓÇ´Šy…™G`M9)‘¤˜dT¦Ð(&¼ÖZ=‰ìw†ñhã Ê kB™VKrã­1¿$Ôâ{¿î=…ÄÜu>`‰¶¥ð·(¨³{ò}“šý’Û”`: ²Ï²-­û€8]ÆÛ2H•â­.1GmÍØ˜6÷1ŠÖ Øì7%ŠðšH¬¯ÆÙÿšÐoX6×ÑçëìDÎp•þ¯Ac2 þÄp©/…r­Œ-ç!y)ÃËy@Œ÷L/—wÁQwÁUÄáë:5I&áýÜdmÃßЉÜ7 ˜¡‡g f™C%„MÆñz^wooÃᆭuÙsî_ „™Dv=³Ÿw}“ÁŸb÷$j>޾0’NãmФЪ-ÆÑbNÖ?4‡ê3õ…Þ$¯}­Í‡¾n Lâ:ôuövÓxà]¥¢b¹ü/hùkIûR^õlÖj~í%œÔgæp†Ëî ;œ¤Ïp©ôØS|ð¦¸TzЗï3ÅMgÔq¼·æl¾îH'ïƒ?d7+m-k7kØ»™½èÈ>K«Nó2€|& éû»  öG¸Õ`lš?í¨R܉ºÛ}Ø%Fã©~‘4lFn èbi7H5!]©$2ÂU²#Ào"BÖÙÑXÇQzê5‡ÝÄáÈ7ýHN˜OáÙzª*Èb: O¥Õ~èy µ!§æDiÀjië¡.jR,íáá þ:yIè/ÏYé'!û䔉»¾“!ç«å]"G0Ÿ4u)¢±HÀ²bý$–•¶¤Ô²ˆÒ\¥–}æOþ×~ïIó¿nmm¾Þ´ó¿n½^å}’¯N+ÿku/¢¥yò‰àH7 >a*ëO2ck#[âÖ†°ú¸öǘ€ñGäqãŒÊÉJc¢„«ÍE‰Xi”dÇÅ8µ<N eY½O.Uù Ì]Ž[µXBÕê^œPÕN> c\F”©‰zÅCŠàŒHÅ›qU¦RÙ àlÿ5êsÒˆÞhøŸ¦_ §×#Žmï(5I£\Íðt?.ñdãÊdîšîSK]Rÿ(=Æ0´ÛtN«ø2¥?¿íâo2ƒÇçƒ 6û3ÊæÂ)+eL¤u¯ )[¯)¿Q?¤´ $¾ n"8Èw'“ÙÍ-Êu/1‚ƒokõA}Êùf0Ú‚îŸghRìGŸ)y½ÝᅵÌ.§ãnoJqtGfw»Œ†]l‡N[ Ñ îq I#D_”½‡œú±Ø<)ð¯Ä¿îßnReøW±L3VÇ*h¼€Ùì…Ñ×î%ÚOºÑ[t~ïöÃ^z.¾&•m£fxšÇÑàßBN¤,0Ġ΋—êyúáê‘ tÓ2¸ÒZ²dm½x»˜Œ¬ÂÃÁ/sªU8f[Ï*@õå}M¤1Ãx ~8„©U\ïCÆëupâ¬át ‹õSlÖžR‚Mo'á–EÄYaܵ,|ï'¬”ŒÉ?ãôC2>E¦Ø‰@ÍL}/ÎàÆ£eÜ­3?Þ†MÅMVfŸüÜü˜ÞÜs;`¥4»ËúÁ½¨Å²'Óñè.”™{?-ÔTÜŽ’ƆŠ'-áÉIJ:«ŠTÄ®„Ï÷ í S5tZd6ÆHà€í–ݻúõ%cïVfJ Þ¨Tu§ÎÄŠŒÆdX1zùúU×ÙŠGžr‡ë©QÅ”Ã$fYƒ°KŒí,eb‹àÓSú “=XÍ1†Í-ÀuÑ“®QÓÄk˜9¥ì$36:™Ðæq#UJÒÕÖüi ž ͪ´&bCÅ|ÀÖŽsADäøÈìj Š8AÈmvÈň‰*Kb,¨2™(®;Åa‡ß!Õ™5e„ô¥‘ð†\ñ'G>â- ”)ç[ùÁg Ž€/òy¼º/åUNj3ø,ã•Ý Á€˜¡æ ¦Ž»N¡@éTÊùüdVb7ëËêæ6u“{f§ É]PÑ+f{,DZvâ\ŒÊ¡«Gè Õ¯yÔ[œy°¼SÐ{‚énÌ$2œ—E9Oû‚퉂!â·ßSè,‘ëÆI)ÔÂï°¹¤·†ý_YšòQÍ©Må3ƒ~;U&–žX8fò¨‹ t(ç`¤=ÁG'sè`à·±Àðv?‹´M¬²pG)ïÜdÆå8ò\¦r² ¾œŸƒSÈŒzV¡QO•u]lˆöÜOlÔ•õ%?Ô%õ Ó+ZR;Rr¬-²ˆïQåWö|–/õA'‚KY­ß’gÉÖ^³:iiɺfëÚ‚3è(ΰhëÖª5ú+°wÕÖç-Ûû&!5¦ÿþYH 2œ†”Òaçx#/(æºz¦wU2ÞÁ~ Š-ÝnÇæ'ù­àèÌË\k½´¦B£oFýY¨ð[1„û3P#a³­ò±Ù8&ë‡å]ÊŠ6’:Ž.glÇPWj†WWÁél: Ǿ»W`L(™D|åŠi¼d` J+”mSÞ¡æ¨Ùœiú÷1Þ(‚cox"œmŠÊDø¬²¥‰rÈ“öÀÄdgµÓ?’Í‹ûõV½ý;ìQða÷­×)š0ZdÏLG©6è9Þ@Õn6Úu ÐîTN;øãø´FžvN/’‡¬v‚ן´0Êîz_oýáéôÈ¿E‰µZm #õ¤Ë’ ¸D>.ëµ”^dÎÇuPk6‰àÞɶxmÒOʇ?kþyš†áE»î‡Óý<Ý/ð5–æë¸Z¹$OöÅe:ä§!-Z¨½'˜˜xbùï—æ#YíÃFQ„m m‹¿Y3Üë"ë•X¨.y²^IA¥µ²rfÉ·ý¹ÂäÛI™ÆäÛþ\aòm=‹•çqœKÇ:?œŠ¤§¼rš6'E–“R‹ü âhs›#U;›H@ñŠ•ój^Ž«„¤S.dCõT#±â4å-‡ÂTWÆ¢,ˆÓ½釪{2ýЦú¿}wu‹³1R…;«7*Ð>,];)OÃýVŸ‘Ú†hßâéÂt§¾ƒä—!ö€kXÄU¿Ôã Œ—°qp*‡w.Áfªø¯/Æò¯Æƒœ9QjX-˜-œ7ä8šÇxÅ(gZSmð†O[mˆM ‰õŠ3‹Y›¹iý­§¾ ê4Æ4žQ%64œÅ%L·”׿F븳!…jrj€â« q‹ë÷ YÚLèéóÍÑž“oŽ»丕6Í´¬Xs³Ç¥fŒ³Š¸ü¬ñw×X*Æ“ŒÉ´2µ¸Îǵ«Ñ`0ú† ¼Á#boÐt)vw‚—›Œ¾* ¬k"§¥¼ ¥{v÷„gWžAµSÑH\»!(lvI = r[´Vqɬ±Û7–âñÙ2WÆUCë»…6ÆÖÚš²+Æ÷®ˆÂmº¯ƒ<¬Ã»ïm‹¦aæ ªc5‰ÀÚx‰åUw¢®aÃÂ#<<ɳK|ìÃL„-n» ézL G. 4Ê·'â$JP½!'#ÃÑP]X¯Žâ$ž›/Jïoèóoÿ±2Ñm®ìÛËÌ嗲͉[Ó‘^.F•ØËC:w†Ö… ƺLÔko r¼;ÂaרÉhð•»q;Á‚¼õ!M&?oXËÔÙk<>¤WÏCÍX¡’vÄ}Ýu|Ÿœë^§#¼8)LB¶¡#»¡ÑD³FÁÔmØb}ÎîÈÇ4±/µô ÇQ ⢎`N¬Ó»ÊpI8º€LÞŸ œÏþ¯ y½9nT‡ñlv™O’Á{qúÍj^lU c;9 ܦŠ%5êpX ´4–µÛI4 _˜a°tÞ› Èæê/?Ä{ÆäK%¢S4J#¶<:-|áTâ‘Eˆ¹G“hª‡)ù¿áFAý-l…Sˆ ¶†MÄ£8CÅwØæ®‡Æ¨à;ÞÓ$2ï &Æû¦ÊœC²d*„†ú\†ÓoècæAÂÝCTM)M£)C’0—_?¼ ‡HÔnFQ¬n;4Sõhã£r*0GŸß:©W©£zl‘çô|2MFÌ6™|,|o­ËŒEVY•ÏRŸ&Š˜ f$¢­U×Å/þf÷r–8o¨}®=»\£«GP¶Æ×Onć¯÷$¢qfY“QÖ ÞŒZŒàSú›iú¾\ÉæÞ–¼)ܪ`ˆím oÒsüâ¨I©7¸•ŒÜ¿»“®dåÁ^¨“§´˜‘¨lRŒ¹N2-²?œíw‘ºÐQÒ^•÷æ ²ßp|ÉŠèœkƒÄØMõ‚ZïÆKÞ€hÆ_ÝÌ)ƒh+eºÒ{þ)'ZQˆßUJÅz* .)6Þ5‰»M˜¾ôƒP\ŒÏW\6xˆ8þuj#%Ñ•¹0Ö“ÛÖ<®æîU¼OàÜOO„mà¨xêã•&XRÁe—bi2³*²¨ä×û. ³6ƒ%ð­Ó‡@3>œ‚:>|1 f·}ºQ-Vðø¤ƒF¾¢•[)!j(a7lí Í| Y7Œ[mû#h™‡Šqjâ£Ü <"ŒtÅ¡æ›"?yF<°4^'%¯ ¡ùÎð@²x3/“IxY;ˆg|ïä\@ñÊä3¯±À²U¯*O-U!Úßs|0¢¸R! çTäÔ +ºsÞw»æ ŠÊn ›Áy£ø)»zlé–4 ÂÚ8#¦ðTQ¯0_LR±àšÃâRÌó•¹’æ¨&®^âŠGP|…Ù8BêG[¾[MqªÂitƒ†e¾ñf×Ö/˜b·á!SI“ûž xàûU ¦““÷äu'“Q/"ß¾ê[ÿºèWc›8{þœ¤~³ƒ#1¯ ÛäÚ£ñ4e#A=œVŸ“·om8Ï0Ü´M!ž#6M ²;ùֽĹ"%\Óng¨«c¢03Å}Üe4Ê×vW‡Ô=ßãµ ¸U{E\œݾ ÑÕ8ÒUØy2/û(!´ÓhŽ'º“?ñ2ÚÊ‚ ŇW´ÿyZáá1Þÿ&..Söìóü‡×â•…gþìÛã铱ù»Þ>;9É"ÿÉe8„Ù’Œ¸&¼+ÅKÉâèé•!ˆ4'»ŠåECEŒ/N€èK!öÇÞ¹V«_ïlÛ×pã%o}Œ”å·hÌwÓi çâŠòl3ãS3º­ ÝIÌÁc„½‹¨â»“ñy¸)üÞ y™ñÒá>",ß½ÄcNFþü®}­´"€Mƒ Æ£!‹êá ;èØAÿµÄÏ«®Ê¾eèEIŠ2⽿Z…=Á¸ñXè+Q4‘ïäËÒŒ P¶ãêéÜ}r°º/.Ø~A„9^wWE8¦»KÓgüK«˜i €ïÕ¿ÒZJœ%È̉\¡3¾tL>vänk‘Ø]£¥q$O×4Hœñ·q4†ò2îÃsSZI1ZYCtp'±Ñ “¯àíïtã ¼[Û€­·µÆ¡%¢CÛa\¦pŒ½D§#щè6£:!ƒ½tÞ0G†¾?ó/?qBV‰ƒH[O?˜Ñnp‰l§G1½‚N]EDt‡®{Ó¶lÛ¿ñÆE+H sE/·¼bSÞYS!£O¬®i¼^?K|ävPdœU{fÎ _ÝÔ ¨xI™ÍÒM›É´Ð\å%têCûñß3 8¼é7Z‹ ǹ±a&ÎèÙ6 ¸P§î%Ýl/¯nŽ!Fw„R]0b«â~½4”«Ûqø5Í(Õ®3)‡›rm¦D¡0šŽ¦À7þ›\X¶Á&R“FÊQÓ¤@>ëVA†o«Guñ„h½±.ú.ìfdՌ׻ˆ gçOåŒÅîÏ5ð)c{H%çØÒæZ°fí¿$ÆÁ ¦Ÿj=ñK8îŸtBz‡æ…ÔK h¾¯éÍR©ðLÑ_2àˤm£¦×£JþªµA·j‹\ä1Ê™Po¬º÷`X2cvîÁàÏÆ"LQ…hªIÃØ›2Då Šs!ˆxû_ æ”6üŽ)_80 úÜ4vn/¦^!U®ÛÿJK'NšDV05¡öÆ4ÚØ `k©ö¢¶?øÖ½ƒƒZ÷JÆl-?«€äD„Χ)¹ø¸ëJ‘ rzZùÃXA9ï_tƒÞ£¦,Úh 1XQÑF¸aìæöܧ[£ GÃÿ†ãQ,ÄUDa‹Ú OÕãÌ'“ S‡®;È~9Ñ¥fB4˜:.¬mpÎ#‚¥¯xžìÖS·*ÇËÔjù§6ä(G¬ã5[h”éóË4SðH;–jââ©8ɃW‡ÉšãA™ü[äâéÖ–üAÐP\Yz“77ƒÈ•·ö+exE/×za˧U€‡¤ æ3ÔÓÆÿ+*1'lºÌãˆ"#Å ±“EÅÃ½ï¤Æ8s!‹¶[…²/樯 ›‡vOŒ»^àþ!î:•ß,*¥uF]ÁßnÀÎXód~‰_,'¿x¾á¾ˆX™„ “Ýá5>•—ªü;(mDBþ.òDÄû&UJiúä §„Ûnåuà·EYS£¯!¥~Âˊ¡¯Aÿ:X½†9Àhùún3¨ nºýp¨Âá‘&Ã(hvÇÿ!ýµ±Ûj¼lÕNÛ{z™½ëq4™Ûž`_xŠyÚùððø9!éÓ?N+{DÆxh6—zßO fVl07ƒïWíÚ†t1)øQóþþ/ù1ý_­ØÆ•›®°d2ÒËãÉ£îùƒÓû¹ç=þßhø¤þßòÎÎζãÿ-¯òÿ>ÉGˆ7Óÿ‹·ò)–oš·€S¶y+°i.ÿÖ÷+Ò‡é¦~¦ÎÚô¿Í%$õÙÞÙ•Š#$wòæÓ/u[†óõ¾¹ë­ØÉêh‘sü§ì;fkÇRÃ.ÇÈ6Óp¶à¯\ã&E°c»_ót‚ŽJa€±5O•¢Æ£oÒÜí]†Öâº/ï”›·¥Øج|¬wÚANÜ. Ê'Ó¡Ý;Òdæ£z,ÉÆÃá"þ ãõtdÎ@Šæ† ¸6|~˜‚×·a›yÓGÔ¶ï Nå#ŠßÌkØheÇD 5_fMÓÎl¨œìøufÖyJÏŒm¡ny{”ÿ âõ–9š¬-E¼‹oVDA)0½tùˆ×¿ßCB&NÑz¾Ûóx¿Ò©…F'rÁwšðUl!¥ëKбûÏCá÷[¶É¢ö¾!÷–ŒÎ¤fù8]–ô¨ØFZ/°B~,ßêůRLGkïKxˆÑòw¡µ†ýËó ãöÐX¿n Áû2R›CbbxL£„ÓžwØ=wiêcŸ<Ô´×Üs¨‘Ÿbw?HéîT0o'¸„ àË$˜Ý2Â[v¡Gˆßb‰ £<1v ¦:{)íÅ%kˆäFI#ÚxÙïiåÖKæ ÷¶(€IKiˆ Ÿg°yÔ2ðB~•¦3È>[îdÃI‹¯q¹!J$ÃÛl‹ÆWŽ$+ZŽ…ÏC§¦t:‰Š,Ϻœ€¯A%мb|§Ø [íÅaнÒ6Òxƒ~,óÿÜìÀ‰3²CÆ.¿ipÞJ¡·P§ <ÎO6QÛ‚(^dñ!Ї¶“0aÜМa[ÖðJA´CÁìš›¥à×§ŒfBÛ™”Øgc:cæ1‹¼8°u‹æhœ›¢q)櫘H$ÓzºC$S6ò 9¶ X/.ïSf¢¤q’šfœ`0Á@#Ôn΂Ì=Û±—JªV|Žx¥0jµÓJà%\NVª|Å:GFF%ä›å]ã; Cïß4š Þ]Ð#í£X«î‘̱Çâãjs‹þ•ñ7ó;®™ñ/ #ÿ*¥ñ°&Q®(ª”Æ%ž“%sG'3­‘‚€iDaœæE’Mz*ß-‚ÝÆå€Ü…á:8©·ªœ[R`˜[ÕÓó´nS²(¸%~n‹Ÿ;x­z›’S¦9„6@Ê@Ø¢ß[§Í½ß’çy¯ìNi(៕§y㟧„¡>©ÑÏäj9cí£!Oö0*’Þûxˆÿ5–ìó×µœç·½Ó“–ÓK«“<íJû ÓMV;Z6K•éÏ““hÒÞ½·áWoÙGJ€¹w,ò`töÅÏ6ý<Å<œíö^%m––›ï’»ýd©-é–^Š4ï_&¤ºº€‹97#fHçè¤lj—nR 7S¾»m¿ëÍêè÷­önü´ŠÙH(8±l_7iÜ|Êq‰êÏb)ñ¶X;‡¤úpÔíV¦l z½µV½œá.¾óB5ÈåÉ´î,ØÂ²“Ch+Ë=‘ fΫ·ægλ6<ÁeÞ$b¾ì|‰9òî•ï œJ>gêÂz—¢•øédö(µõ Í+SG¸}w@1¿¡08Ž»ÃþH©` p¢¾„÷Ž‘ÀŠé‹è_^ÛÛÚaáÏk›Öç¶±¶šéDnIÜv59ÂÛ,eø¤'ë*„ˆ7^ù¤l?Ù–O¶ì';òÉ6=‘íJºËJœ÷ɘ¤µô°¤%xAi÷j“¶p¹ÒšÚÃg?BCÉ£WàXHà|¶)K•|$Í^ÃË™J„xè'æžÙÕxÒPiD@RENàfH‹_iY¯èk‰õ'(°‹YZwK&)l/—-6„ ‹ˆWšˆ ‰™È䤌Ã8j(ú/gŒµsJÑ4ÝÞRFHùµ™jT$é•.Ý•i`d–ª]MôoЮ U,õ:íëêåVÑI„UÅÔ ´Lxl 8ÖÈeŠ©ê>zÒ/ðJÁ5/ØàlOáÕ"h¬§”¬°vB"˜’Gãáé…·aÞ¹” ÂtL5Ç›tôµ9渉‹Wí¼íØÃ&Ó~œbvoŸ_n°Ùqot{g Ðƒ Ú?E’§Ë0¾&íFW]lƒ²þ¦à¹&§ê”²JhmÙæIvr —B‘´ùh”×˦±·ÃÞ[g¢ÏâÚR\ÜF_G4+A.8Aqí$+̆hFñΜûr¾ycƒn§·ÉB·Stl×¾Þy©æ,ˆÎ8Û—2“áý¨C™òðuzJb|ü×›ó¼ÓÆ/ì8ÎZ“i„챟*#eX#`oôùóŽÁw˜GWXüO.m^mïáÜðè‹].O»,šO<ƒC"ǘ$¹åÑÿ^z^!3‚w†KiÜÿø-²Æø_µ¶•8yÚÝNéÈï=¹:T,y%…àÀqßâŒçö’8ØÏ§†Î¢søFÞ³s0îÞ۽뛨?5žN€ ï] h£’’¸#ytÔ@²æÛMç╇EÜ(«é±‘Zí¡Cž òr˜°‚ô†ÕGaœ==…nž*rp:ºœñاá-pp W°†|(oŒžýN{× ?©Ýc…r¼÷eØD̹lrÏ)à.å©éÈØÏ\wMÙñ.€Iôù¦ ª!Zû¸ß4–RJ‹ÉÓª¦£ñˆ-ýÝ¡½*¡××Ñçke2Ç´³q·w§c)7ÁMØŠÜnlHW¯pæ7•E ƒ}#v±T9üY#Õ£ë·(ÞxSth$L/-5™»-72„} ×çËÍþã“-AòÁîšucè8gîžR‚ö9äàä.׌Ë0­‘U,êÔú¼Èq“ºS z˜W³ž;AR–ŒgãŒll•AüjŒ‚-ïÙ#\¢€¾xîðvôÖhrû*UK¾Qü-žwÑIJk~ÓÚÂÇ./ÒÍ:º Ž_0:G؉ѭn9—ßg%××: ß0NW›q‡0ÓÅl; l$ÌÑ4J©ƒ«›@®¡ð ãJqÄv|…†b¸`c1Qè¦Û#8ñÐ!x2×À¶(/ÔqxL£É‚3‹,Ž4™ïH݋æÛ2ršÆ4µp´AM#¤'lXÓwÁ/M¾å"´Ö˜0é—&ˆx`‹”M6±Â/L«‘¯ >‡—ã.§ ]©‚9yz]½õæu/¨»½ÝJÅò›BP™}Æ: BnoX=ôw/îÛqÜäš±6¥’›Cpн…víz¥Žf„ÀÂM–%øónqŠC³½ç£ÁFPÞ2ž@AŽ ­ûB\^O¹.K;I}€ÖVhEç†ÿqóöD¶Ã‹A3£tÌàz60yéÁ/¢q‰×ЃŽß»âNŽ#fåi6‚³½Ý—{íjñíkøIÐ8ÛÓ.¤o‚6Tzûöµ–ÍsBLXÚÐòxNÒyªÔ–øâyrOÖØ"B]ß wiÚFxuaÏ1ˆþ`0ìë~E}^·l1±g”¯OœÄ©,WÙ6WÙ6WÙ6u2«l›ÓU¶Ígms•Ür•Ür•Üòñ“[öºCÃ&ÎSJ<ët8eÙ%%„ lSëÓžHo†GO òþöS\b334&5ƒÂu8°'"U–Ps°b³9þέ¦žÖ(õLèa‰Äê±Xlåã¹»j:++]ÜdM0hFüoH²1ߨÎ>\¥ŽÙÅ ¥W)ì(§Hl–œÎîÓ=RÙáÀ¤ä±[¥K}ÎéREâ3[ƒþ%k paDomtNÏj9¬¡vOåÐ1»|ž„FH«ºü$ä–a"i†]cMHã[F…¸°ŸLÔ;Ee]$+Ïø«•æCÙD_n„‰1ÈuƒËÆdÂ*pßö2ˆ”5VÚV­Ì°Â‚}ŸÞi½Âˆz&B¦î‚«.™'ãØÑ&ŽóÛiäÔæüŸY$\ŸgÝ1Z×M»¸Qžã¸hKlÈ—8°K›~2·ügfeþP§™nÀ &ÙSžuE6 Ñ ‰ówÆ¢#®[OIW]%^%^%^%^%^%þ!I„Éǵ¤4ÂŽcˆLˆzšÞ™h¦‚æÜˆSF7ЈÊ¼Ø›ncóýÃ'èášÀª{pFãÌmó åȳ|vZšõÖé¼Tx^â#oÌfjR‡‚Ûs r èe•Y$Ù‹‡Vi4jõJÍB?Îj§pÐ;¯ð÷•VNkŸèkAÆðîÚAó$×([Ì~ý´ÝÁðŽa©îŠŸé±WÕ‹£8ÏL½Õ>¡×°X!z-jk5=ûL“ÏÔNOéçÁ ÿ8mÓÏ Â!vš'iDàq™“ÔpšÃ‚¸j¹Àw1‚gÒM¦Gm*x¼¿ß®AÛ/Ä] –˜‹x8n·~ÐÂü+{m‘Ìæ¤~NdNa‹<…6Rº’Sü.¹n ¹Áòð£Œ)]ö‰"Ï“ÛÍUÑN£Ðùý´Öþ½à8 ½¾@¤ºO3^Z÷5Ú°|’‡B%ŸiTZíŽ(çÉ)Cd vñ”ÖeNV£²Ô GásþyzºW»ÿTÁK’E2Ù‰‰e13’m|Dð`gSyTÄàaØ Í“FG" ÷%Påµoëòëͼž¤%Ö„È-: SÓÒÓ´†ýyê-{ë["²¾/óú_XÄgæß°ÉèiQêgô—6‚ÑÄ(¨Þ\„òúRåì˜iݦ71ŒÏÀ¿1ŽîLͱxü_隤€5 ·N>d´ý *ÑPCŽƒÑ86o*Íz#;›s-̈çüL›>NTÍ:0ç<ª6úzCÿ挼‰ÆD&d–m´Ž;’O)w)RZ/DqÆ\W‚ž?DPL?ý®"‰`Ù&8'ÙÖ–]^ÖF)¤Z»)óIm4j0cI´^Û´Dkùu<ì4°1%ÑøKäòJ"øf.Á3Jº³(HžÍ#ùÖ&)„‰F©™¤ij4z%gY‚Ãk,-˜M«ô‰¤œñ’iÕ%ö6æàL±ª¥ç˜jw¯B¶Înâ--• DZb’/ññŒ•Ä8’ŠJEJÔO jsÁM¼ ‚ JkIŠ_ã¹â5¬+ÆG&ó&øâ λBÓ§ ¬ñŒ¦ÃN⤳ŽXÀžpÖ«Í­f\'aŠ}„JrºƒßyAR26Š#¥„Μv3Ú#Žòä`gWó6ДÊÞ>ÖÑÁ‰N“”aœ$aBq!Ž—”ÒÌRÙ{¡ Ɇ%Mp ò²ñ42mO/Q¡Â…Ïuk«î“ÕÚÂÛ6Ú§Ø|¨'½ÓøÉM{×<ÕÒÞi%ýIé„x ¡–Ðè´´h)-@—ÂLW?ç#TöÐn¯7#N;Z)6]^4ìF†yqf?ÑåˆuÜÒC¡=é|1LœLLÝ%ñeW.2Æ#Îm-q2&ttuUt"º@ÉÈåJî4\)Sóæ-u3á•H'~*÷`ù™oâm(Ò“ð–A_£g»”ð‚xaé½ÉPÃíhé5L@ðb^5¾ÉуxL «iàñ´ÕÇh@›±È·$@¦:îò"j†"’ï>!2œ`qM··ãQ·w½a/ò°i—žÖ û‹i1éHÛºöp¶º—£ÙÔî%ÉÐïè‹W‡cfK7ýÞ§Ö<«R#šš2³Ø@ÌÆ{Íägnàª@K¨®9S‚ '׆«iin4ˆ¦aûne£só§—êŽÆÑç…dµ‚„ëuZkÏ*¥±mª…RŒ‡¸ƒ¯Jk¾§4w4æÿ â%¯Öh, ¤7‘S2mÌŸVÔÔ)•Ô¬V^ç«`2r‡kù<(@;ÔD™GÌšóéDE Ä~SZÜ*C‰6Šî‰_¤ðz®iU°XÌÈ€ ’MÇÚ¢ ÷?´˜P%y‹Ä³²ï™¹J2TOŽ@L7ë4ĤrÎ`Δ`â%ý=º‘ê¨â#Ü´Ïí¨ÀÌ_• ¥}ѼcêE­4 eXÏ=^Œ»¿ºB%…xfv‰he‚ðc„vÆ“ò’q†m-¿ƒœrAJãB 1о—¶¼/é\,×b·wKb0°Fš«}GE¹djd¹1!Ü‘‚aæz¡ð®É{¤ãuz·?Wª*:xœ3J(ÊþW´2Fú\T÷×&µ6TØÍê.ø 3娾À ú/K‘°ÆMyûAÝ6ä{Í{ŠÙ8A…°a% ˶—“ŒÈê*‹ „™¤ø’¹œ`³¦´R®jÃ)‘Èå¬ßV‡êh_ÿÒí妠хv’ö$ ÁÞEé—Žé—Ùú¶èóœÎÉœ ‰zò°aÂ%bQ†ÇYüžð†ËÎ÷áÝ`>ûŠ4zIo‹¼z rr0—™ÅÏåd~,–l¯Kê®àѱs"ùÍZ0°@ÏÓâì :ÞCl6”©tœÀßG߯˜Ÿ' ÃÎ!%B÷‰!Ü^pG‰Iá™ûöV`XL^§ê'â¦Xî<”]Ê`/ó+ÝCêA²ñjˆãK±ÜK<:M´]¬Ç*ˆyFÊÉô«üË:]p¢¯–u¤$O2‘lÒMRšZš¤ÚòþíÍó$A¯ïhð=H1%²îµ”&ÖXáÍåñrÒ´w]x¾ƒQÝz«n&)Yëw½é "‚U±Æa;÷ÿX Ëañ¢lŽù‚‰‰†aBrýPÌÑuÀ«˜+I:í,=Y‰µ@s§Ãç¿‚­WŠŠ?-3Šv¨œîiKº3m?g5—î>;L¾#Fëþ°»Ìq©™s›ß2軌M¶^Œ]BäŒ×š"ÚñÖW£ñ#rÕÄ“„]纋¥µ¢mùF(sRa³(‚”í’л\¢ Οx¿<Äý`Þ¥x*Z¯Ë4½Oû6™†‚j3ÂZhˆ ´œã®fºþ6Q52Ù.LHÚêR>þ0"Ù·›¥³‰1?£È awD£f`ª_ņР[¸ú"d ¼ ¥ O5·cöñ›v‘̦¿¦Âä°aïB7ìYö¯ºsÏmd³ëÃîD%Ôž`x6üv#Mw*>µ‹—Ù³ˆ¶6Åàƒƒÿ²"u®MŸ1‡·fÄ)H¨Þùœ«äJÏÙ²¿·U›ÀAŽg¤Š·¯©½Ùw³D=°¯2‚oÛâÒ+ëßwvH·vñ}gÎÍK¢§ø¾¸t ¦:¦šs—ÝOk´AØÙÔ¿õî.¢aõ´áH©kúˆ¿k,и¤Þ'1LÜD^ •:J°“±_âÁYéÝþq5B½RAýug¯Ëš…Œ×\Ìóš´Õý]ö6'Ccì¦dhHZ3<†âÛW1‹¸üa´X$‰¿“À€>$ ?INÅß<}ö©øÈÇ“ÿÿ?O›ÿ«üêÕ–›ÿs•ÿÿ)>¼$¬üÿNs°V›hTP™ÊßHÃo¥Üÿy’ìSï¤8ñÄ#R!§Í÷@%æ¿Ï’Î^¦±/Ü3]ý-]½Ÿ25S=¥©G*©Iêg™6'ºÁ̯Ñ4øÐÀ0¨ÞºõEÖQ÷:ß.ÛñÑUAWÈ©ji„Ýt1W¬tû"¡åóÓ*¾×nŸ¨ßvñ·kP–/ÃpÈIá”˹Çùx«HGï æ&ÎÔ˜ xpS_âÐL9Lm318ƒ¸¡ç²üÄùÓ´„r>Z&c5ÇÖ`:æ4´¸ƒlt½¾`×½Õ8<¹pZ¹H]o­ð)Q†"šÞù)‹>|ŽÉRH•êÏœcç´ñþ\ˆ æQEãCbrÃeRMJoª–½º>ÕÎ㘩í,Àšƒ'$€žcîS~7½Ö³€»—‰[9› .%ò#Î[&‰³7t›d¶F§2/q¤Z϶1 6"‰¥ª³îÔ™X‘ÑákJÙWìÌ-ªÊ9™#ñµ§I—˜zÁ0HÈžè&JäF~³œoËkvfQw8d²ïˆdIõò¤]h˜Uw\¾x) Ëi¾ÿ@IJ&'n)rÖÂÔmmæ[Úí¿jMä‚q èò§ÆÆq‚èŒ`nÇŸ¹Eüý}§"ß´§Ðäš‘©U§Ûõ³ºKFšüù„ùú”8Á[D¢›5VË‘DeãÙd2é\3@äÌc‚Щ8'W Õp¢’ÍØïjëtûqZS¨RÚ\$ÝIBžq0ªãﲊi>:ÇB€7kÁÿA¾40IrßðqS;?Ûçð“¾ÄßÐMÿ¥]ýÚÂâ-½ÿž™«´ŽÑÖ½[öDJøQ'…à  ¯­öäìNtuçÍ1˜Båi‹¿Ûüw'=mÆ#$õ Ÿ'¨ ëŒÉ=Ôk)­ÍœäÃÍîÑ9à$x5'þ¬uDÒŽô$"©Çr³yTvaâx–ê›ÓCEçë–~/V Ç·,þrû“Fñ8ŠÒ|û<õm'–ßz»žú¶¸ïy¬ã4M,6Iòwš6'+€“E@‹“_“‘ò¢b-C€(Cˆ1Wn´R3!¼Jì_¢ïÄ‘ý ÇȪri®fQï‹€qàgÕšðÐ`V1R8i Kb(gZ›«Èø7Œ8ƒc)š¾†ýÑÕix5ÃËfC»Â+_TP‚¶V¬øýšÙ_fä.aEéãÉ  ú“TT0?••ÏÚâY‘O/ý›å·Qмè”2 ìÉg±k¸ªQ¬ÉÌåâ«¡‹o6p”:mbU„­’ZRΑü²+•XÙk@; ›ô¡$K6n¼ÖþD<‰½ß-T UQ[¨ ¥ð4x<À'5å…GY {âJî3VøËéËpú ­†ø>QS`ëŒ#­¥5FK¨ï¼J’Xu°µïĪSßy’5ЪU9›4Ô4´²®5O}ß¾pÐ$KzŒ«b‹Øö Y1jl¢ŽpãÓ§h¾Pa° Éô‚(jK?`•£JP£&‘·åt,¡I »r:PºÏ ÞÅì$Q ÁÇ›R:Òw¯R–šÑ’„Ì16[ÎR~½ÙÔgº~%î¹DAJÜIP.^ÞaX&×§ÓeÀ¡}p¾40ÇòªJ•ð~r7“Û†Þù¸=ëîîØï@"†ÙLë¡‹sH\³" ¥¡í¢JØ÷Ùà~ÿÃV±´Îœÿô"Ïd"±Ëza¹“OͺdÔ#1?ô+k’zY_Ô»™FeÞPÌIDRæ¼ÇWœë%ñÈ\\5ùŽ£šP‚­ßÍEÒÀuèaî@ò涩̈ w{3mm!aÔ­‘Äêíc{ƒŠÐÅ釯ÐE¯7 ™7˜xæÔxOèh’C3bÞÒ)àsÊŠÈÉ0?lx\3I T„¼ää`"Ńu4’äÐ"v`å-ƒOÛ>#îÙ_œÈ)ѹº}ÓJMVÒŠþüõ&áòšd,–xû†}¶Q^»¸¢|¸s@ñÏkxÓ“ÄMCC¹Ç‚”%/š\ÂãÉaD‡§rÞ UÅÔËaÀqÖöò»FÁêשÍþ²ÊxíÄ©v/ 5îêchHÖDOÎ}㑸ø×`´ «@xãy’¬.rùødUûÚÜ̽aN?8ä{ÓOèN†¾4›‚ Ô9]Þ¢q:¸–TM”¿ÉÒÖ•-J0Š_ îRð@[ÛRŒiÃX‹#EÕÝ©ðõ›-@Õy¢·D Õ’9´IÕ§±Tö ‹Ò”ÁÓŒÊàm8NPß>D&ôvškZ,ïWþõ¢<ÑZBp%)ÎÐL`…öh<õå'‰£Q9jÆJnù`›®mGxh›jGœé3®M¾uo'ö}Û†„ÎÃ9¶Žc\.–öŽÃWwlû˜× îì¬UW)@â¯9Š‘nÞ|U ÈDvH 4Å}A¦¢^Oì¡ÒK¯“Ïs¢ GÈ@õ„Úü‘Ü"¼!¼š‹ÀQ›°ì×?–ý6ø³@ài0oêöµÂƆsƒRg\`kàÇÓac.ðøÙ Œw¼’¥`Hv„!I}©ô%àñ倉8ÜY IïÖeŽêFRôm /áBÄÄA”´I¢¬Žc!Ræ"¡2yúw>¥ŠÁ :AIâC'ïî*9n²5usž;ì’ ql?ðTî+ö¨’—úšeÍw9Æ#² ø}FrL÷ò9.V”óÛgšöÚ’}5"–ˆ_eb.Àf/v‰zZ'ăÚÔšcá¦p#öòÖ,Äbù6‰ËHAÐÎk¾2%RxÖíÁTë}>7 ººD8îŽ ·ØyL8®£zúDpUcg¦Œ¾NÚ𜠦MÜœ‹ ›³èg™À±IWë \ ž»ýÔ[±ýjo6‚0˜³ï½“7ãG€t›þ,û±=æŽìà>ÿ ;2âÔ$ÔÑïï½§¢;Øf¼n£-îµÿ$›± @´6c5 oǸÞçÓ"‹—4gC^ÿè‚ÃücÜ„§‚>:`ÄlMXñy"_-è‚øDZ5¡êœ[hÍ-Ï¿vÈeÀõ!Ð+3Žët_gï瑃ރÿúºdø×üWióõÎkÿU~µÂ=ɇÙÑÂò>Þ]4û{ty®È0Ox죔d?Wøó‡¦€8HÏ_É€ÃÄ&?0ú¯VáÌ ÔŸqnï… l:™ÊßÏÀk‚—,SÊlõj ¼î ±Yþ®ó¥ŠÃi áÑNþÌà‹ç¯_1'ëyÀñNN‰­“ñ¥À‹ûNb)(;a±Ô'& ”hOÌîdÔÃËÀúL§š‹ÖìŒÚ² Ï&¡¶>¦š<[ïùÏ•6Û†/zñ’RkÿÕ‡m]]½ ²£×7pŽÏ æ(Š,m\^èI.L„¥ìùtäC[rvë­³¦À žÒ+§œYæEp¾fË%œÚ¾„pA”ßC&ËóGÆDÉKÁþápD$KAœ„–ˆý{DÀß'÷^&f¥˜²»˜@ñ§¼¼P^FG¹zÍ÷EäGˬ2‹<Á¢!z†àVJýV"`#W멀σg™ X\h,Ê{%>§°Ÿõ®ùNã!œ¿bÖñ€»W!‡÷Ín à¤^èdö"Üò4¤$‰,Ä$_j¾²(ŠQ”TTÊÉDÖÔ3 _)ˆÄF#†©ë•ðŒ1úF+iÜ~ †N3ÙH0”o:ž¬©L(5ÃJ†åзDRŸù”¾F=MÅNi$i½?å!"Ñ*FX® YÍiVDZL^0i:I²çÆZó¥¬ñîPµâRÅ’*W£›SînÝ#U!èáÁeí†[¦;”×—ëZ«öÖ‡SÓÌG2ͽ¦h¸?l,žÏ xÏœfWK²3x{½¼ uÓ¦N ==(8Ð>u^HÚ—Ž½_¡Î˜Ø7 ¥sk"bU{ÆÎÉFÇót›£Ïþ×ÒøÏÒÎöë²ÿùjeÿ{г†mÿ«Î16Äú¤Éúm£þÏ´Ê~‹aZÈ|裬ì…ÉZþòMŒÕG·1n¤§±ác÷l‚ÂaökÔ€}øŸºª¬(×]©—\ jý´€Íî@ ôѪ2»¹åF÷Ø©\ FÝ)Z=nGœã»ôj8zÐÚið ôZ+ðö(¡ýMØ&Ó >ϺcÚVûÑçˆ.Oïöû/'³Ëé¸Û›0H&s4ìb;tЋÆD\%iƒè Ç’ì!û|,6O üëñ¯{Å·›XRÁ/Šejzo4ШôÂèkojG¶è:üÞíƒÚ‰W¼A寲mHÇhžh[!¸„o¾…Á—áèÎúp4 WVã•Õxe5^YŸÔjìcQ×TšøÑç‰;ìì®%Ú^±ÙX!&¶”›DCŽ™hìœ1K+AÈ0ž1Ö­àßïq9àÔqet%ð%˜âTÀï¥Dç/X[ ~K'‘2–x8]¶ó-ø·•Ï—ƒµØÀ&ëc¢hÙ’¹é5uîÑwÈs´‡ý_ù:UV uB(óñ|Ú› º¨”èC>‰þGtRmØ/Ò›t4ª°oi³[±Ü&˜äU4†Î£‹L’!I]‘Äo†£ aRnÐ2ò/…ÐêÃ@;*Í›²ü°šH7Cß¡Üå0¡I…ä—Ó¥šèŠ*¼ü«T`ÚkX¹žÊËu™E{îÇÌõE¹¹¾vN ±µ¾“oyµ¾0§êäIfaN5ša°Õ"œªSq×AVN5T0mN]yÖþ឵Ƈ³Úé…¹6‘Ü8ŠÃL/â°ÿ•«-©u÷pµU÷þ6®61hÄ`¸f «öa£(|\b›âo}sÌsš‰¿aýÍ®#JeÀ^¿Á[½fh>ÚsYÏ<‚Æo²ýx ½Fs¶L±³M_ý2t‰g4ŠvØ O=ÆÓsSiølô¢¹oL#=Ó«+‚õÅ)–¼Y"RF$«ï´šì; œIô7óÑ<­Á#ºZ{W¾Ö•¯5îÂßÍ×ZÝ{_ku/Ý×j¸t¤#AŸú~Ù¸%Ö û\¤J§HØjÒö™Ojœ)çÙ„o<øãóÿŽŸÔÿ»õz«´íø·WñOòÂ×òÿžJ ô´Ò:¨i2ãNçg &àg~VvÛãFʹ ïˆEM½}vr²ò"ËM9&7 ¡Œ£ìs*7ã¤ì¾ü–ÒJö³{¦‘ ¥\žýÒÙÐccÕn8kzÝ!U;.ï‚É-h”Wwèþ#JÎ×e5ëeRÔãûhØ@¿©•ÜN]ï]À."·K}½ Fz;¡?š§z.a¡ä;À qÓñìFd”>E“¬Á]p:ºD éix [4°ƒˆó A¤ †]mè15ø?ýIl_+ Ïz ü]Ê­ç¸ùÁ~p5ÝP&ëÑlüòy4êÿ4‚jÐø¿˜(£EH(×LFärF÷åü^¬mãîM±Ý»¾‰úS~Ù²è¿TˆŒº_GQ?DP@pÕEß™ä 9‚óÜF=â+$ƒ]—í†móV™ucS#v ŽP©‡ÝSŒM7 a¢g=dLðHJz®rÝ5åÎîÅ`}¾éþ¿j,ðoþƒŸÿ·S@‹*ú»SónÑÄþ±—‡jÌCe¯ªør-)if!to.ûÝÿ÷϶ըÙî:ú|­Õ+kq·w—À1²âÞªSJ˜IMî fx!ÖÕ lÂhË/œ>ó94ZÍ\ZDn`¦Â¦ïÏ#üç GXUÝ_  ¥Cž@TJ¿G ôUß®ëÎFmåÁïcßÛ»Øu×,Œ,÷üº«Xwø¥8†%ÎîÓoÑ„–H_̺¡°.BN¨ÁìÇ&x%ž˜mY>)ÒPV8±[!ƒ$[xØ] UvRžÁWoÿæÔmèÄ’ Ó÷ÿ9`®*­;×àÿèv dzWYDÅ>Y¥aS7ÜÁ#Öo8ÁŒ_ÎPÜ‚ý†,Âû• ÒuÎÅÀ`ªS,¹Èƒ%bÂÅ‚Õ~ÈÈ7LžÄ!£ïÏüß˨@´FÞK\YâQVÉìö6ÄTßÐ5XjY›Î{:štǽkT L“ä¶íßÐc¸Zè íÎj©VäR•î~«kÚr«Ÿ%>r;X”G œ‹I\ÝÔ p&sP`qHàäý×%ÌÚe(ü¡)ÇJ1A9ó› ÿ¶ÈÄŽ ‘Í_ñúõ„@©ÀÏX<,2Tçr¨X·JžmKÝËÉh@›2¦£Aš`/TÚ•É\ñË•a’®Šês÷`>Ò¨»Nô·Iwˆ(7|_¦«'\,B‡j[Æÿé. f圧®˜Ä£@ad²ÿÌ#ú0cb,ÖɃÏQ\uÿ*üuùW°Ì×8s>–&Bb³ èV:n6ˆ™Y(¤Úb´4n¡4„5šî*ø«óW¼éÍ& 3EÜõí Û nkðÑšRÑœÉ"=]"úÓs;täCþ®’¨½‡Š£…Jj£î½§$M›ÒN¶á×ZœÎÕU»1•&ÖÞ 'Fãÿy0&zù;ÔÔÙ9¨ˆDál_5U~`ã’èÆ©‚´º]ŒÆ_°=¤Cÿ?[.” O‚žó"ˆnPg‡vàÁb*'Ï”]I~<˜ïêëŒxÖ>Ë.ÑX'aècº½AS=Ãõ “䉫ÈÂI…Ý JPZ¸ðâ1I½QÎK£³æŽõ£î↊Pƒ„6¦^'`ÕK½Þ ®8Üv»cÜ‹PZÁ_ƒ;@uƒ¤dª_Xàu„jLz³É$¾Ã‚×à•ÐúoÔãÅ $ÑØ–ÝÆØèdä0 ~kНÓPg8M|ÔpFÆ[u£&WÇJj’þߘÚ7`¨Éö_ø Ëñ£ºxÚp½±^’;»™ÔÈŽ÷5c5G`Éù°í3}šWgù‘ý ÁÝY—k®‹ÁÞ§Zëå]6b]‹OÛïë†qÔöŠ… 7i(0}fý… GæçClcšÂ ÎÆ,bÄ©L9$ “ •4;ÒKŨ°ü¯“I}0üޱ@¼ÑCû›:!Þg)… }%UöhMT°XÜ÷žÆŸ]îÊöðjPÎû9ŠÃŠv ãª9Á_08ÀåÑF¸a(¡Æ`âW]¥ãGCT âE‰$6¨¢(>ygJøM‚ë§é[)ç#Jê)NÕÆŠ‹‹º>> ×on™ð Q¾ÒÏ×ïùú½H½¸@(…]ž\ž†-ÏYmóÝÁÚ²($à²ò¦ö½ŠOøYã’yhÙ Š 5?­¢þ.Ñõ¡^S?…_d6&n•Ý"†™Y76ïv'$ŽIÉG—3†U_J½ÚqvõÝfP ™þ8kKMçx2Œ@ïÿ‡ô˜Æn«ñ²U;mïéeŽ€ËÚp˜"G¢Ç„±Œ˜ÞéS­@Q‰]%1ýÃîzr ŠÉÒé{ðé#%è¦TQn^¸Äº/±nܲºþÐð‰J£Q« è£J?;5¼€SUœWø)Ó¢Nÿ8­ÈôãìÉñiµ&“¯'\¾Z«ÕŽlÙÐZÕúnƒ퓔`¼»VÝá ÿ?´¢= A«}ÒH»uyQÍň%E( aa|`˜Dx±;•Zë<¹w F‰0¹G‰Ù;>ù£  2‰ýáiQA$ɃÜn_TN–dBóÍÓ¼x¸‰(•å2Wât<²Óç`W/ôýé‹GDó” ÁV!ØÖQ¥ó"Ux-Ç%ˆrY„´[D£Â’À-R׳ÏiA1fXÌš é0Ccâh¢‚ÚuoÖVëÚS„ëóÃüS&½ôÄXA1hô»d‚N¬ËœØ˜-­¼ö^ÕúÂ@d¼Ð¦@ÒŸŸá=çöÕ6Z5¯cªeª/Þ ê -Dþ€êä¤ùbsÌêÞâÏ&Ì1A¨ë É.ð=ß÷šJô­IÔÊb勃Ñz“ô€x$­m¥íô–<÷¥’A¤ôvÁ!ɤt:?ÁãcÆ(5- ôÐ̺¨I^’M3l>’ª93ÊÄ͇҄–3¥ÆAM~å_zn­isVe°J…é„g‘04c´Tp ¿fÞ2¾&6DeEq’ Ë[¢A]Å?ÏÔ «(/ú,;Ê+˜·ÓËyÉ[—visd?ò‰Zeˆ¯ý7F>DC¼Ñ]Z‹Ð¿È®…™nd)tdÎ&ÂÚ+ˆEòr4µ0¦8ØPµÑŽÅG¹wüc½‰œØ‹B^7øþxï­Ó:ôŠHP &¶1PY6ix?½0I5ÿý¾e‚ÄàR­Ä v›Ú'ïøÇ:Ÿ } £ó†qÐÅŒ„ØäÅ11‚Š4ÒFýYâ¾ï7DßÛ'zßé/a£«+ôÓ‹ŽocDhÈçp3­NøâØ",I_¹ÉõœÓدUƜ̀)Žv—ƒ&&£ûbP™Žï×lhç´®@7ö+ É6t¡ãß÷…N²ˆ¥)hÊxù¡OVHâÓ3E;AÄÔMõƒHHõ€ªi‚ÏñBÄ)ÙVˆ•X¤K 1µ©²\¥0.[ɰ£Q/¼‰{&ä¯ÜZw›L­r+‚g,ºâ±•‡í߯0±%Ì3 ¾Öå žðÌ–Õõ¦Š•#x@Ëê‡6g µž¬p¹V1ÇíKy›k-çE½t)ŸvH¯~{YB÷æ&=& „ñu×›¨i2°4Èc4­‹&¡Í‚žT§ä$¡BF:¾Ÿ¯Éö‰~ÑÝÞ£¾z^{a¶ñ_ÖŒï~RÆz‡æIZÐH8é·Rò–Gs.Εb#Z3¾!*YÉGE+ rwÍ™âä1Q}–ÙÖL JàE+…·Ó¶ø‹ýF2•G1/Í¿0òž™Àµ+G-øEJ†‚ú•³»"$2HŒÓAðÛMöãìæoìÈ…yLT=¶6ƒÃ€ÀMçÚº¶êùƒVyøޝ‡öÅÈÇAH!­C¾Û¼ÁU¶#‡eÖð4C´ü[€¨ûðÐó@k‚Ýc:ø:ìÀ«hMÝo0áÏ…¼sÖÓ[~|H±AöCÁ•Zœ|4¯‹Ýÿ:ôm•qó·|÷¸Z ìu)DzˆÈÙŒ§>Tzüÿa ÞÉ¢¸ ƒÃýƒ.¢æ”ºD­)ÑåÔ9úå%:É6Ë0‰øCS½ÉÉÀOR22œþ 32<íÇ—ÿáû“æ(¿òæx½Êÿð^=vþ‡”ÿÁÈ1S߯È4ÿà´O™ÇüY¤qøøDi*Ï2Ã*TõÙ†ª"™U,é*–tKºŠ%]Å’þãcIMP´Ù¬L±¤Fˆ +] –ÔYð¼æÙÍT¬#œg¦"h_üî‰ìã$M¼]òwÈ'à`‹â×W¡žOuSâ¢ÝÉ·Ö’"ÏÒBδ÷‚Lq¥ Þö5õ‰43¬Š+G íšDT®A’‹èKÄä`8q¢Y–ļÚÄ{YŽÎö\cÒ_Ï.2˾×^0ÇaÎ(Ǝƪ*¾dNý‘¤x&QJ¢È“ÞçâH2‘’¡⌜ø¢öI!jU/RsËø¢:Gøˆ0£¿Q\ѳ¼]&1^HÆ }8ýÙâ…x:—p=Íý¬¢oÔÓUô͈¾1F× ¼yhTÉÇùQ%«@‘U ÈÏ(ÂÍZR˜âp’$£BhQ$bô nãâ¨EÚ/hßÕ­'~_… Ðçg AɆħ“¼'¯¢fôN†éx(L_0ÚÏÒÏÉ$êÀ/Äñ®€Î„ª¿ ŸNKhµE̤9 Y€þ÷ðÓdÇ÷J©×u¼ON¶oÍ%ÌSKøSEh99K…Ày(d #-IH–6ã§þÑ3¹ž¿ï ‚/ÿ-Að²ý‚ÓJñ2°+þÂŽ¨ŠŸØaAb~~0²Þ÷¾Ã¹ÏcŸÞJÂØ%PydŒ}y…±_&Æ~{yû­g…±ßz(ƾ.j2VÓz½hu‚¹p|‡îaÝd¿ç}¤ºLÈ -ž”‘ÒKm™óöSñ‡g¸â’‡É]òÏÅ_m§(ðŸ)øÿ+üÿ?þÿÎåOŠÿ/Áw.þkuÿã“|xõøÿ?`9悳“Æ1é_Ô5àŸúIýþj£ÓãÊTSB…pH»¸ñÇAû›£>߈…NBR´•½V÷oÂg‘x¯Ž¡÷¯ƒýð2ØÜ%ûð÷ ݉·PtŽ¦Òƒ]…Ð(§ÅhCÿÐH˜Ë*9nœ‰þÏ øG† ÂÉ”€…‘F ƈÎHáÌî!Ô…àÅ”cx’`tÜšõ¯p¼|«!¹áõëÒþ?öþ½«$Ù…÷ßó)jõ»×²$$Œ¶»Ýã^K2à%°Ý~Ö³ûPµ…ÄH—}æ|÷—¼_ªJB`»GšiªÊÈ[dddä/"7 {Óie»rZ©œ ‘ÿ>€¿ðo–;CÄ'Ý]‰¶©F£ Dfs [¶ø©Ô,—5"Åë’ñ:6˜ê:1ƒ!Î'!E'%šc\“¾Jd¹ ádäàõ{"&+Kɱ=(¢©œ køŒËq|¥&0 *†‰è ‚*ê"p¨ÜÓ\gJøì @ôsa4Û6«$øü mßS5<^ÓÙäöœr_À»ÛïcoÕÒ ÊÆHÛh[àõËiHøÀÐÂt „.©‚Ìá-+AGPæíš3•YágÿôûßûÃáà:Òý1þßqòûà¢O'I“‘Å—D–q=³E¦=ñçܾy£„g¹d:¾œ}FC ®EL¨"ãÓà‚»2„šm*l¶‰m´_¶O’ê¾^·w.nÑ$>"¦’[HÄtê7'jî̳_öÜ(&Å호0tä’‰H½)œÛðR”! 囎.ؼ Ât0œQâÍ>R .‘å„MÉEØÝ'°T‰|óÐ!0=ŸIoÀÙç1ÛEaf{¶[_г¹hJ‡^iP&ÛÂô_“Y©YTh¹ä ˜NUiz|×/›×R·ÖÊ©©…ÿBbH³Ò¤¿*½|uÕÇè#‚ÄRE[²†^žÀ0N£&®ýq¤Ù«cU•×¾ÊÑêÓÀøAhÝW¯˜>Õr¶ ØV¿Cb§vöµÖñYè3N¢ì‘YH0Ùp9Œ4­cD С,ÕÞŒœa9£ö)­ãvß&Æžª¹<‹Û¦O^Öª 3¾4õõòL}Yd'h(—½RŒI ζä²Ã+G˜ÀÇŒ’争G8XJE:]‰ØC³±E…(à>àúª"ò‚P>£·±d²ŽJÖC²Y}lÊÈÊÛT6Vð™à(A´V™•1ø|ˆÌ܆ëâ@Kñ%ýD…¨kŤ1½ß/(ê £õïÂp¨©„]™ˆ»šÄ9„Ð#|c—Â% Å‚ð÷|`ˆ?Û'ÊÀ$-ßAús™3ÃöÊ=tTU†¶þ7¯`Áž€ÒJÁ—С—pð{Ù€/ªÉ)² ’ד¨{ÖŸû—±¾ÂÞÊ›P¸"öN{¯ãÖÊÓã9-žQÀ<‹èrLž=èÌ¢ÆÉ†Iòc ;#fªò¬“–'›m‚tLY$Pí$hL<+ZÄ ™ªÈe2 ‘žÒ6(&lQLð<ïWí™Q¯ ØCæ¹HnÊ2ç6Ië<Ïiš!x¸v^ÚÜ Ø3Ú·}䛵zPf;–À»ÿ´Ûht6€‡Ü ™Ít½{5‰¦@Ëš¸$¬j{Â]Ç/·g•Û+VNt‡JñQG”Á"~ 1ÅkÞ ×­6XÀªÕFÓÆùZ¥§ro-„ùÿn¦2VÆL{˜MieÕNØ…“lÂ/í5ƒ:/Lÿ³9ÿWЋÅ(öܪ»Kc]Ò¹lÝ€Ón&¾”šOkçqÿnþ»§^ -ôDÀçÛÎb÷F%¶ºã¬—³Âa8à™;5þ[ËH`õûš?©{è={‰½ >Ì6°Úó‰îeµË¡è"ããCz§Z“œ•úCO‰;¤V'8úUMÿçŽ*³>,À‘zôNgI…W ¿‡ÿ®‰FUTïcËF—y ´ôþz²®’’‚T“ÍŠ¿DÅ€c͘,„ÆF<×°¢XKä(‹ÆJBR·•c£GÜV–<é1KïŸàǽ%ªS¯d\ÙÛ$^õûJçìµ5[S\2îÝÅS”@…7hîî¶;úä–› Ç± øõ{b:±µA螢͗÷ªò–®öT:8zUâ7å³Ì£½Y© u‡°ÂåÅc›Ö‹p6¨”èz¶°¶Ø¯Xó*¥âu6ÑpÌ芨‰È@ +w!÷¸ÿÿ´d÷Ÿ¼ûÿ­'O<ÿŸÆÓUþùˆ…dßÿ¿‘q£< €òð?ÈríùA“wvÒï ¤ _K{É5渖~£/¥½˜Y™4È¡‰D|j~œ|ý_B>(Cºêjâ= û¹äºžx%îÝã$/U-2Ò$æ–nñhÜhTªn°Qyq+no]èæM2ãqˆ…+q:n´ãà‘å13.E;ØåÿbaÅÛn@^'ÇL8d¸ïÇ’·ÜP߬Wiðs“H¾Ñ-!‘^/«Pøättƒ@Ñ!o%rPePã¼A}˜]Ù#IT$5œ›Ìžb1Ø.p†¬;½¼œÒÑùת.Yê´ÖåJÇZ‡ì~ÔiÉtä¢5Åüå—óé“î¶Š¹ ƒöAs§óƉ¼ÓÃÕ qB0w_çNþu‹0DÄM§°á\üÊð Ö",îFè ìïç·CåQ*;E­cC•‰éƒoËÄ/Ø¡?58“Ü ÑÀÍg4æÌ&¡k Øö12CФ>‹ŽbÚnè ßøý(•A“ø0ž fW×Ê¿&“‚˜•ËËZK$sÀ”hNoÁòètS>ÈtÿÉ™ŽÞbD¤ƒ×§;Ý?ìÌ!mU¤™“a–wèß“æ© ®,c(3èáà@êúûGÇ' `´2tYŠ…\0Àr¼JaððÇé¾aÁ<|(žâ½±b'ÿ!m>N‚éTƒ!—ÿXã%[>ê¾:éZ±—XËBgŒërƒ-Ë8Ë´ <ðÃñ-²ÑóæºózBö<|ødnkÄršMï.Ñ“çõ¤{bÖBa{ƒh  ¼ÌO˜a´)“¸ ´p³¡XÛ%ENÈ…1þÔû1e?58% /غ|æŽþ°R¹Ž9íÍx0šA‹°h:œCkgœXw¼Œ‡‘Ò¶Ÿ|¸íO.¸±3NÄxñxz{6›ôÏgU¼‹!Xô~;ŒúØ“´À¡áùçW‰¤‘ YQz‰Ìò®vx\å_ÿп¾¬ý²•!ü¢Ö ¦Ÿ“+ŒÊy:øg¯dÎÅ]¥_úp*Â]Ú(•mC:VóDÛªÉ|ó9¥¼“8×£± $ÖJÏû0yÊw0Ày¹G_¦ŸÒa²Y• 6JÓ‹iÒ©TÉõ˜³dêý—òMЋïVÑ«‹èÕEôê"zuýÕbËœ¹0é²úÁïª#ã-YÖÁÌäõªÓ®G¦/V9–ëqfeí/ù iEJ“ƒBŒÂ›"æ˜ñA4ýÓJ‡pÃûVwãSûbzJZ¥I‚æhZ5y`*¢Lý›òMÒ"$©+’æ züÚܾ]g%:ë.ÝKý8?½³Àp´‹‚8Ú™+£m. ўŖF»øÚ5\å1wù7…Êo—?©t,Þž›ÇM òœ87[Ͱrw·s{åq‹µ»àñï/B=ö´…†Ä›6¨¤0†$@ȱËG1$¿úec}y³@_ø¤ÍÕ[>žæ@éAF§-ŸéÁáÎ|ŸáW|ô„ÉøóÔˆ15¥f>.ÁîU°>\ù¥¯Ç%²Aàk‚}vo'KFÄ߀hĮȡ…ç2ö“Ïdˆ—½ôò2éÞÎf˜åH‹&IPdi² Çp”hlžA[Îì«m£d@RHc ¼Û#`‚Êʬ¿;éÎÇX‘'°ÒÛ‰KQY‚DÿTaÐÏ':Ýã{dˆNzŸRhSý)çrx²þ#aˆÖ,QÑÐÒì¼4‘‡ Úõ$j€¤¡€°èŠ~Š3 [+„Ñ=!Œ^RVw4:tFÛ/ eu'Ò i$ð>íöè~°G¢M;«Ç$"Æà×áo‹d IEñI\„qZA#W¢»8©¼v¹K¯,Îop¼iáÆÐ1 ÓT-ÐäF=0þΕ\Œ†ë„¡pA8›V²24¬ ”Ûöws[}"Ÿþoò ø¿'[›uÿ·µÊÿû ^¶.þO’»ÍΫ€~øæþCK ülŸf˜…š­^>$ ô‹¿Gƒáéññ{J§Þ,þPBc€³Œ‰U*„±ÈBF^x˜lCÌOÝ]‘ˆ4 §va‰”Ûžº4'F±«1ŠS˜¯s¼b+ TD*Y)…A‰ÜÉ@|~7JÎ8…¬ôº)娥À¿Ï2¬Kê«æ—H`0ºÀIÜé)'£!;¬[Ýf]–OS Æ:V$'¬(µ_x‰5wÊÍ×#Ÿáß—<íWÕC™))…‡]ã’‹ÈHu™2“Ln¯Eæ.^w‚m·;>ÃûánzJ0+¶ë‰ ˆTÔšSw&²SüëbªïÞªâ.M;Œ`yLªòR¶OýÉTìä§ãñÅOÉA²üÏ žÕ"$Tê§c6Ž(#k^/ÊëÉ«IÿºÖ;¿º\Ð]«n™Ì ŒÚŸÆ”Îh^‚€€*üvr8Æ Ëœ˜ùœ˜T¬l÷t–Þ¨+m} ‰E‚c<÷Kö SOÿü*¹1s\ˆ|º%ußH€«‰#*õË ßxç¼éàÃu?iãm²¨ªJs@kÀLÆ{‘^¢´Åƒ6îsä®@à—«Á‡+¾‡±Lúçç·“þùWc€Ùa’ë´OñPeµÐEd†`‘Ù@pe3… "B ‡Š½´ ¬“°h6º@lévÄùCÒ‹²Ã@ö¡?þÁFøbœr¢Ž«þ§”CP šŸNf˜ÎND‡rpJge;¿œ=²ÓÛß‚„µ}éžf¤µÃN3F^ÞͰ ’²No,––{þN&0͈¹H^9 Th‚ɋƌy“á°òÒ¯¥©`øó2Mî… `R‚oŸa=2|•‹í© òn”~6Ú2½\Ît"jÓAëTFì èU‘ éÒZÑ>’óù=:+¥ £&>€e3C¦Ó^ëk¶¦x{EfÞèàšÆ ¡(ýñkÚnЦû)åÌ0³Ïè·ÉöV¯A°ÁÄô1è˜w¦þè«/±P'é50‰Ä—Ë6 [[¦w¼aªk:¤¡nꄾbˆ5DˆË\õÌ'¼ƒ<šÂ¢:'¥E¤¬]<'å0ic¦™¿³¤·žlÃÆ1䧨ޥheÝŽ.î‡élö<ùI¤–LC[ƒï0ü]D­V#¼å;uõ'¦uÌ„šâðCz6á„uûoÞÜ a J«ÉæÏÏJuÐnnÖ“z­ñ3¨ß·p½skÝéa¸{ºoGºÉ;–D¢OnvÉ«þ ´3éµ›‡ÉÞø–n“ð¡Ð/àϯÓ«Cv{ߌ‡ëIã‰ØY¨‘ øáŽ*tô·ÓÃÖŸÄú­mÒ:<*þ´wy#Ô#5ÈbfŒ‘ÖËê±¹@ÆÂмþI4. ]ƒÁùÕ7bÜëaž¡±ëÉéËÖã—½íÚ/ÏàÿuAãô¥b9Õ¹þË/ψ_ñ9÷1yT¢>KP ÛDéN˜˜=ýH±0-gò9HŸÂk¦iíÙ“-×}EîW릢¬ÐzO“‡¿¶;XÉh<ª!)]›à j'‚Ô}£™¢¼›\÷/$§#0æt9/vDÑákžsP³aL:ý3Ï`"u0èê®h*ðÝþýÅ-‰é¾Û½ôËyÊŸ:|LÆ#åÂu1›ìèb®S¨Ôoµ¿ƒ>Ó!€t®ûpB”ÐìÀó„N’…šÑÊ®Gy8a<¯ÛÑÅz )n1|Wýáe Ôσ‡I N˜oNÿo"YI*AŠíD# txñ¯¬–ªm< ŒT…?*#4OQÎ$ÿL:èP\5ÖIA, :B`·‹•SÏÊ©çþœzòi,ï«ÞÂŽ4–÷ŒIâ¡iÞØì+³¾9 /?0}´¦_H4®1\ÕÌg(ÔùX‰!iJ'h\çWh°o×±mÿ„†X“û·‘óïÒ•hiJÑ"±ÙN׌¡kŸFùl‹JcPÉ÷*û§Lr‡D¦ltŽ$g© Ïhõ²ŽŽ(_`SáßÁß¿ñ+>@h’  >øË‘y†ê*Vêã³,Ö—y(A?S„§Jû³bºpsÄwf_8»qÀBuõu¶ÁHH¸…á&]‡óh^àŽMì“2¤ä³elqÿ§_=³68˜•σ Ø©`"¦ì¹ŠLö¯[ÁˆÍPŽÅKð9®˜äßýWÿ}ö卵TíbƒßHƒÃZn$E$æd²ð’j‹ÕRÝ,‚Ë H$\ù÷É¿õ&};å{g<—Ü ûçi "(­©S.b¹ ¦ñŠO{ÌáôGV*äï áÒq!é®öëDX¤GžÞ@Þ7B™ºLZšÊ¡8yYÇóö«[8j„B/G•:ÿ4ÅÑÎ@Ð>Î7î:‘ì÷¯0åxè\óÿÛôý^Â0r÷¸ÆC´O´39y¶ìŠa“`¾·ÇX/œ°hÖ>È.ÑáÜ$aé¦4jž£õ`’Pi”'.oA–SKÚŸ¢¥… 'è@r>¾H•Ë$žødDP ø‘6«¹IÀ©—z½N\±·ž´à¬+RrÃ_"O¼YÚàžc˜-: O¿Â‰ëš8§ÇÙ¯·û ­Ü¶Ûc|h·bªŸ",ð¬ÊöØ&§ç·S\œ®´ SŠ4 H;*,Á$Ó|j’1ÌKøõ¡ø:ËE§i6žÁºÐ™¶ÍêX©N@ÒÃ^pH‚ë fÈv8ö&´eÐÑÊxÔ@{o«%YÌ—öDybj ¡Œ±öºøXö·}_°=t1ÅêÌaÙõóÍöÊž—><0äïM"f_ŠújÛåMûŸ° „¥Ê‚Oz|Ù4(‡=6-A$’ÔMJ:ŸÈ‹è¼ÅÖ‘ÑP^`ïe^j+¸.ƒë…Ï}°ßLØ•ÆW9•O¡5Œý‰­Ý¢-Š·,­¾ÿÕâK©B¦_0ª†Ês}híåK æñ‰´äqØÖ S9>âViõª‡¡+ÀŽj/ê ÃÏý¯p¬1®´nf»iÝï×™Òoä$Ê‹Ñ$aò¨xÏÑÎù>×—Õ4*j.¼…г0ÖÇ‹…a,a ÖÓuK͵Æ¿bK¾1PEÑËIðÌ@›ˆ¼7ƒ\’.&ÐH$)È‹ëFe@õ€ñJR¶ íë¦C>rC²®Ž–Åá[~ÌPóYîû^´ùÆÓJg`óOó‚ÍuY}0î<Ù2 +hRù~¢Ñ¯<îïÃã~É÷ŠŠbçúFE‰G“gV.ìööHøJŠ„øÆ²¥Ý;-`çÖaÒâuÉHù<#ïOG8OLþE ÚA«sð¸³Óí½4ßÙ.ëÁ!‘nšŠz]«þ°¶ß5|öúSèI´§¥Ó‡·¾¹§u59y+Ñuóº[SYô¦›ÃùZ, ßg¸yp°Ó~ÅÞÔøÓqÅ>ÙéT“7Mz‰©„àú‡·»t›/Ee|áQw[eù!ø ;;;GÒ»ÂȱÍÿn ·ïxKð1»…·[üsWüìóÏ·GÊm<“ÎÛ}áVÞQîä”wzOyÇ‹[îä¯B¸3vZð_ïø }ç´»@Ó‹9™Ç›"ÀöìÇstx\GÄ%A.C˜ËïÓé\8›Kßó{p:yD>羯9bbùθ*nã2}Îeú‹·Íc•cÉ.è<ñ÷ç‡Î«01ò)lT…›g÷‘py&jT1nâ–á‘럞ëáÎòH¿!ÀÈx’‘¯°4ò_1¨°4ó_i?2«}å¼ì£^r<æÍ¢Â¡Yz”ã9Cûà·§¨¶}‡{1˜DPŒý.†gû;zð{ù9ü[îûsxð?5ÊOˆ‚w45é6‰ýFßœ¢;ÿ›Çáר&äš­Æ5XAû» ‚1À¯²ûcW÷‹õ@×xJÂi…q—:¼ ßyßåÕá› ›ªãõò7º“á`û½Ñ[ÅÚ4¸âY¤ÓªqO²[rÏia¨ ÍnÖÚ"ŠD°SËP^™:æ•z@Nz="¶…*Xbúò£ 4î+Ê@÷Û¦¶9täv$Í9_õ¼ªjȵÆS{ÞM —>‡^PެhÁˆ"oHxé€JL¾Ú1¾ ‹¿úœ$9²(‰‡dxÿŸšß‡SË[a”»-ã¹â²Pg¸ÿ †mð‚0ð‘ç”îŒk'%Þz]öxC/¿90¾9EPÇ›ÓЦ³@”ˆ¿aPˆÐ^KZY`ímî™ì%tã-KË5»¶·VW‘$`IâA9H¬K # uNÚScayâjm«uϬ±n×ØÈ¨1 4ŸT8'H‹Í”ª±¨b(9Ô-•hVu…ö;e l/ $ j0‚õ¦Œµ[àëG´ ë¥xS_.ÞNåeÏàR8º{ \3†‚\—5Ê'ÍÓçüc óï2Œ“í±SöeW‹© æwT˜`’^Å­™„áo=}æâp u§îm¬yÛ«×ÀÕ »„˳aØ ºm‡±‰ï ñ¸´Óº p òÌó:µÃÕo*]}C;l7ÊÁÄoÀ'…™¬}ž f³t„&i1q%,#¦ó¦?CdýÍ@ôG‘ny[6gÛ À⌠ÎN¤yá1 4‘ýÏRÅõú"V fK ÿa×@9‚æ’aM^§¡¿;Q†&!äH4p˜^ÎjØ ½@ªÆ½ÃJhL·`äöƒDÜtI‰Qá Ñ œ˜4’F6UŽg»uðœ¬âˆj”bàû£—ûr4$’›HœÉ®rQ#Ö=¯Dÿù¢cc U㺱¶t›zÇÏùÇC £y S“€“ˆ. Ó+ùj·”Úo¶«wÌ£Š 4æW5p—m÷À[¤&iÇ(b-< ‰u}O¯Pî#f¯ÆÙ°±n]ørF*† * ø&x6¸$â›vÜTä]:~Cœ©îûîè; ‚ÅÛÐ}ɘ6Ok6Eäæ“·MÂdà7/5ŽSN$CfÛ «³“ÉË@—.©}égðÑŽ ŠÌ„{Ö.§oØu¿ð²†m}· *‰͸]FeH¯bͰ}ŠÍ&’øI÷TÑNòl$ò€†ç3" N%ac•J]¨iá”Ô$¢ÑºdEþ¡Y«;yæEÐ^aGP²¾Ø1T1‡@$Š“Æ) (‡KjCF¿ÕÛ²xÅ"€ÇiE^¦U:8‡…¯|§˜ùPï¬÷-6 0ˆ3¦‡*‰ èätŘÐZäʼnsÒQ¡Nâ¸þZKÙŠ}§¢W¼‰X@ÿ̯~vM¥T’D#!mË0MAzZ[‰­rß›wÛ ™™2 CGh îC¾×sµ?ºi’8ìP‰ÞøP&¾œ•óiÌQ'“-T«ñÄ’¨Á¥âZ½a«˜D0¥ÙìJja)âv{7Bñx¬vdVž—]Èdr;bÜñ…½pÔk}óê(99J6c†ÆÄ»gql>Gˆ©ø<˜¦F>VÈÜQ ¸‹È/±C@úì .Í3™y¿ ÑK7äˆÜk=2, ç;ìnÙ[;¶DÝzQb5yë«eƒ¸dÎÜØ}=€ÂúR‰¢%T¸­ÞGµPä*§'äÐuHo.ù£¨FAÜ‹ät%Ü…B½«0RÞ‘Ÿ~‡ô»¹ t¿¹HÄB²°¸ HºÈ¸„ä_DÆ-9ì!PÙ»½¾Iª–¹oŒK/„ ÛÜpMXËJW|hȾo‘®¸}ééïSŒØ¥A èÁ×ðÛ5œÝ‡cÜ èo‡µ¦¯·©t•—E¡Òfû A·L¢!°–ÜŽ9èc‰3<þI#Ûù¢Fæ¦ÌÂÏX™ Ã>tùCAp8°­(}tÎ èPD o%O”1ôО ,hlPüA||ù¶„ÖPë ÚRHkWÕd£%|§Œn¢ÖnDÝ{{FÜ6X ´å™h}«¾ÚãÔЦ›š@oùñ=Æ…Õ*DÙˆç{Ÿ¶8¼÷ÌÉæ?Ù°Ún=^^Fn1W¸QL»ÿ‰QLCñ?¿Ã2c‹nœ—VƒtŠ¡1’FE Nõ.‹†,/7Yµä¹Dâ(pêô¿mTíhõz|m­_KýtÓÃôL¾bƒ9žM(nÕÐ9’Òß4²ÍF^!Så®_(ÒÏ$J7^Eºy H7*Ã7¡KG¥2‡°JÕ“`fìS†ýÛ¨ˆ9ÒÙèA¤*F†ÙªqÍãNÇøUÈ#d+¸ßG ž-8Ì0}˜]Ù£àF†©s^Ð AàÖ­#îXb’Ÿ+¶(.6fóï6ÆÂs/fÎ>iB]¼,¼˜_C4ÌØ&¡hl˜yÂÀdÅyRéó-ß0Š6ÕY|R[¨ö„+ÇûSÒÚˆ¨„› ’üJ̾` i½W $Ë(7ƒ\™Ë5†ä.×÷9ESÈY°Ç!gøsBÑ — #Û¥ˆÍ#6¬|QDÄ+óù~B†Äï$ „ †áØFŒKœpLóƒÒhªØ„8¦†Œ â‡þȉ"bƒ¬‚‚¨Ö}oAA(Ó*yEÁA‚AB2F›£†ÐÏ×"ŠÈ$䇈õ!šª#}Xq>V!9V!9V!9:$‡`¶ò1IÄvé,°‘UˆŸ²†>LãçŠM|áh Ér‚$nL¡Pld-ÙÄè N¬È θˉÖÁ@ö#¡;¬%¤¦÷YÎtÒñұ`8ŽUØUØä‡»Ý^Wq7Vq7þ#ân,ÓkÚˆo¡¾Ø±CS¨ï­  êÛ·Ý}3–Œ?ÐÝ7¼gÈ]»{mμé_æÛÀ"dÜ㻞ÝtºVt¯»ëúÒšï².•yï¥ÆÈ›­ÉWqÿœÂY}pÜÂÅz±C‚ÓßÛçõû6p0[5*Noçð3ÿ¦Nãd„))ïhc 0†;X/ñ”±l<·Y^¡¥ÂŸ¼r?cõZ9ƒG,Ûí0Ðê@cs½ÌÚR67ÈQ(´¥$ …Í^<¤lnè§þ’S13ÛóÞú†¾ÀÆò^²c¯l¿ £¿p#¯è'nø1? sp÷?Á;¸qö½Lø³rÿ¥Š¿™ûoB¾+¯Þ"^½Å|dŸ.ÏGöÉwå#ûä®>²mQ“%mÖÚžy2Éu§ PðèîEèÆýpå‘ê2]vcñdŒ”9XJ-ÉÓYÄáÒoîÅ»裿zú Æ܈ßýPnľÿï‡iãAýëO6Ÿ:éîpÏåže¢ha¨ŸK7•BÃæøˆò iÔÙG^g z©öÈ•ãÒ~¾JÉ•Y¹"É,wF Õíù|jUž§«ñg˜€+\z=Þ®k®ç4‹õ:ïxn²ü¾µ°c,.®&5µuwÙ%øÇJì¹Iˆ¸{TÔ?6æ)õKU~0sо¬ b€͆Õõ´yüŠð´ÕÞžwëQ‘A õÈF„‡ÁöììÖMQÆ¢5£j@\ÝuÓ¿&|ú5ºPL‰±¾o÷Û–³H¢œÜªúy¹ñâUÌa½±Þ—Wãa:ý¨Åi_†“jY°ý¾c 1Å+Tº„¾·Ö™R ëñ¢¸jKP-¬ÍøVÐfJø{ó@©‚Ðf…eæW åü䎠æÓãã,¼ñ~†µ¿Šþó2 µœsÚ|GXS‰-ý£Û€'ÝÃ7ô£÷f¹@Ñå‚}c Ý{ :f}šD’zúÈ&dÂþèïW'ë›s‚9¹6\å!a‹£9sЗZsôå¿l«hYfŒbq<œòñ`ÄÍKԔʣ/cÐZž/#ê«czc”ƾ¼ÜòüÞOo.Ð5_kœVÌ“ÒÇç£*üçRMH"0À d¾oXjÑãVì±( ÿ>ÆW+•†÷†,Êï…leûÍ1”Ù”}i&1&Ècª2:hMc/ñÞ»†â·h‚ªe™¨áåIUvZ’nÙ•1•Hìâ$Þè6Ô=/ÖW£½ÄíL^%á"F'o@¸¿¸(Ys‚ZžÏ);çxT»…3÷#ˆ¶º×*ÂZä!”âKÓ9|›äÊThiýpDï¥I“1“'wY˜šp±Šò–A¯(ºµ/¸äꉵ :c>)-wMeµC¯¨¢<ß›¢ÀžÈö¹mÞa'¬?ÿX…ÿ–¾Ü会—}Ü´2§FNDÆ4Ðò‰­“á¨:Áp6»eQ÷Ö ‘‘KÆ cQÍêS3²>–ÕV’C<¶Be”qÄ_E ÉÍ…¶ ¶úܺu‡Íá¹5¶- V%~Ìœ[ª+.bVMQíô5d3¬QÖ¤¿çdÚEÚì3nf©8ëúa®U¡8Ð3z §¡ê6öá?¡ûßÙƒÞÿ6êÏžlúñŸW÷¿òáµáÞÿž¬î¿Ûûß“âþ·R9ɺÊÄÇ{ 5ò5nåd±{`,(o‚‘ؽßÂ"÷ÁáŽ/3r1ß”&ä9r.¾™ºŠ"­9Ãù®€§æ®q‘„ëßùÂ#ÿ׿Å-¯®W׿Åû~׿˹ý]]þ/á\ˆšVk)×»t¤‹ÝÃCq¿»Ï¼‡|Á{x‘€–{Ë›Ò)/TÓê6ئøŸu|Rü6˜§>7à‡äCÛž̶ ”®ão&*'9§£OƒÉx„¬§™*2†ûcµ©Åanˆ³àW;úâÇØ°O§Õ›Z[Îùø"5m“Ò7ZO±[O¬–œ÷$÷‚!)|Wï$Zï³ß’ñ5:5º:©(ûµ&w¸©ÏÞ}}ZðòX‡CÓáæþÚ>ñGÆ]`b\N¢ã\z9Ó¾sór^#ÞÍjûµýÖš4æ:-ϧ!ïˆa–2®è=À‡^ìfÐeñг³nH‹{t=€:hÚ×}ÀÕŠÕîWêJ:ú¾kÿš±&ºƒWÆ¢°oó+µîe¼u‘_¾å¼  ¯ò‰Äú€Y$1·zÿ-)Œ·H\ÈÅ2Eò|äÉû-,“m!²¸Lf^œGØ=p„Ùd€Ù’¹dÀ\]0…²ƒ°ºR@’ÖQîMBª¿‹ËåyR‚ÊÊ]䲿6î"—ç˜É|¹Ü˜;ÜI(Ì_1½:ˆÝI\øÎ}kÓõç×>žÁyGþ’%ÄѪ‘à sˆIºÍ×âQÏi=‡53––¢I‹ÊX39m‘+ªî.§yÚ“!¼¬¾æqª]e¬]¹d~¬á¼µ” Øá,GgÐMÊïUæÞ³F“{)SI ¢­puߪá"ò%ó 0´L€SËRæ @Qcg*"¹à± OÜUaùrráÁy-_¸|/CÜ·¢p¾\íÒà)_´Ì{[w ÜVü¦ã•DÁoü×§%ÿòâ<}²Õpñ_g+ü×C|˜=ü×Åú1jÁã AÆo ‚Å.&ƒO°#ý8˜1=òÞ¡0rL Ä}Ȫ7ª¢Cê͇){#CSŠ;ë¤ÒeäK°vC]1ãŽ!˜ G3Áglš‰G«Ê«z>¾¦òåE‰]ešáW-ã;üfMÆ_$¬‰sË_€­¢ ÐÛ:$Ÿ´Üyˆ :sWdˤã£:sVB´áfDWW¼Ed+5ùOJ·Mû¤¬PÖ"S4 RvÊvë= ·í£MB6P ,òYØâû†&.–P¼í"P %ÿ;ææáܬtju;sw¡Ü¼ÜÂÁ„«ÔÁó¤þÖØ[M…SÚ2ò8áéÜy£g½c‡ ÅeíÙØZn>\.ïgÀýÕ)+>é˚ʃbd-¦VH—^`<ìpy7‰ ,Ô B¬Ëz± ˜Ä­ÿ7jºÑv #íG–®cÏZ(b~ FcÒ‡Y1°èùÐ+D×·‡®Ü¹Sg)U‡éŒÝBÂdFcû¨2±µ³Ï¸šÅ‘W* ߇-f#°ïžJXæ ¦ûÏj^Nà“n³#ÓvÌ2—ž•Ow§ýê›cŸe~Úx$¬y1ä$IJ® Ãê}bÈï °›!6½Hf×¥A¾ÏKæ*@ä~2׃ï3™ë¼r™¡u®|¡*›§¬t(L`^–,œØ33gÃMÇ™~]t£@îÍŒüª±ŒwKÈùêMòmrÂçÐÏòÒÒ‚ƒ¯ÄH ¹‚ øì±2Ô üµXO¤¶ŸÌz—WQI%»ªÛƒùÛí’;oJ±»yâÝuè!±2qG‚Vÿü£r´UÌ%CFÆÁ‡îV¢wVŽ˜§â¥= ¤oûéLoCLÃß0P Q®­žý¯ñ7Ã0o+gÑ?OÐLÍÈÙG•¯ÒÝù´\ùê <WbHqa{—õÈ™ïž8ïz©~“,¼‘qW±:”sé¯@òBÚ¨Q縖s±Ÿ ÷>d¾a?à?}´ø`»˜5ØîÄd ¶ XÞ`»-6'š:~ïþæŠ9ºÿ¿xØø/›õ§ÞýÿÖæêþÿA>̧îýÿöÒjW{d{€€¶¥5Ì Õ¢ïý¥xz(ðÀö0±|[T>1mµ³2Yf˜=ø\ > .R¢x>¡ˆ~­ov%ó I,ëµäºÿh}BÛñõ`xÁ;aSCÿ ÖR¹ŽA·}€æF3hMgƒsÐõfÉçÁÓ`áÝ È?¥,sÐÆ· i# ÐE)7]ÿââñôö TŠóY“^Ñã”Ul‡IZàÐÀ #ƒó«DÒH†ƒŒQ}‰ÿ®vx\å_ÿп¾¬ý²Q±ð‹ZƒšÎ¦A•ótð©Fq{ClÑUú¥‘ž“UÚ(•mC:VóDÛªÉ|ó9M>ŽÆŸ‘ÃFãÑ "‰¬ð +<ˆø¬ð +<È Y€­¥-ÀÖ`ki °u§¸Â¬ðKÂDS²F£ƒlU¯&öGa=êqÑȇÆä7,­ÞoT:kÑ2oÂeêÉZò´‚6o(]©4¾&dj: ¥td´¶"ÇiÕœ'P饯æ"D6I‹¤®HšÈ‘8\ÄF•ð 9 C"ùÅg\yBŽòn»(ó¶3¹·m²¯hÏbìÛ.ﲦ(X¸@‰7‘›À»O*ã¶çæ\“‚4óÌ͹V3,6›‡sÝ]Ì^E9×bXÁÄ8÷;G?m/ ¢ñò4Lbsi°Cvx©lhTMeॠA£ÂdBx)YC¤³oì,Žq˜õ]æç+xNk‰6ëH_Iñ¼=jÑð+¾ »üÎÂT4¼½†Õ€Í}\‚­«£KñÃUr=¾(‘µ_]¡Å²Ðb»·“fÈÝNAAÚæ Ó(ÔêO¡fhª²“ÁÙ-›åΤæyØŸ|LvûW)lRÛ)j¾´h¡‡}¨¦vp>5ÌÛûðôöü#¼}Úkr‡ã ´)á¥7 {†ÝÁ ?àŒél0£q`ᬠbÑ.å*G>œŠE ÖD‰nŠ‘ÆC]'óÃ$…u…G?à×íÛ)1èíLÔ³ñíèbªƒå"‹7“|q3žÌXvûCè^ú5”Aÿm¢ õ|<™Àh§r€ãàùdp#ç”XNÆï!Ö ¾ç{Ѥ÷)U“úÓd7=K6ž¬æbæËóµ ÃÛcúø¯·Ke:WÂÊ»Àô¶§W%¶ý;Fë1Þ­]¿×á šLŒX™ÙøÎùJ,ø‹OBè—BÎÑÉ [¬% *¬ÚcÞò0™\Rßµ/WÆÃhA64`#Q·¤âQ;Rx7D¡êl[Ql/@rÓ ¹Lâö ¤ø7)nG)Zx = ªÍÄÀíâ®WâoÊUñ—^We]¦íj[¥Úv12ÉkÅ[é˃P®°÷„}\ïÞ ðñþQz ÍØ?3àÛ?ò?íÂ~yXüç³g[þóic…ÿ|ˆ¯KÿùÎÁ‚äy•¡ŽD…Oòæ š¼9ÅT$ðül¶z'Gðû!i$ï±øû9!¤íÝ&Qû;!Hñ[id¯˜Ô”âHŠ¡:¬*¯TLONÀ€1ð§CÀG— BÍ`‰÷%îïœPÕwª:…‰%‹c&Võ;Å©"‘9Ã\EŒê; ¼ä¼?"Šr¨Î¾&S‚0ÒUC: xÉ€ŽõÂhz_9]îR †ÖúÀR¹_€% šBÍhe„s›D &|†||;ºX4Å-Àiî’«þð²6¾IE8x˜”@ø¼9ý¿ ™ÌJÚP Rlà%§¼¸jŸâ_Y-E2KHy¹¶ô~ ¥_ÍóŒc³Ú*¯Ð¥ß)º4"9ѨK«æ 3„¨´`”&‰ïQ9/Ó­•+Då•o‹¾¼»{sþ^~`ªiÓ|!brP¢3»ˆ;oѵÃÙÐR£ú“ó«”²n[ª¶íŸÐk³ëX9gqRy玲GöB‰&rºf ]û4úÈï`[tPªk%2ZÝ4 L¯aÛÇM`‘ø»¹³ê%EV/ 9íÇOÇ. ƒ¶ñ+>À[@eâÅ$?ãnž¡z#‡Š>ñÙF럖HúážfÀØ Éž§J}µÕV]¸ ÃuJç—ÁußRÇH??OofœK\B-,<Êgr=˜1^dO$~8H ¼khOÿ§_=³t'˜•σ P‚`"¦ Ï@&û×­`ÄðEŒÅZ²sÜKð9®˜äßýWÿ}ö卵Tíb ßAЄ#¦L?àRdÁ(ÈÂKª-VKu³e%CH¸òï“kýïvÊy’Ñ]ìfØ?OÙ°€hM½†þršÈ/!äÆg(ùì1ñÊØí9òw“. Ę#cw*¦D%×c\çç·˜ýáWžP5ÖŠIgTÙçÁ¹Hý2‚µu ‚UÚtz…È›Feû yøò÷Ò£Þ#8#œ ÇË…oR7iïøGòÜÃMà·*/gvþ#|Ðt|m­_ëÈç"ä`z&_±ÁT^ôÆmJO7T Ø¡x–pĵ6Ï`¤G·dHQ~4<À¬»'°êA.’pp;o¬ó*¼B⥅)ÚâÚßF"‹ìae/C¿c\é¡F'Š=–µqtöÇ;”ÿ¾`ûÈ Â[ÝaÙuðp˜ïƒÙ̃eÂÞPf‡%¼¦í½IÄìÿx2»Ë!3ùÌQ íòX7cq‹6ןKÌ«MÛFMKp5I…ÇhšMÆçÂñ·¥+2Ç‹ëa\·œéQ8Qîƒð™ë•ñ—ý™9ù±[û§Óûr•s£¢ªDßY©õEΤ٪‘ÔL„îŽòA¤ü$¹¾%döôv’rËáÿ èÁ—’³³ÁX’T°á€«ÑZàû_- ·ô úóŽŒK«/¼.ÐçwÄ.ΟhÏÇnØš·VlPJyåõz7åõý:Sú0ÿ,ÇLæÒï¹nC?˜+OñP®?W: rÝ\r½÷@®žN–÷Í“JGÜÙPH| ¡ˆ“[ñ=Êp°hPå(ÎI¥Òžs¿ BhE òˆä ¿)K0ß!× —k mÐ4^ß¹ËÈ»»FÌ}7OÈ\kÀcMâe0‘ó&£Í±$ñÙ ËÛ«’•ïÃ÷êûð÷‡ù7(°Y»³M?Øÿ›&?^v,ß@›ÿNQ|ß=Œ{@ÌâîÞ¹àÿ\÷f,ý†@  ÁL¾ÂÌå¿bPa¶ô_iÿmƒ‹q#‚b€¸‰<s îïˆà÷ù9þ'îûs øŸùe #ø1ÊOˆ¾úºC1LüæÝPÞ8!MÍùaïÕ¤k€}Þ`±¬/«CN} 뉮ò”†R³"ì È0ýS¤Ku‚û'ó$lï&%“ö¦b—ìDFoK&¼Z<ꔳü~ÎnÅ‚Á¥¶#>ßO`éÍ,ÝØ˜s¬Šúl¼û¶>‡žkXp’³êXytÌëÑñ®”ÁŒ ,]9Ièƒ.s°•zxï)„uVÀj2Ú¯¢UÞ½C•‡;Ä:ô!>eöYylø#]Ôccî‘v«wÚÂÃ×KgÊ: +OZµQ퉆q|Ìðäx·òäø›}|ÿÉåôaý?žKþùX^+Î4NÒ€¥âí7[è«Ò¼Žu. v¾þÀ@d=Tk>ÓÉž¤ÓaÄ´K„lb?ˆ%àØ±#óØU‰»#×›.\Y¸-‚Å^Sá‘ Ç»š ÖÓu¾ÊÒo È€“S Áë»Mλuц(„>Æl_OžÌ;@a“JAÀ|ø½X¿ —Q”¦Ø¾Ùðk&>€0®%]túlÝTçö(Öû¾;³Gƒgãð‚­÷“oîå¬Ýk±Å„AÄ×…Ô­á$€ƒIÄ…En«ñ»¾Îˆ¦³;/ñq&¡\&ܶæ4 ï½]AÌ·Ù³I¹m‚3V곯ŒÁØÕs±»„¹Ø]¤üÙÀ½/PC. A\~Z¨ïó+tx›ª¥±G¶¼=Ÿ!´ ÞÝ6iô-¤¯ÛwÛŸ"345 /S!éº Ü7ÞþÕü|ww~/‡¹‰‹Ž€zbÞºKB!5…rpá“Rcòn còn)ùc‚ÊÑφæSê ´ô ]‚AiäSÐÇœ²ol61©¼+ýUNJØÐ¿ï¡áÁáµáV ëßtOw$p ˜Ú(ãA6±*¡ÜýUvö„‡¨¾˜À:© ]÷?€Zu{¡àO©À¤#€=¨•—¨_5n_YäJ¹®+.1“ˆrVÐÄÖº=à äBLÔ€nmûž»Žz{Ð…“Á¶€ï¡ë-ÇŸû_1áËtˆËÒÚ¡á„£(øú­p?Âà.œƒkd<‚~L¶ &ŽNŠèk“L*×É ¤u-åù¡h²„´äÜè«bÚ…Éÿ‡`Rœ»†è"[@S6 jŒvSÃËæ‚¥©RßdE lƒF£06¦_ôaóvÊø2¸¾½6Ô`8ìÜÐ>'• ÏÒ.4bˆH:ybÓÅã ”†ûö"y’u }¿Ó=Ê"‚ÏÉiHr¢„æÃõDÉœ¼ÍlÞüãâwNº;ðÿßÜÝ©óý ;ÚwûÑV“ #‡zÍ7;%¼á] F¨ùîøhÚË#úAfB rÞoP.–j¶€Z,Ý÷ÂX«ÀD°wN¼ÛT¼*_ µæî€%ä“‹_R1îßC ™‚˜ ˆŒ‡ùÁÝ4»ˆ‡ê™UBäì>$§¾á~W¸°%2–¡»ÛËÇ2,R’.…iò‚…í£¤¾‘ì%äfAöÓÄø°ErnÆŒ…?­ÀC …}<Ꜵ;§;ÅzÓApž¿WÆ#¤kØ:h¤¤”M8]³šÜ o§I]õšYQnñâRxä%vn¦ƒáx¤W ^ó•^ÿ2EL2¶Åzo§Ž´ßW¸ˆñ}‹ÓóÇXŸêÕöXŸCœã§j0þ–=úÆu*m3‰Ì—¶øNí‡ {À+æƒñø&¹ÍC´VÞÜàiä|‚Š‚>hŠÖ}Ë£CP=|p¾©(›Zp¤h&•äÕ>ºëÅ ‚ð]-Z.{h²®Kvg­N›Œ-ñ‡oŒ‹•ÝË‹•w©xH?¯’@?Š)üd·A3Òí°oRÁCëô|t„.uá×2L3ÿÕ,WðÇ»20þÒ9ïZ­`|ü¾,ÕR»EÊÃZùbi+–¦MçŽ÷ëÂÕU(ÑŠš,z‘ŽÆÀÁ}á|†ŽÇšyC µƒú̺x8»¸`3—Oyêa•¢þIÉëèì«ö!îËû èäâvÈE‰Ÿ!¾,šªh³œ4gåA˜\ä»S¼lbÂb5lÈ.¨˜ñ9æäíQE?:ØY*=µ§ô!|…k ‚êNo.Ðt¨Œ±tý0øÐŒ¬6%Z³¬¡ŠÔ}`‡¥gt2.ó]%^U‚§é’ŒOìè-¶¾ãWŸ$›ºÐùçš³³¼:JNŽ’Û­’¹9[ B?ÿÒ;mV~,¾)'ëÃtMù/œ×iF h³\¶çH(S(¤@¡ÆX'ŽBµ&Õ©²Q•§UÙ——ðŽÖ°bFs[Y²pK%ºNNSïæwQEιóK”ÙjCç}Ür)NC%cô5pÒtD\GZX¢*¨=ò´¬ÉI ͉aOG7èÈ<œ‰;'Ö%#Ê©.ÑžÍ(9¬£Z“Sc?-UÝðtøä«öÆU¡õ$Wèâ·ô¶\uõ·°”Š3§£Ûþ²ŒÍÒS„íÍRµJ½—»cÎM•œÉȾø‹«Š«wÐ* [õÈîÉ⦑ä!×JÉD5îIü!@qʼl%û§98îø(l‡1_ ô|p?Ï!C¾"‡ ¾¡¸$ÍGewCIîcOI‚ÛJÂÖƒz„çøc뭪VŒïq®êyj¦²ÉÑŠø8£ÅË­"-0X؃Æ2zÐ( (?Ô̸Šu"÷aXYqGÓÑ—êm¥xz=v¢VEØ LÜ=¸§ ¾ÍÈb%s(•Ä5DWG¶[ŠiÔ¿?…¨hàò„EVßÝÕ&°‡ÕñßKNÿ~òtãYñß›­'õgˆÿ~ºµŠÿÿ f;ÿýNЋק;Ûù8ð ÑÓ>n .  ïü ?þlu¶{YTä;vŽº‡UýçË£Ãc A÷£P“ø™A(Š=OòáçyOB/eÐ Ö÷ú×é4ÙN¯¯Ó!†»è‚Æ÷{8|èÃaóñÿŽ“ß}:¾™„öúS¨¿ çK å“…r_Ïl‘ wÿ9·/BÞ( Ñ2¾œ}ÆP*(H0x@AS·C8}³M…1ûÑ6ñ¯íÃãƒöËöIÒÁ;|&oÞaÎ Çœ/É/‚Ê×lgGÍüj—ðîoiµúô]Cü ¿ìר­ãh?xE–`(‰/X…‡QÄcñ«ám8‰ô9x·°ÓA²,¿ƒä.®‚€r@@ÞŒ dãñ€I§}ƒtU4õB-wyá"ñ¶¡À„*—·ëè·HcÆ,|©lzZ©zʨÙ6úÖì³K0Ýñ7FþVÑUïÇR˜ø~0œa W9¶â~Øt¨#®VċɊτÙQ­G Ôúž"4F¤Ó8ïOSÛÚ]Ø3¨ƒj)ë„Iª¾ÝŽÌF‹®êq°|IÏy|ª´'~ƒ"dA;†:Â"/PÆÐ1PR­%Ö@5'WãÏÚÌJC]Êh#™¥&¾x»Ç)®šc&÷™QÚòª/øB•"IÊ.bâ’›þt*%0žÐ1©úùF+þDÓÃã~;9|L†À>¡útä.«Ç<Œz`‹8âÌé…3 ®b±¬ØQ¤Ó€æZãˆÄüŒŒ –2vç3þ:Ì<LFizaå²7†.Î×"ã÷ðëºÙwÊ}ÒÛí3_ø_hgŒˆÐIîíÒ¨ ëzJËÚ=²cBrtæ»PŽÚÈšÒNÖ³ÑÏJž¸ ú–ªA@_/…Ƽ¦¾I¼‡ F–ö”Jòœ¥îî'UÜE*YÌKêÎR‹úFÉ2¿£€[”Sº9§G”œ½ÂyH´3”\OÙ)Hb~PñÒ¡.¨™Íö‚º“T² Ô]ÝŸîèù´ˆÓþ-´ˆ¿S’çòtGo§d!‡§;ú:e»9%x¿mr[Ñ ì$K`{’ÓÀJ­&¼9Ò¦QefWóŒa)mj˜^rö ˜zK@ýT¸¬pÛ|”Ø]ØiÕô>Ú}ôk2Ƹ˜¨ïVU1î‰V¨e\˰rK'M¡œqs BgøLôTÔi”)Q5\’ç ³(ÓoHäˆ)œ}YW¨ov¥z7è%Ó+ * •‡ÈÐÍÇîîk'Ç‹DïÿêüÁ‡rddo";µé^ŒS–Oçý[¥cNP} ìsH –ëHÜŸ’æWçR h¦è]CÈý¼ëx€©h ..ì)­ø…†ïK™ª’ $„'*Ÿ€G3$#NáU<‰Nÿÿ‘ÌW³UŽ ^ :ðLòÜïä˜ÜÕ pnÿ¿W;†ÿß|®Iž÷ßÿaÅI.ù tth:=4C­v$ଧÑI‹õmÃ}ÎÆ(N4•ÞÇ4zDÜý2éÃá˰DGL;†§²[[… M¹y™!Ç~×êJMu¥ÊÜÉ’C鬃*¶¼û0,rä?õ'ƒñmÀºç®ñi0}Š ¢JM>Ñ« Óežº$-ÍJm"g-\Z†pŸtxÐýRñϿ٪ªôWu@ž»ô‹ÍûYïx®èy¦hÙy¨IݹH¿hab"Å‹Ö ¶=Û„wBЙó[êµÐu{ã=Ž»¤"=€AOÉi•Í<ÙPÆN©#j›µÕçecbUlÅÊzãp—M{š"›Äˆ?¯BÏËö¹‰'ß´ƒa¯.éðB%»Rx Ÿüt2Ýô1lfè¹<ý:†Í7=ã=r4EÕqàya󘨽ËÛµ¼}GåÈr©Lÿ5™•FhÈ™û×çW%åþbH'nv#ùéÕmÒ‡³Lzñ“¹®žgyÛWÝ*…÷y:ÁÁì_0'(K Ði}Ã÷ëöš>†Ã>¬W‘¿c”~‘é; û&)4erÇàÆ´Ä Å³¸„ÎRžJΧ‡u¢á”d˜[Ú« ?îÈnZúŒ;›Ï“5²RÍÁ 뼟ö'2iÓ¢£+H›©Æ=‚KÄ ðÓÍ3ëlû¶Ö¥!e3Š tš*1xóþŸZýÿ­‚„À&òWôW™6@7O±æiº™ 8ÜP…óÞ3Y¤³ýÃz•fU ýz\hªÝÊðÎÂ:ÖyÓA§1`PRœ$â‹No¯9ýãuîCh[Ý8߃è8 œIòV¨v¤ÎÕŸ>¡Ž^Š„òV‡¶÷/³I_Yó9uD`o¦ûo±7G”½y6舦9ï.-Y-²K÷ôâ{´I}ŽMÚ™¡d“>ÃRlaènR˜š²¶”Z;¿<6Döÿ‚;¿< …ö}™wa<4É»Âi%Ï¿j“í¿nS’Î%qc¾Yæ|¾Š(Ì—\Ò`mhëèŒyèÈK®Ï¾†™ŒUÐŒ•D›^/á8̧ÙÐíû}i6D|¥Ù¬4›o¢ÙX‹w¥ÞÜ»zSj2âúK¹,/Ò¯Dív6ÞE}„(÷vnxÚ’ˆ?ªj_“Š«NÞT~+MJ$†= ­ˆDsƒT`2¼£ ¿šÈ£'蘠Æ |BFÎnv©&dG"R‘ÑÆ:57AEÞ=ι&]óºÒ~O`q]›‘JTrU)™h/„ýÔÚNÉɯÈôÏ—ÁI¬V«|“ÈL§,hªÆu4P¿Šë„!±ÑQC•ª}úWz‘ö¯‰Aý ø6Ôxrà;;üŠä3¡%4ÿ &ãÕ®®·0‡íx2K¶N[;a"ÇÝ—í^û¨ã Á]:š‹v‹tòIpÇå-]Ç·”3¹á÷îNïwâ‡òáçŒ'ýtíú­Qè£f%êµBŒøÃdæP`¨?¥Ï)0!úR1/^t2rLÈ{‹ãoJÈÈ!ú—§«@÷fxT<N ÅÛýø—ü0˜x£:KϯFƒ¡ß£"¡ñª ýCñ2PÔ)!eµãN yÆÄŸg°þ$W?q•Êßàø‹ÛCÒ²0–blDHëùŒ¹¿fI†—oÛ½â„Mä„ÝaÿƒR%Ø[a?íŠH"ög³ôú†æà‚ðábÿ¥UÄ×/úQøØê-cµvA‹+q›Pâª$x˜%t8McÂ*)ɆÛç.ƒóôú™# á– H˜,“0)–cö옄ë|B2`È)Ý€yGi3ž¥ÖõPq@Ãö]²Æþ–lãŠì¯§”¬¬Šÿ,]% ÙxOÜ%g4PãídrS’êešœš$åõbF “‡Nt²¨ÒN#îpÑÛS2r›PÆÎÚÞs{üƒií÷fž Àžlƒ1'É€=‰%S´MB“}^‡û0%{&î@W‚'µÏépHãj¡dÕÚ0½õí<¸›a[Q£âoP áÂó¦&§/'ó¥ÔµƒcjK¨™«„QŽ+ñ8¹mõ¶y{ãVª•&ÔkqïE SNQp³V‚qhpZŒ Çzêqæ{rÑ©WïSÄëÂS¯«yáHÑд;£šI/gús@*ź¯ÞÎè<•´¦)Î*NœõtëýPôªLu—€›#Þr›±2ˆ+î*:îjsIwÛÀð×î0 íÀs"ØRÞøê‚fh÷Ðó†+*øORgtÜyÜäÑŒ Ò2CBc+‘è1xý|qê£aê©<7Õ'(ÛÜÉ è²F±±Æ½—%¶Üùaïeѧ¢yQïeÙŸý²yAïÕ {£œó^•Ý ¯€Œ÷¡ˆ÷ï!ï‰xoòbÑ÷ÒriIí£h|3à«+²Xä«5ŽzD:á9öªþY+$ÕמT¸¤%ncá3šÈ¿Ð d70^.Þ¼Íù›'Ï™ó`VIoG¿·lY<+îTèú§?ÞN nUÖsU_ŒMî³ZWœõä»E˜nNŽ+Äns´+RhNF+Èe;c±l¥˜Ë„°ÞЧ2°iSá5 ,ÒXÞBÚ$}_ÝÔŒGVÞÉ£ö#ñES|Ã'ÉRÂÆQÆ8£ë:)«e(Eè•JÑ£hÚ5Džk.Ϫpرc¸0¡£ >ÔÖB´úÕÙ1ô,=ÒÊ6ƒú6\a7ÚFmG¿$£“º&‡’iÚáû‘!³“ƒ“SåpNA+œ GÚ[ÕæE7Ö›CÇ \É¿:1VéWž‡L[šwbvžª¥™zÅÍ]]ð·üK˜«dTÊ:aŠÐSÒçPІŸq…Ùö¥ë†Rçå/¥r9 $º:ò¨øE©Yyé&@.#E4 2”ñŽW’´Å”ü…”,°V'.á˜jF„>ë è™–WÿFê]ÑÙ»Ôˆ÷o Õþ …²64¶8÷[È“]`ïÀ`Ë|ËèÑ(¼óh„µ@ž]*MƒØ|Ûñ‚Û n‘“B&$×ör ,KÁÉÞ亟5qÕX— Ðö1—Ò^Xe+2úØi¹äS€ƒºèH²KR±]+F@³¶T‰Iž‡{Ŧ'MÖ½°šký­´R[äF´Ä€¼ôb:‡3(ÅÄ%ÿ(=¯î•Ô,áâ­[×h„âXãO\¯~ÃéÂJ´«Ã …îûM(÷l,Ñ.”@øtX¨ 2ßN¿Ú&·›`•KvH!ÛY‰GÜâèÇc w=€ççÜ'ýOãÁEßÈ` —­jôH&¹CLþ‡8QU.AÌ6rDåù0®ƒ,ž5¾Ç‚vÞÀ^k ûŒ“11Wuœ$Yµ% BËc‰û|(ÅF83g_KÂ6H³1žÒoKŽ¢[ž·$çÜó2ÆZìyIÖ¦—wrúf›^á#]n¹"›^žýWÕèðO¼ ´KÚ4 ô3\Ÿ¹“Þes·Í9íKwØ6ã+@ïsö³ðÆ™½s R¯!>x”úÕç¾>~üÿé§åFÿÏ‹ÿ_ß|Òhpüÿgõ­' Œÿßxölÿÿ!>¼ íøÿ=3K©máa»ŽŒçïÙ·¬ÏoìÒ¡ã/&r ÆÙWžã¡ðñ…CÆKl†÷þ© Ü;(¼<_äDƒÇáá¾w¤u@T©ë^(x»ÒÙÛÍíFìuÝüÕmn!Tiþ%æÝñ ¤Hæ“43œ¶¨†2çžÔ"ÍŸ]2›"|™‚ê¥@³ôo‹™ø=1~2 ­h>âàU@Ï›Á§1¥zWã ¬F†ñ.M8c©–½HN¡uÛð†é¬R¨03ò¬:Çá«âÕïÕƒGFßN“Æ-‹`‹ô¢h¡ “ð¢®ÝŽ3š¶Dá]ibŒð¬²£ì·m§€îjSužÐáH£ŽÃU§WøkC¿CE¦ë‘ªM7'#º8˜t¡Ùè¹Ö1ÓÕôŠé°bŒ;˜ç"a²“¹#e'óËÎÀLŸËÅÕåk3v²«Ù¤ Ûœ³9Pù"›écGøk¢6Û!›óC2‘›éãeœ/³IHH¹¢9›åç‡lFSŽ‘(×Ù$cG©^(¸ó‚=*2(™ažÕ”R¤Ìrñb·gWÔ¸“-ÞÏŒ¡‰žlÈ ¤ ¡l±B gǰVËná@Ö*”²ã–—±˜>‹T®ê]Œ>Á°Ê쩇*ÃÇ2úÝ Óßâê€ùô@–ùŒû™Ñ&ᙽ]úXý(ö7Þj¬¦X[+,ú/Äoµz] -çë`S“b[«E›è&ëÝFòÏ¡Áø¯htpSt·KÈmôšht¬¥ku—Bv£±¥Ï¡T•þµZš1¼Ìv`à|QnÇVK_Ks¥pe¶ ‡å†&‹·›w¸èÚŒö}tóÆogëURÜËÞùÝ$½&ŒñY,ÑÉ“DDdG¥Óo^GG@ƒÞQYYî72Bã4 SýBEÀ„>r“ˆz_ D¥ÓR±P:-éP([È !&^¼´C¸±Ùy\ ò/視ÃC%jd“ݦ4£?‚xñ+£5ølg©'èB §. ,O²IÔ1»T™˜"1À¶”Àh¾d£o:JrdŽ 3²„µiÁ™S–‘Ó9ïYÜQ Å;½eÁÊ8>)ôó|±áŽ=µ½±ÍçäP=¸‹?uB.Õ& ±]`¤¶ùü©ù“åUS,?eþ„œ®í#dسš‡öîN–ŽŸeÄ *ä&òút§ûGü~ðvÿèÎÖœÞ3󻤴š;7ÒÒêûÎðóª “Ñš¢îG¼ä«"OlU°ûr<Žñ“!ö\n2<{ðEIˆÞ×뵺ŸYb;Ù¬3Ù1„u”±VeŸøeópÒkQ(]·‹‡<:@ Ùoß/(Ðt¥là™!¼ 𸺄­î…X"ÔÕGÌÝ xnaüŸsª*ÀÍÓ¾/1‘ K†G*’Ó×`.n!Þ{“âÚVMJxø³ ¹&´2rÖzd´éõ¦óHﮣu éªcô͘tCÁ蹦¦f…M‡”½ãód@¶½[ºÞÙwûÁ×Y6keŽÎY`ns¯Æzo~à‹±ÐýÏ’Ó?çÜÿ4žÖŸz÷?[Ï6W÷?ñ+йÿmsUcKÊúzð^Sª2?ïà—a¿¦ÜˆS §àË$=¸z`<Á°s»$åÓß#s°NúKlRr®±ªfjáyî´ÞqܶYðâÈÞu.Ki¤œë ìÞ/¿vÌXUcÖ×§¨kŽ¢°}RrÈQ°dŽnAp›¢\ßÈ£¡wœ:1''Ðï5¨‚7Š äõu3½YGÿç¹§“\Ê5êö™GÏ9îó’‚WzÉ’nõ’;_ì *ùW{<þ Œ¬+Œ/6ļ?ãýº†Úöi×"¥KÚÖ“£™Jq§§Å½KÄI•ýk Á¤9Û‘¤V®ËO0жÈI¥sGÉ •Hµµº² ·ÉçþCj“‡ÜI8»ÔŒÔ©Ê»Q´È½Ö_väR?x߈ 4eÖWìßò‚=;=ò"¹‘UKï” ™>‹fI¦÷â‚"©’uU&ùò%[—é¹7Üþ½zà=çž1÷^=v™nÒ Þ«ß÷½³=¹@¾\;2}¬,´B ºÁ\·8Jd>xÈIQPÈC@:T2é9ÓH«¥). Q"éÓ`qÀJVv袽‹§ˆÎÊ­¨;‰Ÿ3“KYz›µIðâã cIítÎfq'³³ŠêMìl¤t¶èÙ)“î§œ÷ŮݗQ0連ÉÑLþ¦´îÝ24{Ãë¤Æ´UÒ6'žI…r#Shí¿ÌÁòIN…ÇZeWtS¾=‰Õ±<ýPïX•0‘þåIÝ‘ÑVfux–>Œ³Û ÅIä%lW© A)Q¿jܾ2Œ#en>—˜IDÐ5‰!­u‡Ÿ ;„0œúÜÇx{ nPaANTÖ~îE1>¢œ²Ää'Øœ¥£–I9yÎY,U·IÅÈÚ]0_·Y:žº»PÒî¿ZŽ¥êf¥S¶as–äѺ*»™›[ºOÊÓ™„rpu+0].˜n¡Œ(ß1DR'3ŸÜ£'?>VÏM€bZú£dâ½p:”(¡xš”prcŽ@ÿzέGºAØ€z"T“hC´Íx±?bÓyQK¢d´ºbé(Ìž¤°=ž ˆ=²ÑÄ;3mŽHÏû·~zHݺ‚¢[;C§›ÂN+n øŽ*«%ž‘äňЙT–.fXù‹Òañ0–ÚÞgqNo?àÖ~_àÍ9’dˆ§ùù1払E‰V“Înâ½l´h´Ý).К{“æÆTïåN«n±Œ^¡4_ÿaÄÀ§Õ¿8•™%QA‡ûAñ{å´„¯ J>dUÜ ²º "–ÉÀ¢ˆ×9á®ùÙ‚ß) ñ]Âß)q ±ΕÅA]uæ0¨«:3PW!e­j ê8Ì­ ïR0ºT³´  gë»7Èn(¦ó2 »±a4NwÁó&:ì'H]9ëcüÌžEpÀ0„6ÞU­é+5Rƒíà“b.^‘‡Ÿ„¾ @`D]fÈE ¸‘ºuU-rcÆ>j?ЇŒ ‘/€d±ÃÖ.qV€%=I$îl˜ís¬ZSim1Ë£ÝÛáð‘ •ÐjyzsƒØl§ê´³øB¸–<0‹y§Fçd€X¤•ìÚŸ ÐI¢8s+‡%4Ô]ŽŒ)NLÓeäL>»Xò„wŒŒxÿ¨ #{Õï_Žú~?Aüÿ’²ñÿOž6žm2þ¿ÑØÜÜÚ@üÿÓ§[+üÿC|x]zøÿ9BN¯ÄÛ&Ô–Õ=~óªûVHÁ B:vÞ|Â-ý°šÈŸYB· Aô£€ÐË1OÏ$ eÓd;½¾N‡UøÙÿ0ì’ßûÃáàCTMþÿï8ù}pÑç[mƒÐ^ wéÙf³üÖ3[d:2üïD¼kÞ(Ñút|9ûLÐp+h –HsìvÈÃlSaoŒh›ø×öáñAûeû”çNÈEv._ ÁÀwtÙP+H²`œK5£Çí6ÖÚ ôð»öð08ÌødÑ{¢u2t)W¥|Câ9§y áP›ªˆ1ÆâWÃÙ$qüMérr'Ÿ“dq·és"È,èyâº$ty¥²tWA—ž]é¤Háºÿep}{OG-oF°"u5 F‹Ï⮿¯{/yèÉë #‘µˆÐ{TJo¦eÑqôO7sR¶/”r\NnGâ†ÁT¨?ÑÜpXSg4ìïšr5PyÀÏûØké=`]vÀ!w˜~‚z‡¼)ùà`ÿqƒÇÀ$ã¾Äa¥þùyz3#ÈदĪÅE|®  gó‰_›þšL½\Ü }D†J¼"îá©”*襋ݤÉ0ŽbäþB~ }‡¥ ¯ˆn3é§ÁøvêtçótÓ„Ó€°sMêM»ÈAÎÓ+HДOѸ!Æ~ÊwFŸS¼ßÀû(¼ôæËŸóapM'ºéN’2ý|£(ÇO½$^ ./¡qÔÑÏX›bdº!̦éðRvMϨãn•<®’âNW‰ëwµó¨*dŒ±–4Îõzæ¨.JfÔNØÏ “ Źï•+"â}•žÊ`ô©$¾(“Ƕ|¯¥Ê¾õÝ5„“Î F.€)oRíÓ&… è…DÇ)\:%ܪ&T[º‘ÏÒª!~wXøZz²ŽOö…†sp m&a7˜Õk—6c`•cG©9K'nÃÍ ,FÛÌ–îä&^þ1ÝÜr¢ZØÓMêü¢žnzs•3>—§•W»¡@^WÖi ¹¿ "YNpq¯6åÏ&7нÚrB[ºc|ž¬'­¯*ÃoIì×Bt“—,hR.›™'äì¹Í°-"ò~|:}†`™;w¯¿ŽFmUÞäLÒéàâ&u¸™š+ÌXÚÑyji)–ÑŽ_}JœnËŠÏ})å Žz‡]ʽÀŽHr­[V+d0ãù¨¡ÉàÃ`¤•˳&Cåþ0kÖͲ¼úϱ†ëT(¨öêë|܆Î`Ü0%•ptÉ« óÃ`¥YÃd¢ºl`œ“«ñgÇÉQ퉼+À!ÔZê‚y¸jÖ£ðŽW¯³È UÎ^¢4µtxOæÚFˆ )„¤ãÐA‹-é·“ó”Áª¬ Iã_­ó0êÍw‰œÏÒ’9JXxÞ»t‰„ªŠ°UxzEZÍ™Ï$ g±`: E±%-î_©}ÂõfuTáT¦\ÍU[C ~£Iä»ZÒ¤'ôüŠ…éK5Ù…ôMÏ©saN]~'ZÞêÎYŠ ÖqýNçy&yþ›'wqÝŒym&yŽ›v­‹ølw×Lîùä®>›‹ºkÊóì㥋?vÂ9ß!îñÝBÏíØÄ&k]Û8ò¾À\à|tp æ>j4ñl¯Ï">uQ‡ÏäÎ>Ÿwt÷\ÔÓSŸµ‹Åƒö ò"xAÿÎ;ºv.èÕyïݶ¸.ó×exr&wtæ¼³çü~rR½ñâf –­5´Bž›± ÔùN›WMcÈó6]/My‹2¯f ÚôÞùOÑ'òLÑB¹ðPsÔ—ô‹,BL¤xÑšãZb&Azˆr¹…¡¡½5žÛí pÜÍïJªAÏ2÷™;Ò‰ ‡@MõA…ƒêó²1±S¥ž+Yèp—M{š"›Äˆ?¯BÏ˶àTˆ µ‡`¯@Ÿ^Lå¬B)L“‘üt2óÜcÐ4Íð¸?ý:q {>=cõj4ÅãÖÀ ÞÂc1ä©,Ø8ÇùÁ¦ÿšÌJ#<öO‡ýëó«’ò:1¤7»‘üôJ¡û~2×Õó¬ =U·Jæ<àà'àþ„²TîûÀõ ?Œ×ôqíü ƒcŒÒ/26tÿÃ$íÏèžô.#À;ŒkH†1ćKè,å©ä›?¬SìäÜÒ^ýqGvÓÒ¢ÜÙ|žì¨‘•âhfXçý´?‘ת‹Ž® }Õ/ºœ3zÐOúÓ:ã‚­ui(P&ˆ‰zò˜·¬Òûÿùjõÿ· ›È_Ñ_eÚvä±Û Tu3@{tÄç ¡µ½÷.’ÒYò½ +M Öíq¡©Ø“ÆŸ9ò•i ñ¦ƒ,ˆ&E[*«Xtz{M2î=°m_h¬ muÃ&¢ã€<€’·âT@'úÓ'ÔÑËÛ Á¤M”¶÷/³I_êAý[‰ nÜ‹½9¢ìͳAG4ÍywiÉj‘]:¸§ߣMêslÒÎ %˜t“.8ˆöYÖkçW†…ðþ_pçW'ÀÀþ¯ãÁ_FO=Á®p•ó¯úÞYÀã“’€¨m–9þHÙgØ Ef §]}Í’ /ß¶{;Ä ›È »Ãþ¥Jªôºp*b/ËÙ,½¾¡9¸ð-ùæ.C? [½e¬Ö.Òc#± %®J‚‡¼†Ó4&¬’’l¸}î28O¯?ŽqÔò°Uéèr‹Å¡M „¢¥8´IÏD+ü¤Œ[õ”.O½£´GVk€z¨(Š­X ŒíoÉ1®ˆO{Z¢ øÏ¼Qj³rÈ+ÜkÐ1sÊÅp•Š6#ä¬A(|(í=·Ç?dûIöfž Àžlƒ1'É€=‰%S´Mº3$û¼÷aJöL¬Žáë#ü9i\ " ZÛ¦·¾ý‚Gw3l+jT–_~B>ûùF S “Ó;£…î¤n½ÜóÙSmêŒ4‡×W·¥{Ô]«PʾGÙ«Öesm_B³3 kÊ õCx¨ݱú …P¨!î©Ðt¹ÎX7íئk0z^4ûåÞGÕÙWÚ5æÔñ¤Ïþ’þ­~È*Kg-yþ²‡ÌU g'ûj7Þ ½M~³ ÃÕƒËðßù‘‡émæ2ŽCÌo±ì¶;̓?;ÝC2嵫⋗‡Çò‹ýŒS aˆ/"ëAi‰ïãTŒ Ûoþ|Õ=z{ò»*ì±Ótì®×|Ôcs²ÿ²Š£Æ(X•h>¼¸eõ¾xbôþ|šMÈ xùY51[úsFKÍAW¹clé×§íZƒcÁñÉýžW“½86›ï€WÚ¯:§‡Õ¤wØÆ¨Êô]ƒõàQ ÑY!¨¡›ý˜Ðöþ‘‰¢Ý5ãVgÇ¥ÖÄ2ZZ8Ì´/ ã×òâKǧ[¨>h¾îý!QÓß½— ±:TzÐÔÕæ+Øáh|jInÎàÓÄwÞ ;úfŽ|Ê#{ýË4Á3œCõ{Ìið ºÇ’»D«t Ûõ£îº¨Ô …k@õ—´àËõÝæAoGM-üî¿#ú "v=úÃèegÛˆú*Î|ö ᮬLNXo|åó䔿Cߪo†”x´Ä€ßøcr:à€ÝÌ„†¦.¡ È›X€¶Ñª„˜Ïø¢ väþpð¿ì'/Lϵ€KЏùÊ•Nè3VénG³ÁЧžvœ§ÏøÂ\6KŠI®B’‹hÖîÊô_=x¯é?+¹?‘¹Jx+ÅÕCëÒY@ž¼XÅ¿c{WÑ ÄþÆ}C”‘°pž4ß…Â9oáeÖ+61Mþ-É=®/—°áš>¨ØÕ›PüÀöpÒîœîXÅqT‘:ÚÏI­ ô̘ú†õÄ`ºW!íGXÑ@Þ®Iô–AœŠê-Ýé =6E­§ŠwèèîßÙ±ßÅ bÞ;ƒÒJø÷¡­â½¹s|÷Þý*¬í͵í8Ó — ©Ëò$ngý¥äG ï)ýŽ@Ú”¤7Éð­5Í ÇlŠÕDÇÝû£@Sx·ù6ëŽN)7´GŽy#¥öš’l1êl%•S…§¥ø¯ºXTi‰â¡ùCÓwq÷ŸT87f@[Vð}¯Ïð9&f0’Œ,éIóž}͉„òÇ`ݤÀ¤?úXC[Åù ›A“»h/’R××í•e3Jj|9œ«1/>wø]î^0AÎqCMt3ÜÁ$ÞCîIÂê[fÞ3aj€×„´wÎ0˜s¼“=òmžxÚñÈÙœ7 Û¤b‡Èž/6‹XeÛvø.¬ê™r6±­3ßÎþ™•G`•H`é?þÿ좱Üðÿ9ñÿëÏê›Ï8þÿ³úÖÆ“ÆÿßÜzºŠÿÿ^Nvüÿ“íF@›³SMNš§¶|ÐñßÃáñÖ8ü½pÀwi3£Ö?5 ÷s…t/Å=d‚‹†VÏ‹•¾-"—0”¥@hq#®¸uAÁ»ÆžêpànÐ1 詾…dÈ$Bø¡ÂÃn:™]9šÊtp=€ñCïÔ(YSu‡ó¢fÒËa*¢Û‹ÁóÖtÆ8ž©o­¡³\dæGWä:] #9°XŽ3{謹)6Šá¡s8%8ŠŒ Ø€åm, ±•ä>'ù‘<â‘·‘\¿±²[¥šÅŒéPs`m Û¥"šF\´c§h;ju¯%ãËËÚâ­Ù1ZCÁÏlq ¯Õ)‘¸)Eã/nü”õ(èJ´:È'À\ò‰5 Ì2r, §kÏÍ×¾PÂvÑ ‡Ÿ-½ÅÔ^»¦ZIŒ¡âåÆh¬ˆLBBz ”žŠÔï¥ô[§ÿý^ ù÷R]±:3üŽS|Õ×!ßTùßyòÛI-™õoA%û„ÿ=âç"8|?ÐÚ!Í&KœOÆ÷"…-Ÿ›žÄïrEõ_á·úóAƒð±R¥ÃÀ§É/³ цM‘z«ÖS †ì’Gµ^æÑ”‹£ü­GFÆÓµºÕÁZ<4ª´¸á),o‚¿ÇÆô„v"3!^šŠîa°àh+bsµìÐF‹MZ´57#üU-‰ó< ,¹£]KIr?RøïSþÛ„ÿ¶'GšxÉù”ü(*1 iâQ±)XTB>Õ=*>ƒJ˜vÓ ¦ ¨Ä)`7•²Éwì~ƒð¼:YúKt›ƧÒá’ÖJAnÜz!CÐý®9ëÅ`uGªÀÖýÞêî¾"¬Ñá†5$iN ט¬í£“x % _ò[ò0(~' €‰¤h–õ¤Bžh”¦„¦ð›fvu«ÈÁ\`—ŠY™O¢°(æ}Óœ—ß'Ûâwßb'¾œ”‘¢`‡nZ©}¥Š ëžJ™üõK<Ðþ½c—¬_†¥ˆOÚÃTdäÑídØ"3;°±ÃxQ6yçó¥›…ܸb`PÀ¤.£Ñà ýÈRKŠ\•Ãú…i¨¢iþm¯Õ)"ͨø£ÎbÃxÀû «þª wÛY¢’8Á&JÅî3|š77ïÜ= ANyü†)"°UÔ]úIbV.€%qy7˜|Iž¿פÁ#U·š/R— W"/ÎßÈ•Õæ!1îËœ£MCs”ÿ¡³rݾ wÚûÛû™åqÚË-/}yTù„^ÒŸƒ2—î:l`Å_I4—f7ÔG%q_Qº3Wð¶à‡Hëy*ùdiÚmY¦ûò,• àÎP4‘&ö¹ }FÖþü~ù,•ßȤtƤÔhÇ·'+kFÐËaÌõöBpð> žàU&ý*ׇù™Ûy Ñ® _1ìËG|mËçÜ3M‰PVaqdšÃâ¨ÁâˆDw-¹Q$Y‚¨S¢ˆÆLˆ"šµ×´Çˆ¯ës™'­íû’Vtv­ò 6ÌO¢wX_Õéëù¨æÉö$$³hh…Ô2™’%XÖʰæC 7Å¿'ÆdJª%fËb=ÈrÌqJÌYÍéâ7”uÔj%íb.6«Š bâO³kqñgªù‚¯|I©CËßUôøÏ(H”ÆFãGúð—‹ÿØ|ödcÓÇ<[á?âÃKÕÁì†ðŒ¸[A?B…Haž›ì¼ö:d ÈnCb§ãË dÈ­ÌA‰åZ·£ó«Ú~ÿöòº? ¤§‡ÂWc#Ç4¥ Æ|TÄgè|T–¥üŽ©„ƒy„¡FáuMû>Ž RV ™#ö²"Å…Ó‡?~€" ‚8øÄ®Î¸EUkŒá9GGdˆ!@.&[ǘ;k­F‹Ý.5[½æþ~5yyt€N³eô´LtøöÙW§h)³l™èzí^§Ù)ñ[eËæ·Q¯ÁÿÁžµúS†Dp®ªsNV¹·ºÖ稆­qŠ‚U¿&I/|¢DϬu$Þ{œÎ³6 ý*úÁxl§7³õª}F¿÷Gã/ŸmáQ.WóÚV Yƈ©†AG#CßSåa ¾?.Ê•SüŽ ëIå„Ä)üGh„óÊœzj8F‹›&ø~ Ș¬°2Òs86`ü<2²bT2ê4>goh/©ãæØ0ôî~d]ú¶„°„Un\î˜ [$kdþ¨)C.eJM!¹!§ª¨q¦p_ª*N‡]º´¡ÜmA ºÊÚ)‚Ü(à4ö[ðvV:¢=ÚøË'üMkˆôøX“Ó}Êû½G†·¶ùž+Ô[êU|kTûèɬ ÈÇ‚“¦|É@}‘ `˜Ö&ÉU‰Z²ÀFWƒ½ƒóp jä–5@ ×êtyÀ„n)§Ò†Øe£(±‘qÌ´—Á-ƒz¹r€ÿèeûëà kXë`0²ÖA]¬ƒÑ÷¿ìuàéõ·8š‚`ð5yœ=®ù^t|JŒ…Œ^›®ÕCk¡ÎkA½±ðrøHJÁåàßòÅèg)à &éUŠ·u¬¿}cÖÒ¢›hï´_ý~RMz;oNú$HŸ^Ä\¢.u<“•øºå!»ªI›0H{ðúTTköá¿ÞÉÎq†YOh@â’‹!`À:rai»¿5à·nÖ•Q÷è-„áz»ÿÖñßãz ã‹ ½ªBË…n×9QÌ¿¦Èe´®x˜.h0âÛÞ6æ–r›[óSe€Yïu7V[aõ‚˜%!ˆÙîܳ¶Š‰%î­Ñ:s;¥,‰çWã1Å æ˜ Â¾¯êi‘wÝ ]Ãù/IÉR¦8;$v AÑvÅQ4E§¡©4sì8>Mß—æk4@ ÇãΕR•š8Ò!¤Ca·MýCSá Ù¼FÞGÄþé€[ŒªaKÛ‡Ó;L0¡Å©l€dy¡žØ3^%'GÉ3#‰CÌfÛ*Å…gÝ€Þœì.º­I(ûv‘•&sbe˜¶êéæ°øÅ;ìV¯„w,(µ)Ì“9x6 ¬qša-ƒÍã®ðÂÚŠ."Ÿìó†.N¼xw@¾q"§„0y¸CûІ6[‰ÃT±L…k D¶‚‰JuoyÛÚ·#`yÑ¡T1;Ü–sÍŸ,ç`¯kã%“sZPacî'~ç9…Â# òtÁfa_â¨r·P!¢ö­2ûÇöWÞ Qnýú«uÙ×2i46Ù¸JrHð¬Á©>ÈÃmKâ#Ëø³g°)3[>§º44ãRè)æ\Ö/òùÕhÊ fÏ5ƒ=™žb<ü׸8TD.»îñ({¯ÓDóèj±Û&…%ô²¡‡Á—fƒ¨¤T¹dëöTŸ8žKÀ_/ºÝa^ª”äz,ëŽ,þ,ÊbIËc¯·g@öQ·Wµ.Ú6£a¾”ßg8×P)Ô¶ÖC­ž,Ð.q  [Æ{Ë2[–èM±a™ÀWv´…í'5Ai-©{Òjÿõ¬ýýèµ3‚g:!.À—žø™ÞžÉ+=´ÙTùVÄ햀̾Ží26­} Ä?3qТü~M‘Ø?^s¨Ð ì˜dLü씄ÅÏ CÛè çÆêJó‘xñ˜›zQ'˜Emê~Ë&#²mc)ÿ ;+u%ˆ#LÄ/s,) Ðh]€FIGÆPú·L7·´Â‘ªV‘)ýQÂßb“+õÇô=þÀ—vë‰ “¬ôÓÈ‚ø£+~ĵ®£J|V/ÛCp‡¦/ ÊDUðCp›[I(Ö¨W[@E7çY^ãpË ÷‰”pøpàiâËtR;åo¨¸@\ ÐìMRãJ¾§¯5{xW…Ø¥á±KƒØ¥‘Ã.¡žTœ/¶!YÚ™Ê`ô©„„õ$ÀoêÄÑЫԫmS¹òh»a½S«Ó¡y»îmsD¯.Þe©{ïD-†–©@ˆ´×Om<´‚½8J69\0nž é÷å¿4©Á‹@ªÂU£Ê'ºU¿‡Ô>YZ—m4*êýšA%VV»ƒìe¶0‘1{À¯‰ß¡¾ 4¤–µ:¤¨aì;jl¸o# ›4öä.óÖÓ.­wjuñ×´i×dX&œâA}(æ×Xn,î.2/ ñÆÄ;Œ{›˜Y19¹ÃûÇF¼¤ñbÍ|S?#b=õ;²-®b…-ü)E^"„+X+a;r-@JqÔ_³áÓ»V¿ ƒ_º­°‡Sƒ–¸RS­:¥SœÇ Eü³•mÐú ÁÊy-•Aë^ Z4´QƒÖ¾a5èÔöY•_[™µÌ‘Z™µ¾•Y åeÝàP2!íW-Î[²I+¶^¬v9æ¶Žmn[[™·Væ-§]k?”ykMPªÝ¿yk6½0Ǿõ‘ !7bÑ _ài¿‚íí8j¼Z+l;®íËÛŸýý lÿoe[Ë´‚­}#+˜d›ïÁ vg;ˆ›Ábfs ‰›Lc™€Jqô¸õ#1 ªù¹³ìe%6˜E-f‰4'äXÍ’€áŒ´ÍÁol3så\g;lûäƒçmgÛvÂ4µQ»ÍŠîÃÖWóØà²¦¾gÙ$Çô% kÉ.oòAßnâÏ”TJh·Â¸ÖÃGAR‹ ¸ãZØÆ·F6¾#UH`9$hÞªç #mÖRÌæ¨FÈ‚£ÍeÊ|o.µñDЊ˜ÀžJØšÀÂö¾Dš°uÛü¥MXk&,D¢éÒÚ¶æÏ"uC+Ÿ(Xh_àÏòÍ_klþ:¦‰x7EÚ=‡lMÀŽÅD=˜ÀœâñmÊýûÇ2­2µGK0­…Í_[†ùËPKŸmøÓq±û7Šqˆÿ0¹xÐøÆf£îÆØÚ|²Šÿð!;ìøÝíìüœ%èÀOô·Ž!úû 9A2TSlżyCºÛÅò†ØÈIĈW>ò¤ðºR9¹Ÿ "¡HâbBÇ6øÕ)áÅ-ðJˆþ-£tð€Ðù;E1=ú!¢ØºÊö±Êö±ÊöAôWÙ>þ6Ù>(S(6ç3€ÃEš·ÝqºZÒ®ÊÞ®'…¤ô§bå³=ð¹¥úø“pYE“Ì+Z’ü¦%B’ÈoèÙhÜÅ4µXçí5úé’ƒ±ÔëJ§%}Š;-a’µ–£h1{ÿ %ã9l~L ݺ„+t?Qcšüë6…éAoßéô¨‹_ÅÍ?iÝVE#ز`šÏo‡}2LVŽõÊnSebrÄÐÚrê¢;ÔDæÐ áEjIˆŠ½Ñ˜“¤Z‚´ý>^ؤCÊMZ'w”bnMoÙ±™½Ä¾2ÿ˜+>Ç*Ì*Ì*Ì*ŒGe•?æÞä„,pbøfœâá^Ÿîtÿ¨ #À¤öÛÀ›õƒmi@Û?:†ÑU!nîé´ÛŠù] ½óûÕ4OºÛ"qÌ~UDl^¢o=¢E2Ú9šÐ 4w:oâ”Q øµPk< ³ y3°Šºóz½¦/z\çU–zEîâfë¹Û1*¿èK äÀ ½ËiÄ5¢Z^þ .Ü’‰¨7Ø ú¨ª ÛäOCÿ™Wœ¼(Váõ×luåû+~%§ñ# P“r" ¨Aç2ò˜#ìr=¯:1ê5TEÞöŒ’TQ‹y™Eà¯öDÏðg<÷Àá| 'KÈ!‚òÂ#¡÷||a}JÃþT‚ PÇ~î‚7º²Jc,Ûì£0“xŽ“|´™ËGæ$Rßeàkt7afôÑKX8[o?\Q„ ³¥VC‘c·ÅAѹ¸¥áç‡+‹¦©%‹/Æ ñL6C7}ªO‘ÖsÔŒEéRïé¨ÌçGÐpPùn—ò§ÀbÅ«ãÉyÊ”/] ö\áìMÓ…©f–sÇ$€¦Ï—Õ¾@ØÐ.kHŒÆØmæh¢ Z˃?Þ½¾{­î–± ØoSëᕹxR-ÃðñRàgêÏ?~¤C‚±šì`Ù<ÜšB|v ”tjwk–ðƒ†—-ÕîQX¯ _búYƒWmN=øžÁóÁÚè¬F~&ÞYƒñ—QÅò-øÐ€Ÿ¦BÈh@à툹öBû-"údêp¤L»c\®¶iHÿS·¬Ök\+kÞÅ£†ši;pȹu@áúØ·§oRÕ/yÒ}nÀ¸ÞTÞbæ”·•7.JO'MÙW Kg¬C¶ÃBjËÞZy£2o;iP„º,–/— ò^Žo¾Ú·†Ý½;ÁsɈ®×õ:½¹ít’³Ê!´Š­¬!oºØå„ñ?Ø×=™Åe/$2€®i^Æ7ê#d¢ƒQß§ÓiêJGºÈÕ‰©pD{%=´·œ58(Gãýà¥ÛRRî” kËÊ„Õy‡Lñ·XÑ%ï¡-sñÈ…]ÊátGÈd÷ù—ø`mpFù°ð‡\ä‰þè>9Œè5s¥Ç;MéŽHÅRÅj'Rà¯ô¢/Bf ÷’LÙpvo’a³ dX³$CQ¹°’ qŸÈåËÁÜ.co ®ÍfpÍÝŽ±Õ”è1+ŽÆëê™øáÑxÿ áÿ.ÿWÏ\üß*ÿÓÃ|xá¸ø¿Ýhþ§ô/y¨œPÕÅ ~»™J¦e@íK‹ì:úªMÅ´GL E ¾1o.î#T8[T0UÒX$]Լɢ6—œ,j‰\A"(Hdï“•¯e•Øi•ØI|V‰üÄN?ün˜Ž>À~ ,ê îêë ³;ÃËXcgȆÛWƒ¢µ"iÙøWx»ïo§©üæP ½a@PØòƒ-+AØÒ2„ÝOаU6©U6)“Ú*›Ô*›Ô*›Ô*›Ô’A™ËGK:PIø+ˆ–d¸Æ4œžÙûc·*‚ <,óáó­!*ÏôÖ2ù@ÈÝï¹{O@H9 ð’síærñ‰zÒbÀºª.1>ÅQi²Åôr£êCÓ¢sh…HÃÅl|¦—Ç+f£tþQWö]dÈÚW†}eÝÒÝT( 3òÜÈŠËá_M"tÞÐñ‹ÑŠ Ý‚_öÉŽ¨nÔ½›ô‡IÈe¶Q/c°ãVÚ©§FÑ>ž¦òQøEãÍÊ4Mü@(v®A@"‚‘áTð"ÞÂ÷[‘«Åíè[Û•PhaðÃ¥×iÙßÊ6a£Õvk½f0›ØÁxý M2 ðxduÈD@&q¾ #ãÝ´¹“ªw–QÔ œh7^°ØYè¹½e,'¶¸!ö~ŒÀâ÷.:5Œo•/ Œ¨û÷Ë<$ vÖ;µ9¤œ>"ÞnQi€ÅŸò¥š!d¨úÚA²‡˜C¹xQ¾$ï‚èwÙóM--íqbª<›ñ帤`tž¼l„#Ñmm¸QÄíþ£($.„ÿ9¢@9ªú|çcg2#’Í•ÈCJ,(ÂI@í¿šò1µ@Ã6˜ùøÉ\çãÛáqÉYª–ë·ñQ5Ó;åFúà·q–ø#ç O?˜~ˆ=ÚòÑš´¿Œ'Fúw»ŠQWNv—{©¨»·}¤,öÑ+-z)£%…/´^ÿQåŒ&t­uøf‰·ZÍV¯ú]mý¸wW®é®{›vþ½ÍbRhã„sÜ}y•BX;œÛÉ5’²nýEn,\}´Éþ‡ô9E¼Â³Í¶ˆ?1žÍàÚì?;‹î„r{j3[B˜[š%qøD.:?˜€_çVAsƒÙ/Wö zCé ©{ëNǪcu7cÃ’;ÕvÊbS¹8‹LëKÞºp_+5Ë¢§ñÃÎ#K]f^K¼ººI9¬°ä™˜Ð€I¢›!LǶªˆéØ¢3·íXÙ0-“mP­'_îí¼ÒFb覺CgKñ³ý¸½<­2ãŽV I}q «žó\$Ò®‹[–Èol'ÚŽ‘öàÃ7v®n#P*ÍÚHf桌ÌÛÎðèßk´e‹f«ª4¥¬ú¼ôÞ~öU¿å›ÕÀ.mQ. ¤`F¾Ó@&šæ~bçÖ9q‡õ¸/é·bïlÃó“ ´d¿‚4‰y¬9A‚áØá¾ /_Ñ/Ô¸aÉÍ<Îó2![1ÿ2˜ß› ó¯œ4CF+ìÁqDƒèúc/ <øèGêñ±õwn¦Œi W™!ŠŒÌ“~‚IJ]IâCg%r"s‰ì’áý,;³¤“X2àSèÄÜA¨&ýë&Ãrò=Æ'˜.Ò*[S¥E†I'Sä±™ÃΤ‚gNs1ÅåZ$¤“°æãBI íF¬Z“ÇoëW½Ei©o2HmÒqÐ »!h9{bq½“1ß«ÞIödnøR@ïŒâ—žþÝõÎŒtϦø¤FŸKüs²K^ËÉ_©Ån–¤¦]"7'eöVLÍ0e¼¢õÃk¢.Â214Q”Áûµ°¢iê™ùšhH1MT7"CÕêjìqm^MTxá®–Ã}-onÌ¿ é¦ÁáT×ò²I›Ÿ®Úêëò'¬–¥ÌZkÅú» 2™Ùp¥?„:Ì“n%I¯‘Cþëê³™YÒ³R¤Ëî¦G¯ÕÃÜ|l2Í÷¯ð†bCú ý8ãÍcýê o-¬ð>!…÷i†A6?aj·]¶ú<ì'„ÿ›>,þokkkÃÃÿ=ÝXáÿâëÒÅÿõ ü_§û{ÏE’[fë?H½ƒñÀÀV‰kŸØã€S+¢ìë) Ž ,‘4+^¼ÅžåŒD ±àpùAF …Q‚+ˆ *úm!‚ÈÅhi÷˜ÉàÃÕŒ¢½'ÓÁÆÒãHA'“ŒÝÖº¨; Wœ§x²@0Çie!tâ.>®eMU>²´UÅÉΗ:l¥Ù$ˆ%«%°˜Ãâš”Ö&¥µÎ”“ò­C"}cÈxxßiµrÐu"(D.²î°ÎÿÂ-ú¿ØÞé.^Ð-:÷jÁrð£‹È9h…ÂÑ}»°’ÒŒCY”]dÓ-2–î‰_¶U´ìÏöyZÚ\8¼Þ}âðÖºë<‚QXž.ƒaõ(™P9¥7nuµË©±©>edâBk}g•[NЀåÝšÍïô?Ï­ÙæýÝš9Ã}ùr¿ìšôÉ>©jYÙ6™i¤cf‹Ì^Ât×â¿õÞUÜ!+x_QWÁ[ÖSh ¿…Hv  CÒ‹ (¨FÖ…^Óí$7ı0sƒÍL6ÒétÂíµü´¨P¡®9n]ù—Vbdá‡YçJÓm¥ë™,L‚K¸fsÉ Öá¥Z.3ÕܑĨ©VÿÖ åÜesVã>8kÎÚÔÅ9~±Êä°Þ/“&gÞÏx·¯‡õÄ¿¥b΋Π¬ÿ )‰t-zX¯4qhåW¼A8è=‚Fs;øÜ9t{‘šèMñ^ö[! ›Õܯ`µ÷ÕÚ@³t¦µ_£–Ye¡œ2ê#…@æÝ”Šþ‘dA“;éµ›?ZÂfþm ×ñl;Ë€^?¹¯ÍÜ“iî—ÄÝG'FZ(oÏ”6ä8ͺHúæmY?ŠÒbÕ+àewÞZCÓºV·&V„ Ÿ¿2QÅßxŽïTs´:a«ê^ËÚÇ"vG]æþx¬€äÞ"ÉíûD!‡1£'¸~Ñ<Á,å÷m„þÓ{ú?¯Np¶;0÷¦ƒ¥îM&ò,ÜÒŠ ÒãhÅÄDw1*^´Zœ-P¾ƒCÞv"Ÿ×Ö–rÈ[+|È[»Ó!o<—·ijæ«e»àH Øö× sa#ÊÅk–»eF…áÉȨÝu–,ñ¼¸–}^Œ›…µØ‘²ÐyñYÑób±ÓâZΩÒ9û;-®Õ‹œŸ8/Ò:ž’Öñs‘óâÁ2Î‹ßÆøû˽ëu`¸™:L¨Õ |.ðÓ°Ò>–7À¸g8É:-L˜ÈŽêµ增ˆs#;ýJ_вU䫦œ´ é‰tû#ÕFJYEQxvÉÐf,Xbwn‘·ªhG8ò¢®KÂdiþðtç¬Óo–a`Íš CÌÂL#_!Á…0ÓbØüáŸø'! uã_·Púž;˜çú#$÷è¡Ï\Ÿ‹Šnã#É“©›3 6Í®ß3ˆÄ¦7]Ô·¨Wm±J;ŠÔh<ªQÚ´x½F íïソ]ˆ–^rÓ[4y@˜â´MoÏŒ¿½p¤±å¹N•›pï–Ý”8Ü»À{ÇúŽPÐǧ¡8ÿãÅZ•^ÿ»Nuü…h\qdµ³ ÛË€Ê9/øî‚©/ÇChéÔZ ;-ÈUlÍÚ öWõ/öõà/˜H‚AÈÕ>^”ÿùbðÏý!tÀ„b1ƒÐ_Tüz0*ª­9 aݾd&7¢âªÃ!쪼pDÙIêµÐã(?'©L‘Kä@´hÜ|«æáæ£Ý$öþöš¤ÎbÔh#c¹´‹í7æJªš$ á­ÅöãRXfK‘=GPÙÍŠ ++“'…²ýV õo¶stÚiŸÐI½ÃúF²TAܬÛ*õX@#{ê_³·ÃÿÖãÝn¶;o:P_“ÕJ¼ Âø­‡Søó~í©ˆ9ša¯ùf§”lGgÉÙáqó]¼§ Œ¾ü½Š?;'2FFVF"Wu‹eôbŽ,pP Š'¶×í½<¸‡°¶US†}ëà¶Ì×hØŽB8ªs„ E˜ÿ@»SExIh¢|ü-)Ña”k€ ïûºí¹|îìmàyÑ#Ÿ¤èÚiIÏ» ÇÁË,¹¿] à‚Ð$Ü&‹¦žÔÓRØù€Nv÷ØÍó(ö^ëª-+ù£,`l,!á;–Øþ%ìûp渾½†y¬àâ+%–ÿ†j½Œ}33Î’lw\FM7‰h®$Q! ©fµ#O· õ†_qÔ˜äo¬]ëq£¯ñ ˆãìz·@;ò„ë¶ß¸gµ-ó¼ÍØC˜ÈmŒÏ>kí–¤¼ØðiC Dp ½ãÛ|­W¤ Æ@Nt¾1×%\6Ztø[˜¥ø‡ÜFyÏ¥]Ï‹°ÂëÁ|–¼{Kü›•¦gi7~ÒRžø:c¾gW Ú˜ÔîHÎa2‘56W)UǤQ£ÈR¸A õãQÑŽœäô[šÙ“ÅzáÇÞÑÜûÇ£Œû¯úcª×ÛÅ&Óqò4_: ÷11ÞL_ÂI/t›E…‘q(ZW8á^p³Â¢ø4²è! ˆû eÝpdVÅ ÿ©TEH<Ú³ùQ4wb$) N(j<ÔRcø …;2ÑâÖK¨‰(”-N(ãçݼ«s^Ó8ò^Ê-¡$1S4²ª b¤á¥f‹Ü"цøƒÜ"ù÷?“ˇÿ²‰×>ÞýOýÉêþç!>Ì£öýOwW ë“n³ÓsÔFm'YÒšîwßá›ðÏîN· ¯Ó¿Ö#,†{¾Ë!cà%¨™ÿ6ȈQÃLÅ3øbW½£o’€QJܹ®•€[Ø>a\’$LÆ“äl|;ºà¨g Ý>÷'≾ºÔW*¨Lwf´%Ç1;ó½Nzy98 mL‹‘·M^Њäs¨9•(ÔÆI £ö ­}| ,†w3Há:u ^†§<#p ¼iá²®ÆábœR¾1ø%À›ÐîOÔÅ fý#CPbEé2çý\ã(ò¶kÚòö,÷f†VK~¥úÆ‹½Ç=ÕjŽÝK+q§SI8NRR2Õð²óò ½ŒQôû'±—_Š—7^†Þ_·èd&‹aH?ƒÄêFjÙ7Rß&Ò9°c‹$Ô»PP¤Õ-Ùê–ìnÉìNó…n:ÉØÄ¿ß(LïŠ6ÿ]¸ùñèQï–ÐîwëLÉo7j;D?'dV°ÑRe! Š¡Ê’C|›öϯtß>¥É̤ò® ^Š,DoL<®wÒ=ÝÑPß[£Ìùx2Iakb˜üb-é ­¹2J÷ãØxn/ÔiDÖ(bÒ+ %K‰úUãö•aQ¼.#.1“ˆ kCZëö€S›Î2Ð]Kßæ–u{ Ðp”S á,9ƒŸñŠ ´Ê!.k7€ckÞ Ñ5u®Ö]8µËñ:øy0EÓÉÔAW%FíÇd “ ó’` ½ËM¯áP„¨h ñ`dKº¯jˆI0©§ì»î„ è"[|éŸÏTV7ç{sžwiî^“G =\œ¸ÎêþUuëžsÛN™J!tâ­ÊÐrdþï¼÷qçÎ罓îÞüÂÿ›»;uþÑ dÈ~·ÿ—î…¯«›ï(«HÅ*/¯OZ^î¤Õ»”¬ðO»³\È@ïºÌf˯…Zóðé̺ú aòákqùÊçK©'n¹©…>IÙÔ¤i­²Ý(”u'ÊÅpçͺ_±/ê%%WÈò'@·{j•ò<Ìj[`ÜŠÈe©·Ã¾I¾8-$ý³i© ¿–ɱÿ¢Q.Wð×we`7ü¥Bß·Z“‚ß+S»Uð O )ë϶µQÓfŠÌûu:Ê*u\QSþÜéh üÛÇ—Ñâ :¾¦G–‘TñÈçƒylÂñ)ûFIX¤h’‡£Í…uŸŽ°Àt¯‰ÄÛI ë¶@pŠ„Àd·ÙŸØ¢Žê“„DS8¹ÎAÓ›²ÌÁ úêp)×F[zøîæÖGÝq»©>ïöeGß© ôA‘ÛäQ“ûÝ~ dpý~¸€3œú÷µðÊs>œ!=YaC_k×Dh‰råÕ·¹á0·’­è#óãÁ¤TWŸ.wäžDFÎö,w>÷8zO2G/Ö”}£)øûZÂÔžm½š€‚¼ýórgèÏÐ>³HÚï¯á$Í;;zäÃþ,sؾ+Ó¢£ö2Çä1&Ñè^Çå—e²£pWÏ%bG7³—Ô³äø£‡äõFÞÌöBz·E¢>¯ô&•Õœ9W–dJ"ÉeÆöY¯/ižñèQoÜy¹än½yVK=¶=f ùåröÎè2¹èFºTÑ^ÏÝ}ó¹ýɼòÜ›kB½¬M”ºèçæÜ q>n~¶ˆðŸ³·Dÿ“9ˆEwÐ’ßùÛg8£_"Çäsµ÷¡ÛŸÏÃ<ß“2ƒ0€ †ÜYk“=é±±‹`äÄJrk|в!¹b´Z½A ׉ØoL[eEhÑÕdöY—ü=ßé+ÈÇâ›r²>L×ùÚ÷…ó:í¼˜çÓpÙޯűY¤ó¾²sÜ«ŽÎkòà\6ªôÎÏ&]zGŸ¥c­ö±ø½ä-–D _z`Ýü-xtOì‹ëDÝ@Zmé¼×‰˜¿Èì…÷¾ÕËàŽãºîŸ_!Î4e3—9'A{OÑšœ Øü#2˜rðZ´È ´["& ]2Ãn"̆u †w c-p«³±¾ªöÂbÄŒ'ö¤WìRz[ölgoaåÌÇ´žucrɳ…ØrI5M½—+œæ¦ˆr§5,‚QkŒáËԘϗIy¼X†=«VFîwÞNÅ<óTGex ᕤe=‰H³”͸–?Èx1»šMÁ9VŒïqÂLÅ>¸…óŸ‹E T`p°Á›Ëhðf^ƒ“èL,}"¢.Bl¡b3¿ó6"#9¯Å6SHQ%G_¤ltNñäßz1ÌÏi ¶0ÇÜÉÍyìšÿi98¾ådzÿ^N¯—lþͱÿ>{ò¬¡òÔŸl’ý·ñ´±²ÿ>ćW™eÿÝíŠ ¿[MzííjhÑÒºoÿgö¦0¯%Þ§eåÓÊ3ÿø …XÂx˜“Á™Œ ³‹vƒW8¡Ÿ¦úðÕn&oû3ü¦›NÓþäü*yIqt„±™v⟋4"Þ&Ñ=2†NÇ—³Ïx¸Æ5ÖÿÊ8EÔÚ["BYÆnÓ>Ž'ý‹q²" Ã6ƒËv%¶N<—õ[rO;óC![8™§3“—ûÜÕ.^Â#«´‰Ã¯P/¦Éâ/ ÚÆÒOé0ÙL@[ê%ÃÁÇTñ'ê-M´uw“]Êq¶.íé°RiO7·Ò^«Æ~|‡*1¼¹êWÄ>ü®"é¦M¾¬DS§%a>G®ºF6©x2UiƒG i5‘ KØ´ ¼·À‰viÙX­ŒaŽbw„<¥¸æW2ÿs“ñ.°ÜÎg²ŠÝÛáŽÕçùK0”e{,Oôè½£ŠEªÇöaá¶2Mü/ s{7©ù¦çákä[dj .%œaÃrèš Od1eòŽ•” kWtvƒ ˜z Zä÷aÑL ÒQÓKË„óÁ0hÑ;Û’éW¨&²ARN–á£0—®ÇKv¹äKØØ-y:âØz4]Ù)]ŠðÇgAÚ‘“s8ÅpÏ¢Óå/ƒˆ Ø0SÏo‰iW5iêÑ !=ø¡$Öº‚Ã*®žŠ«(0 ÆJ“³Ë¶áÛ©mA–fu1|× l!Ë4*“ E­´&i,F#¢H 0 .sÂefN™GEyO\U$*XŸ²L*!€òÖ¢`Ìbæphƒ¾ä0!Lmã|ø,DÈUqÓ6 óM¯þ'^_lxùqÍ5›¯GF÷Ðá>ãRK\÷´Öá%;±o7{˜öá{´D¯j]gÎÖu¢­“‰M¹ð¢h¡-xfs·”#³…¨üÄš'Þ¶ÛÈJCÂ2y=y‹®«J©°‘Ë8¹¶j>Ñ÷E¬´’Q ¿³>™¦3á¶j¢æìŸ;±ØF'ek+N:h{íTJµzùqcݹR;€«³ô÷ØÙ‹tzÇVË¥ºKBš”éè†Ð¾o¿À…F£§d@iãy§ºñœ²ä~Æ'ü´Ì‘Ý—ýì‚U´W(i–_\ü*_m_Z„ÖÃâPµÁLÌKšŠRRì(VÐ÷KÊoGuiZGë"„”ÄM¢(~Ê\È"„'2=X8@Ʀ)·è&QíFÜÆÎ‰Í@ÆÝ%o¦7¬56eš?˜×+nZ|fée0çfB °‹Sc¬ð&|‡àl7-Qð- yt*Åj_A)ÁbD þD<¥â{Çd²¿Ãd/^ÊXðÎx–ÂB†žòí5ù¡§0:Ãézt銋ۚ¾¹½™¹+6¡ÃN¯}ÔW·Ö½-ee@[_3ãþTlnú“™}… £pµ‰¹d¬×蘯€Õá£â€Ã]IÜ3Ï"ˆœ{!ìÞÞ=ð}G·"4ƒuUL胋ôd¶¯aq÷05 Qiz{g´›ÉøÃ¤ Û7‰¶ϸáðŽc‹g´Í^'å‚Û$°‡>m‰Àl²õçˆÁB@M‘“žÍ®È¥ëH鯖àp×7ÃTœ|1¸ÈSCÑh’H;%y`~øû\¦âåd£žl4’Ídc+Ùx"ÞÜØ´êõ¤ÞHê›I}+©ËÇõ øÞ‘F#il&­¤!ßhl$:|o+K››ÉæV²)_ÚÜH6ëÉf¾÷”ª­­dK¾·µ‘lÕ“­F²µ ߇ô¯'òÕ'É“zò¤‘<ÙLžlÁ÷ØQ¶Ỷ"æj<¼˜â¸8»L‚+ŒåY¥“þïx6Ÿ'°õ4Ê<³SÃ" Fš]MÒÔÔx ""âÎ<´À\6K[ÏŸz™Ž³9é%¯Âí†é²RÝz V]C¬DgÝ+ýjÅûƒ•QÛ;(ñ,Ú>ÙEª?E¦W²ÛšWKßæmÄÿÐ÷æ›ÿ› L÷ÄàOg)¨,%àÙ'{:KB}hõkµ˜ëB}üUĵlùíKÉx³Îµ¸oÊÅd¼ÙÀ%kØùȵ$eÛg‘3gßû4ìãÙóÎÎÍ_·Œ ©èVg0£¨ÒÖ:áîC:㳞§æO#Ì!LŒ: §l<ºð'Œ: 'Œ À)Þ`Îa2a–`øa\YØá mŠ?aøa\aÀžHy<“³ ÓóÌ#'þ " ¤ܲöÔI²·€'š÷c;€~–± XŸðN`}¢»õÉÚ¬Oή`ÿíì ÷(ë·–+ë7‰`}.Yÿy|7IíÄ$}½ZŸOÒ{È•óÀùKóA§@’ÞóAV—ÂÛÔBÂìÞ~ o—ÛMáý D²;°¹®60΀‡²!Ãëvþ& mn ‰qG C+¥­Æº¹t¤úåIÍ{pôv§‹A{éêò°Ý;ÚF/&ùó¨{Ø<V&¸ÅÁÒ$&&pÛyˆa'@Ñ3 Š&ÌÎ@è=hÿ÷ Ê|µsˆy„Oº½Ãåb3ax޶ƒM¼€¦žÓÄŽ´Ûµšâ:K¼Â,B¨K5oHÎ7žo/É èk`!†EP–]‰Âœö‰=ñiŠ.uçnr×£ÐÔùp›Fdá^^háÂàΚԅ»†°¦î*/ˆ =œšU}æ¾ïB³X@ñÀâ€P/Ü Jº|))1´ŒñxK‡ü»¨ÇN饨½Ff_c2< _]q`ÁÒÆöÚ†]…zf¦¼U}bŒæ{zt¼WJÊC°t`M7$pbã3 Æ æåë‡RÐõæ·d>¬}­f¼ö%4žm½UºŸá=Нc|šuv½<¬óF $ÚªF±Ý&0§,g9ÙÓ‚8Ú.!À§ÁÖ`¨ˆC‡–õ@&­4¿.¼öÐîƒõŒޤT8&Èaï@<©Ó“¼b= Å4$•HÌûowø¸gÁð>ƒï xZáú¬-%ŠC“«*ZUïâÇœðØ£,‰'/â&a®JæüŠTgxƒÈ¨­`…¦“ÈÑçäÎì;ô¹‹˜H"ÆÿtTîbÔû2®?Ê¢ÕªvXÕÈÈŒŠQ+quôi˜\)‡wz‡u&˜_¹tH¨ÍV‰Q{r[b:ÂV­†€…í)4‡r¼úC“ŸÂŸåsÂÉœpêpBc^NˆDF Kœ(–`ÄÚa »jÍs²ÄÃõùXÂ[ANðĨø>Æ!óJ¦Ó¸d²ô×剧ÓïO<Á¦6·|:É’O?šxªùTŒV>ÅG"£ ÞžPÅyâûOþ¢˜K@…¾óMM-ÄKÑÔNZS;¹WMÍ• jjõå‰ÂÃzåP'óȪ]×zwyèn sÊú…{—‡óóÃ<òЕsËÃŒ‘ÈhBy8'c,I(ºÄBJ[ý¡µ6WJ=ŒÖf²æòµ¶;‹ªÃFEìQå,7Á‡SÝî(ªpéQxPqµ|õíÎâ*g42šQäŒ9s|â*¼Dî®Çy_X*dÏCcëÒ zl¹½/‹SH“^¨FC3SQÝ¿ã¡y1Å`m>MQ‰^®nßX[ûk•µ š¸¿„Sóþ"ºÀZ=Pÿ¥îÝyá§æ¹y!c$2ZàJÜ»ò„Uõ²NÍsòD`UÜ‚˜'žîICÌâËÓïNF1ÿÌ-¥28Rqú"úá7QûßHFã•¶Ø(Ü…î"¡2v­yøá{OÁñPv½Â¶<Þˎ÷oÙ Õx [PÌ»ö—!‹UWÜfU[¼Å‹ÊËàž1ŸN·ÿÒr~f¹ÃAz1.4õgKËŘƖ™h,嘽È&»ÿà*ß³wù*ߥ\Pì,e›ß×y²± ¥ïnBl¿²ÿMÄXa¥ïÁÄXÆHd´ à1`ÿᔾ;ʧؚ¸C ýË[:”’‡íĤµŽÐÔè(¶³ÃØÎN#P2 Û¹Ævv²±.-ë!b;;9ØÎΰ†_xR§'5xÅWÌÃ4$•E°ØÎîr±]ë’bÉ–`›ø‚³*¼Ä@7°á²+Ï2¶ƒR¥Ã‘Ñh± bíEÄBÖ VtË-‰Ê;æö»ÁÒ·Bò¸ØŸEëç;etÌöÝq{^ëÜ»ÝYŒÂ¼§ŒÐ8d4À䜓GŠa;u›s Ozãç¾âœã^èqë sN|±-õÌQTöe9–/û– AXwwäàβ8xãGaàú|¼$á·T¨Â’öÍøHd4!$þî¾q¹g®cë2¶Åøjºg u–yguŒ=ïÍ>Uáý鑹Ÿo=ðr¨ë¡S¯tT{î[™ H’ù•Éúh“÷Um,‹h“¡ÈhÁ½lÆqö¹9 Å̳#g¬»Ñ)ç0c/_._§¼3w±6¾ƒ“цlÉ÷ÎÆ¸æœa»OåòÞp°ËÙLsF#£÷c™ ³Ñ÷·™f/¾‡Îv— œU¬|/ÀY‡úCÚK 8á°ýÔ”5µáî/º,÷;)MªøšX jÊÃL÷çVQÖîEÇ}0¤md“›y2F"£ÍÀgžùô‚(óæÁ»˜œæažŒõv?úí ¹÷ — ÑX ›¬sÇ£Ú]¹xãááý9yxYp©ˆŽ¥ìž#‘Ñ‚Bp¾Ý3Â:ßÝÞ™¹ÚÊ®z/Èß(ß¿eõÁ¿qX Ìù-WŒàEÉš ¼ÐmDPÔÌê¼wóÞÀñgØø·Ý©ïÆ<Åx>WÉYFþ-4Îû7©>(x)<ì2Ï7>;mX<üXtßûT)ï $¼”í1c$2Zp™ _<ô¾—»Vî4|ì„ÈÝ._r"b2îlÿ£xþo?ÿûl2Xrøìüï›MøÝÉÿ¾_­ò¿?À‡yÆÎÿ~ÒmëXäí›W‚b8¬ý*Ÿû·Ïç¾Xw=ŸâÝ@.N\Ð ë_(1»Aå`gÎKÎÇ×7ÀSòÙ‰òyô©š›"á¶Èõ‰T.í´âƒ)O•à]²¨Ì-8ü0ž fW×™YÆÿa&‡Ï¼YÆEÉ…òŒGËÚY´sÛtФ9G±“§ÚmÄzÓMDm'O.6 "§,§¢Ï¨Õh_0DZHÚëf]4©àÀ'œš×ÌK©yÜ"ÿ0ÓÏê–³y’ÐvN^D3Ð|zÙ?‡yböý=\fðȤs<žÂwŸRXî—賟¿V0´ñ»“¸2š¾¶êç¯Õ9kå±CÓ &°ýH`›|´“ÖšDTþÚ^þZQª½ÍYë´&œ¾ÖJYkͼ™L)?{­‘±Ö¤2_òÚÑÌÌkÒ±s×þš›ŠV3IÄ3ÑΗXÖN¦´`^Y•šPNèz¡²ö1éˆs‹ò2)éuR6ýŒVðàÃóÖðj¨Âs—9@[KI âFlI}RP嚈‰¸7MoÏÏa§¾¼R³ÌçÿÄçƒK•qcÀmÔfWÀD¼?$W}Lã• †Ãô´õSxkeÃþÍ&2ÀƒÍ :(ÓJú¢aø•ó³ØÒãá …P@¹?™ä1Å/0‡¹óþHææ[¨ÜV9\W9\W9\W9\ÅXåp]åp]åp•ß®r¸®r¸®r¸®r¸Ê¡øv9\—§uŽô¬âanbÖådb ¥^#UBÕ@ÕßiUβHYTE2Õ“n;@xî,ªßaÕ¼ü¨’ûô™J#¹Oï)©¨—5'I¨Jyz‡<ŸÀFî’çsp™€<ž€Á4¿ìꞺçÎõd^Ì"ç5¾(Ç÷(vÐã››Ü Cfr£¢E¢ÙÑ‘‰œQêa—dÄ¥ä"½IGƒÑ‡d<âea55Ë(ÅÈ_ä´-³ÈV¤Û*Z‹÷œ3ÐÏQX€¤yÎ{)YDÓÁ‡«oÇö Ç¢…bsÁ‘%óWo,ÈÔõ«CàA9PjœòYqZÀ¡3²x·|ô»»±ã#P¬ì°zv©è6¹|mT¯ß§aù]¿^Laq^wÃ2ä1üËðõ»öõá>"ä`åò{h° y}8Â|Næ\5*–$f¾lÌ#Ž=µü¹ï[ψ쟹á¯Ývjù¹ÙÔòûÿ®Y5çØÔ8rÕŒ"6w|Ú ³ýj~ð&ìÎbž+¯&V8©IÄŠ«Ý¨•Uw}C)ú¸ÐôuA³˜Uh½hߟk÷»W„”}“]Dø­Õ÷æâªÑ¾ã¸œå·ÿ`úþ¾Š[ýÈYˆÖH-²Mܹ™ƒ“j¢8õ#1x’¡÷›… ÿ¸˜â¿ïùÃ?°êï°x~Ò,Éä ²øþÁâ!åßfñý‚,'/,vDóì ÷£úó™¦Ö¾I'¶o [³}ËÜð–î¡‚¨‘}´ô3óx½ö±Bë©ük2¼è¿øX\U3˜jÿÁÏîâáVäÉ<+ ~q%ÍØ!îÐÓ[žœ?×$³?/çkO»ï™÷#XÌ£RLNG)’MÁú#×ù.Wu™9¼ßVŸ€ÿßìæaýÿêOê Ïÿossåÿ÷^5Žÿßɱëÿ‡vßî.üs¼òÿû^üÿ4daG@ñÖý¹K@âŸOŽ“óñÍ Füÿ.'ãëdbÀV/¶Ê~2HCxL•NvËÉlŒ—࣋þäBzÒ¨ÇÇåyœÿŠ9½uw‘m#éÈ•Ýýô»ÚéO½Ž¾‡ßÝœíl_;èžI*âd—(—:<´õØþuÜ3PŠÝ†ÜBM*¦7"SûÀ,DA@¦ç·Sj*Òä0ÃM²Çb,rÜ3{ <Ÿò;P5XX~Ÿúy0E 4~âý€° „ý ½“ø5B±j?Q“&¯W^ÇðX½fú¿¡ä/ @¹+ýU«—+=Ùþ‚¼™þ*Óù¤þσ¾øë×…—B©1ªýUöÈüEdFó:råzr-èÊÅpÖ•÷”øfå=µòžZyO­¼§VÞSKÚVÞSÉÊ{jå=µòžZyO}çÞS¾ä¡ÜžàÇI†¦šìU“ö^Æ{ÇðÎ1F¬ƒcå^/ЕïÚ*Hiåñ´D§$å³t¤“ã‡öAr^ªûý‹ Ù dfBF 2_š÷ò‰g¾ì\teõ¼7ø_ŽxÆ µñ¼sR3€ft÷©”ˆA®@?˜S7ážĸ¾8¼è“FÒÝýŸ—¿òÜJ˜éÈ“¢SSi•fݾ@逌7Òuó·uõ­éµd´$¡LøúZRyÐIM :Â(Ì88ИiGkuÔãl'0_”«k ñáÊÝì!ÝÍu=sób%´ÿûœú„¿Ý>Jöðûª^çÎã6<Þ«Ò²ö°Ð²B%{ì‡_@9‰­R’JDúrãñßµ`uÈÛÛGTŽŠ‹ºÏÃ¥Dç¨ï‘Þ‰á©Ùvdˆs*Êùsïc ¾ý{úExÚàÞzdin`~arâü BO“¥N›l üdÒ$gfo÷z#B‡‰¬cÿGƒâ¹!2dÉ­ç5$s=ÿ°ÞhMZ‰äÿfIÀ¸{òá( †j”ì—êkº¤öfcPÞ¨>ÏJjçìÄ» ‚Â|¸7J;d²j„“‡{ηÄ=s³‹ |{ Л{ñÍïÁ×B¨pqÙ'?5æLÃm@°ªÁ¸q<©ëàæ¹·)•¦Q\§é‘píº¶†MÜš/{˜µd«¤š ÓØZ;)WÈ*ôÍ×kÁ¤+Oµe{ª-x:ØÏXCŤCÿȇ„Œ!ë,öFòÃ~X?µÜƒBlŽh‚öq8ÿÃŽ û«“ÂÊ{-Ï{-÷Ôµ?HѳOÉ•H&Äïü±àŽh-ýÿ¸Äâ¡–uª™À2…yà;æ\Öòp±ÿŸ-Šzÿ ¼ÎBþ_“õÿj<{²õÌóÿzÒXù=ćù×õÿêFý¿Œdåö}ø€Ý£ëKnY‘®qþp@§ÝÁº÷ãF¯©‡ÝïÕ ìÛ%z[Ø ìæ ;„Ü» C˜ò¦*¯›õ…ÜÁJ–¿RY{W•,7$K{Œ¥Z“‰­~"ߟŸœÜV&;Í•J)—ã%†"´Sv{¤ÜÃ콞ØùȪð)?ôO0ŸNíìk­ãÍ:Bàf*ß!¯`•z̤3sÁF+ØÚC©·pv1yÕçFq¿F‘ûo‹ó2¤£óôÂîÍAno<7¹yzñ± ô†ú½@o@}»YdÈ®iv°û±Î”`­\÷¿”êÀ'+g¸•3ÜÊnå ·r†[9íœáD#WÎp+g¸•3ÜÊnå r†ëÊÃIÀz±lG9mzH8øïÈ>®¿kÄ‹°wÜ9ÈùíýÑÜÞæNÖ|W]å ûž<èäûpÂÇ0A¥„ ÙñºžÊ²wò¾ëÞ“÷ÝÁṈ.ìs—°M¸zo~r£YA?¹iŽŸÜs²÷‰3X§þ¢Óx±ÿ#ùΑùþö›ì¯äõ†¶ÔšÔjûÅœëUESé0Ua¬½·mIâ®_;ª)í »Ìá‘ᎹÍeÓÖ”Ý Ñ¥¿g6ƒ]L2lÕšu‘|Éòã=;ñ€Ù>ÖЃ½ @‚àæ‚<¥BKP[¸¯f̨)2O§±y‰WK:‘Éê0´Šò°d w30÷;HÜ„œ+’|`}nÌ^ _:¸ÇöÈb5Å&õaýŽBÜr²”U ñÎd’‡YÐÂæXÕúÚ}/l¿…ìho鯑Íä÷8˜wK.£EÅR¦«fÎöñ­'£åwX"#GyïÍDÞ‚ïMŒþ|| ]y¹ZTŽG ÆÜÏT£öWZ”õ)4Q9jT¨Ÿ¶*µÿChRû™¾H¤Gí?˜eXìÜrßÖ-#È1‹«RäLౚc‹¨(cdLDÞ¾…¼qfû4;åxU@Øì¯}+ín_§rµ€œÅ÷éwy쿈‚ç-‚¤È:H¾¹zw—eò0²½ð2¡5òžý-‚Å’ÙU–àU[M«ˆGS·¥ãñM•’¿‡fòò„ä½9‡tÍ2߯sˆçÿñ!ýtþþèòñtSúlm!‹,· ÛyBÞW¾!Ov§PƒC%ÞŠºSÐPѸñˆáà™+ÍNàfšg§DR0y¾Ç%nù`ôJÜúãÍAI´ª¢’¥†&óM·$ÚMÅpKžþ÷ã@ÞJÎÇ×7·˜ae:¾FǤ?ÊMaB±aÎ#€?½œa´@ô‚9Ÿ'|ÓOnúr6˜¤ý¡ö6(õªÇÐ0ŒõØ_ç_·ýé æÁ¿‰ pÆqÈGb=Ixõ¼7ûzà o&ã‹ÛsòùABØphd:öû_ø¶w~u;I.ûØæÁÿögåÝ—p~j}©Ym•5ìã(¾®ô*ï+XgI‹þ<¦?ùþT¹õ^½ú½» ;[ï÷W;¯ß‹›û5„ư%_ÖÝÑä+6ŒÆ ‹Ÿ'“tz3æ«ÐÙ˜`xô6BÀ“ÏÔù‹ôÖ'6‚Ðeò2¶òšüšüš_úZ©ü^®ôè+ñÇqU¾Î„ß±%Û!4Ôxô×í‡þŒ‘U¸óu]vL·dJ A>à¥4ABvT“3ø_‘#†$.è4üÊ®BXáÅ ÿaŒÐŒ³áøü#Ís¹b]6õÄ +®Ã§¶‹Ë;É­CJþ¥¡F ÿJ&…H†9 Ö÷ûŠ"ôºòGUÓ{¢öšºÃ½•US#Û—ø ÞxOoÌÈgv5æŽ1Nu—=6EE8•üF²™ØFbJQ¥ oüþ#5l:–Ïr³B±Šœåù:UL,&žJºžË™ö¹* ¿†Üžd‘@3%ZF žeôS¬FÞ Šô iGi˜-³š–_ÚÊK%>g \] XÀXÓ:ô—߸ è ˜Â®{ŽBjþVLoÒóÁå@×? ¦Œ¼Í‰±å?ôØÊm1àDfyZÁzáiy­–Šª™×¶Å [Î,ç$)SØ‹ésé¯2ï4´iU2ͨ&ãm–ÄC¾.åžÎÄ©°îôƒªFþƒ_Öêeµ‰4~?¸îŒú“¯ä¾D«¯ïöd˜~Én´ó5Ö$â´;PF5Ýü±þ©zc1¶V­ž# f€‹Ðk61“ˆ|—1#Öhu,-l§X›´ö°°ˆ–áð(÷Äöwì94£Ž=Ç1Pƒ’#Š &áÞ‹vù±D|ÕS&LQ¤ÿAG6±P×™ŠïÄv\tŽ£ãàÀñ2G@h ¦©RŽ}EI¼Ìï˜TH§¸FTòåíµf0CEE®úã;ýñ:Sñ‡þÍ9ôs]TáR ™—Ûâ ùÍÁº K¹ÎX“à`ù~G®ya‰(¼æ»…Ö|7kÍw‹¯ù÷ykþ½³æY¥,²èó–}×XöÝù—ý;Ýš¹×=U|fÓƒcUÖò§"SQ$£ÚØšµëb FÇðkB3P\ ÄüpÒ¡pÐ劉‰CLÐ ½[Ì€7ÝuA*OTt-QÑ5EÅá!¿šÓ”Ñ-ÙM¡~É f:á)î¡ò”­¢PÅ¡¬BÐÉŠ`0o hu$AL"·So ò2G"ëpn-ý¿šº¬Ä'ŠÙéŸ_g[÷ô6>?¿¥è4ã‘sX¤lÌ8%©E!ÄíŠ0®OD®´»Ò0~O>NoúçiT¢?­tÊwŒa±÷âá#,2¿,hªÍI ©>Çðlw1N9ÒÆUýå€ù’E 1@»"«÷6g±LK¦©9„j•ÍKæs¾Ÿ„þ/>Jf±ñû/ºÄÄ9“k¤á&லáel´tÖrH´rI4*µúóÍJ‡iÁ5¾ œØ¹È&ÙElq–Un‹Ê= U…¤šiAŠÑxB4žFëÎ&„¤ºãÏ”ý¬d#'ú~¥¹¼NA¸˜šÓˆshO©ý‹à›o3öAÒÞŽ„ðœÅÏIq&CÍŸŒ=d:ÇSã¤:ý:¥×‚{JâôsÒ*'h2ß`™ˆÞF´³£Åä¹ùšÉ¿ò‹ôžĪ~)½í/EÓÕbô/JýéÖ'mXZqq6Ëìþë–W™¾¨{¸ÚÑÈ]ƒ(.ñé´j–•þª~,'ŸJðOð»$á„ïÈÕõþWUFÑ/þòÈÃwÜg¶Š'/¡ ȤtrÅÖ~¿x]ö©46±Qlc½¬¯G~š0ÿü$…;†OK u°`9yŽÙ"*F kuÙÆç¾rÆ€¦“<ÆÙ šLQRÒØ#›Bœôw­®U¤Ò&û‹š6M¥¿D¯z³ô&iÐ~5†>øŸ&Èœ)«+?]€÷ ?Áž˜ÞT‘GÏSfd¹!‘ÁX^¾Ó>ûœ¦¼ë’D‚ASªÐ (ê†â¬t|€"x†”e:N.UL1š½vÕTÖlýcÉÚ0†S9/ÈǤc34¬ô'Øç!ìÕÍ)o¶Ÿ„Q6BÅ™:—AE7èE8Õc-ƒ)e\ÿâ‚• AåÕ 6i}q@wºˆ’Š òžÒ²eg«|U#Ä£+òâSÎXþϪÍðP8èRcø%Ì¥F5_nÑßÁö5"•–Ì×÷Aq! 3òyýcF2“‡] ‹ªGRƶô©!ÜÜ/È´WBf8Ø>.ã¾y%Œsò[¼(’É7ü›ç˜·¢yLƒŽût2‘í dž©ŠÌäwƒ.¨h,„J(»1µâ1·œQÆï€¨n iî8sL|ý~œç,³¼Ö—÷ïwºGÕ䨳SMzÍÝ“?Ä«ÇÍnópÇB%”èeÜ/Ö7vÖ6¨jü— Ýî3]ùfú֗­-îáÿòèðø J?à Ø>h´þhàÏf«¹M?Ð+ÿ Õ|¹ŸÑ&xA¼„èçñÁ»*zŽã?-QØó¿ÝÚyÿî´éß’ùmÆd´á?¹Ä[°WMö0mîKø:³÷¶štà»ÎÛø|5_í`¸Tü¯6ÑG~ô`”€JK|M?ÛµÓ Pe ûÿtNJ‹‰µ±—íÃF3ƒ>oÑkÍWMñÿîî4šüƒÿjdRÁàÅíÃv‡xPü<ØmBûz­ Æ-Ê`±Cšö“œKü·!~´ÅOŒMzÏÞaè‚8wTQ”?›,}³ÖSk»Ý|UBŸdhõé!üVUôÔ_=9=<–¯Úq‡ÈÆöš‡/Ïc‘'ªòµŒÖ@Ñ{µsø†Òꃟ/ÿ Ÿ¯ôãÛ–§¢ÙêUE°Šv •¬b;=_¤ì‹[aûîs¬ àB@ ÃïÂB``GIp%×q’d‰ë°®>8ö2+l*ôá笱•Yãæ<]4Ø®õŠ^-oÌÎó¢Å o‡x°0 -ä÷!a èøaÝÙ ýð’nA}ØøtLؾ0¼åþóÕàüÊ¢AP²Rm²Ìà{(c÷1á,7&#.éc›w è¼MÜ ñ¤÷í9–ì깓­½º öu?£%ÁN“£‡™ÐPÕ~DR ¤yj1{À™‚:¯ìxg¢µº#P‚‡ž¥"Ç^*í©×zÂí%´ž.R¹jÔýM:: «´0<ÿ wñœ—¬bYÙÂìC¥Át¯€£XÆpªBF‘‚8;(Y, m’Ð¥šçž#0B訷£ÁÌ[xD¤ð£á Êž‚$ë† êƒ§x•BtL=ãé†õž¿½X$äÝŽ ?ðbX$YKÊ¿—ô/á¦Î @gŸ}[ñú«1:{]«§ÏdOõVª¬Ï‰ÝN¡ŸÓËËÁù€4XØ—0-w‚H‰3POË cIÜÚú„wã +÷Ù?ãË(˜öA…/®Šq¾ÇŒ]{ù|&4s§÷–J¥™yÙ䝒м/sÔõá»,D•P*¡ê¼2x屢„*t‹Ð£Ôâ²b¤_ˆ6E(ñ$h]Üf¼¥M 2û “#ÜŽ.øâ·¡0¹zMu¡¾–×_Ù2Šr¯Ê¸Yšç9ƒNKÑáqŽ]'Já¹ ÒVö ¹Ev¯$Τ­þÀD‘Î,”IóÌëPoeR'>,æÖ$z UEØ?ÔŠ–ÑŠX;šÂZ‚ Š©ªUHT´ŠÖSFÔi›ºBXsn3nCí©ãÿ…69I±V'zyð¨ˆÆWÄdÊ„T ›S`É(ïïfk3Æ81jËi®˜ñ¹Ú«W=Ñà? ·8ü-äÒ3$ê%9¾DÙ~È7…º/MŒo'¶-ãý~àI80ÕËàß%(íW¯Ö>!C•Øßg±²\ ‡©J$c$ƒ± YT„p5 íšØCçÈuü$Ë"Þeç^ˆŸ,Ó¤úõ›ÄÛ+ðû8cøWIkBl|2ö"Ò™‰håô€îõì탻JÎ^À/‘U’Rpùè|„+mÍS©³E¸ ”ú‚)eOÖ…=$«:ñŠaFmæ×ÐR5´òk0w—–W›ìO¤>|Ï˸-EY¼˜ /ÄIq «©ñž·R“EY<¶¥þnæÂRxf•Ñ™©ïË&z³Ñµß:kMôÁTdƒÅ –õ®:å²øVþ M(¯é¿Ú«yõ)²¥$¦sƒxÍ61É svM4é±c Ò¶Ê´#e"û| îüάyÆxóãO}5dƒ‰ eÉšsf,[czY{œüôì’$Ì #Uo2‘A"2¦AG(ú èôQ°™SuTŸõHpŸ|"¢¯A›•c&àË9j!H{!‡+âÈ߈-&f§.ö±Í'ÎåФ¤,ÚP¨›vI"¯É¼`Ф¸F†S<7—]“á‚ ó­g^©?å‹%˜³µ¤ó6`Qb“%Ñɰº:õø¯¬ÊÓ˜™È“¸¦g1N°”¬+„Úœ xIæFú³.'&öU4Q'ÂïSGCP3"þöF÷Ÿ¯RòÍ›‚Ɖ÷ª˜M;E”>ú€áå‚á¬2õý]àr‡Nª$‚›•\xê’­jÞªE¥/HUh­e~ÁrÁi•¬ k¶†Ï‚<޽Ñ*ú3.xí¦áË^ãLT’Ý<¬—´;ºi¯ˆñŒò¬À_`â•&^z“qè±]ÖëÑ—žÿýJVÅeÕfÎË…cˆaB6da˜¦µ ê…YJØ4;bÑZñ¢m£h#¶Tsáæ6oîœEÛvO纮¹ßAÏ:nÕ7#ë,»üœxJ'™Bì_ÕSÈÈ…\Þqv“Nf·“³¾ƒ:_Fý ¥R^Õt%•«–ýi¥{©¸séÉã3_ãdŽ¥>wW]çÎ*¢RÅÍM6 vÇ5?H¢#[ùЖI¢íBÄÅ×Êà gþLƒ7J…'…O\õ­;¹?qÕ·2÷‰'󞸸%øÇüv?rÖ8ÓúS]ã`en¾ZÑQ@ÇÀ†}&QÑgÈ@aB”xKŽk6' %ü.Ð2<ó8—Ï L;/tÏ-q63`ÎÎZ½¶·#¢ ,ª®¯:3“3ÐÇŸ]* 4(æ@ñÒ[Tš ˯ú³˜ vˆŒ¡G‰èÑ[¹·$ɎݵÌfQD ¶v^y»xÏiRÃo#ÐîÐ(ç 7h`à;Úø%Xž ž«C ïýÌVV™’Kþb#{8ù¯œ±ß¹¯ÖóúÏyŒš&lö/Ëi6·â—ÜV„,Á8¼Hj6 ÓmŠmº$9R õr€<ê„ì÷>±‘–kâ°!¬lÞ£$DÔüãШkt,¡(ºƒ½n4‚ÞŠ6ãw½H—>¿ë¶¬’]%— Ò²!@ú’µº»FÿS€úˆ\Ê dýÒÞŽ­0êØï{;µºŒƒ0J¤ÝªÐöDµxÁAu4*JW2 ø+Ƈz,a3žïíÖðÜ €;òÖCÜÍàUÈïQ¿¡îukõ•›ø¦ö­Ý pÂWnÖ'îf0·A|çÛÌw0è† ›Å ºs9¸‹?Y–ƒA#÷8ˆ/meIìô'‡e+¼·7žäž£ ù|Y¹¬\¬7W.+—ƒ•ËA°µ+—ý¹—ƒ(pà K9…DD k‡x˜Þ^»DJ½4M~rbÿ$Âw¯»È·„·mÃUêk<ž ¡ØìJän¦íI|4B´«ðº§…l/ËqʨÕå Æt̰¿ý–Î 9_Dfm倱rÀX9`8Ÿ¿‘†]7k÷à="€` £õ=SFòm5v¾;GÚŽV™;8jÔŠ:jÔætÔ¨E|tBCi;jèMs^G ]raG ƒD¦£†ß¾gWZÄU£&/›æVýÐdL«‰¸…mP&(pMu‰ˆžÝTsï6Ù{bu;¯oÆ_§ØÜZ1ôF$®ŠYÍ­‚†k.ðjˆ_üYmÊìC#<@ÁÖxïnÆÞÅøæá¡Ñr´GC¨‡{O»M >T÷Ÿ9ê~È«ÂS÷kÌ=ZqÏq»÷Àú¤Ã î|˜gè&¥yìÈ–²õÄÌ µž¸n¡Ö#‡¸­ÇItZßÈ…(ܧ?×Kí'åFôµ„ Õ6f¹5ad»gÊyªF†ÐeB7q}+WUÜq²ZˆÕêÏÿª&ŸûƒYr;š †. ¦ëKO‡7“1úõ`’™ÒgÌ¿| ‡xñø×sLßìËIÞK=c/ër,ñc.ÍSŠ-û0Šw4‰w Ësd‹úbwêŠè;aw¶ðL«FA«|lŸÆ*„_È–¶Y·?‚cµ¹‘ïÔàÃâ´^`bJÿ Ñ‹tr3—ñ}”€êgØp!U@à÷Jáð«˜~-[˜Û°Ì´%dè^¶ ÷%è¯õ5™Ûñ2±O;†#¥T—,WʈPÏð¥LBî”qÏÈÌ%›ã6™QU5j3J ¸[ƽ_67‹-ñv£Hîäw+¬ÞðAb¯…ÍLßLÿ“Ä÷¦ÄŽmžì¦*¡ØåeM"‹"ÉÎ…éÿ/ÞÞþÂýÔÝÛü`€Ž<F$ýæÓ|‘TÐ $É:h !/=sæ–Œ?¥ä, ´û±B-Ëd½ŽþÙ-¯^œ4n‘ »O:ç‹bî5ª×öapŽžºDôa(¯ÇIà\ç|1g'ì3á‚°‡º›¾cB’'qâw¤ÉVUîÚÈd³'S6Û|²À IEq³`ؘ2pjÞ DcÍ÷é.Í_¤æj¬¾ÃHHåÝ*ßü90ç9rXLdìùóù˜âGbñÄÔÿ™½Ð>^Ø>PÖr©ûЇGk  ˜^¸W§pPÉԤиßg./_ýz ?äèâ8¼¿d©Z[ñóÊV伟"Ê)¾×˜ ¦)½‚#ƒ lÄÛqˆtj!ì¶D\K¶Š8áá{9ÀËüNZªôÖV¼“Oæéä·ö(Úzª>yY5,êžkNw>"ýºáQ´U Õhö³å4›[±˜uùNE.1%á{Æ&é{fféOä>Â!ˆIû„ÚUhtr»ñ_rÏI–´ÃŽ2œ¼I½„ýú¯ÕG†ýPaj›ëǽîËÇÓÙ‡ôKcýr©ulÀçéÖý|öô)ýÜhðßOê›úÕá³ñ¬¾µñ¤ñ_õ­ÍÆæ%KmEäs;õ'Iò_×ýÉ´=žÆÞƒ×.—;,ßŇ—Eï´Õ=:…ŵC æ]£”¼mvN^WéÇ{òuÅŒÛÛhñŸðÏkü ÿ¼Ï°‡lCÙ=Üñ¿ã¡ÿ–rZ±µZrЭã?IG#ÌóžVõw/ûÃè|£A?i¥“é0ýJ†šNóUr0»Pé…;ãO)åÝl*á±¾.’œ'Íɇ[•oXtÊOàl–x+”“œ²ŽãpÐ@Ò(ÒÒ0‰AéÈÁ $B¦ÄÖ¡&…2—¸– ݇”¸6úãu‰k­d^‡°†BÞ—¸…•ÄÌu¿ßNnDÈ,+·=3Q2ýÜ¿™&ý‹¿úçÞu“J–šuèi«^/ÓÔ”š ÔÐhP-0‡ÓÁÿbŠ·³¯pjõ]˜Þ#x[ät+ýë¶?”ÍëSéwÔH«„[NÎpöÈìjÌMHÿu;øêÏâÉóD×DÁkxc µ‚š”N€­þ7½`'®ÞùÕí$9ïÆ£æGI©?U0[k‚5÷^½ÚéáÕØz sˆFw//úE‡qD¸ÇHźõ¤…d\¢éG7Øþpø•=)iHÎá¸ôš¨¾Ç±5;Ãý gûšÏÛ›‹þ,½X·tÆ×¥Á¨ |Ð?ßãÏG ¼.ÁZå'â—÷ôË£@áV´pË+̵+Ž7M²-= ^¢„ße¹:ME—¯x“ç¢O4&CÌüeO¼d׿Z…ÙHð<¹'£ñLÒx½®«?õòl×ÿ¾HýïEýñš¬_ˆ“ ڻ'œ[Øâa»^*¿~(H6MŠa"ˆ0‰˜>  iئcJõJ™Žåö{4bÿaƒû¾ ßSêCZ™bu­»¥¾ f\HpŸ*,šuY½uw˜öÉ'XµSv½Ït(AŸ¯û_Juh¾ ßš·ë­"]oÝ¥ë-ÕõÖ2ºÞZ'J~×_'9}7ºŽ=íùàR,Ê*¼]¹há+ZáA°ßìÀ2˜¤—é¥÷…U/5d¯‹¬œ{½N„`ÄêV+Ú~7Å{QÿûeéûäEöˆ¾/<¢ï ŒèûÀˆ¾_ˆ¾_'B±}oè{sD÷êI‘ú£‹ô‹„d2š›w\­q¬'õäŸ/à?5ùN1ò–0‘ZtäfÕEVИ¿ôAÖ u¤u$æ×€jÕðy<ù8…³]e84aÔ«¤v–¥8ås™X,lÍ(“ƒ d{I§Rê4Ö:¿È/* y C¶@.—@@ ØxžônϺpy;$6·_ø ^~^:u^j¿Õë@¨y2̆oGžÇÉ%èf„ öµ&¤ö+J­PŸìnܨ ß@9Vu©VúPe ?{;:¿MŽ”.—ŽºˆZKª1lá`8¬!›ZÏ#ðOk0jõ§ÏÅ̈ÒÓkPA5½n@›ýB¸t¹Í@3º**Õ\ÜÞè¸P—läxÁYj›©¼aÊè‹ØÈ¾¤?û*jn“ýþ‡é Çë8Õã1üÝïW<æpFÍŽ|téƒÒCGôó´*Š×iŸN†xŒœÁ"èÕ~Ù¨'??£'ðççô"•z›·êóÛÉéž/`jÇ —Nû©Ø¨d:ëŸÁAuö5™¥Ó™šxÐÈ™ÃÖiÎn§)’ñõ`&ÓRûÅñ˜@“OŸ„^Œ ³(܇ãt¾€Îö¯i@Ln÷PÀIñœ ó!Hðõäÿ4þ/ÎxôEÇþOýÿâî/ÇóWÐȶé&%9La¹ ¹í¦${pwt|;kuòÊX]}Ú©¸ûð%Ÿgykµ¶2Þøp½·žŽÑ¿&Ig Ð)¥St„C?½‡Ò³IŸy®?ù ƒ5Ì$µ×N@!ïaˆªÉþðö3 Só¼‘^Îáœzü]ÿå—Íjrs¿<©5ê?ËiXÃŒ¶.¹ìWƒ¯hHH¨Nù¬Ö»IÏ—ƒT5È´œ¡ z^Ê5«Lg>î4x0,«R£Ï'ˬÔq9‹N$K³¿¼«´³‡[7ªÐt2Ñ“åÔ"¾e®Õ$ìê*õ†&b ¤·hê² TÏ-[à¿{ú¿ACù÷ þü'ì%Ü*ÉnmR¦TÂN¹l9ê½íÙk™Ñzkæêwú"Ž·=Ô³XBÛÜK®Âô–í"Æ~»Ï,wi|ŸÏžA/¹^È*gw:Q½kÖ^<ªô*¯ÑQ”~?ßËe5õfµå C2§ÊÁŠlr9Y-W•àÑ@d  åÿÉwOªRÆvžôß݈cU˜UÕ¨.QTk`܆̪t¿½:Cú‹|âh1ö Û:ƒQƒ¯<ž5_×{˜Y;ùÑfmI0‹÷z™JœxIžHzA¹‘¢C¼‰îlºýûøéSÆa”š¥½ús8×bPœÃ5ø£C€+ÿÛ²i¹V €oRH.BÅÝïÊ–’fì%ð´NrC1 ñ§Ô;k \MË®¦µôj:5ÕG6eôwÑmÑ×rªópË­®5gu«ôÒÞ-£ÎÞi$¥FµNÞ|_8Ó굦×ê«'ãZÿ{ÿþÕFŽ4ÃûóóWè<ç;ÛØÝ@2“Ùì9æ–1ØØÃdÎ|ïk Iœ›Ç—0Ù³ü[I-©Õƒ!d–Þ»¥’T*•J¥ºøÞÍ5..׋™YFxÍ)+°á•˜Fÿ·€}ŽÍ¼âYâ­²ÿÁY&âÈ*Ф…ËÒB*9¨æO2›?±›?q›ÏŸ„H¯ý¿(TÉü“Ö!®èÔt;˜‰™¾w}3®ûL j[t Ð ¡IGÄ0yD4‹gÕØæ1y›(m(9©õ¬ ëoðë ¯aÖ½‰F±j€×úlÁg/ Uˆüxz"úV¾U£oÖ ûEêy«Ž]\(š„‰ Ÿ›]“s6\eHÌòsGη’˜õL^H ­ ¥vÂu§t²!RvÊýtÃhÈ8KtÌrÛ~ß–ÇÆŽ¾àk µÝ6¥M6^x¤Á1 ¶å¨“ª e²Õzíuéƒf Æ&üCô[âO1ãù– YìöSä3³àNX¨@OÍÑÊg¶ô‡&Ûáe4žÃ! Ô ËX'žeÊL*šÒßËÄÀ0J4ñ5)­qЍ8/–ÙWšÀ&½VËK>Ël'] ²6Ó–!6Þ·´‰½††tÈø#†GÚH;09-Ñ @IJ„+o¬uORé¨ÙEÆs‚&Ä’DúÝ?«Vi",øÆ;½h‰ÔMÌpϰ“ª…dr¾¼ÉŒŒùêž„Líª±ªÍ%Ýxß]ùÔI"i3Š%ø4fàøØÑ,’Y’¡]|äéòÐÑ_Å©Ôs¸É9Ù¤lø‚ íR×Ï¤ÈImÕ#IÛWr¶È¤Š¿G÷ˆE«Å»ÓRÕâÞÓ5sñŠ1’é~9qÉO_{H G êN c¤[H÷D\ gqÃzÍŠ¾¹vú%²D‚2Šï ‚U‡_ɾÆ#ÄHà"è}ýZ7A*N£öõMÎ~¿š>µkÄéSLÐ)Ï^#ut½Žc „²ÉG]”úa€ÖvÌþ…“OÛDÆ2…©éðMïÍTýÇfÊîÂ=NQ‰%qÒ½ õ“Kqò?‰÷¢˜-<ŒÄÒF‰…©Í^‰vc¾–Fl–ŸbJKÝ$]'Z28ÓrM­Œ¸É®iEĽUœ¸‰YçÑ÷V}S§óé[&]£,†âšY0³È²ƒÎ½ÕÖŠÝjPzFnk¿.W¤LM –·Ëwl‰½× !×è »¦E|KÕ4ö]Dv]“À½çpöO²Ù·YX)¢E¥Úhr«ýGd%!Ìþ¿£éħM`+‘ÖÄÞ“~ÿ1Dú¤£3$ kºï{‹d]#Ñ-Ò_#Ñ-ÒÚó5’¿©çk¤‡šµ_#=ü¬=ê5RɺHrJ¿Jªd1³æUl˜ƒépÉò+º¥ÿE¯“Ñ·ÿ%ýèÿ²ë|…!X63CNºÚ~rV6i_=ÔØ“L²H¯ÆÕ²¤S:L“AöJ´§[ìipO¹ÑäþЉ<>ž¼UFKá;2ADTY5‰òN#¯²ÄI-u–%"ò—­Y4aôÉS=NWåHvÔ³¯úš>ÿ~•!‘™ä±öf©—OYš6¯¡ø3Q0ƒJÞ.ÛNÔ,ظŸçáN±î<È 5îߊJVz 9jß4Y'CXt«e]ºÝÕÈ;“n]‘X¾Öv(#-7+^rË$¬ôqì$ ¤1¹‡‡§ËÞ5÷¹5H¥K·…–•™Žœ¤oU‰I´ošupl¬fúᙳl}…œ5D“ö‰-¡Ñ°Ž¹Û?Xí} ¹xà!:M¦ Q“ÁªlÛîf܆Bð!ú?µm¤7ñæ…™ºª:µæzàaÌ©è–l¨©%'óiÇPwÉVÝ}¼éák+íüŽÕÎÎj:ïÍ’oäÄYFyâ@xÝ(¾\šÖriX´ÛXv¹¸ù?½ãnË¥™h²ÆÃîôŽaç1:í4陨5q³›HÀ,øÓè3ùJˆ¯6’U½ÿqš“ðãè®gást×»?¾ø¯ÿu3|¹µáÆÝÚxõÿõ1^8nü×ÝUÆmÐ…R+>eÆýÛE}5†Ïñ'²¢¿züÚ¬¨¯»ÀÜ)†Ð,a€lM½Œ(µ¶Ì.I‘rð-B1¸ ºø’n­Eã·z­eÈ7p‚©¨/ñaMZ Î&ìg;§Øf–¶Z+¦y;›Nn¥Òç•õ×@K$úÂùßâL?Ç}Ž!kVþo![8ôeñ²y+È„‚h)c¶*Ђ݈Y=uÅ>nxÚÂX-vY¬2g.Äö¸ÕM1†Ÿ£àʧ™{ ›*(° ª‹]°“&ò Ï±Ï2.+¥5Gˆvla€bm·„ðÁ胷QñY¢¼Â)c ã|fñØ!"Z È%iÛ”r9¼ äp´PIФr¸Ö8n*=븦cÇ3æq2`pÞâ´â§b_ª•ª*2¬hùT0¹Á(—#ÔêaC‚²ÏwpÐAUL00íípÅ%¶*±.‚—¶œŠk‹`(-â@|B£IA¡¹Îl¢å%‡–ÇWÐd<¢x“t³bc€r\È‘Pcß[&˜ù'h‹'z03ȉ Û³ñDDÓ)ǃUÏ5&|þˆK|D\ˆSÇôÂX0>×7q¶ßÝi©Àû…¢2cPfCuHÄ`G"Æ@ÄuԆ̎‡5à) ‹O ’¬CwÒˆm0o‚×L ž€ÎFŒ}ÕYqN s£:«˜ËCŠ%ZKB0£.ëä§ÁWXȰÐ"uˆ')ÅS£Ëj9À¶ËJç20q€yšŽYËy„¼“xî›ù9„qJãÐuNKDµ•oóÚ _TÍâ±^['ï÷»¿§ëÙ~Ýïâ-Ùoí&¦PÚ9ÀZøOgÿÌ.rÙ8›tÙP•ŒÑqÙˆ–˜¯ÏׯÔ0–\f/¢ ä¸æ(t8KŠ}f…:Þ¥‰@²hå}wÿ¤n,ÉX—¾›:Å®7r”1?SuHÊ€®¦Sën'ëî­û*Y÷ëʨœ|ô`§ ýΆ›ùç$äääÅ! å/6}å@ i ˆ– ¢• BO™mÇ@ÀЭhÀ3ßqØSÏ¥--1ãjNx¸©2J´2ŠúŒ"ŠV†ulK 8 ª°§ ‘§‚,®™œ=ýÓcßNi5 ìb夫W^òG“TÜkUQs=µìÈ©šœx͹@ýaVyy/”6B6fÀÝ®ñÅ+EÌTàz)& 33ì÷ %Z@Ó|øq3°ÕmÌI2N’ ¾m”Ô±þEfƒH¦]Á¶”§ÃQ ûkÖ€¥Dg.(ùÇM“ë‚Mkšá†þÉÈA#Ód0[ª`"²0 [y(l©“[ [ŒÂV [. [y(lI¶2QØJ¢Ð™'`4 ÃC²É)å¢ +i˜¤®X¬ÎÂT¢ð­ª< ~Â…iGä‘H£ ‘FDÂ¥£0A|^BžyùîsRl¡Š'…ïÄÊxÆÖ2ØJJ` ûu¹ïÇ yìÊ(uš­óHHþá/ùcŽÍ|é§&ÃÚ!ýÔ‡Ž?вë§p¨=Ÿ¾Ïià¿c5O}-üp'…Ì>ÅãBÍ!}¯Œ·š³‚$¿ÿΓòˆðG”´jÏç§äCãûùp/lyê>¼Í8„ú`]v$ÆgÆãáûMk >wÆÝGugLúÿÍ¢ñ£úÿ½ÜÜ“þAðìÿ÷Sšíÿ×ÛïÀŠ>|·Su¸Ko¿µ¿Û÷q™tîÒhÿJ1Ÿð“â>õ¦Å\§]Ç­ (Ça¯yà²$9ö{ûÆ‹Áôº¾Ò‹º=¹ä+v8}a¶qràî„(/Q–rZñðÓ;@ç+q‹MÀñá¯V~ñ‡ðH¤©ÍðEl;`´Í϶a0Ÿ0m§TF_‚o¢8òHÌöZLïåÉ´X2¾tK9Ž‘–/%Ò°¬½‡ÛÅ#:XÂÚ\±ƒ%¬–Ð:2š^Ó[9ZbèQŸ§%­œØãìdÍr©„)oÊAœï÷b´ Ì3>Š2žËÑôí3 ?‰„³;n ·âÿ-³a-öY4FÅîhqQÃ3r§nyb\LF‹ë1A>Q™ØãÈþ9mtó“é4šÝ É/@ ÿ?lŽ=ñh`„²Ÿ‰Òet5ÕëlqÎ?–ë¼Bi®óCs½BJ®ch–W¨  nÑà`³,‚IB´æØ=Ü–>£8T’ ï3&Väšü\.¿ åõY2r‰ym:í!_˪ì¥ÕAL«|Mø _t1¼™ÊäÔÒ‚Œè>#‹]c„1úÎÓH¤4CçƒHì ¯”APÝ ‚26—aXÝ ÃòŸTJŒŒÆk9uì’r3˜Ò’*͈!(‡ÃW t…‚"诺˜Faã¡)$àÎBT«Ä#l”3 ¤M”ÎåÐavS§A±;dÿ ÈÃhäú¿b‚Fßr+á¶>­³+€·3rí—žT¹‘f8íâ.†ä”á/Ò“Vn3t!¸žk=Ñ8ƒËjˆ´Eé·?YÎ~Î%JÇœ¡ù¸[\IxV» ¨„t¢É¡lG…F׉wãØE@bLîuÑ™ˆè/ྶ»9BtcJ†>Ÿ Ä‘=9aþÙ2†îô&|-Þ×=Ÿ,Æ—3t°]—¡¯kçä[ d¢'%ÜUƒ×aÙm`󵨗•pŒðà^Àñiœ£ÙÞ¶€ª¸æg€ôô6úJ.7DqoDètj뵎ºÏ2w ­Wiqo`XPâ¸bp>ù•a@‡“ëáE¢JF…ÙúÍÑzø™ÓÞvÑö6e{ÏNî%I&Ú÷ø·Ùާ²ÞL³—kJæå.Û)r"ßK1Ì@Û¡:Záf¨¯,¢¹dà6~ê4ÜáFÑ_ÈØ>/>â€icLÊYê¡Ý©þXÇÍÈ–i€ð~ÑÀòY’Œq¯'ñ€Š_Ï' oä æ—¢CP< ††cÀû%Ýð˜û—îHô¿!r#øå\#TIsR’Œý‘ð)bÄï5K$pŒéít8ŸƒèqþÍ/|)·@7àÁwŒwî qˆc<2wŠ"s'%¶ÁŠC°¸m¸p¦¸÷2Y/Z%vêz¡Ò TYG}¨ õQ *>¿ ªõz½ÚÁÙYñ(Γ©N ÆQW#O@7aЂ–mé¦ ‡¦ë»qdžEä`âcZ¯Ú—Ò8» ƒ]Œè~+ûO^Ž#:“ ¼õ{§Jï{trÅ ‡WÒ©ÈjqaÖÀ»ÿ˜è©.TRcXŒ‡sT^9_Ý8sHט:@ºDcG?£¯±§ gÔ÷_`Ä&ÖG|ÜštŠÁ}£6›Û§.šÀ¿WȬzˆÐ8úHùï×ãd™¸uc0J³ —µŸ)œˆO H²[ðd6¿ªÞŒ†|š×âVËšH¯Ä‘Ô±™Ø/£hÛ4´)Êy 2œ„ä†l¢ŽšG¿¶Ã!¢ï±D‡,ùÅ]ñž¹|̰%ŠÓ͇'D7©J²¦›ïå—´¾ø²´Éd„Jð²H -]Á¨žlEㆼh›Á>Ž[NßéE7å…1nyü ªb Åêíª>~—æT\ñ¹ßÑ¢L-%Žv,7±¥ô–Š‚ÂËDˆµyÖ%ãèP=þ§'ÎN›¢àÂÀð>/ž²˜ýjlRiÖ‰6¼„‰'ôŽ=\$LP?5$ò}*/Äl>‘‰¥×´U"þnSŸ· XØeK3³°µ8&GçCÝ”DaA5U2ÖD–ŽúÊ¡öò­?ý“õª—Ê.þNñoâ6èx½NmR–°¢]GÅ•àe¥])ujírbÕ\{ko™µúÏuT@5ÛI²S7œ©”×L’xÌ“šªm‡àBUð£ªNÝ63 ·iR®ÌÝ(·)I·©6 Z]XtÖÓ¨\iÓ¤RMÛU¬ê#ÑæÒ4jítÒÜ (6 ³wL…õDÚt¨Ô¤ÖK¥Í<2-÷‰n/zYqŸ(ðSóÞqŸä}‡˜Njm®Ãv?º,f¼-±¡jö"Á¢±¡’P2‚E}%2jf|¨$„¢£“ÆmépüÚgªú~­ÂMV~£{é ¤ŒT‚Šð×8HÖr&f@4°\¥¿è:væÕ‚ÕÀaü÷ïö*u0€Ê8X‡×ˆÀ÷k°‚’q£âë=6ðTyV£i¸Òèþ5^âœ_`zOÖ<ÑL鵨Oª“s 1$GZIéÆ*XÝc¯b­Ñ]â(~·šªk± ÄjÕ­Öš1(X.‡_I-ëЄn«tRy_®” ò€oà_6\]¢»˜'íJ…åcÔ[w-<ìj>–T°mö ò^^!¿3¡ë²V1zÖŽx¶¸ºb¶ù(Áh÷!ŒbXI®bœœ ?Žj.TW‡Ÿ”'#À®9 0"Ùµ>é1“Æú^naÙ4ˆÇÚ—`«30EÌAœG þˆg Ϙu‘˜Žc½%¾“Hd>˜™ì%6 †Õ‡`«7ˆÏëAíz8.‰ ¶37îØdÄ[[W?U .÷gÕä!q3DôD „ŒÐa õÀ¤æiä© 5VÆAe–Q5¥¿È%i ºþFü!¾L'ãRsŒyÜÏŠýÝÃ45cøåO›š5vŒ;F ‰ò_aøÓ_ªóÃK _Ì­-ùƈEy Jà¬`£²(´É(á][>«Šß5:Žà—èâ 9éåâb®Lo䊈oþΨ‰ßÕÑ ÒQH «UþcévX²EX9‚¥“E”%¼³L2ƒºhŒÑBn:ù‹JƒÙ·ë›ùd>¼(óùÜP¶\ Ô£1ò¤²Ø§.DÙdàÒËr†¦™ç¼W‰Ç¡ëeñBÓ"-,'1x=¸ø„Bï ®tñý‹_é|¤¬ôYf ˜Œ=«›ê·'C\åuÞÖ‘K9«Û”z¨ßh¥j$ P[9Mnguq@ÌäV¿\·«ìI?¦¶€“ØÈNÝßT)È^SÔZ¢Lûº~Nä›®H$74ñw° Æ~áÈš {¤ %JÐÝJ«*ºñêž9—F&î¦Üû6úÑÅ9ˆ–n: Àx¥+j¢U…„bÉiÖR!\î5“ƒs-­)OMµÃèFdBPÃlïH†G¥†X˜ü >Ð*U!ô/˜YÜ‚pת’õÛ‹R)xQ:nUŽ[åuü«[9î–qºq¶×à ]^¿8nU៮Ö$9 'ý/â®çÆ'%ÞãÝSH«ßh)š(|!Í%š¨hüq„'à SŸÏ‚¥ìUÝ5¦ÞÅX¿SËÍ‘hRÌ]¾VÐ@r&GL’ ¢˜šÄ7 ¯F½Çž´ÖhPƒéÅ|ÂÆ7 kÀÆ «¿Ñðþ®f ìÀéòH]8Ý$œ.ýnÀ¡Ãd)wŒ÷³hº6ohi:cſت2£d¾ŒxÒª+Bø5ŠÁñ¾ÌJ×¼p¿ŽÃëÓ)8€“z4.f¬Ÿ&,Zfƒ¦Îøv@1äK3E¯Õèï!qëì*—è ªîpQ êP³OJ± ¢Èmnâêß%¥/bÀDWZM–X„†KX„F<—ÿÞŠ±qÉçxe1óô‚6w­YtÕ Ï!SB:ÿZˆáÙª«©úŘœ}÷RL™=ëí[J‘LTP;»¦E<àUA[ì}¼ÐDL¦ÐÜ5Ç÷&Wó[Ø«1n&Ó¹xßnv€1ü¼UßØÊ§0¢ "—Īˆ½-’q™Nò˜ß&Ó/ò€±‡Ÿ^‘á$»› ét×@R(–Æ#!x*À›Y3P•Õzóo0ý)ØP]@jéMF_ÿy땹ö¥ÌE ι†ÔÓ^zcòL& ÄEÿf=ÜÔsSh2Я{#ga/ºà|zLÌÝèëùPãf:ÑU‹LÑ«mgŠ»mÑÇ\YŒïS=¦3q: O:ر cþ%(ºÏöùÞ]îxE‘á²Æ aßuö³@YÖ©4ÝW¯,Þ:ˆN ÌÞû­qÌŽ…{ò#Ÿa–·8ÎÀì÷»½y¸ìþßèüx„õèↂ¹sL÷ôVÚ:|˜ŽÍ½Œ€ïõÞ·«(Þ™Òo0¶v«ó¾Š,òWÌ™ò^ãt¿DÓ™„²| yò­Ê„¿ôù–¿öz'Ué%^•’@^RÕëyâÔ{P ·wÍì/¾O¶s‡€ø0¬æ[˜óÞI×´Éàø¤1¢ùZN›- Ÿ¢oÉ O2ߊY âÇÍç ìøõm¿¾”]¡RE Ï »ï _8ì¾'t~á°ûžàøfØý’x_¾Ë‚l%~Hü ~ȨâÊß/¢{o¿“ÑÝŽ þDC¥ôÂàTp$šÇt…ʃ7rY@Çk,³óe^Â) ª¨ÎG$¢TЈ‰bl9$¬8ÓÙ~}Ë(¶åB£|µÊ…F¹M»Ü¶YŠI¸:Â^¨±Ð,´•©€=›>Ëúú G…iëwžØæOþ¸‡!øÄÛ8ñÊ©‚'‰ð¤-@ Gþxèq š# vdÆ.J Ô”û’²Ÿ]ã°ÛÞ@†ní‘ bfiöô 5¯'É@?žP*žÎ™-wRšñ6=0Kà˯8¯³"<„Ÿ˜•B1Á„Ý“ÉX 1JwÖ_ê÷qfŽ”ÅT¸í­BmÛÖ+V7òšðÂuÒh–“¶¦i½hZ ;ˆŸçdëHåäa"Õ‰ÜpVsY`[þQ=Ķð‰>ìäm$£SU;=] o>Þ‡Š÷ø!ìº?ú¢ ñàɲ4€0ò?©7´»¹ííaÄ$ÑL0mó,Ý–(¶ Qmcd ñ¦!¸'ãO¹uwrêrXVaDfµú‰Ãfêæª”CK¾¶©hÈEe­tlrШ—~BØeë[õ+µ¼2)ù|rSK³’‘@z¶ÎÍ•nv(7<"¢do;÷Û[uðÌ´½5oTÂäXdóE¦ AúûEÓÿpèõŠÓ# J‰WÎhùÆ×ˆ”STÚ½õ†^ÇÑ”,W ×Aiúæúé«fÄù7ÓËçr!#\°Ï´[_Y¡ .€úÐHbôM”††ù3HàéìÈ7ÇG8³€!Ÿd‡¶Û]}h;¥W°cH¡¸]NöŸ6 x‡G9Ír}qiNÉøî3­Ü×ÊþÑ'–ñå ê—ÉÄõCÜ<Áuã×Ýôש!ô2Y½~ Ö˜Þ¾Á—í…Ã"Ý Þùa¦å™~sfµßÜpw„Ä„˜!¼'£¯yç|sAKÇð¤Á¯:zƒq)©ûÔÁ3\ÛøŽgµŽ¨™¿áN å¬á5I£hàOm»Ç¿ƒ@s°Ö”šÌÚciIñbèX|1ÀŽ `Gº9ÀÛJ'Dîš¶(}- Z@q‹4º“²s˜‡*ÑÙÔbþ°cÖóô §€Ñ’ƒ${«r%sˆÄXja…Šê ušÏhRБLæ¶•L(.6=%,æ,zb-gbEú$5[˜âîsïƒX[êÊBÄ’øeŠ´DKµ•uVN ©‰£%‘‚ç Qª)’ÒôïÇ­u(X–Á?³Ä² Æ"§,,u a©›‰¥¤ÔžÀR·–ºëPPc©›%ÏÊÚ+ zVAi2}»<' o’I— ?#~^(;”w1ö¾­/ÿ…áò†­©®»»÷ð)±«Ê†’Æ­$ÊP”ae n´4êä•‹²FAÔ…I”í,ºÐA]¸RÔéR*F¶…Jµ\¼Q«’k‡ƒ6X¦^ÏF$P\/ÆÒÐ@ÚÐ^ÁpvMnìP yâ H/ƒØ|öR|` ;lZ½¢(téÎ:^äÙÒˆXÙš¶¶ „œÅ^Ô*ÌÊ.oe*´Ô K|ÏÈÔÑV,ß D«—_:Áð 'ÝúÎÇð63{‚*“™ú@P³C±/ÇêòŽ`J¼LexE¸¢[’íƒb.mÿ ΃ã.p~RCáólX~;z=™…þó,øž”Yðž0ùx¹eóOÑ„PÚ¾‹ ±fq%êl¯š»„Oî’- ¤ët™`yºöI{îò< Ƴ5µuäR’.é§"ŠŠC#Ävy/r© e¿˜¨(zÑæf\L “— Ž¿«vL°ƒ<ja®·ÓH³¯CH æ†W»bbΓš›QT¬P2‡ž.‰ò‰Êé ݉¸FËá³úq„Še!e'þ äØÝ3n?€Tù$(WrB–Œf«%÷НéX{¿öö,ÎL„ñ60ŠJžil?A›,Ì9áYÕ#cbQø±÷Aå½Ïó§á&7Œa[ÇC J²©ôÃÃtÖ>å¨U§›Ymvt›EÅÙ©kœÃÙ)‚9-€³Ó%qvTNsqvºrœe¶ÙÑmúqvR g'æ¤ÎN–ÄÙIÀñÌ2qv²rœe¶ÙÑmzp¦s+dGšæÐ’tñ5¹Õ&uî*„c$î:^Ð:Â1€L05"YZ!u²1;ÛØQ:üV~ÓG|H.º| „ƒ_ìH»Í»±òV¢ÐÚqÜ>ÚÍJEÕvc'Âê¾iƒ‘/L—‘ ¢¨Œ‘ñMñY'2 §Ø ³ÞÒ!Ýò”ÁÈH*²±i™´l"7/›sòMI£VêІکšX}[.^u1Ó«GBîâv…1Z=Ý:P*-ȱÀäÃäakß%›ÈMÄæh ü8„£æ8BÄ«¥ˆ( Ÿ&„ÁRh{ˆŒkÇ m¨O3Á«œ*¨aóý®ÛÄz¸"¨ Šl ƒýM?Rî‹épýè”;‡ƒ‹ÉùÐÊ s4ùxÍGhòoÅY.#UÏ%9ë*шçå›jÉ2\SÜyŒ@¦ø‚£/šG7U(÷Íåý4 ÆIè¡BqöåJ»±û+Þ¼zÊïÈòǺüŽ.of±”—ŽS¹áôÞ›¦4a°~ó5ÇÎÑbñQ…eº<µ_Òá€Þ ¥mÑ4ι«]Œ  Såd·ìkA—RÅzv±ÉÔR}¥¶Ô.¿»úô#R o“mì–º~oÇ=µ“?H–Žîˆ%@!èD'¥’+`Þ—„ð£í\DÄé{Y (o{lÑÏÛ tv “A5q00¥Ålë΄㜦da'Ù{ïô¸ìå—æoF?šÔkÛñˆý¿¤Ô~Ÿ¬mžPÜ´ªZ‡ª¥§çzoàû®<÷}[•“j0Ã/ªdk+e_N—œûSàíYsÊ'œjâ€cjcîOÕÜŸæÍý©gîQxçOZž¹?Usš1÷§+˜ûÓ:2öÛäÜË1ü¢J&ç~¥!é,G'µjâ fÎcîOÔÜŸäÍý‰gîQxçOŒž¹?Qsÿée†F•Ý69÷r ¿è¼‰¹OæüJOÆVéHå_ æçõ3Žtß.0€0ºÉQYÇahµ·DŠØ®^c¸$+ÅŽYàŸT`xß ;€¬×ZEÀb¢¸œDê,Î]ƒ+4ôn7Κ}9F5”±Œ+wlÄZób”Çy!|#æWvÖõùd°G“ÉÍŒ/Ai„,Ù~5ºlŸ§àt;øQ¦ºdÇKê³͜<åjÔUŒ/ƒµ(7þ;¤Ô9l´:Ë? Ì›9PÖÚH4–Ø>PQEñ̹}Iù9—àH©oÚr/—ÿ¢“z|1ÈT}7(5:¨quïmßk•F°Y9Á[†Ý Ò ~ `­²£~ëáoöm)\ù>.ð^ÈI…Ñ•¨!yG·]Ñc:Ø…ÖGÌ`ÖgWßè¢;©w‚®²6=êt#eK7‰Wå=g¿ïR”HV¾ö†eš~ƒÞlß=¢¨2'ôÄmvšÑ?ÞóÇ)ÈŠÇÇûݪíã=dYÄTÅaUKNoÐ]jÃßc {øþÞÅ0š»½÷øt`¿Û}×Ͱ(yÛh·UÑýí¨*zŒÀÙyÿ@Õ^¬,HÉŠ°é‹µÚƒy¯=6ùuF+…#‹î¾SE{Qô¸Õ¢Ïnÿ-GÝïÃg÷]?=vqO /ºlØÏÆ)ög2Wôˆ/®©ÊÎ $&½pˆ‘ePAŽþi•}¿fFE"¶À&ÁJp§.8,{ê‚;±À$ÁHp'.8,{bƒ³"œ¢‘8EP+™£ã{ÚY£à›…㘠OcÐÞAç€N„ƒ3@ŸÄ ½È½é‚ngG_M-=^2ZkNt×—ny'ºk;k6’•­ð®ÇY•“1÷öÞ'±¾×áXé]fo~J3l•l%·¥§ÙH‡ÙïÇ¡xÚô½©+ƒZÝ)é4Ò1ý߀Ä&¹ H'¹:ôÛîf-ßÅà‘yÒÃ'iÀç\¢ ï÷ìhÂ"‘áG¡+"§ /æ[+aKÔœÈUöù*F¨’ ‘°ŸFââÑÓ^l¦¼ g¶õf½µ_o›(µÛ"£&šv´Ö=0 ä0ȦrÈ@}ÎvöLIoh‡/ðDì Ï@f(ÜÌA ‰Js܇^ÏŸÐê³§PJÜÜ\œY}8LE‰Ñ‡ôBi¾EÚC­–”ô›.ª¾gy3]Cˆ(Æ’@J¢-©>»ª÷ÝO”¹eÒ `f)%}Q—Úê¼øš¬1ý‰AH%ò0ðÄÅÆ çG  * kªAz´óšÌHÓfCõ7žÐ v_Ö„¦Ëè°š‹¬ ‚‰ç€h˜¾Vê ëÂP÷ðMeéÏÊIæ¨ð oNH”P‘ßä²Á˜Uc‰Ëªˆª}åaÒnÇøÅ„–Ñ|J;«â56›IaÕBØŒ&¥Ø}øÍj2û‘[Ì<ô#)Ïc-؇őËh6œ&Ãùˆ8\—’‹ò€6ùm³®¢õ=¦‚ö¦×}JŸNó:ÂÍ)5ªºpj… ¶–lJ'ymtÈ[Å!ù“eI^XTøÂ‡pã„[¨0ŽwÖê°i¡o›ÚFçuwœtÐPI-+:ÉÙ¡Ÿ¤ZžÔ¨¬ÎcƒÛ„ ­îô`×0dÀãúëøÐŽÇõÑ( g:Oh"e²~ƒ7¼fL4’VÇ·J8 ²‰9"k¬y¼{yvQgejÍõ êÊdVôÌTgt ‚%jY!Ëäþ’áÓ~Üji8:0£]Yê¤<ÒˆÄ YåeÝLZ2ÐAc§'«¢W9,~D^ì5æ‹öŸŒŒ‘äPÒ™H‰Ôû:2W"ÖRo¬ÇLãæÍÄeÊÕ„|—{llèH=‰ÖšWr´ÿ|C„BCÅ‘šùÿìîè®(ý•"ÓŒ-EJ†dÙ4áœEsÇh,¶Ã,¢Ò~KuCé*?Š‘/ñxÿ°BI²Ó½±¼ôxŸs˜ïê1&ûüâ9r8\¬dÅï …,‚Ä (êðN³H Ëý'ì¸äÆGöÃkUžzéÕTˆg!ûÏhy;ƒ>V`Í­Éè=P(ÞÐí¿•+”ÑS–pº¢i8cò·ôm¨û[2HM‹Qsϰ‹co^Ø=I°Õ¬m¼x„¯Ô†-|Øs˜Ýªgz ²÷{Ž.1ëž &:}›ž9SÉü «"Ј~yåá´Ç“Ù¼6˜ášEí¾Émdl‘6ëeŽà£•ÂÏìA› MŽ÷§”<2p8òG‚æææ©]îBLJøL´Û/¶å·‚`Krßv”â˹ñJ êqÜs‚zxâ?Œ7þÃv°¹Œÿl?ÇxŒ‡‰Ä‰ÿÐáøUñë»ßÚ¼0¤ÄÞ §Y[{ðZœvI›Œò&ÅqyU×f"†t *¨îîAá«Ò”HfŒ‡Ó–BžLXÑfôù.JSc4x®œU.”J¬ä÷t'ŽŸ XNv°3ÀG¶£¿z¥¼  ­’+•?í–ä ïÅ¡Ó0‚)Ñõ/Tnci¨5#³¬™™2Ù žôðÞóOÑÅ|2•)”¥ømÆÓã$Ò¦?óP_ Æ“1¥¦t.h§ƒpÆßLHX¿tRiT> -]e>ËÏÙ§¸‘yYª±_jš“;ÛÔ0rdgÉHñïÉÓzÌýÌ\cÄ}i!>¬G@rhJÉl¦3ÔñmlØ”'Ä?Cmʃ0Øã¨.vŒWq@FÿÙîšD9nt=mIÈ"k­$! Ã4Ö3ë›4Qê•…K% ö²åõF¬í¯½&ê²¢1Ž1{N¯ìú½Ze¥Qaíß‘ÅÏ'€c‡`žõ8L‘Àœ¨ˆçaZQÙJü g0qst€u{ÙË­¯ó]Å@’Æ\F*I³„¼ÌÃ䍸K<*Åóò¼=à/BV›c{wºM13Á j¢¼Ö<ÔdIŒòçÑÍÙú/:ëóç\Ü–>Û>’·ŽW9é&2ÖeáÞxÚÆÙEa½Ï‹¨RVÉ=M"Ä™€á7ò}—Þq'ñ( $QWUßM8ö0Rg±Ïbš9rAÿL ›ªšþß'5Éùë¶ofÃ]Ø×[d&-͆µ¤¶§¡°dë;jQ?Œ `Ç︄ï_<¦ähv2Fóžyz4§­‚£9m9î>lïÎÌI1ÊÀ¶Í?eêsDSM5¹¾Nc±=&owUIHذZÔ+_ŠÀ<ÅhHGq<ÍE®¯Qþr÷ûþÛýÓ]É¿vie¹{´î?‰§­:Cú—ëæ U´£¦º[tª»…¦ºkOµ‘{éGšë¯t([z®»YsÝ]Á\wë ©ð\w͹î)œçxó´ L´“”+¹¿sÇíÝÉ”ex+¬ú'E@Q>£%ÁPë‰Ûo緮ς·¡ %r¥ Ý{Ù ¦gamþ=”*è ÷¹¬<ˆÏŽ•Â)ç°ƒyIÐ/;XÅ‚Mé|1'ZŠO .&¨1]£*ãœá™SމQ_ΠÞ^*ñ ïG7§6ݨƒç¥—‚L61¹ÄË;…„¬Ó‰MM~2`%DLÉ4-Ng‡8Ÿá‰±}®ó–rìuP”ÅŸ& Œ[Ä nüP‡ŠÏB“‹‹Jßòîm>]ÈΈÛÉbt鈋_£é71»Fzƒö- $mÙS7Ré£-ãŽæ¡q(åš™Ð'±:‚ÆÕvãšö-óθÑ{ì ‰vÜiŠ7›_û…O¡”3JQ#8ü‡a˜M1t„‡V™Y$¡H:tè.«U)†¦(Ò!‚ÏûÛõ¨m!éî—çî‰wäA•neh€ØÕnCê§à蛩ô·¼A0’)Ñå&){’CG)›#’0l‘ÖGÓš%Å5ÂJ§R꬇åõà¥c”õ¸šqËËíÐø‚ó.¥8é/¦ßœ ˆV)°» ó•J¡b†öÏrHÔ˜D¼D›M¤ÐSØ€\«Ÿ³Ë­’ܨe:µõ6×x÷ûYЈ2ƒÁXXòaónåŨfÉðUºQ2A¬‹—©â„L6’ÊY 9n¼½ ×Oxݼƒã§R®õ^ì'²”ʨ$ÿ`å¨? B¹Åpvƒª8§(v—ÑE¢Ì rì•nñº¬ôŸÅZãëØþÞ¡¿Ë•J)x–1»%EYÈH!_ËVhTNœ÷UGO¡#™“,ÕÐçÆ‰³rúí/â?ÿþ¥WœÏ@š«­G£Bó7Æ…¢Jê¥ ¤ÔQª¢Ü“u…f–Kqf¤[šÀÓàŹ(½ˆ¬ˆ%€ø“_U´BJÃõîœ6Ä¿£éD®ûRƒ”ÙD ÚJ…Î¥&åYÌø]JçüâHã/΂EëÚYà$ïŸ@€–.‡³ùm¿Î£ùm$7r$Wƾ óä§ °DíyŠþ\Ìmݽ ®Ï/4M[Ô‰ÒmU¾,£eÏþqOTxšX5þ‚FjR‘®ª×°§á…Ó ®…™LtU|y ´3,S1—Åáàø\ýб÷ø˜†$ÒΛ«K†œUQfaÜÍ«˜M8„Ç«“·}‰»Þâ†nÞ³¼ïúõÚÑgè«þ‰œ´}ιï×*ŒêÊ)ª‰K½ªèÓ’¢0¢ žË¿DöpxR [Å?ûVŒkK€€ö¨†ü“êÊÚ}%vfœ Õ[T§Ì Wâ…]…a‡aûXƱφ¯5ôìF:¾±P¿þ0²y É·h@éX”Y˰!oqþKr«Ðìñ‡ø2Œ±‹M*'jôÍ ¡£âOwL²üy²|ŸÊ‹XÐøÇ¥ÔR^¢ü\߀AID€"u{V¿—eq å~.¾¦UL “è»±3"ÓßãÖ;2ÂÌQtâ°:‹Ñ$ bœ¹.0=‹âv0žëª¥Y¡­UïÀ4Ô^¦Xo¯Ûärç,¹²˜}²O&lžvÉ1ÕÉ÷~K”tÈu‚]j²Š[زñ…‚oY‹zՌӷQ·1<’ÙìÜ^áäe0\Ê5÷¶h¥¨ª¾ò­…ßþX—~_~r ¯\¹7^ý¸b‘ǵâ@ AüªX_ôP‘Ð×*ö1±9R€M[‚‡·ãÛ*•ùÒN™tz€Ví`!cdÍÁô›–Qr%”Š1Tt­rFg€ÄÍænãë~üz¯çAèÎøDΘ…¦½ž‡¡áçG¥OËE‡û tì¶[·*<àË0|@ëwdº,rPoá†øêeP¥Sqý7·t¥ü‚ÿJù(W.ãi1Ƭ{†SGö=Cö=O°ïøRßÈÃóA3¼(ìu:™ÄJ`US«¢)P%™.ÜLF߯“ë!ŠqцºËº[SÂVS_D2-` s³ŠW…m›ÀŽ0Ïôî¦éœ˜[4äÊ)gukAœq<¾gÒR'O™^­ÖŽ[eó…ÒÆ9Ué ÕtŠÔN)†@[)ÿ噿0ÞH¡õ5ÚC½76ôÍTN*•êû+öeÅ»îjñ–F›”bñwÜÒÔf&ÁÜeK363Å¿¥(…RÌO^Hñغ;Q¶j8XR~Í8ï¹7u½/moöiFÝÐY.+¦°~Ú" Ê·O’/}~Ì:\ Ï郹™ºÓˆõ]ÕÅamóÏrX×&ðZ½ p¶CƒœÞxÍù‚·èslg"ŽgsJï‚I\hÆ'ð}"à^„±TIƒ€æršŽzClE-õ÷×Ñ€¬êÐoþ ¨»öóF ~zEoàëmKZų×}´5 üöàO¼µUúE4`Z¦h¨ÐŽ ºËêdìɾ±·°®U¡÷­±uc£¦yîÀ,-·Yø<ŽÏÈUiÉ…O»Þ«‹ö8)¼çà”¢ËDm£íßèct>å@¬­FÇB£ÀÈ @‰­×úÃëH4n0–=ËIUq4Z ³Uãbp]/Äñâ|TÁÏ?oVÅÍ ü±] ƒŸ$Úþ-ÄðlÕÕTýbL¡„ÔV3¶Àê™¶mDrvrØ,TP;»îÍÅ>¯øå5îÏŒ‚×Pn0L’½ÉÕü$ÅjŒ…Åûv³sûÅÏ[õ­| # R rI¬ŠØÛªC_f<õJÑß&Ó/†óñÌŸ^‘ ¬rœE ÎâH 7¹x$O©JÿØÌšªl¬Ö›ƒéOÁ†êR ¦m¦³<0“·ÞTÚû2•6P8ç PñÇ…Ô1È3™0ý›õpSÏM¡YÈ@¿îœ…½è‚ f™˜»Ñ×!ò¡ÆÍt8¢)ª™¢WÛ˜"œ£Æn[ôQn¨#Oƒ~ªÇ„&N'#û{ å@©ד­šY7£ß…¦½ÝoŸÜ]8 Á÷ßîŸíV¥ØºÂHh*€>éö½Xe(4^{V´±*]šÁÆzîû}Œ¯¥Cpíüj”Ý;p Ÿº…UÛ¼þãâÊ=b­—¿ŒYé/ø^uÿ¤^ ÌòÊž{Ρ ôнåb™¹}kÐhb r…£˜å„K„sBe…¶ò„Û)Z7·ËÄÔù½ãÒ£9õ»9õM<™¤HÜm¥X3l<¶ØY†Ì¦%v5^í¶2€¨ûçS …FL…üà6–ˆSÅG“:þŒèC+§F/É-²CøíãTö”‰WP†ó³UM¹  ìý>¬må¯é—2~ÔØÉÄ»pwˆÃè0B±†)=t²èºÙ£NfóYØñ7ÿê ’Ò5lǘФ1s$ €$G‚%)#^‚0y‹ŸÅ'¶‘,¸d"Ð|5Ì€Ž—cQ•’ãÑßÙI, W[*îµÝV }ÒœhÛ7XÚi *wÂ`ÿr;ÊøSJ‡ÙX6a§@BÝ/³âž,†_T´ëá¦Ù› Aè°ú«H'&tÇ!ùm4××åha8 —jò% –Ü`TDZÔÁ³ùeñ«È"G=ƒ;ìÒð .lì+{Rig°FéKõKÎÐ1âý@y­Áî"uõ䨖Ø/ÒØxç°#áF±›œÜå"²ÉÁe  ÏJÏp¾÷mº_¤]?zã]bãÌÙí´¨eqsCÂÊåéI„úpšÖTqˆ»I²S¢Iø9»ƒ–‡¼ñ˜Ìø0YW\òJÆža¼¸\Ì'î)v-Ã`†Æü ·¼áxUâãE¼BG]$Þ W’v<õÔÐÁŽ’a5Z©Íµ–n®•ßG¿À“^‰³XpSÒ´(ww{ 2Âi–„‘ŠNö8º=5LrrGç«ÙÌ®™AªàU(©¬ñ±6*k”Í»ö•4!wÂ*J "£x;á+ÓäBÐJ±º ºt䃿1I$Æø“ÄN’ØÉ' I[Š)š¹ÔFã²;§UÙJrÞÁN’„»sš,Ú+Ñ8¡4Uz‰¡ÓUˆ_úK¯³@,kº!òœó6?]Û½8c;HÝÒz*#ÿ¾,YMíÒÄõ¸lBQÕòÝ,Nb(4`ñ|½@LŒ57œ”H=(/GÁžÓp¾¦ä-²O— ed´DöQ!ŒÃà2ÀI"Fd‰ö"ÛWV÷úØ|½ž_ŽÐwÃ!èdgï›h|1ñÑgŒ·~ƒ¹(ñy‡û¥*¾”m'‹­1¯(ÍÊXŽ‹<Œ#ó0ÏéxŒ¡CŒ¿P¨ É³Ž¿Ø¦ kÝCÿ\lˆ–^p› îd÷í¥.”Ù·W&¬ô&²¡ù ê¨á@¼òÃjÜaúÆç ÝKÑMV›1nxâ{0ó ˆïÈ’á»2O9AI›ÞàÝbEÆ ìVøcñ·æ:v®B9U“ÃDã)¼v¬èB«rb3ÂK7d(¦{:éoÜ *»Am«¾QÙ “-ÐõVÿPí4üù”ÂR)&7Ê…ËUãk˜`^v —¤´ƒ–¦Rï;‘êzv;¸qýdãìX‰ÇZËRµ!¡•‚jPÖ Ô]žŠÆv1 ÒAíºLzn|ÙŒŠjdRíT:,ä¹ð>ÏÏö-ú1ðv“.áJJÉRÿÐ[c'ÙjÆ’ Ú§ý”—ýi\3§×ÔTB"©¡†³Ã÷ÕÞhšø¢þÖ¸J0ëæhTÓ›Bt‰&ïç£èDT"ƒiô™\+=\ÖÜÆQ Óä>mVg¬ŠÙdôÕ6èÕ*.„H¬•ç›Käy6žFŠŠ@‰»Ÿ€‚ÆYÖÚ;Vª±„‰F°iåhìÚø•JÐRu‡-Bhºƒ¡$v[ÿÍ jŠÃÔzȃê'®:È|:0„Žt'LUÉócN-²¡‚¢p€S.š¤J>­€Zs½ß[RÖe«´³`{ ½ ‚uø~Zá[¨Aþ:åÇn­É•ä¯Í¥@ĵ¥Å†FpA;U/£ú??±¨æoÆœgÚgè*—@¼—+Å»*·¬»ÈØ™}•=çLÝŸ„„ž*¡= QP“7<ü{zÔNá8¨ÿ­'þë·ð1ã¿a¸±éÆÝÜ|ùÿõ1^NüW<óö»#št™Ûö†~ÝÅOø'ËF®µ·WûXþ9ÀÏÍg»{½÷múÀ|’é0$+=>I ;Xü5 Ñeê1ÂÁÆ l+j¾s4XB¯|í3s$´'£ÁÊ÷$: —íìîøD3É„ÝD¼ššÍYjTÙ•ŒÝ-ñ³cÅî•Te¿Ä¸ /dõtP]2Rìï!˸³„çZlŠ­$[7=2ÇHÑŒìÿ+b×íw)HøÚíu÷ºÒ™‹ÝµZÑ×h$d U±ÓjôêÒ#IÊØeüe<¹‹6^Xw´ó ‰Æx¢ÜCq0½ÏFý%ÀóA™j²oŠ+`¦]q X›`t.Öå&0pzÞ`Ô Ñ·*;plJ4{ŒfuÙ.·GM# ”ȳ¾0¹ÒK y½´ÅG´òÔ`Øh!.f’%ï|ŠÙ@1;0˜2‡I6q;¢wã£.60$-üCeŠæð4?8#WT½!„‹O@VcŠÌðu2¼$ˆW£É­Îˆ®ð:žÌùl4“vÿú°TJ:’=bý•¿YTεZjè ¨»ž5ÇÀ²µóƦj^£G¶E“¡K“Få=]y_U–tÙü’çÃý…fä,™á[ù‡÷ò¾Ý„à¹JW?cº•ø-‘f$ϯC¥Jʳo°°¯ÉJ±º7¼†Q£é3ÿG?2QSyÅL»ô×Ô¹ØÛ¥„*>¬U¾ÅóFÇáoUn ma¸hhñÞŽçz¾ÍS3y %8ͱ ‘÷ð/ä«1˰øMi3ÁjºèQ½³Fi Û¬™•k*ˆÛ‚Y’±œÌ€]zÄ>Jÿaó•?ÅB¾“ÿùN–…r8Åý˜`¯¸¼ç@÷ìœÔj€”_·¸ñ}CØaã–cïµÈr³^ÈŒ$v ¤ Ú®;'ÇVK¸Ê,“ë› '§ØjÚ圊aq^c¥ùÌg…}ǸCu×UßviÌŠkÍ´V$HsÇ"Æìý WEÝ©ß_{mÔ_‹©yM‘3“Z2ÜvF+3Òö`.¾ ù8v% à¡kÀ-ó°À!—wbz½ªCÈ1¢”ó>x »®éÒÈž§4 fGöšâk¯Ï„R)Å 4Tn'Ú_ÛÄ;&.é ûÞh2ø)K„ΣßÔ’rñ>ùÁôÞî£qî]@ú’qªáÔ-NÓ±‚\¡é Á3Ý`wé4„aÖ0ÒÆs³ãpë€Ì µå«€@ÓÉ­  ¢¶KgÉ[‹G€Ž»ÑIëÆ;çÅÝàØ˜Kõd‰xÑ¢GÇl¨ˆ´†#|BHâ9_QÀh‘Ú‰ =\>d´è¤ kçú_ähšÚ -tìè]kXy‘é<“6ºÝxtDÁªö H£6¹Jõˆ#ß%׫æéÃ$[·â²çý¶‡)êΑ(ÉwN^é‰H¶JTîj¬î®«»u‚ä!–½¢Ä²—¾ö<Ä’N&{«ù·ìù´_t@ûéô±¿Ô€öW1 ý:AòÐýÁ’t>®ƒBt?‹ðêk%„°4á·4ZVÖƒ:AòÐ 5ØÃÞ9'SŠä¿©ŸÇíÔC°„u¬(íÒ¸™Ód”9ǧÉèÒ®M‡…šNÓèJmóÅô<>í` çXbŽ“Ë’¦pÏ …€Ï>ÌÅ×Hph`˜B„†ÃC¡)S=¶ºç›*}$ø4¹ž ô;YÌTÏ舱‹ä âÉ£¥}³³eÈF¡Õa~B÷“3ámAa%8E tl;öÆÜ ¼ŒUá UÓBF/šZ§ÌN~¦:¾’…K'!•zV¸Mû\#‚,æþU“Œ¬è lAy¤/³NOìJ)à-œscáÑ YkȈû2^ê|GuçxÐy×ß-‹Q´ÙëÁ—cþŽgG†–ÇH:ÊŽF:¶=žÇô “‡rávp¬NÆ7x®Å  Réƒ ‰:æG®lvh`±>­Ïë–,$š`¼°]¥DÜD.ú°\aü%¯ä-„.2·½ŽAˆ¥bö„ÁeÀµ¨ÓT㜫³HI©Ø[§*¶ðsËe=?á¯?•ùp)s aœK¾4X"$o" ´:m#*'tï݃÷:öxÿÚx'öþK'v”¯ÌxQƒûӔ£''öb„Z:#h›Úÿ Æ ~‚1‡Vùƒ‚ØŒx°ý:˜qŸQ“‚ …6"J¢JA×ô/­Fo¿OÖC=û¯ƒëëÁÙIU„¯^l¿Ø0¢Ý*ÒÚû _zƒÀk ¨Ÿ ÅÉ‚“Däžá@€çJ EúÐÑ>ð^GöŽAÌ9„ÿëCüìáÇYŽ ˜3˜ðßqUœTŇ½f;-27òÇw»©#tÃiøpÜ<å‰(Cã/éMwíé 诪¬’ìÆ=Bp¤EÓÈj¥pÀŒÆÊÀeP%ÓøvUGÑÑ¿½Ý0c¾ @£¯ôøv’×OUÆ‘[m° Œ°‘]É]A–@ñW&ÿ8þ…¼o_ëÄ~°ÚaQ–5=íJ}Ÿ¯ujh .Q^•èФ¢TS·üém¿úºÝhÂïê7BŽÎ^7rÓ®·|>ÐFC›FCFdœZ[žZN|vö½ÎáùQ6 ?y!ì.ч`à bo¡ÄþãüÈ+òŒì-y‡Zʉ Ã…K XÏL²µjITæ­ñÔ{QçuÉãçýããK!ö¸M[«ÆåuUJ™¬ƒdÁ0m­Âž<ÎÑüJm¡t-"ÿŽç1®ñ=×xÔU™Ç¹Ijš34?¤AÞ–1&¡¦Ïÿ8>L#'U)ì>ÝTðL̇ŜV–omÏníàþ­¥’2Ëpæ9)À›¸«j®Ôœ“ý3mûÒ…ho§ˆ'$ ])•Ue5½ï6½_ é·éƒìEåþ®‹éBXLBþ•Ž“ºÈfa!bË–Þ·0§E-aäv3Ø–*bv?½o›Å¥ ·è±Iq77“"SZwÝ¢ÇAf·Œn9}NÎìõV>r·ŒÞ¿<¨ ¦ŒŠŠn&DÇ”‚[vÁôq=K™ž®Ø(Z¹”ùò©I™/Ÿ¥L«£(eZËÞ”3“E=éfvAæÖS–]ÕŠí*)¯kìDm Š •ù“n˰ùâ—·õ½{´~`µž)ùww¡uóû ­›-´¦7½¥GM»ùãŽ{KÛnü{ˆëá]z!®SÉã G6~¹]w2]r´xîf¦œéHèéemiÞ€¼B‰>ó(´´ŸƒÓ< Û‘Ù³š\^^ÿ®ºÛ]5ƒYEï"«k˜?¬žâo!©¿zj’ú«gIÝêècKêj®RRwaþ’ºŽ¥ÊsÛ+¯£/\þ”k¡+ SnÏQ-gôdÏêIVø“ôžäöd5<>Èþ‘$Jj;§³:Óãö—–iïÝ Øÿ²m1UôXÚ•n[ëí÷1VâZUzÊàÀê_müù˜ò¶OB~tñw{ ñ÷å’â¯Xsñ¶e•ÌÆÛ+U¶Þ´PZo[VÙ<¼½R¥ àí'«l¡cÃvq©Û-š9×Û¯’E³z 4÷²`·’E3)îeÁÿ”,šƒãW…¯.6}…3iãUÚ½Dú~*Ü™-_áLâûé¡.IŽ„'j'<”}€ì–Rb\‚\þÓ†8D«° ÔÕùÌ£øaŽFiYoj½lÝ…r¥Ù̃ã=‚!µwRÎ'dÓÙÔ%~²E}-ä? ŸÄÑðç§v4üùùhhuôþGÃûp¨`ãn,ÊàG~U”E™üÈðVÄ¢pŒV/2YÔ“:½¶å™Ñ88â¥><æS£{Î5¥%/¨VÐm÷P|§n?ÆÍÖQÎKEK|€í옇أB¶eXÛw–.<ŸKž¸WÝwß¼ð¤Þë ÿøòŸ¢!¿HlH‰\ÂEœ´»Ãšá³°®ü(èžtZòº<®Ö, Ã;b]3#ÃíeßTÇÃÅá¸Jn 'UqbºBÜÝñ!ÜØPm»Y 2œ Ò= òÝ 2} pOûyC Rºcø\²œ2D–_†(âš!r¼3DÂõÁyûŽkrQš|‚i@4χ<¤> £´%N)Ygå ¸7 ?îwö(zðÀ®¸U3Oÿåÿä3y¼²ù/nòháúœPȾ)Ë<Çê•ÿ†,«WûЫLi´‰Òèñª+Úµæ¾é\A Z WE.Æp÷×óoÂìÎB¸Õ¹=·sEîÊ uîÑ f'.àaPHwøô´êlPDo¾eÎ×@¾K•´?eC¥Üþo& Ü ={›Ò4¥rBé“R1 †òHbi2 Ê,–þ½È—KµÁ1‹Oñ}§* 5W°U…ù‚[jãJ–Ø_}ã«àÈæ½//ŒYˆò‰qEô¥ åÊߣòÁ3Ò÷uxoéï9Ó´Â?¾z±èûY¡çÚ._ÝQû¹r1óeñpq?ù¡«·XÏűëši<¼™èqŽ•}Ân}56î/“ÞŸŒÜ—P9oî’Ëڸ癭ËýÆèé³òªØè¶%3G÷Êé ÍеeyQtüT¸/OÕ =xù÷7C^¦Ûx>¬T_–;Xñ*~¤ƒUÒŸøi¬îµ<ïè%òC™`/å%ò´Î~±é«:j‹æåÌm•®×¾ÒXÂnwɃãý{~`÷üÀ¾¤XÞj÷qNmyˆc[e­»_ÎjÞ½fHÎb>Ï™¯°±õý๡HNæjPÄâúgÅu¸a[\+9Ȥ Š]ìshNÒ`ÖøŸ#åÔî¯nc×ʧFH•¯}ÃÙ8H‰iB3á˜ðHHÌÞ‘4aš'òŒâi< °(³™o<¾³CEEï.¾|j%KEZiИèËn‰ÇVÉT¬î•xðiý@H /œs(¯~ÜÅx¬”yr1½™Ì"#? ÿÎ €sDr~bL*;:ùwt)zßðgÌX¨dÖ×I‰¸ÞC˜ë}€@ªÆô¡ü½›è\)p݇ĞQyߨ,=œVeÇL1eì—ñäv,®Q<Öùw«2dUe”É0Kx\+SÍCLHh%T‰4 ØuUŒ(¶Æð)#懅ÓT}«r.Øi4QºÔa4«{rO^£ç˜$˜(-aÕ2,¤O‹©¸Œ'ã!f؃U íëQ2 óPãðÅÈ…-!§1ŠÅoåŒ÷üÆ¢Ô…¥TÖé aª1u7Ï2æöŒgE0N2Ø‹O@EcJ—üu2¼ÔÉ`U:QàñDfô…IG @@ï0·cÌÊô&ć¿ô”ŸË„¿åV¸Œ®€Í]ŠÁ,Ar˜ìññe:—šcàÔeàômÝ9¯ËâϘäÂÉÁcTÞÓ•÷Ue9–_‘ôš_°/”¦ôú>œST´ó…fãlM•›Oã®5(`ÎêÜØYUü^V…Žà—èâ ÌÛÍtr¹¸@b™ßbÖbF“JŸìßrô·Éµ«Û¾ŒoF*ߎ+çU^SËOiS‚.yj¹!ñ&;ù t$A!ŒEk-ùÒfó]r\CAò \3+—jeE¹”Œ0X2ÆK¸S¹ˆeºi"ÕqTÃê©S*V•[Áí ¯þ€å)Ã~ùO™Àó®ÊŒÓ.⌲{4¹®÷ÆbFÙY[ 8 ijB©×ÿEš(9'²°–ÄÁtr‡ LRœßKîdp0˜Ã€¹·Óèbt‚| ¬7 œóÉbL©gebj»ÓcÖFì51Êq‹¯?À^Eâ þI“~=áµ7#+Òú 5ÈÄ((6ÅN«ÑƒÑÇ °’Oײ˜ÞC­´McœW^ •À¤‘7| dJÌß‹µÔú}«þZ¼ ÖÔŠºT3‡Ó&2³Ý÷€ñ¯€Éê ù2äsÝ•L¹ ]†ô¬˜0bÎI@MI‘¹CÈ1µó>àdÆ6È &»GºÛtJ‡™¥·œÒ›¯Å;Lz ËDç\÷- Ê~-3¸×ü²4šL€Ë}Š—˜È€|ü&‘'w \–e§í­Õ´úXlHçqJõ™æv«É–Á0î1æ-Z SÎz[ANŸuÄðdzɉ·-†ÜP[/%DÅ¥9¹5’}3ÇWUs—’µÊ®tîÓ•µwå6ûëqÜŒ[Ù×›†Ó’n“ùÌI¼m—ÝNŠ)©HŽÚm@å"#©!£51K°¸^'@Àq¯•0X¡ZÒ;EÇ€–ÃŽÃΠưS'@ñ:j »Ö^¨Äì©CÙu‡‚ùÚA4…r»”–|0³x@wy5¼Ë«á]žêÐìvs9JŽæ³C–â`—`æi7¥SÃ#G [‚‹†Øü§Á x#ì®JòœÃßçßÜU¢åÔn]ï§o`£0”Ö>^Ƹ?ØÉèr&ºÕT8ƒ‹OóÞ_.¦8 ¼>ÉðˆxäfuàK5ŧôDï®`¢wëÈC¬{E‰u/}Á%ÉtO÷~o½ß« Oï÷‹ö~?}©%{¿¯{¿¿‚Þï× g‘,¹ÈÒÙA¡E6‹ ÔåC¬²ƒ¥WY«È*;«¬õà«ì`3}P'@¾UÖ”ðÍ9ö`— ÊãY¦ÀTRðÆa*Mžê%t†˜ô0;ŽlÇ£áÇëÁÿs=—>”åο0áH.¡M'Є"œTë°(Û‡c9È«‹‹O$l‘ˆÎþðÃ%†µ@:í6Q6ý§Ò0ÐU0Ñ“—EO3%TIåR· oó0áâ¡08_LÏãsîùbΧtÊOËk¤¿Ý3‘ÔK$rD­› X®#Ø[u5¿‘ì© &¥Ó±ž:Œú4¹žà1fÀd R&aØšl±ìÏlߪºœ&TìßN¦_f7ƒ‹(iajò J*Òr‚uivÂÆ¬šÆ9œF€YÉË&7¸TG¬gUëUö$g½¦¬S$aüKÏ"IÀÌÜ’\IÖTË<¬´+š§P¸&^§4°*¡ñ^4ýF‹q6ƒ#ëå/R’'½º%5ãùýv¨yd£„t?rhÔ˜œ‰>›gB[|òÌ ‰‹ö õx"¢ét25]G³Ùà#²'ì)Bx t@Ÿ-à§óo2E¼:ãªÙÒÃ×3æ#™õÎúK©…!Ê0ù‚g¢åñvqkmvµ]Ùþ ššÎjCÖh k@÷©1€ÅH6½ÃÑ(ú¨%T9GÁ˜¤š•V1ì8×HfSq1Bµ[4„õF0fj³_L¡Ñ)fe G¶‚ÂTSìn`á†>žË®wÒ‰8|„#ðäšzqŒYÞÅñ¾Ð7T*ÍiDx×B!©‹.†xUììýu4 +¼¿™ãR¯ý¼ˆŸ^Ñøz]FJùòGð'ìfëq›|)TëÍ¿"ÑP*™•ëM®æ·ƒ©&iTó a™Úªßzµ+ûJ!FÉ{µ¬¡õ’Ú³nÄb\›Å¸cÔ Á3º™Lçâ}¦_ÔÄÏ›õpSsõÙÐæÅlŒ£o³áLñï¤(èznJ º4Á½þØ'»NÖéžš¶8¬«ÉÀ&ôrjÜÜŒ0¢Úvi«ü:ØØÚ®/7¨Ë[²Ç›I’‰ñ7”ÛÍVé£Í?M@RÄÍL5³ Âîº*Ih2#@w¬h$²¿Ï30¸à‰x[Ì'H™ØôsDSQ›0ÍI]¼ÒSr¸.üüÓÏUqs#^Áˆ_m«]õÍ*”> Îéë`:Ľ^13Ø>F3äÔdÓ†ü9þ…ühfzx5õëàúz0E± ¦ãÅö‹0ÞØê°æaÍ]#Ç1n)=7ìȇÁ;ntí}ëb¶D…HâØØ_ß Ò´ã7ëêPµÝ"é–oæ[ïÞ6wí´NÞïw‡9x‡û¶,ç»LÅy…ÿÞw€j›Ýwï;{Ui{ý®u ¯0p ~ÀOY—å-yƒü0ùq‡âŸ`„= %˜Ž­=u;±sYè •¡§ûþa9Á–2–´˜‰Œ >­Æ~çT¾ß?ƒ9êXõ©zUËèMoq.Å£?€d»U¥û‹ãß«’«lá*ï.`ô,@xÚk⮢…oø0¾n³Ókw@ V éû¤Û÷Ž º€Óâ9l^=84Fú^Ñ=0õÉeÄ:N¼É`ùþF/m[¥Yù•É~ j!õí=S*²M)ßîŸÔk¦e>šõÕP]cO%úÅÚ_‹Ý–âÙ•"2—ÕÞO\¢<9FQTï™c‹ú»n]ýô¶_ßò4b´c„h´LÓ¬/dªüÃñm»ÞÚ÷ÇW m é1åÖÚòÔjí5p¬xRÁm³=À—^;&„N6„Ÿ¼v—èC°á±· ˆÐ b‰q~d,Ó‹—ÙäR)L0)ä¬êÊ(õS³úšfÚLlmÒå(è€ç˜sú¥«z¶mºk±›¨é©æÖa‹vº£â¦)á˜`ž™\‚9LÖšÝXr:¾UFv¹ÌµKb¯ á¬\“dºœ4RqÁý÷÷Ò.l;"œ,†_äQµ7“ÙlLÜêo›I†¦½ã'­äXš¢¼xà5]ñFàŸT÷{Ö`÷p£¹F“;uö?MÐõäÖû% º=vÿK{6y·Å"· ¶/DÕD-ö_蘵¶ókiL“´dà$*9;o.ûõM?º)ejœô©å.šþ´»>sì"føš^U¹Ô2¨Eá&gk4©–\“[tùMïÆmj¼¿†oÄ®MU:0ëV÷Þ‰Í )å²Ë÷Í1°y?C7"/8J´ÈÜ"dó©c¸¾§ÖN"> Š²Â „ ÏñIbUðDÔ›À²@þ@6°$eK™;„´EÑÝear–r:ÉøAÆöã¥v‰>b(¯–Hv-©=þ÷B¨¦+\€p]Nº¤äòHÂ>>YpÒÅë×@c'ãÝ–©• P…_JÃYú‚Reb®P BòùPù»¹o?ØEŸ/ƒ(j“F¾Id¤UTTÇ[7L;™d@Xš‡¬›dcÂäd”& ¥Y[Bçu×WÑDRJ§…ã´úhþÚô;ˈ¢{¬Ü[çÓÅH¤boh(Çæ¾¦ö¼­ ×ÙRg1i›\ùí;Ñ'¶7 Xdžף´î>&A¯i4Ò4Ý%èýLÐX=´€}á^³©¸†¬Zg[a{#‰?Õ»uDÛfDZKºóH;Va£QrÒ)À{,Òœ8¸:T¸éÅ=¹/v’zµaÀ;Iâþ„Ævh4r…:;6èýLÐXƒTÅaî`÷/ «tÜŸHÜwü¸?±pâ➇\3RY$Y­-0`´¦\‰ÁLôQKKó¡}y>jÚ_5ÎÜñ&%ɇP9ARêïëú‰"Îò*9ÊéÁ)=~a*ÂÔôÃÉ8ÞT!BGþ?”dÆ*Býä¥ßXE† ìF¸¡C’½o»ÍHS"Kä¦$á'31 ?¨4M ‘Ÿ,iQj]ˆ-Åb_±cœd»…½X÷ì6÷âÜ=Ú8DÒ‹XyúXùÑKŸB´²ú¹å`eiÎW ŸÍ¿ÑF´7.s%fH"3ºšc¸xwÅþ¥X±4-5Êeé/[p(Cr¦ŒÛR~¯4w䯋ºB‚ß@K³%¡üv³"G!%!ÀœÈQfœ¦ÈE[r¦®7·…Rß0ÿ·N£Ë×fµ7b-XCpkïÖ^ ÙÞ/N‰&¾Rôè™:\&†Þ#$š]7|†ÛfK—äЉ耸N‹5ÚÑ Æ“qm½Ïh×è¡]ð¾0„Vÿ:­I²9¶a¥¸Áw*¥ÎzP~¦Ä Ùsqd¬C^¦2¶Òíp¦B:ªg F°’0$#6\gÀŸÑ»Y†cRëq6ŸL1$Õ8v†7áÀ`è 9‚¾Ì,^1…vqS* á°Zú\ Ê•Ï0*‰d†ÕÏeRûÿ|3üç›Ï¿¤@h¹Já¸ö¹œó™ÀŒ]ç|¢Ù‘99ù>b23c.F¥[¡¸Ü XBzßËðiÊ#“9GF8Š~a&kKÂàW1§zQò³)Å¥’RIn³ÒQNôK¹ßw–p½‡uK-ÃõþŸT`x×û•ºÆ.í¿JcÃæËë¿j:¬VmoÖ{ú¯vÞ½ï4ûtöë°s¼¯²œ{äÜŸšYn®gUqÔèíó¿Aú°ÍÎiÚk°ì$ æ{íV³gøkê¸H"Ê„zÓ}Î|˜„²b¯VxÝ8K)HœíÝ_Éû´ÓW× Þ¯®êVËEaoX’† bÿNþ½no·µB÷ׯºí(Ø»x¿öÑå5k»½Æ9Çï•È5v{å ðk-3]£+P^Þ¡C·Í² Ó4±k-‰(ËøìJ›ð••𓾲ns)WYÀcJB”ƒkeA ½划 åÐÞgÜtAv”¿®¿¼òÕôûárèÃsF¾Cß|ôRüòÔ¦hÝú³+|›Yê©iáâ8W°!ƒü{½¸WئÀryսߕ~çÆ¹†#{CKr“Ä;¹E`§zÚ•ÍÆÆÀ-00.ü\1 ±¨c‹~F¥·iÆaèØ÷ÕËí5ˆ°hÙ™ÁR¦3×O9ó®ÂÒ·AP%µ|=Š]Ú_WV×®C•Ió‡“E?q4“ºŒ¾žï„¥øZ^^Ê›ª½«ñH›I¿8"|•êΩ ™rçÓ’ƒ¶£ùð¦ïü›`ÉÍsk¡:ì^³Î$¾Ú_« 'Áô’®ñBŽWî׌‰P(x®E]ã‚”Þ¯í~ÿ1ûž¼oˆ)õ÷5gX昂2zÜ•¸œàÕÒl"nAè¤cÂÅ`kÈ$o¶ n÷³/›gxáO²B)¶1ñÜËI&»sIŽêzŒ—↽S­Šäi´]ò+ K×½D?ìW&léyQØ žèOv؃r$=Ç ô›ìÓŒ¾ì¨uÜS“…{âx´~}N4"fú,Ž¿\Íøšg«þBi·¸å­üö"©ÿŸ^ÍUÿ¿¹¯úÿÍgýÿc[#á öñXÌpöR|f»ˆ³»øUL8r-PèxWûW<¢àC⃘ DÂ5!¬ºpŽõa³‡¤l8á¹’”ÿŒm~pm`Åœ“æðq‹w,*½ÅŒAxwÙ„]SÎØ¹å D5É·Røo\Aw|“€L(LK’€âMFgÓ09¾Ë¿Çß4Љu¨0@¹ð &ªC¸H .æºÏW§{ušwkêÞ“¦ʉ¼ÂpÁì¿WÕ×®9×­$÷3Nx6øHß¹bn¤éãÜÇk¿V¯ßÝÇë?øã`?à>H‘zvôð7¯…ï,g¹ƒIWãÌþqû”>z§p¹Ú+ãÔ+áôQË«`YÌכǿH-ax©‹ÓûÜrúïM‹…-6^» §øîrѪËÃ^š]eÛ­R ž°Lب{V´®ÖÞßçR¸{Ð{ÈKaÜŠ(ôÞS€É”sÂxXKvHî ‰N;ž—iwY·Îà¼Q°ú˜'_}Åêઃi†AþÇëjã4>žŒÿM'ñYMuQìÂT(Áqx´˜¶ÈŒÛŽy/¾3Ž&ã˜oðÆ“qu—£ëÜ· W1~'vzÿÛ‹#¾MⓆsÔFÜm{n=wK ó/°tIÏS“¶ž;3Œí8a¿yÂcˆö2º‰ø¨ÂM…uõÄ7d¸ÇÑ ¯§Cò–sn›­û2é¯ {ašF_]þgÕÇ–š%G"åj–Ö¸1Ťõ+Ì­z»Åh`BÁç„t18Ÿ•ºð'Ç[Ào„Ærÿ<+=á;Àd°¼ÕÆ:¾þ SNÛ½‚w(¤GqFàX±ÃnʃÇ: µ¬¡©ª—Ñx: l`38aÏŒCœÆJª"ór¦L<]]^²n# y–8ïÁ"Díï„ ›-JE2ª,b"‡råÆnßkvu¼CQÕup˜ÌÒ¼Ï8AhZÀ9h$¦ÌwÇÍû¿ÿrûhW¸¡ÍuhƒÍrŒÞÒ~Ñ)î­gGjø°ÐŽŒá{Ámj\ù˯ñßëÜÞ°í®ShLQ®œ˜Í%£1FàŸuîÅV1ïÙ´@'ýq¥HÚŽ‘”BmyDm/‰(†zd´pD-œ¥ÌžƒØ‚®ì¾@/\ß‹ŽZí½â):Ê EVlzŽŒéyug:î¡)!¡ {:=«Øq«ÂÖÏ[yÁÛ–ÇØ²ñîNÐ&†Ýv˶/©D÷_û¾ìãVeSBÏ'£[ ‚<ŸDÚÖ¥ÈÌØ[—Ž¿—6ï½¼iÇ.[Á»2šÊXP¹Ûho™õlÜ!–Eë²éýÐZtß}„í!ÈÝÂóé|»ÀžàŸ£Ô YÕ†;!{+ºo§Ó{îv»½¿*¸,‹Þe7ÜÕ ·èþ\`÷p¾'‰TÆ©ñ`pmèm-Óùèï_'š”ShÔ[¿vÖ›2ª_¼aç'\2•<àÖùˆ`¹¦m&eôZL1|•‘q’(6µH–‚b‡î"³OÙäáwß9¾¿”E}Õùž÷Sœvo´ÎæsxÙÞóåi©ó¡²Ü«xíëêÈ^6šLœÜM¸T&>ŧݬÚòÖ…­î±b¸#Ð ëªïŽJaßT }åhõ¥ó!HŠbjxá˜Ô§ÔqÜC@ט~‰ˆ5h&"û^MOѺš ´ù10‚©•ÇSÒõI“6Ö]¤(Câš© 1ô"V kL$Í1ç“øn:áûŸ¦¶±'½Bö'¥ßÊ µÜo°r–#Ú„^e|)¡…±ù’îš?Ü 9- 7œV? ’q{|z Ã]Æ ä£ËøÝe´£…¥R”ÖÂZ}žfdº ‡šbÎ4’x*š¢2\SðþÑR½ö ë^ùAšJSÖ™SË3i1+Æï8)ÁzÉ-ä‡#×ÄgÜØáÍUtx3¯ÃéH^Ç©þ$a¶CIØ ejŽZti¾@÷É-áV jt!Ô ¼+ß1f¶R–]¹QÍÿó*þû…¬D#}¹vR]Rº½ç€Z?ò“ôÿóqãÁÉl;éÿóÿëQ^º¶ÿO¿Û,ù|„ŸšÃÎݼmŠÅàR-p«Iw™)îÞ(WN"‰É@L£Á(ÝꜜG¤á¹a..-Ðñ¤7˜?U׎¿‹ƒíNð"ϘÕëUðnŒ?ÓolTYÄ¿€çÙ„a¹,ë_`ŸŽ Ãïïæ_°ŒƒA/ŠÄy=¤W‹)Å;»ŒæƒáhVwý×pÎx.Ř-› nNS?ü8Dk>FyÕ1ÿ%KáÁu¤Vbqð1²WÛw·¼¡üË2¬N‡tð&eðQ× )Åæ.ö#‰ig(é’ ÃÉð‡‘x}A?ÃõM¹ ÈÉÙãÉñØËUå#{‚{.¦®@ìfC g3¶¢!ÈédÆßo¦“ÓÁµ˜E‰¾6¸Ÿâ¾'¦Ô׿)àôþ*F¸ž´‘¯‚UÀÂ>ª=Õáá0¥*8t« Ú“预T³Ši|ã  P |-[¬–iü‡¨.övÙ,€údÎB)„™mZž#t9¦âÙócìâ­ª!ÓÔ€—ÉÝÃÄ9Í„y%à/B›|§Úz“èt{g ñ!­ïajœ°^Î15Ö¦É÷0ß)xYóÝÝOÑÅÚöÕf4œSÀ"%%ÚñŠRnM3Í …›þ“-}åÐ}Z.ªsˆÌ,- @93^J<òÀ']Ä3”ì°'…LV‡ïÐ%ÿx‘‰S;Òn'Ì踣ys—Ç´Ùš#©!ĹGÃ]?îµs»Î¶|‡>å^¹òv×)Ųx£â¿?&*Îj©E|Z|YÇMÞëÍm¡p¢­²ƒ× Y#jŒc€«¿5í…×Þ# ×ÒBbö‡¬pJ<2ŸÊÕLÂ`«å OI¨îê¯=D‘r JÓX_ “Z²ÅÒñe'.H$ É!Ž{†ÛGʰ˜b¦+<”óy=x=ΡáO QJ<Úaf.8Ê)Hr¤]‘˜ä„€Mr*¬ó—­!yi¯Fþ ‡ðIôàUÁ»!Ó´æ°Ï=­¹Oÿû¸ñŸ‚­àeBÿ»õòYÿû¡«ÿ]"þÓßC)¼l¦;D_*YiqýÊ¿F3;ZQíFÅÁÑÈ1Ü€Äl…°©r!6ƒ ÍàÀ£‚AûRŠvÒ4ÍdRÓµ#ã"tjçßjƒEn¶Ø ÛÉ^å2BÐÉðê;Ð7dá•PÿTõ×Ï¡‰~X½ý÷ Mô…€yIô]B!$;LPÞu7Z}[“7È®B÷± ~£êQóHñ†žöå„âŠÒDˆ—V I ãËáðQ 7˜› Ͻ°pçð£¦c ñÓàk$¯1¢±{‘ñ½TÍËF4IJ(£WþÔÅ+Ž ’ä¿LÛì ú±D$ 7ðÆs B6î¥lÐX†îØÑƒxUö+PÓ']¥rÕôZë½»Ž¥P{å·VO*eÿRÚzo¿ jëwïÙá»jëmÂSlJÍpO¥tdù ~?—‡Í5õ=žk[ánEL)fÙk†¢`l.c¾ kà©(â¾ÓãÑÿͯUÿ¾zn*ý_°½)õ›Ïú¿Çx˜öý_ÿ@î¼]•+F.·F÷`9_•‚f™ÏU¤ìÉá‘>l6¹šßbZ\3hj$#’So}:M Šeé7Míçd4™.'b/Â{+[ó©ú%lYs)…§9±yºÎUØÁÂÙŽtœ@;êK¾j³ç­›¡«ÚÔ†`äÄ„1¾ÄðA–R”úÇtì™O0±Ç\Õ…óë(Qò HÆUƘðh»¼º®îªFØ=Dµäs;@w9WãÕ7ªhÕ[-V½¹õó2¤>œªó;$*Zá%ÊÖYy{Ù8„¿z²íe4sÙ¼¤¥„u 3ÂzŽÒ+íÚz6ë±¢ÐÒ=8Vf²âWÅ»ÃÙÅbF}î +áÉ®÷©è¬h`·4—á|a¡§äsü;ݾËÂb#¡ØØc[–ÜØÐæBlŠ`Kê5œaS™†"Üá–U 8,„ünkÑ67Åæ–ØT…@ß Äf¿'´m[[bK•ÛÚ[Ø ÅÖ&üžTÌ ±­Šnoˆí@l‡b{SloÁï8PÒ™FsŬ‰׉Ø>MF—3ÏÊDâ‹—¤AÓÀ}o¢O†—°”6^oW7^ú¢™élb4ààÝóOÓ(RZbÇ †yˆ¹8`.¥­×/Žyã¢.қp‡Ñâa¨FãažVãÒÆApêÆƒ1€V|ˆ¬Œh“ýD)ÚQzd?ûÁ ‰WÉ@Ö¼Z6+8Ç$¹ðïfI‡þMŠ¢Û6èÓY ú¥4»m§³$ôC«‡HÓhÅ\úI®"ne+ÙO¹”Œ’·â–T‹É(â‡5ìu÷àôA5XŽÓ'‘ËçòWÆæ½4N+€8½Á潤®˜·)…øÉ=…y{è=y»Ôn2ïïÀ’]Äæ"\o,Ì`„û²Áû ÿâaÈ6·ÐElÜaÈ~?›Ô‹¿Vm½ûm¿[fïÝÞg§m´x~Ó2Ô‡”É¡“›î¡y˜QâðÊ£!œ‹}6lOôâvu7¶ïöçÆÖœZaçEèÚ³D‰»Ý–çæÖ‚™rcÚU7ªK^áR'R/…Ÿž¿Pÿà®0×…qƒä ¼w”Öy®*Yʱ˜Žé¯øuâ~0³°cÇž5ò†ªÁp¬¨¨¯;ýZG°êôžº2ì@€•Ñ¡«žˆÆÂ “‘;îÆßïØþŠÕ¶õ&ù$ÞÛuBU'ð´yEò4ŠU1ÃŽ£…ZuŒlWwŠá “ËapÇ΋G©ë4 K1À‚£ËÉ5݃ÿÿî/ü¡RoV @ëÔÆmrÉ<ü€ÜüÓâ¶ù×@ÿ ·ð 슢d…|Ù›\G,¹ý×o€í 'ù‚s[nE?Ò Ÿ@ìFäLAî&4Ž×ÄJƒ3kLIVf¬6nÉG‡xY7‡crj`ó¯Y„¡¬€Ùá‘d¯SOÒÙ¥ãâZ¤¯^[2R5«ã“X W›˜PM0œi-õ“®6°‰'œáñÿº÷Ž®Ø7ªñ2s^+Ÿñô¸»M„ÐD˜cbSÍCͧ°‡)ÁO¹óøïº·9$­=_LZªGÕ€BÜ÷þZrp4ö”ÑIôh¿‘‚"a" âiœŸÇüÕ&ܶ"”õ¾8e4¤à‘0X–^zIr"|oÅJ‘§:Ó<ô“ŠÈÁ¯óëa/#$—gaäÐG±Á/QOA™x¤UÕ£Žd®*‡âl?7á¥Á&Ù_ “ìßIš,!cjš4Ék°a=Îr5…žÄã­~çWš¾“ç§ó=›©äaúðèÄè«|OèÒÍ,ºÖ }ì¿wüÑV¼§ûj„Y‹¦J{$Q†ñ¬Žá»¯˜\îeÿâR“>&ÜQRôÞaÝ òáQdÅ´$ ÅÅE’¨~d‘1’Ø32Uüc}ÝIbLCaˆü—ÉŒGÏ"cºÈèá–w•]j^‰Ð˜ÅÕ’¬£ÜÈÛŸÔcyš§Zë»mý³\/föz©ÍòÓÝïwœþážÄù ›êãÆÝÜ|$⿆Áóùÿ1^'Öù¿»û®Ãw›*úCrEê°ÈçUÌã,3w>µ±íÉ%Æâ¤Ô1 VŒTbYŒd:\‘,þôüJDçbc³*z‡¿Öï|—Ô(Í;óI!ý Mø_æ°îk‰³bV4Î;ÐÇå‹é±›:Y/KéÓèbx3%™NнÀo.‡1¢9 £¼ïÀ “ É[ë2éï4™ XhÅàœ2Þ*‰î*Œ ºØ©\Âh+rŽÇ V*`eÊ4IOå2‰Éã¢c`w¾¸-”&Ž®Æ_Àà70±Ù’(¢¨@ZB€…ÏÞ~Š\´%1?uÏbvreÏ0ÿ·ÂÙÝZ¬!¸µw¨þàö܈M#ÕRÓ3uÏ éî\ÕÚ´gK·…eUò”n‚IUA‡ÜâÊ•ͯ~ð4cÂ)ª~ðê è¼£ñågTOêh2ô6<Š;"ZcnÜ ©ì…‰Vò&”Áh6qÃL êg3`=´Ež¿x$ sGG“æB/¶ƒXš[?©yrÌ_”ü¬Xu ·>øídúes”º¬6+)ë4e-³’Ú‡=±Ëÿ=ZîäÓÍ£-tXT‹ãÞz¤:܃›JJóIXgU™•ÿ Ò‡ÝhvN;Ð^ƒ%DÌd•zíVç=|=Ã_SÇE"_ޤ×kœî—Ħ;÷P~ù›Âp¸©#¹º½ûk?;}…Ú4%ZU‚«ºÕV \c™Ÿ ö»=øìöv[+ ÜØ Ôwƒ‡}ïøÀL×hÅ …®d(¥Õßuëª Óm…B 'ü¹$ü¤rPÂm.ï’zŸ8ÅO1.ðÌ—÷×`â÷ ²NûjCµòPe©KUƒç3ÛƒßxÑã8W°™Ãùàzq “SÁU uïUqîK»ZÓ½ ¾Ë-vÐöÁ«û0Ô´±›mŽá,@<(÷ ÃûKä1ÒèçúÛ¾ ×›°\ÜWGQ·óF3£×Bm6þ„Ú˜¤yLW%Å<>É´E Ë“$ኬÊn3®2Q,)ðåÈ*´/1`òkeÅB‡=m¤Îˆ?ÔÆÈ»(íc&ãˆð•1˜€Z¹óiö¢íÅh>¼é;ÿ&XøKMpF;†æ@þôf4’fŠ?ÏYLOzÛgl„‰wéªyÉÁZÑ!ô³ûO}ÌIJýOf_‹)ö÷5gh渂Ô®±Ë 1às ò+c. \#°T®dÈ@³$ªŒÄ‚"¤?C_óà°Ø¡iÓ›tîLò ØèKrÌP·œ,7 |ŸjU$‹£—_eÅð~ûNô1 ¸*Qn¡žè/”ðŽÁ‰µl ßä¦ZQ&™’qs`î‰óÑ:FÌ{F©ö€’ʉH˜E¿o®æÙ9 —­¤]!ðçë ô'yÿ}½xÌûŸ`c3ÜÚLÜÿÏùÿåá…aßÿìŸîËjî7ùõÝoíÎïÀ\ö[û»}Úú¸!À?§-üÿ=íflP¤ '!ØÄÛzsbBËÞæh¤Š2ŽÂò&§¯Ð$1ÁÈX*²¶çÎ’s}Ó/qût}sÚ*ÉŽð×nIö¿¦Ïßn}€~”šm;ô5ê­^´©ƒ"uÀü¼@ãÂèjޱ;Ðäõb>™ªèrØ``ka½èÿ-³a-)Ã÷ {mürÉHwÙ˜»á˜ °?]..ØH[î]|ZLÅÕþ›ÒíÙÍA7¢)|2|ÒÙ¿'•~å¤RDŒû#Ùûµ·Ò¥>¨»&›1ñ—VöºC߈žät6V6}ó ÝLQITʉ[ÍetE·Sçß^«&q’+˜Tã¶òÙ‹Ò·Jå×r¥O¿ñU˜cÐàOjÄ/â!8”„ÜJÞ2-À²:©h 'XÆŒ–NW‰0xl:[eóŠ_ÎéfþiÂýg*â,cÓÉ í–¹_Ãv$ÁáY®/oeóØ6¡Êž9&â[|¬dß"o"rȽÇêâÕ”¤ê$ùÎèPë½FSu<}ôTÙ1«PÔB{ò,r€Ìh‹ ¢aBGV“Íc2;—_Ý“wNˆs£hálÇ,GOíp "˧q+ëëÞ¯" À9Ž)%ßðßÐ×ÙDèôðFfy8|Œ0°Œ1ô Å Æñ·àAú"Þ Ô¯xüÓDÂK”þª~££Ô†2–Ö”ÿùë?b]üçÛêßר¯âª†©F~:ùªe{wOc»F«uZ;ïú¿ÂGkÿ ïN11Âq£ ÿv›oÅßzïÚû§jöªhîw¡|ÿ:F+rô«'ý RÛéA;SÀ‘“É"§;l—¥~ 9 lg·h +%Ý€ðÚlå¿KG‡9ÊN&Ò³0îo8þ•m>…Ïì3Ñ5²Dÿˆ³Ø`ý!çóZw*n$€x¾,i9½º»*ËiÛ ØN.ôÿ Û5äò^9לnÌPÏ5Œ<æ(^fXKë]–J±…VùcÜ,M•¤¤JEU=`MàÇhõ‡WcwVöÚX“a­8#KÔʾ¯F¯ WKØm+Þ+:‹a¢R=å$å/×÷a‹Î¦ñ=Ïl2újZ)²K@+×°¤½É:´84?t‹spCGÆHĸ4+Ư³ i_‡Ç Ì… ãéMÃèQç:_³IÙ>µB…ô‹ßâûJR˹:¸XaÚ¤`¥ÕÄ%«­„±޶ce1¢àÞ †Ó×¢t;­Þ-í3¬ÎªRÅ©)ñEIžÂŠqKŠIîÝTë{ïv¢²61‚iÛš½`kŠÈ—ª8b“VÄÍc™ùËe Ò¢vs#Q娙Ye+Y£_¢ëQ³˜ûj±úÇ,ÈR×·Ò²Èg¬ñzíëãB,Ëí0˜º¿ø‘$2%x-¸ øäÆ•´w¶É345ÿd, Q‚CûoÍ„]ýo(dèsL¯k&؄Јå½È UÁóeI³†˜ðïàݸôx*œ.õØÖžŽÀ+² £¼ÎQ-¥Ç0NYVçMªH¸#t‘›$dÒ!ùàQs½ClÕQ X˜*™aÕ>á‘Ó+'!ÁòÝÞ ðC7 ½ÜŒIðNü¬x›áŠ8h²HL:/ 结V}h÷òóø ÙÛßÇvž•Dz8õÄpu€W’LAö@Ø»*À;Ѭ­¡Ù4|J¢V²]CkEÖ°]~÷RŒKîò*»PáhñŠUG˜ÅwUÁB;’ˆÏ»¯6¬B^„È<û5åéÀOM<6¼.q¶²NUž|iKC»72Š\–«ÖÁ´@u‰MB—1E \:6EáJE??+Šøù!EáC*ŠÐ°­ {ª‰ø TÃ'xüŽ#.ÿÏY.m÷:ШfÈÂHš2+»°3‰9‡E=õ×R-†÷i1ü¾·ðIhÜЈØä¤Eï¼öéi㿟~­»¿«`ù°ÃÀ+biæ] RR{W¬RhT*Ð’µEd~Þ–ÁÈŠ”‰y°Ýý$¸Cµûü-Õ•£ ï7Êl"Kæj¶Ùd™˜¨þÕ²ÿÚ3på®TÛùT$BŠÎÁ0hÃcžÖÿ©QˆòzæŒÚ5´1¶n :ž¹$ [¹û %Ñ–®eÎGù5ÔA°œŠº–0õL+i– ‚¢(“hn¬Ð3÷¬­v¸:­¶”%—ÐkgÍßÃt9túÌ¿ÜAŸ,’n&ïèÎ|-‰Ž9¨"=L×å³–P³–Ëæ,JÑ]œ³f†AXìÎGܯx.3в•¥ïAؾ·±u1;jÿè<{æõ¥ì™Õ }?{f—à=’êJ홃—ù‚Ç q˼¸˜ÍDlмœ)3NÉëN•?¤)óšcËœשfú‰7è#¯X?“u·åqNCt½Ò—[©èÒžù[Îà7[~—º;úZ½Ù 3šNôïiÝlT¥i*1dßʕ֥jæM¥á©_¶áÇSjÌç(æ„e‚’©¡J_Sq{qyËdL§pµOæ·Z¾PÎÑ$P9ÁVš£VK¼Õ²¹õS ±4àQ‡ÕÃrMó%?Gâçoj[ÿ€¶“ŠX-}h.¹.u%vjTŒT\»ÌñTRëZ¯V᪮Œž sòÜŠw"ëABZÒy%òÌÑžGËìkàô6(Þßô¯ÖG§÷:§ÅüC³g—¤ð÷zÀöz®U„aóD-¢œÆqH•åß ÿi•c@a:’í=@Sv},ž·€GÝ\Â7mè½röŒ|¥–Ýâêv%E¯îgÒzˆ;5›Î4rò£æRí V¢*3R½s}Öέ%ÌÛã͆U}…º'ÇŸò=‡…`x‰{ŸVu/Àg@?}úôë8Z¥_oI¥æº419Í ‡¦ž#_Þì½å(S ™½»•’U2aY³÷ÜÞÁðݧr°eøîÕ ” ;ue³Ž;`yMZ¾×¤å{9Õò]Yg‹yý'@q ß}#·-ßcœmùnêÝò,ß•pb™¡¯ç˜¡Y†èÙ–ïÅììƒØº[wL*…2@åÚ¾¯Èò=øÙÐþ……´&Z*–*0µ¢köĆïŒ#Ö$»æçc·ŠíRØø 7¬v^ó‡´~¯‘õ»(ë£{  ßJ«è³˜7 ­bÊ4,¡UpÏZEz~H­¢¿º<Íûî*¾ðìV/‘mž$~¸}¨ŽÇáÝôaÑ#Phw5,|˜¿g­Þ†KiT5w.WJgòå³ ,Ã8ŽÖ›•ß| šŸïã—RHÍ5§~øvq£Õ»²‹ùÞÞ ÞÒ+;ÄSsÿMšâü çoª2~Þ¥î³Kåõõ îS™^•žÜêóõäÅѸˆ–Aõª:~Á@2?uô Çø"8bPý4Å}é~ésõ3ûìäÿÿs­Vº‚xq;,Wš¦óóN&XïŸQB$[÷¿´ÎÿY"ñ"ê¿V"I¿‡È+î:ÔxË'žØ¬\5 @±w˜Q?TõW}§nüøwË ˆÍæ¬í;{Œ„¡Ò.m×mÜ[²êVå•&NðCÚuç]Ûܱúzµí"J7ï~ï“UnÝò0 7W uyµìèi—Dq<$}MTÌ•‚î‘’rÌý¯‰¾W÷Ãåœà´>'àÌfÿùÇóópÏhp3¸øRÛ¬‡/zÝݳù4úë¢~µÒ66ày¹µEŸ¯^¾¤Ï¿ã›/ÿÀ³ñ*ØÚØÿ±lm…á?ÄÆJ{‘ò,fs8§Š\¦³Áõd–VŠ]­-OâáeÖ{¿Ó}÷–ë>-À³Ý,ßöñ íÀ}±ä?áŸæA¾5[ø/îA›©ÌžCk¼V­Æqc÷HÈ´¢ô5šRT ¾2¼—œàýxøµN©\¢ñN°QTÛ…“ÁÕd:ÄN4ý¢othè4ÞŠÖüR'ÑëL¾F”= Î%/5“©×ejJÑ©P}»¿6º]+ÿ%!áÔX’ù LàP%‚[OZ?Ê èkÚ“ð¤ÄÀ*ÒŸ€Vb5mE[Cª´€Ç‹éÍd)EùwžQ1(éó,Πù¸¯xþ›ô4œÈ”Þrªk€ºâ“J¿rR©`6j#uª­êæô;”ÅuJ9w(7 àH )‘ì5Ì e¨Á·ˆ5Ùñ¾Ó!´À:ªËœ|06Ӌφ×C˜Çáœr ϧƒñ ëñ >@Gá8ËòäÔ9Êuær79Â4:Ö‚štί£ùðfô ow‡sÝÕqJ”Ž9]‡c ëb0žŒ1ç-£4ð&9¯2 ‡3J²ÃÈsóqSòÇá½^˜ý¢“{ßSöÚ!КþYÝnnÄy¨ç4øÉÕU-Y Ð4¹L ç`ýãXŽ]S±•–ßѲqšj½²*©x#ÖN×^ËÀlQöäüâTì`ÅˉOæªþ‰ìYG–ÊI’Í)ÐeŽnÙn¿µÿÅ–V<Á&¨*1sJ*g\¢ËFó×ç˜X0#[ˆj»ª©Èá#«ºÛÆ_ùÌ9¯WLfcUN¡l‚I¡`½_§99Ðûu¾üU YüÉ’x>IÅóðJRW5›¨üxtAœÐ:¢±É†¼ 4ô‡rx’ìÄqûixñ)æÆ}7Ó¹n»CmSÞj3G½ž‘“ÌÈI!%§„øvrJŒfƒg—Ð4le$£cŸdO†F»HÝ33ÿÞ’ÜXª´a˜0fÀí}Ô(Î q4J÷{Íoqr—Ÿ˜œû‘JÔêÍd8Æ]b")Oå,•©Î°#¸•š0$&èUÜK çŸ`arß ¢éÖÊ/4Ì`t‹©…©ø,Q^!•ñ‹yÿÕÐkÂPƒ%¦Æk …ËᘸšN®©§f?qÀ&k'S8â•-¼âŸo!ðÙùE~oÉï’”P`!B¹L¿Ì༥.íŽIpÄ*Tõ†RÝÏxÍqµÑ ™þIpÆd¢È!óƒ!zÁäþ‹ûe‹áh}"¤ÛÍe~;q DÜRøÉD\Œ@î¢Ô{·ƒQÂ6n¦“sØA“W40é ö~ÃöjH*4Ñeù”&`> ¾F’Ù ¦h?<ú–¢ÙÖµ0fMfÅ `þk,EØ›E‰zStø=Èyƒ¸ Ì® «›ƒÐåÙϽ›ÌCcjÜÒÔïŠÇ"£ÕEo#6Çp˜›@PÂÌ2âÚà|ò5zbâz¿oæïi5¹Ù׾˞VS ?—A“(÷t$µÚ³¤ö$µ¿Mß›¢Ÿ °¦—³ÏÖ\cè‡ÖäÔÿà¢Z-qÂî¹Ç?9Í“åðï.§Õ@Nó¡ñrÚÛ 9-TW$¶¢Ý “|ÓÛ³gÓÛÿ®'iÿ;½š=ªýï&ü?LÚÿ¾|¶ÿ}Œ‡×ºmÿÛ=è•ÄûãÖ;`“ÝF§W{ÍÆ[öÆéþ _È4áŸüÜA'ÕtŽÙÚ;«ŠƒýnŠÓ¿’yZ<ôÉ·'—|¥Ž ²qçØí„(ÕÜŒl>„?½\¼Ñ¹ØØ¬ŠÞá¯ñåö²6ÆŒ[‰hĺbÜ{cicÜx'ÜÊYYÆÜØ:¶*V{D£Qâ¶É y§Ä}à/0³%þó@ÿ™­g•ÅÏJ<Š¥Ì™@Qz†“P§§éÎùç“ÅørF3} ív0½”oà\9¼Ì¡$…2…™MF 2zÁ˜2,έã¶>cmÅÀ0ËÅÚ“èêjx1ÄÛõ–Ì´´ø;Ó§8))³!p¿ÛïöPC1›\Y¡Ú‚l¤£™¤A_#´,cK¹ù'´†æUQ×(¸œDlx9C( ]æX»Óè ’uÓyt1X€8~9A83¤ê1V^#ùVÖFXû^¤Rœª|ûÞ÷h¦Û`³jÛ¼Ù5èm钣ɭURáWH~£=y+Ïvîd„-ïšãYÖÓûÚéD‡;Á±‡w ­ÎD[ Fe§pŸ W*}£|?­ð®,ü«Qxw2þ¼øH¦Ïª¼1A äÅÝÑ(OƵÅx8ÏÀ·13vÁû[Q7êÂ6£FþTÖxA €QD¡#ÚÀyyXêl½—º€•v=žYö·FG.€v8Yx]öÁèSÃ_ª­qñ5Æž&­·qÌÍ+^„]î¬2¿í ígÇ“0÷Gs?Û8·z£ù`8žÅæã&ŸY7šT!­ãøç£o‰Å¤š1á4”ƒBãd ¼ÎÐ{bDRž+ä¢Pc EFZaŠ÷ÑÙ5œo&;#Û/h0þ¦QLü@í°ûÚõà l±Éâ¯ÁÅ\w@­š%lÿ7+Úú_Ö2+©3Ëöø‘¬äSÅ‘ï¼p0¤ÂØêV`lßy‡"=œ^ß½ï4ûxö=†Éâwžs2ÉÿýŒltaÔˆFoC>¤qÿŽÚ-ÔwÂ'þ¿q°ðGHöëì(uxt²Î9P÷§û%±éEÒò–û˜Ù»Ê‘ˆªR)QÅs`û”>z§+´êoìNÒLûïìØà™G{÷×ôQSõª*æëMŽ£Aßö.¸Ñk)Õ½€ˆ0v/`-ˆŒzÉ0ÕÆ%¤â†œ t$è¸kx¸„i¬K> Ü`ÒIA¶ÜZÊGÈ&Aª®ö¦ñÚUÔ8Åw³ºp{] $» Qñ> ä¦ 2Çó"á=ûhv•m· HÚE5 æ­ûs²îYѺ×(}I?ŠîAïü((y*Ûë úÍ\ªºÊzO±ô©´ÆÃšÃCˆ­ÏËÀ—Æ8u4Fgy¸½ã †5;Æ<ù tÖü¸ê|tn^/® EÅx2þw4ÄMUI\“žª¸-f†1<ê“°eaLâ„0•û7³áh2ŽyoZf‘Þà èáûb•ÛÇT®büŽ1ýùý l/öá˜Ä'çð¨;¼G鈭¹õ$ŒY™¬WD—T`51¹)5ʨ«Æ…o?¡_%¿yÃgˆö2º‰øˆBM…ЊÔW•¡­heO\,®†ûhÚ•‡ºìȃ;45]£Pe;Ù𠧘¤Oþ¹¨Ö\Œ&<­AÀƒóY© –aù¡²\Á?Ï0ûþ±ŒË[=aÌãëeuV´{ïPÀ¤_°¥÷‹áL”‡½øÀª-AkhÚù;O€HXu¿ –Çpà”1VRÙCa3uâÉìò’õ.IȳÄY"*Ç¡$[³E©g§S'P–EP”ùCèääÂxx6›ÄŒ(^Lv“&›É"a©k&Ù?[7ÎA#1en@L„ÆòCºa—ÜŠS-I`˜¹QÝÎŽÔ@Ï(.›¨ܦÆÚ‘¿ŒƒÁøïun¤AØ<”ù…`8ñ…Íõ †K‰Í=~¹ZlÇH)¹<¶3‘þÈDàÚË‚Hó«xðXÒ~Z-¢_1¢RÁ‰¥‘ü*Éi™Þœ*é”l¬?K ¤ç;¿~^%©w'5×.Êchkr̵Çb™A˜7½ôHšDP€O’Ðç›'E!ƶ+š5˃‚Ñ~3H=w[é-CéÁfA®ºʲ7–䓉²¢ûÐJYj»yåSâv>ºZWµUZ‹îT锘»í,G‰¯ 2Ý¥P–½ñ$ŸL”ݧ–·DM“LTè”ãÌfMÎlÆÇL?=#hR„ôªfŸÎ:§ž|al\åÜÕc+yÀ­óQÀrMÛLÉèµ.XöãI&FL¢ØÔXX‡áº/Ë>Ía üÒY|/öBþRõQTç»È7NqÚñ†ã¯ò¼W¶÷Iy0D³?ï+žÃáº:–&'D.•‰O‹i·öÁïƒu©¨{¬€À/ÑtqäAxa]GÝñp*ìÛT¡¯Å¬¾t>ÄIQâò/Å’ºƒ:Ž{—lpñ í#ÖÖ˜ˆì{OÄ(“¼JõnÑ2ªÚ2&+’»$žŠ¦¨µ„Ì/b5_ÏVóõsô|)££Ç^æèð’?æD'±Šñûÿ8©6¼›·ßÇÄK¼Â*E´È ÷ïðf^‡Eê¬p <òŒt ŒXöŽÎ^ -¸Ì8›mèÒ|Mì“z0!sº êžÙṳ́I”ÑåÕLqÃ4oKâ¿_ÈJ4TÈ'˜BªïO÷ ÷ìûó_÷$ýfÑøqý^nml<ûÿ|§‡×»íÿÓÛï7y·SU‘{û­ýݾ×oò7ôèifpé6[Øì+ÏŸ–åÔzvRD6 ^–ÉðRYú$RÛñVä3·¡yXÆQÈcÒô`z ÝÑ›(#ÁA³äd:Èò%ê.™ ¨{å¹bôu'° 8 ÎùÄ ?Fc:‹ÎÆo@ƒ86®œ[†È‰ð×E‚Å#e¯@I‡q®/*içÔçͼµMùnǶ7³Å9_Jœ¾³ó(¨µ)½š./†7S²‘ÓÁåz&OŸtnOAÒøò…4#NíÅ›sáaS.× PØ; ŽØ*'9MèÙ0…ž§Ñ¥é3§ž”É+õÊ"uòàíþqÙçnS¹¾Iûð;Yœà'c ;hÃ-{*ËzÚ”U a·Òެt>év(Ðß{|ã·ˆ+Kçå’^Ü5ç…?å3å¸mÅ·ýÆÒf÷©ÞÌò™3ñkŒ£ÚÛÜ­.ú¿WÜ2 nÉ•@îŸËq@›CÝ› 8ñ.Ž¡©dÂÚQîf0t Ïr規ѿÇz-'|þ%[5¡È Rq¯'ñLP¬'o0¿‚‚äé54Þ/)þÍ>ÿÅïÿ– PФ>¡,è‹q;ÎçÑXùÄéPâ6(ó‰ãäàÛGª¼XäŸ\–GŠGN¡²Ú*n•_Òæ¡]T òlrqpo¯$|üŒ-f™»%ø…w.íò­ÎÃ!eô\?$"ŒßšË”6G@›õçzðq8L¿‘Ÿæ¬ŠöŸ€W4k9.½Hmöglý˜†½ºÌ­zŠŽ¡“iÌáüîP2¸Ê¶Ã'”Ëû74•D¯ëÒ°:¤½©×Qiøz¸Té_ºIÛCðà0þ%6\i_`å7˜ÔÊ—Ðî? ˜wñ6alCkg›-TÄQ"wˆ4ŽD‰“«Æé\, II—C:Ï‹Ìð–qvI3máPA Õ&¨µðÚÿDU©™0¦ç6Фç,:xITÄ]:2xnر˜åÄǧkcq$_í˜s–³zßS 9ÃPûfˆL0À¯ÿtã6çPJ2ðÓ9,±:¹798ÜN•î·—Iœt'§ '^n’kQŸ8†Zò†4v-ˆÞ"„­š0¬ïcŽYºoî'Ü[í‘ïÇ=õŽ=锘·_¢&?¨’–¥œØ6ub(éJ$°ÞùÊøÂ4„¸åµ%(GÇì-!e+€üˆ:!SR°ÎCc %ʶ+¥N­]N«a„S1¬¨ªuûz ºÆEÑ“E2¬Ðø¡’"Í”Oý/¦ŽÁbêx¨R»ÑQijgx…#QDɉ”Ó`‚¡ˆ*Ìú3#7'óòÀÀýl<á "Ðu4› >J{}Öò@ñfÆÂ2ûà¨ÔjK¹·JÒk¥½f&ñ5Mꓹõ53ÉO¯CÙ )ùÔÔôÓ¡‡˜šKS“ A)¯ŠRSÓ  ŽÆqrj:ôdÛÑH‹ =5óª¨çsžãóJr¥Ùþú°™ GØi‰ˆâ¹‚Ü|bŸé‰³ªEè¸ »ª™Y-=‘ZPjb57ÈôÑLö…C—¤êG×Q,nÂp(ñ«Œp[*šQÁ;(ô—YR!40Rá&SRìEÐðÈVùy4ÚLnpÞAÑe–~jÒa…-NÏ€Áé®اk&êZ¹ÛÌ'7pH¹ÂÖ¦cÞ×9_csÌq¬p!^Ϊé w0‰PÒ” ǯ}QF?¬aJ_ ±„ÿÐ^g$ ê§„Â¥è‡T0Ì(Ï8TK±õ:ÓƒõqH4ñaM†æbÉN…kBc6>šð#*¾yg0Î| ¸hôyyrŽ„‡šXØóï+yÈ:€Ý 3mqØ–7vaEóÛI\’Vî˜IæÔÍu|*:F¦w¹ˆuÕ¯n¹R á¿R-xÊ›ìÄù›•];.W ë|"ö3ÑSWƒK=D"uŽ”7Ic¼œNþb0n,"eZËø°ÖN²mRVdÚÃVÔÙ úÜ3­4–e5#ÌÞ >Pä\ޤ]`€ ãÈB>nõ¨©d[eÎ?oð‹ýãº:7ëK ±¨©EŠ(’ô#H„@ÅéôUh'«Êê *h®µëá¸$v•-£(~³«mŸuüžÙPêÑM³g¬;*cÒTÑzgýÙEqí `ôXLiâ-|€6—5õ«ÞæJÐC4þ,í1Ü,]—e@¨k¢<1„•6οYáÛ”\ƒÜï£)°Ì‹/¬ÿÀ·‹‹y]üfb²F«5ùæ2¢P·Ê^ÙÒ‚ê×e¼>{ùJ{æEf¦Bv;“¡¦!4ëÀGÄY˜Xhªªü!£,±”ˆ ‹ÉPÞx©åS’8Ë×Òu)Ãu#¬/ouw¤ÖuÚbÉ\ˉ…Œö$ÙôQãUó‚YÁª«ŒaÔ:y¿ßý½ Í6»UÑû­fNNçת 6½,3V*p,ÛðÓPØdØèÿêÑY™Âµø£ƒf¨aV˜ Ë }´„îvÞuÑZ †èË6¼âÈG« Ôy›—9¹ªŠeôf‰ Êy >)ÅÌçL¿· €>éúSLß9ÉrIü2ÍÆ!‹Èúom'ŽBDê¾ß§@Bó…ë›eݧé…Óò9§ÄhâEG²1+S÷OêµØ\G!²šï8Ax@îǶ•õ2a—|É¥ð'ÅÃ(-óh‰lÓ‰œÐ²MgÁûÉ€gî=ÙÛJi°Ôý¡bÓäËJUüë0uWÚuAÜ~©4 KõøwŽ?äuEƒS{Té–4¢]¾1dáÚÁšVà*Ç¿v÷Ö¬ò…M„Co‰­MèŸZ`@’ÕQB Öc )4k5%µUEÀÆ÷M+[+Èê-¿jXšrÅp6]ƇŠsû0wÑÝBp©j–(ŸØÂ’¼[ÆÑSüF<ý—ø{EýJ¬s/Ë•>¹Š|m‰ˆ9Š-žúpŽ:kTY£>ØBÙ>ÅEµW›{@ðË‹= ƒtŒØÚU”TX€—ZÊ:ËŠ+»2Yµ»Fü«!„‡ÕûƒÄc\‹¹¶Ä(ûkUþ牌2ÍéÓçó£%D¹¤öudy³ä–Å©½ùDZ/°±k¢mHbÐûØŒD£]C¶–—DM¬ó‰¦&Ûó1¦—ž½1í¤ä;&åF9èíÇ…ž£xýÿǃGõÿß ¶¶7Ÿýÿ¿Ó#W±íÿßiHíίï~kw~÷8máøïi73ýçi7ŽÐn“ºôYß3·÷tÏ¡ô<Š ÐWøWhn3ú;ž»¤ïâÿß“Nþ@%O€ÓVI#Ûÿÿ´[’5B¨1/ Ó0’…fz²ãÉK_`¸&1Ò‹ï×ùûÊt.¿TgHe‹‚¡æ”÷Œ;ÀÆW'¶í¦²;øaýã£ÖAÞ¬ïñˆ·HÀëw›°îæéîôŒ~3<Ú™ëñho@+:oµ Ÿ¤æÐý9áÙÞË­oÛ†*¾T”fCìªÀ<ëž¾òÍ+…ê°Ú}ÎóÔ=ê6ùªšP²©ÉtO”4Á(+=ÝœÏÓÝëŒo{Š_¾Ç?³7ž¶‹ù½ß: M×ý‚^øUŸó¼=ŒÔYlij˜æ*ö`¾ôK8Ñ÷—qOúË“ýìÃ:ŸŸ¶  ö󶻪’žœŽ&Uy]Ð½Š»“öM0Æféì’æé‰áøË×â%’f˜A31ü‘¹O&½œ´2 e†;”g169EùÆÞŽ­õ ;s³C„ßïîŸî¦x[2ÊÒýÎyzî7÷§-Çñ€ZžçÉiTe”[ï©ò?Ï¥’n!*éÚTâ¸þdÒ]™t³È¤»2éºdÒ-@&]“L¼Þß>ÇÈ4â\øbR%"?x<–ª)Sd ¤êo] ìSp7œßZNpi õL1í}F0܉õdžcúT¾:F aɆèÌÈiþÝj,;Jç‹9Ñ`~‹¦èEfc‚Ó5ªb1¦àÒ¶D(ÇĨOsテGû2tsjÓÏÁ=¦ „ML.ñºO!!‹«ØÔä'!fa‚ÄdŒírï:QI“øsÓu RZW”ÅŸ& ´{ç7~aÿX4v§“Êäâb²±ôI#ë|)¢N£KG˜#—+¶Æ} (I[öÙ^ÿmË"‡ÁÅ÷†fº>=3 À’‡YcW:åíéX¹Ž½ž×^2̆§s&±ÌØëT5=¸˜/ÐÏÕ„²˜ñÎô=FLç ö˜-:·9Ö1fŠç{–JšÎúËT>./YÓ·¬Bì9[VÂ]‚õm[¦¯º.¥Æ¾œ_ˆ¾íA9cìÍÌÁg§oSÔGÙqßʸªGÇžøÀ:\Ÿ_d$œØãʾÓ앸ÞýçëZeñ¼8'•E¹BŸ_Ë–7Õ‚&õ«vCfÁó4lqáÁs£¿ˆ¯k–w“Þák–“ðW@‚zÅÉ+í/.FÃËHfœåÈ-œ“†‘va¥,£i^¬Ôƒ‰T™³+ÖwüX¯Ä˜ïc¼în0pØ ‚bn„ƒØÙȘÔß0F’r/&I֣ȡ'ál5ïç8˜c$’8AˆcÈ9 hº4ݵ¿ooqÃ*fw\}rY•Å…eßÈK‚ÜÖ¥ãºF“41×o‹ëÜš×ǪɕfŠÃ¡E§).‡ä½g­ Å.}J†ª´R‰©aìî[” §H]&Û`ÊÅT!ýRP Ê]a NRÇi—(RÜ‘œ¡›Š ¿»ûPÈoÊvgY:ª ßÂUxÔIOºwmº?3}ézÕ|W¹ªô–k ±P³…ÿšÎs=6WÉr†Ûi¾í¼ocðóÎü‹ *ö[ý|¼Ç 4˜Fi‹ÔêtÛY‘ÏßWÅq÷ÝÿðGˆ~vÚÍ>Ú-j¬ç»—»‹Ë]ê°°÷¿—8ùp¢¥»åí½ëWe&jú<þ}æ`ÜÚÏ)ÝW/£nF¿—pàÛiìU“Ž|­ÆI¿;ô=;ò‰ÂŽ|ªm^´qquk½ÖËpæÓþs©ywñÂÓM77<ÙÇ'ê‡wÚJ8âõ´#¿,ꉧ v³ vó ê¼9™Î}Æ©Ôsý•uwd^~Uco·-+D²ì÷OœH8ÿ‰Lo½ @‘ë˜ ZxŒyc°yî€ânb§@‘í˜>~ xzº³”ƒ Èöi&ú™]/è,(r¼&ýþ‰Ž× ðY9'º†íêw{ƒE€œ$ÓmÓnD.zåÝf/ûc½îÕ{ßÊ7¡¿LtÑóeY'´N#ß ­˜_™e¼Þ‘®dñÜjP§Päv™üEï-І¼$l ÀÅ‘ÈðiS¬…ÛTet ÜÂÉOš…Ì·À¸ÕiÆóÙ˨ÂÇ=v|é æë8–XP5_⮎¦ÓÇ=Y„g žo¨ÆÿtÀÂWI ½²B,r“3;Ò B×8,e¹Ó/}©~)ñï#lp’“vK°/I³$²FJì4ËzÛ epþÒ48w—¼¹¸´#!{̵=<"cÀÅryˆ/µ¹a“¢·ì%¶Üœ}2±bŽ!,w7H"Ô‡Ó´¦ŠCô;i™ 4-¯A«Ù4-'¥ÏSÙH­†=!´"s½1ôxMô'T]ÛòÇãÒgQ\ÌpÚ¢¤ŸhF‰¤×C#Ê€Í/ãïIB<Äb}<—y$+´rZæ†ï££—É' Û®¼"þ.»‰Ðê)è?×=€ØåÅ•™ß2¥ÐêdËé¤ÓV:þ¬y@ÅÝ40°D'aÐÁ½”A i@=5ôpÒÉ*Ù\kéæZùÍ¡NÈhÎTìä§0)ÁxßJ™Äû|F•éÀ'Òý&—äI¤ø¬'ØÝÍ7ËòM ã 6:ÛÍ”—µ²èµ °m0íÖcŠN;W;¸„Fz[í“í®bǧu1yþõÅëOŒGö-ú1ð´#ý´×:qÂíØN ¤m£ud¨"Ó=Ò•©ªó,+¿W»wðÛÞ¥u¼A$ì«(Ì2xþNÑLUŒåË$od9G@å‡Ý>YŒ+ÀŠ»qdèøRÒãW¯³s‡´ ݃°OÃ~€—»(DÙ·葇 Â×*üçK‚,TðLæúÓ ´»*¬TÈüµO d‰fg‘žYÈ2¾'’±½úøñcž¾¶ ÅØå¸fB¼m ÕÚú&ãá|0ýæ©ëÄ~~ÿ!ÄÅ ^ +³™ø3í^Ã~þàÒ\óϺ§Lý'ö5H.jä>êÖ[Z¼x $¯ˆÉˆ|œ¼3p«¡ï®Í×ªŠ‘èdcáv<0¨åqôqà´ÌM{©­ýÞvµÔ´fûZ&ë„r›Jî5ðЭ…±Yá}„]ÍSi—òV¿‡­Œª{Jô:äÃiR…Ó¦÷ÅîšZEjm‚Ø4¬ü1Eë ¼¿«ã#øë¸?¤@|€rÅõÂûjI(ü@GV%éÎPèQôAák\À1-$euhÙ$(*—›önÕwí®ZÒ€ &ç¿›V lY5Ž=¿¸Ëp¬Î“ئŸ=ôÓ‡@ ›9œ7¬Êl绽ŠùKVCUÇúšäÖ›…¹µn9Œ}³}ã²7tÜ—~{Wi¿÷c`+Þ{|ìÞ„ØŒ!ö:ÝJS…ÍÙZnßñ)Yiß + ×<ò}R!Wò%]pÇ_K»keW‚þHü˜ñ"¶a¤!%vá<Œ}éû Uù1s²bLð“iÂ)æU8º%;av\ ý8û×qý+®óÊ_:‚Ã…¥ÙH;éÃáŠ5ùUýÙ©U‹Âs ñã½|O^ šƒ~Ü™2¾¿,Ü °#~R%&~’:‰Ùôk•ÒÍúðÿÊí¥‹õáe™"ç¿›‚`p͇w˜Ö0Þ>ÜSJOkZîv™sïår·Õ¢¦åy¹,¿\`µèé0—Ë2”“¦æciÜ÷5•‚©ôU•Ðé‡ÕãÛE"¢y¡Ð½”Ôn© :dA;ª¼­š¡þ`ˆH'0 `ošØ›&üø§ê½Â>bŸñ•DZù}OüÏá+ATѧ2šLnðXrá rË8(µ8<…eñZåBòDÂéÆKôQF=M Ǻð$ÉͶÝ{'^mˆ–Ïc•8¥±£j‰{4¾Ô{µá©D9Øüf)-ôch%~ ¿¦ùã âý˜ZE2…ù[Ó ¦8c*<µ|Ž¢)Æ9-å´²D Iûâœé§Ü&ž#Û"õèç(,¿¦’>Ú ²IaÈþڶرË\› Òk‰¡°oÚÛ~ýÈOG"Å}JWÍ6r: –õòEè{‘áDÝà¤$(ÉäS–n9ݦÎßùN"«{󕦚¨¤Žw‰—ö@öZÑ·œ oÞuŽèëQ˜Ž3<Êi£v ˜ˆó€ÎøÇº’šxM?ò'8»"RS|“¸ù®n¾ }Í.7/óíÒµV …ŽÒ+ö€¯%âºÜ)ü0|–{ºÏXŽÌ¨ÝgÀGxwý 2>Ù”§Öž¬†æÛø§¯ N–«·öë$ÏdQ7ÃëY¹C= ¦ÈHΗjC²·£Æ`¢9{,ý: lLƒ ¼¿åïyF‘\’e¾Êž1¹™S†æè;Ë éÌ kX ¥PhßK ä(KÅ#å‹ÃOú6sóa¡Á–D;VÊpÇ Ê6UÓ-~E,­Æ åÞí.ƒ*s1½‰ç1óÕ'® ˜†¿’§“ &Þ• …O– -†ðû¢!¼B á’hPÈšyk[¿DRPrø2ƒçb‚Î~T‹þ>ÀšÃÃsá°ÒøŒ*«5J Ðjºu¥vâc‚¿ ͘WÂqÂUrœð‰pÉÐ,àM€ÁTñ¨È¢üHHõ%ϵÄÂ,È¡áJ‘ÅæP62Â%aó)i"ž`S˰Ò7¥°©eØÝ¦¶Vɦ¶ž4›’´ug6õ,BÝK„Z)‡AÊãÐ$ŸgIòÉ ÔËSƒ ¶«ÐBÃ2Ô 6ªÞï¡Ï‹†M—±…\˜›´ 7¶7Þ¿p×ʃcîKÔôܶW¹;mÿ8»3ž%Äíô’æŽçi*2_&‚)Òϯ6’¿ ïíûmk⡯ÚÈ@p©›6yÕ¶öwm¤>Oy¬Û¶ä}[SvI^¸¥Ý·y[m¾Imõ^n™÷mž;“üÛ¶`ó^×mÁæó}[‘–rZyŠ÷m)×mvW‘‚B¢²í›0Š™w×@üu”¼Aaõ¸VxÙæ„£,pÙ–òŽO;_}ùÿ>äeÛÂý>ÀeÛ „ A§bðíæJÅÏ7fÏ7fqÝ¿çÙO«½z"¢÷Ãݘý@œd¹±„÷Ëw¾»JÓ ?_]¥.ýŸW¹ô~"Kß_òq¯®ž“XÑýSÖˆž/‘þ[.‘‚r æV}Bãqo‘žÇX­Xñ]xÅêîs~p©ðX~¸›7šŸq±²¼Èç¿X±oNò=Í‹•`•‘ÁS1ˆL/ù}oV‚Г¦*Ø\ú^Åôs̼\±îVÖàre>¹©q8‚¢w+E.WÖîz»’y¿"DÇ®”sÃâsijÁÇš7°:>™×,­õï|Ñb,p\ù?óEKÇç–Â×&oó.[~N¹l ò²¥ŠeÅ/[RÜ9 \ƒx¸7½ZåÞôêÇÙ›¾ÏÜO¾ ¸Ÿs.àît÷öàWo2„à’·oÂÞãö-#–`Þå[~8ÁÌ»·Œ˜‚Oîê-ܾ÷Õ[¸ý|õ–1®¢­ü@Wo‰°‚áÖŠâ  ÝçÀ‚ÉVï×âS¸~K„ŠY"RÌî=æ<_ÙéçùÊîùÊŽBƒ­PöŸŠ¹ôß6áß@QõÃÏü˜ÊçˆË1ºUZ‡OÛÊø¿*â÷g‰ø‰Ï÷“Öó_v?®2Flø´cÄ>îýä³Ä¸:‰q¥|òŒqu·¢Ï2÷}/T¿s´ÈÕÞÅ.‡Á•š|¾Í܉7W¹oþ8;ñw¹ ·<·±ávÊm¬­w²ìí/ñ…“þ™uþçOø n_j›õðE¯»ûb6ŸÎ‡aýj¥mlÀórk‹>_½|IŸ!ߨ6‚Ííðl¼ ¶6¶Ãl[››[ÿ+íEʳÀ»m!þq=˜ÎדYZ9(vµZ´<‰G.û÷;ÝwïÚ÷‘~ûMà×ï[ppÙk6ÞRúC•1Qf²$¢¯ÕD«qÜØ=2—­(}¦”ˆè ö‰š\ïÇïu\ýh<Žf³(ªÆ¿íFëÉt<ˆhú%Eß(l§ñV´æ—:ÿlgò5¢ö!PÓÿž9¿²hÈ´ØF¢ÛÝ_ÝÆ®•Ä™„ƒ“e|I–aŒr¸ÝLÜ^ƒSÉ'›ó¥Z.1œŠ0ãŸÇ‹éÍd9¯ùwÆ?fê¾YÌ£§ý#^#ÄÖ@L£ÁH¦œŸLÅhr ÄYçgS—íô? ghÍpZÑ×hqöd¡¦JåL}œL‡óO*+½Ÿ••›ß!úp,*?»ÆsÅ Û»‰.†WCLþ)‚6¦q^ð¿D;•: ËÄâX{¿öš¥ÒöX2-,ÓJàKá¬ß©Ãеñdžì÷x8Ïèm{Ò™ŒkN9ï Ü"X¨# ©þz2È£ÝÎdz‰}¼²úWÇêÿÂ,år"-X/̤÷b€¤\—C˜i"†RkDz x7@Óoœ>î©Ù`óŠi‚EM£hp‰ÆCd4–“nºACE†¼¸(Eí`8¶²ÇãûDeîE•X˜aÖùùè“”U=Ù"M&Nð4ºŠ¦Ñø"º´GÓÊK¹K&Q9u44†Èß?7—ÃÁÇÉ8 ð]fgh0EŽ0›8à¨_Ûöj0›£¸Ä¼Âç‘,ã2¦ž¿†s&žRÜé²ÉÔæDËÃCìˆBÁpìb ögÄÈd:ø Ø2 ¤l ¨¶ÈzQSÓ»=Ou†‹çzðW)€… áÓ®‡ðÕêñ4+-..`ƒ»ZŒhØæûâûá•Î/ý…qò¥6ÿí3³Ÿˆc1¢€‹¯ƒÑ"â.¼YÅcn›Ç:+{æç5>žÙÞ·vÓ]qÃa¥¾±¿¾aíqª™ÖäóÝÓm´Ôz÷¶¹k7Öy÷¾Óìãæ| ˜åß<»óaÆn{xèÍZƒDÊ:XŒ/æ0ëÙÝ ÜëJz?ƒáv¬÷ü:£•Þâ\ŠCF;@t|«â~ß>­Ê¤á¸Mà½À9†¾îzºÍN¯¹ƒm7콋.óÁù(B»±y¤%Eýh6—²8²IqŽYI¸ÊR‹¦ Ø8W=Ë‹Àbôy‹ç3.Á¢lŽº„-ð ëVhkMdäiW(v‚ÕPãI²ï³@†.Èœôö›ny'½}VŠúmûp#f‰,ó 0Ï2·ÀXOZï²ìirè”m×J@œ‘Û’M˜iFüêÈ!i.´ÕŒþ%Qô›¨ùßûlçd…˜‘91x´ºÞ ƒ×Ÿkbà3òi6ÃuÓ.³6×1L ©kHçÀ×`ôÃ(¾žz<ú¿éðqõa¸‘Ðÿm=ëÿçáÅêèÿºÍgýß÷Ôÿu›+ÐÿÁq6M¸ùX@¥ä2”}qWñé﨤G¸„O)à¤:$¡…sÛ5z˜Pëý}•qÚù·Zç“£yVÆ%”q6í<«âðqUqCÆÉ°€*.ò/ÈEìauXÆyþ¡ü;šNê<`ÿ-=ríB½ÙPRNíæ_ÍÌôg&Uî —õﮬ’ucQí —Æ¹yLe!xv`Çÿ|{ù=tƒ>Á¡ÕØïœæè«ªØ*tˆpÈl“±Çp[­.‘,†žŠÿm Ån³¸B‘çûd1¼ø»Ó|1#[áv6ò°4Žô-° ©]Âî§ À†¢Yápþ Á)9®nÃóë™X©ì²|ÊÈFIJù(s=¸ŒPw „1¼ú=̵_ŸêíQI~£±±Â»šƒxF¢ÿ[ H;óÚ¯¡§§dŠ/e§pŸ “åûi…weá_»“ñçÅÇÁ<ŠÛ€7&ˆ¿É­ ’dXãqÆ?!mφ—Ѭ*†õ¨ÎZä¸ËÔÖ=ƒÝ‘ºl;õ†h‰«¡þBν‰ f© ¡ø(å6$ûBÈÓŒ §è…÷(çz&u4¾ Uõd_eÝ™Pr.„2n¬›žô ¡“쇾™Ù±(7ÿns§Š´Ÿq½é¬²xÕxoµâ«˜ ®»Þ¹¨ªw¦ñ°³<ìÔÒ=n¨¾Ã•†á™&V¼²ª&´Ãñåðb@!`iS6˜˜{me¢~–tþÉ»¬hüTn³8LGŽ­»uU]½éûjï§Ôv/œ~<£õ%®’×P+½O’äÙ‚z`ÂwÏTNñ¾¿;êõîR—Q÷¿ßJÜWåÜom%ÊÃN]eÛ­²Ä•Ø«dÝ¢u¶u[1‘,uÖ{B×iOì ÍF¬Z®jÍ<Ûø\žH×Ô÷x,–žWj©³tÖMŠW‡Á1 (3{?°2Ó£ÿ›_=ªþ/|µµñRéÿ‚íM©ÿ{¶ÿ}”‡éÖÑÿõäVÒUkȸïmt–3.ð îO‚Ú ìpŽ2!:ØLáó-NÒ×Y,‚7wÚâ·ÁéF³h0½ø$vA:€C«©ü©H'Òû$‡GÚ®Ùäj~‹‡,\7hýv3|…Ó õÖ§º” P–ÓTrNF“éàr"ö"¼æ±œª_byu¦9§yšÌM÷ýÕ—p8h ‘¨$¿,¡ÆìÀYáfèª1µW>f¦À<ãËÁôRÀ‘j$íE©ß¥†à4<.æª&ÁI„©Ó%@ªÊ×/2…GçåÕxu@@z„6¸SHI· ×KWëÕ7*hE›S§ž£äô)ÒÌÐ £HöЂ3Ù‰D …D•èà2 £sÔ^ À³Itêhž¸IôjTSñTûUS¸¢~ŽRªÓ·i«ÓÓ©”:ëAùEX· ¨}<m÷àØ¶‡^6èŽê Z¨“y32þí7•äïVp…v îx€Üñ˜¹c UÌ#o?EÀË`&Fô5×ÒÇ!HéÄÏàúØ_¡MÌK# Dã)€y‘ùðï-^TxcClb#›bcKllË’ Vˆ Á¦¶D ^Ã#0oÂP„›"Ü¡*nˆ0€ßmÅÔæ¦ØÜ›ªÐæ†Ø Äf¿'X[[bK•ÛÚ[Ø ÅÖ&üî1½Ûªèö†ØÄv(¶7ÅöüŽ%Òæj?¡ £N$ôi2ºœ!^3 §¬C¾ ‚I08™Åq7Ñ¿'ÃKØs7^oW7^ƒäE3;c2-çÁŒÈjþiEêz‚Væ1ƒ©ó2³Y£´õúe Ã1¯†¬´2éM¸Ãh­Y¬&Fài5n!m‡Ç±°7=DLX|ˆ¬ŒH@ûÍ‹ J»Tåb0C¢ÇUAÒšWË–縑$þÝ,éпI±@tÛ}:KA?°”€f· òt–„~hõi­˜ëB?ÉUÄ­l%û)—’Q2àVÜ’j1%C\â°†G­%ÅÛnac0Q_."bÈç`‘Dk8;ä÷yÁjCšzsÚ¹Òàf¹=ÙìÂ^øÍq:YŦæ&°èÔŒ± _ë€NÀ `[±7˜s˜L˜%@?à•™"iS~ô^aÛŠßÀäìÂtÁ<‚sŠáàW`iÀ­s«Ú&——9[ÀvLûi;@ü.c°ÿN`=©»õdíÖ“³+ØßáyýÖjyý& –âõ·“ûqúÔA܃ÓÕ`9NŸD.ŸÊ_›÷Ò8­âô›÷’ºbÞ¦â'÷æí¡÷tæíR»É¼¿Kv›‹p½±0ƒqîgÈì*ü‹‡!Û<ÜB±q‡!C/չȣsXõÍè]®)[ï~ÛïVE§Ù{··ŸïºíF‹'9CTM´+®b†½ÔÂÛ„þëÃgøÇqpzúõDï>Wì]÷nï±n>ãÉŠï?•Fм¥YNøáµ_Ó­¦öÞ¥÷å°J *%¡®Ó“¦7\ÜÝ»!µ‘ëñÅæé}Ú<Ç«%ó:Èɢ᳀”Ì¥,4¢`N‹Mת‘Ä]À¤(‡Äù°«…gì°†Z+îªVCPlRY=Óœ²ªû«YÕý•¬êÌ/K$· 8Ö—^Õ`ý!v²‡´àÂôÞÅx\†ÈWŒÌ{²%—ÐRÙR¡e ‡XÀ÷FNFÏW´DŽòÞ» y ^)-Ê&í_\*ÔRêe(ï¥ÉÝØ-ËÊ«•¢Ž²iéK£Žž¥¨b•#FùÆi‹RG?„$u”N^ɮ֎TŒ"eœ¿Þ])ÏÒ¾«$åRÌÝE)üñÈC=r5§-¢¢„‘1yûÒBÆ™í HvÈêî"Ü­?¦tw$S¹RÀ‹ï;Ëwyä/±D‘u ¾»x·ªeòp¼ýNË„ÖÈIxö¯hÆÞ|x¥VEÕ*Úé[ÑÉä¦Ê )¹‡f#yuLrY¡´hš¾UçóÙXåãóÿ¸yTÿ—›ÁfÂÿc{ãÙÿã1^®ÿÇqÉã÷q|—èï«ôè0Üô£!–­Áøãd¡à¤úP‘æò7tôxL8>MÈfI§ŽãN®/:r(Gäúpk«ï»„ˆ1wÉÌ1nÒÇÜ1wö–¸ˆØ< /õ²Ê/I>˘=3nˆ (Ïkb‰h!¦k‚êÇôœðE ¹ßˆ¾¯÷D^` =†Ÿç=¡\%Ré,5m…^Î&6Ë»ÎÐÜ8Å6 6`û?#“ã©dÂÊÆpö–º˜MöÀÕ† ¡–>ׂråó‹…Úaõs™L‚¾þóÍç_R ´\¥p\û\N€ùL`ÆOÉidÕgN,ŽäƳ¤!ZÆÇæfž&~4›²0+nÞu¬„UWŽ VÂfk ,Mâ^6XÇwI¡è·2:²5.Rg‘ˆ¢`¨ìÝãï‘R¸/PÆ:Ê8X» ë»mh³\/ÏQÿzYøü|ˆ¿ï“8ÿÿ{úÿÎü/ƒdü×ðùüÿ/ëüÿ¡{‚vÖá¿ßxÿƒå~ËÑÚ^ij7ÂÏ2g_r(Qˆƒ?/£›it1˜Ë~Ÿ@2¥èhÓèf4¸`•ƒ*Žôá ®Ñ8[Pîrq!Cжùô3øÏ7¸kùâ´ÏÎí$Hè€uâøF1 ÙëhÀ1“éüÓ„cÆ‘‡Ÿ·Q„ÒyæJF;8Ì«Á å yÇaãæÃ<á&]¬³¬À±f$XÄVW¢·ã³”7‹mŽZ -'·x$P ªŸ /ڶ‹. ÔðCò…-m?H29us뀚íõúei1l—¶¶žXXá·C80Å'Gâ…S\±3<@9èHÒèÁ>ÆÉŒÇÃOÃÄþYáyçL8G~93vEÙÙ5öÚù—³‡õŒ(¬¸<•‚{†`$ª*19ÀÒù‡e5»a@e1€_ª0z"ª**õªüm,ʬL3t Fq¦3g9î1•ž‹‰ˆ)4à;„n'ðtƒ¿Â´üå5ô«®Ž@< <@Vš½oÙ€¯³ãß«¢·ûŽ>Þî·Oé6Ö^«Ñ=8Îû:,r\ÊV(ùPí;+ Ú«€B1~Y'ÀãhJRúÜÝ·¯´(¡N‘N¢“2¨O+Dž&1µXüÑ=-•S]é(±U{•zVcá©”Úœ+pŒ 0—ÜÀ܃•¸;-°gÜAÜÑ’6Å wèE·¸áãBŒ3c‚˜¶1©õÍsÐð¨¬þl:[!äHîC& ÄoI¿Fjà0©R± ¿ÖßöÉ3Íòñ7Œ—}+nŒéžÀ1@ò~ýF4*ÇÄêëÉÚˆ¶X°ÅR5b¿&›Ç=‡nUѯžöÏNÎG2ùÖªÁÞ„Åi’ä ‚ yµ1í)r“¿ŒÆh¡ÄÅu$ó‰[3aÎ!ÞåÍ î$ëyF¾VBC'•ÇŽ&9Šov@Œ…‚X‚•(Y;¹ãRü¾ÆûÔö–ÙǨ} µ8)Z i,^»ÉGeß³é‘ ¤÷C45©Î¿ÖÃ`iïÖ­2 ?2Ðÿë7ê/YC~-uÔ¸‰H,×Ô‚P´Ÿ–Ìvœ’&? ˜3ðëIÂ3ó0#lqž–ùúSÖR{ô¿ÿ~dýïö«W/úß—¯žõ¿ñ0a:úß~ýïoïºè{À#e°ÑCé„qË™Fá}ö»V›¤.÷>Å)ÀVc¿sš>ùÞ×ÎrW)ƒøP¤{cÓT«d¹jÿ¤^ ,Sà§{Ïb^rÐM‹7~qR×­§Ýu 2ˆvñ¶#þÙ㌽‡«õzȱhYªJ¬3Á0øFN%l µ—t˳&ÖªRÁBºPWÝ©;‚²¥Ñ'øâÿÇÞ¿vµ‘s‹¢ðþºúWh={7l‚Í%Ýé'=ޱIbb ±!¡³Ï:= ¤ºMû’Kï½ÿû;/º—ª\‡¤ª;€]Ò”4%MMÍ+‹ªtÔq?ö Ï©‡]Û ›§?€ ?užß|ÚäTv½Ë¡ìÒ $ÜÉ;‡Ç<¯—p'¾œ†,u(ü‘h$ÀPû¦sj-P Á¸J¬AuvY›Ä“ÜÙu6£µŽÍ"¦`îÀFœ£‡+º!’Û-lfgCõá|tá®sê­.¸¶©Å¾9g±ÛsN>Më¦ÓS˜Hs+B?; oÀ G³«÷äD“ÚK!äeaËÆ ¿t6›ðvL M2šªn˜"Þ&æÖÙ}*¤D)°R>” ‡®Àtçä‹p0Ý€^…h _ªËQ$‹ð¢Iª™Iª¥ORÚ‰íÏHÒ¤yD×çÞ:÷É]£òSêR@=¦=ÁpÄÅÓ¸?|¶îëÇJÿ÷×_,ëA>3Høªd(¶¼&Ù(ÍÒN¿jÑ! ¯*Ó G«ä¯8kæÕ+ 9£µÎ®« f7B:À°?è:pט0Ë/p‹øëpWƒ­´¨g» •ž¼`Òßy÷Ey8ŸÇÈÍœÚõRü4^‹Ï`îã§C_ƒ­TáÀN•ˆóëÈn  ŽŠñ *.Γýˆi/ǘßך&‰€·' …‡âøPln«î¯íÓÚ -…x ³>ªÓ}c2;3. ‰:rdHVa`íè’2j€£áŸ³+œ˜cKA“©¨ÏVf€s‰"@jeU3 åA(Q6ò!ÄÒ€€°Gœ= <$JÁîÛú%ÓŸ9ícç+v—M'æÖÕÕÖJf÷ ñdS a)ˆ²™äÜ“À÷&ÜYëûýìIºÆ>¸=y›-éìH­#Uã»Õ–´w¤YýˆªÅv¤Þ¼¨ÍŠN…ܺó‘Ók·/ÙmW¼•s#ÞjÖû0PÈÿÀ‹ekƒçtsï,y&úµF)–ª\t+Q4¬*e>ã!ûí.ëÉ#ÿ¿øÂòÿÍÚNRþ_ļ—‡¸%ÿoòÙ@ùóðd·½'Žº{V¯uˆÂÛÅåÿÍÛÈÿ'Ÿ¯á <ŽÏ—.ÿ?^@þ\Èÿ¿=ùbÑ.®Ы¯PŠ€¤"àØSŠ€Q8óŠú›wvbûqåùM–ç7¥<¿ÙûåùÍBžÿ}Éó›ß<¿ùäùÍBžï²Ãæw+Ïo¦Éómá›%Ì¡yB|Ob8ßAB,"烡”ÒeW^HÁE[.÷ló}g‚ûfªàþV{Ï]ñ‹o½„õjçÂz±a}ó‡Ö'üò¥åÿÕZBþ_Ý*äÿ÷ñðž±ãòÙ@ùvМòÿ^!ÿ/äÿ÷(ÿ¿e$ÑBæ/ ™?=…Ì¿ùßÊø®y!ó·“ù÷Xæß“2ÿËü{…Ìÿû’ù÷¾™ï+Èü{…ÌÿÞÅŽ½ïVæßûveþ½BæÿCÈü{ߩ̿÷ÍÊü{…̉2ÿ^!ó_ΓGþÿÏÿó$!ÿßÜ.äÿ÷ñðþ±äÿï ù¿l ‡ü_F3X­îØÐW¼+B*€û„불T(Š(@ê)ËRdÿÎÍÜQ€š~ ¦ŒÔ,¢ÝAƒðŽ5ï¤áGzWh¾/ »ï@ƒðî+hÞ„{b¾ûn5ï¾(@ïŠ(@?šbáÝwªXx÷]DzWDZ¢’áÝ d˜+ÿ?><ºkˆ[ä@•@‘ÿáž\óÇóô?ð¥¯ÿ©nùîåaÒVäøÖò?|9ÿ‡¨ü™Žn*…ꇞ¯—ý¡p…Þ‡žBïSè}Šì²‘o\ïSdø!ô>Eö‡3ûC>QoB’jwÂI .=¯£Ï¨ø‚Sø\ÍeÍe3„¦ó2Ø&afež £buÒLvå!œ-éÿÂ7¼ú Šõ¿®Îå¾÷Ã2ô ¾~ÖáÂû'³šs;¤irí[‡WÍ¥7ø¦¶HÕ—WÁ-ò0Õ!?NR„èÉ%ÿ¿cˆ¹òÿÍ„ü¿ú¤ÿßÇÃ{¹ÈÿPäxÈñŸ ù¿~Šì…"àa+ŠHP…"@ÙäWEö‡BžŸ¬[d(²?ÆÓ÷0SE<œF€Ëþð*š,ª>B­/ª‡–÷ˆ´¼â&_Ϧ\™{S+w¹#x“Eú®Ï8/© ý›èŸQ|ïâKq-~ÃV^YkÂ,È%¥[ôªþªtÊ \·Ž–8U©œC}| '}ŽŠk8»>cÕ-ÌÅ$ Â=°U¸9ÕÁèùh0»†à~ÙÔ î:œŽÄ™ZQ¤yr«‘îÑ(²&°Px^µÂÑYŒvuZ„«íÕ“_YI Ë(°†`ôèâ‘VÌѯ!EäVDU øž"2€ÒëxX:¤®øÓ–…mzŸG“_INQÿ~&bü¡j•y/Ë~Ù ä|„lmõ CˆrÅ߆êô¤—ãܱѧ>©Àÿ‰Æ£õ$ÅJj>‘„EÑШ@Ëâl6uõÜpÒQ¤+Lu.â1MÜ÷ð9ˆÑùùlŒ]†uˆTi]$Áv˜Œ`õˆÉçÉ4ºÆY‹þžQÇ ¾ÅlàÊ¥z½[ºÐé ¬ŸÇ¹Ôª‹æ²€c”rYM{4?™E–úöúÙTÅìm5¦ðã°y?jS”Rdë0—­ó<ø¢i/ˆ£ú":ÏÖy²‚ñÞR`¨ñ<Ê’Eϧý$Ç£b^4m«ô‹ÁíT¡Ž‚Æê$Ña=FMc•Be –Lh ¤š SQ£Fu€ZšÎÈÉYíNÓ\p\‡“ÔÒ¾>$¤&Ì®›SÇýs>à4k„'ØdvæªF&Z7B«BŠ:ãéç4Ôñ‚08HèBèšDŸ[¶ý°ÕÅŸpçõ£ œÈoYï~Þ}d¶A ×_‡+Jçá(=l€¬1oA™}³1o±µ§ 4O vÐ3 õw)ªMwžì±ßÜGc_ÈW`^TŸÂzò¦89t•x驹¯º¯6'«3]$ŠP>íÔžÎë,‚zÚq«hªÃ&µÜv¦wkY CkpÞ›pÓwÛè‚w¬ Úó·»HÝñöp縨É-å$ÒNUNóÉ‚l>ð˜ ã ÏRÃÖô:¸9™çÐä¢$ ÂÍœôáòXÆïXª7Uˆ/HÉZA'f¡²Ly²å¿÷$ÿ­&å¿›…ü÷>Þvþ‡Bþ{ùïr2AòßBþûõä¿KH Q‚ Ap!~ð‚àûËÍpÂ_•ø@ ›Rø;/óA!üýn…¿ÍïLøÛüŠÂßæw)ümÂßÛ ›…ð÷+ ›ßšð·ùõ„¿wÜèâ;þú™]¾gáo³þÎy²å¿“û‘ÿnm'ä¿;Eü§{yxcØñÿ ùïmä¿ËÉPÈ ùïדÿÞ25@!ó-d¾…Ì÷ÁË|ï/6ÿýÉ|Uà{)óíI™ï¼È÷…Ì÷»•ùö¾3™oï+Ê|{ߥ̷WÈ|o+óí2߯,óí}k2ßÞדùÞq£‹ïHæëgöøže¾½Bæ»À“-ÿýçžìŸ$ä¿Ožòßûxx“Øñÿ ùïâ?Ü1@!ÿ-ä¿_=þÃíRRàB \H¼8pNåqëpû÷'V±ì¥Dø”Ï f_H„¿[‰ð»ïL"üî+J„ß}—áw…Dø¶áw…Dø+K„ß}káw_O"|Ç.¾#‰°Ÿ¬ã{–¿+$©O†ü·ÝþŠñŸkÕ"þó}<Ùó/ñŸkÛ›8ÿðÍvþÜæøµBþ“Ä"þsÿùG“ÿ€óÑI… 5@ºÐ:€I`w.ŸÀ½t À«"ôÈœû½Éÿ‹Ð÷úk+B*€³p¬ 8Ñí|‘7ýa4ð¤dMÌÃ(^q‡ö+[=)Ÿ|ÂQbï^=}µÖÙ­Tqß…q:Œ/‰Ï±I%9’Èu]AîDË‹þŠxÁ>+¡ö6§ÐïU®,ŸÐx€6™1G“:¨;‹v*¯`¢•‡–G²‹³cÚZÉ.Cp•:›¹6†ŠøÞ¦üWWî„dÓ„Aß@GxÛôˆá–¦=YÄÐ!¯*Z‘b4 ¯2V/@%E[èƒlgÅ&5‚rÃZCÉ¡Íä^åA¬UŸvô ôã{`½áÒ)ì!’z ¢ô‘u*’*h5²*|¦ŸþŒo ÎÉù ÛÞ:>¼b_$ZöÁm æÁšº™g!±€µ8­xú$X£ÄØîL6é1´“†—‹xê)¨ë\êÀqpä2,ä¶¿‹mDjNЯ%¾ÃãÙòÿ{‰ÿ]Û®m'åÿ…ýÿ½<¼b‹øßEüïBþ_Èÿ‹0à…" Pü0Š€‡|iâÿï4x!þ/‚€?ø àÖT?ûÿ‡.üoÞ«ðyÑðÿîÑ á§…ðÿ ÿ›ß­ð¿ùP„ÿËŽ–þ„ÿw'›ôüàÂÿo;Æ|¶üÿ^â¿×¶«› ùÿN‘ÿó^^´Eü÷"þ{!ÿ/äÿExÍBæ_Èü¿G™ÿà ¿4™ÿw ¾ùAà|xkª “ÿœRÿÞ½Jý—ÿùIýïß»úpZHý¸Ô¿÷ÝJý{Eê¿ìxùIêw²IÏ.õÿ^² dËÿï%þm{3)ÿRä½—‡—oÿ¿ˆÿ_Èÿ ù‘ÀÃi¡(´ß£àÖiÜ,7Ðwš Ð)| kª }@N}À»{Õ,/ú÷ÒÜ=º{¡à´Ð~|ñiýb¯ÆW«ëÕêæ“Ç½ŸÙÞzòËÏ¿ìÔ~yòdkë‡RK:éB']褿c´Ý9 uö^ÝtÀ}íÝ^÷P¾],yMFn«Uª‡}Á¹°³\`\½ç”ø6ÄAýE:ŽŽŽ2.%¬Y?,öŽ÷ð×ñ!]å:ðs¯Y¯ê/÷êÍt¯zÇõî1_åŸûæÏWÃvoA5zh¤íúAãeÆ(õƒú©|ß>|Ÿ½V¯S×ZÜ€s Á/K8eU>£ß¹3 13ÜèA”YJ8´Dµ?t½Þ٪]X|#I€”šöxY”Lú—›x¡ÓPiãðyÙ¢?ã#K3AY«.H_#ß4•ʘ1ò&G¬"RßUömð&'}×ç—*`ÜçªM~YF «ë{l3ŽFoÿÈÖ¤ÑÔ EK™è¨â´R«ýôÓªGteŒ©§|y§ûU÷¹(A›¸,Ä~@û ê–wú[Yâ(\äH•1Ä׬ÓYVŽo»pì¶MM¦Ê8w. ô¼ØØ´¾¤rUóÁÛ—­öb 7™ZîPÜ<òdéÉu3¶žW]Œ£0 Âü­zý«SV#Aþ±*jngèYÀp"š‡Us"í#ûÀ‰Âu²í N¼Äž¥‡z¥1`ku;R)Ÿ¼¾šfø8ÇåµÛ+YëÍ^ü@U¸®ab)X ¾Þ9<^çÃK•Mˆ@ÃITR• ¸°[R [Ù´Ëûi­eo:õéqÊ&µç8ð­> „uØ(T}Fé4 /“'ˆÐçÏ~Æïó|I ;-®uI-¦;VäÕÛarAj­±bÀœ=êÕ±ÊíÛ:QÓw¦ð„Mμ®çS ãz wWÌN›5´x·ÍÐy&u¼î¦ ×¢º®:”nI¸??ÂU8|U“xÚò7YÁœÄŠï 4röÖ”.å<΢Ëþl!†mߨƒ&4y?tl¸¨k]¢4z<¥›åÇø"*Ãu•°Éˆšh¤IŽf`ÉmˆÏ›$© %u"º°F‹ÅoÙq·ýtàcÅ2¿0öÕ²ßgaá–çOßY 9úߥ$š§ÿÝÜÚLê ÿ¿{yäAàçÿ)ô¿EF Bÿ[è ýo¡ÿ-ô¿…þ÷è‹´d…"¸P'|‡ŠàpZ²2Éíýé?Æ×¢riÖ›µÔL)lêáªþˆÿ÷§ÿà#ÆëÍêzÿkós‹>iü?€¥µA|ÿv*ÿðÿpØÙÚØÞÚþk§Zýb{i=Èx~pþ?cþáXN¹çÿIugãÉÞÿªÕ'ÅüßÇ“=ÿ’¸ã¸³ïÿµ­juïÿµ­íê“íÍ'hÿ½½]ØßËÃç˜eÿÝx±÷ºKR<Çü¸~Ro»¯à3ÿ’ZÔù†ßÕå~Ïß/Íô[gQ ð@&n˼›Vâ¿~i›o9Ææ;qçf“ïq”´÷~ÊtÏÄkh°kÛ8KL®;¾#ÁXÿ¡Ì ïl[XO7'4öCZ×ý³Ñ–¨kAیφs>Nû1«-”‰7›4q—éŠRWZȪG•ÕòlHÿL W~u{x F®•m@Ú|œí ‰8Œ£›q4A}'ÉVÆÓ÷#“ìÏk”Ôõm(7ãÑÅìœT 8¦ëòpEõÍvÇÑå bÌ ñ|0ÙÆ_=Ͱ2˜¬Ü“õ$Œ“áÏ_4©Ö“&SÊ´T¶|§a#¡n}ÿšÀyåXÕh‚Q-ñ[I,nZ²ÆÐqC1 äl 31ò3˜`¢¦@v&1>RO ¼çý! óÐÂñ"º@«ÑÔG9µLÖ]àÐIv|OI„Œ°­%/%Çë¨ä"ÉsH'Ëôc$’h’{_]ÁFñ,%§ïû¸o?}á„7ö%’Ô"üîìŠOe'°ÆJ¯wvá á~Œ'pÜyP©téU¥s ÅØƒæ•0v´|+òÀšÝ{çq‘R Å®úGA­È±‡‹HózO+:þ'âb6ŽaXc5¤l¼…QÂ!Ÿ® v°ànٜĜϧöÏ9Ì$:œ¬b¥§h§„&F°p[íú^çMIl–Å#>YQ1(•%ƒS©â?²¾p0¶éaìÏåv†JCFâPêTVV}à?`âýììÂ/do$·Ç3‹¶Pø»&oº¥ayªÒØGZg}¡·¸ø{†óG~=8™/˜‚KþË4>¬¹[×Ì]ÄdD ¹Ím04½d­<,.ã1, : C0påG"GõºF·Œ+\R<‹S…âR&3šXi·÷PŒÀŽ$ÄŠúŒ¢sŒ>óâ‰9YYշϽ Ý7ƇÐË—Hu_–`¯Ó/KiBñ—ÜxrJL‘“ÌËR¼âyìIˆôæ™hÁNœögÀ#~Àø=ÅïɃøK>®x2?Xß ®jß—¥êÓ¸REØ\–ªþŠ­UŸ^“‘<û: ÿƒ“ƒÚ’:¿-ÇìC^eØ!1ÐÚ `éÖç)6ØËâö듽îïW  1°á[|¥h½í‘iÝ“^—‰¸QIÛVNÓª]²ííœBù]¾‰ ÕlÓŽX†y2ѼZ3owŸïÊßÇÊPy‰Ê Ú€‡0I¤ZY$#’5öZíô‘rõ²,êMŠ´î‘cÿL3Ÿ•Ñ2*Ú8ú-ÚÂ*Ó–WA[\8ÙŸéã§:çøÑ@+ê]´ªJû4øÔ>^¥Œi¬3¢‰Ü×xÛ¦ã›Tê£ Pp²³¯香ÄΆêz»:Ö¹·=/åL¸Ó/¢)­à©Ã8Ü’¯È”}%5}އ•³hú=cE ’ð G[#ºZêž’ˆæg›ôG þR>¯žU7Übÿ'ñ‡ú[•«V*µJe³RÙªT¶+•JåI¥òs¥òK¥â³!ý¿Èçq¢ öÿÙ¶ìæñ³-ÝuàˆÖnï³¥ñÀ¬˜¤‘ò²§Ï{cüM¬T…Vy w‰ä¤èOà9 ùI·¤zÃ7<üÛbjÖ¬¯†p\@ùãGçkÓAÝ‘¶bO`éð}"Á ÁI…ßÛ,ÑŠ_Ûg Åì ²eÆm»JîËL“I'áÐã¬Ã¬ó²¯w¹Ú9¶·„$Þèýð×dß¹¦‹vªd¶Zâ*kc€¥{N&±¡žÚóçMÞÜ^T $)=áZ?¹û3ͤoä:jfèÀÃFåÍnïõzÅá=T¿]—úlÕF;DËxZ/ ÞmfÌyýL4Ñœãg¢ûîÏR^IG®½Pªóš3Ð2Ï$ ‹Xô4íÀö™ý6{ãBP$‚h8š]½§=šz^ CÚ{AÞÇtpë8eƒfë¡ÊX“÷·[ß±5ˆÐ+a±Og4Uƒ6èÀózbni]¸¸À¡0ƒW0\8}(­RBH†M|[ƒæËC`^Rw‰¨ Ýz,$‘^“˜©X$=¡RINÑÉdž ¸†9£=^3\K-kIãÁfÆi4ü9es ±ORwÄÉ$rÖ9åÄÐß×´ß<Õ åDR¼.x‹¸µ«³*-2ßõEâ„Ã&$}SdŒ˜Ñà~o©@ëµ åV†7G>Ì“K™}^>Âå[/í?=(·ž¶ÖZ»x/Ô®óÈí%×"‘P¾¢XvÝǶ-÷óÑøc|ñ(ã2Ï£ Emì–€¨híι… a»¹‡èäþй–å¨ÝrksMM3Öª+Ù]híÛ¨6X9ì·:'{Âçi'BÄhH;dO1­/§v½Ô²'Ç›ž º6¢#PKaÆØ²ÇH.ú˜9*‘Š ¾3›»ÄžµÐ1¢K©dVÃuŠhWŸírµTÅð’d+1ÊVb茖®ÄkñY'Â^¢Ç%k5&VœÂ×¼õr\&[zQ ¿›†PUi©d3£Ñà1H–Ü #îéKãÚFWÄ5ʥϓM[8{¯‡ŠÍ(0yh" ž^åÙÌEy´çÕ\²³D¦<šÏ©|7ê³òÃ]ùiÓ¢@ r±"r¸·YÝi]NÒZÅÞzëÅš2ÎíBsèq€02^º2¤©¶”[•8X«>í°t§#~Öò¦8Žn¥j€\jJIh¸¹\„RJžRàö©\åB¤”×TÖÊMŸ¥$½4µBLê½u,«–·ð Œ:]÷®ôÔ–C«@iñd‘@ ¯[𼢉ˆkâš`1–ûš±üR \Š’»Þœ#õN”+Xˆ·¡ (ôúé§-E>mÒ©Ëx'`æõk98MÇ(ÏgzÍ; t%têO$/yØøÉ}¸U3)JÏ¿þ¼;­Â¥{Á¶¥C­·=ùmØá•ïÙßšÃkñ8O¶ýïÅýØÿn×’ö¿;…ýï}<¼w-ûßfaÿ›Ëþ7ÃlIö¿ÍÂþ÷+Øÿ&æ³0. sçX=Ä"8GO ÓàÂ4øG3 n¦Á…ipa\˜ÿ@¦ÁMiÜ”¦ÁÍÂ4øk™g?Ò4xÎy)g¢0 .Lƒ ÓàÂ4¸0 &Óàfa\˜¦Áé¾´ip גƃ¦ÁÅ4¸Y˜?ÓàfaìÂ,ÑÂ4ø;3 ^áù1Mƒ›ß‹ip³0 ¾gÓ༤ôÞMƒï£cYµ¾]Óà%ÐÑÂ4xÙ8ýÎMƒ~rn߇ip3i\Ø?È'Ûþ—SÜÕìuNþ üíÛÿn>yRØÿÞÇ£vq½-žŸtÇhÆúQÿ:Ö½û3h ‡qïêOVßmmõ1 HQ}Ë<Ýw µFºO Lš¢Y³k_¯ŒR}…„õ &€& ³%Zx®†Òøôò s­ú«U/µXð Ð$ß÷¯½Š‹ç¶Ïú?þÛ ÿ'›ý¿GîzãÿÑ+ü?rùŒ–äÿÑ+ü?¾‚ÿÍgáóQø|äöùHY1ÄÏ#¥w…oGáÛñ£ùvô ߎ·£ðí(|;~ ߎžôíèIߎ^áÛñµ|;²ŽŸéÛ1ç¼”3Qøv¾…oGáÛQøvoG¯ðí(|; ߎtH_Ú·#…kIãÁ ߎ‡âÛÑ+|;ŒoG¯ðíðFa–háÛñùv,ƒðü˜¾½ïÅ·£WøvܳoG^Rzï¾÷ѱ¬Zß®oÇèháÛ±lœ~ç¾?¹·ï÷£W„}ÿŽžlûßîÇþ·öÄ·ÿÝÙ(â¿ßËÛزÿ}WØÿæ²ÿmµ÷NW«;è’ìßö¿_ÁþךÏ ¸°Îmœ¹nˆ-pf ‹àÂ"øG³~WXÁ…EpaüY¿“Áï¤Eð»Â"økYg?Ò"xÎy)g¢°.,‚ ‹àÂ"¸°&‹àw…Epa\X§CúÒÁ)\K^X?‹àw…Eðƒ±~WX{£0K´°þÎ,‚—Ax~L‹àwß‹Eð»Â"øž-‚ó’Ò{·¾ŽeÕúv-‚—@G ‹àeãô;·~@øÉ}¸}Áï ‹àoöI³ÿíîÕ›{ËicNü÷í';U´ÿ…ÿ¶··¶á}uÊö¿÷ñÀ~ý bîkÈå·‚×x"ñì§`џȾÔ.•ªHš_ŒcÔë}è#׉–Z-2BW ÐDE¶Å$bÝðÓŸþ£"šÑä|ßàOÉö‘”´}ñ7‰¼/Ì[²ž@c¥_Tm à ®GãÅ¢}èÙ…Sñfõ'h~r‰vN#èëÛŽ8==]Çöwgñàÿ@5I<¼Â?Ûñìf?fc4Þ¸÷¯ñûÞìæf4žþô?ÕgÓ÷£ñS±?Ä8øÎ‹Ã ßýÏl®ü“»g¢¹×kt[GxÿYâ=ãö"/þYNW€O2KáÑâè]ì jQš7ˆ_Œfgð Ñ=ˆ>ÉB~„‘Dç1Ú’âÿ×äâüŸÿ¾Š¦ãK6òlŸˆ › k;añ¿jÿ Ó¦ºúT8ôd0{Üè¦Ç[´³Œ’ó·Òn[éÅúCq<‚50z„¦8ç3€ü!Âæ-àÕÿ™Ð»{ üß üëîòA®¦•›‘Dã=ôò×gѯÞ/§±s òqwN“Ç£›å4t|x¥‹›.žG“§ nSê&ÌÏeYôÖEõ—_žHKžxJ&h‘®÷3ÕBÓÖ)5§Þ:Â÷j#² ¡RôQ â³1š¨ÝX´\µw‰D±O+!šÆçh· X.ññhÏ ·Êpãˆ%:˧ ·OM×ú©1#àî‡dÆmêsÉj¯OÔM³§b0;¯÷å—ÎîÅwƒ~—J;°|â‚> x*þ+ )6x1ö áVãWÓÑ ¾sÎ XÇ{=¸P¾pÏ 8+F4«ˆ<{ÀiE–ÓÓÏ7‘xtÝÿ˼«Lùp{ÄçÌÇx0€ág<8E€7‚é|?º˜YWì+g +ÃÍM„F{hîgàT ûב(+±›oŠKX»À ü=„:³Á[·¢Á;/©Á`ô1EÕÂPÃ×ëáéOÿkr~ñÏcÿ(…üo›Þ×´ß Õyž½/i~ñ;ÿضçªÝê¼ÂÎþ~xÒGÝÃ] 2‰ƒÞšEDÆŸÀ•†cƒ­þÅ…‹C5!j7Zˆ#Hödý=#Úw]"Uå—Äèc>n —hu†*úÔÇ I|[ûä§Ÿš’˜°>6»r%ñú“ø¯ÒóÃîq·ÞY•sqýÙ¢õK÷û|}ŠÔÛ¼d^vå |Àó¤MJ¯Õœ³•îÜÚQýø¥8>”ÒcŸ2¬<æýžÞ/wN{'GGМ¿ÿ~— 5öQL&Â’%¬Î®…Ë_÷Ù~ã– `VÄ„ÉõŸœzOÕ±ŸÖÏ'ë³é_ëÑÅì±¼»Q¡ŸBPŸÊYÿL%ÿfîÝÿ>Eã³AÿοÜgÎý¯¶ùdîp|RÝÚØ®Áýoks§Èÿu/s0–ÿ§2_êu;õƒ½47Ïþì¬3²VO:|Ö–íðÙ}ˆÈË.Q;ù|>/ëÝzãx¯»ZZ]‘ƒ¤)½IØ'4§‹&#I²cƒx= íª»ÍÕmŒÆ"o½ýdÙ ²ç7_’ÓYäÝôá~‰ö^W&7pu¼ŒÏ¡¹óˆØõ áÎìþ9¬‘i©Æ³\HyrŒ»˜3 ŸO‹³PˆcKb‰Ú°ÏH¶K ¾HÀ Óf$ûa¾@"ë8ØH{ è"@v»‘và/ôØkQóüö^çøò`ƒx%Ò}Ûmï•ÄjY"óGŽ¥/¼h¡M¹åxRüG¾›Î#ËàIʨ•—C!£vŸàùÿ9n- ˜sþoÕ6Qþ[ÝØ†·Õ'Û(ÿ-ò¿ÝÓ“rþÿQïvë¿—x7ó‡²ÜÛÀfç½½òÓþôŸ¹¹‚ â þóV\AY³e ¡§ óÕ_ÊÌü§¢}GíV£u,:‡=Y÷‘YÓr„HºÊSæÑ„Îß²ÛM3ÄÞÛä‹¢gpþ¨ùù™Žþ`ÐÝØp ¯¦ï×½¡“,à|t‚™Ýà ±Y³áщ۟ÊVÉ!<9–!â°È ‡b’E ÷ZÉ5P·úbL 3"{M$¦†Ä%Ä I~Píbxôtø—Õg9ù=èïdt¢çãY%Ñ´\Dâsüñ鮄p·£Cºßøå„‚<$³CLÈÿ`Nc–½9]_ÃTHQ‹X¿0Á0¡´¼Ù«À*Å”@ °A£¿"5Âqÿ©\Åÿ[þFžt*.a Ñ£h:†?Jü«å?V~Õ…œþéeñÿÚð+^Žtñÿ+7Èxô!¾0K\"B:ç#”Q"µA–9ß1ñ (@л€ÿÄ_Yˆ„‰æ©-Üþ§Íœò\Yû9É¡âŽO†UHnûEÙWnoÝé€Kð±tÞK >µEÂP3 2/öàÝ–/¶À¤ñÅØåðÅÿ Õ)ž½ŠÚ·R«‘Þ%øÈ[d²nN~œ¼|a²¼dµ›«ddCµS˜x ógâÑ#ùMóPyQ—}úÁ›•7ºÅò·ž¶È4Ä9éТÍ2&i*cÇ/Ê,¸–%ºvÁßÏãñÿÿœ]Lþß«üo{gc§æËÿàNPðÿ÷ñÈmmÅÛmö^wKâä¨}HSÆŒ]Ð=Á?eÑ, ؽø]»‰?O2,ÏÚM¨ÕÀ’ð£»`ܸ%F4cBÄd åxiðŒ£ŽÄÆå"‘暇'»í=qÔÝk´zh&_ÉÐr{òw×Ę“ýNF§k”¸[Tá¤ÄÝ£oŽK²Ÿ ©£eb‚Ô±—¿4('! iË予1À2TÚ˜ôHðê1Û–£1²USƼҶÊ.LàŽm=~©÷¦¹+€†p8’‡D+qœ3à £ÑxEœÅ:Àš ɲ+u[ÄÓ\ß âsŽóO4U&ïcè ЄÁcnZÄ%·ëEUQ±veè½ü;Z]})ßp@•ž ÞävEÞ–,Ü•9bLhEQC@¦Božå(QÕÔC <~]¾ …§µòcÔ*¢Í@™"! ‰="àn3ÃIÖqÁNVaC(ß'ùÛë2/‡øÒkž‚Ƥ7c·¡@#bWß[ài¥Â·eº \ÁÅm¨­›X–N€û‚8!½9†á¾Å;úŒ#œŸÙ0¦H<º]¥ßm_\EC²½Ráþð>fÖÁEñ”â0ž¬î®âÎêOÔ^!Áÿ»{»Ý&s2«+”q+r•äHWd¹|äÄËë¡·»,l¡|¿?˜ŒT»â5kÈîá0ÒÐôI4äîïE‘ø»âV½k¼ÑöÔòxÃû÷ƒÙ^ ioeH 3¸Àí Fþ¦^t1ÜÞ­ëçç3¸.ÿ Q²¿.šÑõu4  y».^õß÷‡ HžoGc’VtF0šÿ¹)J0 e³Ó;׉ǺôŠ\Fh»S% ÃѺØ.‹››uñó“ÍÊ/UÌŽ ÷E´çÙXQ¾ÔÿâNMƒÔ 6î%Ù‘áÐ߆:Lh `w-‹ÑtÊ k]çðPdË&ë°ƒ5idû3Ø|0”š™à 5Õ-Â{≇Ë3©›©ºq·$%ÔGJÖŠ~j8ÇãÃöÁI;)Â(kcu¹7ʾ´º±QÞ;ê­®–*ÕÇ?¯xa³bu<L¤w<÷]Ã…þXnïƒÑèÆÙ°b²ÁR ¾²„» íêëy4‰1òÞX^T<´iw¥øÐ;i ·<„µÅ-÷Ï&%Óúê$¾ºîÿèX‘ñÚUÝ‚jÀíMñÎÍ÷§Ô~x$+U:×¶ód­†©áyÕÜn®¨Ö(L×dê Ú³©¹¢ì»ÏÐ*™ƒ:ViŸTP–[Ü9ìŸ%º®±!Jxµ¹ÄÖÜspìuåU-Is¼1iM¡uÒ¹ú˜tÀb¤Pꦪ2Ž KƒÑ$—4ìE6(BAÆ{2Õäšó1§5¶À¶R¯‹ø*f— rYKY9þˆ Ã…ν&>uØÔO[Ç]-‹´wÖŽ G–s¶¬5 fî¬'ŒÆ¼éû1)ãq Q݇»Œ#sf«CB‰¸RŒÇ£jéš:ש®·j«V™Ê©VÉì0‚eÌ£[í¬®Ö¾T `Cò2E³ïöºJ<|×äƒ=Gx\¢÷t¸n47´¸6mW2ÀÀkÔÝ̓ÒÙ{1— `ó€½ì4»Ç/³€q ^5رr„¯q|sÑ„-6çu©I æÂ:Øk½È—@dm¬WkÛ¸€*€×d&8Þ“°S¹»üc‘ÐÔ‡oqëwëÇYÎeÑj¶ `«w‚‘ª±Ò>™ÆmŠ‘G}Vø +༭Q™Í²8l7±*ü:HGm}··WÆŸ@ꇽ6ý„Æð™èÿó²xQ/¡ý,}4‚5àWx¨ß{ÙÂÖ½Ö‹ƒÿ:Å_vx5±Ó=ŠYÝ#<þló¯ÃzVu({ü²»×{I¼ƒb àzÔyŽ6®ÕMeÏ©‡4?íúAC­Ñ@ìkª^VÅ2z“7l8@ê¿ ˆ½ÿz]åßojem{ö® ‹/kïš=(EÇy×{[? toQ£fXQÐ@RY‡§e€?_w³uæ2^X\mÕ2±›¹Âi÷adÌÙF°æôQû‘)—CÎ:%Nyi ΋¥‹·¯ì*›‰*ݓ쉠»p«Ë®±í×£µŒ  Œ>²~Ø]÷W•¬ñâ8QÃŽô›)ø¿ íæ‰Sî§éµ«‰‰àQ;hÌëÃí~#ï«z–n˜˜t·óûð;2°S^©ÚE^¢ã]ugCo0>¥ˆ­ϤÇËç¤ÎQ^wÊÀ00®%6œgÎz`Œ ^ºÞ7 éÆ9.eÃQFÓèÉg«yœÐ†´ge'‚gZYBí?M¸™X×AÞª(+¡Ï^üêÓÆÀOóõ&]s¾ÇŸh•—ÿ.¨#DÿŸiߎù×àgòø€¥²w3‰£¡!exÈÙzýKfø‘‹Y)†ðõ;e1Me„;¸ùŠ"Y [1ж^ ¸yÂÕèD “qÌh ¨4ׯ¤;Upʕа¢% +è7rÄjx¹ÆGq¾ÞS_÷:«Xd­¨·ÆQ•½piËÑ’…Bï`v×T;øÞ‹ñi‡Dä`‚‰›N.r;œ"ùr—Ðwÿea‰o˜t¤ÞPX­GÊ4H¡T-ƒ dé<YǜأWȼöÛnûÒ¸fÑöÙ.)-}… ¬ë+¢BdeµÒ.²hJêrøV.rKæ£ïÑR}C­Èʶ’Â`yP¨²²Š J¶ÄoÅ„`”Â2ûm:ÉÈ“nCÄr¯®ÊËŒ±ïÄþ>³äa \ÀŽ>Å׸¤¤ì ¬cŒ{7Ž_˜â™}/æ8ÒjCšé—%©ËÌ™ãXÕ^“ý„š^0[Þß) ÷› tp;kPƒñ½é Ÿ °ÙM,‹Àãë€VCó‚Žc3\ORnÉYÁ|žno˜*(Mç:ÑÛb¤Ô«òfWKøåc¼‘ž¬iq<ôDLt=¶æëÖw‹Íˆ7–­DœâíPäb»òÇÄê—èPbæÉ曚Þ‡íUÝc%2ê¬Ò¡¦é€U¶žØiu›!ânZYåE—Ú–KsŽÆhöÁA®Qu€måMÒ.åZœØjT»D­(!vªl/!I“Õ©…L0%#%Ž1 m!û$¾’º¡5Üì3kjËïu­k ì› Š ø³BÀ¸Å2LE©•ú ìþlh´”Œo¤X ÓJŤ€íFW€Â¹üÎFòÄl¼Îÿ"4Ûƒ†,gD¢n@fC—ÿ8Àž)ܯ)…hÁ#Žñ–(\Û0¼Ú󘌎¤jˆ#óêa#’P%ìÓ ¤Rp› -Ç÷ µÙ)} öQ.W«mùÖ!y’x:µ-I;°~j¨ð“ ”"I——Ó×ø0ߢ<Èj 9{…Fêõ^òuêX{á!ò( Š3L [K­ÈSó³Eu%4dé–ã+:{ze•{’8xOªnôúøs¢èž;½…xmLn( J x¯Ôn¯ÈK€p»”ù€È¼–5ìå)ÎFÓéÈ?âUrHR>í@£T½»ø9³n­”Þæ’ùKðcM ÁCQ4l¯tP!ï+"T¨¨,S üè ~‘{È5¼sÔx“•¥»$°r(ÿ™Fn}»{SãQ©ÊKƒü‹wK@.ÙMcGYJ’KÚ Iµ€!™7{æ» õv¦¸3ëóµÊt8ãN`®×¦%%iÚŽ¦ä˜NÆ«ÕßÙߤsä ÝÄ­ ëV";€×NųPÕŸå'–<#’ºu¨Â…¡áO~ã|Æ6RGè·­6HmÞ±îÕ¥,A“m2;ãó Œ!ÃPKÉÆë+)C­ÙÔ“ÖÎ3û\Q‡ìt„!’†Ñß:€ :²IžB1çùHOHªž—<šŽ\³sŒ„Óy4Þc ¿³Ùà*’@VJgñöw…îRLˆJÔEúÖÏÅâ‹àøü\¨ÖnŠÚž×Ž5oáÜ@Ü,Çd·y 6qŒ¥ô,yµ˜ µQ‰|ÉQ­s-uÀœ¼$CÁP.à ,Çáá4“”={š¸Ë`ñ´îL&%œ©,ˆ Q´¡ç©„M$6ˆHÈÌDžÛš ½”¼Ê+ÙŸS²Ÿ˜?cm"çÀ[Î%Ëç\„¹aœ8_“¬J±Q¤‘KÈ«¼)jˆ…Û ÞÃÒxéÒ¤¦¡ÖA°÷­7Æ6 ¶Â—IÙËlL(Nª­o“ˆ ~’·@oÎý]ž¶cÎúçÝjËH'{¿˜¹l‰‚Åö‹5»ÙÛ%mbØnQøÏÚ.‹ì–ªÚ-´SX—]ùVv̲÷Kuî~ |P÷r}3“÷òƒ¤,‹u¹QÊrO]ò×È‘|$¯ñ ö™g;§ zaŠIe´PdW,CC3eö¢”ôVqÎäÀQôƒ—,šKkOÑ•‹Ì Ø e•6bJÖ½>µkzÑÿ0Š/Ð܋̠ÆqÖ ­ܵáÓ!;?7A G ‰åeƒ¬Ê8JU˜º$8g9ÐÜeœ4ú²2ï®Â¦ëH㶖ܨ^cز¢Neþ†SY[s™&!uñj…¡}_a~ÓÄ2¹w=‰¸3­6M³;˺[žÄÇ4´´BŒZ°„´20Û"›ík ÏÇ2„^šÔˆEdôkM Hl^_µ¹Q¨¨D?ÕË8º@ãV ÓÙ2TÈ\¬y£)R˜pÍ3:E{h/|>š ™÷Ñ_(?ƒ]× ï’)s[ùy%(2fjü©Oà{¤ùR{ÊTz«di4G«§„‹¦ÝN®!Œ`ü[!­v3§Q¬vËZñ·ŠíºfLJ ïRŠÀŠä¬Ú@¿Ìê„V0³\M !ÌM3\î¦ÐÇE÷ Š»)Tq‘n-‘&…R¼çºÜm ߪT»0‡>÷âòµ9Íçd-è^–*Ìc¯¬&&¦D–ÄäkQ6å×Ô…!|ÝzMHl&èóÖ"|+[Ä•È]ÙÕ5Fd øUIeר™Õ=;Ž›ˆI-ÖŸ*\£¬ñ‚´OòuÂÊM¸¶pª¡ra¬´•¶,€•ë<3æ¶¹³‹¦¼‚+sJE£H<? $ԸĺÝ~ZѰ´)p<ç¼BÀÌå¼D`ÏrÞ!p¼xZ&R£¦Ýž·€âðcßÜ3ëÀ9²üêÀ> 8JìäyE(HXÛ‹^(8´æß"9±ÝÎá§O­Ju¡s+¶éM+÷ÅÎ-jÜ:¹æwÒ”³O®P=‹¡XË{xUj©‡W¥æ^¡¢s¯\G—¹äÍ9¹rŸ[æ–§Ž­íyÇ–ì«j}IV=×ù˜bÛ#Š«azᄅ«¡.–¥Ž°uâ2Æ“÷èät5"­,QçdZªZÑ©mZ0 ç° -t˨™¡TƒÖNGÛ hÕ õIÈ%QÌTQëÇ4IÓÍŠ$é‰3{xŶËn¨ÍlË7‘swg«2€cwz^Ò­”­ç¨ú$`ƒÜÃÀ€¡h”ÝÀÄ?“¡ïJñp9ÑÖÔ ‰ˆ¢˜t4|¦Ø˜ `¢©Þ$¹cð„“ó‹ç`a!¸‡)ï©a³1 tÍRË1—Bos×&Kϲûƒù[úyCìK¯ä8 µVbJ Þ>I>¥d«ûþ÷¦í}o?›yù9Åõ€NG€‹^–µj¥lô>öo‚ñ#Ãו&¥ KÀ~Õû=,¾LÑãÚ6Óäž&5RžKŒnI£eŒ¡&Û²Ô”ƒ, Ÿ5ÉCkÕÙ*Óe.•nV“vÈÒ.¿fhßA¹BÖ‰ô`ÏÕ‡ÚÁNhêk‰6<—rt‘JuZD\0“Œë0àZ#ѯ5ª‰À¬kI/*é„ê¥ÍbWaceUæÿÎ?þÿùU4ùp¯ñÿkÛOà]"þ­ˆÿïk;þãÅ^ï 9­wº/{”¯Ý„­£Ö›²ØÅOðãÃòhgê°8(zìñ®ß)àL8ÀQ÷ðøðø÷£=q1ÆxÇ÷’`¿?œa o ÈO¬XO&ZÈü¤aöE±ÿy„2¡Ib3ÐBjØÿP0v”ÿ@|˜´L‰I™“- ^â!P‚€Ý…>È{JŸùÓ|”´ò¼”èz‰“O‰½T¬rN>JGœ¢<ú{Ƈ¯º›@³è{µK†©}¿.£âwœP§¸*N9W¹ñ[˜*ü}ÝéÝ%ÛO¡ýöS¼ì#OÿÙ‘—ã¡F<ÂÆ8*h¾*Ï×0LÒ…ûÚGñF£ƒËÛÝŒGçÑ…ä!àG G03”æËšAt Ç8ÆÔ™ÀŠC¼„ÙÕÏ¢Áè#‡»kÉp¡èÛ1éd|6 åhî…ìŽnµ” Gx|)O)$\pX2ƒ×Õˆ0‹|2Rúò)z\]}†k¡ø|_cn+`¿OÎiH*¬ÑÛï(p¥¬¥« ì5Ì1 )únFež—·U;V7ø£„¶$¾l<ßÎþÑI¼ô¤#†ÎÉÂãáAû×”ë†w—.Z‹2)º•@éV»¾×y£Â^Φ0Õëâ„Ô ÃÑDzøˆAõ>b:ªé˜Â"†ð9Ý´Š&Š8ÝÜP¸Yuc!ÛÃßèzs®b4m ]¸ ô©ªÔítÄ¿Ùñº³²z Wëø# ì¾mJH´óT7%ý“ –)tål%.‹x=Zç(»v~‚ÂN"^?.¹Eç”"ïYÉr9'‚äÛ`‰°m«/u‚2 rTé›i0ª´ Þ 0]/gÅЗÇÒù(º¼ŒÏc\Ý=~-;>¸Ù11ÍFK5áŸñº°Á”(XÅsB¬±OúÞúFYàñ`'Œà£‚S•Ð!jƒ™ ÏI¸Æ™].F3¤¬&@®{<èžåé ›Ó?D)sR*î²LÏÓgx› Ÿ˜ÄBN×l0Yâhµ½zò«ÎNoЖ~ÇS$ªãèBÇí®çÙ9sâv××’­[Å`&à{ñ°çæl dŽñ‡úA]˜´6´t8ƒc4¾žq%µøŽœÄãÑG{›æ#ÿÇ䛼øˆÃ’Ä®ÆnP݆{X†Ò•±«9_lÚâq–‹ŒjX¾+B†Èð—¢]ß]•)Ðpý)”ï:4`n$ùÝ2‘î ké‘+;I¯ Ý%¬ Ýu†”\Aê2PÊÿ49ž–¸bê N3¦rT§zT§KÕé:CJŽJF©wÂÔg¬³˜&¼#p.á ‘)\ïGƒ ‡yÐ)³¸å^ @¾æþÍ–:kÔrަùâØÖõÅ#ƒ†i•+ŠæåœPäiÖÝÂüwäM¾%cÛf…é§(ü©‡Ö%%+*{7 çI9O$Óï*ôTªâ©“g÷2”̨î«6ÁùÓåƒn7ÔOj·"(<ñndªb8°åÍb’ìA z0¼>ªlsvy¼ÐQÒ¼È\ÂáVw!ç’ÍoBóJ’‘{ÇÝçbÕ§t7p™n{Šú—Óˆiëæ'ö JKÁí÷¿eN»âUVe=¿+“¿¹,Ý ­Âå%‹ˆ—’,ÂIÀpRŠËñЉún¤H¡bTÀåy ×H&){€e#”7}Á¤\•ó¸È¦´šŠ4¶¡ëŽy8!82“$ðÝ’!t¦o:F圈РŠÁ­…¿‰XœZ¬P©ÍÄBs¦ÔY¥DCf¹W§ ¼N‰nYfXÍ2*¢úÏøÛ51( >Ðòb —x’ý$&f:JN8]žP¨cñQœ#ˆzrjº¡¬üะt¦JK*5mÔ¹±V~æÙjîÑÁÒçžÇZ_ÞXëc5KÆ ´~O5a5Ú'O ÷‚D·™1PÝt—´Û·êôfÞN÷P5Æ<6+0{õUZµ½ÝPoáp{ÔiK½èQÙ,°”„8›Œ5è.x¯.•Ié™Ó;b®J¡Þ¨&”y@¢)ž6ÄÛ®¨àšK¤B+É•Ì ¡>ØcW›‹m :6·MÕÇcÔ[¨ó?kpc´Y!Ö·³–ã"³Ùï#h¢< Ea)ªØ‰˜`žêËÏÖŽ#½Ò<*i…lŸQ—Np±=cñ$rëÖEÛ‰¡‰îø)zÉKÁÉÍ\$ÍŸãÊÒ®ì{YwªÒ&ÞÔ–Ëpç ´×#å ž+veh\{¯49;Æ9ŒHÀŽ*ÄòÒpú–^F$_ë¿u»‹5o (ľe©«÷²Vµlt¨æî¬6Wåž¼ÌóÓfÆ!Ò)G‘H;äzÍq‰y4OiµHP>Šæ“NÿºÉQ,“ŠTPä"„lÍÁN–ÞÚÀ`V1 Œg>ÑÔ󔜕´=®çï·\S(kƒúûݤ桋„|$ZÜšJ‹;êð+^d­Ë ×"'Å&âð[˜ngO먷X¹h¸0A˳ÖÔ2ˆyãe7LÏ… °…¿íïmÚ^óÓ§7'DòLêOÉœKÜ úçÚ è|tAc‹ÉÐæ,:ï£öFZÎHZS!—‡”BZÖã¸R†”ë“pÀѾˆfÊÑKHpµÍXrOýô¯ÈiŒš´›>^ŽpIÅr#u;U}ÒÄMŠÚbEõ“]?ekH:®ÐéU™smf-mOveêȦy'nþ³–D“hú#{ä“$Ë>çè0û®k6‹ ØpçÐ:¦<æf¬û’uŽ¹Ý“Ä+D἞§ì“ôÄàcžÅ~ÂþºwÏöß;[;Úþ»º½Éöß[Û…ý÷}<¼Jûï£C´ÿæ…‰UúÍÚÛoGƒÑ¸1Í)PÐ2¼3ú‘’±¶±ñó‚¦á—õn½áès›Šâ|iÃñïÍ*×ã}Y…¿¤ü71|¡\V•‚" XŒ#˜9FãÔùÂh¼0/ŒÆ £ñïÝhO9ì°¶“T¡k~óèäÑS U^ç0Ò> ½`ìu¹ÖÆÑů^6ÖhS&Ñ”Êt\Ö)ìÖD|9»usb¬Àé@K¦º,sµ’Y§ G¹3k¿¼JîæYrS9»~ Š½{ʆê♌¶N¶–6 D]3J KKØ#jóˆl0ÊfUŽh`­Ó¬åéΜåAJhDnÀ‚Έę}©˜½î_ÅCt‹DÕ /A/=Ú~EÚ2 ÅØQ”L&³k¦.ðFø÷Sáΰ ;ƒ8ÁýÜ6Î ÷£A4ùË1t;‹ºò“ÕÕ—«T?µWÛðùžœ ú‚¾° /,è¿ ú£Ã‚þkYÐ[¬$&јMG¿´$NKf/¬N(!ÜQÖïIî†I˜ÀK“{͘¥ÏãDq=i¬_Ï‹ÂxþAÏ+ãø—hoÛÀ×Ê^›Ô§ãŽ c™÷”í}@rýè_î¥ï”vJ:B6ö/a¸ZrK5µ/,ìóXØ“¡4͇ÒO=:y„))5\àmûQ†¥zÒ Aküùü›~• ø·“u¿~Tzü ¯_Ѐÿ¥2à×ÚZ¥§-Lø þ þckbÑ|M+~%ÂÊcËOŒ†Õÿ%õûKò/”°¦Hv8±ÌB|Ö|Ã}ûæïôãa›ì¿dKÐvt9µ‰™´ûÔÖùIûΖ ëüÂ:_"¾°Îöl.Ó:©tM$H›R·Âÿ Zã+|g,B4XV÷…Õý·guŸzV-du/¡Ø¶÷ߣսϖkËöû6¹N>ùÊiOÂŒüöôßÚãÛÿ_Œ'çƒ{µÿßØÞªí$â¿W ûÿ{yxUÛöÿÍn¯Ñ¦ó …:=Ú(Ó¤Á~ö)Äh&t‘Úm{ü[Û±`„öÆ©É/«÷BúŠTKû€2¦wZZĸ-®á¾ß b²Ê4«Ò–í2?à'´ñäF &4p„R}Ü_—æð? “ÅðÍþ¤Nî³á…üПˆÁN³>)™É®(F}Œ¼¹|zÜ(ë+ƒ¾Da,t}h,ÎÔ°•‘HÝ…èOŸš„6âïãó÷¶MÈEü†"´\×Íb«Ÿ­94x äU½¿‘™ŽŒ-:Ñz5Àó` ÀÁäXn½S»·s … Hu­Ô©TWVûg“.bßò%²V‡6Ú½ó'"ž¹þY4ýhÜ!'!S¹óB·[„µõ°þ«¨O¢_,ùÅÎÇØyê8¼ûTŠõŧúoÿû™ROŸ-ã™§AìyL 3W£LYvžIupYê‰YKT‰¥(ˆƒ üÎ^zçv[/:'¨nîuø'Üüü„'˜Rò ÝA-p¢YºÖT]ªâu’JRù>£¼Jg€´[o–eú´åèWSMr_ïtz“s¬Å®v0ט“wÊã_DSm™o´—O­ƒéí O1¼ÄEõXM%¿S9DU%ù¦¬*˜Ëu Õ»pJw¢‹h8º‚Ž›¨TÁH³ö7Àï«ÿë %=uõYw()_35ªx×…ß«n—qYâ„ñXvÖÂ%锹ú ^rù3 H*rñƒÉl•H°v4Ž*òÄü,N‘ìJôÂìÑ@€Òî»b¸8Í' ö]ö åR³º.x7¢¡Ìóz»··n¾—¢~«E­”«zΈ°ÂJ®îËù´ºO®Gyºï`7«û<¡ÔI«ûv¿œ>ÉÙ£¥ˆQ¸VÁd7ÈÜÈÜœ ÆÈ>N¨Y€éÝÿTvEEèl~Ô,*©íìÙ{T˰ç\ñˆ ûnoxÙÿ»:;_Üëýos{ëIÕ¿ÿmÂWÅýï^óöýïÅîn›7{ã2fþîÈ<µ¯`÷½:)µ#9 ü„Ó{¯,^gdŠl7_£]VÀŸ ™ŠÑu ºƒ?Ð;eÀµ•uãD×n…;Æá€1BÒH^äîbÞJ싽'§y};ÝäÅ]WnܘY{GŽ0-3uÓ8u‡fùu‰Ça9‚/p¦õç ÚqO,wî«h¼Ê@\£_ÄPœá *O(<é¬ýŸÎb£E½bO“>eï@EÞ _d$ŸŠ× ‹è~„‡¨å «Öö7ßeãÞ9ìôѺÁLÄk¼ =¢K¡*Œ@^?Zm°'¬¸‚«“ö3hä¸3ãRBœ%ü'W«æœ†ÝÊóÐ9¥Læð®®Å“¯©ßGHtNþW6 –‡;¸gâQçÑS¸ù,¢¤ïùŠ©÷ÃÁgÿõ‘z ‡Þïª÷g£é{‰–ù:¿ëäèãÄw[G8¶?æ¢@¥§e®ëçÙh,ncAY_µìñdv¦~ ÛÎ~²0pØ]YàOÓ]|‰y—îfº—†vYºü¢Š–AÖ· âU{íÕÉZu†ó'úðx.ÃÊ]Ü-a²\ÛvQjÆêœÉS» PпfkÕµ¸ògùO2¥-ÅøÇ%ù¸ ƒÕŸ•¿f+ÿ~ÿûÜÊJ×å?×þ¸Yq´$õEnÇñt Ô¨˜¾0=Ä´³±t„±aU¶‰«äˆ·›c¶ç»ô ˜g…UßT{KÍsO'þLwBx̯„°Èºçâ·w‡ö+ÕDœ¥¾@7^ûݘ³Ü_—|7@¢úDU‘Úu´Vþµ>Ád»¯×Sjw¸ö‘¬Í³÷:Õõz’‡ÌYno¦ö*k_AZ/ßÎÔgÝ|,÷oÌü7$À’–ý+Ð7¢†ëGfêÜQWð¶Þ9F+.øÕà_x;Ã߯3® $1®iþ¯Â¿\Fwñ|xõ o§øã¤š1¢W'pE…[ìA«s€²8ü³½B9ü·6øï8}âê»=èk·‘>#]Ì=Cç±P’…u :ûK»Þ}ñ†¿¿ùso:õ®{xœ1öwËÓP”EÖÆþ éØ\Pg³¸_[šÿÚ\ÍHªS–•ÒrÄPìtÅ"#8”ô¶£•™(ðš|¶»ë À*{tœ(|”ZI3h”¸+;8\Ä9U±†—“5í[â; )‘1wÐò“½Hz”Éît‹=^+9Ëu.[г 1‘Y#‘æU;»BÂíÕIv…¿Þ° MKZ­Ÿ“µ^c¥ª™u5Còòb;Èrî äÎþÊ…«'Z½ËãW dÖix€n#w‡5öníwG’´Eýî,Ý¡–ÉŒ¬”ú–Ù<ЇƒA~0B„Õ7žk?(£= «Ð¥ç3²Ú; ÿ­¥ÆtXñ`ÁŒÌÆA}`JÂl©DÓÔº®ãÞ»Ò¼¹®…ŽŽ—+ÐÑS¿K$³õtPt?FjT hýº$ߤ€$ïÊ—WBQš‚ (ÿI',5P8$áS>©æq§nÐÀ0•|Çî}ЭÎzËSO~w‚ßYޤQLÖªjY’žoÑ^mqÕ¤•ÑäwˆÂÙ©²×Eëc-¡hS7h@…2Hj9ÈÕÀoÑð xÜN—Ã@J?FŒM?zº_{ŠôʉSuü>2aF‰í—‹P¿Œp‰ƒãj(J O’ëó‚b]×-Rà9v Z¹´¶½So;ôöÄy»K'àû{:w­SQuP¾®®"µ6/:¶¯ <ûU ÖšÐýN¦¨PS®‰ý/ÊÊž6ŽN¡÷Cl‰Þ=ôsG~åE×î:·¢U¦{æ/P|Èò_@ï~ÞÖ—»÷j×y©Æ ?ÖBïpÄðƒÞ¹c‚G­ÉÄÂ@këá0~ðíp4DS1-gòÁ°ÅZ°Ëx!°dp¡S¼0–HQ|Q¿sì•.wq€¡U¸áqì¨þ!Ά[VØ+¯ éü0?¬èÙ§ t•èz߸Þüà.ýœ@ŽŽc6ˆ.§ÉQ5Q‰/Úi³%ǽ_ìµ+U'DÅôd»dZŸ| d‰Š¡Jö¹íwê¥Ïа&æ˜&æØÌL¥­æ‡–{v„° ¬Uo ÙÓäü 2 2£ð}ð´x&¤N,ÖÞ[?¨´ÖBç¨ý¤l6o¯õKñÚõèd¼#£)«]UÖÇÉgrÎ •Ãדø¢ÄØ?Y;hW”Ãþ†?çÇ~‹ ˜0Ÿ»uÏ{H?~ó°j»õpQâ1‘Mí¤­N=6¸'—øàaØ5à‚*9cu ªÑì²B¼’%wHÑÂÕçà2ˆÇÔ-M‡#üð~ÔñQÁ]â¿×ìŽ÷½ÅM§/úþùùìzFËšãz“Õ²ONa1¿®Ñ&ºŒ‰}ê’… Üù.£†+0âªú3š‹}ED°8‹?”sÜ>]ˆõµ §Žgn˜}LôO´®KC׿âè"c™F ±%üÈ¢¿±>/„4 YXoóî¨Ú¯Á]¥ã”A„]ü‰ðÀî’þŠ¢‡XŽfà O+Ä£Ú-áÃV1T í–&z3'¦&4f|Ž N…?a~þ\ûk¶"úg#éù|&£¶ûhÐþÝñTñõ¥áZõimu¸²œ1D2Ñ^=ƒ«HưËü*PÕ-€t;«òVøø½¶Ôºy(\ cJ\ õ\)cÈçLå·ó€ÜŽy¥°¡Á¥º‡{UœëÁ÷À¹J–sÁÉÒ­lMàœªªX <†íE8Ö½×ı²8ï€$(ÁÈæ`Oƒí,“ƒ-;óÌ̳›²L%>’,låàdm9®ƒ“J-«g*ÖdÅê¢ ï‰Ç¤äcx½Îfp½ †¶MuÊâ CkÚÛ²“‡Jö´º#•†žÃâ$v LìÑ£4¶lçlÛ³î3IÒœØQ–âO>ºž]KœœgŠÏùÊã]NÚÎrXº]çùÖ8º'wåèÖþCG\ÐJ#- !ƒÂ _W}:§ÛµY:žÇUK–ÉÙ9e,æ. Ì“eŠXHZ ?S—Â<~„jhâò³ê£½tÙ𿉠¬‡¡SöUÛQCXK nÂ]³fDF´`Á|P'âHñµV$¬> )gЊR'wI¦ü²¬Íž(/•mWh ámÂkqÞÕ$þ´…éR)à/²ÄÙm žjòïnƒí+©©<4m Qp]™°rOÝSˆ •Uï°t#½tàì *íñ»"‹–#°R£*¡!ƒ`+RÝíÃóH9CFûJÐò$­5G&Ý lý'As/’»ÈóÞËÞa#æ²îxóÔ‚’vÖKŸë6Ïz]¾^C"l6Pê¾q€„øÓ.ê´˜o‚X'¸Cª¼Chz+ J’ͪõA6GiûB·x¥ä b«~Ó‰c¨ØKkU¨•~\œèFYÅÃ\^X«îáÄæŽZ‡ƒß¬-À+!{§Z  n{ŠàL­§,ÕamT§²K€´Š¿Æ³¼)Á`EsZëu$Ç%¿ÇTó–ÖDô¸^¯$ŽmÜ7Krr°„»ið߇ÙF<½š‰‹YŠ>ÊD:AäÉeçYØÇ.Eô£A†Hš ššÚcé)fQ7l0 R:óÙú"¸{öž-ãOEé'H€¥±[OÝ­ *Ÿj«ÖÐsrMÇÅ¢~eÂnßÔuçaÅ]CfóÖ éhr%Λ»*³†‘‹ i/oIwZÝIÞÝÈÙö»¥?ã–÷ˆRŠ‹8™V}.âIÿïóÑð^ý¿«ÛÛµ€ÿ÷fáÿ}/h×ÿ¶lÅÃ.û%'ý¾9S}Kt¡t3ƒ/xоÞ£ êqÄÙu1Ü`§†üƒ2‰_¢ègC<ÎÄÆfYôö_ó°EýÅmêî›Ï_<#^™= ‹x‡Z†YµÅH#žáP~ wp‹ˆ&Óøº¯ò}cÀIÌÚ \ŸŽú9¼ ”&–·ªvG8Ê{Üs…‰b¶*Óî*+@+/™íÍ&*áXû$‘Š38áýú|Ü}®¼`‡ºóäu†É£ rEÀ¥xø¡T_Y)[æ€ÞèLb€K·ÙW·6šw²À{,J ¾¾ض*½_f´6XFpaÏs É9û—;7UrhŒãèïY 7XÇÅö™xTe‡·CÌÌíù^å-|¥Ö²ÝÎbÎàvÎßTð»¹i{êòJ^KvÖNk$Ãe{q_íf4¥Äï]‰]¢ÜgÝMØwË4ßòÒîSTÄDš`_W/áS®t2Åö1b{‹+gfÚ…¾Ç·Ç8–!õŸ»Þ6÷uœ±±!nƒ$íµU×{zIÎÙœ¡”ݳý&žšHI@é¶{MUz—_‰vUÅ¿Ÿ‰ÀYˆº±·I>ºÓ§ÑXfÓåIÁJtÈÄš"I²“'¢cë’‰”M ÊçÞÀä\Å–£vÝ÷ñUPZ²z0}{ ¹pÁÍð:÷1™ïè²iM9¸9`hbÿ¸¦ô·ÎãZ[íÜÍEµsWßÔ„kêírG~MÇTòD™çjÇ,'|U“ \~×Ðvçð¸E)­daî³¥ÊxÊ~¢GÀ€Ö{{ü WšÀ¤¾Þê¼é'Š÷ø½²Ä0É%¢Óe3°’GLŒë~µW³W›)éníByë „é£}×<%îëåŸ ÷Ó;¸]ÂÁ|×t‡‰°³ê´·N;¢×%UÚʺí»h(A´„ûÌQlû—æaޝg×,“É=u¦à+’¯b.Åì>2Ü!òñÄ!X¬QËUîw–Î&Ë›ÐW«·µÐ ¿jýÄé¥7Ž[9@Rû5 Wå©èÔ¬4/5m¡UÖ§#©tr9[¿OÉM§Þ„ñ€‚šW¼.Qˆç¶›HâÑ…5Æ7€L –=Æ-%TÊ~Pq¹AõXœ.plÌgŽ‚Èžé1²Ÿi k€Ø6Ö™e©hBÑ!2 åì”N)£¢¼³škÆ B›U-ýZ-d¸h3{.Os©³8â‘õèoÆ06ÁˆQ°ÆŸ‡ôáF§iÚW&ÿV0ÄX[ÎËkWrt®׌À³CõÿQÞ4FÃ?gWD7ÂãHï¼`®q¤J&" ©RŽý%Ihs¥˜)ˆ¼{Ì^Íæï 3¼Nk4}Ð6Hg{ÏÜwãÎ¥âKmîÍœ{Òÿl-ˆ&ç{ €ÕÕÇ´®ð¿‘Á׈“B`X+ÎE¥2h8+Æt¿?2ß"úb¢Y”瘓ÏË*–œ/  7!Ù)¥ô•‡9±™\P³þ:If::·IÃÛ+СԒ)9aµ ]ŠH,aŠ/Eqã:ðyktßfDŠQ*Éhû’ YÁ?I3“H´ÅPSõÂCãøþ ê…“úßèïÙ=ë7wjÉüOEüï{yxáºúß½×'%‘¦üíRïîáÛF§‰ñWÚLõ/‹4šÞwñ¼QI­ìA¶b–Æ-Ñ#ѵˆ‚6$Qa½ÑÀæW»Â¬›¨×(«GtÊИJ · Iõ‡¬0GMÝ >#ÿ¥>i?06dÇ ÕÍÙ#8ÚÇt’$Ü@[å=x¢Ô…Øú„òC°º…ó36¤ø\÷H¿.‹ó÷0*ò›šb´oŠ|„d•É@&Sí)€J`Lýä Ò•Ãï’ÒáhCÃ] ìû¬[ŠWV9Èïj£ôç ;DöÏ(q¢Ì•$” sï±$ê‹ÆÐ•q|>e$žE:ß’¾^Söìð®×D* ŒN£…e *O&ê°œDjÖ‚£Œ·y5ëƒ=¸rvÒ”uq6#=éÄǸ4Ìø\ŃÌÒ.SÁ½ Ý®éÁü°Û&Ö¶¶íê¯rÇÝöƒmÛ`–wû )`]õ«:?‰O ­Å”e€>ü†çN÷)Ú•HóŸ\º¨kíeã}J„X6}j¸ÝQf§y>s*O­–¼Á3¨Ž·¬gÔ£))‘aÖNQNün’ ióT}‹€:¥ º© ‡F#™^j8âOÔJ™|Ș¼¡t·¤Äxa쪹 Ö`qd(¦"zÔ6„F ’`Ć@ƒ²G¢3Z ‚²V•ƒM÷˜Äxl²7’ÌÈÓ–û¥p âg‡¬ à¸ÇáØÙ)±y£sU–gFkNÞf ©Å+V…ò^ž û–:lå7JÌ6c±ãµ£›|&ž ÓŠ ¢Fd7ú»qÀé)“5ºf)®¬ò%¸~-{8–ò>*ÃÓ;¨6vt€_(–œ§OQ†?Øì¬ýú2:ãôÀÈ?¨â8Moœ#¬ð7¤áÍ­ß½ƒ¢î¸KWԦőõ«Ìcx*ZyðzßÒ±ç{;euÒN? |Ád —;ËÞàéG}ql‚Ç4Ð9<£r³:ì{mÙªSÿy,­ eG-rè’nšb­­­°5j•ª‘Ç¥Î$P”“ïWPpCš R­ì¯¡0çÀšëSþTVT@ªSZ•ýr2n™--ÞÌ3LºX±â< ¯tt/Ç'+îÚàXXüË¢<yñWœR-NVžVv©¤(\®N‚èìªí[XzcLÑì±[‰F‘/ŠÆcÊ­vam*žRr¸ªÔ÷TûYiJËÿÞÙcür³Ç»56”ÉxÊ´ Á$8½y7²·¿½å^^±Ò ?$Lm`Mð.Ü-µVPå÷dúÛî.©Ža`HO¢V ®'»"U—ºÚäãIh7”>O-õ'·!Ü´²©íO&³keÊ­H~6v¶ÈlÁù%…àü¼0ÁÑc¤: î/à¬ÚûòçÄjüåþéÆ&H¢"DRVüB¢Mž¬R:ìä^© :®''{Á=ÍGf02õþ"¤FºÌ/‰ÔTk)ãЫϧ5j!iMµ6—Öh®iM£´¯i ýmwO—¼­qð™TÐÏ÷-+h¿ðÔÿž-W#íÈÒ5¯göÈV:ÿ[üý§%9½ˆ//Q–N!¶Þ½ØCë  êäõŽ: " †¶Û'7XÔ¹T–ŽÅè…äÄLÌBƒµMq>#ºè_ðøúììÔ«Ä„O ‰—Ð.€/+E«f(ýhMÁBºư®ñ¦6F œŒ†W837@ ?‘µàà3Ü»[ƒ˜`(ûŠÉßãi‰ÆÂ‹¤úØú¦°bø6¬rh¬ççWd4–‰ÅÑ,ÎÓrزÁТ Å}¥tŽ„âØn¦aëcØÐaÆ¥Ú5Xf *Iî—°kxf …]Ca×PØ5ܯ]CaØðM6`ÜÔfë4C Ð>|Ñm*úÂÂ"eóPF<2÷êmiQXAÌuŸ/Ì na±»,;×ñêaB TüEêvOÒ´À÷.²oHízV2t&ðþ(QA#-Ì,îdf¡;“Deð"%„Ý%š—ÕU Ô%š'm 3-'0͵?4 “Âäã›0ùpºw?61{¸F×ÄC.8cAÒtà ’¦¬,æ´ÂžÄraO"¤=‰Ó¿û1(Ùýn,J’öãËɽúÿמlnÊé F7«®Äc_Èl6ˆ¯ÑÂ&Rj É-’ _ei“Ï“iDñ퀧Œúc²nø{&3\}| eíèò2>‘M•xBÚÇHæk•Æ<$g&B¦cÄ—g@¤?öÇò )ƒ×«NåÐcÓ2 Äz'æÇ Žl†¬ê‡kï`0ö:`92Vá–ìðd+^ùc*¿ºzlª”ŽÓ 7dá—Vá@è°•…4ì?TÜw$ 5BIÙÄ{R–ã"-‹x=ZgåOÂ6Ác# @vi9Ÿ®Ë>,9^Û½@à‚¯ Þ_(nÁð~ã]hž9–—€pÇ©}.çö¹Î °ú%²(Ë2œ™!€–¬— 4ýI®ì’ä]‰°¢$:íQ.mЍ‘î.÷Û!Qn™ËtÔ NAÅS©²gÞæ" Jcæt ˜9]gHIÌ WHð±Ú Ͱb†(ÇŽÅ$ûD+“„‚zœ"Ü®6”S4-¥„¤IàgÅAjëRœwOö8añéxfÕ9Çp#læ››’ñŸÎHb¢hf,2e«Ÿ¢dýx¡"JŽ% -Ѹ*Ü¿À£6³¬{Öº‹pê3¦ìĤÐuiøÔ.‰#àLaléhÅ ¿>b à£œ÷Õ@?$a—¦W‰e­"Ü;£! öcÆŒMç¨À{é7Ó`¯¢y©k Ž_Ù8~E8¦ÓÿIμ4-I¤ûÇ  ›™Q4Käs*lÇÖS(ëiKH³RY‹ÃÅ^bb=h¥¼5¦7DŒí~ë’^£3i™6»Ô³·7]_’Gá:-‰‡³HI˜àm|iKÄDuE&–g"µ±O”˜Ä³c&ˆÊÛ!bF#¡¼µ]õ":Gý Ë€ûS”Ý£V2¥¬Yz-Š@¡0–Ý 5´¹"ê›A‰×TÙ êèøÌwVŒF.dœø¦uüöpÕ¼ÂFÌ‚Ð[w‰_Á"Üb07ÞÉÍJµLÉ>F´è_õã¡Ó'aŽûãnЪê˜=Ië&>dzR«ùÝg•C{V›#py¯¢æÇ4Š\¸’ƒãßk^?νTÛHl{ e»¤sÈæ/(íô©Ñ-<–ßÀey­³nç™WœÎ3ÌžÆçÜŠ;K’UAJ,/,†Õ»²¦˜•«ÉÏbÃ¥2†IÓ ¸¬È;G1£{¬€Äh(ˉ6è…#Æ¿%»$\”Ðê§/p÷H•YË› Ý`P™¼À8¸×G;ÂäÑxŠÖԥͅ‘ûT/WLw$זšš¼ªd -ŽÐ¹N`iއÑtì\¤ÁdïIj{ÒWš ”Þ®$î oa›-¶h=Žò—¥œ¦!þÓ>NußLÁ¹gê-`еtú'ä}6åXýÅgu+ó*ð‹Ðá›#ÿª–u„S°ŠyYXí{¯×S’° 7Q¤\6«z-Áõ4‘6R„Žœã¹gN&ªÕy:v„vE®< ɧ¯ÚËGºÈó(&3ƒŠd&M¹S$®Ø‘wìíÜL¬"4/7l³*/bæáܺÕÄÿXZp]Zs ¶½švwÕUˆVê£äõƒ±¸™áÄuC)…+k4?–•h Õ­€NªF÷¹[}ë._õ ú|ºÏøŸ;›µêûlÖ¶¶«OÐÿcg£ðÿ¸—‡·PÂÿãT_~ö^Ÿì5çúdÐAçªÄÁC}w¶ Ê€Áž"?à×»&vKþõ&mͪª ¢Æ`P¿ó¹ŸñKs?ßmüÒ4“¹Gü4Çœt‡gc¥¯A½tÍ>m´ü´¥û‹—ÏóÕaÁÅ|¡Ðà¤cŠÜʈ‘ŒãQzƒõ(IŠ–³ bÁ®bû4|Ë?-#áù åftzk?#a»Ù>Dùˆ$˜„šÔéPؼ0“Ã]–¾PÔí+ñ„+±írí2pE Ôà•‰]2óDƒ0s@o/\O‚.¡ðÈ-3Û9ÄG¥…ÄkØzö #†Zx•¨SêˆÐåŤ&æ*™`ÃàϘK«ÞfòUF‘z÷,¬ðˆhsÞŸDžuwxáN%ÛèÞ 1US§‡7Úý–£5¨p\ÃDÂ; žÞè¬2H«1¹¡æÎ ã Ã[ÍCÙÆý[Oà¸3rûgèb.,a§„r…«á˜0Ý€E¥ý….dHdç!qGwe=1 v=˜ÛÀh25-$À+áSÃma[ØMQºç4—€?ŽÈÇùB7ÔE1i]‰J®‡oŽ€+ήr‚ 7£òæF™îHaO”ÜΛbžÿæ]]7Å<ïÍ»;nŠy¾›wwÛÌï±)–žùŽ^›wtØÌðÕ¼››¦˜ç©y7'M‘ôÓ̇yÛ[óŽŽš¶³Yóv>šwvϼ»gæ<§L1Ï/óî.™âV^™)™Í{¹2ôÅVào¶ÄF{[„Û>ö–Ñ´‰©c®‚N[l㪬›ÀÀÖ¹:âÍ=ˆ.§ÖAô+Þ,4i<2¼·Œeͬ]tA¹2Øùަ½ÎsàgÌóG¿*êMŽñ2SÖÕ †!¤a˜šÖr Œ5-ǯ. q2ÅðÍpÈÇhó§hôÆ&¹½PÍô¸–g¨¾ £öpHÃÉ Ùmãúàµô“e*&9<|â@þ/â™9ïÏÐâÑÍ ·©òU+xM`-˜xØZ’2n64ÚõH² ƒ¿I ¸s9ê…á5­ÿ¾ÚĜʃLÒX´€,¶4Të‰V W(ã øbv®›µ"uHW¾ÏìÌŒ‚1hö™Žfç}–¸ÞÝjœ[Ù Ã]÷Z 4R÷Zãv{­qû½ÖHßk¬½ÖÈÚk{­‘±×Å^{{Í1‹‰r äˆ1 æ…¸S„‘d ×hÜP‹F vCGX,À€˜càNá„”‹ù ºÑy }E7G™o(PKI,'}—£(½¿¢hâßOEÿ/#ǵ„"% ‡(YQ‚.nÛ=1²ÞÒ¢WhŸ'cõÇÓøùí2ÒVN|æa+N dÖcæË ÅA7pD¹†ˆW¿Põ§FÒJû 01P® ôr(KS[Uv[Ž]&»åú:Š(u£wô®XJ㣑g»ŠÜÕÙ¿‘ǧšk3¹·‹`‡€òȈ ù÷ù1à1ª¢”=ÖÑKÓ‘™&´t‡"ªOg¾ž~¾‰DIk (ª…³ò»šû¸¶Õ+R2n$N¥…§ßÖ˜©yxî «¢‡UæUËÔE§¢‰‡(¼”·H@‘š…ýq<šÔ-þÞŸ$#˜Å¥‘¦Á+Ku™ø$´ ôºtfÀR³ha1©RŽÉ.ó|¨bZ¼ñÏnÛã/ÌÞ”1°ƒ§é7«V\¥ý¥®!F]Åa\~ºbMìD» é,IÞêraO"\&iÀŸ–aä+n:$ž|[£ºŒ£Á…\A-´ôÿ:sûŽ‘GSŒ›2™þ VèT èôŽÏÑá™Ï8†q¢Ï´Äi–8°3ÀÕòhJ³7$KÚAÿúü}I{EZ”Š»]ÿz¡3#þËÞWO³bý”ý&et™óhŒÈƒ• ¥«¶¯Cu#U&ÑuN0ˆKŽd¦Ñ§)3H8ü«q]ß|ÚØªQy5A¿}@gOet¡,¨QE4HÎ-[0³›ŸãÏæS±§1«ÈÑ‹aÏÖþXIn‹ ÜAF]'»ú±ƒýËdÓü×:ë ƒ½õa(ÚŒd}iKì-ðÿýïJõÿ–B`ù+úÄÂßÉè:Ê>y3Ž9û¤d"%só.¡ iGSNĽÕzYš’÷¸ÒÄø£úع&¦ƒnr°@‰¡R®$[›]{ÇJQ73¦Yx·ÉüO¼•,±yÕmèålŒp­f§£þÓtÜWòWH9`$H-‚™rçpŒuHÃèÃkùö‰Å‡ûOÒò‰êÚitþ~ÿ¾÷T ŒýŒ)Ì ¦ø@d‰õ<ñ"øZlˆ?Î`3üAnæROËß þ¥j’˜. òœ†b‚(?ùç,âÐxÛêíÑJØÄ•ð|пҜñíôåCD±?F×74‡—˜ê¬oŽcÚE¬±É`—·ØÄ6Ö{hé‘T·»€$OG!bñÃe0‰Òè•(©Ž»×0kå™ýŠŽœC(±¥c$ÃÓ „IζÓRçHæèÈ=7:ò:_ž,ˆh‰[¶tÛ0‡mZ¹u—œí¿‰ ZÄÿ~&:ë¤DMøcÅO¢.C„;ÛÏê 1ø…IÀ•vÿf˲ ¡©´“eÀ„fžy7^,XõoN©Æ`P<±oÄz>:kûO]ü‡ÄBbš¸ó}°æÄ51UbˆÒ”ý®x%%aJö-«¼Ä}Œ«ïY–ˆ`2KŠ6x²a_‘ÁâÍoA ùóÌ—wØ<™š¾0î¬Jë×ïÈ·HÛjÄBBÉQ°îÓp@-Wݲ_®ªî®‹ÝÏš9ttgåVãˆbšZk8ÎXÒݤòŒÏÄ#•Œ/·™6L·®TÆAÞh¦ìj#£»W,_mU]ñœµXÎSE!ÀH\ÑeÄW¾áC[º†©«™‹VØ0ï#¸V¹ÚàôQ˜#óËÇiO‰°^s¢£;aÖ©4¯²9Íù:ÐÜ{^?ic¨pÉ Ê/Òë!Z Î1q º~7oýæ»`É”0ôV“£J©ã€ÇZ9êÇ•³Ín¢Íõí¹µ|LPµšS/àQëßçÊ"ÉÐgø ú_VCWÇ< ‹E6B h®ÑwOzÇÎèqãæ9â9G.›á¸'nS N¶˜{põÓ?HúÞËÞ—-(:cNJ íoWªª€HåÛ@ úîáÛ½×'k®M¿9(Pog1}€û2sÁÇ¿핉,È?q}ñ_¢ÉYNìry¥“˜:t`fíc ÙÐj·å'ªÊ±Ú»™#xE¾ív^hòV'Þq”¨¾}š‚»”ëóL,{uÿ¥;ͽþ¢é (Aïu÷8«ËPéé Ó½?ž!ÿÇ)â¸.cÀ_8é8n5´óbW˜fèÔýØHŸæ[@™“Z!°dA¦K>„å9‰ Ä›ÐÅ*o¦³àKÕ xE“µ¹°fpwU“ÑhŠF®¿Ø[OÒÿD {¬¢"'J+‰*'kIÄC˨ùÌí¤©–ˆ4g .žUßšåÅÆB1”âÙƒ¸w©`§œHy5#^{K——èw}=MºX˜™òH6æ¥lbLaUl¦æÂ±ã·2+õB+™³HŽÌ-µ_N^HSh¶ðÅp‹T6„ÒïhZÜàŒŽò9ÙÝ̬šÞÉÍÅ;©.æ·ÂæœÊ‰ã>7­˜ªYkYj©H¡Ö³±µŠµÂn2maÚ«Òïcþ%yûõxËŸàJ̵ ë]z½`ÎÕZéù–Þ\¶ m;<“qÌUøòº6”µŒÀFJßëÚ‚Ë€ºGVà eH¼þL§&‚ÁZ] *i ÅeMpµª8¬,囄Ջ½Jq;kÕ=/ôõ9-lKIðÒDy®3Á Á¸Ý7Úµ0öÇB{àÚ¨>I©® F^UJ1”{–,iÍÊ<‰ ì¯äÉÈwuä/½(þŠÀJ£V­ªM…ã¥újÃÏÍEš(soÊØäZ¼Í$ÒÈ:CIgæ…Zv·sY¬£KÈzYƵ¡¿$UK\þ¾JÇ» tüqù¼íÍí“Ç.z^`ý˾?EöÄOydN\Î&Ùkž»œæ‘LÑJáÈÁŠiún¬4A#èúÛN"¡/8=a$cö%³w¸­Ì¹dsÀá«ËžŒ‘Í4n yWîˆ5±Ÿr½É38vMô³È½-"Üå]N}q;Éu¸Lå±Ðz6¼ð.z=…:œr‡sßæ>2j)GFÂ1x`Â不åýö°P¾+ÎSšÍŠ¥ûƒ±xóÃX`äåc‡qV—¤…‘íW2)û:ʈ%Ì;;Šx4Í&ŸÝ(ãjñ5D H»Ùð…-ÕЩg4¢¸Â×1¼?GSÁ‘èžQ‘^(poÙ‘J·òÍš°ñ1š3}TÖ+ ×VMç½³tÄn†Xó=z®0÷‘ä6lúŸ!ZÂ¥•ãªJÔÀnÙ!Á´O)ÇÞiæ±$3IîÔÊ?—yð‰”ôQVßB—c—–Ü×±˜}s,†(ñ"¢†¯v.."™[5ç¹8Okd·ë­9ž*Ã`é,]ðhMp¸=÷¸½=.ç­‹‹n¿æÑš-ŸºÃÑš'‡Ói‘Äé+?ÉüO“ËÍþ4/ÿSµº³YåüOOª[Û5ÌÿTÛªùŸîãáÝçæê½)eå{bA%±±E«&ßÏÅ8&÷Ñ`r$u"”ó'wžeœe'+Ú±í´Ó3ù¤æèQCV¹zv‰‰â;¼kàÙT:Væ«müÓÊ)ãX§ÓÌ)ϱšRȰÏͧŒü'Fg™PnÚuæüí8à˜ù–BîwTðn'\>‚ÁÒ‰€Þì1zJ?wÉõ±S9û\¡Àò*à¼å1‡$¿ˆèæÂ^·ÜÅ6ÄÄ$ýš\ …¸6¬'Ò‡ÜnIG¾Eu¼:ÕÑ y¢Ø–Á\)œ(ÅÛC/Fé$©Æ2Æpq Ïq+˜¹Ž’BöDuÅ„žöÜñ¡bïLVö ö-ê‘ÁKv!CÄL¦Äª“üÅónÈN³@ϱãbî¯;»€‘Á†–œ!;3C ñÅÓ3dçf6±x‚†ìì Fn“¢7šèn ?ƒ›œA‡…µhϼì ô¸1auôR@¡#ê÷Qb ‚õÃ’Æxý6mîò«Ïß効\”?Üë×}œÝ!Ï=É–½ÌLúðêÄ$}è”ÿ\{ÕN`‹bàzÙ©ȧÉD 6Œ`΄<Ùl áÄ <‡é)lÙ2ó&è:FA™B¡/ä*ÍΓ¡g‘d~^ÁóÀÍ  ®v“,gGøâÀ4æ¤Ptô«7 :÷¢YÜðÔy7°Ÿ:°…Í™›¸:°¢cíC¼áJ‹ñœ÷:ï䦿žë[-”{õÄu¯¶ °‡t|iANÒrÔ#^ÔEZ> zJ'×iµíõ$!l&´¾ Ë@žËM*³Ã8|‚Í-«cPÒ19]“,P·*Î>'cÃé^Ø_ñ^4ì’÷<;È~£.²à((‘QóÔÚ}êÐ]ž&ÆžXu¬¹?fÕ-øQÛ†›;Iks`̪›Xal"Œ-F¿Zƒ5(Òß„"ý-(ÒßÞ1fX`†fX`†fÛ F¿ZÅêcal!Œm„±Ã0fX`†fX`†fX`¶£aÔÆ&ÂØBÛcg[x2,p®±À5¸æ Ä&‚ØBÛbgËAÖFXà \[ã‰Y†´Æ<‹p£»€xªàR¤cHä[ã¯~q„³æ³ d¹Ã´íŒ2CDä‰ðˆ[Æ áhИ(@q"ø€‚*xÀQÊ\±”W‡á¸w ¹cîî]ì9ßÅ í¸û\þ]Yoáwv_(²W_È*Ý*<Ýr=Å,<Ýì<Å.<Ýð<Õ0<Ýö\Y†§xg•ïN™Œ9ÓêþâŠZ S´“VÚ½7"`¤iÙj[ æJfæ[ÙõÁú¤ÑM2X²äôHÊ6õ6¡pDÏ¿þÖW¥ðÓ“|Ç´…w™Ã:uõ|ºK=ÀˆMóQf¾sê%ƒI¸žzR±À,¥ŠÃ{o¾†0<$ÿý´dp¶üwë |ëË·¶6 ùï}µU˜n›&íL0NRv.ܹ2þ"̪§UBú§ÿI×ã)®`KÐÁÕ¥~6‘¢©#Ê{LE‰L¯G8c 4«qlwSÉ磹ßnÒP¹— ÃÎ*fQ™ô¥n)ˆ‰Ìf‰}£­±Àe•‚Y‹ŠÄŠæ éÛ’-óYñÊSy‹Í†òÇi…²ðK«pc4üsvE§‹U­0´6ñ­Z ƒÄKøôá\ØJþ¯b5±¨ÉÄ_;´½$ñÞ!tŸ2v¿GiŸðº«~|’ C&bûz×X§ã6œ­# «›•œmìÈhì2çVSzœ„謜\w‡kkÔ¹ôú0Zgèw‡s¬e}x3"h»ü¦Åšh®ãìÇé)~‘HۋɆÂëJ.&£Ðùâ4L¾€{Žuýág›;©#õÛåàºÿÜô..´hÐPä+”‹2ó€«é,”ÝD ÊÇ·æFµ º+£Aºwh‹Fòuú îS;‡ž2h¡¬áõ•Çôûd…Mþ4ÛdÓ–Øú‡­u)å&Ú©úKî“ØZµÃQMûg@€§4GFV²Î}§w¬V,O4F×Q(ÝþsZ'[—ûÀÝE!rGTõ< øž Õ>%¼¸#º$™ I6þtúßÏ:IÍëBsª&2|]Ñt HÕ˜-ø|ØîwD¿¼å&›T‰LoïŸ'Ÿ;»éÉÇNtš´—´­\RAÌK{NvjͰÇÒ1yœ­î'ÀØHN&µ;ÆÎ‰ökä.’;ÐâbRÁ¤p7̆  °?eÙº˜MÍëØtJ°ô~Ù¨Úšk8—¥…áeõ$aØ$Î0Y×#N?³1Z’mtÎW?R|âGš÷Éì åú¤ q0B›¯I4JSMËZ V*}²ò¢ŸM0 ì·ÒUD»ÜºK´õ>D°ªOÄ0®Ûëb‰•øº× ªIÓvJ²¾@ò2x~´Ú˜mÿUV>Ë+«¬\!Ã|rŒ øûð?ó«¥c¢N æd,õÝÖ‹ÎÉoàÖmÐ[øÕêdê¾åâGo^tß–Eï  `ÊJX7'Ç[¾Drã]Y>=ÿ]JµŒÞ.ìŒÙ8<úÝJ øb—fƒŸi_Ít|²gõ¬A€Úõ×/B=\Ô©³¾ PiJaBƒ#NuïT0ßM^¸Bç6âelgN¢ž(°g äȾĉ ¨%ÊÿÂ0}/GKüf¾Ô‰›d0góF§er߸!-ï’÷IÜ6õ“®Î۪뤽þ%ñ0¾ž];EyãBQ$RÕ”Cr=9óxèªäP ë&>8ãÞúÂØçVtÔPüÒì\Tr-$¡«EqLˆ3¯ý-äo2S-ššjáÜT '§ºEvª[§§ºK~ª¬UÉE1K&î¯)õÔú¬»Í ¦»îÈ Š;óˆ™y‘ÉÔ  ÖΕ,ûª¹µ‘ùž lnˆV Y…¦§U–)îàl‰•UýßÜ0em‚¹•NE]d¨}/1ì:¸“>x»Þ}»ï@ß·C}ÜÙô:°«S¯:žÓÙÛ×0¸')GÞ~UûÜ3Uo¹î×Ôa¸¿†ûªã/gÚ~xÿ…µÊ~õîè¤eem_娦ï7râ—L¨S…Ûzââ1Ö%i&‘çÀK OWç ¥w, ­\ØMö$i»}κ¤Êžž9¢÷¤^O‹ÞÇýá_ 8x£<(‰wð¦ïXœ_ô|#˜Àfý™W;M=ÚqWö áežìŽœŒ²Ð—ƒÀ–V R¤Tßí•hÈ #y¡ŸSv÷/™< ˜Ä3)³ÃóÎÍG'ÊlJÁÑ1¨Çøg¥*û›üzŽKNqÒ’]Ç ¼v²¡„rd¥nãÑ–Á×é±%¸¨?­ 3ÊË/2ù¡#jT™è&«(…Ab9œˆ;#TÔ0ä5ê&Œ™³?$îÉZYÍÎZÙºkÖJwšç­ÉŽ\P. raäX$åáɪì~¼PýÈ€¿l2æ1‡Ç»K‘––ÌS=YI=¡è*v8R»O$Sì<Ÿ t¬?*Q"+)… K‰”Ì¢“ÛÈëüÉ›nòó|ã-¯°¯†K¼å ï³ûÐ÷Ïh“\Ñ’o ]yŸ+kùó>ŽZÅòsÌpE(ÖèaB”"ÍÏ+™ŽywÁ ÏŒ%¯·rСófJq<ÆMT5ÄrÇ•I‘>©¿ 5â2Æ\IÞ²I3a\ÀF7NÀ-ŒÈŽÃäHF’A()j`ß·iG} \}ˆG³‰7÷€'œÂá-£Ä´G1Zè ž^ ‚¦|‚þ÷¶fþ¡å-9föÿ’¾{çƒ~|M‘«hµ a1,š@C„*#ðò:Gýˆ­é…L¶»ñt .ÕÐÌŒzaoE ò­ÈüÖ¤FI»½ÍÐÐϸ£Ý1ð­Öa,+òí²ßÞ9î­„ôãF¾w~k-˜…ƒßê‰ÄÀGpp©¸òô#7‘•«¬ÂãÎû)#Ø­ÁÄ]âÙ*‡¼$Ü6ž­cay¡x¶HŸ²ÒˆXÅ•uév·zjƒ‘nX(t­´VõgáеâËD¯Àv÷3ƒýÙ`*J’ ì¥NšÝ:îî=ÿ£EÎD˜•†…:㕲µæˆPÌ2$þS`*à×Àé³W¢} %Y0¬†©¯ùåô5‰/f0È*¿«AÔGûßÀ´9Ì#ä¢ßKŒ\á…ɉH¹Ä»À~f~5‘ÆOÁ3ÀõÀ„MäÀ~–ì2¦yzé.C1¼€᜿}ô¢ëã™É>܆ê 7Í,»ª½™R L‹":Ýôa½Ê›$ùoJì]÷ø1ŸGìÎì¹ëÁ ¬õ«Gì„®yb /#¼ð2" /T8Q8_@a"Â}îLx‘„ëØû\A„sGN ¼ÔèÁYí)öwnðà…â?M "WÐàüƒç† Öuàͱ:XÌ‹|üþƒÓb‹yaƒÝV,æ öX<^°˜2Ømâ6Ñ‚ó ©±‚søñ»ƒ—,ø8Oc‘8Á!‚ï8`àÝpdàe¾}<àÌPÀ·œ+p®Ø¿ †ýó"ÿæì“ôWdÅýÍ·3ìè¿w ü{÷˜¿Ë÷{÷H¿Kò»Œø¾©¬ÞœÐ¾á¨¾¹ãƒªëµi~"ÚòŠŸôhÕDÊ4ù÷+ô1ˆËôÀ8öôdÏŠK2ç!Ù±ÅÃÿÞ9òïí"ÊÚ3âíü拽E#þ¦û½sœß»ïv›âëtr…Y$ªïúÞ-šïRCù&âø.7ˆo(‚ï2Ã÷æŽÝ»Œ°½áˆ½bYA{ßß-^ïÝCõÞ-JïôÞ:6¯"0Ô$·ªÉÚ’ö«àp*}òÐ8Cõµü(Fœ°Ÿ‡“…Ò!öa‡´á5Û•àᨷ&Ÿ8ÐM\NN?Fa/V’jM£Ö\¦¬‡ïáb‰÷Z’ä‡u .ÉþÉë “¼…„•ZÛWT“…°Ü-ܵ`ÑJ¡µî¯¥La­¦nÖ2?—!ó>˘Uz2ø™±ì_Ú>»cøå%D^¾[Ðå;Å[¾u¨eµUY{­‘c¯52öZ£Øka¯¥„ÔÎuùvk»‚)c,4/º¶X;wLíe„ÓNÓ¾Kí9Q´Å¼@Ú9.Qé1´E Œv®Itƒi[q´çFÎöÃe+µMþ Ù‰HÙþ˜/;%H¶Þ,sBe§ÄÇö«gDÉÎ-æEÇÎ1çé±EþØØ]£Ø—RF_±¯"H»ÑŽ]Á¯eÐû+Šæ…ÓV1´¢Ù@$í©lÛ ¤fœŠ¡ÍL<ëàSürÌ‘Œ0©W(­+¢§H@Ù|áL† ¨D5Ë”ºm,#È<Ëi!œ4¦¼¹‰0@ ÚšÛ®2!´&”:™PÛvÝ3Oe@ðP@X…Ñ€ïíñ}%åW†öµg3O\_“5KÖšÒ׋ã«wUŽh¾& wÂÓ¤:æ(ºµœ1{%/roæÌ„æD‚QÁÆÓ£ôò‡(xê½9•ó$x8E,k¢¨NÃ’aƒ-vàŽA»ybu[¤ÆÐ–ÛEù¶C{K@ù|gDõVÌŽØÞÂ6ÈO!ñM¥Dl 4ë8ø§d/B|=ý|û@›UC-gHH{QäÚµÛ×ÛxÝ·¥r+-<ý¶wŽš‡çΰ*zXraòá¦7A ᘆOà¢c,̨¦«ØEôÉèEiAéuéÌ€ev§ÔR´`ÏÕõ¹¸Ù c{¡Ô-<ªÏ£<ëNï.ãñdÊ]CŒºnqùéŠ5±ÅöÚê­.ö$Âe’üiFîÅL׆ÕúLÂQ:¸ÐêX¨…~Æâ_Çc¸_ÒîÄ¥ân×Ä¿^h'‰ÙûêiVÎŽ²ß¤Ìqy°¤U†2öÇ%PÝHf‡Ht}$ ŸW¸äÈÖ"ú4å{$ÿjõ§dãu ðicÇâ—¢‡Ñ0¡ý,â©dõ?)"¤Ÿ‚š[:·`<>f7®ÌŸÍ§bOcV‘£Ã:Ÿ­ý±2 »-6p3E9ÄàÌØÉDþekþµÎ¶ÁÞú0´o ‰ªxÌÇWéÝÿ÷¿+Õÿ[ ]ä¯èŠ •ub¹Ý@S7ãúƒ6Ö|‡‘\ໄù[;šŠw0%½ÕzYZŠ÷¸ÒDžI£œ Ç<%¦ƒ$E蔃ü¼b~Iv?»&÷Ž1±oŸWÐ7K£‰Çq›®Å[yã [Fug›z9“ £²7 £þÓt¬Ýºú3åj<Ä¿»s:… \ä°Ná@=±Õ²K9±ƒç{þóÚ†¾Àí͈aH׳œHTþ)+F¢âpZòærrúvàÌýã2eáá*8ΘpþYIµÇ¡(IóüM49ÛX—y´†ÁM“”ÈÃÎââ1*‡Ø”75¢Žt§©fW€w°vX¨"v¼sq9äIú¥¸^p9—óU¸gó¬ÎguJÒðÓÊŠbz>)og}Ú’>á#Iyâ„Á?’œ“–ØéG7äªÒÙ¨ÄT~-®J9Ë„8®t[îBèTÁð‰‚½¥E±ˆèŠ(tHt 35<—nÞÊïŒrþðb"±ª‰&ÀP”rüñºq9Ìİúƒ«Ñ6Úµ‚Ñ*Eç"œ­ÎÑJ’U.¢\>.1e—ܹÎhØ• –²éIr ­¼I'’¡èh´EúÌþU;C)ÙØ‚þÖp4®ðDÁwn² µæRúðÈ[OµÛ/ô@:nï=wÝZ^^ìãdoÑ&÷ó©Ì äÖ$VÚêŒÒ]ÅpM G‰WD½T¦D–öªr•‡åål:ã)XÉDñËî^ï%!¹†H>Q!,7 é½è¶ÏãR>øÈºÈvMßÃH·^¿‚sv2ù{J‘Ü`f1OðuL`C^á^T Jáâ½øˆ ï^Ex²·O,ÎÖ’¦¤/¦Ñùûaü7&Ó R`¼èÏ`|¸g1yÒ¸!ë#mâå¶´XbœÁòúƒÔ9RõÁß þ¥1±1˜þ4 #ÄV| þœµÝo[½=Z ›¸žúWú¬¦ ÊýøÂkˆ#CL§Ñõ Í!,€‹DpVÁe0 á{!G¨=£Ù0i ã’\R™¶2¹&Q%Õq÷bc­<³ByCs\ó·töPxZ‰¢óŒ©UÅy‰9ËcÏÍò(²-}DÑĽÕNjhØ-ƒ6NÙºKŠÈßÄ-bú‘"0áE@.˜òÑIíhqذÍbz2G P0­#†¤Üêâ?$hûÓÄ…Ûìƒ5'È€ð†©Ct¦<éÄ+éÆS²o™$Ù±zãÁ€ðjÁ›‹uéžÌ’ÂÆÆ Ð™VÖu Ç'sh¾ÁærÔô…qgõPÚsiu“Ùà{™mçe!¡ä¨,÷i¸N –«ÀØ/WUwÝ ö`€î¬Üj2ÂŽ5g,©¡œrÏÄ#•¬$·™6L·®œÃAF/ÍȽ´øŠ *GPñ%'U¼Vs`†¤: ÒÅF]v\´Â†yÁEÅÕ¯¦Â™ßj†L.ˆ$÷¼Õ©·ÿètHnÖ*Ë/Gê‹]úˆ!D Î aÉïÓ¡X µÞüñ¢{øöø¥®±×u2ìuyÚŒÐq»ªÐ¦ÆQ°)Ù}(¸åŒ¾Ø¶Æ w²Y¸€ÂOÊÂîéÏ=µ‘E¹Ç¬§á¸‰T½EyM9&iúú­[9¬nÐôV‰LseýãÅ®®ùNÙO °ŒžæMbÊùžvušÒ”l¤YñUÔv½×h×TâÓÓ@ïM`úÍå.Í›Ã3+ç™ÿÔ ¸.ïN|¯Š³q¤ÅR^S,òqŒvc-—´É+sü?º” ÿ n³£¿Ä{àic޵s(9N­Á²lñd¤'¬ÊWȧ‘–8Œþ þ‡êäÂ7kÐ$éÀ +óS²j!Ÿä¡¦Ì¢Î†Óx€Ö}.ôEò¶ÚÛ7”Ãõ^·y[¿¼­EÚÖ”´­U“¾£HÛj†ü}¤m­-{r‹´­)ˆÙ#fñ´­;ùGsç´­ËËÛú’¶Þ1ê-³µÞžÖ‡ŸŸÕŠ‹1 „¡R!ùúæ°ÌqDßGפšZßðòO Éve¦gM%*û‘ÔCÚï°·Í쯚ÎL˜•Ötã¶Mg'¶­Ü!±­Z†xQ-™ì ]•£ÄÜGÌŠFA ŒFÆ—IöšHQÏ%å-S.`áµfý©¢Ô :)åï¬àþ¤Œ\›¡3QååMž’&-둌#£h«‚§Ô5®Rþë$qµÓ8j¹NÉÆç™—…‡Ã+yÔð–Y<LÑ9p.Áo.¥ãCOåxªÇ'O§|)!ÒØƒi›TvJÊd×±ò3Ý! S(í’whe¤Mø…wõH9Ò©¶·\$'jÝÍy1ØÝ$l÷DÈJÚ·ô¬}ÉüoÓËÚrÓ¿ÍÉÿVݪnÔ8ÿÛ“êÖÆv ó¿mnT‹üo÷ñðbró¿?‡õš–÷8y@›¼^á´gÚå!”Ô+w"/%ä·³‘íØ*ÍôT]©é·Ôèxd8â€JáKfDzšÃ?­ÌPŽÎ–çD !ÄöUÞ'qQ:†~@Òº4c£H ê7©z0.¡‰A¨Œ#-Ïl1ž FçÁ™¥&XE¦PvQeJ׃0Ûчh jîÉ= ʉ¿ï©¥$zÂ&·ô;Ö¶ŽÔ /±Žp¬0ËÙ¡²@-žÌƒëÄÃΆ€»xDììpØÁ&‰ƒÚZµó¢OÓ³hj¼u7dƒÐW_0¶nä“ai“(¸¯ûȸCkz2âX«­û×`í¯ÙœxÖÍL<ëk/žµÆEäðâ ;úi2B° Ü;L° $18O¬`BZØàì€Á6´Ì!/²­¾\§Ù1§õü/xÚ7«ƒÍÎ1‹óz[`Åo߉Pú+§Šö†1þPµÊNXDJ,Ø´(°sM2…´Êœ¸F™ö{²«ŒïbV)ȲÒ²@8%RÒ®2ˬ’Ÿ+õ±%yOÄØp÷Œ{ÀÖÂ#ô41‚py'àè´Dý`+ž‚çrµ6yµ:Çš}¸+*,I¡˜œ¿‡;!éŠà@ðô&— ‘@Þ;C>%1÷÷3±ƒ¼ Y!E&ªÒßUQâ§"üHÊcåi[u¬¹?fÕ-øQÛ†›;Iks`̪›Xal"Œ-F¿Zƒ5(Òß„"ý-(ÒßÞ1fX`†fX`†fÛ F¿ZÅêcal!Œm„±Ã0fX`†fX`†fX`¶£aÔÆ&ÂØBÛcg[6)¸Æ×Xà \sbAl!ˆm±³å k#,p®­ŠOBr%ƒÑL€.Œ‘åZÕb¢ÇʘYî_ýâgÍ?1­Ì9g32"‹×xœ€Gë)9ÂÑ 10T8F"|Bßž ’zІHÂl—Yús8Ê»[2æ0f pÞ‡½²­B šÉ±õbI §ËÒª13 ¬´,i HUgK¹Ðe‚LÜöà`ý\O^½YÐ -õ*J”!iù%ßg´“׆L[€A`ïzz½­}5#0.óêºÑ¤òÏNf'\õ}E”MÄ|¹úØ à>C‚¼Ô9‡]OšQ ±²MG8sì_ö2óì_’3sì_3¶1Ë› ƒmcË¡ÔÁÂí8¿ –§åõ,>ÿK…Ü^.Þ4úr3¬Û$ÅLGê9 !ðu!w+fÞü ·åº:Õ4TSY­šîY²Î°°dBA³hŒí­¸Z™ ^½!õ¸AÀ¶ç¨@* TXOÝVô(É&-¶*ÔÕöOÔf‒ç`†AyÕê_^F燣¼‹'S`†$˜ÐÈ vŸ¸{ì[Ú}À£¶îYÙ¸ûk!¤ÊyÇ—hÊ‘ê ©?ÒêÛã…J„ocSëË’º1oiÂ󽨸>A72¤!ä.ÙÛxúyŽ„3,‘ƒ3|ÿŒ gô¯”Á Ç*ûöRÚ?‚—|@Àû¼/âhq{ÓÚ)Ã}Ç6 i¯)¨ºVDÕÅ´¬O§œXÁížf>CK€ZÆãº¸7¸ý£Š²ñ4}õ›¸yX§Nç­µöO|ÍÍþö£jou9s$ÑÇ ;QÙ· À²DèP:» |œq OKG$÷ C)Œz̺«ûÃ1†_%b"ضØëƒüX³¦1ÑÜÉÍYsŒá®C±¬gg–¼Á6:Ah=Ááì'Ѫ;‰Œw± X6¿o™¸ÕèÅXµ&Ä1½˜%8+ 3"´pÕºTrŽ>Ëft2©(.6™¤²j¼ÏV†…·âþ`õ/>óíøU‚¡µk™dù”î~‚îÀ_[>YJÕBÁY»l%Tñ|µ' ÿ_Þ«þos«¶³åëÿ¶ª[…þï>ÞÇžþMt ýŸ„û@ôÝçwÒÿqZÈ;êÿÕþmÚ¿BûWhÿ í_¡ý+´…ö¯ÐþÚ¿o\û—_ù÷£kþ¸DàŽÐÙ%ÕU»‰6ÍY¢‚¸Ý·TiÜÿøåZõîªÅPÖ&üÿXÕˆ"6øj.'ûøù€Ôéã'½dMé&áú;oÓçáxï ¤úã~ӺϞGÄAu³$±Q–Êš!,·YMÔX‚µ]ßëàExž:Õ-—ÑîÂjÕÆ!â ‰iYŒ²î]o³¦ÎÖÆÂ¯ãn/áäÛUÊ:Ù¯®“í>ÿú:Ù¦÷¬åÀ$þɰ³ÈJ?ÄãÑ—£n¦³‹z.Ú¹änl†óH<*;¢1áFê·Z Dª”ºóÓ9Ĥ1°(žÅòÀ¥’Îe`@İÏÄ 1³LÉÖÝ>’Œ¨®¢k¢:»¨Â¬JLí¢òåUȳ–Œe7GØôæu!§³æüV¼6ô»wÈœ:ìýîpøƒVÊÛ#Æóx´BìšÂV“¾ËQBò£N–¸H¨ÁíoÂ# ¨_ÃãØ¬þä{n¦CjžQ‹Ÿ|/Ì—HPý¼•:[3ˆÛØ3xCßÉcÑÀE·ç5ˆ»†í*vRQq{K–AIÏÊÇYý9dé˜û}‡X%+ûkIu.Ò*èz(â|z"O 9³ÌÉ(“šà:^¥àg~n&^×èu^×’¯7éõ&½ÞÜôÀ¿Ä8õÐ@™À åÃòÑp$A•ñ“Zè8Œ\®/ÎÃ1a½Ô«@¦žD™ ŒF€†¾!wÌÌ3Þ|n"ÂâೞÉÀÿKº¬`0·-㩦Ò=½:ïm }Ad â£ÀSÏ4|«fì<*؃Ê>ü^KØ!lªrªÉoýõ´_£žíoÒð´k+¥{Åe­;32"°â×óó\ÍËü)öénÜxaA“]¢ï‰5;ÏȶJ±_È´ Òýy’aÄ"J ¡'N¹`¨2’H¼³Ñ?·4â'a@´ï­(1ÏŽ(iH$ç€Í‰l{"<Ë÷Cse[å̱+’] X%Ì‹’Õs¡3~r#­íïVªIŒÚ-­íïWªÈÁCß,^.XCxK»Ëf?¿Á’„Bk@="h"c?Çt¬¤ðI:ñ0ƒ–Ä-“{W1—ÙÊB ð®Sì˜ÄEÏVI$ÐIAšß\ûûÉ]r«¹s+§Î›gêä¿MiÀ -ˆí¹&i¾MÚþ|{­ ÉšXÀjh&“8–ÖÅþÁ<¾0‡—)Jf'’%±NÄä¨ö55E²Ä"‘½à~ØÂNŒìhQ%¬ìò™Ù ËÒÎ5µË[‘§Ú®šZ*ù¸³?··¶“Ýȶ¹“…¤å]â¨JÛKÑÍgï¨UÌËQ^ÂÖy«WÏ>[«¶6ç*Ê ÞJSÓÀxÙ ´Ëé•‚| ¬ŸµýÜ+FCšöŠœx9ç?§[G e“½¿ëp_Ék ±!ýƒZœœ€öoÈTv¿fvã‹4à1÷ìýMÅ/l°µj…j³ÙI$ű؋~fáJ…÷žZÙŠc†·YK5ï%ø%ºS¨½E\="Í6‚­’t?sž´ÕvŠpýâO•ãÏQyúÜð/R^á0çi¶ˆµ3[ã¿X¬qè’.û6»›ˆÝͲ¼V&n¦¼Ó0Aˆ±­‘ÜúõÀ€«–¤i30Rº«¬5Ñ ¼%IP2ž¶7w„>ƒ·VÚ‰N¤ŠxU,“Æóƒšò‹ØŸV‹ŽŠ3¯ŸPaÆÑ"0Žl¤8 VÐl ¢Í~,:R­æZ<ŠS XWƒèC8u„#I"åžXË6Û7MÁvÏàP'SÚÑå%ÏmÌ¡‡tFØ•áMñóÉ0†sh¯’8Øg}u!†6ƒ®X‚g­ùȰðQ ãCÞåQâcÀûŒÒ™ý¬ä 6RîøüÝE¹üLz‹Àb‡|¼& {Ѣ쇾¹Â7—ƒðÍ…μ€ºÝ+š™q -âd•ð-(m h÷ÏÇ?qwtU ´˜lÆ7ˆ¤¸/Äá€$5 úÁCdSJÅÒŽ!Y¬¦Î¤µ &Çk¬DÆY'B/¹xfI$Vk>›o¦êLB¹™¼Ïß+éܼ édôY—þ%QËðô‹[PËÍû¢–.*,¤J`$ÍçÞärp¼¹0Ž=©—3 ÌRÌVÆl.Ä-L²0,%Ó­›Aÿª”F‚ ¦O°îleR¥í…dïÎWAÅbפêÎrîIÕ«€—uºpwš /”ôĺ˓ ‡71͘0ƒzRWóÞMt_Æ‘Lt,9T2® ú|™š”_ñ©…ú¶d_úV¼òÇTÞ”?N+Ü…_Z…£áŸ³+©ÊÖÕ°bN?çÑø"{†~ß­o3î¼…¡2V–ò²ˆ×£õ²ç°3tŠN¦ÔvªŸõâÖM×O8äù¯‘¡æµ,úN/µEžÙG"ébö+¶áäp1Nñ+¶¡Ìq1Îò+¶Ád¹c¹ûtv›Llg1‡áŽë)l¹Û`òx ï:ä!¯›?,BXÆŽþÞ†1À¯B¾îDUC\hšvó„9ÓijD“Ä®ø…]¥çúJßÒYú+»>Ê— 9=Þ1Éw»sxÜRI½3˜NâÝŽ þ_4ÅöœlÙi¸—êƒ÷bïàít×xñÆrªÛí…¶Þ§SÝâŽn9ÒY/%ãï"Ù~¿ϺùÙ~ ‚•3^IØY{Óª?IVŸ›[3™ó÷Nþ|½/âÏ×±ýù‹©.}\çUÓ8tZÂ["9”ÒŽä_nN‚&Û_‰‚<«M\özòU{U^là*9þ8ŽÉÍ}—ÚS§|™©qt3Ž&° %G%nÆ£‹Ù9™›t {•÷;›³aPòKÚ4aOmhYâSÝ0Vu›zò“Ôh²·£´3c1ƒ#ræÕ{2oõ&‡‹gì÷¼„4æÑ°2#­9‹†€l¥ØÈŠv‰Fµ,ƒÏ„¥ª—•Ü9IÒ6°}¯^÷д™M¶ãö¸:ž‡(DH*²Òµ™ê˜¨HÔB½Ÿ·k¥ói‡ÕhÕ-ÇÎÕÊqD#Ù{aîÆIî: #k#ß?Ùʽ—}å˜^Ð/Óôv®ýr : sJ,íÔI3K>uioÏ_Ú‹ŒcÞÒÞYâÒ&VßZ¹NÚ a¤zû"k+øÇGÚ¾˜c~äýï²¹»,ð!CËØûµŒ ý_tÖÿë~õµÍídþÏíÍBÿw¯wGÿ··[»ív]¯ÕÜ#þ¥Õ>„/[ðìÕ=Šò·â›ïXó§Q!ÁB”0rHˆY8póðd·½'Žº{V¯uˆúÂò½ß›7·ˆ¢ç–T]Kˆ;‹At9Q| ?D({Ÿ¸ñ„¥êaHáíÙg“‹Ú»cކn~k¬Œ°p31<´Î‚¥³¬ €n¶s(ú`‚hÜ )ú¦Ÿoȶ,­û*&žü•4~eq1B“«÷À”µXãú:ºˆá8|þÕ«qÄ5ÒB¿%¼%Aô惘À’F–(T}7³:g ?aP«×3xd3ŽxñOaŽÎdŽöþu„r–ÊK™8šÌnPÕsZgvqwå˜AJu¢o`U §ýºÎK×^[þàÛ^Ä¿mœè@ðé7¾"hBP yÚCÝΊ÷9¬w¡âY]8ÅÔ$ ÖÀ_PUIñ%öNlüНžU¸güê™ê5‘«k Ê4O¯åé*½e¥×*+ø&¨¥”ûÈ Âê…デCy¿ñC„¿qàæÕ½)Ì€­uÊAêJ®ßŽJTíL yka…Pñ²·×ê  wÇݽ7°ŠÂç©;Ò4ªXDäÐê‡áäAíí`=8åÛ} ã¹´oU©s»›Æmïù1ðÝÖ‹—Ço2øøù*ƒóøµp͇“Z°ap;"v©º7cñJ³etmÌnÃQ§Ù>šÖDö#;Ô_2P¥­Š#&–´w=¿<Ò/-^>Y¬—cw!ýÕ—£·!ÒhskõæhJ=8û°†ŒˆˆŸ^äÓŸ%´}pv’î ²‘ûÇÚ ÞÔdˆ¨T5àœ¨¢½ß›¼z¿_BÅÔ~xaø’j¿¤žÏ9˜_$¹ÈÓ‡j P䌬‚/Å1j ôvÃ,/)ŒÀ¦À™OÝž„R.ûTY‹bòuÛ£õà¼ÜüYŠÖä¸:p í•ñŽØÒb³7·P4Ñ€ƒÛRØZ¨¬stŸ;w»–_¦î.G=™7ª_>GƒU9‚JUL¦Ñ Ð+1NãºBx!âš,¥ uð†…â l}3‘G-±bŽæ¯û™ëEyÊ!!ðñJ£JÌí‚õ{ëxI`ÚÛ°*Þ–Ðï­0 D'TQ"UTx•¹ŽÉƒ¶éB=²…Èþ¢Ï¯ü5•_O#æo…í{š‹í7ÉÝb.‚QYù Ióçy áÁõÊó}BòÿÁ½ÊÿkÕ­­' ùÿNµÿßÇÃû×ÿ·å©Ô)£)y»Yh¾é~Æ=9!ׯßP¿^â¶ê·§:±mt6@ãìÁÙü†ÈÕ§,.ãñdJLóF(á©£à¨/&ñuÌ1c}¡ót$âÉh€l–'¡ …Äó*?Beæªp),"³Oð}Ç Z¬c.+/‚_YV7é! ÃÐËš‚/ëéC0ž$´ìgÎr@<ü°;p°Â¯ëþ_‘Šæ–cóúó G3D§ þDß`ƒ»(.G#9n°Y ™ÒØžf{{ Ëb]Ìι¥jeh9ñŒp²øúf Z!¡é©úçŸUQOB¸Æzq ˆó–®.ÁÊÚŽW Ÿ¥4f®žÔ’<€¶a„=Úà3Çel2g„3@"iÞ ­€¤œˆ©Öúúz¹“Ô®KVYFcÓ‚ìvÉ®o:—€B{Äñc’CsFýLc¼ ‘"(Ñôj s@u^¶Rjøm¤­CCàÄáøÀ‰,¸:¯û”4°#O²5W<£µÝ»ê_œ.ÞY³H®DgE0‰'S©vMYR‰6 1V&‹¡vîMå(‰cLDq ÿ~šÝ:zwD>Q/¤xb¾3oM]z‹ÿŽkŠ f³ûcÞ¶ð5NZ£R›õ|L†}ªÃJ&`0’~ŠßYgÄè“Ç C½0ío•)†òÁ¬,œ+"iõô¡&öîºÅ³Hd³ñ‡d»PÎ ¹ÊRÝvá_Óf³ó?™üp2áï]f(àûÓiŒìþ ô>½°ëj}HC«DO¬œP˜ÒÕ¦™ªßñÇŠ.‚sÆ]]ÝÅbòïwbeÝ)#„þÅ»´Æ`hS ͰevÝéLu²ÃMê²0^¹F™c"µ®v:èjmnþ³þ„9/¬²×ê9—®†¥1'¯Öÿ3«ü‹ˆ²ŠÑ Çx–‹¦Ì’Ê1¼µM?k?ëJ§ º•AÑ^ýëjV1›Cyž~UægTÙ=uk*ì^£ý¼ÞÈÌ%Xm.0(w|ØÍÆ%¨Ÿ¿lß]Ü9lv樀x¡ß;mÀÏn0Éó }Pk=/‹eÑ…ÿë$©ï=?¨ŸVåïýnu²BQ¥Ê \€Í“%;‚†p`gm ¶Ù®4^*áaŠ [%u,«â½þÚ*íú.ÌUså6ÍÖA¦0CÉ­5Û!à¡¥Ы¹àˆ‹è2ÆHª_¢™—¡E{%ê¬þCÜñ·Øyóõm4ôóÕòߢF}QX¸PåÕ"kí÷´ÈíüZdþˆz í܉7 9êcVEÔª®ëg@AìõÕIè*nŒZ„Õ˜ø²Šdæ4MXqœè~µf”ÐG–ñ\XæT®k•Œ‚Óuùæè3ÍÒu¦–ÐXÊQó^Ü·ú¿8?HQœ[/õ>@¾ê[N:¥ð§7½“ãúQyµÆåðD’!üèóù¬L_’ªVîMIlÁYÿ3¬ <á4zÀJ߉—1NõFè$¹âÐÂ)aêf6¡;ص¸}TI®¶Âª]ÄI5¼ÍÚmËœd‚Ô\ΆžImå•”HŠ(—§›PŒÕ~Ð~À©†{±³‘¨Àt•QŒ ÛäÆ"´$°ÞûÄqÎÉ´¸‘'ÔH"¢.‹.UVÇqV¬­m0F`žl$aðû_6Bs©.6ù¦ 1åtþœ˜$8¯È£œ üš¨ªtjFvÉ›%ÊÛ ^-6MP5}ždúÊÔy²ßgÎS•–¤Ì“6Q¯U N"ÂQM‡<‰”]­n&>l;‘Bóyiðe6òn¹**Ñ+$¤mà ´¦$Üþ€qG7´ HLO‚{';'óµ("^¯$ øcóùÈXí1SlL_¨® S‰ð·«Îeƒ¹h·"⿚$>ÌæCÑõçu8Ô#$å„°Ž“©2 òÓUßx+yÛZäþºÜO1kÌ3À6°§$‹g‘§v¤ëS«ú'š9yäÓ/LA}Ü´Ü«ÖW‰éòãvnA$s µœcÇt×G—¨µWyÚÉ—ób†VGý+ô>˜r‚©Šx»âbF±‚gËh|9}L¸±6Ëf·wõGïjCZHA¨|ì^báynX~zrjðnZÝIC1õåÅÞú îáî€tšoäšÅ×îš ëÈ.ß±l›ÊââWéɆۿç«~¯iý$¿Eü7ê‰ï»)cGœ¼|Oó?5¸ƒ;ÌÙȘ¶¦phUº•ˆ|w×BdWbf.ã/$Ò“ˆüÅGd`H ¿¯s#‘Bb-‰|Ffâ{ÙÅŸ7ì­ÑžTj xíWÉ@¬Áµ.㉅%«½ù+>GŒ#-åK–9wÔ÷K.ª·j•讦=§Y?.4wãEJ7^dvÃ.(—Hæãù­:òB+Ö—ÎIl>¬ZEÌAsÜ=Ùs(•c¹)©æ‹,ÂéTh“4É£Ù¯ / »’¼5mñ>­U“<:iÒWú4ùe™BßµñXÀþë¢v¿ö_µ' û¯Ú“Zaÿu$®ýW³ÆÉãõW³,öÊâ¸~òš~qìøoÌ,5z3 q ^Û͇`^ÀÈ‹ÑYÒ¾–"zK Z5kÒâh’tÝר Ò±7ëÄ~’nýU²q„ñ™c­²¢ È»l†_úc_í÷T¼~ÝÄHÈGÂÄPk]Bƒ¿=Ã2T'²)ùW]]‹ëœWÆÈaδ°S(Ë}†¾Žãº°3°@$à~qû9¥z†¹i¶Òâ…àê(£ û»ØL”£¬TÚK¶ås‚ü¢^ÛU‡ÛæEdÑarÀX‹IiœU:aóhcÀ³‚Ó“²Èæ@L„t¤=5,ªlïu"Ÿl ʸ•ÇÑå RŽÉrüºgý3i¤B‰ç'’ìñ‘ÕãP'¼xÍ"­ÇV'MÌã¿çNãÙ‚“èoË'1Ñlx6ýiÈ@Tb6ƒ}p•9›_u ¿®ݲ£SÖ‹•]ÇÃÒ§DXk½TŒ…¯ Pž\EŽõhcS>#»:¼zï=«T}]^VnÝ?‹TîY]]«®X¦ª52ðVª)»ÓÔ„ËRœ¬y­-·pg8C÷ÏŠ\³1anHóÉ¡#QÙ²wâzÆŠÅý’Ùù|kéËõþ(«÷”ô {É&'pAŠæ ö“ÀBFwóbܓŶI{M”òˆ,×¼X¶’”M’¨™ƒ§>óg\‚a/1xíËÜÖé¿—¥á ©ëø_¿0¯_PT[IÐdì%n,þÿxß7y;žêv^òö´ÙÓþìoàJ?à¿GÂTÔooàÍ ÿ=²Í÷¨X¡8i^Œò4ùÀ!|íC…¢JÕ§1†ç}† â?pÃUY7ÿÓë+ý‚´/– ê\èïb†€$˜Y‰¨„ŸkO‡™€Ê\äW˜)ü*]7$Ni´üÝ‘ÉÐRtkÎD^ãH³¦òúANd`…L胅ûî?îS&‘f°Æ3ˆ€fÎj˜9«&5mÕƒ3H¦­·˜D6…},Ϻº†ãÚ1›ÀN&ᙇœDô©XQûz½C- á¯m {â71\yj¨Ö5}¯Jì`‰c 5¯%!`ˆþͪúߊ JXou) âCÕS£|saÞêRˆ5 ̦Kh0›ú_ćM &Kh0[ô/ âÃJ%4˜í ¶]sä 6Ñp4õn©ìÐ.¬÷ap-Ê #ß«CXš«²A,ܰrAÇnqZ·/̽+Ò€ f+Ò’¶#UI22¬—‘W#$®Ê)µ^Ö—j‚¨²Y´ëÝçò׋%˜"6‡ýlÄ/cÃ7'ÐʲMênmRl6iR׬-jRÇXx±·ʅЕΊ£¤äFºO˜)tMæ\ÇŠ$Žš†Ùt>סþp¿É Íp;vB.iº,‘’ݳP!ŠaU¨*-RÙc 6£Ð“ʸTÖØ|ºH?ÓE+»˜Mcíã=Hd¼H=Ç-«—Ç-ÏqÔfÁSaù)êëµ–‘ ž?¤Ûå4k?†]Î}=ûŸñÅ=Çz²YMÆÚ)ìîãá­äÙÿt›yíÚô+¼|GöA<ÔïÀL¨Û´Ì„üXQ•³Ï•Î3¡E-„8Sa#ôl„ä|6Bæ)l„ ¡ÂF¨°*l„Da#´D¡|6ª‡ªeb&Wç6…ì3F?’ÁƒÕÃÑ‚THÆi| +€¨í/û3wû¯€h9{ž (fãs˜=S#¥S˳k’ŒD4»‘ê®á"Ó¿B¦k@¶èˆLõ0 +Œ…Í/XÁ÷íÆn+,É K²Ñ’,÷DÞÆšLMdÍžÈÛX“™‰¬Þz" k²Âš¬°& Êëre{»›MX(ÔÝ듽îï"LLùFbÌ}”d¾í¾:•¿G¡æ«Ã£cÒÞtÊÀ²eÈr;»P ÊdÄÍ{›™=na 4Ò÷Ð@Ûí6—aFqð2íÏÒƒ †0Ü®ï鈋ñÈ÷¡v–mçÖÁHÒÊÛ¥?±à÷ü%•¥p¿BÁ¦,õ(¯Z¤ÀË dæå–3³yG&’euUZ…T•¯%{¯×+Ææ¡ÚßéºÔg»¶Ìéfçã¦vß üfƽˆMMÑ›>Ýçp‡î”™è.!Ô¶3ìÄ·2ðž×ª½@ªó:#«ôÔZub…¯ì/piyw1zFUN|â„|!»³^ÄÛè| F!&Œ<†ã¤sêij蜪á-VmŸÍùÛÇjª©2ôâ‰Iû&ã)F+C›ºöòío6T0cd"tͰB^b›šêzACÁ4kÎï±£ÙÕ{º` ¾a£´É¾,#*(04F(ŸMdHhûé‹  G$Ôµ^xÍáù¼¶Äkm^ýúfX/öÖÍÐhAªMŒ÷A÷ìÇ ]~±%ƒªZ ½8å rhйøÊMeå´œ€ëí—&FZÔ†c´0*P©L‚–„)Z"µIü4^‹Ï*!ÞWàa9¦ ÎԾΟR‘ßeœuäô‡Qt!òÍš ±Mê” 8³4—Çrµd:ØK–)+ýÚMØWI»¦²´GIãU´JÙ¶º’ kf€Rj2ã2°´” Ñg—Ÿ˜1Ãm'¦ì&Ü^Öâ32‚_C€áíàh%Ö$fhà.õôü¨ˆ7«¿?‚_§«'’ØBnŽ‹Îˆ­¨çÅ Ô ÿœ]Q¯¬¯§Hʈ;ê5¡»,ª´"˜m>ä#ËŹU¤Ô4-ÀÏÔ0A)ãô>˜Ìª wÜé2Õ=JãáȵB£›ÏyïGâ¬d¤‘¨ûç€k¯ow„­ð1Pí‘5¤X•$Åâ˜{ûÊ.p?hë…%ŒõìþüD¡>Íd«Ö%uf­ªÊ˜ÎÌOÿ)ܘ°j.N&‘wÖR¶“ši]÷1wÉ8…L©ÕÈaqu ú”EœZãg³Tp±â/Ó-ãðjd޼–qIû/8ëïÕþ«ZÛÙHÄÚÚØ(ì¿îãáãÚÁÂXk]׬ÎßtámS-Øî7fþ¥³b8–• ¬;5”rÞ ùŽ_¸ú=Îİÿ½ý—ë¶(ÍÛ8:oÆ$ÓÒy톔À²“ÒæhÇÏ^XÆYŠbRE!•Qo,$”Xà3}iñ[ø®}"µÃñ?M]çÔ;ûŒÝ=î>WXCÝoJ›v6…“Ê©ÀÀ%ÌS_Y1Ö"‰q×½±ÅÓ¦¶¡ÙDnž®&¾Žùs솄’if¹áâ@€¹óúÁÍÔGcr:ƾõŽƒâàÇÑß³NV?)`•3›bÆ=nÏOÆ×zdÄþ-»/žŠoaû:lG´iœ{w¡»ÃÑj{õĮߟ¤¯¿/0¯.—Š‚ïÓOO¥íù+;;Û„á^Å–AŒ›ˆÐ‚ÒzTNnÕ,(‡7I†q›|”Æ^ŽU—µMÍ}\ ïN…Ö…ãÅÔV;òTì*» «jû%àÖF˱¸GKà0£»˜åi’¡wQZ''ÔU/¹£÷”£¿¥ŽõÐá×ÎWõÞÿ¬¦³Þê¼éèÔ˽6ü;hwNð«“ôsü]8—˜†9Š^ý \e6ƒhúá22u{vYrŒôû¸Rw-%5SîWÊÊô.•é]8+Ó»/‘•É’=Uo>T À.C¥S[]¦Œ`žN-G‡AºY7™zIÖi=¸ÜKª.àX›³¤TÛ6‚€[§l‚Ã/| žÄ¹ê%u¢Z$ÛNæäk²di'mAXVW‹ ˆ–,-ÓQa'öè_sâzvýÈêí©›.SÅ»0'`)Sjwˆ| JñkZ.B¿³tXªWÔ¦ÞÖB3Œ/ÕI†B×ÅZ /öR ÊRP¾Ï«s†%"ÿÎæÁïÃËG¿…9à>µN³Á4FÏYà|uí_Q¤z ÄcÑ· õ}tô ~3j¥œ"]¡¬ùìì&ƒW§öðdNOÐ…%ÔÃÎhX™ù½LÈ^ž”ÕM]N¿ý¡®?ÊÛ÷°îÀBz¿ÈB:Œ\Ñž7½VRFã.™Œ%F’X2f\¦S½ˆÄ)v.½öjïd‰áň”D#ñhʧ~ÞŸM"ò©Iä€á4ßÏU7_Jòû#wïqÚXØšié$P¹¨ܨ‘ùZV NÉðB}8¥V%µ¤c– †Ó7«—7cÄJQ7$CèM"}…Ì”>ydV[6ýWtZ¥"77Bÿ*h1xˆõÓy¶¬©“¨$3hH*ùŸèäù)%•^ª´¾qhŒ¾ª{Rþý=»_ùÿVíÉvBþ_-ü¿ïå‘䯑ÿï½>ñý¿»”€¨{ø¶ÂÿÆa›~Ó]+YÒÿ»&‡àoC×sºs*¬0–î(¦oHïn~Q}~ùLÐ*‚ÁÖŒ84¤ÌNwF¿.‹ó÷0 ²©Bç™a^Iùa^¯ð©L…Q[ 2Í[ãs…»äĉ ´B~·—ÿ\yÖ-Å+«uú{µQú½ >ÀàÏ&°À.Aʯ«læ©$û¼LÐtFzúœEðÿôc×÷ ¶™B×W¸o )D0»­\H ËT¢J›Ç1‰Ô„!…ÇxBüÅÕ nÑ0‹ÜKã’ˆÖÅÙŒd‚$ˆ#`RP-6˜ñ¹òZ¾¯}RX¿_û/¯p·ÀG\›ÖFÁŠz]»~Ô¼ ”¤ùžüwe[ÄKöÀsËø%¢:€þþ )c—B0Ë¡ÚÚîÆµ &MÉö·èR'­Ke„çô#DCœö™PçÔ-¤ž¡¸(Àù·‚êÑ{¾+CiÙ„ ¿[§†$HZ®U$6 ˜ð”ò\ô¾¥S)‘Û;£“/"<ÞÎßã5];¦pK°&6 1:4}5‘)Ê™–ør¸h ;Áìû‘#«cÞç±´»î–"Qn{NS›l”\5÷w‘Á+¬G÷‚4KóÜd^rÛ(Ùú…,ÆCS*˜Ò°D¤ƒ¥ºÍ—þLÃP¶‚Ø”Ey’ü'‚¡ªV8U7Ÿv©dÚy¹Ö¢³¦©¶¯³äâ ?ƒ²¡Ûc·|PÈáãg$=£`¸Û)3GàdÉiz@Y)DËÿÞÙ1üâÌAïë`ZCàù˜l¦L+agÞâã½ÅNxö:”;þ’ÛfÉKÞî8!ðvÔÔ£ètK­”\ã‘þ¶{§Kª…cw«•‚ëÉîƒHɇ®aö}Ú¡’tPKýÉmˆ7­ì»(b ÞìK*~66_ñË!¿¤ŸSfP÷›ÐÇŸBäcÕÞeÉœñ¿Ü?©n„†"rŒ.I«T5-Ÿ÷½ÑŒj548Ù îi>¢q,Ö¾ÿ.‹pTs…ÏK8ªµ”qèuçSµƒ”£Z›K94Ç”£QÚ×”ƒþvœÓTÉ;PŸI­ðcCköý£É͈5ÂRuê—ÖpzÁ`cÊ¥m .¾”šÎ(=ůf°ƒs({i÷йáS)|ÓSÙ¨š`ÖLOõ¥Ãkú&XÃÓ—"Ýó;ŒßJQi§¤¬¡À§áuaÃð–ˆ…ÂõÀX÷¼‚QKɯ½@qYT”€6ˬ7‚!GJ$ŽZ¢‹Ù8ZÑtâùI§qŒ¤ :;F®b›çÓÁü†UOÑ9Ì?4¯ÉŠL¿ŽŸe¾yÄøKiBhPê죥5a ^¨¢Õ xªq{;ÍÁxë¹nµã´Š8G—€È¡Ÿ«ýØ™n ÏrÚ?µ‘`S0œ¾¢wÓ±Nëy·º_Åw.4™Dµs÷Ÿ™„Í¢ÔÈ︣òòA¿sÎxõ|¤i·wph+óŠäaÜmE¾é­KP°&«¿ÂÖ·8ƒT¥:j|“‰¬SðÎeÑ’ùÁ\ÖW£Ñ…ÈZ2ä|~È8ô}Nu(Nšâ"Qµ²>º]kÂz7P]ñóèPÇÙStäiÚº¨ÙÉ<«“[æÐ6P~s¡Äåt›“Õ†#¯»Àü_Ámaúþ.ñ@æ¯b6Lcáqyöcä_-nõi«}X©rûkÕ§Äc½Mƒ!‰"4C†ÖÙÃùÀÈ‚ Á|åñÀöÏ!·Úü0ã,cóÙ œü€<ä1¿XL;Uw Ç’3Ýñ&Xås²XB }†K_±®giLëÍdtíáƒòEFÆXj¡qÌS)c’€ù=ƒ©QöX¸„*Ú:8ºXI¢‡Q{*ú—S””pá|(³¡íèòRœ¿‡+ AÝ.3¡.Xö`ÔQž=9V˜:ñ­ÃÚØíNà²;¹üœF²(ÏÄúq÷do]Ýœybèö‹–¦}âÂÏR¡hÛ4q1cü³ZhýëšV¡z ¡¼† 6 R0Ñ’$¬}Ãlë[2z‚[tóuIC8äž1Ç gÞ³Ž™ Ùè#zO¢uã¯í1ƒ™„¤ðSóùé~HÆ© u0窗þ¥I¸Œiîèç†\·Wg[Q/ToBf‰¥S’i`:z:iYƒ:ð˜»ÀÛ3ñ^äT<3y0½ŽèlšN†¬/4.8Ó¸d?$p·ÅP"èpuÄ+Lf8+.~éxÎ ˜‹|™DüÏJ2-ÜL¢ ÈF¥“.\Nüü¼÷¢¤µ”¦=ÛŒEÍ“{b¾u²>½¼s¨®” ª„¶ùZ š#c”£žm*|dx[Û.™#-i ÏpFGî©d[Û@‡2ÛPÃꑽQqwÝ×îE(°ÅdñbŒ÷Oñ¿dó ê¿õ¨ëœ¼‡AÙï‹|4íÎÒÕ/‡Ïë0åëÖ ! mQÇë–¾‚ŬÇäMžöÿgïß›ÚH’=`øü}>E=O„ŒÀöÌzÆ!¶eK HÀ°>qÞ ­!±ºø²ïy¿û[™YU]×¾Hâf·vÇBRwuUVVU^‰š¦Æ‚ªì‚NL­È =I²p³F,¹/î×ÊÈúX-aí-§Ð6þŸ”#©™TåL‹'?Š'7²0‚°¯ˆônp˜ÞŒ±’{ÂàÄg*n­$BÂ+p›ÇROªtõ ¯9ÒÎ<®æhÇ“*žÜh#o›}åj#)"4o^w!JÚc­ypテpÑE<ù„6o¡[üðª !€E›ÑFÔôÆ&ÀµUm­ä$…_¬a½ƒºõ‘>½tH…S!Ø–¿ nÀ[pÁf]Âæ!g„ÛÝ~gïÆóiüy<‹ô4srqíÞ)z%”Kqœ<¬ÍR,oÑ>s¼!\*=ë%—y©g»¢…\׿ }Tñ@µˆ¬ÄŠ¢dQÚX’*ýCnòÚbB›Öq—/ž˜2£¹@yy9¿1„DÓÙ4Ââ/ñ £95¡“8àÑg~)T$É)o‰Q&õKj†Í!­)Ú:TÔå7<çáØ,·õ M†ëÃÉ12ž˜Þt^Ö à*+mñébµ»•²ðn*÷QÚUI*ûƒˆ¤3³2oLYHÄ_QÈ¿ðºCÀ” ¯ãe»d½5ãq zŠ!¿LZrÚÎ(ŠhQª‡RpFSŤٛÒ£þëJšåRùëè–[ê.w:º³‹þ«±†):? ¬sŠégÓq6­u׬ÕaLQÆ"a¤ì(:oú‡¨P:D]kÍ’ Ã¾íœøù4ÌÏ®t`µ¦ÊJrÙ&-€zhuBpr0ø:9‡ÊÐëGõòÅ»×úO»;Ïw¶ÝúOeü÷½¼ÄÞmÅŸÀùyÑ;ðƇíÉ‚UÔÄû™70<ÜÌ1Nô\.pœ®òÅ{ôö8HÊóÌÏËóE˜cTƒ"f?­P£’‡ú|iCtRÒïÓ*Äûë¿ „ºÔg@+Öc&ƒOŸgyC×3zq¶^K ¤1ôÐF(Œ£Ý히9„H¶ëùÃÁão·\>¦ Ï®}9û´‚n±+c°vLkìy«-¢)±ÕžNù­kìíL|•¯ü¹(p Ao¼‹ü!b¾!Òš“„Ô™i| ˜t·Ðô—xø]á°•Áýì‘÷Û-ƒû— î¿.Üß-ÛrE6ÓíCàÒ †¶P _êva1·ÃPL£~‘ÍFk¯¤wýŠÎÎd3÷îŸë[tF#êÎàžík¦i7s1ž}v& Ɉ=§0~Ý@æàl"/Æ|Ë3=ž¬ ¶‚´ ÎNeBÅH¨0ö¤Ï$_• +O¨Úù“*H´ÊA©í4j“m˜`”jƒÖÈ)-‡R,“†<Ñô²cuìlMáÙ#<³Fx¶Ô3wÿ‚ã;ãûÓb\¬T9³®æLµ±³›èF%Ú‚÷õªÞª´ÉhLÉNë=éÕvgFvÏ4œëN_LÛœõpL—؈žíÔèPe­QÁ¼ H²H"Ë2—çw2U–6×|.ÔÓNj‘B@0¶ñh<ÿdŠ9õˆô« È ‡‡'Io!a¯ªÆÂ93‘œ†Ì¤¤|™Hz#eRÒ]&%QJÒ’IK§#ÌE²°z¥Š)ÊóJ¶”°,¸d6ÒB¹H˜¯“EÛ¬D$™qäm'oÒ9HáÎçH@²2¼Íde Áý5Åh‘í4ÐoÞQ™`ä3²ë‰EMñ~ Þ#3á¨w–âäyˆŒ¤öÊò’e>Ò¾ÈJÏK “J$,•yI8/i%‰G´Xµ+È7‰Y@ú%î%Ö%gî%vWšî%Í" ›¨Hjbr’ [ò÷™öwÏ?Ù+Ðì¢/ZÎ ž3/ë…}}¼¬_Ü{—ÎËR³õàyYë”/9K5‚IZer¼er–ú>ͼ5ZO‚)zª«ø6]¡;ŽbaH 6 ]'&ƒ¡%vOiï6¬]¦%Ô+ÓǰãVºS\bDwzÈçÝÕ¶öX’­+`›cëÏv‚ ûÌ *mçÈPKËG{x̲ùh竪–Q¦˜•)f?BŠ™˜¥2ɬL2SW–If!J‹²L2 Éte’Ùý$™UCfU=h6i"-8,°D•+Yk`ì†X·†7i3†Hȯƒi,îfd‹e¹ +Óòyn¾,†ËZ0³àX–Lí—ä%QÐTpqÀS¡è¹gGgä¦$µk]°•¥Dë2—ï1æò1i]õ["3ö=–8)Øk™X¢ÿ*Õ‚ôý¯Žÿß?¥?í0]ô:q‰äb»E2“Òg?cj¢'ÿïËýÖÙ­?¯?wë¿l—ù÷ñ"ηòÿÎȳҦã²ëXåÚ¸kòá7þW7l¯òùrø$‰ä™•½×ôR9|÷`0+o%wíŠè}ìVD‡6ÂÊ LcJfü™–1w¶²„9v&`ð_žñÆ) ”nQaÄÐʉJêÒ~d_ ­ qSxÈ öƒ4øñÚ×lØ¿¹¸êÃßô\OáŽÉ/ŸÆ'.é¹VKåÚìÁ y••%D{'݃³½û äÞo`ŒtÞ€îý|ÞwòvÍWC͸£,è½ßöÛßã|vï‡Ñû·ü½Õi¼­>¾êm3H¼íFf£ü¤]Ò5/±#³Û)‘Ùíå"³yOÂmwW_Ÿb×¾¾@´'†š+Nt;‰ƒngÅAÿêi²ë6ÙMšì–%/ʨê²äÅ*b–õ”/»](Fø>‚|ÝàÔ|½¡ÔÒixªMm¸2mRûòÓ¥C†Ë*“éÏÆT‚èNžíFi{bܳçCŠï2Žú¿ƒOx¢eCÎQÙd¢­„2^»Œ×~ ’ MŒ¼Ò£µï.»ùdc±ñÛM€ù@±ØJäÐL²¼‘ãÊ«ÝÖ·p°ó€µ¼½fí§iñÛBŽÈ¿Ý~¨øm¦²¢ømm¼ i§"opv&AÜm–& ùc´s‹Á0mÝ“ôÈÍ8Ô„¡AÓpcÆÅÈÝ&m¯»VÀªdíæšñµÉÝow»!MÁHÎ~iØ^¢iI]£]ßíY£Ér®ÑîC­Q)?–5šJˆÇµFs(9×(ª5F¶Ùƒl,ÖÇB]ɺ+Úʘ²K8ËþÁ¶Ùõd|£,,èý÷üt¶Öb§§¼=d'‡ìŶï°WÁØÞ]ENKzÀ[ÆJN©ŽÊd.ºBÁD9m“Ùzù *¸IU4®(á²ç%"çT!…EêM".Zsä3+õ ‘)‚Ôêò€0rŸNÍGÈ8wÝM.’±yž° 8M1 ÓŒ§wwÿí’ޏ¦¡´=òžT¨«hÄiAÏmà ýTx-º™Òn œ§¾Ç3fNÿæ‡-²H€ã¥‚­~¨RÔÆÆÛL7&©‚ƹî¥*¦eQé÷áZ@×ÌaL{`'#è*z…ÌÇîŒZ¶ot>r*jò6Ó©©=æµðLU<䪒ßïÝ1ǨÐÂòíMîÂÊ¿3-½²òdúd쳆”™ºE‰ u¬ºoÖâ6MмÅ9™#î¸Vß|ÝBДäØ'ýÔ¹_ðòåÝoý·ç/v¶_8õßvÊúo÷ò"î·ó¿øjçGg#Ú«Z‰`n8²…Kð×i¹ð›¸òEZu¸¡”ªq?JFY Íå¾ï ¤Jâî2RÍèz_HL'D©P&ΟH£¹’TÒXÊì"3<öD¶Õ•~["“-©Ú†èÄXºM+p–ÈàŠ5 TßÜNÆ_d½®ÅAHì650º!õVÔâ…&Äú…«Ö«éõƒd¼öhF–j£–rµ€´I(*{'«­•.㯩¸²/×Å ok ¡Z7s´ÅRÖÀש¡´–F ZÑ‘¤ìZpÄ>ýÛÛáwzŒ*{3Ü øƒÚ/­U±$Þ`û•­úzUu’6¨Ï|•bY Ñ¥©Û_D[ÇäœÕõ»2WšŽ—2¾¶xƳâ¦7PBoR3' îN](I•B!FÛB|%F‚ìy¤hïŒãë`8¤|EDp¢1ùßú—Ÿ ñlp¹Ž•3ú ½Ú¬ ‘‹Ì¢…jû¢B„S­amÇ,EwëÕs$—Ò›™ËÙâ½Ä•Ïã¯Z®àÜégĆ¿HJ+q~„Qj° ŒÉœ8œV’Ø€½»ï`fì¡-‘gº?Æé±;À’Ú¦Gü.é¡KúÝ,ט–#ª-4Ïîè”a õÆWGpßîqòX~”Å5ÎØœ!.!ˆäÂ÷ðýÆF®ÅÊY—¯E_•}ÀçãÎŒã§ýÍ[g·u€ÞPa®9ž}vç'nbÚÎPU“.u}ãò¼PÑ¥f1& &€ÁŒP®@[ýWãxª-v½÷ÑÞOµr’§A‹ZúôÃås;ÉÓÉmª[Ô_Ì{­•»ztYà¹ÒuòDJC.é#[žºöñ”»3È õ#ó1नÒ"²7- ѲY¥ØöçýÛÉîÌÌÖ4R{f¾ ¬¥‹;z Rý·ÉR˜Ü]”€ù¦±HhµÍiÔzÐz× þ¦¨Ãï¹78KƒÑ,†RVâ´º’GôÈÁ#¾)~ínj܅ö¨TÀFePE2ncö7û{Ï1Æ…þÂZ­V¥Âlü”&ïÉ&}-ÇHqÌ)e@377.iô餺¡š`Ýx‰¢Øö ®â̇ŸHŸ :KŽ„a†ô·«ø›|—ù5‘_o(<‘E˾rñÖº–ýIf†}­iÑ?½êªì)¦9Í@Ä~@ßôñ·*¶Ã±fÂk¬zÍ;dÝ–:¼é]+p <…·“k.(¢ž ©¢ €7ý«ˆÁ€©1½ ‘ªão0)…€å0œžŒâ­‘礗çy…Îöoƒ›¹QÝN–Àãý‹)Ÿ ®%•éòü<ú.¦Jß™}3ù\ÈÆI‘¨eoakóòVáÍ×­³åºå-?0âJËW3Ø`t&‹¬í«‚ì½5Úˆ6ù%–K‰åò(±\8+¦`€Ë—ñ¥xÍ×tä—è¿Jzáï+ÞïiNv¼ JT?öiµLŒQ¥S«½™€¿„»T¢Â*ïéG‡ “7³¾§“ÒÎI·5Jø˜>& >†ö–Zd÷(÷’ë’Œ"£¸ã¹—XEFEµNq‘Œ¿!dLưéÉ_´•`_s¼»¹Î’H;Î ‘väY•f›²ZhZ“¿›ÚßgÁ"¨ßë:Ѐ ­c· †÷xë¥.‰”€ú¬(HqK T•@AVrq&"ÐãÂåyHtìþÎ9ý»;@ýº³¸0>ù}\L•´ƒÏ‹ÕB»b,ãW)4ÿ¯·=Â’:Û¬²È¥Cú´‹vÉGè’·zïÓ"ÒÃáoÝýôoð̤»œü·>8ÖÎvàÑË"`å(T\"`=B,ª ˜èä%"Ö!bé0ezŒÎFàJjö^Œ+ñh#‡‘üÚ”ÖS§4%ÏS«ÃGLH¹‚|²ŸVý=k'(qºJœ®ä¦§«ÄéJFRât•8]ø*qº§«uí‰ÖuÏ«JÀIâ§í hºyؤxmùÙ*´¸¦·æY¢cúÐ]B‰Ý”˜´çÑÂBaÆðݵÁÕ6±<‚«ˆÍâÛó‹»z2H/7x½6qd¶ó/8UÊ>j$¾ÌƲ´KÙ*ÑxòÕ³_9›Mý¤œª®Z¢ò•xj) O†Q[%zÚ2˜i~`¨´,®w0Ï4®/±Îò²}!ˆ³U"›-ƒg–“íK3{ À˜…\ÏäwA+¾˜< Û·6¦LÃùZ’39•'€4[œ¸kç?=ðÚ#y¹øoŸ¦+†ËÀÛÝ­¿xnã¿íìî”øo÷ñ¢Eh⿽íQä_O`õº†~Ñ„wþO£}ô>œ4Â{6Â…xÆàï®Å-ØÆ‚îf’Tž€žÐfÆ­©¨'§ÐÜd'’Þ‚kKÐD‡3ðÖp¶xZ³B=K‡ZÆ7ðTä8Ä„×ÖËl+Ôv)E’)`ìºÄ—ÇS« Ì †¿ÉË?¾}{Ы)À··½XÍ.«j6³ªÌ ÚP¶òñä Ö¦!2 Ud¡°òÞöViT›TÈû-gò›}årÕ¿ç”e àr¼G l¹I‰>"õ »ðp/¥¡þCàJŸe†•pÌ z‚/öx£·ñqcã]•O~<Áò*BÙ9Æç}ÄTOÃ2})3zøï ]`CÑÔéãÇx¥0H—'àYê–ê9k²¿­kÊO³ñìxHX‚aÁhR¢ž¹•ÈÙ?Ó€žæSNØÁh:‹ûNÝ‹cq âŠXÖÛY’4X϶çÉ L®e·“ñÅ0Æ9ª¼Žd j°í-,/> »ë84Iða®dÜÂ**$¬ô½¶ìÒé`ÇÆ(#‘L[IsÑšZôæ\oFô‡7Rmý ™4ËÀ‹ºVÁõºéÀêuýôòªó¬ëL &X·&ÚJ%˜ŽÓÓ3€z~Dœ  Å*Ð$´.Œ IKDmABQ½Š:‡ ¾ÿé`ä?q± Di.Twß`q’ø6¸w½=îÖÖqÔ Jà•ÁnM´ ðùP°0IÃéí"¤3#ˆg³Q‰š›õuk//±4–ÆÒØ}”X¯’Áaɲ;þ˜„) L ¾Ü4ÅrŒY‰ŽØC/2ZªqÔK™#Ñ8ÂùsÝVþ|M®ZÓ?Xĉ€“:%Ùg>ã2Tci@zæÔ3Î×Ñfý5"ãü)FåíÛf£í½~Ç=,;ïõ»Þëqyz¯¸þmàúþ¿ëî{¯é½þÀGΕ(ÞpjÊw›Èx)–Y÷>ý— µ?° íxp‚Bí½ÿ×¼÷wý÷ÿÝ{?zXåK2ϧ fÓõ'޳B×xÌ{Ôô^FÛ{¢ñŠl~›N±aîQ*ÔuÇ’ /-ÐÑj7Å;šà ìĘדbeÞ;l÷Dè@‹LÎ-%Ðiÿ­öÁ› 1­Õm½}Wuÿ€ödô•@y!3ÿáÑIZ‰˜?>tZàBH5Q\øÍøg7Ì ä½„Oøª(ÓßLøá½Æ|¸Lãq&¤04‹‚b‘2.CñŽÐ,oâ l.i*6 ?8©Š]¯jî–wµ’b%/´Š©²2(þB¦x ’–²#TA*\Ê›ŠlÒÓ07¬Üu‰íª¥¡ãÚt2³’$<«Ý³Ôvw<íêÙTf €ºm+»?n“Þ³nꈻùFÜMq×q7Lj»ž{úc°dbæÐV%I1)‰­¡ý 0gð*ñ­AWÈËÓw,xŒLÁ©¬µ}Y A ¢FúM8LŠøRÅŸÒ\>¥gâ§g+¨“^6~ŠC1´8jø)½l—B2QX°Pv¢°jë…ͬGc•ø ag&¼?4x‹ˆp ¶Œè0~æÚ÷á1cÞ¹·íº·½Íq›\KƯ_Ò¦5ŵpj¸þ“±´’…µ\öôÛûѲ§:kC}Ò °Hø äR«\èhC\wOYÐÙYÏ]áå=“,i§7O±Ož¶kÒ•Š2)¥¢YDob¦Ì‚‘Œê£¼Ld:ÔÒó6ë[Â.¢úÛóìU‚=J*ÒLÁõÍŠù¶¾‰éR|î©ÜÉžJF(”‰¬âµ½µªE-ñÉC´2‰¤Þ†}S‚š ékã1Óv7/miC…ÜON #}>ªÓG3Vµ€W}u3Áq‚&LþAs…y£é³ÅTÚW{Ÿ‰Rx²–Œ7ÙŠÙFF¦«•ùí]YRN›-–ãŒlæ0ùã¹ñƒÅ",tt™,ÓÕ»ŸŸ[dH´–• ªèá‚¶Šu\!â‰'lÛÍj–gXh®=áÚ‹žO/²žàc‚X/Ô=Z–®çP1(ƒVV‘¨_„<>Êè!ï©¡í…¶ÊÜÒÀ=îÉ3Á$R›ð‹öAÍ  f/ÒVŽ2CÉÖ"»5DpKoK‘Ùfh%¿ ,ÚLl@å`½úB|$dŠAGZû…àèæ&ç™G`ŒLv[NLÿÅø!ßngŽÝEõŒÝÉP]fì¡­¨èØ]h§'ÑÓ‹«æ§–jÊ—Jø{ÕÜé¡m<0zXW ?ÑC¨‰:±sè»§–¾‹ÞAØ÷®ï¦Ûéa]ž1E뺓ªëqcÈY æy¾í•ižüåÉÿür¿ùŸÏ©?wó?Ÿ×ËüÏûxÑê´ò?ÏTU  ²pö§ EãËüü‘2<%Ñ䉕+¿³-‰ó4³;)¹SåvRjç£Ëì<Ó2;Ï‚™ÞdN'+Éï[e.'\U0MPäbõÆ1»PÒ¤~(23Õv2‰§·€|Åõê dÏü'žŒ×Íá|ƒ@ÛÏÔŸ¾Œ²ml|ã§?µµÑÜø&ó’F\gLj£e’X1zr3w{áó;>]ôÍ|£±ñü$ßk’âiŒä¤ì hüïù€?|JX¾SWêÏ´áþ‹*¾#3oeD‰+¼ó@¨õ8Ù~|0WX„mbNj-ºg¤½ˆ»áÓô†3P{(y Ó|TnôX&#BCX¾©'óTJxÓsD®ƒ›¢#(Ä’ …Ç~—Sú|ÇrÉJ»/ö%€y³‰8}Îd9plû ›òƦ×ß“j¸ów„gðs“q`F¿ÈŸñ&Üýp‘·dæ®ÌÔÄb33}?Y Sö·ëùp˜À+ýGryÁÑÂháooæœzQ}øoUQå$_ªí 2mõ%®5_Òmèî$¹Õ¡Œà¶zFî*rHúíÙ#Yiâ®ÌÛ}À´]½¦=•‡µk¸€™!ë5ôE…Ìi’n™äXz“X=9™T€,Å­Öº(¯VÕÁÝdJ1y_1@&ò©¾‹œ|;•ÒHcѳFi_° UF„J¿‹7a ‰×'Þ­ì$e¹s4 ŽÐ[ å:/àrÎÈ-MyHäÏ{ÎÁ2Öh슲¹8Æà7­^w3/“Øé46“ü°iÛ«Iµ¶»âK°öfUë ™I„eBt±„hPªéªÜé½lh#Ú•¹æHu¾(§ü£¹¨¢{ ˜ÎOñí´#ÏZÊCäÔÖX ÖA"ìâSAzÞâ;ÑtLŒ5˜M=À“Ÿûơѿ˜V0óÿ¶?áÙÄ/7}~PÑ7˜»Œo©ú_¶ÞTޏØß× O“ü/YSpãv•ÊQý²Å3hU ý7j´“JŽ“¼lf4e’§'’ëyäfy· Ÿ²È$rŽñ­£uKF[ŠÑœüî*2ðÓðõüû2ýþɤß¼£ôûnúý‰/ý^Kµ‘™ø¬ÌÅ/’‹¯VSŽ”ü_œ”üÈÒ0>÷¿Äh!vIŠÝæÉÍ÷ÜŸ$ë—¹ù?GnþÉÛƒ³=ïõysñ©üþT|÷ö@&};O*? 2“ß2…&OÝðÙ”ª<|Ø’/Í7#üuض`Gذ.ø ‰Àª ^|÷ý:®”î ´Xáš«ÑÊÖⱦ숂±Žº(ö\~s…O‰oGíÆÆò^ÔÞhnt•YÀ1|h"ša’¢ƒ ÕöÊàÕŸUþŸØÔÇ*IgüúOØà/‡cp]VTÑ–y]5).ˆ'H|teܧaí[Ã’¾—Į¯ÜÃÜØïVÅÇ&}¤íMEd—ªà<µ¬.ÄG€³pHŠŒÑ@ ŽÇ?æçñȧ"ŠWj`ЄÚs5ÓŽàåÙ¤?š’šh â“m7©(!û§NCÔ¢wšy„()(¡•h)¢Ÿ6Z gÞ*–|©Š0UªoSMÃQQà)¾‡ø×K=W3ä?X-Âív.j÷d‰šs^Ø_QQžóÀ6xÈ/E_òá¾…}Yõ¥(èKQÌ—|/E_| ⽨+³BVK„;J(û¦'ã Áh@0‹áÀ800 L sï 0†)XÀÁÜ= ÌY cþ(þØh?7ÎDúÍB„Yälø»öÕ=O£”Äw^øÒ©›i—i3Fh>Vk(ù=+{ɤ)Šå‚)ëÌÓ3ߨBH. ƒ³4› ùšÞùlæ›Ï´Ë´Çyæ³iÎg³Ð|6›Ï¦=Ÿ«IH[b>C`Á[ÃéXœþ¦µP[DË“†dùu, "KN@ÊÔu;j±DjqÎb Ï„ë¢æ®Ätñð‚ƒéâò‚N£ÓeL—mÅRXÒEd±Ý) ‹Ï¥(œ‹‹æR‚¹X¼Á²tÔòÁr)Ž #¹X{¶ár ;™&ñ¿çñøš4hšÐñL.”ë­ù ª.8XóÍÀ¼¡‹«¦ÝGtô&Ñ[Þ°dºàMƱèÙmöD\áá¶hå;P™¾º¿1}›kÆo΋ÛÖÅÖ@Ý¢çêÎîšCgsDGQ²ZxתÂÛåÕ3ÔåjaÀJ‹œÓÕæþâçë‚?žCP›uD·Qé:p¦œ ð£.Ä8bÐN^.X ©mÈ!S.J™ÄúÕþÍ¥s¹ŽË‹ín³÷{öínÈw#ÙÝö|I/{^Ò¶ ÕÁT±c­kóïK0æË…óù‚ŒÙuóùªóåBŒù"ƒ1»&cv=Œù"0’—™Œ©Ëñ¤'¢ÈÐãÁx¤ƒ%…pÇ ùóBª˜¢®ÑRâ¯Æñß>AAT &3ad à|D)0¢ s\Óž»¥ž:eÃÁÍ@„ ÷¿ŒWüö+JfS}R ÈH<ÌR| ®—ýÑ,ÑOøÔüâeSŒ°1½þ¢Dç®äÚ–º–ÂÒ.nší‰{%ØƧÖ¥-u©§ Úµ˜ƒIvï ·Ú6†aYŽš€Xa'×ŶÏñå_8¹­ÍY‚L¥Á*·ßbÀç5õÒ>Ö‘:bPëÚ²ú@oÍÍEŠû _:8êmˆ()ñgÓã(5F©»÷ÍqÊfùú&·Ì:ÿËxºd6ˆÖÓ`©ô®äéÈÓÍIžÖ*ÈC-Sü—TÞ,@¾®Éƒ ØÙO2d}/Åš…ù fzÅkæ§XSR¬™Ÿ`Ò¯«’€ÙWˆ¯Å}öXY’IQäª8ùÄPd‘Žõ ì©Á¤UsIûÕ|mŠ E²'C°Óøây¯í¦½ÂÛÛäsîïFïßbâ&ÿ§åÓd2s!­œ·[5WIЈ›‰–‘æ&¡µµ¤*øô6_Æ—“™Æ%\ÌkE"& î¦Vù/oOMŸ«ø` c{Uö"Í 6ÜwN7þŽ8CGçAÚ´‚ã°aVÝ›OÀh€ý€I[ ÒêÇÆ9⣢±ß;t<½ëîTàR»4ÌZ’gVà¨JuP…‘X³ V=¿ûž³jGAØóC¬I soE^bXÛÒìTv;ÈÞâ»…!#jÏœƒ·¨ßtQæ/åéÙ¿;ôÀ×f㚯¨åq' È™-¹J9“’$Ѻ“@¿-™PS'§$äÁf6¶cø˜„~…ƒ½`W[¥‡³¿h…ºC;}Õó‘t–ú,gˆú-*šIGV±Úñ0a Òm ±¼Œ!5a©ÔÃFÊià6$ÆŒ">Õ—N<4z‘÷Aºê|$?ðqÒHeØç› ¦_á¨úÌYiHR‘y£áIŒÎ™BðL¨±[€rÈçÁAãäì‘X¢p×oÆóOŸ1ÙÊãkBk{lòxµ_À5Þ.0ª«&ž”ô;MìQóMøÈn…ÆU° (ë–ì ÀccƒãcË×v öDþ·ù³b0MM¦e'uZB€=[6ÑÞÔ€¤˜æMkgbÝ­ä™›ˆíƒ‘7Õ‹ÝœwăóDHè&01Vi…áð°Š0-ÑË§ÓØš2 Ùf«‘øÇa€V¡)¤4|;Ú`aÎA849WÛŽD À•tk ^ 6|N9ßZÞ"i<ú„ߪš5gȪ'F¹7=ØDØgÎ6N6ÎÖŒ&°„aR®m~Ð7÷hô‡XÓGÙ @Èilð¦,—Ñ\Œ­?‰ø"fCE>¨v‚PŠ”+”}7ȃÉ8ÿx(•Á…¦b´‚!+U–Trb öŠ“ëŸlƒ­ÕØYڨ­S5À 4[í€[È¢ÈAKFí ¦Ãÿ5aÔse:ÞªNXP³kLBPŽ–p<úsþ ‡ô¯ƒMBo¶ZÍÍP \Èû´…8júTµ«ù„«‚íÈ€¾(èú­ðLS4Ò&MRx¦½L º–Ÿ´Ö'AêǺv:`ÌðýV q‘®F4‘ Ò¸]¿C Û”7¾óßV“4P-+ðüdê*¢Á÷|”Ò-mºäÅÔ í¥àü$X|-Žóc‡c1="«™„dx~íÍxòµ?¹J™ ¸6\ðò¦]–}Ñ*‘Û˜5_™ÛW÷¥Øß7Ë„ÊbIó6èˆ{ÀqÊ á„víéÌôå[h¦Z"aJ¡¡éÂ:Ár„Ÿ‰/@~VôåÆ ÿ}¿ù¿Û/_¼pã¿v^–ñ_÷ñ¢¥cƵù²íØw?RâoçÕyL¿œê²ôºeÚÇ"0bðåáH¼–7”s)}4¯(b‡kW¶•#b«#úŸ_0š#Áù£±\§ºÕÑC·r†%j…ÝÓBÂî"É"`8ìH×x«„o%£ô€#~¡·£lÄçq¥¿rSåòÈ>&nãÿŒW‰·­Í{ÎFà‚¼6 Y»æ­ýþšÖ3{Ø¿ Ä/¤7ä Mʤ7á M …éØYœwÔY, æ¢ÃYäQæ¯vŠæ¯fÅ,6rwQ#^bZ"­¯©ðþ÷»J}}MF$ýÅ/‘‹éÑDla¬È¶ŒA‹óo° üù©‚¡$\1CEdœnr™0¹GóãIÇ«²)'ïdäí½=33óŽîÚáYÌé©Mè&äu ºý2Ü„ŽsÏrÈuRrŠ—‹Š¦Ê}öÐzüü>¯ºMá-F$˫՗ÐÅù¨Ú<èâ ´´<Ö(=Ï.˜ew”4¤²ìZU™h'¢©ù¾ì;œœF¿ŸÃNÀƒ±ÞTF:›Ï¾¥Æ´+Z¹yaøpI•™›ÇXÀ¦åAäóvP¥¼›=×´Opæ}Üö Ÿþ}¿ø_»;õ—¶þÿ|{»ÔÿïãE¬iëÿoRôÿ%ñËI÷zdÖ€7¬Ê«)­‹Z,Þ½5žWZr°ÇOa ÈÇÄ q׫”itÿ©F ðgu fuÊl£&Û¨4ýðf£;Êׂ? E埯Ô„º›ï'wm zœáï™V' ѳb`¹+à ;¾*óI)·Õ»?F«W0 ½S( ]ÖòZΊöæa‹ØÛ6¹dDiûe·%š!Õ–¬L£öÛÑ싯þ°Úðj£ú@%½íI—‹?BÚ×M¶p€´ÑK¦ÅÇšå ˆ‚"ºëΣ§“8h‘€§¿ŒÐj_,µ=$fEÓ(ÜKRC¦}“:—<ñÒy”­xd?n&•R$ŠOAV°#‹e)q€(IžošÃ³b‹?A”SÑŽ‹•¸s0>;|9ŸL@`Ä^™–æŠ FFó²7 OĤ€¤e*fi5‹™§¬¢ 6„ÌAIÀÎP‰!»·^¬Çƒ¶xG ð˜þn$¿S©Ë±‰Á+ËpC¶Ö¥BI/XM7—ÃËG®PÄ3SŽé\är0;”R…ºÚñÄ9‚(ùKqGI.8ö¬øâÔDÉ¿¦Öó„Î&˺î³4ÒZÚé–+Sp BÂp¨¬x]ÍØ?ZÀϪwI)ká%ô2 ª¥ÌÀ:y’Nú6Å=’ìxÒ=òÿ<þŸéŠÝ?þŸÝúóÝ]§þËî‹Òÿs/Z{–ÿ§Wa'ÝFÔ“bNÔ}×së ëî àžéw]M ;?RoÑÞ»F·±gĸ 9RTqÍ™¤ÑÅ7hÌŒ¾ðFÀ2ßÙî“*45àcº”‰[ê̯rIïbÇhäWúdF°ë{±üÀJw=oð/ ?'Æ-l'€¡ƒ«øJ`àÔk`(ÆÉäÔZ´†,sh>¼L¹a GëôßsÞÆ¨5ýTæC¶hG”©²A-®U‰¾ž–D‰U[Æ‚ê0`_þ¿ÿcM.‹76ÎùŸb€;~ÿnv[êA€Gèïµ=¿Ôm{å´)ž·k>o/D§|tž¶±ñÎzàóÀ„ó":¯&§A4C”ƒ1ašM9Ï [ï”]àXTgå×ߨ%ï.Á=Ê,k(¤Ë`y c„‹ü !µŽŒ¿ÂFmºJÑ…‹Ko5N?Īl*ÄÄH]*; ˆËÎs¸‹iž‘Ú07ê¦sê+"·¾ˆ½ƒÓ½ñ›uý^Æõœøµ'è²Fbê¬9‡SÉÀ3ý*Ó¹ìvuiÖÏkÔ…ô¢£/ ‰ a%°±ëœßÁ¤Ž"Ç]ßjÄ—yXô§ÂìHž0~Àwßüæyôï,ç£ÛÇ ?š+4÷äÞn.4Í*ðAZZ„Ü,\&”;WUìE.û†þC÷m² Œƒ EµéM Œýßaø·›ž™„!蛚|Y]×úû*ÔC8¨Òöùò8EM#œO½!çˆøM¦N®æàPæg'oL^- ³ Éø“bpURÏaèPÞ=´ÙRr.È×Íøj>œO57ê”E›8 ÃapñŠÿ-“$¿›‰ŠOö ’ a¿s—û½È³ÒHž©Ö›³^pª}Ü&7ÏTw6ÅL™S­6+ÚN–Û¬š5lèd?ç{U‚üã…¼è×Á/èß‹Ø&}èœþ¨6Ÿ„ÄT ·»y£i KèD"ئTcX£bql£2œæñ†Ó$­üÃj…é­¨DWÓ•e¼þ ”‹! ´$©l_ù”ÆÐ±/ž†”þ[švv‰¸öÐÊ…§ äzuŸNû‡§Íö;êìµz­Cú‹^J¸KJ{ª‹d§°õfO¢ž…ÚÝ "i®³ÊNŽzûaëU³{ø44z{mp¨àÛû*í2Í*ãŸÛüï?z­a"B{.—µÞF§ðŽŸz6ÿ…ˆéiµ«œ cf|éqê§ØñôOWöÛÎÞ;ŒŠÞ*‡Žzƒ‘îãª}[Ê(ò†)ñ›ýª®ô¦*´|Î!¼¤!†|<éžt{üÂÓ¨Ó>¦w¥z-UŽÓn¥ÕèT’æä2ÃðÄscLraN…¦MÙ¾Aܨ•Ö{ký“;Ö(#6ɉ5ʈMr 2AH¿Å IÊÎôÒ½·iÜ›Êù«s» m⟺¬ä r¸8@~É–?õÍàÓ*p^2¢‰MlGW…AI„Y*>ò–“à€¤|oå­tOjZoÞøùÉ…¼ùMƒSLjY!¾øžž/âŽ/üÔˆ»¤]|ª¥ -m$G|î ˆV‰G [(òï.¾øÀ_®çí-ø<;ÞÆ~þ"q‹+ bûXJ9×ÐË+¡¢x^´àóüQK«¢T ¡Àºëuí-JΉŠh"‰#ðDC v챇 vÄÅ+"I˜£ “áÇ4Äøp‰z­J”ìˆ"š4a{$¡Š7òÁfçCS߯3®5^~_«ËšD4˜ ”Sx7z°S=K>­©G‘tGÙ½ü!Þic!Ѥ"~‘â Z‚k NÂ&æ.õ¿% Ë|††F®RpíD ÔÀÿªî‚” PÂ(LñÎuÔR•ꮕƒR­•#m@ð' ÞtÔàWüTÔp£À¨ßÂ@Šö¥ù-èRÂõÌé^›÷ï-ïß6þ¿¡IÄvŸmf•½v„ ÙuI×ý¼ŰUº%O¥$Ÿ¯§Žƒ=åLDvûÙ¡BU4,Àĺ´ àƒÒkÞÞÒZYl¡¼=d'‡ì…#$öæº&Lû|²]ŠKäZkzØ‘4*ê —°˜²é2eÓeÊæÝ3eÓ`JOÏʃÃÍÃ6ïƒa›¦ê¹ô(vüìáJeÚ8„)ƒw=ñ î Pb³­ÕÑ(ÿìD"Ô>nuÒhC¯ÄZן Û }‡ß Û’8QÞÖ3´ ­lõ„…爼æ`dï8lñmýÿþϺ¯Y©¿êTë¯Ðùh·XbÒøÖ÷‹"`&§&²´ðM›Àz S~B{i 7öJ£8ÿLD·‰éÄŒ¾Tºë‚@Q*P{ç:…Ò;¾ðÚh<ÚšJ¬”ýÂã²#¼¬à΄MP{ëS8ée#ôrÅFþ"»’ÄÍ\œlþ:ôEu ƒƒó"#k2¦$}×$°—52‡© ¤»2›༭-@Q‡Á| UsxOÙ蜵ž–¤ €ä|û |ߣh¿§•ŽHȪECïdÀüºÛÎ׫|SgoÖÒ0wŒÈïDZkè­©¥cÖ*³W’ÌÔðFÜùN(ÈÝžP}äèE2ލ@„›¹U¤ì{§h¯ç:ªäF¡ ¼SvâÎãØ‰Í¡w6õm$Sgxžµ?ìŠr0´?øJ@x÷‡ÝÀþð<Çþùö‡ÜÒEû8SºÐL&OEºÐ[Ë}Äz'•l·–.Ü™³w{6¨o­“ìOb{ÎÞJÖÜKôy¤ŽÎ½Jú—ùN(+çit5Fü„Áè“iýŒ n…§|ÖéÂ,¬&EÍdv vAj¥‹wÁIün¦†Rð‰*ËS£Y˜–cxIj w¼p ø²mËál´žÎ–?G2š/ÿëê^ñÿžÿò¼¾ãâÿ•ù_÷ò"v·ó¿ö+©™_ü«._vûü­¥%[ˆ]˜†ø¸ÃÉü"‰|Ñ-@HOxD0=Ì׉$ ,üu Ÿ?ýÚ»O7ÛO µ¤¡-3DàuÙ$îe©¶’tTÀ¶ÊÌÙÁ¦*ÿÇ.0?çû?ìå™aÄì@„»QáU ýOøàJïl]¤œaœÊgÓ²b¨jÙ Ÿ‘ tOýµeª/|j~è, ˆ‚tG*Hù¢âI ݉o§8!uÛMŠ]ŽãkA•S|1PQŠñª€°àõn<ŸÆŸÇÃ+ÂBaH,*ìU‘Ó©*”[i[ƒ2Ñß´‡xÓ¼þÆ*Í6%ATø¶ÒSIaü[•x5€ÄA¤Öåxñ®¬Ëè_~ÆUZÙ]ØüE/4 é'»k ÅÛQm899Çð͹Olj D‡óõƒ%åúÊÉ!¥¹¦‚Ÿ£†|ÿ„pÏíDŒ«5b"d tJÜ íàíZ·|T~⣚}æºcÿ/ÞÔˆ¾ ¯(VX&g^ð-Z¹Ž©Ï·c>¼Kpk<\Ö ÿóë€Ó”0@=.ì)AWöÙ'N,ÌB¹âDœá²¹ºz6_pÂ_Ϊ@4àŒ7"(K­ ˆ2Û„‘mð½è/b=ØÏ·:GUúóŸÉŸ{[߆‡A+ðÅÖvÂ^9U.ãÁ—þg”ëþ`=úëó=#°à=ý)ûíÝ}«² þÍטý5Gr.îÜõŽåî!ON>܈K_,Oî>`f)Çù"ŽGœ5¦³Éø»ŠŽ^YRÙ½æ”eJ~B„¼Ü“K?¶’†Z×"}çÄ0†¹Dv^ÎÖøzKKÁ2ó̼l¿ÊÜœ`ëßqbŽÌÌ3ždæôäœËÙvdÇ"`¹Ö1CÇðñ%?šðdOøÑX³oäÛä‰cɪmH‚“|Çç®Ç¥Œg½ŠDð”C ƒ+!’=ýat-Ÿ6~Lcö‡‰$æ9f¾ö¬öÎé÷×ÔìôU<ˆINÃЋ+©¿ƒMD…eMø)€Ô•}Œ¸tÕ—+¹—¥'¡äÿžhM•™?$…ƒO8މ&àؤ.ц,¹«l¾u‡aùÎÅ™mØ¿Ï)á&1âøŠOãU|®/¼c$wE¤•Bè6kLÙpLr›ÊF’·Sfv6Àýmxòg;¸ésÆÅ p{ E–¦I¶³¾šN°±D:ŒªB°çÛ6Je1ÆïÃ7λ³áw'½íÓx|e䶉ÁM?£hô k®€ ýB›“‡ÎBKXAªIz+r¶áŽ©qËTDwÁM¾A¥Ü=‰l1—FÅîᤲ ’v5›‰ €ØJݦf¦[Žô6½!;Ó­+WV¦,Çq Ös×]Ðô?wl¾«o#s^ÞèuÚ½ÖGþáWþ!jŸµùŸ»â[äK¶iÝ]¡7ëë;Ë.Þ“ö¤£÷¤³¢ž,¼~D_&ÂEvã”ó_Ô°H’ýÌiˆgsF(•¸³ Záx6ß(€F4ÑôíÄù¨ù•ùtŽ µ6¶ó‚°¦-b Å4€Óè¤)XÿÚQ±Ð[– Ó<6µ¼.|ùÏ€®ï둸LfkzxXšÌ‚¬Ûò°nËD´çœÀGÑQ,Z¯Óçu³¨¥ÞÂI.Rdåçú‡ØJbKâC4FBù¨¸ *­ÒÙ“âöð[ïlu_Ú¸¨ÇEúOñoöž '¶òî 8g^oÙI­¸?BŸF ¶Åüç™'©Ô63] (U>ú!3¸9/V}³?%üu˜ .æd˸e>:0â·sR7âÑÖ^Ÿn󱈸› ëIŒŸ\ûƒ/(í‘݌ܳïºâ ±ùj•vl~uO–¼;œŽ¬ÓŸð3ífÔ~t{{âÏî?—¶ÊNþHM|MI¨Å{!÷ѧצØå|Úf„òÿ°Ô ü{DoÇ©Q%‡"ÄŠ¶ð¢ð ÒkøÛøvœ´(€VD×A4tò®[Åí\Ô^Do´9‡§Ö—á{pÔã7¾Aþ`¶ï®û"“uŸ2YõŒ×fw_e¾†‡®¥ÄîýßÛ½}'ERšÝ´†²Rd—Áï_"Ù8w–qÑ^þUØ>Iã­¢KÝ;ô•'óšg¨–Ï‹¬/¢™¾w]& ;×ÉÞ-Šû½×LÅEÒ„ï·* ÈÉ‘a¡Jd’3[‰Æ³øüN* 2(Ä^ÄŸ£œxûCÞ÷êo`²¼äGc¬)O(Äðe‘¢%£HÊÿ!'€ö)]qUékÌ¥f¡2ÝNâk®ñÀÔèµGßTžÞ&Ã˧RVvÓÏàFCy¨'À’SµuUmè/Zƒµ$ÈÄL#¶çƒ¶c³°måæwB5¿ëºß‰|ÃNŒÛúD’îúw‘îÚÛ—é®ÛêÿV(Ú­/[uw·“+«ëR)¨ˆØZå˜kˆŸ• †y¨ìYp7Æ6@BJ„ÛkE»€àn±ãV;HR}( ?-BñG}.>×ûlËŠ¦¬’ËŠsåwv3žÄäb½Ð•]åK8-<… °³NXžâÚ…`mdd‰‡Ï;xùªP¤>‚!S³¸ÓŸ§"òs$"³Œt,zÑ”83‚f°á ¿kNT±“åVÌd¦Éã`6ÈEX²úU`î7áÄÓˆœNÑ5”Ôœ‡«‹d?Þ;»Ínv?[;¦¹×3.Š?œŸ­|ë…†.ºÇÖŽÌì÷…:@&WÏ=r3§ª!x-Œ5å®+ãöÝ „ÝêŒXÄb"Q&#ŠeíyL¬±Øö¬ì gßóxbšË`ƒô¬F¦OZ®sÀ7¤q‰sZÙÑù ƒ„®ÈŸ—™» ñÿáU˜« ÖrÌѵŽMLÎRýàß\™²3~$Œp_”„u›üë$»×‰ËÃûÀFv£àIñ¶æ.õìÆžo}üð†óóóWì`4U媻ìC| Ö¡x¿ÉàÓ§˜KÆ5rT)Q[´"½ `þŽ(½®”€ …X&¥£Ç_¸äÖßZÞA„æžj³ÿ Å“lë¹Ú’·v7:¾i÷¤ªÐ‹Æïn:ÛÆŽàYܦ žui‡ aÒfwÇ·n󣌭`ÝJ‡ßb?²Ad}¼ñù׊}¾" S›J-´e´ˆÆi£pjèWMå2жÌjb]ãGüd§1&(XÔ™ìr€L3Sì·,nÎþƒàæ˜e‹:ôVäןE,Ïv¾Çúáo’‡õtð ì­š60ŽüM¢æÐEÏ ñÓÊ0r@Áœ¦Áã$Ã)ñq–ƒñCÎü<9’CµFлgÝCÿò¦Œ³Ï]”µÂã£yh.Äã>Ðu*>$âN.æi:|nôûþu ôVgõ\½ut¨W-*Åat8CaVæž¿2ÓΕ¹^øÿ_æcñh«`í ÀžW™(Õ§®´ðD@„¶¡€Uiq{’mcTIѯ‹Û5pZÂÄIãÔ4#óW$Œ øã&³û#=×Ç]³¾G¥›¸ЬÏÌHhVÙs.¨ C>b…JQ’°*)‰zžV’’Àñ:¬éKøî̇³du4)¡Bd[WŽ×—-²¨0eg —`î·«Ä¢AZt-^)->Â9?¤\vmÅJ™¬Bª¸¹VÛ¸Vëâs©6°Æn=GýÎÂè”èa·Ü%à{L~Œ\®~ÒùÿÈü©u`¶IƒÿÁZ)M¾¥.8´ô8âtæq9gg#Ú‹¢àøXét6£u›ƒä’áJlEšz%¿ôdôw]çŸã0Ù“‹ŽÜ•f1Q  —µk ƒÃøz¦Eï þ~7™+Ç×÷?ŒU&¿ðÓ Õ^Θd„Rk-}±¥Ë„žÈ¿Ô’´¬Ì5ïyéºk§k2zCSÐí9Oϲ×szíAˆfÏI`&÷&_§ê¡Ì‘™¥ÆdJ%É`•ÐŒ©·Ýî„­lÂÅÀ’Ðuö“èI&þ¥4”ÙM7œùE•"fùÄôž4‚¹:s•Ì™xîÑR8bIž§ 4ï«%ŸØ?€0(1§|ªqКqæ´±uõ0þƒ¹Ý[[·ì8?|Y×í㌽&Ù± þ8 UHxñsT2@·#aeÒÆrûµAØÇg´Úüi :bÄà\p™ žÉ5äÝ^öŽþ)ïŽÆ#‡Ñö×Á6þS¬Û]ÿ˜G¿lgS6$‚óy´·ÀïE?otÌŸõc¾ã2€<æõ»RùNø˜oÃ1/IzÚwRO{XùÏuî¢Ï›àqJ=ïqzÜiqŽÌ³þØ”]ÍÑßN]Ž’HÆñ¯YHÐ Üz棟ÿpX”p+—:¥Œ@<•OFX–%ŽVÏ–zFYD•½Ý̰ 1›¨f,ó@ÇK{]k†ih¦®ÜLµØ‚‹“‹Ô—W'^LhsE+.YMâ›þ£ ÒÙýil†0äÐDïøˆJWBÓ¥ØH5ͪÃuÐLôÇÒ@³B[ù\âäyRºg»žÕ¡;f^Äÿ6þcï.ñKàÇÅ€¨cÏ êÈ< ŽpÝ0þ&p¡¯|ùJ •¥ :Š~•ÀŽÅ5ÐŽìø1K»ûÁ±Ë‹í¶8»áFâv©‰i ·èo:(¼À;A´I¸XU.ÞØ×ÁT2P‰W"ä•y%B^‰w§yÿÀ*@°iô‡Óñ+½uÛÙË€mâ²âº;áÓDŠÃ‡‰‰ó¼ñg‘Pꀼ}÷µ¡£¸é eº­ Åíņ¶iA;¹a¦2q¦J ©Ú#Ad—cÊ„_ª‚ /µõ0SŠý`:QQ˜P÷ÜÔló½;_D«‚qê¦y~óá5÷{Ç]þ¾wxôÏ4 ¦ý.!;™Q𔃷³ªÄ…Ji&Œ²¢Þ6» 0JâB¥4ô³FI˜(ïPˆ*ñ¡!>”<Wƒµ„¨å0¢ø U/5´(i»TÝ!I­k_«Zá÷`›J«ü”jFƒ¡zPªl`)rR/ª— /ê‘/-‰»„Ð/iØKáó^ `ôzü¥ôgfàóÜþ’‡æ%Ò ÑÞ 4$xRøÙ™Hýîa-+@>ÒZGnWîµHK˜°;bñÞ¡Šv:ÆBé]xH¨"½ Ci+§“Ðäç…) í€è”MМˆO…¡J䟬8È?os"ÿ¨]ªø“C§†‡ç<_YmÁzì[=QdÅ!x Â8è;Ë¢íômç!ÀvžÖÙÓ‘HJ°í”X;y±vTrÚº¤Hö_râíâóG ¸ó¤ðvînÇts87OæFbƒç¹1~ñ‚N$ék›ÈF¿Ãȳâ%qnZéY0Lf¶ÂI?, ç&c¸Â†Ž¯Q|Ðwt#©”‹6ÐM Îý𻆸ñàÙXÉÅðmtÆ?Ê[“žò–ŠK£nôÂÝØ;á]£Ö8"ÐÄjQk²ˆ˜Zã'¢½¢îÐ&ÿ’z‹ñ:|ÿÌiÉä±Ý \K:‹ñ/R9,Dœ·*ÿN? ¥Üå"CÂAax¨#ò?éÑ#Çœ3 šUï&ƒëì°Xý^  M¥<‘ÐO^˜•æ~僧ç¡2ºèÔ‘x;”*i1!’×-á²"ɺž™èi´¨$ãpNg|9¸@ÜÃÔü—<‡œ[(ìË€?Ê•'åÔê^ò-)F¯´–¸BnÇ•ô÷!a•µ†áYò(o©ÅÖáÈÒD.‹´4_*!Íétf‡´üùÿFðmÓ’¬|fIWUª¡ÂN <|èŒ%Yƒyºá%’HhF*¦ï1¤ï;™¼HÃI5ËïөÐví@Ría%=++(Ch¨:>"š¨>oõG©[|ŠªÀ ÄLA&®Ñggr¦ÝI˜–¦n°Ù¥Ù–qpÑV vWjÙáÄ õ ‚Ë¥Z=["RÀ £ÇÍä¥#AœTTçtÖ\Ö–¶c¹åv9…t³U_\1ÕREò-‰AÑ”šÔæ˜C[íèÚªyïòjkÅÜŸ±.­¹øy~/*l‡´É…¨ Ï7”ÏÁ=¡`^ŠK½V¿5¯6ÌÈóe”ßN:-DgR½+õÒ4æŽ{µþ°€ ­ÖhFç@tZ®Íœ©û‘%«nFﺋI©wà™é–ÐXlÏ%]o‹©g‘N†Ó?Y·Ëá–aIÃèô“o!둹ڲ½l&O-`²ô¦¨8¤å½éJ†ó?¤7xžH@ГŒ[Su¦bªÒÒ·¶"{ép»ÝèÅÏ«½XÊá†+èIyÝ:?–×íå}zÝ\ÚÝ•×íMN¯ÛË%{ðº|ðÌ%:s‰Î|ÏèÌü¯_òc3§à,÷JœåGûòá?»Wüç—Û/^8øÏ»õÿù>^´.müçótüç÷Gg'Å  lìç;}ö<¨¯c=§âB‹kîúÀîäì!€0`5¼#ŸƒÏý)»ˆã×øn‡\ŽG¼y9²Û?k°ô¹Xz+XšP¥¡XšF|#¡¥ÿïÿ¸2¿ÁÎÙW[þïÿàw”–mθ?™} d·>¨1ƒÿ ñ@JÿäˆÒÚxuDi9«dçVóØó‹IE Ö±·ƒ/c0À¨‰‚É#ê1ÿÖ­×ù;ì}-ÿ×î»;âglnš’áKÜi ;_¨és ÿmp 8P«|¦“p´ú3²0Ј¬êu¹ò&Ó°TA­QûÍ/åÂO·ð0> Ÿ YWà ÕwˆÝFƒÏƒ¡ì'_FóÑ€_Âð„˜F„Òu=ßÄ%Ìmà_Ãgrþ39]N‡9'œ¸Ûìùß=óAÓ±M“q\¾Dè~Î?‚×øýƒÑ— ÆúÆq}m£é›ôÿ‘HµŽfþ3§;®1§3…'L¼ˆ¦mßàø]!Žß丙N :òˆáÆÉycc_ųþ€Œƒ™“(‘ºV .þ4ÐÅŸ2’¸Bq6ë¯:w BIÍ3ŸR¦s'3Äýƒk’úë¬6Šk ÐÛÔ‘ÕLd3¾ûΜòtQ•ùm€ËçK¯æ'E,¥Η͘OJlÏŠszh6$Ë›˜‚ä¡ß}Onæ·x¦ÑRé˜þFˆËÄ&«7 ug7|Uã±Þ¾šgÉ© ½«ùDÂÛKÚÃò¡_³¿´ÔGúý_…˜ñ—uÕ½À¯WIä4¦}j @JNñIC|=÷í`A¦ÉH P‰éä$á©?eLñÊ•­~WÕJaÜñª‘„®×kBwÒ×ÿc/½JpÉÄ\^B¸Î¥4„0áSwxŸÐ‹·[Øê &€ë›„¸³^] |g#zXà÷ˆžíS÷×¶À¶ô…à®"'K‹€lvÒ4t…È]å¿Â¿ÑÉþâøÜÔàs@³ac =D€åzƒÈÎ-xšaÝnœ|L9ûxÒíTöÉÇ."gŸF¢ÖK T¯™ºÑìñ5ÂYïýÛê‚0ÕÔPs™ ~‰4ÿ<2 áÎEFÎVëZ«Áj‚]ÿÈÔHÍüÀÔ ] !®g#®-¢&ùŒÀlý€Ô$š—Æžy±ÕV’Vuð£¦%PZ ”v÷@i!°³ú¶ƒv&X¾,{’€e2™9—Çõ*­ú”nªNPœÀÖ‘“»LžLÔ ÿìD›uUyÞ+&Y‘¸Nh"‚š׸šÛOìïÆ\Ëÿ<r]S44Ï„ _øodÎPýUGÙ•øk_Ypeûj0ºœà¦Œ©h åuIAÙ‰B X:4A_ýÄEë'!ÎpYªÞCÊ?Ð0:Q‚‹ô-ÛºØÞYAݾ’}ÃÙ%Œ€/ñкg qË’cp)¿Å–ÈU¼šr\ ¯ b(œDæHÕ¢‘*×ÀxÍ–¼•Ð&êNÐSòLv­gÂÜJ妨3…"´ sb1é÷ ‚{P£>úb ,Íg®^}6[[pÔ«o8_ïkœ'÷íl8_Ã})pVpbq9Ôý×ðf“kvŒkÔÂZX¿à‚"ª¿¤üJ–N¾L "l? .±v"g´#@t†_U{Y.V&}mp?ï"ß™»è-Ùÿ<¢¼ýÿŇ€{”ü†ÿ4dg¹¢”.üGŒÊgEð®“P!÷hk'öï®á}šyZÒD6[>t«°Wü8YãÝ6¾µÎT!?¾ža*Èxôçü¤e¨Œ#w2ŒoÍiÇ‘™Ýô:9aàÉßL&G F:XÅôŸ­Q @Ôéím<Á`ß±1,þy´Žèµp0ج=1ÕÚ&’$WJ¾7°­(=ù}Èl¬ ŠdO NøÕÍé}¾í†±"Dÿ”ó9”±XÖÚØŒ,gW“ûòÉG¬Ñ\·©b³i·¥ï(ŠÙÏ$âhÒ¨$K¢‡¬×¾·YaòÑ2Àf4Z“/|™ÑÖ6à@‡´GAÊrÚý=0½f»gÆþ¶pî;êË@B7oí×ì4³EW„ÕÔŸÕ·PD\ÔZ႘­äùþ6R>}ìÐô LÆþ²m\è=ÈèåÜΛ<©{.Ô@ç™f˜vz}²§zV¡áX¯„¸qý mA_[o-?àÔb¿:¬öwÏ>óÐñüª™Ó@!£ü­j/sZ€Jß(×(þvßâ†3û ¡¦W>Û“xtOéÆH dU›‡Z]5?ÉÚ[‡>\ó},žè!ˆJ<À„Õô¦¡§²{I…gèàñÑ›$šÿÄù{†Ñ´-že4²[# ißcèosØŸníÊVäq+(žk±«qt2é1¿½ÂPl†ž\¦`”)ÉÈÊ )³S0~ØD™:`$#ÐÇÆÆý7Žô”™'â&6”±þe¬ÿãˆõÏ·£@ C½Šú亳’$óÊQ¡¢Õ×E˜¢Ô-LÃPÀ#‰}B¦¤ïýA4d^;] Ç—ñٞ·î{ý{>˜ æ×Ÿ½Òo=ø‡”Åx°»W!M«Š13T)Øà* 1îVf78½À>$ÅìBs£Â»±Žýè@!?êQs#Ô©¨)ôÇ9¸FÙÅx¦SâìÒUšs#ãg!ÕaÆ’³DëšR Ò.Å^|Se{Z öq×XppˆÀ×ÝI`¾Z×b˜¯±R5îl}ÍG÷ïyÌõ èûtÊe¯«ßô.è ar—-/ç °˜œ…ƒ‚|,¸ÐØ·aåa&‡\s$Ðã©àkF6³x21so¸×ÿ4E öL(®ìéœdcŠù•›Ì½å¾d¥¾,žùòf>SN7‚²..7ûpŒ¡:&È_ÌI‘¼øN}ábÏQÌuˆ˜o "ÎnÂz`Õà<±Ïõ ZÕ´¯ñÏFão_ Kü§ž@q;¨A\ôhÖõ·'3>¸y\ãk„{Ù§Æ@­¸â#{ßçÄO\ï¶?ZãÛU4䡯‘”ÖdJ2ГNìi¾mí¹ ¢ôyÊd&þ´ÿøpxt‚q7áîÃv5!$ ¹ÿìÂ?ÏÃÓ´ât!~Š÷ZR¦ÎÈòP´p¶ýW“¬!€««&™<€Ê*J’†>&–8¡Ò:ìÏáqæÌð„äM.¢vªw•dÄ»©F|þΟbª_Xìh„‘¡kTš½˜ÊÙ©B‹¾äKƽ‰K-7íÚ7!ǘ7‘Ÿí¹ç¶îqæmùÕ]äê"Ú(ä…$‘b9V.2z‡q"‰PH7ê°x4÷Ù˜j·±¤Êøûµþ•)^ÎíH%Þ¶uþ?Ê˨E‡'5{—T’ÔÉBHf£PbÙ?³ËÔ¸ü]*³ÐÊBƒ=:.“ÐÊ$´LBû¥ÌA+sÐdÛY9h»ÅrÐ|b7UF€£Ð ¨¡_Q"ˆ££Å´¬µWÂà…v°?pœì5qgÑ,‹2{m‰ìµ_Êäµ2yí§L^ólP»\H6’§Ýö1;»ÍJü p9¤ee&¿ÂÖÝÈW•.w|¯érúˆ{åY {3~ ¾~n&ÙPÙt•–šAž§–ƒÊÂÚMIÏc$O±X÷c&‹qº¡ÅEz¡š^&7#fo|Ä]kåÏ®{ž×©Ùu*½ 'VM2\éM T“`”?KT•O|¯•O|éá ´¿Ì¥*s©8—*£:ŠcΑn•÷•nåæÿü{¸s¯ù?Û/_ìîÚù?»;eþϽ¼ˆÛÌüŸãöŽm£8iœÊ"Vþä'™µcôxæ‚é7Yy3œJ•…“f8Õd‹¶V–dËÜ@˜‹Š%óSCÚ?Z\õ]2[ Fˆ¨9Ý3åý¦Êa¬ âãõ•›­W”n¸6ZÇhœþ@æèÉzcX,Qt¥ý›t=ø]õ ÁÜ#œuª* ¿TF[7ë[3#2t:çÊ‚ª€*:¡^ö¡ÿg<¸ây;a€s«>TÉšÄâ1Ú/SˆfÒà%“\ÄŽ Âûv2¾š_Î4Äv¸f_ír©|úù®aGBI›â]‡…C=jl?óÉ8ÅuûùSÚ¨ha+¾÷ŽÜ®ÞŽ5ò‚pÒšýÄÂÚN’Íá"ý“I$øl6’ŽTÞËw•¿ÖY ÿ÷®Â©wˆù$«Ï_"Êô¦:’>è_~æ× Ö1«cÇ“Õâ;Šo±-6ëÏùöûþ[£ß©QøCÒåîMl@QŽ_ÌŸ(O—4ð…o$m`+§lÓ-ô%|Qÿâ?Âç­:&ڃ͘61F¡vä¢êo¦§c×Fxp ä€ï%–Îs”fĤÝlô‡pŸí£w Oû‹#3·Ý7âíÈÓpј£å0éšPŒP(Dè>BU ÄÈ=WåÌÀÁ…¯üÈÀôñƒ¥YZêdN¡Š¯[I0Óêµûö)ÚL -Zåˆj~Eg ë dTpoñþl}Øl°Ô‡Í–Oß猧.ÂÛ¤EܽFQ¶eX<á)·Pêz¹ÝT]1GnA*kêŸ]´»F‘ ¾&†;ýˆszê7FH\¬d¦ýN§‹¯_´î™Ï“Tß9==´Ÿþ}¯úýùÎóÿc»ÔÿïåEìjëÿN®¦ÿ·83€†Ûñˆ¬oò[¬¬ÜÒpiÍŽZ¾jÃåù>¬a cö¡4 üH†§ž{ªånÒ,X™ o¸žß@ö8¦Af›º‹r:µÜM›™eÇUòf™WÌ«|%ÁJ ÒOaAZm² øtIükýÑò`À ²í¾”q1aЯ[«sZ ƒúÁÇó•Ú‰PŸ†¢¦x?YÁ(ÕP´x>^0Ïî> R µjq{•“räÍÚ±­MI«ü¶þ{˜–ЦEašQÄL¤ÆÙíôä=«y8Yµ'XXÉzXÝbÇÞª\/IÀÈLë äLiTý%ðøå»ˆ œØ˜Þ4ã$îKZ‚Ct®ñßõ`Ê´'DMÈШ ŠG˜¶÷Á“ª‘ÄíE°œ1»œð#Ìþ$ÿ)¹_ÅF6v§šK’óv38Ïæúè<ÔM£§œª‰€ €ˆÃ%¤ñüÓgDßö’1q hÔÒ)H?œÏ,v† ½ý"Œg²InÓDŒš\<â‡ñü%V MN¾LÈ Ô'dB.ÌDM{HL,x’Q¸—ˆ,cL»L&i'“;0<ØÄ2×%äSXBÛrGŸœ´¹°OIëñ*×€NV’þøy(¾Mq£%{ÿ“q£=Ù—Çÿw»{¯þ¿í¿¼tâKüÿûyÑ:³ü¡e× .)6–ŸÞKxOýË9v ã¼£îW^GH©àuÜèJ(þvü%²]Æõi™¶t~ÈÚ ‰Þ¤íp$W‰îS4LüÂ÷DÏ-8¾îo¦C=‰¶ŸDúyoÆŸb´À¯Öç';«ãõû»üªÝ|~/ßÊñ߯ü±@?~¿(ú1_n•¾µ°þ›ö×ÛU{ê|+–ÌÛü A%Û­ñ |dû¹üpÉ÷ï?½/÷èë{vŽ&^Îͺß-Êêu‹ h3Ã9jĘ/£tÖ˜ù…Ãókë]E£ÊNbfùëž¼«€wó,ÅÅjüþEÙ‰ðè'*ZPkâ_î×°o/¨¦ùT3 }W‚¤ s y> ãïÏÿŠU#³ïøN¼¾y1x#LÒ%Olëüðì@‘øÁxÑú]—·€“DÞÆÿÞ½c°Ú7ï›Âíüžÿ¿©aÓ¶"àoðcÔ@ÿrX±’Žç7çûàz†diBÕFzü¿“ãf'ÕË»ˆKZä.íˆwÞ×½? ¡z¬Ø­ìƒyýu;;áî*xWºÎíOQ9ÿjùŽ+ ,ùàŸÍËü›æéÆ ‚ÞnrË™€C¹<àÂ#ê žqÜgò áZ®PÖ;¨¸Üq+òÿxô’þñ£Ýñ׌§pEZãñåTjÿü–¬ä °ÇjüC~:‰¤bNYvÞS­j?‹ÂUð+¶ê¯N†vØUq44¸åAû~ŠþR}`²7]ì¿Ntƒ_jüaój·6¶ ¾m¦®½@³†§År³èoi`×o„Õ $ýoèÁ9MÙku‰Ãð’Ú&0.¹m¢œF5ÍÄíI ´¸ÄäQè¬p©X“5ôæjcoOçØs&C# ”Aµ™Üö&í¶¶ÿnÚq—GQ…Ÿ€mƒr#1“ê<ÓИvü€_'à×V5… ¯ÔcC¬††tÙI¿_¸ 9 ”Ì×GÑ•°€–ÝGAýp>ww™IÖÓVJbùI_(.7ƒ$€¶òº«g÷: j_GÂ÷i}­ûõ³7î(qÕK „j%ó°FÙ{\ÛáRL„(m»g° •’ÇoE„¢ô$)2‘– œbØ)Ò_ÒFì²Ù–ƒuN(ЧéY³«ˆ­,ÄŠ1RzPRêIK”}‰Íøt‹s¨™±„tM û,V7-‹-ƒÅ¬0,9vïuþX,©óú'=¼¯èuöì3ïiˆ×ÒhÚ"1 vDâT":Okh#"û[¤e+ã$Í y„l·ßøe¶aEKí&E »N¸ÐH° e°‚´iÐöµiaÐÙ7F›tkÒ\µc†}x·©Ü"ðks~œ5çeÛÔh6SªÒ…/4˜Y' !•m|[s¸‚Œ ú(É»©´$ê¶jân¿°û^ůÁŽM—n½Ç•àFq©S‹ß¥±›q"s±÷¯"Ïb“aKÇG=‡à |úa!€­2šœ*¤„VáyÅ¿NI¿Yg0ð÷ûfÔ+½Ù)šO:‘ýAïîn§¯lG<÷Kñΰ@ø‘ÅgŠ_Ä0ÌàŽ3ƒÖÄi“¦¡wÖB3£ÚR—‹Æ6í>²Ø&_üÏ=çÿ¿ø¥þ‹“ÿ_^ÆÿÜÇ‹xÑŽÿqòÿø³ð€ßsþŸKô•]MÀSð4#~~¸P,€«•€×æ ªªvOâÛ!…Ñ­)/§Ý«¦Å ½Yñ+ï¦n³+l²ltŽ0²¤Ó ²)|w˜®†wÀòÒÞý˜"¶Z+%Ù±à0P’_(ÉbyE-^*³ÊzÇ]¤BÑ€•ýFR5,¥.qfà ¶Sµ¯÷õ¯ôÌLÈ‘¸oÚr‘'¸0ø/À,QÖtíàv:ŽGk뉕25š ¡<,7'šÀ-¾’D´2¢ Zð+5[ œ e„ˆÛSâ ZZ<¸:p¡è ?‚MCc0¢ å»ÚõAHÊÑ{ž˜§á´˜³y=ª 5. pÌ h×ÐQbïø]ùdùìä‹À5Ýð—HbÙ~y»×ž(}Þ×çmw33 Éf-\Ìë4Ò½NI —õ:µt. ¸Z†Û©³%f¶!F´©–`ÈùÔÒO­€óI ÃëÓ±zþÜéy'5ƒ‹h¶‘ÄFŸ~íß‚1ŠAÓÀœ£ó ú‚—JnŠ ô™  Ûõ;óp7+²“ÁC½,°ÉN{Þåßð§d³Kß±Uû1PÙ9‰ÞÙ¶.6í‹]‡ Ë&mјKqìuRÓ³#(xhœ1~=’•6§M:·ÕáÞ4ôhãñòÁÐ (=‡™Hd;üiB1€Fµ‰PšÀi#·z& 7lî\èǨ&à-"V+Õt³µi¦÷è¨ÿæe”S:¡|{¤E**ò÷5hÏî&¦)ñ™Ár éV¯èðäàmŨÍÂùœ QY o’Ùës¹ûûkFž–Úè­ò)~Î¥v·é;,©,JX‹éã÷߆;éxÈ›$èlà‡-!õ„îßá Àû†N»äÁk°¾±±ã¹Nm€sTÈ£Dnß(Åœ)ýÒ†õò†It$+ƒ$dõþØytϦáÔÛ1*®I×$>6Œ¾À*] —Úñ¾*ðùuTƒét5œkY ~_«ÞD–ÿ¦„b§WY£íÉæ€?ˆO×iY ¿*뱕î†V_ TuEÑZlÚ‚Õ­&^ÃYb*j>óÙβLcN]¶œ†1­jœÇ.¦›™ŒBmlUv°…`†LÖj3Ø‚«ÝÖ}‚µÛVñòéÿ÷ÿ½»óÜ©ÿþ|ûe©ÿßÇ‹XÞÖÿËúoo H¯Î]ÿ­´¬2˜z…Ö€vá(ÔU[—Ä’rb¾‘3fãÏÔ“T š±,Šå.!F>†ÁEŽèÛBeÃÔðRGáz´ÕÚ‚ú]ʼn`U >Îô@<êæå ‡™¡ˆ-í¤[¾Ê—‰CÙÞV½3êzi++rÜXײÀºe°{{¹þŸÉõô~ë½Ø­ï¸ø?eüç½¼h™™þŸî›^…tQe›¨û®—x‚oðþoë¨uVea¿Ÿ¶ÙžÃüŸ7Ý.¿ÿÍ!ôpž¤ŽÌuùž‹JppíE;`LAXܦøW‡œ6|3_°m.¼÷Þ¿«é¦‘°7jï]£ÛØ3ÂiÚ)¾æ¬Ú§h ²Š *â¸ò=€ÏeNÌœðg½Iþ,Œ^Ô úøØ¬ÐX62뿊žWhÜ…¼iœ£ÙàævÂç›lzµvŦ\Š@ñ"=ØôûtßÀCvJ·øßó>Ù`€… Áo­²ìb<]Ñ/¢Ú©ø%ž‚ 3Ãl+Ÿ–Ã'‡Á¼bšº.–õnãKàÖÄT)eÐd,j¯LsïZ´EÛ8)Amâ·•hœHcëÖõ'xýÆÆIrKå$tñž¸øv±Gâ[/ä-O®âI–‡ÖC޶4wæàÓçV{fS˜Ü*Ôâ·ÿ¤áÐ:rÉçUT(¡B}z- »+iìƒO° FŽ·òg‘´7ÞÁϤˬt:MÔSUßõÑF{ãT¿¿?MVíÅwXÕ'Ý7ɨ߬`ìoj¢)wô°Azž‰ç¥<ÚÁè yÇL½ÿ 0õß_~Í÷ñÉø+ˆ.þšhGŒfñä’sê'NtáÂM¸{'•‚бZ³ ¼êtÚZ²MEñæ ¸­Y£–\zŸƒÈëå?wÇb:úÕv/†Ã_õÂâ¹r›R”9_eÎkÔ’K8|±}I“xRÞ–'Ôp¡vrᙆœƒ/Ló‹cË8¢ ‚™€]^R›þßÖ5;?éžHœ¢Ùd®Ýs9žLb~>ŒFül†G ÁãOc$àNic¡‰d ´? fó+å©E#èÔpn G"Hy×õoÓN|d_cz#¢]½1h«fœ|Îྠï¥ï¸¶Õ•0‚.—4÷É{7¹’2ão_ûßÁ“8ÂB5%.1«Ä€‘º8½r“XÁÚø`ÁC.éÁ—Ø–†@ Ñ™IoEø@‰™’ƒwzÃeo ¦j“ö=+3¸?ú®Èu¼©&o ?ã3õßo±]`„vX85#f[ÛíQ!»µFÂÓ˜äüÄâú“Nã\.Y¾1¡µ=‘¸Äy‹1ƒDVäMâk.JC7î3Á§âœ$(MþÂp8¶×ìEš¤¥gã{¥)E‹gWûvòGj×øÏà3{ækæ]÷ µoxoj·0l™'. :M'C3†zvð~žÞ½ÃS¨ÓÖBø³üÿÞW?†ÇyÅëÚ½“î‡ÿ7ÞÔémß0šàüCx?îŸv‚ƒGõ;ƒ%{³ƒJ æ`Z€/¾¢Ç'*Гñ@ 0…èˆ)Ø„qÔÚãñ-›fƒ!YÞÞ"šß¤YØâ!ô’KµSðÁÆ2ðë]ƒ«9?%»hðÜbãÛJc  Zì=E‰Ò/¯aFÀ¢Z½¬¥U@åIïåDN0bXÈ] ÇiŒÿM£:$yT °éÞíœN¾Ž¹Œ™øuÎvð§¯UžGŽ?Ÿ2ˆ00Uχ}½0t ¸ÈúÓJ—ÿ¹Žu±àRk}þ<‡þhòÝ®7zBÄ…Ÿ?®K=Åìÿ tÀ8 JlÉI;¼›B/ýXCc…ÒªTkòÖ«x4æÜ߇‹!ÀŠ«jI;\I‘#ЉíA‘¿º"“ÛòÔ1-ð ¬ý‰ñ5Â#ƒ‘‚óŒ W¸ëeL¡Rš &\»›‰6ž£)»&uòÅ6FúÐÆÎ?$ýã,úAëŸÕÈóÀH=ãÕ>lÊÆ)ÔáÂp‘Ìÿ|;¹]?&^„«^9ˆR¼_¿„× àVñ»^¦ŽnìùûžÐJŸË—±xHôA'Ñ$ž´¿¤ ÛŠgsÇÅGôk`Dž@ݾ=©Ñ áÇ-SUù6&†šL¦†¨æ‚úоôÖ*žö6iµòv}Û Þoue(ìç×€¸¡‹&=}‘¡0ïB5¾úøù4šÇÒÈÂe0X}Løò4Âg¼_WáŸÚ–nø1 .ö˜Žøª_¹³®n½Š/'qJfÐþ Ì×`…ÔâÞvØÕ|‚ÖZÓ& / JÝõ=hw5f ›ÂÂ$¯B¶Ç(²ÀÈBzÇɇÉO탚8ü=÷PR€Kè‰þz{„›¨ÌÒ˜W1áøÔŒìÈRyÐrÍV?iënÌÒ‘‹†«Z¥÷ä ††ôCÚ.7.¥5|³Y!Ñ»]çœJÃíl;KZ#GMêé'8 JVÎÓù3ñ W ‡q\¯­ËñÄŒ¾ˆ“dÝœ! À.ÄI>Ñ`SŠëÚ#©@o¯I$„ƒÀ<ì?~ÕcUia¡*Øþ`X©H˜<*¥ýk.ÃM²B#@Mlå®"´ëˆ7dí Æ¦ä•‚hŠ6å…æG£|ò冲ºøž"䢀 •Ü™" áK“¹ !B'E(—º”‡„¦m7ß·FZ…-š“¾iµ•?ÖÉþ¾ÌŠ1­%³ý}%'¥OÂÓJÕ·<±ï¼\ M¶é× Ä §=pdþ=XkŒ»ÂŠU߬2æ˜Ï7î¤.´žD:+›4£AÖN´€ŸRøñ‚ƒc, íï̇³ÄNsFl³¡x‰+}ëöYÂ|ÇÉIÖy’JiÏYÃH›ö P/¿à¼¡3M½ž%^"3¥’%YZ‚Bš@ow–îíNaØ¥~´jê{Ðbéæ,vG*˜÷Ê¡«®VR€#~×Cš ºaéqÕ¢Ýn`µ¡9ïM¡ ‚èö¹äïgâ&˜uœÕ ï¾I ?e˜ø¢/oü÷·Õ€§Ç¿¬?ßÙ¦øïçÏwyñâ¿_Öëeü÷}¼hý8ñßçJƒ98>=ØÏŽOÙüº|7Qqâ*\DµPåÛö‰þluŽÚ­½Ö ‹ ¶‚š7|¶…ò÷Ëö‰ËOø2Ì ÷‹'ùªÃrñ j™ ÿ; Õ§ø|Vµ‘¯Â#ý{âÈ%>$Iá'ÛBEP=ç-@ý=Ÿ!!¶øSK0`VŽ“iç ç°åS D32ìQe@œø² æ¢íAkº*:|%¨ž/ ¦ÙBÕ»üa½X6Áï ¶„.%ó„ƒHæ•õ%š’zC#×Âô`x›”oøÊøÜÿµæß†ƒ ü”ÆGá;$2\&å±1.˜þ’ïßÂè©Ö˜8e¤ fà¶ p…š¹ìOc+ä¸?º2§’¼âª7°Ê©SÛô~‹Ñ&¤02H˜“DÂ_½ñ åÓ#8Y‚»àýRÁQx*-=ŠY¤˜UÅíÓx–æ©–pÿyüU‹îuˆÁ(s^⇟“Õ&m\Å×}®ñÑ£û——ñ-³$þµÀUÀ˜È!^ò3ó¶?ʱr¾~\~æÁ"ºÏ'—ÄÐd¯ìc%„hÈ1‘Qã±Ìô›3o ¥ÝäϹɟpŽp+ùvDà鯛p'n-v y Wã&&7²WZÊÒóÿâX¸DŶ©MTxa¨øålø½æÐ˜ÕèŸ~A.èr6®™? DÂ}ƒ3Õ Ù)ôú·Ú ÍÝõš3”¡žý€ñt–<Ái^šŒöÌ'4á ͱȪ\æzœÓþ$ƬÆ+õ .7ÒÀ¹g†íÓâðä‡4“Éü¾àÆpJãÜÈÀц?="wŽËJóZ>Ã+r[&¿+GjËÊîZ*±‹-•ÛµDZWZFËJêZ2Ÿ‹-”Òµd6WÁD.þ’ò;õq äkè݆æˆ.™-èmƒ_ÚýqW„gðͶ ¹¨íã‘‚ùÐ6Œß@TDÔÈÞZ"#ÁîΩFGp ª\Wdî˜ÈbÐÎ~î@3oÖ~“+`A謪ۈ ÉÁÃHîÔ<̾±a€™–5ÒåCœòŰ fInz­kz$=Ïw'*À·ã¯Éž5á\ùÍnÇé»úy<^Á³}ÍÈ#Ÿd£éÄ¢$oÈs&*U€Ô]XêÄÂÆ§FëüœŽif.û€»4#nÂÖ¦\ú5ÉÁ“xÊyÏ·èë!¢O0á?Ôøj6 B¦ÔÑ,[ ð3ò_."ÃÀaö…3-@ÒŽµ~×Ð U©«å^‹< ïØØE2 ¢`²Îd(ùòëLœÂÙKm/çR££+‘¼k­Ë[Ù ®µ½ÅÖÚÞâkm/¼ÖöÒÖÚ^ÚZÛ˱ÖöRÖÚ^¹ÖÃZ[*?9Gj2ËÊN^*1™­&7y¹´äbÉ,+)y©|d&Œ“,%™T^Ç5HÞWÈŽÂýt–‘°J‘ŽVÒµ¬^SŠš$­ôþŠã¡Óˆ­;°þõ,ÖllšÂZá{ èªëÒAÏNÂH¨Œ‡Qf1þ|šT@„’º =A¨í®&¸Y¯ê}€ÈñAÅ%»ÌWQÆVµXcTÒW’²‚ášâ”aã´Xv¹$+V4€˜þàÚJ{9FÕ>6O-&s"5ŠGWñ·ÐJñ¥1š \òÐÌ}‚‘nËsø ¶ó[¢ö$%9í2Á“öÔþMfoÓ OXøØ5 ¨éÔT_­k;Ui›šÜe¶=MB¿ªò‘¯'üO“˜we²$è´ÑÝVB¨L»¡‹˜¦2¾’1©à\À=HÌ-ž[|<6ew 9ÇžÍWì@QVnG˜¡Fgk"­F‹RVЕm;ÝÔKG-ùÛ§„gjäòöÖnCîͰM@Î_…â¯ÿ?ÿß­úÿ¯Êwè"}…ŸÖñ0œŽoÒpf2¾ x8¯ !R7Cu;ž1Hoìm4dŇÝ4M²"Áµg(ƒÎt öÆ*¬ö´ù îqÉa}û†´â}«'|Çqã¬ØBäC1¯þòôZÔÅ.P<ê¿Í&²Ø×щä9§ñÿáÎé€Xä°H EOlÉvÛ{¾ç?¯õÖ ØÖ ±g€‘ K>"ŠÓézUi† 4¿,S “OPR€%÷jG8WȼCé_ò'ö/¿K»Å„«t1îÔ;²»N,¤ƒ¼‹Æµ’qýO“â!±0ù1i³OÉIš?’Ä.;h+ ,pŠI9‡rWR6^J9¥”ó RޱxKQçÎEJƒ(¾­«2Wßdz˜:íDœ‘ÝŠ,Î`Ÿ0ð‡+9¯íûÕ£]©*,F9SùPR• (òpÌø—ÄÒ¨…TMc„ü£fèDS¨ò’[²¢¨¨3‰¯ùL ƒ2ü1ŠR‰™æSý0­H‡Õ³þ*1LgXýá§ñ„/´8Ñ%»ž‹ül5ŽV4XÒ%_…òÐæÄÊ5Fƒ ¨¬lê‰50nó‰&ßDñ‘@)²ÅêÌþMŒIÙDký3çáx²EÅ¿3Ñ$Ï ‰¡ÝøW»uÏÿÕ:é¼ù&ʬ³WìÏ12ïnK íL¾Õ"áøÃ¹h¡/Ñ}êç+çfÞ‰¢ V4‡Ó饕X=qÖ¯XÅÂoP³ŸSÇç@$FÛçÃx+±gkOW¼à…ôÑžßÅübKW[`âÊ W„é—’ŽBeuxx<ú2˜ŒGøtå)›ÎooÇ“™`j#ŠÓ=±‚¾L} AÁÉÁ ×óÙœf=•!Þuzï%v€%:NŠ­Ì³7ŸoP¡‚–x®ˆèa=Ÿ¸TÀIý%~Å7³{?sÌæ|@´91šô˜šhW¢ ¢ÉøPöÖä>%ïµ í! Ä}‡C¤«Ö^JLÓ¹kÚEmù~}‹¿ÖŠ/×"ÛÞ¡Ëdrúü´Óz("BÌœ­Ò"õHÃÁú‡kt€ßeº[ÞWë²»5Öü®„Cc0|ßY_hñ§VŽ1–p Kžñi ÑH…àKÏ Óìi•1ˆÍŒÒ ’¨©bÙn«úº•HCvž:Æì*#¶ó ^h°E5Lªf&Yù‚ùsµÊô‡G‘™wì€d®fá)¸ÌU¯\ÏÄB&u`ÿàMã´ èÂB_„ï²ðgD'(1¨û»yïßÿè½2€[­õÑUà£y¸k;ÇmÞaå|d×yävíEæ]6!ð¶ã>O¦£­ÎU™+ϧ¤Ú_Z}šcž¦ ½">ù3×èOº§½cô°nsÏðœ#!p óQ'ž('7d7@Š«D%(óN/خį ìîáǧUÎËm|7È=Ô|/°ÇÿuòÏ£ƒ*®Rñ'Ì7ü¾7­3%­·A©ì4ö“ÎQÊNÔn‹«o(ý½Ý„zb‹?º‡ÑÛð°[où£ˆ…Â\îFW>þ4ê4ø¯¢?ž [¦ä:WûÈyƒ’jÿWGû¾ è…ê®÷Ž»¾îi˜ëaÐtÞéÞ¿Þ˜þ¯s¬,²Çù_@»p¡‹#Þ¨ã<Ÿ›÷Âs²@+òÎ0™Â@Îà}TÎÀ1ßCñcVÈ2™…«½ZýÁp>ÑØX9ôG†8SgK»ùy2'Cúˆ°3äÄ\lX¬wáû 2`Nîóqz>ÖË}8Óé¼sÏ,Q™*ZU‹ÄK§«•¸çÖ¾ê¯D6î×l­å¯Ó#®[õxèCCüLx…‘U‡c%`"z5•#àe9q´«LEÝ.TMÅ+<a)züÉÈPkj7‰\hd2beè"…>‚NÒ”½0ƒµ=$³mÆ©èf4ݺæ…ÑMžTv<Ęto6@'%Ú$аU“á=÷Z“ mÖ×Õ\à7Úgš/·¡–´š…ÌgUC(÷µ`á;ZÈ}Z™N.R{4ùIØ`%zr]ú—À¾XѬ"ëY–ÿGj„T¹ÌSÏÞ(E„¨ò{:ÖðE¥±±gçA¿N¢£¤,ge¦¦­.±*êõ.rÄr.ªANE­*p4µmÎfu±g9ÊÕ½u¶[ ³wL³7 þŒÌ~X"%u)æéßj‰æýˆ67MéÃí(ÍQiÊXþCï¾C^J’!D¸6´ÊÂ…D¬ZÕF$+ýø’˜¦¥ q?_e‡ÕÃeêÔ¥ÊiiŽ\³äcò=¤xláÊúþŸbÿAæÊ¡Oâv ?ÚØ¼%ggÝyêYçÝhHà<¯Ô9gfu,P«FëŒOe5·û:SÈó Ìax°ƒ°ˆq"óÖœa–¿E®Åd47hëåƒÅÃ3×YšcÀþçéì2´ÌCÙD×ëë(ÉçiCǓӺá‡2ÔïF¨)ªÅIÅ:Ó9“ÂT+hHÊ´$•¦¤Ò””×”°ëøòÚOºÿLµû´ønÐ"°õG¯ úú0´»/¥Þ‡G')È€’hÂþÃÇó•ŒPï–¢¦x÷¬ÔbÆCð'ÿDgᡈßïÁ2E“ŽfB:|D*ç“0\éÙ*hºòfþÙf§¤U~Ûÿ=@dd-½—y§ø¡øZÌvž,coøÎ¶ÆÖªB7ÜB›–‰¥š‡3V{‚ûHQ­&t‹“.§Í" ù-fØ—L.¨úKàñ!*ç5¾É6*ðwr‘äP£¿éM³R⾤emGçð]¦L{BÔ„x4rŠÙ¸ìXS†Â¦Ö¦hÇ1»œðcB2ç¡ E¢Ä|$?D¦J„ÝÁ©Þ®*ÎÛÍà<›ë£óP7žrª&¢àÎC|)—•ÆóOŸ¡5ØKÆÄ QK§ ýhp>³Ø.ôöañ7Ù¤ƒ@·i"FÍW ôp!eפ°—z%Xç¨Esí a’¹X5í!1±àIÒ{&Fá^B „“´“LÒNx’B§¥=w̶b?jÔ'“Gŧ +ü±>Á ±öúC½€<é‚’û×_dëô`ˆ„&e8°.1Ï>¯ ’~háÁ×éVtŽc}^7øâƒÚ¿QÚØ„ ôF4ï—ùÕ›Ðî&ì„ê X6¯5U³[­M°|7M+<3S+}v%=ÂiÜ-Ä>2Þo.û=~X·˜Kf:bPZhßl5ý¶ðÄy"k ¤½ ÖÀi÷ -´71I±éÊÊ’TrH&WÉývïPú#V²?­×Q†wXâž8áçHS”3„Ó…pð5“2-_‚1 )”“–Ú}á´pÆ/\1?ŒUØc©©¹\Ö¢1XŽFS°lÂçd¬©Òè`zm– ˆNeËNm…ä’VsS4â‹5W;_Ÿ@ÓiÃ@€5‹”¯QX³| néòVtŠñÅ LiŒ³ïõ˰µ™g,¥å#cÏä–Lf±´u‘ø–ͶÜBÅ'-–ÙX̨ñœúc•w@'+‰{üߦø·’Íþg ʽǗëÿ›^Þsüï/;;»NüïöËÒÿw/Zd¦ÿ¯·ÇW·æüÜpJÈyÿöø>pà:ÿúóoƒáíeOÆ ˆ”Û©[‡ZÄ+è3‹p¢ Oà{ù§¸:ˇÈI_ÐqÈ'ä¾`†é÷é,FèŒ!ŸN”øßsªñ`Ë þPÁ0‹|ƒ©aþ £U¸öaúÉ´”Àö©%HJ«£ g·ƒ/ã\n×5ßÛÁae9)WæOô¹søYšÆµÀåüBõ¨g”²P„tiòŠ\¸G|bÚü¿SpåÞ©/‹©’î|öµär™ÕWLÚX­¥YúÂsmdxʺÞÒ×À—gäÞ²5›ÈPopOCE¿>Ü–[¨bI«§¨˜#UQa0âú5UõàN\äÊÞýþ.:ú§è(ñ5ÿ¸H_Å͸ý)»K:K©$jìj®è>Ɉ`ÿš¸`ˆò|¿2«¸lÃpè‚ߡ µ™@a{¾ˆ¾Æ“ë!̇™ñ[+æíiö§èµÀN¢Ä…t 7ÇìCÿÓtŠpçXNØÑ˜î÷«¼yXѲ4_pÖÍøìö¶þ¾]g¿þ‚¿ð_ã«Xv}厢 ù\NÿCfÉEÊÇ{Á†(³TÝs±P¼íûp›­·Ñi§ÊޏìÑë´ù‡ð‘yrÐñ…Îvµpe¶÷ÇQ•}®\;äc£Ó8‘R¸ÃÝ¡û«ò:·?E==&'&€Òð÷8ýþ© W €óõÄåáfºãÚÑâ k6ÑÜŽÀ$ªòÔ´šOýÇÞZÉø-âš òä?˜Z(¿µÙدˆ_ªò†ÄØA6(“¥ªpáñÁ»LÒÖM<ºPØÅã u)ùÖµ¦{ _á¾ÜÆC_ùÝ!£OJ?ôÞ£{Mw\ Hz„~§þÜað}l:øeK…Š2Ó𰣺½<5{I{.ÅÏšÛX‹’¯]Ìù‘|=FND¥éczÒø¦°AÓ°Á9¬ÂdWÙ:ð«Þ+‘L¯¬^àäÈŠ˜pÞf•¶"à «Ùä^š=>šB3p ï”6¾o6>[^cØœùt=§©ŒdôvJõ¾VÐ¥l8‡dÏ_«?7pÏÒ™c7‹9Ì8sH>Ù¨ˆ‡¾íÒ³w.yîáÏ2y/–‰!‰UøÓÖ ¬Ò5ÿ`ÐÚÃ5–ÒÚóP/ýçêê>í?;;/ž¿Øqì?¿”ùß÷ò[£iÿÙççêûÃæÇªÎ×ø)üÉÿ9;?à_´ø†êm¼2-xüj2ÀR¸÷o<Âï~ݪ¿ØÚÆ~7·Ÿ1g0qaƒèþè©P=Ü'+ñeý¿sYžT•š„0@àÙQ Oß?•´^0RÝ×~“.O ·Ö‹º†O}«Õi…:ÎN*¢÷™N½¢¶®ýý$HO+QÅPx»¯b™¢J¬Ò;Û_7âæ¡+ò»ŠŽvˆ‘†ÀL¥ò¡ó$¾ž3=‹Òêq\GñU0àUìjðepoñ;¶8#AH¨t£–Ï{Šñ×É`6ÍXéÆ`õkO¯õ¶f9ˆÉ›â¢ø–ò«UÎÖõ˜@ºr€‰æx¾~\~†_ d$WÚ/ãÛJy2±©àj®…qŸê-v¬@íªŒ<8W Ë yUMóZÃ,`§¡p­»“‡×40pö»¨ÝË ¸ÕÑÖ(þ„¥PU7è *0 Vƒ«xzS½Çñä ëJŸ¨°X5êÄBmœbógªCr­ٖS­°…7UÇb€Z ¯Š…>ƒ€¨³wU,/x&cÆ‘4_duÉ$Iî›þ_œXôf0¼¢hâ[QQŠøA+\çê#ÞŽP¹oͬ5£Ê³Lf›þågT‚¥UwÞŸ õ®Ÿ(¦³uõl:¿àŒv9«’§h !ƒÍ«Ö”4Û˜ Ž“m°áà/"æìMç[ ŸãŸÿLþÜÛúûvUÔ„/¶v°ëT]”Så2|éC±i‡}Ž¿õùÚÆx˜1Tx§?eߤÝZuOô* ~Ù_#¬^œ$#»Ó ϰSÃÂT–b¹™oÔuƒVRI},æZ²‡`Áʼna%«ôô•,½ÖXã§\ßÑØÄŸðu¤p€«B•Àõõ ì¾SÉæ'¿YíÁCgÆ"·êßCÕmvƒÝñµâïááØÅ4£¨ªu6²zÉöµ¹ºOÐ;!€Å²i½ö5“´auW¾°Ô,6T•w¶ºiQÅK lߢ='‚Ó×BC¶‰qGc³‡pÔÙOÑÊËã*šX(wŒÂyï*ƒÌiý1æ‘áî‚Ì]…> ¦ú4&¹TŸûæW±Ì\E`ö¹UáüiMÐS€mס´à¼ü-_Y='vÍè6òX%ñ-Òõ Å­'+¯æ£xoýDts7“‚I¹œ ³Éø»bó»N ë‰F‚˜BidQ *{CÁiþF’J’MxGz·&ºqjw#c9œVO÷ÛFà €Ò˜»±[IÂ긗uØïS‰[Õ¢µÐ[3¦±•§ma=–z;Vúá©c™<Þi,å˜ÔÉ^ˆúj =_ ‹N>mÀÑšÕ©6ø5W¸Ä”°íé Øö´F-ý“„zQjBЫÔÙMtD߸X\ˆ×¸iî½ÙL@ÔâÒgNo«¶à>”Æ Vƒ6+ˆNo ïΦ¶¯LFøÝü_aF r/Çg'5ÑT+¤N†¼;J#°¼H’ôÇÍeUI©uï1%&V]µ³!I² ˆ M€S Qƒ^ž†’ 4®V{Ú3Š?Rw?ÇWzÞ®ýô3*„"iˆøÝ˜º1IÏÎMKÌf1¹z#˜}{-âf“ÔYŒeùºWÈØbáréZÖ(ÑÛ™¶(Œ".¬0*«õ\o°æxÓbØjÕv%‡iðn9Áï]—á[_uå\½ØÐÖš¶@õÅw­úƒm²_Ô¬ãé{8æ× MšÁÛÍ+6ú¿xb±ÑÌ?°™„z¸æ–Éž kz¿¹ßÛß㣹½— \þ$M «ŠVéÀSßΑ£ÞÍ$Ue2ÇDF¥°ýÁ—´ªÅ¤$‡‘f ç" ´‘ók{{ PñbBªœÌõWŠÇ+pQ§Y¢÷(Ôe/EnOĹTT¤‹Ä‘K±Qï¥`ÏÑi¡7iÝI‰º)gãÉþ#:9†\xëÑ{Do‡ôÖ OJ³ýSòÝi>þÿøê:µÚü?xïžÂ?gi™Ñ­Þ\éðï½ó7ø†W.ë\ g7óËÏÂHKg08I^óƒÄ“%δC†mX ,\äʲ/ŸÅzîíRˆÞBq¦5hõ‡‹Œ²?Qš#y¬<1ù”Ø?«íšvÏ,êî¤S÷0@]ð‹7DAÙ?ð;6­&Q‚MšL¡«$^€p¾§å˜­¥&+ôÌüODÁžxÜŽÔ3æ<êîåzd²6ˆ'à_] 4.–ü»#¶Ÿ,>C½0ÁÇ»é|Ü+ù˜•|\„srp>þmdòïótþm< ÿvåßNÉ¿«}äÝòïþÛqxØ“b†Ò,E<§t®z!g¿q6‚™Ÿ+ø3'‘ÑÃêjXÔSþøM.9Ú ¯12`Ê¡… L>‚8rUÊ8"aMx8íßU<óXíyŸ lÂÉŸÆiâ” òö?)qý'Çc'Fgqb¤-(°×¼„½F•Öömÿ)w—%„ûU<•NÏ{‡yü~ ]fi‚,´ÏH‚Ýil0Mwç)-‰Ê’ØÙè %±“fIì%±“×’­Ò’8c•ÈE;¹M‰܃¬c¡]°^M‰œRxÞ>¦:ùM‰®ø_Д˜AÞ,[bnêÑa;¶}œ×Ó)¬ÜeN×R³zfþ'ZGS'yìÝ?R߆ÓiÙi_ÉaK¤ ³9‡-1ƒ‘³Œ‰%#—ŒŒ/‘s±p>ÎaLÌ`à,kâ1°k O8E*xå¼[ÞÁ],Åšå¶&Y{Asbç~~/E–Pø3¦=ÅÈC‹7߬¯â™9Œ¢À rõöÚZP€à[L¸"¦Á¯8'‰:A¹ÔHÝšsJlá]xË»°ÿ§ü ‰Hkv ò¦’u 7Ù‰^»ä£ejRÚ£ÝZZÁˆã‰+¿$h(ýÑwQk*jTJ—Nç××ÈCœ µ"Í7cÀ¹›P·UEÖ¼¨e–T8ÖR<-7Î2É#´øôþ—þ`Ù.†@ˆèuõéføÜѼæmÑØE ›!iYè¸ÂäÅ™ó-ÚéÌø;HKN'ez@ãõñF×þ±’ÄÕ¿B x¤ª"8Ãý¢¦ÓÿJ×¾i;X× c¶*Û‰ZJÐåuù‰’–bÉDþø^ Ìû:Cþv€ñuT|7\¡ªwE·Úkšÿ‘i¢ôÖÀ:võÌží7Üòuà›2Lq ýp$æòØ'úê“}äŸí¦ò¬AþB«ñfOú®6é2j-×ÄG)Ï5Šb4˜PÉI³®3Âq“K\¦±#µ!cÏKHÛ•´=ðöˆ²R,×eU.Y¯c1•ðÛ9ÈK®Æ)a“óïéZ•’ö#—Äû°ë×Õ{*iðšþ+ÚdYwñYõûrºÕr‡ç[SãÇÈ[¦,Å‚†¯îeÂi4w]X,g'ž½÷TdîYÍ"‰Z§X;‚lûa"=Y/Ì–´ÚnƒM›®qµ¶Düƒ“ ã¢M¾TÓ¬åÔ§.ö©è“ìtÀ«¦ÝP‘km#Ú¢¾<Ëeeê ãcîºc^ùyÑv¦¶7¤cŽsí‘i{ãÛï|;ç +žÔ…çv+™ª³nRŽqïèŸb³ˆ|}ïŠÂ†0ÏÎþ˜ÿÀ”­mæ83ųœÑ¾E$>ÉÇ9°¢RKxv1"\Înh‚sœT£)pü¤K ð~O‚Ü?ò-¬]kaÝ…ìàr§sÈåŽM‘Ã#G¬b¥¦ °Z½Ç™ÝÌøÚ˜~ʰlÄ¢e´rv’cbs &{ž ä=M„(ç7„;†K¼‰ z/ñÈ=-¿Ü#?t3×k¤]ÌŸ»ŽÍ%¢Pê½™b’oÇÀ8'×MæWKh?JÃnåPÈ_oÔÑcÌŽ¶Ê3'KÈSó ­çò›à!µf¤µx¶’¶ŽSuûé ‚ü,¯‡GÎNÂÜÁ¹YðE§<§åÛéïˆ%Ô”•$²f½ ½›¦ w³ô®WA êjôC¨«|JeµTV²•Ê*¾V§¬j-É”O¦Ýx´W»Ÿô“Úl©Îz^Wuê¹$šÊiº¼ø¿cµ•ŠÞ=Œ:* îÝÑé½Jt¥êçOm©~æT?»^õÓYäÞ ]fÞþiÌ›¹ òÈ…¶Ù±”GWÐL£¹<å…@©6„í+œî’8ǚχվîÆ=*´¯4iAí«ªÌ!‚]ùør°ëêÄõûPż–˦íÄÄiüšªÖäYÖ›N•¨5ß_•Zã.¿É#Î(l¦¨Æú±D÷¨t•áD&•ý*òŠõ†RqÃkò+n?—fUÌQøõ¬{qŠmeÍSs .¥Ù»û#×ÊÍê=ë^v‚®¿GóºW†Þd iYKÕô´‰Y 2D v=ßð7’峵Ơø«ßf¥B°"(‘â·ß_c%>J0°.YERk¤KÙ £%G-ʲÂõq×Ì’¨²ùÔ,#LÉ_xÄ‹½ã†ØspÙǼ ±¹˜ÎR”0Hæ‘Oí˜jãro|ºÈš%¯šÂª¹¼j¦°À§Jg3Zw6³Rª!¢vV"¢®F>õ§ÙY-{…"Ú¿š[‡õs÷«O`{Œíú]þxv›¶h¶€6üÂ?=èN„Üq˃3ê“TÔ66Þ¥NP~sÆ×"Æ8×I›}d¿UG¶:¨íSW2ÿTë²U2hŠß6§›9pë.'¥ O:æy Nƒ áT²ŠÛ³›—éSÔÑa˜K­¯ùy´j%|‡”)΀°‹’©Û)`+%nŒ¨´î@"×¢í\Ì݉󜗻$±‡vàî^§’©9åR~Œø7‹°YvåD}ó5¦y\Q~«GU§¾ÝJÆdäÓ‹ôøÖ¼3cÙA:Þ¹2ÎtûÇýC¶ãK:¶\–,é1wèÔå ’šÑƒEÖ)c¡ùÍdæã'2·…ùƒ wVYÊW굄ÁŠtr~ÇA¼—W*é ùÌu@­J>+â±V§ZY—”òG¾iu!òc=î•e5 TÑŸ lк¬Ð~ö ÁÉÈk7ä÷ÀÙ³Ý)Ô—‡U˜š‘¤^€<°<·UÅ2çyœ?¢ÙŽ+ÉzŒ)o-âËe'I£™©0ø¼Œ*BÔj#xìfù°÷)V˜ÿVò“—Î>b¬ÆÏΊ»ÚÙ"Þv/ó;ÜY†bÌÐí¾›ËíÎ {ÞY^ç{Öd3–ºyä]›,‡ænu{5Nzæ÷Óïn—(W½u«k`ùQŒJá¶4À&¯G k±@&år¹6ébPºGåŽÀ0 ‰*–œòC`Ü;üàš“~E Zy8”‡Cò*z8ô♩z9žp-fí6†ÁU<š fßÅÄåÜŠ;y·b‘€v’ÔäqÇãyÂV$þ‘O„½,éí”ÓÖU´)Ä7O¬RIÍê:0–¦¸»C°S‚éY‚æR¿Âã_5¿±OI*Ø…¥¹DA.JM…:]Š^xuÒ‚s[°¢WûØ-ä•´S°¢W´ªŠ^ÅÆï·¤WÇ·2%ªQ{ÃŽåîÉØYjÿÚéVÍ«1þÂY&ëP=Å#¯.þqxøw;w€À“YÍËñÚžzÏD›ÎúvnøýÄ£ªñ¹àw:Yð;tP=~ø3¨ÂCØ'QÍ«óªyel•žr^t´¹<õ¼ àÝy¶]Ô`œåÚÞÿãþâá’{@쑱O»P³…Zµå–Wvœx¾:ùjÍ.èÕ^ÏŒIhûbXb½vÃÒsÛÉh±‰ÅŸ,øh·h´Ï<Ñ©%ÃÚ2–¡½A±®+ÏL{´\vo'øëm £ê0ÍF`o+ýÄê{[yÚYì)'ržS¢½)£=pùœþš#ŠOô²¸…íc9Õ.Å-ûŠDÉjùH¿k‘þ.$—UK8ö§ošBó›fšì¸‡¯mšô\0Mzä°ü¦ÉŽc\è<¿•ôßç‹ûI­.ÖΞ÷»."E Þ4Çu–1Çù·'išSòkÖT‹ä’ôŠao²Õº_àç ¥ýB¶½°…vlP'EGî" -É" Ϥ~jÃÄ;‚1¥²„ŠŒµ+2Ö±…®h½8Wì²ç*‚'¡*-¤ÙV±;Åî^’¿Âï-o„Ü4uhÌ`Æ΄ͩ¥ 7̨ÃvvÔWHÈf¶¬þFëlQ&u:JÏ{¾*P *,–a.p+‹eX Llz­`9SA; Ù¾jkÆ6U/õÙt}¶ÔfKm¶ÔfKm¶ÔfÍ×Ï¥Í.D’C -ðU…’”ºë2a%OhfÕ’Y,ºdUè]âÛãôò¢ÚM]Ô£zªiPõaYxæy™éü§1OáÑžok”y'´aª’²…~]‘²cÏÐÍ-µÍû`ÿÊ|z ‹©ÿäZ⛚½qYˆnP|"¹D}[w% µ=ȲU܇ ºGÅ,§2|Ù#Œ„*µ0ÿŒ–Z½ž®f‡5>fíë)òõ.å)|(ì~<… d°–-`À †×ù¸x]³`È[pa —6[6€(/­i³,÷»—Æ»&R¾Òf¾‚eû‡ìe_<+æŽg x䳦œ1ƒQ -M¶DU³e<÷Ìï¼Y¨¨™ñUYÒ¬”d`Ivù4® [í,È.'›ÞyE–ÕNdº­#Ëmv§¨ùåNKè, ›ýÀGÄE\?À!õéúÃ!š`x¨I0&U¦u<®sÉõeƒ,È=Kž,Ñ#gν6§ß[Nµmü?]\Å›« Ãv"ô#õä‡0!ìacù–X‹jÛ¬Öˆök+ë`°¤yµŒSAŒÂ×?ìOû¤Öë´ó÷‡.¾[­ OKÓÈâÉn<›OFl|;Üð=))'-;õd­SÓÀ—¯Y§qþG7ñZuNN»‰&~Àe¾}|{ÐÛß×—Ãÿ×ùö9ÍþÚÚ­í<ëu÷žýçS<ýR»^í3¶ùëåóçøþËË—ø¾½CŸá§Ý_~ù¯:mÿR¾ýbç¿¶ëÏw^nÿÛ^m7ü¯ùtÆÏö_7ýÉ´3ž†®ã—]¯˜.áEüÝ;mvOOZÑrþÁbußõ3oë¨uÆ÷>øÔ4eË­-ÖnpYü»š øÏ&cÐbVá¦ÍϹk_¦“Á—,²“x4âÇHW“ïöøÃ՛ѠϚñä¯xG=$j¼eíÙU­&‰Æ_â› 8ù9©Õ[«±?¥ø„6&Ÿæ7\"šòïä¼=èû†KŒZµ–4Û˜Lúßó¶ÊIUajãÚ;ìµÎ7ê/Õ% =u6»f…žw$O†?æ“Û1a'¼¦}“$|¦Þ5ç:¡¯d±é÷é,¾Âò£;æt‰ÿ=G„©6øSÏù®ØD¿Ô×Ïñ$æß ¦œè,Úºø¾Iyfáÿm²>¿Š~åÔ¢ ¸@ :}?O­ŠŸ¿Änû“Ù€ïÕ·ƒ/cÔ)¡µÉø+ß²gñäòsÄ·þphe>åBËu¤B¨—tù5;âÝnóÿNµna·Ùm<¹™ÏF‚º^“)›36…€¬É ORgûp*z{küZ£ÑPxPñFR}¤ºÉÉÿ%–‡„êŠÜ ¡•+i“+§7\RŒø¯KÓe[èÖhŽ+À3¹U6¨Åµ*2ÆxrEYî1­<ï¯Ù¶èNi‘‡“ÿè8åZˆñðä*Q-Vo†ú$;Ò¬‰gk}i„xÆ÷ì’¶ ú°.«ìjÀi‰{MÖ•é91NèÉwê’àêËq¬ÊÎ*RØw}Ìè&â€)g$b€I~ü§oã!—n´7NÃëù”]„ok´ ¬& œ"“‰¡ƒÏ!Ç4 ãþ¬¤„‚ª}Ú°jÔ§éMÿ[¥Î)#Ú‡M Û—D•™KQ“šðT\À|Õ^Á²‡ðF>¶øö|x´»ÙÑoz¸ä­éÿÚŸêÛÀíp%n§ÙïæB,Ѭker…Ú;y;aT/›pµOÅ× ÿšMª½Y´p®æ¸¹‚9nÖ¨%ÏCÄÑèüŽ$£ÛÐð[|~úbãTº‚#c0ÆŸ8ƒcø¡ÞÊ?¬Vx#§•Au€Ádñ7¾Š†ßÓØr=ëŠ^Pšú"æû/t³øŠ¢k“%‰{ºlÙm@Zª|rÌóór<^ázÔÀiA_¯â¥K+ß8Ç£ w~!Ä&M¶88?9èF¶Öïóƒn³Í.œt߈wŸÀÒâ¼=àÜrÉÞÌG—téBK·õZ{IÃ\-ò´rð-¾äKùb³_ѱ~äNâ)QYNøþ ŸŽ òa´*4KA å¶k&&c‹ô+¾ŠÒoÙ±oá»ÜÁ‡…~\ Ýûܽ·™÷Þ_Lå4b¢FÛ·¢ÎLóÈufå¸â¼eµ ÍÔh_’]ÆûÎHÖ2V ( ùe 3g‰vkÊôÆsU׎“®k¦Àž”s¤ÓØ ñQ•ô…ªI»÷yM71%é¬_v“þh òíZ5CßX Œž3ÖêÏ~¥¾À˧ÿ_­Øªÿ?ßÙ}Q¯Ûúÿóú‹Rÿ¿—XÕ–þ¿_8øS…㳓!Ê>¶ë‘3ªMo]×5õTÌ{ïÝÆÞ‰®êk4Êic8•æ|A lkÃþái³}ÀŽº{­^ëEa7EKB¯ˆÙá´BÚ GCEôl#GŽKAKžeª0’T,CA…_¾S©ŒÐLÇ0Eð€ÙT).5&.jU½”Où3.š&hGø˜j(cBǸŒ(êÐk§èn§|½ÖÛèí—ãÑŸóO\üÙRGVåL°/ÙèJ2›˜}ýúypù~á–Ë£—ñí ìl@ªÿÍ`T¹©ŽÖ]å°J"¬l±ƒ:dò]Y5D©…3Ó\c^%Äi¯æ‰†@u'†ÿË »Wä·¥Šà~Ôó´è?¤í&Sw[ =_›GþEx"‰ŒËMäÙIM4˜Ê„Èòªè7‡Zò'¹äD1(º¨‚ò‘``®WѰSID5)¥½»"ü‰2_ÅD2( ”h(¹–šã£fÔß È%ƒáo¸õ7¼á³úi<¾G xÌû|6…ŃM?£{…»@{ç!¡XBgý¶ˆÅ†È1t¶÷µ(¯ÏcÎñ ùN§\‘»úM×û /ólýá%gRiT›Þˆ=>LÌ‘ °ÞÌì3,úúRA‘Æ×)Ê,žLƆ,{‘“Ÿ@~†þ`ð t¡Ó9ÿêâ»ðšt優áç:Ì^lx3‡¹þÌEf¤ú+9·[õucgÐ[˜ø/\†7ítÎgÙk^èD£›ÏzaÛ:æ÷b63gn¦aþ/þ'œ ½½´:»k_¥ˆ{z;æo§*‹ëôvÅûiJ;W¬B—ù}Œ°*‹öNáØ—¢nZ3Q£ý»šíð¬SXµ D?8êɈëàt¢G!Ý‘°ÚÁéÎW—¸)É@QãÕ$¢w­ªÀ䪊Z¶Uª–B0þû1FB`î7¾c»”êRèUQð5­!~Á1]Øivӆ艨ð­Ž_‰aÞmµÑYÊt´½w8ŽèíA˜Žø˜ªh®jßæŽbÀäfÎbÇÝ/YŠÅˆôË»zª!‚+HBt0þBü‚; ÿÇ,}”  ëôœ zæ ¸‚šªvkt“öû¡ÓÀ¡Ù@ä\œ™}„muò¬ç^ѳÚ½¶ê²„‚ԢÓZÅ!VòçaògZ˜ŒÑ“4lŒ/ù3iø †öÒ­È 1O…zî‚!ÔI(Úµ¯ÏZòDH”¾½tï=…{ëD„Šd[©ø1­Á¿» r¡Õj(/¤Ó ݳ®¦eš2çjÒý±KJ™‘"_|x¯àwÚB„cár|ÅåÍøÓ`4ÿoIBßß„y ×zP»ëߌç#t¹$j#ärQÝ„üŸÛ1—jõ%6S®|‡C©íQ¢!Ø5D³×-7‘Ç“|E²hLõ IÕR8’E~‘j½­êÊ‹šZKº{1_þEª,ôI§ÄàFÈë\}º‡ã¯@Á©:¡«0:åÈáú "5spâÁÔT“c¢’d~GËííç0â!äȼóŘ1p©i“£: W)ñ›·ÿbÃFUDY ’·qö²*âëöתd®{öÌ i!Û¶ÙQÕ6CUøÉå4ŒÈÉlU:n¹ÍˆúóšoÈ~øEňm²hCލN#âd—2…[°•Ž©¹UgNʪþÜ£¤»ƒcÑFZƒV¸À&ûÉþàC½ÄÓ·x¾·­ûŸî#ÀñG¤öÓî*Ê‚ÐÕw=Jé©âï]?R¦âí:Ëæ‰tž8\AEaö@ý w„X@6„ÔÅüŽM«IŒ“&SžAOßÓr°ÛRÜzfþ'*¦9ÎÇ4ÇFüQ’®€Õ·¥sF}Ûa0)&Øm77»¡+ÃÓ —^K>|j|z`Ž}s©=óÎÙ¿Wh³}žÎý½r³5_O‹É9 G·›—-Ê_‡™üõ"7–üÅž=ô& ļÆÎ!7¼ÌÍÙ¥ÜP²|ø±Y~… ß($)ü’Îï—:‹²u§dë;ç¯lIá×Üüõ@’BÉ_OxÛ\©¤Ð(&)ü=7g?6I¡dù'ÌòK2¼¥Ýƒ¸‹vümàñþ M§3蟿š›ý}}ò^TXg“K"6#kŒ¤\ˆÁ5?qÍúLêa{z‹¿Á'ô K¶”bÝé,Þ´µ©œÏB&,Ô§<.‡…9;•_mfM¼Ø+ñ¤Ù0Ç+ó¤E9=i9Äóú¬¹‡L'S(O¦­•×>¾SWÕøÈÍ/öNÐÉçJÓÃ0Š»Ò:kÍî¤g¹uò9ÑR…#’#‡-…бš[šÎÍED‹ŽG´hç5B¤ÑÓêf2ÚR|z&g£ÅOú¬cr, ¤.¡…gù`fS·Ïåq¥¥3]’ äi äFíõ¹1ôØü-ºsÞ9û÷ m¹Ïso¹½’ÉÙÓdò„ç}r(WŸ,‡C-ËK.3_O‘Ën+bÞ cçq¨-/=”,¯’åh'o’~É-/dY]?qÂÖiu3J¶V¯»æ²nµÜòBÉeðzŠ\öƒÈ bòÂß——J–‡WÉò÷¸“t«šÄý™Æß…]k»w­™É‰EüFYöõT.I[ɶR¬;‹xúVjw¤kí´˜k-×jZœ»SyÖq­YŸý}MjJ)2&ˆCy¶”: 7Óa€$Ù¸™J§Ü tÑ*ÝW|–Gø¼Ê"õ÷2 ©þx>¸üKä8Éíx:\ c£¿J/ÄõùS Óžñ6ìÂËÏ€øz9Mg}=»üà2©)/‹3ªqŠ’v¯1³½’\™ØüÏàVq©¨øÑ3ž)´ÑËÀºI×B'QpØx>ÃÂ!¨hÂþGÅ£¦þWõÀxÔ°ÏŸÞQ _nï'u÷Í‚™ÕdC„ùðí³St©‘ºÅÝB~„4!Ëù™Ý2«óI±k*.ùh r‘öhwˆdSWÀj ãàáœñ¸®ðStét.ËéeDnÆ€€ 7á‘%n« L¨I|5¿ŒÙ|*A©5D îš³Lò-Q¹ÿ¥?¨Âº½‹¸É©æÉ˜›š;1Õ¼- ÀéBB²V+Å=¨UÅœsñ½,¶ ¿Ã¶ì©9K¹â×Ç]ûG_QØH•„r„UÕ¦ížÉZÇP4Ãd½¤B+ঋOù˲¶²*û~œp¾sp’Ç_Y7\°–*ùB¡b,®‰ÿ˜åÔù¿S…#)£gû Ïi~à2,møáHÌå±O.Ô'ûÈ?ÛM*Éì]ÈËÏUE:ÒêSˆ]®‰R&žKvµ»º·Yë9•ÀVU_“i,ÆHmÈSË—¿WH;’«ý‰Öa­³uBZ¿Š§ƒ TY"ä>¾$L„Ñ´éÆÔ&¨Â¿X÷M³fÉ·2YRlù­*¶¬"«ÜEz”57Œ¥ÏG€æ Ùóh@@[UZþÀÏýG„#¡C«AœÖ ÈÍŠª†(Ž“dßïEÇÇ5r‰˜ÀÔå´cÑPÐXpå`pŸ•S1+ˆx%j[ë'O9l@œÂbÆêU•[U»”¹Ïäe ôîêšóS úMbÏñ%Õ,dUR?üŸFauÉ‹FMuýÆ0[ˆRÏp S½!‹;è¯ nz¶ t ÎøN°»‘êDèù#ˆaì³k”Þ†ŸÆ¼³Ÿo¼ÛD«ë;§ìnèæ>]СMñî{Fëë×Áùyñf€¾íßz;ǘ@”ã}ä¦\Ñ ^‘¨eiƒ‰V0”hUqöJ²ùº†Y¸w‚N[DgÞ¾döÕ»µ3%âržÛ-¸ˆ!,ÄË2„^æ;c#{Ù¹ýò/+rÆf À+9ZýDà»r¶5Õ€•ôS:†R•ÁÞË-ùÔÙ’å‚]¢ùöð¹íœTènÖ'úÆýVÊWÇ^ñ—Ýçôc6Œœþ;å÷6¿úÁ Þ?§ê!,—*¼ڈdÅܳ²kÍJŠ~Âòª(Ì«¥¸,íH\9gJ(4w!C§2<Ê%R”¸Ðˆoþ}ÐGòüÏ¥rÙQÂ/Fè<62#¸×eê¬Ê³ãiÁ§t,´TòMOPû`d[þkkR¡È»uëë*ï½!]޲u*·,ï¨<*‘ñ”7›ÌÕ)° ¡Ýr\àô1—\'ÇtÚþ!dÚµ`ïG›/Io~I Ÿ™Ä‰ÝjÁrÒžÆ,Ù7;¨@ Î#øGHÓr n4œµrÎð(òÊŠÅNÕ½ý×Uͤïn+9­ 4±ò 0z´¢Ów¾‚’{käµiçWݲÿÐowqòç[˜²hš¹:›Q.3WžC¾“fŠ|Ê{>êÚ6ޕȶê,Op3M»y)äÞöpt#¿jášm*/|.w–:—åTå0 ZwZîBñåøŠ‹€+  ³¡åmrQ>“™<>à 6?ŒmÎÍc3Ï-ÚÁÒB'ïZ:ðp€ak=/k›ÓÜ%îÍRpìIî+³Ù1†EÑw”t,<8¥ÉîI™ì¤‡OÓx5›ò#4äIþ„R~¨ÿr1·ÕbNá5µ/a\™vµ*Ä#3¦˜DÅT Ÿ¡­ß!©{‡1oÝ-‹?;ª°Í¥F€¤µ“FïHã‹B–X>“™LØJJSìÝšbwJSìÚbwÞˆÝew¦*åâe¥Šôã«H«æƒR5rT£…lï9ÕžBã)",ºàú:+àøŽRPÖºòŒí8‚tA:[ ç)(*÷„þÓ(("º|qͤ‘o ïÊ …œP¹U’L/TV3‹;©zþì/VRµ`m$§‘tÇ•îu:õy­Ø2Á䬸ۊ-ë¹b)Î+»?èêÉå±b‰J˜Ç7Å2O,Ýkc=/Ý9Ã2ü-,ÅåÂr{]XNm‚e+lys;Ëw°Õil y„ù‚¥ h,[áÐTê#I‰¨f«Õ>d¿rÄU³·—[ü¾{þ)mòæ+h“¾vìéæ«¼³Ì˜’|ðööËà„”2¶¹_ð|ºæþ”A»[gäù;žÂl7ƒ­*J9SãÁbÇ®³qÜ—£a1š­ØÑEtë3©¾ÐB†Òº ,å´P-¶àü­Òtç‹ñ¡ü®'5A´äo$ .êSB^¸SÛA(;e¡½m1mEF‡;wAþˆ.(ã$w]Pa)?Óy;wI†ÖÇž¹ ™Ò~îþRºßž”’šÒ‰Òý¶"r>.…­t¿©ÛK÷[é~[û-Ÿö”W„Ï ä¬°U(B‹•O`KmœÂw™3‡%­<óz·þÏ`:K^qïq¸?óÒÎíÿì­¥Xplì¤Yˆlì²[Š9G—p.å,ì¶[Â?—Ç£–íº+³[JoÚ£ô¦•Ù-דæOe,ç¥t‚áÈsä 3–†‘ÁîÐõõù5?†Û+ÿRdlw×½9»E'`OYË[µ«ÐÆü Ž«û‘?{ùP?£3ʽ¯tÈ<)='¥¥C¦893ÕÆBàk,[aLÅ_cy ØØj5Eæbó÷í±ëCùÖût-ŒQƧ+( éú)4+æ#Ê gƇ—h%ÊÆ8‰~Jben¢\Sû@~¢"*ƒí)ZJMp¯ zŠ2qÑ+ÀEû%Ý¿ÔÈÂEë<2\4¬=ƒÛ2ùJŒ4xý$iK©Z?Šk)¥‹«\%ìZqصBœ§K’âóÊÔN1ÈJصÇà‚ZS¨]󼞦Q‚®ù_K9Nïtí¾S;2œ âËídð®52¶Qà ’±Á®'ãþFf™çMšÌåÞ\ú9J¡{QqR%K1R»¢L´ý „›KyùÜ7‹È ÷7·œóÍŸáóÄo¾ ŸÇå| w!m±a” Løwy»RÂÕ•^ÃǦ"—^ÃÐ¥×0' •^ÃÒkøØ¼†Kke%ˆñzh…©±¯§b÷÷ÜNÛAìîÜ«»ˆÝãöè–€vw hW¦"=6ýæÇI²)Ý>šýðî¿#Ï÷zœž»#ïÇöÕ=FŒ<ñ¸éÂ×H •÷¤ òJGš5¦§àHso.ýQ¥¾öóú£Òõ´dí• }Zß»‚V‚öîP‡X Úç}=¸öS‚ö¯Çï+Aûî´ÏùÒ#wX­}Rcèä]×ú }hõmp¢õgœ1@6æDºà¢Âh<Ókæ¼tã«9—¨Áƒ•ðòßW.Uƒ¤Á™ï*†OÀ€VÇ=‡±<ƒÝoÃçnÖqkž²¦š–g¯t6#wKÉq¢©)ÕÚ¼—×.™jŽ´v”p+ž­F>†Ý­­ë€®wOáÿ$'M»MäS^Ó£s·¢½ScÊøgß¹ûçVFl‚ êõ¼/ïω¨áloêø{¨[@¡‡0|¯º‘iå.|&yœž9\õœwÖ-y`c5¹Çn† öû, J,%Dd "ºÓªEŽNìi8o>ÏžÀ‡m¬w»"ÑQÙjW Ê9oö² ˜DîuQ¥Ò>{MéÄ÷ lKSÅkgU‘h+™Kìö̘µÃnM®»OQ×ÝÆå­QèòíÐö*Ÿtæ{ÒßVìcFCj\ï>«ÂjÑáIM.üZ#Ú¯i_"G†x2S\KÝ!þ-%¤‚¨+ífòŸ®ÆQ@×ðk{°_óé\HÕð+ÅÂï„z¡¥ë¼Sœ¾Û<Ö™Mߤî{b3b+WU˜Ö{Ÿ°ÆOµå´º9s•vó{RìsÊnƈÎoFS sŒ¿Nk ЉÓkø¯NZpn«²ëÁ„+ûRäç0yüטµM½U×I;^¿ZÿK0ì_ ccV„+à †v=ìbd ˜U"7È·“V? Zú?äù³|~·¯‰·¯½qœGyMl ¿©8§Üôö }œîÆ+bßÍiÙUùFý‹ñÎ7a…ˆü<°"; 0v?¤ñïv2{¶ßðèß^·Žß˜Ä\{’£eÛ&%ÏD›V¥vnyY·-u6ù™sŽ7vR&^Ú—:ËۗتLLÌkebºN©Äæôÿ,SSpœ—kBš<¾¯ÞhNE±ÃE|þ8tSyqXܧi°àôø TB³).x˜^ˆL™A¥ÔhË}Šä-ɹ<™âC0z©ˆÑ•Ý7ðúAc£2½a8Ì0 ]Q駇ùNÊa~ú›a˜ÅN1„D_FÎhœ+£ÇOF•éÒá›ßLÒ6¯åÒn‚åÌn@"fÝàdAÚ ¦ß¤vŒÃRì„\lÙ9{ïN£á$š äD6Ñ7ÜÎjÛ¹§¡:›1KeÓ;}¤-Ø}ßӵΠRoMŸ….OL(3ʃŽè»?[Îf¢6óü’¸‰NÿœÿÙ²÷JŽ}?øÆßÖ+'![üÇÌÁ^^w—+º˜è_áf2eüœTènʇe€Ž™±¾Üûã.¶%xÅ¿;’þXJT[FH[¦Är©BÌ« I~Ì=+»Ö¬¤èG,¯ŠÄ¼Z’Ë×…Û–Šj[xµ[1TRj±}8í"4×ü7’ê•N8ˆª¸Vt¤kEÒç'õ)X¹—¥-y“Íó+6¡Ø(_`ÔB«%ß’H‹ò*:¤ë‡Só­(¥ìä ’ )EŒŽ‹Ï;Q*ì3œQcä&ŸAþS7ÕCÉcd§€~ÂèrÚð¯;ëüñg„äYjû‡lw›µ`ÿ§äâü[³ üÝiEmµ`5È—˜ïÉ2áíà;å™h3Ÿ5¿L±ÙúZ.(¨·x˜–«’/­àÖs·œGZ驜ðÆ#£“Vtzà´ðÛ¶–LRÉ<øC¿ÝÅ©Ÿûá|‰ û›?¾NÜ¿è)¿8†Ó£>ÙóÑøî,œG*2Æ+⮌Dîmx@}²£–—9’“ðCË9†óG"gÖ7l~)f|4úí¦ýzkçŽmÀ|Jû_iÿ»‹¡–ö¿Òþg¾V`ÿ;M²<ûK›þB‘Kÿ4ŸKŸ±”ßÒÆG¯Giã;õå³?bß ½{t*A¨÷z&9¯m~›á¢6ÛŸÑ~˜Jg/SÉìC)È¿4î(^eä!öX´¹@6kÐðLJ™/—õ Øk½É¬‹Øk‹æ´þÔæÚ%ìµÏK{m¨÷wk¯}þðöÚ0¢Ð©<9ŒÙSVu~nEgÕ³[*8¶‚³½ý'S^rœéaqøâ{A†·¼G!У"LßQznk{º—#'ž¥eX+çñk÷ÿ“h…s‘ÏéTçüÅ}N™)ŽK¸œzþ42fäUgTŒxž;þ¼(Q œC $ÄÂ1謸Š­¢DÈe÷')‘Õ'–”Îãkb™Þ"–³D Ëðq°Âuà­ä’üY¶ðÏ–7…³ÂØ¡Ëjl`—FøsÕ€ek…´å´iV@ÈO³Ü‘Ò,~ÁîŸV¢p°…¶jDÐK<¬°¢qÔl5V@/aªsÌÛc,ο2MäNóâ/?‘iÞ¶Äå2>vW“á½4\ÏVÆs°^¶`Ë%b·ÙŠÂ·Ùâ üù ÿþ†Žƒ¶ÿüX²9§g1Xþ%Íï†Ù]‘{ì¨ø«fó™;Ù“bÍ:Ly¤ÕDW÷  æ‹ÀZßåméÏtøsÉ6 JÎË) ú +PÀÙ{B¯eÌäli‰ô‰pÎk5/´‚sZÎÙ‚Àôûù"¥š2WQDûEÖÿCË’=-Ï .új…F÷Ú<%ƒSàj™°ÿ¾H·ÿÞ‡ý7=ÁÎdÈ6Ãnz?†àb•€w6 ™‚ýNá|–'NŸ k¶^7pr³¼6gßÐ+pË&úʆŸÏd}ƒ™Àó×[î,;¤p/W9 ÇoÓ§•¾cJS?¶]¹bÃA»þ^‰]ÿtS>R‹›[­]ÿ´í›¯ mß[Žy56dÆ”XP <¬â¢*[ÈmðÓÔtNö!ÏÈ2Ó®¢Ü–dÂxªPÑá„«î˃±p1èût'嫾É' Þ%ü ·v7´kY·Ñ*+p{/]½ª_¬ŠšéËXª t{‘…‹|p×.¨…ÒQ˜¿ ñ"Ñ‹b´Ók•þªÓÈ_•OT“󖿝 ‹ûÁBÒíP²Î]ÒÅÅÂõ9IsÙ5¥AÝýåé¹ê| ¿íFº?m5¥¥Wn•4}\š[é•S·—^¹Ò+·Z¯ÜRú‘”¸æö;Õˆ+‘—pÞ;ZÇikC=I¨? ¦ˆGÔ.ýPÀºµ2‡hzôˆ¾Ì Ζbïy`—it{ ´™bÞÒÅ}¥ž„(õÊö ðãqÁ.ádËö敉3wç`[QâÌOì`+g¯sÍ›ÍY6MéÑçrÝ„a5ØÝºÂq„•n°ä•Û ¶ôнSMo1Xö”5½vˆƒ´6Š.º'æÄ* «Æî8ªtKý¨iT¥o&ЉÒ7³ M3•Ç"Hl,[kLcc«ÕOuÏJð‰^ÇÉ-ݧ—gA 2ö¨¼î¾Íà%”œõ*¡äò ª„’s_«ÕŠ~€¹”N® ~ìÆ3ÝÿeÎM7¾šsÙüL Ï!~åò1H ícvÓŒ§`B«óžCXž½î·áó6ë˜5OWSíʳuWø®QÉ`HçµÏ(ù‘{+I5"YJ¸ÏN“Ã!Úº8¯âé`"¼‹¤¥¤{aù´ðàÝúAD4æ*`ÌÜú•`C‡E´ÐaQø˜ð¸ šgê|”pmBa¯3gÔn†|ÒÉ”f XîX€]x¸.>ñ/V0­©z¢u§Šê™2èßs¢Ð]½´»}Áµ8º`¦Ü¼BNJÉ{ϳ1p*‹Þn£HÓ}ìÞµ¼@ÔÒ*×rê d/e} ¼¢ÛÒs-‚¤þ‘'&ïÞùß½=3§fí°[“ëÄîSÔuã<40eÿåÛ¡ý\>éÌ÷¤=ÏŽ$ïõ=Š®wŸUaµèð¤&~­í×´/‘Cܘ©… ®%_VÃùCþ-%¤†¨+ífò<®ÖQ@ß05 !9ua?]HÝð+ÅR‚„Š¡¥âß¼Sœ¾Ï<Ö™Mßžî{b3â†5IrÅÓzïæ gýa—¢°ºüœ¹Š»ùúHÔ8]Ùô’ŸÏœÖ|æFñe<ö'ßÕ °®[½½víà¸V—Ë8éÿµu;µ·'µfëmtÚ±N$Ý~»Á[à¤{»&A›èâ*ÞÌÉÙŠ: '?ä×5±‡œµè ¶-6Uõ dÀ4½×˜s1 _ÿ°?í“Z¯ÓÎߺøni´‚>-M#‹'»ñl>±ñílpÃw—Ä]*=ãõd‰RÓÀ—\jœÿÑý ~ꜜv“ç€o+ãk0žôÎöõåðßÿõ4_Ã>'Ê_[»µg½îÞ³ÿ|Ч_¾Õ®WúŒmþzùü9¾ÿòò%¾oïÐçíí绿lïþW¿¶©?ß~±ó_ÛõçÏŸïüÛ^i/¯ùtÆÏö_7ýÉ´3ž†®ã—]¯–,âE Ü;mvOOZѱöy…½iìñ£å¤Ûˆz¨èDÝw½ä¨i¼Á?ø¿­£ÖYʲ=8>=Øç'?øÖ7ñÎáÿÓÝ;Œøoø2æ?¿éFq²™2[[¬Ýà'îv5|áJÞd ‡~Ì*üÔ Œ3÷:¿LVƒ/5XÄ'ñhÄ©8®&ßíñ3Œ &£AŸ5ãÉ_ñ0þŽ¢DÔxËÚ³«ZM4¿Ä7 QrÖV»C­ÆzüäüÔ˜|šßÄ£Ù”'6‰½w.§éA×!ŽFjy\F'oõ+é˜Ä'Â#%‘ŒbvĽû‡§Íö;êìµz­Ã61 ³êcÒÙÆdÒÿîë«ïù|ž+lCm·žÇÀ â%|²Åû›ä+ñž¹Ã'Ø;ìµÎ7ê/Õ5 ‘[l¼©ZàÇf…h’þõΆ¢<1!üy4ŸÜާ1üùš^ô=-6ŸÆS6û³ö)»îƒð8øÊ­`XI-øût<œËïûøË0þ M¿Ogñ p—™bÎ0ñ¿çØÂTô¤Á{uΣ&¦ï|ýObpTM97²hëâûVÄnú³Éà²ç9þÛd}~ýÊù.à’˜ÔÁd2ž°‹ñ|t5tE£ƒp?ôpt…ÎOáÜäÀ&ûÃ)šWo'ã/ƒ«øJ4¸O/'ƒ[rž(J%Ô:ù ÁIÃáø+È…|À·Slî–„ÿøê]W¯¡VðÚ—&1?²¥@I¦[UÆ'('Ù`8¸»‘ Ž)û*‘Óq]AÃÑÚ+Æ@ݨt×7ø×Þ:^³1}©ˆ/Ö7€îòº¦§¡ÞPÅih}cãDk¨«7´çoh/Ôл ýñ9æã@–xÂ’±³¯ƒáÒ«4]qmê6N&^´!IÌùîÕ ÿä“€'8÷qÎç 0¢hAGì¼øî!/1¦öS“UxËH¨¸%—†ar‘3ÙöÖÖßíüÑÏÀ6bIn=Ùkàâ$mürÀ¬Ò¿÷¢5^)ùH¦É6ø—G|‰¶ù§2ÃŽVé®R`ò›ùŒ¢ÇT!x~š3ÆWø3'ƒ¾¡”ÊKl§Ø÷Û[ã:Aƒ]¤Át|³ÓÊ :XÍÅêé¤3º1þÆG;ü®´^$­zqBŠGNPRž¢c”NÖ×lPc‡À]_Ó˜èJ´ãtD½ÜæDY¹øÆÉ¦7${ÉhŽG¥Åd54's1‰/|ƒá)¯tZàò›¼À7ýËÏpÌßÂpÎËiCˆ6ëpŽ÷»¤ÿÚçgûè1¸F ¾;Á¢ù4Ža…$#âûãа<×L |ié{iÍÙ|+¼à¹ˆùÌŠIz^Ã=0ÙìÕ.=ö¯Dãs˜&—Ðrqpr‹6_ð‰'3 ïØ$¾æ‡Ã9ëöv8 NÜÀ^-'Bì™r³7™‡Õ^rqƺàê§Ú•øEN±\ ÐûÁLôí%2¥¹ˆ¾ö审Mþ9t—OÜ E?A§U²Ü8Œ=€ïj‡è®‡ö6«“€/¾ÊÆtVóCúÓ Mb:.bÞ÷Øì­‡’ˆŒc~ÿ*ƒ§êz"ÖmÔuÛPï–såõ€?û«»O;kI_ÉÞJ[ô\Ì*Ê£Ùä;í `eϪªu£…éçñ|¬¨7dœbðäÙš~ùk^ææ¡zlã >AXš³þ`ØŒ†ä‹sÊ»ðD ÆyÝþÌYå"ŽG¾»ÞãNe‹Ÿø‚À3¨‹ÝÜóvB¨.j S`Éø fË!Ê 'z'åáz9¾kMÐ%DŃ`Ƙt³mÕ¾þ§=E.\¸'PãBÏ^õÊG%Ÿâ·•ˆŸ<“þh Róºuý ^Ò‘¼¥rºxO\üN»xo<úsþ Ïí6¸17Êá ½Eo(Ÿ@¶´]å']\«Š âJRz Ú±¼fÛ‚Ö(cy8Y¡?ôM¹m<<¹ê’ïÒ7#cÐwÎ" èƒÐ_}ÐúÔ0òŒnĉ&Õ¯ÊwR¾Á¡v\…*2æ!YóðXSÝ綌ެa_äÊÖ[Ñ9˜äoæS=?•`‘[ûÑwâ>ZÓz+ryóÍö3¾îÕ‰úÒÕŵ7p$è­`?à¨ÒE:­çBŽä½ú¦N3ü[ôIÐÕµQ\£&±Ðk0HÛ1WŒz@—ÖÍ+¥\pox¯ÜSWÂ2¢÷ʦ¯Íä1ÈzÉÁ©Ã¸;j‚ñúd'¨QKœÝnúß*uÎ4’ëÞè\tÎËxo,Î38KrΡ÷Rë}q8ãìÉCQoCœMSípšrÑ›$jLáI~z»~;ŠöíS˜P%;qåÊÿI÷MM;É>°÷kêsð¬7x_-,“í Ç&Ñץŷ=!Eûü”H†ïÙ€”•ÝåƒGÒe/¥Ye“l|•˜0DŠ—¹oØÇ£§9m‘½YÁ"{SM¹Ë %ï2“ö:we//luñv;ø2†”Á+<™ŠÌwyýÆ5²¯l` Å D F\í¹ä§ç§Ø@šAanB å`=Ç2Ò†œ“+W4ä%ÖÑC÷9mË¢Ýлÿ‘?MÅU8˜ø«1ßf}2h4¶n©ô‡_ûßy£“y¬õšŽŒð0îr®1ZY¢‹„´Tã%Î^ûxŒï¡8—ý˜ñt–<Ç÷iBÛsžƒB@s,–™)ò<Ô÷”I|;ì_ÒŠ ‰ÉÕJ¡s7Cûk)}ãñK ¾’—¯ïCÖÎw‚¶ž¯$«©ƒ¬ ýDGÎ@sBs­êèâ#û9ʼn+Rý–Ȉ‰er Œc@®ýKP÷¸êÍACƒ^ 9»þ]Á'¦ÄR5Þ¸ù™ÅC2(ñÙ%™«ªdMý‹‰Ù[íÄvÍž›½"s#¾Õ²ñNN—7µ—>9{KLÎÞ’“³žœ½Ðä4ÉÉ«6« Kfª oZz¬< š5ûfК Úô¯òžZ:ÜoÖÕšýÏTÖ4¦ÅFL7„ÞŠr;ÛVöCó{æ#Œ ö8=Ào¡$Á¦6‹J‚͵äÊçr‚sNí¹;µœû„™|F™˜Ìí¹VBi¹5¤ã±×²ªÀF1F?͉›ÒXºRƒBŒOцmªe§1$Ñ•ȆkÏ媬…fÓçåC´õòªbó°ÇyZrÙ½ý:{Ø{²ý$å¶Ð<1éNSmö¹ÐÀPòÛ:íxÔ5ÃãÛ,¯‰Ýö'³Á%y±²λëÕ@oÀ*#ãB9§@ôÐRµZƒ‘¦ÚøÌŽ‚²´Lõ…Rʯ¾B"árù‡2ºAƒ±ó‚öŠÔ'šÓÝ1x â! Ö®ê­œWþ\g ÉŸ[\«´íÚkÙæøüœŸtO¤å¥huÏåx2‰§·@/pTñQ"ÀãÏu‹öý‘6ò`&c û4ÌæWŠç0‡sjè/ò¬ãó_ÁqmQÿÖ91 AZ íÆôFD»zcÐVÍâüzñ&ñpпà2Hß`†™~%Œ@Ä-¡†ß8¼#ö ê}6ÚI,p^Ø‹ ©‹Ó+íUq:¿G|° ‚À˜ÈWh9ò`“Ö™Io…øJ0Sb£žÞô‡C ¦j“ÔqNTsóû®Ë) ØýštÜôÿâ:¶ ,jÕ¹}aÌ2ÐA…lfp;‘ptÅ½É­Ï “ÚIÆ¡ì¾]/jjÔÚ.IÊõ'®_Ì>»¶k.áLn*õgø~ºNNá¿ñ]›õ/pô±¤×ßðZk/𣠻§ìg:J|V»h]óîOgý ¾Ï 1Hp°$¾¯è‡çºÒïMsù¹¸Éy–¶O b7qIÒŸ™»Ìy5Ù^uM+Á\G¾ ÷ÕK+s>’+ébŽèº?Š`†íßa§þýuäh Í©œÈk#x„öqJã‘ \7º»¿×Wµç´çÙ+pô¢Êq=:–œßñ‚’Ù¶´ °Ç+…äsÿ Õ¾F?ñ|éçFWÿaµ2;˜Ånâ‘\|ÅDl‰NÀ;b÷4éþ¹ïiF¼ÐÄAáo3Ñ‚®z¼J°$Že:vc×ô¸…`ÄK phàÓµDœÐãE<îc_QoG\¶U‚áxD!Ë»“D®à¢±ŠÄ Ôä˜`3ù&Šù©Ã›‚þTm¶5)"¤rw_öçÓp33 ÂxAMZ䪩Œy¡ø¨´ž8¡*ì’Ó‘OÖ D+p|>¡ð"Wp4^ÈûhÁÀYùŠó>Q@,Ì׫xé‘¿GýIÿ†³÷D‹£õÉbÔat .9jt#,¸‚CÖ¶÷7·ñj€ÀOF¬ª|v·,Š=Öß>|ÛÚk´uÊì¶¹bRí¤Õ®²è‚£CPhøQwøÿEÜî‰XŽ»2]Ô#Œ‘ÙØþû0Æ9¤~Bî‡Ì–áýÚƒ³ »‡¿ò·VZf ï']~tö¶û‡L(ñPæàŸÐMßÌG—Ćiäi÷ød„»¾ßntöÞU!g?z{@ï']qýÁ9'Ud´‡ÍUC·¥ô¶7¿‘iZ=8?è6Û*8O8§ã;’Ÿ¿wßôªÂ©"ÞÓà‚ …»vüöÀÓµÖˆoH|Ï»ôQ’óB·õZ{Iƒ8|½£Œ/ç3´{3¾žUð¹Ê¦ ñ‘˜ðïœ25´w•ûÜì\p\@ü\!òô6 ¹I< 3™©M;UM³_%_ÒªáßÖÞ4Ú½ƒZò -7çLŠtoi`8X§¾X?4×ô¬,õ 몽|·‹Ä­×‚K+l­×¿æ;î`4¸™ß—Š<¸×¸!=“‹N ÉL¿:=e´šÞªÍQ›å7"ÓWRóÉð¢½ö…9±o`dF¦™•O(ĤºFnýqÈ në’)NÖTÚ1þl¯ër¤³“Ò(º°cw!‚d¹íàõ»Îõ\ÅK¿å¹}K{¿w`© ®D)Ý{é¹÷MÞ›unvg)…ŒÉøÈ£‚‹}üCݨo{WtH<À¾“1:` ¾ YÚþ©¡gp?ì²ú6{GqÕW‘-ò+âü‚œ—÷ «º@*Ë#O»–?†^|S?iE§F82x@­}PCQÁ3@@&`•ÆŠo}|%ºˆ'¬ÖGLòä‹_ºnæÇj 6šÈ?âb ßÂþ Ý•‚…i¨Çþî/8¹;Å&w¯Àäê×î¬vrw˜\’¶V<¹ªÑE&7u>icjfíKažû ÓÞ?/ØÐËü£±òäÍ„iû1˜M?u)·l­Ê¶ìŒ|‘ƒ|‚!©h$¦ÙŠ A–S+‡ÊLÎГÿ%^Ž–y ”×)¥q)Ä“„Oª€'œkLµ‰qàí’Ñ!–@gqaµ@ŸÂò/Éu&“/)—±¥E3?k±zè,OüÜÊk XBØñ!.„G¾>OöÂ$µT¿`w›µ›%5+  ¾ÇŒz~°µØú†ú .ßÝN®Õ·Áçá½Ñ$†\Í‚Âö x_†GÀ}î¾Þ÷=Oß_øúørÛÓkÏZ jžu2ØúV§œŸ‡kUkEÈlmCk‹š«‡j™IÝž2TAÚɶ…&A½KjÛÓ s•ëc̰ººNeuôGm]Åßk„Õ§–Ìpü£ÎéÕ”âSYv€’¬é_E ÿ¦!°Uܳû[Êá­úá•>¡Iï4lwØéHõSn{Ô!ö,¸ÉQC©‡SiØ„†á¹EZK Ê8¦ì¶­ÝKŸþ‘/ JøûÅå"hžg㫨ïõ5m'qn­™ý¦ ñ³œ2aY§ÁY g/<óîüäá$˸â·Ï\ð3æ;eÎr$kšëOn7œy4º%æ@á ‚=XÝp<Úö=Û"âX˜H â€Ú{ûÂÚ%Š…Õ¿Ói,¬Ì Íÿ?{ÞÕF’½ £çïß§ÈÕ÷¬e!$ O­Ógp±Éï¿ £ß~>¯Á°úзQIµ˜*Ûa ½wÍ=]<˜Ô©e¥â3™DYÕpUB2aƒ3®¦ÚbÂ|ŽgF øuàÔͺf¨$ÍY¸¥TÔƒÛé`8Y^JY\´U~©àj›Â<õ~uÌS^þ§@¥ó?=Ùyúô ó?U«;;»ÛÈÿôd·²æzˆ«‘Ãÿ´:¨\ Pâ/%^qÚÿ‚ÿª·÷¡&ò·‘åVù"¢ˆ :q… äO}KÉÆZàrÒN?Š 2ÚãáÚ…Œ„:ìßÀоßÜÄÃüìöGÑ›þp8øÐ•¢?ÇÿGoW}2 ôŒûS(¸3ˆ¯¾ád‘Fkµ•Z#ßêY¸á¦9R"æ“éøzö…(€`Ò鈣6ÛGÌ¥×)7IW°N¢#[ÇÍÆ^£¶DÛwÒù)¼í +b2DI!Â/9¬.%òó²­–LC¤,êÀ\õjèì–”2 ŒPŒÕµ^>ÎÌG¬gQêÉúÌM¬Ý·^Dôzõo¸ öñV©‚0„yÙ¬ý«ÙhwÞÿ«Ñë¼úWƒ€ñÓ˜\»x¶QÒt^ €&Š»§ð Œ øñòésŒ¾ 9 l OÒ+;A0LWwÐhÊ‚aŒwCƒÑuÆáÏâW¿È"ñ‹?²]`<³=ƒK ~WÁ õ/(²Y8jˆÃ”M 0#<Ŧ¾Á>ÿ8þbq3ªå™§}سƒP8.šM:o‘c3ðB‰,ÙDËßöA_Å.’bÈ6%s‹¶z¼‰¸›\ÆÎÈæ…ž$Ì[F‹ J†(â*ÈWÁ{8åájù— ;\Óa~šÃe9WJp˜Ånå!8\Ûp.bÃü¬†™”†=‹Ò0Êb5ì-Châ2Œ²è ÍRa2ÌOb­€Çpi Ã¥Ù —&.\³pqºÂ\L…¹H çä'Œ²( sð!„Ù £.ÉM¸8-᲌„Ë‘.ÉC¸>¿lÖ´%‰WWÇÅéíÅ*…i0Ê"Ì3\Rx£%©—f\ž¹nynÁ0­àÒŒ‚Ë7o±ñ}*™1½Ìømàrœ+% tØWKèã \%I`n†ÀUúy£UQö–d\žp9.À¥hf” ÉåùR²o–|¯’X –¤¯vÔN_zµ›÷f#—MÏ£é‘(ú¡BJòù>®ŒjhRæS#w˜=bîâ<@g‰C¦äxP™t =¼O®Ñ¨&•ü,þØ‚™ÃÌàênBç7Æ–×ll¹ŽÔ©Z_Κìãjá¨ý J+\ˆª¬5ÒµÍgLªX /*èx¾ 6 Õ A«’ mW6Ζ$y\¿ãrÔŽK±:.Lè(‡Ê^ÚXÛË1ÖöRÆÚÞz¬ýcmÄ‹rvZt¹™:WAÒéPt.ÃΙÁÍeÑsæØ;…™9£eÉ95^ÎL&N›~S:Îó“p:Ì›vïgòoH7ÕÉ Þ ðmÚÉSX7Ó©6£,¶Í½&ÚŒòsmv’£Uá~³V%#¥ÉžhzoµÚî§8΢甜œÎiˆ‡™s&Ê6ˆ9Cð(''î| ÀÒ'ˈ—¯Ji(éÍ¡8iòò… Œð+QSªvr6M-~O*¬„³ÝÞÆÈ„è­d‡+A\Z‡r¸Ô<ªG¤miþ×™ õÑËI‰z‚Ùæ` T®jâ Dzoæa Ñ\PsZ¬€jTåàLB0œ\…>2UZN@‘ŘÚ3¾>‘}A^æüáÚKô?LÁ£JYMŠêBÂä"rÍX’t/÷§6Õ$sËb¬¡:U¨È(ah K¨:ªÊæ t8t`Šo«™ÑP%2ýRªxu-IWB|<ûv ã@[!•!3œH»ql"‹õ-€¶Ñ,f¢¹»_ŒýðÊhVY5K(&/nj FèNãñÓÉ^øÜŸ JÓDt¬Cp¢\JhJ(¿’' ¦ <µO¥dúSKh‘›úh\ÀEºôõ_E˜@ D!\ø Y-˨]ðËÆ†ùz9õã8ÄTþ”=çhÀ5YÔ´ýºŠ¿&ç…¤PJ/ЀO"#VÌ!šw êâÍЊ»»eiObôÔâ;æªågÍ<[Fí®“錫†5ñƒÒ‹ ­c§ÒìKæVK»Ì¼§1ªI(ó%h¹ÅÀª ­jMÂV:¼Rç” c£ô&°aþ ¬˜G3ôßNgÿ Ãô ö=c3n4Å íÀ¥ˆ “*ýºYê0¨ 씇ŽÓuúïɬ0B?èÕ°sù± Bµ™Š«]þñZÁÔÿ¡«ià%»HÁ:}OPx  ¸ÞἪÑ&T¶]¶i§êãêùUŽNïã¯3ÞAbó?LâþŒP6ËH€WÙW¸Æ#—ïõ"æ®äsq:|HqÙ·´nA{lÉîV™Ý›/¢%Y9Í¡ [¼¶ö'”³¨4p%@1ÑDoÏèääÿHBþ±Åè3omíˆrå=Œ°ÏR3žEçÐ%Ýb­$°º]N4kÒø 3ëëÎ&§;È;„ahÏKã—üõw74Ç3ëö•du«$zËq“\£wbÇA»ŒÊ“ÇÔÐë» È ?Èd¤¥þël¢kúw2ØÁ»ˆÿrëtÀœg±X ó®ØRí+¶w}Ï¿^ë¹Ï±`[= @DðON!ÊÄ£bXÊóá·rZjwé±’ýÇu@ñpGåm ó/_~“¾@ó@z£Ø··Ä½#ï q½ð°Ó¬xŒ¤vÄN §cu-ÄL™+`;h#‰,<6âÇrY9Ëw_Ve¾¶rÖVÎw±rŒÁ»6uîÝÔ)ˆx¬¯Òèù*wjµó\!1•;+ þâZNÊc§>ªhת ›QNW~/«J†+ø8&ê'qtkƒ³gÃ+ Ò§ŠC‘ÂA«PL´ ñ5ôÔèRÚÊȺA€•‰ÜªI<7ç"Ä›ã<\4ÓiVøa³Ã,yP‡9«%mjÝ•¥}@Åþuêõ/:ÎGü Ê_ÈŒÁëÔB!³â˦àoiÃmï]£{@š°ƒšðjØÿ Öj¢- WVA›?›Å7·Ô‡ WNx>Á¥ þ}!‡§—“sÆd@@ (ÆÌHXI%ÊØ5œÆ¡ *ÈŠ›Mó’ñ³Ä=d‘ï*²\N‚=Ì»£øâ¨®yq”ˆ‹ÕÎéc:u6¯ú=I‰Í•ÈŽoj,sëÔÑ6i²ºMŠ(pðŸ\wJiTè×|·H·EiÙ¶Xàx1|?”–‘÷¦(ä’;|aÊßçm‰gήÛ쬃Ö'F–OMœ£!4 ñÀ<‚.9Ô°H:e HøK<’\µLpû¢í¼§w®Ç€¥q “ޏ©ÎŒcÆú%Û ›:²ûü²Ój(€\êÌÉÞqðæLxiB(ç–‡Ô\£Ê<Å8,UduÍØq½10ùl,ÔAt¢5ÇhKQ'Wû´Œ¸¥Âžä2CÍ4k`:; atRsçbŸU˜ÈÂvŸTpoÍññî™~ÈJ»¹ã1Å æc »ó5ÜŠdÝüYoã·¼¸k´¾x¬µþ|’ž‘& xùi)Òkú,¥¦ºPàÕçx뛟¸.ߥnKÞæ¶Ð-n¹®]û—A­ºÔÅoÿ ²êÍ}{ß©Qw®i³ncKãÍ“÷¿5kݽfU^üöÞS»_þ·¼™¥Ýbö·¼΢F;&ÞM †w“X9£¬ËÜð•/ô«'9‰WbÞ5Ú… óþìaÇŸ¢`Ęãä­01Õ¹•†À ;èNÄBh˜ÑÙ˜ýáà? ¥ŠŸè`B|dßK§\{Âhš±Mz7š †nîó\^§_ßEvz{ÝúòºU\^·¾».pw]%!Â_ß]—4ù׸»®ºêÎ]ß]ÌOywÝê.¯»‡›ëê‹_7÷Ev{…Ý|uFG1K’ ºY1×[‰É?Æ7t:´µmÝ* (õæºà4(/ Gú3¬íþÛ´Q.‹N½d&TôÞ¢E§ßùW^âÎ?©|¸k,$ôóyEC²9p %‚@{në{ðB÷à f9ÅÉüä9†ydýýoÍÞ‚{ÿœO¸Ñâ·ÂÍyå[¨ŽþÞ_ß%¶à]bïUSÄ´¾F_¨¸‘©WÀÐ/zšð]/Y7ºè¹¤ÝQÆÓ©:VÓ'ÑÈ2ÙSª>Fæhiƒ0á´c²·œ3󎛹9¿¦Ýe_åÞÿ4»¬®öú§ŒûŸ*ð«¸ÿéiewûqïÚÙ~²¾ÿé!>¬ æýO½=^ÎåæÑ{謅Éå>ý»¯`ðöeà½I¡ð}wüä¾×Gz õˉžèlá›{Òoãñù¸º"‡¥”ÿ¶­\üU»+Æ8>ä>‘39ØöPI@¦$<‚Mø¦¤Y#$“%[%qA8‹™$W3È÷á¿ÂgKî}ìšy÷„IÀ‰”°DÁosï«°lbæGÐ*‘o‹Hài&¿âHkæs<Œ*ì@»‘Ô6ÉÜ é0•Ánͦ³íÒ§÷Ñ$ÓÕ$h°è.ÊZµ€“ÃÅì4Xø/Ï-;™ ˜“`”ÕRÒ÷O~§7="hªÛÔ­lõN ŸJѧ EºÀ•N¢ ºä³‘o $£µe¯2hŠã×á¾NLmu;#èXâŠ{DtD:›¬êÓy)e#Eý¡ø1óÐbnÙåtŠ¿“½UAŒÔ€€R%ƒ¦RO+t@a¡tÚÊaåá½Ôô/QS±kùk¡ÊŠÄ4eþ¥$›zÃߦ&îÍxá|a  kŸ m>!¤}–\/$É£ ‰ «0XƒðçúíêSû ¹_ÀÊ3æYK飛 ÞÈðy<à /Y hô+™ßgȼ1KésU½?e²žKyc ã*2¥ú8:ê˜ÎˆÓÆý1Òáï~¯DÒÅúEË ê7‚—±Œ¾9½‰û´*ã¤:é–ŸoW¢gOé üù%¾ŠåM ËCd¾JÆ]ôˆ ß’fþ‡–.ûøßY¸ºqpÜ-‰ }Ö`Ì·j¾óúEÐÓRtÞ}W;žCD<„KÏÝræÅÔê ‘ý=X"oEo vr1ÁÇÁF§+.Æ<>ÆC5ÎBÈè0pœŠ&xDç D¼’$ Í$­×ö ª§Õq„ºJC,Æx_À~ÛÒšHßM­…›Û%œ†êÌh7¹ª9*ÓmÃj:z5à ùùÊ 1u¿Ï{ßY45ŽáAÃösŠFﳈ}aÐÕ44ZððbëõÁ•ä?ÆHêá&õ¼ £K?ö<:¤G‡Î£ÄUñݤí½JZ´¦¾ÿŠ~Ãsqˆ³)Дâ{:‡’ÇSzGt¿ôoq½ž:Ãã3y¢FÓ‚Fù3g訓> %%‚ˆÁgŽM¾àp@ô©‘däBpòQÞþ—£ûÝiž• ö%}³ïu§±ÿ¬ Ø¡å‰Ãzi>³>²w”xÑÂåà°¬Îż"Ea¾…GIr#B÷ªèæ ƒU´~P_”„7[ëü»Èíþøõ‘r *z^‰Øy¶Ù(‰ÖÿÒê¸b“jû"×w9ð¨H›è¾%sž´ª»y%ý’ ¿žÞ^"|Ò zzw‘† gŸ uIÿ)Ómv†7äà .ÃJ+)å¦ÏGl8Â-á†ýt¯Ö~ºŸûãñÿM®ÖÿW©lïØþ¿ÝíêÚÿ÷»–ÿ¡ðkÿßwóÿu^Íáÿk™W›¯ýKúÿvÖþ¿eý¦J®ý¿ ÿ/Ó¨{çç‹„PËe€.À’À/à\Ú¸2'àï\Äÿ·,/͸“©ÃÊ\_±Ÿ¬Õ*‰í S弃Ýùy¯Ó—kÈWùfí }®…x¾vÌ}Ç\çÕ÷wÌí+>t쎋áòŸ"y™q }LÆ#yÝ9—Ó®#øˆT‰d•´çQô¨$ŒõrÿKèß°KêHÅP•«£?(ÝM‡w#ªQÈë±Å‘Ô˜HzÚÎ<˜µAb¡U’¦ƒHûÖ%™…ö;ÛuÇׯËÄ. é» õ7Õgjú/i0r y4‘p=pÓhJ>þ»áFçvõ^æ@Ïäå Æòïó&,Á-¢ÅÛî ‰Š£Ÿ›ìˆ52dŸ/zì“.8Ü<¬—=^?T¨|ºò;áGJ f®WVߌ˜.ÙÃr%D™8ˆõ]jß¡¬¨TÄ É×¾ƒ#¢í÷ÐeÖ Ó»¾b»fíòaù°¾©À˜JéARÓ »NŠW¶Âª¢tóìÁD§ÁJá:3`3¾žá|ÑÄÝþÒãFi4Å}(þ ›r|t7­bIÛ”;R×r鎤§åc¹E£µ.j»(šÃ•ª 퀂Ûnëï–l`j÷è‚ÀÑ®9gñO%ŒL q±­Œ²%fØ€Í9Á™Äÿ½vúþäŸÿwð°þßþs·²³öÿ>懱íÿmxâ¿™B¡é2)üäž`Ñ¢‡õ³8 ó:†‰c˜ws(è˜ÂÂÕÃÎ_e梈B.¾‰©\w‹ÂžðãøŠ³…æžJ3t” Ï 5ºe½²(öd`>ü¼ˆ\®øë)_³ÄßÞ{0öý»6—pR"¿¾WüfYäMÜ^Û%»§)|t2ø0ÀÝ‹ÎzvM7ìÙÌßKœêÉdÁ±„WóŸ/tCûŠ\™îõù4½•M Ž"èóRÜÄ$/qn™ã[$Óòä";G^ ’Þ9N¡Œd&fÏ$éñ.QY´¸Ä¨×é¨Tíb»./'ƒÍ²qç„QqÞ£cBÝ :ˈ-Ó$o\‹ü_’‚dҔأßÅ|ƒU:…ÅÞz±VèÑM0‹_ÂN[Nq²>T!*LôœºÙ (‹Éúú} |M–'ýŽ'Cã`êWx‚`È ¥¤éË„]L?±ýw}55‚?Šm5˜MÕlä¿/åûº°ç‰ wQ©)­U8¿}Äó'§?ÓãïºÊ5~(‚Í›ûÒ;z{ŒTþi»övñÚ~ßñø»Wà¾o ˜«pÞÓ0Š~:çºß›ÛÞ\åÊ5ܹÜÓÏáâ;6"+äƒãçòeÒ*ÒW^‚N¶l×ðœÞý9ˆ¹p®ƒ•Z§0çêf}/åýod{ÿU}ýõYú¨ óxà]tH†3“îS}ñ-6˜HßÅK–ê\Rd ÇrŠdöúä¬ ˆó"n‚a£ò;õ .5‹ÕÒÓ©å /–ç>·Bu‚êØg[‘¤q • é\¤ÔnÄXaż¥©¡G£H{¨é⎆Z×ûiwNµå•¢©ÉWPYsƒ´ç8 2<9ËHK-5\¾Í欭çîÁ†q¦ÕA_žC­ŒÖP±¢Fzu|5yœrr"ûEoÙpKNÊøD )ÔU9ת*1‘Ž<36×9\ŠŸ—Å`eAæ5y<ñ€è%¬VâÛ”£ Æú(è§þøÎ¦Íÿ±ýÔ9ÿ©®ñÿòá±kŸÿøËà IâýSí½©uj{†+ˆZ™âíÐŽ‰°¹B|TT/pésuh:5¦CèŽœÊ 2Gš5(%ª‹=íOØqàWoäW˜B\±+cÚf Bʔڈb.öTÚÁuT”8ÏU_+ºÝÔ½/׃X#1_Øö…é•}Ô~ôB“}[Ðí‰ ëý½¯I Þï…^Þ/¿Ñ^Þþºû €,*ÙªÏÁPcsä¥Å# U¥]]Š[ñ–`#¶ ¾Q‘ú–(;x&7÷a\/÷\rÁ­ÏÎŒ³³ºÑKyONë%ìí”ÃSK¯=ñ³ïä ¾ª¯ ¯ê[œ“§¯¾÷1Î÷Ä#±¼0Ôœƒè¿Jÿßà?ìÏã xy;ƒ‘y^3ìß\\õ‹õâ׺]ÔÅ“d¨H•yM8mÜgi—MA³Ðs£KxxÛ'J^9ñn]\‡C­jæp-Bï’˜ær-ξÝ5Ô– ÞO=‰¯¼>Æ«1‚r>ÒílÒ4¿¹‰¯°³~ûÝJr,’„ŠBN¾‚0Z;nŽ<äå̾ôõôô|gè´É¨Ir ©ñnì„ ½·±ÂöUÂw•¯_šÞñ]Ñh]Œã3G7¾ÄK°¡1gtGL¶æBÝuU³›ß´R8ãbQ–õË™í¿…Y%”)Ì:yÊCÃñº}0+œ&1Ý•ŒD®P!Ê$%ñŒ` ü øÆ/ØC¶ö;>zY‘Ù!½”µæ‰+©š3·eù=Å]XR:š^Q´öošÆªëÄY5ô\„™LFNG¼à˜* S:è—Žn7Ô©óCÕŸUt®ÌMCäg :³™ˆÎŒ|ó:‡ÏJ­4Æp.K=x—"2d#ç ds±EÑ{}p¶ç÷,Ÿ!*Rnñf1±¸ÐœžäçÜЈ< :bN+t:­\Üë,ª‘÷.ºnG­½­è¬°±¤UYžûi–Ç,(yV…n£ÖŠÑ0l‘s‹0P[Q5*Tž?« ne·R®<®ÞW€Á˜ýƒW=¼ÏºñúMObáýÐý£ŸÐ¡½¿rBé•:´ç‰?q`ófV÷2ýä¼Ð|¤QCxhotÿ6Yþä÷8¿ùá±z¨í‚Ü׺iyÔçrŠSzÑz=Gjm~Wùœ~rXî1E%›£')A'&yÓ0þl’Ó{®ÜoÎÉ ”"½Á>!¿5þýÚvÅk.ìœý¶]Iºã-i‚×QÌ-ƒAé™ý>, yÏ*ê ÃÅpÛwŸ î BòJ+ûw ¦IˆîB[U{ñõÛ¨‡À_Õ‚ºÜȤ‘‡gÌ¢vG«æ¨­·µž†î¦ÅrÅpö-$@yé„1Ënåi›{¤›€.‹;Óo< 1󨼬ÞNo–c£Ù­òOI‘Î ž·QͬFU3åm¡jžf s3vlGAŽSs·¾”vhzo_EIݼmË~WÉÞ‹=æ†êhªd?Æ’)®Ì¾R/zwÛ߯ŒRnÙ=IÙ=ëÃÊGˆííp)^swþ,¯&6—ú³Uý™_Ÿ/­‰•Š#™Êv]\V,PÊòrÁª†àŸ{#l±~:oDCe}ÞxßùßðAÏÿvvªO*îùßöúüï!><¤ì󿦰dÚ6"Äsè™ZÄGþ„”QþCÀWsü§BîéPg’sïêÃPä>‰HþÅ‘›DþË“@uW¨•꺎|R˜Å`ô™‚JLÂRú …›¸¤7fWu–fcÊf:FÍ—ˆHfÜ¥‚îaè€ÿ]þß|&1ì#—ê¼ùžP/$”ðœRrÀþΤ°ñåx„ŽdÄÛ`ýú ilR?:¡47B=ã`&Ò‡Žö VÖnøqÓÿ Ò›/$ýUĤǪ?ŠF°_ÈMõVTÇ3µé,¾‡=Òá`$P[9]o@¡&ñÕÝ%T)´ØÙ;Lu3¸¹Œ9ԜꂬåýKÅŒc½²¬Å…ágùcéÞ^çø¾ÎdÇ [Jkð QP A­( €ÔÍ{ ;bô«ƒh† ñŒ:˜ˆ± éàK ĆFV¶¶}›X@Ç|#ö_VJ[[[¥¶÷h—GD>·Åc"ÿc:–ÕŽ]cÖd|¾I7³ÙC«±—W£33_¤s›ZàÜF¬61_“.QG‹c_Ç“­:úÃü±pDE^‘‚(êK‹¬ž"²ab0ä±·ç8L{§•égÝ8u⨆iA…Oï.?B=ú3œìØZaPú ‡ð6äO¼Þ!ú#úË7üEÓŽr(¸\Á#ÌïÞ6Åà ß}„Èn1é¨jücŸ¦Ë¯ú8zɳt&«9.üµ!ïÖŒ®â¯žP$ ȪŠýÅËÓ¾–‰Y)=›~‚i‘Çœ”ÅŒMGUƒNLJfWùfrü¼äªh‰ÐÀ£doáDvI! H¦]XH¿|6Æ&Èõö¦E4>maP 3µÞ)H$­fL/jè…@_¼Ø…ü ã²(Âj£ç".yÑÔ&IîjNçï«9.oæFÔ9¨5= 3ÄW ¥¡oŽ ¦V˜ü§31³?)¶7zr$g¾.Ï|õG%{2U)+F1U?ú1ÂôLÔ:û¿`ÂOèÙÁ2#ã›ZóU^^FÉʈièÏÇô'GVD¼a¸ÀÞ›ÎÁA)êî5_ÕöÒŠ£!ËQ§eTÒvÖ{Yw¥ï­äæó!ä^ =1¯šoßa îR:ø}Ûc®È=d{I»Ä਽=mÃëMø?åØlAVMʦÙ}EœˆMº=8%Ä8wð¿ãj¸GjÍã7èCªu¡¬úA~§÷¨Œ½·¯øßjJAøü1¾¥¼Ãÿ ‰¯k­dv,~RÕ¹æáŒ¸EQ÷ª­ÇÊô Yo/¥·÷Oç½**É“u“¼ï&úý·P]ã>úH^7_2¥´ /Jh¿öþøOÈ1B÷…ªÕ»PF‡ûVí5ºÕPQß¾®À@’dˆÉíó¯)D‘¯8dA»•\ùDWñõ`4°²¤ôÒ¦ «w T}õÝF´)¾Åæ$_ß2êg5-yyXTÆÍ¶»êQô¡Þ+ÊÆ®:ï"µ/x+™U²•±š•™±tV3X²ØGʤö>ʨŽ4wÍs’ª¡Ú5Óêm<­ÈÓZr¤Õ°™,¨î rL•çÛ*+Òt,¼>ï9=„ûœØE·n2§¼ ë"l¤ig5ám©#ºÙr0J®ä‚ô°H|ø5¹*U!ƒ +Boš€ùÙíÙIšcª†’‘÷[K.FJÇ:hü Ê éà u$«ERqþ€ý zRã{l–âÅæ±­G8 ºû}**g7 IX¥æÿXIžnëÈ7QÂ)ˆ¦Ÿž~eµfÅ“”Z£ÔPø©H’–Ù<2eÍ,:š±2ÏœnNÐ † ‹M½O‹éŒæH©p[A7¬œqœQŸLaÛy§Á†zdyŸp¤iG®65H›÷¤M•* ªš˜>uª:«â%‘Í|©ûR§ ‚ÊNJµBŸ"¬¯ÿ5Ô¦#W›ª~mÂÎókÓswF%­i±G–â‰;则Š?‰d$#Ò–g2WÈ3ƒ´³|$î ÄÈýJ½Vòw²)uSÖõ”uú;I©Ó ÈÖÉ™xÈ |ê4°c4ðPkàa¨Ï| lúYI[)©›¢n¤¨›)¨Â¡Ù¡ T Gøi¿ìx6¤þ°åÐ  Ç>ÇÊóÇa@ëü6fçUö,kÉ‚¶Uì|¡–òîD5K&§× D»#°hez¼©/¯Õí–×l™æ3qdBÏ4Ø«Îþm¦“Íí”gÕbÚÓÔ§»©O›O«ÛŒ¥+É›5Ï7š“„ãéÝ.£(ý$¨„¸Ý-H¯Ô†&ïݼñáζr9;zhÎÚ &bvváœðéÕ)ð‡‡WÕÂ,zD3Ä&9!lß ¾ql+5¼š‚J5¯ç®y=½æÕìš×š×ƒ5OžG®^™—QHðOÝ“æPi›ù·ž¦ê¬¨²½g<·@ÍÙ5c¤£¹8^UáüYÄ´ïÃ÷芥ï墊?ÜÅt`*ß¡gÏ|£GVºã`ÖŸÌ _÷¥¢Àü0é_ Ð×2˜  ÷±§5äîÃc–ý·½ù…P›oY¬´V¸ß¡Æ2D|Y<ödñXe‘Qß™=x·g~£ñIh¨RjøgÓTý…=zcO{å±x¥ê#ï–R¡>ä?ÊܱÅäS,V7!7øA*D=KÊXÆ|¯­"”‡™m½‰ÝÛcݹÔè9›<¡ \‹ß„ƒV$é‰:ré{erÃA²ñ½=ã õž&|²Dxö{•UyLŠðË›N×rôurvQ§+YÛWf8 ’Ùµ@ýyÒ}L~ßLüØ‘½TêÁ{¨FO=«N “Ì^ºôJí×{:QÐ\8æO[ÎdŒ {¾À2åßDT-l¿¬ÿ´÷[\üw3¡üGY¸à~»J¾õ'P¥ç+©ÒóÀ†Ç6sxBçÌ7Šf?C¶ÿQ—9veÐZÈß•;i¡\óuåNe9¹Q£±¹‹JUWT©ÐN[®î;)Ýy¨w控3¹\ßræNUÕÐzèIî$Þ)Z3îi“=VRN&û’eVúÉ$¾”ˆYy¯‰¹Ø“xZµ÷Î2º´x÷ÞâÆ„ªP4Å­+ ½à›#L%Xwgp¡É{¡mŠþ×&¾šZ“UÖÃÜJu<õØÙõF,bžxÜA§éÞ•<´ê•Ź­«8~ã*w6;ù ¬ciÑèÖ™” }Ü ï¼A£Ôibõqâ×Á¢¹ìÏ×[DÈ8ÖèTµÀûäõ ÚôæÿH=ÉmbroGßÉÝÄ&¦ÚÐÞ§¬¬÷QgÄûúžp'hh".Љ0úŠPÚÊÏ$F¸uÑ'!5¯Á7›Œl4n; e^73¯»™Óût`OÅÔ=ÅÃP¤ ßM Õβxd\hý‰Š.³¢:"¶BtÞ† Œ¨½/Sµ‚³o݋ņ6M xC“Eް¬a#IF70ìê¬'»zjvôÞž!ø$c£-{ŽÈ÷2E~¸çÌNºÈ;~‘SªDäˆ^ ‹|ÏyÇ+òC4ƒwžxìÛÎøKÂuv휗ÖQÐú6ÂÓ•ÖAêiã+GrïÚñì{|è‘·MÏBŸQ)R$)ÚCÑëú¹\Éêv²góE~&¾ØuäçÊ?nüg¼ê럲â?Ÿ>~ìð¿Vw¯ã?âÃËŒÿ<èÒYÇ‚õè',€Ý·ü{ÐÜë½öÅ…Ú;'õéî7Z%$¿ eÜܧ”9þ.¶ጚFÚáõ´ Ò«Éàs<ù¹bKiKã6ûV*!J!E!'DÇèç‰>õ@ëv©=×™7•”¡à¥¦@6QoDhjA¶X|Ñ)ȶ§ç’ÔÓŠøå“ ¹,¹0Iñ<)'#Ìö +ã.™J5‰´wkÉ@ÛÑx4ývsãú®–yÌ„oK)Xò©ûPfÚ½üxGÑ5taV¡[ŠzU!ãM‡ß8ìGÄòÁ%“ÄóQá C8:cc‹b€£ƒÏ"‰ûSÐ ÄþR4d2Kš1òìb_ÄŸãQBº|c ÒI…èºÍî–zÔlÐÇà$Àº1¸Žºr(÷¨Åëc¨<äÔ¿º"4tɈ¨W¡öbXp&0w•G1 Eè_lêPÏJbF@8êqvga[ΩIØ¢1eÙÑÔg˜2=É–V›Î2µñÌ ™Õñ¤‘Ü×`/Ь™7\¦JŠYšÍÄŒçLxcã/?ª‹Å¼å™ÕA…¶|b8°þxÆÅÆWÞ¸wû}ñnTSM¬°r²á¿@± h¸Œ/ã«»I¼¡ÖïW§í½Ú,Xõ/c3úZS=sWálWñ%h>”¯Ö{1³Ã$2S 09íP_êP-rõEU{Ót40IRô"¯?F_á·ã‰Û&"0gã[ÖeÑg~ªôÙ“­´¿6~#㋃+Õª7¸vU)J"ÇcNT œü´Ç¤ÐÖ:*¦!­Èi1GÃñè¨ææéõ·\後¶zÓƒ­¨=#-Å!¶}˜³/ u–¨0ž$q ˆÛ®—¡#X'aPѤ?¸¶ÆͶÃa‰Eh–Œ¯6J¬5#—Ë>¬}´—!!Ó€loVaÎŽÅ÷ñpüEjûr¤´g#ûYX«âwˆÒØ ˜¦EF[‹Sˆïá#¬1¬t…ÁÌsgâ1Â}q뮀Û!|Ÿç¢”©RbšùÄT_RL½ð9„¯ÒÄM(åšFÕ`͘„ÕÑûN7y'a¯×gÂ{œ ¡¦V‹…™Ì©ÚÅG™ZmS»“{’ .s¦q:Ñ™nKÑ_’5,_˜EÄÍzê€U½•ä¦åÂæ\$³×óÑߙĆ%§ö'3‘ ic2•÷¯ð––7%²DÕÇ ô,/¨ÌßgÚ‹;‹N×`,`ÚE¥/G&=Äݦ¾k˜2y’3R¡å Õ kUúNìŒai5ò˜~ß Á|ÿ<\E£>Ô c{LFmÛÛCcߌ¿@YáïPÍï¿ô¿á"S´þûtKŠÜ7k”ÔŸÐ^€ÂЩPÛÀåã¦ÿ¶nwWqÒ:=[ðJðg[—£•lìܺÌnS£™ØäŒ¬`ÂÒJÃm·§„-kC4ËÖ$Ïö#5_qm—½¡ÛÜyýAa@ÁÀnz·­„Ö™Sh€Ð:‰Ð:®Ðüö¦Ô:ŽÔ:«ZgKä•*µŽ.µŽ.5—h"ߊ„•y97üsiÂå°-• K)‰ÂfƒØ#P&R.¢>r °QF2µV‹´ &9¼‚ÕçÃx|%™Éƒ/<¶¼Í3:ŒS˜)`·†¯5;‚ªðûDËÜ%`F+œO¾‘Ca:…-ÍÕï‚xŽö%Æd¾غ\Þah )˜),)²T˜è!Ds‚²ØÚ޶ôȨñå“XõñdbNÙ70sõ?àŠ€õ¡M7hh ßëÂqµ’åFö™ÆU’ƒèæY±-\GuOr·˜µt»£-±a~~­±Äüw‰^Ÿœ'¸—èº?†Tzaå^¦!Ç‚äêr)º€µ_.ÔÆ²+VÒ Ãn.½Ä&z)oþˆÚ „—íÍÊ‹hLž ZØ<µÆZž¿y}prîé«/Äžp'»B£«ñõu$ù…¤÷ãÚ̓?ÓñMìÛ*±æŠõ}<<–¯½Ž|(s_,ìÙ—bãËÎ÷K¶`†Ó`&Ø'}r*\ÝÅäBð\Φ¤·óB“œ¸”Pà½×Ý9±_ž™ü 3£ÌvÚéÕg½—‘·Iù"_¶S¤ö¸®ƒJ1EŒçtjï´ƒÛûF³ÖÝ£Ÿuñó¬+~à9a­Ûƒ?Ãukžœtþ„´ÖîuÓŽ#‘æm³ ?:AÜÀÕ¿)~â—ÈŸR£Qèžüùöf×yGg¼½Ú)üK¿7ߥÓÑÀ o{a%©µ;x ÿö Àzãui`êôm]|{p …Ÿ¥ ç˜Ïi[Ͷ—†ûŠNZ3Ø|öO[ Oãã}A|c5À2/}K³V¯íkÄ-0Qv^•źøÙ¤Ÿo:û)íç)¶„·Kï!!̹Ð5üy]È3üé¤etÚntÒÚ¶rfí }–"dÂrRýÛ¯³®Û*‰ìJv2· Ü–juÒéy%’Á ³_ޝbFskË"pVš”4€#“U£ÉÛ ­Wµf÷@©™¢U±ò=KÍ·êÉ—Ö.-[O²rv}ÒDhئ´¸ã¶¸“¯ÅÔwÜwr´¸ãi±§>f‹yÂŽ’{Ï»Ã(å‰GQL!^ h©â]ÓÁÉ–vo ²ƒn”MA¦¦Q!+Óûâ+“Ç=ùJz#ŸìåG)Mg}}ÕÓ]Ì9ÖsÈTDíð> Ûa³^“%ÛÍñDnÜÌÑr“oQˆT(µ Oÿ5”ÝMÿ«ÄÏà‰ ÑGLè`úÿˆâ9«ÿ«ZÛ ™##ZÖbÝÕPºì)S«5ëŽAjƦ1™))}š«Zev殺íºÔŒRl#Ç(IŠ2”-?ÏÌÖG„B/jãŠ#èkÒkÒ6ýßÜš’Ã=­f7q?Õë§z°Ÿäí:v?ÕCýTwû©žÞOõp?ÕÓú©žÞOõp?y³õõS=g?™ÛtSrV?9Œx_ÕE,˜@Æ„;ìOž¨@m"i¡ƒÐ´Äà ó!zÂNcÙ¶ƒW=m§ÀŽ ø¢­‡%¢ûmøá¦büãæ‰{–`ŽÊ¸g©#c$±L¿3I¾Â%m$i¨ Žt:|S qj >>Õ=é Ô ìµñt0“çûÒûPØNO[>ж–`Em×5Q¡/'Rר1}|†n#)5óI¯vªËWH¿Ýä,MY¢RP~#öFÕ Bˆ*„J…›b>~IŠ„ØhÕÞ¬”Ùùd ‘yÈÌ›Ì>ŽçÞ $ï4YT€ÜB²Ž xy5Ø&{JV[Å_ž&§4’¥@qjF¢$T—ÅàË"U2 dÈ%Wv$@á iNÐÔSóÃ,¶^Ý ‡j"Õ\µz ‰cB¢¼pVsYNµü÷0‚™DNï—+Ú/,jŒÚË6(lÁN`U̶*eϿƞW>Qý‡ÌÕÌ3T ³ÛshºQ-oçvœÞêx'òÌŽ’Q@î$CHǹ¼ÁHÑE<ù@Ó•T.]©ˆø‘¶|ö("¯¦ÜÔÖ§[{" ÔÀ¤†¿¡ [mQ¢)öä<ê?Œ'ƒÙÇ›’)1*ÀÄ€î`¢.Õ Ô¥K_¸’‰Ô ys ­šG:>ÁäŽõšc‚ ¬gšêÁËÙåSíúxúù¼ÙòÖ ßÑÆ¦rX‰¬ÚVVLÅ’–,pm3Cß›m“PÄžy®ñXY§°g‹Ôšò¨SÖ˜Áæ*›}™õéèjœ„ŒR/âë1ݸ„Ø^:µ7ð¶eÍaœWT8aÛR„(dP¦dïØ”©ºmg]C ;¸k½q),Óu¯I—e$Ç{SŒ›Š‹·˜\µB¸%t¾RÀ˜ÇzuþgOd,´ÀÚ>Z9ˆ“ŽÄøä+Ë~ã•wa¡QLKß>îž+~áä¹>Z;z,¸®ùlŒ]`,³~Ç5,ZøÓ<Š/,{-£s2aµ“eОÓT<ÖzÛ”¼;¹ù×U£.UÖų¤±èôQïÝl‡,5u§Æ Æñƃۻãäñ:œGxbHÙu欰œ êZ…­­gf…<ªúçV]ê>†­/o¾â ûc³Wøø¾>èýß»Ow*Îýß»Õêšÿá!>bZüï³ Àöèè³vxç+gÉDáLÄjÔ1¹ ~žÉ›Å fˆp ñvãoÁ Á´‘DÃoêê>˜&|õÍÃFA*B€)©'ò5OÅ x*Þ?Q…/àCØé°žÂÏÇqƒ *1*TÐ#Ô/‹­bqº ‹«"êFWEÔ‹Ö\Š«âw¥AÔ`·^0Z»OÑ.(+û$Z¢0ˆ ÈaFàþß©JQ3Ë ¶¨LKºäa·°¸1Î#½>g=G&7ë%Ÿ*`xÊ_§èÈÍÏAÃ-…¢ãoÆœ½GÊŒžl‰­ø"ÎN‹zTã »­KqýîZ³b¬Y1Ì÷׬ßcÍV‘­b'šzÉ*h'’= QøTÄç§,Ù¬øb¸rGUôzmoÙcéߨÔ+^ðCõ³9ê‡ßÜÙÈÎE%õ¾,êN¸>9zOR¤z—8 V^N#‚F#^$4Ä¡±¦ YÓ„8bZÓ„ü4!÷âë–L2cÝÌË ‚fó–Iü¡ç³æYs€üÀ k ‡¢ao&µä Z$¬”›f)«H¸+<·‰¿ªº0õ\RÍN(ù1/×NëUé6Wúì‘.”³Õ åÌÊ™!”³Å„¢dâš»Æô)-ß9…q …ñë‘ÄXÝÔæ (âFñ¶Wƒ“_ÏB%äW‹mø­žb¡]ÆŸœcz"\®“®•CôÏ—Íý­êî‹ÉÍ›ãSº ¥DÔ2*fÍäŠä²ÿ©ÍÄ!w+Íe’X¸õŒÐO IrÀ6ÆK½’*ç9C„'(È›£gÂ: ½ã®xwc¤hx¨vðÙyÒõc“í â©^4_Yä8uægIÂfÞg|hpðèy¬‚Ž'zF‰Z®„bU™H2'÷߬½Bxhä¾™@ög#§QŸÅ¦‚†o.°fA954´¹¸o¾ ¬á¬ÞhoV=c 1÷ 0Vq¾È ÐóITqîA`mB¦ñüƒÀ‰S“‰*ß 0Ì?'Õ߉R*ZsJ­9¥ÜÏrœRJà?#§Ô¦A*µ¹zV©MAµ9¯”žæÇc–ª‹Ÿâg[2N‰Ÿ’´gæ)‡*\&¦ÊÉ?•Ò¤Æ;$¦‚5“€ÙÁ?møV¯ülT©\Tó3Q­i¦œ¶­i¦”DÖ4Skš©åh¦´7ÚÚ J%¹è¯¸¯X¯œ¹¯œY¯ÔÝWêÉ++â9;—ÒJ4À'j-^Bõ“hLàu‡ûJ4,ðºÃz%x}×î$«óò|ý2D^”…êAêfÑ=ÉïgÚï(XüË^BÌ*jq(J7rs…ep‹=±ßŸƒ[ì™›67·XÅÑãU‹y˜Ò–'{êWò5¹Øw"c­ÆÀjOè3¿8“­dc¬V±PA>¹¹ÆôLHÅ¥Á 9F•T¾¯Üœcž¶ ñØõq«& ³ªddžGm?¸ɾC«?ÌÑ[¯œ[#aAìaÈãoÐSØ몃+þž©¸U‹Ì¯ÓyÔôh«1Í.±HîĬr쪫—¬pA»B £F”(Èì&Äáav Ò”«V%9dž"‹ãjºy¦e¹hβ rïó2ÈE%×rk¹@.iÈš>îÇ¥Ó{iM·&û™Éãä-Ìkæ¸h͹Ÿ5sÜš9î;0ÇÁgM÷K’Çí.@§…S3H.†*@ƒ-LWG%Ç@„UPÉådŒŠBæeJöyø~*9U…/,òiˆxà#b†±°„R3ÒPÔÉ۾ɨqÍçŒr£‰‡¡{6ÕÀK¹…™T´IUõœ Î@|ìy…1×t%Øó;o æ<ƒ½&‹µŒDén?¿ËR ®%ÑîzÞvûy–î•<é— #Zý0@")7™M€ÿGÑådNݼtZtSSxcty,Âkû#ÓUàê„F·Y’ßÂ&Î¥LÖÍ`$h9èƒý¤/æHmˆ`­+¿DS^) N mH¹1- •ÌÚ&}1€nÚß`P¨¥ã²‡àˆzcY®æ7j¦2õèôF&»QgN…ut…H_&Ù[B#:¿ŽF8ìMUh“7¥s7éÔMsÓ¯ÇË£±âðêJ¬8z¯<á’¹‡ø7….ã=TB9&Öªv¯Œ4!šT2 (‹·L•Æ7_:e†žQ=C'ŽÉb‹ùmÆ«gŒ¨,þ`Œ‹b´ÇæÌ÷±ÿ9&ûÑÍDõøUf Oú„*c^fŒ8ÈŒ±Ï1ÚniLÁô*Ù=ßDû½×g{?³ƒAì°z^AÑ0«C’bIN™ýÿ¢S’¢9ÂnϽ7½ƒÖqŠÃÓËÑ ±3è$ áÖ#½B&CCt¸ÿ¥^%ôîH05Ð ^üåÜ á’d¬‡&º¼vžMÚà£#Ø?mµj ,p³ù¡y` Xó6ÌËÛP«ƒÖïCíàßF«öº”Êä è|¹ûT¾Þ­äÊÙ£•#&/Dïé~/PEù 4~ù+¬µøÎÛ«+瞘—z"óļÄ òNÌK;1/ëD>Ò‰y9'¤œ2N¨7 ‹Baü¤X˜ç @a ‚Œ!ƒÀá6˜ƒÀ†Ÿ›à©›öÌ¡ÐX²Iqá¾ÒÎQ£Èfر‡«Ãš`ÅŒ´Iš¨Q!Ê 6xÏŠ¹aD L4L¾øQPmÞMAzt—ô§qn†¶Ö$F•ðÀmÅVœöLíâü”fFüå²M¬BüTV!è嘻¾:„¹’²Òƒîkm#+Ä]ô†'Äݨ¤K²\èùY”7ô¼bîW{ž4Ô‚¦ÍWŽôFEõW}e¾Ž2—jµŽ2ÿ»F™Ë£}\ÎÓ1úùLRW}j¢,ÖÑæmÎ+·kˆ£Ð­=xO?7Õì§ Z§»IùÆÃuÜzd†6/¶¾DÔº€Û~ÿ˜u_Èú²ënÀúÆ«;áê‹E« ôü±êþiH;\<Ð&ñ¿aÁÀMY¹L»6 «ýòq<”Ç¿[nT¤án¿SâÛƒò·1ߦ”‰Ñ(œîu£D§WÔož1(Ü7 ú€èi]ï‹·ç}g.Ê^´°2Ãã:Ýó«GÐf/RÁÈüì°üÐbÅ5Ýçï õÂÁ#S0zg‰x~¹4‡Æø:ÌŒ  Ä ¬ƒý=oæ öö—ª¬O© W-¶3u¶jž!‹)Å’Ì­ÞˆÚD=ëŒgŽˆŒ—›ÖË– œÄIÊÎ#G¾žhòƒ³½d4ÐE[|,ç5–•Šf¯Dñq$µíÕËRï@&^*ƒ ÞG)Ñ–EŽ"E"ªõ¢?ì.ƒÃ™ˆîÀÞa?øˆI²ÌHâ(]YVSyÕldË3’!ž‡{¾Oø ÂÅß~Ä̇@Ê$19Y«øh M Ãžq'l Lî $"C.­üPŠ˜¾ñöˆ‚ûzg;Ðvi‡Ùz‹ªé-2jþÒø³(s¬Z²³íù’?]gÊü±º ï( .~ËB‰èÉÂê²» ºt\uÙ]µº;ë|<3ÁÓm[)¾þp¤õÙ:Ðú—ýøâ¿¿®8<=þûñãÝ;þ{w§²Žÿ~ˆk;þ’z­YkïÙ»;q±Fn~¤(ÇO-¿á<š]˜ ¡ÜŽøYnvþÁ\>òzÛŒˆc'ôœÔ©@ô”Γ+ŽGÈLêŒ<êœÈ‹"K:Çñ Ʊ{P{u;ŽÝWmûO•XD¸º¤~Jþ8+d„ªwŒô¿lpýû•D×?Lpý[-ÁŒ/"VµïkÛQ÷|bps;a†¹ˆh¦ª£Í+Ç<èÇnÈ®{W ÉŒU ÎM„ÈÇ_7J™·‹Ëšè¥XM78§<÷“'¢3kË*®bEפsä""ð2`>¾ˆ~ÏXÍ ˆ¶dhœäbX¶J:Í@˜g€*¶Íib Ñ/`™AüÝ[ؾ˜Æ|,¦”ÄE,‘sñ•“cEÿ_ úx2á?Ôlf‹ípÿcL&žQ–ýB_¹x×ñ1jžÊu’Þ7bpö$¬.uèËxbm 5‚9T’KC á‰6™!·¢ǦB5]`ë):'Š¿ö/n‹$ñlpÉ·¹ëY$31f®‘4¬‰$2*™käKÃ3k¹Q7òåã¦åTµÂÛ™%®sËÓXr×ê/Ùm9€—0•S_Ú|ÃâÌŸ@¬a¡,Â^³ÿî¬*$ÿ%ùAX¤Üø‡UÊk¢L­¡bÌúƒ‘ŠqËR2Òt.ð¦#OñÒ?Ĭ|õHl›Ô í Õgréúß–d‘®©›]3qûúÆX,“ãèEûæoI^¢ÏÀzFó—¸Ü%?{IBõ¾f/ùØKdOeVèyPŠ=_™üÚD&?‚rü€œ&ˆ3”C«B‚CÏ”n@zò„¶1º!>@ “4q†ŒGÿD­0(‘`›§ÃäO¨õ ú#úËnÍ_tzŠ«”[® 0`ì²—ÒWì©Iîø:Ý×â‰Õ’}Bþ,­É9X9ÌÁ{Žþ`¨L Z~ª6½Ø×})ýÛÛáÀ\c…7ƒ¦_Š]@3O%Ô¨ã&/áuÀ’ùU§ç2a§oe¯xÙÀoÿâåg_ÏEñ³'p e±V"1Zc¦E¸šÿâkð'³m˜ÝåuºDÅýiÐÕH©Þ4Âi¬rB:lm#± d©)ÉðÎï¦ENµ66”33×c°>*ô ›"é\~ uáÙ¯/úÂÓ¯GeÄ©5yµ&Iï*NGWœÎŠÓY@q:!Åy0½!wy”¢7NMFqy¤mbäFm•åžoÕËm;æ—ÑtÐCvÛ§„æâº4&ÒÜ2êª%)OóhEXÐIˆD `ðËè/5®¨röÚ ª#–\E;¡CGÆ®‹álI1à?´B3,ŠóÓðO*Éhâw¥Ëð¤tÑ`½ìÓ˜Ëþ…pËk"h<Û{t܉Å¿’³Ež#¦ñ Uûw&Ý‚ ™Äk|yi:O¾à0Áòg“»Xs}ŒN¸MÿMoú3>úö%»#dGž;òärË¢r3`É~7í}MWÝbŠíMQ˜•|Mû¤}Ûˆ:µ¦GÁ†|ÇP-þŠéöÐ1Ã=Át&:QéK·«:KÏ›c%Å^Kn3:Ÿàðª¶r³ài†'xæ½ÍjÊ @(ÁZ÷”%Áó,5WSO-é‡âÒ‹~(2½äF ;ŸÈôúA2=®ÙrK ‘éëdz¯î&T‚0¥ñ+/S^]Éõ¥u“x¯¡—û+´(hZ(ig‡°í™Ê¨tRø£•KÂ+]"û÷oÛù”¦ª›ÁÏ É[è4xöã’ôbènßCÌf²Ë!ž3ƒÉŒƒ/d¸4Ó—\¦©bÒšHNÔem,[P?2õÕ…Ü%ÚÙ©3I??•ǧ‰°Ä¶óÜbÒkÑÍñ×[¨V_F>«“V”=­Ðôpw«RÙªlUñ-i;BE¯ï`—$MñöÕdü•Œ/¡kã;Dì¿ÔG0~ NW¤·¸Ä‘5û {Ç7ë…shò…¤Å"Ñ‘ $ ÌÀÁ.bD ªDáKI<܈þù’è5ŠÂ¿¬ÁÏÚBÀ½™”\9ÐeC·iª]IÙvÖ, 6p™9ëà/0·~ƒþ›Vé” âi2¤toæö€[JcZ#Ш †X:ðhjè@tŸš›‰ææêY47)ææ<šzš‡aÒ,Eí·ø<\Aº­ƒ÷ñçøÙ?%Má"Lœ%‹ŒÓæálËxÛpÝt²Mü ÚCE»µJê"ÑV£Üñ¶&Ød1‚Í}¡)D›á¦ μD›)õ^wÛ5ÅĹ&Ü\n® 7ׄ›âÈC¸Éi Ã]š¨¶ 9`iÐûö“ã„ÉŒ´$µˆ+¡Äú+î+Ö+gî+gÖ+u÷¢\»GòP"Ç+)y¤A´nô@›šmÕYæ#Í`,uÈGó0–: ¤¢y¢©}¢¿’ßëÚïg ¡¶ù Ûµ Ë GõPœæ¦GõPœæ¦G}î¦]’ÕCôº$=ªCÀÈ ¿¦GýEèQufJ7ä-ps ¯É@7¿vH0TÚjÑåècÝÏÒ¡RîZ)•Z‹)AŸ*2²B×zO̸z›@ož±±Ÿá;•°q¼0›ìjŠÊÅ)¥³d„j’Á,å$—u+Ã=ýõEò·çð߬èßl¤\}(zYÚ÷¿ íñšvvM;+iM;û7£5ÂÀ4Zý(H$ Ò̆[avWg©6¯§ “•›œT>Y+¶Ö·^É0~³‘ÒÀet‘ŠÅMæ[Ý*þIש Ïȱ§v}U£Ü­µd?‹"¦BÿOòÁ? ´Í/$[“$ö/yõp«Aæku=³Õõ|­6Ùk–hu=³Õ¬ ÷Î ¬ùä &³—Œ±}^s sðÊh0ëO¾y΃ÿ¶LÂr’>“ùšKøgã6úãYƒ]ññ,fMLk–ៃexúh†3´%x‡Í™üÇgþÛ?Ÿƒp˜ÃôØÛhÝÅU<LTŸf¿He Ž ücäÑlø8/ó1xzμߡ¤— Ø)®!⾜±´Yu(óXƒå(e‘7‡Ø”£BeŸØIšn×›ÎÌÜñ23/eY[ö8-§Á`\Ž×L–å(…h9r!“©ó¸àª%á &5ßļ‡F ´¸O#ec‹¢Üù­÷ P„ó‘ä,p¸%›q¸»mûîJŸ7¬@ سïJÑyñ3ô“ñk‚d²†\§…ïë|…n©¹ Î)'í†É‚è„2ò#Œìï¦ c„FˆéBAMcÆ"[™Äe…C6koô‰@jdD±Ä³¨AŠxËCLÐ܈ánÑÖzs·}5›gð´çaÀßõÕ›yέ–½ ¹:Ýá½÷uzðVv?Ç=4ÿÙ]þd‘.÷ðÚ§°¾Gótù³9»üiZ—ç`±ê«÷³Ô.×&_Œ¯þy*_½…Há«¿&¬Ïûqùß? o”ÿ½ ÿÛ¶ùßwàµ5ÿû|x˜˜üﯛ­M¬ÇîÖz¿½/E– 6õ”}òOȨî‹W°)ѹõ<Ÿ{€õAšó,¶p!<Ú,àŠÎ;EÒïÅ»ÎÉû ÝMÇÃÏÄ›-6ËÑëþÝtZnõ'ŸÆŸ#XcbÔÍø*Fx#ºŒ/†ñÍ ÓÍ@°O<ºúï£oðÏ¿ª† _ü{ZÜ'GÑ¿Â^¤^üfy΢¯œoêk?bîñ–8Q@Eíëcõ5öü=Â8¯]æ½´d˜Ñõì³haØ`ÿim ®(«>“þèÒÕÁ+ø'!¿…ÚÕiQ’lI§ì¾øOc.‡|õ‚–X“þ1£ñ¿ïØ·"Â;Ž™MÓhJIFGJbë»Ñàßw1öÐ¥ûÊáë b[%ÒŠö”¯|+ šÈ`|1ã‚Ù;Ñ7ŒN:‚¤FÛdØ´§ûnLc ZR,t@ã`ÿè­Èå¶ù±ƒ ÐÑ1)1BH²gN£)Èš‹´ò‚\$0ê—4 sAM…×A„ƒÏý!b‹²7ê~‰‘ûš&t–cü¹’´ÊÎ ±Ö•w0ú\¨o WePÖ Òd7$ÛÖXN]Å£±$g€¯`f‹™3›ö:'?­ð¡A¦|ìÕ*Â#ƒŸ¶5oæ NE ùnÓ¸¡$ç—ÕdŽ•>&R¶rkIZÝV u«1§D&ç¥b/!LÂí-y%jDçXeÆ‘„&WÏŸ·¸'Qlg”·Z5¶VÌ}{œ%¿ãH#FòÈ9ͯǮ(‡Š©*^Ï¡^¨¼h—ŽËH™p¼aRÝŠ›(B2í,ÑTƒ?d"$¦í_Œ?³gµÐ.oÌ>bedؽž¨€ÞrY~ÿ6þÏxp%ÄPpå&Zß æî/Щ!.ã}IaF,{‰jMP§á·8éÊEËßÑ”ÁU KÜø›¢y/k˜Kˆêöç\i\¥Ú¼§Îý“œø¤abUœê «À߆©½ VŽÉi„LTúÝ?£±µ6aI,ÀHÜØÄ\ð—b»n0éðÂ×–F “MÁˆºÁ uå‰ü$ÁÏ“W2™Ïbà×ÎÉšN)H§´0c¡ «£ìyù×MÁ…ØÁ>_¨yD©(™í]ó*ÍPU$‘ªÑ5n‰=I,·`÷K£þŸQëw1ëY¢•ƒ4ª/‰H°À.G¨Šæ_Œg³ñ ®+°U‚.ã_tÛÁY@Ü’…ÈzŽÈã¼)¡P©"s%äf£ïxþµ=bóHÉÍÆ›aý.þÉb-ùE˜E8 (Å=ÓöÛãNÞG-3ðåž%˜šñ?ôN׫øÏNJåÛõ]xÅç̘›çBñZì½%VŠ×­3bµà‰¾×éuºr¢O#§ é?­B~‡T¶ Ouùyä)h^¾øJPD@7x+žÁ·`Å¢ß*£·9Ô‘\vÇêH&GŒzF\µ^Þâ÷鄽Å@³ÜQæÇZZúfÄüáæsDt{¢ÁsGt«hp º¦Z¼´~"Ãsç‹Îå¡êDçòÈ͈΅!MÔ )q©­YGZŸË¤U7)Ø]¹’îØIíUö{RîzRvNò¤”G€æ4FYnøÚB”üwì,=>†8[5`ØjâN‰XµnMެˆUQ‡¹"V+Õ@ÑËE¬Â>ç'ˆXÝÓ.¼zí3ól·Ö Ûuwò¨X£y®SÁ.j•Ä—õâù#ú¾ßÃÄZ©âS¯¯€.-xŠ“’û=¤­Vù©7u”øÖ¬o7ËíˆÓ‰”¼ašbc0_Ü§Úæ2o48šH-Bdü”<ß§ÀçÈF\mkDí´6C€ù¼}L¯ÜK«Ü>V÷âò‹MFæûÉÁôíN•èL(£3¡LÎÁ•‡îèš+ê—«J°CÂH¦ú‚Šò‚)ÐG^A©+UàzË’‘Oû¥H[3Js‹‡³QFAÁJÏ¡„ðãé *CñÎÍÐ@Ü<«Z# V\wÍ+4¨ ñ§¨HÝ06š H{PåVJ”]T¤Äº+ZJÇ~Ru8½:ÖS ÕìôÚgTDjº3W;c‚‰|È2n Ú‘.:©I…»´šc»ñ,úV!«If͘G‰Ä%áØDÁÿ)!‹{·RÑà –¶_aÞW¬ÓLQë9Y×:+8Ò²,s˜OtÍ’»§—¬&Ë(¡}n¾©SÚ|úm ææ œ{Š_©¶†zµüýV¯^@½8¨³–<³O¯-®CÕ|:¤f–½ñí·hý)ïCªÕb ÒávPêýËO_ú“+§ü ÑMŠßÜ)©s’9%3—ƱWXõB2 ••–{¦ôèOo2õñ\s˜»1Ì¥¬ÍèœFÉœó}\üÏÇÉÕãžnWüÏÓêÿó‰&þ‡‚$ÑqvR¢çš'©±6É9¾x®MøE ôƒ‚€|ôºšLRœM(#–– Ba$|®¡Õ †N \L:Vè¼Àõ˜ (zÛ= <žj7ÅË[`­ã­ÐdÚá`>VŒ²€¥øcÿ§% DÈOÇ­´#¤Ûã­ÔŸ‘i·j©mFrq˜œ ÔÈB’Ö¿Ò™—*köívpI7QÒGÎYÇ…~Çæz’}óæÎs»–×pJˆv87ŸiÐí4¿íáñSBQ‡ìúwÃYï¦PGÙc5 TÒå/Êz#/X8)ßkÅshúÙ`Õ!S&ÐàÌê”1åDè]ž&¢×t]"’Bª+4°´øõ7ÅoIgô5ÆjAf–óU‰Â’$6\꺒×`_Ñõ“1T„¯Fzø&êÿÉXÜ:Æ:ô¯\P³ùªu‘!9ûàr0Ã`l>éä/¨§`Ͱ|õ×`„í#‡nR-vœWÜ“xT„þ*ÂChî•O*Å“ øâ üW€oÏ7àù~Ý÷~Ï~¿qo‹Kéè> üÞ熩kçtðàýï Ìæ >•µ& :_i5,VAÜMÌQÞ«Ú­›ÚOì›ÅðÎ ¹*.uŠÌz.Ýá`ÅB<ÆëÎDa¿'Db4Çê™$wóˆËÕ¸í/Á/ðºkㄾ‚x4¬Ö?™¢éŸÄ½*`bۿ㣗ª/·ùÑKÙ‡‹"So‘€6Ë®¡¾Sæ…y0uR¿~¢¡ÙH5ô\(Â9¹„žqIŽ#Á;Œ'xX™\nG÷‘¯Ô¸bTcž¾Ù6œ£ï"Í!ÂEÚ\ÎٜгPˆÄ‹x8þÂaô²Ç°‡|b]¬0€+Áý·H¾ÕyûN¤ñ\p³—"$éîΉîʸj(tEÐJAmÍZ§÷Z»c©óÖwмб}ЇC¾`hà˜¸¨‡:É8Ù·ŠˆÞ ÜVÓ ŽÅèØ Åäéãƒï×k G¤AŠÝwÅ£éÝD£VÆ’P‰}'P‰%—‡ñ§sâ Æ h_ÍÃøƒ‘X…í¨³Q<Á›¡ozEžŸИ›{Æ!¶aâ™–~¦>7[ŽsÆ8³7Žì禴ñÔò$®C±–: D´ FæÁi +Ê}PÝ´–=N“¨1Ùä=vùmˆÔæ¸Dþfy¿Í±É/æ ºz™c)H镞G!¾¥=³äçÒXfD`˜` ѳ0ž$åñ¦œm‰Ž¹W:ž=—ŽgoMÇó‹ÓñÔsÑñ¬HÁ-Ãæãt÷BÒ³0ˆB<=qÏT;~žV{®Ž§¦‹Ãjï‰kǦÜáI¼×?Ãõ±(y˜yg艇'Þiµ%ñN‹Ž]¥Jeï´æ$ÞÉ8ÄÎ ÛI§—&Þi-A¼sü· Þa‡àBÄ;©IÓ‰w”³vnâ´”+'Þ¡ ò¶Œ$çQó ï€ÎülÄ;>ƒN¹Çêd!×âzñ„ v$‡éuÐgvþ¨X“Oè¦Sa–c¿)‚Og›öá|;D½C„ÙžUoÎ÷VÛC<«àÞ!\ÀÔ2.Rçóe^ÊàÞ9Þlµub†ãr«Æ½#ß·ÙH.™Žâ’ºà²’*}”ó¥&b£qaNžÉcRa (…õC—ž!iKJÉn¾/}–Düä2KÝN¥ZüJt;´7þj²íÏK‡b³í”Êq:׎Îë!¯×8~z¥ Çw3Ó+{š Iʱ"I)t$z†R+n&~ȈW Æ4Õl¡„à%ûùÍ^÷u7ÑÞàÚ ãú»bM— ×ãô7µ&ØãµC/>ŽÝÏÓÔŽ¦Êíeòáèkˆò·²ò…Å.ÔôÑE¶;Âh°¸—¨GĵÈ&ø"U‘:&¡RM(i)…ôŒ>Ô%ûX¤Å©´g©¹‚aRŽMùxZP,jG.Ö®OjÒJcÌH>(«DÜ#HRå„6*ØÐ|ìG_™Ôíknö£žCÈvœz!¤vä{í*ÈË¥n@šÖgÖRÁéƒ0T_ÇÈÅÿü{rý øŸÊ“Jµjãv·Ÿ®ñ?ña 6ñ?~2É^íTCÁ_õòD1¯Š«R&ÚŸûƒ/¨_ë¹@ù‘?ÐÑÒÛ;͸ ¥n_ÆÅ!å„°îãò°´Ê £:%ù·º3ª¤CNôû½ÚVh Áù tl?•Õáêž8p¢«±…Ó˜lDÝ8ìÿ%ÆvtÙ(Â:‚È7ØX/Èý¬`"H$«¶Ò îf[º0°<¹‘†LÒ.Ù¡`óB²oë­øC{£W[Bo"æ¬ VÙ«bá-eÖçXo$Öï9¨zÛ*Öœ Äô›Ãøϼ=ÌeÆ|ˆ#C09ÝH:ôŸCÍÅe`®$ŠÔ3ÞqðÏÞF±³¡70ý^0-ľ‡óGú»˜Ï¥K©<4_)$9 €µâ›Åîëb±ÖR¬Œ;Å–åñXÉb+^µ¡Fæcðª:ÖI¬s¬æÁßͺ¬&Ø@r†0ÎíƒI| AºšÏÇjÖ4nò#ÃùQ™E‹dù˜n_i79 `È€u=».‘K÷|™6’²Ï¥4²IvñS6?x¦Qúêo8á:õ 2D¬ Ê–Îú.¸|wÁ•Wtœ€ºÄ7ÔMÏGÖ äGõÀ82À)bî§!¥£%‡Ï½^[‡m›wø?äð9O>¿>. f«Ò¼¸4¾Óé×:dS¯Â;^pš¢t h ¤æ³Üädz¡ÓÉÌ\õL|ç]þK…ñèÕÌYÏÇ,¤Ïäeè!¢““5Pn) œ)g¼ñ€8q²Äe ˜E˜I4{NNo‘^‡÷›Bu#Ú¢ÿ½)|Ú\·Ÿà9Î|£Òœwú—áÁ…È}¬Ê‘ž¼Œ0ÀyÖ¿ëGÅè3þ÷H߃ÐÚ:K¾^žD¹S?›&Ìá3¬ÁƒrËØæ×¹ÀÊïø,Ì#F°AƘç4<^¨ñÓÒ`Cm͹#vn x¦é™(èÄ U½ƒ=Žpiä¶0°^ÓÀ¢døQåÞñ¡“d§•8˜G28µŽ=_®cÏswìíB{êØ‹Å;ö¶üiûèVï\úRu0<Ä¿±ÿ}Lfea„¯”’WK²³/Dg×íÎ>ÏÙÙ½³ÏêlY^9–ñ`…þkûV ôÞ·ºÆú¥]²·È}k9nZ;ö$šÿ޵T+H¨›ÏÄ…g-ëÎ3ÎJ×ÚT0ã‚·Î füÑî |椕H4•ZÊ9(ÍåÔY‚‡õòñg©åÿz!½ý6Zê@;\2O–ôpòÌ“îT^ÐtÝÆfåƒ/ñ0”7hÉ9ñƒeVÚÖl#’|Ûû@…ÎKzÄzi‰”hmý]?žóÖθß'£Š†B¸'áС¿ÄIøßóãžÿOþýàçÿ»Îý?»•íõùÿC|xÜšçÿ4Ÿ°‘Ñ^ŸÿÿÂçÿÐÑ¡óÿ€ƒÌâPçÿv˜|àø¿ÃÌô©Kúˆ¥ÿ1µî²Ë}ü߈Óýmy¶ßJNÎ[ÑÚ Pöþó©øàOÎ;tr>?”]aÂèä¼ã?97QtÚ¶1:Ôრ$¨?ê@pÀ瘄þ›(€Uÿû"1³Žÿ}j_+ò¾ïø_>C‘uŠ|ú¿Q<7<4÷vü¯%͸–‘¤˜ô÷Lìò݈W´)g¾SÐZ¡ò¢U‚é…ÈCÌSЖ pCìSP1£eœ‚—÷´•AþÒYð4„&𜂞¬úô^ijæ ×ÃO"X ËÎ á3Ç9x‹¢B/|†×Ö¥á3¡có¬?ŸÉVø‡9ë?^ü¬ÿøaµ|}ÖÿCœõ§fx6óŸõ{¡Ì6‰àrGýkNœûàÄÑ_0ú_þBÇü7¥ÑsÌ?§Á#ý4xd²Nƒk…q<²Oƒ—>ú7Oƒ;úWƒõáþoììû8úÏÀtÜ0u~ja:–>æ71‹ó+LÇú˜?tÌ¿¦ô™ÿ˜?‹¢Å{̯aŽý‰|Çüé¼,ßõ˜^΢Œcû¥/êy f¢ìc~qPòðÇü¬—÷wÌïó…Zn®Ò«ï?“ny–<æGΙ@œyéPÃÇü< 5¾.ïY ÈVul¹­â½g`ÁÓ¯¥ñ¾-‹}Â"Pü‹cƒŒæáÐñk8ÀÏóqÏÿ§Ÿ¯öþÇðqÎÿ«×çÿñájžÿwÏö ÑáÛúi ÿ=£O4“'ý^ß(&=œ|jÍã7øÞAþ=ÅTðÏþ<“w¢e" :bÒJ<à" à öÞÔ:µ=ƒÃ”Åš:Åä&Ë]Ã!ìŸi’(À#øŠJpü…çVWêQMÀn¿vì¤sÁN Ü t”Ãi[LIÎ ÜòbÂ!6þ=Á?Ì,"_yš,ÜfW1¾9žÒQÓnˆåÄE)7ÛÒ>"å9ö>3!§Ä™«ï~¥ˆ@„¶>gŠuþ¾*¿×=8$]ÝÄrp_ÆSuž|÷…oY%c&Æi2ÞOߌgÑÑ&^šGNöëë¶iŸé¤5žàíÄAlßò5*Ô•ê6 Og‡]ÈŠNXèý„žOQ¸ Öe D@ÕÞ¯R›ZIJ˜üç?ä±Ê?TMð̷Ϧ{T†Ãñ<¼˜Î&w—³» Êþ¹åv ¿‰Nh e{TnÒ)qÉsÎ/>G "íÙ>îù{°ÜáaT†$Œ-ÙsŸr¡ôtÛ¹.Xj•Jéºn®Ç™y¶©Üˆ8DÖB» ë#íÐØ.ì<šò~¯*^!¥”%î!µôPALG›è܂騤¾^”ç]õ:Í(ü¶x]|£½½W,V£Í¨‹?`­¶üÍiEH•®Díå³sáÊÚ²:þŸ)ý~„ïà¸(·ÜÎW]/„áëcÙÿÉ+aóÅ=®rꊜœ²(¡ì{ø4<ïú¡ò THS,]¯Y¢0‘e§”þÙñ¯š%êÿø^ÖÚé ·³a~kÍ¡q­l}+H‚Sl솫|¸&+Ýè´ä½D”$”‚¹ZATôw³Òà^rn”¬et‡cÔáñ¸§Éá7Eañ¸©)4YVÒáW NOŸÛå‰\Ä趦Ӳ«ÍTFúX¡Ä°?ØÚHnT ‰ "Þöo.®úŨ–BôuKôÖt|ƒ7¹ÍÀšÁU¯jgrà!€|á),”÷'¹_aû„Ìõ¥¾ D§TÈ­á(ý1ƒ3ðKº ÆÀëÑz¯/û˜ÏÿóÿÈþÑ£-Vt¬XÝÔ:^ùò•¨ç‘ØŒa6cƒ^Ãë|úŸÐÀ‡®²B•úÓð¬Œ7à`4KfTž‡¼+½þ¡³£<;iè<ÜP2qÀ¯ö ÅŠyPúèôÑ ÚÆèX†S©¼¸áw+A›°Ðgöõ¸ñÈWܳÌrÏÂåžä+÷ÄSîIf¹'r’›èîå*:ey$3õœË7SžÉ´Q¥›šÕƒëoòdQ¦wŒ Ð³¸Š§—“ÁO?b£fRŽ`ÑÅíHÚVDn>¾7º³fâ2=PÌ"­åí3#—nK¾äŠ Hünˆ¾z"2ýRèÀæÐsPFûV¶èîåFV¥>PwIè‚441£…RºšG• ™3ÕŽ>†ž‡07úÆÖ‰\ŒUú{`+E+€Lezñæ9y„y ¬­µ›/š¸´¹{‰Ws»y«çðB×xA„hh8î­ ÌZîDvxêë/¬µA%‰M@R»ŠÕ6qÂJe/ós|ãT<χ“Dç—ÉC¶.Ùd” ;/:Ü2¶9´)±rNâk°äF—j턹ªK¥Ó-ÊH›†¬Á4çwùf%"È—ÁT"ºÎæÛ™EbÆ>cÃ÷;Þk8-kÇ#¶3)¶³±­@lg[”‘6¹bÍù]¾éŠídN±X“<7ú„í²dçed³Œ5ØN¤ØNRÄv²±lQF™+6Ñœßå›®Ø\4pž Û)2Tv³-ìÿŽñj¹ä˜õ«E™AÃÉà7Ë@Ë¿hp^ä†÷rÂ9)—ÀVÔO <*l/A,C±Ê'Öáx|} ‡”φÖ ç:‘¬žÃpfõl¤¦_ú·bBm°ßWüANþƆ&]Y—XNï.]ߟÉÅk;–¯ÒïèèQ_)†ºêÇ?¬lIö/ÇÕ·[rÀˆÁë¯Áè¡ °+OÞˆ·á}-À°ÂP*Eƒ×±t½×ÝC…Þ pر†žòBì„?êm“Ì[¯Å³zè™Ò˜žâ7ñåþ„]%³ ¥Çë)ûP 7XUã˜BÏÆÙD¯Ùšû²žÆ3¯Àd= A7­¢÷¨PÛ(¶jçoŽ»þPª3':V‰ê*Ñ–=wI·Ù蘶úÔ(—⥠qý‚ž á³ÕNÏðN͉|®–Ÿ?‰êý)£=oÆWƒkØe1HïBÆÑ´p¤¿¾£ª¾¹ÝíÄ£’¼du/8GûƒÏœ{ødagß’[’µCVžòœÞíÖ¾;|ó]­ÝÃÓhøqÊ?ÒNea­·÷áß.ÂkKQ{ïϽ¦¼ÄwpÚ~ÛiaÉ?º„mì´ŽK¤ô/dtÚ„/NÛ¯šªISÒ°š>8j·ÖJ©Ï~³ÖÚ{SŠÎ›µökùžÒIÙ”ì×Sj—«ºÏ—U&Õ×ݳ㒘<Ì !]=º£éŠƒ‹g™@RÒ„U¢¤$z,Øb…ºd¼pVB[ÍxáÄx¬ te¡U×GhÂ(ž.y4kÐ~ÄÀ­¼°M-¿3;¿³ìüX§–߉ßIv~ì3†ºk¿Ÿ+u ¡°Õ'öûsÀP+ÛnâÜ8ÔŠ#YØaâ KU©aPųÔÚxšrædx¦2¤g©5t¡²û'N†'*Ãy%TP—”¼–ÉvÏö³A²áK­^MÆñhp‡[”Éq+¢p•¨ÁIs;B2ir„Ò+ Æ-¡RlÿËjÔ} LܦL «öì•›þåG4}؈8X´dîn;IzÂÈNJ‚®sÀ:\g´j",LE¡Uê{,kLb¸jé¯tû×1Z Q˜¼¥ÙVòPú],”ÉFJKÞWÐ÷cíýºó¾}7#¬&(›In£€²¸ s&úˆWfF`…0lÖ bÙø9•¶X‡²Yº'ëf_Æ"êø‰côª›¬6ÓÊ™Úf¾¼vK·Iò€øÂMf»ÈimwŠlâêX+ÆðÐΔžÞ>1ö芴r0bA+‰Ý~PØœ í&ûPLÓá4º¬öÅ]wªuÙyÚhháEâžçf‰À 2.ªnÓŽ¶Â– ~‚ØÅ£I„Ьh>Hÿ`üîLGD$ß Uˆ zVx_Ÿ· ÈÊvtH‘a›ªX£ÓÀœÔ“Zwõâü‰ïàµtT”çŠÁ¤^‡ö÷¢v˜ƒñ(™£+t<º÷¶Ýk´Oµ{òhâ†\qânøJMZŒeoe`¼Jïa¥ÌFšÏñ 3MÞqîuö¥Ð^W­ƒWMËÄÂÃþѱð>ü÷íÃ⿟îTvü÷Îîÿý1ª-ü÷\‹¦oÚç¾€¤.á,Œ5ãXdËOE*÷pàoNâÙê'}áÙ ¯ þHpÐ;_1&ü8ÁÑÙ€jp­<ÌÜ‹±U oü( d ±’5‚š‡¥¿»Ù6 ,d-A Ê(޲ñ0òTñŸžÚÐNQCOánÑ ên7³^qšyn¤³ñ£ŽhC\ûÞÄo› —y£#Xƒ„a&6ÉÏïÔ’ÁT¦ö‘Y§ÜêI&E0熙\ñ mE>Ø=fãߢZ›ÇÀ"ñsç瓤q=$1‘‚å)ÆxÌÁ úø–LZN‡9¼ÖP]iËŸ´`ß7aŸ8¨¡·ŸƒÆn ”û‰r? ]àÂF”ÆÆü±!2Òs1°u„i©i|©ý  e~H™.=‡4QÝ/aš89•Ù§ ¦½£ê²š“Tw’‚Ô¿ÙIø1ýœÕ’jʑ뜇­?à1ë ¦Õ48yqPíý‚ÔÖè´ùÐikXÚ|°´_æÁ²`˜jiüì¹Yyap2áRø9 ~[9à¼È¬yð4½¦ên ö¥‡¶ìõÁÉñ«Ô{/‰'–-V> ¡}/ÝbéʨÝÊ¿5f´ò] ‡ãíz‚ûð†Lq:ip\à,ÍYüáÛ}±«%ȲԛöÎ:oKè~—®ûcØ µ ·Z_ã´­íýÍí’ø™êLÂL)MÅJc¸Žd…óã‰^½í¼ëì—æÆ†ÅÐ[-*(„öYºGg¢;~%骂‘®J8¢=„ÿÀÏãV/¥{à…îA(ì^W;Le'vª+À ÕêÝR´_Ç3ÊýF«ö:•wNÁ…|™{¼¡{{%W>0𮣕%¥/D=:™‚ß TSþbl9þ «-¾[í”Í•w¯'~‡ ¼±Õëœ$Àƒ5ðinàSÉ>e¥–>y€AùqOÐÔ÷”÷tX%KÚH0% ¢²šÐ“Ãi÷´™ÓÛxAØñ|W×{—a:PéfTŽ*Iéðl‡;û!<ÍäY‰î=$Õ'ÙáÓS³ë %Ϧ.O•›$K³‹ð #s¤luàñ+9‹¹ ÓgDvÞ cê„®äÔÆT¨*m£"`…KL€ÛaÖ€ä”öÎí!C4 ž…Û8‹6=ñqžj3ž`º ß‹çnãÈ®%œ˜I¾é-ðÇœƒÎ¹y’‰ë§7iô¦á‘݆aÝälâØà•Çr€—áµMùš9УÀX¼-ë©ï'æPôÏDHßf|ÚeÞŽ5Ý¥ºFº\C¶&>àÇkïTNŠ' ð»Ç’B‰ìfä­pùp*ßÝ• sõ@·Ê+BDÀVxšØ (û4{áiº½Ð½m,ç9,†¬eÚ©*|d.ðÏÌžkXâkÎ_³ÖÈ#Q¤u噱ě¶ ˆÆ)"O*Uy~ù üT’®‰Z áªÿòdkÚiZMòó*' Ê%*Z¬¨•-y'2aû>Ÿ¡rª*§™c¾Eÿ7G<Ôì~iå·SZåŠT.ÝR©L)‡¥r´T¸º¦¨ .ÓV1ê›ÛåÄŽz³2üƒE OÕú †®O¶ÎêŒBÈXŸ- ªö‚ÏÑwŠgòÈ6DÁêç·‚)D¤%î ¬‘Sl³ÔÉKÚ-[!Nó¹xÚw(ûìȱϞöÙ‘1m×|sösÛ>Ãì=öéÑQ¦}Ö*y—#nV¢SÖH"ÿœv Þ¹ÙÓ잘Ï=½+ ›#kÞô™6ÆÀÉaG°n%ýd~µYÚÂÀ….uçOÒš…mŒZæ|ÃÒþµºUv¦®ƒ•ªnf”y¶wV>ñnŵ7Ž|ÊÐßJÅcs`¢4›#éåVHí|<öjlº ¦n'ع4š‰Þ›+F.åó­‰ò^”ã ®’ê¯âi%¤t´&*¥kíÕêÌ“4Õ>uºOiØ)­‘GòëÓŒ›ŸçQU½i¨=»ÙmeÇÔ°£ÄªmåÒ°Ÿ†íæÒ°”ðŠc=Í^ñÜøÙåxô ñ•Êã'NüGåé:þã!>šÊ¸ÍSc§¾£äìäžl–QèzøSª¹öÖ\Öñt%Rµ+È÷ÑNï šúMÞ§ªÔê<¥V}¥VÝR§1ªw¸Xœ+=ꘫ7Œ°õßiB©Dÿ| ðŸQ CàwS‡¿ô§æHœÅ“ËÐg ,t8‹‰hllEò7æ]ë¿ô¿áµãQ<˜Y܈+s³ò»J‚õ ºÑ\ÜçÚ$ÅaM©g"G½œ©Ät”‹Þ¸ŽÛE2G”ôiIˆ4îÃ@ŸÙm¨¦Ì¥!’›sUJ.„¤I8…rÕîÂ|Ë“>Puïð›šþköY»¥.‰å?™W_ÏE-O¢¨Db¼t$ÅP NÏlY-Ê]¨ñ ~_Èåâ =&FJ_@2nP¢ôP‚—‚BÎíT“±Õºüo%Ü V«`UÈrÌ0»µ³ƒB´ãmÐ=„åµ[þ ‚û{0rÞ¯a'5„¹± gæ ¼’çNJÆ{˜J›Z y&ÒêW’iæÇe€ÃðÍp˜†D&.lqœn)æÆ9Ý .?ÁÔ>»›ŒpZ‚ÝÊtÝ–8œÄT­}t[%ùvKvÊ7ŹxÅ’ÊIõ1†:“õ¹_ i¾B£üŸx2¶6|€*(|ŸH±tVáB$jažj%µ¨xCbrd#ÔÍnMMXMîÓªOð¡ ÕÀi.i"ð18•ØéÀU•“$ÍaÆ0ÁïýJ¦ž‚¬¸Ž^r‹÷ßЊǕøtƒî¡in)UYšˆ ŽË¸M´C^'K–[¥íqú¢€Ó«Ù|Äõ<}”QÑàŠ[ßpMÙ[®¯Þåðyý6ê!.0 4v,Û*ÒL5ÛFÓ&X„¤Øó¬ÿIÝåHæUý7©ìø+¹o²<Ò8ýdi×ÿ;¹ž>¨ÿwgûéö¶{ÿëšÿçA>¬«¦ÿ·ó †¯Skwùü´ó¦kŽøæ+øÿ;}•oüK(Ü{ü ÿ¼:ètLÿÍ"Íù¬]ÈÜ%)f:ù9Ð{Õu+ö{vØÂ)ü*ù5Aû£œÎ¯,ïsX+@ÃjÐάôªŠ š–Ú\m)x•ÝdüYÃÆÑV\ÝíúѦߦ°!@‚º2Ç ^-ÇÛ/lw9ޝ¯H¢=“$bIÞì„ÆòW1yŠ(2=ºß®˜6Q†¯‹'‰»]ÆÊšåð7“ÂEsø›gâŽ6å^SíV­µ]ÆÄAR±#­ àWÐM¤ ëý½_,ö’$…^èå=ñòíeY³±zß3޼yiD')ˆ>ó%vn)lÅ[ì)q˜Kôl\r*{õ~ðéÝ…×½¬ÃÑ<Å8…¤ç½§³éçõÔ|µŠ‚òÌàÕRb 3ƒ•Hu}f𳟘t@yx€`.s¤dÍ•FtUq…<=&Qº#æ½Ñˆ¼œFïݶ˜´FÊdw’–¼ãÞ¤·Q¼1äXdSäÊÍJIæý $ó~‹sr%ƒæå?Ïv¾–f Ãkæ :4,âþåǤŸcœyô\ÞþÚˆ Xé¿ÊIP£¶|6ìs¦÷€,iðf“;-Íåx‚WÈ£“™°(aúþe´„¯HNÚÂjÒÄFƒÙÝ•rd¾hãˆg Ü\¨]e®ßÈ-AR_fz&’‡ZË óÚ2NuÆþá€\ÙæÜb8^°Œÿá‹þðÖdØ@Ïä¤fïªa¬ÀFÍöÜt©{å$±*-¢Ø”4–x¡M}ŠÖ°Ld´NueÒsa½Ê”dÓØò¡0Užb4©Äú£oJÜ´ŽCVu¶núŸ` ¥|QE¾ÂÊ©* GÓw 2½üPç~óÞ<Õè!7¹²01ášéŒì•´†ó­Ø¶CFVã!©M|›ì^Â`î=fä¶½Œ§íÃMžAbQ–ŒóË´¼{ïRAá1:ò³³yÓ9H­½Yí¬âµýw°•v‰öÂݳ÷ö´Ý+ªYž'´ÏÃDƺ¨Ùíuà'þ¿öê Â?ªôiEdÎŽOä|ÿôNkç>G­½'¦¾¯Ég°Q¿O20Ês®z€ äÌàÔÍ¡êkB¤3ÑT9°´b¿‘4«a5«‘¯VZÅš¨lW­QÎÙJ:*Ä“õ»a_Ïý@«o~E°ZÁ^ŸßËõ¹õÄ÷EÍ||¾!Ýgf­àº&cöΙÇOI>PMá.=ß"ºrö©Üýјè…ÇN6Œ§š›y&¡t–’è_¾ºbÄ›óÔñx2•€¦^âE|WK’ï¬0à é:;‹„ÎÉ ŒÇÉ2·t£"Ù¾þ™³¦]ØgB}’1ý¦MÙÓ ž[Á“ß&K òõéµ^oõfH…6Qú†««ky \óz ”,ï¨ðÁÂS“ü<ªlˆÀagS‡¤—t€1aõ—àÆ¼y¡#Ÿê†Jz_NbºØy®gxº…‡â´õ¦]ÝM´ëŒôÏ_Õõ´³Õf{´|—;±kä*±¡ÂàfŒ½wo‹É£æÁ–ØÖÐS³i„¯p‰i êÔŠ¢W' €ýÁ(økl!\¬Ÿé Ïš¶A•ƒ®Dš7%Ð ·]1¶)+µ×S¢2 »Cþ¹i­´º8òÍËu:KŸu)n÷}r ÷›øf#ÚÆ[| úÒz&XÄ]ó¼¼aö–˜Àqž†í4(EÑ3‰oÊ)|C+Ò™Éõ|édV5šô¹‰&5–™À7ñ„/£Æ×‚‹HdžÝFêàͨKû<|º#|"ä Ác7×’äƒc2²æcó®\ÜE›²ƒBý£Id€õÙÝ4<ÿˆµ,°8&)SVp±`jë¤áª8Y 0*¬”ê°5,éÞ¥wz‘àA…wŽã ³ù”Öây²’UÕg7ë˪ª[òbÞ-ÆhO­Z§MØz÷ZÇ¥u%×ê­–ú7‚`J;÷àeÀ]¸c&|ÑA<Î_|šlM ‚ù›€¨ ‚…Éþ[m¢eï#ªã(¹ADsÈAìGÌ£óó˜nœ®fBÁ´ÆÓÙhlÔA¦íÔD<™Å`u­bøj!h¾%œ—¿G}¼áøßwÎÙU²ó6ϑѵ¼2zðÈþÞ»§s#MQ’Cr$ƒßÀ—4 ÀQ¤]xh6·=vb ¥­šâ$EÐDÎï7Q˜ñÎ~yÓñ=ùk™Rq/漞 9h{w$A /¿D®uºAœEù¸ô51£#G“B#Ø.4Ù4Û›åñ)6ty¿L…Z@õRSBkú¥Æ2ó<ÄUAgPÜ,^)L•Ñz¯O?e蔈¯œ&¥–¹k=Õöøe_FNíø¾ER0º[ÿ¨¦š¤ëeª)’–¨V¥¤e;Þ›F¨ä£='ûX½ù‰·÷P¬mgOU»i–œdRM@ôúe<í?Ð ¥Æ#³-˜E_ãWTè̵?œŽéé©dÍ~<½œ n¥›ÇñœôŒ[&9J³»'½¢Kð½ÊbJqèpÈTIvƒy%ˆãnÊ(QðÓODg÷§tÿez*é·›,I¨ýÕÝ%á} 7°W-‡MÖŒ¯£Ù\XB¿Œ™ƒ‹Ü¡Žs›L' §$2†’¼a ù‚éCâ·™}›RÙUU’Èt| GÛËíüɇ5§º× oÇÀ:”’‹=Ål)*Á;É)×Qúï¶¢·È ƒè­’fáÅWŠã«&Å-²±GYlé '¬ª‘É·n Ÿ$„ëâœ/QJҾݬðn[Ç<ìýèKæùчRtq7ÓEº‡”8ðžSå’„±á‹qM<†ä(7©×¦ ‡¨èxƒ–ˆNÚÙ" ÷0¡Q´Ÿ™qæÉ%&† ¥ž$tJ»ÐñRà[d"õl0~^:‘©èjVx :â4,…SNd‚µH …´ó;¼Ñ÷—Ð],³¢Øöþ€aAŒ…çßðèÃò ©á<àl/18éG$¾þ0>XßS92“Œ‰xÉ¢I’Ÿ ‚YÒ®0åõ4Ú'Ìæ»öVt¸*“TO_ù  iE´fkÍò÷Ë"ÿ¨,ÓÎïÌó‡ÌB'«šEòê‘X]1kc˜Dÿ4öät¤g"fš©vdš›?0×!y* §)m·),·-ÖIâ½7ÅKz˜¿û²;o™¾›ƒKQÏÃu¥¥5=µ¿–鮩½É¹Úqwºü¸›“a2µ/N—;K^Î!ÜjáV—n~"M=—|‚®.'èåªfÒ}êBÏKüé“7庸À ÑŒ‘iqü-´PhÕ]¤æ©®q£`€5ƒÕhMjªžQõ~8Psa˜¤ØPçAm$¸*”w²yϲº_^Ó¹/Ž›ãv’p–ppá†ßƒß·|Øz=9áy/Ùí3¸V·›lo”ôÑ‚NáÂ=$òEŸF>²‚_ѽ¦²߯c£k% Ô嘂 NÆ^ýCmWÖT±kªØ5U¬ú¬©bï€JÚúæºÂþ ¼íG¨ú€¦>o}¨ª‹7U¾æ`&â¬"ൟŽ3à²J‹®Lïíåønx%¡_ FL¯ÖÝkîyç\ÛÑx”T›éY¯ÄZ,7ñßG7qÄnpqâ®SÁl’õËX´Ú1L%Ö§”Ú ÆA—éŸhNô‹ø²7 g3cFüO' †é6¹ñe§ÖĽH1|äÆl//ï&|ÈÂÖ@0lϽò…ôaz÷ç÷‡DAèŠÅÓl¦â¥™€ùÌ=‹˜®y ÖXÜçÔã>Xh‰T·ýZ²g±Ñª×Sj77ç¯"û¥k¬8úTÿ¾R$Àœï¼£ÒÿôÔh^y4>Zšu Rl´¬:í||µ”›ËW+²}5 íÒ¸‰FääÁuymç$µÍ’ïÚIæáÁõ$ÎσûD&^ †þ~!:ë… sÖ/¯ zHÍê$$ û‹ÿÊ"ÄÑ‘.’ÖÈ£,ní”!ý6¦Ö}ù”_>µ_¶Aµ yÀ+®kˆ1@‡m a*Ê`zæ½ÓVï¹×¤nNC=öz:Ë®zÊå¢.?ŠÞ=)L¥É%÷šúº| Zy&—W5·5Ô&=½ºù®©×Z » äf踿"vpAâ«÷|h(Þ%MÙs£W†Ö y¯î†ÃGâÐ &ð2?c•D)"‡9*,:¾‹"2S!ÌÉqIßÛUó_ʾD8ïuœ¶PºI !k®³Iš!nŒÒ%œÏ=<Ô:È[G\^9ÐïWÊŽñë\ü÷lrý øïJåé®Ãÿ±»³¾ÿ÷A>ºË—Îl’%³RI'ýp•Ä8†I“Ñ*x?Ê©H–…,Z««à­ñVQá>æ…{ôlÀÃ/xÏëýœ }âS¡OK }BZ’O¥OžCŸg>kžô$qž37ƒä¬„hÉŸùìþ‚ëÀ½5F÷>Vy0³,´ŠLèûØ¿ªoßgŠ…M0h—Fi²:ê‘eÉQÜ}¶¸ÆÖîPšø¢Fêî&kºö¨Aˆl%R XÃø’i¯»´×1,L+an/¸Ïÿ;}Xÿïvµ²½öÿ~§k‰íÿÍ8jr(=ÛÈþüTÞâÐá){¥¨¤ó+çb›^ÌÉÜ•¼Óã‘ÂÜòærjì.•ŸW1TX„èRðPV —ÂKVQÓ‚ßǘ„·[/œÑµR÷°†7øªÚßi–&è>ªÕÞc¶þ,öñøÿ¦Õ‡åÿÝÞ­:øÏݵÿïA><-ÿß"—åáëß} ýÉ·Õ×—båþ*î¼nõ—rç 3#m¸Œ+o{.G^%¿¯ºvâ­xk'ÞÚ‰·vâJµj'ÞCùÏ|Ë<ì’Â+<]4³¼ÛiöV‡>”`ŠÓé^¼Iš†r(7ЉêÒ^^ÜV›fÐEžI:©T¬‚t;~Íä:˜M•Ê9AÃì\:ð‡GJ—{c“uçµ£Yü .Œ2"(ϼ8F J‚UPVP("c°a\5ÕH®šˆ¼k¦á½WÈùð'¹µÈŸLë)4³‚¤“]3å}s¯4òÉúÔ/ë¼÷E)WE ÝöàǽR(Ò¡–Á[…,É’¿Ê(UÔä]–»ðÍB²ƒÌË…k'ób²Ct«z}ZüÁshB­øÃH¦Ê¶ñ}& $ôļjŽqÙØ,ßЋæ}Ñ’Ð×HõÉ1 £yF¢SÙ¼ƒ1²pfê³ÈŒæ•QúÀŒîalFáɛɲFhtƒ4J§}]¿?És\¤yù“Õ¹’²:'{Ø—ϧ9§t*(4¯ëC®¢iƒúLŸ×«F7U“nZS1^u§ìg¬;Ø3é± Hµl” =(WsL×e¯<Ëi•„Å Íyžèw% ßóš'úìä›3V¶q’×èðìÜåèÖ×÷J2nžß÷âøtþűRÍ^Ó†U4×ÈŠòÌÍË/Ѭíð‹æf³¬6 ƒ# ë£> 6ѶJö€‹2JvQN“d;cŽñeÁH •Šé«äºU6շƽYn«¸¶s`0¾™{£]}AŒÈU¬v2ÃS‘£9.ÓŒV—ªSÔîÝVG­:²ªP®œ¤•£ØÇ9ÛÓí©ìæ]Vƒ=‰‚xü@ëªl€ŒHú+¬S…e×ÚÊã{߈î,°Ø>˵ص"ZpˆG‹/»i=kSô[ú`2y²ØJíò9vCÊröú<éõÅÝ3òŸÌ±Ì§u3 æéƒ.óÎÌÜòf ÷{5 òNÑœÆÁÓ€qàn”ÜÄÚ,¢B“—þVX$ÿóñ"þ¼bøOVüßîîSçþïêÎÓ5þç!>¬õ:þçMý&¬Ã·õóRtzÜ|KP˜£ýRT#¬þû®ãïç)d ôI½¯ûj2øO~T|'0‘‰x'ˆâbQ‘æ"›óÝì­Ý\ý.NT# ½LhMUÄÎÏWSÌùT‚ cucò”®_µëÒÄM"À ¤‘f7˜íçÊK»ÅÀ`̳³ÇÓe’I ¤g#.±ÑsºHòÑÒ5mQ½´ZÖêz-óbp„øá˜Ôkè›Êªg#[[ýÉk‚ Vs´¿Yaþ¸ÀWŠè¹X— iý,óó\GÄ ˆZ]Ϩ?¨›×îš]ç«ÍÊæ üWé/"÷) ðÊ0’â¯ò§«¾üóå_¿2jrF*Ò\-£¿(ùÍ`T•þÚ„ìBÔq5|DŒ=uH¼ r¸º›Ѐ ŒAIìäÙØ@"àïÌÒ¦ž3H!m¾oÈ6ö ÉOâärqè4êuP]ÌÔûµ.®¡1¤hƒÀ<ü”úM¼¸þ9¥YbIX-¥òÕ’;àx-½©1ö¦Fàh%ì¿åõC"“¹®a ]Wrhkzó-Z4­‰rÏír3f„s{B€bie¡¥@Üe8Ыrn^T8žÌ>Ž‘ž©IåÇZôŒ)±Ä8uQ2žÏõ,>އW £e ŸŽ/4(ŸwΆIÔuŒçL¥—N]Ç“xt©ÖA´¼&œoqN¿„µ[ÏB—©xÏkÍ}aÕ’×Uqñ;E+.{s•!þů®2²ñÜ]Eâ~Ãüøñ&ºî†|Í;($L›âß£á¼ ÏøúÚKúʉbV|5`à±A²k~9}5à›£dyX¶¼š¡ø}©KÑÛ¶Üægñ nÓËèÙÃ?–¼G¨ùöÝ’ä×Ú½ó”Mï(Úhïпw¸êBŽ)—ÿÔÚxÓB½ñº} ?Ž»¥¨CÙtZ ؇uk¯øgãu«–•Õm5Ûét‡+¿ªè IËwUÑ›Ôâ¼±½û(Nȸ O^•’Pß7õ^gŸ êîÁósx~Òñ8/³{Òñ_±”Àìá €4-Ðe¾·JÕÿ"éT¤îâÍ&Ì j³Gº—¼À{s°%¢„MÎè(|9wwš´9ºw¾›Š ¢2z~¢>§éù-}íÐÑþÜ—Õ(\˜ì±Pª'nªsLTá&*ùQÌ´x–vÑsÛç˜tHîÀcÚ|?4¥¥õ’Gb¯dç{\Ùïø$â%y!*ö½A¶ÓÙx»'ã¢!,šûÁ<Þ8—eAVɺ!¨×ñL]¡ +ÜtÖ‡!›ŒFžh£—‘ºŸ¤Û¿£n0ÜÜÝ$ƒfhý¥cyÛIòOÅð’Èò7L#žñ<ÏÕ†bÖ•çòqÆ)ÈL6Ô³Ú{õLd¢]Ó ™²?aÑîãÞ&§ ÆÐmÀ£-šþä[Òd\z¢—br†¶´€l„)JZÓ¬ysÃ3-Z‰yÜÐW0p¨eŽ^ÉL´ƒZåà«Ë ÓÛãTC™/OH`æéPPò†¼ÑÖcý‹ÿƒ~–‹7EêBµ‡¹3^ÌlOÍ6]|¼x¢âÐFÛv„hŠåì½µ…h_—;לòÍv- o'enK¯™“8ŸÙÚÒÔÿÞ¨dùýJÑ%6í„-ýÞ´‰çl'˜¤´à‰iÇ7asžHu+oßbM ‹„DïnFv¾\).oî 0“—±§2fÏÃ.2‰‰Š¦8ƒ\‰Íä$¦?M÷èííd|;ÁÄð›)¯¬QCëŸ1¢×¹Á[;eˆW¨1å ëgÒ;ð£ Lq1Ëò8y§¯6Ö: ÖÄù;)ôÿ]=lüÿîãJÕ‰ÿº³>ÿ{ˆë²}þ—c–Îw5ûäšò@PüÙXŸ¢ ¥¤x„Ж¾£Jþ…wðßõhqÿ!Îim3R¢ý*ž27=s¸ÝM)*¯ã¸ŠIE`Oðï;ÐåÓ.ÀJ{ þy²~ƒÝÂð ¸w7·âjÈ PfÌåz8îS|ãíx0šA0i<\nEǣɩÅ&e*é>Üõ'tu5ø€÷ƒŒ¢þÕÕoÓ»‹Ù¤9+áyQZƒÔ£‹Á)8Œ, Vxùàòc$󈆃O[¿‡Êö¾Œ×gЯ&¿î•Ÿoca˜ ~Q®RÕùÂyÊe<ø {Žoä¸Ä}Œ¿ö¯`wtƒÇ“Hþ*ë†ùÕuãëU¾ÄÑ§Ñø ŽéÑx¯Œ×ÆëãõñúÀx}`¼>0þ›ç›Õ‘ù±R"‹zÃI Ñ}dÔV6İ}x;#S…2‘b‘ÇÐéb ˆCddôIyj@8æ‡Ë¡ë/ˆ ¿WÂ=ÊœèÌ+ºJ}–'uµØ.«Ö< ™ðë/‰>“”ª©¾ŠÐHþFwÀ¢9 ¶ _\Ï{;cÕÇ›[a×uy7$ª½¦ƒÿÄj¸hËÈZnü%ŠìG­+Á$–æÚT[€q‰ÄöݨžB¬œñ›ÑX\â~ƒþôÖº3¤q« ^ã=ýÆ™L x 4>ýÙ A~˘.Ý“üàGŸæ¨ ƒ£“:::úðuŸgxðÐèÌ16:Ë Ž@ò¼£ÃŸ<ÜXÿñ&ûàêÌ=„ už’E†a¤8Šž{#Ù;Nv5ÂC(Ì-&–ŒFÞ5£‘:,ú°h,:,¾a¡é5CQHþaaéu ùŽP_Ú6Öj»bµ]CÓþ–Ð4~ÇãzÝã¬÷2òÞ™döÛœqŠƒ~kPà:¨«ÁÉ5ON:.ˆ—{wT埅›K;hh¼#d\³I8»f“’Ãü-þwÜu·ÔÝëƒVËßíÿ™".·¿÷ë¢óÄ 4h¨ñFòàd«,ðeÂHпéhߤüÚ~ö ÒxúƒÁú®a}gÈ•{X/‹`sÖ|¤Š²Œ^ó-Y¸°-’‡Î©¿,«í/¦íÏ7ãNФk”䈒ô¢DøØ‘Ñ~ú´©ÃLñ¬c>lICl.—PiÖ6í†1xÃ7»–+S{9Îʱ³@–;¾,*ËÆY>N U÷³ªªþZ~WTk*p5îto <]Os湞>ð”·.È’·Â>i+˃v ´® š•åk Ñí.xqIÞ€_6J¨ëþÞÃ@]žuô§ñ(g¨'‰,Ân^Å/É;bCíMŒY [GÅY°)ðéýÓ–ÿß#}7 oô5íÎýEXm1)qåÀ‚}”WSE9‰d¡kønønÈD Û‡>ãP¤ C÷,°ÿûõAñ¿;;OoÛøßÝêÿû Ö_ÿû^.]ZûõAp;Á_àŸ³fŠ—çì¯]„ÿN1i·÷~o¹bç#±Â¯j”Û¯Ö¤œ8·Ü sK=Œ’ÔÄ'BŽ­„¦Ïçã²?ÃÿN—…c/ðï=ÃŒO ÜD sV”ÁÈï0òzýor£‘1<ÉÈF>Hb6—˜&Nêpñ-šÒµfßè>ºk/¢kƒ Liúé_b>â&$BÙ`ŒÏz›~-\Õ¨AÎhßꙞú/„»9(Ú3O§üØ^—Ç·±8Ÿ‚‡Q†ÏÙéÿõœò§Ò€B0ÇF³LÐ.˜¡>|„Œkº†¯!Ä곆ÿÀâ‡ÍžÈ1˜SO²Á«Q»|ñ­ÜŽîFƒGŠ–ÝM½€aû“%oÉs*Z{’<=ÑÆß¢Ò<Ùòbvõ\° ozfÝ\i5ôÎiö;šh{©DÏ3.x<)\àœ¯°Zqfc=² ú“ËÐAצ÷g ëüO¨”!ù¶![W¼–ÒR‰¬Mub5Y“xã4øÈm`C4PZ ޽!š©g0½eObQ$`BÀßõÅ”ì"´­¤›¡þøï)þÛ&g3Bš¶Çèé#Ï)º‹ùÏõóˆêì‘ZИÎ×ó¨¥ý º£.ˆ¡Ùx³ ”¢¬3Ó*K×Fì¬ù:¸é¦!ª./ã[œ³`6–PcÑøBðô¾{…Ú0I2Pg8ˆ $¯Y6ÿ§_º0ìè¡/ƒ+X  SèÚÕʯÏe¥ôÍ B.›t<ÏqTEÿíÿ·ôß‹ÿFQÉLõ›Äôî`*Öt>¹•Ç<|E¶ð’ª‹µÌËj Hx¾0ãâ{ÿMl39¯aÌÛí°—ÜÚ`Q›Jy¤]!ì‰í_ Òß”9¬)4/¢®Ã$^.äçÀcÿÉ;’£›1ˆËË» ùê¸G•8ŒáϨ°/0æØÔÁ@»†YíÍxŠñQµ(NŒuÁv '^›J2j`sAr-QtM€;Ð?¶Kò.S^)û³h:¾1³à`õ `­ ÏXHÔsž3*j ¬ÇÑ?xó€é»8oDݸk÷Lì:®£z"öö×¥ ô£ö¼¾ëÃ@œÅ ê70É;Üà¥!$óËo¥`îÇ77ñÐÆ™õAKÒùðn<ù„õi$Žþ?;¢Ò-ñn”gˆÙxõL,U}âãÝ@óÌl-šÞìÓfªR„§imD¤5Ä#Øv4𛫠Åé)3´•àúDŒ¸÷׳ŸCxeá:¼Œ·6æ‹Ú™iM];7z‹´°žÔX3ý†á혛‰C5 +ÈÌCÅ-s¹žœSÀ)dDC;d„9bw¦-UÒ(4ëV’s†©óÔW)8½V8iÑkäsZ0’)Iƒ£“÷â°Læ t7‰¹µ ï,IéCbš+`µÁ2ª6N"ÐéwcÈI[/þŠqÕ¼pCK[Fû¹¾ß<âpîÏd ¨ Ÿ4ãP²qûáã³î—ÐóiQfàbüÓÀý“t¨O‘;3ç =Ì?›h@g#*4iýMâÿ}7†™5jȸvÇÍ”ÙEegŽ.1´![”®¿°8&]ÏÅI‡¦2D FÇ`¢Ä‰=’8DDì…˜x ÷èZþ åµfó ñšqâøS@Í{Ý^):«ñCpî9vyÛÙ½åßý×¹Ûô} ˜~À?õ´c/|¡{Ì/AÀš€ö¨ÑkWRò9,E‡ð_»{ÜlôÒOwšÍRN${¸8qºÎ°/*V.:kÒ™ÑiŠá‹^èõ¯|ß{{ügIÇ¿ãñƒƒ§·Â2F|É™ƒ“7àðØWL—–O÷]íØÓ¬yaóûuTDÒV’ï£çѼ!ŽFÑ#_á1î¾¢åÂsƒûJãeÓ­¦ EóèwÑŽ9€âKÏ yðÜÁ‘gÏÛ rÏŸÚ©L ù f€Q›||À¹ä ¤îÃ4ÉÛù¶Eyg§qqÖt/ÙKÅ‚«¾ô–F¤‡?^§7È*Ï «HŠ<%Á4ÚÙÓnCäŠù»PX+×3WûÅÔ€Š0Llž¸CÀª^ÏÌBƬ¿_9¹rˉÍY’Þ2áÃé¸_\~èuÍ«½œƒuY¼‹DA¤Ý˜gìˆéŒœ’«aôú€¿ðÜW©KÒS)̸å—[¤¡ùÙ,±käÃòGip~»ô_ÞO3†‰ñWèKNÆÿrÁlÒ‹ö/à@ùÙ %5E÷°6^êvFoŸ5µoNñ°çLš­æ@à×qSc'о3:~ñ0…uTÂO• ;‹TŽ×|sš°´²H…ä ¥†Ú©¢DUíG3±oÆLpÄľ1ᥫVó@$Èýý€Á xSño‡E ƒÛBtiœŸäÞôœ(ªcD‘‹y˜¨Uà‹‚)<9-c:çjGaI ¤C}òMlñ£çä·õª®¶i¯¢[ŒîPƒ'M†<‘€9µ='³îuNUέJ2/è»ÌaC”Sã&œÆ6ü1"¸ù%{Óì^\[ßÙuèKa•BÝ¢as0¥D¤Ø"ùˆ¥/æ7ü•u¡qz\‹Ø¥LDv‡TW+tcµuÏ ‰ÏÁeQÅ'Ý‘üñÕØ|3vÅe¸À 7ÈÈ¢¥¾â¿Õ9ù¤î;òÔ«Ùñá|KüNš}iný­™÷-bp¿ ¦±kU?g„ð l˜];fÀ_»ÉC‰Îùú#¯ù¢ž<òŽcrOš“z£{Ìc ŸxCNìøJòDú¹r¡P¹¤gÒ)h¢û›~Ÿ¨5XºÞ’þMÔ^_ò†zëž`ÎE•Yƒ3r1´<»7ÔH[éÌæø›‘«%ó^êà4Ê àOíövø-„ô Aù’äD¼ íVç³ßåŽh>¨nG‡<´Œ1È"U‹o¾åB!£±B“zP zpGæée”™EF©\N•¦#k"Z}°Ýζ]ƪbï4)?pìŽmwáiâ`ÄÀ!§éxB®â›XjãÑB*FSÿOÚd%3† MOB¤<ï ØóÆÈj²Â¼xk+­¬GßÙP ÿb(Ê><ô<Ъ`×ÁèŽ]¹:*m)šC­ð;¼Ä ¢$cÞÙl”ía‘ׄ×e`¢È—ƒ“ïa ßCz×qÆ8¹Ê\}¯ŠIø]íX›1bÆpG²#¦ kЖ²R²Lñ‡G\É›‡á&ÙãÎøêqêTĦD§¾ÏêÆ~˜Î2þ³²³ót·âÄVž®ã?âÃbƾîö ÑÙÁ^O߹ôT×wïuú ÿ}ŸF˶ÿÞ ð Dnþ ºOÛ\&CÚá[ɵYgTÝÇþgx!ÛävŒï¦tw Z!X9LÑ-ß»dêÃVçU ¬gÄÔõ©ÐÛá ü8ÆÓOIJBBnq •y´õ~YÖŠ eŸcFįS,Ê•â é1ÅÈômËýox!s*<'Ÿc Kš‰!^9‚±fÔ²¾ÊZÖW\Ë£úJ¢1¿C0æ§þŒÙÏ Æì¯6³ Æ4&ŽXT$¢) œ¿õ|xºÑçñûˆ¾¬©(‰º5V2¯n+-–<^¢nt=óš¶vX¸a¼Ær»ˆµÈ«‰‰&ê¹$J)eW_ìê,»:Ë®®d÷^d‘7Šã}ÉÁ[Ó ¥áéG¶š,56²Y¾nÆš¾O‰5}-ß~³˜§“ÇA”´âwù¸¥3ù;éþû»_ í±»ç‚Ho Äóæ i#àÆ¿—MŸï×zD1sŒî{t¤½OÙ¾À. ï5@ÿ qpïÁJ‡@dt±T`[xXÅÿà—4ž£Z÷?ô¼Ê´?m<<èÀŸí÷a9×pOujH˜¹ú1ª ãC8âUà†2X ‡ÏAà{üã”À¯Ïèg§z–N˜Ý‘/ö^‹Ÿüw÷dzÞyëÊbxà}ÐÌÃ× .x¥ˆ`ü>á²×A‡ò’Æ:8ÝÓäP³—jƒ”."rS;ÿòcy¹|CרˆÀó΃æå »9jã{ä}®Í‹×­s:ì‡?^÷¶@”ó£wkó wÑF Tõ”TÏÝTï5ШÞqâI°‚æú«ù £¯»½•CGóÁEa&ƱR/‚Þ'‡.#ܧ Œv‰îa Ð]|…N­<–¡Vœ‚Tô ¥¯î†Ãä€-Y ÑãGö‹†ú‹1ÖMÆ´¢9«Ýn{C7ÃÊØEåáhÈþ4‰c—‡‘lÒn‘Í%ÜâeÚä$&×4R÷³è×Á0QØf†™“œ%µhÁmo ±ýU“ù*¹“Œo°!súË8ºýØŸb`®7†_øØ~VáåÂ*Ì0ëaÇœ8•„ûGŠ“*Hœº%\Àhò¦&vŠï=ûXÞ¾R '1º(p»ñ[5 ¦»\ª:ßÝŸ1WFµøé¢\1â å3%éO†ß¨çocøg4ƒ]ó*?| ™Ì¢/Ä1‰ÿ}7˜$#ï¦â¬:‹YCüÉ€º ç2D@Gu-’t@¥(•„åתð¯zÁ'”w($¸”«GÉ*7a±¢“u>N—¹Å—(5ŒG`Ä´;0gξÄñÈàî9dÚœÃjT@\ã &T)“IL*¤¬7ã«Á5–%Æ™ø°U@çl6¶Ì)6Ûùr<%»™oQçsþFLŸfÓ”{CSd±$—tñ ß}.r©àŸ1¤öˆª/nÊØ’”@K${BKáË›•#³)¤- ÌA8³â¯ ùËÁløíw¼¯a¤Z 8H- ›$fq)&UR·/ÌÀ€‡Y¥Ìú$úv‘ý!åõ{’Êt %—–h\B°€Õá –Ó"§ÃÄ>´ ÅÁßKt‰¼ÈD)j¦6S>Ñ1Ï'©/ ñǸžÎ&°þ ‰ÃXàqyÒh‹ï8,»ÿ–Pm„Ž⣬=€AÂ+ cžš…ÇŸ; Æ,ˆŸu IDSœ&<¡I• ÉB]ÀÄN„S-Λò  Çý·N:ب4Ö˜7>hô"ðeÕ•¢†Yìóx€äx¨Ø¬y—㫸¤  áx|Ëãà†h¨kË–;KB—´Š%:¦<¢)L˜ÏQ½'ÃVðÀÕ‚·4¶ÝŠL€‘q›¸çÑVEÌElÅa5h·áÙ»øzLÈUß´JÛ&nK”{9{;À†¯î>3QMüm%jµBEEŽjvË000ßÿö—艼ãm¯ˆæòïI?]l-(’¿Íq¤§ƒ›\0 Ç^Ñé¯nEEœÅä+ *Uo4Tž†“gª‘Äž‰EÅÕÄ#´Â9…ñ5n0;ñÓHŸ@<0êój”7)¿CuíŒñ•ʸê À¬Òv¸4¹ùm”Q—K¶¾'%–›Z¯TÉ;Y%?ÙŽŽ’(R@êô÷ŽìwTÍŽ¸GZÍ´¯ÊaϘþ©Ë‰.æKÆþ.ÑÓº@r,s¨Ë”†å¬‚Ó›9 ö¨hÎ"—–ÛTL¿›…étÔ¦Osqâõ(S´REYyaªÇ¶?ÉMÏÄ(ñÍðø)64¶Fò)…†º¨Þ‘;Ï_Í1¦tí ³yhú³ VáŠòÍôð;eV¾¹ÎhÕ¼GC44ÍGÒ‹%àËírK¢—a^+!ª©µ©€£~¨(ÈÕü§çŽ|‘9Íieá3rOqå'R­WÊböd$«ÊBtoFì‡Ó¿±<ü¡@Ô/ JƒÊÿZ…¶h⟣øëŒl82øaŠ6¥Ú©UÔ*Õ¨…÷…k¥¾›Qµýi,y†izIÆ:Ú¦ËUüu0%S3d±z=f ÝHê‰!J;<–èdÊÅ‹g˜‡t:ùv@`äÜ ¯¬½Gà¿>7Þ 'ߢ¿ØMЇ¼tõ› 5šï˜(AD–Pi+ÁZÃGúT)B;©)éGùÓ&âD<+J<Äž\*…®nòä'sYSŠŒa¡DåV‚GÔ¿éÔÌèõ[/k[U/J*ïÙeëÞqã.ŸÆÅ€¶úT ÈÁßrÜa”ÕˆåY°SóÍ»ª14å:­-ör̺rm²çY› „ì”ÀÊ ½˜·’ùŒ·yÙÅólÒ©ÙRáðês¨vg8vÁÈ–,PÛ›U¨Á‘Õ-í;üˇUnïo‘ýÊ!Öè¯zƒ÷:¸rrIÙ’ÊŠõÔ Çæ›UȤ`¯2N\ŽJ{XÍj|»ÓSmé…sÜs¶&èíõÓ"õ %‚•þ²†‘ƒ‚Ãw ýU¾ñŒ!V”CÒâ—ú_RcIEJUéY2šüéž{ ½¾ÎôG¯ôšS¡r×én-þ$Paå¯s¤äht\À¦PSêë³;Ne»ªlÞüB´»Úãéñ(kží¸ <½íލT`ͰÝHš¸zm2øðqæv7ÅoGM±ÐÖFj² PëKrSn¢Tû³æ"Nʼn6+‰Ø”H Y¹/+‘a3’úúU+‡¬À@ù¡šÉãXòçb8¾ü4 µ„1ä$¥¤ýIíOm*¿¼„¬|‚ Vyﵨ²_¼É'`¹ö'3un”¡‹ÃøÚVEÔà ë!+¡°úŽ”»×ª¶>Ån6½l”5¦#G±Å°f%ýžK·››OÊÕ¨wå>ögÚ‘°¯ËüóEU®Zɢ嶂ÛyÛû/¹a:´6P‡¬ÛYö¨¾¢”,»‹+öjTª¹™ *;fè^ª[Ó–t£ŠÒªO¶¢ѧ™Ã³ý›m§Úóàj.6©†i,6³Žq r°öfÂÏn|wtæ0Á|¶aU؆>«ÎoŒ¥Y˜Þ\|3F:á‘‹wê’GŒYS×®˜ºhÊòÉ$²f¬£ÚýLZ妶VÌ1eé´ ‹ö‹¹g,Þ]ª)Ë‹6å± {¥/\”|-*{d*ªhµ¾}OG±c½Yyœå¬íÆsÎ}µ:¯ñü³ ‰%¶ûU¢¤š¾cåÀ/Þ Å,mžUùd­ïµM+¸ÜríE¿ÃX½[MÙX{KÚäå%™Ñà J B’¼€¤œp¤Ç9ðHcp0A"¨š¹I©>™Œ„eA ª™Ð‰êóœH¤êÓœP¤#»^Ú¹ u£-E\„›ŒìCRü1úȪpj~” ¦bIuÓ£?¹ò ´¨>‹°OCXýƒölQŒÐÒ=¸B¡cƒ½vDª›"Ä÷UÒA;Û‹!ƒ“6½´¿˜CÅeš¢9iüODó5yç^üÍßtº"\ÃŽ»íýyÁA ړְ!”:Z´IùBïLÄŠ¹³ ë\-ÎéU©Z©VâQÙÙùQñA†ï<ñœÓŸÕRתOH?,øÇwDƒJ¶ûÃxÈÉ·YYà̧r?ж<ã‚ýÙyüݱ?æ…ŠåQµ&ï<ùQ?Ê⽘= âGß®.†ùÙÝþ»b~B3ÖÓô£ÍUº™1×t%̯œI-lPü³óôaÀ?;Ïü³ãÈÙUy¾øgIû}.ðÏ–{ÈnOwþX Ýí´ÃÑÝÝ5heX ±õñî|ÜÔìV~˜M͂ȉ]ï¥l?hÕ}™ù‘°>Ã`·ú‹oeUXŸsÇnäƒ@}vw¾3ÔGƒø `¼® =m²†í¦®a©ç#÷ð ˆÇßáóÃméw}(Ýôýi:¾g÷éwÁ÷ì¦Øù6¾ÇüSQ!á»Ï¶Ý5, Yõ{ÐUðÆ95J„~ìîvQò±²Z‡ª&mÚJªp¿ÔcÈdµû|~Ú±ÍÚ±VÙ8ý´c›.í˜fÑVEF¶xhÇ`¶$sŽ´‰tÌå"K#3Žù#˜ÁžÏC;VöÐŽÁö¬jè§S¶µ„;ÊI[¿ Ó¬=JÉuÍcÆâgÈ£Ê èÄog99W œbˆœ/):/‡Úcpd½+„ ‘ä1è1ï‹“Ô£àKQ?[ﵩ.`wù’ÙpCÅŒµ7åPŸ ÿæé ‡á2[BXnSQw2£~#VŒDy™52S…£•jÊÊ; Ø=Z²Í,"šÌ›ôšF­ÌE¤…GéçZm*¢¶¹^>N`’Jæ0&ì–e”¸â&;caä*Øfc»ÜJ;Æ¡Cº÷<|ŒS^ˆH+,ËD¡Ü‘aˆÆà²ÿT?RíÍÏbPáK%ŒÅ€ãÛ|h\*ícבõóB±i•MÏé[e®Ó·ŠÿääÞ‡— Ö¯lÎw<'Âõõd†ò­B¦¼/®ÿ0„dêHNüYήïq†W´cÌŒæ<À ¨á½a/­ÇI5Šèšm•èy—‰h©æJo.çó ÕÄé͜Ƒþn¢õÏŸ†U|²m"ƒ²ùÞËÍvÂG8—%Ï÷žäààÏQÔìù% Š›Ÿ.fÊ&^¢(M✢´rýôd›KÀŸ<^\Ñ2«ÒTœ®28®ødšVüÎÓÙæœˆF9£ £n>@#©¢*4ßÜg¦Qsà“ôë@V³¥À.ÝÉœáôzjæ3áuxvœ$_š'Ù캵{°]Í=á­D@ Kl*R2x’îˆÍŽÜ<â[_+ù±‘rr-ÉıX§!Lž<Ï’œc¾[Ýöú'DI†vibZ™'>,Ir/hÉ'O~œ YNéD‘#Íd‚~ò£B'ïak–S^A= TÛÚ¤y¤œ|î jùäéßt§6§Q“ìI´o²òP£Åç³%ñ ¸Í'Ͼ˖N®í%Ûz é8c’O²´>O[ZŸ¦+åõ]ß|óéö|;‡Ÿ}l­À òÔ‡£yš¾·O‡w>˜–*A;Mp¼ÑK^ßãN—ï=MÙº¬éÚ´îØÉºÊÛö4sõtwNÄU–¸§™à§Os¢­ž>Ή¶Z —UÒ–¢}d>r³†‡®í(P~æ0MªKѵyZTŸ¿Eا™‘ÐwØ“EQPK÷à …Ž öšñ©nŠPÏÓ‘OOŸ-†|Z #a"˜¢9i`ÓÖÆÓ{q»g¼Ó^Þ‰¤Uå?3„»,Îi%2bñ†@~h˜Ó³Ý5Ì)íFš“mM*心Q%Z Ú)©ú½£ä<öS †(R†&xý1OôñŸ²*°F?=úéÙörè§M¼Ã¥ü0w¸†t‡4NùÌÝ­þ¼Ð'̓úã"ŸÂ÷”<[Ž—@kwB;ÃÙA÷6žG ãÙ´Á£¦<çsøÍÍ‹üråóý1MþKž-ÄIð]yIÌv)ç?A'Oó&6¼~÷Þ³e2H9=ˆD÷àO½¯äY~:ƒga:ƒ†;•ÐÓCÃz!+9ÐéÙ³¿+Ð)0ÓÍC6ñ½qNúÇÕXh†›+éêñNÏÒ¯YÞéÙ“ï‡wz–y¿É³§Ká–Û7,…wšNþ,Ý÷úƒž=K;‘}^]ƒVL çì˾Ö)e öü‡Ø‚iÍœø¤&æç?*ÎiÕ{µ_ää7hžo¯·nßõôÜç³eó ¨§ç•ïŒz27z ú‰åäõéù©Õöy5uµM=ozüS`üíü,ð§ØcòÜsyž¾ûOD=ü €¨ç){›<üvHº%uò9 üó7õ×ÝžžìþWúgØ¿í_~*ïlUëvö~ûÏÇ‹Ÿ·®3ÍùنϓÝ]úùôÉú¹]å¿··+»»ÿ¯ |¶ŸVv·Wÿ|UÝyò¿¢íÕVÃÿ¹Ãu4Šþ×M2íߌ§¡÷àµëËåGø°¢tOë·§ ƒ¤B0òßÖÏK°Ÿj¾-!vñ)¸W©Õà€ÿÖëÌ󣲇rsÿœ®0¨pà¿z+Mër9jÖŽk{GÑÕd€8‡ ìð\¿Lñx4s^“”„£Áç-Ôô^<ÅÓi—’ïöúÃÁõx2ô£z<ù»o´¥m×^GÍÙÕ–$0l?Ç7PXôR ¡­­¨{Ù‚2Ô&îø iK2éí½©uj{½ƒNÒ°DBâF»wðZ#¢¦&ÂcÁ±ÐH,mUtR‡ÚdÒÿæ«ÂþÛÓzó :îì5º·íd*ÒÜH?euß¶Ž›ï‹•'ª*´a  Ðëuú³.ÿL2 ÏÈç®5“Ô=¾›€ABÍ—üáïI—¢ËñÍíÝ ,|(‰âl"?÷‡wñ´D4¾Å•+i/08ó¾íS6Ãø«Ø€ÿ ãDÌýQù*ÆyÆûFxBY€It[Ðd€Ù`ÖŒ"-~}Yöo.®úÅzñëf$¹5ëÄ$ÙŸN¡®pWr'å`6ø—R ضéX a`W+k#ä£zS“”ªʲ0”6M+Vt{ãeô¨ýèô, S—a4 ¿ýn½|zk¬ËWTõ8_5N1çSƒïDºôȉteש‰)›Z7RTª-ÒÊJ‰¦g‹ì«ãÉd)àF7}Èû2¹na6¼Œ¶Ež°øæÉstG3d:½ƒ¦ÊéÔ(æ+2¸fÙ‘dJz6ã ½©çt‘䣥k>ÚÂj镬¯²’õ•U²®W²fTò7˜¸Ys’¹§sY ¶õ ü4™xjoèUx;Š`lLÄØg&M¨– ë–MR#Ñq`Ê) .0Ô'`ã­8°¸|Q²¡ºm‘õ\þ*Ï>ÂT3¼»±jÂØ6ó³ÞPy<ôŒúS˜k†Ð¤þM¾6{ge¬Ùæ üWé/Bvø oú_ â⎾üóå_¿2jrF*mZFQò›Á¨0âÀ×-s/ƒðu0cù_ŽG3Zx°õ<&¯âél2þ¦†%vbíÆý+Ü%Ýo‰kKdõz 6+"÷úBjU¿gµªÔêb!µªÏ¡VõÔ Vw¬Y¢VuZ]äP«º­Võ Z]¤ªÕuW›¨›l‰§·ÃÁ,Úû8†UàÓ7ñÂà?´‰Ö³©C©ÝbñM±[ÂÖOâÙÝdr»ø×»½WJ+ë+ÐÊ:keµ²®´òÈ¢ õÑ1Ç\­4õ±qÍ–/L %Û B%èO/ãUÖ3Qî¹]nÆ88·‡K&ÙTð;9©Ê9 ùþ¡¿Éšq.l&ùÑM†R{30µö<‚î¤6XçÛZr4­Æ—røS>ï ƒ-꽜yôF`¸ «,­ÙÇþ,:G­¨±m­@›Û²Íç8äFã(Ð5{£Km:c!/§8ç[œÓäfBÓc`Pïñ^[êßT mšÂ~<Îèæ¶Ø=uDJ=a½Ü)Ê H tíò´”̶éÝ%UÓë»! jý…Ò ‰N•¥D7úÂô>öÜ †ÃøC‘Þë¹üaå2BdîüHÿüD÷‚ÍùþðL³70 †l¯ƒ:Fx;™ø  ß®ËÒÆI@…¸É€úY_¡~úÓÃðP‰i7q5¸"Å’åbðöw+ýTk­‰íh›‰si5 –I}¥¹Í_5JY½àkáÛƒøòè©IY̹¼.]v3ºˆÅ– ªç°˜?£±¹™˜ƒø î«ÄPŽ·—«øèÛöæï^àÍ»¶an¾}ÝØ«5õÚ¹{‰|ëçáýÙÁž 4óíéySßhïпï:GžmüÁWÐ#T‘Ww£Kö §U¬Ù­µ¤ûïà=Ô¦m<çÇ)¥tï.„çD+Ç“Ñ~¾zUŠÞtêM0•ÙaH?{ý’Ð:ø ït¼%Æ—w³>l«£î ƈrR¨ûÀXäá³itÛŸôo0ZcšÜÊ@âµ¥VIWLŒÊ}ÁüêöBa£§ÉõKþùªmµßö¶ "÷­·-«€ö#>Y°ïu³–t•#IÏ+£ç'êÓLϯjçׯàíàû;öûGµô»N‚:' º²‹› þäíäh‹câf>ª§nª:§ª§¤zî¦:ÇD®«ê4‚dˆgí´¾RÂÕqlð€7¶Ú±ÑÁë}!zÄ®)X‹Ë©Þó_;ÁÊ}r7¸ü$¦_œÈa².´ cîgûö ‘¥Ì…ÂŽû©0MÆÉˆáC›Í)k¸av¤‹B[ð×|mO‚°…[ ×¹é V úJùxK«ûx7I%ùæL4ÚðûMu7’&¤¹üÏçìMõ9.5¿sA–‹GOº ›_Ý]Òºm/î[Fϲ–ÚÒÄå‚7^š–»Û|:+ ³o^µ4øÞl†¿ÍšÃÝnç+µ<'ŽÃRt‰~Y^¶ôw¤±OÏyA0ÅA¤_&Ô,ΓbÝÊêjJŒeBJEðf‘ÒñQäéu£D½¬ñ©¦Ís–ö3~|çW+>L?ÿ«î>yºkŸÿín¯ÏÿäÃÊmŸÿíÏy‚ðcTLHMã °)éG8fc}phJ‰ ¦ˆŽß›ë ÑWu>(ÞùY#÷ÿÖ§‘äó9Ù®âé`‚9€Az7EáDWƒÏÅ¥ÛÇ£ßÖ+g‹4ºÒ^‹núŸ /ߢ›†äc3ny7Ü¿€‹¹\Ç|©ßíx€xuJÏ—[Qc}@7¡{ ŒÈïò#mqÉoØ>܉k¯±Þ¿ºúmzw1›€1]BoØuˆ.£>ÖCÏj`å!)dÑpð‰ñÈ{8ZÞ—[Ç%þõÏä×½òóm, sÁ/ÊUª:»R@*—ñà3옿‘ kô1þÚ¿Š/7`eB寲n˜Q=Q·Rtß|‰£O£ñTÃÑx´>b6R®˜×GÌë#æõóúˆy}ļ>b^1¯˜CGÌùf= …¨”h¹áL}4òDG¿Üû¶Ê†?Ü׸™BÛ–²ÒÇÖéÒHAddtEONA&æ‡ËAi…»Ž÷ùјZ½ß½æ¿Zl‹Ukn‚düžW éGJþÑf7w¿ .3rcöØÞ脽¼Ã JS¬SÐVµ0hÎûÀ¶Á_¢ali;#iµOµE—µå¬çâ)ÄÊ¿Á#áÉ—x:훤k“xH£6²,xôg2€Lxæ›­àá·9&K¡Ì|ÚÜIU玮ϢZóè3ërgeîÌ«ÍyÕ9)!ÚŒñx(¨Ù¹UÛPá¬[Dµ SÅQÀܪmŒ0ïøyXÕn„U[:ä‚ÝȧÑTnèÝXT£>ÖD!õ[’¦Ñ–‚ª;¬ ½l¬õrÅz¹†ˆ­!b {u7NçúÌôiêžÍzŠ´#Ú_Lwì[¾ø&jÒêO>E¯úc˜6÷ãÛþdFŠÍhõ¡Øˆ .§ÚAÐ<½»üoŸvk÷„V;Vˆ(í”È="aRâ½óƒŽ<&:®uj­ã(©@¯Qxpek{&ùmú™zvB™R¢m+‘q˜"+œ^×<9=èüYº˜ÝQUÂíh%h5`4a"K=þjR2x‹_Çžþ,`½×­–³×¬íÿ™vV¦úö÷¼5û¾ >!7ÒÒKÞ-œl•BLØÛú7 í›T\`)~\l)ƒKŠ"¡'Öw ë;…aó#_d¶l9ûò¶ŒkOQÂ¼Ñ tóo{²n§UÛFÊ­á’[¸¤â"” ­Ô| Ïä\Ó²Ô‡^¨ òbV÷³1«ªþZ®®þ¶ß;À•­±´ÕüNF 1܉•åk°>¨ÀÊá–¼Ñ9ÒÞøîÐYópKzø×€Út@íþÞj÷÷`i< àiVLÝÁzÜIãÚQ6Ê# QKE÷Ù™¼ ¥Õ*ðÁ ýÓ–ÿçM‘‰)l‹]R «-0'8Å‘ý åÕTQN"Y¨VÖo`­ /”¾UR¤ £‘÷WGöá¿>(þw§ú¸úÄÁÿV¯ñ¿ñam²ñ¿ïå*Ò©µ_d-&)ûoZeNð]øç¬ ÿÂÌ?§˜I·÷~oeqùH„ÄW5ÊíWBk2OqˆV³$ý@á1O¶R$+' Wvw›Çm0‚;J ƒM|R`Q¤ã‰µâ„¿ÿ›C‹L(f`øy/Ñ8Œ£)Œ¡Ë4LoãËÁ5Ñ'Ærø¢ät©Q5"0Ì?Ž*q!k_FW„Ƽ@CfÖóùy@²4øsU£9[âb´ôvþÝÈÁÆžydØÇþðº<¾Åá<Œ 0ìÏNÿ¯Ç¥ŸZH ÁÍ2áw`òýðæ(ü+XÓ5@x ^„Õg ^„×á5@ØŸˆ,òuO²ºÑ¨|ñ­<’v7M”a‚ž=áªÕ3›Ïè4«Òð“¢ÝYŠ[`î™o~5&}16ÿ}Cdø-Ú ¸ ½Õ˜[!°“àí‰6í“-»p=,ƒ@L¶|ÅVö¶TÍ3qÄ+«do~èÓìw4©ÑøRõ)O/(`žq.ÐÆR³ƒ²ðfc=2Íû“Ë1õ¡a=cÿ •2z£mÈ-Û®dšâ,¶ ÄYMÖz¡q|ä6°!(-þ‚‹ißÍÔ3˜Þ€Ù‹'Ø(ØÀßuc”÷>rT­$Ô Ôÿ=à›Á5!Ò¶ÇèÍ'PÖ);ó3¶OæÕÙ#eÐà¦;_Ï£æö/¦0_ãÞ‚ð_3˜É`ct«Ý¹ Ò†ñ¹ë'㯃›¾±5¡MÞåe|K ž©Â,+ÒÂøÏðÝ+y3í!‡º½º¯í$þO¿taì# ‡¾ ®`©NA¼Œ ÷ï;¡”>‘ËftpÜð9Žªè¿ýÿ–þ{ñßh#*™É ~`4à»s@±•Ñí¶œ8ÂyH‹lá%UË2•Õ"¼–^aÆÅÿöþ›ì…äĉ¤·Ãþe\rkƒ Dm*eŒ5#RŸôÄD<¾Àp Sæ°ØÐœŒº^;®h <û- ´ŠnÆ8 ./ïð2˜~©G•8ŒáÃ÷ú̾ .9f“xr ³ îïâ)ÆcDÕâ~³ÖÚ{SxÔ}´Q¢ÉfÏß³ 铘H Ñ@gÖÛ%ÛLÓñM(Ìcêàê &߰”^´ÆœçŒŠ µÄ³4Œ#¶Ùx’Nö)úÂÙ¦˜$Z4SØ×} ^¡¹„£8’G ñvÌæ:4ÈÓéëРŸ›}òiÂ>éÉ Œuœ¤C_²g¸æéÚ˜lªZ:ê×ȃ Ç-)ÍoÉÈúCd0¯èzmìn„ñ"úÏÐ:R,¦œ©^\bHÅ~v7ägŠÉ#!%ƒ‰ÏtHDž8÷hÊ〠€^ã°ÿž8lÏAT[`©%‚:|JÅ ‚0¤åg§!ºC(ð%ݵfó ñšQØø³wÐí)x÷YfÀ¼ßvöéít´wI|ïk°ïþѨ7ùg÷8E øAOÚûñ“àâ^ëﮂÿÃíîq³Ñ ÷8¾ì‘Ú ß{{üg‰ Axxì`Æù1BjÎÒ â~L¹G=³ò¥eÔ}W;ö´«ó,Ê—>ñBtínc/É'Ôÿ€ê<*’7Ä=îåå+<6ÜW´bxL¹¯4¾Í­he(jO¿‹jÎÜ^î»3€à.®;î ¹ç‚?±“ç‚?sSå‚W¶Ýd')Hð“üHp ˆ9‹N÷aš©èÆ@.èìC*Κî‚© m¥JÞÀ K@yò"F_‹¬òOD‘ ŸÆ)æ ³ ¡&ÁHÞœbí¬lŸ˜Ùê@Sûo?1"¥ÎXѯխZI¯ÈÂó÷+gEn99k¹ _¿-u¾åØDËY¸åîxø™}yéÕã&/ñ[ÎÄÅ0*~ßDÅ3¼Ýƒ–'}Eë±ï OÎûkÜTKàcˆ¶ô60Gœy ÅíqT+ï´ÈÅôQk t|Qð7'NXÜC3fJó°&5¹ ;•MˤWqâÜzU)oÃÉ;¿‹É†|ELp0ùÂ_ÞÉWfÞ뜪¼ísfZÓz¡,6DQ!9\°hgåΩ ­G;™Ö³—qùyWŠŒ¹i[ ‹šK|ìÊeo~Ã_¹§DY±n0€3 ¢0ò]ª¬w×¥sç`æŽô‚ôT8²ÖÐÀB½ÿ6ªlGˆÜžÎÓHáN³§5(ÿ¥Ò¿3ëÕ2C1#yaïÎvJ¦¦¡o­,oÑ óe0µà’ú9N ti{®Ÿ«H®Ní<ñ7´cÇ ³îŸOÕóï„ÊÛusÞ‡};|bÌñ 9÷ã+ÖeÜLµ5ž„vIž>%Óp¶cKºB,Ö õ>Ö</‹ 9²*gäb¨{v_¨!',ØÌæɸ³[’—O_Y§Q.Ÿ?5¼$=º fLÁk`Mœ‰iK$ÉɤšM5708–jG41Tùo˜ZžYLÍ÷çÆuö**Çš•#-6鬠‡%qL’¾ÔSFi1IQd”ÊåX7Øókº-¿³­ßg®,Ûj@‡ð`ÄÇxbŸŽ'ä¹)1} “/cÉO0ÈY ‚}œ6*Gæó mãºÓàËwt ºñ²Ú…¬0¯CúNGÉzð ÜQ^þ•@”}xèy UÁ®C¤O^»Î…ìE³q8óû7 âQ’1Ö6e[•àóN.JÁD‘/'ßÃ@¾|Û<¹1Ss=”¹ú^ϻڱ6Jb”¸Úëˆ)¸µr…¥–è¬õ[üáWòæa¸Iöšk|õ8køE©‘yïÒ‹BÜø¿ÙäaïÿØ}ZÙÞqïÿxºŽÿ{ˆë¬ÿçÝ ïë;aøã ÕûÀá|ðçý¨ÜÜ@…õkÖö^ŸÑÏNUü”÷^‹Ÿ©(@hã¢;oñß.tæ  | ‡R´Ò)á±hûjÒªA·~_.ÞE„¸T;ﱿDø‘¶ÓÙ¾¨áÄ»§s`AS#4šÐO®¾j‰ïÊÚQÛÞ{Ì,í[3t —…+ä:ëL—F¶pd¡€:9š`Àûâ„ÝŸ;¨°|ûaPžH¸;­Æíeifƒû–¸Ä¾×ÉAzŸnx1$ L!<¹£ÀÀÁL_dB¢™‡1ŒFÓp0hÙJ L<ТWwÃar²–,xÒÙ¨+¾Ã Jä÷’õ/aä%†Žg}qÇ(l¦’ý ZNýÛÛá€vÍ"6¾Å—(XaÃxôì”v‡¶O2ä8þJ¡‡•‡Õ  ÚdA[&˜³.ÇSš­9¸gü°í<5y˜Ûy¾ÜvF˜“¼˜CªÏ^†}¥ˆÚª& ;fœc™V-鯣Ph“EÆ ƒäu/!È6Ãoø‹BmlG íå+ÑUó|‘?‰EºN¬£µvÇ98<äÙ­­ñœŠUc.ã:Aq9ŒŠ¸ÞÌ/ÃÇç r&˪x,OF넯\ ÃÞ¬úp϶£#Õ (ì²s.%Ûzˆ¼°ðªï96ù°*ž;%EbÐv¥ëíIõ‘#ÂQFhT4|à…!x¹,ÂÉüy¨=._—û±ÿ9†½ÂÎ`à`»eŠcdzOÌSç(þ`¨ȤÂ.#û­\a ÚìÅ>¬¤Ú°êC=¾/Þ§•s#$‹>!(fÉàÃǦò§Ûoc˜0†‰¬é®L|•ÌkæÏ„í1BçÁ…ûIÄD„$%;ø`«Z<Ú/§œƒ‹*4ªÉ n ÞꈞÖÍM»+rˆŸ?”¼$ú€{q?òGëvÑ‘‰ßJjï?°Wÿ¦Ù:¢á‡mÇæ‚ˆÃâàh%“{‹´$‘”0ôtAì,PDUÞ°„Ó6#ÆG¬ŸÈ£lù¯œYÙR€bWÚ‡Sωºñ œªŽp¦ª¦ê0¿Ö<Øj—›åIÿæ5kZë“—í“åÄ3>¸z‰u8mêŠôAóZ.6å£ÍPøÍ£r u²õQ)«œ’”zTþž/íéqwéJXe&µE'#mIƒ’1§Kw¶ ¦«~y§”¾›ˆ*§öÛõ®$`q ‰)¨Þ‘0XàŸÍд*—ô2­þþÙײÌõ‹Ú^¢Iâc°Gpu¥%ÛÅË©ÏÅp|ùišm.ø¦”»ª­´¶ÊAû"ŸØ9Á«‚»Ì)9bGНýªê± ¼µPÐii²x—)þ¼tStO'cFû&FDKÛÎV¶é°ºÙL ¦²>íNGNFÖ©K¶™Uj6)c˜?Üï½Ô± >–™ÔSsÙ:›Íù ¥HÍiÂÚZ0eðzÕqgÅ=ÕfªhFîEÉpª¦,8¤*˜ MØÃLó5RøPºÆHóéf˜Y‘ei•+ªØdÚ”“Ïû9ä«f®Ó³}¦uO£-×]_×DY½eªv“{ˆ|lp¶Ë‡i=„n5&ÜL•3¹½¨/3Öì»xTɹ~®t™§Y¬š9…qøLoú©F¿ÑàM}åר†MQYùº”3V£La i Ú'RÐÜì2f‘^‚+žÍ£ŠŒiO×N |Üw¨ |õMþ.öÅ´›¢“§‚œ}™³y¼à˜jB=™«»õ¦S;+V»“ø”œ Ïlõ“…÷ú¾vgÌ…` ÂÈ0C3âÕ_1Ù66ŸâøÖØ‹4¦éÓÜmLéP͵;sA?uû8Ð*ö‰J‡ªôFýÂ_°ôÍã.õŠgtÅçD½9ŠøÚiE—oâAF™H (JßÑæQpD¯ 3=ò©©Eºþ< DY>wBlRÄœN|Ú7¸´ùÁWtÃç0·´‚Q™=nÉIj8Š€&‘49Èe¿€çüôN·/{kiù½žýÎŒpñ=D)à÷x"(B˜–3V£ †·¿5I4DIòº×îá(ܽ&¡GÆd”4¶*Ú£ý]ô6ÍHª>" ~Ðì(g´ž@ºW„`½HªØÇ";Wíx6×Õ ùd<=dŽ'ƒ ¿“æwq4ª’®Qª·4¨RÉ1(TýHŸ]}‡ÚîëUÁzT¡Ñû‰º _U¬DÒd-xyjh®ïãÔÐsf:1¬Væ92LàØsžV·×dž Jß$9=ò{P,É|G‡^7ã¾Âfü燽9ÎçqzA‚ìÃNYı¥2Ù¬,“Mªs¬²rç˜Ï7ô G,ëÝ( /Õ^ùh1ÏJeáôÉ!¤{¼Xñº¹îkËñ=ñp±4¸ŸãŲ ¦¿ø÷|£-rR( ^üˆ0xì¢7Õ:!,W•u‡P§ò'„åŠt}Bø0'„Öùàœ§ƒUúóÐǃ?ðç!%çµ ¯ç= lnÚŠÛt‰"еš*òª*‹z@C…<ÐÑ`¬ÍbZètPZM;"VdN V¤ÍZ&«2+JúF3™¼^Úè×>ÜჽqÕ’<ÿ}ð=NÈ·õ‰àúDP~púòœ„^ÖG‚÷p$¨Šádûô>+Ï~“@«±Ïîëë>úuOÿ*ÏWpü·ùéªôW¹bÿùó Εÿ±'íôO¾aþié*σgÕmÿÙ_5Ï1‡úæAÎþªÕ|gÕ’ž.ÇÁ_µ”r°÷KúUõÎäÏUœùõæ8é«Vò¤¯º3ßI_uç~Núª»yNúÔ9_uw²Ã^')þç";\œÃÿ_ŽGÊÿXÙ~òÔÃÿX]ó?>懱Áÿxó‚v‡F<è0u7Îà¯öÛN«uà}Áv¶D4æGŃÀâDoÖöÚU´¥èÒ^šàà«·Ðl0V^ÅÑöN)ê¾Ib½aü)Žo$ÉWNÜ>&Mè2‹ §¤¯@èÅ,:ÉWhAþHTŸ(žÎè^é© »ÜNˆ4FØï0É\ è€(ñ+®IÌ'Á‹(ºÀ»©¤'3/‚ÁhøÓâ~ñi#ÇärǯšðU¿RW#Sø›ƒ^ç•d ©zUš¸s™ØéðÂ×Â`ô¹PÛØ`Ò%oC0§-ƒiR&˜Ôm´mþ-*PW‚<õüå5Äi—9É$»·PCPqDXÄÄ DüyÌ¢¤;zñ%—bZD {/íá*?÷ŠÁQå#²ÄwKL¦ RÑ{*“ÑÒM*{ô¨-kV^Yl‘%—ŽŽÒ"›ém_éÎÍÝp6@ö‰ ÷X÷R³öiý¢à›|{@ƒ¡&yDÅËÇ´|(fwlKÄÙ“&ß¾©ptüåGèTÁ1SòšÎ&w—³» ͽû–jWË;c—ÆQR3{Ö´E`Þ¸n[ù5‘+Õ>@;Û|3›®yÏ©wšøMMµFû¬Ý‚ù‡/ç?q4˜·Ô«IL•´•'˜¤R°äöE©âªÅŠ,î{1»/M½«IZ5›ìÍ]Ìós«§KÊJ×W©Ý¿Ïª u V¡Æ4©ÆD·v[ÜoC~ÐûRYÎ&Ý’0W@sÖª½_)Ñ˜Îøcuer…­„{ËaóÊàÞr¸º`E±Y±rÓpш©½ž/‡ˆkqþ,4VWΟ%grmjÐ)µ¬*É· wœY¾%–€C0­Î{°¯ÿć{¡²²RˆÌt„6Ú]æE0y”š¹mCÌÈþ‡øÌð}\¶!_ GšÉ;ßÚ uö\µé„Ã9S_Ò†¥mèBç5È™…"eaØ»ÐD¯³ËòÚ–g°-Ðl7Éså× ·š†¤ß$ÜtÒ˜9F0­ÄIqyóŠ~¹?Uˆ¢v•o™£ ˆ~æ›xáu¦Ä«1 á÷Æ8ÔÞbsøZvh¦qÏ¤Ùø'mm75â¼­ù'*¶‹‚ëÖvna³‡I$*Û¢ÒÌ<Û¾3‡ K$ñÙ')‡9[¿IcnÅaéwÅ©jõ~W×ÿÿûîbµÀ ÿßÓíÇÂÿ·SÝ}\yŠþ¿ÇO*kÿßC|XLÿßÁÉiÝãc©Ën¿ñ·º·»DÙn¾¬rBF{c4Á.äÎ÷ £)l-onâa ~ö? a?ð¦?> áóŸãÿŒ£7ƒ«>m1õŒûS(¿3ˆ¯¾áXJó&n¥ÖHw+>Ël‹'#GJ¸™‹¦ãëÙôÃàXDDÌ5ŸWÜlŸ?T¯Snßh°Nük6|½F/j£%âZ²a¯çâ~MÒ#R*¹è¨s8=ó{4ƒõêÎåñìþ‰Fn²§ÄɇÏþ5¹Y5%/È芽Ï0Ɇƒ Š'èc.êúœÄ߉yLD8Ùlê,<˜ª€ ¼ñá6F쳰ξŒiÝ߀ïþÿÙ{ÿ¯´’¥oô÷ç¯ØkÞ»nÑ&“™Ìɬ~IP$Ð8¾ë}ÎEÙêž 8€I|îÜÿýÖ—þÞ½7D“Ìs&*{wuwuuwuõ§ªì(÷Øi_š%¢ÃÉ*Ï'§LÏ‘ Áó⺊‰µÎHeU⟺òÖS÷’uÎíñ†h–8ÓG©S€¯®{˜7#VÉ3¤úI‰N2wB… à;°q’jK©KPHOÚÉZ†-vrËž¨¤R !]Ñø¯^1ññr´r˜d¿3û£Èà ÒJÙ/³2£F+;Ñæ`(¿pîËP7ŽCI×2Ù‘ [8gHCÙ›6Ë™ó„°3…0« 7,{«Ä–¦£m&ç™ÞøJ>æÞÜ’  '‡µ”NqìxD,*Doð×W&'±ø2£Ç î:)˜H6okçXó`Iã<òIY4\È¢!î‚l1ÌG+1ÍÅ$gêåãîŽé%ýäÖQzT¶Ð`šÆäzt7èSzZ¶6¾ c¥¦ò»CÅ$âÎ8q6‡å Ö±ÏÒhû=Åäðµˆ7ºÊ¨$-ßAú›s™PÃ6Ò}Pau•!%åä-LÞ.¨½˜b:Ú†mc~ß*“ŽáY"ºÇvý©Óé¸sˆ™':¬ñ6[Çpn®7ÞÒOD:á+LJ™#hïM×pÎvŽC–Ü,l(á`³v¸ý.½K3Âb¼wèj@É”6Òœ-Þ®Õ;•\tàÀpIøu‹$•/û$¯ âˆïŠÑšø¶qX{«¿¶ ¸¹·½¨@¦Xe߀ke‰°­´Žµ/ÅL‹ñ‹#4œFž¡1ÅP‘nÌe2lµž©Ö¶¹FltÐòáWíY]Qa˜]CLñ×ñQ–Å›¶ape¦5 6Ì®Ý6wfÙŒöí¼÷-ý'Kí¼ÿ¯@»6Agi·÷ƒ?Uï¾!B5€–ÿ*K™gÓ£Ê)¹o•ÜÏ[Rt‰Êñùnf)Á“yêßSʪ´»…¨ ¥6á$Ë™9M…òPvÕ ¬7b¥ªßãά¿—ŠÜy<íÁ·×þž¨wC A¤¼ÉÝåÀcQÚüOÈk€{{Ãë¿g6Qÿ¾’=‘}Ûé ƒˆ«¬yÈîgµÍ¡é¢âÓYûÀz£³ø08.kÅ®(§HïóT6ùï.O–çÑP½ е?ÕÂÓ‡_Å×D»JŠ i3I—y´ô¦ÜÝI­µZjá0m•R§.V¾¯‡Äñ÷:Ö•Ö•å¨óÁ¸L£ú„s—y0:ÅÍåu©$Ö5~ç¹¹®‰…ß&MÃu¾½}ß}ýúë¯ÿ5ƒÉž(6Qì4¬o·«t«E¾!P§éï±]ªô¨`°r=ê–:¡MT0 ø}Ÿ­Tüb=j•ÇFdÎv¥´A4^”¶7KÛfÐ/â r$¤”Ò ŽÍKÍ“ƒi¹Å'`Ü·qO*`?×ÄØìÏœRÛ;…†ÙÛcw#ÈZûªáÌH{ÔöýQ“•óÜÙøä¤­ ;Λ¥Y4¬óÆ]Ýr-mÕ2Ïñ)/Ÿ¸spð‰ÇÖzs.P•z:ãôÞ¡…V¿¯TԎ渭²©¿`u2€ â)[I <›%à䨩íí6ZúÜÇ­öQ UœÇó+ê;÷¼ÕutFZ2%uÆG¨êëF¾FU¬ùþmßÔJGAz³TBcò°ÄåÅãRdÇ] ×ia?*82Ð1tra\²_±ÆUjÅël‘".#AÔƒDc‹ÆH­ü¼þ‰Ÿþãó’Ý¿fá?^V7_¹þ_Õ­­þã)>b]°ñ'°I¼¯Ÿ•} ÈG ûhòv¶Xج?NðöÛùÍëÃ¥™!­t™ˆÁ›PvãTÔBÀ¶ÝVH`ú#ûlížhüÞÇÉU<¤[+rØ(G£[´œcì—²xóå(:n±”è×ñ­ÈºJGcKgx7½Á į5TÏlåh8¸w}ŠNÒ^FQ1{±1—“UÈÑi@×5¼«cgª™þM^‰Gwkz.ï=g¢ "ûªüý0‚ßó%e`„é>—¸G¼)»,ä5¿À(ܹÀáÛÞxÊÜ0ïÈM ©Eœîíh>³|m¦Ü@´ÃójóÛáQH+bµÃeÞ×dJ ‘IÎI0‰ECãx³œÑ{¼!¦§7ðf_jÅ ]_KÖ7âÆ"kƒŒ0ëÞãŠvåô½ÆëLjڽÄ-"^ îúÂKÓ$!¯´Ë(íýx2îŸ *òQN‚å@El¬%Eš\ÄCjÍÊT·ª|•óJ™6‘¢7 ¥$éöÐj_)Š›.—àj²Ò”©£‘Í¢=3ÙL¹¯-ÞIA1¸Zj­WŠ–ÈíQ*m®;¾¼L.’xxq_Ö% ­úZ¥XjY3“½ÛZuå8ÁÌ∼!À÷ŽèC"ÍÚnëDûÐÈAâjО#Ľ)ÞGÝ!„ñ–“ lDý߆ÃJˆ%ï}õà‚±Ù ¥V ÞPebøóíÕ±-„é1‘Ëd<™òJ¢›ÒpÅãñÈŠzÊ‚BÇñ€b¤OG¢£@?¾0OøzUú1ʱ6<úrH=+Ú?׫ÅïÅÃOSIÍôW£q2½¾‰.{É@x÷ÐÙá*þ-JL b€ƒAƒP‘²«*HGB>:X¿O…<“ûIŸðS²>JæƒtÐÀQ6®®ƒH–³Y6 ;›YŠæö ¢ÛL§À”ÊLñ¢3q:!àÉû»mXF>ï¶ÿ(Sø ³ UœuñY2­]ú·[;¦Ÿ µÎæöÔƒKÔlÊsÎÁû£.(Dõtn×Zm̳{ÔsÕÝf Km6ÞfÅ}Ö+ŸOð¤ q‡ÏôÞ°¹‹#[ïfyd–¹²[,£yAB;8F@¸OöʶãæUÔÙ†çgðüC;ƒ¯gÇ­·Ýv E xx–ÉLìÝÃýÇ2âYÖ­J›ëÑâî@=£»~¦nd×:„©×™z8€Ò‚9ÆÀ tªƨAöÆ÷ºË¸¹â• m+ЗÃg³$ë» Y¬`<ƈ#ô¼%­G8ß¶ØÉœúä­’ˆ1Ö´ƒÃWmæ–wå\VC¼˜&°izníT\H®6…-ØnÊEv“þOPmÖ:Yf,/Ûio›bañ9 FF8yvž@ú*çºcöŒ.û‹t8OÖÔíXSÛøçº|UÇ.ÖŽ¿;¿Äei*¥6èü&\Q84°zkÂ$!Bßk8¬Á­kf,sð0VL6ÌwØ*S'=|Ka9¨ÒÈMe˜LAڃš•#“‘Vc;ÓÂ.ÖšÐâÌ b|‰Çk™¶oÇ™½ÔÂ{mfºœKÑ»\~ê9`ÈÁ®!ªÔq©}»"Z–RsÛZ»çözÛ¸4}²¯ˆ†qÌ^@–Ýøöv<ºãáppoŽ59ÝyŸ©Pà ¼r_zøñ uÆŠ4êÞÓ Q à©|Ë8/ÍmÍáFviNBÿaô¦}mKA3ˆ¡·¦k,©Îì»'«¢ßÃ'tÿÛÒøŸÕ¯^TVñ?¿Ñ‡§ {ÿ»³¬ à¨Ùû€(Õð£ü] K.´-ÎuQª!‡KûÓ^&ï<âm2mÚV!t@îÇ“dŒ{w2ÅèŠ&ÓO0Œ‚ðÆâ €¶‹~tÉÇ9ý5Š3ÏNªpÎôùúà–­E½sU¤r9õ¦xt;J0¶?§ÉÅFÔ˜F_`îžxÿ&ŽwòczÑÕ]oÜçÆ^q\ÿ^¿ÿ|rw>÷.¦e¼~#·yt}=O†¬.$  ™^UÒˆÉ'Ö7·Q¨N×Êüëú×íõ_7Ë"|*~±^¥¦_-på"N>ÃiížŒìØ¢ëøk¯çJÔ òWÙ6¤c5O´­Ã7_âèÓ={/ѵUú´® +ˆÀ "°‚¬ ?&DÀaH+úÁ ×rƒ©~Ρø‡ ~¯%“E“U¸èw¤–Rœ2¥§’8ÉCýxÖ¢V©TýVЂ‰‰ fMÊl4Fc&esH'"îÆÄÇ$DÙ]¨œJÊ&AbL £U·Õo¹! ÏgL>ÿ >õcîUTQŽIÒΜ%msšˆ¶Ï˜&)«P{ž©Ò~à\I)ßÊ;QÂå3F=¡^Ò<‚ÙžIí¹§’%vâp¸ÈT2éøŸ{*Y3:8_Ÿv*5Ò§RzÀv±…4òî!ÌéÑ0§Gã!Ó£1ÏôhŠ6í 8JfÓàEÇÿºþš’æ %Ɉ'mÿQCTï ¾»‚ï®à»ïòÇtòQ‡¿g8¯ÞQgC~ùã¼_˜opµÂX´.ò‚ “®ïÁ†R :L-ã†A»tF„È6ÆtŽÀ:ndJ¦Dæ’Þî&ñõhЧÛÝÞp‚²Óã“Å8¾Ç8pKóUyÈl•µ§Ä3ë`Åi,(.þWù_´k­·»í¤ ÿ¡=~6Ž3¬Uµz‡Ò&ÒÌ8ÃâghÝ<>::³¡Äé4$Zö?Jlð[©Q“gY ŠõYŒ\ ËÓùz˜œKŒõC!Ê4àü4xe¶óeNðr[ƒ—'0è¨ÙäF0#¼–ËF0ïfMA+#} s×ÈêÏï#Lñ•\Ò˜ÈðÓã“V'µLóK¤‘ û É(Ž %sb”´Ù «ç¬ò bbáCLJ¨+AÌRg…—Xá¦Ô^x1õþq*Êc}YqÊLHO;lw„H†ÚGIÍÆw7Ѧ¥ÚxQ “ôÓöè¯ÜÛRõdUt#Ä$€œ†Ð¹s‘Òê¯þD_[–Å5$(U¬`®r¨SØÏ½qšnôÓÕhÔÿ)… jþwW+ÃÜ"$Tè &#;)Ëû¬^7¢·ãÞÍzçâú&éÓ5µnYò?ôa>(C м„E~¨ÑáÌ“\ŒÒØ\Ǫݓi|«Pú;ŠGx¸—¢Aç”ÞÅut7dÁès„ž¨ ®j ÝÙ•­B¯¨ Õ]P¦&ÉÕM/jàE¼`TYe–k’üï·µ}ÌÓ“ß6îKoèN@•ëäêš¡À˨wqq7î]Ü›° L,ÝÄ=5@E”òJ¹¸ÆiBÐL:Q)4[Ô4H]ôàLà‹Tìim°äAÛPañ…»!'‹ûEG€ìc~ü£p¸?Š9‹×uïsÌq‡PŽÇSL­+ŽŽÉœÂyÑÎuksvr—ð}Oˆ©K÷üéx_8â4e¨òåÝÀ  #)KùSSË=1Gcf„ÖÀbcq 1ïáˆAµ²1Ì+™ÈZ ¿(ÒàöUÔª|£äûbó‘óœiÌhOY,Æ°Ö ã/F[&×ÉåTg&£¦1<ÏCeT@ä’ó·,r;^ÚðPB? 9_ÞSG¥Ð7:`B+x]æ´oñZl'1ÞÓ‘„‹n*sMs,¡¸òã×´Õ áösÌiã¦_è·)öV¯aaƒéaò1w¥Þð^òKLÔq|BczçˆMËFüàvI{%/w¼Yª I¤¡î$…Jc,k7#^Â~°œìÐòl“ê‚ôfŒ×kR0£¦žû3™Fh6Ž?E1F»è‡—ÄÓéëè'‘æ:m 2F/ò|_§tô¦?ìÒ埘V„ µÍÁU|>æ¸è T»½À&@•–£­_^* ÝÞnD•õê/ Ñß]á.ºë‹ §‡áîé¾½×MÞµV¹ôÉÍ.zÛ»…v¹víîèÞ Ýþ¼Ÿ$¬ Ùí= 6¢êK±³P#AßÃUèùx¨5V^¦õZ[£yø¾0üo8 %¡)&‹‘18­§Õss*À 3òæ'ѸTÔ..®‡¸ã^ã ÝˆŽ·ëÏ·;;뿾‚ÿWãmÿsÚuå×__‘¼âsîcô:¨@}‘x,\l#¥;%h¡û V11-4ò» I—‹WÇñú«—/\—6¹_m˜z25§LýŒÛÒha%ÃÑpIéÚ„TP;Ñ#&éÍmäÝä¦×—a-áÐB0±#Šß{.Æ1ÚD[½ O2äoººk |·wެïßÑ2Ýs»½ˆX• 'Óçd<*W4fT$6Ùa®S¨Ôoµ¿ƒ>ÓƒEéÜôà”)}?~g7:æjF (»žžäõxŽAï†ý@SÜ‚}×½Áå:¨/Ù£BOŽÿOwžYI*AŠ&90ÍøWVKÕ‡6 æƒáO Ê0×c\gšÑ¿¢ ËÆ<0)ˆ)AGLòÚ_ù®üÛp–ïžå°gÕ›ÛwÏrØ3I<µïÞIÓâP‚â“ãÙïÈ +Íø7æ,8‰sžEã— uzV‹”¶™Ì7½ñÅ5š ìÛÀ ló¿ QÖàÁîn¤ÑÆëtµðÔäÂ#AïN— –6ŽSùlˆJ3QÁwT,úgP­Y"3<;–óXEìµzYAO\5ß`Sáß!Сbó7|€à*±¼ÂâÂÏx•™‡U'’U¬òçyÞLaÍ ÓÑÎΨBH=Ñ6éµ!ß^}MnzÖîJÆš Ô.ØZ#q÷Pž´"NÇÝÇ£ °Ø'bÄä>jl†ÿ»W>·¶B¡/Iö4:D ‘ Q ¡ l›’/k„5Áç8«¢¿{—ÿ>ÿ;*Fe»‡hÆwid”˭ĦˆœÞL^Rm±Zª›E>â* —þîþ­·ó;„Û'C:ÁÜzq `4­©¬£ç³œ‘#Éè—X›çpN${Êzмéøït@«û‰µ',Ò!SP'‹ó‰P».£º¦r(ÎhVãñdþö¥0 ÐËwhÊR'¥š8äÂi Ú·ádàz€ô€­åà èmùNGa[ùÔÜàqÚgß©<{Kƒ*Áx^8‹Ñ¨]É.Ñ1Þ$aiš¦)5ÕGóÁ$!m›(—w°®P8ì¸7ÁÕ”&.£—ÎŨ+‹˜Iãx¹A5TÄïHiª0 \Þï¦FÅÔí ‹ý¨ÇâÑv“Ùg ­!:<È0\tlžÜÃáì†D‡@V}89²ü î­‘÷¡áJª~J‘We6­À^:¹¸›àìt— :ÐH ‚4¹ÂÜIÆ™–V“Œa‰Â¯Å×YŽX8NÓÑ&ÆðŽnÌF—Vu¬G°ìÃÆpH»ƒë‰g,ôpBŽhÿ S˜ñ¨!¢ßh®U–æãßUÎp‡ÚKholC]%óÃqÎܶÍP›ÏÊB :,ºQ²ãGL.Hß)ËŒ¼¡¢j(1«l†ÅlËâŸË¢1>Î"'¾±¬ˆ î -L€úaTàåßP?àÙ2&päÿE'†f½Õ|ÞÚmw¶Íw@ú:ÓÞîMó†_Pý5€ž~zc¿7ž´A_:}xë›Gk(GÝo:+dÚ³ÿ‚²è4K=0ÞB­ÙÜm¼åà øÓ‰¿ÐÝítËÑI^b*!\+¹”ÀÛí?ÚµmQYqû¾½s‹AV¡»»»ï¥wØ¡QoòÏ=ñ³s”Òf>Ç‚Ø?ÄO!bWGŠÈ$£CHˆ-(¢Ñ=<‚…xþ¿ŸB’aF_– ‘AAdÄ’^Äuø¯sÔltÓ ‹M`U¾ÈéU  ö[„¦Ÿ4  B(»H?Ä{óEš€b½Èibû=F’0N ´Ü <ÁÏÓ¹­"SÞ¢,n²ñçÇÚÑãOìÔQ~IX /OèÈÈß´Y>ÎígÂ× ó)•£­rôÂ13DÅÌ ¼´é7Òõò^ØüW *¼0ú¯4ž™Õá2œ<`”¢`Íào]9(8q4Lú2Ê?õÂHa¥bȧ¨?ê§nQzöô1:ÄpAÁwú]0xŽ  úáñ˜ôã…ûþA?~6ÊOˆ`AÈuŽšô›Än×'Çä¤é8ÌÕ„‚%(¾+h4± "~ üñ6»?vu¿ZtÇÄ–F‹HM)ýð=÷=ƹٴ©:N€¡ð Fw2#¨4wÎŒÞ*Ñ&æŠg)V{™Ý’GNdGi|pó·(О'Tˆ OgÂzÅŒ„xê™ã:iqÜ'éác‚T–¤ºü  ÕÇ Òþ¶AA}"% )•YU;Ô‘D jU[’Ì %}±;ôbõ¨à$¨Œ¸#E[¼5ó„ÖL¯”^¥ßîžz‹v\ývælj4c­ŒÒC®œ!Wþ£"®Ðe‡]QNå\Œÿ劋Bãþ/–Å‹±ÂG4Œ‘C 5¢«®,ŸÐË'Mã›cDl‡6E# LçœQ`þA_BÊ©•bç=(ÎÑ~D7®Þüä " Ak}­¢BÅÀ´D#ÊØµŽ(õ¾Õm´Ž©å­,Pm5gµûf•»ÊjF•å@8æ–éÄa²å²D5æÕ]¥º¥"-­î£Ð©,–EàÕ L&C˜rÊèP$Æ •]X{Å›p7‘—»05ùPŽÖaáÕ€1t7d2¦K·vüš¬µÖ+EqO”ïºOØ×œ®&6hSÜMcæ q|9·åb'üuõSþ)É/>È{RŒ•@—ç£ËKDŒ «9»lá÷^ª@yíJ>•MiŸQH䌌äÍÊñD¥mÉÀöÎkú×cß8F0¢Æý¡ã—øU2ï ŒÖ´w öè*v©Š]¯ ;t³ö3ÍŠÏÃNÆÞÈ´w™Ђ5•5Ìè¤è¥è&^¾oo•ÃœßŠÏ ý½þeœL§ñ/%„(°ŒÐÛÞ=…nÑ)E äÿcÑbÎŽhãn°»‚M»)m s+ÐNvÚ¾P˜:ו$[´]:&¶-V*^šÌ±|²Å}_N×G^ÅG˺q×.쪾°§ ¹ ¢…M3¥\^ç†]ÉfKþ6êÍ×ücíù«±XæƒïßoHÞHg"aH,{wË• 1zè\*:ø¯7-­zÔÍ…Cµ©sô𬱡8Ô0z0«aj<üœ\s@p»¥Ô~³]#æ,6ÐkÕÀ=fÚ^Ó›¼&i'ÊN\D„yp7 “D¯PÊ4#¢»ÆîMuC¸«'CX‹à ¬êã>^ž&—]EB|ÇñMyãI§±ß,¯û¾×}&XrÝ—Ò™¶š#äü Ä\ɬI˜n} ÂK G—ºÍ¼µƒJ‡ñ÷î¬Àm^ãÌ8nK?¡öwWb c©yÛ9­=dÑ}Ã[,`ÝÆ^ ”/ÅÑt™0‘ ÉJpãÿ š°$ñnûXÑŽfÙ«äé¯D@ž" Âb.õ×PÓ2¢¸É¤ 2ù#Wqf ¡õÈàÈùj×Ð<")!äD×|á©ÃKlI̯v$‰’Eb öW¼u-µJp Û1ùò3 ¡^Zï[b£O,äÊ/âĹ MGþxœsÂJqÔ¨ôò2œTKG”â~ä«SíËŽ“”pJ}ÐmýÞÉç®TlZiU·=‹‚t¶¶[È÷ož\ØäÌ8x‘P§[",çû”o]:•zVÀÂÃY‰Úùã.ÌrLº•)DªÕ8†Qª5ªäZ‚3ùv¹Á·ß¾ºï£­M°&jße9v«÷¢ù’Lb#*(«=d²I°¢¤€ÈP(‡€t9N.ÍC¥y š 5®?3Œ$ç»Ïìn™Û6·DÝMR’yS¯ç·„wÆOÁËHiL["ªª}:ì˜PYŠ~üÎT@á)³/Õ )n rt(u­›Ý1mRÊ{‹žß-ýÅ^3}¾ùkß¾EV½´%,×â•Ù ,M)\ -X)‹Òòã£nmºF¶e…K=4·§ —ª˜ã*Þè “ ÙwJði‚î ðÛ ¿#YÆúíd·™PAÅÚ$¿Ÿø@éW39â9ñ€8šñ±|0DPz DÌ Æ_¨à?‘ã‡î¼8¸O!3êêóñ€ƒüˆP=­z‰Uð7xÏ;…ç˜+xËèÅ· ÞCI¼Íà=ÝÝm3ˆÏÛn;‹Îåç‡Ö#šªCõXzVqVqVqž:"޶Ýf6ŠÄ®êð°a{V6«hÀÔz°p0žh9ñx"7$¼ƒôºŠqyœw³bò8,—c,ƒØX‘¿B±l¬I¤øÕŒÍ¶æô‡[³`|š¥¢Qq]‹Vöªø CÒÍX¤¢|¡h¶W±h¾“X4©â·p0šw»«`4‘~¾ Fóý£Y¦—=š. aÂÝ‚½ªvŒfhŠ]û{)F}ñ±?RKûÀpÌÊëïïxÎÍïíß~€»?ç§öÑ6ò‚@70¸•Ÿæ‡ö†¾Õç«=}I€÷FcäEßø^Ø~„˜¬ˆ8QăµˆVS_µOu™O‹@–7?…b£X öœq lGßÏ€óÄ`›MA9Ô3ô¡ŠY®ŒÉã9Ró\MþÌš$Á.žÒtfZ¶kkònõ<Óç1¢ífk“íBÛM¤ðïìÚFÚÊÖ¦~êï.Q> t!×óßÐõܘæKö#—íW±„ônýDîN2ŽÇðEì?ßÂÝ”ò‡x¢§tçÛø¡ó¾—¾Ÿù¸Šg­´Ëw±r_¦«øÏËsù]¹Š¿\¹Š«Ï¢®â‘1y28e2Ki³TñG€]úÍýô.Â9é¯~^ܱ=-Žg†ƒ{gõÓ•³ú#~|ÿï«IõIý¿+?¿ôý¿·*¯VþßOñá™eû¿íTa¥éþqòü®ãÏzšöã€=Ãçš>Ìár‰®ˆ…TêYNÎõ˳ÆFØú&!ÿäuJåžLã´™xLѪ ÊOê h„烘ô`¼œè÷Æ}Óé…ØcÖic! $“¨Vú ßz7çý^©^úJXX2ˆáSŒ†kDN†Ÿ ÇÏŠ¥Z‰~#ßCü­)¿j>+zuVñ­­@Åu³ê¯›Çê%«E_Ë©9†7ÿÊÀø ~•¸¼:#´¯{Ÿãè<†WoÇñçdt7Á´ËFy‡èÖãg¥c*^j>££ÂÑûn{/‡Ï5÷,Ø ¬~-=Šr±Íqüe¦iÔÙg^gsºwÈ?C.¹ŽÉ?]yŒ"É,ïT“Œï«Ýyœ®G_`®¹ÄzÍo×ßÚó„Æzw<ßg~ßZØÛçWšZ_–×󜞥k€Iˆd|˜×é9Íý7ÕÙX¹Àø[¦0;H f¨@Á®ûtš·èQ÷iíªû°åaJ¨G6F?ìÁÞ‰½áWZô¤f” ̰ëjÛ»!Çôp™DõþØ>ÕugªÌçº#Ï]v”\ãÍqì±öíëÑ ž|ÒK+»¡' åUáøBXK-TºÔ7˜’Ï…áêÖ¢µ8^ýÆ)ì»ZSž ƒÈn;õ+¾Mðñ—ß)`üøè( Ë}ÎÚÁ¨h} ãWçÄû*Doí”pºø ª^»ÊðÝ·'ð³Û><É‚évÛ“% tk§Ë…b§A¨ úëÜ|Ðð{Hàãg°ƒ´4mI¿ínl͉¡åÚLD›@΢zõ@²s€^_úeëyË:0<ƒ‹ùAxp†™  Àüh\RÍÔÌ}ñÄŽ°¢_;fMF¹Èû?/†ÂñmÃÇWK¥ª÷†,Êï…ìD›b„t0<Òö^ÇePÐÇ tÚ·#°Ž;B)ІȸÛ~{"ªÈG×+V·‹Õ3Šá¢*Jmwý’vÒ—Wúd7×kuûŽõ­oÓ†êöqV-á&"¤*Ÿž®Ã ŽnTjIÜ ÿ¼»¢I…2=( óh¸Ž7}ÏfµPUnñç±z9[\õª8 æ–¾@96“<ãár-P?Ø?|"H¹‰‰r/Où£ ç«hær`̱«_p)X¨+ÖŒmÒ¦*Õ”·?¡å-¥zNåÅqúÎ<9t6œùnëAåõ§2ü·ô 'Çå0׸ >+Ë4R‘1 4Ò¦)pT8[ܲ¨{“†ÉÈ9c²Èfuª–2A–ÔX±1wÅ"”QÈYKz¡ÜZh«`ó®/¯/°A<®¼Š­”Ɣұ€„ÏÔˆr–@Ô-å £òÙ¢nö¥n’ ¨>iòfÊËô b6‰ÏžôsN’=?¯BSkΊf•HŸŽ~žU(ñœŠ_€³îw_ÝÿOŸôþ¿ZÅg^ü÷Êêþÿ)>,™îýwuÿÿÝÞÿw”ûÿRé]ÖU6>~Z ÔÈ×ø¥w‹á° D ±GÇä`a<@¸ãË GÎ7åù0]ˆo&®öIÓŽx8ôòÜðÐ<4Øùsý?_Ìóáú?ôôÕõÿêúÿ;¸þ_Îíÿ7¿üg^ûÏºçŸ "H½íÏ8¯ ¨AA€ ž !‡DTüêK½ë§s!ý<<wý|ÉH?:‡ê¸Ë§X[˽П[mVÌ´ÕÅ¿Mñ?ëâ¿›ÿ⟇~f@3ˆŽ^={̯̎ ÃóF*>/¹ÞÇÃÏÉx4DÑÓB ÊÄ}e²ÚTç@R$YðÇÛ]}»e¨ ÇL@-‚-ïbÔÿËó@œ‘¯‡Ø­'­–àŠhæJ”b¹( ZZ#ïsP—±hZët;Ôª{)×EÇed²÷@ß!ç¼·×ÖïÐp¸ÌÓYã…D³Tx±¶9M¹mËO“`2•‰5ù¯Ë"Š^[/a[¿¥¼»%^Ã;z‘ß™èuÄÌYë Þ!KþFãЉY¿Þ|V¤Q/w2AºIBr.ãúÛ'ÓñèÞH§ý”ȼӰžwzÛˆ”–º;)0à™ó²nÒñaÀ3æCj3šáf¤Î±ôfä™–õY0Û½AÕ”öLY¡¬EH”$•Xë‚ã"0 "XîïYMB6¦JÚSÿ² ébý(…VŠkŽÌØ^²j¾ln͘âxr©q´©ýãsÊ3ƒ«¥Öz¥øyãƒÉâWùà?K-ÀÀ’è¦;çò~‚óßœ²â“À ]®«ÄQFRzjõ•qÓ „Ë»Y§€ó}òŸõb0M’[ÿïÔt£í­h Û³£‚=KôŠ?LóŠ1ä)ŽHñf <áýAør„Nr!"¸Tøž Е»wê<Ú)»*…É Gö™hl+€_paÇk©ã<‰?@ÀjË`éáúd"wº§.ÏJÔÞm×Z2íaÀcd?Z»·?~q‚ÝáVæ5ã1ü  ¼?3÷L8ÿ"y´—ÿ_<wZêláPà§În~Ÿ©³çu&ù°çÊμpŠä܉3TˆÖ³¯S‘@&ãŒ|Õiip–ÞøíIômÓçòÆØCu —娗¾Ö£ÍÈmtyÈæ•¡Là¯ùúÛ•Ž›QÈu^ïåê1jµd¦u{0_T»äîI!í"F^À¤]´hÎXYŒŒ£D½wñIù§ÚúæÒ"Óer•à¶$:iåÈÂ5²2Ô©a$Poû© c=†¿«aĿ܀¿æ~[ö7™áÇÏg¶ËÀ,f»“Ål ±£µø&ô¹Ù·l èÃÔC*—ƒ(çÃ+hn2œBs°hDYáCVø>Ä ±Â‡¬ð!3¦a}iÓ°þ iX_Ú4¬?h®ð +<ÈÓãA†´PÊ*åÈù(äG%¸`òŠÉÐèw,¯  ]:½ÐI¸^>¬E­R©ú­Ð!Ú!NùîýwCÃ>&es @ã— Iˆ²»<8•8”MD‰„‘˜—'³ÃÞøS´×»ŽaóÚ‰ñdH“ºq؃ `h“‹‰qstOï.>ÁÛÇWq8ê£ýÀöÞ»ƒ×Ú “i2¥‘±p–Á¾“K9ËQ'b¨9Q <ÒhÀQ9C™WãæH@^[°˜ßMH@ï¦B/>Ý ûE¼­Ã·£ñ”WÂvoÝ‹ïãq·5¼o¸ÇÀí¸/÷Ž~<¹'·rLIäd€ô)B÷à{¾ý:Ÿãa9‚SÛ^|m¾ÜŒÅ“áS¿UBéå"TP…Mì°ó¹ÉµÅñåÇ¥‡pž+'óC ©;ŽIÝsWùGD¦2¶³í}ÓÈ‹^mqxaCâ‚_ã«vໆóBúX81¬´8´Bä­[+P™Ð{*ýÈ ¢§obgšŒõäy#‰ˆïÚæ— ñeÃør… þñpÁ: ±QêIÛzÔ¶ž5¬g,¬/‹æâø^ň¶¢Ø^€äVˆdC‘l,@ò¥Ar™(ä ùˆBÞ™†,ÀLz  ÀøYÓ@ëã_àoŠeñ—ž¹E]¦íj[¥ÚÁb ¿XÃ*Ö°‹ùjžqÞò´<ˆõ ýHØèY1-WÈèY¬ÎŒž›ÕnýÁƤìü©Û~ÆžŸ£Þy²`lßàÂ}Zü÷«­þ{kÿíI>,Ø.þûÔÁä~›¡0¤Nëè¤YŽNŽÑçþƒŸµz§û~?$á ‹ŸÍ !—Ã^ˆþ“ã›ÓF²× DŽ|5€äÈPÁ±Ã²:6pßr,xŒ”¹€æ8Dþ @çÒsV`žÌ M?ÕÐô >™L3±éÿ ¸ôÝ ntD…,¹u~M²L×%qBfü’e犋è{€žþ2ö üz)ðønr¨DPMëQ®fÔ€2zp˜DÉ-àåønØß4Å-À¹P£ëÞàr}t‹(#ð0*Àurü—J™•4 ¤ØhâE­¼|kã_Y-]¡ÉWhòo†&ωk˜µUuq‚P[¸i“Ä B½‚P¯ ÔŽž4#‹¾«ÎÒ;dzߑÚYßH$‹4\YŒÄå¾hŸÚm éZ½ñÅ5èF— JÁú¶ù_Ð(kGlYÙËq°yƒ§ý9 ¦„M9]6XÚ8N}äw°!:(uº‚/Šnš&7 àí,²Dç 7wlÖÏ$tÊê%Ad ýøï±ää’@x›¿á¼©$Ú1^©ò3Þ çaÕ‰d£ò<ŠaïÔJRÀì5áÕ÷"Vú®­çêÂ5`Ý-h©_“›ž¥¿‘Ò~qßöf¢ð%ç y%MÙOFdÃ¥CÀ ‰ Åo¨[ÿ»W>·”-¡/I´&” cRPàþºBBû¾¬E»GŸã¬Šþîý]þûü凞íbßq…§%èå ¥ãtåÅS…—T[¬–êf´L ¤péïîßZa¼C¸P‚,™D·ƒÞEÒˆDk*ëèz%g¤ w áèWG›ç°‚êvw²^#[¿“sÖáÝ€N*áPÑÍçÃÅÅÝFpϪ¸aÍžxJ•}I.Dz­!̳KXdPŽ'×7ª–všµÃíw…ggp’F òËŲR\GiG‘(PríÅâ÷Í2Omö&PÔdtcÍeëŒèÂaxÆ÷Ø`*/zc/sVCÃų,T'εéh œÞ‘F¹Ø1ƒYÙ`€5â ·óÆœ/Ã+´”àÊa. ñNæZei^7]…¬=ÔpL±3Qœ³}^ÏðÌ9sÛ6CÛ:+‹ ñ°èúyðÓ3 ,Ô‹gšë`ØUrjt[¢*Ño1¹0O¯GìiKš£mÛåÇ0 nGÌq6ò¤K¨¯MÛFM‹p>IµÈhZZF ¡—‰ÎÇBbáâ9Ÿ_g7Ÿ_g×õët†GÁc¹·hÎX†ö¦&ã#B<÷E¨w.”*Ás£¢²Z‡uë«I³U¸&IØ4Ýý;æ³?¬óãèæŽê“»qÌ-‡ÿƒ:_JÉVÂC`­¥  ®FëŠg¿Yk€Tã⯎€÷d–Z}áya†á3íúØm๡÷qkÅ¥T\žµSqÏ6˜ÒïäÁ+™Iœšâ=×›ðŸåÕŠò¼ŠñüŠñüªÔ’‘Ò}š^êr¸¶D¾ª‘Çm6ÿVg8\X4¨rÜH7Ó¾¸¿ bíKµJÈs—¿†Nx!ôAfºús¡}žøõ;Üœ>4„öé<1´-†xMëS2–ã&£­À´q°s›·åE+Ï‘ïÖsä?ÍK¢ÖlR,ÄFk‡~:^'5~¼¬øÞ¶þ“"{Ÿ>Ehïr”ægò=xQ°@é7Rqò*ÿ£Gÿ•Æ?6¸à â&2'æðx ‚çQ0Ãá¥ûþ¯ü²¹=~5ÊOˆ`_NOÝ¡pÇ >9F眓¦ýØÿ€”` °Ý"ÖÄú²:äÔWµžè*‰1”×/ŒcNô‘~kÕ-›jîÔ·½¨ ÓÞPì‘ÕÉèmÁDZ‹G­b–cÃ/Ù­øÁÎÏl¾º9'7òºyœ~[7CÏ%.8ŒYu¬œ@æu9-ÌÀ„¦@>Ý•ÐGf=C$ž.Ò}V\{ºXµ¼ûއ*‰|Fâia–¬•ã†Ï꼎ó³Ú­ßi ó¯O•æž´EJ´¬6q¢uÒ8G,ÿôŸì¿ñÐïÿ1¾œ<­ÿÇÏøÎõÿ¨®ü?žäÃÃöÿhïu §Õ~×Ñ»{m~G“ §øü³·ÛnÃëôo8WMÉôàøv®*Ê Úi¢|Ö¬m·ªhz%œ­+ðÕ{àMe“c¡l•£Îþ» ÓB7—ûGž”ÂŃ .¸*Æ'`·™Ëy†r†¿œp×ØÓ¿¶]OYÞ5>Éïœ9ÒEÈp9-p¿çræyŽ’Ðé>‹»/…©!$–¸îE“ûÉ4&ŒÏD¯GWV&bûÙi3¿É‹À©FA S¼µf“xYÚ³±î¤µó}ƒ€÷¡L¢ñ…4xzO¦„îÒÞ²‰9\„XgD3t$7RÝ)ñP„:C³-d:ŠvZßúû5Þ áÑù]Ž’xƒïŽô[âªß¸YPù: Îé†hC*Z>LÞ‡õäÄÆ;``“JNl|ø½´~ÅE^†~š #¦ƒû ø{Ý`ܺHçTx³uÃ<³Giͱï©3{”Á<G¼ß|lD|mo>ùÚ [1|˜dP‡ÅT‚'˜D\pãŽââÍÝ`š "NÍ¡Dõý\±L)hoÛÂR#d÷N ÑÝ‘ ¨Ñ j‡€ÞŒj‹öù=#(öôˆì-aDö6)Lp Ô0 n-÷Å5ú¹MC‰÷(œwS„'Á»;&ž…×uûnûOäpœÀåÌ“gÙtÝ_ju"¯È©ßÛ Dmî¢; 6„Ĩ³á’ < + }Ÿ”âÌé8sºÁ”|ΠªEô瑆FXê´$úÎÈ{ ‡)ud?ÙŽaR9-üYŒ Øè?„¡¡AVÛ *Ø N»íã] ‡a7ÊxpL¬J¨™]1ª/&hNêK7½+P½îú Ô$ÜL:mƒ*}úµÎí+ŠTI}é¼â3‰(·M imØ gx"ºCíy;êMìAŽ;š‡ž¸ ú|éÝc¾§É'ªµÃñHPàô;á\ ‰eIÎÑ:û%™ô"@qÖ¦0™T~“…IëfÊßCÑäe˜j­…Ã{ÅnگɈpLœÆŠè¢ˆS6 ¼8c‘©*Ø‚ð3"ûÖ (jÄP€4x$›"=¨k§ÚãkrswchÑpVº¥­ :c´1ž{hx6ž÷:ÐbÓÅã ð…ûö&z™uæ=Ûm¿Ï"‚ÏÉsˆ13éGà(œ NjÛº3›Ñ ÝnYˆÌ»önfÛèKR¾¥!?,ˆLÞ飶ýþ¸Õ-Gr´_ŽàÿµÎn9j¥7÷¨SŽšn{~âÿk{»þQ¥Bõô }hÎvŽCîÙPfHZ§v²[ˆ¶‚œYöS;=ú~l¿§ïvOÊB[) {ÔP?µz§,"¨î4koÓ©.Œ¥ Œ{ó¤ó@`©Äk~k )Ôœ@}ÛÐÍJ.:Êh“¤òºx€?e¨8ñ]1Zß"õׄ¦rH3±S ½#°;t „àÉ XšßñI¨Pdñ Gs@~Bp¡½§À U6ý§¹ +.Ùà˜¹`í½ÎlÆâ4éÖš/®ØyFðýˆÕ«‘>–9çsÕ`dþ ›ûÆu/m§‘ö™¶JøNíûU›áÆxs4ºî†Ód€ÞÛ[<œ]ŒQÙaî' ôMð¦Är[‘áeàX’ôÑצ:œ°jQ):µÚGwѸÅø¬NÓe­üyEd¡ª$åðĸZ§Ûiy;ujÑ GšP ‘ù4d»BSÚÝ gRÁÃzçté.´á×"Œ!ÿU+–ðÇ)n øK|×j{ áã³¢Ô³í)_qåS¦-yš4Qœ«Î6„Ó®8(j²h?Ž@<{‰]¨5òëºy°\âA´ßgSŸOyâa â`Ä ÌÏcà¢ÈG âdÁk@–·6£†ek¡·L Z)Äv ÒÒ ‘f ÙJc9ÔáQñ>©¨ hßËÍè Ô>øtB |Nt“A8Œ&;Ä_¨ÎØ(¢0Œ?Öd5âÉVPR:¯ÛÊNø}ÝF“­/6uaQ¶šu`6ëÀЉHSªQß" ƒ§´S¼ÜL¥îa]€I¯mêE`æaĆZ}“aüùAÃHõ*c د?À—_Ræ6Î9ÍÄÖñ¦ÆEu$¦.¢«š¸úü´‡8„œ2©ôÖxýº\Ò¾›6Û­Þt*Uœù%E¯1u Ž¹lÑ9Àßw7`=ƒ-yˆA?Øì‚™ˆ¬Û¯¨Rd£¾Ü€©Ž}ÚaÈf)’ÊÈø1k5eÏ÷ªZTEûñÅ8&7©ó{í;Ý“w<°T£þÝ8 ?|Y47TÑV1ªM9¾…°9Éw'xMÇ †%1Šm(0¨¥ñ¡¦ûñ}I?jîn}‡žÚcHʾÂ5€Ç·}4«*C5]ÙŒW½dhµ)ÒÚ Ñ õ¤â#fX!i9[“þI%2[¹qÊ)½NõÞ&+4Aþ¹æì.oßGÝ÷Q$nbgÉÆž­aà‚©¶¥?ߣA¼Áwoœ×iFpÔÑtD¨g°Ö  Éò&%4&ÆÅztañÀ#/B©LÑRuÉ5Ú üÃʪuü8 À¨«êj„‡‹¬;÷V$W—Öƒ\¢[ðÂÇbÙÕØ?ÂTÊ/œŽ’ûëR6ÂJl]úÅ™Ûá4£µÐΨ>4Ô);⯮ƮÞA³¯°oU6SöM^(iœi¥äµÖ*2*pYÛ¤!™Lµ&åø(lh1_ ü~p€Ï!C"îQ¸…ÈPŒ•Ú³¢»IDKÚ'">ûWRd‰?a=³d D¥2K3Tf-ɇ¿‡<‡J‚6`ó«n~5‡b»†»:n$·MЬ}³%ƒùè Yõ¶Ú´=e¹’vVEHm•¾ÒÏÜÙJ™gä‚QDI¸áK9î$‘ô(9]Ø¥$Z–WIôÇA@¹— > ïyÙx<%“É ]Mí«Y.¯¤-¶v˜ Sãžy=@‰g,¹—Êð¡G“:¡GŠšÝ·ñÔfŸ …éÈíòßàü LžëÞöÅ0ð}2HÎ1¶®ä­¸­B06lêH¸e†ecæìsaUÓÖ j}GŒ¾ <‡i\ô&±ƒPî ûöêeÊ„%®ªowC³Ñ¢«š–§Pä9 áüÝÄ*…5¡€cçÐŽŽ{És”!Ž qUóCDï5pêÑõè‹´r¢—2z¦±é1²Ýƒã#Wͱ¬{,( yq|¡Lñ=e1Ímo2‘ /Z`†%×Eú3 óýn|!䘬™=]ê@hV™š±yܬæô±šÇÁ g ‰XV ìÔ6Ò DË ÍqÄÍ~AA† Kéãg þŒ<iŒ†qÜ—Áìhé3X—.×"ýüà~Ãì;%±iìö™/ü/ÔGSo U?·JHo¯Ìë Mk×DBI>œ}e«é ¡¯&}·®Ö×A¢®j@å>ŠÐhŒ·ÚÔ7 M4Âþ¹ýà¢Y®p÷‚Ëï=Ä:¹‡e«YÄýmQÏ7¹_±äpzsJ׿ôw“c˜;¡Œvu“³*;—Lš—[zéPÔøfû¸=Ƚ-z‡ÛCÛè×6¯K[_¬©K/áÍÖuÝv:h®h–CÛ}Ù¢…ÜÙèÉæ9±¹]îX+ ²m‘Àù´ºÀ¶%‡„•]±¼ð¦I›I™Å_9Fÿ4¶¯A|É™Gx!Õ[ê­Â ‰Û©¼.@¹ÝƒX õ³½g¿E# ?ŠzpYã^i¥‚ZÆ%± +½tðJ7—P€†çKGÅ—aX™UÃup!yÞ0‹Ò©ý–!1œc¦¯ŠõÍ®TïhrM±[¡òºvãHë=íöäøi½@KøŒŽB ü&²›nóŠuÑ»SºçÕ J/ˆÔ`êÅå á`|uî ‹þRô‡ÜçÛb˜ˆ¶àDÑ2‹_P ÿž\?P…„ÄrŠ ÉgÀáTÁåHR¸@M"!ˆÓ%äÌt/CãJê©ò —ÏÞžÑ,‡ÏùzFËq÷œ×Ósç­éé9Ÿ“g4ËÏóA.ž‘0ðDþyò=Ðé¡­è™B«jÁCq`g½ŽNf¬ŸŽ’6Bs¬©t>ÅñÀ#âî©Qk†åÂ8B`¢9<=åAëÖôL‡Êb!ÒùP.(TG K?¦ œŸ! ŲÙ<%–*“ ]ñåf‚ ÌûÀsHp6'8yFx”óV4[ô#ÜcT}~OiÜŒèTèã´¤ S1ÏÔŸêp¹–lŒµÜÅ<4M·LA(Ÿsf†G¦² ÍöËŒL;hÊké>æy’–frcHËëSzׂ2nQôwƒgEa›²ÌІÁͲ ËŽ>—[…æ~ó.DŽÃžÕ­uÕ­2K-¯.JßM†¨óÜì‹ä(|î“Ñ]ÀJèÎýI09Ž ¢˜¦è•…‰…2‹]’†g%®‘#.- L¸¯:òè†ä‡•óßF„8"ˆYáÏrB¾Ûô‹Wo²>Þ1_Ñ'òLѲ)2«I=êÇ_µ8 ”’Kk ¡m ìŽèâX=Äõîn™Ûc¾Û$Y zjýVIïÌS%’à„9ÀQÛ*ž”_Uñ.•ÓÈ‘.›ö$F1I#þº =/Úg.|Óž†½ºLâA_¥2‚Rqˆ~êŽA—}Ûȳ)ú®O¦?„Ž`C…žñ>:œ ª™x~øÌµ§y»™·©h.•É_ãiaHȯAïæâº <~Œ•Š›]~z{×÷à÷2çÕë¬x e·Jáá‘y˜Õ Æ×UZ[Ùô=û½¦"hç•ÌË2Œ¿Ê´,Ðý«q M?¼Û˜}qÀì2.¡ó˜‡’s'bh€¥5HŒ-í[З³[–žãŽæëhWqV.GsÃï­½±Lɵ(7piswbÜG¸DÌ@?]i™Ù`z°µ. ¹6ã2~bF²þ÷ÿ»^ùÿʰB`ù+ú«H›¡›‡Ä ³pÝŽÎ (”H¡Üœy¦Ïf<Ð%®Sª•ô±Ã…&Ú“ï>¬c 7tz%…JÂ_±èä»±Q_ç¶„¶U Û,M‚©D…ÊGj^åç—ÔÑK‘çCÞÑVÿu:î©[ÎèاiÿÇíÓ)Jà<›uŠ:ïŽ-Å.eÇîïù÷k“ú¶3BQ0lÉÇD`Ým CSÔvWK G‹] § L!]@_^¦šs‚]á¢÷Úü×]L+uA\Äo9ªŸÁ†ÁI# óÅ™4Z<º@cÆAò#ì±w‡abcutc&ц…WVȇù´ºÈ,-‡ˆ¯´œ•–óM´kò®TGWu 5F­-¥ÒóU:ܨÝÎÆÐ¨Xʽ†À žæd­ÄªÚתÒÕ(o(¿•V%AaŽHЖFv‚y«aU`2¼£ ‡žHu(è˜@Æ!|BF®vv:'´H$²ÅÑÆ:17AEÞ7=ŸãºItÓëVop5ÃD»1ƒ¶¨”ºr•¢}öVkk%ƒ%¿"Ó~_b/1s­Þðí$  ²²©7и=¸×Bsb…¢¥Ø«=û7ª‘6²±Aýd8¯ó@Áwv$)sBchÖþÝl´Ú§ÿntÛ»{ÿ&ß…bô:úx“A HG ³åÖ@ Aå Z˜St‡ÛùZDȲK’ªuµFé#3©R«ÇÞü³X§´ë©P=èaFˆ¤ÑÝù ^×öl£v% ÞVÈ„»ãK”úëhâH(¡@©…5ÝÐdÀú`<üœŒGCª]Ý”aòâÑx*„:LDIº·&èþÒœC°yÄãÏB@.ïè–¦˜)ïÚ»w$U‰CÏiQ:*Ûõ[\è¡¢%굂ÌDÄÚhÀêÏñkÊ9rˆ.e,Ž7‰ÎC™˜ïÿæ‚™ræ°®ûéVÑý†eõ污‡»;ÌÄËÙi|q=LþBÿPE*…ÆÛÞôW˜ABa6…”Õ‡Éðor‰·²ü ò_\D’Ò…6Ó8BJÐLÅ~Ÿµ8lltvI¶Pö½+¥Y°»‚—ÚѢ؛Nã›[C€>!ÏÅvL³ˆol2Ô¥ð)Ö›ÆjîÂZz$n×mBB§£@}øÇeo0‰ÓÖ«¨ nà ÉÓó'¡2‡Qâ…ŠSÍ›èØ,8+H%G¨ìØ*7øðd žcº@óNÙfàS­j¶qxËÆCrþþm’‹Ü½Ç”c®Œÿß0Ý>Á¢+r)wÝég4PÃûdjZÆ­ê)›$åíd8a™†tràÒ®#®ƒÑV2Þ›ÈÉÖÚþk›ÿ!³P´?õÌöx`Œ1±HLM¼*1E‹iqðœ<€!Ù7á º<Ä}‰â«A„r•kÁäÎ7m07pgö¢‚œߠ‚¡Ï¶w˜:™¾0ïŒ Dˆ —7ˆð)’T<у ë‚uŸºk5JÙ×-ûåŠlîFT¿WÊ¡ÕXwŠ õ#NhhîX}IG÷çéŸAˆ{*_®3­›v l«ŒÅ <ÑL¯c#Š£}Är¯­*EÇÇ€í<4Œ¢+:Œ¸—oø!ƒ-ÃäÑÌf+L˜ëŽUömpz/ô–ùø±rS¢Ü–g…¨µBÝ–EÄÚÊÌð²|ØÙÝ«71²«PÅéå-PG«Kƒ*ßÎ[~ç,øfJ(`£~¯RÊXä±ÔfŽbÁn嬲íU¹¹ñrf)—T¬j• eÖvŽsåÈ×ç3ü«\…/«¡“cÒÖ¹"›!ý3Wï»íãN×ê=ÎÛ\=§=%ߨÔżIFçÒéågd?•j{­ö2ƒñ…)ü$†’.e„#n¨÷ûí­_¾ÖV¯…õ)gUÁêÃꔹœQt¹vƒ1ƒÄØ᥵ võ¼" Þ§Øâ󈀮é³ä††ßám&½b0ƒRKÉâ€ÿrv÷©¬5\á°b^·tc¤òo …ˤQ ÐpB+ù¬·Å,ƒ¾)ky‡@Ík.,â@þÚå—Ð*ŒÕODÊšÅh]Ð ©z^uWþ“Ô#ï_hyöÇ3#€EÍX·¡•˜3`¾ô©Ù¨<·Ô'(›ÜÊ èç&HÍšn@–xá–˜m@ý9PtV²Yö¿ì¬\ŠÉ—g§Pe·Â #Ó@(ÑÀi ÓÀ"‰LQÌ›i@šEÝ%dç}jú3ºn`õâ%ؘꨌTR–F'ÎÈ~Ù?À¥,p‘kµš§°^U܆¦…†Ìh(Ÿ)S¸‘ÝÌÌ¢éÜš¿‘ò »7gööø{Lj½—%ËâR‡îŸzÉànlH±2Ù›U¦ ¦)•nó‹äâò¸ 0Î)‰¹Äp¾Ö¥—›SsJ_HÒó‰ÞL„΄ÚÞ‰µ22mMáJ ÌÔH^ÚÐ)}‘^ÓI&ç7ѳÆ3ñEM|ÃçÓBÄ6S†u£»C$JD΄Ž‘3ݰ™¦ùDÑäòl sB¬ ˆ‰÷¬öiA«i­]CÓ,V6!TÑùØ‹g$ÔŠôK2l¬kÒ(˜&%î)tÕìFeÀcµ¬ÌÑVì;ôŽ´¼²-Šn\;‡…Ãj­Udt-õKµä|˃áoH³Qšý¨li®^qsÛ-ÿf0˜´"ï ÐÄS0N¯ÅY'ØðòÇ*¤ÔŒí5ÑFé§î¯<¤,~Q¨•¶ÝÜ(d¤° eä¤M9 ÍŒŒ£¾`ø²"g„$´ÎŽž b٭ثA3›áì™Î¶¦øß»5|n{S\£Ý¸¿Ááµ—w¿¡<ø9¶Œ™í\¥˜tæÙ4.\àe®&ˆœ¬}lya±{zŒÈ(å˜r ±ÍP…²µ€°ºÇ‡UœÖ³Ä *Î ˜k?EÅË3Øuµ(ÆY»(#$Ýå)è®yƒÂY;­„TÏ%ÎZx€ì^JX ¶þVj¬½4ç_Q½ÀÞá$Yië)!—ÿ(¼.ï•-ñî­]@íˆÇ2­Q2nèÃkÄÊ­cÃ…P &}:’˜Êð œR,lÅDŒî&÷vÔ„ñ‚;X“RÐ|ÖúÝ‚Ž£ÅÒ»Iàù‹FQïó(éGðŒAÁêÊFd ‰?Ç„‹PQ"Uå…mã[Tjã:Ê’Zã{D»óöìoÇæúŸq¾¶×ƒt…Ö³jkIæ7HÙêN³¶:waÅÌH›’¹ÏE)YŒ–„öÚñT»`¯sî‚9ŽW‹ï‚Qö68kMœçè7³hÎ}p–YÙ¬×ÙÊxlÈ¥½sέ4µÃáúìíuq^ÎÜJç7W}Ë­4ûLž¹•fï¥yòèÔ–?T‚?þÿäór£ÿÏŠÿ_ÙzùâgŽÿÿªòbóeãÿW_¾\ÅÿŠ‹lç¸Þ~Üm´vQš;f‚UÛêÁ[ªŒçï{¬OÓ±¯CÇ÷Ç ùmãì+wïPøøÜ!ã%ÚÁŒ{ÿ³ œ;(¼Ô©gDƒGö¨d2|HUêº3x»­ÝˆÃ®¿1Î-ì(¿D£;nÒœñ_3Bk‹š(á/,¼uRxÙ•²&B“‰P¨:¼¹Œ°…Agéß:yñ{‚…28­è‚ÔU@ÏÛäóˆ’!ÞÄÓëQ«‘a<^¿G Õ²7Ñ1¢à¿ãRé]™Â€™ñgÕñ_mŠW›Þ«ÍgFߎ£Æ-Š‹è¢b¡¯‘pe¢®Ý “©P[  ¯46FVÙQv\Û±ÁSpw µ©:ÿE¸¸W[z£Š¿Võ+Tb²‘Bµ& àdS–|ƒa»·j>]® +ܸƒGÎ1;š;hv4_ÜììXÌôéZž©®X›a”ͰÍ&…´ÎÙᛕ/Ù>vð¾z €³½9oüE#ˆ3}ìŒÞDÎŽélKÁ\Íòó‡F6+§‘ÈâÙ$c¬^(Îó‚=ÊÔ̈ÏjH),f¢œ°ØOÙ]oÜèÉÖ È ¤œBÙ$Mùˆ¦,ã(¿s‚|šD(ß›Œ/œÎZM¾…cZ«xÊŽã\V¨bú,U¹¬·2úر•EßÙ—U‡OEôŒf¯1FÂÕô-:Ÿè,ó75£MÂz§ð©üIlr¼áXM±6w°è¿¿­WŠèüg¹J›}›ÛzjÝÜÂ;Hþ54ÿnîäv ¹^NkéZÅ¥Ýhlék(U¦­–f°—åÏŽœwA·«@¯éJ÷ÊŠl¯šPZˆÝì€ÃyghzÔa߯6—ð6³R&e¾èqÊטּ€'^ÝÉ& FDdw¥‹î¬î¯¦×ØG*+ËýNÆX t‡?G¨ŸuЃEÝ$¢Þì(µê*¨I«.Ýÿd YEÄ\•—vlk1UâRGt™Œó)þFÝÅñ¢7™€bØÿá |Þ³tø„“F–'Ù$jcªL ‘`°½b`è^ŠÑ3Ý9¬F€†ÂÚÀàœ‰iÌÈ]œ÷/î(ÅÚÜñ"ËÀ8¹ÌòœŽ„óôÄö6Ÿ“ûsòï爠M"@c§`ȵù¼Ÿù“å¦X^Åü ¹HÛÇʰ4³öá.‘ŽWdŠ—RÈãÃñnûôcyóãÁû£.œðësz±ÌïøÑhÖv['Ò¾˜ê#^ËhÍn@0õÅÏcÏŸE¼QÐ<—3 |QKïî‡ P4Ò¤9ÏNÇ@‡Ëç4Èr:Êy6fY•}é—<Î-G¡tÅb³<•A )o[Õ 9û5Âó?ÏALnñ`«{#æuõKõ3ÿ†[ÿç\ ª pó´o Ìx¶²U袋Ìèk0帹îœDĵSUƒf¦ÕĦœ»žY§®gz¾é¼Ú{KY3¥¶mÎtCÁè¸Æ§Z‰m‰”ÂãË8!c_£œÚwÜÁ„ßYvle¢ŽY`lg^uN~ë ÐýÏ’Ó?ϸÿ©þ¼µYuï^l½ZÝÿ<ÅGÌ6çþ¶LJTN›>.øÕƒ¼š+h óó` k®éT ›àË$ÍÜ /=Á°s»Äï?Qæà@5FÊÞ½Pö^ɇÇÈ9¬S›é‡ç¹ë:å¨kÓàm’½)êd—Òh9ïÕØ£_Šíš¦FÊ­GaÓ4CAÝ(,ä€CWÉôÝ‚àE­¾•'DïTÕ5!GÐï[ލ¢/Š â• 3ÕYKÜÌs'˜kÔ¹ÿì12O sÜóE9¯ú¢%ÝöEK¹ð‹òÜù1ÿ«ÄŒ”+lo6ÅI¼7åýƒºÂIÚfiÞ"ÝKš6¢÷S•îN‹{Ɉƒ*û?ÒÂr;6RY¹®1Á¨Ø"•Î%T"µÖ*fœ5B¢F_zcŒM¨-r“áŒRWjS'”—¦h˜;a^/ìУ~0x¤-z-pߊיH»/ˆk­ÅhÑé ½€—1W©½[Î~íYОÖÊe.ˆË‘²×åO<.ˆ`ë™M9ëÒ˜–Šh楱ÀûE›åø±i2J ŒqREH¶Z†mÊÌøÚ´Ž×öÔE†¼ÊK ëCÃE5›…·毛Q{Ów[@)’»ÆlP‘‚/F·b MÙŠÕåû·¼|Ï΢¼x eÕÞ9ïÜí<ÊôY4™2½—:È“QYWeÒ™/­²uÑ>óöÛ¿s¼çÜAμsO»h7éïÜûNÚN²l&Ô#Ý2}¬µB'êÁ4¸È$¹†š4ü„Ìs¤b¶Æ$˜ ýZc0A꥗£Á¼prû*f8=æåà÷É -¢i¨s‹hF.j;µ)¤y!á$ª‹‰g~@†³ 6# ÈpÚ=šÀcX‹eBà 3|¼€Õ„œÀ »u6ãæf8h g៘¡[êC4ò3ì–Îâj 0#ŒÆÈZ+ Ñ̹Z<•hú8’E$ݼ°‘§}¨<Ó e˜VÓT\+âꤊù-Y‰£óö1={tÞÔѪ&''tfN)K«³6ž”\yZ¾g;Ó³YÜIú¬‚§¤æ|6²=[tŒÄÏ”¶I÷€³¾%=±›÷d"L.àèy4ª¿+Í|ïÉ›=V;Ù±DÀl•·ÍI¡gR¡´ÉBûO„ð&‡Å¹¢»¼SÊ=‰ò±|gýîX•0ßþé­ÌC£/¬öê>ðˆ] “é]_IùÙZ¿U–hÐW Ô¯un_øHöF™žÏ%ftMbHkÑmB!€'!HAÏ obÄ.SXs•õ_z÷¸ÔO¸ŠYKégØ2œi¤s–ɵtYR´XFo“Š‘Ü;gZo³tz†ï\¹½ÿiÈ;^«¥VцàYë’Fã•ÙuÛT|R0Ï$4£·æÍæµ¹PòLÄâwë£Õ*·“ÉOü“èæ@1ï RɤÿÂQR ¥gJ çG1ÆT¶×ÜÚáh¨„Ý h1BƒImˆ¾A¡ì Ùß›¦h/©d´Vc©2-L ¤°=ž‰ÍÙTFâ œ¶fĽ;?y¤n]hÑ ¡úM`w|ã•ÕïÊŽ!Û³Ç2å,]󰎘J‡×‰‘T ¿2trw…»þc!BçÈ“!žÎN‘1O€üTèi9j½ÇC¼— AMm7Åg ´æª3㣋÷f!YËn±Œ^,àž¼÷]¤+Õ¸}ôG ÆïñÊ©ÈÀ 2¡(»rXsbb%+HîÍ…ƒ]fËd ÌG^íœÚÙ°ÛB?(VðC‚?(Zp \°‡ø•ÅAouÆpúWufô¯‚ßZÕÔqYZè३fµÐ‚¦žïÑpÀ¡ÈËËÀ§±Ñ8R<$阛°ššp\Lhö,\ìÀCðb£ámwšž±ò·Nj°úQŒÅ[ZÂÁ1•Vu…!i=4ÀKêêVµÈÔú¬ñ,¨U†¯ ÑÏŒ±£Å.èÕeºÙ Ç®51QÚ–L<Û» ž(S ËfШŽ6ˆëvÚ*ñ¦Nû0woÃÌBÀ˜7aHOòEÚÉn|Žƒê‘ŠQ÷A¶’-ÞÖEÜ]WÀÍFœÄD=]¦]ÂGkÙ qÀ!#Œ¶Ô‡Uy ´þ µô]~‚øÿ%;dãÿ_þ\}Yaüµºµõbñÿ?om®ðÿOñáyäáÿçt-HrSädÞ²®6’öÑÉÛöG±jeÒÑáæ‹šmÑà(åHþÌZ$sú¤~”ãÚá©ñ\‚Köá,7‰vâ››x‡Ü¸w5è £w½Á ¹ê ËÑ£ÿEï’~ïª Bû½ TÜNâ>ÙN³ü62[d:2ü’Þ‰ô®y\¢›ñÉèrú…ðß°¬ µVÂɱÛ! ³M¹½1RÛÄ¿6šíFtÚVÈh0—¯†àºl¨$E0]Jµ §›S¬¹èác†[¦ŸFj;âe–“« y—dTêYæÈY„ƒIª"ů†SIäø•DÒµäA¾%QŠ{ L.ëBÉq2™ÜÃÚƒPÆ\N&‘çgÑE“Ê¥]=xz­£î#›Þ×äæî&=i´¼¼Àê”õ^qŽðÍâÖ¾§9!Òm僑nZĦ}_ˆo'Ea¶F‡q‹&UYÛ¾¯Ûbt7—¦2Léì¡1ëê…ýM )׉ÊÖ}ÑÃ^Kwë>Ρƒø3´Ð;†MÈéû¯¨ˆÛ6†WŽXõ..âÛ)Çëj‰µ$ŠÏ$0@É 9›7=üÚä·hâeÌVø"²Pzl\þèޞʽs±›4Æ1Šü]È1¡çˆ7!ÑO&þœŒî&Nw.0›6 81„½iboØE¦p^A‚†|‚öÁû _ë|‰ñ ¯Œðššïg.½ä†NcWñN2cü|\”üÇ&)†ýäòGý‚µ)A¦KŒd:‰—²kzDÿª(àbå÷²Š\G«]8X÷GwhgÖxÌ‘¡W ç¶ÝrTw¥`jGì׆……b¾wŠ%ý½ÃÊP)~.ˆ/Šäµ-ß««²}_ ±¤I·£ }ÐÛX;´ÉÅQôŸãð'—Π ߣ² Ï–®äÓxˆê‰ß^Gu=pUÇ¡ ûBìÆÆ4¡Í´ðM³zíÏf0V¹tz—Óxì6ÜÌ"Y´‰ËñpëÎåáÖ x¸‰—ŸÆÇMoBËñq‹Èƒja77ABªù‹º¹ 2ƈÏåæF¡ÕÕÎ(¤ïuʃ\¾o‚H–\ºK›rf“›Æ‚.my -Ý« >/7¢ú½J¤[{·›!Uäæ-Ð\4³0HÐÚs—a#DÄ ü¸:=P™»w ¿6hUÞÒŒãIÒ¿ƒDÝnªÆ ³7€¦t[‹e|ãW&I·×Š/=¹ÊuŠ]Ê™À–HëZ»¨fH2åñhŸqr•à,CwÃ`¨<fͺY–K_äyõ‘òp …Õa}ûŽÛÐ9ð ó7 ·‘&š :Œ]Q7 &ªÑ¢9º}q<ÕþÈ»N­©.„‡«f ¯dõƒç‹ícäå.»3vwÆ®ëÙ¹ÓùÃBM?ЩsAÎGï¶%{Žœyd/Ç3z çƒ=8ç÷“ªŽSÛqŽ‚âykjm-—ÏfZ€êÙîš'Mƒå³]5]ÿLyÓ2—f õ<šŽWf6ëB¾™Vûä±x1·Ì{d>º¨i¸m8Á=Cí§eBhÇöÁwx:솱¯Œ¶FÎûáÿD~M‰É·¢Uú,]GÓ?Œ¦1˜69©‘e¨ßãøvл`fHë[‰î2ôVjp&¸8$æRò[4Ò†>}ôdµÎHk¶w¢´}4§×ˆZQ) ±::\Rü*ã|bªƹ\G¢Eù’…\͘ lh6—°¨o8˰Öyä!ž›K.f†3XÚ>!Ÿ ¶s~'gª†ëàBò`he›"i…Ò6¡¯ŠõÍ®Tkï}ê ’!³ÛprGN ÊÐqÓö…ÕâËaÜ ßDvbÓí£y UHÓ§bŒæ,$n#Œ{¤q‹?¤T·ý»1úE[pÆ‘qC]¼ô¤‚³[[±q8ý>ƒ ³•‚‘s²°åª ½(M¿ï^úÜHꩲŒ¤‹æšºì³1«pa¯K.ÈÓ÷oÿ/¦\Ô3ô§,GõúSºzôP7õÆÉ¤(H³žÜœ|»,žƒGSqkV3n…%GåÆ,µÖå Ø]xÔÑÌ¸ÂÆ¿-…¨ZYŸì›#SƒÍr£Ï1éôQ~'ú¶6º‹,ó^ZKáˆn;MÛVÃtßùdzüî‘ýx+²º?.iGW7\wÐ_žæM¯|ן÷I¶g{³¥ù®)©¡±¦µ—¾Z8^ÇEõœ¤fëˆ}tßÎï©s“À(Àé]§ð2^«dòNÞP‚ÅÌ5 „ʈ®@‹™^o¶€©ˆ+ ¶zü$G¢òð†@ˆB­øœ~ùä'½¨wN3"–[ÚO‚ ÂÅ‘=š7w°ê!­è +`kïÄazoçÉn;§E!Qsòµ€]ÈôvDìbV%Ÿ€>Ž=ªjFŸ–¸¶A®Îa'O¬ín¨¶ì¯ Û¸Üü.tÿzÓRýO™Ð˜÷X¦VOy±/˜êÿÇußX2ô±˜Ó¿éé/åó÷ÏpòW¦ÚÙ®þ‘ ]KYª[j…³D‚TBú¨°Ž` >žÞß‚<+¼ÑhlóŒtä8¶`ÆØ‚y¹÷•v¡¹‡¿l°AŽÃžÕ­uÕ-±Àð&¥„9Rü¾^ÉQøÜ#xÆ÷<ðE^€-\ŠiJˆ^Y\Y%ÆqTL4ê£.-/ìèâÄ–Ç×ÎaVÁÿ 'ÌóI"€þDGõu”.øÅŽö€°Î¬wŽTô‰kºmltvI¶Pö½+µW“7©tñé;±ËätßÜÒ‚ô=¯I¾JËP@ÂçBö\×÷…zB@ÞÃ&$´¤2Me‚û&qÚ dÃíƒ!yzþøa„gÜ“c„^}¸XØ-“ÆÌX°6êØ‘`…ç“qÓõ¦wx5¹jKóŽÂÈ·ý Ä‘ý=Ú$Ib ®ÿ™7LlVfx…^ ºÚqŠA9;®gƂ͈ùj FÅÐFû¯mþ‡¬-ÑþÔ;uÛãm0ÆÄ"°àðÒÄ-¦I…è€'æ ɾ‰²1<ÙÃ_âÁ€øj¡˜Ìúä=¹ó-Ì[Xt°­¨·Xžjø yäÏ6#˜ªŽ¾0ïŒ  ’ºsrO|8cß³‰Ãi}¯î-÷©»V ”}‹±_®ÈæÚÞfg`ñ).ÔántÇêKj ƒ\ý3qO…>Éu¦uÓnmì°˜Ññ|ýí“‹{Taïg×|RÁ³5{@úwZø!;(nä‰Çf+L˜ëN+ö%kz/ô¾ùÍ¢þ–# #ïÌýKo³”q `~+xe¯Ñª5ÿÝj’ñ¬Q_lÉ/êô3-†ø"±þ–ø>ŠQáQãäßoÛï?vß©Á;MÇîzÍGÅ6#ÒJ]¾´¥x¬J4^|aõ¾xiôþü9›Á xùU92[úKFKM¦À«¿>0¸óî‡ãFSÆvÆ0XðEúàÀþ ÏËÑ~ºŒÖk§ +·­ãÃrÔ9l´ð_ü®Ãa‚:‡MxhtV èôàÌ2(3Fpü÷»]„(µ¿fäèìÈКXFSóz6<ëiž3Æ^øðú«BF7kífUÆŒ…u^ 8t9‚ v85B´’ŒùÂ?“ày/ìêXNà ˱ӻŒ#<…ÀÉT¿Ç¢ïáJ÷\Š—h•%»ñ¾½!*uƒÑx]ý%Íørc¯Öì쪡…ßýwDDp®g½líqWʼnƒO#ÉæÊ˜ãÖÆW¾ŒÑ.­±b>"­ÌádH‹Gã÷œGŸ¢kPö/T4uïc ÑD 4G–%:|Êw[˜Ésü»¾ Óc-"íìáÊ4&”Ž)ëtwÃi2ð©gþæá3¾0§Ë£EwçdjðUPðBhRÆ+âýgÍMgµ˜¥iÿœ=E37#ŒEF †ó¤v ª¼óïöY£°‰izðoAntx¹èïÖô‰£b3ToBò[D·Ñ:ÞµŠ#W‘:š­I· ôÌ`LeÓzbÝÛ‰ö‰s¬h ïÙ´üaIÔûºÓA{ lŠZYï:1ÊÝ¿³#°‹rDžw˜R 3%Gz‡Ð‹ü½yp”õaÖý*¬-Î …íøÅ ž‰fËü§³Sðã€w”’ÇZ ŠdJÒdøÖf¥ 6ÅjH¤Ãvx·›£)¼ÇÛr;{ûNRnh‡üêçJ7*5/H²Å¨·tN–½êb©ŠKJ8üÐ>4|ýþe‰S¥aB²e…À÷ú Ÿ#Òc’¡dIOÚøì뜔pô!W‰ÜLbóǽá§u4X\$hÝ BõMé2]_­×:”qÒ0øËÑ[½Ç>!Í~WºL0ƒCÜR[ÀCÝ\°ƒ~çŒÜÁD§Qÿ‚ú?8¦2 Fô?•=ËÛ<ѳÓãdsTÿô(Ø&; ö|a¯y…UömSìR5=s™ìuÖogûÌŠò¿ óÿ?þÿ´_]nøÿñÿ+¯^½ø™ãÿ¿ª¼Ø|YÅøÿ[ðxÿÿ ><ÁìøÿÝj@½ƒ%h·ukÇöŠ¡ã¿‡Ãã+Ìo(ø{î€ïÒ.fF­ÿÙ4çÏÒ=w÷].5´zȶ)¢•ïÎ_X\„7â[×<`°ïa\ች#$GÒjGOò³£xŽ"€Ÿ*b a{ºŒ[à®=tÅMnà-z™NA#›¨[Ç~x&ât|ÅC²‚@:×/)&ÊŠcÈ"é3œªg°õ¦†stÉÐGAî,˜;EØÁkñp5ùNßizÒð­ìHyôé^ÛðRCà=8ä}ìø >+2#Й„†T`8_:³üüÜÌ0pi$ò¤3ÉÈ£…èÑ"QéìQ¦„ãÓÙ*CԹææ0Åqð¨R~oÒ¡ª¸æ¿`5ÙÄ3¯àI`j™ë†èwW÷[ìKœeR°ÚWÖøfF…ÒV3Žo\7d;·X’L¢æˆ˜°bT‹à ÜÄ"æ½àœ7­3˜x®¾µøf9³ÌÃD“s®„˜H®&ðãÜæ›509Xæ›##A2”`OàŠwW,–­ì(‡ôéÎÖ‘êpG™ËÕ«èV¯†3c\Ô`X›ÄN!ADE"‹‹6í.Ò¦õŠ×ªÑååúâ-Û5ZFñÐìB?^«PZps‘a±;’¹Û„º0a%LF½mJE9—Rd±˜Jr7w ö™9ØJÂ.ZáH»¥Õ˜ºM`7UóŒaY<à•²\!!Í(¥ä¢~õ®0ÄHô¿wP¯ß*JÑ#áôuOÇ‚Såß±4¢õhÚ»…í3þ÷ŒŸ‹ ßð}bª< ¼}¶‰XríùŒ’õzHx#~««ü¿U^'ë£/=ˆC5~W¬}Ø!iÂjžÍ.™·•"óT²yý}ðøcqv­¢x›¬U‘í!ÞÒt‡§0áÉ—+³]Ú°€sbÁ©)¸ÕÁ|€3²æ}o{Ì¡õ›L3‚¶ï!Âr„ªµ½ŽÂk%Rž«…(êÃþû\…ÿ¶à¿‘“lM¼ä|ŠŠ~•4 qäQ±)XTB>W<*>ƒJ˜vÓ ¦ ¨¤SÀn *ESúØŸÑCô²ÔœÔG("Ÿ¤Ã%9®•ŽƒÒ ¤µ/cÓ½Ó’õpÈ^Ô^à<ý¾µ[нwµ¦´ÀQa Ö+¸^Y€ø2s„ ¸_Aþr”Áfˆ2/­2“ÁfÈ¿‡l6‡æÑ»YË€[)Tíôè‚Hž0RªJÈ©öÞÛ9h3 d.í¼ïn§7QÀ×ø-¿-ób·v@Ë+/ˆàâwRñ;i/m}}jàf”^ køM3={~ôŒ‡Õ™žñÐ6s@aŒÆ¼*›óÞ¾»SÍm/6ü»äⓌ9[Ðíh2Aü–sÇÖܵïØÔu…~‰í_™¶Ég­ø¸?ˆEŽ ÝÎ_˜Pd”©‚ñÑÆ µj°•²Ö;·´o)¯Ù4¬t§«)ÌF3&× fª±T3粕Ö:SDrÔX«8—¡òN&>½!Ö›‰½N]ÀõÇ·ÀûÄ *¸ãÅ2(&6Çæ¶ïövpÏ]¦ê” è˜ï;VF½Ê¡Ï"{$à4qy%}^¿̬CI Ãmð«Ô³Â•ÈûÂÃ9)Ì ãšÐamhé[LÄÇýŠpÚûÛûèyÚË-/|}VúŒ.ÙŸÌüŽ;X X¢´ ÚK-³[ꃱ¸³¸3Ì…”æóXòAØ´@³¦O0*L³>ˆl(vI ;]ƒN£¼y¿|‘úyʨ´«Æ¨¬“:n-ŽVÖ ÃýxKÈœ½ˆoœÙá "W`yúX/ìÔÓýš°tïÀ- ¥¾b œ‘Û‘IÛ™)šu-¼ š¦Öð*È”LˆoìU°Ê« m,ëÑ㯀ò •±þC³Ö¿Öº%öïk¬Ui‘§¢ßv-¤³{™OðáõPôðëá½:w¾®{»IZ‰kbM4Å–×Ǭig4Y/JŸp‘”](¨¦˜MKëÂŒ%Ô‘&«§3úø WRjµZKÓoX•ä^\U1kÕßæZdõ,HYdÕë¯嵚¾¼¶$%V]-–ÿLEÏ€Fœ<À\>-þãEõUeÓÃT¶Vø§ø°Œ8ø½þƒ1x+èG¨¢)Ìa“õ1Öc¯*ÑŠ“@ ŒÑe&‰è«õ»áÅõúAïîòÞñ3ÔßÄÓë‘‘Zš² cº©gb0tº)ËÒýÀ¬ÁÁ”ÁP£pǾ ÿ¼»"œ:n`È&¤}¬Ó #Ýó”̹s Á¹¡Áô(îGRÎå½¥ Q¦TæÈ»fü9DÕ¨Þ¬uV¨˜*f…ŠY2*&ˆ‹AÚs$á£8YVí™øèÆšÈjÅ'‚@¨d{s䨣ÏNÞœeN¶2 €äd£ yrà™4B çf$Âsš`§ÄË™ ϤáäÅ›/#žÕ—ô´s™iñ¬YòÒXÊ7‹«s%ÈË´˜´0pŸxF~ʤ(¢8E& ¡dŽ EüÉ U”¶PXÁøãG2¢ø„ÉguÎ-âx\#ŒÌËÙt<:"Á ®3”gƒóÒ/͇:Ùüu½úëúæÏp¿íM/®ÉÆÃU×Gçжm©«rtØ›^cH…{hsÒ½h°Q­0¶`°±õë–Ñj´0Ñ5N­Þ©”a¯m¢cm½-“¾}~ï-d–-²£ÝN£Óªµ üVѲamVÖáÿ¿bÏê½ ƒ8Õ…)'«ÜßëKªb}ãÂ*Œ9ã¨?SŽgŠ£:ïÃ{O“i ›†~ýÌ€;ñít£l[àïƒáèëg[xÔ©¥!~††š,BÊc|TKÇø(ûQéæò1üGJƒ3¶{Ú3†ƒ›Dø~ Ȩ¦ ÀñÅ8îa€<²ía”1¤SA{ˆÖ--ùÜêZIÚañ7”c‰ ëÇ8+1Í ¶H4ÖÐïeƦ c.e¢K±|qCŽUQã(àêÿ_Ë*î‡Qº´‘šÜA ºÊª$"ÌÐJLýV!° ‰ðŠþòÿAk B+>­Ëà˜·zl5 ó=w™Po©Wñ­áú'oÀ*€|,$iÂfmê‹DæÂ°Öhù“H!ëìGë°ÄsvLA¡ZN¹u ÐÅÂ눺¿k ÐŒJ«b3Lg Ó¡= š4 *ÅRÿÑÓþöçA3k4­y ­yPó`øýσ¦=<õûéæFþi]ž=›Áy ßKŸ#c"€ ¯OÖ*¡¹Pá¹ ÞXx:|¢{Œàtð¯ŸÒèg*à èUŠ÷C¬f=%îé1£•hï6޾떣ÎîIW¡1‚ôéE ©%*àXÇ+Y‰oZ[â©5“³ÿ§_@ó@íãàþëtwÒ»(qµÂú y¾íTP« Kmø¥ýþ#>H¿©èvÓ­~;•*’Â[rôñÿ;¬à¿GxOµ3wœ®4˜TY(V¬:Ã@ éìØiÖŽþPàžT<“)‹×Uµ½˜S¶Ó2š þí|¬-¿£] ®m&ìÂöûÖþ[ìÂaí­Àvu>´»Ú¢+T[€™ÛP]%#D£iËÆò¾ªw â"K|WŒÖÄ·ØzýõR‘i©áÇVд(MÛ›šÖP¡Àĵ2›î&”§ñâz4"ë=‡‰æxU‹¼Š&dë oA®ÀE -DËs.Ûž8YÇèô4‘–}}Ƶ©âÒl~ƒö´ÁhtËYYÊòÄ‚tHUkQüqSOÓTXq1/y‡:è£jØú¢áŒ*Á¸1OP*‘,äíû¨û>úÕêDÛn`f;*™†g¬ÞœÌHÂd¯I(sv‘•Ks`e6Rêæð6e¯ o¸Çq/‹xä ]çÄ8›íÎôÜ Ž.‚¾°$òx1B~"‹…°ä¸,~K,„•â]¼}À‹ë Hv‚‘‰JßÈ•oÙy·oï=€*hÇsîÒ£åX,t­‚c2¡2§(Æó^Ôêµ^S,@ZDn0ØmF^t.Wç‹ÕUæàÈûJËÇ_b2˜‡Õs?7ÞînÐâR’\I G¦è—iírnH· ´Ú…“ñgßiÌÙRíÒÐBNºX’pX·›-ÛFSÞ°(¯¢Ìô”ˆâ¿&dÅ¡"êôE{Ÿùì ¡€g©sËnh–ГŒÚ†kšM¢’Bá5Ú·¯ú%–§¼?»tËÃòT*Èéö\Öž2µø³¨˜EAI‹ Á^VNOu»e+3Îi7Zîo|W@õê^¨äêgCëøVWh—¸-Ñ-ãMk™-‹ôn[M‘©ÀWv´7Dë‚ÒZTñ–´ƒ#TàR¬‘É!脸( \ãgrw.¯>ÑhVæÛ#·[Œ”ÃC ¶ËØ4bÿbs×3»e¥&ÅÅ´µé¾Ÿ¦ý¸ÌzT2ßû'Ö•õ޾ЦаmLñ¤¨Ð‘È »¹†I͡ԷSBr ¯ðý ,üx%êY¼ýÛ¬˜1Ö̵ƒ#£žÃxqÝ|S?lµžúÙX qFÄ"‘z˜GaôtM—ê`¢¿f‹#&hü/£é–X¾U7,±aߺ’®6Í+îÌ•%¶BYFç±Ä’¾Ì¶ÄþŽ~³,±°ê·V–ØGµÄ6‰Å©–ØÄÕZ? Õê`meõN+{¬õùþì±dÿ0¤™,ŸeKF—n‹M›]VËKq˶¯­ì²+»ìüíZû¡ì²k‚’k¢|»ìt ç Ãì'o…üÞEƒš¾bÂÓp ûåo˜GkŽíV|“a¾ýYœÌ„ùÖç žÜ|ûóÊ|;—ùv-Ó|»öƒ›o©ý® ½ñí|æ[97¿ûms–ý¶™n¿m¦™±L} ´¦gZy’•cj†¬u‘a°SÍ'D´eè-°¥7ÕÔÍgí_:*Hƒ¯q^ÈŒäàHTªm8’ƃ¦m>vŲS»üf¥êDÖWóX޳`=]p£[+æøž³D À j²#™²ÙZ_†l¶‘e¶%Ó,p̶úɳ`CŒi"íka»öÙµŒÄN)¥™}׿0û®e›}#®±°¥Ù\Cñ2;Պ½§,löýEš}×ÐìÚí"Ó« ¾h‹­ª¿+¼QúHŒµ-wÍ2W+6Cg^)“oJG¢Ç5÷®ÙæÞ#±š¼zîHô÷›æ„bÞÏ›ª½óíÒC•Jï'AT(4¸ûÒÁl~sJxj¼¢ÿà°5-<Å´þIakD~ˆ°5ö€®’9­’9­’9­’9ýg$s¢¼Òب/…q¾Í3œ“þUôöD¹„JT¡"ÛøÈÆkþè7X‰“.Ú3CÀS›I"¿£½Yp3›cw7‚”" -£^o•Zu»¢U¶ekÊŠs” áãi<‡­‘‰¡[¬¹Ñ‹g£¿îb$Œ*1™€®ÕÿMOH/·*†ƒ}q7èÉ ’²r¬Wv›*ƒ#Xk/TP]ËG2E­n¤´„hàº8qbmkå„ó@¯÷â%­”;J'w@ƒ½l¿,aÿ5W¸¦U’°h•$l•$l•$Ì£`PY% {ô`93Âäãâì4Û3èl§e{`œæ‡ãÝöå<ñpØˆÕøØ)3( ZÒ†wðþ†t‘ôkVý°aèOí]<¦ ¦8(‹hõ”"¬ÛÞ Ô0oX/e´sþDc!¦6k»­“ôNÊÈ8üZ¨5OžŒÅ…‘uàÝëú2üÇ΢ÊR¯(ž‡Ùzîv•_%¯æ€|½ |87¢æZaX"œ6¸Û“Pož±)öYYÛÖÉUŽþ3ïl=;p·FÁÉCôkêvRúˆ‰§>–N\<£Î9u –ÖH' ‰Ô½]G½<£{"HŽL6&ï¼Åüå,VaÔâöèöÞ¾ 1Lÿ=Ü †˜tM†øÃ¨×éMÙʼn@ÓEY¦ÖP8xqDÿ`g´KÐç”b°¾Q‘!ŽRMuò;žÄîòHWÉ:÷îƒhES£ç} ‡ Î*ˆÀAxа´”Å“ ²7´‘E°uŠRñ˜Ò­uJSF3Z&"“3»™u.2ò°™â>ÿGFQBAü!g¹E¢7|ÌY<€z-ÿTÇuÐí¸™Jl²žõyȬán’¹8œ?ÚÒ°•siX³–†¼ ÃVhaxñ„ ƒnW²w„ØfK¸og!±•ÔƒV:¯­Gâ!h¼§ÿ„ð—O‹ÿ«T_m­ðßèÃ2ëâÿöRóÿ­ ÑSå\ë·÷ÄéeT~4®È®6Ñ·h*9 í,‚ðyñyUÚ‡™ ‘Ä"9ç͸µä +Xä ùÂ"ƒ¨ž¬$]«l~«l~â³Êæçgóû1¡vƒxx5½FAuÐu• †Ô㽨§3 dCëŒ[:ÑZ‘ˆ‰Ìíß ŽLSùÝ¡’à!7!¸çi—•qi‰'â*ß*ŸIm•o•o•o•oÉÃåƒô„ü¿é1JàÀ·-Ž ìî1ðÝîÞ#¢Ÿ>ÿÙ €¢ò*|³(o6þnïûÃßí=þN²qEr¬=¬ÖLXœ´4ùÁP²Åôrµì#¢RÇÐ šŽR²a^~¿ u õ_yàLßEæ¼u>P‡àáÝš@…Ò!Ϭñºû›I„Λ ¿$Lj!øå€,gê×»¾}šD}/6ý—1–t=Œ(ÔC£ÍFŸÎASù$‚ñBaGÎ¥uŸt¡±h@"™ìT ÞÂêáKµ–{-ù—(íNýÒë–ìQ z¶Y£]v{¼f° X±Y‘dôäÑÐpÿ##™yùò‰Ìt…ä›^ïy¢VàPºa–ÅÞAÏíMa9ÁÙ…íLjÌþè3½µŽA“fÏvZRÓqbKšíÍÝÖúóΟǵè|Ç⯇³ç;q͘ó2Bœ1×(RU¦èQV†O¯‡9Wуô–§/ˆª;°s¯}'Kå"T”ÑZÿÏ;¨ÙK¦ñTÔÿ5ìZ(l13dƒP‡Ômñ¢|I^mÐï²1曡€®áÒ#SŸÙJŸ‰K næ-•Õpd³^d³E@V{ÿõc‚¬¾ãOÿ•<-þkkë窇ÿªn®ð_Oñáéäâ¿3ð_ÿ1À¯ñÕ°_Éù§a½P¿D'쩆”#G«¬6tËÂkh¢µd½¨PjüÙò°LÛø"¹L _"aÛØmèƒÝ\t bÄ’I¨7aÀ9žº¡)&} ˜ÂQñ…'!Ý@U693På•LüAUsàpL"òŽ7‡CcH‘-BfK|ìÒ*(¹.šrO0„qr•ƒr…!a©À/]%«aÄáø ¤ N:—bƒžLBÿô›àÂ;8>´9:j›Ñ“HŽõdØ'›þ£AŸœA¹‹úrçƒgfÅÏ*Ή™Y z$Ú3×x (1/™ú )b£»AŸdåÆRä A_3“ŒÝú†¨;®:7Nµ»@”8ÇÃk!tê.>²n X^|q½ŒŸ1vDL‹L L¦S73°Ë©šú†¦¾Á”Có­ã„=ä2°;åÊ›¶ôtg9±â²“±ß>ò°ÂÿÂuú¿ØÙm½?\.2 í¸T˜ãNZ?ß2θuLQU¶ß.öø@Ä£¤û#Âq)Ë.²å™ùÒ/[Ï[öû|¬™6z²ó˜èÉ÷í æ`*˜R—IÏu(j P`¥ÿ{ Vnó¬S |,ÊÈÀQ¸øÔ*·œ@Ë»ù›?Æ<7[wóçØ'tüÔƒ¢{é@ÖPUsÈþÈ–ÐLû#ZëdÆVè:ÿ}¤¿ð®YK¼G…oŠ¡u*¤þ!ÅrP R/Ú¦H°› ­ËÈšÛIn,.ËÂzÍ-^—tÃhêôÂí¶úÔ©T®Î9n‚³/Ú:ê^Œî±‚W²~÷h’ƒá‡5@Ø—p{èJ›8EàÖgJܺ;k¢4™[¯|k©s®øfˆ_õQÄoÞúÔ½“ÉÂÔê$kMäI4¯—¼‹åÃJäÞ>=çb΋Ö5ãs}K@58W ¨oÒ]ïa¥TÃù ÕmñÞ÷ÚíQî@pÃ$÷SšEoŠ÷ä[Y-ã!V$Qů”°²õºèéÊ2f èVý`Úh•©fÞ²ÈÅ!óM뉲Ðè­ø«Rž-Aø6hûôœKß5ÚÞ[ëž=Þ›8Lg¢°Ævóý–n¾Ÿm†Þ]Q&4#÷˜·›g¥Ö똽âr©\-Éßx?øNô=+fV½òBø¡šAHúÖ*–ü‰àúóo·&š}%Š^/7nJ¡µtâÑû¬êª×yZ3O晄ÔVoæØƒ_̃ÍM=È ¸æA¾¹”ƒü·Ù¾g@x¸}?"„÷{Ý/²ú¦©e4AËÈBDñ©‡fΩÇÂóé>Î\¯«ÌxÖ_ÂŽî äÚRÎúk¹Ïúk:ë/C0ó)(¡ëÙê‡Ô€=ê`­º¸¨Vóìé³ê–»sV•áɨ?¸!/Íl°–m6Èc¨Y´ÖÒl ¹Ì¯òš òš¤ù`m†™Á1ä3¬Uò˜ ²Á™s¨,A¤aØlÐ\†ÙàÛ\ üú¨•ͧ²4Ÿ=ÍŽþ„‡5WA˜osµ‰<Væ®wY!!]¯Xbº¾¨y!Óš¿’Øœ}Ìk…X¨bI¬QW"yhäiô<=ý+r]üŠ;?l]Tí¢>ÔÇÀÃÿ_Ž?-þ?ÿ¿õjóÕ¦ÄÿW^nþ¿úbÿùI>,³þCwÛµV§-ÓìÐ_€G¤\óè]M{Ôw»5±6­ù Óv^÷€ô ¤`ÕŽ“s‰ËÝ¿$ñ0j²4º“ ±ö) Fã^íÄx’“¤ˆéGðKžF¤·It2NF—Ó/4ÇÙÕƒµòv<úœô¹µ!³MYÎåônYn²]‘ÆK÷Ž…äÆ/€—*R¶pßËBH)RóøPÌrØž'`v3þ¢­¨Þ¬u¢Aò)VâˆÙM¶Qçjïa®aÐË6¤?L ™uNfCuæÒN°÷Z_ÿà5ö­Püߎ^¿‰zƒÛë^©Vºuá ´N\‹Îãi¯´]æWÑsÂ/b(ÕÜ"¬WÒ‹4üøüàh9ˆ& «-c·È»a¸Ž93ׇºÝHD&ÅÄÜŠö‹ŸT”X3=ÇæÀ·{Ñ'AÐ #^ÄÐð>½›éì!†…e»îù{¸.-ô›@ôv Çh@C…ãÃFígíÙu·Ø–Ŕ¶®¶4–+ÊúŒ¶!4]ÂÙe¡‰rOQþ)Äáh‚çzv5±n'ÅYÊ›¦Ã€Ò)b„xÀÍ‘Èlª>—£PŸ¼v”8Ùm»„BÕ6/¦t¨ MnÂÀnBjüë¥5áx(¬Ø§`ÃÅ|Ã-G[Ñ£MÈåR Z"ŒÐw”˜. =ñhˆ<š¹žx­m3¡ ‡Px•ÉË1ᘴîú[¤ò«å²*಴M.K7˜–çÜŠmõ¦è¹ßSúó\-<˜«…lÉ p¿L”ŒI­½Ÿ,B(¦òèΑLË®E¨GäÉÔ8Üm‘#Ô„O½HajVE ž`ñÑ08Ü}r8µûK»¨b0mîR¢bÄM‹Z¼eÈõÌ^øµ[ÌKå™&‡°¬“‘í€ki™YfSÎ7Âï-÷lÇ÷íqg=Âòºª±ËÙȃ헉 ÏŒ[*Âäî  R_{7 ÑÑG¿ë]æ¹õžü“ÚY†((š½êm‹P°ä§¨˜}¨NG‹Ì *œ@¸Zç«|Ûž?ù\÷¢V©ÐZ«ŸWÝ>Úþ{ÊQØV¢ß´0à“ 8Æñ±È<ðaft<4¬É`ÚÉMSzŒï-"(âïK|ŽƱJZ0‰Ùqð•d{O™Lîn8U ¼‡ë!O~Á>UIàKbÅœ©ØFö!'V+oA(·Á|i DŠ錗Upû±Ò4ßÜ…ñm½oÖšr´[Îûü–¾I?h²7~«ýþc’¤·ÐŠw™Õ &‰#ì6aý¶ï^|ow)YAû @w\èè­\š75xkþäæXk§>9ö¸P«ôè(žß_S¿ Ä¡"‰X^fâM÷.„d'Ò‰¯í4‹ò©¼¾dõ&/C«K¾÷¡êÛö\þ‡L‚xêÑxœEÑóPeV¤´sV3=Æn’^Nøƒì÷~޶$É£ú:¢igY¾Žú¼„††¿Ì·Ðò:*hA"·Ç"IW&l).ºÅ¢&ª¦¦B‚Û&î©´ ³#Üâ"mQƒør*Í.WñewÑÑ©+Øý²@ÿSÍáÌòÑ|µÈ’Ãtȼ[ =Ÿ3: þpÚ P& Ô¥Å×îðì¼—•+QK@¯ºÀ3™ÕÜ Åhí¼Ÿ5”Jð\òF¬‹iô43Aðöa¼C&oùжÙáAÕn¥Á5.I ºI¿_&Å7; ´Ñmïn°ŠÑâ«ÝVÕ-އe£Ì^ ¦‰,t`ïáûÚ竜È—{—Œñ„Ð!Èßðºh·Ù˜„8_iÅ \:·ªQñu%âÔÀ-óbÎMw+Þò Wea?©pppiÅâæûÀ92.bÅZ߃xY’Bím°®å-yf-&amó¯­»œG;ƒ¼&]Ö}v?2Þ#^ Q!¢‚Ê—qdºâe\ñ‡gÐv ´üëj·ÖcUkÕ©µUY[¤âÖÚ̪Qû*p­°MrÕ¢ÓÛ¡úgTM¦‡M¼´pƒ*ºEÞ )ü™{ˆ·óñö7âíУ&PY{Ä!Þ6¥Ëb]ÿc±OˆÒÆ=ϲqüxËÆñ·_6ZÕÙc;{å¨.Rse…£¢jßöúS¤¬Æ2õk†7¾O¿fÌ;¾©ËFõÇwÛ野¯ÕØ|ã\0¼/b ÀÖ`¼q^LƒÙ~\ fû¡ÌñR—" @h\·ÚfúB´˜ SYó£,Dvc…¨Î(L«¤æVåÁëU¦äY¯Ž—º^Í'ËTrr ÁÒW+£±K‚‡iAîÒ³d-h;k—|ú¥§U-©Ò5Ž*_ú„£™§þ§=Héö,o‰YH%Zî³È`/õ45ß`?Ñ‘*k°sêGö7®ˆ(KÜ‚v",º$CÛÏR¢¿$SÑÁ&ït¡Lcn½Ç©õ¶Zè*³«öÖ¸Uýv¨þZÖª³‰p‹ç\ç’‚ùN†ß@ Òêm̿旂mS})ÐõK)˜SÓšµúm\¢\¿y†é£Èß’£dÈF­[þü’åÂ+°7˜Œ¸‹ì‡gö®sq}7¦.•6¿Ã&–:¥3nq—þ<â?åk<”h°Îˆ«wÖü{fÇ…HŠØ¡øg8UïÞß"ó{ƒpx´(}…J(j¢á‡¡ÛŽÅí4¤70C1*Àh2UÙ)1æôóý‘‡•$\)ËÌ$Yvµgó:«lˆqúÀngê³×d u‡G˜0Åè ÃáS ”;lŽ82ÁާHHÕÂ&†©R:óÅÌ›YŒd„„X,éÊy«*‚à°ª¢–wñàH?Pcß^~%}Šùy9})»‹ŠÇ”m,ZˆÿºKà=XŠQrd«ŠÔG5™0-¤<ª@}àíýÌMÒÝàè!Òp@˜UkC„QÀWátû‰UHŒƒßÊð4Тw $%×4°‰‰ÖÙ¿qß!gT-•6Àµôžu'“„¡ñÁxÕW^C3Ep[hèZåµÿ‚|!6Ñö¯7Ô'ü]‚­ßpÇi¡¿9–Þ(:o$ ßY£“7U5 ‹SÛtÁ^ž©ç‚wnQJXnÌ‹!œ¤XòÅÕ9M ‚l'sw2—ƒ¢Ú]VÊuŒ { ~qMǤEŠé”£ó;+à =&S~Ï;C†DN`YžI0#áö» ¦$n‹L·2,×B#Ùc$ Q,ïæÉîÜ#yô#ÙõFò(s$»i#Ù]ÂHv7˜Rp$E )==s íáú¥r,â •ŒzÝ/ÑäùM¨MnH£FRTÊœãDoÞäÇ|&Bú,Ü!ŠÖúòú0¾ºŸcÕ5R-ž™¥#ˆè™h¨cGi3‰„åÎjä节²Ôýu×Nak'Jf^þYÔš÷nÅŸVgÇñ-ˆ¦µG::Jyè …¥²³+89"§}ðyNõƒF­Ïýcdx2B!Ey.‚‡i}Æ£¸?“ëÑÝ€‚•MÀUÁÑ2&¤>$x÷A¼5ßzõ!}½‚U‡8ÒnˆJt7áÈñŽ hÓ‘<~Î8«§®|ª p,=Ø$âjoeydœÕ+{ö¦(ÙØ%«Í­ÑÔ iÖÓz¦»Æ-ºØ}Ø`J¿c¸%gÁ¦SÌèE$kH³˜x½%#Ì.$+g’•³ïCV ýþ„%íô° ´œ-AZÎ6˜Rš´œ…¤åÌ”4›S;¾ŒÆŸ&·½‹8ŸÄ`TJ™® ŠžÜÈ!£K–ßI£&ó|¥(<2¨é4Á¨»DEòE4h_RøA„$¡/TÊ­¢³wøŒž$øÒ‹`SŠAôÙä7qÜ¡Ë!{÷Üc,Á PΦ±Ý+3ŸU&˜(8`«RPï[=3ª!Ÿ&4P~‡£(G¶Ns #„cl”¹£x‚†¾°#Iã’d¸ê¾E0Eñ ³#qd¨+xMî.à:¹¼|˜Ïÿ…Ï¥¸À$emgë ëRtÝë“z0½fÀܲ+©”766Ê­×Tø¯§2fn?é +7¿ŠADÔ™_GHr?°˜W¨þj5@hFå´âo°?k¢Urß§½}ŒB'uK¼Y-‰ð.ìÆe/€Jðt_oe6ËîÝIíÙÕ(8a KàÇXL&Ö@¥Ú]«wxÞ¡àF°ÒÁÏd*gtqBƒeHk“º”¨üÍ2>æl(¤bZ¼D¼|UyÑæ ~˜qG¹Í± *Ú¢0‘ßÜ»r{f4Ç ÛX¶b:fÑ~Wkîe‘ÅçDö%’ÌÔ\ÍձѬµ«eþ‰ÖÍøOgû]âEõ‡ãÝö‚Bè²[\Œ7ÄÍxc¯Ñîtñ'ü8„Ÿî.Ѫu²€ô_GœTŒe:ÝZ»Kñ"÷·ñ¿wð‘K§³å`«ltÓù SÓô  üÀÌ—˜©°û¾YŽêüe]|YÇ/3$§uj{‡Øäîîáÿ[å µy”.ѵz£ ¯Öv*ú—~¯Òïøý6ÜfŠMÀ¶ÊÑnç]cXÕîî÷(‡§ø¦ÓxÛªÃ7ݬä‹ÇX8®äÂ16œßiÖqÏšµ–Êa˜‹³ì¾žÑº¹cs6A°ÞÒÏÎ.0 dÿÅaT3o¨N°2¥]•;Ë"c£[×Þ–9˜' Nút>´»¶¨èž¡¶„…½’‹ Û(‡"/D§¨~/ˆl²§ÔoM|…}ß)=4)·:¾õc³dE‚/é¥g»Á°—´j…bäñz½‰¼ÀÕN6U7€ž$¼§Ë`ªèv¢vÑg …¨ÿC°K|Á–Þ%Iô$ƒ¨Û#IÓ‹FêÐl,@s+Ì%ù8—ÎÒ¹t–Ê¥³\:KçÒYZÎfpé,K™43¸tâO íëøâ“ºŽNì@-PVP_†mUhF«H­:/íö¤ñ!q÷ÃÆºvV£è¬$Ùá8•©ry ³ y å~gzpÛFó½È‰š7Ìmã]ƒ³·S¼Uü ÊóEXŸ=YÙyNùèÇÕ%ºÙ%*›~‘Ü5§(GrOZYAŽ=N5wÎrgŠÜÙLr> H¾ÌxÁ*Ð,‡:fQL%¸„ðÁ5|63|°jp¸A‹ÄV/˜³Qħµgˆs¨'f¹¯àŒV5ÔÕ¾„ÖY ®ž«[fjG™ƒ&`ÞÞÝ`ðŒPÅðãx&QÂö’¡&òBolDë=ì]\ã}Ê6è*Ó!aÔbñó°c'·xÀŠ:r‹”Êo÷â!hêæT/J꯺~Î ð&+¤Øæg|byWxßæ{vû­•í<²h=­h×-Úu‹âÑD.Öò¼-.qkT)oÕ­·ø¸ïáaô¹ý¶C/ãMIS—ïÄSè4‘h5.;˜_š‚C‹Á)G†4ã‰L*˜À}ÎnH3 ¾„ë®É@Øb>êÐŒàÔçšÖs®ÃvÒ©îºõ÷Rþ²Òò"—€ Z5ÕI‹V³}Í€›·ULz—^È‹° ŸwFÓÕï%&f6WG³gg©i[©i-Ý´³”¦yí2ùˆêm6C`ÒèçŒSçÇ]ó1H‘—½qɘžH“OÉ-Z#)»½°©­Úì»È~þë¦^^j _@M µ.ž£šïß…–Ïþý°wçÂdØGDö¼2§Z6p2D×½ÏqtÇÃèrt7ìöÈmNi®óF7£~ryÏ6¥¼þr §§Ï&@§=ú(#Ñ9òý×l[1ÙEft È7Æ–áŇ¼e+½®‹!ó_±f6“0“ÎävL§XŸôÎGŸùªÚ@w‘áG_z÷‰µ0Ù™N^[FöÊkXaþ,ÿ¹^)¾Ù䬾i¨4¦ü©¾†u^‚Wìºã‹D¤dxMÅ€én—èKÔnheñ7 îÕÏ›úKoé\¥ÀªD,¨øƒETI oE¡2ޜ֖È_}¿SѾ«+º*Ù¸zJãü×CíâF½Ü ´@Ä[#9ŒÄ¿¼‘I}!T ªj…•v8ŽÚÞÔ” ÄeÖ øK†76ûà 3úûÀÉ> oßÖpãæ–k˜£Èz=e„g4'¥EV)׎"ŠùªD0ËÞ]ƒÆñœµŸ¢ æp©¸iæ¤&3Žoz ÉÁ~&äѦÒÉMF.ReoFj§ž£œ?ãø6F0Àà~# Y¼_ Ð°ùˆ‡%U€`U«nâÕŒÜ~Y/mW#q$4jº-ƒr¡à‘>|·»pP×M\ ã[PÁ2ÝpeÜQ¨U_ZõŒõK5¯ý^n ‡ëTQ‘ ñnv­šu9ê^6¼týd]kŠO7Ô€nvXR>¤Nh«‰p\ûÀÇ4¸Šñ7×—uýg,«Ãs'}$•W3Zg •Ø®œoJÛ)Ôg,¾º ¼zÌ…¥òmºJâ¡BX@j(™%¢Êü¤ì¯F­xEŽk-m.›•½Ê¨Ìß•s=ó¹fÌGXrÌ:q§µï¥×¾Ô6œ$œTÚNâ>†¸¸î‰„¸¸ÜâjÚ-°âHÿ„ºx²»äD ÞV(Á½]ØS?øKëÖüK«³ä_\k@ÞåÕ©3­ÖÌ!õ?BøÙ$B+\%ßb£×C4{™«æ^½æVs-ŠÁV¬UËîÚ²ÈÆ°žocøŽ×e{ûW;í‚ Àú\2êîîy”€ǘÈb%[—°"<òŠ_kó ·Qh]ð?¯ÀaY¼»HõÝù«OµÕ†ØR¶Z%lêïõù„M4hëáû@àШ¯^ÍÓ·Yè¢bì^DÇÏýמ@²Lî®aÛÇ« íà P*|K¨v]7‚ƒ‡ñ×)¦j_lZ\1hvÆ£[8’ŒGwW×xÈù)¹‘6«Ÿ¬ð_â>³ZjÙª7¶Z±ÌQî¾F['œrÐŒaX0RÌ÷LΡª«°naSèµ%ºÒðõJ‘æ6*|ˆ›d83ÕÊ”pi]ÆϹD蕪x§|)Eq]@œuø‹¸;vEµ·_IáüÅ5uøƒè*7þ0jß@ P_ºýöJQCMµ½ìpàÌ›ÛAr‘LuäV‚oYû¹@òaD8§ÙU»ÝÔE ÑÙFá¶Çvá£g3:ØgêT^й#ÜÃŒFAÅ\4%|v5,ÁbÐçRßþK3À°ÛØ‚8dêA[n0²=áñòŸ{9LëĶ\hÓ‰:%U©»˜ Ú¦ö¬fs›ÌöL2Š5$غ*5¯k7¯›A·›Ñ¼®Ý¼Ydìæ¡÷ ²T4.d©U7A‘Á!AŒ¶€ù…®@õ€|(§í>5Õìƒ|r7f>ÆîwlJÛyË[ÂÍÖm õ<(ƒæñÙ«3íoMâ¡y‚Xs¹§hà’Ë÷ªà»46ZX®°f¸#ñÎ䨜mNÍŸw&ó¼‰aÙÎADÞ/Ê1¨fŠvrËé¤gŸ×êºê¦¶§›Ú©®Û©ÙDÜNmå˜OgóéEÞùtævø,µ­…UOéó™Ûç\tÜn¿È9Ÿ"Ú³"G/¨üøîU·oÝ‘¼!SŒ 2¼ˆ¹Ü/›n Ä…‰i·òïJ::ø G¾‘Pµœ*¿Z溳ˆ@—&*ººÉ»5ƒLímzåϲògÉçÏ‚RäI_k4ÆxFÝx|“ É"ê;ó*O´MF|[‰;¿‡ba. é(ã$é°K1‰HW+Þ4 yj?á´LCèQ¹J5ôT/ÿÏ-¬ŸOšÿ§²ù²Zñòÿl¾\åÿyŠO3+ÿÏLãåƒ#?Úh¬£Æ‰ŠwÓ†ç;2uÏ÷–“çØ£v;5èÞÛ­*Bûn¸`á_½oa¨üh/>6·`aß§õóæõAV©ÅÕnD |ä^Нb°5ü$5—O¨.§Y©|Ž Nò£Nü5=­ FOp óÆñE‚J¾#ðähا0†ã›JAƒtÞáž4M`ŸÁ•FJ¸dÕŒŒ9vLÙq\Ú)—Jï"ž‡_5á«&~eå£ywÔmïÉ@ÃCÕ\¼·c”fx-¯ã›Þ›ÔŠE}íåõÉx]J&VÚ9Ôã@§*° tÉ¢¯g¤] ü‹ÑÌØü®}3c±eÇQŸ#¹©¨¸ûð>nÛA{Fj#`ú#"`;ïž?{ MuÓq®àŠ9Rn@þ&m:ÕØEåˆ>4²>“J¿vdÓÊŽÐ\*´Ö*ÅçU/R3ß ªËQQÛŽÎe ÓïŒ']Õ¾#d 4Æ(:Fæ7½¬J$Åe1l4V&1qB£Eñaðmf(ê[ŠÄ\€Bxe¤é`L¦ã» Ði9ÝqĪÁønh¢y’&‡n™»ºì®¬,0 ÒW‰Áv“æŸÏrÙ|«–)NVÌÅàÜ®f~­Ñ:iå¥.ÿ©ÓðÈZ™DUº¯¼jèjHb0ñ睊Q`gHuµ4wЙ@ úd Û-ÇÑG±`€D3ÐbÙŽÂøÀp‰ÇGG»òÊ%´ƒ£²UŽjŒ x,R©Í a†¢Ð©ì¢­”pk GìK‹Ä·ÔÈ{¸¢tÊB³[$\yyò‡©Ñn•àlø§dcÔp‡â]¬ÃnhŨ!¿i!²Š4ƒ!½Òb^͈Då…»¢%˯ ½pT‹‡=BUpvأܑŒDa±–““™ ß%ßÖT½ú¶¤Üžfµ™Ý€}ì—Úøÿ…Š«Èh4œEÁÇ-¹úm󽫸5¬±=Ü8.%a4¢YW} 4ù¶0K6Ù]Ÿ«Hr‘Œ“ÓÀÊ¡ sg:&4ÐÉ Å‹…@·ˆÜf>¹Æ0‹QFCàŸõˆHTBØ7áꀩ݇N“S,qaÃëÅês•ûì™É§¿k ]BŸ%Œ¯ì·-J»r¿ŸzŠM‚ëI¬»ˆË¿\}¶<»š¼S‚Õ¬’|’k±3Ëy‡à}¤Ì«½µTá÷ÖL7ÆçuØ{ÔÞP!­üYU™¡~ÿÌ›‰Lì¸.–ƒŠi<Éj•Å@•eËûVZ`BÌèjL†çêoöDdnhø„h¹ˆDŒ*¡¬‘u ½6¥X+q!ü‘­•¾ý/þ¼dóß,ûßÖ«Í®ý¯úâç•ýï)>,¸¶ýo÷„âÙž•m#àG7mw;;mwØ4Ø'°Øý@Y»5'fÙø8#Ë<&¼ÌtÜÀæ¹myå…òeÈëtÙh4uógwËtù#³óCP¥Çv2N -|2Ú’²õ‰­>_Rʶ’/Weî<¤'i/£™½Ú˜Ë,2 bŸ;ÎL‹˜WâÑ aùÇ„íav&½ %q öjW&LBp¦âÁ._’ êDQ/$ˆµçmp')iØ…vw‰‘w4!Å7éÉÏf ËÞ ƒ®Ù½àBLÇ«\!•®€ÁœJBwñ¼”ÿ,’ɸò¯7É¿Þüù[ …¦K¡P- ×ÿ,ztþ$:nŽ5•„š‹ÆjX¿Œ“é4¢"&¤”“0¡Q¨7Ör“ˆ™!Ç@XdúN»Ãæ™Æ²âÁdàt6“;VÓå…‚ç„e¦DÕ`«=l[ãÉ-jhÐ`ß^du2yètIÕd6êÜÎ|¨êv gÔ-Íhrn¥gšMʶézšPH‰Þä"æúi‚º)¿MöÅÙ ÍTXCÇV+;/åh<½ `™!•ܲzF_ Ü$­zzÚYÉz¯Gƒ¾¼¹1È¡7Õè"!i%: ‰tËèBKváLäÈ1²q=Zú-)~& “§â='#Õ܆W.þÙ°*…hÁN‚Ôªj͵Æbqs®Eæw‡Œ ÒÓ©Î)!]Ï  ÖoQb¹LÐgty¹òA£Úñbâ&î'tšÖk‘O….—ÜLRX·ô×+};;ô¼ù¬ô?µB¬µºgú,+´ J2ÒhíìÒ¿ítá¿Ó­ÓÏYÚ?ù¯5³ŒØ-Ê“ÓxÛ:†Ÿ»G8PP}m -EwokYIN›@`¹VìYyg$;gÞ™£eX¿w@¸OöÊÚ.¾'ãË& éî~ÈÊntv|ô¶Û´hÞ5)Ùe–a|'éÔÖv>Q†4û¼2¿DaŠŒg—i?rß½€ýÞ$n\C'æ´Üϰô{9*ÜL ¢×ys)¼r­mšs\À±qé—¦Åß°ÓIó›ó’Ÿ/ã£DâáØÎg`âïkfŸ=z òä×3.ìþ½§ /pn ™[@Kv ‡@ï®dˆ±¢õu,‡æKGhêD @¿Áëúe2ÉçXF<ãE5’÷Å)Ïõ³7§ ¢ ™°þªg‚ˆö9Â}E醰‡RkšècÄPöÐaŒ FolÄ­Äu>Y `Hž>sìJvª‚†L`Nm¤¶{Ú…ù¾Å7]íòY1†™6øªÍÜÂòÕæ£ lšÞÝË,›Ïwf\0.vèjGîÄ,-Ñ®¡œÀn´ ààÐA0N[…N‡ÆÚºcö“w|ã míß)x&B1ˈ†²L á€$ ÓPŸ=8:¸fœ2ƒùx÷Û0ßá“KYœ ñ-A†7:¹X\"Ð1È<ºŠsƒi÷´/hëChܸM|ãußZì¤@áu3g-ò$‚zà²Øf¨4ɦløêm¬ Ûã®Õ¬Öq+vCm ŽÈ=4ØÇìè—±%NZ™K) ‚ ŽÈ"MÚ6»ÛÛñèvŒç3Rî¬é¦v¹à½2¾Àë ñ¥m_¡ÎXŽ.¬_ÈGî!ýV,Ê<§?§´`]ÚÓîÉÒ®œB÷?ý'ÅW·¶à;ÿ]yµºÿyŠK‘{ÿ³“神}$.ˆ¢¦øÙ6² ãÿôû!Ù{É”¦¸ŸçÚ(Tƒ†sóßÏÕÒÎÃî–N/ýn©¸]¢Ä"ÓSãúñ$ã–’Lž ßGýäsÒI>@_Ç,òÚX%zÇÉëÓ_ƒ¦|ZŸ1ýM2ès©[>B÷ÎA’‘Êå`Ô£ô6y Z„EãirGïiô% T`Jq€˜°Ù´]ÝõÆÞî'WGlõúýç“»óé¸w1-ã­ Zü1¬HtÎyi,ЇÆDD3’4¢Aò‰õ£m”¹ÓuŠA€¿þ¡Ý^ÿu³,øøÅz•š~AYÆ+qòÎ÷dãÃ]Ç_{}8¹ Ë´Qþ*Û†t¬æ‰¶qêó/qôiÈ9‚†£áêÊpuehZ]Jv®® WW†«+ÃîÊ0ß*ŠÁ¢*eR‹ÞBJ3ß>ÒÕ*Ea^•zÝ¡Î#’å ¾ÈÛÇl¾Xü`^"Ö€´¢gì×qç+Lk£ÒôUÒ‡“•ôèw¤•Rº•Vú$Oéj©å¬ @ßÅ !N=ý½{òݡȠýßDêB:œ˜„(Þ(0›vެG'y5S ìœÚ±Á_’ûFÙEØÜ¤ÎÁ¤yQý4‰íМQ¨‡2~3±{tƒÛ+gKЄ ¹ƒ>jmõ£,Œ“;öòâ[éåÝm?Ÿ±Rú7·©s…£ŠrÌ‹vöÄh›3C4~þ™Ñžcj´67RŠçáâá1Àh‰/)°B¸3B¨znåwŠ7̃+Ü^ WÀ°P£¥CåHǦÕ‡z]¾©³+‘.ÎKºz¿YûA3îl? šQw¶a*6žec]\bŠ~.NP„P°l¿cdé©F–N`è.ðâ"7´©˜±‰óAK±”‘ÖṄÁ\@±óX7ãü>šP¨Þ{Bq.ðhÄ}½TÍï¡Æ~'NF‘} ±jvëÇAB’¤çjF (£Êj%H,ðôrt7ô€'ÁwÝ\®ncq;£ÌŠ“ãÿ¸âά¤• ÅFs0Mœf¤qŒ¥¶t…]¡@W(Ð> ô¤iÏ­PÐé“ãÙïÈp˜ÖË7›)&¶žçÈ9./vxn\Üìã´ õÆ×"ν¹q`›ÿ²®É[pyÊË6­Ê8/a”·ûN—å¤qœúÈï`CtPnvòZ4âïË¥Åë2d e˜F „±c°ÐX{i Ôe+2öã¿Çøo‹ÌŠÙü àÅÁ%Ð µÉÏxñ›‡U'’U¬ŽåtÞ;ŸÀÒ„Û*!3¦£LW¨E)¶  ׆l!øÊ¡1,×]¹À쳩\b,Äá‚Oñ]#l;ðqðJjl¢ÿ»W>·¶P¡/IVU” §BûëNeQ&ø²F†h|ŽHÙèïÞßå¿Ïÿ†}Ù.Æ!ÔñÝd"v'6ßJÃ5¯M‚,¼¤ÚbµT7‹ðÂÜ‚„KwÿÖjÅìO%ÎRö[ƒDkì0®ÕM¦œ°fè=¯¶(ë°d§XL»UC‡‡#ëÇùnL"QÅkúÄSªì Ì9Þy‡0Ñ.a•AÕ&ž &;ª–ÄÝÀ³Î3P̬"*šPãÒŠG¯ÐJ„ØÆCËï›ežÛìðDá“'£k2[ rã3¾ÇSyÑ{³ê0¬ÇÑO¬§bù¥îˆÍщPp/£ºfû!Ž×… ¨¢þ¼½ëÁDœÆÀêw hmHa"ãñüâ¾üŽèN|s\@ïA±,Ï«GãOØXFâèm‰FŠw³ S¸BLGSh§NO`.|¬xF°nÁÊvHË›;bÆJGɈ@±‡ªG ñ4ÜFs­òxîÁÓÚ2ýXœÏýAÃë…¦8ñ<„ƒ„ë‘é‘®Xà|Lá‡ãIaÓPNò¤€Û,rIÙ? 8œàÍßGË_„ðSc?’ú¤Ý¶²;M„.gpÁ8³U¸ÐˆE„L º„è28ùl+þ˜1£ @˜Ñ„z«À£R”<ORù5Ó½8‡³ß¬y%ºø+ºZòî ==4 ‰ö¢Ëã=3KÈf`ÚyCvèa¼Óñ¶A´û ‰.¨Y%EŠúÛ]ïYXpü†d¶%š!TÑ ìÃi2Ûa$ãbü/WÌ+é1Ä(˜/R2:²œ²†žÐÛ'Mã›c¼B89®Æüº‘áN0¾³De^˜ó ÕD5KÖаò†gÏ;gäKD%ï6*¥À-eˆƒû(ìDÁÒ¼\ÌõŽ ±Þe õŽ °N^{í$v:ŒZÃwwpBÛˆàÒíbo]H5Z.è×%TíVû u $¨ØWA _pk$%bÂêk2“ "x;‡7Fc¤Ñt|/z,ðp ¼ÛØ«ÁRúÿ^Tà Ðß&áI“çÏbPnà¯V@%énûXQN2M¼`nÂHAîŒ1MDÊÌb*އ+Ò¾œ®8ˆ_!vBî}oy˜Í¦»¢»¾ƒ+·¿á¯œý8ÞîãÛ£€F±¬°¼QŽÈ¼KìõŒ ¾9¢øF³ùêÌGf~R/W§$BàÃi@´/sZQÑ!;¦¨ºVf»=/CNKYÝÌ jW%ü="þd8{ÔÏ’˜øÑ)uhJ62Ø@ÿð¼ ónëÏ‚º†z¾û,¸íË^Ü#ž¥øÄÚrÀWœeŸû¦NõT/É™´4)°°4l…Ä,sŸ ô+ÍPzCÅê}l»®Š&}?’T,)Ÿ=j¦‰#éÌî„»‘«'ó†Üö:åêùS»ÅįwÃdÊADI¿ ˆ4Œ˜.NA.à¡%ÝêöîüÞî(K¥ˆf{ëþÞ:U/ƒï²œwÕéiws\- ¯Œ’!ßß >MFc2CÞ”Ao ¯èBZPpQúÿáY»Ç‹ÍhŸwC»cXÐXùƒ&oøŽêûÎfµƒY‡£}¤µþ€e“F; øNOD+¼«‰º÷÷Œ&¸m°†cKnsJZJvçP*Â& ñ‚¨ÉZ@Öë®R‘é‚7Øc¢(DÁ£»ŸBwŸÞŦdSÝ—TC¯ŠÕô#ZVZeai¥‡ÿÚé;‘1y28e2K©³tñG€]úÍýô.¹óÎúêEfqþ3ýítQ÷6ßÿëj2}Rÿ¯ÊË­—^þç[/Vþ_Oña¡±ý¿Þvº òÝ?Ž\ϯúQš+Öフ'P¿èû\1ù³<êü‹AÍpm‚FŸIÈAi½_&CD­3¬üCLi7ä|“†fà>VGŬ ŠÅŸ¥bFØ öš7V¼3”d’IT+}…ï½›ó~¯T/}%P,™YÉðsá¸TzW,ÕJô{ *ø[S~ÕÄÇ^½U|o+Pyݬþ«@_/Y­úZNmÐ1¼‰ ¢vðþ”(Ž:c©®{Ÿãè<†×oÇñçdt7¡ ö¨” g=JÇL‰2{tÔmïåpÇâf¢³€í¯%¨77 ¿ f &“Ññez'ãëYÆ.Ä7ŽVM=âáüÎL¹+à¡y¨ïNº×¹òú†>P‹¸@yð»é¸7œàê§Ìåe»›˜³wC7ˆ(OŸº5ê w—Ýz‚Îr]ŽG7œtãz4ˆ'Ÿô¢ÃÐY„¨[ö¹Í-ã¿ÖiÛ\ ¾9lï[ÂæàD[ŽÞÕšRý"ÜÌ–ü6è^~§.޲Ðoˆ4ÃSR…þ…¿àÿüþ=HgV ß®Àûuü­®Þ u> Lš§¥XµSÄkQOèG» ?ºøWŠM>ð¼s²$ôÕr¡q¾í¼ïn§3D âø­P[ŽürÌ×$M e –L›*2&–‡þ~ÛÝØš‚ŵ™è|Un VÞHA O>D (äù5.¿RM|ÌñÄv—Û6UÁgZt^Ûg§Åý}²½™>•¸½*¸m’^\ø~uìIdú²­e|9³Ÿr9³_!—<˦Eö}Ç?Ù™©¯‚híÇRþœ–F|˜ÚgëŠFìО5¦N©…ímlYµB‰Ûöhøç݇puOeÏÐÆ<®£)üÂvÓ׈ÎÅÔœJŠIJ^Žª:÷ñ:o}›ö%>Z«âeÚ12+ÌQ™0èR=lÏ¥Å<³¤ÁcÍßuZ„¥šÙLÕæŒ¦JXF-£ÏÄ©Þ$vú$Ð'Ÿgî$8à@縱…§Á§ò'9 >­UÊðŸ;<|×ÞþE)S*{ƒåÖàˆ°qD9Oòoû2T›¯ÚCk^ËðŸÛ j²ûà áô´žòT”…Ÿã›­’.¿2 H bŠõÔ²Öú2T˜üZš˜aq+¬£ŠU 4@ÑGu@ßî–E‡×¤üå¨FÌ»vU]×#-5ïLrYó Y¨e °þ,¹ùÖRÕ¥®QXOžNP«gV°VGbž |P͘ÌîÄÃ#çØøÈxñÌé¼Ýá„owzžÃ¯¡9îmw[Ys\Îpo»c>ࣃÌIØÚ •ןÊðß’'½”•Ã\²r°Në÷ÌMæ u“Á œ6Mé§š”ôÛÓgÆn©g-Ñ“ÖÜrÌßÚQZ-l¤X™jéËÚ_õ²[Òk³ó§Êdl‹ÍghÑs5Â}Ö+û)›áŸ†N›áŸþfHê“·¾ÈÒ µfˆ›á~x3œ¡6ÈÀ¡ÆIÝd>ÍÏPo€L©NíÚMk]*Gû96„ºùâ Ù ÊZ÷šUÊT©¨{b³¸NÈÕL³ì¬z­•c¦BœU)´zMj‡ûr§ÙO»­åƒô ¼È»£˜¤^‹Â¡mõsÆ'pÿûyÉ׿³î_¼ØôâV_¬ò¿?ɇg‡sÿ{¢®YàëLð©Ë óùOŠß9Ç 2ç`çyYÁ5ëËŠ²ùödÎôín¤cÅÙ4î¬CWÚævYêxËAp¥¯o |å[¤›hüªn|‡ßŒÆ|;l|K¬‡Ñ›ÄÍéF"³›ˆ¦ÚbÞ‰»5¾eQ÷ÞtÙLFè'—P8 Ùþå\w(vh"²É©ýûÛX4v2|ŽûÖ}]!‹»z“GÎ%1½S·ßrÞÙz­ï×Íwð­ï$´èƒ.°Y6!w˜Í”’«+çÆ•óBa79TåpªDI@ÿt<ºWÂQÿþ²þ€¬çÈzÞ¬²>×@ÖS²>×@ú—ô úñïêMöµ}jÕx!ü‹)eëâ^à¯,2ê.¿þŸ–j^`ìÏœðHÖÊÏrèyÎp6 ÔJ‘6nÃ!ÁËdŸz ØpåJ¾»%^Ã[‡z‘ßýG&£Ÿ1¼\]ö`r=,Z— µ¤ª’Ô7¦h*OŠa3äŠØj ©ÁxyžõbÔ- ü‰Zn0*.È3B¯AÙܹfÃå]/`/®¦ðyu«ÿZn4³ûAóiíÅŽ%øÏP…TBnÆMSÍŠNBÛ…œ!…9D§‚†‚žÜ ¸O"ê ž2B0Lf8²UO;ÑRô2–êc…öšÒ33ìU·]kÉ aàOk·ñv¹–4ŒÊRÑ?8[ÊÂrWÓPâ~Rá=O)“½hip™Å# ¥,?FQ3›ÞCb-#ͪ Üó 0ÏI´ôð83Bâ0•=\“{YhO-’l•§)`¸šyºn,çøk¾¾v%d6 yÆåcTBÈá¶>Ÿ+‰]b÷¤²:¦&šážkhúu8ê(8°(s$âù&W ®\¢g–Ÿj‹˜…¼4ÑDÄÛ¾÷¥ 3Öø»¾Çü€®å‹¯ðð7ÃÌeoìç©~¡i‡a5ÏJ÷Ò»à¸XºøZ·õ‘ý¡½ˆ`ëQ(ѯzwÛy×ÎñÇF¢á~æPóÁDßÁD°¤i‡Akœ¸ò1JFËtü19f[écæZ!çž&Ìñ³ÅÅetÖ ¸˜2(Õ\ƒr¸ìAÉ5Éw3x²ºäOèþ¯ÿ¤þŸÕ•­WžÿgåçÕýßS|x¸÷;K»ä̼j»nZyÿdêÖÿìûAÉÉÁ±¹® C=VÞ¾%^-îü#îÍ›E²ô/v¹hß,"¡°­¤‘=(™b¸ôî'Ÿ“>ç¸ ÿºÃTRƒ+Pq§×2ÁL—²x¥¿Ýô>-˜w÷ÑM2èsŸnÙrÐ;‡y‰T.#Îór;J†Sh§É(¶SNXƒFÂh4”*Eª˜^tuG ¤ÑÅ{ÊiúÏ'wç ]GÐŒ„' è4sŠIc€84àûëäâ:’4¢Aò‰gÛ8uN×aõ¢_ÿпn¯ÿºY~ÅøÅz•šÎ¶&àÊEœ|î“Op2À]Ç_{ýø"ÁÄÐFù«lÒ±š'ÚVŽÎá›/1ey@ñކ« cIdua¼º0^]¯.ŒWÆ« ãÕ…qé¾0Æàþ•2cŠÞBäÇi sD¥¨òbÛÇñ_wÍ—¨H†ÈKçl†XŒ`&"ÖH´ðRXb¸dVúÈñ2úK«÷½Œ{š±Á÷«¥–³®@~Š÷@B:z‘bz„Êù=øhñsŠÇ&!Ô—0êèÅed³:ÁW颌ù{‡Êé´ˆ} ¸cK¾Tµ&FŠ+Üa’ØÍo¨Ä¡Œßà--]¬ß`€ö+'3ñ€²ØËÜÁÕµ­~cbÀ”˜Âa/ø®Gæ _ ¨ D¸W†ÛÙBÜ6¥X4i~)nÏ!Æíyå¸=¯ ë`}YjqTçR©ëöÜrm‰€°-$×&!_úr˵5¿‚“çiåÚÏv÷|vþ:!Õ¼RÝÈ–ê†)ÕE¥º’j>5²”;¤‹ZRÅ: ¦ªÄ‹i@:+é\¶t~瘮‡‚ºvV¨® Õµw7ƈìÑN<•ù‚­z£]CÃð´1NÎïØÚy.o‡½ñ§h¯wÃʺßöÆS’BLçÚÃÇЫ‹‰qqOï.>ÁÛÇÚ7˜5?ï¶ÿ(/ h e¨ƒ¥ò¶37máì~Á¶[0›)%†_»6ÖVE¨²æ7 ã›î›âἄq©yêZ˜Ü%͜氀gºÿuÛÿ:˜ˆ-5µ‹Q£•Æ¥ï2¼eû„šg=_d¥éUúOÂb@gø¦”ÃS½úQÛzÖ¶6¬‡ çážœž #Ü3 ÏáPî9µœ!c‚mE±½É­Ɇ"ÙX€äK±A.ÏÝ™U=·r{Ò7ŒîäCŒZHÍrýɧˆwÄ @ùK9U,‹?õ”Õ¡¡Ô’bkÛåÚÁ‚@Á†]°a\AaWPØv&£ÿc °êX¢ƒ¤+ éÚG°vg…¬ý‘>!üï×'ÆÿV_V=üï‹Íþ÷)>ÕÈâ åš“3¡ÅÿѰbج3”ÑEoHRÉH6†OrzГ8!Ûz“­#´eÞøRÆ¡Äq‰&“6c³Ä " ˆ¥µ'W3j@ÙM¸M°îs”ò»¡‡ƒ= H¶ëÞàr}t‹‹/x`:9þ?›žÌJP Rl4ñ:pz kÿÕ5¬øWjKW`àoŽ!]%;W`àÌ\ >išBããÞèãÙïÈOã’w7¢+¤—¤s\dÎE-ñÓ‘I†T‰Þøâš•kïÇ6ÿ eáZ:7/Ú›K°Hà‰Óecm§>ò;Ø”*KÁG>E7M“Ø÷ðŠYbp…¿›»ë|bõ’0Ð~ü÷˜'„ÆBÓæoø/ÁÉsŒ÷ªüŒ—úyXu"YÅçƒ|#S¸w*)—™‚ ƒfwKuÎÑátáÚÓbMnz–nBJéÅE|;e(¶´X¨/„Ÿâ»}¼é¾I†¬þ^n Uâ÷Êç–"#ô%éÃÒƒ‚š`oH`‘¿î„P†à%‚/kÑîQ'Â燎þîý]þûü凞íbÐ>X¯ñÝD"ÓÉ sI^$¸o` ²ð’j‹ÕRÝ,BóX.ýÝý[+C2;úºÝzqÙo ­©¬#Ü]ÎHK$ô£sÕÛ Psbâ4â±75™^B Î;5ö0'Ás£"žaŽBkLüUŽ¤ÙªÄHÕ ‚@ö5w'ù„ +þ˜ƒ(ßQNÔó¦ˆ×„/Ù[ç°¨„ †ÀZTA5ƒ½ÒÑ®Ï~³©ÐÅ_ÑišwgÄ4:z:Î t^²¯ögÚÿ±ÛÀsCäÖŠÍêG÷fª–Z zùJðAûYhý—ºJGäïyœùò/V2Ù¢A•㼦mV{þ.éµ&3dú7€‹²¥žé5Ç5¦yÎ}ïðóÓ‡ÂÏOçŸ[ ðš&^2–ã&£ÍU4õÙsÃ[´¢ì|;÷‘ܵfs·ñ¯±vè§€ŸŸÔøëÂÐW[?ÒüôÑ‘æØµú{À˜³Hè7ÄU(Z)ä+,þ+F5,Pþ+72«` à&rW瀢?ÚîAÕg@Û_šï¡¤èGæKt 5Ȱà“c¦Ÿ4Sð\.î]Té"°4M2-X1l^$ÙUU윑šö1–†9VÀÓu[ÌuŒýIËB_‡zÔp6´A—³q?g·daÐõé*ðî÷‹£>-dÀ}Ô'€èÑ\ןÔp½a,fé#!–³ðɇ+prÊ»sƒ“]R+dò7F&§ŽÈ÷K΀Ÿ® Äþññ¿ãËÉÓâ_þüò…‡ÿÝz¹Âÿ>Ňç—ÿmïu ͧÕ~×a ¶‡ºÃQN¨uÜÜáŸSüyš±<ìí¶á _§ÃûK&Ž÷ÛxG}„ ²e ÁkgÍÚv«JxJ¼e¥U ¾z,Íg/>6·ÊQgÿ݆i™ œ'R0±y,Ç"p¢Ÿ È ã7»‹£%з{ú×¶‹ú !y÷$‚Wcz Ü×›.1§îî\€_Ù(¹Íï³|ªËgÂ,ˆ ›^4¹ŸLcº gŒÇkw¶¥|‘É‹Q|y™\$hb×oÉÄCá­‘ #¡øF›‘ô¡!lؘ|‚ÚÄRæéI<™$‚Ì‚E!œû #cö*|Ñ)ñPØâרæÂQ¾sÐÒ×â ó_£ BÈòr”lÄl§×o‰‹1bá'ë4>§¢ ©Ê… wÝùv&é_ÙÎ…˜Ôãe_Éü0ˆIXS–Á>ò X|@±ëÖ÷|0ºødRq3;ò¾7º¹L¼c…Ó(Ás`­aX{–‚ ´í5Bî”(¢RËOŽ;dÄ”XæÎïq$#²¸¥éap_„ ˆ"÷C^™Á¾˜z3oÅņù»¸FÄÿDñ‡X íß]LñþÞÝ1iô,h—ꊄ¾FsL@Ükp{ãï¬r%TÊEîÏy;]ß`Jþ­ó©Õ‰|ø]ܽ¾Øð]µ»‰îÀ¾’ŠÎ†KB!sÄ®Ù÷I)Μ.3§LÉç ªDÀQh„ånJSÜØe‘@@ÓF†—ýäs¼Iå´+PaꯢAVÛ@˜ÆetÚmïJÜ»QÆÃë`UB½úÓê B"‡F_LT…TnzW {ÜõÕî!¦€Š/óq¥/P¿Ö¹}EñŸ„#DÌ$¢¬šÒÚ°ÎÁñ0d\B·J=k§šobÚ Cïì:%1Dg;LJ©}# ‰ëÔNv ÑVC‹c!j§GÀí÷ôã# Hk) #Ì µz§,"ïí4koÓð-  Œã¿Óy@ÅËò5¿5 ŸjN ¾mèf%‰˜²IRù ý€?eÔ!ñ]Noü-rQýH8º1U¢`ô`D Ar"=f<$*ÙE<¬œM€až0 LFó~ñËžæ-«° ÉŸÛÞë<æ5>]µ ƒ;D#ãÃË}’^coãO=ð/ý;«¬Þ´úäk ÃѲG ê2i‰cÎö„&ÁÝ$ª¨^! (‘;Âk>á6=Û½$ƒÑPË7/óæ+ÞeŒ Il‹õÞniŸ•¸ˆñ}¾ççϱ>Õ«‘>$9§eÕ`dþ ›ûÆå#mn‘‘7,øNíÂU›áÆ…ls4ºî†Ód€6ŒÛ[<*]ŒQõ íX ‚MÐHoaþ¥Ï;’>zPá Q‡óN-*E§Vûèî7‚ìÔÕõ&þäk‰Š)Ñ¡ïJ¡Ô:¨2|rj•§¯5‘@ó-È(„Fª»AϤ‚ÇæNè‡WhïE?þ«V,áS\œñ—:,ø®Õ ö ÃÇgE©ñÚ-R~ þ¯mdš4QœpÎ6„£•ÐÏ5Y´G š=áï€~oš9ã í… À,“x$ì÷Ù†æSžx‡T˜~¨šØ Õ¬ñ<.Šw Jäxk3j1¶ qÏÑ UBlˆ ) i–Ž­T–C« öLÉÄ @{_nF¡ö§Zìàsz »Âz`tÁü4ðµƒ÷k¨ó…âÑŽ sËøcMÖ‹APT[:õªmï_× o¤4\¶þKè‹MýÈ_Ó­&˜M>0Rw°kë"¬¢¸0½uÜŠ˜¯ðˆ:þ2 áb>€÷¯m¼ç`€è¼?r Õ7O* í?³ÜÐã@û£ïNn~~ÜdŒ¼Ü4ñÁY¬å'¨ó°¬ÉA ‰q))v†°nà’W¡&§èݺdÊÁÀŒ?Áê·u˜: ä(àêÚ…‡‹,F÷V@ ?,ä]˜>Ëîä#L¥üÂé¨í¿.e )ùæ&¨Ú¥_œ¹.@3ZËT+i¨S6Ã_Ý3ˆzÍÉÂfVÙLÙ2y¡¤q¦•’[ÔBEE®˜Ê’" Ôdþ5ù€,ÇGÿ?{ÞÔÆ’,ŒÃÏßó)êNüÞ@ #áåÏõ±,-xâ> hŽI31þÍ¥ö®jµØ¼©g–ÔµfeeåV™aµ‘]€\èƒÇ<»ì=q‡È-Q†.ø×ýóA<üˆ¬Ä¨DЈŸ0sZ´q¡R™Æ2jýœAäÖ€Þ>E ‰pøÕ¿šƒã}(¬}¦V¨Ãð2ë´lªøÆÄ«Kë£:ÅWb½®B|ª2¡¤ÅÌjd˦•ê"¾“]̽Gb«Íç²Íug©-õ€o½7Úµ§ò€Oû¿>²û÷ÿïJåuuÕ÷ÿ®¾®Îý¿Ÿãaìrý¿ÛŸ‚îß®ç÷/‡9· öÓx_gFC6žÓV¯ø1úýÉ>v¼–ÈýYÅ3öÝ ´ì‰Tç(óÆl[Mú&5Ë'wåfÚc5€˜k±÷”›@G[å€+gv@)B¥Ÿåuïëdó«dr9$o!å])eæšñ5"§Iõ:üwHá}ïU-¥,º“*º³`ÍùPÐS“Øæ.:vŸÝœ ³¿™tµH‹§¤¯V<|iÍ|gËSôP^w}ÉÉ/œ$õÄ)ÔRaTQp«â·ª)B5T†ó”okMŠ80l†nŠ2Rèå7¾ïzÅ1¿s#Üù¨nûŠÛÞév ?–£ú7ð›é þC„†ýucüNqX7Í´“Dœ$¹KœË00gì-CÖ£SÍ_KÛï<—³¹³j®ßùlÎæŽG­~ÊÙ<ÃÖ \«Ó+gôYã]Ý×½äÍ èŽÎ‘¯ðÿkÑ ~5¤Æ»÷/Ø*ëP€ kLò¾Ðzá¯Ò_òˆ1T_Å!ù<ƒâNûïä'@Uô¤tƒ‡* (}/G‡è+š×±ù·0`ü+<œÜ‘î,ø ùƒ^’ƒŽt©â·=hé[¨U¢¿ÎH3Àºr×[?póÀ¥¨†íɸ ©ˆm¦¡¸×þÓÞgøîÞ¾¦•ÿñZFÖ6÷hÉÉKº§B×¥ùšÝp'¬$Nn&™´¹š¦z÷˜­º,¹~,]ÿžÄp†’ú*ú:>½L®ÈK`òî¨;1îÿ|ˆRo]œ°d~\úeÉ¢5oe·Ã²Æ—n_w½ÉöVŸvÝ lâJþ[…ÿ^Z“îVá×*üZ}颻 ¿®¾dlîöþ c9þyQèþ³·¸˜†›è¾|)Å$ r|7inô­f¤Þ‰ÿ‹ƒ,á(K8(ü´ŠŸðÏ*þ©¼Ä¯øgÿ¼|)þ÷‰Áü f´Œ„–gWöd)±ÀN¡èGúkºŒ¾1ZÄ{{}¶?‰Y½>•7TÆÇ‡Ñ\H2rÃ0=T8“í1j±Øm_ô­Y»A—‹nG=R3¬±àÝqôÍaøT­XÞQ=/Æú{b5oô éŸ;ÿßËJ%ÿãUe®ÿ}ŽGîOÿ å}­~PÊÄ1„8ÅrWþf òÓ)“ Ìr©”¨ü6”Ia÷Èjç_#èà)j@XÑÖO½Tïè7( ²9®òéͱ•€ µ4“Æ +ÍóhÌ7ì#Ã;xŠÌŽìòÝô1þ”IP¥äp%JÐXOƧ£ÞµŽ‚†ø†$6\5ŽRêa¹Ê2Êÿ¸%„ Ü}O徘I¿/rªøÅ#iùEPÑÏ:ˆ\º~Ùë~²Ôý Ù*A³•HA÷ÝŠ.qÖm©×Èž:ض¤¦²ËT^”Ÿ—ÅŠš¨´-Y¼›o_°”¾«Á8£Ûöâm4l];fʰã=DY2Õ‚ã·”J±£ÖSÅÝ\ª8 (ÆmÎÁ…‘æÕÁ#ï÷ÅÅ+š±½µ·©‰’¹¨>º7Ì ŠÔ¨ï•‹´ºL;%djA¥6%Ÿ”ߌUê Ðr$nÙæKXøÀEdB[™ãÆ-#:„à ÉFåBдºýÓ›~75±)áŠG,ê©kÐYö""bª½È¤ì„mIÊèÕ#Tš» ìb(5oŽF öþ{´/µ†}Q*T'+‹ß_@Ñ ãÆè(õ‘Œ'%Šù ¤žÖf°&]Ë%TªA,ÏínóQóQµ·¹¡¤Ö0–ZÌÍ{••;`–{Ð:lÄE‘Üõò#Nýæ–¿t›ièò²¥ÁëÙæÐÙUS`†„B)¬§Vï‡ög³Ûk="M¦ÛXø0gÜÓ-·s­KÓFÏp›6':CÈi·uG—¦ïyí¶ž±Ö™ËLv[3Ò´7ŸÝÖé4¨Fì¶acmɰPsVšñĨ™63ß7²].«òsØ„uŒ»ûG·kK7R'#Îå·{?m´:ÒÆ‰Œ8c~O~ä2KÔÍ–’„7%wîHÂ\Þ“†qövuLÕ;eE@O5 ^,ÙR9òR_€Fó²rÙm0½ª™ÝS¢tªò~£ öiÍü„r2yÜ<à<à<àïpšGÐ8®ÝtdŠÅ‡x É'í8¤5Rb°u³ÑfâþBÝÁ™«£#¢hCV^Cò#2tßÖ.§ëÓû–G;Ì€p:3Hž?Ñ-­¸Jºo;|öD›1g’s5 Ðާº9o d×JÜ0;íÞŒãÍL8þg‡ŠjÂÈS’Þxéèô§GRb³2Uº>á£íèKм*·äP6¾¹@š=÷û]ýÆBD!ô§jßt”?*fsE³øXjͽV(6åS„c¤¨’ÍÍ}YnZXF]ÕBoë|Ã.–y¥!¸JÃyö¬^ì¯:…¦¸ð 4ÇMgŒó·æêb@€T+Õ&ÔVÎUa5Ãévž^ðÿ„ü'£³gõÿ­¼®®¬¤ü+oæþ¿ÏñðpýZëžË=Ð_à‡j‡?^Þ¾§øÐ ðÄQwÛœ!Ý`7ò†zÈfó}…5‚Cåì† µjZ†GeF ŠáwWÀ»@d€?ÚÀF¥X“^Ýz^õн )¯tV\â¿ÞŠhÍ.’ìG ÿX\ùëæWñí ?Œo}‘Ö’ãLþv½F ½h«ß=›nêÖÐ$(}˜kàÑ!àÓ&{—I<:(i‹²®Ø=Q" ÊnÁ_‰}wÍ‚•%ÀL‰ÝDôá l·!{þ(ÓÄ—g9ÜïÀ´ö™—þ‡‚\j“eñDÿêÀ­l·1 mȦ";„i Úƒ*Ùž×¼09@†›‡#A.“‡š§U.÷²îL¶«”áJƒ;nXÎN]Ç`ñ¼‹zÊŽ´qŸ1ÁÆLÑÍóóòýG¶aŒœAÜ l^/UÈ|c R¨vèN$›¦0fþ‚õ zìÁU…±Yeļà?ÌõùYL4ÕÔÛ€,Ir£è¤“!jÂü†‚“fßUØ, Ðói™þ·YоY¨h’ÇÛ(ûù”ýÈ… –Ô‡ËËüOHŠüøÇ*3•÷:ÅEÄ:&šp$8tí#CÓ„é®ÁÉØ;ºÌDWÅpZ%<0ÿ–ŠmÏF):S­+ЏoßIXÖžtHâz§ÎÉp/é,Y ††´/Ø@â3嫸Ñ#üüYÞ@oq wˆ8/ª0Prán¡øƒÎ €A.oµ"ެHT´ ʆ?3ÌtÄp;¯D|ùS‰¿ìõcqÇV™1Û?ýU®Â^Å4oýºX§[ƒé"†ß.À‡[ÅlE¢UµB¥+K þr"v{H´‘†¿?-ñ[UØ+AúMÞ tbÛÀŸ² ßcùø Ó…Y" Ä&i]Y ŽÉF˜ê™X æ[ŸHy$a3E )ô¸K}Z˜&ƒV÷T‚-êý6¼DoÒ°õ´DR±ËY$²±”I ›eo4–ªß›H’Wbi.B(?˜LöÞÊ©3F„%AJ‘ʯøbÉ-‹RjzJ@Œ § œjäª_gбO¡¬¼±HVÖ ¿#‰¥A[D68æÌ54+Ÿ›+TcCŠg"Ä "Ä ¢BÕ8n†š÷œx¢fwà™çf÷è ÙÿÏŸÕþÿòUåõ›”ýunÿ–‡w¢oÿÏ ¹77ý?J‚‡Ylýïݤ®ç#æ x˜àÚÀšY»œ^–·»7çWP4”É8à;WØÑí\b·õ¾O‘1a¶HJyÃ(Í=æž ß%I@Ð5á CTXÑ$B!$¶tÇ‚Â6Íhlm¯zî˜ýóø¿G|‡ë^écÅ™¤0óéHb¼áM[í„GÄ!Ɔx¯'àÂFá‹ ¿ÈqﺡÐu3Þ)|Uþó5Ók”ô/ÎSH´SyMƶµ,v û%±6LØHUÅH´“ÑW<ü­â»îà.æ“`_)9Éká÷ýÂ`±xˆ€ãZÅ}@ÕCø¾’Õ˜/j¦øŒÞ1X¾ˆTlÏ¿t>ç1kœÒ©²‚§‡Å„Ú¤ÀU‹…éFV7wÎ'Ü?xG$kqV*°îŒnЕM¹;y ‡ºªÅ„¥b •pCGE·u¥ ¿; 6Se>]`P£Ióæƒ”¦€Ô?|Å?¨jX„ÿþ*«å>dªIåHѰËù»@—ÒE±Ô üWZÕ]`êµÄ¤1«`i.êèƒe­ùW Î ·e `B¶P-E¬nv±rý@ägN’‹Mé´*i}ÔId`Ý}r·Ám`PvðÙð=½v²öÁ޳(?±Ù¹?þ>Øq÷ÍÂ>ó>àd¬ÁÿÒ €v‚û@•‹îÚUj#¢—ÇK•Ð^¨ð^Ð%î½þ"ízp;¤å‚X»ÔŒ·ðí/•ê-ÌE<§ÿNä*5¥›—E¦ß§.IGžŠº]m{£ñaó $ÚŸ´7B°}*Mþ!;àØÇ›Ç¸ÂÃsg·Ö)‰-ø?}؆ÿ×á?ü·‰öñ¿z†.|»}°…0,úþ~$µµv ›•¶‚úÞu¸ÿÇ;øëxý¾Z{ŸñE¼Ãu%= ¦YÇ›üëUTä—Äçmüo·‚÷ÑŽ½~øÈ×ÕC =®áýì(ÖwjûGÚ‘%ê1ÄÍ”TñŒQÏì-µÞ†±Ÿüm®…nÉÏꙫ["£)ü­Ã²àÐë{Í­ð/ üCÓilzÓ^K¡Þ@¤4йÚác¤ç5)ÓH#B°]d­]&_ùf~ç_qôæçGõ¾Š^¼ÿ•ݯÞÏê~ÕÀåãÌâlÚD}Æ «N/‡CÒ’Ti ¨uCZšCÉ s ° ¨ì"9E Îå¦õ^ ‡ …¹W7ׂ6à»eWßVn W¨ñé‡×ì PRR %@@v¬‰"#“˜V˜9±mŽÛè“e}­Ólɫش½¾bn@é¡ÊvÝ,0Û Ù$G]Ù¿ ¿8Snì™0¾b%Œ§c‚¼-¬NÖU˜Å´ŠpPžÈ 㦠­äA¨0Ïiã‚ ÓÍš73>Ü­:þíúÒ6{¾¹&k<&ÕòÁXËÚ³Ä ä¼6á “ºÐmfø¤P=twˆ.“'ÚÙßó³H ‘½“,K³> AÀ/JöùN‘@9glÄwø#/`]7¶gE–¦Á¨3_Ö\ÄTOqº„B oÅX]HgÌÀ)ç‚F¤ÒHù|ƒ$^ÛNíýÔOÎâ¿ bDhp<ÙåËDrŠjÒç—ÁÐÆîQ4‰Ê§½c÷ý©øÙ²P–o:ÖúmX!ë%³ˆ‹Á\ÚtÜåG–DÅPã|Gm§æª^ ôŠü-Tœ}³¶d¤z%RfµlüÇEZÄ &ÇØe驤——³Û ¼ 8ŠXÓÞÆ P5vëà'M¼e•}¦új# )_3|¥)ÎÐeá¦%qÙRDTMòó¼öëK[šâ¤ÛHS3îð.üÛí…ЋÛyâþ›O÷Ÿ°x(ÿ<Ù·‰+b™xTÀq‘04zkèéƒs›ms3­@+¹&Úfar3u\Ò:bF–ÎëûБ ÃgT#HøÉ킸‚mQ–-ùÛ‡c|ƒçM5}ÞH^ þB áÚûÈ+C7±nd‚‘×@ ­†2*²ßÈøæD™•QYb[“vCÇ¥ww³nùÆ÷:Ó)x½„ãñ]aäU&ÈÛû’o‡Ê ‡æEJ š„eÊ‚åÒ–2ëÇ-áÕŒÑkýò %ÃjÊËu–¶·ƒ©ßS½µ*.—CõÞ¿óÈ ®[´šyÿº T™c'ÁLÌ‘~¤Ç!ªÆ._[¥÷S—9ÜâjFy6¹Ï«Ýo>Óö½n5Ðf EOÆåçœ]í]m¶q€ëÕéDIIúL#Mî[%‰ü'á­¸öÏÆéÊŸY‘M7¬•.!½‡¤Çý—ëòq˜®³Ï)甋oEºøÊKLd¢¡¿‹dðkk¯_=*2ð-þ‡\¬¼ ßñsÀ˜6êq_äZwí<¬t*$`•[®”¥ïexÃm£‡Ð@=F‡I3'E¸V¦>‚ò¯½ÚÊ•®–=ÝHˆà§å_$®ò¡yäÀi®¤5ä ºŒø;ýl$eÏ…4ÕÒT iªS&4“¢÷ãB€!QµÈ{ƒ¯l›pÞ°NËðU³WSÝ È_‡‡,W–è/ô¹M<ýbÜ__ê+£õ‚tu½ZuI–¬ 5в]¶M¨…Šwžz×<8Ðû±€Ía0èšh¥ªŽ‰Àä"CÃâ€^a¾'^IÖ¸ªî5¦ ƒÖœf‘GŠãØ ªeï©OÉ#àt­fxņ P­†k–¡Õ¸tÁÇTdÔ±NF/ùÒÓV&|dë hø®â–l÷]ä÷L0©*ÎìŠ vŸ·ó×OMÔjeWÒÖ—+~ýÇçƒÑ^µwÐâ´òi°¿£qd×óÊf›Np©LÄK=v›‹&`6òʈ†FjÅ(ŸK3<|6feìéq. ”.4Å÷س3÷6Áh{ß@Jgg,Û%Í;ÉË9oÓY—>ERô–Å'2À¤;šG_©ø÷Õ÷ZÞ´~¶äHó«Ô¬¯˜û8'àÙ(اIJQ.Xæ³QHm£@—ÑœÅFQñ&g}oî£ÌîD÷Å—¯g5Xü^~˜f°€S¸ù ,~DcÅ8j¬@ňR+6ËÛŠÓ] ^åÎ2YlÏM)isnªx2S+©êÒüàRf~€Sz#¹É’*:ØÞb§ªor›!š—É­Œ6Eý¥ Db`Bf‰õp¦#M<†ŒðŠ+­W,*„˜Å>ÑP†„_ÜDáÛ&~UÄÒOe‚X’-¥bLä6Aðî}3Ädlü;Ä_äúŠå ´“æÌø±íÀ0ìk;ê‚··õõ}{÷O„¢öŒ¦¶gl‡Èû’¼oKƒFÐð!R4DðD̨±½¡æ^‘{š5þÈkÖPðMwe½ÉaÚȰj¤ ¶ŒG1cLa˜ôc™/2­& ›&¶§˜.¶Át‘kyMéE¬Ø4ƒ…Úÿ?‚ÅbgšÅb'n±Ø‰énm¦$tòdÚ5¤¯=Ç% ©¨…¥¥Öç;Ži£À¶¨qCDí$O™7H³ÌyÚhì†ÊK*$Jz‚¬ðÙq!ÛÁI8öRjDQžÌùé~vy¸-Mµ“Æ/D²„æ¶#™Žò:ËRØN²4ÍN’‰ªåøSì)òŽÇl†¬¡I½C&áXU }«Šy³ÈŒà ´ = QµÊ,DAT‹M"ì3Xg²êGŒ¾¥²´­êæ±ÑøVžŒþÃVS­¨s1cª÷µÙTV”Ñf 6QÙXKsM` eît«Iܱ®÷µ­H›jõsZŠª•”¥ÈšAfÙ†?µa'Cáu¸ß-Ëzá¾ÏŒ_·ìYyrÎ)m’íœ9ÓȾS¾4i D)«qd˜ex K–LÛòlûñÃŽAïÿˆ¥UFàõ&éxa ÕO‡7ý31@¥¥ÉAý£¨˜ø)ó²®s$É2Ù‘Tn¤úc&KzÚð)[&^J½¹Ñ90áRòGEAç'ŠN²^MjÛTè`c7­ãGÊitÿÀ$õ=;ÓS&A]OpÈó3Dðht€n ‡œ°A|ŒúáÆ|Ž7 ˜=¹º8–S€¨8“¯êÉW|õò“M\æ]ÁF¥ËE0-‚»ÔæÍƒ2*3‡ä*qékÁánÓ¿ãÆ\'œvwÈÜ(†¾Q|Y €¶VÌ{Õ…Uÿj7¡N¶ƒõ«gth*Êm·­eÄÚ2+â›ð£ûzEÈ:Mðp†-RWB3.úÀŒ Êœm¸bâÙün²c¹eùÆ£°Šå¢´9Ñ”,vš¾§X—INtU™Î+ÎK »Çˆ'Ž“óuÚÝa‹’ÑÐøô œ>î'öOÆ9ß”J›ú«€~ÊûâÇr½ç‘"毌ֶEøB1 ÓWrß³çÊV#¥¹xª{¿ ™Ná8ªm±‡€yÖ_BlØ7ÃzãÁR™eÔM&ÛmãÛÄö°˜ï—ÇÞ/á¥Iý”禘ݷwÝYµ6ÝÓŸè¤VN¶ùÌ«§{͆e ’¹à8uóÂq&Úèº[‡-}Xò݂ӞÈÄQÍ3æP«wˉ8|¶Ñð&ÎÛ<>À¶0j„uÝ5h·÷mxã †‘S°)\æ±ã„'I—´#—¨Aë'—ǯ7 À¬Q¥(t$ ‰÷:4¸¨{ƒþ%Ó¬OûÓüÈœó*)^ùܹìÀc}òK(|=ôG”P"7B üüˆ—RÍö:[€ D´ 0Ñ–D¾ï´½TõIä÷d"BÌc 07´ìc=}·s¦C}‘ë:O£ñ06'h֙ɾ§x [ðÒËî‘MãÈÑ¡×ÓÏ"Æäb˜AÉ'Ää_"¼Èñd /9Ä–Y…Âîß#LˆhUeSY›D'øþQöIh‰¼¦³Üöˆf¹Èàv^ÍL-žZ?«Îw]Ã̱ûÈþ:“@ꬶßó”†QQïªsëýû 3ÁËÎMÈ2Ý*2[ûW¨·÷õjø»>y2r{’o£ïNFd s3ÒÞoüè¥È7"cbPðž¡óöžbЛœbP  ý{†<¼lñ',ù<–ÐSnf =ê­S³kvåsG‚…«™á9îáÁƒ Ç6ix1¾–•α#åAùÚ SÂŒ=­±%À¿«î·B¥ÔÔi5óúþ>‘óï³yáN¡)Y c.µÏæ›áÛÎ8[É9øá_ø²FÿáëͽGNæsu}TW•|ïÃ9¹ÄáŸZýÃ#ú¼Úî®”xo6ŸWÕîÏäЪË5Ë®²êWj‚5(º)f ï+}š‰Ïä?Û~JÿÙå½Ö2C!êNkêÄ\Û”M\2*ipÄ£ñ}o4žÈüãøZÖQY_‘”K¾µãÔ{Ìlxô„L™m«c$yÞ#W=â2*>•W¤§Ì”û°õíEßœÁ±îTÏ!µ#«M3ÕŽ$‚ŒÄ:q)¥á÷}óCÊ6¹Ë,ß2;hÌ>„Ñé$ÖøEáÐdÔŒYÌ‘~Œ4d[8kþ$y°H¥‹¸l)奞ԛ„?ký¬9É57ï:èt3^[ÛÜÈB–'—…R‰&—Z_é+5v`žôñMZÒÊY(WžŠse3‰Ö•+ßï<óá¬>ÎØ]¹ # gÛÍ‚à}2Ì'NÐv3ò Õ8Gƒœqªä•ò1_í>uá¶Jü&Ù“w+Ån ÃrË:ù $Î[„Lk+22*)Ë©RY#³V`Kp²Úv;+¯qæ•uì0­µí2Ñ©SÍ4XUÊœ£¨‡e¾Kt<{‘u÷ ™|Ó,ÆÂ#p?Æ]‹—Ïx×♇q\xºS9§û7ÉOa&#fG òúpðÏ› b‰ƒE=íB)ÍdPY!˜è9$š+åHþ±Cpþ¸¬œÓo=pÍGGÈs!¤\ª8h‰qïulÛWæêW‰ä2KUZŠó"O=etÓw'g0³Ì`–­ù@ž÷)7gµ;Æ—òã/gqRŽê>ɶŽaçQt ?0ÅYùÀOÅü¸gNö¡°c3*;OÀ¨d¹_±¨ENsiQK;a™)N¥m’ôl†GÑ.h²NRðh¼A]—Eû°”[û°ô íÃc m>6Æ -ÜÇCã°ŽL»¿ÎŠÈÕ<ÜAv×òúÅ4'ßð‚d x¸?¦#uÿÉVaLUت å4R,äRa¼É«ÂÈ«šPªŒ¥)*O‘O±TÉ£ÂÈöñ´¹Â.¨ü(è³Veì<†*ãÇ4–üù¤Æ’ÊJÄZ¢½æŸEñ±³ð<üÄ3Š•>{2õx™< Ìõ#ÜïcYZB8Z®8XZ¾¯$Ó|1GØÇU—”ª.y Ȕ՘>yÆ=Ëd ÍJðr°˜ÉDò'ò2æþ½ïB´½»¿ã“ºÿ1Nzƒç¾ÿñf%uÿ£òr~ÿã9ÞÂÎýöF£YíÆ:ˆÃ€xÙ£qð©$Ú;õº±‰D þ|.‰O;¤|g^‹O-,Žwwá?uÙ³%CÊ¿¯5v²¡­ŸÿΉN€±,œq… @”d΢>à®ÊKißH FÞJáE°k\p[&œ½„BÚw³À³¢V?íäôøk« çYÌÔ÷|¾wô|Dotúk=K8¾òîyÝÓåU’3é³ño‚$çäáô.¨‹7ÆnÌ}¾4²‰X6l¹PŽëêÞÆvƒ·ÚV\ùícΫ;ïÒÄ&¶r:`ÎXð†Aw²º‹[º×B!ÿɹÿ­ÇòÐ̾Ëp‹ÿ–è§»bñ¾mÊ_ñ+WdvŸ^Ÿ%ƒ¡J:pšæÕ`Õàs\îÁ=€½O¹ÜóN,´ÞªÛiÂ: úw¡‹5ªŠÚp5«ÆÉpri Ý€œoê®'ñ͆›Ñ)ÁË,ÜXŒú=–•>¿õ†ö††Uí ·¸2çÃ_ÉBüþØÂ°à7x/ç<µð¸ô—]N1÷ȵ(“ž9Óùx‚] 2 Šeû– ‰5?ðÞBÃSÀÊ“$ÐFw<t l'‰‡»øþ æ¼ïöTÀðè.kÁ‚å2n0G¯GC؆ äD_mz÷’|®eúÂ41€ÿÿó3Å:Xgeš°2ƒ!Ïëš}êq^uÏ¥3[6œ†€r’Ln“dà¬..„¯CC‰Z .Îiwœ”Ôl¯pìÝþm÷nŸd sµïörØO| FG—ȳ_%T0ïH¯¶È]Gwî$žû»ïÐi•­¨Îš‚ƧE·?µäàùÐ3ƒWçâ´+WîÞuˆ#±Ž /`WÁV:¥:v6UOpw_ÃéöÏE'3ƒ<­ÿ¹ÈË =Ž“ V\>hn¨Cï·7ý[›^[S.m–š©[xÓC¨•g¸Snqm.sKé[\Ÿ)äÌ€’qÍÞš0„Íø½µQ({ÝM¨àgØݯ@×p‹wû°ý0ëNÏ#§}êäñvYà´ú´3;Pˆ?ÛÝ€†®¸!Q  LD‹u:ÑL‡*òy„ºÎt™¼sî:œ‰ÚS˜_Ä6„š,ߨ­¤Žå˜„x¦Qª™tO/í¢v3j_Iª² Žc?Ý^ö ª·ùÅm¯ß÷Ž8¦MaÌ@bûrf˜Ñ“;EÁdÏŠ$Çx«÷5aìð`då¥ENÛž#ƒ.Q¶ÞÈF>g 3ö¯&…ÈŸªŸ2"Ÿé]Í(ö°]ýiÇéžµvx–ÿÐÅ*bˆÀo{P Ѿu/´oÝ í[Ú·žíÓðÏ€÷-ïÓ“xBÄo=ñwx=3¿õˆßò¿Cü–ƒø­0âïîÚˆŸãv¿™Ã^¹Ì6 íª.d;Y·¥gíÀû¯›Þ(u5ŸÖ=Í…Þyј/ÒB ô”f§4Ÿ0sЍ¢JÕ’uíª)­HFŽ)Ò¯¤!¨âÑ¡Fð,‘úÊ õOL…袘3*¡gò•ñ9! !65Ý ë€7]çÝ^Ÿ;ؘ@Ä.’8cRã‰óÅ\ X |c¬£—uIÆv%k­â–âVÄDËf„që1aÜzïèIÇaühá'Yš›-­§LÔ†:8´ƒÎ¸´ü‚ó8I¾‘åŸÁ‚GìùÍ oºFBê=S1<}˜­ÛðNlýèªÛïý;!íŒN^$IÅú0%Ìl\u/@r¾9KHÙc¾Uþ!H›Ç¢ŸúÕÑa2˜°‘·Òø»%)êþçÛ–þs÷Ÿåï¥bZ"¸¬4n\&¤¼žÖjK6«s—§uðùC^¬íl~*‰÷­½ÝhÙx6ær•%Ñj|Ø<ø”¡š‡]É Œ±ƒÿ5áO óÅ¡©¦øL7öÛ«%±ÙÜkí–D{w§yÿîìßæû8ØëëXðóv`â—àúNm·¾Iñ,šÚy0žAÎ+ž1º™ÃlìÔ6!cËC²Ç5vkÑh:„F¨Ý¤êÐp%W;Bfv›¤úZYŽßˆMÙA[þ†NŒü+ŽÛüó”ôwëÉéð,a{ÇôLx´EL¤¶IÂ1¬71ï’T‰¡ðÔ‚ÂBÜa©²;^YÕ7ïKS\Ùî>.X¾7¼]M)iÙ[h.X¾ØídL²Tó¥¹`‹Õµø[Ö"êÈd¾*‡»ßµÂªp†¸mágHC·eí³bŒþ¦…]+0Eê²¼EÇf‘ ·ƒ³|sÇc¡:Êé/Üͬ /© -Ô„\”t£ju³ÚLEu™8æ•_~g}sæ(0¦î§öV%”,H¤å©¨—Y-VVM¶œ&•So3ÛLyw—f¯¡xÿð6hÅx¬ð6V,¢<ù!qÃ^uQ½š”6• “.4Óž–x»…Žu»{|Ù«›+C¥à`µ í’ÓŠ¦ÁD/hñ‚jBÃ':9M«Ÿ¶w¬Ë`pü{»Tn-ÌÛ-«y†º¯š¡•ÛnSWªg"5¹hMÈ?ZÅ·HZa¼˜6Š|øß¥'–²mƒìÒ=?ïõ{ÒŒçšX›ýk0¼”Ä)%•±"ýF,ÓÈøºß›Œ—Ó­«z¸äÎÚBç’yóŠøïwøÿÒŸþmú`½Í0pÛ;èM+¿¶–*¥íÖ"éÿÉR[€×[ Sƒåu[ ñ³i}"›f•YNº'à ø˜@ã8Æ·Íþáàݔ֚-ÇØTšvS•·À¨âÕTJ读ÐI@ÑϹ]^NÅý–H Yd¼‚ÏýÉGǨ®oäjäwgp}þ¯úfåvz/Ús{©çÖ EãôY;f¿Î¼¬Å7Ôê¶ ÑirbŸh ”ˆk’BÓgú­üï?Dð.*ï~a¹@ûÖWx岯ŸñÌ©“À®s¸óèÎòiz`?(Ç{r]~_\\6z‹fl_D)Æ=©JÛ$eb®G;Š’Ú"³!¥Ëhø\£½r®o¥›‘|¬ú9Õ»Fâh‡rnQ¯ZÆZÛÏ:ÞÀ'\%<œÀFI5­tYL;¹]"˜¤”0 aòœÜ.ÆeÆ ª¬´3ñ6{€V$dãLCž Z÷ÂÖ=°àOI±ZÌý„ðKcÁŸ÷ÀbúáO(·'_ I) bFÚ¤C3’ÅüÂÈòîükô¬÷?VßÀ—ÔýêêüþÇs<¼#½û„lí­•ÈpL×=p¹±Ùp.~ãÇã,/}&Ñò–GðòÆÙ¨Òécßá°ßûÃQ÷lâ:ÊÁu»#d’Að0 ì«ÇŠ\n†HHÔZõ轎i—+R·$`Í <¤bZoݙ޵ !$b(yÉö„Õ‘ݳ§¬`/‰!yGwû}éQIeN¡ò-˱É/Û>½¼aDèn8îY¾Êx?á*‹›ê*ò ':gG*á‚(Õ7ŒjÅ’ìTš‡o@¢ìŽîT˜—uý'áÙÓ³€ÊèÚ‰ª”áx¢³J o2ßÊ`Ó†lYV—í´¬¸0µP5s[‚B*ÅŠ m¦…Ý´P¬%ÓQrvsj„-kQÈ \-‰ 7âÍûã[Îáò±¸Yüˆ9[Þ‰ÂÇãEøFÿè$»×!RW;à|S}ÅÑË`S œ:ŠA‰Vþ% ,ÝŽ•V÷hÌ*‹3^ÚdyFƒ®ëè»î ‰ J]R«.I—u2ÔË@+øê$üõ8í2ÀËëöþÆØ8«¶ýâþÉOyâŽðï#HFH°oÜõh(4$8¶{5 dWó §²)žæË6–µ¯9< Jñnèꔾ¤Ð÷JpS´ºýQÒ=»KÓ^öv±³0VÞ€dè~©ò¶¹Lc”?.°CFÿÎiýòacuµzvt¿ˆpüac 6HÀ”JcÎ=ƒ¯6[N‚$llìZC©Z¨^½ÏÍwZÁ°,ö”O 3…ñåð¦fÝ%àéºjÔÈ ’å2éÖ›$4É{?•åeh”þÙlà?Íewi Š8²àЀïl$°¯äuÑõ/x>ûYw¼JÊWUw24ûXâÇ:œ–r¡¡lHßY qC÷’×&áæÍÀxÏyr°|Ú”ŒIú¾Õ&áš»hZ6,ÃÓ əΨ5>õ®•q…Æx’ô‡·Ë~ô±ÃA¿÷èîS- ÉÚ•Hˆ^/töµO§NÉ78PO{xéa³Ð+ý“=ÜÐhÐÃþ“ óOVŒTKÀËÐ6-»JcÚÈÄÅ.É¢Mƒ{|eA›~Û!âæ]Fæ>Šñ“›á* u¯•Õ¶·2"Š…¦>_Øà(çö”ë -/«é;grr„–)º¢Ol Y1´!}f'D\«ž5õcž÷L;ûØßÙ0O>Áé„.ñi›rHŒT@¥½:û æ q³ €È¢‘Ü'ÎÅ+› `. p×ã8¼ìc|ÙØ'w`Þî´Ò,ŸÜ•›ú,/I¾Ï>úÈE“ýõmÞÃiEVO¾&×}éÀXPŽ °ƒÞ¢0#ÿZ´7 h€ipס)J`?¼6`+š&e*²Ãæ‡MwëuÏ'’øX‡)œ˜Òˆéñº!Ãr˜óq#{.•ÏIŃ Êñ2ÙÂbßüëà±Ð1 t?!ú#Ôùÿ襤^V,ªDìÆ=çöÄjéƒ×?C¥èYY”Ä‚¤´d<é]á½qïäÂi£„x¥{ 9©'‹NÓx§5NjJµáPi±ñH:?‡sÝ>ènÒG5Åϰ;q1žÉ[ÒW Œ7qI5i^ïa‚N7‡· Ԗʤ¶ä®‹*•bÓÛ¢$TjÇ0„C¸UýÔÂ9-üëJ<"WèÁBÔAgýs nCùù>@¹v¤# FZ"„“š³!¥Õmñ<ŠÌw—­›Ê¨R@GŒqÐ0%¤(܇ÇÏáM£-ìÒa­«`–âC—m4fZ2‹…Ð(Å E2A_€ã.ÆJúÊÈÉ@òni÷€J3c7'l#é‘Cø&J@‡wë’¼”¶” D.öYöÅÀiNöÍ”÷p´ Šiï{Ô3í/×Ùö¨gщù0£ÀãaNê"Oåm¯?”’Yä2ÚáŸ}Hç>7ôQ:¹ôïÖ*¥‰¼–›nÁÀŽ.sÃ[ÞÃDnFòzîþ¤8_^3 J€‡h–#ä{ƒÂׇ?€cÈ\Ûðïk`•Ó-|φ(îYP äaÜ*“K`Ò/.yN*nØÄ’ügÖT3SRN€ÂÙçýòð‹8NëÉy÷¦?QTDå8¹ó 6vjÍO…F{£^Z`r¿P‚yÞV_¼ IáÇReŠÊÌ@.û M˜ùºÀ{LJ•`S<#̘bÆœad–W*iä‘=¯¾-‹½õÙ¿ó¶78Þ*.Ü-EÊaçfü•…•€mäMÚrÄš0WÆ=4~t *<Ç—½óI„²`ƒl¼yWy…LU¡wìäF¨ŠÍAã1}&²üÙÎÆò«’ä`2÷i6¥l`µØl¿¨ÆÖÿå[Ñìà•Åådök­Ý~˜ûQw-d¨¼üÿ!`ý55âÕ5a€™+…šΉN?ÄúìÖ.ÄÁ“Iöz.4zËË…/FI—e{`6éâ'7¦¤ü5 1ºÒv`QzLcB¯.²â±Fè©xßmß&zÂQ-,EQѯBÏët/§´ñÚk£ò*ÕFe%»ŠçÌ+^ý™j£˜ §¼Ày­¤xý2Þ€[^à¤R TªÄxí7 ~­ª¯^G¸›%ØGkwzåQHG'@KÞOoŠTW†MÜI¾&}±ª›Ù7œ'†{­íŠ­áÍHšVv¥û|½÷ …¯(&¢ºZ qaiÿ¬þY.ÿùòM ”Fä‘§ ó¬]À™<£ ÊFwÔ¿C–„Ywº<3¾üfðfÕŸÁ#a@*p€Ý>OR}¶u¡Ûê c4LÀ* ÒõhÈB•Ù ÄTH ~’œvo8Îio`éˆí@šãS`‘@ …ä²ÝHxnÒ5\‚ü(ú½«Þ¸>šˆÜöi·2«|ŒJÀ“#µbÝ9¦‰7w(æ))LéìSx£/’|™ô¯úx´­Ô]Òt)@œ³ ¥„–_­Qôœ´› ( œ¹hî6Ð-Àª%`áµÖºl·Â2޲aŸÙ’)7ØT αC:všxëåŸv+2 èÍ5ݵÆË}sÇÙ•×hm«¼¶«ûÜø²˜¶v;™ ÇÌŠ•ŒþÛ%+»ÒÔ`gëâl%Ó}±a…ŠSá±bcœe…ƨq°§LFLü¶SBøHçEúa–xµØ^ÛÃû)€(²L *^I@͇­#èºÖ<8àŽ}g…¼ù‡²Ç;·Cb"Rpõ’,–1š™C\Ô÷ö(ÒE]þ»‰®¬Æ Ûg€!ƒ_Ôa½;ýþCkL"AÄÍ %ÁWyƒ±$xƒª«´ &Z99/´Í=lZó^zå¢ÙuÑjá˜.…`IºQïþd&¿Û ÝÄày«ÐNp€’Ü<ª£ƒ –—Ëæîu,ƒ3¥}U^ò¼g ÍàM«hò8`†)ARAÈ©L-Àoò…Tx™j ýÒ .^>"%WSüÀ7Bi†ž(´Ã±†¨¢0§Û!Äá‰×€þ‚jz|÷Ên0^ƒ%½Ñ6tC. È´Ëüν3mQôv¢|@­q4àC1RÆa†q‘+â?P~)ƒ œ Ó‹uè‚1/ R&ñ0 ˜Üœ3'~õÂü½AnþÁΰ7€E3fr=¡Jݳ¥OuÒ=ýëí¨öé²{ËŸ˜#íð*ov(w¿e›Ga¢Hx˔Ѽ^,¹Ä2!ãÙ@Õèk!ùù¿„ZHíJÆn'ÉY*¥YòS´Úð\ý ´#ï.§_ÊÕßXF¡*2h5îôRÍ99Ì$Ò ÔfhàZÝ@œrÒg=ô'x³ < ‘ Y°3«_K9{ëìÌ8%ýÁÐÒÓAopg€t6,Lb Š‚ÈV±+ï 9W™mèHˆšÎR¬‘‰3¥Ö‚cÎ\KcÇÃæ™u$ä*ÉáPhµ(¯Œì}ê:ÕñȲNµ,›RžT%qIr­ïìО¡¬#ˆš,ëcˆÿbkØÖÒ´„áøDF”…t;.ÖíðO÷Å:Y=§@ðNeá%Çû‹.ƒìˆ—#ÝU<:ŒÿÝ?ˆêý¤;B0’¿'£îø’˜ŒA‚ŠÔî(°¹qR±iI±…Φj&²C™I«òƒ±ªinÏçây­9Oáz]}@xmSüqšëõÖHNVaÀx–ö¸æ‘~÷ÇÿÐï~¹8é^}}ÌSòV^½–ñªÕÕÕ—+ÿg¥òjåÕÊ<þÃs,‰ÚÎþf þYCÚŠ;Ù'_£Yï”ÄÚÆT:ƒ®~däiI<§=:@4TW¦lÞ·ºÈL¯'WWIíÕÝ‹~w 6‘Ÿ¹@séÑðßC±Ù;ër¾g«¡­îúoÃD†ë¬8Ë™#²ÃJü1u.†RP"Ûáxx>¹e×”Ó¿ðÞÁõhøµwÆÓEʰǔ;óitLü±GX£Þ8M4N¥uøñÈã’D*Ä’ ó a"B=3 ]#™%zFm­ Û¦`)ÙNfI=ºŽ;kv–N:8¦Ü‚Îõø²Œ÷ ÉÒ蹭݉·ï:bt‹Ý“q¡¶Hÿ|ÃÝ'É„¼Ó¹ã ¡@•…X¬ÅÐTœÐKpÖ=6±•d¶Ò;úQ‡F€_j„¹BL(Gú¿ÉÔ§ðZ»Q–ÆÝ^ÿNiLûè‘K鋸fÍ ¦¶ä„<CÄó :u/ðžá„/ç÷‡·âìfD•P‰'}è¢õÀJþBI:’1:B˜ôHn‚µî-` I[t&Q9‚˜esö W½N.¡½Ëa7 /ùŠÎ7ÅûâäHØÂhFœå‰³hj?'TâìŒÀw!-žÖòï㻫“a¿‡âØÝßytÖ9ÁÄÌ„n†a)꘮–â­+@' h‹× þyuÒ«Èè%§Œv¨¿ö¿²¯TOÅÉäÔ݉l“\í©ŒÈL#3M ”sºñΰö…Þ´u¼ï5™ ý\lì$cÔEÞ}51m»®å|H¶ÿt2Ü5(¾4÷¾ÈAäße¡v¬Fí,äo¨¾×Ü2­ånÈiêppzÙ\X!þf'lšî]ÔÆ»Ž®®¸a=j®oÞ®V=hô@ÔXÎ5¾f¾ñ5£ã³Ò~ŇØ|È·w2†è&»²4?c’!åÕû“. fx p{Çν¹}8Cã€ðÓ›?´›§Ó›÷O´œ¹¼ k> %óA¬¦5pŽ²Ê »ÞØÝhÒt—àqwÇ«¥¬êµ1ù>£Ç€÷aØ}’5qè¨é¾fuu$çFÊøÕÚÀ˜o2ãW»ñ!äïHù‡Ç ù¾Ö¿¾¯ƒéI¾RôtBDC- y…È*¨¬PiÍ£ô­ U9˜½J}A:âE<çRŽ“»ÒË1X:ê,òˆÜÞÉt¡Lù=nf–ø6ÖÖ°ÆöÎÒö!ZOƒÕ^ûÕ‘ŽxÁ *eU¨h¨fäŽÊL¥TØb!mY}xö(\e>bŽqCÄovaA’œL’2mèLÇñ¼Xtq2‡Š33’:³Ô3¸˜\šXR'us| x*ÙÞwP¹ÁÙÁ‰. Õî‘;Ãø†sÁN#{'Ü_Ðoy×ZóTñÝTñ`Ê)[{d»ãí>ÿð'îÙ/l)£—£p/Gñ^Žì^ŽL/GaÔ•¤ÃYPŒôÇëßI•UD©hT޲ #õwÏÎzJKÇá FÃ[³†ÜÑÔ´dªé8‹Ì:¨ñ¾Ç9õ`µ‡™ìv‹ÍEòPžGÔ=Ê`££äºß=ecÅ^J¢O,±ˆ*Ñ7É·î)pŠýîÞŒ`ÞwŒ0E~5xc‰y?.¬[Ù×y¸×ɨ̺ œíuÌjphe5hàZniŒ†¨URÔs}OåáÀu7¿«šÄ°cU“q6”]€ç̈á—@Ò#NA 9ï%1…þT±wJUáTáL/ñaÒÌ‹Ì9¨_]?“`¦E&Röìì·”wd£Œ6òñ`Ïþ%´ÑŽùÑä%köƒl5t)™&4m¯/5ÊÈ;§¦‡c¬­­’l.Ö,ðÆ^ó™˜4‡ÃOÍY[ U¸<²>4,óÛb¨;³ÊêÓ¯ZQÎF6½XÄÖüpë{!THãq}zFv-4ä« LÏJî¹­ã.‡?K¢ÒþàÜÅ›ïõØ0Ÿ~¯oá1¾Ý¹7 ˜Ó€8 èÅoúw"ªÅ¦¦¦eª¥ÚOW^-6—k•ßèF¶½`»ÖÞ(¡Me+¾µFóSsSù–Äf‹B±>–•pØŒjµkŸ6 b5¢©[KfEñh1(ðªJ¯o|X;hÁÉÂJÜG°ÀñÄ„|æ–LïÔG²¸,.Ça‹Ëñ=,.žÖîÖòdÄÖ"Qܼç;‰D¶>ŒØm]ÜŠ,àW<ð¢DØgºWTW,¹+o°/\g X®²H(e„pºÑYÄdðr•{œ¨aqx]2hÔŒ5™5ÜèºG„®‚k\×èJ¦$CTÔpÙ*´HîXÖ}ªìXj dìxvy^hJûD8ë­%LùÏ©«‡—äÞHÉÔâa[YqàW_x Há?æüó)rÏ;]Pòp .5ˆxò¹BWš·9¬œkÙye¿8¢¦56¿#¦æTYå˜÷s`ê}l¼nhݰºV<Ìv ušñˆ³”¶YÇ͆ÊIB.ÎòÌAΛÎûÄ!V3}æ#›ªÎüÊŠŸý[_nV +ü|{ZÊÙŠ‡•ü.r™wP ßç®~ s¯†# ìÊЮ(n¶Ìdø‰Ñ¡îÓ2Š˜ÏERضîGCÈ<€mƒŠÚâ!^rŒñŽÏ‚£ ©8úàNd‡Ì¼ö"îêÃÁ?o.#2Ç€£{ÉGsݽìí­b ÍïXМF×cK*â«Z§÷ (  ©Y,ü°Óx ª>¦<eŸzϤ"ˆïAXüñèïöÄÁž0aÛÂòÄÄN@%ýzFÉiCÒ‚Dí«cÜKÇ®f >·€uáji;†èf®˜?üdؾ=“ý§²újÕ·ÿ¼©VçöŸçx9Ìcÿé<…ý§£\ÒíFæöŸßÕ¾ósÛo2"gL‹<0ŰÓy˜a‡Œ:eÓé¤L5skÎÜš3·æ<¥5GQNwS?›=ǘsîoÍ1ÃKNOçi Òåj`bËî¬åm`m£Õú3†9|AæF¿´¿4å¿õ¼ µ6pBG0è\}9¨5"DŸò6Ñ8Ø„V6¡–ú°~üå0r„ª€ l|©ns©’0Ež«Ì3§öKªÌƒ¡sÑÂâ¨ÂiÓàŽ±yÚŸq¼‹‘µ…$&ÇõjßÚ8×Ô¹ûáûëíé«üÒQÁÊ÷/6Úò&Æú‘üÀ4"çý  ,…â¢"(šlM³0-+HzK-1Y³~ʯMŸÝSo°*b4w¾´j@K}8úB¨Dßâ@8ÚF°ÁŸ£Ýf±$;â:üÏ:ü»ÞiÕ2@±~Œï±ÝOª ~þ8u,kc°¦) P<§õΗ!#T|ßhÖv¾ð/ò3þž±$ûöÍßj”ï£Þú2m·P!He#F†PT³À26aêjYP.h4?¨¯€sŸäçø¼š{û­=]e­ÖÞø³j¬â4ƒhÕÌ÷ èPÁÌ,Çî`Qã ˜¤ xf6Š©ä Ã-éíìÝ™wîNnJïr‚ص•l4µ"ŒJÍÖîÜé …[õÝ}õ‘€F¼HËw¿8_dØ–ü=c›n~ùÐÚû|°©+!ä eRoøù8ÖT¡)‹!‡A¯œybT+k®­*»! PøMIØ#ý#ë$´€EÿÌZS`¨wÍVçKã µñAjýB$àKVþ1]˜NËì5𻚂”éq8ø™Ý…޳ZY³?h¶œÙ3‚åž‹®ÙÃ’ÝȰNW3LÎ E¾ÉÁù𥉽´s5oŠËÒ$|vÛk­CÙ›e2gi…w?•8¤8}þ’uÖ™bU<Øtþøùsm}ý³ŠØ˜Ej7¡4±Ì óÄ¿àþŽ÷N ÈÏᶚϨœÇ¦ËBýk–Q«­©‹®E‘]ˆ ϯÓMí·í0c×ã^80¶fÉïØeö¾rœ³=ì÷ÃÑi¢‹N†°Žç©úêSQ}’•Ç[½½qãc+ã뛥æÒ¡ÕÆ4÷…C#7I5 ’eÐ$#!þM¯¹¶m”¢67 ï]¾Àã>vY²h)Î`‘Â"çÕí*)¢Ö䚈õ ÔU,qèÕq¤Êq´Šá“Í"¦ÞçzkxöØÛhÕèïî@Ì‹Ž^>‡§4Žu—µÖW±ëV%«ç=”Šx5•œl©ù•ê|”Œ{g7@ö¡ÆYú2er@ø2Fü<òò>²ÃÐ ‹Es†#ü°)Î’ëd@qñ‡*†uµ“»ë$eèq² “œ[¡kˆdÔ WųDpÙå’³í:Ñ S…² ¡Ì¸´H ÃàaÃÂú‘3Ü‚_98~+¦VdCæ™…}ª|Íèåhp–¡…k‡gY2*š¼–-çÈ¢I(µè£MFÒ²ÿR?t:·´czc1 8ƒ0e-Æ—OΖ³P]õ„ GÃ_Úñ¹òff}Zz–žZ–š—ÉŽpÏcΣ¯‰ i9¶ ¤1¤Ø–c©é`bëï`RŠ„R›Ä_­GªI xsÄ9ªÓ4TdŸXÛBÇ=ÃÐ[‘‹Îëv9Tš5Ò!º (iY £>7r&œl“µ>Pó(íb£éºÛzÜ¥'vÔÈÃÑÛ$ Émˆµ[4¿˜Z;ÎÎú¯`A¾°FÚÕøH’èÖ:Ôšº–¼Ê«Q+i›¬ÕX 0£kšÃ´n„ÝÏ ^P銻ÍX”Ù9Š\/r`ÈBÓc0ÊF##¥ChÂ!Žé!fÉÛÆ\ްô…aš\Rt™œþ%@Þ¼ê 8Žîécêöº¡‹‘ä šÖà;!ÕÉ3»H’´@wO›í.Zˆ¨èœÉXU3É!Òj±]ê2û€w4Ü#ƒ=ù”Õ!ÔÕT&1Ø«¤ ã “DÊUÑmlFaTštŒgöáÀšY¬åC„[ÇH(ñHUHЇÅ4s²'ÔD8´@¸aZ´Y´¥ú˜ƒÊq±Iqyÿ™º“©Ícaìì‰×¯_g·¶KH0¨°õÒ²¾…cÔäí%HëÍ\ÙJl´Qºk¶@ŽWÄÓþ9_ÍÝýdŽ˜ªÖ¹Ã$;Ú³ghëÏR¡‡”ýKŒ‡ý›ÉpÄ­ 6-Cóƒf ’½Sb? á¨8¨”¶Ã:›p“Ú6AíªúJë°~QøÕÓ?À”½”Eòï8Qľ½}‰jú²øwLJq3X‹ó7o`{cZŠN¯HòñØÔ=;È9pØý/EÎ-w:˜ˆËæbᤔ§3’¼Æôs7Mô|/^/³×¸túx/F¤Ódㄲ•²Ã!n[ƒ¨€yü$KæÝC±)zºçj´çú”žY âžc=û0qiµVÜœtOÿºíŽÎ$Ì(ƒ4f!¾éw­M…‰8{‹0L›Ò‚è1Ïߤ†—ó«¡?¬¡Òwë([‰ÌÎ ïŽñ¨ ¼ Î˜ànÙD`*l/¹¸ºå;R9ýŽ— ôŒ è€ ¹9]…ÌzIïðÑÄ&KslzŽQoôÓ’D[ª®ÖB*.}ÂŪl °!¥é™e3Ôµ* ¡7][=‹ 晫”…äÇêNXw¨ì·ÙZªcüÒxÂ^ üþpxM9)UQk³½l;æÛ·Cü{\s§ý'~Âþÿ×_/F·þeŠÿÿÊêjåe*þeuîÿÿ"kSâ¿ìúÐbîJ» ×÷vڹÿøîþsõ<Ïï䢞F-Ë]}ßï™»ó;B‡3ênYùrC1CÈÅèþò>Š4âÎ{ßhäÙ䤠ýíÜœâæ¦yÕˆ…ƒ.q©Øýx¿[NW‡®Þ§û:œÒ‰aTèÅ» ˜†=Mž&ðÂÙ~ZÔs:´ hÌÙCXPUs^ñOˆÿKºW_ùû?SïËçßÿ|µ²úzÎÿ=ÇÃÛÈ¿ÿ¹É“=÷,ÊôVB)ŽN·¯Þ)Q*À)w¨ìÑœéËóü²L_ˆ7bœBÊ`±Í$êííK 8_M{ ÃXàžˆ]œŠï¨àq‘øqÿf„!"ðã;~øw³½091êÇb8ðôte©ž^+ÛŽ«œÏ—–Y©é ¡@•…X¬%ÕŒXœpKļ1³Ä%•hœ~TÉÇñ—¡ê¹B´È)I°\ÂësÅÂçëQ(o¯'nƀȽ8•~q¨7ôTÐPˆH?E÷¢ <ñÄÊœ}v3¢J¨ù$°•Œn3ecŠbŒ5 ¨„3í©d4¹Àº·€'¤Âýw2â$(A6ÕV¹Cùº—åð’¯ÈßÀ.<…}È“ë£E[ IvÒÂÉ;žŒnN¡çD É8;c \$Xú>š¡µüûøîêdØïbîð¿óè¬ â,É™ ¨F¥¨c ’wñS@' #èH7øw´CB«âŠC@*½ø×aÿkB1qmHa‰›\v'²ÍËî×ÄØ'™id¦©Á™ÚúZ¢µ/ôÖ` ±(«Míh™÷Ü›¼y,Æ×Éiï¼'WCo™Q]n-\̱ÓÌù°ÞzÆ.yó¥¹÷E"ÿ. µc5hg!Cõ½æ–i-wC®!oÀn¥g¨…O¾õ&r1vùõ4pïz 6IèGH—n‰Ú²ÓÊ.  Ä‰…ˆ˹Æ×Ì7¾ft|œø}Ê›"ç2F’w*DÆÊåÝñ2EåeÍÙ«LààêÒ!3Ñy£I”<ÊÂ۵vH¢F†#Á‹3¸µ%ݾîŽ& vÜl`å´ÄddØ0A>9?ïö,å› 1Ïbc1|ç½,ÙÐåqÐ{ 6½8KN¬É™Ó(ÒOœha|s²ˆçÉ¥ejÜG§:ÚïP?p%óͪ3ÛJ;…a{`AÊ(ÑÓ'–ˆ%dFV×µ0Ê'œ+ ƒ§<–3›¾ 6=PФ¸<ozƒÓ)^ÜÒ¬: G 9œ&ä©û-i@ÓQƒŠ¹¸¡FÇ-¥êK ‘ŽxÌOg™ëÓ°ñ =If ” }2@åƒT©ø²øŒ‹J…zîé5¾¹†•N5>cñƘ8¢‹jØct\Öju¾á), ð¶³b©JG‡¥þ8Ê‹¥â¶7¹dx†ƒ2.†¸Gî~÷X!.H{ A&‘¥qot;êM&0M >¾ß+Í™©®û(bݱ–¹þ}›è20³}Qk}@9)ªŸi!'d„Æ¥˜—E‚÷¤¡ÖØriaôŒùÕõ:c|\œÃÔõ%Ο©öç˜:#2l„ºÿ¡ŒºÑìÐߣ8êaEÿÌ—¾9àqɽ;¿[Ñc@ù诱S›úE—H÷5«ƒ4Åd˰,°4?ÐuízÀŽQÛ1ê÷²cp™ƒ}?iïaGæLî6ëF· ¼ñžþ‘±¾ J‡Î`j <ä‘Iþ›á*³W‘ÁÁ£ÂSñÁwe|ð`éª_º™UzÕ/ |–WÁœiI‚5_û5‘GqƒþT8ʪPÑÏt>5Î9©“ÒñD³‚"ç‹âŒ ÁÃÇÅ5Qñ›…Xd|Mäz‘œ% têâHÑ]´Ñ:y@èI¤“Y¢ŸJ.\L.µ§´MRE)%ë‘íÜ\3C5AñåzØcÕñâÔî‘;ÃøžpÁN#{'Ü_èjžµæ©â»©âÍø‚n} ñvÇÛ þ+à Ü!3HØRF/Gá^Žâ½Ù½™^ŽÂ¨…+Iǧ@5ô`ÒCu•TÌDTgF±&Û0R|÷쬧tQì?6Þš5䎬øíî9ˆ¢@®¯n®L UŒ4yE>ÜÕxßcHðœÚ‹ ÃLö »Åæ¢a*Ĩ4jØnú¨3…íuÝïž²~~¯%ÿu“Œˆ‰S>üLÑ“oÝSàåúÝ ô*žôú}q6LÆèS|™ô¯å½`.¬Üý‡0ªf†¨ò*³ÆÃBp\¹í#½þ°´Ç®qm´X«&1ÐÓo=`Ä.•àÞ£hØ s1_{p—!¿q§Jį_“f^ä£\ýô(OÁŒ>9îŸjßÜÇþ[1©²dfOj-~í:§H+ÀñÆ. G.< ææ3if‚Ÿ‚Ê…@HÀå‘Ë ™ßÒ÷¡…½~êÓ¯GQÎC¥Y(bk~9/Y˜d*fF‹¦ëô¼ÌX-0a*Yhå6þ, ‹Üú£‹e¾˜ocw˜O¿·ð<ÞNí_owÏ··zxvžpw¢\Èå‚?´»R«ö3Q7[°ÇYK'|-*8Añƒþ?œÿóô¹ò¾^}#ý¿W«¯V«”ÿ³òfîÿócÂÿï ™9ؾm£ü€jïsçÿ|¯¢äÔK2¹¶Ò¢qJ »™yîÏÜÏ/â04kêÏPxqB*­ ù˜ÎJ\|žd ¶+QÕOïýD ²zF ðX¾Oµ5¥kÆ=ó}b ÊùY_TI?ë‘ÔœóÔŸóÔŸÙ©?7ž&õçïyA×ÚêÏ–TW$•ÿ}ó€>oÒO¥§Iúù )>9”dSµEySLÁP¼À#e+VÍwBaÊÐw~ ËþéGËú4ë£Dîï±>1qÿ{­Ïcçµç<ßè/‘oTÛÌñ„Z-4 ¿Þ3K䯔l•ï;GVÑz*Às.š•–(¶võtºO‘‹näHHZO'$ýQ¦qß\¦OS1ó)¶Ãr„wçÿdº]3Àrʇû9Õ½ŸVÝ›¡°ËÔ¦µÿZ¦0$~<êÌ3–úÉï9ã'RIvæ*Iq?•¤µ˜žªÁ^çgRGΤýù ’”&oæ…y›ªægºV±“Ö*>êXæªA(sÕ`NÕ`ç{¨Ãú¿óñ·/ È ÌŸ÷`­×”øo¯W^¿ò⿽©¬¾šëÿžãa|JÅk½ow¾ ,Ø\ßX/˜DŒ¥TÄñÖ&FžN?Ze踃RÞ:r $ú 5„1̱#~¼¤räm…S”dÂ;¢94›³ •f‚6±ÎíZR™{ò6CùˆJNîMRçŠÑ\Sû%£Á€x¨;·”Ÿ´v8÷¨Ü‘fÇÆñÏÙʼqâÚ&µIÓ‰ÿ‚C”Žù[Hª¶ áýtÍmFWSÛR(h:ª£×}q7ÚRÑ»~$?¨¼=¹|y)Y·Ä4äOÈ…ʨÂKL-¨T'ú§üzÖÙUîõæAIF¼V™iJ*ËLÉIÂÑ6åõ,É´§2©©ÌFªRªÛ8 (aKÉJqT2éŒJ:‘Ì´Hõhrí–¬œ4%+KLÖ‚ìÐe:·’ß2¾tF©8ºF”Ì¡+Erd•ÜÄ?%+K^ƼìT^%7«wÉËÎ%‡Œôâeóz'V¼“,ïÂJ+öNTs΃Bè}–›ÇœFåeÏ–ʃõóÅ—Šq¬ÙÚåìD éê»ûê¢ x ,94êï~q¾È°-ù{ƾ61ýò¡µ÷ù`SWBÈ:‹lÞð§,Éš*4e1äð¡àKgžðÃ+k®°#»! PøMIØ#ý#c¤6P èŸYkªN5Zï¤Ö/Dà·xWº0°Ùkàw5)Óãpð3» 9gµ²fÐ:l8³gË1<]³‡%»‘·kÝ\_ù'g"ßäààøÒÄ^Ú¹š7ÅeiÚ>»QÓè•8g–1ÍÁ¿» PQìPúü%ë4Ūxâé ¢%+£ž -•Eƒ7¡4qÌJÚÙ¢â|€±*ÀЏ­>ªµßÎÊ(ƒËšc.P6Eè# ¨]©x­`+×ã^80¦GÉ Ùeö¾r´—=ð÷ÃÑi¢‹N†°”ç©úêSQ§Ëåʇc Ý©Þ^Œ€qK±•ñõͨ7¼›3cƒš3ᛤ<„ iY†)খÐËðér¦X '&šk2rbf(;§&¨6Í*C|*AI'š®X%‹þ®âä L%6ÎN{ìd( ¾Vþîļ˜šº}zÂçP.X«ç=x5•ôkë½ï™\ñ1²+Š™,Š(6»œq¶I#•ž1–‘õÁÃåÈd$;cÚÈA#mC5òŒÛ‡g(ÁbhÁñ“Ê!{Áz<1K…“×’ãœç¹†ì_yvê ‘JÃ_…pCzáô»ÿ¥ét:oi?ôÆb0p¢\$#Šj›œ-gá±eöÀä· ¦mZB*Îcó©C6k#ÁHù«X_E£ñ‹©å£±KV° _`!Mj|¤ OtkjM]S †åÑX¢+‘-³Z$ êžæ1­+«§àýï® dZÒ wš#PŸïr /¸^øP…¦ž’FÂXEJ‡)„EŠ ÓC6\·—¹œÌK­¹—]&§ ¯zŽx:ˆ€½nÀñ€¼ùÒêz'd+¹ý!fIæ,î·\´° P1ž>]ÅaŸ8¼Wœ|çŽÎŽ{dh.ïžH B¨«©Ì^°;?CzU°! „‡è.6c0:Ê 2Æóúp`Í+Ör€3Ã}“!gd­AºPΰgsìY^:­ºžfßzôÏ=N.ÉíE»®ÓfÑ/ãÉðú:9£›+ P»"øÉ µáÖè¡–iL ·’è'Pb".†&‡Ðävè4¢ÃöŽ}©À&Vˆ¹wž}²C¹{{âõë×Y€Å­í ¶h½´ÌiR"Dî^‚ıÞ<À•­ÄF¥»f DàÐÌxE<žóÕäÖOö=ò©Ê9‘;|¤£ °…¶,Å qH©EÄxØ¿™ AÜÊ`Ò2´7h^ ;%ñ“¬ÍÚTøbwÜÏTÛ¨]K1¢ô ëG~[>À”“­ú~€iõ(KÕßq®ˆ€{ûÛ:ôeñïRûf°0çoÞÀÇ ÚÞsüãá)ov;‚ù9pØý/EÎ]s:˜ˆËF’çå6œ§3’ÜÆô“7Mö|÷T;I¢?0éÖN›J`Á•KÉVÊ|†¨mü`æ’Ù¢·*6EgéËî¹Â5庒Ù5KCÜõ±êÚïÙ‡ˆK«µêæ¤{ú×mwt&!F)1MàM¿km*ÌòÕ[„`Ä÷|D‡oþ&Õ´þÍ3øa 5·‹XG8dúLxw¼ˆG%sÆïpË&sUzÙ?ÕuΑJt¼lïú{*’A<£yv5°!*¾B1¢wtT,1šMîVŒTRcµÒli~—²×=?²£•Óðf—Ò¸VtIöFu'ªûQVVQPÍÛ.¬Æ«ŒgêÅî‡×”?Š’*´6Û˶{¹}—Á¿Y4O´þë<ÿÿËçÎÿ^]}™ÊÿþjeîÿÿojÏÿéWAîïìMOý.¦xÊÏ3¿ç}~YöGËü¸ˆH9K gÏîÞ>r³»g¤u¿gVw¬ô(Úœéw|;óŒÏsµÏsµçËÕŽ»PLÏ]JÅLîR@ZL×Ê‹r}ÁkFÀ‡ÞêËû-;ÿÓ¦Ê]f»„= ýS½$“ø¹i ìfæ)¡r?¿¬×X (”¥°…(%¤RýþD£dõn[¨H¡á”Qzk>,eFƧ´QõE•7ªÉîô£gŠ$‡*Ù‰fIÀ³ÃýøzÿÖ ¢6Ÿ(AÔl$z²œP›VÆÐìœPÏ•lI(o²%þr¸ŸÒ`"“K1K¡o.Ì:ˆÇÊÕm>8MÓC³¾³lF‘lÉúžÙáE–„™G*»ÍððÇHEÿ8yD8©ñ;J‹ßI)ççúû¹þþ§Óßÿ¼ÚûNZ ðµ÷ßP{Ÿ¡ÉË¥‡ÎÔáµkJ kò2Õx­Eã©Û?ýhzçé ÏÖ þÖ "©É4£sé\cúýXS5¦”ªqf°¿ÀM?Uy5]íÙI«=u,¿ÙÒÏu—yu—†˜ßGwÖÿ¿}I@Œ`¦k½¦Ä|õ2ÿñMeuîÿû,#F*þcë}»óEÅæúÆzÁÊ&o4€œq<+[úñ3o©¤òõ’Xã4ö9:’ùîUŒ[À^fDoæmˆƒPÛas±Y‘°"ŒJÍÖ.gµP¸UßÝW?hÄ[y鑲ï~q¾È°-ù{¼«C ™_>´ö>lê AyCgÉÊ>A>¤5UhÊbÈáCÁ—Î<1X5Wøú:»! 7¨$ì‘þ‘1R(PôϬ5Õ‰J­÷Rë"ð[¼+]˜NÊì5𻚂”éq8ø™Ý…޳ZY³?h¶œÙ3‚åž‹®ÙÃ’Ý0úy9bòOÎ E¾ÉÁù𥉽´s5oŠs\àÉ­ß6»³A•8õ‹1R ¬’Ì:½Iù²³è.VÅsVßø.Y‰¡2ªÛéNâ\F46Þ½,—V˜ºǰÞå·»‹„ªFmg\ôôýûˆô:0ÖÆõ¸×LL,É#Ùeö¾rd®=š÷ÃÑi¢‹N†°Xç©úêSÑä´¦‡cŒ*¬Þ^ø€1•±•ñõͨ7¼›``c³àšcá䚤„ ýÍš7oB¡Íœ;¡è Ä=c$'О‚£4M=´Š’Â[£6›‹oZðòع|‹)Èü†6œŒÌoYIÁ§¥»‹èKÍ* ²_×Êïšzu©ÏãéäYK¥ïÌNîéäá ¾Vþîļ˜šžxzZÓPÆC«ç=”åx5•„螺¾_ ±ÇÈ!&fN#&¢ØìòñÙ¦'ŸÍ:°†;•†ÌÉ?¦Ç<Š*ºn%•ˆÌ.g…`ŠìÁ<öOÖ‚Ò3†ò‘Þðè-¥QN“sšî=4™îL%€Ì Ý@l°’êü—þ¥Óé¼%ÜîÅ`(àhºHF3#¤ÑDã¤ê•r]zk똼|m¸§ß–Š9O™K­ÈÌ)VzBÁ8¶T¤g¤XŒc©aòçï(R£„I3)Zâ¯Ö#Õ$M ¼AýMª‰ì3d[èOGñ;këv9T³5Òa‡(iYÇ¢þ#r&är!õDPó(è4"S»­ÇÝS¦$‹¤’0„¿©£ÑøÅÔÚÑØ¥Æ,Xï×.6>R…$ºµµ¦nÑïjÑ•HM—Y-ây£º§yÌÔÕ Þ8éSƒ»¾”ò°–£xÁõ"4]ÊòŠqÄè‹”¡RO¥‡lXo+s9™JU³2.9ºLNÿ ^õûõt„q`{ÝpNa@Ú"ÉÕœQØb¨‹ÖÛôž“òf$#NW d>OÅɼë&·¦L®OgiOw5•% v—;W7--%¦è5£0 Î ÕùòÏ›9=vþykþ:+±-QÐÇ´CøK›‘}>”ÃY„÷g:µs0):mKB ²Š…ó8/rOÛ ÇyöÂýºË¿ô„3÷Âñl{%T`(No6&Zé'CÒÔO¶P™åϰcŸlÇÚÐÐ]´MgسÇ9ö¬•:=Ðj”Ä#¸#ÑB ŽõC„G0Ü’]ÿÃÞÁ¦¢ŒÄ,dd?´^O_ä|]Ò¡øõ“}{ª"HäMêè[\‹­qIq+BR–"Ao†ƒ0g524¨é.X’¬DI´2”çvŽÔÚmjVÕW"ïú‘ß,åÿ©¾`zJJ÷wœ'"ÛÞ¾$ðú²øwŒñ3X‹ó7oÄí£üot 7"¢ñØ”+µRᘿþ—"Þp0—=Ì%Á9 Oç…2Ìé‡GzçúΕ^¶Q¯qéß¡ŒÓy„ñ©ØJ–µ­Á¿ÌJ¡9 wal²„=;WcýÖ§ôËœ:÷{ëׇˆÎ.zÛ…“îé_·˜TŠ!F¹R11íM¿kí(L³×[ÈaŠ|Dgdþ&õœ¬â- øa U„‹XG©ñeFZxw¼H©(/ý1© U‚3T9™"Õ-Æ‘J´>[ôŒQ­ i¾6ýØšñẏ¼Ï/ë߬½‹ÕîÔ˜žô÷ô!–uþV|‡Ôðò;å6ë{;må» ÿß÷X#ï”CúË{uj„ýVÉñ1ºGjË|‰&©róioü¶¾9žLÒZHèG^Ç_8Äö |MǺé*d¬€àÕ`|MíäÂBñÎÖ¤D]UƪéÈFnUšb¶8¥Fì_Q6Ìnµhudßîswû¾‡¼=‰ßà¿ X¸›3•s¨ q‡œÜŽò™/»÷ø –lYI8;DSg¼Å-&8ˆî5ÞOÄò×½¯Ã &Ì»‚Õ#l¹½ìõUêAäIQò8IúÃ[è©6µŠ~~-ŸwQêý›ëIê ­2ÝqâºfI „H^»7`Ür~× Tw×É g_‘'îºä”JYæÔË­\M¤-À!G¢x ‚¬ nEo‚F'(a†~³NÑí›Ã[ÔÉÌ‚¸‡(àî NõÇ*$£¡BdÙ˜Ðä:àM…áåÝÂã q6Qàš8ÿ£èªŒëø;#§›£ÒK9&öÁÂý1ì¢ð5å«F Ä¿Çw“ÑX:`Aú˜±R´ÛŸkûâV%·'_±"f,ÿ«×ïçBüm—:|ÞlùÝf- ÓÖ—mË,¥Õ+±À¢ÊÜË ç©|«ðN÷±d£Lè&Rj[ìŠB{Zè …J†„°ßÚe÷³ ïÃSˆ˜ªÝíh«Ûé ñžvͽ#¶cÑ5<•±à…ÜÆL°i=«· ÕoÕŒe(G×ÁƒoÙ×é ᾜàéеàXN©ÞÅ#@Ò´ÁãIe¡Æ©†iž¿æ[ª¬qoç·Z못Ö~ðY¯sÚ긛£ÛöW3ÿîöõkmb†±oó Ù-fÛ6á¶Œõ ˜áå•v™×‚Ðy0?lXF€í¬ÍOtQöiŽ€¥¬#`éhì‰ iÚXšù ‹¢ä´0˰ýÀ`¦}.rœÒþ7?´"Uhâ?Ô à â@<O±7@½rR4ÖÇo"é³fçb4¼\*P©÷µ‡BÙÎÉøw2Jñ¤w¥dý>äÇ#’9ia¬D³ž¢°‰e”›ºÒ\v¯¯“›Ü“TIy_«"P@G²«îxŒ¶]¢xcøz–Xš O(RÉþš²íÓáÍ`¢ÆÒ«9ƒÔ×›Œ“þy eÁ1O®w1‚ø…^¡ ÂA}jLÖ=KCrŽÆy5 µ]}ÚwÈÞ?Z™ã¼¬Ù/ÓÁš¸K,óâ]¶;®V,‘ã55ûÂQš†]1"H ‹è’£ŸtrŽBζAüÁ*©ŒE¿…Áô{öß~oðå$žÉþ»ò²ºº"í¿«ÕW«U´ÿ¾z5ÿÿ,ïb/þ—ò·ìpq¬®7¹Nsómžç—5߆ ´ Yf±Ì† šèÂ$¯ÕQ¸&öþ¡o²VÀ^Išt-'º¾Fi\?¿¿œ­þþI<çRÀØ 7,xÈbnìFø×ÃöâG1ð>Ü-ƒCD'>í}»ö~#Ÿiض ô8&æz üC=þ¡~/3—©‘“$Må å ;x„œ¿¸¸­Äì¢ <Ñ1úw¶¨ |6Çh–Bᢇ$eÜ=O¨:¢¼´:Õa§ÞÝÕv?ésäfœ¨¬йܼHŒÌÁC³BL´¡e²IïêæÊ„WPÅ Íã¥Êb‘WS¯v8Ú‘­³{Ì÷v$^T›z?•éME$G*†Õ_¨–üzf\¤l‘_SÁÄEJnœ#ìâÉ7a`xìøÚ;Wà¥H/4;Aáô6 †·1œŒn,‡\Xß¡¸v -wVëŽÇhJÊp¾6d.J<Óàÿ¯‡œÿëô™òU_VTþ¯ÕׯWW(ÿ×êË9ÿÿ¢fYþŸû{2KÞƒóÕK2 ä<Ø\œ˜%X(ö,!R¦0ò€ a÷MÿgUØ@ú¯u{“)}õýÒa*JV_T9Àê‘L],.Èú?M"° ™1–,[Ž™'ËŸ lïi„9âÞƒ½x®øzÎ +~”lazD¿a¶°\éªcI­Týi)ÅÄ”ÔV¨FªÓ¶@åøåýÌWÙm†oó®s‡b×<@š~ºà–sí‘8;1›øýøùø‘3×ÙäêX~ƒåžë,óê, Ñ~.eXÿw>þö%yc€‰²¬õÊÖÿU_U+¯QÿWY©VWW_¢þïMåÕ«¹þï9F&ïþ ãûvç Ê”Íõõ‚ɸVJe<ËÈï–~L~4ÎVEÁkøü9ÊÛÊÆâWaŸK*Ø{IÆtÏÛ Gb·/5b³2.Î6h×ê‹%•Õ£ÄYHò¶bçH%‹›ëD3§öKêDC (7ð­Ü2;2Á ïE³K㈧7‹Ê Ê?Ïî}-÷¯»1ÍŽðöÅêk× üÂQ!ÇþØxi”>a¾Aú òœäò禫ªÜS>{*/µ ²C蟤`•áøëÍFXfì(©ìY0²Ò§Äp´M9úJ2¡LR(³ ê$~”º2Þå¸(Y)aJ&ýKIgÞ˜Ö)$MîÌ’•Ä£d%ÖÈZ}ºLâT²sÚÅ·ÎÀG׈êy¿;ò;I¦­¡“¥ªäfJ)Y¹±²ö¼•Æ©äfÍ-yéh³ ÃÙsäP÷^ìn8£à'8¡Þ0±õñ.Ìl  &’°S˜½#í{Fïn:`êÜ˵›Ý»J]ýAzE•š­]ÎÛ¢p«¾»¯~ Ј·À¼~Éöîç‹lÛ’¿Ç[±:Üo|úò¡µ÷ù`SWBÈ: YÞð òq ­©BSC ¾tæ ?¼²æ __g7dÁ ¿) {¤dŒÔ ý3kMu*žÆAkã=‚Ôú…HüïJ¦c0{ ü®¦ ez~fw!‡ã¬VÖìZ‡ígöŒ`9†ç¢kö°d7Œ~^¤ü“3H‘orp>|ib/í\͛ⲇ4 \»_c§–møV2’Û4ˆiÎJœÔÈ)iQÉI;žE ìàÞÿKû¨† ˜”gÕí ¥¼±ÒSÿ=’<‰ uÚ¸¸è)ù÷ÛvD…ëq¯?˜` ’K²Ëì}å s z4ÓD a±ÎSõÕ§¢NŸÉ•ÇvB½½é ŸtϰdÂĹ›×< !×Dý LçoÖ¬i'Š‚´kî,,úêVâœ1ö#o9R„ê¹»ZÓtÑC«(éº5„ƒLx)]žÅ£œçNNC´ØH¦% /ÎJÆ>-cDij~PɧSa1:Ñœ©*uð÷p'‡`*»jvîU'Ádðm´jôww æÅÔìÑӳΆRyZ=ï¡Ç«©÷$;ž˜9Ažˆá²ÃÀgY@(¹ÞrëI 3ì¥-$™;/Çpíó´`Räņë‘ÓðÈ-PN3s„ßh2™ŸJiš1@»Ø`%©1ž;Î[BèÞX †Ρ‹d$I‚Ɖ,DT½RêV3—¯ÓÖZj©^ÃSrÑÝpÝþéM¿;±‡^va`cKAÊBÊŒ1–:&vþþ!uI˜“B%þj=RMR°ÀÔÓi˜È>10 /³'GÔ%-¦ü'Ö­2ëPhqño~ÚHÛÓÃ"™…ÔAÍ8 g„Ÿ­ñX¾î@ºb9 ¯ÊÚ.‹_L­\êÂùÒ ©Qãž1 5°5©UƒÆðfL#½ÂB Uôoñ*Õ-†nfpªIÜçÔ哇°Á j˜fË2–gKf“!>(tS4ÂŽˆ0æ(NIØ0&Þ–år2ù¯fP\²s™œþE™1ò2ʧ#̾Ó놮d!–ILæÌ7w\´VÖ¦çœ'š:{1]#l>5'Q´£ÔãþF”AZ Me²B9E#IÔ‘pàšRÿ )D7£QTÆiQG§ºWsе›æ/pÄ9û,ا ů›ùØkj"|µ8ܰ7y8Û– ècZ!¼%Ž%ÍÈ3.Â;ReM×Hâ©­%Nâ>$” ›U!s"äñ4ì?Îý÷ê,/öë©faÿñLØOMÒúô¦7Œô“!'ê'[$Lñ‡ß¡ÇO·CÍäuŠyÄô1ÿ=ž¾CyQèH ´™BdEÒNƒ´iÒ¤`[¢—÷ZËÇ‘ú‹"°½>ìì‰×¯_§Ç¡W0²r»WÄÓï8_ýÜ6bÚU驪‘uAÚùÍÑ8[G’âD„8¼>Cù‡Aþ#ÊFdÈö¨™.XB¨–!Iг„úܾŒZ]hšêJX]? ‹Ÿ>0õÌ0ÛÇÝCþ®o_Rò}Yüû²í›ÁÂXœ¿y#n‡ƒ… ̼r¢Ly9+˜¶¡Ís`êú_Šœ ät0—½ÉXô&—£d|éxŸ“q(N;$Ò»Õ÷…äÀØ'ÛÁÙ85*é_"3ïZy=l¥L?ˆÐÖÀ_ˆBE” ÿà.‰M†RýVcýÖ§ô˼7÷{ëׇGþ@â?Møp3À{jA±8£VñžšAÿòrL)h:ŠÑgòbl’vœµP¼//±‚oö‚£ÌmÂÒÛñ¨}5=i!g-K²ß£3=ݺIÑT>ànþòqBE¾ 븅Ù)M2¥¦mm¶—m§eÛçÝ¿Wò»aøŽOØÿûúëÅèö¹ò¿¼~óê¥ÿáõ›ÊÜÿû9EӦĠ”OZQÎ)¼b! Xu>í÷ùeݘµSq±¢ÚÚK{9?™£°¬pá°‚8¤úÎïy;%¨¹œØ¹ÙdÙ`PƒýV|ŠçÒ3£?ùí´7âc‰E&¸ü2£›4ÿDõü²ø¬Ò±Œý»*¿t“"‹zb†·ö9ŒÜHˆYr¸xTô¡÷±x^".ÚuøìÃ) çd7fâ5FÃéÐþ™¹Šùó³<þo|×½úúˆìß´ø?•êk?þÏ«JežÿóYÞÐ^ü2,ÛÁ¾wö7k†ë£(ÞõZjSãö@Ñ£9˜çùeùÃcÅ(…”Á›–!IÌkÆËF®FߛÜîûÈ·áÇý›ÑõpœàÇwüðïÆ[Õ‘è4¶\pÊÒófxÐm¡ëiw'Þ¾Ýþõe—Cjìò ­“dÂ?Þ-–¸’tÂÒ´¶XB 挙.‰oôûýÈéÒpuI›:@´ˆñì$´ÈqÊI\BÁsÅ&ÂçëQ¨g¯GÙÚQ‹u*¯G¡ÂsƒúCDß t­óÆ]ÙÙ͈*¡§Á¢d|™ÆRÙËÁ÷ÆCŠJàÑîHF“›Ñ Œ¡{ «N.W¤³ƒéšKZ®IïJÆ`·4täb7ìã á%_‘¾ýt ;Š'GFlf4&—“þNÏñdts ='7ÿÙá"ÀzöxÐ ¹Hý€z2ì÷Bý»¿óè¬ â,É™ ¨¦~¬Ûì¡: vEÍm¨ ˜xwbá iÌs‘Žc€JÇÆËuÜ13…dÚ™³gÀaÂX ³9x£IÑÇË@,ºÍ¯%ç¨á—C£õV&\&Ä!lG€9­M˜5µ¡LàOÎÏ{§=¤.ù&c̵äXÎ ÙˆÅÐ×ñsd6éŽÅYr €MΜ†äH‘âL 㛓E<.€¼,Sã>J8ÕÑo%ì0cÓê̶VÁN¡G8t ÐiOéä%&ÅRpÄ–´78‘†©õ×áZëæ4!ϵoù¦G£È±jTÎ]6=2:Ñ(Òm_êbt~:Ë\ŸÆÇÔI2Ã>E^O̸O©Np›"c³,>£ÁŽ õ\J?šÝïÑ ÀGÙKѵq5ô1úñ3€ó0ߎ¦ðP$:ÊD"¶üÑLÃA§ë#w£x8¦ð ™=žFxD€ä2ºõ&“„Ø?oèºÇ™©®ñî('ÞÝ¹þ}ðŽH°s}Qk}À)vÊñƒ|ôYNjU«å=˜]åÊŸ¼VíoÔ%Ö‡ƒ p ¥‰!p†¢I px;Ý]Ø«;±~#ê£á¿á`ì^ˆ:Ší!%NTÉ6°˜ œ^ëÜ'w…xÑVf6:ƒÒƒ1rÄm`Ç@ˆ³ûgâ³Ùž!ˆÏ4P•ó™ÿÄž³ ³¶½rêk=K-‡V×2¢f¦…/ l Kâx£¥tŠÁ˜[PHëx¹´0êÍüÊý€ÇZûhwí‹Õ}`„»ûÑÚû u+l$à¬#Š£¹bé6þ§.ÇßÃ5/o¬.Nðò€Y3:> Ù½Ldåh7>ü<ž€"bì÷µvp™t_aÂ2}r‡YŽ~Z!ú‡5uxÑÑ B%‚W%Óew(±O0-‘Ú:YˆÊb,]õK‡åÉâf–h?¯üšÈgÈ$'Á o޲*øþKYù•Ö˜| é$YÙQò¥s1 ]ðâ*~'ù#j¸H Y ãD‚¹h¼±þ?ae‡ °67×Ì/MPz¸öXBœ0ê{àTuAÿXÜ펇þ+8ýa’Áfâ†5 vqïâ(ÔÅQÜ8m"åõ ƒIµ,Røh|Œ>H¶aD×îÙYO©PØq4¼5@㎬xíîy‚þ³½«›+N#T‘íÍŠùrr*ø,B3Ù+4ÿ_uÑpbÔCèG¢þu¿{Ê â= ‚÷¯›dDœ—rcJ“|ëžÖï^à¥Õ ºŸ “1^Y½Lú×2ªžHõ¤ŽÎ´jfB–å”Ë-.›>9 ”Üҕܹ¾¨ñ¼tS•÷BнÊÀ!vÏþ¨€cŠÅ»S1t±vºìT‰\׃¤YùpQ¿f{ˆ)x±jƒdŒ?#e—jˆ4RïXÉ x@+ÍÑ$22~ñƒ¼—¹.Y ]—tf“jK¦‹µ eÙ‰šÚ‡ŸvjáÀVÂEMó9iŸ‚J¤fv ^-1ÚåU޶"¶æ73¼-×rsï`ÙÌ(ù!4äF L¸KÖîs›G–„uù£Ë—WoNæf#s[ÈulwÒ0œ“¾9éûH_'Jû„Ä~øC„§ãø™ˆ£âÝù«'ÁÈ`ÚrþØ‰Ïæ=Aÿ¯æ³ûrúX>`Ùþ_•ê«ÊŠòÿùúùÿ¿yµ:÷ÿzއ÷T¶ÿûˆs-Ôm—°ÈåÿØÃÎÚýÆ'ÊùV¯íïï)­*ç´›iÍÃä}~Y¯±Ùs’R©~ƒw¬jˆz³8Œ…4á€Î¶›ØŒÉÊL¬.›‘d¬eÅ%cuv¦º^©,k¤Î¾ã|Ì~rRc]ã(MEÊs{Öë^ê‹‹Òƒ¬Î(”›ÿ¼h—RAkêæZ8`ϸ÷ïo{—g”9ËTKµŸ®¼Zl.Ö)ÿ Ìð‡°ÊmRug¬·ñè†jˆ£AÄÄ“ ”›‚i˜Õºð,yhbQfO2CY»Kâ¸}DéeX“þf#?âÁ6¢Ÿë6Œ»áSyÔS¶!c¬ñÓžsɲ6×dXDD–IÄÑœyL#üåp?¥°o-ËÔ,RææÂ¬~ðï“«”óDËŠÃë*1+é<å¶÷”!±$Û1ýÌÉ } ‡p§SçÞº†D¶²Djîÿ.añ‰­ D­Ãm*A=³Íp¤Ù€ØŠ>]õÂðÈÔ1däáð é§ ºYʹ_§€ÂV²—š)z%,ŸzñIÑÖkçaëõë!ðò;!ð}¬åÊVîØ?+»g‘rà[)"Ríf™÷7Æ“ÞUWF5Q'rÓtÙçq™éCySuhWVLX`~«bqE·ïe(ХВJš}ņJÌ&šlˆ0?ü=|”ë·0÷ªzëz…ï²ûÿÊ‹-?ÂsFœj;˜“ù\ôð'…mVdP5ÄðAmC‡˜KRÏ«(¥&}©¸š£`Ð5Ó®"+Ž´êiç±z¢äpqˆ#ÕSɶríŒâ±µ©§ ˆ\t6e ?ì4~3„™÷<{ÜþþaO쥵B¤Ew奈QrÚ»‘0ík;ܳCÒa+Ëmö!ÀLpµ´©Bô§µHdèÿ¿=“þ¿²RYMéÿß¼šëÿŸãQû<þ¿óHúÿŽ«÷Ÿëús?¿©®ÿgÒåO¿9>E—ßy˜.Ÿôø¥Æï¤´ós>œ+ðþÏÐÊÝç?š ¿óªð3z¹ÔÑ™ª¼¢vdM ¤a…^¦6/£µh–Uû§Mý<ôÙŠÔßôO¤8í̧b®8ýñõXS§”Æqf°¿ÀM?U‡5]ûÙIk?u,¿ÙÒÏU˜yU˜†˜ÿÒ*Ìùó€'¬ÿ=û’€¸88KήžÿóÕËÕŠÿóMežÿíyÞþ©øŸ­÷íÎT 4×7Ö $q98Úß( p³µi"ÁÈxèñˆ?°m;É#| ߬åmˆB™<”0N[’ fó6ÄiaíԖجÌœ³ ¢¶0%N"^RÙÄKœû|é̃BYs…¯¯³²`ñ¡JÂé#µEÿÌZS΋Þê|i´6Þ#H­_ˆÀoñ®ta:)³×Àïj R¦Çáàgvr8ÎjeÍþ uØ>pfÏ–cx.ºfKvÃèçv5Ãä R䛜_šØK;Wó¦¸ì!MÂ×¾û€}³›€k}8§ë{ô4c(´Ǫ¦Ï_²]S¬Š'¬¾ÑÏ?®­¯Ψ~Ìþ‚%Î_D£ÞË6m"4™Š;kµŒÚe É®Eg^?Û¸÷úÉ{&ù#»ÌÞW޾¶ Çó~8:MtÑÉ–ëæ Â_ZlÑ_ZG´À¦îOjóØFOá-ñ·%¡ÄBÈyœ9§í…ã<{á~Ýåß z™{áx¶½@*0§7“¬ô“!hê'[¦LògرÇO¶cmhè.Ú€¦3ìÙã{–‡Ž¼@«QàvZŒ„ƒ-8†oŒ{iÀpKvý{{âõëב˜…Œì§€À+â©‹œ¯K:Û‚~²ïÛOՉܱguK€k±.)nEˆCJD%(©ÑpæQâ¬F†¢UÝK–Õ¢( ƒ–‚ ·÷«VoS³ª¾z×ü†|`)_õý3R&À¿ã<Ùöö%ïЗſc‡›ÁÂXœ¿y#n‡˜Èa£ÓÉǦ|åí¬çÀüõ¿ñÚ 0€ƒ‰¸ìaºN“áy:/”q`N?<Ò;×÷žõÊzK׎UN5!Œ;ÅVʦ„¨m þ…(`âÍa¸ c“¥tÏÕhÏõ)=3¯Î=Çzöa¢SÈÞöÆ–fá¤{ú×-fc˜QB\Ì>|ÓïZ{ s)öa˜h¤Ñßœ¿I… g$9Bã~XCá"ÖQz|™vÞ/R¾ÑKL* ™à4dN:Pu…u¤²Ë;ùI全|åŒêÊGR8FU¦§±&#F'©KY é\ôÍ‹²W<ÖÚVSÊDnÞ¤ìY ž¶NùF~—îuûÊô'hšòTɸPñ ½èáýáðšáQöžÖf{Ùöx·/Oø—•~oø°ÿ÷õ׋Ñíc…ÿ˜ÿãUåÕËTü•êÜÿû9EN¦ÄÿØÿô¡õÙ"jìˆjI3·éÇVÏc~ä}~Yÿfím\¬¨v§Æüð gñ!žÉAXÖ ¸pøA»3]“ÓÃËï”Û¬ïí´•?î6ü?>¨ù¨Ò_Þ«v Œ`¨‹ýV0WÔ'õ¥™Ù7‰ü3ȉ¨½qŸj,Æã»óèéD­%†~d8†…Ãëëd´Àx¬›ÎÊÅ'x5\^&ņâ a¨xg«R²°*cÕt„'·‚*Mñ|œÒŠM#äö/©n¸Z´:²ïw: ý}ßC柤‘oðß,Ý͙ʻ ’˜GNpH9í—Ý›œPK6„œ&œ+¢)KD‹[Lr?Ýk¼¡Šå¯{_‡LšxëGør{Ùë«ô“Ȳ¢hr’ô‡·ÐSm<JÔþüZ>ï¢|Ôû7×3‚ÖšmºãÄsÞ /],ð‚ã–󻥊^@vºt´Ù’S,e»S/·òµ‘6‡\âÁ(²¦¸½ üCOÑ•ý›Ã[TÛÌ‚º‡(ï VõÇ*(#¢BeÙ˜D?à\‰áåÝ£QqNYà©8 ¨èŽe;ø;£§›©ÔK:&æÂÂþ1ì"ñ5e-GÅ¿Çw“ÑX;`Pú˜·T´ÛŸkûâV¥8'_±"æ­ÿ«×ïçBým—:|Þl ÞfE!S V©mË\µí,ðÀÀÊÜË ç©|«ð^÷±d#è&Rš]ìŠÎ{Zø…J†„°ßÚe÷³ ïC”ˆ˜6Þíh«Ûé ñžvͽ#¶cV<­²à…ÜÆ|ÀiU¬· ÕoÕŒe(G×ÁƒoÙWû ᾜàéеàXNiçÅ#@Ò´ÁãÉl¡Æ©†iž¿æ[ª¬qoç·Z못Ö~b¯sÚ긛£ÛöW3ÿîöõkmb†±o ™6fÛ6á¶Œõ ˜áewÙׂÐy0?lXF€í¬XÝOtQöiŽ€¥¬#`éhì‰ iÚXšùXr€¥ç?fÚè"Ç m„ó#@A+ÂR…&þCæ ~ă2{T;'EcŸü&’>«w.FÃÛÉ¥’q•z_{hE”íœÜ‰'£¡”OzWJÜï£Ñ~<12™”ÆJ6ë)) ›XFÁ©; µÁe÷ú:°Y>éAÕ‘ùµ6µÔñp$Û¸êŽÇhý%’7†¯g‰Õ©¹…2•ì¯)Û>Þ &j,ݱš3ˆ}½É8韗Póäzƒ!È_è9 2Ô§Ædݳd0$‡ÒáhœW)ÑPÛÕ'~‡ì!¤õ9ÎËšý2±‹»Ä2/Þe»ìjÝ9gS³/jØ]#‚d±Ø˜.9úI'çèältÀ¬’Ê–ô»˜Tª'`ÿ½½íž=žõwšýw¥ú¦òŠã­V_¾ª¼AûoõõÊÜþûoS/þ—å´†7E€3››jó<¿¬©6dž| íµ£B(É?ûSùqÿft=+ëÈ;~œÄ Œ­ˆBZz}žØ›®8Þœô“³2Þï'êuñzÑVTÃ2QêmÄI¾MºÀõ5ÖvM»L¾¤O€¥.¸§î­4×CèF±K#à®’Iït\€Ób0œPkgÉiïªÛ7½i¹³²æÕd zàMü]ÿ6T®÷“Á0^€<±±Ü°8ÖϦCüQ7÷¶-µj­JW®¤šk¦;òÀØ==½A/BÒë딲Úgwð³t#—Vî$ÁÅëši<‹ÑXÖŽ#pc£*WYÇЮiÇ;´Xv ´Þ~†œß møµ½Šáúް,¼*P¥2¾æšøï‘ÝB‡KRÕt”ëÇðYKŸÿ'£Gùé<ÙçÿjååËU>ÿßT^®ÿ×ËÕ7óóÿY‰©Îù¿ÖZ/ˆ]¾Ý¼f¼¼ÖKb£$j‡éï>1;ëDpbz$tú:R̃9»7ßzýRÒ0¡O¿Ðјû8TÛ>Ó_k*5ë'Ž:2Þ¢‚Ï,Ç`(n<þ6f‰eˆÐ/èMÞ!^î†Þak´ÎqÄ!FÉÙÍ©LJtÞ'0yX¾[6è*‡X–.y~÷áļHɨÛÇF®ÑHoQC ƒ)hîoáÃ(š~ÒÃüECtB?u¬Ô7ƒìÑ;lf2êÆø†Ož 0ü·ÏGg@×rp‡^¡—Åé%6‚|ÇÀaÇ ¯ñ ™½¡wžùðn£ ;€0`ç0­ÿy'€3%-Œ*§çæÍ昚áJü7V˜ yÚØŽWL¶N, 2ƒÀvÄí3óxüaV‡«8|…ÇTìÊõÏ`)ðÖi¥xi¥½_-›ZsÖ¶vDš[›±9 óƒÜWûj’y‹!»¨9#Îà€Îz@"DÜoÍE{{Öâ•xŒÒÉÕ¤üÞÝÚßz“ÒôdÁpÕnnÏœ$ƒȰñ㉪BS@”¹pH · ]¥JsŒ ˆ­MHˆ|žÂD¹Tjœ.«&ÇZbµŸé›‡Qr ÃB•)ï½{Í#g÷uŒ]†\492Âõä¼ÏLí?¬ÜcòÑ3`•¬¡ˆÍPÝvô¸÷#ãVCÝw†êÝ4‰Œ; þÿv ÿƒƒ½”v‰8y¡ï¶’~è{ 7uøôÛI"ÞߌHɽžLº½þX’ØæTb õQ4ÇgסS ¶û ¯SUJ»Jº\—ÑIqiÒÓ\[ôû×ð5Kp>•’Ø0µàŠ¡Š6 ¼Äõ¸‹^©§¼ñ8žŸ—ŸbÐòt”wé“ò)£3ëÇ&=¬ ÆA=™¨úq9ÙÕ3‡= ªO7îý¬qw|œ˜rrvJ±_•OîʃÕaÆó¯›ÞHqLg*”Ëq9ÇŸa¾ Gضej(½kfœðQhÂwÂGœðÑ#Løh™Ònª {ëîp6y`³ÖiëîG­‘ ¦Ç‹¤Îc—6 óÕÆWoô}Êl–ªö|4Pn À·§œÍ¡ªšÊ*«ZÛÉð"¡=C¢ê$Eá°O܃z©ˆÁáÓgK•|”WKZ8%ÁwùÔˆ4Š‘Ú'ýáé_Ø$;êÆÝâÑ[`í?àŸNñpÁÄévµDMÞë÷oÆ0.iÀá&ûÀÕb¯É·.">Ñš@æ¨ÊÝx%0¤7NuŸ^‰l1X|kÈÙý®J¼Æÿ%Ôn.7Ç𿛊þ϶@Rou)ÝÄ׊ÕL•þ 4a½Õ¥œ&¾V‘'ÕÿyM¨Nºî³6á•x–&lâ×%¿LMÝh¿‰JÃQïƒH(gì¶¥Q’¾ö2Úêÿ3º?…±}aCÊíÞ³Šc;‘Ì~÷­. eb]žÛhí•šØø{0|8B€ôÚ(iï Õ4IU*^•^4lħRÛÙß %|ž=Žø‡ ð»þÿm½ÿ€Äë:šóC.ÆnF¯ÈI®#’6ÕÉ··‹~À+£û`6æe'ßž—G+|ØXn*?+ŽE‹ètT=h‡Wp-Mká8êàÆØ%HD£L‘kГ’Ÿî¤¢Îpq\Ÿ‚Xhù”AEðBIì–èŠJ”ýJòS% Oe˜»KÚªrC‚è<é ;yÝ¡ñUÔøÂCv×á©þ(2 ±´¤’F¾OîÁ wÙëËuBž'½R´½Hü–A;¥ &E5hTäÇE¿íâàä ãă é[këê†$ïuûåÇ[Q͈S™7T'—WEc|+˜ùLCÀ_ÊúpðÏ› ’‹Ò+Ú,7xUâ³ÔcZ’ˆSs—°ÄÔ9«# Ö šÎ4^ÂÀ|ã}ÈhóŽÕÛ&Mk“¨ygn!x;¥wÊ3ícíó”p •I0,çX⊋’ið=#ñ(-ðˆô^¬JjšÃD L±-*‰3õàï²Ø A/yx~T½¢úÛË&ê>zûørñóùQÌß³ÒÍ{Í1…\¡r?xB–Pì!ŸwH†.á8'%ã§>'%uTbt*¾h25c)ØÃ1®ãç¥ Åigb'ƈ©ìuRKzí³÷C-ú’TÒR>z«]š—œæ02¨)äÿžçÞ®CLj¹‰ ï)ÿÔ› nÞHÌþVCy”u|\\¦9d:€ ŸZ»òÔÚ—§V¾º3Hæ:ˆUBøžtt[#(©±oJ¶¤VÍ#©•ziêæOƒ8|ÃǤ§‘&Á™Ó”3Õ“’ŒÀ•!%M9RqعÓNҥʴ³Ô£Ç¨5Ù,!xöYM—.£gg€q›AºlúÒ¥95+9OÍØ‘™G¾Ü}¨|ùгt©âŸ¦3Ðà'9IsËA¾¢%8¨§Kí•|ð:þ†'iðʧl»Ü ½A:ªEu‘¹óHã¿BD”’ÙBý šÉjdíãCv–)wíºr—ºòé'E\E)òH]rˆO¯‰œAiä2Ch–¬Å|&]ä šHK.»çx)md.y¶ã­ó´p‹0¸?¥.Ò®˜•E!·|dļjP̳/µkËS 1œ/;ØQÂíkëéû_§_Ÿõþ×JõuõµÿëåJe~ÿë9Fs÷þo7ºÞÕhÖµ`ús_ß™”éÖrþ‹SJôžbŠ=¶®FI¿ºÌ—aÕM•Œ;<9ïݘKÁ–‡L£¼ ³áŠïÒ›ûJŒÏSYO¡²Th–+œ5A½˜qq&=wykFC*rq¦ƒîDÖö*ÃZ…ŽöCD”¤1Ð=޳;¹M ©ñÍéiÂqsl¿¿·úè¾D3¸çÀ.Ü{ u>«—Ì:‡[fs”‘¡¦àŠQ¢Ó9u"×¢ñé(¾û.¨³U±fò0s7DŸÊÎë‰c•eÌ‚1*‹X4¦¬M«ûƒåß¼°;Üý³$T`9€L|'–#pþªÏzþWV߬®¤îÏó<ÏÃ8çÿÍ*ÿŸˆØh”Äv­ BU£]û´ñk°Y.‰¯Ãþ²¨¼,Î/ øçúzY¬þQ)¯þù£¹ò±mMm§ $äjxÖ;ï%gx ézÔëãäÿüÓ‹!0i÷ VóåÇ‘ºØˆ«·¬ _65[w °À¯k`l> CÆJÎ)áeE¾³dÝGävõGDƯ­ÃÝ}ƒh@cô  Uý¢¡n~ð‹ÕÅg¼àJp@»5%ï¦4dFæWšs ðG‚õìê9ø¼—Õ$_]Á‹++%,‹÷ÀðKo?²%¶>å.MݹL#/Æd_¥1]Ø—jLÕ‡^©)‰­Zû ¾ÚZ»Cö²ƒö‡&&{;ë%ÀÍ÷» ø~°±»Ÿuï&,ð§†q Y‰b}§¶[ß„½yÜ>ÜUå·w¸’_>c|¹ïanÕGPmP¦1L¦¥ò­ÊŒc÷Qv𠀦[ m¤:Wp_Ý\-X¹³ tŒ…SgåSŠP¢WÚ/høv¶‰jG„Ð쎥aAƒ}N­ßýøpõš¿~Ø{€öUÀù—ðßøïOø¯R…©˜-ã>ÐÞA‹b º½«}ó¾Ñþi_ cÿ.#³¼Yk‹µ¦Øû´ÑúÜjÀçµ#àÆ;úÕTŒ;r3¬vú¤:í\k3ô”HM–±8ûÇÆ•ižAQY]q!e·Å¯”⠽̫¡e¦ý­FÑIYµqZTãËK„ ø@¥0…qDµHÃt$Lèh¤K; ò­nºG‹è:0YM-‘DH€ÝÁõ£§ùʉMÕû`S2:Ë­±êe«¸—*õÂÔÍ^\§Ðªœˆûn Öjgoo_”͈ÚÀH¯–`&%:h4{g¿IÚK¡Ý!+ó'Î|öAOúÀLíºO®ŸËþWÔê;æ}2À¶‚WxKS¶j)ˆå>_Y±7ï¿Õæýc¦ÍûòAxór:Þ¤·êŸ©…»T£þL{–ª ×‘ÛhbN½¸öžÂÿQò7kQ %@«³Ç‹©%wè…õÅÉPÃHøÊ;kh5=‘üðÁÆ2?ä™Úµ %@aJÌGJç'‰@€ëA$…—\¹H|È#iƒ|iž„Ó}Ù¸§;,ó'V:BmUzõ ìz5Uª¤Ù ä¯1ŸÈç=˜vêt×_-6­i#2aEÜö„H.L'uB‘6âï=ȃD ¸–eA"†n1·)`ÿž×þS}óúeÚÿãÕÜþócŒgÿÙk†ì?sÃON'‘O$Å‘Q§9“QúŸuæF|¾‡QÐï6êæõQ :{ÍË ƒ ìŸÚ £'6èÌÍ*?˜Yå{ÙÇò@v‡'°7<µáÉŒ (/–0›=I¶%¢‘qÀÍmô|›CÐÚähZUÊÔ”~5…<¼Ã8A8>][ zœ$øùeušS f6E¨zOe„ØÊÒ[â¡ó£X¶¦g~OÏ ¿Îfœj`k>³iAÕ{\£ÂVž­8Ý„°·ÀVÍ´ð>§æv Ìl!Põæ¶áØöL€Zß6Ðÿ_?ïý•—¯V+éû«sýÿs<Œžþ¿ŠYÚwöT–;•p ÿ]û íõMäëŽ ó‹K±2ÙßC`{@Hî6¹ûÔxÒÚ‡µ÷7Û5ýª8^÷ðjiŸtP*€ÔJMn‡e­¨6±Ù)IZñ¬ k9¬9ŸÎ婢[¬©pê:9E kŸÓ¹ t¦6šùj¯9×>߉…ÙàfCµîàâÙO”…wTáRÙfÞCuämoœ r áæŽëoH˜ç5µŒíX—nï9/Ý®s™·æµ›#eS:½ÝIjgõÓ8ç§å(‰á@fK¼‘KÒ½NþÝ»¹²B-:ݦMÎ(硪¿c×ïËU’õ¡’Ý„ªÿLIºÖür¦ûY d$#Ârõ*Z¨¿c¹8ß7€CÏkíæµ¶Ì-¥çõèšÞÙ| gT'îì}hÔ]Øi×võ]Ú´._§{yò²%àúh꼄-àòùÚñVHÑæèà(fÒELr : I}ÆB¬ƒ®Î»Š¬™?çcÞ‰Œùe|ÌRÅ„cÍ=ÒÕÐH_ÆGêŒåu|,¯ üråUh,¯3.p«Å™ìýû9à|ç'Äÿß=3ÿÿ2àÿSy3çÿŸãa„õùÿ£9ÿ_þZîî{òùGQ>?“ÅŸ¶2gð)ÆÌÕsÖ~ÎÚÏYû9k¯6gíÅ,¬ýÑÏÈÚçzüÿèêyùÿW¯Wߤùÿ•9ÿÿcµÇÿ·v Aο$êø/üi}Þkmÿ„‚@&«O3{}¿ÅâKH²uÿŽ€P/ð@fZ»x6LN‚Ñ2èwbÜCÕ¾òö—lßÕMÒÓ©omnDÔ9 pV—äÈòí’?.-‚4üØ!xÑ4/ÐÞð¬W×È!x< GN}º¿Õ±ãqøušrºû5|aמäàöÝñ=Œï.÷Z£äÍÝÞ€¥4¹,ÖÝ‘GeÁ™1à³Ø&Öü‰¬¹i:Y{lž›YnžHSM¤îMdÊZÔý)Ô³Ö¢®§P„)Ô—©¡Ô˜n»Wor¬Gµ¸[l>gàš˜Û·òSyü¾¥£¶ô¶õÙ$8 AɤdF§æõ»»³É9\&–Ù•„0«±ô!¦DÈÒvÅxÀ’!Çd#W0r{yZ‚¨DÑ[w—¤yÜh6?æ}lûò¨Aì@u@^Ë»Š\q^˜†`¡Ä˜ßiÊô4úQq>±þrÄ;xtá.&b9Þ¹îÔë–@£]²Q®Ø²–'h¥¦“«2„ªìÙOÐþ«Ô(Ò®£Ïè?"ó|“Юç¤y“q›#¶6<¤7)¸üX¸¨ÙÚ}^Q3$ÿMžÙþ³ú:åÿ5—ÿžéaTóå¿rR¬Ëðéˆ>‘Øþ5ä>žÏJŽÐ­0˜ðí?õŽŒò[?š5ÌoëÀˆut÷ðÓ:Q,~ÙJAˆS!Æb± ¾‚&þGÐGý¾<Æ"ðþßóowj YÈ;%8ƒP3J´Gþb¢õÿrg—Ée<¿|¥ƒïKE»ê¾Þ¡þëGŠè=mTìS]')Á·e¯7Œ›!œ| ø X‹qñN/Í—} 78ñ]°@þ¼©ŸŒXǬ Ôäÿ ëGO2ó»èÌ‚3/iê§öÔqêG˲I{ê6™9ãÛvæ[½ Úâ,9GBeÄpG"Äÿåî Ñÿ]N½*·©%ñ¿û²C ;Ê ?Ñ‹9L M¼ê²`òM“‚î?Ð¢É r¦ßg¨®èYÖ‡g Ý®¾$ÿºÙj¼£};õ†jà'C`åõ;v|¡#ûK,QU²Ø\R ",á@Ö:J×:òjYµb7)ëò.A½ˆg@£CÑ ÚE<NAõ —U_ÊXVV´Êª¦ÞÉ¥5È€3kt¬œ\Güû‘”³ÔªZžMnV/Ÿ:Ê|«5”Æ’‘³~fß“€ø8žãV™UeJëûŒ*Ý)ì«Ë䎓WyQjTué3ý|dýLŸ[A}Õ±9/%2Tá÷SuR¤ù úk>éó?9[yÖó¿Zyý:åÿ±º2×ÿ=ËÃÛÚÕÿm¬¯ÄÇvã˜Ôôë%Ôí#jçáÏÇöÁ^kƒ¾´•ö>ª* Öî7šï÷ÒìÃÊ4U…ï÷äüyÞÍÁg½`¨Yß5$.Iª7 ùÝI>x¬T¬ ž_ûx8VñÎ@ è0È®ƒÝ4¯’Éåð¬$‘E2>Ò9=é]$ÖãóB±+ï® ÊNTøüÎ…í©Î¹[PÅ4ÀÎäË“þðô/b :'nn”œÝPÞή8KÂDTÚ&°RZO;8K?ŒÓáX©kŒºµxpR¥(-æn;2båtN @L †™2Ïß zd÷ä U–"š–Ë‚íÝô5&Ct¨^–cøŸw¢‰–Û¢ÂGaÂlæ ×™aÖZù^éëvÑ 9"fZÙau—vV|Ž×¹icQ QÜŸ&¼þœTE¨¼÷àË•øð‡ççå‡NaC\v1UU2äOFÃ;í-ÿ18è)ž(Kx䀟Ò-e¨oÆ-å–¶žt[²Ú`<îõ擄=1b·¬ó„Ó5Ù·A\”wp¼;‘˜?6ÏÛ1µÕ…uù˜7½˜±Ê«æãô­0ŧæã2·£]ñµWMƒ½jl§7]™·±¸² ¼*"0Œ±s›Å~^‹%ñšÜ^›Åþ…vVL=Ñ¿àXmïÄø C¸B(r^ÿ+VË~Æ7@—i‘ªÿï/&3‹ŽQ/¢©ýXˆZY­ÒܪrnüC±X]Œ·óðyfÍ”Ïü¡Š%`÷Pe¢ƒC‡ïIå¹&C±Ø£·^2×qÎìÀÍÚ‡3±7ä¤ûWÂYΠʣ‘âa(O³·iµØÈáYwl¶85Þ eëN´Î±¬ü7•À“ [{'Ê=&©½2ÆQ•G1Æ3RžÀB_À6'*ï4ó?Ô Î®Û¿Žz“Ë+qÞíõy$¯Ba~õ)Øø³îl´Övj%ŽIU’¾G’£“Õ_Î0°ÐNóS|4òýÕoVVx[‹f¸FÙ4p\æŽÒ 4ŠnnÙD™4;& ™óF›¡XaIõÓø©ªn`iÚ œºO«oo™¶6€Ý¨¨˜r‚åqî&W+%ê¶™F:ëª6ˆÕ°–[É B§G#ÜÑ4¥4R¾ê—‡ÃA÷UÉîëu n;oå?Œ6ÒFeËíû= Ì—3)Wç båÖ…’(KÕ„.KË«s•õ æìkhçË ²´ âÏ’5 Vôÿ­”눉WÊeaÜû7‹ätäÓÁ¨ä7yHÁ1Ë¡ý)no ›™X§¾-žjá9ë8ž­‚S,ËÆN¤K… KÛ”iI¸!Yu‘"Z2âW)e4([1ͰªEvßÔÍÃ×%ÎW”/óTLyU¶ b¬æÆÿ:Á5ªEþh^© ! eÃ8N°ª¨¿…Ûf`Î(—ôËØr(•ÈÁ:ëN pÀC5P %p©w0D<;^Œ%E‰nHí3êþ‚î8†¼ºè\â9^´‚PÙ¦K”mgˆ—Úþ…ÀÁÑg&ØðÓcá1Êmb¹²ýj½ÀoÉmW.sdÎ ýâ[ƒRuÔ·p­5qx”ä’U ðv2¾\h±@f °ôxþE÷ôôØuLÙ0Hn•3›lCÛº/é'XÁŽ´ ˆJ?!s¥f·C15áÀ㨓NÊj±¯‘–6m2ÄUð¯ëí2Kqbž¨c„Ê’p_ƒ…︼ÄvÕKdµè%òÞ£†/©·Zµ^Öч_–RU‹Öûæ®íöóQnîJAÒê 9=êˆÚ)Viøòçĸ5®‡d™|–.ó+ÑmË“–ó•ôk¼ý:¤Y% p9lÃ>ð¤ BªA×®GC8€®p7ãÞ?N&Ã+­ØÔŠ[ÙŽRßNF‰u¿Yk+Œ¨ñœ_ñ·/Ñóp,yamn—d3¿lö¼ñÔ0<•BZl,1%0U¬l Ïί?CZ æKÛ¿ˆì±Ä.ËÐX0¬¿EJH3¯¿Due€ï.ÈFZŽmÄíU]Âe#Œªñ‘#Ó3)ùí¶#ÝëúÒà7Òž2nÞ6n„jpKÎñjÀÌ€ýfM“‘ŽþqÖW³qB¬§ÐL Ï 4’º^RSR½¹‡‡ð8»fl»˜k.Ð(yÍÆ¶“ADq‰ðm§6½­¦™Eð&p ·µOlÿN\%£ ©"ßAp¡c¼{öO8x€ñ³ŽwY›«<Nœʶ†€ŽJ2GS*+C„æÙþÇÉ/À‚¹‚U:Þ7®WÄL'I@ØæªÈÿ´)pI7—ID”‰4ͨzkˆE@ )=õýÖšE*ùIÑ0‘ŒFÕXªF)™3HYÑgwíAÊ~¯žL³K¨Å{8s›ƒfÅ.R¿(MèÝ…¿,Úø¦4jåtMª°,¤jA\B+}©ð?íŽtRÛé›èºlˆÚù d?T­tÇÒ¢p2™-’×ÖY2î´Ež†èÂCëÜŒñud]Ò-’º@é‰Õ7ƒI¯/v†ÃkQyµbR¹’€Ã\ ž²ˆÉ9 %_Ã!ÁB¸§ÍÌ4—\5°„Ã@1¢äÒ¬iç—0GÁG»2³*%— ÊlF—D6ЪÉÌ]žšÌK¸dõ²ªúç¦{¬Mï“iÕÃÍ;®EŽKÜÿÐésK¤. eo“¬-ež“íp#è1i6¹à‡Üη,P¶;Tµeè3‰ˆ[i^ŒƒöôY¨-D‡ŠâÊô*Ò.0+©£ÿKÖ¯BÎ5öáõÁÛX7IEÕ/äÿõæyý¿ªÕWUßÿ«úæõÜÿë9Mÿ¯7|ÿóð`UêÑckm—0øc eesOÛa”Û^èÄÀÑ8o…Ž(†Äo‡þmBç¼”$5Íí'÷Bó!¯–ÇòN“~i@˜bl‚•z S/QUœäÆK'½×øóÔS—* ^¨„*òËGõ1>å9Ǹb¤HøýÜéLy¦)—éÕrÚž'›Ç-wµëVT^lç”Ð,E,F鲆æŒó‹rÑ:¸äx› ³Uh Ï©AG{ÄÇî(ù× ðÅäŇõme&ÅTºžP„Yh%Í£;Nt )œÒ.<è`¡=›2ØtÍ™£õ±Ð,‚4ºNÿ.!Šü‹ÇÚðãýŠ¥†èwP„bò¼ÂOª)¾¼²ÖÇ…›’¸a?%éqSè'ƒ‹É¥hòåÖá Q7¹:o6¾‚Ì‚ׯ†‚¯þŒ†cøiœPw–e1 Ø·˜Ì\«—{”°ŸÈöþ±¤na+–Ê^’ZuÄú²ïëp:Œ{cåt†R œ]Éø­Ðyo4žðK§³^Êý“„89\‰0¦%µôLqð¾½sYˆ€ŽP2)Á6©c¹˜È 5é¬ì„?ÃÓÓJÔ›v2€gœœR,`¼ HûDawψ„°u`e bð+ÏÜN+ïÚsIº…#÷Ð:nãê²Aèsˆ¶®ãh4å–7µ-ñŽÅažá††žÏ{¬Ÿá ÿ œ£ÕŒšìW8ƒR~) ]N}Í3jã«‹Ëö$:²N·?ê‘KZBZXXËEMB:΀QC6NW¦3 I§ 97ãp Ãôƒ•tQLŽ[#†…±=•ß<5gô:v›ÁëXèèìÎ:G„'tÄ•4)ÞCÝŽ<¦‚«žú˜0Úò†R1ŽÙLlµ2¾9)ë\õä&þûê>5•£êä-ÇĦÜ)cš 'Ђ HÂ&)K“¯@Øl¤l,øøv–¢–£³»VJ]ù=±Ð+÷ªíW¹‚`‡ªý¯}ü4ǦW`söªéåÀÙ-¡ÁX-8Ã…Ó!jÇ\ä­ÏÄûÉùWˆµŒpâ]N”×ÛS8;g£Û³Ë0˜ÉÍè$9›Å\5‘\wQkèjË×;Fpï7|¯ 5þïä#l›Õº¿Ä1RÇ÷¦×Tát” aÝ@ÈFK‹cÖ>ªh´Nù¨NC.:"À°WꞯÔXá ßQB^Ç#9&—lªÍõOôó£=Näîé_¬:Gx ‘ÞÞÚ=àUÖ JlRº-r  .O’øõ†©NéöŒ_êðŽèÚí8w¯›KÕ"RdÝU eæÎq*+ÇìÙ)G±X]r.p´‘á§ví5ü'¶7ÐÙÍÈ=Ó¤Jµj„¥ r¾Ë$±²g ÑЪ}’Àñ2 ÕK9p)*ƒuST&—‡ùà»°qä*q24 b¦†nïöŒY ±qq ÜÁ™õµÊ"#ÅfBÌðˆZgÅ­=SöN ã å¢àš%>>äÁa5A‡—áÁ?¼VB8©| ÀÛ‹!¢Ó} .å¢.¨!ôpo³$ à #†})…ŽÊ…±C z ”Ëj|…ú‚—õ·EÈÜÉ8-zYmâü‰Y· ˜£’ e­HwùU|ŠÚÏ+o\cQ e“ò£(Ò6@‡EÆ6«™î5óÝhªFiö]û“CdÕѳ-'k®‚ ú¡÷ú.GMÔÈéËjœjYÕ·ø²ÞÒo×LG2}âU< ü¹o 0ñ°Ç¸¯±5‚®~§‚QãÒ·GÜßõ‡hFØ<Üžæ3 U‚Ã…Q›/vÈ BtâÛêz\g†ð@¼‹)¦™JÉ»…rÖ;£8!@ ¿"[ý¼Á6B*罃£}ûöÅúÎ.GŽ$SÕ¾Þ©s©}y×â3üwL7)šÈÃ:À. èšïÆccýÏÿ[£w[¬ ö͆?=ΜP¦Ö)ÍžUFêtÀÝñ­ûŽ‹Æ´èí‚??ÿÔ½JfÜ(Ž@ ÿ4.jJþûÞ€º¤ÐŒVYõ«ÌpÕàOU÷A·Þ<÷m£8>öAtFg©~96Û𯿒ä_]³‚ýŽYF±:‡]ˆŒ‚t”ãIm$:Í–Ë&ˆ“ñï0öXÛÊbê¡ICʱIÍhaô±íŸKmòÇè„«~ýŒ¿ð+ëWòåýL¿ØÙvsHi¤G²U“ —ü½n7‰$ ݸ·Ìó{?]ÑÄÿ]–f†‘«O—Ú²Fq:¿T<=+Õõëª{@WÈ+¹èÚá¬èRQä8‚pMvކºVd•:ºïnÀΕ\u@êŒ1”’L¼£®c–UÖ×¹÷ ²®uW9WGì}úýRÓò­Qëñm (*+½/«“%[·ÀI¡Ri€x=HW+­'gÝIWI¨À(CY˜USiL€B,iLPÈgM×r6v$_{ÛqÿÎÞØ>ê³ig¸±2Џ£YÑèS6ZJ¯XÇGQÙ6Cï”5õΣ7mؽ„‹ëÌð;êq7È…:Œ•y_xY—æze]λ†¼w•Mþ£ñqFO«HeË/gßóJÓæâ`E¶ {`³¬ÍÊ%9iéÜð€-OäPy×!ÌôÂòÆh(‘?T(›úiÉëлЖ&¯ irÑq;ãlc¦‰0 R’x°^r½ü¶"\^jݧ­µÚôþуa>7øm·2‹:¤Øó8I»Çþj|t×mÛñ_ÏæDÔÝ\-à>êcGL†X1)åd$;J v\K›ׯ¼‰~ÀM8(¶Ók pAóÙëò"ÜOzήßræôM1¾¤—ö²Âh)Éù_¯ÖåͺG×Myع'yBþ<¯ÿß›•Õ”ÿß<þÛ3=¼¿|ÿ¿œ¼Á1KÛ uÇU«Tþ~6 Ô(‡À©<&?>§ùó{ó1 •k#{ñm›0sUfN‘Þgp×ÃE±œõö§:ë>㬰rÊc´‰xè}žÖéñLðª νöþ`Û6ë#'·C1NX´­ÃÊÀ#¯ÀtRáH2Ò¦•XˆÞ¯TI¹·Ç<¬h5´_ö~Û½#ïJŽý´;`©·Ê c¡! ÿ¾ÏØi#zéq§¼³`ÿÜiS«Ñ¹fûg-¾D¤Îlz°ü–r¸gMw¨ÙæuÎÐê:6 £pw "®€¤«*o¬i³ÑSy¶p{OïSŠ…ñÐ4»-3ác¬s,ñ!GRN‘—*›Ùm;<ûÚòÒŽ¨FÎמe½A:Z‰º%]Diûø½9×ç‚Þ&£n¯|¡YÞ^œâ '  3pOfÝEê)hK™wžÎ»C©€ŸÆ•g=´ÔŽKÑdË í™ÕÑÍð˜4Ñiè¯ç¾ÕŒÝmð%µ§S€²etÇ®“€íšáøÂDA£fÃóóTLч§=BíǘrŠ9½™ÈÑ+¿cÄ[ÀéIž\”ŒûÃ[´#$1ðÅ Åd§í"!o› øÎáK6{IÇs¢ÿëZw\ü>^hÛˆ{5ÛH~/ìfÃ饖ÙAHëO¾,¨™ØN¬\žn˜@ € Êàe«¤½PÌÁu^ƒÁD… :¶l øèø¤öšëIÀFUE!ˆé3§ö¬Ð³Œú§Ãë;ÛÎVµÜ²¤ùØÆ_…fx²+­äTÿXåÏ{rUÝ£«a‰+ÈŒâ>Aï(9Oˆk"ò„gÉmoìøuæš®{q2{¾oØ¢ïF‘¼JÑIþLÿ˜gJnSd;3JU<ô@©.ˆ‚GÊgáÂ~V„!NŽ€r9ìÛ{á/áž$öåRÆjÉ]—»}vúÒ6!ÜT Î×@u™™rÈ«³szÞE¬Bòú®?Š{#_ }þXM˜‰­««³‰IˆNý/›ìnRÈ«¼Ý¶‡¡ÝÔ€B(–y½l]âºÛK•·Íxí·­à$žNx.ËsH1«¡u)·…=(¥Ãètÿ£YýEǨü¨Ûˆñ`åñëJRD"±/2RTGÐŽ…µ¶R'†Éüe·ΘÐsÔ(ú0oKŒÇŸí«uv&¯j]&½‘0¡µY@b/ v…³ò<Ìfô·}nï²™eÈ”3¯éd8üKnKþè¨=€=¯éÀ©–¾Ÿ{× „78Ì_ܵëI¼³rFâÝ¥ôÙ”,›3i|†O›²R0B/V#Ÿžå•õ®PâoüŽ_ŵo*È/U¡áëøõ1Ñ¿Œœ«¶àÿÀ+Â_þº_ÛUé8VÙ'³V0uÔ~»$0².ü¿vöv²<ÍrF´]¯aXÙh¿ÈÝÖ7Iµ¹¤]œ‘o©’_>c|³Fø•pëízm'èw½µw¥[Ý©Õ÷ùW`^å+Ëñ±uœä£zÌÉî»öi}Ð^ùuù„¥êÆ™Ž]èä«Ycù#0–jÞÁTôää÷Ç÷‰ŸKvpÉ È_”%¼YÑeö±T³Â­æ[›{&¢{aÏÜ52œK[àæt|—ÀÌš”þÕøÿä–ܦÄ(ü[räjH)‘Ⱦ íà†ôd/°­”e-2Vn ø{Ù'²wlµ3ï8â)tXį¶'‰dÝœ)Ž‹¹<;ÔŽô0WáSC6žæË’µnùóÆ*[‘ŽÑcµhaÞgUâ8]"¶a9Rm93q`ê»R°µ(Ý)ìå{½¸š­§7øcUêsªÀË@tÀºº¤ÍBº‡ 5¼ñdØOFÝÁ©µ¹€4“ehDÓC’­Ôëuá÷ÛrõM ×ã^8XÐïህ÷Ä ¡l‘° ã)a³‹¾5ì+Jc8¢k2W”>j€)ðê Y°È±o,yE¼/›)——;M®'lÊŽ.ºÜõþC]¸b ;©µ£²;Ýüú²O*x¸8r˜ §ê“Žm7* ‡ŒMïe¡<×¶œ­¡w¸X,~Šh»iBF ªZ©¸W‘X_Ú­ Û\¨-( S·R‘媪7õC^*ßPÖÄh@ˆ‰ õ§L€RG€·ø7­^t¥.Î;í3χ7T ÕÆRÊÃRji-Õï˜Kò… ^rÊ[ ³Z‡dvŠÑÂÆ15ìÒˆLÇñÆ¥ÊÉúØ0`®­AU10X:ÄÐÐ'@i-žÆF()©š¶ùÀsò¿žop¸h‹CÚyôŒ4Þ“ÿ6Sð£ÒPà¸N:lW͹åŒj y'à´œ«ŒŸnm¦T|M” RrÅ7v=Íݼ^‰Æ[•-bs^\ì-É™r®X…fîL ‚5 SÕOý2ÁkÅçÃ?ÓWJ§…dž92œþÛ|ޤm¯Lù³EÏáyßCEÌ¿F“BïÖž`¾&¢³ ´X9­hd5¸!â+š§Ï¸„3Ûø¼Ù¨€2]ÛÇÖZ³\´âΩÜöÅUdÖ¨X/¶síy­S±¯þ–8VäÝéG¾ "õo%@£m¨¦©–Â,a‹Ú¤Àë#ŒlÅvÑèºZjSŠ˜òP9U^aÀó&JG­HË8©C]HïêR±7-5š2z(IVzŸ«2P‚5…° ªLvÕìL¯ ßP1l*Y¤â‹ê'q98ÆPŸà©¡ör4h)}4¥Úv‚ëøþm%½øÔLhÛŶà‘l`döð/öYúg@ü°(•gdw{šÑ fO-=)ìÀ ±š)Érdh Xty²¬ð±*°BB”ºM7-`í`¨lôÚäu1äl³í¸/ãyIkx ?eæ8ìQ§§yöúÁÛ܃7¨XØÚ7»Ø {«VĶ}ûu\‚ÙwO„ûË/•J`}"ÖDåçÐy+­ à„¡Vd3QI›)®‡»üÞ­š ’Љð[Þ6®Û7ºBY#Ô—àM_$ÃV$hd=[,ÛŽ^oÂ×òß·øc~ßâ·{÷?zƒg½ÿQyýrõ•ÿãåüþÇó<¼ß½ûh‘h¡*F³q@¢M¤@›t‘^¬á·5}9Ê£æp•òdf\ÛèÞ|ëõ{¤‘ù1/pìì}hÔc› J³+i»¡ ϼ&¡×ÔçrÊ„hƒJ– Ünø0£E¯|„.äˆy¼VàÓ ŠÍœ¾|š5úq£‰6~dµpIÑ›$#¥£¦H§͘Â: e¨@‹CÃFÜC]Þ–rï3G FEJ?ù&cn"r `‘I ']Þ6s\-àåÆíG.½ëV°|Ð:ÜXou:až5òxÞ×@X6ü™ªK„U¹» H‰Ë”ÃèøF:¾ôâSd YUÜË î}Ä9÷#4”½k ›^[S\(7]JêÇ_TE¡VžáNqGÜ\æ–ÒÑ ?G§àwa!&´½ Œ;²ï.;èn7`ûàö”ÕCé¥åP>9CÉw£Â¨ñ±ï+„ÓØ;œÝÁ”g]WGt³ÛƒÄ($©ý¾þ¬ÐEf@ד„.Cù#!·üO®ÇœVÅ[)‘E•¬¬èöe7ciߥ2•"zcv+˜ÈU÷ðýæ,¡+æ[åâ2qœ™%«Y‘–ˆÂ·ÒÝ"­M÷¯dò:ÿùözÿs÷¹Zkjµò'_+©‡ðù°zm™[ Ää D`Ìéc‹Õñ¸²‡—qAÔ¤Âûª{z ç{ù,¹Ng¸R:;†£Wvj·!ØFò“áÑÑÈŽwdU¹î}•pQÈÃ4ïc£Swæä}*©°]}Œ®Å®GÚì.in z¤¥NK?8Ø?`Ó Õ4™È9ÊdzHÂå¾·»»¨m46e™ wšq@[Z‘Åå÷r%‹]!mzF»ÒÍ­@ŽnØ4ÿ+Å kõMhºî´ÜÜk‘sÓA«ÖTšáˆcÛEP;h—´ .¥­½ÏÀ-6[»€¸À[îí`¾ Ìñ Œ!ðÅOØkõuä³7 Ï­’àšálè³¹¿Oq;®µ±ãõc|5c©vjë¬ÄðÇÒ=Îi¯¤êeÌ#¯›Ü±tŒƒZíÇòtãôëÝÚéöñxÓnn¡ÖCþŒÐ|%W;¨#ÖÎi’ê-HeÇž”^Xþ†Ž9ü+ŽÞü<›»ž½ŽQZݧÕÓöûEÇñäzÒ¥+ÄxbŸÓ= ÇŒ¯ydî†6ÚÈÊJ–¬4ØÜë;IC^pù’w—À,ŠS&<ÊŠÜèbQ `N\0̨¸)Êâs±! ÊóD± Õ2(®Ö sXªEG-[ ie``[){f’T¾nªÏX¢ñø€ [Vù&‚Eª¡Œ×è„ÇLaÚjeIþäØ=cÎ[ð|R¾Md|³ ã™±‘ü&¶hb‹,N×DQQM”‚\—>u¬ÆC®à,8 a5¤ˆ/ɺA—?&)+¦Á´s{‘˜Ñq¯} ×‘¼+Ì Š ¹ 263/øÙÓó1x{ ëCûµv I6;–83ó’¼O™&025Øoá`YþºÑ0†À¢ÏT40zàéew@AÿoYùžô{W½d2Üòʘv[ý•¨¿¨z’ùoÙÁnK™ },ãG¦P_“sß Z&­·²¬Ú"6©¢*¨"/WÌû QÖGiù«–v‘蘈ë¥!ƒ^3ì»ÊÅ…›?¹×ìÇ^ ä¬åuÚAOà £¬~ŒŸ[ÆšˆÄÕ7„ùšMÇ^­85ƒ€a+®íï¬*AÙä;†aPê÷ ˆ¶S ²yðûBsÁ˜J¼E>Üyò­ÿ'ƒ†Y-™è¬r8[†Î—+™[_ÎÖßʹõ•c医KZù6Ó>¨6¶»ÿMƱ(×ÇìþÐôu?êíCvÿ›gÝý ™i»ßÀoÚîß*ÙpÿÝÿÇÔ5ˆÓ·Ôîÿãv,Ï­%»´Æw?¿ÏÚýuk÷»L˃’Bh ¡5$?ÅÙL…q<,~ƒwcdxŠ_™ùMë“mD‚‡ J¾NÙºM®Ÿ"­ù&0a˜ƒlÊ QA,¢¶uAе%˜Ìp€AdJZàmûϧ˜íGŠ«*;ç†HЀêhÁÉÆ7çç½Ó 8ÀiL.•´€j@¤Ÿ_#\ ÊA.€Š-ØXf ¡Hƒô@ú VWìqÕ/‡¨BWÝáv.sû:Ù…u;|2ºÝ‹nÏõ¨lIâDJ³Àó¹„kˆŸ 6ò韭äÆÕ({Ý’¤ KŠÐø„® €ˆ2À£óµlqÄ‹8`¼ïöú7£DÛmmõãÿ(eUúrß©TÍšË3AQÄŽõ­gQ}¾žïÖÈÃLÆðñÓ] Í¿ýf.ûÿøîyíÿ••׫)ûåÕÜþÿ$Õ®ý¿}T5¢ðuT>VðÐO¬8«·á—v³òÚñ I=Qš–š£™5LtkwûÈÍõK$ÍȬT-ŸÜ•«©ì½²§‚à‹ÿ(Ðè”:îz4Ä„IgÎAhÙ^utBåß8f3&ýeÚxxe«áì«ì0g¥§s­˜²‰îÉØþ‰ ÛÄÆ‘Œ¨AöT©e}ãËÝGF>ºpOcÔíЂ…djLÈ‚8gr ´N— _tƒ&þ¯ÀšŒÔMü÷Å2üXCK”¯Ëêõ;ø g.àÔü_nB¾SMý¯À×ðZ ½ÆêŒÿîbP“˜7ݘ¬¹Q拲xá=h'sßÚl V3TŪN¿v3$sO]à½Q?Ç=þQâµDG´O) W1½fk5{¬k©Á´%<Û6/±újxvÓ¿ëÖ¢ñž²[Sèï6Çä$WsÊÐÌ-\eXwë(ÈÞvÇÌüÛ±3»ÂP½ 3©l1ç=(‡K‚º†t¢H»åÐl|d\›«¤;À#¯ôíŽÀýŽß kñí†ähO‡7}í TåhÈ/ ™×–F”…–¥\#ûZ×Yà¬'¾FŒ&Ýh` éjõZ[#6kýxc0vc£Ö/v)Êx ÝHyX‚ªEoL¾µaCéšÓ›‡¿¡uÌòÀÌA2ˆï˜ayá]fdâ2zCô_¦¦¥{È¢îö—¸V´}ô»iEŸ' ÿýZ}VýïÊ«Õê›TþŸÊ›¹þ÷9IW\ýï§jPÿûë}C~•튙\õðlzàOÕ™ôÀ›Éè ܼ¼ÿ×( IË÷¿æw88¶>ÖI£ö¿š=¥>-ͬÊEV‡ËcCaÍVHý[@(dZ Ó§­½è錞@”—´0<=jùqº kô‹”"i-®§Ä\QA­N_ÓEUnŽëbry2µ™¤Ì¬”*Ž&3¥,uu¹y¬šU¨ÿÓáàŸ7è^"»(TÝ~­Vb#¨çAÕAÆ”¤†6MØk7ºÊÚû5±W8šÀÌ–%òdk±_•ÊAÑÏEN´VºZ?ñþf„w©Äz2éöú.Úx(7¼ ÁM¨8OnÅMÿz,Nº#JÎ`$S%˜J(^uïP5Ûèì¤PWÝñC5¢‹v_E@Ò1›ÏP‹ˆ^M€ ¥—AFÿ‡¸„‰a~œQrÚã;I2<Ãé¤OÇÄÍXÖ Oú}2ºœR€‡î¨7¹¼JP‚¿%íñ ÇäÛAê%’nh@ºO©¨ñž*ÆÖb*¹ ¥ÖûiO…±²?Qªm”>ztÑ…¹ó.­$ Ù+ü£B`‘>Ô·‡ ÆewtEr”ºØ¼Ai‰áí  }Í“3%¤éa}1&¼tm)¹ÿ†Šâ‡hP•Ì•óŠõìᘉ x,}«¼_BØl*WÙn¥çgGGèÊ”øŽ»§6í<%–#Mê,ÃÈKòý ʬê”ÔJ처F¢fy÷sQ-U\FE@ÏeÔÙŸ´üwQ=}^ùïå›—+(ÿ­¼ª¼~õfõËóøÏòÈ}æÈªõ‚Ø%'Ï:yŸ6}À¿áû­½ƒ½ƒ£ýlQ°òøÂ`íæo«ƒ(øÆ:´òÈ„±:ôlwÉa7Õh4܆ñ®WV óÊÙ1rF×0­ªûévHqÏ¢`¤Z);ÙEQ® ]'Ú[÷«âÔòLcJ|‚Ú2·¤ãì*Œ¶’®=+8™vh6\Bfwy·2m^íÚ? °ãËõþGÖ“¤pð00 U0À q”ñP„‡ü0€´"íHîb`Ù-1ºr¹}¬Â¹)ûœö§aRà˜ké1´AS-š”t„kÇ(¦’`åE ƒ7(žÌ”_&ãî=Ò¢G`Ö­{àYBD ±Ö†` ž6ÅÛ‹òý=ćûo«€þ{ –L–ãf²\… ÍæëËRdŽezÏ©M¸Î’©ªóá`yJ¾¥>c?éJ¦£H¼\usÁû¯‡¬ºQi7’Ú5ëÚX-û®v:†¾H/Bé+¢‚œÇ3 Bþü¼öŸêjõÍë”ý§Z™óÿÏñHTuùÿ6Èì‡ûû-`a¯×@0¯­–Ä|^ƒÏk«(¨¢.ó?Eo€aËÍOXä#þøŽÿ2ñs„ ¦ µ*'OàHeðÿU.€I@7ƒ$ж NR ï$~DŽ·h‹Ü–=¸Äºœ+å\Èbž)î}¸P¬1‡-|*ZáŠEú¡ ¾‘Ád1}¢«§€ïk«Ð4ƒ ßd)˜çÓBqÚý„­U&3v´è«à%5œærsï`y¦¹b§fߦ  cÍue–¹ÎÖ@f-ØÑ-‡5㺇Ô>€ƒ\°‹nÅYo>ÉŸ0¦pÑô¡l‡‹ÜÀbêͧEª¯½È>ZÍ~T~´§bUþ¸ÈÅdíãq–€,˜Œ=kÖdÔn­ð˜Ó²ŸŒA¡òÁc!t÷‘‘k¯‘艠ý~Ò_»ÃQ‚ljI*ܱÖ¹»÷j*K³v•¤z=d  ½ÎÝZËêÞ‹ue÷ =°“áäÒtû1Ô“oh[s‡'ÃÑÜʺ؎Nù=6·&B цC™!–CzpP<šÅt ™·R®€•o§„Ã<‹îà“q{B‹`9¥Büfh‰±àjU·ŒkÔ«­NoA=F˜æ3”Æ ߤ 4´q$}}‚áQ ù,Zòñµ3[ËœÙÚ½fÆCþqg¶¦mwL´¦Xb½Bñ[6gɸ‡ù¼³ñ›8ÔÝ}ÊÓݧv÷Iw÷1OwØÝÇïüOg©•E¦Ù—œ\´K5ôÕ`ûÖ*þ§JÿTù[¿}Z«ÈàÇ8+ ¨üC–*º Û¢Hu)»>¶“$3fՊݳ¢s2p]q’Å~ZòžgÂñþ®ak•âšÂZ-®YꌩW«ÂO¢L¥-ïû÷kö% û†â‹ô}I—s«s8Øn_ýpr§¨¡iDë“eð;°së+>9ueWãýš‰Œãl1*Ž÷*Þ¯9#Fåé§u<i\URÕ^›º#à]Á¼‚¼ÂZÍ×è_¤5H>8_VA´Äг>èô¾#¨î"-É:ý[ÆTwQ.Õ»TÊPß–NŸHÊÖ %#REdŽ(5oW×nôÞ¥WÿŽÔÅ©·-çmËÜÉÓ*uʾÂü69Ú®oÄi ÈF¯P¤*9M¤*`ùÿþg¡øŸÚèí>á—µÿøÑ—ˆ@£‹~{§X«ø¯ªêMÓ}áø¼ê5AT ¶ÌçWUõF7ÑÂ-ã6Q“} ™î ®¨ # }DÙÓm@ödÖA6°æ4ÐR  Lé-ݱ›uoج¦Ž‹KÜ+Mg1ÃÅBK>K‰ù(Hx.–´# ÍmÑh˜2=xZhtöl9RÙ¼)·}Ï‘ÊI›‘ò¼½¬¨æ—$1yÀ8yÆ6y”q2n¼˜X¦–Õljé̶b¦û§ù]Ð N+}ŠÈ´HŸOD™T"At‹RÅ]JéöèÎ AÈWÞGZÉ-ÞOªKAh¡UWªkÖí¹¡3d´óBõ,AÓ/¿¯?ª ´rA¨~oA¨~_A(-êØ‚PZLšUz_Py_À"J­"âZÕ/VUÂNœ`Ii­"9…µª_¬ªd®àI_IÔd¢KŸÓ’Hô•«@¦·4§ €ÈI_É€{¾£½ 6ã‘iø_ª¬Ôxš’Ï~hß{rüJõ˜c¼‚¡ó؆†<+ùÏck"O6G^•,yÃ?C,qPòðOßO!>}äAJ—{ÑšJEѤ)A EtH¹‘.RÅ(Âh8@‰B ‡©REKL°©’-U„¨’Ý@*ÙrM”*U2©ÒLòG¥ò …20Tf¥L•ʃÔ/Ê’³_^ºSæ-•)9ÈQ`ô;êÇzó"<Îði“bãCtÇ«¸“ÅÐçÌQý¡=¿æõ¸OÀÿsrõ¼ñŸß¼¬â?Ïý?Ÿå‘Öõÿ<Ø-¨Øÿ뿵 j;û›5LkORÑúaItð’üYÛ8¨e(8OÀOèúÈ÷7%ÏŸLòÜÑ`“EC¦g'Â.`žv¿,šªy½ ÿÝQùC|}:òlÏv1C'êðâ«Ê2‚ÁõhxvsªCB`! ñ5ñöèö¯/»Ða £’‹s’Lð«4›’û";ÓuQ;à+)ðF=¥Æ$´ØRõ4QŸ@P/ ­æa®‡;ÄOÔïCƽGJ"éž^bÃs—£!`3+Ë%QY¦(µe’!ËŽs„XNV ‡Š›akË‹-òÚݵÊñÙ•ÙÎ&Crí2(£È[Dcã YšL§úV?0uSkQ,d·PÇêi—LÅâfp]R:uÑ —9G[æÇÙ¸D÷Î/zËÉ2_IJ]³³›±‚ÊÅ+.à6ùÜæp@Œp «eUÒ-Ÿ$²YY”áŠ/GuÇã›+ƪÉÃYßqAœº\IåÙ. àGÌgXN'4D ¬ú³ô“ê%»íÃGšìªìYtf™ÒHĺTwšì(díÐÎ…òy°}ÊUÀÎ2·$/6¥fÁ“Ãn?'æá–\–µŽwŠ$ºèóå$§D×>@ݨ)Ю-û…é‚'ùC« GŽJoQäÛõø 1ejgO}Ÿó p[‹ø½2)çé´€-n2fÇ=s‡ÌØEÌtY—#÷pvÚ0f% ¦ùuº—™/t>(äJÕ+¶Šßnwoú“Þu°„r)à¾ìÓ¿h]©¸­ÑÏ1}ˆ{oÓpŸúm%’ U¸î^TT.6÷‹°*j|åPèV“À32¾XYo|e'cÜjh”/ƒ£L'p¥ó/ $*˜Dh ±üˆJiJTe ÕvÅŽ§d᤭±ù _*ñœ{œ NçÑ”Ÿ—ñG5KGýäW ifhN,Şܡ®QÍȻڴ:kêÎ0yWYÖ†9{¤ŒÏÅŽj(Ð!§'UYÓ¦&(ôBòÀj`¼ã±5d-ÝÖ¡ùÍJM;sºÓ×!|—…Ô6ô°ö`¬e) ºüº¨»óÔ=|:Ô}ó Ô=|DÔÝ ¢î›YQ÷ÙQ·>ên†Q">î*7çm|D,Ž6<»TÕ«î옭ZQíLéØÙö šjYèþçƒÐÝm#ßhyÀà€34ª¾3[}kGý9㎒™>ƒESi<\†'È¡=„ã)‡9žJK*²÷Ê{n¤›å'cyÊ–gj¹ÎJåþ;©áy¦LŽr„ç©TfEóêò<€· AÄÍUÄOޏ÷fxʆç‘wõAˆäxAާ²:+â¾|BŽ'ЏO%d–ŸŠÛÉjx:j=·S~(·Sž™Û©<@0-?»S~»S~v§2«ì[É’}gÏkóá`wîL’öÿ¸LΟÕÿãÕÊË—•Tü¯×Õ¹ÿÇs<Œþ®ÿÇæ]:ßÙc?†µ’Ø^3¡€ûO%ñ¿}Ž…þy<:pšJ!‹¼½¦c– ™Åg#Ô.À°;0@»À}Ïä£ËhB‚u1äÏ3nrr‚Þ¿»& ºA¢³Ðh …d’*®Ý N/ËÛÿöÞµ«\i>ŸŸ_¡g ¶lr™Éììg™K‚±1ŒmBÂYg½Ëà:16m’Éþõo]$µ¤–ºÛÜB2î½'€Ý*I¥R©T×ÁíÅõ`œXqo⯓9¾sͯ&Ãu´‰!Wƒ™v y£ÓÖ¾E‹SÖƒÜ&Ñ{–k¹àïø9ý¡q× ŽWÐfù&’( Öq!Pƒ†PWð‹EªªÇ6wCïïÝ#|¼"ÚõÚŠÓc{Åì ^töqg ³cóªéÐ27}vÈ–:Àpæ@N„2YöT¾„‰Ž©˜O41-e ã–ôç¥T!¤³…ÜÎžðø Ž»#þõÁ“ËÄ„|º¡ÓãBY¶TJII¡Ëç˜Gjˆ¶«Ó½Ý~÷ݺhbN€}6šœ¯Î'C"‡¾ŠdÒŽ¾F#±)¶ÚÞ*Z’oo†ép>»=S„KS²V{U– AD—¬UQöÔìW2Ø)}©|‘5ÀjH¸µD”"´„ñ`uôVþ†ÞnÿJ΄¡ZåBXUs¬ÞVko`ø¯µ²4fɈ1;[Õ©5!ú°ìt2Ò²g¤yX}­*ôïjÖHy‰O$ Ò·ÉôË .ÁQ.C>©t¶VÕÞ;y€½w²Î<{¯hš'Ë¿ùý¿ñ{Yû^þR1(/ú{@lŒ3•ÒX-c)ñA©ý ëwð]a +âìvnìe×M{Ç­îŽê¯FfÎå÷‰ ù-Ïn;ì6*i;åZ—Um·ù~¯_½Ý}­¹õB§üï8·À¿~¾ƒÆÇŠØ‡ÿƒÐ³?ùƒ#¸-Ãÿé?¸¯¶Ž2Z½þ.¾žnc«×@`2Zbû°MÝt1âá ýžQÅm#ávêôf&|X—CVNXD‚ÿ¹$VÔk£)štñtûðèÌlk}ÃÏ÷»üãebÜ~?{'£p„L•¡“‰+‚â Ù©P!uOW‹&fܾgfÆmÂ<NjÆS‘NÍHŸÝɽSUhP|§‰ãŒâÿDÒ±¯-pÆ¢&çW“ éQèþ¢Äx5ÇmÞ²çm™KÒËm‹£þ÷´å¿(mG¬«CùÀg:z'{¤KÇt ·.>‰ŽÇ¼ŒŒ#— 9ÁA‹ç%¾|68ÿòm0Ê›s#j\žX1ð¸V_ÛI ¡K?¢‹þXk'PqY:á#\ÝÂøâl…=·TÕªkœA¤ŸÜÔaôw« Oተ/¦“k¼‘BtC“¥»ZÝ‚t¢@1Nð­ D¥Ig7“ñpÆuG酡ô½µ`®ÄÓµ=t'x#âk‰ª°h ÞÐHqnR‘’har§ÚÙ¡h½ÑÙYÇ›e»¿ŽtA™EZøWÍÉ#¢Ë”=mOn¾Ûs0'uÂÇÕ”(’Ñp´1²ª™d¥k¡†²FJJüë„þ4í^ðE‹¿À¨`Uð¥E-Í÷p¶-5±”i’{GÖV+fÔ 9*üƒyåwõ¸Ê”ó/ÒÁCH M½zR "8ÿ|ŒŒwÓ±Ötæá)l®ÊެŸ¥å`³H »R5•€Ð7 GQ"Í·x4B@°õ†Vz":_miNÅN4Ð4JÅÁH«´Ý”DKušgxï½HEÝH&?ŠÚ˜mð‘ŽPc¼…Yµ˜ÝÐÂ’=^³u“«ñÁ*‰3ke¯oÕAï²D“ZA׎­[ÑÞ•ÆÓ`” #[¦ò¸F~¹9#(œ¿Á[)5Lcà™6jdgøN*Ø@~Í'UËjÓ:J}”ìÊÌ}šBŠÌ}Ó¤ÌFxŽ­©éú& ÏxbRu…IÂá:ÓôÚ“ÂDجŽÈÃdt¸Q2Y„a0<„‘ð<‚h³½jÍGiB˜ÄE¦z·üySV¡Êê¾Uåw­F\Ò9{”*•ˆŒIoÅšfóm|î5!Ò¼ÝÄoÂÆs ØL>83^=÷ó´ Œb aî\” 2Ÿ‘º0¾ŠŒX‰™oEùìÔÊ[¦¿²Á=Y|Ù£ÉJ÷3ñB¼ ë~†˜¹=69(µýŠ,™µTÅÐø2VÎ3r?›[+)öþ›ê=àÄÅÏ]¹Ÿð2@a:øZyÓ™i2n5Êð> ÞyZ`i±âúMfåRhžMº'{ZŸ›‚¬fç&‹÷µ8jŠ˜²e:irQ"µ® RÒåPFŠç;)ZÖäìùÈî‚A¼œ0¤²ã”Ö2n0©+Œ@&ž£C½GtÁMl¨îot–_ËÛ†Giaäc«Ü@t´'ãê­Óeˤ€£4QšAÓ‘#áº*÷†u¬bs‚B\QÝ|4\:²Ž´´ä½V7hVK9¾#ãJfŒ¬Æf‚Ná²éRn‹w0.ßX[Z¶®¿öl/Z:%xpÀcE]:N’VO¡Þ8ÌÕ¬[¹¨ÌÆfÒO™÷µÔIêkÞ‰êè$wÉNŠ¤Ð¢éãÆ±|kSøNsyÔʯ¾q/ác8Ö±„î, â„?Çðc Û¦ß`‡|A _ªó+C»qœnÓÃ*Ûè]ú%¥ç0qœâ£6Ñ…™LŽÊŒ;†Ùi7å­®›†ïáÊ¡å„Ñã…ªEݾïgúžK¶¹Ž3FûHN°¢.\à4h<¹É¨G ÍInùZž«Ž=Ë&ézD@yñã„R6IÎôý»ž%×Dd AÓ“2•~aœx žJÑz"W¦ån>ùRM½$ïì¿%Éu¿T¸CIÞ¸$ý†¯{^îkUÒô¸† V9r*8ð~¦Ÿ'hê¤æÈ{¿BRRõÚ÷~ŸÓÀ«êß®±À07µñÍúZÒGÕì›;¬/ä¼í?ÑŽ)בÿ¨¦u’h°×-ø¶ó®ÿMó=ùVá3¨ù¾ì$Ý žw«q¸4Nyß 3ü.`¢)=¥RKXfÇì¦ÊÈy*@Jd¼X5ßL¾“ëh}›žÈ«î#y`H$v¾±|s¤ÖßÕÂk 6ù˜Uáµ ~uÓÖн'~ˆ¶„¸š)°7ºF cP…u:ã oÞÒ*Û=ÖÈïÔüèdÅlÁ62¦v¶b–ƒ9&@‹¯£€yÄPÿ¦í$zòœaŸŽµ¿a7«k$Ì×èÌ®v¶¬UÛÇ\ÍN‰ý¿«ûåôQ›‰®¹™çÉw£‘é@p`h?†‘ìoù"aá û¶Ð®? l/¿ªigRXß$y¨­lÚß÷Y òÁàh½ü Ð Ó¡dÁŘFçså‹Fi°2×A£ë ®•¾‰;ŠÚbä§2Áu„ÐÑ™ ö­ËÏËàÞ=º“ó8™ú€w ¦Cr1GÏdéE‡n{ãáDY:Mþ˜À1…•ríÍØÄÖ>±y1~0ô1E)O-; ÙïþÞ—6|¼—šU÷m^J í›¹{8x^‘=Á¥ÆÆÄ}2):÷4ûæDûÉð(Y„ЦKÏ•”ºñÁeöûʲDö"ò¿“œ=펫¼‘l{U ¹ÆËµ’È-G<·­ÝÊ+`ì6F3Ý@Iù¶î6ˆjy¶nt]H[w<¶mÝ5¿­;Á …ÊÞáÛIùæè÷°Æ[!Sôû´€ àLÑ9晓b†*Ó0á¡t¾¿ÒQ€Í˶-ÛøÛ„™uº¨2ˬ¦)ºE²ì4'æK¦ ºåAzò'ÆäJcós´5‡ìYÒÖÜ2,&DBa’Y祽ù×·7—ïhnnöÞ–)Hµ´h•w½Tpò%Y^ÈF­­y9z_Åk-+vÙ²¤ç¨%LsdÎÜïÀ³:·­Ì6«¯.ŽtçcvâùÙñÖ]3XbQº ›ËÙÖãlw¿e»ã±lG& ’Ëÿ;²šè¯iF.§­È¹FdÉSl*‹n ’òOeF.KHU[ü‹Š6;ñQµ¥¼cÙú˜²çìÄf7 PK‰®‚gt†‘»|k²Œº+fN6•>»”šyžy\ÁÐfàä?± <¥÷KQ3o;ÏÌÛ›yÛ!3o{q3¯Íé šó¹"~‹Xƒõˆ¤A˜®]Ò l_½|Ì5Ï*,œ –©~¦x7{±´Œ–k6aÌÃdÆ8G6Óz¶å'ùÔ‚=É·=æáržy¸íix©«á=!,ò3‘6— ˆåÊøÞ©Yl½‰a˜é.ß”üHÖa™bÏκ':?÷4ë&väĪ뗴­îÔý„щm¸lØ¢ßß2ìXpýfÞ²eÐJÃ"‡dŠš…˹fáBÌÄmQUŠÈzðžòK˜†Ë…LÃÍñ˜†Ë~Óðkiþ£ˆiØ6ŸB­>š†¿¼Wà¿´i^@Ó0ü¨²™`² ™ýÓ0&c%¦£[™ëc;yFà4bŠ);÷[Ëû[Õý}K”Å=eG)+ð‚&àûÚ€=éž Ú€Ï2 w€ŸíÎÄdž¤º¿Uf+q2öíb·ˆVN«à4 Ë,Y«e‹1{׋ko¾ ‚"Aì¾ÒŠý—Î`ü#ŒÅÕ|cq5×Xü~7^jÞ­öµ¡Øºœ™{&m(öÀ”~:õ‡²·¤öÁ3ù`Vн]«,í¯žÔ“ÿó¦Ošÿsóõ˯Sõ_믖ù?Ÿâ‘{ÌÎÿùW.™N¿_¡§$41Ç@s¯Y{¸£÷((|xšÁ¥áuh|ŠïŸ†r…>ZXóÛÉh2 'b'ð‡Ê'êK‚âi3ÂA2(!0¡¸·'ň‰wOVŠE*ÃK•B”~ž–xéT¢ÂÊ&*œ„¢BHÒ( r{¯· /Z™%Œ(¾„%@Sk·{çW·SÌØòîdsT© –n6È ü* £¥±øϯdB< ‰1,॑D2öä–‚%¡©œ{ÍdúVúH‘Ê ©VG$yŸäšRØ[±Þïﮋ7œjìv4’³$ £Ï™=ÿç6iüO§á»\ŸÖßp¢2 UT±–­[£9]h4I ]Wì‰Ó"£²›à8¹;¬{$¤ÜsRâqÞÎ8XÀ¼ÎšvåJ¼*í™6‡T"Ä8;tY®½é¨¬€®„›þÃp¼(ÝŽG@4ö·‚ê=&pä>¢ÄcâfÃÑÃz¢dNš¨™ý`^.®$v4ýSD§>rY‡,lª¬W.éü4‡}œÊŸšqÐ mrªÈb!rê0fj@ÚEÈT  šŠÌ¹Ê[ñèal¥O”Læ”ÉAÅàüüö؃#œà–·s'â¶:{¢´Dÿ™†ˆ9‡%69MéÄ„c§Æ>Åãæô ‰™’Ù'Œ5}ÅwN½éhõ~?5Ð~×ý~ºN€¼û½HJK r‘“Õý‹íÄ–qE¨ƒxĵ©•‡6žuÎÖÕKãg@ø}މØ/0V(žGS^$<-H&¬$!¾ŠÙš'IÍ`~…ùÖÍÁðî»×&šI1ú¡“»Ö B#ŽMþ3I3ÿ0QEÍ:.ÿíf©K‡ýJkbº%ÍÎu_k¿5™Þ^^ñô$Ì‹X¬wòؤ!бy|™¢ƒD— £´¶ª~‹9 ÑßêÚ1øñZ‰i~㇠ç•×­Éf{™¤W]ÇWúj¾ö øD®1pM²«)æC;`¦\ƒùÃ¥1oÞžŠ`ñ´ÍÇÅÕé*â0ÝSÀn¹¢ÑLS ûVÍ×´4.Ó!Éñ’ºtwDë‰-äÝí”rÁËÔ×îýѹEnÔ«¼[ ²‘lw=‚œw.O}ÃÝ|‡ð/œu=À_<zÆÞœM€)MPB>î54àZ½ºñB&·‹EïÅÖ÷h:c j[æßqZ-8”3 S0‰¡(&Sfh0b¥‘úRä»,"Õ9‰îfCI|ÿ*ÁÕèm‘ÓÉ¿ƒKLx>hq’)yG£tªþ’ÍKõU1Nnæ2aû™EÓ¯’mWÈTþèÇ@Ý H0vs“ä¼!X8 “ ©^µ?þxmN–tا"ê'žwÞܽôPùff~áEr—0¹ðs 72 +FVb£AVNâ.¤K¦˜½Fû]Ö€ºI6eßÕÙ”ñ/lLß½ndõ¸Óèײ:Áï4ößÄ žƒG›HxìËæ¼s|ÄŒÂðOþE*êmÃøEþ_õwŽ`÷d ÷´úXŸÂ“k ñd«"¶àçÖv‡˜Á,Æ]÷ïÐ 4Ü ¾@ùxÚ_3%C×ýŒô¸}”AÑD·|x¹ÙïqŽgT*ì£6³UíŠx¸›t|úIÆ(i)³ú¡$ê¼»á”̾mÐnì4?dÐJ»q°½§ :žÊÔ¾¢ÞËOѤÌi«±SÑÉ™Ûî»÷˜†9QÍ=FnäšÎ93 3î7³üÌMƬ>ö®Ã¢ù˜ÿºÏ¿(G¸/ÜLf³øl”1èZ˜V “4 &¯€¬‰/áíÀµ½žÐ·‚¯çZão;-hŽW  âîTS”NUzæÙ}¡)@H e€U±™ÀßCÛw]‰´£Äè»M÷;ç¢Õ$Û»8ÉjÝÄNKÚ4ð ǘ\o§ÒÅt5ÀËv¬u×ð1+ì‘¥j£û¬15>ØÃ:™ƒ–¿Ülº¯Ãhm”kdÖ¹î&®å>HޔÒ”¸Gµ.eqM4‡w­ :‘<„Å'X¬ïGÓh’Ì6ȯø#_U’à_'ñ•À Ëëë{Î&ðÏåt0Äj`Žš›Ín‡CÔ&hi ¤XÜF{¥f†¼ºj⚟޶¤Q5©ßÔö´fšn£œ álD»·Þ4aÈ}+]ȇ–«J5Añ(•MØe`/£ù$ѱÔ$D „a5|8â® ­äsÅQ„yòƒá ê¥ŠJ˜T·h`“F¿ü„ë¦_ ÛÙcÂ…ý-©S}q*¤ª¬ÊZ´²Sî׃ó+8–ªÃè&’“n [€Ab:{ȱPœˆÃ çdiךÁ’XOvË̓ãƒ=;à½.{¿r»ÿ2ÐÃg_)‘?¸…’‡Ù‹>ÖŒ.H`—š:/9H} ¹u5eDL]»1ÇpO:O4 q0•— Êf—xÇ«Ã>Oá©ôr¤¶Ô¨§èº4gg`mLņÕâñ­ Ãã –x>3#9D6ýç%:cg=ò é¿ô2AŽ€?£ZÍæZˆwþ€Uú½Ïc`û@‚5À3›jr°Ý)ä,àȘÃü,:`d˜Ñ:Ϻh ÓÈ@I2ñ¶u ªªìýJVyw54>íÉä ñ˜ÕôAä^£ÒÕÓsÒ‡PÙÐ)˜x›âªíõ‰XNލ–ʶŠbŠd)Í+ `‚KO`ºg%CùÓî#uZá0‚F/ì‡<¦«uôjsˆÂþ[6%ád@u).פt¶(håïVlÃøÈ#ÈæÇR¶¤–7-À]`ļ!Q½ o#òçwT5‰F& †U4¨=b’ÏQ§5rG×Ì‹ JYì3â“âk¬¾Fl¯™ο+CÊþ`«ÙºHKJNø«E{L}p ­!²ý¤ÐØRÃ>ꭤѿê[ å{}(†,Ã+!ù¶IÕhåé–¤Ù²˜ R·o{l5ÖpÍP$á¢)Kå‡o¸‚Ðl ›5¸ÿÏË@¹íEÊ÷eÀ³·m‡WSµT†óuÑ å?«Wmté~)åì@N ÕÎäƒWàÿ@Á F‡ ž)Ÿ–ãÖã÷Õ}aùêv@Òòù³¬S«†OÂJÉVº’£ÛSgETOVKul!³f¶Þ9ì¯ûe.!Å®¶ýJ^MÎ-°p\Rà̆¥wÿ>n¤&v_Ø'£`jGæšÍ†ÚÈËÛž ‚Ì¿›CR‡›;ÅSýÇ”\ñÂcâ;=&§û“xôÕÉxeæï¾ŸÜ^ŽŽ±#*–…ß#?A5ÍêZòYàr›ÈÇž#¿—ºó ûÁ{*¬×ŒŽ‰‘õ=ìËÈpñÑÏݘcUŒ·Òï}©ʉá+Ä·ÖÖêeœ‚úÃ/@ô¨ÞBÖ|䋼²û#Æ’ÒŸŸÄjYêEô7ûµ|íòaÝ!¼úÉíÑ<+x¥û˜.sU³0· ζü)$øûÄÓù· Ë1ç·~1F[î]1õÕ†Àû(^Ëk¦¨jp’V ¹RtqS<¦© –«Dàp%°$ªßXØŸdEȸçh‡ûF5²¯_" ¹ƒÊ¥£5`øäy~ö(è 8XÜ£øWüùËAÙU‰ ½_ $¦}§iMG+iY;`i¥ï^*¾6髇tæé ÿu¿á۹߰ÒrÏ ºÝælŽÆíáZÄ×W×’A+)0µ JöL×Ì¿a©?êu%p¤ èˆDÎ1©—Óe÷z-ù¬°×2´Î*&ÇLòJÑ% ®_`ñ+ç.[8YaÏÞR¤¨pCë|Ñ<¨ð&vvn_ë‰l8›†jkã]h w›ˆMï-0$f‘ùG‹´{•®–Ã"&…¯Æ—Ws”~öì›Ïüêv&PCLc€éKÈ›ôìvtINé ¦8—ëAúø~ýÏ-%xÒÓ ÎÄñ6ƒïÈ¡ÑõF&U†ô˜+Ô¾ªÓ(_è[ÛIêüŠÔJ¤¡  LÆ-tˆù4MÝ…r$#΂¢…;w¦Ð5€¹¿¡¹‘Œ gÑ…ù9yM´‡x…~oÁÅ\:ÄÒûý:ìa8jk]ŸMºËVuV|*ÂLžQ¯˜×7JñÁ“$PÆÃ`© oŽŠÜ ÔªïÓW«xuóÚøV‚ô½S6’­Û÷ á=©?Ôœ+oôëš— ë©€ál‰ï@rzÃО˜OAÝrHMttöq™D^R6ŸfÝ]#¡š³S2i™•êñºÆ¨Ú'æÖ¯¯)¬ìû¦ÌjÉïUÂmò²ú‹^ a‹ßs"{SHÓüÃÆš‘YÇõÃs”¯MÒª3(a~òuÑ÷‡´;Ö*|½§D®ø­Q «½§A(ª¬è,Éï!(Ì¿j ?HJüÃJžaá ä)ihïÞ”I@2?凛Îú ÚY‹zʱ`Q[ãìÔÆÙigðœh;ÍF[ò¶ÄÜiæ’ðrá“9DVB$¼ZÈpádGí v›¼§åY-¾¡ê…dÌ6+%_ño?”.$wD¦ b2ºü‘nPúFÃ:º@fç@¦¬<7¬ªgÿaÓ¦­Dméÿšrö 𠳎à<1 m¥ȯ釴ªÒï¾­¢åê·æ_zýüí(!l¹Njc¯Ò˜@եį@«¿×¨¸¥3 Sä>Þœhàž)_ž ”²ï?–ɵ^ÝWVÌöUÆ3×Tìm¿_m¶ZÆ›œU–yÿž–á}Ëé¯sšîMÛ†÷ó‹[ñ“ÿòl~!óÈ‘eìçt~S‡hív/à`A‡ê%A [)&ŒŠLåJW‚ m ÛÙ ›¢T{k¥¿Ohϳ1’kúIF:äù)4‰æ4Í6kù^^séŠ!fxˆ åˆ “^j­ß â­ôD›VIXÐNÿIê3$Bv ¯OÐ骈ә””h-ÞÐý Q“^:±óêÎÐëJû\±H¢'iü)Ø,=޾%¾ÜMÛêÛ6òa5ÔÚuÝmÎ"ÚÿÒˆ¾Y$<ù¦õ'ÍÿP{½ù¢ææج½\æxЇIÔÉÿЭ—0ãæ„Úªˆ†ÌèÒo“£s{þù„??=a6‡GÌÙÐ’¤‰Á¬T*,-»@ö…F‰RÒ…~‰cÕ%Bd‰ ‹ŸJr$[©< F’+WŽ|Ï¥Ò…õZFÞ0ʸŠf´Qô·6 ||$ÆÕ­OÕÒ¸ÊyìôM±¡ýdtP[¢¢|‘¦ú­t¨©ZG…B¡qz ãµp}†+)nÇñ‰d_ǰP~b_µÂ_+€½ü÷ÕÅ<~–ÜÄpº¬oëKW.­é"8…;Y7¥Úk2%eà‡µþÚ‡V ‘–ǸݡÑ{ÿÿõ%îu8LvŒÓ÷»{ÝÙÆÊ*áŽÜ#UBC‚oqq.hÊP¯ÎºØõ¯® À\hyN‘»ù"íÑ ŠhÁ„ÑÿÒq¾Ð¬È˜ÓÉž¸D‰ìFá×B@шáF…2Úf¤cÊV¹-ô^1o·£ÔdûÑÁäc&«3`Rþ=cݱŠRß`Ìá*«½ê¬vŒÌ®W:Ê‘ÿi±Ð’W _>b€tL£*˜ ¢ä­f¹™NÒp4²WÚ2jÎxkOÈÏÎ =µôW·cY“˜{¹w’0ÑXºÊ‰bn¬3¤t3LœáËY°•JZ0ãs‰s–é% Ƙ§ Çžr_QAºïW<ÃJe½ËÙ×xí?^ûë éßXF\Bþ´àð?ù†O;u|¦·õ§õ§uôï$K'ØÓØ7÷]™åŽAUžHÆÞ€Ñ{© f¡ëp¢=4K¬ÓÿöJã3EšdõÙÃLxi"^g©qá¢xæÍ·p¢}ÅÿdÊQ’ÅÏ¥¿ËL¬|8~µ¿’F.ä àk©ö&.‘Ùo*ð7ü…¿×þäß±’]öd¢ õ+9`C½R‰W¥% Ç2&II§¼è[ÌõÂ0¶Í`xóÉ%•©Z.Y·E烔èê шø[Ÿz™ sä¾]äb‰LCˆ`nÇŠ³ÞXMì¦"kÌ TÆí€Þð¡õæ­(%"È*,G©~Â?Œ›Ibox,Ä£\^¦* ÅÜrܔ޴ºtã…Åx]_0,’æ (y+êo4”`u…óß꽿»‚¯ß}­e÷µ¾Àw @øÃœ¸$¤)§g‰þÉ4¾Œàoϯ’×IöUQÎNË`"¹=b£W„ã4—û…£ä`yöL²B¼ˆGï°Ùˆ,;fì6å\§ëÜÓ7Vf,éS¥Áx rÀ Æ‚“·.û»ò_ñš@´ñ×m Œe<¨Nç1 øÃÍÁâ}ô9)°£ÓÓ‰$c·è`o·*õ7ÀwE^\àc+”¼„è”5’5’å•PŠÇër¦*b“c>’³Áù²#w™ ‹>-àHr—}œˆíôUnáHë2GNÃO¼ïe)zpk«Õ"áʾ(Þàdv›À Ǹž6>Rl« qÅäÀüã¼nçáY[±ð£ß¥ÖðC¶~ÿÁ3ÆEã[12É7Ó`©ýn£Ó;:ìí®ÈºÉÔºJáþŸpœ•Ú*ëM‚Kžî”öSR¹Ã«Á.:xŸ©œNV¼¸¯ZøÜŽg g%òõ€ƒôlUÛÔ-(è”P1+ÅÚ±c}à(Úéf€þ$VÛ6ܳ¡sÜÖp™9SŸgôÑTâ«Z1ÐïÍ@‚|³ÎGgi§ >ú 7Lõ2†y™¹ØQ¢wßGñãC ‘sVóÒŒ,C¨±®‰´Y5¥Ëò¯ne ž6³„'e¬äáÇf%ƒ?Z½gæg¥3.Ï”¿‰2`teí¬î´$zÿp±"…ªÒ°‚CIèºYdÐêM…\j^`&ý•µoÞ9HÜ£À’ûÎa§ZÿRã|){¬gTøà ‹|¨Fd5º™Ýä0˜…‰¤b¯V30‡Í½&?Ô²±®)Þ™LpLjà$³gg1Ïü-ˆtÉÄ3ñçµg•pZegÝõ…=h4½'ý˜,>à»É¢ÉJº Æãø*F5wÍäÀs¦"=â4AXËÕ()ç$ú®ƒŸ53 Š’ú½iû·îâQmÀM¾1>dosÖÛ2ÍŸƒágœ¤zJþ¡ÚGdFÑ8/'a±õSð„} –—âw…®ýCdÊÌ`Ž âïqBŠ9ÉòÐfT Sôäiä!•>\§š^:Q.8§f6r\fß™ˆþB\>ŸÅ‡ÐW¶wtµÃåI¥ŒÐºS ™-ÅKj^>Ñ5³ö†Ô{êö¢@de+ðÇJb”¤QÕ5CÔöH;X³¤Û|¿‡X„;+¾ÌÝy^°öf-4¾,€¸Ó7ï vQ{8îß­ÐâqUžV† ÐHT•™õ'¬¢F+âä¡-’Ü„ó‘ke6‚=æfþ6ìyÑMD»gíyñ<ŸÿÇðiý?^n¾x•ªÿ±Q_ú<ÅÃÅõÿØYúÜ×ÿãG9€ìä:€ < ‰¥ûI@~ÿíÞa{·¿›&ùu¡_UCþ04I¬ ÑxŽ6›N5-.nç·ä:1Ÿ²À3BÍß u‰h6¥þ‘¦XTbSbü¹*ä(Uyx™û»‚ɸ°¢QéïU¾Åcu”1v9ü°8Ç-©ü¥n ÎcñÕ¥Ÿ{#S¯v Ý^‘½ÙaU—í5êtc“J̱š²Ì >£/o¦©"Împ‰¶ÌwÃü¿b¶ö·øÖW£áû-| ø+÷Ÿ9Y?tÖm§‹¶êâÛŠ¸\_d?²Šx4žEø€/Öp +7SI ;T¯ì°²´z±#mŸ…a_â:ß”C Wó!å;åÇ!]U_8 û¿ðÝÿ[‘YбÌ>ÍH¢>7ƒX›”gß»UC/a«5ü§"60ÿÝÿÅʤÁ¸øp)ÿ¿H­Ÿ/Kôùªƒ½ÜGµ&pÔ:Qç îê­ïü½ WÌæt@'ÁΰÁÆx“‰ñ„j<(6áÔýpRË\«} *c´íh|9¿ÂeúÈUz¹åG§e¦m?eAû\•;BålEÞiÂs™¬ `WNxèNùmŸ5Ó`à'4XEÄŽðܦ©ê:DkÆœº†-ò®“.}F—˜8ÿ¢&{Põ¤¶zš}ôð4fã2´!—ø;´] Ðöd– êI ž³Z ànr¢ÒØfY!аQº-þ-qÿáúÞâé óÿWÄ»ÃãnV?IY[oÃ_/$ì´ °]øJÅnõí#,Ë üÒ­àø»G u»$ÀAÝ«gU‹Ýns [‚Ò§Ür»ýF¨Ô¹>·öÑt°}Øk"¾ñß0RpeRY“”Š‘êf•ŠÍ+ë3]íö·Õ­Ñ[ךWäk¾Ñä(…5Fõ»Ý›Y<šŒ“Úw„MÌÔŠ”¤ð]#ÉÛTñª«üˆÜh5ù(@}Ç|Ìøn—êDq Gü=J‰;·¨l‰Ç#¹nqÿ)f¾<»‰Î±8û9&ÿ6µTˆb7»–V¯¦Ša(j–óõ”è¨ååêùrYãÚK…™û:ók_þk«êhœ‘ÿŒÄ×£ß÷mŸTr!žÎãÚÃú¯íP$̬ßO'gÅ·ý_é‰õjkîמ<¢VÉZaÔáA3òš¤'ßzð»íÃ+ãA­¶âaéÕ&¢ý¥gØ«ó·ØÎó­š<|!k§zµr¯¾Ös³—gMÀ˜º)àÉ;Fhæ£c,iWÏ bµzjηW/DÃwÙ E/HCÈD⪭v×Óß '»Šítº×ËýHÅ)Ò™â·Ûz³RÊHG}_ÆeókÐȇìRÂ2êTÐÔóÞ6½§™‡ÿ=ßjÊYÔ½,糨˜E­à,üï$ǨÅ5•éxqlB$µ˜ÌÀ³ãH¤Ñ”¼cCڢᢪsþ¥ßëk au å:Ó¯§¨p }2Ϋ¾dáðf™Wjkm«œ>¼‹¯WWµ©Š-²²^M{«É’jÞö›S쇥<~Y­«ñ²$+·„yÒAóä°CXpÞZŸÊ>|„è‹4{§cï0ðeBË4€~…üÕ5U¤ÈÎF–f_RFªgËHúà IAI…²¾û¤§í8\Ñ"ç»»Ih!ñ,$›=ˆ¤•Zßé­)Æsp>W¡ç!$“€ÐóòÔRè±ÐÃ3Y+\:êý×8=æP@rØÄ•‹ô=$ ù'˜#(y&ø³‰L¤mRìQiˆBÆïE”ñBÙ³œ™ô¸ât2™“Â{4™¡=‰ÃÁИ¿²3Œ ½Ïš<þ˨Ü[+ C¢£:}É8ÝK!UÇ]ú~×:BS¥m¬A©1U”R^ ãit>}wÆ&”´éâK¢@ -)iS$§|3_ž¤ƒÄêv ÎrSzY{¤A‡=ÕMsÃ~p')© U¢kÈÿð?&#¯æ!lëjý+\F–#s1¸žÜŽçY˜¯ħäý|ÌûD}¡¥ýÝ,‘K.PµˆÄ/üœM‚ØÂ‚NfëT[o±˜dqGñ_¤V›Þ*¾âéÿØ…ãÒîÑú#èžÔÜNœ°{RÚÿg4ÛxRÿŸÍ—¯^§ëÔ_-ýžâ‘»Áòÿi÷6J¢‰’¿*¢Ó†ÿºd‚ÙÅßözd_jïÀ?[é—¦¥£Ý.\Bß7?õ»ôsûkÖî¼§Ÿðwçø€þÆŸ`Û»hj¾kÓ¿ë”Tl“R÷ä°‹ù °QÊ!éçqCRhR¸ÇùT8=Å–Ä´B]U—záxÉpùdÇËØö‚.Kþ±Ã¸Jzi)í®~  wKZâ·q]Kzük™Ñ`L9öÛL%E!ÍÈžOÍAz,ƒ[%^zyëcI®ÅÚ"¾Y°«´of<æ¸ÎÛÑ<¾}G¥‘ÄÅs:WÕQÙñqÝO×ïHzPrí’ ?„>£ñP%Þ˜N¾‘;ÔĨ"zE<ñP‡o¡I6}Õa?ÆýÌþçv0(³ôÙy„4Œ¿„*€ªžOÆÿs Ãï}Øao©Áù•Šqž³òϳLAÈŸ¿áÔ“éüjBS¢HJ•ðƒbUÇ_a”ÑP:©•jíUñ>þ1óÆœK”½áä :õ¹…éoQpäm÷§ü„¾K3#SÄoT4ÞøÎå%y%)DÆÚxü©q]äHlWé×^•4*ÒxCI*–x+ÕafGÑôú–_æ,¥N#‘g\6 nát8§Å5p¤¡Zg ²ÒC‚—9¼ŠößÖßtäNÝ_źlXʾ|WpFØÏ^Ú$…„ª)gÕuVÄ‘Eã,ì9½qty€y[(c„¥:Àh^7eH*X‡åE]ºCt]š!'Ô­ÆÞø«–bԜƟ^Œåîf©qt"Po¿È»¦ßÎrhã³&ÃC¬‡Šê äZß®8ÞAc›)EùŸÙ©H˜³EÃ$N]>oÅÆÑ̺õníèf¬òOdŸð„8•зt~Ʀ4Aëæßè$vï ”ý]Ю ”¨( (¡Ç",;]ô¨xÌ”CøÊj\êtËTÕö|nûâÚeÖqfg±{ª`6{¾èVÆI–1&¼F&JÞD,h,ïõr±œNâCÌ ûØú¸Î0TM_¸øóÑ¥Pnå *–Ú‡O~kz¢Ó4´y€’)`e`ß™ªsJÐ@ Îiª s×ðü›Ü^^‰ƒuì…ivc!wP@múªf L"Ÿ€½™K¶Ö©±‹R£)ç1!µß…³ Åx¶Ø´¤C„ àúc‚l9ðwøG%”ÁÙ–áë¾c-1B¾IÎÜ™(QŒô0º1—¥5†º^U¹8|øÎ¿Mx÷©;,o&sW ‘yFæ“Éq3¤²ÃxlÒÅìöLÒUÒ'ˆ%Ep øº… Ê£ºylX }ˆ%J"J:#¿CúûMîL£½:Œ9é™3%M£ï=c,²Ôê^™Ú÷dú L½x [„rm’é“€‡RzO:íÞÎxªv<½•c+Œs¤ æ0“·cº !-Õm;…¥–Ú(Ôè°”$>ã+¦öpÖXŒÓÚ™òQòñ¾‰2î9ó2‚¥ßñ°Š€"â*Î4.ë«*hƒn²²{èf2ŠfI´Å¹3_EUÀEU,†œ1BVèÒÛ¤ÁñÝiG0lä³hþ-ŠÆ\ÞƒSü˜3+ÝŽ™ùDÃU×M\Ý3¨©õâdd°›%së.87cáƒsì–šéeW“Y³5@Èy›m¹f7vgîÎW4 ¥Z]­€€-eñ’¹Ž» Ôzo§r ‹‘ˆÑù6#J&ä»Naf¥ÒOu0ü {pD¸Â¡Ê{½ÚCæ¨Zö¨ÒeÛ^G€C ¥êf±#Έ9w“HN#nân×uNþõ˾UÜy;oæPZºLÏ—d äëØ†q×Ö¡ê¬1`èš¡¥ I.f äDb/<Ð^¡ök ¤Ü²¯\j4w‘h­•je”Ã0.«¾fJd¤e5BD¼!PpqAM lóÙÅ툲‹YÁMÿ¢7`à²p|5æl—”Äg ï« E‘{Ç£Qt w“eÍ–·5˜qb8\i|vË2ÔÙw9š:ŠoiIºÑ¸º w!цÑÈðz8ÓÏã™óNü5žÑyƒêaÔ%Ï¿›†®NV¥.†·{ ùÎál‹ƒÁôà€«ˆöV§ý[g·ÛÛ–ïxæðdQ3d2åЙÎîûœô]V¨ŒEÃqAk‹¸ø’sQò>ÉvûÝÓ ]0P·}T ÏO×}>€ðþ×k¾W?Ž0ÎåàÈÀ±`j¯Næõq·»Õn$)¾vº‡}ü!Ë›(‡†NãY ¼efÙéÔ3m½–îuÑh†ëÀµî#"ý ÁQ;Þ åäë£Ï$±d°˜QÒnD#ùņ¹¢ÌUëíþ:¦„#×*ý¡L,æZáçQ”¤½µ:m„S 6¨§t³lº J¬õ°GKåŒõ…‚d»§:º;-°îìá½t‡wnlÑ ¶xíiñ1»Én¾+–&µ6|GÌÂ7 «9­RhhåÁ†½ Êñõήgb”c…ùEI¬°Uh¥"ªÒr©ß³\ºœÅ6gjý*°W_nÝ¿’ÁÊ=NGÖ¨D‘îè’g:3©ö-å`ó  ¢ùLmª [)¥…NŸleá¤dŠH¾Tø"†ZR¶ç’656e™úÇ[E„»QÍj¤M‰\ˆñ^Mù“Ààq”*cM 5uD ë"VÍ‘F-ª‡óÌé)ₚcD›£ñÁG“V‡uÆaNFúØl”mÚHÀš©ê9ÓÛLV~n#´Æ3­ØO HE2È´¬¨Óƒæ­g"æLIy!H¿÷Þi g†Û9ÃKÒšÌÁD Yš v}“RZDÜbŸ©»åöGb ºÀ“|?í9µƒßJ›ö~:‹¾ ò¢ä-×yQb`'ß {¢‘°DŽûd„÷w§z<2»,×¼ú]Îøð;¥é ò´fa|½êÝ“™H»þ>%‹ò9té¬v6B×xÀâ7¹f¿……9~œ©”w<«ëGÐ̦fˆû¢*R®…&›),F¦ÔLá6„Ç%Í *E›nk«û5z>iä,°:3¼X­€Á«Æ^ŠïÂsm67’OÄd øCñ‚×lŸ,_é­.–k–¬Ùà½Ø¢uï¸h/ ,šœ)gŽ´®¼úÁk"òg¼(•Ð Kº™¥Ól Ê­qi;$™ÄeVûŠ“Crî±G·GŒU*5ß&”Åi&JÓ«ìøøz€éƧß)Eülu==:ËvdCUfŽ4>Ïô‘)g$ïþ Æ¿,[êTPgaÊ—w@‹.!{½µ”3:ì’Wt—gæ†où˜Cñrƒ.ûc3é«IÒ®÷k‹Žñ†Z" ‡u4yª¼Ü°Ú™ÔòªåàYY¹Uf¤ öZº“.ä• _:UQõ¿Cýë‡F=ªB¸ÆýïÏ÷eÖ‚ú%±CñGó&’Hx+µ&%-{Àç´ÄùìÑj!Æ£ú£(êXï¸{¸Û ÿ#Ç“è«U’Ã~Nvb|衯±(÷††NÍ{ *i;ƒ¾*}¤ Õæò\@¦µÜ¬:ÕCuÍ]yi°3g:1o9ïêåwRö%˜õᛵï.ÝMߥ©þW†ãSqu¿»”ãÙmÕHöÝo~ϸßÈËIîÝ$uxTÉÞ’ååïùòä‡o-µgykÉ‘œk¯‹ˆÎJv ϵ×~ìÕ~_Dœ•ª”äb3VÀë’H P6Ý7óü=TN]ËÉSˆR? -q±DhÛp07h–UƱO¤Ap¨ž%O:âѽEzGJw„ü0]h¾ì¬àf÷.Æ›4&\sމ„»,V ³öòeá7ÛÅEŽQ(d>â½óGޱè…çjSÜLXßàa«I¬iQË£Êf+¬zŒ…õ AÖ å–´h÷—‡Œ÷Åž4þûEíõËTý‡¯—ñßOñÈ êÄ7’øïÞA»×W `²g_¸z0NýWìòãâÑãÇnè¸ú [dì=9c³å‡¾ù×iò‡œÐ£Å—7d°C<ð©B½E£¹Ï¾ËNõ&FpKaó|]\Äè ;W®ñ˜^œÏ¹:r©ÏžôÞøP:˜©Õ$Oq½V’NS¼ëê’Þ¼P‘ªT ZÎWÅÓ/à|b„ÊUÄg*ºÑÿ'kÈãW¦æLfŒqHítÀQÝÞV/Aç*¦X…ØZ+ ȃyœÀ_'–V` ÓÉL‡ÙªÙÁ¿Ö«9±¿Ò=ŸØZNìÔõàïøúöýÇs“š¡ï6~t6™Ï'×ò+† éX^ܦ‘rGïð·ù¾XØ™ìÒã2<Ök÷—”}’ðX@†êIÊýJ´t9\›ãó…М-¼ýk€qŽ3»Qápº‚%gog{+§B‰Lo½e÷ Ì=¶7M±°³c%“†ÏŽíõç£8gêƒu3é.È FÑ×h¤'ì¡’¿€Yý›è*2bSJȆxìF3&â.î›S9ˆýû +zúø¡¿âÛ³84À ’¾ýqi°ì»a²HÜþж§Ëe èó·Øwi4¹üÿê¢Ôù­¤ð³ºŠÁOµ¤ëÅc$QO°æéÞ‰]ay•—dØ5nÖUNÐ0™š!œéJ;Èk¿%‹„r'D6ð~‰:Ô*é™ì…Ç%cÝ IÍ×½´cF¹™[Ñ$œÉØÿÝ,ËŸàÿ´T#ä[Ÿ|i»/Sí u&¤ÅaNïNñ×HŒ/7Q½‘«™ÈÆÏ žY‘ü¾pì"õg@o}ÏœÔE%L‰3'ÑS0žÒ4š;E‰“$WJzCæ»KN…ì…B’‰0Ã@SåÊ3VM$ËfLØÄðä\­€'k„ÎÌìÚs7gìÏРÔ‹Ÿ|ƒHtxý_8_‡Âk&ñ£^ù«B›•Ôcˆ)œ2H6¹{Qr§Ìö¬TQðòãž¾ÕOÒŠ™"›Î0¶ »êäDk/´‹ã‹d ¯Äãx¢T¦4´ÍÞb[žho_è´Cá!£š3”bß:çžgΞÀñŸó]bÈé5'Á å* '_ÛÔR]3Ý“µé]–’t—ºRmâ¶ZÆ©ÿ²q꺺£|e±ÂŽ÷Go¢°ˆhà/Ã]3DƒŸ÷»»¬ ­ìÏ•#Û¨²ÿÀÿ =vÿÛBˆæAü¾+s¼" 60w'}Å»ø!…‰¦g}§`w¸€î´½~:è]Z(Sý<@8¹wô?E$9ß$ÖæÑäø¾Rq(Ïò~á6Éò~åi‘åý{ºÉqNØõFºIoN~¯ØëFñØk&«­ÉäKõKÝ 7FV ן9]üno‚R¢:0 dDòoÚâ¤{ÀÏËÚƒ¶6Æ$Ñ÷e‘$›g·-Ú%΂AÛ}GÚTbxc~–ñJ›(‚Kví|9FéôÅ^ÝšT¨ÝŠY]µÊÑq4­ˆË ªk¯7ÖÿËÍž¦ó÷‡¢O®dþ•#Ýød˜(;L”„pÅØÌ2£;®l{öÑþhì4n„$…,kˆ“˜ä ÀäyÌf›uñóóº¾1X6©Þìà±A¥,:;e.£øŠô mIñÙbúæï}#Î}‚!3ÿÒ q•¼ÕiÃ[ÉÕZ9CÑÜ ÉÑhÐõ68ò5h¿{#ÐC«QLC^¨“@îÆjcðyaZ~÷M,ú`î¢rÓrUì´“ïiW¹ßwíﻩöXz©Â¯f3ù1§mл›SôAàÞîÐÚEô@ºˆ®tVTNyŠŒoKgÑãK ÒGêXÝ\\©eË~oK9‰¢µÛúÂq‘Þ§¼k®.'=ÈpåÌÒ#WÊHï¶}û*ÀýŠ »C‹šÏA´îsøºr½¸Õ޶Qø>B±qùS“.ÃØÍv9ç0õÆnØá9 Ã6‘ù♡W}tqp×@“É’X ’í‡n…Íæ/ˆìšzF „z^HEt¦² öBþØÔ™˜›Éõº˜>WŽ©+pàošêºiŽéc˜ÝÃìæ0Ì®oKgÇ[Ñ¿òþøŽSJ=Ã|í[ßßÛÑEp+|¸Mvl×ÜÑ]/Ã즦»”ê%½<8z38æüÖ¼È?¿êû0Çìå˜Ý4ǬåKµ–äÙóÌšO©¥r8qðVЉv¢¿çÀ3o¾ËàîÀÑ)É•Yçíøüj0¾”qÚ²½4zéÌ O2žMÆ¿ÂeDOÉ#„W-)Ú¸‚Ú8'Õ¶º‚¦&üXù.\x×”î@ ú‹PÎ[Òîšv^¾XVooÔMÓÖàÖ®¯­áå]~"#„6,ÁQǾ |ËwÂP_Hpðª}y¸ˆevYªúB9²`£þ mýHuq k<žË1Ï *‚‚a*t¿±)¾Ý¶?J…½R@A¶WZ5‡ ¾³7£/¢å%“kT- ÍÏeOxIíÀ€çΗ~'}ïóÀñÞý„sý3¿`öïZE?å×gKÝ©²“83öĦÉ@™íHMVø}éûMáªe!æÔ+S¾ØN«cí“m~Ã¾àÆ ¥7x±Ö§vÓ–œÑ¶üÙ“?sà tþ‹—îI‹Ú9xYcµ¹¹¡woâUüfQ3 `ô0:æß\V—ë×åð:R±m>¹©'߯6_S³ 3c& Ř׻‡b^©Èg˽~—Ü«Í6!'ªí'å`¤­E|·Û| úÔ3?ôÖk—´ö‹éÜ~™¹8Ótù`ËLó×%Ó|¦™ºþ!I±³GÓäßCßP9P¯‰]ÔËoÖ½|‚“¢£6“'ݪ ;γ“ÑÈL×§ V©ß±!»{øi”äV¤ýã(Étò,þ®ÎæÓ”?¬¢ü¨æU•×ònœìÓÂÂ=‚ö§îKV¯-¨Ï-ŠfáC³¡´Õ8cµîQ*E†B÷¨–V§Ö`3w ê°aQ½î[„Íg¶Eªf…5ì²½F/s×èÅBkôìuFõ>"xùÐzöÇgº]ƒ»6!>º²=°á³³Úà¯üêÇGbº¯|KýzA•pQ4 𠽝½ß»‹0Ý®‡é†Ö ;)'¾ñû#¬AÓõeªÿñÌ¡hCÕ¬°’ÞÇt7s…“Í…ÖèÙ3ÝMŸø³™ª%!è‚`°é|@=„sÆ4òrÆøò¿ Ÿ4ÿËË×›µtþ—Ëü/Oñ0q¸ù_vJâø¨}èÉþ²SFÄ.ÐâNÆ&è6:-•-Q&Oÿ3±lï5ºmËÉÑ#¿õ9Š'ùY4æ2ó ¿æño'ŒzžIÌ’¤] ÷³#3—ì–Üt'jÎ9YJ’÷“ÁRðVV†’,Œ+Ãò킞ÈB.g±*_ß@Ù‘t7vz7/¼Š/”8)Wôu<ޝ1µ¶Ú½=ÅÃh0¦UåÛˆ`d ìhíc&ÅñÀ”B¥C¥ÕSÉ8ö#‹¾…_~¯9wG’lÈlúmcy`2ßOÍ{ÆS]ƒ°L 6`¨Db_KLÁË—‘œ¼SuJŠ®L«òŸh:ÉÌõ‚ $ÞþTE£ANŸ$ÆÛí5#JO¾ŸFóÛéX¦îÀ Îç· ¨»ÁÁ¨wø•zžG¼8TTãûEMþõà 4L}‡Œp³Û뎜7£ GÖÞLâñœÑϯ®£y|¾.šsñ-†{F¡:ð–—"¾ÅŸ#.aÞC1Œ/ã¹Ì—2›ÝžÍ§0 f> %"P,¬4]9,8aËo+babÛÆú¨ÓoŸôoÛâ êŠþª"›hS¿a.¸PÅ_g£ïâbSÞUô÷6\ƒFØLýªFFƒð ®"Îà“o‘ø2fWØñd¬Â²2Á /Ip›ævk5#ê­X9^y«Šä¿‹áÐȨÃ9tìL/+mO[ŒXý–‘ïä¹§sI•ÊõÌAýC‘îÂ%/wËŽ9d»¥@¤bÇW¹ÀY‡×X–XONÎ7™®îÇ×ÙG’à9ØX X—‰È©ìÞy*Õš§œ²`‰$ì±~ä.f÷!•ô,I<7KÀÙüVêàRèìj‡;%ºÆâ§ËXöGe¯ˆþ‰Ò&,ÐN-ÑÓHF·K¬¤ïîÛF-oÛ²’êeƒAÞ3džSÁ÷ú”¨×L¬²úÊÄfa’JøÁ÷ÛGÕäÏ:üìžlÑ¿MþÑÍrÚïé-̵?NXÕJÅï‡Ap`¿T ·tî©­Y¯Õކ.E½ã¬±p c™Ú ÿš¬:=RnIˆ´^?«ÔŽL—¡NÚà»GXØ¡û¾ƒ}v·1^]Ÿ:@;‡‹–÷i›vXí=8ª]³G‰:½¾ÒF§ó 0œŠû~ÆøÏ\Ðí¿ç Ûm™É !þÅ?wûYÞRðBדúSÎWdY• 6ËmJöJýy&¸hÊ„Æ*fÓyèä­àÉ‹ö¾ãÅå#åQèdvˆü:ƒA-ÉÓ`ä4ÈMQp¯Ì;‹Vm‡]ˆf$"n²{3‹G“ñŠpß‹æ*‹À|2Ц˜âÏ/±ºÞÞu 'óÇïw×ñhHO7=tC0p˜úšUÏÞÁ“4ÍKÌcýë6>ÿ"Õ}(ÝLf³¨hÝ!³î|MIÚ ¯w.~µÃå»3êo邆»}YD[H·ù˜•?Ò•¼SÞjr²~7R·b⎌sj&VœzˆÉ³£jήU3˪ؑ•¢‹Ÿ"©ŸáTË5³”fÍ^Ôø!:WÚ+)lrà´ Ïñ!0+¥á7¥~âqƒK7=i.jÔµ>ÞU÷:k;TWÎÓ®ÌèÚîù_ÑÌ#äÛ­+ƒÔ8hHUöà¿tÙ˜ššƒ[ëÝã—¬ª5­Õ«jˆáWä4m z©Cžozrï}œQ8åÂ}…“dœ|h5%~5);5OÇó Å|ËûNÓ \5LSµø¦ÓÞbq"øí¢O¤vЦ3ê½9}–‡˜#ƒ˜{ú`…ŒuhàÔSCüó›Aæ“æ<¢œ'ë¸Ð¹^~£ä8â7Bãýb±šb­Qn­‘=·ÃÙ¬“¬ Œûä$–mŠX´ án6ŒXñ®ìÄð=+ÈÔ5(SÛdÆ2b_šºçœl¡ÌG ¾Û\™Dyô ÆoÊ®üÖw ßó—ðRúÛî oYŸ7åçð=5²¶Þ7øë¦ïku‹*æ=O1ò*¥ü¾cs˜T°ýÎ_%4ÖЊwÔÿ7”í>#$ªºc5›"riç¶•oº'a¶À%œÍ!|eÖšc™ØU,ì/€*n äÌf¬Kat¢áúv41‘‘Ü6óUÓî|­¬‹=ÔéÖHm)VV­°\uU‹³NÜEüõÄö™¢¶lÞ,ó9dºE½0+¦½{Gèû¬’ÄÒ E}X!Yk>™²÷ _!¿w—/H5drÍ(Q,cÁÈÚ"y@‘ƒi¡¼q4Jt¡.ÌP³å¢‡=›rJ;§Š:?üéTó]±j æÖzäñ”SË9UÅù§; j¾¬YµpÖ¬ãñ̾(‹Œ»#®«º@ož&€.ž?;úZí}Ïsš¸W\¯JÍðBùZt­³É52ß1S™›©4“š0¨;/IFÔ¡è]þ=© CÒ[hˆ“vl Š :¨ùQöõä;ó6K÷Ø|­,îòs*wóVÐ –a™_uic¿£$±0fýÕ)ÞÕŸë Œ >u_Gå϶‘€–«À˜Ïd•ƒ·òKr0a°ùK¼U/¦^ØúHÓÕ·}yçvɇÖõÛp?HÞ0/àæ åhJ“ØTãÀøskFX‚DVWSß%üÎz™Ù½àà¯y"'ޝ(×#ê+íd=`‹¦ñ=›67Ð’(Üä@¯}""ʇZ̤Zbíþ:š|zC­ym¾ï”ØD¨š¥îÜ©´"z u#‘Ó3.³›ŒJ©M1å¾|ÚÉ´éG*·„”[ð;šCßäiˆä¤ªÂÅävcP¢ ¹„ßÏ·³Hª f¨8…P&ªƒ®À£g šã Ûâõ‘K)ï#7ä¢ì5Œ/d¤“mj@i:M%3VJe ;ÿÅùäÒõàæçT<ó׊7|•r¼–†Ê¡Zã ›d4LÜr£™Ãö럴ŠÎÔ9õ‚§€_s•^Sµ”bæ@q­Ò½káˆ(‡#¾á¬H1CYc`/ÃÍAnmÉsŸ–•h"í$m\wÒ—™üD"¹r¦ø´°Vñë{E±+}ÑŠùi™:qS _6@¸µ>Е5cAí kV2:! i²6¹¦ú6W”¹°¿ZØ—Pç¨Õ¾•ý=°²¾z@Æ›ÏueÃzˆl%D¶"?ë pÒ=Ù¥EüaU™…/ ¡ð‘IJ )~ëq¹uxØ)ƒË"Wž»ßwîyÙ¹×Mça®9÷¾ãÜù‚³øí¦ÈÕÆs¯qåMý·“&“eéÛÄ^?“éÜwkIDËûy=ryz§Œ\Ÿ;y¹>}O:ÿçøòìIóÖ6^½Útón¾ÞXæÿ|Ї &¶ÿÝÇ_€²:ïÑè(7@« ÿWàŽ‡Úk’™¸>·Ç£ï ?O®Oœ»º¦ó(„2„/È>˜»Ó“-YgfÎåálp"N£;ü5#û&,£Ûœþ‹sÊHíÉdQêÇŠÀKøÉ»éä,Ç·3ù9—B¡4wñø"c&»…ÔÀ HipF™¢ToTSŠl%ФÞM®L- ë¡L\5ÄX«]n—këÜàsu~e1ÒÛqAsù²ñ~4à#‰ÃÚ¾Ùó38>¾Ü–kå¸úȵµDïä„Ê©?W¿Ü®þëmü¯·×ñ¸4®|.)åN¸ú½I"Í®KP€x… +_Þ‚ÙíJh?¨UÚ6e妓|Œ¾ÁÞ:øÁØ`¢r ×oñ,⋪Üö&Œit@Æç*ÛçÊFW„¼L^Iz°òFÅLVÞ¸g2¯&åÊj¬b®9h£?qñC£²TY¦Ú‡ï›ÛVú&ÑîÁ$ÕÕ&Þ‰¿Îè¥hž(¼›õþz¨„L”Ìê Ù!«`î% 9œB‡0‹Á -háCIì(¶¬zÌTgÓ=ñ,3—§ áæq•j2q ó`O׫ûR•Ci;´Ïñ3¹åÓFOÕ)A ?*lMjp4é~0ëÕTycÍŒQn72 ?¤¤8µ ”)É®ª^PÕ£Xûuafs¹;tbpR˜Ã—32ªBصqÛÌAbÓE"g<ðF>k#ž´P"ïïƒ&ÓÖ1%­Š}ó¯ ÌCÓýjë8Á;ü]9$…msdÉïæ[e÷ %RÕï4ùÖ.”À^t¼³ö‡ýÝ.—±Âïܦ£!5!&X8´¬9þXÃvj‰2–~Úåjµ ®÷WÉYÙjSÑ’U¸n):žéÃŒû ÕiR˜§÷×ß—’F"•ÜGß7ù€äƒš=xõ.š½bOÿ=©þ>ª§êÿl¾Þ\êÿžâQ.Sÿ§w=«¤ìªüc4|4Ùƒ§Ñ핸·5{»¬Ù+¬ÚC@*Dß°ÐÒíæiév—Zº¥–îùkév iéÔÊÕe‘ú(­À:°Ôu¤®3È!¡")¥®+¨)ôÖ¤) 5,:Œ†3Œ<­›Gév͇íÀ»Eæ—§°b}N ð ¢sâ?¶¾ê`©¯÷ÑW-5UO¤©’•=ÐsùgÔYÁWÖW"KõRFùP“V3ý„Z&{V¤eJTI>¼e+Œl>´¶è w ~5m‘­ï© ‚kO£ÝÙ-®ÝÙ}<íNþãÓÿÌŸXÿóúÅFªþsmYÿùIµ…2õ?}Ãÿk§Mž;ÇÿÍÏB:GUYÞi«_ެ™ ÈŽº2Ýš éyúyzžþRϳÔó<=OÿÇzcõs½±vo¬L½ŠS>—UW1ƒšá£•DÚ¢{’]}¸`?©^²a?ÐìÀžžþ©z’ðÈ|ð'¢ò?ZIr?Ož¶/Ú¥!Yÿ#jET*,»ãÉ9.ø¤ZÓ=Q’CjË«¢cƒ7Xôýc«·HRW¤L¡›¨­H)®FÉ(IæA©[ÄË •³çh6*k\ÒŸþp kåÊ9jª€€Pê.\Ϻo=‹¬PÙ^à²wPz\¸LæHê1„VͦÒé<ñR/¼T팥Ú|˜¥:.¶Tmg© —×znJK³#ó†¤5:ü0}„J¨Ùª5¾âù[g´pÃÕ’.¢NÂëPø«f¨“ú ©“<úŸ«'Žÿ{ñbóeÚÿ§¾Ôÿ<ÅÔ’­ÿÙÓñX7’£ÿq€<ù° Ýú "÷žcà¦dŸÇƒ±5#Cïô·—ô·· ú[ª™ž¿ši¯XÐ2¨…ú…Õ¦ZœØÿíÍ *Ÿ¦²r0Ìw S%`r'É$L0Ön%§I£×Í·Þbæî706Ÿ@uÞiã;m§çÇUžíe,ÖuF¬áÔÝD##>t,¢waGší‡Ø¯…+üð‚ji´Ê5íŽFá|*ŒÑ‰] ÃÉcôÆ.ÆLäo9<†2æE2r ãç?`Ú F6˜ÏväªEÛ Á±;ÙÐÔ”ÒúÆqdoaä6°é‘üp{ fÀ·8/;|cPäc„_þ¸ÐK:zjüãÐrl3¡>nKÇ6ùbfDaÂm¿QYz¸ ©¼ÅDx¿jD¦Ñ_Ï€5úk*eøÁ‰tø¦{Ørßw‹ÔáløApœÃCéjl¾¢ÑUëe8ÀëÞíÜžèñd¤&‡iúB4Þ7ý»”g–“/¤ºkf¨î gD÷z¿€o"^aàý·ÆÕhF¹II^ԒǃSù«ðBœG¶¼Á¡Ât4‚qkì2"VJgº®[q ÞAigÊ†ç• ¿Azýe=f¶0<7ý; {MœxëÐñSÀ½0#Ù¨oû†Â^…ßuÓ[«Ù„‡…ƒ³É$AX U6¢Ì‡2JhèžU±B‹½dñÔ4T¤âL–çnmãgµ&àXZh!ðf#,Î{DRýXÚt<ËBÞG±\æÔñ»_ ÑgÚúP+rìj¦g}á«ý­ê>‡ÌÄ¡¹uèTs«»Þ·yóÒ³©œM J¸ Öf }Â3v@¥R˺Ì>öAuÚ5£hË-‹¹.é à's¯§û«±ð$5VÐôŽYËÖdCñwºº¦ËÃZ­äÞññ}›•øoޝ“¬²(õƒøbï´ß{ÄHûçùøìOÿ_Û|µá±ÿ-ãÿŸäabϱÿí¦ì¿f €<MùÙfØ{–YýòüÄ÷òòì-ó, x?¯X>€§5à¥w&¢NMÀг'MBÖ<ÝH±ò…Û>ªõo7×ú÷) <ÌÛˆ57ì5ìaB¹ cÈ{>ˆ%kô¾grpS‘uz#1ƒÎç£ïaºiX¶³”!ÆšQÛ;#†m‚ÉŸQh8”ìe Ï^|wF YöL@–‘oQË^B_,OEçéòT,{O“µbiÙSkÙ[õ²Œzµ°­âi.ÄÝ-y%4]ÿ 3^ºoö¦¥ ÷iÓŠ#ki¸Ãçñ wVJBö8;͆·£lŒ3 [.-q~Kœ‹'ð¹ÛùIéâŸm`+̲ìg–‰ìf™9]j‹Ô³+`ârBö©ûýrÆŠÉ€eJZš¼ûͰ4é6ïfhJÚ.íL깋©xΟ½šóÇ||öŸ‹§´ÿÔ^Ôêu]ÿ­örsÿõ”aŽýç:#úÝF§×µí@~ßðSàAÛµ=ÁáÙí<¢éúŽ¿Çõú:KôÍ­q2˜ã'Ýh ¦çWb®xÑTš™i!ú½È Âc’Ó)x f“‹ù7Têà\ÂÏéäk<äÑúL[Ê2s™F°Éh2 'b'*m˜—¸«¹Ë\ϰBâa,^or^ò•¤·\“×»çhòÚó(Ö:ßaH|´ˆì]žìÝÒ¶4€ `w4{y PöÒ,`øz4|Ù¦/æD õm¿’Í¥-I8éÁHîñä9ŸŒ?ß^æQu>ŒgÈZ†É¾4ß|‹EÐß6€íØÔ›Ûé7·==Ùv¾ÜÉŽ¬Õô;sh1 Î]3šóÁu$.¦“kÕã û llÅ\ÙÍ{íµÛêÔè-éÀâ§H1¸Í€GÀ"5à0àŽþ4ÃŒrW‹á;Çhä³j£a1«¡è¬•:åÚêou±úghéͪƒä`“/üô¦CiÄ<èY†…Ø‘5_ ô½å¢ÐÒÆ›NeãM ói±½?¾Fcgø­·ßêëvC¸­CS³ád8üS½Ú¼p‰9í­d1óÏÞµ¤îÊGL×~CŸÛ`˜AˆŽ"BìYSåpÒ œÈÃpE ,¼ŽÏ¯°h\îaËþσëÂ&W6¶Vì^ÆÚšmo¥I¿Ñ‚œ† ø%o䙽9àq0Š#¦Érl\¯Ë¶—ñׇèï ÇrÈV_­'‡Aƒ66{•˜ÞfçzycClÔÄF]llŠbã¥|scCÁªÕD­.j›¢öBÔÔ×µ øÜÀD½.ꛢþBÔÕõ Q¯Áç6º67Åæ ±©^ÚÜ›5±Y‡Ï]aU¼x!^¨÷^lˆ5ñ¢.^lÂç©Wáy©^}¹!^ÖÄ˺x¹)^¾€Ïq¢ä‡‹Í¬pƒ\MFÃâÅaß°.Rçñà&úÏ$† <ø%p`¸‡KÏ(íÊ0Ìæ|šF‘Yá:"0¼QòFéÅ›W)€|ò²ç$z<Ü‘;É®T×Édjž¾“B³!8ëF`¼1€¶èlqýd;‘¢G|‹ÄÍø*H 6³§àè€êÏ'¨:QN[çƒnÍÆ,ʰ¤*f£éGžJ>b´ý?yÓÙkæî™Þ A°É›ÎÕlpØI/½›Æ6yÓÙÒú¡Ý/·–1vsgë'Í,LlXû\?Š1˜­ì†5‚ÛPq §¡Ý¶Ž X–ó(Ö¡˜÷71²xÆöŠÀÆâ NÞTHJ3䫟ogìà”8m›”D%oj “¡Â¹Çáe4盂µTÅÈOMÿï<æW&"€f`‰aåô) „ü–V–úrÃÓK^Gª—H–@E@°Ò|˜à:mÊ?8`¥aÍ^Öü½dv¤zy‰”„ ôÄdÁ««ÎüN8@xuåa:Žþž‹b”hrÏá— ûÃÉwG±õøcë ÉÖ“u,[OÎÑlÿíÏxà¾xØw“Öîpà~›q¿78™{¸µJí.®g2tàÂ}àŠôiáÝT´åè̽Ëáèß…êpäm >óïŇ£gc>Ý]jŽ?ï—~‚œ:æ™±šO‘.¯#Ï1Z³{áOr¸ÌŽüǨµ¨t’:Ü?7õ:eòi¾;€ÚÇh¶átj”a³MAvá¡+W“ŠöClxÆr7`ßxwòû›pE½–1š_Ñ]Xäl(é"§¨G¸GT!'匈/ÄX+¢Ôtã“o½ÝУ:1"Ô©þÞáe“¨ëú{üeY¿½aõ_\ãg,.¢Õâ-*ZQt¾B'^-Q"“?pº•^]JÁŒ0VÍ®¹…Óõè6éúöf4y»r¬ ÁžÛÇþž-2£_zßîw4 µtl¨%R/ͯk4*¹LéW•¢1ýò†E5€ –r"©ÃÝ` sÔh¾5}¿È1Ê<”˜8ߢ8’›Qñÿå¿ìo¸uû8«µDÞâ-HÕnsxö Ò3Ÿê¿E»´QÙX(sTâ[Þ_Ãå x¹ ò) –{ÈïýÍ.<Í‘JvRŽÚܳt¯l…{–ÃÛ`onŸÓàýG˜5HxØk¸*jžÕ§]úRþ\ÿ ó©™»Hjþ‰`ÆÊG€\ å?^²¬.ï¹þ/RÞmx„‰oƒ‰/@W ña^œJ€j"8N?> 6éñâ-l‚?Ẽy*zdÄ<;š&õt”S|T^”~û¥ê›²TºMüv\­ñ Á/,†u§ƒ%g‰|~Öž]ú7ݼñŽþ'Ÿ®_8èÙvÿÓuÁíŠÊÁÎ5¡sæIö÷~xÃ!SþB©Ÿê ©gÊY]>Ö¦Þ'–ã’y\<À†_`TM=ª€‰¤CŽÊs™Ñú16½Ðû¬•ÉŒm<=—Å})âùLW˜´ì¥>Ã5ÕlÜ•j6¸ƒd`è1ï EéÏ…³ˆ"¹‡´rDÀÌMž5Ä»U™2Ò;¤§“Õ@žÙ‘n¦þN©o´¦ïÿ€8ôVŒ³ùJaEE¹ö#T_*_VaäŸßÖ]uQF­(ó $hÍêæ‰•ÏO }:ÅG˜Ç<¹ò#L(YÝý¼"KùÇ à™+=ʵ¦öxFÔ(þÙ*Á¤â;L©ouå˳T·”Sè| A^*žÀ°ñƒ.?¿aãiNÏEÙ”½^Y]>ê}©hÊR4…³ù¤ðô\öþRÛO¥WŠŽÿñJ¦\+UZÑôCÏ…ÐF?PÙô\MÏó°ðñÁçyXBàcE´oŸd±¬ç&Y,˜cqÏŸc1Oذеªc;U‰|*a9Q%~PÒ}.ãú°'ò¼ü³Ì—`Ðyò˜ò†¿¢!<½0P±˜†¤aeLh6è¹Ü•vEPø•Ãëa>A_òA~‚)M²Î„†'Q\þ]&’-ÇËlŽXö,gFDUHS­¤FZ9ýÚûCÑÇ4’yÚœŸfð2Ó{ZÉ+Í¥¼vÑKÎlÅ]isœ«X€2ÛFÚw¦Ìv{™ÜÀÌ^,Â8…Ä!¹°“K5vAµØ2N,¹Ùªž·Â?{A×€¹*®èÕª´”éñå­rfÆ$câÕ”ä`tû6Ã[!Ûôù–(´‚œÒ«¶Å9m¶¢än”ŒÌ)~>+Y˜ù×Ý(Ý~°¡΋°+Qˆ1ßî½`÷ñÛÏwåY¡N?ν‚cg{).9vA8Ì–‹)ÐMÛ¼ed÷ØéÅO'‡;XÊÂþ9ü8Yx)Æ&¼dŠÏDVý9åˇ&±ç(_>ÿʛ˄Фø£9àRüU¹Þ|6€Yñ€zVu©Ï‰‹¹«|Ù©lsqVä( TBNJzÿ'"õÃh8ìMð0r-LñÛ=ÉŒkåw…HXe§fñJú3swæmࢻ1c¦gõùí¸†nYH”˜x0ò4ï¥XòFKndyM2è.¶4Ü_\{;w]–Ì5 .È"¼±PÃ"rЃ<\áªbТ÷3Q˜ÒCbE5åïÎmÉvtõKÆ‹‰FûUS4â¿ü .råƒôn+6 tðƒeÚ(€ŠK%âáXås\‚×µ·¿¤aA{4x)æf:9f³gu#DÎ?óæ œSÌ& ½”p/ƒgd{Râðw8XgDŠË3`F¶<~¸uÞE65ÁɆ&*™gálÂ@GÑ:âÝýZe“‰ò_™lÔ'}Ú¢§x£Öù|2’2ÝÆ›€™Á yN-,`9À¢Û¿ˆTé9áwà™ÒyæèÌ©ú¶ýËó|‹çW´‚°¾é‘z³ÎÄaÞË R„ø¡×Âçs>úª–¸|4º‘u£|ƒ‘äáóÝî dJåØßxz)Àì'¬ÞvC¨³®v <(»F Ò³¹ÄÝYÉ;6¥æ#iྲ@m©ì O&ôÆRÙ§¸¡e1欢ïg/î¯êSáþJ:–²8M¢îËR‹©;yV§…ͣͿžÚïN¼ï2ywù»p.Ÿ/V¦€Š±¤( æ°c„˜­[`M¼pú?®¿û V-ÈP}ª×Þ˜rklúÉ ÐÑ–Å[€ëW÷«õ îàÿI~¾ nlUÅ&´eÚ0þÅŸ5è~êS{e ûŠ¥è+4@¬‘&Ž3sG©6®ŸKÞbš™àÑÇnrq!†ñàr‚õstuæ4P–C2r¼&aød&˸8õyÒ³½c¾ŽÕ’H”Æzgwj+åDÀáÛ´(ëíþz£‘÷ºÐÛ½&ÛÂîŦkká‹€Hvuï¥+mN߸Ä8Cè”!fö›î– —,ñ¨à‚„ó<-ÂxÇÅÀM؆žø¥ü S(¶­23Û-°† .àÝV/oé2×mÁE ®Šÿ‹•„T\òA™NU2‹žƒtÌ´ïvÌØª•Þ¬qî˃°$jxc[`œú$ôæÓž„öNÚì$NXœ‰Ùå~*¼Ÿ„ä}; ¿øa§‚¼§—wá£RN™TÿKä¹ Y‰&—‹aA|b¤ ¿ ‹œ\öÿ¬ã“uß\)pá¼ÓñÕºëñåUöOÎbëWMB1:>N£óùú½dEFjÉ,¬Ž›dÜ Ã“—)y Þò7BúƧ¿AoÐͱ>Ì’Ï9ã/*Óg¨\—2ÈÂ2³¿ÐÒ™R_È$›aUXá̧™C˓ςøøbHNþþåzXŸZñßÌYVȹ’gß¼²Â"ñÕ½…Ê#I ÷‘gÓñï—ëwÑð4Ñ?àä]\sÕ«5_Þ‘žÑIÑ^š0žÓQ‘^£6lQdz0L ×FÀÍßv$ô »ØÆ\àRb/,±ß«jžÕl1cùÕÅÍã‹]°Ñ<¾Àá©lãåEÏÎ;YÇEž§a¼€Q¼Èá~ßÛàÒ$þÌø¥IüÙ×ì ,´‹ÝcL íòó¼¶>ýM+·ZÜÃ2㥉ð2äåõ÷Ù2äEM„w”²0 .Â1Q˜]È«%± –3NÝAÌ^”«³²ï‡=Èd@ÙVÁ¬[Í¢*ËÇ·æ_c.lýó7_ê ëÄâ–?ÿž.œ“`aû_N|ýòh³ .m€Á†?ÓzÜG±‹!må1*t‹9aà_ã%~†NÕeº%Aäòܤ¹ìúÃ/ÍÝOè\\ž[Tûü h [~ò-YÄÂ’ZØOܔҲüÄ—æöŸDXÔÜ^®Uèßå¢þBûóH%Ì8>jV0¹Gãˆ| ËÆ ]­Šv㨱݃ۿãQ<˜~ÓÉí<G¢ô5šÎâÉX‘­Â›’ã¯ëÈúÑxÍfQTI>ÛŒb¸ŒãØŠ¦_@ðÿNõ:÷¢=®¯K É×èú,šŠ:˜æ-ëë¢w>Áº6¦—·te€Ï$‹ÙÞktÛýÝnÂü’ÉÉwšþî{ó !:vÒIc:|÷õ‘§J³²¦YæöáÁQ{÷ãZí•î¢qÄ/$á¯G·S2¡À¯oùáÏyeÜç·Ó1Waú:Ý≯N€{trª!/S煉³hßÎäç“)ÂoD<¾À$\ßêÊ…0 ô2šÍÅàl6ÝÎUwøifÎ'×7£èoÌàuù¼Æâz0ŸÆ‹œÝÞÜŒâh= d9ð,ðµœäN4;ŸÆ7s c¢©É¦æª—\¾€ÉY®—`ˆ%ÊØºº Y\_øjå`çµr½âÊ¥Ô„‡Z©­M*A(µ•ŠX9dP“¢ š^PM†…òÎ åèb…óÙ ¼h…ñò s© ž Ü­£ñd1ò4qÐâ©u*êâëÛkÌ¥t{=†5»^­ šÁ¢aÁIQY0€‚›Wz粩ÒÐìnS¬.6!Pðñ³Õuä@Šó+SK/ØÑH¦4žÅ³9Ò²>NÈOoa‹øø;Â2®@<¾¹¯&ücÍʯÒÃädqdnÄùDœE’h™ò%™f€¤ø³hhœ?“cBv´P¿°ÚÐ5ï[2š"-®MÀ|ãË[äˆ7ƒé\rLzÏRÆ5¹i×ÍW)#ú õám5uZ¶±e;4(§%¡_m‰ÉšM°}dvÓ!N˜9Ÿš‡ø÷[±¿œ\Ecø‹´râ™ eÍqÁþM'Š*Žì® –=@Î_è†Î¶Rg­Ô¡Š9«îмk1ÒlÚÇ-™Aš€xG~‹g’Ñ@ŒàdÄÑ8Ö¹ŸÏUN¨†;Wãr>™Ú€ 5ö:࣋Hñb2‚¡ÍÞX¯]0Òbãy_Šñ:‚© ×>Ã$ñbC›Œ4uµ½ÿõöóŸmB©>®~^MùL`Ƶ%»›¹Îõà2£x43SHL©Å8²ç\6#®2 ÈU3à'°/y› O’ .ü·ÉôË #ZMéiÀÌgµJ[¯2ßT3bú鱃ŒÝS Æ?WþÜȸØj.Ú4ºãsÚ›ðÒÛ‡xLêh0\GsÝ2ŸWÌœgGÀ¤v-éªD—ç·¢¶¾±SÞà·qÒŸ–¸£únO@z“"œÑ½G*kVÐÐ ¯±Õk$jìcóøNšît÷o˜,’лÛñ9 "FÏíÃ÷MaöL‰äÔ­õ#L¸c}Ï_gôÒ»=“²Ñëè=šcà@y羪ºÍN¯¹LTHÝR@¨€ ¸Ã{ßΨ…ïÍóHK¶êŠNì,ÏÝ…Rô ÓòÙ‰÷V|i÷8ïž{ˆ[ù÷<]È1ÉøŠL+éÀ\¶Ù ÌOváò  O)%|[Ûà¼ÓBV-—»Wƒ£ˆôGE¦†<’ÙšYüˆúÙ>ìô›ã”*HUgÛw¿v"UiGœcYwVßö”RAa§5;/ÂØYt,äÍfÑÏ"5ã0»¹f©/¥ò|‘¥Bi&›i&“ïÌÿÖÀùÜNÈÿƒ{B]!àý·ÆÕdà À'½#Šìg‹oX´WarþšêJ·{¹¡’ú„¶òjñ6Y×V 3wƒÿ–©ç•`UÿëI)Døãe²ŠÍ¨xÈ>D{ÔÑ«0Í1Ê^k”ÚyÉD©ß× l|èì÷pg¾¤ú¿ç ¾¶‘G(f1‰; Ïéïÿ~Ø:ÿLèëôå[^jýx)q3râRß­ä·ˆ±Û©Õ˜œêžµµ}BÈ•—×òaèó. ž9µÚb¦fˆ >ŽæF•,>*ó„ªe㎱†Q__ƒŸAžØ ly\g/æØÕÌ­•»‹mó¶ à4¡ñíøÀ4¿Q;¿EL›Þ<»1`v3÷|‰g™Ý XÐÄ".’EOð Ù$O 5– Di’ñÚó ZôYôŽŠ[ôŽ–½ŸãñÙÿfOjÿÛxýòõ«”ý¯¾¹´ÿ=ÅÛ4Çþ×SÒZþ*è)ò«YÿÂ&šìSÿJÜÕ‚ÀÞs2îáBŽaA.üö½^ž}¯·´ï-í{Ïß¾×+dß{4ÃV/ß°åtiØB®ÔIµ¨¸ÈXÚ¶<ûþOob×;‹F@*ŽÑñ"ž7™ÝžUµý&`Þ ïÄØEƒa<¾4Æ/1'í]ë P‡¤Ô©ÔV”ÉÇ4ò˜–ÆÒÈÃU´NØ3¸¥mGÚvȪsÐìüZ¦ óLb›©ÑÄ©ìQ§éš]RAº¦óÊ\÷]¢ƒÚµCK»VX½_sÕjA|„ 2õ{bhÉC“£ø´Ðƒïnfê|³t–Ò¾B¡×”’i±0eYlœøT×/:Ö¸‡HíU1fh†Søô^çhlRäRÜ0ü¾aÿ(µ1+÷½ëbéX­u¡p626ùõ­< b¬W\1Ö{fŠ1Ÿþgþ´úŸW¯áwWÿS[ú?É£vX¦þ§oèv*b÷Ÿ ÷¹¯Êg'Gß³»°¯wÿ9©z”¯÷žö^‰Ußâî¢ýéçiúKíÏRûóüµ?ý«ýéçjvœ® ¨9ÒúŸ´Ã-ªyd»NÙŽÓ˜ ÇŽ¥ WmÅPþìö&šV3{þ§jHÂ#kðɈ¿?zd‡äúÊc¨Iî§!iïz4$ ɰQC¢º`7 €g{WXú´KŠjM÷AI RÓã©|×ãÌZìfOªº?šjŸ_äb”îDk²j©uòà±fÏ=åoacÂlTV¡¿*î,¸µ|¥S5š¨ÕspÎÚ®¦ôsòyå®bÙZ£²wHƨš<ª|_ágíYÆëý¾ï_oÇ vÇn¶–×Êuð!¨; *ÝŒ‚0Õª-¢U@y·a\R2´ ý;k<÷ÿÙÙÓÆon¾ÚLÇ¿XÞÿŸâaªÉ¾ÿ÷¶RñߘØj‹¼%±ñ$¾"[%ÙÙb*„ÞÖ#«ŠjH Mȳï× `OAˆ;¤CÆ¿Åó+ñÅûg è`¾Ù:xa©SXêž»NÈôùEŒ[»õŽÁâwвq@{ž.¥U¬ëñ-BD3cµÆ™ùA6¢×±O¯¤Ã-{y®<[_žœõƒ¶0Cqæ*¸œýzZåîfÖÏl…ƒÔÃpœ— ?ž­¢që[X©W1¿¯lŽ;Ÿ21¯^ß*i ³~KãÊçòåO„¨.@yþJ[ë,9àsŸþ³)æ(>½¡ž[ƧËçöaZ(ЭP0:iZå:F•‘³ƒ7*Rdy>m]Ÿ„ÏûI ‹Ë÷x"•k8…–Ï“f±Ñ‡"¿úÀn}ü>8¥Ý)’»­BY}‘ú‰#­ºßT)à±PÈ7Þj˦”wP÷ŠË½Gl7è4Ï}ËÄÅ?-~QT ¬ÒMˆfìÐíÄ«å%ƒ§¦™n¼6Ž¥…ZõôY*Œn͉à>W>Šä&öËœ:òöCãI+äkE’¯h&g}á‹Ã-îŃë¹Õ]?żyéÙÔ Î&lCL›<Ü; ¼&‘ÓÄ$BÛS.+,ýæ‘;8]’ꮘÓeoë™9]>£Çgÿyêü¿õ—iÿÏz}iÿyЇ·EŽýg™ÿ÷™æÿí=Ëü¿‰ÂðAóÿöòòÿö–ù—ÖœŸÀšóóÿ¦÷ì/žÿ·÷\òÿú¸å?>ÿïÒÊ!~:+G+<¾¥•C=FÞæAãý?>o*Ýl±d¼?(ïc&Ó5â.“á>¡Íd™ ×~*npÔË$¸ô„Œ(…Ðæô³L~+ž»1e™üv™üVüÃ’ß’ˆ{GD:Mÿá˜üuÒ÷Чî-Ó?öã³ÿ}Zû_ýÅ«tþßÍeþ—'yxwåØÿ>¥í¿dà<àóÎÜûôs1ù}Ê3ù}Zšü–&¿çoòûôÓ˜üÔ ÃFÒ¤˜é/i¼¸ñÏlû¨æ¿OO‘%ÙÃüà`±Mks# ˆCbM(·aLyϱdÞ÷L@n*t”’ýÇ7}ÓMÃ2ë¥,_ÖŒÚÞ1lLþŒBñ dÏ(yöâÿ3RN/í›’€ziÜTÏCåWúYí™E­—µÊ‚v½ªµï·'ì22 ŸçhV´³Q{;úaÑV%$¼e¨UÐJhãǸ 9ð±éàŸkô{L+_Vzó'0ç•0Ïzx÷µØ¥B‰HãXïb‰øTÜñéµDxôÿó§ÍÿV¯½zµ±ÌÿöƒÅ²ôÿ}'ÿÛNýu8W¾Rüý:9í_$\ÿ9æ‚3T5Þdp%ñ…R¬Š»¤ƒë祃ë/ÓÁ-­ ÏߚЂtp¦I hY(d(b{ì CÃ5J¨+c´Ig2®:ïy'å¾ò˜¶‰þSä»pÐe%,Ä *¯Î ¨½b¡üiòÖù+«œ …Õ})˜¨.Mõ“&ªKÀ$,l´ û”YjÁœœ â|2~z3“5Èu*aÑ 0á°%¦"Înçø `X7¬!sD8|~É<{Ë¢ ~›ŒÇ8rŒ4Ásï-í5¿HÊ=ßЂ*65KC'Od”aãÙIú<¯‹;çèÛ(Yé‹2Œ@´Õ‹¥ì[l>›áù¼È£FLÍÏoˆ‹/x†9F¤’ÞÉʸ’^†‘ôꎋþ{ÞŒ^/”§q±ù¼Ïç÷…½úÿqKòKq)Í…¼\ª¸!À·<ˆ;Ìvð/í‹q§tQà-Û^ôGx9Í'3bÂgÏÚ6¶èÞÊrbOÊr:CäXªµ»dpßû¯t­¾(ëÎÅ\ýq{±ô°EœqÂX^|©ö_¸g•ëûú”äb„jjóc}™kEìý8Te›ŸÌ ³«…²Ìм²ÜnÑÚ« ÕÔ^ßñÈ­ex ¯ã@-÷4R½7>ÿðãóAp>ê÷–ñ%êzmA¢®É€7s!cêõ…RàŠE¡æÛõÜ4‚®¿X” ë¹2½„œ-pçáò¥v\{x<†eñz¾,ž%»Ê±‡ü˜ò˜ê¯3 1>²GÌ#CÊÑÆ#âðÉÂ9‹Dÿž™ŒXdæ#æáì¼B„3Ïñ+’4¿õßï,Åø6¯ß})éÒ‹oDÚ™ûÒƒ1)»=hçz®;ÙÞFƒ›¹‰£Å#äŽ ]mÞý"ôtµ™qß a=Á ÚJy¢åaA£ ÷|ÏcÛwð<ëO^ÝÜäÕ>ÿ¯§Íÿ Ö‹zÊÿ«¶ôÿz’GíÁLÿ¯£€ÿׯ•º¸׳ÌÝV¹  c¼a‡¿wè~^èþ2ôÒ…ë'páz‚ÐK.{ROêÂõc³K;|WòZ+‡´Er‹¥“¶rH›pžm:éÌÝŽ~¼£ÓÒé'÷Ej…‡¿ôEúùcÇÃY„Ÿ™W’‘:Û—ôPÜ-{¶+D(‡v¨Í=•ZlCÉÊ ½À$ ÚE^*íàdŸSNnõp—á¸À-Öc;5å¤W_`‚žL ZÄñSz;9Œîçt~Êg‚iÇ’##aÀÓø<åïÄÌQÞÏÍÉÚ’æóóù?;²qù4ŽOù¬){”÷òvòò(óyVîPw.Ûð³øA~N ]Dž CF®a'çÏðzÊlöÓyDOTLⱺôÅ+„Ïÿ)à’ñPKòKyCÙO¹ÇôòË›K¯¨ðHqŠ$˜Ívƒº{ma õü«ÎCù“¤Ën‰…—(WâNôÙ;'…H¡€7ÒÝ‹º¿t¹™>6Y,â{$ÝŽî;éâqT¼êFYuãŸóøü¿¦OìÿUßx‘öÿZÖÿx’GñÁLÿ¯®ÏÿëÀ,Âü"ímùOô£ÒϸPH¿û¼<Å7Ñ&ñp0¢öi†EüúyþaÝ¥ØÒ?ìùû‡u°˜Þ“™bú­,1ïKÉ‚pÕ‘d×ÇcXI£&kˆ/]gÖÁÑìj =Í”O¶Ÿ™z+èe–¼€¯¨íY4W—ÊEå8›³—¹ˆ­2¦kÕøbIº¤.i]òàJù¡tK†Çß7ÂNîÑu«ƒ#<ð9ÍFø…XLJÒË^J‘ž¤1;7VF½–kN[yën‡P­éNæ/ÝâŽP4±üó«µx‹wx§ãk¹6еÜy:éÖE¦“Yª%]qÙ‡=šGŸ×1¼ñÂÎl4Òœ¬cEöÌb¥až®4ÌÁÒÙO<¢³_xìKO¿Í:FÁ€xÕ«ËücÉ 5;‹Ê&t¸Câ¦g”|LåE¸ï~­|cæßy`š±ýXÚeV±{:Ö%ÞVëÎNi½½»~¤TQÔÛ.Û}%íÑô#ò‹ÙK9#ý§¥ËfÊyÈz‡º0gÉ߯“8ìI\ã|X~"׸BN¶ÿ‹½ð›û+Oéé–ËàAÓ?Ä­MòºN˜×ù\»råa¡Ær\» À ¬[=Ì×òÒB¾oÅÙ€BPA>PÏåõWyŒ~ä„÷~=ïßÙ½-Ä ¸·ýþOto3®ý>šù£¸O›utäÔÔ+àÚõ9‘²»¹s(àpõ´îiÙK¹Pb(Y•P#£|‡œk d…zȵÎÖè¸Ó,sõÇýð*ç«cÁì[Üì»ô0{&OÚÿëf4zRÿ¯—/êéü_Kÿ¯'ysÚê›ØÅýyÔnSÖÔÑìlÿŸèø·×îúúsùì443ž–bº>ƒ ÎxG.—ÖGòâ4.’Òë}ü5‹ù·‰r´ùÏ'Ó™øHHQ¢¹)¦9Oƒüœ>ŠOBÑ"9ÓÆYûê|r}s«Ülþꊋöÿg0—æJ„ó×Z—¬‰Ò€;¶[õ>ì(»f½zö½ZOs¥É½»®Çq=àY,ßÐ>hä`ºÃÐ TÄ·«øüŠ\Ufì3àÞ¯£ÁìvªÝÍÈÍÉl†ÑM4Fãóïê …E{$6s ½ãËùUv7-P¿Á*ä;3ÔÊ¥&¸Abµ|ÇF<…·?ÚÖ÷N•{×Ý÷ÿŽçø: 6ÐôÛ4žÏ£±vP`žñø\¢ú,š‹"tÿ:?‡ ÄjØ?®3Èë‚oŸî7ýOé Lÿ“úŸ‚ÓÿôÓÿ´Î “é3ç„ÔÄ]^ãöÅ;vhz‹ðDi§i_w³ÿ(ã|ž]ÞµÄó禹ˆÊ^@Ûlá/i¿¹ˆyßÏðÃÃjÔPø®ÁݲQ‡¶+¢ß8~(£øLjÿý‚.žAžîö·•€í±äÓ×½u Ø; á´ññè¹pußùG4åó;ÝÆç_$ÓG',8g1¼î¤öiï®×R÷LÞXîKÞ=äÈÕe…{ÛæÃ+x⥷—ÜZz8êBÓeA©Äù¬ñg™øÞª€:4•íÀ@ùeùÿŸ¹køðA•‰¡ÄÖhͼRY²‰hT¸ôÞ¶÷Uÿ0²ï“ü')ªÔÊõ5õ'‹I<—5=›: ó“9Øò£²î.s)/HYÁÍ5(q¾n”(­$Uv5™õ™~¯'¿×éw)/Ð>6†¼‚´û¾zî×ó'¾ÿ½~QKÝÿê›ËûßS<’‰Ú÷¿ƒ~I¼;ìžtwT˜ÏG óùHYçºËŸÇgŽ'¾Ò\ áñÀÉ‹ßùX⮊ßå³¥åñ¥¼‚9.ÙèÇÛQ§×G¼*ͤ#<]à[| ï5œËtîµJµÕJ«T_­¬¯¯Ã/U,Ï£KûjôU‡PѼ8~¿Þïï®WæÜü6˜M¸oŒêÇÒÞ_]EüÖqHís²NÖÖu©^Þ5Ú=ìæ øU^7ûFó‰Ñs¨§¬; ‚¾Hz²½ÿ<8p^ÌšÇà ÀìÀ¬·ý@^þ¶c‚½Ë¥)¾¸Îy¨7tµî}ŒÃhh¶bGíE¦ã¨ÍܧÉÃú@ݲZþé+NàÉã˜wË7Þ™|¡]-¥ü€ílÁýIR»öçd²ÓHFRÄx'Æ—1¾$/‘Qò°ëâ¸zù]§›ø_'q¡öðÌþîÁ‘‡-LÊwþÍ@Z,ä—,çYã–¡ ÈUþ ¿µmÅìDò !ÕÇ’>,¿ÎŽùÌ]˺2Éøy(úèOë´Cf×´>(ûz*®']¥äç¨öU2FÕYtXÒ³7ä4€kÌW¥fÓë®’|“¼ÖôدàE"ax§ÖO£H¶¨Ê_Ó8íxñ–z—ç_—óO{~ÑÇ/7ÒŸ ib4ègËb˜Hýã¾ô»»R>Ê·0‘|ü*—VöÑA¶Y¸oé \ŒJܱ a|Sœ˜¼Î§‘ð6ÚOv‘ù1Oó•œæïþþƒmq _gú‹\gÓ÷¿ÿ¹<{Òû_­ö*ÿaóÕëåýï)&ûþ÷×û­’¼÷µÚðß1*X(ÏüÛ%ÍR÷ðd»·ÃíÃ6þt÷sò4(Ðg÷¯ãÝŸðêèÉASɸñI„1²2m‹Œ‰B‰ÒE.œÛÒÔØÍK±U’C\èê ”!¢ÿ¹…E;›Ðþ7—Ñ8š‚€'¥ö³Áx˜X%¾Åó+@ ¶žÝž©PÌ-OëëEÓäÓÛT¸Š(%¾3ƒ•ÁÏXGKb¯¬=¡ll]zo»À5îað+xZ],Ú ÂµÐ‹h—x¢õ@3î:5»8^¸ kµB›4¶ÌNŠÞ.³.ˆIâ‚1weI—ÀàZµÞ{Zírë¸\[wg”_ØÄyÉY–Á»[¡Z'°·¾Ü–kå¸ú+‘X%I0’°Vù\ýr»JÅI®ãqéºò¹üe´jJzÆE—ª’$[n¨£©åXáЊ¨šÖÀ Ú…1âªô¢H2á ™£åBæÑÀO· I^ óV霬 Q¼SÁ/äœ î§"À)"Å'h’*mÌöâ]¤ó¨d'Á^˜{‡{1vQrWÒvÞn)^UÕdTÎüLMƒŽ‰ût°íé`;éO£,ÌòÛhŽãy  ïì°DÉËî­ÄTI¬ô 0ÆcÌ4†a ¿%_MaëោT3\rÓ‡7åªÓb¾±þ~w]GJãV¹wã3˜8ƒ´4^®^Ž,kï'èÀ>™÷}¦Ë Ãåy–êÉ‹mWÁ(ô±å’{b¿ØNk½„©V§P&ŒO©ÂEaÕI,ÃíÄ•ˆ7UËÍê¾ÒÑmﯥ>Ʀ¡ l%¶FͶ‰o nµè&+Yã¬UÉH‘$¾X _>duI?ëGXZ.”’Ú›¬ðÔ]1ðâÎÝCüs%·‘Ob¹?.€p²ÐñÒ‡ŽWyèØÒè(¨¢ýëýãÖt_äñ飧ÕÿnlÖ6ÒúߥÿÏ“„Vp:Ö5Öí1Uiõ$©R5i”xGµ¤ÖIvó´’KäSj$s*MÝAaIÍ+çĸ³…9oÝ•ñR~g¸‹îÓ§ðt kY˜Ii®˜‹U&ÇÕ³ÓŒÛÚOS€g¡Ñ‘àèv„Չ(¤íwoÜáìÓþ²7ä~¶“rNëÎi;}` ðÜ(%ç»Õý«G±ÜNÉãömÊÅeFmƒ \â0ƒã7ïôæÔI@×À¹îÝJ3°p“>Ý­n‚mµ)>-¬éÜ{LoAŸþï©ýÿêéüÏ›¯–ùŸŸäaºrõ»†þO¹þÓ5„„ç¡ô»“?ß^ÊŸo/š^£L2ÎÐöC¯Ÿ¡¶Ï3ŸŸAÛ÷΂iT¬g²6íšÖž‚ÌéêÕf{ÿ:š™EÜ)eÂ_:]ËÚ£´>c»¬uÞŒŠ 'gFEâ¯ÓRËòCÐËÓÒ3f)2Å‘³“8rj½Ù}¼,—j³¥Úl©6[ªÍ–j³‡W›-•eKe™ÈQ–=‚v,£´ãYÖóx–R€©²h®òHþ|_ņîôe«½|Õã `öë·–ž|?îñéÿnžXÿ·ñòÕ²þÛzxß¹ú¿#Sÿw´Ôý=µßÑ"õãx—*?ù<3•ß‘ «˜Ê¯³Vê”k«¿Õïî;çbËÒcTž‘Š'øϰöÐŒ,§gøË¥œäL@)9©-:*êwTŠAš)}ÆÊoŸaº¶/[­€+œ ¡TW?¯¦À°KÜxý¿ü·†- é@w5KÝ—ï¹¶Ô‘-udKÙRGö|udðÿíð —z²¥žl©'ó(€ö±z£­âzdÕÜ ö·ËÍjÍÕñ_V q›ýX¢ˆ2¿J •¦ ÿ”Y¹þˆ6?‚ï¨t£9¦zw•›B|Jëf|‘¥xó#¶@½>¡nîh©›û¥þï¦þ´ú¿ÍZ-]ÿ¥¶Ôÿ=ÉÃ{ÛÑÿÕUþ¿Ãwïz»ýÄ pÿèCŸ WćN ÿ©g$<9ìþŒC³ü)”,¢ëóÀC<šê>¼ ø•ùýÉÅ=iudCÄÿ¢:ãº8çbÍx·LÕǦŠ.RósÌñÚÄIä(žo4á·Qb$•ko*µ7NVÕ7¾¯½‘”…ßÒ5öü|2Eo£Ñw† ¹Œ!ÞèÕ´‡Ô$ |¤<–qpÏ¡r´kàcxY–¸3A0M$ªŽ;c!Vø.’±ð6%_è(ÅU³¥#T'gèË ÿd-ÞH^Ñ0ö¡ZŠ©TgÑhòª hâä’LDüs_5âˆÓè‹nŽçÔ~2_M‚ÂÀ_¨ÿˆ›édx{>wR/Êq[Œ.F‘Ôºly7Œ/y[ÆJo ó4º¨ÈÞ<Ô´x]T¸?«ŒWÅú8ZWaɱ'H[•€µ„Õ—Óɘ}.׎Di §ÅVÿ4»ÁÐg—Æ|Ý j¤rAúIÛ‚ú…F>öÂ[;2Û£†ßúâ¼%q ¤ÆKWhbÐ÷ìR¯êXïÍTüTÈÃäcwR\Kƒ’ÚPdÞ‰a§ÈéŽ'Óë¤Ûú£uý Ó÷uJ’ vª‹êæYg¤˜óîvJ¬b'&4ò)qù½-¥ÏD×ãi û”RJsü~õH°ãAõPS€7óɺF¢9fkB|>`y…§á`(ö0TÝõnÊñÛqEló™>±'F_c‚·`o¿DÈætÜkH!!½$À¨‡:ñgs4‹\~ד!•×#?];0ºsÆà­Ûσñäk|ÎS Ùí`8¢Ìä^KF@7ÏÁå4:ƒAO'ðÒ@î®ý[QŠ£¿ßa‚„Éø4cZ€x¨$ÌX4e˜ ¨½æ?J›{ºÛ=¬ ö,,¾m'ßz5½‚4»¬êµ¿aé{›ß+i1·'­Æ=uÃM¬’J*â–ˆàC`ua,pü·?Û›§Òl³™¥Mîݞɋƒ1NB¤Ùî» ÿ€¾O{' _áèEõ­2 wÿ}} {ïR¥÷áv•¤yJpèÿ´Ó=¨‡çÎp*îû ©³ÒV6æJ UuLŠÓJ¢v f_’Zä•Ý›Y<šŒWV“šv’ýØ—‰¤Vª¬sSáGÄ…êgYË¢iêwpÿ]ãY:‰=ŠaQaÀoƒ<†ÇÑ9ÜlcÔ QHÁýÁšÓ²DZItªÍ2Ýmk¤µ«ˆšª†-‘û®„m×;»XËØQáãdQåMäF×èÅ­bgJý­[Ë/KóõšØªÏäsýVª&³úÞhªjÆú¡I)j†Îuóºó†c€€ç=¥…Ÿû…±'MÆöhQ×Ûýõƒ0þhÛJª;¢i”«!ä©?Ë›Ì.ÅM[£KŠè`ÇÜáAÒÙîÆÍÖ©Ê™Ò,;~³BãæduDÐ JªÒäâbÍËñ›ëJ W’ñªN³"ëE*^½A•±-¬Øß›ß :9fÜù–ÄJzX©˜ø†}BzŽ™'– äX­Ë5üïŒA¬¯H›܉à‘Æ»Fí1J)a™20YW¨š»O—ËG;d_¬â^§SØ»ðtû»oHÆd?^ëŒrzIÖ„ºÑ÷YÜ\ÅçðÇø<hêðJ<ÇOƪɮ‡mŒy}Ø¡ ëµá…[XƒO¢¸Gjž :²;Y·¶äøüÆ‚œuížÆ5iQ»|د7A#±ßL£¯ñävFįTÇ­;ÎÆ$l «¥`9”|`LI£ïžÕµ°ý„–>¯M¯µEj[òÌæŽQ6¯ßŠ|/£˜Ï):[Ôå~k«¬z¶ ®H4Ì`~{8M¼U´Ä¿Þ¾ý·ª!ÒRÝ_ÜŽF sö!ZYß`‡Ùóo"jÝÉt¤±4Z-b´Â³}Ñݱ‘ܲ˜ìT~w'–ñ®â?`z·BI ?­¬%Yœß=Àîx·N€ôîè¨ÝñëØäž³ ‹ßy$S–lVÒ •-ëGØ¿´ñ«…!½~öúÍímRóWD·FåB†°VëA a(ÂVèLJDz‡Q.Þ´U¬ ~]Û/¾¶ÁtËRêÔÁDHðòƒ–ñ{QãÙVtÇìh'¾]Å#ÌQ6¹‘ã¨m¸.à¨J-‰Y¶€Ü9ú¢$³¾ûEž¸ÖÿeÓ³žæ¦ o­ûÞ|v·VÊîÖÒv·VJwkXÝZw¶º¥Á:-aLt3¦},-ïè“Vò÷XíZÞwZ…­vnû´Õ®•mµc㓾ÁìÁ?çÁq”Qt½•² ³Û(u[(þ®Š7o?ªêwë1ôö]©%]IY[ëïûë5ß:ZÁ2-_Ì /†4H£SòY^‚½àÈKb¥3›Ç`Ï\û%m®í¶ŠÚjwæ„é÷²ÞzRÓÔZÜkCÌ—²ÅÂQʶRÙÔøF¦L¤²”ßBËrÅ{÷Æ÷¬J ïƒr_Ì·¥&ÚáíA7ÅýgÉ-ËRœF†$×íÉøóí%®Ÿj…& «šsb“u±Êâ\Ž·ìå§i‚; Il÷õ"‡n2ÿ‰¦“”96 âjý—Óݾ^"eH{áÚ¯tÍñù”i{”¸¬ÉuK@&K¥¯ªUãO$³¸ÚŠk²å'saC¬n…evTxeﺮ¬®yœ^Üá:l³#‡ÈïmZÍ ug·-BXÒÎ7ÀóÛ鯩âó…h8‡•Ü~ê¸Rò… K‡UY®¹÷¸ÊÝœi¤ÖTîÓ VZ¾ƒ'9`Ê…Pk=z£Âh®çDr(HØŽ¿äíÜ DJ.ä`!ÌÇB,âf!´›„ò°è¶ÒîáV$ØòÕ˜"öËl¨_£?ªüG°ýœ.Ä¢~ÂrRàðWyk 8Nè;;çûBþ…|DÐ7Bê­5k½dJæ9O7ë„0¤OCênÅÏûC@"ܳþËÍ´¶ÀåÎ}iKwÁÂv •È[2B!­pVL+œIٜ蜉•ù¿ªú(/8ÒÀ#óÛRÜoËdÄû¶Hú“5”¨çyVˆÇqí'CC«É æ'ÙáV~èÀ6.?t˜a7bÛ&Û0ae†ñÅE|~;škË#é•÷ú-¯Úpð§“<¨ë"êFJ¼ùÔ†3wmý…éê„(ÓsQo¨[/}Â-™Ø€§Ñ­ª2³ jÖÙü•êa¿b8‰fÒ\ðõ¯òŠHÒE$±S*ÏÄÔqôVVW…¹Ãl$¼µ‡˜¼¦9sCæ újÃ]Jþ3é÷÷_òøÿL7žÔÿçå‹Ú«TþÇÍÍúÒÿç)¹;mÿŸîFIœ4:ý~…~œ’xßÄ$)ͽfEì!ç„NèÃÓ <¼OñýSG†_ùÕ}:_ óÛÉh2 'b'ðGô"l1{ˆ-š¹Ä ¡E"DžÌHæZ,â[ä1)앸gŽwãÄa­J<¨´+°¼„ã$„¤œÄ'ˆl•ñ% ™Ó}‘ÃÏ®Õ0{©ìÉ*W,CELnð”BÇ…J" Cã>Ç“%~ïüêvŠ©Ã ;im–€0 Ö)48][ƒ‰~»Š¦ü…^0žª&r¥$ª—£9oµ";• ·ã˜´e² ̇ßýjYœá9Ô³€Æ×°6˜=™Í¯A|ˆoF±2“ÀÈâ© Ëæ:\x6á³x~…?rCœC«Ëøkd`Ár¸’@ÛÚd’íù•™©nx{ÎÉ×8/¤^œ·^’³ï¾yÿõFPß¿ÖöÖþ£.ÿ¯ÓUø‹~¬í%ˆ°<‰DÊ™H‘¶HL¿’úM ö­Xïwá&ó&ñEH‰—vЉ£`V: ß5à>²þäX “1!j´næt¡Ñh‰&oTv׃q‡ÅRÖñ`æÑ=Ê<Љ¸´·ò%JÑê‡ì*§¯æœ6ÓlK;dåL„£i4~Oï±xL¾UÜXÊW©öT­ÑgÐ=^D˜`9êö!©Ï¬˜làbÈO©¹¡2q¦%aHdN¯i΢9ÒòÀ‚¡MÀÑG¸àæ²Õhëj>cqsäM_íuw—ŒÝøMäÝ0^½Íœ-fy‰CtOÀ„«kIºFœaul\ÀÕñ(8Âè;giìнCÆ›×P €XÄ{Müѱ{ÇBUüÓÞ ½â­I9{%õÙs\Ǽ9k=çÂzª‘[£œÆÈ°ÍûRÎbÏjœ®Xå9úÎábA°:.̃b‘˜•“­Bí{#Ž‹Žlص{D³·ã™ÌkJž(8e%ÚêLl:ê“&Ž€ïœ€<#àÀ9·²3›Ùù4¾Q7B9ÝÞÖWÍ[ž™v4 Ó,úΰóx.wÖgÕÅ™cÚGðY8…ÝÅgÖë×+ PÐV… yxñ6·Ç1|ðC~ÝI(èGäó¾× ½u‚C|Ðq‚çD㶘ËÔjª{)ó ]y‡øÔåÏUZdÎkgAy¢^fròÓµ+T8 Žz™ró¹0Ðw|•ØD¡(Mìt®šÆ(Gá5ÿ„sYàŠÇO{ q…Ó ÎÔeD|㤭½rê­•jjâëÔ\SüåÔÍ"cæíõ¾¿v,¥Èc) Z­q‡*øÞpÒT€œÌìQÝteðFB2QØCêà†±”ÞÁDn§ênÿ¤„!EÌ„FŠ)ì9‡–ß*~DL£k˜²ÛÛ1Ìæ+H¾ŽüÀ9Óåì<6„,³ÄhŠjq7=êú…=¿ïòŠg¦œþcÊ~ÆÔèžN9w»g¡)-ÑH490Jk«t`Qzk£/<ŒüŽ×J4<óß(Œs{àè1äî%0³ã»m »tI4¯¸i ó ¢åZ‚kà `.-Ûø1§èàÇ'Øxí„o}x÷‹E9÷èŽ`ËâÊ–¦Ñå`:ôõP¬P÷N„³ÐnÌ!=<ÅdŒƒ{»Ø˜œ€|Z°ËÇb Ž®{Îv£›+±õÎ1 0LçÈ"ýi³ð±SgµãÙ`f„ <ÜlºJö6Ê·€(Ãc¯ˆî:šg±N£q(¸ËPóYí]ÅsñWÂÖ£ËÉβkÊ6&šo ULœãIÉ»É9Õ‰ ¶3Öδ£¯ÑHlj0G‰DS½fã@ìOn§òŠ#£NÒ!¤"¾âvŒD}+Þ\FÉiûGýjõ¯+¨õ¯›{ó§ ól\^ÂQ3C=îî` 'ÑNtÁQ£ö 4Œ"3¼øfðzÓÁQ@*`Ä„ÏÃ;ç‰ïœhÿ„·|.*3M²”N'¼å’½°Žÿ€H±÷WÞ8À¢# xœˆÁ¨‡Ð—W¸ô æpÒ“·n)‘΂8þ01Нãùú* 2l«¡±Ê¯½‘+<™·¢fÚÙi⻟GRãÒ²\F¸0‡Xê‹'ñèVÊæ`gh2Wç?Æœ÷¦®É•T81›¹ÝˆÁµv?vND<¸€ˆXÙ“¦÷³&Íߊ—YsžÑÖ|“šgjræ HŸ0V¯&çpйÀìp€Ýc•›d>&„Ü©e—OaØoÅ+wj¬ÐÏæ ¹“f»U# @ª‚I7ÂaxzÐÖ‚Òø-Ä{bUlÖè¸_Ô½¾~9ÜÈ ïwc³²Â®(~jÈ¡PÃìè)#xÊh•“ r˜5øÖŽÇŠÀò…E5*bk«"0Þj{çøÎÉøóTtû;Í|ŒÁÀ’»õðp{aÚi’‘Óâ,„žcííz½‡áóÖÎ1üÓËÀ` ßêÂ8ZøêøïdÿáÏN> *x2`´OZ‡G˜cgwÿ}׆÷ð?,ÎØÜ¢°«‡ZeÁéôh^þù€mNð?þð?<9>ÚÚ‘(ñ˜ {‡Ýþ®úÞSFqkûàètÍFµX˜W»±Ûù ¿÷…oñ÷!"cx6ýœÍ(å¬ñ.hrûèSEž^òb¼)¾?_zzºW¨L ƒØš÷H®}3ìîàp'ƒáx:ÆÍ7_(N­<®èJa¤ö%ÚÁ쓉¶ì€*?Ãà0þg™|ì]´@¬žB&ÛflNo•jBýÙÁÞà-áŠà‰N$+·«7É:Û±/I_÷VX©öüœLxh•#ù"íþÌgR<þž8C…Sœ3B¡Ø†]&‡ÜIûØÙ]¯j×úÿ­ƒnÜ£øþHw‰§Mñx&‹гÛÑe$ÈY¢:“²´”©9B©9áHEðÒN«ó«Á¸:7ѧÑe÷¿7¹I”€gÑlžFkŠŠTÛ^ëq#>OÎŒà’K12£ò@y'1ìsÊf> TôFÒJÏ(–ò®N¿¾k¾îøO«ž½îà Tý¨3¨EzN^ï¤{vñG ¼ihŠÓ‚, ¼¨–f¯go&1jÃÉ¥îû‰H^a_T=€¬QÁâ´5/‰ê—výIñuT¤ÎVëR“óÀTÜ^ìK‰‚é´–=lª[ˆA Œ¦XG86VX±ºR‘8vv`[VUq P ANsÏ—è¼ ­«M­k[£`‚MÕ"µT=w©’$3³7ç`QîxËõãË[¯ÁÜiíA­³d0:àÎp•Œ,m=µÆ›9ð‰Áœ,߃1Þ@aYäå1ÿ6±Ö9½ =kA^ÞaAzç$pÁò+Âöµ ž÷ÕöºU8¿eÛ:ŸwÎâìjóUÊ–áåm'¶y%qy!I%…uÀw™‡PR“:²û4™—dß“¤qÇù5‡r˜¬Ö<˜9L#„0Ë2˜’ÍÒÛPŸ˜´ ›k¸&¿ár“¾‘˜ÖÓ§]ñqLv* 'qŒZÞ“€d'ªÞAS¦`™¯¤/NÐŒ%fˆ æSþ7eG›Nf³ úÁòVMm cs?Ôï°Çø# à+‹éÄg(Á厉.>æ¨^ÜaT kC]§<£jœŸßÃÃý&wHÞNIHœÏ¾Ýü· ùÅ)0C܍޹±êX1áö|ŽªÙŽ5âU©—®¡ßÿ;5Y¾vš“}µød55Yù÷d\uã•ô)ŽÅsßZUwU•Óôž> ÙD§¹¿¡àÓ;ÆÃ–e§4:ëüâÉþ&êö¹'ä@='[2ü¶~æÙæ ÏŸ»M¡gO!9êkj›öÁÀ øgUÈcîyÞ…Ùy×~C^ÅJc&Î'·QNDLŸ6OVÈ3B@·2iAÐì«“V5ÍÑä{ÌE7pf¬g[]£jxjIÄËNÛƒò&¶3]Jžüe]j£löÙ›,­ ¢=™Ü¤íŠ×0löN£á;f&°ƒ5¨É/‡z¹€ós&ãÈ_Ò*TäÜacçŒó>9Ð8hé÷ _w¨Ê˜çLW¨攸…tRØ…ÚVSY$p8{”5‚²®àc&û¶ÎYY©j™‰4ZÄ–Hí—qõ`(é™l/B–ê¿ ¼±^§í×g± §¬çk2 jn„$4~g¨¨ˆ1Ÿ/¤¾ÏcÇwN¶7±Îµã Èýxß&m´¾æ¥¸Šà!ñÜñ8[O¿ojò³pÊÌ.ÉŠ9ž$KFÕÕØV0™úÚS¥žD/M²hè>löÚû@È‹!Þ,.âé ¢ØLT‘W}eqAljŠŒñ’’ŸŒ*< ,;Œ/tKP‡­>ó¶Ÿnâáè;À9‡ÛÅŒéH«Œ¤¸üUµ5zðMnã ÜPCNÑÉnâ&4ž«gÇwöäf‡Ó€öTÙIÃz\}ýØ“Z^7c*€×#sâeóLJÓ)Ênêz)üßévõ5ìÄn˜Žî¦qP®µwTò-¸PwöüR³1ŠÎžûM Dôò v¡±‹Û¤w©ºD†ª´ùðƒ cãM7pyqš¡/ÿRç›…Z|gfò·1Sd]wv·É/µ’Äî6¢wC¬v×®™²2ÒÏèyŪ†V÷;Ɔ—˜àŸ*½áCçPi8šÂ„ÅxøÛìf’[â4oñ[ Ùòmç*J\ão(æ¿éêùA‰-#ä3¾¦‚êºTû «Àè7yõøƒóêxϼŠÞΫÈǪñ¬zÍç¡>JÜ´³w¸*®0NlB™qŒ‘FNÊnLÚÐÉ|>¹ÑðÒÏXi|Ù#ƒAì} QœxL!àº7§ƒÝ—®ÃxÂQxÙªð1ÌÖ$ÿ~nõýÛ E¦ÏN÷4òÚt듪¹…£óaW7çÆðfÙªE.™ú&“­—‘¶F’;'ÅÔ2"K3S"£¥Ì” Ža8òõV?y Äì,0¤½ ÃQwW¶†ŸÑòA3;ÃÕ†Ò¼ƒ¼5޾âˆ÷ì”÷ÉßÛ;¾Z=V9ÌÔn™óx=Z/´Â½/ñ yœÿ}ƒîà°ÐuÅì[Q~ÄD*Jèê5òt‰,'PìÀ(Ž S©®c+¸1 â[¤4ròn ÞIÁ9Pê/R›ºN?)jjÆÑPÓïç!?æu%ßäØÍHbrhùd¤‚|p6ùŠTI„`h»©†~=ŸâRùÍî ñ ŽðöL¹û× iQMÎR{â78ëÇdE^@påT“M­-hõ¤²À—D žUEX¸,½Vf¿¤µDÅ/ªéŠm*«¯Ot%A¯’¯Æ@¤ÍÄú!b{¡Óû­NËÁN’kúߤ‰eß ÷6Êéj8笓p„>Äe4§{$ðš^Œ¾{±"ÜcøK©S~µúÛžM¶%‘„Ï$‹Ž!|ALà2<'ñ°GÒUO;F’å18êGi¨ª­^¹Æg-jFª°B„&”h•ó’g¶>•ÄJc…|˜è?zD¡Rh‹ úÁ6IÎÞ½AÒU¤‡ìŸm“¦Äõ¢$Ö/£Y´^I~Á±Ör\¯2ÆH8x’µìò•æsJ.oµt>•ДÃ9Ù„ãøñÜf˜5)on8~˜J‘ò€?«T¿ˆðœð7eµêËL$a›OFcï@ÎTRhðu{"vts´]›˜Uø®J¿sâíÛ3N{>ö%ULCUä=Ê+‚Â&˜NÁǵTs埽W¢“„˜'bOÆ”‹!ƒíÉyz¨T V’³q1 Í u&¥¶È–3©Ênz熪Ï;ö>!:´ò)›šÛoÚKÕÓËvÒ¨`“­­t?9MvvÜ^rô»uºý6åz7ñ ö€ßíË·«Øóbîìð¯pxlm­moÛ²¯¯ùóEug×M¼n>'¥GØ#ôQ–V×ÂÓ‘Í’FU£Q€¼…}NN¿ K§®Ô}dãÖËJ˜*Ôt2·YQÚ‹F7xçÅóù(ÊÞ¬ìù‹ikøLð¿ÅÙ^[iá20{9 ܧÔ“Ý/k„óémh€B%˜&¸H¶îŽOne) ¯¢òÒø¨¬Èjá6ç6s–3µz¡u Y5)¬Ñ¨ÊòƒMü a6 //ª‡1¢ðÐ&52I’Ýt´Î6á8,oüÏôñÝÿëOzÿß|×þtý¯åýÿIÞ¡îý¿þXáäà··lhHùÏ>p>³>þÞÏJ`/rÆ4ü×ð|û¥tþb§Jý/­¼´²~X_"‘ðFŸUhŒ—€bq9p TÈ',>ÖÛ“%Çú%ž‡RˆÐ|Ö2“ËN¨Å‰l’]¿Ì-f‚:ˆ!ŸÌt(ìQÎÞõè\‹ª ¥y˜‚¼Ê´tö]_–¥/1ös¸wkÅ÷ S#±vïGÊŒl L3ß Ý{&“åëRh©„á‘´,À¥Ód&çY|ùâ­’*¹Ræ]£ðØ0šÅ—cN–‰µÎçJEŸ¨¼ë¾Œçè]/¡ä9Ïc±Y9c/©k†ú'µ»¿Áç­Ó€ÂƒÒ¹Ñy…Ñ &:¿ž©©jfÍÐUU,ÊI$[_MnT},N](NDê7…o Ï¤ÇÝ#¼ãÈPœ=(»Ö¼HWžñTiÂYóšÞRñpËm5)`™ÙÒ­:) c¶ÒÕtJ˜Lghœªàðù•¥¥JHÜŽsDZ;¹ø±þ»Ùê)§ûP^¸M¿Z£p«ü—‰»œ"q>Ü9™ÐOÍ!Ì&!¬©V”i<™meþš;êlKº •–è‡JÒ;(¥+ɬºŠ8«µ‹¾d,º”=OÉ:©Ø•‰)¨Õ^‰ŽÖ…f¯¾Ý°ðÃA‡0rj1Ÿ\FÔ>©Ž‚iWf®åáäF «[})µ¥Œ‰a—‹LLEö ¸:Š9ÑÔTÐ)‚ç •käÄsÍÔ1éðLM“îœäRÖN g` ÞúYÒmåš¡ÁݳH÷®EìUéN.@Ãå:ä+$fœ!Š äJUJ3R²“\N(&2x¯;CHŸ€úpâ’1§´(=Á³¬¢ÎÁh¨Ë zKÚ¤ 2­•âääóo•†6›\[ÓwÏ»ôI'MY¶Ž¶ßÆA‘¨¶¡Ãd€"4/ä2™H5бJÝaZDÉ<‡R{TËsœP9ªïè‘ù£,ìÏ”ÑÉb7²^lŠ]®+z§Qòo8"Þnq¶Å˳ÙôÞ|.B +&›.Dno ðÝ[(ÀRQ±…|MÍ¥R$\‚$©ª§ã2§IëlYAnǾó ¦e’_ÐÌv"AKÆIÇ Ãi ?ìÉåS JâjjÖ*Å’Ðtò7å‹\ Å­šÅþz]6Ù5U|1 ”ÿ~ ‚›eiàœ%“ØYtþ Ní+ÅLSÿv¤º¯ãÞžÓqÙ“ •ÁVLZR2›)d‘Q[ú뢄`>t«j§g“-urq ^W½ƒEöC¢¬ù{:è HþÔ8 ¥Õ¨¼—Ë>Tœ •™ŽÝÄ-ÖÜIÜ‹³“¤m¶Ð†úpç ¥DDB‹Žå>{@&Er'Ô!h¶‰ŸڅűÙgljTõ}#+„£þਟàH™Þ³G’ Gn¦cô‡ÄÍÞN)Ì$‰Ð—‹ÈÕ{qDž|p0É0î‚É“¥6.mY|.ªÔdÒ•®j©ÊX¢j‡ëAÛ…,Ó®œÖeJÕ`´êÚµ Q­KB?Iÿ˜¼0Á¨œHFSE/M‚0+_¾¥Œ`6ûƚь‹]ªüÍ‘L¬yþ"‹oGs>î9ë› "™ŒS±“_ÊTåIã:õ§Ô…[X$=½ÊIæ`¼XMÉ…KJÊ2’Ö9µHEIj±t~ñÌf1×—gQ©§Ë#éæ År›á×QUòN4[»ý†ªÝÓ«ˆ~ã8<Øw‡0Ô^ã%®ÁŸ˜¯§wÐî`ãã¶ O ”ñy×£¼¨ôoçÝ!ý‹5Zöáÿ¸÷¶1ÉJ»“UÇk«´º‡'ºvO›ÿ=iÕèßzE:Â{\ÂÅo<“Ýi7¶UÆBO©ù}F?E‹Ö¤­ÆNEœnRíš÷»{ÝúypPqKÚ„‘/tßUøÇ{úÙÃ:L§ýîîÇmøyÜ9ØëzÆû¥o¶;ûïý%p<=þš~RvÔE°,€˱oäç4@Á†è‘³‚âLÚõ*U]Æ[Ï%Xs€(-Ps€¾+ÑÖ¬áŃZÚ†¥ÑWåþwJÊð°°bš›°¿øÀˆV£ïJb¥»RÁJ'Ì=2†)ÛÃÃÛ?)SüU`2u{2üv±’Îô‚íc¶BÊû•0¯¤*'Hèn¥ òê.jà/œdŒ¯cVj‚ýl™u’ÀPB¾¾ÀÊ3‡ßÒ€0ÅÓªôãE'Š÷†í‚±ifðôÿNFœŒå)k$n®c»F£N€[óA5§~08¿B¼*U8³×€OJD0@ºðÉ.núæÁñÁŠÆ2Ÿ¬ðï¿Évš‡íóIQJÎ^n¡Àlö¢Y¨ÑÖ˜M€ ¬)6Ø!o8lïDõ€ÞnÒ ÁdaNBß}3Ñ'-!~*sߥýK ÇÁ´'¤'ù¯K¨F_(ÚcW'F_îF®¡¥–š7Õ#×·¨0&2w·wO Eek3Çe×°Ã%-ZVr‚&!Ø]'^a[knæc›Á©QrXÍ‚‘™¬ î/c õ%^Nùy:™¬Îf#kßèÆ=»‰¿DUÔÊìu.¥I©Ýÿ89¥*\Iùeà(“"WÖl6‰ÛW‡ÌÞƒ>šÚ:ôr¢Se$ ›M9YÛ}¦”ˆê =ϧƒó/nJ';yÛ±q"¦P:+ñ™”2%(}–ä ª–kvSü»¯¼s H™KÿØ#ÁS¦‘S#Ñ.u;«¬g”6¦¢êc=9Ô-Jc†¯+—6¬ËÕ³%»ÅP„pª&í‘}å…7^¾dᇎõŽ8ÅS(¢ÉVÌc“©Î1•†ËJಕ8y÷K2!_ÚYÞ3|è-tX znÃäsÅJ>”8Áç=ñ°˜N²ãIzÄÒl+Jîï³ xSêëlò¤žÔÐÑR‹H$i< ;èX1•D3¼'´ˆ³ñ¾ãÏ_’tâ5d¬jÌÄŸE ¯´4bëS&hXÂÊ}6ùjºt®ÃnYImøÃŠ“Ox)]0ð]E”§Ã)é°Ó“M“UÕ®óÈBû'¡#s6á˜A×ß áƒSXŽ}÷" @IaH_y™3ÕØfêå‚4­w°€ŠØÇϽ„µ`§¡BB•H>• †=„2MÉî÷ñ«ì",jyS§-‚Àª ôBªûÖfñld¾bƒÙoÆŽeÝ1)|ûöò$é¼l¨®™vY¥ í«L¶øÒ ›”}TG‰¦Ã)I.ÑšL:ÝC4šïzxH—kˆI¦|†i0ȰMùn¤›ÜÈ˪Ì#9³Â=_9ÝLAœ’ ñã%?–‡šò†ª”’ñz™IN¨ÄÃüOJ®ò •´Bô]Á˜&ýQp>†{¹œ Å5™³Ù,²4 Ä(Süà$¦Ì~®¼ W^†+/ÕÅ2\Y,Õÿ!áÊæ|YªØ+¬A©¥§bòäi®üâúˆ“ ¸t¾¸Ô -ì`hÃYÏ• l6õAÙ—Þ<Ë íeö2H{¤´[i´³ Ò^i/ƒ´¤‡e6?Ë íe¶FÈ2H{¤-¿ Ò^i/ƒ´—AÚ?söæÃi?âã‹ÿ~ñ¤ñß/_Ô7_§ã¿_.㿟âaÂtã¿_xâ¿»×N"¿O þvÁZü…c·+I·Šâf(¿m„eK8O‚}¢b¨“pêÅê'_ߌ¤ÇÊdŒ§À׈{I‘d4%Eé@>-G“£hnÑ¡¼t®Jüìvt ¸!Íã*LƒÑ%H™ó«kŽûUá˜ÐŠ#¸W\Ü ‚Jøoé"ÃOgn¤,´žPaٜЂÇ^8Gß+Ipè94æÐÃÓä”çÈ×a„ÝMf±qöî¡Bœ®­U}#C\ŸVXE·ÖG9ˆR¢p—!µ“éõjEvÏ|±¦0~÷k„á·F”Ú¡ž4– ƒœÕÈÀ­1;js´ %áÿeDüšOh…ÞÃ8þ7þ)¶%¤† ,Óá€J2Ÿ¸Á¦¤vWKÂÑ<î¼ÿz#*ðþZÛ[û pŒ^¦®Â_ôcm/A„f®o­5qþVF–‰70;‹ÄK‹ê†fõ§Ó»ÞHm;HF7Z(†ÛM€˜hòFe7Á!q`µ;,«Î( GUsã{ïF˜~œ 9}y¢¦)p~0šßøžÞcp‡Ã@ n,:S{ªÖè3è¾\{Óan_àPIQT±Zïa°_…ZQàŽRÄ£‚!‘9½¦MˆqõjÁ¸™F_ãÉíÌtÜj´u„ëXÜ ÐÏÝð#ü&ƒö-8Š8æ3Ááõ×ÛÌÙbV(‡8Dooñ,ªXs˜]MnGCd2°ƒQÔ±q1f7ùfÐ<ؼÄØ† e¨¡m±ˆ?öšø£c÷Ž-ЫD6À¼z5ÈÑÛ‰’¾_Œ4…®ŒçSÉâ GÄÞzªÅ» Q  ã¢12qãO÷¬Æè%2€ƒÍè0}ôÃÅ‚`4t\˜Å:"15*a":a¦t…q±¬‚!ÊH³·ãÇ S¶ñP¢­ÎÄÆ–.jK¤‰# µGtp ŧhvÍΧñ’nhägÑ/«ŽåÉ•¯ð4‹þ†3ì<žËµWŠ+ŸWiæ(ÕÄ8‚ψ Ðg¶'Õ+tÉç oãÇ´çI*-˯8eŽøÎã}Þ-Ä0›÷(€›ùàõàïR HÒàú·…(Ú¡æþU’rÕwˆOa(r’œÄ|ZP0rG½Ìää§kW¨r‚=hOY×ê\ @ìM5‘&v:WÍØ_”£0cÈI)f¹¸4ƒ¢‹G’ãL]F”’J:jjâëÔ\_u÷å4"3KÕž÷׎¥y,%A«µa%±²±x—¿À^>ÍÞËV=åïeŽ[¿ç&:…Ó%oÀϘâÔß³?N­B\×G^fä÷5cRa Yˆ†èŽ<"Ì>!É=sâ#Sµb%‰¥9aƒ ;›,ZáŽC²ùÁLF>Æp>pì#7™¿Á+ð^ØÑ|ƒ„_^­uÜxs””(I³Pó’Ù»cгm¸žè6>&FV—Œ°Fv€ ”‡¦äªwg*ÄRÞ‡db)ox»¹áÛTÑ×LLe3“yVpÝ$ÑvîÙs¿ÈL;4ÓÐ e.•éPFh.–©dyäÉ©æ£T¼ˆ7¨: p»¢Md .À‡è¥DöŠõB Êœ‡/OAò´³¯˜˜œÔYBì*]MíM<šÈ+@ ¹v‡*øÞpÒT€œÌìQÝt1TÁÉÂO2QJ8Ç7: ¿cÝ¿¼Â?)aH3ထb {©äbÌŽüˆ˜F×0d·fb÷ŠªQVMC±-!1šBðÝ Aº~!E«d43 ‘2ÓUäùèžÓÜ-€¦´D#ÑäÀ(­­ÒÅ”’¾ð0ò;^+ÉÄyÉ7¾QçöÀÑcÈÝK`2f§’Â9Ø¥K¢yÅMƒP˜O ø(×\YsÞ;Ì):øñ 6¾vÈÒx÷‹E9÷èŽ`ËâÊ–¦Ñå`:ôõP¬P÷N„³ÐnÌ!=ð4ažFºÖ] NÑ^þö 4Œ"3¼øfðzÓÁQ@*§N'uõ0T¾s¢+Á'¼å“é>™ÌÄÍtÂ[.Ù d1çH xã|p˦ùxœˆÁVj8¸ô æpÒ³qÜR"qü+`2b_Çså/¹FÚ0Fc•_{ÓðdÞŠZ-e^'› iüSœHMsà(ÝJ¹Âì .j:äè弯À0•s:‰¦V@5KÙ‰˜¥µû±s"â¹Ló9[Ï™4½Ÿ5iøV¼Ìš3ûg¼IÍ359s¤O «W“si”2 Øá ºïí™ó1!äN­·—3µÚ.^¹Sc…‡„‚¬ÙnÕHª`™Õ02m-¨tV1Fç ø'°Y£ã~Q÷úúå0‰è}ÎéCú'‡YC€¯1½Ï¤ i4*bk«"¶·U²øsAtû;Í|Ü;iKîÖÃÃí…i§Iqøcú”ç¡ÿolo×ë:åùÎ1üÓËJ¢£·ðUò¿Ü«$^¾ä³ÿeÁÐBvv·ñßwm™%}Ö¼ÓÜ¢$ *îdÁéôh^ýàv9ÃPç„?<ÁO޶v$J<öþÞa·¿«¾ßÞƒÞ¶Öwkûàèt­îYج4&wHSLOÂDž9 w€f”“vÖx‹¦9q™HsºüùÒÓÃC$$ñ$"w2ˆ ÷W·ïͯ™¬D!“m29PïCö/ŠOr!x22tdðYF2†qÑ&<´Æ‘\ˆSëÇãO(1¥­§cSÙR„™J¢³»^u£¬×Gp°²5¼¹[ŽgA×tªa9Á åN@8Ò†ÆRþ·êüj0®ÎMôitÙýïMnåßY4›§Ñš¢"Õ¶QÐæçÉ™€\Î3(”,ïræŸ@Eo$!­ôV’R¡é×wÍטLiªþã«Ô‡"='¯wÒ=»x‚#Þ44Ä~G'TGÏ®´À7“µàäÊ÷üD¯° ª@F³\©T[óÒ¨|iןtQ_GºátaµÆ´hЩ¸½Ø—Ói-{ØôDä2Jtøü¦ Ÿ>ø„cgÚ!ô…=×é÷|‰®íк `ÐÄ ,‡â•~Ã(7n‘Zªž»T†#vŒ›s0ŽÐmB ºÎŒåúñŠå­×`î´ö ÖY2§,-='|€¹J‰Ûož°¬ìÿ6ÿ6±Ö9½ =kA^ÞaAzç$hÁò+Âöµ ž÷ÕöºU8¿eÛº7gQ8é–Ÿ·e¦kª§P$^¨g@9lV Ü’}€¬K2¯Q«©ãü€Ã‡ÌúT,›a–e0%“¥·¡ãis ×ä7\7”§Ï»¥vùÙÄ ž„#fˆ æSþ7éz>Ìf˜5[nÕÔvå÷X`?0Â,±¾ªø˜N|†\î˜èÂcŽêÅF¥€Ð¸6Ô5*;rʱ×$Èo§$$Îgßnþ[üâö nTÇ\Du1›OoÏ稑íX^• qéúý¿S“åë¦9ÙW‹OVQ“•x_AÆU7^IŸâœç %’²@½‹qíRzú4”Õ ÷7{¡(\.Ù)Î:¿x²¿‰º}î 9PÏÉ– ¿-‡Ÿy¶9ÃÇóçnSèÙSH…úššÄ¦}0pþYòX {žwavÞµß7±Ò”‰óÉíÝe0”­Ëƒ¹Q.$=B@·2i?ÐÜ«“65ÍÑä{ÌE7pf¬_[]£jxjIÄËNÛX)ê2µÍLù1Y¹çR…ëÖðH´&ˆv*WŽPÑœÍ>{¥Ñð}9v0ˆ€üq¨— r—'ïö“t  #WY»¿nœ÷ÉöþPô1DÑת0æ9Ó:ŒCeŸ F­ÚyÀäp0‚¶5îœ$%…çœå‘Õ)½X-3…C‹C+ñ³ìÔ!²ŽRË7Ù^Dé,¼77Öë´ýúìø"¶á”õ|M¦@Í„ïñ 51æó…Ô¶ãy<õ$×ÖÙ‘v<¹ïÛ¤…Ç틺2â.«>À äK ñk0½£É΃sTŽø¾ö:ÊXÒùdŠž½nëÅùîk^ˆ«ÏO³õôû¦? §Ìì´C Å î„ýÅ6;“¿jO•ý½4ŢÛeÍB^ ñfqOgè Åæ¡Š¼ê+K :LT|`Œ—ÑÆ0ªð€n0c zºÐ-Aa¶úÌÛ~:¸‰‡£ïçn3¦#•n"Ýíÿ†óãZ ßän0®Pò [ràb÷pÏÕ³ã;{IFÚSe'åëo­ ó3Ǥ\NT:¯GæÄËæ=…cÒ†Næóɵˆ†—~ÆJãË bï×ò™"É÷àŽ‹Q¨ñ„£ð²Õt‚xZxüû¹Õ÷o7@™<;8ÜÓÈkÓ­O>¨æu»ù‡]ÝœÛe[¨¹dÎßÒËïØc˜Ë tÆä“"5·ßD*upÒËvÒ¨`“­­t?9MvvÜ^rôÑ&d£QÞÙ¡wŸVøÝ¾|»Š W±*Ëÿ ¬pkkm{;Ø–ýT1oì_Ý~ITVÇ'¥GØ#ôQ–V×ÂÓ‘Í’FU£Q€¼…Íõ¼Ü£‚²¾È?€°öC/(róÃ÷¨ Ö Ñ72QÚ‹F7xoÅóù(Êެ쵊)W˜ãûßâ„×­´€˜½œŒîSié‡M*¯Rº-Ï©¨D˜ØtÒr:*ÃK“ŒOne)έ¢Îø¨¬¼2FOO&s'‘…æäõ“Æ‘%f­c”“ᇩ·>kþ…ÖWg«þ=h ;ý­üOº)ÉÖ½IHý²ç±$2MÆ8ÑÖnØü£”Ø ¶óaW¾±êX°`ü”ÜBr†ê˜ ”Š+ö–ý`蛩oåM_ó\e['dˆõ™Øà…r­ú‚Á’ ¿H‹â÷AÃ{‘‚G5š=AÜ |$¶…—®mA<¹6†œÛ²¾[†_âÕL0›¬8¶,^ËB&Š”’€põ¼ú‚°=±3™S¸*™kDI† Œ°ø F§ÎW½tFž;œ¾'d8•WÖ0|&u~‘~¸¶ÌøŒÚv£V˜PiÙƒÙò›ŽŸ*Y£!åÇÀX „À"~W°)Òßñ‘Cä¶àtº, „znd”È,Xt…þ^¼êN9ngë™ÈL3•-Û)iû ³eÿz/ÿ÷Ë'ÍÿýúEíåF:ÿw}™ÿû)Þjnþïâ§ÓÞ»>H•Y‡TÖÁ¤ª1ãÏcd]·Ï\ÊI+üö”û×4¢}d¥IÝ[p ž¬êÔ§BÝK¦â©¸ajàã^®æˆ3‰^·´¿ZŽ×zMøIäÌÔíÀ‘n”¡$KX;ê:PdªD ¨J°Å9Á‹‘!¾+Ù—7¿ñ»0f˜âšëäÙ®xâ; MÎ#`·hRØI¦c3£8 Ç"˜qèð·ŠI8à8Â冼JÆ3Œg”õŽÏH¹Qü¬Ç“·y˜ºñPù7ýf˜dO¦LOfo#A÷Ût>s ³Ñ™]E=À-bXLphOš¨OŸÓCŸÂžòVr¾Ê$»v曢û¥+”™#M'¼[)ÈŠ<]€"™yê£ÈÔÆˆ|)SkéóŹ~ÚÚ‘½x*Ì«¯š³û°Àì>dÎîÃ]·ÚΤ‘Œê¸øÌœJxµCδºiÍôx™gÎô¸ g‘ëDJ¢iÓ´õXÍÃØ,Æ‘wk&˜œÂŠï¢#®6)㢾MáÜÙs2¸cÛEÈ nÉ= ï'f™‡l¼û}r?>~²Fó‡Ðü!fâݘ(ÿÒÀ®Ï”v?ÆnšÔO>„hÀ¤õ“ìm}R`_gú Íæ¾Ì›5…÷†|¯ì´wKÁ+ËD¼‹%à•mÓÉkéwq©äµ¼pÏ9£f—GÒÍJWŽEޤËÕ"Ófûh“mîö*Õfw÷]ïø <æ=Lò´‡éböêø*‡{w~‚?1ꦷÝÎJSxÐî`Oý^¿Fÿ„ã¶råòé£1]Ï ôªÞ>lWÄ>ü>ÙIRP+½Ï·w;½îSÕä}¶$Àÿk*Åç:´tPÕÝ%8­Ó,ÓŒû§|@=ìvvàß^¿ÑÅ¿xgëà•Û;- ˆœãà ðÆö6"i«ÝÂîf}ÑÜ›žÅÛi7¶Uà´'Ó¥ü>ÝO £åZ²h™9-;ûïuNK+e| äùüÐ/Q^• ´Mñ ßjÀRRðŠ™ñó¯n~vß½§Ÿ½Ý~ƪžö»žýš98-³ºåÅ8vüupLn N’cRÁä2–§ÃT¤at}ƒ‡ôTÔP•Z3 ¦„ÿ *,’@€ìÁHmå ºÁ"ªC#×÷‰ÑŸߘ ‡s(4À¥Õ9#bª4èqì”þuÔ™ö±csZÝut8œ_‘I&»æô•HdæÝè?A< $Và“]ܧ̓ãƒ}Œ1¯‡÷èúM¶Ód×n˽TJNn¡«7{ÑTotAzø„5E¹rÙÇöÎDÑ+ÓT˜¶…|†ÌLHZzáäé".L§:ÛЃ¶–Dª&¦Ô9›T¨–Þ$fw¿nßé‘>»™õÐÁ¨n¾†»;©‹fW~B.×Qóã’òžú’m»Ä+PÚpˆ4ŒÕ—žºT!’=r¦%ÿ+ôG²éU6åh4,»ê}‹‡ó+ºÝÀÕÉnÌ/¼Zc èÎgµß¦\¬c¼ÂH)êŸ 9Q 9: æÎ¡¨×6X– GAتü:²DÂBU¨”*Ònê•t¾cš$TƱ&_"Ò™tüÙxáÁ¹v{EI!ø–K•w‚/,sp˜™Ø$LP%o&£Ñär6t Kpt—²/Ó-6 oBqfäìu@xÍÏp¬»Q‹d.3|¥í…ãüêvüvÇ<g¬±“ ¡TnŠþ&D;­áN{>º¥[ê0q»©‘^ŒÚ®®#V6Ž}¨MWk-Pž &k³âÕzBÚ’Æ6yëD¬ƒÄD³ôšÑÑN;$ B±y„Q±’AL'“k¹Gã±’[¨«4”RŒË﫬øÿ6ˆ±Šø<Y2Ï™¢ò¯'_}¹†“oNUPÀ ŃQã±w3Ï€{õ0¾¼–µ(ÏÐç“"ç¯(Vë êöáè¡´jîúÂsÀFMNX¡-™V©Jë^®sÎÇT@ÁÛ.9ð€ïU*œ…èeÕͬˆm8Ù%¶týiéEgëÌà§¿>a»Lr%#ó>ÁqëøK™ôøž2’9^z‹$§%ñ‡4Ê'$·áÎY—!±× åc 2í‹•%"ý1­œFž™H7\󡨸.a4m_¬ Ɉµl¡žÄÙ.ÒÁ›oÜ$\H×1¸tÔר£Üpj~UúhíbUI‘SÑoe nr48©üø@É2dœwF7#TžÈ8TLšÜòö­;QoÖ3ÞÜ´ÞÜ ½é·µ8áé3.4˜yš n‰'5𾯗ñ8„§½›ž¯,Ù"Òñßë²È§/f@è7eйL 8ÿ6©²ç›¹“ÊÌ¡ `€/tðr¥¢i97…ºà$ƒr"É¥)QŽõHóF¾þ™~ ]_‹º™˜3?$VeÂDTPÑ ½*CQúbôcP"ÐREÆ{uõIýá÷6sÞ æôP“jÌ­YéQM€9^Úý¹9„\[\K)„ˆør<¡\Ë{%œik•Ä%ü£d%hªÒ— ÚN£ ²˜hJŒÇÑ·Ì!'gÃùdÂù)¥‚apc@›uÊàl‚ÐÉj**†2\ÑE?kM}Œ•Ö¸\» [g †¦k®Ú§àŠì¡¹lÚÔêË$ë~¬r¦Ð T–’÷×r&R2‰½l6¯inî€Õ¬„FÖù~•½¦û*‡û’­›*¡äqû(cVÇr˜es,µ¬òT^vÇ^®çäÃÒíÛ&˜¦Œ^D©|Û$öÛävö>ã[ßÐÇ“qu]Žà!ã(ì¾uJ¬žÝš\GC’…ÈEi>nâa ǵóå‚¢8#y¡Èf‡"Áì}Káß.f³[v£›Ñ@f¥Eä&L Qœ¿ …Ø•pñoþUµmL¦»B¢PC¶¸&wxÖ»›æ»î}D?yI5‚Ÿ¦sugÝ7êš\<è:–~žuK]øîc½ƒlïOá佋ßêYG¢à¡^7n õz഑ºñZž`]wëzÝ­ý]=À]¡^/p[x€¡Š‚¼2W†s{èõ@¹Ñü$ki ¾CÑ·R»ê%²}Sk°ÃFÝt 9X³+ÕIµ ¼Ør¯Øœp¾¾}¥‘dÖg°IÛŽff5!6<—ľ­:I¯+*º­Û?·ŠÔSH |BZrµÌ”³mß”Ñ4‡Ín­¨Îi»©Úª`?‡´÷­ch?û2:5v ÙhM?Ô|Ój¾™n¾©›×ü2fpôffé…<†\„© •x(¡FâR[ã£E&…z¾ÐI Ú›kñ–[/+¦Ÿ{ñ=Û2‰_;Ñhðd<U&UUEk‡Ó •ÇÐÔpH Üc1*mÍý].§54»ÌÇØsN+#_ò9­LçÑ”›í`–(ŽK³2­ò gd-È.9çn+v9"Þ-ƒhËAQï,=¢5Ú1ûR<*k¶Sàj»//{eÍlÖÔ§›á˸ÑoýW¶Ünth´£\y´jŸyއìî6­î6ïÞݦÑÝË@ÛÒÐÚ"™J°$8óx]”°MtÍfƒé÷ŠrS8ø}*ë?2ë7Ü…¹nêXDºBUVТÙ\0æ$ÂlP’&Xv¶\z_ÚÁäwÉé!ÏŽªäÛ*î<^b?æ•<è-Fîð$-mšO>Ï z«=“¾ýwî¥ÕêÞj^xX)¾¬®7® ï‡@׿¦X, žÉòO‹lcé‘e:òP5Qµ-2(z Ç¦Š°É-À:[3Ú:§næ–à¢bHíIf‰ÅÈûô.¼\ÝÎ&íÓ|vn´e²>-ÌÑín¦‹ôÈùÿgïMÛÉ•…Áûùü Íý0ØÆva³ÔÒM?1K™ÅжYªîœ÷>p•±9¶©¥çÌŸX$¥¤”2Ó@ÑÕ}ÈBR( E„">Z¬ý㼬ÝÛ¨IȯŸ,œ£P!Dºn†®úiÓGB=C¶~VÏxYò|êeÊ6„rC¬ñ 6@Øoç”V\ò®×C }“!Ôkº õó‹$‘GüD«OÞúÄoèÍ4áYäÙcɆÿ 60AÞ 6sŠ„»Á–ïc6Ñ'ÙA3¦qi>i) ÒÓªóƒÓSË·%æÃ³#ä™kF<œï?’égÍ@-ç Ì£L< p}ÞHt[Cž <Ôp¢r”T³®‘JÄ ‹ÿpŽ”âÎ=wº›HY¹àtIÏ®œæ€äª”‚êÒŠG-¸§”:{Œ•J"¹«1¶÷éÅU]ãe61Ãà¸29ûÔ C[˜fèlFsÈž¨¡ÀK‡•Ù¸‚«°{=A¤q “Ì ² 7˜ áÿ½ÁtÝODa¿qÚTeÖÞ¾}í^f·ÀôÙÅýý€²¦WéƒF ”†™ƒ[Ì6ȃÒì¤.” ÌÞF"úÖG…Ë´*¶å=És 69J†'‘†t—eYøŒÇHÙkñ.zßàm*/®1ù(à-N4¨¢¥‘â;ht“/1%!:ïŸýysîGúÀš–èÆ0(d«T¨ïëS7¯mìV6íÀ1áÊ褷'”± ¯vPÒ¨”(é²sôkÑécZ~»bÄ-¤°w»…凶rvàä­«Én=2ñ¤ÚxÐ(´WV¾6VÔÆJZAË®ë;"mlEì ‰sê.$úP«)ûÃäü¾¦SÀûZKµ Úä`g H´S¯©áǶS«…ÆÃçhIÆ 7*‡GWî¶Úm¢Û;ŽxçÑ_Ù:–ª×ñˆe_Q½TŸ%¬sCöH¬×¨~]ÕG: ÊG¡Äl{qÈ#0ýä\K&÷vÛè¨çZ:ÆW"»&Ò¡Ó'ãS߸LFãlQ:ZÎ2™æ2xt?–^òÏÉÚf6ë¢â—Ôãbu³X=‹Õ¼²wéÏ™"~ªn¥–4Y†ƒW'/YW™ô´ÖVÒcZãí¿c¾/«‹ùbZwÿ€ÎÞsj)¨^²—æ±ë£0S»³:>Bw6— SOÿ2†‰yÜF21—§ç笶{U¾–¨/>’ú!>ÑëåHï ôs”9dmάWÕQdñ’´Âòå@¦ 6¯RzÕ8t"FêW{5¾Sul\W±ît•9ÃÃ$)s†µ¡?’MY£ç?7ÐU2Œ/–IÈç«:ê®b2˜£uk|uedgÐÞóÓ< c™:Ηç#t< ›Åõ²yU{4sîZœ£ ‹ýžÞÕ-–[°}ÌWn7+T|I†S¨è$2Εð>N‡¡ííþ>!ÏGC-ß>Kº q¦(Ž3‘L9†Ð5ßsÑ ‚ $3b- 3P Í…²XhcªÄcÀ‚þâ+ R‘ÃŽ"¿Wæ°Ö®Ô’7ß+=ÍÌ»(c[‡ú¬S;ÒµÕ¸Ç*,v¦£^¨‡¼u¬ú•ª¾é=Q Dn³'Í“ÃÓXµðUàë¾:µùX“{â«\!à™ÝVO²šè ¬¡æšB—(Ôéi—@$Èæ¹':†žc¢½}æ‰^Ë?Ñã.ЭK•:&dºÎ©²}­‰Â ï%‘¤,MóÎWöD“/XëÁåǹæ_ä'ñdTÒy&„××{Ýë-¡ÁŽ¦Ø þŒÒpˆÃ éÃÞÀÂ^2„2µ6 úY´êj›[äIâô×Zë> Ï.Ö„/+#ñªãÇÏÞÇ.u¯ýQ\F˜„‰nV`oû,—£ž0 Ì¤ëðÖmbŒŸ;Šâ$³*n¼_ºa|„ă]ÂÇîJe—sl¢¤è[cØ÷õôÄa†c“xóã$€à­Ëæøî»J¿EqjñÞâønрšLüÌN¶Jw‚9è5Ö ²¤Ö*8%ÈJxë[ê ‹×»Þ±k‹´xÏÎZøœ<Ï•»¨&«>NœáC‡–Ó ×ÇõÚBvŸ­ »ªÏÌã´Ì“%Õ`À&ƒ@Žñ‡–É <ä`Õh­¬Óhi‹2C†ƒ†|X6’€P˜h[µll¹ò&r8Ϋr$‡8")Â2 †›!Å7¢{Ý ’¤×&_›‡RwëIBµ»•Eª8=­ú#R“¸ö-⊻ž¶0©x]Ý‘tõàŽ×ç&—•ŠA1ÈŸç[f×s˜Érb˨>'^ˆ1ØVßo,6‘âpÉÍG€|çŸ7?æüóÖwþ‘QV¤òfÎóUYÒ1L¾uzÁ«­­03·°Ð¥~ÅÆ¿¹Í¹·ñ„gw)Hn¹÷6V뜞„é¼lc¾­Mv78kkË>ÇIîÓÑ[›s!4hדŒcóÚ [p¥ôízz6?>©2¨¾ô„Ê 4w{'¤TŠ/è‘vÃou:ë=xGY›âü*˜ºsÕžcçÞ!e‹y÷ÏýÍV“=Õ&+žhŸ©Ë_̻ۊ'ÛpE’vbU¦Áê²Á¢OæzS+ìã|;¯ÈÚ|=CÉENçÙÄļ[°xú]XäØˆŸž$Ó6kñÄûµx$S ïÚyHy^Z`õ ÞW¢ðU¼‡m|(ÛŸk/÷àÊTé×óº×»“Ÿ1ZoB2 T˜‰¼W_yÿUOþïéù³æÿ®-­¬-»ù¿á÷Kþïçxx…:ù¿»q|´Èù¾7Ë¢±lb²o`øŽRGlý~¼µ©¸ä3äà~ªLÛÍ÷N£iåv¡¡”ià²'ý bƒ1¡N0ž„Œ“'ƒC0]¶gÈV}öäŒÙ(Èî$S]ÝO0÷þ¹Î¿çèU7œSfXŒ0þýö6˜lz”Yfâ~ªÜ¼0W•t•âäÎ:ÔüŽYÖ• ë¡M«Æ»ØI•KÏC©fî³q²æ¯7eN¥ Ówwè<5ÃñW|'ÆV‘Òˆñ ôx0)t– Æ×ñ¼ðºG-ø-§ë(½A™}§q˜Ìñ›–g²çfõUÂ|¬â·8ûëÞf.X†3Ù=t;¾ˆãÂLjc„x¦•üxUâöPÒ Ï)¡a:L@ý©¼}5}g¾¶§ðçKq•OåO”¦0À?®(Äù·B­ü©òù²øëúà×õO¿í3 …ˆÕô‰ªßF…QùÓ"€«ÚR-NÀ·ÁŒ"ÓµÚÛ”Þªìæž— ÝqjöõM}Lóf<Œ¦Ÿ¿Ë¢ƒ?Øgƒ¬/”¨"þ½_Ú_ÐNÁ9T¾ýÛˆð)¹9)b¶!G€Ô”c¥x³è™W• ~['B‘лΚN0è$y۔ݓl3Ò§Cuž6ˆð&¤âR¯¼Š‡wøº…AQå6 ø·òZŸ˜ê%gó)ô,ŠCš+€Fêôï0ïúX/ù¼l†OÄzó¡[sòœË’ÛÈnÛc»´[èÚòÂ*ªFUXâ¦)¢Ô(âæ¥•‘0~óºEØMðO~’ƒnd«8³µÁ­;[]ï}g«K©@û˜[9šÞ`ˆOFï½ÌIt ø¹ŒpÝÉÝU@©{(vÑιJ©HM‹dI\ì.ÏTõ«lž˜½*7Ðh¦µÓèìl‘<Õ=À){VYýœfv”:È}µ;ÚWô¤ÜµMU$5¤ôU4£Ðs"×ßd¿pàç_¹wåÀ <ØŸÿ1EF_ÚB`FvF±,äͨ³n..©òÈ]«5xaIlªý@¾@_&¾²Ø w°¹[fL–ž¦ÒòÕy’àíwa|á³ÒÙQõòÜYíôðÝœv*sw`9Ò~¿ÇØô“hv?!Mƒœ<Ř½ZeAÙÏð^ÄRÂ\Á¼¸SüRf!“%ì«ñ-L´ ËÀYrqÎ>^f¾¯þ•Î2±@þˆq’® ¬EÜmâ$] w]È,`<߯Pˆ'àõTI–×¾äÆw0n†˜¼ârcSǕČëªâ7P¯äµ vÈFGAd ÝS1%w–ÑŽ5,AXãFÔÊ"a™jâpÛõÆkÄôUÆMŠÝ ˆÈÅxešÖPºXlUvU€Ãæn @·D±”ø!Ô± “÷õâYHºãî'$iûä"cå¡ÈXfdìÊ 5¨ž_D|‘‚  Ë4¬¤ ÁUa*âü°à.Sþè$4ô™Ý¿¯*Ó§ÿ»{VýßÒëÕµÕ„þoyåEÿ÷“µ«ÿ;2ô£­ßÏ¡ë;*Ì«å; kù >uœ@(/ ¾¢àk™°ò)ÎÚ¥B{±V|U ÝY2.i3Ã_|ŽÔ]Ì‹ƒÓß@˜ÎÔЗ%”d–^ÊÕ—IËQ^ØQa EáS¥V,}‚áÚº¬ZU˜ ¡PU>`X%6 )Â°ßÆÒQúðw ª«L894W/º¥ÝÒ‹néE·ôóê–ðZÄßH¿ô¢zQ ¥*>v›‰(/O ªtA Ìï6[•š«ü0¾HÓ%z?¹©¨òãè ôE>pŠ„‚Èø"M=äÇQ[T ;2ç3iŽ~V ’Oÿóý™õ?¯—“úŸ•ýϳ¼(ƒäó“)ƒ,X¹½¨R¨’¨àœ©h™ÅŽ1& Ša#‰}ÒúxÖŒ¦ñ,Yºï<ž=*ôû7~çùÍÑPI&ÑU4Á¨Ë—öˆöyD&åõ#G$#gDyº“1¢‘‡¾‡n«ßú…ú+ØU$€TõØÇ9¤€Ø)íöý,âãž—E1IÞó`Χi$CÕÓQâþö\Jåƒß/Û¨áq`|}3icÕaZcç›}±)öÿOOT@Ú¿¾í‹VUœb)þ„ Á‡ã)…sÇäƒëhDÇ ­é¿T:9<3dš+8Bp úª*ާ÷pú…S÷ªMà¸r7]ÒIL„£Ëè8e„]£6VgæmÿļûK>xÚyƦ³ènŠ]ÀTæƒ)F³•‰ÍAH¥S&©) ý"‰«˜ê Öí¿.1 ÀhŠ~2e^ðÚXaNâøÿú?=:¡΋âh2¾†áL_"ŽÌq¡‚`àþ¥À\ÀQÜ袜4=còÀ5õÓ­ðDS ôÁ¨ÏAª•Õþ90ޏ{Ó²L@0›&è$ä›3ʯÙÀn!Žú«Õ(Áé*\zÇš‡ìµvX52û:˜"ùÙþÆç¨Lã H6 0Ò¨Gy˺3M J&c‘š:·;c®5&s(¢•¾6MåÔØÊ¹•ÍÀòεMwNy •Òá^1 xá€Ì¡Nûý9 ò†`‚LÓa±¾ Rà5‰à ’½„xJÙî7ëaúâz<¾ý;˜´oƒ[¦ —•Y ’Ãp§-&±R+&WÁ[DXpIß0›IÇ#¤[©ºb ­É¾n>¤¯ÉžŽÂ\Ç雨ÔêÜ' )nt¿0(–6c¥èþþæjÅmŠÅ–yˆW*ÄÝàËx¦ UÝÙýäVLáÚu ›E¦Ü°ÇÃØ æÌ¼éÓò\õŒ=š;¤Ê[„ÚÀQt=\³ŽÅöµ:©Â ƒ® &dr˜ ÎïÕªQ„—°KË®~´)Êgâ'“°G‚@À–3ê®R$®[8Q>Íh†ÝXªº¹U m+IÊ~aA{GUëô¥.rzqÃHýXèQÏ‚ñÔbbéØ˜%)A[ “Zr™Ik±¬#- I°ò{Cïã´­+Õ>ô³ÚëoѤTõu'dÝTüŠÜÚŽÀŠÕ’µ7JÉìXÐÀayŒq4è­(¡'iA÷;›B'Z\¯Œ`£¤— ù¨0HTÅ/¿ˆe%dL)£(’©½à‘K>)By¤`î¢>X8ôÚ»I‘[ä• lá—P¤vÞ‚ 6»‰ —Î’øuú?ÚU¤‘’}‡"ÛR™_ð:²@¸Ò\!1àâÿù+µÿϲ]ŠE8l¹÷D¶z?º¸é®;·¹|;öò5q¥l ´03:âÔõ¨¯ŽJp¦˜2ämÿqa2yIÒ·iÀ8HãErEz˜Z=¹—LïïîÆ±x¨N+#Ô=° Ëxý0eAG”‡w<~·¶vyŠ‘AäÔ¹¶.Ô&ÅgìÜ H_µWÝß;½­i©É ã¹˜s-òV¡F¾}$4^¢ y]46ºµä‹žÐù®tú߇07â÷ûñl€ ›N•j?cqÐé 7³.{RêIvjBÀ×ñäóô®å’/VJm9‚íû í›ÐøÐg`”¢¶²µ™ûï4¶jnÀÅCÅ%´†ÑlÆ "Ô&;ÛZ¢²VA™®º³;¸…NÜÞFÃyk¶`1N>ºy3€ÓôÈ­ß‹¾õáÐØ€ {02+NGqП€œßïo´÷_µ·:ݦY¦y3PNÆÑ|}û3­…ö°­´å^[!¥TEÛàÒæRÙ°.¥ùP53€6N!•:%ÖÌo{ôhýºÓv£]+Ë?T¾ ¿•²ÕÞÜ?Ú§ß”ãl³K?X9X£Ÿuà˵4Õ^=ŒÞMX‡ÇtóhmajVøŸ–eby¬ž›­.Œ*¥Á ['× À÷tc>éìàQ×´RZ¦È¨6· ¢ƒ™}“¶ÓfXÜ0œ¥;˜(jCN­L¡T¸ã”UŸ¥ýGv½ß)û8szøH.¸<iªã’@DFîR¤-L8Yj+¿h~‰iK—åKcÀ”Ù½–1+g ˜“‹Øl\nq£&=àIõËŸÜQ+&ÅG[¤Õ@¢{/^®È© mÑtùN‰÷ðjhHdºa—æÅ ©n7 ÃŠ®p­Ze1ø;9‚ŠÜñ4ñ‹U¶%¢Ff·bºÍÓ‚CÚ" " ·ëALæb‹q#˽âŠqY˜ zƒÉ_ÛEÕWúµh6iô˜vKnKpÇfâ:ÎH[Ö0)E¤cÍŒ1È+¹ Šá¨ï‹bç°w(Ö– lÕ[ÄVýÇ`ëéQPË‹ ±5¾lœ°¡_µÜ¹‘“.»-*{–òÀ#]òp<¾C޾h÷Ûäà[êwâþ;´›—|yN^‡)8cZxl(uR©"(kuŠº^…_X•æ™N1ý?pþå$¹åÿ‘ÜQ ï¼¾÷åh¬RiLåeLú à…ÍÏ1AM”×¼(w<ÌíÈk–xØ~Ts¶£ºo;ªKZãhq£-7SÜJÛÞMé\ÒmN4…”S1Y-‰ Ö€jŒ,4‚˜×+YÕޛ蕵8ë¼8ëÍ Ä5mì\ƒ²h²Ø‘¾8gw‹ƒ~ãa¹Ük£ZÇ”9bœ+î勦ð£Šü0~]·ù5ya©Y«xælÎiñʧZöÒW€|k?cÂçœóüÓþ€™·û„=Oaàr1Àš ¦ŸÎ¶ÒtÉ‹¹@QR;d(êÔ‹éZS µþ8úRͤ2ÇbcLÊöÜ[ä¸àŠj‚DhËTùzÚÍ„˜¯5Õ² έWÎ7TÚ1¾´«¶€dÈòòw=H8Š••p:´Æ,®&}»¢³ú™ó‡×J:í00§k‰ú¤z#.‚®¦–"Η IÙ]8Ì–½„”ç Ž8™–ÁÜ ´z𘎇ÀŠÚÿ§'¾Äè'±ó¬ÔqòÐ'WCõiž_áM‡=!cU ªÉ17½âþîkr9å(ÂË{·Ú>ìU•LÌnºÆ«zeèݪ&¹ãF’;~äÅ d˜”*Jø%e|NJ Ä$?ZÅâ¢ük±V,K4¥Àhá \FÒ¢èK|y®tgŒÓqܪ5­ćNõú’õÞ\VæLàÏEÒdÃ%Ù>ô¶^sYZ½îgrä« Ã>§69µŸán6FòƵ¦F:ÔvXÜðL"ZÍA¼ÎÒQW)°Ð)3u«=ONfÝ™J›'%Aå% Ož”Ÿ˜J’ÉJ‚LÜ䡓嬄6ÃXKå_ø—ã¯#séS`NJDN±çñÚÀÆþ^·õñ‘Aê^:e’™Ü`±–˜|)‚ã~ÚyͲìJÚ<3ãmæxísŒ [¤^_MÌóÚ“óƒ×ÆÄ$¬ŠäâñÒú¯øx!%]O– ž›<šJÞ<•¼NPÉ›<¢±âÿºïÑw†^¨—¾£\{‘‹ ¾­sßñA·d~«­¨lÂäÃå5u–¸‚*â·?jkÚÉϾãÑçþGýyï,­®-Õ÷?–—^î<ÇÃTíÜÿ¨óý³²ø@·8Zí&üÝ$ã üÝü ÞÀðYXa$jl¾(òó„ìhf„ìèÊ gò÷ù{îÛ õt¨’§¡ªsäm}wÃ>à~2fóØT|ÌnÄ$ê¡Ä¦…#Hô:Ã7ÓÁeD®r}í&‰Ðê•óú>šÜâ­Î{±]DSòü½Œ®”—7]p¼U¹sSñ­,xÿ¨ŠmtΡ‹yõrµZ-ôä$¢¾áÍ|ñþ,Šwëú[Ø'>]ð}Q|§o+‚Pùßq¡)*úA¸dÅ*jªL©4=T’ë$Z‡—FIU4¿#zîÔN_#Ó€rk<³€æ‹ R[$ïÜÒ"ö‚$¬o¿$fö9¸ö§Sá¥ì Ò—ìɇÔ“ïÉž|OïÉÇÔ“?”ã”É1‘ƒÑÅ„õxçÑì+FR0Ç€–ÖÆÇ*üMG…iZýÏå et¿™è¾\ÿú"…MVÀy±•l.Gc´“<ƒM¾`^eh1úžÜci®ø-ÜXÎR¶ (ÓmÑ8 õj-ü­Â¿5Ø&àÅø÷Ê$ êùØR"¾aÖáß2ü[APOàNƒç‚²ØlBkgøû°½»¿[‡8Ø´ÎDM°e†´®ž'¢3|ŧØJ¡¾u0ûû!ùíGüö#¿7ßvt¥-û‡ƒs¿jâ7°ç·š–¯¾í&߯ tmß³û+ „Õê”°, µÌ-]5@\Àp ê¡Õ¥‰/w˨WF•8O·Z:3‹¬`—ä·½:›[¥f‘U†|†íBGoÖø˜‡Šýš,ú,ŠužÑqøÙšW«ö·j/‹bŬ½ìÌ»U{·æè™š ´î«¦úé~,s6Þ#©¶šüžîðši‘¹Lø4Yÿ™N“žóßÅísŸÿV’ñ—^¿œÿžã‘œÈ>ÿ5 âÀ þHù7è ¸¿ ?:Ñ‹ø¡¸Ž48ÙÁãƒF|F‰©ŒÓ!%ñÝšîÈ|çÂæ¸‹&t¯˜†0ÓßäÍ£Š¼€t{?œ àìpA¢˜1d©wëžfƒÎw|Y…­à!ï€&Eì_Ć~Ûæ[Ì|Tü…%Wïw9néÈŽä>™ù\uÌÇ>³Zã]Óº†p`_œû<Æ7ݦŒ‹dóÂÉh:óÖNë_JpÈ\Ç¢½K"w"ÊéÔ¡!Ÿ8* äìµêºÌÆC‚i¶­lxÒÖ¸×Ùx‚lT Pb îÁ,#NgÓB3mM=„æ ¡Y%@‰!tä}›9oÛÔKú¾Í“Ÿ¯æ‰g˜A2¢Ç-•­ë!O’Áî‘©àJ^¹èÞŸË Õë»?±³up0ßIŒË„bÄg54o‰uÕ¡zØ© '?¶,-ùªIô‡³Žxñ{!ÔžY»hÀ+Hß0÷7t.#À˜ZÌð…aˆx-âÀºÝÐÄ0p„¯Æp+ó–zÊLgJú¡þÐkºä9‘Ëïã~`„¾ñG"‹%†Þ4BŒ) ‹"”Es91ìϰ7ÑÇÞßÕ9qÏg+ù«‰^¬%BÏ„è7q¾Îhud‹¿I‰CšîÒë^Þxf'|Dl<×Ñsþ»zâã_Æù¯¶´V¯¹ç¿z}ùåü÷™sþC/çÖæ–Z¥'d%ƒŸ½Æq|”'@ЂÔj¶z¢­ÿþB§BOJŠ @èˆÏ‹Lòd›ç0黨a&¤Ù0>Sæ?!n†CeÙ“štššèjÈŽ÷lTeÐHGb%£–Ù‚ f*Tÿ0ºš qa2¸¾™UpžDw“h -èl€d„Sªàó=y±UĬcú‚ÿø{ý ÞÌnOy&qö¿Øßر®¨ê:Æf øÔ§Yÿs4’ö"ø‡‡&ëõÆ„ªïâý‚(ÌÈv2útÑèr¢)ò=Ì ~—Bh­ãœÎ@,G@ð9Ç©I Ñ‘$A&$ ›%0’’h:ßvô·MøöýÓ©›=+ûÁ8àRR–š"~ è}^8@#Tÿ|ZÀUY,¢øJ(%„ùj¡rÍv¸fgÁ–´ÿ}Q!]4më0jï«0&ÔŸbj ®, cì±ÉÈL·~}©2œ_cöâÇjb@QWxD¾3oÞÍÔÌWü*ù€tIÀÐ'_'ƒÙ,)gY‹–=áVP2˜/Z öÌþ˜3¶pÙ*¦…yÈžŸÄ B;Q+Â>Hñ³×=»×Çõ‚÷¾D¿Ó¤ou¨/ȲqyNøžø ££ýû[Û½T%À~£Û;á_MOssÛ?ÂéàÁ¯N*¼ùãÍûú¿ßø¸‘vñw3Ü)wÞ)>—nÁÁ)^ïâç,]%AÝ¥ÆÅ7­ñ™nâ4Ž«í-Ë/øÿ¢/»0Ü;`h“öƒ=KAHQàÉ“ª]£Úín<Íèf&‡]‹F—ÆG1–éúŽî½ÇYõÚ8Z&<ŒU3ª¾ã}‹í ¯îôŽEÑ%È)¢ô£/Ѱj¬¸ê ©}ÛDí3èÄ›¾à«œ•‹r üŒY’ï‹ xˆßÿ¤S"®Y ͤt¾`óhÖ2%wu”Õ\Ž7ÄJ¨šåbHÅÝäÎW«U¼*jöºor!ÐÿN³àt´BglÝ!ÙE$"H%N΄mëð$“s¡éz޹i“ÒÔsCœƒääÌ9)F÷ÌI±Fc÷;kRâŽò¤è¹Ð=ËšóCXÙ'vøÜA|ú¿ógõÿXY{½’ðÿ_Yª¿èÿžãaÂsõJDëumŒ Õêl5{eÑív¶N”^p–ÂþæIŠ ÞÃ=[kˆþ½µ‡_„D…5BfX0ß“("|!V%šæ÷IÉR#ö ܈Ò)Rc©i¤ÆQuhNÍã†GõH·>-­#Þ €QÄ*¶÷ ¤‰D0¶2r.MäS+à¤jRûØØ>4ìQÈJw°kRaƒT‘«õ¶¯`î¬E§`3.¸ ùHn¢L¦™M·tÔërI‰ŠzFŒª‹ãécø›Ëû Uk”Mzš§NO·¡§¨þ}±Vß`9Wé¿÷…ÏEQ)/ »ÃÛЕ>ÇåëERØ€ýL֢ɥÅ7çÍû+_o7ò²‹y !8Dº—À©©Þy&¦I‡ îì!—Îø+ó“ën÷òóeS艂@;£_o(2ã¹àÃFŠO¦[6žòÇ=Ö«15ÑTæ¬xàTì,ð•…Lmž§'©°–ø>½+ŠÄ• {Érµô$Ï{—É•ö€óÑ’›¡ÊMŸNC#uª<°‚¬ì ¯ÅT"wo‰7KohroM©cîSFžÖ˜â¢ê<òn(¥ë~4C±eÉ :’ÁS¸¢4R{$ØÙÉâŠ×…ý%»M Î 1˜qR{cÿª:Ê/s\±qÆßUa)Éìˆ ú[6ݤEÞ¬‰P¯S¨Y®^Qæ–ÆYËR•Žçc­‹H„j ]¿p•ý ¥"<§¤FÄQš•fm¡t‚F˜fþ€ã†(°[?2á š«iÊûUz,î¹ß ¥Ä%¬µ‘Ðó]Rº”åæÅWn¨ ­} Ç[Ï›¨×? SDJ-9&n ùK6'<ᢷ'åî%·O[¼p t¹àW9ÈŽîI±Ô2ù•Gú±”Û{AÒG¡¦29a¨±‚&gD!åI<¶Þ©QÁtî-ÖŒ 8± *Íy:6œð;îØK¢·À+—þÎ;™”xzAª²z„‚Qå>÷D*m ÓõD'é&RST`í•Ä©gùð‘5ÏÀE^xé‡$œ©v©Ô;õiSM¬Ç*YaÂN̬‰™`e/ù<€N|œ)cçLJ\à9s’jÌô) ”ïHßoù’…„\•½Üã¿ã+Ò2 ˜áõ^_²nÞÞôßvßQâðl·ìí–]™hÑÒŸ Éívγ=ÏÆÉ­e´oœæ¾©¶Í9wM<`ÓÔ;]`ë[ùÏÜúp(9ö>·ïÝô²˜Néb,Ü$XcjýÇî…ÆV˜›%Z{áß ‰ô[a¾¹7¶CVŽí°iˆ=YÛ¡µùÍI.ý·C/g\ËÚ Wsî†úZTüwÅÚ±æjx\ó±S³°s¤I÷‘<§ž~é/òÇò•Õq¸‡ïqí¾‡ÿ”ã°íðE½¹wvÉYwsœ¢žô´üzN‘Á³Ï¦o*b¼drϧ+ˆ,žýD¾5Än~?\xÈ¡Zm&?á:§$oFÀ~ƃõüÇéK >~–±¸/5<|'é ý¬ùm–hñ&§haðk}àvÞUB³ä4<¿ K&o_NçOu:÷lh2QÑCŽçšø˜>Ï®ó¸“ú²7ke…øSNøö&üçÛ­Ýö/ql7N~¡Sªø±Çvÿù<Ï©üeW ×kõ¬]µVËb78¨>¹ïR6ÕÄÙ¾V î µzγ½ûYßpp·WeCïüz¬8©½Ê–.3-æ_A“þ<ø*‚SG° • ÅGÛÌÓm>Ïl4¯Ì=O `|S“Ï|zF§òƒmè9ö¤¹F’r«o>³‚mbGoª‰BmÀ³›Ø¯0íì!pâ‘Üöv{öŸÛÞþœg'³³×V3%••bi¯­„%‘Õ¿ÐYž7Üö;Ë/‡ùuš_x´±½–nSzµ½æ5ýÇí™ÏiõyžÙÖö€$¿ü²¶?©±ýëandŸCz#ûO¾ú9á›Ì-ðõš×k¯Ãß›ß ìÆa¹þNH[zêY¹þŸà]þW8+ êµt³ÍÏeQ¯l3O |B_ËXñ§XÖÒsöPîÿ%LéOpx6mé?õáÙwd~´šÿ9}i¾|`4¯§ßï!÷ôŸÇl^_ JõÀÕ ³øËQû‘–ózº5èGXÎë^cÎË–›° ÿiÇtÏ®š6Áÿ –ô'5¤?ß‘üÏ0 ÿUwÖ¬³x=ý–XþS çõåð¸cd÷œÚ=ѳ“‡loÄæöÌ€‚¾ø×Ï›ÿñõr-ÿoùõêKü¿çx˜NÜø;ä|ØØ?zß(c’jLJé?þ)y8)i;äÈŸ½ãlî,;â:aüÞ<‰:sbk„™(.n †6¹*éÎ ¢?¼»é+`*>òhù%åߨ:|¸ÿ¾Á¿¢ü{I§·gñœáá4ŠyÆZÊâë`vï1[d™J}£Dm«0ªÔŠ9$7uG(qHFÖ µò÷vzˆÓ”ô»ÆT'sÚS`•œmóRô§v¦×Ï^-Þ4ÖnÊì²”åµÎòŠsÚ£›ÄNÀ­_<64$OêW Éw¹”HLiÍ,¯Ó Ž¡¼/ Š´…èë>XzP™ÝÈëÒNnL©ï–3)=+dÞž èö®óz7ÍÛµÕ·lõoÎÂ]µ44˧¦Ðü,ö`Žê¼÷’™ªSÉI qA–}Xvë`öê# -¨€~…ÇwÒj=‰ÙsgëàÄÎí³×>"mv(ö|6V.“+­tŠ9SI{Në~êÙ€ 7^[Y'÷,¡YƒbVꪭ±¤€/RŒ®üÐΗpØ×ý‰ã´Üoé tXµ$¼?ÌJžpb"l&√8¡ûÒîp…ˆ¿` ûuVÞmÇÊ O÷óà˜òw¼Ó>â¾OVÜ„9“‘¤§ú€Q^½LÙã g§­ Ð[g­ž§–ßž ÎÊA«­¡Åâ¹/pªjï•ZfûÝ:{ºáÌÃ1½0x÷©L_ôç'fŠ0âœÓ0íV­J8 ˆ|*ŠHËrãH‘zBÓâ’ȇÏ=Š"Ð ó™ÃÅžf àg™fùÅ»OrÖéOxA MQÁ Vh6˜r=e:€CJD7I?NȤE=1idLþI<í.áÐg"Ž é¤óÃÐᚯô€4+£­Ød{†Õ'^¿¨yÓ_§„ð@ì#dÆ‘XxJz©ø#t:{ÆÔ¼úXt ƒ°Ô|–O~Òö@µ&\»ÆÏ$$SŠëyæ&~Ƕ9gs³›2[0Ø'!ƽl‚;,ä)wn™ì åtâÛ¹½ , <`çÖkg/<±Yûs²†0D‚veoÑ/È‚f) $·aìJgÜ „µðnç/&´ë‹”AÈM@ÎMAà|kï>3×HW*Z›Æ§w£ÊçEØ+°¶”ô;¿Œ r‰ 4%•]dö{À/3X´p¥…]“·ê7Ùû<µr,2°¨æü"I>È”“¥ŒFØ¢+Ji(.òçÑé1,™$îÄ—ê[qÀŽ/ˆ*BD¦»Œ~€ô m«vÒiF݉Užpš6ùÚôÿ}¦“J¦ºÖš T]SÌïe„Î&Ír;å~0/MçvIº&Üto K/Y‹s«Xx·.ÈÊ80»…\í6ÒÌC-n#MtiÄŽDÊ5‡vÿu<ù<ñ$Ê@XûÁ¤¨è …Ѝ;ÒØ%°¦Ñ2¶ Gø³¬Ú|xŒmg^«vÐDr¶ YÂ{:<”î1ì°=T\× ½^þ-ÿø· ÿÖàßkø÷þ½Méø † @8'á œ„€pNÞþ‰6íy-ò¸¥{Í{ešÓ@Ìge—ÀX½k¶cì[·–sg|2r=•åÎo®«[ën0ß7J„9]†«ðï5ü{ ÿjø²†okð:I5,ˆi†ŠfûMÜÞasÕ:ð³A¥dél'$âZšP¬ûºR£ ‰5ûÀm´ßåÈ,f`?jâü{?äf<XQøjòd/P˜“’ÊêÁÍNXw–l½†NÕˆê‚ZIÄB^ëˆ;¦åücªÃ˜ê¡1Ôè¦Xh4d¬.biqNêvíºS»îÖ®;øY àxjŠ̈E¨ëQ^lÆWJ©Ws‹Ö¢u«h=¨žqÑ¿šýË€þåŸý'Ëvíe§ö²[{Ù™¼µ‡N~\ÆË?x.Í¢ËFÑe«è2]Ë3í¯óOû LûÊßoÚOVìÚ+Ní·öŠC4ožˆhÄ¢Gô8YÁ+?U™EWŒ¢+VÑ,ú&¾ÍO€«@€«/hàɪ]{Õ©½êÖ^uÈ·¶ô\ô‹åWñãê_’œÍ¢«FÑU«èê?¡TdQ~m!n (í…òŸ’òOÖìÚkNí5·öš»nB’ð^7øq ?®ýÍ—‘UtÍ(ºf]ÃÅ”çˆQ›ãˆñVÜë—÷󬸓×ví×Ní×ní×îz}ðÉìi׫¿úk,ðúeA«m}m}m}Ë:Ïù¶6Çùö ¬ý7/kÿï²öOÞØµß8µß¸µß¸œã©Ô?šs`ù7øñÍ #y#±Š¾1о±Š¾Av’G¹R›C¹òxÎÛžóÂs¨ö[»ö[§ö[·ö[—c=›Nêi9~|‹ß¾0°ËÀ¬¢o¢o­¢o‘åÑãÕæÐãÕ–Ð&µôÂí^¸Õ~·;B²ÉeÉ¥—¥Á,9ü²þgé@Ÿ–_ú«×–¨÷K/,õ§a©ö,™s°dOòÖzu2>îm¼íØÉÏç 1ò:CÔ± ut|¨£?Dýêè±LnøÅ²×#bK.£GD;Õ#¢ý<"ê¦GD¬>pçv—.‰å±«îŒÔóè+ëOêÁ}Ÿoåý3÷î‰ÈX Ãä¤+Š“ÂÇz’3iÔŇ8ÐEë6gªçÑÕŸÔÿápM’ K(¹åœŸµ‡ÎÞéàãòœ.·è²QtÙÞHêyNáõ'uqøIg–$O–8sË›H ožˆRä(°òs‹[tÅ(ºbËõç>}#퇄ÈMûú ×þÎKÁ-ºf]³Ï‡Ëy¤óå'õ&xY5s¯ÒY±®Ê¨“é°üàÊÓ®´]xý²“ªÆ‹.úÚVÕ,ç9ç-?©À˪}–UKúeÖ+u2íöËOuÖýÑ+]kuáã›—…?ïÂw‹¾1о±u´Ëy4ËOj·á?- Ë[œŒ:™ÖõågÓš<-_ÑÖ"øøö…Íü@6ã}k}k›‚–óhš–ŸØºþ“þV<‰màÒömÎj¶å{åÏÒ¹=-/K³|cï—^ØÝÏÁîS°dÎÁ’1 È÷Vr[¾U°9xåO‰=wö{îiOü·ë/Ïÿ­¶V[ZKÄ«­½Ä{އ“ÿ"Šê$ºeñþø@žðGSüõR~ú²ªÀHÔyxsåóÜ<<ÞØßÂ(žÍV·uØfYÒû–'¬Í™ŒäöaÞ0n;'ÒgFÜdP+ŠÃÅÐî†}Àùd̨¦œÚ sÙ#„‹ñ#Ë”1W\4¹¥lžçFŠ*–ÉŽ¦6¡qÿp± Í Hꨗ«Õjy¤±®³ú\P,s1Å_ExýÿÀÀAúSW¨\ŒGŸ® X²(ëa…ïq!–„ˆ ³',•ê H`vrª18»Î&'ù‚6¾À蘃 “h‰ŒsÑgÊ.Ö¿0¯é`DXîíP ,LÒu9¸ºú¢ˆwXrc¿Ñ­iÚþØ9ìíè䊭+êúºŠ7‡ý\¯ò¦ô¾ü–(¸¤ b©‹ ‘˜Ž¡Dƈ£ˆzýaŽxss‡qsɆãã)RSIÇÎ,°ù‚˜Õ íJ­XÂå•ËLRò7³orøN3ÄJ™ŽNL’D*úfýÎFÁ`t1!ê‡ñξF×\ gU†ó›N[ùáq(ø‚ï~™R\(¹J)‹‡ýáÑÃþPe8ñ°uø:5àÓKv3‘2Q²¢ÌÁ4=˜f•áă g%´îZe­òv ÄÚ•¶¸i_Œ¢¯¢?¼%ÞP¾ÓªØëßôG´„w«ùö6zâIÞPòä+¨?£j¿½å ™€]"çÙ ,t`ý«hF), ·ý‹ä8wq8d^Ȫïg2‡ az*VQ ¿ŠÎÅÒrYtwß?g@:ÏvØ;åxtÙ¹Ö $¬äºŒ/ÇñæT´9±N ï®Í¬VšÌÏÆßx¿m·:ÝÞ?Â’Fóð¸Ý+Stn”8PÞic7Œ¹f·,6ᨱÙ)‹­#ø¼]ÇðÇNÿÁÝÆöA«ÿ ´ë\ð C¿·Â܆ð¶ÿÃ/h»ëŠÒÂãy†³¹ß8h¾/ãï£êî oç”K¶;oœ;t~6a¼geyñq{ÐØAÁ“¹î¤`ñ Õº¿wzžé y91ª•ñg÷w´þ—(æñWÝÆÉ–Ó)"9cf™äŒ{@oög}“ùèï6½†¶x%ª½ÎñVU¼Ê5nÎÆ:pP€ã-U‘\Gy$Pv£)‘¯‹eù çC½ÓËœ0¥ÄÕX4êÀ‹ùÂJ‘l» ‡«"ÚHXÕíÆ~wËÈÌÁ¨ÆÞµÄBwÁTVÁb5¿Ü²¾äù1¿ßXÀÎ ü+‚Sä'é’ÊY° 1Q§©3l Ùé+›2¬Pÿ­3'8j}0?4m­%ÜK7Ûðæ ˜®þðN9ÍJr Â÷àÅrd­ñ^jÊà¦î›–A9HK’bàÏayöo#Þ¬;øy'þL\w’øN?µQÝÙªJ„Å) tĤ:ËÇ¿…­„äÎtKíæWÜ/ïWj¼ôÛWÀÛa—DX×V3Ɖ÷LŒºû\·mÖjbã{6ÍÔUÂ~š]áMÓØÅ…anÄú験cötuÉzï&é¹& ’2gá 8Ëš€³ÐHôO@Ýœ'cÇ6.LÅܺÖÊ1¾Ù±¾!^UÇvi9 €K»X’,ÛdŒÄP –>!Á±?ÞÁbÙô»˜Þö‡CëV‘j(„&š7pÅçwpÉJ^½c[úÙ+åÃ+<éÂiâË€äæèÛÝpp1˜ ¿³ >û:ÖZ óQ¦ng6“éš½éÚ,„"b–ÌZÀDA&«˜UáM²zQ넹Dï¶ÍÞmwÈêÀ³ˆtè_\ÜãIÝ-ƒ>ÃÜÓ™ T=÷;—;Q¯PÜAsšßšLðÔ=ÂÙ'ÝÈýè2š\ Ç_ñ嶆~;žÎ¬ŠÇíí}½ ‰êpVÓMf|_‚®Èïà/«ZëŠX?:PzqIž4'ÛÆN½¤„`³iTÆØÉ¸%.WLOG >WÊ û•ÞÝé-ËY‹Ñ$‚s^TæÕøz…è~ÅåE v‘‚|IN1.ds>YjâWfýÏ BÞ#mœO ÛÛEÖ%r/¶º°¾Ÿ&x„Þ1w±"/§H®Ám“È}+p{;±·Õ4ê%—Ÿ/ÛÒ&r$få% +Q¨eÒ-¤¥ƒ}Éê{GuÚ×Ù$O Ö³½]òr:ô9üéÇ†Š£mvKÛ@LÝvÉ<©Õî@™`Í’NH· K%Ú2﬌ѽBV4Á(ÿS¬ßù ÒèE„¡óQ‡‡Œ‚Ñ`FœB³/cddµ-½Â†‹.c·¡pé´XÚî$aÅíýp6¸KÝ6d‘A4M Oa`—L¾LŸ-ÞlÖT2uÖ^°›´^aFvê[‹jÕèÙ±:Îzéx× U2Qþ;.5á:' 3 .Vx\A¨0SšÂ‚*x É9èÒ—™ÕT¤ALµfÅø®äj¶m„áÎn6¹ŒÝWñçÕ€}¼YÀÓYÖ Ò‘G(𣸭øAïÏðýÚ†ø“CüßâñØÿGÏkÿ‡Wõ¤ýyåÅþÿ¯aÇþ߯ܠ›-T0¶º[[›àáìobõçqÍeê÷A¼˜ŽAsÿfþö lò³ûÉÈ6òàì>º„Ó–²Ð³wÊG°>æ2£ì`ã ñì–…él28¿G…lÓ1¡E¤ÚÜÈqõ SÉ¡ÜeÂWæ<ÙMÙ½wfeØ|ß aHþ»í_FH9wý  šŒXj…¥r­hW®ç¯\©%j/gÖ–Hó´¼u%lÆô¨Ùö&qA‡­?Š˜Ê®½šUûb0¹Fª¾öe ò {³"ĤÕu%Å ËíÒ;EÊÒ?žü'æ2áhƒê-°It P–VöZXYz»Êò;âX”N¢n57êrcb5ZÕ7>­ýgéÓ<úŸÉ³êjµµ×«¯úŸ•—ûÏò0Í9úŸßÿ8mÿä˜<ᯣÖIº·a«{´ßêQ<ÐÍÃ}üqL²Xgç(¥V§w¸Kt ÿou:ðs§‘V«µ±ØÜC÷½Í­3¨"j·,>bàѨ´:>:ú˜R#“B1ù«½}ø÷ÐmÅhÇ1IdÄÞZ9\Κ]g:˜«*£¹’W_xÂÔ¢þFW8›ª ΙyÍÆçn*Ë"QÈ?÷åoÕ2YV»H‚ª¸ÓhRÙý#lϧðëœ(WnÖDØÕý©±½îrпã¡…³·“¶+ÔÅþÿé‰ëÁ—h„Kt“h«qtÔ9yjIå|>_|6@­),|¤º)3™DÓ»ñè•sÓ›PK*׺¹=èÞw.M)ND<žP¾4pEÞFƒÛû[q7øCéãµ:ÔÔ2íug÷pžFÿºF‘º¶CÜ<±Ôs©VU8Ò»1,½i½È¾Þ O=q>‰úŸQEŒ«r̈›V]Wƒ ªžñK\¯S8%ÐdOÆ_§¯.ÆÃûÛÏ YQí@¤I`}4Ô½LÔ3Ê-Z*þÙ ˆ×7º@E³ ‰“‹ºƒìo6ži=¶àÆU¼ùë:ÀƒmµÚ÷CÀav³ÚmÉu0…&¿ö‘¼ F5 ¿.†°Á¬[Ûk™†C ö3–:D—e”ÜÁü¢íeÛ%ñ&ýÑu„#x]µ©x n*/hFLPn½F¢ÍúÚ˜€›ô¹«z{<‹˜i#z½#.&^ç”[!o6@ÊL`NçM`Èäš„â§ÕÇàï®Êþ….ê•A+Äc Ë‹5½ ÄØ<ö/"ñQmHø½ LoÑæŒ´6Š1Ù&TKxìäÑE3lðh2V$KaÚŠ¥HNé;- ‘eôc¨íñ*ÜùV¢4¥£xgþŸý­í^¹ÓÚyßû'ݰ£+¿“kœ¬+«•©`ñê~½§©ÿ%ë,c@|3L¸ûÕxW=œiš`vÜŠ ã¸Míà ¤(+é?ŒŽLšF·ƒ¯ƒËÙM,ì\Düzf!_/%/¢â1ó“c€%óTc˜Fx­•ìú¢=IÃbmßœÃL8}P’(&iÀö3¸ˆo ³0! *Ò\ÁWE³¦ã‹i'ÙûÒå²~4‘h~ú‹:ðR ãáãÝöóh8]OÕš"ŒÆÈl|Wëu„„u,™Õ®.eªo !|æ~t™ƒ•+=fc,~+þ⮩è[•»ZØAc 9h|Á(oÑk—öoëƒÊìÆ¤‡S»U[r¾Ô !ƈD*bÎE¹õR/m±[ÕÅ Þ`‹÷¤)E˜à®ú¾wÄýi(ê¥V¤º>‹ly÷7ÀLÛ¦‚xß×TµÐËeâEeeŸ/?I<‚ã¶ÿ­P+8S@"5×Ë)ØG@jƒKƒ’O"OU½ð” !6—õú¥9±`Ǹ_È× Œ#m¹|I.!l¾‹Å@r~lÝO¤ª/Úh¬)|Àfí¤R`V„KÈÕy“§+ãMÑ0â)“TÐÒod !W(KLÚ=Üø¸p²PVå¸Ûí¢>á¡&Î š0'õ’ŸRˆñÃhaÒ=.ß-‹A5ª–圲·-xÕŸ©G(¾Æ[!‚à%ÔŠÙwÖŸªIÒºyÐW*GeB“§<û䨋…Jx…óôu<ùL¢z¾ˆÌ`Ä !Œä×q=\|"93fam¾CJ»tN¯î‡$ÖØæ¹ß¨HCÜMÆç€ 1Æ L•¬®´¨ÿW*}8Š´ü€âà%ª]´kÅtp \^ö%Cž$ÁÛ¢=/¨(ºÄ $aΠ`{¹ëh¢…O‚Á çJºc FhCì.G!ôI<’c…1’ºá†FxbŒ°±¾¸¸ /¦Öy܆S÷ÀÙf8Ìš­v@„!I˜œbù5’(zÂ\ 3Œ.†Àb¢I/Ðà¹ú<¢PEƒ‹ûá, Ø" ‚p Wqbû“ÅÀ)—ßãíÙŒ”/ÐÁ$¨/ƒè+í¶c` ŸùtOƒ<3òy€•ª“G>FžA¾¾à(úS¹YÁ@º·Á컎Šö4ͦIH@IÈI¤·ƒ¾Õ^)ƒ†fʆºàk_2æ$ Òx!†ÏQãÎ|fN |#‡&“Ô®`é@ÚÜ’C ˹( î†Q@2ä§…ˆ%šé¢<Ì‹€—Å×>…úD'%»ärÚ3«ý~?ž 0TCk)q»?*Í4Ÿ™½?À$†ò’Ö1H8$·z$x7¯×ãFÊöz”³ÈNœ²Ù 8î¡á%j†ÑlÆV44¹1MĦ´²¶¥A™nCØÜÊ<óÖlá%ÖO°¢6aÕ ÑYÒ®ßÙD‰,½ÁȬx8 ÄAò/5ö7Úû¯Ú Ä5Í2Í›É`:('ãh¾¾yPùc¼#=6;žhù½×ÛP’ºªõñAydL3#l¦ï&üxßÙ‚¿·;eñ¾±¿Ö áÎiysú2dÆOìç¹$ÛC¿òÌjØ%t"çzØ5jzusiLOÄ¡­î^ ˜\{kkCÜt{GõV :ÖùÐùÈßãïÎïáiÞ$¢CçÆÖš[òÍV{~âp\kÖÒ¬³X Î;üët¯Ì3ü:ÀúZiAv Àþ&•Û—¿OÉ6RÖA[þƸI0™iPzG˜þߨ‡ê{ä€Ð:í¶>nÑŸò¯vsÿ¸›z{Ô{øÝib€ öÖis¿K¿·»üy»Ç¿÷ás  -lÈl{»»÷7 ü&@ðpM¿ÓAètY ©¾Ñiõ>”Åïeq*§í”æë”ŽÖim(€ØÄßGìãvç&ècfê#Òʾü}œ„ œ†i `·Úµ2ÿ®‡ñF·×ÙTÀïSâêxsf‡´²ð£‡î ;ø/­?ûƒÍ°_Ô‹}ª 3½sïÚøë¤, ¡Öfš +‚Qí ¿~o¢ Jçwê@·qBßvw»ÛiѶZÔf÷h³Õ¬vågJ‰ t ?ÜÇÞGÏÊP@-ù}0VZ;¹ÝŸ›‡GÊRŽ‘¿·a›¥L§‚ÚIµì7€ð==ÉéæmDð¢8\xÃÜ-Ã{Þц\´UQùW¬Qm“yÀ/:Œ¡ÌˆºâÉÔ¯°vØÒ¨«îæÞ^¬oö7aÓ(Yï`qàÖQj1ƒx­àFá¾.ˆ2õZñ1º3 J¢ýM)bU´ðx¯ŠüCO»°´ÈÏ‘÷äU|­=•,D则/ÖÞñïv‘4$¬ü ÒŒÖ vBdí«>Ý!ùƒ¥LyKDÅèºþ‘”çÕ± Êä¶ß¬qšuì€á ðÈ"Çg>Å!lïAB)ñ~Øÿ.#tÈá5«ñ—¨j4ÝĹh›/p`ÆŒW§{Æ|ÅSÐRsðš¦@Ïz³Ë)h9sÐ2'aéì¬Ï€\1ĈÍ(\Û…ÍÃ}¼Z_sƒ”u£™’ y¯Ðl–H«7«!’}Q­u ¹m³Éc¼Œ`6yLƲG4yLM/ÚMÆ+Î2QàÉ”µq¤9“—ŒÌž"å2ÜŠM‰’>efrà7±° g—ºvÁ•Ë,iª_)BÛÇB­Ìà‹¬+ªœÐnGêp‡x£=Ê ¸Xâp6rÀˆ7´mÁ(¯†ýk¶rNg@}8óÐ}+ ƒ…8 =Gñ÷þÏ ÑÞ·(VíÍ*Í|<(Z8·ÍaÀmÅ­Šî`tÁkŠ Å‘k.Äâ#²œ]©ÒßÅ@)˱Ŗl±æ²ÓAÒ%O”FP=6'¯³¼Ìˆ³¾«û¾cz2J±n‹Þ¡TD&Ó©ÔP%Iµ± ü©,¯ ¶R«jEÕü@[ãb…®6µ±¤ý%lµu¢Ûþ䳤û+ñÙ%Ù3›ÈÕ˜J ¶«¹ÀÌ×÷ãû©¥ƒ×[ úÊ|;žØöä!†£ý®©Dó8:3©øV< ƒ_º/)¾^"‘\úáKÐ+¼ÎÖºv¤¡Òf8C”¦Ðé±À% ¥òö@²xŸñ@›¤Øñ$º”Ž«kšÝà)÷GކÂËÕVù«¤×?^}À Ä2CQõÔ°± ÞòµËÃôLQÀ_nxA¡£üÙùDÂG’ý”#óuVÍ`Ë×¶løµ_Al`TÅêa§ZàFpófUœ¿1ML^4øºÂ#v¨cH'kÒ*OèªT\šVàÆ²pö®—¸+¿ÒÎq¢€“¦GÞüâï`²ùLmw^_ÿÓøF|aá¡æ8èŸ*IåðNž¾ê•$J>‰`OqÇÜÙ7ÂçNµþ‡}–é¢oz7žD_È;ÌÈzj`´,4Ðfxq?ìKIo:ø#rä2Z<ípÑØóð&Ë6÷@LE `Ž{…{p_Ô¾Õh¹éÂ"e†“$]É ñ×¢M˜ Z¥¢—Y|ÉOÇÄvƒ-i›Ò©&:ëÔ’¡r§³}óÓ"sT»4‰§þ Z³1îÍïó¬Úžáá\ì¢EŽo^ÁØô½!vœQêi4éßÝMÆßlš–™žpßîOÙËH‰ †rÝ<¢'ºâ&(Ýð´Ñ{~Õ–á¦`wâá{§d,2Œ"´×áE”¾!ŽÝ fÁjÃ^Ä:z4 üëžÐ¦Îª¼}÷ sZ ÆçÊ"½ãÉáKÁ¨(BÏ Š²PºÁÿ[$›ž(e—1ŧrþhúœSu3ÕIuVµ<b@Ê? jq`¼vº^+·œÁÝÁ;LáÆçE¹$–]–jôšUƒŠs*tÝÅGÛ¹LÌ&Q÷AÖO¼BHy¿q”½^ 0–‡,`…r$fR‚ÓGb5ý£èz!|‰†‰Ù÷t´,¾Rò {òÉV a ýçŒá¨ï“§\y†Å´¯9È%LRÜ«ÖDSgCˆ¹|] ¯ºÄp<¾CoÊaTà¯Q~i˜¦¾s˜Ýx©™ûjÌ•+A,ñ]¨‹µ~©Òê’sf|ß‹Éý%nÜÀðøÖ¿Æ++¸±S`öÐDÑõ8Ì“é5¯ü*„rð©ÔÝ/äµVó•yÔ—Åj6è&r5d:Žˆ`RjŠ›&âT‹C¯< m&P«ƒº"°[œI¦cìýhæ.22Ï«–,ÀjA,9‘ã% B HÌ¿F‰#D‘í¸bhù¸_³B}mO”/:¢ .1±6¸š;Ùâ#žTG37JN¯#DÁ!F_Ñæyq;‚Áe_QúuMÕ†9eŸ¢ö••ÁVõAöÍã˜à<² Vw|‘ó;±n˜7áLh@Kr+¤}½¡VÀ©¼î*µ=³´M£’¬s×>ŒèBûV¡d{™/ùØ ?%/ñ؆x ö½ÛîWèt:EcÕy€‘ð…*!û!KdñAƒ #Y½'½fâÛQèŒÄnéFZ¨±R_yT#æã¹Î¼û«R¬èŸ*!ì.E.Uœ—v¢ÉO§¦·^ ¤p¼QÀ9Å7%â}EhÝh!\’‘(ŸŸ@ìT¬‘@¥¦ø)#M¬ º ÷Q^ €¡1àU¿…V>¸T*‡w’]Ñçêåq¸‡©5óÍ‘°µöyÞcäU¡Ôní0àMu`]ÜSi(ŒðGó}F(sLž Þüì?mC$_rt’Uë›P´^9V>Ñ›“ =Ôq¥}t‹Ëæ=ô…ú~Ï ¥"F&ï]yšóš2P™PÏoÆ ÇÐCìjk†S&qö–}림E=2öP`É.µ²«¬òªø®wp„Ȥ]ª´ïݬ„6Y¢aµR[Ü¥ù‚š©%í¢ìU#˜³krÓOîòˆpò»¼!l(ÎX¼Å/Iö0N´±EÄϸ5ÐiM¯ë( JM$¹ž‹¿ÊïSùdW¯®PþUGš>ÇrãPd@ÁÁ±¤¢¼´ÅQ…\¼Ûÿä~Aü. ¸×°§ºøòÚýªÿh& I'4GãõŒV—±‡LiªkžîÝE ç5Ü(¶¶bán­{)rèµ™¡—ðM£©Ÿ’wbÒ…¨†–;»Xh™knœ ‚6˜é/*]uv­#ò²£}H'¥\ 2Z‹e ’¡?`T õ!åâGö÷#K”¿ 1Ë%YšŽÒømZ{YTžs;¥ç´ËOòÌ+ 4>œŽ¥G´Ö¨Ð¢ª/b°¿ÀuMùhE£}¯‡–¥ ÓJž¸‚ ÝŸ¡º®KÖIG=„Wz”ºNâÈÐIœ>\gÇòêìB#žWg§2‡âN÷4—â.­§s)>D{7甉,^`KáÕfùûQÓT6u}6Õ…Ãà裰d˜@G \‡„h\š²§ {€épˆtèR¨y‰Ù]5Tu_i:ô‡t>µã°â|ÿ~XtéN“Î>ßø¡$O7ú˜ÁǶ§6<¸a2íÁphÂPÈ‚û‘ Ãôc dª=y%°Ð†×W^•³dÿV…Ç"Q›$þý¢o7ƒsRžÄ§5<{R‚Ù‹áxÙ7§}0‘o;å½e…$é—Cª$NKþF•Љëj§žÔE/[·N ’}ÕCzïв|ûÈNhò,®J¼ºx#Ši^-ÓÀ³'Q¬¥º`À‹*ê Í¢BoO§¼dCF¹s ñ¯)"”%ÜHÑáÍõƒ§ ²cÔÊ +µ~€†öx“O'P¢JΘ@‘A)P÷Ó¡†)Cd)4Cµ<ÅV.½œ©I_Œ]_ËGå´pÌøÈëròW.]bX“˜QÏÔ3:zÄôš®’ÑÕ"fÔ6UŒ««Éú€ c”DnzK[ÉHBÒÀ’9ã(¶£±ï¶CÌôóàÎïIûÃù¤?º0]ߪìðàZ‚ô¡¤N#¸ç”YVFšÜø·AXÉ8lÌíÊ$çèû)~DæC¾\*\D¼íÇQ•F‘tÊ£½æÚ“ÂÀÚ^­Ù¦ó yô§cÒÒÈIZ…×t l‹"vYãß‹ÞóV¨.Ÿ—ߦmIÛ‹ŒXb b£åk«Os¶ã4ç±ì2eDñ_öI1ïá¹Óìm;i0‰MÌóXOæ1ž×ÀñÖ¶ÍÇ2[4ùœ˜Ëd¢L|É™/-+†×Œs›\ðªk./Ÿ>Àb£"çû ·Fše`Jv¬–³,SB£ïNŠà®èr …JŠþË®?L'*¦Ðmt9ðäàÑ‘”Â’ÅZì!²úáx(¨“_Pá,ÁK—õìùà½ÙÞbŠŠ;Øb=Ùâêš[/ÅaBv†\r Û;f)G¤:6Ò™.!Û×¢ÝoåF‡ÑqX¥­eûéüpâA%êêï`œ—®ráß‹¸ôR'ÑÀÛ¢íIÅH H¾=£@E—%[›â E>¾E·ƒ ݪ ‚²y´yÜä+Ö°—cdf¯™šÔ†×xÅØ|0M2¦ÈétKEV)muK¨96 @ÁÅðZÎeƒEè_Ed®•`E”®Ó¦5’ü½˜Ù ^_MYh°æý%¤¢Édìø»¡¤Á€¿â"-­k;†v@\a?Aà9šŒ¿ (óÒÝ•A!àÖ î>$X¹7|èäY†µNwnIAÎÑÿRäU!Nû>µªÄ8/r øf<ü‚ÚþT`šµ` 5¦1ä"g¸ü:cèEyŒNÒÔ'áÆŽ]ÐÆˆÜy Sÿa)‰ý*_¸ˆ“vàð¯ùì=¸… 0 ¾‘åˆÄæÜªÕ›>Aï*ý(yþ&ÀJ.£¿ÙY?TXî”_!s§ÌÒªlƒ¥žúƒ—"ôô)º`²#¥ æ¦ &JkxƒgOŒƒ•¼— \ /Ùcú=òu±´¨#xëíe š£™ò½°ê‚#IÍž¬ …˵ëçHFò­,¿ˆÁ7BÞ§,HÙœUß…ëö½TóiÞDŸã0Ï<æA9¶Oñ0E3@½É©ಶÀ YÈhaq@‰P1>-ÖW° t Û (h"EÑ…Á›³‚¼3¥N…mJV^ÌU™“™ê5U<ãˆËjö¯Qòbnà«Å¬Œ¨=-£kœ  ÷xë1VÌ“Œ8{·XMÙŽì:¦òóC²–’ú_›¾+e¿ˆ0 iøSöu¥A¹ˆol[Á™ALßar,'‡óXR*ol¸øïáxüù¿5‚ª{Ï"ALJƈ°È‰•ÖZ $f“; J9·÷´50ŽjølbÍ”<`>5v2˜ÜÞûÁê ó†(ða-HÚfXlÄ{ÎZ8ÑU™h:S¾=†ášd*릢óÌn FýËè_÷}ºHõ'C Ó *‚(ÌòBøJÕÑ)Fj¼ÎÉ@t!c¡"ý讄¹“Ä JЈ”¢‘kËøñ€Ðù ·-‡wŸù 8µ“ܲ?˜ÂŽóQX.ú`síÏA º/a éü é8²u6?…ÈõL¹¾µò.E b0, £SWyÅd ¼ˆãç+T‚¤=w®à¤5ši¬Uã÷¨¢¿—|¯!LfläXŽF¼h¢ÙNí¤jM{ŠdÂTä:ß“:…º>bÝ /eIY㉔…”gö}ó9fE]¡PÆuØHãœ2*ãÐxÐX«¹¶ºŒ«¢ªo_Lî/0¼w2ÇBüça§«ø²ƒ ·†M˜ù Â[²‘jC_•Ä m²:…6,V~ïF;y ž´Pì¯ýÉeˆ688g®Õi–`Jð÷è4¢t^”ë]¦!K†ÒnêPÜA“öø 讀æq£3t{*€]^b5ŒœÿÝJy›kmˆtT¨NZò¨ÖN+þ!!‡`Ï’É#ˆÆ7’º`ýý¯}#’¼§;J8 Ó#÷éœòGqŒ–˱<8áÉÀ¼SËᎳŽ Ù(åíΆ¹&ä&Œiî'HáÈôîGCô*Ìd¡‹Ð™Ž£3Cƒ¢Ú>ìU9®ß?à„µ”(Ž}€ô3^°Ž4?ËEhÆ”÷v 6îWÖF¢¢üÇmö§¤Pã˜ðœôã&kŽ/¬s¬ÑôÓšøsü!·«d8ëÌ¨Öøè<ò%Šqü÷tŒà¸ÛáëW²XþKX²‚Ô®-§JS°‰,÷šB(´,:DGÁ¾1çÙ—äqØà%Dï'~ˆg$œ)&°÷qÜê,•¥½Rĺðù{‹ð xv8e´ ˆMXºêr2Èo¼–j|ùNAËyyÑ´ÒÏm†ŸûÒ£"gVÜ Ð&™V¸Šª¯¢Âì}Ô¡ÆSêzg­l†p£wdMcÇ2×QÊíUžr¤ ý/"–2Gfº¢¦ÒŠaH^žö°PMÔk2äçk>‡8g2™eÀ7#!|*aš29[=\™5ñô+p[ž)zQïnú˜ò÷ß .ÿý*x6ˆ“çc™ñŒªÜÃi@EÀ¦ƒ¼÷&˜HfÒ¡ 9(—ñ¸òï÷þýoÊ¢éha†.Kiµ/&ã¡Î¿÷/)\þ#lÌк1CñÕ¦J6­hÙT‡ÜðßR¢m–•7¬@Äëe¤bŠS“jÓ9`VXA×Døú¯4QįSÖ'9>’qWkç$bR,J¹/˜.Fd·¤0$j#¾ìŸtdS„s;þâÞ Hð0=Mï3¦“Ù9]gUT~3#‘FKËibKRÕý­*3× áTÈâpN³Žb8ˆoÞã99Mnà„(^¶S,Á+]yûAgô\IíGx3DtÝYŸX™&àȀǔ[˜“/Ñ4|œlä–’½tT쟿§HïîW¶Sâà@Ó½'$-ò,µJ%œ|¶å<¬:4Nf¤ŒÚÙBg|NäóKÊäwõå哃¢œ¡VQQ¿¥&UÖÝ.H4âíÑöVöR}"¯üH„ tÌ5V±*ÅË XY'GýHcÜyÓžR ™|½?ÞßšîGèÒ"¤Þ9«{äÜ@Z—jìB¬sÑiL¯©è§,ë|Ò¿ø ’<¹ “yöv|9¸¢ ÎWÆÊ€uq3Oi©W=&8¶LÒÅÏdÚVÏcö‚\Øð*êô]F-mEYDæ°qGªãT‡dÆšù@gj\¹­K®Û·ä=Þ?ã-7¤6ÖÕ"µ4¿m~”NRf ɘ¹"P–”iˆæÁêU×°áÏEIÆJ‚)M…ÄÓv0\CrÃÐ*Ê™šQáU©Ò<æ>ãÙKÒ†¨áâÒš“ uE„§X§ZNiÍv Èá '´VŒÆódÝÒŠÁ Y:eàÁJwOW±ÊX̲ñÓ³eAb³Òß c¬ý“ÇÌ…“tO’nµwY»nœí§Ðzˆ8ž°(#ç*ÌÞú烌ÈóBÎ;åy;‘Ckðãá'[i&B¤—Ú¥j)÷§߆i•MRd‡åyÒ¯$¥;d1Qg–g0Ë<(½X+sí‡ ÅZõ¸¡0×§t›ì\…мXÓÉMÓ™ tSfy-DÚµzòþrºZ9°øûyêá02—ZÇŠ†Hn¦¦ÚBÇ3XéÑÉŠïwkÄö#¯#;ƒê•«¾À¥ès@eŒ?•ì¿Ïû—ÿr\€³Òp(CÏ@[J;>‰®0ÝŸ‡o¢ñ$ìÙ1QÚ ò3ˆƒmÜcJruZ½D?« Kݯ9è ;sˆjØ D;#¹kg, rjÌ \È ]ÁÎûEå¹júTæ”sŽŒÑaúò¤T«ÈŠm£"|xðnIA µ'~fBrdêàCWäôÇ\Ã×íṼí1ÆU›èÞ˜T55‘z4ºTZ…ËdÒ¦äxaÝ®œÂ—(Æ_$ÝX¿ Œ‹ Ö_XÇp¾;s:âß.£¶búäÄ̺‡örpÍGþáOuµ’Ìt#5œJË“ûó(šQ&dayšSBÛ– }…þ.'Z Ãüsÿå>Ãþ]ÿâse¹ZÕí4_ý™ç/†õêU¢äß%xÖVVè÷ëµ5ú½TçÏð,ÃÿÿU«Õ–^¿^®¯.×ÿk©¶²¶²ö_bé û|î1©‡ÿu ïߎ§¡rPìê)‘ò“¥†0ÑnìˆýÙerdªOügëàh¿ÕlõD ÞL™Þ½è Éõ½Î–.k¶{[;[.†P£îùà4¡ [g%ãò(l•¤,JzËòå¼/Ð÷qKøçÑýäN†¦Zç‡ßk*–ñÝÿ艌y§8ÿ']rSøDI¨P‚“')ioù&~¼F_ ›xò¾%6 AFßÞ4âœI¹PA­-ôp¿g7Ò1ç÷£˜/4ñûîÿN¯£ÿEˆÿ‹ýÑÞhWį†Ê-Ç­ñjŒÇ;#°0p]T³f율ï53ª”jgœæA6°iƒIÌU,ƒ¬>ºÆ,qüM3e^°qU—ptf¶÷ ˜ 5kÐJ¸ÁÃ]Pø^6†ðä¥KD(Ǩ:u¾ f\E–1fÌ¡å}"^é+N„»[ߢ‹ûYÀ»3èõ’(iz§ðÂxª‹÷x)³bÙ9 Ï ­ò. ™òWèÍj{(-lªkòƒjÈÒû¢DPJÊ/ÏÎã‘ÿf×O*ýeɵåÕµ:Ê ‚¾JòßJíõ‹ü÷3GþëíÄvYì”E³[]Øã;Jø‹ešþý·Áp€Çý2 –^|¢MnqF1QS&[ÓVªÀâ‘!šêÞ—Gáwp¼s½w7Ø×G˜"UúuË{^º¿ÿƒ]tC_þ)_lë¿:âŸq±ÿý_î|Y¥ø×ºþKJ"Ín©T‡“á¿»íã_°YT5Œ 6ƒÍ©vô_K،Ӈ^õ)t’šB) øQÓü±sØEß.¢»™ºAnM7¯|+¿•mšÐ;¾J\“oÕ¨·®ÄÎúR™ƒö5»ëœa±Û^_2Jl›%–d ²YßÀ i„‹_#£ÜËiò~Ü– d˜6L}CO'wB½åx$£JqCÊu8ï‘’ÑvrÕÀ¼€qN °“\Jwá_Œ§8}êV¯¤N ­Ûv ¥ô3 EIA9 ŒÆ# æc Wƒ41šûÉ S"oF³þ`hΟ½—+«•·k¢"”'° )º?¼Oàã- ‚§U±×*$ê٭ʳ¦±Ô¸!õ êOc¡Mú!ß«,Y˜ÚVLûWÑŒ4½…ÛþÅ ¢J_x•±ŒtÆI>1‹‰­Åª¨-A+çbi˜Ïî{9ðõ§xLNy÷&GöNËq†zYî¨ÑilõLa·€%1Hcuisq‰ªÿáOäº.–è£>ÖyØn3«•¦UÀʨuT£LÈêüÍþáN«ÙØƳÝêè˜5Q¾yxŒFãVʉ´,6Aàß„=ƒ®vm×ñü±SǸu6¶Ñ–Öâbv žáoèãVYÛ°Imc]ÏÈ·¾ÁÜâÁk¸,I›çÍýÆAó=Åd<ú ÂmöÛžœrÉv[¨¿M¾†±V»Û2‚~6Ð&Á…Ê2þ>lïî :;èÕ€.t‡i7ëP­û{§çé>båÄtÎXð³û»Þ‰Õ þªÛ8Ùr:EeL&ϾœdèÍþ¬oòýÝf£×ðÁ†£;«ˆW¹Æ-.#Êým£Ç Þvl¨ [ œÛ’^Ëò·z§W1aJˆ«±,bÔó†å>¿]Ãu /ŒQl”ˆ² º ¦™–¡ùå–õ%OƒùýÆö¨­@¯øWÎÕò£r,H¬Ðiê¬Îýð­Ez.݋Ȗe€1=8arZàÏc6¶qȪÚ~ØÑ 8˜q=ñJpÑW^v1Æp-„^Aáß–‚›î–äøô{îEò½ýN|ëíž5lM©©ñÈ EªÖ>×j×dƒevÐ]÷9¯Ùõ\¿è"¥5!':¾åÇ™.žÉz.¤VBH= õ,©g^¤èñ U»ZT¸4¬–{W“ÜŽñz'~Më¶Ž Õâ.ˆô_,Éu•Ì\?&$ õ§Ñ; s–Ádh©XI¦šÈžIïœñ¦øÜ®&É«v Y‚ŸÍ±Š\ü Op¬ùÂé¢owÃÁÅÓ|9û:V ÛÚ¸™l·k6ÜM¸uÑ©ø°qTò•EŬoœºa:TÓÙMôgÛìÏvׯL4Ý e*“wœ­8}3 G#µã©Jîw“ Îàޤb¶º%¹q.éVyC\¡£¼ÜÖp1ÕE\븽½¯y­¨gU1ý×dVÀ÷xõ¾Èï(’¡&§+b°@©xáf)–—ÛÀN½¤D8]‡œ™ÇØ·¸ .T &qÚ‚Ì5rA}¥7.z‹C1Wœ¶1‚~™)°ó 1ûŠ ‹pì‚|It1.d°#Yªá{ ý¯“Yÿ|ZØÞ.Úámr¯’zpà‚ÖÛz›ÇH.ëäBÚ6é6±Œ¶·Ëh[­"£’³†®Í›È8˜§–4»DË(¡‡ûÞÁöS;ÛQ½LôÎYÎÄ*¶·K^nAç‡_ aðplÍniH¤Û.)©Á=ªx4]³þãæ™µaRiG:§Æøë2 ºsQ F8o»4'CÁcü1\àÌ:8´JÌm\ÆL(eÚx…M-¢Ä®BÉ]±´Ý-H*-ŠÛûálp—`ÞòõÀôésÀJ&»¤ÏËÔÕ”$Aý2–Ø&­0@õNý (m›ñì‡Ô;IR§Z0í|ô²öqÁË’d“`¤Ž¸„™)]ØÏæ¡X^RF,*í–ˆî‚˲/S»YÁwa½lTK•ì¦x'ZÉlÊYrÖgëCا·“î‚ó§>>ûÏ—gµÿ,­,­ÖöŸú‹ýçY¦K×þsR@ÇŽ3ÔÄ4áçú~6Ë¢K7ÿ‚ö Ÿ¹F¢É#l{AWŸ…©`x±x4x]ú¾Œ./ôûü^-½™‰Ùv¦PyVl'l烤@Ç(C©w1b¼c}å Âùä¿sö¢±Õz¹Z­–GÙñ­0@õÇ;TÎÊç_ 1åoT]ã;¿§¿+ãѧë-ÊŠE]$Ûl#Í)ž.lm¸'2aº¨aÓŠLk-1fMñC¹@¿ˆ¸ µÅÞl*!Ýæå }“ð±LŽNFÖäG³¯ÁÄœ¯³*ÃùM,I°×í¡n»ýáÑÝþPe8q·›V·Ã^Fþ^7½–$®hÚ™peïrÍ‹¤ds9#VùXÄ5ÙÎYeh1úžÜB4—ŸS 9'òÍanwå>´žÀfÀRêC<«Z’U~ø`~hð – 9ö¬E~VÆ?à[`ÝÏx+‹á©ª€Ð‹%¨½ˆ,Ÿ>|h¸®Q@V„Æe‚`åt3 o…áò7Þã¨à½ÿ`¼ÇÂzßÄ÷0DGÌM[3<Ç_ž¿Ãã‘ÿÿxbñ?Ëÿkiåõª+ÿ×W_üÿŸåáîÈÿµ6·ÊÊÁ»,NH>>á4ƒx ØßlòýääAà'ÿ›ïFÓr.ÀA¦Nhð4Öƒx[ðlt˜+lŽƒƒÏ¢ÀíЩàDžøæö|„Æù@IõRš Ã_Náî='®’e°úAåü{¥­·¡3¤}—н@èñ÷ìi%slE Fú¯£ã½©IÄ{R¸ËÍú÷0¦/øo¿—~õð~`v{Ê“‰ðÅþÆrj]QÕu¡|èO³þg¼ÇIBþŒò®f*åºtöª¾‹÷ ¢À‡ Ñ§ûk¼ä:›ôGSD1å{˜ ¼T %ùÈ­aÓYÔ§ñÂg ò=wón2¾¼¿ ǦÏ^äOÑžýߨ;ýcïcçãvo5¤YD¦_Y—¬¸óëbaáMöª$šÎ·ým¾}ÏÀä÷¹ÏT“ñW-+²©>ð|v1ÞߎBàöç§’X×ĉʂìä|££>¾¾º¢ç–vK{?¾ŸF¦ŸÜ#eò3£*M ¡…ømzû‘ã þ®ßµãïä°NœaeFöñ4‚ÆäNÅйí‹Z‚Nò;$f‡òL’¡S˜%o<ãØâ0`o"î36c*Ò5_ª ç×ø<ƒ­øq‘&…*"~§÷Œ™ïhŒŒ¸máÖ¾câðɪ[’n–4)"ì˜æSÀ*7èšÖ¤I@;&˜EZ˜6 ©Å°Ù̳0B?;媡I’¦!CÇ Pãmÿ[“¦Ið´¯#x;7a–åÜ~ í¢=ÆPYná h6ËÔfŒý)»V^¨ …tªTÞ¨Š£h6˜E85ìˆ9ia@¡g7£»Yµl‹&ðyo4þöe0¢„Òm<£[¦G>Èå‘É>˜í…©<%Séæó®Ô>†Ýûs)çÝöx~lœ}€Ž7é×ÎÖÁ ýê4ùH“ ´4wNÒóè<þœû]@H¸'üõC4Û®¬¤b crûr½Y¶ÍÍÖ8†C}`mhI3Vì;_aÒÞH#À2 „µ²|éÆ.æ  ˆSRÔ›ò¸ ï‘(LH¦Òq©¬.è7‹Ø›ÛÊp±öîVöiÅ7ü~ìNvA,4“RÕÉÕmég °*ûÒ$5X QD¨æãlbxÝú¤dT…ïð² ~…E²5¾Öl r›Î» P^f¸I%A+ô—Ü [ÎHç¸ QÏ½ÖøŒ»Ÿ{6<¾ Zcä8l[’¦®•iÜê9"\¥®ˆšƒZ¥3Dýç¢>¢©‰ñœFäí±EÝDàŠºQ¥ˆ(¥Àk@ÅA¤†¨;I· 6Nlº½M¥Û݆ےH±ZŒßÍCµã1bBÄÚ,HL:]Õx²‘›A¬¥0¹ÚÃJÑ7¨Oÿwþ¼÷?W×^¯%ìÿËK/ú¿çx˜˜]ý߆uzFok´:[M¼ÙÐ;ìl(½àžT †…ËýMT"Óë¹RÊþæ_]{¨‘B˜R¨!Œ…•Š{±F‘Bb\Hãªñ^6¢tŠÔX)õ8ÀGÕ¡95Õãùp|ñÙÒ:¢CŒ"V±½/•ÞK·„¸Þå`ªÃÂÈó6È:IER)ûLjçS çÆÓÂçIpA³†/6È?Q†KŒ²Bk̯|“ÊEìæû…¸ëû˜—"©Œ ”îp<Ò iåj½mÀ+˜¢IÑ)ØŒ .ˆ‚GR—ëSb-«éÖèrpAW¡oÆ_YŠ:FL7ã±£±ZÔ„kHžnCOQü¾P+Âà Uúï}ásQ@¾Äd$eÒZéߣ™;â çs ¢^d¸… Ø ¶¤žù†mUáà‚—œšâÐgŒšI’⥼óÌU“t¤_°jO!HlñWòÓk}÷òO.š¢' ëF'V g!ÿ+Þ"×DÊÓÆžÏ+>T+í®©•v³´äÐJÇ#ø“Ó¸±´OЉÖ5ómbø×Þ/Ô´Á•åûZµy’£ªÍ“ô®`#8`OgäW{J'=z彄Nf¸?º¾GÁb7²½˜BƒÚk‡êÓ¨ê=ªzUdŒù§R™¿/5yKäßÍÒ{ùëçÔ…#&HvÚ+ªî1„Çua¤­mÙŠî~»ø‹YÚYíni=Ø];¤¾:—–=_<Ùjò—½šsv •¡ùö‚ç6i"wYek9H9¹«C®'îØ§ôÍþ¼˜®_âÚhPËz¢ÇçªZ ¹òþ–¥Ъí ‘ž¡×s”2(¨WðØy´=‡´±Â;E‰kjŒò ­$z L §JI®Þ›hàÑ"/‚ÑÒyGº?þM¤Bs{<ª ‘/õ9”Ê›/>U—lÓ$:¥Sÿ[ä”ZãIÒæò’'l$U×ÞÌ6ÙrÛ-¢Ké~ÌW$ÉËû©:O½é3¼$áG¸ä˜mz5Í[iØx-÷æH˜¬ ͪ$Ë -šëµb:&Íãm^ÖIãeìþAäK.$ÿ6&ü¦ùÙ¡’•ì@ÙR˜]ø×J:ÿºuâmNþ•4(•BÄ0ÿ”;–9kÖ”g08Ù ž‡o…ùS-z”éFp8=ÿª—d «©“-â{•]$Ô­vs‚WCñJ²Y¤Í!Æ!Í‘¬=j$ki|*¼t8¡Bp)½ ô ¾z½äÖ+².Ä:¯} ÷Mæ@m› P—µö¨x«Q±Ÿ2=dwp¸ÈÛ‘=l={-çdàÖjN.w‡0kK:Ö´'“+æ·?o<±Úgÿ=süßµúRÒþ»úbÿ}އiɵÿö “/KGj¡;vÿ&\dXõ²gZkk¢µ¬²€ÈBÂ>;͵'8¿ÁÌÖ4_õÉÚÚCœ±ä=–`ûÉodk¶X ¦Òú!£ö.4 Ëø€/ZW†‘uXrÐl‡Ûöîïîð†‰îþ/H’Çp§! Q$1 Å}²-Æ•ÓF7uŒt®ðjzœçAjï•Ù´ë8Fˆ2gL–Óùž8ã˜<âÉ|ÁÓ»ÎèÝdü5o×TߞޞӬܽ‹.0¦/Ÿ‰†Ç¨ ¡„L©–!Mù¡lQt÷ÅcÙs­®?³Ý9ÆËSÚEX²è§c×Pô™¤/žÈ$=1MÒ9ÍÈ–Ý7áiRe³¦²h>Ä–ì㨮YÙà%ÄbU±¥æ5­æ±¯¥‹ï ·Ž½¢mÎlo[ØõÚE× êâD™©a{Ò¸’TqÉTñ'nµ‘+Û~¼Sä1Ý9¶[Øš2Œbž‘y^§‹‰éAö>c}svMÊ9 «>›òg4~møžÕà¢ÕÞ¡ý›0"×Þ±œ (±ÛRç0q¥=«Æu²l»þÉ,˜&ä¦%>pï$j‚ÉÁd`N6&“# rùü9âœôeÚ4; Cô­GÿÁì­òv/€fÖA§~éÛxÑ¿îûCÜk´ ·¦àD8^.åIƽ®ŽunUÐ}@$Í?m$c6ì'¨"’$ “09î‰ÁÞiâH)›‰ãÄžãù_zNè§Q· ¾ÔÄ—ºø²,‚Yí^™þŸ¹*s ãÿªü¯¦'djΨný¯À+°m.@ËÖÿ Lê*ÿŸãeÍ÷R¾÷M_Í%|’(ö ‰Ÿ©pÏó>A¢„•4HÔUщC>Þ¹Â*ÐÔJ@6ùø'5 åO&u(ÉóÚ] óù3=J².n>2ǃy°ÏÈÜÞò§áÆñSÞßä2‚k‡Š*õבãQ®½y];bË1ß´ª‘éåm½Ú‡1{øÊI*¤RpnvÅþ-aº§¬Ï"á^óÙDbì: s.®!'vš&ÜaJï=Ÿ©ýÁ"Z<غK‡ã@ ~_{7’éO÷Úš‰«§'dÞ‘v„“dFî´;„{•–¾¨I8OM$Ž-Æç·m¾<ž ¢'A´ [Í\ƒKG¨þ€?É CB$2–BlgôØ~´Á±•kpʪÓ+§Ø ý+a(úT“òO…úaÖ>Æ®(ƕ¤ýgz1|^ûÏëúë¤ýgiåÅþóSžmÿé6÷Ñ8Ú‚U…¶TŒøµÝ9D‘Þ¡ºü×À5Ô`ñâ/ Øç #N‘¤HŒRø ¡!Á|‘€5Êi/j¸¹¹ C0‡FT{vÁG=A[Û‚¤&¢¡´$˜u[¤øï¾¢!Tã—ãë0õú鿊3sôÑö2ºÆß¤‹€àÇæ¡)tÁ•”®˜¡¬ˆÏþ6œ*Mƒ˜ÿ>Ý–k@‡¿c,¯«ûá°œPV•º(Uæ=RÕ¨ãšâë€x4”Ë(7ýá•Ôc¹½ýýOë-œ³·ÞæècÜ!_;f•]Dž²²T±NK@× à Hæ{½äQb´0\¬16ÚqõÁxTÃǹv‘ûø†™…ãNKþgu.+Ǫf§0O†¥˜«ÁI™R¾Z™ Ôଃ«˜£†Ø© æ–íydÆd @®*L‰ãÜ2–Ê$­Õ§»!Šsv`Úãžèª(µì| nÞëk çúš1§C28©d#Òãl°Í­@›>¹Ö[ºé‡’—¸H"†}ÉÓª+bz;Öo–¢šÞüþ×%øOi#娙 /wLàY—¸E ÉãH“‚òý¨Ðä9“×Ò7ëþ–‘›ÖÊ[»4²Í£ÀÚŒÛ ¨âX¨Þ=Hëðoþ­„dzÑÚiHù»&7Iª¬ÑOŒL{ Bi÷` >‘~tÛá–3`f(ëÊqîX—ì݃rÇRî×8“Ô¨4¢Vì¡=+–ìú±éj}צˆ@ðóiå6–Hsi×ÝO«›P@ÚuÓêÖÓë¾O«›¸Óf×õ+MeÝ•ôº¿§Õ]M¯û1­îšQ7ùm¬ËM^L£2¨ ­Ôò«‚y×PêSºÈË£@ßä¸ì§ ©j½Ãp¥bPšÔ«òknù6—§~#^ÕF{/V¶·ª ¸ú7£üª[>Ô×nÄþVuY‚€]ûD9FÑÛ>Ø[?°-è¿/IìÞ¾1Ú=òE§f*ÐÐ’§!‘T؛͌mÀ;ÖðÚ žk„8ÕXÝ@eQbzØ1ºè8ÌË'Ø×eO_=“+1½Gžðá¾&&YÕ;ÎYoÍ®W/A‹²r Â߃ð¤e³j~›I·¹ŸßfÂ;A®ÛÈm¨¤„þ;|y'BUÁÅ *Îî´ä£áñf/üi°Yd:÷´ ”~‰¼(BÇùä|…ª*|•LÂò‡ªÖ,I¨ñð¸eæå$¢ÿ/h~ÍZ…Áè O*#ÈÓ}v3¹ ãÜàñü"u ƒr™GRìY»/Úý6bœ€:ª©ÆÒ­ ÈàNÄ_n²ðÇ9Õ ¢éJVòî Æ÷”n3,AÈÀ".*Æ¡Ã2¶þFá¥ç·1ú÷§Ñ´,ËΦÑðÊ‚1&_¢©R¸IôécÊÇa·°ªµ€b”X¯È0‰ÆÊ­9¥Š—B9\ùW6~p£|&»dQ•Ý)™)ÝÛ+n:Ø1œ,£[Š<ƒ½pç3£zí8= ÜC…aÜgò5ÅA5c3o‘ƚć\NÜbk·Øôß%ÌwWØ™Ýýš§ûû~ gðºcb(2èî¼CYñ e5ïPêž¡û¯ÎP^‡‡²ÏJ«MFòƒ¤y6uPk¾A½Î;¨åà šáà-ÁÄ Þ8ƒZ¬Í?¬7¾a½Í;¬• Ù‘:–®ÎxõÃæ ÷–ÑYb_, ƒì­À˶ý}jatàÝ@¬¨ì·yÃÐÆH-w"„‘ÕàDσÜA*]uMÇI”¤0£šäF$3ïÕ**ÀÆÞò\(ññ¦ZnÞ´æAÉFÚÀ‘£¯ûˆQ‚®ªàñ ü;°ñ–Âùj+ ¼AŠ#,[¬…Øbr«"(Úæ ±wçPôò³o¾‚Xþ§úIü]¯ÿGýi@2ò?×_¯‘ÿÇÒë×ËõÕeöÿxýrÿ÷Y^Q ÿº(H?Mʽ¿yføwe]õÍz´÷jªûlWÙ…³îTlF°Å ¡ñ¨=„sÑûþp8¸îÊâÃø±x?¸ì“™Ó´ÛŸBûAtùyFšIÒ‘Ùdz“¼É‹PKlh_;â] \phº›Œ¿ .yØ>7³O¹]b‚}â?[Gû­f«'Úx”cð¦Ö{®ìÙ2;àæÙ<.>cBFÎì3t€9›ß¦.@páÛÑ}q9è_GÒÅíj@,*¶¼ÖøMü ¨Þ„v(žLJgk]W7k¶ý87 ë Œ÷èõ»´N¢»aÿ‚§yúõ¿ÓëèâÿbO"uOw}¥¯ðšÑe’墢M¨aK"Ý?ü‘¸^tÆwwÕL( ó0]Ïn„iúÞt1SöàWu Ggf{)ZOƒvTQ ÿL¢šJˆÞ¬:u(¾¨º½e¾X·âì\ïw«ÏH(ZRrƒ—Þƒ÷» ¬«?J°\ZŽ×馺[ ?8Ò”þ¾pù¿gÿž7þÇÒêëµ× ÿÏúKþ×gy˜6œý«WÇGû±¯çþÑûFYllõÊñóïáò‰ƒ ¯o×ÉÓç›cæOñòÜÂÒƒÙ°ö¥]¨W6•ƒ2EìîtÖ.&¯‚RßÕ—ã«+õý4cÛÁˆ8ìã\ÌðåÚ]Jrîhæu]¤IrµgwàH^-5!‡–ûùàçÑÅ ”IúØí«ÆZÇDc¦å;D…?:@§¾á0ÙTn¿«xC<°¼f}ÞXüžW1Øv¬á¥ 3Me¥ðÄq;Dç»T x@ò ˜>Ñsnø9€#À'õ³”[FF±«š[’Ä’FaPþD:æ&5ñëºà[ùáþ€ÓÏ :ŠªŸ~ñB¡{6„# Ê`T¸-t@òë~öä®_O =Ç=Äy]™BLù³Qòm9ó:Ên4³ÚâÈ“Ù[]¿ð†É±yÞÍõ¨‡Âv#”ië^Ŷ­ç¯äÐócXÀ{û¯ˆÈ–-³­v²¥†q‡‹¶m‘m§²ñ@ß®ïþCðki (¥85,`¨@β‚)Œç±~™m¬=ã‰èœ1Æ}8Õ¸É3–0×76oÂêó”Hž^”å ÛiÂk£Ì3w>”y£fæ  ‚¢_}î9ÿMžøø—qþ[®yòÿÕW_ô¿ÏòÈufŸÿ:*@õQëä°§ÿãÓ`³,º¯c Ÿ.Ž=Ï©ðqZϦŒûØÍÐ~>ì`Ø1RñM£ÝSà"< à-¿»aæe2æ|CS;ñž2k œbJÛ&”f)i÷No¢‘•†ƒ§õGSÔ¿²+Ò¬ÿY!𞬆x·.ŽJ2`]›2uæÖ(•J=~ÇJÜ#éw6žÌnÆ–ÂòÆ?˜ÎH!|åàêF‚Ѹ*óµ«?кjwtŸÃÌüA†wjhØ1ì‹%@„¶ŽˆŠ4*­ðF*Ê î\‘P2R5à9‚¢G…?*5TVKð±^¤_µ¢*¨‘kÇÑÁ3á׊1\Õ¶© Jdc„C2yØt¦P®‹Ê{§uÌ U×¥ŒF;ƒ¢ˆ üKLñ§:° *ôš‹m,ÒzÆQžÀ(Oú p¡\}7ø2žñã¾A¥±€ïdÉ«uq:‚3 ™¦ºè:ÙfÃï9Ì%9óFÇæ‡–¹ýR‹´w*žµ¥þVŸ´SfÌG]VÒ qÜ*‰š9µQÔ‘µy‰Ïk¢Ñ]éHç!éÑ„àAq‚]´¥¼rR†s*õ°’Þ<­ò5_y ta²¯²Ëœ¬(•óÏø‘ "E~ WâˆçNÌiç4碘 §<>(”` —P˜/©#Bb˜²á²ÿ¹§k:QÜÒcsFS¦=¢œwÕ“}ôTcIœ?i/°°ù˜vÞd$ÏØlèÉ– Œkqcâ%ß%Ƕgé™"S<¹i0gTJ딂5ŽñW‹sÅ…HÂì"l G˜ˆ~…uôm²+s›>—ÍŸ:…°Ò|<iCÁ^½9géê®7càú¹? ¬†-µÍ¨œ²ó\9¾2Ç|_9U!ЋD8»: í¶ Þ u›¼bîm/"=â@"ªA;µx2ÐCîh:À#"êv;bAÇ<ÔÅ}9¼ ¯„«@ mõ9yI<®6Gbä#Q ÓjÔ·Ñwá~;@-ž²Âô ù¨˜×šbÌ"+”¯ÐsIæ„x'8T€ñFppòèf‘Â^W½•÷ýÕÝ=e³^¾µ+CÆ‹eèÒ/Ô,Qõ w¬Ô0³ìA(ÝÀ¢„fÐ>úIZõc©M¯àº?¤‡¾æ'Î6KŸ!·ø3Íÿò_zþ—6ÿ+™óï@véA±Þ“±5íD”p¼6ÉT<á©…M4"OH6«ó‘Mþ÷“L6ÕÕÒI&°ú0’YûA,Cúâ”qê3ÙÅO1÷¯ÿ²sÿúasÿæ©ØEˆægFÞ¿„˜ñöGÑŒ&“~³hPQ€›èâ7ƒŠÀÛÑL‹ Táü¢Vÿëɵ9…ÌŸgök0kÙ¦Ë1¬h7iØ'nï!§) ÏvÈ©­Ä.¤öS[ûµê'¦@ôs]ôï£üe‚ûVœÛ> Dʾ¥Ô&æÖ²ÅÜò )¬¶ÿJŒmÔ¥ÌÚþ ujoÿ²³ÿ0Áµž-¸>ûa§^ÿkIõÚ"“NÚsÈ»²øºE'í¤¼[˜¼[ÿQ ÕúÊ_OÒ¨Ï/kþ,³ÿ09³>¿:5%¶gøW牣 yîMÿõÜñ?j‰û_+ËË/÷¿žãaZrîu§‹œghélÂÏn³±‡ïîñA÷÷¿à/o67WJ‚ sÈ߃y"{œæ¼»Hf{1û&Q^•©˜^ðMWXŸ˜¹åFfF“p ø}©TÅXßÐù¹ˆo«Õê"~ÉÏT¸?ŒdñûÛé¿Êæm)(: VÙ?Ÿ°û5ª3Àý* îpàpÔ;œ@‚#½·‰Üß’_*÷èÏÐeh:˜ªó»¾ׄz_³a$¦ýÙ`zõ]¬†QÓ‡Q•ŠÑÙÖ¢¨—FÚçJFÓš:Æ£Ê(º _"ÆßÅ0‰^Ý~Ë~K °ÌHÀks…˜"^Û£×ýÁmÿÚ|IZµR ŸÙ9jžº.3.QbòàŒ˜ä8U9-´I„7°ßäc,0Œ…ãÿe‰S!°·3/Ò[ºAG©³Æf~Šø€o¯o¬ØZ9Ü›çv¾Ô‘8xŽî§èçW = Ÿ9ÀSè’tÚ7¼ŒsM/&ƒsŒNvˆ«ÚS¥¦Q¬‡hÞ ª1ÒÙ–šg9Æ>]LhÌ0ÞÙ×霳/!YÊnÅh£ñÛ Kü¦s\1)$ Ó’”9‘ÓhñIºT1è¢ݳ×d=Úë[v<u¢; v(TO‰TŸ §´næê)µœÕSd*ÔÓ?Ë91gjø§ñD< ÷åßšúƒR4mnìS©ƒÆÎ|ž{,ùíøüÀ¤»Î.x•¶+j²Ä’8jcwh'kñΕ’‰@a&˜/À©š<¥ |Zè†ÆUƒ‡#&Éuê6ý]’uÅ+Ù*îоŠTh]N’óe"Û€ÝÿFê<è9ÿ}½{ÞóßZ}­–<ÿÕ_ÎÏñ(ª¶Î§G3Å·JVØ:j0ƒý;Õèh¨sõðýx§Gf0ãi4°À8Á±#28ÖàT]ý³"ÎÒÍ« gKÂÈ‘3yÇ6ê_ÜèËY{5}Ø«[þžòºƒõãñqºm£n#|‘ï#µî~™8¦Ã*lùðæ?éÒR4¹¥ÈæúÆâS^³ah{µ\X¿LàÈ)^ IÕ¸wÙOPŽÒ„ÆðªÙz®f‡ý'm•ª'[õPÂ^½„Gt\ãÅСúCw8Uòvº]%3uë#*œ8`UHð5á$–õ Ïä}:Ø9tAœaµ*ûbpË¡yx©‡Û§š|6ÐqùCN™Ø¾èˆYd>JY")ñÃ3û±ªb‚÷¡1pÍä2šÈ.nßOèëf4ë†60¹Ä ø/Ôr§*šUqzQ˜Á&ß-ž'Ð]×ÍènV-ÛÛ|Þ¿}ÁÌÃðU·ñcpóÝðBË:m¸SÂ?<Œœ-qº_ØY–•\˜ÿ^Wæ §–±pp!µø|K"½µŠ¬Ý>r!•ùO]0 Ü=CJnÕÜ”âÆ~šï5â¿âCð‘®VÁŒ5%û4ÇmÖÝ6kn›VÒÕøKÿ5þÓC÷=Û É/cËzºè,º\÷_²“©-Ãü/Ûâ?Ta`ÖË8ÏšA5‰#ÚÆXžÀS’ï„Ô"‹\+|4âÃòž ,hrÙg9Ž)n/dŠÓ_Ë¢GeTaeœs,«!ÚçÀ$4*aŠ*ò$ó@4f´Àþ´ò1%ç1¾šÄ´Ìž>¾J³Çñû 嘵ÜS毹šÂ7MÞ衹¸§G/‰Ÿ~Üã9ÿ¿zÖóÿ ö=öߥ—óÿs<¼°œóÿ‡mì¸ ÿoW؈µ¬8ÅO§ú*¬£ øIusg€àkû8z:˜Pò¬jÀvÛžOgða[…ê¡p:ý 扰ý„‚^ªÐŸqfG#¨¸Ÿâ)˜Ò ²×¿¿ºíâøËtFÀ2Pùf|ÉvaÙ‚°[4Cn¼Ó'ýuJóQêѨÁ±ö üßÓ4Î ®8ùeˆÀ,ÐïâóK ×UØdu¿XP¤ªZÜçf°Ì¦l¤È¯Ä~½¶à´hÆ3)`A&¨]Ñ0¦>M«:%<Àóâœ2HõgΠȉQhºtr!øž­ÔtâB0|ôgò"šÄUçno`€ö†WÇ?°ßm´TxÒÎŒgù ˆãqƳȇô¸jчMM*÷`‰ÉLK»zíªhÍÐŒ;çÃñÅçCm]U°(Ç>œ‡b™’\ñ¤{wÙŸ1^¦÷çJùR°æ¸£¡)ô¬¹(æÐIͨȼÅñ™nÄv3¬Œ Æ]@2ŸeÄzgTùMÜÜ&NŽÏ•?‡²MSœä¨áY”5H'¬Ûþ·Áíým¶Élz3¾Xb^a¢:hU‰}Dêx§£« ðƒ,ÆR !™©àE{ªÿJG8æQöök4Q+pø=ñÙ°–[¥Æ ηÜ~”þ2I`¬Ç1Yâ,Öš€FˆÉQ"Ùƒ&åÆBžõÒ-†Ê™õýÔ¯ûQä9ÈA x0»+˜Ñ‘FË\æew•)ŨQpq:#ÊÓŒåAŠoD^±Ñ½KÖ™éXW¾­úÇÆhj] «³–2m6í1X s…HZµˆÎ{XhÚp6m-©³»+m,©‘aýi­¬©oF3+%ÎÀ¦ „Uà&Y;V¨©N€ö¹ˆ7 ;CRDö°\r®EŒ?(#Öpk±Eh ãÁjHj>cµ_½3aèŽV8:kÅì«·ƒ•Ú;è$þ´fvÀ‰Åˆ;}v–ªÝÓ„úã)z:÷tÑÓÓ,¬¾ƒZeúYL멌S/¾Ž'Ÿ§pô2òi¹½¡S'>ÁÚ;­2$ÏÚÃÔgíÙRÁÒ;¥Õ¿º/1¿ÿ ¿‡ ƒ}.”}ëû#šŒe=‹Å˜pèAYýÍ|B˜E—eq~?3Ö²/5jŒjÈ+ÿäppè¦RÆxo²H¶ÛUÙŠ§mØ[­÷˜Bb뤧Uz^øT@¾‘ p lãµÝˆçlØÌè{“{[ÐÑì”óØcÝÇgdÏØ¡gó‹#²pìÑ?8¥î%‚—ÅÏ^··…åOÃ8lltL¦CkîS3ÃS \ÄÊf N>›uúQ‡âðÌÄG¯]åÁ‘î|Xù؈ûŠ„WVÅRz“7"ÞÇæáÑÙÎÖÁÿ:_è„¿NO"Ðõâ+ šƒƒVHõ÷NÏÓ„6Qùšð…<„6|‡I8œ2bà€¤ú°PY·ûê}$—²EËÕìc€ö³=U„ÀØä¦ÒmÊœSxJ“/šE/nÆcR–°UYJ;P4†ÇuÖ9Þä"b² –>öúó…ù³½mK>©#ý€ÝÖ9'Vä„rXR1ÊÛ#V±‡§e¹QsägCL>…Á×ê¥ÍŠ:ã# 8×›ÝÝSIPnAþÉ||‡6øèì½ÑÅ‚X‡<ÂÛf:‹îhtäª[N(éÑ¥N¥wÁÅx‚NðãÑ%yšË{4L3LYð£×ÁƒÕž¨ ñ[°ÿrOqnð‰‚Ø«îoUÛ•öÈ6ÕF{³ŠÄýYžènÝ~Ò÷]%ËÜ9=4-š-5Çwßí1˜ƒ:åã,IÅ Êqo(”!qŽ2k ´G>í¤_ÄO§ìâ^´Ç°'»kuÁ!ë)ˆ…ö8V"-°µ»?*M ¼*›Â(¬G n§Ôµ½SUô´,„Û?sîp?!;³ªMnìöd˘I •õ1-¥;J¹ª• ^]0»Ã{^3dÄü'[©"\èc…¨_ɉ°_cìÒñÕUE Xʉf`ˆijòyuòFIž]x¶9ŸÂ·³ø‚‹3©;Duž«Éc]nWP°’FH ܪ9b–ä uÁ„G­®i¸À‹„ePv˜:£$Y³ˆA2M§cë F®Àмï(é+qt¦ˆ°&5ˆÊ8]b•žUgïÈ~•*åÎWw¶ª´ ”Ô |]‡g46©´LU’¤AˆNç=}QÝI4`òšt“› á§ò Ãà*<ë2ÖÌâ-•šz{ …ÿÀŸ98‡ŠîÓ 24³/yØZZW„H2=s]Äü-ŠÍýâA%ær×`'<‡ÙÅ…3v ¢Îâü³àÍWŒ®¬3,l„áå›%Ù¢ÉSv%î°NÀJ¹šÝ7Ù)¬QÉC¢f—¨&*û—‘äjqÏýœ¡TP|î•jÝ'ùéç¡ Cxy†0\¶’œG÷X÷/Ø»íªfoÊìÉÀãn{ äH‹ÎYžÚ¦¥YœÉö¼@ÑÉ¡–ôÝQ„¸o&J¤Ö.F K!BŠç;)>ÍqiÅn‚„”ŠÒ¢™dϲ³@Ø%y «àô'C8\~—†3:Yɯ¥˜ëÙ²÷È™jo/Hƒ´Ýámà{§É=“Ž’l pÇŠôYÛX­‚u¨*ñ:%i+`G´¤±ήšÖÈ‘–­ èøñ(¸O´\’Û㥇xI-ûž}jį=ë‚{‚Ú¼···(·§ºC›ž®z‘ çTÁ9Õç€Sè4m§N#^²%’AŠE1¯$š$ÿDujñ{ìÁ†y3^N“ NYk ¿JX7Y‚ýŽeâ#Ü®?Wf7Æyö8Y§‹KCÖÑËãsâdkâ8ÁÀl¢ mÅèsK ÅW4›)´(y`è¤Ãõ³DÏ1ËDö»LĪY÷Ⱦ¤ÎB4n^d2¡ÙàÔ.Çü†p˜cj°eY¥/Ý9hšð=½Žç,¡—sè`MŸÃêi§1ÓFô¤ëôŒÏìóYÇY<•“³ç®Y¨¦ ɳÛ+¬ç…V· ‘0*܋ɧ€M” 6IÐþ>PG{á¦ÍܸŸøîu u¯ÂQÂV‰?å÷ÔåŠúà×,0&z½׫˜ðH}.gÿ.µIi ǾÉl(¬Ë¡Ù³,í”õ—4ËyJC`R½L1Ùò•G‘àÄfÃì-Ç}Û3‚<%OÙFÁÊÞ‘ï;‰6ëÛä@6Y IÁTfïY[ÑaÔpúKWŸ¨E¢ø5+õjK\ÔñS7Z?Ž£lE--ptB9mµh©¶`í:XóÁ¯ kfKäþf¾:]0k°V—Ô½äUƒÍ€Ä¦øK&úb6¸µÎzìý¾KŒT¡õÖ*–HØ“ÊÚÖ$ìnàªÕ.°Wi…Ëú$ÂÀèñ­mØu–ˆL@±_y€6=áòÒú»»Êßó´/™„}ÔßÝõ)2³Á@Ïãýr%q¿!ˆªIt1Sž(Ó{@[*–ôè’£_虨@~Ö>ÄE°÷!E¯Pì1‡ÂñkI‹«Á…rt?#‡Q²ÀBÅ$‰èVŠ~‰Ò‡vF—ceø0™Q ÇÜLkïF&¶vi-ËcÍZÀ>Àôf|Žo~Xqí×íùo?©j•]›qhû\årbOÙ‰ olwØ%K„W¯Äï])Å£Ew×âÉØë‘á©\æuk–£‘÷d£Ig<å‹`kÔ÷6dìýøˆ#>ÚÆ/å~°}™îb©¶/™‚3ÝôµRA–é«n¬‚¦/º½i˜¾j~ÓWŒu½îup…d[§v`î6B–©¤ž”'öí–©9 SÀeÔ9Ò2NíùÎi,\"q'æN{!M•|j2ÍOfþrÖ§ŸÏø$É,d|Ú34Ç´ ã@C§É°êÅeý+ fªì¶£=SÙÓ’I† ª]Q Ë3# ›©HfYÂ=$AExm<±¡(6ñøÅD Ä¢emŠ E‹†±IyóãÍDŽ9ÇoóY´¬CùnXÓìL»ß¦ôÿ/`#ZÌe#jžÀF´è·½–6¢·ylD¶B“–5^•Gãó»Qþ%mDPmDð«Â*ÌE;0_=‰sGÒTq3LtÛÖ v–5(9Î<Ö Jû8sÐâîFew×:𧤥ºlìöYã? ØX2þ׬~ñÌñ¿—Wëÿkiµ¶öº¶¶„ñ¿–ë/ñ¿žå‘ËÌŠÿÕ«7ø_*îW—þÀŸþ˜_GÃÞaïÃÑVz,ðÚÓG;èÇ `¯õ‚þAÀd°î¼AÂåEe`—b{ue p«Ø£…ÃÜ¡] ð:u¬ª„í×<¥mGCžb*Òtǰ`N•+¤_t[íë‚o2˜ÝÜF³Á…Ùµ›…GЏÓçŒOÞFF3oÐqYÅ.®Pƒ2ªþ]ÅhZ…í4J¤*Tû'3iMí‹«aÿš"hõSC¹wƒ¦†@@«)í0“ˆƒ·Äq¶¨Ã <]¨)ú‰âĸÑx~qJîë’n”ºI–Ís=¡Έ ÕpxTø¢6*iÚ&]Œ£««Æzž¹ñßt¤›®ZÁ‰ÌäW790U†¦]ÿé68p›ËHÇû‘A9Ö—¬aZ<¸è6~Qõ~ã°)d5æ`ê.OOîGSÙìRc•Çý8¬v­]¯sG1qØTí5(ї䓈0c»†ã÷Œ"µõG J*Åbž¤¹ÖìfMQýWæŒRîÎò†“€d'xæöãûñ‘ÅÕ ÁB¡›^»œwJÝ"¤w#Æÿ€þWŽ«â2à!¸]ü€msi+ŒµtøQ*È±Ôø†Çue0jjG®:Y ”›xO=瑺ûÄÚÕØ±’˜O™+ýÞf.X±NÓ°qO›ÖÈ©ÌniË\%7uÚ5ŸNPü,ÅçF9™|>œ@À؃pƒ‰‘êôTº[n.ÖXskjá8kÄ'ÛaÐÈ8`‘yÓ†štCI^1ðþÔJUà$܉áóåbmqP‘¾QàÈæYø©òù²øëúà×õOia¹†BTkúDÕo£Â¨üiÀÅ*ᔑ¥Þ¨JP0݈Z ]iæ ØŸ¦íž ®of°ÔqÑ .#qüâÏÜäõç¬qÖ›£Lc©òŠrjCñê ….žlIELµ1'ÑA‡1Ì-ƹÁÍUêí¥r‚sk!bŒ«äÃF“Svã›ÏâDžß¤ØG¦±"솓ñ·Á-n5YB"Œ9¤šp¬Â\`æQÉM˜w9æ¿Ð1n@[•è‰çŸ,ú±=²eE1Öe<3Y± M@”±—úÄbí eݦ¸…c/rvK‡®dR ÉcéCx¿W°S2󌻷€•aë/{‡•Úšj¢F°“¡øc¤¶¤òdec•¥Æ©ÑŠÖ¹±úH#‡YàW*k¯|.¾ÂjX7ýK"!½¯¡Ÿê~T)-åª}RkÎ÷y>¾Gõ؈׋ÚÕÉÂDÇ43ªÓ…q. ñ_Šø|(‹16üu€&iñ¸ ”?${M£K—í½ÈW@Ø›·֙‰à$þË-`xE= 1¹ì÷X´Õ†HžlX Àtc|Æ~¡ëÖ´ÄÏe|ûó>Ú9úÃë1™£iW~‹*E®×ÓóíjïFÿD/ÉsúKAû댫ÕjY8Qó¿áò‚ZôâqƒsŠüϧE\ÿ]á%Ñà7åOq“ÑHº©obìˆçQ§úvŠý+\cŸÄ`&¨¥ôAU{;±uƒ$`”ºÉÄ—ÜK¢|€=n8¡ò °Äç<\};üä€ÿ÷[aç½Áz­ŒXýÚû¢P÷Nhñ52ÿÅ}£LëÜ‘Wâ߈ÇE-ðõ¿ãNš¥Uµ‡×‰‹µê jÕÉ ºH(VtÛ±ów]ã£ËÊ,n) µRèú$ïË|Ï”—¡âD¤“]Dš©·ÔkÀ.ìk—÷°É™½¨¾ÊÙo‘xj,’‘c_{ø7’Ý¿|HL´'¥5n,Ж¿qñIÊ)Lì7Œ¤XFÀ»hYJsk\º‡†Tç6*ÃûD¤W•i­ãW­6AAH[1¸Ú+ÅŠ1™Ôø§«eÓ1ó˜çK}Éÿ+’tŸ5¼Á¬8-°În‚ÀÖÐÛY$p$œ¸ŠútŒQ [iwôÙ‹»ã’^Ÿ‡†’:³ÎÊÌÛ¥Ög6F0Ieæð`LªQʯ¦ª¾ÔΔyð §&Õ\[~Ëî6947WØŒ’S·è5rÊÿ^ñ±t¨>54ÄÓ…JG²e ›'ÓH溲8|NF^çøWx pÈ 0‡. `ËŸþ)<\^óëSÖàö~3ï§Ãïq‘¯cÉÆu-—ébÃÕðè†ÔpÙ\Ó~¦NLX—R”=`®2£JSrn˜Òƒ˜‡Ÿ<X8O÷W"ïþå¥ò•˜b¶ /êÿoÄ\)H”=¯øcü7Ì£¢÷‚™g¥“t yŸ„P²¹6§Lø·Ä?2ú«§á” Fæ°²|ÌÌB!cÖó´ᬢ/›fPµW…# öj‡þD¯6™ÔÚåÅ õ3ÑŸ›#ç}c›rß”EïTY6ò¤ËÁŠôq5‘='ÅVmà…a•ÿ&iþøÍxÜHÚ‡x8AÍq»Õ+K_þÎïf'·ÙnuºPe·ÕnÂO؃ðÃþVs ´Ú›a¤m´vÚÇe±Ó9<- ø¢,ºûôª‡þð=j¢G™ZÂX8ÛhoÂáÊŸ¥æ»ivv 2Zždú—ÍãÞž8áÍfƒÃb˜‰o<èØ”¾:›ÐÕð@>nöšeúu\F³ÒfëD–NI§cu¢ì4V–@ÃX¶[KAYÞ¬<›<g[[p㌒ôÈ×ú %ž./O0‰#o¶wwyz<=(C¢¨ç—ž¨h3‘«‡ß%ÒõÈ×€z*€WÀ56ñvÌb`Æ=ÐUïäçM Ä3=ǘÅ%¤½x¡mANa3—Pü»‡â-Ÿ0Póq§y¹Ñ³í‚¨BsUî_â¡vçö<@J¡t˜ ‘©FÓC˜Æ×î\8Å›i]¨º@HJvAbë8 䲤 ,ù ò B—o§5¹â6Ùö_ãRåWÝò{›éÖÜ ¨×Æ*d2Õz£j™N[:îT{ËÓ ]ùbæV lû_(‹ŠôèÐå¤?–_‘ïï÷ƒ‹Ïê¦,J±JÈèB;÷ÊqñŠÃ«Ýö/nð÷et"72¢xEpdà®ãa|°Ò ñ¶Œ—µ•h$9P1Ãq¼(yG‡r|-«i®úÍ‚Þçe…¢ÛŽüãUÜà`Q•œ¯5¥1ÇÔžì`^r´BôÅá chÔ¿PzNVHÀÉ|x™ÐH¸w±-'X[æö^k°åëõ¼„e-u3½ev}¡¥w {ò¦_R:µ ùWø£QÕë**i5V"xñÂKÈõ×3–ve79º Ñ5Ó{Å3×ëöPÍ'q ÞÐŽ'ëiþPOAœÉDœße]k¶>ÿÎR°RB¨ÌâF¬0¥è—€,¥¯“Wucדq¸6e.íp#£'ãñ˜9¤›±Žzìk«Ê°Kt€qg‚û¼n¤µ«¾§ÊÄ‚Wp©g6&ç‘PÔ Ùc—j ÷ãó²¥ rÍ‚¨A‰"CcOŠfMª§îå…)îÂY">"{F'Éý̈`v¦ã—ÔvÆVÔn¿áq*gÚXÖHgdדñW8Tµ(ƒäy:«2i›ybÝY³tÞKø>ãYÐŒø¡ã ^5ÞtâóºËM·Uó¶Õöµåo*yŸÛ/ná7%9l<›úV»Ø›_J`aÞ?JzÕ8F==‡²/¨$ùÄúI ¨AùT´ŒÆ¦Ý!ÃÌà®\‘Lt¾–²Í*eóXÉåñò¦€VHµÌU2: EÝUÅã$±J[;^£Ã½…¹}–˜Æ^ G²{jlŒ(ËÔ ÐI©À¤Sž}§GäñŒjý]ïðʾêI8üT@Jà+Œê(}=c„ÓöÈóB²Æ Ã_”hóG¾£\Œï‡—†ºµÙÔ*­=ØŽ;’² †³ï¢ùp´câ¨äè3-”ù¦ChšÆ_%êí5vW¼q"CHÛ !Z #-ÄK„)$ƒØ{@ ú³E±‡°åát!•=ägÓž Ö…¹Œ“´·šGf\sã´øI °íÇžGç ·£‡ÈÞŸó‹;~°,ðö/! ü ²ÀëŸw¿ ¯q´5É…^–ö´Ä‚÷-ù³]©‘X4Œ¾@<“Í„¿WXÛóÏOBƒÏ–W°µ³]<§“t♟hà—ÞŸÏ<ãû„¡’EˆôýØG7Šþ_ts~ó—\¸.–x?n¥Ò/¤KüþMžúmÊå\S#Ƀ.±2„®æ±Ïá‡Ý>$“^>JùC‘Z#rs;SüÃËPßá¿á˜¼ÙhêcÊÇÞ÷eßkFßËÚ±šÇÝF—ôCžDÓûálšJÎdÞbæÉ¦V¦é[b6ßpþC'Ã}3öI³€H3OvÄ}—~•¾¹ ì~½255&Rc}–¼òy–TEJ%CL’d9üUŠ’ä&2”E½ötîQD×ç` Š‹}“Ž6¦“g<íßzGºýö'ß=œáÌØØ”~ÌÇ=lK$ï6Ê+Ï»Ù!x«SŠÜú½jDâu·<¼¯–3,€og÷µ¼»›Ê>ÌÇ<6ÿ&·€wÁ=!ï÷Br±UTo÷%eÛIí?¼T¿¡¢»öêœåWí[Mmó9KDÑ»ÌȿijȬ~ÈUL¿KP#XÒ\rÁrþÙLûâL›ÈÑB‘{90ë"ßÚÐÖNI!á<úY¿Z4òëz&‘Ì?óÆ´j¯°9dÅbÉhY ÂÀ€l_ƃXôcSr“§ø»ß%¿ ’Ó!'îy˜´( ‡¡Ã²–E*'×Ò‰¿ûiPÐ?rp7üNœ“@ n£©v˜Î^9øóUŠÄÃODÅ–VÎu•½¨þ„…šÓøÎö;¼ú­P{7’^¡rë%naÅû¯+·à m® \ÀJBáš[[ªFLË4XÆ‘ù …R7qðô¥æÛw´>3™~ô×jF?1œEÌBL "Äú—Äú. ¹¢¢8R®ø¤//9ý‹]êf˜¹G%¹ˆ’+„".€ ®bíš…z)f ¼~’|úŒ«Û¿põÆt¶[JÅFj uÿÐÝ1±§npPöˆ|¨J³rõ¦q¢ ÔÌÂVâr*à¾ð­`\&~GÖ$ºT•x[IÛZ¼€?KÀë@ä¾ï§†\î(r€4+èù©3*ÌsJYN¿êñú®P`–]zN"2N•ƒŒ2÷¦ù™•MrU_Ù JßµÒÃøf>ï´ÃÛUïðÖ7Þù.cÚ¾Hç¾kÎÕµ:LhÆsy숄ӎj³ÂvÜÉAX;-•…¬³RÑí–3+å#…x'K:ˆŒ==ΡiGtÖã9¥Ï£s÷Ò+bz‹)1`ÞKß Ÿ‹BðùüëoŸv€?–Þ@Þ³µ¹Ÿ>3Þd7i[ënöÆÚºbD$ÊÎn‹=l´™»le…˜K_!‚* ‘©µ Õ9ôÂR=ä: mÒ æø`ÆÂ™¥ ’_üF7ŸÒ$™X¯Ø6Œ Käà ‚8ÁÑB[yÔ!?Û1)$³Ð͘€”®*ÖVe"ÂRg½}Qg%ÇùwRg=Ÿ$ Øª'‹Å‹bK?/Š­Ìï^[!0/Š­ŸG±õ>‡b«žé!+’Š­úÒϫت×^[~Ìe(¶êyƒ2 gýrÌÝ9w̦Ú+–Ëð`ÀQÜ츃©÷Í G¼ñd†>âá$ŸÝ8dÀK’ÏùOþÏË«gÍÿ Ë¿¶âæÿ\^{ý’ÿó9ÉìüŸ› r÷pƒ.Ä~Ä»°ð£ó¾ ?6)¸nGFµmµNR»ðõ_0Û§/ä1aƒð’µS¡…°ä +ÌÞékñ7Êʹ«þü‡âö‰Ê09²ðÇws¾<ž›ÛJ(QIæ0.ñ¹–Mœ«Ø›ƒ«J4Q~%{ƒJ¿rÅé˜Fâ£2ž¨Kþç”?F&º¼¿¸‰S]âƒ`(} &Z ð#´*Z3þnzɨòþ±¸Œè ô”‚K ãüzqú„ïâãÎV¯Y¯ê,]ˆ5èà•Àœ™Ó8qƒ1ô«ÉøVDýÉpq†Œ³w^‘yMù¦”“1M ÊÇ…¡ö9RÀàNuB}SI,ã.QwWÊàoþÿߨÁßé®÷]4¹½Ÿ1`J Gý*TQ1+‘û€R¨RòH_œG Ç¡À¥ôD›¸4ÌRr²Q‘uQ'¶)–GF¢®ÁLé7VdøÂÄ%BÞ=¦C´ÈSßöŸÜ3øCå'$ëÝÕxâÖÿˆÔ¸X‰@»blâ|p=׃/*æ© 4I—âeîó©SðÔ·bÐrŽé;Vå…E˜ÃèÛ¦ûB”»]õï‡v^GÂDuÔ ÈàhöÃñø³è߀È)0“Â,ºþÎ“í¶Œz¤[Ì&)c!Lª7U˜sµ²hia7” SÍ$°P©U…Ñ5ü:gîÆ8ß"Ë…º2{ÛG î£.G.5f¬)©ô`¡›ù¹«Š¸æ²nšªŽy¸À;Ï"û‡Ì1ø162r ~䃘ì‚oÁð$~IÄ ¼š+å\Õ"©sÇ™ lÊŒ²u!ã’|+†ò ZP¬Dƒrh-†¢ËþÅÅxr)“4S‚>¹Œ˜ò ´[²Fn•ÙÈSZÑ1è¿î'N™:ådÛˆ°ã``Us”…CÖe²BZéít?ì+æë¤æt²'òæÏC<0…G¼ qèŒÏ{Þt'0„»ñˆè Œ/N]jÆeBñÌ8Á»x£™±aÙ¼ÈNàÇ3¡£§ÀM`ãòíÃÞÖ;Yl<~Âþaª ÑT&A"tÕã4qˆÂ&¡0žmJ5ñ Ùvð­ôõnv#”=¨“"ç. ŒV'ÕYÕ˜…PŒ¶H³‰LTb¹Ü¸4!|4ÑŠ²¢ –•ÍA‘Ý ¾PàïK”~!ù­†jËþ€=v‚(•ÀÃ\5S¬›‹•bMcjµïþˆŽ~’5o:ÏÝWY™DíOª»áüж´ÑGZœ…¨glc,öú×°»ÃÂDå#Ô‹£1|î÷Ë÷6 |bAHèÝ‹æSæúãÛ¨Oç<,Í]ÝÊÛ¥šxóš¾_£Ëh¤eOL—.ÏW”–þJæãï0Ûðí €zµò$nt÷O¶äÿ§öO)x!Bïy28đڠ­MY…ÿªIìcúžSä½#Óa'E)Êu/nî'â€R§MyŽšÈ©«[̵Ǔ©#èuå)»dAûBá±¾üaÀáukkKPóþ…»Ð¡ÆýlŒbé¶‹iÊâd<¬ŠåØËÇUñf÷°rkoß¼-‹»;ñzeµòzµ¦G^Ç‘ÛSm´ iëêj€SÌ™K;ãsL“jÒEúè«ó|ΣÙW$eL$Ö‰XÄ?`2?ꃔÍ(k`Vø ™r`ÖO ' ÝAÌ:>hµ·+oW«K«yZ\BÍI¢&jo¡•<_ª+ÏIû q¶ÙRѨ¼É­¸ž`ô<˜2+Ö—çÉ“e&ÆJ;ß73À6PA娒 p@G‰14Z¼XííCÊ‹µ—¢øèméÀ_] žcøu´Ü i³e@¥£Žö ‚]%ÅIz®¢ÎéagOOU *¹ÜJI•Ä4[q=øtd@Ivhî¼P*Tó~É“+üî6딪ÛýŸ¥å«"…}Jò¥tÊ•‹+<+»–§7HgÕý½ÓóŽ/+“TV¢Ý¡î1œ" ün*K¦,/èždp@šˆš×HãIGS<¾a<Òw’™Âh «b¿B‡T:‰#_Ä•<‹CktÇó·Ù&Q?¬ÜJÓ2´Ù RDʼn ¼q„óCkТhºVº³@%Y€§PédL¬¸Ï¬Žà!ñÁaÕÞµ1â*Qj¶Ã4ÃM —~|»…3ˆÔ.7üΑ Ab`ÑdƒDÔAÙ-þ½¨“|‘¿Å2øHþq±¿œüì]8*Šcô%þ„>/™Àƒ:t‚ Çìl‰¡iœÛE‘H©{›`û~]&ÙúRû#Pu‚CígÃ9HÀIšQ[(ÆÑacjêçPŽ-Éá$ãä—.V@Q˻ŘÚY Jz?Ô“q37ý;Ô”Éd¢(¸ÚpáDœÍz‘à@Ee§$¹Š¯}ŠŒt%,º×ãñ¥PG{R (©>Gbã; _£á°òy4þŠgÃ>‚táÐaÈ´X… >.Ç(M+ú­zˆx7Ö'­r·¨Zú‰µéØcù1ƒ¨L¢Ûþ`„“à @§¸•"KQ°¾4#’ÍóÖAù¢æFj÷pÀcfe1´¸BkKÎOäHb4ÔR¨e2 ‡âŽ*W÷C`רW½ÇùÙ‰BënΣ‹þýÔ€Ó}P¹r¡„\Ä•TbÁåz€¦<b_<\EV(›p.å^ìWÅqŠr*hKsÍ6’éàú¶ÿ¿afÿØv`œ£Pà}„vø²ˆã7ÃâI;¦ ¶‡Ãë/Œ2.“WÜÉv¿P¼Ï~ËI}Ы¤MýrÎK‚j²ÍHÅB‡®¸ßìt¢ÿ.‘Tg£î¶âž{ qJ­=(ÓÂhúGok€þ{O`poîçžl éøãé @ ?ÃR\.Drû¢¬“qÿüÛÿ–…uOT¶$oS¾íÄÚ-ŠÓt¦Ï–_X@Â¥a I»RHòç˜*¤â|ÂÓ. O§u“¯Ù*O/ôîïìr&eq5ñ›–†p äÐÚ(¥_ëüZza³AJÚ£ÎÈ¥{Å]"q¾ Z –±œïÉ0keäwø—•.Ñ3Kð‡dºx.±çJuÐ[]´cÈj¸ÚÛ‹¥îX’mꦞÆËh`g–ËŽ3è(YFn>eêC<—©E+\VBÕdlOœ¨ —F{?eUÃŽ„káÚSÉ÷ں׸·ªƒæ²ttä_‘9Ä|«!ì<µ{X½8Oýg>ÿ¯»é³ú­­½^Kø­¬¬¾ø=Çëßñÿ:êú³#ȳxiíˆ<¾YáVZI¿N¹éýÕüÀšïFÓÒ´ÚˆØAT¥¨PIšâ5FHœÇ[Ì—©¯c§úˆ5ޤ‹ØYaNï°#™ØNÒ£H£ ×"éU ±ª²-LKçeaväNž.|ÉUÉd¡Ì¼Ó®2Ä7䌽•œÏßIï¦lx‡C;2:¾{[â=®]FpÄ‹´ÿ1¹Ì=5Ê ‘ïÓý5J‡nÑoDyç&£ŠÊgË"¤tSJ Ëœ×/ï1£UœÂƒœÙâ,¸Á+ï¹qì;g$!÷9:4ŸG6:÷*ûøìd ty«êÛÃ÷#º p‰~ðçCòï(xòÕëx [â<²GÝ“Øb]UÐåL4 |‹ªQš¡B|±‚´Óñm$ðÛŒn©SÙˆß|m‚â\cJ1÷eHñÇJÊÁ.‡ó.]¤XeÖK¾di8»wÑÅà \€YŸkŒ+vœS¤h{ÐÅpÖ1Cý;hÖq³sÊìc™}´ë’£Á¦©‡ÖXMÑG{ «9nÏÚØª.–&}[hcb/:õzF=k©C½^¨RÓªôÞªÔL.0¹y û}ÐtÁÄǵDΪ$FÚÉvÞ)u‹gmè/g¿Öþ ¸ xn?`Û\Úrݲ®nŒ¥ox*Ï6á‡Ú‘…«ŽwƒBÆàjIñ97”Ää4Û¥æó4O.ÙÑМ¯*VÿM^ŽÂe}dÃ2v<;I©çêâ«zÑm+¸puÃeµs0Nñ²¼mJfŽ—æ¡ 5\eÀŸ*±[ nÄÎ4V´§  †ÔG³ÿú2}gù]1«"jCñ«0À;Þ”ÆîŒ ¾hÈLÉ-æ×õÁ¯ëŸ~ @Øw!ê£Ê§bÌ'£\9ά¹Ó¾[éhOqéœ ®oð ) ~G.Êô…»Ò×É`6‹È_ÏrZ”zåͧx诳žRCú›Åþ‰: bnñÇõ&S—µ–Ê Ž¥7O€rÞ¿ywîÄõCr¾”âRô F‚M W 9GIq5áXo.WUÛ~£’̘V9æ;dÄúrŸ&þ¡òɸnŽšÁ!;Ò*ý««Švj7ý„5h¢T¶ß^[u ïÞ¢#Îyì n%T³ÌêÑÁèjìÿ;¹†³7°+¡2lyeï°R[SMÔv5©m©á4P€½¾Ñ‰y½¨Ýì¾8Ú§Ë'Fz=-“Ô+E[|ËìoÍQU¦¼·_pH”9ÐWðëÍàpx]|f¾¢®¹˜¢6ß?EÏö?¢ÉX@7@ò†#³éÔnhîNS|7Ʋ5;Æñ?—{Ôy]5,¯¿ÜªÛá`jß·ÿ©½ý/ÛžÓ_ú Ú7Ømów ÇJì½¢ëùLÔÀÀõ߯ߔ?ÅMFÈøH:Œ®ðBóHBï|ÄöäOb0“Ô×0ϧÚte¢Ø˜$`”ºÉÄ—ÜK¢ü83ñ„)™˜Ï/YNK4'#B¡îÐho¿é‰â¾(ƒN¯;ŒÅsr‹2½þwÜI³Ô¢ªVÂâÐá:"q±öO]A­:YÁJ:ŠÝv”B‡äFA žTVfqKéR¨|wÑk€ŽÒtöÏ”7§âDtt]Dš©·ÔkÀ®ºÇmö~ ú>(d¿Eâ‘"Ý=Áóo$»#ø7˜hNJkÜX -ãâ“”S0:£áΓQ|¦¬³·ö|NæM¥uÓ™„÷‰H¯<*ÓZǯ&Z[€Vè:3¸Ú+ÅŠ1™ÔøÇ-g8k§üKt»¼ÅŽq¢*|£;)÷ÆóMÌê–\|Ñ¡7AyLºeãõª+¬a ª´q+¥F|±‡ºã’^_Þ#Éa:ëfeæíRÙÁ7B’J¦shu`%›•_MU}©•ÑNMjwøöüX¥AëçÑX\a3JNÜ ×ÈAúèB_ñ±tt70NÜÄÓ…¼íÇ‘°yνëgsøœŒ¼ ¢Y6Cb¥. `ËŸþ)<\^óëS¼}‡¹Êú£h|?YV] D§ff㺖Ët±ájx tÃj¸l®i?S'&¬K)Ê0 gQ‚]Ÿ$ç^²ÒÍŸ<XxYºF ¹¼TªB¼Ó7ò¢þÿ¶.°SÙùŠÓ‘KŒÿ¶N‘å^0ó¬4c’$ï“J‰TÑŠkã‘îß®×U\Âj1#sXY>ff¡0vÓþU„³J±ƒª½:(Œ˜ÿÄËÁ 2©µË‹»?ÊfDÏâ2tõæœk콬“çñú¦TÊøq5ážbL6Ð_AùŠ' ·îýÃVÓòâ• “Ë2ØX™ƒ÷¥˜0Ê¢EQHZGä ®ƒÞ¶ÚÍ8ôm΃1Ž,T–9å)bÇE¢)ðƒàgeIãüîg˜Ò*NBís—ÇP+z¥¬â~ÜôÞÉOóŸö`Ž’Z¥`j³Áˆ¢ô[atlî7šïËùܱÙÝú¸,CËÈÒïlê\ÙéDÙiL:o§¹š[­¥ ,¯ ¼tK8Ûê€ÌRÖñòµ>@‰'ó%ç0‚eÕí—h·#lÀqÙÓ˜ö-ÏéGOñx8,O=8‰Hìµ!˰>H›äˆF>`Ê/™Þ•g!~m¨§x,co‚,fÜ]ÕñN~–?>ŸÖUÀ>Ž º®²Á±YyáxA@&o_wóŵÍ"Qa+,—PÌ»‡²-/Píq§¹}S  ÍU¹OÕF{³Ê/ìÎí™ê4–”ByFjwl ‘ie¿3¾vçÂ)ÞLëB=ÐBR² [Çi —½ %eî^øoº|;­É·É6FJ\ –_UåÍÈVtù àådUò“b®S lÉ^(‹Šå„'Ò¿\|Vñ=@|‰5FÚÈÒJé8]mêóÐmÿâ_Fw #‡ˆIÅú ¾lwtC2Håºäç0¢.ÈW ‚}¯ÄOÅväjš]`®ýÆFc³ 7`õÏmGþñ*nð•¨àÍךÒcó%“]itp 5“QÿBiYMçåáýeBO`º&Û’°aÁµCŸe@öA!ÍzeßÒ±¾Â‘s&})-+zb8Pjj~, WK‰ñ–¼ÉáUÝåI=å¾Qh4t€GÌ/ábhb‚îH-[k›1 Õ¨ÍõŸ;t®(“â7\2*þ¶RÒáŠYZ&q3s‹ãó± Å®¬n»žÌ©Ê¡ ¦)~]Ýߪ2lJc`_=H?vë·ƒîªï©ò+¡t©g6&‘÷2cî1 ´;t|õ»‚K+ª$¢ÈPAÁ“¢ª’úÔfÄxMFŒä› É%æXw"$b]‡¾ð!ÖÍóG]¦ý;]OÆ_á” Ô¢,|çé\Ƥh>3á û5žËV¦°‘˜z`Í °íXK,#§û©áÁã[bE ¦ÙL?懟ݺÁ^ o Ç襧Dö•ŸXŸ ç5 Ÿœ|*†^>C ï®\`LltU£­Ò²y¬”ä·<]¥‚üÙ%ŠÙÎÜQdxå°VæÈ5³õm0Óæ Åð$åJK6ÞxÃj½|x‚™â<á=Ùã´ŽzÊT†<¹Ëy¾ntno'(ðòVŽàÜR±'Uk¯ÌÌþX­ôqÑLÀ“G;&ŽJŽžÐB™o:„^ ø«D] -ÇîŠ/®}i;!¤QKa¤…xhº†DK¦äK£ Wý’ÂÏJª€";˜-=„¡)_×ù¹ULËa¾åLð˜ÕŸœÇ8]H%gÛÔËgúí¡ÞÕ˜–œv¶àcåše]Q'$ø¥7ú3¶þiÈykîÚ‹I•E`ßO¦ƒ4+hÀý_y—ó—\ô.¥—˜ô0ü2cg3 ˆTSƒì<5W24m"‘TY«Œ¦ª_¯L‘‰ÊX¯&£ŸyáHeCL¿ÌÔ7±GA’ÈD†ÒJ¸÷xܶ¹…Ôp?6Óm21Ù·¬Ôdyò¥åIñêìÐþdfLfiÌòæ0cæVK&0óoi9R—Í›·,Ò²92–=EÖªÚ«óB(?9s”ýÌ ©‚_ÌŸ¦*Ϫx@Ö²9S–=læçHV„’cÿËxK•ì\J.òÈVtšã IÍ™ë,™è:WÖe=\¢q-¶ø»Ÿ}#wÃïÄ3 %PÎÒÙ+¾J…øIK¦ö³%V?rá„æô± àtö·rjú·”ÔodiÎÊûæ&}«-åK¬&2Ó½)¹ÚóUF¸”pz‚kf8_|9Ù’d!¦ìâ ýKâ}†\QQœÅ‚ã…7§—37×zr„™{T’‹(á²BØ)âÈà*Ö®Y¨—bšÁë0W;Š°Ï¸ºÃ¨%JK©ØHÄ…†ºèî˜ØK78({D>T¥&.NÏzM‰ÁeVð\ }uäÍD(Jý ï!;]£’Ç÷£ Ò ß¯ÒøáÀZäRáÅ_’~,,Wvã0dÙ©ÈËýPekiÔ%™EÌ©“Aóø î JåSÉL‹~1Ÿ§$ÞÀAJ?sM]S7ÝøocŠä¶\SD.6Þ)R”=;gn(Oð„'õ\Q³9ê=Ý”9þAÞºµ¤×BÍb|¾—i§dÃóЃrHË^›GÍî;=W(\£ðè¥ô­ðÙ1AŸÏ¿þöéaëcéVä=ùš»á|c€ ä¥l|»ÙÛ^늑Ð$;{!ö ° fîy”"§A<")úÓ¥2ÏuBÙ¤[Åñ‰…&K=#¿øMÔ2$ŒXx6ì î£èJ‰íò^F8+scÀh¡­Uzp–ÜßÚþ´ }>`÷€P¢:F…ì'Qÿò;G‡äQ—ÌZÓ,`Tü„ì¿Ssoà˜ÏƒüµjI-GçRê¼ÿQJúc]"^”:?R‡c´4ù¢Þ‘Ï‹zç?H½Ó|õNóÙÔ;Í¿£zç̓Õ;6‹c5O¬4 žkÕch‚ÞüHMÐÛk‚ìÚÃ+eŽÏT½}QùôwQ=Çv/ >ª'=DÅ‹úH?/ê£Ìï^ÔG!0/꣟G}ô>‡ú¨žéê(’ê£úÒÏ«>ª×^ÔG~ÌýpõQ=%ÐÛ3kzÍý=w¤¡Ú+–éðÀaÃìt©·¡P=¼ueìáá˜QB#N¨…8‡Áï™ï"þÎ Ì”#Ôöñ„¾:•©1ú”Ôk¡—¿ÎRí—YîG<ØKªD'#±s'9¨áÐøÓYG‚‘RÆÏܽ™Îž‡š}zÏéÕ(ñ’“pÉÓìÕ`òvÍð~v»:<ÿ`ª’Ô'$§(ÁÉûø~ z¤ò‡ü¨$yáüZFJŒ‡uæ,+'–̼–#—ž?•Þ£’‘I¹@Œî‰MŒÄLõžG’*tÂB«cù2m!ÛH˶•Äj5±2ˆ¸@.Œ®M@#Ì>3J¦ ÐëÌNÌDåÌúþ)7Ò«!>H™œ`†)0U:Ï uÏ}]EÌrihŸGd‚‘ƒS# R¤3¢<ÝÉQ¤øFäNè·Á,-/œÉÌ…aæôƒt®Æ'8{™±šÑT2ãšC$"TÆõ }§_õφUܤ'*gcÝM¢)Æêd^Ï›ŽDøï˜5Ϲê¥N;0–&&] 9kZn<‹7ÿ´h<8™ëÃÑøx´(´EnÖ-ÉÒ€=Q‰ F©hÌØäÒâ1 ÏBH¿q p< K &÷󥨣"qn¸UUFçïFx½Êb°ÛFÎÍÙò­Ä±ŠèÁôÃXO#Ä-Tœ'š?÷чÅ\|ìm]I c}éYÄ©d‰ÀË8.ŒnÌK2å8 ¦ÄÝãc£”z#*Ã(±0•“O]"ÉØQOËíÄ@yï8Wkæö¯ûÁ„…T¾æ‘GM(†hЇ¨Ç/‹Ó*J®Šp<[ÀóÈš%P>eÉ50·+¦®ö2O²>ŽýPßc–ø[¥ÿÞÓT/ÖôúÅ Þï1ã ª§ˆ~ƒj ôͺh‰Š˜õïá ñÿ-üÃH@†ï)¯¶:Ò0E2é|±¿’‹‘C"€/…ÔuráÂ;º.j¿Àß”N¨h$oó6Laü 2õP‘lë´ëc7˜P±^ò²ÿc\C× ôžÿ$¨ Y¨]ŒQ;à‹‘ÔÒ·!Ôš™È\¶+“­CÏfãk>ˆh¯gõžð ñd…²6å¶ ÇíyN() ¢cÝC7äo€ó¹Rÿ¬x…,ß±ðÿn~TÄIét~–NŒÁâV %0Œ4ï1ÙÔŒOw 3 c¢o}œb4¼LÂ*¡°±.êï¸ ‹í¾þÇâ½ï%0rüïË ü[E»*ºL,j"„šH@±!((XÐ áK¿ì§A²(è‡ð¥w6ABɆÐvFÅKqÁi3%BÿfŽ ãd^3nññdp=@0’üUZÓûÑÅ œFdañeF®qNhÄõ>^Ï’Ë—'‰répx²`Z.®‚ÎÆµ$3j¥\¤æ ]•£+O™ã« ³|©:ó¤î äâ: #¢±ô¾ái`îœM*IÓÎÖÁIuEôk¿ÑÜáßíøM’”ÖæOªJ‚î©ÌzÅ¥’}™7gòg‰JI~$7ã|Ùbö·ÙbâBÉ|I‹y‡Ö¿ï a+'Ms'-Aój›­ â"šZ+¶E­u*Å4¶µ7ìï0íNzЄcÞÞHD‚]åŸæöi²åŽ:{ù ÃcYfÊL¸²0¹²ÿtÊò0J~£Ñàf0ô„ù`©¿î'jd¿x5zQa¼„P T¢J6&¥õ¾öƪR߬K~ïÁ l]¨ìKÎ ”CÁ©>Âx¼–©§ï™’HÍŽ$„€yæ%XýN##Þ¤Õ…Ò%XKEâÍñèÓý5»MJÇnÁa_Ózµ4µ“A=ÏT22·ãîÚÔ=®äè²É±b¶d´?×Àsöø Pì÷ÏŽiqüTûdxìB½Ž¹BæBR¬¨‚’h)®X’òÏ‚BÏÑŠÂü,­·¦#KÍdÙñ‹’rOÇi[GÁ§û•m8’Ê‘··É˜`1ª3yŽBF/õò}6Ì5lÌ5þTÌæÆÜé#0'}C±mµ³«údXЧQq)¢@ŽNªÐ…§±æ%µÇ¦ûŸ©´a†'ÝÖeÎí¿Ã° ‰¡t/b¼Ä˜Ògx¼ƒ “ô0–¡ò{Ÿæu+–é^à´5ÒæKÃmú}:‹ncû´ÊA2-—…k•_8Éï𥴂¡™RÝðÄËé“è ¡TbtrØm®?rMÙ YwJȨyeWÓf]+TËܣ¹HJ)²ô7"³s²¿Ž*ÊLöEù¹à—쉋`ÔXØGMÃ÷˜;Ο¼÷È‹hi¤óÞèÞèÔ7Љo€§á}Hc0dêSáÐg7“hz3JïH ä~D×µ.ÑÓàºÍPÐùð¢wÙãÀ‰ìDr¡91œàøØ©¸ª¢XŽ»9…øŽÝ™Žo#ñ‰Íû3ŠOAÅ£e#Üõ)sÀú2¤x‚å³ó[bçÙåÈl*èÔly")#z個21—y:LS‡gMDTŸÝ anÏÚØª%Ö}[0Ý¢S¯gÔ³Ö2Ôë…*5­Jï­Jž3€Ü&Ñ>hº`b(–;k‰mIŒ´“©"½SêÁB¼%< ¿œ|ÝsÈÁ×Áíâl›K[>Ö´±tüö O¥¹'üP;²pUûó’gPÈÜ#:>çFxbrÊ¡PÞñ²ôƒì±úoòžhÉõ‰ŸÛ¾gïQ¹|àÅýh,Å ¼á£šß^{mxýß=͘pòú¿;£ÉíÌîÛ1Np4)x&w4ÄŒ¹ñ»F«ëBêéaÓ´‘à ìÓýé6ˆKyó¢ö”…é‹yfp¾Ki:&ƒë¼Ì‹«‚=E1ß%‚2ç T^è³h¤|Æô.+½|”‹0߉Mñ°öyÇâìî*$N¢ƒ‡™[`´4£®ñ.•ÃÒ@9ï_u²”¸Únø9}“fô­AŒ¶ÕÉøÛà÷¬@Ÿ’bµj±Þ<¾éE[7 £’» í嘑CǸ¾|ˆÐUÒ)†µ’‘¿k·°««Š^W&øTœ÷–„3õ‰åÚ\Êq~Î[8SãÚºžD€¢‰-ÛZHf'ÊÁÉfß+#º5A¾ÞìÞV¢ìVjkª‰Á®¦ µí •'+«æ]FnÅ@ëÜX•îÂxV6ך‡q¨†éýƽ¹ºÒ²6 üJ‘m]T>órøŒÍëaÝô/‰„@~¿†~RNÌ,çqûLØÀÁõNKÊëE‰¿pPö34N:ú|Agr=ULj²ǵ¦,,]pT-â0z»ì^ÜDŸ™¯Ä~V">ú "Å6@§ß?¢ÉX@7à(3ùËÈZ¼à ÁFÿöþ¼©,é†ß¿çSœ˜÷@‘»Û=ž±Ùl²A7ö×=! °e ‰Ñâežûùîo.g_ªJB`»[5Ó¤ª¬³äÉ“'—_‚Hø{‹~VzŸQ˜ñ¿\cwÙÁ°²Nïýdè‡[@K‚&ØÂ»#‹ù¾þOýyÿ1Ò÷’~Ó_à»>²‡«ÿºÚ‡ˆÃ?x·üU—!âúwS{ædíóÊ ©ÛÏ)ËË’Éš¥{ÚìÜàû(ºc9€&Ûe0¸S¹i²Pµa è¥~åËàKn%q¾©¨ÞíTVUçÓ`Aäeš“> ¡nÒâKFÙ[¦mƒþÜ'âÿrEž}üM#í»VÔcËx;4½qðÁÿêÔª“8%‹ñAÿ=n°¯u#0O®(s¤¥T U)3è,&è$<&㉥7‘Õô!ÍŒÔZj5Œ®Ê;°[ßUmÇ0>n·®ú?^tÿñâ#Ç _kâÿÙîÿ"ù ¿(1Óœ·ñË\|”zJzg½ø„«lgÑ—2f(K†¶„U—a ¿ÏFcIï#±^­_£µŽ_ñl᳘„¬­\ý‰HvÒ‚á~ÜrPeUÐl×ñ|‹ ãjv Lgw×ÑÌ7 «[8B®Atöq”Ž("A"AçÄM֡Õe6;¸‘6sˆãæø¬×ᮡæ0wúãËvi:âüGß,W—ðÖ®SªZ~5RÏKDb:ui.c\•ª•XÊtƒ¯Qz* é`ºõjL¤#úe ™Žš%m£(!æ%Êfp¬q$|IA^QxÀÍÿ‘uÛþ±¾ò_ÿ+"R^Ëë?2D]˜ô`f²Ádº¬]H1®Ÿò….¾¸«^L€úÅ]zqÍ^Óq¡NBXߥ8»Ë"œU .Ï-%7L鉑ᗖ ÎÓý…Ø»s}-Ù³-]`/jÿ?I¸b:Þ{"?:áxÄáïúšÞ Æ‘•fMÒ‰”}’ÂrPh^Im´[þ_?Z\ÇÇŒ óDY9aæ !­çQç&ÃY%ŒV% êON0›o«?yI¿±“ Ôɵˋ›2ý Ñ£dkDœcÁ…ÉõmŠç¥l¨„ ™Z¡+89C¦f0™˜ Þ‰N2 #âfIä`Dò¸ðzMBXÖ¿UÞžHÙ „«Ãš ?híHàðô81V]M¼<}ý‡Ä c¤=‚Ü‚ˆ*ÃC¥;~±ÝÚ…ó>Öó3%ì#n!ïb0¯šBo~·«ë1Ï)¿#6>»Mê×LÇîqódçUMì¾kBSÓ¡°N9¯I°2yw:}ÄmDÍ{™L/Ée÷m9CV6g—gàbï4•šÎÇ‘ëc“¸_¶KsÝ»”ò´5‰ŠNßttÒhÄÓatLìe1ç$"¼1Ð[£9™cæQ–@qÈ›l¶Ý®È=ù*ìü)öÁ|lhäx‚b“µV3¡®ž‰N~2oHÍ Ñ,B¿ˆ$ÉX™;T©Ë–} áëê[ØmÍw(‘}†-*ÐØq§Å· Y·¯[ã6­5[»küÛ¸c+CI’2=¨Ì" 8Jd'B’NáNëk.¼ÛwòšÐH4)l‚­ó<’Q’’€ŠXz[®úþVÞ+7ýW¶0ðt=yÿ–ÿñnŸ ØEÚN¿ë™zÖM§`W¸ Ã×RôK¬ŠXâh¥šX•Áú>°åП2…nï_‰:¦²«OP·«øó:»Õ¥‹as< Yt8è™’~‘„L~!÷èQ42TAí¾5+MBÊ*¤a~L‹tã&œÜÔgÕ`Wÿõ§ØÕO¾Ã®þìÇ]²¿¦—,úI亭I_P°~c+˜Š]!­X‡½Ä2'Èv|?¬>£ùÝT¿‹5§ºOªÎ•:gÀ½Ó^Dú÷Ôø-,1kß—˜B«í?ó6ûËO¹f}>]æõ{¿EJ?T]¨_Ê칿–ÈNÅ.s§—eµ¿Üzlç±8ŽVè*Ô??8E™$ ;<úB…ŠÇ'†SvÑ Ïús²ý,ûˆÇóØîŽluÝjµU¦¯6Ù캋³Ãl4éGf–Ÿˆ%ÈåUN¥GuÇ#;Z ½âÑÌ*‡ˆ4¦‚R-8Ç-øœ« «ªÖ±j×Û§j§±/q~d¬x˜4Ú0ÅÈ.f<å!£‰Óð~üÂØhq½oië°:ã×¢úŒeŠF–©éìïñÂŽ‰ªŽ%ËÖsdÁU‹9Æ~J”qœ¶†cùŽSToœG¿ú“ËJª´_%ë5þÈÅù’_L_²¯Ì²˜¡‚ã”åg›ù) 7&i "ÎçA×è{ I!Ý(Wtyó$KMY÷1,m_ªÚºî.ñ¸VIâÍÏ£‚±|Ý»Þ7šD¢{›tpoñÊÁŸä¨9|å–üÑ ª‹‡\8©9½o1L] ³–[ 3§ &¹>‹j`ú0ëëåŠLŠÂÒ—JgŽ|UP3§¦žàº] Ó2Wyc©Dˆ­<¤dBçš$Bǧ!W¥ë«e¤m¼öA—»îQ¡QJã*N@TqvÍJcÙÐYÿ.[ØÞõ «;Q]mL‡Ë¹£‘7Î04â]÷ûÄQ¥ÉN¹=Š Unùö”ÙÓÜr˜>+mÙ`¹@r_@ÙC. Jû‘¿›|žŠ ›fôø0 …G¬òâ_–~o;ZÇ-®ÖÚW’[P\qø¤|UkIIaÄtPNäñWrr±øøšj>r¡ N¼âß­U¥f€â?°ÂAJLÀ=Æ><‡bEO½·Äs÷-ãÃxktL4Z$Þ/ïÜj9)"G×i¬Ï±£ëªMna:>Ád.­|òlëÉëÓ?þùq¶Sí¹ Y‰ž:íÆ ì°ŸæÊÛt‹·œƒˆÀ¾êíCØ‚ÄT¸ÿ”9Á‹²‡x‘”¢ð(ŸÔ4KÆ…s/u<Ø¥TsZaÅ1ŽÈ/þÉhQ*<¼ÆÂ‹m™ÛýK1–Ò™e8º<|jL°·ð®26‚íìÚȹVz\I¥M^™y8 ž}³¹zŠ„=Rs*‹Örš'íaMv&Ô¡˜Ép¢æÞ§òùOÇ9¤„rb÷߉–Ì™.-² °ÙÃ×Db‹÷¢œ]?6¯MÆ8æyvû«=*v‹Iã wbNƒˆ;͆>›ÆB?ƒ‘àŸ+B£\ã%Z]æM÷Ìõàùônš Á&o®k¥ }¤œºÉ›S5yªe]ŠÒ’·R,¿òæÎ=2jΦ‹åÐÓõ¥ÃN0ªƒi‘rùHŸ®å/òÕ3Z*Ä´uŠò†p¡máO[¸¢k½ËÓξÆ n1ÃŽ^ÊÂ.¦1²‹©ììâ¦va|b¤¯i£AžáP”¶º‹Ù ïbÛ»(i~ùV̼ï¦7'Î`cS›ÙÅ||,EÆöbrik¹ø±1bÖ©Îëû†…eÎ5 +P‚„yXð–¾Ud!#ñÖ4;¶(4‹B“°Èµ Ûhð´œ;9KþÖïìZQ×.ðœ¼”ŽŽ`ŒÞ0ë\cPFFºfÑšçw*ດ6gäx^GÝË먇ñKžµ%eNy•6§4î °0§ü8æÎé®ÝpaX‘×°ò2¬ì<‚aeçq +;JÃÊ/3V, w $œ²W$O¨ê2_ÒóëÌ6˜9õî×…¹&:<ßÓ\ó([³˜ÁpÓƒÅÂp³0Ü$®…áfa¸áë¯l¸yUÂpÓ( í¡á¦±þãnõ…á&>r†›Fì‹O×Y08öV_÷¥þ„U2TÝbÉEúÊMŒõ€Sxã)„Oá?sJôµMªò¢Dßc_±úÿ}ÔúëÏž=mõÿ6Ÿ-êÿ=Æ%e‹Wÿï]EœPæß±Iþ;kž×įOÂ*~?hí¾Ôè±ì ö.‚Ó˜¬´WTEJªÒo8BS—Ô{'³g¹ŒÄ Ö+¨œ¬WIÏèe_5VZç.ûï {Ýéɪ&HáD³.š ñ¿°9üEŸÔ࿪üµµz¼RÞªÂ÷°5VÄ)ª¸¹ú7„Û¬Ó'”/˜ ÌV¦ {¬Ã…&2øW Éð—Æ ¦™6ÊLj,µó:%M#4 31©K'!f6='AU†!§xÛ‰÷‚ =ý q tg8ø2Š”•:±ËJ•,QeˆZ•æóÊUω®*Ú"Áöìçqæàc,ýaWy5˜Œ2¬÷te!Â5ÑZ¥^§+j•+HÖr‹©òH4Ý­×Z-µ©¨bSTËEvÙ®ÕÄk¤û_‚Hs› ë–9-ˆ0œ®=eS+vEŠ…r6N¬¦uåå·Ô,Üt‡X+@ó È ªgiJE‘8fwÃl„˜{Þ€¨¥(ßý—nGë¸@ð$ZJ^­£‡¨fU©×Ntƒæ9Ó/Å5'A)¶Ël%ôä[ózD¾ñË`øi:KVâ¥ø`ºŒ+^¶;h8„' ´{9aÐáKYFÆâM6îŽ3à3yZÂÖÓÅZ@ûn¼Vs÷9øû¨?øú+ë œvóo!_ñ1W(Á2\—È~|F±ÖïÒHVwu>? W<ëºk°g„µq¬J]Ä7¾ÉÖÀáßÄ´8äq çšOhUàÏ!–Í!vÅZÝÏY_ùYð…zÛåw‘Ñá€>ÀcL5p½Tðó3¾×.w¢éœ):Њqg²<¡ä¥®ó*L=‰¾§ÄU‘,YRÄø¿N' ¥´*>F¹ ïàR—§“"x1·!Üe…WÌjë÷»º½ŽLI±áÆ<õznVÙÙ U UÍ>¥‚l «VUçãv!9ÀÖ#úE5¬/õAWŸuZ%û+ ïÁÓ¢ŸÔ ëÄK²ìÖÕ5j®Mà”FÀj²âÉ´ÌVÅúÞîÄõ©˜˜9³ÎÚME4èhÿy+µîA ˜ÞØQòêTt¥ƒuY­`šz1€ý-öøÍ«f„øÔpõ Çî¼üðO÷ßðÏwÂÓÔ³{$ÚÂ$¦:ßS HúDI{¦ ZÙ‘éæÐÍÇ@ÅQ‹ ;ž#í=qLlý†¿á„œ¼«uÛŒö2ëc¹«ø*^a!G˜'ÿG•uÂýÕç¶ýoˆC“[œ­vP“ÊO•NS¶A–ØÉujaõ ×Q¦HŸIt^Óc1Ú53‚kTÕ‹¬Û¬‘iÞÝõ¾éÀó•ºÁNÞ ·¦f¬Çx ^:Åoa#:@—~kõ[…DÞ^Ø>p »(Õfõ YI+s ëa WŽí]Ž-bÿùïí£ÚêëgOûÏÆæÂþóó…gÿywRíƒÝ½š´X?híü.m@;X£¼»ó“„tAn³>±›9'õš:zbD{d…¹§9i§^á‘i§aÿõûŒ¶¥³¨ʹ€_¯ñ¸yÕQU»uÁq8†ö:W|þаäç­“ÓwJá"¦õäQñµ­ òŒú^îBDåÝÙ»ÓíÓ¶#¿W'Ól,ÞØ ÿò„Õ|Á˜nÅÊ}E|æ`«Ôge”ºÅÄx ¾»=N¬e°±f¯¨ô‚ºçtI¶î@>GXa#~¸—Ùî¦2²íÔÅÿŠº×Røp·«þ‚«¿QE²HÙå7Ë;‰÷Ÿ&ß_“/ G ÎH}nBò…;ËoJܨ%¢°œ=ñs:ÂÌ.‹ïËSõå|ùf~¶¼ùšð¹ß=r9F†§V–°r‚PšèÄGR­ºü˜~¬•~ìtÉïääÏêä¦mIl€Þ½YƒÞtMX”M¡ËÇAcÄW–ÆnÿjÈÊËlü…‡}¦ NtþñO±îYŠ‚á úƒ¸{|’Mwˆ‰îÔí9*cºÌ*”³­s¤î?©éÉqM¢ýU9QÐèP,š;¼ ä“ý mòd[£<´ƒ,I¼†ns­žäÆ-wùMôu bæ<΢å ]þPó#(·KŽvÍYpûWÑ× »Ç–Túühô±ô dj<¿M¾’7ò&ì¢i†n[ã>£ùv„GUË޹‰‡Ý)í«©I«”]H•“`N¿§e†Bÿ‹Ì3\h²¢JMjëL^UÀ©,:Ó]dQÀ×ôãåÞÉïôãt‡pAB8ºç½lúŽ©*Šs0÷Ä ×Ï#Œ]Êâ8¡ªfʬ³öútMÐñ?‘€±²a†Ž¥áS×Î’_0L }ßWp¡­ˆÏX?¤F5´%àôpY¤ºulòÂíCK+çœåŠXÚwOÞ“ÁxysBv YVUŸÒ~O°(Ÿoè^ó:«—RÓ}®u^VÚá/ücY|YrîEÔùÿúœcQÊ먄Lª‰U{@Ö/9б‘9=¯è!à§ôÙÕ<ÞPÛ%"Sš3õ4åÐÍeñ95ß'ÜÒzñT¶îÒžΡ5]ñéLΡ<-Ã#Ê¿iY÷”5JUÕÍÅ:DkÞ«ŽùU=ëUv³g{Õ±z•¶’veðOÿ²7¸úÄI¦·ú<Õ{?"nk”JŠÄìê %liÔQhKkßeWÝ4±ÂÔRØŠ;¹ªýî|ÊirN•£ô,?÷ tçKÏ¡žÓ=báÇ¡©ìoƒá5›ßâ=b^õÃè"F-ùîèñ¾k3}-ÁéMS)•.Ûܪþâ Ä]Ü¿y–³j Îoúæ]|ŸM%½`Ô«Yš+v'’,;u/c ýNr.’88¨å½×¬‘úô@C%@Ó5AgßWt§ 9pÅŸ‚™9ø,5Q’ûâÆVjæ2Õ•i a¹)zçrgɆ—îê4,˜CE3a£DI¼¤döÂÀ÷˜WÌþ÷Èñõ§Aü_ãéÂþ÷/5ßþw²°ÿ}GûßÉÂþ÷½ìSYÿ6Ö¿…õoaý[Xÿë_ÄšVÊúW—6¿ô–²S@gç;™A?؆ s{¾ÃØ›Ž›{­ß M†ò¶yÚ á(x?^ía4ŸUjX7ûä$òš©ãž"hêà§…Áp¾ÓÇ62•]œ­[Tžµ"FÝÿ*„UñYÿsw8èãÔ›Immc"1:éƒVÞ)‡þ³Â¨MÛkÇ{kuŽƒ?^îEKæaQwãEÔ×X$WnÀ€™SŸpŠlžýT”6¡ ߊJâI¸×Á¶nmËü¾”Aº•¸D:þµ åÙs–Zƒþ*"<(;&ŠÎeÇ<°RKZ"sÍ@49ºµø*ï%Âgx3 +Ä'9жÚLvi§|¯˜Õƒm´‘í86^˜³|­ðì¼ôäP*E& 7ÈÆÀÚÀDm÷¡àEöäÛíõ˜b–æúæa› ‘ùJZ‰…o(žÏ2;Înh•Ñ©ãþ«l[®´YVY)c+¯2ÕÚ‡]eqct„ýʬ´È*Ãö”9Bô@=\e¹C'¼u”?Õ%úcº’èI¡™^oÚò–SYìÆò¶ïïÜêÛï.¯ýǵÿnl5Âüïõþߣ\Ìn¶ý÷Í6ð³¥ÎíÂRÚ¦Õ€Rq>Oáž]Ù^P§ù·?{ñÉàÍlŽÄ¥!Ž›;­Ô(Z®Gèb ÷ÌýìR¬oÔDûðÕÚßÒæŒ#Í£¬¶€XTŽ5Ó˜§#¤NM>¹d¡ {»"Û4º!q“€j÷¶£ ÚÃìª š¤ÝdÎu—²]¯ÔWº«ñý¼ÒÅ_p]²1úãê§ëê?^tÿñâcÜàNöv £‰‹:ééÛn¿Ò¯}\jÆz¾]‚‹¬çÛk’0¯âZý†º/Ðý×°ÜD»è“hüf$)¾ÎÈPgÊåëXòX¦ú¢÷•êÞJsÖVTê=Ñ2¯yÐú½uRU>Oþ“¡?l*Z&ËWÉA€¿X^š×Ãx”Ya&Ë-©ÙœÊgíGƒM7$ /í)ôØÎ‘.;Gº?¾s¤lúµòkÈÌjåÞ˜›s#¢»! (•,¦½]€îÖÔQTÑPjd×c÷ËÇòçyMÖI+aïvÏc>î`““ýsñÿÚÍß÷*b#?é|>î™wM {NŽÄîqódç•:å¦Ý7D¦¦nÏiõô¡ß§íãšÔùéçÙv{œæv»¦ÀNš1ÈBí¾‰‘Œ •Œ(EGi¿.IYrÙ‡£-·ÛhIŸUÅŠü›l>^¸¡¬ûvóØðÀÝ!å(õÔ–ÿmuø˜]§(xì©kU2ãTÚÑEG²¹;ºÔžmIqÛ÷åãkÊ»Ú4qÐMÞÔéZÚdM°RŠ@ßÛP?`¡ÜNn—¬4ù=¥6¸:33Ú'2ÃÃ(é-æÍuþÖ~T_÷í:·ÕÐx𠇄³…DíH»ÆâÚYøy|n |e'“Þ¸‹˜—ßH:_ Šß¨æ¡(ðjÙFõ´Ù‡‡$b<âΪÝï´Àz1˜›Á~»TÔÓ²õ}V–ÛÀt$ÝÊdÏkžýK?q¶ø­?.h½¶•?Të“­ŸnŽ‹®Àê?7†;ŸžáÂR‡vïêO¸ÃëžçFñtj‚[»ê`µTUùÙ§ŽÓñ27Î]ÐôYª Þƒ¥¥XEJ!¨8”`O‘ªËx«LJùH!|£–²þ Ɋ둉$}Šš!µÛHküZVLN×—ôÚö<ú:ë”é/]4 ©8ˆ~ÔÞS‘¬äY’ Ž!'ýmZŒ]ÚPÒ´…Ðÿ“ýgòÈñÿ›aý§úÿ÷Q.)“ÿÏ޿ΓþŸ6.sòýðíGóí|?¿ G{n™ö4.™ò~˜U“W€h‘\Ç’L­²0/ÕÉú×ìAÐíu/ Y¾ƒDÊ:]šDz˜QÍ‘îxd$5RQ f£»ìjŒ¯£èì/¶Q®Á0¸ey¸þ¦¬C–Ã6º£‘pôŸá¸Â@ö QËš£©[AÏêæmë(i ]ºÍÆÝDs¹I-·±%b$ж0忥µóȇóaÐe§a[À莒¶O~q·/:Êzß²\A£ÛN¯‡Ghu´ŠÐ€å$Ða©oQÍ!rÁ#¤BÏÙx_Îä>ó§ó=¦(šÜaBû†}§ ®Ûe:_Ž3άÎÃ#â~œæÔ~wä4Ë;ræ“á;rÚŠçSž•„—À¼û@ø×k¹r’z©<:íi<:y¯¢OQuU‹­6WÙ°‰PöIgø^}½ÆçÔZ P‹['áTg]Îz8Tˆ:½ñ ~_ ¶…lýe0fS¥åá`¦3²lÙþ6/©³‚¡†Î©†Ëå#÷ î‚j1ÈãoŽ«{nfê䇋o2ßL`{¥¯j–´qVæ‡Á¤wõîxÛš6uæaüCN~Ô?=26%uá)š¦¾ÒÖ¾¯£ Ï‚µ¢\ǵTóSsBånžY4‡é¶·Sé!ã;£¿e~v©¨üFÿ:=[¸'Ï=q?94¡Æ{;æThÆJØçy ‹º~êPà>Žõí¬u¿®Ç{u€®9Ø þ›Ñ*Ö»ža½6×­{!ÝsxÆ;t¡LÚlråÿætN~¦Þ¶ß•!gÒÓ!X üJ¿ûòÙb“.Óp_ںؖÝ6¯&—lù·y¡u»dsÉl)ÏËÖ=õˆÅl˜@ Ããmÿe“Õ½e%öšUs<õ7#>˜ºuïE.Ô µ€Zé·A¸—\8þç¯9Ü!R`)ž #ª<2ƒ¨V%u³œ¹æNo$:­gœ-¤(r+Î\møHCúÕÊx«#j×íÊAÍ«¨¸Óï®=œo”/A6ªêwÇx(Ñΰ†¶X:?©-ö{\¡ýwx3zTûoãéFc=´ÿ.ð_å’kбÿžî·=ûoëôUÛÉØç_ñG^ZÎñ.Üp·Â?û{§§p;ýË>¢E~€¾¦³CË¡§á¥±mñÝÓòŒs#KÍí›_gH€ÖUT#éúSþ‘fý"`š wl*70®èÞÂnø9SVXíI‡{d"ªH7ú6‚òÃîK®ñaä‹Â™¹d77]¬ñ­­p˜Í±‚#d34»e×ú­é^C{²áp0—ƒIÿz$ïºúô¥3¼–ßè ¤r#MŒªÝkÓµÀDJZtƒ'þ²ö\\vSµ’êÍŠÈ#dŒšè®ek5¯²h”gjÕý¹†Ú&.ºX“mȱ1—00.,ÍßÕÒü@)û®»È×°ÿCäœà¼y©Wê⬚š|PØ2â‡Î{ÂÊ øpST@€Q±F™F➣¼/‡yßg¹ÜÊŽ3Œ2,Ø` =Á Ý•ºóðIp¶#ØLN'Ê¢m]„}q·ôÎ+»{º;¿<©í8ÙëxG¿I鑹˜ÃÈ\¬1¥pdP"úÓ8lb3¬¶xJ´¶~R HNd«¦Ÿ\Ò¦r>éJBðãSuõàF\œžï)¬»ñpb=s5¢3]Έ•7 WI=ð£Ó®·kúÂ{„éoRïA!š\ëBzSl:ÚAÃEýZåöUaQe"æˆ œC°£XÄÖš;àÔæ‘f½.Yˆ;ÎÆêÄ™adv3®D|°ÇB,½/˜gÚc+ÆèíñÕhtiz•˜áÚô¡³_º#´ÿô:¤„zê$4Ãa&›Š¬7ÊÌd´íÊÓ4¯@½G‹¹ýt§ÿM7mÊ@j›ƒ-n;Ÿ@1!ºÈ"_a?Ð ˜±ÒäŸ-Åê /)Æc•pˆÉûϤ¯‘Wq-MuœÝ‘Ç!OÚO#™‚ŠŠÓž¿³-vj=3©@QG÷í…ØÒGË„Ë.ˆŸƟϵþF²mgä6 ¾FcºÛ²™W§{¹m£€ÔÆ#8!w^Ÿ·Îj䋬‰#•“p\­wéì½iÃ=í³Ó½6Ç6÷÷êü£A?È#pq”žÇÉq›:[Ì-°új[• ¡Ô1R\æàâôSÇjùp€3û{gÏÇKæá-RÚþ>cÔDòÙô)åf~yj¿ø±_ÂǶËBEš´óðEé‡õPÞÃ/~ºß~H¿8c:â„EÝäìæ=”~?´ ëbÃï!-.×i.”Øý²saô¦õN¼ˆ(3ýAÿ¿Ùp`ârA›'%V·|×›ŒDÝ@`¾ÓÀrˆûÕX®i‡á›¶ý·w7êö}³y_ÊKÔ÷íÕá¶Ö»e~Äú¼®Kúþ ¾Ï`zÌÎ;Ù;÷Mw*ltM܈­˜!ä Ÿi¡‘tÄwbÒw{h"¹»ÃcÝÕÕD®hHuq„~Ž5û1å¿…M÷zÛ J³m8›5Ų¸Ñ?umëmZ;‡\Î$]ò·PÏ»´ÊpmÚ»táPš²Ü±j¹SÙ°Ðr4éul*hèÂáHt.G•Sø]ÒüW³ºŒ?.pŸÁ_¶AXà½N+¥¿~WUʻۢNp ¤ðA:¬½ãÈC}ÔÐÔ´³?ë€s;x3¼rÖ!Ng}¥Ñ¿Á,‹§ÛkîRçmXªxÊ€7 /Ûo¼Ì`3>¹§• 4¾%6{û6!ð–5ˆÏŠÓ„tP·ok]ÅÚ'0\7"áº82MŽ=²šl_Ç:hÖБÿ-¼z“‡Fm>G«p7pþÜ^÷o÷GÌúcEµ…\q+H“ü.‚wÊ>µ“˜NÙó°¹nž¥½Ó¸#»qG–F¦ã‡ps—¯ƒÆ—·çA{ÔV~©7°ÏlNKwÓêc8Ç„ëgЧÌØõzMnp@kyãGbЧ÷b šÕg%a4£ÓCõKNà–е—gk¼]Ç£·Új ÂIÌÍ•¥ù{bjqý,›Z%Bo…Å/б¾Ýn}gªÜÖ/ õËVÕÚ¶Ô¤3M¨¬8e¡?É”) ¾íÞØ¦/Q¯J¤'©Ð;iƒ#;ì÷™[Ðy0r#c}‹ ©FU?z] ³Îˆ½1éÑÖª\M°5Äõd(ë·8TZáfÙÜØ‹6ª¢9d¾•v4uïýZ¬ú8£‡ õG> ýñzÙ|…)Õ¬‰Ñ·î’Ú†·ð£° çw×h*ÖÆw¼ïtÝÈD¡ô&²5xŠSÝÄa}¨MÙg"hÍ IB—ÔŸ\…Ë{Nkœº÷.Y©£òÏoÇ ³ÆÃ”úmòäkcxxaüOä'U±ÖËÖØ?ó»´ ’è¾TêPBs¼ì)v+J­«Z¯ ´;›&Ýc4½”÷ÃUÚÞ9N†'“$èyÓûŒ ¥p½HB»œ6Àa*ig–G3:’¡ <‘:¸l€'ÕbyZVÔ¤ÄæÄr†`Ѧ><)²ø:mBI6O&´x©4[º²s0Š2 “cmÄ_/¥Ê›I^¦ÀÜÊÕš`ø–Ryæôtì_ç²Æ4r{'Ôí27n‡3Ð+¹J!MubGü5^U8Ð=õõľY­G›Hâ€=¢³Ç¾aï_kõø!\¸É2ËÄC!¨Š˜Ó>!Ø*‘*>ÌW\Û\¶¢^/Ò -RŽC£Ô8ðZ–Ãl~*˜¿|ó%Û¹ ¸¯ã ƒŽ’»o¶0Ü…2J´“Yß­7í@Y®§âúR[•''Túyt6‹‡Œ©ôl xE¸ÖEóûùõ-bå‘WN÷Ílí?ýÆÿÆ7‹ÿòl«â¿4ø/rñÊqãÿÛgûIü—-Vÿ¡ñ^Ô[Ìë¦*;T L€jéˆÑ]¯;N¡×Û°øøxiÙŒ3 Uàk8Ü¿ï³Iø2“ÇÚ^!:›tÌrË»WÛ/ÛgšHæ5 qS(Þ5bŠølcüg[iºtBèØ-B:* ã:ñ«/ÝkŒªIH&ˆ½„·6N®Æ“aö\qC›8ÎñWë P'hl“L˯?75R]ˆŽL¿EB}ŒÓ}Òà80*£KAÐH$öLõv¥ÿ£Fé»ñ¥KÉúñÐnhëTÁñ6™º¾ ŽÇhôTp¼MÅ‹.8Þ±*üøqòö¨Ê¼Ÿd¬Åˆ–îŠM›JXÿƒ…ì%Y&ö'C‚!ÙÍÆnOÁ)=l¤þCÆ"0Ñù§K¤k®°+(Aì•ËLn=cYoÛ¹.3†ÁäµrMÁÂ:›àºÄ—¾¼'ßìo1 ¯%î%ØÕT¶;k‘¸G³UÑ®£òFW IdNêõ@vÆ&ôØì6Ù×v” ôYˆ¾ÏPYÀ¿ç Ú7 Q½.àŸþ³!b—*þ1jàÍ üg³èf~boÞ(w3?±Y’òRÞÚĶÊQ~Š7?ÝžÝÌO<ÛŸ=Åž©ù ,¶­Sy`_ä ¤~%M׀ńR ¨-øO磃CÜÙ€t6¡­gö-4e4 0KØ·%lî’&ÔÁ‰íà\upø;›Hh =}¦ièéÜ BHãézJ„:È!œôÎc§¦ƒ£ÝÁìÀ˜H&"¾ ©ÞTBc à Úñ\m>MDHgél"d¬òJ§_ ×××’ä½§ŠC7gÉl"äÏÎÓMù3sH†(l(®DF“·(å GGGÁ±KÐ.èe$_&#³ú¥Zü·Ãdz&jÃï+ðiõ·8У"ÍaÖé}gУ¨ºFäÌ…QÆÇpâ::©‰“t'š‡‡ó †}xð#,6˜È\4œã†_Æj’/ ‘œ—ý™!‘àhÿØ5Æù&XcV”öwÕŽœÓ3¨4“ïÿnÐżwà '¤Ü´(E<4b’Î#5Ç ´üÛ•úó~þ­â¡3@—ù|Íú!ÜT~[ƒÿ\˾ Yn?á ˜Õºç(Pá`£ -È`€ Î%ù *ЪÒÑå;@Ì8@G¨FÄøáa&Ká 1ï6öo¹Èê§7L¢âú~ø¢¨8ÙC,úKaDñÑÓ;œænŸ&‘û0i͘¯³­CÐ¥ú.oU®o<Ä„e…6‰Ì~xXÓ][ÅÏ£1 ºŠ°UÖoVq¥ÁóI kávrðïjt*C4,ntLß O#Óst}JFŸ,¸ºô‹ W£Éödõ°Wƒôù¸òéÖáj…†bé!œ(§âgÚƒNÐÕõþŠ2f§³fÁðyR(øùòå/›B^­lknæÚÌ)±Ñæ¶¿l|ŸýåžËðqÖàƒo+s_€…Ëë$*ä½ç}¾-õ//UÖÆ[^>…Ühn-L‡ÐÏcïÚ|ܽëϲbî·e•PľîÕHhh¢ÌâhªgÖào›Ñí# !)(·À»Užúý›yŒM œè~â”HüÇç9‡Öÿyº¾éÇ4¶6ñq1ßzñ~‚žÿ¨ ãÁ ×Ã.Ö)ù³Æ„PÏgÀ[,FM´@§ˆùÝ„Š8 @„t(CÄCw(ßDÙæ_3AM õÓZ½ü¶Ú*YB¨td³‡_¶ÉÎ¥N¡×Y#:°å:£xí×¼ÁÇ¡HßnÓàö(@1hõy-pUëhwBƒ{ð$PóÑ^4ô+±ºe…t¢ ν"£CYÒÁDĉcÀ`—5;¢†Ñ¢nµ‹ŸÒ7ÕÈÀlÖ[¿™df©çõO›b†ÔghOÑŽ`‰`üœÁ,ßrò+aÇåCMþØ5y¨“ß7°[–Xs´;·ÀšVíã s á0ìå2Ãz5xï ¥¸v`쩊‡à"EÚdáŒe"ã3^€ ù(a<.dÙÕÁƒt׃Ù>s0"ËÌ!”ÆR|X”ÉïŽÁf¨$ª©®ÁZXá]- ú§1|*Q+æÅN…TL0•ŽwÕ…µü\Ö×ø™ß3øé© ~âÆ‘&#H^„œ¼vƒtDAœŽsÃo˜à ¼a²ùÔ¦‘ Ñ17ðq¤7Lð†É–¢‘úB×ñq¤7Lð† Þ0y*O!íîmä`ï[ÍÒ:&º3Öüäì3 \aƒ{xCoèá =¼¡‡7ôžêN§ât„ØÞÐÃzxCoèñ ŠD$FÇL’ÀzxCoèY7ÌœóP±5?zd‰DBžB5ÆÚ7÷!Æü4á"ˆ†VÖLC¢Ý':åw1mtŠ]¬=O§[r4º%Ã&‹²0ëÈë“nf©¨mu&Vâæ2[6§÷˰Ká-\ŒW\8FðtFg¡ ,2øi“ñï?ŒÅ8fÿýú¨ù[[ÏÂü¿­­…ý÷1.¹d<û/H›ýæÎY­t ææ˜Çfï_ç{»„ «–Œª$Q¶­²@i*%êýtfg92f §±A'êÿðí‘ðÙÓ9¦/*T›®týw+üšä¨pÏŠÙ!¸Âñ•µëý\÷=» ‘,jïàu¬ºóåIvz#껬h¤Îž»ÙèjؽSóÑ3§´‰xåHî.âA(»–ç˜ú&3àjÀ£Òè!:¯ ;«²‡ø¨®@,ÿ™t{ÝK<¸Ê5;¿eu#¼ˆ6b¯4þ ý…pò¯ªœó¥2æýñ!£ã5…-ŒmÕâ ›1 Êjâ"Þeft% ÕÏD\— 6wo, –ó£F!)(íe çÒ®.7—Uƒyö­¯”Ñ¿á mk ;B#ì,€”ûE¾^šôûv¥sº¾ßv{«N­…’nQÂs#îï¼)ÿ¶5…¸©lB]\U]XÝþU÷¸“D©Ô´šáȾ}f•ÁÜ#VA•ùiM¼F.C0';ë.SöNÇ ¤@‘Y¸Æª@5 ¨©ªî (8 HÑIºÃÇG„»&»€(9˜MN½ƒöup¸¿t`Cí¿gF·A­‹1.¡÷ƒŒ×‹ri¡ú‚fM‰Z·~šbªk’>—h@ûµœ¹Í5;1‡Úòñ ×ò“‘Ä–sÝmjÍÝhËñpC¤ÆñÔÝ]OÖ ”Åj4>—S}Nµ¤6 ýp_н‚òpÌ ¢«*<<%Nu—!¦V² ±–,U’€‰»eD®]aI‰²[vWGj$]iÝ÷]´TÈAeÀWù¨óæžF’¢ÐÓØ¾»éfT“Ï—ÀwÔõ¼9~¬ÑDÎÐ@ÛÕ©¸ âškšºCaôLµ®™Ö‘óó¶K< šãXâA\í£ãÓ˜ó±x,²q§ÛÅ»Ñt(¨ ¦—ôE$ùv©æ6MÃd¶›£BòÆßQßCÓŽÒ^#§Þßæ½-jìÆÔ^q+«dúna‡Ïìæ©Mòjp'W ’Çפm/IÙœ¿ é)éÇÚšûÚ…ßûÏî÷^}ÄR‹?£ÿ»&²¯WÙ³Ì-n‰úî 0ÑkÈÈÆÆTËfŒ–tÅ̶MÕú™Ð:㼑mZöu5j+‰lqM¤d– !scƒ^~¬¢Æä²'Èþ›ü·–ñ°”ÝQ aÄb\AG+•nšcy α -¯M8L|2î¢9mHkˆÉ÷Tk‰Öàá¢+7z˜-¬*KÈŠêš„Ç4ýse[>¾RsÑq5`àbØê“⢊ô¢Šô¢Š´¾þüU¤ª‘XÍ“Qò…°q>wÁYRñÍ1½–®¸‹+朤‘€ŽLF;' ¹QÐFÖÛþ§ˆ!ô‡çì3ìÃÖ/¥?;§"ûŽëñ /Ëv›uúìJêŒmk¨µÉ$É$6ŸV"Ha{j¾Ìr.ǃﺒl¹DäL·ƒËⶉĦôž±Ë5¯%ÓK\¡¡5&${u5²»2ÜÕKW±áYùBŒ3š¼G9ý#G½Ÿ}¬j©Ñééw¶[uÐ÷ø)v½¾áÈʆŽgol#Æ1ß,OŽßäPúä« q_ét?¾`¬ÃÎG¬©ïSqîÛö°Ê.NBÿH¹û–D¿3Rñ€÷9à¾AÎJ2b^Ý‘ˆÿáâÝKbI"ºÁ>È[¢X’zdÍ–¼'–$ͰýkŽš;ÝjE“ @wÂÿ>¢‘îa“p›­×§'pô>xÙ:‡ŸmÖåÚô]›AOŽ[Ñ’õQ À#[¯¶å}E…Úõí9­›:ã+ý2ˆ¥üù¯WÛ”€cC?q„™N,j‹µ™Ù³åqªhG4#0Em.éÎ|ë}ÓÄøÎ ð¯AÖ fz„Ù$%%^XÒ篼SXwÖÓune—z‚•¯øaÍô¦¶<$ÉšMŒð\e±ÙrÍ—¨s+)}@ÞëafùGSxüá(‘ûä ÊF|PŽw/¦$´U¾7Zz=+›puQ>áʼÁÙ3,_¨JÆRxzÒ²'#¾F^¼´³̓‚÷$s²ÚZ+b‰U,¿ "šJÕ¶ëÍnOÏTŽÒ â-ÔeâR»c|~¹Ñmòˆ‘>î¹{\\:˜Éº“¯¡¿Í©[¸­kð½@±‚ õGxo#&^¢uú"ü”ÔG"¼åÄŒO“è'"HÑ^ÿ7Óbø°®$×á*•XLAÌ¡šŠ7ÖÑS¤ÑWëeæ8)%x„ß¶9]ú­œî4Ôžr¸B¹UÝi@kdwL7¸­^· ë©GƒäK«~¥pÅשF#§ïØš¶Š‚ƒù&iÈ»R0åÊllÉŽùKÒf̰¯-ÙèP‡¯£ÃHàúR-%MØJ\¾¥Dܼ w‡º›3ÌòÌ)ývÊ[Œ_½IÙ‰e$ÙàvKè ýߟôzK:{ÌOÑ3™\Ei±V'TvŸ×<¬žÜ…ÏÅÌ[5Ýã™9¡òV¼Û8ˆä÷Ú]2£›ꭕĘÎU„ëlØé(Ì%:OœB¦?–Ì¥|×’;ŽKî7Ïr÷›§éýæ"Üo.ìýæiLÌñÀ~ºOÜÒ§\ØÅO)ÄÅH$’.^qQ‡ ýÈ!% ÅâÏ ¤øç*RÚJ÷`Q¡Ô_T(uïÿ‰*”Âáó«Pjh¤ªŒNá›rüžç?^ˆé¼rX;üÉ*/n<@åÅøèè=æp¥þüpå¨EÀ ƒ/ðà\‹Sé 2ׯú-¦E•þà¯jݳäbë%[Wr±L3 wÔË”\,¹Øç¯Sæ4µØŽç¹Ø¼TÜ<–Ù¬kLÚºe6m¸ÖÖˆ‹—MÕˆÛ˜¹Fì©? ï¯ˆÿgxó¨þŸÆ³gõÀÿ³¹Q_øãbžôü?ÅHÜ ÿσúN÷0ÿOÙRk÷¨µf¡"æ¹vþ,ÌÐwòظl ÏÉÂsb‘ùSVöú‰ëVMQ²jÊÂ…²p¡,\(Ž eg€ÖòKθ'œ°7h³'o¬¾ìÂÓ°Á‰Ó!ÈÀ>Ø>{;í½š8Ü{Ÿt†WDc»¿þòëOïœá»":òNA2ñÓ­hÊŠ¤±è‡Š|k›|Ç»…›Gnò u7Ftâ‡+õi\J‰´c z°“ ÿpú1ü׊%æ2aâºüC—¿àÆÖdb-½‡ç)Ö›ãæ^ëweÃHæËÛrZ3µ‡êåÞÉ ;¨ŽjÒ˜‚?_óϳÓv, {ê$âió‡ùžÙÊŸ¥  ÉDJ˸½÷¸ mRêŸÐ;uºÿØÞ)¦²‹Óz‹FRV1¤PŒºÿÍ$XìYÿsw8è#hÒ­mè8¯ ²Iš.8ö•Õ:þgç ¸ï ÜBÜtª9“P9Ùmw¨/ÝkP$Ô”ºU²è0†ÇÆj×"Ò Y‹¤ëÀ(XÖÜ.E¸µm‰{ì¶Ñ˜^çô1øã%òAÄK‡9 &aÒ¢©HÅÑdžù|ò)âVÖ²»Ü"‰%üdxIAu8+CëÇAQìô„ ©{G4ñ.rbfƒ<Òz†}×û²í|'”'T&ƒŠUQ÷ïjçÑi!J!Й͵¥‡)‰n_Þ WŒ´äš§°È”íA®<ê‰1Ù"Ýzf’Xb=;pùwõ`Å^húÚ—,1w×{ïšY_[ÌŠ{¼ñРë}ظõ‡¾’{q©gnbÉy VF|RØUßZ÷¿‹x£Ô{Whɶ⠀¯síRB$·ìs§?¶#“#¾¥ÞÂ6Aá¿Î@$Ic¦7µ_>tAÏEÃãGFgVqPëOÖ3é‹/ …g\Öab·ô¶ÓE® zÝHY°°Y?ö.l5þÛ 7â7É[tS#÷&yëÆFô…ÆŠ7’þó‘•À­M—(â=Ä£ ©š¤v DbÌ®ðˆßû¶f¶”öªF­ö…ŽêÏ‘ÊnïÆßÈЀKt¢wŠOÞAÑ#ÀÛ”»‘¯ {´»zÀ«~®D\„x÷†º[ÝÊZGœ4²{ÃñW&&\ò;ŒM”P‹NôOf7㥚qê/í„ K¹‰Æ|-µýÕI¿‹ÄÔÜá‘§Ä£qiSþ9j”æé˜dt‡§Q0<¨¦WІ…94¯l¤ºì8‰h‹É¿<Ý`ù=o¥õE µQ†¡vwߤnx ê°¤ 8gÏÖ—L—»÷ÁFü.¡p?ăæA°Ú—ÜÎq?—ˆ(p°zH©æðïÁ ¬G9Bë ön¿ÜØöõ¥WÜÁ÷ºcQMÆã,Ã{.C™,m ÅËj#Õ]G‚%[ÂGåÊÌcÀîSiÀX-9"WÂÈ)EFÙ8v´¨¯0E<_”¥QN®m$'`*¹¶1•\³ydAFÃPØÅA„Ùó,¨¶AžzZVm•B)™»ò ‰l ¡§i!>WÍ§Ï Ð>áØw~ÞãØ'˜{lü5ÿØø ¿1 >v‹HžIœ}œsc}óÇ:8.Næu?ñ©1ñEƒŽ“¨=G¿Þ ¯7è ùcœõÜ3"45}FŒl4±ùYψz)åô!ÂPYÁ¬%ÔиZáh§t°×–Ö4Ë QªZp6T¡½Qes[†ûÎØÈi´¨ïqŒXO`éOy¬×-=,­]‘MW*bõšD;¤e먾¢çBFDýì€Õ49Zø‚HwÍn^¯Ï|.„™ù\ø0Koã¾K¯ìá§ì±q#¹âf86ºË±Üy1çTÖÄ-½ã»¾§8ì¹F¹]È•þ=ÎŒIy·1•¼ ‹FŠ•<—>)ÆÅÔ'ÅúFiÕ˜AD¥$RìÔXo‰¨Ð¶5û©±ž‡A1ä?¬4ÐÉýGÓy%§fcš-¯$–ÿ1z\ü¯u² ÿ£±µÈÿxŒ‹yÇÏÿ(BGTˆˆ­lê²ÄÊŒ ÍœRô×ôY"TúðsFåÄtYC¿.¼h.c€Û6eþÙö'$S'"&#.i”2iQ d*°Û”ú&…ÕÃæpØñé&V¿¹]˜Ê‘zð/›ÑAe5§i¥Wàt¤Jçº-– §•N0øžÞÌ.™>­ä¬LþB{ë%["!•|bÓ)ÎCñSKd[ÝÒl¥“Q 3Pâ (çS' ÄóOŽ‹óO6sãŠûNWÒ—Âíb¨ÌË_Š÷»§®£‰|P”B”{*éw/‹ÔâzÌ+°ÿÝ<6þËÆF}KÛÿê[Òþ×XØÿ㒒ɶÿíþËÙi³Õ>µò”šÓ™ûJ\h”¤Ü”Y±GÛ—85ŸGæ ƒ)²tÆøÉi6Ê(?v”Ól(‹@ȶ þR¦é6Éîuɼ6¸Áx\-˜¬ŽkàØG­4%)"”gÜ´MŸƒÞ`عˆÝ¬Céš=U»„««Oeí´§4}jñ<ß×ÀYÁã²â–´sÿ!Ànþ87v y*[¾`£lùæìT`lõ,¦-´˜â(¶. §žÄêìûoòPsvÔƒZcYÕKšÊZ)¸ÈÌË‚¦%}âM™§ ¸éÐò Rk”h-WZ+õ꓆¨:½p-R±ú}êƒ<¬Y¿{ÆÄëltâ—Å™+ùI Ù6D Γ3Çå‰-:c§G°²þ¼U[þiµ^%° ƒi²Ÿ³þoâÓ‹Ö“Æš¾×&‚­ÖñAû±Áõµ~ê`ßjÁÎ’y­Khœà;=ËÐ+Ðo&¢gÓê!Ç´]ÁEbÏ<>Ìôó¸ »vœØcf¤ 5ŒI ÑN·Ï˼?6pƒ› Ü{àUÀPŽG„œ¢å™ÛYÞZØ78 8¼¯Ø†_ …MF}Müa} a1ß±$b.wÖ™—Û1Í+lc‡ÿµèÊ ‰lxÐŽLi¬¢¿3=ΞÀ½·üê6ôÿ(æTCå'AjQ¯á}’?Ï‹lÂLáÛŒVö!Z$û×Xêï 30“ómM>‹qô8€2HîÌ„dØ©‰bCnöÅŸÓ!ï]_ëu±Þëb}S¬oÉ;××ÕXÔë¢Þõ Qßuõu}]8QÁ†hlˆÆ¦h¨;àÄݨ ?6xcCllŠ uÓÆºØ¨‹†Ø³-77Ŧºos]lÖÅfClnÀç±8Ÿ-uëֺت‹­†ØÚ[›ðùß$öÍq6ö$ N¬ ëŽ‹çQÚÇåæJ7¥õtî²ÿº g@¨oH‡ƒMåh¬_½ÎˆXrüa˜e:˜#ŽÞ0™hHq³²ùüi@é\Å%¾€K¿È­êÕ¦3õÈ»ÍR½!:Ñ$ZžÆ´½ÁËyixCo•Óú’qôžL:—ªî¦Ü,ÖXï¼BÓÔHy.¯:#\5Z„;œáˆe˜áEŸ§‚Îì ÚDÿ7wzkÍ^Àà[%r®Ys§·@õ VÒVtÑÄÉš;½%­/ZýriYm·W¶¾B9àŒÄº³Îõ¥ƒý”û`›à?¨$…÷ ûl%%¸;—R=† »çÈŒ%­ÜõÅåv5ZTÈJt¬¡¬ñ‹1é¥1% yt 6|bÔavƒJÁûlÌeÎT•c?ÕIü¿wÙ_ÙL<S 3§w!äŸ0Å0s0 0 [ë‘·½H½eÙ¸˜fš7œ§ ù'0Ì4ÌÙV=þ–Ü©·l!ç£ÿ3[ðìª=ÿ„]6ž]¹—ö³¯c1Å>Œz]á6¼U¼ ›ïr¶bçŠoÇΕܒ+o[v®‚­ÙýÛÛžpÃݜAë3l¸_BÜoÃMvæn½VŸeÃtæ6\XBâ¡7\îÑEEKŽöÜY6Çø*T›#/õY|-–Ø# ³ôæè¯R{süy7¸ðJnpj›gÁj_e6¸¢E¶Ñºûþ¤pƒË}Q|u&•vRoƒû®°ši z.¦ ·™‡’ZòËO¿þ ƒµÚ¯w1üõéIó˜W|(æB@O}£&Ž"¯þÑC«Ìäë³Óý9ÂK¾Þ¶rî‘Vö™€+eÒE]Uö‘˜¬ãHL–C3 ÍÒÄw¦ ÎbÔˆd¸×yÅ |« ÜKGo͵ÿ8ð“+"ˆ°8¸Ñju0yEB¿ÖÎNÏ÷Ö¼Ûð¬Î÷ží“Û^õ3ûM´5§ À¢tþ5DU6Æ ¢$žˆ†ù( hf$v·4:JmìR[Ùê.ë“ sÐgFušÊ\ã·¯Õˆ4°NŸ­Â—ñ¶Õ#Ï4Ô3õx[1b¡8qñÂÊÎÛ6§ÃST0)îüò„QljRí°zÀ^sÑÜbõd !zDÁ€ùZaûôM“ÌíJÖÓ«¥ãG¾£": 1÷É-Ó¯£C§êQ9«‹Õâ]µõjMœ5Ô_uø«ÍôáéäcÖC}û‘HʾÆÐÀ8Š:Ç =ÎÅÔò`B ¥nçÄ®Øw8ËØ{Ê+¦œbŠÁ¢ˆ«%ÞéZ&éT7#ò}Á]-ªNÕÊ©‚ExCþ[VÕ[äóvÂ{ú]¹¯R#y._£˜}$ þXÁ…äNb>ÇâCŠø,Á‡ÕzŠúõ•ºÃˆ}þ³m˜4õdÃyÊzfNòà¬x¬Y±¥™D*^šU; øc½4+îÄXq} NÌçú+Ö˜|‡w&„íÎÔÂ6¶DìÍkPalF÷Ÿbîlã ÅŸÍJÿl«/ûÁ‚0vÅz²S©¯˜'ñË~}þMô®;/út“ÈôØ2·þðœ~î ]ŸÓU; ùoY2T^ýÁ£Š%ä#’WÓ(ÅóïsÄó|ý¾ƒ:‹ü 𴬉B·j˜“ØÑbÎ@äZ2wÙ»ü·–¼Ä—П~î"É™­Æ²‡W Î]9쫪-yœ"çž¹Q†;£zÁºêr)i¬‡h î´žzL©ì~â³°>ǫ̈IG½›÷–îüòšY@ô©Å¨Ø¨äº¨{º´¥Á|Z‰(ÓæAû1ç¡RJÌ‘%„VV´Gôé#ú¿^:º¼|´¢î,«Ró‹ôÂ1J­õ‚·Ùé¨f?1¯Es4“T¿K2ßæ ùë±¥ÈQ­í‡-Æü4­n}LÓãj×crCr%úJ½V†U|ÛcÌõiØòhj¶ìÎÁœ5ÛS>^"íóÀMûìb§9.*’çæ¨ Ò8uIô.ù³qêöËáÔýÉ“'§OœüžI“q¯EÞä"or‘7™È›t9ß¾cZ’Ý÷] ŸSiBCP–2UmF-”Ÿ%A²Ò­u«jžu$¹“7ꮾþ› &3R ™©·%a^Lªããå4.’I‹¤ÆER#½k‘Ô¸Hj\$5.’å§‹¤ÆERã"©Q}¾HjüÙ6¸ðZ$5þé’wÝ”Æ]JhÜ]¤3N†vøy܇lËKÔsyâI`¬•Hs…†Í!+”UWÈ'å3iÔè˜.—o=?—Ïf–‚ÔÜz¹(ê ‹ÎŠ'Þ+&¹äÄ®P’›FL™bÓˆéÒ÷éÉQQP2!®Q˜go@*Q.ï¥å²þ"SËÂ[äÐéë{äÐÙ³T.‡./bƼ´¢,¸´Šã¥yè´£‚'ÞÙ«;‘ ÷çÏd ™£8“-/á`¶ì°Â¹J«;Ñ, bö(J~ ™#HHûAóÉΛCBY-½½Þ?£,1ÔÉl’¼´Ù{$hå'½¤U¨˜|:šOZ¸8½¬°y)PsÎêÊc—y¤uE8¦TZW^^ëL‰Re&1­™ù¢KeQ•]SðLõ`ÉUóJ®ŠåÿŒ5ÿ§þtkc3ÈÿÙ|ºÈÿyŒ‹™ÈÏÿiGò°ô&ÙÕ©täö"èÏŸ DÓ,§>âç›)Cˆ*Žá)Ó…ÚX@ýsFãÿm4În)(X ºžýgÒao¥.(‹ÕT;eëÄæáã©¢EþÐOT| Y¹­þ„Ä’‡è.? ÕDw-[ã<s— ²É¸ Ù^“ïNæ4ÍšÌtæúN Ê_…lmµ·¨V cö¢ÜnÈ`JJ?Ž‚A“1ӕðí C¹Ô. 8œŽþì¦uyg&ÂD§Ã€|aG£¼õB6^V†ÿTÙ-ÓLU©‘ä$rR¸í|­Ôk­ê’0ÃÁ`‹T•XLì"Ue‘ª²HUY¤ª,RU©*‹T•EªÊî"Ue‘ªùο©*‹T•EªÊƒ§ªÌòÐEµìì“ÞŸZ2ŸÒXÍ‹h³9$ß!‡DßúªÿȦÿÈñî6>Ó ë…â[“Ï>SÏÞ+e¥ý)+k¯O×x 2XrŠA¡ªbYfÙ}Q"ÁB¥· ¶©æ ô2[).*Ï…½rÒ³¾9ÓPûBÃcµüvî÷7÷ã_öðVÞ-ßž—[þÑ®Àÿ?}éqýÿ-ÿ¹¹¾ÅþÿÆÆÂÿÿs«ãÿ ‹£"lÜÏã]ø§‰{]MœÂ·»5ñÇk,“yJ?˜åÿ"¼¦ ÐúcÌžç4w]ã’ˆíùª×êÉàº{ÓÍ®Åx'…^ƒxvZ -of¥Å¡P囘9-uÑ«J,xoæPÖèÂx¢—Eó õ{ëV›²ùOŠÍrfM/[ù*Ùø‹—”y Éx^nM²×(úhþ¾ †ŸF (e ØXnÉÝîT>k?Hã€zü‡ x³LA¤&Þíªm³Dùs¼DÚgîe¡èíô~Ž,x öêØŽ~QGM}ŠíæÄ® VÀ‹÷äcùó~ž·ÎOÒ»ó»Ýó˜Ý…;Hª€kp Ønþ¾WÑaº‡Ñ)öªwM4ï$Gb÷¸y²óªÀhU“djêöy±vOÛ;Ç5©ÒO:Åo˜ÖªÕ܆Sæî6ÎïîÁIóe-açÒÆ­ÝȈíáz):J;rIÒóâ!Q…V¨ú³*œ…ùSl·ùøqŒt´øÓÛyÄôÆw&ícÇSYÜ ìc= öã²Æ®ÀPF›>MB+õØÖýmd¨‡ÏÝF¦vcK>ÛH/^“ÔÝÆÐ¼ß –x›ùO˜ð–Ð÷vç àþÛÉí’:€âƒJ!ˆi†'Q|{†ãƒ–Ìfä5ƒnÁiù\#]É„!„íÂg¦'ÛñQY }¤]cìð4~ŸVü–™=š¡v"PPû$ì“%«'nó(°‰”~JÑ.Rí#CÙ ¿:Á±”s°ç!qìÜMµ™±e –dFóíRQWÊö¤5HuÁjiº7‘.œ'»ÉýòÛ}\Ðn:D=L»ç5ôÇE\¤ûð`\”3®Ìòš_B£ôºà¹j4_@½%Œö«Î}¿Ÿ³áMoðÅé"?õBŽã2·Á]†ô®RÔ>ýuŠ÷`òk+ZÔ„Ÿúj(Á& 7d–ðÇþ¿÷¯óŠ-“Û(AÈêÏǰͪŸk‘ŸÝæN}mÏÁäÞ.on/oc‡I2õ³†ƒ/4^'F0°ñ`'gýköwÀºîöº—C”Ù$R Þ$ªÃìzrg¸ñ(íH§B¹vÃlt—]ñM„æøeÀ¦Å5ÌWwêë`ëT¹•YýÚ•n• |£ÿ Ç•&•gÅùêô½Û÷øCglž½Ö¹<”æ‡týŸmxø#CšËMúk¹]>tFb€vùÄu·ó~ÐïôÖ…’‰þàËN ¶€%í–üân_t”I¹eYúG·^O¾êð¡A) “è[Tsˆ€œ¿ÿÌÖÞZ½ü¶Ú*ÃZ_prUOm2’18‚bàÕÁ|-ÐñìÙ³+?až¡ƒÏ³›l˜õ¯´kâ¡-òm5„);yÂæk 'm®]¯å®ò?)û|{û|Þ+†èúP½ÕŒL t<°‰p@îð½úzèr;ˆ§d¥(æûYc€ˆC…( — ¿à÷Õ@ÐР­ A´H&Aݾ­XÉ–íoó’2û2¶mSÚ°l¸äE Œ]P-†úÍqIôa#Õá=Ax“ùf²–¾ªYë̦1ú@Å¢.• ûQ •DÅ,"â¯9ž¥¾Zâkß×k€§‰š(ˆètü5lj0× ¦Täìÿè/ˆYOg2ZÏÁ8ÍviÒoèüÝþ×éÙã˜wKØZÛì¶Ö9`a£bõ XØÞûÛ1 )É ÇÆZЂý® =FO’½°7ÑïÁ^i¦§Mxqh:%@“F˜pv´m• F|ßßœÖ9Ÿí¢Õ@ÀÇ £Uó ÜÔèkhå;àß ý^SOUƒ!&š¹um‘µÇ©­ï9&eËj¤Gód@–­}Åv¬ ã;V£]´¾PÇëNÇU ¨•~„{©šìþçÎŒ;ó.È"„o ñ“÷jRG7& ¸@ný9<ÃÞHtZO8ÛpP´Tœ¹ÚpÛm5V™—Ô’^®´+U4¡žE¿»;¾Q¾Ù¨ªßIã…p:ÃÚ‹`éÿÕìEQûÏå| @ñŸõúÆúÿ‡Ì?Ï6ž>…ß×ë›O× ûÏc\r!ùöŸíÒ qð'm# ¡ŸA¡‰Ýìö6ƒƒÁnÖyßíõºï;ýšx;øï@¼ê^wH<Û„;„ ÕÍ®¿áêÎ35­å¶è^RPÓ}1¤ì6•6œ%ÛÄ¿Àÿ`çàL´Pý5ÀǬV`6K¾®=eè*òþ=íj£oÀ­ÀÄW »Ú®6_»Z ÖZØÕvµ…]maWû‹ØÕjb›ªÎNÞ¤5…DÄl^¬ë ÁªóŽNƒ¡Ï5ñÕ0‚µwøít‘ó)ijT4éÜ¢Rwð¨T¾åM°½p‡¼1Ê×HÔá©íFýƒ.ýävÏíy>×Þò)ÿÚæPMù¹m"…A$àØ¬¯m¡z‚Ì’Š¨ÎÏpªM¦ó6˜jSéÂPjnü3J‰#——Q.Wˆi—‘UÑt.fÓµ{ÙM‹RßIxüÕL§Š+´ÿoÿ¿±µù4ÿ·¹°ÿ>Æ%‚cÿ=ÝoW"¸ÿŒ°O¿ì›29ÞÇ»°ÿìïžÂíô¯ ðÃÅþÐè<è4â4ª3ÀòGwœ• çùï›_§Æh²ºº_ þs˜C¿x¨ÂšÊT l*º·h6Ï”EQfój o˜È°ZÙ5uÁBÌä§³››îUUi¿€sxN$™X‘»¤å~$²áp0—ƒIÿzDß\‚lý‚(üÁD@“²jÊÆþ³û¿ÿLÀ6ÍÏÅ}QùãÖÚH=™À f(·X™CÙºkS±á2 ¹àQ¦h>³bô¾T¿1É^cTŒp Æp¦µqFÝWÙt¤áÐ2ü:=:Žöˆi;ÖÍÂ¥šãÛHsz”3x]‡)¼=hÃþtüµÿ£AZìÏatö×$©p|Ür³Ô8˯þÀÝxØ’N'ÊÖ´¸(ªiT¨ˆOV{Í'¡k\È ó:§ØÅÅFæb)…#ƒjÑŸÆ“›aµ™µÉÒöKlÖ¹ú`úù9Ã…`S¹@÷eýÍðÒÉ«|4þøTAÙwqvz¾‡‚‘ü²Ã‰õÌÕ`ˆ~[ôN" Ñ€^%U¬UO®vúV_Xv™>°¨{úÆäÚB&7‹MG»`¸¨_«Ü¾*Œ£+ˆ ¼F£±M i­¹NmàìuÉÈÚù²Y߉=€a¸ñÁœ±Æðã ÂT€rÖÃ…êìX ÷ûÉ…4º4½JHÌ‹‹pí úÐÙ/ÝzzÒñ<Å í¼63ÙT˜¯$3mDûø4Í+FïÑèìxSûßôpÓ¤¶Ù/ÛùŠ Ñeðö«±n€ZMq„šƒ¾ô¬_VÂU&ï?“NH^ lå5z#œîȨÚý'mˆÊ>{1çç†+òÂÅN‚gH%ê㮽[yÑ0E :>Œ9ý¸sp““m;û#·ið5ÚÊÝ–Åȼ:ÝËmݤ6晵×çèl;¨‰C.BJ¾ÊÖ»tó÷Þ´á€ß>;ÝksÜ]s¯Î?ôƒÌþGé©yx ©všoÞÂ×ôãÕÞÉïê)-sðw–EݹÊÑì(FIÿðè§Ä*ÆÈ`µ§pénEžÝŸ`{pî_Ãg/Ê>[׃zGôéþ£"{{Ía¿ì¡ôØ¡…UXIiÙ¸>j¡Œ©î—õ˜ó± 7­wâED;éúÿ͆™ê9i¥¥ŠºcMÜõ&#Q×½&B-XËzZÞ´mgùÞݨÛôÍÂâý%IIß·WGÚï–ùëó:éû'ø>Ý«Ý9”y§sÝ`üMwô-·%í¦ø•ùˆwJøLoû¤Ÿôx0¸“þ¸ÛCƒæÝÍ®†¨ê¡¤D3'¨|#t¬Ù)÷*Jº×Ø3P4mÃùª)–Å…Ó>‚]ÁŽ¢ç·i¹¢}»_QEÒO~·Ü-« ™œ¬ë úÊŠ4²Üq†¬DÈ2éul*xTïÂ)Ft.G•Sø½ÂüW³ºŒ?.pgÀ_¶Aà½N+¿~WUZ¶Û¢N2 è£@:U½c3£>hjÚýžõÀž¼Þ'.ë4 Ǩ¾RÆhçg¾Äc赌Þ)‚ƒ1,A< ¸³ýÆK.CGl`§²®é_a÷¿Ü·)Üã°¼»?>+Nä0»о­uqkŸÀ€Ûˆ€ƒëâÈ4˜óÈj²G|SwþKÝ¿Ãëõ9"L$­òú­lÇï7m´‡usÝ< e§YGv³Ž,•H%2ÉWQãà[Ú)¶Ö“Ôݪ&þÇÖÓõú&Ço46·êÏÿccÿú(3µñæIv¿PRfï_ç{»¹qàmSD1ºwÊ qð•Á  Þú7üø÷vk·÷¼ºçß\Mÿ‰®O A>^hƒü™C({.&] FéÏa’ˆÆ—<¯ÈÏ”oØ2ÍŽ†ùå›bµúæ‹’2cœ¾œoWL·Ú ìoËŸ<•åjÍJ9H¿ÒYó9¦%Á1°±†Oþj¥/«@¨Ä‚‹™3 ÄÉ!œ‡¤ S fÌ/dT¡N1Àˆ)ô}tUðüH‡y‹tM¶øZµF¿_Ò];€viçcR¥"O0«b“ÔTÑ×Ù¸Óí)§‹ÓE+†€ ºï»³áº5Þ·°,>tÐá•ÁÀ[È<Ê>'6˜Ýö=SóBi¡—W »¥]P/0’4âmMËGàp«Î(óBt;ýkwÂØ=5í´-GMîÛ¤o7ZvÕŒƒ“"‚ü¸Úƒ[ w‡-r&Ø‚`[.¡=Uí.“‹’cü8ÆS¯ŠQ6ÒÑ5>}‹â‡Á+ÙWfÃgÀ1°ÛÁ„Œ³¾e.&îÀiŠ_ݹºÊî(LÄxô7ÔÄd$ùs0õsí¥HÅã4¬«îÕàËì3MûdxÅlËf½E§Ç<Œf`ËdÖL™V3MN Ê/b±¼´ï²+ÌOãþÞH˃?À£_‘a}âo3þá41˜L&Ý¢RàYC—æk vÆÄ‹5»ï-ì{kà¶Ï¾á-Þ°=ðQ¶œ'T‚O“p¦pYû'v`JÊλÖF‹6Z¼šÊêÕv·µ<ñ3¶õd¤î5²Ð`ˆŽ]ꛊÎ4âò¥SŸDQöÓýŸÊç<‰û¤=aCÍN6CÆÓ<’æçtÿ§{g7Í!±)šÓ$ŠÒšî•Ñ$î•Ô4‡|&™Êtæ¥2Ù1»v*“(Êfºg"“°`Ë8ö=‹3à—‘´ƒ)#彃djw—[6cb2³%fÞ ÐAòÄHL‚ädn«Ž¾•n6"íïZÚ_úM t µ¿š~Œ{föVj?‰ÏÐ[ùdµl¶€ǃYmhûhŒP^ÿŠШö6½ƒRʶý(Kïh©²T0}_×4ê›ûR#@ÚŽXŒ ¹aú£ j+&ýÅË 1Û£ÖÆù*‘ÖˆìÈ¥{=ÈF¦:™$4ÄÝ"j#P ¥³ˆ<á0¿mDœ%áÓFj»;õH¶B}CÎÆ‘N‡ÜdGÉÔ$\ÁˆûògàÀ¾£dNájxL¸ž\é§™Ôòˆ]fzÍr¹Wê_‰¬?Q”øw¯œ?1Ÿ´¿i3þv_îYÓ%û‰¢|¿{¥ú‰òuÃOMõ8 E‘ZMµæÜX=«]ûS–…•è|5AtàÌbÛ-MºBåûYUWøÝÆaËtÈã¬ÏÉð~žT„Œ€½¹{…{Z e(ƒ/¢K»j£ÒQ Ë{ŸZ'Ägü„C®)¢Î6 ç¯lå%†« F¢×#èCÌ8x$RëV6[ö]b/Êû”r!›ÑÕ“]€–2ÒéÁ³Õˆû&Þí” PµæÚLîl™zvzž$T.I/'3OÒ)“Ÿ'lC_bµ4k:Ç*ÍО›6;~=þv—‰Š6éÀSΘUÙ"ã׬Ø%Ç‚& æxê<4õôÛÆ~5ûN·Vu·j̵,]´öÜí㉗×f†HÍÂçΰ;˜DlcþÚ…Y¹†¹ô iF z5iièŽØ$‡gBÔ¼z¸Ï>7SZÙYp_õøñ¹w$Éùï‚"P(ä¨ò±Ö¥^ú¥Zuo_ͽ‚Ó®¦O䙢cZã¡&õè:ûjr…‰¡4_:3`™Ê\‹ØÅ•\M`¨ûxfAÛÎäŽG{Üw×Íð,JU—5=-¿ÙBæþsŽš†#êÚ†»µçUkb5d›Ä¯F¢.w¹´G²IŠøóô¼êžàxòm³öꦛõ®GjVá)t‹¿Ÿ A—}ÛÈÒs˜G㿇ÂA¦¾ã}´?BU³äcó˜$몆û6tØÞµO…Àû ÔëÜ^}¨èÜKRq³âï/'a§?βë¿Ûëêy^Þ}Í¥Ìô¾Ê†8xÀ >´7°@}=Ìðš>€S3¬×?û:f »ÿ~˜AS†÷Þml;¶< è§Oè2ã©Ì®UäÚ!Iɹ¥} úãì†£çø³ù\W'¿Öâh fXã½–Û5kò³Ž® cõíZfyŸˆ ð÷÷†gÖØ”m­OCÉf˜1TáÈÆÿóÿ¬ÖÿßHl"DUi3 nƒ¡f8¸v¡=Àk.žý»Àxœ&Gµ—›5 ׿‡F&§ ]Î10˜:½ƒ’B¥Â!é¨>¹%÷ŽmÛØ¶¯4VжºeÑqLâ©ò‘šWºE½™ ñ ­$´Õ;Ú8N›Ê(²OÓ&þ§Û§Jà4›uBvÇVl—ر£û{ùýÚ¦>ņíÍèôå°”Dº» ¦¦jÌŽ Ž ] ¤ L1]ÀøÉnŒ‡æœhW:WðÆÎÕ7cÊýÏ$#I]‘è*Ãð¬]4òaö)+°¥Åc2¬ØeŽó·Ll¬®€î`­$Ú°ÐsÃŦÑrÈýPZ_h9 -ç»h9Îâ]¨:®êTšËü‹±ÒóU%`èÝÎB¦´/)ʃ†b"ÍÉ…ëÃK¿:ÔªÒjT0•ßK«R±qŽë˜7–F+úb”š“ásµ°PŒl;ƒÝñXÍÈ8ódú1MpÒ 3Óddo&’Šò9=™Âå$»t«Ó{?ÂB»µÑ;¨¾‘R´/ÂÞêl­d°ä[¾H;å 9É•ëô†:"P[ÙôU•"v a´+-=l™Þ³Ó±%ÊF6´¨Ά«·ôpÿ"Ò~³ãìêC¿ûÌÔ¤4^v&Ð?”0½..P8RÖðÈCÓ³.Xÿ¾„ÅðoJ‘“^YþÇ_:"IéBÀÅÔˆDå²¾å ‡?Ú{Ä È û½Î{­YpF³T)/Šñ8»½£9¼ÁJ³Ó*bMŽº?ÅËX¯Ý5SáÆ%$u:BlÃ?n:½Q–’W¢¢îÃ,Î3ë'†TXÂ(±©ñ á:ˆ@ªí4R¡(VÈH…m©pOVÈoF´à”m`åÐ Ãܧ„Ø?Å:1ñ?^ˆÆ V( ÿ¡ÐEÿ¢„ëLÿš(7˜´ð¨ ß4KVœÛ$•w²#a‘)Š Äƒ…tô›:ƒ§²ðˆ-Ⱥ#ûD¬ç£µrøÜÿ˜YHŽó€;ØkN’SK%¦è š ¼G¼&`Jípó<Ä}ɰâÞåĆ»¨"‹|ÖMBÓîlØVT°xñ[TbÁ×Åö['SÓ;«…2"Ä ·ˆð)’T<Ùk*Žƒõºë4žrÝ-‡µºjîšØþ¦•C§3 wª3õCJ´ºãô%Ó^¦!î©T|ù©nº-p­2Î`à‰fü!³àüÜ#–ﶪW9ÜʳóÔÑ0ïé0â;ßð"ƒ-ÃÔÑÌVX028V¹Þàt/Ì–ùð ©Sº0I›»{ûÍóc„ø”Ê ü ý ¼£uFƒ~þ´ìó»ï¢w&0a­6†½J<ãǧÖ×K<íWÉwžï”EÛrŸòG‚k8ÏE²·üó\M„ }^EOãËk`ìèX†´s°Èƒ˜Zª÷g§çí3§÷¸pKõœ6ñ’=—¯ádp÷UStN¾±tçNšÿ&ë{»ys»|ƒ’3Fà$u’F¥®rDQ"Êo#H²§;{ÿ:O÷à°FkýßgoßìaÎ}ú-}‹pNa““fyMÔ˜<;>–wóq¢íñ6fë2oýqúºõ2ݳƒ—ðª=æÃtƒ%k§›qª^ÞjŸ5á[ٞȜ̎Eüæ5ÕpzÀÙ~ÿÆ»[»{±dË™j®b)½¼&GH¥ƒ¡Ñíï¿Aeÿß@ûà¸yvÚlµé7»4†ñ¤ž¶^íéÓ<_¸î¤çd* ÊÎp:™Ã@Açc£\I¼CJŒ‰`.I¬Ö"VŸÄ:îÖj€‰A®(ƒäÚ˽µp sñ©àÆîVVUÆOp]rž|á6Ò< æXKÓ³ž·ÑD<Ð4E)½=:¬®˜A¨YB"DTáådÚ}¿~wëW·êÛâ •'Uðõq}Êg7ÓnJFÎ…4lX9 ²«ç±@ìv™ž†Ì‹^x76ûÞÐæÒ+à‚‚!PJJ©Ð7çwŸžuf+3tË4F)ÿÎ#1X©\õ v'z—ËrèÛ¬Vv ô²æ‡%òµÈÀûã%• KøIü¤¢6ÚØê±ï¾ðà?I;2Àï{déí’…ÔA8’9bZA‚Gðøépâ“0ñô<·4$¨šÜÊ¡ÉGQä“ òIÜyõĦÿD1ì¼zôiäÑ"Ôyõì/á³E ó!n|yÐyýìôÅÏcóÌù¹•>/ÀœWfQ_„ì¾NÑÛ8«éÅ"ØZꨋÔ¢ÑCÛ8¬…ç·„€¾Õjš‡Tñš‚ Ìi()£‘ßÌÜGÓܘ¾‘ê;Óh<ì5ð÷®…Ë–ÇËÒ©Cþ§N·7Z\¬Möö+SŒis¥ßÆò,9;?ÎÈŒSrb)6œ®uéç¦dÀ’Üãôr¬W¨ƒÓÙ¡¶ YªJ›:®ÔŠ™(÷¨:eéMÃdr~!––äMù O+‚M$Q!–‘ïP—´’xŠÐ1 OÑ€šÙv·j5`™"öFÆØýh«{Z0zZkÏRÈÌk›êè|ìÅ3ªEæ&…#ê›4*¶IIuÕî…Il7Rsâo¬›Âs#ý®æ2¡ÙæÑ!°¨ÖJ]aKé_ËÞ§<ÞãÊ^”2Õ5xÜÞð%+«¿¤ýKÁUÖ•‡m;ëØZ-:ºÆ+J'v¥¡¿€dŒŸö\1²øA¥¹¼ã×@î"U5"*´Q׎±áTÂÅ£YÂ?¸`¾×0~­&‘ѬÕ✫ÃüÞ¿ßâ… ðvHoÓcÞ¹³2l;c”È>öktJ]a6”'¼ÄæˆÉžßĦ3Íöc¢Àet¬ÕµÊã$›´h[É7jzÈånî¡¡¨>ù»~\½ãÃ).f «Äe)ÏXþè0¡Ò•™ ì»ÎlÌÜEn~z¸o„C4gCU‘ÓSñ±Ùöï¡çú®§Á uÕýYJ|6Ò3ˆNŠÊNŠO~[y^;¬r쵊jìß2 Ž†XF›X ÀÊ qª ´Xìq>¨ÈÂõ—©'N!Ÿô“Ñ7a8ÁÖ¸T‡t>ëöÂáþƒÇÝváû+ "ˆÎçA÷ZÀ' ‚ÙjVTá€XÖÆˆÃ1ÐA!ê—«Xk7ŠE—â°|NÓZŸcL;oÅáÖkËýœS4²V ­œ„€ýæB9ÚÛ.¦ÙÛ.*u`Æ‚]M$ð­Ä”}W`<Öž—3Ä%÷¼G§Ù÷¼ü-¯@ Ns¨+|´äŽWd0¶ßëùôyfÈD}¥]rÊM3ÙáøûÜtö±,Ü=§7D}ÏÝ3ÿ´}ݳ ª½)_ø'ƒµ_\%¯ÿôy¾èÿEøÿëÏ67·ÿÿY}s}«øÿëë üÿǸxõ·Ï·O_ŸŸ´öP0´íz¤®ih[¢Û–/ƒ =ìRÆZB_'ºÇáK£Á«0Òþ©:5Þ»:e½oëшDœÌ Èn!°[dñW ¥Ü €¥ùQ!õ^î&’sXÿטlù&ª_ {Ì6éóœÚ”øjÜô¥aŽcÔÐä8 !eéßm$ƒ¹Tü0BÌ*èYÙ§3Èó:£c'óák)?\”„Є“”n)á{¾Zç5‚5³aeõAp?¡OÇp§{Ûñ’ÕÅsÙÅLÕêБ*®©ðmN’§oÝjlg:ž©îÀìH}BÏ’1 åzä(9 ß^øsœj15Tµ˜­:™®3'Ög@¼ØK¶)¤p“óA“#/Ÿ9™.+p;›ìb&—…{´ “érÍ’+…¤l’‹v*8eûùÈ#6Xb S¹€D³$°²M&†±\]ù~=*3(±¹•Ä4 gWç|qZt¼±MÄÍŸÔ2ÐÅ8~%ßœﬗÅÌÏ.4kYVwZ#Ün¶ŠèÖ2ãj¥°Nó‘_ËŽPþµ0ÇP¨4Ñ›fhßÀ™‚Ýûd Jt¨t]äòÛnŸIXövmžÓ`ƒ# ¾vÊ_HÅJ6ÔkNMf$òs2+Q¦¨;ûß¼R‡òB° ¢–SÚsŽM?;Ý—?cªæ á賄HS˜ÝTÒ:6wéлx \N`]*R.\W*§ŸÝ Ÿ-ŠwÓÏ>sm5f“1kaÐ"1k¹>v@FQŸ÷™%g—Y2snêPîG,ÙNStoì7k—lûzqs™O#„dþeØ¥RàÛœ¼yá:¢Õ0 Nª‘OšÆÚ¿ÿU c1ûÏœË?Ø66êOŸùöŸÍg ûÏ£\r-zö`X¹¡–Z\&Bˆž£¦lV¢WrŸb†8r(ˆ¬r¯HÍÆŸØè$cÄÍ—´@EK ÊgçQ<0BÃÔê“…té×°À_Ik×Lå­—Y•§±–]0øLѦ9\‰19Þ¯¬mó§1¶íÙx/\ C(3ÆÁ¥cE«ÇHªœ§$¸K Ÿw*>3ЯÏlÜH8Qgw ­¤Áª$k}Í® ³:Ì0“uðAUßÕu.Æv!1§, ¼Î­¿a1oùWUÎ…ùr[>¯@½§ËVNx™SžOb¥ÊÑ•4T?[‚¬tý‚mÒîY³K8)ýËé™ =Ë2D¥ÍØÛöWÊtØp†¶µ„¡vx?ey•¯—& »ñ¢B…2ü¶Û³X5æZQÖb+JmÅ4vÛ³­Ð–[ª5}£ŽÅ]\I]àúnÿª{Éçdië Á† yq©ˆsBF¬¸ªøšx=Ö%“ÌáYÇÁ8öce:Ö«2ævL‰T”^EVMÔ2©é˜€•ºÕCqNâKgˆøVAH‚Z T›ä=‚¶±Ädc8b]Hðg–¬.|b$V˜gnS‚øh‘kLéh©Æ7\ËW˜0-ÇP¯Ö™Œ+‡¿¶€zŸ‡µ×¹ã:ZÐzYOGÇl9%a&ãÎuzXÿ%è^¹Â­]Užò)qª»ô°Ä#Ë k™^4à0³Š]*‹¢dºA<›1ÔHáÝÚª\-RÅ‹Ùo.ᣠ™ }^òK(u¿Š#€'‚”•Δi±Ã¥hZMSw(èB_6!G¶Ë‚™\¶G5Ç1FRY³ç¶E³¹ï¡(Þ¡°¥+¸9-Õp]‘j¶ÎÅHqÞ&úø™6åÔ h$mfQcÿÞ®qb‚ÞRIÏ3»qjW¼ÜÉ%Ôñ%©ÛK’pç¡ÁGi(Ž¢üå½uá,û~βüZ£ã4«‰ì+¶•.BhSñ—ž¨ü \Æ9hs¦³ÛÒ¨g ÝOà¯æS%î€UlB× Ý"ÅÕÕyMMK¥n³*ǘzXWît•ÿ|F{ן[ÛÕ.b:E•Wºœ‚ jÁíÇËŽâè¨ Ý¦á0Pùº±Ó;Vk FuÔ¹ÍH¦wÞ;LÏz¨;eX×°¢6±‹Õ¿” J—œ‡ˆœIÎydD[ÁˆzYõz>Gu^yèUýTÊftKvoïgé^JO3gé‘FsÔS{ßVz“ú)“³d@N!ãÒ2 §š±[ŸÞ‘Eú½Ý¥œrõQuÓ¯ /*Þ—Î7†)¶jk©ê  ó{Á¹ ß–•·ËÈÇ”ÍâÊòRœ‹®qÁ ÁüEÖ ³2ò‚<Ïo4ýÞS±ÓOÚZ±a¥‡µ#»å²ÿði*+EØ» >ø‹‚Ûü׫½H&ŒßÞ']–-µæÖZ >Yìܰ w#‹Ë"+ëI`,ø¶±.Bg»‚Ê'Ãü‚9ÕeýÞÛˆ “uÿ“8÷$•Ž'ÍœÇdM hvQ˜ä`OG"ÿI§Cxˆ°8Ë!œ¾ãÓé*Õit¡:åÊd ëŒmÎb,`˜o|•ù˜ºKõ¥¤®#‹Ñ/~êâúÎÉëúN,\ßÎŽ0ÀÒþ¤×[²R]ܬ•88šz¦ÛªR]¼†a}ån,Ì´(¶ÔŠ[ŠGÌæ„”ZÁ¤nàx“Ìž3]ñ²wbç¡ “'1/gÃNDŽàèÌpF…þ8-À¾•’n+WÀm¦ÜE(à.l·p[1ǯzšnȾ™n~ÂÛÞù4WnÊ ;aÚ7 3UÜå &¼’TEœ~ )®^Œ5šÄ_%£ò红ùŸsNÍÏÿÜÚÚPø_ÆÆÆæ:æ>ÝÚZä>ÆÅK2Èÿœ_hNèé›ß_žþ!wŽ bq:hy‡CeÖ„ú™·Q•L.M^:ëí Ð x9‘¾äÃÎ-lÉ»ÙímÖ«ÁÏÎû^§/^uz½îûN¿&Þþ;¯º×ÚÓmB‡¼ø´›]C¡š—¼º–Û";‹õ—t'Ò] F‰’®Fƒ›ñÊ÷ÒyŸéôAìv,ýÖnSéTÜd›ø×ƒ“7Ç;gpŠhÅÌÅß/Q·¦Y0Í¥†Ñå›Ri½jíDz83Ý<“s“­oË›p-¿*šZœ~©‡<Σ[ò†[ÕX(µ2‰…—L,T>qé„â3/HTÕ5¬0§'jŠ´âxNñ茕OæKBVfq~Z± @]i¾GñS™)Üv¾¢}>]R]µ_¤]ºzl)#HFÜXçYŒä°ŠÏ´Š±KtçוìnT•CùÇ2”E鼉Ǫ˜ô¥gØÖšAØC'ýª>¹b»Ð”]]Ëþªƒ½V‰Ž“Îþ½ì3´08úŽ(Çû¯©ÈTÁkAËÏí1FgÞ)ùo¸ª%¬Ã||tâ°$íù›õäGê¼EÆz9¸ã@:uÐô>c7i2¬,>ÀÉ–o%PduÇúsw0yݹÂZó4á4 СëÉUL{Ö¥>ž^I‚¦|„ËKŽýˆ}ý_2ôKSPeç“ ý»êuº·t~Ÿõáü­N“Ӣޖåó•I­¼¹ÆQG¿àÛ4#“g»;e½Õ53£^:½ˆdÔ‹òIõ"–W=˜ ËÐÄÒÝ3Ç^[µÂ”t¼–ÝpG“a¿¼­ŸýÙ3ìÅ—d6M’ýÙ£&Ù‹?mž=gqèˆ.ÒʪÓ$ßKB±˜$;öÈîp<›Þt,?§>‘M/&¡^PNýö7] º"·Ø°Î1Õ—®ZCÐ8^µ‹Œ¨ 1É1¢ŽaÆïN‡ÃíÍ"¡ZCó¼~^ïÁ#9…£îõ&•2®ÆÅI@¡¹ÊÅÂ1¦ñ­?bÚ¾ð2÷E¼O{üm&÷} mÂ#h·¸„qÃRd27N–:§˜JŽ©Õª3Læ˜Üz×øô-Î߇Á\Aoc,¼á™Ù’^2¿šU ‚1ë,qC Õhå #È÷TevŒ&$ŽÔ:&±>^eåÍj …yš¬]§ÇNrŽ({0ăy€Lƒs0)…¼JV a‚GÆaOkÈä;ÑÆéá½€ æŠjPi Ê¡L i0 ž(‚48»šA È@a¸oÆ <‚˜ˆ›NfŽéÅø*æNšº`:Ôª@ Ãr€‰œ~o¾SXyéü’DLA6²ä ”‚%°ÏK8Átˆ’Œ‡K0-â$ÁýÑr’Òó±ʤ 'aÄœî Bp?ürVÂ<èYQ¼óOB:äÍí=±_nÜ1!¸À=q±+4{ ä`ˆ"2Ë7A@L"pü€û(ä€m4l{±Š¹D Ðç,P|y€Äqļ Î>pèf9À–Dööaiµ•“÷ä^W¬¨™Á‘(y£ ö¶\€¨êü›Àˆ½†ßÁ©ue?Jö±;RTJ5¬š¯kšõÍ}©ÑBÛæÀ%C«þhB¹\:eÕËã4¦ÆÞO\¼0ÞDväÒ½FËjv*Ù-%ø´·[ž’a6BË|§xДÈý¡8ûÔ#p=’)[¶ öˆìÚµÐQRW¸1•aãp ~”ÇÁÔ¤¡]¿0ÀV”‰¨ßT®¢A³\æ1k™¥©>FDn|«nL˜¹·³~XD ŸÆ‰÷…Š8˜¢Æ‹b…h´`"÷ÁÀùV"¡&(!ŠÐ JÌ@B”Ç‚85öjï×añS‰˜àf÷»Ê…eõnʲ"ø…3XúÈcùn8"åÏaFð^ɦåü$ÞTÊ®æšk’-(FØ*)ÓãÚÍš¤f´]ò(ó}Љ”cŽŠ˜ŠîfsÒP^gkB)îcª ½ë~ñ¶îñ‡5ëü7–æ8cæO¨õ¨RoÑÕ_iVŸÐÏó*ûþ¬':—´"2µ¥ý]f‡·ÊÝâÎæí6@3¥u»²ù¸s ì0þæVP?>÷hÉQ{ñU ƒ]©ôn@H rUu¥S»GfVõо¨Y÷^Iç %[¿mÒ×Û ö×s‰wº=v[I:ëÿ@A÷-ÝÿôÌÄæÄrÙ’žÒÈåùfî 6±ScÂFF̆NaCRHBå€)rÐ(ôqª“BرY QÝÒÎa Rm(–Eã·x:€ÍLøõøÛ𳎨§œ1#~N”erB|WŸûÐÔÓ_³†AÍþӭUÝ-)`x“ÒÌÜí³ƒ’`ˆÔ,|î 1<$LkCg$Ã\zÐ4#½šôötGìUfôr«™¸†VüieŒ!߃ËVÝÉK_ÿýN™—£ AÕT>Öº„[C¿T«îí«¹Wp–Ôô‰{zd•8š‚Öxoí •·sÖÑÀd<ﲋљ±A°þnb*ÿ¾Æîühk}:¬ÄD]<áí«òîÿü?«õÿ·›ÈÑ_UÚ GƒÛ`h@î†]hðš<‹Hmî]àß=ÎÆâæh-7Ul›É=ið…Ül3J0dýÀxLÔË•K¦®É-ɸw_€mûJcm«[ö5Ç”H#þ':-ÔŸnQGo&CòÊÃ|êG[ý×ñ°£t¢ÎDEYF7ñ?Ý>P§Ù¬è´;¶b»ÄŽÝßËï×6õ)6lo†D@F—D8Y5Ö G ÐF‰¸.PR ЧĈ.` ÅÜ$OFÑ®0”ÔÕ7ã$•Áæ¢"£Ç6ª ÀTuÂ(ÜE#Vp¶|ð´´xÌqòÄ…&Á†kutk%ц… 'p½”–Cy¥åñ…–³Ðr¾‹–ã,Þ…ªóàªNEúæ¿V«Jéùª¼ýz·“¶ ŸŠåÁƒ¿„šÓàÆ^¿:ÔªÒjT0•ßK«RñŸqŽëp6k+”A*0ÞQI:($;&–v¡ŒRHu¤5T…E"3™GMSQ>Û'S¸le7ƒnuzïCXh·6æu¢Ó7RŠöEØ[­•,¤|‹ m¼AøR¹rÞpX=3 ¶²é7’º÷M¨Ôˆ‘T(ZzØ2½gÿ¦ã{•lhQÿ<œ Wy¢à3ÈMñ\"Þ·¼ªx®óQ 2Ù—»|k.sØ®½Dw¹Ï%¤û$©*ð®Ö ýŒ<ÑŸq¥R££úï©Ó{f„D .†Uöa8‘òš)S!ºÍ• ޳¡J¸™Œ'<ÕÜ!~uº×~EƒÜÀA>‘ V€¦ ®wßÏýRéW¨ºÈ÷š¶ÇÝðæ{ØgG#˜¿ç„‹3[__—|Û¥IXïq-ªœ5#‚Z¼—6Ÿ0áÎ~|ni¶þeB²”7€RI;bœ]}èwÿƒÈ¨šT‚ÆËÎú‡k¶×…-OÆ¢ e½¥vV eŒ’v7ù‡ >—qÆÖÈi.Ï ]–‡Ô]§ð”ëÀ8¬ÕUsÝœ:»3 wª3õC&W[Ýqú’Ìâ/Õ?‹÷Tª’üÎT7ݸvg0ÚA"»{hñAuNíõ-'uf¯ÖdîuÿËùâ’ÁÌ\ËXF j[ ϯbRç³J7黽ú4þör‰áùÏÄß_“ILÿ†ÿ”þá/~: à¿Àð Ã~ þ€à¿=_ÿŸ¼µ¼_µuµŠÁ”Ô઄^j›D?V›².?VÆá é(ݾbREO™ï\'Mº>– "S÷ÃNÿÓ*Ú"®ºh¸Œà;\¤5 ëœáH3bqß!2c€‚nrcbÚÚ”m]ÀòO Ë¡ú ÅJ~ÙV„Ò@Ë ÍŸ†Q¶©¸ˆÊ%“=©¦Íȶ,KjTiÑæM²·KåÍ/ÐæK^!þûø¦1_ø÷ü÷z£^o0þû³úæúVñß7Oøïqñ"qñßÏö¹n MýGF×Ѱ1ÜïÒXßÊnd–?µ­ÝS¡y—ðŽÙ­fDÕ¶(᯶´c»ç1W{H.°ôàÆ D‹WÐÐå@À³Nû |ŸäñKp ÙT.›m?9˜¢ (Šˆ¢KQ<Ñ)ÁD}”%Ý`<(&ýËÞàêl¾ŠÑT´rÝ×Lµ°ãìsÖ g ¶$å zž“2€j"†Þ7ÖW°•ç!EÙdôœÙà~bÍÜÃpóK Ç€Ûø¼+§®³. [€íÞ€gt¹¨áPä‚Ù„Ï ÂYyHdöóe½d² GV@"ëb’ÙdÔÑAö(õ,&»_Ê J¬Gî9ˆsáÊÁ!Ñ•(Ýæ×n[.Ó<=3ÊØCÔ€ÿÄãñé>5à?¹`v^‰÷O.$ž¹"UݸcnÇ¥Tt@Œ¤ûû¬gs[¿na¡fc\:Dm?uÍub›ãb¸kïxÃw˜nESV$ïé7=ó¸‹è%yÒÃÃ)Ÿ)?fMì´[ÍVztÞí¾>ÛQ'ª¤ •îÒÄrÚ6u±îÝ6´~¾Ü;ùœ/Ÿƒ§rÆ´ÆþÊö¿NÏ¢MN:,ùž2Õ¤]Ÿ&͸1Z~"Ë€Gn¾³ tYßT·(ð.MáúÑn#Ûò4¥àòfjúMºWŸºˆJv#ôWº–Pi&66m707ñ@߫ΨcÚóü=®aR=¯Ö9 =™dBc§’Ù«JfãÁÉ·ÂâG—6ðo‡\­3iÂ'«ðê&MÝ!VÖ©Çbìï=«" ¼Dy‹Ð’Ìëš>N:8L[^€ò¾~ùZœaáYçsßû¡»‡kR¾ÎýÖ{I||%êÇH®ÔŸ·(ê|ðEú#‰=DNo%º¤ ’/ kè¤ãûQRgSÍK<ôsÓ³­Uhúême’ÎJ=·v‘6?{.…&p¨B“hÌ´'q[á¶r8 sáëÌ<Ö£5+ѽ7ýâ ÷rmâ‚Åuü(‹ëÆíñåeÝñX`ÒÕ2§5–;á­²–~0 ø–¨˜…mdreš=¯Â%‘¿p¦ïAÎRK¾ÎÌg#§8,ÿÁ ±¹Î3²±îß,÷ðCþ~3ø>ie‡ {adÿ鯈ýxó¸öÿ|çÙÿ77õ_åâõëÙÿ]oýÂþÿöÿÓýÇþ¿¼üJä3¸÷‘\ä(mþߘ³ùÊ’*bºª*bS½]:äÏaªOTùËšêAxå ^ýhÖúBs½m¯Ÿ> UH{½E¥›k°ï¦ ös²ØÿH&ûôNYdswMùߡ°mÐ ¶çdlÏÑAŽ›{­ßÕ‘*ie—·å´fjó:£OàÇ«=Œéâ³ü<;mÇÒ«'ˆïYX×çd]?Ýlë:SÙÕ¸LF…uÿ›I|ŒÇíî}U±„i·¶¡çÌè4>¦ú\BæúÏ™ÚÖ6ZÔêú ¼Ü3F'k7ĘOS‚ðÑõÜP(3¥>å$Ýéq‚3ËÖ⌴2j¦•O®ÇØÖ4Ñâ5{{¼ ©¿:v—½géÔ$y,^”©kÓUnæj®gMMAÏ¢Û0Y.‘ÄÒSÅýDE³Ó7‹CÛU­IÅxl°sº¹p H"•.™°ª’…>ªQ^˜o¼jøãˆ’dõ¿‡Á;eО«!û¸yŽha £ƒ@íúqÌÖ…èAõÁ÷1QàBûÚÛ8-fµŸùLχ}–KX‹=àŠd£ö ‰¼ÿ¹r^]æK‚Œ?WŽ«KËü3MîÏSÝœ!¼¯¿Ö;ÿ÷ü÷ > ÎO×ç¿Ç¸x±û翈Š% aä/s¤ÞÊa˜ßÁ²Â¤§<%RíóÏT1À7ïÁ˜CÏusÑ\F˜¸m…S]2N°ðØÈç¢øùcqldZXž¾˜–U Ã-<ª SרÜ%A¤l2nC¶×仓GةϮgSX“°ú¥O¬.×<ô)qÛœ²çûíš]›.÷ˆïM§™žäá; …E°=‡Ø^cJ?à1ùÑÂÒ"¢¸TàÙEšåœwÐSõüÁ1`Sáñ¾SœÉ·Âg ÑNÕ³Ïæržo?äyžã»pï‘ßÝF]ÊhK”²`Xy7ÂÇt§kí”j–a(f ;±í¦7ö¥µqv ;*¹ £)Û;§æú~ÇΑhjN; _–™ üžñø~}K„Ü·oa;ïÉ3ùÑ÷æ9%‘¡m ÑŸê ì?wWƒþ#ã?n6žöøzaÿy„KŠ*ÛþófçuË6"¿ÿ&VÁÉÆ`CÐÉàQú®¼3)'¿Õ@ è»^çŠLøVQ©¯‹ýìR¬oÔDûðÕÚßÒ˜¤Tž“5ºÓ˜˜"¤hR*dT’­˜¡ÞTØeî-k€BÖ° Œ=éªåèUþ®pÙE$Q_Å"cÕÒQ ¥“)‹L*¤3Chƒï‡ÞX6ª¾Szp‰é{²ø(sF‡K .+÷kÐo‹žë×vFºÌÕ¦iWÅ¢%ýê_ÑfÖ|ãÒʵÁ´–+­•zõIã‘mU’ÙG¥ð¨<<›^mÔdYjò#šA$( ‚öí˱TõH¥­êC±îè¹táæÜÂZîŠQù¸Z¯.„AÁöWºµ\v¼þݼøø[‚±O¡Òè¯~¬2™cCæ#‘é«é"¾5Óå‹!^xÍ‹ ¹/iY3R ‘\Ìoâåb™¨Š^UBùɶ6‰èR}¢jó õ{ëD]ç?9Áݦ¢‰|•ì?üŋܼ†¦ [òn){+›»$ºìi¤l‰Z²êñ¿ŽIðaÀ%ïoäß#*²àÒ!bJÆEM5Û9%é˜]±´IAéDZüy^sëE £µö¸ƒ¤¢¸Æ¿ íæï{*‹8WhìUï°nKz$¸\µ&ɨ€s5¨îž¶wŽkR5¥ŸgobÞÅi-¬Ím8è3¨åîÁIóe„¤¶±ÆHFkhÖKÑ±Š°Úê2>_!öa8±ívEB«ÉϪ°ýð§ØdóñÂVlÝO{>-Ý5Ç8,Tñçn·U›©%^íÐ,¯Iên§æ—û~wX€JtXòj\—…Ôæ/µŸ»›¹ƒi˜ E°°ËWžrm7Y²$Áhظ×>á3Y‹!ù„­7Ò®±u˜?ÏmA¶ñɤ7îÞõ¾¡ï•bÌ–ªŽ=Òjˆ§â¬ÜB[¤mYà.ªÍȵ)„áH¾]*êFÙ^ä™~u+Ó=ñšžl~$1ÓoóqA›K™«§oó¼†ü¸ˆsîkÅ6í‰qNÎл‚Êkzý =Ž"ëz€fùÑ@|•”¢©¯: n‡~ÓóRªù©r —¹ î²£ÏpU¢Æ+?ˆNÖ0ôºƒð2%ür'e ÏÃn³,¥9ÃøF- ýä̽Æzd–H¡fHå0ÒC”Éé*‘9uÆüóuHóOgÖ.¢ß#µCTd&ŰÈ$íL¦Q:å7½¿¦c#´ÿgÿ™<®ý¿¾±Éÿ«/ìÿqIæØÿ÷þuîÙÿ#e9(£ÿcìMú{ÚëÛålõå ôX`Oç¦Ê´vûã¬Í>»^k‰äYãMÉ¢¾2ˆ¢%³óžA †Ùõ䊚Õ"~òy³Ñ]vEÅ)åâË€­k0pÒQ=A6׎°Úq·ú¢þdôŸá¸Ò¤,*Ð’¯>ÀXôqïèðéS^Žö£wkÄêm2n¾@zËMú}¹]ùX%DÌãl™U4½F o벩-`”GI+#¿’ŒÄÒÙÊy1ºíôzxXUg¥ XF=XúÕ528™ ‡Á̃‚´ÇÐ,­¼®Í8æÈóXcãØå]_À=Íù8š)@[MeÊ,Ÿ01[Ö tW½»äéíÊОÆ÷ ¬ô:PÓ¬W" J6Bpì ß«¯"”ÛAüX'¹‡û:f]. 7p¨tóáü¾HH…×ùe0þë%µÉ–íoó’‰36¥SV€l¸ä^)û¸ ªÅ bœLá«ÈRÍê܃Ëo2ßL`ç ¯jÖµiŒ>PFê¥Ã?J¼±¡’HË%"²H¥çr jµ~8ÍÅISœjBW¤ˆ);)È8úyFy«ÈÙ/•¦äý÷0Rƒšû ÉÂÞûÛ1‹4ÉPǦ]ЂtŽ€”ÿoFKAofþà8P'/‰¬=ó†ÿV=l³=Žïú›Ó ùY™ g£>){VÒÊ~WƽH95þ¶ó•~÷e¦‹ÙF•fêæoFª<€æ”eÝ ÿ¬ˆçsèÝ7.\"ǽ‹‡‡€áÚ¼Ôø9¯¸ YÞäIκÍ+]´l1wlKé¿3ˆÂAl‰U¸eE4¾×`æ•§±Y_  !E8VÛMw2І ÷k>ˆâ*wpQòhÀêþ€Q ¨Õ~„{)p3ÿsgÑ;„‘?ø=G”_yD6S+Pj¯ù\³‹PmñNk.` *W‚²çnÓ_úÕʸ«¤"ps¥]9¨¢ù“Ìèw×^Î7Ê— gUõ;‰ƒ¼@tgXCk-Hÿ¿¦µvþWhÿÞd}ùtvsӽꢚ ­" ¦€ê!#±Ùƒ¿±5˜¨/²áp0—ƒIÿzDß\Â]_:ÃkùŽ“G* wo²½ÿŠfÛïƒpSµMósÃHX˜’¿§)$Ë<†ÿQa*v)qä ç8ñã¹9r:äÜ€®Áu×:c¤ß´ÉT`wƒ±Œ#UÌQq–L·>4ÚÄ…Ó‰²pEpxFT¦©†ßÛËuÇÅFæb)…#ƒ{1ÑŸÆ››aµßPÖ’µÑEk/ë\}0ýüœáJ°©\  ´2åLt¨«Î ܈‹³Óó=U­o<œXÏ\ †è÷E'" èURù袊R½@Ó–¬¦,×ßÃî<¹ÖòUº:l:Ú|ÃEýZåöUaqÿ&æˆ <7£±M i­¹NmÁ1½×%ómÇÙ‹œ(ì̢ĕˆöàÐ2 ÷#èA•éáBu63Јý*]š^%$æÅE¸v}è,É/èS‡4"O·f8ÌdSa¾’Ìd6lígÓ4¯@½Gi?Ý鳑Q›(Œ·Ù³Ûù{9ÑEù ’\7@­¦¿xòÌA_z9Œ?)á®’÷ŸIG ¯¶DÕ ´ê»e.%ž´!ªÆ™ªÖ§=wOXìŒtfr<¢^0îÚ ±¥O6‘3Q‘+Íwžñç3”²Ë+^—lÝÙ¹ƒ¯Ñþë¶-FæÕé^nãè µñ>Â×ç­³º ŽjXÛâHE¶Áo­wénì½iÃy¸}vº×戴æþ^4èY©/ŽÒ“ô89LSg5/Þ¼…;¯éÇ«7'¿[©A¤¾ÌÁ é§Õ’pL3{cgOµJ¦X-²•~*î½­¦G§2Ï^”}öט£aJçóéþ£"[yÍq ý¡YPX[ö‰y]Ï´P@÷ËzÌ=UЛÖ;ñ"¢-ô}„¨7Q– .“–ˆq¨\%à®7©Š@ŠP V”æ¸7m;%kïnÔí ú†½YÊçeméûöêHûÝ2?b}Þ@O}ÿß§{µ;0‡$ï´¬Œƒ¿é޾ à„{›ë§åý >Ó›p#éW; îĤ?îöЦsw‡G¥«!ª^(¯ÐÒ*ØMÕ–rÇÁ!¡{=É}JZ« ;/‹‹` ÷JöØ6UúêÑœYB 6$Ë Êr½©‰ ‡nÈDšXîpAF´Lz› œ»p¦ËQå~E'"ÿÕ¬.ã ”ÎøË6H¼×i§íã×ïªJçu[Ô ‚èb!nGgœwM§5tMM»g³þ˜³ƒ7c•{Pû 8Ôô•ú2F5s% ¯etvHySa¢ro@vµßx™Á(f|àf*ë—.vËx倦šùc£Ð9Ÿ§ GGîZ ‚VìFA{·ÖÅQ¬½CR#⮋#ÓàÖ#« öu€·ù;îó#ªe&‚Ë-ëõ^ô™À 0]ë"x…l{;z»iøA¢áªíð¢›ëæ«Pª;M>²›|di6:.äèhåh•" 5L%Q€îÐö_tÄã _QÇ·r*η÷üù~ö`ó=ÅÈ·3w ûp´ý)ó }i¿øáøæé½ø&gæa«Y=R:Ÿ•¬9(bS ÃúKNC,®Á;}<ާ­"–àHäfUÒl?±§Ãº€M=j•½ë@7¶‚ìvë;½—ê‘ù%¡¬ÙŠ]Û–Æt•‰5Ó gôa“–ø¶{c[¢D½*!u¤VAï8¤“Ì¢CÞ¿nA]B¿}ƪÙ5:ª~ô:»fÛ^;c´™£éSùl`ckˆëÉP‚Ð;TcáfÙÜØ‹6ª¢9dM•f-uïD¬59£‡ UO>.ýñzÙ|…É·¬ÄÑ·î’Ƈ·ð£iö²J®¶…‚Øà}§”W•c߸5ê2ø‚•«V4]›ŸD[)wŽ6æªjÞƒZEÕ}véJ¥–úÒ.Ì*S®·ÉxŸ¯ÛÚ…1Ò?‘ŸTÅZ/[c'É ïvÒ)$pš;äREDÉ'˜ÙeOM\QJbÕzU +Ú4é£7¦\® øÎõÊúS7¨ïç8ÿfUO…ëÊÚï´\Ic¯<¾Ñ± ­ðá©ÍÐÁÅ„¼ÅïHž¨NÌÓ²¢&%6'–G¢‹m‘§IRCN¨ÜæÉÄ™@ªà–æíœ¤ÎaŒeðfFÚ¸rYê``&y™3+TkþñãXJå™ÓÓØËöÓïíýO·ËÜX¸ Î@S¬äj”4Õ‰}ð×x¶pXêë‰Ý²æŠ6£ÄaWDòŠ}ÃÞ¿ÖêÉ Ü6…d*îÕ 5Ä}vÁ¶‹z‚øŠk¤Ë6ÔëEz¢¶Ê©Î7JužβƒHß±ù{7¿QBÍ}”}VœŒÜ²… ”¢}ºún½=Êp=u€×Zª\&á©€‡$ .˜ùÙ‡pmæ÷'ò!êCÝ.û]/ކÕE\÷ã^aü÷èóœÃ¿‹ð?ð?þ»±¨ÿö8/67þ»ý{4ü;¿ôÛõ°‹x. y‹DN[$ñל@èöïnup7üYi§+ÂÉ7‘GOz¤–ªrÕZ½ü¶Ú*ÿ¡Á‹‘ˆŒyT¡ŒfKÿn‹g¢s«bqe_Ïì˜Ì댴øÃ_@sKÃ@Ó„Té(Mq^ "Xõˆ¢7¡¯¿é…©š®ŸË®O¬Ði "•Å~\sljëÅ[ß%ƒÁ¸©r$tl.™õUo¨rOŸš($c•íSÓó'‹7gLŸ/íˆn;†Ü¦ðc…“'Jí9aäåÂ[ãáÌn|ë”qå6¡ffyn\¹‘‡+ÿAãÊ ™v–‰Ë Q,ðŽ›ÉÐ9®³q§Û­¹çܵCÆüÂìAD¹M¤\%‚š.”2&.<>·j…Fdt ¥ºŽc[;£Â—™Ý Œ¦¾ËÌèJª~)9q 8ö –9»FL")(p ^åøoW—›ËªÁ<ûÖWÊ$Üp†¶µ„¡vÖDÊ ._/-Zvãá{§¿íö,VÄf©B‹s‘c‡–)~)jˆ%mñµ=CáÁËÖù‰®+ßæÚq\hîä¸ê}lZ‚Úm½z#ï+¨շç´nêv‰ü{ÜÜ‘?ÿõê E¸SÍ!.x–LÅ™óO5K£MÆÇ+rNð;3’ÐȵÌVh„×¥ßã‚ö\h[I† Rù?‚ܲ<˜‰}áõýæq{OO‰ƒc¢î‘ï—q|p†¶ãΙ5E!þ(\ÌàBØc¦–ov#ÖËä¨ä5&a€Ç!Ì #¸¿dŘ{J&̘«ðiÙ\„)Šs6ýG"cuÆoxE²1›Ç-NË(ƒPl}»¯HFàbd½Mæï›HYá;_‰DýÎ(`Û*áÙV%<õõ4bŸHïô^¡Æåç kê_ÆæQ6OêŲ}fƒ ¬Ù?lµ\p%ûbÕ|EˆÞâÿMøðG£D~Œ;&õõø ”µö5Ê÷&Rƒuª¤œ‹òI9æ ŽÀŽ¾È˜0²çÈH–‘êÇD³fà=^ÞN[묃°²âÃ9ñ§©ta»YìVÄ!üh/hïU.ÖچâsÉMm“σ,œh¡YÕV{w3‰ "FN‹›¢Ã1‰c ‚_ÈB²Ëú#¼·“$ñê¸!ï$7þÍœø¥'OBd/KT03 žAÉòÅö߸I r~5<}LJøUÞ à)iE²d Ö½²»‚_‹8Uì qíìÕEJ;¾Ž”_K5—·Ù*UÒ.‰ªB1Ý…Nú#*Ò8™Ì ñZÍJ·ßEº7ôkÒë-Y/n¹S“‘— ‡ÍTY/^›a0VK§0¸ÔB;‡ÌæÄ”ZѤnë§/ôʉ;±£HÞLœaè59Ç£s!kxªãìn*)öreXª$¶8š–a¶ یɰ­€Ã@—©Ô`£§Ñw>ÍRØgc'<û&a¶‹›ç¼Á„÷¢Æ©¾`kõêu[éªÂ"Ûô¾ÂüÏñðæQó?ëõÍúÓ ÿsck‘ÿù¯L7ÿ3™÷þÔì~¬·˜•k€7‹ Y«ÓéŒ0Ì.¨[BgEØdž¨íðH$™]Ø´‚äB }Í} :«T›ì‚ Ñe°Öæ¶ægxýÉÀÐJ•ÊþiÃãxbָDZ² Ãgm2S¦9;Ö6å. ¡Å~ìx€\wÿ˜YÊ;?hÖÂY»pÖþÈÎÚ‚’«‡p|Ýÿò\³ðeØ‚{ø[£ÕW_Ÿí¨£`ÒÍÊwå´ejïênÚI…UOáß3Â? ÈOëåJªížMç•‘?[áÏ{ |üÕ4-Ë…6R˜›œrs³™’³íá¡5g"×Gw¸ŸÂý~E"AŸzîÕ(]_³þüpµnR1Å¡ïŠÀ.¢ ¹úeÙxFhßK¤Ã4,í„x øqkÐ_ÀNº”†M_­K"œ… Õ ¤Õ‹óÊaí‘.Ƹn(û»¿ª6ïUµyãÙÑïX“FÉÔi;äz«,>*ª%ºÖ‘ø‘pØà NMýÞ$>½o¹îÆçÜ ëCXTPšÐ‹mÏ«oÿCæôŒø9hüê£6,FOÙñü§ìû;5ÇòÔ; ÖááJýyË^‡4D®ûÅ*?(Œ à9dF“˸‘W-ÞVbxéÒ¾†Õõk2Æš*ý‹ÙøŒ­Ÿ…½V=jÑÛ$VeYWëé¼Å.o„GWŠuÂc-X–¡˜3SÒȱsó<§›ë†ý÷ÀµÿZ%#ßЪt´Á× Mi2B*&ºþ›‹ktµ_Ž9°ù¦ÐüšóìOdˆ}X˜…ÐPëæz•±ÙÊö<0¸Èù| ·Ç1ÃmÔ[ ^ÑkÎÍø³*vºÎæ$ïÌåOc`…ÁëVíl6c)5lšù0hÉXVÕðùQV9ïeŸ+°Ì}Sþ×J7ø¯d;ù~Àv8'»ÜÂ"w_‹ÜÁc[ä˜Êб¿?zúŒ%\­ö3é15öª|è~Ž® dî*c ¼®'WcÂA8WH´çÕˆÁe~–Aûób+÷•‘Œcæ´o,d¾„^¨L!ÎWŽÚò°cÙêñ2½y6,{,«Kr0«Ó¯Ü1kåÛ!,KÛ¦¤‘ 5ýµ±!ªêÛ•2ÚÄ'%et¹Ÿ©•L6Üž–‚âNY}$ß´ŠŒ-…Á|$¢ÿÒæ’?ݳÿŒÙþSö,¬ÿ°±°ÿ<ÆÅ‹Ù·ÿ”¬:ó'¶ý0•_a2Ps'§8*.Ä ÀÒq‚&@PÅh„†$$Q½ï± I?fôÞ[™t&ËÕÙTöª4ŒÊ4ö*+°0°8Me¯ÒF*‡Ìk¯z (¿éü’SË:žb§š›)f#ùÑ+6Î)äêÑ 5þà–Ÿ§x#è.iH¢d`…{Dzq•F­=ÉrN‘Ð.6بÄAR “8‚ÇÊy3Ç`bš´ ¢N³{¿’í¼3[ƒœöa;’môÚ'JÆ:¥¦*nróÔSSu¼üvÆ!Ð&œ¹ A´}ÌJoïÓÀy³’¸·©½° ýHW`ÿojÿilÔ×7|ûÏÆÆæÂþó—8¶ý§}¶ß°ãÐÿ¼9ø½&N›­£š8{}¬ â¶ 7§¯Ï^Ÿ½}³WdÚvºïÅñäª3bsÞ5þ†Òâ¤Ó¿úºœ}ŸhC|ì5œ0áP\C;Ð/åì@'+t£Ø Ô¤AÀ~”îi$ªð»LåÍHƒ¹²fc¹e4Ѱá0OÔìJ›˜p¾K%¢ÒÆ£’¢È®Ôý<ËJˆ¹K£ì¶Øž¦ÉE}³$k¼!ÕLDëÆîåÌÔxíÁ{æ¥Ö&ÇËèM—¸Â0º‡„Ÿüz8þp+®±!Ãq厰?€ÓAí%ÜU2M©‘ÃÇíÁ[cbj1©3µ¦ ìßCð×ÏYO4(âíùÙßÂzmÉX?„3`U¾ÝÂùkÇ>«œ›±Å™SceÄ Ì¡UÖ0Ó¬µr¬2áP0€¼m„² mBT!´jЛnUºÏ~>>OV-S gŒí÷¾ñüÐEš†Ù ¬­þÛ=:^ @€•¥Hö(ÉF^Ê4§ Ge%Ö£²‰¾3öaeÍË.ï’„YÏ3‰–@ÁqmM®>Lçþ [ć¸˜*ùM…¶#ÐòÈ^WU`ß‹½Ú_Bp¸øÄÃ¥ë º¶k.ì+›†Ÿj [³³róŠ;œ( ¡”°`/ƒÆ\eT3ÉüCNG_´–Ï—Éô›íQíˆ\øU„Ëjr…Q#WǸ§õ LIcåhµ^©cž˜âpkDÌrh‚¶œ6>Íf9m®1¥Ðrª åK`Á3˜¼yïƒá'APòSXaÉÈjŠœ¬1×ÚXk®*Ö¦Á2ïö¾Õ,ø+º(Ñ^ÞÈçY—v%âE䇫.¶@k-ä—Â/³6^«ªm·/•\/îöÍÖKùÿíŒL•âLK@Hª¿H¤%ªÊòÿ­?­;xÝ>'á›bªs77—‹¬Ùr…Á‘57‰9¯JüNAÌåÓ­hÊŠä4˜±¨Æ³½“7é.S ÒnûìõøaÝšµÆ;jàôæ÷³´Emö9&óˆ; H~¢>h·šÚ|ÚÝPµ{{NëÊôuäæË=ŠÙåYEAh.>~½S‘0SÔ‰Ñsòb+ø I+ÀP¥ÅÂ`¡øE·/j™¹L imN´©ä+ô‘s*ëëñù‹’¬©­+n;³‰š0e4s—$®@ÔÀeÃ\¶Ry]Èfõ¤1ÖD oºÃê½T–H‚C5ç'€¶}õÇ*¶täÌuÐÖžk ¼+c½'~@Ĥớ¶âÙû ”°‚Y3yØ|Éz#˜³/;SYhÊVÔÈ9ç%Û#RÓ ¢j2}<êw¯P³ŽlnxÅ(C,Wgì=ÏödƒGù{"ÜËŽ_Žæ;{3b~_FtD/^V¼—Ðò¢ØgZ²Ëòå<â·+’V®›ÚZIˆ ±j:@cQß@EÓ(qpTSISi­VŸ“®ŸÈgùÄO¯«­z±ÑBI'Õ%’K±é“Yû´X‹å“3º n5’Ë/”˜ªÿº^bì='”=x°Ï±L zã@Ðiíõ•‚Âb?ýÁ^F|Ž S0NŽä~azæßÈ~:T™Jmá:Äœþ"*Ñ)ÃîÀ·‰@s~k•ÚÄm_9<­R¼oõF?¶¶ÄÒ¥¸znw„‰„TËq9XK1±ª„°¾už8ðwFï™3þêP׈½"QÂ@¿N=ê6Q½0à™6²‡-D‰Al5Å ”ìÉOX…*XöÁ…ýlv¥FVH+(‡¾ŽA=ÉQ„ô÷–Ró¬œRCÆ_x¸Pj¾›R£PÂæ¢×æ-*G³i „RnHW F¹¡t×zÁšQ‹ÙYÜ.‰|eeúÖç¨7É×ÙÊÍ/ 寵"v¨à½t?Q5Ü&¢ ÿIzä“Òºfö|Û”B=49ž¢G ýÈž;Ôx=JulɨûÞ?ÑÎ[¾¸Ó—8賤§(r´TK‘m¶wCmÄ{ë¥AÓмˆáü³\‘øÏG®ÿÑx¶¹ÁñŸõõ§O7Öøoxñ2öâ?Ýú3Ä.¢>‚¨Ï’åGQŸ?UÔçÆ"êSÞµˆú\D}.¢>QŸ&êó¨v´ˆùT×"æsó)1Ÿ91Ÿ‡Û á °ýÂ?cm;nîµ~O7cÊðP&÷a¢¯ö𠨣EÉ€¤¢FӶƇ '=9hqLiMz—æ[ú³ãJâ«0‰¯’‘Hö͹ñH|G%ñU*6ɺ5¡ÄWÎ*ÏV’÷äÆ,ñUŽí#ÉÑ(Š^’´§ q¶Ÿ "´‚í#ñ\¼zU(ÓQ^œv)2ù­ž­¯³uó†vKÊþiL_RýRe*¥…[Úé ³Îõ7Щ®†Ä îÉ‚/œû£•C:þæL¿¬E±‡ëËE;´Ó(¨k[Ö£,kúh:íùKŽ=<¹QÊóŒMXÿËœMžMw6‰ÆµÆc¼Ú_ålòË{6™6Üì¾æz6ùeq6YœMüÞÞ÷l2evƒéêÌç7ÓaŠÓÉJ‰“Ó.¥£Üól’“û Û3u„Ý“ â×éÏ&er"§“ô­?ðéDåUÌÿ€’›¦`?—Lµ8R§”â…«2Žlùrhÿ=%¡2çY;{!*·T;•Z¥ÒÎl[ 7ŠÎå¨Òä›k¢ Ÿ|¬En[õn[ƒÝ‹î”÷¢z™Á}ÿCØ5àï54iýïji˜ì#ÛuR9®‚b‹?–Ö‚îëîXÆ ˆLæN3¥¦z]ÃØSÛw‡RpE„¾´eX¤<@ÏZÌpÃ-Ú…æPSe³.ƒfµè=ÖOpZM:4SFM¶ÐúBc³ZO4×úã‰ä«ù+NóUã7rÀ›¥†Âùp_+]œºº)¤+9Ëç±4¥ó¬<»ZÐËŠ ½[µæÂ Q²þ–æk_Ö[qña+>ÿ«\QÖRn ­X3 3J¡9š©BûOöŸá£ÚêO7"öŸg ûÏc\ÌG®ýgï_§:­½«3Ð;´T¿»ìÇ÷²ÿD°;¨wEæ!êo,%nëÏžüYÂô®Â¯žÊ“f,Aœƒºï³>cÈQYƒ;”WJ­å/ ²‚ÎÒ¤b€ Ê~ð¤ÌCòHÍ$$o`³Ð.¦••¦O`øù»íÝ6´Y:(”ˆÅG܃l¼<×§|gCqžc ³G@ :Fv¢°oЪpFéÝß¹ºš ;W\{^x›u’”¤®»°_8ìôßgT¹hö¿±¡‡ÚqÛyož\S‘{L=“‰ê’Èè62{бá0Ýá®cçLŸÊaWgqšÁPµyœõ0-¿Ó¯Éè§šùjœ#ÍÈð‚ÎðZÀlðÖÂh …G@è›2бû †jtz£¶òf0ç`ÌÞ½Ú;;ÝÅüÐ7ôH¾{µ ¿’‹ê2ƒ‘Þ$1Ì®'WÛÌÙ3‡ Ö0;¶– ƒ%?í߇U¾dŸKèVòlì=œÉ" ¢w{hp‰è‡#Î:¨+˜9Ï dÖFMrÍ(›–i֪ŶG’n¢Úå…Xj!ŒŠö¨Û-ï÷¾ù¸,¿‡7ÆÐ–.Í1ÛªB×fXR޾ó@K Ÿh0ìã_Ê)¨y"´³¹¼#Bìâu𠯃)Aݸ¯¹7ߨû$e ,´ùº 39Öß°ck4úuz2pr×.‹ij¸Ðæ•õ}àêwÔ.å.âC¿QvÕÕizqñU÷Y·Ûw}Röõ¥ÃœhRkáÿ¤mßÐþ}×йét{¼%ïƒòð>û-õ:3V­•.š»òÜk)"*¬rM½PïW‰st(ùbx4h}©ÃÒH'BEº .MNl×tX6y.‚”‹²ñ„v}þ:ç-e|6SµûjòLF`-í½XÅ=v¦ÞV0ô°â÷3õû½½3Ê(qz>§ÆÃTŒø6lË r‘$†®¢Ä¹®Í¦¡YܧÏ}:ð”xOä>mÃÂD¾6~˜À¡B·LéÄ™£†,$ø šº oE¿ø%bèyD²ñ×2Û¤^ù4Ù¿ò£½>6´wS˜ÆbM”ë›y§–* ÁNŽ—)1éðƆMQŃ0ÙŸôzKœóV³e³2.ÚVw[O;/Ë;÷N÷ÛéÜã"8„)F!ëÒ¶(¬‹­Œ£dmU|mG¾LNÈëMëçßx›¿®4¦Ž™ o’ʇà±l¾¹ëMF EÒ zoÚè~ KÈïY”Û·´;7ÆØ`;œûöêèy·ìHÚЛGß?Á÷éíÌ Ã;`ºioîÈÛÕ;pÏNMÞ”à3½¹6âµ1ðÞÁàÎããnÏTw¸¢… ­s Mnº^9:² §“îõ$=J„ÄD$R<ª51øZ#Íc”øV]Æ_Q¢á/—UŒd’QÍžO‡a+¨è`3[Ž'Zr#úá¶.®ÿíîûâ0Aì"u“FäVá)ÿ'ÕNÊ÷mNB“Á›¼â~‰‹ù4vï‚=Àò¦FÙÁ?{3v«ÞSÞÉm‚VÉ¿uã"ÕÔFàåÆê …¬¸saað™¼E•ƒÕøàYƒ| ïLݧÆYÝ·’¤hç)Ò`ï\¤G\x‰Î ç³°GZõÕŒµêòtxnmª¥ X­w®Ô­Þˆ°yϪImEÓŸÑ–™ÑVbFÕt¶äm9Ë¡ÌPb9´ÒËÁjT™5a5<_Vx¸§ìXˆAï¦=U4£ü¬qsNQ ‡yŠA[Èj»ˆÞÓ@Üœ@T2ç/(݃0šj9c19œÐ‹;éuˆ‡¦ü‹ i¬§˜ýH]¶>{¡ôÙmh1Þë`à3ž~ý®ª¬˜n‹à;´g²¶šãj5t ‰ÒfýŽ ^k›«¦¦½‚Y@Õ„¹Äl/Y¾\ÌÎT¦*Ê'áà z®¯9°?¤éà ͭð<µØo¼Ìn0!”œp¦pÔ÷vpFi¶•ˆÃ}Ì,w äóT|SCÒto×ÏQsfIŽâ]ǦV‰Ð[áQº1ž¶Û­ïL±ïVâ8lÛ6G‘'<²!êœæúXžMá𭛺#êU ð%ÏnôŽCâKòÜ ™=náPŠ¡QˆƒêÈ¢QÕ^gWì3’xyctæAó:Ê |Ó×;cÛ¾¨à„lnìEUÑ‹ÛÜ%ýêÞzã³ðt¨‡ øl‘:ûãõ²ùêxoM•é[wé\·ð£0ñX»ë8žà}§ÛwÚ$t™M´lZ±nuâÆaj-/”Ø~­£rLÆL6ÖWÕ“@J+?!²6 èþ»/fþ¹/™® ×6ùóÅ(A^ŸâùIU¬õ²5öä¾ðn'©)aÝá—ÒoëÝ2Ìò²'‘W”<®Z¯ IJM“î1":å1u¥í;ÇË0u’@““Fô¸#2ëN ‚´.µØ·Þ¥=eÒXFF2t`†62Ce¿;‚À‘BÑ퇧eEMJlN,g.Õ?×(Ú(@äf”ØÝ¢æ${û•»µÉ9k6›§sÙlbZ¨½Ûh¶47n93Ð,PVi0»ÎÓÄ®Sˆc$\‹¯ddsÇž GàÈ2Çѱ&ÞK”áSàp‰ûBq‰|4.‘äÄ¥Ïb˜\>$a¹ö\®gI p!:—ÈèÚ·º¸Ý¿ätùíwqºö 9:‚àµoés¿$û©6¬®È‡óÓ¯ýûr—`¼a.yM;¦óN½UJò¯ ¹¥Ÿ f*§4µ@ÕÕýšZóûêÉŠXª›0iüuýAÍ€dþÉé¾ñdüeàïÿòW˜ÿ3ú<çôŸ"üÿ§õÍu?ÿ§ñls‘ÿó¯w7ÿ§ý{ÅOüQ ??UÚN~bÎ|rrv§Ï§±Þˆ¿ædÅ´wÍÜ\…×ïçĘ„$Ó\Æ=s[C{ËØÔÖêå·ÕVY¬$¤€«pr.èßmÊ­`J˜y@w\q&¾_Å&·36 l¿¾C¥š4åq‰¢;Ý04º»ºŸ Çÿã¦x|´(› Ž•^>QÂ&³›Ê5ð’~(E">SeJÌH*„B‚6‘xI;ýB—ÔðÑkü™Øs÷†ÙûÎðš—b41K%ƒØd†œ›†èZaQ…h²GÙ<‰íZs““â>¬¯T O(,ñ°i$ß=øÛP‰@)­®†ãü¡„ìJÀ+ßv,Â}ÄHz=Ê$檅TºËšÌqxË~ÔÔ ‰LúdtBƒCë¡"Îg¬•°;s‹¬MÕ ˜{èé,ýÅq Aèèq óÀi=kÚPNœäñ,bŽK(« h½þ]9Ä;ö3°YÚÖò;ô˰Kަm†¶»pÌŽãÃFéÈQ÷##œ4#´_X~¢+vþÿú¨øõ­§!þdzEý¿G¹¤<ñÎÿ v÷›;g÷ÇÿUÿ´0 8J¥¬  ±&Ì£ÜàŸ% £‚ƒa€—eåš–´œ$Ì&túŸÊr¢¡¢Õ‰äNöl¨‘AßÕ‘DÇ*?¢’Œ‰$õ‚D-QY»T‡ìNA Îrºu¯7ø‚jgo"9núœï«¯aò¼0è·zHÚÜÃãx,'G“Oº=Ô@ìc¦5`»TDM~ÁÇù|P/8zÊýÐù¬ SB?ä³6ðˆ ÆšŠÞRç.NN×qU0¿á!GÒ+%Â8ÙgÄš˜:Z­‰×Ý‚ñ5Ǧzg[”,³Ý·ùÅÿTGMPZ‰òŽŸ^HBˆßQ0­3ˆ öŽ»#¾t†”_—“±=’ ´¿×ï3µ²éaºÉ…¬q ‘רe3Åô.3`9skĽ£ ¥Ëà®å+ü*¥Òä(É[F‹Mà†Hâ21íÝ]¯Ëó!‘âhE’¨ÅË0ôW“^'è^€$d`„ 7ˆî¸„“¦˜B^€\µÆÆâ¥mw4‘£1öOa|Œñf—«€ìí+ˆî„ý7‚|,,DÒ ²†ùvpÝ•YQN¨¼Á™-£L±Œ;9¦U~ ›¼Tïôÿ£X’a§AÛ=îHôñ‚JZný·»À@¸(f¶¦[»ä¾Âˆòìzq‹!Ò<¨dÓp`ì§Á²‰ÛŒ½åîïVËy<¦{ÉÇl9±Mrâ¦b Ø¤íÝgÒŠ¹±ØÚ^Æì_b ÷î3…ÚÐk0+DT)?ÁcXù5XÔì0QÆwüm´°òžŒ‡…}ºOAë¢JÖ¬ÆÚgcº…•ïçÈX­®R©û»ÎpÜEÕkXóBïU-ÆõªsAÍF ƒ~€°>8$šêšÛ*(¯:@ѳ×Ý«Ž.V/³ý¯¶¬ –,вœ‰\ e=ZF˜ÇÆk–5'‡©ª=ž"°ôÌs‘ïQ•þØ„®¸á¦&4‡%iPMujÒîÓ´‹6IHû_ÙS«E©mˆœãhÏz.ÎÙÒWr–ML$Ç^–e+2ò¿3Nˆó$™¨˜‡£–RØžZ,UJ_ŽyÎ=à-ó€,”n'&â6œÈ*ƒpÌØ÷93ì'£uŒÎÈVIH½i&éètž•/Ä8£É{Ž á6ðµÐž^£¬õÚ2ñGÚ"‹6o¸TX Œêò´^©Ö¤!Á¼ÛsZWºPÐÎk„Ó ü'Ðß‘aÀ$5Ežcõÿy˜„Ýb÷ÕïQ(Ð-ykˆº%ŸÙ_ nÝ'Tã¢|¨†yƒœ“0’âqªy´6T$‡Ì u2Rx_R±"gmp,†|ì÷ˆÀžO ˆ‘nX¯2 ŽƒÆ£ïx—]U•؜Ѡsý— Nmçv˜3ÎþTæ„Èôk²=’$Dñu$¯`¢ëKºò¸]È"X¡ºž9cHï®)GuÄ-í½Ø;KìðUîh'Ô.wD.t×inÜ«9²ÒÕî7í|”EQV =#ËÜw¼äx&Ô±ì6_*’Š+JÄp|@lÛ(€«§ÔÍ”GyKH 4‹ ÏÙ+תóc@ìr¢.~àˆ¨0þg<¼yÔøŸúúÓõgAüÏfcÿóó¥ÿ Lü9Bt’A8­ˆš8Ï<ŸiS{°°“Û#•@á0Ñ*NaõRA'Íh5V¼W"ù*±dJ­%5ÝqWè_&«%1"†Îƒ§´,å'´”6@Ù-óã'ÏOÓ› ‘O¹éŸRéù i~‚&¶ìÈ$SêEšB®9ñˇ.œ½‰Ò‹8¥/ÐÐi@sà.¬e4œ®ÿYÍM‰"Ç›é¦ìÀ { ƒýr†>[ÏÁãáºK<÷×±hÖï›—""VØ»Pox²œÒüp°‰¯w¥é`Óªë`²ÕÜ$[Ä‘ˆ¤Å˜Äf¯çC†œÚ!§Ìß:Í(ù{¤0.~Ëhùá×û“žˆ]˜ç%}sùF—ÓUð[¸$ì‰K"2é×U±¿Œ/Z/á'õ±É0e|a”WT-ßMeÛØ²;Üa@…vI"z7°Â5þƒv÷,j{p %z ͼç*H "16–ð+Ý•zÕiÄÏ9§‘QÄûÊŒcjmб„!Ô£ÙÈÍ•zÁxú7¸#ºRO©ûÝž5hyãÚ0ãÚ(9®ÒãÚ¸ç¸6̸nŒk£h\¹ãÚÈ×F0®âqÝ0ãºQr\7JëÆ=ÇuÃŒëfÁ¸nëFî¸näŒëF0®ÅãºiÆu3.Û£…Õ?d°q_Wú\é ЀÑ\áÚ—×̇ÙÍ•%oßÊÁ'‚T$Ñ(ßÏ(³ÿ=nýoø¨^ìOùrI‘àÙÿRõ¿J ûTïþ @‚`¶8ÏSpl3–ɉ  –e·áß~VŒP'! %u.×R¼V­à\­NÓ=’É&תœŒ [~:§£ÎqÕ$ƒ‘E2°b~ù=÷L;ËìDì÷ ëU{Ì"l|³hžºµUM3ÀØ«†w$´/]B›ÌZ%é³l:çéRàaÞ²Èù94TÍÛpC-§YçÞ£ÇêQfZ²¤÷ñìä„ÙûH³yКÜS–Ÿö9¬ÜZŸGZÎÁ /â$×plsÏôçyQÚimÈñRY“øT‰ ‰Œd5Œ ,¤ Mqp­û~ŠƒŠNØÖÔz;°‰øyÏqä¤XÜCíÇIz“ûƒ˜žçV$õ€õ´Cø?ª+ÛS†"Æ(7÷Z¿«³Ih1–ßç¼g8¤vc>Ñ€5¥þb›Î欘¢¸ '«ÊhèÅœT¶Q0)S“Ó"pìèýı‚ÏÌùvæp?Pn³È¦9Ù{'÷]t?Üâáf* «FQ0ií,¸1YçÚÔËÂ:`­maêFº`ôô•r^ô«!ï´¶J0ß–5ƣ݌ò‘èd·.^Æñ@î›ñÆ©o×ýWYÞ^{¹·FšPtÆYT”0‹:MWœ·uPI ë:¤Á;hñدbÎ\kÛæ¦t3P¦ÊF˜Zº1Ñ¢©^÷s,@?ÜvÄþ3j›lÅJZ'Ú˜Ë,ÜŠ–ÕŠ–Å-ϼ"ì:yóŸìœb´$/}_ØŠ¿·9âílïäÍw²nIbÊx Ì0· §°i‰cj»«Íu+ñòšs`&}4”ö sŽÐZ|†©{üáx`¡¾PAr¥4¼µÿPMãøÓz¤"V[T3ø|ÅêmøÔ[ï©·ÖSNƧ¥—Ó§À…²ì91#l8@Ϙ’Ÿð½êU¡ôUØô5 ë)Eô…äÃ_T§;†ý³>Ç^¼åÏßJ{Z~ÎŒž¨Ëž•ÍŒø³Ñ(¥ ZÞ°Ø£ Š=&ñ! FÄdRÿñ½|ýt2í‘ñ¶6ÃüŸÆÿçQ.¹",ý¿ý† ÒtøGó lo~÷¡Ò~Ì^'²Õ€êôzÇÖj j Šò!šâGW ²g?»ëpª9|µVî,1c6QÎÃÖiαwÁ<D£4ßøUºÊ<ˆ1, ¸’0|•®š­¯"`Õ…5}»½Í0LC $‚™ÓµZ´ÉŸø‚д¼|æx·ño'†¥ý†cXèÔb•ËBýökÈú@Ø2hêçJ³Z5g¡ H&V:I¿³3Òè‰uñDTÛpÙ¡_-qŠš:ÛÈŠ8ÝzÖ%ÂS@/Ùå¦èê;‡žÀpp LDGÂçñ¬D“ƒÎé!soccº#gš~ó¥ä cï5î£jFצ:X–˜j¾qi奖+ wUŸ4‚ËÞ“‰ƒè Å?·“Þ¸‹'õ¡.äå–\ze8°çg#äâšœ6š+›Œ\8±Ù¢ãH…ȸžw].êöÇÙÁäGºƒ<£ñpr5ž I¼îzlu­b§# ’Gþ©În ªAÀÒﻑB>÷©E‘&j³SÍ&]ûOôÊo´~oTu)AúÓÔT—–LòU¦¯,5ÌkˆcШû¬ìõÔüåUÿABBJÂ;½níÕ 1žà&>ºï®¬×æ 0^”߃ÊWM5Û9ðàÌRÉfQ 8´›¿ïUÄF´3÷À2Oa”Ï#G§‘†WcɳÊ>Þ”Jþ‘ÈÞ¬,cþOqºûÈñƒ&øÂg¢@"ê±-s1Q‡Tù'êDP¨mP-¯IênXª©÷{Ã’ÀWÉ-ûNà!ºÄD¸ñ»u-\c–“]cy9}ý‰¶ùÎûì9_¡¤#îy91.qÿ¿s"МZ A £oÒBÛ1Æ¡VÌÇIóLÇÄš"+s Å¿’>¡AIÃŽ·ä¹ã“±‚:¦óÁûH¥½#ªðsg¥[ósÂ:ì7ÔÞPáh—**ªø'é÷K.t·ˆä±eI¨ÛÆnWK[ô³„Q¨¼¯1å”s"öןh%DxÇ¢”5\R²Ò‡kÄóÝì$„¼®²Whÿ»ý<ï€ûß³­gÿc}aÿ{”‹Õµÿün›ÿŽß¼jòÂÕÛ{g𑌠ø ãf°á…Ñ1ÛÏ=ƒ´•N L#€s(Tùö‘ur]•žßÁ•Œ@§§¤ùM<!:½»åæòWØÈ.áô¿ü­Æ7ðÑ•¾æÂð%’øˆS\åú}Ø×¥å”+_ÖšhÊZ}ÜKú–é[W3%¥©p#Y5° ¹ö2Ï`Vd1³’,è‘QÔ‚æœç-MkKú¦§2¶4îpW*œ!Ñ|ƒFƒ›A^3z†¾èl â °Åb⫌ª%¹ä¬ËnaóÍZúÍÇüæžzs`œï›ÏûlaÒUi=Û_žñÏšÙ–5­ã¤MÐy¸%na/@ kPî{Y~—usJ4V¾Ý¼xìÕB~Âm%/&^f%ßûÆ–<‹ê—C¹ÿ£“ê®x}‚˜žÎ-ÛÙ ÖŽ“ §H€/kVÚ4 ‡Ò¡aW|O2/§4¹2Á¡"EÂ(ûÏZÓíôzÐ Y³$ ÿ&K"BoQŠÖE5ÖC”ÑO:2Þ‡Ö(ÁðwÄžT æÛ¼¾iÐ7뜂 ë~ΰ=ä=^¡Ø¼QÔklšQL.Ätµ€ŠÅ ú¦Ü(¦‚ª±|Ÿ…P‡%Páh`Q]î\Ž8‚EÞTŽíÐ&´s©d'öŒµV*î)¾–먊6+)évWʘ0,•FheH:d.Öøyê‰,Z^&¢”˜’Dc鉨HD}cMü¥Ìé&o«Ñ{ l¦Ø@|´/ÞŠ~–éj§£lŒ ¤¶”ëÀ[—§J…ÝMÅZogc­·!kõó8ëÛšIû ûdIäÉÝ5Ö^vÈèÇÝ(¿òœ÷vfÎ{Ëq\³qÞ£x"J»±<æø*Ú‹ ÜyÞú’µ'*’˜C4¡ †Þ÷gÙ¥ÐN8‹kÁ5Z®ÃOH-7&`9Úuðc\ÄU· g Ä‚„“;޼ƨ’Ý º2¸µÔk(ðÚ ÷—±™:º)Ü-þ v*"CIÓ£ óÃÛôÞ†oxð6õ”NZʲ0ÂXavT+ë'ñeWêp‘j4¹*k̃>¦©:8,ç÷œä~w8s ›3Ø„áŽ5M$ðOd˜o…Gp÷÷ '¤°ùE:W_:²TÉ÷z"{U_AJŸÈõrx¯Á6/›øÖhÚ󶢄B äÕÒÚÁÉI3—­~댎w…Qĉ:«CñáÛ,Ù=~NÔtNƒ6§áHJŸ$¾H¥@öðGG^üyd_ Ý;ûr½ ù -2ælçŸÕ{a‰;üÞK{ E˜€SÁOz|G}^¾¨`âdìžF‚ApŽŽ"“½¥'ûõð¼õòV……Sc–ñ4{yÕþ¹"äË~`¸Û:å&Œfã‡m:Tm:ôÛt´rH¹ý+r´XÙò_É#7âWOsòJýUrˆ{ÌÑ…ûYdéïbJò3z1Ý”Dš!âBH(îtMv&<a¯põÛý¦<Ò/ÕüH6„ÛG~<+ɺñ‡AãKñMðaªi4Õ‡v»ìË㫃@ß™ ´/l+×åâ<”Ê_±!-=ŒH2¸ ‡² Ù ´~Ih•’O¨gÊÚUy÷‘Sˆ9ð`‚ªhI†ÔxFEÛaL´!¸„á)ßаt8Éöè$d½PßM 惋2‡CP%ýÄ  xýáBCÂøá#ã?Ô·à?þcýÙÿáQ.æF7þã4 ÿС°?ÿeâ=Š"=æãQ>¶ƒšêwwß°Óÿ$ê‘øŽ¦‰ïøºÌyëâë ÕH¡öê-YŒñPជ\~&¥aÞ±ïX„wÌ!¼cáÕŽîwôj{7÷q Ïx³ˆ¼)yãâÓà8T` R~ðô9¤Ã<–»õ™5ÔgæiË¡ÒÓÖPbÌíéÞv0»´Z¤"±kñ‚A&pBýà˜ØÎhÊ áHy×҅nô4ŽY¤túŽ¡ ?D‚ŒAÐñéæ&°‹1?aÌÁ<²§)‚ÀÈð‚Pg¾À·¹ M—á§°nçÌf€©ØäF8cߊ¡Ã»q?”¯_6ð¾Î¦ô5¸¾M:Ø1¾‚>º^Üw= 1ŸBŽagG‚I:‹:ÇË®ïƒHy9…{rt ¡Œ²ø&ùÛŠ`À²‹å¼U9l®H›qÕ»”?ê…ðÜSÜÇè[cnû|zÏÏ.ûẮòì¼e\ IP4ù3Í~ŽK1ôˆ ^QÊû)Ò\p‘Ë¡[ac޼z÷C1C¾ãÀc•Ò¨ÌQ/§’<®WóÞ’''šbþ’Gy²ôXkŸP‘´Š¹8…š‘ãåóX[å¸4—ÑœŽO+mÈO§Zsß@Œü ‹‡:SŸ#ªB§p5J83E ¦('Òž}F(+i6)WQÒ yêø #þ¿›Ñ£â?6¶ž®oø›‹üïG¹˜<ÿß¾ÚÀ% 0ÿ»¹¯Ñ¶eÍ üyQ3‡ÿÚß;=ÅÄü—!NÀ‘ê*IÃŒc¯÷§èµßŒ &3™½>eP$hbrßç? • ‚0™ìsŸï~×C??\\ šdFf¢WwWwWWWWWýJí¦´Ä­]–ö_,”ŠÏKzk×rZ T˜†R4:Ôîe}ãRœ·Ot.l`v«ÌùhŒwžˆJ†Ö#jJªW8=a+Ó™ \÷ÅÖèwz÷€Õ ë͹@V~˜è‡úUaúŠ0ލ\¨«S¿2»Y¯]Öµê8ÑŒ9†}º«ê:;­ƒÔ†=øñ¸±à]Søõ1JACàBu¶j8 øPo4º4½l`I\„kg4„ÎÒ. }êâ5µ¯¹aÖ"›™ìZTZ!b&£ŽLnàTƒ©ëd1)SÚ«WwøU7íßPÕßJßt?P¥z‘Eþ„MC VÓ=P€Û²¬]4gsváù@„Cy÷jîµ½Ù¿oÖOÕ’ÁÔ¿¹»±G8,ÜÒÖšþ˜'mLiƒŒÕGÄ-ŽätùuôNžûöZlfõr^ìk¨cþüÀ"´¿Ï$ ¾Æ e—²X5¿¶w3i£ ªõGÀsÞ~{Ò:.“_Ãy4(PN¼®i}Lwc÷¨SÍÎq{~ãÿõ½Ý*ÿªÑ¯ÃF«,NÒSôqçä@¢ç†o®Ÿ}€_Ûoé—s>|—éÅQ4?Ž÷Ê»ÍI›³Š¬ûEàÔ€%€)ÉË®•AÞOaÙÓ¼e«¬®µy¼iö:KÇú¶€½É“††0êÄv*ca½Ø`¹‡ØŠ|…¨žÑ›ÖGñ:¢- GCŸ²óYröïÑÒåÊâvp7±ÒÇQE-ë^„<|Âò{÷vÒŒ††¿YÌÛtº— ¹ÀRZœçv1’±õ±ÄE¬Ï14¿Žíé^íŒÌ!É;-k‚£‰¤ §àæ&$nÞ°0PíÂ6¶>ºwÃi€6ŒÛ[<*QõB…v,PÁ&h¤w $4ú˜%Äœw(y{K ádoØG¦HÐÔ|-áx (k·B #×)O›J"æ;ZQTwƒ®] ›ûp¢èÂ߆?”šßÕÙ¯ÿ…3þ±Ÿu¨Ñ=ðõÇ¢Òx]Šà;no$W´7´‡ÇLÜCòMòOòÁÁÊy!Ù˜Ò¯ÅÜÖS¯6çpæ0~0™9{—˜F&Á f‡ƒ´›ÎwÆ/îÅsŽ^µ2LÜx“ÌðбÉe/ždª 3†ßÅÛwÜ«&:r¬Ìøã^aM‡;t17»¶B¤¾–ÖP/—tormºõ“^£zd~Jh`¶¶Ö±…,B a¤/(Cغ¤¹¾í»±_Õ¢Lø%UjcŸöC²uŽy[ºÝz¬•~¹~ÕŠºèEï|ÜëNØ ªc »êªö«š¸¸[© í×–äÆZ/ŠúT‰TÚªÔ³¼ÊaUÈá=lÈ0¨Oò!èøýÛ’ùª¹»*53úÖCRãðn1t£x—Œq4ÆÀMW=c€«nèÐ$²ÒìÍ΢ˣ€ô6[Órµ0¯œV>uÇÝj¥ºÊ¿}‘§SFëO¼S¼¶È,Ÿ­·QâÇSc~.?)ŠÕAo•¯?^{“¾ “Eºã.Õ?O ÛÃô–<pE)€E«©@´ë¤gŒN˜º\pÕ»îm2%¨ë«HLÊ^C'Dz½ êé] mawh€£TÒŒ+ft Cûzx3õàŠŠ< àˆŸ¨¾ËÓ²¢&%6'Ö]CâׂäÚoB6%ú¾T¯-­Ú9#ÀK‡&Ы{vê¡þ A_ D‘PB9É%º/¼/–ý£Å{XJù™ÓÓÆ^ÊÓÝíMPÓeœ¹.P§X‰mŠúESØ öú+”ÄF ·Ì™ ´$ž J$òAùsBØ.é€6J²L‰xÈËeS¾ø!48R c\9-Ù¼0™H›ÝÔÔr /Ÿ’‰ÈHlª{’?Ús cqnæÍø2k·l€éúÿµnnõÓz«´ãjê ®‹žªnFÂcÌzbÉpì–å®EÑüý\¢> I,X²iì=c4ûæ0P¡ÿ÷ä±óU_Tƒü_µ—›Oþßñb6tý¿;ï¢îß®çwÜûbÜåï/„¥]°Æû: Êòœ¶ZÅ?3¡;ï”÷×ÄõZ"÷g èä¹AhÙ™ÎñàDZžL\-}“Z•³¯•Vè±jBØ,h'8“c-VƒlQÔ/W޶ÊWöìØFX¸íÑ!Ú¹‘·ò®”‡ëºñ5"§I zþ¡ãd9ð^ÕÇr¢”6ƒG›Ï¬>Ÿˆzjëv<º¸;'uÿ¶½iWŸ}18[újÈ׿Ìw¶÷¤³±š~ãû®gü/æwnN>«Û¾â¶wº]Ã÷å¨þ'9˜f;¨çs-ûI»¾¥sz¬ÛiçõE<Ö=oH#V¾õ릚N¯'Îz@=qy7&ì¹ ö–ö`ч\OÌt6w|-m¿ó\ÎæÎ¬¹~çó9›;–5û³¹šFPµz*ϳÞ'&„ÙFnyÊÝó%|0oô²×ƒ¨;:ÝvÒþ©(þ-Öä½åx*¬ÞOô…*ó·‹&/´SøTþ$·#õ5)ŽÈg",0»þ×ò/`Uô¤,;¬#UÀ£ô¾’$Ñ·Hï`õ¯€`ü)‰ŽnN.¥Íg~E>Ñ+’è¥+U¿†l¢‘ÒWPªL?J3†7r×[?yàJT£ödD#DÄ‚ñ‡]ó+J{í?l<Ã7÷ö5µüÛ«*ÙÙܧ)'/éÁW†Ð²µ¥ˆüã×5È¡³^o(•å)®Ò³»i¦lŽAcª–'}–€eÍ ¸¨ôtay%mU˜„ÜA¤„s´2[7;Öx¤Z¾Nί{7ä¥cçÝqwjÜÿyE‚±ÃRù=Ær£lÉ `züeTÑüÒèf’‘lø´[…E\­Á¿uø·auº[ƒOkðimÊî:|º¾ÁÜÜíÿVæ?úÅpÀDwcCžÜþKÂîB5ô•Ö ^‹ÿ©+#ye¤ÿZÇ¿ðÇ:þ¨nà[ü±Ž?66Äÿ~ ð溺¬÷þ¥9ç¦\q¿ô³ïÝWô¥±3.ìîÙ¡ôks¹{*7¨ŒØÆgކùÌL™±NïÙ8äÚåС»b»ŠZºuÇ?óÖKlÖÐ ’(ù¶øÄ}êX¤ãVò™æ°Èx'-ÁoŸ fÿýóqñ?66Ö^ø/מì¿ñ’Ëijÿ‚`Ù«o—s£€87&΋°dÈßœ` ?œ1ÙŒY.“²ƒêÁßFb:hì–lvþk€~Ÿ¢dââòj«ñÌ zǾ°/Ö®•Ïn޵DL¨å¹,æXIÜhžÇb¾kcŒHÜMÇ+ ©^P¤qü èÍÁ„ì®D4vz“óqÿVŽ¢ shàI¬N&¤è]H¥ººŠç\xzhIÀëÅŒûb.û¾ÈiâK²ò‹¨¡Ÿm¹lý²¶ýd™ûydk4²“œéø ûzÍ@xïØ§^söœ*h)Me“‘3aýGŸWÅ[0¼2§yµ±åƒ¸õp™ñ} ZoO¥%ŠÅƒ‹êƒÐ¸`ÎðHö^9Ië«´RbW-ÈX÷…¬ün"CÝ–”àpË:7`â#ÈĶ2ëÐ-â0H²R9Ô­îàx$èØ ¸"ÁˆE&/BÆ} 1󾨤jÐ<’àAe©±ëÐéGFÒòæXÔ`íïáý’•§cïH›PÌýØT8/š¡T"SÉd& #AÅ|"ZHıµ ¸ÔNØ­œFU©"dõéîí $ê $ê¾wn.œŽõ=.L-gï™Üd±Vû¸mÇVÙPð¸óå£NýÍoÿ"£Û G—§-^ïŽáitSw«ÁÈ{Éãzªu1¶¿˜ÿÎÖÒt}›‚sèž}{¹²uebxËè]Þ†WŠ 9ïn]êBùž÷îÖ»°uú2×Ý­¡4¼ÅÍwwëR:kTw·ñ Û,‘a±æ¼2ãY3¼j^Ý.×ÍòcÜ kœ»Åîæ¶¥“9Òå¿û~XÄ:²È‰ ¬1¿%½Ì:îfŸ”„%7ùyïDŒ½·‹c«þ9úªâbÙ>™£(m¸á!¼uêQ *ÙŸX=  ¦‹þ¹º^î*ÀóE“9“Œ³úo­??>>ê×_p–WÐ8¯E]uþÛË+q/¯!ù ‡´µQžlûl²š´ÏPwxáÚéȉ(Y‘´Ci_"#÷mûèjXž6ÜWLíp44aw"{Ü’„K­¸éu‡lð”™ý'YÙ“œ¨ÕñU!=åX˜½Ùä@â†9…õλw“t5SÓÁ6\$ˆP%?îeR"ÔŸÃ8’Ñó¢ÝÙœÞ P¤—Ž˜æYùBNe“»+”ÙO¾c;ß±zèp?Uý¦¡ü˜­·x&KÓRo½mÇ€)‹‘&[•-j&£~<ƒº¹Ýç Ò%ýîQRŽ ÕÞu\Oì®üÇs»c·‘ý$à„â6ÊGCg£u縿Wרî¸B'ããJôhDZÐKÌ#À;ÏOl_N Šÿlïn€É×µK››ÉÊø9ey2eþ+Ÿ4„[‰A†Ï¼ž·½qƒŒkye¸ Çyþ”^ì¬Û…føï Nml{b\&Ôü¸:ïb”ZLT[P«æÆi&H¦oîyû}¼BÿßéøòQý7jë›þÃÆÆþã¼x ¸þ¿3<ï¿›”}õЊhÄð`5DçδŸ+̇ êà*?>fy¨ú'h¬$Í`<϶àÄp]9èÞ]Þt‡¡—&VÂŽšæ@î\i£Þå\jóc‡¢0Ÿwe^×Ê¿ êA®l{OÀvo àæCÃÄÒÄY Í®E¡0ZSuQ˜dùZé(áÇŽãò÷ø{ø{|_÷LËŠ=_RèyèýOÐøýÏìpƱËñï°îØ(~Q!ì ß¹³ÏyǰYùù…¨ˆ-BLÆ‹tr‘>—×&@Ûþªhö@îÉtÔCa#Ïùc8VŽ?ãæoŠßu‡_%S¸"œýµe¨ì ßžÀçG…a±t‚?@ [¥#`ÕøGo)¢€/nO½½y&Ÿ/aïóIƒAOØ%p(¡—ª¸ édbU”À5K…é&f77®¼GŠ$±–f¥œýià(ï_áÈÕÉ„œè¢–ø–qA‘FE·wòdïRCÄ`UÐUÖC&°] ‚#õ›N†î–‡K¥ þñ Zcþ}ª¨é>a©IÏ–cÃ~Î_ú)ý(>5¬| ¸›À Ô×’“& 9I}Q[LkÄ?Ùg÷ ·`ì"k¨•×G‘z±0ìeõ7#ìbC3­IY¿,ƒ¦½ Ø$ê.ƒ&-PPšøÃ,x®ƒfÖ:h:ë€ÀÍ:¨Êu0üþ×AÓ]¶ ûÈ뀑\%ƒÒ @Íè:PÏ%×­*µ€Ñ+“•jl-Ty-è'^°‘¿Æ—Cx.HÕKÕxK?X©¦­a£¤E¬~ûÖò¬´ˆÎ5kYfI¬ÎLi¸ÛxóëqYtvßëkƒhýô Tù“l€K`/gftÜžAûvFNÇЈ²´ Š˜:ñ°~JÉ÷éL¡¸Í ZøÇþÛθB=èïâC}t”çúV§ŽÕÖ›G¿ÂÑtûm“l¿}oroFFnvÐ`§†¡G@þ€){€ÿ1ßÔÁüLäd¼ÇÕwlÈ>Ö ½é+oùX5ó#Å¡|µ?ß×céKIå¬ý[û8RûS Å*…â=®›Û{óâÔ4pú’œ–8Ù2îØät~=‘y”l ÊÚZ—¦Tæ5§·]A,( Ë)wHü:÷YN†/këߓŽ«ËlcŸ8 ÙÅLò }€‰ôúËè)òDB€¨Šµð8çœGL-¬˜Ø·Ô˜ðÈóƒmêm 3c•Zxw®Ò¦¤Ò(‚@†"Û6±  Àé¤É™,$Ù¿?@ž©zîi¾j!Í“4Ç=ÍndG…\„æ €³ˆáD›*´G…õM›TÈ.[Ý 9¼iˆ×N­m•NÌ+ù4PY¡)óÓ®Œ./+Z±4>ئi=`…ˆ÷(rØQáæU øÍ±Éà ¬WƒSGóŽVªeÙXžÙ¦ßc¬¤âe~ 2lè²®£ƒç" &bÔ¦,Kû‰qûci¶åèàˆ Ù㕘¨Ûiæ Nõ7ƒ‡+åkRl8eŽÜ‚®b¥Lüê›ÝU%Õ‰D‰áÈæÓ2É&É”+þ#H&áÓ¢È Ø·Xi6úuX˜Y‡µ3\Ö“fó"¿äÓñìwû’!cúª¾(è—rëÑ{|“:QSbrJewà?$gËægœ$J@#éŒg ñºT^ön?òm$Ù†ÕíìË“ø”b’ßja–h,)î÷¿Oʇt%)¸j),Ž¢ÒÂ"*ÆïÊÎxm¯ìk ÖJCw|•• Jf<zS+O,¾øDtý Kòºi¥!Ùå²ymáwÀ&|TCw¤–\=‰­£¸<™I—¼Ä0”…¼÷¥L• –àšÈGnœêQTdMþú Ý¿‘ €ü Bª=ð³"ÂlšTúÕZJÄŸáFæ0òüÂÈË=ÌèW2¹;S·¿h*,ó•?(ÒKì=ó£^¾­m™Ú8{1³ ‚¯WžHšXN¶»OOIy›J'k µÄhÍÔ­ìWâ²Åù^=š~ô”ž"õõbÔ&áà Fƒû­zV:Žnâqý­"Å~ùü–’Æš4Ô7ké˯­§£„Y'IËZQ67ÊŒ‘³îŒh_º·é c¡,&;â+¥ þE\“°ð{6£Ò}– Ÿ¾+Òˆ‹trNÂ2G ‚†¡¯Ý!Sï¸×x^“ô³HVh¿t]¼‚ Æ×TÑõÒ3ÁŸ"É¥êsúÿ~Ñ¡0é;æž;çŽÄŠ?j«ãˆRG½9–µEûK¹Ú÷¥þP£uT‰meðBS0<U•¸m$}?Þ銯d8/SÐîsâ¼ñþÀ4Z«•¢e³šË 2Õ¤É&¿Ÿ9"²öÔNÛwi_Öû:ñyæ°¨"NÏJÐýœ¥‚î•pư¬iž_)uÁ2{~^ÃTÌz>â×BQ±éRËʯô.í¿·Ñ³IÎg ô^%0,›·Ý0ûÈrÂõƒ#‹€À`b=X±Ÿ4ßI­Äù6ìÈŽtËÇ" K1•±ÕÓîxj|%¥ýÔ·‚ê³€õ±¥ã›OU*L`àmkž©—¯å-Sox;šÓÔ+/ݵ©oÝEkSoÕëœõ¾u„ç)'n ¿|1¯Ý÷ßèS>Ëî [Jë/b÷ýþl¾MܤͫʚӪ(…sÏcù=x²üÚ•>Y~³ü²I`[Zs]YË/P-^J…«¬Ši?ŽE·= ¢/s[uQ>WènNÙÀKúMMÄÓVÞ”Tpº#-æF<ðŒ+ûETDxã7ÓÜÛPvÙ¿°Å÷ïaê]ù¡L½+²&_vä7õòº}sït *ù {ï'ò„Fì½’ f¨eñ˶ƒ pT6Í£ÊÁ\çîºÏ<œŠ´Ý¸¥íÆ1Áþ“ìÒp50‹@vÆDðÇ8‘‡Üæ3ÿ4Ÿù8i9¶ÆI{ñÒLÅ™–_Ë€Íó?ÃL|°43±bòïÁNÜœe'n¦íÄÍ”åÌÞscâ5Óš,ýkñgÜ@(,¡&Ÿü´ƒr-ÊI“²ˆY•£<•éø`••àÈ–òY(¼xÌè›&š® ú J½m…&Š‚’ª†óÑbÖi)¹WfZ§ÉΊÁOl¦®5å'³9Oº®¯Ä­Ó+³¬Ó™,ZI/-1Ê-ý±ñçl&uºä}3d Ç–mÆÑ·e›ožE ™s8#5¨I¨@Û¶±OAÔJ-œI›xÕ.w J¸ñZl˳¬é©ö’eç´ŒSߎem ËxuM™ÆWÐ4ž8m±}ºV ŒâêgÛ©cÕ4ŒUMÓÚ4©ak¼?ÞiùÏÚDžá›Ç¹î}Ë6ì~ŸE¦_¶âÙË-º³ªQ&uY:2X%W¬âç{YÍýqœe=Mük!iANÌCÈ_Õr¾’ËrÞ.Ár¾’´œ›#“u|cSï Ë‚nŽmÕêš?SI”Ÿãöž]Åßå'ýŠáÿô7ÿçú‹0ÿçæúþÏc¼¤¸òðQüŸ¬\O(@¡ˆÍƒd¥Ç´ÚÄ?3. (º0ì½Úõ)TÉÎ+P·à€Ú­Ÿ‰.oòÌ0{Íòðt¬pjën­.¹¨²‡é¬ºª§±"{ýTm–#*Б§?qFf&¨OXTà„î3 ]‰B’HæPŠ'A²«ÈD¬1Óç“NP:¢ƒQKDA/¢½|¦4¼ý«¾wۥþóÐà£ÙAx,­¢ˆ«ž§È;Å&Q‹üš]è"7©ÔÃãüxë:#¿Îܹ¾ÏT1ˆhý—²&%;˜†Ø0ŠÕ)m@à#æ#[âÛÖny&0y*è< 0›ƒì :ÌþqÕ÷Mdúvk÷ôئÇãÏcJº_P x~îPùñîa&"ùüAã‘¶?î¼=>Q§§dÌ8?•AË¢èè£ÃwKù^=GxucÞðêßîú ¹ÇôÙIÿl`<@˜tßÓÆ;Ðo_÷ -$e§(qñƒSñÖ¾F§TàW”ÊO2;ì v6šN1¹ãþwMQ8~‘¡ScÇü]iðé”ÀÊ0àÌ |½g»7ù²ÍÇWäÐõ(Vˆ_EC²ý[ _=MŽôžèh8Vƒ¨:¯éÎW}KæƒuœMIT©¼ü­EÀYjñæa…7.Õ·xÎO pÌQE—鵉Aý·=Î"6’9?ÑtC!š¬úö¸¨“çº;V9¼64û ·ÍÍ5‡Ú•W×[‹¶\J`üØÅSUü)|ØEï‘ê9ÓÈx8d +ŠÍ¡‘Ðß«¹@]9Õ•+¿úì0{áf%ðÃì•É%#€çðÁC:šldɲÄ!Òµ¦Õ¤¨“†7<ÎÛì+©AÈ^ir2ÂBC»ñð5O…×°5` lQv0^È£‘à©ú? Ï=g‡:ß!ÙµDŸ ‹V‡I Ža›©”°æJxýæÏVüÎHá3š|*óåWÏdâ“YËÀ¾æ~ZѺÄÜë!>#ÁG³Zõ[öâûTm³]¸#’˜0Yç2'-‹>¯Ñì¡ 2×0fL_ªÝ ‘æº+Z["ý±â»†ž‹¤÷Ž”¹ì³Z·œã›h¶ÃaŽðr/¶|…B[Wª¾¿¡àâÔsEN„ çˆ@Ï?ç°3'ö<æA8#îÜfµGÃÎíï2|m‡A<Å +’,zí6Ù")hF™Kô+—ë GP<¾ØýÖy<o¾Ž—¼tןd^6Óº2²^ºNÇöM_÷• xšF~ýß$ŸúÞôÿD—?ìKš§^d"`^‘ãAÍë§äñ€#Vj¾hû6Ç„àˆ°œãAFì…“´,ˆÆškoeoL¹·Ú.–f;ËÚm½)é7i “þ³¢vN"ÀÛ9gùŽÿ‡„Œ#+ÙG„|‡ƒû $™Gƒ‡‚yêçû^,_ÈÑøGZ±™ñ>È­ÑFÆtfQ«­Zb Óf•ù–S—Iº¿lì·9Oy±IN·¹ðAAmëN¨í·=,Dƒ“œÈ¤ ….àÏøiÁ3éPFø3ȘДˆfâ`•h,SâŒa"•ü#ÆKãÔœ RÊ¡ä3"¡6öwó3^æ?fD7‘Œ$'éþ‡ŠJ+ëP¡¾uÏ8Tè¯ïs¨H`?D/èPñSÆåÃÌü”ÇíÆ#y®Æü?'ëÿ¹¹ö²ú¾|òÿ|Œó˜ïÿOëæ‰ý;øRGå<¢KèV[žÓ)´Ãiš&Nž&™7O§kõnD[œTE{‹b%aîȉ#ƒŒVž¯è“£è÷î(ŠÌ£.“Ç{Ü¿ºF·5Xš“þ&ãäü@Sç©H°¡KÈÖªl;é´º·êñIez"Mç|>ª¶S¨]Í Õï×grËá®|®Ã(°p63<‡=¾1|õØuÒºËGO%ÐXöW8£†L9fìi‹ ˆ5ÿÝtÿ,TË-B+¯ïç9~c/Lùå\þ—æK9Ó]ò°Ê?áÍýÃvv[o—œh'å¹ToÈ7»ä Ãqb¥ÓYŽSd*ÙOÒ)RÕô#y<êçA6eY÷‹€lÀ„X„~lä½tx¦ãs9XvÒÁrõm{•G!éoiʤ|à:”Tª*Ý_Âåm¯?žLeæPüZ–±óK-ôÔ)·Ì\6÷t• nÃ싳Dê›%ß­{wcê^ì¡Üæ<;ßI|Pô-÷ ˤZŽY䨢˜i‘£ã%œxØ,Ï\øþÈ|\³²÷U¼=êtúI|£xh:î'|hñ3îš³}YW÷;ÉÄ¢–¾L±m‰–&D¯~¯õk‹ÄI®¾yÁ}³¯¦°"4ôhô)õÒⵄû4Ÿ™œ Ö ~ªÌd¨Š¿RDŠ¥*ÕoÍTÞ5Ø îª=wÍÙ\¥ Qu³/‚¢Ãû`lMúœíãäÔH[v%4òž 7çHW¤ÛÐÃj©ŽKÁèÄò CHÊç[&G Ò~¢%zR>—ý”Ujßõƒ6QÙb×RÖn#eìЙ­ƒ Q攩e^ X;Npe¡$…uEÐ5²Èò2oõþԺ³%¨ ߇WýÆ#zÕ/Q ᳇ß^ñ¢÷Ù1V‡Îgåp¯U†çÙ®»Õ2ÇÛÜ¢ì8ínG"%„ñv»÷6›í•ª3߈ƒµÐÞg{…Û©¿WÃÉæÔ^"÷hÝôJÖN˜à»{jEÉyµRJø¯äþó¸Y&˜¯JûˆÙ\ÊóûØ7f¸[Þsßøé¡öïW fK¼¦½½5—º½ÙÎmñް2NîB¡2®ÝSL“²HÓûLùó€ÌÙ‡K-SâXÉKÛÕB^\YÊás%÷áså^‡Ïeðä¬ 8ñ)Ü—Ç£qû‡vç›—KkI>ÉÝ´ôŸåúŸ ¢àÄË<Æ^ÇžOpöùUù>.|‚}™÷›ïüº2ãœëFó_WªyN°Ù®m¶Cœ…ï¡ÌDÝ»â'Ùæ2N²ß§Ñûç5zW×Voíòû(çÞæ³o«ç“@K°ÅÚL‘ë©¡#ò²,Ö1¨T¨,zÎ4çŒø6,ñ˜¤T”„öªä«&Ï&þ£¿£1pb.ëëϸgIÀã…]’;ä’üôzÄWàÿ=í]œ?ªÿ÷úú˵Ðÿ{móÉÿû1^¼ ÿïãÝí¹W}$çç²@ 7QUHS“µéWZ&7Û3X–jü5 „ilä×¾ãMÕ@Èq»7¾° ævÞžl5wÅQ{w»Ñi¼E÷àéL¾+·ý2:ýÌw{0:rŽ&î¢×¿ê É©‘|Sá t‹º|õµ,¿ì¡ƒ-y³v]'tøá{ð·ó‹þgt!•‰ÿsS Å®G4¢èüÔ..ï€"8 q)FIþ`§ý®ö1=‡?»ƒ 9ŸõÄåè¡4aüu÷¸½ƒå?þz¤ÿÚ¿®»x´7Ô · ûÝcÚ>ù?ËšCÎêjŽrHáA ˆ|b?ÁPÁ ø*núô)žÜÝܲ/_÷ Vˆ¸Œºt޼õ‡äpÚ…ƒå5ô¾¾*SÎOŠh§‚gϯÉÛPºû_ÝuÇ0zW}•P´{qñ|rwÊìù´Œ¢##L°8ë»H‡]R`ÕAÝûrÝ?¿ª1èâŒ)ÛÈЧ•CPqèÏæÏíÊÏkÔ¾«ÔhÒ€tF%… =ïõ?wÏ@¿ìöHÑuïÏ.œ„û7]šBõ§¢ÈˆWgðÉ—žø„Ùw€ †£ao^¯'všõÝu³•A9bhé‹™±¯Å³:õ«˜h{Œ†ƒ¯~ð@#|Øpnd! ƒúu¼ËªCaüî¨ÆòEµÛÞÛ)[j·?äƒÏݰ?eΫҟP/{!TåÙ«!gpCàÕ%:ü ‡§ íâÈÑYÎø®‡»Ÿ³W;éGŠ:½0Õ6ãÀi²;9W† íÙ]¼3•jFw`Iß»G»F:^ô&Óñè«Æþ'{F˜ÁÇrj`ðxyÒb . ¬kW`q±Š`&¶¥Àƒ8—昹a@ŽK‰]Éh ’kˆ†„A¸øí¥ã/^½»Ëû”n³´™lÈ!&Çb²Ÿo\ ÓfË ;¡²Na(/{ãt5ë0ƒyV÷ŒØ«\,éªOŽ3„]ÊÃ3éÔJÒd1/ä#Ä ÏÇè^-“^W ø2ä Ò°ªEé³-göwœªD’¤g^È£#+rFÅš#ÜA‰=àwKü‹î¸Á8¡ÖÓâÀßÁàZ,ͶøwFñV©åTÐQnGø·ÝpµÂXµs àãsC™mB½0Œq ÒÝô‡ý›»¥ ¢óÌÞ¡v)j›jº‰²aÏÝ£pFJ««®uzÈ0æ@ÖК'jš_‘BRÌz¿ÈDîtt €CÅùÝ «Òt¨‰FJõâ¶NR8 1ü!N)h2ËLd*m$ƒÃÔÈå`¿ç^ ˆX#^ÍøÉp$zãñÕèɤ{åôeÜÃ>f˃ƒÁpmýW†¹¾aL8œŒã䨶/‡K+±EÅ´‰ÄËÞ¨¡‹°¹ Ûö2”´/¶ Û9Ö¡^í{.ÀxùŒ‘¬Š±^jѽX«4¸-þ Tª‰¬`Søàª@1¯ÅFm€@é‰x±OK¨^$j¥Ò'”ídKèà†î ô*(j°t|P‰D=±+Aé¤EoLµ)gň|jÏ- œÅ,Í,‹(_ÝXP@EÔo* i•Ê•#ïÎßÈ: [è4î#tóÆB‡ÊÓ’L•Ï'¾_ÀÂ|AËsSÊŸ,I°¬V×¹½ïF42eAL=i<-ÿ%/ÿE£½¢pï…â½j(Û­ïîàjD–=2‚q÷¤q«0–4À z!û#WØ> kð?†³®åÖyN0 PðÎÕµ¸]ÈÄŸÊ!Ü»â†Ä&p g¶ùl«;!î¦cé¸vÇ–Í3u ßï]^ŠöÝtÚ—•-k,:ç}N×î:•¶ß´ÚPæzÞh}ˆtø‘û±•f}·õ.ã6¥Y?܆Aß­Ž">‰«+ûÅ2z‘jêl7©ÆÎî1ü¦[þý[›#&‰DHÏÏÇf}›2-Áoéh_+Ó5V´ÄÔK@Œ'ÞûÁ07e„€ow€~kÇÇeé©™˜ïÉ•--»¿­Vª/}ö' ëƒRH¸ [ תT`¥D¨Ö ª€[ú]féöÀ+ÝÈ,mƒ D¾6  j=’ —poDº`”>€4æ>¯j:¬A²ˆ‹Éjò…Û?{ —’‰~»Œf5í®?îÉ‹!ÓK5t|£5_?—ÎW%èÏüXÓÿûŽ‹0f»«’ãdgm¢„õ"9êŒ!Eqøq;üØž¨ÝUIöÒ"ßZôÁs€HU“¦oQGsØUp[Ç9¹Ïù#ÜÿŠ÷«Z©¥Ž”\/þŒ!†.XTO«ÔJŒ¹cXá*Ø®Q÷ Ïg`B31g6E¶%$N‡<Y­{è˜ìÀPšÔ¢ùªí|×v¿l8_Rs¾30Kd˜ î‰ Ãb;ÒiµÌŠŒ—èXa{þ«k±*ºÊÆU†nzΛ@8å‘RfhŒîAœÊ‡Káç=®}‹µ¹¿Î2ü¨Äk7€!‹â†ú£ºxΣÆEŸ½NÄù {‡S8 ‚$}ÖwB¡Ÿ¼(ðYüjÇx›lKou޶et¤6Çmëê¶,}$ä2…u ¸Ñ ÔX¹( »ý&-Û\[Å¢6²êç•ÒÔéã‰\>†_áÀy~ÝŸöým"•BìöÍqÙL ]]àážÝÔÑÉœ:áì|ÙçÛfß¡,ÐD‚ç¡=X•žHÐÅËîÝ`ºª&#ÇÈ úCíPíÇ.˜BÉ„²BÕäÈ{±jÏ¿s‰Éþ[såÝ­¯ºë/c'¦ÈõŒwœ¿þØíöåZ’EÉŽÄ–s9 ›‘(ðN gmg 8 ݎG° o¤‡Ï&“¿öraFöý’×1VþÓÞÊŸO9ðã…€8·Ð_°+7·lpÈ# L5pa÷"ˆ ™±ÕñÐéDàÞÝ`ðŒ1ZËöA[Úò4(Jw<ÿÐŽô}$¢ußUUg)¹ûAEuQQi6Ñõ=îùh—u±DþáÕ,3‰&¾$#*FJ’Q”…¨ÔZip[Õ5ó¼íþüáñ°ˆ¹Óïat¹V Ë,ÿØÁO z—S¹BðÍWÀðö…¯©ÑC­#còDƒ†›1‚-ð Ÿ©a¶Ílùú5?œÈ'ª;hÕ¾{ÔáªáØUïÞNúƒÑð™ppêÉ€AÚ–E)á`ìù˽&Þ£Bë1¿{I =ë²9ˆÀ«Ù›Jƒ %-÷Ѥ?µ¬þCŠ7³=uÐÆ©¯ãؼ Zµ¬­ˆ$¢iM¤ò3¤¹>rážÓÀŸýÉt²ÊVJ•{üšEôÝ ©†œjÎzÓ/è ă„û©lvˆÉ´?eÇÑ!ža[o8õɨHyçÇiè>hóRvb-}.“wC#ôÙ¢„–Š'Qر†þ+¥%ƒˆ•âœad ’DOÚÓD1mDFœB»ëòHjáb1دHî‰hÜL¡swVGr·1ð±«Vj¬é„7-Âx¥ЬäN准Њd„ØéìûíïV6="&ø—‡eœn‘£å߉'6µAá7ú ¯Ì’´ÇRˆ’]åav┈ôÏÝ@ÙDg7EÏ{Û´Û"ÛûH‡ILYªà¹š´ÂZFSHî{Â:뼉ŽÜaC³ýñþ8Ä´BTUdzZS+ißî¤g¾,OaÀܳHºÛù]Br£8놡ß"c–qvÕT/ÊQnk®¹Ïn^jw¤ßdLºœ»mKmã°tÈñƒÜÍ6fÅk.O9Šå¡á 9ÚÎh“=«³‚`U¡á¾ìIuN”"n~¶Š|äN¯Ò>ÂÞÎlèÕ¢ùvVygè(íöibr;€#ž ¤û´ƒgY}b¶P–„gôü<£Ên{cÔ Ñ[™¶Š_ÑyðùMä fê)(,óîd2:ïÓ¯íÙIGáQÌ#Ú™ÀC4,$”«8v@OaWßÎhL*+Âp›|éR|½ç*ëkï/@?G½QÐñsø2–¿ñ?ÄPSS!/î Üð..ʆ{¤aÀIõ™£4¿ÊÆ÷ã_IöC„Í¢›‰#…OÑ#MÌÕ&»ÍO4艣ȗNŒ­ZÕ <Ìï9¾L_^¤õĤ¥îåšÿtÊ8š¶Œf™ESq¸x@]fn$þójü¨ñŸÕk/ÂøÏÚSþŸGy1#yñŸo@GØ»…Ûr½õfײ…¼k¿¼ß†'‘=Ž/Ço›¼×³Q£srtä6Á£ž­D-–ãfc»q,Zh .ùÁ£l×ëJãJj ³êhÌ9¡,UWs/°TëMJªÎ jJxî"wísEžÒLÊÑEÂP߫߳£Q A}Ó6!¨Úܵâ#k¡`Q2Êg£ÃÈzDÆ•»!Gº]¨/¯»TUTP‡.z—”heÒ›bí·ÝþøK‚.œ—3åæœ¶›Ç½Éíh¨’¯[Yñ-º>Šï!"u`)¨1·ðèøîH#ŸBÁ¦×'S1GÂN{¤¦¡#Å´O>Šg_©hÿò«l\>Oæ8ü¡¢LõîäcA2‚Ô€þá¥Á9Œt£ùªqB÷|)@Q8\“cy73‡Ž‹DPwÚ=ëпë˸KI•ºcŠÄ%—P,?C°Ôa[-wbiŠìäéC:¦¹žo‡T WÆ^bªK—Jxͯ´‰ FC¼xÁ¦1ëêÆX×Yo³;%qMnjù¤Ç׈^¦¯TWñyI¿ ÖÅ °#véʈï±ÈMqww·òrsCGW(XÀÎ4¼ÀW^ëÙâJ*1ΰ^ÚgÆ'2º-4Þµd9Úpޝ¡¦X)nêýyÞãe"ÌÒá>b=ø|÷ •æ‹;ºëz±É¦$ &¼? YÄPß°’‹ÎGtï£|guWUßrDæ¢$EqÏÈ\?7W$ªÖŒ…½U° Šò\dÔ¡f?FžO*ê<àë‹×ÝÁeÎZáÒŒxEg6‚‘È4Mô[U>Ÿ|—E)q–¬fþ¬džÛš'@סzÕ8õïàúVxnÓÞðþ1¸S HÞ8\»µGÑÊSE̶B`»«°%·Šìn.ë´=9@VÔ¢W·½Ä`´sâmop ­;!££ƒõ®é2Š?JôÌÉìgÔ«qÉëîµòÕ—Iûpr¿3dS7gÚgòÕ·«¡!À›sNtèlSHó¿€(?nÀ pÅ»^þ´ºe”¥r2÷ºl­ÆIò«°ƒ ÙAµÇ¨ð¢ì¦]ÒÂ!õô ÿ¶×3ßÕ±£GÏ• U¼*úñç Ýl•9âß´^çŽwj8ä›kvO†´‰Â[ºtÏ(1\OFLGƒèç=¥j81¦ÏÅ sZŽ{Ÿû£;ÂÛÀµ¨dø¡ZË(Ȧ£)ð±ÙãÉrQˆ5°C5?¼Åœ2ÝŠ´Ê*ˆ[Õ_n4WÔÝè{ŸÀ¹Å̱Ê84òAÆŠ³×ELuî;Â!Fðѧmf<¿Œx;49äÔÑž.ãƒåÈxAöS« j %vEv·f…Ú+¹é–·´p¥¢ÄƧÌ>*ê탰 ‘4q=\(‹ÛÐIõ¼/ô‹>Ϩ™hï¬Éïè°ˆÆ4ƒI!IÛÕ1_zÔ0vÇ®A:茇ÿ‹Ã®JüöþD$ŽN>:{ Ó‹ˆ,¤v/>ÓâÅ ÖyWI^ë/©D›::H E±´4½xv|é~…c_÷²÷`hŠí*l>ÍÀàÃs(WD½Ý®pÖ…¨•â«‚NtÐ{Ô»%¾Xûh'd•û„»©ÃG¬§“ÁhøßÞxdÄV±J Qì’u^ÔíóÉUÐÆÖ8”¹ VêÄ´Ô'¦6ˆâ*C!‘sØ ÷Og’Ýλ t’K>TÑÐ ¯,VÕ(÷YŸ] ÙÂ5……i¦à+;zZ)9äk3gðyF¨]˜®?è*¢;(.BÖ¡9´úSÉÝú¡ìõ‹Ô ˆý\ë™/«HÁ!TÓ"ÇÖ®±¸¤@ b¿Æê°ƒÍšãàÃ%ÇËÈâÙ õ¸Åºà k!óbÉa!vòj‰p ò§uÝãžòü”r)`»Ç Uƒc…ª:¨ f6r0^Ãã<»"?òÕá¼eĶj¶Â‡]s@žÇ æ86µüÛ«¥zZÖ§LÙuØvš°KîF€)LÁZ´àG,øn5,ˆWÑ · ñð«Ü¯|õ€(æk ú™?ëGBd=”%$?u”Â)aÚ½hq~1u(²ÈNÛÿÜ#t8|pYAµ!hç@w®aÐS³±u(ꃛîEo(ãc™&þ8ìŽÿCºls«Õ|ÞÚmw¶íg¶¯ÇýÉØöÝöøAä±÷µÞzÜþЮoGî6rÆW²!6Z>‡Èx!†L|°ºWovvWÕå•ö­>\üfM½Ü›µ–¹\ãÆÝK¶t5¬Â¹o~Ó~Â}þë¾"÷ÿýá£Þÿ×^®½xÜÿ¯?á??Ê‹¶wÿßhY¡-,o[Í·Û(':GÍÆ±=SÊ4öêêû‡Á}Îv>\ˆ3 ©ºJÇRÓó›Cû½]¾7Zæò=8̸Wç;EymØÜø*ºïÜZæaÂú°ß“ˆu' «2–ZýÁT¾(ƒ÷üÚ1ɱ¾gÚ>ûª¯¿Q©0÷ÇõÓÆqGÎïÆxŸG¼Lº7•ñ§>@xâ«ëøÙ‡…tѯôÖäé*¤j¬CøfX^çßv'uúãIëð¸M¸Ô'Gø×%]c–á%+QVÌp~R¸ØX·û¥;ÊÛ!â;ë²ö¡n ´„ç¹ÇÑ+¿…ðv±ñÂpŽ;¾ØådÙb—à®Ï¿ÒÈpÿ.Cr¸ãWÎ}Ä}&!¸Ž*Þ;Æ{÷~Å9L1kËʳØÈðž»1¬òkB‡ç¯`KºåÕN6ÅÊèò’óÑæ"™)µUôŽ ZUWlhÈ—ÔsR8„µ Ö¦ó8Œ]É{Θ….,[ùàm{vŽ×âÙÖ3<é÷þ¼å›<—®ªý”w“`‚s¼A†R·ŠþUDÔI½<„÷¿¨­­_|]Åã¹U…w0Äè3ñn_iÄÐCcAK`t[¯kXÛŒ*&=Œ66u”EozvI¦]=ö顦ýyÁ¡F~2.2n6•Ì{,Î`ø4w·ìÚ®ºpN^R±Åb ãç0* ¢z=W·"Uoˆ”rA!Öxùå¬çVªîK—ù%_Ä!v¬×‘ÁæQË5 Ü!C»·˜8"À¿vsŠb{Ÿyñ¢A‹[mìÒ÷{vxm„.‚²!éÐ…¶EG­…Ϥ²€ñsRƒpl¡¤­ôD÷ÒR5Œ 0Gÿ¦{ŹЛo½'"-ƒ[EËÕC]—ÍDÙεYl’q8nJŸµþ¨j×"rñõô-î겘,¤ä~eíO\1Ž¥Dk¡¡UqÜâ>eµ°Y€fÖ.L²¹ïUEçjž—R7/Èá,sïR¬½¦’¾ÂÖ GHAò¦SX~áR þÌ3B©aRª½ÁöKØ3¥^ŨÑ,+è èÙ¦¿j2!·½1jÏÚYt÷ô¸]ÑŠki­-V¡ÈǨÙ|ñÆX†|4ñâ|ÚŸàA§liC*,]ºm7£9‘n3¼Ã¶A‚‰b(nKÅÁ(®`”%ýθ.oÈß@)õmþϪdh€GpÖU‹Þ·Ú‡Û¿dXR޶ÛpÒ"pJøAY“98›·)Æâh—~§['ìÆÎ.ÂZâó§ûøcbc·<¸dTš–±»»SÑ)ÊBʌյS‡ÁÉŠzçäЂ¶„þkl¿¯’k+ÇK-|_c^;ÛoÅê}s¼'wèw›81S½BÃŒ´w4ËmQ§Ëòñ`,D+i¶´ r¬$=\µb= ¹€ùy)$T†,C•ÝðËFñãe¶Êšo ¯š5gäª/y?ݯÎÚP9ƒ83ºKÑ2 P$˜ý`ÉÎÚE%môËÇ09Eúxÿô ;:Ÿú·d…™JpfåmÈcBŽyäùÀB«&Ú)¾e‰¸Au:¹í¤—mÞ ùƒVÔÀn|=1çƒÑ¤WÆ4¬t;:貘S Ý,à‰vÐ3}»é÷‡Õ³TßðØ¢–)šF@>øOÁI´„üàìßBÑ \Í!ív„kЍ<<½P柊£S1FÝñæ3}ìŽ9nârÇÕ;o;þ°)T¦6wãÉ÷YsL ¸ÁgÇíÑíW'nDLЊ œ9|F‘ :ç%š«.»Hƒ²qRð4SÐíKaJh&- ¸äƒš„5T1,VGm¥vï:Ö þ°ðÞÒ<‘}–ù‡ep¹¸íѬˆ‚8Bqú(V̆h-‰Îœö ±y’cƒë ·écyØ):ž[oJ«Y/ž#¿Nn/º'­s˜èx¨€ñ^fÃããÏH|Ž+^šk‚µ&åTÍ_ û­ú·ŒÜïûW×F Ÿ!þ¬¼·8:óyµ³sã/w¹í²h‰ ‰g’Ô–Çï‘"d/ˆÎp5‹ûñ¸oJ‘µ%^ÔÛV4šîäëŽéȯ#7ܪT£’Brླྀo~Æ {IçǶ£óõð¢ûftÁ..oÆÝ›Jçüú¦1u/oƒ0Þ»@ÑF%%¹#EtT¡Y³º"f9ݯàAà—oã‰Rk÷ƒèÔ^ö;!ÙPX”VÈýàÇãvL éjàh²ßæƒ ³Bä1S ü\qg g‡ÊTQWðñ2k¡Xä§5çÉ ús>BâP >«dQô¼”чŸ“}À Êî[TßÚ¾îÈ5B¾øÊ7*ò›¯R™Y«ÕLÑ‹6b”½dÁœGYÇ!wì°Â˜1„ÍðŽÃ—ATHé¶“š¹Â£“šë¹2ë„&ä·M–Eü…^‘ø›ÇÅ|±V}±ÄlTŸâ?ã%eÿ±ü(µÛËS“ßù˜MDÈH6Kï(‡!b$ÍÁ°‘¸ÈÃ'¸È.r‡²ƒXÉ œ,ŒÎ¤G÷ºƒ•åg0Œ®ZÿÏÅÄäÂZ-`v˜Xê©¶`l±:Ý‚L„‚ ¨€®ÏÝ1aMMîúì ±hþϱk†NDÅùàn¢|¡¬´³X\Y ¸Ÿ1»H‘¢ÝnC7Ûúú@´Ggwœ½Ý»®®áŠÈ‡*Ïðì§Þ8RùïZÙ¿0.J÷ž Ž2œË.í‚N¨cÇ*>¿Ð-j+0æW˜ô¯nº ]£­—û]FS9A5IšîXj-/sÏÓú«z}Ý¿ºÖ&ór7îžµ}p Kæ¦×JdO¾FÑE÷Sc(Êì䨆¨°ª:§¤e„ 1£WtXU¸nè´ÔrgánÈ\л@{¾B,·˜l£ޝù8gðý)ò°ÇÁ@ Ná¬èd9õFV³hlP³Ð=\>êN1|g".ï6¾ªY1žç¬oð8Ù& ‚øÕ_Þ E €øSFO îÞíDœir/4´V>Ñü-^tÑ•å²kØûbÑÂ'7~^ÖÉzÊ”A ¸ QPÆÄè^·¨ºß“³R¸°:`§…§„pŠ$´†m'=ô5“—4J™ƒk›Q@®¡ð )Jqtíù ; EjÂÆâFR¸—^â͈B±C8ðdò‚mQ <^¨ãÞ 0%{È…^bøÒd¾"eÏ@[tVº+èi=Œv%ü‹aÚ¾ÿ<¼Lû°{ykLÓìTŽ l‘±ÉÃ&Vþ'×Õ쓯®zgã.C†®TG µsåÑ¿þÓ˦õ»½]ÕJí§²¨ß]!ä(«^ãÝ3}{kHÞuÖ¦Bjsoº·@§è4ê‡btGî–Pñ!Ë’:¼ý:é3À­Kï»Ñ`UÔ6¥Œ'"1®ä¸Ô¹ßÆŸ” ‘Ž«›©>µuZo Ãÿ5ÜÍ9É·0råÌX#mÜÆsTyKþ)‰“Òm ºwŸ@™1…')þǽóë!îä¸1"ŠZk´*N¶·žowv*?¿„ÿ«²Ž“m­ïƒª ÚPõçŸ_ZXÎbÂꪅâ<ɆqÖÀÆXð0ÎŒáÌ[Ÿ\ýo»,m£wyÙÇž#~ˆ~1@öu?ú¼nÙÈ$£( »“NN qmÕ ÐÑ ºœDãÃÅš@3ÜÓ1Ã2ô,C7Öà ÅP;kŠìv×€¬bKpÈimÙqä8F·0EC©œªzYMÔEF——U öä-8×)\Á.V3éßôA|â%‚ŽŸVy6ñQØaÇ9&"á¹øQ¡ZîýÏÿé‹ÿ÷öúëïÕÿ[†ɪ€„þìÿ +Õÿû‹e½:ÇjT|½¦‚xGáÉC>àŽãòêMáYÍEâ‰ÞŪ¼•xOi c±átA<󘣃ٱ²X5°Ò18mæÚÀÕ·R+ÃÚ<=†ÞJ½÷?ÓÄJ¬áží•qÑvý€>&¨l»d§Ÿè– fŒ3ìbGÏ— WPµ’õXUîÇß?–?–?–?–?–ÿE@ËŸpÁŸpÁòO¸à„ .•Vm%’¦ -ÈízáõŒ˜ÈÉ´õq[¢Á¢‘C¾|èàHfb2!z®{"2¥ ‘ƒ »äÄ ¼ó L#ÔhOjrÉÊ^eF9Ï›¹›.Œäëø’-Á` ñ¿#ÏÆ=Ò8øÔ‹«48Gxñ—€Ì%lý÷ãÈ¿80°¿OHóß3ҼĉõõnyÑë-~ÝhWÛ'»«e5¬=+aAKÌ6íê‚K½xf|Û2!‹HÖ‹³&” šõFeCì']¦¢ ýdpö°£´éOöåFZûE¡+Îú0&VŠ/ü ?yóÆÊ>ô«y™´Hï¬^áD=“Á«_Åe—n L|b¬‰c8`«:½9ÿç®/oñ®îºc¼ère˜¹Ñc¢"zIK$ ä‹ ±µ¦Ÿ,Ÿÿ¹óà¤ô¹§+˜Á{ªÓ²„ ’PWá˜wÄí‹ Ò^Ÿò/hó”á)ÿÂSþ…§ü Où¾Uþ|tY‚ûZö.DWÄéW×ŰlÝ9š¬ ûý â†.ÌW2Lþà–?†#ù/ž'°êî "7m‘¡| ±lÜ®½·'í²8l´ÚoŽdY ]f×Z†çª ÚáÁ™2Ñk ­ˆsh½ÙÜm¼!X,úÝüíd· ‡¾wuþü}½u '·ô±¬&滉X»o˜bb—ºöíÎ1Ær`áΖüý>; vçýÁøj´:GTŒ¼ˆëT_‹hÝÉFþÚeà¯Ýv›~¿9â_íý~OÎÁLJGY•À×5c °}rˆ=Äö›ü«Åðöé:àØM¾ÝÛëìíïå½Ç¨~$Âq[7-D¿ÚîH±£Æ;ª¦ [dhjˆT?K·aø<ü‚"úUA5ÀÉÃ&5Ñɪáø×önçײÀqÇ„‡ñƒp"n¾†ñ²àÃ"Ü×ìÀòI…kÖ[cù\׋ª)ûgP7?`rþzÇ¿Ûíí²Úåø÷~ÆPÒmz°ƒÀpÐXYo+;ïëG²çÅ#þàùF¤±DGâþXc$ÐGG_ Cù]³l1Oȼ*Q°˜ ±jaÉ>ÒxfÁ°Ø"TÆ‚<€ÁQ;ˆUPªµüL×ýуŪ¾V&Sã9oÂÇ téBuòE©%uyýÑzIßÍ4†:2S1IÎJ6M%R@g6Å!±Jðhç×òk‘ƒ‡1y4O~p3 1ÜE@™·>m¨×J6x–Ñ…è:u:¦¥§géÿìi·m×PB²±§’"½÷ðÞŸ¸ïa›±Ñª'ôÎÉhrtoÞ÷TVy}õ!ƒl ßÄ1Eÿš ŽíËÖ Èÿ­n‹&^É–ŽÛ »géJÑÐr‹ÑØ;µn½jÆŽÆæCIƒóîÄš>†mÛÉ;±“w<º5úFÓþä„n‰L "e«­·Ç«ŠO ÓÍ)­gû!'¡¬OŠªPN?ý­"Uaͯpâºÿ¼j ýZK°¦pþNV›»«0c©º^úuIj¹8wšHLUvÞIŒÅT…?ͬð„Àae•'³ªüÙ¯R7J¢ôLR ò»¬úªÁ²‡b,-¸&šV)è“Uã'%?ÖÕ˜·²Ÿ ÏûÇÊ– ý×é^öØ>xwc6¶,|@YéiˆÆU>Ç2ò;Vu˜7?*¿ksûŒ&+)êï(¼ûó6ñ²¦bYUÅÅø'7\”Hr|dx‘£¯‹¦ÏXç;š[Ïf¹€#°¬Y£·ƒùXϸ]…+öí*4šS{ÿø.ªE`”ZsÖaÌ¡G*ÔÙÁG½ŒèJåhx݉÷nUŽyBV "d6ÁhU^Kegì¥6¤KM°x™<\w¤—¨PáÂç¶­U÷1¾ê„µð6: œ|ãó¡ FjñSGzضàH­'ã`¡RiÏÛQ#l®ÕP͹ªyWà I›EVCß´øjØîd-†Nëi1üClƒT×D àŒÜ6e èùjû$3¾Õo6ó#U¥–·EVøtÝÿQ7üwÚ|Óÿô=ÝL¿ë œn%l èvUa»8–©¢ ‹,¥+vVSGÂq¢Q2Ïòy {xµÛëXÞc žv”>jêÊÍ7|}`,¸¿g«¹H?Ýh;:íȼg·Æ „±ˆü‰>UÒî¤DÄ$tqݻþþù/âKO&k# Öä™y%C“t °B e=t6^{tœ´NÔxmá(jÇ ›Ç–~PîŸiàc8y…Ï¡<¥;9VN%´]›¶îªW-µù¸Ïú§Ue›úRåáK·¼½FúE郧îh&‰fîmv<Ð5ç)ô ÏízÏÉÑÂ_%zÄÝ–¶QR÷­è++ržÂÜË~†‰ÕöÐîùùhŒypÚ±žbÓåû¦O”6Ì÷'þ7¶ñŽ[6FA×#ÅH‰:Í¢¬ˆó)R8É#“8å€ò”qùí Pí_*ë¡tbXZ®t¡†+…|ÿMrGøRfyh«Ã=F>_±ÿ›, œ+—Á…U‹>06É«ÐÂíhÒ·[˜€àEÐHN¤ì Ç'KïLËsÓñγVûúŒEwKÒåÔöÂü‚>5C›Ì‰ð@ˆ 'Ø€i #i»ç׫þ2 ;6+yñ¿¸“ce[×nˆç8[ݳÑÝÔï¡×Øi`Íê,Ðl馿;½©7Ïz†ô¦¦Í,¾³ñÚ2ù¹¸~ ‚Oè®S‚ §Ö†¹YøÚ‹Tô§VÅè xsoÊ ¶t5Šá‰_¤¼;ŒdI×N²•‚ ’MÇÖ¢  ˜üJJÉïj±ïÜU’£yºDð€]‹¼»$a†0ñ*â%ýgÿFAG Šÿ…úb÷ŽÚ·¹Ï)l,@&ëzLÔÁK“žŠò™à•»á_^¢–BLsw†ÎËäÑOC,ˆƒ%Ã8 Y1OLÕß—6eÊ=3ÌÂå[›Ñ©µ‚¢Ç{§ö QV騉P­Œ]2Ð8žÊ‹#ÃYEZå¥^[,K<>Ãþ ^ÇÉõ# jÌ6©Ç‹XϼwÀËQ«/jg—ÌÖP/w›{ϸ€{Ò90ž«Jù/®©Ü3 ß^µâi–â·†°ÿµ¿jT`îÐÖLdEˆˆ¦¤”ÂRƒ=™`ÝB †!ÉèfÙNQŠZ(Yÿ°Íâ®<±esJI’¾¿Ñ8EuýlêqÒ¢{2›|Áæá$çÂK¹7EØ0Q¢J,Ê~p¿'J„ì¼ïŠÙì+A,S¥%ªåœœ,f2³Ðü\Kó³ðXZø—+™Â?¢J$øTQŒGä?`ã$€íñ©ìn¨ ¬‚h_G_zŸ+å¬Îq$RÅ1žeÜEpß0UáÑQ["ª<5?‘9ǹóðôèL…ýF™_«JÝQÄë!69 ÃJLJh¢pX5 ÷(TÒòJ/e¯–¬I96)pòT"?KûLipmÞ¦£8k ˆzýU¸QG¦&2âHwi%M¼±ÇÖh±©kÖzù Fuýgªê­ß•Ã`Ñ+Õk¶}™}Í[Hø>^Qäø(îï¹2I&ƒ°Ï¾R¼ŠXeöÐYGæ±Dí$ÖΘÿëVã(´<ŠvhœÒd¦RVî¼Ñ r)õä~:C—Õ-üåw™_2§d 3nŒåÂTÔ˱KtAÍx#AФãçX‹Îgìz«'ž$ì ·]©+¾}–S»¢7²ÿ$à?—Ô´ùeT¿}Üf¥lÁÃÏJCT¶ô>ëÓtÚ'›]©¥†¨½“ ÜÕ\Ég`Õ#“/]Mj«ËPøøÅ®Ç±Ý,›M´Ø0üŒ"ƒ†=–©qiì6d]ÈØ$dd×r”2ƒì5ð̹-|‡Úõ†íwïmûgæjYvhû#ÓÜù¸×h, Iôc²á¯e¡ÓA©ÝÁž%íã<™NðÁ!ž*N_>¦Âpx½‰‰„úÏ™JŽÐzκÿ¹¯ÚˆP ;˜ûRïͱ¬> á'’ƒoÛ2å ÷g›Ü§œ‰œm2È{'{ŠåeÎ_¬0óþ k ²'úÄD¨±aÓIž“ÊÿCS5ü‚ô‘†¥ÄŸ`ˆKõ>Å0†D:K K<%ø.±!Ëñ»ýXÓŒT¯t$#ØëͳîCN±P#‹S¢F¼ËQrrã“’ƒ,2ƒòÓ†EBþðý°X$É÷)Ÿ¿˜Ã“ÎrØ~Êò}¾"ù?þó¸ù?Ö×kÕ§üßêÅ‹ÒËÿñ[»@è\­Ì*•‡“†ÃK¹ñã$Ù Þ) }¤XEN›‰´JfÀÈ“Ðâ¡Yüf%²ð73sXP ¬%×õn¢P|ú7ˆ ÝŸŠßšÇíB©ëÑ…Ä#_»|‘€w%,­Ä}íÜWôÿé&„n¨® ñÌýñ×Ýãöáªþz¤ÿÚ¿ ø¬×ú˜ÄxÇjŒ÷Eu8 œ•˜DÜœ5†ˆš œÕ7D…Áë"ÄUŒó#úY8w±*î†}_ÍD{#Xwb•ÄGØéwcÎ~G› sU0Ô¼8êÿ×xÉô/äxú5V‘6Hâ—ß;ì°qdÑ÷‰#6Þm&Éî†÷‡M¶jY snûÈ“n?fãO¦æ†S ï£ dã7-«~…HË€;¸ÊèžsÖ JNæ?qÈq)±+™s©Wº/WW ¹©Ûlm&rˆ‘—dÛŽ-£›œs‰ÅÜ13ÊP$°C¨«\ëŠk©•Z•ZÑÇD ‡FAÓDG'0Í£âÏÐëD¸˜1;+KsN¢"ãnÓÀ³’;%þ.LãúZ©e¥ÑýÅ"µ¯ÖNX-vÙÂOîD#˜çñS„NÊ¿à°Ä׎$ï:³v½Ý8Û‡Õ(»%yi!œ5‰•>æ!âäþLªŠÕïtåøý[vbP¦ˆ9!W°¼«B- YŸËÒ··™¶mãŠ%h[RTP4­qÅ$l3ÙE¸,aá GÃúiã8‹ z»µ6LLßEžòø·4T#<ÊñÛã²À4ð?H½&¿¤{‰_ÊÇŽäïÎ;øMâ_xµOÿªYÐ*øxËî„ê­·xu°Ó%¡TàG­,öÊâMY ë^‚ï@Òs^ŽEP £Ò‘ï;üþ8näÀPè÷ѪžEË 678JˆŠrü†AN0[³;‘('éñýâþn/¥¾dzÔx£°Pbݾ?ŠÆ4°/N$†\5 ÄÀ»@Q±ºc0±§néw™¥¯t#³´ wùÚönu=Øù‘ll„€´X ö‚….PTø²a WA>Cx¡ÜheâG¼Hö/yFÿfGëç²Âƒ»ëŸ’^1¨kV‹„û†Ë‘âpSgXìØm'6‹èäüåÉúò†£ËKRb0Æó;„‘»ÄV:–ÃZ,ìÁ®ˆPc‡gr±¥WLÁÂG ±,4=«¾ëÈï ÅkéŠîêÔ¤¯¯EKI ¢ƒšØ‘MˆbÉût%Øx«RK䑽‚ÝU1 ÖhdSf¤'; ÅÝÏø å)á™\f²IªÞtÞá[õŽ”­·ü½Ô#¾9´CîpÑéºa ³,8Oç¨E«ËxôE.‰þß$ WlN1*)™v(8ð‰Js¥ŠAó¢)MúM[™Wb6cRU1†Ð¤úÏK9ՀŕÚc» t¾:×è©'+¥ÖoÑŸôÐñ·¼¹¡&vçjB+<Mˆ+™Ú\ÄÀãC€id‘ðâÞXNŸõ¦_РùgHv¶Í8R0ÐZ*²ÿ‰þ,ª'ÉUKÑúL®:ýYå‚Vp¨»²üÐʆEžþ¼9}âhSŠ2Ø}å±2ªaTÚdÿáÆPI~àòÃî;$ÓËòQ_úE»QW:´ F]¢äËi#¡I ‡rZhí§È€w1íÈ“ôѰò•t¤Ï^d -%4‡’ÄN€®,Ì1~5¾œJ~ý´fÏtãRfîEAI܉¨UξVà4‰9 耉êC‡Ž˜Ž·J¾«óL¾Nàð¶jwÞгîÞÂÑÁÞÄÎ$r˜]<[œ³pÀÊ-C:¡Ÿßå6YߎÙªTWø+Aë„m)xÔ Ûý³-Ö keS}&\•ÓŽò¢¢?Y“´ŸÁ¸ø3³†b‚Jæ¼Æ"Á+Uù•»¸vU™@5!¡[âÒÄuan¡xsÃUf䆻±–µ¶°bÔ­‘äêc{§©‹Ó/;þ_PêêBp˜ø ÙÕxTŽèpR@³fÉÓ)àÕfEäèÌÏ6„ݪ¤ªÀ^5˜Xã›´“Ð(öÆ|ƒWGx8IÛþGjJìE®ó ;Bé•´ŠçÑÿr<ÉXžwö® ì³ï7·…+*ö…ö®>~CñÇkx3æxŠ›†7`8kV¼èr ' #ê|ÙVóTUÞ ^޳¶]Úr<¢~µ}öWM¾bGA³Û¥6´¸eµ°|ƒ“WL¼ d*s‡ÑD^(=¸gI²†AŠÉjö¥»¹{ÃŒ~pöæ"Ñ}9<”lØ œÇ³å-Ú§Àõ¤jRþ¦¥m([´`”8Ü¥%àkm+1f ã® ±ÕIláãŸZ€nóȦD Õª;´)‰ŠS#µˆÍ,e°S¼íêàÏ÷Q´:è³Ážº}ï,*³tBźŸVXÉ«Vé\ˆdòknµ*H1jah0 )†Õõo§V–©R, -OþK©HùtÃÃYõp.ÝpÏÓ s놇–nÈYL;œ5ùôÃJ5©!&õÃ(g %Ì*Q ñM¶†øó !Vb¢x/Ô©’ÇÕ›|J´ÄjMª‰tiüø*b\A¬d)ˆ™ê!©õ‹(ˆõ0©Vkß…vˆìw˜W;ÜóµÃCW;Ì”À+qÚáa5®þœC?„ÝØù°Õˆ~X õø< …iD?t œ'Ë‘FŸ³qð˜Üè][ã£)­²MKC-Û7+ÍÎ;¶'¦‡¥óŽÍ·¹mÁɦ´=˜ªL4é7d°ýu¯Ctá,RÐýH½Ž6µX¯};8†Ýãqa8ÒþwˆÁ„˜Coˆ`ߤëŸ,=ºT·¦– {]ëïäáu`u“·&¼ LËXï@ r4ÜI¤Kýb¡SÝL¬ÆØ-=¿ .¶Þ’/zÖ½µ\ù/âKI_S[ ëZˆœà1¹2tFãiã„þr€¿îŸ±ÂœîØÓ¹CÑË#Ξ€(v“/ÝÛ‰ŸÑÜŽÐw8â6p"jeá)ö8º`nD¢lº;¡¾€•¿äaôƒ‹‚/ìPô+šÓ3¢z±ÅXD¯l7è©ç¸ú2}Ô“$ ‹5­Cõj÷ˆÄ jÕ" Í‘{‹È5”GMó¦ãB{Š ýƯ þó+ˆÙGÿİÏõ þs}ã)þó1^¼øœøÏ°– âä¨ù–¤{•WøÑ8j¼ÓÛ|žÙ‘Á iÄ÷%z8ºè_öÙÿÍ ïo·jèr;À¤g(–ࣷÐíêšØë‰µuPqö5®£óFšâ8ª7hZ7ûNÚé™}žpÔXƒ0‹3ÂOë&È W5ífG¢"ûˆÞ5+€ID¼“cúH!î9™žÞÑ<L|bµ‚qCEŽ’PÁ¢&ZBZëVDêe5†þµ+[¶º“ÒNé¤T:F“"¾oÂû&¾×Xg_‘ÜãöžŠjºÑ8É0aðëŸã ñs¡^,rP´cXMзþÄ´Ùð4¢F‰Æv5*9õ« ¡¬ØTd+œ±©[ X~â`ó^p:c5Îð1Ä1®:I°»¨`Š»Û[N^7}ÁºÆýîðêC$\ëµxv‚!Ÿ'TÈ<[¦Ø6{š~ñŠ6±hÓkÆ-ªfôÞQœ¢îÇqÖ½ºfÄ ÖËn¨ ¶C.”£ÞѼss7˜öo} œ‘1·Npœ©“ó#Npà›8IJò ÁŒ·ú*׆­¡ôˆÔ?3œuÇe8?¿Fpû‰¯Ét|w>½“,Þñ8ðB9¹FÖ.­#C™/Eý!`!“€ú*{;/U+HnVµ9$ÇyN`eTL<×B¢Þh½kUJt~‹«¡ë„Ái!&›2}e㤞$¨:¹%g'f.€Z©UüN¢ ¿eˆ{p›û‰hø– d[Y+ÛAn+sÅsEbNŽŽv•E9îuPïd#1;%I -c†rÑ©¿Û-ˆxþò{DN¥"¡–ñd%lU°ÌR¥©yŒÍšdͻй”Yq‡­×AM&H7~ÒN–éiFCŠ–ô;ŠÎ#²’‡nøeµ_0›Ø.è•×¥ý(IîE!´â©ÕÓñ;Þ°ìÆ‡%‹f6¬*Ð׈–BaãCÔ°Qïr¦ÌF³¡§è‘Ù½ê½ ߥؔ†â•¡#¸ìÞ’oôZd€ À< òƒW+T &¯Af«tè…¨k„o±ô5Ïd_0ñ_©K«^gjÆvüÉ ÊÐÆ6¥ L¥§æôIÏЌۃ’+a ‡º )É8à|Æî¡Œ Å;ï3eÞ !„Ÿ{‰=õ€²:ü5;TSH¹VDßÒ1áYÑ`i»DymÙ+ª¾É‚i‹\ix1/¹g|ÊRó|ýÎ]*<"±ËµÌ 2ÐM*sx#OËÚH„õEÕý­§¡ý¯÷Ÿ»³ågØÿ^Vkÿm½¶±Y}‰ö¿µµ'ûßc¼˜}\ûßîo'[ ÆÌ³Ù¯N÷œ!œ˜mæ›õÒf@¨ÓÆûgꤻŠÐŽ’77½A~w¯ ÿÿÚ úWÝaY|ýw$~í_téHiW´ß@ûí~ïâ+®,kâj&E¶Yñ§™}‰TŒÞÄdt9ý‚v\‹°É-ŸûÜí˜=Ô¦)·m4IÿÙ€^c»q,Z¨y„škÚ깸]“CùɬÉ¥ ¨s=ó[4“tuæ´xâ‚1à{ãÑ+¾Py9LÈê1”Ù’@Èöý3Jyãaïiû&Ö!AØÐïÑßh°T!†Å?ý2b ê*:o9¨L uÍö¤ Y:…>eœ|>ùÏxZ¨úå>8ϯ¡«C;1€DÍVämÆ4Ö Qm¶ ðäu–êô®Ô)ÀGæ3öLªLK >h°ÏøŽ€aœ$m'Ü0b–)»X˲½rÌ1œ ”©ã3: `b#õˆ¬f+‡ ö;³7¶Ð—¶2ÒœJÕ/»d2øÊôÒ.D ‚2¡F£­îæ(aD¾õ°–ÈŽ°…!ö6ŒZÖ:!û¿²væ±f5Aî(M±--G׌߃à½R_¯R½LqP•$ÊR:µõú2Jß©…jÀ[ü‚Û+ƒXQð`_¯M;dÁ®ÓQŒ‰Õæíoýl2Dûä@çá’•ƒ?uAQ ëÑAÉÓIDq¥äP™o4EÙZUv“ëÑÝàyšÅÖêwaœ4µüÛ«Å®Ä_qò,®r:~c¯9œ®ÓÀpÅ‘¯~okf üŠžÁÚ×–€µ ¬i2¦¢¼{K÷”Þã·Í²Ø†þlà sÓ°•Å ‘Ôyý£ºyubŠõÃfë1¬oè·ÄÝêœv~KÛCO”ëN 0xç$f·Í²¸&Á¨Ò,ÍäŠ^¶ÐÕˆŠ©,¢9)Þ®ouª~=a%pV¸$xX¨O3 dŽü¢8DêןUέÆaýùøqlº”ɉÓp"†]MŠZo=+`Â| µ¶TE`€Lp ´©Îe2l¸ ׵Š6Ærj½ éÀ‹ŠuÄM5ÎïN޲,áu†r‚Ræ[ÛÃõû[„æNÄ\›AßÎÛÐ"ØQÞy–XÅR;oÿ¡Û¢é$tF„ú÷cGÓî~ê¦ àd—v”k„M’û20$,¹ï”ÜÏ[Rv‰Êñ9pf)9&ó´`†aEYmïGÚvv£¤RㇰHç¥ÌÌìþJ@ÃCͬ(<ô̺n‹èxkZùZaÃlw[w-Á>.4ºá*(œøeÊZ¦RÍ(ûЉ0)áùÞÖú÷pó¹RøÎzÓ.|úÿÕÿ?“i:&„iㄺyC”ZÿiŽœ!``0¸'˜©ð9›Dó÷Jl–KîD•ì[•ìgV:5G¤Ažj÷³hóêô"ÓC{ÏvÅŒeü˜h宨–H÷ó46ùŸc^,ÏÅP? *x¸ÔâˇÅŸ+’®’„ÔJ2ežC]fS>ÞI¶Z+µpšÖKÉ¥‹Wà1!ù…|_Á¶RÄè(´ÎoÖ%µ'}òíÓ‚Õ)&—åRI!Ò3Ïm¹&>Mš Ãu¾(Þ¼Å(®ŸþÇŒAX±á±b§!GÀùt»F·]”\Ú<¶¿ªÊ¯jôUÁÊŠ8.u¼ŠÖPÁ,àçEünÆGÀ*¢U²ÇÓ2ÉÕ´S¥íµÒvÍÎ)Ic‚#SJéO‹æWž.ˆv¦‘€yß^£@[hEÎ átýÃ#‘hîÄß ²¤¿%£Þštçm?œ7ÕØ ¯Xà¥cïë”dØñžŒgIXVŽ/ßr ·‡¢,–A0×>2sŒà#ÏmÀö¶.P“fAãß!Qkž×ZjÇŒx ’âÉòxß²AEØx²õ½ÝÃFËüØÖbô>*¡‹Z,?¢?ó\ÇžÒH2SÕÎŽºù-Óð‰.Ö|û¦ÀOš›§Œ³ =Y*¡Ý ‡°Äåå× >ù•]€Ÿej*x,б´ri‡rq\jåãl¼¢QFÙV"¶xO„§×·x…þ7Ÿ—þ5Óÿc³úÂÿZ_{ùäÿñ/¹ÜÿÃw¶÷Góè׺q9Em\ø»Çðö½ýyuïþìú˜VìÇI 8+Tk›;ÿÁslˆ9ð á-ÓuáTæü0§Âá;!n{cŒ™XfŽ´btë#u}¯^‹îàöº[ª—þ„ Oe¥¯e~€Ãèkš:²QÜߺ”ÅŸôùWNe­/²4ºÇð‚/½)t8û ?ü›ëÌ+x/ jV”•¼‹ŠL¢qQnx“SÞò½íާÞ55v„¯ÐÍE¸è:É®ÄåhÕN^y.’ï8Z Û~v÷LX÷ïw¾S­j¾îW{EèZMÐdA¨×² 8r(Ð…J§äÅseùXóÚ²&ušô»p ·8?"P×¢+üyVs‘GkÜ&ϬÞ…\Â¥’W ¯¥œíúÃ’é+"E•p\@˜‚,è)ºÈ‰(äB¾’V¼HZ’¬i¯ ?%—ʳ¶O)6Á§7¯cšM£)в#X3Ç"Ù|æXä–3óEZfÌ‹Ó)wžœkwùü²?†¾;n>ué;ÝXS•C´q¸ “»³"úD^»7«T¹¿nâè*$¯'óõîtž%mó¡¯Ð-a¡2JݳI4<`e±ß ŸiƒÄMƒXå4d•VÅ©ÅÝRÅŸù:JåŸFzÜGM+yEyYíœjNW¹<õy¦+¿tEÕ)1% b©DT¸¢z²*Þ#Š=Ôw7æ ,—AŸƒ.‘@Æû †=øL>éM‘@¢%_>¸<•+ëè\¬õa1Öú²Ö0‹³¾®šÌ£(,ôø/ãþtÚ#1È"ý¢;õÖ°.®9ïÃ|œ÷aaÎû°Êåâ¼Gñ«Š(ú3’Ú‰Wd&Á;•`Ì-h†—–“ÏЫ4<µÌ—Xü¿x`úÀ)áÏ}øó~|HÓ|¼{ˆp¼ø+3¡Ý÷D©é» Õ1¡1ç¢ED猽Gxè¦_·™x,¥,ñ2RâCf‰ªfmŽXR8v? £Î %uƒÊ¬ÐQ™<¯Àg 4(ç°@~L°F\8Yç¸ílqw·R©D}ñvÔG6ƒM$T8A²:„ÐÀG±6N=–ð¿‚ÍLÞ–°–ôhÃDÅ[ønáCØÂ‡ø€w¨§t\¼Õ°jAY¬üä½u´kȺä) »È¤÷Ÿ;Ì7JëW>EŒ†Ñ3Áí ¤ÈÕµJ#gk岬Ô,ç=R– ê„-1l}qŸf‘g6’&Pòx [±F4x˜_&7î•€–(×W¥ºf¾ŒBÙÅ@¦3"e½fæÒ}CZ›Ùšw5´Þ@^ÑÒ¼ƒ³>“ê¡'×8üXŠC×¾œ„èñûóûˆ´1÷Ûïƒõ쉩@™'#ûR4¼'—Zñ†|ºeè"”Zö)Ø¡BIQµoT-yi¯šøíú‹µ”+/xó‰½,F½kH³I°gªR>Z¢%¿ôZø |{¨Ù’¾‘Ž”Qòïs{Dʵ´9k¦¹í}Õö¾Û¶ôoZ‘gN¨üTÑ:^ÞÇ­áàÔý,²@w0ñÔ³p:ß44"dˆ¸¨v’›“öAÏÚ‡¥L[¤WŠxøAK8胈­ñ—9g^w`ÿC¾¹·_4·û)ºh–÷m¢~š™ûB¾ñ€2E‚m¥[¢HÀP”‡’ 3—\„f~ÜG¼áê’…ÈÏ —m2ÓžÜCd üüƒÉŒë#*föãbf?&fªÕ™óºÀê;ò@’ª:S7LŒãò¤Jµ–Wª¸øüI ŽÃw?¸ãKèÿ1^¶ûÇ,ÿõMøÎóÿ¨ÖÖŸü?ãżëú´C÷íöÁ~ \žË÷ñÈïÛ4;¾æªpÜ~ÕˆwGÝxwüY*ˆ?Ÿ±˜xw<‰Æà¥ÁEçå·áÝPºÁ£|òëxòëxòëÈë×ñt Ýox í¹ÚäºÃ}ò¸‰z™˜Kd‰Ô3_Ÿ¢÷Îù«‘Ô1”ò¿»ûOzbrõiöÄdVLÌ_ÞÙè[ù|ÎÒ@ÛkOÿšž¿þÅÿÌÛûà¾?¿«€¾ø¿Ç->pó#ÝâûwøÙwõÞE=ʱSlÍU¤À¿ö§Þý1{36™7ôδÁ†×ËîÝÿ÷}ßn†cŽûÆúB÷öÕBì!Ã:ÅùæÀ §’СüœqÝ ¼‹ýXÎ:!¬××Öß+‚­ýdÅ‚¶UW¤ »f fÙ`ó˜÷ùº{ÖX.4Xwjá… ð|ÇSk í:ÖüõyÛ~…Æò{]²%ÖÁŒK¶Yë ã~ýAÖ¼qß_¨ˆÜë`sÞ©¹ïÍxö-øƒ­ƒðÆJØ—à‹ã¼ëàår×AîËæœ×B?NZËÈýÏåäQó?Ö^T7kAþÇͧûŸGy1—z÷?{v>…Vû׎‰ÿ­ïÑ{*¹Â¾ÝÊ@¾¤;ø±·Ûncþdäøv ÿ”$r˜:=Ž8ªœŸy. r$…Œ@mâÄÉèã=ógÛSŸu»UçãÛž|»UྔÒÂ…0ˆít;FýžïŠl¯#ú7ˆ©ßS¸â2ÿÁÓ‰c„0ü_'pÄ&Øb`½.YæàÁ§Vu¸tïò²ÞÇã•4Ç¡þ£MtýáãöÊ*ÒYâùODo<ÅÙènxÁ™ïÎ@ú~éŽ/ä7&o¦²l+s’çÌ ËË8èiû +r3Ó1%¼Ûe ¢#kç¨Ë€ÃûW×¾ ;Áñ.‹þjo•­·æ)æwnñlBà|)¶hrNW% ËEj±þÛܸöfFv·kɰð: ãÑçRýÆd„a9ç5aÄ®l÷¨íQhÿžÝ£9N-Ù=Ê4Ûõ²¶qú¡€íë{óñ×^„Á¸ž3×ÞD´á *¥Þ´+™+k©•ªÔ®ÃÍZʹ²®ýd³^¢^»¼“³wFÒÓ½%ÌÈÞª¬êGJ{º%æâ–­2г€_<±©s|èÞZËo­rMáðž:ÈwËŠZ@Ðs'd; 6ÄØ¨³êW¡nÔÒpV¥GfæMvŽ‘9]åšÂ‘AU‹êŸ'ËEl†•^A"ÁÒ7H!]£×=¿6ýä}»–SLäR@¢ÿÀ$2¹ºŸôÇǽ ƒàô¸}²K^#d“½³ÊœÆ˜Áó´`>ï5%ÕÌ?ŠÞ.ÓZ}aInúÀbî T¯» «M¦ °ëщ`¸¨_¦¯ã¨ó.Å*³+Q©-¬Ê°®UwÀ‰æ l#ƒ>]ã¸ÎCSûIìA›láJÄ‚8Ná×̼ ꪳÃñÈONG£KÓ«cé—ÄE¸vFCèì—þ=]LHáë°@†ÃLv-ÒS„™Éèf:ÿ‰®“Å$ ª# ‡_õpÓ~ Um ÊPtÓýB•êEùvM€ZM÷ÈkÜ–eí¢93ΰËËw¹1”—›æÆØ9Dø×Ëc™ …WŸý›»K‹†³Ò-mmpÐó¤ñÜÃ^1IIì@‹¤Ë¯£·ÝÜ·×b3ëÌ›óÊ\'oæÏ ¶?BÛñûLÒàk¼ku)‹Uók{7“6zªZ„ ÕÛoOZÇe™–å@¥m}L“¿{Ô)‹f總Ûáü„õ½Ý*ÿªÑ/B®<=HOM"uÊ’S^ÏŒº~zô~m¿¥_&5õá»%f¨®oÁaÒ“2'9)'½ö½˜•f&å›QV…Ô,%IL´qaòÄXæºïǨ9þþ9¶§{µ32Ç2ï|® ÆÁßpGßNÛ©åŠ#„Ü*1NOíû^q'úèVÜ §ýxooñpv>FeE%š}Aé›àM‰ãø¯Òfñ¤q›ʦ-Ìz JâÔ¡ràG©¶ @Íiøn¨js´J÷íÀÓV(F§uê ¯LE"óhÈv…¦´»A×®ë}8Çt´oßEBùÇwuö¾?Å­ÿØ!€Ï:TÈ@øúcQéÙ.EÝ ¡¢±ä™z(="«>²ÙUŸ tmªèEo8öìâÃÐ"œ¹¬ó(¤†Jw" 4æK<ˆ^ȼµaÍ“àh K2ÈnñŒ]­é ì丆d i´íÌr;Þrñ÷דl¬¦:>+w ï‘qÏ”Í5qð¶è$‚O ÉÀœ‰¼-‚ÇACÀ†v2¹Ë6PÒ:¯Oe'þ¼¡Ñ֙膬›¬¬CæÀ*6çð~aï’û9éLÝ žºƒtXö7˜º÷š:š¢—9½b¢sÀÞIÑõŒëÌ Â;ñFwOª9 N$fg“xn§—U,‚•c×VˆÔ·Â2êå’î}´M·~2LeÆ#óSB—±õžŽ-ªH÷÷ÚUa° ïzÊÔßöÝ8§j‘ ùjÓ¥6öiW!;嘅û hèUÑcMFßOëW­¨‹^ôÎǽ:ŽNgÝ©_wc²Ùz!­£ð°$7ÖÐzQÔ§‚Ì›ÒΤžàÕ+ÇèaC†AÍŒ2Çïß–ÌWÍÝU©ãзî’B„p‹¡{¯ÀKq H1Æiº¦Ã\uûC‡&a48Ž[*I5ô’a%¤º‘ëJðÀOj­´¸ WNërº÷nµRûãß+ÞŽòæ­8F—ã`E[£±EvõlóÌNýü¹ü¤(V½U¾¿xí=N[oø¶ã¢;øR“Bª2ÌqÉÓ¦V”.U´š T*÷ž1êUêvÀÕ”>:—D©ªÞÁa¼&A_P‹ó.=…6‘;4ÀÉ$i‡•ç:ß <<Þ˜zpÙ@EžpdPTuäiYQ“›ë² ?q¢I1›8+’ ÍÔ”L¨ÎRSµTçÈqc,´@EÕ×!<]dÑùZ7áΰËI.ÑÍwá}±ìkéïa)ågNO±ýy)aL ¶wBM—ypæv¸@b%¶3êMubGüÙ×Òõ3œA å‘„ÿ ÷M•æÙÊ'3ã±ÄÔöe<&ó¬=8äøUܸb?`»¨‘õ‡ìñ™[²L‰xèYÑß$Ä’ö á`%͸žé$Aœ ãMYjj¹Æ×PIGd$Ó=ÉŸ‰ù¸¬8ó¶ šµo¶@ÔtýÿZ—°úi½iÊr5uúÕEHmU—¡ÒÏ£³žX<â„eM4€³ŽmSùû¹,D}@[S°xÓ>ð{Æõ½{Áÿ}_Qÿÿ?—íÿ¿ùbs]æÿZ¯mlV_¢ÿÿ‹Í§ü_òâõiî'åÊ=Ubs÷·“ÝÙq*AG èXéåÂÁ­ßá×ï[­NV-ê™ß[oÛ‡eó¯t¡º»†–ä’±bvøÁ¬—O€ŠðÌ>îŸ)W³ýîMo"vz77½A~w¯ ËþŠ W]8ýw$~í_pB-»¢ýîÚoÑø+JÖ¬(‡ÕLŠìp‡Ÿfö%RQ0J„5]N¿`ž/$Ý«žrv§nÇâ4lšrÇl$iâ?‡GÍÆvãX´Ðׂ«w.{çÆœ¯ª_$(ðeš óË–"Ø´Z"}ºO„ǃÄiXÁe´‘îXGuð(É7[±è’ŒFÁPŸ³Ž‚UÄcù§T"¼¸¡BKNŽ-Ë /÷‰0‘è8tà Ÿ¾"Îdǰª.KR/ôrW÷HÊ@áš@loS¡ h̘…/µ5ÄL+uÂL‘}á:VÛ}¶\)(̤ÕG×ü­‘¿UtÝÅk¿L|ÞôÏÆVBym¥bª@neöÏžœƒ¨—–R½I€õ]Ñ`ôÅÀœw'=ÏU¹;¼pg/é “KÍ”òtÕ}»ÚDË®šqpB†D5„ qtƒ€ HTg|N(}ãÐ1àÈnl•+û:²¯«^“ÞmӖú¸}±¼‘‘%VaX6G˜iÏÞî™’›F¬‡[ò–1÷š‰Ê0V]<‡½• ¤FÓ¬°þù5°kï3MûÝø\ò1™8]:!+rzÌÃh6O¼ÕœÁVóDZá*!Ë¢ ã#I+˜á†ÛèNÅddDЀ_ŸÍø«0óhç›Pš,-ɢϺ4_“Ó7†ã¬Ú}oaß[#—>ûøÀÖhÊ^X«tDwJ¨°¯:¬ë -kßnLIÁœÚ€ÓAë_]Y;˜“’'~¤Ä–nA(´'`¡Ñ¯·_ÍDeGÅ刳bâî—?NÜ'îÞqp‹†À©ýÒ!›#úÍ+TË|Ssh…¿åyS«*Ž£6+Ü-]:žR>Ÿìv¯87q¯P·ûF¹Ý3Àm‘Ø6|¯†5Ö¶c‡v‰Y‘m÷ j ŵÝ3¤-ˆfó»Üq$ Û—ða™Æ›ª¸õ^Œz,±Î»wZ÷£Z…¨6XºCycHN0¿ð l°—ÕL\õY¾Qû|Û«@º6L$-¸Ð°G¤Ìâ„8ÖUòU(Y‘§¨|„ÁV~sÄ)\ ŒÇ¦‹»sÝ é¿æ?ŠjúªPkÕš¥r¯ØÏaŸbVä罂>Årâ>ç ùÜy³k…|Îí)f|Þ+ÖSHKÈÔSÏN´bˆ I9Ô‚‡òÀÎzÌX?·"&]Wͱ©¥ó©×•ø{ªèÂaͲ\XGˆÈ=<=ÕAÛ6·ö\¹h‹´Ï“ŠÐ* ŽôÏï_¾1eXýŠe›<õU ÆäáëQY‘@wjp5ÁH ”ÑCžÕº•d˾3áWùœÖ$ü.èTìu)c¦<[ºoäåvÿdk®Íä.ªiÇgÊŠòEif„fj»ÐìMaDk¬¥YÓ9O’h¦x†´×¼Ùqðëé×Ûž(hã”rƬ(mSŽ}Ñ2¸9FDiÙ1çr§ÐÜÓo_ЍyØsºUÑÝ*3ײtÑúnˆJ1¯Í. ‘š…ÏÝqt±úk†eæÒƒ¦ê+KK‘TœR;ÈЊ—V&ÜW=~|åÅArþþ‡ 7$ò;+üQîS7ýQ,ºW2_Á1_×OÕsŽM‘‡šÔ£‹ÞŸ&XœJó¥3–Ð5“sÑù õkhÔÂ$¬8Úcà¾Û~áekêÓò›Mƒ®Å“±¯‰4Q×<Þ/¿*Z;ѪÉT)ˆw¹uOzÈ&©Ê_•¡çE÷ÌÅ“oÛÓ°W—ýÞàb¢fJÞì?Ç Ë>‡mäÙƒØ'Ó‡Ž`CNßñ>:œ ªÙòyLôžìfÁ~„Ä€;¸ðk™üg<- Élн9¿.èÐKR1Ù5ñÏ7wÝqÎA½‹ÚëêUðBÙoR†úŸ÷Æ8xÑåªåo[] CüÒGè¼B–#+OïÏ)+HØý«qHßsx·±-úò 0z@ôÄç<•½ åþ‡X’Arniß‚þø#»îè9þl¾»zd•8šƒVyoE0xÖä \AÆÜÝ·î#üJlDˆ^žYez”Z¿%›QL`ÀXÝ[ÿçÿTªÿ· Iäè]‘6ÃÉè&P`Æ£Ûqè^“J¤Tn>¦Ïfo*06®Sª—¥?d‡ MLHÞ}8ÇÀ`:èô J •ò‰Å¢“»’qÙ¨´ýIc´U-ÛˆŽ&ù«ˆ÷Rå#5¯úb“:zy7ƃ¶¾¢­þÏ鸫oîp:ܧiÿËíÓ %pžÍ:¡Î»c+¶KìØÑý=ÿ~m×>džíÍè å°äDºÛLMÑØ]-@-º@N-@˜bº€¹ ¼L0šs¢]éžC‹Ýó¯ÆüŸ»Iꂼ‘_/2¼ŸÁ†ÑE# +Xv>ÿYZ<ÆB‹uPØåËÄÆê èÖJ¢ ¯¬pæÓrèFÿ¡´ªüIËyÒr¾‰–ã,Þ'UçÁUB]Ùÿ,•Òó§ŠÂÑ»ëC£_R”; 9ƒš“—³ ^ºéP«J«QÁT~+­J9]Ä 8®G‚±4Zn'“Á©q5¼£`ØžX³“TÙŽ(ì‡ð*²ó4Rô9y‹pä3^êY^\‹ºoz>Çu“ìfЭîàj4†…vc£·P'ºC#¥h_„½ÕÙZÉ`É|‘vÊKDò’+×é ßN2j+›nqUfzäk!tsb…¢¥‡­§÷ì_´S²‘­Ú¯‡{ã O|æBÒ(ž“C³þ{³ÑjŸþÞ8nïîýN EñJ¼WÙ8GÊÈÀ†¹|ky Aã ZØKt‡é|%¡²Ü’¤ª@[­QÚåyb8òÔêq°~å*–÷«~;UjÃÎÈ#itw6èUŒ=Ûj]óB°òK:ÂÉ6\ÓEMÜåJ(½Ô⚀!´?`}°7ü܆Ժ¾)›ÜÝÞŽÆSÉÔñJ4§2±@÷—ö‚Í£7þ,äòŽnyaŠ™ ñk{·ó+±D Yâ0ˆdTÑËnûÎ(tQÑ’í:hs±Ù£~Z õçÞ+Nž4¢83fÇ›>¥åñq…’z‚BИ‰3‡sÝO·Šþ'Ìó¨‡4O,=Ü…¾0˜x9;í_ûÿÁ Q]U¢Ž7Ý;èJ˜AŸð6È kÖðăS´^° ~?ƒÅð;ÅIÊ[YþÇ_^D’Ò…ˆ›©!%è pÚõ×,á°ý¾ÑÙ%NXGNØt¯´fÁÁíÚ½Ômˆ„bw:íÝÜÒ\ ºÜŽiñM†º?ÅËX¯]¥GòvÝ­Hêt„؇o.»ƒI/%¯DAîÃ,Î3ë'U™Ã(±¡+áÕˆ`Vf{x¨‚³Ð*ª²ãBU®òáÉòzîÑZpʶPrh†q. á\Ê*þ-Öˆ‰ÿõZ´Ðù²@Þúøƒ‚‰éö „.e‚µ‰äò³4î}”{ªüVÍ’'v•êv² #aU3Ëò¢_ï:ò:£bMEý‰}"ÖóÑZÙåŽÌ,$ö§yÀ¤Áš§Êˆ©‰¥×è šò8¼&`JömwÓâ¾ôW«’‘JTÍgýÉ]hÚàÑÀ iE‹¿UKÌ }¶½ÃÖÉÔôÅÇ΢Pz„¸îòV%|Š$OR` BÁ¹`ݧî:@)÷ºe¿\U䮊­¯Z9t:r§¸P?z}šZ«;N_ÒÞýyúgUÄ=•Š/·™ê¦Kk•qO4Sv—pŽîË¿¶ª½¶óTÑ0Wtñ/ßðE[:†©£™;¬°`®{p¬roƒÓ½0[æÃƒæ&àn˳°jÌÛ²„®­ÎÄ™åãÀÎî^ý¤‰¯R”¤Ëá°@­cÒtùvÞò;£O&0-Ã^%Ê8Õc©µÅ¢ÝÊÙd;hrmusf) ¨XÍ) óseêóV¾Â—E`ì䘧jç\‘=1ý3WïÛ'c§÷¸nsõœöðœ=—Í0€ÛÔ“-æîÜaýôw2¾wrUo—-(1cäMZ§ª*”¢ü6$ÜÞÞýí$݃ý2-õß?í‚H¦Á¿ÒÏ·HþfZÖ9¶˜ðX'#Œ‰³fS>EÌÇñÈÍ- jfÞzß~Ûz“îYã 4µË|˜&X²všŒ¶jþ¤Õ9®Ã·’žÈœ,EÝù@©Î>p¼ãïøtkg7“º@Úë²èüÖ>Î"9RU7ˆîü¾w„ºþïPw£Y?n×[ú Ç.]ƒ¸RO[ºÇ4ϧîÛíôœ,PË íg8Ì`  ó±QžH½M:Œq`ÎI­Ö"fílû;«Á¥ÆÓÒ¹úfw5Üàd,¢Â…#O+£*ÃçØ>%_»Dšbj’Õ¹t}VùhþPezŸjµ=:¬®˜A aÂGLéR.qC?/‡ßÝúÕcmýX\Ÿò¤ 6W§lqFs1í„äÜX8Ó†"»z^ÐÏÈø<,`Zzí‰ÜØô{c›Yß 6˜1JKÉ7úéìþSag¾â`céúµöeÖQÔá.…cïòYFý6³å½°¹°D>·<øc¼¤Za‰?‰Ÿ5k MA\?ö}Íü–ô#ƒü/¡Zž}xfAš¦h†àF*#¹0}À|™’‰¨<“V¨hneÔ¦ˆæH¦HfP%6ü³¨¢/"EgåPe ËÎJ; 9åÙYtÙõø ÈH:Ë9pI:°HΛó&P†Q_†ì¼Mf"°Aw#â‹…°µÖQ‰f¨äÈ~9<Â%$œðíVó6bÅ'4…™A(Ÿ*£‘MffÑ4‘ë󩎲 æŒÂÁfïw,H¾,^–×:tÕíîÆk£½ÝdŠ1m®ôiÌÏ’‹óã‚Ì8''æbÃù¨K—›“sr_ŒÓó±ÞL%˜Îv¶½“ȵ °¶®=K-¯©‘º u§ÌUzÝ0$_‹ggòƒºü„O¨ÁV’©ÞèöPãEI@M蘨é£iÚ‰­ÉåÙDæ¡­IGÛãcuauÕ£§µv-…Ì ±¶ ¡’Î_<%¡ZdRh²¾Q£`•¸§ÐU»Bdcá±^Vfà;¯ ƒ§ðïHÍ+»¬èCÜyõ2Vk¥ZÔPvôI­ÄŸÑú’¦Â+ÜPf£”ý¨ì(®Aq{Ó—ì¬ÞI3˜B+­ª{4ñ¬ÓkqÖ &:”}¬?*½˜?ôiÕ’~~úö*ð“Å õÒ¶ŸŒ”Õˆ°Ð–A^=ÆS—ÏL€D˜ñUt…_-K,9 ™Ð99ˆeS±W‡&f’áí—Þ–¦Ç¿{kEÜv§(Ÿ}(à¨tvE{H(Ï}Ž­a´½‹»žy6#ã.½e­®&è7Yß Ž%©I"›”oɹ‡¾6CÊÖâÊŸUqY“›%.PyZÀlXû /Ï\`ßµPˆÌê]žzî›çÎÙg•Kõ\ m´{¨¿þ¥„C°ó^+±®hN¨“‘ }dze¥$*y.(¼*ïÙ+[ù»G6véjGc,]¦—Œ]`E8 ¤ 6\Ì+ÁöEŸŽ”O¥}A)Žoa¢ Fw“¯.jÂø;XSÒ®ù¬ó£w ŒF„¥wÓ‡ïÏѽh$ºŸGý Ÿ(t«+[=Ry%bñvXD©W^Ø®‹Î×b]G9\k}ŽÞî¼=‡Û±½dœ®]yV×IØM;"!šô ±Ùfmv¾œaµì´Pžœ±Í‰Dž‹ŒØYÀµ f tÎM0ÇÉêÛí‚óûf͹ β)ÛízOÑ ³´sι‘&;oÏÝ\Ë™éü¦ªo¹‘fŸÇ37Òì4OÊ“áòÇÈyâÿO>/ýþu}sCâÿ¿¬n¬mÖÿ½ºñ„ÿÿ/æÕÎÉVûíÉq£µ‹lܱ¬º¦ÞIž`áq^Ícß@Ç_Œû®ÅÙ×QÞ1øøÜñÊÉÁƽaûEÎ ¯Téhð8<:± ŸŽe“¦í‡o·ÑÚ-vCþiA›;.£4ÿÊ Ý‹v$$sv„ÿ3Q[¶D Aân‘žË”u‰H&PXš¥Ÿ[hÄÏÉ!T˜´²è›®qµà£Mùh3x´ùÌêÛ‰( hQâ*¾aaˆ‘Œ`¢®Ý ûS‰K[ lWš ›Uu”ãÕv\üwÂt'„MÝù/2²½Š£U¥'jøgÍÙ®ä£ +œb­ßÂPÖFÙ‹—ËB(¦×¢`Êe³•ÑË…T–}ç:T>1 NZ»Æ€k€óz>ѪÌÜÔ,šdøôNáSù“ÜäxÃqHq6_8õ¿–UªEŒùs"¤£¤ŠOrs«$Iôó ï`õ¯€`ü)‰Žnþâö+ò‰^‘D§(]©ú5d”¾‚ReúéPš1¼Ì.p^îâk`dºÖ½²€‚ÝÂqéa*J!ëfã ç]¡i°á0œ6ß(á%fµLÊ|1©°³òÚUz9±t'S0LU¢º«"sguwx5½Æ>RYUîßdƒÅÉÀ(ø3tð“]êv%úy9¥Ö–Æ2im©¨?E!«ˆ˜·òÒ…tùèa´ó‚¸”Õ£K™‚wz|Åîz tÑL@1¼ø…}ø¼ç(,ç '1ÿU'EQ#瘓S$Ø•ˆØKÀ];š‘Ñ4"uØPÎçLLcFQâ¼qG bwrÇB–½áÔ0+`ZȘé‰2mOQÏýû= Š{¶+:v }DZ›/è™_Y¡Ï)…À &æW,2Ú=VÆÃŸyhï éC&‚“b1¿ì¶?¤åÍ÷oà@ØÚš3xeþxF³¾Ûz§ ‹ÉØùX5 DÿÀÒ—¿cvŒ~ B!7æ¹bPxöàƒ‚½»¿­‚ú`L–ä÷œv|Ž»)g¸5§ü”Ӯͳ•uÙͰì,oã OeQ(]u‹‡<9@Ú?Þ5§k×㨯¯å±ûó´\èEäþ¶º×rmPWŸ1W?³œÞp ãÞe n7O÷zÀ¾xg+[•n¸ÈŒ¾FÓ~Öw"âfíù¦êI‰–#«íp˜8w=sN]ÏÌz39¶÷"w±vzmל1é–‚ÑñOõÛ)sÇ—qŸŒ}[ Vpê^mG“gÙ±µ‰::g‘¹yÔy÷ƒÜÅî–œþyÆýOíÅúZÍ¿ÿÙxùâéþç1^rµy÷?°%`.¢rjùø¯Ÿ«-A#™Ÿ÷Èó•ý_m‘®%’°ù¾L2ƒ›¡ó¥ {·Küü#eŽ4c¥ìÝ‹eïUãð9‡MŠ`;ýð±¤Û>±” ?‘çÎÇ¿Fã¹Ò&ðzMžÄ»Sn1<¨k÷H×l£Ì[¤{)Sêx;ÕYîÌ´ø—Œ8©ªÿ#À1ç HJÇF"•Öé§Lš(5¡ÊEk¥j둪øÒ#$¡±|¨M†I]!¦É¨.MÑ0w* Â,/\ÄÑž'i]"®Eî[‘%°î Y¹ñœuZR¢B€àÝL¼‚Zõ€Q»·œôè–ÉÏ´­“Â\Vj‰#m¯ËŸo\V‚Ô÷Uå¬Kcb楱ÁÝý"1f66ѱŒÀ*³?²½Ð1lSBÆW¶u¼¾§/2ÔU^r&œM‹u· Bµ”毛ÑöæÂ§€2#[«AŸnåÊ:«O—ïßòò=;yò♓5½÷JŸL¯Es(Ósi§ƒ<‰”MSv=óeSv.ÚgÞ~‡wî‘ç¼;È™wî©‹v»žèûCßI»¹•í<ºsdY¦—“—VêP{4û-’’¡vaæ920;s’Ù }­1‡3AòÒËÓ`­±ðRúêÁð.zìËÁïs( ‹fdŸÎÍ¢)¨ÝüÓ6“æõ ˆ1'Õº{^Ìïá‰Aò͈;dxtÏv͈øc8Â2âBàyf„þ 93\êÜ›Ç1ÃóÆðÿކÒÐE#Ÿc†Ké¬QM8fĽ1²d…Åš9¥Åc±fèG²ˆÉq^·‘ÇpúÐé¥J,­—©¼VDédŠù[²òEçíc:itތѺ%/tf*)G«s6^”Üx*ͳ›àÙ.îåzÖˆ)ÉTÏV’g§+ß3ek2=àdoýó®ÜÍ» ys xzÍ꿵f¾wÏœÍÁP{I±$N¶N׿eγk¡lÉ„œýº° SÓ°\Ñï”iOyù8!³!’;6%Í·’yhõ…Õ^Óž±«azw¡¹ŠÂkœoô•õ«ÂôaÉÞ¨²òù•Ù•Èzíʰ®U·ÉëxúäRÐõ…¬'±òNÅäeÝÁ—îWõ“J1G”~†-Ã[F&U™’¥Ëâ¢ÅyÛµX9½sfó¶K§{çJéýWó¼cù[+µŠ® ž#—Œ7^™#¶mE ¬Êq̳+šá£÷ä˜7Ë1¯I’g!¿{¿>’V1w;•óäŽê:ú©Oì{ƒd5iÇ¿x"”dEé)ñ´(ÖÊöŠ©ކ† ìND‹‘L’sƒLÙ²!¾;Mh/ÉjŒVã¨2-Ì›U!=AŒ‰;²ÉÄ8cÍèw†ºÐ¢;@Kõ›À&,ïøÆ+‹’àÊÇíÙc•i–®yXGLÖÃrb¤”Â/ä:¹»Â]ÿ¡yÝhçô¡ív»>ð½‚ïƒ|/ˆàFpàñ«ŠƒÞêÍá ï_Ý™y¼µû­Ó¬U;N skÄ;x)Ž¿Ô²´ ©g¡â=˜p ny~À©a´Ž÷qh¤­íŽ:Ú=K8{n‡1÷b‹ð¶›¦ïXù«ìb>ʹxCB ŽúˆðSFˆŒ¨Ï žÖCËyI_ÝjŠ|xÖggtV\«?‡cŒ »0º«?è6ž]kb{i;<ñlïn0xfy™*·lv 0h£~Ý­ÊßÔ£SööcÎ0³<`웸KO†ç‹²“Ý„#*GÒG=t²UÃlBpwC¿Úˆß¬àÄ#¶×Óeâè?¢8bƒØ7† ô8¤ÔÂÁªÞÓµþGÃXúž_Qÿÿ%dûÿo¾¨)ü§Zm}}c ýÿ_¼\òÿŒ¯£Àÿ΀˜@R›"gøĺÞHÚGïÞ´ßK©•Q‘…›*Û©ƒáýÊBýÎ’9ã ’/xmðÔx¦œKöá,7;½››Þ¹½îÕ ;¿vƒþUwXFÿ‰_û]¾«¶*ÚïN áv¿wA¶Ó¬ø…ÕLŠì@†ŸÒHw-%ºŸŒ.§_ÈÿÄ Zk•;9v;aÓ”;#IÿÙ8rÝ×IºÏ»Øk.àÜGÀ9tÐû ǰ Ý`ÿu-ò¶]¬+ ­ºçç½Û)9Ž+ZÄ:Åg˜ þ 6¶ozø±É/b$ÊÖþEd  ¬Ø(þèÞ¾U£s±›4Ö1Šâ](0¡ë±7y$bœLïst7ñºsŽI´iÂi@8š¦L»LÎÓ+« )Ÿ ýAŽý„¯u¾ô𠯌ðššïgÎÝþ Æ®zC8ªDñó¢?ylRlxÑ¿¼⨣_°5ÍÈt‰ÑŸNzƒKÕ53£^|•ˆ„X‰üQV´څƒõÅèíÌÆ“c äÝaXŽî®bLˆýʲ°Ô{§X’ ïV†Jýáç‚ü HQÛê¹-]ö}«!Eš k°h¸½í™€6%e/çsœþþ¥7i2ö¨l»g«PòioˆêI؇ÖW[fâj^@ö…†‰ižÍ$ø&}»yÏf ¬é(t/§½±O¸=™Erf1&®¥G¸É‡Ì7AT ‡¹É*”š¿h˜›¬Æšñ¹ÂÜS]ïŒÒA€ô½¢Ét+öMV’—iÓÁljÓX0¤MPÚÒ£Ú൹*¶¾êü¹¹wK…ÑOÉ[´) ¸h'_P@²ç.ÃFˆ+ðë ê鲕½ ×ð«hƒÖå=WšqoÒ¿¸ƒ DÝnªç “6€¦tÞs4ÇøÆ¾ NweÅ—®’rGbסL`%’\kõ éOy>¤·Ï¸ÕÇU&§î¬“¡Ó_Ø-²œ>Dõ‘òpÓ“ ªÃæö·¡37LÜ$ÃdvhrÑaß­qÃd¢my4‹ëÑ/ÂQï¼+ÀáÔYê’y¸iÖ©ðJÖ¬³ÄeNࡵ¶!txO%³FRIß¡[ÄïÆç=vAe}ˆ¼†ŒW«ÓcF3°³ã!ç …tdŽA(¤t5ºÄŠÊºb§ðäš4œ³3H Ï cÁtX¡‰rKZ0¸R‰á¾`ÖX_•d:Î\Ó ÿ ‰&‘ïkIW HOè„ K“˜&Ù…tÏ œsáXNS~7YÞéÎY¬+ÃNÏŠ³"7ï´™Š×³B6ÝV‰Ǫ̈)–˜||ßhÍE5Õ w\äté¼ÈÈó=Ðï„8«wÚp¢=Cí'1!µc÷`H‡;<^Œ†½Pm¼ç 2þ‰âšúö¸Ò°ôšþa6­Ét«SY†ú=îݺç<ÊúV¢» ³•Z#}[”ü"FÆPç®jÖ›i3ì‘ÚGsFh‰Jù‡õÑá’ð«¬ó‰­JXçrƒ$DBù’™\30«HhöÈjüqèÄY}ÕÃFçQ‡x&—B̬`°Ð>¡˜ ¶s~–'gj†ÛàBê`he›"i…*6¡?WuÔ7·Q£½wÌ©3Z ™Ý†“; jБ€^xœ±×h_-¾ƽÆ›ª¸õ^ y UH;¦bŒæ,$o#¬{¤qo‚æ)ø¾7¾ ÈC®ú,ß(®n{\ÜÉÐ/iÁý{DÆ }ñÒU ®ncuDâpù}”f+íFÎÊÒ–« Pšd|ßWs£FÐ,•e$X4߀ÒÔUŸ­U…‚}K‚:}ÿyðƒz0q °õ‹¥?eªçПÒ1êâ¾aê9’-(VPf=µ9…vY<¦òÖ¬nÝ «U# ©#—WawáIÐG3ë ß;& Ù´¶>¹7G¶›FŸcÒô"}ÛÝezù Ÿ¥ Dwƒ¦]«‡eºï|êõfÅÝãðã­PÌê ãqI;º¾à¶£ñøê4oGåû¡ø¼O²}<;š-»¦¹†æšd оZ8“QÇ¢fMÙ±îÛù9}n’> pºÇÐ)¼Œ7*™º“·&”ÜbæšPòÊW ÅL¯W-[ÀTâ ˜£­™?5¢VQuxCGˆB½øœ~ŸùäŸÀz¢{F+¢§¶´ÊZÈ)\Þ¹³ys ™Òª¹°‚aíž;L¿ºé±›'ÞiQrTÁ^|EÃ`çj'½Q»\U}韀1Ž3«zEŸ–-\€À·AIçx'¶v7ÔÛ ö×s Ûº\û º½néþ§g&6'Ö=–mg#é©N îÓ}cø·ó„î["ÃȈłþíHYQ¾xÿŒ mªê/l×µ„¨ni ç°©6äé£a1<Àf&üzúõøYûÆî˜‘ŽÜë¹Þ`ÖØqùòï+ÝBsOÙ5{N·*º[RÀð&¥™¹?$ü¾^‡!R³ð¹;Fç™0ò t, > séAÓŒ@õ•å•UÂþ@Œ€ÊN'ãõÑŠ—Vvtqâòã+ï°Rð÷?à„y6)Há T¯ wÁ.Úºuf½‚s¤®Ÿªç/jƇéýi`Gˆ¡4_:3`]mËŠ˜a°>ôœ¹ƒ¡¢õ5¤»[í1pßmï_°V«>ÇlhïZÇHÃuûåWEkb'Zµ×2Òã.·îIÙ$Uù«2ô¼è Tíq¤÷ì胋‰šU(…é7Ä?Çp|Úȳ)š &Ó‡Ž@Ì‚^@ß±:6œàQ­@»ð˜¤ÁˆµfªÒÑûµLþ3ž†h>¸toί :"Å’TLvMüóöü§½®^eAø”ý&%hÌyoŒƒœ€ûÊU¥ T×B°˜€ô‘:¯Pư÷§ÂÉ€î_{Ý)ݽÞgx·±‘ˆäAá>üŠÎz<•|›ˆm*>5·´oAü‘]w´+6_‰]=²JÍÁ «¼·vÇêªvÑÑÀdÜd£3cc ýÓxœþs•}¢Ôúuh§OUñœ·¯ÂÇÿù?•êÿ-ƒ„@ù#zW¤Í]™v»…¦nÇ} ™ø,"µ¹Áåt³7aJ:¥ºJþÖáB¹'¾0F–mF ¦ƒ¬è­Šz¹Rb±èäî†dÜGv’@Úþ¤±Úª–m DG“¢Ä{yr ÓBõÅ&uôònL®ʶJ[ýŸÓqWéDÝ;åƒÝÄÿrûtB œg³Nh óîØŠí;vtÏ¿_۵ϱa{3$úÀÒ';ç *·Ò¢±V8Z€6JÄuœZ€>%Ft6™`<<E»Â˜*ç_ͶtÅé·^d8’¢ãüá.Y˜‘ÔÁÓÒâ1°S¬+)´¨i¨«©VW@w°VmXxá¸õçÒr(þâ¡´ªüIËyÒr¾‰–ã,Þ'UçÁU‚ôÁù³¨3Þþ©Â€ôn'mA~-R”; þjN.˜(¾tÓ¡V•V£‚©üVZ•rbpÜËfc°¶ÜxÑˤWÃ;ÊjswU^PÈzlÇ^Ú…za«Ý²ˆPåÛM¨`ÌLd51x\‹º¯}>Çu­ìfЭîàj4†…vcC.Q'ºC#¥h_„½ÕÙZÉBÊ(‡ÌK„ô“+×é ;þ0j+›n‘,Ѓ¯B…L¤BÑÒÃÖÓ{ö/ÚIYÙÈÆVí×Àýq…' >sq¤Ï%œæqË+ŠW:Z(ÕÆCÞå[Ëûš}í%ºÃt¾þEŒ4·$©*ÐVk”vá¶‘!-¤»¸Ri%vÛ©R;B"C…ï0wÍ”)к͕ Ž{cÅpyGž0ÅÌ!þµ½Ûù•¹†ƒ|(Ã%-ÇV!à¶ÏýRÁi¨ºÈv íñA·¼~ûìdó÷ŠÀ@`f«kkr‚oúª ò ×¢Šè3"(¡Å{s8Þ'ÌE¸³7O,ÍÖ…înFÛÓÞùõ°ÿ„ÔU%êxÓ½ƒþášôaË“~(X³ÞÒ&Ô­õûý Øëwº–‘Wü Ž¿¼'5ÑS#BjÅ—ˆà¯YËmû}£³Kœ°Žœ°7è^齚¢IUˆÏ…ׇLN§½›[šC`€‹ j’¯Ò2ø¹£+æ¾Ð,èô÷p+’ZR™–2¹û&½”E¸{°±8ϬŸFxÆ=9"ôšûÀÅ``×í:fbÁ¬è¸H°2òɺïÑõfpxµ\ÎeÆŽ`d­Ûþpdÿ-Öˆ“%@ìIà ðǼ0±Y™áµ÷j4ÔŽS ªÕq= 6óÕª(ŠþŠÐFû¯ÜñY[Äþ48u»ó4XsâT±à°hâAS â€æLɾíecE²Ãé 4®V%„ÉlNÞ“»ÐbÀ£q BiE½Å‰TÃW,"¶ÁVuÔôÅÇ΢P:*é;'ÿÄÁ‡3Ž=›x#ÍÐ÷úÞrŸºë¥Ü[ŒýrU‘ëFÚáS\¨2þÜêŽÓ—$ÐA®þYqO¥>Ém¦ºéRà;œÁè±þîÉÅ¿ ªrô³o>©âÙš# Ã;-|‘”N7êÄã+,˜ëœVÜKÖt/̾ùÍPËadø‘Ùпô4sóSà•½F«Þü½Õ>$ãY£,?Ø>*¶¨+[ê¡u=FѦ$ùðà†ÓOø`Óê+¼}‘]‘5ðð˲°)ý)ƒR{PàÑŸï î¼ûÛI£©° >HOìÏð}Yì§y´~X?^i¼i–Eç°ÑŸøY‡a‚:‡Mø*BttœÙeþ½óAb%»kGgC›Ê2(Í‹ólá:ÃømùÀÎ:=íðÀoe1º³Ý¬)¨èªóØÐeóíp Z3Æ|èÏÄwÁ»æfxBC9vº—=‡8˜šç˜Óà9tÏwIª ’ìêÛöªlÔÇ¢µÜu͇´àÃÕ½z³³«§þŸ‘}Ø\Ï>X½líX°«òÀÁ‡‘þÎåÚ–ãájã#_Æh–6®b¡CZ™ÑdH‰GÛ÷GŸÄ5è€}+54}íc9¢I´F–•sø”¯¶`GîúÿåÈwÉ`f®¥C£Ä  ®-cR瘲Jw7œöaí¸ß<}ÖörY(¸Æ—pÒþŠ m>K·ô÷Âg 1W‚·R\=´.½ÔâÉK5üst16ötðm܇†Œ„…÷Mý4†§¼ó¯öY™p+3õÁÏ‚Úã ðpÑÃí6õÓˆÊ}P? ¨lÇÖÉ®SGkG‹5©u‘žYS]s¾±˜îMŒƒ$}ò+ äíšDoÄ©ì ÙÒ½ºsàÖhôTù¬Oî¿Ï_—ä÷¥”ô^Eù{so€õëaÎöæ£`{!q2˜gâ!l9¾þätÖ_ !xGëw¬jSZÁ$çÎ4k/š()! vÿÖùƒÞß]¾½u›!öœ)íPL>S’E¥¢<L_•DR$£ÒV0œ‰– ^M±¤Ö’€Â9ÙÇæï‘ï7Kœ& “‘- þ>è3¼ŽH‰é'«ú”}ϽÊI@ÑÇÂ$"®fÊ/Ü~ª ±â¼–ͨ›¾Í^´)±*õFƒ²ÎÖ3t«51aþøûü½`6€CĔڞèçÜ=äÙU8}ËÄô·ÓœF˜ýG€ô¿7¢Åó?U=‘nìì4J6cú§1°íZ\8ìù@¯YÆjë¶ÇwqeÏ´¢` Zoº½ 4 âÿ ãÿq^!þÿô²¶\øÿøÿkkÕuÆÿYÝXÛ¬!þÿ:<þ„ÿÿ/^c.þÿñ^-¢ã±¶Å…~#ãkwßî{n¬we³ë_Ø–ü¹ÐÜs¸Çlr‡ªn5†ZØâÎÕOŽÚ¯&G‰Ñ¥ `Ža%csënx~]9èÞ]Þt‡„r(|=² …­|OèÝae|âG–‚…Œ…uëîp‚ƒCéR`²XQO67’¬’ dÒW :(îV¡åÊ!¢LÖ8bÍÞçÞ@Ô,;²*Ó»Š"Ô‘…éÈË3vœj°7ê$´š§[‡ì@ãF€ŽË?¡ ¡‹@NN=ÓÄgšh>•H¯ãk0 xoø=z¹Xs¢ñÙ ‘o†óAòÙåçµ³!ñRUä糫QG-Ù£EúìQžAÉÄêÓS*ƒôç‚^#ïH§õ ü5DcæH˜?­òµÏ†÷Óü¾0ÆŸ†X›Y^;y‘ª<Œ*ÇéÑÃ?ãhÈgv1˜±ðg .ZN4» m>4§/i°±L04§C.ZjHcˆh³Fu.X´‡Hqþ‰Wä§û¤8‡: ƒÌÁ<ËA-%("¹ÔCÿ5òJïf‡È3¦ˆ½0GÅ*A=<¡k£KVt‡gdOJ¹r­ÁÖÖ~®Ô~®¬½™ÓókBŠä¦·Fg@Û6°ÔUYv§× ó´jM Vkk?S«ë/_ZT£I¬ôõ­Nýà  {mïTŠh@¶oE¨ÈÙW¯h!³l‘M¬;N«Þ*ðSEÇîX­üŒ½ÚêNhˆA‡Î¥1¦ÏZEëKô­Qå©´QE§7þŒ£E…Ï`²b÷`‹·³˜ºsÐX}TK'øtóUQ:‚Exÿè-H1ÀÆI ì¢÷îDàó%, ‚P>a^ˆq¯‹þÌí‰N¡Ôi´¯rb £Âͧfi·ÝßZZ-Ö’Vlq9!*R$‰µÔq°C§"Ja¤¥ÜaBNtQKs÷Õõ?ËÚM½Þ$ºC Cà[—RœÀFKvØo±è­¤2þñàMfùTQÓ}Âû=G÷| û9}ë§ô£øÔ°ò)X¿ØV ¾–œ4á›Jê‹Bƒi­“Üâ!ûì~Id3ƒÊjeK›çÑðÖ‹…aŸ+«¿9‹64£ÑšÜÅVƒeд—æÜeФeP-–šøÃ,x®ƒfÖ:h:ë ?tÖAU®ƒá÷¿šî:ôæÇ[|™-üSE›Ñu žK®ƒÏÂZÀè•ÉJ5¶ª¼ô /PQ^ ãËÁÔär z©o)à+ÕT£5l”ô#¹îïYúK#uï6Þüz\ÝwÇÚV­ŸDHÙ—À6^ºD,XÛ3hßfj ’Þ²ì¹b„æµü.”'GG ¢òß1Û[Y4èzþ§?@A]äàþuŽwÒã¦Ô–zóè׺Ò^Ê¢ýö=üNÄNY¿ Ü»SÿjðWþ€)x€ÿ«øó~~œÓ3ÒVžÊŽoel>Ö ÑI§š²z<ƒº¼Î—Úe²„ã¯÷õ#ö›\‚Ó$Ì 0Ìü„i~Sf7ÊÎoíãHíÚy2V{dþ·¡új®zœ´yÆæŒåaÕRNkø»@¤òE±"?Bºågóù~ò3iÏ¿”{(­ã}¡}rÊã'-72·Hs.7¿Îw³ÞžtÚ Ï¾gŸÓíçx¯–ß뇇¾¡]5YDUˆrFÁióz4"ã:_äK» xÄ$Ç”_ÁƒÇ1@Ó†ÛT--»9Þã#OXßZ%=RO$e±=á'·Ê#]Ýšjˆìź—Õ$†òŠlJ¯”õ ¤Ü°Z“°ð{6©‘íK…OHçiÐÓ`²rtV ËI4.»;WAg¿ ”±˜~úiŸå@‹W0°25UtÕðLð§Hr©úœ>Ç¿Ÿ…‹¥]Å}Ãø´ššXÚê HŒPi{Z¡ò‘±é ‰íE‘e²)ø%ÙÍo$ ´ÑÕí‰V7Õ8ÞjÆÃJ 8~8ò4óE:²ð'Ôl ïLhúÆ=ëN>§ w¹ø¥ðKø¥6ƒ_b=)y>‹ìCª´32”îkÀ*œo" §5³LƒfÐŽ6S íÔœg*U:=ïTƒ}Žê«ÊgY,¥ž;6«¡€…JÐH…>ˆR@TËÚ¢ýx+Ö9  ÷Ï-’J5ò ¼ÐBˆ¡·ÕZ‰ÛF½Ov¬"ÿŽé~ª´)[«•ôó«–TY ²¶&0²}?“BA¢½Q¦Pº×Ößù7´WB*Y»¡WV¾c¡ÚšÿT4FÏ®c_m4ïÓy†àµP-­»-YF ¯xT%J¢Y Ž^Vš¸>çž NåÁ>f7ÌN¥Üáƒ#‹€à$i=X±Ÿ4ßÉq¾ ;²#o«¥-³4Hät¶Ü½¤É7iÝÑ|Ì6D$³ €¶-¾—´l[áõPNÛ–¼uÔ¶­*ÁêÍcÛ"þÙȶmý§gÙ¶@ ¶žl[dÛjÒà&m[–¡U9`}~åÉÂeÔ“…ë[Y¸PbV-%[ÒAÙụ[·R+ơ̳½µ\ÛÛÊ“¥ëÉÒ¡k凲t­Èš*o階A?œaêúDÞ*È©KÔ õ~Ù¦,ØäŽ’v¬•ܱ£Êº:8ˆÄþR±•LƒØÊ72ˆ)¶ù,bÍY±fÚ"ÖLì½(&n2ífÒ« Æí Â2…hòÉ;Ñ1Øv–4ž‰œö31¡‘ΩLh–♹p,¦³ï·býãógÓ5¸Dû`Û܈¬ªä>ì|4-.kâ+i†3L`Ò·ΞúO“£0´Ìù0fŽ!ŒŒ]\g3ß<‹b-éUº·®¥0Rƒ…‡YJdÕ™‚ÌÇ4g¡I«³£›6¤EŸ›ÓFTËÚ†´ʶ‚†´˜ÌÊ V«º&4c[É0ƒ¡sž)mŒh+¹ p@á¦6¢%¨a@[aÚMÃæÃÐV”[z‘0 y…Ó››ÿþÇ2ž­ä2ž5†K0ž­Äg–ñÌRf_®ùs‘DÙ8Þ«ÙU&$_)fYP1KÊy°˜'Ü“'Ü»¶'Ü“'Ü“'Ü“'Ü“%ãžäGðhþv²ÛþPž‰äÁF¸Æûyàµ#¤+3äÁÛ£ã²@M¯µ•Ê£5²Æ,D RÕ¥I2Cš|,ƒš¹‘4šõΙ½l¯©yÔcQúy‚Ylø´°ûÛjÅøü¸Àº,õŠ  lê¹Û©Z^š›¹h^›X*a»†»Çû^ŽC¯%‹Rgž±ÝøYÙý)‹þÙÞ¼Þ®ÌÇl¦æQ~dí9Á9ˆ¤àzŒã£™•¿‡$†å/ÈRE¡WHz[[öÍ×ÚŠ»É‚|¾SÎÐ8ÓOEî¥i:ˆ±øö\Ë7ßñFQL×Êzk3ç0’cÇ  ßê?"ÊÁÀî–Ã!u åLówYr  Ú00¼£ë$hP™gÔ¹‘!–¿¿Ø•Ðy“³óÂŒð'7üq@ÖDöŸDÜY"ÅòÐcÌÉVܽÊL1¥}:Målé¦ebî60½Ô]õKúb© Pÿtæyôèl!ô-ãoá8/±ÛFL^ãKˆ·f‚1Xí’<36UбBºœìAöŸ f7æ!ôgQÑ£¡e¶!#™¾ùVŽÌt·æO›‘÷,…Vº&gÞåÞAß?D—%Ø~Œ®_é­ ºÍ^íVxãÅV{swµU™c½ÃÙàÓÆ„-¸Þ±ø«áìõN£f­yåOh­5ò¿Êð†}ÉðéÕ0§d=HSž-\I.ŒÆw"2ÐÕŒ¢,BêÜA˾·Ù\fµ­h¼È>¹¤óaê‡Ôuý­ˆ±ŸŒå¾Œ—ÆXØúÌzz%.Ée/•µ¸¿ÞFௗԦӎ|í½,êÈóÿê?®ÿW­ö¢úm>ù=Æ‹¹Æ÷ÿjÌðÿúÛ8~ý_ ×ã«?Äñï¥|½P"ÜRåÄÁn8F3s]·-Ðslo-“T‘s°,zè¼Gžc¸K.†O°³’]QoÞ3&霷¦H*R™=Ý@#´Gf¦/UXT ââT5‡ Ž]‰ºÊLºàÀÔX\ä²MIèv€u4_m¾§öqÿªï…jËyŽzƒ%}¾<Ç*ÕLŸ²€ÞH× ¬Á87±K‘sïÁþNvEÆõéì˜åWâŸîKN÷LeAµÈ±+‰zb=šÛ“[ÿƒy=yáBYJC¾ ýff,žZ©UœÓQbŽ|:‹»Iļ$ õ_léÞÒg†¯? ½“îÄ-g&£îc‚èGöÏ·­Ý²¯¢OáÐgœ0%î~A#ï?v}¥>¦4 iê€àäëôs‡ æw–{iûãÎÛãuÜH^ñS´Ì}¶ýöèƒ%»`[Lþû¹ ûq/»îƒÂÞnÌ‹ÂþÛ]äûXg¸åxÒ‡™r.!Ztw„Þ¾îA-ä¦àlŽ–£»¡«ÿÈsÅá+Œ¤Žv¯z¯ÐEŒnævØÀw6šNáÚ\#ÂVÕ·b˜lƴƒÆÖæ–zA`äW:e—/êÌøz׆ì~ùÚl²_Ђ¡¢î­z«éŽUý8Ù%wªí”æjqæ™V™b ·ÂB½({š>-=sTØeâ‘á]×moH:—´ÚN¤‘àaÈ–è ûWÂíÔ3·)ZÛE3 k¤­Š?…ï%î=Ò@5dé¦CV„úká£3øhY<­ "Áh•¤ñøgç e+Æ­*œ¯Ì'i”ØÔ\”UÒn” F–fu'*"3Õów…÷lI·nËT•Õ`€Ì~(;óTh«¯øÎk‹²Á±éߊO`ýÀC28ö¾>ŠÁ"ø™§RÏì ´A©Ï–°ÎJ‚àÌVøÎ*þ†|(úˆy Â„áCYÜ®£°ØÛ/…탩°ßÍÀu°Éð€•ùƒ¾$G1}YàÑÇ?IhÀÉÎû™¸Yo3C Y0a!áŒQª&aÕlAÅ7³l°x÷Øý ¯T}àœ$Ú}°{§ltŹ`wá‘Ó^OiÑ–íò»ðk ±Ë%"õ"¶*2ž<2%ñKô'™¸ët ðce]Þ~˜_édÿŠïUé¤ ÛœÛÙ)¢t&½^üÕ•Î |N[þGÐlç’ÿŒLÆò?@3b7KTsZËYb3vc¢Ãòº²Y ­$ÕPÅ>©Š¦tUç‰h%ùÔPCD†*jtÕÔוyÕP³û´l!“c¿Ë§˜FT¿¯Ì‚ýŒÒ”ž°Êºëò§¬’¥É:«ÅyŸW“MÌm¼ÕB—"Ú:p¶Š}Ÿ¾2›‰g›f›ËÖ²­Tãì|dsÍ÷¯í[Šˆ-õ£Œ'Ì£ k»‰›¤í¾È0Ūš2¼Û {·=½f½bþ“ÇõÿÛØ¬®þ/žüÿåÅëÊ÷ÿëXþ­ö¯ß b0·þF~€Ô[9ì¸UàÖçt ì0zÄÄ€¹ƒ£Q$D½„ɶ8Œ\{ b%!ˆV^Aö@‹{ >¹ê¢ßÖE9G]&XfÜ¿ºF¯#X‹“þbé1òA4¤Æ®Æ%dkU¶tWœÛOñx€0/e!ïÄ¿¯Ü–3ayýK·Ê8ñ.¦‹–‰ú‚’ ³éXø§zj¶–05[«\Sdj¾5Ò7v¸“_Îåj÷°nsb¦ËÜa•›-ú‡ìì¶Þ.×o.å·T¸7»‡ïèWû¤Ì)¤Üãæö‰S5ýˆo(˜²‹¬ûEæð‘Û Ënå-û“{Z6ƒ6—]ç!ýë(3`ÒÝΔI¹WuêLª£*h7áMµGÁ ކ_Ë2 í%ºÔhOrËAXÞ…ØüÑÿó\ˆ­?Ü…˜g<0@˜EßfÏ»TË1{[3í}tÝ"£–4Ìmñû#óApËvÈ:ßWT_ðõ¨Ó8\øF±ÃtÜNL2€äs‚C‡"*üN2±(‡¥˜)Ö¦hËÂèõÂï¶~mQ©\ó‚¾f_H9)ˆRï¾Ò'Óc–&¿%\¡ù¬ä ·&¸©2“*þ’)†ªT¿5Ky×_3x«ö ¼5o{úrÆÂdsjhŒŸI¡³/a‚KÖê¯Y©˜÷ wÑ>Bº"Ý~VKu\F–O—ó¾tqFƒ‘?üLŽ»ýDKô¤|.û)«"Ô¼ë%l¢²%S4‘v)c—€ÎlTˆ2§ŒNÉÍð£Aæý“† YŽÇ­ÞŸzO¶„-ýÛ8VÏŸzÇê͇ÚÒ¹öìá÷J¼¶}vŒÕ¡óY9Ü8••9‡+fµÌq`Á¶õ£¨.N»ÒìÞÛklZWªÎÄJñù÷,ÛsøÏñ½ZN6çûÐê¶W²ö±‡ÝSŸy8Ë!¹7HrÞ{²Ç˜És\ÄAÑ>Ç5—rŽû6BÿŃ ýŸžÎq®kÚ{Ss©{“í`ïëÅä·ãéÅŽ‰écR¾£g‹”ï਷„½(ä¶•¥õVrõVîuÔ[×ÍÚ6c9p=–ñ¸0bk8X©-·µ$#ÌѶÚ2³šŒOHFûÑœØK;5ÆÒãZ§Æôq°îÔ°’:Xæ:5¾Ì{jÌwf\™q¶ôN€ùÎŒ+Õ<§Æ—9N¹t¤{ü”çÔØ\Æ©ñÛ‚~PCpuí±ŽÍgßvk”þ`Ÿ¶ÅÎL‰èoêµæ ¸1¨T¨,zÂÌ´Šæ øF<ñÈ´T‚3êL›,בgý±N´¹l‘?ã®b‘š]Ô+¹ó—ðJöý§gç£á£úÿV7ª›aþçjõÉÿ÷1^ÌÁ¶ÿïñ, X‚oÛ‡*™ÀN£þ†Ü_v@êá ¶áÁ¿’4íï2ôpt~£NˆÉx¢z»UÃèvÐe„eüè-𬉽ޙX[/‹Îþ¯F•œ×ÝXŽ£YùdÒõ‡›‡Zmo;oO¶š»â¨½»Ýè4Þ¢G(ÍÂ<>ɱ: î¨$>â?EŽÈõ­E‘J‰¯Do‚yTé¸wÞ¿“˜Ô—Aú\ôÉ¥Ï8•v±¼åŠ{†³lÐÂŒIpv¬ ZR&ê±<ÔéWúPRH~­2[5å¡ÕžXow¨i¤Uä ß]²c3,p8¶ÌR•·#Œ¸hÚRN²4xìƒTë¯a`í–„r<Ìò˜F¾Â ò˜–Ãÿ8œ´†4ÖMŒÿÜõA›{åyß²Q\µùm骆£a…’¤¥Ûµ(t|oïƒ\u™%7¹ƒASšÿ§mrwf½`HSËs•·½·\Rf9{oE¼½Ó^úžh0§ \ÆÓÿt±ReÖöû]¥6þ@/\y"u³ »‹Êy[ÞÝ[èJ}9¥g=ô]Z®HÍJ¿òGùÚëã˜Z‚ÿ¨|º(þëuÿ_¯ÿø%QQ“+Òµ£YýAÅoúðüÇ TçxV7.™Õ-L\}öƒÍ•wÆ“÷<ÈXÇw¥è¸§Òâã5¿•ƒgyͳovœ³vVTí,L-Çl³óÛÉ·Ùk«lWa‰s#ÈŸâR\ ñ{À˶U e«h°ŸÇþ^~ë%g Xå».1`• û½Ø[oOZc:£·X4í]wó†ÎDÑOA?¬wvùg5Ýíz£õ®íÕYïÄ« (Ô9l¶Nàí)~šVú>îœÄã¹×¤aÎvëÔßíÄztì–œšñc}Ö“ã°Ó¬nÿJ™[Ç*=GF Gª®ìËèÅÜîû;íÎv³,ôûx+]¸¦íÎNóNãqg~íÁ«72‚ÛPq5W=B¦p«¤òâ)ŽKGL¤S†Y_øS¤Û|öÇGç奋V{X4èíŽ*-¹¿Ë"¼Ä@ÃÕExÕ›Jùš¢0è:BÖAÈzsAÜ;¬"“  dÂ*e×N²ª Â(fDj¹4v² Db-êlJBÞd›fZrGYÐéöAQŒýÌ–RÛpî³Ò]ªÖÈ›|ÆBúÑé^‚¦K÷æîæ±Ä«“UZdyµ.<Š}ê¾”v~/ltFLòÌ,=Ú«ùÌM¤ûØíAØÞÁh8øŠÃÇuþ›féc¼èbÄàà®kW÷ÃŽX÷Éî oªîh µióQÐâ²½‚‘» Ú¾#xT±gBÛ¶óˆ’eQ< t¦.ŽÑ ÃFš³klZ“;ï±HÿG‘5wÔ–×´Ü›9Z-³57žðcïÌTë9ö/-å^I0PõÑ>½çéy„½ÒE Ç©‡·åÿZGNŧ‹Èå_D~¬sàÂ-L§1$¬§ËQ.ùt9ú—£.l×"x]ÇÙ(]Ü…‡…Þ:¯§ñN¤ÃN—@ýé*×RúÕŸºŸŽ]ÞÆ: ôrL²ôÒ|ˆŸ{ÝókÓÏÏ=„µ³k9-ã 4Ÿ`5œ·Ovc÷Uæ|4÷`ãâ àplJê’8=éOl« )»LXl^Á¶tw¡­ Ê® ˆ]\(q Ô¯ ÓW„qD½ðBù•Ù•Èzíʰ®UwÀ‰fôqôéò©ëˆzÇZƒ=>’”X à„9…__ðâTÍ.&g¯€ÃŽoî¡Ñµ±­eqªŸ£!töK‚f¥鋾Όê‘ÍLv-ÌW’™Ì~8¹c¦®Sz÷‡®4üª‡›„'TµÅ oºŸ`«¤z‘EþìžO5OŽßÔ‘b–…ï5ÁŸ7H‚­·xn(k‡ŒŽtÈhÉ£¹Jª;•—!]´>¦p÷ÎøÍÎq{~ãÿõ½Ý*ÿªÑ/ºÊ8=HÜãøeÌíÑP?¥½2S¯òk8Þ"˜Âã­ÎÒ2öúÞ ð£ÑÊêÊü.&I’ô8H×ùXHÍ“ÃÅœ¼TÍÒ<Æîê‘9,– 2)½!ˆÂ°JEê1Öi}í¿¼Ç·ÿò³±6_øErùpü–ʲ©¯â¬Â§¹ ëi¹‡÷H{ïQ1:=r8ãt*øœÀõíú;e,v¿Lùd¹§±¼˜|êxö½*x?f+š5{±bÛÑbº2o\[ÛÐÆ2ì GÃÿöÆ#sÚǸT‹Ç£/¤¼–Åíàn"ªºKTÑÁŽé¿ím³{;éFC#ÌxëÏpÈ1Ï‘?Hëc‰‹XŸ×àsþþ9¶§»µ32ÇBï ¯)FèºM—"WÒp@é_ÜÁ¦Ú&“eEŒnÙÙùÔòæø_þæ5ÚDËäT*ýêEÍÓ¤8W×Nb¨²àU¸ŸN ÅÏ£¦‘uuå»LDª@†šÔ¹Ñ†#Ã’ï0E!ühƒ¾tíZÐPЇ3”èžM mø³Hñ@øŽ±XÂ?OqÃÆ?¶@áó%<æøõGsíRßáªÇÇ×Zkê2å¹îã*öõ©Dצñ zðgFC=uL=p*­–B¥˜/ñ |qÁƯ°æÐ¨ ko2 dX»Ey)B‡|`%‡ƒd²yÉ4/¯²$´¤’Ý`h b‰ZîJÄU<¹NC=˜µ˜{Œƒ‰,Ü·F|üîéÆÃQù=Õ¯ÓÓÕSü¸Ìè ×yèÔþwP9kà ^ÀSëÍŠ¯ðÄ_’4¼@Ä]~¥Q‘ +ÅŸƒÖׂ"Öþ²±–üÊ~Žuº¿/–=€›‰tQ¼×Câfæ &é9°é9 C×÷"ç°‡.P±™ÈÉë?-{ª^òTÐ!’dÿÁ ÎÖ#LSdŽ^fÎÑO÷et„=Xîðý,‡Q¾!üy¹l.‘"fVcs?}^èJêì =Ö–Q­Íb„NLßwª¨Î»K`•èY†¤ÊdÖÖf]­.m¾ñàS­Ý{ÍÜŽ;ó-±jj;ÎÜMf°³7âð5c°óîÜKÝBª3·ûÙ¼¿9ï®™ŽûÎÅòösš‹¼ÛyšñgîÍó2þËE6—éì]9|Íé¼ÛxŽÅ{2.ãω“®³ûb ›â‹§£Dœ«]ÿ{2=·7òHEFm…H}+|Z„zcóeÓ­ŸLxÞWN¤lã•cêØ¢+èì;…vŸš«æçò“¢XôVùªÿµ÷8mé-Âgú¢« ÈÃ?rIëci÷¨SŠVÔñ¿h5XìzécH]¨»‡û®'¢XUbEFÑέî‚á:(}»ìÐÒúh:’°Ñ‘mï–CÓœÅG¬è¦{~^Æ=¶ÅÙyµzð­¨ JÍ5"ý S£Ù]¤$aX1%3¬?ÒØbÙXˆËkéµ<—„'er'½DÎN…÷ÅÀÀ÷VÎ|LØh–"šb&[6iẫ3ÔuÎ8¿Ð¼ÇeTm-iq²Bûj÷íÓfüåD÷å‹ì“|SÒÌ„'œdœ^;öÛãlnÖ`GbÇÝR6A~ÅO¥%›gjöñ ºqç‹”ëCPdHÚõ{S»>‹Z‘üÖò?WËŽ‚k!Xèñtµÿ“~š(bêNm#1lºéÊ#Ôøxè6kî©l"¬Î¾03?—…¨xͬõd$]{ï¡Ð&Ãø¯ÇÎÿ^­®¯‡ùߟâ¿çÅ<åÆYùß—ÿõ½…w=vhÖQYsÅVY㟡RNZx+2ÀÄÁ¨=X:ô¥ì†µ”éšÐ ^)s!•ó¥? C¥´¦)ãEZì»Å®À—Q9ûZ¡ÀG…4œ_÷Î?±ºçÐhiú—_ÙUTº l»·ò®ô®ô®t¿p¥?)㇠S¢È—§¥¿F€Òså[?œÒÛ!ÊŽ¿ò8dD,¹EþìOË–?þZ9 óH‘Nß<ÆÀÔòo¯»ŸËôzCKœ–©ÝEÿ¼;åæîÔ–5¸HåN|è-x~©é˜ÀtÝý̼|Öë u0õê#†GÄ|óó…Gd<ÃãÂx†ˆŠº¿\7ù”üRã –:‡A|Çö,§t~b¦ëûú¬GœéçðP÷ÚŸ؃"ßÒý>èp:|PCÃXž¡k›Nw¨ã(ñߟ~uAü—ú™¾0ìÕ.‡(fB%|,é¡Ì™€`f(ªé gÁU‚ôDMǼDd$çvøÀe %ªÔèË”­ùÏùffØQ47°)'Mʶ£5w{} é_%Ïc¿ûïåäfÉæßöß—/7Ö«Êþ[Ý\'ûoíÅÆ“ý÷1^¼bûï^çPnçí²è4vv˱|Hk¸Þ<úc;¤ xE¯-'OÞ,óoŽZˆeUˆ;îŸ)¥=´¼Á ý<1ǬÆÖ¡xßâ'íޤן_‹m‚Q’Æf¨È¶ÿ”‡ˆ4M²{düœŒ.§_ð0k¬{ÕS0UDmÌÀ-«¢Š²ŒÝ¶)|4»#±ÓC— × ®è^üè<ÖoÅ <í̹ládž>4Û]̦ìs_»x§Ê&B»˜þŽ?Ìioö>÷b]€.Ôƒþ§žæOÔJêh)jï‰=Ê]¸ªìé°R„²§[ÇXeœÕc?º…ý½“ÑYbp{Ý-mñ®zZ’_™/l:}$Y‰¦¬ 0›Ë‘«n†W¨¬lîh- •¯ˆ ªÀ[i‹›¤›ªVÄ’ÛÊ€RÜŽ ]Jp¬ÎGÃ?®àÍ3“­ˆ]_`ÝOU[{wƒœ¤Ï?Á*(À˜ÝA=6ÃxJÈ\®S8ßà ÞÊ´í¿¶ììmQ -Ï1»3¶È×ÌD ®)œjËdè[ ·U1mû®hÛwªI7.\äÙ¤Yö+*0 R6©Q]@fžô.ëN[¿€¢Sטé[V¨%2CR–¦Á³8㮦K¶¹äKF8Û/y2dL ¤íVn’§ücDÂ1ÂÁYÐäçpl'o>§žîpöÊHX-0õüvÝ’©=¨4Z‘ü "‘¢.ç°ÊÛ§üÃ* L¢×QjvÙ<|7qÈʲ.‡ï†]_ÈìDe²¡l•V'ÅÐbD<4e¶¹Ì¹[&”L3GK^^å-*Y¨c²Oji€²Ø©ÁšÎÌq1Æ}ÅjR¾º†úøX¬"{xåÝÛ4RYh€ _éöRÃ{È_W|ãùjbt=6´®¹äÕÏÖ*<¤`5».Ùƒ^>G{ôj.êZsR×JR§’3ð ¤Ð•@Ó¹)$ÅÉaO­¥ˆ”e\JY­,¢WÅ{ ÒÕj‡SžS¯ásƒÄªÃ–öào6È‹Io*tŠˆœœ½ôç!ó&H´J…ÖJµø¼&ŠÎ–-ZhŠÕß®z×Czð•<«ó9öý¢79‡sëñJ?&NÚwr»h\ʧ_ãê£ÁÔ‚¡°öªU^{E鲿à7-üÔÒ¡Û—ƒ×-ì‚SÔ](i—]\ü¢m\:H툅¥¦AºTÇ4­Ì¸Pg 9c@­šZ[ÏV%¶œ±ä¥£,¡Ú\È©C4xfØp¨¬ÍUmåuªµÛ2µ­c—³¬kNÞtoYϬ«¡0ÃCVõ¸½WôŸ£3úçtàÜxàòÄ(e°+ WeÙ+„Û`°À›ÛAO¢Nå…¥—ÔIØ|°_üy«|xmM¬UÅZM¬­‹µ ±¶)Ÿ\[SuU«¢ZÕuQÝUõuu >·F¡VµuQÛ5õDmMÔªð¹«[­¯‹õ ±®Z_ëU±^ƒÏlcCl¨ç6ÖÄFUlÔÄÆ:|S×6Õ£›kb³*6kbs]lnÀçØQ6L= Žâåz4¸˜à¸xûL‚/œÕ§{Ûûï¨b¶¥MØ”jEžË‰†õÉ<Óëq¯g+HÐUÃbÎ>ìÀ\Ö ¯^b=1y©‰™Ò ù‘â]5m:S´mZHõ†êYµ¼¬Þ@móö.£:ã…Àh”[Þ—žLZP©ˆî™x—RG°Ñ «ü-λ\6Zò;œá(ø¼ …/ú<ÁÍ·ïwÛˆ5N×ö‡ÎÛŒàS¿ß¶ëMiÀLSÇh‡Ê·+rÓˆÐ,5¨½Àj‚ÎpO¡ÿ{w7~³{xˆ^ÇíN d}¯cž·;QÀõØÌ©p³Û® rSÞÛÊG˜EÈŸXOÅûˆrÓ‡çîˆ,|nËË×",á?Üžå@œrhÆž„uÊ.µçwIæ®'®çóH¶€Â;‹zNnË?iß‘;æEí¯òœ>χs:<ÏpÂ~é?ï¹:f±€æÅ]Ñqç^®Îtî)ˆ»6^»pÈ{¸ó8vs›@¸­„îÖdx~­a[ty‡ ´?à·ýÀ¶æ\÷Œ}÷9ª©ÀÆIWiþú0†*gðq_›=0ê][ý›Wq*bSìOéÚâc…-“sã¨çÓh™. y«ƒâ«Ò´ÊÑÆ‡UþU‹”D«WÙ*¶WUåü Zow èãVcŸí(hÊ¡W—ó%¢¥ŠçNfwßüÐíƒó  «8.Îa-l@~S¥o*ðˆóU G>«¥¦jIàÚ¸ïýáãžEd,$¾Uåi€a:;K ”ÆTWÖu•ƒÓVˆÂ pìÅn]¯½Ê특)sî Òá}"£µœ Úq¥2KiøRx´ïü’žümt ¦ÊøGKç¬GõOû§ÕHõB‡MôÖ<,çàŒ†Q+psôƒMn´Â*9TxXåg·®@¤çòVj"‚f’bÙ–­Ç€©"‚r Á¡‚€€Ø4Ä!…øµ|^ØžƒN<^¨ÍË éÈ @2Ŷf fAl}!¦pÛ6Ü1'S4=¦¨ÎÉÁºˆòB Jåç)™W:¤¥“£Ê.OD|" 6¶¹eÔv¦ŒZûáDTõ›È¨|Ìð¸2*=$;WLHåçŠïDF… c.!û<Î9y4¶,EcÛ~lmûA56_,¨±U—(«%ZV³›7ÍÞ_&úû¼2±ªÇáÁeâü1LôÅÀÜ21c$2HÈ%çd% F—XLy«>¶öæKªÇÑÞlæ\¾övoquX+É}ª¶ÄS暬ññT¸ûŠ+\IfUd-_»·Èš1dä:oÎÁ߉Ȋ/“ûësÁ‡¦ŠÙ÷Ðøº4[rÊÂǵ?¦‰/Ö¢¥ÄkÑÝ¿çú`1õ`e>Q‹_nîÀ^]+9U‚•¨ºx°„ôÁBÁJ5BÀ½%ïý¹á'è¹¹!c$2(ð¥î½¹Âi{Y'èy¹"²2FQœ%¢HSÌâÌ“ïNN1Í-©²xR3û"zâ·SßHNåã;{sŽa¸/ÜGJeí]ópÄw!£¢«â±ì|1Åmy†>Ÿ!ÞÒkñá·¨,˜w,Eæk¯$ÙÍi7?É‹ÊÌèÆ1§nwðs~v¹Ç¡z1Í.6íϘ‹±+7sÔ±”#÷B[íÁ£«~d$ÌbÝå«~÷–tQɳœÍþÀäEÉ¢bÊß=ÙAéà›ˆ²ÜÊߣ‰²Œ‘È  ïààñ”¿ûʨԺxàû‰Ï]Z,ðýä<1®§±I'}?[ìûÙªEJfù~Ä}?[Ù¾Ÿ~]ΗèûÙšáûÙº‡ïg«6 ¿©Ò7x$TÐãÏÆj©©Zñýlåðýl/×÷³í\[,Ù2ìVþ†á¬Ä“ Ùt9âg)ÛB©Òb°N ZìÚØI1kU—wÛ-ÈÖ[ö¼Æò7W¹$r;²GKòçšcm‚ÅPVVô¦{°èÂ<°o©L]ùW¥t"Z߀z0¿¢²ò ºî£yâ&vºùØ'c$2(ˆèö™O;H²On.¼j.öÉXs£çÞÃu÷„àR]7–ÂÅ6ïÜóÐvo>^ûQ¸ø`N.^–\ª§ÇRöÐŒ‘È  ŸœoM0Ï÷·ƒf®¸Ç²³>ˆgp’‡ÞÒúhžÁiXÌÕó›®ÉŒÚ[kOá…î'¢Òf—Ï×<ÌS8½û,âXþ÷ëû±O>¶Ÿ©ë,ähþ-4χ7±>šÓðR¸Øçžo}ŠZs¸ø[1é7©Z>˜ñR6ÉŒ‘È à!Ì3QÎxôÝoæzy8§âè×Òî.ðÉè’sy/äÖÎ?þ×ßã5èbbÂÊújíy§½ýü¿ÓË鸿z¹Ô6Öàõbcƒ~¿|ñ‚~¯ÕøýÚÚúú‹ÍõÿU…×ÚËjus½ö¿ÖªÕÿ%Ö–JEâu7™bÔÿuÓOº7£Iê9xìr¹Ãò]¼˜á;'[í·'ÇÖ.®„ãvÃà±3â9¯}tõahZ·%ÊÆÐ¬Õ·„DØLl‚™¥Š¢A¿0ƒ¬j{„ÐúgwSάº7†ßop‚>O8•!"á7¶Åûî?i÷&½îøüZl÷†ÓÞX¦„€ŠZ£Ï=JÁ[[[û)išd÷0Ѳ˜Œ.§_0‹)®™îUó$~î_0µ'ÃþçU$ò¸7ö&“^¯¬ª¢Šô÷ÛÝAÿr4ö»b«7þÔô0‡¹þv4»#±ÓÂPòNýhN/VW]‚²pQ_ÝéÄL¿NVmºΧ|6’Ï“7´" ê”/3Öb˜/· W¢äd°À?îÆ˜ÿ|mgdÎ磛[à€‰L{€ìDÉSº‘¼ìu1™ŽK8u/Ör©²÷âʵCS×-b ÖÅV³ÞŠEUÐÁÕhÜŸ^ߨ´Ãª{‰ŠH©†À+318)¥¯¥"jqšWYÒNÝÊÄÿâÜVcÉx“µHÚI1ÊAÝ 6Âɽôô>9Mý¤ŸÞM•žo@dîèaÅKTî·jÑÍh.Stû‰RíZpGã NÄm'z¦DÜÿ~-ÖÜ4Ó&ûìôɦÝÜÒ1–•i¦%£ZÛÕde™.‡i¦MjiñÚ®æY*Ïô§HžiñÉÍ-mW¤ÓL ÒLËR½dji»¢Y¦ÌÒÎŒÚy±f'™¶K۵̗cz8µ“9Ûõ¸)¦™™'ZVgW‘N=_®g7MÕ‚©žu¾OÏ/WVg÷÷–Óü2÷ ûmQ>¥•Ù¿êcv^eøÞgÐÇz$Ýp«uä:© È•j­F–ÿkÜ}&wçç°_Þ ˆ,ûûá÷ýKW¤Ï4÷+Ók`"ÞÄuSÛ‹þ`лZ?wwN6û»•ôñàÕ/÷‹´¦þìžO_Å{ãÑ*‹#3Á©UŠ”ç})1(ë60‡¹ó.æ Ÿbf¹I*©ÿ”Nù)òS:å§tÊO锟Ò)?¥S~J§ì¾žÒ)?¥S~J§ü ®xJ§ü”NùïžNùõ2^¶a{Ž„ÌòÛù21/'©r,‹rÚ¦®s#GšþÞó!·e>äãv#RñÜ ‘¿Ã\ȳR?Jã{$N¤1~ üÀAŠãù~uöâ{¤ì6zvŸ”½ýKǤ føeϤã5=÷\fáŠy±» >Gø^ÏklSõÀlf"‰EÂÈb.‚W=Ì¥vI¡¢þuÛ^ô‡Wb4äeáÇ‹!…cm\±QÌÐ*©Åëú)œ…PX€¤yÅ›>™ý{ý«ë)«î §Æb¸bùÂâTÉYQp3‘;í£:ÙÔÕ¦BM;fxØÀº oéúeXÅ‹›¢WËqUTþO•׊eq\Sïªð®Ão†P:YÌ*4´‹D¼s”ƒ9 ·”ô ¨: þ25ÃAKþͱ»äôËYÎA£‡)7-/XY©ßÌ âRêvóÄiÈÂTZ´›R0Ò¯?oYIU¥ÇIö$k¨œqÊá·¯yúäè(O×*Õk«+U‡©‡ü¶c>U²æ”²ÊÌÏÕaæÙ:aêÅN+JfóõÚ‚l]ýø:æÇ«FÊ Ô¬so ´Nl·éìh ÊŽÞ‚råÂ_º¥bâÛæó•aµ”C†ŸÄexõá¹=1‡sñªš2‹å›>ËWïÛÙÇcù„pУ5“ãc£•+Ëès²çʰVr¤1sfm‘0©ƒ´ðÐÚFb Wïj°,æfT”ã»fÖ*¹£wÌT6òŒØÜXÒQ Œ9Ôýèî½E=7^T‡R”£–¯ãèµUõ~K5ú´ÑøMA»˜ShíèÀ’ +»_Ä”~'B"ü[©zÀù¤/Zw9 ðàÑôþ¶átdÆRt†j‘­â~ìÍ<,ÊBóê'bq‘¡ÿÛ…-&ÿ´Øà €ªxä#€Ïä³Þ)6_[É~&<&?ÈÉä‰ `ì'€È¾ð0G^:“ÆÜöÆ Æß’vfü-{SÀ7,ácQ/ûähiöA{åS‰VTñ1¸è¾þ”_a³¸êàÑÏÁòa2f‰='F~UÍÚ%îÑÕG[>QQ3OÖ’YCµðq"?«³”§Ï4Ã2[ÄVæa¸ÚfûO%{³€U°0Ï{‰Tù˜bóþ\³hMÿ¼¼oÂ_¿gîOäMr6R>Q¦DçÍÌ€Tºl5e&"5ÿ9½}äøÏõ—Õ0þóåSüçc¼˜½¼øÏã#?þ¥í=øqôÿùãÇʧ.òóH…~Û,z|$ÎG·ýÞ$öy9݈qï|ª¾¹¼ dðÖÁÑB¢p¼WÓ^³»­ ¯Ò_ç‰ùÌáØÞCnéUà'7ò4ÏÆBâtA,ú ;ïcé†XBGêóÆV:ðnl%÷ÔHŸüHt°]‹|‰Þ³]`ž1z “ó» ª'EUqØ›êÆ‘‘¹cDƒ~è ¹ÙÝ([Œ­^ìAû¥?Aw(èÂd/†Œ!ì²û²ñcägkB…íz 0…@óê\¥õcv¨$n…>¨D…?*Õbéç è_SàÛEÒë«ÿzÝÿ×ë?~IÔÐôk(Ô†•?ŠA5P5Ãycþfý-õÇŽ¬OvOvOvOvOvOvOvßi ÝSœÝSœÝSœÝSœ]®j­ýö)Îî)ÎîogÚü+$~gØ$Ëb¿,ûOìÁ3Gˆ(Z‡?:‘®|×!v‘šæ©ÛÙ~ÛÚ“¿¢íOñwKŒ¿›§#èîw|ôØqÞCÕ° Ja½èz@±.lâÝ1çafñ‚.äó.\³Æ Óÿ/J²Íj[{Õ:®XŽ­c C+Ø)ˆBÔ~°`9&á¹>8¸è’nÙÞûŸí_ø—Ä”†oŠïiU†£žºýáS|€rYphÚæO«úS;4oÉq’B>¾"ªñ1Oš‚ñAçA¸†£ÎÎB4ŒÃ•*Žjänpb(Ô¬uÇ-Åøð) ò1à ÉÿzæçP¤{X;ž~Å?Ýy+öñó²YçÞ× øz¿LË:pÎW ¢w °ÇþQü”˜H•°P"öÎÄãÏ•hsÈÛ;o#_P9*,ê/%;G}OôNOªm$†HØPŠ4Î/{ œ}Çb¹£!?ýkÆE&¸Ûâãjb.i–`¦ašÒœľ4Š,øe\1c޽O÷;cC‡›¬±cJø Ž ‰ç˜Äà‰GZã"$sÿ°Q“uZ"B­„zAtÔ—Ã,7i«d·P]1%MÔ%»Œ«ó¬©ÆŒ½xÔR˜€™¬œ`gñ-D¡÷)ñQP‰½¦·w1Гûé­ñÑWE¬pþýà^q•Ì£Vˆ‹dZ‹…Ó~Ï~@fŽ©žZ~§C?¶'çØ.~4Á!_õ0kñ–IqÁÇ•†(–È^õ­Üœ‰už",—a¹à)â c5å;H®ý#&2†@®¸Ôâ>Jü°q–3©Ù¢©:ÀáüÛ)žNOQ˜³¢0gž.²ö %aö)ié'ÒüøÃ5Ü/Erð·;hü(—Y§•k2ó’›¾sA!?çW‡ƒ¿Ä$o4åñÑÃGSþx¯Xüçø‘ã?7kµ§øÏoôâáǶ“ñŸÒÇæ)ô/Ê›‚jÈ´8 P¨§jã=#BÛJé/ÛOñ ú× UC’/ ”dg '¿:4Bôªp3U–•ÿµz z]òAjUξVZÁ<£§ÞTçºåÕ«“RÚõL=t‹ 6,QRFxKi ç`[”Ù^§°0/{ãÞð¼wáö¦9³7Á\ÎÓ›#DzCý^ 72.b§žge¨®–pû±Ê5Á2¹éþY¨–[J=ž>ž>ž>ž>ž>ž>ž>ž>%™ÔŸ>¿>¿>¿ªÏŸ‚_´ .|=¿þí‚_áß)&H8ªžÖÒE8¶I±°!½ײ8¬Ÿ–ŸRH~O!¬êùæNKÀD•휩²/TÙ{…¿¶(üµ¹›Šl½ªogĽ ¾)'ƒ_E$þÕ+”ëgäý|q±U2x §9cc'3bc_‘ Š4R´ª¯[µ×?R¼,݈½Æ~cÉL×´TWj‹ÔÊZu²’×*ï=,_¨¾ðp!µiK&‹ÿà •Í®ÛÔìOˆ)ýµz¿¨Õ×јÕl7¹¬àTÖ[2Ü£0ãÕ vÌë3¤¼hçò”Êåé4¡î”Ïek~2þB Ù,²¿"‚=M<²s(åEˈIÈðÏ~ØYbšÈ,´d#11û|¨ù(l¬ŠUP(æã¯¿C¬eݵ¬;±–õ\±–³$]vM&·>¶kQèCIת®<´° )äxï4uvˆ\öº{”aýþÃ4ë^˜fÝ Ó¬Ï ÓœÁú“”¼.’2úpåû8› ëJ³†“U¦GØkž=ã‹ía=寴²ÀÎ4#´³e*áO:ø:9‹uX·«üêøAf˜.)ãß@·ìñ~¹-N±,꯷Òjv¹j«Ùkž‚Ž|*^% ¯|r {:zŽÅhDJ¹oKé—5yÙ6ƒ9fiÈ©’ïêÌ #¦s烕oun8¶ƒ™ÚÜ !ñžæ\¦´í…úÉY¨é³„Y‡ÎRÅÈK{±f‡^ÎPY2Õ•áE×UW•€@ܨÉ99“©Ô¢@ŒÇ©yžNÀ˜L͇ÿ­—îÞý¶7Ec2ݽº{õêîÕ뵞ÝÆÎnQ¼{ÿ±ÕþÎ‡Ýæn½G^]TXÂ?nþ9nʹÿç/J(¯ÅqËâ¿­üWßwàDèðÇ2¾¤Ú€(äi™æ]iûP*«á"úòÎ^•G€1Y*Ñ«’0FècÌH¬0b–J»0éáIÊ‘c%ÿ²óþC­¹+;»õF·ñøéf™€ÛæaŽ;JîšÝw˜¾7s²çø5yÞ;996ª·p‘Ë'’¡8Ÿ\]ß ÓÝlr…ž…¢?)SÏ)Å9†y}.ƒË9F>F‡ÙóùdªLEûÀV ÉAߨì@æºÅCè[:w‰@)€²ëGÓÑbo<„& [y›¿æ˜Ë×ÓÉÅÍ9;cß ƒ)Pá¿á§îùçr-»ìcφÿîÏ¥ëWßîC¹j±–§Ë–ÄÆ€>*t §…»¢5úzH_U©þL¡Šºpúöí»Îœ…§ïÞî–U±žF›*ñM»Ã¹Xß±›„(¬~>™N³ë ›uÌ'd0N¥ÑKLÜ*.—°n±æº…oÐí[èö7Bî;ô=_èÒOòËaQçÁ_¥¡îÌ6Ò$MeŸù½¬÷dFAO=¶ó‚žÒtÉ=¥(ÎàG,¢p† .†è=<úÎžÄØàŰÿi‚¶nÒ˜æ]ŠÒ°´,šÅž¯Hg'ŠFÿÄúšj ÙÁ¡ZE—PÁ0eAÛ§ è¨ðg1FÔ)A;¢ñxUÓÔÉÆ%¾ƒ§T‚ ÑÇC8ô¾K‚œÅ#ÎJ¶¹’'áXõ;HT)ÛÓ¨ðÆï¡eðÁÆÍéÊs.˜>(]鬽VóìÓ>´9}yB«*^jÔŒdhœ2L9:>6²Œ jÇý/}ãKëÚâÚ–{µ|΀C$›ht’Ž÷8=«Ã1ì÷ âqÓí@×èÀ –Ò9nRË÷bv=8^ãöG“OC4Ñe{5>ü$nùKŒ[uXú.Ùmë k…§å ôZq=ºe^×-ÀÎrfy/«¥lîI¼—z»ç\fé5ëÛéÐØÓ‡—êtÿ+¯Í¬ÊfŶ嗌$án”p_G~œmµ:ý]fª#<26æ]ÿÓ¾ËT?¼=©ÇÚ¦ŠÞ‰¨B¬ÍgÐ][R[™¡ø®Ú‡Ëááp <®ØÏ+ô~øÜÿŠÇVd‚ð>·Ã{âí°ÌP|¼7M¼½ÈO8ÑVËB`× žì³Ä €h7^µ5di ö"¦pÈÞÈ(rŽDîfv»èwëUoM0dÚÖh~„Ú/˜A0§"_v{O± B§¾ªPnznsµÍÐê® 7I·œéÉe»²lr;ÖþØÞéQ×L¦ݾ(ÁÉ×`\¦*ݺ’ àõD†+½ÚÇú´}Ãbð‰ vP55½˜Lホ›e –@ÄJÇ¡5gÚGštñãl­¨k·ÕÊéÜiåt2­œNÚÊé¬jåœ:+‡¹ƒû/ޱt:Ë/“¸/÷[;À/^;) =æâé¬xñ4ÅÓ¹ë≃¤wÊÔ¢dL¾*¯–L«e.™Ä®ŒoH:DÂÆ›Ä ue†Û±âz¡Wšh©&$œ´-˶!àh§5d¹™¾)¢ÕD^·¬Ë†ÁÔZ¬`Q´,Šœ‘£ÀiC•Ýþùç˜W7™ØÉùù Eᚌ5É£Œ‡|;™~™]÷Ï ö J¡-¥~Y׬ꉮÒÜ9>ŽEÃwS~Eîe@¦wºÛy_ïÛJüx7ÉÖ®%¤ÌQ!DBycg}ƒJ÷ˆ¾¥Éë ¼¾z]‚Ïé6$è)a;‘“݈ëX‚B…Œì™4Œ"}ÀnÖhV›è4Ù¬UëôY«îà'¾O“]w1Úa·–"Ó(µÝ·ðïnƒþm#Üw,n´à?–¢7ºzJCûE±¥ö;É3\­¿ß݃îÐ'ÆaD£%øèÂÈ¡jM¾®A7’Û·íP«Æ•k²òN«býêÖv{Õ ²R·EHíí Ň&üsÒªž$“QMv¼½¬× Ql±yø¾v±Oðÿ ïN“ïÖ:wšÕVý]roO›ÕƱ|Ÿä[”`ŠªxJ¯³zËD"NösÈow[!ÀË:ÏVk]èn¦»Ã=)jÚF«ªÝj!„ö¥ 5"ÖZ7ʆeÅC"VÏïEßZ7Gýæòb]þ„–¿ñ¾Àxgp>¹°V’O°íšÈ~´J׃çhÀ»õ"àGÛ‘pýñbgZ§Ánjƒ•@ƒžŸß’-ÖR[Ü\fˆæ ÛsPËš}@Ù3ÞL‘¯ ôKr}æi]‡AçB¨[ÆšiU98Ðm¥â\6Ƹlls‰ÆRð-¡%¢Ûv'—l¬’î î9£ó´¦WZÖß|ËCÞNwió¸îaÖº¿Ù˜2“ÙWu™Ëúª×'7cÞ˜â+‚ÉÙ[+„|lyzÃhÙV[;ï1Våþ):Î|I)‘ #¡ÿ³aÁ?ÒÈàââzö‡Ý0½a¤~œ‰…0¾Z<(âÒ¼…¯„:=—gÂ!“Q÷qrˆ/µÃÖë€êa˜x•E“Hã•KV¼29þÊiÆÚ¢ü¾ DP«h#®ƒëØà: Ày ¬ÕÂ0%‰UV–ü.´¾0.ÓÑ;Gùÿ Ï@«WXTÉÖ·˜÷I‰(«3§‹VqľA§»ý˸Näêæ*Ž×ì2Â+Ê YG1Œ8bæÔršoÆÒª&ðÃ&øÝëÙp4ä‚þ­ÖŸ ⦈›†* ¬€®û#Ô,ÿì¼~•‹kçM„õn¸`êém#x½çË»®Øp åƒÇÀEž©†‚‚sZ¾hݪ¦K`„¬ËÑäVÉ0<0³Éè+…áR¼^E˜Ïž¯K{qd˜'Ö¬÷‡Þ{iͳˆKÝþcTXo`Ùâ¤bí ²Æ¾[Þz ð67È€1*RÆX`/ëñ¥yc>TOµi}]ÑaÖÝ íÆŽé¬“Ǹ'ëºj×4{R3ëÖ¬ºÔ—uÝ»öV`?å˪¦W³;rIêY”¬9%…7]ƒµó~ìmw»´¤6L›ÕŠ­G“É5±)ç4mDñðDòÙM:>Ãg°|O‡ß&Âq_ty}&ï.÷¢;AzÁƒ§<Ç}3o€ &vé0mî–%öé@ry|ŒëÚ¡YתäÓ"0­ñ¼ŒÏ‡#´ ”gê ÌÙö{/h’¶aŽ:¡9ÒZ²íwXtCK¬®Öõö†UÐ_P %úQPb9™ù¼}/zD:î;ç ÔO{2.Í6bbô|pÔ>\^χtÑ}ŽI(΄ê^?ï¿~GA^_`–¯3Øâór‰8¥Päã,bŸX R2"‘F'%•r¶ý°Ôˆ¤†Ø“B¨Y¯Ê´â*i »UYà†ka$À¯éBÔ9Êw9ïÃ!‰vs_1dæÍø‚KÉp/TÒî|¾üÖ^~üRv/|É€jññʨ ‚‚×5VxÞ¸¯³ÆnÚKp,ÞM¨–“ìÏ k¼0#ÐA}B˜ì•½– (TÒ”Õ’h+Pñ¡nÔŒn$u¤*9sìQpë5»…@e·h)¥t@sv4(]´'?EZëL­{¼{Hì·0–/‚‚ìANX RèPs`1þ‚àpf‡S-ŒeYs:,§}©×ì×–ë±ïmbàA/u5¡Áý¥ª×q-¡JàÃËNÄ—é'¢ä;öQøÒ8 “ÎAYs7ñøÛáÛ/Üjx²a+å…¿ðø I,^æÇ;Ôz± Ý<ð#rúˆËã™çðK¶›Nno‡3”ÛÉ€—ïXê}ü6èmð½P¹ÎÓê–<ð;üW) 1VtQœÝ\qðäOpÎÃÉù¥øW{T8ä?ó…o¹/ž¡~¾¼ù+ÔnŽ5¸¶¨[íO¿(ÎÁP™1ŸLÆ¥fýB7òÛ^™oÀI{75—¶?Î_ÉUAœ@²?p±ñ/XéÕ†[#…qi‹U¤l{¨&3¨ÿº¦_'°Æ¿e²l‰>Öµa—™fºé9Hì }Ä “Aü–™ófzæý²@},éÔöˆ¿×‚ká‹olJ["X/ÌeñW¼,èÏðNt;œ3 }4VAnûz0…;Ê™6“'‚Áxr5÷¯*ÂpΔ£Qwé¤`\®“  ;|ËÚ1ØfwMps¨ÿˉµÉ.„Ù+ã’M[IÆ•I ¦\›Lj}ál¬Ä @Ê¿g^½bñþÝ[ÀbÑz¼„-¦X¾²|h…‹%.ûÄ–Њ´Ð9Q"…úNu²»tŸÊ—QÃa*óÈG‚· jýó/B»X†BÃØ”žíΞHé:*)ƒ­¤Ïa€ r?l¯G%œï:ñÁxø']êRxaaT*JëCZHòÅКèvê¶Ê/~UÛ}k«ùI`&%¤`w†´ïUKÔ'×ìÚ8£3Øš€1Êhµ÷8pq“Ô:L‰äòb—Ð¥“SކZÂŒÌpdwbâŠÂÄå"câIo‹ŽüŽda-pH•…Cѱ[xcÂñT²[IôÀ“ÞNr]Ýp,›1GO Âû_¢œ+Ú\< zßA¡§?2‡*;ž«'‹õ£;+qdK #5gÈV¶¥@¶MKÚ‰vôó eK¿ªP6Ê •í$QëRÙÎrRY Ÿ¬ÛíJ¥²ÞUÒ’½~Ïâ×gñ«Ýÿgñë³øõYüúSŠ_£»È_£'&](NÅÐå\,÷ @¡G¯ÿ*qš:rÉBÑäLÜz~ßTö¯õèõþ®Qø[˜!~£Ðf‡-<—Ž<ŠJºÈq&^Ýi&BݬDZÌKAï˜eMS½F9Õ-þõBx¦Å eQ® ÊÆýôôeP†0cE’(bš<*úͤÀ{£¢ß–F-…éYˆ”49ûx/Ò.ðÜà[¸Ù!`§èæ R¸ ý™·ˆ7ØšHœÜÅT!î<ŸKh"v6ùH\¨àéè÷¬t$“RP®)2ˆ6 J¤Ò‚®Æ[‰F]BQäk™Š’í¯˜ìêãË:t®`h1J ä…º›…Xoñ?‚:âIƧÆd%Aòå¬ V5Dª:X‡g‹‰TW#CE½ñY£;ÈPÒƒÈP;>ÂÓe¨•Š!¤Ãè~ï&C­T~” µ²¹pH" ÈY C­lÞO†Ê“ž,È ŒcKÉ‚±Ðzcž(‘ªl-!?­l§ÊOùkRˆQ´¨¨£øŸß*ÿ³U^¾rãnnm<Çÿ|Œ‡‰Ê‰ÿyRí§Úîéã”Nˆ*%*,Š~Â?Gø ÿœ¦†ÿ„ºûQRŒÏþÍ·áhˆq@žh´Ï€g±‰Y*1Ú'ŽœpF#lF– ôpO®æ,ÅÖ¬å<}9Êq3éÑ9OsÜ7 gz8Î“Š˜Ýö¯g¢ñWÿýxµëV„AYàŸÑäüËLäªQT¬Ep½ÇiÈU+•b­R¡¦84LR€+OE gß©¤Œ3ø×Íð+œÎãsê›æè‚+û.+RX«32¸òâd‰óþx2¦¨qX»Èᩇ³"ûµ ”E-¤~8 Xâý56Ša8Švd4fhÒoY…tèäæú¢aâ,vä(7çaVªòó?×àÌ9ÂÀüFþqJ¬*×+׼ʋã,¹ /’žÉC±âL¼–cŠã@Ù³¤#Y‘p¤{ßkq1¡€ÆQ9nþtùæ9”N¸ýÓ,í«Hq÷Š”'}¥Êv ¼ª21\ÓÌu2ÀMU'R\®É4TUžWÆR GI¢(LL„º²ÔSµ}ÇH=Õ2AòC½ÕîˆZ ÔÆ@m¨• ’£lpBv½h•¼<¥òºˆ™– Œ¸áéÊzì&”Ž„vÒ­òâÑH;ʲVàì¨L€0¸Óiƒ¥¼ÉGfP§ÓU"õ4#RO3#õ4ROH=]ROË( ©§ROM¤îG"KûÃñÅà›Šiz9œâŒÌó™röPMâ bꦄjo¢×ܲ˜6ÀFÜNnFÈÌ'qÙ·"eòC15ýóAþ¡"0ŸW"k8•|çÒ ûªÕ½›)TžŠÁ¼?ÙG«yÀ¢#ðÒj7¦Ã³ކ¢Ã¼Õ&â ÿi6§ÈŸxc“ˆÃ |ï÷‹=s)ª ²Âdw€„ÐE£ƒó"ÊWƒ>qÌÈ^Ï”»¥ß7"ñÛ+z_oÅH5d¬¸›éáR¤bˆný/,)î@#p':~þ]̳¹æm€kâ )s8ÓÙ€/1¹Ε³±_9¾óÏÀj‘XÈ,2~ŽŠõ«£³ Ýît‘âÔzÝF2½,‹Tþ‰Ó‡@.ûr`ÿˆþ‰{²Âçp\îPÔoÑÌ?O.È™¹3 Ó‘¸kDçSEMþ[ƒ^: K…D³'¬ûð#s¶2lüaL’EÃ%¯Uî–Ek”{È\œÜàb†¦ŒpÂ+ÉèÓàlÚçL_ýé§´a¼*>Øz©Ë^T¯¯G€$¢Ÿ¢8ÝÜšªçý‹ÁÕð8û³QYD¿ÿ¾Y××ðÇv©ý¦S±£"üJ*ûà+B …h›±à¾«"ª™H[€ j§®V0›™e{ô3Á1™BsW3ªÓ\ÎoÚŠüz2‹-ØWJ¿o•7¶ô>¼hi,Z ¯"ân îi£ÙÃ!Ê+ìÇÉô ¥d7¿½Ї·poèOin{=%úÇAð^>fà¸'ÜMN:ª§%“ÁŽÀkù«†#ë¼ Ô©ëTlœ±Y§*¿«©w=ïšضr¸Åïñ¹Ò…ÿpçaàͱÔ=µªÁîFõxFUפßM1ö)<õZV zˆ^6ŬJV¶¾¢52£‡ŒúOQܦ­‘ÚzG ŠÑÉÞ"(¦IE"¶xá=ââbLqé^buµ>âmÿéV¢ÿˆuñŸ~þíxŸÃ½hbGår°ôòùx§ýص Œb3© ½ø'{óÿØÅCƒ×¬1iÄŽŠ§‰´Ñß°æ¼|Ó£nèbi[ç«‘TKG͵B·pÔ}þîÁßù¼sA—ij%oBÝe³L¯¶x¿ô¦\o–\eÓX¥àÂBȉmY‘¿½º˜b h… ®dlZóúÛËäʸPFÚ²mH¸nÃ0öiÐÎH§ýz£$íPõŠYk½â×[Oª¹eÕÜbkÉ -¾´ê½ô멃ñEú/RÎx±ü©‹àº)¯0˜·®¿¬…±²e9Û,T/oþêØè4.ãƒt8“\0~¹ÿEQÔèûÿÒ™û¿,O‚¯@;ÀIqŽ ÂÐ: ¡™’WÂüÓ{/­™ÃQáâô©9Aãëz/ÿ†µèÄcÐ5tm% Û%Ýo‡ÿ­ªvß’Çg…k.œZàÌéæB´I]Ü®ˆ\ÓÎK­1LF¼É[vÀƒZðj¡z~~su3RiÍé&k.¥¤…ûÌhÎÖÂÆÄÊqƒLÍáQynNÏi¦éIš!ÕÞQr{Gv{G^{G Ú;fƒÝoÃ9KîÔ}QA+ì¶?3ò#À*й‰6J.´È‚6üE75Yߌ²*Ç/k%@- N*eõßý„ì¿7ÿs´½±åçŽ^>Û=ÆÃKʵÿª¯Òþ«±‡|m£IÿþL¹žïnýåŒø—²«Ã®N²Y8e¬¸`ÂÁÉlè¥9FÔ±,N [{9‡¸açõú œåõ­ Ná.5›°ÇÊÞËRBÎ-K*á!§ÜœRœbÔ[ã|!y4B¹”ðNß³e™Yy9˲g»²'iW昿¤[•%jþJffBÒÌ’ò_duf¥‰tM²‚fgYñ`—lxvfp°á.=¶L§~)ã3·§é¸=ÍŒÛÓnOMÜž¦àöÇÚ ÑñnéÚ=d;Î>:M|”o´Å,Ìbn¡ìŽ’¹ ºòf` ŠdÇn˜¡ÐÁÑûS1¿ Ʊe=wcµ&s»GvC³¡§jy§¸4 5Êj}†E !¥•“>¸$—Çó”Héz2D¶Û2dĹ”d"Mâ|&»;×Tr6ÀÉ%¢(ÿvÏæs¿¨ùœªJVt¢$ØŽny:m1"¢Œt †iG·Ø€î›i3P”•ºóï0ý ØP-#µt'£¯ÊVÃ$Öî÷ÑWOÅî¿n˜ýG ç\C£ñDžԘ̙mĈèß,W6ÌŒqgp΂&æÎàëwšêõt8¢)*ºStËS¤­q¦^mÛ¦Ž¢Zo‰žeÜ´`|ŸËOF¢‚ w&èO.=¤d‚á]@Xón·³» k/²SJ«=ˆËÚw¡v¨_ÙS[’Y5§µTü,nÐKô· ÿžÎ çЫfÍ¡·í×­e­ë%YÖ›3ŸQ¼/fÌ9’š~gÃM‚ü»ùÔ|j@>Í9ò3"‹hÀ¦¯o1›[öôm$‘2@4‚XI:·“Õ§sK54z‰HÚ=*k–lah¢—‹*ÃÝ[\äèê¥øgGµnÚò ÏæñàÛœòœŸ œ(¬¡[ÞSš® Yì¢ÇS™:YBÞ€Þð.fþn!Ó%#ôažÅñ×›V‡e&£0¤8$‹m0eà?ŽoZYfúgÀFÿÂsP ÎÁÛÝä9¨$ÌA<›ö²÷:™¢m}°xÏÏÓz|ýï î{©ÿÝ~mU<ýoåÕ³þ÷1¹ßZúßîn6¼ý÷µ¢³¯rÈëÐþš°ŸÂCÁ>¡Ün¯êíÂhøxØ„ÿ:˜†~/ ›¨5ù£!¿ÉϧSÞïoP[ºŽ]&t¡§©ýш >Û¼#]ú,øÃŸÞc¸ò ±78pëî¿+›˜‡PKÓ”&+¤BÍɓъ#%ükxB—Ñm¤‚«Òœ¼lB— yûàQ—X¤F'jÍù*õdd aç|µ»Ð}+ÞMÑ‹p¥Šv”åP 7˜^±d)EßN«$Öp­YŠö|¬hïÇÎ8磌è4å2V¿B%4ôžÌÝÔ ÕòeS­€€8•Tqr¶Pã8ëÏÎùd:Ì®Q<‘âXÊý¦qž)ŠË] .G,¿™Ýœñù²¯÷ÇÚ˪þ=½?ñTÿrÆû(y9gÚí¦cþ‘ÔKQb‰,ÿ’»¢Äˆ–€h#ÁAí¢ºK–t1š§ƒóáõTúfbHNX?#IšÑg†všßـг3¼¼ù‡Td« 8èŸTJŒŒÆë¢–e¶Ö"·ÜŒ›¼BpÔ3#0¥ˆg/&ØÆi¸Cê$cù<°Æ› /Ø\@–+ „U¦Aat+ üý/  $Qô¿pËCÑi€HoËÓ2«t‚‘«+£|‰–”Ö9¤bà¡€¤”kèrÿi`ik”Œºðy@Ê =ÛzªqÑžvˆäEÞnŸ­\qáÝAäÙûê°“\I–¢ (‡”¢ "o;w ìý8VöHœÉ㤌âG¸ONû3_¥Õ‰iú˜}Š<]?eáù2†îô¦òZ| ;ƒ³ÉÍøb†òTkÐeéÄR:#‘Z’^OrxøE¯+y·Í×JbM܈<ºp|ªÐñ¹ØPW=ìß®Q%üu€_ˆâÞˆŠÓ©­×Ú5YîRcH—÷ºáO–äa@‡“«á¹×ÅóÁl}À^Œº¡‘ÓÞvÖö6e{φKŘyí¬lËYo¦·wߔۗ»LPË`«Ïñ=2/qe:ýÔí?u`Ï`îç7OÉëî6XEÇÑBw€1 ÛŠTQ»Ž–n§ÃùNʳïaf!Élë‡[mÝÝhk5¬eÅ`’׊ͼ8½†a.’j„Ĉ£"KÖ1ûªyyXž|»ƒ¾Ê%Âìž¡èmY_?1v˜~ñŽ2ÝÌÝœó=Úã¹M 43rعaþ±¾CàdÞDÅr¹\lsâðÒ&cº—¥ÜÑ2–rdÊÛXýËÛ’DÂvãn{ó«›Ñ|x=Bƒ¤4:\ä%È„Þïo?Ï?k‰Ùÿ?,ŠkYœ›yé¢ëÖd:ÿ‘g¤%à±o†áîSß· XØ}ë‚zc_fM0ÎÕ3†º)‰Ã‚jÞL­ùLìsQI®.¤—Ñt€wC»:¹ºKÛ?¦–Ù'NnÛèØRâ¸'þ3ŒnY/¢z‰[ÊŒi~ÑâŠè3Û!‚6)Q‘Äöy;˜éžAdÝoŽ ”é`².‹7›¨ƒ$6–@rQ^wð5nrè±Þ@íªr, vÕ„Ý”I@©h0ÂiTÔÔ—Å ¹v©åFuu+®°Wpªp4¤¡‹ÄXô…žñ¯›Áô;dzÙÍÕàâS`j#rô5Açä•n£l¼¨:5&'W¢×:–?C[|ßíÏ ódbB0XÔ(ÓéÄâ—¯³YÿÞOFä!»^SÑÆÆÂ›) t5›>a*½L"U6ec%tÙH%̆I™r0w£Ì†$͆"Ÿ¤]ݤM]X´×+®óƒK—º0âÊcŠÎÿá“hciµNT)ßÏJ£ ƒÀì“Ya=‘6*5)‚ Ric™fq” !qª£yJ4îí(!Åʦ«‰T(]ö‡#ìþà¼3“¡âbg Oš™Å»Âs¦ð¡¤xW|%2J¦C…!«‡E j÷QĘ3I3üzL§i!OìËÄ—ö— 4&7¸} 7³Ù9S܈Á†µ)µq ú@íd-zn ˆ+ÅÎ'×ÌVžO çSÃMƒ&O°£àŬ˜Ü¸’G l[C%Ê [+ps…YŠ‹j,Hê@=økùµœ9ÄÕJ%_¤¿Hå5®,ª 3‚ÿ*ñ_Ü¿[ñ@`PÖq´¯yÖ`ñöå õ×Í'µÝ8Ô¬Û¥ÙB8Ó¸1ªI€Mlœùª³ðŽh9uÑv¡¤¾)OÎ0Ã(ª°p9¹úשvUÁêõ»µPëÀì!{x¤& =ÔçRâ…baØ Š:ÌP`¹|ÂpƒäÿcM–n&wTø/ä o§ðïZ‘«(m%/ãP—êë–GìaÕècNéäù2a€” P…wr `%ùeÒ"ÁÏnTòô‘·;ÑéCÈÎÕ‰ƒûÒÅð88³>`ÎûT—&3.w6ìš3 CoøäiµµžSaÉjZ„‚Ç‚–‰çà¨30E›+‚8xû#Þ6ŠŽYìKÎ}‡0ÆzKL"QxöÚ ¥Xÿ. õº`õûÄçU¿t5çÄé ›±˜w¬›Ö–ÀÕOEc§ûgÑÜHâfNoˆè‰:€ ¡'^àH~ÏÓÈS•s•Â8*Œ+y”Šé/r5ƒ„®¿ÿ_¦“q®1†ÞTq¯%úºë³1†_þio‡fšQ£fÔ(7@o—Æø›êüðÈ#Ê­½>‘Ÿ‚8+ب,Jmî‘ð®Ì-ŸÅŸðËàü 9éÅÍù\Ù8È«¨N¨‰?Õå ÒQ…@V‹üÁq÷Y 'wDŒ×ÏÜɈçd $5uþfPÕ1ûL'ßX·œëϾ_]Ï'óáyžïÿ†P窥nÐU‹'•Ù¾¡Úzä­=´å MëŒNYf¤FñBÓ"-,'1xÕ?ÿŒLï5®ôYœ@ÊYüJ´$y¥¿d˜É8°¸ðÛ“ó!1®$O0ŽvÜ¥œÕmr=Ôï´R5ú(+&·³²Ø£ÍäV¿2|­2É"™œ:HVξ¨JCSd|<¤(í QjŠ<îú9’o:Âã,ˆyÀ ‹Ì`Œ7üÂa*4°ŠŸ SœfQtâÕ{æ\êò=38í7Þxưㅎ(‰f²ñÀ*é—5ý²Æ/kQEÁ˜¥v9)×iæ …ÊzÿæJÑ‹J^ΕQ¢ã” i̺pÒS¼éôÏh¬¹X žÈC.^‡Í˜®§leEæeŸF“3ÔÔQ+R*ÇÒ}=dë3øLÜ\SW&h`/€CÂcwv3USr+rßòjljï&Nž‘µ[ÜËSܦ­É·¹`\*ă˳æ|Ò`Jj¨©NàèQKaeA§†Ù°Œì;rU±.vQ}».öЭX!“Øã„§V‘ŒŒ^ärÑ‹Üa³pØÌ¯ã_Âa'Ó³½^)öÅa³ÿtòZkS€žôo´»ž œ”øŒ·oAĨ~§¥h¢ð…øFÁjùÞÛèï5†½›>ßsM8«:kL½7cýN-7‡£I°Âr÷µŒ–h39bâl ´©I|òJÔ{ìIsÕŸžÏûÀl|²l¼`°Zñý?áïjòœÔ…ÓñátèwBÂD2ÒŠüÃl0]›‰·7hÒ7cý‚Ø*ÃuKê®x_fɲ]¢À¯ ŽÝ<…û ¸îߌàº{ÑÇwS,°7õÁxx3cù7aѲÎ2¥Ê·Àóâ´Î`§Íjo‰{+Úeb¢+¨¶_ã¢äã–³ÏJ°À'¾¤ÍM\ý["§äE ˜èJ«nEÇŠÀ4\À 4â­üÏfŒ ;ÏŒqбfÑ2ùuÍSx æßÙ‰¤wëAœ Þ±‡-;$‡KÃÒÎ Dƒˆ6Ì 1ÄæÙŠ*÷V$íD»Ô²“Æðj”k¯Ç™ªâ 7 T³°Õ­Œ­½ó»àƒ ¢ðÊb—_NJAÕn­ÄÂ;ïØ@0Ü&ï!”2EnëI›HÅÛŽå^°ËÛ ê!v$ÝÝp—î[¨lu¸…4Óf¢¿G”L½qZ¥$Ž™YùcÇýÑ è¢`î„`=F.õ†2ö¸íí`Œ•ðȆ%œL>m•‚¦!³‚˜<¦“†(P·¶ .Gê¡\DBúØ3uï˜y‚mSQθ¤j%c“ÃܼJÈ ô¥É9®mÞÇÀœ²,3ÓÂÉ’¨ëÖÙ>Ä_JI¥ ?Ÿ\—¦º‘ƒ®}˜l†¼`n¤xË·É…Þ¨…€Ã?ë-©`¼¡àH¤ Dƒ$ÖîÀ©-ºe?É¡Õô$‚$¡åkѱg]¿|­ŒGwÿ·è¦wÅá™V•LBÈ||%#>&è¾@.V/yÏ’¦+óI©ô4¯•˜»Nœô4V3‰{?´ƒx+]¾ë$¼sW€ÝZpWáÇX‚ m+/{ËÎ ¿oúù}\D™A¾&£¯‹ôy,P%‚m¾v§‘4‚*ÒåaÒæ™š>ó©YeYóÇŠ?]¤nËøŽeÚPÃø wd(gqWÁÔ~,°¶f¢z³Ò¶6¿T5@MiG…v…ò@%,»… q6Ü&éâ Mâ±M‚Ýë8AXÃë}b‹ñš®™õÆÂ `ô $ÉÚª\H31S¥JŠêXAz³Ðd¡àç¶Ö?Ýù?®Ÿfdp24oÍ…|ûLæÞëÌ|JHä©´ËðË„C1xØDˆÓfáu¼û‘üË ‘ª):ìõï‡Íu(˜—Á?ÓN÷ Æ¢¦4,u2a©“Š%Ÿùó°ÔÉ„¥Î:ÔXê¤`É Ûi1«ã>v„q=w†-°£Ì õòN¾Â>âÅÊV´ ´E $þQ«0+»¼•z¡Ô¼P»’#]‹ÊЬözžîxÕ‘¢&™ZHåáÜDéòÕƒºšeH(–t›ÙXYÿv!îºÁ¥Þ‘„Ðüeâ6—€Ëªù›ÝP䂯ÛEpÜeÍO`qóÓ¡j¬u¸ã wêϳzf!åÞ¸•~oÉ‘´Ý‘w¦í*ŠÁÙ^Ù®Rù%w•ô³?#='sËÓsˆøåw••ͪv•'8 )»Êv¶]¥ØU*‹nZjâ—€ÕƒâY¡Ë˜ªEqÕÿ2ÀXrä†"‹\,r×døï¾a‡&Õ”aß.6]ëê° ¾ç¦ã;‹n šîvÞ‹—!é³Ö9TkÝ\¬¬t¯¾\ …¦RpعÈþQ*óŠÇÀ^¨fò^…Š©"Õ­bñë7¡×¼ŠðwTÚ•Œ¬¶®’Í;;ÕÖ#]Q+ti½öo/{¢´ÃQéØ Zä]=‡Iæ)9i3Å0-ån iðÒÕõ¾ (LLÐ52o<'xêO þÿ_ýGÿ¿…âÿGÑsüÿÇxx:ñÿ÷a7Ù_ûPÄéß#ÖOÊ; oªðRÄ4ÈŸôÞ£ ü[+ÚÙ> øç?SÀ(í ä}êÖ›qš–÷ÿ¹äëïªjÝ2‡e¬ÆxV›nÀd“Bö3Ú½Àý{•?Mæ&±v¨9Ï´1ž¨€ùbbôþ +оН±úDörŒªrœctØAø‘ƒdJÜýýjrvÇÙŽ{Û=Þ¡–ó»(ÆÑ?ŠNßp‹¸ü{2¼èò~TY=87¢¸ÈàNÉaù$IG$ô`g;é{ª£Hõëéµ_°¤Ã—vóy c:$0äS !ZfüAÙƒCë·ÚëÀ5 8±RS r¥Œ}«À[ü\JQ¡[Á6é^BCX#ìþaCkªòôoµÛ3ÃõÌø+RHéOjoþfu~ u%CK(VuÆQ‹¬q&‚½šÙ ð~ ç"â(Müµ©gàrX¹±¢aâRæÔ{ 4YÛ£\kFÈa¢‚4©ª9(·«kJ7èC8YXú°V¨Ðãx'*à˜;¸€á9^+Ôø÷ŠþÝD 4â#¡•!›Âž®ÁBOÔzÖIȧÕt¸?-p\f&š’¢s|­Hy-ïT¨ùÿ÷ÿ”ùÌÚšÑéë:Õ”¬5:›OoÎç7Ó ÉÐpдf E#ÌÐßdž«S©%ª)iªî¿5ÖÍF€ˆ“šÅ[ÚÀSÅ®öpÐÀêSFPð7Q'Šð¼Ù¸@šª—¬`¡¦A&ªÙ:ÄÊÉC n†@fe8àŠú—f^䥋NW§sŒKËâò£t½P¨ˆuÑÅ7¢¡Mû‰ª(* ¹ûWsÑk¨W¤Q¯G¯ÛyÔ¬ìLÿß’fÿ€¶RÒQWåäë©—¨°'CoVuã}p–C-T¨ £nƒê¨ù¨VrKX‘Úƒ0°YÝŸ˜:„±Yk6½F݉þq Ý&ImnÚ{/þ±˜šZŠ:R’.¦"Š7@#ÄvøDr© yÀ˜¨(.Äæf\L “— Ž¿£ÎMPÃja®·’H³§ƒsôÍ|çj× ÅF…6i uCmÍ(¶n’e!sÀè’È¢ †òël dzùÁ7ôLÎ1- ;^“‹°dgœðÆC þÊŽ3qût ¢ÊG‘rÏOÉŠ‚\9aJ Ôì{Á ƒñF¬}X{QÃ(åº1cp„¾} }ƒæ ÌË9ïÔ#ÃŒPD—Qáƒ"í§Ñ7Š‘ð ¡¡äN¥£¶mRNÌ?õ¸}Lk°­Ds· ¬‘uœ YÇæx²Ž—DÖqT8^ˆ¬ãÕ"+µÁ¶n0Œ¬£lÈ:B0G u´$²Ž" “Ь£Õ"+µÁ¶n0€,;=V'ç")ùäVÇèÒy+Ž‘£ãp@ke„c͘K$jij‚6é¼"vb‘ƒdøÍÅMð•@ºLñ¥®y±wìkèvIJºE%ÐxL´mä~Š­<02ƉƒW CãA¢ß˜@ÌÌ·Ÿ‘÷Æ‹3…¸›È˜ffl¸£òµÜŠ*‰Á%ThH;¨Äò)XÄÂ,Îu7!“JŽ ¯ÛE9pLËÅ;“ÚCu‘0HÈ< ÐÙ‘Ô)ó0¥°‚L¡í¡>L*–ÖÝS±ˆ…¹X!A“pËPÑÇj |‰Âª ¡¿ò" Ë¡B ÓLð¡°ø(j[TF÷á᪡J*‚( áë`ú‰27žO‡óP—Ϋ°ß?Ÿœ KÖF0ùt6˜PiýoÅ™O#éÏ\@Ë*ÖƒLø]µd™õ¯(¼/zQ›‡#Bš®‹Pî»{:Ð(دtR pFÕ|¡U=}·{Ø-Ê×dùC]¾¦Ë'e¼É?!ïMæšþò§Nо†@Õ‰$B4a°4‘󯻣#ðâûÜó¤åµ_Ò ‚Þ %˜Ñk`ùb..0ºËÊ[J=jA—Rźv±ÉÔ’’%¶ÔÊ¿u}E’@É'9Ød »ÕU÷¤¸§vìmy`œ!ÚB t¢Ð ¹‹$5*_‹øþ ,·~(¶vCè!Ý2èQô¯ñÕ!w3»ÁiÂ1/]²¤Ž(ˆ'& nóÁíÕüÍèDƒ:aUî ᄪüªæMÆ®ªµ©Zr^–¾ïº?( ãpƒŽ›0â1ü¡JF±PSöåøNs §AÚÜó•¨è߈â›ÐƒÏý±šûãÔ¹?̽ÑÿàÜãÅ,0÷ÇjîSæþxs\&@ÆÙìϽê¤?÷ Œî€tÃ+ú¼øb÷às¤æþ(uîsoô?8÷xÏ Ìý‘šûÇË⥲ãùs/Çð‡Î÷åͽŸeÁÄW m)#d}ëâ´NÆðû9Fp´²èüÝ9àÐzÑ/¬f¿Qá}SÊ^kñ3âb2PWyîºè_¢Á*°pž£ÊXFÞ94âÛ#aIi¡ó+;»è|2Ø£ÉäzÆS!ó¼_.Û÷0¸÷¿ (‘ßq;)6¦q˜9 FÕ¨‹¢WF)P^ÄrØËd4د 4RË 7˜6­¯ÌN‘h,†¾¯ÂºášÓ'’˜t8ÎÁUT«åj¢¿ÑE?Ö"²¬U+¥4e³®’÷C´V¨F›…#TFÔ£B'ú޵BMýÖÅßlý‰fYƒù*<)i:Ua²Óôwpç«3¤.CÒ®ìZª1ƒÉŸ]~'Å›/º‚³ì=’Âw#t~'’¹÷¤n4ƒŽð‡v#Ê•¯ƒáؘ´ß 7ÎÃFv“ØõM?ê ¼¾z]‚Ïé6$è³:w"'»×ÉjNÙ0‚Í5Ú g€øã8ÙÃÃÝNÑ uð?Ò {Šb¿(è¨Hž€*Z­nbLdø>ëX­Þý€ÿ@ûÎ{hømµÕJ3ï|<(Šn75Æ\•â'C±öþóÿ9 +-fZ(8_¦T¾„Lã×)­d F·Ó¬vzo‹qPºú{ŠE'Ý‚O›Õ·]ŽQwØl¦£kV»»=(ØyŠw·t5²¯7Ò‘9m`Ô«4Šêyı²êžO/J"TÜê¨ Œ³Ê~X3ƒÆ!­[àŽ}pÇܱ Ë»àŽ,pG>¸# îȇelpVP<4æ¦ÈG9st<àÀ@Ûk¯-sè;ôq :8è +) bÐA,íÅ­k¥ìÛrË.àoA@À—ny' `+m6üÊVDÀôÊ’á¶ïEðû #øÑ»ÔÞüæ<ök€ô.­‡•Àðî´°¢‡ìÆX&ž×~5{„AÞ ZshgÙR}'º.NÃáBÇ{ØíűPZôƒaPĺ[ ÖñBX‡ô !{°ŽÂjÓÿ-Xl¯l˜´4álí|82ot Ä:­XsȘ1sÀŽ=ÌÐŽ!º"îôÅ|kÅkŠ’ã×Íá÷qwEŸï"ÙK û©F ñ‚ªÈ׃o6ªßãz£ÜÜ-·„ç^£Ãs2GN.ë ´fi®7l%Ø~ °MØ>ÛgöÏW‹›fwºÄ†k›fÉt¨ØIž¢ÄÀM ‘"$®MŒìûÝžIg«äBžS’Ù‡\Z}Ø×ÈIéCr!ß»‰µ¶€CË)^šߊÁüVüÙÓd!"s ü«d˜§ ™}¸¾ ô,€Üpá‰çs+<þœ3/ù,ôèТCÑ: “ÏÇð*wMöû„1Ëx1˜ §~¨ûê*ž=ë \äöÚÕ N}—Û‚³…7Ûä>/êÄ!y*ASª ÇVVuv¥µðQ¶Ûh+÷dso9ZvoÖö…BlpxXÏ­XWpk² ¡g™¿E›ÚŠìÅÜXÌ­Ê5‰n›vX$©ÿ!I= ÙãåÖÏ–Ô +©¼Ž+(R£áLçôÒ¢êG©†—‰FÔ…˜cŽ+u:…ð *ø gÅZP¦ÔXŠî^a…˜Œ2A°·ÌKé‰`H¦áèh…ve)u °‚t}—RL£è¦Gj~¬W kÀpò´øy±c(4ºEÂ?¤7;‘itÔ*£/\©7Ö»`"aSùu‘ ý’#°ÃËrÏ¢ ÍÆk­q)Gû·7D(4T©™ãËîŽîŠ’1ªh œÙ)gxìæM ãÙ`îØ3ÆFŒ˜)Pš:*$ÄÈ—¾¢|ØXñÙs´a…¬õÂ0äW «ÇŒ¡ér™rtvµj„”¤h‘$ŒÇ«P$^@ÑåR ”à$j‘ípÌ ¹ÈJ$að—l˜GXtI؇ ®y 9ƒ7‚Âbw¹yäyR)ï_y°ª0ô-ùÄé|<ðŽ=¸QS°—À*…^Ø]ñ¶ÐÔÓÐbh“›¶PbÏã‚vsœq7_f€ñy3ïØÄgè„3çÊt¿êQ8CˆÅŸ¯[êád6/õg˜1y{s[ù·•‹Çࣙ°qÙ6w.9ÖßrnÀu3œ*šÿ›§v¹ íÒSQn¿üÝfԼ酳Ç}ÛVòG©¥\ÿe?<ÇyêO þËøqã¿lnF•m?þË«çø/ñð:uâ¿´9þKQ¼{ÿ±ÕƬz”½"˜¹á8M‘ÞÜ×â¸Cºäî)Âpg¬Ìá CsA 8Ü÷'÷¢p ˆÕìB¤3ÆËqS!ñDz0ôó ˜$Æh Ød¨„$qd–Pwâ*üC(!cm¥{ç8/ÇÍœjz¤—ãNN"ãÎá]ÚU#ܳ÷ÿ\e‘•™3²¿œ™Éi͈|@'/à=ÿ48ŸO¦2Y­¼Aúd§dÆZ²ö=C‹@dÀóþx2¦,¯h\W”Y¢gE–(°O 5Î&óÏIRnÍ„¨Χ]mGyûy@¶Š>vX웪šõMDåºyá"*4“· ߈µÝµ×„r+îáxô!¸N£ÇVY…~*Œ Ýâ5YœÐæÌ¢Ó³.ó ¼l³øëV¡鵘@Mýш›£»µÛËîÂú:UQ Ä·a4òâÉð>|ç/GÅ_âQ© b‘·SãR!„:¬NÇò6îu›‚Ÿ8F²)ÔDiuy¨~IŒòs³r⯒5É•jYÂË}ð¯xe’dc"ʽ·Ýr9qôÕxôI¦ì‚)°§Îjø¯DF`±‚«ì%ý[±Ý«U­œúdëz{‡ÓvØátiOÓ´1ÕÜ1 cPáªuÜ\jPÇMÇc¬±GÛ6í¸“Ân†¦í6BÙhœÃÈ¢2ÇÛKErËÕÚ;˜ÖM0dZÍû#ÅjR/ “ó²¡5ãðëÀ^ÿZy‹g~fû°ôÞî×Î#Úݨ™æ8Ô¼ÿ\7Ë BþpÃ*Ä1&Do«Yï,7ëL³Þ±gÝH=ô³M{çÓÞI›öÎ ¦½SfH4íY¦¼cNyW!} _âVË=^ývœUþáɃ0áØŒ3;ÅðY:m õ7eFº‰ ÔêpqlãB±ïA¬˜ l¹XaòM@‹ÅÎÚ £E¯(ÉZ+˜9‘»çÍàá­é/Ûyš¢hMÌlüP‡Š™ÛÉùù ²SRÏ3Ÿ{CÍ™`n'7£ lnÄßÅì ™Îþøû­Óå=ä‰0GMÜéŒ{7PWœQ”p!˜™(Ÿ!Lä 7‰ŠZ2þKæ *z¦äaO35š©/#HX²-7¾Lf'½ --pP˜<• ÇNYí­â?øBCYƒüÕkšŒõ¢EÌaƒeŸ5m„¤v(ß1›;+*h£"Éòáà±+ᆼ–Gy¹»ó•~)Ê\Çr׿þ,˜Ý„ÍšàH6Ó¢4c qªT í‚æÕC¦¿§‹®Fë•ÄÝ[æ?H$íÌnœÝ^œ;8q.ç‡Øó$J7<‹€ÕïÔº“ÍÀ¸Ý¢GV¿(Îh£»\RÚþ̶Èèæ¨¶ÈýçëZõæ?ì“×èï|¡‹^T0å]ÈÝȸ _óVlTÎâõUÇJan  qË:£‚ð¹¥Û?Äþý+ŠhÿlÜÌ\î¿1R(â/a¬°Šì¥ BùlTE¹óÞ” ÛÈ”‘Ȉ÷gFªõ±‹Ðþ‹3‘{#Y/Kyã,]$fHÒ§ÞQ2™‘ø÷`:‘Vtçƒ BÚ,€¸@ž˜Rd†ôR7Ò±è_‘|ã­0’Èå5C¼Ÿ†“Zºb¶æóœRóÛ<Ípû2ð“)³,#9ó4øÖ?Ÿ;Ô6ê_]ôi #ŠýÈÝåû)Š?óªøü28ÿÈU!ŒÅª74Ù;¡†þT<ÆÀÚÒ±†˜¢Ä‰°§‘ä!Ж!!úE~ï‡Íjogoñ^C‚Öx1Ðq37Di4_Ðño :ÜþHX á n¨¸Œ3|Yü£RÚü'uƒ©xc„žKyØjF@A¨Ã<¡Ë ôì†ýIÏTÔÚDô?Íæ£¬£§8œÀ÷>ÐÖÎ#žÑI-5î Ýó!¶¢.®}R|¡–llL·ôûF$~{EoàëíI…šÕ}´y~ûèŸ(ìRúCTaMQXÛÌ?Ox:|çÁžì—¢¡¦|ÞWg@ÞרÙ“çb~dri1mÆgpœú¦×*w¯Ÿ™ÀÁüHä34}Õs£Oƒ³)‡Ekö1"êí¦X[/õ€³ÕkŒ4KQÑàjx0ºAëÓêyÿbp5<‡7g£²ˆ~ÿ}³(®¯áíR%úM¢í 1<[e5U“³'‹fòïšj&"9;ùS*¨º{ý•é­á—׸…N0òLUÙ2Iv'—óÛ>Ëê ®'±1í‡0”¢$~ß*ol-¦0¶œ ‰{[eèËl‚G’Tã~~¶a«…*š‹ïMpã,é´£’v, Á{©f`3mв±Rwþ¦?ªe¤ÌùF-lboƒiøvUÞV¡pÎ54\Hí Éœ©YˆÑ¿Y®ljd.= úuoä,ì ÎY§ÍÄÜ|â>T½žG4EÅ„)R€h¦^m‡gªZo‰1eÜÙ`˜ŸË¹OFÏâömšŒù{”@"\„4áœÐš¿,£(«Ã›–²ZõÓ >Á@C¡Ž>ìvÐ"ã}«þ¾Í&jïøsg?»)Ãà$Éðï^·ÿ6ñ_ÌÖ-ræ/•õ4YµÆÛö‡¹ºîñl„šíüСe"Án« ¥$”€-ÀŸï0Ÿïj'‰è¨²h%¶©ð¡ì|hµþ”9€éïH¦õ@Þ#bEÈæ¡YmÕëðyø'¦O<…±W’ûyºó¾W—¯“` eí”1-£VÝ1âc¼ÝmS<Œ:ÅÉè½Ý=©eÎÊ@ƒw |AÉîÈy98†UF»àÕ`”(¢ÔÇŠ'Ñußïbe¡öÎ(»³ç>v «¶yEÆÅ•½ÏZ7%D/gºj±dl÷¨\ŠÌòʆ{ΞNúèÞrá*ܾUi41P9ˆÌ*D{ð¢I8ÑÒ¢"EÔ²ÖõB3˜ØCU]Øæ69ЄS¿³ ¾‰'ó^Ñþ´¥îí†P9`/‘fú`ZKã¥ÑjYGØï„ù(úvsºs<?‡¨MÚŒ„üj$Ì–Êô3ÐâV4Zô ΙÖ`q“*ÓÉe8Ò“j‹×Û Òà’Œ8¥ûªœ?ýÝO±éŒ®ÕRG¼nh²Ú¶ ¨Ê0Ö²Ü[Òþ–Ðag– ÒÎ2D÷?ÜË´ø"G7Ãó/*¸Þðó̆p‚XýUÔ“©c±þv0×2PR·vh«„\íô/4Vøw §yÞtƒ>£¦[š`PJYí SFì:i"‹“K¼ùТÑ)ºtC^QM¿x3¥8{º Û%³sô•˜|¦Ø!lqBp»_Å`Vá$GPd¿Ñ/9KêµöÝ\Y÷%…¿_÷kwê>\Yxá-ýÕˆmþp]ÿv$E¬‰JгTÇVq_uý›BbqqêÕ Lî4T ‚ ú_¹ß«%À c;ŒºN&ܲ7r8¬VSªÅ¿„¼àüP Êà®+UKSçºn Ü ®¿›¹Y¤XLrY±¶˜¥«ÉW/Ÿ>¹/Å/ùùg֓ɪ¹¨å…Êïˆ@ œ ëè¸fǃªZ~Øç町5ËXv¤Á[ÆÃ‹ÖñÿDþ¯×©¶»°Å„¤tý¬ã'ü³“êŠJ,ÿìáçžÞù:;]¼üv8ú^¼šwX}Í]r¨¨+Ãò Œ¬`qGv¤V„.]XÑqUçÀCã4“$sYtaÎ XGÓ[ÌT7“Ã)‹ ´¿#"Å?Tš6Œ% D@0âô²OV<ç˜3rL–_'à ‚x9šÜê¬" -ã‰LR<“z|͆£u²cUIÔDÔõ͘Ó35k§)檧±µWc Ûd^Hë-47n\åÅ?m’ª¸$eTÞÑ•wUei€Øø²Èæë‹cñåy!%í¼’Œ¼—¼•¡­súù]Ük#³¸ñ 1ûËñJœ®}W˜-œIãDÂ: &‹Rí?¢¸ò+”ÏõĘ'2ýñVô­J¸Nìà_¨õ4–µ¹ªs›ÞŠî icmâ¬à¢^3+—ö1“+`SÝ›îh“k_¢þa¯ßŠ7´±qáÿŸŒ ór¯˜ðà"ëá«tÿž‰’]ÊÞ+ë}¹íõÑ,#‡Gù)åcñÁLI.Ì Ý03±Bm‰¤©mš;ó­T–¹¿i2ÙÅ*XwšRZÙÒõ`|ކo(Ó¹µ¡H»-îQu&³,î×xIdZY|"ààd2Zë­½6ê¯Åô»¦(GÑ¿t¤Oq]0}èûsñeÈ·¥K©8‡®ÁæT·0œçÜîÒ†êîVèÿc¿Ž^‹ªe4(.Ñæ‰<†`dŸq—Œ}t\ÂOpÙI"=—.9µ³8³È&Ø>ú°2çƒOßÕÊqp_yâ#Ùy»‹j9ƒ7»HJX[jX÷ófœ[îìBûHÕ­ae͇XO]ÝÎ H¥Ï@ ¥p:ª_—°.çE«·ô¡¿«[îiìšµíaXÌ3Ü3:' pÞ-$¿jÂéhÜÖWÛz™ Hfg9’ÙI^ ;K‘ÌÎ*†E¦1;¡aí.7¬ÝdZÙ]jX»«Ön™ VÂÞVÂ^òèö2­„Ùµ +Y {K/…¦FîÞ*»W&Hšáû`ŠyptÎU’\Ýà7õÊÎÍ‘Yl„º^äêôÇø41y`ÆG#ñy2º°kOb‚˜pÊFß‘¥›ßLÏâË06߇»Žïß&œ]˜—¯Áä0!ç@Ÿ¤›/…¦OõØêžÕ³§ØüçÉÕYãÉÍLõŒ.u¸'8ºL\½ L§‚Wª–$YòIÑ1™oÈǃ£ÝÐMA{ìØŽ0vzM¬ —«’æñà Cv/ñ}‡CIÀíB]Ý]œØÒ–•‰Ül€îˆ£Ém>^\ÝsnæáÕä»!:»¡÷Œe§'ö@%Ï ðnÜ}cfÓuj6xJ9ÒÍx>¹9ÿìÜ#Úï{»¯e1Š"pÕÿ‚‰0a=8–€¼XÒõv4"·€uW“èºÛÄ;¨W—èk¼£cƒäàþEý ã\vah ·<-ÏËò,Üš`‚°mœšM,Ä*–»?Z³¸ƒ{ÎöÚÁ߾ļI÷âožÛ8ïJÚg\šd ±é8^¶Aü}ãu·ÿ›ŽNò+) Díb(ÖÀJ)|UôùETFì u¼fôO‚tOØ‘¥¹s*_.ïÅuÑöž.,°t`­%÷Pû¨ìÇâcÅ•÷^9U„49±£®sI¨‡ã9}‰¿$7Ùy×ÕN鯢¬âw㉦PÕ®!Õr y»Û­Wè³WçÔ©äftŠØ´·¬‡ˆr1ò¢G±¤“HJ:T;C(PÄ_™2c©¥›ª†2|•eM{k»R=dTžè!ÁyåáUŽvåh!SAÒOo{åJØrÝuØaï¸2ïÚ×ˤ¡!Ëo£¡M£!Ã9dA­­@­ A A“øÅŽ"„ß‚êKô!Ú‚ØYD%bw‰qDadî-Ó‹—K‘KFo€?+ÙˆÆ-Ø Âô¡a™8¦ÎΣíqÈWQÅ—<*„t±¦ü« j¹}úë¨óoVÝÔº»ºîž[T”,±\Bd—Ëå"†ÜgÓýŠüÅòüP÷*Ëb˜O6÷WN´rω}¶ÈìRÅÎ0ŸÚÍp„ªh¸U4ÒþÇ.ƒ‡–´î¥d J(TQ…vR á˜ÙšR2(YjW—ò:~S7×2X D Dr³€9)Áܹ:u.Ð,•áV÷t¿Q"´S˜vÔC$kZ:åqÏ'~‘˜æ’Ìô»W~m™NÈe‰…‚•ñHr‰²û×õúñ;)‰.”Ô“\Aè5.yd ‹ÜÈœ®q~”VlýÏíhûÿV Øä?!SÕC´¸çµ¨½Ýâæ<·7óQ Ÿ> /k>[N‘˜AQ™”‡–“¶Dþœg5ºâ'¦”L®Îºù0F“ÂØðƒ-÷ƒ‹U¯P^`¹Ðüí¹e*ÁÅzs6›程W7ÉÆäßÃñ|"¦ƒ«þpl‚,šieášLr–òj[VRŸ…š ä¢^)’ÙTVQ{Ïȸ˜ Ì^*˜0á@÷Ã~¬ÁÖÛ¥ý¢ž• v?SÎWÅӨʇwš”övíövµ·g··—ž‰¸rVÝ fËq]zÙd ¶vq8“×!ÖdÍà/ÖÏAv+©ÌIG3'ЉY0'hÍPJäO N¤U$vNLŽåîüÉoq6—?yµ¡ÚÊΟˆÓµtE¥Ö¬J:³RRå5?’η¨â;‹ÀWlð»øÂÓbfÖž$7³6e ¨qkƒ’W08ÅlC"k’±­½åÛÚ²™’Ž$ ;òkž÷;˜ TQÃ>îƒôpŸŒE†¯ë1Œå@.}±¾`žÔà Æ¾q`lKÛÆì%MgÕÄÞ78C\+Ðûº†ûÆø»älŸäÁ]Ð;NiAïíÍѨ\áÞ¿ õž°ÿ*tÖþ–’™N¢+ÑûèÏʳ÷Ñ]ŸÿÏèQý¶7^EžÿÏÖÖsþ·GyxÙ¸þ?ÍGñÿ¡Tp?I¸ýþø}*@Â?Üý'Ý:G\Š{á}i§ ,éá~”ãPJý»äˆû³™Ý¹èuvï"Ë·hyÇ¢d÷¡+ôíÇîCß!Í}ˆ€]ŘRÐú“4á¦ûP‘­ZdÐs2òf‰NEXݰÕ{\§"¬iúÝß©­òœUb¢Bì@${po¢;ºqäèo‹|ˆ¾-5ú`eQ£ïèPTxx"íP^ÇAo"íLD¾Di®D9cÔùÇ"Àh)àÞ€€bW#¹Úwóÿ,&:=ìuv¨÷zõ¥G’åwÔ£§+’Üeÿf2Àa³î%w‰djK'0 E;†…ç8(ñÞãFÕO‹,^6p+_ŒÐ%³´IΘ¢¯¢ÿ®Øéu‚Ò,“Rݪÿ¿!âÿß'넳 p‚Æ·H\›žÃOJá-»ðækñíëÂ.v1Ý[N;îš\Âik%í¦ù Ù-¦ø Õ—ðê¹™$c#〫e‘íZØêšwôJîJ‚»PÜŒ[ù!|‡°«‰y0Wä)Îz¹:G¡´1ÔVäNrù³x¡ñ)ï—vS¾GD„E+)NBîZѬh§¬OJ ó `¶ˆRõbFÕ:™éÏD§˜CR…¹¸™ªàó¦}»Ÿ¦Ï4ˆ_‘§O÷Ã9*¥‘ìΊܒx ç•”6†Ýù ñ~Z¤å×]¢GRâzifYw{rÝ5|ÝÝÏ-Šç;Ù+ja^ͦUŠÅ…Œ¶7@ŸáÆ!+¶ fnð ºVàÒÁ”Ã<™ ˜Nóq”>%‰;®íŸ±§I'غ*¦%¼‹™¬$æˆ ’ÉÚw4Snd¿1Ä)e›&ÑÍýn~dÆ¥ôei?2HØãÍð#¦ù‘!¤§™qr)'¥3œE’Fy/ó7!/ód+Î[@HM•!scál³l8¬îµKeãl­s>Nª™ÁJÞi—s”¢¥·0¿fÀY*“o»B¹wIñkùF9ùÞ“4=B’¦»¤gŠa8YšœJ¤¾ö§tЫ=ÝY‰¨×ßþ‰ÛvüK³ÚÝíÑÔtQÃô®uÕŸ"óñbûÅF%>ïîîÖ¸¬çbš~²nDƒ­KÀ9™?ó+Jä•É#ihÃZhtÞÀ´[ TÍwß7wÉMr?º˜É‹UÃR±ÌY¾Z(E‚ÿáÿGEq”Œü¥­cIV”^÷ðk ¾YÝmË÷É™³d±”Þ,íÿøv·Õ2Rc]K¿Ç¢¶:òÚ[Úÿ±F¨Sdf:½àHÈ2ƒÓcö,UOÄ+rë¿Ü+òe³WäƒxEzY’ &œU]éÏ15«¯•Kf•tJ‚®“¡œ õl;W/B|RŽ«("CŽ«ûäª dJŸ…¬Þ©ÍŸ«ªÅ$CÓžåLàYš¢‚xàEgn¸„T™'¤Ò¢†³ÑmÞÏÁ¦u5=øŠKøð&GŠxFäyÁ†‡%òÑóÓ6km/®¥QM “DbªÌpéGŸ.»åÍ0¾É€J¢b½TžyÀC`²—5ÕÅ:s¶ê#ä•­êžç㤉Võ:’ë-…d~œ&éñÖð@ÓÐå7}$·¨ñVü¾µÝda®÷‡·íÀýƒciË€ßSsSaŸhfŠÙ‚ŸÇà˜ù½˜„bmE # EKò+á†[hfÈ ›ÏìúÙÍ'.ùòdîž&gŒëá¶’Ì*å< R¿Äí'ÈÀ戳ͩC‰ò㩦 ²¢8àR•àÜêÆÉXðâ¼(jäDD|ø2Ý2‰¥åÐJßU™xÈÐ;!)·¢sÜ·N©xo&&ŸÒ¡ñIÞR™§R ÜaGË\ÛßÔ„¹¯¥LRÏ”4nm5½¨Ã¡Š&¢:-«J:§Æ.¦½_¬*þÁ+ÏÛùôæX’òǹyͳNƒ[^þíÝ2wiN渽aÀ:4²7I[ðCâþF#è˜ÔªÙ wSAó×-úºí÷N6´ÎŒfËìB×ý@B° -rïK"ʆ˜c9r†½¯Ðø2ˆÆ}DcÛë« â‘È#ݾÑÌ>j×là» ÀMD¾ÜÐ~WaTIT¶Ã¨<²Py䢒û_2ü†S¶B ±pbëÓ_øA^TpO7rŸX/Ô¡»Æ{±K5ÊÐRC¾9ü±6Û½21,ãÄ VbÙž~öQ#)§3àP¼¿k¼¦Ù8E%K-à »!cÒ*Ÿoá= £' 2XÂèL#©3BÝ$°?`D:Ÿ&¥¡è I’U’|U>èIÞEÙ«Š‚@.®Æ/õ… vì6w8Ôba¨rI5*ìµópFV‘Ÿf€cä‡.¿t«NtïúªN@ˆêè8(´=HÜ!ÐÌo±çn70øùÅ¢Íü¶d´@ÕïŒ*"¬„RN¯ÝRô診£>¶~_[ÑÆÒèj•»÷FWcw}iâºw»{vn£ ‘&ã>Á±°þßü)zØàO¡¬´Nø#úÁRÁD¶xGÂÈüÝ’ùX9)+­V<9[  ¡±^²óœs(£Ìg®ðÏØ`òLp"Lz€ŽûŽ5ö4ЪǾg=paI2 aÄŽ:ºÑ³UB•u{ÄYxó8žÅp«¶›9dURãj v3¥Ë“ÖÂЮ‹¡Å,ã‚Æ³chF•p0”h3LD?ÏòÎgygZÅgyç•wFÛ÷ˆ°WJ -±×H“ u<áQ0È^zˆ½J‘ä>‡, Bû*à2F×Ã`¾‘¤wh/ÖyÉbIIªŒ„bo¨þJÑ‘/´y ÙÑÊ5÷•ÒÜWD³ ùL‚p&ƒd&M,³\ؼèe&yË/Ìp“£g7Pr˜‘(êúrO{M6¹Q¢ÀŒØ}O_(3[‰ÐHï«é³‡õŽ;ê…Ò2Ÿíz Qk©lÄ•(%¶©Úo’mgSâž6ï÷Ô‹ÿy}ÛàcÆÿŒ6+¯6¼øŸ•íçøŸñ0ùXñ?RQ¶ÓSÿÃaó=ºØWß²%ãaQtàõŽ!tÅíüa;Û“¯ì; kò¥^=­É†Áâkýшdí :E’³-- ~VÄ”{ƒ3±± ×µýw–ßÚRQ?%ö4>ÿG¡Æ÷v"­”È„û€sPbÐÎŒ,A;scsùè™H=:pV(脌ê'])eªI F;Ñ€"Ub1a’J1’×3‚ˆ(&zNs8„KàäæßéG#P$—¹U3ZÑ‹Þ }UÏ0è ÄÊX17ÍUóy醟q(CòÆŽÛRîô4w%¸¿Š%³%¡Â¤…£CJB€ ÂÑ™!ß.Úü ˜ºÁ?,”†† Èø×Íp:¸°R\¼kÑ‚[{¿öZÈöþpJ4ð•"úÀÔá2É0D€ô!U9¬ŠÇm³©KrГ¸¤Ž­[H¦FÛÔx2.Ý@ïSÚ5zh¼o<5 P†Õÿ‡Û¨Ú°Rcl´ ¹öz”QIˆjsèbÊX¼Xeü¶Ûál@A4c8}1‚õU¨á2þ«Dñb)ä›Z•3N±,ã}Ri ©nÖ#èËÌ¢´á%Ó áϦÜ.Ϲ¿JQ¾ðŒJ`³añ¯< f£¿½þíÍ_$@hºr•q鯼æ/3v#íÈŽÌ)‚Hÿ6p>ñ–LÃÅX¸v  e¸-M*´‡ŒÇ¨SnÓþ‘1–M/ó¶k’“AÆØÁâ½ëE.¼q©}Ë÷²€+…¶d:hÞñ â%B~ÀBµ˜òãoT`x‡+õ½_ÚA^ßgd‘ #»Ë×r—¿wFßíF|îÛÌåîª$/†°FšËûIQT»»üo”<ìj£}܆öªÌ\I÷˜n«ÙF©ú þšÌãœî|h%Ž:Kzànõx7'6WÝ7ÔÔiã&âa§YmÕß‘—z»§4F)Þò®èVKÅÒÞó;n½Y”Ü5§ >ì®À_¾Zƒ ½tšo´ª‰ƒµ‹|nƒue‚ü‡HªŸ#šâ䙵®RÛËßP É¿b¿ãŸïâêßCÿþ8 XìãË/'Z‘±?_ëà´Ò—^ºè‹UÊÈÅ‘„¬ÂK ˜ºØ “V} ”ï97À áû$ÜÆRqɇ(×LƒX B”#òAÊ¡}H¹é‚l«àáòÊ1ý¹uñ®•=·.ÓN&‡ä'dÅXúê´D¾ª‚q4ñî ¿ñîãèö/5uusµ†éhÙXþýº÷u}nÜíðï„à½Ü$Ø ÚçÒDÄ‚˜­aÏÃxâL ÅþÎüvŒ.úu¦…‘¡ØUM·ÛÀ=Áªe/-K÷À'›çöÁ''_A ŠÚË©õEÓê8î»&GªL’ã¯,¢6” @SV#íJ.¶‘¶",0RG6Ÿït†š”‹CÁW‰^ëº(÷ÚG7?­›Ñ|x óv†ÉK hwTátÒG{›¬ ñ ÆÍaJa0 2c¨dF:VⳘkæ’Ð뵬ݮûÁâÝÞ§v[®¬½÷µ"1qþ¹æ ÌUôBؼT¾Í&x’.Fçý\Fò ³e­°›n¬Ð8A#brr±µS@Ñy"7yzKÛ™“1]Ü4lêT¯ w2:$ùÐ$ïD³/^e#<•Ä/Qg%æÃ}`áF~t cÌ]ÓŒiïH´Üë¡…~ÚçhñƦ”Ö0Õ^Ïr¯D{E®8!*žGb’²Oºç$oðøúŸéåìQõ?›Q´Qñô?›•gýÏc<¼¢lýOgOŸ*ÒúNsImJÈŠç„ fq‚Ÿ')GËÞn§Åé_Siô¬J7$±œE9$SÂèÙ¸§6çEêzöâ?—ÒYIÝtE Œwt)íЦŽú:¼Ì8ˆ0çø¯g°WÝö§òM¬fºŒõ: ;GÒæàÔ0uR­L}8¶'”0®±ê|2¸¼bØV•]"”}L^5NÄì"(«Õ2Sàs`0½N¥è³Éª`ÂÕ xÐå†QÈhó¨PaÚ/kL\LÙüb"†P²‰×È”²ˆ‘`âlÀL“f¦Îûc¬2¼B<ò¡oã-ƒŽé‡(`2æYŠ[ŽÚ¸NÅ“­gÙÕMIÕMA (S¢˜ Þ)ߣò…B/®’ë%®ËÂïŒÂ¶<ÿËè›pÊ+Ö68IÏgœC€…ìq)ÖYqÈÉ„NʲÏ:°ÿ ØÒ™’8¼©uˆðÁR%Ù¹’t¨ÿ“åq„wéÞŸ¬ ÷'e†ä÷¹‚Ÿ¤† ­²ÐÔáM&Æ¡ÎùCÎýóÏnZyÊI27÷×Ô<„/]ÇI¯óAçù˜OoŒ:ç“)fæÀû0žÍjJrHY#áÌ'ñXÌ(’)|‚ø&NŸ»È'¨b‘k„ŒÐ¸JÜ¿<à™!b)BÀL ® a•m„söLÄ0$CßIø`”¤™lï…«+ŽàŽ4‡[Ô©L%ÖN Œ»+d ìš¼GmUT„×d ƒ¥í—’K‹ä2ŠÈ˜ÄdBaº’ÄŸF:µ¤†ÉÉSÜ-~ü]£›¶7U}ä¿`žS„‹$ò­>×xÖ—ÿP}ù"U¹«çß— 1éYåžÓJwðÞúvd•‹Zï¾@ßN|u[^3{)7LŠ% •ï˜ï4‰»‡pgmv{]øÄÿW÷v#þ¨Ð ÌO’±÷8*ø¥•×Õ ùŽÉ vï°uLÝP ù‡Rdßà ÑP Ò@@ó{ó¬V_R­ž!¸þRjôûè¼ÃZô…û{ÓxíJú– ðÿ”Ôîº<°éU¶Ý*Bé»qôº'Yëj¥Î}L:{݇4à˜åˆÂ Å…ÒRáI\)Œ‡%Žû´´½ø†µÀË$Åsš BJ  >]u:“,Ï1f/T­¬¦9xmŸ ºN¡¡ƒ!íOÆÿL'ñ5 Ý‘[Å4ÍÈSÅõèff„ @f´N8ŠM‹ŠÝëÙp4Ç{ Æ)Fq9²hŸ¸Šñ;Eå ÷/°½8pê$¾¬97kÝa .°mÓA@= ׆áÅ œu’•Ääš-MO ÃTNÉoÞ nP8WD¶oÀê®|mƒC…æÄRc²ºvÒ¶ò"Ü'·Ý ÒUÆ"€³?I%+Í‘• †Ø—­–Ð\Ù.6—˜Í E 7£¾ /íC¸ÏˆþÙ,×?9n ~#Ôå øç žžøG 6!,oõ„1¯Oóêšl÷ Þá}f ZÂÂ%·£;Öi™.Þú† ¡©ªƒñˆ²O©6gî_ÆÝ.UcÅ]’CS#^J/.XTäCžy×dXx(H‡LÍ¥Lž.Ü@@ÝPx ”ö8èèx±)Ltƒ&šI¢’×ÙßlË E8 UoÖBÌ"„-#êÂMü¡û@gpZô‡-ü!Á;ýä F,¬A€›¡á2ÂA®ñeÝeCÂì êªêëÅ..ðdsɨ}„<øg»»•Í‹=)¼Æe^1>·c|¦C}@œn/‰SÙúÙ•bêOh™…ŒQ:B±°s¯õñÛªçóÏçAZ$ÍÏå1—¯î¼>Ú@~Š=É#y¨X¬«Cìﱋ”> r—I{Ÿ…bN‡×u™J•rZ;öc, ˜N8ÝÐÅÃe8£ ² oŒ1]ÁÒ!c“ç¿»hú±ãVüÄ”ÆRVáÂã¿»Ü"Œ63WwAï²gû}Ñ›•x„c(ZÈW,¦úí 'OÒ´¤LËêØƒ…ÓbmzY¹„dê_x¸/Ký¯2žAwAó²'÷ªÐœõ¨Ïp¶8ß}’•A³‚72\)ñqŽ,À/„Mâ8¸ÕÛ–à2Þªqò/N¯hBËà­ó­à†˜³ßºd‚ ¸Œ£åcÙ”œY‚–©¥Ó%äÕ{«Ÿ_È_ò¢<”YýÿÆ)N‡;z+°l!o3RäÔ>-ìv AĺCä&=i„ —ÊÄ’‰$%»-d8µt÷ºÇ ˆáC/,Mï!Â6ZZãlõ¥}$A@H‚AÔ7ûrAƒ:»èªþ­h, 4Ù J_xŠÖÕ%Í‘!öç|J2K6Oò˜O\3E %…>†¬§löóJ«Üù$6Sð"€$‰¢ìI/‰RîcÞ/~„•³Ñz²¢•lM!Ñ’¹7éÎÅnPw€¹àÂCóÞ£d@¬äËp( Gșʴa5>eÙüÉ$Ý41á]'ÑO UÆ–ô¸·X|ÌRR’Ø‘Ÿð µ`’C%!vº1]™\Ñ$é˱F‹½Ý¼wo7õ6¯íLxMt¢ª¤{Qµacé†ÿ6,™ti6ƒ1)•­Œè*Ä-(; Ÿ¡c¬l%¬R)RÝ·,SÇÿýBV¢1TÌ${‹ÂΡBñÙë—y|ÿ/817þ_ôòÕ+Ïÿkû9þߣ<¼Žmÿ¯^§‘ ¹Ç?5‡­»9[e Á§Zˆ›JôªJö2 àŸ)nO€rå<äÝDúôf4ø–ì“€P”[‚áL ýð–ן?U¯Ÿ_À Æv9y¡,jïàyò~Œ.aÓïlF›Å…gÛ„a¹£,ëƒbß €惒«2{¡tq6€R‰Ë›)Å=¼ÌûÃѬì"úÛpÎxÎŘ͛+oN0ü4DLFyѱÿ&SñþÕ@­5ÄbÿÓÀ^s?ÜÖ:†òwʰH8ÒÕ›lÔáGiƒ¤{±I„H;CI—ä%@&LŒÄsè :û¾‘ÊDNÎONÀ\®­ÙÜ3éRw ì8›8sp3c3 B€œN&`üýz:ù4í_‰Ùà퇯=Pí¡'¦Ô׿í`Ÿdöá*F¸Þ ´ET¨‚UÀÂ>Ê>Õ¥b?¡*Øw« :œöI Šâá ìÇ  º+„Z¶ X-Óø÷Qfì²Y…Êû$T–*©mZѱ ì5ŸïâD/r²ì = |‚W„9êø_³ŠÂ‹ýýd Tá¥ß£{˜±'™©¯Ô䣮Hÿ'c9žl.!>¤Qø=,²=#ïÙÚ‚ûVÎÀ?/kå\ÿ<8ÿB|‚:½†s ò¥˜K;ÆW‚æ5Õ€a_¸yÞÙ Z=$%£:û¸û%åkÂËȧ†ŠGRˆx†üò‚¥uø] w}jGUR:îˆðœÅ°·æ(`nkp}îÆ÷ÚÑг5ã~E Õö„¼úú~‰³?ÈèIÆ^ÂY)±HHê/ëX‘ûDHÊiàD¤G¯GÔ÷WþkJ¯}@®%ÅRÛÇ1iQÔxd¡ìMfR"³¿_L)o0øûfXáÊ¿D‘pó‰îu¬ €I¬X²ÅÒ&Ûo'³^F"ñdqÜ›0Ü>RÒßSe œ¿Ö£×ã”#âi"ª‰§]ÚOcÇG>…Råð‰2™ä„€Mr W àE¶†t¤½¹jìÃ'ÑCP’ïÆÍL¾Ã9·Zá{Hþû¸ñ¿¢í ?ÿËÖ«gùïc’FŽ|T´ƒÉKÇ ]TäJlAÂ~@ƒ†2$!m'‰É¶§¯&ce´KgßK´G¡Ø­sbÆÉpåb€¢ ›áåw¤P•9U€1W¬úSf?‡°úÙd÷?&„Õ7ŠôºêCW-Ò $;žT6ÅM0¬”­·I 0eW! D,Œß(†C=R`ª§­¦Ð@ܸbšQma¥°‘d2¾žÃVJQûssºª 'ž?j:f°!~îH…Æ`ìª4~”Ð9c4›*<þ eÂ+Šô’×å¿L¤€²DT7ÉsБLAGî%Qи!†€Øvåò+Åû>U eñZ´]_ÇR(h½‹„[Ë •D)‘|°ßEòõ{vø®"y›ðÔ6¥f¸‹—V¾Â|ƒgñeT}5.£ôS<ý¶ Ý (“`ì±™!8'›ËX¿Â²ø¥¬_ò¿ùåãÆÿßÜÜÚVò¿h{SÚn<ËÿãaJvä½=y´vTš$¹xª½å$~ JP˜oi:Éá‘ük6¹œßbtb\3ha$#ÕSoC2M Š¥É7Méçd4™ö/&bg€Ú'[ò©ú%œpzË<͉]$ë\…,\äHÆ ´£¾,mööàru=tE›Úþ‹¼0Æ É8Š\ïî5ó &·™«ºpYy%÷²$\fŒ‰€˜+(äêì¡4„½ETK@>·}ô“sE]u£Š–³•´œÍ«_^ Ü|8ÑæËS,´¤Kä­ëýòƲq‚õ¤Ëþl¶²‹âµîØ÷™¤]©È×´‹qË M ½Ce)+ö0"Wl³;œß̨°“ÂjBÃx2í}*Â*ZØ­×ñ–!ƒ:òNÉõxŒò¿)^ñy§:äýgWõ-F1k“åí×[2CÝOç#F£Ù¿TÁ`ô¾—†3,ÐÔ#C a>ü;éÐeá ±‰ŠØØc[–ÜØÐV‘ˆ*"ÚÑ–ˆÔk¸¤D¦¿R•MQÙUn•~·Ef››bsKlªBÀ]oFb³¿{¢µ­-±¥Êmmˆ­HlUÄÖ&üîKá„ØVE·7Äv$¶+b{SloÁï8Pæj³¦Ý¸Löy2º˜Ö$\¼ :†Ý÷zðïÉðÑÆëíâÆkXQ4—3ONŒúÀ}þy:(q?m‡ †wsAÀ\Vs[¯_zÎy`óW*<"¦ä†ÜÁ4y0ªéx0Q í¸…¤Ñœ²¡Y0FЖ ".¥:p'—¢ *ÕÓí@faVª¦ÛH0ö¨þcÏÏ”÷¼?ÃeƒK‹¸(‹2,Û¤’ªOpü»oåâ?Ð'ú\ÒYkæêßö×B"ظ¤³@õ VÒvpÑ„ÁÆ%%­Zýri}7W¶~ü}ÀÂƵÎõ£6³–]1â.¸ÕNáT´ëVpGƒ-ËyÔÖ¡¶ï[1²öŒºÜ3ªx ŸMà E…¤4Ã}õ¯)• œ–Iä\Ÿh´ Ç$ê”CK~H?kª²‘Ÿ$þßyÌW&"€f`Šaæô) „ü S 3ÓÝÞ´²¨!ÕÊ’%PÌ4&8O›ò+Ì4ÌÙvn%µ!ÕÊ6R>*ÐÏ®:ð+œ2p€ðìÊÃt<ø6KÄ“‹‹Åçðv¼}$Ãñ»”£ØzÂDZõ$ÉÖ“v,[Ï‚£ÙþîÏxàn­öÀÝ$€ÑÜÛ‰÷;ps7*Fw9pƒy –xèWø§EpQÑ’£3÷.‡cxªÃ‘—ú-¼3Ž…™ùptW©y8þ¼œÿ$pê˜çÕ|²p‹ £‘Ý ÿ²ð€Km(|ŒZ“J'©sÀ=¸½/úËnÐ|ÿq·SíF÷ýÎç¯6™ “eŽmTéT(M{aššÆ~J‰ýC(sˆ¶šUø#d¦ù¤–µ:Ø©¿oïcV™÷;Á~­ÜúÀœbaç;éØFDžB3`…`ÁLÐþw©ÿ̨‰OÏÁ­·÷êøua¨>BQPßnMQ@íÎRò[!e€ÙyO×mfúÍ©JV5Ç# ] ׄ14X. ð7^·{¥(Ž×ÖîyN;º2œœíˆ50;±‘…#&(m̚Ѷ]Ú”aÝBLBòÞÛu*ªNhãRß_Šb†§­j•1ŽcÙ)†B.‡QMÛ/*aã¢o6að—ÈAKnÿõ8„“2ÅÆ¹ƒ-·b錄ÏpÍAäLážCh¯Gˆä¶gÖ˜üMÍXwÜRˆQC=‡k(îÙ°ñ¿f~‹Ò¤ÈÒ”¸7{Åòx|?­¶‹k‘¼Žm&NÕôX{ÇË[ .;ßíVI/¡˜jš Pµ‘} ¬1‘Ô8ÂPyJ/¥¿c©âF¾(zõ-‚o]þ2†Ú‰ÕŒJc³JþšÌ7b컩_á9ôÂþuç=™©lãuî¼V’£_7B½ÇÃhÇlìëý{˜t˜;ÿ®›CÚÞ Å„¦zT HÔ}®%GcODO„fQ (& Æù1q`„‹ÕbCþjF0z¢&r2HË@ä:”,ŠVÇÑzdQù˜¿vãT³bÕ2êä3S·AÇQÂ\Ò,ÁLK/[€$†Ð[ñ@¨ºÕØ®X0ÇίûÝÜÐÅ% 7û¡8Úˆ~‰w”ä‰GZã]êHêw¨ÞöXÁupfÔ—>3¼Cƒ€¾Ü\Rn-^UZ"B­„j.â¯]õrì-½øœX7jösÑz\_Ž£‚:2ÞŒ£eÖTcÁÙ@´[@³ß*{"·qD"+&³ø[¡ó+Ñ‘Ä< “{1PÉýä£ñÑWE¨röóÀ;–%`<ò1 Ñ$ìÆPpŽþ®OÍðT²s<]ÚðCgr†ãâgÛøÝW#L[¼Eb\€µŽÖ1È1É¢žÐÊ]¸Û¿¸T­¯‘w¼IÕò÷>¸ñb¼¦¨Éh›õ%t•ÐK%rî“õe=p™ˆ+šÕ¬JÙù¬EÜWR’œì âµæËD äŠKÉ$ôÓ^%îw%r¦d`b4Å~!B)÷ ³²Aê_îy¡Hš-š*Ê*ó_{¥8x¾Q$ß(gÇÃ\)xa¡êuÿz0MX5)vâeQ3ü§@¨"Þ ¾˜GǺy­_ÿR õ&¯_îp»H;3ÔvÓ æO¤øñ§¹jÜñ¼´ÉÁÝE#;Yó~O¿iâþµÔÃ"¦`“Ä¿Ìc(~iú&låÄ¢ÔÐÀß(ÝϸÀÕ%äà—¸ƒd’Ö³êüôNšø„ü?§êÿ¹ñrsû¥çÿ Åžý?ááEâúvrŽß§4¥y4×Ïý›ÑΨfüir£ }$…áfù_áú¹œÇg&OO>TqKK¹{æ˜L *ôærñìz•8}êäñ©ßw²¸zÞ߯²ì”|`¿Êg·J*öÜ*Õ4fs«¤uÒ^1íR@t™ìwÌÎãp_& ±è²¾F;Bö9l·ýáxO±Y?PŤº¢Š•6RÆ;9¤‚Ñÿæb:¸LãóÁ…=¢&È£b™Éy4˜0¢,ÝY0¢,H H:FìT³,ê¡Úªe†ôCµY{çµ?N9óÈ„ø Íb÷'± ~KÞìö¹÷1¢õÌrÑzF·°0²ÆÃÒ±´îe€ÛÉn€·6 =°ÅÊÊ åd¨vÜ ô’»/ª:s(‹,ÌÍû¸õÝ6Š\®—Q@ÿ@½ÔV˜‹gA@êãÝÿ§p>nü÷ÍWÛÛ^ü÷ÍçøïòðÚ°îÿúû6«ñUô§8€š”`‘™_™—W(C‡ó/?µñ­ÉÆÞ¦ŒqÀJŒTFyŒ\N¸wÀOï1SdžØœ‰Í¢èî¿+ßù .1¨qºè:Î׃ÿQì‡ZsWvvënã=^i–¹­‡`pÚí‚ÞzÝèãòYïôØM Èmì|:8^O‰‘“¼.l8CŠw‡ÏîÓ]>tׄY )D ÖEC{ ž>•,Îåp<œ§UDv Ë-¬¿®‚öÅ {·ìY`á‚¥ X+æ0÷yusôÏ8ŽX·¥"ÓÄ‘-Æ ¸üjpj¶$²H*–`æHó·Ÿ.Ú|ÌOÝ ˜…ÒÐ0ÿºÂµÝ S­!¸µ÷(ÿàöÜS #Åb#0uÏéhï]˵ œy®•n;ËJäÝ“(}0î·Ùå*ûjXòhÆ„“Uò7d#GÊѬžÄѤˆlx&w4DºÆÜ¸ÒÙïý†L(ýÑlâ ‡·Ft1šÍ`¢“ò vGnði7ÜÃËm)Û™b |la¥Þ¥ãýùE.¼9«NâaHH¸L¿Ì€‰,Xh•B[2AY׬êÏ„ùÿÙw2À´,‘`U¥W•áïUÐû{É•TÈ{h¡Í¼\ú>Àöá!ÝPl\ˆÙ;)Šƒjw—ÿ’‡]m´ÛÐ^•YHÌX•º­fû|=Á_“™¸Ó­ÄQÇhû’{½ìVwsb3ˆ»{ÌBMV1^~"všÕVý]ùóvO!>IðV”àŠnµ• äâN§[oå‚>)D´×²üÕF®®á4ï4Zx{'ÐR¿Üë8ÊG\ ˆ'³ARýÑKojÝõSÿ–ëòWìwüóãH/fAोþ °hе9ÕòûNYUá%Œk¦Ä ž¯„ïKE%ÜÆòÁ î“á)f?XBtûÒ–ùŸÎ.ºÅ#ýAc'8í+ÂJ©™&'VŒcwv´Ã¢ ÆÑí_ûëñêæ &§ÀKÎB¡î½JÃ97î¾I:EÝ :Z°´G&€Lq1f£cØ6oàŽ2Qeøw¾–ÄX£ŸËo{2+gœ»«îãnïl¬F·…:m uøJÇ’˜°örj „« cØvaó¢T¨2†çž’‹¨=) åû*]耥+mvöcÉ™:õ™E cØ$` ¾ /³Ð)÷:ɺu3š¯aÞξ ft³´Ò§÷žpŽV¼¤†NÖʔă•<-44ˆÍ]½ž¯eíz ­;‚Ô¾k!ëüä±1‘þ¹æ ÎYô‚€ã²º˜à¥ îl·À–ÓÅí¼ƒËVÇ¥Œl¶€D@•‘L3'n`¶?æ—49sæžÈ}B2L¶P;`!7 »=Õ+ÈÎ[~•–Ÿäí{ÑÃd'áé$Ö‹:+1îsë 7ÚðV°1æ&ªe„r+2.œîMÓB?íw´ˆùaª­?§²:r1üW • w3IR!ðEê/_ÿ3øzþ¸ù?6¶*~þßJô¬ÿyŒ‡‰ÃÖÿì×aÝ6v`E½{ÿ±ÕþØns·Þ£½‡{üsÜÄ?ðßãNÊF E:pwS¬¥èÕ -«ÓѸL¥Üh¥>§§°%Â8Y*ÁFà:Íób*qî¨èé帤è9nædgùk''{_“§úú! 5%~›Á™v…n:9µÑR|#˜Ãh8¸œcÄ#´Ž=ŸO¦*öiŸ@Œß|ñ©ds{„Þ~9È ¬Ã™˜¿æ0J°—_Üœ³1/6Û=ÿ|3—}leøoJÃëµÝLáà&HºÿFz…£Bá]e‰Z®POßuw:Ô ¥•â±ãß´@تøN4 §Ó°*ceò7Ÿ‹J¢tNÜÒ€èêN-¿VMZO¯€yµn ߨ¹'÷úœ/ôè7þ¢ªq /üI†ˆÙáA…oVõ¸¬÷nFCž…ïóÐ{š¹è‹â ~Ä"ÓAÿB\ 1ˈòÉ’í¯%ÔF|øŒ¡ÈkÛ,øâœŸ(*ú3Nâ‹ØFL#‡®p›“ZE&XˆG ä¨ ŸQsÄy­J§µn\òKÒmŒ‡pÎ|—4ʼnH§$:´vÖ&Îó ‘ä‡wŸžT;ʶ±aB5¶LªfP*âVFô°PùÕA}–$pŸ’gt êÞTÀbT©™U(\­=P ‚ ïËYQ5¡ã®“¾Ý¤vnqõ@jZ!΀û¢„³ öfÆyjÙÁ®6z¹SÔsÜQ-7ÝvÍÎà<<ÇíèÝ„ÝL¦Ñ7ÉÑäÓ9`VçðI$§€¿ÄS N®°R#nVŒœ=ê¼â;ÄÌÊ—nQ ©¦BÚË¿gW³÷QÞ†¤Iº±•g!¸x“Çî_(åˆVkm[›64GUeµxMEľ‡â·ç˜ÿ÷,PY³Y÷êßäs[-íJÚÐðŽ ¨ô,÷'lÌ®U†½,£\ 2„æ¯1m;ÃijmƒÉY°¨ùé¬éÅÁô{¿ÅqÜ,KP'c\$Ö¡MR>a¨òmµäÝeÉ…ÔÉ´:i ©ótRÇXHåÒIÌŸÝg%,^I ü˜¥ÔyÄ¥Ô4–Qð=—R§,A-ZJš4þÐåÕRjµ¸è‚®Äö)*9‡éó6í[±wÐ+ M´TNš%Ȳm¸ ÐÚ2ÜÌØˆèÂãÁÊãV×KË¢Ù’8m¨²Û?ÿó¤&s69?¿!7ÐÉØáì°óÏö7gOæIÜÀf4²ïræ§¿?ú4™矯xiîa.à^ûiÚ¿Âi9ëÏ•G]ÜGnÑy6üƒ¶õÙÍÙl>œSøi¸÷,1ƒò’w¾êa¢àíá6¢ÉæéÂ’Æ­¨–𢠩Àœ|2sÃÔ©ÃC_g¾*©gˆ- ðUÿìÿ7Ð(ÆáŽ¿Eºžóª~EÓb-Ááe@rߊßótU‡¡Œ¥¹Û¾ýG¬‹ÿ|ÿOùÇš<¡Ú hh“ƒ&O–‘SѲ€JûÕ[ ½ÞZŸ ’¦Bµ¡ ªR$‚–*EN¥{ÚaU›Í㢨½ï½ƒæî^>Þc¸›Nãí;üÖ}ßÚ=NËEÿë²' ü¿‘<ï÷€1ìì’-‘¶½B §²ÀúÐ<„Ú{ÍT‡­°~ŒýÔÎiµûAk—2ÛOÉj)£XÚ~ªþþðO4£B´ÂçÛÝÖñYQÕaJp,23ÊS´ªª¬ªêa«ªú=¬ªv´K“°9ÉÀJ+i‘ŶO¬B&^m+¼â¼4!"=/AP$kÕ+ÛtÊj›Xæqa¥pAC[s›Ö^º„Ñ=ÚEºk†ñ ¦úh)9Ï.)›RÌ‹„áŠ"%Q¢œºàêÝ[ž{e´ö°$RÓ³+ÚÿÏÕR~–AƒÛŠ…ÌßÔÇiÕ6§Ócr–M‹1šÊå,ÙhB 4}Æ÷0¦îšx'`xÖ[Úð,® 7l¨1¡æ$)sçÕË4ˆ¿ v,ˆŽÕÛ4Ú‚AÃlµh€É5œü1ñ,/aP·{\_•A½PìlDÿ'<Û\§Rý„a^æ$ÿÅùt2 XÀà‰œbD§÷*Åæ!Žã†ºµêNŽ~/rQU}ø!Z…àUÁØ{”ÖÆCØ@óÐÜxônôÖè!·Ž×dµùrŠ——x„;h£ü¯9“f9ëm:Nz9ŽGý2 H\‹AåOw)ȘÇñY=T$å§Ò M]9baòl2újÊHýtD]5lø`l›¼#V¬±Éò2P±$ð­èѲÞG¥µ´Ú´Sš\j¾=\=Q§e[ö`Ô¾VüúúÛ0‘¸±±%7@òA¿ç=Pîô,°Õ e½ô›m°rê²eív@u@’Í àEÙ"KÒ©Ãל¾!Øj˜=—UúŒÌæØuÍÏ1[ ¢ñ ¹™j¦„}ã®a±­ 5-.ÅÊ!")¹¶­³ï3`z,ù>¹^.z}Ð(aUüÈC_z9@ÄA#Ÿ/ ù±ö{éQl/…ì¸Zoòï’‰ìДSÂ5ò¸ÓÔ…æÞl¥+}K¶Hr›9h É­ŸÃMV4Í#×(›ñšoÜ ßÙÏÿþs-Ý:’­…4%9V’© ”BSKƒQ€ÀBëÀ&“úäú»i›ðMÿnV¬?…!ûɘWIÃ^ex²áFl?á]SíK~ Ó†a|‰¼*Nº‹ê3KÒVâKmÈSÚL"Ƹ yŸ]Ü; þ—LüLÔcOùA8²ñ7R^€Å^nÄe|+h0°Éˆ„ƒ—Åšw“aSíSd“&m–â¹H%6ãâ;¢4ZU¦O¼â3M];PÃ)Ÿ:sæ–ïVÎ\Û¸pKÁe€Ü øh)L`ã"¿f<;à«%v@¹J×å.öjÑ…Ç)ü#¡þ¼Â¢ë˜WÀ!4±5F7°Myˆ‘?ìm=Ò Þ¾ï þû‚åoà*t°ê£BÂï«=ËëÑëv‘?¬³|mñam,Ñ;ͱgšÜf`k”7Ã%N󰿃q¨§îxà‹v O8X§m€½UðˆO­¬ÎìuŸx¬S¾¹ÚS1(ˆûÉG½<[³žõ ŒWãÒ7ÙðùÑÌ|ò«Õ!²¸Ã¸\¢[¿ É?ÿ£èç?yÆóŸ‰SÿMy8* =n.:ÿm" p êë&³ó n §|ê\/Ç+¤µô¼BTYbƒµ™¬*“Î,°¼l±ˆYHt‘Ù=®ÿWGˆ øÿ|{\ÿtû øÿl>ûÿ<Æ#»íÿsRÏ‘óÈrø9ÂOø§±×…o&ýû“ûðÐ(Õ…" Nu†*1@èXÊu' >Ê10r±1Üo °øgšóÌI]LdX5Kq[1,ؘŒ¼,gÓÌÂÝâYªK6Så^ D y< )ðWVŒá[D•xÍtdàXaÔ[6¿ëk˽Ùðjs6œÚžzO…BGOÙ kr¿kÛ?ÃæÏ1ô£X`Ò^]Z Ì¯nFóëÑw¦ç<¦Ó nD%"‹GÁ1Üs»éýs-õ)˜Øb’õžª…x(@|’Ï•YGÇ6É ¡òãXÝ G‰Ø^JJ!B(¦@¢Õ©∬šÎƒ±¦ß!;ƒ°†e¤'W“½„TNÅíçáùçxðç§a4ܦ†“C›­`RŽÊ )Ú¶–ø¸»,hšã~7É {!Û³¯¯Ý¾«/°éw<ÚÍL ³Á¿ngÔ®¼lK“³Áü§³ñWÿQ]±¦#{ÃíÁgûù½)¿ÿÒAà³}¬¶{)‡7\/ZpóhUà?²&dº£2)Îè.²?ê1*¥·Û:\­×ÇŒ'[ªNï-|vÞ÷V`Q¥Ì§ÂvS+1=JŒíD›òH6Ê@hz»H› Œb;†ô€±é3Û™lTŽ,£ 9òáf¶`ÁýÄM_߆Ĉ Â+BÓ†Ð\AÛ¼ÜÇÚädeÖ&¾±‰‰ øJ[lÈüÄè¹Ä"õT­‰bc9ÜC=~ZV·w;¶N%KŒÒŠló°VŤLüaÓÐ^¸±q÷Bzß\/è„ÕhÅéÕ¦µ^l¡ [´¡ˆN²uÚŽ mëjW6º Ñ`zþAîù:€`Ÿ ’¡1ØÚاMY½ñ¢R‘/Hf½æ7ØKÜs®ðºÊª‹y‚CTºÀðN¥ûhµ­$î°Ñjá?‹¡ñ õn‘8DìT¯1Èß°ÅÇ»QeÖ+e éãHG¹#°Ó“ WšÄPo*JPo`"þ z—$Ýì¶Md Ä7Rb*¿i jX¥"ꪸeñd™z—JÅ~¡ç_F‘‹kS·¥™Õóó`žµò#F´ô„Q|º+Ê4ZÄ;»1Ú£Œ£õ¬7WL0UJ–[ž¬FnéËÿ¦—³GŽÿ³½éçØÚ~–ÿ=Æ#׸%ÿëìé i”<ØŒÿ×y×ÞÕðþ9IÿsR{»§Ÿt  —Bb:srBBUΙL§“©8›ÜŒ/f4Õšµá7qþ‰Ë8¿Ál2ºQm_Zg'*„û{ŸïB$è;¯ç“Áååð|ˆŒ”%±Bé­ýѳ=ʬ€@½N¯ÓE 5‡=Bo>ògôIJp‰vÁä78 Hߦ¬Qp1°æb"†P²žºdJá˜Ïpx@6ð¼?¦<'ÇxNŽñ‹$Ǩ-G¿µ".„…¦è¸¦Q[Á je†äâd¹Aœ„á´º÷'+èýI™!ù½Gþˆà'å'  @q&Z&dð2Ä­Ž'«ŽL('ƒ*§ƒWÅþ:ó~ìP'°(N0v• Q7ŸÞu¼YØ”ä ÿ²FBáð2ÇàyàÓ{ð«GI¦€×ÎѸJÜ¿<àQ§Z3H¸&0„U¶N}FuôhH²ê¾u˜ÌÍ’8™îŽÂ€@Å\çðq‹±3€yáb²N#¸·¸!ƒ »&U[!W9Ã`)Ý6Œ‰Ø@— V.]j‚M(Ò^’‰)>qgWpBdj˜R(@ÄÉA2æ'/ÏÒúÂê EdT^›^‡3ÀõxZĬÙmî¡[MŒ~‘ŒõBó{óœkgÉ\;¼JãRÈÅ™sT‘%rëÜ'N8 ì¡RuµçhŽ]I–S¼þ³åâA–"½Ê¶[e‰ô=žîYëþî×=ÉZw%a:{݇ÌDŠgB0¼ÂxXF»ïºÌóS ¼LJC³(½\ nïø@Nr>^YÖeÌ^¨Z=XMsðÚ>t ÃÀ †$h<ÿ{0ÄwxÌŒ\.Zf!/Z×£›™ˆU…¨m¤¤‡cÜ â°{=ެt/"AÇ?Â>-pãwÔ?óûØ^l 3‰/yÎÜ ð°mÓA(ZÁ*ÝÀ9Ù!¹bIL®9uå‰Ιã•ó›7ˆ\R˜ó*Y_ ®|݃‰æ$ ä–îOEqbÄZ¦^áòÈ7$i“ìô9ÊÈŠPc%rê©%4@H¶KE•GñͨoBÁ ÿîB¢6ËuàÏ<¥kÆo„¾|ÿ<ÁÓÿ¨ÁF„å­ž0¶ñõi^]±í^Á;¼ ø:` Sc8e2*NY’¥oš6oŒ'@˜}Gînƽ.dcÅÎ1¤TšIg™—EobÂá÷BËÇ ŠFBgå«'3êìÎé׊ÄE±ŒÐTýv:œÏce^GçRõeÊ?g‰9¹%mά/²¡ðÙk•‘½Ü¸^X3`eàÌx)¯ 7Öú;üúñ‰™dH±è™³Õƹ|«âg}TT’‰>|?Àx¡XgÀ%.˜¤Ô·VZUf6𠤨®M®É0¬Öô"4@¨LËŸæáLƒ»:… µ?^¸³šG}Ã,kžpr†Îòx·E¥tª $ Y“«Ùfç ÷ü§áWº(0¹£Âi¾ãy€?ðëZ,Ñ`Ò³Ç Eô¨}áExðjùõÒezo…Û .lùÕ¦'‚ÄrÛïÙ@n0œï¼[†ów„wG~uƒäŒ˜ïü÷.ÕÞ€óã0#Yâv0Y€öçˆ2Í¥ó¸YYìbn%Ø\®£dQ!J×Ï!Q{CˆÎ"Rgrß@‚_LëLîŠÚ%—hþ‹5î’/ Ìlú“ó!íŸtûÔÒÖQ@´«¸œî÷Ñ×qi*¼Jpi«à:¢$: /RŠí&\½÷HikåÉÄ\òq{ÓÉÙ`<¼™iv‹¦ªâVb¬ùí$.IëuÌ|˜9uq8 âT“»œ‹ÄºêW'_(Tà¿\)zQ‘¢lÅÅfe×óÅLœh™ð '‹Þ#\"ŸŠ«*%rc¼hL'ߌb@™n0>¬†µC{ö,•ÑÞ¢ XBès×Üh¥1_ Ù ãZåM]n/H’†`ÇB»Õ)õS¹må96½±_ì–k¯È93¦–Ù}#é#FŠ“éªät$aR8ΆŸ®ú¥«á8'êJÂ(ŠßÔµmvÅŸ ¥lÇ4«áó§0®`dúC ²?uä^¾F/`‹É+yŠk,0Æ‚üUn9è!¼†R‘öhiä®ò2ÎÃQžÂJ›cÀ~3Z ’kû}0…-óü ³ øöæ|^ø ÖhµÊ\BFp CDgª•JP¿,ÃóØk,T’¶g^dÃËË4þr;“r$4ë´³0±ÐTùCL eŒ‹ ±Œ—jP¡»—³|­ë´2Œ2¢èðò–â½®“KêZö2ê•L飯,(. 8`.(Êø‘ c+¢TÛÙc4>ìvþ,RœÑÚ;þ<â®ü8”µCÚ<Š~¨C `ô€# ˜â8E­·‹2öûNKæOKÉrŒ“2ZZ­[þi³Ú~»($zQKéÍB£spø¤`W•£üÙ ´´l˜ʽÕ=ꄯ¯8T:eìGOúûµZì Jôé¾ß%ïvtDæúfÙC·ðqrᤨìj,˜M¬¥.”ñ9º-ÆCj¡âXÒ¶µ%åTù6cÃàÿ‹!´”³o(¾n]vUïv…|ƒKñx-lG…v%)o Ĺ³ìh÷¨\2s¿©¸Ä€M×ÌŽV¿2r‚QU í8ÔrìônÎ@; @Áñø3½¨ f|Wp36Ñ'¬~×ûáО•eÂ3Ü+Œ¿naÙØK„ñ÷‚ígãŸï7‘Ôâ93£E0 &†BØJžQ †Œ>`¦~§ÉQ¡»Û^QA8<®{‡_háˆÛ²`ì‘LQPqì* lh¹µY¥|)2¶y²°Nÿ ko©A¿:oKõ̓ Îg`tÒFÞö9ŸÀ­b§HúÒšj†ˆ\”‹Ø¬uA^ºfªÏ „XäFîÆL{FÎqBb_´ÁqáÜ Ÿ+Ó˜C6(ô¢ÊÿxqˆåÊØ[‹@ŸßŽâ¬ºÒp® ¬<ŠÌ~Jÿ”"RëÁi .jåc5¥ôJLCÜ5µjö-MŠJƒWu©½‹áxj³ä–µK«Óïú{‚¹œ+cìq”ÿLû¨<4­ü0!ã~ŸñYhößÝ ý$fÿú Øÿûlÿÿr+òìÿ7_=Ûÿ?Æ#×¥mÿß®Ê Þ»÷[í?ƒÇM™U]wRÓÀki”^­™¯Ko€3H2ˆgw¡'"“¿@OÍ #_á¹ÅøodQ÷ó H–’@W}î.ð(°œ0e=ƒ¿vrr<éùD¸a5æå|ÚU#YHª©YÜšŠ ÓeærÀP‘nfÀÿ%ù_üT6”Fƹ5Ыc ýdD¢)SiPÉ­D¤ÈÝÌi‚¡{ðÛ` Cuºã–7c *c³&t«ñ'YóßÓ™a™‰<¶'2äÛO© ž]wJyQ&Ì©µäíé•sšDtéÞ -éÊ“9šÓZ7´|J·¨. Ø\ÀC _ÆÞÀêk-ée蜉ìœÑtÿ|~ƒÞÈ&”›ß› õΤz‹3ck‘±sxÚ£kÙ\2òžØ^™¸—°¸"e åFï·…zî"lh5==t)…{¤ÄI~'uü™'ùM<¼ÛD/³Ò McÕå¨uvÑ'S9aØ‚ÚBþnŽ‹¡Üø?_× 7ÿA ÏÝä ôù5oÙyÞм~ÕÞÌÈàoaÞ׿PÈdp"ûö‡øºfÙ]&8-|U>3Ô+N\i÷æ|4¼Àà±±1³Ç''ÁB@£á@×SLþ$ûzêÁDJîØ¼ž¬1m ûK1f!~ŒWÃ×N¹·ÀÀ¹›A“ú¶[Ž™Í ¡æýLš¨K=ŽVÜ0†UÓ¥i ¬=ºpK$A—;®™+ÉÊâ\ˆ|hä9A5Ò¥Fóq÷áZ”’Ø[ Z?ãO%Y ÐH0…¶è4ÁšìŠ B ’b;ÁØXqQ@•V=#(¢Ý}‹raàQÞÙ6˜r1H^®ÔQ>£‘¾AÃ>uwˆ"Åɺ©úç4ìݸ·eo÷}‹Äõ¦e¯kÒÊ£’_[F…³‰±ÕoãÄÎ+vÐMÆE­ñ¶ý¡Uäüb¤|o¶Ñê·ÓÖ¶¿ðÑjb¡d1ø ö-YÒ^ßÁ&;ïwñv;â@KÐPëϰ#uç´ŠYÄ1Ë\ŠbçPYIîòéÎû^]¾N6GæÖŠÔ¢¬2Ö¥­”w:Ýz3`­Ü¬ö:]eµhñ¡’²ý 4hõ@´z8 Zýiв˜]ÿP«kÕ6oZqq¥#\ëf°¼ÉêÃz ‡.u )áÐZ{âÚÿ˜öÛÂMhÿ®€H½¢øûÿ,P¦!·ðÌ™lK.,Ÿd²j[pkSãDÛå»,빨:Ë ¨z"&ËÇMÏf¹«m–ùårFË;Ç4ˆEuØQ ²Õ¢ñ%×ð2âñ%ÙïÆ¡î‡zŸÚ“—69ÅÔ³Œýs»úåŒe£•œB‘?Àä,Œå¡–gZžÖ\‰{jei•Ù¨ZU ÝžíexðiÈ|;˜ë;Êüæ}R˜«Âv*¸C#¹±[æKÜce67.Âl¹jª¡0 ¨Z«îäë¦*Ä®"dT­vÇ­pçùòb„²ÕÛNµÕK³Œq.˜E×AycúRš[º`ã*îÚ>"WŠæ¬ÈGQˆk4ýÀ$]™ø -CâïŽe"²É8QĪ;Å›~ñ4è@tøB u•sÃa»‚f>OÁkÈÖW$ÛX/‰Yº–½I»V)Ô¥‰d b)$1>3eÅïwº)t™Õþî”:&ï7£‘çaÚ„9H·ìÿ×Úqĵm32ºh}п¾õ:<{x‰u4µÅÃ1[U^·‹ðŸÇ;N`W Ä𖑺‹2†·õµ¤LJ55éÀãž«Cv-e÷`ù3çêkÒí9šY2UšÇ\{=ÊÛZ&?gàˆâQ\l°³‰·]Iö^2›í¹°ÍÏõÃ÷e¡ó|nzˆ Y§—¢bŒÈEêç’4+u³Lª¡ºP†ÜõµÂ7m½}æo݇S¨öšl ·/™]K7¿†ˆ~Œšj¤{ÂaÑDPd%Õ&޵Pø_)HèÈ̾‰·H2e‘pWÀ6oŒnÑ’onœLƒ÷MÜ…I®…hˆ #¡!BFfè[Äww1AÙîl"n‡£)\(`@í!à9€]9.²„ÂX;Ád B ‹„›úâÄc­#®™j$‹D 6¿Ò~8áÙpüÝ̇ɆÄt$ËéJBxª|‡:…½Á1ûFx£EŽËwäQÎ "´}™rÂv4àÉÎíêc:ìÿ¿Ùþ+ÿÿåÖ³ýÿcF(B6¹±¼Sºn–F³É\€ÍÇ]­Ý½«µ¤®]Ô²v•K/è*.O!RvìnΆŸÆÊË v³ëÑk^,iÄoW)yUKÁ1ÑZÞ½›Æ’ƒéäVY–™0¨Ê9 ú„êÔË¢eÚ®ßà ¾ê…º—féˆeD_u:²ÀÈ«ê§Ñ«”P+ËXvUËHÑ·”¿¶ÜjK¸Ôôj+A­L€|7€º5‚¬Aöë©) xƒõöd90ÛÊY‡w®'$2Ðû·¬~¢ñR_^êed̬´€¥»\ÆpÞØŽsjà·Àá<9~°ñÙleê@þÜ'Kö«+D¦E˜~ç#4A3Lªÿ@¼ó›éÙÀOY"Ý´n¦˜JãÐ!8ÈìYo10>É"ÜŒ9ÞÞ…¢ßeì²ÀÌe…ëÚï{dYé3…geÓ”fr—•MÊNCX"SIÖ)Hêï‘ÁGf·‹’™ä›€­ °®¹û¡Õ¤;Eq¼ O¢á@Ø@%dññ¡õ8!씈Ê.É´„mD>P鯱ºì'ZšØÀ‹a )#Ìjpª¢ax‚¼bÃ’:à­fêïÛûoMCø§òM^Æ`£‡‰Æ¼bƒ y¡£¨bf‘š]D:[hA ᛡ¹ì†ê¡léö²Ca˜µE0=sd|Q:Iˆê{) –0<}zkI“„& Ûnyà—L†VÊø^ùukYÍ~÷ëÖ³¶éɺ1ÀŸÍ11ÍH›bÀѺ¹ìã§úŸfÉ,0P¤˜ˆ`‡Ø¡üøO±N¢7Ø«}ìÕ>¾)‡m¼9XÂLíÁjD3dÔÇ×k‘BºdUäiëð¨ºlX•"ÅÂçºÚ‡˜*¸«zÎ.…C¶ Ü\'n®‰z¡:5'#CÕIj%¦Œæ‘øERnçh ë»Où*„d]+~€íCÑ’ŠÊ”ƒPtI ¸ÅwdùØ´JaÌ]Pù«[ׂ(7wË´)„•Áº_ÝØ¼;Ћ„·òˆÜWa-ÕNÍbØü5y<=R8ò&gàÛž©€ ô+R1Þ7 4¤M9°µîÔ²ì„Äì) ÀÌ_NãV=ŠQúÅ÷uG•ê$ŪT?RŸˆs¢ß[êDëû­GvÅ„Dë"Þßãà€ïëÙð¯ž7|¿Á¾Mˆðâö铨ç—8?ÖÄCŸ $—ZúY{°ä ”°—‹EgÈœÆ!"’N‘`»7ÉíúÇÈËäc$¶l¥!HY¸§WÙ‚MšËÕSwô§z$ð1g χÃÏ|8x$ðhÇÃÖꎇ­u}Vtþ¬[gÏóéó|úd:}^­îôyõ£NŸßB§Ïï NŸ;<xîÜI®•*ֺ穓(×rΊt¹Vòù±´`Ë?Q¢Jú‘EOWÀõ‹œC®hLÁ|>‰žO¢eÅd+;Š”Uñ±Ž¢( EQ%á(²1žlr¹Þâ:?Uüþû>¾ýÿ|XyTûÿh#zYqíÿ7·6Ÿíÿã‘‹Ô²ÿï5*9ñá°ùÍ3Ð:Ã0úÿÙøy@88Y&%Ž~uÉ`ùéùÙÍîÿ*ÐÆÌ 7冟L¥h(޼Ž> ²ŒPÖ|ŒDEÔšÕ®P³¥ìGŸ&ÓáüóU»tÄ géò¦a2v*q–øãXû°öš ÄÌ7Ê4±LÓÖ‰¿S‡¡kè‡çõ{<œ§ôm×dÇ%§\pPn‘{šZWË"ÍZ:«¥n5ÕR7d8M‘#‰2hhEר[YÔÒ•kìÛ/_ÃÅÍ1ŸVaž-ÛÎy²ñsle>C›Ðùè;–UÝo±ˆoi¦¹p4.ý.5¯râhhÜw -‚ðܸŽý3„–³ýÑl‣~õí›m6ƒí ÎhRYkS´€¸Óysw#éðÓ;¢P0»Ø¢ðÇè·Ž©êá쀒«6Ú·­öµÍûC\)êP Y¢>ŠÙrà(Ëd¶œ“†ËE¦/!×2&Ìڞ؇€eþ-dÁœrïï¯Öü7ÉPw&¸Úô/JÚ­2í½Cê»XÖö§vlaišbóYf"a»1 lq>ãÌ™&¸ZsŰ|ËW ´ycZjÜ){ña)[Úv­8TÕ¬¶©Ú&öæ¥ÀEf7/[`¬û2ZïÇØ­Žà²+DL ú&g$,¶À,d$vÐRý‹Wt›(…ß{I>ã ®ØÍ±·µ‡®OÆèõ_¥1`„ð‡¼Áõ›ù‚énŸ´m©P!µqû!¹'7ÅR†µ¿_ THŽ›—>Ï Ì‰;Ïžç ¬ø ϵÛÍ} .»Ã#†¿Ö£×ãÄ z +J"=´Kû©Lpä(—ÞW =«Åø·Á¸I#_ÓHr-+q²ð '£t ö¡ÿZéÚÓò¿éðqå•Ê«W^üíçøòðºtäƳüïGÊÿ:ÕÈÿ´/»/Ü|,  r¾¸«n.Ħ..!ÅS8)ñ¤pn»F=±Þ¯.ŒãX(¿Š0NŽæYç ãlÚyÅá³’Ø· ‘­9»Ìà[Ÿ3â”yÀa]=ríb^+•ª„R?Q0ž™sÊÎ3wc±ÿX¹`ÑŒÿ¹”t0åž#Ó}ätÂG–(­¨ þvK_iêŠfu·½8€,¶JA#ÜH[ôÑ庮yðï p¼³?ÿ³ÔQüÄRÇNã±#Ü3”úç@¡tÙrïο#8ÅþÙ)+„Q,®TÆi!‰e5§BüÑ“£œÆCÊÝ„GÅZv”E+­¶v ÿ=q ñpN'c\@ñà(zï4áñ¤÷ôâE|§+Eê?k´khù's%À—·»Aq؇ÆÔ¡~QòÆ‹)ôRâ® ¶$1Áºà“€§É©Å2¢jGL 1#vî÷Œøö»dJC‰DpÉBBв¦¥Åç7Ó)2<—,)L¶PP8¸Ä ÏÈiC<È蘮ÆÒB%õCæ*AZˆgô¡ƒ®:«éD‰{¡$·I½Iħ1£ ™šU&¬&£“QAv¹æw&&Ê K.?ÀØÙåæNÛmâr(L3Å´@ùü³.<{ëM)b—2ö¬ôé")÷ú>-ódA·pÈø¯õ¿ÎXÐŽE)§Ê¾ÓqUÚ/í×Hb­IšÇR¤Ø‘«'®“¸DÒ"X]÷ƒ‹áþ=ª°Ä ×Â@–5”áßâ22+:geÂ*ŸüöÈö¿/·7|ùÿ«gùÿc<¼”\ùWñle¬k°níλ®!ÅÚS¦ÙˆUËUǸ¦ð2xMÂ|•gñ­V}5nµôS<:K,%Øi’KË”Œp‘ ‚Îî£:ò¿ùå£Êÿ67·7´ÿ´½Éò¿­ígùßcÀñ»:œ d¦ï•Ê’î(L¢õÝÒ;#ÿöq .‡Óç“âÂïªíø·Ù=Þfo?`;$ó诃qYÖý4üŠIœÐd\¤N c^¡$ª‡XÃÀ˜ÿÞäõD…76ÄF$6*bcSll‰mYrcCÁŠ"UD´)¢-©×p¿ˆLE¥"*›¢²%*ªDeCT"øÝdmnŠÍ-±© mnˆÍHlVàwO൵%¶T¹­ ±‰­ŠØÚ„ß68b[ÝÞÛ‘Ø®ˆíM±½¿ã@iå æêHz#þ_{­Läõy2º˜!^ú3 µ«ÜäÖñÿàBnnXýëÁ¿1Õ`5·ñz»¸ñ˜7šË‹i7èψ柧ƒÎ߉ ûÁ”y•Ë沚ÛzýÒˆpÎÕ!WÒ %­“$bJnÈLsÍÚ¯âÁD¶ã’FCpÊ^¢M @[v4ˆ¸”vˆ­˜ˆ‹ìƒޏsÔ? ÷Ø?›¨ˆ,¡-³c×9æjš©3à¼?ÃeƒK‹s¢™”a™!•T}‚ã߃aÎ}¢ÿÇ%µf® ðm-$‚K: T?°Àa%mMl\ÒYÒú¡Õ/—–ÑwseëÇß,LlXë\?jc0kÙ#î‚[QíNE»nw4زœGmjó¾…cÔÜ3êrϨ"ßI¹´iQ!)‘ßà_7RH8-“ȹ>ÑhI"T8äáðŸóÙkµ[é'ù©AâÿÇ|e"ˆh¦fNŸBȯ0Å0s0 €Ðí@+‹R­l!YqÀLóa‚ó´)¿qÀLÜmGáVRR­l#å¡ý1Yðìª3¿Â)Ï®p…Z-9:sïr8†W¡:y¨ßÂk1ÃáX˜™Gw•š‡ãÏ{ÀùOâ§ŽyÞXÍ'Ë·¨¡À1Ù­ð/ ¸Ô†ÂǨ5©t’:܃øÏì:øæû»¢h7ºïwv0ïv§Um2¦È[‹¢æóœ„j¡ª¬ÿõà¿üã0: 9e>iÅ~Ò²}•#šIßï;÷êýxÒ„•E禚ŸfÛs;mì,˜ *÷ÎÝDs'­ ~-çÒÞÞéÀÉáÑëºRû¯Ô[s^›‘¶ƒâš¡6¤(6Ü0[¡ˆeq%#WNŒÒþž†œ.º“bPC£ 6ÆóRë¨ÛhëÒ.Àh×ÙA­¢ÌàmG¬Ÿª/u=“pv2æÅñšì¤0¢½iWÞX˜gêu1° Ej)þ-¢ßJðÒ Bï½]§¢êDa4.õõ§Èƒ¡j•{»eÒ½ÁqãIvMBáÊÕK•²ÇÉ€0+JûE…Q£îU¡Ï ª†)´ª”:Û°ûåP%Wa# ­Fï4k¶±yH‚Z—Õð´!hëô_ºmDe…Cv'$®-Aû~‰jª\WàÐ*´91UÓæÏa/w|Ý<’tyònç°J4­NzjšgYµ‘}¸¯ŒK®¤V’È;Pz‘(ýK7òEÑ«¨o|ëò—1ÔN¬fT›UòˆÑEÿMÀ³±oœpúÙyOî¤ÅxQ9¯8]ÄÀœíʹY5öÝݪ]Y–¦ÊÈbô þqý\ùAÂØyŸÜ«ý"­ìPU§Ohd $y÷nÈ_m4œ‚ ‚!õ S¡­×‚¡æ}­GÅŒùk7¦¦¤š«–QgÉÀÞ_ò³ÅHº!ü3¿Z áNÎWÊy€Yâ.`ú©}:°«ÙHÆ ãýR;Jȳt¯ž©j%ܳї—@(@q ;]}éÎÛêØá{àüLâuk1ÅU‰…¢¹j.â¯]õrìy\sÝ®¹nÕ\G…x£ $[¼Ó%ÀRÔjÈnr@¯ëKïtíhý!6;¿‡´T’{cô.ënåh;i{»ö²´;u>¦a¢wƒú½}ZWW Æ^ ß#þ®ª*¯ÜðS¦ˆöƧ3E)cXÅâ}У†9¥» “¦Ÿ4YOûwUèËÍYo_}Þ;ù.Æk’š‘ÜðR_B¼·æ‰"‡ù68©/ëî;®hV³*©Õ¹~‡sé ²)ä²,øÁ3.’Xð»’ Óp$š¾éˆ6ܬlÏ—žH:̉‡ðmsã?3~Lð"…?x`NœíázwåÅ[ßÃ0ãLÅh3xÝ¿L‹¢ú¦–Ìd#“ÉÞpØs¤Sñ:±òú«²Ã¡)KŠ„ o…øãA€¶åî—´Õd%ÛâXÄu ¥¦ÈGžÔ‰»\ÖóÖp % ¹¹;lOüÞ°ä2¥•h.Ô/ÖBM¾IÄëÐZª_ XºË®Sc]¤²+?Ã}b%+ûAËå׳ÅÿEy¥p(mÂ9YŒÑ:¥„OGîêöóeï a‘Rï[ªX nñ£bfö°·ø–ºÅCç~&šiyqåg¼çòtj:MÑNÕŠ`ödx¥ÊÈ^ýöÎ<šRi{#cÏ3$0Þ‡ßMnfôõL×f°7Î?O.dj×/óϼ÷˜Û£Ž—uš_ð¬¸ýŒűÇyìdŒ2Æ…jG0CX˜H2 À)`aQÊÞ+QPÀdçað@¥’H¡:o+©†•Ôƒ[§Í¶A?`Õ¼ÖÝÎDËæ­8¾]*8 èļS¸¡äÇ Áo⦄ Ça¿ ONvÒ·ÅÊTùßÖ  §R¨ÏÔ‹{,ÁHNŒa@Wð]…?ÿJ4\Vµ¨8ÇYãÖÖ‡Ÿ‡#šÊx!è…ñ…çÁÀ/'Æa)»"»Æ>Š)L×3"±ãªUâBî‚‘¨6ªÄä‹ésšÝìV< ¦3ØÁá—"Œ•Í@¢år¹(‹< ÔLBÑcBRh÷Õ¶bXb*=û' RhÄ<@ýÜàè…iáú,€bÚ 0{u ì[_”æ¸~‡<Çõ•$:‹¼€Ó’GUm¾[½£vBÖß»†‡¯žþ õ÷ôñv·uL:|4«õ·Çi9¤›ÕÎÞáãÑÈM3]¢–€µî,k=¬ ¯Ëú[¦tm óÇœ€ºëœßt üÊ­wöõ¼\´™#ø~0ž|ûŠ]‚WÝj|?´vjxþÙÐDÕPJÜ’y©ŠϺ¨äÊϺ¨_PõC3Ë·Ë%%¾g†áæÑ‡ÝΟ)W*¸Âñ×øØ…Í µOx[ÜQ·Æƒ÷‡=”ïÀÀfµƒÉ1åÓ®µ˜R3œÐ÷®Š¤fµsZ“Ÿ=úìuNW ýÊ¢õ Còج‡"߇ÚYNÕïKº7¶E8M5óX»GåRdÙƒ?]]—©h"mW0bª¡†*¿ï”“ôMˆ ¢]Ô8Å?üÿwpå^ 90¹°éœºCÔç"öÍÄnÎ9uú$©›VOa"ãz_Âö<Âxróé3yR%öRy@Ø21È/­Å&œ„“”íÉ\u#î âm_ÆÚ5¸Ÿ°¤w`«\(Ö¾Ðý“/eÀÍÀ\ú*!Úcø‚õBŽÂ/ÂD“T‰'©’qr$%jS ¤JÍɵf²Î-›(kÑ­IáÕUËûI ÷—¬?}V‹ÿw>®þÿfü©2zäø?/7<ýÿææËgýÿc<¼æMýÿ‡öÛJSéÿ‚&¿†îÿà}ï ÷'Ü‹Oƒ1Z$HLºú±Ö÷Kíãë.'S`VÇ(Ë) s‘ÅäRˆ1¸$Í€TÞÐ46•Ñ–ó‹¡ïC0±ÊßrXš+“9B pI_b¾©‚\S$‰£oˆ’ap­8j*×ŇÖÙ•De¯ÀZ1x–…Ô«JÏ 5!Wx2 pBDzŸÑàÒýÈn5h…›3f˜–)Lpê¢ÌW—Ý8ØCŠ©’3Z cR·ƒû€ê þ hf3fÍàGªª‰¦îŽù¡fPT”È‘¾XŽØu“'½E¹Öøz4lͦG[.E$È[h =yKèþ?}ìûeûÿom<ßÿã‘kƹÿwžïÿ?ìþßyÀû?_S@@º’J,ø’,è< ~.Àð)]ý;úêÏ´¼¢»?/²ç»h>ßýÿ+îþÏ÷~úú|ï—OàÞßy2÷þ/pµ/}ï—v4žÞ*îýËÝùÑDÜûý.¯¶M‡{¯gë˜fˆh¸SlãÞ÷EÒ•_Zï4,ë(‹íŽ,¿»ó»—× L÷½eμp¥ W@À&! 9ØTÙ€4—Y  fÜŒKR°JI@ç‡J÷ÿ³Ç½ÿG/··#Ïÿ^?ßÿá‘ë¾ÿ×àþ¼[ïS¥?c €@¦hVQÁÓ‹@³eH &cíÚ©C˜ŽËOà­Ð …wA[+Æ¿ÖÙaÛo2JF_ä¾+}¨’ï÷ðbØÿ4ÖÁ ßkrû?‚î×à?l Œœ:üB6·†@B^sUP£ð˜ŽCèî[üœf×ë뀌{éŽqIˆy5Ž0¯†á‹üÜÿ:àPÊ*šÀöxÄ~!Œ¡!ÝhQÞ`U®ðÎ×Ñ#²õåT]¢ßtM–"„bð&GÊ+˜ÀŽ öº¥¿%7t…6©¦ŽÈýœš‘^õV@-‡éhÀÄŠ¢ 1m…˜/ÐÝq‘gô Ì‹¶ýx‹ý~› ÷7FÍ –¤¸¡(ÔV®,Ô|!lcÝÔæ˜ÞH’šÈ2‚P'©¡ ‘y7í1/1w €¼„M1‘˜Xß©GCG¶ñ¯›!¬2º~«…!ïòŽ—nxá¹D­ô4Dü¯…ÞÄ‘›šêÐzMKs…‚6µŸÈJ’`É[D—¥a-§36u{ÓˆÅy°æZѼ›ºÇ\K¯C•nCéì2@§áypŒ’&Óá§!^¼yÛ HÙkÄ Š¤AzmÑ,º ñN°tC.€üª¥£(Õæ…’ÂrïöåZnï-9`ËÜ(bòZu)l-/ 4Û ?9EÃy“pÖ2Öl»5­š+=ª³½¨gW²#›²@&Œ tC c¹ ô–€Àç᯴ĉYÂóßÎ/ºDU³"˜XÛ =Šç&?I“%GñHÑ<-ª Ež$6_ItXºÕvï(åBˆ– t)Ü7¢ cN-Ðü=’ËÝ!>U/¦… ¸«,¸ëæuW3aÅ"}šP¡³Û±`ND->lµ ÷ÌØ»3C r–gø~N<ÙÐáR9ñè<ý©{È ³+9¥‹z µòÝ¥EA[1ñ…½"Í„Œ“\¹]Ô 2ë0ÒÇ»å–_BçñÒ«ëE=hg { þËi— 3ÁÈ ˆèýP´ÀlÇë7„퓘¦y´Œ#‘£Kè±ü˜®…éɨXªeP,=RÔ¹X‚Si?ZÔtÂì¼9.æjKàúÈ󌻬-ü%à5^P mGÕ¥Çòv·|ö˜nÄ¢-æÀL‘TÐÁ›H2Ý L‰‚µ,8&2?NJC‹¼tÞ ÀÌ*Ôý<¼œßáö‡P 4\‘©sÈ+šy< ¸³ƒª 3Y`¨>ç¤(ù‰Õ€±J1ÞãõÃf®¶fÑ ƒ‡ì‡ÌQ5†"ÿVË›µ”r =Te#ð£Ó«(¨.d­ö¨è 7”bImI"]èÖ”«¼¾*‰^øŠ8ñ®ÿS¥03ø€$Õd¶R—ŒÍWéñ,"§¾£Ð%ûÒ_ÈýhÑÊ>°´½Þº’²Y¹®à TÿÆ«+ˆ»æÑj¶Ø>ÆÊÆ%{1¹cœ‚lKX1;8lÖ5½`mléµáeí ­­Ôµð^òþ‚o·ÕÞPÂNwáï¥HçÜÝNØüÛ{ÔË…kºaM®Á¢âö≇0ÛRBýóØ‹Úü’Èù$+ök?V±Ÿñ èÿ??²þ?ÚÜðìÿ·¢ígýÿcÎñ”8îãÈÝP'")rŒÖòe$³–JÆK”KFÅ‹¥ž³"Äh±@0qSpè'F§N€•¦ˆÂÁÈCN~©ä½Tí%¹8óžI&°FøöaÂŽNÓD§IAÉr8tÛöÜøÃòCÝ`t`4ø[¨h°¹ÂP7ÍÊ³èæ©=!ùÏ¿×þo+zåÛÿm>Çÿ}”GnŽü'£Uø/%z’±}šG¶4H(X™4¨–dµŸ¥AÏÒ ŸYäûx–¥Kƒ~sAcRâê í[Ïv‚OÀNЊ̔ÕP𩉠I W"þ»£Á_Mý5>vI\x? —¤“ó&_¶-+ALæ aÞ}¢J×äg¯¨ï•^ +5ê{;ÄÕ.À`š¡%Úkd°HüÕÄ«ÉQ%îcfãk)qíÑ·áS²ÝûM ý_Õ÷SRÿ±+âÜD(5ö:eœÃ·f/ü`G9csxS >…¸KNY0ª’wÃ+;“wÙ”›Qwh²7Šzum¦¯.sZ¨Ï'I½´: ¸Žù8Ma‡‡sv0žÜ|úLŒsb'…PyÐß8òlF ¿´ Le×4=cÁ$OÞöd®ºwÑ6‹Y‘víµPþí°÷àBÑîñ|©މûb–ø˜JßC˜ö4f/^ÈQøE˜~hŽ*ñU²Ï‘Èæ\pÈp·ÌmÛ¤(¿%N9fŽ·òÆ÷/ç#g<½3˜ÕøþñEÞ}0²îg@ðˆY-¬I•€5›ž\XhöaG3ª²Nmú÷€þ­b¥uÂGlS™ÀQ‘ðH• ‡bH0uIË™i8{ mYQ‘äî5EÈÒ”HYáíõFM*¸Ò\ÿ9°í°?þtãßY™`õÕðŽ]MÉÑÔr3]ž‘gK<±©§$´q"páw&··ÃÙ`M«’çÕIÉÌ­¦ýk<%r£Íû£–Š8¥…ƒ®.VĹ½¯ °µúdü×Í'´ë¥Á(7ÄŸõèR;oŒ¼Uj”5™îá.80G.µituÈ¢“<¶ÏÅ“Uo6FMtêh¹¯é²~3âe¨(1ÚI%G Ž98·ÉÃh˜Òoýà¾ç&Âöêö-¤‰¦íP'Luux—f ˜««7b~c‘mä#Ïäë€S¿¦(ÿŽž•Oð èÿþ5zdýßV¥ò¬ÿûAܶlýßQóYÿ'ž„þï¨yGý_–l ÄÛ¶“fQ¶ÂJ@CH*À$ àQóç×þw%Íq:í§”´©õDЫÉú¬LY¬¿¾r°½¤r°í*Ýuú¬|¢ADžuƒò§»é-½ Rÿ%ßšU/XYQÞÙ_N/øPÚºŸ*nöðí Ñ)„¡-5Ä0Ù¢³5Dg7¡·-Ù¼«˜(e»~?J&¥»ßš¿gìÂÂ=Ô[ÞSAÙ6[xJ ÊÂû¡ J‡æþë”æH<%s…! %_ÆâÛØR:JSý¨t•ëíš­® ©$¯JZ) 7Õ,jɶ(%«&[ôòéª'ý úI­÷¨4ƒŠÈ@`‡‡P.(< 4I&³é¡Ûë ±ÅW `du¢¡^¤Œ¬Ã… ÆZÿü‹Ò0։䵪 ú¾Þ¨•Xã”Ì uF›¤‘Z¬mde#¬”ÔÐpx1¬“#Xb2ywPµ83üZ{bëãÁ¦'4Ä»bÄÑ=>¼ÂQû˜šHͬu”«Ï$¥zt‡–<— ’ÕÔQÕÍ×WË+ iCDýb1þ3QÝk%[VÙĤ%OO3yÔü/ÖL†ôÿ«{ú¿çøOòÈ}ÃÑÿeL÷ô¬ÿ{pý_çõÌ<>€ÐMbÿ%YØyVþ\ ÀáSRýuýõ üI4ɹßGðèIÄùDÁ§«‚ ¯´gÜSRÁ-ž#ñDTp‹}車[› úI-7^¤SŠ¢P„ÆFÐP< =\67ÁvÐM°ÒùosLH`-ž”› £»RcÉ<®‹¼É²êî(\'joÆ+Ò×eô ¹­=—¼ï"X$ Èì_¸ Ý0 KTÔÑBÔ®ä(‰wò Lõü[ÏSOÒÔÀ=çtùQO@ÿ7}ôü/›/½ü/[›Ïú¿Çxä¾dëÿ:Ïù_~˜Æ¯ãæáœ+ˆøI<êªÓ¿Dä³b„ýü’ð³óðóç ø™»Òž~ Ã~>‚®¯säºù%Gý4Á¤¥ƒáÔJÏz¾Ð }Nó_‘¦ñœæ9%L&ýAçgH Cº«L C˜-‰Ìñ®)aÚ¥–™¦]:¡´0­R{ý~©aPxhƒög@ ‚‰D/]Œ4sVfãiѪœ¤&­õ™u£Üv–PbùŠËúé_‚‰_(Wñ€'lœÁ¬/ ¹^ì¬.jNj—„ñ¬ºðÄдXòt‡°¥ í·[8݉¹˜Wœâ¥óœâåçzBòŸÇÎÿ²µˆÿ´õ,ÿyŒGî-Žüç9ÿ ÃûñÒ ËÿB—èU§y–-öYô„¤AÏVßKIƒ~5«ï{§ƒy¶ú–ϳÕ7>¿Õ÷‚¨OÉrËbõÝyÎhþæhY6ÒSBqŸHOÔ|;ôÖª#=eKFcàî"=užn†š_5Má=§¢yBfææH<3óÅ‘ž–OEsç0O¤¡ø‚rðLfåm#QŠiyË%ž„yy¶0Op¾™Ÿ$Ì“­ž²^áYó…2Ì,ûÉÒjÝ9ÍŒÔÞÅaŸä˜V›r&k¨J‰gGB2† (9ò“m+¾È}R͘èÌlTÞÑ9gÇíLwò…~RUÝ ¤ÆI51W*C3ŒSÛ%Ö.’5:Ý d¢Ù+%–~„µyç9MüôóGŽÿT©¼òõ[•gýßcW?@=y·Ûëì¼ænÁ ›ðÚ8툟›Ì”LSôÊ7uy7rÖÏ $$@ÂP¤¨É.D¶ºöZ|¸¾Æ; 1Š#ºÞU•eƃËpÁCÜ#à§&´ÑœÜ®´å4—"kñ¦ÈW5 í÷¢¹æZù¡‰Ž” 6Õ1Wº"²Û–½"êPKÞ„F.m˜u¥_Ô~H¦Iµ³fNënD¾otá%w¡òÅQuT×_&Àç]-Yfdåõ¸ÿ¹ê«˜;>=’vºbê%F»qVÿRTó—Ä'Ynß{޳úÇ—ÿ_U9ÿ{¥²¹íÅÙ|õ,ÿŒ‡×“-ÿoaÆšncî\½NµÝ-&8ÕñK}±¾ò'W˜H¹ÃÚ¾D€–•{Õs ÷þê˜`25»•ø‰µ £Ø³ÈŠQ'6Âæ= ð+2݈æ-hOø½ ¬?Š™Œ:k‹êÔ½:uhçȪÓYØÕYK«íp–‘Ð.I‹â8N™QsD‚0ßDÕr„rõ I~Q˜g›»¤µ/W¤™qyeИPa‘Ec‚ÚŒ>YC¡ V’4)$¡Uº“\º#ÍN OD–ÖÛ<‘3ãæ’õ¸äšÈ¬Vò«s(«?ŒCY½üxyD\á·¡A‰_4Lª+š®f–ÎË"¾âÂD$”L޳Ó2yG’<æ–õ>s•êáêxŸ…ÒŽ$å©âÒ¾š\ /‡±¤:Ïnà¦4˜AßàÝ„5.+Vj¥L°ã¦–6ÉVÑöÏâц{+÷TIm—SÖS՟ΡÖ^Öig—§ï|0Æžê¼[òg½[깯¯`îëeä;".ì) ªöŸ\;oŸZÅlÕZy›Ô–Ô7Ý?ªÔSÓ6-Ð3=”ÎhªÚïñ¨Na{½GƒF4mßD)¨‚ÿ¥ð´h6‹½±Z½R’Þh¥ú"4Ž]šè‘#YáTÆê ¾ÎnG¾çIŽKÈKð^†•iûHú¸ÆÆ%±%Éï±WÊÞ>2œ>l-½r$í14Öá H_;%GÐYJ;EäH}jÈõ4˜žk»œç¶@Cæi¹üt%GKäqÔkG)#{åW®gu¶‹6’æp MÜH(º)d²˜øï©Še¨c’¦¥ÏŒ$¬$NY €¨ÈV15*è.a|ß4ÞÛk„ª8U#§jL뾺*¼(æÊ³l5Ìõê“JxË7ºâ´f‹¤)$¿äËÖè¶ 7µ!›šÔÍxc®¤º•àâêB²´¡ã™9m0>mxŽq¤4Ýë©ÉÀSã™ );g,’x`nßô÷*ùÏ –ê Šv öï®Z ¹Æ{«:ÇY“A>(ÚZêçÅPóÚ€.áÛ({ø0ØžEüû„äÿmÿ¿ùÒËÿ¼¹½ñ,ÿŒ‡›+ÿï<ËÿãQüŠòÿγüÿ‘åÿËåÄ~–ÿKxÏòÿeÀ>ËÿGþŸ-ïø³à *:Ï €gÀ³à àO÷ëÏŠ€gEÀ³"àY æp)E@—‘ª°è'¤ øIðì×;`)¦Uô±Câ'* (Í…õŠúy_½ÁÐoRë ü&÷Ý&F5B@ƒpåAÃSä$‹ÀîIÂÀná^j…gϤ' ÿ?{\ù%Ú|ùÊÏÿñœÿõQ^Žü¿ÖɉãÝ:°ÿ™´á5ŒVþ21ƒ,„ ŽR®F¾JàrŒ¬H3и¤á­Ã’2%,RØiê$T']O †ÛüŠ7|aÊó_sq©bPIõ­’u]²Pxg¦’ð“7ªÃ'0ªCT‡áQú£:Ô£zÇz $t*‡aW•ã¤Ö]œ\÷ÐÓ·»5t ý< …ÄEyQ¬üC®"÷s6¼ö?Mð†Œ!U^ïohZj²/ež«†ºDŠœgÉ¢iâd8Þ·ø÷t0»†wïƒÑw%úÌÅø_ÐrH B/ÆŽúCô>ßÌðUœ•ÁŠˆä…É.Œú?ÿÜŸ`9¸.ªFˆÄÒçþ×8`0˜1š@åHЯ¥jºò÷7âKR”«/,hå‚K.7þWË!ë”N‰"æ#§O_ ¥ñ¿Š@oõÐÔÛ¸©·F—¾`ד š}JS8QgE•Ï‘£B‚‰q#lê"‡jîÊ÷Ðk©‘b ÌVq¹­w2Õ$u—’Š/¥ï¦š«hââÐí m]—®…]²1ôk鿜µ9¶" “éðÓ63³¾l™cƒ[¤«$1×ÚÜGÏ}[¸«¶l±DÔi°ÿÃB-äI´#,cõñ¿òêûÐD…;¿KF07õ¼%½¥±œ¹ÁÙÕÑ&¿©¢j:"ÚéÏLú³”b€6Wf’‘U6ž¡»(ÒâÚªPÄNi5ÁrZfrw²n&˜˜ó]pô£ÐS‚Ÿ‡¨žs¸ºåÕs°‹jÜYá/ íµuµåªÂ‡ò#Þ…]Ÿ÷³ÿKSZÛ™¼Úéjk7í—[õ8_-£®°dÈAÙ™B»–¦ÅÌí’[»½T¢1‘£øQ¤¥†Cã*;aßCþê! ³+|«‡‡Í?£eůŠh)€bmÓ¤ J ã)˰‚$$®)%1ü÷qµZà'f°Õ<âÏU…LÎN¶b1SE¬f¹ 0;Z>/­²‘Ð0MéL‡,‹ú>ª·*qu’Pbžå4Ôøýc¢—Œ¥±VE¯™¸µ€êÑkû£ðÒÂÄHÁ(çÁ×XË 9\^ ~­º§_VÝÓ’/Ъ{ZòZuO1~^þ¥[>'¬IëÕqš¹b,M¡›ÎŽrãÀ&q@Pò¦FZ>á^þæör½G~\ÍK…ÕŒ6m"ÎW³ýÑÊ?$Œ_KÜÞŠ”5­ŸP<ÍÅÓ$&ëÅ ­ã 8hüéÍ€|¼ô}" |]¶]#ÛRí: Ü„®ÜCÍ£ƒ¡`»+Äÿ“$õ#§Kî0%äâŒVÁ;VmÕž@`ÕйOLÀŒÆ^Þ=DlE&Ë·0]BfÂÁ/¥žƒ_Já{BÄÖÑJ#!êCê(%rãRƒú›7¦«\›ÉxÑX]C Ž*Þ¯Žé‘/m×`Èl(Ô×8ÊhÌîB`ñ¦Ì¥¶CC[Z)·R&mUèò¢lUM±ìÒ±3b?\Â̇îU,ãOÙ„âbíµ„®a^Âj:\j5%/¦æ‘5½ºš–Ôßü-â¿~9fÓ]O‘*6y6yÎﵞî<Ìg°Ð°ÿúüÈþß[Ûû¯çø¯òð’pì¿Þ…Y¢&…h¼k<€-ôG$1ºŒ,rOߌ'Iã(Ï7ÜFÖã[|eqꎽ§ÿUÔ<›i3’EVFG~b=Ã;œT ï% ƒ„ôg÷Äw:[ G“<¬›Y‰?³ÝÜÝË{#¿ÂÝm_–öõÆv oïç0 :ZÔ"ÖFRÅ¢¤ñ' 0R÷÷¯¬bB5žÒÀ_O_‡“›ñÖ&ïR¢$ðÁ¿nú#•ÝÁÈË ÿ{ÚÇ,Š¢þ\¿"_ßwŸH‰UN9j·÷Zœ,Ó")ФÔnŸuî]”X’¸ÍA›ƒ‡½ÎÌ@9ÕÀ¢œÕm±²@ "øóãôë½€gB¸{ø #ë8群 »¡¾­×ùr™6‚?´?ôÏÁwfþ'¸d˜‘=v¹RÝgn[éú¬ó‡;ÜàŽà.q÷êüxXÎãBnWë°rV¿Ð=\§!Ìæ§…†Ù8çÒmjü‡{Ý› £C@M3yà^ÓŽCrèÔqd§ßõ =¡ðš!bfÅ"fºÅÁ@ŒãÊTõîó®'òERË /.ì¢[Z¥3ྚ[C´ÊOŸˆ•'©røSÄ5¸1(i’è Á)ý"OV?èd1i<<ÑãЊäT <5w`ÂÓ«–I*$”éXÌÄp0««ÎáÒ¢ú| •0“.ù¾•蛥uü“ÌüO«Uƒ!?yA6^°ú¯åܯzðÓj†ðï?ÍõâU/‡0¯ØáO†Ptc§ûEj˪vÿíZÁR@wû ¤€îçkÎ.ÛÊ)ÆL™pWýc'™¦2ÀM2-Ùpå3LÛ¹×O%94ˆÝŹdžäÐÆgHÝäÚ’C?ÝäÐÛ¯ÞI¢‡$Ñ6̧”$úõJçˆÞÇ+ž#ú[½,2rD?¥ѵ™ŸÙ¢=y¥=‡É˜¿䋞‘ÎM—?v¤NýBº³²:/&Ù´4P:é¦-LÕ't•¥›nzn]ï’·z/Üùâ³ÿÿ÷ríÿYž¦•ó?)ìÿËøpîríÿoq$úoêXý?ûoÿ'~VÃŒPgÆ?\®ÿ±ÎøøóÛöImûM¦´ìùƒ=°ç¯¾=8îâíñpÜEa» ‡]ëòìA·Ø©‹ýÝéu ±·h¯²„½ –*øåš‹ghnÙcÒ÷"‰ã9{ÿ:á¥ý¶É ïD+y¶öÎòð>³ Zý¾ì¶b§‚¤>ò}+Ç‚Àò¶%þžn(U¥…U>&ôhéjÿ®‡†7ÚÝhs;ºƒm¦¨=ºcè;ÖÕL7‰xzÐb®¨rö®ÿ÷tóBg©X™¤’£ÚôC§ÅÃ_ÝL—Ls-ïtb:@Ø1ž5—Cm›CÌsÎBs×´ÿ?Þ†ôŠèy=·óœ9ÿÿÛýÁÿÿ7òÿ¿Ýüÿíýÿ†ûŸyÿCÎÿ·ûƒó6çÿéàòª.î›w\¾ÒwÂÉöèy:A¥CþòŒùãñ\y—|»ÓN–Yëì´g>¿>ˆÖÁ¯?øõ‡4–ƒgð쯀g¿¥çÞðÚ ½ṫ÷ƒÇ~Þ{¼?xìWÁc¯œ‹¶§Ä®TñÝkï°ÏF8xñàůÍÀ9ÏÓ°íóe¶¸S8 ÜPY5Þ÷öá[P¸,íêÆZxòßî<­áUÃü¼Þ¨¸^MÚ8®ã7xºŽ:éh¦´9à"òÄ\¸ÍÎDÀèµzAíÚàßD„@oŸh„îä"V%B 1`•ÝñÜùn8ãsÐ×»ã·Î>þ&»Ų̂§]ò¯_ì½ØÛ£f'/r”/Ä/^^{Á»Ùä M¹|å”øî•ŸÝ}ò´-Õps¾®Ñyùã7j†L¸äÃ#%Â+×%¿"Žø·û ?Éßïãóÿ/ùþÏ,E¤âÿO†û?—òá<éúÿr%úàÿ_UÿÿßâÆÏùøÿ™öµ>ò[Øÿ<øÿgóÿ‡ÿ‡H€åDWŽæ¡O$àxB†P€!`xJ¡Ã!þ• xjw}~£!Ã!þ¿§û8Åôý.æ\éSüoWøZÎá¿í£oÏ_ü³ê>úN¦ûeùèm·{GýßÍG-êÿêxòg=Xï:ò‡³õ+y¶~#‹ûŽßºé †ëKp<\ÿ;\ÿ»Ê~à§}ýïpíïpíïpí¯ûþJ¹:WûÚßãU¿ö×bßÝ¿OôÚßšk~—v­¯8'W{µ/;ª¦‹zÝã+ŽÅïòuÛxB÷ºwÔ¾~±A„ÜàÞtA/¿zK®ü=êxU/r¯ê5<’µ­XòvèR—‹wñîŠ||ö²\û?Ay\±ÿ'é`ÿ_Ƈ3¹kÿ'!ûÿþàà¿ÔºžŠ€4zÀþ0x–|ðô×ã_€‚7¸º€]U€´šÌHŸMi¾¸þ\Áz?ƒïëÙí½¬ùÓÍÃÝôËÍ%LM’ÆNî3ì7¼=Ûœ½Lº Î Õìâ|=œƒs£sãLJ[úú-8»¸´ SØ:»ãÓ¸øö‚NFfå–³ŸÎ£é=U6¨–õpOaž|¼˜ÂéÊé×ûɆ­ôÓç××7þ(Ñ¢“ÍùZìø`a‹›ü['È“õÿ:ø=¿Ç“ð{•->QXÜ™Q=¨à;ª ªp³~ƒ¬‚A{ÏKQ­ÛÞó‚BLÔÉóBÏ‹§êb=/ôóó¦ðnìÛ‘üÖq‘qXaYš''pZ¢æ¨„{N¢—cÇsN¢æ„{Bb1~Ï&àÝ©õü<Ç¿º®—}é¡a¹_\)'y/4ŒM‡ŠìxK…ü]\*Oêãóÿü÷rý?yLp5ÿc2ø–ñá3Òõÿ¼ò?þò?¿ò?.ëÇr¸ò »pGÇpŠc¥‹>Å1d„ôöxÈ9d„äŸ!#ä¼½SO=#¤g/ÅôÅÓp_†Ë#Mb¬R¦HˆŒ®´0dŠ.\‹{¤j¸;Ò›?òøípwd'OïÛ•L]ù·»;2È·O4/e·”RC^ÊUÉKÙãîÈÏ7Sý¹·¦ýÚᳺÆV'½åÌUßüÑç–J÷,åpKå¢n©<Ý X‡Ä–heï¨<Ö!‹C„Æßåã‹ÿøŸ¥Æà8¥enüG:Üÿ¹”Ÿïnüǯs>ÿûè! ?Ÿ]?€;S|ŒSÀO ä×!d)§x‡áÐN`W5d8Î;D¹Àg8ÎûÍç¢\†(—!Êeˆrùû ‚n¼×´òSìMFJ™3àÌ~¤^àü*pÈ€3à 8ÃÙþÊÙþ!èI‡u¼ó72˜5è×' ÄÛ˜ÏÍÆØ²?C:±=Û QMÆèjÞ«v*Ìú ˆjšS¢\á›LèK¿p7 '[ésoN¼2Mõ šú54µo^¬ó›„yO¬”Ýêpp¯¨©_ç5åMYã¹8 EWÕÅP¡Oæl©Ñßj"©~}2‘TžøŸûÛåæIcRÉÿŸ$dˆÿYƇs©ÿsz,gð»£ý7Žró$ãæž†“F*—¡0 §tzüwÒùòÿ{ƒu€~¡-@j}J£ãrXÙµÃ[F˜ëÿ¦ ®7n£êËýi÷ôxç%ïmØ zGHmÀ´Š„×YÒT*ì« nxðDâˆXoZáðŽ‚|÷õ+J®€^2ߊ&¹ sU˜•áÁ‡ÁEú¹óÇ\Û¦:L-<g>Á8¿«À,sã„x8rÀŽøpEœã\,/½òâRã?ìb·ÛÝãcšÉ{®ã:uœY| Ž9HC ΃³r18Cη‚3÷˜—¾'h×—x¶BÒÆ(öDnhH]LÈ·ÈA÷Wo÷Åßcä«»ÁF^¿À­T3_éÈ ÿ­¶þx Û(¨[[L”'g¢ ë~§ _”ÄÔ4TŒ9-ƒ<‚B*A A!M‰UXHÈb3«¨Ê=]ô•d58Gø\r5®®H8j]¿óÛ}÷ÖòCþ×kÅc³Õü¡âuêÔmŒµØ¾9' ¢êTìC‰ãåRÂ×Üì”pžUHŠÉ¥–‹?x(|Æ8‘Ó㕌áßߪ4hÒ5á¡›ñršòê€Ú^ ¾¹šx.KXÿ8c¤ˆraªêh×— ÇòM*·sjâ7”áí¾Ê nª7jÓ±™h¬ÿ^ε]nmbº÷b¿rÙFH° lÿ䄸ÿï×ÏËöÿÆ$GUÿ/ü¿Ëøðoù^ÿ—ï9Àß{$¤ý[Bo¥zê¾ÜvîÛ·sð× §ìÛ5pf_- p΂ý,èë|+|o%€1R\‡œ•âv+å2õþõ§#XœîÀL ²„–ÀݳÏÓZ§¦Ç§¹ÑŧÙÎ¥ÙßÈâÙìþðà‹kJ»éï7>GŸÖYŽZøçÒH7ï›2³XùÛ‘ ªÖdø|íðZÿ¯»MÍÓ#ft´ÓÑìC–6ÌÀk Ž!×·rPZº„Þ:.! ã!w¹“[9rÞ¶öGÎÛ dø0úÝ, þíÉ}C=Rû×Ýcº‚l¿9”; ïÉPö3Æ“xçE¼!þÖ4PV9uff@‹®¹xd7³S€žLXwßaÒDØ:ÛŽ*Ù/Ý—m‹mèP6Äd.”b_MŽ7QxW»Å‘>´a‘,Þ°xc°_ ž¾iNYbU'Ë©´*Q¹µ¦íÅü¹c›3Û$ôܘ›³±çþ³Éù“{ìçÇ o™äAšÚæ˜&|Lñ†s è­ÌËjŽgOÆ`Ä‚›ñ)àƒ‹*á䄃ÈëܰOC¯`ĵ‚±ßTœQœ^¼@-2îUf KzWI‡×WÜõ™÷Ü’ŸÂÿ‹c’¤ßň$8ý.J玉çó7÷ÿzÆÿㇳß&×ók£áþ×<ͳïPœÄ ÉI‚2ðÿçñpÿëR>Û[¯_r[Ò]´ýjwkó5H”þ‡à?úO¥Ý1‚ïØøNŒï‰ñ=ßG£5^™=mÄ“X|×£5ã©eɨG¨¾RWä€BWä–ŠB˜ ‡uþ(tÖ~\ ‡uÔOÔš¿Ë÷X»kÉhm<Éè'÷tg<¡k4-WºSCƒñ§¡C ò#×wP1|<(Œƒ(ŒÙ*·¾ 4TÃWKcí }F«€ÃÓ‰%ñãgåc˦µ= ÕjÆžÆ(oY2êQ§7k“Œ#I… þ’p¥.á’U@apxº(,‰—8+[6¨…@ŸþŽ\ã€)^Sã»¯Äøw»„¤•ûé"»ÖsÔ}W7fd¢ëªòÁ)&´§U¶D$NãÊÚ×obŒ'!Àa1®@+J\”´¤¬reޏeY‘'•’yË ºþ'išxø€Ò¤iµ?l:“$)¼='n±Â-óá–¡ªÖÂq#U}f¸!D”˜¥^hI’¥ÈÆc¦gV•àó6åì*©xI’tõ$&)ýÐ(Ò9´$/bÏž£ÁšR%”ØTõ5”‘û67u£JUíÒG힮㚆J¶ Ïö!ÁiácZ')S?µ©pA¾õꤞqh 6)ã¤JÆ$1ö 8S¶³"©Ž‰¯N½ç˜ÎO‡VÁżñ”Ü^h„Älìªv’ÇÆ: ]I5ê&nÐîNìVòÏgýâò/lãòm¹üóÚÒ˜üóAãòÏ‹ö7¶ÚèUM RþUu.ÿ¼kŠž !ÿ Ðn7dUüàêHI¤†«ú’„\Å“i9þ9öì³T¸ù ƒ­„Ó¹µâE¹ž`áö»2qB—Å@ ¡óŒõÛî3ÌÃlT†Nàiѱñ½pÃ…gBõ5òHé8Ÿž¶›Òª•]‘ —øÜi°N&žªâ¦h…Û²ÆTEÃ7Ð͵ ­@%f£¸~ à6R&kÇÃ?†á‘ªðŠœ‰–  ŠeŸÑõó~_ š™ ЖµBd"t¾:Ì:ö, ÎXÛ¬k*Æ©ñ½0¾+F¶æ¥Z&"°ïЧde[ý6¼FÔ´¯¾HÚùJüàê;`„þûÍ¿ò{Õ;‡0Kf_¦B(Œô©@vÛýLiI¼a>¬ó[ËáqW†%\4ª)‹Öè(+Ö7ˆkð¤tPàÑ‘~P–lj G€kF…‹’ÌÚò&…§ ”©!©ÓAdô‡aÂ4ª+k'³ÈìRÓ4€,BE™&ptl€a;*̤µzŽì÷#“­”i£Ùªã •ŒÂuFêT ¢ µ÷샬S9M*ŠûROqp¶á-¬…énǶ)\s›#mØh`úÑ=b |¥(X«Q~k ’<4T­ZÔ$¾¢1â¼ïC¦Nd †éYµâ«f jPÉÂdI €jz¨Âsn¯{Ÿq¸Ü'"lvVOÓ¦5%Õ=œªcŠˆjòDÁxܽõ¢v~+-p*²¨ï®Öú)ED×Ú̇bõQø4¥VI½|cN|ðË*ÿlMýEâ¡§®®6Fi¨wýµ›Z4k¨Y§hÍ*ìgKçàY7ê%DЏeÛ·Õ)ÙI7O¶2œg…G àI†Q’øgš©ÿ«ïËÛø·ßœ´An©NG?r+J×yXÃ>w½ ÎŒº²Q]a}M·Ô|XÌ´¦^ƒ.Ò Ï!ÓÏå#SG—^嬌!È™ýìhpÖ¢ Å1K”–Ø ž´>‘;} µ‹uøp[4? –i—Ÿï(¬ò˜.·‘:½¿}îÃynn«.éú@ ÎXÛ{†:~W.˜û9só =~W[AkëÞífWZØ0ä1ÜJ×eíðFÖïrûßúQ{\goÎ|í4Ùe¤ðì˜[¯`6rrì'ÉÈüiÍ(§ Ή¿8®©=ª-m¬Œ¨æ“<)§†0Ò•ð&“4Å9"Ùük¨Œ'J(ÚEw¼¡Óyž‘4+–Ln&Ã3\&e™yðnd“bR(/ä­<bMlBþ¢,KåZrèR’ÇÝ#O_ð·*Ÿq‘—ùôÊ")Çùû˜ygéLÈ ž1"Ü[‹Ê¤ ”Gq1Å+8ïùxóÿ}˜kú¿†ü1ÂCþ¿8¡Cž  òÿ¥ ùÿ–ñÙÞÚzE;g÷gѧ‹Ëiôéæ6ºŸÞÝ_\Ž>œ]ŸOÏ£úýá’éýÙåÃ4Ú™~¼¹úzswqqsÝÞ<Ðw§w#Ìã*j>‡W¦·ÑͧèwtßD&̘®“üXüˆÿ!PÛ࿌ÿq4TmÄÞ ýU5ãjíÃQÚ„²çתUÑ÷Ñ­¼ŽÖ€ŽÑç÷_ÖG¸W“‡Ç?ŒPÔTù½]¢ë+œ~¹Þ}¹¹<çm~lÄîèá>:îo“D÷_¦Ñôö–òÌôÏ‹û»j¬¿}s>…ê×÷ÓÛ¯·Sãn:=QVŒP:ˆö¥~|òúq™ò?KqšUä?Éù¿ŒÏöî¶3C_Oÿ¢³óüâã[îÿú:‰rqýõញ”]K¨8"D- Ñ-­sgä8-n7Þ€«0èßußHü€ø¢.©–¸?D?ðÐF£9/ÞHù¸±JåY»Bîê‡ÒîvÄOþ'­škøa€ñMÃ@U°ûƒ¬Bü“Σ?”AŸ'=òî}&Îc€Ñ†1qš%J„ºmÕ© ýƒ\=z´ZqÂX0Æ‹ Gg múÒ´=ÆÃÄ™yâ Æz¦Œ®@çŸ!‘3ZWZi1çÚNõq{ göB&ò|ç­lt=GU¬ :ò²‰Óì5éÑ1²â$^âˆkP¨XI÷ ÔˆQkìÙmÖèÎÄ)f&NQ!N*þ39Ç] Æ•”Τld¥€þ©@ í7Úã†VFÔ{ÐÓ]rz,l-f’Ô™ïñ°/îCcϾXn£ÄZ©©¯ø?BH ¶¦Øµ$_7"\­VmÍ}KArÅÏuº¡°É¬A˜ö™( vG½3&ÍÄë1Ï¢´¹Ïóh§ÚçÌé³TÞL.Ö5•øf_Ôdðf„7 c/¨Pq Z0åf‚ßb$:Áï1²µðçÀ)üü‘£ö…KãW2Ï›Sbyn#›,˜SÒ6œ"—d\WHê “ºBï¨Ô€Ì§<Ì*ÚSr>íµ©~íõç„víÍoõò·7ïÕÑmÏ£l¢’nVÇq^YÛÄÎã&»c’>î>Lƒ“b®D ‹çù´×~aï×^ÿ…¾]{ó[øýíÍ[øÖ'E"&E9I’‚çôДÍ&y–W,ãÊ›é¤ÌRëÇüXä™ûf1Éìk¨tÌ'8¹D4̜ۺì7ѤLˆûc9ÉŠ òxRäâIL*­§,IžÙ:Ó,Š$­âI2& G£„eR£I¡ ,«R1Iq^òïd‚‹± E™!^@u†<DzBRäHU i!*ÐfKŽu4N&YŠ¡B'rR²BR–‰jãód"l~%ÿ^Rš°ÄPt”`ö»Éx‚¤o9) ÿÎG“åsc% Å.W% @UTA™.É&))T9r0Å'’æ¥jl´“䉨CI‹ˆ 9$*ûŒÄ ”ÃJ(by=&%]ªJòI"X×I±n'‰u;x’+&I')Òíä´©:XbÍú“Ç"¯ Å /byÍ+Ð-OnIœ=-â\•¤F(CcIëb‚Rõ(Ó~£4ç#˜Mâ,Î%ïä)QŒ‡JNuÎl…äJN’&ò%LÇFUˆ‹LT +$ ¦“Ëï”z¹äÎ|L4³Q¾•™k ‚d6Ê$X²9…SHf#öîÆ5Ê$z £]Né]FädBv'%»ˆ öŒôsÊŸ3þ¾ÐÞ3=}Ùs¡á§>{?³.¦ûŒÒ-&j ¥©Ê•–¥ü]Ï`ÔùÜ¢•™” \¨ aQ&cžóŒ?t•eÆ¿çT¨ò€wè¬.E51E_J-´Ø³tæY'7Ʋ¯cÞWþLj Z«¥hÇc6Æ~xچ玕„'$Õ³Oµë¢’ðDÜ€òXÉ¥8‘RV¬l©\Q±bÌ,Õ²••gÕ×(ä¢$ŠÉYy^} Á²‘Š×ľ¬¨¾–ÁT’sL ’»Ým¹IÁ‘b‡ÈÎûcì…Ö‡pÿ&#¿±~4.À Dß—lùËÕàébF[”' /Ï©ŒÃÀþEè]¡Öd\€AÒY—¨ù›1©Æ,o ¹#¤ÆÖ³gÌ]xȦéØzUÊ+BÑ7¶-×<íQÅÞ÷]xlÌbªú±d‘´nŠ‘ñtõ/²DN±4.¾éCŽ…d¤ 'IJµ(à\M6BH.HͧEGÉs„<ï"ª¹!©þˆŠ‚§±¤ØÄXU( Í%í³˜°gŸÅâ‘ðò¤×bÃÚcåD–^Nz-F\ áÏ…Ä/åød¿œ?Ÿœã£žK^?–øäŸB>—¼~Ìá•ö‚š‡§èUòú âÏXâÇÊS/ÓmF&Úå8Ié£(N•Œ@%ÉùR7&CÀ?èÑ8gS5+“X/¦\QKY'¼ ‘%ÿN[Ãi)åtž3µ8q®#œs)zi*eíS)¹‘¢T”H¬¾€)yâ>:þü;Umò\)tÊ@ìQmär'g©ùka^s]jÎûãÀÊ¡6)¶‘–¢TtXîÝ7P†‰ý†íÿ¢‰dŠh±Þc"*”G( m@i'Ø~¶žYíÞ³zDfõ€ŒÆ ; "·„=DªÇ1Í.•t%(ÑïCä:¼/^âŠ9%¢ØÔ%¬BɦA¶ —Ã\áHhÍ6M3ù~£X½Ï7*\5ÊՆУ®—ùÅ®Òã=UÂ˼ðAzö3ÉUÚï*8{?ãºñŠ”ÇâS•®Í1.å¬*s’(,?  ÐŽ $;bºÖ£<“ Sª ?t©ÄR1} Å¥´Ñ”Y))ºðç©’·$Ï¥DeAR*½ eE!Wµ4.S¹‘/‹Dîjhß i¢ZIl¡äë)ïBLd…”Š!RÈ ¦i‰êdDjgÒ`E5í,W‹k'¹T ,×MÂÆ -Î{Nòû§¯Ön•8ÉlA>vëÇÎû‰ÝÞØþ©Ïmß©/á«l!M¡1.þNûí],”®8•Ó}œÙïSçûŸ] » NÃ.ñAÁV2`ñjÅg{’¤|™y©Ì™‚O¿—e‰$ËÄ<`&…µ‰8]xÒ,•[¹´,‹à»‡„db'YRVLKë]ŠR›¸u‚m&JfŒ*Pná[Ð9ˆk‡ò{Á+aÁ®vàWÎzh­â¡X#!GrܦЊSCü+rÑU«Ùo#ÿÛJL]™¾È¾%óÒ¼á,U¦øÙ‡Ø·tˆTš þâ"•´O V3.Y¨ QCõϨ!%"36¿˜šm™³!~gîcÜ©½o ~‡ò4ÂÀaqYÂwÍm¶\w±+vC`Ìܹ¹S{KŒ s[¢#¡û á&•ÍnR*Ï#s î‘´Iùɨ!˜c¥ƒ9€:ʱ©Œß¹ce'ïÖâC%¬ŠT’%FÀÖË͹Àý›ÊáE…LiLXkeN†m¨q|õötø›;í!¯,Œ@>n`Õ›AÔSrDƒ_|Á~qæÿ. 9tYÉý~¶Ð¡º‚NäËW0—÷s߯v± `¨a~ÚDøT5À ۙ僋5ÔßÁÅêŸoßÅ 'H:.q¬b™…‰<¦ŒÁch÷ÏUø–å1” œåí‹ &ïÄÀUüB³!›êw5ÊuÅÇåµvåó3šº’¬]ùŒªâYIâ€aÝ_>?ÉRRpŒ±Ö/¡Å!Сå!@ˆmeR [bÄ.G. ˜Jß²¢~zé™ÿ:ü¸nîïýoç˼ÿ-³,…ûßR‚ã ‘|¸ÿm‰ŸíÝ“Èþð»@á·/ÓhûæêëåôÏèðæú«éýíÅÇèäã—‡ÛèǛ۫hçöâ÷éí¨z¦¾ÅòêŒVú3:¿¸š^ß]P8êúÌ®åd÷†TÞaWFQí¦ /Ó—ŽÎnÏ(ÓÛ»èpkƒþw°wHÿüòæýîñF´wÈ÷ÿÅÿìmíÓ?'?ýxzBÿnnocì¹S_^ç^[w깩óxzv]ßPÂÜF—×Óè‹û/´ÆõùÍUtÍ{üyz=¥0Ä–8EEDвŒÊ2H™G'ôgÖš·ÚÍíF[i¾»›Fg——’’p#ß}í}çÛ½ Íðkú†[ÀÀ½o5p'¿t8cÆíþùuz{?ŒßÆL‹ñ‹:ε•–…`oxsEpdïŽà’y¹§\®ÄŒ®6#ã•À¢¦ˆ¬5EÉJ`QS”ö`ä@,­‚ƒì&VžÍW÷¹À[$™qDe¦î«¡mÕà^QÄä÷šˆæ V §í¹è‘pŸ‹ ´HÜ­¾ÍŒû#ªžíp_ ­´ïœoŠ+7á;Ñåv‘cn9‘æÙœps³’tîbQú‹œt£)' Ý&¨‹n9éf‘—n4å§Û¤°BÔÍ"'PÝî•®n ëbÖGá õQ8j}Ô'l}Ž[…×G}"×GáÐõQ8v}Ô'x}Ž^…Ã×Gó‹_WSÛlcî›—yä½ßEª*I(¢„Ï]„Ü¢Ô(Ê xæÖ#sÙZ.~©Ÿ†×5>^Á/Ýy¨‹R«h¬‘ÜÛ „ï멉+­<2™Qml`1n‡ÅÈÞ®× ¸Å…‹X8¼U‘~!,Æc‡æúdpdŸX~§ßêXS„ƒ4ˆÃäÃãVXô¯¡Ã­ö(-ñëÙ”­y4>èAë°ŠêáÕ`‚dŠj+Õ ï0ãîa$"-¢RwZt>(êe÷%Š£ÈZˆ£V²¸…ã®k»1j‘Å-‡B•1Š ›©ÑãÌ¢En”v‡s£ÃNQi4ÛÎvQi´X”F‡í•TM gðK£) da›ºVj`ÑõØHáêôo·T¶ø5ðÚ. ã–˘½»pŽ¥ˆ’ÐÙ”ä1õ G¡ÂÁ¢Ð 5—~‰–›Õ°ÁØ¢»Ï9* #PÙ¦{ù¾^Q­ÑÌ-4²VhÔ/>a84'Ç퉑‡ÑÀ~4êÞT²kºU3$$ŒE©»²H‡èÞŸ´h’š1n¹[šîíºÕruèÐãÖ<³HKd]·æ½.ºÈ­vs«ÏÙ*' 7ÑNR¸:¼#3OÃÛ#—<¼$ˆû¸F*…\ÐöÎÄéU¸) ÁÜ.ªÙÏ„u§†{U·u2˜š…Ì’<ãÀX9j”[Žà×ÌÃÍÃÞ²·=nje¡ÚZ¿¶æíÉ{k¦ý̵‘î5 ú̵½DÔÌG%j Ô®Ö#.Š%·ŒÕŽ|Žm­ÎZ?ׯf·fîñjâ>s;‘lßUƒÛ1J;Ï"/$MëäaÌí÷ݲ'†ƒ, ;Èò¾ÃAyk€ bƒ ÌïÈû{& ÂôÇŸºæF\ç¼gFŸ~w'”ìT¯íJŒh7§C8&&Ži× m:ÐYëµÙp§ˆ nƒ£Qaܪ‚º k¾+S´"ºÓ€Ç·…Ç2„× V0ï«[Q˜·óhÙ\Bq¥fÇ lÑšèÑ.0¦‡ žÒ,íq0nÙ³#¤f­Ô,]ãqMôhw@.ÄáÖfw­@ºVHºVh£ÆÛ®¬~·Ü5l.ŒÒûÇD±%ö=W¾Gn3óΣj×óv-wº´5¾È›jqÛ(˜Ä9ÜT‘>Ý ÁN·€7¢6Óõóz®ŠŒîý ÉèÖËÈ̼ó¨¨^^Å ÀîØ°­L„œïiЈ+ÛË9Ê[։Јï—s&Tô,t*Ž ~eò˜ÝÕ*V“®OË[‚ $bÔ(v¥ ô¦ûur1IŠ© $•÷ӶűK¸E6KÙ¹Óª9) Y!)ËDµ`Þn\æòšäRÞ±.Ž‘àÒeÀùž[8Ã,çäªØý.çìªà‰åœ^ÄTðŸ_S" 4磚Mâ,Î%?å)Q̈J$I°ü·§‰| Ó¡Râ"à Êe¸e‚åw8-+96ŸÄÕ¦¼,¥^N²B2 å,YŸÂ)$ÊKŒk¢$¿Å¶cF”S'£ã5mÕÉ[ŠAZÀï@Ú X‹ÏgZ™IpY¡À…ª@ØÉ>xež‹û£é¼-ËŒÏéÂPdRzPIRîê³½l,æ{¤¸xi‡z£LFó>ÖÕ`2 †1»FÏ–{+jš}´×Ô7LK!ÆjÚf©^ôKY m¿(‰ú¥ÇÝ짹ŶéÑÏsGÿG?Ñ-èñègº=ýT·À£û¹îqIU ­à"V»O¤rë€ùƒ0E”é½9þÇìšqžˆ#²µ$Öj,ß‹¥¬‰^ÐÊ‹’§­á´”ZDž³Mp6ⳑðiMÑKS¹Ð—H³FE‰8J@$ªÓ8l=!ü;Ý´ä¹RÅ©< 8´i±5¼oó¨z(Ž”Ö@© ­eà W@&ž ¡PÁÚCòÞ}Îgã]5n¡§ãûëŒsv÷¶-÷qô2éQ‘&4ZÉ‘'ˆY-¶2£TÃdÄ_â©#Xå2I%K”è 1;#šŒÄKÜjAÇWXÁV¡d’$aö0ZpqÃÐÐûò4Íd…$F±ªÀM9©8Î/Lhº›³Ÿßê÷¤}NðWxÛxZ£r„6Àaa!mÐzÍ~Š?r;·Èsü‘;8³Ÿä¯àÚâ_S:×[áŸ$[žæ¯ÙÿZ15ßýþ_ä™þ^µ¶§ú+ü³Èsý3¸C'ûkåìÙò¸@\¶ƒ>ŽK)…Ëœ$j³¾•°ôS²¡$fªø£<“Ú`ª|+T?År{;D—Ò Rf¥Ð ©ŠŸ§J¹ ¹löiI©v‚(+Dk°O)Si/‹Dš¼hw ét¡J?Il¡äJ,ïCLd…”.\¤Lï Ý ªÜ”gÒ'TLp–+6am§ÃRY¯Sbm)ÝtfφPÙù?R>ÇʈPŽ5rÚָ曡¢¸>RV„È-¬‰n°ò"ŒÁ.ÈæGÁ´1˜û/lµŸ™nH’ 9®¬2g¦ú½,K$ç“®`%X º\š¥Òx˜–eQ_¢”LØ3K:cÓ²Z¢„”i‰2Pɬ@%óƒ(¯ö¡ B9K‰G‹¬19÷Ši·o\Äþ`¶ÓrÖÉØ6¼ñLàë|¯AõÝÿùùÃÙoó¼:¾ÿ3Ë)wÂýŸqBèÔ¡ßéŽ=N‡û?—òÙ~õúeNïîï¢íW¯¶6_ËèGÂæ6¼éïâ_ïŒê3Aç Xãf¬—Š[¸„XËï«‚[Zb`­Mæ«[¸Nj`6c½"£XkÛÿ(X4 ÃBzêeùÁ- Í+^V·p§)Ê½Ëæ¨aEíX2rÉ3;42WhÉ\¡¥s…–Í ÝLÎuPÇsÔñ\u<×AÏuPÇsT¡ã•W‚ûpÞãKÎ>SvY¸uÄzà•à•†>]}|ÜúL†ÇÇ­Ïdx|ÜþÒO&U”]{/(iØ÷JÌ’Š’jïg% {÷@‰£tŽ-R…Klårl‘*\b+‘c‹Tá[Y[¤ —ØJáØ"U¸ÄVþÆ©Â%£§cé ãöøÛã>¸-ËÒ9_Üæké\n}Ll[¥s˜¨«Àp«ŒÛ0QW|¢Îjél¥ü…Jú)…= ×±¤Ÿ*é§\Ö j¥3TÒO •ôSRC%ý”×PI?¥6TÒOÙ •ŒdÞJ(Á«°†®ÂZ¹ kâ*¬/+¡ð­‚mf¬t«`[«Û Ü¬†r3¨#+¡Ž„­h¾Ù„ð†ñ½¦dÔ£N+haÜZc½R¸9%O·ùrȲpëÃ!› m˜¨+6V·a¢®ÆDM ¥1µ*µ-1ÍÔPSKl[b*š©¡4¦–:Ù¶ÄT4SCiL-u²m‰©h¦†Ò˜ZêdÛÓŠÆJ2«NÇKmM 4µ”Ó¶%¦Úš*hj)§mKLµ55TÐÔRNÛ–˜jkj¨ ©¥œ¶-1ÕÖÔPASK9m[bZÑRÃ"&êt,i­˧Ǒ'}qó–,·Ü[ùÂ6öcC<ŽÁic°ÒkÄ ÑÍ-Y>nÞvüc:LÔ§ÏpÃDý;NTù½Jì%ƒµup%7”ül·ów%çêÐL£èä1›¯Ôéwç–€÷RZZz?U> ã†Ö±¤ÚÊãý­ñÉ“Eü)ã=§Œ÷|J ÎÊãý­ñI¿¦úmÖúmÊúm¾úm²úm¦X­Ü(Ë­Z’á¨Ø<ŽŠAYn”åV­@‰Ú‘vó63Ø?k9o=u:–hhã8é!'E-ù½eKĨCªÐZÐ§Ž ³QÈíQ B —Øx÷£7©Ò»‘Ob‡vÛYwŒé=_þCëX2«àåïeá=ü|‘1^˜<©›-ÄÅ»ÁÛú<Ú >GÒ‡ÁÍI6'‚×Q¡BðVðÜZ!U'ºjÅS#Üï01çÄ'}Ì¿— |T¼g ÷ØÇßKå“êœU¤»g´/Ñ%Q‚­:KôJ”«Nǽ±%‰U§c‰Þp‰’ÔªÓ±DoÄDIfÕéX¢7h¢$·êt,16nP4¶¡{‰ÞЉlÕéX¢7z¢„Xu:–è  (I¬:KôÆP”¤VŽ%zÃ(J2«Nǽ‘%¹U§c‰v¦7â¦Úgoò£ÄÝêÊìÔ1d§.ÁÕìk§2ÉlIœø00'vp‹T;¹N‚íÖ&ÝÜõC)Üv4·5ÐÍ uí:EúÒÍ«+—Aºé»òÚÓ-õamâæ–ú9„>¾vLƒ"ØŽ—¢ítÏøä~h!¾æÐHh.dÞ1­LTïÔò4ž¨&rÞ®¶m§²¶z™Ô½,x. N ° ˜¨áAÕýñ´ãeSˆx\dž0Ã5ÐÍ˾t × ¶·°¨ðÒ:<>¦i=´0xÛÉ|ãSÉœÛ‚Öæ’ᙨáùÓ@ÑÊV÷©ºh5Ðv6@{lhmÓø­2#‡eݲp c0à6oܼ% >||ÜüІ‰:L†'Û0Qç> ÃÙ‹áìÅpöbþg/â(Žz\ ¸ÿñri÷?"DÂÕûÉpÿã2>Û¯öíû÷év*ë­õY”æ íñó,÷6\ý¸¼ž>Í;‡«Wb†«QÞg? FʱV"©íßjH†ÕuëÃêú†aX]QÞsuՑѡȒÈ`ªÈ˜‘1±ç iõ÷Ñ}l»Ï«lbïʺ‡¬‡¬ü0ôéêããÖg2<>n}&Ãããö÷àûèUîö°‚­Â¤8dI“vÕY¤Ï0<>n}&êããÖg¢>>ni½û%wdÝùBzÊûèÇ7³ôÁm¸÷wy¸ýîý&ê0Q‡‰ºÕÝG‡Ý\aÐawMØ%îv¥u•q —¬2naV^eÜÂuV·pIÍ>z˜¨ÃD&êŠOÔÕÜG§« ž¯‚¾ êö*¨Õ« ¢®Äžql|«`í]«î*Xo«û£Ž LÃ,鏨5ep—¬aæXz0è 5©¹Xz0e[mu6]·½ŸÈ‡öp³ýp³ýü9dY¸õáÇÇÍ…6LÔ› «ŒÛ0Qq¢ª}PVÍYî ¯~á\ÖìÉ6*ž<7Uˆ§Ø(1Ûuè÷õ‘[âÁ­ßU¾¤¯Ý°¹%^ÜÂX»Y3CX‡iƺ2 ^ꄱ1Ÿ7é~G¬MÜÂЬR«ûqˆÍ×#·Ä['Œµ'çë Ì]:LÔa¢uu'j¤‹2ã{b|ÇÆ.7vwÈ}kïLoÅ^¨vkY›}t\O€«$}qó–,·Ü`Ã|aF˜±ÁîcGŒÛ¬´š¹BtsK–›·ÿ˜õé3Ü0Qÿ¶Ð‰»žïÔ)Eî‹è(6V·ŽX¯naæ3±–ß«Û ù½I^ná-d[¬…[{ꄱ&ê0Q‡‰ú$&ª›‘'ô]²„ñÝÜý&R›œ?²†m å h¶ö%uÐzãݹ¥པ–V„ÞO•OÂxÏWÄê¬<ÞߟGÒ‡ÁÍI6'‚×Q¡BðVðÂq½I°¥'Ù¸%Üï°ð̉Oú,˜/Aø¨xÏ@ooìþRù¤:'‚ζRÖl6ÊžŠf¶S~ÞB1„÷ب3v¨ÐöFeõ4ô¥Y·XÄh‰TŘW´ë„…XEÄÊï3ãíÒ¡6^§7¶cöyà`íNïºEÈíëŠlø¤*Vï0´å~h!¾æÐHh.d>>U&ªwjy˜'n]Ga˜¨Ãdx¸ýí'jÝm4(ð=5¾+Ou%§PWHÚÍG£ïæú¹<ûzöñ·1™àïOwON÷_}ÿñóùäâzŽmµ³$aó,ccÌŸã‘$‰¿Cq'$' ¢å(Iqú]χàçáîþì6о»:»½;»º¹ ½G_ûôi-÷³ýê}dvÎîÏ¢O7·Ñý—i´}sõõrúgtxs}÷×ÕÕôþöâc´{ñyzýûÙåÃ4Ú¹½ø}z;Ê"÷søpõazÝ|Š®Îh¥?£ó‹«éõÝ…3ÂQŠ#„#ÃÛî;Q4BüsGûÝžQ¦·wÑáÖýï`ïþùåÍûÝcú÷~Ú~³?B±‹Íé—ÛéÝ—›ËsÞ±éÝ}t{vqs7šœ¿Û˜ï=ÜG§Ñý  ˆ0½½¥µ¦^Üß* )‰Î§ðúÅ5Åìëí”×¹›NÏG@\lÑæ`ž]^ÂÏ‚0÷}ÞÑWO:ÃÉÇ/·Ñ7·WrÒÎã FÄßò8œ´‡_f‡Ý?¿Noïåpà ’ûg·Ÿ¡iw0¢µ8úç”v{¿î—tý› û/3 ›˜ÝdÌ·@½y²bµåoœzm™þƒ©Vˆ Ý/³ôE³$µJˆ.#ùê²-KŒZyý“–”F ¶JR7ÆØºe>7phÛN¸¤0 ‘nãbævÂ%šŽ@SÙkð™ÔA†vN‹P9³Äí ë8k‡œ-ñ£ÍÚ1Ñ΂uf"c9ƒ,ÜZögV±úQVÌŠ‚p†}JÎãqù$¼>¿¸‡EìÿzvÇ&ùÇKªUSÙr7½œ~¼ŸÒ™{s]ÞüAÃbsnš]³y‰kÏMóBáÄ_'ªíuj”ØÓÌßš©IæJ÷ðÔL8òÆÔtxÜ Ò¬3¶ùµqfVêÌ<3Çᙉ‚#7ûÌDþv:3C4 3i‚ãLÌÆdRR@Iß™ÏWgû;jƒÂ1(ƒÂÑ™E±–Np†0eðVZpxñ;ÔÈ ÿþ±"ê¦J(Ý Ê‹œ¿K&‘’§¿$åßé(æy^JÍ›Û;®Á ÚË ½ ÚËŒÚKg…œŠYˆœ¢IF2þŠ‚D~ožæ1)2 /Éq¡¦vŒÅ”/'ÉR.N¦y¹¾€2ywq>½ ê¯5 ©.VöêÒÍZ[(¢Ò]^”¤8Þ<|="ŒÌ¥»éVnÏ®‹ÖÎèÿf­Ò6ü‹–³RÁËÚgZ/z/V½W¨úeiûÕ.}¹«Óþ¼ Ñ¥;×Ó?ïÙ„Š.>ÑQúgtxúï£Ýú! a j=!D…¨#W;im½e_J ádfG3C˜™’G3Sò'Æ.¿·†SG³B8ùw4#OžÍ áô ô DÇâôhfÀÈ]PZCÈGÛogå¨ã·³BØŸÂÛý™!°¹énÒZCÈèXü 5Üå¦5Bép2+»o‡-Àwaýÿÿ½ýôu^{€&ûB)×ÿ“#®ÿçé`ÿYÊg&ý?:þñê]ÝܵÚùx•[ªÞG”æ÷Q¹n¨ïüT2tøÈÒ]›Œ>!ÝÝj. Ç{škÔç[wÝëÊ«æïaÊ{¿CnÔ,Ël“êª;cqe€B²Š¦ú»ªà¿×öÓdb‘v%^ê#^gÊ]Šõ®½0¼»Q¬ÏXõæ’åòjà{¥ÿv¼3Fy›ïµ”'¼D’Ð÷^}&)¡*?bÓó£XŸ±êÍ%#f[IÀP¿›ë»ÉŸiµ.1¾7¬nˆŒÎŒt6-P< :¢´àßqŠic<Ù-‰Óªàv*„PBòœ¶E‰Kú½dΑ”eÌí–¼  ISÖeÀˆ°ï¬Bö½5³ @™tDPRßµ „X×éwMÓ¢ÃäÑ}#ªo’Í¡o]&’”}ÃFߪDšiü‘‹e¤–ÃÆW›Ôì¥vŽƒ=ÃbÖ’,“C›¬ œœ¨¤R»LA%a!+ožS ìÃD’ó"‹s¢$ÎéˆÈõœdD­óiLÔ0ŒeeÌûÃy$+ã’Q^J"G!C¥b*º¶g.øUEY*%!&ºµÛúŒÊobQ ÃŪ“S ¼$ÑàË ŠeÅ M1ÑiF1Ñ2£˜$§XnP,™ÅA1dP CňXm°äUÒ0Ûê¾Ë•ª^K„ä“€0àlè*•)™§Õ—ØÜN±êš9ÿûea@,ÙI|@;*SB$㥠Î*@g4n ¨ëw*ñKh Dê3l a¤ÞDZذõf$ÈR7ƒ»ÑïUreþé M#¾†³æò2‘¨–$/äw’H¾“$™ÐBÆLxbïÎ’8Óß“ÔÇ0IFÔÂ¥+Ý&É TUt˜Ü&‰üNQU¤ÌH\åg€ŠóRjÖz¡FIJ¹2$ØDüž”©l9M%z¬ Å^\I+\“«ž¢¬PÊDün¡Ç‰ï¡@×ïlWž ÕŸ`HÉÌH~g¸¢²à*÷2•¬%t(ÆZ¦Þ$æc-©g¥L=$šµä§975keе$ësÖBk!“µª“‹±–À‰±–øÎXKâˆß © Y«ËƦx§¬P„Ø”•ЉIEšÉ)+ÉÆZì«ëóû.—èÿÁI’³ü¯(ÆYšådðÿ,ñ³³µoûöGΞqvOî¨ÞbÖ¨ýöÙ¨—d1½],Ú¶jTH×Lºvæð›qìj~¦Ê­hÞµã3U°kx½ÑQÇ+‡ØµsåКi'¶cwõÞÌ™]gòóvÔÚI<“Ÿ7äH׿Cï—]«FiÏ›URµ‘¢È¬`šC›fsh$I¨eÅAFoØ `ˆ¬›ïŒì—ÌÊæw]y§ °‡;$]Ùß2³˜b.¶¡Šùݪ‚-d­&<`¬³9s \°ñªå-ÁIkŽPÝ¥(áÄa»6s­Ë ®)f™mØhÀ¨0Z+P‰›ºãíð.$‹Éü‹µé€P.>NÆûqm'[‘: ½ U:Ïè¦ ­9já<ž%ì;v oŽ_;ºÉ-¦™]{¼IN“AÍß³2ãi»ÇÕùæ£NÃ*¢É–xR©Üf.Õ˜ìÒ!ã•È–» ´¯æšà¼Šm¸´œˆéHŸ2«Ôx„Å%ÍlPÈ~Lj1¦í&.ãWñõ áÂMLœ‚´ Za¯9f3”uŒw­UË|Í^µ‚^ä<ô}¤ü𢠢æ?ßG"Z@U°å®`¯6 ĨH”LýUx…?f6'eN)ÅÒ)#Þ!Û¥cVIA“ùÆ Ù5‘É zNÍÌ®™ØFNWïØûó(E5ㆾ›ãÆ#S/‹Ôïš'Ò6Êjþ^3ÞH½E<"Ÿ+ŸÐcì:ŽÝQ”ó©Q>Y¥cd6Z?½]Œl¥4ÈÚžGSpf©.m)ÂJ§Iâ2ã"ŸªÚyVðïx’a”$jÌ%44`¾ïÕ¦ ZöhÔZÏðªYÛˆ5äÖ“ñ›UÄØ[OêÁÞ×TøÇZú¨Ø„õdÀ‹vVK3T惵˲VZ‚”ޤ7]m, ­¢Ìh>qo5çÀjÑ&Ž|BinÔõç¨&Nã›®y…’ñ`ÄÌ(í‹Wàm¡<[.SµAògïD2L"æFÕ‹çØÐ„hÕŒ¿îà‰&)ÔnÍÛDZê 7È¥ÿ®OFVccã%¨Ûa×\ ±½^DgøÞC/0M1jï®ûÜÈ–!Z2cÔ#µ!BJ”Ofcöƒ¹ê}FEþšµ c[•™—…â{Zw–J•cJê`:1Vd¨àmu@ºxœú‹´ÅĆP„h2ÆUyÉ`¾7.ZÁö=Ô‰‡Ìßó¹À<ŒFö¶Aä%¥e‹f|MŒùgrª1 ™ÖZ:+V¥%×›ÊÀl¢¯y®¦˜+×DAÅA\„Ì–Í=¤w¹Ð–Ie¥ÀFËfeÓ^kJ†Š6O"{èCžªé–Éå—Èù*p:É3)ñÝI•)Ú³…މ EîvR)¼6>.Önµðs:mGíEÜ;§(†Í Š8&­L&¤E ‚mvÐõ桽ûlt_Úy‘F¨Ûfp=ê³Õ®³Ì–‹n¨³ÇêíªöÄ™¶HØ^;ƒ#Eš¤%ÁE‰0. Ú14_y–pìR:C º°æEšæy‰HÞäññEuµúàMeXŽœã2Ë’$ÍP’e}ñ®Ç.\B f*¶I™æ¥ió¸ oÚ×"ÈdIA0¦Ò$gg[jðî‹]¸„ŽyœP=·,Q‚ BYJʾxÏ»yâÍ”ãIR&Tj“"+QAÊ2‡¨e\"Þ)ú…²OIY‰–Ǩ â#O9Ä„ ed¨ÈŠ΂§%õ‚þB J†,)ã$M“qZ0Í•b”ðsÃ=C„>KÙ ¿é\£ˆ¤t¢!ÈÆ%¾¡{¼ñ¿Ë½ÿJ0\Éÿކü¿Kùìl…ï€ ¦çÑ ýþpI‰ÄrbE;Ó7W_oî.ìTÀM—9„³óÿ¡H^ÿÉÿGÄÿ ù%û/‹Dfø÷žœÂ¡¿ªf\­}8ãE¤×E½šT™‡ë?vÒ² âlÄn‰Ù)+¶¼´bøÌíã“ÿÓK”ÿ(s\½ÿ‡Aþ/ã³³»mÍÏ×Ó¿èÜ<¿øxÆ–HOòäâúëÃ}E ¸©Ý«–#žhÄVÎ7Àjß&¿ ùEœ„Ä¥© ÛM2Éå/„+×ã* "_Ê'âhb"‹R ZÔàò_}”Li°vûc¢A'R—M%D,›×ÿ\@I¢Dd\ÁþÈ¥5ù@ã ±ùH£Ê—±¢š‚XJò5]kóe^€Æ ø"™ 29㩦š'S¡9K*ÝôÀT³0•âÓaªbþ’ 9€V©ªWŽ©ž‚¤ª@É¥OI*ƒØ1}ì0Œ¢Š1–é$S¼$ª)@Š©ø…¿ã¤ŒÔ²©°9|Áò Q¿ÔS…H‰‘bAñKm}Éç L"î3*3Ö×eŠOÿ–ƒ sú &tmUÓ” ƒù´“c„«3Íg0M=pÌUL­HuLƒô+=˜‚˜/lÍã¹ ¦Üÿ»øu³îšüí ¦ ¨˜Ï`b0é3˜ˆ’}Œ5 a0»Í̹j³‹ÌAúÖL¶nÖ f6£”Ík0sù¥˜×`&3&‘ƒ‘®Â`JK”9˜ãê`rª&-G54E3=˜s^$Ûè3Îc^ŸÌ‘aæÅ9‹d¡yé_õLËÿF‚³àõØ ‚ã€ì‡ÀQÙ?µƒcWÂ5ô+ªÇ»W%†¤u¬ÛåféCë`¿>^Ü¥RÉqk$]«o/ÐT}%#Úwr›3£\FA&VÄÄ>¯"bAð‚3ðE¸qn sH¸!l$%¡ÜœÝsvaâµÂ.ü`¥H­ñèŽøaØñƒ"'ÞJÙ¤,R‘ÈU`%Ÿœ!Ë F⡜ä»B¡ˆg±¸±Àå¡v•9EBHbÈÒ[­äåV¥!(Á2‘û ¤¸P„`5ó‚Ó•¢ã6ïu¨dÊŸqXžÙˆÿS£Ìdm @‚Å¥*0Ç1»0$e¯!Ä2ô¦n¥qÛJô=Ræ ‰¢HU).â\T“²dù–+•Æm+¥}§OÛõh€àåà2‡k1úV+¥õZC/zv×KSê˽´µ6à:)¥æ|‹•²JÍE2Ù"9n‘ì·0^¬0æl"³Ÿcª˜ätA#©õ0T2*U'Çì+Ú0×Vf®­8÷­x¥EL§í¹‚³È|ÁY¾¤Yóâæ€ h.+‡•Ù²§Ù®O¥ðXÔT ¹¦RKš])ë…üC÷þzSæVȳ\?”±*IéŽ6•ÆtúTä™,*&Y‚M¥|È'˜]5ËìÝð”ªJTÁKˆ|('Y¡šÅ“‚ Õ}JJ³-E²†"IuK$3+%g JâRáš« 蘦ìbÃj¥qÛJ9XN/…N )dQ’L²²(uK¸Èß`•“<ÇDX’4U#,x#AšÔ™ºZŽ"’£R—MO:riªKA\8dŸÄªc9IŒJEˆäz¬l°HZêN& ʱ'j¬‚;)±fžœ©L¬‘£ÇgÆE¬Q5ª·R3)cÝPž \©X„"ºIbt6/ .Mpaô(#ÆHËR…L¿gqi\݉dȵF,) ÆâF­Ê “E¡By)¹oLy‘(ôœ¥#¥Ã¤š…Ãåb” ½P‘g;V†DY)›ÆdK$Ñ,K‹ô„§äOqªG3Ë&^޽•Æm+a …rdIU%–YAÊLC®{rÎÌ¢§¶×Òb^®ý 9tv.-xEÕ‚$'Ü6‹ÐÈí oÍ#Ì%K™Äâ*Úf…W"´V•zµÔ§OH¬âEf,U«‰@W‰RÍtÚ6B†àˆSýZ\h±VP1b /-Ð ]t Á˜åzÁÍ'Hg@ÂtÁ-ô{EŠŒ¤šÁ¯À%TŠÄ¸,'º(Óˆ§àŽ0A3NA„÷RS9À$Õ½ˆ sŠ±Æ®(5”ÒZÒ%17¤i–K]`-: Ýõ47tƒ<7°CÈèeŒ4l‰T› m•…®›£”˜ò”QªOÈöºYºë± r;1’´Ð«&,¨Dá˜hJf…!OˆA‡|cc,Rx fœæ:d©^Á)i®RæX”Äà¨ç¤TS!¡Í*:ÐÕ57pÀE¡É¥«±™ é@ÑÓ‹z2)ÖŒÉD`13Ç‚äz˜ÒÔPg° )% :Ćª””ºKt:f梮ç‘Sƒ+‘Y)Óz-u­ÑU834c’’#'FTtVH7lN™ÂÚ<3&t,F‰Ó£È˜¨”£LÝš cn$Ö¯¡öð.!Íâ É¦šÆqj¶4S•Æ G0ÒÍfi®ÊóB/÷i‘`_¥qûJ)ʤní¬YLU©„ÌU¢µ+àV.ÝÄLwWÂu¡™`J«Ò¸e%æDϰàg©)s¬·˜r›®D í[EeJTK¸L$UÀ³È´ÁJ¥qÛJTùJÕÞÆB/§<•çšä1Q:õIŠ{œê–è”ÒØSúÕµ 2ôH„圢 pAL›*¡·¦ÚWC\fYnÌœ,——aðpÐåÕÞ0} x›³ÄÚ—oEdh|G[ÆF €°˜ 36|yaŒX!'¦=/6å­áU§{âÔ°æ+EàÍ”LÔj.Ÿ>¹~°b¬0 €‹#ÁZ±íP3BeR§†Å3±ÍB©éŠ"©„`:Œ @ì‡â¸P´Ãˆƒú¤T¨ÆÄ_iܶŽâÁYOÊ,Ñ6"”æ‰&$ëWÀKÂVA•˜h³&*™ Æn¥qÛJtdÒùfTII‰t¸CNJNÅ5ݤ0æ63'wY„§ºÚ§ ž55aW– 62a—fI¯À…2;ñÃî°Y=Ç~Ø}U kÄôXrÁB¸—¨²˜ä*‘š^qª= pr«ôî–è{I®'G‘!#¨ Sû*±˜Ôà¾Ü4 ’ÂC7ô¹²ºðŒkÅ„/ ^ô iNeÛÙɈ­ y[‚8uT€É)—•²ÚU°íXõ:ê2K OOØ­´°ö%¸¹ lC ëIýŠœR=• ˆËÐn*œ*K| ÖÕ}°‚¢¼yVÓ¹›ìø—9|mÍ;T×LE{ì†^KBPõ¸(ÕÜ+GJŒýÑŸœö%«#Z*—0ðD°e3éG¸""DH*ÁAÌ’ŽÝ1˜ï™=‡û× ¾ziÈÕGA©R¤ü¿îF$U>m*ý°Z`Áši¸Ft€`—ëÐÀð€d`D5\Ú¹’Ìà«¢Sc¨œ³*¹a7E¤Ô+yœ!Ü œ‹w’DÑ„ Bñ¹Pƒ@¿Ñ{ „ ÌRÙCÍJã–•˜Ó†h¯\–e:.Øâ_lÄŽ˜•Æm+z*(ìÑ~ôÀc]¨p³Ò¸m¥†s|Fî&B uݸ웯!6ÀÅ Ö¶›Ù °O0šŸ6†Ýk6švJÂÍqA¬ã¿™ŽxÍÝ Tw¬LøàjO¥sí%Ö%T3b˜Ó˜=ULji[Pàð·pi!Þ;ò¡T›]áιqTˆJ%Øß*…]‰îuöj}¬ŽæXËÈÐV}wh„Œë<5× º›0­ gNŽÌžõöˆ˜”¶–Ñà\sZ1ìü ÎJbç0Rèa°scŽV»ØÐ*bçîW;{ï’®4vî¢³ÂØÅA„V»8ˆÐÊaÞäÚ{fØ8ù-@`¿)¥»n$g‡ø2aLÙŠÏÍÄqžH½…ÅG¥¢¨Æ vîV·­!QÊöêî©x4ËIqeÞŽ\˜ ì=B‘E8-a×nª ¯ÎÎSfžN#†“JQšo,!ÝÅòiÂaÇ !"6Åy+±ów:`P€ „{x*¥@dDÆf\'³¿¨ö îi5ÎW&87 ó V*“潄¤*„òÆÞJÂÁäNŒdöIΙíg5b9<_g—£a±5»àkÓj_Iå3úÌK´Øö³ðP÷¡•ʤ’‘Æa:Pù }ª"Õ§UjŒntÄ /Q–A?=*õA¯†'ĘS†é̶j \/Ø-Áµ…Ý\«¬{=Á…`"¹(­œ KÁ´&y¢,3mÃK1É|•Æm+Á¢¢VÆÚÚh—n+Ã&Öª­Jã•rO‘à¤P•òLE.²£o©¯Ò¸m¥êÊ1ó䨱³õQ¬Z½×ž›ÛúWÚ gW³Í›/)á¾9&K“Éh=2)µCŸ‘a?Ó•Æ-+qå)ÞñøìA‰4fTÇŠÏA3 ^…q(‘3)/eV·­DŒÃ3®­$#æäH2ÎU]9à8.ÒÃyê¢í#²#­C8c'"Ä!¥œù^qUö2”é‘Ë”æFcÌ*ŒM häàpÉd’;!ûUÄq¦JâŒHTK·LTCï4„]®âÒ?Œ +ÑÅ6רó‹ÍUÁ1Ï’4a<1„,¡Ï88ØHBbº¡a§ì|àè^"SàHš¥º„ÃF¢D=@C™ ¸Ýû£õ ¤Ðvâ"MM·$BÞ-Ä’¨(kv*@:Å™k‰… V"áàPF¬'ŠY$œ3) –Ñ¢R‰ùØ »:M¨ˆýñá „› 2ˆ*7 À®l] Î8‰YbîÊZ*:hõ3nÉëålçfZj)‚gLwU¿îvn¶wK›OK-·>sسµÕZºw·/—×ìôØÙoô Dø§Ú΀K}„{â=HPÂÓô0I‹s¿#7ÕÙ@g%JT%\&ªÝÂ%©÷œ7¬WXjáKJtðÛJåÊgß=*s¹›Mž]oCÈRb]©%ÉQŠ­“ÍÏ®^fGÑr¹`CZ£ª86Ž# 8•ʵ£™w9C…‡`]à1èE¥–¢‚ÌÄ!y¦¢?A3"™ã'–°óØЭڰ‰<Ž%ÖˆBŸX3ß‹,l og¿<3òšè^ذk°EÙªa]Ò4ŽLêÍq‰Ìë±~]}bÀቜ°1áÃŒøƒì6N)VÊ–ˇægyœø*[Vb‡ÛÕñj躑A?ç ­D%n½­T·­”NJ”åBð£Y Ÿxy®*%®à®1`‘° µ ?8×(d[½j°ù)àªîÔ¦†U‰Ð¯Ò¸m¥– %Ý– O¸ä›J5õ„õ]×´¼ð¦ëplz’ǺŽgã`5ÆÂ"®å]ÍB6jB«:H^}‚\r¦v¥X•ŒÕ…$*š«ô.v˜J¯L¨aœ™æž²ÐÄKs•²”eRP:ð,Ä­4n_)±ÑR–™•r³Rû*ÛVÊFÃLª—د…&­Ew\Ò\aO‘̇ºƒËlpšyl2„³68«YÕq83k8MnèøQ­£ 0©+ó=›à”­&œ ’"—áMpÌ'“+¤- ÛVª:„‘êmçÒõ‰!µ–‘ûî-*… QPe#Ñ nR0í6¯¯©ŒÀ,ÌOÇü@ fR‹NÁ»¤Æöþ+F»âÇ\‰åòb ¡Ê¢ß†ë}N–ÐMƒØÙœ™ù[ ÏÉzÂttväö¶NÌH„:à æ”T•œVI:#5ü`QÜZO±!°Çꂯùà:8¤fKÄÄ¡Ð%ØTæƒEcq!f‰&ÊâqHLr‡ìqpÈL‚ª¥k àÙÆ¸) ä§¤„´,üGÒsHÀLÄR‰a˜ŒÎ*K Á6c°Ü ¹o%w©ä¿Ž¢—±nô–Fû+ÙGü^Ø‘¬'¹ é'·È¬„•ì¢(ãǾ)ò)×kã@ }p«Îbƒòy‡^\å²AˆÑæÑ•a×R¦;ìö„n»ç¸ÕLì™Ù V ÇJt׳ÁœÇmFØíÙ`ÎãÖ ö<ØÍ ®† ÀÛÁ2J2¸ ç—I¶ i0pÕÊpÕc²U„¸(. É…t‹BÖjF2-Û«WZ#æ"D¬"È“bái±ksÁžñ?Å$Å*éLÊòˆ‡ræÊ‡’¥ê•þ6ª—…~£L¿—!U‰LRÃç—³‹ DÜ:£šÅì,§n éüŽ"˜hô0VïAô¬[ŠeöûùEe&[ÊH™èûļbD&æTƒ³˜…A‰4×=̰A–Dg*Å,#‘êŠ5x‚3‰R6ItÆO çžuK)Rý(à,·¦Αî.ŽKƒ–)ͦôÀÅвˆÝ9¡ÊÌ(‰uR[hÉ]l¤y¦˜kü(1‹R×ÊÒRc^‰¸cK¿–*ôí¯öì ÕRçD’`=¿ÕžYdÑ  K«j‘Â@–ÄØhI.e$NÉš¸&DgWJ!®La¬r”^A Ýl’dAØäóÜábÇ)q§/f+„‚é>²]‘lSŠO!ÕLZÊÛˆ =‘´…¼­rfƒ—iÚBÜ{žÉJŒNŽäÈevtxH &£(fdš¢PÂhP°t¸r®À4/²R’6IÜ£9w1ZÓ— $,{Î9aÝh̦˜òQftœˆFyêw}*0-U8@ɲŸªy˜*¡„„û.$Ø7]yúT5[YÖÈRŽ'޲0]Kc,â˜Ն‚>©DD0[q¦W*r1CŠáÀ˜¤R.æê2 “ÌbuEŠc!Oq¬Aò£$/KÅq–”j5Ãi*.CšæI¬¨W°$âxÁl©ò‰çpSøáÒ f!ßc}2i„ c.É¡ 8ŽÕdƒäZœ”`ß2-¦ÿ4/¥Û’q²–:ˆ½T#Àr-ÉÄà ¥ CÊx4 Z†}z{؆rÄÎ ÎY;žE{äðë4„®JX]"QpNÐrÌQõÆ-GK¿†Â[¾JQ¾=šíÐRŸfçÐRKNµ[j[Ô3ÚZæÏ‹´xÙàztwsÖîn ð3ÁlqHKÅæ_É7ÚH*R½fÁ¬#7™8‡fgÄa.ÍvÇaþͶÂaÁ͆pXf³6¸\©€h™Ä* á°àfC8¸¢4eZ#hy`ÒGñœÖö¹Žñ#ÉšU<« …VA$­‚|Z°Ô(؇ Âj™’«BËc!„–‰C¡ªUe%\0Â"áÊä€évÎÒ5´ËXA¹;#ªË”ÈÝQ}4YÝ ÕUâóØ/N¾‡Q¿´)'$7,׳‚[¤,œÕeJêî¨>Ú:Ò ÕG]U¶0iÙÓ`™_X¢o”‰Õv?óÑ`a¡/!ÄÓÆòH]!¥ð“¾°»äá.Ñta>äV·2³ÈrÙ[±V‚íàÆgY­vaq¿rØ9¬zXìâ B+‡]@h±³²•ÆÎ”éJcZ9ìâ B+‡]Dhå° ©å.vÙ¤×;wy¤“gq&]D•Éþ1¿©µ!±cÅLÿêØ"JîE <¸W—¹t×›E°•gA;zd 2ê ®n`Æ­ÀµÚq¨³³óÚˆŸ¨fÈqa—Æ<“昩ӪùeÖæÃàzjKpm‡¸¸Á½Á¹Jé\ÁáIIp™È=GF’D§Ôá!eÂU–5Ýå“Ûa·Çnžæª¶%ýÌU5´ëeʬÁRª$>,8·L  #3¤nÎügEð;lt ­.Áæküö܈uÈëŒØŽÔ0;Ïí2ÀÍÁ\²ø¶{&ò[I.K¢DN2–«0o5ãçîŠMU~lîìÆF—…,õϪd–Œ ‹k¬ÝNz°!¨º¬‡´%žÅEÑÁ0d¤v¥X•ˆ,.ÏÕ¢ÂD1Îômõ™oS¤$QÑHì׌kÂ[8¹à’î଱ÑE‹bíÁe68MX› áM„ ÎjÖDÕn(ñ€.¤îÚ¼R#{íp¦ºŒE¢¹„d7À‚1Í{Ü#ø0mP\V õÈ]upˆúãà0;J¬¤Ú•Ïšti;—ú!vñ]-a:„:;rz[7•BíqW!¥ŒDŽï…C ?X·ä)6„’Èâ17R‡Ôl‰˜8º› Áüq°è`Pb–DY8‰‰Cnâ=™‰ƒ©Zð\˜‹Sž«Cê0€Ôè»öŸË³¯gƒÛÄ¿?Ý=9Ý;|õýùô|rqÝFÓ0Ï’„ýͳŒý1ŽÉPž~‡â$%8¦=É¿‹ýž}ÅsÄ!øy¸»?»¢ï®ÎnïήnîBïÑ×>}ZBËýìì¾ìÏÎÙýYôéâr}º¹Ž§g—ÑáÍõÝ_WWÓûÛ‹ÑîÅçéõïg—Óhçöâ÷éí(‹ÜÏáÃÕ‡émtó)º:£•þŒÎ/®¦×wÎ(¦ê¦[­–~Lù5:¨¼Ch9ÿYôeúÒÑÙíE`z{nmÐÿöéŸ_Þ¼ß=ÞˆöÙãÞá¿øŸ½­}úçä§OOèßÍímŒG˜NVËÓ/·Ó»/7—笧÷Ó»ûèöìþâænt:•>QJœGg×7÷_hÏ./®§Ñ÷_hëó›«èš÷˜’fJaPpwÓéùn°HQ–QY¦)óè„þÌš ÔÁ€`d6üîn]^JRÞÿõuzG_;é8n'¿<ÜF?ÞÜ^ ã¶q;i5nïé8nÆ|Ûýóëôö~¾E —ÃñŠXøÅn<¹È_¢à û§vpìJ•KÃÛ!×ï^•dJq]n'· ¤Kì@;a_8IrM¥ ’ãÖH¶¹²Ò^ ©úJæ=*삘±ùà2 2±"&öy ‚œ/2Às \˜C a™ÍŽ¿FÚ€³{îÀ.L¼³VØ… ;³x«/8_bmžŽ Åçþn$47îÖ›í)"»žŒÄÜVÅrõq0€£ÄÃCí*5rŠ„°‹9«•¼Üê¯"%Xfä[O!¡ «ie«2°-E[]¸Ö¡R I¶+ÏllÆœ%Ýòiðd¸âªœÈkÓ ÜûP*Ÿ·Qiܶ}.˜ ‰‚ß9È+Å˪“–%»§RiܶRÚwú´]^.s¸ä‹ oµRZ¯5ô¢ggp½4¥¾\ÑK[k®“RjŽÁ·X©zƒÝ"™l‘·Hö[/Vs6‘ÙÏÁCêÒÔz*•æs1p‘a®=æ\[qî[ñJ‹˜NÛsg=´¹E¾/ûÍxïcíCøþ–ÙWëÒžf»>•Z^/cW ¹¦RKš])|™Nzðä8”1B-’åú¡T—àÁjYªÒᥓ"W·ò“,Á&„R>äÌÓ•anÀ©ªùóÕÝtå$+T³˜%S”-ñ„l ™®·HRÝÉÌJ Á™‚‡uÍ\1É‘º&™@®Gâ«4n[ n^(åu´ÝËIdÜ+¤Ñ+‹R·„‹,ñ V9És¬ïjL~q±’d”7¤I¥X G¥.!šžtäÒT— ƒ¸´…\]RH&9IŒJ…q5bšäz¬l°ˆH0ˆ9»'(7Æž¨±ì¤ÄšyDþI"&YbŒbœë+"é{UÈYjæQéYrKþÆèë†é¸!¢û—˜÷@æ…Á¥ .Œe:#dJ»^j¢}Kensi¬ï`¤“dȵF소sï…Ìîü6îVÎKÉ}ìŠs…ž³t¤‰ºÅ1›%’w+CPÁ®Žª\ÈLømÖ²%’h–¥EzÂÈ™êÑÌ2ãBf‘ƒÐ­4n[ ®’,½™R)Á/xä• œk™iÈuykɬk'ê ®¥Å¼\ûrèì\ Z6ðŠª%HN6¸&™—ìx*‰Å‰ÉR&±< Ò¨ ðJü‰¬Ô«¥>}Bb/2c©Bظ•j¦gp¥º!8âT¿Z¬TŒ˜ÂK tBC0f¹^p!An¬áezÉ.&EŠŒ¤šÁ¯À%TŠÄ8Ȭ'x îcQ4ãDØx/5•LRÝ Èêª×¨kì I”FÆ ¹87¤©HS-ÌØ%²è€t×ÓÜÐ å´z@ÈèeŒ4l‰T› m•…®›£”H·y[±H..„=2®&z,¨ÜNŒ…D${ÅBÃDá˜hJf…!OŒ|Ä“|cc,R8ÜãYà4?Ð!KõÚNIs•2Ç¢$GÅ87p ¥š gTÑ®®¹. M.¬gaa©‡ip%‚1™,fæX\Sšê ÖCç1éªRRê.Ñ阙‹ºžsDN®Df¥LëµtÔµz·Œš1I É¡OİÜÎX£œ‡Í)SC›gÆ„ŽÅ(q:bN]º5AÆÜ,ÔQ–§<3ºd\È šlªi§†`K3}6ÈŒt³Yª¯‘ÎóB/÷iÁîb¯T·¯”¢LêÖΪ‘Åòˆ Lü’È$ÈâYb¬€X¹t“‰N‹>+ä]ìV¥qËJ̉ž‰Qw©)UŽf`ÿ„¥—ÑE¢}«¨Tw¶'py½¤ x™6X©4n[ R›ÇÞË}áú†<×$‰ÚèÀm¦©÷RzºgÁ©n‰NÁÂÜ`J¿º–A†‰°œSpY91elª„"t Üšj_E q™e¹1s²<É”¾Uªµ‚ºq)¸t!%ú@ñ6gyªd\j®¦ÕšÅdl)–ÕR} 99%" ½†«AãÇ’¬”\Ia Žá\¯¬”›æFÍýÀ“I%‹Ä¥Ä²ê~6A¦'ÆÀHË0‹DÑ ÍÂ`ä,5·ïÄP9pllT,Y¼€…BO3¢®íàóGά”]¥éÀfªó66qajÍ¥ÁyjP¨ ¦žfY"çÜcMcœêq.M:¬«ò¢\`½üT)È^书P’›­B  ëȨ”$QcV(å…kh툊¯²”Ó‘n¸I¡-‘Ik QRê–t¥qûJTÔfþE­Œ ¢)žär}‚ùHɬ´¨¢4VL’( #XœóÂWiܲôç²ÈݱÖÃrãª!Z)I°Æ ¥RŽTÕeÞÌWiܶc¯î5KôVåúà8Øè3¯Å–¬+QÆQYAB,ÆXjþC€­iðIu€-†øFC’*l'ª*•Êj_oUÄÆG‡±Ô¹j+k¸†àö‰] WƒŠˆôAÁ…H9öU·¬dajPRÈJ”z)LÁqUø*ÛVž¦²4$%z”r7Ó«ˆ¹*0 ¨A§aâŒénEIM ›)U¹Öa¨Ê›ª†˜ª#ù#Ô”„©†7@::ÃûÒnèÀŽks(áKrÆ{ˆcEgIÆy¦µ ùš’òàú2\ì©¥(gÆúk_¾‘¡ðmòfI>.±á{È +`Ä 91íy±)o ¯:ݧ†mÄ0‡XÁ(מּ†T«¹|úäúÁ ˆ±ÂT4.>Œ kuƶCÍ•INÏÄ6 ¥¦+Фf‚él0"t4±ŠãBÑ#B ê“R¡¥qÛJ÷Bˆg=)³DÛˆPš'šx˜ ¤€—„­‚*1ÑfMT&2_Uiܶ\•›"ߌ*'pZU.¦T¦®é&…1·™9¹Ë"ì8ÕÕ>Mð¬i¬é»²œX°‘ »4Kz.”A؉v‡%Èê9öÃî«Y#¦Ç’ ½D•Å$‡ËY‘š^qª= pr«ôî–ØÕ›zr2‚Ê ÿ†¯ I îËM*)¼!0tCŸ+«+ϸVLø’àEÏð‘æT†±ŒØÊ·%ˆPQG˜œrY)«]ÛŽU¯£.³òô„ÝJ k_Ò›ÛÀ6”°žÔ¯È)q ÕS©€¸ í¦Â©²Ä×à ôJ¹‚¢¼yVýÑ;þÃe_[ó•À5SÑ»¡×’2¬é¼z|åH‰± zã“Ó¾äbÕbDKåž¶Œb&ý×AD„I%8ˆùCÒ±;ó=³çpÿZÁWo" ¹ú((UŠ”ÿ×݈¤Ê§ Wˆ«¬™†kDˆv¹ \ñ —v.…$3øªhÇäjç¬JEnØM)õJgwçâ] $Q4!¨P|nÔ°‹íõÁ^¡³TöP³Ò¸e%æ´!Ú+—e™Ž ¶ø±#f¥qÛJ€ž J{´=ðX*\Á¬4n[©á_燑;yzV­“›SÛx ©°.^°¶ÝÌ=`}qÉŒø´1ì^³AдSn‘Lðº£ìþtÇà5w'`PAÞ±2ძ=•"̵;”X–P]̈aNcöT1!dH¨¥mXªá„[8Š´GïyŽPªÍ®8a²Iœ:¢»ŒÔW ö·ÊGaW¢{‚½Z«c#†9VÁ22´U$ãt7býPÚ0­ gNŽÌžõöˆ˜”¶–Ñà\sZ1ìü ÎJbç0Rèa°scŽV»ØÐ*bçîW;{ï’®4vî¢³ÂØÅA„V»8ˆÐÊaÞäÚ{fØ8ù-@`¿)¥»2â²C|™°?¦lÅçfâ8O¤ÞÂâ£RQ Tc;w+ÛV‚(e{u÷T<.g°‹Œy;ra6*°÷D±\û³ÜpP…yu6pž2ótñ0œÔPŠÒ”xc é.–‡H;f±)FÈ[‰¿Óƒ2Lx ÜÃS)…"#Ê06ã:™øEµOTÙ,Œó• ÎÍ@Ä|ƒ•JÀä†y/!© á£ü±·p0¹‡„#™}’sfûYXÏ×ÙåhXlÍ.øÚ´ÚWRùŒ>ó-¶ý,<Ä}håŸ2©d¤q˜T~àBŸªHõi•£ÝñD`ÂK”eFÐOJ}ЫáÉ0!æ”°¡Æ@:³­Ú× vKpma÷×*ë^Op!Ø£ˆG.J+'ÈR0­Iž(ËLÛðRL2_¥qÛJ°¨¨•ƒ±¶6ZÐESŸÌÇú@µUiÜ¡R®â !œªRž©ÈEvô-õU·­T]9fž5v¶>ŠU«÷Úss[ÿJ[cáÌàj¢Ù`óE %Ü7ÇdiR ­G&¥v(@à32ìgºÒ¸e%®<Å;Ÿ=(‘ÆŒÊãXñ9¨s¦Á«0¥1Òa&e¢ã¥ÌJã¶•ˆqxƵ•dÄœI¦Â¹ª+ÇEzbb8OýB´cDv¤ugìD„8¤”3ß+®€£Ê^†2=r™ÒüÀhÌ‚Y…±)a.™Lòc'"d¿Š8ÎTIœ‰j á–‰jˆâ†°ËU\:â‡d%ºØæ;Âb~±Ù£*8æY’&Ì‚'†%´ã™gIHL74ì”ÝKd I³T—pØH”¨h(“CAÕ*‚ýÑzPRh;q‘¦¦[!ï–bIT”5; â̵ÄB+‘pp(#Ö“Å,N„™”ËhQ©Ä|ì†]¿&HTÄþøðÂÍD•ƒ›ˆ`W¶® gœÄd—nŠÁ(:hõ3nÉëålçfZj)‚gLwU¿îvn¶wK›OK-·>sسµÕZºw·/—×ìôØÙoô Dø§Ú΀K}„{â=HPÂÓô0I‹s¿#7ÕÙ@g%JT%\&ªÝÂ%©÷œ7¬WXjáKJtðÛJåÊgß=*s¹›Mž]oCÈRb]©%ÉQŠ­“ÍÏ®^fGÑr¹`CZ£ª86Ž# 8•ʵ£™w9C…‡`]à1èE¥–¢‚ÌÄ!y¦¢?A3"™ã'–°óØЭڰ‰<Ž%ÖˆBŸX3ß‹,l og¿<3òšè^ذk°EÙªa]Ò4ŽLêÍq‰Ìë±~]}bÀቜ°1áÃŒøƒì6N)VÊ–ˇæg9»=±Riܲ;Ü®ŽWC× ú9Oh%*qëm¥Ò¸m¥tR¢,‚ÍJøÄËsU)qw‹„­øÁ¹F!ÛêU³x„ÍOTEp§65¬J„~|•Æm+µL(é¶dxúÕ ßTª©'¬ïº¦å…7]‡cÓ“<Öu<«¹Ð0q-ïjz°!hT+òÐXÕA@òêä’3µ+Ūd¬.$QÑ\¥w±ãWçªI‹qfš{ÊB/ÍU"ÈR–I!@éÀ°·Ò¸}¥4ÆFKYfVÊÍJYì«4n[)9 aƒ¯ÆÇ%ök¡IkÑÝ—tWØS$3Á¡îà2œf› aǬ ÎjÖDuÎÌN“:~Të(LêÊ|Ï&8e« gƒ¤ÈexóÉä i‹Â¶•ªa¤z›Ä¹t}bH­eäþp§k‹JaBTÙHô‚›L»Íë+Aj#0 óÓñ0/Pƒ™Ô¢Sð.©±½ÁÁJÑ®ø1Wb¹¼h¨²è·aàzŸ“%tÓ v6gfþ–Âs²‡0¹½­3¡8ƒyÆeU%§U’ΈC ?X·ÖSl챺àk>8¤©Ù1q(t 6ùã`ÑÁX\ˆY¢‰²x‡ÜÄ!{2‡ jéšx¶1n (ù))a- ÿ‘ô0±Ô@b&£³ÊRH°ÍO“D+:âäbî‘»í+e:)âGj±x/'j%Ì“23Ñ3óµ¬T–¹—z%,I厼Í+KÙÁЬ²¨A>m¾#dïå$•,·Bî[ Ç]*ùo†£èe¬½„¥äþÊÑÎI×›Ws‡›WwóêIë›W#vi*üLJ] ¤ŸÜ"³ W²‹¢ŒoFh]J:/)¦ü§8ÐTŸ‡Ü*³ø!¼li!®þæ³yt`Fصôè»=y[Áî9Z5ózæÁŸ‡0Õš;?Ìy»ÃîÉsÀšQZ$?à ?xV”¹‹ Ÿ“Ÿì•90çuÏœõ@¸.$ \Ò® Yëuä#D¬"HtŽbá*sxŒ2‹Îˆ¹±Ê”²Ä>â!‡¤Çò¡d¹–¥Ã”n¡ÊB¿‡Q¦ß˪D&©á´ÍÙÍ¢® RÍbvW·„t‚NÈñL4z«÷àøF¬[Šåõ#³ÊL¶”‘2ÑZ—\8L[”HsÝà dItªYÌRJ©>¡XÓˆg¨“(e“D§lÅpp]·”"ÕãkJàéîâ¸4hYÒlJÜ,¡(‹Ø¥!ê¡ÌŒ’Xg%†–ÌÑÅFžnйÆ³(u­,-5æE‘èá€KÒôk91À¡B?ÑþjG~ÁnQ-¥q®A$ Ö x à™Eñ’°Ì¿ª) dIŒ–ôèRFÒyœá˜³‰kBtz¬õÆz ÉD©á¤ÐÍ&¹A„M>Ï(á5V pœwúb¶R@,Ÿî#‹¹ÙÁ¸¨ør¥¥¼N ò[I[H¼+g6„i M[8¸g²d”£Ir™ÞRƒ€ ÁÆh'Š™‰­(”0$Z,Ÿ±œ+0Í‹¬”¤MR#ylÎ}ÄÖôå Ëž³L\X7³†)¦|”'¢Qž»_§5LKÏQ²ôµj¦ŠA(!áÂÅ öMWžÿVÍV–ö³”ã –…,L×Ò‹¸0fµ!‚ O*“ÌVœéU…Š\cÌb8°ªœ™€¹ºHhÄ$³X]‘âXH4ëA}ÃèÉËRñ@œ%¥ZÍpšÊ†Ûâ¦y+ê, ¼^0c¸|âIø~¸4ˆYÈ÷XŸL¡Â˜ Dr(Žc5Ù ;‹'%(ÅG‹iÆÿÍKéwfœ¬¥dÒ/Õ°dY2søuH©âÈ2Ž6û [õö° åˆüœ³v<‹öȇ;a÷¡?2Ü•°<È,Æ¥àœ å˜£ê[Ž–~ …·|•¢ }{4Û¡¥>ÍΡ¥–œj·Ô¶¨;g´µ/ÌŸ!iô²Áõèî<æ¬ÝÝnŽá‡ºÙâ–ûŒÍ¿’o´‘T¤zÍ‚YGn3qÍΈÃ\šíŽÃü›m…› á°Ìfmp¹RÑ2%ˆUÂaÁ͆ppEiÊ´FÐòÀ‹Œâ9­ísãG’5« xVA ­‚HZù´`©Q°K+„Õ2%W+„–)ÆB-‡BU«8ÊJ¸!†…¨Â×-¼¥s®¡]Æ ÊÝQ]¦DîŽê£ÉêV¨®‚ŸÇŽxqò=Œêü¥M9!¹a¹žÜ"eጨ.SRwGõÑÖ‘V¨>v­P] ìB¨²…±H3H{HÝÃ2µ£L¬Î°ûɘ¦ } !ž÷—‡Z )…„Ÿô…Ý}$O牦 ó!·º•™E–ËÞŠ °‚¬h7"ÃBhŰ ‹û•ÃÎaÐÃ*`Z9ìâB+ˆõ­4v¶ LW»8ˆÐÊaZ9ìâ B+‡]H-w±Ë&%¸Þ¹Ë#¤8‹3éò :¨LöùM­ ‰+fúWÇQ’p/jàÁÅ€¸Ì¥»Þ,‚­< Ú±Ð#óPQgpu3n®õÐŽC×FüH<Ë€xŒ K™5æW1dŽ™:­š_fm> ®×¨¶×vˆû€kŒÐœ«”Ξ”—‰Üsd$ItN$R&\aYÓ]>¹ý˜v{ìæi®j[ÒÏ\UC»^¦Ìì ÷£ÊÂÄ‚sËÔà22CêæÌVD¿„HÇÐêl¾Æ¯ïÑÁX‡¼ÎíH ³óŒØ®!ÜLÌ%‹o»g‚ ¯1’±u¥´$Jà$c‰Ü±± óVS1~î®ØTåÇæÎnlÔqYÈRÿ¬Jfɸ°¸ÆÚíd¡‚ª ÁzH[Bàix CFjWŠU‰HÃ#!ðd;*Lã ëûôÌh|‹˜"§Œ‚hŒFb¿f}ÅsàæópwvEß]ÝÞ]ÝÜ…Þ£¯}ú´ „–ûÙyõúeNïîï¢W¯¶6_ƒ¾± 7„í•uæ).EL‰ÒöûÈ-À=V™ßI µ€ÌïIÐÖ€Ìï©h/@æw•„kd>ÍuØ|xÏLí& ÷"R/ô¢¶kg6•C®2Û|ßG.¾ï#—¾ï#—ö¾ï#wÔ}ß+üæûN»76ºøÎ^ÂFï;{‰¾ïì¥Ä(ð}g/¥Fï;{)3 |ßG ›Ö£9Í?‹!:m=‘“ ­§Åp ½æŸÅ (4ÿf¶&¹1¬vó\í±ù”ÅfÊþ™iþU*w™sµ•[im*ûæV¯ÊŠÂ³SÌ,è¨vú6j=÷}€z Žn:ÖLBd&á2“ЙI…Ô@±š`U¤ñï¨ó÷£07@í€ÎÀs/P˜ç‡a{bÃfjA‹)<FAi|ù÷ØýÝUꥱÿ¥Z!Y´¨`báoÙ†­Z½ê€Ü㎺ T˜¹/=r·é¿In±¬àZ½¯óúÜFïë(¯TÊ‚`uÝùIƒ¹`Ä£r{ï«® Ãöm [p>7j®A­4¨q-d …L´°6Ñ"ZÄD+1ÐJL´R­ÔD+3ÐÊL1•k;hˆû²iUÏƒÕæ¨…´Æu1hÃæòû(ø03ÔSà‘ ;°Ö7ÎZ­ªä!Xëé±»é-œFp‘#7?¨}[ø6¡¶ù¾¨~Þ]k=ÕázJPW’µºäÇs¿[ÇœÃÎNÒ¬uØ`³áxôpÊÇ{þÿ|ž§ÿ›Îÿ£8I3çü’üÝpþ ŸW'‘ýÙ9»?‹>ÝÜF÷_¦Ññôì2:¼¹¾ûëêjz{ñ1:ùøåá6úñæö*Ú¹½ø}z;J#÷søpõazÝ|Š®Îh¥?£ó‹«éõÝ…3ÂQw)#á8"TPDî;Q4Büsõ€}ŽÎnÏ( ÓÛ»èpkƒþw°wHÿüòæýî1ý{?m¿ÙÁ=ÍöçôËíôîËÍå9ïÕôî>º=»¿¸¹MNßíNÌwî£Óèþ†¿˜ÞÞÒZÓ?/îïFÐÑöÍù^¿¸¦˜}½ò:wÓéù(‹3 €yvy ? ÂÜÿõuzG_}ßmv/>O¯?»|˜FG·7.§j0²Èý4 FÁ†#…áXê`0ô=ïÛÁ/݆À˜»~ÞÞ‹ˆ(QÝÏþÙíghØ€h-Žþù¥×Þ¯»ð%]ÿ6n¤¬¶"å·@¸ÜÖð/ìÅMä\™7–óq6WƬ’hïú냢Í&@1ÕÄ(7¡`C9± Å×®d=BÚ²’õ€L³NTÚý²Þ3J²`'·*M'þÖ¬×â+®ùôÍút2±*áIZƈo¤)FyZbñ°ÃõùÅ=È‚ÿëÙc·—T%¡Ì7½œ~¼ŸR¼½¹Š.oþ ¿á?±Ã%Íph¨:qIj>d~þ©§…źe?.‰õPYŒÑò¡KZA©Ç·W¥> ”Á%Ù„dI)úpI<Úù¥¿Ráˆáª†÷-‹á9îï·~ +×·´r‘ JòL­.).2õÆ R´¥Ûv aªgÃGSlJt‡«•‘BOšàD-i‰rñ‡G…H=`2¬ßÒHåCFJ=^ å9I\”ju,b[üáç·œN¢,/“¤T”ù0Æú!)ËF~ûM”^ûßçeÚÿb”fnþÏ$%CþÏ¥|v^½z)œ‹Ë©R.®?7šœnoè{Ó»Q^Ñì6A1wðíê ï(e¨ªáê½~7ZSŠÒú(iÝÚW©A‰vGl²Ã"!þ«ir+Zûpyóñ·»‹ÿ™Ò6© ‚ÿÚT¤jZ´vuq}qõp0 ^"êûú`À8ùiïÇÓhíúfw_.>ÝßuAâ`óŠÿÕÃåý«}¼½¹»»ôë}·ÞP S÷æãÍå$2†SY^7®µï´îåȧŒîomn¿Ö¬ÖÂ9×Åg€`*Ĩ¡v­]ì%w¶Z‹ˆOþß}Xªüs’VäBù¿ŒÏÎÉVPþŸ´þ>büâ_zŸÐP5G´iñµXpRßZSiñ5ÿg×çÑç÷_š]wQ7« ©5'[JÛHïü_²þGrTÿé0ÿ—ñÙ9 믦×ÓÛ³Kª¼œ·”MŠ`_U0, H¿·èü" (¨ bPšjÅ^uÌ}Qí,7 ü­*Ü òË’I]°y¨` –¯"ŒVK {¼WþÑç¸4ÉÿÇß!„âåqŽÜÿ³!þg)¿ä§sd÷äý÷;'GoNÞWDjžì㓼BÖ#¡èÿËøôÔÿÎXT”T•¢ã݃6í^—ê‡÷%þ}T®*²ô×&ëH·š èòžæuúÖ]·lkmÍ[%Œ89]Eœ&Åñ­Sv¦©Á 5“ª^ ~l®>m?ù¿»÷êû¹¶Áä~Žÿ ÿ(ÎQFÒü¿1¡ò?+Ïß\þÆÿìòìËùçÉ|:\¿þ£ ±ûßÓ,§_òŒÀúO5aý_ƇKó“w[ÇoÞÑÑß6÷7Úyµí½yw¸wºmžþ­žžGÑx,¾PðÕ?Zû}zËŽ³’ š uú¼L?ï®/~gŒ§Ókª%ÜM§ú·í³Ë ª2\_œE[ÓÛߦ—Ó¿"XK7_Eû÷瓉rxóû”­›˜rǃ~&“èä#åÒÛhóöóÃÕôúþŽþ6âÝÙþióxsût÷ø¹T ¢pïðt÷Õî±±–ñ®*À¼£‡Û¯7wSøúÿðß9}¢¯·Ðä—éÙ9Eíâš+?@yNèüâÓ§é-EŒëëÙý—;[¡l@—ð92Q´vÁûë]X¸§ÑÃõÅ}$tº ÿñåâãÖ¬#ºÈ?ÐUþÃÔÂ:0=—½…QŽt«Ý–¯Ï®¸®@¿C§X‡kÛ¿Œ æÃT5Oëá–Q‰(:»µ°¤ŸWo_²£µÏ< …«OAãr^=~û’ýÛüêþÉîKö¯ bqAí¼dÿ†ÊOÞC¹!Cç`H¦1F;Ó7W”ƒØñNäæñ1gÀþ bÔ²ÿ63?h—ïKØ»ÞOo¯)ø®?Þ³Lªý7¯ö¶7÷-rnìŠâÝ_hÛ‡f¹(öµ2ýøpF ÜŸÝOÕD~.þQŠ¢Éþ.Ug×ùïÿ_úßñîé»cÙæ6Ž~`\¼¡—TC^WtúñâöN(ÔTIÿx{ñv8’/(£R¶¥ ìgµÊq^‹È¾=£ø,Z§ÿ;ýIõTÒ¶ôOÿ:Þ;ÝÕôǃSZ^–%ŠÖ 9´ Ìçmèøm]C¸¹!Ü®!ú{]C¤¹!Ò²Gûu %Í %-:y_×PÚÜPj7t¸CÛQ¬t`fŒ¼‚TFëÏÌ /£g6WR“Ý·Ê6ºˆt¼ÞÌe)üfI)A›Ç7¥Ôhœ4‹Ö›)›æÑzÖøVF‰‘7¿EûX¸¼ è‰ÛÒµ¢'ù»Ó“R5¬m®ÿ€âxƒ?lÁÆ“uÝý÷íýd¨ý~÷è„NûgÚò@?Ïdãy§Ödõ`+â ½\L_4¼ÌËÉý{á#œÌËðbû|÷ñì’Î=æz~¸>§º eŸèòâêâ^âéåvOuˆt´k?W²d˜áex/®©n´Gãèí³gÑsŽTd¬EW×kÑáFt­?çïЇѳç‘É(ÄÛs^û”ÂþUµ²E[QÍmŠ6¶[ð‡·°Ç¡? °ðÃÈ©íºö¯´ö¯ªö‘Y[– ö a½‚Av“‚n[„UtÝ\§Å•n[h{…†&ë[ŽºKÖˆÒ5àôÍ | õóJï`É©ôÎ;ûK<ÿ“¶ýQ¶*úÃûõçºKý" h‹:·my© k^U¯(á-œÃ@°V¶žÿ%†bM üB´G‡¤B¨5ç¯uÕ@kªà’Ô̶wb¦ñ¡ÛAô˱É”u=¸¨yèP6©™wïcˆ¶°ÛÖQm[[Õ¶f íÛówj¸µf Åöù{ÿ äú]ïÙÏ>ÂÌ.n÷úô2îSz/Õ‡ §ø ûÿo§ÿ½ÿ?Ê0œÿOqš£Aœý'Cƒÿ>}mÿÿñîÛ5æK£bŽ Ž“hç ì€7D(ýË2QÒ"V2. >0@ô“Óº+)àñdnÞÞžýåk´ê,ä\£²vÝ€Ôu@G…^2§%$ö“‘&å¿ÞÞ|¾=»šÐî܃ãÒâÌxD L!Ðïì~ÊjqÌ/ʽ÷tÂ?°“¼Çv"mKÆ LxS£éxQåþþöæ;ƒ÷.éïw/E0Ã'ëÅH[¾}T@/yÑ:}‰§'…òéå 8žž3ŒYd¤6ô¿Šª¨u2½—-ìiЬÎôŒö–’ââœÕˆöXƒ×矚Ã3ZJl^ËQa!,f°£Í‘oŒõ¸®;ãúpG œØ"tW9³Eœ´ :%Y#’Ï€a7ÌdôbÜæE.DÚü§Ë³ÏÀ|çÏXcŸ81ÿ¸¸¼Ô§neù°7uñêìO–#ÐUÎévÇèÜŒ¢fâ™2†½=áÕÿó‡Ih ̺CãDˆú¼eÅzx¤Ë{Ç'§§®ÈÓåÛÈ-{®ÑnŸœWÊ Y¾O—ˆ°¸Ü£ú%¢ÿmoD?oD¯7¢ýÝCЕO=ò’÷‡IM£;>Ì–#Ç–°”`ö¨ð¹ üûѧB¡ïžìmkhûÞ0g ð×w6O7#ûÃIDµåg1Â$I³¼(ŸEß÷ na2`òjw"fJÕÀÌÜ+Sº’þE§Ÿt\pü§”ª" ü¢æ÷ $E-W&þrñÙ‹ ‰ÉfÛo©ðN2˜À-иè7imû`G’U Á¯{ͤþô®8ñŒ ÿôÁ ì)D 9!wsg/ðÜþlm³ˆ×Ÿm0+øp¢uÝàvÅ=G´lbN Pm’D«´,v(eqô³  dG’½f‹ÝÂ=$%F$•Žºù½è…Ф©±”`ø{ˆ¡_ûÜœ°“ÍÃ:ÁP„êóêMt õ”Ú d~„?‚«UfüM…ê U’hÝKY·Â‹ww´ú•EQÄ(!_Ow'Ï¢g‚H•0;É ƒºç)؆ ½„÷ÖÍ!^ú2ýø] ÏîéìàJ DR~¦ ÒTÿº¥ÓÆœêC91‰£×œ‘¢—ÛX€K¹µèõKZ§QåÖÛ¦p_Gã*멇4а&zbY ñzâ†,Z§ËP€‡:3É=ikÌÌ9âçúñ¥T°R¡v@6MÂÐ L¿`ƒj2ÙÙj7Ý B9+׫B…‡@eN‚=W^‚”>å]ãé…yÚK¡ƒ#T’ …]Ûð¦XaŒ°Qóãá‡çŽü£*½¨5⼕SÞQôíÕ5s}Öõƒýw°ÿößÁþ»Úöß·E¶ÿÞ]-Çþã<ÅUûïpÿ×R>‚7-ûïÉÁ«µH|¹ÑóÇͽ}úçø˜CwOž¼Ý—e=k–Çæ :Ì{¯»ÝÞZKi(s„EwW”½þâǽï.éŸno®¨$Q™´ÆÛ?½«|ª-ò„q«^«Œ]®%²¿É‹Ž¨´ónÀ"Æí:Ÿ˜AFa‹e‹@Öæe#àMžÓ…æúò„ÝÝ1’Ý«ü¥ì‘lƒŽV‹^ÝßÜŸ]º-IŒÃ; ÉSŸ^QŽ>û<…=ØÇ›Ûsi¿)°] híß5•E1çõl÷Z‚•¨nÔ3Õ4†P¶ R >³‰gôP燵aÏ`§3 ††?;*g«Ogp.”²o•¥ä‘pC7„Fžm^^ÊÚJ¿s•6™ NÏV]Sr0·×ò¤–¡Àe¿È·¬Õâx•@-‹šõÿáêñÖÿ4ü¿KùpþpÖÿwÃú?ëúÿî`Xÿ‡õ!GA†õXÿ[¬ÿïf[ÿ_ÚúO7ûîúâaý_Ƈó‡³þ¿Öÿ™×ÿ÷×ÿã÷²þ«ÿ°ú#«¿¸ÀñîQ´Ý|d®üçPGM%óPÞUÀúÿñÃù}Œ–ÿR‰ÿÆù°ÿ_ʇ3…±þooíœÆˆçSÚˆ^ïPæÞˆöwè?oá/ý‡þD'úÑ)<¿ÿzsü:àf\ÉÊ)sžìí<-µÁ£=1x×=€RjÚ¡˜ì'Úï.ñâ;,Tœ’]üe$]3|‹ÛoŽöw1ël®qDY…£Ó51{|»Æ1‡‡ðÀéFÚi=œs˜\º¾»¿}øÈt+çŸÑ&×|.hÙ‡ •7’ ‹V6©è+²o=ƒÿø2¥zÆÛhí*úðKÀuµq½¾ÎFùèýYü¥ô_PJ@k¡ ÔVY áõ-ˆR×íŠ1@¥"³.5»ž?|—˜ÈptÆÈ?ÈlnBK¢{*’„]ór"O˧¥;r‹Å𢠾è\}üsà+¥ßL‚:à©ÖªÊíÍwRãT„Ùd¨¼•êOW˜Ü×{ôLÀ}½Ówï¼EÆ >PŠ=Àf!ëÑ.”.x;eì|tôN m8Cñq*³5pËŸ¯v·Žwþƒ·Æòšp þ¼€{É!Üvƒá³—ºåÿŒ½xŒÛ ²¥1Aœ]þáÑ<5j…oed²Ú)PìIpX ìgóéZÍL•¾Û†.§gç·¢[ ÀisÂ!Q¢]ý¹†6Öü·°~ÂZÍy1Óe'Þòû\ b›ÕmÙ¢úûvý};áªýÝqúËä{µ³Ð£ÚÝJ“Ñ¥/¢aƒÿDï·D“»Ýš£J£w”㺴Áá ã q½‰Jw¼À }÷Ÿ‘”vG§í™ƒ.gî0—;¨ÔíÁGm¬ä ìqtj‰T±ŠzÑ$,¼¬É?nn»£úù´Ž/…Vu,*šõC «°ÅÌ8ïWvËjm|‰uÍ\õžÕ,z ÙÝž]Mï§·õZÓ¯»Ço6¢7*øhóxó`×: ³Æ^‚%gネÙÛ°r°'ïy“À1ÿa˜ŸÃÈmÒ ÞÉÓHÝÝ[XÛû›‡¯¨J~² F_úwó`[]aT¹Œ+ô~ '”Y[a⃼ýæèßÑö«Ýƒ÷x]ëlSž§Û߃MøNjÜÙò  çíÃÅÇß褿¸½‘Cõ×» úºe39à7ŒMÞOèJÎosÌR÷®15."sîÓØ¾¹¢ójjë‰Ï˜åOI²@þû n– 6¾Þ³±çˆG¯UØ™5yõ;nä#!¹úSz¸dŽä‘ yÀÅ*‚Þoîïs¦`Jº'¡oý [$öªÆ[Û'˜§ øîäà?k´Ã‚ËŸÃ>goC„Ú�àíÔâ$~( @‡ Lµ›ÀôkѳCº}¸=»¾ƒ=Ò³ ±3V^còe]m¥Ã{/Ô²i'Y‡Î™5þ ç9U×Ä5QþòìåýS/×EõìòO/·$ ࢸå`ÞÜ񾆥~ @}¸å`e¹%©çk¸;%Cdófƒ|8äŽ8•ÄøSâ7òðÉXBÜ#Á?uƒÃ›qyj¤-¸ëɲKÛ#D.ïX{ÿÊRf/^…á Öü…‹q¶©»`ù샼º+HÑ bÂ1î¹P©Å¿*¿áiŽ5 ýŠkÇý‡Åv7C¾Ó CŠ¥7oVeß úb#B_?’FÐgP˜ý 0èælßV¹çõGAÐvùù%á€Àß³½—hÝâTÝ•4Âmá;?Îa‰)<ÞiNبp­‘F“ÜF¯N'lä½Çust#¤F]7£WßBœWƒA£qÝ´lÇ@a†&ƒ~¶”¨ø|œÜõð˜ç¨žê§Îÿ‹—ÿ•åô»ãÿ%1ü¿Ëøð ãú±ôÿn´¦ÿlÃ_úÏ;øûN®1ÇM®ßoÂçËÀzϺ¾xwo÷îÖÇ‹ùs·×8~ìáÝÇsÎ],BUÀ®ýñËÙõg¾öáìŽ*ìâ¿6éÃ_ÑG¦=ˆsÍ/vqþpv©†Àö¡nÁH´æ¶¼céìOnÃ./µ’ ƇÀ©[lÌ·™Ã÷=TÎGJ–ìšD7·÷_nLÅÀY¬êŠptB`¼m‚Qþœ¿¯V´/Àn9`ëœ0[~Å-åHÙjƒlƒ#ekÂ!UýlÛ°ÞnĚΦ³»»‡+9îÎ.®ƒ«mÏ¡CÛ©Ú¡w:ônã à(­²~ôNuàÝ:ðnÂ!U;Ðѵ@/Ölòf.¬'èÁªq_m)÷ßø²ª n,nin¬€ãÈçÙÒªå¾âƒIAð 31ð«[îÕ=ÖsÂ)T¹“§j r¬@[MV Îv¡ÂúU£m«¹F{L7[2’ÓøÅ""´Ás+lD‘j¹4¢˜&’­%™H¶z˜H¶ÉÁa+ûÈÖ,öÚ†nv«q¤Š—µ(`ÙÒ–‘ƒÃÚÞF팲­ é÷6}ÔíÿÉrâ¿Iš“êþˆÿ^ʇs»ÿ'kÑ»£ý7*œ‡|ËÍ?]óß³àç÷-¢¿Ÿž À“2ˆÖ“xPø;I‘%ƒŸ4X L{·5ås¹¤u¶7ÄÛ¨¢¼OÞï¼ÐO´‰àyô^oäß±‘{Ï6òînEFnŸ¸NÁçµqÛwtÃòãËS’OÁ qswQÊ-µ”À®ʽå å~¡ÜïçÊ (Uó!s#Ãó˜]LáXÜ”¶ukšŒ`Œ›[Ÿë]Ãù!zöîÙKÚ¬ºá¼³ïì;€:Ù¤%ó}H8€ø@ÉûÇÅùý—ºÀW7ìÛ F5È£ëòP˜ó]'Û :—mÒjŸo§Ta‡Ñ8» .îy>|eAø`a„ÌÆ!LbÊŽžÑº±·®:CÙ2˜¸jݸ^`ñ¡'€xíšþØ=ŒØC©ÃfãUJ,‡ŠMÀþ³^F™•ÈcT©„Sd@Þ=ß|~´Xƒ‹Œÿ=é˶´‡“¡A*¼U7¢;Úc~Ñ•¥”Ù¡Š †ÍsÑÍ÷‚¸ßû‚¸ƒD~_ÀÍ.%¸à~?‡î÷§½ŒZøùál‘ÖÖ¢ÔiýwµSÕGZoõ´ö\­°BûUƒ-Þü%ŒJ[ËkfC€[ˆkN–­Í­“Ç7oMZ®‘ÅžL AØÒüR Â~µ;A=‚°Ù¨Ê]Òtêê1µÝâ®íj·4’î¿Cuƒ¢Þ[AQmâ¤ëŒo‡¾°µZ㛚ÅmUaŸ<éºþþöKž¨O~×Á«S=’!L~#&{báÂì«§šdfÒ‡N”5I´þ‚=I†eU}iÛ!{ y“Œ×Ù-»F‰÷Œû­ ·Bº{²o›Àí§Î¾û§þHX â ‹}_hö•yŸëÖ…¬÷‹A®‰Xבä>¶mÁ³iÛhÜÚ‹U;ði·¡Êw©¹&Äjí8(IƲ˜IŽjMHk­b½U im¡ú”Ü/í#TgòÀðf:;afŽPÝZµU²zª!ÿÏÇ/¿}ø°ÿOÇIþŸ,Æå(fùÿñÿ¹”gGÓÿ³ýÓë­-:Nö~…«^ÞoB:0þï¿vN¢¿½~­¯‚WÆU¢Ãc¨²w²»KÅÁéOtrþÄ2ëîêӛ̣Mÿ ÃÙ¢Õ·vu¢#–„G‡¦no7:£öͰUïö){‡?¾iòP]OÿPóëvz9=»›Fx¯€ÇÊgŠ R©Š6uë‘ ž …‡¦Ñ“Ì îÿeŒ6tðaîâèj¸%7ÜO૵(…åõkáž_åבô¨m©üJŒ3ú&[Úd±¹›¾àÜ0·­Þ£5>T‹ÌÖÄæ¹ЫíÖ”YuÞ&pœ]NÿŸßý™0ƒG`ÈKtØ}H—nB'—ÉrÛDŸÎàY3#@Ñi¡Îî 5ÌVtô<ÚîµçÑÕ”ª¸äãÍõ=|fWK­wÃo(áž•·<ù™ ê? d>ž]Gg—w7k·Ü^P¸¯‹ß§:þ3úãâþKô‚–DG~Ô÷.]˜WÔ*sï]ÄÒx°¦Ù‹wt’³9€À…C*0ùÐè?­¤~¦“N#}à4“6ÁTüõöæÃåôÊl^ÔW0 >Ø|©yä ú3’zoßÄïGÆï‡Æû[Æï2a -–_¥Ší¶F{âPOuEFbÓÉ˹ðWi‘Ä Òkh‚ú?"Â$ˆù?Lý?›ÿ‡¹?—_yš3–ZKÔļæÔ|F+ózüeñÑïÐÊG§ÏÄ[‡Ö[ ëßÒ¶Äàß ÚK…çÝC.™g*¤Fì첩°nÞ ?.Ëþt]Þ|¾k7÷5HÁ'oÆŽÖï^|’%ÿµœÏ¯†cÞNŶì6¯ü×?ÔeÌ6ãl?ÜÞR¹{ùÏHuyÁ¯“†Vy½ª¼¾›ñ™,³nÌ¢}0ÆÞûŸéíxg¢Èç´Å‹û¿t¡¢üfä:Ù¤›ÒyxùWÄœ+t&Mzªý°t£:™Ðn¿Û?âüT œß\EwŸ¯ï´“{ ÊénäÓÅíÊ`K…×gå¥]‡\\^²`óyzs5…H„³ËYZKÃMüãã%UC)ÛœÿCBˆ˜«šò@gð3 ÿî§"€Rw#úðp]=\Þ_|½Œvòö˜®j óØåí:)'BÞÂÃõ¹R°nŠÞ Ìhp½îDï7êc>ÄÂÂ>;ÑŠˆ—,z3šQn¸¯Ð Y+çŒb‡„0U Æ!LÕ.ç‰i £Í€$IŠmŠ>Œ‡pKuŒ‡¨D96”s‚ î]þø…ê×Üͽ6FhOQ”x ^s¥mAÔô¥.Pˆ«âÎüŸþ ¤(dû yš…»óaDŸ2ÝÌ„*4~™ˆ%œ¢wÿÃW€èáŽÃ…H(?nD.]®`ØjçùÍ”åp„ Í'ªSìÚPºhÝ›P`§uϪ Žc¸EøBÜJ|&‰•tKGBW=G¬Ò–ð:êÚ‡²9¶±ê0º*8êÔp: <*‰Ç1’›uýÔß»7(_%÷ë×bEm&ÃÞ"ÁæµPjÓÉ#6Þ/}A>LÑé$®‹¦uH Í©CwEDù™«Y“È%¥ Ÿ ¤-) P›¿Pð/¬¸>6ÓÔTAB©ƒ]Êù9 Z¤âœodm'4í|ú fô†H—!Ù>SíJ+Éz¬‡›Œ’6ˆ ðt£µ>=\ê&zÉåZ'¿9rFH¼*±3T¹}âoè‘;~±±[w$IX÷Uâ‚d‚ÞFgž@6é°°×θ]–)ÌÿP—Ö?Ѧï®è2/•H>§ÿ¼¸z¸rïéõŒN´¦#cIE¸VÍ¡cKW¸îÖÈì}Ž(Ä!ZÈ:(r5׬Íå 6ªc%š“úKúP=àæVÝmÀö©UÉždòü©XwþÁ.8±¸£û„¨Mo…üЋÒää‚ÈÒ¯S)¥CÚ„#È›M ße»³UFZ2Ã’êÛ÷2j+,ü‹`o®™¶ñ—€s§âvYtòtz.W¡šp™ÄèÞÜN¹URŠê Ta ˜˜Þÿ1¥4‰K'q™þ‡5«?±~Ó¦þR£ÈL=°¿a2Ê?›—w7ÂJ ›! ‹ …Vº9?â×BYã ‚ì;p'ò™Õ*û?ß>À6б;¸‚úú#ì>¯.îy„+›Sòé;n¹»1Aˆþ~½½ÔUˆõU¢¾N¯a‹i£uǨfBÐ 1P`ø!ös` éŸ÷¼a0}ÐÊL|=ýó>Mð–F4~BøâúaÊÇÀàÀJHÓ³•ÚQ›Ö ÊMÑlì>Þ<ÐŽ‚"ϯ­ø /›Iìrˆlˆƒ÷ó3GÝ}¼½ø¿ ºëíîGÊ„w¢uPÁnÀ¸âà1pÎâpG{­’ßÐ?D…Jô5?ž1ðŽ®X.ÿ²ºÍÆXhÂ,q]榓ÏTŠ£¢{Qƒ uòöþâ#(ñ–òBWOÑ 04w9õU¨}´‘©þï”Îo>\N­y)Ã`édÍz·•7J»ßŸoZ7çÀ Å®Èõî$±ïò0A¬q’\€ VzxHÜ]´Ç\Ð{ÊBgŒã‰Ü3Èú\^5ž¶Bv*–0œ·ŒÔïî8 °íŠ¡ÑÎ#{øf` *š’* aµ—'Î7Eê‚gǹ…¾±‹› ˜¥úŽŠ8:Xlÿ}v¯»»Õ»»[þâh ÆýÖë;NóõH&mØiÝõV㪠UÁ`})j¬uâ/ab—XíΫ›OŸÆ˜ÙK‡.f* }«8næ€i…a%!}ƒYÏ¿yªuìÿQ¿þÕõÿ¨wÿfîÿvÇþow“‡ÛÑÃ×ó3·û§ y7{··çßí3:Æ_ÿrLÒóÑí¼sK‹m_&i½…æ=*±¡ªØâV¨eï ÿdÎZÈø+ú ápÏÅ÷Iç”$šX¬"s$;‡>÷†‰Ãœ<÷â€È«ÍM•™†+=>¦º¾¸üºßÎ~¿¹°¸4lÊ](‘Ñÿµ-r_††¿˜-ÔßèÍkf<ŸŸyrCl~@äýÙíœ)àÇDõ•—êe¨ËþÿÊo‘ Z¼«N²ˆçcðkóÒd{ñò½¼ØòëJ‡_+±UÞOvÜ›rèv$¨¬}0¦ Œ¢*³2¢‰¡7rvðÈw!b¶ƒ’ÀDd,tšñã¶Ìc½|zÙ ê¦Ô1_í®´&®d¬#'Ö—³ß§boCáXa(ÕÛÌö›Ãº>x³Ã‡ÿ=ŸFâ†Kq§ß)äÔÞ×p<òü›ús(2{lþ‡ÃW_AxóþÇýèÝá"Råt6zÜFãÌeHÿÙ;|Ïž„£@phõòìþâwsŸÄΟ2s'œ¾7dÈñ)oÿø”cpB·TÜÞÜè“›Ìï7wTUå²fR!ò)sUA$HƒO7·\îÝ±ÃØçÓèg°2éYúZZ÷Œú2R„éÖÐÜaŒ»…—[·úÍ©ÍÆ‘3dxƒÌ¡Í¡7_:-ªÃÎWgŸ©ô@{¹ÆwÊÁfÞ¬I‰ûÿ¬¡ïñ:D¼YSƒ,-ï&OxÓ6‹Û 'ü¶Å¿5uÈ/ÇûêŸøAÀ5qPש ÙšÃCþ–'¢Œ ÷:ÀBüS`i—“‹ž·­ÍHr´¹sx(þl…1ÛÛà!£è~çêÏôÿÛoè”ýù˜þ^„zÿ,êükoçô§è5ý?­ùšÞ{ÍÓ[ð£| ãkÑr8ìw CÅÉ\ܳ?¿lðŦ.¾-Fá‘Þ<8¤²lCfæ"Z (SPq/v¸!.¹X ŽÙ&—Pµ•;ï(}Ø¥tÞìðC&$wÔñ<—VúM!üÔü:æRk:a:Ç£¤,õò†ÈC´!ö:µj›%QÛß<Ù=eOŽë¼ÇIß2€ÅŸv0ûËN¿þ²{¼µ¿éA¹×¡Uû´êóÉ{`ïœÝŸEwÖiUdgót3²?l£ïÁ¬IÑNŸ'ðO¶‘祈—™„¤o ·£þõð°ò+È-ʲaûñÀy¶Ð1ßëHÑA€âéï8¯°@âŸíƒj,¹ž,×äXÄUè3¥®xhÀ‚2ÿ°>'„ÿÀl€Kr~6FakµèËOg4°U!õk>Ö´4N#›Ááú]†ŠXg^{{*~ösËê(öeÓ 1!#$cë2#Ý<çɱduûÀÐëØóúaõH¦|¸¯sRÕ£”xÛØ ¾ŸVa+t}#Y¥Òq^…[eg“H…áÒ·B° C5üxãEõ8¶ªZéØþÎÛæËj­£ÆZ¸Âû;Û͵* 4™7…WeÖ%ø gϹ…+N Š}À Ã;Öepª6;%Ê×ʵèwP>ÛˆÆâ”‹z¯îÒºV×å‰é´ûVeå|füÀ¹›ýNÎppCw—uKÛ†G/OÎ>±{>!èâ™êè‚êà$SòDm¬*ï~½»¸d§6Ÿ«ß¶Îî¦Ø=+Pûr/ 6Ä?ˆø=ö ö(§¢}^Æt6Ôý››¯Ì²Æcç6"ù´!Eä‚ÅÌZªr» _)ù/°fÁéc }`áIË;{ÉqX'ýEL——Ç'yºW]ÈUpE#1,Úйaí#Ò(Åÿ&ÐÏkZÂ$>Í>pÉ–8Ýz î,|-®}rU—Wo¢SÖœ {_.8±\÷মוcæ¯ß¹/êŸWP<¸LÁ·CŠ”"âFÆñ[oûαúªƒmÚÀ– šøZ)£üR$V×m º39|s:‘§ xõ*‰5•“Ø…"Y”ÿ}Q½{[=M61%JiHÜR@Qì®øasqÒ«.½Ãs×Ì"O|ÿcó_)Ý9Ü\B¼6û,5\E:¶ü Èå¾üŠ˜½‡~U‘Öt§È¢*ïâˆj™ïÒßäy‰ÊûDÆPDÓ?¿Þ\‹pð_Û1ìíD}=»½¸ÿBûG7HQ¤I­ýñ½›ø« %U_E8ËåÍç(Øfæ¾Í?ôå/ÓÛ« Šï5•}•f+pòÈû ´Ztz»ô¿-£u T«ËÔ}¾ÊÑÕ[íÖY™g¾”¦ßóòµ5é*o1NûA ä[Aþ†¤Õ¶8kQBe[Jÿ£+Ǻ0Rhˆ‘‘$# §J‘7zi››ÓL.:ÛæJC lM¬›Ïa‘^ΚzðYð|Á~nä0Î÷ú&¼÷õUˆË³q0ãU!~|¸¼|&ÎÛn(ƒ)ÿÃÏà†.­‚ØòÁ¤=¼¢öÓ.ø7‡At¹Â;,•( Òÿ2G{ò¬Öÿ/úùæöá.o>þ敊¿2™æ›"ŒÇAí«É­´gXœ"¥=+8ØŸ(K@RòÒÓŒ¸rûÍ~8™PÄÎï *¼ « ã!x¹ˆ­7à QE;©C{GƬˆSnFuDÐÛ1É;§'ò®¦g'ÏÔ9ûg‡ÏÔ9wn,öH)·c;Ê̳ÿ3 ò„~ÃÑzþÙSg鉓ÕçÐZ1V‰2ÌXþnÁ´)ÛÓÆ>ÙÔ@ã A8=2æ%iC]Zïô™QÙÌ#Ô¯ƒŸÛµ8ú,åÔžkXQË¢>æ¦Í{ï¬GÉûúDßXq¨nF½ˆoý¼wªXoÄ0¿FÌöìü1o€óKæñÞž<\]Ý꼤Kʨ¥ÇÉX#Î,:TL¸–øòõ#Ýl‚mEÔ{ñÍÁ3áÛšž³uéXÞRúó„~ù>*¡_è©Ø Ñ¡z7z­¾ ÒÏLSÿaÍAÖDù3;_×°ÓÈD T¢LTÞ"aßá©‹b²&ÞdðŸñ E¨‚Y˜.kòq`½Bñ„S_檧ÜGjÔW#Wåð™ÿ§.ÿçùRòæ'è;D7)-¥¢‚åÿ$ñÿs>ÅÝüŸ;üŸvÎϦ-¿“óSêƒR< ?*‹~ßë"Mÿ½ýjäýdWÏÁ¿ïø=t¦®r¬^¶Lù¹Z—Ò5¥øäTyËIid÷üªŒÑ`g:ër}îDAƒ¿k¾oíäýκœòdÊö«]°ðÔwìÌO *iØ÷§oª¬ òB:â^ Á“™A Dë¶'–㓟³¦ø¼äÏMØSí–¥ßY£ÛÍÈÜ8¯ÛIª¼¹A!–é îÍb'ª`fVboü3’WöÑ]Þ«­cu4éÎÙKëÃKŠôŒ'ãÄbsDçU0s’ÂùîëéG8ÿ{IãØ!ÙèÖÎÉÛci£j1`•ƒÐEâìN\Œu—b±¤”6ÂÃ|¹NÙÍ7w†]Lð2ˆªˆÖ•éæN¼éÐ=N‘ˆÛ6yñú\Xxó¼(ÐÌbDzSN?™g5YÞC°ž´àyË6(£ON8AjKq2«…œ†Hdc«Ò“Ÿ•Ë*Ïùq‚%¶n³j å!MÙ&OmùC´öîí:%úÚѳ÷Ïx¢y¡碋Ïí6Yõ=òiC2dîƒ ò• 6œÚüúõò/E£ê=iè{Q§âB¦uº'ƒ9ËÝ1`y&GÍtûË’2ݪìµkÀ ,÷-L{†ÊF±ªGþ„·Ýòႊò²ñ-® ñ·t€?Mæ¼úKŸ»¨.Ã.³P éCÃEž‘Ýõ‘³ïrüøL ìï½4’AYzùÅ °²[ÿG_ +®nUSà÷]ô«“ßWVÝøÍŸã÷—àᾺ:¢m±+qÿÍóOfšôÇwuq®_¥]y¯Hç}r²ED¾;ýÖõ Õb?ó³¡BZW<ª{%ÚkÇ<*8f™‡nèGßCø}ütvy7•ùhX–Uñ0¦¯V„.»°x’tÒv…ÉíÆ¸ÂóRu2‘ŒèÒ…Ÿ‹W8Ô¿¤¦Ek§,­sÖÍ”'Tânÿ¤r„Æë@5JŠ1L81Î'èÿØK‹.Œ³÷€U†Ú 3¯¤ëÙÄËÆRJÄкœgkoß±Uã=̈õà|“1«ø‹¬¨˜÷Yá7§Y—Œž±Z¾É ÉPå‹—5:E)«­{§é+zÈ=äŠrE¹¢—š+Z†q~<»›¾ä`3`„ªžÔÔ;2õòæ3¿øHGð޾JcÍëèQ™ÿÿà øwmŒ×ÿ7mpo2¥üº§‚Às_ÒE4šþ?JÖcÉgE‹×`)»¢sÀÈE÷¿" m¯Qà”cýýïh²ÎUÜçTS¸{Ζ€¨ð§¥vFÕÌPÝ.-µT»ø§mîÌÍ 8èoçÑgŠ0K \(Rܪ^²ôy ñŒfΨ|¯&äVHt À,„6 «‰—ŒãvP‡Ûàv qkt8d;[SVpîþ×úÆ!ÿ».3h¶N Ü»…´ðð¢[Îë¶œù ¿²N2Ø/³3˜Xíøg-9Þæ:Á<ÿžé_g©Ü=÷óŸÈœ\ýÓ6ëùøvÂ!y)stÚ ¿£S)i8‚¼þŒã)"l¤ ÛУSwæMÑ›w¨œ¬“MÓàýÒZZí¬Ædíà…ðÎFkÑ é;gÀ °f¿ˆŸ+ÛSÎì»Røvšï§X;8`D€|—2³qÛ”ÈA:§ÏMçš„ !K-˜÷‘.Y˜C:dƒcôRnÿ ¡Í"ü’'9f”¯Q̆¤Zœ¼”Û§JQöRly*%ÅK©59EcDåៈåiÑl¥¥Óæ(Û7ÁQ ¶4ˆ-Â~ ³–Þê×Þú_#/Yúxõ|eiΜ÷ UÆ©÷7â–÷f!™˜PçdvÄ ág‰˜ù­’ÄUr ZÎj×¶j¤Ÿ³wt×x?Õš7šÈ0ô…¤Éî$»UŠlñn›Ù=dÏ?=väØíÓZwȀͳ+é“yL¢òù»­q_‰³Ûñ\ž@~]·cátêUá2@†ÿú1OŽHj$ûõãæÞ¾¤s®íydÒž5vï,Ú3%Àž%·3ÊÝ2hÏ’?{ÞÙ³ësgÏ%sv—¼ÙsI›Ý˜7».MõFtú/úí§Í}yp´)cµ•°:fõéf„/h`Òݸ.¾ùqzϘt;›oÒí½½ÍW’T?Ѧ·­–ßí¿qKŸYz´yúS¸WÍ »Y²î¦“yÐ ünŸiÝ;ü„ö›9ºU*î·uéº<Ý â­ÝanŸ;ÜôéîÁÝ(¼aJÈ9dã6pïñ¸z4çdÜAÚ˜™ÀÕåd~é»YîëãCyœ>˜Æ[½WÓnÛtÞ›"Û¶Py«é½á/QZrxµ ³,ÜÌö Zv ™|û À¡=¥×ÈÎâûæ|÷—#8$gjÞ¼2“…Ò„K±Cվ훫+ºº×  ýÝcJ7¯«bËq¥£rpZÃöT¨ÀÉ8 ëAGàÀrwÙ7;¼1Ñ(úžÚ%H@nƒ¡YW“!¹-¿,0{:³ÄÏ%ƒ:Ïn^hnIÔçŸG½’0mq©Ñù"3äJ¯É•îŠ×k3ynÔ}aTõñŒzѪÄáyÚ÷`ö–YZ7öœ'³ÕÜ o!z‹Ôæ•üéÍ©Í+ÙÐEjóƒÚLãžœá¿4×Ê«µÞ6Öòå'?:eÕ:f(ç<Û"¹ÂsÆdä;]“‘ï]Cª»K~©æý{ òëðœ>϶šDµÍ~f½ˆ_² +ôEЇ”…ÌàadÝV‹ùs§ôãê-imÐoÈl”Åyòð ™&\´c'*?R=hÎLÎ÷#ùš¾yµ&ß]§ï±gØ?W*uNe®¹Afsæ£SImn§4‡…£xä„å*ÿëáw–Œú”ÞmóyW²NµÏä]Mã TË›rx·Oà-²Yån®UëÖŽJîºìÛ¸’ä¥Y§öFÐ*Í =VÒvâ0u£gŽ©ÌÈò])iÊðݜڻUNïÖɼ[fñn—¾{zñyzí¦î®æì査¿®øÉ–‚Û¨ªkêüÝÖ‡¢fWåï%îxT¬Ù¡ÔÝò€†lTWhÌÞí©ƒâº:FÀ÷ÚåÍç‰ xŸøòÿ7'ÿs-vçZ‹¼ß­’~×düîœîÛ›Š+”è;å»Fs~ï@rïZ¨íÒzrzdˬټýI¸Ý Üf·;V6jœ7‹v%Ú¯ú'ûc Ãv—ôÚáÜÚnbm¶ »/E­3k†¥KNíJBíÿµ 2î‹ÈÍ“pÒh;c´°¥ò?3dŽž=¡¶?±g•&i&'Zl¿.v[Zœô§…HA½Z„ÓŠZ«X‡œâŠóîÖv§­»›7N‡æávÆézöŸ9í4Àí‘zºRM¤ŸæøÄõö¸(rs„¿1“„w£xÑf²Í‹ä'Eòƒ $?gÏž;ÉÃéðí9Ýê-ásŠÖöòÛ£6ŠƒäÞ2Î26›9ý`wwú¯7Ï¥I¢šUt®É‘;ű¥¶¡»¿­qÐϹÏk ìúüH†'snÄU©Ÿ…elÏs˜ha·C ´íná{Y´æç¢5Ââ¶³PîY¹~÷Ì- d¿–ö«ªé¬}0ü7xo ÓI¼yVÜ3µ¿†9Ñ‚ñIÔ†«jçýh P?Ë[ÁiXÉš`H9`v¬r¿Á°¼qŽgpW&uU©™çg,~2—bÌ;¨C\‡>±Ýíú —w9èfÆ–we‹EÀÀº™j=w¶=Ê^‚ßV;wð|>Ĺÿt7ðž×ó)ròÚ:©)¹ÞŠ;ÞZ$k–´óç_†Ñbø—wöíúê°pˆXÞ>§’=`GÏ´þÁú¡1?²Zø­în²T týlŸ¾¤š/á ¥\¢~ _j´{À.Y¸¹þ¯‡ÏgrY„lÂL;»±žë5*®MHÝYNm©M 3z½² ‡F= Ðñ6S·>û,ä6Óa­kqênÅ‘³©qòÌ~/Î[ÿÅ8µ-;m¶¿GË [`ôiµz=Žw^¼»›ÊT‹tZ°$hNò]OQ[³cjÝ;ÊD'ˆþiæYr¡3Š´ÏYâN 屪j #Œxº{乿œ½.EÏzZ÷*· Å.H¿R¦ä¿Å üuCÌ/_=Ëf›&Sìh°G·é å½V‘|96†kL³qÁX[áM÷u3HÝÀ¿ü*rÜ~ó¯M…‰çu™ï~NÐÒeݵX–fÝÓµ½‘-°jù5Uó⩚‹Ø„/=­XÐÚî©m9 '/O´æÉÎeƒÁ#'þ#’O°\2+ȹsusÎÜHä^˜\h;¥bùÀEÏ#5]š&Tp­ÎtáA2O|¾” ž/L½JjÔ+wU¬ªJiðÁ_Y]¶hV«eõêÕ»j¼¾Æ{W!ÓÚq¸i%L­ ° ¼oÖÈ|÷èùÅŽUÚ^‹–Û]c#›LMzô>kÙ|×MsZÍZµ5?ñç}GíÏi3÷\RÈøµ0á¬ærÊ",‹•ÿ@éõÍõøâÚN{Îo*`ƯÇ2MºÃV½‚MMPm¬bq%ïžáß‚LÒ>©·Óìñ“ ìë C­·èc7é—@v޳,}[¯7ËXža³ ÂïÖ ý ‹«ò%7åÂ8‰µž%º…±‰Û+7w8cÈ&ÊÑ«²"\ŽN¶*@‡ŽÖÇpÃ?kñ}ˆÃYüšÍ#Ú[:!x9¬‰Rñ÷Íf¡VÍ{vi²»¬ºy6“ßáÜÛk/F¬¢o\PLæäþî½dÊ:ž¬Í¸#Ƶ?¯à.f°g|:ã÷­€~öýñúþâhÜ=|„ä¾á„á ž¯±SÑcî}®Ž®ˆSŽ7D½wOËOZš›¼ÁL°QÞ*Ví¤²j«~0gôé¿@² ´÷ÖÍê1×¾ØnËì±®Ø÷X@˜çl¯(a– DZºk¼£ÐV}Žš5hÌ6JtT§G›mC•n2êðUQZdþÝ}S…ö¥‘œŒÍ6³çL­ÃL­{°œ!ÜB»ã†Fý+EÂ_/iRöž·4ÀÅU ;ÉÝv ü6¸#œ{s³´„Ê‘î}q3ja…›»åÕÜQ½@Óªj×~?zÇ[«Q}(;,YÍQëæèvG3:«½5Ú½2š’ΰy]þío)ö´}Âᛥ Oò˜ÿë¹Z_]ÆßNàËSxüï —ò¾²[%õ3KÄÎVÙØÁµv×QoŠë¨a,Ô›"Ÿ´ ç¾õš¡î£æÍû•wFÕ[ªŒ+¤ïÎEέî~ö\öŒ z¾rÛ4Ǧîjì¬éjìÌÀ8s.ÄÎì ±íK°m0êBìáæé¥}êîþm)÷?ÇY'ß¡8ÅiŽ”&ìþç$î^ƇO4÷þgªw²•²q>õ{’UOŒtðµö¶Ü×"Õ„ m¾Þ0ò„‚.ñΙ?ÎnÏà1qsÖ§òÊRZ‡]ÕÉOáˆûC/äE æ= à³;8Áþõönˆå} =†=ôJäÃq“©¸ý¶ð²C‘~°)#°¸ÆMªÊjM8˜ÿT—´ÌÔÊ3¨Nv9¹Ú<\²¿S› mŸÍÄ:«Z Ý[ 3½[—fÌb?Á?°ûäŸ7¢×±˜~ ã¹{D7!Ç,ÏÉÉæÜ8Ëž~‘šŽ'cÝ"Í’¨kŸY›pùN¨‚µË)]“ºŽ¿±Á_Ûˆvát½þa^©·¤J¹5T[\´Ì+eÕæÞÁ¦LUe\ae©’ ‡Z’b›F­àðd®HV±?ù ¦IhGý‰¨Ù¯ {ýs·ÄI¼5Îa<Hlý†­ßstÒOÇ<1•él1órìê||òX¹A”öjg×Q$Þ +ߤ=ÖåþIZÙö°²5äVÂ,®¶&çÐ󽊄 _žïAþ¬wG~PfƒçúÙ‚„=]ã Zƒ†IëN<ÀùÁ¿zÛ©‚£7©®òl ‚ÔŽŸ1á'ɹÁ‰Á~ãâKJcQŸ¼F2 ÿkíxM^£xéíŠ'ü¾ÂJ”J©Jô÷D§×²¶­AÌ#5 cƒ~,à eÑÊÛ­¶‰Ó‰`ÙŠÍšù…BªÖ²¿72e‰%ƒ¿‘¸;jèhe /¨˜ûò™óUÓ5RÓ*û‰-ó.¨D•ƃFgŽ`KwVðÛn@ge¼’ÈܡަÖV›Vy˜/E¾hÖ …0??À®yá QCào+Ö7ŽøVƒÓ?Ï %’T½x¾ö‹ëO7ò¦Dv¯hp/ih-“­aÑZVÛÚ—³ßÁ›*ûª»Ù®µ”ÊG®Ê°«%ã‚Þæ§oqÛ–h9ã7öÕjçþæž®éžÖøíZö€±vZ^¯Œ‰£nÿ¹œýž¡´²ÿOñ°ÿ_Ƈs¡»ÿßÿÛïÿ÷Íýÿ~uÿ›qmg*ÉúGžz ˆPA–áýî2¿Ó7ïà:vóÙŒcؾÏiû¾Y¿}ßœçöýÅÜöï?íí)uÿ ûîìæ]UÍbìºm¾Ì1bn÷ùn6Leja~RGpðºþ[D»¨Íÿ¦|âûÍ:[ÀæwåŠZ›¢ŠLÐ4³-`{óðÕîF£MÀyo^¶ß~° ,Ò6 ˜v{AuÛwâ5ð²Ÿy¡›¡…Ý —èv3lv1ø@H‘R®—¥`³¥ „”%®MDâ-ÓÊñIL‡à€ÛŒÚLP©!«7Gì s„Q½b‘Xª‚AßgÀÙpD“7Ç@‡ý#Ó½Iw‡î4ÙÃÎK’´,Ù°©ê7Ëò±ÁW¸ÓØ!>U†ÛÜxÓ1¯0ÀÌ;`¨ótßDÐ4Ôj"Û¢?ÕÎððO|lÁ¶úⳑ´4Й 4ù‚ 4ûË2Ð,Û>³ó oŒJðORQýq{Cw*í­3†’WµÐ´´µ6ÐhSPÒËÔ®!¢-A¤—%¨“!hÿ± A5öŸéÇ¥ØÐÿŸ½ïjcWGÑõ÷ú:{llb·¼æfý† 8ClC˜œqÎ4àc³ü˜Iö÷»ßzHj©[ÝnC’¹è‘à—T*•J¥R©TU¨”‹ûO©òjÿy‰‡™/dÿ©ïg¤‹$ì;]JWó‹Úƒéw¸GiìEjúFv?V²Ã4ö¤ú¾´'‘åg3ܰ÷5|Û—Þ#jghØ`ö»íÎï;Ö/÷éµÓªò« jÔbò^qÝ›Püý{?Hi;ÃxF÷ðñî^ôÄmÿfÂôi¹9æÑ´ƒ ”(Ë¡{Éxµá<àU€?{cJtHè·à{cŸsÄã÷>ÏS ŸÔ ’*JJå Éî²êy¢Žà-+òœaIúù;€ãìÔý!årPÞ4ZæÒUì,0 Y±ÈJ%-fÙ¼§¬À ðuÜŸNý!b'52há(§0ÀI^m+3öÐ̺»hƒ÷ýÊLá©tà ÄS‡›ó)Zw_ˆœT_%‰…î"©{CEL‰±q€”ätàûAïŽoÅõÝ®agL+#´#¼=щw§8É#@~…vÇUZÖÊMŒéSºrv©ß’SË |Lüί8‘åoÊß›ü9Áè‡Ë4æñ“ZT!^T±õOnËÖh#ñ$ëuƒT?ƹU•ZÆ/I½ÐUâQo›´«0°ÁÜ©ïS»n©"_7åë–|Ýþ¡îDslZK§¾©ï«_B¶§3õ%Ád« ÏÓ«‰™õ’JÂÞEßÏ`rtƒ  ,Rü|”aTÍ=¬üѰƒ±†ÝtÞ7´ôSÌãe…dUF`Œž:r‚ÊyLà–±3§K!ô=n¤cîƒp{áàÿ±›àäöÝ{î ›-šàP‰?G;ß »QKµT-Ò£mêQBóz´•‘"AÉŸœ*lu I‹v†»¥~*F~2dX˨O¦:E]5úmI}k¹Ü,O·-æ„ønÏ£ÛvFÊÕœâJdk“‹n(‡cè†?Í¥›ªoSHU~»jºm2Ýâ»í¦¯¶hì¢i&ÞJîä7¨Ä¾µë#½/ëX㉔BÔ‚ã2„ÅŒ¢Ôô®4±)³^ÇY#{œ´8lÛËí[o÷ø'øxÜêòÇ ³-èÝÊÛÚŠëW«j´Ur5f5Tb𺵒»¹Í¸æê­çh.°{½cKQu •R^ñbU)L0­¤¨´ê–îŸQ7§$ØÈÑÅ(ÛøµF £ÎIoÃç}æãxúÃC°Û\ £áØ}®1E’wž!@ï$n%·¶Jyÿл¾ÇݨVLD4¬2¡næ7ÃÀÖ„™dOdHgÐùâé1*ëÖ‹fë&}Í›Êj_F·/‚Ýèaâè}´ô~;_ĆÞújœQ¯¾ÿ£z à|çG˜ÿü¨S§üê ^/öù3Úeàó“£67ÕÁ¦Žüñ&A¦hç¨ÞUít>ì„>Ê×ö{~¥(Œðz°ŸSu±Ù›q{Š ê™KÔÚ’&oÃD—Y(”ël_d«ûõ‹ØAzgÜÃ$ŠCýBê„u®ïgcŽl[¹#+_\¦Ã¢þíÑO¹”;a€6ó€tÃC‘áØÏ˜X÷F,Ê̇Ì̇‡äI¯ÇÈ%‡õWrÀº‡ÀØî ´@ê°Ãåá"8|Ý|âjâ^¤êfv8Ôìpx™»äÁ8 ãr ,çØåДf3idÉ!F4À× ùr _/I&ÈŸÏøç3üYA Tª&KÕ¸T€Ðã{…çQÍij†¿§@°ÂN¨€'‘Y@ÒÔj@}SlÒu8®£G «&bõæ•(‘{hÀçŠÇX#Þ„®Ã:¤.ßă9VÌj_º&?öúãp­Ã ñäƓAȆ›'6S7a¾Ã˜´ý;ØäÐrz2ºñ6]Q BU ãcÛ†Ÿ‘Àí2$Xÿ9g‡ÈÇö{)VÛeŒ˜ÃNh¢¥ç‚)—x=Ã?ì|ÀýP³zˆ!„àõ¬Ù”ïOºÜ(æ×Êìcâòq¯? Ñô{@²Î¿gx’æh œ€:lŸ­DÜ÷&07ýÛ[Œn–ò8ÎU&9ñyÆ!ozÓþFº­9¤ï·:ÌÈoõüÁ©Š¨ƒåå&àgʶŽGFÃÇM=ƒ¡Û¾âæÏ ¯9‘ô€ìñxö¨H!D dÔ@}IìkN­‡êÌSk×tXwãO®ÇýÏ|ÀúC,za0}U ¬ÏÉ2Øw© 5%0%X;è݃*+=EÅ3hÏG^!ºX ã(¿d³Ø‘Þäãqçýƒö–•êX–ØÝ‹nj°ðK2XQÑ`±¬´:óQØBQ\ Y[‹+ÐQYL‹K¥aÅè\*íÉ*t õªÄ®©² ËZ];ìÄ=”˜Úˆd:Tˆ]ÄB¸Pª†]BP}uÍèû¡Z§ÍÇ«è¾ÕÔ:S VSë¬õlèõ}µfƨ5ÕÚWàX­z1›j‹+p¬–/둌¾L«¯M1x›‚‹MLÎ…ZܤèßXÍlYY%…‰kŒé×¢{'‘#yÑÒÂ,‘ÞÊ•1 _ë÷긇‡Ç9X ü!ûZ-{& ””àì}¹QÉj£ÿµÎªí“Nz,êcpu¨UËÁŽF+]«C"Ø‚rR½¬™­b$ëVm^ß­¹ýû<]™€ÎÍ66© NzóÔ6”µÔl ã_ÍaÌìÖåjºt=M&#T'G}ÐCZ—fK”¹ÑZ¢cÍê̬?'¢ÛýØ®‡[ɉí Ï3Ú¡†>-Þ9A‰XñoüÛ+¸_ûÛÑWä3ÁX¶V£¶0݆ýϨ0„zaBÆÀœÎÑûngaØšë'0îƒio裟Öä¾;dÍ6p†7ªûûÅâ¢mLül7讳ëél¬7ì?¾ïbDMú¢Õ$ÈËGN±‘:àà]â¥ÀîRa°áøÚ @µ <ކ€Jï3ÆvöµzŒÐ¾Þ÷ñ£õ'Øt€;¶àKªeÿ&g­‘}ƒêÜ–}ò®“"Ey»lDX+œr¨A*w1º*(ÌYqL[õO„Ñ%Ǫœ Aúj¡þy¼ˆ¡ŽO~}œsWŽ<†Ì[ E º,KãïìŽü݃“Tÿì¥|&Üx6 A †ÄëZ´GJD‰4$´pâ ~X÷Ž6‚Ùìññ‚îXjº%%ÄY}úßX{—ÎŽ·Š”%«h®d^e7¿Ë6k¿ÍðXpêßùã°lsÒY5“ÊFýôý.‹ÅÐŽDŒ®¯ 0o¾€mxvp,yÔàC<ècçÇ4Ê”‚þ»¹ ÒÞ!/÷€ÔG¹™²cf÷Ü»©ÐfJï:dÇ,áýÊÃlBùL‚Ôp4ü<è ¿ˆþÔ0@[`ÊÛ…<Ò4~/„ûSÚ{4þ}JàñÈ´øF [ öè“> V‚‡—³'>ml H.)?Èi|'çÃÒš‚…ÞtdÁùL#„òà=ù‘jNéTE/´ªü{F;xCfDö„€aã³ D&r(Õ¾jQ”ñÝÞô<îîöinRË×R!¢; ¬Q`{Ì ^1¯0ù‘ }ÿ&nŽ®¢k€Ærõl.×T—ìÅ)rÍ]R{£üÊ\Ü¿"¸yÕsÕI’­”½j´‰ÍÍ×hu•&¤7w;]Øðæ\žãì:nh"Êm€ãmª)'_&øò¼ÕšÚ†â ­´/žÜJÈv™)ÑêšÊ[1L¥áÔ n¤¯Æ¹©³â«Â'V¤ð _é…¾’TøšôQ*j8^æÚžc+-ÙZó.a3gUíèUµÓu¯ªÁù˜cIuñbÔÊÀׂ~‡$‚î‚s’9úÉ3¬å+ZÄOx /å'+[ÊÇ0aƒŠ'‘å|e ±¶§:Tžª:„-dD6LôYÛŸWØzYýaûÅô\p[Õ´dœ‡Qté{­IÿŠ„ÇŒVà¿Ú"—úçV[Š/¢¶”~ZµåÕNÅüMìTOP[–‹©°ÔX§ø<šÞGHŒ«¹ÅyS™‹ÛÅ+Õ#ð°˜ü1êvˆ@ubb Å.ªDõ ÙzgÍ2š!7•òaý£Ó¸ªÏ]gq½™hÓ×5Ù•ò¢ÃnŸýÀ V°Íyh*œŠ‡üR,ä‘—¸MAyê†#Ó?áf4´Éé 0ëá ßÀ<)J’-(æÅ9ZŲ3GÂÒ›a»ÞePòÈú¯EÂï–já(w)á¨rÁü¦i"µëtdã`‡Îr#¿‘»p ˜ÙFDC´›²tEÝ!|“=p.£ôîÐà<•+zØB^sŸ¨Ëûú‘ñn4«Ë½Iaöª&Ùu'?{ÀãÀ-Å‚-~ê|!Ÿ#{*á…ax2+Û®ÔB"šêë¶Šl3º~míŠY¿¶I²ß Ò3,dtí‡Ä¿Ò¦ÈÕ:'B:¯ f™ÎêW+Ä“ˆ¹ÑÍ“ÂD‹~hƒ¶?œR°@ º@'juåã. ï&}uM ÑךòäÑ5„ùTæ#«äÅåZØ=o•1~Ãm 109K 3Ò‡D væåÞð»;6…³ˆ¬;é×¶…—ªÑš(’ž<ÏæJÈ)S:ÇÑ¢1Ãà(,ñ‡x9u÷ØÈÖ_ÿQËÆÉæµ?&OPët3Ì% ‡ œcA‰rQ:α{æ¢ðIï.ËJ ¡Ét„.08ÞÛÖÛÖúz‘Kæd8²Vøœ·kzDó±CFûÈÀî±é5:í®È ´rv’Íó—Ѱ/k€*g+𠵺,ó¤ÃàéÐáuÀÒDÚ+ ­da«{…,jÓ6„þC³\¿3.èe¹Ó¸ôغ¦ö¶mn_ûKô()ˆ@¡kÒÅ7$÷Íΰ1¨-È›À–´0=Éóxr/ýLI÷ A‘SfÂðª¶+õí€R‘m¸ö›5…¨!n.²ÜãZÌ FÇÕ5…`ºDZ1!o™7Nh¤lK0_y¥å $ÉkÄ;»îvWÿÓâ…[˜»X<,ÓÍ­uøP9 è=¶9/"úó^á™ÖäÎ¥îäu) ©Vd“øË­ÈIËqçu9þ[,ÇÑq|]ŽW¼—žo1ŽJhã4)ÒÃØtD¯‡—ufŸ'½kŸE®ÜPœû’nõD/í9)gxÿ’÷rsm÷+ÒºÈ0/õñ¤B&Çû=Ðæ$²n™ÐG㜠d@Ä€&YPõ¼¬¡¡I’FVüÈ ¥^Õæ´÷'0íº²$]acCƒ¥6 ð¹D)%DM:щ÷ÍZs‡¡q6Öß^x©Äå1'Nðb=rP´6Û€ô:½ðÚêW¤qÝös¬Õx-çÕõ‹VF^ÿn·$ óh×>~×OK]Úz–“W¶Í†Ï’O.W@K£œ¾‹¨lÜdî ŸhGN˜-]hY2 “Ì.Ó²-Þ#T=x~=x~=xþ=xÞ|¦ƒg¶×léÝÔæ3ኵ×äÂÐJ‡Ï‡yø|x‘æðùùÔ˜ˆóz°û»‡¯»‹ì®~éŠh‹¯KÐJ– ­wv¼õ¼+Pç—X.íý°½ì\¦YmÜ“àBåHŠ®0¯òÿÇÉÿò¯"ÿ£»»t;:{{áÚÝ-°£«<ËR²Š]Ы÷’lä¹¼—žwRm󅥂Õ6¯Jg©ŽÉb8TZµÐ Gq½µÞzŽ#ŽŒ}\«€Q²*ê•"…>˜r Hg×÷¡iÑ›2gh„/ÖYƒ ÊîÎ^±~Ïž_Rê d¾ ›~<³E …íUÿ‹*ÿWí¿¬Ã…–'öl¡*ý œÖV{,ª¶ÌEäT_\f”u‘Ó…9‡ý’Œv‚)ÉõPo2]÷éô€Î ÃPô(lÉ ¶g@ü)EÈK ì&9~ Ö”nÏ〱´ì½¥_]¦ÚÍ¿êW¯úUð¼êW¯ú•„ðª_½êW¬_™jÆ<-Å6@$j,IZJD°9Ô;ÛÓaUSB’ÍV&y‘  …Gæ»;ò†rTûµ]ŽÓcx^\Žçax¼8†Çáuâot„ýjÙ–<}Ùs¶·_êRÔ³¶jkÏ ¥j«’Rÿ)á<~"Ùø(þµ\‘O 8Ò>ê<»—ÖÜøð^¯2~%2~Çá?Sx!ÿ™ÂBB¾sq°¯=‹¯ïÇy‹³É/9Ñ&˜ÀÇHò wq—w!ô6%ØŸhó„yÿ§'x g²ö\S¾ÙµNÎ:xFlÜ âÑV·ª˜LØ=´¡ Q(À5ï`F7ýÛ~p•Ï>Çjß”»Ž“ŸjÍðÅó†5%–âà"Çka_÷Ø:jêÞG#óJ²“}p¥Ÿã0^RåpU“¨rPå0-Ubª`š˜%B øuÅq'9q–[F‡Œhv†Nš±´ÆlX‘;[òYäÊâþ|ä–È„Ð,^åšúÐÿÙƒßáÏÉÛ3÷nøï#ÆIëü9ÔÛ¯š7òtMn;ªÉí¼Ðn}ç9wë$繡!=`± ïÚæ]{F¿3L“ Ô?¶¡¾:!¾:¡ý*_¥ñ«4þi¥1 ¶yÒ8È`ùŒò·s‘$;«¾fòªTÇ+Õ¯"ûUd¿ŠìŸVd£,œ'²Íðµ«Ö˜2^Xï¿‚°þ•eiÎ8ÓæŒ³·'¯ÒøU¿JãWi+['ÕKÄåz6Æäê0ÆÄ#á•8ƒ_ÄÕË+ʓу™ÜÜÍŠ¥nóÓiûØ[ZÏTÖñõm±UÞ½ú|œ„¦ ЇomF_e:ÊCÿ˜LfÐ,iÃ0Pþsÿ_Z|2DØgîõú96Ê^•‰·1Àõ>·6>ßh—½ñëýÃCÉ{«x<ù¼8 \Òóùò+F6¤’üõ¬Ú®žÔ»æï·=¥l”ýy`öN±ˆ˜‰¼‡ÄLB|Åf¡9EdÁ6æÂmØ€S…2VT*0—rPª; F¥*%“Ÿ.?œž'Bj6.ï6EV3]À}MºÓ?=“åÊi6º_«åðDÿ€B²a)Ä#Ì üƒ?â‡Cù/}ö©Æe7sX2‡Á$sx—$'ÞW»¨ì6AG;üØN€’2‡šcElSæX(¨5C¦ñ>‚ 2ÃÊ‚ì÷þrߢä¾þm½¤+.YíEKe‰‹ŒLäg¯ †Áít#¯o«ß›V=ž IÀÚØGâý)üíž0>O½o™~?ËI­#žèg…´òfBq ¡n=i,/êíÎÿç¤úáT-~ßhé÷@–ý#!qGí2T¹~MtûN1§µPxíµbÙ´Šëz2—œ"ÖreIüÔ>–â1aJ5N›ƒŒ(c¥Fä—z²BËŒl9ÐáL‰¨xúHa±‚/F/ç5éâõ9- ŽB+ôñ2%œ3³\ [6ž”“Üúܨ¥j“›5)swSU›gGU5Ø9Q«wOm~ŸC%©}àÅófœBëµ%H³n±ÔþéÉY³~i!c”Ëñ’ˆ8YßVÙ—ëñ:ýÍ™¨CûªC›‰`ºÕsƒ ð©|²ûãR­¿ÎU¤þ ô¼rú~6¼&§œÄIÚì€PlÅc§¾ÚYÞiVOö•p­_‚dlYeN.\>¿Îì³Þ®i «Íj»þV%XKhÝÃ×ùz,_›üZßOB(@ë#¾ÊЇ²â‘ŒÂ_;ÝD@Ç´,â+¬ŒôŠk ¼Ò2¸Ð>¤%_/’AZuáõ‚_/¨kð*\в¯€y" ‹Î!ÔùU$À°¬`x­'-?X€h¯D xE€f–’œ¸¤›—Žam AE‡Þµ‹ï@Bµ­Nc?h¨‰ÌBÊJi@°Ù=<Àž1‘ɼpª´LǺ߆:é& Ë÷§ÝœŒsØ:kŸîãUÖ£Æ{ø²uÞjt‘«›“ºAÓ³®£3rL×€Bò=Yomj^¡$€اâ|jKÀQ$%jò’ºÆéÉiËú8¢uÑhÛ¥|‰õøÎî;‰~RQ}ùŒÁ)éRzèªIC½¯Þt‹všû]|¥‘ÓC,Ç@RŒ_’ •ÔØk¢€Þ Ö,¡­µ‚W,•+›[Û;kâ]BÒ€ B!'ÿyPÜ%KýëÙ´‡¹ç;*ëvǃÝ‹äŒæÒìáûüû*ˆ+…7Q7b¸—Q{â¶?‡¸-§«eðJ©ëfƒio%ÂÎ}¢îµq£ NCkÝFë¼n@éq,bãú!ùÀKû˜i„!‹Zbt€µ2¼Ïz‚®eªÛ…ìZNÔ[¸³-†ž5”sÜÀ×øMh%ÝqÌW¿'WªŒû…œL ŸùÓvÞñ+e•W :1 :É 0….ÿj‰WÉC£±‹wc˜é.¾1L§u¡ú…e ub =Ç\@ÎB˜ÀEêÄꘅÝ…ÍB18š8Æ4wh5C‚C“—1….ÍBG5w¡£šQ¨S¨fBOSW!ò¡Ò…>¶Ý…ðh?vøÛ w·È¸© á¡«÷ÝjÆt«i:Ž)tlŽG ¤CÒa ¤C‚H–ÇÑxj(A%!ØxŸ¡êùúÇü|Fâu´Ò‹d:ÝS]J EŠ`-ᲟÚ.“J íìloiÌuåNêÊ›ŽÊ0õÓU®D+ã¤OUykÇU¹“²ò¶£2‰t•Cá‘®²ƒ`(TÒUvì0eŸ7Ë®Ê)ÑÞt¶œr¨6KŽÊ—i+•A˜¥#˜«Ïµ”•7ãŒÂ/]Ëž£2Åt• ŽÊ´sL |MWÙ51@|ÊÊJv !/–ì QƒÏðšã»hà°9hÊÝm&°3kØBÉ-P€¢ÍÇ5wLÍ]Óqo8ÑGÆî†nøÐÝÏÃ4ý<\¼Ÿ‡î~.ÖÏÃ…ûéR–öqaq`SßTêöí+¼—E(¢ê®‹¬¼j#ÍÛð žÚz&¾l@GݾÛ>ת½ÙÕú~&0ñʳùÔ]ŸÃø; f ¼ hì÷jGœØ°IcÀÎ*¶{¾Cã) $Ø.[ª…Ü´ çû­Ä^K R'Zùf7_H¹°ƒBm¥Õk|$à5ZxžT>ë-9ìÓÊvóÒb›ªíípÛæ‘[êöy°#5ÈhéhùÖi7Ïë)é¶¼¼…vQ9#-ü ²Pãi'bmrsœN%ä±n+ñÉX ~´Y>\´e5[àÙÚZ4*ÄEãëæˆ¤±¾ žYlˆê ñªüÔ¹ÛŠªn~<›ÃÀ¥$þ8{¬‰3¢ÌÙäì© â@di)-Ì!g‡$ŽÇ|iY‚‚„%¨ÁÌ!«à™Ö|ž)'ñLë‰<#H¦åL<–âšÖÓ¹ÆÊÒ|Svñ-Ú²•8ÊjàW-g°DÅ ×\Ò/jñ<Ü x8‘?R¨g6<ÝÍ8îwé=ǹHHãGk’àþRO’4 u½WQtFÃÉ÷‡=ñâRÈ»7ÇN°ë.aÁh¶?aÿBv$Õ=u²#»vx†Û‡g¸jxá#zéráî^àjá‘+ ùRx…ÒPƒ6‘C=[$ïj4³ Ì=«r;¢[wt 8ªîšM®E¸|". Ë¥) ãrP}ÄÁ䇅qøôD>)>-y=¨Ï8(@‹ã –G‚¨ÅÑ.O^‘Œ 4Páµ#ÐÎ2lÿ f»¹Z¥Šæ”Œ-U2çM\)¯H¶(ã™,žP¡d²al©²É(±¥*Ö@ÆÛ´mKЋj¸¦YÒ3]5 Á®%óRU»T­].Ò\Ö ˆŸ®æ'¬iÉ„tõ`Pvíyœª ÓnhꥪI#·š-zµ¶ÎlXmЪõá…©c§R$Œ‹?F!}F=ÓeÕ µ^U†®2ã„G€V(s´‹‹!`0Ç2$@Ï-ÄÀ“š?Õâ$Ê&cKm[]ý-­ŽªÖY¤ŽÿnˆÂÒ–Ì´¥¯¶òü‘Œ^ÆG4}-Q&ØÅøÙ0‹9dôˆî¢Ø$2F²÷º7Ä[f˜›Þ¼—GÉ(°RÙ.ï´k7ÑØˆ1_‚›®‹B `únÙGׂ«ö”ãoíc‘F1>±>±8m»p û,—m]nójͤ|ÀoËQÌÈè…вD0ªY«öÁ©Ø*Ø%ÂVc]c,J`Z]Ý£ÚI +mJ»Q,VÛqX¹lGóÓÂKÝ‘Š‘bq1¥jXV¤Í”¼E^æ¡I[?cU±£ßh›¾Ã‘HÄ3‰õ4L·Šé¸¥™.¬Q=é4JO`:'VOdºí¥™Ž×dÓ¥ÍÈ¡0ŒíΜ± c)üu'ùt\}™Ž¥Ósòejñ‰÷æ³òåJä§©›?™•/W%?#X=•‘ ü,ÊÊ—±ò3ÍpºXÙóæñ²†,yÙóžÊËtƒDdú·(|³þƒ‚àÀÃA]¼ü_«eóaÖžÇ.&Ä;éY¿˜†õ;+a}sWødÖ﬊õ#X=‘õ‹Ë²~'–õÓ §“õKóX¿fýÒSXƒYàÞ+ÂÏ q¯Ú´¥bßr ö5.Ï¿a›ÂSØDê)ìÄë‰,\^’…Õ¾;ÊÂéÆÔÉÕ9#l€VL\y*“):ÂÅ®Ë"Ž‹¥5; WÒ0qoyå-ËÊQ*Ë2Š4û»8%Ý\ŒR™Ç(dÉ'•ðɧ§óɧÔ|²™ŠO>­€OìãÖ'óÉæÒ|ò)žORÐÍÉ's%²â“k@Z>iÔšOå:­JÅ'ivæ¼§ð‰}$þd>Yv¬õ\|’‚nN>™· +>yÒ˜ø„NŸÈ(òt2 §l¦ÙøŸÀ*Ç…§2Ëæ²{Ìà$×Á-©ˆçb—ÍyÛL´ä—Í'í3‰_è<ù‰ü"ϤSñKšÝ¢ð üñ0y2¿,»1 Îïü’ŠxN~™·73@+~yò挢?=mw&H¥Úœ¥ÑWxO°cÂy²Å¸=ÉB¬Qz’…ØÕ7fËêQ„BŒ…8Åp:÷eóÔ¨²Ú–ÍW£¬Š—÷{ƒëÙ 7åôW&м¾ÇÀ7þ#faƒo)­Vo85Î=4YƒÏðØ;eÄÚ9@ßb°Nü7¸¿ï&®Ä©jÀã¬ã†}úç2 GªVèúã¤? ÓÀø©} Z+áE\ä§)3'^´.wº)†J©Ð±§V.¡v‹‘–§÷˜‹OfŸèhË*Ìr(„òÜÃpŽî¸tsŽèÌóš;h_¸y~¡†Cá¤ç G¤Œ4Dñ¡oüÉõ¸ÿ9m|è„f(*¤n¥qËa"á·bŽ#îô†ìA±s¾ö§÷¢¬‚&á’ívXµ0÷Bø¯ 2:ì¢)ÜʆçJ±`«T6EÑȢˀ‚BlÛ  Æ"<Õ5˜S¸vº§gs˜€Ý>8D´Â[OLŠóŒÂƒ‰[CNW*Âé C­bih¾ +§2aÊñ–p0þ21ƒQëˆÍA4¤áhøyÐ~lü#º¾„RÞØ.ð˜z;1´L¼b„‹…˜‹†VB %ጭ$(¤GÂ{ñXÂrUDhÆÇî 5´Ž†'?½dDC¼5ÝdHF­ƒšvhTÀÃqªßP/–m(²„ÃÃ1X #nð<0!÷¸ðgŠ$@´lì’Õªç×Äšô“Šü’‹F®Q”kX_í{z0J ϸ׎?ßûÅdW®þÀޱÜQà˜ÒXðufØóÜ÷"Ú"éÅ Žu–Ç»âØqÑ-¨±°ŽÅFÈëÉ¢f)ÒŽ&`q‰íÉ¡‘6?­ˆû6 Bó­WX§wo¡.P&‚kñ|èàžº@kj8ï8 ƒg]Í/ýG-Â@ªÝªrý ¦¦(D¶¡Øìýaÿaö[ì’¡\G“ n3ÄãD¦]¦ÃeÿÒÉ}ÿvj£CçF{“Ùg©p›ÿ4KÂDAÐsÌgÞ™cŠó·agœ›¡Ñ”ÄeLn#¹+ôKbˆd#f&4A(Ä ÅÍgÕ?¶×¢À‘Å7Ã1>ä ÛU;\0p#ŸS0ð$O.èºéÔßt ×)™‡@IËæ)@RÁŠeN*¹iÿ Å=·É ÎfŒü‘`¤¶·ˆ˜å3¬ÿˆ¸ZŠû‹jàœg¯-Ârv Y#-n…™ç–5; e”ä):Ãú)Z¬šOj~™‚`úÔ½0ÁSUÓ,'ƒˆó]¾-%Fç2å x% *9*9—ÙRÌ.ò½Æv 0;Aq¯`¼÷Œ÷ÉAße»%=ÇAÑeøw™@å˜<ž2„†‘ÏôÞŸ¢^] 2gŠ‚k<ôk ™~Ë^z#÷Ô"Kn 6ò[gù%7(Û¡õ¶³¢Åö§Yiþ•ÑúqæMe±u³ÓÍ0{¸ÍÄÖ^4—\Z¶—^Z¶Wµ´ìl-¹´DzÌöϘÞêe5í2/ÉêFÂJ‘Xnh±Þĺ|Ÿ¼¼õËFŠñ>yy êou¶÷;iñ/•Ì¥¤)’ƽPšk^šåײԴW'ùš&a…s)1o"Q"שàqÌÉÎíhxT~˜)¹„ÉÎÞö²p(=/šü–†/*+á+Cë2'×üÉáŸrŒê’ÆÍ?ÏÈ"4ž‰,RÜYX»9|‚ÑÀ¡u@ÐfŽüñfŠCãÂþ“ͯZÎ|-'¢È`èÂDï_B)–ÕEJ…_R¡ A/¥‹¤XŠMi^à )šb ©Øë¶¹›M-t—p)‚á<“x>LÏ%oQñ\sfáÍ'gyâæóâ7ŸýáÝlÐslq@égG“>Ç»^îOdæÅ«i–™wÜ¿»ŸŠ{ÊhÓ¿ñ'N)îmþRÜÖ®Ã"=…˜Ou”romkf¾(š.H¤ˆº!Õ# ”Q®': Òàí¹~äÂeL½l—^¶Š+[¶*K[g‘þKn¤‘…(9-^î%Œ“¥òB–(­Õ.%n‰Å~böЩ÷- [%¿°¥×úb+ í8k+þóìPi/ºC ·¢õ›4,òæXH¿IÐiŒ¡KbÓ4y„ì7©5¬3úüºûRiQ}ƒÒŒ=q;h¦Ò¸˜”,ȳÐZ´%?©_ˆŒ¯ËOÈm‹?û×ÓÑx’]¿íÚhXwDÄw$Öö,B++‰õÐ-žªˆcŠÖ/Ì-HÌêNÍ “L<€èù–{ºÎ™ìA¬L6 €äl\éY²|DÀ†¥«;›Šå٧󣥘ðÕNøÎ“&|Gd:×÷³1ºÈ>¼NïçŸÞ—™Þi ³É'Ùi&vÂI)¾øIŠa¤ÖG ~|‡‡na…æûĨKÏ|þDGŸSpÛŠ–T²bÞ×_þ,¾¼ô¡Fye‡›‹jAíXršV›h»n¼Ç˜ï« ˜ì °¦tŽZt¯,!`ºÓ‘ÃUí3¢9‰S.f%Ká\åžfþ6ŽôÓŠÀß<޹ü-é‘.R-Æiêð ºxÇX"”»‚\’Ÿ×ð0Ù !xOŒÅ"n†«cçD6Në=;Ózll¶¿z³*D¬"hðW Bóga_ÅçõJœÃq¥Ê¢ÇP‡+°JGT¾Î²*Ÿp¸û´ÄkEšÒ5RÇ©Nb…û¼ÃúÏ|sË)ß".4ŸÕdíð¢ÊÜr{<"ùóîñèb÷jg÷åÓ'÷3[wœs¾âšòôchŽ·~„çÙç·±1)ÆÍmçÙ§ifZtVwW¢ëš~1óy?ɼƒýX—½é$W%wìó¬Õyˆæ/mäYãID&\<}Å¿™ à;> z]ý_rõ¿øû¬þ†/Üâc®þÞA,§?¬Zh<·óŠ;OèS$Äå*$„u”­DÅ|{~õ¡è’ÿ9êr:¢~^½`ɳéð]Z¶3sÀÈB¦³òrSKϳa9Ô’ ‡UbŠû6Ï·Qyñãé£Ú2zŠ!rŽjÖýÈn3ÚþÍìz‘Ë6î++Î½Ä ´Ì‘D‹¹ïBá9jÖ9.ðÉñòfÄÃábÞo—ŠžÌõáµ5‰ËçD/©)Oq]ì©ÜY« â¯Í›xN•·*z·hÉÓ°¥0•V€I†…ïë×qjÑ»ñS.æ$,P­{¹Å¶¸¾¤÷UØÓk¹@Já{7KLt±bŸQ«`Q+-¯è°yòÄtP`…ôãfè÷Æ îÆþ„NÿOF7þ`©VB3}ùv¨fR¿c™cøÕÚFÒß3Ëq(ÌÔ kž!ëÖ»Õü)ÝIó™Õðc¦:®„ïŸÂ•Ayܸy?Æ=XyõúÛô{“©èü{Öû ËÏUËNìn©v3âXõoþõŒ §£©èM§þÃãØÿ$ðt$3FPŒ %†úÛ€wÂÃõçâ.¹ÕîáH”s:£½õÅ¥úd-¥M6Ë‘Ë,–Mn=¹I hsi@8Ü ls:M“Ýjå(F{j³‘²ÕŒ,h€2Ó†º’.³&º£io ¦ý_Ì&0â{ö½WÌ¡i1ñѤ>¯ÞɺE]×ìÀùp %‚SþaïÁWíy!œÖ××Ech'V`³¿NïA©ÚŠ¡þbGˆ×7L`²K˜U·vdK7‰uñÕûÄãHÿFb¸½cP$À ™žðÂlm–Ï5"õ&¼ùMg*ù×^(VcSÝ^èÿÄÝ2ÇŽÒàèÞûs/Û(¨.oÆ l¥) Tâ $©q(eKQ‚™Ñ`0úŠii´ï¾Ê<÷µ? ]w„€¥Ë—DU¯€$(\òY°h5ÕV|ñØ›L¢8›Ò& ç„Jþd«Â¡YÀ¾s…`¬÷Û8mäTÙö Ú´ýø3H3&Ç!N{_ü!ŠÙÏ>f–ñ6ó Ù‚'M"Qn¥ÛñèA¡I«DÀ–-Úb¾Šê"B‰"T|9[Ûχí¨ÜZ¾A¾„U‡Õûy—h#P¢’ ãÍÁ8ÉÅ* Œb%Å4G¸aø1"d«ì!ûGµnû@v&3V6qü©gH¨ÏØ£pC*¡Ô3õÀ<÷oú½;šÓÓ”ŒþáR±å k¬¢Áﶨéß.êíNã”ÓYƒ6»–·ßȪ^:ÒÅX÷"= “¬|` ØLñ{ñ(Ç% õÍ!àÚUEê;WºýÃZ-–/îä9J®øìfŠÍÕ0¬km>Ó±®ÅJOI…^ùyš4ÛRM•ž½© ÕTñ¥y¡ éÅó²Ê8eÔP%£?~²áp¶só Îiœ3ó¯AœB©Þã)FÝ8¬hüó¯Ïßïô{×_6Jùâ»n½Óm´ßՇﮯï¿ÜÝåoWÒFžÍr™^·67éµPäÏ¯è• …x…J±²å•½ |J[ÿ…•´>çý,â½ñ¤÷0šÄ•ƒb·«!ÇOõðôîœ×Ú§ç]L!©ï6vWhÚ£’Ä›ùñÇªŽ«­F—¶Í4çÄüš/Jv@g Áë9Ö„?9ñ1'®¤Úc;t*WârðR¿¨ïw›òµ½`„ŽfÓ:Vœ¢ÖÑ€«ô:Þä± "2°^:VÊ{Y¡-ÄçÃþŸy·]ŠÊÄ÷sÁwû°H&1ì÷DÍñþwÒ¾ZÕCÑœÞäUúÔÖèOŸ.Šaši9žÏ‹ÎuU­êønöàa̫ˮÍÓÃÆ~µ+ekluë‡õ¶ù;vR@SÇ2¤!ÕìB¬"Á´ëv"8@c–иHWÇãÞ÷”83?fЬªF%cØX]½`_ö:h™…¸òøf„Ç!Âà÷OOΚõK³F5ÃZ×'$^ÆøPâñ V3ëKg‚÷sk3Sgx|¨³·ñM|å#³é3ÏúT4>ÅCøh¶Ü± tÒAèšuÎMp©ú GDCPÁ`2|{6Ã"$ìñÃß³àâsµN8»°©Þzc°g_±‘YÛ\ˆÜŽ·G„ÆááQû@°OD•¦|Mô&âJ^ú|.ºð6‡™¶Ç>Ô|ð{C´6 ÿ˜Ýõ¦Ô·é¾ÂŽ‚ŒE›Ð=Š—!ˆ‰;˜|d$Ã~—7c ÿ^Ø9‰Ù°‹â÷¼yò•®+Ôƒ£ÃúÇ+݃#Üň¢#®¸ żU]8£ï:Üúã#ï aø‘þ^YÂŒžŠÞ`2’¦6ŸÎ+dZ˜2½Áã}/ãesŸý)¾fsù|>'¿ʯ‡ð5£†õù·?²{̹?²„ƒ¯Îø+ûÓûÙ*Á—bOWy'Ë! z˜d4U[‘y,¥¨ãO3À  ¼FŽhþQyà&eKïTÓÑöˆ¦ýÞ`ð]øÿžõ¡9Ÿƒ­»›$ÀØ®Õä~¶=û6Áå^¸‰- üÛi4œQªPtw«¤J¬.K>öúc‘Á+Vg"‹ƒ=Ä_±:g‚¤­úg0úšb@ ‰A úi«_Æc¦Çð†•†C± 1FVΉO÷þPI 3,´ÿ&äb¶È.¼Áp,“7"óf¸6yüÓCÑ’”°ü ¡?yô¯û·}ÿ:ýcÅ÷®ï)° Ây“U#O_cµLNŒ†š~ʲÍ=Ãó7¬…vnš_#VR"¢Ž:¯¥™jÂ+Q}ÚV«6`Ң݃P62ºõúÐ7mò†NîG³N!„2yâáü9…ÉÈu¿k Èd@¾A”ïaàîïGPŸu‰Ý)E²@ÂÛ¿ˆ‰¥üü vçñWõ/1³Á£È&Ö/rýÕïõk‰õ¹r‰+7°ò¹ª9·V9¨uq‘¢–®XáŠGPQ Z‰ëQº¾nrý.Õ?3êwSôu+ÀúãÇÔ}Ýj]]9kev°ÈCï› ôÈ+†€¡ ;òÆJ ˜­8OYæY˜ÉkØQðó_\—˜…ê‹Z„ #…(@ .óWNü% ý%#ñ¿²Ëc»¶ºGÝ. »æÆ÷(À·kà˯Á´B˜Â`õä÷0çfZGð\ eæGF^haìaª{Ô>P`Ñ̇ÓÚÞZmM ό煉dJé9T3‘æ ÛxÁa+>£µ8”¬¡¯phÆICsµüРàôhMû¾qP)åül2#íD3Éíœø<£upHíÂ*qïß>,‹€(c7sx¨I…¹þH {Ù“±Xù¼:›RŸÅ<,kÐnÿVv‚ÖòÝöy]ó Û¿D'ó1w¥t“›,:¨Ð7xB|+åZç/KÒxeqqâ,¢Â|”‘#|kûë"“ Í}âýeÂrÏ;ć±m©wÃGs9¹ÈP¿é©Ž&çÐ:Óã@01K/lßÓ —œ jp;lè£& g5ÉX¤ )]”XëAV²uñ ðݸ÷ëÂFÝÛeCö7ªÌz2@"­Ä0{A9ÐW˜ )BØf^!àÔ°¨51Ý»R£Ú°ÍÊK-¿ë!ù k×Ì€DÛ¡R¹H{óÇ›¨îEhìÏ@ñNßyDý OÝL]ÐÀ©ú`ï*†~ʈBNàýõdz¬CÅÿõÇ#MFÅ…EªÔWŠþ êÿS¶#õŒÊßTÕ’j¯±pÕ²jµáFUC¡«ž)þ׊LF|€Ýá¡aôÞöF|oðØ–¢Æ©7Žgþ/ Û Hʈ˜øÝèŒÜn_Â^Ñã⬉ÿNßIÐÙTXd°:¶š ÷A$Àæ¼¹û"¾Ákh>À×™/o½ì7úƤÜoâË^¦µáeßå`nQÿìÁäþ`Ûgëh’•{Lhxô 6åBƒÆ·-çJ¦Ÿ÷aú€‘0zwevã O@¯Æ}fDÛAÝ^–e×·‡ß{´¹е$ŠJ·r­ì4œÏjM—fÇ¥ÙfÄçþÝ:Й–Óu¤6Sù |ÿ†ÖT<ØFµäv¹ÔA*ºç½ƒ†Ö™‘ ‚lk’—•Í4T3–â£j6¸¦ñc) Z¶ZÔØë °ã 0äoïl] ’£Tb‘L˜AŽA}ªÔÚ(ó@{9)+ss€œ)“ þZN…ìyœò@JœkI•ÅÝ¡î¥iO 5`Àe0[ ¦ Øw‹ ƒézl>+¦1Ó.ö`¬º19»p‹­¦•è}®²&PDBFA AèȽ$J¯'³„QL†ñq=i¬·]d pðo"±™H± )S ÉâÍ«=ÁÀ»ÒEïq :é‘ßIBy›+ä@ø@;7_o$u%»~³·4æÂB=í’éxV8 sû¾'ÛïA‘UôÁ䢗‘1þ/J0c i9»2Tb!ðœKÞáV ¡Ø¢Xä^ ÈÅž°tÕý1X:~r¥UG‡ÜT-1>ƒˆO9ŒE¡—ǧb—EAŸM×,p®(jiÂ…e#XX’° -_ú¨Ö8QSgj¼iC ½Ô³êDÖ„Žû2#йÚ"êát„öj´ýÃbŠ n=,ULÚáoF>Z ¦ jïø`H9¿÷¦b@žXU¢Ýjqåj¼ÌÁÑ3rçi¶X•»SŸCˆ‡UJYTag˜„.Œˆòap0ÅdÛkíu(½~e×ÉÚÃBÅzòêš(þˆ1P­K~‚¦I¼¢æyßJ~þF©^"Ã…ctDæ¬Ú®žÔ»0·$IeØÔÁÀØNïÇ£Ùݽ B!DÑØe!B„Öó…µãbc%›S?8è¯èÓ¿ŽÆD2ª¡‰PCún4›Îe èé´çïN`¬"ñáû7Ê>&3Ø„ )0çi6³Ò3Y­¡™ð«d.а— ;•ß,οå[Kæiy? #ª° 4®&#éð…œè&¨4ºQÒÊB9À'Z ä£mÖéy7žñ‘4tþßðömb}<ª„ÉÌgƒòFׄ·÷“‘ Bö÷q[üü0¢ã,Œóúlð¨t–÷hA¡{wþdÒ»óQL(c”z(Y3¨³ 'ÚÄÇŒS†˜@”Gš©&Öܦ©H*NhÞÇeO1Ç£»qï9‡®{¨Aõ†& Û\0 ð4ŽÇÍÀêÛÊÆ†WÈ˽û‡ÎÕIߟ¶»íj‹Ldj¹%4ûCÆ‘º.®Ð°ÄX†åEÿ–žØåvìOgãáD4È=EÈ׉g]UÕçÅüëhüeòØ»ö³Ú¹3ºž“‡"ñµZYK„œOX Ò Œûw}Ôb«,¡B½‰¼¶‹Z”YÙSŠJ.¢îÉY±p†Uœ=ó|°6z;0‚äôØ?ä©MÎØè”âã¬hÏ ‡¨äý¦þH§£ ­ª#çÚËŒAíÇr”Ì<­8Nl>Ò>JÝ×b•$CÏ6Ù¡T‰ÑU£¶E‡Q¨EPèx+C/¢f˜dݨ*äœj©ù(™MßRÓT-?âOŽ´é  WGètcÝ}ÏVGàÕ"ë ìù‚“è<× z‡eí“!ÓðÜXÜòRܼ5£®¿`7ùŽ©¹–³ ¿X!QÈ÷*=U>¾èxËÈ–¯~XË|¹$mËf£t­$5ÎqèÆùJ£eª¹ZÖytš/*çðÛ(Á,-· Ðäã‹4Ëv¼ôSt|è÷I_g åÞs~ßyÚ®ˆÝF_CëOØo_ñ ´aGŒ‹ˆdˆë9)‚ž‰d{5HFɈ;ÿ’XâU¡f.—{†¦¬šÞÊ.OË ¬*­Ð‰F}®åõÆA[­õõ¢ s†½DsIkœÝdgÚ %£3tŸ-Ú“âz@lêìŽY5ÞJm×åûqPWAcÚô*‘‘•“Æœ+Ê\0 ¥ò1•i‚(w:Ójè½ã-÷Hôþõ-ý\ùÑ(c.n …ÑÇ`î‰Â.l¤g×ÀI<$@‹ …ÓÿP Ø7¸=±Ñgç¾þÆô°äã1ؾ£±CÀVß¿ƒýuÂó/S m`ÉD"·¾§'/±îOÂìÎOïód4š>’ˆ UáoXI‚½U<æ­Ó39¸»é¸\yUoŸæÄiK…¦ N ô“¡B8ùBýmJc˜nú”t sŸïϾ/Ágt :áŽá>#‘‘hu’®Z =œ¸I„¬‹ŠªÍz§òÞäK±µêA« †–iTг¯ôbàÄðoþ·á?žÈÁ ÝôŽ'CóÓñéY7'NäÕp¼ÝQÚ1c€ìvæFoaÄ¿tã9¥Ú:mŸäD_:Õ÷œv ^õnýíøRLhë¼y–Ã?ÖEß ”XâÓÍädÚ7«Æ¡‰O·’kö7 ##ËÓÝäc¡ §÷8®žT-˜ñ<®²ÛrÐüqy<]åZ¨ø&.©r¨q¼Ä褫Üm7ªvËWžêýU‘ÞųÇÁùÉIU’­Í]9ZJ”AÇh׿ðB“ÑûÙb% 2ègëfL§Y=Ù?Jh´Ym·äïõK˜ÿ- – '§Ê'à×™}Öa5†.È „¶Aƒ€×nÅ“¯ô7Q9©¥R‹ûg¿'É>@éý!ìÔ»ôÚ=)çäPx=oÛÔBI!À9LæËz»Ö¬:úØ@ Ô‡k× Àäi7ZÆ~°Zë¼ÿpHÞ9A²G ° èhâ 7í‰É´7õCªÝª°ff ëSYG'¶)dë%ñ.¡Î•ØK§HKE9±F‘k˜•¼Ä &tþWB1± ¹$¼³ØŠT¯LïËê ½C.W¤¿•¦°ßʉø¸^F_¤$j Ú+¡'”gµžˆÚ`$ðe{}{^Ë$¡åÍuMà"Žeq]½+É¡Jèøz{Yš765³-n.h†Þ•çy}SRt àƒ¶¶×õh𷂝“zVœÛ%³³ £õõš¡õgÛæzf[bq^t‰ÐÚ,¯|eôÅuùUZAõÒzÀÜꥠz%\=ýšD+Š~€R"Ú‘ÒÑþÏEg=ÀÕµæ`8çÞPêX"S)þûx{Œ½’(¨³Ž&÷DAf.ÒOƒÃjù-ªŠ¨Û+:a2/ñA¦þ!'±jTeYø›‘‰0”ËC*g}-çY}×Xðù |ã¢9ZXËUmqª™ï¦,_=Ã…:žïU@%w?µqTÝ×é͸âÅpq•I4©R¸’t%€J$°âêm†ë5ª˜³ÔãPäô©›§±‰í^! ãÜ‚q>ÆN Rþ°›g[FlÇuëVÝ#>|¨6Ç×'=¡‘cϬ7á(óíz÷¼Ý ·À|ñqÖ¾à7Ú Ôm?Pª*¢†LÎ]0¯lHUå}†m'½pìôn}ñТƒÞšFö>f¡úã¤? á÷uý]­7ñƒ `~óA¿ÑÄÍð;YB©¾H0Ö3z—&+ÈÀFL×GÀŠV†‡µùân)kxõ°‰ïs̼¦‚Rü)N ²±ý½Gߣ9@5Óù²7ùìæ”ÿ¢G´'%¹%¿À­ùw¸–\‘U,xÿ#·0YŠ$*bðNËS"kY\Åø &â:Žä;Òm3X3Zº¤K7ZëLêõ–NY"ù­…³Ï‘í$eŽ·H^QWE¹>SUólà3ÁnF!W™ËØx¸Ë~ʘjåáQÆG»_œÂŒ§  Ícæ¬Hû>®ˆoÃâE2KjTÃl[gX{ž-Žz‡†¨LˆR¾£jXräd’ÀåÅáŒ)NÂIA%ìj +{©^@PÙ*¹VCYWðâzæÝ(‡eWæð´ÒháúÚŠ’‚ΰDÆ4P¿Þσ5¶¤çô¿pÀTsíä'²øxF:àHEjàr0B> c¬2$kR%l%…`³m´Ž6«HuFÀ 0hÍOUUZ–eÕu¨$ë‹Ð‰RãOR€Öl®ô×ÅxX' (ùÕÖAž?7㘤šQ‡5Ø.ÙqDI˜µfD홵—šµØQ[bFDê袅fD-ÂÆ°·YnFDA¥›q`ψpcg„;Ë® ¸13 Œ¹›­Ã‹ðsQN½Ïø ¯¸è«©3q–Ò ]ìбøhk(º Ó¢-Ãm1JŒ5±¯êÉ'|²àò ½ÀO_ ö¹CêsÁ?bNмƒ&‚¶Ø"ìË]ªØpÎV.ˆ;Ú6Äãa—àç<ÃgÇû4@|rEÙyÃvÙùË…p-g¦íàW9^ •Þzˆ;b¸Ï ɸ'åIqÃõñ… јîp‰âzë­ìOlœ™r·n Æ,´gú0¤éæ…ÙÍ‹¥»)»ØÑRBG/ÒtôÂÙÑŠ=Ú CM§õiÙ ¨Ú"ÛJYˆìƒØÂFkÌ<±Ž/#tõ¼yè”®ý̤Ú e:‹©¾ð%óÏ!z)¥vÿìwÌÒ³#×®3®’±®«’:ç±·>:å 1ºôu¡H]ÍȆº†H²…™“ÜOf ný™9Bž…¬µÎÉæXª A¦áÜ4.ÏJ@Âõg#`¢Ù‹vW¼â;ÙßZf[ñÔ—JÃ+õÃ$A¼@6˜€ý=²äˆ™„,žŠTà™&?"ú#©g~¥Äh9|&<’—y¼rŒíV¼Œ$±-ß­†ú¥°ua“:C£»yÑúo„.µÈ‰µJÿËŽ­úZ‡õ§ C•î²Ðî[§Õ5Y_[ñ\^³fEæFº©Ì"(¦Uúh—xV‘yæl,ù«dà;¥H>}NÌ]iæ:ž%ƒÈ~‰Â_@¿4Z‘a-§g–`HËs¹¥²·h>¬¬žYâ™De‚¦Î³%'Žo’ A/ÅPÅŸˆ¡‚E¤˜Ñé’&ëƒZH±²È*/¢G ¶tŠE@þTYôf’á8 XÓÖpÝ"»-ÉÑé§“Öï{¨–;:´i¨`®±qê×^!ýrqPH½Ø…FZ›† ærv¥‡¿×z¸ÒMŒÁvjÖÔ­ý-ä|형aã¬9'ÕÔ‹§òRsRòК”µg™”ž=)£q¶’•Ð&f̉›÷ëè¡›Kè¡›s5‹­eõЭ…T‹v*=TJž9ò‰c½ý ùÔþ5ôÐíeôÐí¹Ü²³¤ºóƒ™%ª”š|óƒ,Kš¡~^=Trˆ×&ÚϪˆJù¼È¢‡ù_ôÈpòRªhqUï K^ÑMÒ⢺èU."wuÑv*]ô—õ?¯.jÌL§2úÌó²øcçå³h£l<÷J˜2/ìÞ æFi,FCJ)ïcÀÔHWe*–¸=Ú,OÃn "d?.ÚÓEŸº… åñã*B6=dÑ“{wÛz†ž­®m×~@Œ¡ …X´ãjX¿c~£ AŸðÏdŠ}!#9Òå)AÚËŸqË?NU…„S”`hF1:!7 .ÇÒØÎóë;nC…5ѽnáNî£$†üš¥(#]º èAd³e©¡W ÛSÁuKÒâN÷€ZL4§H%¶H̪è>‹åŒu­ecð$Ûù#+þ%ÑÐ]Žª‘Ʊuùæ-¿ 5{†ig(ç ;1q‚AÌ­å ôQ4\¶ X¨Ã(™tÜ6ŠázH ;ïâv–3ÿPxôþxÂè — ¢âŠ–@ùrDOÜû=º|8â›<êð¶?ðÃØøQ|k(ˆ_ ¶Ø1mÍÙx¤eÙI {Ó9ç*T­ì¼vÎ÷c{À Ç£?F]Ï¿Y´0©Ödl\C׋&?k×£á³;¼PJÊåãhâC ÕÒ‘] ® ¯"îN³"ñkü m‹S›Ý¼W€gI¶‰^ü)ÊplßÍÆ]sßîNÀÀ[5Nòêo‹®ð=‚‚ k3¡¢"¾ôÙÃ0ˆWJ«s~‚±Ç(ð˜ê¡Š´Ìb,ˆ«‚ƒ‘þü’*ºËŒ„»è^jÄZ\•á=T­7áë<¼y'v.Ñãh/Ä¢T@’RW—8ö2ðV×F¿[#Ïa|›]c.%2딜²³¨_úÃëÑx ¿€æÂgM¥ióoí5Qës É„8ÎrâÐ+äK„V{fÃh=Y g6£—[º—]òÖhÝa,•oò¦x8y&cû<ð0›±LÑ)2ûLf—ÄeðÆŸÂJ0É-uåŠQ¹#óÍÈKI»Ð›b)L…̇µµ=-knÄ‡Ñø“]F×_Âê=Ò6Î{™B®>ÞË4èM ¿iÀ›2~ƒo*{7ÿáCxð6÷2”ÍK4²9NmÝ ÂY9šêþ©F¥‡ìQÕBÎË1­:¨M²¾[{™BEììe(„ÐúÊÞÊ¢\k¨bøuɨ-§FlðûNU { ¨‚öõuC} ¥Ã˜€~eÔ–åu¯¼ ö &ðŸþë€Ø—±×`î‹6†.àhFò‚šš[ººﺆÙÛÜëF¸¢†\1±ÄŸ·³wç|„éMoðxßËa:ÚÞŒ’îÆÖ^oÜŸÞ?䕸o,`A…žbAÖó§ÐXðí½ëÁl2õ1_æ„Ì&‹Þž ø¡N‡Oü·èPþRs‚ Å¢d9‚YGŠ%9Î9*™%ÔØçt5Q¬(X\Î5VÅM…:FÒ Žr¡¤Ù+„ô˜["s„ÊfTö¼ø¹<’'yX†Î8ž–ÎÐ’£þ ¸„èŒSA6­µÈ•aøf@Æ éÞ×BÃöbô[Ô‹ÊË*b°›à̘<æ¡QÀ=B(FL .öG˜1Tó‚# ÉOy±q?ø—¨Š q.ŽÄ…£Sðó;VUÿC1<Ьd0ªY£šÝÄš5]SrT‰ª6°êy|=«5ù”uÍ‹„íÖ*Tçê|.¸J@ôÈDtÉ»Iu»T÷,±n7ÜÉ-êÇ‹ur[×¼JhÑnmê<ô¾Áo`†ÔíÂYWõÍ|2ÍS¬`³æÕìίéX4`ÍqáÓÁlÍ|V‹á(1°êQ7½K-ŠQµdºOª+8¤fÐÇ"}ÄŒäaE° ÚPYkC¨JNfƒ©P•hÚ‘æõ~;_”K“÷r-{Ðru>ÃÌ%ͬ8iõ´öþã?üô{×_6Jùâ;ÜI4Z‡ïêÃw××÷_î¾äoWÒn 7ËezÝÚܤ×B‘? ^¹´Yú‡W¨+[^Ù«À÷ð^Da%­Ïy@Kè…øl¼&½‡Ñ$®»] 9~ª‡gBç¼Ö>=‡Ñ¯óÁ  h™„ÍfWM#ØÆ4«gÕýc™Ô[f©Ê Š‘_KyP;66äŒ;öÿÌãœëúÃ!j éïöa jǰß5üÅøßinUEsz£Ï·Fú”E­ dæ˜âZµå÷°¶ G°±äd×ÊsÔ¿Q!ŸÃ„µ>cG€` —£AÉéi2ëóú…4 G+ûª•»•€ÁM®6äfB©ˆ vF÷åý³væý‚½Q®îÍ…±Zó72®”õ³qÔÛFäûqãéYRÁ©«Åcã½z§<Á6Ã>ØjHpéíÝ F°k™¹é1\Ëp"aaô m»Ò®™ÚL0a„VZŒ=ShE¦K-fºÔxº,Â,r•ùµ8ˆÍ Ñ}ù9'†ó·WÈùÛÎßù99Ÿ?*Z‡h}·RÈß=ä·ƒN$k°a!‹+Ûã‚… w2kÆð¸n‹l›0 ùà°ç £#eåZHž3"òà¹LÝ+惬ÚîÆ¶DVëS!˜5á롌21òÊÈŠ¡èoGx «£(¨å9ÍmªæÔ1ÓfªæŽ3Íl¨ÅTÍUTs%Ù\%esí¥š+«æÊÿŽPs÷½?Ñ­Æ24Œ©šC_=6œ…N eèWÅNdï"ƒ–¶)àšQ¡ƒÁéhÚ¸šCÖ%)Â’ÔN©\ßxù1üŽ_ü➤ó¿ÁËœÿ ¥Bäü¯\x=ÿ{‰‡§Eøü¯ùþ×4ÏÿšÑó?uì÷zÞ÷ç}óÜ𨯨úè>K3MX+8L‹Ú“—8»:j4´9¤yJï­“¬¤Àõ V)‰–¡,øØÄ,Àέø¶íjògÑc/ añs/®¨JþÚ§E(½Vu,äfŸg=Ly惓@wtŸs“…ɯyh⡤ ¨ƒÎVhÞ¹q(Gví‹­ÔâA»ÎVÜ@”LjÐ] HlvLÎk=® ָωV¶b­¬SàùWz“€ó‰üi;Ó7ȇ+? ˆ³áFQf.‹|/\–,>~Öv,c&DnóÆTÖÓw£­œl6äŶ«'1-ªX{Ø6Â1uÛFÝv´î¶»ôf:“=RêÂg:bQCeS\ÔP·&b¬tͧYéÆ˜54•nO<›‰Î4óPÎwÕÜ3Øç@èÌzlñëx[¬tm-bœ‹·–¥k«lšÊÊ˘ÊÒµS ìd¥eìdA+)ŒdÍW#Ùà“`ÿ»ÿü"ö¿J¹à•£ö?ïÕþ÷ÏøýïÔØÿ]Õñ‚9ª¥ŸºGðþ#Há-ixp*ïÔS:ðøÝ4ºî­+íïáwê©sß4Ñl =õW¶O²áGZ*Îsª«ú¢¿&|‚YˆF)Þ ¡Â¤H$lÉôãB¶yzØØ·áð°gp[”Ð#ä :·Bž¡ÂÈHf-~*òºáìLï;êÕp‚ h]fù&z®6¤uËœ3Ï|T“F` çßÌØ?¤'ŽüñCÚÇ[òÈÒŒñVÆ}•8á`4ƒœ˜áýiŒ!G ‚ºÑ­ý£Z·} n{!®½*f›ç¢#Î×ENêë|ƒÁ8"‰ÈK½“ïò¾¶0߃=Çße¬’¼Ì54¤1Zªøc†ê(Ù“¿¢b|3{|Äà3t)x@´šUSD½Fωø<z\÷&¾ÊõéÞª2€jõoÐô¨:²ßo&ýÿõ'oDæÍpmò&”‘m!¾öo¦÷(òE®¹@Q`…7xù+O0`Âmᨐ Ìú"üÞõ½ÀÖ°-C_høþMV€ò…\ þ¿g ¡7@n™ªaSAÓ9 Gû  â³/î8ß'˜T‘Xg*à"qï-N€Δ2Ï@¡¨ÖÌÎ˰F²Ñà8^ LJï8_Ç\¬»n4Ëð»\@2‰3PbÂs~Ö<Ý[;—aw2EÕ0ßs^·¯íÊB¥Æ®©°+§ÀOX{â…vÍPˆ Z„-Co—%{ö7VåAìƒÌ«ùÅCÑ?²Ì„˜áçuk‡ZÓG=ܨ’ÝÐ2­%"ûÂèߪ_ ˜w*¸ö§ãC}D¼ùãM”OYBÌÆcÀuð=ǡϔ o&}4 sð’þÄä/D¶“Ú÷QŽ?þпpýéwÃ1R|5”˜žƒs ÿOÃN@Åà*hßöƒøÏ^$~žB­ñ´’±&ý»á$¯‹eð÷=‘á`[rºÐ6qÌÓUÚ9+vˆÁF‡Ãö¤2•ø&Þèod„À°º)t‚¿ ð;½×èON|žMÅÃl0í?$u>¶aQMg| ’È0ö'÷£Á$ÂVZ3Vd›º){'ãx£D¸® ŽÈK›¹4aŸtÿ`O?qó€Ef¢œI Ä'…J“¤VÚY fIü‡ AˆÆ!貫@0›ž€LÍÛËp—WL !‰»<þdÎ!É ªÃ×÷  9UfÃËyYž…^ÙÀ -Ó‘JZ =Iô( Ådîá Ð¥µŒZhy =ØŸ"¿ |¶Â Jíìfä“-ë¾?¼Ãòؘ°.ô¦  õ&l)T~ -)]mÔxUÂÐOÐ'Ú¢eäŠh¶XUK&è²Ó^ˆ†;ä5FP†FIGBüAG¾1¡\áB#s>ª%lò¥z**z]µþN"ý0˜]¢½ÖÔ64Òç"óñqj2ö©Èlã¦õgSÐ>‘¦!YIOH©M0q«-Å&¥¤Ÿ $-) P'ÕKÿÖ3Á€gZŸ$)I¨ÖÝÜЕETûAÙÉéÚPÎÂ/7⮆CŠö;ÀgЦ@z(ùÔ§V‰’6ˆ>§¿ÅZ·³¡¾y»Ü(kq–Z„FHUØ Ÿ#Â%‚QFÑØYlÔHÒ%o­ýôC/Â>rƒa¡b=6Q“úGŒúi´.ù w¸>Kém,¾õfæ.ˆÃ‘FFGdG IRÙVd¹[Уٵ¥àòŒ(Zû-dC(²fiÖ&dD.:V²9õƒƒþŠ>°*ÆDü•ì1Z2¼ã#ª$Q¶€ži…ü.á[’þ£ô¹œ[qõH ŒÆyšÍ,iôL†5n‹ ýÙŸ~õÌöra§ò›Åù·DRhê»î)í~ñÕˆ*l«ƒÉH&QGljnBJ£%ö-”MÌÐÿ6%3 â­,^#ZúçD˜ Ò;°Š’ÑdTc-;ŒËãôTÙŒAcw=ša¨bP=1˜1ê}æ¢7t÷&là{¡I:¹÷?ã÷ŸAßÊAw¯ '²ut`Q>‡L\H€N ×<\@ ˜—ƒ1RèüØöêM@ªÆtãF·iŒ¥öF&X üü]žóûx…Nö¡xì§ýkŠŒg¡0U­ Có¸+-úQ¹,‰Ì¤4ñ'pÀÍh;ik^ÊE˜Ä¤œr»<_%#ãòÜe÷ýi»Û®¶"®¢fU ‘ÍǧþdÒ»³Åi†IÒ¿5Üg9ðìDfaÀÞkcY!¯ô\UŸåÕ×Ñø m™˜¡"ò*Ù¢“!‹0ÿL«•µèw.Mk¤bÔƒ¥x4ñ Ûì„#"¯Ø’€ÙS’½ ¤ã½oýÞ R.¶h±¢È …¼ÿË›,™ªv U¿ì[O"Ò9ŸG7‘IEm}Uv;:r‹ZàŒÆÉÀÎ9»èó{ôÂÝô¦ý?Mõ aõÉRA¡ºí.·ßî2Ѐ@ŒG#Ž_/µÀ?û£Ùt–5ù‘»dê¢( nG³1Ë=œ×£Ÿ#Ú³ôXmÌúL6ZˆŒ·ædânyà´zŒƒªMãÈ ?„±Ìì¶âZ¬¶B-RÔXæé;X`gÐË +ð±Íœf”Äý3Þ»bÝN3zÕ—/xÙé' ÄÇ%bnE‘˜Î‰î§SL0ÔJB̺$Åâ}O·ðRŠÇšÀJ¡¨…ÜŽªÍ÷IÈàï ‘xG'øªðB“M.E{”ÓHl0Â1·¿Î3µêºSÑK-¥†NtG‚^ØÕêüÛÇÿ§MÊa"> %2 2íɇOƒîQNçpJ]æÄ‰ôáj©4"ñ haÉÑb$“¨œ#ñÃSmlÌ)nùJà™‚/‘(«•!kYZÇ’?ÅõµF#O¥‚Q>J$hÔ@'M%‚AI)Sõü¼,6ï’Ø /‡Á.¤DæÝˆŠ!H¯Ý“¶|íÐk§ÞM g¨É‰Ëz»Ö¬:P[ê¶ð̈́Ҥ!±rtHæhâS\M¬ûg ë Ú­ û¡1ÃÈè9̳WY/ãŸJN”Ö·Uxvg5äÌ!°Žù—Ô?€Pr|Œ§–HnUl$gYA/«æÇ$aŠbšqñIì}=.$Y#ËN¯KçN+è¡“—óTÕÆÃãh<íFLè{tT) “Ôf–c‚Éw4ÔÌl\·¡ƒ–ê.µŒ[(R µdF¿ ]×ã¯1{•uiÏÄB%DvÞd Aö˜°/ýÅ {l ËR÷øØ‰¬ü:Ùš…m1r…N5„—o*‹y#ü}숱qÙ|èjà 5<˜‹*1ãŠÃÅùÀ1¹’³Zlùr¤ZÕ’©„+5ªX †Æ…¸þGÐ<8Çz-×…$]+ÒZ†ù,’\•,-y½I^qŽ·¥À9îÏÅÞΣ+‚,™1:ù×rb#œWÞ µÀüóqÖþaË-Zs•_—‹è¢,Ýà“ãa|Á\¾Jº“r2Â{@ ‚„öLÆßNï¶ý!î­é.¡¢¡u@RdmòðÒ•ë“þ€n¯ëïj½‰’[= ª©”E¹{Û“~ôA+­]Ù>ÿF‚ùHé,qSÂ^ ¹P^D•©O_‚¦Í=ËYþF%€G’ÇÈJ¼‰bŠãLÊ™î GÐåû`t¥ÕÎ*¨òד)2½ÌùÁ( $ŸX4ñ12w+$Ü„¾·]ˆ€#Œ 9)ÕH¤…q³Ùx?:}ùamW‰Hu¸ª\ ­Ò®ü‚®êo½8®tÑHE Hj‡D£ºá–°;ùÖi7¯5¹F6J¸€v[…0Å-üêÈó¨ò¯Bh u×\®hå𯈢T›?ÐmKéçÿAß0×O$µað‹L·þ¦ú&bÑèLqîã‘à9z¿ùM @AçÄW_>~Gãˆ<ÐÑpÖ›æ]m€Â9àá[`ªtÙX¥“*—ú‰.¼ç Ϋ%DXÌc— HÙ¢à“}³,|§|Z#åKê@QøßGCy¶ŒG?CûÀJ—õ[#šæë;óð* ¡¢ßÊsÝÁè>hÇr ·!`3 €Ÿ„·„ó‘UÍËVµíÄjÙH½w=X³údŸ“áÅý蜂ƒïîqQ².y¸¦1Op{zgH¿¹¦pÁ1RV[‚ RŠøvOíJU©Ø9‡3£m1°y‹¹*6au–;⢠è D[Õ „˜±BÍlÉÎV–‘Ëé:®ÝÙuZÁ’¡o.—ñõÖ:/ôÉ€·Rå WqŸaÛŒqŸgƒÁš¼àÕÊiK¿¨ð4‘¡ > ~x/‡%ß„%¯Ÿ–í.ÀÝ«˜DºV&4ZТðɺá çÅ[y åËÿßVbQ§D¾"yêê3ÍÔã–y‹hZ×pЉɷµ¬v4ÃÐ ç ¡зQQ ‚”³9ËnÛ’&ž‘¢X—“°¶3¦~ˉÿ›2ëþ?ò°²£.‡8{¥˜¶{ÒÉÈX$k•Þ­éë—l–Œ·=ènh+`þ­QR?I²ÃᬘH6 J’@¤J‘Ž‚eÎtñ˜ü@âÓ?&Ž.f.H²•†orÚ!Þ\üÉÑŽ%Sc“ÏR£õº*x1_×l½%ñÒÁà:Åu»ÃcÛ¯dÃy€¤dæ±YŽeU{ ŒÐvJ¦ý»M†%†HNœ%(¿“Dù³°Þ#6òKɳËt É¿‰¼ÂB4²//@/¶j³çÔ˜…a`›À‹ÓœÍüZ*,½ŒEç`긩«Sй˜ØÓ‘¦ \z—Ü:›¡t-”e 4=êOŽUúÁQ¡–qdèp5Vã'Àlc×£íÏ£7œG©‘ Šãd>ÉÚ•› ¥18Í;B*¨ñ6Xýa~(´ƒPjíPyC¬éã߸  ò\—1.ü}"w<¿Y_W1t½~,:hº¬É{œ7›L€nÓÙsßN•ƒq‹hÈCôÔf)R]Ù´"#Æp 9€‹é¯×Î9LÞ±2Ž$‘;UV¹êú*Ú ÑËoïÊådSì¦]êUö”M{×8„——Ðò®–Š{PÌ©t-m-Ñ©ÎCäl¬dTr-Ê»Û2ê‘Ë@šÆÊF%‡(nNñ“4ùÀN|ÍØ’gGk{¯nwFþ&-#ÝòŠ{GgŒê®ÆvöA•ì6£•öN¢€È·#=¼ÂÞ~ÀF=3Ä$ÑÖÊVkìbGr6çí5¼4¿s«9ö* 7§çcÙš]û>Ú.ÌP” )&r‚cHI†ÈEÐ..%¯PüIUeßšŒ¥·v¾¶3Óe@?Šf‰uÑÌêŠëçœÅ=–/RYV´ÑhÆ QzåùhÈ™fôn‘Ü'/Ž9±½ÇØø±œ‘ßÐ °ÆW¥ÂËH‘ª ’‡‹}ÌbåC¯@Aá1¿1DŽ\à^c~ÿg>Iñ¿'/ÿÛó ›[%Œÿ½¹µY)K[ÿ»RxÍÿ÷"ÏþpüïN(þ·3æ· í¿‰ Çü>‚: »Å ì÷¼…ÿŸ’„>•r¢~Qßï6åk[¾þ._aÝ9XÝj’5AFÕ¶, ~éÔ›E‡‡±`¼ñÕGïÏ0ªD¦’yÍôIÇcB3±ôèÙŠ«X ºxÞ:À¸W¶#Œ«]áœxâÌ‚FPñx>a.5ã3Ÿ¦¯ü»YùÈD£ëŸâ¡t‹V¥êy&=¾ö¹<ýüÊ ¥îIPŸJ™9`ŒÑ1@ƒoãB° ±#TÄp4F Gà vy4~ºš‡“¨[øþaýȈ©®b§¦¦c§+ÝUÛ^B0Œ0êG¨ ßãD~öÇwÎØéa Î[‡Gm…aâŠsî¬vÕt°ÐIuTÆ,Iã¨SÿØÖ?¢Î_‰®¸ : +º! ø³q‹Q­8 ìHôY÷ÊØ#…m_)ÜE•ýšfCï~åý GúÄјB 2ª˜Þ´qˆ&»aºíúžéÀ¿ÊZ>GµÜ$„"¦Á3îßÝ;+´í¤ßD—cÌ…ê_³‡!Åyhj¬¯¥FóŽè… mS1ÙŽ ¹­!º)4) ¡qòD1ˈíP Kx"làd¸F+©_”Ô—aRÍ#õï«!õQ”Ô— ‘üOêËEHäKè,–/CBI(Iæ¥C –Jp ³H fŽƒ¨×bÝÀCµâ•ˆÄ¬"œØ€dÿúúQtwT'$Ð¥#%uV‚#(I’Õ}äme¸ºJ]±°¾‚2çWÙ9˜oZ˜_…ªDŠo©âÝÌ•Ž‰…Ñîñ3¡ ¾“vÿ ÃØV0>…`|Šƒñ)cGãцŠíOFkµ#¥1\ •nb׺ؾišµšÑZž¬ut 5.?£ô×e´tQ–þA©6~7ký­U’µªvUwe³j¤ª«U¤š‹d›Pm>1á„XIÎ ±pÚ %\™'Ô\w'ŸfxUd´ll^hɱÑÕ[‹‹‡¯&ýR,D|¾µ¢‘»ˆ'j¡„JÔ<%§ÅÂh’œZEŠ ‘ܘ)çž”ñB º§&½PÂ.&yÃH³ùÉpF.‘úBRǦ*̹&IÍ3L˜•ŒéâiÈèÕtòIY4„1Å}µzIp•·W–ÕôuÙ„/ÓÍ⪺©p5ï0r0ÂF>³&výÄ_ÿûüõìi¿4–â:t‰ºTº”H9Ú¿ UFÀ+ª¼yN7/MŽ)šrM(®î;û\~¦>/³P¤ïzŒÀyg×+ÏÔõ³öøæ3õ:Å$6“ëóLã-3ËÎæ’«»·Êœå݃õ½eneSæ’4ÑziÁÄggÉ^½´PÎ@d§ ÚpE0^Eò!eëHŸǨۂíçÃèFß=[×y‰6’2åD­(#ÑjR¥ì(ï¾Ò Lúô: ÊŠòë<=ÁÎ*2ì<-ÅΜ;ÉC%³ïl,–vç‰ywžœxçé™wV‘z特wžœ|Ç‘}'y°e^ž$d‡­_A*žUåâYQ2ž'fãYE:žäãYUBGFžÎ‚yÌ”<æÔ°9OÞ"؈dèYMŠž§çèYA’ž§géYMšžeóô\k:gð‰_ÓŸ˜»g©ä=É(ËH·ÚÓ•^¥šseWyj®ž YËPšU¥ÁÉÓIÎB`{×Óî^-8ig•L?&îä?Ò1Š7TÅ0SX@dz—øœ.É#pô„èê­eàôàLnCn-(G6ÍP·2‰ƒ1¸¤ž%Š1ïiýé\ßÏÆ"³÷¸xÒßYßdÝy{Љ"¼ ’Û„‹¿;«³ÜšìgHóX ÏÅUô9¶whrŸÌ»|NßTøÀäšA×›3GÎý…æˆòd'›HÚ£UΙ *™¾ç s$!ïO$ò\=cë4¾‰­Ÿ_=­uV¡èî\L¡ÒD\%6øiþŽmÌú,F{v6§ž€ÍÛ€>¤`1 Z-``[ö„2'ï'{òZõC-/2{?•žµÃ¤Èôæ÷9t²Š7¼†>ÓëÚÞ^õèBéпFuxLÞóÂked1ƒŽÆÉè¿%“I™Sg¹öB ‹è!Ÿ¶n´‰Îž›Ë³µã&¦B6vÏÉF݈L!÷%èë±É¥ËwÁg¬w•DÎe!H‰èïÏBë÷1 D”°Góѽ\ÝyDLÈ9¯;K!rÀ—-ž¶u«çóq"ñ~6¦¨Ì7«DF¦LB¦%Ó@>©\†‰°[ <•U4’½+ÿkO”×Ée†ÿŠ·¢(¡·ôr\ˆcL©]Á«÷ô´’—Ðz2œ}æ{Úõtqt’ 3‰&Ë•u–¨šˆÌKw¯Ä1™ 1£ÚM`óSB>5'¤™2a9U¤›cçäˆ4JŠ oWÙÿƒåZ¿w9÷#3tô÷Ò®²¢FÛÜUæ™èo;»´?Ƴ>ü–³¸ð©#åÃÀ” ¬©cã!e}Ã+ïÒþAÃ8—0B劀OÐéHZ#æêHš#HoëÚʤcû&ÓË9ü“A%ú< 0€ò©“g* @¤Yu¢!7[×Ú¸tÛÇí þÐTtß¿N"•‹ÊEê]>¢D\mØÜE®h“¬`‹]Ä¿ŒRa½È¢•ò1}Å1 ‹ÎÌÜ(„PŠDX7o]Œ(HˆÒ-}i£› œ¼êl¥ ä*M•©T–M“©t‰<¥')²”Ê*»â¥‰ÚèN{_üèpðC¦Ô S¦Fy¡\§f3q@¨qeü2s¥b§Ñ’‘ïÝ}-ʺÊÖSšæ ¹!eÚЈ¡Æu"i8]øè-x´a&¤”çdàC|Ø| -h 4~¿ë3•Uí³Og¾‰¬ø7ýk¼F40ý©1ÕUÐ/ól˜ŠÅ@øªºÏ-jº§OûÄô°Ï’–›sÕí4«ï»-ö9ð*þí¨]dÃLÕ!–K ûÔô±K'}rêØpþDõ-¦—†˜“N¶,â.GuJ'û”d²«N%›œHv%idS'‘å&‰gƒ6;þ6‡8I|Ú#ÑÏÒ5ºŠÚLL»Þ»É¿ÇÓ (ŽhRÉäýÄ>¨—ÿÏÞpšÉĵIybe‘E³Ã&]¿ý±IqŸ–,¶èY]UN ’[§É{d$ŒmYc[væØÓ¤„«>¨t²*2â±'Ö{¹\±,ð£)cAÈÅ7ÎÒO‹F•A_Š/—H–ç}ºL²vÎÙHjÙ„ª¡œ³±Ä•x–ç˜Q(J“Ÿ7yíþ)åª%½žœÐK×+ðk±˜“¶á$)@Û0*Ø-xV\Ìy+w„:'n •,—nçäU»ÃžÃ„ÎI çÅ“é>{Ý’L¤[^ß̉MüSZßI“M·äȦ[¶¾£¯ã VÒÓdÕ-%eÕ­È÷ñq¡JP„@R«¼ÐËf+Ô6ömsñ]ɽüEb^#¯íMÂ;§›/–µ6EBÙHÖZéà•H+‰«·®G‰h1‰%¥J•iiÓËîDAœ[ Rd¨$Ñ-S2Zúó¶Hi;sÒu?ž˜“¶óò9i礠í¯*­.¥ö‰A ˆ“ÈæTªXÙÎLV«ë1ÁÅó—FI¶Kw[$W‘ᶸ¹\†Û–g¤ˆi™¿¸rß¶<;yŠœ²iÊF{§O%M4‚©ÌK"›>ƒ, /††'çŽ5Çš»Õ}Øïµ?×=>±UÖó|(h´•5=’c6)Ál1ØÆ£1Äð¶´}²á3ÚrÝÖ‹4­c›ÿƒ¬¶1ùl#¿ÌËB«Òϲ–”†ÖÈ?ëɯâóÐ håËœD´FZõX™hù–{P™; ^˜“št‘´Æ‹å4N/fd¶\&S ý-$L|nâÏ£s$+ñ§s+>‡ØÊ韉XK¸¿)7¿$•’wxœ_J?£ÜˆWðm[’s±J•páºñù©ÜÉÿRdþsäòsæÍ³QHGm$<âÛm9q#Sí…MgÑÄ-+íã‘k»¤Æ »•Æt[Îf ]brv2@¯ƒ#K3Ù5žÁè@a£ÇD©x MÙÄ<‘Ô™gfib-æ3¾JÊ*·~’1 #² Œ¤œ`Õ¥ÊÄ­8†ð*‚{ € Ì‘zï*—¶à‘QNáe¥xuæwuZK˜ÕðlFnÃSœåqrá…ÚçâtÔâL•_âIœiý(§Q8y°Lz‰î!ìYBi©Ë\²äHnˆN±A²äÊ–%fåºyñ¯þe>•Âs1NÞ¨a"xcç—uæ2u“úƒ‡]j´ˆ*›ÌQRÌ’œBÔJúáÖ'/9ßzöIÒ$H#[Ï·Þ&ìÓ¥¥u‹áL éLšmrGæ“ÇÁÞÞëÛ´ƒûAdºÅå9&iè;s†Þ{Ž¡ÏW[ù4£‚:Oã†'¯-IC™³‡¿ÀÁå//d¤z ¾èÐz.aWK C9Žiâ"ÂÞ/Ã?C¨³˜+”Ãk@¸uï„’£S‘ÿ±}(4~êÄ!–úz˜Í/ÕJ±Âð`$³–vÍxúk®húá†(XÕ®ŠªT ÞGûêZ½ClWOY¾])«u/+»Ahÿ.M=GÂAwO7wíÿËö¶îíù“º[‰ï®ØB”A?ÙÀø(A˜þ$ŒÉ«Sí¯õ2L…xLn[ ¸m#nŸJ~_á†×ÿúäý•ûëS鯬Ir5veÉùØõ*ê+BD (€äÄ"™iòcê%rµSŸKòsT ¨¶5Œ¢ cîë¹ü\äÛ&ý¡¿cèì¸*ݺ‰0qh­Æí§&Þè§3t¾ÎK“Pµ¹xÏgK»!¼•ŒÙqöfÇÖFÍÆøÎߥ#º¶a´æØÀ•ãTå5ã=Rà|é%j#ÔJ5'Šs+J/ù ›gy*ƒˆ'J¢˜¯ÒI²J†×2f;‰'L.*7ç”ã vº½gQÀ¹í\ÕZc¸Ê‹ /±Æ’4ÙÙŸÇ$:,亞áE7øcކEçä̉&õƒ[ ¡®Ù“!('ùÌj¨Á‘Ë—Õ’n¹r°f}}. È9ˆ‘¹…W”Ÿ>¹š?lru~ðä2¿<ŽØ-é’”åP®”¡[ñ’)d ÑØ7ÂA‡Ô8@8•ü‘®TÁTÒ«Ô‘øÕqR+¡îX^úÑGzmmG¶ùüè;·iû9~¶ÇÏO XÔ?I I°µ_*÷,âÇ‚[.i¿’Ì7GßH¯3x6aµ-®gv¶'?¶–¼®š“:~þKñc¦~óç[W½-¬ååS\ª¯è°¨…Uoi×ö] ksÙ…µ»°J† ÊÅ­¬å'®¬ŠãôT àº:³‚…5“kÙu5'qYUýLXU¥’4gUýÁSëW^U‹…­ª;éWÕftUm?ÓªZô殪;+\U‹Ñ3c8$Á~ʪ‘ .ªêè©Ñ¢z‘Ý8';ÕÇO ?ë5Ö¦‰™±G»ÈzÅÔ[mźE×峞68ãÕœ@éø8¦Õ¢?ìOÿ´%>ûNº/jÉ•«ž…•6ñp”ßÅ3dAßÛÏm©6κ¢7Cù‰‘Zì^b²¡P·›6§ãÉPÒj%ˆ‰Ö"ÄÜú‘¹ö¨Nä‘v.,=Áã{µò¶Ÿ‹„¡yÔs\g ïîEÚ >ñTœ'iê=¾HpLa?"—ÂçùZ.Ýr©˜$—lºqrižÝÕ–KJl?Q,qÖœKúIÅRó—KEK¿SÎàä|ÁŽgY±ÙßXbé÷'ˆ¥èGX¢£”^,C;¢¹b)ÍÖH¤Ü¥‘JåÕK% ’ .U ±TŠKn¯o®[ 5nHÖ(°¬w ÿ©$ƒ19dÙ+Ýó;Ûp/~MaPÚM›Üñ¬LG©þ„:Ji¾Ž’jZ9{sV•ãfUÙ=«Ê?pVýþ:«Ô“4«Ê¼ÄV­%¶úÒKlõ'\bËó—X·Ã'þ£F ù¬ø—í‰*lôÛ1Ëßä›·ü&:88V†Vh={ä,ãÉ©ˆ¶Ì„ ôesšã9äl‘ÇMK˦#QgöðÐ÷ŠŽó“G¼ wg udžlïOÛ'U¼¶-“»í ¾\±¦#FÓDÚÙ¸ _çáÍ;±s‰ì¶ÒX¨€¤® ¯žìeà] ¦[¿[£+uø6K¡bHŠGÅrà¢~é¯Gã1ü2ø¾¸†Wû)øÆ #½&j}Ž?Ja@ÃÂYNz…|‰Êa¿l-£ ôË¢û¸åècG®çtÖ‰+Fî}èM¯ï£Î Á :`W_fÊÙ¨R®þSOÜþcÏ ÷Ø»þ²QÊß!ë6Z‡ïêÃw××÷_&ÓüíJÚ(À³Y.ÓëÖæ&½Šeù ÿŠ•x…J±²å•½ |¶Jÿ…•´>ç™M¦½±ÿ€™>é=Œ&qå ØíjÈñS=ÌNóZûôF¿NŒÖéªHÝMÅ'R9Qõí6)bãe°Žju¬Âüï`D€qàÁÿ"üapP†ÿ•¤ã¶*^©ñ”ÿÔP/àߙԛ®æº+6­5·Ù¶ì͆éŘdö0Õ›ÆÉY³±ßèBo[rí€U³Y¥èü¤vªì‰T30ºs)ïeš'çÃþŸyrwó‡Ċçç‚ï@ÅíÃÚ;ì÷DÍéõs$WEsz£ã¶FúæÓ¦ù¼ 5$îNŽlJÊWQDJ’OŽkÂÀ+æ1CT9â…ZÂ͈…Õ…´#P®Šuµž¹WF’¢]}ƒ¯­Ó¿eVtÅPõdɃ¢zSRoÊêM…ßÄD)eT¼m´±®øM} ˜²,ÌýN!ó©mvÄ赚á¥ÒÕ3Y æ|wžá1OFâÂ(O5tè*(`Œ+¾=›q[d«æïYâqЦJ )o•›¹&d^ †ßˆyTï¶Ämã*f*ç¢#Î×…J/².#g;òK©˜ßÎ܉„¿?<øëã*á¬èz&’Iòvû˜ÛwFÙHIAø³6PÞÑW 6n|c&㨬"^RCã3èQ-ˆ!ÏH>Žý Ì ÎÔÖ3ï ;¯óSG1ý§úÈɤ©úÀ¨3™bÂj™‘XÜöÇ:Kópá fCÒå.˜ ôj²#ÌV=7Gæ )CÙáuîbÀ˜)Æi§œ#¡J/ |$úµL@ÌÝ08ovÛ¢q<ÃëFèÿsV覜VlJ’ûÀ™V-<ÏÏsæ€Óéâm!œõðOŸ³ªôiê÷C¤TÓë !R òÈÊn"Õ®"i¿fÞÔo‚„& Ú9EÉ?Ä\ÙN,0#rÿNñ€ÎFÔ»¾ž{×ßsìesÓ¿½õÇ2ù/F$TŸ?µS7¤sU¨eCö h´‚ÿž3X3°Êrp`Ì è&I,pûöÿ óIdÖk’ÙiÿôD–x*OäšÒ–, Äl>cÏÛjy¤¦*^ãÐ1‚UrAJÄÅë-¦p†ñ TGáÔ8ßÄŠbûFdÞ ×&oø6,É™hI tû†1€ Pa¬{ è(5ÀyCꢯ)i‰“J)Îež¢ ;å™™ðú8•¶m‡Ú¤%£y_uA9|dK:[“ XÊG…¼¥v r±½¡&™6#ÎÏš§{kçk9PýòÊ”)¨]WÓTeù0ÇÇÁ(-G3£¼a•m,Ù‘ÚŒ·Qæ…·z¦Òñl•Ü–ÙQ wèfâÎ.‰|Ç@ž4œà9hQ5ˆ™t4ÒWWqH»ëz².LÈ Ôd£Þ_îê-»zѪ^Š­Î ªÅCUÀÐÜÈš U…$‘™÷i20CÖpj]tÄ…‚¦Ê Ô-ùô×Î_6%]~=ð€Ó‹ë²7üªÃº†Ùsºœ±k6éïLˆùþ‘ì0N•NTgÈ©Ž•³Æ(jÝÃ1gÎÁ¨˜iÖ ¥»ú¦Œ2FEÖň3”íQ¬á$™GZ(”¤Ùy3zè1ܹÊ~I«¸ë=<ô0ã¢&ÀV–ÿ7B#ÓÏâÑK_gà—‰Ñƒ×lì”J}k|©Èž(‚x€F–Œg<ñVlsÃëëÀ}ïð« þ"»¾^Ž?ωyX ˈµ*ÙÔy2k’nK’‚f3x)Äàóñ§+£âÿ‹áà hˆ±ûô?@ÿ?ñ6„~Ÿþþakƒ(1ˆ¢‘ !˜â"dj8zW,|ÿ;ëwÛK(9©ªÚžÁö¿5‡n ‡kÍ9'9…ÒQkÐh—ÒNwÕò‚­^U+ ¶jTÝL)­íÚ ™ãU¿¥Z§#ÕâЇ›þS€²ÁºÅÃ-q \÷ÐÆ!UFµmÃÊw³l/¦¾oìþìûá=B¦h M—ÙüÉ÷–„1Î}=VÛ¿vOæ¸ODqsRö×R™ÖMÉÈR£1VÖ[÷{àÁ&îSØxTi]ûÿž!ˆ2Å&VÙL)•2”PßûyµB¹%Q‚ú×EÄ¢®ˆšÒ"²ÑU¿ü‹ÐñÂEG£•eèˆÒæ2t4êoý"t¬ºè¨ûy5ÕFÙÚþ¢F {RJ&Š.Þ.Ÿe£•E¥ÎF´Gõ”óJ&W`&´'FøyÝšk³M­a‰>¦óãFÕ´,S­ü†0`‹ v`Íc¯l™ [î¾U6Ñè6œÐØW‰ÞÙÌ5èOȯ, 2tbî¤uLØaši{Œ?¨äÁzç[ušR0BÆo›<ö®Ñ°ˆéáŒ<iqžƒÍ 2¬é¤742Œg8ÍO†LÿʬAÙCÆœpO,…ÌiI{èlîüЦbi¤2•ø&Þèl&od„H9XÝ”:ÁÇ9«öïÐÞ¿?ÌÓþã@rçÜw§O>Ü}W¶žèA˜CŠ,ϳ7è}tË  =7ðC(½4/þ€Œd•·†©uØ æI§°ÕOGhÿΠѸý)Îo\O­Ý•´ë«ÍÉ}x‡å‘tÜÅàžfà÷à=V•h·Zr5´Qc-"‡>‘OFj0f‹U¥âà!q¯?Ä,êtæMès¦o´Ús’ruÂxí«°à,92E»V9&_útŒÐUúÒ$ÒˆÙ%VxÒS[³4ZTI;‚vC„–Ô5¤%´J%À3Áo3HŸ‹t1Ôonúxš#ÓËçtm(gáöZ_Ÿ+÷³ÀgPÚðHòyŸzX%¢Ú ú2".Ôº -ÑÛåFYYäkäaË,ª°3ôJ!G„K#¢\šLFcg1Y#Ie½µ™ wÀÏ=³¶¹X°P±;˜’žûGŒ–k´.ù š¦ŒqJ=d~þ† 0 ^’Y#£#2AòtIRÙÖ—¹[i0AÈf„(Z,dC(²k²*ecd¬”ùCþà ¿¢,þè¡"‡”“ª!}Çç¹Iâ£l=’(ý.á;¾£Ô¹jGwê¹Sïó4›Yé™ kÁ @û³?ýê™ '³°SùÍâü[")›¨žB/g(õFTah\LFÒ ·8ÑM(Pit£¤•…r€'ßÂ> Ø¡gu¤çÝx&SNÐt4¼Æ(1ì‡À™ ûéc;a¤ÉÈ!ûËNQÈ—×÷èÙ‡òÑÞHGˆ­ QÍ„ Î£oåàò~}Î7¨òùßúSn}¾”\ï›Þ ô ýoS:WF¼åŠD‘º¡wÙ¸DŬ"€d4y¶¥e:,ZkÓØÑqª on{ýª·ò,î 9ä¿ÉÞ½Ð$\ûŸñûÏ —°—–3Q¹ÑÛ”*IÓ0 Pr »‘«f®ÌÁ)ô~졿ݤúgCÍ*¥Ôrè`–?’Î+ ?„W(àd²µñš2vX(LU+ÈÐ<îJYÃüâyˆ'7£lØíãDZ^ÀÕ ”»òùš¹ÈÎ]vߟ¶»íj‹¶'jŽ ÷‘EîÐ5„é+üɤwg‹Ó “Ƶ§½Œù"ÉD^ÂÂÞ õˆ ê4Gå)—òêëhü…t;-¹”ÿ( û¼5î1Ä‚ÎQìÔV+kÛ™Î'ÒõSÃÑŠ] Í#bœtÄ@¶x>V,6i"V•ÊÅs€c!¡ö®§3K‡ä9¢7â"v˜`xop4‚.¢³f˜ ÌZÌ{Š(þ@zàš¬\oªgrô¤§¼F%£È¼Î¯°Ž½+Ú$ïT®®žìSi»TvÂ(iž çè” Å.Š‘ÞFŒ”‹@d/bú°W‡¥Žhè°¿E§®! ÜC!"EP þbÝÞn,FkƒÃôX† ¶Bä;¨pà½,ÿ/º®Û›ØÏ>µ“þÃ`6í ýÑlbÏgÚ±^™”û•‘sˆ »k“Çú/c•¹¼pPü騢>ätJK*ºˆP !+”~"°‹Q¨“&”pK®Awtò\ÄvrÁ¥Ðè'݃Ð͇{k{„:dx+ÝÐôbÅh.³Xñí(r°Q^"ÛðØeëâ o5ð¥}oÁA0QÚ®`÷A¶6a9¨¬)ahÄ%ÊýuK­:îo0]§s€5×,óe‰àzˆ†~jÕ‰¡ƒC)u["Äì“Ùç ÞýÌÝ9éð[‡)ªO 8÷Ó{Ú׆Sžq_DâOfñ(/„ žý“Qs4d’™”‹)—C3Ë(ú³ë{ºäAÌ›cDX»“C{d<àCŸóÉMRPÒXèkPí¦þXi±/¯>]ÌQŸºÕóÕOXyirÞž7+¬ñEg÷ãJ„Iûâò0ìR] m{/y;2ß°ó˜òò>m?±+fœdÀ¦„Þ¶*ùF«JÛc¢)=€Êb]´ðdÿ­(ª·ëbp§¾,É/×׋–^DÇ_TfO ñ̰ÇàKH'€°‡'åâs&gQ³T¯¢³ Z!rû¿M@js]bW‰¢œ}"šAåO G‰|;ùTÚŠ1Ôÿçÿü5Ð|} FaYf½âfdކ/ÒHïZv¸YZ"SÂØ_+GÓæ½› sø®÷ç¨oÙ¡Õ’T4£^mÜbRaº”õ‚lùhš§ÇjbÃÛUVúÿû§â®À°¼Ò{#òsiWÙg#?Uv•(òÓÎ.mÕÿ¦Æù¡·­“ê¥:ãÅ÷¨ì0ÅÒ.)PĹ*†-MGÒÔ¶€Ë|¯9™&=§—gµÞIé$µÕð4¡Û<ç­“ý¢6Õà… ²ñ\nüÈ2¾Ù¥œe䊊B£¼±šÇCÙ¡#ÍE”ÏŸïöœõƽÖbtlQ´ƒ‡þÈ¿ê0A˲œbö´%7Û¢·nÙ(íô–¦~ýØÂ” ä‰BP‰c:ÅV¢y§/¸äp4ø¤èº7Œ]ÊÌ;1hǼÅüÀêOÎÌÐEBöÆBd:šBGcÑ‘° µæéþq£6]ác›`ðQ¦Ô[¶Qçƒñ4ñ f:² w;±Ó‡®Áý£–['™äLäûÞŸ¾4'ëúô 7Ãùé)Y=}¾`éÈ6æÇÞDž>n0ÎX)¯±ÑJKZ†ª¿0\õ5„Ó ÊwÔz/cœª³{º—=…7'%¼ Ÿ÷¨o=rhVHŸ¹ Õc´PmGfÈø!ŒeŽà$)®Åêa+Ôâh|£xú”Íô2DZ͜fÔBúÿf¼wEJ½ušÑƒ¬¾dîØ[ÅcïÄlãBKÓœè~‚wõÆáQ3paðÏs .8rÕO†ª‚vUÈêÈ{ é€BtúÀ œ¡d±-Ìá'+Õ[”8ƒ?Aãô‰>&§àì”[0 Û}‰n†~ -ðkbÈŠ}îU†úeÖI ûqTm¾O úQ*!ö/cIÐäBÔÒ.9"ì·«­ÃdQ‰ È}2´z3V½iARlð'«b&9HK­z€‘„ºíßÛÕýxR5tÂFSŠzŒG,ÿ¶?a°L,—œGÆ(‚½&¦ ؇ÿ ‹}@mU“k:³-È§ÙøT?€zÐâyƒ¢ßðg~9EøŸÝïDFLÂàIõˆ×ñ L®¸9Ö`ã´:gMŠ-Ç¡ïXŸˆgÙj­Ó=ªQ˜¿¯s9¹hª%ƒ^ã[ä5%g¥ðã—¿”Ù12¯m9™ðÿŸÇ2N•œÄˆDATPôOEñÁƒùblnùð2 &Tã•(ø"¡*ûŒ«’ñ„72¦E{Zÿâ­+ïgÃk »Üßfµ®ƒ4:Úê4«'ûG9|mãÀv:—]•A¡~ 3¸eUap¹˜j ØvfŸµmOãëh€rµó¨è[¡£3ùùŒ?Sà$!ݬvêÝ\to%Í:|U-'¯$"ÛO° ƒWÆ_‹Æ&îf'êpÏ€b »r2îcN_Pä;ÃÁ&/Îe½]kV´n 1h8é_ǰF»[ìýÌošÎQvI>‘üÁ#·äÈÔÑØAoÚ“)¨ï¡€ZÕnUØ1>,k@5 XÙþW±ÿm'ô|;ö?¯ Þ%4Ó•›6ÿ%ÇÇø¦Ý’[FuôZ@ ÔQ®¯ûm~LÒ‡œõKвk²ù׳)]°ëX#£4Àcß·Óáõ½ÿ¶Nßw1˜1kä¡cµ’=!H¢¤C°4Q¸Þ‚®Úxx§èLAzä»+ ÓâÉœÃky8?í<ƒLB˜à'HŠ@&£jZɲ”5–­9Žíƒƒßʯ]qƒ5n ¯ D+÷Ñ{R f›5Vx‡ ã;0žú¯qÐuO0#”=µ®[YncÇ€:Býj–C²¡Å9К*qãŠÃÅÙ¼–ÜF)\©yPÅ4"q•v¢•ÎçV*Fš*ršà"“\d×׋Ù_ZÖãÀèÆíÜUS:6ö5EìeŒ{Ɇz#ŸZFé µÀãùqÖ‡ñd[ ¿««]®q­ļñ§í¼úÂ`X˜aŸàÁVÒÌ£-þž\¾¡ Þ­·ûÐÏvM÷µ:½Á*j£%©,ÍTTÕã;_xýqÒŒ†w]WëMü5³Z.tSMµ«aUçW«›ÁOU¯ÒgÚ$jTWuî.Їà7Ù!þM¢¬hFq©qSÎŽõ9ådœbA4XàaÝ•ºØ ‘)ÃA6¸Íb!œ`‹-Z¸dËKÝN %|ŒtÈ×(¸¨HX¢!Ë;ƒµÃÞÄ¢#.ëPžò›9I-®¯Cmš’ÑÐà ÿ†ó=¡*m‰°ûxJµŽ¿×[ë\²ïÖí,:¼“’åK)Ê7dyy „§I\>(FÁá]8m»›Þr·`æû §õ€-Zëðÿ­'‡Â¨@[.=-xÄô!W‹ÜR^€Ðò\<ÀÛGµä(wuuw5¡ï®Šo=gÕH@ähÌéGÚqô‰¾5@žrΩ+µ\<eå­új"ñk˜T>†Â?íò„šÒ"ì\ Bèmásj`Œ\é•Öº*¡å›ê›È/ Ÿè`uD섬°JíQ}‡$±Jîy‚ìŒðVß6„9@ÃvÁ¢àK fAøNÝ ¶ —”£´ð¿=ކÒg^d†ðÞ¾Û½WÖo{ãþô:û!‚ئ™¯ïLï©PõŠ~+=Õñ8Öˆ±˜vu»öf¸6?.<·„ó‘õºvíÄ:G»ÒŽ»R$îSh ÎZs®Ö…¸çO-\lûBxþx…ð\hÈùylÍ?»qãž²u¨"nÎǸý¡&¸éŒ(ÃN¦ÿ7a¡’†””‹&~0¡ðA Eô-Ù¯J*©¬£ÊâÊdaÝL”uXOÙÜlxÑ”×®d0dÂéýŒ>S´e´DHÛ6¿p,ôð€éí˜õí{Iï|Ö‰JLf4ð¹3ÒEV‡pi¦#°C`yA:x- äˉ:ÜØ ­à¿Å‡Ñø/Ãà eTP^‘¤‹t˜µdç2hQf=Ò7BQAˆ´ÝÐÂ3 Ö•mXWöã³Ï¾LÈû´¶ç`©mCÄðDÃr,†ÊëD†gü¿)-Åÿ#ý?:*¶E´Šóº'ŒL˜²ÖYÓ!ú׎ւTÆlM'ƒpXØØ}fË1[2(ò‡ ào'!ZŸÛãJl•ÃôÙüžJhI=MîçÖÜ‘Íé÷æ"ßÇvl³MyÞ‡‡[É}\ëªdE¥X²MÍ­Ê@C·ª0°†ÌYH6‡ u:)I½Ö:5¨ÜXŒÌÛiØéoJçVL†ðç óN,Ï"a1ÝÓ7¿øü=ûó×+¤ï±à'è=›¸zª‹Þ[HŠî5NÿT.7Xhm¸“ÉÂEm«±«lP.¿ êÒ¦Ù‚ZDeÕ×dR6w©=óÓz"Áäç÷² ˆ…jà[îµGÙ¤ì4IÇ0ó‰vÒ) QÆQ ½QŽîÞÅ *ŸšgNh™[#Â`¶BY;Îñ\Â,S”tºXÍ{šŽLÕñl¬ªöÅðûìšÂÊÇ Â’“‰9fÐ:ûðl;¸ƒ7™ *ˆCx$µXÅKn-{‚JR'HYaаð¿€ìÀ¿4º+øºÞý„SÌ‹º¬“/LÔóÜ„¤¾¤Þ (¦³Ž\j‚:)sXÅÈÜ’ð¥{ –}|ïUxoâmŠðYmà·® º]ëôª\æ½K9Æm.º—£‹±H^ðæïbÄ“72Â`æÈ¥%†}ÚÏ”—ÝÏ·~)RªbŽ–yæØØ¸‘‘VܺH¥ˆô‚ˆSD¬ž Œi3ç˜R$h ©0ˆA˜Ë4³»W‰óu«e·êÈaÿ—ÈÆDŒC):+Ï4ãgÐfò R;´ÊO=ƒZ·4çH<à BVˆ°I¬Ž+Ô\ÁÊÂv¼Ö*’×rHq¬Ä*Ž"Iw-KÝѪa$"ãÕ ù]`€¶õt:¦‹BrÔE_]¤2¿È¦»ˆ{Gz Çâá ë7ýÛ[ŸâpŽ9–Ž­²lmxÛaã© x®”),ª"Qõè½ÎH¨ÀÞ„£} BæmÂê¾wDwì]_ÏÆ½ëïa…é¢éê÷ŹëÛF3zOð<áê ÞŒ‹»\§eëVøŽ%†33¼5ƒJC tèÚUÓ@çÄZ]ž®PØ/Ãí<§#“ɵ,‘'ñ:‡Œ{ö©-o®¨ð_©¹ÒÝCkžQ¾K:Ts0Ø7?çÜN¬XÆS3`I§ŒG ;¦u ‚±ÞÚÀˆ Ya¼4õ–ÂQ®ÓýŽubïâø„ŠoPÇìúºcë‘´¢àª±ó¤UcãÞ<Ûø ¢I$°sFΟ·öª£Š7KDd0½wLÒôr~k Ý€¸se£l'µŒ²Ouç ¨¥¥H øÁТ©ê%Ȧ¹æ¼4‚i%¦\I¿öÑÀs<‡,^,p¶Ÿl5¥ÐCËX@K¶" ̵„ ´$åŠ]¹èºL•@è…l!•ì~„9^äý[9ÓqöƒÊ‚ÊÎ5Ê+$…B8Ì}£¹Aù™8kã?B#V0ìD¦M‹&ÄEhF®j ©C…®¤98“+ƒ¼¡ ,¬§‰£jR´3å9jaɪ8Ã(Ô´;¿(0.ze»~ÄÖNu‰ê.2…Ì/mQÛX…"ˆvY[\J\@ \•¬müÚ²ö¹þ0ŒÒ&)ÉM.X:ÀnG¯g9ÀcÃÎPg§5dIXÁ ÌU˜SöºìÓññו›±Ñ¹ø¡MI[š”,2IóÌßoÈwto8ž[QÆÊëܨ×Êèx‘áÀÏIK!²,œ½R@´h¬ÊÓsM´s(õÖA´sœ¦A™g#šF¥åÆäÙ‰æBÌm Pè†C)¥Ç+Ç%S—~qük;b=‹8cR’AK«­ƒhtÀ_߆¬./pc!Ã-gŸíæBÑð… ÌöóêB€=¦œmhŽ>QÔÌiŠd°7•ÅèÙ$±Ë/-^ÌSZ¢É^zAWáb|¤¼‹ÕÎõ¿ÅÄu…Q7|çèWž¸¿öθøáEÜ—}õŠaǸg¸./=sâ¶ì‰[L1eÀ]«çŸ¬®¸j²†/lýÊ“õ×¾ÜU|PäX »¦;Á\(z?Õ-–¢—ò·ç˜ú÷t8øÎ69N³‡éŽõzdÍ ßN]q TF- ÎõÐÄr†OE¦â(ïdgŒð®†á¥á¼O $f”òP·DF{ßö$ílâð…þ)żƒ×Ï@átQÿ@6ÿRÆ×ØÙ¯ånÄ[P¤s†>Q·È gØPB6¹xÉÌÏ » *¡Þ²/œ¢n.itiÆ_(ÚÛ|œ («^²¡˜¿"é.rÊÑ0£ðzïk(ÒºŠô+?±N‡"ÉïP"m¾ë¡Ð+Hô¢•lÉy\)bVL>ˆbÅnˆ"…'¢HvF¼jýÅJ]Å<¯ÄbÑN”ï˜("£mû&º*<Á G<ÉG¤õÅsÜqNÕC§SŽˆ±IØÉàI¸iQ¾íþ=¥4NÞx’@+’ébžXO ü1qô³€x)%|cž„ y±€œ‹Šz‘,íÅ/ )0ÇãS?sľHüÂþŽ;Ìz;…ê'y˜':KDª…@Ì] /2_ϺX Å® ¸|Øh4É¥;. s§ŒJh/&¬`…(ER©%."Â!ñ>ìü̿٠Å2æâœÝnŒ‹|ê†ão;’aµ†[ñâ—<]­?éšušeO¯y;Ž_5 · Œ_Þ‹¶‹oÙÐFº‚-›>Vç%~£µð"ßlD—xíV¼y3ŽÍbüÅ7ns|×øIº6&ݸ6{ŽËS*DwCŒ>Ù‚.^Dpй²3 1åya$:pÅcµgqke³¸ø<‹[ÿ³¸4džŸç˜ÅÈÇKØA û< ZÖ†X07patG1©Ìýɼ9ï,ÀF;í‰@y ãJ).ÆÔü}pâñA‚žºbYèGHÜ4ž¤³ Chǘ¹æùÅæÞVᇙ"WVæíXU¥ ~#¯³—’$ÝŒà'Q i¼£÷[ðÛ–Ä+ù¢?)¯kH¤ ©î»HôÏÙ×^R‘oÄèú/Hv…wô†Ì!{<¶±ÇeFO·g¬Æbe½û¹xÝýOR¹.¥àép¶¤Dçÿñö+çO8·_+#ÿÙÛ¯ÿ12?<¡x®í×RÇЩ¶_•_~ûUYfûU~†íW¨à¼£‰4G¥BªR^ªRÅT¥J©JÅǘ‹9ʳ7£Õ_ýÐ$62f)!hÔÏjÉ%çéjë*›+ÍJ‚uLó÷ åVš“rO¬,”[ r·’#fçrÊhâ­\‰y[ª<¿&úÓH‚ˆg¦Cõ|ºxšÞùëÉÖßO¼XHÇ$…2uÌÞHMÔ#7—Œ¿˜ÞQ_,®n.Œ±´µœR˜2b¯¥¢+‰@q;1³‰œ òÍ[~Ý:HöÑ­hŽF˜/bÿÞ¿fßwÙÃ?²â_2cCD=;÷1Xïl*/D½ï_ß‹Û^ö†ÇÑÞ Ò3"!’à¼Qd…‚Ùüa=Ï »¯ ÈZ·&ªO1'Ä-­ Ï/X•ˆs?<„xOÜû½LÀ9¢º7½i "ѦüZõv»#óE,±ûÝf‰´¶X­­¸]O\…ÍE+À»v„q½¦ýÞpAìÊ®pôü°úðèŸü›8§°ÈÛî~Çî†ilÝéÕ½#ðˆh¯O¾P_jH·a‘ ›(r˜05vþ›Í/$ùã0Ø^5IKƒ yÌ!uJ£ÒüÆ+DSÁvf½ñwͬ)5«ó“ ÝBÅFö†1§„—BT®˜€ø÷§í“*߉ýý£ãNwW¬QÚö5ˆÆ¿¡E{×þMø:oÞ‰KxÛÚ 9æRIH]A:~íeà] Öõ ~·Fñ<ðmv•9šÛ ™wƒ0VщT¼yåz‚™×˜Ç£ÏÿÁðTzt‚ ^¾‰é÷GLò2ñ}ÙG’Î7þdÛ$ Öl¬‰Î£Ýï ̵?Ù uËoïÊ8—Ì·¼“íà Õ„z•½yjW\f“©?RûCãOò®–Š{ø½?ýžÔZ´¥M£¥Ao|çç„ÿ§·Ü&½kÿÆÙXɨd•Ö(ºÛ2êM`‡‘¦±²QéÎ=øÓq>Üœߊ1¾þpâk~M¦í½ºÝ É@‹ˆ‘þxŽޣFuWc;{‡Ü‹þ5Ý’s·m¬´'9–nÉɲ§/›Ä^ao?à#Tì¾ðÊVkĪͤ漽¦ƒ‰æw®b5G¼iNŽqÙcosï,| 1®mèµ ã-„»øôbm»]»ˆïª½ãªÍtX¤;Å‚ ßBp<=댋œ˜J]Ýï )2¤Žf´$-Y’4¤Æì:$CN»Ü:ì¯ñS€È9ÛEo¬ç{Ž¢báÒD?‰OX½§H‰jºm „5qµÏa|û`Nèäçïâh4›ø÷£ê»2(ÅrŽƒò;ãnÚ׉à:ùðͤÕþQ½Ûýãü¬ «îÚùÚÚ.µ@køKTÅ ØhϬzáFÿ¢‹UÿC1<‚BƳ‘ø¹ÕÏ+ËŠ²Ñ:MBǵ^DQK@'¼l”#¨EБ²¡hj,”ÞIªÊÓHµ¹©ÎÒjëi¤ÚžO*ç’e:Pë ¦ÖU¸ÑΜFa‘^E*Ç7ê!¿dHÞ_¡Ë¼7‚·Tñ¯ƒ¿°fÖ¹èìƒÌÙ§c®õ±VWcÀB&kœ¨d´‹ A¨G±‘g.1eMœ2æá»*Û]Ôäq¶[Ѥ‰ÖTDv‘ Ú‚îU$!aä*ÿå®#W2'ߨf¦´ùÔÆW9Šôå_"Sn€Ê;*Ä@Ÿª¶]ÒuKÅרQÍ~ªe»ÕR¦o´œP»XPÔýZý=žùÜ«”$ï!ÉP0†´Xtð»{þ¼Û3¨!Pа~’(læ„Tád¯[1óÑ€t¡!U,œbáÄâtá$5ó¤—Ñ…höÕçV6oï/‹öÛ;Ñ]…'¥] íøhF‹ôvc7áýc¶‡e½=Äèd6˜Ò’¶‚}ÐcDá vîÛù¢lyûåZö åºWÈ—”–³½ej9dâ5u÷†“7ÐY¹Ÿ—ÆC.¦wõõÖÁ?ÿñú¼Ô3è&ûe£”/¾C[I£uø®Þ8|w}ýånð¿]Ih"Û,—éuks“^ Eþ\(x›Þfù^¡R¬lye¯ßßÍÒ?Da%­Ïy`Ó ñ‡ÞxÒ{MâÊA±ÛÕã§zxÒuÎkíÓsý:LÇãÃæIF´Ð™ý¢Ú̉ú{F[0ã;Ò¬•“–ý¤ É'ÕKÚ²TßçD þÁË¥M´-²Ûu“¢ÚªË÷ 966D³zVÝ?fg<šM1£DæO<éƒÂSʃ°±!…Ìù°ÿgÅL×ý È¥\ðÝ~oÐñ4ì÷DÍñþwÚlµª‡¢9½Éç%ÖèOÿá3ì}ŠÀÈڙϋì{ªã»Ùl–&ðÝ?ÆÝúa½î„ê.“‘ÉÓ’ý×FÊj3Ô}u‚"› Ú¯ŽÇ½ïi›Ç1ˈ2JyÒŒXÇ·­àí™z‰<¼ Ê쟞œ5ë—f™ªW}/ßÔÔ«úBIòKn%è3¾=›GоÇÏL+’öñƘÌ>+îÀEh2ü‰ñËa'êaäÿö¶ø±7ŽÏbþ0ºñÊÎ*‘Ðä6ÐPˆ´Z\/Ó>ΦY5fÝ{_ gÄNÀ‚26¼Câ¾3q=Âz‰ög÷\îœM0ÁÜäJðF⇿8p=d–œ¸éò4S2­V6ŒY€¶+7ðãÑW£ZK¶s²òv®GƒÙÃШy¢Æýù›:SÔé¹È>˜–öéH|æ½ 2ß»¾Gÿ’ÏýaÓ’šp‚Ê 4!6n%ÿÂÓ×ßÏê‘aÌ¿õf&70àüÑѤNÊHöìÈû<ˆ;Ìÿ‘h ÉgÇ‚hC“Ç„ùvüÞ áΟRÓŒ`˜ø&­fÿF’ž$”&ý;˜ºs»lõ鬩ߩ÷¤êªf¥­URKöw4ÎóP\¬,N'÷£Ùà±üìO¿ú@RÚ].ì€zM¤øÚŸP6£ïâkÈýÙ"ÈØ¿™¡™¤ÖÙäüg,ˆËYñºÝÜäÃùÖŸr?†þ·)wFÊ»3z¿ß»ú– S£O«äƒ< ÷½?±7Ð=ì’úò´\3>Jÿ0×Oïaw€v@žT*›\‰‘Á‘«jÑ·$Vx=˜Ýáñ¥3s 4­7眡k ¬òßæø0Þ¿É!©.ì‰B0™/r#Ü-9³d§é¨M͇ØS¡lF>EÌ5ûÁ$1á`¾ŽÆ_˜”ûXUþšÁŸÈhœÕK¦CxºëøGª:Õ÷O©]{RÛµ'µ}¹PÛe³*©¡ª¤‰¸[•µd¥%Ñ¥L¤à“Ù°?UyƒJ+V n < ”D5a„DŸ ˜[à{v Óyr;¬0Kü‹K€øÞoV»'VÇchô´–.:ý*±¾C ÚŸ²dç#q‰êÞ*S•>ë{˜.Y‹å•Hþ~VmWOê]³DF-™{bÛRU;ÍèìRq7šjž6ömu÷}£Ýé*­|ÿÚÚ·š:htº°µÁØÚ`«á²ë%Uö¬Ú=JP͵saã”Á¢›ÇÍ*þÈÇçøî¼†.—ÕÄü!5«’\iONêU~©ñÕä÷UôðlµÏ჊ãÐñå5Í¿ì·ZèƒK¯µ‹éXºÒ†$™¬§H*=N®1ª>À³«÷³á5's׎} ´£ìG—@ø–Õ¤ü=¡ŽÞ)-9 U›Õ£ƒÃ¾¶ëéµsŽD‚ nèxÂåÐ+¥[Ûq´ØÀã^B×®®g´­Ncßh°Öqâí_Ϧ=Ø“ˆÎ–p½ùSó©1D_Üâà^b2í §FþTdÆŒðv_¼Xä×4 䤪œ>‘WÌÈAÆgž!ðE¾Û>¯ëB¿¦P†ÚÒû]úœV'õÖ_o'ÃÑ $³þ¢ú‚$=E"\w:ð>aÖ¿‘Jj8y,¦î.À<“¾„†ÃÖ úyÒ~5|›0äÒ™ã{¤LËñ=¥UCï–ÈŸ¶óìì}òöÌå!†e%ç…×^[ëQÇ«` ÞW›=ü8\²PÙUxùÌr¨ *›.YîáWq0 ¶>¬RÁ*r‚ÊӉܥê¡(ÿ¨¡°Ä(û:— ¦! W*,V^§´ðD³ùHõö8èЬpT7K¾¥ã™3 i¾uÚ͇ŠGî0rÍȨßÖìQ<Ë&6²ä¡}†Rð =«®Þ T©`«²ð 㩼쪚ͼ@IVá•O­WçÁ¢UKXªì%Æ^©B N<sýÜŠPñ9 Gên‰,¯l—„µ´AJ dÓsñúºÖ‚-Hïú lØ7—èy—¦W+ tSj†K§¸p yËü2!åY@Ï3­øÄѳ–bkŠž’cBô$•§ö·¡§9Õä”Ûù;…Ý.ÌÆIÿFüPnÂâìp‡És÷á£e}_†,Ê!bl‹s’ ð8“:£æÍ™¶àsK3> Ìe²—g¾æsI{Ì¥àc< •£ÃT_)~üöŽw´)GzÁâDÏRØÍ—ÿˆ›÷™¼^1awomÃ#“’¡È)’û·T3©Ö>§ Ýò,oÞƒF"OäܦƒséSaž®·è ½L®¶ú-ÐÍx6MÁ'í?ãOh® áÉp…5½R~Óỽ¾¾¼©Ä’>xî²jø—ŸéOáF[F¹ß”kð7ôˆñÀ1‰·ßýâÞÕêMÛöHàíiÐUo>«wWò ²Û<@È_a…\>¶Yפχðñý®À/o{¨Í÷ÿ—S\Ë[Ÿ¿oœ¨óPÞ†Ówgê»ZNBiD(í('X£eC9³¾«¥ñY8áÎ/á³p窠-=ë ù œ¤öGÈð~Öá,Ð:[º?±®¦ÅÎgOéöHx‚OIlZÏé/Â}É@·²¿‘W‹W‹W‹ãaqÞ쾺X¬ÎÅ¢úñIµÛO©úÌbµ¿ÚÕ“jwŸTûÓñÓÈ][ŠÜOóLYÎæÕŸå×ñg©wºsüY°Ð)ˆhòès¢LÔ¸1nœ9ýcâ÷utp‘Î?&”[Ý¥gVê5‹ Ð"ù&Ñ¿æé~/Ûä÷ûSÃÿ%ž†¿˜cÌÇößÁ1fŒMty'‹'Á‰Žáqb½9aŸ!ì3 6ƒ¯ø3 ÞÎCfxvœE÷œ´°‘V¸¡ÝJZQ·9X³HËM1•ç‡FlYÿ~R{ðã Â]Âdƒ‘ó÷§xŒð³ˆß?–÷È ¶6Ï}$^vðø $8‘ÌvjLt%1z¢ N8„æ<‡’´hÌu+™(ð:Yuö4Ž|Ú(êN' ~ææâô?ÓôOt@IEÿZn¾Ê|ú×þîôo!î¨ðÒgU€L0¯C§=Ä¢æ‘Ï<šÖ®rÁÁØ<ýi¦JLaÅŽ 5øÏ~æûð#=OÕ¢3ŠFŒÁ†+Œe\W—ò<ÑO ý8|QH²'ä’NÊ£$ÜS43IÝ?qÀ ²Å¶”ìÈâÀ׋‰õïm¹¼´Â¡RùQkôÇöO»FƒÎû·X£S:}¾®Ñ®gkt*'Ñôô]£åó¤5·ëQ¿Î×5Z=¶oíßjvû‹êg©%z+âAú–èâS–h¡ÜR£•ˮ镈ëæOáÃú±‘%çù±Ϋ–ïjëyüXŸÙkVrTœÓéÇö«Óéü'ÁÿsòçKÅ*9ü?+¯þŸ/ñð ùv.LÿOéû¹ªøOç9q‘tˆpv„šFô„ˆóœæ?ÙíóeƒC5‚ðLn×Ïø‘JáJ£®|3aèåÛÕ–ú8AåRz._/žàíÙ¹Nu.v µ{üî?ÝKói¡œÒ{Oº¼&Ÿ?dÔ«Cã«C£|^_ÿ?Ò7ðüIm_<©öǧÑu±¨“j?á6ç×j? Ó†Ã0i¥õb|õb|õb\½ã²Ñ½>⟶̾Ú<¸ˆz4ƃˆ öêÑhy4v.~öH^¤ºô:ß8Õˆø2v.~!_ƃóðá/>†¿h?ƒ?d)•?¤þÞðb´¾7\Oì³kyàô³„™*¾†™ ?¿³‹:ŒÏ ¦É Œÿ‡õó?=Ëùÿkþ§×üOÏÿ ˜68ŽÇ´>;3@qÖ'áÿ{ 0¥ƒ<2®ŒùŒ|à÷0F"ü:öUî'‘˜ÙçÍ•9ÉåZÙTéŸ2á¹™]ü?}ö§„hK«OÍ4'Òk´¢×Ãý×Ãý×Ã}96¯‡û¿Äáþb ¡*ë¯GϯGϯGÏ¿^b©„½àë1³qÌ ŸŒcæ}Ø]t_*pŒž†:z÷R‡ÑÐÛ_è0ú—È8uöšqêgÉ8å kn¿fœú[¸DÐ~=㞌S¯‡÷«Ë8E‹uÿî~º¡óMMÄ>Í˽ƒ'™îP\2bmÿ°¾†Ôó¿ Ú1€âŸÏa·L?¬åxÄS–R˜)€æøcKô4wÇC€ e#­C€ª”cJ~>áÏ ƒÉìÔЇ s;½?z€…Þ¿‰tø,E‡Ï:,ÙoÉ[9¶æa!+%vžü=ŠnŠ ¾šÂßã¹3„…âH_W)ü-‚/ë’eâÕ-Ÿgs ‰¦À³%ĈøéR—á9×v I—¼ 0]uò²3¼ììíɳ%/ÄÿÎ~-qþ7ã;ØÃ¾„ÿÇV¥\)¡ÿÇæÖf¥T,m¡ÿGÅ+¾ú¼ÄÃŒmú´ë#ªÓ¸"‹I+°ž(kJj÷ÓóV£ìR@(ÝÀ¹óJùw&(ìäø“ >ÅA½óY½—È{ÿóx†b¿LýD/°ü£î³"¥Ó\½—‡í´fD‚PFƒõ$#ºécÒjÍó%QêWiDv/1I?$³R(‚¨K:©jwÍÆ Â\ Òz«Ð×h=dMq8N¾?<øh$‘V´²Þ¿ŸØ¢•é\ßÏèŒèRŽ)7ã>°5z½Ô;²az/ó…&—ÞD|\ï¬_ÁRŠ_|\ïâûœøzïaõ~o8AÃî³;Ø'" é¾Â>‘¨R„˜á¦~í÷†w3äíL?ïçs¨•˜ØÆ‡æÓîô÷ŠààÙL˜¼h€Ö4˜ŒÐ17VLÂH1™Þàñ¾—ù#›ûìOñ€ÿ±çåòù|nHÇø³ åOû ¿.¡Š¿“ÅÑDÖ±0š*íú¾7zùãþd c€®Aìžá87þ4dÝ`ð5²iKkÙé#Vë Ð0';5öG㟷Õf'&#ÞC€¾2Ú¦n^`Eb³p(ŽçJò¬|à÷nГé¦ß»ÃæÄçÁèú‹ì ‚ ˜E<BÉzÐ}I<&ïEFÞL€æ“7"ó¦µ6y“¥ë!ˆhI’Boh0'þuÿ¶ïßýß+c,BB8oˆe}Õ0ˆÄc¯FCa׋¬ÖØ´w‚‚CÇï–ƒŠnT"‡ ùPóv4Œ¾"½@Öè } 4°2Ò À!\dAèÎ [(ƒmy9Èm˜ÿíÚ¤M_°ÌT€3žÇäÊx%vÈÂBøRˆ¿ˆc>ÂD‚Y÷¨´ñWõ/1³Á#pPf8ŽcWBcŸÕpŠ §FpºœÚbpJ §p>* ‹(®® TP½ éGÌʂĔ,$:B0ƒ9é¾)›³g/˜(Ú™GN|³mTN²¹: 5R! ‡+1Byû8ÀùÏt×-*ðùK‰ W'óGîì_ú'%6`}¡_l ,¿6bØ¡ÆüâÄ:ÑÈü•ûK"“U?Idà‰Œe™?®[Ì0ukYâQ h7kð)ý¢yÕM“-¸”_™íD®Ma'‘mÓ@ð ÙdÎ…ucÒßóï‚=E)²B~åà…ˆ_dâ«bè7$׆ÎAã„N×,‡OHÐÔ×û>¬D_Q³Ú¯7ëûÝÀ¯ãD.sÏYqVCl;íYË-Þ€ì ¯Eл½]Þ&dc÷au"J«£ä,#£Ààa"·™W¼!·Ì7ŽÖÄ`t×Gÿ jTo  YédñÁÈ_Xáâ3[é‹jx~Š7¼‰®ó„ÆþlŒ~ªéÃ9å ûé¤n ì8ÚŸì mFÈv¦y&hÿëGšŒYcUÍ «Œ]i(ú7ÐvÊ»½žQù[ÖXH©½ÆÂU˪ՆU !„®z¦ø_¯¦ñ4ùBÃ2 i%þF|M°#e1 0陆¿@3¬‚±§57ƒ'.¿á}…¸„ÙèqqVÞ~§ï$èl*,2X[͆¿û ’@‡-ëû_Ä7øo Íø:óå­—ýFãÁ˜”ûM|ÙË´6¼ì»¢±ðeÄ=˜ÜÿlE7ñ oQðÐWœž–éñ ˉ"µQEc@×’Ïêå‘ê@YAh½ËˆÏý»u@mòÿ:"Ȉ½ïß rtW„[P’‰*TtÏ{%Œu/#A,ÙÐÍàrÅÍ4T3(NUÍ×4~,eC@ËV‹{õs>ð »Å€æ’äžEs"»t/ñ4‡^&p€4P­ÖF™ÇÎËIc棳ᣞ‘ þ¨™»_é0ËÌýˆTMu½m1¤.´Ù-*P ©ëñ†¼È;éð†üÁX`bb)‰Ä)ŠNÉOxÒõ§/o ÌcOB"Ì‘Lº.€ÜK¨™48B1„ØÑan»Hàgbÿ&—‰c„­'ÀOȉmLoo^mTç`1F£äã–V´JêQßIBy›+ä¼"¼q#ñõ6@ U²ë7{Kc.,ÔÓ® Žáuµ0·á{²ýYEL(ziãÿ¢3’–³+C%Ïç±änÕŠ-ŠEîŠIì KÄy£Î‚&º¼ÇJOÛÊi—ÓµC×Änü[¼ ›“[ê¾{ø ûD4dH™-2UØÈê{8&Iðgé2 µñžLà9ëírã¼OeW˜°Ž(‹*,-­#Ã%‚‘Q'jF¢1´©q›°[¾µìé˜÷´Åykú}ck ë±m±ÿˆÙ`­K¾BŸ ”›t`ÑZf£€§hãí%‘ ®ÎH’Ê.ðV1žÞG³»{—gDïldm AÝÙ· W†‹•lMýà ¿"Oÿn8¯úª„ØZ/¤šŒ»©újjºû¨¿™`€Ó‘¢æ½ÔÈeÔ¼¨&£œ}Õ"o¦²x‰¹B‹S ·Ú|ÃÞ¬ òñn<í7Lx}KuÐèãÅJ˜ÒÄu/oÂÐNø°p22AÈî>ŽGˆ¹V ûÃÿÑâ¶ÞFkBD3!÷¿yDp±»ιáP·lé÷ú¾¾ã9µÁÐÜkºP;RËÌtDK@8ã­Ó¤÷0®Š)ïÚVÙHCw=š¡“ÙD¼¹íõþÍ]lñ Ýå{“S§¨7PÈž¢“ëqÿ3~¼cù7“à~mkDîÁ=6óÕ@[O ×<\@Ü4æðS¢°c/~O@¶iKk «Ù`ÚI?‡êJïÕz….(C¼e0í_£Ö‘ÃÅ…A[cüÌãŽ#‡øê”ÈL`ÍøÜŒfŸ~VÈå%£ ƺˆž×#a®·äy1w½}Úî¶«­È}NºLææÙT’ôÁŸLzw¶üÌ0`({Ú]E]Ódç\ì0E¬@êòêF°ªÏ*ÅÙ y1 µ¼ÕÊZâê|ÂCKGt#{Ü¿ëã] D…zéÛ‡ËiHаpÝSÂ7Yc÷ä››·Âî™·|ðžVÐÑØaÆ•L†Ö®G¤ãÚ ŸC­a]XDRá‚«Nô5êg%yíÇ“¼£:šêâul»ö•Žº!…Ôí$dÏ؅ňwÐ - ¨`OÂG^ÞxìOGCþéȘÖµ@CTBwuÝs›ß¬üçQçÉË(ƒÌÀ¿f#ÆD…PÛ@wÙù$­˜y5{BZBÚ‰tµ@÷¥“•쾈öŸn´,BWÐþxâ›twîOWÓÄØíæÅ€èÝ…x‚Ýß¾dÅ;ökû’U'“_6¦÷qNd( û3•}h±8 ä—(¡¦Š±ÌKMµ:‹•ó ,¼¥õÖºŠ¾³@ô±½Þ²ù¢íèŠ "‡ B*Ä€ó*qуÌq üBÚU>¦2iœêTÓT½w³ÁcßõþõoôŒZt„HØ_ªtéâG$‡ø*ËŒ¼g°ÑçÓØ>òYOšyÄ}ÏÈh¨þºká_¦Ònèd݈B‘—H3/G-Nv| ÅHT…¿ùa)έWõöiNœ¶ÔågD ,DÁi õ·*W‚èS’ì>ߟ}_‚Ïè t‚—ë>#‘‘hu’Ü~Y}HÂEîí÷Dqó‰Á3jÕtIo4«ðNÑ(C£êx<Âxì^=8¢c D¬’àß>üoÃ4[%Ðꃼ‡ ð‡d¿úDWQ-~U1àŸ—ä%Q4êív'/dÈxmw/8£oJ<;vªï &¾bg»õ“3_Š9qÞ<£?ÖE×aáœpŽHŒ£Yí4[š`÷جÙß$ŒÙi󠣜Ëaô2b“ßžT-˜ñ4:®²£JÐüq'IºÊµP;ðM\RåP;âxˆÑIW¹ÛnTí–¯<Õû«"½‹ú6£] àŽÁÓ1MñCC¸ßFè$ S³Z×läâÄfõdÿ(ÍšÕvKMlGDn?'ÛÉIx9U/¡ Älé\P*z·âÉ×rŽu0jhÿìwnðýa’(8õ®Œñ‚õÏ['Å6a ¢ fR½]kV/Ò¥Ú€q¦EáË"D9h&™£%æÅÕ’+HO­ã¥Ãöà~"VψKò—§KíØ‘où+ê‡üÎÑÔAoÚ+: Ã>¨v«6²rŠ‚ìUÖñ”¹°²Î[/‰w u®<¨ÀÇhEú[‚É5Š\ìä%Öᥫð?h¤˜\…ŽÞY'ÌEªW¦÷eõ†ÞÇ3%—+ÒßJNlçÄVNìÀÇõ2&¡P PÐÇöÏ*=«õD¸Ð#/ÛëÛóZ&! -o®kq,‹ëê]IUBÇ×+ØËÒ¼±©™mqsA3ô®<ŸÈë›’¢søE3´µ½®GÓü»|Ô³âÜ.™Í˜mͨ¯ŸÐ ­R8Û6× 4Û‹³*@„ÖÆ)u楿(®Ë¯Ð ª—Ö#æV/Õ+áê‰è×$ú[Qô”ÑŽ”Žö.ú;ë®®¥oN@¯ €íÀ&ú¦³ŽÊ¥¾ µ;'€ÂiîéËöéꃌk@‡¾ÿԨʲ²B¾Îƒ\(|’ü:ßìæõ6è¿BXèè_žu ßB­K¡j«Ð®ã5z¬ÄàãŠÃÅÙìšÜF)\I¶@%4qõ6ÃõšÕ|³ž÷8¬}êæ‰¦q v¢ >Z >Îá• ;¢Œ €WÔF=ƒGH»ø»v9 Ûu°³Ÿý»þ$Þ|RõvßhɵßåáÌè´ ¶ùº)1ô}ŒK§TðçqÄ‘:tCHo"¾úƒ¾Ê¢[às¬Ë`‘ñïF£u¬Ç'rŠak‚*L”5yô8%¤ø®±+¯Ž>ô÷¦S̰ͷ΂0ä9ÄE[>>—jl‚7Æœ¢°BUÈìA¦2 âEFN×çè)ëF;î’œžÒ é-¶ùØ~al(üOOú‹ái61X¬Ú Ù~lcíæ~¨º2À!7Ô7ÅoµMiò–{[Ë™7«ð]tO®fí€ÞL_˜’š†Ò3cǪ÷‰b}°ª„è°ú¸ç$P8§ÛÇYŽÙ qêþƒKâ1›Pè9Oô…Ñ邫¶úû(@ðL¢¡1Øf`êôn}ž¢³W9~óa¿‘øGóÒ;YBme¼7¾m ²–Ö…®€q ã*ou‹»¥¬q4 À&>JiL•ä–»bâ”Äö÷Ì'h`SÍ4G£G¾7%ÏÈÃKÃc+¹-:æg n.©¸ZîØÊ³db \ ©ˆ}Ð3æqËb#Æ¿Hø3×qˆßɽÔŒ–.éÒÖ:“zÝ(n/2­å?ðœ¨0¹,£]rBáW/Ks+¾õœU#ñÍ"£#”‚:HííÛì˜Ú'f… {VˆD.# ZõÕ ók8 ñHpU\?ŒÁÎ)°Œ]÷&d×Vfqwð(©d•­ŸD`%û@C*ã1|`ü£l<Œð®|Jm¹¤[öJá¦U<‡Öœ*ÍiôÐŒ‰Ž~Iº]±Gá‘ðx40BR†ï0² `Wìy2¼Á×w#1MérNìõ×Á·N7×½’,©²ÍVhw¾Ë^8Èyo¤‡ †ãã6‘¾ÀçG¨TÃ`h æ±7E³•º´6QN.úªBªîºqõvEF|ûö „{Eøû1úÝØÕÞÆð Gžs)Ë’\Lƨ۫ìšÞÊs@lîš>ñªpÔDĆé‰ÖœqøZ·ñ Gà º>gÝv2h†"lWžößÏn|Û«F¿°+Ý\‘4ä¶äFhE®…9"9.ÙCÄ»Ö]åø)=¯œ7s«tÖG|àlLzAé;•ÒW,è„'݈BLR“§5>âݽ2¤ïjß³œøÿˆÖÑ'MªD R R'I<KUUÑȪëPÅd@2¦VÜàq%КϽ"ýu1ÖÀI¢6ô¹Ç$ÕŒ:ņp#JÂŒ¨-0#j¿ÈŒ¨½ÔŒ¨ÅΈÚ3"RGŸ´.4#j6†=Ñr3" *ÝŒˆ{F„û;#h“žfFÔbgD¸'n6/*ÀßEÙp‹çeÜ ƒ87’žJg)=ñ0”Z–ŽF°¦¢/)­á ^éðµ1í?8¯—ЕÇi´?‚”ÿ (ÿûr§*6œ3O¨ûÚP)bÏÂó1Ã^ûD\>¿ÍàAo…\Q^ù¹JQ±\×rF{ ~UqžßcˆÛ·ÞâŽîsCòîGùc’G‡~ØèDˆÆt‡K×[oewx’â,“;v‰x0f¡=Ó3(M7¯Ìn^-ÝMÙ…ÄŽ–:z•¦£WÎŽVìÑNjòbIËn)¸v+‰¦²ë\İ#9»Î¥ƒw¼ òWÛ !z•ÑâzTËI¨ºQõñqðÝÞ ÜÂdË&±‚dS ’øB‚TCª ËN îŇÜ&2a&M]Ý@!ÍÚG³f£¹™(#·ÒÏ)*äݺTSÃgmŠâÛ«x¯Ë4)Ü+?:§“ˆ#Õ» ˆhæ7t¹),æö€"öí\= É9Oƒ‚ÇLÎñC:2(’< ùù{ E텇¡ð×9’xHx¶•Õ'NZ‚ÜI•Pb{®œ´…dÜÞ.• Q+RyަVs6VžŸÐäv¼„Ú)¸¿×qêÃ.5:-Ù…â4›¹]ÖÕõØ5íq ÌÌîÃŽî³ ?²§˜Ÿ Æ:CŒöÓ›ÓO<" òRÄø4 ¬gxóNº|sï 9ª*Þ„tás ªyf£á.ÝsÐØàïòœ3Î~ A€4tüˆ®ÕàˆÝã+XX•‰ûx˜6Oudq¤Â¤ƒ°£p‡|wÃ:¶gJ«ß?û=lÌPkP'fPUÉÌnLUuœå‰·Üë·<qlã½ÅRoy4‘ƒ,óF‡„~íå?þaç|åüÛRRØ%.è¯ÍËxòFú`5L‚a‡žW!çÝÓ0$/¤±A}Ñz[ŒgÓi%’åQ1ÌqbG¤’JñHK)G›ÃK¶Çfã®Î¹÷% x«ÆÀIÞ`õÚrŠo;œ)}¼#¢®ÃBõ¸êŒ '”fwí:囌 ã vp\jÐîÚÍ?œ@”® ì ξÜFÁýžÊº™§¬›;—x€°b\™¾“H­+HËì^ÞÁž‘‹®‘‘½o)Õæz$7©B¦CáÍì„*½©¹Æ@ÌBÆ@r>b¥ cCˆÙ} !¤4}'ï®8ÎÿŸ½¿ïN#Wöàó÷| ­#³‘yâ)]pº¼®/ lNçŽdlBøñ{™¼GÆŒ×5ñ#éDT|Š#8'UªàhÒxŠÂáFЄ•/A?'r'±IaéÏ»Ì'Ä2a®DÌm4¾§ä!E¡öÞ÷¾Qèð²`»G=kW43ð7C]~¸!ÔÖÍ_¬Ûƒz&ÑüµŸÃ嚉fÕ¿òÖšÕþ2ÙPw!jÉý¥ÛPè|ÛÀÁ_ÝFnÀ—¥»,ÀU"‰§^?õa“C[ ºñkú€®©ŠÆüì®??˜ Œ²};>ÞÌ‹ó‹nCd;¬ÛKÝ,’C@c@ë‰h¥I %%ÀÇosÁ‡vÌß!fLoˆ?êÔôùDErÇÓR¨'…'+ !Æ{_€«“¹w¤\£Â|ijÄ{›¯TXæí ÀÕîÇòËZÖ2ï&²Úüm¬Þêg7­{ÐÔè¬~TqåÐ3k®•g§¶>†De‡¨A­J`2oiU‰–£-G%hΚ§ŽFÔJ·*(莸öŒ=¦ÙºoÝ7€îf‰@÷  ûÐ}ènQغoÝãuغoÝ7€îk@÷“  {v@wò^êD~V@÷=Bo×Il€Ü7@î ÷ ûBÜO6@î¿»wzûm]PÝÏZ­ ¨ûÔýoêÞý;€ºË30ofcàM*¦»±Ûå5ïªõ7EuWÒ?[Léœ _¹û/ £íG8ubo¦Fò?›[þg{”ÿ¿Ž‘§ /;ÆÏŠXß5´²¸ÈÞÊý¹ýßÕù»ó@ØÇ­g'š½aOGùæ•Pð$ 5öE řº<³Ê«46ÿTª<Ûµ*êE(´MdntÓQ;{ÞPGïzLlmá»>¸˜÷d°×ß“ xÁ8[çêð–>«ºƒäÂÈiHDûÌn±Áe‡ø\’.Í\wû wKÖX¤q~wšF¶ú\`*›<½„'M9=¹jô cÆ>fòþ»ÚûŸÚVüž'3®l䮹¾Ì ö‡Ÿóx2ïËxp§6üäŠÎ83k‡|ÎÏÝrÛ)0Cë þ‰ ¸1"aÏùèHNO8Ù§c|MÓÿÈ凌Õù/$SµL`>~|ñÇãÇ7øñ™«ùóãÇgÆÙàÇg`uøñ•,øñå ~ü"Ù´ðãˉ:²²nøñ°zóŸñ3 }ýxðøÕÔbiÈñ?W#ø`ã—R‹…bƦbÆü-1ãüZépÌø`> 3>ê OƒŒÇó¬ODŒwvÙÀøBÀø@!Ä©»ðâ](ôzW€è]ݾ™`_EÐË51ÍY6,t_¦Dt…UÞÕ±Êãèä6ø¸·ÿ:P’MäqG;š]M,MÅgTXÎΧƒRû`Ó°Å»ÁR{§ðÂZšÒÚ%¦çt¬Ý¬€ÐWÐGðF†«½àÜiNgrÀ[Ë©No6¿ÎÉö­Cî… Ù± !3JÿK¿Ñÿð€sœhsZQ)¸¬$Z-%KT sˆô!R¿0iˆ8EZLié‰"m x¢,2-Í/Sؤ̕Ýb\¹ÊjjfžSeE@ ¿ŽÒ ¤ÒÒ¿„é3ôÜ£¯[Áƒ`$Rl“ãa¿ºÚG à1F…7m /HÛ`W½¶²ýBŠsÞ4P¼ „€l?õï×£ïwgèû .kBrøyzqzqõ½¿bõþb·ìgS€y'­µ &oFþ„xßó†_׫m³[r/RRQµÕ >HÄñ[¾k?Š›iFwöL!ý£¸´N£¸²úQ|` ‹4 x`ó0y¤âwóŽb›ÝÏ(>LÅœOe±º! úc›ý—lú°§å¢pŠ7ÏÙUäÂËC˜#Z PÐ>ˆXå<â9•bî€äøù™e­;w2á„D¤ãí“éƒPBcdÃu Ã3±ûÔïáV&­eîàrÞ‡Á°ïÞ¡ÄÓžp~UžýÇg׋(¯#=;yH ]ñùÌ|ʳf૚­KiÅ[ WvÖz]ÞlgÿcáìC·¯/ l8{8¼=3œ}wÉpöÝlpöÅùàì Ôøt8{™3=t†‹’¿ F¢uø=Í:‚CìfOà»Öt$V ÌÔs@. Ì1À÷&Ö¤dÕ¬è¨YI¯™ID«å-î2Â9h ‡/¿‰³$^Ü8»Ž„#ѯÄQ_)Ðh®1(.˜éîú\éO¹e.k™Û›³gÂu‡1ñ*ý±GÉ&Ì‚ã\!_ØæàáM¾Ì÷|oÊLjv÷q(ðÊq#;CŠúvžÂ<×1±„ñ=•›ßŠy a:=Ƭ2>„ãÛ¶3;äx`…iˆökÁ&põL!=À×E-··‡BLüß!Ô³4D{™¼ òëºüš§Žá%-·H¯j”¡V|d&'o¬Sì—4cY½Nþ·àÌŠ;erЩ$×yÖ}áD¯wb½¢†è*†Þ ŽŽ?öÇÄ0~^Uã@àÚïÈÖ"š–þÄÄ‚OXùú¼0ñÃãÛáãô¡7ÿRÒ‹  *#“Nšý'kc€W}€>}(1ì™¶·9 ‹¢Î=² Û>¯²±°,iQ:W[…•cìBÅáŽôBQSZ[¶ÝòÂ!qÄÒf~ @ÑØ{‚Dc5>Ķv†ˆhv;MöòŽœï@@s%.º‹Ù™h…8²•D1œ9Wõ^€;o)Ší1‹xï&Ç.‚Ärä¯ÈüCGþä¬2ëÄY´–'¶AW¨ã]eô¬u<ÿ{úm5øßÅr¡øßaù (åá—7øß«x¨£Yøßíqï‘›é'xãX@}³&œ*ç–¼êí]’0 X'œokü²Ÿ Ó.µÛòà çœx­‰ogCô^4žwsü¥a ù2ª¢‡Œ›Ïû$ª£Dô¦¦€&ð ‹ÚO­œ–é]³1·]5²Ó¸âbihÖí™0¼ëDo¿t¼ ÞõL Ü'9j˜qžÛ…ÈíÏý.Ê ‰Þ&Au·of…êÎEq”± ¹ëã¶Ïƒ@ðFzûFÃín³=Z¨Š«³p!àÍN{çÝyþßìtངSÞ÷/4.RK*Þ–˜/1Æc)ç i. êµ@Î2O¡½u„5ÃÞ›|ÇÅ: ' Ç‹O-Ñosl#¬6åÄÿ8&„¦"!<Ò^ÇWð¡3™|_$'¼ÁÉxü ¯†Þ~êM¸¼ú“ÁÌrâ÷$ÜN3¾hÍ,8Ъ¡ƒ£@I/œ9„ÇÇJMúhzÄñj§cŠÒãÆÇ°+ž…Ýþ}C‡‹"*Š{™QÈa±Æ¤T õšé?ô8²w!ˆ,x ¸ñî´ ˆ÷xê}D2B<’A¥(ØèÒ@âNÛRj—ù®ÿaØ{!G0ZÊ4(û¢‡ ã›0…ñMz¨>!již}àƒ9ÉÁk÷þq0|Ø £x6Ej•7Rå.™š}Œá–Z4¢–ùŽZPÝmÿ†nl¬Ÿ(F‘f,acØý˜s"ü$pípuØŸ21$çžœáÀ2Eš‘1¦3ã‚»AÁ±?¦ã‚#bÅçÕÂâ”Ñ8et´­ã¿ò 7\£põCˆÔUÿb#—ÖA_ù5LÙÑRÖì”EJY‡”od23I)Jòî; €´ÂZ¦*`Š´àõ¨Ûte'T1ædU…Ñ5þ€f9Å@šÕA =I½ÄkçþÈÿÁ×€ò'©©vY‡~1‰œ’bÛõ<ì¹ï'÷Ýs@—Ìü•ÿK0³-Ìð_3²úBlÓñ‡0D<xòíÓú…ÜæÑ¢>; µÅ&ÔW˜†ä—¨z€šJŠs Œ`ìÓ´xZ© °¸üð4 ¸d±Nû¨LTÐéàÃ#2Çß i`!@QOL–GN¢®Ô?åB!ù l.ÃÉPXFñf©–eÈ Ubä쪽þâÖÛŠ‰ˆ ¤‘QÕ!àŠk`sî*,"a•ú[„N ˆ ææó"4§ŠTU^ lã,‡¡²ŽÉã×>Y>4çOÇìªð>F7F…}íǹùgLboû‰Eðí^ˆ°Á^MEJ-jÄÉGxA¤Ðzïq$µd“o¼ÿ†A BõrÀèUc›4 À‚€’æÖIU!« àlN—à|ã›z%.u aÌÉR©à»v .Û ãÃïU£Óºv ߘàeÐHˆh¤ èÁTÐ,}Ò=ˆŽÕñµQªñ™a´ (!¶$§3i"P7 Ô‡ñ/`’ ;8Åïöà.ATÇì…—¦ÎÜtcB¯’AFІ랲\drœñÏØ›`a:Æ¡%ê/ÿÕŽþaHHPºÌaÔL®,¤EU“?‚§Uù‡µU3¶z̃¬ŠáƒñOx©!èŽP³X KíŒ>UU¹’øß¬ü_ÈþÔ*øÔð·ÿ­¿Å¦¸ÿMB‘Ïñ[-Ä|¸dÀñˆ{S8j  bõA —€ÐR€¶+7'G2TŸ²¨Ðv.q݄Ό/£FÊæ·8¬ý}ø¥v¿géÁ‹Þiqk ±…ó™Ÿ`$¨©5JP üù'íôy¢ 0î>˜ý-ä°!±v ’Á , nkÿ÷}.ÈïŠÃ÷ÕÿF¢¿ÿ÷Ÿ¹`·—¶÷ìÂ!ÒÓßç•^ÿï?$UÈÞ˿׀AÞßýÓØ®#3óÿý¿ÞÖ j­ ý¿ÿ÷SðU7YåOzUBU•\ï¿k˜Û+ïN£Ü`{Û3NõȽw¤ÿ3@¿ˆ•æ=,:ôÖl+³Ôç¸Ë¥iåÞ?§’ÿŒJþS«q‘jœ§þ‰/ Ñz ï­@ŒDDQ`…`°3íÃÎ^\.Ó‹€‹Š‡Oƒ‰Ê ƒ9Dñ÷½»>®þ©Þ^¥¨½XXàõçY“ևĄґ¿’Dí1oµ“òÜÇD_•4 1¢Þ2ŠÔšˆª>iõ,Ã60ìyœ|ÎAÆáw¾þtRî÷~hžê4Jåëï´ ±{nšõi–§“M3xøNMËSìæAP÷ìÿ'= |5¡—òÌîØb|Á0öÞñK”Ä“q÷=æ=£x‚çwž’S2Bɘ9-#¯5oz-£zî,ÖÓJT%˜wöŒ2¿*xÖŒæ=£x;£šT—’ÝèOÞþôu£Ð×vŸÐvŸÐ‚]_/JɈÝw×Õ‹âÝ(tw£;Þ ¢³µÍnÀË6 ž­Q±QÉ3eÜÅLT繺È+ÞDÿ¨Y³ÔcAs)µ!BRy;;9K¥’þ ¬Ç Ô‘Ì…‘€¾£ü€9ùFckµ`Z¿`¸ã”«Sp.ïâîǶîrÄÍ£äŠ]ˆJõÀ*Ũì6ãGÓr†çë _sþ©@ºuT`é6ª¯_ kr}1q æ§ó`âê÷xFL\ƒ ;+&®NDƒÇa⊪èØóõ&æšw"t¶ØcP¬­XœrˆèÐãቬ›•O(} ¼àªJáÍŽ$ŠãÚ ;}‹µ¬Ð]_ÒÏ0Õ\Á>eo×T«&jê°m ônÑ&E°0Œ]µ‹OûqFŸê¯RÅr†­/åÞ¦«3âZ¹ÌÓ{¯¡ål´Þuk›ÚlmS­/ 'ãÏßEcÝï—^óµJ-² ZBA³ ¿z z§a¯â–m®ÈƒÔ6̨*üÍ" £N;KŸ ž5*x6pÖ8Ñbö‘œôœÅ·=Of”Ó1 lÛ&òVr™D8 Èëxt:"·Ø=äYѶ¸ã‚Ïw·šçR¸f¹ŠÒIœÖ_*5G5›GÍìav…» Êi‡ÿÛª± 6Ûƒ×@lF<'¿­<Õ¨%nÔã>µ(|Òøw_˜m)0ªNkÞ|4ÞËf l—•DMêŽbäI"‡ êºDÞù„P')""‹s×sJéàLžƒòK¬Óχ½úÛz@¦æYG]Õš7óÊOAÒ12=záŒø©O„0­#à‡äì/ûÄ(º}ÖTÅçéj§í«*×Èuúòºy‚§ :7C.½H‚9m†ÑM¬«ÎëfGÜÈŠ.f]µèîÙ›ZR¸–7µš¿Y«µfëlÇóæ5åʺӺÎÓ&\žµ/ø5Ä…L  ¿‡xµý*4RóìíYýüUÇßÒ7ÞÖ²QRìs~¹(D«†x£îof†ñttˆ“ÆI§}ãoñ4˜O>Å6ÏÏò&ܧt“ÊÉ+XO+_B=æ€õlwO¼gW{þ¾'þöÀŸÙºœ×S<¾Ì8!x’Ä_¶ýÒ†aÃÿ¿j\·áœ³£,QmFDåð®wqÙ4ª±ÏüÁ+ú’$/€—';4iµ~Q•Ф•ôM«ãD×sQwŽÛv‰ œÅŒEÈžc7xÊ£ P|ÞŒËûœ¾BÞÅwÎÞ774 Äì™\/#ð]e¯Þ„à3@ì×#9‹Öñô,t=ZkgGè;1hœ(d•‰ˆøq•cäê. s?÷ç •¬7øzKÅ׋.R/ `ÏX@ÑDÒÄ£%?ö§ßô«ý ¼NœxaÁó(>ºo"}H®ùA‡¢g66ž4–JŠv¢ô£„ú 5­øD#ͽ6ü"E:ˆÊêÈòj÷K/AêÏ~0:ZõA™09,*ò`)Å  µ‹4,`ÙožÓŒ¨¡Î]ËÑLâe\°"Ñ™A`M3Õ…3¾Šâ”º–±rÒ2Ua´r[Í“Ç ¹ç,õ%t±Ùz^3Rœø:ÒŠ–¯öT=KHr7XÂì¥Õ²––T;¾¾É©…6­`³…¢—Õ¹b ‹L¡ÊU•C\ÏôÒò×Ìâdf›^™7z¸×ª\ “‡ŽBÚ‚ ÄM ØÞë3<8‚F,æCùÞ#[’‡«^·à妟àtô GÇ5å¢G¬Ùã$èZì$?~À|&þªþàôª!=Üz…øPÙjn9(“\Qó…ž³¨e£·ìÔºÙ¨%`téÔjNj®tô˜‘=#8[L¨¬„ä ŠÀ¥ü<á̤‡ç³~^ùc°Â‡™ºbàâ"\\ÀL„®yáçr†=L£á¾ÝP×±9pí¨Ì6±‘_‹IýÉA‘ž(¸–+Š"„Ò{J à­/)iw)Â6EJîdþ]ÀÎ@ÑôèJ1ºu°€îŸ©i…ðä1’V-(׎hœn@Ç2;^Làa2ÖXwä;êi+7»Üs“Jq幂.hD×™®ºFij•m£f}=}öqœ1}25ËfXa&Š˜HˆßšÊDN2¿"¶ƒÌs¦ZÂú$(fz}nz¿#ш¸ê,»×žl($)ÎÈNæ‹&a%¯<Á¦câ’K²‹ p¼šÞؽ–ƒ ´&¦*ß~˜ÿ.Z:ùBñ¡Õ)q¢ƒW­ÅI1“Z㢠ÓÉÅÅŽ´Tw/.ØöNèi8Z힟)Ä^ž‘‚áþÅOˆyÍè´ú ÚßÀ…o=üÆ×1»íMÅ}ó œgrùCøÓÞ¹d)ŸŠ¨€N;$€ñ³•Ã×-™û¯_†9\p*DöjšUÄ9´ÈÅ$J|hLx¦Œ|t&ѳÀd‘U×îžê 7xèÿd>¦ž@¡¬­ÑDǼßM£¦GF1³v!ô‡ŽÉ€K9‡ýÎ[MèiÚPYf‘—“.¥vÈoÀ¾9J’&¥_D³q¥*³TÖtЖɎV¶@&HiMIc‡€)dÒH©°É6Ϋ¢å÷“G:Nz·x* £(/µ¨¸%‚ŒŒýÄGÜBoG›ätZ;Ú7?,ØëÜÖÁH½Ôt;y”Ý1¢‡mÞ5\âž#e+sîíKêiûð|¦æ½vâÍø7ß f“7H·j[ŽZ'm.%l‰zö<]T²D¶÷9çÜÛLÞÏtëâCÿ¦è†1’Õö£ç®½Í(³çÄ¥t´‘ÞSPc’f<áoêùZ}ûmÏÙ…õMºù:²«³î+η—Û1LÚ%œcÓ/e£6a£oŽÍ½Ù }…eÛÄ›­°â<…½›³f%ãÄïŒoÒw)rgÙl“K.yVß±áæÝdKØXƒéÑ¿›æßA{®YÚNYÖͰY7ÀR6½<ûZŽ®`íteØÝšqG+eC'uǶŒíÏÉ»R3îD-›ÙL»IÉ;HYvì‰P±Ã#fîÅw„ŒÃÊžÆþQÆðÛ?õz ä`?° Œíyv~¢NëÜ”1yMÛK¡pŸr;E ç÷Ðâ7¶O’Õ ÍE—àÍÍêYžÁ•œ¥´¹œÅ3{‡³ºƒ“½–ióÆÊF=²5æ‘Íî…­YÝ~È'zX³ŸÑ“š@Ø)é >î®bØ%Žº `µ\7Ž7‘¬@ÒPÀEk–¶E¸GQI.‡xyjIÇäÁÝ”½C ÓïD78£ôÞ¥–‹Ó¹æÐÎâÄK,ò\S~Cf3x¬gôRÏè™ÎäžÕìuvS+»<Í©ÞåÌeÃgì°S½Èe²·xf±».àb¤y“àSu9xtf£ë6ìk<´<§A1fd‘'ât8 Íäå9€…o¶$Ù`…Û7Ù`…²Ã 'à/¤´:ºŽÏ¾õ”—ý$ð È7*¶!ðL“ÞƒŽ)¥±`«±“ZáJ„ðTÛ€PÈP UÂZÙH°!(E 5V¨(” âœþ“#YÞXäsº|‡_E4-¡·UR…ÙËd$¬¼ Ž”¢’KD.ˆñiCiE×]Ù‹Vv¸ÆnEòŽEï¶+æíÄæå{<úhÆ‘½Ão2œ· :”âzk,»Äî­o,û¯jRœl»–z¬4lœ¬0²¹64.vU¾ŒÅ†V­crKÇ3ã]  Ù(Õ¼ËA¿À¼ ݯ½¼lTÂ&>í9ra¥­c(AZ« ªý@ˆ¶¦’?g„²$ûuó ”%oF£8ñ”TÎw EZÅÖm°&§BeJÍnMɵen@º•—‚o!ÊÄÃ×~$`ã3Ζì¶‚rê¡C¼ï8Q² Þ$ΰ§pOn´zvQ.3W9‡F9´rÚ+ÄÿŠ Š` Ä@Å1Õ>åÑ»:Ô‘£öÏÿbåV•Ç—`)µ8ä7B‹h@`Áº*Å-u½°«Ô‰`\þ‹ùëƒ)ö1µJçVZ9Z»ñr€–ÆÆåÇ©£OSÇTt³ Å¡ *¸ïò·dq™§œ9ЫÛZ†8n0›²xÙ| ÁHAc¤®Ë-2@òj²TN²=¨2`5-»¼„f¸û­—мÜ'ÿùËjðŸËÅb9Œá?‡… þó*êÆþs7ÂN~–‘¡ëhñûðÝÿׂt—üÏ+Ø­kó/¥E¯~:|e×–G/¢@‚3]X¶¶ði…û‹HƒLIº”´…"­Ò/ªŸ >úü+;Â1Î{…ø@=+ ’YÛø•Pä£R'õNY®ôR¬ru·¡çï¶œØÕZ‹ÂÛ$Têį̂Ôb¹â@Ô]ˆh{`u8Ïrc…¼­b…>Âö!vFï¦,¼ÛÊ£A¿çÃlt+¢K£‹c¹á¡§‡1Üsþ¿ô…½.ŽïñÔ´Ó‰BþÈ䩊öfÁ4|Ú8ÁÝ$ˆb¸¤Ð‰u `¬‰Yˆ‚ï¿SŒý(N7"¤TÔ yŠ­Ö¡XÊ&äBQ!‚Ïhüu$.Z9kŒÍ®­¯>@<µÒ¬‹r[èÊްÐfߎ×PÚÀäþÿ™~ßÚ"P ¾S!PºÕ`K”T>wÜ÷¾QT+ Á÷óû»Ti™ƒµç>-C‡Ûˆ«!†é_l¸³óŠ[L‚Ë{LÆøb‹VȰ>F|…¿(Å_y Ìøj݈mG`{HO¸©ª;†Ïè9ùÀ$\ -•ЇZJ-&F-°"ŽLfª`:w½‰«îÁ¶ ŒnðïªP>ä˜j€Ÿ iˆJ}ÉC’¢n…l•¶q~l›…vÎÛÍjRijõ-éZå’JÍIUˆqPæ}OÂÀJVò‘ŒÇ)Òp-á~-¢: ȗ僘DýÜ¿^mC?<íñIø=¼•?ÜlKõƒqüE|MKŽ6xÁN{°ÂÞcá1þçô=ü,>©CðMè" ~ ó⟢E@ýjäwçÅ?¥ˆ€‘WåOȋʜ@>ž—òçIÕPÈ ©”Ùì2 ÔŸ'ÈÌ&0³Ì°Ù5L³d† fHÀ+3Ñýë#ö~̇ÝyUÍzïÅyÕi ,-1rqX8X¸Öƒ˜¦ ¿z4f|‚¾ßóÚG6Þ½¦ìåÓ0áQŽ õ»eÏA°OšjL;: D1Nl¤=ÂH”e9ëlpßÖ÷­þ õ+½3ý¶¸U¡Àájà'«ŽiÍ[›¨–Ž.F[Åê#Eþmñn ëšá·uW…ßÖý¹@̺ˆƒ±`æ 3.¾L”…·Qx+3—­ôzã’J'l©ý8l–H÷ªž)9Jé<øfM¡[sçT`j³ç„}ß¹rÂq÷¹sb©³ç\*¾[Ã¥«md·p§¹Ó„ÈU;â8i ª›ÎOeGÖc¹mΊÔeM"x¶ç˜¼ö³4ˆ››Òmç¶87þ§Ù‘0OuKB ãeˆtpÁɱ;åAisí;åYýŠ‚²×ßVáO þ|ÖÛi˜k~nl0¶ft@ᚠ̵Ž_’ÕZó Ôªô">µªúe ^#h4?;fšW06 šc‹â9à½/™$ä³%"›­ѬSób6Ì:•`²¹P½N¸Øoª—Ïë èX¤|´pŠŽ¯Ù;ìü,- _ŒD>+»âù’à®TÖ ÜÕÏwÅÍ$ИÃa¡aˆ2ÌŠR$bYáà ćZ΄dcFϲ`X¥°hä˜V©;¬’è$¨pèý0J G ÒH|Žbåˆ/"¤¸¾sÀ9Š0‹4ëGÁR —«Ü"6€êEK‰I“Ú µ{N i˜Apƒ§•-Ô³‘ãIWÄt\VÖ÷%ù½ÂüAšVª²#U`"„QD7£´Ð§§€ì–sãÒÛšëG&q¸qåùI($nzÉ$žHd‘û»‡»–ÖN¦/XÆSÉ)»¯lœsƒSkø¾ÛÈQC¾É¡\¶õµlA£ 7fþá™$8—Šºì‘™œ•4˾ሠ@/¬¶íÂÌqÐóÇÏw¸©<‚s;rzØgaœU³"Äl‘•‹ªâ‹6æËnEI2 6¡Œ2…0ªm™hNÙBÝßö™Iêy­Ìv½ç+Å2" ±Ðh‹—s Ã0uâÒ –äNjFNš+b¸„uéj!‘A?yÞ¢\Xb`T6ž ó@jš½JéÌØÅu5åN3ÊcþÒh­¤„A”Tü$Gè$ëé¨0Jx¶.ôJÈŒ›å 'Ëô¸AaND41E-Rî™cYëctÆa‘†ÎÂÌ;Ã"‚…y5ÜGÛ,¬Ñÿð°…–*$Fµ¢QP³Ž“„0±&õš‚¹Û-»j\D»ùm˜ÙnÅÅ´[ öfm¸âSÎ;0á¨]ZÃS–À^Ä ûäˆàmnðdl.3áqìº Eq™%ŠxŒÿ4 éˆJ›‘Ë•°˜Ä…8ã^"Î 4»ªÐÒ›ÌQÈ™ ¡ò+ZÞ1ãª2ctf×,Ñc-$Æâ¡¬‡:·Ú‹W;·‡“–ÅeÌÖ'L¶fˆË?ƒ+â—£óÈ®¼2ÙÍÎà’¹óO{Æ×:E¶H†A.ók™©¤‘I;N.Ê噹(\”Ó¸0DJJÆØJILð¨†x¤ 7’›=ò=³‚ß—»™+ž¸ÊÈú;|SòQ2_\"I§q¶§ÅåôµÔZFÝgsÞg Ñ·Nnº)±÷£6—ÓÐs¨€Ïå%ód*Ù#ø{Ù-'OÁÞ|¥9óýk3ù§ÄBø{£÷‹ÈY)×|”]b]ÔBG…Ž‹üdîÒh±ó$¡ Ø{ÉÙ½ösºé3ùåguÄÏîyŸÕÕw¤»”NÌ·>—ç<ÝUn:Â]4R€ìéÁÉïÀéÿö¡”fDp·]&¯ôìnhf„çŸÏ«ìw#{ýƳ:ŠS{X**wvG¯»Í+Ï®í¾53zƒµ¬ñ:fgöÄÎ'˜Ð#˜dOª_01שíÍ ™¨/žO¯«SD|Ï;Ù¼™3¹/“³9(³{$ÓK5/ÆÉ˜Õ«8Ÿ1Š :L«˜gÐë Ìäû›ÅÙ—àšÉ—Ù—±ÀdØ,.¹Yj˜¡Ì'¨ŠOsœeö”=Ñ5–Ù–Ýù•;roe ‚]ty°Ü°ÁaõsÀö»æwýÌ:»²ÀÐÙÒ©’ê3ùAñ°õ¸Õ‹ …}˜™¤ÞÄyA­í(×𨃅ó½¾é.3èuw¥A¯õÒÎô,º0ä/ƒ‘ˆ‘:ü ô k µ'‚¹ÖÑÀÑ÷c>òÂ9ŠP»±8»þðÕè±ÂOeñ©&>™Ð]e¤û}rÄÝNŽ~}-ÐI™_WR_—_;ãcãO ÒÂõ® w q^à³ fíÅÌà¢Ò1û×ÿÍí¾Ú 7üÜ®¯iß¾ßú(üë®ßnð6(ÞÒ„ñ“{fŠvBY‡?ö¦ƒÝŸ§&aJôiL\Ê:zH‘Ìíë®y™ ¥q™ƒÚQ}0£ ^Ô_,Ç™Á@O\tÛ2ÿƒ=ÝŽGÓWîÐ[Ĉòf+Šl|áÀ…¶ß~˜<æü݇Ï,’8 g•g¹D„ÑìÊüiÓë>}ë¥olÒ›Þhx=¾oÇä‹÷ ¤b Å$?ÝÄ4sh(&_|_3ÚîN,¾ï*1Ãð®$ò¯]÷ÃÃÕÆ&?ÞfdïÑÔ|XYû©9Ü‚l'-Ls÷ Ó¼´ÇÿùËû»•Ä®”Ë•ƒXüçB¸‰ÿ¼Š‡Æ‡ÿ¹[;w¢øÚД›à¬+ 69.ÅNnûììTŇNðÜ ð5¼ò?ݼ¿ÕvµË¿Ç¿Ý¾´“‚ìbгľ*jÖ“"ÿažµàΧ×Rœ C²ýü¢ UKÂåDy¦Þ’溒…|†®'Þ4›)A ¢6c¿™)83¦>_çHÊÉ–¯E®kb¹“í’˜¹#2ʤó„cæVÇ {¶ˆ DaBïú°;žÒþn®Ý=ÝŽ¢ûžñi÷VøtzŠ-M?hߊȤS\]ãB0×ÞÆÑLÁc¯1q·Ã²À]S()Z[AFrûpI¾¯âþbÖft$ì™eCTiÉÛ*BYã)DÅãƒôcï×RÖnÊÙ§¤\ É ƒ†É¶Ç"îoƉ®-S@gˆ $äx­ø¯“ÁÃCQÚªy)D[äã 2Ê€JPë ¸¶ÜÜcþ»h^Ôáìý`”c¸ÕÉÇ?¢E±G0¶Äµd i\@YôSh,7± üKÀ3âHC?Qq¤ó|&&ì3 PøŒå.¶(*uskº-%èJþƒgØÓÏý[ *µ§…TÆß¹‹|SQ!ˆ(€ Rd(¢˜¼.ï±G·×£;é@Dûþ¶=à1¾$¾<Ð=s˜›qI}ã"QÌVŸéA µë¢¼tîSÀ†þ/ÃDìÅ‚DC6 „¸ðit`tÂØ¡¸ÚF4é þrÙmD€PÜj9ÐøßÂ6Náµ –£ dÂDúMifHézëZ¤¾0’£$œ^·#Á•šFª¤jG¡Ñ¨ƒic, Æ\‘C:×ÂÕ +`pÇÉ#ŸA ؇üÐNû2è®[×À¹P&ûRéÈÑI¡†^T¤–×2$s…HóÚB•MâMƒxôk*õnG’? òmN½mqŽBƒþjÿ¥ ikeèÁDgŠj(·(´ÌŠ*<Ö}N7ÝgÓ}fë>oUL†B—= Äí²àÙ—Û2>7ÑÔwÿÀÄ ðµ&7‰1ÀÞËÏq lçyž?¶q^%AØrŠaº'ØqÍ/ÀN Ç·™Â8mÂÖä| iË8#OF_ÿæ‡<ÔƒÁjï#8{öÇ3œ[D€575ô8™`|a Ù5L1¼ ·©¦ÂCè ƒ©>à€{ˆ±*£°ª!ÕÑA õa0U5PIš2&÷`œ²®ehQŒêÈÈRMЦDÿK Ìpž¼SFSçæä†‚"ŒBs‰E7óEèYew©A܆°ÙÕº¸M!„EÐ[­‹<Žø ýÀ§¹]@€Ðœ¼cOÌ TÀIJˆì"hS9C2ë1™Û‹‰ÉlÆZÖIkênÜÇÈŸø K´{q!4™Éš/@fÛˆY ÛXèQ\7Ÿúà£çc…âc”R4[t"8ÿ8òÐ äŸQPiô0Pu2r˜ðnV¬”A¨™Ä€ÃÍ%ÊáëàîáÓœbÀŠ>U D$‹HMeï©B‰âDIji§ž©ÉÚI5RÕNþy “AÐà *AñlņÐÉ\æUnžÎà£ÿÓwyqJd ÿÌU-¬GÕ刱jxÏ A¨Fž‚-Fj>xA…“¶§£Š†zdj¢\jƒD  QË$ĈÄ64zE=iÎù`.Œîó£mXˆÉ5˜`búÃ1'a¢÷@ür@Ž;K½‘iÀÒçÛàþñ^ëD4Y‰¶`¹( £1ªÓ ToT®“Ç?‰ôÄÏŽ±¨Óˆ¸å¦ÈGÉ,‘ÈÇ[D”áh5!ðØØ¡:Á•¤4˾°Ó4*¢ó©ò» ™%èdè÷ïä¼,æM’ªNAH`„þIûÇ–×Ò¥ Qè¤ôG +ï øQ‘ øå¶ÃL Jqî`Kæȉ‰5áíÛ¶ôh£ÐçÄΟeÛïy²ãzGºŸõÅn}äá]ïËx`ø7¤÷T®‰3ÀWÔ? ’0x(Àó}E°b—¯ÍÀ¯»Á éú§ϸ¾`íñ½tÆ~.ŠŸÉAû¹ôBz b?¼+ë§Ý ð Îò˜÷?z{ñ·É]ïa$¬(Ù e»„/ÐÒR$® +YéY*¾oje5õ²¨–VY!—Þ‡±X@ïYí@¡ˆÛxª@Ã+ ã#o¯qáé½ŸŽ‡p}[í¾?Ož]`‘dV4¤C<'Dü$…ú‰ ŸSé„S:'ÄDN’Èí"E¡azá ’/ÅŸ<™8¨!©¼¬Ö PN¯&žv㿿̸BÑ0”Ãi½Ë»_÷e#¯¨ð×æË†·¹b0*ñv8áÂÇãn ò¿lœ¶OõD^U@ÒÌx,ji8+KÀU©v A^œVÈ mgà«´Ï’UjÊ“ë&‚×â¢Y¨—BÔœ|:ÕS¸S:5€X(ûiµSeæmGá1†É%üißêÛwŠv@/”²~ÿyDÌï5/;{ò %w„8ѳLœP…'Än•FÞïxI_Ü‚±ÂX´@3²ƒ Óõ¬úÌÈ‚ªƒW,1<õ(Û Cf¬;Œ Õˆ± mñ€2Ü·Ý¢p_h¹Ë5½T=ø,§°!C(éÝÅž¶Œ,$£ð]Ñ­ˆRÅ©ŠzŽ€<̃zsUq0êZšµ®b…[ÊVÕx¥rmÜÞ–›Ý¾º2*:ÃýVEp¶hÑíÎ]JÌzT‡ør)'³À5DïÔΉ–ÙºÞRØÐçV~‰Ì{yÐ6% µX&^ì‚‚?H¦jÀ«»opbÌuÅ(Áû\z”—­syzcK­Ó/ü`7bNêÆQ’˜Ê1’‡ifMÅêq„ÑupÙôT=ñ@fàH¼ò'CAê½øtŒ¤‚<„½7y$‡!vÄ=moÑÖÍ"“µ¯N¤‚vFÏÑ<÷Ž1~ÈÚà¶s “ô=æ|ÎrÄ€Ö]ú Â9½ù±<éU6š?10$žN lø«¢…eÅ%A@ob® \ʵp:`9 Qq«1«!^â8ÿQu+*âþ@>]Ü{»šìb~-£òöÏÁJ=OÌ®ÚÖ.³ÂÎf¢ö·]éÒŸhÀ¶yŸu9º£ º*2‹Þ¬-SÄÚût,öI‚ÝÝ’oÚEÿ‘Tê£1£–P‡gm’„°QÕÁآƠàøÍ”–!ÆÑ_ Ÿñðñ~a ¤—Óà<2QÃÉ­¤È,¿5þªÞÌ;Ä0_ñEWñîèÜf\º°š—ÎÍ»Î8ëÁ/ÓÖÉ#>èÈ©v52blÄHëœYixâ‚ÛÑÅN'N­ƒ!a­ÌË”þ$ EíªÐ”N+ö&b©­+>ºCË߯¬d ì…Ï‘)*©)¼)d<ñ߯¡+åã³'¥9*àf†? “xœ¿4º!—0†SP4TÖÀÊŠ½Q‹çx`‡ã6'óÜ1a«”X ™´Ûñ§} ¨ó ¶‹› U°‡4ÝÁ˜"qL@T„òëx‡£ç´þÒÓUè!ý}ÞÑô÷¹ËÏçȦÚ7¼!RºEPú$úHã‹w8†2ˆŒœ ÌǬøœôàV—Ú¦G­™E­ãðç+¬õµ>=®²ÖŹk«qÖñAOB±&™ ¥Ö8@#é7S½q—˰1ã0uw;?dGzy¶¶mQúÈxïȆš¡Kc0ÇHÎLBë ³ôiªøìCy¡M+¬úìã¹¥ ~¢j?qLWâcº’yL·çÒ§õnTªæ—ßN—c‰âŠ6ezDL‘Çû-?<œ@¸O_gÐ3ÏjC¯x tçL+ŽèR"”*öŠ«/ Ú•‘ø1Žx—Ê;ôC!9‹0­t£ÛD݆!Œ‘‡*Øðñï“s§ÉÎ9hPúËžËÏüÝßÂQ7‹+m~²Sé'Kv‘eQœIKƒUxÊN7ž2ûI÷”þTž²£ë) ³»Ê‚Àë+Ó@Ï–å,¥/Ö[f ‚up—%Vu%þ² ÆOâÇ[×Oˆ&¸Ì`·ý÷7ä òƒƒÃš—éÇÉô4“1}ÐQeŸ_)²žÓÆ\–™ÃeÁ&;–m×yÖ¢´(y“i*èŸíŰş_Ãóô‹{™’ÖgÑ’õM¦Åú â˜ÁµÿS¢ ¼Rðþ`©Hc¥„É+Ô—ÓÏ:ÀfÏÌ/ïx[Þ0_„@’Ú|&µ—.Œ' u®_PÌ6ÔÝž¨Ä‘þ$ÔL(62Åý4§ï)ÝA4«×)âìþ¦ ôCk[eÝš½¢¤ûšϱP«·ðËQh}^õ)@qÄ£âÚLû,@ˆ$†a{#Å2ÊHÐù(l3þà%!=@`nþÙ¹€Â+VáZ* ûëå1tð”N͈çÔBp¿NâRë‘Gé=;#¥ °m4ó"úv6QYòÂzwÆâC³ø¥öïŒ,‘ÂâÌȤp}_Ì!íÓú…ìdj2³ÊÑ›`f¾"NÚYãì¤SHŸˆu&}ƒ ¨f‚ŒmF?Xfz™Í\hf‚Ì,˜f@363¦K€5c)ÈfL›å&½Ñ,¨»möûxr ©!OÞÏ`kê@Ó'¡j„ «ì žÑ w¦w ù ;“ˆ}r+Üù=€Ÿ0£Îç(VSîÃ`2U˜:z ¬"ðŒ¶6YyøûØ“‘ƒnâE±‰3”§Äg·C¾´å}ÿî™ÿ†,ezÉI…éóBo+9ÑÛz*L³ñdt`7¦€Ýôiçi´Õ„N\Ÿ.<àz[|>ºŽÐõøˆrÁêÁøYOÏnŠÕîçzL‹³;VÑÏŸ¡ NHÉšÉSɤþº&u f¨+ŸK>UÑñê& –5¨i¸¨V•¼ê“$1{W€1BxP='TýŸì¯ÿù ã^³„ Eµ0ªæ¨PÑW¡¨ §}#˜¼œNµý¦Å×çÀÛ¶°(3 M„Ž9[#êT\ÕwÖ¹´¤:Ï3³d¯ºg†ð¶¼³êå%U=èý ^YR­3 bÂýšƒxC˜›j¶æUMž®ub¸ÓŸl ‡O&žh ÜhêŽ'Ýn‚‘2Ñ´"ËíùÀ è8Œxš@âG”ò€¡‹”ÌLJ¯c6¢ðm@þ-Œ)í-ÞuR)1/}GxÝŒ*ta-¶%ÂàÉĽ-áñýmž¼”Ù0|—‚]KìGˆµxHùRn­… ’k\±¾›þ9àÃVb=zÀgu"+Á¡=këD~2ÚoÂKUp9:‰_–׎÷çžž[Ÿ±z”¬GûØ^ËF¦ÍL› œvÜg§Õ—0‹¦]- `ÞÊà?_-FšU†!fQÈ6¾S[ ú)‚W…pð¯þƒI1#og’ƒ‹ŽÛhíÑUe)3ÕÕUJcðgŽ)=J¢a±S§³ 6ô ,‘°+F¿â™â˜ÝÄ RÃÅÔïô |üîñµ UÚSÛ©Tßn{¶¶…c/®Zs:0N-lN£ÀM·2¨N$Ýö»°U"°(lÔ½ÙpƒbVàÅ ¸0äÅÇáçyц[œ Ö³©Áz6WëYÞÁ]Êç!½îì„·“ý!EŸ Êé;hâ΂¸iç]9H¥…²èG¡¬øP(Ùî‘…r6dÈ ü‚†U/ÙžÈá Ñ‹Rà%[ù< ^ÏÚ$¯¶lÒ¨.£‹L`“»‹y¢{]Ðvµ×íM€FNµ‚ò…H ùðø+ß1,¦T¸”¢v­>'O  @ P,*=C‘¥bíªN…BƒiOÖš|l’¼pñ­’â-9/u:ï†îŠO½/}ans}dõ<¹lž"àÈi[6XýâòôL£Û%åFF÷çÞTØgši¦Ö_ÊéDÑÓ76L{ÿÐ(¸r‹üB@>è³ô7âÁÀ¸P¬¡.âç—p0/ÌúCº9Yé@i€)8ä«tz«ƒ$ð¥‡Û¹| MÆã‡©4]8‘/ƒñ㔕"ôg£«wÐs?ä,‚ºù0æ³a@a޾ëÓ…Ùé^KÏ‹–›„B^)>eíÂ>-zøÄ) Yâkh,+/¶u£Ù£S<ÑRÚ]Zõ¼i•†×lÈú‘¯7yír´6óq™“ÓßÿÍû!¢Â]æT£Ê/e‘Ø7£2Ûý!·+@½¡E‰¿ ¯)èAO±Áþôß“‡Ÿˆ·ù¬—+ð¥O묟®‡ý/½Ñƒ\ǬéÖ‡F+~ž‡6ä6 Ý6¨v™¨¼OÁ 㸵øL(¸Ið·m¾¶Ý)Ê_¯ªWþjhx¸0 Á³Å©ñyÇú5Þ þý䲑÷5/¦~®blD·~Nä[q-‚p%Ðm q˹վ®åñL¿g˜#}^ÚÜЬ´çê/r.à\W+œ^_\T)›—ŠEv¦¤£ÿ¤ö¢”BëfÊJGòLL5Ï„àpTVT“Oþ'ãû{>u%õèöY£ qGÂBRi<ÕÛ:%Ê㇖È/]#GñysZ¼{ ÍË«Žƒœ GøL}xqÙ4xÜgív㤯H,¯çuŒÓKÝQTš±Cr'm8ð™ ³´cÊŸ_ ê1Z×|½jVqrÌÍï¼m–û;¡@EθÂÃ×öõÅ¢AOøÔs£cÃañY°qøÀú< ó¬X³¥<+íTò¬Š;Gòº³3; \ˆ´»4äÿD©d|‡_û%XT“‹Ë Š+ :å*ÉÿécY¼÷F‰ÊQR®½’J%H[Ʋ¡nÀæåßÍ MTarƒ£ÄŒâYnÉ Ê€Þ2ò%2ZÚ:koEœ|¸½épÑ š>’ `Yá©Ý°ÒAYÒL„‰^”óÊÀЊcÀ¿YЊcÇb×FE|òä«Ä Ã-Œ½†+¯Ìt`gÐÈAñŠOŸØMâ(N¢Û6hÐÇD"AÙ¦RÞ à ã/;;!)j&‚‡’ÆÓÀŽÏڿرÖL¤òᣠhÊÊá÷dHêèÇ:ñ+¥˜’ð‘…Ø:"st\Nÿ¥®²àGUáy@•ÃR"¨²;yÁ‘Ãâ¢Á‘9E+´Z\V´KÎ ÏÛÞ…ÒÁ¸÷›;jU Éæ/ÜHa7&r")Èúó³°äo •ú8`t®’áixÔAUø¶€£Ä!£#(êEKÌ“÷i¢ E¹õ­žþ·Ïã‘8 !nÕDÉKÌ~z“ÁÃ'^In2uä5Ïr_÷­KY’D9FBœEŽ?òêež™$" z„ÌŸÿ –ßE,vhùø0S>U(ãQ¦Œ‚o­åcX®ltžÎ#X=èî£t·įAj&ÁN{,W¼2‰{ŒÆ“{«*9ÇŠ`•‚yÊ'±œŽh1 „ۼчMÔ+¢^¥l4\ Ï&¡db‚zÇÉÒ¤åŽH§ÉÎ…Ž›éÙÀÏë–¡¬ ;âlZª‚ñq!ϽîîFáàþÓ¸cçèlõlPïŽÀŽŠQ¶º¢œŽ­îŒ™xP@gš˜gí C@ ·’Á\€KÖœhQ”«r3ᢗa!ÌšC˜L=i[Ò/)ÚØ¦»K‹<é*>œG%¯Nå‰ ”áŸÆþ?b×¼-ï´ú¡eˆâoµ5 öW[Qlr²¢ßÑ¿´fÊAYÀÿc켘çi8Q @²HÊ^‘´£ P?2ý!¢Ô–*ŠŠWçr&Ï( +}·b I‰ñJöW|öÐuPLˆ¨-)ÒjÁE4!“+r´/lÔêgØê[§Q“Ç0=ÛJn´­ ’«?¢Û””¿ž:õŽädt¾*~N~öŒâ UeäÕåÝÆóK©¥Æ†&(ìÙTÇ nC Ae‘Ì)ÇhéÔ¬–4D"FûBý$Rs> Ñ­æ¥6:ch$Éb>Ì¢†!çWë'çfòîØBå|”®ã~ÑÞ¼H)[Ññ­K êØeC‡Y-èÍ]òÙ[Trä“O™›£°Ð*,­⥹‹m3SqK>Øáæ®™s‹“ à(µÎý•ÇÊ5¿ÝeÆÈw6U&D_ùàåé¡QE•wTÙ z˜ñÐw¨Wè(Å©§P@Ñ-.o£gu©£¨'#n¼}M«µX<Ú|bÒá N¢¸lt[Ž*Ky‡°H›;;>4_VÚÈjF(¡ñÅõhþ@¸–BG© VZ•È1SÆtDØþ ›{tV¼R "G¹#@¹™<^8fCÀt>, L"v7à!>zÝ¿ÃqHKB'’DÛÉD+.¢ô@yà¢ÐnþJ?ˆO7SdEÛQ'èÄðøš Þ«t0>8DzÕå9鸓<Ñ”™é†tí&ZÀ‡nˆÓJf0×Z¢ÙÀ²ã¹2-œès"V%KV(@×Þ*J´ ô+ËŠþʤÓ18rvF¿9Ó ƒ½®éý=±x…äA"h"¹³î‡%ÒÐG· Lˆ‚7ç««ƒÝöf2ª—c7Z(=:>ˆR(AˆS ic B— iN1L~yäkCWÐ0­píîÀ–fr„áa ²ÓCS‘<Ĭ_˜$F’ÄknTO™ºh¥=x[ª–´^’»a)S7,*„¬˜=êVuêVoÀ”Wp¢^Uœ½ß`¸¨Ú»Ú©š¹“Q57ª¹cêæT˜T«—¹•s …ªîò‚Tw¸žª;SÅÆA„'å‘£@K,Ì¡†!|6}ʦŒ] e`ƒÑ£+ãò<ƒª¢ª0Y—T2ɰ’E—ú@EÒɪI*.‘Tæ©4ÞmL³z“áD3`DÓC‡Ñ=0#‘dìQ¤Š¤ôÒº’*Y¼q£Öi5Ç“^ QmV‘0[Ó&Rqâ%^¶­‹4L²úb:¨ÚAÒ ñÔô;tN!¹ô¾)º—)MCž}C«¿Î ™e›L1LYÍ®+˜bèYP;ÊZ0Eí®L–‡3Á/Ì”º2Sêr´£/OÉYÂ\@a0s}$ëMq5I<úœwôdÇ€ ƒÕ`@†ñ#} ,Zß”²"@Òm‰t÷@:Ð÷Ypíó"lÇêè‘y þcføG¾N3àÙ–âáPãa+vÚç…dÁ±† ¹gˆ7†ª¦ÿËÇrƒö…Œ&ºgÝsT……Çî¤Y®QFE–asÃËŒÎ;F¥Q Å㎊neÚKª•x Õ OVæÍ𰪛PIËè (»r¨¥Ú„àf¬PÜ)!X6Ç£]µ…oá£ã·ýáp…îU»4ƒQáYEInqƒü¸e¥&ŽZØ&yEVD-Cî½x9ñæʪPoOké½/zATFŒofjƒ ¢WN ïëi|ÀÂæKE”õ²âŠ„[®ñè%Ò©]ȾG¹)sI”RŒ¤`’3{HÔ…ƒC½:ó‹åÄ8ÒËuýGÇñ§zèרK‡Lk—BŠ‹(FªlŰ`£cÒ³R± ±œ†Ž*üÝ Õ Ž à°\9!ÆN‚zaHE×øAÄñ"îJ°iE¡µâbLY@ ÏPax"¾ŠEÈàF i%*-uµí!dIÄaucŸhõ§ºåHŒÉn„Ëð]·EêyZ1•¨‹±KÉÇ‹=³¤õÌo¯P]ÂÉpLê‡3v_8Êܼ^{Àüí™Ûÿ …„™[ÿ …e!rsúxË'éÃø’¦ÖŠZçѱ^¹iŽŸÂ¼ÐÕb@¡ÃR…õFX¯…½¢(6´€TÏÚ3©6=@ªñ]gÂF…(Á"ÑZa£þž$ü×/«Á-Å †ÿü×U<4ìlü×îÒð_û5ȳnwœøßn ßµÈ4Zg_Tl"¬ŸÎ¯‡+$#¤ÙŠÆ&4Í ‘dWƒ{ðtðX.Μ”j ~l#'䎻­œhN6ȥЉØD oÓpf», ЬÀ–ÕQe».TÙîßUö@RÈ * 6ûos0¸[üÝÛ è˜­8:&tž >~z0 2£ðsoYÄ ï¦¾”1@ßæþÐA-#tÚWÀm¸m·ðE:à ÃÃþ“ß<A©‘ÛñèǼ¡vÕ‚D‹¨L5›ª¬’kWûQƒí¿_xñ¡ˆ7‘Ñé:Âhí}¸ˆ«ÊÇüj¥õìr± hEÛŠÃÛB¹'–ÛH+·¡•+àmßæø b;sos"°Þ ògª¾@3à ¿rg ÙîF‘ßa8ö†Ó±J-ZBè#¯5©^ Æ1~›¯T×|péß@ÐØ~Œ‚&±Ë›KŠ€¿uÈ@%йŒ·,"!(ž,1h…š%ô§Ã(€nTsÐñ )^ÞTÎ55Š®ìr4®VpÆZ5ܵڠ¥nÐR7h©ZÉ´Ôe ¥JYš’žW3;†Ý-uŽºn R7P©¨Ô Tê*u•ê‡JòÓ Ü@¥.*uõX©Ý Vê±R»:‘ V*=¬Ô Vê+uƒ•ŠO+µ»ÁJÝ`¥Ò³ÁJýy±R¹(~8RªÜ_ Fi š4j:a‡µ½\Ò°EÀ¦ÁSY[°i÷ÉÀ¦vñ¸¦ë0:.Ç];æ¨Û˜­ëÀé ' jÃۙ‹ P)cÆ …ÚÈ …ÚmÍX¯–§^-W½¼âBsU¬•µbÖÙLÃs9Î^Í y«Æu½¿íˆ…Y«Ès-Çö +Œí<·ËA²5æê¿/¨m¸³µ?-Ö¶ô‚TdkÛ˜Hå©£ˆHk.l\ðŠ }˜L<b·ûwƒØi7 »]d×êï˜Ý%Ãì~Ýàìþ"8»®ƒúo¥À†Xë×›×DãuÀð²ßá"î'"/eŒ°w]»þìnì]GÂßX™au;ÍÄ ýšêÎ PµîÅ \GÀ¿¶ ±óFÛ¥Žá| !?Üý5 WÖ…{›$̧âÇZéÊ?–73é„áÚãÇVë¼á0² Ò ˜ìßL¶»X0Ù v¬,}ƒ;vlÃÄŽm¤cÇ–TZ&•V:•˜ ÐaŸ鄇6Ù‘lCÕWžˆdÛÝ Ùþ”H¶¿’meáH¶• ’íÉvƒdëͶA²Ý Ùþ$[='s¢ÔºñmÍl['ÓÛ¿%Ží«þäP£FÛ Ž-[,Žmb{m1Â6Ç6KÏÙàØºž ŽíúÈyƒcû³IÙʸÁ±M,aƒcûŽ•_ǶøwÀ±-/Ç6üÙql¬>ÆV:‘ì« f¼0Öy‘XÖ_WÀ°â }õ팡T™á/ašË‚ܧ॒ѥ’)V2È6B™o²¬@}½ÆP¤|誴ª¯uñ\†€dŒþh¬šƒà¦B*&xšWà~¶]y&Û'Ší‹mÕ¿Æv˜•mž…Gëh]85»hxg`ˆÏ ¬a> åYC½¤}•jyЖ•<Š…½¸Uà î‹È$®‚»7~`>8È• cç’± ᘠ<ça†Ñ˜‡,à§Þü rÄ9ž2óRÂc@V¹0áQ$>äÎ Yù‹óÖJdNŠÎOä·8lpâŠHîC½a‹ž7ínçí厶Mkóavª 2Ì4óh@ºîQPšu4²Ž‚R|”Öyg4 OEŒ‚Flø`Ž=b™w”`bg³¿àªéjl.}W6ïe§pb2zýY ®pý ®²Gù%c ð^j qØ ˜±ÕAËOZ Ä/Ö®°ËÚË­Ëjh ?k·-þ Ý–õ>ö t¥«óV–ßy+³ÙÏ0;LäT B§Ì½4käðf†¨"-ˆÏY0µ­Êxg¬Œ°Å¾Aëˆn¿²¥½cšÑ‘O~ò©¦ô³Ù£åY6¶ß÷˜ÕP†=c²3ŒÙÆSÆìY9äšcÖ&lÕ{V¨ñг̲øj¼˜èp\[¤ñâiüÇ#χ^šµÇ=:¼´LèpϺÏÒ“¡Ã]Ç%ÃJ :üà‡@‡Ÿ)Ãc÷,27bh²nXñ0¥V¼»ßÀŠo`Å7°âXñEÀŠKHpÀ“èoì7¾2!~(á¡åªÛ ’Mûö-"6ÇÂ&¯!»€Ò<ßnt3Gb…×í„RnA#d[@MÅ{rv¨nNÍQDñ Ô@7'ä¬ÀlÔà+Dq.Ú(ÎÝuEqîªDçŸæIÀþøq5øÏåÊÁAÿ¹¼Á^ÅCÖÂ>?_ þ3OÐ~ÕÌÇp kyÆ©A ®ò:üß›$ôçÓ7yöŽgn\½ªòÕoí¬/ø1¤!RI<ùDÎІá•`Ò¿0ôUU Z´¥ÒæÄç¼h;G|òs"d1u(?^±¸z:øÍòì Ìb  °{=1Êtæo1ÐÌÉùÙy›}è¦f›¡ÁÜß°6{G…ßð<É(ÔdV0Œ\*¦ѩ඀¿ÐëÒ¾ýôˆá#,ggÚ΋Báï;ŒÑ*É(:ÀyBFQù!ŠpgÉŠ/ù{ÃÏŸz?î=_ìó×m‚°Â’é·‘øm¿Qé‡?¶Û¹?òp¦á_uè+ê蟧<xXU®}‘”@Š!ÚŸ ö§q ¹ã€Ô‘o÷®ÿãͱKÄkè2wî›{*R”´/‹Ž C¯óOÿß^\ŸPvÜE"a(×(zIw9×b?6DDw‰S$pK°½Ä8ìPlHEäZ&9ê3Š¢AΗ;Qð9Ÿ{ƒ ËUó5ºXáƒóÑ;'>øSÁÁŸŽ þDXp&8aUð~Ò›¨5$D˜Ç%$®!IŠÐ -ÄÛ4ª";&ƒ|0RE\ø û§ÐO´È„5à(†×ÏRþæïhùk‰ù)s‘2×!ó¦–·)¹JQ®wìZ‚Ú`¸’? IO1N%j$ŸT€´û»ŒÔÕ_ê'©ˆvi­¿L"§¤D|aoÙsßON^ 2°bæ¯ü_‚™mù“`†ÿ"˜Ùöô®¨-A`ó¼$p„hôÍþ®ðÃ媊 ]˜n#p€àô/6$´wL‚ý“±Ú¶hhŒmü¥ø+/$Ëxר6˜&‰aîºã”(1Ý%è0!_ÑNJM&FM°2ŽZLfªn“J—'wZhb‘FAŠÅ`"nEìt'Ú5äõ^ÏuýTœk6@䈧‚\ψp:*‡7F™ mËg>šFxÆöúC°(Å”cu;Ó(ÂÆ©CÇÌ–Y‹²¼úÌYK²Ôº›U…;bW>ðO©0Øà‚㓊–FéÁ½¯`Lzì/8çüoQôJÔ9ÀÄü—Va²ÂQO`’Óôù/üNÞÎÄE²C©Ûöw¿³$P\l³?Ù7þÏhšßù×¹?ŸÛß𯟌.¹°?sÍÝ`{?Ô”LŽšIõ?…²!tö“€Mñ"´‘ §Õ|tlKÂ9Q(§Ò±Lmp(;Ô©šÜŽð«÷ƒ;§Â©¾ cÏø÷Ï€9„z둹1éq°ÏSÈUàì œ¬«bÇ™Š©Ëb"ýXæ¬SNíÇâvÄ E´d”¨¸—?—áçS8BF2" ™£Ø™{‘†¹èg=œ¤Ns5wKÔvA^(“@49ö‘Û`é(Öô••ØYˆÏR$‘9 2Ü’‘é\ÿ—hÖ*N‘J¨¢ow„@;¼ÂÖLØÝ‘äÖá$r&µŒ f àmá¡K„:üÿ©àeêh^ã‰øcbTkc;HË=åÙ$\ OªZý(‰åc(®òÀðîà7ØåÚ¨¼½sw<7çÌ`=ë´àx8#4©Rë ¾'Êïñ$‹¨ƒÞ7#ø 2.ÒÒöÂXñR ñ<}‡JÕ´ƒìaHµ 5!u˜Ö§‘•©QrKµHü>ÒÞ?Ÿ’Í)¡•óS6ÛË”Îà§âÎÙDNK0©ìê±ôü\XS—ú·CŸŸo€¡— }~®ÙCÓ³†ÞCo€¡7ÀÐøÄ€¡ùŒô‹C[jx`hjXC]Í ¡Am00´Ž­“™š¶©ý Õ‰¶d@kOú,m ÃYOYËPÞ‘ú±¤'øßß :wƒ° }ü{o`pßõ—÷cây‡°7qÚ%U {›Zª "Y£Î!,&ÿŸ“¼ƒ>0íCÌï‡>oadX&dÜÅ2¬6Þ|ÀâìÛÃî9€‘²Ç'½û{2#:Ñm&w-7 nóQûðþ/ÚœòÛòîn 0³×Ð; ¢7Í3 ÆõO``U£nމz`*ñ±a¬ù‚æÈã(*¾m+ C)Ÿf) ’E@~'yhecŽÇèuàƒ%·k«‘}íÇË^BQ>ëÚÇí—üÍ<¨ªëü¼-µçª9¨Ù´Ã…q\å®–ö–eBÐqø1<Áƒ«c@Ee 8&õ¬8Dº´˜óÚ‰ ¼(‘¬Þ×T ,¹þµÙêŸRY>ÜíÆ­ãxe;¢²ofìnoü•ÍÁù¶éÑÿf€e뽌“ÒtÊlZŽNÂùBP[€n.µše‹gUpï(Ü`Ï,:B™µd½P†=Ofô»È@ºïCåá]ïËx`4Œ<Ç }s°œbZò˜^@·¸åãa >_pðè þ‰ ¸É-qêtiš«'6;øŠN`2n…ô?rSë`Ôì¿LÕZóá¹M±ZDñ=Át¼ãŠ^ó~:B”uª XÁ,ô$+$°( l*ݘ,Oí$A8 1ê·(±:ïìï@êEŠŽ28t«9ºb€Ä„¬}éåw]èéùiÞ§æ~“£» ˜£­“j‡Ú'?Žž§£çÁh'ЏŸ2ŠxPãFbô½èJú­ œù2!Â}Péùths/`z¨p*úÁÆ+ w ¾¨¯WOOUŒ"À*F$qþ¯%qÄÓ‚`ðyùõåUÇć;5ø÷. qQí$A4 ˜YV"P¼]}‰Yà8ïœ]\ôæu˜ð„Þ‰óìÆ+e1Ü!äFµ]7Ѿ5ó›„0ÆyS`Ô/xk!ˆûÅöºj"†CfèÌÙ2×bHå5‹\Rf«ö 2B¤wZõªYò»@Öþ]ˆïüM/@ÚQl-ªB— ™„uîj´jzŽîêRj«)y9͉¾ÄHÏËô |gÅJ¯ráw/ò´†¤^Äk¡ž Õ8C/Ïó 21Jda†­B}9Ðé—ÍßÏÐé|<9JRPÝqìyIA&2´•<°(Bö»ÁËSZpÙ *ûœ¾Qooè<~¬¨™ÀÞq4A,2b³À<ØI†\ð  Ï \zJŽrè™’Ö¹žRYè€KIÎ"€ëõ3lw^…Ä{ç¤t!þ-çÙažäÙ ¼—à8R µˆu0ÚU¨ôAĉŸJ´KLÀËáÎaZɨyÉ•%àÚ2ܑ©*¾S†ZÓÚ¦¦—EÅEÅà»Rºw*B¢)ý1u÷¹Tkꢯ“j¦VI/F/C+F~ý„bpB‚ÑVÙ)àhKLN³> ZmƒÈã2ê‹pG|•ÀV”½¸#š½e/ÛÙÙ¯ öâìG,%²K¯*ûG;¯®°ûøÐƒ‹8mCeÊÄQ4D\ßF¨D1€S´„ù7¢8ñ-ÎGx<ˆ©¢¢HÚàà”–À[ÈTmæìhêý¾†8ávAÅí‡1Àc‰Ça»'Lïºgà¢þWØ]˜>Þ‹3.“ [Ê©ÃîÇ£ñÃOªÜ¹ðùPÓ&OÛŒ¼›5YUX" Å‚o·È݄ѶòRøwÔ¢WedEdmœXy%…äÜç”Û.8ʬZ‚/;8ÿFvt³Aöv½®òM´„l¶µœ¥YrÖ!J”üœ‘Ë\IY†;Ç;¼£Ô› ~¨Ïá[ø‚ÿÂ?ÆÅDGé©¿Yq¥GIvqF]Ñ—<´“ÓfprE;“8ÑÃ3QPO¾Š¯qZÝkœílï²µGŸ:{8þ¼Õ+Äi¼1h¼I§q£­á@Éõì­¸*ÝŒd‰Ñ†½Á†1¼"Ñ€Dƒç·xÿÚµcü[V8ß7Þ/È#DyqÑÕ?ÎÞp&P¢1ñ MA©(G”À ŽÅ2…3x%Ï5m)æhá­'j÷>ô ÊëñÞ•ŽÞ &†ö*Vð¥ì‹ru%Pò¾šS«|‘a;â’¯ðU~ ,…£yzi¾(nk§µš¸Š½ï w®·XN¢•¯¡oˆï)"4x“d1š/ÿ¢g=/Ï¥J…"£uÊN"c|ªÏà1&+,ÚÍ3ªy“h¥hŠ»it#âŸPˆHˆˆ_±/V1ÍÀ‘º¨R×›^}§èqKµÖ/V¿Ü¯gò„I‚^R³à:–„rÇgkžh€'Ú1«¾«?ì“ÀîÆ…wú`É#ý‚ŽŸóŠ œ+ºÉ„G†0ñihQ›93âZž2Â[[ÛF&E f—é@iãÀÔÆuµê³)J¿´„”ç¦`1!uTNW'Ü„¹¯Ÿt«ùŒ«¢k2a¹¥ŸWõ÷qböÁ¯7azmÆEAÅxØeÜ)òÇFuâ›FÀ¥˜@hk =ürwB‰*` ÷âyÔ®‹, ‘ˆ°f䮊Fv‰2eÛ"뎃T˜LH„ô5ìÃqYÓP¬¾®Ž9ªÁÔèsÃ×Iª9¹Õ!¥G( #¢6Ȩý$#¢¶ªQóŽˆÚ#"–Gí:Î4"j±nœŠ¬íqRÙF„¯Ìa××;"p­eDÔ¼#®‰»›Û“ ïß¡(¸) D<3 ÝÁCiêL¥Ç…3ůÆ|N…cý8‰sû Ž.ö0¸wF䈂ÀÈÃÿñú0´öa½t"œ.Û‘Š*G‹'„ƒ †çVðÁ —ö9sà©§µ„’?ï2d,ì\ Ž,‹­—çˆ#¿ ¼‡'TøËKú˜ :%: ƒŒzªáЋêÐ E0zZxkLøÉ艎õÓ,YªùN¯æ»¹«)ªXÑbBEße©è;gEË™Á:ñDGÖîöb›I2U§$0VUuJ…ìÓ4H\eÏÄ軬Œ†;YX-%±êRDÕÏŸ‡ß͵PÈ­L4eâU$¡Hü‰š.š:ÐT‹O;z/3}[ñziÎwˆAAá1N¹â_áUfºðGQiULt{¥`¾²ìkÛµ”óe’C¶ãÊ$÷NÌ5ˆ–ÕÅ"ÔQ"Ì Tè¶Q\ Y!ŒAb1hjÕDTpµÖ“ûÖaÉýI¨·bÁ×¥â R²·lÆâÎM°»[ò´E§Ð~¤ÝS¢Ùʯ_cÔ\Í(²f5üÓŠ “‹,&ùf®"‹óùîIµ,9¢¥Yù… o\ÕÄ€Ÿru0µ5žÍ—û„±mÆ ôƒ÷âq~¼eAÇoåõ›ßÙön› yq=¹ï«î†ËÓ1x‰¿Db>"TÆösJ*®ð 9YˆHDt2p€žÑèøDLÀX”~»Nß Ö3›Ð̘Û7utõ©C"ÙD÷ÄóìN(„=‹Â™:®€ÚVQê4Î5Ï8sI½Vq ¤’a¢éÚMhh£öx!HÇ*ˆqõ“Mwý&›ƒ¸ "(à v¡ï|æÔaÔ¦À„¯JТaüjQà, îžÄç³ÓDÉbM%~ ±¸³'‚ÍÖh‡¼Ñý[t&/"몑jSW :[Á§<Óë’gk©ò<˜Yž~è$y¶à~û¢j¨À±Ü×iƒ/´^섘QØcWBØ6ÇY£ ¤-5‘˜%As»åÝvîwÀI ŠÜ^ăÉôA`ÔŒ‘׉ ŒwÅzìS¿‡cò@šƒaß½Òàˆ8ß8øjÄó-_ jxÚÉCm7 zB†ò¬¸í¶uM¡Q¼5°ag­·H·Dô/;[þ!¿e§ NÄœy†\Òè+»öؘo[•ÅqÒ}›ÄFGmtöÀ^œ³W„o y¼&ë­º^¸«rî æ‚Esà¯ú6(9ÕOP¶Ñäá°j64yº¢Çñ¬³N^?SI6àå·D¸Ë k`ÉÇ™ÑM[ H%ŒnÇ“ ÿeø=† --Fpêµ5Ãs¡ÀcáJÀä"[y¨™I£©Õd†š™D´ZFÐêû,àb¬Z7¬¶p8ßçî;‹N`F´uTm]£²œÊñLav¼ë?ð bºÍ¬2ëèÖmFR‡y‹¶hr¿om{ j¶xм[ç ùÂ6cáq®ŽoŠðM¿)Á7ð¦| tóüßvݼrœÃøé¢¾§`êuL¼-šXBÞGÌC›Ðé1f`†ùsKIBÙ³ƒãÜ)²ÂŽŽsxºQƒ3± mƒ—P&‹ÀTà뢖[ü¾í€™fìêŽY Ç9…Ÿ"³ÀZS~]—_ŸÆàÁ·¸vÑr‹ôªVAjÅG5òÆ:Å>iRK™±œ¢ ƒ–Âß.œJrÍÍÔ®f*ÇX¯¨á¥*C-GÇûc£g×FøMÁgzÌ[IUãà¸7<|ºß#Ïê"n—þı¸á "_ÿæ#~x|;|œ>ô/…!½È08gQc„cÒi îü²6FEÖ²†¢ÓˆÜvÔ(,ŠvÎcJ„Ò eÛçU6–%-Jçj«°r¬Cʨ÷‘^(j +†{c #wcØ?kª#šÚ¼ëh:¢Gå±îaÁV/CL:¡CÁ$û3×{Ü€Ãc{áÏb…Á•iLuë•Ð󧟰bÉŠf‚÷ÐVèkQTìÝÖ-qðZð»'Ç8‡4tÅ-GÆÞ¢è0˜Sá*&äŒE¡EÌJ¨Šþ|Fiâ)©œïJÔJ³~/óü™#|ËÐä„RŠ¥z,ùDŒ¹v¾#«RaÇó÷ n>਺x"wÜð>ºÁ;§€õ£d±ÞÜ…ƧI®£úhÐ,ŽÓ&~ ñ#Ät·­ŸòKjÊ{ €Ñ,(¢a2æÅËýP”¬®ä€—|†æu«e !,Bnþödüïü÷éJð߃bxP(Æñ߃ þû*êJþ{{AøïÜ÷Æ)ÿs*6cÕ¬ñÕ¤Ãçµ+é(kþ²†t‹õ´­5Å{_È£´ÅýøŽðC«!¾cÀ/ÛÜÿݲCþHnZ¸ÃÞÝ‚YÀ ‡pkÉBH`ÌØIû¼Sh’žŽ‹¯D©Á€_&=µ°+Šúñ±ÿaçÃnר›=HôÔ„®,‡ƒŒìùÔÒ<^Gº.ÇëEËÅù"ÂýÕµpt©¡ÿNeÔ¿§…4úU¯2Åÿ«Éøæ'‘Y ªç§ƒÑöÞÙÑöàíÕã0Z@FÍõGÚÝ‚¿YbÓ’ýUr—@Gñ¹ B^¡å{l[é¿2äa©Ð7wûòlü™ð•†ßãž^›®ÂÆùÛ™ŒPÁnB‚q/£§ëÆ){ÄXpNÿËà®/`ÖG\ñžôÇ1­ }Õ¹‰ª3åÊ÷öÁ ¡¼NÒ¿Z¿n ŒA€á„{û^ÖׯãÄxwt¥…Œ]ëj]»VÖ«­®³½çä\ûtª—ß•õ°NÐP1)ݪ¶ênõ„¶y 0Ebòä&Ø„€ý×ÓBŒ‹èÏ0ôÇ3–{6Úš>#ÏB„OŽŽn ù~±—Ä'ö,º $ñ7ÄÒS´¸¤F ´¢*oÆäs5ÁÝÅà”œÝ?¢Ké_ûÃá.oPA86¢WS–­ÊeðC‘ ¤Ÿ'–W¾ikvkãfƒªe”•â]‡ã¯ˆl‰Ž;Oä¼Ó(€óŒ©ë«Æ%;ÞºÞ²ƒEÀ°wl—×ì;Õ^½S®+½œpnÝAqpÛ^. P9F‰ŠžD5=QÉH„l£pŠ?JV¦d¥Ä+žDX`”ìÀ)¤0›j(¦LB:$vy>2yë8ðîÈILKçîÅ,•«‰>©rìÉ} (šÉü”¡˜\C2UóÒòÀXþ4E¨¡Í¥ø™;2ór&Wn,„Ç.) ãŠo¹xnU›ç ä­*];Aš[ ¼Õ\ó‘>ü®ó˜¤j4t†Äˆ¶|Ѽ·ÿÀ2cà¨.Dô HÿǶ†c  Ù3ËuéX Å1@pg*^.89"®P„Z9HD½6-Ù³?ž%¡›"î&”:Ò€éÍM§r>õÚnøa¦­¯ƒ;Þ‹^kadP!+úБzqåÍ‚h ¦æ@*DQÁÎi—Rc¹Âmëí¨´‰@êy8  dLl×b¤Η­ ±0´‹ºv, ů@Ë<|×.&ëZ•“µ®.ë}>¹¢#€LÜÉÀ1æ@—8Õ኶^h¦›>ŽLHd^E:ËÑ¡$1Y¸+A‚/ žéÚÜÇœÚ$Ûe<œà+ì™Ú|¦ÐNû\Ò6 u”cL,¬-à«r€NÊ dÓ~Óêä €‚ô§ˆ3·mL<ÙÈžXÒq´1ÝóNR5%ƒüåçÕï"c´üCUÓïßI3Æ‹vÿQÞÒÞÃN:K ò6^ž*`(ŽÊÿ0Å./껪3¯ï#Xi¼Ž¡Â¥]NÇâÐ,Щã;©Ù –#>aÜÁ oÈ;FϨ ×´'°xâZ@îQëvØ ¦óVžÒí¼éX'!êûy2Öy½ý4Ààð Ú[S”šN!Âè¤&A8=Þ‰>ö1¼2 ÜQÁ·pÎVÌ´¿®“õ¿‘ã¨Òt†w ëüQÃÔõ6¬¶I¯ ³»‰+*¸'lL^äªÄ†¼?Â}nÑÂ0gEÐgxûY>‚ìYc×ÀÌóºßò9•Ðqˆxý@ÉYŠvÊE@mÇE…1LyƒI¶£ÎÙc»Ÿkÿ÷&`75¸0ûÐ?̧ ‚ €q  `ïdò0¸Å ²èÝQ”lôÉØß,œþÞîÆï‡}cŠ µ§¤õ)6 žRðÎ×//[Vµ‰‹9‚@Ûãå! <Ëm7‚?¼ïO§½¦ÚÍ‘Œ°‹`'NÅEFï`=ìŸ3>­ƒ]‰´‘ˆgÍ2·ËÅ,$Ì=WìYÙ;÷H[âø«J«Œå°™‘jïöá–˜: £IÃx‡g,éªÝøz®TðèDa×2»–UØÑšÎçAƒŽeN™r† a#)ÚCŠÒ¨–¨-º%j3·Dmy-q*~ò¸ú`†-°gÞU”¼¬ŸÁ 7{ûüÎcÎ..Í´ñ‚æl‚ì$yR·y—Š9Km'2¹±ÞÍÜXïÞy”f`[Ú³·Vµ–.€ª[o%¼oR}kèמ@¿z•F_ÞÙ çà~©Ô%¶ŸzS€^ÏH¸)(/â >gM^a&<ƒˆA!:_qåñúuJ·“Ñ%Açg¯¸8Õ9SÅ[YkŽU<Dð€K „ràÒØ~Ì5!>qq¥²Mb1`ˆÑ©žMÄq¤E"/XXéìOÀˆ6th0†;;²ÿ:æ¹R—TfpI“Ì1àÄiÙ™D\Ïܹ¸Ë;º¨R;’À ÷Á…²â…2@†[²˜ßYð%vA,×ÁÃò@°pa—¯Í]§Ýà…tïüBôŸÂ¬=æ Fìçâ ¹ŽýT~!W ±ŸŽ^ ñöOÞ¹)Lo ŽŠÆ3b#ACùša7¨¼À‰L‘x'H˜ÉB¨ö–‡ñز°ò ˆ!ëKÁë!zœ;—3Ön |RÀ;}Ex§°ß§½î¼µ;J$¾¶6Ëór§\. õÚE·QÓɳ§¥{úÓîbÍ}‡à‹»½Éðó(äÎ•Ž£"eÍü#þÊwL'-Ò*œnñ¹ÕçE—$ˆ*(¼Pê1õy±„³+ÊD_¼™pˆ¢6üà9ïÁ=3yÙ-¡\·bg6wžEœ £˜‡ñ¯†]ùªÅ©/ŒíÁ ’\³Q³£_ÑHÜi{+¥¼üÑ~þbah€ Þ Y*òÜ y8ã ~ü¡bXNW†íFõe§­oþ_6!6úÅå)5w—¨ |£YÝÊo¥™ÂÕæeëB+º {Œ`èÿC£áʯ(\v_6òìºùRå¿”»aÐí[ZZá8~~ Ê|L{¸º‹Ü@k€ž~¼p‘hu¨üV‡8hÿû–Þ“ñ˜®æ ïÈ—ÁøqÊç1šeöb’ï§Û>Œ'4kÁHB—õ£QùZú±µüâÄ"¹£sÁ.láb/çO¢R_C£Y¹±©—ú›ÐÛc"—¤¯Dúi–ˆw©£KÈ›\8¶mNîuþß\°AN5²ü’zÇñ"ý‚M¤A¤•„k2†Hä´WOSÍ^áìyç1×”ô‰ç…OôcÒÍ W…ývv"JË©ò$é$¬oâ)§¸’y’.ß‚OâELÇ, Œ›*RÒ49Ñ…¦äÛ@S)eóŠ—ub'ìüŒÖ6I\Þ«ARà¬þ;Àš õÆ_ ä]‚˜ê‚Èuƒý\ò¬½§¢±¼®Â¿#ÀkJ½¯ñŠŽÔ‰Ð'0U(DS˜¥’®eá,æï¡ÕZ»,V›u@šGœ ]ª3|õAú.¯«PRÂ=­{ímÕ*éµÄËiQ,¯¼B°£»\°‘Ò‡1Rˆa‰• /ú"!+õSÀRñZœ}`6^¤¼£ƒ6Ú¼ûû›‚1óðÚjÊag7¼7´H&o'Oà®ýø^¸«5þ„•\†nM¸g¦yŒöo‚¢VõUdNßäE¸Å¼ÚÉK›<Ž4Öñâd^ {æ…ù¯íkÞY Õ!€:¬/ù2ïÖÕ>¼¯µê|UuÈÇîçß„&ÊãyíSˆ,65¦‰ˆ.œÐä â¼ `ée€h/|eç(j\š‡£]!µý²¤•dœrXV¡ß‹Ƚý±PAVvJóuÂ2ðâÇPRgCð–¹ÖÁûç„kžv9Ž˜|úÎ ñ.u9†þîh-2p²BXÇf"s“˜‡Œp±Üˆ¿7ƒKê­C©³åyƒÖö•ÍÌeõVœ6Ž?òŸäÑ€äÜ;7=..íå“Ìšyó(ÍLGîLt-6^ØÈŠÆ{d÷ly'ïµ1šÌ$Ø—ŽåúM&qC†C|L«*™/¹mZû”O^¯ üÊdªS!%*AõQ¯r&91iìÀ µ½ƒú5h%Qš£vš;"½ŸÞAÒ"<z˜{]úvpMT—×¶þÓˆ¢éè<ØÀª¼Á¡ß¡b°ž³¡.á‘ûØ·N¨W<¿à‡?6 TÆžâ7ôò[WúiÕ<[$,ÔÉeà ¨Pä­‚d0‡`Ÿ‚”‡.¥4±”¼b1™~˳ÿQpÿØwm˘‹[ç¢ð[í-›këÕV„“@®=ôzù×µŒI÷­pMMÇu‹ÒdSöÊæU4{蚦)2AC¬'JO7L3sOm’ú*G÷éfxo†wòð¾Yâð®Ö<Žo;ïSÆ÷5¾1¶¡"X•§µ¤SRž5y6Rœ-½Î«“˜þ!S£8çó™ì§Uj‰®%ª5á~þFj"žuÍÔ@\”ÓDMùÚ‡¥7,žþáE¸HÓ»}°ï¦?XÁ‘ÄCÁ£{ƒI(ý×ùš•kBD¿†x"ê Tüf^ñLÙ¿!Ì@ZS„ ™ôÑ5;{Ð3žà.éäK/†ìKO¼#àœvýv­ï:íT˜ÝÂ4žL “ +/[B“n4f¼°•jÌ‹¿·ÆôewêúFO&=PßèÏó·Ò¼š&7îôˆÕ×Õ Ð8‘“ñçïF,N°Æ\•xxή+I²u½5Iè9õß]»OôÀ•0º³áí.Pç­÷¦c ¹êtd¶šƒ[€¿ûz?=µ(}-Kz¬ÿC[½ÀUüÑáÑÃXçq?züÃ(MŠ¥ŒR,’OJÇV.ÅbšK3Iѵ],rÑvåwÁW¯òˆ¾!6¦ŒõU»Þ¯6®÷Ô©£¬ÅÔñƒ|sW³¸Þ×}z¨dTl嵜ÊiŠ­²šéá0£Örz8H“âá§ïÞÏÌóÃϵõsµÙúÙL/©ÓKö­Ÿ5Ÿ^ÂBFÅx´–ÓËQŠb +™^ÂŒk¸0XÇé%L[Ã…³­á²L/)[bŽé&Ei¡'Éo¦9ÆÒȸfÊ#¶ŠIg³“¸™u²ûÅ×}VÉè ‹ë8«„iÞ˜p6oÌܳJÆ¥_X^ËY%méζôóÏ*OÝØuMGÎ%Ïßl:ên¦#÷³VÓÑ:lÓ®ût”Ñû¬åt”æý góþÌ;3.㵜ŽÒ–ŠÅÙ–Šs-rê›Y%_ßÌ*îço5«ï¦œ.Ý>K¦B–ƒ÷ ÄXÖ)Œyg±÷(—4‡±¹¦1Fz6ËâI$1ØdÔ²ßw_WaL'Î^ ®ÔæØëêóày}÷÷<‹ëàbÜá#â׈_Å_µ,|Õ€¯šÉ—®ë‹Î•™ÉW1¾8KeúÀÖ}Ú+eY^PÒâá’¦½øBJ$£š=ZÒ´ç\»˜|•âË—TÆÓ¦½R1s“”‚%L{%çÆTjµ"¦Â%L{¥ ¶Q)̓ìx²N{§Yæ½Lê¦_Aš§4²P1Îqd8¨Á>qžnfÎÍÌù”™“NuÔ|§:ØÚÏœYö‰DÒÒrfÎ’sÑŲkêòrfÎR†…SɹŽyâÌy”½I–1s:×]©ÕŠ˜:\ÆÌ™Á¼*¥¹iOÖ™ó&ç:kbOŸô {î[-b¼q“+wnöYØíÑ]á¬N¯l&áÍ$<ó–"[÷¶œå|ŸHZXÎ [v®ïXf^–3Ö3¬ÑÊÎ%ÓÓfØr9{“—0Ö3¸¢™*-a†-g0ÃÊiçrOò ›tþ†¥ÁaÎ :q}»™ ãO¦ º»™ … z®­Yö‹OÐYNøˆ¤•%MжÃù:XÒa)Xv®Ìž6AW‚ìMr´Œ :ƒÓ<‰©Ja t%ƒWI»Žáxf^×73ìfØúf†Ý̰sͰڮè«%]/¤aÞñvü ww5VÁÂÛì¿x?àŸ^Y<(Zñæ9½1ÒHTÊ—6Às"6gSï½Ü- “9AlÄI^ )ÂzD-I˽îevdûñþ¾7‰°¨$‡í니Cx^Ö/j…ñIcù%_¥T”Šþè Fh[S´‡£ðFo…½Çßì³£À}à_•ÅB:*ƒ0~œãë•á»-TYðv{KÛ§íIœ(ŽyOùí?žò {p {·¸îƒ4êÍóý³úùþíÝäËôaïÓh˧ÀŸJ©„¯• ¾Â’x  ôA¡–‚RPæßårxð¬°ÒSžÇéCoÂØðÎ3íݧ¾t<هňc­êFíëZëòš·þu°Ž„7僆5rmv)¦& ‹/ƬPËñ&õç)7 NCþ¯ÈÕb5€?!üá¯È4N¹]ÐååU¯Ñ"»Ë®~"Öž´RLZ|}®&Õ«êÉkDŸ`Tžå¾ô'ÓÁxÄŠ{Á6O$äõhðe†d§?õ§Ó~?}wÒ¸² z¬ÖŸüÙö¿cÌfõœ5îbxsü¥ÿ¾?»É5Ö÷öXû¶7äý²:ùøh!°×¹Ú:?kuCÓEŒ²’•”ûñBT¢9ÚK¶¹ P¸V:9mf#®«“IﻋéÆåyýĤ#±ew”áâªá¼–”‡éóáet°xˆ”€?LoŠâœƒwÃ൴Òx_UïBõ®¨³pryqÕ8»Ñ)TsÔ$˜œ÷]‘ñ:G”\|WKÅ4VÞEßkò‡·W“Ïã)‚dÓ£Y4ª»3`Š+ò5+Ч*TØÝd½Þ`AR¯Îκ§ì–°H§ p`ôø°¼›çÙø3€xðŸ¾Çp_Dâþ-_þc4ÙÒö¿i,®G<ïãPzìnðep×ßåedÈ¿ùê ?ŽåÖËôMÄô”ÈÛ>/‰s/­Õñà´}«?ì´Êð;kßC ÞVÿó¤?僶E³¯owðÀn{#w]®VÕ  /Ý‹¤üºÅÕJ»Ez]Ü\Ö–/ltÉ-~ØÕV$_}ïØ[Iwõv³5,ÞfZ]ÿÒYxû©?’³Ó`ÊÕÍpŽ=6zD»ˆS5{6üOúŒåž¶¦Ï¶Ñœê):ñäß?Crˆ® ÷{É—ÀýÞí'䀨³ŽHâo7¢Å+?êKº_\:ï%îôeÈ€‘ŠÌÁ—¡¦í}æSêçÉ€®ä¤ª1!ˆÊ‚ JªLP)–°1ÒCŸûnqÞ÷ït€J‚Ÿgì/Ve»ì;eï¶ø‡}–cUÿb#ö8ül†Ë…2C3¨äޤE™ô4àiOCIø4ø+–˜&”wÐÆj;àˆØè;j]ýºO¨òkÉDWR¹”F(=ξ„Øà¹Þ%>¢Ï5f€7\ÈZ½ ½§X¨ìƒF§bïÁ¶çßíË ÓàÙÑÛÿ@ªdX?DU†çŠLdHÿǶ¢5Åž…ì™åº:3–ˆãÞ=DñÒ¨æ<  ϶ÿ¡ >ÈŸy‰\x{ÖõÙv*¥>°ã?ûãY¼›G J49X²€EŠ#Wò3÷±?¾ïÃæèÎEð˜+û {v;äÖjwÏd@–SŒh›…:ʉJªð’Ú½û> 7ð:æÙ{>TÏCÑÛoZ|- …†ˆÁÍÈOãá.ƒ¬dGw.:¥C¬z¤=H!Nîùr|‡+7¾0"Es üq4xèMpámÖù”}âœ8{Ñ(R]8&™1ª(Õ†äŽÈhRòñkÒAæù Û ã7¡.„U>üTo:œ»SaF2©2઩ýýžÚÈŽ/\áö_ Ø‡ ÿ.·äƒmmT%Nrîz•³ÒñTLª@—Ðì6ªÀakP›TEÞ/EåÞ÷¾öû#³Q äü0f—ÂÖlÍÀ§§bcQÝ^åÊü¢;ÌJ'¡O(ï—æ‰‘¾2 ”§K¯!L‘‹v†²@áÜ7*¹‘ÉmÇúX—óQS©a‹ 3ún̓Ɵ¸¸‡ :÷°Âç“yï û=þ²“^sÌSïÈH¼6é'é•C#χ$¯ºCsÂÌÑéT¥Ä—‡½ÁH:¨>pòÃW—õ3¸yF‚èÒ™þ9øü-øŽ4ª¦±ŠéD2Õ‘Œ¤ôöæ_FÔ³›BÈ_'’µ)4RÕNþ¹ïŽƒ‡ºÎ‡šl`sÞZ.·ÀêÊ«ÜÌhB]X@|ý4àÆç@v'þ™Ûv°ÒËG¬a¥l’€Ræc–çúð8ÔŒÉàJ6åËj£ÍecÍ "©äN3?YZQÖȃìè†ØˆF7¬'™ºŒ ¯.ïé==·> òvÂd=Ú~Cûø$ë˜J‹=½‡µ›‚!†ÿmpÿx¯u.4˜ÍÅrWÕVõâ¬ÃGŸ±¨™ØTol®ƒÆ?é$(=1 €^³‹dÚ깑Y"‘7ž(Nþà¿”×Óã‰%G£—Ÿ%©š’Aþr„Sêw‘1Z=LvÿNZ0b¾ Që>J´û=è¤³Ô çúü‘+t^1›‰ ¬T8*ÿÃP¸¼¨ïªÎ¼¾0«ñ:B† —vu8‹]3X)€ЩðLã;©Ù –#>aÜMa¹Ç;FϨ ×´'°nâZ`Úÿ7{ «²û8'ø8Ljph¼•§y¬Ét¬“õý<뼇Þ~¯Ã€OrŸû#X“™lMQj:…Žšª·¼}„¶à­õmð@ß‚+HÌs‰ÏŸQÿÛ:;€o1ñw0™ F´®ŸÂímX)£Ë]˜Ý¶¯hÛȘ¼Èmƒ y;~äµcöCo0Kv@]êY2Ožå¥»ìŽ'2Çîôv2xß¿çÖFž×ý–÷È©(u@„jÇœ¥h§\Ôv\T—|íœç &ÙŽ:g÷µÞ”kÿ÷Ãï† °Á…Ù‚~,>eô÷>rïKA¡:\…“‡Áí#W†!Ág"Q ônêÒ$ÿ<áƒ%8…9ý/¼;ÜùÒߤb‚Gí)†£XÕ?Á&ÁLï|ýò²ÕiU›¸>‘#´ýçÉ:ÐGž8»ïO§½¦ÚÍ‘ŒàÀ”ž7òMÅ+ï`=쟅½ív«â'¹9×kN–‡)!×lnä®§ÔдÔ\f_ÁÌ6ݳàð‚®bjê{¤-qüU¥UFŠrR—ÈÛ‡GX]ê$`Œ& #àOcðV½™Gµå½ j7¾ž‹ú9òT·ÙÀ ½j(ônÇ%í’qÇt"ƒyB©c›ü'íÎÙ›ïÇ÷ÃLJި?~œšr•É;]ЖûÆ€ð¥Âç±ð:Úº/ràW“¤~.µš¼ó£“–÷ô´îäªeh×Ò´*ú™kY\N-Û¼–­—V-t*v…Š®fËZ‹·ÕÀ_ ™$LORLKr-ÊOR4×n=b“þQ-£[¼:ë´NÙsvrÝ…CB¼/ åU䆄a_q©*o-8Õ“êu ³I|ö£zÙ5¸ÏÄè»…ö9{'Èbü¬{jº:ðÑ%ÝH’Ͻ©X,k¶¹òœi[ xï\+º œ°Nø‡FÕ_Q¸ì¾läÙuó¥8o|)÷“ðP|SH+÷àé~~É;&œ2G15Ç Ðà^Ò&†V‡Êouˆƒö¿av˜ŒÇSécád¾ ¸%È-š@öb’杻>Œ'4›ÁpÅC·T¢¡ûZzÒµü$Úv`¹`ö±Ë‹$Q©¯¡Ñ¬ÜØŽÔKýMèí1‘SÔWbõ¼i•8žÜÉŽþ‘[ž¼–9r­y‹¹ÌÉiôÿæ‚ýpŽ__æT#Ë/©w/âR‚½=M‹Fçè'Ý•²Ì³Î[þ®£®öE»êÉarvÌ {…³çR²Ç\«Ò'N€ éQq^Ö:kB&¢‘t ÿUµñ2‰øS&ö±ð„ãô'TQ® Î’Hžˆ æT%› :!1ä” dž¤» 4ÿ$ñ"f(.ªC㸾x#æNºê‘|Y¢V=mÊf=yÅË:1Š‚ËŠ~Fë\sžÖ«çüåUí­ºjŠ0áÌé[Šûz“t‡¦u Ù;gWðBwàv/]–„KÎpW=äÿN.“nüþ&£º+øš«öÆyï­œžà½zÅ?™‹<»à…]pSëB\QjF·û`¾Ë“qè'!î)ÒlìïÈòVrµÉÕwž&’¼˜•¤NÆWI¤´a|^\ôÒK1¯O4½$] Á;ÕÞîT%Užx_èôú⢚ct;¯fÊ;6°{Ò‡„~©Š" i[Ù×ñ PøÑ~:4±¨”Ž*}ãú¼/G·°Ó¬ ¹Ýpqò ò4M»}Ó‘&g7|È4,îä \´ß‹áj£Úî^wDä• Dž¼yå×ðʇnŒä5oÇY' Äk(¼Ê ’DGxGÕ“«ákû¬ƒ¯¸~9ë.®h‘]–g7g­Z£êTVÎ|=|ëj0Þ[u¾Z<ÑUkƒÖá¼p¥‡Ç0ÀB7‡m¥œözlúÀ­TëšÙiµSeæƒ}ŒÏ.\l\båü)çYqçþ±ý„¼ÐµyÞp‡çVÿs2EÇG¿ÔTx“\ØEPŸ‚J2WIþ¯LšžaþRÙxy®Ý¿}|€kb”æ‡86®]ÇuéT]•åpËAþß>}… +L ®žG¥¥½]øûÜ‚c{BV4¬¥j wšÏ›;|ÎåovšdŠƒ¤8‘Ò‚dD´Èßí„fúºH_ä¿—w4Å‚ÆH&Bw‡nºÚ×v@4ÎUϦТ™ÁV´ÁÏÕPàjRZS€˜êÊÀ•—ãu1ÅjæÊø‡["à Ÿ·¤g^(ØŒÝ`jybP½äêW'3[¯ ‡Šù¨½#»»¬.¯'þ'û}<¹ƒ£¬ÃñíŸEõ•H¬cÖcÐ…V¾zl)E2Æ…Ð ~XWzɦÎU8„Ç<¹løÃ1rÃx”l[Ø{è G–ÆgÉËç©ǃÒGÇ Ïè´Oóž\ý bܪ¾röìâ´à Qÿï$<Ø•2F%Ä•Ñ)“wùÓ‚|â¹€(–'}tò¬!½“ƒycSRìv³:cïlñ»gˆÜíÙíÖ=[œn#5L…3¥SÓ LÑÜûÛ7NÇB БÐÛùq?õžêŸÙñ£pµ²Ë¦„ýÆ4£vÖß¾‘(Q†OêHŒ™æHl:Gbñ'‰ÍÍH\ÂHaEÇÁƒJ0'<½äùæË$¸Ikq ÅQ{q_~.ŠÏÎ&‘L(2¡If×ÌxBéO¼!¨”}*%åh–|xãíè•#rìÅ Œ,N'ŽeiâVf$Ý¢”®k ·N 78½¦áÝ\S†©:¸w©<8º“S_ïÒ›]*=Aþ3t6ïˆcuðQìk»XŒŽ_¤ÈBg3prÙL.šCæœ Ýø)ƒík)]0ÚŸÇ¥{ 3ù®Jñ£¤+Ùl:¹\©t=ZZ޶]îÖÎÞ¥ažE4Ó'm7J­œ¹5t8‡›ìü‰pu0ôþ;ÝécÓOviï9Øá;KžùSv3÷¯Ì //Ð /¡^ža š>É%Ùïrx`?^öõî² øÌða†/pD‡Hã§ÒÍ͆gáCŽUlΗæ3ç7C·ç>cƒ^Úµ¥u1éË?Ú¤wØ õ†éæë £4Le“úNê‡KšÔCsR‡hLì¡1±'ö=Yì‚&ö”×\ìÀ+ x¬Ÿnà57ž…Øoµ®8\t.ºšíp‘CÕ[E4ƽ;‰o« «ÙÎr±è8—©•`ñdXK§‚“¸6,!BŠëè#GÙQ¢£L$:T·aw'bòl4–†÷/äOoÁ¾Ð‰¬à°`'Òƒúω§'Ë! 2ÈÏÔÁYWo"¶9„…$9„AF9x´oêY8Š­)vÄéxˆðpjîÊqjŽ&ëÓ ›a£„oËs=î³;‰„Vr®çjsÂΕzi{{áBÍý"™û¥ÏØÙðKߢ[Œ‚‹Y[¸†‰Š­¸L_Î"‡ÒŠ|)QåÅ*øØÞî¼ ¾éPðÅ_VÁon²%(`¸ŽU©±æš|s2Ÿ…kZ¸Nl>Á_PœÓ_°ô£áÅõð0h½tFÒw‘3§dYÞW´¼/&.ï‹Ë\Þ—²,ïK+ZÞ——÷¥'.úßsNÙ܈§^Úê ´È»ÁÅñ($®~¢“‹Ñæ¥,+„ÒŠV¥ÄBi™+„R–BiE+„Râ ¡´ø¢´¹} t͵ùæ‚ > ×¶,tÜÞÜ4©®ÏÁÍR–uΊ–¥Ã,Šø`EÒA¢">\â„T.d‘ÃÑŠ&¤£$9” _^8.þ=–›3Œvê¥-/Ê‹ŒO†´¼pAû//ÊÉAÜD¢`5Ú¼$j±p™Ú<9ú…HT\6/åPZøòbQÚü§[^l´9{’¶uÔjÉ·Ôl¦.v\çÖ7‹“êú,vÊÎ0;¾[jµè–ZÍ}K d‹ƒbµøåû`‚âKžX"çg{‡¢k+šA9…(›îòÎQÈÜ.˜ÑoàëíÚIÕîÂŽ©""×oÓÁÄyev­Ðì*Ñ~ßå2ØN29º9.¦çÁóúîï(AŸnË•ÄiôàIæ0œe£­|¨l‰ñûs¨XR­üUJÜN+gÝN›÷š›0jŽËk€ï®ÇÔ6®¬'ꃤ{ ˾»pˆÆ@mÎËiPç_ÏXÍ⮲ÐÅ]™w®x?å5®8*Y¶¯+…ëÌJâ>u%ë>µWgV²lgUÂEêÌJâ¦U%ë¦Õ¼7ÇLÙôêL;ÌÇÏ 3ç¸ïõkêÌ…ë4ºNÉ>á WeÎðžK½óUYО?À’®d‰%:Ël‘Å®,Ú®$ZØ•'[Ø•,ve¡v%Ñ®¬ÎÂv_óЧ é×Méÿš/9B|"Ñ·Zg]mî{¿æl³ ý`¡ú!Yè®È–¿ìÝ®œ²Xñ‹¶â­øƒ'[ñY¬øƒ…Zñ‰VüÁ­xSíÆ/e,Lí:ƒi®ŸÞ=Œôî\·4~M½»p½ÈЮӮO°òÖ5ˆÿÁßÖÒ?Èbé/ììô,KƒE/—O^ dY ,t)p¸8xâRÀaé×7SNmîK¿æ”³Sÿ°´@S¿H€¬ÅdDÖ_ð¤W@‡YÌýÃE›û‡‰æþá“ÍýÃ,æþáBÍýÃDsÿp6sß&7ö—£yá»×ZóÎuáâ×Ô¼ ׌¬˜À»9‡´^ç~ÀJá0Ëi‘+…Ãä{ý"QyѳU9QµWž<[e¹ rx°ÐÙ*ñÊaÖk(f«øå‹¿õ:ashÇ•zi넣šÑóuAÆý˜±¿î:á(Ëå±Ã£EkÞÄ[bGYo‰y5ïQ–Ë$GÁ"5ïQâ•‘£¬WF²®–£yÆuÂFóŠç šÑQ«%ßžp°™ºjIÂÞ¬ZÖkÕ …£t©·'ÎκÙa}äiYÒyÙ  ¤¡Xûü¸œÑá(îŒ0gˆ3³Ž†£Zsóó+ß[‘…¹ÈC'EÂ/.ÎvæD¿Æ¶¥ìšï–uädqØ ¾ÓÇ4àšÎW\¿×Ü ¸% Vÿ_ÿkI–Êú^š·²žªjVÎâ4‰}õä—Õ$(A|?ÒY¹0Â×ë¢È¢/_€ BW@Ðö9\;“ÃyÅbcr$›P ;õMŽ£šeŠ%^ɳ}vtÃlŠÏF ·„8dZxiŸçø»"WØeøn #8ÀÛí-\x”`±\¼>ÕX˜%“²'¥+f)|Ñ݈Y•ˆóßþcó¬üöàÞÞnq/܇^ožïŸÕÏ÷oï&_¦ßö>,¤Œ*¥¾T*øZé3ÿ¦X,‡ÿÊaù (eþ}P.+ÿÁ )=åyœ>p•Ëþƒ+„iï~<õ¥ãÉ>,FkõÐèk_×Z—×¼õÏh\¡évýÝ(>PÖ øûÓKa‚ÈKMìWÕͺСB—Ê3\{¿âßòÿá¥sÁm’n;Pã”ÿÌ“Ñ<ḗÎj)+a£&â3]£zU=yMvÚdüø0õYîK2ŒG¬¸lóDBi]_ö@muú£Q:í÷óÑw'½á€Ï—£AÕú“?ûÃþw\l6«ç¬ñp··'ˆ4Ç_ú÷ïù\ϧäŠÒ‡{{¬}Ûƒy¿:ùøxßñÕ*Ï"9µìJ9’X„ la‹LhlU¥¤« ëw9å .#v«hÊ8¸m\ž×OL:5Z‚íÀ4AÝ?$TúVŽ• C³©'v°(ÍÀà@ÝïÑsœ\^\5ÎnôÕ‰ze|èhŸüRë¶sB÷IãóÛ\J~Mo;êÍÅñ Þ^=N>§}x{Lê54LÙ-kS4 GãÑôûý}Ÿˆ·¬?øØ}é ynß~zœ ©¸Í>OÆï‡ý{A¤ÿ› ìn2ཞœŸµoöì"§ý){?« Z ·ü+^@Ò{àæÅ„wöñýð;»ëîî£l<Dîz=6å¶îpÀSr»XåÝ}©¦ý?öG·|,õ¦ìk8„W>ö “È?ésÛùÃd|ÏGÏþùñ} û8¾£Ûá#÷yÒ¿ßóy·cÎÂÃ@q0z„1Çe4f_? n?±ÁƒÄ½IŸ7æZ~É)L# ¼ýÔI1 ¦ÈvÿŽ3+hÂØù³éàúÓg,÷l´5}¶ìõ ôÄß?CbΛ~îß>pÙì1ö’ÛÜý爩g²C9ürF”òÀ»¤úuÀå÷¾¯µ äâ­w'ˆ<ˆ%©»³8Õù¥eI}i²$Þy Wõï^(‰å¸Ò„§À\W‚Ðx“G“Ú~f¼7õ'_Ôµ£'7³éxò€=èƒÖ‰§QŒƒ\H%üŪl—?^J·½Å?îó%àˆýUý‹A zP„W}.hžr0Õ×P¼bŒŠéß>Œ'Ó< Í`\‘ $òuœ\Q2Y'&u‘½ŒtJRœðp‘¾ÅN£%Æ9ÉZ,&Ê8›ËV¹®[»m<‘xÏùÅ^± ×RélØ_/¡ƒ§tjF<§røƒûu—Z/9ä±²Ë^Äg“Ÿ)¹¾f9Ì׸A`ÖuQã)[…;ªÂ²Š™%T84+¼Ì1œM¼¯®^ 4ðúˤÀ¨˜šÛ§õ 9v•`•£²^¾Â oŸ5ÎN:}»ÿf–û¤ ªW’Õk\6Oϰ*| ö¨£^%þ#—Ñ¤×Æ.¤=f¹ƒ —y|ýý¼ðŸ8ç°ð‡- Ýòð÷±?&#š/ Ç&Z@žŸñ5Ï”‡þÝ3Yî8þŽ,B/9©0ݾiÃ`ãË/Þyöž«€ûÇáÀ–mع˜>ôøpõÍ`¸†â ÈÃñWþ/«>‡R± Yó4Ú£»8qÝ©j¦d ƒæz‹Ï{×¼~y #êq4xèM¾Ûz¯Ã>qæœ]Íh8”?ÉRÏnŠÕîçz\ÂP“”£XEqGˆ6‚†}ËRZL%“úëšÔ5˜¡®|Rý4VEÇ«›0XÖ ¦á¢ZUòª[ Ê)sû‰«åúPôœPõ²¿þç/þ70õ„U¡¨FÕ*ú*tº‘ºL›~|ÚoZò¶-V,™†¦NBkÏQ§âª¾³Î¥%Õyž™%{Õ=3„·åU//©êFílðÊ’jaëDÐ'jâE an ¨ÙšW5yºÖ‰ÁÌb ‡O&žh ÜhêŽMÝn‚‘2Ñ´"Ëíù`Û°ùJª j·÷À†ýÜׂEÔP)™_Çl2þ:EáyJ ÿ/”öv<|¼©”˜—¾›âºìïÈð.èÂ:ZlK„Á“‰'µDWòŽú}ÞòÛËuKä×—Ë#˜á„5.÷ËpGkט™3ôÐpi©MˆÞp ‹jh`m@.â´‘„c#aQ‹^ ^Q&é{çRì}¤‡Éàã§^/=:|ý5óúÌyöi_ñ–l) 邟⚋@úUHEp/4Ê‹¼“èÎwµlCEÄþëà]¾ >=«7ÁuËÑ÷º·P¤M²‚Úž‘-EDí²ðBûE(*œ/9e}/æaò(–Ö‘®å ¨ý Þ”úÆ3¸–LzÙK ¯‡ÞŸ¼‰û“Éx‚C“ÊéÉJ¸°{··ãÇÑCä[šŽa½÷ ä1…Þϳüû±G+]Þ§‡wÐY/aɸ½gI6ªló<8SpcÄ3â“B®º½O½¨ÝT»u©Ýºv»ucíÖu´›¯3:&±Èõ·^××zе¢§õtÖcgs!¯›©ñºØxІlÄ™OëÂ&¯éw&OíxÇãccK–œI¼yQ"ÛrgÛ°Õu?:¦j+tï¢S®J$­{nAz†¦é§ ˜¥¸Îäu€yp•)ƒ!Ú”ô “Ï6 N`74oôÝÚÝô3ia©¸ û)á4›ô¥%òzå¹ Æ%‡+rÂï¦SªJÇœÐð¨ø>õ…¸`¸`'Siiɧ1i¿ÿ•t–Šyfú瀛=°»Ú‘^¾©&Y§NDLÂX%rÐeoSá0ÄnL®¼=I$µÈli4Rr‹ÞÍߢ/ÕÎÿs²-E¿ 5Ž^Éža’ÊiŽë&ð2æ£Ü<Ë]ÿÃ`܉MxÙß Kžè>EÇ\Q’Ulôøªæî4/”ø  gùÈNëYƒtz;¼‡ïßóµ]žW÷–w©(,‡1®„Y„äŒnÄ»¯55šFÁ6ZR‚ý¨?ö`º˜rUþ~øÝ¨6¶±X(âI$>ô÷>rMà2CP(ìá.1 ná>ƒ±™Ë§Q thjwé¦Ûs@ãp:ÇûÂ{ÀÝøñý°oŒKa š4.F@ѱ¹Ö˜ÓiîK›Ó_^¶:­jS_”¢‡IŒáRÁÓm¸45wnÅ1;œã¦ãáÙMèlæÜ¥ž F´áÌgxl]vÏÍW¾x3úIŽ„÷ªž:×Jw¦tDÏûo»aO¬6ª2»ÚCÞV'(ãšJò™%×lns=¥þý\ÊWð¸˜kr°YÆ– "ûþ©_ÐÕhå{š=i×|ãë‡G4Ýa¤ )Ãe¬H²”‡¢-£Jñ¾T%õÁPI2ÁÉ&R} Dóº<áòj1Ò¬ŽðÔÀçﲯGvÝ7à—Oj·Ù8Ãùª³þÕsr~6ÞÎ$ \N hªÊRfª¬«”ÆàÏ>œI[ÓXŽL-Ïlè5°¹°‡+F¿âéQZf£Ý*˜òa‰ÚÑtÃ#ù;\}§Âw6ØãëA­t¢Kæ’¾¸zZ…/ƸhàåM`kiÊiƒ­Õ¨®B¾Ýöl ND» åt@3H•Q?5Œ©Ì„aÜp án{]ØS°ä%CªNÁ‚êˆJ¹ÆIb%é;gAÚ¦xÊ=^xp¢+êN(.8>FË\ØóäGJÑí9…•.Ì‚Fó1öOHB~u®K¸© '¤v‘<®šoǼEo­nÿ™NÕÎE+O¯mñz6×U°]ä&tÌ„ÏíøŽV¨ªDÞázï¹­lá>ÿmgw1OtqsÌmòz?»àõ|?®ý+)pcRȇÄ_ùŽéd1%Ü:Î³Ëæ™¨[«ÏÉÓB,R‹[Oÿ¤Å±XC«Û><.²¬yy‡%;:TR¼Âê¥N‡îÑmò©÷¥/Ì~Þ@Æ ðTæño[ÎLõ‹ËÓ3n—F<ÿŸ{Sa©iFšZ*ÏZµyÙºÐh4a¯¦¿h\¹EþË.FÃçôYnJáí„ø&’*˜nªã|üün'ÀÉÄaïaðE_-à]ôºÁå-¥èZ$/uè<Üâåºn2?L¥næD¾ ÆSVbj¶3:zÇØŒù0æ Ç847¼#+;ÝkéÒr“PÈ%Æõø.æA7¦8Ê'K| eåÅö£ão4Çð„'ZÒ»K«ž7­ÒÆ“;yOå#_y<òÚåhè)â2'ç„ÿ› öCŒp™S*¿”EbߌÊl÷‡\C}; çLüY8yUæÔ<ðûÓOr|zÚæsA®ÀWA=n¤ ¸Êö¿ôFrIs¼ˆG¿©é™èÖ›ã–Ù‰É ò¨©'G 0jAa¯pöœëezÕ‚&¸Èr%•H” |Dwè”úK¢,Ø•ÌR9 .2:.ó‘ÚL",ë1 ãú›8){º ™rÓ°zÚ”!+N^ñ²NxQ;EùóUµóÊÏh]ÅYA N´#÷]ß¾ÎTÂï'—IÑGÿ¸Škp!.Í6£/«õ¤ü0cÀ¥GqŸ³Ý8é¨ðøòRÆ!ð·&ªë¼1L{´y±Û—À†¡7óº&=îm¥*)ÆÄË«§×U "C=ˆ»žu¨nŽ……ÄÛ“B‡ÈnÃó‘"‹¾HÈ‹ VÏJ'±åŽz‰ñÉúd|ϧš¤Ø>kt« ª‚¿xª·uQOüÐ9â¥Ë^ï(Þ!ZNë´~4/¯:r‚žË6Õ×ÅeÓàqŸµ¡5à‰åu⼎‚qz©;Š:ûÆU$ì½|ÝÂRV+Ï%“FõâDŽÎ³>n›Fñ{B9íÇ÷òcT’ƒ™¸ÒèÍ»ŒáöÔ·Qåú$¡3ñík.›³V­Qu°V‡5 _ܺdÀ›¯Uo¶ë'Áj­fÈ’Ç3bª§xö¡÷з®^ŸV;Uf>ؽyyæY1ÏÊ;¼æ¥JžUàOqçHFÉqf‡Å³w8õ?Q*ßá×~QUÆäâÀÖâøüRÊ‹\%ù?},‹÷þÂ(Q9JÊUMR©dtˆbËX6Ô­²üîx^W¯ëß>>À⃵¦ÁL`®Œbãmˆ£}ÊdÝ2†/¸h0aûf+º~­âðÐÙE]EÝ)è_¼Ô¾À Ñ,ðñà{y¦+"‡ó&O-6KUžCyc(.Ñ¢Vx¿µc]pÃ$vþJzÁ#ÎaItÌe{@›ŠUŽ›Ë¿©–i ÀOLŒ"šx”CVÑ×"š™Ñ3TÕp3~ Ñ€¼‚FêÈ–;Tšó®ŒÒ© ©\_òÐNNÛ™ÉeíLbχgBÛÌ—¯+ŒÕ5\ìd¦ƒX¦ËôL‡v¦ÆiØ ØÞekO~Âfõ ²§ÑmDèc"•0F;Qq‡ºQˆ¯;;!ï3ç¼NèÍñÒ*IZfØ9 ¢çˆñ¤hf€xR¸¿¸•î­ûñõ¬HruÜòý„'aÆìnL¡`«ŒZÐÕK)øJt)üB"Ž]9Ò èNR¸r?S0¯M»÷/<#8Q°¥*&&Oë‚}25IÐd*C­aR™®b)âWJAê)À h7äríSȦ֩«,øQUÜÁ²•ååY©¢ÐCº“¾-@± bª‚h …0‰­ž¨ix?qÒÑ*]]Y±2àŽN*9Ï•ñyàÌ‹˜U˜84°Jz,˜ˆù½æegOÞX¤äÛ–ŽzU1êUô´ÁYEûôp®¯7ÅyBzm.ÎT¨fƒ’ñp#Ö >'‚Äøë0%À݉8Xû¬ú,ö ·ÒÆÃÈ…ª]‹¤‡¬ i'+EþQ©FÇî ÄWê|›ÐQâѼª^´Äü7yÝ2ÊP”›ïêéû<‰óâÒe”¼Äì§7<|â•ä)S7"ò,÷uߺ¼,I”c$Äiˆáø#ÿ ŽÙç™I"¢PñQ GxÆüùbù]ÄbwZŽ3åSˆ2eÊ(øÖZ>èÊEx´z>NQ¤°ù„¤–£ø›=ÊŽ vf1ˆ_ƒÔL‚öX.€e÷ “¯VT2ŸAÁ:3™Ï)bÙÑâ銱q¨S!Gò±æiÒ©WD½JÙhð9d'š \„Ê™Á”´ãûjÒª8ŒžZåKG>‰½|·D„.¾’;!›xq†U®+ƒÝ ÊUN”ÖR­pû yºsw—Õåíÿ4®`;:ö#5³ôj«˜ÖVú÷ÊÒR”C/åºRm6u>XõÉeÃ_Ä *ôÂQ2"…¦„”P}â|½| Ö2$^ŸÀ«-×—”Æúr»´´”á ðñº—¼u?•æ.D¨ÿ}úùÿˆ-ã¶ p—‹ ‹vNÄyÝjo©[¯¶T´>áiEW¥AÏ”O³€ÿcÈqH‚©QtïDuú/Y$e¯HÚÑt§™þQjKEÅ+Šs9og•Ž[1a¤4“µŸ+tFÃtŠ´6pMÈ”—:¡ÕϰշN£&76à<•Nl´-Iýݦ¤\üC{Gr2º‹ŠŒŸµS¤ªŒ¼ºi©[t~)µÔØÐ…=›êXÁÝ&!¨ 2’9åX圚Ւ†ÈBÄhËB¨ŸD*b†§!ºÕ¼ÔF§$’U·YôÐ"ýjý\®JÐGéZîíÏ ³•S@ œE&FœºÓh³šÌ 4š»´Y`QÉÑf@ÊìÈØ……Vai%/Í]%™¥¸À%ìqs×Ì9‘ÅJPðŽ”ŽZØþʃe™Êß¿Ò2Àœm• –ƇIë¼u.O 9ÐfuvãÏdŸqÀÉè:Jqãu` ¶iÐû,¢y /p©Ã˜q·bà-Ôb@H(¾·¯S,R:•çTvb?{¬G•·tˆ5wDÏdû,ôÅD:òxHàG*Á=îœÜÐSR$p†@؈…g³=AÛµØì‰d¬ã'òxK^ *°{êPNÈQßàî†L²ã™°7+ôƒ‡w\?à.¦r\eÏò^†*‡­J>1Ò¦»²©(€n’â—¨àŸ^‰hPÈ„Jˆ³9dà@ŽÔ´xã`šv:á×”¡–Ÿ¥âÊ’ãÐ9±úRÌ”º2Sê2Û=.{ž’³%é˜"ó­H|æ*{S<˜ñ"ÛnŠCsR×x'z~ÏëÅ;JSš1²iŠmNBTeÂðõÍ.Ѥrähû¤)$øNœ‡¨@­š ŽN”æðL ~Î=·Ï‚®RŠàCð>qÒ®¾„»:§ú•RvF/–»yë!`¶nKlúˆ[M¹i¿/C$ÀÈ¿ë?ôÃéö ¶¥Ø9ÔØÙŠíM¾dYpüN‹0­7cŒã'øX>–æ24æžsÏ"‚e†Çu+r5svey¡Q'+À)5­oôzytÂìQþ¨ŒbT›ˆ¬’Ù7¢ÎêeÐÙ$,#Æ,St«ŠÖ­‚£ã‹xN=ziÔ‘Ã@¦µK 0ÅAæS¶]X0ŠQ± éY©Ø}ÁtYcºƒ2ú‘€t%h%q‹‘jæËý0®’rÙ½?C €*Ëè˜ÖøAÜŽ©5l9°¨F£m¶óícáh@ý¬$€#¬AШ¸þ9ÀëˆÑD¥9toI ˜7!‹ˆÍ1P)ÉŠºáa´úÎSÝr$F'Ú„º\ÿ´b*Q%2c—’#zfIë™Þ^¡º„“á˜Ôgì¾>p”¹x;_ð§ô€ùÛ%¼í±èX¨ôxJA¡·8 ²K­—¡œ¢,GÎPCGö¸¬ÕhSSyK#“e£”/K*¥‚}O orÚ5êƒzPW»”ÉAD§+ét“èt·órpµÁIËeBR~û?…ø BÉÁÇRŽÕKUÙª^àŽ²Àt““·!óyP€Ól¿ÑòÇ],M5ýo=0"pŽªñ‡8=£xv`#Nߤ NoÑ,¬`§ ʳ#MgG—¾Q‰6èÒ¾'ÿù˪ðŸËÅþsiƒÿ¼’‡Æ‡…ÿÜ]>þ3¸8ƒ<ë6йÉÿv[ÉøÏ-ž°u©ñEFnð— Ë­v/2œi~ÔöIµq&^‚ »b Òp þz¸ÒBÔ¢yZ1té„6—ýF†?E®õ¥€L/X{‡€g¦¾¥>@ÿICy¦n©² å¡}è¦æ—ÀÖ l-:jZvêÍsCaóÖÏÉN‚†ÝȉnBhØ­œè/:6é™Q±µžoS°»¼B °ÅEdïZ’9?;ëZ¨×Ý êµòQ¯}²‘ŠÀ‰= ¶ ‡Äž [P1 ±²caÃ:z‡ X·ø»·@}[qP_ K˜:²o°ê-Ö¸QÕ—2”ÞÛÜ:oª½³óŠ» `·ìÂ7é7<ûL†óT¥VDxÿýãñcÂK/Ž•ª6U %Û fû/®yÛ!n#ð <ÎÅ.À-˜îÃÍ=U.æSn7Œj°Ëå% z šd+Ç å5æ,¯‘V^C+OÀp¿ÍñõûöÏßæDäP½äÏ:UÝKbF$íÜmȉH! \+ÃUˆ±¸ü¦FPeë%)þ1øéB÷¡<õâó V¾  CÀ‚ó“ÒàoâP tyÄŽ-–T‘˜ÒÐÊ6 B,EÃ!€FD¸ë««@ç½EÕµá¬kÃQרsô€™ªÚ˜·ª­ U=ÔÀÕ…1^o@ ®Wu®*jÍÖ“Bp…ƒóe‰„e$!I«ß-BÈ9Ñ’TÙ' T¨T×Iï¹=ºÕѯƒ©c´Ù∲ˆŽ¹$…R…\Ø!HÌ. LÙo¤»*ÞwŒ„f»&àdQàDE$}\¡\êEÓý2ä·Ål*WŠ„äΧo|<_g½ŽÞGG%o€£—-eiJzFˆáìpžàè9êºAÞ FoP£7¨ÑÔè j´5ZÈO/pƒ½A–j6‚‹6¼µ è8D´¶Æ è£ 8Ñ1„èÂB‘†µzdˆî¦C gˆN„Žv¬ÊÌ1¬C +*óâC#‘k43ݰc‚ë=žwwƒç=ž·zƒ ýÛzƒ ¶sÀkQà 8sðç ÛáN¬7Ì•«Ñ$¼lž³1šíÆÌ¶sjv hv13hv>5E·î°Ù"íÎÆUE¸Ï^Gøl«ãw6ÚmÁÆ@û§ÐÖnT›'öï³l×98f›ˆ8¶ þ&fÛŸð·m˜í…ákÇa³ý¬èxÚyö–§Ûò6ž«ín¼ÚšÐ^äí¦¶Ÿml;†©5l{½A£‹k }ÂÕÜÍ;z±£½yùx…à21°uµ%€¡¶j[+Æ›î®ÞôÁÒð¦epÑ ÞôÀ›^ tÃDn¤S);¨´L*­t*1(lô„dÄçd:G6 ÂP?WhÔa¸™ˆE]Tryuw­°¨+,êÙ°¨Ë¿uiáXÔ¥ õ‹zƒEíͶÁ¢Þ`Qÿ,j='sâL»ªÍl$j×u@¢ÞQo€¨7@Ô ê_ ˆº½~X¤ ê zDýó‰Ùʹ¢N,aDý–_ˆ:ü;Q5 ê¢KW=ˆZ'“`†êd¾ng'Ž'›k]Áœ<¿+ïÌHÖöP–27#EYÄK.ŸqSܹ F˜oØXu{m™<ÂÂÇã˜ÖQ4®(š¯ŒÄàUŠx0@CÚæ¦•aƒn§)Ä8&·;X~ºb±ôý!óÓHXõ}óÓȸãê›Þ©¬$#{³YÁ½Y¾7K€øf6Ê÷‘#›ç[c' êÛM8í[«ð›%(³L°ßŒ%¡Æheÿfóà'drC€'dp£€'dp'dHÂgIßÌ¿Øg6Ìwöšè;¡2Ü®–O`~' j<ö›1ò7Ké»™ð¿YVpfxî×ÞBPŠAƒ—mhðÊ ÁÕ9óéôñ^‘±oS^Òú6¸œô>ârƒÑ-\êåS« óþ;F,Ç+jâÂÄ]_¦_y¹#*I"Ò€ψª­ ÇC‚GÌqK2 h牸äáܸä zèâ‡19ÜãÌÄß¶èx¨$©ë€$u¿9À/x6<˜c”•9Š1b0"2ÇÅG†¹k˜'ûÄ ¬Ï,FH¢áÁmÖçd±Jߥ‹Ä’`ÏÃÈ€’QËW{náSG7°ç±YÚ‡h®Î ƒ¬M<;¦yq&Ló0X¦ùbš‡?ÓüLÍj»gZ(º”¹ ï\â›IýXçÝ Öùë|ƒu¾Á:ÿ[aó¼¡ÌE†‹NÝ/]B™F–DÈràc¹p¡ ©<”®n+ЪŒ ÜåÁ!wã>9+€c'Þw ®/s6Ÿ‚n¬Å9µ9à“3” °Ä9§Ë)áЀî.©”#YŠ)ÈWªshNO$íÂ<¨Ñ:Á<(ÖhxòÒomÁ~7Oá AC#â´¤t@jƒœzV@jö"©C º»®€ÔÝ5¤öá?÷'“÷w+Áæ+Ѓƒÿ‚ Pæ¿åà?—ÊáÿyuGÿ™/Îj§jɆ±é²C¯¸ñÌ—Ó›t‰IPþ-y–ä#¢Š¨ˆŠr†ÂÁŸœŸÕZp îºy^káë¼BåNj§í7PÒ;Z”Îùnd ­Jv0 Ñ$Ÿ{ÜêÁ\&ã!«»ÍÂŒÌL1Ó ÙÁ)ÏÞ cC¸Z og6Þþ&›ÖAÜæ,A:piàݼìÑ"q‡’æIè稞èÙ¿ƒW#ó=~Ç¥öSÁ:ŸY΢·­·9VÚ•ì8ñœÅÅU‘­s‘è¼Qï]Oz®m ]û Î謷÷Á&mÞhêºaüνø=¡œÌ·÷qÌå£qùêõÍYËŸŽ’d¯ŒÀuÏ\b…¸^ȳË×q$»P›3vÑIèE¼ º« ÐÛbÆN¹¸l­¸”NÄ« ¬å‘ɤŒÈâ‰|ãbcÖZÐÛ™®´Ï0pQ3ÓW‘_Tß ‘Õå ~½=rLöP£Œ|Åõá`4ß>Âq(n2®þA·|«t¼îú‰±h»À]Ï3“1a0pK†MSÈë1…YŽ*yŽ#½P“zÿÊ£IšÍãÔ€óÑ™/9ŽÀ´Ïò‘¿”–8B”gíètRûìÊÊ™å|SÍúÂc¤µØ9& µC|ÜäüçÃf?m$OiÃö¬)‡o^ ëÍi£l§æ9&”z†¦ÎÕÑ€Ï?ÿÓ‡õM U*ﺋ=‹ÔXsü˜åH/²è)’Ê«ëáWEÛÃ@¤ï#A—6ñ8‘ì’"¿æÃ¶T2=`´ÖÃ$|5˜xoÜÚû©Q4ü+/`è‹FkÅH%¦­m—É ‚ªÜ¬˜•¢Ÿ•f|ûn©¬”’Y ¬ ¯¥òRNåÅØÏZ*/©¼„.±„K`å(‹X•H%pg§XÂ%ñ¢»lÕÄgQ·jâ?(Õô²­k&0{ôÅŠ䔢Ð%mOþÊóv?*^(‡å_2…c«Îˆ›pÜTœÅwUñájÚBtœ‚»ãÄ™[iG̹[jeÜ&Ž±Âš0—Ô©—ÎM’úâF¿Ç²jVS-«fUZVÕ-X$5|Ó6® ð­;ê¶´ˆ®ü4}ݬÎo!Ã5i­Ã1Ó(bXIØcü ŽmEIw ŽÝ†‚`8Lf8\4ÇDƬ‰ðÇ1Ø:,ãðG‹8ˆ-6'öâŠ{qÇm¿ŒÃ7î÷ÀKëÙûñÂ8ŽfŸ£øìƒw|(:(Ú„Þ?ÓÒY3uZ‚ëDтߥåoÐÙØhÃèÝó…WÒH‘ÄYsþi n&MK?–áØ´1ÜôMKÇ.>U%–Áqlt88Ÿ(bûVÔ“ŽMKÃ]Ï´ôcûDÐ)œ‡sp\XÇgÇE丈×TÆÝ…r\\Ç®%ÆßêL̪NĘçaè;ÿi˜³“Ÿý4LÒùÕÄ)Êñø/•âæüÇ*ê¼öù¹ã¿ü-Î$EÁïT Rv‡qG!@Æ>ñÖø›þôv2ø,Œìò‡þ«xƒ±Õ…šŸŸá+û0ÝéAÀ÷ûQ¼Tbs4)ÈYV%mA¢í$ѾýôˆÇ7î}º7’õ†ÏWv´¯+„9fnË<Ñ›ì™k§”¢ 0§ c"ÆóÅîûï»M•¸}…ç9Í”'÷þ;»|ÜõgîßýÉöæTΊOå”wÒŽœ¬î0Îqƒ !…$lªBÜ®<­_ø+„ ŸrR§f¶qñ9ä:ÍhQŠB3b‘uÊGŠ(ÃÁ;‘˸¦§Ûˆ…,jeÏÜq„7’u^ô¹ Ðhy¡áèµ+^è#×Cy¡Ã’2áºáéá—NÚ³Xh¤„a²ÒÅË5Pã¬ùßüKWïý6Û(¾4ëBx°Ô=yª·uJ„«¹·-‘#^ú<…¬ñ¯—Wks+)i»qÒWdبo!kz©ÿØðOúi¯åñZü)®â,¡Dwr„z:ëºC=‘wT7Ü7ݲ…{:ëê¾`åU½!ô€ ?ÙÂ{“(å"1ô”»‚Så^Nc·³tN›[ºã÷G³»Lh³&qZZ!§±Ûé‚Ó®Éiøã9uÅ銄Ú]+V}ƒJùKxOܤ‘cN‚bÆÔc;E=¶ýê±U=¶uõ(­)¥|Ú8iFÒJ4›…µÔØ@ÄÚe[W”kȳ#Æ^Äs[ã9R?žéX„ÓaÏ¥ÕòìTNm9âãL‡kÁtb—Ö™^ƒÞ)¬JºÂêÞ¤Ùs7 ÝMVƒîFWYÆvr÷…gÉŠî¶€ZàL¡6dÑü7O6ünt…ö³ÕÈi ÞèfWû{jäÒßV2ØéëT#§eì¨Q²=ï«,Ye•f¨’ß‘JË©‘ÛÔ¾Ñmm»J.«{­ª”¬îÌzýU “[Éüã_p¬“vÈR¥ k¨¹ªä:|ú„*Y!EéK¯ÁÒN3XÚ K;«ÁÒ¾q­±Ìùвðd¿V´×¼ìì%šõ¿€0·˜àVQÆ»Kp_Éà4óÝ%($ùÆÒl7”Râõ&Üÿùøq÷‚à Æïÿ›û?«x¨kX÷ÎÏ7÷ü÷ÎÏÑŸÏéœ÷¹8ç}Nç¼Ïáœ7R8??o\àW¯Ž–lŸáë›ÖK|m½¡W8 N¯WüõÕùÙ›wD¢Ã©alÉscò\ĘéjÚñû3²ý2\š©6®^U30`GÍeµ³N”½É|}¦S½Îy¯ìÄ ÃýtÔU¡wf–Ürið>Ú˜¿‚6N½íâNŸÀGöë? Ó‚='øE5ëdá'¤ÂgšJáü²^÷iÖåþŒ«ßü„°ç¨5·¢ «\?C<äÚ|Wl`’wB£¯jÖWÉÁGÓðÛ¥éÄJ°§’±ÛÏÏ}Øí 7|^Lø-“æ>ªð·±HIoðï;:‘’âGÁ’Ÿä«,¡|ÿG°wHê,i>Ôòß6²yr†›^&KqO¨ƒ¥@óˆ.Ÿ¥ø©›¥0ÆR¸\–â[RI,…«’cßIðÔõó´d1ÅË 9uWÉ“+ºCË£qñ·,êׯvѺ'[ÝgéÕÏ|˜‘x}ŠŽ–•8“:ú'¨D¬ƒ•HžmÖ¦±i ^ ÿü´6µˆÍîZ8g´µ©Dìd„·ñ9pm*Û tWÂ9k®M%â‡éµ×®)‚ä±<5¯O-2 ïdþÃkau¦~t™x¦~ü-ËÔ åÔï‹î®WC63ï–v†šoO™ê%Ó-9A®!Ó±‘c0íòãÚÃòÛLlf®c#ÅÍuèY«„?DÔ± #‰éøjæÇ0Ÿ $× /×áïÕñ‹^é²^®cvöl\Óİ*®½0N]»k9ìbÞ‹y±‰¾Å{w ÇÝϳw?§“¢±e¤€K·vó¤ñˆ4ˆî‰ƒUÚ°}«ŽV¥¯°Ÿ|Òü\;»ÿ³VËá˰MË¥æOU-‡Ò®–¹øüIêåpdºêUPUûIê?»ï«—¨ÚOR/ÇAQgÅÔãg©W²:Ôo@X»Ÿ¥^ÞŽxm·Wè«W˜P¯ðGÕ+~¼Zo¯îbë®nVÎ0¾Þ,¸^á륭ꃘ%v•`‰]eµÄ®ü–˜¾àŒN7ùDcK2ÞŸëB@êu‚œAtWO6Ô®ü†Ú¯Qk§wå·ã~Z;ͼ«3ïר¶Ó ŒW»à„Rþy«íœ›Õv 6ÿ¼ÕvNÝñjÇ7>~êZ»-çxµó*ÛO_mo'÷ ºgê'®vr'Û§O®v¸Õv›¯W~óuAÕLµ½Ö-çõîYñß²íYñ„‹ô3jN\µy(È+©`¨ßÓö½¨â óD®iÅîz­â‹ðU®iÅ›†vÅŸêÍ\ÓšÇ,]wÍŸâï\Óš;¶\=5ŸÛ#º¦5wmú«înóÂÏYódÕþä9­°¾5wlÖSͯ—<›~ôlžÜۻ˞Π?®æzû›¥Ïç…ÖÜiÿú÷ð3ìá7.¼{øü7¯çòeòó„9Ÿ# ú8ðŒ7æ_MOOsø"³÷×Ú2»v¼:|Ê’W—ƒm=™]Çëðßj‚-DÌð긧ã•äZøá¼ºv¥e'pøF]ÌúÃÜ/ˆ×™Žq¾Ï<ð_¼SÄòM/ÓÀ®j žž¦U‘ÙÕL32ëÐT’Ù¨Õ…2ûÓðºvÀ1hr]ò0#¯Ž) ÆëÒ¦€yuMÈì*¦€Œ¼Îv’÷Mk†UÀ›–w xÓzéøoÙ¦ž0>H’`µ6O—ü4=Ùz~u9tŽäÈPæ«ãÈ¡Y4Ž”fYCŽ­½C†„ KfÈu©9 ävrR›‹cÈ„WÓkë°òß² Vžp¡ƒ ~Ú`EŽ8XgäÈ1X%G‹¬3rä¬G‹¬32ä¬1†ž6XgdÈ5X‘£… ÖŒ ¹«wÖ>9ÇpZDëF„:¼¡+9ÓL39'3ùÞek϶F\‰»³$¾‘‰]¿ÞÐ] ˜ ä°(ü´çYhÏú2Ú±GüKæÌ²ÕR„šÙm Q«“7ûZø´á/‰déšO§=<÷ºê8´cT®¬ÓOS‡jµª£·Ž½ì^¿ú8Va õ ÌäúUÇl(µ:j‘¹~Õ‰‡DÈ\ŸÙš§ðƒëÓuÖÇ:š6sû„K¯ã\åRÚ'»Ê?¨>‹nŸpEýÍax.±>Këo xà$ϳÂIžúZÜ`‚°­ò®éŽZ;®DýÃ™Ž»Ñl®¥Ì}c±°žl{…ý¸Ž”çRì«„fH½³fÆzp=t¥]yDFqZ&žjë/ê‘V€–h+®ž4§J*÷4Ý‹µöUÚ½`ýÙjíPÞ‰µv®O¶J;Ôh†J[ËÑŸ­Ò.˜£ÌµÎÜÔ…u«õ¬Ãú £º°6µŽ¦µ.®Rƒï–SNR,¼Ú¾.^XeµÃBÊ Š•U{¥óõúT»¼>Õ^`'OŠšÜLˆšÜÌ5¹©¢&+È;§i+GÏ_ï ]ó¥ ¡ùäàÇÈM7ÿ®P¾ÿ)øŸëPW\ZGœŽŠuàßhÔË`ú,Ögt\¬ÀYÊ.¬I¼C8­:µûc+à²,g¨@j –]ïXPT [h&<²'Â5üá¿'Â5r*„|XÿndxdÐæTÏòì´þr¶¦üWã©Ó!ÖBî¬ÿÕptªÎPsëX ×Ü®×"ˆ¡[ÇZ¸&x« “ûºÔ¥✵pNñëR çdŸP k¢_›j$ª©de[X£jdàÉjª°ÕÈ<“õ”wxES_âØøi¦¾äj„ë^ cïž¾:kž²úKe ]M£ÖcÓÇûûÞä;Fý(D¿Š_J‘}ÛªwÎr¢Ü—hÊñ‡mS˜ªfG–SrR.›;"øò²uQíäXpÃe\äÖ/›Œ8‹Sö¹7öï0œ×Cú0eãøA÷•Û2Å^G”ün<êoo° YÒÛÙÙ£ÚVqzƒ¡¿8«œ-*žS‚¤0[gëV¥ëltDNx³ŸGAÇš§¿ýÇÏò {Ÿ{·î÷ÂýÎY»SožïŸÕÏ÷o¹P>M÷>,¤Œ*¥¾T*øZés¡P þ#‚B™ÿ” ÿQÊå øVXHé)Ïãô¡7aì?øÐ™öîÇS_:žìÃbıVPa×µÓõævæWíœW×¼nÖ;8xßÝeêUõä5Ž9°XîK2ŒG¬¸lóDbp\_ö`xtú#>ü¦ý~>úî¤7|OFƒ«õ'ö‡ýïïY=g‡»½=A¤9þÒ¿ߟp-^ˆ¢îí±ömoÈÛ­:ùøxßñ‘º'"óq[mUO:g­¢T[švª7;gçg-]ce*äêqòy<íÿÿÙû×®´’­o¿^ïO±þýâ 9ì= ‰( Ó÷¸¯ç!Š Ý nÀN²GøÍ9ë|Xkq˜néŽ ¬ªš5«jVÕ<ü&üù–^ô9q‡Ë[V6aå}µ\:-Ðï:þ>n±ßÍ÷ÇíÖqÑl°?¡ê9ÿ]kr Ãn»Ú«p"dç42!Ð% 87Ý?Ì6õ^«{{uãžÆ  £Qÿn 1¥dœ£O$×¼mxU?ç›]÷Ãh8‹F8DP-«‘=Îëx»Š—>è­þ„Ñ?cÓM ·o@¥KÀÊü‡ýv©QíêÏäð¸Ãs°Á²·yülS› ¢Ýú˜Í6>å¼3­(*®ÃdÕØn ?êg´ï¢Ôã4»Á6K“Iÿ»Ödýì}$ôj;Õ:ïÎfBÛïJµº|®@ïÛV¹vÕ¬>ú Êt¬Ç+gV½z©?^Êqæ‹2ûƒnéBÖ8O±W¯n—ëµíOelè’j¹”»ì­~cÓhÄ8üîat5cÒ+™É„ã)6øK6æMãþ}B;‡Or½É–<5ѱ$\Zpéî=—8JÜ hñXÍØ r:¼òñ‚Í¥v­Ù©UTÅ0M<Õˆå1E•ñÝÛʺ®Ðk‰TŒ SZœ=Ôp>ÝŽ¯~×—ìY£qÖ4øôkªðßò,~vJçñ¤‚HbEüá#£úmpõ0ëºDY6{•8,Bc p¢<‡ì¼ZtEö„.*¾‰öÄÖ üÌPªÿÑŸ ¡AëÃÑh|õ0~˜²o4îÑÛS£¸®ÒšR§|öU¼Õ|_E¸Æ™;a7 öýë<ÌöÙÖ ÉŠ"¿šì8q¡ÝPNQ1²ÃWŒëIvWшø H…R:Àü?bóöûÛ&l&†Ÿ#ì²ÜåÌ+‘æe÷¿ û·qÜ áúÃò EmÂw™¢6áA¥ú¦»&í°#tÒ]½±¥eôÖ‚3"ìQipCõ4ŠJ‚º5ï9£yš0š§YGóTXôۺ깣ozWN—ÑS=v-d¸áE:meyd:¼“Ë C"ªÿp2ŠN†ßb“Qº.IFñG!µŸÉ 7,ÔO Š& WL‡˜é•˜–!k.ž$ƒB}—M²sŽ ”ç¹ÏÔ hi9ˆ$X™~ ÅõPà‘¾H¹?Œ‚ݵÍA Š~ ²ˆ¹9)pA4u düà#𠌂w½À’Æï²,i|p™%M--³ 8 /éUR°Ø’ž›gAq ^Ò+£`á%=7Î’æ–ô#Pà,iNÁ¶¶‡ì= á%ÝHXÒ¬Kº½PÀ0»ÚÙGcjÿ\"‚(Zná©uí:ó4Hõ¬Tq¡~´:÷‡Ö]ý†öCiõ¬z—VßVðtIuöŒ§Hj¬Ý}¤ÝN×Fj{£ »gøH-®—TÇ¥ÇÇÕ§±¬ÒIÝÕ¨}š¤¶5®úŽ!ë'Õs@°¸Z rµøDHm›à pÕ…HckñÇÑš~x:| ÒÚ~2ÓUól3³³¢e3pòÅﲜ|ñAëä« çË ³Ì¡WPYutø?JgîTj?–Lç¨ëiŸ.•ÅM¥ss¨| #ž•Êâ¥Ò±>8T}T.'uç¦Ò|0ÈìYd×ÌÌí½_Â{C-ê>˜³‘ƒ1$OŸà= Ñëµú+C · ½¬„wUªŠˆè]rûÀŽ´Åöñ“tķèŽHƒöÓïˆO"Y‘#¢ìŒFO݈ ëí‰Oj…zRôIð2¾¿ÎŽxö¤êI1óäZoO’×ûÏÔ“ >­'éÁÐÙµ½2#£É©Ò»áw™"£áÁœ "Ÿ1œR*¸‘!•ѵ̾#®û%õ'Ø#Ô ö€€üpŠÝA/ÅEà¢$xý»ñ¿ mÿ‚=¡¾œâöS¥8((x¬&E¼>Šu&}ò7ŠQ´#!fñÉÆ)wÌ8Å„ø¿él-ñ/‹qÑÿÛŽÿ[Ç‹¦‚ÿ×é>Çÿ…ãÿ:ݤø¿ãjWÄûuÛø»¿[ð9ÿã_µè«N—âÙoŒìiñ÷ÇeYä¸Zíè×%ÿ±@eú¸Ì?.ÃÇT Eß´ø7-,€!†¬™£çÕ„B æ8ÃÚ¼ÓåEx"b¬#è°©…Îmè«/Ö‚‹Úß{ÚßšÇz+ž¸Â#õtUýÙæ!}v˜9¸3ahÄpíçIq‹B5Ëÿ\ˆJ¨Â…›&ŠŽ’Âá¶!³xyߨI¨äz¤£ò-%-*šÔ$)šP‘-‘/Zš~hÌи¢`Ñç¸ÈÈüÈZØ 5.‚'©ÚýúUßíîh—\Õôñ‰öaÑó! 7A9|¼·‚°Lq`Ç%8$‡_vºðK”!{|—ÉÞÚá—L–Tçqè¥Ö–²Öp2.6tÕÓ£ÓáZ 5:Šk#à †ÒÉŒJ:¶uf2”Šbߎœè&DNt³FNtÛö›ËW¼»tÔ`N­G¤Àãg¬((®Ç^¥°˜¿~6©‘0‘Y'RCN$ì‰æÇâw(ËàŽµôÜ"š¤²ý4ù¼ÙMšóÔúhòyÚ[4i¡+öœTŸŸµ‡Ô]Gv¬ŸTϲö‘êó³/>ÖHijÛì+®mö¹ÖŒFyüfWOT²ìøAœ Õ^ÿ” &‡ÇÛmèœÛÊzÎmÙç\í8•vj-}¼m9ÇÛGh^qÐLe‰·ùÐöÛÊzŽkÙç8¤ýW1=Ó¦Akés\Ë9Ç=.nFË>Ç=!„® ŒcÖcT+ñeÊœÔ-}€j% —÷èÔJ<:=.5î¡É¡Æ<4=.9îÁÈKή¹çŠì'§ø¸ÌQ+Ó Ë@Åk`eâwYV&>¨$,m$\28$P3ˬEѾ˜eM€#_ÜÁú±Ú‰WÔ–¿Ë2ˆø`Nãß.:ëÕà T4zóký’¿'ÅeX[4Ï#uÄ+€dGäÖ›6"?~²{|cµŽÔ~žŽøŒnOäΠzRT={ s+ön²¡UR\fL»'.´Ëê{R4vøܰ´¢ž„½¦ Æ(a«×mHMs›OÜùÛYvþؘ°ÁУ_åÅãœ1(ßäÿ}ø "åØG[1D•Å»ì£@%8¹$!ïuÒ1á§ïµ÷LÑvξ-Üèv€ÜváivÛ{rig:¹üÌÝösÜn{Ž9?ó÷ž‰Ú‰g¢ê®ü¥z ù‘¹çJ+ï¹÷ÕNÀ=zç¹ÖzÙðÈ;[XŸÝJ0ü¶²~[^ïG#Í, ö·µ´E¸åµ?R݃uËo*~´º·á–×Tséq±RÉ5ëžilƺ|µ-ÌO†T¯¦ÿÊS!Õ; ÕÆú§€‹˜aØÆê§Ck³ëž¯aZfðI{µöY.bÓ$lp³ÿ´†×ד¡5}Yðè“@;í9' „P6‹~ËgÑ×§Q£mki‹~ËgÑl2¼£Ÿrny :¼‡’ä3É*ÉÅh öVÂËfJo…MéaSëhèF¥ºŸÑbÒZÚˆÞ ÑÃôÙïęϟæ(¸jk§ Ú ]Üüö˜}ð®ë…úiƒ«cj…mÓO³ Þó~È(¶H‡»P|ô.ÄWƒÝ‡§0 ¾Ü A¸¸ã²èÞ^̸ãr3®œ€¥QΊ¥QVXBÚKs¨’ƨòÒМýt´.bÜD'FHàuQã.›š]\ïѨqMŒ65±¦ƒ}db<¾7œýùØB@8Ùà¢Ìª¬-»ÊZÙ¡GÐ-–—VÙ–]•íS"س¸=ŠÛtŠÃ{ʪ)ö‹â]ËûGSì®6ÄKpq5êÑy vKeW%k¾Ý’`3ª!Äâ 1!ó’ìQæÙLÍã©Ëb—Ë+Õš¯Žâ„yáSž¯s^¤ ¸ù¶¬ ý(NáòÚgrâÔyñJŸÉ뜮ÏÈœÓbYú#Pœ¶øž Å™§E¢¸Xá´ÐôëΡ5áÌšM¿^vôëÞ‰•EŸ[^ZË^v´ìk#Æ+&25ƒï92Ó1ò1¨ñž³ƒïù/t|,b’î‘A“D9«I¢0IÈn+ÝŸÒ£$‘¡][@V^ÚØ‡ü¿{»Ïù×ò¢ù«çÿ}_íîsQ·]jvdÎÐöq¥fýˆ¼ÐêGìG~—R.¶?œµO™œ¬vjGÑÏ™DXu"¤¬›½9ì Þ(¾I9â$AE¾x’#bVU¾:€Å9=¢7*R—‡XÔrލÄ7—9¢Š+: ãôˆ®Æw÷³å@ž ¦Ãë‡þ-úp°i|û‰!aˆØ»ïÓÙàþ†ª?JÿyèSêȨ”ÿÆv•OQÄŠF¥ z÷†Cçm4Oîråh›=}¹½ˆrôIi“Ž]Â_ÕV°Xѯ_“¾…wý«/0Ë÷Óáíx”!ù1ŽväK~ë Š;÷ƒ«áÍ3‚õÿNl1ªß²·oô’oA¹ó†QŸ­ïºøÝÿvéËïû@ti6é¦0DÐDÉ*]¡ÒÇvécQúj<úíásæÖ55xM)™™yRfVn2þ*÷Ö»þl2ü•v žCNJžîyÞJ¯Ø<ºùêmõ²5¶h½lhUCG†Ÿ¿Ì¢/ E؜Ƽ ªlIk¹dõH,½>¬ßBt=d“ eZ–_sÓ&iÌZŽØºiDßXŸd©vV& ¿nýëáè³ÖçWŸ¤ÈÕÄȾëËÅ…Æ&¯ÿrê/ Ðw§\ \«%ÿÇàj6ž(o.ßê/¹.d‡/WÐáKÖáÚ _¿¸È z ЈäEsóŸÑP{¶»bhàhç$ÏÊÏ^P*òdÖ•]Ö"&u&ßiòYS.ÌB½ â¦ÁB³~v”e²–;Ûü&_'ÃÙl0оg_°ÒëáÍ  £«AÄ媄ò ¡ ƒð.aÊ:s¡¬'·< ñëxòû”_›´3ºìoðCm$¬ˆ1--±ìkfx÷p‡ þhòÍ Öẖ?­3o½ç¸ðkµ}Æ®œMqÉ󿬇‡"L&\ÝÚŧá‚ï’Ž•”j+VEîÁ'òÞsÚ:ag+v oÃ]-5Ùå­úŘώ;ð÷Šr±‡®ÔKÍ÷ÕBÔ©”:¬éN½Ô¨Èër u{!T,ÚÌÝßW¾nÏ›ËòQûÈ ¦ò¦gΆW¿£D‚uÞ€™+¼)ÿ€m•RIó¦ß墯N½º³휵w¢¦þ7{x§zÎÞÚ*qX„Ù«Š×wΩ«í óåmgÓPcCÖÍ×XVÞŒAY£½‡$ä ¯*mX:tq° EµèSü³74©#~á…[À=š-¹h£JGÜ ¹REš_ì‰xC,u¥#™º©1‹ãQ„˜ KúÆqêY… ‘Øt@"Oø» övïoS¶ÿ ¢áˆm#²—¤Oƒ‰¬Æ¤9V§WÑ'¼¨B϶AÜèwVÏ5ï>ôÝe£M‡ÔÙ;ÃûB´£iœœ‰L™çE^xu©d¯2^9ä»ãÅ˜Š¾źrñÒ~¶ˆW@ï³0.ç@ò40§¿ö,“"9zS` ÉQ^Ð,Ý|qÉ#S´ÚhE€§¡RÓ§èèðªúÐÑ=æ+Aÿï®Eÿ·{°¿[´õÅ—/ŸõëxÑÚ°ôñnŽ+°„øäª¾ˆ+ô¤^ï¢Þý¹{‰š;ès¢ºŽu÷‡êëTáìÚ:&0ážÞŸ€’êë˜Ô WìM yZÆŸ¦>î”üÚÌp¬À6{ÜÞÈb KWª-¯WÒè^¥ZÉ­vYÝÎ]ôé{4Z·N§<ÕåTªË+× X^?¿Ïú0åòNïQd(ES:¬ XdÎÿ¨Û<ž\µc¢÷ڭߺ æÝ~ÙKxêåoÝÍwu&º¸{{*6oÇâÖ¾ûž_Å­ºtÙúÈ*¬œµ>®ærÍ6 `¬©¹À={2˜=LFpWd;ÂtÈO»W{îv´²ß¤aˆõKh§ÄÉp·&uµnª­Éàj«S7·àW”àåGDWB`?žVJÚEFTb×%F Ÿ¯0QÁn"Û°>6Í;“·¸  ï/h~Ë‹”V‚Êø®)%½ã:n¶øeœVŽÆu-ßÝ!r‚cÇIdr‹ß¬P‚5òú½Ê¼¢i—þî2Å{ßÕ7 ™,gC#¯ 7ç´¨W¨ªuÐB`• âÅ_¼ºS2|'ÔÐRŸï„ ÷¿âšü?ööÿ8~¾ÿ­ãEëÀºÿ…ÿ䘇ßUþûƒ!§ªð» ®pÝšš?û…1ä â°&õ‚Y…ÝkÉÛ#20aw˜û*YÍt•Ì-~¥,£ë1;õGÑ`øy0"“etõepõ;/‚O}8þààÁùAyu@'Øà¾þdì*› LGØ;ó–þŒþ¬þ=ÜÞ‹©ò0…‹Ü%âm8…ƒyqõo§cîׇJYö›ÿí 瓪ÓfÚd·ÖÒV”«æ~Ûd³ŒmÜÔøH4ëNåߨ6î\ÂÊ gŠß¶g_tFpîQÊå½§¨†Ý‘¦Gõ-^ÆoߢÑ6gì7P†Ï¾°ª®úÓ¯*‘Šé›èÏÉ ÷-7Üü3ÚŠþÞñ¿Qc=¤£ÓÎÎN!Jö}Ñ_Js8¿0ž0Š&`ÍglLD¡š¿6ŒÓÂïEWÞû|_º/ѵ¥âº¯h”W§¼:'å}ÜÙ‚ »…¦b¨&öÍ_\h=첡®§Ö"9óaqÎ|Xå˜"¶×¢þT…5dîî[Ûj¸GÓÙ g;ü`.¥ÐxrM:¡$ÿ¢¥5ATï×/àcå¨êã*‡¤ßDuŽŽTÃ6­;ÒÛ¦Ê==ÈÃZ{D¯úŒö½k’ic±¤'HÕráO¼>šuʹ/Y[]k«;T“ËÚ™Y법ºÒ¿}@ã¡TΧkæ› j±€wL3I'æy¾hÐ>ç6î\j/Æ×oYOª<Õ¡†WŸ“ µ^œ{áä¤FP”™Gè9Õ½TÀ_‚hÏQ¸Öm㑳ÛÄ û¿rVg?ÏÞ½c?Ûgða¯ZIW-Š_mÔœÁoPžUÛí&|Þ­6ZA öº¨·H¿…PÇú¼…æôZ­wVÜ©ú¬[ó*2Ke¨5JïqŸ°_Ëë6k£ál‡ûV98gÁi¸ùvWÖ¡ èá %¢vs2¿µ—P„ªé"µGôP6ý&›S©úMZèî¤}ðAûì~gÚ'UþIÈw©t^*½—DC5ÑPŠTU´a×$;›µWÍÚ G­N/u²ÎbbÉH¬ýƒF±å¨ÔôÞ%Å£ j¤× uí‹Ò¥;½¨+~¯µ£³¨¸‹ÏÑo³J1G…uâf1T4“$„e™ãUÆ’²È™Í­˜Ä2¸”ÝBRÍM/©ìÖËKN¡vWˆh¢nÓyY‡$ ¡®=YÜõ´bª“Oö¬äÚÞÅÒ=³â¼QßA€Çì«ýpSžÖÈéIÿ0aoÒ˜¯ŒBóDâ€eµÓ ?÷}wÄ‹Ãp‡ýãlò Ëx{JzÇÝ]¬xtVkÔkjG”c‹Y©±ð•VE¥B#ª*e[‚['†Ÿ*åT£Qß2ª«ìô[ý`9=âÆÌö“w··¢%qD¤_¤^mjû œ§´MåÅ.žµœ”"êƒ_DEü(Ä ~ÈQI&ñ,îý9UÄc¸É{ˆÈIêÃË]<"Ÿ=¬ç[ø,<˜ýt¨D"òt¨c¿ K.¹Q)‚âA¯"ˆN¼ø‰"èU2Av˯çn™ˆE€NÂëtS[$çþÚÂöa~9¢ÃqÛÕÔæM9— O]±†È×#éÜÉN‡~ÝÇùl4K…?/W%xª’3‚åê«n´¹þã!ªF×ƒÉ P£ÞÜŽ¿l±¼}¿1VFs‚LÝFª4ƪêIøòûÏ «óÍ)³:­2e%B슼FX/gÙ•ÿGUOÑøBfRSTÛ'nj´U£½ü¨Ö¤€<ïæ(¶R6mòB(‹–B†ââßÀy8Éþ»·ûïÁáÁK×þ[,>Û×ñ¢émÛ÷r¨)DµN»[ˆÊ%&WáÙýØ{ç1[Çðeµz”pŽmž]4k]ã´uŒÀ)Ø–Õ«ÃGð³L°¾•}ÕÛ¸+à¯6ÛŽzð›ý4ÎÊQ¯L¯  T©@• Tá|Úa›S•ÿŠ…q:Õ”]7,Úöå'²g{4T0ÔaÅ ~‚J±@L>A¸Á›éÄQ–{4Í™°ºŒæÞ «Ô=; ²C̀ȅ– iT$—é°½CÎúh(ìcÓ‡››áÕÍÞÛï[½Ÿ‚À!'pȦu·}QÝa5ÝÂÌ0(Q4(½)fáš<v¿d?òÒH3B3æi¯cðp`ÏIßaø{ g<äͰÊ’h%îG×Ãþç1(¡…ñ‚å‡üæ¹ß65R‹’Ô|þ¨­µu >H'¸ øvpcÒ[ &”¾B˜4vÔ3öÿ'&s5ª÷Õ²©.Â~4BAI6äàÕ1±¾G“AÿV#ËE׃ÑX` Á¡„ì¢@A¯­µ·¯Ú«/Ø^=­½ºÖÞµ· “ðCîæáöv÷ý häÁ]ö4=g¯CáˆA³?¯·¥›;%~Ä×/ƒœðT@òQV}"ù‰†^\C¢ IŒÞ’¬ ÜâxÄVÚt|7 .ëÍcͲ ­}QƒÆ¢CEl0ØŸY˜$Kè\rטͬTF™<Òˆ1Lng²[êªâ^ˆ/uÔêÙ8P÷pÀY´žÙ2ê‹2 ¯4ðse­Ç¢ãÜRá-¸â3g‡ŠŠ­2aVZ!åT×õ`z5²]âËø«.$™TûÄΊ£+ݧ‡Ó:œzVfÕf‡»"U=’å¢*ä*”Ÿ"#_kŒä%1›øÛ,3Ê(iŽöÕÀ¨ÍÄýõõ&"Âd%ékÙâPÚžÂ{hSŸJ•¬BP’X¡i/™š‹wùžÁm›Ÿga×€örôù¦Ã@±Ÿjô9LqøèôbÊèÀÅI…¶£T|ÏjOÍ&윆bZMwÖþôáþþvȾg{/ž©v š5@+ƒ =_“èѬÿ;c:jœ¦äªÍéNty4Gý««ñÃhVˆ´¡œ}éÏ4‰EþóÐ͆36"_Æ·×p;Ë]Ô[›j3b7½Ì6ŽŸÙYt„wXö‚FQ¸X¸* \Õ¸ª3pUÏÀi‡áF¬ºÜˆÔ††LÖ1¾‘wö CV5‡LÖG퇬jô'}Èzåð)1~×%;>"ä4,øáÕ~à^ÎcqÆcîòæbs¦#s¹RNßÙØ·Áë¡¥Â~¥X³j28ÍÓµ„7ÿaÔ~ˆØãk⨠t.xñ´ÛVJºƇëáU$&›bÓŽvzWã ñ{è:\ׯ?ý±’NOTt\;\Ýîì*à\Ñãp<¡¥â²q8ºbgnôY‡³wBß®:^ºêá]àã&ßú=ZâáG~2àØ_b Ç7X¯ôHNÌúöÙÈßãô¢Ñ¦y³cwv£¹xf#œÀw´zÙ{y%œ2Å>sʵ¨œ*ô‰-VKjÁާA(›Z°l·SÅ-åPÛ•<™»ßïq«Öµ;Ñâ ÙUíÓà6"¯KX:d_]=L(é»Tv¸r‰ô ¨@R÷Â=þEHƒ_°â_ J,ôõ"dÎ5Ýn ÑàÛÕ`p=å­ƒGô¡p¸8Åêô @ê3ÎP¯P¤Æ›°y ò•°íʘ2^~º5f÷ôTw ¥ïo‘e1#cç3›º1¢DÅ»»õ1ÂÉ>¼z`×\SŽÝóy+0ů÷ƒ‘ÔÅÜ O¬(+‡ÕÿÇt'º?|ºgk¹~f†[8œÜ=0VC'@§Ðgÿw0ïÉV­¹“ÁãF»¿™²V ƒat=¾‡&“>œ¶¦ƒÁµ^üO%¶Ë_?\IrÓ*è?Ñs×D3ÂÁýÖ‡ð£Š9&,)pS]­ßµÁL N®;@7Géð òß± ¸ÿÙ”ð9šC—ŠvŠ|ž’N& #ÞÙ»;óÅþߥÀæ´GÞ ÒÌý2¾½ÖofzÄ€Úp™›qÞ_&Š€«ºØ‚‡ZTŸõÂÔý˜ô™‚MÞø±àF&§u—¥ÞæXŸî¿‹ùˆòMéQïÆ×Ÿ¢QmülóF»•ñh'g7ÖòãÅ므á c¸(˜à*©IC²Á¶5ù`^?ù ¯„¿¥ñ¦^V÷ñOƒléì vèh@@‡8¸1>óª}á¡^}¾AïÕ­QgÀÜŸš'WG$'85˜0Áë¾ÉÝ«ïD {[q½öœ]iÛ]iûºdÔ°P_Úé}©·«sõl=Ö¬e5{Ãsx„¨íy{ÅJ¥w‹_ӳƷ¨&yA_‡”Bz °?yºK–¾…(‚DÑÝx²J’ð–cœSÉù€BE?)ˆzÏôë¿¢ÑÜŽì §M£u1Dã;PúpWnÿü›·(µÑ®.:ÚÕU¶IÞcW1ØÕ6í&YÆZh¼Py-ÀÚc$y8͹”ñ ÞúÔMõFe{‹ å‚íe³‹c'HÐ6_±ÃFà °uƒÛ ”GýðÃdÂmÌûáŒÎž¨J/À_èùh܉¸ïãBq‰hâæ‡ïºˆLÌŠÔ&ìÄÃ¶Š±òìüdŸÅõ Šù&aÙ[Í|¾ˆW`dÑky“Œ5õ”m3Ÿ#|²(c.ñÆiëWkíÀÈuÅî37·ˆˆl_ÔþÅž!]Á½CŒ¶±ú/ýkÀ[ŽP¹u5£!µËÿ›•ççBº °]¤®Æ×º]ö?!b¿qà/R3îsõãTVôT Ë Q÷C"â™ui]îbI)‚7IÎ?ÕV§ÖLj`5ì¼>Ü=¨n¿š'zÒã‚U.ÕÏÀêŒýÁŸò¸buªÍNRp%7²žš;fÕéGŒ×~ÀMÆ_WˆóaÿN’¾0Ì2ùï˜#½uõ&€­u)œÌÙDç<ŠÃ¬·jÍ^!‚ÿ1¤×€íZ|ÙïFb½6>Þí¿1_Hm×ËI#„¾cÉá­À3ôFs„‰wý G{çÊj£J;6ÅÌQ¥Öã ÔÍUÊ„PûQcxiàò.«ír½äia™0ÓÔøÒ£þ¬MÈRªå¨Ô-Eæ F:zÁS/÷6¢^v¤Ä«VÀ%Ch·’Žä¸Â™ààQŠÂ³äbâ ,tx|Tç”O·D¤§µ(ìç:vD¨ü¦¬ÚÃíE H…À—N»»ÓD ÀRóhG¾wÃ`xám¥)cgvšgÝêJ¨Ìž]†«›ë]?à¸(w`—#£ÍPzé‚vÂÏ¿²Ÿ¯• DÌùIïšÁòñ®[A¯nÔ@oªp: ú³ŠvJN·ñrnÔÁß'TòÚ©Ïc¬;Q5ä0Χ‹þ5;…5}¸bH6¹‘¼ð ÍB»4†‘(ìšè ¹˜í,œI¹l¸LP=rsáõXÒA¶5 ³Ò“Ú ÿܨls¨ì#M6ŠjSëÕ ;iÀ…°vw?žÌú#ðŒMá%8’‚Ëé Ú}0u#6m±Fв¤c+MI´Äƒ*–ïÌ€kí÷Um´ÍÑÂc ÙÖ´ €§-¾Û H’eª¾2VÔ¶6)hŸhÉ ;Òó«ý™‡¦a–X)evb$Ëóò2-ë³òãâþXü°¤"È!½Þ½Õ˜AÆ´Æ•^f »ÆAVÍ–P¸XôÆzʤ¯¼¡§}Ý vb)?]6…Ï¿Ý ÁP45©úÝhÑ@k¯­q×ýØMª:I²ƒÃj󈄣qÔ…)ž‹Ux˜˜&ŠH‡ùC›\¥‚ƒÿÁDÉ÷ /#í ©ž!cÍ·Y’T ‘T‘$U,’äd]¤b I{›º˜ÜóÅÊw›<áœ/'¼ GD«{ZÀ¼ú(xüÇ@EqÀ!‡6·µPE3ô˜]-@¸@8rdoü?Ü5Ä ƒÁuéÄ r‡ÅOBˆ(4»i÷hÑ..ªÞ7*‡=F¸Ë: ÑŒb¬ ÐöQ º. %¼à ¢ƒPÁ è UÝfwlb©7f¯’K{ÆŽiͰ}c†yÑ<3¬ž2ÃöݶÿƒfØ~¦VÌV_l†Õ—˜aug†í¯p†í[3ìÀ3ÃpzaºÚÛ[îÁ4¥ä·УˆW3±¸»K‡::—èpâøBjzTwÓôºÀ’:hEsŸo¢ÐGn_ž#ë ()=°Ä×B§„º&C)´A<Ô2P…ˆÜôTÚûuÊq'J;ñD™=Q–sO1ù' }"Ïé'¡Ù×þf=íùŽD‘{*ŠRFìõþ,ê²ûÎëÝصh3W çƒÍ¸1>Yü&&Ø@( &ÉTWÄ8Xãxh£Ò¸¤¼2H‘êÒ „¡DàPžYršE4¥—nôWé #¼¶Š XLaŽØÕš5×°¶¬W-ÔAËwÞZ¦Èkg\PÂ6S亂&lIð* ƒ$"iù(‰Û´Qzmu# yÅé[è¶ìúx¬K”n«é¢\ªÿûIó½#Í÷ž¬4'oK¦¿~™þ:]¦ÚÛKB¼àVI¢o5`×"‚1¾¿O”‡&áн4YÇYv(—½™ö©¸¸†*.þí7*ÿðÌ·]Å^ˆªm5ûU¼·ŠýÊÿèÛU/ùæQh«¢]*Ëå#a›ªÆ…Ÿv»Úÿ1ÛÕþϵ]Åû²_Åûéþ¥³_…îCðÝAÚ~U_l¿zi~àÛ¯2ݨݯÖq±ŠŸ/V+Ù¯Ör¿Š³Ü¯"XùÆ3ðYq×£»ãñLáUêñBÅ€(å¼: ”ú:†¶j¯Qyñ]N]ÆèGycnëa4§1PǺ¶¶ôÝã ÕveÝŠ‰Cg<™9gwbܾ ¯ÆŸ'ýû/Ã+ˆèV5ÌÆrB!\ºaN-™^,Jg€& rÍ•$à>‚µ"îᆶ6Ð ¯kGõlß²×åû º[1t„_¦jÑVpù§‘MTЇ\Rî)Äë¥ýþân"q­ƒÀ.Ày¤”ΉŸ ú’j ¶^LF;Ã1’±-³òSz¢æ~MŽ$è§è%N`Èy*7¿Òžµ›Ñ>§î*O_k½pk=»µ^ µžÓZ±<~T‚Ý"ÑÖmÿwžnè‚‘L p}1Ké¶Y!"‘©–°ÉÁÓWy+>)¢@•e湘æž8–´¥Ó€°°™(÷Ì1eÍž’5ŽHéÁ¾®18¯­tû;4X¾%J%zÑ‹à„òóušHÔšb"u|âÉRYè£u‹ÊÒ(¤nQrðQæÃõ"²ÒËj-ˆ‡74ü8ôæANïÆ6U²iØV÷Ì{†Ž"t‚–®Z¬>‡ütf51w^2fÏ©&•„-"IbÁYÃ6²¢¾ª†Ü&Rúj?þ"òÔœeß•4§M5KÊ>ð9¼c“E'Å\bÑAYV*: t"’IûsȤD9ä0/]þø¤V6ù“"s2Ң˿Œúa²¦’5Õ•Éšª_ÖdmÀK¦’5Õ,²¦š$kª+”5nCn鲦ê‘5Õ5ÈšØ#kbSÖ8þ6Å@îuAÇ‹Ý;H¡ÉH8øî›h/È*Ü npoáÞwÈ>Þa¼ˆ^_‚Þ—}hœyð€Ðn]t£êe Âe"6ÛËÕ68þ²o µ Ð.ªPerN-—ˆ2¸¯¾ÍYÅ÷ØøÀ÷ÀRüsSÏð•O`ïéåHÂÿß_ þÿáÁánÑÍÿ¾ÿŒÿ¿ŽMGÿ_àÿ{ÿ=ÀþM{±RÇ]rA†_]Œèë "¬)@þpâ?jvê•.PÁä<‡íûÒÓËÔ†•ÿšèýs¡óã X¸ûIÉ€éRÄàòe6†pú}Q±v†ûD,>1ôçýQš´#¾4qõÿ¡¸™%ÿ¸«½ ³®×Éq~D~'6ÞÈ ëGþÑh-—¿Ÿ-?×¹úò€x\w›:ŸW2øv?˜ÌtýÎ厭š¼Húñ^6(}=*?šþ4Š÷ñ“ø€W¡ë'Àê»Àh«ÿRƒÔKFÕG”b„UŽ"Å32±>œ¹Ñ9D„v}SÂ>€àwX+½ÎF üŽ‹O„¹¦~ƒpY t ‘Fö}ˆÔIDò2Ö³/ØÉÇî4X X]“‹É<ÎÆä«Ýn5ÿ½œŸé Àб÷…Õ7~h5®=¥“aüx½\fRGDsj#¯~ð¼N¢Ò…!OšÙkâàÛ«œÛLnItM¼;4ñÌX:;½Ä,ÊŠ:”}p9^õÊ×S¶we‡E­j¡ÃE³Ã¹†³1ÍÕõsöÖñ(ŠÈ3×Qç¨Ök×…f§—¾væ+,úNµ^­töüÍÆlw© »·/ºÇ1Å"¶ç'G€Ñy/:ÐÒ‹ñD Í ÷­¦£¦^¶šª¾š`÷˜>Œ ßgç¸þg]"…Ù€øÎüñ+Aˆ_DüŠ0âç‰Çá{¹9W:†´| C6r“!L>ÑÂpIˆåÄ`^Uæ"‰:ÄΓ™AU¢¥h˜o õÙl’›=7Ã3ÐÐÿ:°ÑŸ!·Ÿ1â*Œøglôtlôè=Ä‹ÐÑ¥rdãLl,AÀ2ðì]}£ Á³ÏÕÁ5Á³w–‡g'-‡ôz£®òÆèªÌMãd¹îFJªÞ™oêbÜBUïøpœ Î(@õNÊ÷ªw‚Èã‘B‡ïÄKwD@û–RbÏ|(ÏzÕèŒû"Æòk"#u:¸e”™+1w<Èe!Æ%‘’²Ð­HìÃ`'Jž%JÍs› &‘V*»o|‘‰,Tò&·^} žL÷¦êˆhïJ×3F‘ip™¯/z5Z·¢wl”joÙ‚ÚÙÙ‰ Ü–ËN)dµ«ÁÑøOâ#›M7hþrÖŠ\·~ù£çÝc/1b;¸ŸÈÄ\p0Å#=’Ò††]~#µXbU.ƒ{ÓȰ%s7ˈÞÔDhî(ò4^êæyÐhdE'ÌËÞÕ—1lL}\lç‚fzÏ1y¸[€îÌæ/3c˜¿|âæÅ|S"}/‹a.PÇûS~®åg$D6×kqÕÙ¼™Ï5·âÍ´y¼¿½ò°±a/p.:]öÖúp©§ŠÞùÉAÑ}ˆÒ„Š^Qî^¸ò ‡DÏ!(úãýNt;¨rz±Óõ2Iî¥=‰  }Ë@hßú¨ì>ÐovçßàÖ…{Íø×Ôй‰#§³Ÿ¬Hí}!jw.Ê lCEÆá®—šgX‚(ëv${¶ À(Rðì ˜ÝÅ_'Ðõp%=ú%LÌyðÖ}Ìm5rwX镨‘ÂÌ­ÔKÍ÷Õt°tª§`?Ÿ@_f´ôÊ€£“Â߆ÂL¯\4»»ñÂNçƒÅ6°ÊøîŽIø$VwªõD2{êC*à›vp¨Å2õ4ï™5¬.ZMÕúY«ë©Ž×ñév >Pºdmœ5õš¢QV/xe½rÖGN8ýªy'Á¢ñ@öŒÈè¢zdtN=ýÐ~~Ndt²:»~¨æ¹Ñu@ò Fý¾(¶$Öøþ:°Æ_êU¯k< fÜ"Þ¿DwÃÑðîáÎÀ’áÈÇ[t&å§×\¼¹ >Š\pÚ *Üeév¦Å]S òYB¤2/¶ÑÜ0>†mYk#ò„_ˆ’oÉC­dvG9P‘7„®ÙyÄ` &JĦ%«;> 3v`·' –´ÜëO¨fè-äõ£Bët2á™GÑŠ u¬æBí¬RÇIž*Ò×Í*8 ´ò_"'~»ª$ÞÍŒ#Ç3ÊNÀ¡†¨åà-B7ÈË“&žjaRñÄ^‰QSÎ Ž×ˆíÐñÜ«Í7R3ëÈyþ8¾QaÜÁ ʳæ¡M 'øþ;pÇ*:žþT9@……Fä ¬5ä^(bF ¤é rQ°×qwÇ­ަv2Žf“þh Îæˆêe¾oŠÿ+˜°+(cHÄ™Äo³/BÒÍC¥â^fÚ*ãÑoŸû`öè'l›ç¤è!+¢G:/e1¼§‰à;º'0‚bg(H ³éƒ øÀ«ð”–Ê lülb3©–ÑZTó<ÇÛ|Áɧ`ÅfÞ¼fòÁèt|¾‘?#ArÁmšñx3„céøöán4ÕfŠ˜(ží:Ð3‰Ð/˜´é•çûšvuÍsW÷i¼Örðʨ¾ªƒ×ºÔ‹EdU¯Õ’!xXH‘çØjµB*p›wÔ}‚Y0ÙõuVôʉÄž¿L$PHtS¤Ä¡¯K/Ó©×uRöÂéÉóãž§?ìEÚ`ó ó¤$I¢À½¼#(kçlYGeÑ¿^%ØÞVŒ-ú³Ð‹CBºTF›K<‚$ÒWWL ' d'Œ:ïdpÐ êKðµX|2è <?|þ¢ÎÙaH“J ¶Âiœúyy8—noá7†ý̾L°c2ÓàÁþq6¿ˆ¤(õ|?g_„;;™ÕÑ+š‡™è“Õ§¶¬Ù÷LOùåçË¥7E.¢ìÙñbÚÊô“oú¶¨DD}/¡°sË„Xøˆ›fFÜúUmšëÆ«÷ošr5تÃ]v‡‚c\7™_’¦ðæØñ«ØN8Ž“gxýŠ·ä8ˆ¾É+…àrU+Æ–g©¶ha´fÁµ7Ú²—n “)‡ç“i#Wà8žZðØGõå¤R*¼ø_Z*e„'_•TZ7,ùœRÉ8˜CJ…à”qÞ–ŽLE =UC/TÃA`ñ-*B“à(W&BS²]i 濊þˆ‹äëuH°”ÔFOY‚ù !vv$£ÝUK°p {b!!öj½BìÕ³Ë"ÄŠë0(^ƒBÑgP(®Ú @ßjv]È-¶ëB€¤?¼Ü…O*(ɇ•رÎ"ùNùHÚ™å´Yöp!÷á>9 „ÜÄ!¦D [©Z Jñvü2—E7<Ò‡‹Ð`h7Äú""‡ªæÓwI[Ä\_†‰cÌnŸ‘c¾æ\ ¥JÂX2ŠÁÛ4KPuŒQ^Ö`¦MDôA¶ž€¸!z€§CPd77¢GE®1ãY;ùŠAýÁ:r¾HÏ”ö-TÖŸùmÿQ2¿! K%K¨á‰äóéÇÔKäÃ~øRÀi_ÈçœDpr,=¹àjÔ‚\5ᵄ{hп€ç¨;ù‡|¦Ë¡šý<½ä*¥¶ ~]øÿÔh ì/&ŽŸ>NÅÚUœ87:™Œ½x´ ¼gf|Ú¿ud{ÿé§¿×+LØù2ñ`Êi…‘)h3ÚŽHi®†³©[Q(ÇU)ì`o¹ç«2¡|ä7È÷‡®ñóýYù³|3À“7Ë­vÆ,g| "¿A7=–¯I+1V¸Ñ¬Ù°æI…eçÁrS`…’S¥,)+!”÷*c­6YZÊ+;Û•Õ ?ËU8ÁÕ|ݱS[…²Zyº£=®²Z¹ ­œ™bUeN«Ì‚’Þ…ž– Ö*Ì Í~h1:‹,e=ºö5 kˆgÌLZ–ÎbKY™Õº2{ž•ÙK]Cþ­ÌJ ig¿ÌX«M––ø2ieö+³—aefêŽà2ue¾ÔWfÏÉm9ÏÊ|™°2#ØÒá“9“Äíÿ $q«h×N'SÂ-“n_gÜN—ÿmï`-ùßâƒ"ûÎÉÿ¶÷œÿm/š‡Vþ·½&;¦Ž?›t#8mvñïŸ+eš&;"»Æû'×­›2Œ=©¼ÀŸ¡4[Ä=®L®tÛl/U0Ìpr™Žoÿà©y£Î÷Û?€}‘¡ @f&¼|Þæø>WÚÌ_F[Lú¼oæ/óìƒ2ˆi„ÓÎW mVF%g:}¸“HÛ2ÏU4‘ö3ú°Š6™l¼Ÿ ¦È³>‚ôï¡y@‡ÑÒ®"|ß„* Êí‚»¶â9!3ì‚zƒJnÙƒörÏI°ivÁ¾¨Ü‘Dé“Ð|@¥À î \ag‹Ø Àœ*lq•?ŒQ>¼†ÊYûãÉ5cdüF2ƒiÜÛ܃H_yfŒr°¡î+Ê/àïòæfÿ¸ÜÜLJÀ'̬LÇH4``œ*t9†%­!zekWãЫr¼8×~E5·[#;ë~þpuMΗTuSaR#S^=–eüfsIÃ6gk*J£¶;ž±¡¹SEÕÆX¬! P…k8éë„ãó–ú‘ÐyñéØ× IKÄÆ’z…¨ûá,©6 EÏÑÛÅ’ìMÞ$µU/µß'õá¼Ú䉩„yK‚ò4>;ÔÁ¯rx$ ޼Q/ÑÏ#üUÆŸ•‚̉ùT\T]@OaCë×PÚr3˵÷ˆ®G}UúÁ^§RªW |¯Ùn$4wÙLBÕk7.|m~T=G TçA*è8íÑ_Eü+Ü*&ÀD=i ”PE­R6Þ†;WvJV2–¬tJ=«¤Uל0ËÀ®þãýáyaUø~x¼n2JÏÛ>0¼T„º÷€€f[Çh  W•bžL LayPÄ6ðNª’®Ór‰<•st÷¬h¹t”“ ‡P ²¦ÒA¡?õ’ˆÓœ,ÞÀ„œ­ªÅï‹Ö¥W¬ ö¡.!q¡ÄγE­vÊ`¢7¯z)û¤¹ 6K Þ´ÿê”ò]¼mÓ[ŒÊ}/>³óvýv<¾§Šu@8^´ Ä3.)ûóѦ&ÅÑâè…±ÄD™Ÿ@Í9.È]  \8·‹uïä†ýu—}usµÆž¯îýìtWêÞ÷Õ^¸lg¡'÷TýÜywçËH…!°íÈ÷u$c`« <©x,ܽ豢ç±HUÑ6–ød¤"eá¤8‹…äÇ#n¸B*82BX†ãKl£ñ%V[Ì^m%[µåìÔ–ç ¶œÚr:µpTˆgÑOˆF àóLZc®nãdÍS°Žç©&™g&Øå†\jDDK÷E¾,xØÛ„ÄÊ›¯Ó¨¯Â^¦“j‘ÀÊdYÕ:²º^ДEú¿LV´ˆWŽý‡[ÎÁ͇ÔZ_x‰ÈE±å£nÌ~œCBïn‘¾n“}o<’¶II O˜£SŠxxªƒþ•í=îfô…òE FÑ&ʑ͚Fµz§›Ñº+mºçùnœ?ßî1y4d.Ðc@4f”–¦m2hSÖ>a%å’Þ% –ºÃÓú(C^ñds“Aÿ:º™Œï‹o†·<¡Çøó(1Aü³}øïd~ÌìhO.œß΃"’è6qþ(˜­óì³|Ȩ0LÀl±p…“Õ7¦_E4ç&Ør… 7ÛÝê Î|›Š€¤‹Æ䌫“§Í£ÄIqûç¹iíÆ-©Ý¢UÐ6ÉrRD~§‡sZUÓ¬©«O¢vÜÁli2{Z½Ô©v |7žÏ ÊÛ Ú9uÓ}bÙîB†>!:Ú°·PnËëþ ¶ðÙð6j¾ÝÇ¢×Ô'ºXé¦=ŸvÏ0÷¥šä¬f®µ/Ã…ÉdpvcS{¡DÑ,AJÃRŠpÞÔ uõp÷p˶­×Ê*ð×êWº«uCi÷=AÙr\uP8¬Ÿ'áA)j~"ð„t‘>ë×ôJÒÿ¾\‹þw¿X,>Çÿü¨­2[ÿûòo ÿeñ\ñæž±š:šщ9¤»QÔÈôˆj6U—üR‹% µ©Kf_ ïèàì†Io0œHÃb}!c§é ÊD‹Šg®7~ºPÖ…Bt=dåp*åö×ð•® µØñGqÎO(Ì‹óg3Y7:²¸¦†›˜‚)›îÚá•–í¨t;¿1´ÃxÊ8nñ¸à)©¬¹¾:bD‰¦‡$Ùôy;´k8îTÏÛ™k(zjÀ9–¹†=¬!I;ŸÊ\’R¸šc”»L|°•mpƒGI RÜòE·¼Î‹Ôò{nyNù§c=x"ƃ5D†!Š[Róö6:Øy}¸{PÝ~µ*K@ѱHâªxV`¨À•P€Uê„:Cs€bÍãeDtjÄHòõêU°¬züï9¢ºêgïk“°N•rïéj0ß(T@]›xDQñaÜ"QÌs«@G:ÕV.ÕÊÀ‚üºªˆ03à[õUB z ÃևZ–ÂÚZë:ínªm¥¢º^¯š‘v5«i%Ͳ’pÝøRàhp?|·Ìà6SàÛ…f¡é€¯$Yhz•$3$?w¨>Šc¿¡ø*ÂæˆpÉÀ9΃'„s1ŸÏm÷a¿ØÓ!ž Øùòë—áÕÝì$ÀM­à…e‰êI7Ò6j¶/ú¸èÿØI‹Z×*Ù5>+z>Û3>ó˜Õìªø‡E߇fe(\’bá{'FK$YÈ„ io‡Í4Ägàß74vÄŽ'3 ×z;ø6¼žôï¿Àiäö;\®Ø5l GõOßáFv ‘³hxƒ›ô¬ÀK›²«âçá<„¬çEììæFVNÓ ÎC¸Z£â”œ°¹'2W'aÂSa°1ÚúÂXë:%' PïÞŒÔêE(0uoÏô‘‡†MžT8)©8ì²À¹cu>¦wBx𳂎—ŽŽF‡ÛÞW¯øÚ0¾ÒžuÚQŸ«–ìà™Ñy“°º-‹ƒ,Âä•ÐÛ€¬bÂo“æÍ¾tòŒ¬àp‘òßB\^Cþ™ïèŽüé,ph<|ùt4JøE%Lˆ Ü&E‚›7 $Z²ÂGó!G:h°¸™é°Ár9„0~£U«R{b»:JÏ,³ö9ëv‰C¼]«†ä†maY8Œ#ùú¢Ê~Xú+,«ƒTÄڧ|>±£Ûï¡´Æ='˜3R1ì‹mƒq–Ž»Y´òÉ 6PêÑ«óèÑ=,…$û)´éŠùL5(¶¤x‚¼±¾à£(e-òe¨×#G_f­¥˜lÁ€YçIÿT&ßó©2*î/<ùœ2V-Ë9“õúžÉ8{þ˜Ù÷|ÐŒŠ+™}+>…f~.˜ªø‰œB#Œz™ïýå3ÞÏz%áÿ¼Z þÏÞþáþKÿ§xøŒÿ³Ž­:ÿçÕ3þÏÁÿy¥áÿT›sâÿ˜üÕí¦H  hy¿§ÓñÕ°g²‡&ÃþhM>M™„ü, @Ó0*Ð4 ˆƒ N©/„&áÙ#ùQqðAÕ¦ÓÜ3|Ð3|¨a%ðAÕæ3|ÐÔäĆúñÉéW…Â×ˊ0Šì,:JÑÖcÁ…2($Õΰd"“¨†÷k™ˆýTk„ùaâñÈCôSvÆ$Ø‘D ŸõAéÐEázÖ„iTk5»视…Ì2ód^Ðp†ÂË„&d%g8·³×‡«?wPƒºYчœ‚Ù[…Gc«ô3|‘¬ÑÆ-²3L(ü"8£‡ÙS¹h¾?n à¢gÄ¢gÄ¢‰Xdâý@ä"Hê5E×í[`d„ýÏ S›å¼`E~P"±µÔpŸáÖqV»õóHG¾*:|Gl1x¢Ý'O }Ì Oä¦#Qs!w¦•ÀÝUãáùJx˜y Í$0>t¦ýìèLò.²ïƒÁ<ðK½üRÖDÑ“i%èKÉ“ €b ÜàšàÒŒ!ÀÛù3™€)!_'Ëä‰ µ£×˜¥¡ç¼LAϱÚɈÒãÁÂI‚éñø!ﮇæõ“ƒ¡I‚ŠVC·|貘Šá Š{0^ô/à¹.µÝ´.ŠÍ:€Ò'ÐKÎ|jZ{ð?= &#d˜»™ ÁtîË&ŸeŽ¥ðv&Ü¿z~)ñÀÒH'Ó…çõyðˆIRšcìŽ-¥}É¿ò Ÿ4ˆøþ¬LKb°<¬Lß`üÉ–"é|Òò-tŽÍò'â‘!à× «†:0LtNÙ—dŽøøëBrv*)<ƒM,‘@{.⑯Eë(ÜdVyB h#Õ(Øö&ÒÃòM£”ºŒö%p‘õ¡WïÃ* C{d#ÙÄ& Áx˜D&‘‹Úá ¸/âÙ;¹² u$ÂtdÂèž‹³Ë  ðÙçEÉE„†µ¢."¼¬åš°²çX×ùNòÚ¶WlâêþkÈtQ–YߪÆÌõYthÀ>áuüX>Ë­u³^£ÆDò­¯ªù›­ùÔs‚…2÷ÒïÀÈ$!ìø¾Mœ žiÀQtĵøÆ‘¡$ŽðÑ«Ð`q– ¤žN|m‹£ÕÌØ"G"G&,Žàµd•»ÔÒS¤ VÄ©IŸšXaâ¡6«¬ËT e=g_³*rf)¢êÙˆâ6e¯ý¹§lJº”C”¾¸¿Ýõù?Òpc‚Š ©  {f ǹºaŸûÊÉ[¾ SÓñ}hêCª>}ˆ2Øœ«?Q+¸ÃKŸágòSèFpy`. óÞ\YP 8Ê£7æ)šæÉaˆ½iäy«]Írˆ¹äsÁTò‰d¨Ï­Ïç­‘ƒ¤Ff éô=wwXv!þDk®÷7_srõÌ»ìXO\u!ü;ŽAù³­:Ÿ]p9t´„Õv4F§ï‡Ÿ{ÑUE:š¿é¢[ûF2xr\·¼äÐ=rÎUwè[uéð\ËíuÕ×û›¯¾°å…pÂ8æÛO¸þ| 6Þ˜Ñê±VÕhÄþ“yÂ}•ób>)ð¤”#Òòà$QΉøæ"G¤æ80`¤Ç‹¨öáIËDΟ(úŒ~žàö}õepõû4ꃃ7;ÚŒ§tìáqºÜ‹2oRb‚ô"*G½¼ö%Åp棻A„úâß>Ñh6aï$ø üÙCtîdº£UÒ¹\ oÈ%½€IpaH߯"øœ}ýÉèÙæô°7`Žú³ôg4Šnï Ñš¨®HNíoÒk-g«p/S…5 óBÐhT縦ﰉ(1ª‘³ â!!üûýGƒÓgcç½L`01TR•{¿ÉÎG­XÑ)æe”VbïMFN4y‰„ÞB ûtøß˜¥ä¤¼ƒã1œA€0—Äl¿0,úËpôÙè}mݱØÓŸE·€Þƒ’" Þ¢D¬h7WusÓ¦q<B|Äm”{Ýôihp½)¨å±ÔG¥,½e´]ƒ%FµÉº^Úñw!ÖKÃj“߈øþò=+ûz&zcw¦¼pgÊ wæbŽÎ\ø:cúºCx6B nfÛ_ Åéð.‰ð©^ԘƼjޝa®¤+ 6],̦‹*ïð© Ì1x%9ÈùÔ›ƒO½§Á§ÞÂ|êíPùø„Q8Ðì×ñäwT$ñª˜oæóE.»Ú¼¬^4€ŽÑEH(šhvy—«ƒø¬™û˜rÑŸ"ÿv°^©™\¼z˜Û÷o‡wC¨Šíñ &~ ðWÿñ]rØ9ïævüÕ«* RP ÙÍmÿógj¨ïB댠O‰n—WÈ¢Û«àUïšáí¡€ô\«I…ÃÒ“bQ‰¦œ¤jE¡ì'p©:9ªA`êIûìC˜¥æ8¤^Ô[ìGó+ö>ùÉC… ¼‚_ŒìÅðmÑÎØ+Dš}šÂ ëUo¤XFÛ¬?Ò2OÃEzpÿ†Œ†£áÝÊfé?T½ŸoÇ£ Hÿ'>+÷§ƒ í˜Ûß hùG¼,È&Q‡§ Á;gíþÞ‹ª+; K좧EyJ¿§™êNQT«´»xÎBH¤”#vØÍ•6uu,Îhá1(#1c©]W鶈G–U(Rªç &Ù<ôóË©_þážçkÇä̾z< ÇÄuW .< T‡OÇ+DCŽ·ó‚¯Vò.mæAn%ù•ªf˜(‚Í3KµÓ€Ä\h“kæUk‰íúšÖ«U•Šš ‘ óHªÔ2IXÐ^$ðÀ줄žxò1®›PK…ݹ7Øtªù"œËÚ&âw’0ñ®+ ǃ‡oÑВ౿°&àAX[±¶d|ßÛ4ÀóÛòPæ8º†,äöõ6yh­A´vpÍœpÌ IúÿâzôÿÅbìèÿwžõÿëxÑœ°õÿÅ\T¯¾ëzÕÿ¨ýf?JõÖ1|\í–R ?³ ÀƒM¬ _€tÓP–Õú{Ъ²›pr®9 <`0ž¼@5G]XÈ@ó("Õhd‚¡Ã!]ÄáÍ-ÃÿxýPÇýdÌ.6w; |ôSîN8_ 8¡•ê)S£áÔ§"7^FŸå±Ä:8Qõáw™Þþ©—åÌGÈûþ·&mâ+Øð~šU”‹þ$þ,DRëŠeA9‰€1ñ6ì¸;Qt<˜°ÙϽÀbo£¯ jg†Û³/:¡ÍÇ t¸¬‡_aõŽ'…hðŸ‡!û4dË>Õx§×µø‡j¼£ÃðN2ŸéßÿKïþ_xô2Pæ#Æ&iÄ&'û×/à¢ý‘éf*Aù\êßNÇÂâÀï_@__˜“@-Uí_}1æÚíÓ‡{˜¥×ÜT!в Ê/ý×òƒ»lôKÿÓt| Çìó/PÃøƒ˜h¡5˸ÅÎd‘B$è¾Ø½¶*M˜U·ƒo\Wö ªˆþlrß6ÿŒ¶¢?kwø×?‹f¬÷ˆ&‹õB!Ò°+T=ïðQÔÈý±Éxå†78oÞÂP¿ÝåHKÐW“GÑt0ã¼/c“êj<ž\Gý.Ezr¡Éx\ŒÎªã+Á>ñEˇ–£‘K/¶í3Þ©d,p(šnÑ E…f—‹qÃ`DPoH²˜B„xtÅ8}7BHá*ÎÉ>¢_]ûÉ$öåa‚çêL{y³ÚVQ:Í.cíºLö®" u½aúz|ƒ· ”~nãïEù‡Zµªsô¢šÐ ‰+ΧA÷šý¬.ÜÏj¨Ÿ¼sz%f?ñ ”©Ÿn¸ì‘ýit=˜^M†ŸØ¶ÑÿÄŽ’Â%dÛÖí˜Ñ‹°ç h ¦qꎵᓎX¨pòÊ6A:?e§³¿0óY¯Áv峑…8â5hYì!1ÇŽƒìˆ¤WÃN„ ùn‡ìBñ­0[ñmTœß7ÕªWï²Íí ™­ø#óZ¬~jUå˜ÑS1È¥Y‰Éån»Ô®ª>KV!:éU+a¾–Êhž)ÕßÑoRƱeŒoËô¶Š¿Â¬6Ûj›=×nÑ&)E±è’D4Ó3VC“°tãßÁí(âÆÀõ8ÛBƒ³I:œ\Ç"4+BÙ¢MnacòÝ1”„…FÊ3|H3¦ Ôd_“¦Ìþ7ÁNZ¶¼BPÇá{ªÀ.3cç.Z½¢ð%g(|in HA‚‘ w¹Î8ÚžcŽ$;°\žÞO†ÐøN}ï ÑùZ×;žç§Ña²žyö?—dÚìBä”ÍoíÞ¥†^1n9ñÞäVÙz¨ì(zâ¿öží¿ëxѳí¿û9Ÿå·¿; áU‚…ï¥*Bì§´þ¦Øw;"uòãÍàÕÉAÉæ]‘Mȉ 3B¿Âå2ï«0]µ˜5 cÁò|oƒ4Ùe|ßÍGèì˜qa Ç…!a¢qKôgŽœ+‘0UncóŒœÍ?Ñ|…OÀì}~”ÏtµÂ0¤qùI†!ý춚ľýX Ng޾u2YEÙÎÂÝé,ÜîÝéféNWv§»pwº?.jl<™}ÃÜ[2 Š˜ðsÆ„­š ?AÄמñ•9|‹?Z€ùš‰ekeýL‘Xü‘¿•IËk^ÈKåOÁé©ó袊“ŸÝ:ô5o<7šK]¿\©PVê >êáö65°(¡ˆ/šÃ¦ ¢²%¯C¸Òóº’ð’[h‘U¦ªëC,B¥øiöHqǯP!ñFI¨ËéTs…P‰«u0êÁÚ|°¡¤¨©¦4…>Ocn¸”ÅÄ"˜?ä5Èa"lrœ‘9lñ Ä0gàeêD˜‹©BO‘ÂT¤m9¶êUdc¬3–&‡}áR¸õ©P¼”g=fQZMáh)_¨TY‹Y‚ÞQ(†¥Tk!lƒ DIAÍZS‰­: GÁ(©²&…ö uêæ™ìñ5û?©;¨ÿ½½›M×£ÿÝ-¾Ü³õ¿»Ïø_kyÑœ5ô¿õF·ƒú_¶dZ¸¿•Þ)Mpù—ÑGìÿw GÝKÄ<ãO”¬¦~¿ž Xé]Hg¼ò;]µ|Ä‚ŽÞå¤â8‹šX&‚¿ä*ãdM1L<ßQyÿž½Ç@LsB~¦ãÛ?D€Œ÷rËža£w7¾ÜZ±C+Ðà ˜Ö6E¿NmWyv¦DÕôÔ÷o¸tRåy+×¼ÿ•ÆõŸ ½ÞÖjêz[z½ó©‚޶¦¹ýéûvÃVý–ÞñZ3©?DÍË*åy~JBlkû7†rå…ææB*â–¿Ï-»Ïå9ûL5/«LÖúŒÂzkã}n©>eìsŽŽ§ªå³å/H\¤tpœ¶tE3s0!§NÂB˜IW¸LÃ$ƒ£€<´éRÜI@œ˜2á"{#­äF.Â̧øC)fð–OžþÑÇvwæv»oX:Çd¥#í×à$òư×Ù/¼½D×€2‘ÿ‘ƒù;ÔKÜSâ+S#-s¤` ³ûRž>ùÆ?yØÄìU«Ó^.¨¼Ì¬·LÔT¦©(-•gf £ø´ùî,Ü%áûÎ}Þ[¶çÓßé××O6ßùµfsé;•Rç¢!ô„~kϯB¿È‹KiQ#B6¯Vo.Ý`"^Q#ŒWD¥•r-ç±£“»ÿî=D¡Bß¼ßÑÇïD¼¼ƒï¹ø=ÒäÞÑ;Å£ÆQë¿Ù¤*)µÞð U¤r%šx-ŠñfDªsNq‡ZíÁV3ÁqW¿tÉ—¼n±?Ü+•ïÎAðEÓ€ä‚ éœeà½ÜÆØÎᢠé¯d ¾ á]ngàºÁYônÝhŽ•7ˆœ\‡'&Ã%V‚Ÿyøª†4Sõ-Y½†›=GõG|q‘ì¢NÝ»´hP0D|Ö¢Ve™¼ ­û-ZÁ†nð’wUž:¤Ô¶0S 'ŸˆLçˆkà>J=Þ¥øKe ȨdƒÛáOªd{¯ þï?“uéÿ_î8ú¿½â³þo/ZN†þï¼íÓÿ³}œËÉnéBé;K‚"éÃ)¬Tùï©\•¾Op*í/¨ükkoÂcvô15Ô‚á ºz™_ >œf«M1Þg˜79ƒ¨. %[“ÕŠ0Ÿ•Zñ¼ýŽ‡Ã 37¡É°/¸ÿ˜ Ò¡‚ÐÔi‘·—¥õ)¿A7Õó|[º¨žç»ù_ŸõOJÿ˜¦ê¡jM'´£Á¬?¼•”{' ç~À&ƒÙÃddâµ|ú.çQüo<ˆßÙF4gÍGÐγÝùÞµ¦¾OcûàS¿õˆS¿óþ}ûüÝÐpó£–àV³Ð`3)Ÿ/ίùVÅçDžÙw˜¬ÔâSK/®Ã ’J¥mGçù÷GRVà#ƒsŠWSNÀjT;eP-eª*iÉJÊ •ì©JjTŹ D„ozJ훥~Ý`íS©– ú\‘rýÙ5xWà ðÔ>{‘L >ocÍñêr=ÌcÐ<“Ù<ª­À `hóé÷q’Àÿü*¬º—1þîTÁïð¢Évɤ!g´Ùźr\mŸzY¿w²å,Üš ®† ç²üÊ}¸6éJ}°Æ¯MOŸˆ·²6kÇ;~äøMºÿ±fò°¹„ç.Ÿ¡€+eÞ¹Úßü3óå ߣ? wüƃhSÞœÑbSÜöã&Y£~Ÿ' Z}üu0¢Û1qŸu«X@XìйþÖªV޷оžðž=7ØáKìílË8uÿšÜÙþowöWÓ,$}ú[޾zßÝÙvJÍ£x®»c§ö Nñí¦6οæàƒ­µü&zKqbåÆPà2UÍëMc‚ «D‚ƒp ‰ÊBS Èi ššÛ-h%#MEW ÿ^9›Úç9>¬b6µPwÖ]Z³ Å];u‘4 ò A¿ÚIKäâþžÆ…/!ŸD£ñnjã-»ñnæ)¤«Iã[sT€Úga Ïÿäߦ!RBΙð~:E1š?ÚZA:µÏ²Ði|I~÷‡TÜtŒ]ð%el‡!ÝÄNEFÏ|Т²Ü1ØWF„RíÈVÐP‘…EÍ™€%Án(`xrˆ¼à>ù@S\ª¸k¾J‘¢€ }†FZ]`€Ô-)á1ŽºÉcÃÅ>¥ Š!2øöKæyÑÊ6/d&&2<«¶ý3þ9FæÕq޹Ñ*h–wv”3ÍŽbâì`tÒ‹ræÉá &‡¸ýf:ä¨;`@|Ãi^“>QæaDX ?ÏÈfYàÖݽ壤q;ã¦ËqÿÊ|Üã#㎠bZEbÙê¸Z:oAGéL¥ó¶ë[8ÙxKµo .U³•0o] Gf椨pv?‘³-‹³¢¬ßC ]ózHíÿ“ÿ¬Ïþ¿¿ëØÿ‹‡Ïöÿu¼h²öÿö9ØÿbÓy¶ÿÿ`û¿’‹$úáöÿïZ9´Ïíó@ÃP…€–ñ)wh³mX8üšïæ…Å5É`n½ã° ½§RÇ:?·«‚ÏêŸà­0Ÿõ?`õn>ªõß7K²Oqâqã)ûû1­ÿ\w÷lýLèy»²õ¿™`ýoy'ð±þgŸÀŽõ?`<}6ý?›þWcúoPo±ˆéßz{|‹)¾±œÅÿœ®¥+´ø7Ÿ-þÏÿg‹ÿœ¾)>[þWhùo°Z™,ÿ-=jË¿ÙØ¼–³ÝǶü³©¦ëe~"Ë?Ø0ª¬é5†7tc8ÂFIį$c8ŒÝ¶n=c^C3ð•¢MOKÙŒá ôK€ä™@U ÷„Dí 󹀩k.€ ýúÇšìÿÅ8Ž_>ÛÿЋfŠaÿïô|öÿ3sö'”kç<û0%梆ý¨Ñù9x]åõüÅýŽÎ9;T")åC‡Œy||j;ÛmÀ§¼£l§d¥ÇÔ¦äÀá ÜÁEg„sÝ¡VA0­Õ‚þ° ”ÿ@§wä÷`_Ë€m††Zü.¦¶HßȳÓ9Û ŽbŽ$ÐcG2ú¤˜o?;<š3 %°g>e|æWns…Ù¦×ÀͯP0l~]•}ÉB}­*¨YæÙ鄽Wo-’ǰ?ßWcV`ïÒ2Ì…‚ëÙ1LA"zæ8t׉¸XAÊ(¥ð¿ØÁŠ$ñ A|oâ{â[@¼ã'Ð[A¦'E|o+r9ŸÙG'Û—ÇEˆºè°2+ þ|+’ÄK‡Üë£tS7‘ §(óÓ:}z¶Ç)#ôNG”«ê¾?$7¹­ì]ÿßÿw=ìcÞ¯ %ëb|ü¨ˆÙ©® 'Îäá ’[ÝLÆwzyê#Ö'NXÁ–¸¶˜ÍE,½£Ø¸ö±›è°Ïûˇ¶-‡¶½‚¡mï`EîÐÖ<ŽâDè²îÉaˆ9S‡ús1\*;§—ÇAf/×ǃŸâ¶é—ÑÑÃuóàG¿m<úyÕrW¿££è" íàwó`Í÷l7§ÌÁ<%¼Ì!”ÙoøRNÁz=¸š ú ,¢ñäz0ù§sFÆ×[P‡Ôš âǰNÏ9é~\N:ߥ“ÌbHdúà„«§á7‚j0Ê_/œHp¨W…mzƒdÏJg=Ÿ@Çü^$x©DŦëLÒ”ÛŸÅG„å[œØºNþÙyä;°:sPLCƶsI‹–§tÚ'3 -žÒšª>]]竤–Åj~twÙ®ò,×h‡?ݪ#ÌÃ?dEì™x7:aÏ0ismI)C¯v>?Aý:¨¢j`?Ý®oP%1îBLvkMrªc-Ê·:.rŠgÊ®c³b4ì©ûè`ì%iQ °Úö©EëžØ1ur÷DAÃVéÍ[ód’Í%ŸuÉ„¿ˆ_%OµE¸<È@DX3ÊZ) Bç£Uù”#¶üŒýBËÏr(';¸Ë¯¼ÜòKóy;lOù=ØÍ£ì–ë¯nÌð×r†›³»Ìç²˜Ûæûmn¸8ÝâS›ýÁÖˆ ¯íé ͧLï¬w°Ì®ë­ÈÉ]^vrÏã3WÌT·†eßÓä|!?U¸­'}õôÔhè"Ñʯ_“çv hh­,¤ÐHu¢€;ùÜN‚ªÞÒ~á̶NCa&ëz…¹™ÜÒZY ¦‚Ëä…@–›ÉŽÐy*“ÏÕH¶bòÁ" _W¿GÓñ„]?›îÈT.ü‚Ks¿J_;FœåŒ„{{k¶ xm§YÝ9q,{ÆB¸=£HûX=sâ†ö&¨N}+}­¡ÎáO³²›º\ w™tlvO‘ ·ñ¼~-s³Iº¸y¾PÈÝ,ãs¹=¿žØ+äÿõåÓ¬¯ÿeïelûííî?û­ãEKW÷ÿ:.w‹1»×µêg¸œ2a|ÚQײ£B¤Ž[iŽ[?±ÇVå¸Ô.U ;ð$¬ïŒâ~]ËC¿ˆ¼ËUË«¸/–ᥠ+½ pZD¢{û=º‚Í|õÁbÃŽãép¦™÷Ø ÜI>-°ËDè"OŸý2˜ wv K®},bSlBì±;Vu}b#;¸.@ºUô|â¶óŽxžã(7¼acñvw3‚”Ñßïî 7…Bì·ýT,ìŠûÁÕðfxý{cR¯ùþd„mó¾°7pÆú³ôg4ŠnïÙfšgäøÊ©,Þ3dA^(ݯ æT&ýkÄôÔ[ªÝàsoQÏ;³ŒÑ·enïE_‡··Ñ'öÄtp éÕ@ÉÜ86»ý¾ÝB0•ªKŽÆ3(=ܰQ] ®w¼tÔ9V‹Ñau&HÇÎeSP¬~j;HýpÓ鿃ɸ ¦þõx0…æ¾°³«ÙÙYtÇv £?»=ûJrJNK™(Éýux=ûâñÅ ¶´êÙL }F}akƒYu#òØÚÅðA6Iu¶ B;KÚá„2é61ùÀ*aŽG{zk‘0cåÒb®ÂG0´Ú¸Ú}e•êÈEd[T·+`ä:uŒ'ÃÏC#‚Ð\oj3ùÞŸNÙò½‹Õ'ÕEŠ0ê²G­ÎœX²›Ä+þ%.½–œXRjôœi¿Œç_h¦Åziôcߨn{8§8 vfñÌÎBR,óy•3‡tS= gµXÍØâvìŽëÍÍöBíªjª°) É8˜”åŠö1‡W¼¨*ö6mQ—Ûƒ’òùÁìÊh¤i¬…ˆïn¶`†Ù}á›Ý–·)û:#éÛýŽ_×à-Ù׫¸fÕK1î v ¸xá9Èw{ýp5æ™´ù2¾½6ç5nøp^@8¢i!z?üƒÕè~L‘H<‹{&^ìPyg¢7íAQK`!À›f>_^GÙ=–šs:*áD»©ðNGVÏÙ×1÷b¿L¯&ÃO0”ŸØÁx‹éµðÐÅîaÂ&Û£Û!b$ÞâìÔR€¿úŒ‡L¢±£û XëôÀyB^2ôÄ㸹7ˆ€Nýì}­bRP?ûÀÖ§ß½ÎT’ï35ì'ìÿ û×w²äÀ½| ´ÂåIŽ:>ò;ŒYáv ¿œ2ÿÝJ÷çÁj iŨŸ×½ç¸Õ¦ŸÅxñTج?ž%œy„Îx4õñ²a)!“fÐ$3ìêÊE©-ä–„ÿˮȯ§ÒÓ¹˜iuáÐÝ;¡ÙÔÓâœfõí¼+Õ;ÕõÎfö+&†Ä°iÉ‚Ýö…·\]–3R§¹.ñ§Lߨêýtx‹žQyùY¹?è¾NñÝ ªN&ìÔ‡šñ©üæhLiÛcùI“íƒxH{öK:.sE~E*op ‡”lëÁI¡}ü 2?x«]wM_:]G2ìV4eçâþgºü÷gÊÚêø]¥ÐçŠ Y}- #jžûù´5g Ö5€‰hnÅÛ¬6SÏÛ<¹ý…®¢/±?Ú átw Èq¨‘49 0¥·Z`Ü9©,Ô¾XJÅpÃæ$ޤ/‘AÆ’Í{]‹ô÷yƒ‚ñÐâ6‚v°½í´‘•÷8„Ûúì'0B‚Õø½gÉgÀœUÜ×jç´U±}„D J,.П1éĈ ŸŽÕC@E§ê9€Ð¸þ`/)¦…F§¨h„r=ª>`M[ð\Ÿ"¤£®3Od!þ|à„v>GvhN|–˜–~8¸ƒA²#=¥y(ïpN–ŠDMÔ»;pò» œ™è$ÒÌ«–Âm:Í:µª:EEnælr㦯NÖ»„ëEGô¢Fp;ª|‚Ðp,ÍÄÒûG(áÅoÝ×Ç3cš¦óÍ+ßz¡š‹0oOžMFXæ[ÄðwÛòÌý*Á¸YT\µó‡ÈéÖTÛ”w·øŸb©DÞ³¥Ò}íƒuÙÿЇ»{û®ýïÿa-/Z†ý¯Šö¿Z÷c DŒ4–Ù¦²¦b@tK¦WøßÃ$È™Èy§ ƒÈ“§ed#”sí„áaõà*ÌcM„I¶˜1qi;" ë!ÿ\" ·!æ&ƒþí¦ieÐF >/­‰µÿ·ÂƒÍN FeƒË©†öôŸ*˜MZ9M½k@Ÿê*K¿~a]þ Do¨”yS4\A#Ñ/½_p}P€ é•Ð`9Và6A~Á™ú=õ…ØŽÈR1˜Í P»¢šZD턵¿ÁQŽ 5¦_Æ·× –üç±–Õsá3Ï@n°Wl´Õf6ÓÊ-¦·Üc-÷<-[5í%ׄÄô¼Ä¼c“ëˆþ',ÖÒ´óÏ"¨¢µŽYC;;;ǹÑvR¶Ðš:ÎýÍטxfãÕ€·ˆy² úW_ šhôõÖÄÍœ›á„Éòß„Ucíb q2¸ëG0ÑFÛê¨HMÑ^î·­øÍ¨ð›ŒZO0  |úp¸–Ù÷{²ü¢FMvÑý`l³ŒÙñÆB‹´hM»‰æ2Ç4Œ\§y&¤x=”ŠØkÐ/0Ò‰OžÉâµg’ð‰É³0Çl{ {ùdÜ"'¬˜gOŠçIQ]Ê“ö×tJ Ïî 7÷„æº=~Œ?“ðF £ò*Ա挆x®Ÿ±Ñìø+Ø¢.ÑuÁ8qïÇ9«ž—^ÖRÿ¡.4)o{AÞ%o&¬È ¼p†Û¨<úƒ_.hÃaRE¸xÆH¯Âç^²ãîtô”hƒn!ö8››!Þ Œ]{$CQf:Pc^ç›gÝjÞåR&ÁÝøN¸µ²Ù@çT×ubúðɸD*©8ž )ÓFŠç&` .±=c0¶âNÞöáš·GüŽØRð£Çþ‡ †Ö˜lº?L¦rwf÷§«‡[¿ÂWqºE™åõ›1–ÖýËKç¿t2ƒ2i>ÿ¤bþo顤*QW{·_BCÎkýþ¥/8 U.›§‚?Ø9¤3¯Ç–…w»??&Ñê=¢$žÑIå¬^ ßöÙ‡ð˜„|£‚LíuJ½Ä U«wÊäs™z$¤ãj›~ ¤ö;…‡”0i.šb½@¿Û²~€¯•‚€g¤‚ôபsKú\=;S¼ ×Ñy㬽Ãß¿ïîì¥x/€4Ôq¬«­î™·ŒAw ~]J®š¼wý¾ªŽïF2&UÅÁðÿòS+½]4¥ßýÞðò–»˜šéô:TISwª0p»T/µŽªBZ“ Êtr52A“Ñ/HdAFi­¹Bp)öûEÒ,ä&¤Ó¸O¡H: mǾŽ%ù é>-‘å8äN>Û“Cù]°ylΧbp>Õ|âšçm@R_j>Yƒô6$s&ŽQåÌÙIŸ8ö%ŽrÓõƒƒF’'ÞžíX# ^à,´æYï|ÕÅD ÏÀîžèyJkÛÉ7·NÚØ”l„7‘ïq÷H €Œóßç+9_¾ðd£™wµ‚¯ÚW†üSmò1gçHò†ñN z9 ÑÄÅ`q»Ð5 Úèë¨ !*éÀ–XµéEu$‡/ÉÙÑöL£e ±;“…Ébsñd9x uO|”èíœd˜}[±£&_ËÌ?­VãõU–ùJ&š}† ¦œ}Rf˜†ÉÓM•aºhMôò0U¸›Û&ào±+ŽoçL”œ‘te×"CxO Ï3xl« +„=ˆ©ÊÑÐó]€‘ÛäÈ}ö.fºÿk¨×‘gEÒ-’ˆ©ºAü«Tâå–ì š W¶Iï7é=µI_Ð]sODìÔ]t°g´#tdã²Fr#7ÁM8qŠDžìÈêkëî³2ƒjOωÊ]Ô •¯ÒÀ&Q Õ@¢o±¢©žDûYœƒ¦ŒÄX8^x°\DÓ(Ã-È3Š^I{Þø’žÆPoä?ˆë3?ÅÉØI}öq_‹»ÿf)[YÂÞ¿f‚wÄÐ%qÙ)¾+®Ò%> {Å[#$ö»ÈWŸ]äÿ~¯$ÿÿâzð¿Ù?×ÿ÷Ùÿ/Zí¶ÿÑõÿo$‡„O)½Âs@( ñ·Žà …ù¶ °õíèQGû޼˜Ñù*º|‹Ž•«›åúr¶äñdöe (ªý[å €Ó¢Ãð%cŠ P´¨ø ?Áµ;¸’(% ñ6=ZàŸÑW¨€¬%{È€M·¬"Cܾ²¨—éP|±sl›Íå}‚|Ó+Ðý·7.x黬¸o±}-í8ýußÂŒ>íKù´o$yi/îmûCÛ®lsûeÛ.¾éŽÙsÕ%[/LË Køj/ë£]\ÈG;‘´F2iÞ,¯‰äéUJ§O8—ÿ%œÊ{*¼Í½Ì£Õ»™KjÕÍ<±ëÂÿüñýÎÉé鈞H@u^Væ—>ü<‚Ycù ‡ÕçqŸÚ Íì~®FG¯"àÐw0—ÞÿzóH›ÞÜc¶ /t"ÂIzÍÎÑOÈ9:‘?Âk:ƒ§´ªçƒp“6jo˜5 §êLr6[Üçúïêj ò jðïµ³~¸'6$Í ÛðÁ^½Ï5wŸžÃãZ•X2,x.à?°¥Ÿ€GX6š­8̼ÕÀIœž³æ{},ïæ†¯ëOäºÒ#:Ð6Ò<rô52Ê. †(Li©>±in°ô­ãåªBh×1Y,ë¦öÜÈ—9dÿ ¢2šù¦|ۊღ³gæóÃì}2Išc0•¶Å Å”{@C›ºó…áU+BØëäD$= Ùß'ÿ°*<9ÑÝd(mŸò‰Ó“#©™§9®‘k-÷³õ@ïqŸÚ¢AR{És<Ô˜˜Ò,ºýк}!ëo•×ï-P4 ÅùPûÌIÞ(؃öhø}Gômh|+ómhHK¹[炾 ‰¾ j} ? înŒi7QÛµ!¤„¹<áÜ)Æ0´wë";´gÏFþç—xíÿ¿LÖbÿßÿ'ŽãÝöm|° öÿý—Ïøky‘ 0ìÿ§—ÓagØF—r´³_Mö5MÕv›ÝUNÅ©©‹7ȯ_!ÎÊ•ë%„ºf—¤+4eŽøé+W¨¡N¨¢¾ o‡ Ìý7%2ö~2þÌ.[øA}ðÇà– ¸òmº#½>L†³«”Ý{ãÝíÒÃg6”ÛñëW/ÅI¸=¼úÒŸ\GÇýÑÔoþèzØš¨z`Ç÷zÿÓT<{2˜ î¾GGQe2þo]*ìØ*°‡9,ñv¬€‰‰XÀ”›½\ü†=†Dxàòô†°YÂhnáx@ 7Æûß(äS”‚fÛž}-Ã₤è,™:2²»ã²¦n±FZÆWÊ?cvið±“ÛS«‚=¿m7·ñ#v–ûü…õJõÚޗ่Ϝ­¼øŠñמõŒ«[EÆg÷óãõξ´Ï ÑÏ ÑÏ ÑO$ºõ í‰n™,NÊ;›kâFô¸8ц7¤v8û F't5ÑÙ×yª¾±ióÞÓq×9†>q´çg¬çg¬çy±ž­%šZÞõþd±ž Q_÷:dÜ“é‹Ù³0Àb~E^9ÑÑ>Ÿ(9¡¢gøäèïŸìiï¸T—Ô |/ëe”â3 s s þÅ„É\/µÂ|Ÿ’¹[m°G0³ËÞ7äGg]‘û9#n³¬µÀK'ô)³ƒs鑚+gøKæ½oô(ñ=ý,&Í/ö Ï0ðîÁp¦g*ÂDòãPÙ¼Æ5¸rMB Á`8>£>ÛcðWE}v3vƒmã/…ø ò$Óžú&!‹ãyqžçÌÿ¾~祃ü ÏË!'°¶B„ôÌ'òË-«TœÄA…BãÓ åh‚²“}—kKr‹üEÞ( Î<òC*î¿ÓÑW‡ôÂÅ"\Eb]RšY´y.2"£ÌÂ:¤± ÁGÜAó½Ò+‘Wêä|7q¯÷Lþ<Ùi¤åÉË7Cæƒ ùйÙzQqñ´ÎxZæänSÿ|äòwò®D«ÃzÈñ²Ô[ÉùßS•¸‚ʶÅÉæ˜±Âjë»êàŠ"<„ñ¬ÌÎmŸÆ£k:–Ä/rÍ<›º::_OZÐô­Ø5!Æñãoî5Bx<¹Å²ªÑFýûû[c>ŠíC˜½ÁÍ-Fr JШ4Ç®PbGÑ7öOæLTF!ÞP1n›anfC`2üüe&•  2~Ž `à X7ÿ€:Ü~ªM±é3ŠLZ§õ¸Ÿ jˆaêÿ>qU‚\3£9“ÔcÁ˜ð¼‘ FA`DΘ®¹¢ë¾?™ñË­^Ëv….b„á ¿6Û/Œxmë‰:)¾”'vXg,åóÝ('•¼¸¹‰7döÍq”“@³x56Ëpo„1’Ü{ãž}P–€s_2g¹æa5qºÉ÷„]¨û#Pû4õ…/Ý;²oWý)àAôØ ¹fWÏÙ—)Ü{n®#{}{_eWÆ÷‘U.À >XÖ`-vsñ?Ù:{£_l æÀ‡¹²«8[ÂÅí#dên%æÀPN±rJ1¢Ø.v\5Š G™h}=ƒ*8,Òó»ÔŠÎëݪÇ÷t‡4Ôd¤ã½¶Ð|Kvp´Ëp›CW2¶#ZtÕ°ºTôŽéxD$uŸOyèz6t…áÜI¿"ÒñH<­§ÖëŽIå¯ÓI‚^‡æ‚6%äMU×gm“t²ùÊ0jñ¯ÜÈÚ†Ÿ ½F€rf‘”ÐŒÁ‰ ˜ºýë-0“ýll Ô¦Ó‹…˜›!Š8år‚¯Ú ‹ÞÂA¤! @ €zv?›²gžvºíìjxBdûVÁMð (ƒ->ï!dHBÓƒ Ç’Ïà¢=Êä¶ñx”crÿáv¶i–+¾ 7Á×¹çY[Ö™[Ϲ!‡ŽÜL*à!{E±xýãý 4x,f†Î¼Ÿ¾ãH¬ØA6aNqÏÙÓúÖéÅVz²ÅždG§œêÔÔPeÍ‚g3žýA>Bn• q£×1êâ¤Z*/C/ 0Æ­?[WtÌ@™åàµ!vôMn,» ¦_·Ž|ßá“€ñ“_Ä —ªhý–Ц ‚F4Às}gâÛáÍCà×áì‹8¡Šœ—+˜—J{8ÒgH hDó€ý'ôE>ÛÝ(˜ȱ,‹±Ì4„ew»îõ—/ÅÜtSÞƒÕ@È0¨—¾Âh¾-3šÙ]Ë. êr\Ú¤¨qxdëÍ º+y^^ÏËiÄeü¾Ãñé€õž›ùÔã’Ÿš!i "£š±•z©Ûè@Ž˜†‚?ÄE “ïÎŒyáa ;À¼‰„%òæáËëü E¨ím´=$óÞ ÷û\/Áæ &ãê¹Ïžˆ©Œ?òèF²%¡ )™Óû*(áÎ`¢óv§u>6H7 ?ka5a%.DGµÒ{G9X”O,&õÛNš—ž>,‚AX _Òy6ÈKh5»s-|°Ìí}:X 98‡t‰Mx°C¥;TŒTÒ¥»ðaBÝ6ú©WFÁLÔñüPÿ¾œe"Hëì!ÞDíõ¯l¸Ëäü.1fÇ2áöò‰§=«Cö:0Gá YOÈSÜ ™À–½4¶— ¿F`I˜I£ î°coNvt}v§qBŸ÷ÓúÜyÔ>ïÏ;Zá)ÐÊ:CR'AËunõóAëo%±þ9ÇØ:ëŽ}bgSGÿ1:{8gg»mg5 ™KqÞ˜F?|âj`êŒÁƺ½ý·²Cù­âôdžtž²7‚¬ázãž`º Ú¨Š§¨¸Î7P¬Ezæ‚ÈÏ'jêYxDhˆì‹Ëz¨$´‹•›qßꦬ3ŠIsö©3ØÀ/ ¬©®¶¦l¶—|ûäËy×K`cðpš;´ýœœ~•Êér˜Ó°‘É™í°<€Š”êØ¯7 7¤S#F4ÐT^My7ŽÐÙk+À¢Œ7Òl˜ŒXö9Î ìÿ?»Û_ÿÿÞþá®ãÿ¿»ÿìÿ¿ŽMÓÿ¿ÛØçà±$Î~ññ+›íNí=HàF ~µÙÚ?J0³tÛµR“I’ÚQ­Ó• (?kè¸Çš†LZ³=ï=±e©ÆS)£\H#Éœ—+Ó#úýk­¡{Ø»ŸMé?:e&˜Î¦ÿyôBy¦Œ¾~^}AçuÊIðˆ\C5$¤Ìã‹ÎE„18ó”ºS«Mä*††£Ù€»œ1‘ðXæ·žq IØx¸§¸“Dƒ!{Ç-à‘˜j„ULXrªG3=;0æØåàFß7uw?<7÷¯®í ˜ãÞ1ÒEV¬¨Àr‚zq´w8è s3¼½•ÞVNFnå CþÓ9GÀdáìC»œ§P³<Þ¿€7Ö/Ð#á°7r9ÄØ¢'°Ö&¡JÞ¹ËÝ}л ã»á ô>¼¿°vxøôkŸ1ƒ %û®1ð;WÊÕ '›è¦º‘ƒ#ÍíÚæÎ&“oÖÀítlUB©i!Øú^„Kà`ÐXÀèX>€è|ÍzO-§=p€ ¢Ð“­™Üút¸IëkðÞë«ð’ëè„M$v'ÿt;¾úÝzvï r²‰1Ú×ל‘ýè÷­8ú†?õXˆ@)­?VW€˜XFøýþCñ_wÜZ1ƒ?#N >^dÓÜîgä,A—4·"Dià ¾ù bckѨbÇÊß}5M‡S Õg« Û|³è÷·ÍmöûW„…‚òÚôÜÁ<7ý_"öT4=N©³ŸÄ1嬶'Î>K&vvv ÑïæWôßð üÛ|êP« ö>ñ’žè³ÿÿ·ÈŸìÿoîw6šo=¿¢ÇãíkøQÌ_‹Ê·±HþÚWè5+d #ˆøš‚ o³u"¶\Vc¶l¬R(Ö®ÙN†ŸÈÏ÷Ð(Çvy²¨ílÎå*ælz¤TÀf¶&›þÍ3isÜ( g¸!C¯Æ„…€ ·D»·˜?œÕ1g³(Ó´fùqÆÊîøÆZT\¨{ä{¹çenïÖ@ãòy4œ=\¢Ø’p<9å›UPAø4SO†SIîaúпe‡ØGƒÏ}Œ› Ø^Ågífêu{Ze¥Êä‚^ ¶"ÆÖGB‹ö|Ø×æÃôŽõN:¦tõ±…Ž¢9‘”^žìb_„ë;?H$2AŠ7¸Ø›çÑ}Ïú6âÅÐ0ãxÓ¹á΀ «ÅOcª‹Rb Il$.2åÏš¢\c²H/ çè±'€ŠÜSL4ÂÉc}ŽàÒJl÷ì³#òE³öî¬ÝÈÁù(Ž\ÿŒ¥·cOñ½´â€³ /|m³JĤr÷ׇ\´îà|ÊøwªŠ­ÀW ¯ÇôÌåݘz Ò9wÇH›Gq¬å¿°³´òË¥£ÊUdÉPîÜK;üàÛŒ=Âæ6u~ûaÏüpô@k`Ú¿3Vé5<üç2Ô3ÔòoømŸÝ+¾w<ߥ¸ë!­ýYÄQ·ì Œ,ÀA%8ˆ®™4÷…yöø‹ºÏÿ㾸øaÔÞ`O#] |+dãZ\”“rÂóGæMÿSgk÷i@Cð Gì*{RaÿŽ(çú)û¿\}Ï~Vá¬zZ—ZmŸr±ƒÂ¬Äqsú9{Zé°³¢t\õ5ƒgI¡vý•©|A<—@OfhÌg»—ãR¹S ÍÕËVNrz’óÆÙÑ"™Îy{I¹ÈyG²fç5Õ}Pùhú0Mòj<™ ®f$ñŒ¶ñ9MYUï[ðP32©«ï>P½ÙÒ²p PØàAÍPÖØú^‰ÔË4Rn-¯Û¦+wø3Œô÷Õ}Ÿ¡Ö‹ÓŒ0¸¤ä9L‡«èpŒÓB“ÏãõÕy¾ŽžÚXŒñ$ÚÆRêǢĩ‰}­6}U»Éé ˜0ë¡y²³×û³¨{"Љ§=öï€ý{ç‡]øQ„ûðãp×#èbx²¸Ë˜¯sZWhgeáÛêSH@ŸöœAð¯[{ŠÄ!)=¡“ÔååBæ>½|Ã÷ã,Ïcó[Úò|¹J¿~µñV`.ÜísB‡or^‡¦`;P{Öpe.yÊçb¦Ñu‚ŸlÅd[\¸‚æ<¹ß¨w½ö¸˜ r‹ñ\{Þ‡r†a{SŒ]Ÿ ¢ãÂ,»7ΜP j;`»3$¬/eý¤*á U')u­M<08íÈï°%ÇWWöµvÕïB¿^€ÌfÃÏ# €ÇþžÂ5D¿¬¨òÚ­Åð‘b+Ÿêõ9’±þ$sQTá2î6„pëVL¯ Ï-/¦Ãž>‚ãïtA¢7¾Ç­ ÏF×xIáQLâœ3‡É#ïrF õà~ˆµ¹cÌɲ¤œ—“¯=/œb Û½= éBì.ä iLEÚÒ¶`Fºgx“/Ú{ö ] è•Âçú;oá¤Çk] ïÝ+uçð^K<]ãäí”.t06RØ uÄ|@'ýU†‘¶ÞÒÀ¿óÍpdyX‘yho - a|©Ð!°•¶‰i'ç@ÌYÑÆ/¡OÔ\>¼ÿ¼öôuÏ»ïeuí6öÿÒN¢AÿÏ«Ù`=øÏ»{‡{‡¶ÿçÁîî³ÿç:^4³·ÆwÍJ·vÖdK€ ¶ýZˆŽ~2 fWáÏä㯙½¡ßÜ+}ÊÏl”Uy ùF¿¾8B—%´ŒM\‡,Ã9n°ÄK_l‡¸'-Qd­$0Z É=6É<9ÐakZRHþʉ‘•CK éÛÌ¡ªµß³Þ ÿH=OÍõ„54Ñü"£Ê{x–ˆnà ;£½XÒ(\'“œ åc’eÄ* @%Á‘¾4:›lçme«÷z0ß,röšÙ訶žõ›“ê ç1úzåÇÉYÈôUª5JÂàM"ôÂvkÏdì:‚XœŠ÷Ãå°ƒNØ¿²ã?;åêÉ?,[Šº6À³"QdÒÇGÚÇž³²Ö$t*ÇCÌ ÇX%Ý?¨ˆmüu éè/‚X²QÉM"UÁù©”ýÎH¤dˆK£ÑÌaýÂë‘ÖP>Ñd‘5Zõ’/¨Úͼ¤bËO°Q¹,¥ñÉž‘¥ÇÊxÚ*×|ÚL8ÿM¿­ëü;ñ?ñÞóùo/škÉ翎P–¢rµë‰ÝùÉŽZ_2ž»pt»áÛ“j(ƒ¯€b ü§‡áíl{8’e8º‘JÜ{ÄÂùàÿJ¼®1ì °Kõç}8‰rÚ lÚXØ‚}ë9—qí=•ñoÓdò¬<‚%Ô4çL¾Ø¨VÆwwl†&Å«½aÀ~ÿ®û¿U¿è€c‰§-ÞõÍUÖ8kêUAgHzNÐ(¢JÖÀ;_úšNÿv}4Uo§Ô«zÏtª{×q]s@ßkÚæQw ÎNÐ)§s©ÜÑŽ(êQ¼+N²Ev´"¦øš}×ñ5É;°¨Ú:…&tÕÛf˜þpO¦,ÚU«É´žZjÆc‚Ã9Æ+!"i–*}j›`2åG·¼ÖÝ´‚/h#ô”ÎzÒë\> ½bðü¹—Ösþ;|ɾ³ÏÅçóßZ^4øïNµË®SLn·ÞFéÄ7‰ÊïxN² ûÿ]‚òQ!:z‡0”²N¿ÚüWµsQïþ\GIφ©¥h£~q¶yö¬`¤¶ç¨AÜÉìl[eç")%][é](y[x´Êïôož{üˆÿ®¼Ë¥”?zg¤+¯S~x„AÊ‹QëZaÊáÐOAÛ ŠmH'u¥þ0ßþÇX-ÉÀ-:tFñ9›ô­ž"xøùýdÌ wQŽÕ™%UÛ£$´i­ RÀÈo­”5>¬ åÂTHòò¡cñA¦Sh)>˜éÇÃÔæ¾V¯n¦R´WD¬p¾4Eõs0„7‘ ý÷i©: Su4U-A•LÝ’k•Ô^ãªk¦Á„L(!ÚæË‹ŽYL!^4e ²u@a²**ÒHÀÝÌm¿ÁÛæû¾bMàù¢?+æ@3èånƒ‹Àh<¹cgôü7¶ƒ\E›/èƒÒf_næ«­Ž·tQ•.cékYºl•^•B;u¤ÚSÉb½wã¹Ó2ÀŽ+s/žnwן‚=%£Ae|ÿÝ»¹,!„ßÑÇïôµ"Ù!?9²ŠU¨ØG![Cœ[ñįVt«uErb~ƵŠTΠDO¾1~õ Ú#¬²#|äè™Q½ÃN0ÆR¶ú‘ãô·ôs·¤Ÿÿ^ , ¿Æ/ÑN5¥CM!ú†ŸË(bC‡J-ó;]@!Cè(Â|#-S©–+´@`A¿SvO 8–lÔâ=ç Š·Cùy5l|ÔÍñéæ6Êòë©N±ŸpQc= „˜¾aûÒ0£Ìc«ž”Úßx؈è ü`e.–­Û)UC/“ pËujùV´Ì»¼š–/FZ‡© Ùö]d´QlÚ)•]T(+ (+rg#Tp4¥ df#ë49eí¶‘³ÖŽœU*§S"uÊVêôæ;déݹ°³ÑÊM¼Û>®F+=fA±Åõž±1Á˜ðµ˜D¨y7fržÉ¨„6b ßY#õzŽI†-džĉ¾"yXb O}êà-:h縎õj¦°¼\Ó¤{³ÀŸø§\†Í ¥ 2''£j2þjT!{hô¥ “™“l¬tè9$#¶9 ñPäÍD¿“³étÌFo‡nàã{‚Òúxø» UdñÓšƒ—ê ÛFWV²u¬–$ÐÄnEŸ'ý»h:øŒ;ºPàúF·iR¶ïß,(ŽïçJ‘TZEàÚ*žä`ßèÖ«%†ðáˆc$ζ_Î5xx81œøÁ|B4| Hˆ€m€==P$Â#@ƒÕ[£ŒBoyrü»˜ g~[ÜõÆ®EIKOî«]zöVò$–ë™ë=´ä>yœZd±•(+/: îÓx6cS–ÿZ‹Î·<Ò¢Ët´yª‹.Û‚;Qp*'lÞžº+G¾Ö³àB{'7ƒ¤*à1s›¦©i"p&âõàŠ £‰f'”뀋™ÍèM1Q0ùžs.òïJÙÎüJ>„Z‰Y+9‚)‰6óW1ô>Š/žyt5Ákœ¸)ó·#„Œ*ømè[¶.!éÄ™ã$ “ú9~?šÚ²çr‡Ê#Ù°ÞÖg ¹ç^Ú‰óøàZ—­©«ß‹ïÇLãû}Gå©ÿˆèÊ &_'ÃÙl0¡4÷×M-‹È1ÿ˜mÌ?.<æw¨übc¾ £Å‚™¾ù—såøNrxH‹bYIK¯ùîŒýÏÇì'ìÏPý€“ Õ°÷§ì}=L>ç²'á—ßÒ2Bo¡ð $ò^…¥h•³qÃ]ÄÈ4Úl;«§‘œX%3ö¦(öfSurÊ&gvR*Ÿ&>îd‹åÉnY¹¤T·NšaØÀ#2Ø“ DKb •Mwá,²¨oÜæ)ùXRÙó‡áÕï<Ò¢&yö+) 'ã˜àTXhaL"±ðÑceǶÌ*ÁŒ |Úøà(ÏÂŒd[\à Ê¤²A2þ½o„O/­ÙcÅvއZÂÜfåoác¸…n ý ï`OQI&”¿SXå» ´õÖF¥_è„]Á7 á„z˦ðây¡îûSØ™üùüEºÇD€>çUD&}3é˜MNã0²YGÃèÂ0Š íEÒ½†Ð<(Ío͇H¯¬¼ ˆ=)ÞU_zñ"êH fihÎÓ;x¬˜Úšå”í´^ƒ‰qúqAæì¥RýÑàŽõÂÆÙ­HLǽÙ·Ÿ‘É¿^x— ý¹9ìqVç•¿sd’#yÔ“žýÊMY÷Ž/0KØ`B÷ŽwiR¨K"é´"ÔRæºQ›G¬ M}5ù1^´d™6gñÄ`&ˆ…ƒ.÷ñ8˜*u ”H† ½õ-e%5TgÛ¤8ó¡ŠDÚjâly°¨mñ«¼[JH¿·"íièRMÏTJ/ï|¡öODû'fûâI¿è  ¤JoÅβ8-åôÒü̳ÖÍ<éw9ßÈÕáò2ãd‘8ù8ÇtÑ_8NBÄáÄ8Ñ)3èfBáN§aÌ«SçpçOiÄM(9™ŽXÄßX©&MI¨k“%á2€LKä%ȈØ;oëRßi}A(°¨è$@U©ìÜ:õNäǯæÄæø±Þ–‘ƒqñaâ2žsDk´˜½BõÄY[UwŽ °€$s{ûˆ’7N=dG~†¯N@ÆÅ¬r*SL \Œ×ôÿû<Û×ÿÇØèâíŇÏþëxÑt3üÿÞwwc™ÿUú6ô,çä½ú+ü`°„¸°Ÿ!èïn| ºøë¨ôðôêñë×/ Q? ¾*õbÔ@´ëkžWT™Çx-ZRŸÇq2Ô2ÈRÄ!ð¾±|°¡ò^Æù…‚õ0ÃHN˜¿æ¨óø*ÂÔŒ®¾ { ¦Ëñ´©shŒä”vì-DqýE2OR ?x™Ÿ–ñyúTwe$OÄè>fì8) Êð…ú˜HùÀÆn†£ál€á ¿"^{ÛëÅ5°O´ä¨ðÔ™J‘®LóZÈ ‰—¸Eœ X)­¨î£ÿ'vc›÷ùÏè;ÈþYú3úó×?£Qôp{/tñ Šž ÊXEÆ öœ Êœ†” V5„œsj(œl¿*vJ'Ö•òÿCÑmÿîÓu3_Îÿ×|¦ˆÏ”ͧ¬g€å|ÉyFó3U!j~wÓN÷Ò€K©^5Iõýò£¿q±ÁÈ¿HðuC7öLÝqÊÑÜ/H‰¡²FÔéÜñ·:âÎ ¤´ƒoç‹cÜÎñdiònõ/µÕ+ ME^h!¨ñ¢!¨ÙºàÈ*h¼Â8S +ÖâIµN𠽂}Î锆| pçqÞzÂú§Îýº‚ÎýºC5¹³ÃR‚";%fèÓ|ñ Í¼(ž#ˆ³9ggœÄI¾G{û¸h@öÐçdO+Ù_˜U%HÊÎßõdé«ÔKÍ÷~ÚÙ!åšM ê•'J÷üZ×+¨ÿÈÕ5á?¿<(‚þÿðåáÁ^qï%á?ÇÏúÿu¼h­'à?wêÕJ‘Ï3kíW¯·7ø4yÄ€"›AõëŸñÌzfès†ÜnæÔø&åç@ͦ‘œ£R9>Ýe.ÖLå}5-ᶃÁõ¼‚=§‚ËL);¸ÒAbúF/:z¥ûã$&ãÛiôeüÕÐF`$¿BdFHëNµ~Öê½£/F& Ñ-²ä~ˆçèv€®Ÿ} …ƒ(RsN)6Z­€2^DcžŒ9Zì¡ÛôéÙM¬°}=PÙÊxD_¢«ïWÛô‰‰?ø<†JÙ—ÒeœÀŒÙLôÉò´»§8hcvz_kOl ŽjìlD£2€e…ÄæsŽ÷›aÚÙSjô6ü¡ÍK¸­Ïƒ’ë ~ó‰©u­‡‰M %úU[Aè¦OÁ4­”}c=\ ˆ\´_’ó$M‰¾5Éã×mžF–39 ¯q¼&ý ÛƒûoòEÁYãžpj³¦µYó¤\‚F ÷ûÄñ>9ž$É5«rå=âU"Î%¡³<4‘á,<ÿÍfÅuù°—‹ÿT|>ÿ­ãEóÃðÿèv‹1^šOË%H™\‚ h=‚ÁNop½(®aíôõù˜è™ó;¾¬ÃEIx\”ª–ë……÷œÀÖŽ¨£SMñÒ¸ÈÕ¦cFæ£0̆h>Ÿ‹·ÑEÔ‰.òºE>ºôGàÃ0úíá3ÛT0^,0 žÂ`?„‹v/7ŠŽ,ï$àBŽ€q´Þîn‚å\V‰@U«ö`¼¹ÃÎk_Ç‚£ K:[D®‹Ä6ï¦æà`87¨"E*Rƒ"òùÌŽíëÓá¦yÒÍ ñ¶AÇk>œ×ã"D|a`ÀÝLB€Gðr+@oø:¼†/ÃÚßÙ¡ØBØ„Ç.à G“N1Þ&:ºÃ üªåÊ鵌!Ë¢ªÁ˜\Û–NéÈär‚ Ôì­"í¹‡ÑMÿ =.6u‡ «?²±¿æ7Éð2„V³ºíZ_Ç77Ûó“«×w/ƒ\?¥@%,”!Å·ç₉ç #˜+Ø<~eaQ(öèî–ÛcEÕSƒÙgCgUã… Ï™scS=%ç.ovµÜÏÔ®ª¦iÌ÷X$-u.Íøœ×‡@¯GÃ7„!Ð+ðŒÆ…¨;ƒ7Ç…ÏE…Kv og†Y;µÝFún\MÍã»q±Cå!×\Љ"_||/  ›kb¤³ˆHñ*w0Û±‹éµhºœ«‡ ›N3&o‡wíìøÛœ ðWÿñðQ0nnÇ_Ù¨6D ·_áÂ-|iŸ€¶ãÙ—C½N¬â¾:"zv°Íwuvd„ïÿRnïÉÍã¸Ú¦ŸEl¥Sõé‘–Q¯”‹E-ô [ZD2ä7éãñPr8àj¢cE/àƒÂ†\wBéôoØñm8Þ=ÜmÈEayª´&ƒ«!È*ÝWåhLH±æ½ràdÿtc²ÎÆÛ`F~# èìl4:{“0½ùº£_®Óƒð5Ñú,B¶(áÿtB"ÊËŒ¥ûc mäsÑ %l“áÚf„,ù&ÆÃÕÎxX„5Q®ZúVÿ^PO)niMÒ³GüÙ-ìÍUdÕ‹€)®4ÒPÅtZaÃ’}Q¶ôĶ›ªm Ú K¯¸ÙtðÆ'yì¤Võ6Õid·;ÔÁÜT) 1Ò ƒÑÓ%šÐï»;1×Äãî\üc®“UÔè’ A΋À çOmžŽxÝ ,óüŸß– ËvÚ1ØA~XŒ%¸‡€ÉÛÙ€žÒü \Ç'³55Qïz17M8/ËTÓRäBéâôÄCÒvŒÎÇùìÚó tÌeÇX•Éb[…àÕ ln<ŠuÂGë³Mº$ …Ô¢ZÛtyåÊf[é)´çRcN>ª[JÕ›ª~e€(ú”Ñ,¦aË»:Õ3ÛšÓl(*5ƒ @VØÜ6½pMm­Ÿ¦Þ5ÜfÀÀp‘/áåÊR“º±†¢ßôõ¥[®ÌÛRq úÈhq€ÿñÁ-'.Í.Ч^;xoVwšúLvª_[ÈNQÛ–PÖg­Á½/ðo#Œ·[u¬Æª@iÓú´ ÅMÊÚjfå5ÔFwŽ,ogì]Ønߨú¯jߎ­æ¶Iý ŠüÛ_§gŒT[v[Z~Ó‚OË®›s:usŽŒÁn<š9§ñˆæœFÀœÓX™9§!Í n šsòasN¦IÓXÜœÓ0Í9>yD“êÄ\ƒüí¶8Ìc³i86›†1ü›„i³id·ÙŸm6‰WÈþó0Zþçþá¾kÿÙ¶ÿ¬ãEkX·ÿ\4ÿ³}ö¡rVrÐŒù¨gý¨ý\æ*'1"|Q%;fwƒKZ‰²àr.ñã/L:³/ý™®×£0@3CZĪWjöÒ­løßFp›Ê kÇßjFŒ¤j«o8g°½A!Ô“p%l ßä6%• ¡‹¾Å;5ÝÝ~/ðîÉ€ub´y:on†WCLz)[ ¢p–H‘<žÈ– ª£:$'fí¶H¦|uËu[Õ1G¯ÉŒ EB÷«/°Øî…£ÞŽ˜Ö2m¬º;àõ?¡|óïhTÐ5µëèù ý—ñ(Úâ̧ÛrT¬[¼-SWðù±2'ã¯S*Ã>8ý2~¸…ô4£Í<—mo<™}£¾{8ûÎør¡sŽíM.³ P˜¨Íª€SÀšµJT‚%tZ4ª‰FõUº3—©PÕ¥‘ã©n>'ÿT<èÊQžð‘ ðưð9 Ã,&+Î@c¸Õö6k¼ÄäM¨SÎÜeL 7R $n¤T´Ïi€Ç…]@¨èÓ(}V&O"‡›Þ!§'Ûš¹­»?ºðM¯E-(eÛÈ7mIÌläìc½¬!ï¢O´µày³³J¯!'Øàæy£N±¡Üßq7ål³ÐXܲvvø ÉC1VL "auFÇm´•륎^ËÕøZ`U’œ¶ÌF—Ýý‹‰ï,ûAdN[ßF5eÝ~«†'Ã=1ÌžÓ[·]jv.§7nfÐ{…´Vd5ð°FâLõìd³J,ŸÃi@®ö ç0ô™² @OÔÇ Z]P,ð*Ê—i(šå%5.DK(âè²»ÓÙ7´É}óy*;q«dŽL–Æ‘–+®æ†úTò25¨¡KTÏW¬ç…®ÍÐââj³†>BY ð t£Æ¿€/u®#3)åVô·†À0‰“ìúh¡Ì®¸ùê™<5€E¡´ôÝCŒVfÐ "¹opI&ñh‚` ]ÚùC¨ –—ý#îU6K[kFB6Ç nºS|“ 0Íxà½AžŠ/2x!„©m·x¢÷ÌÆ³ÕêÈñ¿^ðõ+4¥jH™Ô}˜ñpúñdi²%©¿¹R8¸€#Jâ%Oï[(ª&² kÝlQÂÞqN߯6¯ÈŸ·Ê—oSP;»zÞJ‡©??·iƒÁx¡rš6®ÝJ Ú ñMAH[¨Ö°pF¦m*Üé†w¤çPÏÍßÐý€µÒ7ýY´‰CxR È&²™ éL¼_tP÷|ƒº?ç 6ÝAÍ€¤„ú°¿¬µ#Iÿ¿·ýÿèüŸã?~Ì‹fµ­ÿßcK§Â$ìç=4œª¼¿{¦- pžˆ"3öC¦}ÿMyT£cŸÄ•Êw¡däÊ Î(aÜ ß=ˆKë6ôrDçâö‚=T„÷'ì:~š†¢R]à`ô@¹ÂÆëᇨ߸OX±ûñ5f¶wzß'G]¶6j|¦äðI²&±®êÕGEèOú|ƒu¡?¨ý Ôp‡U©1§M}|#'ÉŸQ/ßÛç±ÑèQÈFÁlv<Ñ‹lä{ÉE*<¦o'À+•:™S ÙŒ)öÔ$ì"7D¿”|þøÃ/õp2À©¤7Ò8Ê]}ac9‚ªÐ}bEÜöÛ= X|í<Ôác†Û³/@+Œ´l¢ÒšØÜSúŸë%ªþ…îŸßôS2eÕ·5½ÿœd0Îdrà“ÒLxUSœ÷„…k@åü…Iafåü…jÊMõ"¤ÏQ$»Ý]±â‚Q; û¹µÓ[°½•ô¡—­½Ä>d0lÔtZg^+°¥” ÂÍ[r­ZU‘a$ŠR›xå×*ñõ:‘Æ”ÞEß0M|ó‚­h"LÞþõ–µó/2C°í©Ñ†ˆeM=7ÃÉt& =ZóÖ¸ †Í×OßáŒÁˆµŒ=ŠíødlsÔ²q%¦=æb3yOˬ_½9˜Öó0m:¸bÛ`:×zȵ^®õ×z’k½…¹Ös¹ÖÓ¸ÖKåZÏõŸÛæ%viïÒ¸óéÁª¶®é#»`ýöÈÚ¥fÂf)hãÆÙ;Üy<Òk±cj‚!5xê4z÷o©Ÿ+6‚=ºÌ îqïsÅÒÔà>wÂævã2L$ä¯j„¾>t èz;½Õº|¤WJRÉiá7ÜÂEÕ$Dß<2Î×¼v3T:¢Ëj»\/ykLA#oŒ 4 —¡2G ‚Ûe*Ê&cªk(ϤCè»õr•p¹X+g·-¿´Í"ì{Фo»ñ¼Û±M;Ô»(zQ èè%س 4“Ÿß·Ÿ?¥çц&Ôp’ÀÇ/^Ï]dÇ®0¥a_±:P_`mÐŽ­…‘EcѦ×'(y™’žAIoJzÙ)yœ(ìЂ{R€Š–OŽÍP<€³-y›ëŸäs\ékÔ/ÖP l»˜p5b·â‡Û™å„ïF³5.8{0œ­§½iòL Š1–º¹Á}ô®¨¿d´=bpü–D¸ÔÂÁ2–Å‘m#02åªÏÙ‹íìc¦BÛÖîQ=|Êmq†2`ºèô7¡ í¦ùè ËJ\Ðé8‰6·Aa$¿´žAøëE¤‡É8c‚)×p·4´ ‹6wEßh³g6¤*Ú§ÖÔÌE+‘¡oH×Âô¥°?ÇR°R Ê_¬>ð¸ A´"‚xŸq!ÌMäB Á ò";‘ ao‘…p‚­ÒB8-dq\z!hz›¤µP¡ÇxvÈ^âr°waE­uRCò\dǨÝJ^Dz0^‚Ýtï/k7ý«¼ößëO×k‹ÿ:ˆ÷÷lûoñå³ýw-/!›¥ý÷¨|„‚†â¾NT–ÞsøÍ~°ØR•Õàç_/ ÌúwĹ@}FFhÑ^Ggåz5jµ«•Z§†9ÞæŽöòÔQÊQ£h™Ø~°ÕÍqj’AÏsDîBæ]šìþƒ÷’ÉÃâEŸ£ÁD!D•¢›Éøñ¼?)H=FQN sÖj™ýkm(“äy”»Å#8ëßF›„ÕÚ ÷}ø¾e?áЦvL¨@Zm Dô¦Ÿl$²®PgR¸–HII?®ȇWj4M{@´–w5.üº´©¼¹D_0ÿ%#èIŒ½J‚Z>SBRÎW ¤ªm »ùéQj½ œÝ-Ð@É"Lˆ¤“÷åùª‰ Ö~íO@#L˜oï«åöÑ?©µpýÔëѦ(†xýû-7£D·ã¯¬ïö÷ÿ²BÀÛY)KB Ó%Ë@ÒÜy[²†Ê >ƒRÉcPµ5RpyÂTÊ2R‚˜J;T“Ät¾ùç!ò¥ Ðâ¶x‡Î…WŽ€^ƒ)sdßÏWÐ÷óªÉíûÑü}÷*ð€Ü³T.Em‚rN”yóÕÅ›÷$,š>°é9V¸×0h1äÂóðÉ[YY†à‰½¨»Àbû g黈g1q½À"ú–›B­®!S°R9ä”H0‘f`JcKCã3ÃÔìÒ6õjÛ|ñ-Oß7öÕÚÙ €•Ís^šÓÊvd›Íl&K8̲ x»$YÍá[ŠÀÓ#ê¡©<']5ý´’deiì¼GŒ+§Q“}Ác‰Œª£Äà“ˆ+©p6àÕ±äIåâ‰è0¢V\$õ§ììÞØˆ&Vö`z¦Ãë°¹zí¤eŽhV¸%ýo¤qç'’²<‘ôXÔ2Žgíº d’FëÕÑ Wm/½= 3«ì 7fŽ'×N8¤¦¸r{,oŸW[¶ªÍd;)§ÚËÒøQÎBuŠñ£¼C5¹ö³Ê"äWRÉgëK#½f}ÚÄ)/{VYAÏ*;T“Û3;¢2SÏ.Xy¿UÔcÌZE\ä¢ •Y¬Q‹Ø¢–6+1Cý„v¨#TY¡(Z©á·²<£ÖbŒ ˜2Aó‰` áÆŽ×:Š1âñ4™nôƒ¾Î$©¡PK/TNÓ eÕÔÈ\z…þ3QHC3—ª,6rm¸\AO¥Ü,‡Õ*âÌìIèR^“Ò¤¼€Ò¤¬)MhVeÒ˜”Õ˜ð6T³åtu‰Ÿ.iQ@WRVéeÍÄÞFÙÔ!¢­ 2äigJIºÿ¯ ÿkïp÷À½ÿï>ßÿ×ñ¢™ißÿ÷rÑE«~&]ÀÉå[ˆdvtè¡tï/éýíA‘f„[§*ß=ðùî­Ä禔~åO}¡0…ÛÆxâ³Û«zÞF•âÂrò°ž©Ã3u«¢¹BbЙÝwÜ›ªÝçkû‡ލ{TY™»$ìœ^µü¶=©Ü¡4+öy2èÏp4ú# €2ÚPôŠb½qð±`òÊîzËJP˜Œ]åÈhM¾ÅMSqnÄ>œßµX¯†q W Îaé^,*;ëuˆ êËég|Ì 8_8¾ÆŒ*ˆùR¾õ¸ºáÜYÅì1Eë”$=4Î$=²ºMYïe ò¯ØÊ€"z5(jÖ"ÞÞ=Ÿ·wó½d7o!÷•›wonÞ½îrJ³b~….ÜÆþ–âÂýwU%»p—uá^øèH>JSº…ubÿèˆðÌR«Ð¹­HÙ†xJ?Nã–ÃT™k(Å»[(‰\ïî÷U•ìxïnŽºDw³ w)ƒÿî|ݦk¶ým$¬Mî¹Õ!Ï­žá¹•Å;IØÔéøå3|³Q Ï--KoØÇÔÈ¿‹.ÔeÝ~ØâOo×h䢦wèˆ|â䡦—˜&¨§,k¹×Í|ïv*wý@ôO­ÙS“ë?A•Úœ×ý|AãsÃW|Á¹šÅ#üçš«˜‹'m®9ÎéÍÕegêO0O“|áówNp…W.ê¾9ša‚„©æžšÆü ÎÓ”y9Ǥœk\(;ÀW:È`©#‹"1‰Œ‰#†0Á£6ñX\v=j³zÈþ,Æžùs†§ “u1º4âa-ç<-&„¦ž±Æ×O˜@¹hÎ˧§Üæ““ÿÙ†‰5ДJè…[n¸eaV+s»Z˜S†ÇnÅx×Êççd¢É˜[Ї‹UóìUªe6NÓd€?®f}®ºýij¨\p“07 €MtÓ¿š':òT àŸúS€})G­|T঱|t7èSöny-ød 9'\!ËøOŠ«þ(êßNLj.ÿu2d8FÐðó…Ÿgôu8ûƒëï@üúW€?D;T*Y§bm`ëøà”­Ø+P_ӓ؃ï÷ƒ‚tInj]«Ù R„@7ˆY3ŽcJÙûÉøÓíàNodü»ßÞ":/|éš.è[$”açÖç"ÓpKû¼©=_Ö>¨"ìkñ§8Û­±žXÜ“]>Øl%Ò´ú%èÑ*–‹!OÖŸ ¡ ˆ.”éÏÒŸ”lèà©8p/Y¤’=ñ|ƒ打ôtF¹=õ +Üên𧌤G¹}zê#ÕT|”°^J"hÒ~À— éL #ö Œýôìæ”_Û©ÝŽ?A¯Lª~!Åâ7$<£Mœ»ÃñÍo˜"i§Û¾¨î ‰RN[h"úå·_dbsâT&&Do¿ÞÔímPc¥ÛÄâSV÷EµüNkgË’ãÏAÂþÌŽd?|1¼f-2©üRr¾ÙÖ9\tÇâö;åèb+ ô¿eп]†¨ÜA¸‰_®nÙá‘M›ë_D͘ôÞRÕʦ<µcý‡¬þä6c"€q“†Dw·³áý-Ÿhó6ÛDF ƆÉ`úe|{Í™ð2k £k_XÉ+ì&ï·`ÁŠ»è@Ì&:jè)hŽ¢/Œïd0ø,Ô9"k“©ÎòõȽ^1‰I3$D©¬)Q³£â*)M˜hKÉV’œ6¯™xq1c I/f¥­LôÆg‡è2ÏY‡ææÜv\ˆ7i‰ÆûñBk(>ÈZEB_’¼{è\=G´·­€/"j…Ìê0¢ ðP¦×çazœýÁó$rŽN‡ÿ¥ z˜Rp â‡ߓ˶+Ø âœi'0£§T3½OÞ9:õ[,ð¹`½Žy_±Ds%‚DƒªhCW=J[ÜЧJ7EsxKšct¥GÓŽÞl@È•ˆåzY?÷k³äüq<\ õ J#~¨á“Nštâsé†{à|ꛩȄÿÞŽÁÓļ~trÊÎHéâÃæ3³v"›•œz%YY©UÕ(]²ê· g<\ir©ÄüP·”ëkô4d✮¢´åOv=¸ ;²‡b:°÷ìô @ùÔbKÈI³Š!Hx¶±R+K7ã7Ô(:ß•êÆk„ø£‚:í€*®Oô„q}÷L#»MK’„Ͼ7âj’ z×lF}×®A6,øXŸt¨x`þ-p\ÖZçó‰5=½cÛ¼8DêiVÕ\Â3²gt¢œòAá,å] S55ÂÆ–íã‡Ï_ ŒÏ¡à¡Z‰î¯ûþþ/Ž=r±|ÿ+Øÿ>õûï–"EØW ŠX ¸¦1àÚD&üyp¸Q;ü3/¢ßÐV øÁ¼Ãà7—çïÈ 3çv†žì‡O¾¬ÜS'-w 0ž‘…ÍÈIÒ]YºSÕü »ÙOÜì@Uñµ)p€ŽÎN±šíÕ¼4×ËΘÑ)˜£×Ÿ !€¢CUpÉù0”Åü§ø+Ò«æÏʨþ¾ sº›ÅŠÍü6˜Y¤ àJU¨ ~UQ°¬´Ÿb4)ƒØ…&x¬û¤™\áÃÚR LJ^7ë)B4J0Hhü8,D{ù×Â¥ß[ ¦ +VÌÇð,•Þ3þä$×[ ÔÂ$ݾ(µ/þ×ßî& +¼ËšñÍ‹”ðÖÊ—ÁÕïd9õ£J`ÎÏvL Ë!y‡RY­Ýݳ;yŸ º¥~ üa”ìin%TŸ6›Î§ ·@*‹†Í· 뽉‡¦ÒH>𪳎f :ñž˜ñ^ˆˆ'¾àIk æJòѼ¨ 6µú¹  ÕßL©ŸaÕßÐ IÎÓf‹ÚŒ}8sZe‡Õ§Tý®â¥¯«;f«g‘¾Ïœz{Ê?ö³lt´èCÅ MBd$ޱ‘ZH5Osr[L™‹ˆ0ôxÑóxÓlïÙ«’IÚ÷¶Q>à4‚;tr#‡N¡v]¯ì"õ£vÂpùë°”ÙP¬˜‡¹±å†0Ë¢NÇêGçé ¾vKµRKyP?ª¤—r:ÇQ/ÑÈAEQ;B¼6iˆ‚ÕÉA1c· bxÆÈÃ&Kc´%핹hƒì‰…h›G”Èç’òÅeÊTÇ—Sõ\ÂÒ<Ó> Ù„á cv•KÚðΧE5vú7˜>|$6d—à,(cñÇK£×®,\½Ÿo1 2/?+÷§U¿ªÊªêâ.ÀoŸo¹»¾Ù”ßñöé;|£ Lëãñ=ª±ÈÕ­‘£RAøuˆ u Jª’’‚vJúö,ˆâÖ6.´$Øñ!mÄaŸhú¿Â³¼ˆL$ŒVõ%Á%C44׸ ]ÍPãø`—_1ü{{²oPâÓcf,#n8ÚàéOyª&ûèòþ,êbsfÝu±áìŠ}Ri:ÑÚ§öƒMõ`Þ!‰Ïùf5µ@×!ÉJî #Üî§}!¢¾â ÛõW`ÊÅ|À#ÀÃ(å6²vKÐæYwGP‰M—ÅŠËû»v-bŠÒï-7©õ9¬Sº' ûö·@"¿]Q7²JÂDÈÛ: LýKé—ß·ìæ0¾—¥¡õ©EèˆÎÏØâ3`—ýðÛ8Bå ûS:F³›"úg‹ùUéϲÏDxƒóüžpsˆßîÇ#îýfۑ醀OïË?û“áì ë» E‘ lÊ}}aãe¹µÈ?¹÷ÉíøslóÐ~š^ìá/ƒÉÝÑ;b²ÏiÖ©çeä}Z}5×Ó¯ýO çTwÆâqŸv9¶{ËÛ:~çY/¯=“¾Æ×婱蜧p¦½ŠñTp~€ÛQ‘‹ö™l;`ÿØÎ±É•ªÆH›ˆÂø""W—Ò¸YͼäÍ’sPT–ãûf6éÍÒ´#ÇӪᲒFÉ^ÑRãå¨dΩ׺OË×{nOŽÚèY~ŒèÑìÀÞ^ä`!²ãeV#û`‰‘j$Œ” 3±"i¹ƒÂg %CÔ\a͇"µ]ëJòx×€ ÈköŠ67Þ ê†4¦5ôrKÝB|£Oƒ˜N5[½"_†žE¾ô«›7‰¬ç¨wÿܵdžc¨ FÑЛÅxb—¿Ä5þd›Ý„7 Rp²uZ÷v'Šžâôb+ÞªmŸøå¬¤Á©\²VŸ"$,k_+áEQŒ.âÈ$‡Ž¶nk¾ó2\Ÿ8dúØsäÌ‚€x ‡}ˆtB8róR•€òH&W!*Äþ ac:Lâ¢pcDgø>õ˜K‚º¢¯>õý/¹Å^í²þò/(ÕE²„ ý§}zq•FÑ9:G!¿Pï‚;KüFXÐwÙÀô/EoÞj‰‘½ŽE£¼rQ…9¸Õz í%jy í…h ô.Ë9¤@®<4õгèÉÄ+¦¯BâÓ8uC)¸"¡ý—­´ ÅzÉdL¢Qª¨ž°©ÉQLo«=þ:•ð„bQÎÝÐ^¸!-•©OxY½ËÔÚ~´é“yÛ uÐìš§Ld¼Üo›Ñ¿¥[ZH}깸˜áî-­½ü-úÃ%«+®¢;ËAäQ`O]a›ojX¥Ë \ˆÜ`Ïn‚Θ‡%ÉÔì‚îÝ1UX/±ÿ•,Ý8*—7B{¥PéÓo~”^!ñü*Ú¤Åv*Î!ɲ™½ÀHçA’x‹ZÔUÈÖÇ*õ­O=FØÎÃÝ]¢îäRÑšÈ-²&\†h²HkаÑõŽéK $ááqo":ÜopÕà÷ž·°…°wØ/¢×—ìÏûÐ`>5å³Ñ©ü“³V{'í·9«Š½ÿ~]€àÏMœ8`ŠØF„Uí«÷±Vjqÿ†ÀM›Äýëß G?(RÄ"°\râí&Ôõ>ÞÝÙÓ–¾@sä±åÿ£þäR|%¾’ð¯×ÿï_ìÿOÌN­ì[6ýÿqïÿq-/š¶6þãQÿÑÄ|L»‡Z˜â#Î/¶ÉtØúº„Ï“œ ?¢_5ÜGL=?/(Y¶CMâ fD~|ZIÉÒ‰+çÄJ ô±›:J&ä#oîÉ@=Ö$$âRh¼#›F9ζ9À;±HºVÔ³®¥×Ò3Z‹´N¡çÊeZùÚSѯê6Ö—„y]Á±tšž-×émŠ• BŽÞWáFO(S ¿•®úf¾íÝîõDdP……1IéæûFÆÄФ@\F »Eáe©w:vZC—«²é—½MêÈ 2 .6w £j`UÚ9è‰E"[»§¼/·exÊÔ׬àj ‚¦">áúPù:¸%DW9>ôZˆFËGó¶Pšd+'$j‘ŒèOyv£d6ÂHAÆB€€ˆ/“ÁS–L5E ŸR`_çEcVV€–ub‘äÎf„BµkˆI]ó›°?‰½Ž…†‡ƒ=Ñó@›«ñ‚Я l‚¡¢\ ‘géÅRE /æ˜^.?)^T}„Ñ) j5ìfå@Š@=Ñ&$¾r盌é¹ÖFoƒàbDz,šEÃÏCw%,^SÀA1ÿ VÈ=6DîÝßß~—ò¿ÅüÌm7ÿ/k°¶3`ón ²B/e[L4øßobê!|0oñaê;¶4ÔÀÿ¡í«œ1c[½‰þo´³I—‘<;WMó¸µ(ðŽ\S\6†Sº{òü˜+ óÑ›]FÔðiÓ†tê=·«Â¦ÛøW³`c{*>Nª­×cw/VbòuÈŽ¨ÔZ¿Ú$ôdºPlo¿"ÌŸ}ór% !½üt0“ËüáQgÚ¥š¶Þ»þw DÞ£5d`T$x‡ˆ&¼ ò? Š:·4^KÝAÑûU…ÍyÀA8ë󀬇ÖmxuÜŽí‡¢ÌøêA™YÝUÿ?Upÿ—;jv á&b8רүDäððõ?v§ ¬zbYÏ $Þ²ÖåÎA;%¾5ÁŸ¥ž•+…¹ÂQÈ+a¨ù¦±¯Í3ÿ óA¦8O¬&+S^¦.¤tXy¦<ËÂ9Ì€5Nàà6V¹ö¹ðÊb³œÈÙMÖâE‘+¦Ë'¡3» •em®ŠãÄñÆV ÇaÄõ•s<œ@Á\÷ó1}%©þzÌŽwƒÜ.ki¼F‹!\ »ÎòBáâØA~%q½ =ÊòîZ½lå¨ê<ÙÉr`  À HsD'°®M«y2Ïñªs´@ú·%õQFKy­nð4y!´cq¾Ø°¿ `ª‹u·€ ’î«ÃŸ#ÛºNAÃs`2eO¢ÊdbZ#>yš’l#q=E‘É‹)šˆÂh2¬µ¡ŽØ’þƒУ`ëé` ¡zÙþh¼>ˆÔ7?)¶¨Ëp¬j’zta3xo<“isäï塯‘~4ëY¡èlõßùFvÎÔK]»<¾%õR7Ä1#‡RR %±LRWÅI”Î×’EI-sí/™KÉ;·/¦~ɦ6‚Y×ÀHót†G³ 6_:1ûiÄŸû8j¡T z¨ïàñ*/’0˜1¥“ˆ=îñ)°$zöD§6È·#̳kôŸ+pé}ëI¬$_9Ãîejµ;Î…÷p2_=uÂñ±‡/‡»ã"Û‘¬è%-™‘ƒþø•ó"Á˜`\/ü›ᳬöÎÅ;°WÓ [Dz÷®¬™ø;‹ÿ4©'#KHÀÇMä/WÖ{¯¹ÎÅâ$À4f9­}£øg$· Ê€@—áØ9wãk´ͱî³.›]ñ?"׊\i‹æé¯r|ùÉËëG^,xLÚO8&Ù[ž{ä9füËâŽè;L>&]¸%^&—èÙ+uªÚ³æ~¬SRøÃ–ÑK?Y™Çª}çèaæpÔ÷$s§ÕZN9鈶myÎoÆŽx1ßÁJ4w˜Òœy‚ã¿zsžâDc/= *qj¾ÒƼŸt‚ÍDšò‡aŽÆ£íáÈ̦ˆŸ>ÚÛÖ ä½ÂUÇãkžO¹¦YšùÙ' SâðÏ-í@n0ÆlÒ¿ð­ 1sŽºTªe¯#•¶ ¼^5¸l2Ô+,™^¿!µ*ŒßӘƎÃ;E¬1ÄøB1zŽj\L¶ “#nÐá“hsòhQ¤Ä‹ÐÔF÷3Ý}šÒ Ü%Á÷8¬Ö`<¢çõf¡½—Í{®Y¢»X\±¤Üi®¹æ¾ƒ}ãï²éÌØJ@Ì š–ºÆvÿ4_ï!Õènú”Îa_Ù‡£Ùð`'¦W²ïNŠãÏç0–x›ìÀîèr7ãÝw‚wˆ!™†IŒ#šHõÇ9˜ºõÓÃòzßÙ¡eGÐ.Üý¢%ö;9{S®ºc†Vv^a¶»¯G#b¦~0*Á#›uOƪ¸*r³d´xG!ë99J?*ûêÌpZŽ’ÌMíÖ¬ÎÌÙ”1B•òq¾Ss$–[º"+g´"žÑòuV\ÌpT#µž¿|Šj‹á/·ŸvrËgÔŠíºZ1 Œ´Æ±Hýd"M‚fÌÎÄ-tbçOÄgP­N'd E\ì‡oèG••i➨Âí))ÎŽ*B mÔTMJS&ï nAG€Pß®(³}òéŽ* `}þKèÌâƒ5)ÍhI®PiFÝŸOa¦-—¦¶\䯓?–¿ÿkå/¡3‹“îÎѪ”fñÁRZ³x~ýWü`ñšµRñZÕRqP/¯F1µ´f*NPM<’j*q}Í«›²+‹“cM9îT‚x|õÔáÏ¡žŠ-õT¼ zÊ ñ Lû°~ª:Â̈<°½­A–ð²¿mFÿ–(ЦüiÂ+¬þÚ7×´€u˜–6¸©¡ËÀJ„µF‘:þÅ– (^ÿÆÎxD·fc·œ9‹Z77E ¥Ð(½;k7JpÇ‹oáèuP¦ö7BSÂÛ"¾…ì(o-ÿ}&r÷áÛ Xˆ¨Í‰"›P×û8†ÙЙO5JÔ¼‰(¼gC‚ýâ9‰8dï°?^D¯/ÙŸ »m|@PLã”ÓÞ£Gÿ[ ˆE¨W¶„Á774ö±1ûÇÿx^·ýûþÕïÛ{;ÅÀóZóý‹jíý‹ë«/¿ú}çÆWdî×.{îïãï—‡‡ø{·Hïá«øåáÿĻїñ~|À>g?öþ'Ú]Ië)¯‡éŒí(Ñÿ°ù9íß§¡çØc7«aÇ“zÑìè\”ÛlýÕØ^…s˜]­š¨Älv~jc;@½Ô*UNy¾¢ž,[8¨ïí@¶ÖmŠ;þ±+´;S¶Î ê³ ;h³}d4ìGåÁä÷Á-ä_†œeL†Õg×Å­9þc€8ÄL¨Ê¥/QU²¼DKÙ $þl=LÀ{þ4_‰øÜÜK§ 56ÀOlÍ|íO®­žoZi„ÙÒÇDQ^};¸™ñ p:¾ˆ„ÖãÉ硺ëC_ûSVºŸŒ¯Áûé;kò¶¶¡©„—$ÚDöâ@ú®ÉÁ¨ÓEð´„6Ä>–Ú¡jþ-“VeÄíUJxú;¼Yíz{=³¤~$vA/:nCŠ c7þ›T‡ö;Änøö~ÀM” '…èp4a²Ã'a:«­»v"ú^§ôŽ®uøî2HS¤Ø:D‹I ª" ÈL¶µV°Iÿ ÃÎôÌê ]Åþ‚t]”+ ‰UA¢2>Îg©óŸÐÙvÏŠÆgM+ò•Mí]›µ©Ìf‹—VU0i4y È6yä01yÝU@dCqL'ë|´Ùsø¸&ØgzçŠ[ž7›!¼þz —œ£¸¸³'‡ÀßÖËhSÎÃüÿÙû÷î4veq]¯O¡“±ÇÏà`Bóòcm¯1À&1Æ`'Ógœs±Û63¼yÌ$ûæ~÷[I-u«›c'™ËŒÄ@#•JR©ªT*Uñ«Aÿ[ÿÓ J¥ƒóÖ F7c•«Ë©›å­UUkEÙZ5±µ»þ_h…T} º™®µ pFâôÅjÉH ÅmN}+¤m ~'z£V;³ñ d £5ÎojOµ“b¯~¼pGúòzÎWÒþø<ûÿíb±Ùÿ—«/ûÿçxñZ ïÿ[ÿñûÿ–¹ÿoE÷ÿ¸Gß×)w&>Ü”Gö”ìg:Æ$@PlŠ™¹( ØÔ ÷²w_ÓÞ½–¼w¯­sïþzm›÷wͦVØ[§ô9´•ëªU'íñU˜;s¯Ï[}<éá ÿãwû¥¤!­eؽÂxæDwûÁt5üƒOÉ⻩M5e `Ög! T'í#eþINþ‚åÖe1p%æù-z®aEˆn»Nãÿvâ2:,gWHaMÐn+ËjË\ ÔZÇå¿’ý –Î~B­¤°¥Dá­b3ÉܰuÁˆCëWO™m¤°ú˜Ø¥™Â±T<«y‚ ·8MˆÈŸvòˆ=Á¹Y¾Éðþ=Ôä öäÖÊî`^Í´ÄV`Vß5Íò5gõC·°U YìC4Ö9ºj¢gë z4QMÑ›˜®À·,ØV_lkÉ’ÆšÒ£5ÛOd¬i=—±æ¹m5ObªáÆ€à),|ñu2•=½¥ÆÐ…¢Öš”v¡ÔÆšÀ,T^É,”®¡R`*­dZÊ(Ôz1 ý¬W‚ýÇ¿zûW®V‹QûOåÅþó/^v!ûOã #ýú`»ØíQÅßÔäH É=Jc/â•ú:=©q íIdüÙÂüZ×ìßOÒ{Dí 3 ¨ß­v‘vžÝ?ø½}Áïzœ¤³ñéÀL™|Øëtÿhåð¡ïí¿«P›Í‘ÀxžWý)%’ºóõìMæeó¾ÞÞ‰¾¸|ÃLê>©Àóý Úƒ„bû9tHù/!œ{¼òòWB‰²©ÃA\§þħ2ôAÀ÷ùpFA=ûARn9¶yBòš)ÜA*;$ÈÁ[JŸÏßÑw"v0¢ädÊGË)ºú]¡œQ'‚!+L~6/Ä)+T 5¿N³™?B,¥–Åå€>RX狼6´…iɶ¸©!@|\Ï1•7R…fŸ"^pH4œ£ÛºNC¬A Ðæˆý€®ãð÷Gj€%‚´åz1¾öoÙ5D{ÕŸ±fíÈä…0¶hפi Äá<ù50×i¶dXk·U¦ÏíÊG«~KÎw}ÌË߉-Kvp,ÙÁ±dǼ\âÍjÇ´x¨ q‡cÉ5Z²–l Å ÄjÉ–[²å–\¨- °-1ls¹{¦@®¿˜F›Ä³`6lJt;ÝŽl­#±ê0ÐøV;ÝŽD—v—²‹ÒÀÒn€¡]“_Ú„+mJ’‡zÂ¥p ¨JI~ÑêMÆ]ÇD²cÔX‡eØIã€ÒP÷Jž|/Ê÷’|/Ë÷JÒe?,P•·åûŽ|ßý©îa 쪫¦Êl¨_BæÏ3Ãç*Æåб;› F3qПоO:¦&vv“wƒ;;"KËWGRIØçë !ŒR/Øæ²˜‰$…H%™dÁ´¼È k-‰®ÌÛÆÞò3[ ”áh0£Ùƒâjí€}»î<]@¡Ghù‘¢›¬‚jU„º‘Œ@8ÅX¬-'!·é(èQ1£›f»Š{²÷=z î;„{BÓ‹p/e4“n¢A 1xã³O=ÛÔ™\u¦œÑH Îv ¡á=ÜxäèŒ ïQ•z”€Ð¢U2Zj .ßYE°{DÖDZÀ=±éE¸W3Zœ+-¤-ßÕwÃt,;àš’@ìÊëðèV™º•€Õ¢nmg¤ˆVúDN ù@{st‹DºÇ0û¦~*F~2$qÛ¨O4©†EW>-iú5EúêãVbrˆïö¢qÛÉH=''•2¥Bå´öë7Ô‹bÆ Z8nª¾=BªjôéºÇ­ÈãßíEã¶›Ñê³RîÛÁöÞÃL ­‰xľšvãÎ[<‹ayþZ‰Á×J¦¼Vüøµbc¯åê¯Ã(S—,ÙhsÝ mì4ôɘ-w_`B¥ªBØ…ÍàáûŠœbf0’Ÿ=y”¤ŽWðÆà;IËúÞ/ ç&ÚP÷ ‹üûq»GwwÍa¬Ù »½í˜ö`Jž¤½jL{0ÏO3 gƒDaOÒÁrL{ï`ÉÝ`)®ƒíšÑ`ÉÙ"‚´ãƒó„æŠqÍ5ÚOÑœC/°ÚŸdú º½7|˜VJûÙ§ðÚp‰î «6Y÷® “^¸=4ñeÔÝ` j2ÑÕ_ÞÙ=ìѯ2,˜™š‘Ò“1ìRïæép‹¶©zƒÇ%ÁL­Í¶a@ñFjeÞ&àÜ“suü!Åñ÷ý«;4ZëµÈÀ65«N¥«ù*c×íßào»ùûÁhp?¿ÚÔf…ù²0&/ë˜ócÿSæZºÚiÙüƀͱÐÒÛ|zcìäãÑÆÁ&ÿùÏqþW,oW+Ûÿð<¯P_½Jáåþ÷3¾˜®Î:§GÚ “[#õùÞúOøÞ÷Góþä;ðm§8UkÈå†-bâ“ØO Ã%rY,\µœ±…d€y>D N?ôgwS ³;Xêçý‰/Ï#g"cqÒFîŒÁeu´E²„Šý®s˜£ÄHïðï]·ñ¡Ãœð‿ãù£L²wò®ÃMu±©îítÿè©vè °Ûãvкö–ß±|? ±ÙëÉ{Š ™Oè©Û­ëOgúS?¹Â1QUh]pUùéL‚ª‡²_‡Ð/Øç‚zth‹Ž_]õ«Žý¡XA9ËÍì…S]9jt±m|?”-6.b'ïqO_( ¨Ô½º›O8gl宬|ñ)oþd–€Ì' °h`³HW9:Î?6ü/h ËùùÑ]ž w ô÷î¨ñáRwïÞ=aHu¹<|Râ±[<øGzð.Ru3 9ir8ú”»äÉ8 &ãÓ X.Ë‘ÉWÌfÒð˜# ÓƒïòíP¾"^!>ãŸÏðg¾R©º,UçRuBSŽŸ5žuÏ:þžÁ:0A  êœÆx nS¯kÐ/±I—óF¸bT!n|8·b‡¬GêÁ4 l}ha'¢—X e#¬Oò¹â1VÄ{¡ˆ% ÎTl‘ëx0ÇŠ¶CíËËNýÁ$\ë(hü(©ñd²á£Ö‰½ZÀ` ;þ-l‹H*ŸŒ¯ý¡= È?Ž ª„ñ¡cÀï8À2rþà9ͬȇÎ[É…Ž:d»£nh]¦',‚)%¼Ÿ!uß׈@ŽºL0g­–¦€³“7Š á3€$ å` DËïÃuÿgŽn6ŽÆ0ÈhÀ¦)PnÄ] sp=¸¹ñ'þh¦|}ÈÁbšŸçñº?ëão¤B!³þÖ€ü­Ñ…?¸²õo ®ú#t Uƒ¾#£>Gq}ƒ!ý†>7G.9RûºLÃ!*œ ÷àÌ ë@<¾<·´uuןÀ4BÔ±QÿÞ'ÕíŠÃf 69 )…,¦@÷“R¶¬A×P Kìš* À°¬Õµ£nLÑ#‰ù‘X0LG ±‹XJ3±Kèªï¡®}?RbÝ|yÝ÷n]‰í˜õºËÖkKh(™S ÞR²1®À±’z1ŽZJÀÅ8VâËzIB?8&éIJ)¦À‡Ž61ºJ0¸ HÖ¿µžW°ó x•d"Ä®11F›n²F|óD[3³ øy;oTƬí Ü2(ת>º\å@@Ýû#6ñµÛöJ@.)ÁÙÛ{£’Õ¦ÐhŸÕ:'ÝôX"Ô‡à2r»žƒÿœç$]»K,Ø‚rRûT7[Å×íú¢¾Z û÷y8¾ú2 šmT© ÎÓüØ6”}Ôl ƒÍaíö§õtéj2žNǨN<ŒÑ‡©ýÉl CD7Û+t¬U{+믩èõ>táVrâßûÂóŒ†v©¡Ë7DžÆPâ$þµ3d÷ë`t=þ*pøŒF0åS³Ý¬/=n£ÁgTB½0!{¹ûîm¯»4hMôS˜öá¬?òч{z7¸™M³f°À›µƒƒbqÙ&¦þö¦4×ùÕl>ÑÛ í †ß÷0)‡b¾hµ\Ár¸WD¤|œy ¨()°»£×t3p‚ƒÙAµ < Ç ÒÿŒ¦}­#´¯wüjÁDí ¶ ÄN,8äYJÙÿÏöØvÃFenŒw¿|r¼— E9ÂDDX+œr¨?*r = Ì5©€Ú†ØÅÅjœè@ºl£öy”ˆ¡†O.ÿÀ±Æ÷jâ1nÞ-bf2YgO} î>L˜õÏ>Œ”Ï7™B0ÙRs Ú!%¢Z8!¿XóŽ6‚§5øâãMSܯà¨é– gå}äcÝ]Þƒ¸QCI!7‹¦äñô]¶IûíxŽg‡3ÿÖŸ„9›sœU3°-©l5Nßî1S íGÄøêŠóÖ È†W‡µGý=Dƒ>v~B³üà_ n¾›âvy¹¤>Ê­”X®ïÞK…¶RzÏ!;fïVîçSÊUìŸFãÑçaôE fþ½ÚSÞÚ)äi–fñ;!ÜÍÀœÒö×£ùØP‚‹<ßH¬Ð`‡> [%xéeꣅÇ‚Ã%ùÝ0Á1¾•kƒai=ÁBo6¶à|¦B~ð–béNJNiTE/$SþgNûwƒgDv„€a´ DO7rÈÕ†¾jQ”ñÓ.†Uð<àíîöimRËWRÂ(Ú»À¬‘a{L ^1¯O/ù%Åüà:nwŽ7F6 ¤êî»î†ê’-›"gÕÜ%µ3ʯ]½ÅÝ+šzaûò¢åªã([%{Ñg›[¬Ïþî*MHkîu{°Ý͹.ñ 2CQ·Ç8^JGÐcàËC[kij3´rعxt+!Ëe>¤B«;¯lżõ ͦÆàFúj¾º1+¾(|bM _Ñ¡ð•žIá+I…¯E_¥¢†óeÊöÛhÉÒš0›$yÚÕò´ÛsËÓDaê¢Â¨ucDãFÐã°EÐÂmp>²@3y)~q¸&ñ}Â0,ÄOÖ&Ä'°TƒŠ'A¾¶†XÏŽS*U–1¶Î»nTª?­æ°ý¼šÃγi(jÛÝõ´dœƒQ’Š;œ­éàŠ„çŒdïßGa‘Bþ©–â³(,¥_Vay±Pq# ÕS),‡Ra©²Nñy<»‹ 1Js‹òf2ѵ‹תGà!1ùa4ºìêÄÔšŠ=T‰Ü(·a™ËšJù°þÑm^6ÊY”7Smôº"‹ÒO^tÙâ³Ø¿ ¶!„3q?†_Š…<Ò·‰ '‹ßôK¸ìáÎô‡˜uñ–™o`˜%I”“s†ìíaÙˆ#Aôf›BÕ¯‘î†#ŠjQô®]?8 dã4LˆS_/ÃÐqo÷9ÉùØaå!š­Z£}A¤ Uûƒaèp¾ÍgÖ{ JÿX¿ã%~øÝR-å>I8ª\°¾i™HDí:]YÇ8Ñ¡C¤ÈoämÂÌl#¢!ÚMYº¢ Õi„„Žö "ÑôoÑÔ<“=È%ãÜLÙ­Ú€!ƒ]kR—{ âÂì”M¼ëV¦sö€ÆZŠ›ý4UœB>G–T cñbVV]©…„5Õõ‹Öˆžú""×!"·£’Ÿ^Bî¯e*˜¤'•H¿,`QuÑç;'BZ˳Lwýò±D·'Z>è@8ûЍ&¦*pÞÈ6ì'F3ŠÇhAè´CÉo>já²ði:PWÔ}-(°Ì !LM‘·f>"‡/>m„ÿ–½ñb7JD@äÌ‹ÌÀb):˜–û£ïîPdAà²Õ¤çÒÂ0y'3½D†õèU˜°’BΠêÄÒ9ËÖ 0  |˜SÇ߉ÈlýIQ'µlœ©^ùò@µÎUÃ4”pd™@W”(¥£+»a Ÿ1ïñ°Ä˜ÎÆèœ“ã½.n¶¹XN“m‡Wq¯¨§3;_´‰ f½o$•01ß,C!6/[×N¿%+'ªÚÐ`¸É7—Á¡R€˜€®ñ€ s‰².Æ ™çaÓÖ4Ev¨¬~è =©0Ã#¶&Md|ޏ8¸ïcÚω=åI5ð–+¦ÀÁ Mb‘ͺ‘f$8¬O†‘ÙÆéìó½TbýÈÜeD@Zf†Qq?¤„5þòGx)¨^U5{ê P—rÐ;šð›D…$Ì =…|ë~Ò˜Q/~“Jº™¾Ø«I·$ÑÖ}mÿ¢-:Ë/¢mÍ¢­ôÚ!ØP˜Y-,-ØÚæò‚'8"} :‹Qrûxáfþyúп’˘–Ð^X6w¢¤$ μ‡÷!Ž/·Çö´)2LAA€©ÝZÿ/ ­[u;HúÆž?¦”Ž®ƒÔ@¥ îÓ!JÜÌÚ‚341†í»dax².,HÜ9­P 7b›„Œ×oL=zñ©’¢Œ37Õ£§ë$Ü~Wg+ Ã<9µO·µ=1j [ûÁ&›>ÃGµ'ŸÖ0–Ñb^ÎMŸãÜôèåÜôåÜôï)‚v­íg:8Ý~Z Ôý$Ч’çS*ã^*cTȼˆ€Ÿ'Ê¿‹ˆnðÒmêì†kƒ·Ä¦®ò$Òd¡ê‹âF/…ªN!ô´2HµÍ— VÛ,˜ÎRmÅ;¨Ì¯¡s‡_÷Hs/>T_¤Î'Å=é6ö½}=ôŸXæø©<ŽvŸ„G–¹(1rZ{½}è½ø¤;ŒLJýÓœtc¨ämï§åÃüýEùxQ>^”åãEùXJù yBð¸‡\ò(z%ÑÅL‰ú/–‚b ꄟ¯¼<<ø}{uIž3”™¯ý[ÊÕÀçaÈjÿ«ö_Tù¿êÿµ´ï‚T›BªÒÒPê‰*­”~ µI\ Að£ŠÓ3% I/ƒa ¼DúÓéøj@9«…¡èñ'4$ÙÿQšU·þ{»9§Çð8,0ax¼<†ÇaÙ÷7:¶~±fËF~ë[@;OjÌîÖ7ž€KÕ×Å¥þS"düB¼ñ3Œø×Á5PI„7>2†Gç]÷É=³†œøÆÈzáñkáñ»Ÿ™Â3ùÌ–bò݋å˜|ýI˜|ã †Éã\$˜‚~Ë…6Å\8G’f¸ãˆ»¼’ ·KÁöD›\ÌK:}™ ¡Ð<“ëŠRoÌi·£"t<ŠÁĸ¼Ã³­¼´y˜°{hÂA¡XѼƒ¹_nÁŒâúÒ¾ÅÎNõãd«o½¾b^)¦”Nä U?Ær!ã_L%£zwÑ0·rØÉæ¹`¤ŸÂ.GåhÁ¨ÅŠJtÅbéF…ÓÛüª£‚ t¬“ÈXÀ¯kö‚;ɉ³Ü*:dD³»0tÒŒ¥5fÊÜ٪ϒ W–÷á ·E&¬€fñFÕ̇îü÷>üN^Ÿ¹wÃ6NZç¯ixßyÑ丑Çkr;QMn÷¹bv<ånøã"×3Ä£$¤0»ÇfOèk†Yf˜ú‡ÎïÀÔ×ÇÄ×Ç´_¸ñ 7~áÆ¿,7FƶˆÉ Ÿÿv/’øowÝWK^”êx¥ú…e¿°ì–ý˲lä…‹X¶výÌ*Æ3køõw`Ö¿¢²,ÍgÚœqöúä…¿pãnüÂc¹qû¤ö q¹šO0O9Ì1ÑßXx%N‡qõòŠ„òt|oæ w•b®ÛúxÚ92À–63•M|]ɾö”û > §¡0˜GXƒŸýáø«ÌèF9Ý¿ÓéÚÅ3m˜r|†¡ÿ<¸Å·vpCÂ8to4É[Sv«Lľ¨ð½½õùûV;¸áŽ$ì¯ãÅ à•Ï‹³ÀÏ>Ÿÿ'ϱ¢dã…Ã$=«uj'žù{†'nŸ¦)›å`˜†S,$‚AL„‚ƒ¼ƒ™„! ŠM)B‘Š@ZI‚Û\¸é„Œ}N eší$¸T`áàA©Þ(=RJžºÔqzž©MØT¸ |ªŠ¬¦»€[ä–Ú…?}“¥ô4=¬×s¸rèv™ok=ÔMŽZ RÁÞ?‡ûîês9d|9†ó_"ú:¬çð”4‡ sï?Ç1ð‡£þÁgGIPŽ>!"ð‡¸Áá~ýPTdŒÓ|›A—a…Aöûà å5’^ø·Í’þ­úd­÷.Z¢(K\´af"?{ù3Ln·i|sGýÞj¶ñtÐmäh󵊷§ð·wCŠqyí3 |Õûã,'5ø¡@_+Ô¢•GrTø uarâ«]4:ÝÿÏIíý)Ì>n¶õg–ƒwBâ~xz^o5ÄY§qÐì6OÛð¨qMtûn1§5Qxï¾kÇ’i eû*=E¬å:Ê’ø±s,9dÂ’jž¶»‡QÆJÍ.°0õ¹…æÙ„á@§3Å âIè+…à $Ì^:2jÒ…(ë{Z@]…vèë§”pÎÌr Cضñ¤ßÖ÷f=U{œ\Û¬I©°Ã(8ˆªÆM=Ç‚ª×­§•ͤܤ¿9ó ‚:dP9T|’À9Ÿ·z \ ¬Ö«× Ò·ºþCž¤;ñI‰*'o|%¯[¼®È5&q™´ºÀ–Úñyت¼CÛ8h+ißø¼©mb8¹pùüºóÏzÓ¤1t@®µjƀܜ$¾Ê÷cùÞâ÷ÆA’¤€$µð]V<’‘Íá{W6Ðí%:&i‡ï(ððe¼“Ø;<ì‘0Ã÷DÙPráû¿_P×à]¸ ï€y" ‹îÔù]$À Ø0¼7’ 1‚wxG€ÍV ˜9ÐÝétLksz2ì³®\t<¢Ólw›AC-$`PJÀÁøþvn‰L›üS¥é9$oꤗĮޞöTpÈöYçô/ɾk¾…‡íóv³‡ Jë°y’0nPàô¬ç茔TéúPˆÃ&kŽMÎá I,€}l2,êÀÇŽER¢&/hi NONTðz#`þ›ø)¾¤z8Êò=ØSRQ­ËU“æï@}è%í¶zøNÓ¡çM¬~k&Á¹ä«ËoäX;†ìm•ƶTÚ!¨ÃÂ~±nÐ6 ^±T®T·wv7Ä›„ ¤ƒ@…BNþ󠸋—úWóYÓ©w-T6%ì®ú>³âŒ¦RØáyþm ؕ›&7C¸›PÓŽ?›OF¸7¦ ^ðNÙØïçÃÙï;Âöyªn—q£ Ðœ¶{ÍöyÀÒ爿ÆÕFòD—V*ÓBv7´‡è>tµÃ ïtÞž †™ÚN!»‘6n/K #g õÕpxŒO2hÊ*éŽc ö})©2Bjì9™=+ò§¼ã×CL”®@tc@t“A`nXþÕb!®’GFc‡îÆ0…[|c˜×Mó…Æ…%· uc =Ç4ÎB˜DêÆêš…ŽŽÜ…ŽŽÌB18™8Å4wd53Gæ|Š)ôÉ,Ô­Çô®nªÇª…ÐßÓUˆ<™t¡w!<`þ£ÎD×Ý-21ªBxôâ*D‡.A·Z1Ýj™…Žc ›óéÈ„téˆ œåa<™Ç:A¸Š€ 6ßf¨z¾ñ!¿ßqðzï´Ò‹Ãt*z§Àº”Š#‚µa„Ë~ì4{ÀXM*†´»»³­1ו»©+W•aé§«\‰VÆEŸªòö®«r7eåGe`é*; ™GºÊŽC¦’®²kÀŽRö¹ZvUN‰vÕÙrÊ©ª–•?¥­\tv=倹ú\OY¹ê˜gd~éZö•)¦«\pTî¦0ÇÂÀ÷t•] ا¬¬x—@.‡×;ö„¨ÃŽgtÅ‘c4pØ´äî6Xz5lÏ·Ç´vL­]}³I4Õç¶îv—m÷ÈÝË£4½SHÛ¢d$Ì¡@-g YÍ´ÓL9‰fÚ¤A<-gâ±Õ´O5TV¦›²‹nlÖ#[‰Yüªù –¨8ášr ½P‹§áv@Éô‘B9³áénÆQ¿Kï9ÎEÒ3?Z‹÷»z‘¤YíãE ä8:Ç¡R ¦ñ8²@Ž¿@Žq莹@Ž×²@¨¬¼@ªK3Öã€(çD“–A ÉÑîÅ.ÔÒìQÆ–î­Š­3M¿ßßûèˆ×™B>¿9vÅxA` ~!uSv:d÷RÝS'9²³‡g8‚x†ó†ö Nžá€áÎ9·w…øUx! 5h)Ôs‘Eò^¡N+ÛÀܳ*Ç‘CÀºuGW@€ãoØÃµ,Ÿ9ŸO+@0«!@õ“–Æáã#qø¨pø¸:ä3ô >ã -ƒtGZ @X –GC:Ay ‚# @h Â²#ÐÎ2l“ V{¬¨h.ÉØR%sÝÄ•B;È(ã™$žP¡d’al©²I(±¥*ÖDÆ«ZmKЋê(Ó,î™® ÁžÅóRUû¤Zû´Lk4à²f0øéj~ÄšOHW&eÏ^Ç©êÑ4í…–^ªš4s{¡Õ¢¥5®Ju„ÄZƒÖ¬¤fažÓ,R$ŒëÉEÇ:õ|JBz‘z¦«6j½¨ ?]eæ (.I(s¶‹Ë!`Ç*C€ždˆ&õüRÂI”ÍaŒ-µcuõo$Ú]U­»L5œÿ½Xü60dЦ¾Ö>ÌóW2{_Ñø|µ˜™`çãgÃ0æàÒcºŠŽiÓ\Èapß«þ/ŸaNzó¾%ÞÀJAÄ»¼Ó²\Pc3ÆbÎþ‰º ­z¶ ÷£ŠÁõ{ÑñSû E¤áGŒOì‘O,N;.œB'?+àeÛ—„ÛÀZ7G> 7‡í(ff´(´lŒjÖª}x*¶ v‰°ÝĬ ÌE‰,BòÕm2J;9‚¬Mi9ŠÅj'+—õh1bšýo«{SQ3R,.&_ 󊔳™’¶Èï=´hg¬-võmÕw¸6‰x¢#Æž†èvR·2Ñ…uªÇFéDçÄê‘D·³2ѱTv]ŠÙŒ ÃÜî.˜Û0–Â_wã‘OGÕŸÒ‘tzJþ”š}âMˆÅ¤üi-üÓÔÎMÊŸÖÅ?#X=Ž”q@ùµ,)ŠåŸi¦ÓEÊž·ˆ–5dIËž÷XZ¦;-"3¸Aæ›Å° [ {ï 'eóaÒžÈ.ÇÄ»éI¿˜†ô»k!}s_øhÒﮋô#X=’ô‹«’~7–ôÓL§“ôK‹H¿&ýÒcHc\àî+BÏKQ¯Ú¶¥"ßr ò5®N¿a«Âc ØDê1ìÄë‘$\^‘„ÕÎ;JÂéæÔIÕ3l€VD\y,“1:BÅ®ë"ŽŠ¥=; WÒqouæ­JÊP*«Š4ü»(%Õ¸¹¥²ˆPÈ’N*k “§“©é¤šŠN>®Nì×GÓIue:ùO')ÆÍI' %²¢“k@Z:iÖ[¥:¯JE'ivæ¼ÇЉ}(þh:Yu¬õ\t’bÜœt²h@Vtò¨=0Ñ ->’PäùdJ©¦ÙøA*×…ÇKuÕ=fp–ë –Tƒç"—ê¢m¦ZÒKõQûL¢:Q~$½ÈSéTô’f·h|½D|LM/«nÌ‚|½¤<'½,Ú› ½Ãúˆ‹éå!»¹¨Îy¶l–³ShÊšÙhqë,Ì<ï°¬ÙÁPF‡œcXg8x?…ºUëI­/¦ À>u/ŒGðª©e–“aÎùÆ:—K‰!˹L9(^ ƒª¦¨¿-#­+T$S qFb'ø¸|ô )Pñ<£‚õ #³ç8@{R4{YŒäddxNØšR>ß{{Š:v!ÄÔDœY n0l0P\Û¶ŽÜ¢ˆˆß Rmä·îêâ7(Û%ÙÛ]“àýe¤î¯/%­waU–“¡Ý^†ÉÃ-@[ŸY€®(fvV3;ë3»Û+Š™HÙÓ[-2pRÓŠŒxƆ˜P7’¤FÀÆ9Y¼Éɶ›N5¨aÈ’àãn:8$"ÔgÏ‚ÜÕD nixh“42QKÐhy"ßä‰X(RÄ"©B _J•àå kI|‡h¨U~1ñQ¢ “ø¼UuáPWœ´“b¢‰©>Á—!˜’›JÊZåH„ñìTBSšH%ÅÝ¥Õ‘£Gìøj´Ô#ã¾ý£m/jÉbµ$¢y`äÁD×›ßBy(VUJ…ßRy „CϦ<,æ˜Ã‹fƒm¦`º[›;Ñ_”ç%òÜ’·,Ï­;³‹ð3Ú(›°Ü/>¥Xîoþd–$ó?YB?gI|R‚œ\¼S_Ux&n±L¬ç߈[\|Z†[´™¼–cÈçTaá> f.²kô=3?뮟™'MkabÝO¦îò\ë…U¥gUÝçdUϦݸ9M˜u-ÒŽ¨~ŸêO<œµëEÏÍHŽÖrZm³‘#<°6©×ë·înõ™ŽRÖáŸn5‹7¶ƒ¢|oM\îý^š¥k‰„‹ûü¥øìç/†i[l$øà¹yý£'=ñ©Eç|AÁ+ÎYRÉŠyï~õcùòÊG!åµ…T—; 1‚Ú1áôpXm¢Õ»ùc¼­c²ƒ€(ê¾kÓý°üa!2„éNUŽÖuÎϨæ$V¹˜Â)g:wŸ‚^â‰pL¡ÍªuŒ»x"”µHq‘,Ƚ…Dz\à^¦äwÈc=ÈÓœ%û8¯Äm±Œwâú¨>‘ÚÓž.<ÿKéAjP»Ù¾ááø3\t ’a"Ös¸Ø, ¿ReÙñ£5˜Ç#ŠbwUEQ8Z‹¡\âµ&ýêçZËã.±ÆMåQãW¾·åäئ»*¥–sÈbUWÛÒ ?íÞ®k¯w}ZÃú~bk’sÙW\«ž~ -óöϰ=ù7v4Å8 íJ´ÒL ÒÒZòZT䵸–8cÇ6e÷Ì[”‹ŽÌœµOrFÓðÜ£58ÉDøÄÅãùÄ…Èßð‘Ù‹Nðœ:ÁÅßG'0.\‡( ޲H§ˆßd‰x Ö†öI®^Ó¬=±RáL$úfñiÌÂ:gWÜ‚BÂ=½rQt±ÿå©NŸ?­Ö°úÁù’F ’ñ™¬ž?c×þ"\y8zŒ•á>±&²ULa{º=Ìó”×WQWÌ3ñºuû²ŽŽ=¿ZæÖûîŒs—ñ g7‹C&Ô7Z‚øuëDèäxuƒcŒ‰qyöaO'8“ÈxÁ½òº¢áÓK~õz í~oâó­Ä˜UÑ[L+ž ­|©´¾àKê-|3(¸øSÞìˆ_Kt(A9´ëÕ$iqs%…w±Oy9¹ãóô*0ÍD “JËF:jšÂ§ðè¬[ÔuÍœ&PòvDœÒ‚Œú÷¾jÏ á´¹¹)š#;_›ëuÖÊÀV õ;B¤¸¸a^’=¬¶½+[*¸‡X'Ç_ý‰O4Žâ_K wv 0C¢'¼0 ›ñ¹AC]…ÿÒ Hþ½ÊoÕ¬J ;«ýïX ÛæÜQÖœÝ;á•5ªËÕ8@IAn#P*±P´¸”²ÅŒ(oÌx8Ål3Ú•_%”û:qŒ\÷„€¤ËŸhT½)Ð@á‘‹VSEýéT Šóm‘pM¨œA*Ì뚘!lÊ1æ¶z»ƒËF.•Ï›Ž?ÙÃäÜ#ÄYÿ‹?B6ûÙ‡§‡^5¯-pÑ4(b¥Lº™Œï5Z´ŠlÛ¬})"á ]¡."‘B…£³±½ótØ®~ªÁíÕä«láYÕxX½_t37%z¨0®> ÆIŽSa+ñ(¦9z Ãa!Ûe 9ìÖ{CÙ™ÌD™»ñ§¾šûŒ= 7¤òD¼_ú·´œ-z)]C)±íAë[¬Áï6— Ý.nó”Tƒ*»‘·?Ȫ^ºQ‹±êE:­B:ðå' šÀâwáQbKâçÕ„õïÚQEê;…ÜáQ½K·òtdAL|,ã&Šj‚VV³ªO´6¬{µÒõQ¡W~š&ͶTS¥'oêB5U|®¼ÐéÅÏóªz8åÈP%£?~´ápþróg©ŽÎ9‰ù× ”¡Ôìñô¢aR´ÿùu¿†ý‡þÕ—­R¾ø¦×èÂõèM£yôæúêîËímþf-màU-—é}»Z¥÷B‘¿¼¢çUJÿð •beÛ+{xÊ•ˆÂZZ_𵘖øÇ}2íß§qå ØÍz†ã—z1iuÏëÓó&$Ô÷ëºÍK4)‘U>ñZyüŸãz]»Ù#ͶuˆÆöœx¿æD×K€ÒÅû „ñ¼ŸcMøs‘râ@µÎÞu<~o&A©7z5Y®S’åáÃ[ã¢qÐkÉ÷NZÿ›–ûè’–ñÖ–R.x“ÁrPd€i‘NPÊ{Y¡M”ç£Á_y\ó=Òrêû¹àÙpJg£A_ÔýÉè' ];­Ùu^eålÿòéÞrÖ›f&ù¼è^õQÞ×&·ó{l8¯.e¶NšµVtÒ”­«Ýk5:æïØI94-žæVÓ ÑŒsxz^o5ÄY§qÐ$E+8¾aÚиH×&“þ÷”83afЬ§f%cØø\½`7>Òn›…¸Ö2Ü_Ï”–1¾”øKÂñ9©Q¥#« ‘UC^@»ª¬üÌT›áyHÁ„mïÌNy©9+š•>˜àx d„—ì×5‚¥m~ë¥ÂáÜlõÂü¢§=¡öePÁ 9üx6Ÿ€ÖK÷÷÷ùÅÏ™! q…A§œÃÖTYn ]&ØBЇÀ=ÕÈßìÀÈ~õ{„ÆÑѻΡ<íŠq€ºèOŹx'.}?‡J"‡ùœ'>Ô¼÷û|$<›ÀìÌ;&îÇŒ€Wܰ“¥b2èËm¿tx¬>žÌîÆ¤W§éƒÕ ÂýÝQãÃ¥Æýï!îâƒèŠKFþƒ8ƒ ù3ÄjþðÀAhô€hð—ÁÈxc'œáØTÕ¬‡`ÈØûæQ{ÅoE{A?ÆyU›‡} ~ǪWã ìgp‹‰’ÇdRúßp×ýçü3?ôRq ̰ªaXÈædWñï%¯9¶À–f¢?œŽ¥½Ê'rCn"›ŠLøp×ÏxÙÜg†ïÙ\>ŸÏÉÇ#ùx„Þ°û4²üÛŸÙýnæÏÜŸYB…ŠÁ£3~Âkv7Ÿr%x.öu­7²(NBH{øWƒ› ~‹±ÙûWw/á¼Êª™§ÇX-“ƒÕ©ÇOYˆ¹gxŽ…µÐ^L\ÂH_oñhê¼fê ¯BõiªÚþ …P6žõ‡ùÐ7m:†NïÆó!®"„2½‡ÁÃ%t ë‘ë~×@‘È`<®™Q‚á;˜¸»»1ÔghÏ<è!V áã"bÉøÀV7#~Ô~ˆ‘˜D6±~‘ëש~Ϩ_O¬Ï•K\¹‰•ÏUÍ…µÊA­‹‹µtÅ W|¥œ¸¾K××*×ïQý3£~/E_·¬?|HÝ× Ö女Vf‹Ü÷¿ ÊÕ€´b0º°²%o¬°@Éà:e&˜faaèÖˆáææ;Ðe¨ŒÐ³iq–•-c»Ðt™Küȉ²Èņˆª]¥ ÆÉ1 öؾ&Âï4½„ß÷ „ùÅâŒä€Ér‡Äq(Í´?IZà)rÆÀ$ ÿkæü$û˜ïÕ$\ôX4óîôãIûýú†â’Ï ”ÉŽŒÔÄš<ðÄÁ8LN]Ïšºâc0ÚˆCÉššÉÆúfg’4;—šdÒÃ>ñÿ‰ï‡{’§Ï§sÒ€ ΉÏs€ȼ5 á·?€!(7 xH…¹þX1vÙ™‰ˆù,‰MÏ,D´;¸Q±‘ µ|¯sÞÐd…Œõ‡èf>ä.•rE§z‚§ÚÁSÉú?,®â• ÄYÄY<ˆ³ˆ “RFNjTðÔ÷ã "“ ±"‘ý0 øÑć±ͨÍÇY9)Ð'÷¨ËôÕÑ@‹ÏAhhsF ƒñ h?*f»ïÚŠhJNP ¸b0t솇—$,Òz”ÞI¤u/+ÙúøŒÆx6éǺívÆÛc£Hö_T™÷‡‰4Èäå@7U`¦¤ô`›y…€S›¢ÖÄp|KäJjc4+ïxü H]þ…5i&@Û‘R¯Hózõ竨žEhÌAÉ͆ßyF†ƒ)¯Þ1¬^ж©:lͦ{Š €ž2¢xC½2}Ö‚¡âÿú“±FE…EªÔ W‰Á5êú3¶}õÊßTÕ’j¯¹tÕ²jµéFUC¡«^3ü¯•–ŒxÙ÷BÃ2 é­øµx?ž\v¼ÉŒSe¯YøÞ§0`lÔ ½'#>åÄFg¤Màì{=.ÎZ÷ôL‚ΦÂ"ƒÕ±ÕløÙ{‘›kòFî‹øÿ­©y3_^{Ùoô7Œ9rÿ_ö3í-/û¦('s›úhO&÷ÿÛÆ}>щG»e•¡ Ì‘2Ä7¬÷!ÄV`uý˜ÀÊÍgµ"Huh)~ñyp» ¨‘ÚD±Wðü‰!'g„ÑÎÈ –ÙbMnÂð€fÖŒÈ.®7rä“Ë~ñ–‰þ*tLw‰[…{òô˦B™…åá~˜@Ì.ñ–,ýhËý!xñþ Ú ´]HÚ6@ñ¥ôמ †Ü ˜@ „'w‹ý`oŽÞÔ°ëËéÚPÎÂÿÁëVxª7€Ýî@ |‡m%š¬¤FÍgz5TÄ`Êæ¨u3¢Eîc½=n”·³l:¬JÊ¢ ;cç+äŒp‰`F”{ƒÈhî,"kÞ$lªo¬sèÐs߬-»NF˜*Ö—·:p'þgÌ>Üh]Ò4MìµÎ»þHÒó7 :Ðíϳ#2gµNí¤Ñƒµ%‡TvwôÜÌíìn2žßÞ™ dÈ Bm:²!iÝÚIEY;‚1W²9õƒcüÕø nGã َйC¨)}3žÏ°²ôtDšów '°Éûðýke’Œ™Ø„ G`<ÉÓjf>¤W²>-BkØW†¹@Ó^.ìVþeQþ _h1È;P¸S…*Œqm8K§,´càB7¡@¥ñµâVÊž¸¸pO>$^³6pÏÛÉœOY¡óÿ¯Ðôs?ÀÓ7XÌ|Ü%/ûLÙ7› d&cD]kڃѵÿàpÿo£5¥Q3!H ÃÎSÂ&?ƒ8#Jô,Mh|} ÏVÕkä›ÑÑ&â-%äCïFsÞcMû÷ «@Ùº«yGØwÈ’Gl5¤y¼Ï¡Óý©xuÓ ýëWt|tïUN›F¡½`ñ”ø3>Ç]aº~9•˜äÑ læk[µL„móÓ)ŒOŒî4A5«®´ÙG—ê)pøÏÀ{i’-Ö5ÎC²c‚Xðó·yŠ7­y…Ÿl?ô'³Á;m€ˆaÐÖ|q3 ( ½û<ø5\矇~VHAN³!W#sÓÅZ…´Á‡¾ ±«—<èchÝ·¼Ò–W±Ntçò$Ú^8Ñs‹{ë {Àq`Œ­&¶¼¢³y»-Î §ãÂpêÏp¶åX¸ÚC2 Û‹{i¼4fre`ž‡T+£˜æQdNü‡1¨kÆÁQÈüOt–…ÎS‚þè»çzpsã£cÞ²òÄçïUé4˜ã¿9>(‡åZUhMÝûÓiÿÖWdBy˜ 7DŽ›A]†ü­`ØpÑM}¼ô6óaº Dy¬ lj©Ì°€[’êÓ§ñ xÇs¼ÉøvÒ¿§c0FF®Ú«>jVý‘ ÅÂ6,<Œâ9Bc¬zZÙÚò y¹Ga—Î…ºêÛÓN¯Sk‹ù¹,7„æ`DÓ8V7Œ;Ê0ïÜo{ÉNüÙ|2šŠ&yÔ"›¾Û'¶­±«©ú,俎'_¦ý+?JkŸ¼‘Ë"žƒµÛYK18Ÿ2ß$R¥©› n¨×îC…úSy§/$ÒYÙWjN.¢ÎîK¾[¤Ìˆ€µ1±³óL.Bö‹$ä‹MîÖèv ç¬h¯3såݪþJGˆ ëªsÙú¯4SõŸ?SïúËŒDBgqZÙâüN»uª½…æÛÄnjx^Èž¤ŠO?.aëw—z—®·~\Ø14Æ'4ëÆì]H*H÷Õ¯(LÏMÓSSɽnñ÷êƒy ¯¡Ÿ`Ò‘DH‚0µ6yiþì ~½X;†ú|ÕÕwt]·²‘s,ëðºpŒÅ ’ü‹£.Ñ`—áóe¯Cʸ½mXNt\<Å‘ƒÔR#ôá§Í‘•Äâò—À‚/³,…‰_¡yº³üX Âç+ 4ž©åêYÇ€DW;-å~3‡ónËUÈàAýSeÅȨÛB_²¯åU£/ÙÍ9Gñ= /diľlÍ,[\ÌUsŒH •¯˜SZzü”>Ýlzì”2ZóaÉ; IÞðŵv`÷c9íÁï2Ó;óp‡Øõ}åè¨"Ðű?Ë=Nú$=Šê‘ËOÒ%¼¨µ #ÃzDKÂHŽ"}!Y¬*ÏmHŦhonÂf¨ºÙ–QΰWhElï“מ£'³Wñ‡ 6Ùòí9¨«lÕ)†Ã«DæUò,“U)«Î4l;ÌÇT&¥ýLC¯÷†­!cÑÿk<°¶;Ê]IÙßq×.ŒÞ8fg_ö„˜Î¯€‚¦x®ƒìÏ,ðßTvam_l ØëpLäMq×G“” ‡þ-/}åH½þMPj!ËÙ±¤Mcîä%΃iØd̯þçéx#*,†JUø‰+`/óï™Îz܃u\T½ltNsâ´­ÂÌÇ:ú•¡B8üùÂa c0mü’t_ÖÊ`ák$бîVª.´Æè¢ÊW‘“oóÖk‡ív<*˜¥Y;D÷>¾‹Œ1ßÿøßÿx^ otWÁ¸9ŸžõrâD^nÇûé¹ÃäSèÄ^wadí6ÆLÈñ[/~ZjíÓÎINÔù­[{K!kñQï5NÐÞ‚oŤ{¯­³þi¶/bG—îLƒë½Z·y¤ãÀSHÐzèI<*ž:]›>†9Èp>‹ãÚI-%ˆã{'í×"ÓU®‡Ú'!pI•CíˆãƒV­ÛMW¹×iÖì–/=ÕûË"}Š'€Ãó““š¶wØRɹNß`™£"þv>¢08ÉKþ°U;9x—Ã÷öQƒÞ;íCY¾ñ iÛZ]1åðèÎ?ë {dЉ; 'á½Wñä;}ÇTN*ÍÔ"¬ð¤D)­ÚÁÙŒÚÛ#zï6zü~~Bs2Zã:'Ť` ¬„äħF§Þª9úØD¥Äé•k°añtšínó X«c ˜òwÈ Z¿¸z°û³¾˜Îú3?¿à°Ö« ûÅ„ˆ!k*›è€W@}ÃÛ,‰7 u.=¨ÀFEú[ÂØÀ‰5Š\ìä%Ö€%®«ð¿Æ„M¬Bîo,ç»"Õ+Óç²ú@Ÿã'Ëéo%‡‰Ú·sb¾n–Ñ* …z€‚öh@èÆåY­'"À…¶ |ÛÙÜYÔ2±2h¹º©¸ˆsYÜTŸJrª:¾YÁ^–ÍMÝl‹› š¡OåѼY•#º€iA[;›z6Í¿ÛÁ㤞vÉlÆlÃhF=~D3ÄËqµU7 ´Ú‹³Ä¤.PÛ=Ƹ6åüXHÀªBªË†¶eCÔ@Дnhwá¸X6ÆúíãUœ®Åx”&y€×¤Ø/‰"þêØRRÇR.‘Q˧¨¡¶¨Åù¿—)_ÈM쟺7²,üÍÈýgå}&™Ú¥DhôXfC³PcÁ§'ðÄ+˜Ù;¸W'ÒщïÑ('ªéÝvç[[â+|ŸNa»Ànv)Ëűo‚îÇ£ñlLŽ*Wè ¶Ï-& ,]!cDY™TÝ­Ê,+œmE~ñ ?îøyx«"/¹“齚9G*®x1\\%«Lj£®$} qž¸zÕp½Öa Óbz*›¾õòD±Ý+Daœ[0ÎÃØÀ IÊõò¼Sí¸nÃ~›“cD0Õæð¤i`’-ò.ÚÁŽƒÞiôÎ;íp Læ  ÞLâÖWݬsÑeI¢Ñ“Éi“‚õ#RUy»aÅI»ý òÁφF¶f¡ÆÃt0à÷Mý¬ÞŸúA X~xƒ Œßˆ à6ó,ñOcÀXÌèͬ` û]«±2L¬R÷JYÀM}Ÿci UißÿÉØ~îÑsÜ@«fZãñß­&Çáœr¢T‘¶~Ä:åÜ?šßq#i±VàšÅr·©1¬ód!W¤"í´=Åb°–EUŒ‘ðçAÜÄ™|CêjkFK—téf{“‡z³í…3jHzkãêsdå:I™^,’¯ÒUÙUíu(ǰTà=>á‰o,@žõ«±\<2BEë/ê…oO¿¿ÖbϘù ˆŒ~uûùÒMcžÃRa7$í³dAÁŽhÉg¦öÛï9›Ç,{ÏøU2³ˆ<”uGôÙDAÇÖÅhË%ݲ™/Ž_*ž×{k¥”4zÀ–Gu¾úõЈqc‚~—“ñ0ˆ> ‡>9¾Ä}ÑžØ÷8”•øúf,&cäûEý8xêtÙ/É’úÙ mYöØ—÷+é‰a ØöÉ[N’Øl\Ee ƒ£Ä`0ÑÂd¤.9G"L¤ÚžWoOdÄ·oßÐZ°_„/ õÑWèÆž¾Oè>IL‡Ë²$ã’b¿²gÞnY¢ºgÞ¡R…ÑÂØðxâwBN^î £ñh‹®[[·c1CN´'Ïndç×öÕ7˜ýž¼ç€CC«n„a¬ÈÅ«ö±*¿l^úÛW%•s6zCqP‡qÈ­O¿¤ï«¾~/½…ü=©V…ÜÕ†ßÅÞ"˜Èd¦lßíu %(èY«,D“uŽØÉ›ÅœÜa)›ßžöxæPH”õÚ+ñ\ƒ…äîMUͤ¡Ïós=A¸ôÈDÆÃ=öÍÆÌ#>lør׌ƒñ´t˜D\õh»Èõðc˜¹¢`¹€JŸ2ݹ™¿çÙÌ¿©·DaˆÊj(¥ *¢%GŠ" \Þ…¢Ê˜Ì+œýR®Õ°2‘jq…ª]É%{eEÔŠ›X­|“ý éa´Òl£4oG‡‚_J1ë60L÷Ûùp¸Áæñœ<`à¿ÅÕ”ÓüŠzËúŽŒ›Às#ÃÁö~²¾*˱¨„í·l§ÖÑ&qÕ@"©:)‹· ô©ªJS²¬ºé•t t>и ÀÃk¶ÏGúë";¬K6µöaž¿·âH¤–Qç/تqƒ’°êK¬‡úo±êϵê±ë¡¾ÂzˆÔÑBK­‡z„ˆaµÚzˆ‚J·â&À^áþÆ®Úå§YõØõÈè»(n󪌓.`t5DC-¤©³”^v诇>ÏïÆ OÑ;šä·Œ«Å(e”+REEùPGû#hcQÅÜÛŠ-çºã‚¸î@A<»u-e~gø`÷€—O¬(I o³"S¨_)*– áZÎÔÐÁ¯r-vÞb”ô×ÞâŽpCò îdùkRTrýâØÅ„hLw¸Dq³ýZv‡)®2³ù¸êf‘}ÃE Mï.ÌÞ]¬Ü;‰ybÿJÎþ],îß…«{n&†§M&•ØÁ‘}Žœ]ã¯(¯¨)ÏÙ‹”H7S QN‰†‹]Ô†ßí RÁƽä·%»Ü«r¹Ç¤^‹Ö û›J6SÐ^dl³õõ7[·›­&ršíÔ´Êk”¿1i(¦Ìkk4ž M‡æ¯-\¢ät™œÜšŽDìü" ™_r[U(,ìæ(ÞèÙ=¸0z@Œh‘/•Vâ§udñTĦèÕ¯¿ÇTÔŸy*j3©ÝæÖQ¶š8n\j7™•A‰…|Ìfbqû£TŒ$ʵÝMÖM†UÐG4¹Ï¡v îçú5á éÇŠYûv4ž¦,רöJ]®Ö³—¢#õJ8¯RâuèÖzÃL3„a`ϼ0€Ý= Fä ÿIàa<Ÿ…͇‘ñ\ާfE&Cºï§ìÈ‹U†fVñjìéî¦$Ü6;[<%så.´r]Ïâ¯$ßËdÜÏÀ_‰NšíÈt–ÓI0•å…TRYŽJ4ýUÖO$ñÄ¡’/SçÙC/ɦœ''¤â/DH´(ft°ì¤Å¹À£-ñ¸Ê[×Q›ƒÍŽƒb‘?Eýpd¼Ìåæ„Ø *$69'2s*ÛŽžmz•krœZ³WH/ß"ÿ©¥[hªµu§`Ê·è¼+íú­Ö®•úa̶S¿°Ölý·fìõß`9† ªæbTk.yQ.¿%ñü¬ÕX’ÕèÙ«1^)YÝ\bEÆ’y¿ÆY]Aã¬.Ô%¶WÕ8·—R&:©4Nf9 ø-¶Îs3¦Îï¡qqî,¤’Ý5ÎÝŸK$QíÓ¤—xOLH¿®Æ©Â5Ç« §U9%C^FÊaZ†å¥ÙDžKé,.!æ!ãŠî!-.«u^æ"œ6Qëì¤Ò:iæþëjÆ’tªO½ ‹?wA>‰ÞÉFo¯´…)<ð&é5êh”Jb<¢¬æ>†ºŒtU¦F‰»n¢Íé9ì5 BÆà¢½NôyYÈÎ?±BHô\EÙÝê5y¶†F]çíÁ`àÕùÈ8PH¿}ŠóóE"ê„6 S9–¥ŒŒÊHË`;¯úªk6šMUÓéhªÐ×%œ˜ Ð¸ ¤Xpù‡Æ¿¿á6Tdàï›V¯É Ô¤Âß“ eLF=ýìH`¶Ì€#5´˜²\×ÿ,‚v“‚E~ ŠTb‹ÄˆN÷+gž£€'[[FŒ"ÙΟYñoˆ¦®èò84Ž­Ë¯ùC¨Ù3LC9b؉b^,W¬Œ¢áyMÀBF.¦CWte7B,Ûy‰7¹œ©‡¢&SF‡.Ø*®€”ßFôÅß§[tc¾0ƒaÿnCß}9Žª`ˆ®'&Ûìc¶áì‰JײãÔ¤„]u®ù„ •e+9oœêhó±`9óàOP'Äà˵ëj#ˆiR^ñ\ƒÔχñÔßÀìTX‡F)¸îmЏ«º"Äïñ׎-:mõò^^ˆw²ŽV(nl§Íæ]Ýs_[NÀÀ[7ÎÖO‹®8‚â k«Ñ–"NñÝùý}ø¯iÿÞó ßE±»TUL`fc Õ ¾)ÛoAÔÐ7XfÜCÐ<6‚˜Ó¨9ï£^…ÇyøðFì~B¿¢ýmR9”º‚¼‹±ŸO ]›|¶ANÀø1»ÁtJêf<2Ö)9å/Q¿ FWãÉ~-1„φJ«æ_3Ú¢>à`)Õq,œåÄ‘WÈ—­ö̆Ñ6z²DÏl F/·u/߆}î6PruüþPÞxŽäBx˜Œ?ýûJÕ+“sŠ F“I"Q ^û3Ó, ¥®\1*wez¸yµh:S,…!ó~cc_s›kñ~<¹Æœ•»%¼Àa†Íõ~¦+dŒ÷3MúPÂ'MøPÆ'ø¡²psð¾„箺Ÿ¡¤ÔX¢™Íq†ê&ÎÊÉ–b!ªÁ<ÔƒAä53µ´tôöÝsM³WÝïE¨¢Î¡€Ì—·»ëï}„éMøp×ÏaVÙþ>Ì’îÆö~2˜ÝÝç•ø?XÀ‚z ²ž?ƒÆâ€ïì_ çÓ™©. d6YôöeܤàÈè´púÄÿ]J5k.0B¡X”D#g0ëèQ±$ç9G%³„‚šûœ®&Š‹Ë¹æªXU¨c,ª oxÀJkÚë2°¶DæêšAº6Øãrk$Gñ0þ …Î8&”ÎÖ‘£þ (At¦ ÝÔFäâ/<R Cºó5„д=›õF •“UĨ7Å•1}Àäw€{d 15¹Ø;œaÆP­ Ž!&¿å]ƒÛÁ¢&¶Ä¹x'.‚Ÿß³úQû!Fb>|YI`T³N5{‰5뺦¤¨UmbÕóøzVkòUÖ5/Z´[«PwPçPÁe¢ïLD«8¼UªÛ£ºg‰u{áNnkT?|X®“;ºæeB‹vk»Pç¾ÿ ~Ë1t¡nκª ÀÕx4å)à¯YóÕì-®é s\8Àr0D‹ Õb„9J ¬zÔMï“æÅ¨Z<Ý'M‰õR3èk‘¾bbñ°Xe¨¬•!Ô$§óáL¨J´ìHñz»“/JÑä=_Ë&mG•ϰI++NZ»¥ýŸÿxyýz¯aÿ¡õe«”/¾ÁÝM³}ô¦Ñåï*™é8‹¨É,PÉotOŒˆùøñl>AmÛÈ×ÄÏy¤5òðè¨^;ι©q/ˆG–_ûPõÑÆ?•Pû*aÚC0ÁÌ¢®òƒil­ QüàH¸-JÁ9¾`žŸpªmª•g0ÿÙ ÍÞê@9yW^ À>Kr+Ç<Ò9NënQ^3ÚEG–v&¤ÂÛ:û¢R JúÓE+øØ¡Ú ãl³%ßâ<Jn¯¡A¿ÕŸ(…ÕÌòv½¶w½& ¥¦m5¬1 ·\9¡@ª¿Ã?-ʦ…gÄïsâ¸Ù±øÌÆ£oç·jœu)Ëè§ð÷1ɪZtìRNºZFF 5•Ú[û{=£H¦ž¶¦þÖ*(5÷b‘~}Ë3›¦Õ=¨µÕzÇþzÑÊ´ÛJtÑz*+.:ô¤#I7±vçm¨¬ŒÀô¨éríù§”º·(ïÔšòMœä4‡¦÷VNú{¬+Ù“›€&ZÑÁ×)¤b&„c÷Óq]ÁzVt<+9ž•­gíPbX²Æ·§^ sA­ˆŸu…‘Ýálâ_ P|o¨C3ÁŠÓÀ $EÙÔ¿Ivþ5rx¢I>Dj2Ó`×>ÚvÏPŒY<‚Éês˜¶{9näPöiA×ã@—Ü ËéAãÁ>ÑQ&]°+KÀîÄÁ®8`3%à_<RO#—N’.EB-åëR¡–ðr¹:oµ"-ÔÞÚ÷oª¨Fêo%cµCK>þYF ªË3”lÌ—CvrNé…e:7%'|Q‹ß­c>sÛ`Ó*®ß'((”’r@I€Õ$¿ÇOoëw Ù±² Y5vœ,\\ƒ¶Îá*¦. ýNôÕ˜<5ú¥8ôY"¯F¨ú1{YÌÃk?sÑÊnlÖ6å—N­ˆ­ ù½–ݼPªû×;í·ò¹¸öGcØ­pª_åGé_G‚ô*G©<á4°’GŒäâ4i‰•Ó8b­I8Úè©6N¬6ê6•Ù£ ¥†-×Ý·OØ‘·ËõDiº'†ˆæ'2”ªdð‘qôÔfäy„¨ð‚ônrÈj(y±õV}RŽNÕð9¶û*½¡=4öœ2µ}Ãs —F'ÉŽ+1—©ÀËDh=…6 rÆíµY$õ˜ERçE²™HÉòûÓ{]÷ã·£÷ÝzßY½ïDè}÷פwþª”gÀ2¢Þ.8!ï3 úElÀ†…LvlÐ „îd6ŒÉqÝÙar,Ñ©Ðé TùËqNõÈ O½"$5¶-²Zw 9ylÿ[s¿(KAÖÅ`t3Æ3F„¢ Zl–4WUͩÓjªæŽ3­l¨ÅTÍUTs%Ù\%es•š+«æÊ¯…Pswý¿ÐŠ©æ24©šƒNI;‘u¾¡š@g!nt*{™´´MÁtÑŠ ´ÍƳþÐÕ’&(D’¤†tj@åÏÅBÇ<È:þÛd%ÿ Ÿçüþy‘óŸráåüç9^LÕáóŸÖüùOË<ÿiEÏÔ±ÏËyÏsœ÷,>zÁ£ž¢>ê¡Oò䥺i›b_’€[ç.ë:iy×ljËEë”>[ç.IQc~îiL%i,ç1˜Ùu¥ã®œÇ„VàkKÂN„Ó‰œÇÕÔ™Èßá(¹ÔO;ó0ÉcµÃ'>ÈT<ÇQ†±Ÿ‹;ÇØ-èYÿ1\ ×AF`°ÄY­m7åÈæz¹£ŽzíH—àþ±ç½EÀ‰ø8y= LO×~fg^¢LNy.bÍMzqo+!r“4¦²^¾[õhådë¬Á/v\=‰iQ P í-ciØÇÔíu;Ѻ;ìÒ[ÓLòHaO ³ˆeíi–éoö´Öcìi8¥Im_<ÞšFí9MN¦Q†2ws{±¥Å7Œ@@ç`õ‹¯“1ºÑ¥k,Á’æj,κ•®±²iØ*Û ¥´m¥k¨˜µJv3)-[A3)ŒZ­¿­Qëå•ú•`ÿ»›>‡ýÏóJ¥RíÕíj¥Z-zdÿÛÞ~±ÿ=Ç‹@Èþ÷d>ì /xéÕU¼­ÛŬaòn7ç[æ¸ I† yÚHÓÃøÅ ¿Ê%|„ÿJ~İ>1ÅÆG̯¡¢Qªð@ôþ‡|ÿ”çìÕt2ƶT‚ù£ ª¸/IÁÓ”ÒœÎ(º~³è[ÿódÞŸ|G³èöÊfQ¶7Iã̹qÙ]M¼œô¶a|s=T@‰C€ ”\¸´Nš–ùBV7aj"èKöH‚t²%'PVn·ÍŠ **­b8Ól&Z’TÀ=]T’[úʘ•ß™h˜±^ ô<³R¯h}«g qn¶n»LÕ&ˆ*|Ä A› ?v¼E8|ì¨zF‹)íòBHæ$Ä:„°ÃÓh<š~¿—¢£ýÕ’Œ$:"ÿaÌ{xÓçX5L‹N·LÏ7DNjqꊪ¾±C÷xïŒ{¼”5 öG"ˆ@bøb…8í½ëˆ[™Ÿû©'Î5O æý|8< ˜FG•þü} 0ïº= ïh.EO\£p‰ý1 ACPzXâÕÿÌûÓÁVpCùG?–fF†üèÀ¥×i\¨ø³Ó €µóþ±‘ÄÕ‚Òâœt¦Ñsw¸Ù~l#PñOÔˆµù÷ƒ ƒN&ðÿ õwþH‘/ †Ëõ¯ñX)Ðé彚þן¾™W£é«,µÓ—P¢…)VÅ+ºÏ=Å7ÿ:/0SŽðûWw!¨Wj•!8úkrÅ÷^…iÅg_Så5ÕšO}5í3:ؽõ’3ðP­`Ô8ÁÁždKÁåx=bxµ_ÁíïóÍÍ^ô¶wP¡¨*ðÍí t¤dI•ÄëÄDìèwÐeôåe芅õ%´9¿Ì.À¼ja~ª)¾­Š÷2—НÑ¿ã†3xÜþÁØQ0>†`|Œƒñ1cWãÑŠFk?:‘Ò^!Ë¥[››ïèÎúGüÐ2kµ¢µEKeé?ô;ÕÆf­?¢µJ²VÍn£æn£l¶Q‹´Qsµ¯je[‹™5ˆŠ>iK ½x{¬€eÿE«K™„$ZK ¢J…¥ÿÌjHSZÁØDÞlÓÅ ¨M}ÌM+ Ú'ÅOdÿ%Á nÔÐð.'~†,í>™#^ýù*Ê:2óÉ~Ï1ǰ;4ÈÔéÏ”8èÎ`bزBi¬uümp @³ïáßqFk"DÚÉZ¡vrŠVx8j·M†ÀÉÛ‹¾¦˜#Tôÿò1˜æ6Ï_OÙl–|>Oñ™çʈ!ÓÁíhš7Kf°È¾ÈpÐ9ÉáÉR5ÄaÜ?Ïà01héÐ0 ^q¥˜†^é˜/¯| ðÈfƒŽ6LfÖíßû¨xÀçÄçù,ÐjˆV»: A¸Þ Ç_aT&þôn<¼Æd'-ùèÚÅäh5ÕSú“@¥°‡»VֈΓ5¢ž¸DœDb=¥9.&ašcHqgÀ—›?<`´ý >ëaˆÐ`Ákë^±ÅõÒ„B~’^zkìe¥ÿ¼רÁ FK5 åýÐÿ†ñLþœßbèti²¢§M%â˜ö5suüuıä2Ìð$pý,Åõóöó“êç'ê ~=àë–T^õ8IŒQÊ•i‚ˆ,Ò´Sj1{íìjù‰ººŠHX¦Ç&ŒØyvö¸òD=N±bŸz«OÔÙE«×„àZÈ‹Wïê ’]Ëd€Õ$»·“ÊÑîlo›{USŸ‘Ó«ºf Ê–—ó²âY0ñÙ]±WE/-”„^¹L•‡)í"@stx’æØh[¢M¦ö÷°ÛÏS`äÁ ¥êà¶íK3®Ç>rÞ F·X{z,lú31ôûS>E¶T^˜(6¾fk…Ä—b5¾¼-Áh•ÐE²¥gäÆÈ‚TS[' üY0B3 R%÷ úˆ á‚ 5øƒŽÖg¹Ä-†\j 3ý2ÒFkJOmĦ‘ÎYPÒu”·Wi&Fnôh©ñ ã“Ùs"çÁ‚’vN X'µOÿµgÁ¡Ã¦£ñPÚòánõšùðÜ·åtu(gcâß Fhèâ¨ÞEZðx,µ ÔÉ vÆ€3Ícµ›ùÐØŽz{Ü,ïJ9DÄ6)Ë*¬X8U\¦JY8h’fÓ¦ÉfÒ†ùƲÌAŸðûVuSJÀ|Q¹>ŸÛÓ6ûÏøM¶n_4N¡-ÕV’À·ÁýüÞ 3)<:m"8DË¡–½àÝ:·³¬i<¿µS»pÆíI¾!$y»kU'|F.:‰²AõƒkÔ HOÂCä˜l:QJf@e»…Ó Œï²j`ˆ!äû×JÒKéÂ#n#2žäié3+Ó˸ýØ=tâ³?ûêøˆÊ…ÝÊ¿ì5rCc }ׇNÏQÙƒ~b* zm8Ëã[´n W°À@­ñµâxÖ¦¸ñ¬aÒ·{<øv2Gƒ 0†)f]¡©ç~€6dXùDŒ@ô3¦{ʧÓ±Cöùa2FìZ¯îðDubðÁ¡µÇFlJ#g¬Ÿ'm_W@N·8#0gß3nú ÍAR>°6cÁùßfd©GÔ¥¸ƒO(i£9§:š¢Ÿ_56õØ”'ólEŽ+mIÇ&wšÝ«ñS€®‹É PÑ0¥½"צW:‡ß5 ­ìéÕdðø JFã (u*‘ÈÓÒð™óй  ³ã) O(Œê„9˜EÕ€hû¨NAJ|¶7Œ’ ¤¶C‡ [üümž¢í‰y…²ˆ(±“ÙàŠ¢ÝÚHÌT;HöLJoP®à"ƒ§2ÐÀ_@$×ãùç¡o/`©‡•KUš£ÈÐ9z‚|{ÚéujíÈýÊ'ú æÂ`µ{:í߆˜s†G f<¸”Ä!æ§29Ž ^Ÿ·Ï.B¹Æ¿D ÐÁñÈDH¦ÝÎÚpϧL¤¡C ’tikïAÁ‡‘vB̃)6ÏŒ•iM©uò˜'A‚í_Íæ¸¥µ`àJN\jxñCˆ„ɉ¾Æ9z „¡\WxßU S‡„)…‹jÂÁCAŸ]H=ïÖ1=½- N¦Õ¸iÆ; >7Ü‚òÎü X5ï\­ÃÊ["“óÖÔ1Š‘-2ûÑÓæ¬³t¾–t¢í¢8@Óê5·&;RP–è|q­í&ZFÜ9ó/‚30U >A¹bfÑó,ŸsîÇRËG¹y±oÄùS.Ÿs±Ì@ŸÇtÔw±p’†êò™0¡yOÄäürM˜°NFÇvçb•¦â2±å/uËf«›«Õ³°%Ë’Ñà¾;¡¿jS;£±Vk6óëìÁXTö÷5b¿9PöÃÍ,Ã5>vJ+ßjõô«5øâ“K&{^ÎS¹7™*î˜bÑ¢5#áo¤dU´§7½p¬ÊhPuò>(‚§‚K"¢ÞÏpì2{OÆ_µ—½””÷I‹Fè’\Dž`„b<¶žuˆ®ÆÃùýh £tÐûc £´Ѽûåhæ ÷i £±"¬s8ÖCç¬Üm'zåÀ2}ÐÖ>ã]U”AìŸ=YëÑùW}°:O‚ìezä3m¸çNúeóa>¸’ç[º eIŽ­"y UÙWÈM”õbÖÿâG§ƒ_dCÏÐaU`c–·ËÈuf6„WÆÎÀOž0ÐÍ•‘ïßN|ÍÛ)ú£!±Ùœ–9 Ú<¦˜y’X`^§ò¬Í9—¶H”üœ ºˆÛ„ÔÉ‚VïÑw}°¦‚ã|öiÇ—¡a‘ ®ð2MÒÄ fÆR—rÆr b1¾ªîs‹zÜ‘a¯–¼oÎ+“Îz¢½nìi‚rTuJ-WÝL¤}×ÿË—‡<ź­~q"c©Z­ÚÛ^W³ýƒÓöaŽþvÕf¿yrzØ0 \°Ìåá‡þT †}”¨ù)ÇU ^mi`®ýË€àª-ëŸ^¼måÄyû­¼Uxª\oèÞJÔƒF7LþNð§Ù¾ ïo‘šf ,†À„ÿ2Ï’È’D®tÇGèô¸íN[Ï駘ޚ𽠤?Arö'ý×`<ŸŠ²ÐF†ÐÄôHåêHݨü(+ òw2”FW1Òcår`ÔæÁb/ àE[èLû鯯ºqŒ“ªKóʤ?™1¤œ»[«µC­QŽ:¦ýÛÑ`6GÊg‹1Mœf”†öÿf¼7ÀN³ 2z²ÕCÕ$ÑlÐf×Âf‚5Ðþƒ~–þ)ÐUÔfbÚõÞLÿg2ˀ☮•)È‚P/‡þ_ýÑ,Ÿ}ƸykH&dåJ̆Ģ5 ¬¾û¢èY÷:Ub"å9®×k‡xõØäÁ»xŒt<=¾ÍÌ!p1¶üçûêïáßÁ©;ƒ¿ÞcÔ¿uþòch[Ý€†žÊƒXzNjÐmØ_ð[GfW Äãg®Ö>”S!rL^+—ÑÜøK<*Ìx4W½ÆÉ™ÇoÅœÉô˜iÆNT8(àÁ;˜ôkÎk‡ç''5b&vš‚B*3¼¼»-×¥"œ¤»ÃÌ5‚’’i¥ªÊw›TÉøxV×Pþ0©ÔáÿNÏþÈI³H.HŒÔèy~/´óÅׄQâì<ŠO«PeTÊI]€Þ»¤ Xàü$ǺFNoìåÆŽ/=çäæ$@t!8'>5:õVÍ1T+Å7<¬Sn\¦'È%ÐÑÖû°?ë‹©êPbUëÕBˆaØn K9QÙ,çDy³šUüSÚÜUéhÕ‘´¡ziè ©l=£ÇñVÒ“›CÑŽÍy”s²VYýã¯ù9¾1.T ŠÂúNj•e¬l¶Bmcߪ›ˆïfêºÖ‚L[œ‚¼*Ñ20ÕA˜ÙQ$uˆIU‚D <‘®£ªG3">zA`82ÑüSw©mÄK“|8Ô{;¨–äÇùVÏ/ibA^¢ø“¹rA7 :¡%‡¢¦É^o©Ðy è*UâvãŠÃÅÙ”ÜF)\I:•A%Ò7âêUÃõZ‡µ|«‘÷8D }ëåÛ® p ÄnĹâ|!¯†QÞÄ ôçuãÒ± +vÌvGàÃØ°ŠÛ‘\Fl°›áFNlY¹‰„Žäj©ãÃ|ÔÁ&.Ü"«[µ.*¡§4(rJÃ!OC!ÃNðdupÿ0žÌ@¹åt×}ºt aÓ¶ËÅÚíßÀî`0B/ã ÝT\ÌRj‹”P‰­ê™“õª¤~ç{²@ãa:R¼×Mý¬ÞŸúfÜ×í“zû†îýÈ¡ìIœåš¶Ñ «Xú7 R«‚j­3û—¦nоêlÇdNæ[ 9åp­íåX¸d0FŤ@81Œƒd"¡"aæ™b¡b"Xˆ§x™*UHÅT÷ågKaælk㺠Ó9’[©÷Qìf´s·ºoŸ°âkÏYÕ^zrð0´'IhÎ&Cµ¬ù|û´—W×à¹x64hÁ¸U V}5gün*ÊÇ3jn*»h›aåÁH\ñâX¹óf/„Š=,%QÙú { µê÷S†Gz¯Ã ó+"Vd]•­Ò—öÉhË%ݲiZ…/â¦U°ÕÒ‚F¤ÍíUíUäÐêÆt°ØŠ­¬/)Bê3ê7œ9]zß“·Ö@¬ÊGúz >A—Þ pQðUýf†ßT° BI93ë—ÿía<’.ð2ä@P¼,¯þd0»ƒN‚+ôÜÈ|}cúŸdû•é}>ßÂ}½-'l„j~I“Q|ýíH}0Õ— ÞNªzºAÅÝT%ÞÆÌÒT |IBD,9J~{ëffžSY[²›c‹ØEˆj÷Õ6Vq¯’Ñxrj‚›-µiøL.+÷È,AѸ%,;&7¿THëÀ^dBß–ýª¤‚‘‘Òs“Dã&I ÕT@YXo¶7Yœ'ÀÛvp³´R0`óŠ™3çÃᆠ€×VÉÒø¯ÊW`OW(D½nêJÜBì/8Ñ!¤"Fd‚âYË˰ ˜®&†jZØØ?iÝUC.ÆBnjv†Î±¥Ñfæ ˆÍ/ÐVɨÆÅóÓŒaÉcåÅÌEÏR,ž2pKÏQ¸î>×ð¸¾å¢¸æ½èrw€Ûâ°çrýì®Òõrl×Õô?ëÿn Kþ¤cCWEô‰‹"öÞ ó$ßÀ}…ŒÝIŸeüK¶—’¹1~³/tb‘ý£ô€fÐ{håµ—h…Šl³ G¤;"Ý@À™î§ÓŸ1Ø“ŽD5v$Ž” N9V™[¥€°8OGV¯¢²ÁDÔ±¸"ï—\@*aüƒ*}Ÿ_†Y£b‹xªhdÂ$¥Ê™LÔ`NæÎÔLzådÒÔ/óI0‰ÙtUÜ\#em/ä:9ÁÔãG²³`}UeÑ…ƒ$ µÆÏKQÕ(U…5åK„"õžƒö©±Âe¸à´£¼“†“ý=‡¹œÆj­Ã¼»˜M®cÛÿуìbG¹§·Qã~B¦¯áÛ¦$§¼£IŠ·0Ë>ê”æÛLr²q¤Ü56ôQz[„;ºÌ¶¦ÂŒ/eŒi†­×ü²lØ‘a¦c~Å™ŒÐÒ"Ã6ÓE|Þ¿ã‹…9qÍai§aË™"¶ƒ³?0Ml$gÓ;µß³«)³îVt^0ƒÉ¾h;&„‰ÊƒMï ¹žVk¤Ó‡­v¥¢jœô"Ç–Z$S wæ‰ÉDÚX+…ŤÇsU´‘2ÃÐ0Ôù{´ÛöÉ0“)½G|÷.ò\'jÚÇøíüÙU.mÁwF9‰–ç¹6‚:yh”$BC7˜·-OÑ•'óx¡æ¹8‡èRåex]Z?ÊETt. ò4¡`¯ÊJ °ÈY1¦ÿ`?oƒpN b"—61+7ÌËŽxw1ƒ)>6KáuÇmT0ýEÔ¼¤Æ©d=U½)™ËÕ=Ð)<S2ÐRÙ¤™Dãü2a, hÛ’Ë,õh±#±ndÅO4­F¾ý:aó™‚óˆ8æ#4ÿq<Š'” Þ¢ýØô8 šåÔ·èášéW'ž$*è.¢uµwýT¯µói&$atG4 g5gÏ&>Ày¶n([P0°û²3î¹ØE\-Å,1©NJ:¹ˆÐ‰÷›ÑÉÅ/D'êÀæùõ \ŒJxr’1v,mõöö$žËc‰Ø àR1òd'„ßáXôèz@iḬ̈áÊ~nˆbí©,A¥ AA´§. "휸\IÄ—"^w¯²ä`èѺÛpe`pu±ºggbXµ›µp7ÏWëg%¾Ÿbqåe #׉’P%·PµéÖ2!XôVÛÛ mï`ÛK˜AµW|ô~ä~|,ýÈ:‘ _d—NÞÉ®P;/Å$g5’çŠôt¦ÅLùˆÈï5oªï±c/ë•BõÔ÷(gPHëÆ‹¡Æ· h ZT æ<—#…Y[MÕ鈌ÐFˆ½¨@mÜ4‡‹8ÔcãTKeÄéÐõùFp}ž.°ôªv"îùðj/f{½ëìÍ®­ñšñÝ  ì[¦ý¦œ /ãçÌêê¾JØEnú‘C]òÚ<}O|˜äu”sŠÒÐhæô| ŠR[è›ÈN¤0seŽÀ«Æ*ìø=ìk$‡HæPã½eàZj¾bN[BU-ߨ nT–#ô>²wµ£z~°tÏdÏÑs³˜<¾ëç#Æh‰VG³øÏeé̬Ã>~Bû§”Ã~, ȽôZ²¨‹ÔÈ'B¥BlbAZAQ|Å .•‘‘ òœ§Ü?2þ\ÍRøÉK=Ï¡’hÜÝ[œ):tQ#ÃaðÇœk€Ó$ͤÁ7ÎBížÙÌ6r“'˜&ùH ¤3Q`¹ ñÐÏ܆ ý )C™wÍ\¢ú=%á;2ºñ=ô«ñèfÀA¡ìK¾B—nSsdx}M3 (ݒ«ð‰kjÁÆJe;}î5ÕýÉkÊ|x±·Ó½@7ƒGuq;^]Ä2ù7oDSJl ¾àãà­¨”¡t¹@ÃŒ¨„£øè8IÔ…z+aø%¹üNÄfÅ/-3¼ŠíéT`ø…C~ì’±úX0a¡§‹±º®AÄË ‹d’€–ìˆ×‰J¿Ö>Õ¥g¢™ ,êù(‡$ØÚã{QâxĶ‹Ç[]$wX°ÑH¿YðìÕÖþBÜy–Í•±µd=Çd·ñDehCÏÇ“[¿žžãHÑ¡POã29F§C):=Lϧ•ƒñèO—¾³p6;¥¥ï”bõI.A¹8…§üH…GÑ›^(\W֠ÿ­ªîDà$j;ªŸ ÊŽT]h;?iaýÎÊNÑ{Zeg7½œnEåt牔bq¡ˆÝýu”ba]ƒ˜BÙi¹”Γ);‹g¢XX£²SôzM1Ù=â1ÊN„…/©ë(Ÿƒf›®oG¬£dO}§ý„v7ÒªMZ–źò Ý%ØÍc,eÅEöf}„ˆw1]ðÄù`4˜ýe‹yÜ“$¿•W‚Éþ9¬’ ƒ,%ì·§rZ€žwžúÌÑðkpZöD¬PawB“…R×¼½´©´¯ åË$¹«xb¡9ë©|ÒÖ¬¤XB0,0h K{ó8₼îÁÐ" ê9.¯‰¥Ma"­5ŒHÊi KÄDz•0W ïÂ"L)ì¾¥™RÑÍ”ŠIL©¼þaò¤?ž'»NOúcužÝt ‹o”Òó¤bh“º'¥Ù­Š”Ö4,©¼~–D¡¥šÁ“Jq<ÉíCé-t¢¤Æ öц–ÐBtµ“Žá+›d“ ú!ç[[Ê=½S%÷â÷ÔOJÄ j¶~R{ný¤öëé'¥ÅúIªUåôæ¢*Ç-ª²{Q•â¢úã¹Õï)`Ë,`k–€­=·€­ýz¶¼XÀº}9/ÅuÚÚ2b³IÈfÅ¿u¨eÔ^£á3‹ ÉM~xÍ«‰B0fH>ëÅ#ů 2ª"Œ3 &Œ.#˜ÓÏq¨xb‹|¼»ŸÚöCú ã£+È;†ûøT‚ÕVÁg˜?f)~iCñ¨Xîp´@Ô/ƒÑÕx2_†ßE› ŒáBQ–®é QpzÓh½¹¾ºû2ýœ¿YKxUËezß®Vé½Päï…B¥T-•þá*ÅʶWö*ðþTKÿ…µ´¾à5ŸÎú!þ|lÚ¿OãÊA±›õ Ç/õâÅÒ=¯wNÏaö´ŒºuÊš¢fuØ{ŸUÈ=•’]]ØN/e”¢It©o÷µL·ôœÐ`71ˆhÕ(ó i°*%r5ŒÜ_Ê{YIDÐùhðWž\˜ýÑSÚú¹àhËã£A_ÔýÉà„ßéø´];­ÙµLÛÿåS²…"P¶fDù¼Œl.j“Ûy(h°+*6é‘44²Z`ªàžÙŽ#µ•ôÁ ®Ká½]È:ⱫÀˆ›‰q¾9ì Gö>¦Â7¨å {žáA ÒJ9£/Ð?pË ƒpžáA¤â|ouÓŠâÏæÜvÑùù9½Ì›Á‰Ý0Ó©Ì_Û‚Ò‰ÏH2&B˜ Ì@w˜Q%Çùäé42¿èºF–ž #5ß­÷:‡â¦/ìcÚ«aVRq.ºx±H%iÚàüFo«`¼( †b É7ÔÎñ÷ ÉZÞÀâª?¶$ÄÿÄL7”«eü4OÌdŒCTNÙ!Gó Õâ©ø ÊŶT7j?R¶%.ƒ9Ua‡JùlÂùO¾‰W/õ•ȼmL_eƒ2²-œ¯ƒëÙÝŠ|‘E0C’Å\}…©À°²“$³üù}ÐZ(G´…`è†à_ed7œBg´:Ü2U£tºé¥TÉÐe†×ÁP’•Y׃k“:²j’”Î@¡¨ÖúÑD0²QòG†Óä°˜BÞ“º¢¹pÜ‘vê=&¤îø=£cužµ@e?ß UÃtËêoùxö_4­*+‘ Èd¾2¿š3%¢AøyÝZ@Á¡Ö0ô'%ðæF§†–exÜ!ŒÁúÚuÇg+2÷˜âh2QK”N •C³_SJ­¢MËäZƒ©I_ˆ:Y•Mäõüã* jð£žùšŽ ¬Xˆþ_>Þ½§ „×*«¢žk/¬>O7žxY© ¢ƒÛ‘‘¼-Ãaœ37ƒ ô@.Šø:áå ƒLˆb°¹õǼH)9×ÊHe*ñM¼Òh_é$’žÌá¡Àê¦Ð ~5‹Á†ï} Пåf¾Ÿgƒ‡¡¤"Ži­Rê©’ä l§…àȶ¤WôuSöN¦A¢ÔÌ(ÐQd™’NVN±Cq(8ÉÀi>N=Ì„}ªa¶ñõçPvG=ö‰cj $«$éRêG”9™õh,4”rüL i‡Ò¥Ò ˜`hóÏ+m0Õ©bQ¿»¾ 2.sëåtm(gáÁiCs2ã@‘|µ sB¨”ãÔṴ́i‚ÈxCPëf>4ô8oeuŽ}5Ãù7eQ…¡ù µù¤ÁŒÄçƒæ¹³È¨™¤TÞX+J)úò‘‚ ¦…ŠõÙšKšèŸ1z¨Ñº¤'Üíb~¥À1cø†)HÂÉ_³#2A2;9¤*¯/i´ÜÌ-phLÅk‚á Q4€[ȆPdӬ͙Se"ŒÈ\ÉæÔŽñWãRΫ¬Ô”RBMéØ..`vîÓIÈïN°'!>ìû×:ý*‹Ó`O®^:ýcžV3s½’ƒì±ŸýÙWLçÍ)|Ë…ÝÊ¿,Ê¿¡!¥; ª§´ îÇT¡ c\NÇÒ‰Ê:.t T_+¶o¡l¤©„Å…†—!Cßê ðÇÛÉ\&t˜ÂŽß]ùfqÎÿ0Í|˜Û)›¦c„ìïÃdŒ¨]^Ý¡r‚ÿÁáÈFkJ£fBPaÇnä”PBs [Nßë̸a4Þ(¦=…düo3²· ÞÊæ5&0Íù>Ö•–؉U MziÞ6îY‡m4Wã9tÕPNŠý §[E'a¯rÁ®¾Z°VÆ÷œÌl;U™¦Ð4KËúlE!p!f:…੃‘¢ £˜ùVv% Í>”˜‡ÿ<ün Í·ÔäÈÎbÁÏß×ó hó \ø#Ì_2\QLT …™j‰›i@iÔA¾ÙÌt€V5ñPÃõxÛkkJ¬ÒJ YS¨gd_^(‚ßžvzZôÓÞ##G˜ \n°™ýÞŸNû·6kÍð`¾fm’WiÜÙùR›+ ZAeMUYã$ïú:ž|¡T”¸"|,Ùä“!3…ig­±<—¶7R½<Å_q{`EWÇuGtcs&U9¼u+è@ìð´\ã(\§1³W-ïÿ²ð&S§*‚C•0ûÚ“ˆteÇ—C‘I5BÚT!iÏ00«ÑSÃb±be¢S(6žÅñÍÍÖb4]Aó\¬„&G¤Ã5ت‡F/‚ FúZ•¼ÎcÈ+¢òÚT…i•íóß­0XO.ð–„‘~ wë ϰªÊAŸ´s#´a!bÔW9xïiS~–á£&ÀD)H)zbkJƦǜ0"52½‡äU>¦2Ése\5• ïÍ|øÃOý¿Æk-)ÓƒÒù¥ £3Žqe´ [Üz|§Ý {qzL`¶Öó2Ü¥ðB¨L&|ÑŸ 0‘'ßH=3“{ÉÂX—þÈ¿ê“0A˲:˵üÞñ¡ Ö#½`˜¥vCY¬ÝËM@P‰]c+ÑÄê³”ŠbÞÜ]õãEyü‚êÆ JWÛj9õ¦‰<@ÄÀ™gÐÑXt$l¦¼4^-܃ÀÊáƒÚ”Y…{ÝØžkÑÞàD[#²ä¡ãÁºÃÜw¬½ëˆ:ú 7Ã99š:íÛ/£ø4õ¦o؉8ÃTðj£%•0®úgã¦ü‘ü]™éH/jØ37’pÓ÷·˜å6þ°?üej‚k@òÁ @ÙÀ ƒ.(SÀH&ã1{•I…’ïs%¯ÉG¹GFä! ŠÜàf<Ÿ0ßÕq5¾öÙ5+X¥Çj¿oÔ—É×xÛžñ¶ÐPMÔ-”‚V9Û™]›æ‘ 2~ c‰#ØÄŵˆ9ÑìÇ“kEÓ· ßΡ—Þ Ä6sšQ÷ÿÍxoŠEžéIV™:ö×ñ2Kv™˜s\sÅœè}<ÅPÊÍ9°pèW†Šcœ»|á°ÀÌt¸'}êµ›¾0§wO£MA9°X’‹Ç»Zëm"ø»PùE±é'æéIÐ$×Ä*ÎDî,ØW'Ùë…’$çø­RS{…ˤAMvŽÂ[Ø9•,¬“ãü¬ ã)]yßlöÞåÄ1&¹§<åÒ몭ühãAÏ©tÔìÌ‚$~zÈïY§®$o1yL"%PlIƒ­1cŒþó˜D©à¾CN'8eç"Îs¨²2&à%³+ê’*#£Nèůñ Öê⎜òŽÁãìÃò÷Æ' Å¶EDò÷„vºóÏr‹l´ä†tpöGNæ0ÌIOëœÌ£"ßÑ76 ŤØp¼£ÈÉ´ÓÔš¨sƒÊ{嘩N³ÝmkulF† á9ÌÓ›£ó-ìÃþ¬/¦V2w‰•#g<Ù¦ßȤö•Í2þ©`ºøä÷˜ö(b~yý¯¨RÛÛ_㇠K$7ƒ‚ ›Á\ö zYý3¿&1QLG͸Ä¿šÏPg]k¼f…× zÎtºH®ÚLÈè­SÒ[ñd²{O¯a ç£æ²Ù“9Q[µ QP~ìºî¢±ÐQO¼Bô³æ²ÇŒ@!@¶‹ì±,³[ô]t +Ç"[·°-ÂÁ(TCxGGuгìâ5ÒksóqYìûP‘KxcsÖ‡‹óYar%gõØòåH#œW7±‘J¸ìç±ØëhÒBÝÿÈ´ϱ‘dl­Hk¦NKUÉ‚€ñŽ-[1bÁm+pv€ºÞ{ nÏ0KÆÛ3dŸßȉ­ðU1+‹Rè‚Ò‡ùè‡ ­h|U¾Y.:¢¬ðOF͇ñ€© œ7^ßÕáÆNưÝHb$´/Ù—ó ôo@Œð\nCw 5 ­ü‘Î k“—–®Üx˜†ãÔÛÔÏêý©’Û) ª¥´D¹CÚ—.ô%«“íóoô%XtÇ v@È©3DÅi¿ð•>·«"(áÇðJ¼÷…lŠóLZ™î JWI””é(kÇV;¤¨ƒRs” ™~áü¢ð:ÈŸXô–ä1w;6Žp(®á±b›…œäjÄÒ¸Ùd´—s”Õ\Å"Õ¹¨rc´J»"3»ª£ Ð .ƕٻ=¥y‡[Ò…”³¥Lšpcà†¡(jáwGø)uù6½™1 bû”ÿ ¡õeޤ!=óeª’;Kqhë«b˽ª½ŠX º3\ûx‚wŽ^à¯þ%†  Lrâ«¯Žø¾ãž¯‚¡qª? §T¢6@Óñ¬,0ºöà¬ÒI•K=ÃAÞ÷íäá£öqƒ€EÊÊ›eáÙ@gÆ•/©ó?á{ä±0žÎŒìó9*]Öû“Áìú µ+~æëó|) ¡¢?Ê#Ùáø¾LƒÔ¡6„€j¿bÞΗ¬jÞt°ªí$VÓÈFêíºëÌ Œ,³ƒ™₳¢Bpø]@à %놆kóG¶§·„ô›k  ±)yűÅ"¥ˆn÷ÕvT•Š]sxW4Ú£{`à·ø_é,·ÂD(Wv'‘³^lýt&wæf¶eg+KËHqº‰²;&`‰ ½ºtã›íMwÞBðöâL츱ÜÀK°˜ kC^ÉjË´;*­§+ “ÒtF˜;Eå'µ¼J|84·¸c%‰Ä”غ3΢ð÷×áE™ãU^y´éom‰¦òÆÿ?âýxr®$ÃñÕ'?¾$nêês-6!›±ut؆£C¹ðhjNíhd$ªD§­ÄÈ‹ mS~H,ˆÂ’è ËîÄÄ-Lu9 k•`[;Ήÿ›.Yÿ?ò8°ŸÄ]{¡SÚSjl±ñ¯xËa!ë[r?~YiwÝ9JCUI*#KvÊ<÷O=DÇô‡ÈÊΞ"7»ˆKÏî˜ø íbÙ$íÖ ¬-¸xTÖe±®lí"œ{y%òUí-1AñÉÝÅÒùÝÅï;C´"V˜!•{ùO÷¯³°þÃ:Âi¢Ã“àæg¿ïHÈÕî"ûŠðÃE{Ôž=§â, #›ž{ÈÙØ¯YÂcåY´h»œ;:&o´rÔQì'F£Iq˜ß$#Á6)] ùYs‹Â©oî´tü¹¡–q~èˆuAàç³}:’ÝŒ¶¿hиáô8áãÂu;‰ÝM‹R­Œ†ñvÙzDʸ`"94Ø‘r?XA^,"/Ò&(¶Ì¿®.z…tæ Ç7¦lØ] €nÅÙWü š‡–¦¼mó7w.ZaD—sÃ%ä2œ¢vãœ^ #aD©“×3TÛ\¤£®ƒ.$òç‹2 ˆuÑE8v\ÂRw“ˆÝn aåUÛ¬òKÚJ¢ ´E\¦»¸Mê¡LÅ"M†c ƒLŠ ™"5•x±ÁfRIryAfË¿üÉLÔx™PÃ[=¹L¶Nén2°„þ-z4…+·0’†»´c…¡IÏ.â÷°XÏb)g¥´Äc ™-¨Ãv7¿ï𦗷¼Ä«·ÈGåà5@¢Ô£^lÜ~¯˜ÂnsH™õ6Ú·ÅáÓ…’ì‚?ÖƒùL× ™;Ö+Å#î´­Ä9"Jÿä‰xc)olý–¼±õ7㥧㡧Š6Ê L³Ä—ê1MâFëeš®ÄÜbù°™^Ës\èÌHëgxo‰.-™nÈxÿ,†éV%;òrŽhœüB²RFž™?j„¢oÇDVm¢w.^ùåK•ˆ„cÿŒ §?Tº|%úâÎt½Fª›SA ¥³jy¤Ÿ¼ H t³±tÅí81”P§ºB ¨Í.Ë£Y†êÁUä«ðJ$ü 3”q†ËëCÙÅ[žèK9ð»;ÅqB`åñ:–Ñ_ãCó å½IÀIlÉsÕÐBMÈ?h>Ù]>„,yÀÄ…å‰d»õŸ@v3Böð Z(Øñ²Aº¸„+©s´¯žqS­£#u¤—¨+~ëIÂi*2SßW7|‘Ã^û3`*Ó, †Æ®j`·9Ú –Þþ¥ÊÉI™Ø­p/Ee_Y«÷Œƒvy±+ïj©¸ß ņJ×RÕh‰Nösv¬ gc%£’3²PÞÝØ¶QÜÒ4V6*ÉHAùpsj~+&5û£©¯iY’Iâlíì7ìÎH«ÞÔËH·¼â~×Ñ£º«±Ýý#gØ#»Íhc¥ý“h€òßH ¯°Q`¬ I´µ²Õ»~ØAœÍyû---î\ÅjŽ=GÂÍéõX¶ÖcϾ׵3DBr†œà(O’ r´‹…O’V(@¤*¨BOsÌ»ó˜•.ïq¸I¨‹FTWü=çÊ(î«ðy‘ʲ¢F+ÒãÐ(/FC®´’±Ò8D5±uqLŸËôC_à×rF>!¦¿ÁWŽÂ’£HUP¥C9A_³X™¢{»£Wc)Óž-zuRüçÙsÄöàIy;ÿ¹R,¼Ä~Ž“[8þs/ÿÙóY…vŽ×Ã1ŸkgÁ®òÖâ!¬ŠCÌú«é°’è#®Üµ"þÁ| nôü;“IA.Ó†‘–¹¸ZMgTi¹‚OÎZ̓fzÑ–êêß'Ò´gÄé„ 5a™HÓMîyÙ`Óµ3YíÐSŠ‹M–TѲúPÉDcWLjµF╟Ì(Öñ.ÌXת°Hô§…½€u” ÅÊÆu%?\ “‰#h÷„ ú¼(ðµZ;ÆmêÃîfì¤`×F¤kµ‹\!ÞuÐæcB^ +êuÏõšJ ÿaâOa Pd#Ñ—A¡(Œî»1à€·ÄuÈ%ê&»Nã ¼œŒH£{c$`ôÃV±žØŽ$+¶[  P${Ûy«~˜’¶€›`s2¤‰¬{öñV!ô_5T±Å÷?¼¶FÀhòÌ5Àeà¢ð‡Í*:`°’#¾àŽ>z5W"ƒ”bxde÷ Õ/ƒAšªÄ8ö†3ÐM‚ЋÀ]ùĵ?ÂxdN,0Ð@ìžÂb…²ý««ù¤õ=Ç›ÆëÁÍ?‘1â`·:~ ^ úü±“º![Bµ(²{Ül=þ#gf.4Á[c†—3‡Äwx`Où/²¤Df£¹!Ç2›§ H ŸÀN^Öήû8#AaŠ¢š0ÍÜ,„=Ý‘u‰é0£|#ÙÐ6sÔ7’ae6."í«y,Xâ¨SG³#™vPÑê“Îï0ÔU5ÌS)_:’6a<;ãÏØùŽ•$ühÍR¼Tu£1’M¢·\6 t… ’’E,ÊõWJü ³> wâT­(͇S= ˆue{`ºÍèŒ ®\‡Ö¶7\„Œ)R·”²=Fº¼6­Œò x„aT¶0½ŽÒím•9H÷^¬¼hÁšQâ©á.4 + ˜D¾k"Â×8FS×qÉ ÙéËË8¤Ýu=Y÷(@z?ÜÕÛvõ¢U½”X½óVÕâ©*¨èœ a…˜‘õl:›Oî9´§ªòùÑÄ'žz&j F2ÔK1Ƴ”^Ü”…¸áïTü”AèKg0º5! æïd‡q©t£ÊCNu¬œ5fQ+!މßNx±:–5<˜mðbÖCº#‡´1›ÀK!_ˆx††æÿ‹wÕ hc ÷ÌâýÿÄëúúû§ýÔQbE"B0 Äe†©éè]±`Ðý4X¸È^Bɉ.i„ª¶gýAÍ‘{„õ‹æš‹ãœB©¨5h´Ki§»jyÉV/‚ª•%[5ªVSrk»v8x{ê ÇúmÕ:%ý-n#{¸L1z ô¤}јr }ö¯úhïZ£Ú¿aåÛyö3ß7¶  üðf!S´HÕÅ@ª¿ 9afŒk_ÏÕÎïÝ“¦9ïSQÜÕaãKe’›’¤F"¬¬÷ðw@ƒCŸcWcÄsPI®O0ò74  `w‰…E6SJ¥ %Ô÷~]F­PnK”)ˆw7¦˰E]?`5¥ex£«~ù7Ç ×8ý¨¬2Ž(UWG£þöo2Ž5×8ê~¼äµ{Ék÷’×î%¯ÝK^»—¼vO’×NÚ?"ƒ¡™„N„æ”'¯-ºòwLì ËÖÞ5kWW>Ü€§?|¸ ¯-ŠuÏÎ’çô>º’åøEòö^ò>aú¼ž ä%}ž¤»—ôy/éó^Ò罤ÏÃW4}^ï%}ÞKú¼ß"}Þ›äW¡Óظ—Áóèֺήe[¡Ö•Py)­ÎšÒØ99Aí_Íæ–b+ȯäIòñ™µdî´ä„i5™|jq´„)Ð8eÔxËLf åÞí±ïÃ]3¼CÙ ÓöÂŒ&|4•D1b·Dî@Î~÷g¿  hªè²‹F·¡¨#ðFæt ±r¥5¢ÊøÏ˜T„Ï2鲚bvilV[ò#rèý”±\ÉnðîH"ò$î‡óYäçS{ñÓž÷Ò•°‹ù™Ð ì¬ÆèUÒÈañ—!§Vz¹Ø©k@ŠáIA"¥_w@:oC6¡„û^rƒ£ÃÑL ëì°™0Td#É"e ¥» ¯¥×Û:Ò…Ò*òítâЋŸ9px³‚/V軎‘ƒi¦ÝŽC-¶)Ì@•ñ& HG¹=¢vci®#ÇàÙ`­ k¤ùÂFpEEhƒ®™YG‘¶åÐ ˜Î?oñfkèèÎIG;Ø©P(ÐÍûC :ÜF‡3 qgEâOVø>¨E„ ú u<â!3!èœWT­:°—˜_ÝÑE¢â#Âz£´OÚ3ãAÞ`.rD$ïõâ„’ D9CR”/~¢bv±@1ëÕΟp±Ä²Us2•'ù¢ubQÄ8ºN¸C—"<Ø?•m†Ý£²Ô6>“&S_‘ˆÍ†¼z·Ìþpn!ÉÀŸ!]2:(•Ŧh£ãÁkQT7ÅðV=,ɇ››EK×¢s9*³¯˜~æÏlN`Ôv0€°OY+>÷a •‰Mõ*:r¶™-4\Æ´ HU7%v•(ÊÙG¢Tþ¨p|DÞèbõoœ8Ú˜ -oOYüÿÃû›?÷84»„D~.í)[oä§Êž20E~ÚÝ£þƒðáœqNÎ9æîBúדb[ÅÒ©IĹ*†-ÙÎÆÒl¶¦ëDŒ]ˆ‘e¯f’¹ïMçm$Æ^<8휵©F˜mD˜ˆ7"Ãñ¥ï)y£‚½äõÖ•þ^y½ë­ÓƒãFSuðP0ùÈSí‹fç%øK>ð—|àªÅÿÜ|àæÑ»¥ωwçO›œÚ‚r;²’‘*œ§o¿jæð¢Ngà QÒíÔÚG$@\"HK› ­ÑJ†ÕhYä°tFó^çNí ~¨ŒŒæ-#«yãäL'7ož«çñ4äô5IQpÖ/AË®Uä_Ígt­kÍŒRŽ}ÿAÜÌFWwþØS<<|WdðÊ7¢*Ä&\×Å š°tÎB®š”ùZ'¯·²Ò³Ôµ²Ä ¹% r `ìñØ\õm#W½”emg®zù86W½…„Wˆ¦Û‘Ì}Éé(}Ó/Mq€À”Ïü_ã ëêT÷¹ s5ÿfFˆÿùIïSä£$½—ùèóÊïF+-NF_Œ4UܤÑ+ªTô››ÅÅI苺ñG&¡ï=úŸ–s^…ÊHUKf„—Ð×–“žu_\_í^¿eTY¼àGßi;c$ª¢$öÀpŠœÀÌN%®ôÀ¦™A¼Ém ጠ*r½b—*¹yÁl§„œòÜ»¹F¾GÆEE IÞ™»öÖ8¢¨‡òœ`Í5”Ðâæ&Ô¦%Í_Çpño8ÿ#ªÒ^»‡.›ø{q³½É%Kði³hoÊòò¼;¸|P,’™Dµ±ãåM„“À¦Šò8·7eê;C£'VôÌC­y»dëö¼ñBnãÌÌ:%+”3·ºâ™ÐIWEʯ­Iÿ†¤X(ȤÙDŠ'fhÓù|û´—W7OeŽíèlsZ€hÕW+€ßÃt R¸„s j:‡„õâ$7jïÍ5ùž1*E²0ØÙGTnñWµW‘_@£Ñå60ÞG,_¬iJµO=Ã!±Jî{‚ã· #Ô¿Ç·Xì‚E!#°áÙ@§t6 —”ë°ð¿=ŒGңܕÈ~¿¬?ö'ƒÙtv AvøœÈ|}cz…ªWôGéÇÇ‚FLœ°«Ûµ«áÚürá¹-œ/Y/ÈZoÖÙI¬£q´+íº+EÂ#…æ±à¬µàâYˆšq ñÒBîmïøÃëÇ+„×BS®ÏckýÙEˆ÷•õAqSþh<¹5ÁMgD¶ ø_ #M,(Wv¤8 ^*C=†ŠŽBW)é+©`d¤4Ç,÷˜E³Î&e­¦ÊÊGv*^4—‹=`:AKƒå¿1Q…T†­4Û›eª_•ÙÌš.½‹²ž¾•£o”¨¸Ä„%½·~t¥æ²Jó(¢…8Ö™z0œ ët$ÿG¼O®ñ¢ž¸EÙä%ñ¹H÷‚ļ1½kûËpßlÅØäRMÍ:ÃÐAªì$'ÄTzA>@¤,µ—ô' Ãr,†*÷‰LW³Dæû'Èénç¼o¯’”9H“·hLâ³Ü/ŸâþéÆB{äX$D|ZûårÚ?AºôGäJ_O*{;KzûÔL“.g4å(Çç¦_21ýï7Ìíøt’kæøLôHCÿ ÑŸq}'¤ž_SÞù§™-þQãz¼0?|89|sK'MOJoçfçJ*ïz3)ëúriáM„œYáÃ-'Ž‘B!)%¼ÄËS™‰UûŽâîôñ ŠJ”˜ÜYã)ãSå¾]:Y||’FwÖÛ)oIl âã,œýø 2E1I„lUMÎo§D–݄Ȕ &ÂcÜiâe[Ž­€]È7*Ï%2³ÝÄ“§›¿=zÎ%†v"ø'˜ó´9ŽÝ Žc²§LûÎ[ÈâN$¯±#שseņšÎódÂ(:€Éàß ˜J!çx>~Ö¹ùß{Ö‹O0ë&³Ð¹ªùuÑIä@‡_çÈ\x:ãUÍįñ0 ˜ôo¼ô¤ù²Á‚í;a9q-G9™·–eÆ%÷p3nýâ̸õ[/Ëyæ×ÌŒ[Ë2㲘bÆ­ŸÉŒïY/?ˬܶ…|äI^i1·}ºÆËnÛU·DCú+¹ÿÓð³0'бÑo§˜`cÅßñø»Ã¿¿?pL"ùĤ}Çd…Mµ%"ÇÚDÏsí|!zè1¡L'q"&:N/–;T\ó~fëðg!‘ñdÂàì÷×Ì+OÌÔ¼U]\ýÌR±u"Vµ<Ÿ”¥Ÿýþúuõ¹ôë -䪛ãŸÅé×g†+§8žíÚ̶ÇéÏâôê54ZMäð¶z¼,‡//àð%Éáñ,ÍE'+qøR ‡Jÿ ~;÷~ ‡ÿ½¿ígâð;ŽyS¾õÓ8üï=w;Ï£´ŸÅ)íkà¦Û‹Yøú݉7‰P¬+ƒ…©LòÈÈ.mk‡U[ç’I¬Žñ÷8K½ç lå‹îŽO-p <µLœ®4mцŽ6/“wÛ»®©¡¤q‚r{´¹ŒÁ¥±lõ±ëÓ¬^Æáâ·^½»O¬Ÿišt[>#ÔX\75Ƴ8ÏY$Mµ%M‹–º’×ø³]û·&;ï)N[œtWŽ›dõE )–ž‰]';t°A4žR¡–~kRz†#N<·Ë1ZÂî‹jÆHWh“ ”Ò Hp³ÇŽ)—’nQ|9¬hD<ð^˜§*7 ­‘Šq?”â~(«"îû^%¸¾V…ݘ—Á‰8=yO}/ÊïQ‚QøjEÆÖ‚º%³n)®ýR"Œ² £nߪëEÝží! ±=îÞÏW°€|7Íã"aÔB4ÏhÆÃQïãi 6ÞèúÛ¥ˆ]¼ž~߈FÌûu4óŒÃ£"êa –¯ðp4 )˜ùüŠb°Ç1À’“ˆ9@Î&Ç¿Ø"Oq!V™ *ÒBx&5;Å‹km{eÊ¡Žç®Âd]á[{AÿÙµ;Â`tOð}³÷W˜uf'•¨Oº IÏ{IÏ»šP̹î0RÞç »Èûœ‚üóy ò•k}f dïUxßáUEøt5ðiWPÝ.qZ—y_RŽsw‹ˆàrT‹d)†µp‡"¹I!Gî21ä³Ð^¥œ´W‰ "Öÿ.• (gŽÝŒçÄ­ˆTH¯ˆ8½@ĪÂX1 ÎE‚‚ œ:‚ˆQ„) ™Ò½J¥»µ…ò²ÚB¸£a./ŒÅ‹KdÕUžfÕů›jòºQû±Ê/¼nÚ·u³ààF<ÁºABˆI¬N+ÔZÁÊÁN¼–*’ÕrHQ¬Ä*Š"IW-K]Ѫn$"óÕé]`ô±Ít:¥‹BÜÓ5¾ºHeq‘ª»ˆ{ã®L õK~=¸¹ñ)ÈäøáØ:Êö–·¶„ VJ)µ¢:U^ñŒÄÁëO9b"dºíVAîx„mæŽ7A\´\ý¾8w=m¶¢—Ïîâ5¹¸›vš³n‡á@_¸²1¸Âk30D0Jg®_f0qrNl4äáÅä’ÓÎs:l˜”`‰4y%ûØ‘—PTl®ÔŒ\êê¡+2OÉÞyj9˜ë¿‹_pê&ÖÌâ)»P¤“Å#…Ò&űØloaì…,q° ªß¯)Ôâ&ÝÍØ,&]¡â[|çcsÓ±ÕH((4v%4¶>â²­÷*®D5gäòym %'RÜö‘ÉdôÞð¦góÛK0è6{]ÈuÐæ8Ö¨Y”}&»?­Ìœ€ÅO†æL5/5-RÇÓð¥µXl‘#ýÞöÿ§85Ù·˜ßì<ÚFJÁƒV±w–l5hkƒgI²»rÑu¿)a —²8†²»1æ&‘÷håBÇÅ ªR¸Ô(1Žä áîÍÖ%âL¥ÍsüfðŒX¾°Y6mŠ\ ¹=%¤º%æ L® ì†ö® 8(Ò¼¤°?(Ê5sÔŠUq…Q°4h?v}QHZt©:wýˆ­7#œêÕ]f ™mNÛ\‡ˆ!nV[\I L¯®‹Õ6oVûÔGü‡NéÓw΂´Ì`«#ò3`†±eg^³óe¬$¬^PÂ%Ìü€‰m]Öèøjj”[±QºøE;6b¶´&·˜c’Þ™ žoÉOt7žX‘ÅÊ[רÕÊðv‘é™ÀÏI[!²,œú¼äQ0hÑ`“¦çzÐΡÔkÇ ã2Ý Ê<Ù iTÚnLž|Ð\ˆ¹í ÝpH¥Üøb-ܸdrãÒoÂo«'áÆaìOJ2èh­}˜¦˜0à©ðr#•¬wïÆèÝ=œ#RP# Ú;)”Ë™B¢ NiÉ& YU[c¡˜°üŽÖä=‡&ïšüX çô…æCj篕rniðySŒ[:»2¢6Û¦i(%œJJYDZÓ¬ÕPŒq°…!b³Æâûmz+)⚌©¦Òþ<Ùš¥yý­—í³¹ëBK´KÏá¯[LˆpB³vñ²y5ºbg¨Õ˜î6Ï/µïíhñ)Bn¸W#»ÄÃnhO³]ÎpæjlÛ«±˜bþ¬ LÑ6»]qÔ ŒÜ}úõWàï}ªø ȹ®v®Kwq¹/z¿ÔÝ¢—ò$´çI—ú$ôt4üÎÖ-N‡‰šFƒøÈpÐÍ\—ûUn©%—Âzh¬¸@“…§"sQqàt²ØEhWÃðÒÀpºákæ‡yì$¯Åm‘Ñ>leFûl8܉ ·:±È¢îúÁá_'œ.v"êedžTÊR»ú5{øÜ‰tnwÂàÅ'ê¾™¶ sDȺÏ€ùuÂÎvЉ·m;'k[ÄŽ^2cÐã-øºL·dG=±XÀÀ]ä”·^,Faiï°'Òúì‰ôr‚_±ž{"ÉyO m±ÿžÐò#z;I¶ä<õ1²Dþ¢Ã‘O¬Ù—O¤pçÉ}‚eV1Ñ©O¬Õ¯O,rí+í¼3ñÞ}"2Û¶ƒŸ«Â#|YÄ£ÜYDZ±À©E¡áôkQ=tº¶ˆãn€ÌZ„›fä;îßSòrádçÍG±s±&Ž.’™zŠêÛ l¤_K0w‘’¿7ñw±$‹Kpy±,£ɼ^,`÷Âà ¼&õkÓ |_˜¬ßqëWóÿ°c¥~%‹€EŒÓ) R‰±P2ù¯¹ØŠ•( Þo5[äÑ‚¼ÅÂÂ%£ò Ú¢Á„ȇR$/Y¢ˆ ‰wç×âËPÌ@Æøþ/ØéÆx™§n8ù¾s†õZYÅsß‘t6¾úÍä4O‹»]Ç/Ê„›KÆKöà–êò[54x>~«fXéPF·—ï­fT¸;nÍ›6ãX+Áß|öÀ÷‹_Iw®Ä²¶ÀüÎÁkJáà5ü ŒðEâr'´Ãóë$gw=Ö Òy´5ÞìGJf-òë0Ät×Ú…‘@ÀÕæíuñŽâ,ïhÿðŽÒ/~=ï@"^Áê’pˆ Á¢em–½…²Ø6X¤:ZH¦ÍEç6ÚiOÊ+˜rJqQ ï»*ôâ5{ÈB?ÛÆa±ºŽ, vcQ[ä2[x¿„_tz”¹d²h{¬*mñyŸ® é.¿¹‘Æ;z#Ÿ¶%^ÉW+ø•ò‚…D*ÁZ‘ꆊDÿ\ {øšJªaç;,ºþ3»Â;z§åç {<¶±çrFOÂ÷]¬Æ’ÔSc·uñ²ÛzÔnëâï¯1-p4ä×Óì¶JìzX »òëÉw[¥DgÄ¿ïn+O8w[ëàÿÉ»­ÿÞ±8j xªÝÖJgÜ©v[•ß~·UYe·U~‚ÝV¨à¢“Ý4'¥BªR^ªRÅT¥J©JÅ‹9)´÷žµßüL&6ne)!¼gÔƒk5qóx=õñ‚&…”YW¨5I0¯@k¥ ìÄÚ­ (§C+9j®¦}&^› ÷õ‰UÏ_eùG=ºæ£ÿãÍßmñ·ÿ~‹ÿÙ¢,&i©£èFj¢âX]1$bz§±¼.X]*>bi{5-0e ]5KEWÿâNbpâ'¸ä‡×ü!4» `çãÑ0cÃÁÅ~ô²‡fÅ¿e΄ˆ>v6`øÜùL^Tþz7¸º7ýÁ0ìY³½dðeDBC‚ëF +ÌæynØ}õ@ÖºáØMŠ!n(”y’D@T"àõ@ˆ÷Å߿ƌ–cª{ÝŸõÀ0*À¯Ýètº2eà ÛÝæHËÕÚŽÛæÄU¨.[„ëF÷ûý½Y–Ä®ìŠÏ/Öü ÐÓ½çdygÇÙØí/Í ’;½»· q€él+Ư- ï;1«Ø¤Ò*ˆÞùe¬ÎÇW4Ÿx…hÒîüþ¾?ù®LŸEŸdè¦JÙênN-r…”,€áÛÓÎI ϱ@'ywÜíí‰ J ¾!èø×$ÜöQFVáq>¼»Ÿàc{?äKä é Òçj?ŸJ ÿ*ølƒâQàÇìk<´2o„ `¤ d=¿?š Í{C“ñç¡0x=Ý9ÁD$ßÄìû&#™ú¾ì ±°k `š…Þêæ«Fó¢ûà_  Ù™Ïd/ÔW,#¼ýK2æœ'ßòN†W¨&Ô«ìÊ{K{âj8ŸÎü Œ³?0þ4ïj©¸ß¼†ß³ïI­E[ª- û“[?'ü¿|¼V6}è_ù×ÎÆJF%«´FÑÝØ¶Qoz*xšÆÊF¥[Œsœ7§æ·b’«?šúšX§ig¿a÷BÐÔÄH¼â~×Ñ £º«±Ýý#îÅàŠ®¥¹ÛŒ6VÚ—K×ÒdðÓÓŒ—M¢ ¯°Ðãt]xe«5¢ ÕfRsÞ~ËAD‹;W±š#Úˆ4'ç¸ḻWÝ? _û‹kzíÂxÛá6~††ý@;.@W®ÁwÕÞuÕæqX¦;Å‚ OßRp<½êŒ›“˜À[]¨ RdJÍhNZ²8iHÖï9$C7<{Ü:lAñ[€È9[åD¢×{ޤP±ðÉD?‰X½¯H†‰º¬m „ qµÏAú=Lü)'tòówñn<Ÿúwã!*…2ž!ŽƒòãnÚ×ùʺùðu«Ãî½èçg-¹ç{ÔÉñCÔÄ Øhæ«yáF·ÿÚ1óá(¢¼Y€ÀÏM¨~žXYV”†Ði:.yE-°Ø(GP‹ #yCÑäÿ”†Ü9T•Ç Uuµ¡:K3TÛªÅCåIP¦ µ.ai]†í.hdŒlô2R9¾Qéõ0Cüþ]wàó›1|¤Š?`ͬSèìÃÌÙÇc®õ¡“VWc@B未œ‚´Õ€¨—"#Ï1e=8eÌwY¶»¨‡ÇÙnEM´¦Ôh‰À -è^E¤êÿÃòw)É€|£š™ŽÍǾËY¤‡?D¦8Ú•!vVˆ€>ÖÆcR“Eko出zW:|z¶¹0.º,ÿ‰[ ú†Ï擇ñ”‚%ïó‹Ÿ3qJ;ýáÑ~ÙÓùgEÈZ§ãá_´ö0þføaW4„û“ø4Í÷ãk¨,t =¬ ‘v›ëe£‡ù,«ÆÛl wç‹ÑœÈHM†ñO¸®ˆÊÎÄÕxRÍ–2سÜs™`xÝá„q%ø ñ£gQ`ë D‘ƒ-% O+"ÓngØø`»rëw5ÎïGFÍ5OßÔ™lª½ö¦&ã¯Fµ¶j—à23xoÚhgcñ™µv˜<$:¿u‡G÷Ÿ£>æa4á•5h|jÞH$þ‡[œ5º"ÃhÜÏïMn,`õ@ùÅŠ¢“ ’‘ìÛáÆy=(„wX%&ÿ-Ñ@cÁN -æñû×8·þŒšfÃ#oŽÕ|ê_Ë¡'N¤‡þ ,Ý3]¶&útDv¸ïÔ{RšU³ÒJ'GKöw<ÉóT\ð{f›Ó»ñ|xX~ög_}RŽU\.ì‚fNCñu0¥ .ßÅ× ÷gk@&þõ LÀE°N•S>1Ã-gÅ=è||}wäÛ`ÆýùßfÜÉ ìÎèbÿfæ[ŒLÍ>ICÑü®ÿöº¢§]޾<ŒÔ„æòá0»›øS´&ñêRY¬¤ôEbGb®Á LçÇE*£«áü:èÏ5Ob|8À¤yˆôÏHáD ukš@²7šãsOÿ:‡4¥º³/ ÁÂþä` ánÉU&;õ€9zfjmœøÓ&ø„¹&EX0&ìÑ×ñä “–òÒ©É_3ø™£ƒìbg€÷&þ‘zNííZÀÔ׃M}=Ø|Z ›² ƒ4ŒÕP‘$€ÇvT9‘‚Òæ£ÁL-c¤.*­ˆô¾@ð2Rì•c„b¤&X7¡ó+`Ó›ù8Yâß\„Áa«Ö;éêÌ}àR“ 4z:ó*¾’C«~<˜±œàsY‰êþ:^¦~ÖŸôï1ÃV²îËrMþ~VëÔN=³DF à}±c)£ªÖø uIÝ7šj5X_Q¯·ÍN·§tùƒwÐÖÕÔa³Ûƒ ¾Á†[ —Ý,©²gµÞ»…^{‚51Hˆðœ8nÕð@>>ÇOçuôŽ«%æ`¨ë@W'ðïô°Qã·:_}[Cg¼v羨( ®_›«óÛAû°^’ô^Ï1£WÚÆ$ëá)•ž'×5¾àÊÛùèŠsakˆ„9Њ²±|‚o[MÊßÚéê}‡Ñ’R­U{wx”Ã÷Nã½wÏÑ{¶/¸ ÄWßÍÉ…çh±‰ÇŽÀ„®\]Êè4ÛÝæÑ`Ý¥ñÍ¿šÏú°ÃÝ(z˨ÖS¸Ì€6L¸3™Îú£™‘€‰1#¼=Ánñ€ü†F< •‡ÒŠù)ÈøÎ+ä{ó†ê9‡ðe¨-½Kæ©ÏiåT ôF(=f€3ëõÐbùüˆX¸îtà*Ìlp-UÞpöML}\€u&¿ ‡©tÊ£3üjøÑ`È3Çs™¶ã9e¦BOܶȟvòì•{òúÌå¡…eå(.Š ­Ýƒ6£N>ÁD¼­µºz&øåpPr@e¿. å3Ëû1¨lú¹§_MÄá8ØH±RRäÕ¯¹çÕSQþYSa±QvL-[1c¹Rx±r$ÁM‰"hØ1á98¨ÂŠÁQÝ,9NæÎ4Žùöi/*qÞfä( ÙtökóñˆM:ôbD»µ] ô¬ºzoQ£‚õ êI7Œ§rõ¨j5³€’¤Â’OÉ«ó@hÕD•-blI8ñ@Lùñ_×hŸt•÷¿,¯,ž„µ´\J dÓ ñúºÑ†MLÿê l'ØGEô¼Yr+§šáÒ)¼Ã5m™ÒFãy¦Ÿ¸ñ¬§˜ÂºOI1¡ñ$•§þ·Os ©Å)CÿfûeXÓÁµ2"ßáìð]Îã¨þ #±®ÂÏå1¶ÅQäyžIQëæLÛý‰¸¥ñŸ&æS¬"(žùJÆ'º…a~-_ãaXÁ[%m±¥!ìãˮ߃žÒ‘Ù¶6ä®Ùóì®?ƒ=àµmnøÐŸ²¯¶¶¸x55u!L>Ù¨%™‰)¼X ½iaíSÑ+òâw_{„¾CNÆ<ÃÌÓ=¥ß‡ê+Åßî̎6¥âHoXœÆ³ö5Fññ5>“¾ðSö9ÖA2JŠœòA–j&õÏÚç´{˜åtÌcÐHä9„\Ût‚/Ïöw"gûerùÔaÜŒÏ Žö…:Úϱ鋸KùªÃ‡xss4xS‰%} ðÜcÕ(pr>Óß¶rÿR.Jð"æP˜Þ|`ÿ “„P)Š:ÈÑM†)hÁ¹‡4šŠé—ÁÃÍ®ôÒ.Þ<úüØdaOzþýJ8ÿÿŸÉ³œÿ˯=ÿ¯¾œÿ?Ç‹×WèüÿFó?Qçÿí3íÐvúÄKbé `ûÔÐÒݯv(õ¤<¡uàÏõÇT¥ë>ð7ôˆñÀ9‰7lýÂÞµêCÇöH˜{íiÐS>*ßÌnœ\ÛðF z >*Ç]` „Öéû|}»'ðáMõïÁÿ²*‰Ò·½õùûÖ‰:å3=;SÏê9 ¥ó¡t>8 œ`¶ åÌzVOã³pÂc²‚ÏÂIœ«‚¶Íl.åp’úä>ÃŽY‡SBûlåþĺ^˜þK8=œ=¦?Úóá>%±ýiýY¿g÷%ÝʾxXˆ‹‹_ÑÃâ¼Õ{q±xJ‹Ú‡õ€é¬ ª9+‚ù%]Fê—ëÓ[˜Çkš¤úã&iM>,w¦yñ‚ù}¼`ÝÞ/,ãëøô¦9Q†mÜ„7Ïœ^5ñ[N:îHçU„ÍÐíÞÊ.7kõµ‰Å@…‘t“è•óxo™r=²á5?†¿™;͇ÎßÁf /Ž*:JÈóÈ“àÈðâ8±윰Ïö™›ÁWü™og¯2üAÎ"G‚ÎFÚØH;܈ÐÎ(í¨3Šœ¬ÀŤ튖—Ê_D#¶ª×¿RûŽð+ƃ„_t½‘VÎßãg¯e¼Møeùœlj‹œNây¿ƒדE@®”hßõ1ÿ †s ÉÝF‹ާ¸Èg%-Î =W [Ö;ï…Ÿ6Œ¶Óƒ_qùž…1YgÖdÕOÖ™ž¬D‡˜T“UÏ-v‹Y.–Xz·Úg $‰Yöâéúâé*_/ž®/ž®O×_Ë3ô|=Ø\¬̇5ͪC«Q£ ÊÓŠˆ(§Ðõt¥éð-MÒ*^|[_|[_|[õëi}[WwøÿtdÒÕÖáEÔÏ5DLX¹?WËϵ{ñ«G…#Ô¥XúÆ©QÄõ{ñy¸ž‡\„|?è<—l)•—¬~nø¶ZÏ GÔÛUèý*!ËŠ/!˯DŸ‘”¾¢«x‰þ§F6+.Ù,¥#çjd³4ãIŽUwX1”‡Q—ÌHX±s©“\$ê0|ö@jLè‚Õó°!N8¸˜Ë3ãI£‹-ðÃ\ÁcUß‹t^Ëø[ÄzZ<ÖÅ2Ù»b¡_…áҳ<ìE!”†Y¼ôK¸EtÑüñs"äÔĹ)t/^Üžìþ?œúÏsþ¿])oGâm¿Äÿz–¯+ûü˜øKþ¯—ü_¿fþ/ ÎàÔ¿l‘¸tfã¬_ÂÿŸ9LôŒÎëÈ„1á£ð¡ßǨ–ðëÄW¹¿D`fŸ6Xæ$w–kgS¥ÿÊ„×`vùãúôy²¢m­?Ø‚hX/Ѫ^Îð_Îð_Îð_ÎðÿÎgø+&«l¾¿¿ÿM‹%ì _ކ£aøþ.r4œ©Ûè­éìæO0½{®dèÌot€ü[d;{É8ö«dsO…µ¶_2Žý-Žïh¿œË¯?ãØË¹üú2Ž‘°ÜÞͶt¾±©8 uy¨mÄÓÝŠKFl56pôü¯‚v  xà÷óØoÓ9^ñ£¢VÊ–GÇ›9þÚÖ_=MÝñ BÙH+Æ *™£å÷þž0™LNM}4±°Óã{ôþu¤Ãg):|–ÐaI~+vØÊ±¶ Y)±óäÊQtª£)\9ž:C\h@ ãâë*…ß#!ø¼I‘7^<>ðõdш „¸¿\ê:<5ûÙ>é’צëN^w¦“×½>y²äu€øïá´çÿq=¹…Ýè3øx…R©‰ÿP®_ü?žãÅ$júvŽ«Û¼$ÛG;°ƒ(»Hj÷Óóv³ì7@²”^ày)0“¢?P¦rÓ´E51w ®µ@ñþû¸Èèòô¨1ÖóeZ¤×âKâ0Ö eØL²“›Î'íöb'êf¢iÆŠè,Œ aÖBI` ¹)ã”~WÂ:]VÏøÀ›Ë Å´.´üÄÚYGÓï÷÷>šB¤­m©×ÂÀ7¶[eºWws: º§†”3Ëõdtž2®l˜>Ësa¥?DW\‚ÀÄD?çÄ×;2^ÜûýäÎ&ð1‡Ñ@“Ñ72ðtÐÝΘaÄðñ`d¡ ‡02Ÿ‡ã«/ŽªdÞñ¾y„Cñ[QPA´XI†þíxÔRÆ<|`¹O@az®Ññg6Fß‹‡¡^£?ç·¸ƒ}èÈ#k»Ç=(¸ûø÷&Äx2»S³yÑ5m8³mæxŠb ‰Løp×Ïü™Í}ögøðÿÜ÷rù|>7¢^ôîæSè7üº‹*ýF–Æì‡Ï”NxuןÀÌù“Át6¸BèÛö/Q¯k–Þbøu2¢°àéVéÑÈ]ms<¹öyova:æ- ¨§Àß ékêýÄ&; ˜…û0£xŒ%÷‡~ŸfCÍÏ•ì ‚ ÈB•Dÿ¹ ÷À‡x®ßz¼¼šÂpO_‰Ì«öÆôU–f¬ ¢%‰#¾¢Ùœ>øWƒ›‡]Œ²ý"$„óŠÖ¢ÇX-ƒH é'h—Ì PËjQ»V(8ä/`y×èF%r’ÏPoÆÃáø+Žp^R†¥‚ãà.RtçšWL°k$· ¹ëó¿]ù3µTx÷™©f<‡+ã•Ø›Œ%<âÑ‹d?@ƒÎˆµb$æÃ ŸÌh 1Á®„æ>«áNàô 8õåà”Ná|P@–P\^. @àPAõÁ ó³€XEf÷óVÞt°ð¯€ýòkqUÙ„¹†öCËEûP™í£•ÍM!>rÓexŒ‰12ÿ?iK‚€¹ùži³€Æבn\Ã=+Á×]r Ä⟹?³?ôOŠcmŒ¤_l ‡Ìà¶b^°eŽùʼn t/£‘ù‘û!‘ɪŸ$2ð‹D&›Ðe)'b{m³Ô),`ª$Ëu4áåli»MŽ`â3]X¾?¾þà/½¬ÈnÒ'#³«¸È»ô·GÜ„9 Nñ þ;M–@Dä*Vÿs ¸üóµ‡ úÍ/CÿÛ¼B‹Ö³Ä.€°¡WË?iƤ ±¿˜6¤DÉì$ò‘4vI^!ûH^’ª/»>vòÂM^¸É/ÅMR­€"¯U =ù¤ÊÔ=lžÐ·åÄm šúz7í+v¯Ûh5z¯,®‰©ýEü×dtBFÝT­4Û×ÒBñÊvx"ÃÖØÛã|ö_|%@ù%Ò(=”±P†ƒ$n3¯xE®Ö¯­‰áøv€^PÔ¨Þ½C³ÒÕé_0€´Qä_˜®ÙsBú—ÞÜâÕŸ¯¢ê/¡q0Ÿ ïùPúeaË‚ý€½ãt€ÎBì >˜îúgFÈ‚­I6(ÝÿëOÆz³†²™A‡5»ÒH ®¡íÁŒ 2}£ò·¬¡_R{Í¥«–U«M7ªB]õšá­dfÄ{Øi¿–Io·¯Å{Ø v¼ºÜAà¯Yø†0§¤„fðÜó£3¼ïŸ€û z\œYÀôL‚Kd÷+ƒÕ±ÕløÙ{‘‚¼æyüxÌ{jÞÃãÌ—×^öýcŽÜ¿Ä—ýL{Ë˾)JHFÚ“Éý?Ķ‘¯ð¾^Qì÷5ËoX.¹IƒY ˜$ÞX€•›Ïj…êP±\R:2âóàvP›ÞÃFxdÄ^ÁóWˆÝoBÁ|{G*ºï½†ò‘‘ ‚lêfPgàfšª™d§ªf“k?–²‚! e«E½ú¹‚?zÐÝb0ærÈ=kÌiØ…÷/sèeÕHÕjo•yd06€`=z°>è ª¨ši’n‹qH/u-жRÚì(†Ôc 'W/Ù݇É1× ô`tí?ø#ÜÖÛhMiÐLALžvW@9·8êæ<Žâ^ß×wµg6ºWE—äÇJÌ»ôn4ç­Ó´Ÿ0¯jV¸?_cc MãÕxŽnŸSñê¦?úׯp¦±õWt»öUNù\C!{¹N¯&ƒÏø7{9:éõ¯§Áùö˜öûl¿ç˺6cžÂðÔÁHá2‡'ý²+iöц?>ÿ8/M²Å¸æÃÙàaHæI~þU—Þ•÷ .#¼÷3\±{mÍÐ6Ó€róЛ*‘™‚üø5\矇~VHQŒ\ÒcšÈëY1e/9J-”½oO;½N­¹aM1Èô<ŸÉ!½÷§Óþ­ÍK3< x, }ËÔÅiv—ÇSDýB^]îWõ™[-¾‚žz“§9\†|—ð ÝÎZ¼î|Ê´@î–a2¸ t¯#J…úSéž‹²8Ä¥˜3ï+΋è})s‹Äó¾yQ¯Z#;o³‰bè@Úçd[j:t"V¤õW:+i­Žtä„_kŽê?Žºjd– ÛÙž}@©øH~x3Æ\Ãã öl3B§tCr õúiøÀSÃsœFñoÖ°bªxýôÓmþ ÷¶ôöŸI7Aîˆq¨d†þÍ,±j¸„ÀØÁŠXnmJsj^­Äº’vQ^®2Ò-SŽƒˆÝt[f$Ø3uéé0g‚=]bÅÔqôç׈1ÌÈ1Ã5ˆŒò×ý’}-Ýx¿d7"+Þ°[î—¬:‘ý²5³ö1~®ÈÒÙcUù ®ú…|§¥äm©°/É4lÑîLëóXÙê4ƒ½ƒ.Ìy…ÍLû5ªW¥Íöf}‚ÙhÓV=§íMýáà`²¯28RÖ%EG½J\l4sêÁn™©Lº·:ß57Þ›ùð!‡Ÿú×úhJIPGˆ„¶Ê#“.žMr8›ÿ¦ å½§­ŸKÈû@¼Ä]½èçþ-,zê®5ÿ&0µnG>FTœ¼Dšç8ªØñrEQ~ò3Âä8<ñ/Óœ8m«ËnÎ7XˆÂm_¨4^Q¤oIWX“H, û¢X}dìœzíï±4[5ø$‹9BètA÷GÏûAcjÖñ°¸Ñéar6VΉ÷ðïþ'Ýhy&5(#@KÍ#2¡}¤;éÍ6¿ó¥›x0x1o‚b8À¦+Š÷¹ä[RlÕN/´£{L<tko &¾cg{“3ߊ9qÞ:£?ÍöEì,…cî¸Æ·Ömµõ´ã5ãzèI|/š§­Ã®ºar S”UþxRK â¸Æ®0AûÇ5¤ít•ë¡vàI\RåP;âø UëvÓUîuš5»åKOõþ²HŸâg¶Ãh(ÈŽcötì"Gœ Wܤ¬¨n·j  ’Xt[µ“ƒw騭Vª#B·““ðráz ýX"S÷‚Òñ4zO¾—ä{9Çê5,%1SíàìÆìí½w=» áœvNŠÀJ>5:õVÍùJ¡ša`‰¥?… ëÈû°?ë‹©µIb]ëÕ„ýb’ÕÍ«lâ¹oa–¾·Yoê\zP¶ŠôFpA"×0+y‰5`±ë*ü)&W!cÿëÌ·HõÊô¹¬>ÐçøÉårEú[ɉœØÎ‰]øºYÆã»$ê ú áé¡gµžˆÚb$ðmgsgQËÄÔ åê¦à"ÎeqS}*É©Jèøf{YZ47u³-n.h†>•òfUŽè:@VmílêÙ4ÿn“zV\Ø%³³ £õøÍWÇÕVÝ,ÐjK,β“º@môãzØ”Oðc!« Ll¨.Ú– QASº¡ÝM„ãbÄ ÂÅáÑHŸžê{ô:æ›z@Z]$ …{Ýס8ŽÚ{5ƒ3ÿ©{#Ër@Œ=CŽ_¡à\òq¾ÕËk¥ö¿BXèØržäÁB­K¡ðjW¢Ðn`¬ÄàãŠÃÅÙÀ—ÜF)\I@%Z®qõªáz­ÃZ¾ÕÈ{´Œ¾õò4¦q v£ >X >,á• ;^‘ ¯#ôÖRm»2x²‡¿ë£tºK û4ñÙ¿ŒèàÿÕGUoï•Þ[»·ûÁhpŽÓ÷tr›6Ý”ù>F5¦øó0æ80º¡ÀÜŸŠ¯þpˆïò°ãèë2X$üÛñøZÝøëóI“"غ  Se®?Ì)¾ZIgÇÊ[aý½À3¬ÀÁ%à d~qÑûØÏߥRቱ¦(hƬ2ÂÆÝƒÎx‘™ÓõµIĈàÃñz6yÊ•Y×å•–G1˜Ò‡Î[ D!?xÑÒ_ ‰´åˆûcÕmëCk·z¡ê ÈBG Ü|Pßìïêbú.CñÔcÇ‚/”{t—á…W@0-< °†ä ¼JóŒ‚U#>øœa½£XÑY)tz+SLFAq®ÊóÐ%SZ_”û¿‹125QüCæbôÀè·ÂUy7 ]bípìöo|^§óû J lMÍB‡é`8Áï›úY½?õƒ °üðA¿‘Ð@;ÇYB™dØ/àÙ½W– d`Ÿ¬ë#`5V†·eŽRÖ8`Sy–4¨ÉÑ—;8"äßös&4á¨fZãñ_æ’†FòwÒðØ``FSEã‚ù’˜‚eìní1‚ƒ#¡ ¥"æ:÷ŒuÞ¶¨Šñ/þ<ˆ›8“ohs“ÁšÑÒ%]ºÙÞä¡Þ4е ºk»˜¼NTèf–Ñ*¡À‚…ÙŠ¯=gÕH̽ÈìHw ŽöNÍG<Ú'fÌ {VØN.· ZõÕ$ó{82ш$Mãy³ °{¿+XT(&•iÔÐLªfeë'XtÞÓ”Ê"ïÿh0.#ä0[Í£-—tË^)Ü´ òÞZS¥™qL#±KÃYIà8 8DxR90©{¡ Ç—¸ýÞûã_ߌÅd<£è9±_Ôƒ§Îóçý’,©]”ÍVhg¼Ç~(Hy¯¤†§c?.HËà3Ô&ja08h æ¡?CÓ‹ºÂ‰æAjî“ûޞȈoß¾¡´Ü/ÂØ\ÐWèÆžö½…' Ñ ¤,Kr17q¿²gúî.QÝ3=ÄUá<(—ˆ 'ZR&|9Ñ d4mÑe2ëî1fÈÂöä!ô-PðüÚ·ýZ`ö {Ò釆wÜÃXÑÉRŽŠ\wì)âãÈév\Q.j|Ú†—<Ç¡'ú%]€ôåBé4àïI¢Ð{`¸Òð»¸Â;R£ÈMRS¶ï¾þ3óá~&D“uio¯ó©oä•‘yO;~åÄç9«áõÚ’ó\ƒþ@iK†JË7ñ‡>ÏÏõ8áÒ#›,[¨÷ØE ðà¥a:’ÆäŒ§  Ã$âªGV ®‡]aœYLPhii+Ž‘ž- š¡hëDe¦–ÂõÎ’’¤‘k(š?ÖDÆd^áø¡6ůU6y-½P',¹„µ¬ˆŠF”쌼§÷†GdG¡´_ÿíèPðKit݆)|;78yANžñ_p 1Ñ ,#è»c`Ë‘áà“'2÷«£ =P V!ø` ZGŸÁ¨HK±`ðD(UUyv!«n:@“ÉPtq€‡u0Ö| 鯋ì°.µ¯¥ï­8©eÔy 6Ö´õK“~} Ò¯ÿ¤_.үǒ~}ÒÔчK‘~=B¯0ÿ«‘~T:Ò››ôÃý%}²¤!ýz é;‡ÅrQ¶Ñæµ'3§ Ókfê,¥WF•DƒÖ»1HIt–$© ú™ŽÉ<³Á½óvmp§[¹TFû#h÷PÝÃÜêŠ-ç*qÄûD§€˜hÊðúA™eKE§ “V’ýÎÐÅüºLQ±\×r†0~UÁËßbÜæ×ÞâŽpCò nhù«—L§üb#!Ó.QÜl¿–Ýáõˆ Êl>®ºYdßðYIÓ»K³w—+÷NbžØ¿’³—‹ûwéê_ÅžÛ„‰ý@!ßÛ ƒ#û¶#9»Æ_Q^QSž³—)‘(n¦@£œ »¨=< ¿ÛÛžàÖ½{ÉoK>v¹Wår/$Hi0­Aö6•l¦ ½ÈØfëëo¶n7[Mä4Û©i•×(9F€êÑRyXù Ô*€0ÇÀMJöÀ/î„»ÌI ܹ1D4)‡ºÜ, {@ç=»—Fˆ-R9àeæmù)Y<Ii(øõ÷˜Šú3O…CCnpùsë( L7.µ›ÌÊ ÄÎB>f3±¸­`*FåÚî&ëÎ&Ãzó#šÜ‰çP»÷sý2Îâ`úÂ%£Æ˜%’þP|o3íÏÆ‘º³¹¡}PÛÊ¡ÔÑ}6¥G4óÅy‚¬“½h?½ýēРeI¼½IºÅ·È¸ßã+”2h~À+yîÈp„@e"_]4h墚;Í þ.Oã¶ÛpCÇèS1˜‰ØM±‚ÕM€U‰áp€w[9Ê· ƒ^ïTÜ}`v°ïÄapCÇ&G)Ég„÷þJuc¶ UÏìÅTU§Jžxͽ~Í3G6Þk,õšg)Hú ;1:¢¬Èÿñ»k+?Ò¶êÂ.Q ³´Î\JP`¤6À÷$0V.Îa·CCîÏÕƒöëb<¡.9Z"™óÐ8¦ã:"ŽñˆT¼GhiX“†ºUT–]˜ ‘nºx[[e‘‘¡¹§b{kk¯æŒT$tä%1æ¹4ìAúóÑvxå,E)ø2S^¨ìS©Úµ—Ý#Û-ºÚak.åŒ9õÐ@ˆ-Ö?ØêZ€Ø¶±»¢£’57á1²”Ûd³žÄ£DËÌ…Œ£ÙðÔ\æ]LÕl9h6ŽæE…X~•¨¾Ç‹€cNx^˜ô³‘óXÊHa^¢Õwñd0zë† Jå0µÓž:ŽZ¸UµpC¿Ó…ep©´^pžï4Ž“SNbÆ22¼Ëd#ïÙHéô† £U¤àMÄÉTz¨¾…æNŽ!˜Uþ´qtMî/Ê]( ˆÒžà3˜ ˆ[˾¦òœøQé= F#ÒKB°‡“³ù{røLeY€Ìr09 ôNެ©gÞÌýì|©µTQk)AFò+6m݂߸ãG=·ßQ¸¤$%<Ôù:îšóA!¢«ï(Æ9\ ™Âû\$=â°y‚øJºMB9-²n4Mkye][f¦ [[Æ=H‰ÂŸYño¾V˜ßõMùá55Ëé§)K9Ù8T+Æ$tøë{ÛÆÁsŒ®vŸï¸Ò;}|Йƒ¼R*¼Ád:“ ˆÆ„ŠËËùAæÍ¾óûääÃâ®ñJûÍ`è»}wèÚ^hY`¿ñ²¯JfÐîF\ õ“˜{i`WbGb*”—­Jׯ©kÛ ¶鬃ËöËF< mîðŠgB:Ï ÍpaeÎÙq™aE_P÷•ø=ÞÿÑ"S?¦£ÎW£ `ûau(9 ŒÙüR[å8 ëÆ ‰£ bü²Ø·NzWÃ",¯ËÉîõÌêäö'x×ðÏtjc݆#Ù¨ ÷<Ñ«‘ú^œ¾,HGA®y¾È¸‡÷7kxS_}E)¶¯Èç)üî'txØ‘®ÌDOC­+È“äý |*ƒü,ã³ r ¨ÀGÊÏÈì8á¼tÊ·áƒ0h.tBø.ÄÑ‚Œï¶ß.Å1µSÙõg6’1«­e°Õ%l1»Ó!$«É7ƒj%8£¿?”î¡ádÄ2?r¤bôÔdã"ƒ/e´`œŒkRiš*Ò•ËFå.†‹†vU®°=èK±ôÉîÂFæýÆÆ~LЧldØ6௷Ÿ)ä0™`q?Ó¤%|Ò„e|‚*û7ÿáKÊFu?CI°D3›ã M*œ% ‚)VqyTUÀ÷©*f3)bö Ðe}!¶÷3‡„ŠØÝÏÐ5$# PP T± >.µåïÔˆ þï`ß©Ja?£ó©*èS 7Õc(Æ´H£¶,¯{åU°W°B1S‰TMà sFHÔþœ6µG5Ì˨±ÞŒVqüÔuÎw)EÆŠkÀ¶c¶ïj¦T׫+9Ë ¿Â ´y„šÔ ꋸԮѰ•J"õú›Ó¢jº³jÃî®Ð®A5»Av»Úí˜håX»0MàQŒ8}±0À8â$æÃ±L`ÇÛEj´ÔIû •'T”PaÁ!~¨Š¸þj«{ ÏoÆ ¡2InåÛê±´-v6C.¹z%T7k†3oŽ(¨Öñ¥1òË?Ÿ[<ãÁ—ÁÅçJm3ÜóªÛ{±uÐ}±uy)×»¯›Wk)ìêf½Ž¯ÛÍ&¾VCú,¿©7ƒÚ?‚j#llõ !¿jðQ]KéÔV3!þ!­Ñùàz:÷¥“É®ÖÓê¡yÔ?kŸ¼>“½@3ì\ÅF€h*n‰ («›‡´¯—¡– xÃñ«¯üP•ŸÓ›|ŸviÒíh ŸNz+¾M»«ey[ÒÖGY°ë!Ji+¶Ž[Ï^ÑΣŠð\}ÂtÔ6¥~§¡µÏ&£¯› ’N‡“Ép.…]9úî™45å:3 D{8û,e:AÖöZ/ÄáâRÇÃëM¿q%å 1ã3SPãˆ-=p.ºbb c«bsªšêMêÏ”Î2ƒÈ8B³ªgf1âCûºXuŇåh4¥´ÈÐëCùBР(±ƒ­Vj^2ÏLJæyv)õøƒ†‘åD}h”³ÎÞJêàDe~Ãé™ß¸·0“ÚÃý\ÅŸšÕ§Ý°_bTå]oof`WaÅ '>ùù1Lút2ÿqÍæ¥'"¿´(Þ‡j'è¨yžÂç ]í’&_ô9î DדÊû•‰]šŽžC'‡áóáÈ©UÆHx •iÀqËÂì¦9£`|õ²YŒ±ƒˆÔsš¢ß€ &žÁíbA¦ÑZÕûâ[bÒ¤¨€`Â|+µ¦mDöó6ÓÍü¸—:ѩɩDX.CGòaê¡eþEZv£¹iS€ášIt]kÂæ46Çð+ƒÒ½ŸJ­ÿý Pµ¶—£]°á’ )3iÔÌØŠâ›ÈÑ’Ly&¢¶:l/™¨$‚øòÀöª7“Ú‰lûq©ô«$¤iâå‚bÀŸ´‚>ùtóAȽ-\ÜxÉòD‘9F Ð †BÏQ»ž`Pµ'¢ðd²1Bv¢þ%Sâã´ÒÊ µ=·p%'8“± ákÄÔdÊž6²® ø@E'·” AEêR™; Ió) ‰ç„@CÖ»¦?ð¥Â=‡Í9d>"r‡eD Ôþç„pƒ2bOá(ã;Bƒ}ì÷hdmU¸›¿9O œtåq0éc­?Äù!w>NJ˜šæ­Ú‹€€òýüGYüÁ¿ÿa»SÓp!jéãåüP#ÿƒ?Î #i WD€f*‰——>a+lºéÁð†€Ü­‹Æüâr8™.‚q+.¦ã›ë‰]bmõ¦›%šÎÑd%q~¶vž–4Bl“[¶ÀIV œ¨hÈ+\ÝÀ.Þ¾|‡tƒqnKýhR3ׂ^ñ('y/- ã*GÂ`<׬.I¸F…ùˆk v!ˆmú[™_©°2¬+Æc(5‘_ÕºYÄa¢ª-ß&ê­6y3†-ÎêG×[ŠvÍò,òdá›sˆ+;F «Äv{ZWâÄQ‰G%hÍZ¥ŽN4J]µ*ï)é{¸``H£Â§ÑpÃèÍŽh­ a!‹!¯Tƒ=†5þ'fÖh2(Á9ޤûT4LåôÂ27Έ⹧FßA`GJ{—År$ËrL7?ü­ÅR<ùôăeûL ±î6šc€e-–OáFss}(p,?­ ¢%ãì©f,²¸0.v¦‰þèhA6ÚÀÈü½hU,¯»tÖº*µëfUSˆ±«žüÓr œmÁ5BÓ2(yNãÓžEü p²ÁÈŒ@!SoËâw£2´.Š·xæ%'§9ö;~Ǥóa¢C([¥ãß½i$ ¸.©€ŸÅwùÏêš—òëÂç§Añ;þõ“1[îŸâó~¡W Š[¡!Ÿ ¢cw&Õ¿eã™(Šd4xðM(D…üóDa¥ ‰("£0²°£TG¯±»ø ÔG—²\bì‰üþ 0°¾‘‹0z!é~°%S¨‰U•ì } $»º˜ (r1Ñ9môcåìRNãÇZ1b0F´n•¨¹W?7àç °„Q›s“V›S|Nn÷MóŠeì‘$M˜«W©Sß*X¨M šœ oôŒ,2!±fÓñù`L€ä‰Ò6Q:ŸíP‘"J§€(¿Zn´È g8+ÝX0¤ÌCJO„ñfEÁI¡bž|h Øt§’ä~JδÎa a ÞÞ¡&Üq5aÄŸÉ…üμÌ=l=fØ b"5÷\fSX××X÷únËûP¸WÕKæ7¨HÔ(–.÷Wæ\X¬ç]d„ÖÕjf=¢†pùàs°Ž:˜c ò22ƒ!“™É&­ׯЗÍç*ÕÚd © &¡&$³Æ´5³ruª£BîV­?ÌG@ü'òSóc·Ð½óÓ°ûËnŸÀOÓ5 œ« / ¸¨T¢E%ké Cµñoì(«=e²N2±U£=1m ih1…mªMôÁV)Å¿6I°_ÞåT&—ÖÚGÚÉâ²Mø¥qãB%«Ê,¤Å–—•Æ0m½Qxêh?M…ì¦†Š¨¼û@ß‘'Khþy$Û¶ü$ƒ&»dcåo<¸{4aƒLÒŒµ›>A7Æ•Ýn.`tÜ6H)H“ žoQ›Ë›`°^^Žhk͸²ÎÍûÞšá•\&/Ë|a¤ú^~–v¢ˆ@Þ­M¨¿Mb4'ƒ\æ ØÑUßíSŠ…p™²Bc`ЍGR k±ï¬Ô½J±’¯¬Í^Y;9fn®:îÈnÁdò‰@Óú“ǰ6Jçñ§ /Aü8˜ðXý)ÆXâÛ ‰Þ…ª•›”«@&:"ûvñq6½ù`à¨ãÈ(x[ÌÚâv %‡W…Á‘è*.Mýàh~Õ<£“éLo8Qð/Õ£[1€aGÇÖ-¢;/5áL'ÚcAÉ0^ªm´Ô¾&…*’×&Nf1z"Ï?NoÆ¥I;#QÀŽzu·ñOkà_a‹Ê¢~èšÊZÞ\H®§˜¡¹)Zãù”Oïa[º>½¼Ü$±bq± S Lìñ¬I3·”‹f7`rˉ>þç¨ lhux:%»vN[mó©I‚«ûe6εâ<šî ›lͱÑL @9õîSÊ‘óaˆ: M_€Ï›"ø›d&Ãï <ÝAÀ Z^0˜–¬Ýäf¨±üýª€Ç_Ò’#~m­4´ ˆÝx˜`ƒ¹x· †—OZÃDTyR޶9±éjy—eÕ/äxœ«ð=¨’Y6dìj[šÂ 'ul)Äšý¥ª Í:|/%/v²%¸!·%å¢0Üü*K¶¶ƒ*œéu'w[/ÈßU.0DÚê9¶#$ÆM#cJà,UÒÿ*GÃåôæýxX¼ƒ”4ÉX`iK/Àè:‘¹?}rzÒꉛÉH{ö<Çûi’îfÁí{=œÏlÁZ &‘ý:ˆ¡ŠÏé:T^ަÆêfQÓrv’\ º>·¡§¥]= à€§×+ZrïŒ(ðHaèf£#Xá[Qëb¢¬Õ_ÀÇwbÀÐ ”X$¥÷#|¤øb½Ï+u9k©Þç¸Ø2[.jo·ÉîÆ#ìH¸CD#处J²½‚: )Óú#4¬ÜEwÿ0û¨ýóû¨¯Zf-mb¬ÏÞæ€.7€YŸÒÒ [pèî6imÇå¢[å@û§ÞE/æÉ«a'ˆ˜„+ÃOi ÷6b¼=ÚQ{³oîŽÙ7~f pDY´O÷âü2£çZ««ÈÞºÝT3>¦"åüïò·•1…Ù"ÙxÐYLì%'[BwÙÁšÙA¤(ÿ.•`Áï&~œõÈÁÊ=r°Iùÿ½<e5T”Óºú-YIQ0¹ÞŠøÿ-ÝÔ6 ³)|Þnpɧ\ƒ?"¡ã?|.>e¿ÈÏÅÒc²¡Óâç¢òbù\±£õy|âtÄ¿¶Ñì'Á­›½{;èv¹žf?}zÜe;ÍÙ>›«U n6Äz‰‹ÅèHÏvJ ·Èøª«Ý$‚݈ðåcæ#Büm7•Ñçc½F,?H×Ô·ÑÆ-:³6zÈ4òïUñ’lDD¬U$þÍŒvJàw^*ôÀºWÓœüce)ÊNÏÁe˜˜Wq'Ÿ÷?´çÅìϦ‡læúüwCZáËRï ŠÇаi £6øû…}Ë:è(@Ç©(;¾vj‘N½Á@v é0Â÷Òßø9Wгx´šô–°rPH}Qù }.Oæv¬~–+s¬ ¿•'3£’™bjÀiÍ´» ŠzOÔœ£üà; ÁÊ|~3¹ (®Ô>DÜuq„Þ­P8ÝÁ[9õzÖœ!:åxúþú7ïY*:(SÀ’2EïË´ —¼ÌaðË 7•Òì³Wf°»2Õ”|ÝÁi–O¹Â]xšò¤ÛëwŸŒ¶áú–l@<}Á™]Fà$íDPšCô‚Ø}žNë´%쇆\ûn”à|¿Z’­”j*Fƒ3Ï»@f ÌÿÖäÿé9BÊaf Rs&ÊBÿËBÂô,x¸³e퇘¯Žïëê ¾÷w&¥ ño£,vÊb»,våÇRŽiÓXhG,h‡ IN‰«ôT(Q…˜€—ÒNVÉ„;»%š%ÝÀ!ôeXRïjÜU)/5 –µ¬¾i›eQqQ1ø®žÝÈ¥&·hÆ8@\Ü-Ùº7Í¿ÛÑ×i5 3«dc–a£¾¾E1(a¶5KUœm©Éi Ć®bÙUÝÆ0Jü ¼­¦pÕÀ„©µ¹ m. ˆŠÒí–€ŽKð/nðôí[‚GéyQ0<ÔL£¸jšX}úQ"Ð;è" ÊéÅŽ T¼x<´þE׆ӢÂ:L# G‰0Ž} ±Ãâ€Nš o8¨&Ãô!,iÄâŽ)ý^±­C&y_ò0žœ6qÓ˨Å3ñAÑ¡'·Ê׌ç;ì´ 4v@±(ñÓé&¶©Än’ċěLAÝAãÀ&rMe[Q±±už1ˆŽ¶•T€C´=ø];^ЮØ%œØ~MÐMäÉo*ßÞm`ZÖÔõh2º7ûk<ï“F”.JL†ÃË!î3âaÝ—)D=4 ŠvZsñm8ëKƒ³á•œ-—ÈÂôù0^ªûZ:ŸTþ-0Ã\m[Ã…Êk…ÂNÊ·e$ë{ qdŒ‹è~Ø\kOxMQÛ•ÒÐ&U, ÍH†13 ˜øùk ÏH87¸3`ÅùÕ=§óãl…h%ž²òo‰æïÓV Y72Ï6¦…°˜˜XC"RŸ{sòÂBh ¢ð‡ ¬:É#KÊ”JáÇÃ.6 £¦¡¦ã˜+nH=ûV?̆Ü# Bîá­FYÛJŽÇ‹ÍŒ77#96¨‡aGB]Øp‰8êQ˜Œ,(gTƒ(b>dŠ}ÖÛ%ýÁÕæÊÍõ†fQ‹f¢ƒ/óÑx:‘¿—ôwíÁ|eЄù aTD¿¡øÛ‹Süb4éöHg0˜‘–«ÎOàÔVÆöJá^­hk÷0dŠ”¼]Ä­Ï6U<5h,UU ÆÅËèšVŽ"ÕAaU°j.S³ÞZRåj†UÚ<ð,™nVCLbŒ^`ÌÍž5ªˆŠªKX‚žÜB3¥9“©k:u·W¢¦.õ¬èàÆx빆|h7øêjKWŸ0ËLDàte|8³&â·C‚Ê >¶á‘o!bCB«‹V1¸îHè2–¤håW]G¯ùÔvïî¾Ù1F. º¬ª¶ûá~C­$Õ­ŸD´Gò»„C6¼$N³ü4X·}Û÷Ëc‰;¸`âå~à¶ÞgÓ1ló¶ß^,ëw`“î‰ý€ÃŽ}Ûšjôð²Øõ×Ñ·ÎÓÊý§ÔþÙf)h.î‘3L±'ì(óe0ç“w²æqѤÍfX[q20§÷ø–ÿöÔýµ¹òuÑ·.€R+ÌD¼{¢ ¾ÿ;5û¡ü 5nü(«±§å7è*ì©pSR2J)ö{¦ãr‰æžé¯oJ] ¸¡ö„í…5:‰L¦“ Þ¤³.>mÒ`ÏÖ?LF À‡·œ{dïW÷Øãš½—Ü Ë¶âxÐPè¿dw™Q{RÔ²ïUt FùéÑa„Ùƒ!à,‡ý ôÍÊ™ÂiUü|:‚#tänÊ4þ!.à4iqBý"hdÝwŸ ¦6ø,„ßCΓm óC†z™­[µƒº§½ßè` e;FíTêƒK¹/ ÷X)­¦ïÁxHýs9Qxà†#m¿î‘Ÿžä{tý…oµòŽH âÓ&pBCÄ•MuÊoãb„0Éf€¥Q¡nêE­8T[°,ÐAƒÓè'‰+8Z<¶DÁ”]8BD+QûÍzÅí*`õŸ°€ tGq —b´ìnüû€‹•nÔ?8Ã~Ò ¢¿-ô§'Ú5r™`? ÕEn¢9è ·²Õ6¼n¨thÜôNæÑç ª€T">td:íÈ••÷å9kÉA*L'Ä1»|‡F䇉úº†ä€¢ÑHáó¡oˆ´ ê\ Šë¬úÑC¿½ÄÐoÿ)†~û¾†~Û;ôÛ+ ýD}¶ÔУtãáêjC?I*ßÐ÷u€=ôãõõ}ˆ7uè·=CßA8¾LÈr=ški “‹1(jÎÌ©ô ƒð{°=óëT.’àÑ…‹²TÏpkˆŽ”£kçÍâè>»r%uB4H ¢n@ÍûÑöd‹ÀQµ=æ¯PÜkÀñòy—#c­Ï•##¢iwòü…%Oƒ ð>£‚øbVâÇ´ð„ú¡í dÔí)ÂRï)W‡æ#L(³x_v3ɾá‘§vïÌÚ½[¹vÌyjýjÎú½Ë®ß;Wýòã½A¬â^JãpÒ Átâü«‘ê‘ç¬Æ»œL„¥lÔs²á­/_Æ?l«'Š8àžòMcÊ{§{ÃÀòNÚ–5ia"×{””rŒ½Io±íõÛ¶‹m¤Jšfî±Js¤êqÖ=­|Hå&`™íxÐk<ª2"›y‘5˜#í/»i“¥´ëÂÆ³Ù?öOmöM l”B9°)U´ÙŸS‹ìNhÿ:¡}ŸàЊQ«N´µéâ“`R2í¤‹/™b;SvÙ‚ËgþåIIí.²í,2®+ߢÈm¿TÚÉ‚ö4÷Ãw3Pëb#ÁiÅù °vEqã…ºªº¡œ {)nàÒlXëP,QÉ šQIp@4*èv’:îbgVH€ ¢æVɧ|¡cÚ%üÁãàf¹Jç{vü{Ï>ñ%Rû.Ê—I‰€S¦j|ŽñOO¡r•ãÞøÞñK^úF`qCâr(lGOÚƒ­9þŒ"Ë9ü4&d $dÚÅzw:>y2&+c§·ôt¦†ÿ;„‡‚Q‚~ó®GÇ‚^г‚»ã«êî8¿À±ïW˜qÙ©e“=¥~ ÞÆ•ÌÙþ;²ý‡Wy£ûÁÁ£QTÎqŽ6­q›ÖÓÛT]¤t4ê»u4j-µQë·lÔÊÓªõ[·*DC|«g(|.áe`¤ ¯àO%½ÂŸ)½Ì/a%Ž©•Å]âØZFù©ð’ {øÝÕK %@ç¡°ÿœƒÿ£‹ j݆G‰5Z<È:'·Æ{³¸§Ñœw¼,´.‹$!4ÝÃë‡1kÎ×8k‚ÈŸaÞÔÒ¼©=ÀyÓÌ1oj9´ë†¿nðs=ÝʃêÃ>)TÀ+@u¼´7ãCÒ¨‚ÅnÝme‚K>£é¿2ý“7;üüïe¨ü+¬š‘xÀó¿þæóÎÿíó? øê¶“>ÿ·³çÿ»Uçÿvlþo{æÿNÆügÌ;tè¬TŒ;\Ч¢ø·†eú…€¶SÛEû~ò›§b;Vä1Ä,€EdºP(>ˆ=åôŒ6Â[ „õ1ÛÂy† Vß\دF³ù‚E×Ùp9qa %1‡<Ä$­é®±]ÆC÷Ù$:Š‚ë+»!¯ù¾“ú|ÃD×DvòB»éÛçóeh,›AÚ`¯uo%bxµËÖ£&®ÂçÈ "wdzõ;eXcëðt3,ÁÍjgµ®”f~ÜÅÓÞµÇ,ÞU=·SG Áº9p6°þ6tïP†´ÇhH)ðüNȧþÍõõ`öC÷,.ít®¼À…]Ïñmq9*N-·Eòæƒv{×wpõŒПïi4m}»VG!¿‰˜©54o5b&è¼ RšßIaæÀ Q„!”Ô/£ c¿Ž$0_'àpÑV68¶="§RôËÞg0Ö‰ÊpÏ (ùÖ¤«Y-«f6£–ÛhuˆÎ@ V¡“á`ÌN$`pöÐU”›I Y Z€Û ®«Üåp!þ\ê½[ #s¢mlð0Ñ0€t¿ïAÆpz‹`¿P-W‹rèª<¼©Á7€#_‡oàMcè–å¿b^¼¹_ÀXÍ¢[,Sàæ.&VÈÀu˜®™‡(qB}Ì AàC^Œð¢Å6 Ñ+b—AÊ ô„8¡"œ¨dv|]3róïXˆM@þÛºc–*#¥›Y`7C}ÝU_ËÔ ˆä näæôºVAj%ç4`nÊÎêàˆ¤Õ*6jàÂÀ 99ƒC5Ÿì©é¦“œ•ÅùžU¼¹šmr£6Ÿ`wÿÃpʰ„öºÛûƒÙhññz“`³þ ñ±Ì'Ñ,ø„UÎ7\ÈÂ|Äwö/Æ7óÅnöe0d ¨>A8Ñ:‡Ð}â¿DC¶šŒ0ïC4܃EGÂ÷sS"rG¨ú¾¬³‰°¡hQ:W_…Í}¾BGÖŽäBÍWqeÏÑâÏ-0œÀœ‰÷r&ÚrŠm”ƈQv1Ì›eGN–w`š¹×ÜÅ”fF!Žlu.#ç*àã«p?á7ŠK;A"9Fà»Æe‹@®ù›*ÿØ‘?=ë¶Ê:smdÅ¥„çsøÓ€ÌïB= Èü\«;? È<ÿ{þý>ð¿ƒjÐh6øßAóÿû>~1üïþ[¾D)Õögxù™¡¾EœÉ¥foƒz§Ë‹v—p¾Gù|Fù è<ƒ]@? {C?ñk›¿ýË!y?‹ê¨°¼©3 ümE½ƒÝÇݘw[ãM§Ô(ž&»ëôöWÙDú¶`» tî´jæxV ¦P¼Õ/ý,BqøíÖ²ðÛý·ËÂo¢ÄX²À†ß¥ö³`CŒâÁ¾5°¸eAW²RùÒ-Üx#úâÝ~~#Nå[…¼A÷6!·¶¤¤L€]ºx aÙLŒÏarq 4 Q"™Ê‚ïX7º¿‹{€ð…‘$xôŽñð{„ÐËx·tåÔ[µXæÚGàmQ¤] x¡@AGé\¤„j%p]¸{ ʶ|-f¶ý6áß&Å" ÜÌe3ÀÎî>©éò-bó2h„ˆŸ.ø®+²ñq0“=9œæ`3@œx¸ºíæI+º@Èã@¢{-UúùµFL‡¨û„:¢.”„ÄO)üÈ@jCãá_-eC·*Ì3)Ù³Ç/|F1}ÍÛªF%¢á1ÿ§þbüË !ÿ. gñ¸aˆä|@2|X1h²ôOLBhĨÓÉš>b¿^ Žq‚áY’#O Nqq95Œ8~”Ûš³,®äÜEÐOÚ‘µ{3/*#dÔÀç¦{¿êª«:èÓËž5û3‹F`ôÂ/_Rê;úßqOëÇÅX¤sC‡»qÃդʀG ‹/ ÝCìbµÍ.V»E"VšL0ôY°hõ­?Äñ§M\XùcSž)Ûñ”5JÙ…”oT2;I=Jòî; ขqÔbIi„‘/`T_9‰ç#KÉwÌ ¬°ã||Bƒ¦7Ék+ àJ° âUÛAØÖ)+rµûTþ$ Oõ“BqJ¿ØD:$³*žG<õýä¾, âŠ™?Ê03Eõ3#afŠ)Uæ•À[k«H^Î們S†¢X®¢)³|¡.‚kv]èËâoЇSðØÆw&Gñ“÷}¬@A€K6.â»ü Ç §¶É8¡ >aHa™øÓÓÞ&eBâB“ÏåJ 9!rÍhÑïtÔQžúÙ†Î߀u%8U€wKëÑRH%å§Ó}®ÁËd5¯®@pæ;Ê…ÙÍ0‚Š êŒ®n9ùf,®§ØV€RÆDÕS9Ý+«\(0"„,„ªÆ±¸¬ö³Š·KhD :cix#Ç}ês°­Šš‰ˆ ¢‘ÑÕ!˜ {çÜUXD"Vê/®00Àž½§5’!Q@/ZÊŒŽÊ†<=9sÍ ß¤eÐTˆhdÎ ÂTÐ2ƒÒ=ˆNläÓÔà3Çtcä'¥Ô ¥zÑ0øÚÅt!KT«j U§ÁFV]<¡Ÿi¨;펨w¤tEŒ}†Q¥‚Рn|Þ…H•;Ÿq4i¬É(´CLtŸÿÊ œ0òØ€ t•ê™2 •to«aK]Æ«30{ Ô;‹¬Žñ4Ðk“¡a Xà£Æ-sjI)ñߢò_(þ+ø´ñ·¶ü­ ¿%Ûÿ& !çsüÖ1ä$³!qÖ@à„Y„@?Ù§@ ûUªésQkº¸¥\¢u„ŒD‡Q{”-·û?Æ_‡hO%Í8â>J'R 8,AáR ‘X Ú:A›´F®ÿ¡¿¾Ì4ºísê9‚Ê 7ã…C$°ÿ¹. *½û?Ÿ­Ôª}P~o€¼ÿQùlË’úÿÿï`cCL' ­ÍCÿ÷ÿ¾ÇÒ“¦„úɬJ¨«RüÏèa熅ÍFe>šFÅ¢"žêQxïHÿ 3À¸íŒ³¬ì§ý½µû ›ÀYêÓOîr)GV¹×O©äÏQÉŸרÆeŸ8øêcÊÑ Ä¨‰(ŒXn;ó!Æq£«þ‡g{‹£Y<•Espñ׃Ë!nÎþ¹Ù_õ¨¿DX•õ—ƒÙh¬5¶Žú•Z4>çcý$›‹ß'š¾¥hVD½e¦it‘,T2êÙ€ó~ñò49嚃à™Þk `1$ܯ·ÒvøµJ•à:o‡X’ƒ™Ô͆´ÊS©®-~P×I„ÃÀö¦Ùx-m†k½c3¿yÏÊÌnJ‰ï¿DI<+ï1ïòù ž^zJÎÈ%c欌²Ö²ëŒú¹Œ±žU¢.9À¼ËgTùuÁËf 0ïòù âõ¢ ‡”FŸå0úìF¡oUn1Œ*·FAÅ7Š22âð­¸FQr…îat)‡¡Ut¾¾©²l»àå:G•¼TÆ f¢:¯4Œ ½’ÈÇG;¶Jô$—V ÉK b]5Šù1èE&4•ÚQÃ8×f,I„žwg £=ÊÐÕÑæéd³líw\rM Nó.¹­kí·âi`zÅŽ¸RÐJ1¼>F¼Æ@àdŽÀô|5“6çg¯nÀ0± ƒ|ØzõœµÉ?œ±U‘ù*pÆ&‚¯^ÎØbA!/ gl1pÆ\ž8Dº=̵"‚ñŒå7ŸãhúXÜVe3"È÷tüU^ÃIô-J_~2n\e(/‰zǺ8Ûh»óÅ”-\–hß÷ÏRà\qbÕ¸7g[6ÚìxÄ .7¨)‚xXî1:et1.œ‚Z£¨3ü¦Žq}Ÿ«“2C‚¥fÄ«ßÊø3DZ%ûâʶ“ÚËu@Œ®¯BϦ_~p÷]O/GW#sSV5á”ØN)q%ä[o‰ï ¸Y<„¥ã2åeŸÀ½U\,Uœƒ‹7t(œ“¡i#V¦¬K›l=æ \©§Ì\iTÜÂRÔî^ò˜èÙª½Aîaýøô¶VeëGè#¬²”Í+e&ÎÍGÐ2+*B  É%íòæbal³ò>²”œ&‰N÷¹–¾TÅU¤ï³MÌ®ÑAf–ä¿­PCŸ.˜k?»éF|¢M=ûåžA`­ªãù úœ!²‰µpX€° ÞdÇ¿²a*ˆ–UåMwD‰%.ºŠ £"Ê1ÍÁ׬ç]­]²e"’oZ#ŸŠ¦’ÄΔ[S©ýù@cyX¯eqªo. øŠyÕ§à–¨­]DáߟIÙÙzfqÒ?èé ƒ/Êv§Ü’’Ð]¥xè>?ëÁ'r} ~¢øŽÁ†ˆŽØUºÉ½0ºœw|úªwÊ—ôô]=?㺧ø¦ ŸÚmW´Ú½“#Ð*_ôÎ(³ûüôä¬L‡veÑ?:įOŽŽÓÂÇÂï!z!÷ -ŒØ²øí ûâ×Soïıb]8¢Ýç²¾ëéøßèëþÕ¥±L søì´ÿÖßÃK`ö^¨‘â@$¥rÊ.ÌSÈ—R0OûçÆ> øµVÖ ‚êïTWi µ±nðS~sâ)jKóåm¸§uåó¾¿anÉÿÏúà(ï(‹ `g]γ×GG¯{VûlÉ) 0T„") 建qeE…˜´$aN|À$a·±Ò—@"„}„ô,ô?„Œ’ÍšÈð™E㙦AJãdA jr]…ÝFKÓßdº­aï†0º‰¾fÂj‰çE½µtW6æÉ~ÔÈP±ù‡Ãùw3h‚FÜ5Én!RuHØ,CºÖèw9° ­bŸæ+ôõÉ‹7'ÞB+A<à¸Ý—² ¾Z±&H’œ%Ú2‹ûZ<ÃSãsŽÆkŸt¬zD„\k[<‰€Ê¥Å(W±èìz+¥4R®E2صr,ƒ"Ù»,Šd÷úËt¶HÙ€·axÃIcèŽÇîcj‘~ ­ÒÌÕß@˜—( é£:/åPK±óÈ*gPe“&*óKÝEù—|EUÝS%ÛèxÈôï3ÝÆŒú¾A2Z²ãšj;*ëTÝÐGRf JìF˜‘‘¿Ó•Ö­ X~Ê”»'El ;@©Ç` ÛÞ“5”Û…£§½hÐRf£ZÒšŸjú¸t©•´|1*\GED‰@t+•5 ¡°tYr66¢…Â(9®¥ ¦„Jzvª#gdÍ) -6O’éH£ƒÙ ’Ü~Ç“è,õ9 ±m:ö¼&ž§ù8Á‹”²©^-¯´»žô8QvV)«·¬´šI[¢  VR¦áœƒ"Íu¥P“£\Aíuƒ¯À2½¬üm»8•9N/‹Ì3(pKYÀ‘5îòPê#H¾r‚ž½£ÿE_C<ó™|ùž¡×à«w- A9(VØ„A_½ ü0…°ª6ùûŠ<\e»À‹£ùGpW È’…޲—“$è¢çÞ|a8E0×|pé±ä w`ä4Ùèm8h-^SóE ŒQ;ÈG-iH8©ç£–~fRk;©¹‚ÒcG}ôÌßhnyà¶òR“*Âíòó„«’H^®øe½‚¶8Ì5Ñ5°[æ¼»¾ìD=>,óf“£2‹ŽûÆû¡¾òîȧVÚØ~Q_PKÍ—IG!®´o˳&•›c«Èblc"ù@?½ÄÍ–ÔéýÃ9°Y›‘ÂçéZέGÏš4{€§i ôxã¾æú™ÚâÅi†ö%V£vàþ"Íà-+’“ú…çtÆ‘ï{ù9J+Ug÷#¼Š\}Û èœO\ä‡KŒúœ™KA4«*Ë ¨nð Ñ‚§²AeT|É)„NÁ_hqÝ6{¯O7™Éì EPÍlk'G•¹¨‡²ªU¤l.‚ù‰s¾¬¼%ºñ-xw`2˜ié»úq[{Û¢¨ÝQ²¹Vºcš½1iÂd×)Ç,HË®ô›Œá—*¡S~Sú"*äöÂEz*…]”k„º;F*•/˹fàÇéÚô–Ï`|=•MKñmu <•¹HM¡OôÜí#¢WÏÃùà©6ˆ6.rˆ|<µ s>5ÈqP"øøÁÊGÎÕž=D­xýóމt‡®ƒø' Þ™o»K>&Ðx…•ŽË(¼¯8ÖãOÚB@^†pXXÀç­Œ1Ãû/¯ ÌÙd Há6Y‰N$Sø¶çGÚò¢% —±Wº2wÊšÙt^2Êf´ŸŒnT4JD´q›FF…m¶qEåžß²|:sjQfÙ[Š’g„¥-ñIYíÍïâ»éKÞnî%O Ú§aFƒ.?¨mfÒ† –ædz<·Gld[¬»P>°S…‚“o°ö—êxOv ß8I~œ&z­IíîúÛKƒÊäl⬫À6ѳxSÄpN'zܲ477ú/ÞzèÉæ”VJÍs𡟜@KieÈ9´Å«…ÕZ>YâoC‡ô• ”E“×ýK§È´´ò 9Ñy¹áœÒCÎoÛêÉjåFq„W* ~V¶%ÝŒUï±\Öiè1ó°ÇknÐ:QOàFÉ÷8jøc%@è°ÁžHÛ`©)À«˜æ?±ÁûæÏs7³Á^AB«»y:V“QñöÄÍd!õóÞ~äE7^"·¨jÜÌ=9ÿ? xO]W*cÛí# gÑ:€A3¿ðxäÉ,ùÈ*ŠR`ËÒuö$iˆ"ïH•i È:%"vv5Ä¥% i§ä2›QùöiÉ.á7‘ÄH:·½2Üሚy¨ #ÏÛx«¬ì¡Bã/ËÕJ.×rTƒ³•íkµ¤•ÅlºÌF{ÃQë4ï¯×Kš[‹‹Pð†¸+ËŠî+é.+ni¼ãwSáQ๬=L<÷3âž$*{àªôžÒ€ £@`Ó™|Ó-·»ÅÿoqÅAlúa¬6”}ý—Çud5w‘¸SHš#È Î®8.‡œç:°N?¤Îs0oͬΠ“2yèlÝwó" ñ¯î3s,@TS(B tíX‰ƒfÏár4°œç¾6¯YǵÆ]ØÞ“üîÄøMÅæ=ïÊwrl”÷k‰3«<¥­t*µô1TÞs§ô¥˜ñ˜8öQºëÔÄÑOþãžåºÕ}àqË£œüÄ—<²I!ìlé š=ïŽyڥκ ë!ˆ“ì"U´©€cyú†‹pÏ¢’^ñrÛ’ Žé¨¨Ä”½S Ó—¢Ø!QzïfŽ‹û-ëä,Ïi‚Ñå·Úl‰£±%Ö<ËuìµìQWúñ–›ZÝu¤•yŒuË£«åŽ«úQú±Ô GQÎ íH9¤¢j)'åðÆ¥´¹éî,G×­ÝA#Áh·Žh‚ZBÓ¢ Ïpp:a'o8Îoú7×׃Ù{ÇŽ"FA†°ÉʵyŒBa•ÉÊBýÄQ$ô}×@ò¦À{¥£ExÜí¡ž`ˆ4å×›B¾ ûá½8¢7& 'r:C1‚˜ß¹‹ÒºxFuð}uâÿ£àÃb·Å’µä(B–°³›†ˆuã,³îM}Œ«lÃvɺ4‹…eJnè’<^6w ª(õ÷“á`,an_8¡fc¥nhp\BÅʨGµ³ú#JQKbÆ£¤Ä°+†ðs­Õ†àP±7¤jaÂÝÌã}´A¼¼|èøØi”„(•ã9ñw½Q°¾B>´kèpe¯Å²C§PL&^$XŒ«¡à±Ad¦“6Ô ÇDH¿eËõË®f÷Ö7Âbù(«šÃ¯¥æ;G—еñ%ŠCdªŒ£l Nj1áˆYâ”±¸@ΣX›pÜú¥ì-çL‹AYõ +ÄrVŸ6‹®&ƒß„N…´±‚`ªôCˆ9#(UÎ\UëæepUoF«8~ê:ç»”"cÅ5@iØÍWƒ±²D‹w€!áú*wSæVám. ÌÚâÛp8aTg„tŽ·,!kë£ <ùë—O‹®™±mñ¦p4= «w±0\‘ãE¹À‡]åìXå·Å†ê¿#(L˜ñ"(Õå1»Ô®£ñ¯ NÐåÉߟœñ¹ÎÀ˜EÚU)i0˜…B%ðßÂ_L±…©u:·Ð* )Ë6¹û„KÇ–Ž9³â/䊔X>°ûj½§€JÆÇ¼ïÕÍzŒË2å,€\-fÃùÍx!ÔÀ™|_=–šãÎfÈ|T&H…Ù15·®Ùn‘ TÖ‹¥æ°N‚/Ö!ÉßÙ¹ëò® éåwðW¬/i Vjà¿üãá<ãÁ—ÁÅçJm3ÜM¼Û{±uÐ}±uy9ûðõûæÕZÊû©Y¯ãëv³‰¯Õ>W«Z³ü#¨6ÂÆvPòû Ñ?‹êZJÏxnæ ©‰H³e>¸žÎ}éd²«õ4ǃzhPöÏÚ'Ò*ëöp¸ž¿-¨H$ËäÀE–›ò¶ˆCü)n¢óCùï‚¿–~„¾´Ó!O(\4é(ç±(œt¾`:1ß#²™µ’vA’³WÚ‡­ãÖ³W ÂËÁÎ ÒlÀàìµÍ (4¢÷Ùdôu¦úép2ÎçÃa9úî™´Käò0 D{8û,×å¨ôZ/ÄáâRÇðíM¿q5åd1cžSpââÊ uœ# IÍŠÇLØQªÂì‚u¥¿©°÷õÎX"5G#yQŠ‚=° õ"ŠÿQÑ.ôôE¿×J+M[Ίn¬\ª%Lž 9öüX¡Št¨vN#åÈçÑäÒ'G¬Sòc–Fõh аðû¯E‰\ØÞÃ[õÃ[î! \Éâq>íÑoÁžè ÀB:´ñâHìOç=üÌŸô?‹%ø&tп©yñO-F@ÿjåwçÅ?õˆ€•WçOÉ‹’@9™—ò—IÜÛ ©Òíòmè?·h³8¥Û »Ý€¼]¢Íó xÛŒ§@w"ÞOåô Ëù¸ÂÕ}süâÁ¾¶Ô*Ï^œÓ8ôËâÃè«ZŠhNšKº©˜·~¿Kkém‘ûï¿î ÕoÈbå¼û¡ß½U¿Bý¾Ó?aA°êVgµºí»ÊžÈºZ¯U}ù³;Í5¥ƒ²+«ç¸ ±ä(‹÷eYèž´£æËKt)¶;Uc¼†«ù”¢;HÉ dþ_1ÿÏlQÀ?g‡ÇEÙ…¢º \à¿*üÙŠ%ÿ?Ùw{4áhgŸ£”M€ 3­ë)}wÖ‚ëAÏùßálº î£,Õðñ…å"}9½–µ4½kCà«][¤èeÀaÙ¨?bZ„§å bYá1IPvµ²<Âþ>@ØßîÂCæÀùåø§`£ð'‡nMÉÜmOm¤sÇX£ó]ý‘€)~¹CøÞ5¶ïCEï=¿wôÞóGÀZ °öüp /©ÅPŒ-2i¤*.NÖÊÅIÅ8ÝÃ×Ä!n%¡U9ݯÝ\éh«Ó™.OG³ô>Y ¬{+*°Á»*Ýçëà…ÎÓoIå~]KéFÀa©Wê= Bø£Àtïæ×ÉüŠ£ø Ø{ª¸¢mûU›¾Î .¬:ì&‹^&Xþé*¯Û§!ÙÊ28]e)Pa×áXYt רû[ þ´á ¿þö» ìçÆ”Cl$å—‹x©.ð©¿%[íÞk€ùmÑ :iv_üÁ÷úÙ1p}½ “Ï—âåà F™4àÞ;æ½@ÞÓFXæ•»lâëž5ïO÷`´$uŒ8=âs_4¬Ð ¸Z#ºi‚D­6‚—•ùÒÐeuÖGtÙ?º¬Ô€0ð-ŒŒ§"õ»¦‘XA†6Õ¯˜'§rÀoÒ9D¬ÁØSfKªjf¾5㓆u+Ç2ø¤çKà“ò¨A DïWÀ#M ÕØ ü9ŠJÆ_Dh¢Iè5¶zžmàÜ cuÊ­·‚£[fjù¤¾"¼MuS×W¥ év¤<©jøƒlØ÷uõ½†ÇD"±T GªÀýÜ©²D׿Œ(ÒA­H¸!?.ô·¶ëG¡ C¥"åù](ÔP©f©$žÐŽÑþü qÌꋬW6 ZÁkX~wà<‡ïÏóD·5P" Ø(Eóc;_ˆÜ(Ã[;ÿïÊÁ)} ÚÓ`j26d¶¬= Š—%ÚE¾¤“€™?éƒâ¦rÛñÑ~HÜ_ÇYµX ­ R§Ñ©|a}Ùc¡š2ƒuƒò§‚uG±àÚ6òi¾ˆáķׇ3g¼r=ZþžÊ­3Û´è³è2(ŠB{€Æ¢Î¹“Ú!èr†¢ÎKYx‰çF ºT4=– ÞbRàEjj±(¢ð„˜ëÙŽ}OsŽ~“DÛ$!›­ÔËÖ+„¿4²W“±ê0LŽP— N{Nu :ô ½ dOØnaÆÂ ¡Ç!íHìç pÎÞ¼& QØ7¦9„‡}7ÞGÛñpxµØ@=•¦C£FÑØTþ‘ŒyE}‰Ž£`qîž;¹çžóI »çjëé¹8TX¶ëj·í:ïäWÁ¬®­et-Á.r„tôˆÓ”E‚3‘kxWGãx±!Á\‘ŽÇ£K[ŽËþ½°˜ÆIÿnsãbéúH+x\6 )ôUöˆ”wƸª…¼XC9â4O„îØ’ɨ ±‡F¶ ×௞1²9PzXwlª`¹a³µÊ* Þwh¦®Òv{k»å¼cîüJ4žØÓ;A‹U‘S\å72kRi3“N+œ\4".KsѰ¸hdqa5)Éë8%™Æ#’‘’Ü€ÊbyˆC©§3W<%Ø$£½Ð—ðMÝDÊz|q™CŠÒ˜±R=Hx±‰H‰<¹Ñy{žrõ¹ò²Ã=Ã÷7£ñ¢2šèÛíéTòC¥xÙm¤¯ÀÞ|õó­Å[ D¹ÊÉ"ba® Oz‰P,b4qk@‘‚Éb*ùÙÍ<ÒÎ"²µI/‹Õûc1/|m˜¦! ªÅõ{½êþQ(à–ä÷MÊËvåe'åe÷g¢¼¤€­4 °³>ä–†Ú@³áR²áX@)^ŒBŸ—rÛGÙ*×E@[::r^´SæÉÁjK:ï’»ˆäƒkY,Ëζs7܇ÈR_‘ÅÝ·¹ö­—ߨDÊJûÎþfïÎò²[ÉñíFg÷G;Îáü[ÁîNo:ö~ã¼_ÖpˆY>Þ­Û¥÷jWmšÐÓ4é{­þ¦Il®ÆwPs´M4ž¬½Qïf(‡ÅM.Mùö;—ÚàLß.\n 3ÿžev©áulCæÝw\i£1Šœ:T¯ÄÞ¡w³0×îà2Û)»DKmøåÞáËY`úÙ2›vËÔ0G™·.ÐX‚o·µ–{/í–›g¹wËòoe† 6Àò† ¯¹ö¸Ü!ÂaKëÏ"Ü¿Q´úæÐ*ÁÅ›k.Žq³vUD¸ð;ˆ¾RðXDpŒùv;\)&8Œµ;Œ ~~¯1ÁÍÒL79Ô/£ pÿHD!+…â_mr¤Ù6 ¾@”ð”ßçØ–/ Ö$ÇNöÖÆ=-üÔàOmþdSÀ -+ÝïôÉ–<%.÷Ad¿SCäÉÝLìLÄän¤Æäv÷è*Jñg¤ÜU‘x!ˆ |Vq¶ÝQ¢\gÚ¿ÿ?…ʯE ðV¾ƒ`mãÛ÷ü­Âï¿¢÷ïâ5Pø˜¼‰¹iס¯C¨êðŸ›Á|TùóÔ$+06&®çj=¦ ëñû´e™¥Op™ÛQ}P£ Ö¢ ™Á8V²éŠ*ÿcY]L'ó…+wèÎÍ!°¼ÙjœMÚ ²Ñ¶ú‹ÙMYÀß-ø,’Ñ’£h]é! ëDÕ. ,_6½nÑ·^úñxTf×[o†@>µb ã5%–BK,©Oor9´Ä’/ôpzäûdÃŒü—€Lûww°{8ä8PÅÃ[Ó?±£Ïï4v´?þó×÷—÷ÿy»V«ÿ‚ º½-ÓÉ÷Õ Qo<ƾ—‡–ÿù¼Ýá+FpÏóH*ä°¿ мæÃÑþÁAGLJönuéMÕ3x•ÎOá ümõ[çò{ü{~Š/ýB}Lqà<«`ûá¯ÂÙÜÜ9SuhÖ“ûÆßVÔYzËânâ7ÓHÈ à ÄÃGÁœaXñ›^o©ðÎr˜ŸsEîcFL{V †¥L?û œŸ¸+(¬ò)gÔ߬ZYN43´2_">ü¼ÂQætNG…þy§Èvxv^ȯðÚw¿Ã¯ç/)j“|ÿ²®BA$DJ­~”TðQ0ÎÐ*ô‹8;)<ì¦=? Ó³iÈ`ØQQ4Ü!\(êð¾²Bô‘ÊALU–M Ge$ïëˆÀ::Û8ãäGVšš‘FRú5›þù©*`› èKúý÷ØtPÄý?t1}£3‚à¸ÍÔ’sQìg•WÇHêè‘´³âHÚÍ1’‚j1ÏH p4ßëH Ââݤ V¼Û‘Ô‹b$õQgÐ2©±âP šyÆÒv¾±´sßcÉl ©5éÖØ]UDWs´Fäj0¼÷Ö€°¼¬2X*€Â’P&©À{dˆ.‚ÔåõwÿÄÄJ×Yi9aø0ˆ~ 5ˆ£Â§bYæùTDMB•Ñì)Ôí&³ãÒH€O?Œ *2…Z1%’´„dçèëO¨°*o¨èP×ÑÑxòé j#Œû µ lÈg7³†œ¦€hãÑcØH}>‚HGË1š›+S‡Xçµ"–æðÈÆ(¹™Èx%u£ Ac@ÈVŒ‰²©T@/)1TĺÍHÝý%"us£SÀnšÖ<í" ¤D=GG¤U+Í\~¦g—ë XÚ/Æ9â m…y–jë7Ó–PÑ•{wQÖÅt|s=1r«ªñ”Êߤ<áQ:Ñ”S:Ïœ¬“Èåtˆ`—¥(K pm:j½•äŸ&ì#ó8áyã’ü‡!´œµe[¦³ø^Aç—Ùd¤b·ËÏR,Àù‡¤k)hò¦Ý$äçH‘27„]ŒDR°G…“d"oDk -Ô—†S€”"ê™”h‘؇Ö@è¦ÉÇ+Ûì».OŠ`fÒP1©À!úÉ!?± =’bªãéÑ`Sg`I]ß\ƒˆ+÷…(D¡¹áˆQ“å òd§Já1½ùð‘Ó{`ÿ'X4iDÜJ•êƒb–H”“=Âe8z\·Š±`Vª0¦°?¦gðV,t§'FhTD8–2פùpx©æ2KtnF®çtÆKª^/Õ£gj_AÚVqL׫» \J„ö‡ -@ÖëÖ™ë)fhÊÒZãù”w‹aíPyzy¹¯†j¦- ÙÞØ’çýRf2ü¾Àm9'­V§=„ñ€Ðñ7ÃÿÃn“ùð?7CЇŠÏà§ò –$RrÔ^m7Ã=Øch©ã2[²Œ&ã›Ë¨6Ôït F¶1‡‘ý÷~t ¹¬æÆRH/Ê‹r€sÏšpYЧS‚à÷èžIýÓ@R‚täR!RªÚ0£g…(ÖIÎñ¤ÿ`d;öSCëš=hU½ß&&~´{ÙÚ$Jÿ¦Óò |Œ•“œ¥qvœ©ÕûlÕf9£ÒUýÎÖP¿³M¢d×OE!?]‘ÑóSÕÄéy,ˆ N¥ͤ4¯=ƒW8!¸ÝXîY•ŠÕ5xHpûvÓÊ—!wTOš 6ª¤†Û+U«TxÉ2î¡÷µ<¦å²U%ç6GG•/®³Æ´œB­tÔ{zô¶Ü¯•zñi(_K¥X×4¤£z]Oš&½òÑÛâ~APõµ]¦ýìVûKK×:öN («ãË%Oøs©…VY¯ÅÕ - P ÄëWv<ÁJ°§l‡Å0É*ážèO¯Aԃœø¹Æ?c$®ï)Ý2ñÓöžZ;c?U‚ê.?ÿ,Ìôö·Ú˺rcv„ÄJî¡„×$ΘD,Y}¤«N‡ï{FY=³,ªe¬¬P¶M£ÅtJ*Çf¬(ÂeOÚøpRõ²#¾7༟Kuaì/‘¨<‹J`yN’MÞ &_M;N'ƒ#,9ûžèçžèò.xæV|?äKOù°?ûU–øÌ*ðåëö›2ü=ÿç§ñ¤¥šJzÜÒb=ÁìÉõ¡ûò ü9ƒ?pÝý­NŽÑ‹ý%“!×AýKòO9ì“ÇÄQÝžæËQO½tÓÂ+±¿ ¸¾– ú§e-Š:råB‚ðZSóµkE !<9pÔm¥Ðú6\Ô¦QÚí9¨ªé+ˆÊ.×ì´‰|xpr"Çá«äÌ 9E_6ðÑiÊh’óÜŽÎz]W¸æÏéÍ‘ûúèèuÏj§-$õŒ_I`®Œl¦åD&Ÿ©7.>:pjnp÷´N[Â~`7'^Ï úð§µ!¶œCôÖ€ô…ªüÌ}Ñ·½^âÛ#‚>PŽzöÇ£øçxŒyŠ[¨D *ó‹®>Ó¦î4ÒŽðby5.7ñ× ¶`Í]Ü.Œ²õ Ú,3{NÚüµ‡6µHŒö‘I\IònOói”e­WCùÔz¤næwÌqMñ)7W¼¤²hä%R©#¡°äaôä;p\¤ò2¾¿$(uan, ê•ü@¸„¦³äƒÂÀ¦hÍÆÞôÔ¨šÌ¶LþDAß5 ô2$*@£ ®í’ìm]ÝI„%à ÎÛüp4ŽºÒ0¡O;Ý7à šV*O…ãS¾k·ÑA0Ò©tÃJ'm ºœ¾!ÙP‚ Ô¥8†ñÔa@(ôWì!vs¡)€Þ¤ãÿ£Æd4­ðüžT,…Á$~¬ùÎÆiÀ5IÖµÔátú….ºà©`9v…µƒáH#õÈY90Ë1‰Ñ? ÜpÖÇP¾„$ ì(;šê=TˆPš«&Á'ê8‚±^‹+rÅ@£ŽáŰ.íkð‡§KÉuï žž M‘£–£é ÷/ˆn"9± ±Ž²*Sæ“2á /viˆSý`†(vSKªÑ¥/ù69- oG«ÍÌÛiƒpé^ž%YN®]B£Ó½y(Ûòú³nÝÂÆŠìÍ7¹Lì%ša‰­"o¤ÖÍ[1ï1hÙ A˜n8flúüYçèÃÛ"Yç<}h[^?m¦®£!Òúx‰v¸£)í@@ jù¦´{#(uFßn ÈÆ‰ÌØZq÷'{‹fÙ}ŸlŠËïø@3˜OÊvOLó´{ºnîö€ö™¤˜âÑô2¶¥c§ëMÃ=N¨Ï £zuÁÝÇu;û,9È>Lü§É:ÉN”Äéw”µBÜjãJÜvïJ,¹}%–ØÁ96±Dö>–Èe(å'Mrþ2Õ&9) y±Á JÅEÅõ#þ_IRôTyñJHí“„Ç;Ü—ÌÅ9ŽyÈ?ŸŠoC¡Q’T¼#AÅA ãÌoF –¹”†/÷ƒ²g)“¿vý¿ Þ"*¼,waô· Ýò˔ťãæüƒ‹·¼{"Ëcíå2¾¯™{{"ïöžðíð ÿnƒ0½×•J°“2Ö¸×'ҽ؞ʹ¥·üIJ»~9ôšÃ³M³‰²36ÿV(zÛSt¶ µã]cß«¸c%ÆÉ:•é0¿’woP¬°=¸DåÝýè›ÌJɰ¥¹”™p%g7S= «ÙIüÛÐæEtO’GçÞT-§rè8r<¥é8ò焎ƒÖ*Ý»îm¤è6G¶Ðtöµ¬[VHºZ3äQ-ú{«E»•J>µÈwÆøÕ¢Ðy6é*{íjQè¼!r¨E)KŽÀyX»/µˆ9¹ µ(NºöàÔ¢¬Ê/§1zÞÞ®TŒ¸ \ܧ¢ø·Æ@ŠeÄ{¾iºÎ7ÝXÏ·+«}ðn|(³~Ü’u7eƒÙcgéÝX/)i{˜ž+˜ ŵΦàëGE  ×8ÆrŒÝ ÌqÒ¯bÐëSÁâªÐ·0Ð/‡‹Áhòà%›¸Ã¨³™8Äpdª¸Žñ8#ø5"“UÏ,ÒŽ€úb+‰«ì©ƒÁ·RÖx? ¯ŒÈ#œèà•ü“‚ÿ<œßþs£¹]ûGPm„í 4ê€ÿÜñŸïå¡‘Ã>èGøÏ·Á~–ö†÷T¾UÒDú6yNä¿.¼ÂHpžf|Ø‘?³©6ÈzÖŽn;¹±û×€†Š«FÔ¢ã?eº+ˆç¶Ø|+¸çåPžµ>œŸü£Äv ;ï¸ù›¹[PoN³¢ ®;ÑoN—v‚§‘‰î,5«ùëë!F‰áèÃpBÁË ý‹7!ÿº(¾Ì¦ïÇÃk&BhÏp*qÐbÍjè_‚'Êýûd²1R¤ÐTLeUÜß'“'ª¼Ð¿€ßÇTXP™—‰˜ø¼É&JCë jŠôª¤È°×-Æh»¤õžB£&"jö2)®b*y˜}Ícç9…ÉŢ3‚.¸2ºn"1./ç}YÊy_A:NPý7`ñùáCûVŒ‚ü#ƨ‚›£m‹qM†ÀSxŒ+ƒ¡o±HæB>:uÕœðÈ&ýíäéü?³E¡K¿uq9Q®Æ¶hS<_‹7bLœÉð¼Éô€&äçòú oÆ 7R™lÄ¿¾;†¶o3ÂñœYÈÎOäi\Ãs7{˜ç¤DøÇw8Ðóµ;á+ßÁPÏY|h§ƒ='K$Ê$3*)8³ðêÒïtÔˆÓË\¬³ÛÝñâ,<;…ʼnӧÂáªmßà[&cÁßdŠîÖ,3'æ­ ð–É,{ëÁ¼KÃÞŠä[‘~+4þmA»Z\ÅËéìrÀðe‚« 6ætZsyjé"MDftÂášCÃDÆÅÁd"ãZ6Š4]¸ÍæçÈÄŠyŒËÃևᔴÜø¿%w¸8y zr1–¯é—OL0`„'Q”Íe˜+ކð­;!|:¾8˘„MtßJÑ\hnG["™ÄͲ¼!W ³e`[ÝðÊ0Oo°, Ëf‹Œ£ .†õú"õ[«²³Ñ`òa<Œ­Zk«^ÚÐôÕÒ¤‚¾“Zk¬eʼøy ×XÁœ4#¤Öõ—ñ0ž'Ÿn>@ˆb@•ƒ.5Db|lÄ^|”Òx"®f²FಎzÖ|õ| õÔ°co±"’qo6©ö߀Td-2×Ì4I$&iÞ.5‰˜µvVµ~GU]eY¦Æ& o?;kܸ£瘱÷ß½Í;ªlÖì5)¸&röì]½ƒ¥ —jÙékµY zj¤ëÁέ‰§*Ôz榓©+ñ`P a5a%(6æaq‡çzf½Œ(žF;’¦¸ø6³é·96þ8† * ;˜Ò^ “¦N‰yé;B} ;R­«fcí®·'ÂàÖĽ=¡÷¢Tµ•ÊœùÁXÑVÓ›‘ò=9k=ÁDB³Yf)寧›€ é WÕâÈ#”ÅXs Ë²eh–ØR¦#Ác´—CfŸ`¼î\ÁŠ«êXƒ¸”ËÜüóHÎÕK† çÓ°hÍ*‘ ¹ô­‚—ÛŒÍMohn]“HÞ†6H)8š¸uÂd„ÒM[°Ê/I²D¬´OË:w †ýrx5šÀæ9mŒÔ`‘Ÿ¥p…½w´)Õbh_kM€•DJX™ëêflÝÁJ¶7!»Åu3Nª¸3ÌtÁ=B)¢Q‡4ŽA†}WŒÉ$ÿÀ•µ¯ˆéúps“Ý‚ÉtpŽÛŸü›ªtO²hÄ€U–±‰%ÆVJôŽ(D@§Ü¤\Ú{ BdßJ±2½ùðÑ$Áh=È(\æ°˜±H¶»mHJf€R¢¯¸8õƒ£ýUûH}c:Ó¨´xF&T—nÅàŠ=[·ˆ¾žàšòƒéDÛH(>†ÃK¥yðúE lRø [6q6“Ò3Y æ›ñ%°ý~¸ø6”Í\Ån¯Wwÿ´Fþ6©,ꇮ©¬å ¨ž×SÌДmÜϧ|d ;30ÑM*2ÓôRI+‹åˆO˜\sØùÅM})=?Ìn`+INõùð?òílR]à¨iÁØÃrt/†²oyy>µì7ªï—ÙX—ãòâ#œäjõe8m*›­9¶šI!Úý¥.•ùBв·¾Tðlc±\'½Ê^(¿/ð4øæi1Åb4¹‰nù;V54öIײ#~ìj­Gt ‡ýx1½‘•ûj0ƒ‚=¢õqŸ”#×ÔAlÂÎ/f£÷ðý{©J”eÕ/䀜3'›t‘Ä ÐCr1a:G4(^AÅÛW\•hl@'žK ÿÞ6S©¿Y/ÁCI¹,¢xP:¨VaâOÈÑö\‡-U@®6\ nÊVÐ x¢¾o’þW9.!Ïš£¼f£ÈäÙÈûœÙZ÷ÿTu?ƺBQ5qä‡ùI†Ç÷àþØë­v:›SWƒ.h}]Û²d`Nᘰg? ÃM’Š8ÏZ‘S#îWCó2ÕÁÅâíc˜€ÜÜpËk”Þܲ›.¡U£JÉnmѬ–ã¨Djf¦þ èè]u77³ðëšµ5ÁÃÙ_~¨Ñ‡“››²M/õ‚é]ðëézYù}(åÈêìüv²;&'¿uoMÂhˆC_Ž®F“\†AŽÌUÅb§­ÍøÊcTÖë©ä¬4¢aÌgLT;UsœÞ¾9nMB=‡£ÏCíÊ%ž³&1WÐÙ –¬rS]/(ßйÆ©Õü¬þìÒ›Øë¸4/ÌH™¶)m=_tÄ̧ËÔ‚çýÇ7x¹AÙE²FWÂ*Y * ép›aùåã“ÒóFMüJ~4º0/¬ÁÂèKG¤ñReCLÕhMƒr(^¿²zET‚=e'ÿ ÐmÍŸÂ=ÑŸJ¥’¥?×ö”…”ø©¹§Ô²ÄO»{¸$þK.|²Qè-uÓ(‚*C ËJsÉönZ%ØÞ£)£iàû刄Õ= ‹)›q •°8¥ë#&'¿@‘$…”V$›•Ô©‹éå0îÓ€3dð~>„¬:ûç åⲞ'º•}w8€óÁlõ´³x<˜I[a!í•=N ùðÿU¬såúáEE²Õ„l[{æÙælÂkYè2ã9“[N2j1܃ÐINNúÂK\þp׿ãàë- )a,¿×g¯{2þí«.ë½îtÏI\‘½ñe0gÔXµª÷Þä5zz°Ç«Û? ®ÜœÀa9€ }VÛ®è™Ü&ÕãÆ=ãWÃó|#¥}:ÓÈ@A÷åÀãYKé“S$/ õ¥Š/§Òl:tIäëhz3u–åãfg\MÇ’I9WS¹ÚñÚ‹ñå®r¨÷JmA¹©Yh{N.C8³Æ­NvHQ ¿‚îŠåŤ!ãï¶ø å'ÚSp—ÖzÑ‹•†œhCùƒ4¶ndí d˜zŠx]PKÚÿS¶Â"8¿.ènU_ª"qtFeö‡c©7|‡j3þÌ;“²ª =å[è›&W×¢\Á Uiø ¤àÉ5x<ü:˜,”·¿ŽÇtpdMäMîðñÖB…“DÛzú)`"¸ ¶YíTIíK‘#?¤¹“(J#ËÂjCEhΣ*%Oý ŸøV§§®í?ûU–õÌ*ª/ 󸝥šúî‰û«ÑÕáRPJÁ®Ùk¸#ÑU÷í_•á>ýËg¯SØR^_Ò%‹é¾Ð1pŽÔí2IØ´Û|—Ü߸à[íøòœ_ÓB¦ŸôÏÚeôÈó †¯6…5‹HK\•ÅéÑqJQ†p$áêíæÉ*ÝËŽnluÎŽŽZ#“«¿¢De >wxV«a—v߀dN”’E^®¬äúgCÒ»Zønô„ÎÏm!×ÞgÓëk¹r¤ýþÁáyëB½øK“©àÂ$*ã‡Α,]M8GñŽö–´ä@Bš¯O䘺 šýûúèèuÏjº-Ñï>;…W$V6‰Ë:2ãôÒuuð]Ê;8`z~3¹Ë3]jtúàXêo3©†=S¢áà­‹=‹å/«t)üôoÞ«[G.Š ÞJ‚¿öO«–’­Ì±Áðµ@öÏŽR!*Ðe­HwX‘~{pÒ>l98킵%­ž WÓÉ^?éJ[åYT@«ÝÇ<ÙÝRn‹„ƒlg°ˆùb°Æî5uZ§-a?8q CY„eQ´òzYÔKͲhŸZiW…pf‡) 1àJ€Å®þ'Juë;üÚßv51½8Px 8¹"ÖËœ«®þ§ ~ï/Œ5¢¤Rn¥•JšÛÀ²¡nÍð[ªÊ¼®Q8¼¸Y€"úVW¨;¶°‚³² h€Ü<× +4N)ò÷ÆACkQ<´Èæš8­F =˜_<7¾àbê#Í}üBï^™ÎЭT93Dôqé—©ù4WFMDëðAduÿ¢•Ób¼?µ°b`34 ¢¯!„R5?Is§¹ðSàWãm$¤Žl1ñX"n¢Š £cÓS¹¾äa<9m¤—Q‹gâƒ"8Ê“¯™( OM6]1ÐT¦íx¦ÃN J GY}Âò‘ØM’8ï[4èc*‘ ÁH£`/I¾”J!àGо…·µÕhÓ!°¢ÎõGîÃE$— rêáãFYTâ‘ô¬èy± [onFr\Ñžd¨¢Ë©ka°+lý*Ò±»ùGSi¦ÍB´›÷y%”õ讆áÜ 6t5@”©À€Ø"mÐhZì ø=éš:yõkâÇZ0™)ÀþÖ´•ájªüÞðá3éê,øQWÔÉHÎ?eå¡Ä n„ˆ¢o Xïv•ô|˜ÐW A0‰Ñ³¤þ“Š,¦D‡)Äð¨Ç´-‹"zôbwÕ€Óf•LŽ¡‡é¢\ôfïõ馺ÊBÉ1ó³\RŒmHôaˆÎÞ¥"y1˜ãî›Ú±‹àÄXÇJ@×­Ÿ€Vã_âºÃ÷™9rY˜ˆfóñŒöÌœ֓Ä/R陎á #Ú•³RN¡V]^óÕoÐ :õ~À.šRðóWÚ¾Ãä(q(ȱE¿‰åoêN”¡¦Ñõ3üþe:a ¾%¯‹ø3˜e%¥‚'´{mY¾mÅ.s) öpO?ÈÚ;³,l…¦=¼ÙäÏ¿Èï"¦êåÛÉ•OW ʸ›+#ómô|AÕ•¼tÁ³!6ò1˜#Mi¹ÂØfc|–íVã™y¿²&©í¾²`U÷$™Lg×±"¨ä‚¨® J§\'Ø<Žh ˆ_©h¹ÂÿÑîì¾±ÑdRor½êùhÈ¥¡Ix¡F.B°Ò”á-mZM‡€1S«ÅKZf½ùf<ÞàXÒ.¢í5úëÄÍëÆ´_]T' ½¬à\&gý‘ò¥­T¢ÿeÝÌKFá|‡r(1q¥_ElÚ™#$EAÃ$%Êîj±§.¥?¬Ï^òÒO 0î±Q2 ± Ý)·Ýà3é|Ö¼|r ¶¹“¼îÜ‚×x»>§¤0÷ã븛\…Œ4žH(åôª×½U廓GÏá¿@4ÿ>?î«K¯ÉfQ³àôâÔàØßèoè°4øž#ÂÐ6*î,ú c¡· «ø?'7ñÀd) ù¤“ˆ Ó[¤ám‘~´Ð™nóŸÑLìN[¢ém‰jÁÎÙ@Vm¹òJ‘­GjVr‘0uPLfSI×wMÉäŠ?3íôclMÃΈð fã¶\!>$’£š cH`’Îé†ùÇ¢žN‚wõiTñ³Ç•4~×7²¶3¥NY_ï1õAKžd̯&µcvcRûõâíäÈj7”ÊBĺÜG(ÁR©°‚@}°Ñ{mÌð–mz+ïä‘dÍfîùá ÖÞÌ»ÙbrÜûK7r,#nw@ÜözŠ@w)Ûa>U;…B¯BömÇgˆ?!V(*tÕ«¬½° Ù28ÎV.ȹþ%§GPõÎSmÿ…§ÈŠ{‡¢Å¶™¡ßÙS¹Pd" Œq¨¡B@Q®:ŠŒÆpTÙ“1ÆcVh7cÓ1¸àœ· Ù=wnÀ‡Jû~:6!Upé`œ —„’¿f¨±ä–!IÔJ‰Ÿ=*§ÎÒ($–_¥R¢t78„ÎJçW½¯*i€OF°_`È/ÙiÝ@,oÄ.@-9N=HY·Pe3`ñ"7tˆ HåŽ,åd.”’p`/¢ì¥ÀN‚$ÙLHÎ^÷ïà(“Ø›¡ÇŠ­ˆöÓ‰6]Dý@Hj‡.ŠGaµL¯vºú¢"7Æ7ò˜NkŒõÿ(lú  B #G(åÑS™ÉµCÊf¬1pK¼øÉ—Ÿ™zvüX/¢TL–Ñáˆþ¢÷4¯[‡&}Šý‘…ò“&±IS z«­@ZÖ§Å/¡st¦"já,„à ) éýv|¥ñ6’”Éè@&F' ½é%H:÷7…ìá_ à§î²S3€‹Üën ’;õ&¾L˜ êPÓT)•Ux*“u*ÐXÅ_d üæ¯U<µrµ¥Ø¯[ì§€g¹ØÏ@IŠº3iˆºÇΩrób«HN-–• Ü ¤Œ,…e2*.‹ÉæN%“.>" ¤º§›R¦ê#ôh‡H| ÿýë=á¿7Bþ{ðˆÿ~ §8þûùá¿GØï¼‘Îñ´+-¢Ùù &¿'ð_\ˆð~ÊÙù/‡ÏMÂÍx’ŒOéž{D’ÿYèñ²u ª‘òÈo#~üaÛ©œŸ¸q3°ã#œù@½sÂÉ«ÀÉŸ‹y"ßý–÷ú$‰{x ³Ñ‡ ü: Kü‚ˆÑ¶NÕÑo"øp …â£óc„zc8`·‰ð{ËÄ’Ó$SŽÀqL÷’úô4ÀNx°è¢ ¨ó) øOp𯀘³/¾ÍŠœ'øCßñO#…êcÀ¢„â»Pœ_LgÒèý[oƒÕÊ2U÷ÅCª`÷ (S¦¢èø±?@³óú7u0”È(s0‘Ý qJÒʹI#bjóM=¬†•FnÌ-zû©•$³ŒÀÇo#_/ÔïTúFà!ŒÀCðEö <ô Âñðʃe*‚Rk"Q÷jÊÀ¾ Ñ:סà×5ÅõRtŽŠ 2ð <â} o;æи[¸}sÜš„zî@þüÖòñâÑn^Yó·\îèüpÅ™ŽGN¸ùCÜ|â¬1‚œ?ÌnÈùüóç«Í/r¥rVðÄUAo¡•jx’·†‡'«Õ<Μ£^ôVQ®nþÎ$V–­ªÌ•·®äg€Îç¨èvBÂÅ}¤H&Mþ+X8ènÓ«6=$PïT給Œ.äex7ø:]ê}%æ Ùò}†n¬ô˜Fþƒh_ ²²aºOÑ(áÉ9À¾Ák©¢ÆúÞ'eZ)6Œšøíªh¸a^P{„Ñ›Ž:H{±Ê¶'ìü (7©‹×¯¬^•`OmMü YÌŸÂ=‚¡'G€Äϵ=e”&~jî)M8ñÓîj!ÿBÄk~Kˆ‰´éŒ{вÒ\²½ƒY š{$5 |¿$‘=’2‘“¥‰„Õ=ž¿š }X’ ´$ŽˆÅ”-Áø…Faí3 +¾@™´&*¥X£ €kO ™Ã„¼ŸOÇVù~ðÆ•ºC´²ž'º  ãˆ@šÏ³‰Òº{l§QsÈÿð_õN8Èjäq®ÞV¦m€@5!o­èÇžß´5Ã;8Ú›ºÌxÙ©ŒZ · tR¼îí¥N^¨¸i÷ÀìÈДÒÎr¾6²ù«®‰'Ÿsdn~ÌÙ 1ôA½ ¡·^ £*zzpƺÖ? ®ÜœŸ°º1X}VÛîè­›Ü&×ˆÝøù9xë‚'Þx°}5íSÔ˜q[œóõŠaáƒÃ𑞜J³é4Ò¨%‘¯#Å]çuÅðñ2:ãj:–L‚ø»šÞÌ”& ªáånó¨÷Jí@¹©6 A|p§›’ÄŒfçŤ!ãï¶ø å'ÚRr—ØiviÓÙ¥òÜþ míY»íKxŠx]PËëÿS¶Â"8°¿.ènU_ª" 3G—ÙŽ¥óMû]àÍHP†žrƒ-¼q'Wú¢\M Ui÷¤àI}`<ü:˜,”¿¿ŽÇ¼‹ÉD:yé@ Níêê§@±òöEu³Ú©’Ú—"G~H»ÎpúÛë4šògˆ²aQqܦ° >„XäIZuA5 b…Ñžv½±ùçg¿Ê²žÉ¢J5õ³Åuíƒî³0(Q—ïAŽ—e…Fï@ýH¹|Á±âŽÔ­–(†„Ø(k¼åŒ‹Bñ‚_× S®ƒG‘þµa¥“öTÛ88ßÐ §p^3ªš_<7¾0?Y«Mÿ&ú}u­h‚*QDl‰3ŽŽMi Ä„…‚XYx^P_3†½Õ‡š <‚†ŸG¼%o›pÛD܇¯…ŠõKåzaáãÉÀ;µŒZ<ŸnÉLÎÔ*_3Qõlºà~T¦íx&iÙCI…/äOØC>»Iç‡ ú˜J$Hp–½Må$›ÊN’ l¸™døs*“VÓi” ì É—R)„wdû{iè~´£­aÔL/ F£5¡ ç=žÒn”E%H×IŠA~¼¹ÉQNû|Šþ‘¯è]N]CÁr°y"€yk‚Åb M¥Q—&ÐöÜçEYÖ£?¸ÓÍõ†®¨eù)å'dQúGA“s«Àª&Uùèf„&~¬¥¢™lXM[F£ò§ã³£¤ùKWgÁºÂ;Ì.òŸ*+_%ì8†\„ ‘ôÖÚ×#ô šÈ3LtÔ/r„8£’J "³«U;À$•*re„øãެ‰P¥f•ÁW±JDÍ*˜ÇÀ©êÞcµúPÍÃf5fý÷a»…üFq1 ëj{ló;€ÔUëJÝúI­3\ßfç°aŒ˜]zÒz’øEjfÓ1_E[`V Ò|”nÀš‰ú D§ÞØV®WüUG, ß¹(q(8‚•z1ËßFd[e¨)‡ý ¿ÓõJðgá«OQòºˆ?ƒÙhñQVRj¡Bû2—EáÛ–y9ì7$Ø›d<ý ?Ì# R›DD¡é£@Ï…±éË¿Èï"¦êåÛÉ•OW ʸ›+#ómô|"Ü®+ÛBC&:àühÂRdÛhñY¶‡nïò$~eMR; Ú}e.ª$îI2™ÎâcTrAÔ@#ÕX.(l‹F´dºš#zfôÐVhš¨7¹^õ|4äRŠ–!W(Ï$!X’JŽàÅ6­¦CÀ˜© èt‘д«ut‹¦8Q`å˜`Åæ„p+:@æY× “÷öß¡J ÀôÓþµk˜æ÷IØPv„.Ôb-N]JXdŸ½>ôT—joYA2X°!åvv€Ø$Ÿ5/ŸÜ‚mnÁ$¯;·à5Þ®Ï))#¸ÍY‹\…LIžH;«T½î­ºŠ2ÊñcËâ¿@4ÿ>8îû‘â#ˆ×~Ô´‰‘î7ß…ÞDäm±‘Í׈kÞȃ¸mº¬ÌFK0±;m‰f6(vÎv²j“WŠŒ0à¤f% “QÅ|E‘ŒÑ”L.x_ÄmcöoD74…øHކlã²þc!×ÓIð¦:óгǕÂH^ËÈÚΔ:UPûê‚IÛ­¼“G’ý5›y°öYͼ›-&ÿ²ÀèkkäXF†><ˆô“$q§²æSµS(ô*t¬`Ñ(СA6ÖËòE…®¢Tq½…É–!tÐU r®ÉéT½óãTÂá)r‡âÞ¡h±mfã¯8{*Uçžf) /”_Œ‰2çÇúpãËå@–³¶Å“ÚÍØôCÄ08½j¾€;7à°¤>› ûÛ+2íx+Ø|¿½ÊPcÉB’¨—?{TN¥Qê¢v©W*ùÐ^|YéØ! ¨nw2‚ýB¸lD.ÉNë6¨êØm«j œŽ®Ts!8©m¦¸ó¿-¾QÑ'ã»Q"´¤GökXÉs™ Îbðx¯®LèÀ¹¯-m“»½%™²¶eN<£uƒt`­´)ŠU òÍOᛢ"/þ£üÑ_o`×ûú]4û3úctq·˜û,Sf{@¬íæÖàÕ~¦]8Œ6ÓzmÁw&ÓzX­‰é0/Ó.àD˜èa*¦&øU¹qÁH‘]:ÅW€·iÀQL ½yp‡È¿¢n–=xáZ«På¼ðœ›»ÊAï¡‚¿¼ôÆOfãåÞì¹Ó˜çI äZ d<ÞSÎk8¡‚ t™ã¿ø0i—i·ó£·©€˜à-—šÆx†¤ƒ´¥SDºS= ŒNˆ*4~xêké¨v@ªœ§B)RÕÐÑ/•žY¶ ✾½bÔ‚Û+á‘›4™ÖÓä¡R6†#Ü‚ú‚_„#•Óß^—Œ³ñ˜Ö Ç1Úƒ©è=uè©ÿLÑsxÏ¢çp5Ñs¸ÑSw`°ÿõDOmÑshŠžÃŸ(zo#zo)zc¢§vÏ¢§žWôxp sØpaù~ì S[ì ÉÑ9;Â=ƒNª‡1ú®>H«"|øVEóà4R|þRŸdàjàsõC7°ZãÕÖñ1ÀóÆ­Ìãä5í{Ì #9>˜áBvº•Œ !r@×þ Z > F÷°nþÔaÝ\NlzææNj% Åvæò®Ux¸ÓDµBˆþœcjÆ*·m¯ƒÆ"x¼.rNg@Ľmyy—&*m2«Iÿ gsýÏ>›wêlÞ]n6o»gsdÍæ°šo6Þf6oÛ• «ÞÙ¹êÍxèA^©7P¸ÄOEño}«Èz,å¿xg'áÿ?ÀåJ×ЂµÔ-z¶;YaîVS,ÐëÓØ9’—¤‚‹÷eö镈†µ\M‚çÀ ¬™øý ƒåçŠçç.¦é–üšq\ã+»¢h\¯Í“cÇ),|©·—JÝ\*µœÚ<“ytÛù˜œ³º¾ìˆSÃ#Åò÷q/-Â_T&A.Ìåó²lŸfE†+2ÞH|„^ŸÒxtÎ]=s`êàšþ.ä&ó›mÇí¶þÍõõ`ùÉê£}¸ž cÒÀ"䛨ÄJdº yuKo¥žPÌU)µ0>ÇÖG*‘":f´®:mQïû(B…™‹Â|8Ta(A^ƒÑx^Üš¡ƒ¡„³ÆžößX0V['árŸàcc_¹‘í©0÷›±÷q`s,3ÜïÆ0f’£G•ÑTe$0ß÷LØxº\ÔöO5Låž½™V-*qۨމù«Bâ„êFF'ÀAË.vŒ´ó8!¸v’(”~·M„ßád.¹ëM'íi–ìáÝý߆æüðk¼4‹Q§Ø’"¨›põÔÅQÇ A^ÎJˆÓVÁ{3YN²;‚†.çÄ€6zzó«YF•‘`Ç›™ú hš•c¿˜‰‘6ü.Ty¡U'#'j¾ÅîuÔjÛ,î AöMÊ•P‹j'¢*dŒhè;ft{ ËHp£ÊäAÕ4U°»” µoDÃ8 TÚx ˜7â Ö¯z.¬ZÅè‰2³R± b»a0}ŠA‡4ä%ÑdëŽ#õ@°~¾³Æ¶º  v…‰é@Ätª‡˜-do5¦aN 5¤àBt$®sâ$ #qC(„t8ú „Ñ’ljl¶ä€Í„Foª$5GiÄsPßÖÔÝXŽ:šúÏÁe¯ÅqÙÏ*.û¹N´6\öûzRðß?|¸ü÷ Z¯6êqü÷úvýÿý>¶1ü÷/Öƒÿ.ôí•8ðí²Ôä}9ñOå¿7)D;oÊâÌ|xü+lÂ+ì¶N[üñ$ä¯Ó¢º@úÜ›"w¸Cí¿„Pò=tø7ºŽ1XxîT&ã…}/s':¢ÊÜ)üûrï4& Ƈ°ÕNÃÉÈrÂYDÛ œ>œTvZüþMZ=Ø“´çd&Lý»è{£×á­ žd†žï¢þ׿c„z  ‘Ú=±ÍŠ;Þbà©Î‹ƒ}q5 ´ÝN°6 >¼}ñŽ"u¿‘yÞ qUPHAȬÕQÙ˜ÐÄ£;}ÆÌ1ëÒ¿øxƒ‘o¬@€áɬ„ñú‚æk$öd`„/Œ$ Ìs7dÚœ¡yÝ =/–¹öð÷ÆUŽ Â@‡‚—¾ˆ¢ZÆÉ‰Â`üåãbF¾.àµH8|Ø ôÛ„›ÀoÔÜôçâ~¿ð©ü‰ÐÚ0ü꘾"qºøx3—™"^åÚâ¤J†>U€OƒKÈm °/³éû1Tñ°º. rhTˆx÷Þ9 psMErI[ªèd‘ à1¦…´(‡ÿ¹Éâ†æ. C¹V‘0bÏï¦Åx¯‡Œ>¡€ÖŒàúñ!“­ó™_DîÄ&Gc& ×o’s zÏ4þ [Qh•Û*úøo¸Ÿ$ `W¾À_ar™`]x2Ù˜?¡„HOÉ”.Øi9àŸ[XQ’Γ¢ø5Ú)šL!­5–^ #Š¢ÜÎiðAÌV>µE ¶‚sªˆmÌNq€¹ˆÈ4G°9N3m§šéh§ÓbÍqaN|NØ~(ãc,ÁIá`þÀñɲ’Ìp0Â'd†§æ)óŸùÛ©ù)s2w!ó¡72rÕ£\ïÞ9s!>µFåÂXJŸÐ`ÃØ´(‘¸U4Ƙé€Ð±ç¬-©SV‰±?ôOJ@Uä⌿ØD:$\|!°ÅSßON^ J¸fæòÌLQýÄÌÈ_˜™¢³²¼œxëkÕdÙ\)@eGÅrUL î(z£¡Ï1àK¡/Ûßþ §EQ,á;“£øˆ‰ÓgäQ¸á+¾Ë-U­ÈW*µM&± ‰O@`×BzÓ3ùÎy˜!Ž9Ô‡#ìòò(lUøˆƒ–ôô!-BåqWxæê1.•~• &Á‰‹ÉD»ÈSA7Ý”â2]!çdÑn'Z‘âH¡R(åô"P‹ e&=B¥Û1%}FMfVM°2ŽZÌ–ªô«=|²ÝŒ8ðœFƒQ& „.kB¯ˆþÉ€–W#Áƒ^þ3ë˜ø(ÃkŽ£öGv°l@™›ŠçzDX£ãé€;fô:e/Éb9TÚ?åÔE¥Á €xvApšá3¨AJÂx4G­Fvò|1?é°l¤bŒáâPÀÐBÇ—*­ß2ãÿê“° Ì¥W„‚èÆ3MtÈ0Z³ÌßUÖš*¯»tÖº*µëfud EìªgÿôÚG´àn¬i”8Á´gÿBr.ÿVY](- €±ü»Q¶[À)Ø£ä$å~Çï˜t1È¥ãß½i$ ¸.)ÅŸ¥ýlwÍKùuáóÓ øÿúɘ-÷Oñy¿Ð«Å­Ð2ѱ;“êß²Atã8  o¥C%"­%™Ð£ô: NM¨vÔ€êh­b¿z?úPêðiQ $ÆžÈïŸs<5a0é~°%S¨‰U•ì2 I Hvu1APäbºª˜ˆ‡ Œrv)§ñc­1#Z·JÔÜ«Ÿðs\fè͹ɫͱٷ{¦y 6öH’&ÌÕ«Ô©ï‚2 ›@4‰üž‘EP15k¦UËÇf‘qk ¥m¢tÀ¶‰"E”NÉB—_­¸¯I¥ÔÒwúG8G–µŸB˜ˆHjºSIr?%gZç0…0oïP0âÏäBþ?g^掶žˆ?ÁÛ˜ÞAVî¹Ì¦°NuÜjÝë»i,ïCqÕrP†+—ÌoP‘©Q,]î¯Ì¹°XÏ»28É­«ÕÌzD ?àò2É:ê`ŽÀOÏÇÈ þ…Lf&›´^\+^ 4ŸgL¦3 dM!ÙU—nÅ@,=[·ˆT²Ôœ0hO†°H‡—jÈ >¯¡Õ6q6“Ò39Bn?\|Êf&8Ázu·ñOkä_),Ầ²–7àÑy=Å MÙÆ­ñ|ÊŽ°ݤ"3M/•´²X6 àää›|<óÓÌ-¥ç‡Ù GaŸÿ#ß^ M@Ur:MCÙ·|Ïk>5Ip}¿Ì¦ÀºÖ´GB”‡Ý/‹­9¶šI!Âp¦.AtW9t> ž€­ñ 6X®GçTê™ ¿/ðpøæ ÏE&þ†l,t}óv¬jh|@ËŽ¸¯µÑ®!öãÅôFVz0O®£ñðò t5”þ‘ž”#ÜAlÂZè·e{œ+Üð­W'x؈8¶<Ë ®“-…è}²¿TU¢±9€ÓŒ¹”ðïÁõ:Ù]7ãÅèË÷1å²0Üü:N¼ƒj&þ„0³/è[.1DÚê9¸i ¨óìµ±0—+—¤ÿUކK„* ^¨ANšd,Ìòl­‚œRòuÚitLÒ|6Ð$Œ“I½¯Z·×Zëöjµ>åZ¿Yuؽñ׺ÅÄy…ѱ'©+Har£ÿg«ç'‘–³4ò àw¹[„ÝSÍ);Ÿr‹‰d“¡¯Á2mFž¾KwœÙgä_|+è/¼üð‰HÄÂç*({Ýêœí‘((èÏŧì>ý¹XaÐ4òmþ\Tþ Ÿ+‹Ž©÷ç5uxØR™Mn¸fO„·ï‰Û‘@oíŸÚ箞uO„vO„wÐç‡w ÌÈÿy<ýf-¥Å„[©š°WÓØ>’›cÉe®nŸ¾88¦wzAØ4üùÉÕ'®“~­wP! –½B… “8dù·©ù¨Y² YÕš›¶+bpŒÚØ,ÁMŸR¡×~ ÛèüQ*„¥ÏO{°¨ÜÀÍÜO>?Q{~s­F-¹Ò¨}Tb¯2½ªÌ?Ž®À±Înäί/Þ¼£5­×Vä>̆ܪ‰ÓLæ—ÙOžƒ~rôæ„èÈ÷/Þœmåe_hkÿ#Ξö€Óïð+è¼ý ;V¸oÞ=lôÎU7Ó=YÚßÌÑÇA#1TYà˜rF¹¸ÍãûM›žÌ¸§œÃÌÍA¼Z†wƒ¯Ó‘e(µg æ´0jãrû¢º'dw_ÈI1‡³0ÌÿÂÒLRÀ¶#òT»å€ÁÄÇxE ©Ë ?H@y`FdþdZ1›}©y·àbz‰ç]P ›¤Ž2x?ŸŽ!8–%W1 }£Èr ì¯ã1o~kÐÏTôzBjˆÑFgú)`"hÿÍj§Š‰!P |H»”E¶fY>=ØaÓº1¤ªp8¿FºÂ–~K Á­Ë0Eä;?Kpû¯Ûêtt-ÀŸ‡KÏä?9…â63‹”¯^Ÿ*XYŠU¡žÚðï]³ä¨uÚO!Ãâ*º‰ râï«~ë9fWàüôàè8 —° ¡ ÊPÑÓ–xó.ã`«ß}¡1wñFs;ö¿J Çoâ½’-Qçà-jæ ñªE¬Qù¯Z0þòenÇÊ‘ßÄÈ¥eŽ•#^=;lõûù2Ÿžt[vÉïUûw!¾ó÷,ƒ«a³P¤ª9gÅÁw9©Ázy~3¹€ÝäŒþÄe#¥hD§.ÃëIO̓·rªö¬9FtÊñô)üõoÞ«{+‡Ê-ÙÈçGe25èå_N¿†üZKéÂá.sAbðù‹2C• b§Nëu˜†{A æŽšuAÍ‘ké…§éOº½~÷™Q±6TG68—NZ˜KÚÁb æ ©{ÄîÄvZ§-a?4,!ôQ£[Õ’lŸ TSQœyÞ2¹¤„ø·&ÿOÏR3SšCNx…þ(¨ô,xþ¾eyk…˜¯ŽïëêM÷GéBüÛ(‹²Ø.‹]ù±TÇ›4Ú ÚNbÄ,£ôT(Q…˜€—ÒNVÉ(ØdÉÍ’nàú2,©w5îª”Š—PËZVߴͲ¨¸¨|WÏnäR“[4c ¬ø–lÝ›æßíèë´š…™U2‹1Ë0ŠQ_ߢ”ì0Ûš¥*ζÔä´~bCW±ìªnc˜%þÞ¦h50ajAm.h› ¢¢tA»% ãÔË›Åînô-Á£´È($ê½vY+õ/ù ?ð· à°]½¤Cg¢_Ñ/º6œ–0žH1êYA>±\yH_CöxèDÍm€mJŸ;bÏÛZD B7|ƒ½[iTò9ºË¦dB°aYn×ÓÉt1Eφ 8;‡]Ô+½LÈ´½MÝ\ÒÜäªe^XñíÙ”íi£¬ÚÿV@¸ÄÁ¬¬h†BÖÃÓX^E!=÷ Ê/8ʬ{B*¹’+;ÚÒ½ßíjzÙ ½¾‘³¾LÎ.D‚’ŸJ"Ê@E ˆŽŸhCA³^’#¦íÄx”»nðÁï2¡üXwÜü๊sÂã0RY jèk¼ ¢¾äa<9ø¥—Q‹gboC4…Ê׌ç;ì´66Š·‹ŸN7±]½Õ«&i¼±h¼É¦±› ½ ±Qi#Ê[q]ºÖ£2{ƒ2c¬IRñ rø¡w•x,d  /öøÍÍHŽ ²àaÃAÝsƒ7’ l îLüÂ\:<e%ãŽP<¤¢-y쮆„óws½¡Yì #ÑÁ—ùh<ÈßKú»ö`>Œ2hÂü!NŒßPþ‚m¿Å)~1Œ”ë‚6=9ƒÁŒ4;u~ ¬ÚÊØ("Ë&Ü« ÇŸÄ­ÏFF=0Qøû"^ƒa‹ñZ)n¸••»£’;*’©3*þ©þ ƺµ¦©°ìО5 $,G˜Ä;½Àï=kTÿ„lFˆ("[h' g2uM§îöJÔÔ¥^`Æt5Æ[ïÀ ˜6+€¯®6SU,³Ì€£+#ø8²&Âëªþ¨ac™Áƒ"æ7{¯O7ÕÝU†>OF¦°ä’¢•_u½Æ#%Gñ§í{4ýÁ×!;Ž&âb@W•‘ —E£z+Ý¥ný$¢m‚ŒähD§7Ì@ò̬”%GÁ°ƒF¼h­RÍ”ZF¡*r?,Ä~íà¾ïå©~³é<úxG1âÕ;0H÷Ä~@qÄ·­©˜MèìVû¡þ:úÖy¬»_ã”úºY ÚŠ{ä* Óû »1~‘ í8“+6miƒÖŠ“VÚãX"âp¢®#'"ë ¥–;ÈÁ~°'uˆï߿æÍ~(?Hu?Êjìé{$òTc<®sJJF)Å~cϼ‡’A¢¹gÞvR‰á¸¡ö„½…ú¼¹ÏÓ'ÓI/F[÷X6I´ÇSä½¹´ ¿ËÞ¯îñhô-u3êP¿ÐPè]jwÙP{R̳glt©Q¹QƒsêÝ8œå°—ª¾(Ï~½ÿëó8BGLãâîûN4 4²‡î«¬2ú˜Dšbc²MññÈJ/³i«¶^÷´[ 9¢À lÇ ‘J}p)Õ™h„ŽÙ˜Õ<‰©.§1 ïÜ©¤}Û=ò¢–| ΞœðvH âÓ&pBCÄ•ítÊoãÂZ@éS;¨áØÂ¿«mÑ8EµyË« (¢µ P{”ˆSx9 €6Âg¨j½\jWs­½œ±‡–JAÎVºs¾…z€ ÛƒÕ¼—l zÜè빡â=HÍÈeÖÙ‰ÂA—×ÍA‡+¸ ®6ðuC¥ƒóávy2>™P¤aÕI<dàœ$WVÞÑç¬%©´¨‘B¨h—¾€“(ÙÖtL’¨¯kØAÂŒ@ì<ú|è"­‚:ì‚‚â ³~ôÐo/1ôÛС߾¯¡ßöýö C?‘GÁ-5ôÛ‰ñ*ûµ¡Ÿ$•oèû:Àúñúz‡>ôy†~Û3ô„ãË„È!—Ñc|Ïš&cÐ$Ôœ™;S鎔àúëT®’à Ž«²ÔÏÈ…w £kg¤ˆ(>‰rOÖG ¹H€ÏØb…¸åŽT” ONdB8þöƒŠ¾)ÐÙø3lG:ö+À¾:O~$Ñw92Ö—ÄâTÓîä9D~T€wàðÄÀ>¥A6¬à¦È¨§:”",õžruh>„2‹÷e7“ø`}µ{gÖîÝʵcÎSëWsÖï]výÞ¹ê×ð"R9š§‡%ÞÆá:Ä·ƒœUˆó¯F^¨Gž³ïr2–r°QÏɆK\´¾|ÿ°Íž(‚Œ{ÊoSÞ;Ý›<Ýý‰* Ƥ5†ý‰\ìQRÊ1öb$½Å¶×_lÛ.¶™*iüXˆ‰\8Gч@ª‡æ`cIALròD§èÙ­Ì)J@…ºÊˆ†í‡æ‹cº©³±TM€«%j€‡>§v Þ5@A”O[…hÿiÉîŠöߤ+Ú÷Ü 5ì„p;Q;0>i&¥Ônº(“)v2å˜-Ä|¦`.A’”Úî"ÛÎ"ãzó-ŠÜñK('®¥™ØØ˜ªŽ­a3m.LÓHÁ*¬@>°R7Ri˜Rë€.YÏ k "PèwŽŽâ¿âUSºðDaGu´ñ¸¾mcÖŠfmßeûø2©){êʤŽ0lMÞ *ëbê¨àqìºo—€ÈðŽR†ÎPbõ%^ýX¹·TX‰;P,ßêUߘJöH=~r2e×ù R©{:ã´й`|¨xÚÕ/2ÌàfVYíX—¯XV˜^V-µ¬7Ë•U[¥¬w«Õ«îPǹ7EcOÅP·niaÌF¥¢Ç6ô!* ¡ZÄ®˜¶âb¸•9‘8ú B?Ø0y»'¼®¢ßŸ4¾ÉKÚÙp:„X¬„º §‰:‘y+}‚&†FŠa‡Ùz+'8LïZ *§ø3^ pqº2ÍÄi>&p³2ò”ˆ7ðKtpIE…dPc4Û ë9 ­X˜=«=Ùb{SRóôâ4 ØàIrû±wÈ“o¯568_x¼•¬<0O^ºJv—¡³xvÁR±Àö"»îÈ/²º9»”‡Ж£¦’«ºÁSÐÑ7m=ýd°‘w àÍ™àŽ‡Š0|A˜FkÑbP3x„ùM Bü›ºw$&ʦà*›C5¾’ã·¸„©É¡•rvBO È6ëD/ÓÕ¢¨\§~ýœ­(ÑãíCÿlT ŒF­ÏGÓý­Z8QØ›W¡<*—ÜlYOóiƒ¤¿™N© TÚ‘kŸ]rnÚ% ï. ÂP—¬lnÆ(: ¤50°ã&w¦ ®dÄ8s)¹élf+æo¼Ö´¼• ÝAã.[9›7¢8]°LÈÇ¿ÖmhX%™´@‰• o‡#›H1_ÔÍzõ»¨YÃTʾ@É)(Æ £B抋ŒIá­³YüRF˜‡ƒÝus.Gƒ†SütNoOp '!òú7×׃Ùݳ¨?Q ¸Õ…Wº4n5‡ã@)f^)Œn^¡nþüõÉQ ü 9:ôX6-¸©CÀ€º½Ê{S~½)ßl‰Ý·p켘€[Sgàó¼ý‚|W“ G¾ÛÀ£Yx[Ü ¡Š’ŸÓœ£h‡ê—Ñcb^@ž?*þðð’ØÞí¹Ñã}à±z\/‚êf Ù*CÍl=£&KÔÌ&bÔrÛQKÚÏq´8\3¥«˜Q´2W£Çz%“_‹Bz¯4üö1 ðhbnó6“š1«¬e˜´³+c²¡™Ü, Ý ÁÉp0fWÄDØ7f`í {Ê+Êu£úæ"% p#ªC]rÍå˜Õ™kFæ>¬VÀ‹{²‚a->Ú /76ö=xyÅD[nÈ¿Á~¡Z®…÷ ]|SƒoºòM¾7} [–ÿ䇸$iîÁRt‹e‚sébâ"ÏšŽrÉÒÌÃMâ8¡Î>fh¨ „¤µÅù…ØÞ/t±»_À{0¦ZœPN²U²Ñ ¾®¹ùw,Ä& ÿí@Ý1Ku¿ AÜTزR_wÕ×2uœ©/¹9½®UЀZÉi+‡tVG$) ±Q1íNè® ÜËaŸ%Ãt’3ië9hîŸ&FE›nã˜O°»ÿa8eåxmølÎõ÷e/éjlïf£ÅÇëM:ýÿ/5ŸD³àV9ßp! óßÙ¿ßÌCÀbÎ`È,2 öùêR‚p¢u¡ûĉ>â2˜ YC4܃EGÂ÷sS"ž_¨ú¾¬³‰°¡hQ:W_…Í}ÔNƒìDr!0ÄÕF\m„¹…Ø!(\Ëâ5|P±œàÝ„ôãUƺ‡Õ¸xcÒ]à˜Ž/RJ›ü´1î$þÌ»R”&VCžFþü B¦AÔzî&x}…[¶šJÜ#pƒ¯è1¿›jNÁÞ¶­½áȘ@Ûæƒ95ªvJÎg› ­aVÂÔöç³Jã§®s¾K)Ñ(-ö{Cæ' ÄQà(„Qõ!¸KÝ%1 ýò©ªJSì#Öð€ûE Á²MŠ.ÞÆÈÝÅt2_¾Ò¶;'c S²ÄhÞ²À«&—I)£†¨bÑŽË&~ ñ# ÊÄȺ\ðëZСQ)À}4gíùÎfH%ïìÞ_É ö€®h8Mð„‚£b%[*ü¿üãñùË=ãÁ—ÁÅçJm3ÜêÛ{±uÐ}±uy9û:ÿ°yµ–2À¢nÖëøºÝlâk5¤ÏÕ &ÿ«þ#¨6ÂÆvPòû Ñ¨Öþ!ªk)=ã‘+ù`&Ä?¤:\Oç¾t2ÙÕzšãA=4»ûgí“×g²÷pÞ÷_¨8¿IňP8eu-ŒvôÒBc²én~È?öëz><òkù¯•v›³}¬>z|¤Ç|üJ[eÁÇh(ɤ©tØ:n={E;ˆ* l4[ˆˆPÛ”š €Ãc g“Ñ×M{§ÃÉd8—µ}÷LZZR“™Œäú1œ}އ„tÝk½‡‹KŒ«7ý:ÄXÊ¡ïÀÅí-•¯§—ߺùñ˜iwƒž2~‹":pƒ òry©/±óõqA ±bøWò±Z¨ÓyqZ HšOuÁk®Ïæ&G„p-Óã_â1+Ž"B8xTÿë-"³)R…z…|\˜#˜¦Ú^gN#–1ðª‹cG0[¥”]—ƒŒ`ÄÐ.9ú—à=Ä£‰2:Xl¨1Jäg}:&")ó©@ˆÉÛö'Î,:YDÔ¾!¦6XW Î)YaOáíñÍ ¬=#N²±ïLr‡œ-iÿ;ó×lû%BÝón‡¦@» ? $ÞÿýŹò€=¶\@åd.‹éÂÂÿH3˜FÆ—‰1WAÆÑÂÂpSa®½\v›â#àÁ­Õ¯£KŠž'5g)@¤É5þ0%+ÛW—·Q]æRj^,b ¦ÝØè‘ z@ºIªƒC/ßl¼$wŒ …œ#êøAލ¼}Õ¾§1ö^Òr°ìŸ^fïg`-ÉmŠJC¨¿ŽÎpÅ“OOÒàæÎ *©À§´ä&¿¯À_U`Ùú6º”£è•²¦iÞÒÔA_½ÆP=qpÆKi‹Â¿ ¢P1*í™%"ñ<¬“ŠÖ˧×âQòÐØ QÇÛQ¿†üëàËG‹FDSªJ²±˜=ÄúP.n« à\—*â¢=у²4~71X-U¼ÒÍG&±«†¢@¡€ äöÆ‹5žÉÍ3ö«Ð—×”æ>æô™)(.ëàÖ_aOôèoˆk£ r”c-,¢Ï蛲Ž-ÑÙsrZÐðS€²5œ#(oÑZxò‘¹‘ª™ƒŽµ´hf¥Û ‹ˆ8+Ié}ÆÐfâ æ…L™°u:8³œÇêlU³}l2±ð¦Vãí®—×´qäcÙ¦ƒü§² «íYvŒF5×­œ‡zXí¬<:aEÏE&stÂm“™ó’GjŽ}ŠÎf…JP !‹æG’\¹^¼t³ëÕt´ÖëUK«Ù¯ÚQ!Ê´š)tgÚÉ›)42í¦fª9K «y3%…®çÌT£öÓÔÆV«Úl% GoF›£ßFƒ$ÄCeá/4¨¤Ò°‰ŽÚ£LFŒl’`3õr*“O¦‹R§Œ`†-laÈj­€½éB6ð„ëõè'µqžÄBd}ͤÓR £!÷qÈõ¡ ¿IÝçbh¯Çï@cÐH£š}ù‚² ? 3WIÛËΩb&&¬ ‚“ƒÝÜþ&‘¼]aRÁáM2xÞECg„âuOPž/Iã“ò±²Î-ÓY|€û¤aŽÔp’Ÿ¥ ÿYr+•ÑGM ýaᔹ82ÒŠƒ=*””cºØ_8©âÎУEVQÖèÇ1 ±­aØMÓÙ¯¬Y]9Òfns1”ý¤‘kà Ðß?¥©ùT:,Y4:{)-’F¸³Áú>½T’Íb9âæXzc90VU¤¤ý0»# 6?ùxÙ„Å(Çùb({yNwŸçS“×÷Ël ¬Ëzñq„(L1·ÅÖ[ͤnS— ž­D†P0³Tð¸ó@Gã&™Éð;m‡ -gxƒ[Önr3Œv;¼kœ¯“Án|*q²k-d´}‰z1½[NR¹…{P ÙrHý'è÷ÿ¤aÿbóØÿ-Ëv¸£s®à…p20HÐCr1¡;—ÍAý(› dç©*D7¿çr%x?þaµv>k€¸g,—áæ‡M@a“ú<3yÇ(³Åè}B-ªéæ î ÍäÄ£ '’þW94.§7ïÇCkÂòb’ÔB<¸~‚~Þµûùë“Ó“VO*º#mЃäÇ+kˆâ õ8Â"¾Î烶.PðXÁB1žóqh9Ø8V«6؃ƒ]=— ½%ÜÈèg¼µŽz¿±uô Œ ûôÄë †é&‰Pœ”-¥ª‘ôCó3ÕÁÅâ,O“LÜ´¹¼ÃãéÙ½—ÐøQm „BŽ©V;>ÌÌ4.ÈìÐÚVïbÖXi/Óøí¼Ù}¾í6(=‰ôÑN¢§(î™öº{¦½tÏ´ Ûæ{¦“¿g\}œ›Ã£ƒEM¸ˆý Ú»=!f°o=•¬£IgL)TƒSšóÝ2Cê{DFÅaœg¦w以;òGÐqM}ùlµ—hˆ–»!~›Î>ãöVZ½ÛËÔ¾EA­ãeÇd©®PŸû)óƒžyË—Ðã"²­hÞ “s ²°•™jÅO¥ÞÓ°Ô+?zŧ5ù®òžd.ø8¨Ì2 #'+l¾Pj°ø,æ7pªWX*}ÿÞGtÑ(³ËN±+êxÝÕš}G×Ö„€ß™Uò!Ì50¶« ¹ÅUk¾ï)Üúv•cºoZåQri§VÙæ…mЏ“Ú¿xýÊ>©{jä_Tgþî‰þTZ 4L?×ö”1œø©±§TíÄO»{¨ìüKÊP©CÒ[ÂLåÁ àŽÐ5ƵX®Í=æšÄ;&a' ¡f8<Ó©ê«Ê ðr§­H8+'eчWp'‡³a>.Ó±°ü‘Oœûxâœp¹¡Óçrü\YòÞ§ce¥!+@9<.‡ 2tä<ŸŽ!*]žªí/ui9e¼TÖò›Ý86§p|>˜Í™¢~›h}ªµåC,DŒëSE§%Àó¤¯ÓVBU·jôcOxÚêá¡(ÅœòfÂ)ˆÂí#`4¾‡=ŒÙÍ$ÞúAƒ«}LËaK¬bÓ…¬F¼0ÚÐe)ƒÌãÁË•R>Q·ã曕ø´ï­”Þ ¿çšdfÀxé­¢Ùe³9.éX>çɇŠSØÉùôü´ož”¿îXÎÑëu÷9 È8¼¢¡bêÍCÝkõ^ŸE÷TÌÛ4\ù5…×çÏËâ¬÷œâ_«#vŽc£p<&fZxžË1—†ãZ7‘½´F¸Ž—•#'§TþÉ)qЗò À}¦)· ¾Ž¦7s F*Öâ§–+ØÕôfF«Ì)tÍ?š•¯Ôf¯‘ŸÝûh϶Tà¤G);kD¥¾‚N‹åÆ~¤QêïBöí|%BP{»D¼gH]¡+R ±o ê<ðÿ)[!Tt'«/itì¯ã1ïDâ1º‹á¸-¡¥ Ä–T!]¢mý0%àB’›ûRPâ™>pp&â¸ÓAÂ4­·û" ¬KªV´Ðý˜ôK&DÎ??ûU–õÌ* \¿üŒv‘Œotµ!©gØ} €ö,Jä D¸L¹ Òe"g¾ôå³×2+¢)ë@4¯Zðo 1Sè¼jËG ]˜âQrÔËËV„Ô[>°bøGC«Ý?[=)eÊ$ïÊ,<•èÀW$[ʦ¸"G±Ïϼ½Ú"’z×)ŠÛWÖ ÄtEv¶CúÒŒW¡8Ë,\¢/R²’šïLÖâà;@íÊŠ<¿™\ÖYÚ=ìËáïï 9W¨Jœîà­Ä=‹’)Ç“§p׿yÏ{¦„ˆ^æ8¨e^SËŒJH¯gGe¥»ú[®£•Ú¶Öf;üŠz*ܪSÊn R{Y¯5täß-µ—ï ÐãLšL®þ‘cí¤+-”gQyr.”´nË‚`áßœœ:hw ¨ÚB~Än¿uZ§-a?8à>=` ŠF©eQ+픥e¸«8ó"Ðì–4Š„C¦ÿ%™šã£¿))E³¤—‹,”%%|]QWÿ›«)eÈs³T—e¹FåðâfJ½è[ͧV²€Wá(ÚÚ.)À÷/W¥À• ×uß(Äî‹bc¢©ú‹®§Å@Ì,h{k?J„‘óz:RdeHs¡Ã2ް_Þj"ud‹‰ÇB°q­+*˜›Ž Iåú’‡ñädk§—Q‹g’ö5Ħ (–<~:ÝÄFó‘ØM’xg‘x—I"hÆi„%£‡jvä J)™çÞH´˜‡ ñ^:ºUìð·öê §ŒaÝHdAX7Ü03€¥„P‡À?ûìk‡tÀ¼Sæ”~cT]¥Œ«¢K2¢n Ö=º¸›É—»D4tLrŒ` ¶y^•c¡0U|F%šÈð6%`B QèSÄ‚øŽ Œ0‰1P³Ó­Ë[äZ@ÐV,IcàôÜAmI!áØÕŠ• ‹`–›×èÊø4pfMÄ“–ú²°Ñ¥zl-è¯êâ‘Òœ-4ƒºaèC³7cñÆUÇÐk<¦ <^ý%%6ŠÂ\·~B+µ/ͱô’8Ê ªµ’cê?i=ñ„/}6•ÊÐtÝ™»nâ¶ÁŠ€úšÈJ¹ ~%Dý+ ?;a(È›ÉL(¿S— ìÄ5å!†ß¿L'ìB# ù¾h'­ë·FŒ2¡}”ËâÛ–yÐhgnè·ì¶2ž~>g×#Yä$=w3ž›—ÛŽ~ˆò)fí<;©y4v¦]w&ºg™¬NbJÐL%O;ø[|:ìÆG¶ºäõÊšMvKûÊîRIb‘ÍyüBHÏXT²4ó¤NÙ½R.^¯, BÊ ýlR¡}¼$ .Qßæz%ã·ºhxÑ(Á U,¡|M!ÚÌE”Ö¨R¯ä±émg¡juØü,zÂlýxðJˆÓU÷€þËŠRé<8¬è ¹òC\ð¡Ãvy}·ß*eAÚ¡rÝ~3†Êx~-M4ÚÑ¢¿-…Óa)nC/·]-î—ã†}öúо_*(í0A2X?p°_µî¯ ™Ø6ávæ,ë›<Þ%M¬:èN2Z¬Éûæð'µºyŒ-e¶Ìâ̬1„cÎBÄh3”s*-Ôq½×FŸum$ ¬ÙÉ3¨swÉíF´»~}pýƒLÞSÿìf÷V}²'–Ñ>í3ðrš|óÞºûe's'= jYj¹)Ô#mMøë€N€Î?ò Fª(,XøëÆ_ B¿¸!¬¹„æ4"«îyåHÝv¦¾»„¾Ö¿„${LéÀvs:aªþ"ààbºGÙ£ƒ>0`ûë)¾$¢G;²îFèºh÷ öC’}âÌ,Ë-ì/)Hø@ä90ÏVȃðE0en?lâÂnË¡ëG`µ{æú¼9¦©«Vd4Äî^äÅårû2ݽÊF?€âXo@‚èg+¨—ò|Ÿ;öŽèXzbO´JßÁ®ß_Š¥vÉår¡3„¡mgIÍPÛíR+‘!¾™Ö¬U ®ÊꦯùØõxÇ]Â(Â.o›ƒÃÀš«óada6vÝÒJE˜9ÛȤfÑ8tƒ±ÄzcE%î?8ˆ¨xRepq‰‚ŽÀ5š³á`Ý‘,œ(ßô¸V‹3cµ8Ö«E½FrhXV,ôŽ䈡Båæ^*„¹Z$«!ùi9«¤¶qéVë´ŠûpF)¨¯FÈÊJU4ÐF90ÜqÃÎTë‰fêÛ;œ©­¶gg<ž÷6Sõmlªb$=M°¥0ŠÛi®šª!ÛÊá‘FÏÊÚ½òˆýçêä”×;T4ñó*?Ž_Ö(ÞJ¹Ðz îçï ’yØÄO¶á|Ñ8¾ ÁPSçóï^ÀÝ“ÁÅ"~wy ºÃ'Œfe ô îúI SÎ}4ÅÏÏ 6…ö›J^¦À«¿£¹øÏ ÜLB7r؉Ù÷Z'S¯=#¾#W(g_ lbzÎa3v›]¿™†Î†vŠÈóGIO.IÊ“—–22YؽÊÈ£¿©Œô¶“kæwg>=¹f~÷qæ{ž¿ÇÌ—õ³Ùp;qÒÃ6Õñ›’I"Ϧ_~XqA;˜: 9’ K>Ü,R"cãlj’2dº/]BôÀíŠ0º^á .Ð.Ö/½é„@,§.yɶ paï¥oØÓÓŽÒ·ó¤ÇêÈ?t> \%Ä=L$pzøÑãŸ?Y­XÏÙŠ5jÅ—i鼷b-«ëKµ¢ë—sÑ?öŽËˆž!îeLò{Ûd;~Ü Ï\,jÁƒX,î{íx™Ýð‡¾ 4sŠ²Æƒ\Y¢¬y? ÂNÎVÜ~ ÂvV+î¬}AðÇ,½"üìÓ˜ãÇӘǕ"þD+EþÓ˜¾R„Õœ2n÷A®»2.¬ÞËJæ4ÀÂà!®a–.g€åY)2Ny¹8O‹†BOÚ6—±•¹WåØß÷²Ì<îýYÖ™ŸºqýÐבœ›'aí!®#aÖæI¸ÜæÉÊëHN»-l<Èu$Ën —³ÛüëÈmÏZ] Ó^ù»,@ç ûy\€þ, PÎÍšpûA.@Y›5ár›5«.@µœæ`¸û  ,s°¶œ9¸’!Óý;¯#ÝÇuÄýü=Ö‘Zà=‡O¤+ZÙ1MèÁrÌ»“Á|‹–ð®[ï,mÕ+-\‚$k‰“r$4;ìeåU &sêz%àâiA¼j= žv+/Ë")ukÉmn¿ ´øª%øjçá« |µm¾Lé^sZ_6_µ¤–Éxê †úlçï’Èà¢kÝ’÷§¯ÜNaæ]âï§½”Y­ˆ©¦‹©v&Sí8SVg$m´Sµ,mÅñ¤,¦BË«6øØ–^eoÛ>p(²²ä•H,yWŽÌ¥Pd­†mífÆåênib‰Q,»(ŠôuQdL,±Âê(tÀг@Š”5R¤.“"}¥wrº$V;`æ:çöF}¡«ç1!(im玺¤±Ä ’S°îÞÑBç´Ol¾êI%“ñ¬…®^ËÝ%õ຺ó€)³ZSá,tõÚP=k_Øñä]è:yVº\r¦´mlj®©kêrkª1e›¦EdJ‚,´¸¹¦N¯Œ°R1G™…OEño9ä§_ciÌÿ°'à`ƒ1:‡—8)÷a27å×›òÍ–Ø} PòK« 0·™ÎÀñ´÷ ò]MŽÄ|· Þ#L9N~ùÇã³Ò3€“x¥¶nÁ0èö^lt_l]^ξΛWk)£*Ÿf½Ž¯ÛÍ&¾VCú\­Áv­ñ ª ùkШþ£4aí¢º–Ò3ž›ùb0ârÖÌ×Ó¹/LvµžæxPÍ þYûäõ™ìýšÍ§ UJgˆ•(å÷k^Œ)Ð= +¿4S‚F­@忚üW/‹ƒs9Ö$ÝßZi8Þ¿µBH"óœùç\–Ý:CEˆÃd¨B±¨ZñòåâpØ:n={…`‚ÁãEáëp6M'¢¶e"–‰g“Ñ×MЧÃÉd8Ÿ‡åè»gƒñH.1“Ñ@´‡³ÏÃñðFÉìµ^ˆÃÅ¥FïM¿¯ßgp7º©Åíæ¦è_ ÆrP¶fnbHë])¬_œXuCM ÛGUòÝ”°§þLé,:¶óú¬}x ŽOžuûÝ×=!ô"ÉLFܶf³Á³‡¯_tåúc¢0hKZx»jDx°u­­bú2BýF,¶ Ô˜ºp6-¦75zãoƒN“ÒÈäJ[ÁràeQ9+PO`úsóƒèõ.Ì"#‡¼JµÁ»ˆœÑðöøföe:GØ‹}z Uˆfµ ÿÌ DCeE1W&Џœ`àÇ!UTÿôà\\zé\²‹BVô²˜~TùÓ’ '^,¦3 8; Ã`l°#ÿ(œXFìð²ñ6âc.§ÙÅBj?™“ŸÀL‚ÆÍ@_ O†ã¢Œˆ“é{Ø{2ü2ÎåâÆÝ-ÄÅ`â®ÔïwÛÑiíùû}tnwß¡÷щÇ÷щ™™n&(;šNæî«›We±}·í‡»¾i±}M”É…œ{F8ò¹ârôut9D-êb:ùÏTšãSB÷ެû`8sP•y6¯R‡ö×ÁèõdîeÙþíãp¢ôŒÑ\Ê£ñð7brƒJ®d€ÛìÉ|ô¿ÃùQx2Ù˜?)"馓L¾øñ’C„xà¹)ÄóéL bO",z ‰¿AÞˆ–l¯ÉPÑý6’ ú^aÂÁœ‚\€÷©É,ZEñà‹T޾ÌFB¦Ô#ƒ &ª Ö$(©¶'T³,,¼QÄ¯Ó }Τùp=¼4ñE Òü€çÑñNtÄ» ùaKÄ­?ÄDÜŒ¿X~š…PeèbÜ‘´¦’v™¶*ÂàDbZqÞAë3¬ïÐÄÖpÓ›@ß`XÈ„:¿‘ŒG/ú [iB°~½„ØáˆSàÀˆèËqˆàld#‡Y†9RëUAkP‰÷`¨ÉïÀ ‘ÖF°GVSñŸH•TäéUTèx)ÁîôŸŠšÖG²i—ëÌX®O?Œäðàâ•¥$y@ÃLÿ© ®ÔϲDÙx›§'g›8¨&ªCpà?ùô$9Ì#†žÝÌf’u);°~ãÑaï"xàU‡P“ÿΦђa:øuÄ€òŽEG[KÄ4YêÈ¡R×™K™j¯q¶x ÊÒì‘>;<¦¹Î¨€óчI}¢‰öEáj4“Õcé"Íë íìzˆHxê~? §$ÉyNí$+h·CG|”ÌÄÑD’•ÃØì lY³}l2S”Xº?¬ÆÛ]/¯îñ”βMùOe9¨×ɲ5"#Na®…[9õ°ÚYytaN2™£3òª×ṳ̂áâãTfâj&¿+T‚rP4¦xP7ø‘$W®W#/OÅ4¡&Œ C¤:ĹJU”C“+÷~¸ø6NìN­Òö&l§KqsDÛ$3Òlºm³ÊÍÕ›n'/”1¡÷96µÕFÚ‚ÞÓ4kkb¤Ù¢ò¡ÕR𒚦Ô<¥BÙ½k^NDX_-­œuëË©L>™.>JÅqq•®a_@®ðƒ…ò=dµVÁÞT¦š^’æÌ¼öè'µÿŠZGYNIY9Üð.°îcÒi)åHZ‹Áh¢¶)¨>àÃ4DOXM'‹›w 9ð€PÚÉüóèËTëO•¦5OTÌ$’«Ž¤9e÷ëpàˆÅšÕ¦ˆw·¿I$oW¤ŽZo%ù§I' NÔã@½$xc)‹A+ëÜÂÆèBÈc°*¾}It¤†“ü,>0?”µŠ5la+Û$@òÜ•¹®nƆ†ìQ¡¤h>oöeÛÄVNª¸3tR‘ÕE”5:+p CìDkvÓôß+Ë,”Õ•#}`æ6BÙO˜l@gܨ4JS™©tX²èù5t7Fü÷Ñõ͵1¸P‹vt—(·NZG§röqsHï¦BdgK4½ùðÑ$Aé‰QÀt³˜±Hº®™™%ådçqqêGû«ö‘rz:‹µŽ£ñø`‹àµÑ7Eyk޶”æì?Í!ÛÇju³˜Án‹JœJ'…@Ø•a(ôzE‹îÙœ†ê›ÆæÚ7нí½_؃1c‹ ¦›$BqR¶”ªFÒs ͯ¶*/7`uš$`â¦Í-àO¯ÈÆj+‡C+> Ì\4 hËOhX¶‹™ÚC»Õ]í}jo."³eB2å /-8Û}s"÷õøf1˜ §7s»ÍÐtyg6zlÓµÊ@I[âË”÷*ãÂ1:Ph¥õ@'¼·*ËÙÛ¼r*d 3WÃxmd˜»Æµû©ñÉóXL*ñÊÕ\Ý™»Fõœ5¢ä䌲¶pTý¼°ÑÛ@Ó\XY ]‡Í³¯´6ÏF>.pÅÆµŸ°xáŒDþ&…¨$iîŽÃÔ{ }dgaƒMåt\\Ü€æjrYä¦ú­,ÓT¿µÂå’×–I~&rDtÒñõ†±ÇÆ#ÆîßOO:â©,æäÅéIº8&––Çä7‡¨Íw'˜Ï×ÔR¿Ji «¡AêdÉÑTr¾¡Zu•š¥üš>3°é™ª9¶ÎòrÆð9¾äãØbwºÇïîlDÆô’냽9uŒ_ÑÑü¹ÛKcÚò² i-~›Î>ãÖbêÌà"²·~xóVödá­‘Ô­§@Îͺ(‰žlMù6ToKbüA}©~/•B[ ÂF;¦ÙW³©ðI*ý¡ spIaNÅûTùÂLÓÚ®&·Ÿ½µj¶fS²Ö,1$ãŵ1›«—ȳ2×8ªÄ¨åÍš°¨ÐizÌ:ÛôdFSVƒšvu°u3þR†wƒ¯Ó‘µß¥¶™Óª†F„{v¯D•wz`müû‡`óŠ×¯ìÃËJ°§vÿ%ªöOážèO¥­LçΉŸk{j (ñScO˜‰Ÿv÷PÅÿ—ãÒr¢·½£Ö[uDïA%ŒFCl-¨Í=\–4‰3&a' eÍhŽ.¦¼‡ßdƒk+§GR¦à+¸Ÿ£ì,óºXVbˆ•·„‹,]¦<:=Ñ–la2 /¦—ÄŠÏàý|*Õü謟·m•»¿Ç+ëyŒƒ'ìÝÃ)¸œf#iú“Ó8Ì×ÃÅpóªAåƒø¯z'LÒœB”ÅëÞ>¯ Ú ¢ ò£~l±I[”¼“e¢ ]ÞL81µ{Kºˆ¶¬/“xWèÇôˆÍ‘«Á¬¬xê&øR“ÅÈbºõ²Ã´ 0Øç6Rå²@cw–­Ä§}oÍõ9Oäl”( ¯z¥75ÖÇÔÇi¯IÒ±üò“# Öú7ÖŒ‰ûìuOΫîÑë‰s’´+õe0ç} ÃÄÑ;—ÆÑƬ0ŠîÁ3˜[ÿ4h¸òk ¯ÏŸ–ÅYï9_x­ÎóÐ3+y(gŽþt±??—îq°­±™´FxÖ>\ÆÂprJ埜ýÿÜÀê0›Nsµ¯%É|IO®´€l&ZþÔríºšÞÌh9ƒé‚‡î¹ES÷•:É0òSóб\û*p„Cž½z¢R_A§Årc?Ò(õw¡wÄD›Ò¾[/z±§³K5Ð?LF‹YËmgz‹y]PËèÿS¶Â"Ünx]Ь¾Ô£ãT¯ìÑŒ•ݳ— |ÂûyXùòûì8w&úàõpœÓ¹Ù>·ÍápŸýè΢Üñœiùk2§@;Eàn$ßoMå[¤ôG½ìŠfþ˜9^_Žÿ·ÈÆj3ˆ4–«„›H3VÚœHÖ#"ÒKÙ^®:'NNv–«Ž›ÈîrÕ9qV'¨æ­Ù°Ý‘ o}Òˆ„yšÙ;q"µUªñA}•êĉ4V©NœHs©êt“7Ø^ª*;yG™"›þÁîRU8qްºT5ø%-¨4m’ŸÜ9¿tø•ÝçøçÓ0-+&ˤ÷óK‡_Oøõ-¹éeÐùé¼=8i¶-®d TïŸM¯¯§“¨¹µ¸+Õø"ŒèËæ?:uá¼ïÇSˆy‘x}tôºgq´EDž©7.j]pžÌG®Ñ(§ÙI·×ï>‹hJ¡!ÛBŽQ¨²·¥Ç Ü–PÆ@ŽR:ƒÅ@ÌÒ:ŠSí´N[Â~pI–¥<‘­Ù(ÕáO£,j¥ø³+¶Rò¼•yÃ’Ì­ÿ—djŽþ®ÔàMzyà“åɼ®rÕÕÿæÇ´U½ ?«l²<×l^Ü,ÀYRô­fT*Ë«áð‹¸ZÌ&‡ŸÅÇÁ—/Q´ô82B1ág•›£päÑ£t®Iè°ñU=4š ªSàê-¿áËô*8JÝ@‹7a ƒ  ð/º8-‚Jð 'eðK ¤¯ÌÍ@V³j.ðî<ü8ÂÉ{«‰Ô‘-7Š׺¢å¯¬*f¢r}ÉÃxròaN/£ÏtØiAl&_¦Ýd¦³ÌLA3ž+,a/„¤jˆb©n¾8Ý$×fo-u«Ø $ˆLáEÝÀPþ$3!”?^Ÿ–Ú}%waÁUÄ  ÞÜŒd’73_oGçóÅT\N]{ðFr²ùúdSõ~a ¥XÀÑt6Ýë/ÓÙb0YÀåÓ9¼‰ºVîóâ+ëÑ\ ÅõhA¢þ M™©”#h”BÈñT ‰2©ß)ê—&pðe>O'2I×̇fðÝGcc #Ôp{ž2Ï?õoÌ)ýƨÆ@Ô ðr¤)e "šã §²Ï&¬†u,„£aw­¹Í*˜+EhMcJO¾Å‘L"geJ7Áv½JZ¹GîˆL—50îp*R«.{²ä"XÀE±P8ò¿-ú l:Kz1ѰT’¹q^Æä—¦ Ÿj¹yë¬hu@õáO ~K½¥”Ÿá>Ï…™¼Ëéùf \«¡ô6U•¬F ¢è1Š]w9Aè&¼cŒAà٢6µ¾H„Öj:žûR ®þ$k  ®VýH€Ù‡‰ª¹2> œYhM8ϦREŽ!ÔCt?$‘’4?VÈÔwÐFVÊý@ ÿ¶|«Ã½É9¡ì„R Ç3fBù i'®©bøýËtÂaMDa"ßí¤uýv€‡‡‹Lu5², ß¶¬Ãvö†~ËÁDàžšˆ‚ß–…ÝÎÝŒç¦ÇÅç¶£'¢|Š];ÏNjÍ£i׉`ýÕJÌš6 ­µé¿%fFä]ž{¯¬™e'Áaµ¯¶T{ª¡<™Î®cEPÑQ—j~CþkÊ…÷"Z©-êÝDA‰ç ¾Íõjä¢QàE¾E±„Â4…h3QÒ)äBဳém;ă™Z<Óó›ñxƒÑ@¤‘I›®ô—@XâÝ¥­‹æk)~5L™Ýw}ˆÆ$ç쑺ÑT©ˆ® öú_âåtv9`›Û#¦Þ¡I K\ ^:׋W;³ÖÅ5…PQH0ÐÕR)N] p@È|öúÐÈ(õnÜÒ¤dE¦wÇ…O–ÅgÝËgG]?â¸Õÿ}súÿð¥Õ¾Šœ¬‡§Gýc‘mô74f¾g@ÚíÅmL¿Å-„Úï$ÛÝ  ,˜J¢«¡vÒ[¤ám‘~$áÌ`óŸÑLìN[b;sl”uüQ¯¸Ön¯±½àh¤“ŒFjòé üI­áX¥Ø8îd#+e ·•…ˆQEx¦RayG}µÑ{mtS ü2«vò Ç¿e/ “÷Ô »Ù½€ZÜ(Î)àèKÙ¤ˆ\Kû'½ZEd_',Rq—B…OãðïÆ»ílÑo¦ìÊ àêd®¯ð®ÆßQ‡ÐéÛi‚÷1«tâ[_Q-ë+9B¯@çT8OÜ£çe`à@cBhWÂP™›ÐYO‰¦+¡dt— 8:½t$áwÅ›;‰FX ª@ǨÊÖ‹.*bPuœF fV©Dv9¡ŽsAú¦!ù¾Pׂ7’ð¼ŽaéìÍÓë@Û5*ú0ÕBÛÃ>ÝS|I4Doóг· ]"º G½ì9ä½#%UPÄÄEKè-XŠY¡sÁ¤“D¼€ÆxdóëÐõ#0Þ=sý|aÞø b'ô0Ë@P(±æ¨LAA YNE:—GPKoÐ{Ûžzª šD‚$ж[]툴£J{d4“»Üà‚8QH-*€%\…É‚`LUËQTJØZnÑ·É Ñ¼p¾3–/x^ðtøo(ÿÜ‚ôv¯aY8ßù¾—Àöö¢zûñ¼d‰â­R†¹SÖ2Sò®ÌŽ ÜîÃïLÙë–»…Ž…r=}¶ÔRgK=çlidÏ–zÆliä(J͆Ó0@U ¡Ð:'Eª¢eŽƒ¸ú*"TsÕ·yûú6×-z,¸AîY:ôþbÒá'ÌdQsLat5³ý¬ßBÏoxÒù8xT”Qg6lzXAÑ A}®ñggw(&4™Ð&S±³Û9Æ½Ý T•áXì´’Y)ʯ&yc“ODÓ?q  »›*Sì0OÿZìØ7¢”®©ì擽aõÖšJ˜i¶ˆ„,z›"ŒÞ²®‚Þæ†ÂB^ì¥zVV™©½yDÀâqqf¼à(6¿]ÿz]ðmá¼Üú‹ Áznŧ‘;e3§` K ÖØ·éþ ô ï®’^Øæˆîâ¿è¹åŸ§ U—`ÎTçê¨Î5Üê\ÜB ƒœ"%¼µzæ±³RÔ9œó«ésõt}®éªpk/«Â+X{Y2´gÊPn˜•dhˆPõn!š.4m{B´÷—¢w(ð¼šds½šdX_M“”ƒN©’)à “*¥iES•RIÒó°vG­WÛ f­W8m»¿y‹ý®0™ …lß^‹Ì£ÙÇ$àIŠ<¹C-’õGú{˜WâaZï6Éùñî%âÉ_P­Üέ,î䔵ðoª,n£²¸ãQwn£,:ídG!»·×ò˜ºw£,n§+‹»Ž ×rÜ®­`pg‰Ê;SÿL²ò¯§=îÞôj»ëÕkÁŸT{¬å±—íŽZ¯öXsZÑ%¿¼ ƒÚ¿v ²–Ç®…Bê·V ky”õU¶!»kP ÿD&ôy¹û‚A5·Æä?Ö ²ÏuY¶®õ´–1:·ÎVkÜBg«å9D…Bn~YËcXF:[ˆ:Ì"Ko —ÕÛ”·ØQsÉÅTÁ˜pƒfÈaôf5à Fo®m¿î4¹4qíO!³z=™õ¤‹,4EuÃÐ8{pâÑ’qWjz1V‰²ßOck–{1ŽJc{ËHÔ ~ûN·k² %5Ý5"ÃÖÈéòP¿½ËCý®\Îÿn¶Æ_Î-4ÛóK'Íïd;H6P¯¯  ľÇûÁ!Gýhõ:›™k^ÞÊç­yÞj{ëœmFÕÈŒª»Í¨úmü$ê9ý$ê·÷“¨/ç'qÇfT-}7Ì>¨gY»½YûZé[»tYºêÖ··¹-ÝÈy[ºqûÛÒånKßñ¶ÑnÖé{èŠãи½Bcó.—å]œ¾ÿ™„Ø_ï8þ~Å «v¡ËÉçaî$qû,ußp˜KHÇãøÇãøÇãx‹ËõÇ72n€¤[#9o€4rì¦dY#+ì¦ä²Fîâ8þÏ´ÿõÎçÃüјÂüGùaöQ>©ÍÚÏ<ŸÏª|Þšç­¶·Î™Û’S4´\1m¤ÌhVoah5ólA!Á­-ŒfW€û2´Âh«Êz´‚å VÓ¼½“B3϶Ô*fÖ]œÏÿ™¤ó_ïÀþnå¨ÏÌr9=P3«¾ü}Ó¹U[Jl¸`ï8…m´«•s$XûlæÙÍòHg‡gWÓÙµ˜ ¯£ âUáJ1_LgðéæË—áLLgb<ý&ß,f£ÁäÃÍx0³¨|ÌbªBÆû£žÀSÉ—”ÂN£g,ßD`‡ Iæ™*ÃY2ƒg×* Ný]NýÝ8UDœŸÿ.E¨ØPAìUHîs”iK½:Â1›âûw¨Áßu R‰U…Ÿ‘ŽWêÞ©hÏËbk‹ºD¾nH1ëæ'ùÏ!f©ó*·˜úiþ‹q”>ïý•fsþaƒÔƦ(HIð´QwŒe5Ñ 0FbUÍ€ÈàSƒó]Æ‘9¤9méÃöx;{¹HÎEÅŽ¥ž9·T–š‹=ç\¬= ¹Ø{œ‹w0WD¸2Gná?Ðl<À°¡Í<^ÉYÚA@dù4óß{]‡lÜ»ËGªéÄÕtüqjÄ’›îמ{A]é˜Ûê)í¿ä¶ª—Íh “Íä>;·C¥óPwÙ;®Mvn]ÚHïDûè?§u›Éõ{oÝb,‰õîºÇoï=…ßcqrkxl7$Up) Ô-÷ðaÞYøƒæZ꛽ k›ä/¨Ü“ª¾Î@á©ê»™ªú* aš’ߊ)ùj´Ÿ¯]É_VUÏší½õÎv÷Eч<Ý{ÓžµOG ¾k`E¡âd¡¨¥9cÜâx{÷ú„nç¹4|÷'À·ÖâQm“ÉÖâwòÜ‚\ÏŠ³“G»ß¹'í~'U»ß¹Kí~'v¿sOÚýNªv¿³víþÑùÑùÑ9oë>,Gäã”ÝúcŸ#2i†ëpC>xôÇÎÇîÔwfóï®Ó毊^=¸Í怾â;ÚØÉ³/°sOû;©û;w¹/°“g_`çžövR÷vn¹/°¤ŒOºŸßBÆÇ}7ªt9ÇgíBXÔÓü0o±Ù°³âfûœï<Œ ½˜ÍÈz•Ý<¦ÿî=™þ»©¦ÿî]šþ»yLÿÝ{2ýwSMÿÝ»7ýW±-º³uçñžA2õÝë¼gP'l¹z=—qñýýîÈÀØÍc`ìÞ“±›j`ìÞ¥±›ÇÀؽ'c7ÕÀØý ƺ}Üáó¡ úÇK"øÜB;juÇnž63Í4ÇñG7O›êÃqóÜÍc´­g} ªAŽ…!¨Vïe…ÄrbOTäÕý“ý¬´BÕZ®–ïeÄrbÙµi/9<"ÿâöÒãm‰xê;³—‚ê:CÁÔ Å²ž‘îïh0ÕôXz*Uýž„zªlÜé‚GD¥jÞÓ‚ÐLm‰íû7šÖ%íÿ_›ð{hÙ[ÞâƒE6HæTUFuRP$/+²ŠiÊyA6ÔÓài·ò×c{mF‚±ÇXsƒê­´¬Wž£Ê ´ŠqÔí!^Ë˧Pµ´zy+¤H"G¹*µŽ+vmÿµvòŠÝ«Ž,=76ͪíÇkxŽÔwgkµ [·A‘777WŠëù .â¡ÀÈsòµ5‹Ë 팙rÿd?iâ2Ïi^4Ö*.Óí£\•ZÇ-¹LqÙóŠËx’Ÿ*.oÒ‰»g¢‘æZ| ï¶ X1¢ê]Þ¥C¦ôóïÒÝ• c&»æË¬a.õ:X·z¤ª×áíÕë0—z®U½SÕëðžÕkïF^Ûw…Æ\6΢àW©“Ä€Hj–Bìq±îkc¯ýx§Æúîøp |ƒ0[i±9ó]ª ÿD—jPjåÒñÃuëøaªŽÞ^ÇséøáZuü0UÇo©ã/)’“7^Ö&’ñ¦L~¼ƒÏúe¦h¤ù߯JWÆ]ã—`V³¡ŠMÓÏO¼ݘÍH¦Š·Ì*QË¥Ù‡ëÖìÃT;v{;–K³¯­U³¯¥jöµ[jö«(îÝ;Y%œ®æ*ñxa%™úî4÷Úö:5w‚ÍmäƒÍý+9`¡dÊ¥½×Ö­½×Rµ÷Úíµ÷Z.í½¶Ví½–ª½×~‚ö~7rùO¥½?ÊeqrS4ò@(?ú&=4ߤZd½šzH•jgÝ+ÌNª0Þ½õ SÏua¥^]ç SO½–RÏ{-eš¿×1æï£ù?:ãÆSßæ_o®Só'ÞF6 ï_Qó¯çºfV×,—ë©÷Éêyï“¥Èå\÷FêõµÊåÔÛ!õ¼·CÖ¨ùß\þSiþrYÜNn:ªu×—$|f"Í<è͆ÈC3DêM—!’èåmû’Äïçü¸AÊ)–d_ž55Õ OÁmëÄýÄ•n>¹ qí ó,—À<ìbÒ;GZëÅd<õª¯ët9i¤s3ÒÙírb^aÍU ×wk÷8Yr)·äó³çœŸµ‡/^æêé… ©þh‰»º¢™}“¨ñM¢ÆC0‰°l$úh7-Æe=ƈùù1bš¹¬³Æº]Ý©fXóö®îÍ\¶Vs­®îÍT‹ªyÏ—X½koÛaQ­%†w!ïu§±ýh,¹Rß±Ô\«±D(îÍ¿Š;J’\QsÝ®éÍTçy{×ôf.릹V×ôfª Ó¼çà1Yrt=ác~š}4OÄ]È9Ѽ#„ö ùÍ“æC0OàĦé3PÜ“8‡F,ß²N')‡¼'ÎX"ê¤w€¼,NÔqÎøÀ!x¾Q ÉùñîÏŽOŠ8RßN·½N”ÞmBéݲ#®âXñ`~c –œúɘ·šúñ{¦¹ÿ¸ŸõÏM±¦ÍÉ[)"¾ÓÏÏTF¶ð­Ëïìä–œ±|«¨"ÝGy„ºÈãUÜxê;ÔE‚uê"ê¹ êy;Uä^±Zµ–±|«¨1ëñk;&±ñxƒŸõOk±ýçe\÷eÐ1èJ (7ÛÁŸO§p^4ùêgVñÔw¦S¬w{ƒ`ï¶³aïUŠõ©ë“n•âQjˆ[ÍjG­îøf°ƒÍLýæ=Íl­?ÉÅ`ûYf ¶µ;Çî@®8Ó+q8~•Šxöqxñ<¾T>Å¿eóËO¿ÆXÁÊj1rßÄR)nŸŸÊÎÒæTóËÒ3©eC “AI¼”µ4뜜ôUmÉOÁ8Æß®W“5ïß\_f?4§Ècë°Õ??Šx4É3—§äÀ'³¡ð|þúä¨u }Ð霜÷O÷ /dëoˆÙpq3› /QîƒÌlʯ7å›-±ûV¾ííÇ`U0·‰Î _úý‚|W“B²ßm`¬x[Ü0†‹FUEîVbL'’£÷—d?ã\ÙªÔ6Ã-¨v·÷bë ûbëòröuþ}ó*…ì§*Ÿf½Ž¯ÛÍ&¾VCú,¿©‡aõAµ6¶ƒzÐßFíÿÏÞßv§‘+ Ãðþ¼…Ö¬gÝÆ;tc;Éœ+g-l“„ ÆìÙgíûº‰Mö`Èœ—³òãU•¤Ök¿Æv¶{2º[¥R©T*•JUñßXu-µg\7óÅ`ÆØß8—Ì×Óyè=þÚÇõã^]Ä,Ý÷‡Ó÷¼÷ÄFàÃÚmþ££F0°*ÿ~|*´`ÕŠžáñÛnŠ%˜Ü çCú ÿyÞáÿ7á³—伉¯öNÎàmüèwüíw£Džd¨]--K…Š_¤ªàXâ2±U?«ýAèlz³M†¬ôu8›¦VÛ¶ùKbؽŸŒ¾îÂÀë '“á|>V’{GƒñˆKÖÉhÀ‡³¿†ãáTøÛõ׬µ¸ÚÝ@ÚÓ¯ÃëËùQ#zw—u/à¹[Ÿ}º¹NøŠâƒË§×ŽÞ2ÒÒ´DÑT›þ¢OS: ;ZTt|úþ°Õ`gÆQ³Û '_ãÎôÝËÏ73ôßf_fÓãáµ2üþe8[°«Ùˆ vüºÑè^ìÚUÜ̇söa ®é0–ÐÍü’ßâ gƒŸ/g|æåMažPàüóp"É0š#ÚÃ+ެ€ âAxÝÿ6ýïpþ+ý6Ùšÿ¶è ô—?¾ÀË6ÿ2¼}ä´ÙeìWà†Ž!P¿I†pøJ&*€»„úmÄé÷a¨õ ”â½w%€,ÄrÂÏ,BFÎu•óÐcé §‘CòŸlF|"åÓA2ÙÈif¹îŽ"³õëaùZÝS –M´ÀÜBƒc³Á·9ªósïæ©@Óo¿|3w÷¸y"G³R!¬zô!AÊÍ7ÝF«qÔÚü›XïJ#@5oO6¯stÚ>n`SøÒÔP Þ$þSž×ô¬WðZ_*bW¤}R?¤† ©ÇËI]ÍP¿ØXÖ‰£˜|9ýNK¬íÿºH•VôGíˆ/a‰oÿk[Aš£NUìêuúT>¬“§ŸF@HªZ.£xý¸‚cÛÿ%Àðö‰‡¼6λ½ÎûÆnЛHqêáoÿúÍU%2G7³Gzü ²ñhޱø2c>â+„À§…¹¥ÒAþw8›ŠŠ$4TÆàÙèŠ-~ØÏÁ무àK„9,e®¶ÙÛéìŠSúÃxzùW…-ÚBµº >M'ƒ±¥ÕÕƒDÝå‡_‡¾î@Žæò„?c1ª€w#š¬I‹¦µ ïŸO“ù®þf ^yÉJG3N1àøÂýÀýÌ‹©u­(€Ö§á”Tk¾`X;Ô€ýÆ@sÎüëß$|Ü%½„¬Wè©CWkº0¢øŒ“¼Â>ðq~}3^Œh醼Êû|1ࣃ¹üÌ¥ñ„,+%°·ŽvÖBí¼€v^Èv^`Clk ^Ýw`Ã4±TÉ52uÎ ÍÛ¥:½ÕÞ¦îÝRS—™@Š´X‡ìgo‹÷o©Å9Fìæ»÷à–›5zu¾œ=z—ï`®¨©š }®Ö«i;Cˆž¯ íJ Iã;§âàm9ÌFŸ>/xs¾`è,ø*úJç]4šóâó¡Â­Âß“ 1¤ ~Ž«*þê7A½3cNZ0 p&Ñ­ïja†â‰ý+ݾä=n4Û`}ƒ¶•è¾n!o “‚F Ù@mÓÈ&¢¶Y8ƒÐ†Ò…*ç =YߌYÌnÄây[ਠ¡Áœxc—XK$ƒhL¥M†×bðïâál6áФúz²ÑNìÁååôf²H¬Gó),í‚sà~^äß7ZËrž¾_³žÂêp{×¢lÒØ4æep¶þ4âz g§ŠR}û)™,v“~{¦ú­OýÖ·û­ïô[ßÓo!fôLEb=î½~¨÷êÅ@ïé¨;gc!;¯Ÿ«óúØy †ìħ±°‰kvç5Dç©]qøñò¥±'Kæ"Þ½H‘m¹ûm¨îº%MDsµ—²Œ³èÍœ‹ ëškDЀ!€i:©f).3yàgŒaJEH¶%|ÃÀg'° ’0ùamï&ò™¤°܆öqÚmºi€ìZ®˜qÊ¡óEIXÖtHuizßç¡ ' 'le*)-ñ4&퀅JšCÅ<3ÿkÄuØ^íI;Þ\£,‘S"&al™àò÷©0 "“±nWɬ2_g”Þ£WË÷h‚ËIý‚ãÿ„24¾¡jŽvÇ¡íÊiŽË&°#V’Ò¼ÈÕðãh؉]xÉï†ZÏô|d0;¤d;¾ƒšÏÉÁK}¼³‘aÆÑèwª”l¤¯ê­.ï@^<—(i6T&º›ÞHº[z¼x8ûÔààfšyö£±³Ï›ÄË@/­/28‡àkòD›î¿Â]Y»à3Ï×ਠ̖4X¾®o®5FE3¯@ô+Õ;õ“F\AGÑ2 S%¼C¹Î7½ùôYAéÂDÖB‘ «¦•#K *n_‰êäý%}øbp:SB Ž˜ìÒ§Ó›E†lÚ3€žNPáÿ!à$6~”MÃá•\ŠÅ…¥¥ðKP`:#-–„œÉ$õa¸ø6äd¦`{Õûÿ¥ƒ}D’òª~hôÕ Ø®§Xà€Ó¸>žO…S˜ÍAæèPx¡é•…Ê žäï3`ã‘m‡å¢ùWpªT®;ü½ë ¦)ñÌÖCÞ·b—y>ÕAˆörýPç|yùüòFò‚Ý­9RM‡ìÿR—€Ø»ä¬ó ú‚÷Ö÷Ñ‚*¾„=1iТ×\Å|_ ?à-<|Sœ}F“›a²¿ìXIÁhäO—Èۇ͘ìH0 Ÿ+3 HýöqÀW8W¿AWCí¿¡Bô[%ÑÙÖ€_ÎFàþ¾Î«ð¦_r†œ L@‹˜âZB¨HÎ`)Î~œÔu¨&Á®U‰¦$¼9€©cÎÅúÓ†Hý-è–ħ…áî'.õ¢*Ø7¢juƒ¶tt L­[>ňZ€¹‰¤!ôÐÉùŒì+熫é͇ñУB!@‘i„B…ªμkÌï4fÍï¯N;½N½­/PQ¢Ã„ ŠŠ°© «.SÍ}Zás‡óÝ|:þ*Y†|9—®ýËl4¡íe>Ûcï²k®Êò…œÁ'%êÎUåKžîsr™Òs^àP¨îŠ•G]W;Æ.O{Ä'zbòé¦Ôno½ô~NŒfÝAå˜aÌ…:(2SK/‘ƒ`—d2ŽòzbÀ­ÌTv¾óEÂâõyþ‚Üp¼[”Nî±èÔ¤Qœ©ê$Sø¨(iz9)JŠÙ€0ÙKW—7k&k}‚^œ_~HîO´¾ï€8ŸÔn³áâù¦·^\þ‚Ö¹<>ç¥ðÑQ9o® Bç´Ó¢§éõàÓh2àŠH²¹l™å‘T7T2ŧ¼]O8få±¶[ÎŒÞ\Wäè­NŽ•AÈ«5úk¨ÜüÉÎ…çrz bH{X•,p¸«)í:Ø’!5{éƒË…΃±c ¿BûÄt.¬‹£]¾bF~nÂÅM‘ðäle® B^'S\¢qÜgÀIsŽ'XÝpmÐMô~¿»äà'v_í È^iš`M Jª”ÚZ:Àq‘kƒˆDÏQ!˜^7°AÕÑ3aïµÔµÝ@yTg¥‹Ž®[£‹[¾ ¾NGWÊ´/…¤þZ‚¢PNÌø-#¿±#Ù ¢r‘žf耾«•ÑaªÓg¹oã]ò_rÙ&qÑš^³ Ž('œ0@¹aZÇzÄ×¤Õ Wdo./¹ê6ÙFç0öàÚÁà2‰/ ÀÛlÁ£}ârÊûëÒòüo(tܪ÷N¸ÌìÂgW|6@cå2¯ï%GùbÅQÐÅu9½"[€ª‘³Óà×$a¯@lTü½¼³ž+9n9嫟Ú™û`_æ*,m¢œIÀV¾ åðø+¿1,¾ ‡s+ì´ÝmëÀKKÞHR]˜LGfa­Pg¯xd-°.p.¤½ 4·¨Wñài:o@ÕçÁסXTñ2ÎKM¸‚»r†kžœ74¸}Ï´´ú2˜ õW›êÕŠ[Ù0ëíÓΉ£ {Í0þ—ÁWZ”?ícH8˜M¿åöq·ëTÅt Ï­ãïWp¼<ǃÅ諾Ceí›p”N‰±NAà¨`]¾žà’l6&Êòu4½™³=¦f:ƒÑ{ƶ×Ç)ÕBÅ€)Ÿå`¢8Ù"N·“Sô¯êQ„,œÔÌ8›Ûî¶Žz*@~¼’'ñýˆ¢¯bV!Îhg¹"ö(ÓNxê2¨¢Ë4’‰Áþ©“QÝ£èŸÀ®¿?9©cŒŠ”nH^’äQW I‰ÅÕÔ“¡bÐJ®âåHr$7RÊ¢DÓ‹’¹¼ái¼h6Ÿ¦××\¶§ñg·Ñê×[Ô„p/ò·à„,¶tD ·v9(<Õ{HËa7OæéYÏNÀ@§r½+OONNÛ¥ž².ô|"°Šœ·Q NMOUï\&Á׫›É%¬AÓå×OŽäàm\p¶j¤ÏSêéÞ|‡3“š|P§¬D.Nð³ÛèÑçû“ i£ŠÔJÃÌt,ÔÕ‹Fç°U÷ ÖÍŸ+ß—>ðîë4ÛÝæQ°~ØÅ½@ÌRA§8Ôc<*¼,†ÖÉóãz¯ÎÌ Ù›÷aTaq…Õ*l¿Ì[¾W>¨°øS+¿Ñ[¼Åa`ñâµ2 þ¤=ãÞ“ª¦ ¦WÊTÇgŸ½Š(µ'ÿÑÏ}ñ=\½´Ÿ¼ÊEMZ­4Ë‹j÷±nhÛAð-WyY× /o í³®Ñ2 LEp<…Qt¶­c´È'*â–ñ^ü;§ ¾×½ØR³{¯†¼>p¦ªßx¥ÝÑ©ª‰«ØSðÜ€ôVKÀá¬ÊßÛÀªLK•±X)$«IaÉÒ<ÖàxŒãZ&ú ê°áZE¬Dl‚ÈظqþwÕ5âeJ1'æU¥:y c)ÑmdË` Õ8Üh†G‘'jNÔÑòGð„Þ‘Á!UJ=ª7ôzl¿N[µéuÔìBb‹BÍ-TîÀ©Œ[¾Àj²Ð3§Ðiv¡çv¡ÖqЋØîigWþÂn ²êÂèw ô3Jì@A&ª•‰bü,—cÎ3¯y›ÐŽ„µ'a™áÐ0¶[0@Æ]¢©â.áÞéVED4ö5¾Y!Κ¸ý½|¦ìjJq,`ëzÐÇ¥” %X ohcBæMdZ\Ó®•_Š9˜·¦;øÈ—z£ xKl©Æ€"Êß‚eÃSR%5JÐl+c€á«²(SÀÏ”ˆÔ߀5·‚Ý’Ë Ôbù}Í\ÒTEð§j0ƒ…"9NU¤Ÿ‡”Qhü éIw@JAv2 q@TA¬0BøŠ-ž¨k8ŸxS ÑZ]S©±2‘Ê éæ+É{=EH~ФZ•–3Ô¤=N‚ünû´·+Ï[ÒëÛ–ŒM¸ª–p]]0‘ø,æ8QH;žy“#•$Ü36b±@éÎD‘Û9+Ü‘pþ­þ›ó„«iÓqb´ÔuÒEjT„š"ŸAÔÛ/#qŽ€Ï2â–:°w`S=y9f4±ªíeþLM Ô¤3º†ß¿L'Â×DM^ßcö5˜Ÿy#¹JÊÔ +}{j½– öÂÓc<ýĨ#f‚H „ Ð%lQáòÏœò>`²-I¹ç¹Ê©$_ä*(ðÖzÞI¸ç+–䨵8§(Ø|BRëQ|f²U»°ÄƒÔ|™ö¥\ËWüƒ¼z­*¨f>ƒ‚z z2ŸSĺ;Åß«9ãP‡B¦Û—šJ‡~ Úµ—ŸCÊÉTà´Ÿ LIeO8RÖGÀèoËYޝ%ù$öêf<ÞÊøRެoô×ß·©v&8I¨TK°‚“õ'Òoug‡5åñòÿÇ8>î†LýÊ!‡‘Ò2u6µu…~_iY B,!8u7•X³¡CØW4Ã…SâpeJØéà5L{ ÝozóçeáY â)(x((èâú|\mº¾¢WaìGî°÷€Û¡u¥HŒ}éMß 6ýXž<‘­þ§¢ùŸb÷µ+#3„ã·öNº% u«»¥(âw‡l°hÊ ¯å™²yVñ†µ–Q)Ž\ gŸVAÓ)²¤H7™ètçù]PB»UJ)ñZNØ9é`¥ÉV̹€IÍr' QÄ8"- |@S ¥DJv«ÀÁ˜Ã1ÚÑÂX²YÂå AK`…„õMþèüÀöÒAˆm‘º“XÌä+ŒÚ¾.Îz–)u*ê ª®†)ÙÉ_DÇlbýÚ6ý¢EMBÉ"¬)ú%X*¡ PlµOµ.‚¸æ¥òó<’ì×$3"¹!2¿È“ë rû—&²UPÄÆo$ú‰ Ü«lÇùTííÚc0`”h!Cü1¶DU±¯ªöÎÚ+‹\Ê Ÿ-]‘wþs‡GT ŽžZÿÂCäŽGÑk33M•·§råV %Vá-Þz-=y<)S%ò©P‹7"À€Bº™,FcÖ~™Øxå!©è j[Ó; ØØ•©7¨¿Ê$îKHóý†ûï _´ûÒ±Êû%k¥Ïdè‹}?2±àC,Tã/†l»$=›è}(7vÁí-ñÞƒäêYÒ×A\³æsÞ[€(½Z€ÉC8¶mNvªÌ[„Mˆcm¶&U8™¬­ Ù7NBs´öAðOÍþé7œ'0œ£†åœkí)ÖžY¡'Ÿ'òêYÒ•ùæÑ”é3ï¬é,ŸW]žÃ3bÖD˜{þË5íåšírMræ¶\Sš3“ª2pÁ‹¼\ž¬B˜Ä(넚~’Yç…§ïÓæ˜ÐÔBO… Æp<ˆÝ|©áÈíµ„ŽˆÌpž´pOYtÁåK ÂíìÐ%:6ø Nãë‡OYƒòçXYá¶Ž1ŸæÛ;MâÜRi>Êp0쯆‹Áh<ßþ}K¡ò\CeËÙ ý]@eÑËhá¸õ.tÐ1ÁÏý—Ò"ý»Œ4ºkݵ€`ñ˦æ›y.ªã@ÖacÃëLœA’Ú¨†ÚËžŠnìôî¦5‹j|¦µ ÝN*fÄXU‰ hO+è1»›Tò\{wn§R (?´ÄƒÃÉœcמNv”ÑÚíá/χãñ(8»Õ®Í@TX˜’[\ÍzÙLŠR'=l‚²¢(TUŠ¡ô®[ÛѾªG„zÒzz÷«^G”Ôá ,L}è&6•§ ¿3Y_l´I+$^J¸Ém×3½>rh»T>©£–´ß"›dòF¼Ñs½r…Â:ld‚­4¶Š^¼û¨+vƒ:ùŒm{îÀxAï¼îÍågÕ"Ôõ¨“ã "$ú“¸™±›Û¬“^À–l¥"‹æ<(ý„ÊDàç·‘–œ+VìW.¿l¶€áF6¶L8~4y°BUÐÛ HÒ½ÊØ¤EG&n«—ëšÄú'ŸaFÛ?1*à 8R., Â[k ?„¨ª^,§ì¹žcgñY¦Ó‚У+_¬¨¯µd}­¬úZZ}”›˜—>ÞŒÇÈâ%»VïùX‡ª)3&.ÌÂý–TJÖƒx2o3Úl¨TÝzM @¸F ¿;‡ HO½úŠ‘ƒR«_EåNˆq°-{LRƒõC½ ÓÕ…6Y2IbRC«Û¬ó)´ÀýP[ŸmKnQmmyÛÚò´Õr(ÔÔÖ²Míähêsj*ÅâªÙ‚€soøÊ¯~Øîœ0I_ ÁP‘„XÆëN>÷D›€s‚%ì²Ïâ2‰¨Í•>¾`š\êS®£¹g´5lr¸£,£H.A!U¡„¤öòÅv2ˆúŠo¤ÓåãE³_SrÙQÈMkÊ`6åñ¢É~ßB6+Bb’7!OÈ×{Lßþ˜¾ý1}ûcúöÇôíéÛÓ·?¦oLßþ˜¾ý1}»ÖæÇôíx=¦oLß.…E’·Ý°²2¶»¹Úµ…dl‘#a»“ª½ºÖ”ßZ;ògjïgçúΗ©=5×w²Kd5¦@®o=Ç·‚²l¢vÄ1±æÎõ-tZÑkäÐÛ½¶ ›Ýk O¯i[0KtWcµî2° õ—‚!s³7rõWÃì/}¿gÙþjíÉî¯~jnöÇäìLÎþ˜œqxLÎþ˜œý19»á19»a:»·ÉÙûÉÙ“³?&g_-9»^¯~é ½+Qü+¥m_|VYªë"»^@ÿ÷K­é|„@l&ùpÂwÈ£Œ’¡!…Bb7Y%ýûR·Dbøþc"ö@"ö¥²U[sÞ\귛޽¿z:v»~´š?#'`™#²÷[ë+àà &¯Ê“ÝñÐJò£#j…ó£·2ò£#^²õËŒÁ´Öw­ïøZ쀵Tó;šßê4ÖÚ|<ÍK¼® øÄæ²(!x©<” J„Y´¨Øh-@|L1©ëpì’€N°¬Œ!ì®§³u¢‡¶îÕÐÃÃG§'g*מ„›ÐSŸôœ­õ™gÃÂpÉ#M_é Hn'îjlÑX[øy¿0ÝeFoÉupEc]\ab‡õÛ`ŠÆ™BÏŸÎrÇ‚Žƒñ†ICJŽVE‘£kÙÞá\;$ƒ Xß鈌µ¼Ý €Àå¿tXÔmèß[oƒ¯ÓÑ•Úè” ÄúeÅ{Ê ±Ù0ò‡“a(*ši†aÕå(~ó?år\9(£/)ÿŸü–å %à³&r.yKÆ…Õû¿¤¡L¶F#HØJ—Y×’Lc =š!‘Ù)ˆD±@ÕÙ¶fþŸª°;ÒÌA ʉva< sé”üïªÊ?̺"Í0~6`¦Å µ$ªÌ¦ç™Ø/§WC²%©:pô„¯áaG9©·³ž+‰5.Ë”8¼?˜ S.)·gzš=|ÊáñW~c°*½Ù°â!{c$‰(l¸&°0«SÄKT»Zâè mF’­lA±*€Ñù‚uÐ 9Ü#ø ɮŻÊ8ò«§q·šznA~õuùöe0—'ø’˜2zªm$Êk–\mpæuÍi|¥EyJ(9?é·ô¯À3„®?„ªXË%¿_ÁIB854,F_us®Qq‹ ކ+Éhä¦&ú÷ ÇÙtš¬a9¯#߾njùÊêŒÄÏàãôf&W}° »RXÉ~È ­´ÈîGû¥hp×NxžK„)›žY{'Üm<±`ûkƒ|{fmÓÙ•ðNí4ÛÝæQ°~ØE'ƒ dq® /­ê1VX C+$Èq½Wgæ…Ý!z1Ãoô~y¯ÂöÊvjå2,™·8¦;~Ê_‹0µ ý#H{Æ=¼&UML¯&L¨RËVD©=ù~î‹ïáÊè¥ýäU>JÒj¥™KT»uCÛÊ€o¹šV–TÁÉ~¶Î¶D"¢­Ã-^ÆÇ©ÃË›迬ktŸ "NÂɤǸ=˜(K[Æ{ñï¬Fïõ/¶<ÒÉÍŒŠn„E—ᱫŠ#UFW¡‚¦$‚ÇÙÖòä“¢Ê$;AòÐx²ÐFvÍ9Nâ9^¬r‡1Atr>»ÆJ|°$ß„“~^¦¼78˜0{’©[!ÒéönËÍ9¢‡† xy‚hI­%z'àVØpAè°]¥Ë¢zC¯Çöëä7’^GÍ.$6Ôy! m(w`—kסPÄvO;»ò;ؼª £ß2€ÐÏt(ÏÆäH!ÁnþlÑA"7NÀø˜&Ã46òí—‘8ÎÄg q+ ò‘«mòrÌDpqù¡½ÌŸTºuY &½žÔ5üN^À)Nœ\O^ßcö5˜Ÿy#¹ŠËÔQ´ +}{ªå‹ùË}„pIO?ñó$%­ "p‚@×'™m5Tþ™SÞL¶%)÷@û¹Á”T¦)&ÖGÀèo{Ó·¢SžÔ¶M¥Ì0O1—ÀͬVâᩲ—ü?F 7RØ?P9 ˜¤ äykjký¾›@Våtwên*±fCçÒÿYPNÒ.uqe ­TôÌØðæ³ìLp.žµ ž‚‚‡‚‚.®ÏWÀÕ¦ë+zÆ~ÊØh€Û¡5§HÏ—iú^°é2ŒÈíSaÿÓÑüO±íÙ•b\²$É~»IÇ…íyaÛS†?ÌÁNKw3Çý3Üïçɽ®ï^Ïï‚Ø­Râ ;=zN:Xiã3EF¾OR³ÜIBGÔ1ΆH‹ДB µ"ÔššU =l+Ì’Í.7d§³®‹”Õ”[ý1Òb弄¶tâ*Áb&_ÉlÙká¬g™Rg=iÅ“ñu_ÒŠWo5­¸Iåçy$Ù¯Iævf¶ëõ‘ùE¶˜\‘Û¿4‘­‚”cöu#ÑO\à^e;Χj§@hïО…£D;â±%ªŠ}UµwÖ^YäRùl銼óŸ;<¢jp|ôÔBø"·(î=Š–X›™‰Ö½=…6]‹6†3¥n½–Þ.[Ê£ ’Ô› w„oý°[ ÉÃ8î6èE†Ñrïá†ڪŠ´Ü€’ò5tØ»yþ-íj> ÅŸf¨±äçÀAÔÊÎãd¨˜ÝU9(·!ml¹ì&z÷+°VIέ¾²zŽ]·(mË È11Æ`—¤@´x,ð îŸ{ÎK¼Qf^&]øsô¬Àw=UóëŒbØË86Aˆ>%¹ûY(_•ˆ›ÒÓgÉD¢îybèÊ™-& ŒH&“•3& Œ™RÆÎÓ&×/OfëÊ•\¿ììàÆ3+S¸~ᦳÚKxáyƒåM îCÇ“L<°7±¸¯5F’ñªiVw’JýÉÇx‘;°R’’ëWîåy =÷ª5)ž-pP´€'¡¹~9yËõ+d)`Ä¡ÑNnž§1\«–¯MžiƒZĬÄèž3lœ~¥ònZòtã½@"u€Å>3(ÃÙܽI» ú}+©{tàñ"é@›ÑDœ·‡x6è³›óƒËË›ÙàÏ$'Ç_øôÄøª|½çó›ké\cŸ3‡\›x@óûèrúi6øòY„Ú,&—O±·txޝŠC WCù<5O'º¤Üùá=«Ú{$l×ËZÄ>å ö.çtNéí¶Mh ’åf²Yûe²M@‹:¿+f¡DŸ‰`[½dUÇâ ¡ç\™plð^ìÙv >|Š~ Z»tHBŒŒEþ¢pÌÕ¤ÌRò›Ì Õ´WZ2›V“jáÔnê-"œ.0âXSXhùãUH|ãÚÑQ²”+‹Ý2ŠGª²ÁõÕ'¤­Ê…„¥däR,leÂV Ðÿ@‰äH›ói )ÚA^À§NŽô Ïöá>kVÏ=“çš½sÍØ¹fé3³3q”·‹ÃSm£—‹™Ó¥š"ãÈÓ±iSahú£§Â ç°3ˆhgòêÞ\_ó™@U¥¬EïOJ親‰áÓOõà´Œ sõ>eÑ—6í¶žñ8WCMc; -‚ç±AÁI¼Ü  wǘáΓvù$I1g¥ùp(#&ÁX¿.£ñ|ûw¶¥p|®á¸åì“ÿ޹ƒ!ÑöËh #ô¾uÒeàçþK¹Yñ»Œ…½k…ÁÞõd~fñ˦•ˆ‚y.ªã@ÖacÃëLü„’Ú¨†ÚËžÊea8ì¦5‹j|¦µ =’*fLsU‰ hO+肾›Tò\{wnç&§R‘&ú™ž&z8™sìÚÓÉŽÚÏp{øÅËóáx¼ZØ.@µk3¬‹”„¼å/›IQê⤇m@PV¥”óFÅPz×­ÇíŽh_UŠCÂj=½ûU¯#JêpÐ ¦>ˆôÆ ë+ Q‡Ó†ß™¬/6Ú¤/%Üä¶ë™^ùº€]*ŸÔQKÚo‘M2y#aÞè¹^yÉa6²NÁV[E/^ž¸¹õøä #Ç‘|×®Ë&$1½eßÅU£E^TU˲I@ÍÄA+ víkíêá©V•¹$ÅQPÌÝþêùnlK-ìLX_W !=é m*`;±˜Ê­Sªo«„~9!Ô‚/­žçå=ñ²›Ïóò>h}—ìœ"íMp&€3Þ#ÌÆçަJŠåò´™ÁË3oÈ84« 4ʆc-2‘[AŽž©Z·TÃsYƒ°r;µ¼µ²¨…jõmÊaæÖêpW½€_´˜å”õ+9ß²ÍìævóH'pN# NƒÃ£tO¥d–y¹µû@\7…/m–Í=þ£Ò<ÿÀ“ †ÿ|ia³W¯nÁÒs‹N!C‘‹À€/ÉŸÛëuT¸¿“âš`Bµîc)a ø>IR¢YÃ.<v¬Oݨ¼ýÎh³k+‰…ë9Ào“¨|qK^2¾ tlU@,…_B|ÁLÈ#ðëö–¶‹&v•¤RÜ H·„˜z‰ëè¿ëŒ÷—~|Òÿk§¶?…EI³ýúi£ùúéÕp6ûpµûq-uTùu°·‡ŸÏð³Óoþ%>x¶ÿ·(Šªûüi´_ý[5Úß;ˆþƪk©=ãâÊÜ`ÆØßøŽ‹Äé<ôíãzÈq¯.—Ý÷‡Ó÷¼÷ì˜/QÕÂã™ ƒ_‘¶êgõ£?HÍ‘¡GK´ì±µ]H—·#Ã_LF_wAô†“ Däçk uïh0q½i2°Ãáì¯áxøƒÂ‘×_³ÖâJmO¿1ŒHÌYHb@‡ÿ“øýžsåyñ·éÔ—€ü÷Ô|óDÑDÅàÅp7†éøuã°ªO;¯;øy‚Ÿ‡ÇÝw™× ~¥æ xpÌ/‘Hkœ•HtÍ—WC'0¹Ë¸úê@8¥0#üS¼Ú¬ˆGv Z ´»Á¾~í­ó¿ËNöD’a÷à=0ðà±Æü%rÇæQƨI»´h£jûŽ­û#!ø ½Swe°Ù–$úôŠ/œƒ]踤¾6ÔWŸÝ—.§ÒÞY ÷.„÷6„¾}ƒ7ƒwEÑ` žÐ­.ïnuÆÓ q ž§Ô“7XÂÑ›?.b ɱ\Á±~Wì1¦ J’ñF8.tÍeij˹ª°Ó?\'¹´Ë[pÒKa/Î¥=4Kú¸T €.}0œžœœ¶=EHGâS@Ô*ˆdZADñH~ñ¡Q4rÄ1ËDœA6à4@·C´¾%›Kp=ü@b .Dâ`â‹‹ÜÑd2½¼ߨ$@“dí`&ŒÄ˜M§û›¾GŒ%ûmnç¸Ê©çwŸ“xdïòØÙ ;ýÃ8Ý”è¡Ð IŸàDÌ©nÿXM*»ÆÖ ¹ø`Áæðx ε:îŠ4bô=kâ ø€Ï4'd-ÓOîãñKl'B7ð:º òa®Gï@vqaƒ÷l78,Mƒº¤ê«˜,,ǘqêX áH.›Cd/€HŒµðˆ×GTÍB$¾]‚´i÷†=á$±Øì8³Ùqœ“ÍŽã,6Ën ¯lE,ÒylÝXø °He°u!‘tjÍèTœeŠÏòt*¾ÈÑyº%OÁ©¾…¦äbOªl•N•X¼ÛªHþÚµ44ª“Óï{€E$¹3,ÎwI‹3Õ# …#t,¾0Dàí¡q†F¼)b¼ÈÀBŸa×E"‚£ª%ƒORdðI^|¢dðVK³ôHã÷ø ›X\e6ødeI}¢ÈNß\=£Võ%¾¸zƶk/0nÙý|ÈúfÌÍ#ëWdù¹ydŸçC6örA|Ÿpíh„ïœ ‚¸žyèßSºžyèjãºaºFÁ¹Ëd?ÃnÙÂ½áØ d3(»!–ÕÔ s)Іà€„Ïò¨Aø¢½­Ê…uÛû^S6³—ØTõ*êŽÄé½1§"µ\FÕáÕªŽí£ê(;ª ¶wŽª£ê¸¨ lïUgE¤£k«å Žw~péo©Ô¡¢jjŸ® ©D„>·%èñQX‚å” ÇGr!ÙÞÒM­¡–ñ)£I+äæ ÌÊ1ZQ°"ªïµeÙý@ÕÇ- ªí-}øß5®ÏRqmniwªO\…QïÕdlÊiÀ ™|y‰Ù€Íé¤ &77þNÝHÏž=ÔäÐúGˆºŒ@ þRÏ£RÉá#ãðLrtFíêË\3"m’ù5ÙÔtü]KÒS¦-›N†ÛÒµô¹ætY.—ÑáÒ¬’r~‡ªtNKà¾*‡”Õ]ÖíJ™âÿ7¼ÜŒÿ_õ >püÿö÷ýÿ6q3Yþ£Gÿ¿°ÿ_ã(ÅÿÏp¸Syw’Së%9¸N>ƒ¶'×µÛõŠÍ^€ù¼—qßËôlkr)4âSÐÿa¥{H’´ÑZ¯gžãöÐó0£¯²¨’êkêa«Eßè¥û !jžÓëèä'YR”×Öàø`Kñ¹§ ¾Ââ ¹N´6ïñïþ•‡Ñô•‹µl¡³–-öÛDsQ]l•Z•¶»ÿz«¨ì¥£Y;–·ŠË~&.Ɔä­âò,—ØG–øPy‘‡,ñF¨ùdz—,ñ-áâ³JÑÄgQ¿hâ”hzÕÕ%èHúÏ€àâJJPè”Ö5-#ü^ ‰€É²LHH±)$öLBÙb4Á)ÞN^$ú ‰x“½#ªêg(Å;` ¢¿ï6ŒÓóÔqX½W(¦±ü†pJw|‘ÐÄÚõLM¬]—šX} F­Ð4«&üzâjFÑi+VøÑ@›µ¥U6ÄùPªl÷gG¡JpVtè0w‡´-O é¾´_Ã8Çé8Ç·€óó„ŽM$¾Sœ#[¼e!ßBGÎrŃt*GW7ÏÑiHwÔŽsÃ[¡´f±G~ž^'¥“‰é…;1á!>zí ;Tf?Œ«ÑΜ±à¼`b;ðI_ó~¡ü hŒ¤qO§J”I˜F{ùÙ ño§Í^÷ g&Kðo‡f²{Õg4y¯ÿøvðwf¸ÿ~`†»WôƒNFâePÝhFjØ€6 ö0z ¿þÔTâµ6À±Ãyz`-,”ô@u ¸…Ø[/ ytÝ[÷¼dºš5øú€oAô[óó~wã‡j~>Dwͱ§q´nÇžœWšÿÏfâÕªÏöª®ÿÏÞ£ÿÏ&.!u,ÿŸÇø_iþ?iñ¿ðžŠØÍ®0·á„`R<~gQ˜Î/g£/Ò}h‡_ô>żài·Ñgú?ÙÇÑäJO…ñt˜'”'Ó‰ÊØÎê¢+@t½ º—ŸoÐ}ç: !q€/]Dæ‰–É úÚ—È weá®,ÜÍ]øøð˜ C&ƒ—bÈÎvƒ ;ÙùðcGü;aK”9ÎU†•>ü`W£¯£«¡ èf]»ß gÛnY¿–[Öñà â.ÅÞm«Èp\ë$1¹Èÿ]ú®”¤Ýöz)÷vf{¸«y®#nØdš,?N‘åÇyeù±”å9ÄSž5Ô¼¢Ø<–<’-n'ŸØT8e‹¡[ÁÉ£T'8å7·€’“–A¢TÏ'nn%_zÁ§Òf8I‰³£óø’8Æü€vÛ§½ÝTµô †çˆùÉy°˜æ>X•d'ÒŽôpàÆqÒ°Ì“D)ç>}ÚÄùŸ(zíÕœó?ç6r§Xç^¿~<ÿ>ÿóúuÊùŸãׯÉ÷ûµðý~M¾ß¯Á÷!¼~ýºu‚·Þ`Òpþ³ÛÀÏwWøÙyGŸ\ ŸgüóÍëÆ»ˆ‡†E_‹£¯E€Ñ×Ý·uú„@£@Pøþgë1>ðÊQ¸:pþwÉNá“&5x–“™G+r_IN­<1­<¹Ís+ÇïONþü£BŸ­JJèáÀâhvôç„ÌqÚ7nhûæ¸ùJì¶êø÷p¥£0çzœà\¡Œ×ǘµº9ÎÆ¼[ùtM§¦8âZOLßúò[4zõ÷i‡tгá¼Ï‹üÃ,²†£,-μ Vù'ˆÕÌ#-þ÷Sð(~Æ'EÎK!&UA韈¦…¼sB œ(îס™ûrHÆÇ7;ÜÒ.prý:˜ Bœ]G“Éôòfz3gt$7©8åØ Š¿·VLhUê!Dµ>\î Ì$òðgrëк•BÖŠ Žæ:ßáo®‚bd.Ÿí•óë×þ  !û<ËeÿƒKf:¬È‰Jõÿþ#×Ö¼’ýO „6â§w’kþÓQÒì’ÄÉݱqò ¿M”\‹¤¥H³LÞ>Jî½Rì ß.JîÆLJñ&¨äÙ—8õÃ8Ý2™<®ˆ:ú›ÄÉØIý) qñY‰‹/ê7,v¥ƒZ§í ècªõç°œÌ$Ṋ|– hHù|Ïà0–Ñ€ôYæ^4ÀýnÂs’Ö‚úúº¥83…¿Þì^t³ãl€;ßÝ‹8[uþxgÇ{Ñwc/»ñ½ê‚(}¤O½÷£ŽzåöAp¢¾Óxc2iLéø,Ï”Ž/Ê)=K_³{é4Ø„×*S¸D¸#'¿{†°3ã£è;ÐÍf¬Â;„ã8°îˆ7NbgBHCØ]•law·‚ÇwÊÅ®ou6ïcGW.†1 þM`LŠâµ³uû–¡ÍqŸæ“íboñ—ƒ·çé×y§_“¤³ü£övš”áùRΫVòršCó¸3½^ÙÏùµæÔùô!6Éc{°zåñÁ4Éc/´›d.@›<G_›ªªY M®/y¨M¢Y M'Lo£Ô:á!´)]ìé§n#lÙChSùÞÛý‡Ú§´)¾‹6¹NÉz?õWí§»hSœc<½Û’ ºßãÉ:mjWg)ÚÕY^íê,¬]é‹ÅÄe(D›Š.m€0½úûåõ]jتÊ×YXùzø-öêfgaÝìá·Ø«º¥¨n¿É^ÍÎmrÕ›Œúa6Ù;÷z›ìÉyý0›ìšÝ&»›¶Å~MØm²š¹&; Tê–¤ÚätÆî‡{ùÁ6Ù¯’žùTÒÈɱ÷°šÔXÑ]6¸wÄŸåÛ;â/®Ó¨7U«@¾ø™†Zhßj{PÔðµY ïiÃ=&u­áë°-ÞÓ†{6ñ솯j¼§-w´YËW±SÞÓ–{¶A-_ÚšyO[îÛž 7ÝßçÕ‡ÙòtѾòœV½¿-÷l¢SËßßòl^½ëÙ<Ûû·=Wï®å9¸ýÝ­ÏçÕ ¶Ü«ÿ†÷Ú['öÚ['Á½vþ,h †r¹¬ÁüÅR¶clNo3ªw5c-"ä7cÝ-Bw‚Ƕ+ññ½î¡»â ]T#P5Ñ6„ç|ƒѧº||»²²Ã"Ç f!­ŸBîH s‹Hþ$("!šMHDB¹\"’¿¸N õ®&‘¡õ‰È‚y$€DhM"i­Ý+|î¤Ã<"R£ÏDdA|<"ÒÁg%YŸˆD„Ö%"sâSÌcó]§€ù®‘ï:¯‚"’?Ë'"ù‹®ˆì$4‹ówÔ¹šxDdlñ¸d<#_"cˆÆ ãö2jØoÏöƒKB—ê­ââ;Û‹ÈDæNŒC˜¤–xä_Ò’¾lÎCh‰GxZ-ÑûÄ^ƒª¦šW6ØÏê'¥)‘¹:»Wâ‰Û’Ù5£Ü«–¸Ïs7¥P§Tï°)}oS,ï²¢½ßjS–*K˯ê4eͽo€ÁBÃþVšr+ –rÂ"%“Üë¼™ä^S"%WóØ–ÒÍÑaU?1¬ ‰0ì5àOßÎêµ¼³ßÊÉæ^k ¤žþ²íö*Uÿ?ýÛíW.¼ãÛýôi·ÇY;µÝ‡[ô¡5Üc$Èl¸O]}híöHÈÙpS»}p _†Õ—çôêÃn¸O±yp=¾ü_^¶Uj×ïñøÞô¸ëœ·†Ç÷¡áž3£© ï¯Õí¯ÅÔòjJÎUNÑÛ5{•Ó/rúy­»}}cQ*DPwGyšÝ_ÙŒÛ×—'÷eßÒ¢¯shšs†³áœ[&qö- œ-•ðÙg‹ñ ¬”¹{€²ÏE%áf¨ éZ÷gEgk^ñÒ9Þ,ξYBáÜÎÄ9NL‰÷çl:ÇwÁ>;8ïVl#£bzš”‰4¯µ°oZ Û¹æÔ€¡CÿZ]þ>ÿ_Ï e©b!ýë<¯Íµ¿²Ù°oš mx'yE“ ¿$¼âÊ$@>í¡À«2y Ïþþzðj` ¤ê•¾=´t´Ñ‡J¿Ò’ƒyY úÀ)Ð7(ªÁ¥ò@ŒÍï%¼Jày ’Úø½åÈ·ò k£à^ò@¼ ÜÃQ -+b;áÂEJÂ… _Â_Tò‹£’HÜWQŸiù0)m¨ñ˜ª6—‰P\E àn)÷uGIE]Má÷uG‘¨¿ª·º!Ü#iLº§¸§ýž îz»Û¸Kú‡Fjõ>#$üÝã^LÌ,/!«ëÃÝw 1‘8V­ÑÎV ŽÀŒ`“3Xø®@ë³QêÄŠÑaoü…ˆ˜E8hÛjS 6:ÔæÀjûa5Ú3)¥6:¼À |Ûì™r´Ù·¦~8mv·£«÷­Ñ¾øiën´š¬îI£½• ÑÕµ7úþôt°ÑëïéÐèøWntHm’½ãj†kÎÆZ½Iþ¾?­Þ$ƒËVß:‡§Øxºí”ÀÈí¼‘Û*0²Ê<ç]¿¼Ï¡ÎF"/ÿÙDh¯ßñ?”»}÷ç&øg¤Ü¼ ð©NžD>;Û}ÀßK4ˆdÛîþ޸؀FƮޓ‡pV"åù}· ð 4 ³ª·Ý€àXSTT×Û€d&|aO„¶Â៭œ៭’Š¥¶¿Ÿèt9ÔF…7_ëÊ?[«N‡Ø éöñ0šá Þ¯šáÀw[á›ÛõVDNܾûØ ßoµ"er¿/­ð‰8o+¼Sü}i…w²Oi†5Ñß›f¤Š©ta[½GÍÈ1ÀÓÅTõ^4#÷O—SÁåþ†¦¾Ô±ñ`¦¾ôfÄ÷½†q‚n5ÚǬùJ)hg³ÑdÁl~s}=˜ý`ãÑd˜D8ƒàf‘‡)°çf¯Qõ¾BUî¿Ø6E!k÷d]›9£Ôs*ecG_vN꽋.8k\ûe³éÍ‚£8g_óùð £µ-†óÅœM?â=œ[iË${AÐëWÓÉp{ ˆ…HÈš¶X¹\†3Vu£q¸:«ž-ªžC‚ $1;ÞûN„­1¹ ǼÛ^¿Nbʵÿþ·Çëþ^ãÁ—Áå_;µÝøi¯Ñí5Û¯Ÿ6š¯Ÿ^qFø<ßý¸–:ªü:ØÛÃÏgøYéwµZ«EQü·(Šªûüi´_ý[5Úß{ÿU×R{Æu3_ fŒý‹‹ùàz:½Ç_û¸rÜ«Kˆí÷‡.Çšíà7Ý’ˆÀØ~ßnöpÐóQ¾³ÃZõ³úÑ(3¤0a¥¯ÃÙ|4°Ún´Í_áýdôuDBo8á"g>V’{Gƒñèãt6 Øápö×p<üa)Ûõ׬µ¸ÚÝ@ÚÓ¯Ãëß¹ªI ËÝ]Ö½Œy¿ÕgŸn®‡.vE°I>¯Ô;õ£^£S®IQ­Iäf»×xÝèès¶QA¦JÎnf_¦ó!|}IÝ'ê™iËg·yüºqXÿ£ÂºðÙÂÏ7c>#žv^¿éT—Íü+;~Óm¼ãŸ]þÙl‹°œ½N£$PÓЈ@“áÒhòåf±­·:±U0ÖƒÔÔgí“M×CTÍ‹)û@ÁðJÔMŸÀt³aßLF 6¹Á.°"]Àx¹ŽKïô³ÁŒã¿àì–t·¯COêùõï²÷;õ“FO§„ï€-ÞãŸtãI̶ËÉ×'øÒ¶Æ‘Ö”³ŸàA/ëŲ¦£8Œg“«¨!¨jò@"M¹¢d˱-ÇR¶"J¸ùB%¥ÅædÁéùèÒG ÎMf»Û<Òs6ñ€‘d4aGÓëk>E¤Thü®—£‰,­)L, <Ø>Œ§—éƒöôäY;¹ž"¤#ñ©–$§в$­ ¢x$¿øÐh|^Þ,ÆCÖ] C5}I*ƒuNKt˳Ö(«QzóŸ0”Xü;«ÉÙè5\  ÿ:˜ B”ô£Édzy3½™óÛ㛡úø”O³ì-¬Úi€%‹þ(ª²¦ïC¡ÀÅØ[¾°âÏw«¼ùÀüî“·„&/Œksã½¾ˆâ£–ÊQ·úr=¥ vxÄ1´ÀðþëÄää³[,v&œ­\ó eÆ}8ú4œ EÔ¼h.etj¾J>âÿo½é†TÀè ²†g¹YËÉ­Èi¢€)£›}ªkZź/Q0uÞ*î3 ‡øVQHl 5§7ÿHéÍ?òöæÒï¡£è»z÷f7å•{ôýàúFÐpëht’½£[ÆÃË\*™À£ß:î‘nXZñ] ¡lÄ·I ÷x· êM®÷”µ§W"Šiv äíy£¢‚üY>!È_,9Å|-79Ö´šD¬¤!wƒA¼ <Ò1P"÷Î0¨nŒV$ªšî£õ¿®à’N­6ðÕ–¶œ¹¨zƇ†ª\Pß\õˆƒkU_¡Ý)®žQïâê› î/ªÎœqQ´Õ Õ sîÆPílUt'ªñfQuŸ|T½Ã*Õª†íýDµ£QÕ§†lU‚`Q5R5¾'¨vL p¨êFôÈ"k|w¸fë÷‡®A\;÷†]5ÿ?3 1n|4_|–GóÅ-ÍWÎçØe^CßF«h¾Õ†cÈ¿kT.2PÕŠÜ\Í×ÁÕR%ï9ªñ½@ÕQÑTï äE5¾{T Õ8ˆêjÒ¹0ªî màÚ·p¡ô¤ O$Í\qªðÅ’O9:Lß§£ýNJ£ÕMrÚ’ÎZ™%BxÅy[Ò‘óÌCi‰oJZ¢ö¿@K|2Êj‰ê“d_ÒmJ QesMñɰPS9¦uJp ¿·©–xE6¥jJ\Œ¿6×”Cå¡4ŧ%-Ó”ì³æ·Õ”`üDrÔôÎKø,סsx±dG_QâÏèK%–›ˆ §U¦‰lË/«ïY÷h¦Ž¬'®ÊbëžÀôbëÈÆ Ù½Í"ë¥NA6¶)»ad='¦¶ûˆmP ¤Ð6a„h3Øê››tç?舧}ðŽ|ÞÛcžoºÇ<ü•rþs¾ØÄùϨº¿EöùO¸õxþs_ëüg·÷xþ3|þ³ÛK;ÿÙý³'Ï{ö:tÔ ?»gpŸÎž‰GgâQÎòÏÎ+ú<ü}â±®3z~Ü=T º6úðÿ¸ŸÇøÝ>·á68£'gâÉ™(УÛ=q»‡·¡'àûñãITßITÊ8ÂÚÖ®òݳV³Wè «n¤Mµï5í;œýä­–ÊãR§Usœm$u¾³ËwŠžvUV/r”ü‡Y݃<´jK;[0’t Ó@µcfôy¡¤¡”lÇ$ÑÒÀœ‰rg¢IÙc”sô‰Ò¶›‰‰i!;…ÌÄO!Í©Ñi`¤ÌþS”ûS–ëÁY §ÓÞÞAåÇ3¹¸êuÏÖò:j¡êSNî6ä³ênõX3’€X§oµ›±ç&ÊÌ{xP[ÃÉ_©pp´ô¾Ý^à„¯¢^k,>ËcÅí¾\ 4ŠøŒSm«ØY%ï·tƒå­ãá˜Pu<â¡áœ·ÓÑôJvº¤Üh$Æ®=ûpN/åpN/ïáœ^Çf°BÇz+ŒALÖºE <®ì ñpv8u–;’0#¤0ÒI^F:QŒ„-Ñ|£ü>‹9<þVæ-ÂImm'ŸÃd‚Ó{Í5os8ùsX8i§OÖìpZ UŸ+¿Õª#;6ªgXûP=Do«§ƒ8ulòÅã>w?,ƒPñ&J—wD© Rͳ”æV]5õܳ=÷,¯ž{f빚:•¥H­¬Þž9êí-TŸPÐLšƒ¶Ðô{–W;³õ8Äý’=³Øàle=îÌÑãn÷Ï™­ÇÝ¡ @h» öc^5ê,U2eNf‹VV ÎR¨ÛÅÆUÎRU§ÛÅÆUšlL¥évÑq#/:Us0Þ:ÎÙN|»ÄIF¦yò­Ç‘‰ÏòŒL|1‘°4Aä.TË*CQV/™ì–ëw¤«¬_xæßRõ!ÙŠvø’Ïr)𢔭 !:ÀöÈ[!>ô{ÔÄ“ÐúAîa]ðfžEWŽHö„ïJúŠhH]—„´ü¸— q$ºÑ†Ÿ %Žø•-黼u¯âŒsÙæ/ׇµbýÞ½iˆ³fÏnÈý[Ë5$¾? ùÙã&px2Êwþ _,iSyÕhJ2³ž“sgv£Šƒp÷V!ExÀì^!´a|Ü]Â'Þp‡…¬öÝ¥¶›W©í®¢ÔvWVj»+)µ…ë÷ÍË+µ¹«OQj;¯Â=Øy•³;¯t9’5\Ìàgc}:e„Ïrb}|仨"òXçhÌñj'ˆ$"¼=L|¼ˆ˜øy1®&ñóõ£â§Ñ‰âÒ¤zk4 "Ò´hˆÄÄÄî“Ûèw»$½wÇæð?X&þî‰^Ü*þþ‘£g¨„‚ §_X<öóm‡À‹kýwF"kÅ0ñ‰GÄÄ/%¯å“ÅPñÉE”ÕÄãšñ3=Òâ–h (A–Í5þÖ…I€*’SÖØA¡X« E°¼¢`½ÏVÿ«èçŪ÷úÔó|µ§¨çý‹”î»ÈÛ}%í8½êÄ£ZÐæq±Ô:“cº*\”Ì„ F|Æó;m‚ÏΜ4¡n0ó}íŸõ,iC_Ÿzîk¼ó•jBó—n‚a[¾Ó&øìXfâ‡ß„@/öä;m‚vF¶¡/eR î~0¤-u dÛœ­ù2¯A²ßÉ1_F¹˜³#©$á$‚³Ž<—ÛO"8aÑ­lR­léìKK£w}íòά‹C3ë=o˜wºU K™nïy»¼˜jWúœ£]çwÕ®¦ÔIo+OrwÖL}Úh§ÉˬîÌǦÔÎê´3}ü­©afîD›išW{¹Ý¦y¶“ÏÞ±R`T<­<ò˜×öùgbû4OØ]´9þ¹²õóÏĦež»mTÜyVGÅ<+wÛ¸¸¾N6.±‰JíÖPqg3‹*ù±ëG%–§W•½Í£Ò Ø9+ŠŒÇ›ÑGùm÷€‹E™ý;À%ØKÏò[ªób>Åó§µ–³D·¾x³‘TIn¬åLqžì3ÝIÅÔ£ßq,© ü¹ò‚îOkA÷€çmŒU¶0™r<­ 4Ki/¹[´î6{b Øm~ÿ«µÙÝ_ñ¶9~Lì¼9ù<¨ÆyBPXkˆ´ÆUïwãp*ÊÕ>5C†ñ÷±}^ :wïaÍê´.}à­³ufßù×辰WÛ@«ýKû[nµ¦6FŽÚ˜¢5æópøSy8„ÖûÙÍXÑÍáOåæZ篯ʕµ¾_3^±”±®_3 ^Ù‘±V\ Oï;,tûø3¯ÛÇŸ–ÛGÚê@ßá }‡/Ê¿É÷çÊîZîÞ¦x|@î¼)Þ1f¸˜ƒý{%uÕa¢”¶êÀ™«Ž ‘×»špÛXM,AÞƒÛk‹WÞ6úuÁ¶<¿½¦x— †³ÄHSò­ 6Ô¿ùÏmËJ+œM–¼ +¿ñýé¯d8æ¤uÌýcžmTocÖ6ø«ëo‹¶Ö0ã$aðæ` ©¼»‹gÞÝEÏ”™CÕ<[yƒñÌ»Á¸l\õè̿Ǹt\Ö=óîèØÈs=y6²ŠâãN>6y\êäßn\?6.uòïî o_ņܻ¾r³Våè¬üûŽ·€ŽÛ[{w€NJw©¡µFöI‰!6#å5#ùÌHÊ;æ"W3V4#ùÌH·‰‚W†{DømâàÜ.sÝ ÁØg)6œ³¼6œ³° gS.Úg+[oÎÂÖ›ûÚ/S‡ì6·Õˆ°ÅÆAFg«êÓ·ERï Ù7î+_¸Fš³ðªólÄíÈ)Ú¯þ2f<ðFøzB·`Üm#<çŠÎÂæ‹û6(¼ a8Ë¡•±ú“²†’²¦«>̬ú0 V-§Sµ‰Pðòáʱ«2ºÒ¹)d܉ZGFN‹›ÂÆ 66U7{Í­aãîŽØØDšî–‘ñl6º’~Û Ï‹IÛ‚ƒ2¯aïÐ5ìéÛøKX°W6ïºæ½ ãä¢#_:R‰aݨzƯ…jÕr‹¸3T=ƒÛµïx1Ý»µžvÕ™C×Èi.æ‰u_Yæ6D?EÊ&`ˆ+ó›Xo©8€T~KëúòJnÃàú|ãÝš-m2„Mëçúʤ ·.XÂv‡aËèa^Ëè¡cõöAŽÆ¬h=tì£AÄ˹æÀucâãrMqëÆÄ;…å™ÁÖˆwÞJëE$M- ‘ó‘FdÕ¤wÞø€¼Ñ×ëK­ÌW6( ʤA^Yà5.o¨A©¢Áoh~ ¤v=k¼-2DÞýn‘kF÷¶H÷»A^áëµ®çâ[m__öît;8ÀÏjL¿«Õ¨Z‹j‹ªûñþ³h/Úç÷£ýøÙÁßXu-µg\7óÅ`ÆØßø`š®§óÐ{üµë!ǽºˆ»ï;|”7Û vüºÑ«Æ%ÖëÔÛ]”wmþ¯ó¦‹‚³uL¾„­cþç>C2Ïùiç CÝæ1Ž)>ˆvvX«~V?ú‡¤«¬ôu8›¦VÛ¶ùKb¼½ŸŒ¾îˆë '|DχÃJrïh0}œÎ&£;Îþއ?Ø€Ðvý5k-®vwöôëðúÃpÆb·j(ïî²îå`Ì;¿>ûts=œðÁÏ‹ùý¦Þ©õ¤1H)fÛ½Æký!#Ê9ˆ6 ÝD‘ãÓ÷‡­;ë4ŽšÝæie §‹Â&A«>› ~ø°òÀ¨—¨æ2œ>,ø‰_Âïáº(ºeè…|=»™}™Î‡ðõ%]tŸøƒ]N¯¿ÜðDy:ÎGW7ƒ1nçó©i:æÊû’÷ÿõc¾^Ãw˜ª32ü÷ÍÞ˜ó”¿óyåc¼(«oѯß2Ä9/Ùd:».²þöÅ6{ÊJt§¾ÍÇoð­qÖ…Æò¢ß>gCü=" ¯—ŸÍ†_æ£ñt"Ú¨H¬µR¶»›£PMxC·Ž(G‰!‰œ/ÃËÑÇ‘ oÿµœd’v«Öþ®—| úÖï Fm¶žõð™ GE´¨¾%´˜ &sè ¨ n•=*VJŸˆÒ²¹‚ÃuÀ=^trƒ‰—›M¿©ùôz°˜¾³ú.Àùï—\W" í¢@/9ç\O|pÛ\>¬–…ˇ‡2úôyÁ>ƒàà\<œïê`°&­æºÕ"gD`ìVØÕˆóʳ Ïö¶Û”W;šð!sÂ¾óÆ©–R5¼L‡ƒ«Ñä“V› Ü€$È.Aâø_¾—¢Êɶ€±L3.*@ §%B\%Ãþëðr1%Î=> /56TË/ÖÐò ÞòæG1†q UtP‰"J{û¿ØH{··¢h 2Åï)âÄ{Ê'°ü4;ÀøçSáìÛl´X 'ìÛhñ^>~ä"br9dBȪÞ8\CoBo¼JéCÊ)½q¨÷š@§9@ñÛtöל+³Ã\]q"ÔšaxñP7ÚmåÕ®o®‘ØFM$Z’Ä꥓˜hÛËu\ºÂs6˜ ®‡ ®j¥*ÿhtNùÊ´-ׂg|ê;iÚP _b/q]ü¤ŠoÃJÊ„¬»5åÚ–P¹´ê=ªÔ[®8ñåu;cXoó¥giúà4ãZ)|÷ÔÛøÎÛ ’öÕÍä’”Uyëôu“/ÕõÊÑß0\ñq½ûž×xܪŸ½ÁÏökùzã‚“¨m€Ch•@©\»7Ô*Vaëϵ±_£›\¢Œ8«_úZÍIÞi¶»Í£ÎIý‹Îðòf1ø0²îbÀåŽTG%K½»]þ…âí ° ×¶úÓ'ÿnØ'Nv[Ý*Û=íì²¶þ¿¼ÛxÇÚæ ©Ëéwqi.h£ìª¤½ZÈ€$Ù¦Š¬GšC©ÞŽÀ£ýŽùﯙ_=±^uðö Ê]Ù¦è)ª©‰¥™P5Dá3 qM‰m5HyÝR#Y„ø‰¿mÉ¡“¬ÖH@nk„Áb@xÂ!bÀ~ (dQœZvDj“3ˆÔ™øµÅnãÒlÎ'³!Møœ ZI;`ä¤OÚÓDK•mÂ5(´l‡£¦¯F=Ë\Ôàk´H•«O Ñм€(g»š-ÉaããSUÙ[àcµÈ¯CÙ¹ ;JH¾¾ãßbp(Ýjxa½ N`W¡ÿ/Rû?LÖ×Þå¤D?*œ%þSÁ£@¤ õ £Á$Nâß8-ŽNÛ½fû}#ˇËÐ_Áw·WŠý/ªnÄþWÝŸ9ö¿ZõÑþ·‘‹†eÿ‹ª%aÀ’BV˜ú˜2è½oõ–E/ÕdMµÓñæÞš¡NÙé Xภ„u÷`†§oS²\òu¤×!þ5mt°4+è '´CÉ.?/ÿÅa™ðazöíÀ”÷íKö“ëå Î \œ³sþ ¦ŠŸõŸìgã'»‘œr3‡å¬0¢PÞa7qÁãùTxõ¡á–?àlð¿éxÒpꌡN¾&á5]# R£ô¯mÎd|î§Ê'²Z—dÿ"h±„—“ÎÿÚY|Ö QAÖ£ ï“ïôb ½J›ÔyX·‡ß9¤9»‚õ׆Wìãlz û/Dp2üïp6Å]ã‰S üKŒsü6*Gl[Ãô:¤ìÚ?‡3Þ/?ù»?‡#øVáü°Ë*ø`¢ðob=ÀìÃxÊUÖ«ÑàÓToZTVh“cÀIË—š‘x 6±‡ƒËÏ\ÁŒÑ>ß ‘jÎÀüõØ~]„Nþuó‰ëÍìË`4ÃQÄ ˜™³!œ=‰øB’à ”¬0àσ6£½ù?Ÿ _~›!$5ÿ¹ƒßÄ£‘FpB`¾—ÓÙl8ÿ2àúx1Å— >^l•§¼Þsÿ;ç©~]ºcW½€cóÐØÏœL\fÁ’Õ_¾Ò§Kß¾òùuõÑqëHñjÒÈÒˤ̶֎ÆòíhlGÅè]_£‰nxk¤¶Ô_\Úí²… q¾Õ;hjYó9ŸÐ®`òü`0…ɨ‹rFxJ †‚û&‘øÛ:x0 ¯f´o—Km2¯éÞ!6ú¼à²Á)X@÷¿Ë­€¢Žw†ß]¡ÏÂlwõ ~Èú=ËÙfãè´UáS ÔpÄ%Xó¬Þìð^WÄoù?x)¼}Ûoeo;ÈZÔá³ÙæŸNî÷'gÁ#ˆüzß:#Cl(¸öNïs<_W`e]pÛc ß‚N…·¶¾X·Ûðm{Ý©v+kØiNF‹¬ñ‡R ”@pe£ý²ªÙ#cXôMÍJb> ºÜHIJ¢?åÚá\—¹?Bãý"%ÍŽZ„ˆ  œniwâNÈűôq¬eEMY‘a˜·khkh¤ÕÐ0jÐÛodšFp]ÃÞ Î?ó’ÇÊ£í€xPNk¼´õ ·Ã ÃáT Ó°µ-1¥JPƒâOëN†û]µ*Š9gË‹_(ºœÍ9‰@#´vëíã]„[;mñì{y{·-}øl1(QŠÂà#O«é’ ަqêÍU-ôîè9Ä=3Ö J`¹„[À¶Ÿ„%¸ýúÜ£S»t ¾r»Î*®X÷¨äüAxmû^F6A|å¤xY’76¨˜µŠÆ±o/Žy9F”w{£“¨©á®ˆ×ÑÔÎø^PÖ¢ŒKµª—.8uørÅÖ;v9íö• å‚>ÉxÝó#Aà]áo/°®Ÿ­Q$°T°+‰LëÒƒöÓµ{)꘼|" ¹—]ÞA ŸÐü¯£çpfîËBýÇ<{ã6&뤕·ÑaÔÔ¸Ù—£ZÒi|ü,Ì–þáo4xÛ)àŠ·À3!£rt·ÅGý÷t÷ ¹œIwÐ0a6~×ô‰Ì†„©¶?%L®ú¹ 1ÖDbøo`艗ç_|6έS¨rs½ñÕÍx¼%+¢U!ý¥­Ô¶®MZ+3m゠˼sŸWq‰æt®©y%„å“Î ÕZ¯™¾, ßPžAùdü^´ÕAÉŠ.§ûðÉ?"ø<î7ÓÐÀ *Р PZ»\¾7ÄG$©2\§8ôÑüí¹µylÓÐßrÊs÷ˆäœáÙà$P\"<ÞD‰>î(ª¥uq”ÒS91`?:²À½%¶‡zErú*X©áw÷FÿÁ›X’-Mw¹#~NwÄ­êpd–Ë1º*̬ÿèg–—³"êEÈî¢<±~Vù~«$ú õ;%Ñ©åœ.‡M‰¼ë|ˆ¡ˆ"žˆ5Fn‡Òp2ÿq}=„£_ºgÙ—ÙôÃxxÍ®f#8æÝ}Ýhô/$ë4?"çó¹y÷U«»´—ÿq4ã£÷¹ÜNþ8s­ ½ºÐãPxU _¸RÅá•ô¾ÂmåoAÊ_‘½€ l$æ7?Ž.GœuÇ?´Ÿ†Á‘@pÄyº×yߨåÆÐ& É~ (€pÁ~i™÷_oò?eµg:Á]Smׯ7à³ÅßSŽ‚Òâf2ZˆSñ†3„*™Ïð»í ¨Ê[ûñÒ#ð{¶; nË:*(¼£–v T@bö]92p L.‹ þÐvÄ+Ýcð{â0èx &½€=¼ªÛ  +ö+—ß¶€[Àp#› [&ô¸bô¶réq#CìHò«`ƒ|úÔ°®I¬r7Úþ©\G(ˆ£“cà¢é„XáͪêÅrìj8™Ê³·#p­Hƒ~G«o/©¯µd}­¬úZZ}ûT_ËyéãÍxŒ|^ÏÑ` ‹æ§Põ\ä¾@ú&#\¼¯×¥4 쌘`  J6ÑFÃä¢,(ºF!£×¤„kœN¸ôœO¯‡De½úŠá£Õ/!h$:ÐHÄ;SÒˆÍC$UB§’+7mbeʤ‘†ŒYÑp·©‚á!K+ÜQà™NVBV> ´<p­‡[  µ,:9ð\#€X"4[\Ãm¾iÂj¬ ’*ŽlæW¨ˆÄØ*&¥1'XWÃùålÄEôçé7]Hr©ö«ý“KÝ“Uà:š{FfÃ&‡;"8ŠäRJ'­‡/4B MUr“ø™‡£Œ’fo_ޏ~Þ<—0½¢†ÂH_@kfË`A}x$J›SD mì3±R $v!‰b{EÔRTs†è´± €Yê+Ñým‡€r>ÕðsˆâÐÑi;LøÇ¨D T¡nVB†C–o-f7ph€‹é„Ýyýó›/_Æ#þœÏ½¨'ï8Km,ôðKšDg‹Á_œèhy›“?:T*Šlò„ë[ƒËËéÍdç>8ÿ¡I (òï›Ád1Zðù<½_tZzß:ÛvpL&#¾hŸð~üÄ×x.C„xJ½¨u\¤w\ƒ:®aw\Ã鸆§ã4Ey‰k¬Öc¶¡.S0¦•ù%G—5Ì.Óµòe»¬a´'»Ëú9â㢌%n̤b8 Ã+RNÀqíœÖ†âàÚT®Û~7gµ±¹Ðƒ¬ºRN ßÅÔ7ÁõÂßC~Ày9ffpª§¥¦¨þV‚ÎÇ2ìÌ•I‚v!ÏÙ à±"ÁÂì}GG‚\Âp×Fd«½… ¿ ’êšø„ÿVëË9 üžSîŒÊ%…>p²s(™»ž ¡lfÁC»F ¯[ Ê¡¡Œ¥;çÿø‚“‚nKØeïçä>|޹SC'ÑÖÃôòòf&#é’©,ìg¯WV'Ë®úpØÁXÿÒ'ü&yð7¬ä·JÂŒ㜃äô+ZSUØðûåpx5˜À±“)ÆÝƒÁé@Öp*I?w>£m<ª'š’ ñ¬æœ®Æ? wøk0Žˆ…*’/âhì~Ú­€Ã§PT­‚}`‚Žð£Ë¾¸2bÑòÕ¥¨†ÔÕðËp¢¬:_¤/'+Á‰T87ßeWӛ㡡ÑÉP½à©jœ½¡“«×7œÔÐXÉøwpú†¦I—1<þñ{F•3_÷^M¯åÊ'Œálsü|84#ܶâsËÕÍ¥B7Pʱ @.ùfèDìÜï0² 0/Ù3O¯¼:íÀ^,™8!I JŠ™oþš‹ý_Hë JÄ#S/-õ{eNF}`ˆª<´«»Å_Gjê»åÛîyÿ¬b!¥í“X’ÊŸ§ã+}a ËJλ8'J,us•£ZÂÒÂG>@I¯&:Ddì“di‹ÊßH²;|âÒ¤>ÁUoÜ—’CQâ%6ÚëéœÔt%û SÁ0æa§e ë^éÀ“ ÎÛò„ãTQß»åô…äD6;ïD«`…ÂòjþªýCŽä\Pƒ%Üd1çŸl"¢æðŽsÕ'c\‰©ˆy&v:…úòtŽJ—»Ã]R¿¬úÑt7üh0;ÜóZÐá¥~kIfç+y“X þ¹©9:5©æ”Þòî~k—ØÍ:$Ø_nìàÎ’Õ¦Ž¯MAb„¥ÕÉnT«ÓX®Q°Mh±5lŸ´Â}FHm/•Ý>±p^mÀ ¾Æ¥˜lt¸Ýã66BWÆv×ÓÙ:ÑÕÕò§[ÏA&š–„™ÐR_´'øš³¸½L´ñµ–s¸?çv Îu°„Ÿß Óe¬ÆupDc]ab‡Æ–u3Dc AV~¶,4K³IþÑMÀþAtb‰+îÄJð1YލºWíî%ë^æ s9Êœ½yÅUN o$7õ­•ôn Z!ÞÞQL%Ïï{|«çO#ËíÙåÈ(ë8- 8… žðûÏì÷[Çu( bЯv°ü ·|¿e Ÿa‘ƒ2L Ï]°ÔÖaˆßa qÕ‚ê/ÄÕCnùâœzLJQÛ~A®ÉÀž4Yðœ²sû>Ñø‡$æèqˇڎì<--”Ð ±Â òjªŸHäJ\“Ž#F‘šÜ–›tODÆñ…è&^£hÉX³ÅœÀ®yýe:[ &à¯2™Ã—dЧ…ï 7h4Ñ?ødg¡°Ù6BÓ÷ÇÁ0Íu¹k3Ôööë†ÖÛfo¡Aû > ã3K©2 _‹i4¦ ÉΩnÙ'lßà§¢ˆ<>ÇçM¦õ·ÄDË¿‘'t…‘W ñéxšÝÏ+á*%t—ä¼úŠø€xr¼Ã#<>Ì“fÔ÷yaÜç…±÷¨äy§Ùk”Ô1šW'P3ÛooÍ Ä¼PöÚò|…ÝIUÜKà;ãBµ½Ô&ŽIg( V`JÀàùµf¹pñNfA4ÊÓÍÒ 'A€È3ÕÙú1ËT‘Y––Ìr)Ê,®çЕYP]fþ@NÙJ³Q­§>ŸÍ\ Ê2”i~½>e=¾P~á‹^¢¸WM]ûÛϘ „j‡„*ï<‹ûVZ£¤´…Mñ 8Ü÷­.vâK¹X>7°T-²¨y8A¦J –&Î6 ¤åéf/ÞêÏ-ÔŸeŠC>À gaŠØ`MošÑ%!à€4²‹BIážN¿ ¤¤¨?4ý´a¶ñ†Y¦R:IZ½$O·gõÒ «Ïýä¶-dqˆ6%éC|’^‡ñŸ'íkw#ík÷VÚÓáKæ¿Ø¸Ì‘-óì™) E’E»pŠj®V§°«IcHñ;U–˜ˆC=ti²$ŠòÌ`.åsÍcQJÐÖµMdQöšúWŸÈüÝSl:‹¼f·Úz注¶ŽùÌáÖ§³~ž… ÌTYHLcÿ¹‹—½»™ÎöÖtímz>‹œXÏ.²Ïœù,´Ô‚gûYóYk¹ùì™…¸/âo”kE¶ì|¶‰…Yô¸0[Ë|¶‘õY”g}Æ@(ïÀ=0ã9l*Î V¤—²Ç«1&ÎÐÓÉ0±BÃÐÂëè°ü,˜,æèÏáVñm¶¦Mm–g_›­eêËž]ö3÷“YÞ‰#ÞO8ºÓÙÂQ„\î¿.§Ÿfƒ/ŸG— °˜*®ÂPeè«;·{+/•6j2ýƒb¢7›})&§¦Õ2ô‡d9Ú~•‰UQ“= ŽS9çµz»TS0|½Àî­ç‘Žã[o€ySÏJˆ£Té üAXú)𓤱þà/‘ay䆙á8ôñ D•Yù”zYË@ô§–áñ*ÉÇI©è¤Ÿc$“ö ȤT9ä/[þø¤V>ù“!srâ¢Ë¿Œº3YÓÉšÆÚdMÃ/kòVàE3‘5<²¦‘&kk”5nEnÙ²¦á‘5 ÈšÈ#k"SÖìÙ©Šâý@j2µÐŵÑ+HK)~DëßÙ.4·’c}°z K§~{—yÊ^\€}•ß4t|âÏŸ½ï±ÆEýä¬Õ`œÛäžì²hh¼…zÑJ© ÈdTs0ƒ%ßË’U¼Æûožoavøº­çÇLÉdQ g²x¼–¹Òòìm$ÿdzh?ŽÝüµÇü›¸h0Ùù?ödþ¬¼ÒD0Eñ‹—zÓÓsÀ&ÞéA ü;|ô»éù?ºðŠ–·C$ü`ín먈ÁG‚ÈëáµþšYŠï[HôJ¸1ÐïÂÚ€~@xIþ»²þʬʵ·t4ìÛ·‡Ð³U8œΙ•<¿c&OÃÒ jŸÆæ9!‰Pî·Æè\¢©ˆ7šà«$Aþ¡ RÎDŠžÉ•CòUÞ8Xù»[ÄC_ûË×êžj°l¢æ› ¾ÍQœ{7Oš&xûå«€(Æ3ºbÝãæ‰Ínèºô!AÁŒ¾è6Z£ÞÐæß|„ÀzWªy{²y"âJ¢Äå,Pù òªt¡¦§Ó™Œ•(4Hû¤~>H $˜O ¤çp5oðIKáÀÿN‚nñkÉ@°¦kÊAP, vß³íBé>²ò}ŒxÏÍFc~󆛨D¿p'ó~$0¨7—Iüáà!û°H或¤XêÜl¢›?÷Çc"‰¬D›Èˆð\ÿ13ÄƒÍ ñ˜¡@Fö˜!“(KäDP–½7½uañçK”0yÌΦßUH°BayÝrv†îêÙȤ<ÙPñZ–lË^3Ù`M#c4¹„Ù¤r$PIfbè.9baCÃJÅÐõÅp7(œdaèfHJ†n0KKrKt—Ê+âo‘ŒüîE©MÌ ï®Ws;‘ÜqzÇÐÏbeÎÑžÇËá•Î<9d#¼j.…°Â2´(•ªlô¥³‘SSmöQÄDÒ—¢[k›¢Ã’°Z[xqôÉx3+Â?#¤Ý<ËVbS~ÛaÅÚ¢ƒÑšÅ^ñ^j¾ä#nww—UÄ>;W iÛµ +“·ž¼çL7Ï‘A ª )©e*k%œP±=c̉|=Àßú8œ !‘-Tk®ÀVÇÿ,w8þgÿ‰áøeýÁ\(ÍBÝ ý:GuWAúíýÑÞÎNt tkcöZ5P[ê?ô”“>þyk»wáý» ¼?V·DpñJ±¸þwÊßIž¯®ÅÓ@Œ~˜^äèÚ$Âíó¿¼Hóu…µšÁø tuºï+¸#A£0 êíS8/ƒ!úÅÉxu>ßqAÆ’Øþ€®Ú?Á? HÄó?¤‚„¶#öû(yÖ†À¨Uow‰ò\^M¯¯ùpNs*ê6ZýzKÀ R‘¿n91ž'€`í’M<Õ{ÂaQ/6Z§g¾$Ƈñ|pÞ;=99mëØSÖE¥à©VÑó6 Äé£é©ª`ú‚ã.즅i¦e"h¿–cÛ—XáTì÷Sð˲àè2ØÄÏ““$qÁ1‚Õèvpb7_Ãßw_ç.Ÿ|Àé?gÔþš¤W‘¨ýûN¡ô¨ýžù…¢ö{âåó5Ÿr¿[8ä¾-?d_a¾b ü½M¦ƒ^k ü´øž÷ƒCv=šŒ®o®`÷,=V~J8ü3Òû„†XжwÀ- ÁEœ6hÎä7¸Ê§Ñ ÎcÃ\ oVôóØ?”p›ˆb[í-ã6̽Z½Ìs¦D–ìzKh%ƒ1{Ï)rzÐ- ·®§ 0àª&R*Ëàê2X)Â(˜èÑeÍ(–†ás¯ÀhYÎ×ñ (¤…ºÑ~â´£tŸ`_ÜjÈžn®ØüŒ­)TU]¨žµ„ê1ĘDöØ"®ƒéCI;EÊã߯Ð~¹I/7Ý—S¢DÛ°¹æ‹Çãa çP¦Ý‹í¨\걈úð–=aq —€ÍŠ —â9žÄ%aPo¤¶š}Ì,ÁjψE;<(=0ZR4Žð oIƒJNÅÖ9ÿ– ¶Ÿ$#„˜&”甆ouñ\ÆÇöÉj:¼ êZ‰ÍiX„KZïËŠùùdêšùÏ&Ë´ÀÀ¥çÛ¿«I‚\I8 ߕߔßmá Há^ÂÊœ¶e¨Ñ ]ýålÙOé° z æ‰û[x.aÎ\‚ЂïŽÍqÂyj¾€œ:|5ô¦·ë‚•äLÙb6˜Ìá$FŠ3·å?$tð(Í9r¦"³œ-¢)σcB»Ü˜õ|hí„ rÉIQ4B§žz—ë*ò®„8‘C|Tv¶}q0ÎOaU§,oLjÂÚáÜ1I™Aã„«K¢Ê§y:ˆÛ.[ñ<œI-©¢Å†¸·FÌ pN¦v9©W} › ÔåÁч¦…Yk% T²ÖdêÎi2ë ʃ\˜Îßm•ßÉž 9`ö6ñ8®€9‹MÇ7ד¹Æ(:ŸH…-Ð$•GCRgÛ;ïipTõÎÀ{)3ðAJTc€Â9|ù 0[Ñb)(MT£b%_{Q®ÙÓ‹]ôËŽ¿’öŠ•Ø GÔ×4A÷pSÌ%Ò'Y•m—ýLeЦÕÐØÔhf÷SŒ’êÂúD”¨ÆË3ޱ>NÕ2*¤R"o U Ì“5#«l&Í ë3—LÖýæ2­IAô„™ò Ž„uŸeÇ­Ü×P䑆)Ëæ^ƺ¹^7÷¬…sð2z¾÷Kçý,s¦êX×ÒyÓ):üÁ Óhí̇¡Àí”ZÁ;U2ÏJN67+™q;½½î Þ™+¼»6c¯&pÒrÄTÄìOŠ€0‡ª¿òA³—¡"xš+â¿§¶L·P2Ëâ•¢j‘Xó´•_´#hš™ ‰ŸÖË$‡A**ú¡7Û0Aµ‹ì$e¶&âËK-Íõ[åw,ä(˜šËR´q¤’;zÑíðÃ@ãÆ Å.u‚"Y§YÞR:Ù$B–|Õû=Å+_™&t¢ôXšQ™Ï9P§è³°'5†àýávÁnˆg]&Ó›OŸKBEzn( >_€=­‰ò`yŽÇð‰]ŸgÄGFnÛöX4QX+5»xö¦‹Ïò¨ù,á‰q„R£>[½"ËžgTª‡ûž‡++ü¡G‘ˆòhQU"B¨·k…÷gsi|‹ŠFÎ,1ëR46&#*²½ÉVåâtã NÌ1^ÍIMDÙ¿åXDsôô|ŽdËh8Q0Œµ á\¨Í%ØØÒ"|<ìF½R†ã°·êòËïbòÎŽWD@l•ú „~Â~`t.+~Ól¡›¿Þ4Ç ÷YüæIzbÔ»ñ+L¨Ÿ·'k=Úcã?OÖ®K’îoV’îß_IŠ‚t-òs Ò/dÞÚ”ôËÈbtŸ¥Ÿ/7’ÈÁ³éwÊæ£\ZlV< À<0¾}ûwº m=°û/_x`\݈ì߉ú×ÿe¥ß­/¤ŸmVú=»×ÒÏ¿|¾ƒÅ¯žaí.¤_JEÍî½ôó&_³S…õ®[úÝú÷(—€Ï7+Ÿ? À\ðŽ7_⇻ùû6_ÜD=Z½Ë@zªíCâŸðÞ9D=ðÇHqC0V©‰@ì€2šÆuâioç´ÕðÙŸìæKÖ™a<„ç†exÌ „O?A¾TöQ”ò7 dþ…·âu%`>üq\ *Œ!b ¼à|Ÿqj®(Z^I<œN'ü·Í!4 ã±r:Bi¦i•ÇÄé™ 2b½‘$Ùììeâ¹x§©½‡lЀîóå“ÊzÑH²µzC•Ïò¤–ÅÒkÌ.+áù^2QNÍ1›ž\T£¥™õAT¤%›õ¿¦J3ÊYý±“u¶IîÑŠíÂ̈ß=‰bõð^Ó»Ä!›tí‹„›´$.t)6§º)Šte’Á‡ ‚°›ŸTû|°U=kÑô¶º[ÿn2™›ÊÏBodk]/Ö—‚»VMU¨B)61¼AFl2m¶¡¬›£ÅÜJ¹Y‰2ÏS%EBÙ‡é¤O û0fÊ™}ØÊæécOOG³¶ów:à«#´ù+t“uúª´Òt†+Í››³HbN;+§›3”*3cDYé)í,œ9¡Úhi 8íÜ›V…þœ›át›Åšc'Ú åØô4G{=ɱé¦×t8Åe²Unù@)xC!W“ Ö(,KC~h0:ƒ,c<º öU cHäïN–Î`Ë™;™}ÏÈìgŽ!ÿLf%©¶sqç„j£¥¥áN™ýÀÈì癹šc§ÛΙÏô‘Ùw2m™ÏRF&X&eíÞ¥¬]G½vÊZ• v•¤´{:áXRÚ”ü¯µh#ù_÷£ýèÙcþ×;ºˆo­ü¯µˆËŒqÖ¿mZ@üÑîÉÃß#Aª' oµJ¼âKn O%t+ì`ÎZ`%8¢‚¯¡lœDua+æë˜V;®h)@CšOÇ_¹”$º`€‹oìxò›ÏéÑ74;ÖáÐÎ`©ˆ–·ºŒ \j×_Fp>/Ƙê\Ô}Ã7)&o©}þ#é °>އßñf¼­…U¯8)’Ü>¶«„çèj4ø4…À~„YÍ·Ï‚öª1¢AÙ#t ˆpÌ¡ŒN†G3澌ÚqR9+nïRÀ[ˆ¡ `d6 Jb4¯zÍ©I˜e„}@ ® s^k覲^D"³ˆ²z Që'*º¯ é 1Qd–‚æG^Û‘Ù!±Kâ8C'îð.D;qRŸŒCŽ!eBU¶‹qU2Ⱦz3ƒàÄ7_ x,ó¼È< ‰¾ŒI–D–‘Qe6œ®n §¤®Ma&Jµíòg³yL>5Ï–0*;ä<,c!U¤‚xðU5Þ¾PA#’D-"uÊtvEaˆ£]JæXÁ Š*ãågà•`Çc}<ŸV ! ‹›C`³ºGõ&- õ…Vöí a7M>Ž&£ÅljÒ&1`AH B¡§øò24/ÚÒElœÞ-2Z¾ ÒŒ¸A™亇x×…È€nï*ôo[:¶A{B#׌ðØ$È0 ‘1šû:¡wÕ-gÿÄEð¶„0`¶É"Goºà=ëMiªîEàã7õÖ«‚á¡þÚ/ ¹w~J‰¸®9¿ï¤UÇßå cª ËðŸ5ú eù¯½¬úº~R«UŒ·&|‹ƒ{&êÂQ5»1í ŠÑÐ IwÊvöæËŠæ!ÿÿ¾CÄ‹ã¸Âd4g¹MH¬”–¦¾ ¡ëš°Ö†<7çáæ6_cÀe¨ *ƒºŽšǹÁÿ (#1š7róûö«ÅÏ. aöna{K¬ú»f0öçUçèǰl:L¾öëüG ¿ñ7öSãžôeR÷~C/ÑwØLß:ô- âBV]0òq0²±\ÒyâÓó”zrG0nÕëÇ¡ñ­+F1êìÄǃ×rŒ`Ä•z¯ÎÌ‹€/©UÚ;‘â©·í±Ž_É|®h²tÆÝ$š¬E–³µþè}òȪv m%šx…†“1h©„x&·©x”ÔP’(W]ÚA'Mj0÷b/Ø–üŒ:ÄrUHзkÒ>ƒö.Ë !·Í—ö´—40ÀD…NÉÚµÀç±eÿ‘£RR­Ïa Píä;Þ%P05éw ŸOô›{v­"X–C ºnSnÖ|ö캎Ó)Ï ÀMk!‚dæ’îÆ)õÃóšÝ<¸¹çÐRÈHªd+Ð’à bUIxX7cã&ª’ÉÏýDÔ%W?A‚)`êñtúň@ [ÈÇm"ï%–C¼…¤‚§¦ÏÛ9Ž2ð4NŠÅ®/œZáS•Ü7ž2¢P¨ï8^ò¸$I*;´ñD%í’—ƒ¢ºÄ bàÑû†‡–~µë¦oŠñì<üŒÎ6E“kþ—N¬QEt7ܦ‡:Tð=̂ʯCða `¦Â’ŸwR‰§. PÁV)-Ú?ŽÍßGõPÌUë ‡Žt/DEàº]VÌ(êóhÌ„žÓu\ô€l2OX ÷’3×JJ1\¿-õÍ<åÔE:-( ü_œ¨¡‡ð« ™ÀîÁµ•ÏB`‘7bÍHް#çÐ sæ(/Å‚Ƶ92”‡²k XÐY¹ ¨ÑÜÊÎæq»û¶¶»Ÿç°A¼È°Aˆ|wÞ§ËÚ ÂÛݘRh9D9qÓ •¸ÏvÈtŸ úN>õÉ]JµÞ YÇÑøÑîq;˜#òÑ \Çúö‹]œë×wX֪Ė0,±¥mK¬¨y‰Ý&]·Ä2v&¦ÙhîÅê>Îñr®D2uØ1w³m’%¦®¼ 9l¬É¸ÇÖeßc.ûÄKѱ¨y­Ÿñºh%mZDKÒâÁ:ò6VÈK3Zˆ¡U¤ôRö6æ5zÃYòJ‚y1)Ì+ÃrØkÆ®ÂtÓü,ž´mе1Ï©ÕLÅlk1{ds—ÍýWr¢[ÚZÎÖèˆw‘ÌëpæË©úÌû…|-©bÈŠ(˜Šé2#vé¡åêG>0ÇÂÜýËú4z7–ð8Ž—ÚL`a¨¤Ò£¤‹é=ö‘ŒBç옹µà=jg½ãž¶³^pý1õ§–¦›îÙ½Ÿ/;*¿p6BÂÁ_kÑþú·ôø¯ñFâ¿îEûÏb7þëÞcü×M\ĺvü×ø×ÿ*Z%ÞÌ›½5N¢·vÿ̌ފ×ôK©×‚ðšOX³ûº]¾(Ã"ÛŠҵׂȖíã¥òy¼×Áß1þŽ)´%¿Ïoè^‘|"ä* x^Ù¶ˆÂ:ý±Å Jæl0™C#†.åˆÁ@܉v“›"îi Ò&ÿ¥Ã!Q— NJI³©Æ’–O¥¼lEûÕÙÞfe&"j«¤ìp¥›‰V ðíÇh¥FdQ7æ§ ¯âŠ¢Â·ûk…-H´HèPp¨0>ù¿é¥U`„Õc…вüçó¢9CÁ'[ú”±L};!hç!Äë<„x‡µ$hçkŒÙÙÂ?Ý£VZàÎ^G„÷l‰Oú ¥PÔ¶ã0ñd,Ï@üÎ×*¡Eé cÑkwäÚ> ïôÑ¥‡‰¾bÜ~žÖùZÌÎ^KûÞÑcy¶(–gù‡~“OÙk ¿‰[ûkˆÁ‰ýÈg±ç¶‡}á—çø%–wèiÚR>–Å^˜€^˜€^äôbÃ1@ïO O ´ÓˆºÙòEÝl¢n¦zdë çiQI¸1;@¢L¸"ÏyÊTFl¡îDÄ-¶É€žÂKö“–¬—@? ï;ùN‡Þq\Û‘ïc;öÝ{­°Ûˆ–Øë¤z扸‡™î{ 85ç=ȰØk¥˜ÚA¸Úï§ù…:¯§ùÝå3:É1Á%_ÉšnåìISÌ yM²0o ,94βá"'Ú2œL‹^ªOŽ%úL#ˆáì’ôèXch–¹ƒ´L¾¢ûâΣ°ðžÙ4ÖL²ïBãŠØ…£Ü{KY{§Ô±ðb×ìì¾Ò7­òîU³ì³ çŽ3—i_¾‚¼X+‹Û°ó™®sX¬ÓÂ¥„‚  ûÃãdäLƒÁÉè¹6=÷OFϪb™’5dÏZL^;Œr8ž‹Xb‡qŽw™w.ÊöS4|Õ…Û9ÍvŽ4æV±¬!=çØ"ûùjj:ç©7¶ê7T¯òMÚo¨½±ÕÞÛ¯· .DW‘µüšN‘6‚e!¨ï¤T£‚'ø³uºòk@IBo/vŽ>áÜ%t.O†Z¾‚·z–~Í®Äc5idQïÊ5¦OƳ֎\•Gš±l}]:uNoY0ɞРϊ¸¤ í㥠ÆËÖ˜Óyö‚Hã× Ti°Î¨ÓGʦPÑ›|µ–°S˘J‹àå¼Ç¯ïðX.µ(§ËJq¡ïá9ÔPȬÌxYéÁ²R"eéžçWÕýv#G—Ç5¥~ÐÕ#²åPÖñ„^š*y³Z@]±u];V‹GKójë°¶ÞYN‹ìäÕ"CÚúm×ÒÖ7Ð^¯¶~«õ´tÒõ¨­ß¾¶Þ)ª­w hë:—'C-_Áuk높¸´®·´vÙYVIìh¾¯KÌ£?_h¤Ñ-ŠOw÷"+¢Àš(ÿZ‚Ë#Óù8§æ(ëRåŒ&ä[I•ܵÔ2«)/ rŠ Ø¢A¼ ÔÙÏ%âӖܘۺÿ£î¯5°¸îï/òBÌX/¤šém7ò÷øRfzŸîWsèþ/rëþYVÿäÍ|Æÿäýƒ¼k–¤>Ì»^`I¼žÃZî"lÉ…†*ºìî€^·»^©B@d"/¶Bú3^˜02i7:M"Ú\a þ9[°Îu]EV ëZƒ­‚úÖc«à°®µÙÒ8¬q×ÌÀ!מN‚úvÐVÁa]»i«à°®µeq(xåY‡Ç[s(JVãÅÁ¸ÎEÅaŒvÄ–XÊÓUtAŸTVpYOWñŽ(·ì?)^,ËМ-µ))+¼5)Ê-»A™¿Mz¬ºSF—c_X²xQƒˆ[ûÒÅ—0YÅWiû;†ní9cç°ôMÀâÕkÖˆBÔÞG\ªæ8¯!‚®µ¤èZÁ,E—Ç8U¨´n 2ù¨0œ¸-H¡_Ø*FWÀÓ ˜‹„†}1{˜ÂÞ¶Š-Qíj}¾tµëêó6P…~a+ ]aï’¥û|â/ÍjËÈ«5ŒóØìó¥ygÅqžÛ냮  ¼hü¡'ö Y…„›ŠaVç÷UFkÁ©r–{‰CQû=]…C±¥Cê°¥C³°õØõéZ%< [)î +ú…‹þÂô0)IòXj€–ÐkÞTy,¸%ô‚ß èxWý¡bâÈ*&ŽíP1p°®H¨˜ø†ŠI‹ÿRÛHü—ho/®:ñ_ªûñ_6q?Úñ_jñ_ Ç©%ñ_Ú}'þË—›ÿþ‰a´þg<½ükÎF “™kr5˜]Á«×»ñ ›.>CÈŒéìjŽÑC.§×ÆpÎá.¾M |̦ ˆ ‘ZþçŽ*Ýþ×ÿìt+Gÿü§ˆ¶1š(Rý;b]öÏÿé•¢ ïøˆ·ÿ wwøm>üëEÿ?fÿ”Eø“#,S‘˜ŠtÜF˜½˜‰±ŽoQŠÄÑË*+͆ƒ1öi8ù ÑEæÛ6•oÅÛPïKýÎK”9ÿ‡—‚6‡ß!DÌ¿n> C2Æù Æó)£Ð*?’22r ÄW™_ÆãÇ8)Á8) LÚì1RJH)iƒ!RŠÄDñÅô€3Ø5‚ '{üÿ¸qwNàÖ ¿÷–ßzËï¼­…!#–u€%r­+0ZIújáÐ9|Î;ð­ã  áWâÁéyDûißcõ=ŒnŒíáú †\x áHø ²Öp$]Þåÿñ;¬€*J_ýÏH‚™¯#I>%Y‹n²Êž¤:QAô–Àm'ȉOMÚHôNCZ² éì;OXr ¢æ{È’Ã{ç,9q’î¯$@œdº)‰ó'yœ“ÄÙ듽|ŽL=Ç… μAoú™®ñÚ†!•ŽUé't(*^Sųý˜”ÐT•ï©Ò{yÏÝ%ûJ % .ëi;JêN¼ ÜV/˜$T·)ÄóеB9ú(Ò7usn 's˜*”]Ó;­I‰ÜH›jÈÀú֊ܯ'2,P]Rvó9Lc¤JBåb7$²†b*G(¤¬tb¡±€æÓmgû@cøŸ·Br²ê9ÁÞR£ËG`Z¿Atsõ’×AhÀ8Æ…¶Z X•ÜUkë`ž˜ÏY,‘;¶ºc‘U¡\Žó5^ ^b‡rÔ-åã­Ø¾HͱÄuÅšE›Ä¢M§ÉÏ<8P œN!¶Þƹ ð 4xZŸä=ª.®d¼­©Ë­ÎøYt)˜‘R[Êo/d5 „‚¥«+ž&ýÍK½þZÊEQiŠñÄAQžèâ  —tM^ŽØ_‚#¨2ø»£z!wTu!#i˜²ÓAWNzÓåH@W bþ45€Ú7qkôîžB v§Ô4 ¦"4äÍq¢éP¶—sFéîig—®%P<„‘³,Ÿ.‚ùSŠÃ.¶P%yL0-®u%˜vþ„Îýxý¸i"¬Ç"»rµ{¸+·¹+mÿoo#ûµýjußÍÿP}ÜÿÛÄEœoïÿíýúûaƒ¯µñ'«A#vÎZ’LÃEv÷’ÄÆÅ‘“AâÛàËØB\ýkpÉQ›ˆ¥dÏ S;ˆä°Ï¸-ó\Ÿ0¿'ø€]³ÑwÈÆ€ûrÝËÏ73Úz¤Ì 7óŠ@BÛv„ä‹ÏS# ¼có›Ëϸé–d¶x·ÅÊìX²òoïn-Eì0R‹tý«Š}Dõ“Õ#¹•HÛ`¼ìà®GÐÉ‹)/ÜQ·o×w;œ.>ózáùäºÀ ó9ï°+xål‡š{­œx˜nAÑg&vl.f^˜~ü¨ávÙÕèãÇá ºa>ú4™oKd°Îl˜ûkœú¸Ã;¸†ÄÓ/ÃÙ‚Ãw“`\ evL&1‡ @°âÂÞ(6ð~ÌÙ·áx ŸDvfmwR‡>ðႹ$djÿ°MPÞ|¼Vx‡ñ†¢L*ÅÛz}4FßnËìžÍLÂÞ{ù–M//of3UﯲKú¦ÞzUp¯Šà¯ý¢;§½7FjEÆÖ)¾ÍÖ ØqÛ:?íü‘_Hþ¶`+¬Y‡ÿ£ÿÂÞk=Æï1~‡#e’â(-ÝÄ–>ÂÒGXúKÈìoÄ”»·îÎm¯HÎÿì^…vO9Ü÷­^ImÈÊû`ÿßÃíÃý‡r–최þ²ÖžìÑéÙŸ|6|ÓíU£Š¾EËgÇumÑÂAFµQLñŸµ]«ÙµýÚpÖ…šo“WmØê7÷5H Kíù™ÞÃU=£¬ºž«øúÝ:0»¶ÏÞôIÚÖ4Q˜’—<¨hÕŠ¾ÙiÉ%„6JUÍ›±qÓÜ^m¿6•ëd {‘Dj†ú‰Ït'’2:¥ÔcØI> z¦ÓÆ{¯gï 'ÝÐäEvml3zæ](µõLÍÜPr«ùõÌ\:jͯgÖ”ýQÏ,¢gÚÚé ÅiwŸî…}@÷> >=ó™£g>÷뙵jXÏŒ_¤ê™ñó,=3~–SÏŒ2Hxk_HkVÍxOÙIS_eI>x2—f½Í’ñù­¦I¹HêÓûö,»¿„59×»­9Ÿ}Ö‚â(ÒKA)ª[[Åi¯¼kŠOttÕ rNmÝãªí¹'~yéz~qBSý­’b¿<‡Š1÷Â*Tð³Í'p~ù¤u\ÄgLŸ‡ôûôÕ«´³Í8S`zPHX‹ã'ú¶ÂN¸Ø SI¦#®vÀ™ÿáuwNÞ·dÖÏ0úaè &ÌË}$ÚG”ãæ ìä­ £¡ø÷<­¯ëô”9L¾i_“ïáv¿?¶ÚþI$Ì­ý“x­A­)ÔôkÉîÁƒÔê½”zs¨~Ý89ÑRãly+©Ã程ÄÑNP ä꽺ÕÀ|mNfæZXkøï6tž¦äüBkûåªtÛƒ¯;1šÎãçâ><s¾,[òϩ<ÜŠàáDp÷SÀÔÄKÒe -wXŠ?ÙyQ‘{ûÑ^*6]I øºÄx&’o YÐΞhQŒb­¸E§t„¨öšÖžH´G@-#ˆçÏ0 ½2zV—mØOhJx+…ÌI' §Ò6îò4§”;8Òò+J9¼ÏÝé‘<Ñ89ûŽÎÇ©aÝ…ød`cA×qt¼Ê¥Ã9NŽ#”èj xØóFú™Ÿˆž{Ìh*;Lê,Wv˜öSßdI$vP RæÕëŒý0Œ¨õú³ªP<²0Qî&!½Á¤åÜŽ´ÕÞ*ZE\´Š^‘*‹¶â°p+‹¶â0o+@°þÌ™c7°­ÈåµSÈ3A— V:É~Ÿ©øßEŠ0Ôÿ„ÁK¡46Q÷ÍIº Ð)¡¹Ã!í¶À…Lñ&êû²a‹Q" ’»ëG".I锉F«›ÏãâV&ªˆÌpþ ¶ºû ²YÝò}I ûN—7À@æ›é—C.§‹@äEŠðë08Fóº ²5Q“õÑÃc´àð¸„ïûð8´‡Gz v–;;+2<Ž ÎwÅç»ýâcéHc¾ê.I'ÅòÛÜ.†Lµ »‰ì? Üü@t\Ôw(](H{þàêéWÁÝwZr¡A¤dí¤A ¬g…Ù—LJø÷ÿfYмW^¿ºeœêä’‹>s‘ꂸ…ÌR|}{²%¨#Úxü>—Ã9˜Yž ;¢eP­ÌOî.(QŠf¬Î=CèUŠõ/e(8Í$Íäåq„a&p*”¼27ï{Äë` T¬Î×-²O„µ·“Ö5&ß¡ìéK@9:BÓl±& îb¬RŠT!4a±¿Mh‹–tP!'¦Üíëz`,LÒ÷)’\¶Júù+!”‰I &¡_Á‹©  Sÿ¥dpäLÊñŸ”‡aÿÑ%é®4ÿŸƒÍäkû{nþ‡½GÿŸM\4âlÿŸƒÿ~ÿÅœ€”µþ3A˜›¶™¾D‰/‘'Äõ]‰ÌôIdú3ù*žÿÓ?ô"™ù¡ÓèMò™N”ç‹ÂK´¸#b%xo €©¾ñ)³ÛÛfŸèvóa8œÈω“p„ š­n/§‘òz·UîEåw;½XåG¨Ðk=̾Ìo*'*r‚F$þH#À\a šÈRsxy€˜±ä‚àÀžìDÛ6šHËK 1&\±³é5ï§£ñ’HŒ§ŸÐëf2ZHïÎYÿÑÙj«dsX»ËˆE„4š„5ቯ+ ¯'_^†ã^%Gr†c°’DÕŠJÓ—ù=ø Ùøp¤¿}ÄôÑíWpdÒß´;ð<¦×°矈>b4·NRš¤ÓŠ™ˆ–@;;Cd< 7òêPz'g懛¤!ÉÎp„ÙZõn£WÓ纜‹à€P17pÐOCw& ;–·Ç5!WÿDëÀ›R&t`rAÅ®Àêf²Yûe•pÕƒó àýÑWªW'€J™m·Õ â#B’Œ/·Ûâg€b±§7Å´…[²ÚêÜWm‰ø•,ºe¤f2‡ª…¹t_9‚3Ë[¯¶„M€TˆéA ˆÉ]"6K¤W %ZòžN.aÜ×"÷­Ø}+6ßÒ2)Ë^íÁl j*|>½¼¹¾ó¹•kˆïÊÆña»Uû”øÇ#Ø.Ep W[‘M¾œÈV£Ú)ìd*´«—²u‡fd`¨·ÂÎúNv=–½ÆÖìÓ¤”—÷õ_ BÍ ŸnõÍ-vL_tLìé1qÇãcÍ눫÷ vrfD,Q[W½sèµÐ&‘Œ¬–æs'i÷Ò8ãû8j¡¡cHž0/`É–,Ù*Z8K Jf”4‚Ü\r]þñfÌu}<¼  Ÿ„ô²¢Xì¢XÆK-â@l‡ ˆæÖn²_ ôÚâ óÝÚ>Fƒ)ÔBH­å {¨K#XŠ©u-»’Åçhñèe!K¡nr>¹ŒŒ¬ V½ á`N+8c}Bç‹H…5×™uõÌËÞ¨¯=‰PÇÔ…ñC9Y\ÐrŸ–ªL…`ÑYgJà G§õ§T…I (ï¹¶* *L0îëªYÖ±i» ÏAþ ”x¾µÁC¢Æ"U¶Ð±-÷&¬'©¡‚О;"LïtÑ }j) 9Ng wKUÞ/~W£‚s°ØƒwdŽÞ¤nþx·ÕÛmëõ½>e=päÔ^KÛ—ñí¦82FÅTA”(¹úžÂÁãžBÆ•fÿ¶ûÿ^­V]ûühÿßÄE£Ã¶ÿ?û°ÿƒåß]ͱí·p“Ofif~)¬½» …wži§ŠÁIÂÜ àF×´¤¸œN®ÈMFE0¦ãÁâѧáä+Øu1©ñS^j6úôy! /S|Wí Ü3ót¦å7Ûf¼‹]Ê,_$+ô%.ƒ€Œ”ß²kóç°Ç@¤wÀÄ:˜álÆ ‹;*—£/3´ë©Ñ‹&—ì¦Åà/q0|4KÊÞç¥//§7“…S}mMÕO¦‹ üå^¬tÍÇËAùþôÙNß.ÈìY_#4éóm'8T¢Òj“ÕÇóéï†Q5…7c‘¶{Nžnâd3ìŸÉªG$ 9û¼ÙÞtï:¹!ÄÈc¹!ÔÂ6Lp,´§(ƒ¹(á£Ü ÆðÊ@Å-»åuZd–¯¹åuJ8åïϦÍ=Ù³©h¹m‹mÜTôóæió_Š©Mroø‡´¿ûâ º¼ó|]{B±³'ÄÞÕ'h [ÃÖÐXš¯ÚÇ2ëv³{ÔÂ=?Nší¼‡ÕqÇ8ñ¦ÅHèuý£Š©¡­²Ï§Ç(œ‚]´öns¬KY—Ë¥x¦×/ ¢ ÀÕÉoŸG—Ÿõ=@áàse5×*(Ú¢¾eéIÐN·øÜjÉãîrÚû˜- ‚y¯fÜ[Û–(ÝÖò͇ӽ;‡Ó“tóÖáôÌÖ]¾Â0M⩱<ã:í|:ÃÎ@(ãá÷ÑåôÓlðå3¨ã ©\ò5Øý¿~ÿ_¹,Àoi8aWCí©ÂˆŸF“Á쾸]h«W³ÚelïÞâV®HŸ 4‰Ñf"Ÿ›jªhjSMSâ²êêyΕØÛÀÒ?Â9ý¯oaJ®NÈ“ëš}W„ÎÂî—À’VÎ åØ6÷MéØo\´g)'-©*½¸›Bz ÊEŠÇá›%Ì‚§bä>ƒi}î'Gn4𑲭†‘B§’<{Á§}ËGë!¡ªÐ×öÒ[à×Nðd†}ÆÉ:Ëä!Ðå˜}^ÀLÚûxÙ¯9»$wí34´«†ÉŽ'bŸºò­oo„1-°}"†÷=Nüâà›³‹­ug#‹%;p|Çi­¢Ü¬ŽéÀ¸Ä%ø(-HyËÐ=g§ÄibìšÆ…:%ȳ!E…åpºø t©ã?iém@óÀ/àá<|L ƒ8¤s 3®4­³.ÊWCðZ©#kiYÓ;²¶lGvùœëHמêÌÆ „…4! ƒ( wÉ)…B›ðå·qXÛ~³Io63ßìâ‹Ýì÷ ¢ŠXOyßUŸôPš¼ï'[³B6™ô‡…4807qËïŠÕLÓ:Ð…«bxÜô>¦¸0 ›¾MPFœ%`ã¹üÞ.Õ<&°|ëydáúÖ{øÌÂØó’çä—÷±¨æB7H"QQòšŸTIiPвà"7íDzé]­.ã…®‰D׋C7U‡XÛûj1iï:5%÷õºž§Îi0dÝ¡Ž{+‰@к×R®Ê™{M“+*HE'=Ût¦±L#kÕÁ²Õ(ûØrâàõ èÖ»N!ÿ`èúÎCû"DЛ}X¥úÃsXÇDèáaD1r¢‚ï d4? jõ ØëDàrÜ*-+/chÁðëÐJèÚ’ZxìtRâ `ào}Ÿ\ünŒ@¬Ã„^¶‹¯ªÄ,é?¡Š¹€Í•…w¨úu4.©Ã†žÞ8ëå§Ìéi\Ó\ŒÍß–Ž-%‘PÔ‡£n+2¾é+ÑMe·ºÒÝÅ+‰?©ÕÊ2KÊ?V.¯t*wsÉ© äI—W+H«r7ŸØ ‰¡,éuŸd—j‚!½’¯.¿¬ Ã÷!I#݆’…€#Éëežzܲê“hàÿ ™&"¬I¥“''VmQŠh“Cƒ‘æ—…î'N!(y¯84±Ëdñ¡Ÿ«&º¢°–9ºD%?ƒrØ.åšQnåGY½ÐkfµŒaVË3ÌjÙÃÌoZI†Y´VÕa ã̻à šˆBF}9¶±I·W>I¹–RE§†BPµõSÊÌS‰LëG¿U }}PåW–~…agÙ“yÊçÖ9ÿJ„†Á9PÊ¿ þ`Ç œeD£|5Q½¶ Jãrcô š°û2V&+}Væ¤D0ï øRbŠ#ÚCÈ&Fê˜ÃQ‡£z>¤¨–“/Q°dÌM°ZxùÈj, ,Ÿ‹Õ ±ˆÇd6ôèÊ˶v¸0³Á@—Énйz6Äl2î¾Ò=ŽŒÄ”„ú﬌ùlò›`\Ø€“œÛ^ÓY7À¶ÉÙ9X7â>3´÷(2[-HKJá({ão‡6»Ë­È¿ÜÒHµ–¶ÐŠ‚ ­ ×•dzc8æìÏ>ŽfpBœ%Ñé'°ûxø]ÌöÉypöÖÌûXÝæ —Èj Ç&q?¥ ºXìÒúü´(¨Eû˜²¾à9{À¡™Žƒhª©Ø¼ªóÕó®ý^ Ô¿ÀÕw›HÙfð9±3»Û’ pZ@ùªŸ±æZ˜¯<ùô%j¹!´L ZE1hÙ´Ò1HÖþ/R½?ôþ÷J"x‡Üé+_¿ŠͤI¶Ìq †Zç„8«Çb˯VŒÕ­0̹Vauƒ_‹ …\l¼*f²P\] Åkb¡ c$¬àæ(‡ºžADzrªÖËk­5(!q²ä5 €Û !ÛZÒ,¼¡Ÿ /ÄòB‰Ó÷,€+G¦­Èî†9—_â.Œ—æÂ%yÇ‚²ÂÚ,Î6ñ[\X¤Ý >®ÈÄlX[ ®y¹–[ºQ À÷d¹Æð¬”…bjT§gQÖv¥Åz¾‘øOµ½gñ3'þS|ðÿi#;þÓóÇøO÷$þÓs-þS£]0þœË1çqÅ 5âÀóùôr4u„bCøK³Ñ`²`ó›s.!†1(Ô<jžJÄS»(¸(CMDŠòGE „j´êÃG=†’Ö>ªÑ~ 57)qÃGÝ—œÿÉñ£Âu43á7Øõ%*Ñ"PÑY_#ÿwÜ< ÙŒF%ù¢ce²øæTN ¯$“5⻾@VF¼ª0  ²:k÷T¥&J~ŠxKM²#H=+¿Ê»n½Ÿ3¢Õ;'Š”™œ%onJ/? ðjd•^9¶•iËŒZ•@gõkªJÎè«Â¤9>í¼~Ó‘­Lð1`ÕcÀªM¬2ÃVýz«Œé2Gø*˜*9à­ôËápµ©äÖ¢^ù@tÅl«x­@À*…2:SÞïØT!Wùœ±©ÒÌÞùbSe7N6Ͼ²uã%ý:á«8G%w]‡€×ÃÉ/°‡nQ—(’Ò-‡Òï&¢8µjd|·2®ûªŸûÊHBÀáîc_eô(„LªˆMLóX­1ŒƒÇPioz¼p‚¾=¡ps·XÉL}µ¡ Fû8¨‘7˜œºîSP#x T– fKüî‰G¤?€÷z´+|àO W¥)~v§š}ÿÓ¨°lwïÞî4&¥Ñ;mË,¤Ï}Q ®pÀáJ D…4Zi(DâIbÖÐÓwI‚ÖÝ»øD¦ÖÑgÄyü‹ˆ¨¦=|½ªv"|sŽ•ñLö¡‡ÂϘ“ôŒ)‡$–÷Ì0qØ´¾'N9Ϊ[!ä6™ë6Èœ²wèËŠ—㣯'Š—ãÞiÇï ³®'PŸ¬ËW£¦+\eÞø6E‚ÛQ¹ì€\¡X3aï=¢„€+–Q¿Š¹e‡©ÑÁûÂl…£ÒäCÙ «Š@c„Ó2#i¹gœ÷Ö÷2Wž 3©fr…— *ÇùeÅ·ðíŽË’Ë kDc¤“ð°v†kÊÈ.0®ËÝô±mØÔÑ}‡cÐtV­2¾ˆ¹áYxh1©Âã øÃP­6ÖM¸ÄTô­Ÿ€ùó™z‚ئðÐïBϤ‡ò=MeˆPrŽZ~âÈ$‰#|tZD§ie#mq´Ž “I$“+ŒLp=²ÎYje–iàÆY †XÊfM˜ªÔæ•u¹ *ëÑ}MPF´¤•jåCJ0lÆ\û°Y6#‚'ŽŒ,ýþËX‘ßý=+äQÐp¡ ´GžÛâñ.YZ¿ó•SË{3ÂR×wÓ´4|ö‘dçä]ò•¬$Õ»0cžØ.<¶’„ûnAÁ±„' p™‹äà0„R@~qt¢HÑ”ˆÚõþ­ï‘¨³§möAÝI _à°ÔC â; â»ÂŸû¬´éña¬ºɪcö Ïþãðd¹‡§hEG('Çr4zUDœ~`C4òîΈùütz é"pçóÈ!û<˜c1I…ùbvs¹¸™ uJ]‡¼ ÿÃ>À¡Ãprp—÷ý‡Òd›ýÓÄ”¿L×7ýfÖËFæ·˜ &sàANU(OÉ“–Õ“žNÈ»Â.`—쟻x—Î;ÊÛ_ømáÿaW쟾&ü[b,<Äáü¸€ÈÆ|HÓÉ]Ø)ã<3†ƒ¼‡/?sLñÇàët„‡ø ž}O¿ç]ìÒ™rl®ÎãhÁ\¾ÎGŸà'Œ!A CgòüZŽoázøËlúa<¼VÃâÛìZ'Ù/§WCÆ‘}!µ âäé˜c #V:`bÓÙÑïþüYê=•aœ}ø—ïœ3wäP»‚;WñöÏŸâý¼—Ö5׃拏ñ—réçÏÞÏŸO~þ<üùs~}ðç÷˜ÿ®X}i¾<¿sr=åPì÷è‰ê% J¨$'×ìZnÑgÄùˆÓa–>ÍH'þ`2ˆ_Ûìfr•tù÷eû÷xw{qœ#ÿáÿ»é§ÉuH|§Å“sáég©cËî‘beGsyTywÝg•7rÐ8x\÷¸'ƒ ¦œÖªô&‡uÓlªóËi`ƒG—×vZ·áßÿÖðïþݧó»°Ä ¬Aré=>ÅS·ÇïOäùÞö)¸ÂßÞ!zc6ÓöòEx£¢NàóŠ<–é£Ãq=YüøŽmÖ»ˆÿñi¯’û '­¤NÁ¼øÁΓ¾qŽ“ënk8—Y?äÝttÊÿè'4Ñ…ÉLÓ,ÚKôæI‰à‰4<=Å9ÿ;H-‡ê\îq‰†ØvE¥…ÉH™s;¯OŸÄê[M}Û£oiöE¼q¤˜ºHúS~õèÎ#Î3¬¢Åõ^ݪ ¨Äž2>÷ËûìiÊ‹œ†üE>t÷ÊUt¤æÿv" •Çÿñû1ÞŸá–íÉWc|u_ÀB˜t·V&pPS ªvO•¢Ÿå;YƒÈߨ‰3áÈúü`÷ËØÜ”V‰Ê ’¼¨°ç Iæ ü™† ”Þ/Çø*=аÒÉ¥“y_á‰)4:+˜© Óª5º<9ÃøDLð 5½ózg&¹NÀuÍ/jv\úœµx¸ú ëî ÇBÛ̽ÈáÐŽìSÃp3N9j ÏõSŪ€ñÆžö†BN{¾oCØ'’å;±µ8µØF-¶Q‹3P‹mÔbµšµZj5µšZ-µšZÍEmχÚ^j{6j{6j{¨íÙ¨í¹¨íûPÛ—¨%ö`9_¸øJÞnNF\ûýï€"U‰ræ‘ûŽã!Dšzò†€º±ªãpø –•0|ÆÓéU‹Ì³Ä±dâ$5“—ÜúâͧgûÉ3–$3äç{Ì’½mÎu7X’V™šðKLz²àÉu|í@ß?².<Ùˆ:†qÒÝ 4”чfp÷Àº’ƒ—"÷)©9MT¨ '¶]ËvçB™‚4 7†.ÜþÙ}ÝØ}ëÝ`HÁT}/#Ï"O ˆ¨ê/¬›öcß;Ú^bsAe”LÈ)Û)o§œª·®Cy’+°%Ù Hu4ȵÚ1ûâˆ'ƒãr:óHd0õª‰Ì^‰F"³·$2°bZ…È9æhÄOp¯?pÄÔqG‡—: ÅÿOªë)ë}+…PüÜj¿ÏS{ÒεƒÚÐEzµÐ ^ȸ*ÉÃ×qÕ D“Î7iÙ*Ö r“ÖÞxµ.k6­&)Ëéç³Óõó'ë•¿+óÜÜx|;±¼¡EŒÿýþóg%1ˆÑíJbA ñöןéý%#Dœô9K¶§‰áWq'oKÍS`^¤<‹®È¨ÿB X†#Ú †V£@F hÖ`â|T^KÖŸ2š:2›WÂÑD#Ê„z6¦ôù”IeE|Sî û6„íHãÀbiïµè=Û‘@¿” uè…M !eÁË‚^ª `iù´ëQ°_Ypjzü¢ ƒC00ç“÷EäÚ¿K• ËmÑy/m¿­lnÅUÄ3ZýeƒŒ1ø§\‘ƒ½]©±hšž´Ed-ö$»c±SË.MÿßgÁ³ð"íÿ¼ÌQi*¼?U%"€Ë~ªê‚}{*–÷ÔŸ‚¶ª¹wòÔ™ü‰©F¿’FyH.Ð"¢&Ée5÷†è ŠÒê\›ÒÖT…Ãem“Uï0}:åMo—u,l?Î^·¦È>N^âÚøä*¾âÔuˆ_ÊRèB+c2zVp2"YRÓ}zÊ%µ)ìÙêÒtm+ƒÂÓ—Fys~Μ“žž“4Úk”ϧœàåÎdÏo›öŧ±ÇyÌÝ£yì…Ã6ú!ƒj5øHßÐïç9YDg³¶fì;ð"õ`@Šÿÿ~´ÿÿ(Þ¯8þÿQõÑÿq†åÿ¿f½?Ï(Éê ÄꨵŽùŸ÷ðùB´Žûél™Wðaô@J H)||‡°ño’`ž1z‰ª-ÃL€¾\‡âÇû¡QNw»*žåÄóªlxX¥m ¤)û„œÁ1ûòóðò¯9@äöé5/INÙÂýVÄH¶UÆ:—®ïÙ!ëoiÉÿu‹]ùª9¸CW¾Ç¿} 0ŸÄŽÞÕJwÁUü#™¯°ÑGê§—>¥Y0âKö“#²#á? ¼ÕÏúO6a ¸ê‘Ÿ›\Lg~φz˜`-À& ù^âh€óûMÓ3¬‚¥æ%dç ?¾ç4`YL!!×—á zˆ“r/£ßóÓQ+;ż„ÒJÔ~ÏI‰¶(‘ÒZpkŸþWy‡Ó‰‰]í( ø\W$›_M‡˜ØìóhòÉh}s!ϱ°{ðïš·vÝÂ$GÖ:×ímÙél©Ƭt3ù8€ÜÀëm‰¶pd?®çi6Gò N1$urÔwým‰ôÒ0òÔ™¶ïp™&úš(›e·êpéV.ݪ÷˴꽿ã¬÷~ $ ?.v>CíóÑÕPœSÑKrÔàºöòbZÁKN/%ãbI²÷K“ìý.•whÖBtSÔ4ë/C³þ½¡Yišõw©ü4CG¨öÛtöÆÈE7¾’*—c!î„PÌw&!r´È´9pøn!?ÍÅ4€w‘B»XH‡AaEà¸ßÍ 2[òÉ<º(8å…‡ŠÔ/u¾Ëèä—¤41ǃOŸ¨>jÉ˨ îQ><µ˜,œ¯ÑÆc,k8bòöB£¾=nÖ_óÎéyŠvH§AÞ·ÎøŸö+^ì|‰ã÷+ëÖë8 PlŠ5œÆÐÎ`ø“Òe&ÉRªˆæEJi…Z–A×Z‰qÜÔÓD1è#Ã×{ð‘k$£Éèúæ:qûæÝ©¿Ôø2§þ¼¬îæÃ-ÝÏ{z=¤¡ÆŽP;WU¢õGw«·±ÝÓήøýº·[s,(ª±ÀÐOý™–5ɲêkÕ4vc VÓp{¨_¢yZÉ¡ W2KuúU.h›òøåÉ©HHG5 $˜4ÞíFL“ …ßU„–s<‡ËõÌC\Ÿh¯Z¡R˜•ËÉ*¼\¢°'ø§mXåbZ.®Q—r" Ÿ (•MÛ1 ºuéu’]Ñ‹ù`¥8m«rN¥ÒGÚØ%íaNºJjx+dÒ÷„dÀU¸sÁöw%*À;OÚåBÛ!cåËð³•v`‘¯W+Ç÷×ëïëÚ˜Ã3qœœoÃò6kİ1)söe”´ûÞ68ø@.0_ô)J¢Â§bÄR¤èvdWZŒè¤.Ž`õ›pµzNÀ÷÷\{,'µ¥Öë«Z›•*L¥lHj뱤 =HèAô¦Dð%BO½&ìɘÁõîkº±ž‚£Û(ò“T›#5¼ÈOUߨ!þÉ´`hÀ‹06žDÚÈñ=·kGyÄ  è¯"¬íkoz[]¶ªïGË…Û¹wWšý?ÞLüŸýý=7þOT{´ÿoâ"¶íÿq‰µ¯z^ó?ÁùŸzëìM½“bvÆš¼`£§T¤‡¸àÉM Ä /Þô=ØBY§ùŸˆZÒ~tJæcÇ:C”n”¿ôÒF:뢛ÄLŒ,ªƒ‰ˆS:Ëí ¨¸.bgaô¿|‚L¢™ ÆE‹ÛòaK?d(>}ú¼ÐAÏÙh×Oö¡ô¯m®•6àc‡±|ÒÏŸzYAf·ëÁw–Å%Xñ¿à¯Áé†ý$~VØOªý§7s,*Úea—±7Ãgxxï){ɾUÞù×Îâ³NA€ …„‹/oá7ÂÓYBôŒø´åT OñZ‡PüݯI¡Ýò úIi¹ +‰ bú,fè(Þcß³«]*#BH™Ï+Ô h«Å/˜ä@›š ¿Ì†sŽ<ªRP²1ƒ—ž°Q¹1RåÔ½܃bó/»6Ÿ&Xï IíÄ™À¬ˆ¹,=Iw>ƒN;ýLv-r‡öÑ8ÄË ¥ŸˆüÏ'?õŸœÆÀݲ³óï5ÉÈ3âdjú¡" Bßð©iEG¢èH/ª2‹ú®ýÿ%7€ñÖ”\\1úÅy¸‚]ôaÇÞÌU!.cè%Ú‹uÆXŒ”Áåg£ÓF¸6¿ù‚èJlbÉ¢üv¼îÄ ÖöÛàÃ|:eùî7€0ýˆé0øB’™³n$Ãr¡,¡ƒ9ŠÒÌÆÊwÁ~v†¥ïÛ?ywül^ã·ÿâ$ZðÖ3Ø»D¸ „6…À‹eì¤ôu'•ÑG(/¡;_Vµ€l&…Øœ×H”ÁAÎ¥Æåt:»M ”µô&Ù€-º‹qlÉU!crx(ËÑãøEöÆ—… þUq\ÚV'LÄPTòÅ\mì$’ÇçïÔ(sš˜ˆ˜bã›ëÉY Yr€‰Î¯ühýÊÀßeœ¹Q*üK_o­8×9Õ®² z9œ6Bcœ¶urOtƒ;¡Vp»‡¾ë)šs¨šsÛešÓHiDÓ9Ò@LÄÁ%K–˜ëå¥Íùˆª1Não æb3_£é~@d2Ñ? jsÚgæ Wÿ\' €ôÀ!´¤Q+€ 3 Ä›yEÊYTÀ2—þõ$ÂGüƒ´š ” "v£¼ü:Ö\HñF©Â§``1MæIüÐ/ƒ™Ñ1¦uXAqÀÇ0º€{ÁìB±7N‡4Qò)¿;@ÀG]ã  ‡€ó’E¶{ªÅs”ÛŒ®XÉl8p¡†Fcé¡Ñ 1t æÐ (44ÜQ¡úg.{E²8j§sˆjy9}àô|àëQP/F—Ÿ ûÁxÊ[yºPGã5?ÂÚ8¼V2ç1ØÌf(?s?Ym8.FFÏ9Âøó<#L_è «Ý™ùæÑÓŒs&`®ÖÈ%.tᛸ˜fY1¡ªh¥²¨,¸­3DsE†0Ç[^®Ð¡ƒ¬ÌÍɰóè‰r§˜/a˜~Íù­…ED5èL´ëe@“¿óð¢É€gæåEuExÑ`ÀÐ æòbÓâE“u8:/²ÕIŠ9º|UT‘ñA%ïxZÔÔ•ItÌ0I­È‚–Nƒ"ã­Äæ§éRNgbè^ƒÏsñó ®4¸9ÐÎëJãóÅ µÚë_c‘€m¾ÜÖ#u3Ð/ÀãÑ_Ãñè2éE#F¨´@ýo'«8@TåË«ÿp/™¶Ù::kÉ¥G|°× <`ϯÎõô^§Þ–1Ç|Î8ö¶ß8J±Ð¢oIýè´ñ Fþ+úI[Їp·)>Óìå| b¹C*ד—RN‡È×z ¼€F9MúàÅ»d…Ç{“³}†º›P îA¬Uù-ï$"j>Bšõ¼óÞ•ÙÎBÄIŒH,&žr$JpCʽ/ã„CÛêm%7iÁݦ¼kn»«Rmo©SUÊô}h ƒm=áZæw…¢×EHg¿— ¦Š«™ A÷Bñ@hxÝ”NÕ¾´Ü(SnJÚF3ɈjF]÷”  è<4–Tð¿)Ü4g3‘À”cµxæ&6BŠ¥Ñ6Úïðåwt¾<¦hºûlÒðÞO7P¤r ¾¥äúÛp)éø  /•òúaÅгj~º#—–i­¼³Ã®¦Òòd¹q8‡ƒà…$¶ÌÕm畦|¥éõ¤—bÍóæ_8àx†“œ·Íü꘻%Èà¢íîIOœ`$«a„8jìâ/ÄËsÊ]m´÷Á±Gðzê¥á™oZ(Þ‡üH©n;L±UâH M!°Í!äë!:Ÿ‹¿|o‰oÁ/û-Û?'§„0åÃÔC:ÊbbµÕ€tIHo¬~¾E¨lBÍò ¨"x1=ê1Ó|Àó…8XúîxÏ ‘Øê I4"Í™0ÿB–,/Í£;r»¾ñÕÃpm‡Úœß=n±Ú›šlÒ/KGõõ£Y|ˆ…­ñîë[ܯá.dròVó–…B 1 ÕE:…‚úœ …†µ!¾åQFec¡ÖkU4ÖÐ'yð0{E•Z¢?¼¤(HˆUê÷òCá®cpfh¥q\iY¯ûlŸN†Ù®­¡ƒNùXª¿rV ¬ME}4}éK-ÓÃ"Yi‘ýÁZ¼{¹:É èñh¹0±Ij05w[·zTœ!ŸUá´ ,&(áy/½•l+gä8àë¯_Š”QvòN°®ÞcAÈÐf„ëöÊMr\µµËzý‰Þ¥¶~Ç’Å;âmö»ÇˆÇ£ k¸ö‘€€p‡å..ÜÄsx†ÇÊ3<Íÿ»¶™ø/µ¸V{ŒÿrGqªíÿ]+9nßÂr|ÎGëyS:r«¸wÈÛÛ³¹I·m5›¢¹$´h=ÖéÝ­¹jñ°®1%eãÌØ¡âÚÆë8ìR­\µÅŽp¦75¿«á¢ÄæÒטinÔê O!/Ù ;µršË“TöóÛOúqë4ü¦ã"šúmÊ~›>2‚Ío¸[ª‚ˆ†‚³7³£ZÊz-eU sÜ~Y]s\‚8—jøIä’ô¬ÑS/U‹Ф+2öm4#FÚÙ~(ÚÄíñùP¸êá­/Žø•عä]€ãRÞâî<›ù”¡’ÿúñmðCì·ÐåVf•^). Ëúº;¹ñ÷xþ†rܭϫDŽÍZªæM¸Ê–%Ü»’ß D˜ß˜r‰…ÀqgÚÀ¥šG¦ïˆáÂ3™Nv&ÃO\¹û*Ù弓N٠ÖéE‡Â8×DO/­!*ªn«Út Z½þBáA •È;3ôÙŸ‹ST·Ï§Á’ƶ‡ƒ<»âu  ù—`¢H‹ú!禦¹}YÜHXvÉ AÔ b–LwBVeäe"£¨U9fÿcH{@ ª\ƒ;‘"®°7 C,^NoÆW(9?(ù8ŸZd¦~=¢zã¾8|ˆWn/ ¯×ë¢{žxYÐÇQ3Šðo cø›‘8⨃%:X¢ãw,'”¼ãF¯‰Á‰"Ír©ü. \²½¾Æß°¶áYΛ]лërºë̳ź|#È–ïO\›™RôPM6‘Íô{¾à*DEi×79éà„¹4‚srÂϦªêDdß¼”AWpÁHMb¡äõ©(à7¡(…a.0G4IæÅÑT/é>ø´Ž6H´¢<‘7bqÃæ6­@lÀé^2Õ˜¬¯¢ßÑj- xesQ§8¥Êf¨‰T †úPñ²ðp(#Éž$÷…?C™:_2Ë+2UA^>mJ[tQ›¸š~›¸q¨ŒðÄvZ xmÿÀä‘ɀݲùTr¢s_°¤}?sÖ®®²ÓqN,S˜fÂDH<))it“ ¦V„^Ñ>ì~;ÇAB*œ¾æÇy’^èF°(YÀ2ª âÆÚW²~­Øn½}Œnç)°p5ã¦Ôaö¬½÷êS!Nd¸’On&W.£láþIByßöÞ0ÎJì’Å1f¦±Àz»ÍÛ‡ÒÄ ; J÷U]syBøD²î Á•ä“o7ñí ºóŒk¤Ø|Åv=±UO¬×›õÄz=±])6!Å:$ñ̦ è†ók>†1ÂßH,ÕÁmE6¿Qç§mÅ‘FœùèÓõ´\À Ï™wŸ F´Ã™•°çÄôƒý"¿C?øçA설H¬ÑîDZgV<2÷ý)·ð‘áv NYôn™,k¿ãØMö¥ˆ~4üÒÛI{ Rñ3Ó©¼ í§†UšÃWú¶ë±È¦rüJ|é¨-ÒïKz6ö– vao­Š/÷Ѧ8G™BxÃSÿX„7<ëJóçÝùsMÙKëÝ÷dGÌgÈô¾žßžYN}tzög…"RT„¶¶Fç’! 9áýFÆB¦ÊÔT'‰©­cåê¤Ò©6³ÄÀd—Nl0_~x5KئÐõ—Wtû•Œ5 ¿ð˜Í%Çšì>~•Ð(dÕ&–F™6S­5be&ÁU×1ÈÁ¥Ud$w5æ:Ûö\¥¯ÚÔ’M­×äbÍX“ùD”~¦›QCwžë"£X&mRs2Ÿý¼QºÔ•>Û¬c¢É?Çä ºAY $³Õž&Ž%Š È°(yᢢÂÄ$Ý— Ô™%yä}Ô±´%‚Ä"Ü ¬/Ìç'„úiŠ[g_•øS” Áü„†¥a‡¼ #aÃOÅ·Abü4#bI4੨Ì{êôÏ ëàGƒÞòWÐþ÷ïÙ¦ìÏ¢gŽý¯öèÿ¹‘‹Žaÿ{×ñÙÿÞñiXȹ^ý}b ülݤ(Ëç‘ÆKVþ#í¹ì}B¸ßúz…wˆþó/ ¢£×*ƒ%íå^íôô{JêëaVYk…ô%"¤C'¶ÒwW2_„Ø5§3äüpÓ¡ 0¿‚eŸ#—.Ë^uø;ú©¾+w”ê»r¯üG£êý4ªÈùðMO³ãáb0«¶xYGôGNîφ‹›ÙÄÌíQx7r©ÅºøUë73ÌtEµÌß±u`”9!ʸ®rï¤ÑJVµ„å™/åÀ8| h.l¤ï g¿Q„LQbñÅ­DÝÄnN³õ°êt‘UBw̆Ç2ÉeVo¯Ój~:aƒÙ2gØÏ ±Íá=`ø,Åð¾…3¢ŒËðR:+7ãâ› r@0<Ÿ^—…Ô¾…í >ab¯ô¬1ãÛ€Ùx™1sv»c¦óîÕ}²ë íNÒ¯]9á W.Ç«ÙûP+ä&Úsz!Ù ˜[»zRk2ÎtØ{·U® ‡)ÈeÔð¾ñîPòW‚Áõ‚rHPÈ™r˜¤–iˆwzÓSjÏ,õ-^?•:S;×´¥pG.ÆAØÓ×ïSáâ `SCXÑ&mû¼wšÇškó¬ù†]ž>»¦ØÜýïç·ç‡! ÿd1“‘©?»ÿ<íðôÙy—²®9îþÙùc æÿÕý›-wã³Ùðr%ÿ^€ß+%Ý>3­§& ÚØÅ+¡# ý»º³¶KaS YÍgÛ†˜WA Këþkô ®ã¨B¶ÕrÀé-Îâ¶'8Šõñ.­ËZÓoÃ܉ˆö¯d\ ÑžwÆo ¬’¨½Fám9 SZcÏ }ùé=Ãfcÿaîã¨3gnp|ôº·[pÚàq«¼Yÿ ¾ÓÖzù%¸ñ$R„J0ÐkŠR]©3´€›"½V?ã³ü8:g§öÎÙ“„)2pŠ=D1Ü„+uÞ•DŸJV:CóRØXi±ʺNæ9‘©èo'm|¼‡ž‰d’£\•1ªîeV}fVÝËÍ­A¬ÚÔ%‘Å&`ßÓîz(Ì~¾ß¡îI¤›Ãë~dð ¾æáíðAÍ?245=§N¿˜Ð4^©Ë“)[€2ÉìòQ%O…+?N $õɧ Èm¿Ð˜N"Eù¶=éý•,K'F¦,£Óˆ©(³iPIáAãMî|øOÃd×ç0‰·N¬¶Ž“úülb/Θ¹:+À(gm_Çe•Ã\¬g°Ê™Î*‡«²Š“€3À*rñ™GõÑÒÝzå:høš`2ú¼íé`É/ ‚Ýj-—Û¬ÌÒú±û§èG]°û‡½¤]Mô”¿Ÿ’NÒSÊèô„eyíJOì:iô<Óœ(ä8ü£&•ž®!!75Ï”„Ps/•šg5eY¿÷ìl­æýÜÿŸý{sûÿµ=wÿÿñüÏF.bcÿ¿óöÿOä$ô¸ÿÿ¸ÿÿ°÷ÿ¡“ýÿλÀþç]hÿÿÄ0‹Èýÿ3ã®Øÿïð‰Xîÿÿ£Ü+Ë-Õ´ýÿÂ[ôÎþÿ:öç=@Íùž ¾Mÿg…%7ÿ[ÜíÍlþûø&ß^(²¢Ø åß7²ù/L|›ÿw°ù´Úæ;eóÿÌËð÷mó??Ã?nþ?nþßûÍÿ“ šOVÝü·ûmvÏ¿^~·µÚžÿ;Z1¯qÏ¿ý¸çÿ¸ç÷üq{Üó_ãžÿ‰’+מÿ™}ªÈž¿YYÑ=³ÞÛÞó符[aÌž?ìàY1OŽ|¤mƒcà)/,mznGß}{y'Úþ^m{jÊ·å|‚ ðGø$ hé—Ð «@Ê6øR[ó€Ó í¶çÃÉçDÞ×<*h{î^yT¸Ž)^måÇlúÜ §ÍàL`½ž'Ú†‘× eÔø·¹O” Md±+Xë´{N ó©üí´M9ÔqÆ\šÛ€dáHw÷é÷òàiïÙeûAœ9„÷n-yœÚ>ߟ'(ÐÁ}e}_ר°:1÷åœäU ydèóÙ¼')[‚ß@.VŠûnœÉ½oc“1¼+ŸÇ Àæo•íLÏ)¯wòz˜K¶%=Ä Ù„'ÀÉy¸C{-ž–ÃÉ£3À£3ÀêΰÍUØ ¸ÿ?ÿº¡ýÿ8ªÆÎþ?¿õ¸ÿ¿‹¸ÅØÿïö}ûÿNüÏÜÙŸP¢ñ?õÖÙ€ÑèIõ‘ÿi’J\¹ 8¿¸¿Àñ;AŽ$‘Ôò>>C^’¶‰nó3ÀžËÚ¨7’QA'‹M~Ãý uÙŠd ƒ‘Ãð78HwQH–Ïk%Ü r{ÀPI< ºýc¿g@Îö¾4@ñ;˜¦o~½ß*sÍfšH„èsýîÄåΣ›Áí»¸16éf ˜È·Ñ*6Ë€ÿt°ÑJ·S6Z×µIh¡µ7)¨mÏsu†kí·wøÝ?·ºÿ}k=±ž­ßÄ¢¬÷„Úô8—Ë rÕ3 Ý¾ˆï×W*ÙLx¿‹€TCNdCúË4¤ïiÈ4Äç,Ð_CF¨¤!ý]äöHq?ŸÌš7hHš›/¶††¼ÛE@ª!ÊŸU†‚#ZªCÑ1ë¶_Ï3iåÀþ2‘S‚ÀV&°ÿïÿ» h[[É\ráëÇ1&µº„Ü>³›Kȉõq6½ÖËSÛ6êº0úµÈìš 0€ò¼Zµóo`ùÉ8ÞÑpÑ÷Õ÷5ô}g¹}ßô¸AH¥Ôßw÷ÇÁÚ_äëêΠι?\סOî>™ÓÿÃõþJè*¡^k¢ÇÄïÿÁ1zŽùà÷þàÕ÷mï§Ì~?QæÊTåÍÑG1¨GsØÀ½^Ά+\À^ gÿåhëx½³M³ Ææûo£ùp÷Á{§¸+Ñ%´yVao+ ¬Æ)«QŸsI¯qr&]L²¿ «I,š ŠaØKÌ‚¦õOlçuQ±6ÕOY\åÒû%nÂ>ýOZ¸-ô÷„™OYTeoù;\ÌüÁž(ñBW§÷ߢÁÌ[MØ"ÿc§õä-‰PÚ¶{Í6yÙñÕO=ò Ï•ª³¥ÅqØ#.¤œ|a³4TŸÁÒyW4¹ý#~Ù8 °`Ët{;1¶ò%¼+°›¢¥ZÚEÌÓP°¦mèë ÍÂ'I#Þ/ç#‘ø²„|$`U[ÐGBâÔ_ÒMBªk„í§V_&ì™Öˆõ¸K¸„]"²Ç2ëøó¼Ë$ì»[uéQv¯žÏÃË¿Ø|:ã«ÚOUU^±6ˆ$IÖ˜ ¢<*N ´?Û´}¼›»íÆî[Gvò l¼ §cÉ]õÆ[ï4å¨ä¡r¤ì=NÛ¬6å(477—wrd6Má+ ñz-çq³BZlr¾ÅKÈs¶± {=^¿Âòÿú<_T£ åÞ‹j¶ÿW-ÚôÿÚÄEc^÷ÿzÓíU#”ÝÍŸ›ošÉ¢ì |¾±Œ:!U3qÛú5üµHá¹õFznQ3}öÓ¥½¼)QI–w™AZ¾²œ?v½ðg¢„oW7—*ŠÜS5ì°´ÕøzfÂ)ü àð.¹þ‰t(oÊï¶vùtümªoN‰=TÔs®þKßÓ÷¨êè‚ý&9Ð ì œ A Ãm­dÞçIÞ†÷{‰1ùlé æsÞ?WОCöiôu8aÃï_Æ£ËÑbüü;F ömz3¾âÏ©…ãñôìÿðô›Î1äV;í¼~#7X›`‚å€O#Û gr¦O¦ v3çU¢÷¿a¢€[Íè U¬{_†¼¾Ç?Ö—L÷­<Î]†Ÿ`€ ɨ¦î’ÖÙ˜MÈ! È œ¸tÑï…H’îIô;'È|Ê{íjôñ#lvÁÞ;¶atÅ 2Zü`Ó ï²ÑDcW ã°8ÄuÇ™ÎFŸF°ß3ÿ‹‰í¶g+ì'͵JÛy³L;Þ=’a-ò&!x"’®ƒá£FpòŠ‚² 8:lñ¿Ã|ò!e»b|͸̘ß|ŠoÖ@È7»É%¤òÃ)BHŸ+†Ç'„œ4: —„¶¬Y›#OÀ“gs~ãáäÓâ³'•¶æŠ—Ûåö®>as™ˆ}›ýKL9„ÜSÏ]müÓY˜d9êÝø×wú+¦ÀŠÿ­cèÀÝGË}Ú‡lÐÝ“V22Snèóÿ?{ÿÚF²4£Ï×é_Q§çY#$#¬ݬ½½×ËÍ2–@2 ¬öœ™³ ‹nÚ€|;}þû‰KÞ+«(R۽Ųť2#########Ö”:m6èUÓ@ÇCú§ÅRÑ<Ð?k‚ʵ†“üÕÎð¹Ìûûaïኮ. ΆPÜ:{¡XáÑÏØc Á¦(S„ —ë5]êi'µÇóIû £ÿ. 0Á_TTÖcÖCk <Ûjˆ´´’Z”9cqÓýlã—´–áQÆuwjcxq×'NàôÅÛø›ì¿àGÅ‹AwD@†Ò2¾vcz#ŸïFÊò†2Sæ/u…CèUßëz²BWÀù=û÷=ò†¼4q¤jòÁ {§ZªšnÀ˜\¹ãjNÌ\§=Qüš5±VðQÍÖ9X–¤dÌ*GÜ óîfÐŵ\¬{À]š9q^­ŠØq|„ø%MHÐXF饤ÎlF@¡þ¼`‹¼eb|hÖÚU]?Ü 67‚:KTàQÒJb1š€ôFÖ"Qä×›³&4˜ Šá>´½— €ÅCøHgæÅÆý8,äö=qÆVw¯¹JÔ(G¬7õ6 ø ^Á¦ÚVñ6*ˆó£0{ÃUÍ—ì¤ÿë î¼!¡ék>~§¶AW”ûXlÝÅŠH ©á#€~Î6âáìœCsù(õl_ã…ä9\<‡?.yB O%ÜÉ<ô1ƒ³º?E/&IŠzäÛöbÖ­orŽŒË¯QÆsÁ-éâùóÀ–y³áwá§¾|݈“S ÅpJð9Îd1p\ñFøè—q;Ìåżx? 6òî)¥Ë´#-9£¬§²{ᥘÃHqñ‰õzkRÓäM˜“bb¬‰MìÙ‚fýú„ßþƒ¨µÿsPkUY˜·e¡a¾×ub þd¼z6ø;¯xûÿM?ÿ$öÿÝݽ0âÿ»÷ìÿû$/ž ¶ýßZ6Ï‹í·ËÛíó¹ÓnÝI0S§SZÄ™R¬¾Ì¤ö2£ŒÓbI{’aäDb¡Ño–Â(-L"®×”e-X€bJLÄg7Â×Õ°¡%‘A߬¨†m6éÞ*;1™?‘Jick¿Œñý”HKTE»ODC­¼meƒo[GÈCãíÙ·ÛÛ*ÆÁ`øi0¾›N®FÇ@‰©Z€÷?¶ÚP©•²Â1V8¶*Q¨+—`‰ÿXª`e¬ªC'•zNfCê¦Õ©lFêâ…ÛRéH&c¥.ìk÷B$ÚPºP’¶M¥öÍ`6$DƒÚHf÷ww£!›tû“{4¼ÜI'› 3ܺ=kÀ¤‹a‹l÷4‰åOeüé#B¢1G&˜m>±Åêôì¸V¶lM H4?fƒÖY³‘yU&//Þ-é’æAá´U¬W³ü¦ü¡¢f1»ØŠÖ1qÆŽ\ZE³|± ˆRCš¿ ÝµÐ©)w†¿¬ß+ÚÙ I©WŽ©÷Q×C¼r³vŽæ´0ôº{ƒŠ!Ùí\'y(‚3è†RpB 0A)EHà·ÔU_âÂÏ» n`´mÑRÅÉÎGŸç<åœml‚íƒzb7Q×GŒ³t€Ý1åR–ƒ}ɇÎC/,ãÓt–‹îøçT€÷ ÷%~µíô”Þµ»5¢¶±ñÚpsQÌ`,Ý/…­ð¾Ác`áz0_×6Ô?òPrÐ'ܪٟ<ÛCþùɇuP@¯­× büžã±ö0#Œô–=Ðz˜m×Su¯\hµ ¹°µ”dh­Uö×Å*î†;®œkLj+ÂH¨n¬cp÷SOÄ·ƒé-(FÝñ(»÷#SVup=”=X‰ó×Àù¦"¼úXå×5V;éÆààUÊr‡kŸ)eõAúeKÏ–õŒFø#ÆzgÎÁ^ʦwÑH9ÇJ•ÕçXÂ~1íHî®i$ ëYßò¶*—ªNh ·øi°‚~D‚ …J­B°´œZZ™SMëD¢m"í(ì¬kvÖ3 û¯âØ6×EÃW?"5¼<éá5dº=~|‡LqMó ¬X óª`<‘&Æîçîp„¶“ åE +¼ÔUÐüíÙêô*¬{ÊAÿF2Ð~":­ö¡¢•ƒx »Éh$ÈU ¡°4@ò)©1¾r§œíá†ÓÉ0=¥Vk`'}-rY `¾Z„äb043£.2ìˆAGý¯å·'o[f¦‚Í£@W6ù{#háÉ4P—®u°ãÆßƒðõG¼ß/üÁMÉ!•õ¿î½®Ä‚Oƒ Žl. Kè}:b"Æ'j3ÿº&ãAøÚµÚØ—m¸Ø@›½Ñýl>˜Z­q …×ê"b?x7™ö!®F“Þ¹¤nq‹F¯€Ù? ²ÁàóãVp×T#. ]£¢UC¡§94ʺV›ÛîhiT0×¾Á•ÁxØ¡ Ò+2¯^ŒF۽ɸŸC¨nk¢b¢%7‚p÷uMWå!Ö#캢*6îX cí\´èp„{ªQ’,ƒ~ÖéÜg³P·A'¶2A¸ovNx¥£D‹pLY¨QÜmæ­~‚¾ù˜-oQõ×æÊ»¢•‚¦‚ HvÌæÍÂá¡ÙÎ Ù‰Û‰`d¶+lÏ`°ðÕk!w¾ ç7²«gxm5ÂÒùP–u[¡º €àL×üŽÕŒ"Œ ȬJè3Æ»–¤sÔ¡#_†"›è˜)Ù ?´z7÷Ól„.t>ö‘NÚ6èÚðF–Íï\НÁ •(Ù¢,ƒ䂦—Ÿ™eã”iR#sаq=§Ÿ¦ÃO. ›¹€Â·¹¤óà¦ã …ýI·µ/‚·F/†8*Fº†zÿ,þŒƒûÑlä‹åRžàPV 6âÊHJæRU¼XñhûѪ M¾•Mº€\v #PT“ÑEeOSÛÏ\|ÜtQpz]öuï?ú 8=> âíLD¢æp˜f9ŒÙ΀&«˜´ÿ´!¤›>x!}p ½"H. 6æo~0šÿ³ù§E ØT—î/}8å²QÝS»QÂ0¾—PíòÕÂÁþó’ m’CÂçˆèÎ7¹Ñ<Ôý ¹æÃoºîoV],kl{ÔZ÷ÒÑ‹….' B²öTivZíXí)ÿ´ÚS¼&“íZAwbMƯْ5™¿›š©>ͼšŒhÔ¥S,Ô&…È]-HJéè¾®~ލ8nì¸Þlyz`iIQAôêõ1c?DÏjO%£Bâšé[oµrUÖ<£×—èå Ðê¼Ë­½2G:³üÔ£û;¶·‚2°`ŠÇ¹ëˆ»³xºÇM÷ƒWÏÓýžî‡‘éã(ü¨"ߊx)`ÏzßFÄœ'1ìJ ÚÖ~‚Ùà¤ø“ ”^‡Þi' ’˜v"IÍåšK!¢ÍÅ’ßh.ïmn¡ö5÷*±¹BBï ‹7<‘æ`û²¸9ï–—Ä´ÑZÜ\A̓Ż#¯Lðæ× Û»¡tœA¦˜-mbòlà1*\Dùr¼¸5éHx…›$ѧ/{c¯dZ‹y@ÈÍUVìǰieÂÏy7¸ª´~;îd™¨5¼Zôš£”^œŸž½ÞØ¸ØØ8ŠÊkÜ<|Äœ%ð·blþü˜¸m  ,µyþ¤m¨ÍÒ“¶¹»˜¶§ënso1m×ÞæþbÚ>°M19MkÞ—¸ùtZ¢f—îè¡—¸Ûæ«ÅmÆwµ6igûÔmúQ! mK‚–nÓ/ˆ·ÍÂâ~ÆÑvå6w÷ómŠ º÷7[=Å‘oüÒùñmõÉ—ÎoŸ~éüøöé—δ}”¥smeé\@Ûõ,»ÎÒ%îã/Qâ>þÒ¹ ÍGY:ŸºM¿ zü¥3ÚÏÇ_:ôóQ–Îý|øÒ©ìx #Âô¶ÀL_~{RªØv;ÏĨ˜‡p–ɃA£Ñ¾ç/ÝNíe×§jæi|ÃÚ»‘ÚûGß"EmCAá(¨ú aiáà(ð›?ZØ= üö§Ø:Çfê‹x‡.¶3Ð\à³}à‘f˜Aë|SŃò«”U­¨‘'B6I/ÊZöeªÝ1‡6m$:Î m(@•ñØVFeöa†1ß„õž¿ŒõÌ )“t>¢yŠðbGQ°™Ò‘áE” ZG†î÷ž²7^°Ø9"ƒ)†y„û.Ã]·Á×`<½™eƒß0íÅÆFp)õGÌJ½üæ=~ÅyfÄZYq¾á[ÇÜ·Ùñfü!.Î93õF𞤠B¹M¨V0«aÃçªZ‘1N®V¢ïVбq.mbd{ g'y+BÙ“P~#(Y* EÇ ì–Hθý#+*º"(8¨x:tpd%üÜ:qµ…e¤Ñt'F£@L"h+2;çn ;Ao:è"ƒ´zé;Ì&°³™~Î~Z½’b0ÏV^,ŠV-^Ô#ƒ·OPc¨3×Ð\ßÈe\Ö&÷sQ »Áî¼Pè™Ç )Zóû)†¤ü÷ý`ÜȨ?Î$#*hI‚Ä)Ñ:Ë ‘H/ïÈ„Öôȼ¿Ø dp„€[9{§ÇÁ"fÞDéªys)Á4|;h©¾ü“Õ5úð´fÚØ p›R=¡ú®U]õ/st‡“W,(õ„…~ÖB(.8äCe¡ô¬,<+ ÿaÊÂþ«DeÎfª ïI,žGNL õ Ø(›*Á9zûŸã½l©”½†¤ˆ.Ð^VXI°Õ€6ü£õ|‘"°k.àÔ)] ÿMá D°ÐýÃÂÈ¥Yúy6Ï]Ë:‹Žä°NϨ –E±ú¸ÏÁ²þ¾¯øø_ÓëoOÿkg/ÜÛwãíížã=Å‹'¸ÿ«ùæ· j( a'ÔeøÛ.¯Œ‰wÊœxç§Oç¨öV<õ…£þS¿åu3_òŽâ…'0Ï2€Ën„’þv2üÎéžÒ'êà º¼ Óž@;l‡e:¸‘wý›ÞNîg D>˜ªpo³Ôc¨8ÆU9Ð7ÔDà|ÀR\Mæ7¶[9E(~º™«|¤°—šـ’:ˆìVª·–Åy÷ºùÿ‹KÛ¼#£|L5ã1Ŧ  ÿÆþê2–ûµ.NiEEà{ÌŒŠÁú Æ"„˜Š¦U, ȆL‚Gß…æuÉ– Áøã^•›"݈Z•÷®;{ûGÉŽ=˜A_˜ö¯ƒ ¼Ïxa$×µƒäC‰S,qj4=ÒRæ ÖÑî#Étí$Âe7‰pÇi`a’N7D0UƒA¦±nnu¯fœ›‘\«âæÂgL=ÛÌzÓáfX¾ !Ùê¥èìpܛҔ>™ËÌî{°™ ?äl¢~Î ˜·÷v>L¥ ÛʜŋD2D:Ãys€—c{#Ó?2È—KdAeQfPÇì³Ó-òu8Ï2'â^äËt8Ÿsò’·0oËðÿí†ÊK[NÃX òÒ–s Iä¥I–š¶ñ£äbi[<•qÊ–ÍÈÊ•éëÞ’ Z} XOÏß×’¿¡xI‰M[¿Õ;ôÖô'sX.okå¬Ð$>õµ‘"$LKŒ#N”†Ä“cûÖ+XŽŽ^‹V8Ð8vÕP˜hx¥ž¤´'3‹I"<Œâ6Žæ ³…ÝÉè´¡â$EBS9a4e6Âø—B}›VWØÔo_ä2kw¤™7:²MŸ VömqŠERDž7‘?ô+aÿwó4ùó»»;žü»Ïû¿§xñÜtöo[2Rç%§d‘Ðn-™Êðäþƒxh@iÛÞe½d:ÜK|‡?%|/©°öµÆ›³è6ò'Û< º0‘.ÌËÇŸrhÒáˆZD:‘Bè½Ì6sőŠ7O[ÐR†Ñ /—Fg¹éÛVл™ÀSÚÆ hÃ]Q¹Ú`3A3¬ÄóÊÑ>ìþNï,ƒz2•XØ Éj=û6›ãe-Bjr‡¶aL¿} «k)«÷“òÉ-ì ý%Jq#ȨP¡ˆ[q3ņ0!¶«æšé§y¸ñ5(æ {lÂ6¹;þfÂèMn¯†cŽ‚ `x7I–iO×ëΩ|ß—©ǽÑ}ßNF_«F h2» T"͈ÒW|Ê_òüÌ zÍÞ7°Sꮇ°Á†‰™ß®Ðεû)‚Ïùyrå×''QV+-¨Æ»ÕZ¿YÕ†ãT8¶ÎcjÅ ×*Å•÷cÕnBù¶²DŸ[cm—ìRþ¦Þ7Sÿéû”ߟ¦,ØL‘§èÜØön`WÕ›S$øþ°Š<’W±ÈÅD½I\S[gn&_Ðà+€×èR¥8ìãVîdKÿȱ¦4КÒ|Qµþ¡RLjgêK×JSÞÐiÐûÿÀü“b—ú’òýá<÷W›¤4Ò&¦,º"ðwÉÈ ­N.óúìN\†,"¸l.ÓCJüz7˜²ìŠèô"_”’§¾¡jÑÊ@FÁ"¬_áÁ•S®í–Ûð—+Ç—Ã’uQ2¥9mÊæ4Û„†kBÝ4¡-m£ó›æŠ®iîät!Ü‹¥¢}SìÐ%É"`þÃI8¡P°,™÷WòD˜P*°> ŒÄ¨" øí¡‹£¥W)s›!&ìº.ŠA)¡‹.¢Å‹ êNðÏ×HLø[ß%q/V"nz‚härv¼¾Ú5«¯qÏÆ Y "À=»À¿ Õ3O;íf×):U€•ÈlTÊ%x‚VQ¿à¹éòÅåTèHÜðÈ*:žŒ·­âA–Øîýh¾i×ËÅ7!æ*¡ËÌ-G U «8Ú`%4(n‘Ú)•ÈÀæ…T&Úb¶1q™µE‚bR,sTie‚-.bÁ&X[¤:Ì…Mü ™ÿÅÉÅ‹0®ä9”­þ¼-iÑuíŠgÒÁOAÓo˜­KüÒ"'ÂKmûÎàÞÇ<Æø óŒ õA·rÍÞØÇI—*§5!£Ê„XœSYÅVeðï{ZÅf~»‰ECbú†f\cØ Wa©PƽrqQ_²ÃåØá’³LóêMøYRQ#ÖØüöE•modíjHKrH—:Å(E‡²Ý(Š)š™mª£5V/¤ÿ't–wØ5i7™ÕÛHøa83ÔD˜~*ØmEûÒh_ZDû’IZíKæàع×Ýs$i9ˆ~7BqJµ.Îß$ É)ôcx–ÁÄëÀ¼&ŒÊi±]om¢â#’sËü×êäî͙łbsÈ£ºëûÕ7 ü“ QÚë`{ȧ]CL‰Þ}àÌyÀ&`ð VšB?È‘(²ìQÑ2gCžE¥b£’ Ž«h}:C~Êï›­lÐú­ÎFAü[‹·•ÃlP©#V±t9–²A‹Æå’ÇH™kiÙ3±ã†Wë@1àõ2‘› :#ã§­sx‹·¤â1Önséö9¿5ñÇËj³tê;¾«¡*ÌÚžB@ìf­Ñª•u#õ¢ŸÌ±'i\†ÜAi&Ñ‚|§ØÚ8lã)·#™/àqV&Ðít(òh¶&þÙ,P饄Åu£íæ—’Ê:Á³,Ô¥¬RøY<†¬„UÔ$eß8ÖõÕc‹½÷å·Ê “hA=``ôbÁœûÁ¨ç­ ƒµX0m] §¬[NaUòdß%qªnTœdoÞŒXB‚†’ëeÀx‚–‘-‹óTbìÊeÍâìo.ï6—!Âd$ͦ™AÌ…©°bK=ìݤÄï§§ Q•2ˈ}<ÛHnv×m¶Ži™£é˜eù=·|#¹ü¾[žxˆ»rrš\÷ ©îErÝÞ Ò%Wy"¶Ñ*lÈ3ò©a‘êÑ1jÅp“†•4PˆœŠ¸;JšF‘y”‘‚KBº4ûÓHèO|­z"ƒ…Ævp(¥¥i|­F2ŠkÍ~”»JäUW﯀^tغî¶8[Tåüéx«©­l­`ÓfMÉ þýxz¥¹=t\I°Ï.r 4Ôõ÷:î%¡¢ §h=ަÔv„©Aå îŠÜgtz/vü M„’|ˆsÙó…˜3MçÐμí¥bý~4Þ`ˆ†yÎvOPºd±Nî¦CÐ Daɸ•õ„6eÓÕMAr\µå¶ñè}s#Ê’n¡Ó÷ñõOSÔo¾·R ¨ý…um髙т‰ŒÚŸ)í…^‹çç0öÂoÈ9/÷«ƒìKÄGé†NlÒ–ó³Ø·~ów¦åxŸ:çcnßP7…Éw:¸žodµwÎ×1{é;v\J3Y6¦z‡¹‘_47PwWÃÆ;}DowMΘx->”Ž`%UV*¿q©íc5¦ïÑ‘Kè}aQï[%Ë· ûÓgÕ·ØÎGû\X¶ÏçñŒ|ž–||CÝ…9:ûùé`ô7ž˜»KÒ¡ÝôwÖ8þU±\“9¨vçl˜qJô¶á ý¯1LÓ¿´‘ݸÇ%óX2RÊ´ãùðæ~„‰Y•d°½‚ÌÅ{}B®™ùÈŠ†#U+óñ‹þÙ^MBhî!?ÜE»âKÌx'ËJ1›RzµcX62ŠI<û£æÔÞ¢9Õ6æ”Kö¢OVî-;_bd¥‡ÒÂÓåç¤ôþBJ—â)²]qv„äûñ$7)*}†tH§\žèÚB6˜æ÷Ó1ŸPàŤéDRoÒ74¾ j[Rêøq)À9Ã+=ètÿh¯äxÿßÙýíÓÜÿ ÷÷ö¢÷?žýŸâųÀöÿm]à>…¶”2 _­Š"å¢ñÓ_ùÔž¸†Ÿ®ÏGÖèU4Ä£I:yZ»öæT÷ajÕܱÏô–”Q(ì’mOã±gL:7ˆÈœ¢\w‡#öÞºëÎØ5e~ôÁë¨æâ²L÷[$\<*Ï2û: cCƒ¾ÝæŸa,fÓûñ憽¤ø“HÑ^² ï‡ð¾‡¿íÅå we•‚(ê3Ø… X鱪xù?¿zõ$ò?ÜÝËGïìì<Ëÿ§xùä»ôJÞÿ¨Ó̓sRyªŸœÑúNKø)n„¯bf(”üV?«T‹ü5ËJ£^ïI@*µV»˜¥·ÒO]ÄìL6xÐu‰"G!5 Þ¹ä»ía ’=,éW>າaœÿ*gaéÕ^ W]v~dqÌ·#Ž(Èwô¥Su½—1ßÜua2L¥ Ó„àq1)âÝŒùàðÀÀ$â^6Ú·¿Ü {7öÊœ)`»nb˹•†Åý{ál˜H¬•½†ÓÎöÚ'Æ{Û½ûâêú×·ÐÉÚ €ð§Ð¹]H]ÉÌ·ÃMuåÂ_¹Á Çn#®gt‚»ùk‘g;X¿ ûÀN‰Ýt=ƒá´–NS9Hp¤s[bL2ŒCµ QAùÏj@ÒQ™£’A…]Ñ9ÓHDÖhìê[dZP9/@n-"R‘&¡¸‚“®tLÄM3ê‰ðI³SdÊø ß@Y_žT*B¾˜<JôeçD8Ê])oQ 7¹Çu:†¤µ[HéšÖzÛ¬5N`«6ÔJåuOã‚ä’–ß«ìˆô=dµØ6ÈæÚV»‘Þomrí¡oáßÞÔš­vΙ­‘•墸¬à"{ßô‡\XÖ3î´¤ó@juA’Ïä6UÃh;ÕÀ~щڊöö¨ðFÛ¨tç]݆ÉçÅvÑi„`Àn.×n^TsÁËU¼äZô ¿ ü€fÇb·Š÷ÀäåE6{Wέ»{rþõu{S„rN?Š`öñ ,”†#—.DÄb<_b%û!zèá8gDQ£.QÛl¢Õ½`üßáíý­Õ ”ÄùùRÎ Ë\<œÃ*:ùcŒ† ‚/ƒ ô­Ý LnDz‰ióï{Lc&%l­_VBuñéù¹¿~r쓯È9¨1½´‹”ïéi}#ÞמŒ œu¢ }<àdt9äA“1Òƒ,1½Ll\'Œâ›„Ç2Ì»ó×L»5`nóôãM»T¦e*f‰™–®í¸žº{EZZq¯­—S¶·±*¶¥÷9l~㟓Þä9­—å%^ÕK“Ïö|þ {Ò£JÑGÞ_88Ÿøà!'>|Æa„‰¬/*4™rÌñ/é_¶lfyg$¸—~/S³µñ# xYêý• °NƒI´ªzõ‰Žèçί%ë×´þ$íÒ«ŸÖŸ$áüïv÷iâ¿íïDü?vÃgÿ'y1×:çõÝ 'mcÿ¶èOö‘.ÔŽÑ%¯^Ä·fù¬QI8´k7kÅÆ1ÔÂí¨ºYÀf?«‰ïNvh#ÈFNtíäÆÜsôfSÐÌc\zÄønKðÕwÕiÀ Oð†=i–QÎÄê ì[2 J\ñ²i›R8ÑAå"/é¤ß3#\4¼î>aOðÜM!bÈÃXŽQä T¡.bPÃäÿ|=œB-Ý£¹qºA“J̆W£o›fr˜îöz€;:ˆ*”“œ91ÓáÒhçÐáz8©“·{+’·ЕÈY–¯ö#³ò ·¶n:餴æDÊŠ9~úÏ(~ÅÉÓq”B@–mùƒýƒÛùg°#‚VЙ…ïÆ;A-ÉðñnôïÙ—.³õÉXŠï™b¦–}·‰1m‹™Æö»lc»¶™Ûä´&ÝÑlâ™óÙMo:¼“ôh0¨Q'² Åœ‚R$=çpC @$¶>44K„¢ÄPdkrcLšn ¢ öƒwÀHÝqp5šôþpÊŽˆ’ ¸Ýï Bvƒ?^„ÁWúÇ¡¼®'#Ü ÒüX]aÈudd‹?^S¤õ—ù\ŠDS l¨xŠ3ow™2ŠK(°JEã'§öÉXÌ [gT-çü‘ÌèÃGb‡ÙFíβ>.úãucJÀÿ«pÓS„Gö¼MÜàÁà2tÃ`Œ©h"èÎ?E¥«Zz`>çÑÁ$)(ùœ£D¢×aTÄѧˆCñ¼¨{º)ˆÉÜ^åð6Š¿à® láĺ£W¤gÅL~ë÷í0K7³ü¿mÊ`“ Ü@õ³vÓ ò_ó,¤Q|ßMÛDEûómy{t‘èÐ|£6÷$¹€ó› £7ÌE*7i€º•΢±ŠRFh±MŸû"§ÛYZ¥å‚-ŠÖI ¥lÝŒ»&ç`"AT3í¥Í7‚Ö¡íID0Uþ*S‹ìP/el=¡Ó¥&•Zuð‚=‡eó±k»î|ç÷}ÀhrO 60@#3Ì `=p hª[HÖ’B»&üa„Ûs‘OŒéU×5Áüb•±‹F ý±3¨‰jQ o@#o¤*ah*ž‹ÙÎ’Qç[¿ ˆZòÚÀb/ #i éC wfrRNdp9ÊÝÓ;«‡ÊźÍàë<ÀÌ—Hr±ïÓhÐÔ†ãû’£ž1Fn™çÖ ¼‰z$v§»°£º™ÜúØ6i¶ †™€W2"¯”dq©rE7ï´™íd¸ôñO}Ü( «˜ö€öh€ËzÈÚ²ü*¥Õ_åÈÅW–ÙÕêCb 1#´ØNÖp¼Ú¡š8£ðK’ñaQÖ‘؆ý'æ.\>{^åyó7âœz |W†ÿ l¿kfƒøWªÃßj¢Eëä4ÉK¤a)ŸÂÚ*¾©×`¿ß‚ï-üÞ ñO½ÓêçK:†Å:~q±bC„«H3´×ÕÊW>%œ¸ZUŸƒÕ²®eÅÞG…Žf¡™ó,ºÃeÙߌ(Y?«$xž¥¸ÜD;æñ¶F:Agì ¾òB?ÿµ-˜z<»ŸbàïÞd:€¦E"ÎjPÏv¹,FìÂh6¡‰Œ~Ìo|y„ª-Š4^E²ìR®)JQ&(ûêö‡ØÁÇ08¢  ~\ÍíúÎppÉÓ†-#Ì þÈ.\¥ eT˜çŸ*O;õHùSrë¤j@“`›jé"‘[Ó›Ð×jÃÚøÑ½]²Ã†…rÄ>ô>> Úg ¿0¹qþïÁÿCTvðOÿìâŸý ±d~ˆoRÚ´‡š)é528¢7@O bœTĽp«ÛÅ ËÀ ±œ8ùÊÇâÞåó;±8*ÕŽ3G!œB<Š»Š0°aÍ¡‹èn ¸Ø¡r /îP!¶CYËžæµ¶_†ÛÞ‹Á}£É òXç-êìkꜤ¡Ìþ²”9±š;ÍÀ4ƒõ*¿uB2(Ò°ÛìÁÊœ³{}CÛ“à”ÃxNy%‘S+vb¸˜àhýciòje÷Ž@cG›ÌôÓ ¨°®}DèÂüŽE7 |‘Œ qfÉPM/Ô¢—Ò ÚžìsOhCëô$nòcO ÊûgªÃaÜ´Ç~ ÂÅ Ì®§îÉÁ¬üw“1Î0èÌ7½w„‰)z6]‹ ÈIá;`yÀ{ÑQg‚@gð#ä·¶2BoeÖÚÛÑ¥É ‚cy泦^ib…«fÏáE-mm1äÚ6stÈÅÛ5w[LÐÃ#Ø ç7°cöQ4N̬‹¢DÊm6›lFH!èÁÒ5Â[Üî =ÖIÚWGA“ö¶1DÅzFž„›‚Æq’PÒtdQɤ’c)A úvFðo„º*87\]l¢å?¹ßtn€Æ"êq>A˜æÃ¥„?íp2–õ&FƒÙä#ñ×Twp9Àež¬Š¦ "¢•Š (1Í'„U‚z”—ú‘ÞÂ&ê‘vÔ3j)oLõmçtx€AÀ&SœLÝwe¢6ø<ý…¹Ñõ­HĘZ½Ñ%D'÷’I)àx¨‡»NálT´Q!KCÔÝÙ3rÛÆW¾’ùY,ú¸Ÿ<Ñ>ê‘{¼^œ³mýßÓý…¢ÑàªæÝxz_:D؃¶ŸÞ¸¿‚t{ðó¹$ª3ó -8âGΙ&LüÝüæ­œTœü4ëxë>Ÿ°Žˆ¾j ß» ˆv(nˆ"¢à½ ¿F\7ìâ‡ËŒ²!;„/Àxb'ꎦƒnÿ›tc¸»§6BÀ¨C)2·xûK}Ùw¶´L!§}Ž6¬Œ‘ >¶b#]`ÞdÛˆjùèRŠšo6:@‰Ðç£Ï¯¦è3ªx”jõS½Êxù¬ýá,²BoÛú•îݲ±KveŤ‹€åÓ­­ü‹þ¨´ŽPL0£–x¼ˆ”Æ%†ÍeI±l……¤h)š ¤À&¡X)ðq«OŠ"O_ÕN˜,Ö¨LÞ–/\•Y´bI@9Àá¿Àajá瓞U£eT,/ª(ÑÁв°h±œ¢EQµeÔ,ÇÕÔ Ö«¢ÌùÊcòÏQ‡c×+/3øÚÜqTU-¡ô N¢që¶–`,°ÐMŸåK4ë»W~ṆmЉAE‘¼+Ô  g¿kÆ™ÜvHõ&Q½ ’ °à~xT *™¥Ò¼‚P×·buðÂNêñø¢³ÌkKD7(„º3ï0Ñ=öÚ·26éy*C‚¯}$õEúîvQ Öÿ¿76UýE~ïHºv&@ Ù3C{˜™Í—<¬›ý{:Ï ûdæc ~!ßõ™p(˜AçzhüÈo²±eÙñcã¨#׬l³…# #s¯Ù,Ú|êbä£MVº'Ò C+´€¡Ýß¡ªkÆÇJ¥y ½–žõfráþÚšõAåËrâµë{4Î&S†hÈ$·ôâÐ>­ëÓ q,13¯º$S—œ7Fƒ¯Î-ùRÃ5ã$0üX{ ÃÛî§á/²¬†ŠD¤,‡H0žÜbŠøÉôÁDøËPD‘Eþ'/,”˜DwËz! B¶ª‡AEëHn#hÔþØD3‡©I9Z›Q‘Ɉ€M6?UŒ­GJ%!ÿhJÈóë/{%賯O¤ÿíïïDâçÃgýï)^,’õ¿Ö%lAÿ+‚ÚTª¶=—72;‚ÂΤÔÛ¨]‹õCiNx "³ÿ‚ŽÔ[± Çp©÷qþ^Rõ†3K¥#²jEÊWë2ô'˜2볯(ÑÓj«|›Ü“/VF—/N¿9øÚÅE&L°€“paý«ûáh¾=«b)T³âÓªfÅæK¡˜küMâù(h.B*ku•Å=ªŽ–HµkjÒ¡¤<¹½fOŒŽ(cÆùÝn1 ñùéE ]ú<*•h€-gFÌä³zý¬a‚Blÿ3¦ @ûQ°I±WUìÞ´¢Ö;<ų£È ‡N¦uïÉÒÀ°/’ïE¥ífÄ4æ´J'Å×ì›–¯IÑÐ6FI]õ¶|O#DYµ«N“‹zêžc‘Ý“çVã$ŸÜÄ÷O>â F ½SÓjë­ËGÕÖcõ? äý4úßè~ý/|¶ÿ=É‹9ËŠÿѪ¶[ó¿ÿÞ¨„gA‰>cð~øŸ+ðïM Pc>œ5O ¿5Å[µuqÚþ¹4IÏGT!rˆîÕE¨ýè2ã‰à±Àîˆ!r’TŽ1†Ò6¥”‘&B:zšMFŸQµÁ€öàß÷Ýù„fvÚ…}qÉHë!Pƒ ÀÜL¡þ­£ÞŽ%Nw ‚¡ÝFô{ @K9„c]9æ½ ·‡7v‰i~Ä_tà§¼bfß0C êÛWß¶š8üþËdúÇ $ó`©&DŠ;j¸ÞwO2µ!ô™œõïù®ˆu[’Üv¿fêЬT…W¡LÉC™s/eJ«R¦dP¦´ÊØ!Ê´Ê”$eÎ5e¤i15e2˜ZÛ„k²/Ë;š(Ä<–í¬B"ÑVƒ³§îy,ž•x<+«áy.ñ¼”x¦¾ç™ 6¢ 4ùv±Àö2[ë«0Ö“Œ'`,`xsPhQ¢*d&Û¤LÄ[Þs%.Ì6Þœy7ÊË^ -Ÿÿ–ÅÌçí|V(1Y‘Cu¹8—)Oî¾y×i„K®^oøç7æG-f Fñ—ŠS­ÌÕPŸU±Y}I_ëR1&fÚ±:ˆñVa]º$”E¡D;UZ¤x—)¾jס·È9©Ý!iÞ:¼Z  ZBÌé @F*©¦b¯´ú7 ÕQÛ}l)r¯Ê¶Û2Ût0öA U7ú•´¹fý•wYäF#8ÖD7‹6Ȥ0`‰Ž©¥Æ:´Ø7¸‘ºÜÍø¨#§+ßýq»Ì‰ ½Â.ˆ“v)=—ÈJFcd±»çiÍ då¯~£îKžÿ¯8ûÏd:ß Ÿ&ÿc¸wÉÿX(<Ûžäœشÿœ5Û;a&hž}(ŸJùwòäÂ5åT[µŸÌÌ“Ž‘;šdâ¹°¬;ñº"Ñ#å'ÆE†44»%B´Òؽ›ž§Ìñ<Ò0–\PIýëꛈo#OI©WtäÑ•ËS §‹­‹ ZŸ2Á°¢¬7䦯$„²Í Ò¸T¸­ ä6HyCšCF¤p¢o9ÉѶhŠ>o˜ gv}=ì ñˆGí‡P¡Ö¹ÅÚ ePCdËYÝQ¤†Œïtg‘~ã%Ƈv[ÃX¢×„‹ gbüz78—îd§œäZu=Áˆ¸îiM¹éË¿‚qÖ(ÚÍ€ûÂZd‡A*úO«(BpJ77RX €hNs¯§£~™n…lÞ›š¹ #F1µq õKÍÏaæI ŒßpâA?Ž@ 4€20^85ʱ5L\×g*½X§1Sƒ»pÀ¥2Ÿ]x,tT‹1J1t2IþÄ!—ŒËÆFsFDÁš0ܱ“ŒœSq1t- q“­Ôq„$¬~a¶¾ùäv£Ñ`üI'5ŒFAðíâr|7˜¢XìŽ{±˜Yæ05Ët8²­Lã¬ØŽˆBÊÖ·2u~d°„apu?×^-2a3ÞSäL€Êƒ±•¦u–™)³qzÖ«iät`³oBHi…õ:ìO?Œ§lŒ…È£4µ›ÅFë"Á‚” ÞQ\µÓŠÐœõZ‚êD9ÛK‡E‹Ë—ßP¥rÖΚ±Ð­ßâ X,믴ûň­ßÔ„\Sü45m9'}k¾¿ÂúÇ× p.ˆÈø:#…9ãktq-6Øš²,ÌR)@¶s ‰ßªïñ]í¥ÑÑ;•&g³qýB˜W3ebÀá–d!Û)E—o;åëÚæ¡ýGˆ³ñ!Æ.à B`ßÌp ¼·EŸ.ÂZë`Ê“a³ÅFNÙñáBY€¨„gÁ¸]* P>åØºjkûÀ»b«7#f¤Ø2v›.äo SXŠÛDî25D¿9\5ãé˜w»r"Åx`õQ2:Ïh@0äܾš=óà#¬ïôxK´IÙJF|RqlˆWÍÄ«*OyxÐ3Šo†Âž J¦\ `L¾nÃqòžÃ ^²¼ âòZï÷£;¹å/›v]ec«“\¥Œ&a2£:‹;¦¥çNf4A6a]"žØˆ]d† ¦µÕÁbK nÈ´“øÅvdDŒ›4o‡ßùÆÐà+ÊÇ™µ™e˜‚ÃmNØ@eÂd“l™LäŽS4R®“h–&a±A˜„·BÓSÓ´6ÌÁ׊Åèš“ Êßì,35Mw‹9A ›í…aj›í…Ÿ1UA‚DÈäPB»Ž[Í9åú˜VãÉüfÕA(vë¦02þ®Ö‡ÎZúÐIׇNbRØ»k&®s¯ñ[xò¹2*k‚§j¦: Ø˜<–Us"í¥áÖ@|½ÅN$uñdq}Ã4õñ3eä F¶ˆ¼ü#7ÿSxè^dëÍuŸp>,aü7ðpˆl÷À¸WßN|èhúSIÎ(±ý…‹‰m£¿ØLæ«´òãí¬B½Ž‡z³&_L¾‘¯“‚|M¾Ž"_geòu¢äëäë,$_ÇC¾Ÿþ@¤aö’Bê¶ð¼ºŸ›PäÈ,ý H²®ÛQŽ£±Í8.œîò ¶13TÎP„L(#ÐDޱð%j˜lìódØ'5åz4ù"ÃÅ ú¸yh¿ƒIZûÃåRíŠx0†™%·ÿ0J"Πzq'>‚›.& €jƒO oŠ;±?Óy‹g lp?öXµ~™¸‹É-'Ÿ Z TO×|žâÍ~\¬Pbó¾4zÄž°0yÆò8G!ÙøÈ.ËžÛ-'\V›¥Ó¢â"Gfò& 16Ó§8Ç´eŸŒù∣¬7œKÈ$}Ôa€4 ›õÊñõB£žûl[=tOà9𦷣±ÛE¶CXÕ½‘}e…|¤B'¹BÁ­ÐH.¿ë–?áòt®D§%d6ä­º^Ξ G‘cGžJU¨¯*ÎAÃv\#‰ªú«6¼ÇY“ƒ˜t,L:Ë`ÒIÉ«XFþ„Bt,ÄÓ'l°& è¶°©rV~&ç¦vm<Ĥ¸Ëewjó—:Ëb-¸Éƒƒ¦¿4ø³ï°’« ,ºSÙ³¤lì1æVtÖÄÊáî•}ç|*ŒØÝùØFXóOôïð‚Å/ê“,•&ôx“9ž¾±¤¸,‚€‘Þ2tÌ>&òž iì¥9>Öxnç]°¹v ñyÕl€ÞÐ6¢¬ó[8&ÞÓAË]ÌÚ{?…'ìFÊl(K¨ÏüIk®1Þî `åµxŒw—cuèµp„¡6•Œ°~àŽpa•~GÀx„ß À«À ¶_Ý<×%Ÿ UqlÛ$9Ð#§!°DúÚ5•{½q!L×NhzL9,ŒÄÒòÄ)“m"ÖÌ`>¦Þ|ôm3Àl†ª9ž){:¸†á÷¢‡.ŒÇ©ÀñNgbñHyd@WÜ$X^ñláRd´Ïg%ÏÇ^ÔæÉ–ýb*L¿¿ ûÚ;0Äú‘ÉÐpHO“‡k50} M´žÈ,"ìlä<èËDCE…ÚvâbL÷S`2X#gDÙØC¢¿ÿáŒï€äì0ölÊÉ{‡ŠÓw˜”&KÉiN?$ì gÍ:ëÀŸÆ›SÐëñ—õžñÄžáðŗ㪸Sï2µUÂí™äê Ø§>9®Öë¨Á7ùo~ 'H¹GÃeÊ[±IJù™8"fë…7i€‰¤n'Ëæ'RágmÐ;ý@®Ì-J÷'\˜ó–‰ZœñÖãÂwnDÜî‹ÖJ|ŽáòÒŒsqEVt¢³ªz§ªžmVCN7 ì­îõ€ýÛîoõU!Ç _½› GdƒßR¿•º³Á†,çvT§SŒªF»[õ¤2áh6¡ú¥KéLG /š’ìÌÓâIYÙNhvKÉ ÐDІ„&¼bè‡×Æ.ÔŽƒTäĹ- ~Ô:f ¥v?ñf¼käÍ{gVÎ0ÿ<¥Ñ² º4ü4Dþä›F~-â/覣đå¨/>¶ù.’4>×eÞÉÌ”2óÚþMòdwJLßÀ€:ïÊ+µ/§Y>!Y$\1Ä-4ؼ×"n6¸+”„Ç·éPfûv¤´´§!Ü6G`7Mºkà+q²@rßwL n73ƤخdøVŽyAGN¬»ïiå % çÊ“ŸWFò¬œ•H^;…QÞB©êEI|{ò÷Xc›Fý !=œ(+į~‰ÁÇ 2¤Û =JÄ‚¹Ý·W˜Œhî¥V|¨±ežA8gÿª‰Óv•$8pÛ ¾üÀÊIcK·ßf¤ÙT SÊ:·o|0âzK™ž^2ÓmµHˆ­z#lmdÙ«­!ÿYWå;« qÖpóN(0è¡o®ð˜‹Åéw8ÅE2Åøg*}é¡gÒØZ‘”•0Áv ƒå’ëhcB|çgø¸QX5Œ¬k?Üõ§ÿøWìùß§'ŒÿUˆÆÿzÎÿó4/žŽÖùß1ˆSÞÙ¬>¬kEVüˆïñD0ve ~èhï·“>Æ!êÅûOhø _½:ÈÝ`<øb8£ÖÉÖÛï³ „.—tG£áø“€2üûÍq9Ór±ÆãE1F¨y$z}ͧŒf4[uä(äÈ´F,ÚÆn‰£ÆÊ±³,Íùb1ø`\¦ *:žK‘~€ß­_KTž5"éܱkœ'ðÎ !NõÆæ3Z?¯aß9ühÇRËŠp²Æ ‡èöÙx ;1M¾P°5BÙŒB&Î"i¼Q=8ŠžG~„Ÿ»­$ÿüø§}¾(ä=J"%€B@Ià°@Ò '_h¦½;nº$¨†BH¿Ãd¤tI:X·®Î¤+n}GítÔ½½êw7·J[ßí2y*S²K9e¥­b¤LâI­}¯ÍìŒO‚`{ož˜Þ£Ä0r‚y”¢¡ñTŒ¨ÜHg·ìÂ8MÅœ2§XæÔAb©³ÕÉ´?˜zN3­¼ K‡E3ó¨]OîÇx0H7›êø§ñx~®@PÖ’X(c$Pœ@!]_""Lgн[CrÊ—a$A0z÷q•Þá2é:Þ`½ ò{ùq ½ü˜cHÑ^®pº°ƒ<Òõo峨‡DEOSõú†ç}î©ÓÊY‘O•KPÆÔáÎ’ç9ilœŔOÀ#õÉL«\<¥guÿ9ÕâPdþ“Tç"±‡q"nc©™v^ú¨Ñ)šÆ;0Jm‘lCÿ–£0»–—ºÞ@YA³´N¥’Ö$È¿ÖåTª,ƒ¨áš¦/H{üX‰:Aãðf§ƒëù†½ç#c—ì˜Ä—æ? ŒI¦UÎ &eG&­Ã¹²W2ìÇþ1âÒÆ8ˆ§BßݯR°±EèÛ.ú–½Ó3’– Í6~Æí›¢–3u“Gf>i4K¤ˆ/?š.9–ÍüCG3îBÇR̨Hαã>ÆÆŠû¸ôhÚór]ƒYHÌRqÅÁ|ðÔ,6a&Õ–°à®ß†ûfp5½Ç´Ýy`£t¶VŸþ_ƒŽ4 ]4Ñ8I½QogÂwE„¹2¶gðÅìßÓyf;ÜÜ*¡ƒçÄÉü.\Ñôe8 ·«s³c19É_} *å·'»ŠÈ íVޫՖˆ¬p}3f“)ôØØ*RllK(D\&CD{Q•¡;xÙj–Û/ñì|:Í‚›Ék“Š~ƒ*Ó=uç:hUOÏÎñVÜŽpã¶h*IúŸ|l’[;ð;µ“ó¸ì ’¦ ÓZs•kfÖ9(Ô•ŒË²gn·ßŸ±¯3ºÏЃlÐûÖCË~pB‘(<¬/Sd?ø(6{iÓÁO°•JÊ1ëûÇš4£Ô–k!]®ûH3kßœ9ÁZº¤òb°PMÜŒŸÈPêC eéKSÔˆn3rÚ{6é«R«gOxÀ-“¶ž¦ ¾ 3€wpgLˆó[í±L M ~qé¿„Í$­¹Ä;ËÛ/ÎS!!¼ö |¾‚=r ë.¾†ÌbUÉMt17àŽÏJ“ã~32X~[p!¹ }¬m uÂA«&$›‡þÍr^2‹¥–_z[¬Ù-Fïqc¿/Ñ\BHûãüŠþ\º¿G®9ÀµÛw›ž&8.5ñÓ)σW¬þ÷T÷¿ ¨î?çû‹^<á,ÿsºÿíúœ”Š ¨}îÞïœ'¸´‹*iÜêò(¾‚Xë¹ ~žY| ½ÈMÃ|žYõjøù_t5<çܨšÌâtP·Ý9ºí"G†ç¶8ŽLª ãT0Üä‹Â4®¯å[ŠV9àÝ7>ãö›yë-klöTɾ0g;`mã.\ô¢ÛŒí«òÓNK‘CM"”_;¿R߹ x74*nU…:¿Çüúà ¹aÄ=§ô9 æè÷„€` D× ¥ç“ÿæž‹-É|¹önŒHŠƒcN`€sệO‘“-*ÿ7óÕHçSâÐ:p…à­Ž­sfwyÁCL”›îptƒù„Æñ\LCŒ‰ÊNYÿ xî9ó9It ®JšJnØŠ1ÆÔ}¼ÍŒ¡×¹\î-L…¬X¬™ò6ó;Α¨ ¨»÷øõ³ü£©)cWstb ¥¼GM,El¹ÙÉ„GPŒD†´w•q}ÄÑ|Aã×ŒŽ¬ï¿o y®…ÍþŽ1LUê–ÒRb4B«Œ°F‘ÎQ&iNÒ …ÖH?aØBP'·gN$y~‘ßܦŸ@gût½Ò½v×¥–>Â9&È*€à# ¯Ëõ@Õy sô÷1Æ-\o¡öÇ#FÿvÇþ™t?š£Ã‹ÐÀŽ?]xÓÀ™¼ÜG.Ë™õ–[º‚èâµÌú%_y²réîÈù;] Ÿ¼æÉWÁFá äs"ÑÜ{öÈ´žX« °².n§xÎmÎù–<4>„Ø7 ã]±”ÐkBñDʼn¦“¶•HÐ+Xb­¡rÎ*UëŘÄD ù‘ãÏœÛ$NåzGyV_F£9¬5à™™«gýŽÃ”Ì®Iáj"¥N7ìØðb£Ñ(ÿÊØ1}ä˜"n o„×:Fo”‘UhÓC× ÞóE–±ØnQk³¶lœ±YÎÿKƒÅtÖ%!t·© JÚ%ë… ÁTÙ¥YžA–H—]ÿ™Püq,¯_´×°1ÉbÉ­ÆY»ºíå²P7³p.Àèóý†H¼šÙý•e´Ñ³&|ÏbvbÍS¤™Õ ìƒ9öœÄ=6 û(ÌÓ4¿QW–™Maî§ú˜âÞÞä~:SKh¯;êÝóžÌ]›l›’àÕÁö±Æ\cTAy2_´™wi±)[Gvaê âïJÈÌØ&Ê “Hï/äðÇoÿxƒb×7 IÁ…½ÍñsyðOÍØIýÐPLºá@ÚÔ?~€& DkÇ(#F_ðd^q˜¹Û0'".üÖ”Q ü£8ôgƒ¶:Ô\ΫŸjây‚ÛØÛâ雤&ðy r¬¿ òK'[_„)NLˆ1¦Îñ(MÏã»).#´«õs+ÞT§UìTŸ,ìT$뺺›"èTRåÌS_l(^žÿËgô&PËôUæu?;¯·› G2°‘ÂPã?ZàªPØ—`å^BÐ}~Xh+`Óç°U ÃV¹cpJqr0±?nkïsÕ{,QRpz³@|òT!²üîï ¾y™ÅGûh„­h¼´ö;µ¼øz£l¥¿B#–º#Qß Ê¥¹‚|Þiö¦oîG#e…—)#LŒí‰Ï5Qšdç¹c¡,Fr}ÇåÝX-â’ã·c4»„ûFè¥ÀÍ)‰¾< S¼ ìÎ$…ór²/ŒI‡ÅYò¾ŽØÝhÖöÓí ø Öq)6x›ˆ%U<§i^ÉØ|˜™ãiÀˆðž¨b,‡AŽo5¶ßé(DBGJcÞ¨ó‚€z“Î's’‰ü»óï^È+ -¶ÉÛÒÆl1ãxª‘ÚÞ‰pqžRVMjBA°·ð¬B].ÂkÜB üº`ØÒ]ˆ''‘ç;=?ö+öþÏ|лy¢ø¯»ù¼{ÿgwïùþÏS¼xrZ÷ÚU´;s<£R6v…áìTŠ¡üD·x|‡bt&&…´çð :ì99Y2ºª ¬Ê×vjÇ+^¹×é`´áa^UN4_†óíe4À#Œ‰g¼Ù\N9Þ3 v/š\_GJ—Tiøˆ®Nx÷…ÙAÞñaÏñ£ ðû¤*á—Æ¦¸_Òà!v¯w?íÎn$»¶$im.<ÒÑ[åêºúvèp3èönb oàyößS€"*ÿïV§‚·ƒêy+ˆo/ðÛÿÉ·ƒé'„'à äîð³0wtŒþÆþ÷3,ÑšßOoUDß»[ÞçT ¯¿©8žˆ¢€ÂùÇÍ&‚›®t¶›N½yLhË 5+Õ¤u©þoDA?Pk>;ݪ?¾…oð~I³‘oLÕ‹eüUxl·"OùLCN˜sEéÛѽšMF¨EñåyÝÓ ÎæŽF2‡^4ªoŽ7¡ÓÁ„YV¦Šßá‹S“#bè Rô\ ‡ÌóUÃÑnëFÀáw¿_uû ·QR:ÂF‚?z¦]{õ8¤ ~ŒrB.nw…˜¡1>Œ+4ŽõàN“gØÔvÉŽø$t´ÓÓÙibs–O%í¿ç“Ñ`Ú…yL·¤L6 ð}‹³õn$y߬™@ô-’WÁÁÃÈÃu;A4´ ûúà=9Ï2@÷¶ßd€¦¤Ûqa‘ü_;² w2S\꞉t¥C¡à4cMþá8Q¾ý®Aâéjq+Ò‡ß(7ÚYØ¢]à[ þJEf»ÆEý”þÂŽ² …â±­R˜ZËè0/Ô/¡ÎÅ9:‡àÙvýpÎÏ«M¦+E•[³¸ˆ kq”¡Em n-ÅR‹¼ZVqh!G‰€‡ìo8NˆÕɰ%4D|½e¶ Uʈµ{ `æ ªÏ‘BÃ)«#ÄÛK&ûy<˜+Ö‹8ï°B‘ÊÙ„+0Ó%x±/¨þæZln»_±’V>´˜È {©’× ã:†;ϰölšÙ¬@)Ũ yŒàìÑu)&ŠòvpC”êT‹祜p–ßÍtn‡%Çìk¤V¡~ŠëƒÂÛ ’ÉñS#cÄ Ÿæ#ñ¡¼„`Ÿ/¡lÁ†C·¨£7Ë(U`£”‘/­¦Ÿ T¶täÄj|ŒÑtäÄÍBÀ=DÒ+’¬w-ɘR®ïÈ@h»™(í)(á¼&ä|Ç]+e2Šèàn2óu@ÔÎ),?«]Øã?ÝŒûT×;g[RZa4¸ž1š„…á’ü*±, `oŒ&“;Úß~ 67 e/ÂR´t(ÂQb»$ H_7.Pâ´»ò5œ¸Ábö#8à@#`”® SºŸä¤¦UÏB…,“&¶$:±²¬ð~ñÀ“˜×]-XEéMgÊK `¨û„å‡{Ê´W´‡œÂŽ)më˵Gãÿ(ŒÄ‘_›¢-*ã‹(ŒJ„brI‚ÇŠ†.‰êúõàÛÅ =ŇÝnK»‡Z¦Y­Þ%ôÎ:æâ•ËPyýå([KaÛ;$b  04îÈB§U íðÃçũѼñl¤N²ÿ>Qü×ý½ýHü§½ðÙþû$/æ{×þk –ÖÛÚ›6 –ŸÞêÛ nÄ«k5û¦·ð2ÝÙÚÈ{k!r‘ðŽÕÂx–eûcûLÀ¡wÐp ƒ©bœ‡ú™ƒ‚7Ý™¨ëµgñ\%³q6În,5Y^Z%ýZƒAð!œt‹_‹Ò$\uûÓRwfÛ‘žÕ©g¿fƒæ­EA¹µ j±ØZL †h® *ƒ»9´{À10Uß`@äÌù7Øß¾yôq}µ¿ÿl*|*S!1\Bãn+³›áõ<Ë×Q­»¤÷c¼bx®®“Ò ]pv©$ÓZ|r)LžibÝW”3毷fÉ‹no›ÕÕ؈ºðµð¸ùlê˜Q Ï6¬³^kuàXNZ­ Æô§]OŒ xV'— Üÿ…v¯U­UÐÇ÷Mßš²Ðf•lËIw½ o–:×AÍûDo†tÛ™hJó˜_ŠqÆ—¨uÂc€ÁdãÒ³„~(ÅÚc$VoaµÒ º³oA¯;Ã3¤á¸7º§ÃA ø!ï¢Ûž¥ÇÕñø`âšPV¼,ß«$Ó„ýåöˆ;É]cÞ®ˆËÕÄ7Q´@nP\AXâäíœÏFÉT€“)À [°ƒξàíò1ìÏÃþOO‡sE ˜X°X/c_‹j™Oð³zpÖQ¿ÛÈ0ñ”Ý‚2qêPØçoVÙM8x …ŒŸód” ˜íM&ëD‹›Pz²9‚t&:FýÅ7&,rÈë>mÕÑѪ.=Ê/è 3¸|͵Œî^`o‰b®V>ŒsµL_8nâ\õøË -5|b¯\<,b—ðøÓñm”´-¦í:;Üã¤Ü6ˆð‹ÕH†‰TÓÏ·¡âV†ª¿„"›d+±È¶ˆriˆ—H¿Å$ôRÑGH-] Zߣ6ÛÃÛ:~ÿÿTñŸÃð Fã?ï?ïÿŸâÅLiïÿ)þ³òÿƒÒÙª`DzÇÿ<^qûã={Tܵ†r–!œ‹ÞέʢÎ-YÏŠå¼|gâåRn¯²ÙØf9Ѝ¡-¤9>B3y‡¨*höP!uðÑôAÝ*‹Ã.®Á„.ì^û¯ »´Öx¯µöÈ{›Êk $—9Eªxù²¢ñù9Wâ[]ß”ÁçcmBqcÆ`»q꬞GCÖ½1ëüêÈFôC¸(pµhýñ$Œ/T_‹BõÑÄROÌ sTL ±[ £bð Ðzb¶c‚FÃÈ=j¤¾‡F £˜|HšýsûA  ¢È“¦î~—-+ä·¼5k•pY?vVoîŠÃ\µ~kòßu„¯"Ëé_Ãêa‘ªV øt.½ŒM‹l4¶Ryr{Œà)"†£ ·1ä’b´rgÉè1ñ²üÉðj ãB7$Ýp,VŸ0a&{ѹ@óIÙ¡«"4ƒ~nE‰S‘ËVDÙÔ› ÈÒÅdx€?Û†hW¼©ú¢¦‰m7tÛ*6U$Xn*ZF);€’ÆUfSnÊÈ"Ù`»ÖIÝ Ï{º´LL'í?è סÐÊ›x-攵ÀÂßë1èÜ?µnöÿ&n¾Jlâ¯k?ßÐ~ÒÚë¿‚mÊ0ÄÊçq»òÍë]Ïôñݹ–4Ì.}ýÚeKgݱn?ðŽu’ý7ÿ4ößüþn4ÿßî³ÿד¼˜q\ûožì¿õ‡š€O+?o꿦`Ùµún–x.iÎÚ<ŒÐÖuûVÚXÞØãÐñYí2\¤ƒ´‹ eÚŠ“ ÃNèú ÚÁþ †bXİ?Ûи6ß.6o\ˆò·•¡8¿²¡¸žÇŸê®;œò…idœ8¤L ~Ïæëàïm¾þ!Œ×ÃOci¥ ± Õq†ÓŸÙPýØ©­ÁCᘤÓÿÙmôKh!/ÂM‰%ƒZK¬™S \\M·Ý¯0Pu™Èõo`ÿµk×è–úI‚z*ÌZ'ïþ¬Ú?‚›Á<ÈLM±ÿëb²Öׯ Öl n¥µS÷ΰAÆ¥P†T¶‹¼Ð`'ò±¶Kç}6ÊbÛ¶ü»ÕÒeDPb_äüt6ìF&À . ‚MÛßfŒÝùb£H›Ç~&<ºëmµý·nÑUÜÇΊp¬#ªªùàÄ‘y"ìé'Áæl]O²¾`ËË™î…{;%|{AÔ”Ð^„Éð´ðÈ'ö‚>x!:t°¾¾¸cè6‹0±®7?AÜÍx­f¯±·mE…0z—ùš®ÚÇô_Cßæ¶Ù,Цúì‡é# â… ó…Óopö™_ã­ýuij­KëGHªÑcXûëhí¯ÇXûëk³öו9 sEkÿÆE¼µƒ“ɿ㕬ýuÛÚ¿ç“J"þ„=ÅWeÓß[Ʀ_Øôë~Fó®u˦_OoÓ× ŽÙ_<Öþÿ¹ÿdñ?wƒhüÏgÿï'y1“YöÿNEÄÿ5¶JqEüÏçÈŸé úÒß’ïÊrîÙ8:ä¦ ¶‰`T°Mü"‚mª(›22Ñ·[Q¿ŠÜÌ-ùC†’…ÉhEÆ µó¨Ê‹¿U#ø§ˆŠDõ:}Q=eHÏ­ nWÏ[=0~z?-Ší‰p€Zkì¹TTO7,ŠŽìIã‰a=eTÏפï2ÓxîdÃM°ÏŽëi8uFC’½DÎ96Š´­È3НHG18䂌ŸlÓf†šÝvG#ø­xVØO„ùÓm>&î'Jýi÷tâ'™?NêØŸ¼Ñï™AÒ ë@\ë…þøf×”¾Ü?±wºSyx§•¥ÏåÚ' ÿ9d¦M4MÏ×*¼¦o"®ÅsÅðvûN Cx:ØÿÅöÑ–QÛ å¯ ºDP#ô'‡L0‚þÔ!@q\ƒeõã)xC€Æ˜O¹ÈÃ#0‚¥Ê)»"bS¢ٻ rŒÑæ7Ý9*ðÛŠ”=ÓâNž©0f‚`öïé<ƒØnnÑGúƒ mn¾¬_âºËØÅCýÁ×Þ`ЗÇyºhV„Ë9ôä À f9Ëþ\åËç" °€6Íf< iÒÐÝnS—V¬Bu¦„ ©Lgk°²Ì¡pIÁh˜÷[ï·¨ë—hª} )˜Öôo'2 UƉ$ÉŠ*·$¼ Éã&ŠË ‰œ<Ï(®â'ZÅU®Rœ]*ȪM m[H¹hGRÄŒ^Í_w²àÆŒôÝAé΢(”…Õ¢P> A¹ã•§^%Ž%NtÈÇÒ)¹|KÑyAYw]VãwCò/ ~¹û˜Á/C¾›:2~ÔÈϯ§x%ÙŸ&þg¸“ß+Dâîží¿Oñâ©ïÚMüÿóÆßeL¾ËÿÌo5P—‡7¬î‹¼˜6(”d¿<öƒF¨w÷ó¹ ³í —8ÙÏm÷ip0] Žn€"‚Véo+“§ÏyS” Ælbfc#‡ébdØ÷îó€ù¶ j#¸Ý[4ò,ËH#²zìÞÉÔ m‰ì¼f Riké(§)lãÜת‡jô2>uý]LìO¯ÅOÓAƒŸFº²m«|pôÕÕB¯šAWÊÅ]ýI­´ç‘ì´?]àÕ%ÚêOgt|ŽÅ*)óÅbÍo¥³r`L¦¡€Ÿ*këA1X[n ÖjB VAJòY}“›È šûÒñYâ¨Éè2NÐÅu…Tþ³ƒ£^X –•ºý÷ Œ* ¶¬°fŸÝH§ïð°Qy")TµÀþb5³ˆH‹è”†T‰ÔZL0/Í|dóQÎ¥—ç»ÁH$kŸ ùž>j.ŸjN}¶M>Æ+Öþ÷u¾®ð¿‹òÿìò‘øùýgûß“¼xzE´ó7r?TZ—íÄÙ»³R6¨àÊÿ+xÏ&Oz$:†ÆmÔe±ŸÞpÈÝÇ®7¤0÷Ý”crè~?ДX …-±’_ΘCH滋°Þ]‹«ºÁÕ`þe€n2°ƒ¯—·ììúhzíÂóñZl¹Ø%}£€>¨8J!ŸtM4øÿâ>(ø;3Ü܆žü¾ ßþŽG’õÒßß-ÐùÔ _¦_„^1˜°vþIàÿdß}D|‘ñªÖþíí> Æ«ÖÝ ‡™¤óowÒn¹²ó› L‘@hÄã+¯b"UBæÖ¬¨M‰,©hŽ`În&÷£>6Oçš½é Kγ“i0ÍÃÜ gÝœÊÉÿùš>¼åuà†ƒ]ìäñ'ÓP EÍJ~ù~E/ϰGïëŽå—ïX^v,ou,¿lÇòÒ'•¹)µNeÉUNŒÚ(×Ű۳û© BÙsååxàÒ$ š Õc<Id§„Aô>ÃÊj/-~_Ð;)@èwS²cɈ&„è¶xúè–ºlR4Q3ŒèZ_+ÞCö†‚|gxÙGú5îV,n;p1‰†qCG!|‡?5ò¾í 6÷.²1}øåî;°½w±W!­È’­m‰“ç†#¬D+Ý/IHüþ’MoìµÉ3ÿÌË-n'´ìnow_%ÒM4?~~µËlc›ê8—‹Ÿ¦?îÆXðÁ1<>H%k1Œ‚ö¸­"”|Þ)®öŠÝÿ}{ªü/ù½½ÝýHü¿½çøOòâIcùüFù_H‹Ew¼Ó³¬™ ïêŸ ;뉛»Ä €˜ìE-ð§ X~ *AÙÒ0 K`Y¦ãMûøX†UȽ)ž¶ª9ý€8@59ZÖ᮪Øn^xëªzv–»ëŽ&ÓšÜDȬ2Yì-Z0O)Y çïÇí\aAÜ\./³@ü=Žh q•#ñȃ z[_oð‡Ò¦ch+~pYsÉ.Z?7³ö‘˜»'䀣í‡1 .!V’#Qÿµa]4ƒI,×3RDBÆè¢ÓK;hàæùÔ¿VJ o;EJÇ#ÄŒ•±D6ÊÀM öØ9) $'¥Œ—Š/¯¦h-âäâ:?xVkÄ'¨D&¶¹)ËMyÍMÂÔ»9sÀMÎP‰7Ñq¥ZyRÕЉ4nDÿmïÕ„d0Ûó'‘åÐ9tÈIý·Ü¤²&Nß¾)ŒòžHõvsÔÌVãÅ»&µ¤Mlu2¬½˜éK5ñ#ÌÂ/GÔ«é48”dQoôyã‘{GL´)ô™£uû]Ö¬G!û‘8 ¢‹\®>ÞMÄ’ºåIÊÔ©ï&Ì;׉J„æ–ܨõ0ôûÉ’d5V|·< î $ y1›y—‚ù^ˆ¾î­ý ¨Vý( û¡U†™ÏL¬™/9WªMˆdnÓH¥à¶wŸÉ^î/”ðö’ùj‡6/¾U3QnríƒÚð ¢P<›a± œ PP8÷½ŽCÈmô"Áâ¼åâr»xyÅwÿ ?Tȇ î¯@þp!òj]~—lcý+u!v¥.è•ú‚×éZT-½ÛuÏ´”èÀQò6µš[9Zíµ8‘í^S7´PL€B`‚å)&bV»wÅÏXA®˜Å"Ë»ÿDwXÓiNð7¿N)‘ñøS!Œ·³8·‡gäE¯H wbÔð‡eµF°_7g@Lë8éëôà9«ú“dU÷o2U+ëOº¾íbÜ~ñŒ¿kô%lY2ózU$›Ããqþè¿=0)û¾’ü¿Ÿ(ÿû³ÿ÷_øbuý¿óQÿïz² xüJÛÉ>»€G\Àב6þÇôgt‰‰‚Õ|ÁõËÉ$O/_:ù¤ò˜{Rù…+(+%’Wµ•“øJâÚßD;Š#þ >¾ßkz%{Œ/r7hºØmüÁ¿Ï¸‚’ÞwÜÅ[Há@N¯´^äúe;•‚…¼µ´ OØ[?y€éÆ»q!jßš^©i\œÿÓ\›¥§î꺮O¬ë˜´´o®ëæ¹Ø9w ÒºåêÊèhç8ÔH݇úéæWòÓMD­žŒšøhÊäDôLÓÕñ“Æ ÇâÄžJãtžÆÁÏêjœHéƒüø¾Ç‰hH§ä§rFND¦údÖæ›<ü4Fnrü㜕—q>Nì¼ôJþ[{#/˜KO‰Ý“ñ~ËkôWŽ.ÍQ·å™;+ø-› Ô Çù-{Ýfí8'Ë ^géÁ[у6éZûìR»€PÒ×vÿZ ðƒtеš©ÛMHWÜgÜkRÁ¿2;„ûËtE‘å|saO¿é?žÇ¾C§´‡7ÎÃx|£µ«xÒ.p•Mr‘uÊ%´»¬OìY³½Òn£îëÏäÔšÆu•¼0ë‹ÜXWò=—ÀL÷ÐTŽ™ñž•‹+ùRòÓˆ«¤¶à(¤ßunضk:é’(xNºŒò:Å7TÅKÌ W…TñŸk§Åj£ó«u^-ÃÄ¡kLgçí– ‡ ÿ ±GŒÝè!o÷þëp4ìN¿ýð'½[tîIPT·ãunI!Mè~ÊCS¦²ˆµ<ÃÝ+(·ÛýÁÝ`Üì‚;½é¸·ˆG¸ÀÊ0Q‡ÓÉ{‘ã„_„ 슭ÝyÚªÉ(Wc¶¡ˆqÈÊ-t<´d[ ."”¹HKÿ  “5¦›žzKîâaûy H\âeî± &¤²ÔÎo BðUô‚LowCÞf2h{ªÑÅn r´->.#ó%@ÿ.cVôKQ6û,ñ‹v –°ã4aŠ­%Â)² Ä܈Ú2Gµe™àŽš?Qxm2QÁ`ÞÂ6ˆ‰§@ÿÀM1 Lù¢5>¸S™›'€Ý÷§ÉˆqËæöO´aSrlqЈQ‡ òŒØGˆ¡¤ƒ(d6>¼%0ô@ÌïHãúxÇH`_hËd…ލa(ºÃv_•X±›qzRàžô¦“ÙŒRcs’mT˜3úYê[ƒ0ñ Ñ/‹É¦Éî‘›ðs°Í²Šé)lJ¥ý=‚„‘í]î‹í&öìaãC9Ãd„$œ)©£š=ÿˆ´ûÃyW¤#döcƒãM÷³™OYfþ@SÓm6‡8þÀFÖc1±Òä³¹\ŽnŸ÷èg»[ûþ1”²Õ© C@Ÿú÷=ìŒr“°ðbçµÏÎr/¸í~ÍÜfÇ›/„ô!|í }C¼¼o çð;›+‡ÂìÌqÕÈ[P‹N}(I65aî&º#R.%\ÂxÛÀ¯"l .x˜L²ÛûÑ|Hü‡¨ã¼ÿ×ÝL<]ÅJ&_š|(™3ë^!)‰ ÍãëÙý•¬€¼Cd2ŸOnEHÓlÉd’Χƒ²Ì?ûƒm@|Äþ¿ï)å½t&áÎQ0@ÅFM¨ø|0‡.ô€Cð$` \Ma.hæÓî]Dñp| óiþmùêaCËó:Â}×1#¾¾mUaøè©€¡>fÚîR3\÷q½}OÓÀÚ<_ïFÝ1‘Êv‹9£˜3éI#"8Þß‘9wggSv¦ÛïDäé˜ÚBˆÄ]ÛÊlElÏcXûŒ¸#äa¤;" ¢f•bïÔ®§“;ÆZ8i°Ba€Ž  ÷ö,“ SŒLxèÀA~qðµ{{‡!eô…n‹êíf±ÑÂßÑþƒS¥RÝó5š‚„êeLZ‰×\L(@`1¬%°±vccq:…„„Bü£ÝØGòuÎÓQËt­w:TþþHG™ßˆßaˆþMÿ¾N¥A>Ã}31kè¿^;G–rähRšf¸DàL2«ÿk“[«z¯ƒí?X©ýc# í–-tä @|’tÑßÜOi~ThÙz © ¶É{q4š|®s°š1SÒšx…™VHâÓB$'€Àëz "NÈ7±;’œD솘!ð´Ãàf¡ô¢/žœYž9!)™BXÎhfNûœC˜Ä.³»»ð«ùIl4œñbÁ€¸t³öö¶ÈRméã@ÝR„P g©¥¥#¿É$¾‹ò£½Ñb_GDt‘z§[÷v2¦w9šxb½– hÙÆfEŽžø3ŒÐÄïÇÔ}º€Ÿ„r×e?M‹m>‹-ÈÞ*²­Nî”>DÛ"t©E]bBå@mÅHû!Ä\G¸ipò8|Š‹9Œ¬ '²å F[íf»YC©Å3`f8^60i4ÀHmpaaB ^¾$qÉ7óCù_zñyG 9мHÀèh!”wÒ£óñá'{ËÁOt„îÖÅeâú,Õjµ|"͆Ñó,ñ<Ú¹SÆÓ2ï±[¡My†nùNËÆ6Ý´ŠœÕëg PðRîâ_  h-”‚3y ¦ÁÑÍâ Ü*gjd&¹q\UÇüpÑžçf“f•š†R[v ?ôj"IÈ*œïú'µ[}ŸÛ÷´+íØ¸?qñ˜æí ±˜0ݳä£Kåan¿ºâÀ%Å«¿ˆᎧadéetð_Ê v£û&7>}ïŽf€ÔÝĉÉΕo_Ãz± «Å‹0çe/W¶·P< %ǪJè­ÂJRL•¼£&›ãú:Zª2îÐb'æDåm+ˆ†éFФ–,Š›Œþcû\ýH¯ÿ¯z÷Á50ùZÚXÿcw'þWˆÎ_…LIþ_Ïñ?žä5÷F÷ý(Æ/á A~úå—ÿ¹¦×/ÿSh!ââÏ­`,uœdSø»éäÓ´{Ë6(>É1QkÏD|‡OÝ1,s}ËMM«|ÜnµÑó¬¨\ÎÌ#3uT²Z%Áž‰ú­rêú´ÇÃå£|V??­^ •©!D¯õ€Žô?ç%Ào…ûGÝÇfªnÀ:‰‘ÌÖD¥rB%C¿$ñ©¯>‰«ßâÛw¬B7§! Ý˜_çÁÍðªXýá”.b~ú—P·áŽ6¹úÊH¤®É‡Î‡¯:kE¢Íl€ñW¦6Ñ{°] BgcæœÙ·Ù|p ½ú6¹'>Öêqã3 XO¶ ]÷p|ȯâê‚¡&PgË\ëSµMï@¿i–_Ãìæºdë/RƽþߨùtGÝ›þ§ÜD}›Ýßšß>›ß¦ƒËoÂÛ[|û:˜^ºê›õ¬wó<ÎM~ùEŠÇ×Ál#3ƒ3l>ϸeø0¿z…€Ê½ùa.ÁÍfŸûâgø0§_ç!ÁW]›A£ƒªrÕŸï„X?ä凂z¥¯®ðgüЗþFâàgÖøôIüüIü$ ÞÌ晄:Óø÷ u>ü{*>Ì>ó‡ÑLcÝŸ~ üðY|˜}>5 ~f¬áƒ¬ñYÖøÌx‡Ù'³aDÄÏÄÁtÊáõš>È_"|à~£{Ÿ‚Äð!Üòò—|A~Ø ¡Yµ dÁ‚*¸'?ì[5äχòÃ+ña/”$Ô½‚YuAn™a4ćé¿Å‡ÙgúÀ5nf‚‹`"\nÏo ب7ç€LXQ6™ru†ß¨‹³+ÌšŽ> ð³Ñ@ðõ|4çbÌ=9áºøÇPV3 gÍ€žœ=9zÖ èÉГ3 'g@O΀ž5zrôä èÉ€n$0¢OÏš=9zrôä èY3 'g@O΀žœ=kôä èÉГ3 'g@Ïš=9zrô¬Г3 'g@O΀žœ=9zÖ èÉГ3 'g@O΀žœªqwOrwO2vO2vOòsOò³ªJlÜ“lÜ“lÜ“lܳظw#®w30>z7wò—™Á«=Éï=Éï=Éï=Éï=Éï=Éï½ÙÕ­^$s÷$s‹Ÿc÷$O÷îÇ¢ ~( OK•øuЗ«F_®}¹jôåªÑ—«FßZ5úrÕèËU£/WŠš3}kÎôåœéË9Ó·æL_Ι¾œ3}9gúrÎô­9Ó—s¦/çL_Ι¾œ*}¹jô­9Ó—s¦/çL_Ι¾5gúrÎôåœéË9Ó·æL_Ι¾œ3}9gúrÎô­9Ó—s¦/çLßš3}9gúrÎôåœéË9Ó—s¦oÍ™¾œ3}9gúrÎôåœéË9Ó·V¾\5úrÕèËU£/çUßZ5úrrõåäêËU£/gY_β¾µjôåtëËéÖ—Ó­/§[ßšn}9•úrõå,êËYÔ—³¨/gQ_΢¾µjôåªÑ—«F_N¬¾œX}¹jô­U£/gX_®}µj|T3à»5¾Ëð]΀ïÖ ø.gÀw9¾Ëð]΀ïÖ ø.gÀw9¾Ëð]®ßåTønÍ€ïr|—3ໜß­ð]΀ïr|—3à»5¾Ëð]΀ïr|—3à»5¾Ëð]΀ïÖ ø.gÀw9¾Ëð]΀ïr|·fÀw9¾Ëð]΀ïr|·Vï’»¿Kîþ.û»dìï’Ÿ¿[«ÆwÉÆß%—lü]²ñw‹¿ËUã»\5¾ËUã»\5¾[«ÆwÉïß%¿—üþ]òûwÉïß%¿7Wï’¹¿[«ÆwÉØß%O—«ÆwµjÀNôÈÙK;ûfØ/ÿŽД%7«¿ˆÇæ½_¸ªù[ÿÇüùû/¿ÀŽ‚ÿΈ]É&~,«Eùë?¸Sâõߙӳb¥ÚÜŸð8}3Øž¨½´Szp6Ñýw¦]?>­•6¡òÿÔl)£ßÿ;S:-¶èãÿú_ÁígÝÜÿ?f‡zØ¡ò:;ÔsJ/þÐõœõ±CݦP6С¾Szð‡v¨ïtè;vèã:;ôÝ)½øC;ô:¤bÞ4Ë›¿h†0~’˜¥¢ËÑŸ*ÑŸ>º?ý~ùÿšaäOd ‚§·Áöu°…¢FޤÙáú—ÿÅÏšx݃ÈÔì¢ûýI ]ì«Zý%jõT­Þµ¾«Zß—¨õKîDê°‹U6Zð¯>x~=é+æüOXÙž&þÿNx‰ÿî>Ÿÿ=Å‹#þ«T¡h)ÉèĈ÷ÿßß˸ÿçmüŠ2…à«YmÕ*?W¬㉎áÏ=/‚øËNF¼<©ßq—5|­z`$Æø?G;Âf+1Êÿû £»R8f:ø³ ^Eqýåå"ŸÖ¢?·s{Z´R„íè{hµÿÏ7(ÎÝdè>¶¼VÍ÷¾Ï7àgyÑokoêpþ*4ç­ô©Ã%<^ÖMËø•òȘüÎÈÿáÙ]»7²ŽÌ§¯1µým†¢¡+ŒÛ"€Ñ¾Ðãâ&|ªž·˜ŒÜ—sÜsêþù¼¥¼{7Èâê$2Eˆ ^;Ⴆíi6|™Y±¬‘0E¾ÀíDO ÓÝí{.o§žT­]c©×xç de^Ñ?8Zˆ/f¶ GY5†ðKw¦ƒã#Ã|=®–š•pkˆÚº’ªYtx ´þ×k”tˆ ‡–uŸÿÓ 0)ñØNƒHI!b‚Á/9Fv„oeLoIRv/ðÅóÎFc7s|53Ù FßZVP1Ç€b!ÌÖeV†÷iQ~‡²šðÑØÊïåñ±¢´ Á–-ª¿ï×Ðß÷9†ío%]±Suèq|¸oéŒ(6˜Oô¾äDôNÙävitvì¶LËÁÐ Js‹„g}Ü ¬D3`ÚHQ’1sÀZæás%ðpÇùÆ*ìÁ8=Œ=ÎÛ–\  ŠUÔÐ;1‚3_d¸ßXBÔ_46UÔß²šº+o\vPXê%î(Ë“¹xm$¬]rÖ ×£Û, ·úÂŒ ßx)¥–U¡&}ŠG02-y­×«Ul]¬–ˆoÛ¢4u¢¸ç–¯¿xiÃá¶Êgç¿Àãj½ã·ìewù8’WÞß1Ìß=™ èlx…žÕ²Õ7é–î券žš¤¹ñr'æã?,¯àÚ…<ÁDp¤îxÀœ´¢öºÍPÌÔŠ•Ôpf÷h¥ ;³&ߦ¬£wµÏÇ_BrµRYX}±@f|ÖHFÆ@DÅ$n m^‘“1‹TÌ|AÌ“é™ÃÑÖ‚øtÙ ¿ZQ“é”áÃnTjœûûî^ÔoFJópQö^xÃH0O€ÞÌèÜMävÌ}9áÈñ¸ÉÙqz·)P¯Ø×Æo tË2_5Õ‹¥”dºRD_²<«32rl6P™SóÉ Í%£œ¶½,$óÆ?½¬±û¬QP¬Q_7k–`º^€ê«°FýÇ`E¹î=|àî`<£¿¿îÑ7(À´íC/í9Ý}Í;چnj‚L±-!Ö¶CÁ,ICÂ͸ †5öR°ÒÏÁ‹³Ó‹/£XðÈŠd¯A99ËûºÅÆ^Q–XcaÊúàgYÌv‡r±¹Á2¯´_m8^ý]&˜È‘°åR³\rưd…–™ÉºîÉž Û>oqioú.cˆ¯æh;åÎn,AÔ@m”KX4—dÃÍ×KÚ‰Öcу6o(z‚%Zt‚΋«ãÀULMñÈåÓaï­æ(pŽsÝŒ'ö}»%`çCÐh\7­Cã+XhÒäB÷{ªø"lÛ¾4ùŸüJ:ÿ}šüïðh7rþ›/<Ÿÿ>Å‹§¾{þ›—ç¿%\và†Ž©”Ý”£]ê õŽºöø§º¥ ·I²å ·Iï÷¬t†›—¹¤9Zèø]v¼êÎ`?Pæ„J¨¨\}Á•eü„é`6ìß㙫÷œ´DY£·/á2R¶ÔrJJËÉ2>,-ñuY:×­c£ uÀ˜åDèÝ1?¨GMþ†÷‡9fU]‡™à%š’Pf­û•p8UR‡S¼‘¨û“>R=É!U̱ïÜJ/éÖá!€1^ÑÇ ³qf ?.ïrl‚ê¹·¤Û±ï|lÂN7–·Ïøˆã„|ñAJ$ì¶Š[çk»‘¾Â­U9Õ3ý” I³áHfuÂðj3#©¾h’‹nvÒz{w|ÞÞ±î$»yµ¥ìÖnÞ5¸ywÚËÇò[tá¶Ö¢.Üÿ©&²dîÒª.ܧgǵ² î´ýJ@/S×âm_ÔJV@Ë:µÖa[[“Q­XjeÿBËZ¬5Í5ùØshw·4E½»«9_^ŸEÞÝ4šr ˜7CDã¿»œC·íší> ä‰aCxnµØs«cyn¥qÀN²û5 G:±QŒß…hŒ¤ç‹’>¦ï}ýùn†<.¦Hþw¹ã¶?’q;4aÒ7rD¦žj’MÈ)D ̇ŒÀ$Ø|Aß$;ç¿|v®4=Û¿L¦eÝÏWô1Nð0·|ÅWäÕ4á?¯ž¶ýn·Ä¯¾Ð¼úPNý ø4É~5çWxí¢îãÑ ºm°4kZü˧ ør ¦\j\Ø=ÚM¤++2T«â`$™Èb9„ µ‰jq)êQ›ÖCög:ÔIï!û snfé£{È–~4ÙÂßöðç¿âÏ8äSœÿì¢ñv÷Ÿý?ŸäÅŒmžÿ”ßž”J˜í§ö±Šû¼NñÖ$þû¡Ò~ ¿` Áöoçø¼r†’R$6±J­U­‚`i¿…iŽéÏ.µ¶¾ÖP¤wø§ÕKúZHpN±x´kj¹¼ð0êT¹­^œ¶1'図EGSÓ&`:ÆàhÊ›¯óÍ™ MTÔž¬ç‚L2ã#|Ñ0ÉQ—£Ë#oÙàñ\æDËc]aâc¨ø~"e‚]ÔÁONÄ™2§øØ㑵¢)É ·(ÝpKòX­$ÎÕâ)eyì–­oç¦ü™˜3+ÇÑd5<{µùQÇi¢ô,˜n£+L½W"Ÿ0®âƒ¸I4Ü¢6Áu3u˜‘Ÿ€ÿÔa˜Rp¾dÅÑØVp;èrŠ6¥ßfýÆ> yÏq…œCÀX`zÊ‚† ³¿L‡ BÃÏíÿIyP‚÷èö$z@Ù›à®;¤s(QTkgÅé Ö©àl€j²{Ôƒowƒ¬rInÇ<'òg˜Aì†JX““§•wÓÉÕhpk¶Žuþ"1ðÅ#Í.õàk =üÞ;¿×ÅïçÆï £|Éø]F$Çò£T±ÝÖ 'õtîრ3‘ÙñWAޏZ&ÜPŠø %Œó'é¯ÿ¤c Âã~tÇqÌ(p–¨™çš˜ûôýTæzu.,Êt¨|ÞÞ¥V©].õC*K ~S@/Ì´¿a°˜ åL#ö+¥ú•º9‡¯Û©Œ&Ÿ†h«æc)ÅÂ#žÁ&ñîðZ>ù}™?×n^TstD©Ø›~ýýWàÞÑÈÊtDŒS¾Ÿb>#™h4œQNAi/åDEûHc­ž-ÐPãƒå¾¦Q&§È†˜s³–«‡ŠòÅÀ=µ£I7€y8úйHãL‡}x ÛÓ\º}qzξû ú“Û`6ü4žé“é >‡ÝÈõp Îï °>©£ÕM /À’F8›OƒÉíݺ£‡ •Ù‹oâ×ÞÓ·ƒÈýUBFˆLƒUMy ü}€ßêÞ’êfƒ«û9gN½ Fk½oÂú€2ï$a:˜ÝLF}A„ƒ´îÇ}rHݽSÙ´¦·x^Z :ÙdG 3¡k%¸D¼Ì`Ñ›HhRDAà —®¯GæÕšQLâ8LÂ8ÓTÅubšÀh@f’b›ÃU/̧„Äx!H”¦¡˜˜Lp‡ìrïTˆ1Og¶Ãl¸ÉS4Ü5ðWšCá^Z }Iòîa½z‰Û>â,~‚ió o³èdjŸ)}šåŸ‚ú0‡9q§„)Šù€y±–9Q!ÊßP  Ë.Y©gö'ŠÐx3Ê©NéüÒ&ÎËŒÕÇnA„>‚q Ð$1\‰¦0ºj]^®z”¶Äá¡®ÝÍÑ.i‰ÑUM3‘i˜]‰Øñ‡Hnù|y©_›G3{ä>9+êbö Šc¡Ô¦“—m¼¯/ÉTžW¦è tˆÖœEÓ$¤…攞Êõ‡rhbí\à’RÐÏ’–”¨zñÀ¿°œñh¦©© ¥w)ý>ybRLÚ:ÈÚŽ?Yp3W„!(ÙCÉð´¿Ï%‡ÔÃbŽ“©ZNR(áaƒZ×÷#CÝ ¸QÖ:ßO[@g„DQ‰¡ Êí—Ð#"·ï6¢±Ût$I¼î{-·(™°wFÐõxíÑ„a¡b]¶Ë’Âü{Œºl´.ø š¦„ÜR‰ä9ýux{kðçûŒŽNÑ~-‚¤¢ ¬Us#0¶°"Lî?ÝX™Ê3¢èådðEœÅà!‘åß?xªœ/Óÿó•ûžÔÿó•ûþàþ——éy9aXîïú]ŸWrñð>—×Üç.ŒîÝ7Ǹ!Ï<–¸ä@GËb!;õÒïÜ…U5V;Ûì áW:³ÅØÀ¢“è·%>çÔ…‹‹Ó¶sáb¡æo(LÖŸ‹Ë3WËÅT&ýTž×˜Êrøò~t—ÅOÝÏ“¡%~¥YRîaP]ŒøSªÈ]𠾑%•×àì„Àl¯çe¸R¶& óåŒNw:DÇ~¾™©/‹©ÂX—þˆ¿òS`‚eÕ-ñ½‰‡Õ¼/ 5™ÅN:†›x'.6ìºR}š‚ØJ4°êì’n˜±!6±ªÖ•q܉ªô5(¼Ê&†ÞÖ´Vm6ã0®L¬›îçØ™Ë#$úr›)Ÿ5*°ƒ­ŸUxø;¾Xp]µ|3èýÁ§Vhœ©[B·1¬†ä IeUµv{{ì.è…6¥K>¢0IH(-Nèô¯FäW”[(•eÃö׺óÝŽöFÇ”¿(:PkŽy…hßÙ÷·(’| ’ÐXÄUèÓÑž®Ø0à A¿±>Â_7`IÎ×H¶V‹¾øpF¥©Oüަ¥qÿÖtŠÖe ±Îœx{*~ŽígÉêhÞÍ.Ž ‰4ÆVª Ý<óä¶d•[ˆ0®xÞS¼½©(‹ÜâLªd”v½m”bËïE¡:¹‘ýH¥æ"¼Ý*§•"]ÔÄᎥo„hlÆjù-äÑ+ɪj¤c§•÷‹|­u¾°V>§•òâZ‘Ήh•tðÀUÉ"ƒñþ5[…bÁ©A±ïb!`,cåUSµéö$¯•™`ƒÏò6²Á¶¸Í¡Ê%åK•yNL§ê{Æ“ùÌø¹›~ˆGPŸÀV.i  =ŸqK±Õ½¦´—蟰¡º„º ºcHJž¨M³ªrõn6ÑÇ-õ[©;h@b«ª@ʽ€Ø}¾®nôE]§h‹öù}Ñ¡GO'“;2c±›Y6`'¡¬ô© Ù´Te#¯”ü ®Yx+I³p¡¤eÁN…ŒÇu¢áDº¼¼iȱUõCVÁAŒ(¬aVbµ¯‡{;b‹á_àuOHâs1ûn"-x´.ÒÿˆÔK®êr|´©9ö©\pv亇©±N"·¯O.Ü‚ ]p+‚’àùF56to‡)…sŠty·Jû®|úª£=×À– šø_€”QÎUDuÝ–°;¹ÆY;'ó¹Æf”Ěʻ;.É¢üþ"šÙŽMŒ&›˜”Ò°ë>EÅe‹NI1¶\›†¼ýkñלï)ì&#<š×ZŸY„Ut¡cËß\ná×a@Æø¨œ’a§Hù€}šÌ²ð›¼Z)_îÁàëÝd,¯r°z«Ý:=óÌ—W¦¯‰yybMºH)â´×ÒP KÅò7Þï¶ÅXd‚]m{ðVŽMa¤Ð#xD/DæÞÒ7§™ÑÙ49%°ŒX7·p‘ÞÜâ…&üþàyÁÞ2†oñâžÜ„7g^„¸¥‚Œ B¼¹6Ä=Ó† 5Áùæi\’Í(€R‚¸ýëáµ—vŸ50r€èn„o(L&º<èØÞjòJÓÿ ÞM¦}ôMzx%âG’g¾éAü*_Bl¡šap)ÍYÁÉûÃB HJVzš9Ëg§ñÑtºö*¬§XWâ,|¸c•Œg†(Ú»IhW¤kG]\tc ª›tÞŽIÎi×[2ÑFkC]"ßhlÈ8$ÂNLVS˜²éÀÖúG0̤z2à"(5uk|!‰ö“HÔ°ÖŒˆ>d-¿x ½JO!û2в4e_¤ŠÄ?‹º³ÑÞ0êšq ÒÔæ:ù-»ÃcK;Q|!+y”¬Ñ€40^ŠJAÑzý´z‹óä I^Ýo)r3(|ñË‹,Š?ðÐñr«ž~°äHÕFJâ™HÜaå³ ¡BB‰šñ–j³Ö­IÑxSÇ È+x›Çò uC¦5bð'e¼ ñ>>Åhª¹æõ²ì,êenݼIa=ªÞÝ7t›žXŽ›np¹€7€Þ4&V‰à%·ñï¶a'¼™U€w/NN½Ý  qrñ"|QÛ~—›³¢ÞKç†uúbiûZŽŸeÌÄ"U&59ÌH'è’æÓ—qû$Â%»ˆ„™•áØYo‘¯»}y± h¨-22K⤈Dm‘ëÔcN îŠ9ëû1~à|Ð{­ËæË?u‚ØÐ{A Â…p(@¿¶Ï/aÒÈGTç . _œPo£;Kx$OÈÏØŠ§_ Ž^‰Ž½Žy«¾v9E…]c½• ɕν•v­J<º2&Ê{L?;óè¨Wêh'“+¬d_„H°ñÂ%k X̉Îa¦•ùž•J¢$e@§ ‚š9ò‹ÛjN¾ÌT¸A9)—n¨ß‘FÔ'¼œÞ¥jm7ØôÉ<«lаÍÓGd¢Þï›Á¿”[ZœùÍsa>ÅÞ[öŠ/øC­s¼9B×FLg9¼³¦¡­°)5¥„DHÔ€²›h3Wy’ä YvÑö9ªp^rýy[ÉkYºÑ*•6âÖJiÒçw}”_qâù0ØäÉv"õdÙ /ô2i$ÞÂ+j@&dç瀌úÎ/ûžCØÖýímwª÷äÊÐ!2‰Z:À™tbfÑÁ©Ä /Qo@¥/¢‘D\M; X¹ßGTƒ>­=¯q ÛƒŸsðáeðê>ÖáG‹TT h¨²Á‰ú(Hk|'MûuÆQȈçä„7‰hÀ4²õ€@íêw *·X ÏxiÒEq7#Jü vôÃ*yª‚Ó%#¿n"¬ãp'W0¦¾ŒÎ(îuÿ¢Fýïññ_IñûOÿ1ÜÉïíìþWšó<…)HñwŸã?>É‹§Žÿ±ÿÑŽù¸h/ìÄ|”º”Ô¡ZèTsüOrÄü-|4â>Rê1ü{ÁyÈÒi-51eäÇ+)Ù¢ÈL•÷LJ#èc{á(Ù!Õõƒ„z¬©ˆŠö ïl”d["Xc+”I×òfÖµÅP:VkÑ)òž¹\Tÿ7£TðQ1†ƒ®&ʼn¬=Tg‹ó£eZʦœ òšD븊VŽB0ã ã#u]ÀÎÃ]d ƒ™ˆ A81&9Ý|×ÊöC±"ù².`;9Ú°q_ #qÉÈb`n87íPGÞ “èæs‹Y“èfÎJ7—øg ³µÁ^é¸ÔTWdfÞ»’H aZÙàÐTL'šúv¾Üo =¼E>bè1ºì!-UZï›Òp“b¬"×iŠ"Dw&2#µ0+ÝDÚ` ¼”q3 ( ÊÌ0 –Â3~Q5„º2hY+”Iî܋ŀˆDÔØ Ékqã¾Øû“Ø›±Ð(ÆáàÚ¼úGÑóТlЂ£_e ñ°oÚ`€D‘á—jåÈx¡ˆé¥'ßÙCs#GŽhå%¶n³j åeAÙ&H|d.ÞoÑ3ç #Ói1 ? Ú©zMÊJFÀøo8Cîh°ñöàÝÝ蛢Qôî.º ‚8H h,®˜2ËÍذÇñX ¬”‡¾ûyØl•·{“ñ¿ïӜØ_€)Œ+~¦|BžÄâMÜË'Š€«¢Úf”9¡ò¯`G®çþ@¸ËÅÉE…óha)Ök¹”öFâ{jNÑËUï†I‘wÉV+–j:|£ËúúGåeüX¶ððf€$h"z/'üÀÙ®-ý©‰/yXEÕ=ø÷"øèÄý•U³øcÿ^Æ^Lz!©h‹òÛþÆq)÷5=àÇ ‡ºÀø@…®té¼…1V+RDÄæ›éRã ìI>ñ­S!G¬”*O£D;ÓdèŠH4½‡)¾D_%øzÝÍ2N E_¤ ÙmdnAÓVø§MDx44nÐcOÐ"Ó‘”k!šBðšñTŠxmÐŒˆKÊü‰ó[„> £èÄÈ:Çð¡$LCP„ò[¢Cý&…'<Ê´)Ô/Vº~ Öïò[?Ki(ƉÆó,óþ‚ô€ÎˆÍØù&+æ©â¥¬¨˜÷RVøÃ©PØ”Œƒ6¨–orbTYPà’) ¬¶™8MAHœ¦9uÅiîo¦áÁfúùâyêù¾Úü+æÇs´ïçhßÏѾŸ£}/Dò9Ú÷š£}Kã^w68RëYѳT.êz;š|â» ÃŒà Šb´ÇÿÖ‘ÿ›ÏâßÌv~óÿ@ƒµÜøw G/…%&ü߯’õ(|°hñ~Œê[˜F4Áÿä±í blë/Áÿ r›¼Ù½j¶EK‹ ’énÊÍÆpÆ{O±ƒŸC!Æôf—‘®6Ýppˆ½gwõ\tëÿldÝØžšÎ'ÕµëÁÞ jL¿ Aý#« Ñzo“£'ó†jo{ûãíÚ›+¨ÓÎÏs5ÍïGunlªyé½í~CLÔ>Úˆ L†OâÙ„7ˆüOEÁ,è½þDAÞS¶àýñâ’WL ?Y\òžà MN–r6I0lùß#>yæ6;ÙØ5Lbò•|ArLL@ò…QÈMþ€ä‹£›0Ü€äé¢{FMüi£#K^fƒß²î|ø˜Õ±¡AØã6Š÷﹘PåÖ§ŠZî„*·ˆúµ|µ¨åKÆÿ6á¡À=ñ¿+Iñ¿M0‚—ŒÿMþ”ÎÈç&2H û ?ajŒ"€îéˆàáö}ÝfŠàzÛ| ³ˆrù¯×:x{B¡øL ÒhÃY£`Ga.ú€ñÜH⌯w¬Äp'+}@Qá,c<]`q©vñ+]|è,Ÿ°Ó Lá)Ä1‘”µªK ŠŸˆêÎ/ˆ=W3Cc#$%´Þ…YŒ´c¦cÜêI¸Õ·ºÆ-uÌè8³RFÙÁÑ‹â÷Ílƒß77ÅÞ&uüç•[h…ÞBþ±[Á8S±å%§”Üuùpîë/nÖbƒàm–ãf[á+×\2`·íCmë)ø>ÇlzHw™öÈ·¥daì¸ò‡P¸±is®Ãó¶F:ˆçEÑ•‹´tŽewêá"žï»HáQâ‹5¹6¸j;<’Þâ­{óQþˆCW£ â1 @ôñî‘ÜEí‰MLäÉá‘ÔƒœGÛ! ŠÁ?ƒuþÈñ÷lM€b3Êvv¾íðA”4ˆ’aËSKïu±÷þb…#’5ª~¤xzN9l•ør>™ÜlOÑÀ–dÌ  ¯Í[®Hh^É10´Ìj­8jèƒW÷jûÀù@«Gl‘%%øù¡ÏS>eÓ>_!ìùúƒž¯ò¼ž>XùqÍ9Œ—~‘Ä#ùÉów3Èð釳ÚÚÎiž—@~S·cáÔöêå„ ’á÷×!͈èY²_oеSÈÒÔ×ý¡ÑÑWŽþ °æ «îŒòrqÑ}Ý1Ñ“#¢¯%ú2ÑÐ× ýAÑгAû|z[<•×—— ŒNõáKž¾0ŸÃ=6@öÖL}½ÁÔk•ZñX”.¿…¦ËVËç§gîÓ­‚|z^l¿ïÕâ@ì„}ÑUMìDþ¢Æ÷™kx'ÅŒ½®B¬¿O ÃnÄ_G‰j^ç˜ôqÕã›nWëç°ù·|ÖH뉲þÈ1ÖcI£›6C½«‹ê¯ÖŸtÁfCSˆÓ®Ê%´›6^{Q†Y'ï5éHŸÆqÇ÷BR¼öòÅw—ZìqµÎÑÛaF¿'€á¸ð¾°ï¤?Nø÷êå9^sÃ[agÇf4ø˜8ðRþ€ºUžÜÞªš$‰N«MÀüì$*_ò²×0*õvÿƒtÁ»ixKÚƒŽÀ´½-ŸÕëg¦/ TY¼Kˆ\–ÐLªIH–å‡G O6íµ„Èçðõ €Ö%ýò#Qñ/ö=¯6ÏÁð‚á;„âºb‘.lu_U}<£ Z•ž§}²£PèpÝØG+Öên¿C€ü±ë#òÇ®„»±ë뉡ä=Aá/×:ˆÖz¿°–/ýy›ª-‚žy6E´y…ç£ÍW–6_c ú‘Dƒ¿£"žÁèJÑi£Å‰ÕîvÃ*—?¢˜;PТì FTu‘š¿/^^•’›|]B†9çàðY^´c¢?W=Xyž÷ »¥ÏŽ3²ì&”£ï¸mÓ’kùPõšd´nœHèz;d=%þø‹Ò«ø¾Yö…wVŒäíiãµGBŽ¥Ô ÓŽ«í«E1ÚÓh¡Ì"᦭¬,‘ëIÑÕó‘è?È:t{­âèm3º°(îÈqꎅʈây²(‚ûâÐí©b¶§Öž2J{ºðìƒá§ÁØ ÍÉίٷ[vá§ëFU]SÇg·^€š]9.>{\`vGĈš]Þtê £³{ê„;Iu ÏéÌhò)'=Çs¾ü‹ƒ»‹¹¶ãεqÝSuOˆè¾t8woŒ¶¸@î1QÜa,Žß¼=jº°í11ÛcdËâµûì»1ÖÍgl}ŒìÒ8oœôH„¼ú:š'ðgL õe¨ÇGOwC§Órì RÇN”e¢¦GB¦ÿï*J¸ÿ# [ñÁíhà¢Êo‰QÁã·ÿŒ|ÃZ×–ˆ!ÿäc‰éx"˜´D9X8‘‡Œ·C§™8û)âˆsào7¹ö¥b‘Gª‰xäŒÎN²/ܘñgfÐø¤ÈËQ‚¦™›ë¢xë/¢xýÅŠ×㣩¯âñÉìy¿Ñ×’áïGìp'–Ú%ã&á"ZÓ‰!n Ûζ¤#£¶‚¹“äö2N÷(©½kõò<à·øœ,ƒg|!€9` ì°¦ÕÄùĵ“<ëùÔ8™t&5ë½HíñÞ"ÙbI»~þ%Œ‡¹³ï7ŽãŠnèT²ì|C«Ô|ü/@>€ç?î).¬?åÖzôï:Ê%ê2>ÃUµŽ ;Ú¸bØlÒÉ&¼8ŠïJé«/VÍä|–*ëV¿Ñ7ßÈ.™V©íÖ§×£¤UjÇQÌÊ””IN“…³â ’Þ?I†$=ýí¹ÿÀÞ–«’èÒ,D5Åz,r%׌“&Œ¨ì˜Û¨Æ÷èã C!·c7éŸø@ºŽ¹,FÙëHe,C1^¯ âl4ô+^2½:b³*Ž“XÓ)à+ŽïÉÔáŒ!Ý/”£ñC óÉ'…òÈ‘ìð»`sóSñM‰—q¬Mîg¦û4;¤!Z%Ñ÷8Þ¬4âòf³X¿«æ=Û,Ù]ªn^±ääÚ‹\síu‡*úÆ%ÜiÍïa%C·qÐ2#%Œëþi¿Ž1…Ú®»œ_õ°/ðãx>a؉Ù}¯ìû†„ïñoeè.ñ6ŸGGW¸ïd…|–i”|ÀRÑd =AÁ…KlêW±BïFVhÕ:n@Ñúœ½éT£cF§ì`º½¯Ç"b§T°€Êæì“ ”0¥`Γ”g'ÞQH«'‹UeÌÚr¤07Œ]³Ö™Óc¤)å·å´æ@N·Å†¬-ÒÑò¤£mŘ³Â| UÍzþú L[€„¿Þî"Ím+¥Ul'já ›Ö4‰£`j&jÒ$XÆÜ,ÛÒö(Gqù$Ûa ÓØúìpaBñÇ0Ä…Qu8q‡^)¯Í÷ƒÜ~$ÃY¥,ÚFMCÒ–2µOH± ª` €ýŠ2×7, R~;ôùoa3 ÷žÈhÆSrF3޾Øþù fÆtiÓE-üÄü¡zÿ{Ì•¿…Í,LÚ;ë2š…{²š…ËÛ¿ÂÐ>±U*|R³Tk— ×c˜z°e*L0Mí=’i*q~-k›r…ÉwÍ8ß©ðøæ©ýŸÃ<:æ©pEóTôŠg ÛÇÛ§ªcÊÈ@‘¶·%¢îï›Á¿THl3zùÓ„C}Yý•׌ ëÈ–":mì¢F.oV"Þjhõÿm%/—lŒRáõðñ/ì@#Þ5[«5Æ™ó·htÃÓ† „Áï/¢²D­žááÂ)¼Ø$$ãlðû —ò>À­²çŸÆEO°±Ã('âÖýímwªï·Òˆp´ EVP\FÎÃv1°“Ö)…þ"! Þ”©‰~áQzsÖ¬qÔ_£êµ—E†ñ™BSâ×<}Ŭ#¯ÿ]¹»øt'âYc3²Ê&Â:C¼!û ë|ºQÆæ(àë=*Ø/éq„Ä>üœƒ/ƒW—ð±î¶M$Æü™XÎøNý¯!PE¸W®„¡Ÿ77 òÁ˜ýò_?ñkÔ½ëöþØ.äò/‘7jã—ÕÚñËYïæ«?r×kic^û»»ô~°¿Oï;yþŽÂƒýÿ wöò{án¸¿ÃŸƒü;ki}Áë~6‡•/ø/˜G³îídWŠ]¯‡?Ô‹¹¸uQj‚œ¨ÁšJs ¶€ 2¶a y¡]ÂJuZWPCàoë ØT|ø ÿ`58øÚ½ÅÔ‚Béàü:ÃñõDæªÆx²ÁÚî‚ÖöekyÑÚ~bk7ÝÏh-•}ÕÝL×ÚHF^Äé‹Õ’‘¾ŠÛœyú¶“¶%xNüF­væ“9¬žÖ8¿©=`ÔN ›ÂÉßfçü÷x%íÿGO³ÿ?Èç ‘ýÿþÞóþÿ)^<ÝýÿéüþÿÔÜÿŸF÷ÿ¸GßU©¦ *\ ()Ñl‚ÉŠ Ø 3ˆQ²²™Àîyᆭ½{1yï^\çÞýÅÚ6ïok5¥°ŸžÑgg+ïêªW'íñe8>s¯Ï[}<‘â ÿÃwû…$’3ìIáF³A‘wûút‰üOó⻩LEi `Ög! ”,ciþINRƒåÖe1ð%ú-j¬`Eˆn[^ã?«ûŒËÙRX”{Ír†â2†9×qú¯d?(¦³$3ɵ”H¼e¬bfy‚:[Œ>4ÕÙF ë@’™]˜) KÅ“š'ú)§ rgÍ¢C¿àØ,ߤ»wš\ÁþÒZÚ Æ+š6Ø ,ê[¦ÙC¼¢æ ²~¨¶‹Ž‘…À.a𨠱ÎÓU=ÓXgð£‰jŠÞÄtEß¶`[}±­%Kk 6Ö<’±æô©Œ5Om«yS 72Oé`â_¦PÙÓ[j ](j­IiJm¬Ñf¡Ý•ÌBé*h«Pa%«ÐRF¡Óg£Ð_õJ°ÿ zObÿ w÷w£þPìÙþó/žvŽý§ZÎÿCØ.¶Ú”ìñ'µy’WrÒØ‹¤àŠl­ÝiìIÕ²°'‘ñgó€õÙ~ ï¹s4Ì0 ~Ÿ6ò´ólýÆï¿¿os2ÑêeÙLíÜj7[¿fñŸÐ÷F‘ßeHÐÚ8À¸£½îŒ^Ý ÔèMï1è |ýttƒëáWÌø> Õdþ`Šö !Å~R~Ç Lç¯æ|îN)¡7uXÇŸêNT†~Gðý~4§à£]<\Ð6GHö™Hno8TªèP@Žèbõ¹ú†v¸>.±Ã1%Q“~8j¢+*Ø5X”3@u2!²rÁàoæ‚àŒ*X5¿L‡óù`ŒX -‹Ë¤°Þ G[ehC^²­l²ÛhWƒÏÃþ=¦§ ¯Zûñ$CFáüáÖ­u"«5D;#âÝE’wÇ’¨)š)1GL€oFÝO|m`ŒÚëÎY›€vDbE 'Ú2‰ô”Ôœ ·F£å:M• kíöÉô¹»}¹rå³ä\Ü'<ÅñDÁ‰'BœÑpÂS$Þ”vB† ’D8’âT4p*8å⊖OE˧brž € aƒË%Ø0rKÆß ^ì²1S Ûè6EkMU“Æ·Úè6¥¤Äåƒl¡DXÚ0Eñ¥A¸ÒF$™ Ð.…4 *ñEAN¨¯›Œ§]ÓD²iÔX‡5ÄIµL)²Û…P¼çÅ{A¼ïŠ÷½$k/ØÄû¡xõ—º„-°¥®šÆ³Z–O“ç¹ágãfÅØO‡ãyp«Þ`J{=ጚ¼ù?|•¼<< 6iºñìH* {{uY…Qjë­-/°"‰EV%‘´¶ˆ‡†…– ‡ÄWæMc?y†Y‹­dÒØ<˜QâAJµ†Ÿð®:O—cè'´öˆåš,rV€ú Œ€›þ,Ö~“Œß\¤{”ÏHÁ¦Ä®”ž¼¸=‚ŸŒ=÷CÂ=¡éE¸2JHŸê¥A.bðîâ?yF}ð@PgpYԙ݌ZäÂÙÐ+4¼»Ÿ<‘ËÂÃ{´O=J@hQö2j)T+¸xgÁîý´&ÖÚÜ›^„û~F-çR iˆ÷ùÝ0‹ø†D/»âªþºµKÝJÀjQ·2b‰–úDV,òZ{ót‹–ô;`öM>ÊG+qèO<)É¢ªF-(þ5—ôÕéV`vˆïö"ºf„ž“J™T¡²JûõÑ õ¢ºá£…t“õm ɪÑ_×M·<Ó-¾Û‹èö*£Ôg©Ü7ôöÞ]¡?­I„$¾šöãÎ[<áõü…\_È5å…”Ç/¤{!f_ðÂÕ@™»DÉjƒëê¶±ÓÐ'c´ü}ª a皾ݻ”œþf8Vž#q|$Tð6ã5 kú!Þ}tó&mÈ;y~~ÒhÓ¥ÆCÏ=J³A Õô·wÓ É£´·ÓŒóãtÏÛ qØ£tp7¦½‡w°ào°×ÁFÑh°àmAÚñayBsù¸æªÇh.Œá˜í2|;ª½—|€V ûÙ§ðJsî4Ë6Y÷ú†IÏmM|yoY€šÞéZ2ïìtÛôT„,3ÓF²!ún:-í­kŽv[´ÍÓL—Ó´2Õº€â ÓÒ¤MÀ¹¦äjFc$¸íönÐP­6ÖA¶©›ò$z?·/°ë^ã}t»ùÛáxx{dhS»˜/c`ʲ¦9>f`Bi®¥ëœÚHËæW6ÇBKosyl襱“7ŽD«å':M:ÿ<Åù_~÷Ÿ…a¸³Oýçó¿'|17ÏŽ›Å:³^5õùÞúOøÞ ®¦÷Ýé7<á;Hq¬VsÅÙûÊ3Ãr‰bŸëûÕÚ;0ǧÔÓ»îüf†«Âü&±ìnw:Õó c‰ÒªwÎà6U(H2…Žý¶YÉRÖ¦·xj÷¶U}ßdQØ)ów2œm4ü*ȲL~ÌL~|L7&èý™û¸úþ£`îö10¼À´H·¸<|’‡Ÿâ±[LücEüãNªn¦a‡cÅÇ—é°KŒc=—+`¹¸f—cS®˜Í¤‘1ÇCß;â­"Þ/IVˆÇçüøKô•J•D©—*rü¬ð,™x–ðy K €(qŽå%¤M©¤TË `b“> ·bT#®¾¿°5b¬ˆ#aB—Í¢§Ø‰è#^Ð6#¢ò¹â VÄ€N˜XÎd@‘~<˜ÉÛNûâ†Ó]w8ukëÆ“O!>>­ÛsàÄ asð öE´*×'ýÁÈ”ÇPUÀxß´aÀw$pó½ë?üÎ9p=@Þ7ß)tÜ|/Âë·œy™ž±¦X‘à}™ÛÇ­wEbã3Ìùé©â€óz›Ålõ™2 ¤Ž5!N]$Ù¿ïÑ·ÆÓF #UØ5iå&¸éÎ` úÃëëÁt0žKò°˜eƒ«{ŽÙïλøŒT(ãÖ_«0¿V[ðg6¢þV£^wŒ^!0kÐydÜå“AÁÌøl”š#?¡}]§€áµL‰ Ê pæÐu`žÙ·°Ý»éNa!êØ¸{; Õ­Ç1=ƒv6 \{¬N·Š¼p¥·Up7÷gÈ›_Èé»|Û±1uZc&]h,ˆ‚›1Ú,¸ŸqW‘Ü䇄ûoô Â>L'£"£’$i„1Q‘àHb_³rù$(¦†Nn;ýÁ¬7^±ËÕm±è"„Ñhòev$4kI²Ì öÂmjCÎCLÌå·-ôFÍ—^ùhào[,¨ÛX å)O2’Yìd ârÙJ³ƒe…ö¶É¬B`A]ä¢û ,WYX nc¶ñ5öL@))ÀÙÛ{£’Õæ÷hœ›õVz,ê¾Ü(eá?'¡€•®Ñ"lA©/Kf«€»QZÔ7Bkaÿ®F“Þ3Ð9¢ÙÆ>µÁI¤Ú†4šma$c£9Œðݸ\O—zÓÉl6Auân‚NLK³%Œ_]k¬Ð±Óâ[˜YŸgA»ý¾Yu[Éÿz„¡ÑÐ+jèÃò ‘{1”èÊß\XÁý2÷'_$ŸÑ棪5j¥¥é6^¡Âàô„Œ©wj­·oÚ­¥a+®ŸÁ¸æÝñ=·g7ÃëùlÓlgx­X.çó˶1Œ`w€îzß›ßOÕ†#À‡w£oG˜3'Ä…>o5 rÁò³—l$Ýœy(yI›ÞÑqº¦ýà`|eí]\¸–¤¤H›ys%Ü ñü½k³ö›É=ΟSW¶yé,›ÉÞvõìÍ‹EgGLz=Ì›/`žu5x‡Øù)òÝ 7¼þf.ˆ´wȉ= õQl¦ì¼w]ÿnÊÙL©]‡è˜ÂݯÜÞÏ(•ŠÞA'ã«QwüG0œn ИÝíÃÒ<~/„ûSÚ‡4þCоûÀ´øJ ›†{ôÙ+ÁÃ/³Úxl H.!?èb Òø“˜ Ki zó‰çŠFåÁò‰¥«(Y©SåCgUù÷=íà ™Ù†IЂ=ßÈ¢T d‹Á.~z…Ñ„»¿}š›ÔrO(DäûkØ!óB˜Ï©L~‰…~ØÛŸã¥‘ @c¹z6—²Köâ9®æ.ɽQní .î_q¿ ˜g=WHÙJÙ³F›ØÜbögWi½¹ÝjÆ7ë»CÆ—È MD^ àxASh€/Žm­©m(ÎÐJ¥Ùyp+Ží2ç(Ñòªë[1/>éAÜH_ãW?fùg…/X“—÷(|…'Rø Bá;¥¯BQÃñ2×ö,[iÉÖš‹›¤õ´¥ÖÓVÛ¿ž&.¦>.ŒÚ7øñ†î±ëa¡[ø¤OHh&°Šw*kZ¾ë¼º‹x}m‹ø¦ª®X,äkkˆõì8¥aï¡Jƒk#²5ß¶¢«úãjO«9>™æ€Km£µž–Œ“0ÊMqƒ£5ö¡ˆ;f´öþ}±È?¶Â’…¥ðÃ*,Ï*näob¡z,…¥S K©Â:ÅÕd~!1®æçÍEn®W¨vØ£ÚbWT'fÖP¡JTíˆ~T[–¹ ¹©sõVícuá:‹ëÍL½zdQBþÉ-vˆ¸hû׎mÈC#á<¸À“üNy‰Ûĉ“…Éoz&ô'c›Ü™î“B~bá« “AA°¥ £8G{ØfÄÀ‘°ôf›C+òi¤»nP­Eâ¥ò™^g.#Îj†Ž>¾Ý"T”@´ÎÇ’¦GP;-VbU¨ÚŽœãùŸZ1(qd=Ç{üðÜR-<å.YNÏoš&Q»NKÔ1Žtè9ò+ù;¸ÁÌ6"¢Ý”¥+ÊØPn4íC­ƒÑt?¡©y.VtK„º™±cµCÄ ê+V{ ’Âì–M²ë“È6·äwlñS“ApvrY²¤^òˆ'³´ê -ÄÕT׿´FôÔç%rKäAt…äƒãÇ_!_‘¬eŸ*¤GX*‘y‘LE^ßÙÀÑÒxí1Ë´Ö¿¶iá½äéƒ.„ó/‹jŠ‘ª´ûþ€hÃ~b<§L€tN;äúÍG-\>͆ò–¢¯ÖJTlÄðB3S䯙‹¬ÃË ×õo‰µ7~™Ä109Ë"3ž˜D,ÌËÝñ72¯lµÕséÅ0Ax' ½DõàY˜0“wPybéekG‚‹?>ÌÊã¿oÄd¶þ$¹“Z6ÎT{ƒ)ù Zçª.%Y&ð•%ÊcéøÊî…Ëcîó ¡Ù|‚Î08á‹üVƒ‹eE Ù†{¼Š{E5œ¹Øñ¢M¬õ®m”~À$|7 ‰yѺrûÕ–¬làªfhC»r“w.Ç‚C¥Xƒ˜‚®q‡ c‰k]ŒA2ÇaÓÖ,EthWåùP/^4Ž„Â Äš0‘iøhqxÛÅlŸS{È“jàEWÌ €õÅb‘ͺ‘]DÖ'È¬ÙÆá‘<à«©$úQ¸‹ €4Í £âkG «~Œñ^,p½¬j*öÔAà.é( v4î›L…,Ì =ÆúÖºT˜ŽP/y“ju3½±W[Ý’–¶ÖóÒö°´EGùyi[óÒVxáYØp1³ZXzak˜Ó? &¨#EºkƒãvñÊÍýÕì®Û+–1,Î^X4W—«$ β‡÷ŽÄÛc{âFÚ 2ÌACT_¤Ä'Å5è6öÚÞ>‹z»ç–9~&Ž£ý'àÈ47C%ÆANk¯·½Ÿt»È¤4Ð?ÎI7JÞö^>+æógåãYùxV>ž•gåc)åC+6ò„`º½w\ò(~%ñÅ\.õXnR,È~¾òrw7èÚ³KÈœ‘HÜv?Qº>CQûßÅÿ¦Êÿ]úï¥}„Úä¨JKC)%ª4¶R¦ý"jSÐ:1ˆ*6^Ï”($¾ Ȥ½Dº³Ù¤7$‡œÕ\(Šþ„†@`3‚Á”fÕ*ýÜn'é1ÆjÊÎN¥“d«oéÔ½b^)¦¤N¯ãË9Æ¿˜:rjßDÃÜ ²“Ís¥Ã.¨r¼€*ÇIT9ÖT9NK•ã˜*˜³@Å:‰Ðž®Ù ®ž γ«èÍ®cè¤KkÜt¹óU!Ÿ'AÞ[Þ‡OCnWÝÄUót矯á9ü©¿8÷ï†ÿ>bœ´ÎÓð~ø¬Éq#×䣚ܫ§ŠÙñ˜»u’‹\Ï.°˜Nbv‹IÌÑ× óÌ$õ÷ÍŸA¨¯Oˆ¯Oh?Kãgiü,XiŒ‚m‘4Öé Qþ¶:Iò·µî«%ÏJu¼Rý,²ŸEö³ÈþaE6ÊÂE"ÛŒ»~a)ã…5<ý„õ¨, sƹ2gœ¿¨?Kãgiü,Ÿ¥q¬4nÔ‹—ˆKï~Š™ÊaŒ‰ÿ&AXàtxW¯0O(Ï&·f¦p_P)–º§Κ'ÀØÒVfo ß_ìm¾¥û : §¡9G˜ƒWƒÑä‹ÈèFYÝ¿³Ù=´‹gÚ0äø ¤¿~·†¾!aºW«òÖÝÚ%æÆ@_Ô øÞؾú¶ÝÐ7¼é€ñøX°Áëu¼¼r¹à\ûÙçr¿ðKN6^H&ñô¼Ø,Ö«móy†î5 Óf”ò"0e†“ßIDL„‚D~ÄLBŒÅæ”@²J€¼’·¶pÍ ûœÊÔIp©ÀBâA©ö(mRHºÔqv‘©AØìqAø´l*¾Ó xJn©-øÓ5yP¬žf£oŠmTFŽOA‡‚Í~7ÚYTà²(é²èæ„NðÏi–áüw}µ¨0FO¤HŽ0¹ðV;>Å?øà˜\&Aiak­Ë,KƒV?]B5™cÇÔÞ$@ÁeXaý.¿R–-J–C÷ÙVA=+€>Yl¿–È‹ŒLäq¸#Ãà¶Ú‘Æ·åóÓZ£Ï5Ð&`­•Q«xsÛu .Æå©6Î)ðUû·ó¬Ð<âI¾V¨EK&”¨ðêÂ0ÅWëT›­ÿO½øî ˜?×ê3¥,é‚ ¦S·zŽã È·òY¥ˆÂ{ëm#–K‹¸´'3iå ‘Óh“´ÀÍ! fTíì´Òªd‚]¬Tk“ŸQX(¡±™@ ô9“R*Ö¯ Kÿ0xçȨI÷¡¬ïiµlÎ×Ë”pÎÍr $lØxRŽoë{­”ª=N®mÖ¤LØ. ¦*ò@“@Ïò:ÕKÖ¯{‰m—Å"¸E³æUaPYÔ{’À;_œ¶amÙÙÁjíâEQò }+©oñ0ã ¾ .åJåãÕ¯ Càm‹7÷ãyÆ$N“ÓH¥FÔuàCSŽ")P÷³†å³zý¬a}”aükMøàP É—X/¿è'Å)‹w=g¤ÌhýÌW“†º,?´‹¶NËm|§‘SC,Æ@PŒßj’UÐTiìJÑ* ;#Áª´µ±æ »{û‡¯6‚— H ;Yñ/„â>Y:èÝÏ»˜M½e¡²%`·BP÷Y$g¯ú¿çÞA\I¼‰Ê¸Â̈́ܗ6óûé·Æt¿ Þ)ûíýh>Ä뎰{žÉËeÜ(è³ÐZ»Ö¸¨Pºð׸ÙHŽèÂHeZBÈì†æÕ`íJ†7:oêˆáF¦x¸³¹‘ ª Ü]@EÞ4´cÔÂágü%ƒ–¬‚ê8f`-VªL ö¬H‰¾äΚ9ÏSÊ“.A´b@´’A`jX~j‰_Éc£±NÅßfp‹o Óºi|;1øvÌB­˜BfÏ;—1È\…Z1…Zf¡ãc¡c³ïÇ18›8Ç4wl5C‚c“—1….ÍB­RLïJF¡RL¡’QÝ=}…È‘IzßôÂóõØá?n¾7@´üÝ" £,„'/¾Bt梻uÓ­S³ÐIL¡s‚PIWÙG°ã”}ÞßõUN‰ö¾·å”Cµ_ðT¾L[9ï£v)%Á|}.¥¬¼ïg~éZ=•A(¦«¼ã©ÜJK0ÏÄÀ÷t•}ħ¨,eWˆÛGAP‚ϸÇcpØœŠÝmFzì ^n¡Žií„Zëý̧ÝñLÛúÛ=Y¶Ýc/Óôòxé^û{y¼\/—í¥OQ*ã¢âA¦ZLªöõ'¼Å'¢æn›â>¦3oÁ3xlšèÚóð4á1àžº {Žø§{‰u÷§lTÇíF»y¡væTËm÷göidÁT|¨Vy ØBÔÞÈ}"bÄ–ŽL “¶BÍ/ éôvqÿÚ¾k©:b5^ìÌÏQ )¼H½iäNÛ¹”ŠˆDÔž`ƒÏB]£L;ú»Úbšc®ÕªFî¸6ÜTmºm›gp©Û籎Ô £¥3ægí¯ï¤kórë"ì£rFØükd³ÆPÄÚdå8/çD¸ÍÅ/õ`C?´Þ-Ú°Šš|àiÚ~*ÄEáë爤±¾ <²f§wܺÞÑÝrö`÷xúð0ŽËS¡¢È–§s7eÊXÐ6(gõ#|ü¹`ô³á¹Å†¨.ÿ¡êÃ@»¿¨JâçÇóüüQHâóñÇFpN”9 ƒœ?”A<ˆ¬Ì!…¥9ä\sHâx,æ†Å!(HXBZβži,æ™Ý$ži±G>±8úprN~VÀ˶/~kɤ¼æ7í(fdÔRhÙ"ÕM«vå,8رK¸vce]`.JàÀY_ý&£Ú êµ6¥å(«Ã8¬|֣ň)ñ ¯MEÍH±¸˜rÕ•)G3%o‘ß»3i«çÒ%?(«¾Çµ)ˆg:ìi˜î0ÓIp+3«S=œéJ`:/VdºÃ•™ŽWeÓ¥Íȱ0Œí«c«c)|ú*ùt\}™Ž¥Ósòejñ‰7!³òåZä§©?˜•/×%?#X=Œ•‘ üZ–•/cågšáô±r.âeYðr>”—éNK^£ðÝĨ Z€~èTŒ½÷“6s.ëGOd—â­ô¬ŸOÃú­µ°¾¹/|0ë·ÖÅú¬ÈúùUY¿Ëúi†ÓËú…E¬ßrY¿ðÖǸûŠòó2Ü+·m©Øw7ûWç_תðP6‘z{ñz ï®ÈÂrçeátcêåá½#l€–L¼÷P&&ct„‹}×9‚8.öì4L¼—†‰5¼ÕyØ=Ì[•‡%£ì­Ê(Âðïã”Ttó1ÊÞ"FÑŸì­O><œO>¤æ“ýT|òa |b¸>˜OöWæ“ñ|’‚n^>Yh,Q%Ÿ$XÒòI­túP>¡óªT|’fg®á=„OìCñóɪ;`u¬çã“tóòÉ¢=°†,ùäA{`â:[| £ˆóÉ4œ²Ÿfãk|«D\Ê,û«î1õY®‡[RÏÇ.û‹¶™hÁ/ûÚg¿Ð‰òùEœJ§â—4»Eàø%âcò`~Yuc¦Oð=ü’Šx^~Y´73@K~yðæŒ"B=lw&‚J¥Úœ¥ÑW4¼XˆÛb5n²+”d!ö`õÀÙªz¡c!N1œÞ}Ù"5JC–Û²Åj”õEòr¹;êݺsúA±€E^ÍÞ †éî09üJÙ¶ºã¹qîé¡É–öç=Çc?5• 6.ÊôCxª˜À:¢€Ÿ¸!÷^VÃ"ç-?ì³Ï«€žÈZI «w³áh2Né1–­€q’Ÿ§ˆ×œxAкrêG$ï”’ÁbO­|Bí0SÆy™„|¦‚0ËèËNdå…‡áðqåæÜá1 _ÅÐ2ñ’ÌïÄÜñX6Ø)ÞhO™£pMx[KXΊÍøÚ®cQC먅â{>ŒAAÔ‚¦› éϨuPÓ­ƒ „X"NUâêù][Š,áðâ°¬€„JxÇAÎýNñ ˆ–µ#R ÕÜF°!ü¤"O²ÑX:’r5ë§r¨©£T ›íøøf€ÁPLvqåöU\v ñŽÇ”Æ_h† Á Ïý0¢-bGÊ! ޾– NŽ‚ÏU7]£ °N‚mÇëÉ¢f!ÒŽ"`~…íÉ+ C-Øü¬[Û!îKØ4ŠoÃ-úôºáeH_$ˆçC÷D8ÐZQÃ{Ë10xÑU,Ðúcx§DHµkYn8ÃŒ;‘-”0É··,7l[wæ?ÌÖÜLÙ%îR€èÛ,bGͦ‡é¼èlÝP2Z˜‘8£¸cî&ïÒ_òøR–Œ,?ikQŽöçÙžšg»6ïñ2{b-³|Û.ŸtÕlÚ¦‚!´E´½Hp3z&âôEµÊ”‰ Vñ&vÃô»§-¬2ŸO'W£ÁíÊÐ;Ýé7;ÁL? È×-Àüm3˜ ¿œÇu ×~;oïoc‹]2”Þt2›á6#¸›€È´Ë´¸Œö/Ý ¯ç6:tþh´7»¿ú·ù‹Y& ª€¡g>ËÏfœu=ž9”o†FSÄqºå¾È/‰oD”g‚P„Šd›!Ϊ¾onD#‹'n†c¼Èk¶³¶[P;’/(¨}É“ úî:ÕÜ»Nn‚y”Tp×<H*¸g™€“Jî[Æ?Cq×ã– yôàìÇÈ&A ){K³|ºúOÓ+Dq︨jç<{m ,g'gÈj›ÑâÖY˜yÞaY³5)£$çÖŽÝOñkå|’ó‹È¤ìS÷\<ô«(§YV„9ç0Ö¹øXH YÎevuñ=Ô~Šú"ÒºD¥¢‘¨¤@¢â"q¨?¾Òè„¡QÁÀ€ú…‘Ù³ =)š½(F‰²"2<çkp†”Ï÷Þœ¡Ž½ãµ Î,7˜ 6(N€{ŽÜ¢ˆ,¿:RmôÙê˯ ×ÞÖšÞfÕýñWIëá+˜E{Ë­¡­v†Ùÿ€&¶>ñºâ2s¸ò2s¸®eæÕÁŠËL¤Çl é­Z2pPÓ.ñ‚ 1¡n$­ZŒ'òŠxS’k±›ξ®a¬%‡úã«tph‰ŸC{ä®&ñ¯†c1I³&µÐ¨õD¼'¬'ÁÂ%%X´ªÐÄ«Š~yøZ0_¥ µÊ/f>JTa2_x¸NÆóòNŠ6f} ³iÍÆ0Ãü\²«UŽD OÎ&4¦‰l’µ´>rü€-¿Oÿh[úDZqáþÁF€g½d±^Q=0ô`¢ïÍO¡=vVÕ ;?¥ö@‡žL{X¼Æß]› ¹™BêîÙë±¹]°Á þ"™{œ(s á²2·äM/ÂÏ8õÈ÷€ ÊàáøÓý¨;å\ÕA…ÅNfCŒ½ ÜÈòŠ·Å,ËëtøéfÜPÚ›a0óŠæpÿÇß2cÞö8/¸5bSÉ-R¬øw˜¥J†™/Цi˜~HÕ$+Ö‰¾{4x¯»U?Š18õZ”_y-ʯm-Ú[Ù`Šô_q?‹,DáÁiEò¯KœÒ”W§DY.M¥1›‹‡oeõú–¼:kXÁÙ¸ÆÕëÛ¾».8ÒeW9øÇÙvÒ^vÛé¶¢–4ìñÆXJaIÐRŒaM; «[É¿YÁÕBaY-‚2Œ=pçfÚ;‹Ïlƒ ¹ðYKq@‰Oª 3PågäÅß½ùd:Û\¿5m°H´¯Á !â¤kØ œõ’„µ³ìU/còU;ænÁ³¾ã©4Ò9¥hNž8‘Ykþ`œw í?oú­õTù?"G]!êÏbbùÓ©ä))fk½³¿õ Ùß 2­ÞÍýSoŸçúãÏõÖÓÌõ4ÓtÑʘÊ@™årKï™»ñPäÑïº'wë‰'7¥ü|°Q6aºw.SL÷ê×»Átž´æ_Z‹~ÖZñIÐI¹x§¾ªðDÒb™`Ï?‘´è\.#-Zš¼–sȧTaá?‘rN3yeôÑQÊ:Ô­fñʶ.Êׂþðv0Æ[³t/‘pñŸ¿äŸüüÅ0m«ƒ'¼ãc¿ŒC£bø¤G>µÐÎ<´%•Ü3/Þ¯~,¿»òQÈîÚŽBö—; 1¢ÚAá9¬6Ñê]{ƒÁÞA0ÙÑ`)j½mб\„€éÎTŽ×uÊψfNÙ˜0„wq|˜áÜ¢Äá˜K6+Ö1Þâ‰PÖ²†ÉËx¸ð@”3¼ËN½ë‰@çè8ÙÃA¿³ƒeœ×Çõ‰Üžö páé_JRƒÛÍö Ç¿ÂC×`Ñ(&9} ›ìWØ[öhìx ÆñˆšØZUM”Ž×b&x­I»úkmåqêV°Æ-åqõG¾¶å•ئ»)%§³c/ª€«í ‰è»3¤ÛÚëß—k˜ßlKòNû=߬§‡Î4oüV£GŸâÆ~&'”U©L3Í´-­%¯EE^‹cIÙÀ;¶%ºg^¢\t`æu§}”c4†§6­ÁE&"':— £ ¾ä³gà)u‚ÎßG'0î[»î“†DY¤SÄo2ŒD<kCû(7¯iÔY©ðæ}ˆ°¸\‡°°NÙ¥´ ˆp¯\ä}âã?G¹@®“§ç«5¬~l¾¤‘‚ÖøŒÈUÏŸó±s.¼ÿ=ÄÊpŸXÙΧ0Š=ÞæéÉK«¨+æ‰xɺ{Y Hsпï-sçÇsÆ»Ëx‚“›ÅJžû,ú~É:O>9YÝà˜x:Ýz¹¦œjáLbã×ÊK’‡S\K{(û•Jzµû¹™O¶CVEï0­x~¶rì¥Âúb/Éó3÷^¾öSŠÞ눟Kt(aòh׫­¤ù­•ÞÅåiÖÑÈ ŸÇWi$ôšTX6øÐñiýûa]`9ªíép<èNaÊšfä PŸô£•Zqæñê‘éPC¤~Ç®'ðÔäîs“Ç…ÌpY6C F68µ¤-é_c0lmèœëZN˜*éÖ†ã÷͇ZR ÖyßtXç}“l¥Í÷Áuw7ÃïI}<[­537¦¡bž÷MK46EœØ/¾Y¬ÃD †`k/ŠqlWZ§¤á”´h¥¬Ÿ5õ¥õ1,DJ†m­Åôg0mËÝʯë~}ó¦åÏV'‰?[¿F¸%B(Øle\âµÅÜ)ìÕ â2Æúx²ÕIÍ“ðûCxR—@À‹eLæ1íª«ÖÞÓAw6Zÿ¾ïNK Ïu NìnÜÞÍÿû €ç‘‚¢eÌ(Ý Ô?4¼ B\]q2‘ík‹Ý¬ÊSoýp)¿Y£KÉÍrä?ËßE“nRÚ_P+wÛ¬J¾d·º÷£í²ÙȮՌ,è"†º‚*³´'óî(˜oÁý Fü5‚}æsyh:˜ Ð>ƒŸ^ŠºyU×ìÀÅx %?i§¬ ãîí@¶:8mmmµ±.Íõ*i%`Ë;ýÅŽ+n n˜–äˆ0+¼-íøI¬rã_Óñ8dо2(¢1C¦'¼0[Ëç‘z>üCåù×k'½Um_=\è?c˜cGIpto /ìHÈ.ïÇJŠq² %A‹‹@Ùµ„¥™ŒF“/˜lF9òË|r_†£ÒÙõHBÐ,½{IT w¤À;—üEÌ[M5%_Üug³Q¼ŸÓ ç„Lé sPaZg`6F°)Ç ˜ÚêÍ!N1UCƒ6ÍÁ|ÖÉÃÄØ#Äy÷ÁÅìÕóÅ„û9‰ìŽ'M•âQƤëéäV¡I+EÀ-Ú—b¾Îåt¡‰Ñ(d0 1‡‡íê' 4¡¾j×ïœáîmÐgÞ/÷Ÿý9nÚu;2r÷qß½,^À¯eÑ2¨ôÁ?†yù^O0'ü9-‹7eq¤_ô~ídQi Z2]¯.ÓÃ+~ /§{ƒCùÚËëŠsè>Ť]©(;ƒ×<%Šè/2êÕ (ônåÉdô©ŠÃM`âœGQ9þn”&Ìl“ÑP´£ÙÇh}%k Ûz.U…ÏÙ~ŠèsãMë•jUôχ8õ·fW·×Ñ4rU]Â<|ý¼³×:LwšÚöêžôÌß±’²ÿ¨+uœ>ê[-7$3’LïÀ.CÄ'9,š×˜éÖl6üš“gÌîð©^)Û}®Z°ÇŸnwÍÄ^[®/‘gI+êü!ã$„ÔÈÒ“Yp¿US^"»* ¬|ÏR[à~È&Á‚m$/ÌJ¹9ÍLoLr< "Èö‡ë›ÁÐ6? rñpb–zj~ÐÝž‘û,Î`Ⱦ=¾LùwùáïY! qŽØ sF³5­—+ì‰W“â&öT5œÙÏÀñv@l<þ¢·/~ç¢E -†sq"^ˆSAŸO Ó©(#²ó,‚œ×ÑO‡3xƒÕƒ~Ç=Ѝc& +® ÙiÓb6Ê¿§ÌyÌ>->LÉÄÎS«Äû‹çoÎ4ï/ˆøyoD_œ1óoÄ1¼UÌ#W·77&f„M¬†7Åò@YÍ|H†¼ƒ/•~ eúûU­#Êô)þ³žOg°´¹ÁÕ6B&Oiwi}Áø_·Wˆ}|3ÍÈÚ58ìÆC±,«ŠϰyͶµ´Ãñ|*·®"7$á²¹( Ç7†… X~-ðµX®V«eùõD~=A¬7¬>µ,ÿöWq·_ø«üW‘X¡dðÕ1“×âÃíœ3Á÷bWçZ—I±† ÚÓ…²ïÝ<" =”ð\D‹ˆp…‰·Ém«Æ?#7×\¤,i].’¤x1ŽÇ_Eô?·#(1âèî"‰0–kÙÀrbÏjs…M}ˆ%£ËE:f›‘ªGcDW·R*r™EDÌÇ¢ˆý=Q=Ìé7´~§ŸËBŒ© ‰ 1AS…8ÅÓß#JjH6ŠRû½ýM”ªƒfƒa]€°1Qdž`¸“ùQx2Y›?añ"‰tJBö~BìÏo¢óÑå(º€J?à íÃó8é<)ªž§¯1[L¦ £S·ŸÚ,æšá‘æÂ­cÒ½¥£©òZ ¨"‚&å§åª*ô*bÙ€>ÿ?EP7½‹ 5œ˜ÞŽq!•ù54¡×09ïWM… Úã‚UA €Žûða ùÙ&Ú1ϼEB•Ixû„X*þo°ê-ˆo­ob"nÇ7¢˜™?äümÊ?0ò·3ósæ:gî`æ•si®Fœëô4G.±É_@F9OH^_ä«ëçPþc#ÿ G]7c®ß¼É]×­8×Ù™3Wa“\¿m@Y1 Ý]©ÈË+<¡pœ²,‹00téßĸTz¶ %ª°šÇEY2– EA•9Å·²ø&“|“álH¨jÅ»³´Æ<9zÁnâwÍdø…fxàaøEÌðÀ`˜žÎh0Uîx4NGóÛ1Íx „šñ ( Û5?Í€CD~G3 =&-¼xýö¨ûçîZ{MiÉB$ÊTÇKZjfuµG²ã fK»n`u]xŽÖ|,Y]3[{¸Þ™eõÎÙ½z•ôxHúEÆ9ŸÔé·ó[²@ “Ž.‹÷·4Y?0çM¨h˜>DðgS pFÅ,Â(ž RbÎ?UŠ]VfcÏĦ†g•S”;ºTA’ ´ê wr Å ë7Ñ/¼)Ÿ);䢈þô pÇßJÖÿfi• A$ŽS$Žý$Ž$š,JÙ©)Rñ·¹oëÈL9¡HDR$ô—I ¤Ö‘æ,£áŸl•å„>»F[f¨N ùH„z€gd°Ð‘÷€¶øÓÓlÿEW JÉšçì †>^Âpö’‚EV²;I´®e&Û¾ïqs¾› ¿bÞn·ìð¦HñŸ”™×‡@‰,hÌâéÀ6Udædô`™UÅ€Óš¢ÒÄxzEâJ…êÍ(V^÷ø'ˆ’‘¿°%ÍHm;QæY^Oþz’¶³ˆ½[02'‹ñWî‘ñhΣw £¬mÊK³ùŽ(§‚¨•ÞìPOaÈV0düßh6Õͨ¤0¤Ld¦‰] ­¿à½¯¡‘ù‹ÊZWåuVÎÚP¥vܬj vÕ³ÀÿÚh)ˆ—°})4-ƒ’^Š_ˆ—ÓÙpÇ‹LŸ)ãxÉ/ðj€ãM ²{ â]YüiTFî ¼ƒu²ÇÉÙêþ“¾“¤‹¹¸(`v,µ˜üî¥È"Åux!÷Q|ÿV×¼„¯ ŸÅ/ô×OÆl¹Š»…n%(®‡²37©þûvgrý÷±l\瓜´ZB© ÁzBjzQçPŒÜjQ‚$Pû–áWïGW%`f 2ÈŒ=ïŸÐ4„ç©8™_Â"Z…’îëÂ°× ’ÐB’XEYLG³o™ *g‡s?Ö‹1ƒ ¢ «Dͽ1u@‹PÝ0nsÙäÕæÔìB¶{‡9Ô2CꀤI€ru+ î» ,ŒM Œ†="‹¸âѬÛ\`)L.¦×ÆvŒêz–ÞdJ(s*RLiÀ{Jð5ÒJn>iRµ$‘’LàÊQÉ“¾i°ö§2¨ I‰ä¦ÉÝŒœY#)„9(x{‡›pËÕ„1&ðo.y™;zØzbþ„ØÆð–åžc¬VéÈu3ƒ©Oht¯og±¼‹ÅÕÊA®\H~ƒ (¤f±t±{gÎ…ÅzÞ™Áñ#<¯Ö–Ö#nø¡,I¢¦ „A^Ffø?”dfФ⃱â¥Àãy&e‡K5„‹0äZ šÄš°F\&ÓÖÈÊÕ©Ž ¹[µÎüH>Và?ŸF’»…¾;?M»¿ìÖùül¸Fs6‘“M*•xRÉb'1uéSTãtKoñÚ8"_æ¢:,5©ãòÈ­VBz´˜â,ngƒ¡¼ÀÉ-lkA(·–/¦.´ j¯ø¸C¹HÃâzLNd˜U²Ýíræk¼Î)ñ´ re–Ø’‹0< Y GÚ× 9rÏeyk‹þqpáš|Lî¼fnОW³[>e…Êÿ¼=Ç­Ÿëž¾Á`æã.yïgÎ;pó©IBÖ÷f6EÖµ¥=š\D7Ñ×ÿ6[sj5“‚Ô±ÐìÜ%¼åó öÅ„ŸåÖn H½>Òg«ê™D_t´‰|ˉNò¡v“[^c͇׫@mòî®Öè;dÍA¼SH}w>½…ŠçâÉåp4Ž.žÐ]ÜØ£‹xOÊz;ÙƒO†ßã÷¸,CuÏAç²ô*:~-"½?-Q°m:‡ZswAëàê̱©b?–Ç!zTÏA«¿}Kk©«Ûñbt3¦½K˜ ¢êU•ÂÍCiA­Æ§Ù7ÃÙbtÎŽ0­0i«@ ¹ß•×…^q‰ýO ÓÛ÷ã¨(ääœÄØ#5èrKBî»'•¼e¡èa6îè[A½4­SÜ[yúl–ôÞ¿¥±5:Âhhc«ˆJ:K—Û|®7=‡óh½-›Àb€¦¨Tãx3;æay-Gs&G‚¼ŠT£˜Tnf¨õP³Ðf!¿*h*hóï¹-"èbbYžj¡š[¦1=hE2q†Ôæ#œÆñ¼n6½š ¯é¸‹™‘#õ|ˆÔpbR±¸-ǃ¸_pÓU}Û¬T‚ZU®EØus©MúìuoÐkuÅí¶œ@.‰ÍÑ„ºqª.+6,T`}1º$ö†E‹ÛÙd.:ä9‹ªôëԳ殥òódþy:û8¿žG,_©É<{‘V C<ãêv‹Ö¤2gýHâIÝ5]оmÅZ† çòÚ'vYbºfeW™0唩º+Çy™¡ºk×Fx{ú–ÜbËFÂÏš\©Ñ¥Ëqh-‡啨þHǃ`Ǫ3×öîöïŠýeµÏ¨ vï¿Ð®™j} õ0©’žù±7¨Ò»Z~r×:Y~;U~?x˜òÙ‰Óã¿Ytsó"¡Ù¥«égT妗¥éU©æ«~øóóm“+Gåjî|Ý= î&Wž>~ ~XNMz²Ê:ñ3Z@·©bê Éà49v€—|ÍnÞƒQX°šìëOF±m¾¯¦ÚOªQÈ!i¥Vyó]ûƒDF–|öÃJæK"¹J6 åë(+g£+%ùêgKVÒç_ ²Yh•ÛEGeÓ#“ÄW9T_Þ‚•ÍúÔr¯1ÆkœÿµZùÔ ›Å§òzÎÇbiDE|wæ#íÎa + kÿÊs}Ã\_"¸7ÉW.Ìîªß­»VÏF·~îÒ]¬@žyvO?'f·¤s¼’sXØ}vcöYù¸zêG‘röS›ñèæ7\TÍZô¬é9:åTÿ(ÕÀ Jy• ¦•Ùe¾ügòÜĬrO=󈂔(J¢[*Áâ`£Ô•Á½°&¸cÖÝ%55mIžÌšø7Îm‘ä›bWíËzš h¦úOêS­¨ŒyrŸ¬êÉLêD9²™™Á:ïLÅðÓtd™ÿÊGí/ãjU5pôÈ®¨íÀÚþö$eŽç¨ªÌÿI `UBÔvEeÄ^u#PPÀ$؉CÜ~£ñ8º‚ID_©QÏ¿ˆJ+±¢¦=¹Çð2UÉóhžÜågø~>C‹ KùQþF‘• °ûyCõXÃûÆ÷<1Ïz¯ËâuWET‹-ôS DØüÕ%ŨÑqì9×]P ¨ÁIÒÀ‰±î *ö§è~É×l³oª¶[ûÝ®ŸŒ?Òií£ëß³ÅÐz/áßüïÁ<‹ƒº‡ÍdÜxE¯^ÃzÿH^ÜÆ»× £ÁS„ÀAié.Æ(óËÀß%­îëÞQY´ù¥ßzF‘YñYá~¾„Yw:Ëø§Ó=õ¶.Ý6×Õz­~ç¹wN‘/Û‰oü<¨°át%øôAa^µŽZ9I¼j±çm\þ«Jc¾ÌíD9ðM‚\VæD9âÕÞa«ßÏ—yÐë´ì’ÏUû³Þù`ÿäè¨%›­ÇU•TwŽ“ƒ/0ÄÑ~v;¡h/ÙýØ:Ú{QÆ×îózíu÷eúƒw0H»VOú >ú·ïu,9͉‹2Ø®=˜áuÐ ä+}ÆUKY·T"Œð¬ûχ­½ã?™µgÏéµ0àד#z5à†S˜ˆ€ ²xwÐk¶uì S鹫±aðô:Ý~g/&Øj÷é¿,häbw0z´÷‡‹¡˜/†‹(q7¿5h ûaAÄÈ,Í:—ÕоJu±ž‘ç,€ ì=Òß:†ÀÍÌr3S™†¸ÎÂÿêú43 ¹ ¬[Že!åkÐû†zCïýÇéBúÛ,#ùfYlÃÇR}„²XhÇ,ho= „.JUz&œ¨ÂLàËVikYɤʠä’nàû2,©wuÙU/5±–õe}Ó6Ëâââbè]cy#—6d‹.‘TZPÖVI÷¦ùw3þ:«fáÒ*™Å˜eŨ¯ïQ érm¥¶ÌäÏç°Tàã;•å¾€Ž{˜‹@×ÓÉt1%'Œs<òǽÅK=M@ZºÅŒ²1©ª»!ÁDTD~ e?øÔQN­,£+#8;²ÚãP¶a½Æk|nÃ#3–VÌ<Å£W·=9y11É”>Ôßî:~}ª§=£çã)úé?EÒC{ÃPa×í§cQÁŠè)4Û¥ÖÛ/´‹ãq½dþC…Ù•šeÞÉýq¢ãÝÄtÉu]² ‹ÆŠUõÒ)õ%…îñ®£:HüºoÄo6AŸÂÙt‡»ž'ÃzðºhGì¦I|^ŸŠÙ”ãU—Ån¨¿Ž¿uºOìÖeJ}AÅ,…–,;ìhˆÃû‰tÄ+÷¼ïÉKNš±ycV’ ¶“¹A<ÙD]àMEO"J­7¯ÁŽ(ˆ/_¾ànÁnÀê£P}󾡻ž 7dJNÆ)ÅnsǼ¹±„ÄÆŽy?H%Æ]|ä†Û—¸3rlr‡·˜L'ºJlÝü4Ú 5ÑŽ<3¸‘½½°–¾@ï×v¤?6 yfº†¶"÷é25ùfÚ]Ħü¨yéW_TŽÇè Ä ¦ W6ýHO}µ\zÂÆüÒ¬$ ¹†3¿Šs¼!;‰9‘á¶4 ,Ù‘Û»RP@¯8WB&Û’‹e¹ÂR{~;Ú›—Ã< P¶h­Ä}pf$‘+3e5‰Æ÷ÏÅ4Aá, -2Þ0Üa¿cØÀÐ`´/Wͨ1˜O›@EÄ•–‹œß&•+Nh såé(ªZ ɰU™³¹ï-\ú#K„<¶Jì\:‡šc¢2Ô|²}¸—@ü›Î®¿³\e Hÿa$`T8‹?Ÿ€ôN)‚!×,ôùTa;­&+Ád%È-+”"‹ÔTþ²rúƒeÅüRM[i#‡á•›•ÊÖr#'!!+·º9÷,µr‚uçÂ6ò˜ÞÂÞ¬VØæ ;»[Ͷ\†Ž´OW]Á½õèfú ¡ƒá ƒ$í‹FêjþQ ^0½]$·S;;Iܶ¾U5Ú¶“ø@â²=éì žˆé ;9*[îÃp|©1ýÈvúMåœ{°i(×ÃÑRhµäÞú£Çvh}÷:b¯ÔNêøV¡Ç²o¨¾œ¤]R“T¥Ç)”ûÔ¹yš ¬/Ÿ.ÇS3#‹!Ý÷Sû¨‹ú°K«x0KÖˆtwS n—-S¹rËýÀÒ¯&_J éï _IN:ÝTw6ò IÜ•¥RÒ\MJ´ü5^Hü¡€…©ò¼ã‘—ì­œG¤ð'¤x¶ :tÖà\²æ±–¸]å­ëôžƒ­Žãd©?…¢ˆ~82Fäj}“ØNT$lÜ'• mGÍâ2 »ÊÕ9N«9¨åŸßRÿ¹g·DWëÝš9¿¥û]Y×Ï´u­Ì£·ö…5fÛ¿´boÿÃ1¹¡jF5æ²åêƒQ ÏíG=Ó!”²ÍÍF¤ç,øu,Î;XœKm‰Í»Zœ›+½\'«œ%z‰y}oÅÔû5,έ»Xœ[K¥dûŽçö’´õiÊ‹ŸÄ# ÒÏkqªÐÅ~³¡÷¸&§TÈ«Ìr?°ú,G{"ßËè W˜æî1Ç…î& Wµ:ÏÊ)M›iuörY?µrÿy­NcH:ÍÎÇábwò¦wP¯ TÞ$½@à¦BìŽ0´eªªÄwÝDo§å¤×€Hl‡ö8Ñçe‰}nÇ µA¢û*}Ìî.TÉã(ÔuÞ7^Oµ…ôó8èSœ?Ïo ލ“üÙ LA dä@–2º/Z(>–ÁvžfÔUçì9;*§ÓÑT±¯%D˜¨Ð¸I$¬¹üC½ÍƯë\†Š ú½dÕšÜ@L*ù5‹J(c2º¨èîgG³d&œÊ¡§)Û!ÁuýÏh·(Xâ·$IÓ›Ä3uº\UžT*FŒ"YÎ_Eñ/ˆº.tyœ¦ ÇÒå›§ü&Qì1B£. û#1â?¹be„†ç5KTµ˜]ÑC•}PÙÎKt¸ÈetŠH<šÍ™º`¬¸¦‹ŠÑnÑMù †ý»#÷å8 ¨‚!bd¸ßVáŸL6ÙÇlÍY!”­eÇ©ÉI{Ã9æ324WÍâ¼öZG|÷V‚ç™›h†6!?X­Wkq\yœuáñký5 8¿†‘Ò)±RsÝÛ¾«º"įþkÇ–œªA ž; 裤™@Ñp½U6 wUÎ}i9ƒƒà¡9p6¯þ6tÅ¿HX }Œµ”r‰ïß^_g±÷šöî=9B/ŠÜ¥j¨"³‹£¼ªèZdj?ƒi¤…žÁ3o=HÀîX‹£M£Ý¼‹Vø|]…7ëbûzí&$“ȦÔäMŒÝ¼ƒ¹µÓÄïÖÈß×XJÉØô3c‘"ˆúe49ŸÎfð Øˆ ~ÖXtÁl¯‰öˆC¥PL#ä±v\σZµNl•±f6®Q“jf1j¹©k¹.hFô¸[Ãy« Çò¾s ±àf6}?Ž®c*F[™zS0v˜„?Ä9ð"ZÀ40/BSêÌM³¡% Ú‘¼X´• ëÉF(¼\[ÛÕºæB¼œÎ.#·$×ØÌ°´Þ-Ôʵ"ˆñn¡CoêøMÞ4ð|ÓÜEºeø’}·±[ ¸eLÑ)–{¹C‰‹²3÷ÕOÍ<ÆóNÚߥ¬ˆã"î7ØL2¿›»…}bElï(Oi_Yw’„Џ/®’uT²}üºnä–¿S!6ø¿…u§,µÝ‚$gÁ õuG} ©“œ€qeä–éu­‚&Ö Æï§h†µOÒÇsXBjé Çaz0$¼d¦†–N‚¾¾;®n6v)©hs ó ¶w¯¢éu„ôRµŽo> ˈ—:Ü…^ÒÕØÜÎF‹×UA)þXTSÍBOX“ù¢æ#¾µ{>¾/"t\ÂYdìʨI)©Ö9Äîÿ!ú¢j0b! ¥ÐÈ,:jÖe?—)e‘XP}_ÖÙDØT´8«¯Â Å:F¢Š±c½P7TÓZÒ’±% /ÐÒŒAÌ`qŒ_S#¹‰'ù‡Yè˜#Bi<Ž2Õ?¬á ¢AŽb§µÔµ_øfL fLéC¤)$ºíÔ$·.b¬\¬R[zsó„ÞS ÅŒ©ÎÅÚa3‡j\p1ù©êjl\ ~-Q'â…8uT ~^eõ­õMLÄíøF¥€QÎ6ådælëœR¢ê”µƒYOüù¬ÒäÓÐ9O3J´KkRžç HÁY£/LF7°y7(ï€ògæ$+¹©Y}ófµJnéœg%Ú¥mCžëáø­ÂЇ¼C`¸èÊ>&çÓÉ|Q¥p¿fΔs°<§cÒ€9ÇÅ ³@Ü´JL)GÉ•ª¼Ó L› Ó#²”ؾ!3ƒ>†ô!³“v`Œ¡†6†Ð’œßŽBe¢aG†×³­j(§¦àû•@Éhò»cr 'm]ƒÑþÇ?~Ýg<¼ž¬Ô«á:®:Ýçëçëóó¯>V/¤ \úm4ôº¹±A¯µ?×jA½±ÑøGPk†ÍÍ 4á{ø³Ùü‡¨=HéK˜à‡3!þK¦ùðz:÷¥ƒd—Ó?ÕÃBÜ?i÷^Ÿ@ï°xãLÜQ„eâ@X~¶Ž[{¯$`´* ‰AOëU°*9XN&£OU.ƒh2AcLýݬ^Àb˜Œ†¢Í>Fãè+MžÝÖsq¸¸Ðaß»ÓOaZ… @&\#툖DIÊF…Ñ51¢ÊãÛãÛÚ¤žÏ- wì`¹Ün½*˜Å¸bÂc½ÏÃÄÀÇäc„Ê ¡Cv3ÍO´f–æÖBPâ߀Gâm äôj„X8IfÊUe2ÿ5Y õÞ݉2¸UUÒ‰É~ð'G?ÒYÇá>Ý4<%‡­ÓžLímÂ-»¢Y£LúÝéaü¶Goõ¶‡³ÌLù ÿàÑIvyšô3ýŽÂ5XÅÜ×êà© mŸÄ  T.Ü$˜û^àŸCBœÂsÔ—eñª‹R|®Œ_úÙ·1 Žû„VÜ)ü½ Ó!M4²š®UP‚ÑÂù¼õÌþÜ.(‘ig†vi?³Šƒ‚ê{ CH¿>ãžÍ"sØßkTé=ûãéa!–ÝÃLB§‡ÏiÅi¾éIÑÍÌÝ{–H+oÖ³ˆt0 œÂÆPßžŽ´jÖw¡ã»ºã»†õ]7Ȇ¬ñ©Çðtv¦ÍÕã¾0ŽgÑù§ï5u`‚èNß—öoˆ—h7üHµžú¤âhF&4@ ÖVÉã_ùÅaÅcŠ¢>«èêÐð©#9÷ž—tÛGºî&ÝÈOx‚ö‘ŽÄè¢Ý\vÏG»é Í’€ñŒF}› Jt””(Ž(Nß–s±ŽŸ„[ÒÉáaª„Ö3ûŽjFUHû™T̉rhÈØÉ(Aeãù g6ÖËJ!;5§ôT2€²AQÔàãWë(ÌçÐñRÑtòÕû' eäÀ< f€Ù¤¾ÇwÏ”êw4Ù+Ùdk2«·,^\öÍæi.‹ý^öU›<6ûuû<#? nP ô×쉰/¢Âéaq­Ô*ɽ"îµ®ÉÏ­béT™îŸ?D¸Ë)¿Ñd «†ÂU¾†ÑE*­r&:Âs@óÒ?yäGNS–Ø8õyÝjKÂQÆ@•qd•K·iŒÈ‚E(3lµŠèz<{ÄŠ<[­&Ê‚Ô595¦hþF†• >2Ž0ÚI}!)<%»›œ–Ô|Qy¦Þ)g äA2–™˜ö%UzÁ]O°ػȴö ï">˜ {.ð*Ó€‰‡‰Ðv -dÛc'5HÚžAÒæA²‚˜È™å×—÷¶®Ç/'ïÛyßz0yßJÉûöÏ)ïüQÏ:Ècʼ‹U^Ñ — ôXƒ mÙñ†N< áJfÍè7Ñ-Qì§ ÷ NljʧŒ1ÇSîÉ!í§g¶)ŠÚvJ¸B¬‰èËñQÔÏ‚lŠÑärŠ'q0Šš*±ÓXR܆*N1lä*îUá°˜(1WqMU\]×ÌY\ïNÅ5Tq ÇÙ~¢¸ÃO¸‹©ú2ѹŠC7-Þ'JœÉ"Ð¥† ËÚ¥:-oQ 4¢‡B‹éb8v‡¢ QJ$© Ÿ§¼žxÒ1{^ý]Ž{ROÖùÏøûœÿÀ¿ uþÓÜü}þó=–êäùÏá¿ýùÏ¡yþs˜>ÿQÇ>¿Ï{¾ÇyÏò£<ê õQ½“'/%s³Ésø’EÜ:wy¨“–ŽÞ¹8|Mï­s—¬È*?ö4¦™Õ–ÉÓD?½Óq gŒÏc+ðñPÒΤÓKÇÙÔ™Èßá(µÔ;óà¼÷9Üx䃌ØÄseë9ß9ƶâä×<Äp‘PZQÌÁ g4¶Ý<4R‹ëÕŽ:Ú~Ò®³7¥":ämoñæéyò|¿ó÷¹Í#Ÿvä¿ïyQ?$â$| ð Ó7(‡~fàÛ^M ¢pJ}/¼ÛMzpWŒ‘ºméɬ‡o¥Îœ½;kè‹-WM<%ª D»b ›aOÞž‘·—λåà.ÿnš)9öÓ’Ç,bÕý4këï!÷ÓﳟF„sn©íŠûï¦QyÎ-'sS†Ð­¹¼ûì¥ù E  r0úÅçÙÝèò–±“æ*Ì·»•¯°†¹±Õ° ʹ·•¯ z¼­U·‹É¹³“cSëðo»©õûÉýdìÿ}˜ý¿ 7›´ÿ·±¹ÑÜØÜÿk¿÷ÿ¾Ëà ±ÿ÷æ|XžàÕ`4W g¾ &‡¼͘Ä{ k£BÞ26Vc"Œ1HÎà-ü›tñ-†¾y‹0oƒBElT!tèõOùú.ƒÎ 8hiÀ®4‚ù…#ªØ(YƔќoSôá·EŸEïg·ÃÙWÜݼó¶(ï7ÉÍ™ãJ¸êxÙé]cóͱ顂fHbfhCÉÅËáëç=› Vaª#èC÷(‚t²%;PfîvÍŒ;T”ZÅ9¦(eî$© t:©·ü™ÿ43¿0Ù0ã¡dPf¦Ah}j–0qb–b:ËU·J‡2¼Å@:¥xßö‚e<¼í©|F‰9÷å…ÊIˆsta‡§Ét2ÿz-¯ §¯Ã«!™"ÿaļrÄ€B‡Ó]Ì“5Q–VœºÈ©ïµ'ƒ¥ÐmׯmWBÂ/‡Gé0|±L¼î=ÑWÜë”Ê'Nœ9 çõíx1ºjF¥~ÿu2/úozº^P+œ‰8‹[á ëcPƒ:&¨ 0Å“ÿ¹ÎG•øïnŽ8Æ*õŒ ›÷ÖÁË wpº§b´Îã ÏÎ[ºЩEåqèLcà®p§{ßBþ¤ä礼Ön績Mè:½-°3AÿÇ¥¿ýM”øBSaHÙè•b›^öÑ“ùè£ùQx2Y›?)R9CI%˜":<¡[Ïs Óp9Š.ªÑdD4<ÿ ’z¢F’£_0gL©L‘n¯U(ÃñX¼´T^P®Ûy¤º}!Ã뺠rªŒ¬Æ$8 ’,)¾B®[ / ãß‘>)•é;Ñq†PeàûÍqêTʺJ‰—nIØ Ò/¤&é³³ ÒM‹ë3(¡prV\Âù†ÅùY"K*ù¦J>(œ)A¾@O8üŒ Îø»øŽt‚Æ–¢ñ6Aã­ÆÛmÍG2öÞ¥}ë¥Rµ"§>,•^ÐÍî·øæÐÌu˜ÎÈ\/ÞAŽwo^úö.:”©ÿDÒ/Tš¹þLçªË\-»Œ–»Œ†YF+UFËU¼ª‘m VTÖ0U ÉZë%Øa¬øO]jKH’¡±†!šT˜ú¯¢¦4§ŒETÍ2] ‚ÊÔçÀ\´2Á |2üDñŸ’ÌèRý¥îR±Ô¨Ò®ãÀ2âÉ_OÒªC1³w;›Óã¯eÖ¸#v‡†9u>Â3%M3š'Öv¡ôuümtDG‹¯Éß±G[¢Ç£)ZiÊ®UkØjÛLŠ©Úƒ¾¥ˆ•#dŒ>Epr‹gŒÂƒ§lö –jµJ1ùXçʸóÑÕd^5S0É®(p`6©ái§jŒø~ #N!±ÚžÚÒl“HB0Í6¤è,ŠàˆÓÝÞÜ`Dú8?Ûa¬ÏPÁV½,aóÕÒ¤B~”ZXË Iÿq °‚3Œ)fÎ÷ãè Fýøëö ä K“cl.GhÔ˜ÌùЯޏV`€'QϺ¯žï°žïT=ßQE€ñ‹_·Œ©ò¨ÇNbŽrŽL“DjæíR“ˆYkgUTÕ»L «Ôؤáígg›Tã#öûwïÆ#UvÙè5)¸òòÑ{÷†™]ÏÉÐw›Ùƒ­¼T–LíÌí]s­jÚ3²{UÕ¬F©å ž5“Ÿí;Ö* òRɨ•ÛÁTy˜Ò*,G‡(YÎñ^-KôVóƒõ=¬ö«I:}ºƒ¼‰Î¼Hxó¢àm̉)õZ©»RÏÅgìÚæšÐÞ?—K“T¥ oó)¡—^D8tÐ6æÝBº!É•‡yâ‹ (¯håtVÖ{¼»‰óY gG&Å|ôGþU¬Æ u |@>#ЛòF?¶îåƒyÞ£³²®7‹Ô5”eGœ£6Q;‹áÇ(ÝüÐþroâýWyÛŠ:f1>"T¸ÚŒýÆyCÝ>™ùáÕ,Ò °›£>šo)Ó0Ç ÕÃDZsgÕÔN ôë\ž]a¡eÇ] õèÝZRŸÓÆ'òÃû+ê$‰zˆàŽðä«>hRÁbÞG´ÂâËÁ0HFçx¹$«cF c¨ËyÆ:0§d ŸUõ¹DÝî¨0çPÞ¿æ‘IgŸFÒAßÛEš‡øF‚ì•àh}ÙMðåÃO‘<*ÖíµäÃEˆ‚eR¶ž úZíï½îî—éo_-Æ;G¯÷ *§<çòÁÉÍp.·Ï }´¦õ)ljŸ®Ü”mýÓ àÊ-ó¿>}vX'ÝgòöÛkåŠB÷8Ò%º`òÿ?î)}~†Ò´€Éb Jø“yÎB;:äš@w^Þ€Ëî °ô²þ–ÓK>÷Aôg(®ÓxHMoç¢!ô&@¢cdòŒu”n4~Ô. êw˜e|U)ÒWêÞÈÍÅ^  ‹*èKëé¿®ªñ ;1‘—ú•E×ß™QŠOOÝ¥µžw¥²ËþÕd´¸Å9”ÏÝ^ù÷ÂÏ‘Ž-Ç7{9 -Æùÿ|wû%üÛ{íŽæÏÏKL‚¶·F¼~e«ÛÀð/P¸Ñ~¤ÎËÒzîÂzj_zkZANû{­ÕTVábL=+”†Ñšt‹ŸV:Z#‰ÁÁÑqÀ/aÙTx¬0½• ·÷:}ÏêóÖþÉÑQK†[ñvSœHa‰Ë{ÌrL*ÁɺGË#N)V®¬|ÏG¥ô÷€äsãáBãÉß½!ñ²ÊÉ oïõñŸe¹õQŽA‚A_Cèv¾šÑJ¼ú¡„ƒZ@k0… ]¨,ízídE `àu¹ˆ;(§u|¸,¯óf¢Ë±eñî ×>l9šê®±þàêìµ29:hïC1·Âþ1‘ýÖ •`” 1C˸¬—E³Ô(‹Fi£,6ðO½´­LÙQ´!{½ô?¦Ô°¾£¯ý V׳‹Ãi‹ñh”e®†úÇ›ò½¿0NÔŒ“ÂøÎ*•çWYl“ÊÆºm”ßR òºÆÂÔ)ÆI Cܘë?¬lˆŠ:Ü¢JAS |#Ý(U>ެeD? â i´=ó‡®R׈&õ>h¨—v€1 ²È_Wv¨E“ ò˜ÄŸì(ŽKªIÔ‰-I<ALÖº¢ÂÈ@U)—ëK&“óîRvõd&él™ÈÖðåÛHæ;ÜoUª‡Ë£Oƒj× M‘ØN“8±Hœ,%4’4%Ì@ž†£·¯¼m¶¥8‚zC RœCVp±Æ.wkeQ±pz„Žj•(¥ãÍí¤ƒ··py¬n˜º¤„¢}R£È.M†ÿL„Ï:ÂSÏÑõÍt¶Ã–’‡ä€/iÓ’ËKÚ^ÂÊ`4AÛ5]4\ÌTjy§P OmŒRÉv eR¿óQMààf>SìÓ’þ®=œGkf\Óí’q»Nw`dSÏ|¿¤k”Â&–þÍâ€Ìª8Ûá±ýKGEu N§7´•Ìúeå|¬­ã¸°´-`**ŒÀŠ9ØE„#QÇP’¤òIu±Pñ¬A$PºÌ *¤a×îCrv#äš-b]wI9GQâê]œ| ÚÑYÝ½Ž“â\šñiàÌj=Ùxæ’fhFV¡\VÈ|µûzPUWÂ9y1Ñhq»mÔ¬üªÏøÕ Ú)Ô^÷¨¹ ìã¾ ûëŽ&â„¿jƒ»jÖB¨8¼r&jX?a ¤Uý’bEÊPA/uè]~RÓŠÌ«#¹7™.¹®KRE«P>\´ NÞÉg8->@%Á‚úö]Y>¯›¾!ñáØn3EBzb§WðA_õ* ›DLaÃG¹]äÏ¿™Êï"¦êçÛÊ•OW θ+£äÛèùZžl±ÿGBèQ%°¦À™ß^:&Õ‰ù)sKuóÊR'v’Ú]µŒUIÜ£d2]'Šà¢ÁJAkþƒ’+Ê5rLKPdjIËŽOÍ ïï™Ô7e½š¹häìY¢©±D³FÑ\Dy².uKã¤8æƒôpw«pp9~¶ïRõ†·êûê>ö‘Œ%õP%ÿ_Ò©¡¯¢Û¤›E ûà[’ˆ¯áºBƱ¤÷2$ï—Òv£±/4ÈFþTžJydî %¶Å¥-Òô¶H?žàL×Ðùh IìQ[bÃÛÏÕD³¬Ún•„¥yÒ<²y•žLFÃåy½ä"š‘ÉigIÙûüÛÒ!Z¬ù¥â ‰´4d¶HPe‰#©ÿ˜ò Ù$äV¿ÄV`³å*,= dm.Õ:e#À´ý-Ù[2¾6$¦æÒÆŒÁ8­ö rdµJeabÙG¤Á2©H;€û`­ûÚá2tnÞVÞÊ£ÉþžÍÜ͆tzÐfÞ^®&¢‘»ÿÖÔ¼­<Ð˨¿qC?¢Òð[øöV’s¾£Nòï0Ë:jø ym~¬=W®kú(½«NÂU潦ÃÌ/¡§t’»×üX{Ø© !ê/?¾-#Üi‘!ŒéR:¯_𽲸à­óäΙ¶½ã?25…_ôB­÷ìljÛ.H6÷aº_ÍcWtÃ$å1\Ñ c^Ïk5ÒéC¥ë£\R Ãn“]äXR‹lIáÊ<²˜È=Öfm¹èãñ\¼+ÚŨ‘Ijöû%îÛû“I* ½D{÷*òDƒíb,s~ïJ—7á #d+\ HA•L}i¤$AC7è·J ä*±ÿƒDñœœNár©0 î%—Ör…ΡAž ìQ™`i eKÀS›i¤?ØÇÛÐŒÏ@JäÌV"fæó""Þ+, :ÃÛN=9}ÚFÕ¡ ÒÛKªêÖ·ª6us¸º*…§bj´šTiJœœe´¥!]{æ2SÝ{Ú‘\ï¥O4‡ÕîÓŒÅgÍ#|ÊGhýãøÊ/(¼áú¶pp9Ür”·EŸ¡wkaÞ]x²¤ ¿L ÔµÛ‡—‚j«»_ÍÓ!9£?Á¸÷D³´WËvoâØÏÖía‹ 9_µÇ—ºðåRÊfrÊÉiJN‚_LNN"9Q6g¨¯× á<&áÑQÁX±tÕ?ZwØx"%¼À©<óÉV‚¿ý©ÐÕ€úމ°æBHDq¸v"@œ)ÖŸ®©k†OˆvYœÝiН;¦x]½æNŒG0 q·æB#pUqcÇF%¸k5[ÉjžÜ­žM=Å&ò ÆK£¾Ä Y¬’[¨Ztë9!ôVÙ›eoaÙoë ÊÆk‚ßÞßÊßÞÖ¿L/²Ë'ïd×h×=@¥Aò\‘žÎ4˜ ›‡œñžòçŽúìm{™¯žÈ§>§5ƒbZ& ¯Ô–”šÊ@Å.G 3·êª-²™¡ufˆ½¨Àl,™ÃIæ±qêP¡Ãôè*üA|ž.¯ 2²öR—çùðjdz¼ÞvÖfÛ¶xÍÂøÞ†Š˜õ¥Ð]o”Á‹õeó u ß`%¹Enú©C]òÚO}û’øÐ!Ùê8Ï)IÃM3§çcœ”ÊBßDv"…žkp4b¯«¸ãפ¯‘l"‰'ÆkËØµÔ|<§-‰¬–olœ7m Ëz™Z‚»ÊQ5ß[¹æ{²æ{÷¨¹™Lßúêy6Z¡”ÌÖ ÿX’–άñÀ:éã'´J#é'ÀS¹×ƒBCm‘ùD(XÀ®1-È]Pœ¾ü—B'dp=¾ƒó˜ëGæ¿WnY ƒ?y©ç{€45nï,‡Jw]Ô(°Eÿ1{Ájà<’ÔøÆY¨]3[Ù¦nòÄÝ$‚YåLFX­Ã`zŠåŒ{nÍÅ~\”aÌ»z.ÓüžÓ9ÐÍøúùtr9â€Mö_ 'K7©9Jº¾¢™&”oHá5øÌ1µda¥?¿÷˜êÿà1e~ù*µßN÷Ý ÍÅM¿¹ˆ-dêo^ˆæœ±%ù&÷ÑKQð™t¹HC(ðMüêUÖT—¨¥w†áGjù­Ôž?zΚ¶O¤Ó€á›ü•kŽÕÇ‚5]ÞˆÕˆx™aÙœ$ àNvŠÄÓL£ƒŸ{"Lõ„&–ö|ÈCmíñÎ5K>±éRãþ]©–,4ò/»aõnÍwžeke,-ÛÎ1Õ­_¨ kèûéäßÏÎ jdèPh§·>TÃtw(Cg€PuÚØÙ›NþrÙ;K{#Þ§´ìº×Þ‘â§ó<{BÄ»˜±-øfFùh2Z|²§yÜ“5+¯SýsW54dÐàYÂ~y,§¨yï±Ï ¿çΞðN*ìNh ¡PæZ°“VÚñ.øž4ñÄÒí¬¦IðNïfeÅš‚dɆ–°¬·€#.È{à®L ¢8ŸãòšXy+LäÝ #‘r6ÄD~•¤VJ®ÂRJ)é¾¥•RèVJa–Rj¬®”Òg.YJIéì¥:i‰Ô‘Èq,í²Ã> ÕOäûé¤Ã_R'…¤“þ$àúlÐzÇsW´¯::éÏ»ë¤ô¢SXz£ž_'…‰EêR”gµ*r.Xó¨¤ÆÃ«$Š•a(µ T÷é$·e°Ô‰’ 7ÔGJ ¢«t _Ù¬= ’r¾µg¹ÇwªäZüšöItA˶OZßÛ>iý|öI}¹}’kT9'zsP5|ƒªáT8¨þüÞƒêל`<Á¶¬ ¶õ½'ØÖÏ7Á6–O°n_`F¦¥¸N•Š›MRþ«(þ¥Ã,£õšŸád(nòÍS~ãM‚±@ó³Íà—ñW‘àf c¸P”¥ fzM´G šâ=!‡µã²xÔªubªŒõ²itz¬P/›ˆ®ã¦£Ž}u’°¤²6Iœ@0ŠúõpqþAL)ž²5Ípeâ ØÙïÒIJåhT˜àèûÇ?ÜÏxx3<ÿX©WÃuÆN÷ùúAçùúüüÃÇùûê¥'×jO žFƒ^776èµòçZ­YoÖ6ÿÔšas3hMø>h6ká?DíAJ_òÜÎÙÿ€±;^Oç¾tìòašã§zX@ú'íÞëèý~[…¯Ã žhMì^ÀûW¯T˜9É­.)ç׬jêëc0݃Ü7ÚMWì²Ð—>K˜![„4BV›‚Ç-à,‘êëÕ (4ƒLFŸªä¶M&{•ãïÀBÁÜ5 E;š}„Ñÿ•Ž »­çâpq¡ƒ±v§Ÿ"A²õà«Ve4oÑš]Ý&åº"A“íD­AM ë¨' ÕÜâþ¶áîÑSH*ø²r`”¥Ö.f1ÈU0ÀRflkµÇѬ_Qbçr…ú.p#PjeÐ âÇo¸äŒF8)p#Rr¾«Y²"WãÛãÛšÚF4zþž…^âD00"iJìÓaˆM¼GqÈ ø62ƒ»!‚H™ñÄé™Nt^•&F ¡âûíAo_\å!µ§¼¢aŠÑÇË4 ”hãí#½”€ö"5MÅ`“oeàï1xXÕàAÑo É™&®¿Ù…°I¦ŸÀøÆ S£2D…lÍs4çâ=L€ÏQÝ"}KèBœ±Ê$ˆä EqFŸ ôfÖ¡$J]4„™š0i ,$C_húHþIÑwa4ày¸dÊFðºè2AØ)l‰è¢qL r($‰H6®-輩ERj8ƒu¤¢J¦Od¡âF†äPBÞ :¡9uÜ 6¤ J·äLJ`¦ž¬É‚CU0Ý,:I_*ÂDõïÌݡ⮑ƒ;„èPâ‰P&Z  Â%AÕì°/þ“ºU¡p‘ø °ÀƒÊWâ‰)2s¤_եŜ( Ã]ø3ª45”,CÂþiŒ.Õ/PŒ;>OX[J£I`’´œ{ 3ŽÑÇ£9 «ËLj47å YÇÀ¢²ˆªîüAÔ=ßÒQ3ã±1úá}sBÙ»PȺ¯ƒ2¨ú*Ýòáa¥iŽ®&XYC.G3¨.åtÆÃ !Q;H<Ü\ES¤Fug¦ MOtÔÕ'(1¸Ь.ÊAèo1Àîu„Ô§LXÁ×·ãÅèf,¥ˆã8+™H6Âf^ t!=¢·¨š²vö‡ ‚qBÛGSç´Äìdahí‹À‚S ¬–¦Æ3ÛBS˜2¡Ÿ'åx%?L R Õ¼,Ñ[ç Q ·céÕwNˆ\BΡÖÜ]Ð:„¢‰è®’ýX‡8aZýýø«Umêci½ÑÞLQõ 4]PÃ=± VÃÁ>AœŽÅèœbZ,,T)(ÐÜïÊŠŽ1U óO Ó[XR[ãRN :9Ía’ÑžòÒi÷ÙëÞ ×ê‚M:ÒëbÔâ7³ŠÈ•U"ǯ£ù|xe«Ó7 bëmxU·üß­vÍj T¡£I}õy:ûH«&¨”¾ÊÞÚ)Ð^2…¾è­ö;‘{ldbø»Ÿq`EÇñE²bkOÙ¤Q*fÚÛ¤ÐØr±¶ÅMRO…¢€-ü¿,¾iKS%!ðy0ýŠOµ{¼/+¾¬ÝD!W«èm)cÆæ±j1Õ–šUÛoŠ­ƒ‡ekzyYYΚ«ÃR¬ˆÜ¬Ñ™B>þâåv¢•Råc„ª»ŠÎ‰GtRf«-1o§öß·-gí1­¤‡2_~Ë]®²a¬ +=kÅE¬ÂÀÂ¥²ÑñŽNI¾—à#"àD6îm«ÆX ˜Cb$í­y¦êÉLs¯Ú5 `ýv|SÆwÃOÓ‘56Ô6²ÏP £޶ñ&P\&|¥• NÌâõ+"Sy˜ÇpçÁ ‹ìöt8!Ð$ߘ<6Á§dbÌKä_õN˜¤eZÀ,?÷"(‚m¾ nfiI{¤‰-qi°Ç™Ø%Ï›‰:VŸ{”q å…ØùÐ?˜G%¾¬—À²ëÍí옃dd1]@E½ì$0ì%„¦ñâzF ÐÊJ<ðCÞëM½I—F>NÙMÇõ±ÙØê:ÖqrúIØ KvÊÃÈ¡n#ÚK*Œ€?]ÜõäãÆ˜†+¿¦ÀhÑ„oÈŸÕÖ¿¥7áŒÂ húü QˆÁhÆÃÅè“iÁ!­mV`LÂ@«&ú`"™M§ìõ$ A¾oJ]SM5ò€6|ÇÀ(jƒËéíŒõŽŒóéEÄ®Cñ(}¥ÖæF~ ÆKìBPÁMe*½Ä’Kä¦~dôw¡W8â—¯DÄì²KœÎ.”L_]z µ,° ï-æuAi\{ê§ ;Y}ùÇÏK_ƒ·¯1rÃ]‚P`bÔãÈŽQ¥é“pzât)h&ËrÇxÑ:|–Åþ.þ%áÂ:=‹šÔúÀXÓ 4ÎóûÕd{¨ˆo™_Ú~–:ÚkY‚ÚtØ‘ o U¯Ìø¡í)]M_¾íì^”Å+a'4mé!ÕU~ž~¤ÃË .™}Vy"ñwùåjh‰È#u‹©c2%bj£·ù[¬c2™ü°ö ¬z?_IûV}š¿Ÿ‡>ŠñßMÜwާ…A˜»ŒW¿î;¾7KM„3ßʃ÷:ðÞSýÍ”ç=ÌÂyç÷YJá’¾#8;gíd Ng·«[ò?¸ÝHÕN1û*…2z™}e0Ëêý Ìʯ½Ì¶-nÃZ2X‚*ïÐb« }W\Þ£ß ‡žÎõVÄ¡—µ÷¥O¿ç»o&3I˜zl°§iP=]ÿTä¦O•V`y`øRÊJ»øï€f"Õ›ŠÜýêûíµïŽTÏ_°ä®ÏR$+A×Ky´dîHÿØòáçØò.Tx>ÞŽýµOQñ¤å( 2}¸ù¡ð/¨Å8Yúß+î®H]ërÇÝ{¥Ôf­,µ©´$o¶ØùÐëE~{᎜Æ^dÀm.³«àÙÇm·™ ã“j/l`ûÄOf| 2^dÖ×Ý(º‰¥¯ ŸÚ5è/pìãÉÛ zl?ù§ƒ2+‹Ï‘:š»ùŠ x¾ª„›SÃEòGäÁ¢—‚¤÷CÑËÇ@¤÷#Ñ«´1 }6½JãÑ[8ô… ¼O¡pô«ÂÐ+ 1ýŠ(ôŠÀF’?†=Ðó>Èy•̓<ïEœWù<Àó0ghŒvfG‹(ÝÅnèyÅàø«€‚Gœ”¬Û®a¼ƒ^øaèE.$z‘Œ^dâÑ‹;@Ò 000½ðbÓç ¶¡>E}cêYPõ)›ˑÂÅ}1ë…¶^Ȩñä[v^Ó.ƸOü˜Ù¬óp3ãÆYš¾ó~5<„l®pÏqO¿RÑxõâ?$ü{ ŸÖÇg¤M]uŽÑL3Œ娣Â6 \ä⣣5µ£˜#·–A× º+öŠð Sàõ[ž¸z9¸öc΋ûÀ΋GÁ[Iðù7xY6 í¾e˜ãÇ‚…uch:›ÊF/î‚GÿØMôŠþq­ŠJ/|ðáΆñ#ˆ‹UAÄ­Fy0€kq/T`ñPhâ"‰ |'ñUå­ÐA~ðq±2þ¸øu{ˆFÄzH7¯Þð~8rxŽ“ö£Gu$aŒ“àÖÇ¿†îÈÀw5‘}w…梅=ZÏÓpÆ&o |ï&çÍ~­î;Ÿ¥“•±ÍØÆ\cc¨Ql"f£Cq‚׳™à=) õY§Bá©Ô'7l?Ø7T2ö±. Ls¶KG²¥tùË ÎÏc¾ÎNÚ)ìnYtBº Ï^È·JÜÛÝÝJ™qüD^]È»]Å –o{‡B—ñíf­¹//óÓ 6û:¾C¤qR©Ë»¶~sc¥ ÞI—˜+0„êÚ dzeL…üÈ”NÏ­´ÌF}¹ÌŸ,‹|/J.’±Í2†º[„„w¹)òÛó#÷JÒÏÂ‡Äæ[¤îK¨p(e2#Wb &´©¥$ð†Y*%Ù0ç‚¶-?E³…hñ0¡‚+9L*¯é1¨„áz4%3bÔ wjÇÃ-i<»Üó¯a1 žÅ¦¢Ü‰Ç /ÈäQ» ›_öxÑËK^ÒÕòQÙ{ ”3ðÆ•Âû6û„ŒÇ¬wq[Tˆ/Oê² 6ÿ˜ú3_5$¶iP÷3îÜ»“räè%q¬’GÒõºñð—Ô‡3ÝX<ݘøVÉF#CiÖùÜ2¥IÚèa•¦ 8Z¬Ö1ȳóì í˜*ýïÑe#Ó ïy”î†TGAÙ-’+UiÔ™Õç‰èОȟôÎÅë¹|’ƒ†pœž)ñäñC¥KSb(>DCt`•²èQu9rh1£tV-ô³—Y¬AnÖVθ集2òlÜ!OTÛ.«³Ù€ìñ•Ô«ðd þšj·Àéõ¡ìò%OúQüê†àͨŒ<Ç2:©?„.?8ß›œ¥–çQ Ô |<ó›íÕCœ’Œ/Ä)çÈ pÚoÿ§¥DˆÓu@­D0Þ5Tƒtq%-ÒæÈ\ãZOGéêI/QW|Ñ£8ÜÒ\æQ¤n㢆½ˆ TæEh Í݆ÁÝZê@h'јF»gFØ%§dbµ’µÍ]µ[½c´ËË\UWIán'Ç)_IFIt²_¶ãú8 «™œQ€ªîÂ6|ä§°†‘IFõ©&‹SýÛ4úw?šÌ#-ËRL2{kk÷À®ŒÜÕ›[m™ªVîö•1²» ÛÞ}î Qd—™.¬¾{”¦CþâÔv÷b1Š7+B’.­a•Æ®vgqÁî¡C––W®iÇž#ÉâôxlXãq`ßëÚ‚ ø 5CYpD&)åÛaí” æ¨ªÐÈŸnídmÍ3Òe< yqÕ+Ï92Â]ê.•Yf´Ù8ô°Q¿ålÈ‘V7F‡P&µ.^Ñû½Ç0ø±QßÒ_ã+GÉ™#¤,hÒáììuP‹®4ÿ>‘¦U8#Ngt¨é`ûÓDšîèpÏ«›nËlûz. 4½_WIêM³Ž]í' jÂ+ß™Q¬ýNÍX×§ª0Hô»¥µ€qTHÄÊÆq%ߜʼno3#h„ ú¼,ðµ;Æ í~ÿO3vV°k#ÒµÊ|‡x×q™÷ y-¬¨×gÔkJE,Ì¢›Y4‡!@QŽÄP…¢0º/¦ÀÞ<×!—¨šìŽ·úÊ2R³ÆHÀèÛ­b=ñÞ”Ì<©â|:¾½žÐóSn¦@áâxã3 .RhöÆ1¶ …ÑÓa¡€cn1ŽÁt³à K-¢|jð#‰Ñ'h^`°§¤Wyÿuïù Ç÷PfÐs3€Ü´§x Sh¬ _’?¥‚l>_¯NæØA§?8xÓÓMÒ'é;½ Îbñ;S{€±$Éìq$»Üø>†„žvE÷UýüÁ?” ¯ J'TEë’d^3ŸŽkòÆ·N(¸HÖ¶÷Lý0§IØ"n’-Ë0)2ïñÛW0 ¡þ:¨¡Šµ(¾Ž¢ñ…ÕF‘Ç®n€…¿ØÄ¸õ¡¢Æ#9å_îˆù£FØ~3ÕH9šGfv7Rû,n$ +o/bcÛ$½Ú•oV\DŒMæäƒt0Ááû9 VH;âkF‰§‚ûP0Œ0`’ù¾ÉÍ)”ÙˆVƒf»žGqº³6V,õ4ÎÚ\±T#ëFNmmçNoÏÝᘿ«J' ÛpÕÃÅhŽi((­‹¦„5ô>:â~‡´Õú 3_Ýa±ˆ"cÉði% …ÐR .²ñ*#VÆ8öu_mýÚ5é˜ý>á¶_oм)…e@ZÔ ÀÌz ÿdpqkŒxæ/Íë3Œü hØ^a`¥™-ÔsCùƒŸWQ+–»’e èí«Ç*jQçUM}ÝèÊßøEÚñÔÕŽF=šwiÇX Ô7îÒŽFþÍ_¤[®vÔõøk÷×î7®Ýo\»ß¸v¿qí×Nî¤C+ „:á©]œªÞ¹Ð™·Wͼer_[5÷¶™{ã.͇ ð|$ü͇ËðÖ²øI~u‹<à¸öé‘,ÀO‚C8øCøˆðy“Èoø<9©ü†Ïû Ÿ÷>ï7|>iø¼Áoø¼ßðyüü„ðyëi|¬Ä©«ï1tÝx×h\önÓCê±Î¤QØRö«Ë1˜ÕáùâÖ2`ù< Ÿ™Kâ«eƒªµ$p•T-£Ù5ÕÆí f°õÐnïAÜÄ-Ãó“],mË4(à¤!Í]š£ð ïOF‹©èÞïK—‹%)‚—÷)¡š•ˆ&àøÁGk€|È„f#Ø›³ÔwiÛŠ­°|·V°\À.ñÎÇpžèxò®Ç·‹á$šÞÎíÁLkÕ3³%’®eäDg°"¾™¢;3fY* ûáO×  ä¨ô¸T¢«Âd#ä…úÏÕ½g‰JšT’õ­»:ÝQÉ4²ç}+i€Šb rê'Ý/x*=Ñþ“n9‘¿ý½@O¿wcá ¾à ï08Z º“V)X÷V"$SR ªM”$5å~ˆÖ‡eMNw9¸QKˆ®Y­Ë'â«":ø4jËD…TêæDBÒç·ï+¼è¹vtå¤Ã¬(ÌØËÃ1H.gÈ)ϸ;"ù§Ýð!˜-Ä žýÓ^ætÂMfRÐxV”wWNÁ¾¿=ÿ@>HrËÌÛurŸÐðqÈ1™¼ÖMŠJæ }ÍèÊx=ýΆÓéÃiÐ:yàAáU“f§)ÏíeãÁêùizÂšâææ«‹X—ˆÊð]!îyÖµPÜÅÏ |/˜»RÓ¼ÒM@ $3ÿ×<è¼о#Kóof÷JŸ/>J/ñâ3qß·Ó™–ƒÅ‡©¢Âµ^¨ âK¥p9H|¨ ¿'HüàûƒÄÿ0Lx¨ M-‰Ø.©?f<Û¾8¾ºƒ~*¨´xYŽ>ÓrÆ’$yP8!ŒÙPßÊì˜ß.3¬%rAÕ׃»AÕk8'¶¬)¬vd(û. ¹š2&–J›†d_Žéâßd ü{d¥µVZJø{Xê–8eÞ•B;yG¦—gxÀÁéãd)äUÆ–›T`‘ €Eá,wKšŽÚÐÈÀ`ÀJž¹©µn—jÝî7è mœˆ½¼ Ss…rŒV×%3*éÊHø7é¬)x6B·¯IPkÅ#3LhÌ|µûzPU·8%vº·v(ZùÕàפ(ˆ•$F1±¦1¬Ÿ'¹P{iŽÉ—ÌQ=…’`£ƒ(ìï'­'©_À¢žŽÑ•5Þ¼Oí|±¥)Í>õ6‰•r7_ÝļøFˆ02Bº‘¾iÈe3q]¹äŠèËÍt"½³]@ó» ýv8->@…`¥£·—EÁµOdoê·Ò'ø~eag·so$sóãâsS8™/F•7óleæÑ<Ú™¶Ý™R¡†ýXsæZr‰+!Í8†xh¡ö¶WüÉñÔ’c¡#Çç+küÙIòßg Þ¯ yï òÝ{î3i,Ÿ÷ÜgÍ‚¶÷àÚ{2ï‡hχeï²wAg僰wBÞ ¼Þ\Ÿ ¶Þ‡Y¿ `½­^AÕûAþên/ÆësAÔ{$bpú»#Ó?æºIß½ hr c·¬Mü(ô«CÐ?^[Hb÷l‹ì–ðÃί†9ÿpæ÷À2¨yżûÚ„1—=š³•ýØñ+ÇÿzÍÜõÃ=>x3û‘âïÿ€åßq|g@Ã?.üãµDs¿Wû$¾^ŠßžoïT4¨y|»Î™.z' }5Øv“!'j{²äÌ6R,dA¶Kþ+BVå;’»áÝ3 •´0¹QÝî¹°iWs÷ƒ(ºQis@Ò:@fî¾F'þ3Ž'LÁ=@ÅVÖlDw²X"®€Å§ö’Ò1nw‰3Ë1—±S £0{dÇDŽñ‹§[¿Ý»Ï%‡6Pû#ôy^ b7±}8',;/!íî°‹Ô9²|‚¡ºó$[0B1H[SàK)p¶çý{‹ÿµ{=|„^7•…Æ’æ›Ê¡S(È+€¿ÖNP¹pwú¤Afüc<)¦|ý…×µðÐg}lßë*‹ ÙÊÙÊøpUe\w7)ãß\þÒÃr ü+ãÃU•qÃAL)ãéŒí^o|—^7´í!ê‘GQxõåÚöñ o8´m_ÝôLدäþO—µ“š(µ‰~;aÆ+þŽÇß=þý垣ÉÀËŽÀµ$"ÇÚ=jÄ p­|1“øÒ9Å$PC|SLº ¸ÏÐM±À¾¸ø?`lËÀ«š®~?¶møãÄ”ñh“Áñ¯o™7Y-¨~ÛpiõcËÄÖ ¦jx>ªJ?þõíëïe_7i o¸5þ±Ï¾>v(\ÙÅ~µk+Û¦OÓûìê(t#SÃÛæñª¾±DÃ×¥†Ç³4—œÜIÃ×=>}(ý3høÍ øC4ü¯møm~' ¿åè7¥á˜†ÿµûnëûíÇ>£ý´éærþð…nù·D(•¡Â*;*²3{·ÃÊ­“sÊ,UÇüŒø8[ù¢&«cQÁS lƒ@ “$%§+M×p¤¡£Í³ìÕö¶«k€MNF—kÁœÃV»>ÎèeNéÑ»ýÈö™–I÷ÎgJÇ–FÏ1‹óœEÊTWÊT¨èX²„Ò•=Æ¿‹Øui± ã´Å)wuQàØW1BvR(<¢XÿN¢è:Ù¡ûƒÄ ²ñ˜&•ôK‹Òw8Âa·mŽÑ’t_T=F¶B—\ ”m@7{ì˜óRÖ-jC/'­ÍHÀ|Ô©ÊͧÖԡú!å¾4ãë{ÉfULÐ yœ„c?×øÔçP~N ŒâWÓm•%yëfÞº¯üz&†I£‘,ßʤݞí&K¨=®Þ:“ç+X ¾%³Å8I’µ„Ì3›~:êâ½_–`ᮿ}ì«@ðôËôRx®ØÏ󩸽Á8<*Zbù _N£1 ¿=§Øæ>Xw 1È)qü‹ yŠ;qƒ±¦"-${R«S¼¸ÖµG¦lj¿v¦êJÞÚ‹ëÏ®ý›)£k‚¯¥Á[aAÚ™üUÒ>é&%ÝïuÝïA¢C[9uÝ!`¤¼Ïaî"ïs ˜Ïä-2¨W.ô™5ˆ}ÐäuG°!’§«±O»¢êv‰Ósqƒ×% Ÿ»[j n¤§`‘= 'i-]¡ˆ{.R„!È©»LLù8±Vid­UüSƒðúßå²ÄCàØ±šq3#㜸Í‘Ë"ùá³ „×4ƈYr¦(2 á´„ÇLæÍ’4}’î¶«Z ÉŠ&µ¼0Ÿ——Ô¨k>Ψó›ìq£ÖcÍŸxÜtÿnãfÉÁx„qƒ‚¯M+2ÌZÁÆÁ–ßJY†j#a(6½†¢È²UÒV´²9®‰T?¤-ÆLy}¬”ϦtÉBB{ºÚW'i.O²áNâ^¸«-Ðö‡ø¾]^FdrzÃple³l%wB+%xª´MDÙÓW“]ªŸî¬œ@ù;Ck¦V¡š–™ãyôÒƒìØ¢Fúµ÷ÿãÔ8±¿ÅúfëÞ{¤<è.ûuÛŒٺÆg]ª;sèºß”ÑÐ+í8& ²SÄ‘÷hå@ÇÁ šR8ÔÐFê„d÷Îa…€õ³s‚Ÿ áÕ Û©a ¾à‡©ÛSBZP‰[bÉäÌ nhí EZ‗ö‡E¹zŽJ¸cVa, Ê÷Ž/ I‹.U'®±ôNÊ‚SU¢¼« !óK[Óv Ä·±ª ïdæ7JÕv~mUûØGüûNéa11lÇ)+XêȰì¬XaTld4“ÒP%Ió‚@“ùAb]»Ñþjª•½Qºø¡)[“Ö˜dwâï+ò]àõ +ªXyë­ZÞ.ÕýžŒY Üœt#Ã…Óž—: -l2æôD7Ú ¤zêh´¦•8Í£5šf¥ëæäÑÍŘ{@±› ©”CŸ>ˆ6®›Ú¸þ‹hã_ÛßêQ´q’û£º :ÚêîWA)f4x.¾ÜLeÛÝÛ»›¢‡“aDZ${GõXr)$=à”•lÒY5±e4–N–ÿ@l¸w“–|à°ä]ïu±pv_¢?¤uþTç–O”KêdܲÙÕ&j§kú‘& ßt'!N½32B«µO|6šÍ%ֺܡ^ G“2£Æ|ŒÄüÖÆtÄÓôFÀ<™JBÈÈù‚JªÞûï½x ýo¹ Pn/Û–ÌÜ“üÑú0¬eëCîû„g !c9Š-•†³e74=s$®—–M±&>î¯<“þPÉqLysäˆb<ùI´îæ!Hõ÷*þý=X¶Úwþ]¯„[h"ÞÖX~€¢MW²"®É˜j öçÑÆ,õë/=l¿›».”Dñþ=üuÃŒ'Ôk§¿G#FWì 5óÝæù©F㯽 #ä†{4²K\˜tC{œÑèr†3Gc×aŽqø£.0¥Ë¼ïtÅ9P#0u÷éç¿öM¨ð;DH çº0é\—ï$4år?ÕÝ0Èyú<érŸ„¾žŒ¿òîÂ!ðOçàà€ôÈx4œ,\—û¶TÀ¥0nVœâ–E "sƒPqàtÚ±KÉ®¦ä¡átÃ×Êq줮á¦(h¶xgFûl8܉ ·:±lGÝõƒÃ¿N8]ìDÚËŽ7R ¥Ô;úµzMù܉|nwÂÐÅGê¾mmÛ‰Ý-¿æçˆí”ïÚû Ö¶”ˆ½,±A_WàãR2yüݲõÄòùî´¬¼õ¼%g ¿ÃžÈë³'òÏüx=÷D–óž0Úrÿ=¡çôí$Y’óÔOxæoð‡G>ñÀ¾|"‡;ŸÈöè.în# C]{vÔ–¹ ÇÉ–Þ/á‡N/P’R—L–-U¦ ¿‘PŒë Ù²î2ð“©4ßé)ømWò•}µ‚Ÿœ,$S»¹n¨HöOT³'¯©äjv¾Ã¢óÇfW|§ï´ü˜f÷së=—3j’¼ïb–ež«­Óß«­{­¶NÿþÓGC~gµUg×ÃzÒõŸG_mÕ3ÿ¾«­Tü=á\m=„îøw^mýèŽåQÅc­¶îtÆkµÕüåW[Í»¬¶°ÚJ$\vò±çä£^Ë•*È•*Ì•ªž+•?œç¤Ð^{¶~ñ3oÜÊzFxÏ´×ݦ›ûÛ©÷ŸhrÌ2jM Ìß+ÐZ} €x°@k±ÊphuG@Í»YŸ™×f“u}dÓógþ)GO‡­yïÁ?CóWüÝ¿ßàÿnQ³,ÈÜQtS9ÑpܸcHÄüNÿbu[pc¥øˆõÍ»Y9cèª^ ]qüíÌàþ¤Op(È7OùM¢w@O/Åátzƒˆ {¢sö£—5ü«(þ%1RöØñl„ásoò¢òç£óâr8'=ë±··c_f$Ñ$8nT³BÂbõùA• v_=¹.9vÓˆ"AˆK %Ažd0# +©‹ðÜãCñ!^ ¢å”ò^ C 0N…€Šùëôz} Ùp‡åîk¤µÕrmú–9¾ «fh"__¯¯#DuX‘»†+:W»xW‡ù¯‰ß­Q< |[\c‹‡Æ€bf]PFÚYCÕÓ‹†`Í))4ï Ý̦ïÇÑ5ÒàñWçH¾ˆÅ×#™G‘¬ ©°‹h `^„Úêâ7Œâ¡5n¢ó{$ñLvuÅ4"Ø=‹fSÆ<ùRuŠ0<‰œ¯¹»/ï-íˆóñí|Í £ ‰æUWIánç~-¾f•–.iÃ(i<œ]Ee}ŠðZÙüfx]8 «™¬ÔšEwa›F¾ù5˜ày k™®¢)öq5YœêߦѿûÑdiaÍ즭Ý»R€æV#¦ê„»}G-Œì®Â¶wŸs-Fçt-Í]fº°ú®”Xº–&ƒŸ¾.Å,¹j»{±ü1N—ÈEаJ#ÉPefì:„hyåšVq$©âd7Œ>6v“×þ|eC­]oº(\ù{h<ôÚr:w5¾+÷¶+7·Ã*Õ k.:Ü}+Ñ ô¨3nN"€·ºP™h¤T—:ŠÑš´niÒÄ\¿ãÝðpé°ÅO1#'¼+'†3=ÞË4 …µw6!úI¼ÅìCM@*L´e n=ÖÄ)æ>ÙïfÍA8¡’ᅧÓÛyôa:F£PÆ3£ Ä>*2É¢#WÖ¯&¯“ЬÓÿsÐ;ã並ܵ“µµ*æñM´Dì ÜækÉB¿‘·ÿ·Ö71·ã0Dy4ò?w ûIff™Qš`çØqÍiÖ2ØINk)v¤nMs…`ÈMÕ¼_SmÜ­©Žó4ÕæýšjkyS9§$HÓ‡\g0´Î’…ö— sŒ,ô,•Ù_h€òº_ }†®;ð~} o)ã·ýo˜³èœtö~áøí+Îõ¦WVWa Bb Φ -õ¦PêQb˜SLC7NñâÎvuó8Ëmê¦IçTš®" ”Õkʆ Àüÿ¶ßøæÎ#g2P'_(ga„m󶇯²éËo¢N*`2x{…èm+À²ë:oý›?Ƕ*öm+”å¶ê…‘QrFî°¦Z÷O*õO¿ð¹g)Ù¼¦r&4CÍèÒ.­=hÒ]àǬ<zå±FËZ›„‰Þ)“Üø'Xž`æçA­Zç‚¶ÌS:Vz\á’È¥•®hÝ1ĬzJ ^J¨±:G§NBÍÕ9rba : ëP}îcA ¾ÅJ–Ä–¹$\£½FÓŽp/êx…Z” f¹‹ÅÉô²Öâüã÷?ã!Øs+õj¸ŽÛîóõƒÎóõùùÇ«ñuõòAʨÁ³ÑhÐëæÆ½ÖBþ\«Aþ#¨5ÃæfКð=üÙlüCÔ¤ô%ØñÙÿ¸ÎæÃëéÜ—’]>LsüT‹þI»÷úzÿÌ«ç‡GÑÅ»ÓÖaYÓß.ÿ…1Ù—;;e¹ œåö¨õŽ ÷Ö³²hÃ?xy§Î§züÒítiëjãIÝû†±]©ˆÃÖqkïOô³éí Ÿ¢Ù|Ó~½ ó`¥"ÕÀÉdô©ŠŠ`M&Ñ4G9þno8™Œ†¢Í>Fãè+-9º­çâpqQ­J"Ýé§èú=¬Bd½%W­Š>¬‘@zZ³«ÛkX2Ìá»?ǃƒç½d%Tu¹¹yº²þzŸ®u˜¨¾Úl—ÅÆå·f³á×¼ÅcŸDçAìØ‚(áÛnüöX½õsÒ’I[Ïä›¶zU_ôøÄ¯´4–»LÿŽKŒë†oog7Ó9xÞ凿gá”g ýçÏñCEÌoß+)Àé`>Â@Ó°îŠfÐÃÿ +¹1ü8œù¡¥¯§ÑXí*J&t³l(Fº]ÎWMnnEÕÞfƒ‘˜Ü’Ø€¨ÉÐCðÇIÙ±8ŸN`æÂ­V Z®M2<î°Ã8¼‘üÑwi`¹ BQ†e00O#¢Ð퓜Åü`¹r¹z>ß^OŒœGª?¿¨cYT÷Á‹šM?Ùºª‚«ô൹¯¼˜Š÷¼Ò€ÎC¡‹†çÐÝàýh2DìH“NœY³fKÉÄ¿ð@îÏヾ(0Û_F×·×&70z ý„â[Ñi•Ưd&‡vˆtŠaäF‰ÉÇJ6pƒc g‚Ú†IqQ¢á6ÂU´ ¢™ÁdË›mu;.dÓ“&ÒM¿CwIO7¬Ž~=¡½Ã¯T{2ôU±rgQ¶–¬ïtVå®$º&!Ð÷¬6禷ã äò}´øA“r|åFmVÔŸGsBù*> ¹ß[ 2‹.nqS ´æÙ`˜*V¸¢¸‰O/.ªÉŠ|-¸“èË‚+#u]½º^."K‘©Þ§ÙP£°~ÂÚ@Ut·ËÖ—¨ZðQË'¥~ñaÍq׋G”BÛ’3. 8 p *>¿/@ ,ñ˜œo/âŠpÿÒ1*ƱƒÒ;û(óÌvΔصºfó¯Fq|>]”QŽTvE-ÌïJ#Y-9²d¥nKh¡ÆÃ‘€?]¢OœkñƒAbÒÁ}žÎ>²8)o¢–üµ€?Ñ)7¬Km¯%ü#í™Ö³;gmß½ÔöÝK}—¿Ô†™,ƒüEÊ\2Ó]SKäŠÛÉh¡†J¥V‚vÙH°È+u‡Æ+ÒH(:“ˆ²À…íí9 Þùåí˜4ƒ™â_œ£"¶G}v1-2›A¡ç`ð.ј$è«ôåhÁzœÏz%«»ñ˜òñp6¼FÔ®lÛ”çùûq«×::˜) j‚Ü[–±¨Ê9œžãQ1™ãFQ‡¯Ÿwöl#öY§×([{gµßé`Á‚/°`ÁR“iKu•ö¸5x‘apkï²¾‚)¶,^¶ðP~u‚ïNÚèq×ÊÄuhëàYGðïõþA‹_Ú|ùôY üº½ø "‹¸,w¾Š×æ—½î~=/éµ]f¥ìmWZfd7ëþkl*ÝO®>:ør€ç2Ïn'猯­):æà-jßæ4|×J#Ï(§¯×FIJ­ÃÖ‹ýçe|í¼¡×þ 4R–¸LÃ×Þ.Ëç(±ƒG™ „Î]UÉèuºýΞQ`ÛEåàKt~» Dô0aë%OÐ2#ZÐàÊa¾N¨% cA;‚]í×€ù5Íy)*¯?”ó#Jñ™G|QôNT5Èá„[¨@eéU,w}YzA¯’ áè…šYÑN|Ajž¿"®+»Ÿ2]H“4‰è‰pÊ5gÒ™ÌpÂ:BG?ZØÂ¯†o†ñ9v|-Óu|OhWèÝÛÕ×½*{ú==vy}aZÙŠËbMk—£RÚq(îˆg­Ã¾î ~NOªì+²|lyTÆ™M_#w÷«ŽØŸÆ 6 `9BSéH®IuW4~TWXj”]V`®^#]¬ÜiâIìHcV4x¶f«Rp”·HÎ…³['4dµûzPM$O9„3s$Ç,ºë©ÛqO›tƈVÊœ'ö¬¼ÚöoQÂvœõ¨ŸäS¹U5šy‚’¢Â3Ÿš¯NâI«1UÙSŒ=S%&?sþMùÄk¶úêFL¯v$‰k¹³(9E/å;®ëZÃó`ú³ßNÑK±¸îx>áªN9“©sxœkÙ2¿Ì€¢ŠÛóX>¾ölçè¶jO)1‰ö$“§ý·iOs>WƒS.ÞÇÑåÖ¶0ç£ µ½‡z&g‡?4h&óû;`ަuÒ.”]Ä܆K"Ós?“9£ÆÍ±Þ—'á–›óÔ1ï2zÁ陯y¼£›æÇzüÑOà +e‹w’~ÃìN>šàÉm«ÁÒ†œËµz^|.` x!&S[Þ çìÿ­÷2\ºšŠM»•'&?o´’L°ËÌ ^,™½naëSÉ+êâ b»‚¾EŽËÜìÓeß'ò+Ã_“îÑŽ2¥áH/˜œÚ³žô_Æé?å¿|,ýëçìǬwìhÉ0äT“_³43©~Ö:§¦]Î,Gf^ƒE"Ï äØ&¯é/°•òh©~ íf¼_â. ”»@™·©Øi ^Ýpø%—J%°àM#–ì)às‡M£ØqúXJÚ5ÒýS¹=ÁC[Œs`a~ùˆý'tþA£(ítG·#æ`iÄçrSSÌ?Žnn¢ v¯ G»s?êcõW¦ û}¬þ«>çÿÿ3û.çÿa½Ù¨'Ïÿ›ÁïóÿïòðøMœÿ¿A‚#uþß=Ö>]§€¦—¶@ ·Xz`[¶Nbã…mÚýß~ûв´½îC/§ö‰ãì'öh½Qoz¶ÿ@FßkOƒzóVù "svnÃä-~«t‚\ÞôØú¤ÏÏáã³_^Ѿý/›ª8»w+ï¿VŽÔy(/Ìé»cõ]»,©ôÞ •Þ•#Ìѵ©[ßµóø,q›ÜÁgáÈ窠÷~J+ù#å>¹/°£@Ñá”Ð=¾s}¼®¦Å NÇ÷©ö|¸‡O‰·>ݸ>ïYÁu)@µŠ¿=,Äo‹ß?‹‡ÅÉáà·‹ÅC¸X´ÞÜ=kïÎYÑTY!ëuiŸÝ=ëàîYß¾ºGã¶WoÜ{ø¡ÜÍñå·÷ʯã½rÐ,ñ^ÁÐNqàŽC/˜#µ!‹ÛαÓÆ¿”£cŠ|Þ0~"¼}ÜÜÙUæA}d¼¨p"Rn2½iîïåò¦G^.°ö4¼]ümø‹¹Á¼éýÜ`Vð¾Ø@yŽxŸßÞGöA›“ö1Ò>¶h3ù&?–äm$+Ãã8u”ç,¤‹…t“…íDÒM;‘ÈΊ]Cº®Èy¹ü<4cwõöà'·Ï?Ï~èª#o9¿?«x‰ðcùЬkkËœEüºƒŸØ3 Ãed‘¤ cÊq$]w}<„¡â µìj£oÄÇV\æk’—ç¥'ËÅ);Ï„$Ÿ7¤¶Ó‚ö³0:ëØê¬öòÎ:Ö•éÈ’«³Úååî,Ë;«ý÷ê¬ôO]dÂO\úž qQˆ5Fâ,ˆäÙ<ZÖ¦í³r|,D lž æÂ1ˆ]Op»Ä­2îáÂÏr?~¤«š®<½hDì¸â!úªz'ýäpeÑç…æŒ ã,Ì‘áæ¢…I®*2;Üh6oIÙ1~O”xiËu¦›Œ¹Éšýßô~ÚÙ¬é_~ö·åòLÿ9]MOÿ®çžÓ¿}\šgþÏåÈš¿·~Ïÿò¹×ü› ißÓßó¿zlÿß¿ÕüïöiÕϦÿÍ”—ë˜þÃûLÿB¹Î¦37\Q¼›)?ÛŸÂÏöM#;.óµl-ÿÚîãøÚ>²g¯”(Ÿcì›Þ¯ã›áÿ9ÿôâ?Õ”ÿgXûíÿù=Ó„ÿgÿÔôÿ|àøO'eqZtqüçû4ª}ÕIµð<ýïëöù}ƒCu ŸI§ë§¿§îäŠbŒ&2‘Û1Tù”öÒ¨ÄÉ2*§÷píŸÆ‘¨ú§û;†õ‡s.~÷ïî¾y¿XRùÝ*¿K ©TÌªßžŽ¿=åóÛÓñ·§ã¯íéøc¼Oî^êéݳ¾¹G £¹’?«j!0hV(P9ÞÍŽÃç0kFÿíçøÛÏñ·Ÿãû9Þ5Ú×þüÓ“`œ‡û§iŸG? Oh°ß>–ÏcÿôgìEvŸËx‹Œ„”·cÿôòvÜ?I~qšüâMò‹Þ#xLÖsyLêï ?Gë{Ã)ñÈvJ”‡;?KØ©ðwØ©ä“é?Óoð.ƒÿ®Ñ©ÂU£SåtêûwN•§=é>‰Ó.çq>L»ç¥BCH›ä4Ó†áý}2c›ülÖ˜út’¢\§ô!j‰OÞNãïzŸï~•³wï©û}Ýí²OÚ—ž±;œëÜXÖÉu¡ÎãÍäõŸâˆ¼[?ö€\vïȺúëYÿ~ðñŸÿçÑ÷9ÿßlÔ6ÓñŸ~Ÿÿ—‡Ç¼}þÌoü§ßøO?'þg|êŽ*4•; õIDÿs ½ ó:Ú^™ñQø8bÔDøu¦åEhªpT>.w‹¹àŸ É1X\ý¸>?NRF´¥‡‡€Z éw´¢ßgø¿ÏðŸá˾ù}†ÿÓžá¯Õ,ý>jþ}Ôüû¨ù–ÊXáý>V6Ž•áó‹Ô±rf(þÁàΡïðôÓQ»ïuø •ù…Ÿ Ä©ã߈S? â”»+¬±ýqêoqôïdû÷™þÃ#Ný>Ó8Ä)š¬GW75{4.÷õztº»CÀp)ˆµþóƒ5l½è³ øùäÖÆôÃZ™G¿a*…‘R èh´Ì»úc ¥ÛO24 X)¦Yi»X~>âÏÉâÔÑGK+½7½†‰>ºHUø8G…3*,Å0¶–q!3eVžÜ@Bw‹ 9šÃ ä±Â â óçU@“à÷õÉŠàðÛ[ŸGóICàY„2â/ütÐexªõ£ýEò—§ ^v¬ÁËŽŸ=x0þÛáŸÿÇÅì V»ßÁÿ#¨Õkµ”ÿG-üíÿñ=¦ÿÇ~ïùFjêwÎho¥ﳨ}—Üî¯OºA¼žË¨ bïÐ3é šýt” ©m ÐäA –ö÷ýnÕÆº¿Ìïñ%ql¿¶ µïPÊÚ‡7OºÝåN&TÍ8ñ¾X¡þá–N𮩠åÌr1\£§ÌA_Lï%ÆX¼q3œ‹7¢/Î`BÆ/Þˆ¾/‹Ï¢Øâ:NèPw1ƒ7È9´nIÝâB ¾ 'W· ÌÐbøõhb±³‡4 ïÇÓ󎬴}| ˆ‡ðK((!îˆI†áÕt2b~a$9ŸÎÀ »™N.Ðñg1Eß‹›q„^“¿n¯p…|3‘Gæv·#zPpõñï:LˆélñaJÅVEÌÀñ|Ê~D´Xä.òP…áøæÃ°ðW±ü>Zà+Ðÿk7(W«Õò„j1øp;‡zÃO`©Ôë256ä4Ôt¡lÎóÃô\4Í£s$€¾MIÿõ\D‹ôp…é·i“¾† _ß`–á÷¹J`ÍNgï˜U˜OyIæ/è7(ú‚j?†i“PÌÄCèQ<&“ýãhH½¡úûJÖ…dQ‹…:6‹þ+r @íA?ŽñŒ˜öxy2‡æž?…'ݵù“"õØI¤S’F|B½9¿‰ÎG—£è¢ «$µ·Œ”Î;Hˆ¾Æl1d%HƒûžœÔŠÚÕ®ŠùXÞ5ºPÉ’ä3ÚËéx<ýŒíšGà *Ò0T°€ÒEéƒê\ðˆ‰W¥ä¢!W•Ñ—óèf¡† ¯n MÀBps‚:{“Ñ „/…øFò"UÁ7°Ð â[뛘ˆÛñ ÈOa2‰˜aU}_ÔtB¦Ó&:ƒN{5:u¦ÓA:o‘U4bgg+ØT}t Âú,VQU£ª€‘7Ubý«_~–±!‹0ÇÐnb¸h*³|´¢Šå¸(äG.ê 11EåÿØG ÀÚ|ÇÜ•֑n\ã—*Áç›NYiñ¯ò_Åoú'¥±*0GÒ/6‘}VpÏKrÏ/N^ zÍÌ·ò7ÉLQý$™_$3ÅŒ*ËyÂ[k«X¥Îax€R¸ ³ZE3gù(«X%(r_èÃðýöùE±DïLŽÌªâ ïÓßi?šÌiâ_à¿CÐdê˜Dj^ÅìU@ë`¿žøÖßê*ò¿É#´h»Hêj« ù“V‰F*úó”!g”ÂV¦ÉCa;S‘ä¡ÔŠ÷Ô%¹J ЧN~k“ßÚä§Ò&¹F@È#@%Cï@i2õ÷;Gt†n9qDâ¢>ö«×?8<Øľ²8&ޤõ—ò“iÐ mS5ÒlG\Ë ÅëäÃIì‰ Kã`‡WòÅò•å÷@F£ôPÆt Š .¸Ìªbà ¹Z?q”&ÆÓ«zYQ¡zõÅJWªB"ù Ë5{fHÿrÛ[<ùëIÚü%6öngè{>–~ÙcX²`=`í8¡3;ƒæ;†ýY5Ú!×"[ˆîÿfSÝŒEÃØ, Cœi"FPöhÁ2C#ó—¢a_Ry•³6T©7«šB‚]õ,ð¿62 â%¬´_ MË ¤—Ûâ%,Ѐ;]î`åÎg‘ü[4O§d„ð\õO£2¼îï@û {œœUÀŸô$œ‘ÝO³c©Åäw/E òšçUðGÐ1í®y _>> Š_诟ŒÙrÿw ÝJP\ #¤ öíÎäúïcÙ¨×HNxÝŽG»8íµÂó,Š\¤A/ÆJo,ÀÈ­µBµ¯T.ñ~tUÖæ×°.!ƒÌØøþ 2G÷›pb¾„µ#µ %Ý Ö!…a|$  …$;º´¸˜Ž*&æÕ©ÊÙáœÆõbÌ`‚hÃ*Qs¯~nâÏûT7ŒÛ\6y`µ95»í^çaµÌ: i \ÝJƒû.(KcˆÇc£á‘`Ь™»BÒ-2ÞÒC]OE›LieBEŠ) x‡ ¾FZÉ}0M*£–$R’‰×¨:¥<áyö§ÈÚ-Ë ‚L$%’›n$w3rfuޤæ àínÂ-WÆü™\À¿¹äeîèaë‰ùr`Ã;X–mêk˜ŒñÔàfS+è^ßÎby‹«•ƒ22\¹üPHÍbéb÷Μ ‹õ¼3ƒãFx^­-­GÜðCYþ’Ã:÷“¤‰ÌÛb-<éS·íÌ&ÁŸ¥c<äÆÛp±|°Ã…ó:•Þ’6¢Lª¸4–´Bö §ˆ{Fz;‰úФÎeÆjùÒ:fB¼ã.TYÃï ï@÷P²!{*Ñû/ÏÛ(]ÊzF¡Þ¤s¼áÄÚ½‹eŠÞŽ^…ø‚œlRY^ªs!ÐÇ‹³éíÕ“§gFAîlfmA]Ù7–‰W¦PNw•,Mýàh~Õ<£«ÉtöзÊ%x¯%ó’¹IÁ¸o®¯›ç»cþO“ H:¶¨y×DçsrõÈêÞ̦ȹ6 G“‹è&šà²ÞfkNfRˆc:pàdw’s…]¡nÎÓá(®õ#}o{a“¡{õçtI~ª¦r€ÚMnyé4^gô«j€œ÷ç[¼H]w>½EWÒ¹xr9£‹'Ø»X⺱û¤¬ü . ‘=Dçç³Ñ{üxe:Ý.æñùî”. yÏž/ÛÊxµæî‚ÖÁEcO÷%û±8qß~ºý=h[êXKYÝŽ£›1mI„U¯Ð\©á]ù Và e‚w‰£své€É…I[}òÌý®\;ôBJæ0gýO ÓÛ÷ã¨(äô‹šÑ$c—¨êž0ç[rŽZ:ß>{ÝôZÝÔ­mŠ1@ÛÍ· Ù¤×Ñ|>¼²õg[´?™ºŒÍ.øXaŠBƒ­_«ª‹þ*?k(÷UöÜ‹9­É 䣄ýÝnÑÒi'sîr P ³ÑÕgñVÜŠ”h8—n¾8ç&´kà]¥¡Ë©‰xWÎÂåeÓð®yá¯lÆ­áí«Ø©D)ní[H†°=;:l6˜õG:YY#è( ?¾_Ú?¾_úª5–‡ZðVp`8ê€ÿBŒ%F®šÆ$ Êoöcñ©t§ýX,DQ¬³{ìÇ¢:ýXYXv½ÇßU.{Ž*¿½ü¡\ÈoY΀‡*ŒK¶Zò·Ð¶4f¶*Êä`þ§ËpA­Tè>E3§^ê–ºèË&]U[ZŠØœ Ì%ë'ƒÅ![<• š¾XdfÅy »®êÉL¶®:O5 ï`ýv|SÆwÃOÓÑ…> R3™#LNÆÊVaÇä‹O“žæ?)LKòSeÄçÀ#:í—LâÃOçØÆÑ \ª®Õÿ"2­„]EgúF”›ªdšû5=5Ûño”QþæG„½qx¾Ÿô^—Å뮺¼æŒXƒ‰(ÔUíàiRã•Cú”å‚ϳ{a¹ˆßáÆ=cá´[ûxo¤sØ‚w2™#$Nìn?Ãx¾VL§µ‡³½^öicæ²x ÿöàÖ ’—¸…id€(©óœ¶¬ÞÒóN—_ù’‹Ÿ ^„Á›¸é'Ãxâý)ù’Ë´×Ç êèŽâ—ƒ~ëÑÄW¬ìààè8à—°,NéO§{êí¥d Wû¶úç]Ýíxm¸øÆ_‹ÎëÃý¾ºÑñ º¨ 6øíQ+'‰W-v=‰ËÕBÙΗ¹(¾IËÊœ(G¼Ú;lõûù2z–]òY jÒ;Ïö˜íÍqôžŽEäˆûãhýCQýŒ>>l€”xÙé¶Žö^p䢮©ŽˆG\NYÒ+'óeÔc…˜JýS‚æ94ùZ—¯2›5T ¨”ÌJ­½ã?™³gÏéµ0±˜ÎëÞQªäÝA¯}Ørp~×ÐK¤IÊÔÈP Œ#íýáb(æV&&²ß´„ý°H‚‰4KxÎZ+ÁÐJu±ž‘ç,€ |Ò_hÁ%9BÎaf 2sÀ`×Yøfg¡ÍõuëŒ5¤| zßPo轿s9]H›e±U›e± K <.Ëb¡³ ®žÖVé™ p¢ 3/[¥­e%“Rƒ’7JºCì˰¤ÞÕeWeT¼ÔÄZÖ—õMÛ,‹‹‹‹¡wå\Ú-ºDP•AY[%Ý›æßÍøë¬š…K«dc–a£¾¾G1¤Õq´m”j4Ú2“óÜI ]£²kºq<”ä7ø¶–ÁU“fÔ–mÊ‚¨€¸(]Ðv é¸ñ’ðoq¸3²§çú^¼Žá¦¾ «.U‚B­îêÐ í¥Œ‚A‡‡èÚÈ´àD?/£U"Ø–üºz8¨j£öÿ“àBÇŠ ¬  *]ÒH„ËP«Åö]ÀLLÞ—…³òjªÄÖ?ò8¼ŒxœÞ^ÇQW`ij&:¸™ÆÓ ü^Òßµ‡ó(Îæ7ëHÂø& ÜçX—)Ô–‚ ã:» ×Ê2ƒÁ ¬“u~$¬ÚÊØ`ãeY¸S/“@l¡Î’j²õå ŽÄõ·ý=‹ ná¨b§Ó¾<%7É¿HÓã 3:*n.˜Ÿ)¿9ã»]ã} ÏD‹ÁŽp¥$æ8ŒqÞµ¤Šù‰nÄöä:-i ˜3º®Swº%nê’‘ÜeÈ]×¥´à9R¡˜XA;„$Bü žÌ–f|8³¦bè¥zGºÇÄy°µ·j¼}Ä­}dÆØˆ«g…áääÞ8œ@Ñʯ:™_“‘®HF¤”ŒïûÕŸÝ!`ò;‡A…Ó¤Úu(“¦YÃúIÄ;:/©KeÀŽ—Ì:¸–͇B˜wÊÓ%×uÉA=Y´ ¹ñÒSõ%…>7ã’¦b‘&#¬’…Aq°‰ð$q6aOwxù½#v~!>¯OÅlº h e±ê¯ãog»u™R»›¥ÐÊx‡}@PòžHÿ 7Ç[ü¼qAVŸ! 5ÑJ’ÁFc27Ãn½¨+S©èD©å¾¡¸숂øòå Ζ»!|€Å}„jìh_Wø†£º‰4dJN&ã î6wL_Ù%$6vLl•¸ Æ%rÃí‰;)3¾ è$2™N*ty˺kc´ª°yH||{Ù>%Ðûµéd‰MCN3n†¡­è4©L En3vñŠqæéò_¼P.a|ª†—*§ @ýH÷}™O:)ÅüÒ…$tänÎ4þ*ÎñNÒ$usS³À’¹¯Û,¦|øaIÈd[î··ùTƒòj“yG;Z•Åû[6ÃÛ ´$ç>¸û CÆÊÊ7ÜÇ÷ÏÅ4Aá, =YÞ¡Þa—0à{„—téüInΠÆ`>m=W>Ú•à|øÖ–™§ -÷Š=sA`ÏDôô˜¢Ú¦–“ Úu5“¦®}hýØSy%ãJÚVíÉëÙ mºk²–ÑÐÁÈ.È{qëd@8"5 eýâôßM7?Ê¢ë`ØÁg·ãñƒ”åÙÿå€bé‘)ËÀà2ž;¦e ¸‘j>y¢í~uT¡*c—G>HçÑg0ª€L"ÒæRG,<Ê•Už]Ȭ%©0› ýæë<¬ƒ¶æ¡T}]b‡9pˆ¨u-}>ô‰H« Î± ¤¥­-úíD¿ýKˆ~û{‰~Û+úí;ˆ~*>l\IôÛ)y…þ¿›è§Iå}_Ø¢Ÿ¬¯Wôi' è·=¢ï œœ&@CYF—ÇšoÎ@ ×¥ÇÌÜ™J0ŒâˆZ/¦0K¢#ÍÊ`ŸéËs±];o³Æw¨•›cº>‚VMX=ìÉ¥®¨8‡˜P@/{<Ñ‘áyS@$YäŠ^:­.衈ù9Ë‘±QKær†$ŽUÁÈŸaæ§AyG÷¸ ù´ü1È–S~x‹õT‡S„¥îSU8 Ìâ}ÙÍ$»†ÏJžÚ™µ;»sí$ç™õ«;ëw¶¼~g®ú5í¾ÍèØ7½›Ñ8²É}$g’ü+É µä9«q–“‰°”ƒFN6\ê¢us3þj/{â[îî!¿i yïpßÃÝŸHÑ` ZCì{0ØRRÊ!{ ’ÞbÛ_lÛ.v#SÓlæ–U£ä¦Ç¡Â=`ム TÀ^Ž9›ÞÀ†/á*3(ëB¤A6ÜÔåb©V[Z:/Ø583j@Šh™É‰ÃòC*²¼+²`%øù{tEû;w…ÃB>à ñ åÖS;0>mZj;[•AŠ­¥zÌVb¾¥`.E’ÖÚî"ÛÎ"“vó=ŠÜòk¨íšû{ýgqÐ}É”é͘@|(ž¶ ã³ö\Ý‘\Ó>¨]åPê¨>o¥§,óå¸?ÖÉ^ºžÁ’zâIE AâßgïP‡VØ"–mîøú¢ Ò†oð:œ;›ƒ!0™ÈW7´ÊiËú—§¾å¶$ÚÐñ#úÔ¦6Ì„wQ¬hõ3h5=!¥öð.)GÕ–a§Ñ+â…ŠsÊŽòÝ4 &èXä(#yïøÏäÚ_ÍA}ϲ3#«Ò™OVuªˆ§\ë§Ü>± žbª§Ü›(AÒÙÉÑsBX;EýØ][ù‘vU…w™:Kk¤€ €%€¯Yd,ìÆ ð Ä„ÆësõE÷ièÔ[KdkjÇ|ZGøÈ¥{„ž 7|³aJn•5¤¥G"ÒM— Riˆ‚ …=›•Ê6^Ç™¨Èã¨K<ÛsyÔƒ:ôæ£íäÈYIRð1!&šT®ríawÏrCW¹µóÒ(˜ ÐN4DÌØrÛñm®ÅŒm:ËØW”mT·ú&ÙF–q›½­'ù¨Ó0s1ã(6Ù5geGsÛˆ‹õɼh’Êß ©ð àAýbê<– ÌK®úÎ þnÝÄY9IA­´çŽ G Ü 5p¿Ó…µ!à2iƒø<ß¹9NN9™d´ñ.Á=^ò&¥Ó2ÉVHÁ’H“)8È^ÁíNŽÙWTþ´>¹&÷å.”$D0#øÌ&Ä¥ŸRzAV÷aE“ÑŒ r3B‡ìáäL†Mþ’>3[Y¦Ä m9è˜ô–vŽÌ©{ÞÄrv>j,5ÕXʘ#ùñÂÐ-ù+þ|àö;J¦”¢„‡:¿PÅ]}î™(Dzô=÷ø"'³¡RxéáÃ[˜Îèߺ_Ö{OF¤»"|x~CˆóôˆöŒÆ`dTòŠH'xŠ«Ùàé¯"&FEW t3øÅÆ‚·Bä¢'¹[RØ|¨ Z™Mˆä7ù¶pµz/›“NÎÌÆ€Õ—AñblÆ&4u8$Á“q˜­ßZdKù îËl0\zäM[ïj$æÎ\–dWd™h{3*›!Kª²T¨¯\e"Ñn^ÐõoG.—;_óƒµýÒXýù›V³Ô—í ‰xðmăj’µ3¯¸Žz”õ$!†ùÑ›¡ãG½Ú ³Ž£ø·k¿G°mÚˆaxýª€·"bÛ¯c¢Íu²æhwÈࢠÉEËŸ½b–b[2>uÅå·¯‰È1›æ6íÄ;ïºË·ïe Ÿ ¶œJÅ.1AµÈ{4™¤ú¿W׋{÷¾È€<É·¥ŸÄ¨zˆé5hä>\¤±¶ß9B~¥Üf±œ—Y7›ænysɾ¶D¦ •ŠqR²ðWQüKÃe"Á%Ûïú&‡|ó”ß$Še8iB§=ŠñþúÁ¦q0DÄ­«Ýç{.Xq§º sPU‚žÍæ ø3%V\^Î7ûC4$'¾wWÚ/GãÈí»C×>ðBË’ý;áŸû6h´¿æ l~ä¹·‘‡vÓë<âÉÐX5]k¯uh*o%xH£ü­Z,kq,Üs‡Ç¯„Ö4®$-pbµ³åÚ†zAÝWâW¿ÿ£%¦0ÿÿ|G™¥Ÿ4†²ƒÀ˜…¯´PöqP{h²ô™ EÀ¥|‚­$„=^ K)¼>C×ë~ÕPõ§Gx‹ï9ž0h aÛ†ãØ(¼zn‹ôÅH}+N_L"ÛÓ5Ƽ½ÙÂ[œúâ+Îa» ¾JpðÛïÐÝa7!¸WžšZgçÈ»x×(HÄû5r hÂ[€gf¶Ìð²ÎÁ ^9å»ðq°3; ~—òhQÈæwÓÅ/Eµã† ›I͘UÖ*L Xè7Ę]铚Éu@­:6Ì¢½h8–ΡIè_‰Fi55•¸(àµK›;ã"ZÀœ4/‚éÌ ³™083”«¹v .aý]…µÂ˵µ] R1Õlkð7Ø-ÔÊÝî:ô¦ŽßtàM¿Á7Í]¤[†ÿð!Aemc·@!þ1E§XæxÿJ\$ ZûÊN3†j’Ðþ.eEì±&ÀN”ù…ØÜ-ì+b{·@— Ð$¡"º¨d1ä~]7rËß©›üߺS–ÚnA£ü¨,èQ ¾î¨¯!u’°!Ü2½®UÐÄZÁE\vè¬}>žPRƒ—þz|Q /EI‡¥ot’“²8Ýqus°±;HIE›¯B™O°½{M%w²6òŒÏ÷w¡—t56w‡³ÑâÃu•½þXTSÍBOX“ù¢æ#¾µ+˜ï% ™E†Á®¼7–"œjCì>ñ¢O¾ÍF,„¡ÙƒEGºìç2¥$À§Põ}YgaSÑât®¾ 7vMÔ# Èë…ÐÐLkI³ Ç¡'­$!ÌMò$ï&æ“”¨2Õ=ØNª—1%ñí9ŒQys3›‚ÍŒNòŸ•ÆX¥¬Í#fGɟߦŸÉnÂ÷ØWäK¢©$Ý1%Z»â·ªÆÔ[é¹£Îw’µe¡‚¹ÝDvOãB³XQÎ÷ÙŸ3F‚VrT§¼£Õ›Ñ*N> ó,£ÈDqMÜtLc±ö] ²!CõòFF½WÑúۀݓ’ºfkq˜V¶5úaI'lR¥Ò¸¸þ&¥´F‡¨šnݵa·ïЮA-»ÁòvµÛ1Õʉv PM˜OŠ}¾0 /’$¦½y–NÔxª Ò õOd(‘ÁBCúˆÀIûÕ6÷ОߎBenámíÖ[ÕP–\û~%PòAP«Ö W¹5¢€e¤‹‘?þñûù[=ãáÍðüc¥^ ×qÁ×é>_?è<_Ÿ_À ü©zù eà:£Ñ ×Í z­…ü¾iÔƒàA­67ƒFЄïƒf3¨ÿCÔ¤ô%ØOÙÿ€õñ|x=ûÒA²Ë‡iŽŸêá‘Ý?i÷^Ÿ@ïð˜?U±Z0@›Š£¢Êê&$ï3fEÌ•[ †#Z_ùÅ*¿«7ô>ë§Ûñ?õ~Åu;~›uwÌòþä͘²®¤÷`õzØ:ní½âPqº€+ R¯‚Å©¡µO&£OUT’ƒh2‰æ ~Ëñw{°ø…™o2Šv4û³ CÖv[ÏÅáâBÇçëN?E47…0BÌxÑd9bËäK®¡ÔÂÔªÔœª¦z[‡û3£³Ì 6ŽP±j'\²óJ¡†]¬:âÕªè8¥¬HÕ2ö …Æ Fqb[­×¼džáè€?,.#KOfÁëšò²³À’:ÈQ™ßHØ‚ìÌo ²·(“Ú"¤ý\ÅÌêóþ\I^ªTå]†oog¸Ò5œKœøìw(aÒ§“ù×k¹àõ Àçý8R{;HGô\>U"ω4ûÆÏiO'ƸžTÞ­LìÒt4¶eX@ ­2EæC;QŽ[k.Ìn.°„¯^6‹ v‘zÎCô3’¡Ä3¼í,x±¶Nëü]ñ¹Œ1ò?p”B\T}.µ ¦mÄ+Nçcœ¦Ûù-rVÚ j0”ï…cú¦e\–¿ÀZs4W€Mcƒ0\3 Á×·©&rOÍ}’ tï§°y¡ã5ª¡ör´ 5\deh&›™ZQ|9ZRRž‰¸­NÚ •à'ŒwÌQ¯úx3©‰Ò¡¶—J/€¦I—Q‚~ÒK†É_·W°d¯èBäz¬`.ÐkWÈ0bˆn84–2ŠØ òöDžLÖæOx%C¨é”´çù„ö Ê"µ=³pÎÉÔ…ø5aj2eO ¨k >PщÁ-aÂc¨H]ªäiòxŠCYÒ¹%ÒP„õþŠéŸ|¡pÏq;Dæ¡ÉЧUƒÖ#sFÇ!±£p”‹Åñ…³áÎõ{,YëÙÍÈß\ tåq‘Béc¶oâôPv> J”JŽMóm½@+XD^ùÆ?+‹oò÷o¶{7‹ SË–—ÓCü[D¾F°<¯ˆ€ÎX$]¦úá V@$ÔtÓ áEˆÜ­‹¦üâ"šL‚p4ΧãÛë‰]býîM7K5£ÉJâ´'WÿyZÑ©z÷lÞ²è©hB‰o —·¸¯¸ ïn8ŽÃ©Mjæ|¢±ZÈKŸô¤ÜÝ‹ÃÊ‚$ Çs}áë‚•k\˜¸¦`BئoËò• +ã¼b|1ÆRSùU­7Š$&ªÚð6Uoý³É›!<5:«W\orÚ57ʳÈóžƒ9†deǤA•Ø,ROëJô•è9*ÁsÖ]jáèD£Ô»VѽÉ#}/°Ä¨ÈG¦ÑpÃ2ðœËК(⛄,Ƽ`;ÖøŸ”Y£Û—qå0Ý_EÀ†•YU 8g Ž/7ž^N„—”õÅÊÈšÿ”1æüð·FTMñä¯',Û=n$m·Ñœ>«èµò\p47燂Œ-¨máB<RÜ?ÕŒECVÆÎ4#Ä-x642)J•Ê묜µ¡Jí¸YÕìªgÿµ^Cç_tÕд Jž³Í$Á¬g‘üÓ4/#HÉÄ»²øÓ¨ Ï‹â]Ìy)“óû“¾“¤óa¢ch]¥“ß½Y$°¸›€ÅøouÍKøºðñiPüBýdÌ–û§ø¸[èV‚âzhè§‚Ø·;“ë¿eÓ)-®”hðè-Qˆù –EMhHÄ"Í–…-%PûzŽÝ¦¯¥>>J…r™±'ðýda}5BcôbÒÝ`R¨Uv…>–E’]Le1ñÉqücçìpNãÇz1f0A´a•¨¹W?7ñç}„³ ã6—MXmÎñBe»×y˜'.4 P®n¥Á}¨à¥6x<0ÞèY”†Ìšyp(O,“… $Ï”6™Ò}ÈCEŠ) H¾FZn¤Ésgx-ÝX(R汩”'Æœ³¢òdP1Ïb4jºÜÍÈ™Õ9’B˜ƒ‚·w¸ ·\Mógrÿæ’—¹£‡­'æÏŒHÄLdæžC6…u­1Žu¯og±¼‹Å¡Ã2\¹üPHÍbéb÷Μ ‹õ¼3ƒãFx^­-­GÜðCY>zA½¸¨²Z±8ŽÙÄ¡…KìñW“fnЋW³[\rÃ@ŸGÿsKn]V5INA×Îy«m>5IÈêÞ̦ȹ6œGÆä¡]a“­95šI!Fç¡}Jœ«ˆ}¤š >Ç5¾ÔØŒ(`’™D_tºC<½Pp/¨Ýä6ÒØþ~U åL^ÉÒš²­Ù…7þ¨ëÎ —l8Oð&VtñD!FRìÇâ8TgŽïAÛRÇZÊŠQ*h+&‚¨z…fJ ·³ƒžãu&‚vXÏÙë&&mõÈsŒÅ$±Ûx% x~ ô?\Loߣ¢Ó.jF“Œè‘5½ÉI—Ü%–NºÏ^÷½VWÜNFÚ¿u8Ý‘£°x· Ù¾×Ñ|>¼²•i›úu˜@6Ÿó=x¬?šŽþ×6š´Ü©I;«g#ׯ»7éáècäqã…6˜ËuÏ\iã¤9žèÙ ÆGeöa?»&g<í~8òxŸ _Dät21²ß¨UÕbÊÇycXþ…®!…î˜9åœu¥•w(óåß÷‘‡1Ðp„F«HüK'Ú*¡w©ÐÅ•²’ìk ¥¨5¯‡³056’N2ï¿jÏ…yr Rõd¦u™:ó7‰Áúíø¦L~…Ÿ¦£ }\©Öëè¯- ®³+j;äJx–7ná´o&øOJBè•c‡¢¡ÜΆèÎ&`E]¨ãVuþEdZ žœà¤éHÔUÉ4÷ôì:|?ŸŽ1b´çÈ eáoYÙ»ñ˜®æÇ3öÜvøY3úT "oé§@‰ÈU³vð´F©1¦}Êrøf;2‹°Ü:Úá†åЬ*q8E/öšÏö@'|w?+²BY¢hg–cAî•9>îof‡`–õy‹¾÷Œ ­ðb9,wGX@¨×,‡|†¹¦8 þ~a¤Þ²"ŠPp*jޝZ¬m3ïH`:…\ãuéoüœ+(Yòàg@¬ ~ËØ9H(佸|…&—'s;QŽF3Ë•9QކÓÊ“Y¢Œ™2k@hYw´ôލ;¥üà "»B>»œ3´VfŽz†è·Bñ‘éÞÁÐëZi™N9™>ƒ¿¾»78tPæ$eŽÇ–yâ.KHï² k_–ðQÍΰye ^W–ð#e ¦îà´ƒS&Ìp瞦ìuºýΞÁh»Oç4¦ËÔ˜eBrÐÞLjHsŒG¸³ß´„ý°háEîf ÏÇk%h… TWQœyÎÈÀ€!ý­Ã¿ì!ç03™9cNeáPH˜…GÖ­³ñò5è}C½¡÷þÎät!ým–ÅVYl–Å6|,5ð˜3‹…vÌ‚v8BxÊX¥g2À‰*̾l•¶–•Ì8²ëb£¤8ľ Kê]]vUFÅKM¬e}YߴͲ¸¸¸z×XÞÈ¥ Ù¢Kä€pnס toš7㯳j.­’YŒY†QŒúúÅvÆÑ¶QªÑhËLÎs 5tÊ®é6ÆñP’ßàÛZWMJ˜YP[´) ¢â¢tAÛ%¤ãR¼Ñùíbˆž²}Kñ(;/nG–i'MC «/È>JnG[M9UÄLÒñßéÐ÷]™––Ò†éʈæq"Š Ç_c,°$@“æBÇjé°{D„J—4‘Ä”}¯ØÖ!™¼/y˜LÎ¥ÙeÔ“™ä¡Ë¡'°¶Ê·‘Ìw¸ßÂP×Ç–¤Oƒ*µ©ÄvšÄ‹Ä›¥$‚†ƒÆMä`9•MEÅÆÊÙ“ 8z¬–A<ÚÁßµãïZ]à‰çÕhBnOÞª|;OôÓZM]&£ktS¿¦³3XDé¢Ä$Š."Ú¯›)F14 Šw<‡sñ9õ¥»Yt £ó2Y>WÓé…ºï4äó=%ömAæj›/$^+Tu>±W¾!#¨ïF†1v(âûUsm=Ñ5?½®„…6›bq¨E^a#“†Ÿ½æp‹Œ[C»VÜ^Ýs:?VŒþW’Cþ–xü>M`ŸðêòlRZ s‰‰™5"²öÜ›Þ3 CˆÁ&˜b ß8eÍIžXRK© ~QéR7 7ȱ¬¸¡uôèoZ9ü°aD-L ¢G·¡¶•$¼Žê•onG Üø#¡.<¸T÷(F©8¢f\ƒ8=¼"»ÒnG‡—•Ûë5Í",ÍD7óÑx:ßKú»öpÅbÂü†1'âßHýãÚ]¦øÃh0¶ícÐ ™Á`V®:?ƒYp[ÛG¼P wêE㈸KAP@oÈí"ÙúrM• (-¿46ª*†âÁÒå9rí*'‹ê ¯*ø´ ©?ã²ÞšRa¶ Ãox¦L Ÿ‰³!%1d§c³kIóÏQr¹KØ“ë´8)`ÎtêºNÝé–¸©K]+Ú·!o]—€‡w3¯Ž^éªf™©˜š®ŒOgÖT¸€©x¶ÇÊh5ÏýÇ÷ÏÅ4Aá,  GÞ~Ýa?7à{t}#o…Ê Ô̧M Ç"âÊGKu·o“j•0ëf„™Q¡nœÞ%ß§$®T[°R¡£§ÑLRWX´zl‰‚©»<ð‚„>¢ö›õŒÖU` Ù?a øŽß:MÅþè×.ì÷+Û¨0HÂx²ñß–ÊÓ¿š¸L±Ÿ…ÒG*7Õ|B[Ùj^7T6Ômz§óèóU@&Ú1ŸväÊ*÷åeÖ’ƒT˜MHƼòu!0v¤êë;Ì#D£‹âçCŸˆ´ ê\ JÚ¬úÑ¢ß^AôÛ¿„è·¿—è·½¢ß¾ƒè§ò胴•D?‰ºM‡«wý4©|¢ïë[ô“õõо ¬›)úmè;'§ äP–Ñå±–Š19£!¡ÆÌÜ™J0 _‡Û3/¦0I¢ÇMÊ`žÑÖ)-F×Λ¹ñ}på®é„\€DÀŽ÷£çAº Á£j?Ì Ò]¡²×—ÁÃs–#c½–Ì• #âa×{öTÉÓ ‚¼#‡{\ü@”ô1+¼Ÿ~x;ˆõAuPаÔ}ªªCã”Y¼/»™d×ðˆÈS»3³vgw®ä<³~ugýΖ×ïÌU¿üx?o{¸›Ñ8²Y_º Iþ•ä…ZòœÕ8ËÉDXÊÁF#'.uѺ¹µW=ñ}÷ß0†¼w¸7 \ ï mYƒÖû̶””rÈ^‚¤·ØöÃÛ¶‹mfjšÜ²Êc”œÀô8Ä ë®6>À¸IR'£`;òØŽ«LHe^dC ÎÈûËnÚ¼RÚvaÝÙì÷ý; lMZ(Ö¤ŠÖúcj±¼ÚÿÐþžà°ŠÉªN)´žÚtñi0ÐL[Ùê Rl.Õ]¶âò-ÿr)´¦vÙv™´•ïQä¦_+m-ƒê4÷÷— Ð%$Á¹ŠóZm‹âÚsuÕsM9Av3<Ý@¤Ëq]­C±T%ƒÚ’J¢B Q>7ÓÔ9n‡:³ÂfH5|/|²ïøBÇ„Kù}'½Ír•Í·wügAž}Ò?¥Rû®%”/“R¦çª{ éOW¡r•“^÷^ùeo|#0·¡qe(iGOÚÂ&Wsò3©,§øiŒÇ ˆÇ,¥z*Ÿr2¡+§·üìO ÿw ¯„RB~ó®CGÇ‚¾üßµ‚£Ó«êÙq~…cߣ0ãšs˦{Jý2à»™³ý· ý£K±ÑýààÑ(j nqŽ6­Ë6md·©º¬èhÔ³‡hÔzf£6îÙ¨= ”§U÷nUŒ&øs(¯®að¹”—ã?Sy¿”ö ¤ö2¿Ä™4>¦NU–v‰c zl$ÿ¥Â?6`éñwW/©Xü:‡Í—9dà|ÃEÐέZ¼i·x°ìœÜ’÷âŽvDsÞå²ð·,:˜„Ñq?D×?Ǩ9}ÀQ£8~…qSÿ™ÆMý7‰qSÏa]7ýußÙ«<¬>î“ò‚ yE¨‹—öÆcR$}ì6ÜË£¥ßÀg<ü73†úçO?þ»KLþ;Ìš±ø‰Çãgÿ¿ÈøßL ¨e@öX·­ìñ¿¹|üŸÝuü'ÙÝôŒÿ­%ã_¢Ø‘Cg¥bÜýUÿÒ°F0tvf»hßOùæ©ØLyŒñ(ø/]8”ÆqrzÆa©-ŒbúóƒÄÚÂy†‰V]Ø/G³ùBª®)±ár⢠Eb(>DC:Äd«é¯±]ŽÆ‘ûl’EÑõUº!ßÄ}“õéš/­‰ íä!ƒö†oŸÏ—¡¹jXƒ­½Ö¡=¼•H ЮZºp¸nŸ#ƒˆÝ‘ùÕï”aÉÖá  ß;ùÉÅ(Ý—öÎGˆS ßœ‚†ïRM‰šÕ—ÕÌ&bÔrÓ¡¡IáÔ‹†céB²JmÍ]Ey# Ë7 x÷ABSáw-@ÝÏÁêÙjš±*‡6¤w˜jD®ßõàJ8ºE°[¨•kE}D‰Ç7uüqáø ¾iî"Ý2ü/¦áÂ7v éStŠe{Ü¡Ä éw_¥kæ1FD’Ðþ.eÅê!†Ü.ÆøÏbÑ呱m ÞKì$!„´T²ù¿®¹åïTˆMþoaÝ)KÍ@½WYp/C}ÝQ_CêäqÐ0rËôºVAkc+¡³öI"y®JH ^豋3ºSËs=5Üt’“²8Ýq¢„oìRRÑf'jó ¶w¯¢©õ[Q¯«±¹;œ®« :õ„.e>©f¡'¬É|Ñ óßÚ=ßÎÞë[ÂYd(àùáTëb÷‰ÿ} xj0ưÎ=÷`ÑQ£°.û¹L) ÷"T}_ÖÙDØT´8«¯Â]üAÇ¥ŽõBÝPWkI‹eÇÑâ·-(Ø‚„‰÷ &Ú0ÄÖJcBø:ŸNæ‹jÙ‘“âˆ`®Äuw1¥™Qˆ#[C–‘Â]s•pð5¼ð–£ºNÃd¿›QÔ´"Ê‘Cå;òggÝTYg΢¬4•Èñþ0`ò ˜üT›;¿ÉïüdàÏ¿|üï 4Â0…ÿ6ã‡Pÿ»ÿN^……Ç]Þ–Pߢ‹Îð°6±@½½‹,A'©ÆùN¹"È3Ö=¤³‡»˜~:ö†¤ü$_ÛòÛ¿’÷^\G…åÍào+îê>½|0ï¶Æ›Î¨Q2ÍRïŽÐ;CÌL o¶Û@çöçn[%î¸écoõK¡$üvkUøíþ»Uá· qÈb*H­!£/`¿-äR’c̾3°¸¡ Ë!¯³å¥a¼ÉðFôÅÙ}~#ðV!$¯ñ½Sׂ̭ p—1„šIâs˜Ç\"GÄHg% ²à èoW&ïñÒ&~a$IjFËi}‰z%Þ-_™õÄw-–eícð¶8z/G¼P¤ £‰.2ÂÅ2¸.ÞÅå¼³‡Z›Èß&Å"¢ÜΡpgz—ð–°y%h†‹Ÿ.ä]]bãÃp=ÍFs\õ`Ìx¼zïF^D‹##‰6íÕøç×1#ðê,"k. ‰;Ÿrø”!Øsãè\^•K)Úl1ÏÔ g1£¼°Ç 6oÛ•ˆÅcþO3L+Æû‰Æ…çØ³t‡Ýˆ¶Ä‡ àÃ+"#o0+M–þ©‘©3H#u>Ô.Ñåx¸1Z(¼LZò”pºØHˆÃ8Ô0â,ý¤·1´hY\ÂØ%ÐOÞàÚ½¿•1jàsó½euUWTêiÏýK‹&`ôÁ/_pê_èL€ê'‹±Hç†wㆫAµ:œ@-nº‡¤‹Ø¦tÛ.š±°èCÑ—ŠA«¿µ¾‰ áO›¸°ðc›RŒ”ídÊ:§ì`Ê7*™¤'9;s'AW\Þµ¤¦4ÂÎ(ú0 âùÈÀãRúr#«ì¡8%¡lìãðf}mt@Œ ©H°8DÕvG@@¶uÊ Ìv•ÿ‚¥³úI)¡Šð/6‘}ÖYÏ#žú~r_öGPqÅÌ·ò7ÉLQý$™_$3ÅŒ*Ë™À[k«X_ÎA`@c‚0ÅjÍxœå+u\³ëBfˆoŸ¿ñ‡zœÓ;“£äIÊ}Ÿ,HДMÓ£øÿ“1pùÌ©m2N¨ƒ¿($2$þëi€oÓºŒ q±Éç0SbNŒ¼Å#ôLçHEáª`èò ô3²®§*ñny>šc@-T©lüìwžið2¨æå%*n<6 ½0»b8 ¸ ýÑå-1oÆâzJm…(eÒ"¨€ /§si•‹Æ„ž…QÕd,1«ý¬âíRc1 ÎÌÈÁqŸû×VEÍDLPÑ‹Éèê0d ‡íHrî*,&‘(õWžݧuÖ!q@2žÊŒ Ù&¡‹l?Glß²)<íŠãCüCQØÏF¡YöõpóŸ©{I %j‚O´ŽÁ¸ð1:í‚Ú3Îwkº;§àOhb0L.M4„šx;Q³â©D_@€$Ç8;aý Èéña‘5=â°à –dKƒâIÌs ËHLÏÎbIk×[‡s²§§:‚ʰ«ÉÂ1’Ù]——Þù¯VnUÌ>,¿7PÞ­|´N–Ùüÿïÿ®­‰éÄ¢¡­dè¿ÿû=¥€Õ,%ÔOfUB]•Âð¿F1vnX¨6+óѤ0*ñ\Â{Gú¿(ÊÅh—aœ¡²íŽø­ÝWÔÎRŸþå.—s,+÷ú)—ü1.ù£Qã:׸ÌòIÂp‡Ҋĸ‰8 ®Ü,væ.Œ“‹vDºú/9h±·ø0š%SYt(‡,þzxaáæèŸ›ýÕˆûK„5¨?³ÑTn&jõ+·hrÌ'ú šK¾O5}KѬ¥ˆzËÌ(Òè"(T2êÙDBò<8aÎ!ðL O6FPVî׈[i;,[¥Â ð+{ `,Ìá l³ˆgyî1Õ5£ÅWî:\‘Ø>Î<¯aÍp­wlæ·ïcàYÈì^CÁ"1â½ã—8‰'cå=å]=£|‚§ž’—dÄ’)ó²ŒPkèz#£~.¬/+Q—PÞÕ3ªüºàU3”wõŒò ’õ¤ EJ‰ÑG£>1 }bT¹‡Uî!FAÅ'EK2’øV\R”£Ð-F †VÑùú¦@ÙvÁ«u*I—¼RÆ eâ:ßIŒ°½Òb$壘¥Fú‹šKì熱ºšÅüôb)œ–ÚQ£8Ýf,L„^îÎ2F{œ¡«ãÍÓÉ4±Z°­_4ÜiÊ5)8—wém]k¿•N³+v$+5D«”à(b72çåÏW3Xs~Ôøê& s+a[¯žIkòç…3¶˜ŸßÎØ¤ÀÕ+Â[,(dãUáŒM"²q ÎXVEŠ$‰E§K¹îˆ`<“:[žÝè[‰X³jHÀÞÓñ't§Ï÷(ý!ð“i³j €rD><¾¥QíDÞ/¦r%+5×gÂ!´ 5W<[%ë& mËF¡ã—áùâ–,BT†{¬Ý2ø´Ó’X¤.a®Ù[¥uÙ5Ë*»Ÿ^ñ¶&´fŒ\"Í…²yͤ#sËã_ÈJFÈ9Z!0µ\Üž/Œ-N¹‡ ÚÌ$±ßy¦5"Wë.q¯JÙ5r1ê±ü_5Tê@óD›ÙÍ5’'¸ñQÐÞßÖª"a_¡ŸXJÛŠmÊlú P!D­šÜØ&ôX梣¸0˜WÎ_þ;fdÞ»U Ã·’ðÍóÓS±¡´£ƒ3åºæT ªF¿°ì?lY ô}ÁUAa)¯úÜÙµCÈ2ò÷=Ћ­=‹“þAW_+tx*¶÷ûÇ-Ðxˆ j ó줋ŸØ%ó%úbÒ; HÄtœà¯ ôõþwÃø ßñàUw ¯òé}~:Ç=¾Íø¦A¡ÚmW´ÚÝÞZtÏ»'ð zqÐ;)óÁXYôéëÁÁÑqVˆYü=$Oßþ‹Ð‘-‹·ç/ÞÞIâÉ:x¦ ¾2Ôñ¡|£CÔVÆ;u@ÿpoÐçïáðP»Ï•¤8PK¹œ² óeÔ㸨ýÓ}‰È×zYŸºK T§ª4[@©ÍGHí¿é¹$E`X:ìñ¦vVW>ëû»Çü;><é£3º£,Y€txÑåì½>:zݵÚg†(þ¡pŠ$建ñÎ(‹ UiEœÂœ‚iÀÂN㩯€Vˆëöì,„@‚&Lòz1?ØážEcOÓ`#Db ,ƒÔä: ß-– “é¶þ Uø¨P…ñ}õ;bž«®K`ÖJrLqd\ËvE±©„ªàj™m/»¸‡°UæWWÑü‹•ACn›d‘¨:ÔsX"ß» ô»àˆV±Oóúº÷üMÏ[h%HF4O¶A4ÿd³`ó 8Kµå2îëÉ OÏ9¯ÝÛ·êrMŒÉ$#4W|—£²ŠEg×[)5º¤‘òa*ƒm+Ç*0•ýw«ÂTv®o¦³Å ]¸ÒI‹Lš€<¶€%“XŽü›¤f®þáÈÄIؘÕy9‡šÇ-IiÞÊ ªl6c!?,0¤?§ü%ÀQU÷ùT)F>¿1ðL¿.£`±`Œçû$F'G˜ÚŒË(w}}fd– tv J;$]jì@åɵWùcrP^D(Û—Ò¶{cL”~áèi7ZÎlT –"ð©®?¡Ï•2 x‰€} ö_¤"¦Ä¨º•Êš†P`º,ÍøG¡@PŽD œéÂAa”®êÈ:GsÊ¢%×6étlâhEMîŒïãbt–ú E,†³N<¯„ j>Nt$e©ªW ",#ȳ|œ0>w)«·¬¬šÁB¤ W»l‰ã‡²ë€REˆ”£\QóuCÞQ•ô–åoÛÅ©ÌIzËȼ1£·Ôò9^Ê{°B”í‰Ú@Þ !×ÛÑÿ’3 ÖÌ?on¤ë¦ƒÄ5:Ó]‹BPйþ!gº þ0…°ªªŽü}EïšÓ͉Ñüú†ìà(•ŽZl§I°'?ž½ÞÞH¼F‘×|hêBµ°<ŠmßÀ0Yë®9è%€¦æ C˜ vZzâ¤všZºšI­í¤æŠFÈVÒ3~ã±åÁóÊKH ªÌÏÍJf¤z˜ñËz#…*lq˜k kp«Íy¹|Õz|X–;UvÌetÜWÒõtGZ­j£M.~ÔÜO³….Og‡ÅË¥ U•Uªr9ã‹k‚k¤ÑÂ…Ïþ‚ í ïÎ0 @!ÝbýUÜÊê£.Ž­££’Ú‹¨‰b)ôtïh‚n åäG î&•ø†R\…à;<;ì33Â0f°¨ÏSq>¼Ë83tumzÃ3_O¡i9„®Ž4C§2çC @ØúDÏÝ>"ÞÑyõ,,°Ÿjƒxã"‡Ê§S >G§9J„<~°ò±¶gQÄ3^ÿtß„Ò#¿CúG×Ì·ÝO Q‡•^±Ó4Šï+΃õä“5°‹"î\Hâ¼õC3\ó®e6( )Ú&+ñ‰dßöøÈš^´f‘e¬Æ•®Ì£²f6†—Œ²%œÐ’nT4JL­q›Æ’ ÛlÓŒ*{~ÝrÍiE™e¯+J ËšâӺڛ߯ķ³§¼íÜSžR´OÃ% ººPÛÌd‰ KŒÔæ¼ô`}nKl¼¶xèBå*=„ƒ/p¥Ž÷d·àŸèSHòAñCpPjïpÛß^·&/"”Ìz\(~î„3œ#Š·…ܤƒªw^ˆ%~ò Ee•R÷|è''’SV0†Ö′8[óLý­é˜»¡ÀYòyÃ?uŠ¥+­/YN-.B9°’Ž,wt^ÉvXqkã-¿“ŠĘ‚ËÚ¿Äsµ#éG¢²d¤2”ÞsTd§k:ƒ7r»Süÿï(ĦÆÝDÙ×yGîæ,’t Ér¹ƒëÇG—»Ç\NÊ/bu·‡lW·+ƒÛ”Mû7äóiXÝaùycž3F‡ýìøj©/ÂêþßýÔÒe5¿‡¯€k1äñ ð´åªgÿYµÚÿÝÎõ¯³òÓßålþ{åçë+©/? ñœ£»ÎÇ3éxΙóž—/?#÷Z™qY˽=“L–q¤R ‰Ï¹Ž«³¨óK'A³³sjI™>r¶n»yŽ…øÏ/¯B˰}d¦p-.@Ù›‰SÇÌž£åX°œ§¾6¯Ëk9ʺ:¯5⯧ùÝJð›:ˆÍ{Ú•ï$ ãÐ(ïÖ 'VyJ»Ó™ÔʇPyO²Ï“‹ÇÔ¡êÔíD§¦~òö¬Ö­îãŽ{ää'¾âMagKµåãîøP»ÌQÔ=„ÁfÒ]¤*5hc,OßÈ"Ü£€©d—üܷ$ƒc>(*IÊÞ¡FéKqØ‘8½w3ÇÅ€}†¶ìÜ,ÏY.ã2ÎoµÙ c+†­x–ëÐkÕƒ®ìÃ-7µ†ë@ké!Ö=®V;¬rØGÙ‡R+D9«³ZH…ãRNÆÑËdsÓÝZ®Û¶Ã&BY·h‚zÊÎâíÎ-Tox6a'o:Noú·××ÃÙW{¿ŽCMa†ç¸Å*ÑceÈ2ŽQF!HT&G õ“Œ Á˜òÛP8ØÁ-†û–ab‡ d¾®Æù6î†w“€á”Ïãt†bŒ`¿õ¥uè„êàËñãÄÿ[¡“Ån:Šåµ’£T W"Ý4~««àgKë¾áb‚ ÛØ‚Ã…]².Íba•’›ºdĦ‡æ®cÁzïEÃ14aÐ>wâÀ&J]Óȵ Y—шkgõGœ¢ž†¤'=I°ž(†ÁmJÕÆÇPq7À°0±hæÉ>Zc¼\9yèõÔikœ„)•“9éwB¤Q˜»ß=‚kçpe¯'²c¨ŠK ¹%Y4’‹«¡ð±^¦“+F¢ºÄ0¼eËË®f÷Ö7JùUÍÂHIÖÒŒ}K£ä%4¤v-9!bq„`L¢*AŽMŒâd1&V°Ô8e*.€q”hÓ!ÉBSBo :eZ ˪HYвúT-ºš—û&®)¦M”B:åBÊãœúsÆÈ§J®ë”W"Ÿz3ZÅɧ¡sže™(®‰&Ã:Ú½)Uj´d®¯ro@nÚæã³->GÑDB.Þr²eöZlй_¿<(ºFƦś¹Dö4æÝùÂpCNåBv•³e•ÃË·u¹LýWŒS‰c Y§Z翘]}úR½|2p¶ÑhÐëæÆ½ÖBþ\«5ëõæÆ?‚Z3ln  ßÍ&$µ)}És;_€Ñ%þ+£ùðz:÷¥ƒd—Ó?ÕÃrß?i÷`á×éЈ8}WP YÕ–ÙCŒ‡Ê#ñŸÔ¸=”Ná(¿†?/ÐÉ¡‹Ñ,OË'À{,}出Ϋ'áÜÄËríä¤}œ@AÀæ°uÜÚ{%Axe ö¬L(p|½…Fô>™Œ>UQ› ¢É$šÏ£¨·K˜&£¡hG³0õ%S£Ûz.:¾pwú)"ƒ!„ÁbÆcçÀÉ1Ä•†9â“›•ᨣT…¥WÜ•þ¦¢Þ×ËúT¤lPQñ3K‘À]¼:b<·y+¡¤wE\õI¦q…?/p5KtŽØ±>ÉSÅRæ%uIYÚf~>­ÌÎݶJÜÇ*õdsYn|™ÅpÞ)K‰—¿ô—Ñéë²`t™ öŒOþüq;ÇŠoog¸™g HL R|6'Þ§“ù×ëëWs¬­±é ùH âÝ^î“{ä©‚aáêjã<…“k˜ÍeQÀØÅŒ£]ÔX3HÙ:Æí$ÎÂø/‰<º˜¡x#mr.aFh#“b'“Oèb*F×Àÿ§HZùÒ»Ró Î$ŠùÝ Òc|üØšs]9ìiñ)[ã-ZÖ²¹g €6 ?, G‡5ñ®$Çü´‚|ê@¥"Aýþ+ã2Y€-ƒ£ N͛܉Þal¤ŽÀK óq2ý<‘—P5¦n7VåS*Z‚~˜Í¹xâzó™&t¦$Ì,å¦Äæþïÿ&æÆ_×Ö Á ó‚ÜІ‡ÑreÕYP ®Ýû(Þ5P1‹ä•ìºnúþ€xD*˜û³½ˆ€3ÓAæ")f½ÂÕ–â\³®óòu\$,69P¿‰q©ôF.%¡mJ&`‘Æ+k\W*×7Nñ­,¾É$ß,/A ÐLôäöôÌ_·Wá†Ã í¸\ ±\•0Û’Z̬ZPE5˜­T‡B½Hš”'PŸ#ŠŽkŠGêT³äƒ¹?”âj…JWâ+×D%JQ°«Ð(Ò¼0*Ú…ž÷»­¬Òôª]ÑM”ËJµ ”I GBdOa]á Xñ‘á.Ó€ù8š\øôˆužÄÔ° MÐ2Š ¾(¢$îaú{oÕïdiDKÕžÆÓÿìˆý!î<mº²’ø³ÿ–Ÿô‹%ü&tп™yéO=A@ÿjåwç¥?˜€•WçÏÈKš@ œÎËùˬnF(ÛŒ¨2îêmè?÷h³$•ÛŒºÝÀÂ]¡Í —xÛLÎD¼ŸÂðà 4bÈS~É¥@‹­…Á*G/iý²¸}RSIsÊ"yFùå÷',£Þ¥°ÿùbG¨~#+_ñÝWýîúë÷…ÿ ›U·z2«Õm_TöTÖ»õZÍ—y§¹†tPveUrN’Ôeñ¾ µÁîùÊ30Y8íHj‹Vaå1¦+h4›O9ªhN$ó‹ùÿÌúsrx\„.µ*rAÿkøg=‘Dü? ðþ0Ãñ®0\'-›B–´®oAû"8­…16ŽÐÎùßh6­¢#ÃhS5~$àa˜¤/¦×ÿö¾µ«\Y{ž_¡•ãân_€ìÍYË\’q&ƒ Éä¬÷¬å€I¾QNtÝ¿qN*uùœw‡ü{äS댘k~ãr§ÜyÅøBͽ[<_/[ÉW'g“ÎSÅo‡/ÓÄuÉÔr(Àªc1€©è›bÃ?žBÙºpL-”!Óm,…ì;]ªˆöÆj¿má?{øB»¾ýÝý sã¾v‘ò%0Tô·nÉÖ^ç1|[üG~;mõÚ'‘ük°yÃìX ½Á†)ÖËm莡‡L*ï¢îÞ Ún¯WäÌZ±Ás{ÇÍû˽Ò,k+’†àÜ 'xÇ­}4E" Ek°c!_t¬Îúû°¡cu×éü`õP`Z”Œ§"Šõ§¦•XAz6Õ[Ê“ÙJC9’<Ú¹„«ÅØSɘgv¾ã‡Æu'Ç2ø¡çKà‡J©! ÄŸo€š橱;åw7Lþ`Ð>Ó Ð lÇ€sZvÐØàUu¬·LÍ=05}r_1¦…Š©ë«ÒÅ|QÚOêE^@k$~¯«ß5|%I¤jxRE.(çvU@|AËŠò|€ ¥h ?$'Ây¾Ýó½ Ò ©À{¡P=ÁÌRI¡Í>v?uŠ|h€%›%mà5Ç5ô>£ÏçGE¢ÏZ(Ž%j”uûë^±¶&Ã;7ÿïä჎l¨èkÊS³µ1òÌÙCàˆVbo݇ÿè%`çOûjø©,p ÛìW$ýZ¼UK„ÂZcs:?*X1”=L)7˜6*˜¶‰Ö¶·æ"“‹èÍ| Æ×Òšr˜T~‘ˆ¸K‹®ô \åPhÊD\8R7H\ÁPÑù`†"ÏðÜ —‰v'uC°˜ ¸B‘!Z,Z(Aà:®ÀIçÍ‚Òo“سI@³•;…Àt…—ÆëÕt49 $§cÈ¥ÃÇ%žž%Gtq°\ñ„Õv´š¸$cè8*dϨýÂÁü½£·è€É,îfdý½¢Ž˜x4¸šSˆI9²µŠ¦¦ ïˆäŒƒ<êKt‡só÷Üé=÷\ìQ¸=W[MÏâ¦ÿ²]W»m×'ºÔåum-§kQÆÈFGÀHJÅQT&r}nëx'ERüçÁ ©mSÚ’\Þ ‹Y\°öo›¨8¹J×V Ìã°VLAgפ‚#ÆW-âÅeÃi‘Ú 0$!Ò‘KvÀÖ⯞#Ù2`Ovàjªh9pÙZ ä& Þw´L½IÛ5î­í–gðŽ¹ Ñt^à oK8Æ•4E q•ßʬIeL>­ðrÑ0\4–æ¢ápÑÈãÂiRÖ1ÎqJrL@5¤cùÅò "RÏ3_Ä#Ü$ã½ÐWøK=æÉyB‘“#Ž£˜3S=Høq‘r­ûî<„Äô¹òL£=Ëáh¾1ëèÙTŠC™ÙmdÏÀÁ|õæ[-zJ°ŒCU2E$Qažìs RÄ2h)â–€)"3Å6ñó!} ]žDäÛ’A«÷ÇbQpÙ8Ë>.”Šï}½ê)°Jú÷¦…e+…²²ó#QX2ÀP )Ù²JCmŸ¹p&ùp)) “ †‰ _”ò^ˆ²/”­€^çèÈvfŸÌŸC-É}ãßvÏØT÷QñòwÑå¹H18•À¦loy÷ÂCˆ)õ%Sü}[h×zùmjá@˜Üh×9¼ÍÜW^v#9¹Ùèí~³ÿèÝ.¾ìïô¦gç7¹½ëðåˆCbÝܸ]z§ö¦Mš&{§5Ü4©­Õäþi¶1òä쌷BeØÚôÔTl·s©íÍìÍÂå60‹ïXæ—ê^Å&dÑ]Çm3šÈö±ÇôJí· í .³˜±G´Ôv_áý½‚fo-³e·L ”yë­)øvk…wÒn¹uVx¯¬øæXn(o³ýU4ŒwÍ·ÃåáZ¯Þám¢›o Ý$øwsÅÁ¿)ŽwÞžÊç}‘¼oÄ;±›br'ƒtã£]o³ûÝù]Æì>¿×˜Ývi‡ö—¶8Ô›áXX}OE Å5 Ljڔ‘`÷“# —ü®Œ=ùcAÊ8½© ½áÀ×´£EßòÛžüæR í,'ÝïüÍ6<#nö¡Y½sC™ÝLÔLÅÌndÆÌößä&Ê1Z@ëªH¹è¿«8Øþ(ί2íŠßÿ·´ñë:RxŸðòýžõëùkˆÂï¿ÒòíÝý¤k™ø5}KrÓ­C-Y‡XÕáß‹þl¸ñ÷©I^àjJ\/uzÄAГ÷[+!2SNŸâ2#|µ§úhDaȨ¿D ˜¡XOÐtë*ÿˆâ=]LƳ¹/wìÏ-ÃD³Õd6X5@£=ëΧ‹ŠÀŸáw‘Žfl"Ze‡h®3a2º2ü!Úü÷ÿ¤ŸŒÙdw½Óñvˆâž˜® (µ;jI}{—Ò˱£–B¡³#ß'vüÞŸ>@1ïÞÝÁ<àÜLÈÛI ‰‡7!g#rxb;Ÿÿ'Çv.ò„ã?ùpy/ñŸ·jqTÿGEÕ­-HW1þs}ë1þó½<<6ÜøÏç{ò†^S=†5nУí„ç'òt·{xx ãC÷êô®ðþ…Î{øÿmu[çð;ý{Þ£?ݬ·”âÐ{Ø"—@?Gg+póÁ™j¬#»ž²oÂmÅ¥—xw¿™%!/€3ЉŒhl‚9£XÉÎRáAìïÅã#SFJ{Vâ†å/’àY^€äó^Iv‡UîÉŒú—DP†fGPÆóW‚⸞—<‹Ìø¬¶Ô=?X—K=:±í¾<„ŸèÖz÷@þ=ÅA›àó«î¹Š,„9µz TŒQ\ÍœÑr®Ô]§ÑÉQ`Ï(íyOHxƒþ¦‘R0ƒµ4Aox~ £øRÄ Ñ%*cBIUY6)••¼«û¸1£ý¼ñçÇþ|ˆqÿ€‰T€c‰B[aÄ6 †ئ0¸@('®ƒŽÐL!ÀÔQw…Ìñ¯Óá|>#‹­ŠÄâ“pŠå†¹T%¬õ1^TîlŠ£Á\wŽÛxÅõz8.‰c:±„AOˆE&Ì%¢¡v&YbÇX¢†e ƒeÐ{*Jüʼn "¤£BCç[¥Eú„ >¥ã5Ž1ÝY›‘ŒRÐ.OzÚxB1û<¸ @R›Vxdºã]:®t4†‰B*M†åPÝW7×Í}us ‰X¿_b`¶9y³ÀÚöz8ç›å2̶€–úM¢™m=±ƒZ·E¡t¶S‡³Æ "Bl¦>c°5¤…„ ñy|PÂÔ á(ÙNdè(–ÛÞJld O:1Âvà(ųh!$Œ“CÙ@7áÂ[™‘~Ñ—)Â)­ÉäÇNšš•(ž÷ÆRÇIV§d] …Ìd:°fz€Y{Ë¥SZ“ˆ*Erœ.`îd„øzÕÍ*Â^©!9;Cîå°r« ´zI{zZ…êÑy¦¢,7%q¨2ÖÛ%ßqÈ›·ùôÏ{ª€-Y@èwÜSÓauÿÒÅt­Rì@B†gæ0 Žž3!žU^$hIÚ¾¡$í¤¨º^D’"’æ{•¤(^¿;IŠjëw+IQ}ýÁHÒù+­“7¥¨YD–¶ŠÉÒö}Ë’Ý`5éÖØ¹©Š®h8*Ôq|ï­‘x¥Éà˜ 2¢Ïñ£À€žóBd]Á€-¯û'%ÖXÝ4ÏÂʉ¢Ÿað° ŽK¬W ÏëdI¨’0h=G·Ý”ìø,d§/F“C jEL!µ(>h $€µãŸÿ ƒU¹sÍцº6§âÉOÈ‘ðÚš †Ü_L§Yšã¹†3 Áúlˆš}c8³gxä£ïªø¼z ïÙСöKÔ<- Š”Œé5Zâ~’é™=\ÿ§X´inÁ¤ú¨˜e•tÈ2<½&\· ¨X\VªÈ«¸?¦Gð³DäÑ@ˆSSJ.ç¤Ù`p©Æ²Ôè²e='S9¥êùR=z¤š ø 5·J2]¯î4h*•8·ß} P¯Î3×ÊЄÒZ£ÙDîãÜ¡òäòr3YŠøÌ ‚[ÐÞåJ^î‡ØÈ1ãÁ·9m{À˜´ É=BëÀhñ‹ùpÛd6ø÷bÀÁíÈðÉÁ0èi4'œ†Ø°Qû¼ÅŒ—kp_¡¥Nù\m2_Œ—¦Ü×|wÚUF»ýï]ƒg À¶œ&¦RØ* f@ãÍdy½ £k ’ûnUÏ&BNu¨Q#ÊR1¸«Ú$ã§`0l xçH6Û9€O:ù)Í mʶ¤žwoúÞìR¶6™ÒóÁ~T9FÆ*iÎŽ³8;FÎŽÕ,}¶LSœq‰ªNg+¨ÓÙ&Sr뤂–÷–`î¼§:й;/çìŠ%)Í_Çâwü——#jöer:ÍN›û7kÄ ´³¾®è­Ì’tïˆß» rž°0åŠÆ› (NæVÒ^LX¥Zù¸óôø]¥7êëOcø[.ǤÐqNѨ‰êa;Xt*ÇïÖwK‚«¬W°Þ °–´j ¿Tlumßn—©€ŠŠMþ°¡SŠDN °*mJšUȺÇ)Yœ¼vCnDÏ•Ýþ¯ì×Fü\t'ר~ÑXM½®É×Ôé×õçÊ®K½Úz®æ°Ä«¨úœ¦„‰'HþxL1_Ý©€<Á˜17¸âF?' ¬IœI‰dõç¬ u:úܱÊêØeq-eÅÐz<Œæ“ Oý›‰~àà˜]:å’ƒª—ðò•¤qŽOÿà ևsko‡W`Ê1é¡Ä¤—IòÑ;qè«YGÙlìg‘• ŒÝ@àô@`z4rëý.àOG¹Àïÿ %î;¾:Ùû­‚ÿžÑ¿ç½dÒrM%}ÓÒÁeqðÙí ýê7üç ÿÁ³àöÛ.þÓ;~CN𯜠ùÉ_±oÈQ—½ŽM`|/Çõ§™ñXúš ÛÉ‹VûHGÓG¥p×Ë»¹ü:öüÅQÅŠ;/Ž‚]“ ïió}hhrgÈhÍ“£ƒîÈë¾ä/c?C_¾÷D¸—ï3ÊY:VþÞA¯%¼(V>H­ŽîcHÐ=ìU´*êÂÌEñoMÛ×n „h×ÞS·›GåGé´×6U5|ÁàÀ€î0gg ä£ÃÓSÃ×é‘+ö¡{Òã]~Î:mR€äÎÈmÉ=9>>é8íôŒHíË¿Š$2W!6³r“ûꃼK5s° 8óA«×îƒcAénÿ ÝÈÅZkâ™WDo…À_I©Âw¹Éf~ítR¿3j‚º­Ôq¿'¿'ÃÓsÈC]‚L™_tõ%mÿÎòvL÷Šì›Ex3Jþ,qœ ëB[u&[Ç¢-ufÇK[þ Í-’ }lWš¼ÝÑ|Ze9ñîUãp>5à°Âíüž1®)>•Í•,©"E‰lÔ‰P\0ö?ñyîa……LE“ï.‰§Á]XFƒ{¥8†M¡Ù,…P4¨©#ž³©75ª¦óŸ-“?UG´wm© °tá_¶€ƒ­«{#°ÂùÞAq$–£6,̆äÏ×Uútz¥ÊÞ¯xt)¯ê­uTƒ®9é`MÁ7Û×€ ¥¨Ð\JÂXßÑüúB·%½³×ˆí& @“Õ<×èw6±l›øÍw>ÄÍI‚a¸¥Ž&“Ï|O†Nä*‰û¯[ˆ-Ò€žEƒ£œ’XýƒÊF}ò…òãcá†èÎPïøPF„²\5 yZ Ž¢MÒÔET_Ƨ‘7k*>á…paã››âØöÿ5ÌovNz›ê„œ“{"û™ 0îíÞìà„Êê}E")Ý~åeÙ8˽š¬âÌ#×W|0îzŠ4‡ZŽf(Vl² ¾ä…1ô0$m”›2e?Îò ‡…:´÷§€7q´_¸‚éa©h;Z¥hæ¦ØÊ„´{u†+ÉJzîØîÕy/œF¨ë@‰-^ɘKZÀ9ÕuÖ(‘•„‘×+[`)<ÐÞø¤È<õL—:%UC%=ï…ÓÞbúã'w´Ë‘S¡u6•š õ•à<µ"„uiØ?f€p¡£ÔYZùAø÷<€c4)Œ.éÛQódÓýŸïÛèâNRõÓ™õ‰†X¶â‡& w"¯ãñXa2áI›½À•ÕduÏ<óäÝV·vãꦪZt(ðsUͯžõÎUôNÐÍ®MpÈåØóÞ±FE/ש§l;Éî4ŸØ’ZBˆ),Â}Z®ñò£v¥5Ni÷¢müÐyÿÒu^~èžj ùïPß[ßfzø6 ßîMGïAûÜ”jmÁán^¹K .váÕ\"ç¯ø¹ÉšÁ®I"ÛRë†%èr"j&ˆ¬ ÚP”)ì9—× ƒ\x‹pmmG¶Œ…j᥺½Üö×AÑí/tÚ„žåÅS±£?Y»`ÿ›^+ÛÓ:ÈØÓ:P{ZÙÛYEt¡×†¿û]­ƒ¿Ñ®ÖöÆFýØm­í‡¿­µó¶µ¢êòûZQ°øÃþÞõÆV”ƒ§}£­ч°µ•YÕ{ÙÛŠÂ Ç:I,W'ÉÜ % £W¿ñÞUìi?t ¶¶„~ ìÝn;(wò‰ùƒ]•C;@Æ"΋™S‡Ï*ÍÞÊ´Go²”äÆo…–‘’þáfÚ­+ý<ä=¢ü•×ßu;èk,³Þü­Ð{‰fXb«(Ø™u V,ø"¡õBg/s6}þ®côám‘¬rœ>´-¯6RWÑY}¼D;ÜÑöÀ'EµbCÚ¿”9¢o·ä‚LælÝp÷'‹fÙ}Ÿ|ŠËïø`3ØOÆvOÂòt{ºnïö õ™¦˜áÑô*±¥ã¦ëLæƒç2¡úBŽZäÕuŒw3Ìíü³ä(ÿ09 Ÿ&ë$Û&‰×ï(o†¸ÕÆ•¸íÞ•XrûJ,±ƒ% lb‰ü},QhA¢ŒŸ"k’óW™k’óWPÈË5éJØ¢\Ü™)®kø¥IñS•“WJkg,I¤¼ã}ÙñLœ“ÌcþÙD| ±¤b ©è%J—c¶Î0è  _íF•ÀToÛá·Bn•^UÚ(ý­R»ò*cr9ð)sùÂÇ[Ñ=‘ç±öjß×ܽ=Qt{O„vøDx·AØÞkh;c(¬p¯Od{±5›iKoù‰ewý Ø5G f›fSeçlþÝ è­@Ñù&ÔvpŽò^ÅÛ, NVi¼„HÇÅ ¢{ƒâÛƒKTÞß¡Á¬Œ ZÈÈ„70rvrÍ“¸šŸ$¼ m_D$y4qîÍÄÑzª€ò”eãÀë”C«U¾wÝY˰mŽ]¥é;ík9;¶>">œŽl³GÈ£YôŸmíllÄñƒ0‹BgŒÑ,нg“¾²WnÅÞ[¢€Y”1凵û2‹$'wa%IלY”WùåÌ" ¾F··76¬¸ ²¸?ÖÅkü¡$Qܾ3wŒcßù¦(ãvåµÝÏBtÖ_³îdl0ûsl/½$kÛsEf"u³°ÅúQøo 9Án8éW1øïS!Õyä»ñIû—¥Q1‚FƒᢰhœD6>?ÐX»]…™pNÁÌÈ¥[ò¸Ú¹¢4 TØYôËÁ¼?ÍÖŸ§2*TëÆ¹„ED`ÓÄðŽé¡Ð=‰ù0ÀçÈ“µ^,«Ûî!Ñ(FBÅl§š%SS µ%FS‚ªÏrÍÖ>‰¢ù æfDºžãysEÌ«à>*™ƒ^I(÷,R£wX˜ ÷Ó]¯HPÖ$x5vé0>ЉF”Ë=‘ÀŒðå¨é¹\|’€„(¡ÂLú1%Rø¥IŒ‰ŠŒÀžA¡™ÉiñdiR–,èO¦-ÊäSÑÕÓˆ*žÜÛ·ïÀe;0ª.ßQtßÅKw`T»AFõÛt`Ô¸uFÍ¥;pë¸}︳tÆÕt`-Ó4²"µ±Ž ê·AP¿ë3á à×HBFwwù›Û4 €¯ê%…¿Œ§—k´¶,i´`Lñ2Šx/‡"i8¸Ç0/·|€[¶a‹Éf³aŒ1àÈ.2T+É:®%ãŒÐÏlÌ«ú{f‘wÔÏÒ°Ì:X|+cMî¤Ñ™ õC&zDgþ1Oþó`v?øÏzsëQµ7¶¢zÔ¨#þs£þˆÿ|/¾þóa×à?ßûÖdbTùwÁ2íWÜh:…ÿ·ñ/~ÁçY`ÆGðZ.dÕ&]ÇÙUÞKo.ÿðÏXqÕˆºCTpd:gP*ön ž÷,Äæ[Á=/‡òü«ó¥g} K‰ëšvÞ-ÉæclævI}èå!E[\¿=ÕzË@; !‡‘î ÖÝìûõõ£Ä`øq0æê¥îŧEé¿^Ÿ§“£Áµ$ÂhÏx2rØ5ñn5ô/Ãþ}2^›=YçðX’ÊMqŸŒŸ¨fBÿ"~Ÿ¤šÂ‚Òȼ’ˆÏ›n¢,´Þ¨¦HЦ‚*Él.è“h»ly÷°Ñ†Ð‚ºÙ+l<‹ ð0ý:œ%ΔJ㉘M¦ ŸpeuÝÌdI\^¹9ïB)ç]é8¦%ˆëHϯÚ52 òãbnŽ·6Æ5ÌàÑŽV‹–®Ã"/YŠÑ©«æÄšôíéÓÙ¿§óÒF´^~Û& ²r’^Mlg6x±o$˜è•É𼋛ÙüÁ.à{eõ…7…[©l6’?ßC[·‘pÁ<ç²ýƒ…<‹KKÜ’;šœ=¹Á‚$ýò‰ L)в] § {ÆÑ¾u/„o_Ç8§£!›°îk`í‰æv´õA–MÜž  Ëk0”e„mõÃ+ã8½5²H,Û-ŽŽ6ÀÕë3Ø·Ne§Ã>F‰OÌZ+«^–h†jiS¡ ßI-£Ö2c\ü¸ Æ+¬àO» Öëúóh€Ïã?1L2"Ûa—Z"3>rb/>6‹«)ff ]RVQÏZ¨žï°žúìUgðf›j÷7\ c'­K+²ÐÈ´I¤iÑ.µ‰ØµöVµ~GU½É²LmÁ~öÖ¸qG5.0bï¿{›wTÙ¼ÑkSð äüÑ{ó;@OÕÐÙsµ] y‹dÛÑö­‰gX{Óɶ•¤0¨†pšp#ªD.îb›ðˆgÁ³^!$Q«ÙRœˆéä댔À&…¼æ´ä(ªSR^þ ÑÂ6¦uÕn¬ÕöDÝšx°'ô^´µ‘ª¶R%hq@XZ«éÍÈ øÌãŒAÏP•ØlβTÛˆLŠéç)YÕâÄšDIK°æA¸•+C»Ä–Z:J7Š8ói ÙgHo‚;Wãª:ŽÐ‘#™ZÅÊÜìÏ!ŒÕK ._fááÚUâ%äð» 6Ä›››"Ùвum"EÚ"¥ q’«) CÒþ´´ÅUù%kV„©…õiEçN@²_®†cÜ<ç-€¡øÊ÷Þ¥BàM©–„væœI@ÃB®«ÅÈZtGϹP^{3º\Ò6“IwÖ2]Èá¦GÔ!GȨïÖ:)¼påìë’º> ÇžÇ [(YŸïiÛàð¦*]ÊM8´jelc¦Y’øN©Þ%¶*›TV÷¸è[P+“ÅÇO6 ‰DŒâ…‡Ù‹¼vw’À¬qJõ•,N½ð´¿j°7&SŒKgdBué³d²§gëÑ“1Í)ß%³Dêc0¸T–‡œ¿¸m jÌ&fÖCz$ƒb^Œ.‘íƒù×4s•º½^ÝiüÓ‘ü+jR(ê»®)Ôr¦çõ„24¡[£ÙDãÎ t› dš\*må°løÄÁ5ïar©Úóãt[I0ÔgƒÃÇ Ü¤ºâQÓ\âƒtÏзry6qÖo\ßÏÓ ²ryñ OЇ0[}Œq›ÊekF­fS0»¿Ü%83_€è|ľ€Þú6œsÁ¸%õ:ÛUîDùmN§yzŒg¤ù„&ˆáxan<…;V5€4é¯u‡…hJO‹OÞ¨ï.& ¨(ÚÕWýáê!KÑÂ;|R1.±ýÄ ]L‡ð÷`>T º „3Yú&_€d‚ôˆ\BÎ…JÎzh}Ò­/ɾ‘Ç>ÚÁ3ÐêÜ¥)÷±´Eè ¦F2ªh6GÕ*ö1;ø^ Ë²3ýà #KAæ~Wë ¾'J3†ãûp9Y| œq)çiR“rʽÍ|K‚Žø(¸{Û]¡·Úøõt€ŸVTtL®–κÓ6g3î^´ù샠¯hS;+;$î(gÑÛdíGã©e(i_›TRí_Ì´Æ&›oTR-²›ºæ[ÒT º²Å£d©˜Ž´3sŸF|Ä®ºX6…dá×4dkL'P÷Ïß•”Ñ –UÇl“K}X`{üÚ»}ñ¿@GÜœ…·§…Y°KÛ¾Q6»_i}3¼îŽû0}¢.˜© $NñZ›É—dø Ü”‡,¦é|–h“¹¨ªÝ»Yµo”M=GÃ?ÚÕ ›É™~¦Ž·âŽ^Ä%Þœ†¨Vþ_Éùû”Í^ùggéö›Ú‹¸´/Õ€þÙ„µª>–§¿ÜRçÝ%d½{|"¨gX/hÆÒ´Rà3”‘O!œw7ÅqRŸ#+QE1$K`¯$(AYyÚDµ”ÈÊNÑ€±„ŠjÒß%1ñnò“1¢ÎðlˈÎa+ø©ÿe2¼Ôk%´x›½XW'šœ-:2_ñ¤ÙÁ¬r…•¹`m”éõiÌ·§A4þP6¶bÃâ>l`)¢¼8 «ÏöyŸ\ÂíY. C¡¢ÀÜl çßJå÷Su1ù¶ åÓ0w e”|[=ŸBPõecYô0HH>sä! 3Œ»lL޲j2³įAê&!¡ÝU+X•Ä?HÆ“éu¢.¹$jhk¢Ñ ó„\ZãW*Z¾ð¼;»km4ÙÔ›²^õb4`j( ï#Ô(Dgš²'¼¥K«éQ0vj5yÁ £7/F£5§ÖE¼½ÆÿzqóÚ ëWu`Bo&+:vÁ¨?V~¬&Dà9·âÒQ8ß“J ÉQð•aÓÍl@’ “”*»­ÕZ’:hœ;÷OŽäÔ™L (í±q2 ±ŒÝˆ)·üà3Ù|Ö‚|ÊÜ“-˜æuû¼&Ûõ'űŸœÇýä6x‘&RJ9»êõ`ÕÔ¥‡cKáQ5ÿ?yfÜUNÓÍ¢FAïcÄì¯u×tHú,£±ð6*í,†ÆBoAVé? NnãA)hùd“0Ù-Ò¶H×Lt¶KÄìG´„$v§-Ñ ¶ÄK5al$«¶\åL‘­ÇfVz’°õPÌfSÙÖ÷ÍÈä‹?XÚéÇÚšÆ@ͦ}»RR$ÒÒ€M#T Ðé­ÙÿØò êÙ$ä®>K•1W®`ñ»:ÉÚÊÕ:}µÆ¶Ã-yš3¾šÜŽùÉí×I¶_T «ÛP* kË>" –IEÜkk„§°l³[y»ˆ&û9›¹“}‚¶ÒfÞÉW“«häÎOÝȉŒ´ÝqÛë ÝglÇÅLí Þ°wh”x;>Gý qƒ¢b_Q•¥[†äìÆyç¿ôðˆªÁñÑÓ áŸxˆÜ¡º÷ZrmæFè÷öT!4@ñ5Ô@Œ2ÊUÇ ÈhìO•ý¸1ch48o™dÌÈ29Dú6UêZ"uÀŒÔJ®n)¹¨š­åê…´\ÃŒœìQ£Å]-Û…àæê¾ÝX ®#Or0ÏЋ¬D3ÂH'¡hTHÙfñ.´#—¹žb;+/6ˆ¦†ýؼC È·ìrB¹£’Äz9gð$rZ:)X¤§]hà'/ä¨âûøÞ »Ëä' {Êè$Î>B?°؆Oï¸f+$Š´|¹£Bö½/¹[ Ö`r„5Ù~Ù•/:“5—ŸÉ(Ö©ÑÇ‘_ç.Qz×(綾X¤ôòW)½¼eJ…»^Ä4V´ˆ‰æ"¦PÅ3¦ìm³0 /J¶òæuáY +¶,ñuT´•¹,Ù¾É0kÚÃ,Î6{š…Úp§ˆÙ#-6zzlõ—©¥’i£˜9ÔôµÖÎMÚƒ®ÑçíekkG$ÜTððå®À¶‘®Ž…õ–nØŠjÈ"˨TÞ “9{ Ð5üெË6¹WçÍu2q¢RùçËB˜é[ÉÓò$6lë¬hóòHØt7â7Àma^%§ëÞI!DBZ³faMêq5KyR˜H‘1)-9b°gAûÝšâ¨ÐÆó²èÓ±Ð8¥B¤qj¨+ôäÔ ýµì v’uÖ¢( «Ú€cˆzПãZ¡61Ú/Ó÷d,–_(ž_ø˜æÛ*ø6G5‡Œš±n]ì-’ÃÊJ½µTêæR©b]ÊbñDø0 åpýÓaÄË&‘ÍxšŒÏèž{D’ÿQèñÐ:%ÕHÅä·?þ¨$Û”¨œŸ–dãæ`ÇœùH}òÂÉG7“?Eðä%„¼ î?ÿßRŠbÇ£Y\A@›ö>½-€{}šÆ½&ì†éðã§¹~mB#¿%1ÞZJb¸JôÛ¾ˆ¾E2…BñÑù)Ò½%Ôm"þ'2¤±ä4 Ä”cpÛÎþƒHýñ4¢Nî°èL`ÖÙþ<üÁ¿ˆ˜³+¾N‰ Œz±AŸä«¡Bõ±`QbñM(Î/&SXxÆm ŽyDs¡LÕ}ɰ.Ô}Ë„B¬{^nà L`w^wqñIw„ùŽeöÇÐÝÈìO +­Å2—oîa%V¹¥?sèaî§bX ÞÁ¯_‡¾^¬Å¯\þ%ð%ð%È£€ŽW® V¸N­‰˜îÕë8 ƒ¥u¦CÐ+®kŠë¿@u×ÿ"$däy¤;!2ÄîHF¡¦ë1í 0êŠ.Ÿòë-¬ÇpcþI!ãa0þÓô³,÷è–åå•{d•Ûàrß–`™5"‘/I8»CÔk›ª=Ä\”…„V?%¶Ï p¾Ñl¢S˞ІÈ[]jC0o+ò/—¨ ûŒû?HQ°Z ¹®ºK5|ô´N`s™Vˆþ¶0 yJ4ƒU¨[Â`Oç75g%®\³ èyktä©Qjt¯§s­‚ ÖêÈ_«G8ûG8ûG8ûG8ûG8ûG8ûG8ûG8ûG8ûG8ûG8ûG8ûG8û»†³¿<ûóG<û;ij?·‰<âÙóóˆgÿˆgÿˆgÿˆgOOÏþüÏþÏžŸG<ûG<{q#<{åÌð &ݬÚ7ʦž;“?¿5˜|²xZc®™¦íŸë&:?ZBšÑ1È =䃞Oøù£œ1쇟?* ?^|Œ°{“·R§¾J ݨV§EkutzX¼Vèùå•h ¬Ì8áNãâ—­ä*Z?öD³è•ÛJi¦¤¨L¶¢¿àê‚\öÍf€Ù|ê¬Ô6@É…¼‚Ÿú_&ÃK½Ç¢Ô#+Ö7äv('åŽÌW|¡nö¡0«\Èfî 4ÊtRPoø·\ŽÉÚ@[ëµ”QlX܇×1F¬(/šÂê5O`}V•k=\gø6°ÅÉk§'ÄFô\mü ÑXìWñs†žçƒ÷ÔëÚsµL½j>WVhêÕÎs²þE(×ò#£$ò&/Áêa C¥eÉîŽáFÔ|Î*MÓ ÏKÙ~ÎÄ9]šH\}.Ç©¦Â_–$ƒ-I1ŸÈ•WrCÀ‡ÀÚ;>Ä2y^S©DÑžB/ÇAÚÿ0›Œ0ô«òµEê‰èÆjãWŠrÄÀÌçýéÁCyî|cƒ¥qsÀCÿÈÕ'á!«ÑÆeýè†2/»#Õ„r+C?îøæ­¹c¢½§±Ë¬çH:qq‹Ñ–NJW¼ƒÔÙë“6É>!€/ò@Ã9ÎÎ6*¶ü©mcÃÁsÎê’—zŸû3¹0°l7½ê×[ŒKežž© ½ôO‹‚/·ÌÏøÜ Œ¿«mnòŽMoKë‚-”núþ½cÑómÔŸ¿ØkC²niáõ,á`‚£øÀê †Òt21Ö/ù2ÄðÛu9—X>UVg\MFÀ$ª¿«Ébª¬I4ï.|ƒG Þkµãgå–èl¼qWŠ6ÐG€v–¥b˜ÑÐܼԃ,2ánKŽPù˜-iˆ—æ–6™^*Oé°Î]@íJ¼'(⤤¦Ôÿ-EÏâut?)énU?ª"'G—ÙŒÀ\ùªýäf¨$µa ÜèݲƒÙ}fÓRÖÜ}P\C°Fƒ/ýñ\- wWñØwŒ®1W¶]—ñÏ·ÞéCÍùâ«Èc)Ø&Ä6áÃ+E¡âûr¹A(ødr ÚYF-™Iž,A&oÐi•¯™*ŒŽY6|?*S ïVöXRÄ! å7ꡉ4‰ó#‡Í$¥¸Ç•½Kå4ŸÊvš n¬Ùdä÷L::­¦Ó(cÜ‚?årŒAíxí¤¡ûѰF‘2ƒÐKõ‹ç„Œ{:]«ˆdð\)óñÛbRÎûòÔú“¼w9ñ‰<äPóPyg€%âO`Q—¥hí¹+'e¬GÿjÀL‹ë5] 4Ëæô'fQö’Œ|c«$M/JªòñMMüÖŠv \ÃjÚ$šŒ?“üí7m…¾ê S¼H\v±¿REùn(e'ãÆTdŒž‡PÆØ¾¥‡äPŸQ’¤¢ã~ ñFpqK‚3ö±þÇ@®g“›êŒ‡EÌ•+…‹¼ÉÚÊÕ:?+}õN¤ÝVÞ.¢É~Îf^%”}^3ïä«ÉŸ }eœÈ(á}’&î5¶ãb¦v…Î+84J|hï²|Q±¯(R\maQºeô¦yç¿ôðˆªÁñÑÓ áŸxˆÜ¡º÷Zrmæb®x{*OçfÀk/•_Œ,Æ÷ðcÊ@“s¶ÅÓÚÉÙô#”0<¢½jéÅO;7è°¤>=›ûö5/íR+Ô|o_瘱ìð$êåÔë€É©³4ÊDÑ.wÊåÂK(+»Ig‹È¤Ûq¿/ú°ë±wuUõFì–‡U ©OGØVª…P›Ô6SÒßN—zSÄ{ %y.áîé å^]{Ðj1>ZÖ8fWz?2cnËxVëFÙ`ZYC”ªŸ"4DEQÌÇ àc²Þ«õ-¹hH¼OóÕÅ&N°ì³\®v›[V‡™öa/ºLë¹…>ÙLk±ZÓqQ¦}`‰8ÐãLMô«ò/Æ…D‡ló)¾¹Í‹’ÄÈ›‡¦qŒ´Òf%€®­ UÎËÀ¹¹¯ò*…ËËnüt69Ý€‚ƒÀvç< ~\+‚{LÇ{ÊyF"V•.‚Ëx+!ÚeÚíüø]&&zËe&@yBÏl`V¤Ô#t;ÕCØÀ䄨Â/Ó—§¡–6µC:X5ä<>‘«FŽ~™ôì²]àæìì«ÜàÔ^Ù¨Ž²IÓùq>M*åã6ÁgX_ô‹Ùè½=)[gãЬ9à%:€£R=õ€ê©ÿHÕstϪçèfªçh%ª§îÁ]ÿùTOí&ªçÈV=G?PõÝFõÝRõ%TOížUO½¨ê `?Xcà¥ãûYWØÖªYW(Œô0–³:(z «Šøá¯* §‘9á(°óW ì<â®;W/Ú‘ãК¬¶Æ…O€œ7nµºÍhÞr+Wƒ£9Ž Õ[b’ùƆuE–øÇºøo}«ÉVÊ ~éÎNÊÿ_àåJß lÁZæ½ÏWaþVS,ðß§‰s¤ I *Ùç¿L4®j:Æl¸šIÞ²X~¡x~ácšoéàÛœãšZÙëÖõÚ"9¶½Ê"”zk©ÔÍ¥RÃЖ¢˜Î£Û.tÀäÕõe%N‰GÆÊ?Ä=¬;ò¢2+êleÏ«Š]|Ö*2¬"“$o‚ðß§,Þ±«GúÀÃß炳Ádÿ²å¹ÝÖ]\_÷§ÆOVíãõ\”I ûOÞÄfH#“è*´Õg"zvB qVAkQ|ŽCml+DØ·Rˆ´„2'¸ ËL”fƒ ûˆúðr0ïG³õçbM3´m1´–ò`ÖxóÑî{ {Åië4D®õ ¿6v•ÙsV~3Q> fNeÆ»í¦KZzTMUF çý¹ ï•‹ÚnOÃÂ8îÙ›YÕâ·¬ZÑ]‘$„»*$I¨neô (v±m¥% ᵓT¡ÕwËBõ=ŒgÀ]g2ÞОféÞÙ};08óƒ/ÉÒF¥œRK®‰¨nCÔs›N¼2+£L;cîÍt9éPsÙêéÍ/v‘)#ÅN03÷AÔ´+'ýbp<¦$mðM¨òb§NV&™¨ùŽº×S«-»4¾ƒ„Ù79·)¡fjŸ$¢*äJ†ÝhÛ.ƒo/Q)nT™R¨š–PE;»ÇéÐöv #Æq¤Ò&K ¼†_õ\\uŠÑ ’$dgåb¬vÃbºGA‡4Ä$Ó”«;©G jõ‹íÍ8©¨Õƒ³+ J¥H=¦l„½µ®1 R¨’Ÿ'q]&NÃïy7„BE÷¢Ÿb-`Sc¡¥6½©Jjž"²ˆ ¾¥©ù+°u)4õƒÅ^Kb±Ÿ?T,ösè§ÂbÿOþûÇ÷ÿUkuø-‰ÿGøï÷ñð0Jà¿¿|¹üwHÐýµSIáÀïUPƒº ˆzðÿß2ˆüVï!óÑ›_q[ÿâÎäÞa¯%¿žÆòç¬(3˜>fw+ãžw¤ý©JþçC‡ÿM×1 /;U+Ûì{Ev¢'ÊÍ¿/ùÎ2Q²¾Ä¥¨v'+Ë©Ì"ö,ÊÙ⤲“hÉÏ¿•¸Õ‹ÍS–®]•n\¨øž§gç‘Øõ¹,0¦½LfÃÔ¿7¿[½ŽCõ¬3Âèôònüðÿ`>‰P4R{ 6¡]qÏG „Õ}yø²+®úŒ¶Û¢¶‡¿‰®xÏÑ¿ƒ<ï…Š+8Ä!fÖæ14&FK´ñÁøNBWbæØué^|ZP$HÂ+1`x:+c¼~ã`ú‰=ÙF!ñ+I óÜ™6“мþ†ž­Wdíñß÷ÛÙ,2œ‚#‚}n¢l&ɉRôùScX~Ìñï:ãðQ+ð»±|7ÆwÜÜüâõÝnéÊŒÖFià§7ü«Óù§Å 21D¼ÊõL&%P2Š8ªŽZ\bnKÀ>O'Ftp&Åêr0/hl0ñ=: J›k.R–ôL.<ÅØ€îàß‹!7`˜0‘DËuŠD‰=¿›·âÏIT ´fìOŠL´z$Ï ¹S—ËŒ°ÉyP½§ÿ ÅV”Z•=õü-°&AìjÄWBøk+l¯dAX—žŒ×fOXé)Ò; ÿÂÁŠ:OÖ• ÐÏ´nÒd*i­±ôQuwÆÂ‡1dåy­«©´š³8PElQvŽK,‹0[¶rÒŸê}Ê mÚ7àÉZÆ©9%Tðcû‘ZL°q'‡§ù‹äSêJÞÀM1o dæ9ÿåïYù÷2ósægncæß„ÞÈÉU7¹Þ¿÷æ"|jÊE±þÀ.= X¹¤‘d« €Œ5ÒÝã¹·¶X¤N¹!Xý¥_)µ“3½q‰°r …äOC¯¼¼`ÔrÍÌ_•¿$3ëê•dÞHfÖ½••ÓI°¾NÝY—Í@D@BG¯‹åª˜ÜS ö&EgŸQšRÛ__ÿâ/½u±^¦O6GI‰ÁÓ•È£¨h"¢9V|ƒÿk´T5#_©Ô.™Ô4Œ$þØ@v­¤7ƒï\Šá˜c}Xq×ÑÒ·HáÙ†h±¶ßÕ¼DŠ+Ÿ§WBzÄ@ñ6B=ÝÛ$äæ\Q°{ÉZ‡3'XóáòË.±%aj‹‘Vßz!ÇF„>­v­63TÈyPn¤ªEÑìÏ!t…Âé–/³Ðí*ñ’l °B…E>Ëõº ¹ -[×&R´¡-R*ä·M†NY@ E$W‹¸¾½dç5‰£Uѹ!ã°U$`ÚP |‡e%î(˜Ú#Õ2£MbÈ—-1×Õb„»Pr=çBy9ËIS2…T¯W¾Bö§0=¢N =B–Fµo_e,ª¯œb‚˜ã½fg”~ãMèJÖg_Z‰ÿX‡[¥KyBàpT¯hu~ê¥<óþeÏÓ;¢d §d“Ê*ðŠž ¾šN?Ù$dtibÁtf,’œ£·ˆY¤>ÕW²8õÂÓþª}†Ç“©¸æñªKŸ%@5==[wˆ"Ì2XÎß%³'Ãx¨ƒKµ Ÿ×Po›4šYé‘lPÜ? æ_ÐÌ oX¯î4þéHþ•Â'þ®k µ\ ‡éõ„24¡[£ÙD:Và>t› dš\*må°lAÒÁàÂ5ùhˆËO;7hÏÓ…Œ ?ü>^ lPWv‚Žçè[yïl6±IÈú~žNumiÇŒ.»_[3j5›‚Á…æ.!„Y¦gPl:èÀM©×Í9•zƃos:B¾åŒD碿à5¹â;V5€4y!Aëô5pæ Þ)¤¾»˜, ¢ý™xrÕŽ—O°{±Ä'„^ð¤b wû‰Aê îV$àäLa¿ ïn·¢ ¡F uuè jÍÝ­C‚ÐGŠ}#}<Á˜Vÿ€î·Ø±ŽºZŒæÃÏ#Ú»„©`°ùíš*zZFÕ*ö1co_ðÙ5L+LÚéhîwu†m#K3Æ2úp9Y| Ö…œœQ7ÚdŒó|K‚QÂÕ3Ça¨µ§Ä/A‹Á:¤³<žìãħ1' ‘ö•<»³“@Åw‡Îåðê  i›?¾;<¡Scæ¹ÌÉ4í²*Â…=uñõ`6ë(Õ`Sù<ʼnƒ¾DØÆð¼D˜ œb>€&eò$åDÇjƒþ€K³oŸÄsˆ3 îÍO'§ýëkj"bF ÑE'w 8‡ÛŠéÙ/¸¨~mllDU…ÉŽG¹æÒ‹“ÓÞi«#c9©Û®ˆÍᘺ¦— gt”X”ñ|Kûj)ð]¾±‰R C¿OšCs§¿ä<“[½~(‘ŽnüL"Œ’xRwM‡‡hzµÌ D}4¢€ê²ÄL³ç®vIZQ»Ò„ªäÙP»HKbš·¬6öÐȇkžtçã5;¦<ãšG:šVÊ`ïG÷ÊÞï_\æ>PAì6㥤ŒU=I‘òhá¹ l²ÝD3q7a@àò‹­'=ÏñhG—ÖR—¯¨nþMÚd ÷L eÓÆ«)>»=Ï*½²û¦ŒÕ¸$G(nI™Y4¡ô‹¹¶ÍAÃ9Ò®ár>X¦«ªiï.kº·Òšîݬ¦=YÓß–©ßÂ5-á©üzê Áª{B˜€|íÉ®Í蓌êðüÔXA 뿨â|ŸÙ ÒM0ãÑÜI'PÙJ"ÝLtæ¿L;±Çm¡²û†}{—ÎFþ¹ÅÄÁdKV2äŽ=G®kÞº%åeüçúSé¢üçzyHÒØøÏuåsñçÆü“GÜ“>³¶ÍŒÛv¨SÙÕÕnåøf­¼|6ò|¾÷V>÷µr¬[9v[9¾ƒV>?Z‘²aŸáÑä«3­§\1Õບ$ö^ü\g]¼~Ý{yx¾¯wGQ÷5ŽûùéJ뜊×ÓþŸwP r]°˜Vf;’ùŠoáÊcX`³ªù.kÇ8¦˜Ýa±YÆ[0åRgï).ÛÉ1¢\ŠË>íà™r‘¶s?ùó‰ÚÙâZI$»™¨=Ffocrµ1û4¼B§3·a»¿¾<üí=Ï-=EîãtЧ-$Ít~È~úlÁ“ÓãßN™|~ùÛ)/J¼ÒOØÙ'HòG'!è;ø‚s¾ÜÄÝÚSnµ;çªkùޤöþý5R")ˆ­7”Ë×,¹³ÈLûSÊYÊÞ,£‹›üÔÿ2:ö¼rùP{˜¸ìV z °a*V‰†Ì™VbmL¾ÅrU}1¹¤ó,†E%m+ô?Ì&# ^åèIÊ¿(²²vWñØ7¡ÞhPÎLtyFR0bÍÞ¸~J”Û³JI1Œ‰‰+ã» Äë´,’r'}WÄMçöŒbÿh‚>~|+ûÆOWpHÀ§0Kx®Ý:8ЮÃ!íÃÿaÈülnœЇ¯OÞôä+ÇÃ0L{øÿ÷&žÈq«×Í #ѽUä€$ÜOÝÖ Ê‚‘óÞáñ›ˆÿÄ ÓTÑ`‡¶¤[h9âZÝöK‡K·÷¿„«¤0féVÚkhiЇ첉×-væ4å¿n¡ì˼—(~IËÊœ(G¼Þ?ju»Å2÷NÛ-·ä÷‘ªýû˜>…{VŸQ³rª„cïéÉÃo0 qñb1¾Àלþ¤i"C¨9º‚O;j쾃¡ÚqÒ2J2}ÝÅu‡Ãpè¡Ü‚F>?®ð’€ÿœÓŸ^#’cù·–ÑŒ‘]‘!þ˜Á/+ΧÂð7užŸã,L ÷Ô¬f Ì£¦?mwºí}«b{]:&®®ØøP<Œ%íƒþ¼/fs°5÷CZ½–pK KÔ(£÷Rµ í•k*â‚7Ïû2°{FLÿÖà¿ì1ç°3E™9`Àë,üÂ4eg¡³ègŽçRLùêô¹®>DÙP|œ.¦±][±_ËutBÉbaϰ ÝÁ€D³²JÏd€m0øg»¼W2)6(¹YÖ c_Æeõ©&»*£âåÖ²–×7{vY\œ)†>Õó¹Ü”-š#ùý š@÷¦ýï–ù9«fqn•ìbì2¬bÔÏ·(†4;޶f¹J£-39ÏŸÔÐU*»ªÛÇCYþ‚³®”0³ =YЖ,ˆ 0Eé‚vÊHǧ¨‹yï1tÅ£,Hž‘l^ƒ+–Â1&û ~‘[÷òW4p,H-‚EÒa-ÉÇæ]™–ñ—Ø0ê88©\ GÈ?cˆôdXCÍŸ „TJ†;–^"îêÖ\Æà+î“Â"Rž/ûÖ’nΚ•Úõd<™Oè”ÿÏ”q÷òJO¶³©› –—²ªQEN¬ôq׉i­¢ÚþÝ@å’>p²Ò²³õy…ìÜ/9w²`“Y÷¹À¿“ÖΘ½Ûnk‘ú`Ö ®•³¾LÎ6FtÂ’Ÿµ Ce’³ Y/ƒÄìyñW®=ÅDø·ȹï/TÌ)‡‰jõ©D_ca°ˆ†’ÇÉä|X–]F-™IzI`#T¾f2ßÑAkóèp3âX¸ô­·Ií¬^5Mã7‡Æoù4vR4¨W1n)o<+®KwCnRÄä`ÀdŠÉ&^ „Ž|b@î6’qŠð¼DHâßC ^½ãfƒºæ“Ã߀ j Ù™ôƒ¥¸tè&ÎÊ‹;FØCyì_ ƒoq½¦YD\+ÑáçÙp4Ãû²þm¯?˜ †0 øëé_\Ù?“)~±Œë’^zÊ 3°ìÔù‘°j+k“ˆW6ñóÚºåÓ¡à\âÃ@îÉÖ—‹ Š`¡–Èß |»*†B ÓKÚ`«(×?¥wT”Q%3*6©þŽ‹ugNS!Ó±sj$œŽ(‰%;ÈÒïGª˜FãF$„g´:(aÎtêšNÝ©ËÈŽ·jÉ[çЧ—7+¯¶^¦ª¸6v™)pE_F<·÷dM…¾UÑõɦ6<¶éæ7;'½MuSÂ’§ƒsÈp èäW]Ç“QŒMlh÷NI·ÿe ë†cqÑçk»}ãæäP¡ˆÛÊv©;¯„Ùö`8G™GÆÐsP6óð$¡d¨:j$‹v‘$ÕH©åª¢êËÃÄÛÚóý¬¼¹ÐŸa:¡§›ÜMLFHàés±qñõÙDL'sr«ˆÝXÿl~õ­îÖdJ}õÄ.…ÖŠÏÙ…‡÷éÞ÷ 6Þmæ5>ÍØ¼VX+I[鹌«áÇêjn*Ê Qjù/üïFÏÁ†øöínÚìÆðÌmú Õx®ïTÀ/dÆ*\—)9§»çöŒÍçöÍ•nOÜ[˜’_˜ÿL{<oÐ%açN§Õf¨‰žËç ²‹K÷àïô~õ¹ôÎǦ!ŸK?ñË E^—nñê9¨yé1j.ø)—bt¦"»›DÀ[ŽôÞÔ—Æ¥«á?’ö¸3 ÉI™²Ú§£÷Ïå$Aá}D;•¼oûœ=Šï!Ƽ S¹]ƒùt œ²ˆøòÑ:óáǤrÅ €ç4úÔj@ùG®òoëµh’¢Ú¼•³ ¢µÀyÒˆ%[yyà6A[¨j=]¡iWóͽ2c‡V*%­|ÿúÙa¬€vgóNº)øñ#£†q (—iÈe/Bž¯§šƒWh\màë†ÊΣíòt}2¡ È$"M'uð`‘Ás’BY厾ÌZöÊŠ („Šüê<‰‚¶æc’T}}b‡9ÏpíøûQHDZ%uØ…% fýhÑß[Bô÷þ¢¿w_¢¿ý½ˆ~*>‚[Jô÷Rò ý3ÑO“*&ú¡pE?Yß èÓ‚¾ˆèïDßC89M€ DzŒŽÄN ÌH`|1BKB™™7•aèÀˆ^˜¿N`–D7jš•Á>c7Ú)œ¯½QL¬ål® å¢ôíË+Æ÷¤â„Gr ñø; øù[‰ÏÆ÷yJÇ~%ÜWçÅSåó}Œõ%q2Õ°;}QwŸFÈ;r¸ÏÉ/¸>å¯Q>H«ñ<‰Ñ@u8E\î”ÝN‚ä Õî½]»÷7®ä<³~5oýÞç×ッ~ Z”§y:´QlY‡äv· Iþ•äÅZò¼Õx_‰¸\€zA6|ê¢õùóè»»ì1ÑTüC~ËòÁáÞ”Ã=œHÑ` ZKìOap¥¤\@ö$ƒÅî­¾Ø=·Øf¦¦ ã¦rÑ%0=Ž,<ÀÅUÂøÜì Α¤[¹C”Au• ©: ›—ÄôS—‹¥j ø,U:ôé¹5xoÕ€Q¬k®ü‡U$¿+öþCºbïž»Âc!“…Rn§j&¤Í@Kíd«2H±«Ç\%Z R$i­í/rÏ[dÒn¾E‘Ûa åÅœ´[óQÕ³5l§-„7š÷·öR]±/$êG-!êÐ¥ëåmã­xƒ.#…ã†ø¯t5“/qNy;io»x²"…'Ûõ­}B™Ôíù2©# ×’÷¾úXÄ:*èZ DÝuŠKÁE¥TÂH(µúÞQ¯GaÛ[ UâŽJê·z5$Sé©'ON&Òm>ÚØ¨:£×ˆø\0)*v « [|b攵—èò–g—UË,ë·åʪݤ¬÷7«WÝcŽËÞç*ž¸sãŠâ*=±¡Já!q³•T#äÄ­–©£¿(³·{ÊëʼQÒX¯xgÃëâ°S/& ôònt6)ëå>tè­œ’T<#jT¸œõ§”Xb‡ ½saˆh&zŘ ÍJã)‘làWäà’‰ÐŠÉ°Æ´lgæ,$aa÷¬ödK<þMIÍÓË^X¯Åp„û±wÈSh¯5!œ/ÞJN'¯|%ûËÐY»`™ØŽp{QºîÀ——‡yÝœß@Êà iƒÔlê£vô-AòM[M?Ylº9ݱ¨ËDÒÈbÍL5‹GßUãÐ…ƒtsLÎÔ˜,Ó£»¬±÷×û4,ò|z%æ39ÂolXwWäÐþc]ü·¼Â;¤õœ`í3/?<å‰bß`ÄA 7(ñØ(ì1Füô °†µwOÄ< ª]šOYŠ]ãuÃ@/QúHAO†ÓÙ\BËMˆŸ#*…J}ñiÐ'? Äv‰÷p¯†£ß½‚íñꀼƑ!i¡~oðr-„qpl‰üç½´ëÁóý@†Ú²@?¯è(VÁJ°í 1ù–­Œæ5+ § xÂsÝš†‚¤%N¬yCxÙDÆòEÝ á¿a5GLA÷EÐ}C™€\IE@)‚5¶ _j à`{gÕdkѨáU>ŸÒ[K'¼‚“RxÝÅõuú]÷+YOFïKÑ….à,ƒq³/š{Wd™¿89=n¡7¡Œ“ü×5-¼©ƒ¿ ±½‹¦{~Þ„ÏÄÎ;~)Nîploò÷ç.“š1§¬e˜ts+`²¡™|&"( …݉æÀé ?’Žˆ©n†WBL¯¹C^Q®[Õ·§(QÂë{2¶8öÐå`3îldVg®Ùm'C:+ÂçPÁ¸–”¶Ò«µµÝrÜzª-×àßh·T­T×…ˆwKmúPÃ_Úð¡Ž¿à‡Æ.Ò­ÀÿáKr4wK„e‚)Úë6iSâu9j”C–fï' ìRVIŠTÖZ2¿[»¥bEìì–茅.–$´ŽçØ*™Á6ßkVnùž q Àÿ·±î”¥º[Òpf* nX©ŸÛêgHä¬E+·L¯k5°V0lA|°³H"Ù\HH F­;å›2x+Gz„(¦“œÁJ÷¹¯›£æn/%{|Ç~¢Ýƒ‰ÄNÖFžìã©þ.ô’®ÆÖn:œºÞä³ÿÿ"MûI5 =qUæÌ¡°ñíÝ‹Ñb6 *qCv‘q´+/.¥§Zç»Oü—èB=Àˆ…8–B#{pÝS£¸&û¹B) Ù.V}_ÑÙDÜP´8¯¯âæ® ï¦áfŒ^ˆ,uµ–4qlŠ)W‰5oCÅ'y·Áí¤DU¨îq5©^F”tÊ×·°â3(AX —6E“¤×rTij6´ºQògŸ < ãºËnÂÏØW´a«©$ý×ä=Éï¦S¸³m¡L¯y2¦p§¥ÀPN/‘Ó NËBk”•Ñ¥ÃùœÒäS×9ßg”h•–x߀üŒ@h &„ÑÚ ªÝÀòÑq;Ø.©ÁXêVzª*M±K¨»!Ãå"ž¼·qw1Ïæˆ4´åÏ)Qv9YJÚ£wRáUÓÓ$訙X<‡Ó´I_cúŠø*I²~]["h‚"N24¡gÒb{±½sÉÛ;÷Wr%¢­h¹LÈíÌ$l0øùÇOóŒúŸûnÔ6ãg¸œhw^>;l¿|6»œ~™}ܼZI¸ŠlÖëôw«Ù¤¿Õ˜¿W£ZUëÿˆª¸±Õ£ü5qí¢º’Òs˜¿úS!þ«¯Yÿz2 ¥ƒdW«iŽõ°LwÏöNOΠ÷IÚ»/UìŒY¤â"(\ƒŠº Å»XYá å‚ÕÙñ‡¤/Ó{ô[Ÿáÿ­¬Œ{oÔfGcÉC-ù—î!ŽhüÂá¨õ¦µÿšwÍTØÓÚs ¶ ó·ž?¿lâ`ï ÆãÁ ÔHÅü¶ë ˜¿ÇCКƒéŸƒÑ€‘Ž;­—âh~©Pu&_/8yG.nÿh]t=¹d°ðÖâ#ÆŽ`µ‰³óxðÕD1 BSö奾¸-¯Lc˜]¼/ŸÀ?‚Çi¡n÷e¯ñ´?›è‚W\ŸÍMÕàfÇ|¤£E’"!Õÿzc„e6C UxŞ7MR$Õ–²äÔ°LÁF}{¸ªÐ嬈²2°EÉl³s{?c –²µ¯“b±UâÆ(³ó—óí ÉO%nDJ¾ç~“™ÅAµ[F©-Öß—¸sÊN¨Oüøf1Å5ŽØÚke½Ã†¼ç=Åõýìûµ\ñ¤BµË5¾¦Àký”ïïþþò\y `·GÌ1ùÌXˆ£ïé­uÛ4¦˜* æ6„o8wbÙû©H®ƒ\<(6Å‚¢¾áMÍ/ÃKŽö"(XhŒ>NxmªË;S—hÍ‹y"Àÿƒi÷7L:Pe£]†P_@µÿqäûÉKŠq¥(”¨7R¢ŠöÕÞ=ÉØ åa9¤>ƒÌÞ`-Ém†>JÑÈ‘¦½{•¦[ôÊ[Ä ”Ó#XehÆ!oßB§¸O(PÜQz2^›=áíV›NN»ÝOhÇH¤"Üà óˆ=1¡“$½#p[M ši¬1Z*ŒÒG˜6…o¨ñeÿiÂ}ŒFˆ"†-Žø¨LoO£:—ǽN%Z $V{øÀÏÀÓ¶®¥ÉZ‘#£Ñä+!™Ñî6ÙÁ³(à [to¢­BÂSgoŽNÄîÚÙZ2²>¸ ö^l@ÍÞ‹k×ë¯÷zÿÊ.'^Ç XÆJRv<)D“¨H´g'ª;‰ˆmf/›šd NVÏ,°HDšd[ÞFŠ‹5Ò5S¡FÚfv¶2yÞqëU9ÝŽ—˜•Î/µ"•Û“2P¨r‘lˆjn²p• Ô²kÈ&iE™ÓƒŒ-ª§½wÙ¬¨Ù[x— @P,š1®iðøVkÜÓVç%6òZ‹oGÍ5 ´‹[Ö ‹a¤¾Û<`¼N¥]GAÔÄ<,¹¢çƒþŸT&Íš ž,£ºñÚ0ýë°4*@,dÓ-×§c9xÛhòqˆ\¼Z.2 ¥‘f!”_›“Kñä'YpãYD •ŽT JZs³¯Ó§>bÍŽ®6pÚú:¼)zmÅ$…¬é£ õÓÊ–zCì ¡çÀ"$ g²”=QúFÑY7¥í+VÏ£!C©µòÌ–Â_IM½@quŒõ6–o‡_=œ·¢ÐØZÈ&âÔ0ë˜ÜbA§.U”Aw GXünR€.žªäL7~'®×‰‡¿-±«—œ¬m±„q¿ŠüWmmbNŸ¢á² qNöD> –AX.º O9ÎÄ"ºÝêÈÝЇÝßN{% ·„HRƒ¸®;O12 0͉ófªqûé jk«Um¶²…£7£méwÕO­ðЃT`4l’sòpŽƒ‘bãÚ$ä2õrÉÇ“ù'°) ¤­ƒc‹Y°3™ëÃ9à:~¥6ÎÓØÒ^³é´”A'A«i!÷i ëÃmÓ¶ÏÅÀߣŠoųE5ûsøù3­­ðY…êÈÖ^J'x8–Ö í»]!Ûß&R´+,R* ºM†Î»Xt†¤NÉöDãù’->ÐÇhˆUtnHçðV î[°…9TâßÁˆÄ(÷Rs T"lÚ$PûãÄ ¹(ÑXÅhŒc¾Ì’µnìh‘×EœÕòxÄ:ÑÃv–Í~åì°@uAÒûvn{2„~Òh-øÚïd™ù\º,(š\œ”ÉÏx1F¸¤k~ª»DÉÀÊ6–U`«› ΖXž6 õXáy»Ì&Xd;×ÎM̪˜þ©ÎSСò…§ýUûÀ|>™&ZÇÓÇ–(KÕÔò'cšV¿ËŒfHªf0¸T†Œœƒ˜z>ª B›4ÐYgéAÓáb„Qz´ãP• ^ÝiüÓWÔ¸PÔw]g¨ïí4¨#fhnrôypËÂøäRi6‡eÃ'Ž;\é@0úNU@Ó~œ.p…›ŸòxÙ†L% 9Ÿ —g|ßw6±IÈú~žNuЋOCBbX \p;lͨÕl 4š»„ð[Aˆ>”aU¹à tº•sÛdƃo¼BÁ÷y:£[ËP»ñ‚žv¬u¾n WÜä :Ùu&/Þ²¤Ž¼˜,ð6´xß­Y:þ y¸?©|Û~bì:·¨ûHäLÁèÐ`PHÈ%í š€ûšŠßC‡)¶pÒ†÷ ´ÿ‡Ñw§ ¨Ã¥ÕGûÄ0e 6?n"ÚØð´ uLçà ò~tX˜«RPº ¶ íMa°ñ ÄÓ ÿÄár²ø08ƒTNð¤=Èþ·±IÈ× 8_¿89í¶:`Üõ"µ=]Í"´°Ýo÷z0›õ?ºj·Äm4¤£©w&oFcs€€õI>«.¨‡]±ön ?²÷™ÜB'ûÞÚ"úŠ‹÷”ÄY Ds“U% ¾–2ÉXKްÉ%ÕþÅ|+L›Ь1„¼ãè èÒKlpS[X9jí%ÀÎ̲ÀË -ØD8K¯çÉÇ^^ƒïmp³¦ m¥ù€ÔY]Gx¢d“LÝ{«î½¥{c±Zî°7²{#io‹7E¸2Í6O¼FkÜü)îCO€]Z¢YC‡ÌÚŒ&|Ÿ':ïý’Ó3Eà:Á:“Ìî°÷KwØû€âŒ’Ööò=ÕÚË©|Ë_ù·“韴-•U×½<â{· ÞzSDÆÊåø|ßir “&¹å©v$Ùüլܓ‚1Yäj/s5=m”;Oãr§<úXê¬?­Á§r,÷;ìâ^’Ç2ëI„,26¯†fseŽŠ?ÅlÚhÅåòŸâ¿w ÙÒdö­ÜŠú„ª}³&”>œ+kBÄŽÌ« ûò…a«šÒ7Rûi ô‡÷ުʼ„ šUa2kü2kĪ\oâÁwÚÅ@Ë[œ¼vO6¢çjâ_Œf¿ŠŸ‹î,vÔëÚsµM½jù­$Ïtwy¤«,U9âq9H‘áãÞÙd„Q øºæDm=©k²ò²±’Ç>¢FÙ8šàQìy:Dô`Ž2õÆF‡S­ ³`η –[?’º°ÊËøÈTPn“èÇä¼Í"wcL&ŽqÌDCÚ'Äü€ûÓÅ8Ùú¡… «{D*Ãd8ÅÌ's¨F²0ÞL•îIÖC×ù@'q·ÓÆ—“¸× VJoC›ƒç†Â˜Z(¾Av«¨nh^Çß;ýp1¢d+;G/z]û”ú¤ƒà,Ç'ÜÝç¬ “p~–9¨7V,3­Õ99=¶Šî¨«ÿ´høòk 'ç/Ž*â¬óBzŒŸ¨Ó;Ï‘‹U8ÑJÜS|^€ÌáÅ€Á¨O«³îFZCÚŠ¦ë±†ÄiË?í1]X©NLfÂwóåòýËp²˜‰Xè°E‰ï9nXW“Å”g% ¨Søb¹•¯ÕF«•_ºÖñ~i)ÚÀSF’Ré(aJ}–ÈMýÈRî Ę=³P‰DÝ-‘n¶± +4¿Rä õmIÅýo)z3 RIw²ú‘¥cw}èGsÂsSAkAŒe¨‚ˆ˜]eý”(%âÞmV«¬7wAQÒȉ_èUÖ} V¦Y…Hu»+âȹ  jÅßMɾàAÀ×òõþ¯PÖ¾Sº]…m#–¼Mµ‡Iuø¼ö+P—ªþ`DÅŒkmIäŒÂe¾Ú?¬„Þ«CŸ¼náÿw‚1ƒÎë=Hq¬Ðl9þ¡Œ3‚jYc§ãŒyÃgŒ°4´öº=d±Õ-Sa}W‘ÊS©ú.‚uKÅVW¬ð86ßùY°W[¬C2ï™8q ‚Ë×spW9æ/ÍÈð ñ±"•‹ù!#+;€i°Èt-¿!´+TäÅb|ÁØZYzÔñwƒj+™îðqÇIKd*ÉäÜuäޥş‡0#pWdÜÍŠœS+ÿžW”ín9cÔîikö@þ%;o´)c7ƒ ›½Ò®µläß³—‘Ö= ÐÆ,™.|ý²vÚ†ʾ)Æ—VEõÆ.ªo„‡öñša‰ÄͳƒV¯%܇ op#¦h”ëøO£"jåí ¬wÔUuo^6} áˆàwù? Só| 7%§h–£ì²p’Ų@Ã×UuõŸýµšQƒ 7Ëu(Ë'•ƒ‹ÅzÑušOÍd‘œ…Mt9Z»d­k|V•‚f‚TÅãÏ«\+ÎÄbLâ®sZ ü+mGÆv7‰(R[GG&L¢Úh.tÀÈh*XM pý¨ç ú%k½¡‚‡éˆ…\n(yœLÎkíì2jÉL°¾ÆXˆÇ.§o½Mj´‰4‰÷‰÷¹$¢f’F\¶z¨&pç £bòò<Ø© ‘‹ø Ý*n¸U …ï¥@b¬²0h®UÄF2Ì®ƒ=“?úÛb2Ãks<›R®·>Ù¡ ‚ÔIJ£9ª ‘T¤ŒiO`}оþ<™Îûã9£è“ë’¤M ‰]9ý`úW`ÇèÁ°¦k€6ƒJ-{L âĵ$Íʤ޳û­&pøy6MÆ¿¬ÛëÏkv\)´ž¨ ?»ÒϾ諼=Å)½“¨º‚Žˆ«¢Í:¢n‰€´=Ú´ƒ)/ ·™hìä1×ìõTI„^Tñ•jâ…·­Ñ[[bŸ4ÆDeDI,A"ËN· Nj%ÖkC:± -Áéúƒ¨²AŠÊ±­ +’À.7 ЗñiäÍšŠ_ ö²p¸ÁÄÆ¼F©Å Kù­"þ‡ÂÄþ?yîØUWéVÓh½ãnI"~¬u×t€#ú,#ñnmT…—¢B¨-^”x« #[ï´­ãe·^#ØzÚu¨âøªÌrZÌ´*Á´¦åƒZðuëþšP»Ó&ÜÊÀоEœÒÄM…î4§Åšrßÿɬ.AìRKÙ-„£87kQWfab¼*…9“ŠT-Üqk«ÏÚ.òL^lêÂ]r;‰ö÷ϯ®ˆÉ{êŸüþц`H÷$2º§}–W©sMǽ)ì]Nˆ?ût1 >|pî]¹ â â@‚Z…Za 5äÒZÿõ„êÇ΀Wh<ã"5šŸW°ø¯?Þ?’zãrïŒ%ZN’73àWžÔ{ÞÔw7ðÁ×ê§t)ØmN/,ÒOFmºÆôá·¿žÒŸTCtxGÖßí#Ÿ€¶Ïp?$Ý'ÞÌPn‰uYAGê$σ©wvƒ<—ƒ£r‡a‚ðw[Ž|/‘Õö™ï 2Dy S/dTm]¢ïp÷Rçfi·/ÛÝ«bÅðöô$ªnt6qj)Ïô™gïˆÅ±'ž‹Vù.€Gýë—ýõò^Ùçr¡3ĘaÏÍ’™¡ö\ì•[© ÉÍ´f­jqUQ·líÇ­ïl0§»äRHwy÷d`J¥‘‹]¿¶RÑ]ÎÖriÄy4Žüà7Rã ‚qšR÷0ô6´WEž?ªH~ ©H6ž‚üHÝù¨#Ó…Ý«Ž<þÕ‘ÁvòüöãÈç§ÐÈo?ŽüÀóŸ1ò¡~.~'N~äšêÍ›’i"û“ÏߊhL!4 ª²Æƒœyª¬y?ÂvÁVÜzÂV^+n¯|BÇ,=#üèÓ˜7§13Eò13EñÓ˜>SÄÕ‚:nçAÎ;9:.®ÞËL\€ÅÑCœ)â¼X¼Ü¬ÈL‘s(§‹ó¬h(üdmsYûX¹{Užý-q/ÓÌãáÞßežù¡×})¸y×â<çmžÄËmžÜx)¸n‹rÉ[·ÅË­ÛÂóÈmÏZ}w½òŸ2?N@þçqú»L@7kâ­9åmÖÄËmÖÜtª\Æ;rÊ[Ö–[Þh!ÓþOžGÚóˆÿùϘGjQð>M¯håÇ4á‡ÊQë^‹MZ"8o} l®¬YKÜhâ¬Y‹,dR MÅ{µñº…ƒ9s¾xñ´$^·žFOÛ¯*"­ukémÙ aèðUKñµW„¯=äkÏåËÖî5ïêËå«–^€å2ž9‚±>[Å»Ä,¸øZ7ðþôµß)Ì~°KÂýá]/åVË0Õô1µ—ËÔ^’)§3Òk´SµÑÕ‹,!8imûŽ&ºôbI6HAźsGw}âòUO/QrÏ›èêµÂ]Rî`¢«{˜r«e˜Šï`¢«°†êyûž§èDwPd¦+¤göÒ«D×q¢•\× ±ò)òàqŽ|œ#o4G²Æ^ÈC<ø9²È9LZ¿›9²î]P‰â:¹q7sd½À¢¨î]£ÜrŽÜ)Þ%[w1Gz×T¹Õ2LmßÅYÀªçmºzž¢sä»’Ï;$9QP4: nÆZ1Ù«RèÜrsV„ögïqÖÕþ&Óîß}Ú½Ñ>®(4íþgÕF/<™´z7³jûz…µx#º›YµQ`Öð.ˆn7«6Å»¤v³j£ÀÖr&Sõ;˜UL¯Fž/çÉžU³|fDŽÛŒðNÊ™«×ÇIÙz MÊç“ò㤼œŸŽxðSr¯™´yGSr­L¾¶îhJ.°àkx×_·›’›Qñ.Ù¹‹)¹À&xSÍêLÉÍv[3ïš„çYz¡Û~œSW9§¶çÔÇ9u¹9Õ²M{Edk‚<´¸C˜S'W F¸±a!JþXÿ ß~Mð !W凧üÁI£¢½èu’P-;¶Ø2Tµ,LIqF{1'=–%‘ô"/Uìº7<¨‹ÝÅõujpœ4$ÓÙ±áÐ&^Qõ3}@Ç”MȰ˜ˆ†ö XŸ´æI¾x.à`Mbt.iPîâ`nÂÏ›ðá™Øy‡Pð£Ó”@¶™Î ãiï–àS $±¿­‘Ãëää—<>ÛgÔGGõÚfü E±Ýyùì°ýòÙìrúe6ß¼ZIUxšõ:ýÝj6éo5æïÕZÕkDQTmÀÛ¨QýG5j4j[ÿÕ•”žó,fóþTˆÀÈõ¯'³P:HvµšæxPâîÙÞéÉôþ!k”žBe …:•ða9‘Û— 3¬Q•²S³ÖXa1ü¿ÿ¯WÄá9ÈÐ}ÛÊÂÛŠ1 ä9C:ðÏ9”Ý:#cL†DÈ1Ç‘ô”`Åì‡ ê¨õ¦µÿš-„°¥/ƒél8‹Úf´‰¤^>¿l¢fî ÆãÁl6TÌoûýѦ¹ñ°/öÓ?£ÁwŠÔÙi½GóKNÞ™|\Lñ~vS«üÍMѽè@([Ó‹Ú{&Œ—‡§NÝÈZ£ö¥ÆQ•<’.jÂáþÌè,¾a{ïÕD-™4ܶ¦Óþw³G'/Ûû.…ƒ[Öˆ¯FŒI[×3¥¯ܰÉèa±Uâv Ô‘̆ÀÉü¡ÆÂmpP—IY2åe1Ѽ<*g%î JnA/©Oqy•Ø´Á{CÎê üøf1ý<™ôÆ.?–9Æ£Zˆ ´Áf R¢áºLÜW…Ë".§Cü$¬ ‘êöÏÅ#¨Î¢ËØalAÐ+bò‘AàÕ÷šŒL<¸˜O¦ô¶FKd±ÿ(¬Z‰dãácÃìb–Ïcæô0“¢±˜!ð öïé`ÔGP–Ñwq:ù€AƒOŸ§ƒŒÑ>ò ¾Rìßá\\ôÇþJý~·Õž¿ßGçæ0p÷zøæ>:£CóÇkWÕËÜ}uóMYÜ»Ûö£ç,AÜ»&Êå†ÃÁ=ˆI~*w_\¿ /dE]LÆÿ^€ÑÔ}œ{P²îƒá\¡ªÈÑ|“:ìÝq¬^Oç^–í·Ÿceg g F#Äí‹ñ‚Œ\`@¶Ù“Ùðÿ³'¢ôd¼6{²N¤ûšN:ùüûgLŽQê5Šè¦/&S1è_|H‰=Y×D$½Ã¼†´×x è~Bƒ~P¸t8¦0bŽj2s†·#UÜÿ ÆÑçéДyd1!‰ª‚5 Nª×ªYææ)aèi†>¦°|¸\Ú§%X~àó—h‰ ñ^ˆ÷kðå™(‰¿Z‰±XŒ>;¾¢¥XehSÜ“´¦’Dö V„¢¿R‰yÆy}¬ÏѾa;â¦7¢¾¢X@BßJ&¥I}„VSë ô'¦'¬.¡rHð4²•Ã.ÖTÄ›U2è•ø€ 5ø 4°ÚˆžóªiýŸD•MäÉ•© v<(d\÷`ú?Ö5­I²é–ëf*WŒ&‡ ²xµRha&Öÿ© ¯Ôk(o³wzv¸IB5VB‚ÿä'i17 í/¦S`tÕo4œôžˆ@^¡€”bMþo0˜)Ã:|;” öžI…¤­%–,wä¤lèTwŽsÕSTeTøìè u‰L8~'0J˜hW”®†S¨žÔ.°¼þ¨q]/"a”G©fðã`ÂÊUîªø,5Â>¹ÙCîòIf9P„U˜§,SZJëö¯ˆu­ˆ0l®£ùðóHJc÷·SXð" åÕˆKÀæü4]Ú­´U”Ìb|é£c(mSõ&aå8½†¥ô(:Xî²Ò9CaŸLaœs;AÝv8Ÿ€™„,ˆ±ÝÔ²vû¸d&¤±t8·³Z^ýò”ͲK‡øÏd9ª®¯’eG" §(€+áÆ£«íKg$“+è«nÒî³%H5Âŧ ,ÌÄÕ~+mD•hÝâQÝâHÞ¸^¢tÓ„š(– ÈuB˜u Ÿ•«¢)+÷a0ÿ:ŒÝN­òö&‚|gkq[¢]©i7Ý–]åæÍ›n»( ™ÐûœÖF›ÚjckAïiÚ5Ä9ÑX¶d|h³½ÀÒË Êö®æa âüêXåÒ¶¾œ@òñdþ ÇMÂvºÆ}˜áûs1ôá3fufÁÎRM.Ùr–¼vø•Ú%«£C*GÞ%iûØtZÊ8‚•À¼?«m ®úQ È€¦S^ÛËÊáæ=ZR ”u2ûsøù3™õ=eiÍR³‰ª#[Nùý!m8t“–Õ¦Hv…l›HÑ®°H·Þù§‘M†‹Î†Ùqhˆ^2Ä2èb4Å*:·pqÂvW_? Á"*q‚ï`ðáòC­V©†-je—j~³ëj1²,Ìè9ʆæ‹ÖQÚ&13ȤŠ;Ë&y]ÄYÍYG ©1lgÙ¿Wβª ’Þ·sÛ!ô%ëó9;Íd™Ì\º,(zv :]ÿmx½¸¶„‹¬hOw‰Ò›Öiëø°£O¶±¬ÛÝ\t6è Éâã'›§gFWÎa6Á"Ûºvnb–ITÒ'‹S/<í¯ÚôôdšhOÓyŽÈR5u‡üɘ¦Ôï2£YR1¶úàR1r¾à¦¶)ȶ˜L7i ³ÎÒƒôù:T@Îfr«WwÿtÅ5.õ]×ê»ÀY ꈚÐÚ­Ñl"Eqé€:À¦™&—J³9,>qÜÍp ‚Ñwªšöãt‹)ܺü>^àRízˆ;0ÎI •zyV¡šÌ&6 YßÏÓ ²zñ ·"†0É}Œq¡æ²5£V³)ˆBî\½^€}ľ€Þú6œsÁý±ž†îºžñàÛœv@o9Á'œL†ã/ög8A;V5€#rÇ®¸ñA%:“ïåPG^LPk4f¯úÃZ²C©'ƒét2}RQÛn—È»³‹éðþþ¬ Ôý$r&Kݤ`À‘K(Ú4÷4Õ ,¨+ÐaŠm#œ´]7íÿaôÝiêpi¶ÐæLƒÍ £*Øïˆ…:w&§óáÅ€cHÀL$KAéf!P&ùç) 6”¸ÿô¿€8\NFgÊ ž´§Žr© ›„Ϊƒóõ‹“ÓÞi«ÖÙP/äQÛžQ€> Üþ¡׃٬ÿÑU»%n£!m„Êí8ÞFšI¿El°>Égus=‡Ý–|E'Ñi¥†pyœJκCëlÆÝOv¥µ‰ömlw·ÀPN\•À¢¹Éª’_K™d¬%GØäjKòb¾ÀÕ¥MhÖBÞñ ôté%6¸©-ˆ@+Ùóv.ÞÚÓ2mƒÓóz®•e¶´¯{îÆ!1Xa¤T9°ÑÚïö;!¾-æýñ`²˜¹íDË’÷vC'6$ÉbŒ€èÖ Ÿ'r2©øÌaA+«Õâ;­&H>mÛ‚˜ç‰“¯–q²–®I1(\ËÚÝÕòôE¢6•d…j¾n+\‹zF-8 ;‘ܪ¢ž*ž—Ö:k´ŒNÖR[àÁðô Ï£ÓáÇOsš]ižfì^<Ï€w ü€¤½“¢ŽkZ,èãsöD 3!Û¿¸X •is¹.›äm+Êk’·­8?I-/əȔ r µ®µ¿%{Úmàß{§â©èžœ¾ìf«HfcÉ>k„Ú|wÊòü­ó+h@œ•@ ÔIާy`lŒõ«Ê16mÜdÌ´ÔZgYœf19\^õ‹qé°8YŠË÷+•¶äAYZO»›>oè'|Ýîd±ŠŽbY¬â{‡Ç·“韴M—)é’lþ6ŠÜ…–Ç,r›!s'‚±VeÑ„±úX£êGõ¾\Ž]……›Ö”fWŽÒ`LǂϔÂ.žª‰}0«âÜeª[MÙ~î6¥ÝšM`­Y–<6ÒŒ¯¯ŒÙB½Ä^ŠÁ¾ª”tÊIÆATô|Xél2ÓRP#ÚëÒèÙbô¹‚Ÿú_&Cg¿HmÓfU‡ r¿Ðµ¯DUî”à|õößpÍ(N^»‡Ñsµ³ö/Qu_ÅÏEwkM>·M½®=W[(©Wçj±–zµóœLç\Ã*„?vŽ[ïÔ ~FÌH@BŸoDÍç4µhg’„›,†šñ¸œOä@r“ ¯žôŽAwÐßnEêÅŠœÛ*JÝHÃ)å¥CÊãÞ©^%A óòêbr9H™Wøô?Ì&`J›³r¹í©ŽëÃ=¾±šÇöyÅÞ=šà‘úy:„e4;͈7ýiÿz0Lñ`[5(<ôüW}6i™ÃTÄIçP~?E¯ÞBŠLå~\UÉ[|r'ÐdâKYÁL40µ{H»ˆ·|/úãdWèÇö(Á†«þ´¢7èåÐMäË‹I#óÉ*dGÒ¶h °[ÏnDÂTÀ²A;³Nâ^7Xs}NbœuR¥Ñu­ì¦ãÆúÔ™÷m€Žãמ~¸Qræiºuf Üý“Œ«öñÉËÄ9ëFÞáùÜŸÉõ¾µ¼Ð;ÖÑŰŠîà-.uþiÑðå×NÎ_UÄYç…ôŒ?QçaäÙ”>Ô² 'ÿ¾Iß_€`â=é€jm !­!• ”51œö¸üÓsÐý÷g‡éd2Ÿ©=" óeöÌ{6¹oÀIä¥WŒ)õ5vZ"7õ#Ki¸ ƒc6uC%¶^v%N¦—JÐ?އóÔ²Ä[ƒÁbNJjýßRô,^ÇÛ'%ÝÉêG-==³› ÝóYD⢂f÷N’Hí&ÕIH|T¿Iu’D7©N’Hs©ê¤o´µTU<¶‹J™"þÑÎRU8õÊF\]ª"ÑR=rê°8¾Iu’*¹v“ê$‰ÔoR‹ˆ$Ó(^¡ßQ½yXi¯OÆVñêh Y‹·—ªË;ÍHR+Æ;KU(L¨V]ªVïtµR„ ›IŽ\+lä*l$«–$TØBHr”´T [ y„’–Báª% ¶èÖŒw`Ô  4’¶BF…ÞW} KáMÖ˜¨/a-dZÂbx“5¸êKX o²ÆD} Ë!›ÐÖÛ¬ÁU_‚x“5&êKXÙ„’Eáª% -aYìFc Ã"Hc »b/0¸K˜{Yc¢±„i‘Mh ób/kp5–00ö²ÆDc +#›Ð¦Æ^Öàj,aoìe‰ÆöF&¡æöÆ^Öàj.goxGFs9[#@d9;ãÀ;¾šKØo‚œ,a_„‰,a[¼ Vg »b/ÈɆE˜È–Å^¨:[K˜¿ÓR& ´¶–0-² -aZB¾í¢%L —£„®ÙZ´È&´„iáV-Ih ÓÂå(!C[K˜Ù„–0-ܪ¥–Å=Ú®Ú%{k›Î[§ƒÏ:)õgrOwkG'Šj±d…xÀð»kgkš(íh÷//ÙE7ÚÙÙQ¯¶–0fÞdIîöM6¡%Ìš7YC`{ ÛæM–än/aÛdZ¶y“5¶—°mÞdIîö¶M6¡%l›7¡!@„–³m2äh9Û&Lhg9Û&,;KØ6{Yr´³„}“Mh g/K w–°sö²ähg ['›ÐöÎ^X'#±ÝU‹«ùt|ñið§øÔÿüÙDÌÙeÔ’™ŽZ˜ƒš)”i'é,7SÔLæŠËÔ 1›b½\Ž7_ö6Ùµ9XKÝ*.°¡K‘3(?ëL ÇO×ÁºßHBV8 8‡ßCèOöf–×ÃÉù|>—_çþœlžœnªž ,QJü?žL¢}ýy2÷Çs¼Ô9ÃFpȵrWN¾XþÕ@\ÇtÀ„åGkÊN¥AM NòTb›‰3©÷5K8ü<Ž&cÈ_Ö¿íõgƒ5;úŽîÒbãEx‘íÙS¼YSˆK$žµ*¯Y<™\zùßìœô6UBΰž–ÆÉA¢56øoR<P[5Q,°WÓóuÝy…LÉUÖ+{¼2f•ÈC¡‰•ÅÁüâIëIg&êd„aÌýTJ¶ü¤A¦~Ã6rRîF‚ü·á£—c‚ ¸ Á §-vBøMPt×Tø1øöy2–aADi Ÿ×ݤuý±O—yó!uí±"J_Ÿ9·xÝì ýQãÀ»i­7»›»™ÌÍÏ-OO˜|Š]7ÏvfÍ£›iÇŸ‰¡ÿÂÕJ6¨­õÒ›Þ¥FF”ò¶{¯‘å&!±ÚUÛ*‰+†J”Ç“éu¢.º$ê`æ7àÿM˜Q䃡%БJÑò!·ñMÒxê[²^B4Jr’/£E±^&ešA´Yˆ(Û0Qxà¼\z[õ`§Ö M‡¨ôb1­I4 Xjò¦+ÿË &ÉîÒ«‡æ ¨_ 5æö]£Á˜=V7š66D[Ký/ñj2½ìË5w@M½'’K.4/½sŽÃ«›YÛâšB¬(¤hk­”¤ Q.÷OŽÂ¨Š`wÓ–&'[·¡v·}cy|Öƒ|¨ËÝÇ2îóÿâ˜þòÒjWEÞM×CÉCï¸[’xbkÝ5yCŸ%ŠïöÒ6fxÅ-„Úïäµ7¹(@0“D[CÕd·H#Ø"]£áì³Ñ’ضÄV®lTtüΠºÎn¯µ½ài¤ÓœFjÊÓü'³†k¸*¥Æq°#£Y9ÜN&Æ‘b˜IEê;ΉÕM ˼NØ."Žÿ‘½@LÞS/ìä÷YAx£¸ nÀ£/µ&-aäWÞ8íЪˆ×ש©¸K¥"Oãèßµ÷k-ìª%ÙLsÜ•éãÔñL_áÅ]=Љ£5<ÀÑ·³.„ÜǬò‰#n}™ZzæW™â·Åçσ©˜LÅhò>̧ÃþøãbÔŸ:T>÷§s1Q!H“ýNQÏPá!Š)ðZØ»è¤÷+4$‰µ£”& •á,! Àu… ÃS×S÷N&óþ›ßA…Š5Ä^…ä>'˜5Eð_O8f[}ÿ5ø»DÊ8±ªð3¶±‹jÝ;U­ÈãyeM<{Æ]×@ÍúùIAþ{¨YîÆ¢Æ-¥~Züb§/z¥Ù\¡?DÜ`³±)J  ž6êYV¢H~‘%‰U5Ì‚O çûœ#sLÓkéÃöd;¹HEÅŽ¥ž;S·T–‹ïX¬= ±Øy‹w0VD¼•1Fná?Ðl<À°¡Í"^éYÚA@äù4‹ß{]…nˆü»ËGª9Hª9Ç©KnºøöÜKúç{[=£ý—ÜVÕà²9ma³™Þg—í°qðPwÙ|›ì²uy#ýÀì£ÿ˜ÖUl¦7Öï½uocI¬v×=1yï)üžˆ“›šÃ»!™ŠK­@ýÑræ…ßeÐ\Ç<ð³·æl“ü„æÁ=™ê« do³©¾“kªßd"Ì2ò[ #_IûùÊüeMõ¼ÑÞYíh÷_}Èýó8ÜñYùpDâ»Y ÜD€NÒí倉æµl|.¹ Hh.$p§+‚å‚Rwà ëÊD¾›íÿ`t^i?ª {³8vVhqÔé¨ß±Å»‡<ÎUÃ$yœ›)ު؛÷¤+:«Õþ«ÔYWtu>+Ë¢V+`®<¬£[ÓT©ÓÛ|"àE+°QMª¿‰õà=þû±Î5Â}Y[ÕUZ ¬SkZž)$QÒѤ)úÓiÿ;é6ñu8ÿ$æŸ=ã„qŽÃL £{ ¿^ü9¸è|çá×q‡Ë8ímwÞ "· mBtºËØ&”‰Œ?ö+"xXKSiØçìùýÊ«äÆèÆ[¶Ó6?ÖáV\ ½rž€ ç´C6R–L$¯ï¿ &«i‡Zf;Ô ¶C@/åRø&ìÆô&íRÈsúAdíÜí|ýæÑgГúÎ ûí•ö ‚TÛ¾¡Ï òž½ûãÄéÚfÓ¸']ÛÈÔ1ͻԵÛEÚaëžtíVf;l¯V×fžCçêÚŽG×ÖîW×>ú„Š;Ð…¢–åŒq‹Sà­èºUäÒðÝŸßÚŠ'³=I&ߊß.r r53Îvë~ûž¬ûíLë~û.­ûí"Öýö=Y÷Û™ÖýöÊ­ûGGäGGäGG䢭û°‘ßdìÖ¿ 9"³e¸ 7äó‡·AÿæÑùØŸúÎÖü;«\ó×E¯ÝfÍæ¾â;ÚØ.²/°}OûÛ™ûÛw¹/°]d_`ûžö¶3÷¶o¹/°¤ŽO»ŸßBÇ'}7ª’t9§gåJXÔ³ü0o±Ù°}Ã͆;w9ß~{1Ÿ‘ÕL*;E–þ;÷´ôßÉ\úïÜåÒ§ÈÒçž–þ;™Kÿ»_úßdmÑþ›wï¤SßÝâb•÷ êŒ-W¯Z\<@¿;Z`ìY`ìÜÓc's±s— Œ" Œ{Z`ìd.0v~ÀcUŠ>éðùPýã%zn¡ˆ=µºc7O›¹Ë,ÇñG7O—êÃqóÜ)²h[ÍüU£CT­ÞË Iå$SâÕÿÊ}n4CFÕZ¡–ˆïeޤrݵ¹^òxDþäë¥ÇÛÉÔw¶^Šª« SgËzVDºÿÄSTÍŽ¥§RÕïiB¨gªÁÆNÙqDTªæ=MÍ̖غÿEÓª´ýßgÑô¨íÅí´±§Zw¼jòñ™»lÊrË\6¹T̲ {Ú¤ ߎkº·ãöôí¸=ÿí8lbÅ›G‡›[áf~}à›K´3“xy¸¹-E]ÓŒ9D©Î ‘jáí_÷Þ~Ë ø|eÀ°eoy‹'Ù( X¦ªJT'EòjZa=ËB9/AC=ž¶7^Ñ|ìÎÍD0ñXsnT½•õAõ*rTE‘61ŽÛÂkyõ«–U¯`¥¢¬Iâ¨P¥VqÅn/|íc/}Åîõ,½06Íš{×ð<©ïn­tÈØº ŽD¸¹¹y£¸žê")Œ"'ÿQT[±ºŒ²Îø‰)ÿ+÷ÉR—EN󢨱Ru™uhGªÔ*nÉåªËNP]&ƒüPuùx“NÜ…:,×â[x·EÑ #ªÞå]:bJ?ñ.Ý]™Ñ(3ù5_f¾ˆ ™×ѪÍë(Ó¼Žoo^Ç…Ìëx¥æuœi^Ç÷l^7òöBWhìiãÌ¿Ê$D¾P³‚dÛŠ‹u_{{wjü©ï΀WiÀ7³µ‘›³Ø¥šøot©†´V!?^µgÚøñímü¸¯ÔÆ3müø–6þ’*9}ãee*ÙðaêäÇ+0ô¬^gŠF–ðmV ñqâä%˜›­¡ —1¦Ÿx »1Ÿ‘\o™Y¢VȲWmÙÇ™–}íö–}­e_[©e_Ë´ìk·´ìob¸·ïd–ðF¸~˜³Äã…•t껳Ük[«´Ü6·Q 6÷grÀ"ÍTÈz¯­Úz¯eZïµÛ[ïµBÖ{m¥Ö{-Óz¯ýëýnôòßÊzÔËâ.ô¦hP~ôMzh¾Iµ"KÕZþÙ! TªíUÏ0Û™ÊxçÖ3L½Ð…•zu•3L=óZJ½èµ”ZþAǘÿËÿÑ7™úî,ÿzs•–?£ð6òQxFË¿^èšY=^±^®gÞ'«½O–¡— Ý©×Wª—3o‡Ô‹ÞY¡å7zùoeù?êeq;½é©Ö]_’ðð™·iAo~\ˆ<´…H½é[ˆ¤zy˽$ñûáùAqÜ å˺¯ÈœšéÆ‚…gà¶$ýÄ•m€>¹ qíð`¿Â¤³ßåľ€–«×÷+÷8¹94äRnÉÆgÇ;>ky|vÇç]ŒÑ,£|÷ƒúCtR®?׃z±Ë‘Û)èÀƒGÀ@|PÂ…œ)ê;÷¡žécѸE^Kr¿hD÷¡‘é˜Ñ¸O—ë7sá­š‚ Ìçv[ÉYs¿=*‰ 2{.½ãP Æm:õÝ·•·Œ8ÞÌGÿ»Ü‡ÌÓd…15K§§XÑÏ*tY¦‡FãvymQÈy£Ñ¸'­žéÖѸϋ—´z6@áϡ՗Dâ.´®hAc¿É’¨ñ—D‡°$¢ô°‘ê£T´ß‚è1FÌÓ,´:k¬ÚÕ½‘¹ kÞÞÕ½Yh­Õ\©«{3sEÕ¼çK¬Á¹wϳ¢ºq”¹ y¯;{‹%_ê»[,5WºXb÷æÏƒâNš¤ÐЍ¹j×ôfæÂ§y{×ôf¡ÕMs¥®éÍÌ5LóžƒÇäéÑÕ„ùazôqy"îBωæ!´G͇¸„å žØ4C ÿ .à†‘È·¬ÆiÆ!ï©7–ˆ:é] ¯T'êÀ¸`|à=ßÖI Á× øz÷gǧE<©ïΦÛZ%Jï£ônEùoâXñ`~ –ú阷úÉ{§±ÿ¸‚žÕM±gÉ["¾•ÓÏ4F¶¼ð­ËïìÖœ‰|71EÚúˆl‘Ç«¸ÉÔwh‹D«´EÔs+Ôóv¦È¼buÓZ&òÝÄŒYÚH^Ûù;©Çüô¬~X‹­¿(ãª/£ ÁWbиيþ~6…÷¢É Mñxf•L}g6Åj·7ön+öîѤXI±:­ñ÷6)µ†¸Õ¨öÔêŽo{ØÌµoÑÓìÖú›\ vŸe¦€hK»ÜèaÆ™\‰£É䳨ØûŸ¢Ç—ªÓëâ¿¡ùáÛ¯ V¨²Z£§‰TŠÛ=è Ð6=ͯÔ”IMJ™d(J楢µYçðô´«jË~ Ö1þV½š®ywq}ÝŸ~ל­£V÷üØðh“—\öز‘ò|qrzÜêatNÏ»½çØÐúkb:˜/¦ãÁ%iÀ]Ô™Møy><;ïàcg7«B d›è ð§{xx°[‚O5P’ ümbEàÇõ5K<¤jTU”ÝÊŒéD ½¿üãçF}¼r¶QÛŒŸa·µ;/Ÿ¶_>›]N¿Ì¾m^­¤Œ*<Ízþn5›ô·ówø¥¶Õ¨þ#ª6âÆVTð{Ôh4«ÿÕ•”žó,fóþTˆ€”ÏúדY($»ZMs<¨‡…½{¶wzr½ÈÃ}p»í÷‡8šQáPƒÏ'ÒŠÁ¡VQê%¬:m©¤‚P'ù ’~…¯oOáÿmüÛË ò¶MI{Ço05ý9ï"!ü÷¼}˜c6Y±d*bO~cS‹tèô£Ö›Öþk6¦“Å|8ˆÒ—Át6œŒEm3Z‡DRmœ‡_6Qqôãñ`6 *æ·ýþh3ÃxØ{ƒéŸƒÑà;-X:­—âh~¹¹)‰t&_×SÃÑisSt/úèyÜš~\\ưâ,Rý~}yxj׌­LjZnYÕdûË>Íè0êh­&[G‰÷jr“\v[äLíáöèäe{ߥ³ÇEʨœY¢èKFõPÜJ¢NÚÜÊÜéØ=ì¶JÜ(”úWçKÏúne¬D[˜é¼[’í[毑ý=K‚%à ¾æÓñõY×(ƒÄ©J|Ú3Ÿ$ «?ðã›Åôód6À»ü˜Ùœ·¸@ËeFþëãÉxöýúz0Ÿ/Ä`øq0þÒ-@軟Sòg_Ÿ§“£Áµ$2øöy0‹Ëé†è¾<<ì¾ÛL±˜ fâÃ]ëq,‘›üü ¦ý9Ì÷S“ëÑwq9ø<_ÇÅd,‰\öç}1[|þ<BÊá˜X…1ÂT³Á¿ƒñ ·þL|ŒFø†'f’ù§ƒþ¥¸šN®aÐAöÏ‹¹¸Ž4‡ã‹Ñ‚Šû<\L®á%”q1æCÍÁxÃÚh"¾~^|ùÀÄýé€nc^ýf¦Þ~ŒU3 gÄöà˜•4Q=È[OfÃÿÌžˆÒ“ñÚìÉ:±×w°Ï¿ÆÄÀ˜}\ ¯ m6…xè "1$õD ’£7˜ÓPª ïŠê×!´ß‡Õ/˜ zïR™Ëå_X¤ŽœÙ|¨R¢†"A[6ª$”ªÁåsÝb¥ˆo§TÅÔ)6t¹@ õl1ú,@šÓ¯Cmó”Æ1›Lç$AW–ÏÌÅýRÌ%ü%ZbF.”rÞ]ƒ¯Ï`ù1µþX‚}Óÿ×44¤Îì‹h(c\Ìàb>™Î*Ôhãš V “G#8¥šb²ÍLÚ,{éÔUsâMúöôéìßÓyi#Z/¿m“Y9iK¬‚3¼X‹7LôJtÓæ¼K'ûô„¿WV_x3Q¸•Êf#ùóÝ1´u Ìsn!Û?Xȳ¸´Äs'_Ì RŠªëN7¯ZÐÛWâëdúç ÖH tWWË!Ø7УÙDÍÒŽå‹dÐF J®`²ÂD Ó™lÔ4s³îŽ"·ö«aÅjÝÓVUL¹ƒ Çn…ïrTkÞûož& þ*)2*gîîAûXfmB$ʱ‡7_Q t÷{ƒ¤ük*÷V#@W¯®ªwºÒ98¤ªÀÒÍTPs¨¼„–‡’žáî&;W†Ø¥E©áP:/Fé0M©ù”­æ˜_â.ëäURXŽDÏy‰µþO*‹MiÝþdÁR—H˜úuMiF6±i—é3ù¨L1š|bCrÑjåÓ N¬ÿS’úÉ—PÈÅfïôìp³‚앺'óðÉOÒÆ bf1Ó£ï”QŒ†3Š]ËŒÙVD¦…Y¤Ã:üß`:‘)jdŒá»á%ο'ߣ€·DiK„.e.×Å«ÉôZúÃhrñg…-Z#³ºö?NÆýQÂjéÆÜ…Œƒ/ƒ1¬;H¢ÁBÛ3£ zgÒ–;[ѼVþù8žmÚ)K˜dW”®†Sh9à`áþ/†qÇ7Ùm«(ÀÖÇÁ„MkX0Üš;²€=Ð „pùDѧSN<`P”í=eØfMG,Á É+âŒóëÅh>ä¥É* öÙ¼2?¸q°h‹È«Ñä+|¥Õ§ÉHi²fnG{1¾L·­–eñ`¶cÎÖ`r;)û„jñ ‡ (ÚOnÉ„~ë‰OÀŸW¤œž¢–·[Ñ&’c»ÅOp$)‚r%L7ÕÊÒ]õÑ a­¬zY¢ª¥M…*|'µŒVXËŒqñã*¯°‚Ó¼y'¸Ñàž?AÑ‹Ïýá»Ô² ÔþŒMæâhã1ﬔXaàâ*êY ÕóÖóªç;ªHr·†žîo¸7F'r©RhdÚ$Rƒ´h—ÚDìZ{«Z¿£ªÞdY¦Æ6`?{kܸ£±÷ß½Í;ªlÞèµ)ørþè½yƒ §jh€ì¹Ú.§í; Ú¾5ñLC K cïlÚ¶’ÕNnD•hÝ1a­ÔAEÜŸ‹Ñ a—I#»ÙRœˆéäëŒ)m*ð‚7[8íÅd´¸ë””—›ÑÊ-lcZWíÆÚYmOÄÑ­‰gõD*yÉ£¡’ظW+³±¯@‹ñPÞêLN½6i…A™¡y­¥O!ú£ .›±ƒ­CµL³ÆŒe+¹`½L&µù­ØÿÈGÓáÇOs¨Î—>9¬¢?vÞ¤MsÈ>hÞ*N‘¡öàg´ª‚/¤P¿ÊV‘ÜK=3‚¦Å-{÷]/ÌH=‰¿äJw–¼‡íî¾aÝJü»½C(SÊ-«-T­C£dóh"ú˜„Œ¨]¸pXèeû0f>]ÈÅóº& è¡þŒecS8\+&ƒlLÔž¯yÿOèâÁt:™ÒÐäò±õT¥ÇÐØý‹‹Éb<7»G³ .íæ²=f(ýåß‹>¯eA¦£KÖ\®o&ZÖÔ!ÍÖ‡`§`óŒaª(µÖŸñ–Ŧé·-ÝoçÜoçÉ~;OõÛ¹§ßBÂ虊äz6Ü{ç¡ÞÓ$¸½g³žê¼$ªóÎ uÞ9už¦¡:qéγDØå5¿óeçéSqü²»ëœÉòvt/µÈº:ývLw{'¶ˆfú,uˆèbªDѺ‹+Ðw0OG4Uà,:ê€_+¸¦Ms ¨è;0Û :ÁãLÔüýñ÷Äñ®ÑϬ…•âv¬¢ §Óá ÀûZ0Ì åÈù¢$wÖlJ-µõ&5<)¾OÙHÐ0Ð x”©µ´âÓ™´ßã•Ú•óÌìÏ!Ø:x¼ÚSûx3«e¹9m"r¦*ñ\ñ>•[‚$ƼY·©ˆäY¬3NÊîÑË›÷¨áå¸õøÊR.‡dšÓ¾cß±vÕ4º ÷+&7d¹\ ÇÈ<…Wòî˜õ0 è‹ ‚ñQK¶¨óð3šùÐëj1Cg;\nŽFϹPÞ#}Ñ:êB óò½bÉÚC²»9…énåñâ‘`êSG‚ÛYÛ³WÎÉ>T KßÎm/2@B(YŸ½iO÷ðŽ®*]ÊêçktTÛ–b_@o}Î¹à ¡Ùg8^ ÌùR°cUHAc:£;Ї͙àXK; 4žž\õaUsù»K|BFÐ“Š±Óú‰A:»˜?àï`mWê^€Îdéh9Lhý Í""爈Ԛ»‹L#¼t–”dßÈc§‹¨òî¾!÷±\(’+LƒÍ é¢*îiDÕê&-1Ôêð£®:ǵ0­ÈRP ¹ßÕæ ÚžC‡³!nLˆ/ —“ŇÑÀ—Ò 5é„oŢ穹֙ÓyîË›Ó_œœöN[{QJZ'Q4Nä> ¹·ÑÒÔ=›•~v4ÇÍ&£/JLØóÆ¥žÇ|¤ 3<õ®¸óoŽœ”¸C@ªúÚ÷•½ógì&‹MòÛ'ñ¯nÊÕFKe×§Ä,Ç5I—0­”:u§gÎf,\¸`;¢|ÅíwAŽË$a(ÁßdÝK£¹e–ýtdÙWFÍ7X Ìd·ã0—MŒ×@¨ÙM<’i*‚ÔbÝ# ©dÙßliæÀI]¹´üº‚¦lÉ£jÿù»’rcÑ}CfAõë“dÇ}ó×ÞíËÿ}€VäÍyx{Z˜»ø·íe³û–öWÉCôºÿq8îÃŽÚh¦jð$j9¦”–;àÿ)pS²¨¦ó¹Q£[ºÚ½›UûFÙÔs4üs ÝðyŠ2ÎÔàñVÜÑ̸j˜Ó0ÕÓÏWr€å²¼•,(ÒïýQj¯ú’ö&3¹û7Ü„-êöC“.hº©Žßܨ©n’M=ÇZ*S”Œðƒ»_d£›ö‘½yÞ]b ¡¹¯D ‚úPm‹ÈÆuD+/.0Cyù×ywS'g=d%ª(†t…¢UT(’5ò)ˆÌ²#>”¯lñ@áÑVjXKÁµ7±°¸hKî©&Ì£Í@~2•Œm¿’Y?õ¿L†—zû\ l„+Ør˜VΪG2_ñMsÄ€YÕâ7kû¨V&G¤JÌËåxdíµ?ÔrHñbU!¼’=_6@4ЀVz*k½jŒÅÅŘ'¸VG•êtˆÿÂ$|2ºŒmôâÚ ò´î¿˜@]$¼ðþ3uZ½cÐuô·+ÿ¢Uºª×ÍUDX¤Œ`ù\L.y­Kêk ÷àåÀ/åÕ<æVÅVG´{Žû¶`&òáÄÕ¸ÅOI1ý#ÿUŸ„M–Râ¥ÝŠ8éʺâÈKÉHµº\ž„Ž—÷r@ßi‚õ¿ äÂ:ȹ‡„{­ú·«f¦öñÉÁ¡E÷œÇ0/_>÷gÒÜ´¦b½’Õ{ƒ­ÎÉé±E£ƒg¸8ýýÓ¢àË-óŸœS¨¼°ÍßÕ±]°Hƒé‚ù¢7Ýg§ï/ð‚zOŽúóá{½CÆ íâ5­ºN{D‚þ YÔ›´×t21Æ ù2œ,f¢.ôÌåzÏ9Nºš€J–¦NÕ0èþ­º×jËÊÍ›z ™7Ð#‰6b¥»¡*ñ5vV"/õ L¸Ó<ó)á/­õ²“(m2½TWm>ÂÚiµ+ñ*7PÄIIiùÿ-EÏbºBRÒª~TE’lš2»ƒh¨¯h'Ñ,H¯åÖ&T5^̓OôŒÜÛaÂY_ªÂ:® œ!¨¼ÑàKÏ;­Rd³/¨Ÿ%»°‚¬VYÿì‚Â/Y—Ye‘•ªjWÄ‘s'NUÕ'_¬Ì¹¡Ø:è¨ û¿BYûPT¹¦^¿iõ~ 3ÚÖa?H Áyiöíë †ãµÑ^á¦xÆ…?yãÿXÞ¼í˜Ûõ/Zi•lÖEÎŽ¼Ú=ÚïéÀôç…º¡îER}G±JuÆ'¶yö—usÒÖA[§±N öO‹•ŒîÝþ{gÇÇ-Š]‘Ñ &‘Š” ®b›”D\ͼq)­’*ÈÇšÃü‘—4š•ݳÕžÊËjÃì¸?¹¾Ýž%ŸÝãóÖW!Ü‹ ožR=é˩̑.] Oñž¦Zíc¢yò¦ç!'i³¶Ý•'ÇÇ'‡Çg¢‹½‰XÅ&u”ŒóŸ¶§¨Ão “ðèèÅb|kÇlý6ßñ¾¼‡ï@¬:Nù>£œî⃺ôhJòQ"›’¬LP'ô·{v¬¬ÎJÒ f<„†ywxºwÔò°ÖFËŒï _@÷¶;Ýö¾!ØÚëÒ!ƒTÈÙÌCõ€®àÎûóAâF÷A«×îCâ }UD\µŠh”¡æõr³"šøO­¼£¢ºx³ãÀ‚ìµ2Ðÿ1¥ºóýnªšÎ˜]XÌ>õŠÌUWÿñ׆ü.Œ5LRP5Y¥ò,/‹mPÙX·fù-W!¯Oê‹9Zû¢ët…ŠR‚S^ûµm­ËàÚD\sÒÅÏ¡e8Ý»5=»›86ìM¡‰ë¨5Uû‡Ö2jUÕ¸páþùã+/0CŽfUH-Wuž(V¾#¹R0«I¹ey‚ᵓ”Ë–Ú87¬ã¬ . £c›ØØt ý‹î™˜¡çh``dWn$бÄ?Ëà[ŽhèÊÑ.¾Š<Ñt‚MMÔ‰-d/ÙÐ*h¤†ÚãrCÉãdr>Í.£–Ì$ω Yn¡|ÍTaìˆwä ¸¦2m¥2ägÚNf::h!{‘Ø<9ÝTߨ[ƒ YMÓ8ï:Døk&•8E…„¨Vf1Šéo¹ƒÌ¼„:Ñ>JV]ÑräQÌ·`à:ŠÇÄSÆc¢3ɵŠÜ±Ä× —}Ö¦câOä=3—ŽÇk܃>)å`mØPR¤èkL(|Q£h5KAÐZyWÎÁX›þ,õ†côBXÓ•ACRá²á›’VKðl«bƒQR•ojiâo´Š´Sàš[Ó>RË ²b1³ñ˶ߴuúª+LÂp¡ÈIå?¡tm~°öä_PK!j6q@Ua 1ÔB”$©ž¸k@N¼Ðh¼–@E×Öf¬Šíc“J…zóeDP_OÖT„?¬R­ÊˮұcÆ0¿Ù9émª{Œœ|=¡cTÕŒTñÓÅí!>ÛG_ÀþŒ& µ—Dä¦ eÝy…ÜÈÅàÉà3ó9/DܾtÆ}Òz’zfÚdd6-­Ë’ü°¤ i¦¨wØ :õn$ýóa–‘?鋸 \›Ä±à‰Uÿ±Ã;u Ód¨©{ý ¾}žŒ¥‡¼Ši’×EòéO‡óOPI0I…¾[Q¥¯ÏWš‰FŠ„ô M>Âíš_. C¡¢ÀÜ‹ çßJå÷Su1ù¶ åÓ0w e”|[=Ÿâóe3ص ɧ)Š6LHz=Jï’£l§šÌ,ñkgºIHhwÕ X%ñô–MÁ%Ã Šæ1ÚÉ0§Èu·¡éj©qhSá­Û]kʦޔõª£sHÙL>BB„pJ*{”º´šc§V³, a{±Ödä/XÊñîÿëûÛÖ»CŽ ¡šP¬è¼£þXùƒnlˆ¶º¶ý_εìt(Õ÷¤‡RHr”…àÙ¶ÖöïÚÊÒbE!Uv[«µ$õ KÛpa¨0¦ä>LìFLéÅÕËã³äS¶àžlÁ4¯Û·à5Ù®/8)Žý(=ì=ä6x])RÉ/»êõ`ÕÔ­»c1êQ5ÿ?yâÚUÂq]{ÇÝ’ ‘ºÖ]Ó é³ŒïÇ{°´•^Ë ½çY¥ÿ(ܵŠVÈñÙ:='(µ&˜Ý"`‹tÍDg;]Ì~DKHbwÚÍ`K¼TvÁv@²jËVÎ9Álf¥' ›QÅ8Ÿ"/ |D32eDPNUÖÚÇ͈ÝN;¥¤H¤¥› G$¨@ ƒá~Í?¶<ˆz6 yŒ !=YÄ\¹¢hî«’¬­\­SÑw;m{0Ü’§9ã«Éí˜ß˜Ü~dûE²º ¥²0±¶ì#Ò`™T¤À}°Ö9±F¸ ŽZ´•·‹h²Ÿ³™‰É{jæ|5¹ŠFîüÔœÈ(cæû$MÜklÇÅLí >cph”ø!Gý qƒ¢b_Q•¥[†äìÆyç¿ôðˆªÁñÑÓ áŸxˆÜ¡º÷ZrmæÂWy{ªæJpj¼öRyòx TÔ|o_瘱ìé$jåÔë€É©³¨Ã :©(w‚03¿r5‰Ât^RÎBÁSH ¦<Ç G‘·ƒÅg, y×»EzÏdÛ£ì`ã„ ×MℚÏ&c…¡wÚ¯8ƈ0`Q)¬rò½ sQ½5›*:~”ÉÇ€þ åÂÜùIÊ«d!¢’þËD£bP¾4Ïc6‰ã)@k˦ùìßæ Ç ü(Ëm¬HŽmïÄJ½µTêæR©b]J\ñT»èö¦¤å€ æõ;Ó×A’`YÜ÷ )*¯¢†dŠ4œXw';Ý îŒ-Ãı5[³)l&ëÄ„ì'¡9Ú?û(ø§fÿôÆ c¿ˆ‚smrŠMάؓÛF_m™®,6fLŸEgMïd¹]M+œðÔžó&ÂÂó_¡i¯ÐlWh’[bn+4¥¥f2ÇTF)Ø)*áÉ*ÄILºNZÑ¡éÇÌ:;ž¾ÏšcBS ¿•.M”xT»Å ãØýµDŽˆÄ8\Ü3½ýRC ¸ ¾ Ä×_àmœûÒ¨8d\šZÜÚáԞܚ¿{üg³#áÿ¦?çG´9ÿžŸÒ'ü÷ô?ÒútþdR{‡*8f8´Žýºû­£Cù'“Ž{Øçœõý|xÒ²©e/œ¦P¥3º_‰ b€Md6¥ï\úGJC+•Tcå`J“´ÉY$õ”Ç<(hs…¦uëËyn~…iM>%$ì2? ~^þó£’FÁ>-I¹ÀÖ¹PÖí(|mã[G7À´>'Š€ZËkÂ.‚µ"óòððÏÇz.†Ô‰õlN‰•YëÙÆxÖTn ÔM<šýÏÂXÏÒ¦] ÀúM€ÕÏÕ—V÷cs?‚sÿòÎýÎM<<‚s?‚s?‚sÛÁ¹­³ Î}þÎýÎ-ŸÞ#8w6ú¨]–ýØ@Ï•(þ™`»çŸ4ÚqKxÛùôïZU‡Q5DõhðjRä¤Ç šá ÙYþûFu`ðóÿxPî¨ljFÛ¾iN-~w Í}~{hîdù´Ã9¸r¤?°‹ÆÍ{~t{yGœ@ y~vʃÊ`h;Kchå`h_ªÆEÇQVOÃ5>õÕ8ØþHëFU>]¢ÊG§‡·®2ݪ ¬4L¦áþfΖ­<ä*R{.DnOQ§V2£¯bÛÙ6Lï©Óí‘qD™£ëÉt•,ÑÞòò,Ñ…ý“ã7wMÑ2ífO¸†ÏÄÈs(฽±e-¯MpT„tgmZ]~xÓ.÷ËòÒí«UÞ´ÇWÕã.G´;½ª?\a‡Û8áÙý­vüù:•l¨I¥l›¤G5X]¼ ;Ö|­$±<Ü  %³rò³×ïä[ÁOý/“á¥>TÆqÅzÓJµÖ‘ùŠo¢šT̪6ÿ²6PQ—6ËQü4†Êå¸Ò,“Ï%|§¿ðSÂmsàßšÄÐñæB‰+Þ?Ô†’ªÕáݤ¸œÒò´þ–xÚ£}…ùy߃`T2O“»~ÿªÊý9^ ``L?Ú?¥‹,©œÿ]MáÊJœ )¨_ÍÜRWèhž‰ÞyÏE—9Ç+°îÅ“K’:j½Õ<æÖºö2ôy:DäS6,ߨ°i”óÑ?ò_õIxÈjXr5‚qUÁûr‘jD¹×`Þ+•[ªú¶-bCZÏ‘¼"‡v¼'Œû'±Î@ÑÖ‚eðM2ÚKÿ„€v¼]å\µa¹åOm+žs[}îÏÔM7³ÊÑ›ƒú¸…qªÌÓA§\SüÓ¢àË-ó3@8a8òwå‡@wíÒ~º` œ¾¿Àwx»fÔŸ¿Ø[H´¤£¼B­µ¡ƒ5ŽBôï*ÄédbÖ‰@äËÃq×…3%:ÜÇ_MSµâÂÐå€Ã4(ñ{­¬Ü­÷÷KÑàÓé–ôÐV 3:š›—z'ÜmÙìôúKCü4·´ÉôR]Êü8ÎP»oŠ8)©©ãKÑ3P¤ë0žJº[ÕªHÆÍÑev#PW_qùI{ z3T ¯Â'zFap`[‡Y£T׃þ$ôßhð¥?ž«®ÝU<öy£q2ŵj‘IÌa‹~J”£¾lV«¬‡vAñÀ—¬[ꬲÈJ•µ+âȹ1­ªÀŠT»g]›'aùzÿW(kß)j¯uÔêì'ß—kê½ÚÓwݾ"Ú{ˆå.cøKì¡¶ &¡–_1ÜXƵqB<ÕA/UHCXf#ÀÎ2h;‘^¨”áN–à ¶æ•úÎÑ=ìºæ•+É`wµXçèÞòt‡…ÿTÁ¾¡Pío'Wè¦ü@á[) È Þ% £N© ‹dåÛ-m2]óÃo0ÎðŒÙƒ`ïéñ•ïßAÛtœ4ò}F9ÝÅu·Û”ä£D6SEâ WdSeU¥¬­p0VJEB5{Xk£‰ 6æ…¯  SOÛn{ßlíué0¾‚¨¼ò9õP= tí¸2Õ´54Ù|˜Ù\÷°ß´uúª+|4™|¦}8ö„¬(Ç-¥¿d`vƒ‹¬Qe8 Æ0V;j(J’T]Ü5 '^ض¤Q ¶µy§Bv9áä“XR¾ŒO#oÖ¶ V©^ÕØ‘2èùÍÎIoS]–(¬!¼r ˜XÓwq…ŠÐ ¹ÏGÔ¾×æ/)@®XÏuç•Ún~EÓ¨Œ &î§áVü€çOZORoÀ워x“Omo9)جR†‡4{Ô;‚%Q©w#yíf ù“ Ú±KªI ,Zý±û¡†ÏVjÊSH?ƒoÇä o“¼.’O:œ‚J‚‰+ô•­Š(}}fo¾›]òÝFŠ„tÝM>—™uI Í~>*ôÌPþ­T~1U“o»P>]“q§PFÉ·ÕóÕ"Ùæ ñ—4P@œô:Þ%GÙN”½-ñkgºIHhwÕ’Q%ñôÓOÁ%—D Ím´»aN‘ëQC ÒÕ<°Gæá Î4à3SoÊzÕ‹Ñ€9¤l¦¡F!B8%•yŠÉ Õô(;µŽ“œŠ@•¶µ1ïТ™Pk§² ­]aÜèka©8,%E"- ùðÄ- AÌÇú渞MBTIsåJ¡¯D²¶rµÎÏ W_½S˜h·•·‹h²Ÿ³™W XŸ×Ì;ùjò§…<_Y#'22fèËCcŸ¤‰{í¸˜©A¡³ÁgŸHä¨?!nPTì+ª³±ò¢t˜ݸ ïü—Q58>zz!ü‘;T÷CK®Í\àloOQ'…·®eÃÈ—k/•·Ëšö(èd€4óÆ]Šaæ·µ×-…t³9ž®ÐNΦb©ÑíUË[,´sƒnHÚ×0½ ‰@Íí·¯yiWói(x›cƲŸ¨•S¯ÍPa2¶«&Ó,w´\Nwû ØDNV_^35•å¤ÇF”Ú0Vã¾$l¥«tŸéüÜ»pFllôF ló åìïɳ‚ÒzІç ÇzWñ^‚ ‘|Jêô³" о,X™áÆót¢xy <~ ¢ªä‘‘ +yØ*yd\è•$ÂJ'èl?–ÄSáÙ~’hÏλò³ýС³>KØñ¤E¡}ìxÀ¡s{¢}µq@£«î¶r±^dI§jà–NÑÊ™¶ŸÂ€ÓE2m{ÍšŒ [Ëfh.›ÁPm?)jû í–Ðè«.R°ª•òë°ç_Ö – 1èÚScA•³ŸLÙÍÃvÒ€±‘fû¶AÍæéù”Áþ¥‘鎚/’SŒ÷2Ë;ê÷…8N›YÕâ·¬Z‘GRÅý­ Iª[½ÑÂ7M!ÛVÚY’:7¥ •°¿[ìïÁ`<î:“ñ†>ÏH÷ðÎîÛÁh´VØ&RM–æ0*E—Zq¨wÛ&+w±éá$!Ì+³2„¸S0æÞL—“¡ ¥¡‚aý¬žÞüb—™2Rì3sDM»rr÷‡hJÒß„*/vêde’‰Œ4¥ëµe—ǾnH`“ó›2j¦þI"ªJ®lá¶í2ØKŽÊHq£Ê”bÕ´Ä*ÚÙ=NG®¶ãxAŽ#•6Yå5˜Ø×ªïâªSŒn$!;«.6VyMàIã Op½V½zt«Uã"r±sQ^%,îÛ›qRkQÇyK'z`“­@õ¤lƒ¦ÔZ×Àw)Ôˆ‚~Γ¸.§±ã<‰5üÛ$øûµ`n6oÿÞT%µàË(aK—ptG%l«d0”»)eG•@ •êÚŒõ•.5%`z¡¼X±½ËÜoYÉHßÉê±&6tÃ,:‡ë¥}êÖ(åm™Ýµ5<Û?t’¾Žðóí·¯éKDøô&3 e_/ɤ„T¿Æ·1KLYpÀ—Ô×u¤õ2ª¢Ü/l¸N¸T½Wßú¨éIK´kô"MÏaƦ[´Ùx{.ø°kÍÄBÀõ‘oÂϬ*wÞá’7I™HKá]dÌÌ<µ}\_³NÑä©’2Š9",3¦þËýà¿ú0™ý¹QÛŒŸ¡±Ýî¼|vØ~ùl6˜N?\n®ð¾ O³^§¿[Í&ý­Æü>ÄÍ­Ú?¢(ª6àmÔ¨þ£5ê[͈êJJÏyÀHéO…ø,M`¨Of¡tìj5Íñ –·îÙÞéÉôþ¡èÂÒkï@/È(¶åß Ï~éëé¾Í$)ÿ’‰7έ##uèx¬Æ…Ãu_îâEá“Ó—{§ô÷˜þît;U¸Nøí`?3½ä8G¾T¤«rÉh;²k>÷Á¼㤥âªë‹ÎlÁðαKó"ù$ƒ–r ›Í{Œ¼àë7º°yôöÕÉž ò‚gÓáÆ]×+)Á4w¬hîÇaŽÚ|úH{/ßulÿ ¥ßô…Tb÷"KŠ}Nâ SÌtPÒõGß~&?©B{o Þo(œ%)œ'€j@W,À²â¨ Ý­ï.¦¯îË÷å °ÿëëw‡r 쫱\¡±~W’c>Ü:¬ <,)ÁŽñÌ5èÒÌšƒªˆ“×i…§¤´ 58îeˆHi¶Û|R*Y {0œŸtœ =#Jûò¯¤ˆ¬UˆÉ¬ŒÄâ¾úàccÙˆV|î¥nÒ#ϨhàŸÌ«}Æ¢ªƒKKûZ½ÙáÌ%p¬ ]*w8O.èóc1!çÂ!޳IË·ÖÛ¾WB˜s$ #ƒ7LÉUå©Üè’§‹"Nñœ¼vî¬c;ôœ ýä[cOo2’R÷ü@O)›Î¸zî£Y¾w°†·5SNx<^ì“X– c@ï,×u,׳LNA’؈ȹ¹EŽp0Ñ¡æ7Ô\ jè·¤såæ!]ÒåU\V#̹K+‰ŒÈËý1R0Si>âÕóUó‰ï¶A:|&!žB“$Äì ‹ÙA\PÌâ<1˯ vKC.²elÕ\ø ¹È°U1a:µæt*ͱN¥wE:•;ÏÖÔÝ.Ý·X•BâɅݦS¿­U”|ݵ,6ªWÒ€‹H1òøx£¹ø‘mñF÷È=´EJé$äÂQwÇF3‹ø¾c'‡ {†]=FGÕ„>ÎÐÁÇEuð±ÖÁkGêò GŸÑ'ªZ`i•[áã[kêcÝìÌðƒáÕ3j-^ÂWÏØNòÚ Ì…÷Ïl£³¾óþ™õ¨«³)ýyÿÌnc6öJAüx=µ6þáBäõ§]ãÚ®o<íšäõžÛ5 Î]®øö¾™-0!<‰Ía6§eïId-3È]ŠÒ6pÀ ¢wEÌ J˜\ŠVÕÂúœê{f›ùKl.ú6æŽâéÌ™Œ3™ºY,ÍjJ^lV«6·?œÕ”±“`ÕpûÃYM™:iV%·?œÕÔŠÈf5¶VË÷8~ÒóCºýâ{g*s¨h…šÙ§+cʨÐí¤=ØkЃý‚ô`_-$;kVCsm¸f0e´y…ܾ…°G·T¬Äꙵ,{¬ú¤Å°ÚY³‡ÿæu+“×öšuàð£Yõ©«0«ñ`ÕŒM5 $¿A„ZÑ3¾¿A0ÒîÁßI:~±çÕ\å!ïY–>ÀŸkÛ¹d®Ô8WBÌ…}¦¯T$ЩÁ 5‡š)/Î’ò1T\“ñ`]9Ln[®„år™ÜÝ"ý9Tdê«¥‚äx´zÁ ÿ¿ÁÅýøÿU›Qœòÿkn=úÿÝÇÃâ”ðÿ;Üôÿ ûÿîgøÿ9wWpÃÜÆF*æB¶¼3Ú:â+YxHù’ôN»¿Uðïá»}úÛí0N5~<ì|¼ÊPØýÐãaÖ=%’2¿µò¦kZ†Üe7/c( ˜ÁïÔê0qd·GÿîÓ¿êb•½^I,V¸Ä¼ÅJrYí²B¸JïZ˜•NúÔõNY©g³%Î)ï”—F./Î1äò²•ËKìk–øXÙ)Ò,ñ½´JäÏÞf‰ïˆß® RM0‹úU¼ÐªéE×ÖLh#Ù_Š ”´¢°[Ú¶´œPr*"'7BfBªˆûb¢î6TRžâûã©éeâ\3ßgïHªú*Íâ É¢¿ïî™§íÌqX}P,f‰ü=ñ”¥î`‘°Ä:­\K¬ÓR–Xk FG¡ižVMôñØ ‹#­V¡4uFÖnl²Ï{Êd{<§ *ónç€ óã˜NêSfúÜaÚoaHžãlžã;ày»@CÇ)K$þ¡{ÿ¬ÙëAñŸšÉ ÿÐLö *Mž Ä«à?¾þS3œáÿ<0Ã=¨öR:9ˆoZê½VàЩ@*P£ Ôþ=p¾ú Ôtâ•V µç镈éê=Tàz ¾Zò^ãz°N=ô(è•xø GÓèwæÝ3ø–Ž…iy÷p»[î<‡û«wçYúÉòÿ¹Ÿø_µjÞ¥âUýîã‘(áÿóÿ+Ëÿ'+þý¦#Q‹K ,íx!™¤ÇqÖ‘àÃ`v1~V.Cðð¿øW~ ‡Ù:ð‚þŠ«áøÒ†ux60±™Íñd¬ÑÇE‹It%‰®—D÷âÓ‚Üw®CÎß)ô˜s *ö¯”‚2wUó¡xæ½΃¡i„ ÄIj@Ôúcq¼ñáûFGF½þÿìýisZÉ’ Ïçù7Þ!„0ç ÅöOHXÆ$BrOÌóáTFå¨t‘Êj=U­.5ÒB Ñc·;d)ˆuNp-b-ãÇA•ôÍÕòƒSAnp«å¶kÂ&‚z°&P-?8jO5Œõõš@µ½yU´ö6 V¹J­d2µ–ÖHýxé»D b‹Kv¸dÇÏ%;i¹dG»|D HaAÜ; tù¼0ÙuS2ª:KóËŽvã¸@;¢EF@w #ºP[“|P‡ }ð(@;YTG,{êp3 v1+'®#p¥PGlë ™mõ®’„»«éî*­tw¥2.ÍË †Ç{Qž›Ou}8àË0‚i¢¹ôËJ‚W*k{–ÃrnÃWª(–V,ߨa¹Xº1¬”"üF Ë)7;†•$î{žh\V\Œ˜qÅ 6jºÜù•*‘›ãòÉæ‹ëà‘Æ•‚k¤<mÔ¸ÂøùÒÿÄŸO6ŠÆÕ{ôq…O7_)Ï“‹«¼Úq)ö.A²èÖIÝ:1¢['­èÖÑD7!çêò€%ìú÷¸‘ Äu ³’dŸúœ´´àÖÑ·g8(ç‘U#|9¨«g3(—tã”.àlô¨\²M̨ü§õŒƒ:xÌAÞUÕ‹•ë4¿Q£rêTüsµ2 cT™Ô—¾ŒGb3Á;^ÏfBŸ¥ÛLhAãš'bL2â]7ºŒHFt½Ü^À`Rƒ›Ó)Àtú$09ä{O‚ùÆ哨V ªc'4@Õ6<%¨îb€ª<ņtõ3í¸Þb0U,˜ÂuÁä:6+ˆª0ήQž°’/ÇðÅã´|ñXðÅK=Íyz^’ |'¯ôGÉÅ‚$LÉKúQ`r¨L)Öî#€de# UÒ-ÝGÉ•U/‚)ÅÊ]!Lê]û%sˆØbë´[Œ—" ¸OHzÿbº xëê^(ÑÀŒQ>Š#Ê:]Qtgö‹?Ðlí;¼6òãÿóõë:ü‚à0Ø+›þ?û¥ò‹ÿÏ:^l•þ?''/þ?~ÿŸ““ÿŸÎÉ ³?ávà'ÌüìÀ±…“““Fú€IÃé×N ßÏÛïñ½}ÎÞ©lÍßÏèû‡“Úù¬‰.m ƒŒžð`£'<ØèIçc…½CÐQ+ø¤ó¹ñ+xi§*]þ§ '¿×IÊÁ)5ÑÍ"•/KäÁ²£»°ì<¦ËñE³ùùS½7 1aˆ=g~ÀÙÑç#˜ÂóïƒØ­ÐqHÿ vOü[]Ê-æRœ*¬ñ b“F'…ŸÌùÒž6í²RáˆÊ·!ûԟҀѭ\Ä9ìdq¹¡´O«ü¡WY¡[Kƒq‡½w„Ù~œ{‹^>Žìþ>1|^0y?ª2rÿ˜†Ø¶vOˆi7ŠÍòÅÙßݬÍg¦3˜ãæúW:„qwŽÇ“ë‡ÉÃŒ0÷ܨãodøÐ²Ösˆp]]Ì=váýT5~Š'kDGÍ¥Ëù›J‡ éÚSñqrâ¾'blÁ§ …g©T¡P0§'Ä ¬Uçø÷T7ØóRªPªž_=H¶&TIQÑ®&ûÖÅ„É@ü1A²•³EIûø ÙWÿ&H¡Rø¸ Ù÷=q …ëÀ’㺇ÃÔóÃôÈhrX8ªxê­&WC"ä'ÇÅgi8.T9®Ÿí »·vÆé‘Çäè/á8™ˆç2üY  &øó†À",mñ»ÌF Àbýöü{’2øê z¤X;…{Îl#¦À2$ðÀÞï6bÖ­¥{ÎÝq#`ßq& ܨ)âWAüÖ»#°Ä+{¼õ“ŽÀ×õ¸gKÇgi¶t,(¶t_\}•Íbhì…a3¸–ÙÂÀm±ùmÀÖŽ§ì¨oAì7™°2ClmnˆCϹ#\;Š­ !`ûT²~€í @@ÜðB>)Û&ÛÉ8~bˆ-Y9ÄŒñ¯bo‚§ž­Ó3m–U6Ý”Ø-ö-ìU¸ÅØdŸ¤µÉ>a†•Öñý3¯Ó·ðï—b_5Ò—³=4e×ÉÒæÓ'Š­è«ç8$‡îÁ°GÄg3$‡¾Ð’~h|cr(]c*Éa=ƒ1Ù&ê¾1ña=ƒ19ìQƒ’ç„ç0¦x¶§:ó8²ç0&/ñ]˜óúÆÆŒ)|Š1ÙöÙê<õ–§§S˜b=o‰möz2<®uéê,Fº:K+]ù¥+õ°™ ùÐbbÑÆ ¦[¹X\Þe[Vø:ó _ÏÄNÙìÌ/›=ÿ;E·³ÑíùÙ)ÙÙC.9S?Ï!;÷^çù¯Ÿç[³=dûâÙŽØ- ÛC–;÷o0d/a{„JU“ôL‡OØ=ÿ,?Û!»EÒ3—HXùöž×½+šËzïŽè³twG´à*õ rc¥zO Â?QQ ã[îŠ |eZà ¸C¥® |ºÅ ¸ãÏø²È ¹%ͺG¾ŒžrCGî¸õŒ|am憎Üu=éº{ÎKÏsäñ¬}é=­´¹#w\¢³‘_<òn^zêÝ<žÚ{½—žnä)¨ýüÑ÷óÒGî”ýwíf†»öFÓ{×NŸyµÁP/•6˜Ì%Ʀ´6cý.§¬E€Üj¬§èIàqèv<¥×ôTäЋ**ERÚàqø×Xð0ü”ÖëVVLX`)Ô €‚ÕÁ“É øajIŸxY$Ä-ò±H¨—ŠEÒ‚«d‘Ðïr Z‹Ìƒ€VÄ’V ÐFÁó$æ`‘ ~VÀ"3Âã`‘KÇ"iA›E¶#œ…é'ú\Ž="0&{\ 0Ž•/€ÑXãZ€q,{¹ì׋ãúÇ‚%ÂKéQaqùö"0~c!&ÍRO ‹žK]Žísÿr¤ÏÒ-GZpUËú\n9"0«YŽq,GÌ –cF`ËQfÉå˜Çr´`Yx9f„ŵ˜U,Ç”°¸–£wçíœ`¨" PtÅãÂ]1÷‰YªÝ˜6»qñ´]4T®Â½,…¯Da×Ó+æ·aiÅR?5èIÚÔ '˜Ž0ºµÅœ„<„”!S±\\²r+í˜S$¾àjM¬ž† —Îz%V|õœFâàÑHzb8Ïa$æiŒDó *‡âFXXãP§Ÿ˜¡úél£&Å·%q$rGÙ¨‘؎穇’iRJO8”žs(†uYÖY u(‹,•…ùWéI†²âY ×@`¾eÿ(Cy‹ñ°ˆIPw’6AÝ ËÏdK>ÛR˜9Z¤êF†"b†í£üé™ÉÂ7ö[:‡Ý‰’—êÕo;n§Pu¥Ñÿ«ßqÜÎ}åʹîqܯ~“q;ŒµcÇ]Ýò Ïmà%AâÀ]âês·Ë#!åÀuéöÙ |R_œÒKÏ{à.ÁæÙÍøâk|qÞVz®_|ÆÃ™qÛ8o 7aàŸÑØ÷V@êæŒ—C6ò’¯•”§œ¬™»Ëæ)§ç?äôÒjw{êÇÀ”¾éÒ »·´·§O6d×Ñ¢§Rhœq³à”W&av 4˜ ‘pÐìÒÅ8@–ÂÜ€ì2Q‰¨ÙÁª|²Ö&À,ñlì+N<‡ë…ÙµKH˜[‰0‡‘*qC`NÆsø´á’¸½kðiÙ†72*¦§‰ÙHÓj {º¶°•jOõ1ì_£CËÓÿÕ¬P†(æ“¿.Óê\{K« {ºÚð÷F€s“—бð["ÀÉ®t¤“Ñž+œ"“Â÷÷÷ÀSó` V~|®pÝ¡Å#À#>W¸…–HK¥gŽž†X .–B~¸‘p +¤@HãK)0îäác¶v¢K›6hWü´UZnV2hgD%tiåƒÞœ™özõ3ý þ΃ö1²u’wXJ0ÍYÛ¨×Iß›3êu¸õ£SxŒŽ§ÓŠ ŒÜJ¹%#ËÌsÎóËE q6àyéÄúOFBkéøÆUÜöm6ü.ÊàOH¹¹ p‰NŽ.=Û&ÀïŠ%ê…?Еm›¿3. –°‚K2ïN@ -¿Ÿv.…@†$Î@é±à]+€œÒjí„oÌðsÿ~n¤Ü?7r2J|;þ^$xpС­Ö ä¸þ>ÛT~n,»â(„ÙÇó†+x¿†3ß&ŽÂµ·«£¬¸}›8 ×oŒ"fsß”Q¸XœsÎ-~SFáÜìc†alô3ŒX6ÏlK4Œ <žM•6b©Wx<Ÿò÷×´õÅ®g³õÅ#ÜôahÊ öS­uLê鹿v6Žç¤OfwwýéO2ŽQ„3n-²ða²ÙËv½[Ëñ~ߣ(÷†¾È6‹BÖꊾ 6sB­×¬– kðýi»YéæHpEq\¦Ò/™NæÄ¹ïÏfƒŒÖ6Ìæ32¹Å/j8·Ü–Žö:6ÁŠßLƃí-@!zÚ"ù||ŒînûÑ¿;£Ÿ-Ö=m :Èl׺í([m|tè´œD1åZÇÿù/¯Í}ú÷ýë?wËÅðU·ÖéÖ['¯jõ“W3JßfÅÛ•ôQ¢¯ƒ½=|?<8À÷RȾ—Jåré ø Jûôi°_úR°¿ìý)­¤÷„×ÃlÞŸò”]Ìúw“™¯-v»tlÔ‹³í‹j›ò±z«† øC'Ç#0¶.Zõ..zºÊwwI£rV9ú„jŸãÍlûa<œ“ñN4K[¤ÅyïVñR'ý¬?¥ðÏ)¹EÓíšÐfå "¿þ§˜ýv¥YëªerXtP޾³vB²>î`¡m…4 %?NƒNÒ EOG¡Î:y§ôχ:~ ä#*³Z]oŸ•é´ÿSé²qzR§â”Úl§ÖàãÛŽéû}¥Þå ì{ۨ׮é-ÓW%ÇÑ+*™?t+²Y”H_½†Y¯×6¹ÌÁäĵrYFpÙŽ>wä@l<Ö~PST¾_Ï)ߊÇ& J+Ä™+:¹-­ÓOçá‹\i²'GKL .øYçœoø±ÂyMÄh©8@¬çT^ž ¯]¸ DÓ®·:õ£¨a G3b ÇährwGw‚X„rÁÞf×bÑ0…j íFç4„/£ÉõŸêÚ~ŒróÓO‡"5= Ñÿ·>t|Y(`mú<©áY*Oj(ݰcw´%t’]7°§eTøÝsóQa°½ÈÂG!R ”­Ùü3›ŸÒÎæ'aÜÐVµðuz“‡òiéý¤z§¯ ÛG\£]=2NâÒàžŒðÑÁ°ý¶M0B¡ö“`„O†T?&6ln7lRn¸b8lWjǬ,pÙ# Ãw±b¦— Ògé˜ -˜³nƒé¡ m ìi9ˆ ™Až‚p=8¸/B Yî“APZ8˜ Bº!HÃæ2B`GhT!®À€ƒhIjK‚ž%ÏÒ,i,¸Ì’f=-³ 8 /éUB°Ø’Î µ 8 /é•A°ð’Î µ¤9ž%ýXKšCPÆÞÊAùQ ð/éfÌ’n¦]ÒME¶©¤È> Rðãvç ¢åµ¡g6TÇúP@êÍ€Õ:X°–ÔÚ“ÂêXõ6¬®­`sAµöŒM5PNƒ.P½¸kµ½UP-U\ †ëÕ²nrau3–U2¨%Ú͵­`Õ%†¬T‡€``5ôb5ÜPÛ:جÚa;’Ð>¬ÉrÀæàÕ k{cÈU1òÓ3 ãµ§GòÅgi$_,hH¾*s¾¤ð\ÖW07 ¢e$_jÍRä?5¨i *Þ «%ùZ°¢ä†ƒn¨–ˆfº1ÔðéAµ.(,PC/¨ËqçÌ Ú;´kÏ€5| ´ú.:ÐŽÆ¿‘ÔS£Â‚93þ7º2ZDßcþ½vÌ ¥&³ÌY‰ %ð’û ޤ-ö™ç2×6DÞ?ƒ‘¸x”19'ѽ¤=Ï8‚Âú†ââa¾¡X|L™ï~o]#q²8JÃ7”0}­o()–ÊsŠKJZd(Éå5oDf¦éÜ—ðY*Ïr(˜3C¬Hö§Í¥ä ‹mÄ ¦e¶lÃÍ«ŸXÛÿRÖ<åI¡µÝ,І*°¡vo½ÀÚþÒ1À†&f× ¬Ã-šCÛÞDh½ !·!ëV½Üd¿üü8·LìngçÆzs~è¼xsþ¾¯ÿÏÙ|þŸAioÿðÐòÿÜ+¿ø®ãŶáÿÙé¾øúý?;Ý8ÿÏÎç®ð÷ì¶™¾wÎàwæÿyÆñG]æJßÛïÙ{õöŽþ^gâyU6Ñù\ëØÛ?Æìç*ÿ¹ ?³ gìÉrÆ+tÙÏ]þsFOTúùøÅÕ削®…ßúÚþœŒ}º Ê„öÛ¨_’»þOÆdBfwýÑhQVˆ‘Úµ~‰ÁoòÂûÃ}ä×àÂÚRWé¿ÎY£ÞÍäÃêj7P\SCåsYù þ¡tÔB®\È[õ8…¯j-êóܬßNQ_õˆ•N­ä*EÍ?ô7«ÉíLÆÈ¸›*S;Ö˜c´ g;ŽmF²>^/â²ÇG ·í$±é^Ä3ñ½­òR`ÑqÍžý™×“¼¼ nÖ ¼xÙ>žó‹³.q9ÝÒʾÎc\zkâY©¨èN€¥³Ÿ?*?†Ž‘_ Èáçò Ü…¨A¥7?âÝ~;]Û/_œN->K£¢Å‚¦Û/eµ,†ä¬·e”¯Œ‹-U‹ùèpXzUŽpm`XNx*žYIN””ŒH¶gzìtc8ÖÙ Nø¸È‰V¦î„zcÏÊÄgiV&Œ8,Û Ò2ÖË2KQt/ˆì‘û·¸«èŸ›ë?R÷>ÞŠxŸÏR PPðÖgEp•*J)üÎ×”7TžÄHXLÖJ½žAº”¤Â‡PQ¹_QþÙÀ!X\\BM°Ì¸1x`ׇ?‹ÙŠ1ôLJÚØi°Ö³Bý7‚FHaô}c†`Çㇰ‰,)ûÂM‚Ϙ¯sý›K:'/,˜S¶æ’Æ™¢ò’Ùo&*›³ƒ}WÂ’ˆÈ6  5Ãcßâ0xÂ5O˜O ߉R;i…ÔÎ2Bjgi!µ³”š¹׎°¸šºû!µýÞ?ƒí÷)g°ý^å#ÉPÓ†³)ðL¨}®Dø,%ÔÇG^º <#uŠÁ/ç&$ñPàãAâ¢E„ÄM‹a™A¾^=(–ÏŒŠ'¥Gɺ“P$\#$æìh<ÆäØ×ñ³Ã)6…=Áê qOOðæ @qÏX=+Åmöüì±—îz ®„=ö–¼éà€¬€=fƒÄÅ7{´–ŽdÅÅ $R–c+ÄMôˆ‹G‰sJ¤xI6Õú[$¬JYáùªB1¬€¤eKè=²ôú_F>ÏÖ½sÑ/!ž§ë=F<ï]ÅLßUÚé»Ê)>órʳ&ž)ÿˆ‰é„Ia\vö¯rz¾xS þ¤À»ôÆð€7õ.-Y}OÝh6xç¾$¯ÿ†À+ºâ'Þ¥£ÒŸ3ðÌ+úá'ÞŽ# ï ~ã@ýS}Ü¡EÓ%¶ô½ÌØùÒª{í„/ÐH±@ExÐC/Ì·vðw ØOÉHZZ[ÙÚBÇv¸ù#rî‘m•f]{äFɹqÊ!y6ΑsC’#òï¦Êˆ.7kDot¾¿®RmZ6@u3hÅñ¸) R°ô#Œ_gKIŸ´Ý`=ƒrJ 5(ÇvÓé –ŠHоÀ^·Â´úÈÏ‘>R÷b»Ê¨ü¼´Fòs¤gÒ½Ð{÷TAÑýÑÛÂÈ„%ÔA)?(ö~e‚b`%½‚tõ „ÂC„²·~PzP ·YYqèHæ(½¾ö`10³ÿ°xgé0½ö8-4~O™ÏÆ©Ì`Ýê1Ì;b9¹v*ÓÙ¹_FöìqHZ9§Ø9XPù¼ôÑì³q4{–Ãrî0Úù Çm3žqyÕ.<Ѹ~ùæ¸.žã¸ìû ç¸ÂgF†Î½K;Së[F­$ߢ¡y%ŽÜO14GhCâZi“‡†›GªÑÉ=M]¸Ñ£sJ¼©g.=Q–ž`lñ nucÓçÍ}Êö´±òÜ)z=ú˜Ý‡ðG³"à–€#ߥ³ø,í|'óäa,i$ðY øNä+Á)(%ÄW ƒ“!%œÀW ‚“o$œêVBDÓûI{&>§5šølMø¤yó>-VŒŠŽµi®Ô>/m<ñÙ0žp ÂiAñ„ƒp®+͈B_à2±§ß©AƒÆÊ•mžö(užìQ8ΙQzðx£prÍ>ÅÚ­ÅëÇ„Sø× ~ëA˜vO8·âÍ…zRYp¹*Òí×7e2œ’ŒfÊ⛌MbQŽ+Jç0V°¼K«…rFУý`ðao¸¤´÷wgÎû;ǘBD<[ú ïÌy…·hlçÌ}‹·pl¢=sÞ@¨Ðo–4WEYá±·=6vÒ_è­;éo:Ws®Bã=Æ\Ù ™RLVú›½GÇž­½''fºäÒZ!ùÄDÂó«ÎÒªÎ\êŸKá«TÃXRýsæRÿ<&Nî`á ƒ“qÛÄõ x#œÅè^ÎÒê^Îüº—Ç7d>[Zëræ×ºløNBöé[V¾_Ób¡¬ªÅåæÇB£s-ú´›G¶råÌŠümÀ,7”¬à;¥:Ÿ*âÙ‚obßÔ?<ø?š3¿òasˆß)Ôù3ƒTÌ 'Ô¤êKR ›\M6¹…M£Tægt¯­.E™£ ŽëÆÞxU`Äf·.hì5`BS²ó¨<4ö… M hÑ‡Š•C£ Ú=Q¾@±˜8Ì»(Ó*窶rN½B_@ U]ZEWµUtk†É±DŠºx <[ªAu¬_Ô’a’ðd :·­£qBº÷h3m‹0U[Q(†Ø‘&t_j×Ö„?‡VÉD *Ó«I¨ÐTzméê€rrnMiúzíÓšÌm˜M æê€JÄ \ÎXüÆmU¿v³šV»Yµ´›Î9H1˜%uœUKǹ@œj\5$Î=.Õ·jHœ[XšlÕ€8÷­øÕ¹Z@âÄR¯"¸šV\õ(‚åÎ]×èv£Ô3žÉ«K+…«¥ðÆŹþ âGJ,#p+‹7½¶å‹s,kÛÔ±ØJpçXT温Cq2V§Np>êPÜR°ónbãW‹_NKýï6–0æÜ¾Ö±Äïõ4ëå¹%n^ðncÆbߌ¥ác¶…åŽE9Þ‰™©µŽIý½8ϦÃñœôÉìáî®?ýIFÃñ@O-² Ù¬#Ãýú"ÛØžÂÓ}5:µ¤Z¯Y-:ÖàûÓv³ÒÍ‘€"©Bñ²E¦“‡9qFîû³ÙàïgæƒÙ|F&·øE¹ÀÙÒQ¿Er[ ½[¼ÊÍd<ØÞ„! ¢·-’ÏçA„7º¼íGþ.ÍÞØm :m׺íèj¨6¾F:tê:Ýèz©uüŸÿñÔ¯Qÿ¾ýçn¹¾êÖ:ÝzëäU­~òjöu0/…ÅÛ•ôQ¢¯ƒ½=|?<8À÷RȾ—JA) ÿ#(í‡û‡Á^°OöËaé?Hi%½'¼fóþ”ÿ ËbÖ¿›Ì|åh±ÛÕ c£^Œ;Õ6]¯õVtNjÝR˜#Ýv¥Õa™}è¿ö‡2¿Æ1³ÅkÓ?Ux¯ú,ƒËÓö§] ú1®ºvwI£rV9ú„‹K¬:’ûk0 'cR.Û´_9ãá_EX;ÝÁ˜®ÍÙ`Pˆ~;ꆷ“éxØ'ÕÁôÏÁhð“ôéRkUNHc~S,òFZ“¿w_SR:”‹²X$ëþˆN~eúõán0¦Ë˜VáœøC¥]9êÖÚÑ`!‚a¶ºµõ!a˜t0ÜDx“,¡Ò0Ñx‘ÐD`U¦ÓþOTŽ6*9Ösž=Lï'³||Ç^ìwFäzrwÿ@g9ãt0Þ<ôGx•N7™ÉˆN*K:GôÛÏÙ|pŸaÓéO¡‘Á¿úPbFÿAwˆ/„Ъ¤²Å¾½åÀ0ÊyGÆ“é]®Jvié«mòŠäØ/•m 8~º‚Oµ³ –Výþm0à÷!ƒð®ý Èlp?Ž&c>F‰be”bœ8Ý„ÜpLºQD>ˆ”8÷ƒëáí#‚ŽÿNlѸåhߪ5ß´ô–Aؘg]|ÆñQà#ªl‰ͧýñ &:¨u²Õ…ÚM^[ —S¸Úp—V?àB¢õ¦“ïrg¼ëϧäR„vþû•yX£­¬^Sʹ»ÚmiíÒeµh»ty(MÃ@†_¿ÍÉ7`”г¢Ú ö¤ô\1F„+²ëµ@n†”–‡å`I¶¶Mx&´«á˜.“&ùA$GÇš¦uÒ k4èß Ç_•Þ8²úŒkYKæ»þ\Phnóö¯Ò‚~U€Q[Ðó-ï¿×óÉ42 q­tñ’k@Žöj£½¢£­ßòµŠ ª ¶HD´¶ÿI†JÙî°œ-È#¢•“«j{E7ªx¼Um¼Ž e/ÓŸŒæ JóãOm‚¡RßÞ>•?)燵M·¹é÷ép>ŒÉ÷áü6z3¼½¥Ë|= œÊ¨®`ª0ïcf ªb6fªêLqq ¿O¦Ψ :ð¢¿ÉÅ ¶cÐ*êt™c¢Ý ïîa8…­ÜÀ˜ ûU¼T¡å¬?íß æT\Š þ¨µOé9±%NfgtûjÖ4‰&‡…È;Œ×±SÂÒp"Æoš@ únL¨ÄÄÅ&¥{‡8ô‘ ?ô°Û ýVZô FI—½QœQÉ>;ú­ý ãÎùþa|ÍÙyãô¤~¤7ŽözþŽ;•Îí±Ó¨4>à{ëD¯]Qµ´*ØZÁS+ÖÎÃy¦”Ð:Ú§UÓ5è:åCJÞ×®QS”·ë­Ný(j§Y¹r‚3¸~˜÷¿Œ¤3ïSþ"DJARçÃë?‘Àâl9À²lɰÒÏš¶ YlÔŠ%R"zîóÒèŪì`°±z::ÜGSÔI=] e²pïOAñô}Ât ×ôKñUÅ¿ºŽŽü„“Ç•j´Â.-nn€M±õ%+Ê–×)p¯Rqd7»”öæŽ|ùIÆëÖÚTÓ‚\M¹ºòƒ¿qºçíóC{ÆS;ФÿÔ¾Ñ>ÕÉEVE>tž¼Õ£vA?‡/{òNë'ÏNÿ–r„áKÑñÓ8žžM×CX›êmö%?šxÏ<@ìèG ¢¢œ`„ðX8kXž «Iµ@x^¹dD-ÎMJVÅu©¨ h'o]ìaÇn¶X„Dð“nñ’‰<ÆÔNQt¬yõü¤È”ã}·|Â}ºÍSú”Hhæ£NüÝY=ª F͉6õÓFPÅânNžþl:ôŸý”`Ø/g¿'zÅœÿÂõØ„ÁÁžmÿQ.¿œÿÖñbËÏ8ÿ…Âþƒ²@|¯ñ÷K;Öàþ¹ô¦F^]ΧFŸˆ…˜ÄSf öÉ!k9Ö(³õ@ÔæHˆçÉz’ÕGdBç.ëÑ3 ÉÍ„Êaý1 ¿Æì“\\ÿÉ«ÃñáKä,œÛ!>D)Ûwä•ãk”(û'—ôl-¿*¿È¯Ú/ò0º”ò0ƒcœ<‚]öáÆqNú£Ù„Ûç¡Ò—> dð}axR³ú ¡OzV¡=ÝaC¹Zî_۔Ȩ¬À:‹nm”ý‹µÆ Kh=aLñ¯Ýù7$=ÖAd}òƒ}ƒh†e—×i8·?hK3rç *µ nÈítr“û/p<ÿß`:Á›å±Õ |ç æ¥ø2̆d[ä@hHêÄ ¦t^~Ѳ¿CøT ôP$|0–è'~΃ÆúäËhBEÜ›aÿëDuvØ,° ’>E-=‚¼\tú×ߨ@Ü¡¼?z Öú”€iñÐ,ÎBßÇÿzøJålrßNqQFÌÈ¿°íô°IÛôÔ, oý9£ ³ùßw.¿O±D5ýº‹Ÿø£¡‚p,´ÁཞL§ƒÙýdŒçæù A´ÚhD¾ "’Ìè…þN$¹åÈ.|…Ÿ9áw®¿Iß=ŒæÃûÑOhš’̘!ŠísäaJ`~'ãÈÔ –õÌì èéhJm *qÐÊÐ"t_¿ÅRžàý =àüÕŸ'32£+ýnÀ¬à*¨ÿíˆFƒÛ¹JÈ3DLÂùÈäž·(ZfRÙ¬è‘l>è£X»ŠûI í ((¯h¿—î2—±v]ªaW%ƒa]ó0¸ Oæ”gÁÝßhö¦K½úrÙuu=ÑpëHÒj4ÈÜ»¨Î¶2ŽÚâã¨eGA›]\_ñªx«ÅŽÔ]]èͺ™q¹8".W9¡¤î]Æ;TÒ|;Å ÚÈ  Lo˜~4Κn9­(kôû7˜× ×WQ*m…jiGQóbr« ¡(mËjÜ´‰ù(EÔ†`Àx7~㞣É\´8 Òô©fØ>Ñ’j3õ6劑x­­¯µ"kÉÆëe;^N/ë «à@€›îð®6’ÓŸtãœ*¾ÊÛ„¶H©´:ýdm¨Þ ¯û`¶Hw7±£—´êGNÁU$…wBN Ðª­ØÒ•ÐvADû'·‘¦ÐÁ˜PjšÍèu›ámòõ¹FÙ’Nø+FHˆ ø]G-­6½rvå|+ŸkÑfâTôŽZ¡6·Å}«b™ý)UþíK»,Ê~Çaôs•¾‰¾GÐzíè´Q oíS lpD¹Qý¬RoÓ·nO±é?(ä?4~ìÕŽ’¯Ä[uçðêóZ»Ý‚ß»µæ™×ƒ‘¾.gLÙêE ž—ã'㽻œ†3^m,`K˜ÑˆðÑ®<Àö ÛíÔ\WÕY¯>*UpþYúþ£>·p.’¡±O……Ö»’ê0Ç µ×.͆þ´äâ²$"(©lf…ÒÝPªK¼aëí ÎŽjJD\ˆ°±Ÿn)¿Ôø/>“Ɗצ±â5jÕEGšòÝì¡æí¡×CMëA¿–¿Q@åSóÏ&ÿTBÍŒ¢õö Ôè<(*Wö„3(4S%¤JÍ”œø¶)Ä95Ø ²?e: Þi•KÈæ¬k-úBÖe]À ¸ 5V±Ò:.b+p}ÓâßA'‡-o[ÂfÏdƒ¤Àß|à5{ !F‘ÕáÊ:oí¬Aâ½cÖÀ r m„G@¶wüÜ,¾ƒ÷pò&.‚W\ÉÕ%Ià=”Ø?\Û®ÂH&¯Øt<…zCíŒñ*qºîÛˆ“bx}{6Ú‘(ꟊpSÁÆnf ÌH¶T.ip©áuc—/^k—ânÏ¿P™r›ã'Z¯{n Xsž©pŒVØ÷÷OVȈ+˜¢µñÁîÌ•ßbÄ1ñr±€è·äú&#ðB¸Ãö<‹2S/Xâ›?â¸ÿ6!Y%®œƒöƒ&×;XÕê’>ˆ£ãC?Yº—¿6àm«‚Íì ‡:@Ú Äênñk‰ÊÛx qœ‰7ÂÐÛ¬½Uä O›5Ѧ¼²mRÑÏn#=DÊú~xGa®ÑƒgíÒðz@‘›ÊïF£-Ñ;²¿ìú³¥J“ÆäãÉLYäx`Ãï¢Ü×%<¢Y“« FNN Ú‡úÑkˆnbº=ñð7ägPßÇÏ"NækÊ ;;Î~6€ KÖ£T(JíFиcç‰ØR¡,åîÒòyÑoÉCü‡M” ÅÙ1ÃGuÒþ±vD?”Žó Š]:B–»eäpRrˈóyäCfæZ­‚‚×™¢Á;RߨLÃÁ(UŠ|í0ï²fF¹®o‰š’à h€æÙ^ÂL¥¡:nŽrùóòÑܵøþ÷Š1)Ë“)R”åúM†¨«}ß ¦¯À¯év4ùî1?ãp¸íÏÄ:'ÀUÍ”ãÖ‚ögQólSáZ— ZÔ™ÕŸÕœÒXdƒÆ1rÚ91n“·KÔGÜSèЄ‘ÀvuÜw’BôS½Å~ðœÔžãt”|òbÃ=ùlãÂ5ùEÅÙ•×bÿµxì[ö_{Á‹ý×:^ŒÄLû¯rŽ2ÕæYT+”»QQ¶ûù ¶·tm| œ½S«cD²V"“ÅÈÅ‚Ã~@;1fÖ³Þ:ýÓkÀSøÛ‹³!£EhÕF¹4¾µ)Ï?îÁ;} àý¸W+ÔX…«P¸C÷Š „!U‚é…‚½Õù ãöŒÌÚzn˜o±}Ú÷ ŒÄþã¸a (TÂ-Þø|ñ9nK¬ÅM£(É-u;#À,vt.`zsde”ÈûÊÛ©fw÷AýB‡˜#7¹côÆîµÊ/@‘I&{ŒÐe fõK/±¾ØaQÆBrçõé'Õï5r|.±R¯ã“šOirXÀÛÆ‡È²˜!n‰X&ÌìP˜Žg?ïîàú¥Z–ÝO'_Fƒ;r3‚‹8­Yë] Ò©ß"åÓ}¾ø¾BÅ’"»ã¿Néê}-®Ÿo'#*¡UZr«*ÞÆ=ШP1¸ÖWxû-í-˜E ´W$oÀ× ‚ÙÃííðzHIwô“ÐEûu r‡”¦»í‹Z‘¶4‚iÔ ‰`ˆî^@˜„Ü»æéŒÑ³+ý“—w¯c¼}UnOñõl¶h9i((,#ÆÃ9÷¨×Œ$dÍtö€?Lc@Y߸¿?’Íeh¸¨Q l…NÔÂF²‘ü†Œ £—ÃDP}h ²Uk1ø#2´,£YÀ^Öl@ %ùåó€@  @ø!™"t˜b¬´läÚa>ÆL q"™é¡Û§uY@ý‹ò¸áö/ij0BE\tMÆtÅrkVÙ/Ö#7ƒñDøÞÁƒ_FQzm¥¿½¨¿Æ‚ý5’úk(ýí³þJÀX.s·£Òy,I†ýÀ_A×0‘û>î­p^^íK]h2DØwX °;À†Á6(ÙŒ‰m`l9_ùÔH`Ôždþ'cÊ=g“»òÚ}A³×Qú-((:PPD'Sàˆ~Lƒ$YCÅ’Í7Md%"JÇ‘ŒÞÑ`F—©lÖFÔpχCth80`-ZµdB@cQ´S ൂ~D¨7¨„[ÿP‡“?h&V,ÞL_¾*b£Ž•FC9këf0»ž)‹þ6ù®2IÊÕ¾P±|­Z²rX‡3Çʬ™è°WdÔŽD¹h ± µÀ’ÖÈ7 "¹¤*¨‰MCQZM}¶¯‡T¾Ë kØ^Q§ÃÂÛAcgK AuyD JÙSøMè¡’Mè|ËGö©¹ Ä÷ >i»ü@»ô—c¿o[û©Ÿ… ÖØaÃgB4ú&9”ihË¢Ô|úN”MGäNûŸ=Ü߆ô9Ý{QN.j0 M(ÔÐM G'óþŸé¨Å›1{tèD1ä1•·ú×ד‡ñü>d+àÿ¡p ¨òï‡þx>œÓù6yÝ€tš»hœm[0F›=´è<~¥ç ôËà! ^±YT&.P'®Æ&®fN\Íš¸šcâAy«-7c´¾)“mLn¥ú%Å”Õô)S¥òE§¬¦'yÊz)â㡌D¦Î\¥¢CÁ§aÁ©tÎΆÜqm"ÎmoõAžFmÎÕà«6—Ìw>qíDðúÂÙà ~íƒ?X³1Xݳ£&ïþ'v‚ÆÊ"ìÌ O‚z!‡ï…Úà±DÁaw‚¹c.A¼]aÑd«µ…¿1¢êŽÑ ý.Ï—3ºèoV½3V/ªô…¢¶’X±ãèê&V¬š=zíZPe$Þhÿç=n ª.¡H.fÌj|Ôÿ2fŠ “Ä®1&××Sa—©Êt[|µƒ ÓFàI—¬ï°äÿt÷lø…ˆûšÏƒ îvŽ*ÁëÁàfÆ{W“ Æéã ›SþB1#láéâ ¶Ñ=ƒ-ë>œ{f—_F?5“ù;PˆðÃ)¢, `¿ `pF±”J £±üðú¨´µôDÉ{et3¸Œ¥&ç^Ø‚’x¡‚ܬHn&_FMŠ!|ÁÒUó·aÞªwÕ08½öégp à…êH›¶õ{Z—Õ=ëÞLîĶI7‰Á´ûúl0Ð8)ÑýäæáZ‚ëéùWü3s~=Ô"Nî>(V´&2,Óý&z²¼?mÃ].SppÝAŠä"¿ûeõ}zxV›È1ÒBhz¡gñYfL‘DÑ–Gv©˜ÍáJs¯©!Ê·9ón·«äðÒ¦÷•Àì·ÉèF=¨®X‘Œåibˆ•˸gq ]íÐJ4`µ2{À”z-ÞùŠd§•1žè€î JDÎé_ï&7àù§ÈA¦sS oÝÁ)myK99ÉPßæ G~ÈæÕ®§Ç2PÙe;È:Ԍī1üs ïú(03îdÇ­ñ¼Ï}›ÌÁj,öÛ9Ò±~BãB,žšdt»>á‡0µlþeÛÉ &ºæ‹ƒ"•ŒþQÍ6¸Õ~sj»¡P¯‘`éI[G­ ‹v¦Kv–‚D®LÖ[ÌÊl¸Ve¯Q$M“ùÎ}½ôô·=Æ8Ú®qx‘-,4vò@íZúÀuA²´ºw(t#ñÏ ë8ëh­ä1ñlöÈ+º£.Q[À«{¸ìr!ˆ°"ƒèn2]%Hx’Éæqz ¼D“lD;ÎÔƒq£¾ƒšG1FãÈ„w`öD©Ó][tºÝô›·È•Ù®-:ÛµUͶ*.V1ÙµN6ÛDÒ̵СZ—,€Úòp :fÀÆO`xJNÖ·‘8/û[d*ì/­³pXB’y±CE6 ý#.¼gÑS5§Ó)¿QÞ çL\F%s>¡¥v†ã––Ù]¥ñ6ŸŸ"iIÚØµ!ÂRPÁªáùpfÔÊù“¹ò­V>âyñóF{EkcšÔ™UüçÎ0ßâƒÃQ&Ö1:zj,À¤áúšž¿nF(¸šËÿ¢e˜nã^øX“]lþ[ÿc¼6¿ž³)5ëÿw© ÄAv|`-vð»žÜ Øi¸ÿÓiGþbÊS:\17“ ­:u ï|òé^ÆÆ‘U"Çj \JXŒÁáKœuSí¬SoÅuhKûÅ7¥ýÚîë,>ëK³j¥q f`§ô/å°8ëÔZ8—v~±Fÿô/³?c×dÓ„ßšq^íò‘þÿ©)qà2«2»fx xüÜN³Ñ‚ ¶]æØþõôO¬ "ónoœÕ[½uôÁé¡cM¯ ˜W}sfÄà¯^·ãrñv;È{P‹ÖÍþC,Õ€‡–Ë­Û“þìsHß)b…'C*‡z¥V ¬²òPÞRàÆØØÁ8Ú_ÕÚÕFÅÑÃãxØ÷ç}2Ó|ëù Uº¢¿`^É+™´œ¼râ!ÁcŸ9m£pƒ74Ò ×+¸{3ra zAH¸²iVTõ8—¥Ï„/ºAÞf¹Žé³.ŸT£þp»P¼¨ÞçH±uÚ-28L·^zW•ðáºêF×LEÔÛ3ë1…¥;`³¨t`U‚~üåÍòã Ô82Ø·–·þ»~¯¡5À¾ú[,áà®7ÑNhâµÝyÕ6øw#aÉjÅ#Z‰Š?¬f¦ÎÐäc&µ¡ DÛeáhçH9eÀƒÍž#t+bëbI *]j»fï¸Kf@pP^r£À›‰êíG…¸:sõ µifÆ[g^n<âŒ+Ä5£5)!Zk†ÃIgõ»ûÉtÞƒýÆx¢Eƒ•`û dC‹¬A7;-Àƒéžcêát»>¼/e.•åîô08Û'5e¶õÙB‚ÝË)€ò€â#§»"É:5Wƒh¢`›ø€n™Þ«ð]bD¸¦aŠyÉÓz[ü€õ?ïW®H•®.¹­ëÑ;29â¦C\v‰üÐvÂÕˆÓµA£m\þõ¡{q±¹WÐH+ã½'TnˆQêxt+Q“Ço1œAˆv.쵄¿9U¼«ŠÚ·œÎ|½½ñôÆÝ4ÿDˆd0èVÏÂŽ'¤ tž "ï0A+™íêòBaÑäK˜;×ÓR¤>u¶PÌ #\ Pè¨+êI¯ž… *o«|²ì ÝÐe®™Q@.Âèý}É6°E_Þ4^åHtrWg6¹/‰VO<„Ò*J©9ëN$Ù¥¥§l- |–#7Få'ïù½/Å) €ßUü/õnSb€žo\Ñsà¨ãúÇGñH#‚OÀ ã> ßü²c (‚ª°”+èÏY®Új’–˜‚SÀaHqólèœß®UBWZýÀËuw驟;™}êä`rg-Z‹"LkoO[{û¾öºö™Ö^cµ·g¯½½ç°öö2¬½†ºö½öIk¯±ØÚkkoï1ÖÞ^ÂÚÛw¬=\xp3'ESž ³IÇMJ´FÃR‰I°l6™0«†u2/Ó ±¢ªªSR‡xŸtN2 ÅÄ'KqÇ% 'âã ¯‚?Å3µ ª …·¯Pèq§`O#ÂÇ8Y>&‰"2I’’I*A™¤‘•ò2ñŠËÄ$)YhÖºuô磉ÍAI‚0M_'§¤KÊo\‘A$õÊ­kû?Sý¦ÚfL•Îú¦~Ú(ÁmáA?ð.÷}cŠ­ØM6”¯5(¥F‹iÔ”Àƒ>Å"ã¾¾háíë„[ýµúa";¤ :€uæÇˆÙ¬Þ‡:¶@×è‚-à‚†6ØÊÎÚJ õ¼±æ9%‹¨Ã¶Ÿì6ÎFKÂÛ;i–ÞÃxíŸ%{l> ŒmÀ³.NïÓ€¤ãôj|ˆ¿·/? ·/o,·gÎϳvžÿ&™ç˜;Sà‹ÒŠzáÑ\žNáV“AŒ!*ø÷X^r ý°—ÂK‚ Ífc>Õ>ÄD]ÙF$Ÿ©÷Ì==Ù¶³À©v‹Z[Í~”W±Ÿ9Â<úvÖKspʳ ñmìï{xÙ{šílïymgÁÞº÷³ÀŠ£l{híg¾£<ÛOÚÏ‹íg‡à®hºAªÙ¢ûÙ:fÁËÁl%ûÙZÎgAšó¦ •ß@g‘)÷Ï+«c‡•2:øEÆÍ“ñ ÒÂÀÐ~Âiè°ø.æØŸêVöm²¢Km’æ^›¬dëKÞ]öï“IÚ#ÜÝ8:“éÜ„lê ~ ¯'_§ýûoÃkpˆZ˜O$Uaè.´ÕŒ= ¥•J i€~bñÆëÚ=…6§º12´‡$,*³ù :ã§¢:Ùñ®S±ç5ºEÖ“74<‡î£ã‘ ãGgðvRG )„A,w†>1(Ýö£´ðJpaÒŽLX£ÊüYÝ|&†(" ²Ntz×)eM”ßph}õü}õ̾zž¾zf_aèÝÆ¼œÑtÖQH¿ÿ'Ï8<´Ã¡Ì´ðêz ¢DŒ\E­¬ÅE ÚS‹Ðó–¢{B+˜ÌsNÇ­¬ †ÅvUy¡ªñ¿žy +¨-Wk‹îÁþ¨à7¯Î«{u1Z¼o®\8«Ñ#¯¼Ôä¥#èXÜL ¨ §;Y+ |X‡A({H‚ ‹¥jKp>]¯pÚ·Í¢, /ŒAhýÅaì@9u»¬‘mcÆv 7.z,•3ãíYˆàRŽÑEæœ`b ?«™Dv”• Èv +kÔ‘ÝEÂXÍ⯈£åtÁœDj—ÑL à7æO€]†VâLl‡ÕqE+µa‡‡t~K¶ð ¹¹õÁ!èèÏEúáysúUú£&ó`ˆÇ~vÑ%µ«Jó¬Q#”Ú«5H OöXT4>B¿¨¥”Dð|Ös…AG¾w9£z™Îß><߈äðq[Í=“%¢¼l–ˆ¸ü{kÉÿp„ahå_ò?¬ãňÇÌÿ°'ò?$å}*!ê…¾h­]5÷|©ã/]è~†·^'>ÿCŠ(yxÂÒê4Žº¼ù[àyœº êï™Å!e–À¬LÌÍ,àS²ËWÓœ…ìi\~Áf*†¤Ô #O °\‡]å[Ñ­ï·¾NŽ£eDèêw+"WP~ô©yf¥Gˆi"Ê›Ð>ñ&”Y€I9öÒ¤PÈu®¿=`˜µ»m‘O72øq?˜ÎÕä «¢©¡&Îô A9]~5~Aª 3ìá/Á>oBɸ“kÁŽw‡¹•H‰ñ©0Ìq:ŽI„3Ghcu:sã ™M¦sIC9}Ev¸J4}ˆ¢ß¡½ô:[)‚èwì ú 0ûF\\6ˆ…Ñ<¿Î€TADðR¶³'ÐÉçî²½3û÷tžÛ ¶ó—uŒkaÄëê(Gx:Œï@ts¨ïu@f_ Ô ý^X}çFçJ) óçÇèp ' æÄN^?1‘ÇAi5#ó”-ñPÞF蔣É/ ã+DAÞ¡ &œñ-㣠AWic7¥Ÿn{å+,ݨ»rÀbˆF30àPðc®êtH Ô»~,°m‚Ž_@1~Ï é×›b5Û¡ßÙK],xÏw`Z£vÔ˜ô›ØïR+@oO Gf“It(Ÿ¥ "A^ôôj2ñúÄ%½ÒÒ¾ÖR/]K5WK°Ÿd;ï;ß§b^ÿ«Ê–üß­ôìèW~E!èWƒ>[zœ¾ÃíLé’ò= éÌM‡òaöð…- ;Q…X~þIôæ}ˆÚ`³¹Hâ 1‡Y2?D() ²Í¡JÍ:¸és?¼$HJ$°Žˆø/Ö_2<«Ì/ñ"â“—øND,_jí>t—éùó€r‹%zÿ[EäïfjÆ âõÈù;ËGägÚi‰Çу‚Qôd«°bôÀa–Qôp| ;p¤0À†ˆ¸ßɰºà2Á¹ßqÅùÖ°EÛï$p/w´ýŽ72=‰òtRç†pBDw±ŠØa¹B€«M?N´oÜN1œ0?ýRPgƒ…lp£FLPúd —?/”ù{B¼€ ´xq@ª‹£.,è@ºR+cã+ŠORt°”2»Fך†’I‘ßYs h;­‘0’¾´k¦lcQ›Q†EÞÓYª¿£«©X,’¿¿¦Â»Î¬ƒÄÿÑ‘Oš¨j/¦¨‚î?Bª_‘"X2žùÌh{•¹i©ÛÁt Berqy²É¾ý0uøöÿKøvp½?ãÂ(o0¨»ÚŠ%Ë îfH÷`ow78à2«¶ë,ؽ%»WõĽ{ÿÄÞ6.|焃ÇîÏ‹d‹ÿt¡ß]‘ÇéI•?õÄtçÜ¡ }CÓ žþ¥Uê'Ò¨{ãIò¡v.ªÔ賿•Ö)øW`HwîI-}¦Ó¹—Å‚p•Pðžˆïþ†xü÷KÊ‹h3» “g-¤YrN¯OùÕÑäîŽ.ç8£œN­Ñ”0–h)0k Ñþ¾´½½ 2qtïm‹Íb­qzæ zÏÛø2š€ KD{§ÍæiKm‰¼"Üü_ñÆ jãtŒpöVwt•1Ü=í­gC¥D®oˆµí DíÌò1ð¥qt íÛÄ÷f3 tK°¶zLøô3&÷q 1lïµz²8e°=“þ@E>Wà¿ JTÿ]æBOŸpLØÎ ¼ÚVkKûö^¥_âðA5;ΚJMoŒ—Èòˆ ¨š‚Ç ïÒÇv P†¢‰àÊ"·pngBW&y6z4¹Eµˆ!a¸Ì“=m4 ãåvAþÐÚqFf‘®;8⥓*–;!+ íbtçëg%¡]46æh"ym1ªƒíC9ÒbÞ„Ð,\g…ëvá˜0Á6\T¹â·8ˆÂrâS¢A‘]™[A>æQ>’z÷)¬Dx ‡;³–ˆ@‘½Ê¦[RÕž» ´h@Ú°K Plá:’:!ö ­å/¶TÁ˜{F˜åeeUŒÏŒ².â)»ø :q-Ç“)PøkåEÇô¿t¼F Lܾ¬"Mpîõö[¹I0S ŠÂóü‡üùzÌqó ’§¸ÍCF¨ãûŸpý=aÎ&xsߟEæcþ½„X{ ¶€Zxg4e îS³9ä`¡§¡Ý¢Ý<ˆäPeBæÓþx–üYLÿÞÿÑ^W¶çˆŠ©À7‡my#Ü¥†¬ëk—€ÏA‡£KlŠ|*ödQ<® WDv¢@òQØÙvÅM¸ä-8*Ë>E}3¦ö~ª¬‘˜4Œ¨:Ç»|ÅgŽ›­¼ÿÁÚÔ¢YtqÏwöˆqä/™j£•ú•Ÿü*ùrÀèÓ B€èµ¶Xc3µ÷4‘%ùÁÊt†€FÛç[ùs1Œè³ÍhOÀ”DŽ&£‡»ñL!•N„Àæ’Ì» °³íÜ€÷” 8(9wམø Æ‹^ÛDÄŒzC>ðìVì°ä ¬Å;Q 1‚õƒ¾(Õîé„Çìæe×ÝIkÉNL‚c·W´AwñòÔ9&Oj»*Ùλ‰Ê¨ l«¾µ© PÏFÁQJÊöÇ£ ív1nXšuŒýQ¬æQ y] bvV ¬Ô™Ô½¤OlJÐI“Ï›M´. 9Ò#bJ·8"Ò=LŽs¸¯2 ÀÁ cŽÍÝ„ssËnîg¯/: oüÑy-G甩Vut^wJwp»8\[û¡/Ð7 ÅïÜ*‰ã$ žÁõBbœGç¬;ƒ=¦ ®,ÄÐ) ÄŒw{E¾û3A€«CeLXñ ÞMÃåñÂcG¦j(‰¡qrQyH,;ÆJ_ìFPW7B=n–’)ÈhyÎì´ø²ªìFu¶%$üÃŽ!ˆáºµòZ8–oJîe1š0²š»jÕmÿC@âÆ ¶6v¼,YÅYÚZ*Ú@UçÝÓŠ“¿…éñ±‘èž}ò9ó+pbs¦aÈÖОŒÛè+2ž<|ýi ÂrCjðéôàôÅëƒæa0Á;:ŠÎ¿M±mi¹P[;phbaäîâ8ؙ̿ W'f›„3ÜQ]£.]½DËžcUʇûއK |Õ!Hi$‰ (ái‚‹«…wg ³qüˆ‚Fʬ"«4ÖM$!Š®yÉV¢ìdãn̾^õMGeä˜GÿsÌ|Šä ‹H87ì1o¡D­b4”4͆†áÊø`Æœ×ú<—½Ñ—›gã‡Ì÷ºÀ(£ËÚcVÁÑtK¦Ž&YLÊÄ«âhëN(‘‘£iB‡>ËŒ†X´{\žµåžSÑB/j¡çkaß³:e¿qºÐu°_gZÜ„Mf¿i’dhý®„ýrãâçãñZ‡ôXûûñÚUqÒýõrÒýÍå¤ÈHWÂ?WÀý|ê­uq¿„¬7›Ìý\¹txΖõp¿'6_à ð`½ ðà…¦a€áãë¿ã ïêl>|ã`€ai- °÷$â_ï·å~~>\/÷;Ühîç>>?ÁáWÍÈõÜ/ô¥.&ÏýœÉºÌÔRZ¿«æ~O þ½0À…àëõ2À×/ 0|âË—ðù^¾„®Ë;±‹Òï" =UîÎ!QŒÿc¡Ø! ×ÄFÌÀ"jÆ]dioæ@Uð=©Ÿ æäá>ÉgÐÀoX„—Œš°£ÉWȯIn¹£,ç¿Þ@$³{:Jˆ5óå'×]a¬Í]€Áþ}ÚoÌ P1EQò¢s:óðßÖ—WŽnåÌ…ROë)ÜÄÙ3LÄ(%«äÙ ÌlWÜœ—©+eBŸÀ}½xR'QvOçcèò0M*R¬½Âl¤¢=W!äØœ¤ñ£y7JZR'xGJrRw1Y›¸S”ª­,¥uf-ÉÎOŒøÙ‘XT}庘%ôéô`jßDÔ¤$Aa/Iæ¬o–€D˜2‰ CÐßÌOˆ}®Ò²Ÿ•Hz[­¿…™ÌAâ¥ò¡¯D²Ôõfu)›Ë¥XÊ—’Ã$ÄSv–¥q8ŸÙ ùR4Vü.Qº?UTÅ—­–yúx²Õ¢3SÊlµFöG8²>Z’µ™ïÑšW‡‰ÍÝ¡ÜÑÕ¥‘ÖÑßiÚ\ŽY9šY펾Ԋ +ÊHghfmLÙª –’°ÑÌÕhtèÎÑèOϘm8fbF_NFÇp”âQNF;£E)FS:Y¥æ,e«/ÔßrœÁX…y¡È÷-Fk‘%¬G{À®®a ñ|ÏqËÒZl +³ö¤+³çX™½Ä5äÞÉŒ¤Æfîæ”­š`)i›ãVfϳ2{)Vfªá˜é™W桺2{Vfæ,+ó0feBpERœî=QŠÓUôk¦8• M—Ibº§"n‘$¦/¯…_1ù_ËÁZò¿îû¥²ÿuÿ%ÿë:^lÝù_Ëå•©­[ìô©ÕÎëÏ#Aª#  •dKvrSx*Z7Â&¦ì–¥!øèËÆÉ°ÎuÝôÖh…%Hx³Éè/*ÀEI®û ã;9Þ†|Þ³*{ôÕ¦p:ê)QsX1Œs­Ê»ü CŒÙNYõw,ÉbçZ—ï04ÚÓÑàþnË@gB;ŽªD?›]ÂshèfØÿ:À„ ¦-­ê¥/%€Vºä±¬AXeà@ ˜ªˆËΧzì~Eã¼RRÜ.²€½š™-X£YãkƆ„GÈm‰ȈÒ*hsÇ€0™#(04ó(±×,#Ë0ÄÓEd5¨ßÒÞ~ˆIFHo&q—N!ê¹£þD\t ‰ -DQq;=Q&Óì«S¨üpᆛ2vvWä]ˆä}L²Ä3®ðì*ÓÁlxó3%Î ,LFN€¶¿¢d6˃Ãç+=pn#ÃCÎÃݸpë ¨­‚½o5©UúªZ Wc&2”úe;yòúúã®wi±+üãPÿ~Tñʼn5^þp—ö D°nç%ªº¬0[OjÓ6¶t4Y'ŽPFöKìTTJÈIÁŒSý¶7ÓÓ/&Ó‚Jÿ…‘Z…oYÉò®°.¶¢ð™©‡©„£H-À2*$·¯±Lå‹#$“¯«“l]…jWaª®¨¼/,FrtF"ªÝ½lçÓz"?¯+Y '!­òÔhõÅ w¾Žkò²“]õ#H;ûê@¯"˜ÓwÄ—mcâ|¥[åʰ`äqT \+‡* Ÿ`$_€)æÓ– JÒqA¿Ô6PU¨ÙÒ#ÖvÑ2ôJÇôЪHÖ nÉGˆÚ±$æ4uÚ€{íšLÓ=¼^ âaç‰+q9=u ·}ãßM›ê• Ÿ ™ð7W¤­£=•iyHi'Ée¹´J»I½r¤·ŽñR­:CW;=€óé¢`è~ÆÃ¯^U¥Pt±‹†!©+…üÂl>RTbIí(¢{yšú$üúå$ürƒâÂË ŠÚÕç5ì çÒ›>Äùb>å’™%WPùždg©ªIžÁÜÎã^nVwi´£´¦?Ñ\‰‘e¾trœNS €mˆ†p‰a„醱¢»³Åϥʔïè‚}˜éœ¥Ô µc©ø-mC ò)ú£e:9²«6Y1”w0p-¨Ìˆ ¼œªßu¦ŸÇ\oòe«2ö¥okwÄ¡¢$HÑ×#d§P/q¦¨.D‚Â5)2E+Ïå6:ÕB0 ½²Rµ"WŸ÷*;U3/×ÝuÝý:…âM‚‚çès>]Tá¿îÆ4H‹é ò‘™®¯Æ&ë! ‹Ñ&)"Ô›|põI]KŽ^CY ÃÑðEïñ8˜×òÅÀßÇêî‹^L¬×ïo°¨V‰, X" ë–HVõÉzMºj#ˆEôLDÑÑl€Åò6Îáb¦ eÒÙ1õ°M”Eª®´-d2ØX‘r¬J¿Glò ÂcVõ Y=.ÂUájš¸Äų5äɬ¬/EiÁ—V–Ú éÛˆSé‘ fA+äÙ¸0±´ ‹A¯(»2ãM±³ØÉ¨Û`¯µYN-§*&Ëh‹É ™ÛdþBè¿“ÝÂÚr²BC¼«hÿ[…1_J¡Ð¥ÞÏdhpWdALY± /uß*—_Ò5sÌÕÝ¿­M£óR`‹ãp¡Ëâ`†’+½ØHÚn°dàó³#úÕ‚ÓÕÎ(c{Ûl{Lõ©a†i§¨¶O—Ñ‚_X!þ€µåà÷ Xÿ5\Kü×½`ÿÀŠÿZ~‰ÿº–#c3þkøûÇ壒‹=) lbôÖ0ŠÞÚùœ½_“û\·á5wH½sÒÊ_åá—6bz5¤k·‘-[ÆK¥{z·ßCü²Ð–ôwúƒáÑwÅC®BÀPÞ­@;ÛæQX'÷g ¢dNûã ÚÃÐ¥0¸m‚wƒbb“Ç=õDÚ¤ ¶?$ê"ÁIY`Òd¬‘(žå++F)­[P¾µ··Ižðȟʉ)9\éz¢•BXúï­T‹,jÇü”ìe\QøŠ¿W8ÑLD³„c€¡þ‡n\ZèP5V(¯K¿¾ÎÓ|²Q`ï"–©+p'í¬B¼Î*Ä묖£ '³³:G¸ÀÝ6ïÙàïì;ÔBöÚ ýȱ<=ñ;Od¥ÓE·Õgx˼Ӆ—.&' ñ:øuÜä+1;» ås[åÙ`±<ýÀ?÷ð›t›^iøM¼Ú_A NœGºs½.=œË?¼Æ¡ø…=;ʇ¢Ú½¡7zCoR6ôfÍ1@7'Ð',vÓÙpEÝlx¢nÆz$« ç©\s#f€D‘$Yžõ”È,Þ\ðÛ µ˜*ö ™O¢_ÚQ8Ë´E™6+c™ ¶—“c+týÊ,v~³;-±Û޵ÌãqÍ÷€q*Æ{²ÛˆQµs5ËÇÙ…U­âqvwé”NbMPΗ3¶[±{²­ö…´*YØ7—T5_6ü’Å£-ÁI×èÅjðÄZbïqÑŒ]¢Ýs…2a‰7H‹ÄáËz/n]1r /ƒ3ÇŠJV¡]\½pún)é_`x¬Ø=»«‡øK«´wUÙ4ûٴ©ãÌ%ªÅІ/¡Ï6Êì:ìtªë븀p1¡à|Aàüöð¸YÛ w3z­lF¯Ý›Ña‰S’ö£ƒä]‹ÈÀkÕ …á9%V S”%ν(ÙNQ³UçfçX5Ù8RÛ[ù±†É!¸Çf¹Ï—[3à9M¿¡Ño¸¦~¥h4ÞpMã ñ>~¿e!öÊr±–^ÒÉ2FÐ,xå, IÑ(£²ìÃ^é% ¨.·gó£(7E •Ê£¥–®â£úÒ/!ù±Wd± 2«uå œé£õ¬Œ#Uçbc,†Á>.ˆ:¥µ,¨ÀÄL¨ˆ'YLR4vŠáBÃE{Li<{ÅPã–3t©9X'ô©…€cÂ&Ñšt½æpRó˜þ«e å´î×Oè–ËF”ÒŽe©¸Ðè‡ê ™•/+>XVL¤,õÑëô¢º[od ðÂ]SÈ×Y=`š£Â:zèÅ©¡¢’¥ âú›5ˆëŠ[-º–¦•ÖÛ~i½½˜ÙN+Eú¤õÇî×'­¯a¼NiýQûͨéd¯iýñ¥õvVi½AZW©›>LBojÅèv¹9_¸ÛUÍy¨?³½üÖ% ÏùÈ_˜ÔáW+Xç¡>ç ÓÎ’ë<µÕ{yuàYã혋f®—IH‚YžÞ—Y­·ÊUhî Yõ÷ì•90Y8¤YL£o×\T¯Ï^Ë„§!KÅ}!™C¿lÑ_ˆ&&I‰ Ðâ+æL•G<[|ìxøF@Ï£°äŽP1ah†ŠǺ,¡b ÿ¥¼–ø/ÁÞ^iÏŠÿ¼ÄYNjѦÿ¥üÿ%sü—rÿ¥Õ³â¿Ü?Ìé篣µÐ?£ÉõŸ32³0)”¸Æ7ýé ½+RÀÇd2ÿá3&Ó›F¹žÜÑ63ÚîüûZ·édÑ40RËÿüÏQ¡ó¿ÿüŸÝNáèÿ—GÞŽ%ªþ‡‘ùßÿéæ‚x ·ÿ~Ý¥?Ó­áH7èÿ!ù_Q…>9Â*!«²*?c›ÝV ± T n^ª„Á»ÉMý}öu0þ "̶ d"J…ÛÐï;hæÖÈSþ‹Ö‚1? DÌ¿¾öç­ $ŒËéfÂB«üŒȈÈ1_ev×^â¤hqR¨´ÉK¤” ‘RâZö†HÉÅÓnÎàÖ‚œìÑÿ›ðC~iÂOMúÛGúÓGúËDz"bÉQG X"Î ¸£•ÄŸ.œK€ç² ŸÚ®îx%˜Î•È#ÊÇ@ùÊÏ~ ðbloЛrᙆ#¡»ÆJÑtè”ÿív9d”zú›‘2%^G”|Jû‘ì²ìIJ¥¦ ¢Ž~¶â4EólHk ‚V@ÜhHI$Œ}Bë ‰"Ê®‡$r†Øó<'‘D3Þ^I¸@4Í”¸ÿC3q÷½nî¥3dêZ&Làó³à'šÆ+†¬v(k§pœPm Xõ²¬žlÇ$™¦ì|OÖÞKëwÝ+E˜Èä\ÖUn”ä/áb ¥ÖzÁ&!§Mž®R¨TJ1Gz©›òJ8ÚÃd¥äžÎ•!E|#¾4ë!Eëse©‹G<Ì“P¾ï¦{˜BH…ËÙ7°š`"G–V˜°Ò¹Ä’O§•lá>rÎåÉn¨¾˜B‘"ì#tþT‹ü;pƒN ¥^TXÒ…8ÓU«Ö%u׌4¸v0MÌç$’H[ÝÒÈʅχé/­±ËrÔ-dã-É>KÏ¡€uÉžù˜e‹Y‡~®ðÏ40° (…Øú¦®@_ Á³óIZÖ#û¢BÆÇr–¾ìî´¯Yבl3à”²ÛÃ,²2ƒZðK—/_xšø’1šzµXÌ‹E¥ÉFYi¢ƒ'€n45i)bŠ`Áß]9 ©£È’217ì•ßìeq—/bú$5hÇwob÷è¼=ÉÜNÉmTE¨:I›ãD‘ n7å 2¬Òâi»ˆG×\‚HY—n—ZÅô)ÅáG(“‚¼$˜æ¯U%˜¶]|~?N§;M„qó˜åV®¼á·rë{ÅÝÿí­åþ¯¼w¸Øù^îÿÖòb«À¼ÿÛûýïÿüÊ_ãâOtƒ 픽DY‡³Ü îE7ˆµ«#+ƒÄ÷þý=\!öoþÕ¿¦ ˆKÄ\t熩xò¸gÜy n†ý¯˜ß"¼OîúóéðdcÀ{¹Îõ·‡)»zd™f„ríÉ æß&¬ÞÂ9™=\ÃK·(³ÅùÉ“ÿ!R%ÿK?¼Z< H5‹ìõ?¤ÄïåWR ÄU"»£õàox7„IžOh ŽŠùs¥HHu2ÿFû…çGë3PÌftÂn È¸ÕïZ)ò0Ý‚ÄÏÔí8\̼0¹½•ðêìfx{;˜Â4̆_dzm ö`‚ ý®boxûwbr?˜ÎiûvŒ›ÈÉ$fp]øCÇÕ&c:/ýù>à¡×lÂû_èrÁ\"µÆßà”¢Ÿ®Ñ$:8äC¹p[í­ËÛ"c‡ã2“ÁåÞ}$“ëë‡éTöû»Ü’~¨4Þg¼+…*øm?ëÍi÷C»Û‘vuŠ¥éײֶƒÅ6.OÛŸâšÅÐ’;AA†+Ø©Wàÿ À¿p÷Z ñsˆŸÁ¥ RRÅ¥›8ÂÚGXûkaí£¦È^ñÑHq{kßÜv³äŒpßÁîØí)m÷¢ÑÍÉ Yñ;è?øgÿøðþḄeúZŠ1 ÏëNöèôì³ØWz% Ãb³ÞD¯ëYE¨ÜÏú³,”]—ºò‚Výq_iIB©ò<&® ÛŠ¸õ¬¸Õí{Ò#_9ã2×q¡›|—{¹j]wÆðUóŠÕ I0]t¸ïz/Ep;OSkOIÄ+íÇTBNš#Ånû¢Vdnà˜R朧žáÿ`«HTÙy½·Sùjó%ÁÚò»[yÇÆð¡Ó-"˜AÈл§ág;^â0ØnëˆT@âv \Êæ¼èÐÓê5¹êWQßF·Ù«iš5&šëbUM« ë%MRëfQå&©ocU¶î,ÎüöÕ‘qEd)J…¹çäû'G /+±ò}lnˆC_O"³ P±Žî2Dæ@ r3+æ2:’%÷±$4èË]¤¾²o'FÕäý¨P–"D>m­Ô¦Ž­.H0WaUÊZ•„;9Z¥œ¢²4làí‡É •MàÎÄç›ÜøúKš6ùíšøôej%´Z h¥lµÂQ”`,•U6ðVL'$8«§–ŒÚ†ØPv‰ \SÙöœý%[ЗE$ cœ\´(ã€Ê.Ñ"ã™'cÈWvaC¾²&°âU¢=Ÿß BNä"W³\0(§ V×Y¸¶Î"‘§´ñô@*æ½Ì€•Æû73ž’ã뤾»_èâ>õ­}º+ûh8k²O”ÛûÆß¸åwŠ˜ V ˆ†Yq "øeÅ+ü C÷J’Ð'ìÞœâ¬V¬#ØjÃH[á/Hœrf ÉÌ/+)$³%%L.£URÈh¡ œ"£Ue4KìLr!¡3]YMØ€£¤À‹œ)_¿µœ‰JŸ9ÓãÆË™Œv¹ˆ¯hr»Œ4¶9ó)„ÚŒr¦¢îƒVRT+»åÌT2jÙ-g–¥ýEÎÌ"gšÙÙË—Ý~ºç·ùÜ÷Ø|¸äÌCKÎ|í–3Ë%¿œ¾‰•3Ã×Irfx˜RÎ H(µ/¤å­f¸'õ¤±EI”ÿ©K“J“(%|z­iT/òô~&W¡/®MNUÖ#5§ÓÏ­X‚ôB­d•­ê쮬i²Wdt9 |JiÝhÆÛSoüâ¥ÊùÙ™Mô7jòû~°ÊŽÄÔg£RFÿ%Ÿ ;3žQ ç-4SxƪÝï™Jý5v¿·ž÷Áó^´(ŨóÊEÃzǼ·üŒ«·kžd³¹çQÎO¼1|Õ 4ÛnjՈ~ÔNRâ{‰ól½@r )Îùò…K*œ¢åEOÍÞ2Ÿíd?GÍêϘòÅNàa!õÉZ¾–‰ß¿èY[¾´C7S$ìé‡îì¨Ènhb¿Ò×Õ‹žÛåk¼Vw¡“®=‚̱B£î÷ž¶ûì÷I+í~ïi»_ä‚K¾¼é’¯e®¼´Fœw_Y‘×d N³Ô_böËË¡_ÓÂeãz{nô§Ò"i8П ’òZÑŸ!-Hö4?Ï%ôp‡„¸õ&óÅRPË8£(¨ì›WõéWáº^ák‡Â+|c*¼@±•ÅÉy/“sœÿïþZüCúŸ#þoùÅÿw/F ¦ÿïþïïÿ»òø¿ûÂ{·Ûî|nXÞ»“Ñ_à5 ^‡Ÿ£¿ÀpÊÝh1n.÷Ô”›Üç*Ûù+ÊÓ!ïZþ*O¨ÂYdF‡;ȸ''âªŠŽ§–«+sì½î'ã!øƒÇkZÞ&ÓÁýt0Ctõ1zð产…æÓþxÃ,`ÓÐ;4Mî¢kñNP$ˆô¸Q‚_0zCB##:¹à– ¾Â„yÖR`¨ôuý68†/ý¿&CÊ£(¡ÜŽ&ßÊ«$gXÑ÷v2¢5‰jlßÉô†"2x+7¦ƒÌy°·+°‘þórªstWÎßõä°ne»€ïÕíí<~¸ÚÞþ­ÝfbG±€oJKÿ7˜N~3Øç7øèmúHkÒæU øVõsCpmm‚oküW›ãJÀßCö^eßOß¿ómÅÝÓCBÂRìßi£ ¤IY­K201(õWú‡öÝn^4DÖG?ª3l¦¥v‰u!å¸ÞDG?: æ*X€¯ãæºÂJAjôñHù}öãø¢Éuw½fÀÕo½f¸Ò Æ,Ôð‰ w¯#­,Óoj‡Ú“Z¢LãÎø(µ~Úãþ¼1OZŽìJ·b`fžžÑ˜º±Œš¶2þ;Åþ«˜Š”NXÅò~¾$L†öàãnˆ*Ôð5ÿžû)`_Ô-cÝ׬>üÀ &Öî~L3e^H˜.¡kÑ'»o âŽ7Ø‹…†ƒ+°÷‡ Qí‰ü íîñ…ØB¨T7ð뽬Œ'àãá­æ±‰×NC{y¨tXàcØpHøS š£10˜ŸR²xJ¯î2èVä%F³ä(Y3§Þ!Ô.ùù—E~ϸÍDäõq…ahÞTªVÒòÜ´å­ƒP’:=·ˆIlr-o6"­(D¾Ë²f/ÐÊѪd³ açk• !ëBåLûÛ l>’jƆ ̘%õ8@«îYKÙ“° •-“vÒÌòŒH3&_š%£)K;–hq¤LÆðwŠ¿¿ÿC^qö?ëÉÿ–÷J/ù¿ŸèÅV¡iÿsà³ÿÁÏ¿™dW˜ @¿ÀM´%:ˆl‰™î&hJ¤‡ÿbÿC+ †ÿ׃ÿCCÙãÿcøÿn "ÿwCöf“Y’LÆÒ FÂÅÇÔ<‚R} ªïtít·É·>šÝ| Æ€fçDQ8Ä÷õF§›ÒŽHZoå»Aþ|·ÊøøV¬‹™x‡³ÈˆŠ™NÁ "{¤!@.!àC`Ùph}h #9È@ÛÙ ¶M0—×€bLп!·ÓɧÛáhÀ’Œ&_Ñ€ëa<œ KJY»hþåe¢ù¯Üd X!¶4ûªÃ×ôýVO®¸üÇÝBŠàüÇ - J¦?ÌÓßàÿDë§Ký Ø[ÈÞ:½®Fö7΃ž‡¬V¢ô°·UÇÓ£X£&aÆ´dd~†K@‰?ÐúyëÔVºÍ3ý‡ç¤ýêp«:âÑú;µno™«22ÊžC]€Ç^C5*`¿V…TqÝ#I<¡  2(r¦PãùpDZïJ V5X›œÕã´V ï›Jžl·ä¢¢+B Œ»[Ü£/"@~èS‡¢ëDµ«Yå”îê6Çè•iv RYMDMraÆr>¬[ï·¸n)0¢†ÀXLê¡^ƒñ¸Iza¢!~S±C9Œ],°K…v©P/¥dÒ³Ú…ÝDºTè~zýp÷0¢{+• Ï% ŠÁÑeƒ{äø$ûG—\#¸†¸¦«%Ñ& G¼Ù¨â•ÝDùn÷b®ðP õ‘ë[ÏÅÔƒ‚Ù©tMö.dÒúÎFÝîŒÞV“ÂisóˆÓã:&†o\š»t¨ØqQ‘DMJŒ%Jèrv<³æ»,‘¶"¤Âž£_æ¤@í¾…Úk}ã\åA/léhœÇO X³!j6²ÖÊÆš“ 55B@ç‡k*ßÏnFT¾G‡ 8ìD¨…ü6ÅPb*è¡é’j>éúoto øÚåì óš¶F ‹)j©-5k‰ëEmÁñKžÍØQ+:pç?_æâ¾õ-4—sñíhe$¹ÌNñêüÎïÖ((a}ÀäjG 5• }tè$o”×Nv”1U&Åè!.ØŸ5ÕdìJ3Öó}e |Á•V}ʺТõm\£Ö…ÞŒ]\Ëp£u‘· ¤E ÆØØ:c5ª’™Ž©Á×ÛÚ‰uõ÷¶öÚbaê¤óQ¨‹T™L®¼±&“›]Êúnö»,GSܾz£¾éãb£[l©ýœ’.t*Åâîg\·*ÖÅŒÖ1ë ˆ„\õnáàån!Ã+Nÿ¸ýÿ^9¤¿™úÿ½ðEÿ¿Ž[)¦þÿðo ÿÍ¿}²Ï¢ÛoàÅ7zi)j~Ám· ™o¯b0œÐoè£á;^\OÆ7LÍŒ LGÇâá×Áø/ÐñbRÛW´ÖtøõÛœ?\Ï'XVÞ l€z:Q󛬳6ЀÈ, 2-ô5ƒu,§/dT¦ƒÍà^¡Ûj&T›L§™x‹r=¼Ÿ¢^O΂Z5z‰©™÷ÿäÎàÃiT‡Éà#}}=yÏ­îË+ê~<™'€à®Ïá"¹;ºF¾pÌO™Ã7ÇÏvüuAâÌ⚢Jî:Á«-/He4›¼Õ”ò()|hóTÍ3fñÆ=›áÎLt=d’Ï»¡Ù‡Ní¼º…ÐÑÒXêÊØÂ .Lp-´&Èw)û +[ÃÆàFÅ®ÚõU\$Ö/ÛõULXõ7çÒfCîl J®Ól7Õß5ë­´Îêx¿£{wOøéÅ%J®c?=¬zhû×k7²ˆûª¨qzR?Ò!ëÔµ£nNWT;ÆÏ.{Â<¿ûiv=Vf‰<Ò5ó>*åT''ªtjgêg0O¬\;WVX+ªC™FôÀß@7áþKƹô7qY—}^Ö.ë© ÐnØh­vÔ@; .ÛQ7Ï:Ϫ{Mïîv¬Üã1oEtÛµÞQA—Ж¹çSãdNÉÍGû´9·/óùÜn¸Ûë=…(Pqòû·áõ7õõÜÀó ²6Ö¢zeéHØÍ~¶â5ËcŽ}ËiÞc6”ôßÊÚo+»e?+ùÇýé¿-'õ(ý¸á¤žxÓZ¤g ÍÄŸjG2*ÓÎ&Sœ le4ø1¼ž|öï¿ø1ú ’Ê5=wÍÐæë'³Ù¢'—9Ø* Æäf <åÐCá×á¸?ý‰·3]õ*Z»„ëÝG¼Êå)ÄS5ÍØh=âÏu¹UÔ•­¦.¹Œ¾ºÿóXØGXQÔ«3LÑ@Å áÁ®èwy¸,œ~ô+•Çw(Åí´~GdÊÜ?˜›#À¢<‹ñ¸d]ëÅÛ&—°À©u‘jžç6[UŒZhp^÷ ºö¹¹Þ(89b\ÈÔPhŠ Kƒnê•2C\Ta[;Lno»^ Ó×Éði²] T>fú hœIùbº91ý5%—èWÓ—†ÝÄÊe²kÇ‹ØgSùÑu7BˆèE…"¥:™¼Tð†ŸIén5þ¡íuÒÃÇì`¢!Ç”¥tAF…¦UBÖAþªCÖBKMd9n"ËêD–ÈÝs-ÎcëP­Ý8ja.Tˆ\ ŠÌÝrR¿ÅÐù·æ´m–¬³’õÄ’,ØI.søyÊYV2&‡²-ÀY>ºšå¼IÇ?¤Á€IûϸôW~š©Ž]x*†Çuçc¸aÝu Jeñ¶Ñ?¿[d=zÁ8” X?:Ð ˆ…`NwbÞÍ'®E¼£¨˜UQmP³àh…?®›ÅÐ;J_ZŽDÇ C'Ù?Û»zÑ)e­ž¢ßÕ¾^Çîi°dí¥Ž÷)CPºSS.ëé{E'*LÅ<>[Ì·1Ï4FÆ©ƒ$‹Q¦ûrdà´ èÁ•»Š!÷b螺ü¢]‘"XÉœR=óáp V!ár¸$Œ” `YŒ"àÇÁÂÀfôu| ð8nÔˆÂbÐ_F S›“]ÖHɱ¸Gßc&n3F@ö¡·ž±m8ÚUŽ-Äw¼Ã:¦ –WTÞeݯbpQfëñƒ3 ¿"f“ŽÁù!MEØ´´0lÉñ“.U] Ôqm_‘lj»å+NÐ@|³ûR­¨³ ÿáåÒr§|'Ÿòržx~µ·ÊwÒ±-Jâ^›Ä»ä4î¡|yþeô¹}l¥›­$`q²¨Uð2G?vIuq4£á¿Oã‘ V$Ò Ï‰%X[ÃÚÄ’†0aLò ó\öã^’A 'f$:tS Pµ„DV²GghQòO/¶ç‹rÅ 7Òƒ,‹ùôŠ—Y9a™•Ó,³rò2s«V¢e¬TtXÁ:sÞ0ðaG¬–QO¬­ˆm²Ÿ—X>Q©ŽRY·†L­*秘˜£±˜V~#øê¢J/,ýË*LT²Gû”Ë”s<úÉ5”¸5=ƒåPJ"» ú`WCœ¡D¥|)Q–ôk…r¹6ü CX~;> -s4 <¨·—}I6Eíð%d"#vMò娶#g>MKA9%]"cÏH˜ë µÞàú…ÔH`>©e"£ØÐ¢+-ÙšaÃÄ.€6‘= q›Y±‰øû.ó8¦$fI‰ÿ“-#.ü:.àåv&wƒxÒõm[Pv Òõ4±ÉítE&Ë¢ÑÒ‚\8H¾8ÝÓÓPõšwëdBüÝyèáfoׇKn×›BsʶýBs¯7}ßö96ÛÇ­À}ÜR H­³–rÐ ¼-¯Õ•òc0¢äOn‡SðcI töÈ}4ø¡0fÓsŒ½U‡yi Ù<ƒ%0†B¡‰ÌOÙ ¦˜ßÒºì´XP‹Ö1Ëþ‚~öC=>T]°y_¡§ç¢YÎòŸÃꊿÍȲuïsFþuO oƒ7€·€´%”_CÅ´0]}fÓµPNÝBC‡ ‘‚† A#‚èìÿ&ÖúC''‚2áÖ\¹æ•Ô“'™<Ǫè'h•ÂT¤ò+¿r6R7Â\ëµ ©kôšm)¤"ãe‰0‘„ÂÒªH(\ y #á7CÉÂú)óA,m+aüP¥¤È¸ÙÓçËñ‹¿€ Ã…©pAÚ1ZYâl&«ø *ôÒž† _NdüdX^ ®ø¸–šÚQ £†7ä¸FÐWÊ16ªÓáKT§GyÅÅz½–øOå½Ã lÇ*½ÄZÇ‹­)3þÓë—øOÿéµÿ©ÖÊÿ‰ô¡ë¥qÅ5¤÷g³Éõ°¢ ‹ 5¤…¦ÃþxNf_f”C žKP¨™?*Ô,),=:ccaÁE Šhê%|”ha%á£j­—ðQ3>jSr~üãGùû¨'¶_çÍ®.Q‰Šùújq¨è¿ãzÓd=wòEÃÊèðM±LG$mIJ®@VZ¼*CkduÖêÊ(Ju¬}åñ–êelª8µwºØTɃC£»¯]ÆxI¿Oø*JQѯ¶AÀÉ`< ì5ÔFŠÀtÃÂô¹ED¬n­ ÏW‚Æeb_õâb_iIh<0<}ì«„…I~‰©»ÕjËØë†€B{Ýa…ãµíñ…›{ŒÀJzê«55ÚÆAœÁääk“‚ÁSÀ² @?YâgG<"õ”ë²[á}²pUŠðà&wÖs$oàŠƒ I6÷Na=`oc‚+ÛXb%uï <µð„W‚!:l$+d«•-EKlFj 5}—0!h<½)‹e*}Æ(~àÕ”‡ü‘kVåM„kÏ12ž‰9t`8!ã±’žiP€Ròži*×bTÂW݈!®Æ¬X7p)fÕ}Â@_F¼~Q¼,óN3~—Ÿtõ08žþì`]®õ0]þ.ÓÆ·ÉÜF‹ÊeäòÅšñ[ç¨%ô\ miý˘[f˜µyW˜-Tšt ëaµ|h´pZz$-;àŒ5á.g}'q¥ 2a&Ux¯pœžg°ø®qQs¦a¬hŒtâ_ÖÖrYÙÖu¾¿¶Í»ºŸpm˜vÀªeÖwÔbêö 8”˜TþuÜa¨–[ëz»Z‹±à+>jæo¶æå#°Mæ¥ß™‰ åzK 2à ÄµøÆ‘¢à$óQ›P":-H#xl²£ÕP¬'˜Ll$™Tad¼ç‘UîRK“,p;Î’7ÄR2ibƒ±BmZ^—ª&Ê:d_½)-ZÒR@5ÒÅ 6a¯}Þ$› ÁGFÔ¾¸¿-òù&…<ò*.¤Â‚Ý‘§ÖxœGGësW=y¼×#,u\?êú‘šK?ÝœœG™–ÄszçjLi¿!l>ºO ›®AÁµ„¸ŠôC²wB-@?wÈR5&¢6‹zÿÑõˆ÷ÙU.û ï(‡+pX¬oñÜhñ¸SDŒÉ}®»¿§œdÖ»ùë<šLµtV·ó¹ûá¿·eÑÜõÎðf»ÀCÿO‘7Î¿Ý æÃë"é‚ÿ#ÁÙÁ¹¨ß’áÊp ¹97ŒŒEÙ»ö™½ç—ÑäúOœwrG×ù‚¨ Àœî)Uò­?Ãj ³ùôázþ0¨Â”|Uéþ‡|Ä/àEX¤sÿ%7Þ&ÿëv7¥…Ùë»úcRa­BšÂ@Y ³öÿ— ‘NS¦¦~Æ*%17ÕʹPáoÀðC…Æ=|)p>íg@ƒ«Pž2«ZRáDz:f¶Ür…»&ÿ[Ä_™ï£øùžþlü?ä†ü¯kÿskqðç-’]ÒÌ‹nÍ(ÍŒÀ‰ƒÎðõ7 )ztôÿš ÑQ€.âéíhò(ïªÈ|Êic3é›Msz ‚ñÍ`6ü >°†8*4ùZ^ð9–³ñýtòe4¸“Ëź)žìד›¡@ o‡ˆíþœQòdD¡„+Œ±°Éô†®Šà­BŸ¿~åº;Ã<¬³ýðƒRæ®Xj7ðËM¸ýë/¿›ö¥LÍ]ÿGîatŸÏýúÕýõkçׯê¯_ÛðíG€_„ô{Á˜K½ðìnDÑõжb–cO8WÏV|5)º¦wârˆ]7QBœ )ޱÍÜ×iñDŒ'cþm›<Œo¢)ÿ oÿ·`¹üû=þ‹ñÞäjKµtÞâ‘_x¼/µæ¶l»³æ±îp&\•‹«öU^‹£±×]÷¸+‚ Æxë%V’pgÝ8‡Mé¿×l京8.¯ÌS·× ðoˆËøwÿî3ß]8ÞzΟ@ ©ÜyOÑãöø¢)|{[§`F»U´Ä¬ÇùÒx­ ½ï.)LJª]2]xèT¢ƒËe³ÒAgâãÓn!µÿ&k´[9òìNÍžæÃIeµødVªtšŽNéÕ;Í—Ü.šn—hÒ)ÍäÈz£¡ç¥4úï n¥T¥OîqŽ-¯í‚L “ÞA™R;í=‰›¡üT–Ÿöا¸öy|îNÌ€ºŠ€ú,>:Pt ¾ˆ3Í•5{\éVŒžKä¡kq?¿O^Ť8¤éÒÝ˗ЈšþÛ 0LýGñ'üêÙž(bÑ}Þ¶É~-çYsÐSLC¬Û=Y‹}Í8ÉJ‹´Än˜ØŽèÏÝì~‡3*Þ™†’7ò:B ´ù¿ÆAµ÷ó!ÅF¨T4ñhÞ—°|  že›±Sº¼p8)Á¸XŒ×‰š•9€¿$•¨ly/wÆ…}¬ùÃ彫;Psé¶?s‡K;0=†áÇ0ÆÍž«Ų‚VbO)!Sžï›-ìqodQ&t&€š …&hah¡ ZhƒVvVN­l‚V6A+'€V6A+Û í¹@ÛKmÏmÏm/´=´=´}hû´H,ö ^AÛõñJ¾Ãÿë³(U¼žînß¶¬ƒ˜”•ˆ b[,û¨¾Â1–Ïh2¹—½ˆKJ½¨‰x‰k/:|öl?zF¢D†tâ\It¯M©ÎS‚D)•éªñ"нֱØzwd¼Ð«e ÍËÝÙ¨/£ LïÍñŠ. Þñ¼§LÌ©£@Í`"Ûy?o·^ÈSGþÁ°^ýOjÅÎË…Håç<Ò,Ò6”Ü•Uµ~è*£Ü#ú¸d+(œ )e;¦tŒG½ñª ÿG*ÀæÄ$ Ö‘Ñ Õ*.öÙ×¼‚Ã|<ñ`0íªÌ^Ž­0foA`à,D”è åâ¨ÅN°_ŠZЯê‹ýu×Õ%ö»'…`ü^3ñï—±3iæÙAiè*¾[OØgËxÊ Çëw@ÕP‘¤Ó-AvlågÐ+qAk^º/ã6®'ÁËÙ; Î¥+f¯_¿H7ÿCªãnà‡WÞÒ‘¦ 5`ôï_¿ ‘Œý\ˆ4f¾fœóõ9~¾Dtˆf’dk)z%u²Àm±9 ôמùT$ô%–ÃìC-„V!¡TkîÛ#„לáÞ“GUGâðr¸š˜SDžž ){ʼn%E,)n„]—ÁfLâÀjq嬜iD ¾¤ù´¯Àº˜ç/¼à‰yA7–¸ |Êë…ß™P™jrø 0ƒ*(˜ÓqƒMá©îëbyÃbWrΗr¿–×¯Þ ü;ýf%ƒ„5øYÆ“;>íJ1U³ÁN‹GÕ";É‹“šgÍÅÉÿûþ x\Lú¿ÌSPê OÙ Þ²+úûÚ~< ëqŒûgê3Ç­ë Ý»iúŒ¾cF©Q_Q8£4(ç`1¤$ ÊE7ƒôˆFyíÏ*ÕÆÌ€±UárYÙfÕ­&ƒÏ<¼Yé¼ §€í—ÝëÑÙ—Í‹¿Ö¾yùª/¹uUñC^°•i%lF‡7#¦ ‹zÚQ·§T\ÛÚ—ç¦+;dÞ¾Ìëûsâžô:óž¤à^Á|:á_öNöú±qŸ}Û}ÙÇܯ ÚÇÞXd£:”JÞGê€ú{¯"æÏ`©µy c—SÀ›LN1öÿûÁZìÿƒ°|¸gÙÿ—_ìÿ×òb”bØÿïÃZ÷óY 9[˜Z¥¥Æ1ýsqÜ‹jK”ƒÏÛq€ã1h@ ”€â–Þa]âÍ3æh¤’cÝæag@Û®*ÿr‘c`äãͰr Î|d‰•×,®â|} Qòƒ:ƒaöõ·ÁõŸ3Ò‡(î“;Z“esS\/Ù!+”Û^*ém)™-ì¹Ð-U1p‡©¼À¿= 6Å‘.ª©ø- 8_ Ã[6Oï\B4'Äwäd—B¿@¨«_•_dL@U£@×Es!óqx›Üj5]ƒåT ÖÌ £ÖœÛnš=Ã.HlŽ"Ž6î_0ÿyϬ¨Ñe>ä\÷ƒ)Ì"GõÞoÓãQ©ZÕœˆRj”ߦÄD‹×ˆ-˜µÏ†ÿ'-Å™ÇDQqeûë‚ ó›É“œ}Ž¿j£¯Ï… éƒÛCŸ~V,·+$ž¬u¸–[Û&€“éRŒHîa|Û‡ÜÀƒ›m*7d?®¤*ì<¢>é¸+E7üZV›|"RõUÓ«ê–Š9’êÂ#©.<’‹´#¹pOÈÒ¬¡ãÁàv¾û zœ oÜE­­ñH¢ZÈ;ˆé¯)Ž$ÿ š.FÓE‘Õ·ðÔäh¸’äxê¥ÅSocðÔ[O½"«¿žÐPºý>™þ‰þý^\ÑÓQ>r–ś߯€åyVDêpš› §¥gßø+b¢ˆ•Ô6XhpÓ{˜BvJºi†wCh ¼³ÐHºfI¿, ë5ÈÉR½ÜŽú_¿²þôï‚4±A9íä¡0½cf´«µÐ…§´³EµôŽ" ¸éÇãz儾µO/cd:æÓqÑ8£ZïiµËœ46+oÖI ¯û1ºÄ |*Г]a”å‘)Í• [P–¨a¨eóô…mÞGéŠWƒ9Ò,¶û·TŽއww‘ñ6NµPí~6MÆôy^þVíÏ[ªµöänÀ9B™Zv‰:d\Ûn1 ÅÓv‘?éË–Dú€¢>Sòºy¥›Z1Í*ri¥BT2K.4¦¢a®¢é¨*Üp€i˜lë:qŒä)åFµ"HjçÅÀ !B¼+c¬\¢÷,•«xªPŠÁNˆ™É¨´œcKðOKÓó‰#°8#òÀx&ÊÿY2š–¥Ü³ûTÚ1jg,P§k])l=ÇËGžj@Žÿ¨ÞÀÊ*Õÿ ©9åK;— þ×n `2xíZŽÁ_[Kmõò€aÕþ˜Ç,€FÝ È¸.üfaøt«"›B<Œ‹·åK‘H2P}:üúm®6=#ÙK³®½~‘/¹mSù¶o»„ôá½Ê¾þRër °OÞõÄ(.ÞŽÿ˜òŒpÈ/¯ùÅzÿ%VÆÃL‹ vAì(òa0¥å^aµwä;hw Ì¿vçßT B JxXÐþÒ~‡%<™ DÏ>APÑðªÏZ¼S[„VÜÓ-Þ±£Ÿ–÷0HJÉ YˆôUÓg>íÃDÑûÞŸÞYBJxV`³€:\ü€ x°©éà~:˜QàQ(ƒšµ)Ú!Ã|m(ëÉßúðT›Ý d6‰ b´×ŸG½3ÊüjHÌké˜H6q—S˜´Ëá¯èÖ"uh…Bœ´û…ÀÿÚù… ÿ¢äÞ–E]Né¬ Bž2JfC¯J´`+ðÞ•ªC¥êWªU•¦ôª®W—ýÿÿ je¯¶()»"ô‹Òp§è Á‰}˜É€5œ]ôG0Kì.Šë¤Ï/(;kýëoÚ¤ ñ&löpŒè†_b‰ªôœx܉"ô6äý/³ÉÄv¤»@ “[LA7Æ™)é",j¬A£ÚŸÑ¥è©Ý—ÁÜØZùM_íAîÇö/:¿êwøéŸEs:zw—Ø.4à ‡Âšçþ‹fî¯í"jÃ[\)ï`>ß•”ˆl:ŠÈŒvÉPƒ«œ²ëÉdz3÷çÈlYI¦L6ϲÁX9s {ˆõ!9,…„˜7wNÒxø_’äâî:a'†ªBóÏ7kí*‘™€¾eƒÒ÷‰1*6z¸϶&û˜õüÆ &Ã_<¯5§ß”rƒÓ·«í7;«ÛeîA¯3ÏMhˆû¶Ú€¸}ä«P#¢Ýs¼öäC¨>é}g-íj1C€ðb*µiÀð€·LáÅ7rñR6tO[ýÑwˆ|-¬‡ûþpÊw ØOYÄC!~¦fìr™6Ñ¿ùWÿz0žk .”ÀÎ+òX-‚4ŒÌîaV<¥+ µ¹íøˆ¾±Å*Ù|Œ‚f/·5㺖+Ðý•60ïdz(8è}ªƒ¯W•™TPàÑÞõÁŽ`ú[1oQl¤û-;å@4GU|c=@€?Ún:j+bÜ%X£¸‹íòc kø‹ 8—Ë¡¶ðr¨ù–_j#úr`¸ì• çd&fB5Š›3Sy=~¡8è¡L†×ß4úþhBGI¸Pè¢=ná°ë?üèû _`úªÒ‘› 5,ªæ@#q§\UôyšU¥(ÔE…Ýîδdòh:F© —\„O®ðIm(—íš|ƒ”áGEUQq[%‚úD ¯«´” ¶ÂˆbiJ¨ßFËË!ë‰k ZzÞƒåø}8£?Í ÄÉÅí!œ¢“ètšNC:ÑÔ˜–þT¢S›ÈBÑùv*›þêýéD§¶£ÒÙ•“$)‚K6ðSÐŽcDuU D+ Õ-ˆa!±ÔX¸»Ì¤ÍáøÏÍTÂ…)Õh; g´™Á;VœÍŒËÐÆ7:§!1T&Óó°J›€,XƒY ÿŒ~Âts¾ú„Šèm¸²Ô‚=þ<{sÕX&‹©ŒCƒZo5D,Ñ#º„+Gp±W¡’u·]i‰ð`.‹›ùØ«Å(O«hFR9:­½‡õüž}e÷†UøµÎßãTÙtea½*«WoífòžZ»Íò¼W°u3Pc‚R8êìVï09÷0ìÖšg=w[ Þ l€0®ª ©º¸ ðT Åv& !u*“-‚MDá±–ÉZ(‚ Uæå;®ÚÚVw+ú‘-"øµ.~ÕïÖe­–³Ö©¬¥8´¸.ŠÝ áIä­Ñi$–³Ûˆ#S†ÀLnA55q´PsÚ"ÊËgq‡%m‘”ÛdÆ#л?¼b­ Ó¬jFWp—ä6ŠEÏÚ†–^Òš?E¢ÑÄ—ÜpUë}øP¥]ƒ¯¸–˜ýú ÔÅPî—JÈRi#\óÄæF5”KZ†hpÅj9­B˜Y¹ƒ¿ÚÃ[vÒÝÝ%7¡2l}<ÀXˆK„²A05â·Yê¶U¤.ŠÔÝEPúyÇ/¸0M´Öe¸½9ÇL_mý" œÝvÊÄ Fscãë9ü†p9"ÑžF)Ö;œöÐÔO­ Ï\Û §@^ÒÅÚæî +ÙšàÖ–k†˜+-~s•â3ÀKÁ7³”i„S„˜|56Ч<ߨ}cA1 D& ÄVuF*38£L'(pZŒPLƒ0oa, tœ®½^ v¹8ؤ F b1˜ ‡!‰ú1Ð^9‹@ý¼k}@÷°\[~‚Ö÷w‡í«RR1‚Æà$IïªÞ‘_êÙ—¸VÙXï®y1YÀf-wΓ£RõGf 1ÈÜD.ÁNñòÊsv+lY[-ø"­¼ð¨d(äùÏÛZŒÌI8ôY‘µ˜'*2"b™þôy*üxl€ êg,+Vv¬W ³OǃdûU¦Á\y Ñ_ÚyΦ¼?¶}©G-Ýø!:i1ýƒqxõöRT”eãQs¡Cõ Kî¦nÌ(wð;ˆ®p[àäðt–> ²;rè1èW_•Ø¢Pì`Ë»¸ÁÚrÑB‚4Ãí³—’e­¼Œâ;J$–òêqà]Kz¼ç·É[‡m;Ǥfëox®#˜’H›pn žÂü;|1ÿ6_qößåõÄ)Á¡mÿ]z±ÿ^Ç‹-Óþ»œ³Ì¾¹zú’²„˺0ä–qðž‘9·+¶ fwfÛ’x¢¹D¸¨>ViÝ­˜jg±°.%æþM»£"ÍIè7©–¦Úü29Ñšš€¹ßÍ`ž#3akL3jé ”ÉJÖkN-fgÂ'«@~}ÿžTá0ˆŸTXøP¿OÈ?fýÛÁ\D°ù^´Ê`'| `ì{¬—¼ÚK^öB,# *ôñÿòË€"Ïq:ϦjŽQD·ìš[°â üÎ`IŒç, *¢¶”¯RÊW·ß•øÔÁFÆ¥ |¸(=kðJƒKvgƒGEÔå«„|ŽF‘#ªÖñf}6঺€G(uß§€ßð‹Q:¸n!å-^ì3g:nÀ²UÒo?¿÷ò«ú!šÜŠÌ¢Âh#Æ4‹©¡}9þ×an(ÖÚrF…,&fVR2¯ÃÒP@Ït2:ôfÃÿÀ)æa_þA¤µ+9…—(‹’õ6ÔMJ4kžñd¼;|¥Òá_‚.Û6½öZºá23 D$µ¶ﮞÜn´|Ÿ‰áA ŒÏ´µŸqo ÖŸËÔÁࢦუy¤Šö à_œ(%êO~›ªö]‰^#É $u€¼Ø 5ååmÿíåe„E›JÁ½ÿKãÒZeèº8 a|y˜kììzò0ºAŽ÷EòµÙÄ@34Ð2Ÿ9›b‹+Œ•Mx’Ï&¦¶„4{C!£Ûe=…ž+´ âPxó)êÀ¿\hÇ):ák]vÕä4¯EÈ\`°J£H(i-2THLa ÌÁErQ0e!Õ˜ŸVP9‰ê•ñCÈ0©M©šð‡xó‘.LôWPQ¬* Èæ¥2Fz^ 1KíX-XhÀªç¹éCQ¶ýÎ òlò±¼g:,È­§ÜO)‡ˆJ 7“ïc;•Ü‚‘ìÆî…àKôH'ÀN^*(Ñú“¤ù{*âÐÔ`©À£”˜gÆ' Îñ IImš82•*¬0õaÎÛ%.&Ž©çáÍB'€;BA†¶•#7T~y/úWª+­c´G¸Œi+j®¬ý(›0ójÖ¼”µC©0J„¶‚NÆ76¡hda¡~'¼ëÞï g)rI¢}>ãH`µÓæœC¡û…«)ëÊ©ƒ½Ü²XÙ<0¯|C;aCô¸n¯ÇDZh­*(õXPXÛ;iAI„Ü “i?BI†„`Š‚rÉóÉ|ä½S)¿Ü©<çWÜýÏÞzî‚p¯dÝÿÐÇ/÷?kxqaÜÿìå\‘:ðÞ‰2ÌD‰ü'ì(CÀ³Œý“ݧÃ1± ¹:9P|8ŸnŽAl¥вøë/h/J ^N¥M€iò|o‹iߪø½›—yN! eà½FQçåXdQìB—ìb· ̱¯ðž®_ùq>exþU¬ßÛÀ€õÏ:vCìÀž6¢C'íÀ:)bñ“ŽKgá±tK7íXºiÆÒ•cé.<–î³Ï,À0ð·NÀP°éùÊ‹åˆìnæÉ¡ý5Xõ(ÿÏ)´?/’pGUÛÑûï,S•:B?k¥¸ø6!O^àìYyö¾DùOï·ËºRïE$·\¥PUôkZPõ÷£Qb¼ú˜*ª,§·¢Èó¬nÅéd+â3c.GiáNÉV د«./AéªÊÉÀ«áªŸ[< ïc€o)$¾!'ÇçÏ™_œU}‘ùˆÉ{»‰ ÆßRbñãùÉÑ—…ß@ 臣Å…@ØL8sØá[H&“‰D¡âÐP„l)”ª-¤Bª5‹:v]øqå©Qô}!øë@»]c«Èwßt¿ªD¿‡Áj‘Ì5Ç¥¿ŸŸ'Þ>´¬tÛ«Õ±Ú¬o¿ªܧíȈì®6wB¢y¯ByïE¡¼Æ—Wÿ;º›ÏÖ£ÿ-ÿ}?|±ÿ_Ë‹­4MÿÛhv;¨ÿ¥ ý wãÊûH\}Ïw•cúï}Œ¦ð ÷Æ<\ü»*‚Ù¸¾Öª®¼÷éƒýS}¯ªÛR£KçS¼¿OŠ)‘S³É6D•+®Ž×q£ñÎÉ ý ÑNÈL@ÐÄe6ý%b ¡ÍG´ >On##<ü ô®ã$ JNÓÉ÷™¦½ÀÍ8ª ‹ÐÞÃÉ“5ÞÌÚ¸ý7Òð¢Ê³©¶{¶švÞ3µÝ ªß¦¥¬ií~ù¹Û4U½•÷¼Édí‡hvY ±<_Ì›*bkÿqúsÍBk;»>øÌ=Ú3s´Õ,£eÍ.«6VF‹Œ¸ˆ­ñÑžE£=N3Ú“–£nOÇÌD» Õn$R»ñÞéZ}¤~.’ʯ\±!ü¨«†qÐ<üЕ8çЗÿEÊÎâ{¸ð÷AŇ\QL;¯—0íîéÆN…o€h(¹ÿ¦¡]ŒW/²Íüpß:ì‚¢³ºÜiù"ÿ`Æs—g‡%\¼Ø4rËýn´¿g¿üà¿<Ð_jgÕé)7\Méq]Œ‘4C{Š*ºE³ÏŸÙÛ1Wr¶Þ»UoÙ”’•ÎS ¦ÓM:‹¯BEÉu“K)%ÑDR»ƒ™Ô‹±‰4›‘z¬mdÒdµcõzg‘RȬéMî:%¸ZP÷Û÷ìç÷" ,|C$ÆCþuü>‘Oi© Œ7õœÊhø©Ä¨rt 5ZxV ð¸Âã²0ˆ;TÄÔx¼©¯ÙT= Éc<Ñö9Ç%6«~Ò„¥äáÞéþ !ƒE"$¹ÑÀ^K¾â9ñ*˜pzþ›ëf1ÌVkkH*`Ê@A W¾˜DX*šÑT­Ÿ‰ÖÙ\djýXh q±jc»ÒŸ7ôhmÉ:c]ÊŸy ¶äwØâÕ4ŒWLýWs‡Kq]}誼Èóâgs=Þg© ¼Ÿ`yéTupŠ{QÕ=÷—Wÿ÷ïéºôå=+þÇþ~ð¢ÿ[Ç‹-_MÿwÞvéÿΩÈÀyr·réÿ€«¡eÓå'Îki­êßSøhú¾¶òÅ?ç^“QMèo «ÖùCkàòSº(Åp!ÿ(B;íÅ' T”šºQÁk¼¾:Ò7ž·ß‹TüVžù¢ÓܨL‰¶ÖÇÔ †¾‹™€z¡ê[´S=Ï·¥êy¾›ÿãE1¹9ŠÉ„ÔЦn™v<˜÷‡# ³“D8Þ àé?̦c=…DÛáTG¹ÿŒâþíÓ%ݰ^8´çdQhM†Ûœî\(Dó)µ´ô ŠÔGPÖR€¨;×L–Ý \` iBÓ\¢ãälöä„ò¤2ºc:¸‰D•I3¹¬VùtLh¯ÓŸLÕš _N$ƒêí©‰Ö¥a?c°‰VpOi*œNÙ.ôáœhé.•¥vëTõtßDŒw Zw©ïa‡LKëgKëíó÷O­÷æÒ”ÀS«Ð¤”χÙõáQõŒ)…ö, GÊò™¡-W“E3M›ì’ó­|…ʆ*¢Ò€ÕŒSÎrª²6¨ÁZ©²V ‘3ÙH5¦‘rÔH5q.q3µöôZlÑþY­3msE*÷'Ò¹{ÛnŸž\Ķ‹@¯†mëTà+¶Èt¢êÇ+PÙkÊwöÞù«Zw•_…Ò^µ+Æ÷N B-ž¶éÖ‡hÓÃi§ó¹ýÉÈúí‘ óà³éàzŒ$ý=€['U÷ÝkS«Çf÷YÛåÄ{.Ç Ü7ªÅ±rCab …—^Ÿ+6ÞÛ ýñS¾¡Ù?A[nê¢]KŠàÖlQ7-·‘½È·ó¸)kL¾¦Pq7`¸ñ%Їs®~5ÚÀe•ã}¢'¼CÙs š¾&n¨gšûGüPÏðŸ>Ô?ôiÁf‡­ÁG'Ýb‰‡¦i}¬´=ýÿ%÷nK™ã?rðà $¢C öÄ6®Mþ©âT°¦y»q1ì9F³à3* LgΙ€©µ{¶FcM€)t`E³ê•´Ô>ÏñI´t†Ê"¿îÏ %duíÄÒéØßvÜò¸€H™c‹\ÖѺî&v}¦wÝMM®^¨ZlNƒN@ߦüæ™"?}¸ —MOÄÜ,bwÃ)ª1ÚQÖ Â©ü–Nw` !!»ÝºÊžûÆPzÖUqƒO°˜ƒ_4;}¤ùÕÎÍHcÎ÷3…V*Âq æ^O$†Èa´{èä·¼˜‚@Å ð+òB/ŠÔäºtäAôLJtäðxqLHÂÌ0ÊaÉF½ÜFp¶¨ÄmÛC%¹?“ ƒÝGý¹iÁ/¶ i^Þûÿé¿×vÿ¿ZñŸö÷^îÿ×òbKD»ÿoŸÃýSl¨/÷ÿ¿ÑýÌDy ´û«3 ðW-V`”´Ï=†ísŸa@SÓïÀ3íWnЦ’ˆ0 ø#ßÍ‹ûØ8ÀÌw÷–aÀ*.îZ·ö™M\Ö1V ¬Ó‡kȃu;Ü©õÙ±m”?a+ǕŬ/biµÈÄ>À‰–PXû|°|^Ûr^Û+˜×v²çµî°‚¡{¾žÖ¦CcpóŽèãbÁXÝŒö©í=lk.³í2™-¥É‡mðÁ½]ôœ F‡Ñ‡ÛäƒBtáÿà6ø Ý÷Lƒ«Î~Ó^çê”ÄÃ[¾H‡3¸³½\O}`”1Þ ¦ÿ´$b|½5O½Ì}{ð÷álð7J\ç:ë±+³ùX  HŽ9ñiö$¨M+n­y&ŒK³+‹½9Ö%¡¶ ™àÁÍ22yN¶#l ¼C:R•ù/F%OlTBI î ß†Ôn[çþ3¶<a¥]Z My©Þt ¿0O„Ú¸J?>%a‰rïwp¡—óŸvâ?e ´LP"iÊf>‘É^Ø«ƒß?¢~THu¸ÿ´ÛØùÈ Û¶ºõ3¬£=ʯjÜã&Tc•’uËEaØcpBÈäÀ-RŽÓ€4TõÝO¬e±3©àîY Þ«°ÊÛwºîÞÚøÞÔn,+^cAl÷áüÎËÑkܽlS¸¯« ]ÊND¯³K:’¤>iS¸3?r€˜Œ_v£ „šûÖ´8èŠöúšA󉎟ȗ„ŽkLëd;¯zhúZT§ x)’Ýì/bn`°Nmá-˜€°h4Ñ­¦´:pñ$x­Ê¡Jè’Ӥ兖œn$P7°–\u‘%§›Bø³^ÊN¤5„Ù%rh¹æU¿‘T­St•Ó¯ gýû.׿ÚáäL?Ðu!øä“¤¡û’N{¢Im2ñ¸Ø‹$çê²äœÅ–l‰ÆnMíæ_ÐÈy†Ëÿ¦’zAHQcŽ‚/îþ_=hf6§hFƒ¸X,øB3ѤNµM*L½­*„¸–€Ø^,bÕÓxfÄž)ƒXM± D Y„b-ëŸóDÄž?ª„±û‹„ ù6¸þ“Ì&Szªýj`UæYágƒ@ÀåÍ H#òà¶Àî@ë¦Yw½Øª?ºrƒ®€VtÔ#$úU–øè,Á¶h*z(m§zKŽS.„u> à ýÃ¥“èC“0ÂIƒ;^Ã^\ï¶8×áÅgiWÅhiä³ÿù6›—‚5åÿ-VþrùðÅþg/FªýχN· _©7(ƒ®¨G†ðþÁP8øÄ Èlç÷°×AL N¸åÎa¹Ã3Äg1ÒI2ÀùcàÕ6ÆmE¼\0 N=·gaÉÉn®eÄ q§éÙט™1ÅðWh‡NÉÝ[ÂÓa|ÈŸoéVñ}¢^œðû:܃oþ©ÞȨ÷'4&þÙØó³.ElÑno[©úï ¢ÒP¾):Ïạ?›Ñù¹ñ|¯Ã¿c2øq?^磟`0œ“ï“‡Ñ }ÎF8M¾ÃÝ=Ü}hC†¯ÓöÉq±Wõ m˜Ó4’ R&¥!úx2'3Ú%ZÿÐtðZ-a !î~@gá¯Áèçê’‰àŠÃ¸G³“¨=mÁ@º©Ø¨µ.D‡cfhàF?ç‘Ì飖¾\Bk¹Äì’* {¤¸8b·Ĉnµ é ¿QGâTªáyu•jÏèåÓÿú·ëŠÿ–÷ìø¿¥ýßZ^|·TôÊ{ðÿë~>« {z³Ò¥€@:b‰Ò_;µÚq\l×´$ÝOê§­:”¯Ù*ÀþÃáhÑç6YxôJÚGTÌ—åà(zbT…541xnƃ(ô˶ eYôˆ®Îa^ðÏß‘`³ùÔÊAB8ihúÁÙÃhNþ¨¤ÿµO¥Ý9>™£Ï¾MF7ܾ>ám€Ý=s‘cÍ€Å=ªÊø zþó~@nûÃSÜ÷g3½A”S<#ÂÈ-oi®»£»áÃx8çÈO¡4ƒÙ¤mîª3­ÙGIX4rÃÛ!÷ïSAçz.Pí1A­™{z€ÿ%Þþ×ÁLóé}ŸÜMn áÝn×uÄV€jiÚ=\Y ÆÄþ€hSô‡Åô.qôI=VÈh8›£M7+ÉÔx´U¬?ƒé8¥H£òá8ÔZà“Í4l· ›Æ.oÑ­+–lü˜Æ¥™ŒiVlÈš<5ßS錊Fú‰=ù3å˜ÉíGïûóoÍi%ÂÉ•$»®UÍT,šÈ1E¼íoîz2žÃê¦ëé¥> ¨³, åŸ#˜Ûûéäë´—LlÀ¨bKÊž1Š#hz¢¸¡ RþrÃdç¯Å”Å.\!‡#K19²Ñ|ÎOŸ‡:Ç› ÿ[Jo‘[>.Õ’'ÙžÁÞ 6æiÇdnOôŠ\‰Qy%äï‡HæœÛ­×Qd©º¢ŒëùP{*\ñ øæŸ˜¯-i\º1+r‹/ë²¶¬ñã[}mû›À5¿:Öw°¶ž¶å„¡Î õ~TÇs!€ ª— /¿þÿÛM¸ýÿÞ^i?°ì÷^ôÿëx±•¢ëÿµ õ¬Òý]oK›©·‡áĨÎqÐ)5â SL°™ ¹f8˨$tKŠ’J¿Y ¥4W•˜VVš!ƒbEU ¨M8Ÿ}ã¶®Šn1´@"ˆüz Âº:¥'õĨþ,¥Œiû¸è?LµˆUÐY²kçC§@Aí¼ïÎ~ÞÝ @d&ƒá×Áø~:ù2ÊJZ©Ciÿ¨Ó¥•:)+œ@…­Â‰ñ(¶r•nÿGÕc¨,#õðâäxV‚“ÙÇŸëôŽ·­ºU¨[}+rŒHµF‘ " m(L+Ñ>[ÇR÷Û`6(EèNf÷÷£!SïÞL@!s/ tHn:¸õ¯µ fˆPfã"?ÁO@K8ç@³í5k²§'õ#]g~tÚþ ¸Ž-ŽÊ2¡Ÿ_|ÌhÎæ¡Ñ©4kö&m©lu™^lA­¿cF`‘ø¦Ùq2¨ŠåpýRɯQÅSˆ4¥ý~j*­zGžzDõ®bë´[ÄŽY–üŽ šçU‹ÂÙõÔ!-s`ÂR6ÜÝB1ƒÇÇp¨®<*ŸóxÜÐÙÖYK ;»úP(ƒªöë§ÑàÇʦúp“§zP¤c‚cœþÉqtd?¯}ªA¶¡(À•GEŒÙ\;ˆ‘Ît^Ÿèhšu³U˜u'_èt¾ÏÄ:+ •ƒU‘Šy÷•3u¾r 9À­ULîÁëÔ ñÃ`zG£þx Ìîo2fåWƒÙÃ…(ÿd”¯ ‹ÏU¸ª¹*¥›ƒÃ7)˽^ù*8LÉ«Óo[ÑjYÍl›<«]9‡û)»Þ3f#å«/¾Æb΋igroE3yX^Íþ~ê¢\ª:ÆÜüË`+o"¸@DK-‚°´”Z]˜RUíD¬n"í,”V5 ¥ÕÌÂÁÙÆãª°ñúÍ&bÃI“ZS›LwÆ'ñþgò‚ˆÕT/É*e¼Ë"ã‰P1öÿêG ;Ù’ö¢Â«¨ ¨¿GýA´rížhåÐ׊û éoè œNŠö“@‰„#{ñ`ÄðUÑB9 Œ4„)±a)_Ù Œãá–1È =¦ë  ~ÄŠ^ÀÛxý& Èäfpe¼~mÏ0Cìêÿ8úðéCGŠ¿ý–D•UúÞ"¸y 4…É=qÃï$x÷øýs{p•sX¨ÒÁ×ýwÇð·äë`3[$è¨~ƒW Ã¥|Â>ÃwuÂÕ¯ÖÇèĆöy=z˜ÍS­7ÖCùtb¼!'ÓJ_F“ë?‹qÃb=*£¢ÄþuP ƒ¿·‚ Mvb6´§TÔjHð¢N^+eM­ÍÖ]4²:åÄu ÐÄñ`<£Ð£Š–5ÃoÞ]F£ÝëÉø¦­š½i€ò…‚˜Ü"ÁÞ»zT•Mq4ÃfCP—W…Žƒ’Ö1Ô.ÚýØÓìËN‘³ n êLÿRû¢>,p¼•Ùêฅ:p4‹Òè’¥5*¼ÏP—RQ)¸åZ?Á¡Ú#ÒV/²Ú¬òï¥aÁlH L§ˆ„ƒ×j?3 'Ö‘Ú/'°}…À‚7ï8ßù>œC=—W‹¤Ã@”5{Áº´c¹†%­‰³!µ*‚Ï ÞÓ8!½åðå0âIK¥@ºðCçúÛô`áåïÇþÀ›¶-t9Þ* °aéŠ%—B…HÞ ¬Ì¢A4N‹¶Ÿ™ÒÊV;ic'sŒÈq;ÇŸ¦Ã¯fCßæ¼æÍ%Ì ·%§RØ/ôô¾ D4¯0+¿¬¡3ð¯Ê/2&£{z /Æ—Blc„ª­@'FC9Ñ‚ä¹Xœ,þ ¸ýC«L»ü º42AØ“ üaµ"»´7•ýÐîâmcÔöFpþW ƈ±x7gqÔ"LÓ¬1 »9*ÉF?pHº¿ô–^cK—ŽÕ–.-]-½Á–̆º»}©tÿ«ýKC2l¬‹þK— VÖÂÖmèR.Lç÷ŠV»ºÄZ0Ù¿®°Ð6$üe±žá|›uÒºŸj.?Gu?ku¡¬rì‘{Ý+C.æ²€ÊñÒÓq»×éz¥§p½Ò“_’ ß™ - ;1IÆlÈ/Ù”ã%‹ÞUÉFŸfNI†wBÅ%‹(¥IÎòS \Úž¢×ïjY"ŽÙ1 LRÚì8F II6#zóî„A?›kG%¥ƒrìžéÚo#áê(¢™h±·x›.¨TçÜnõÙ]å ‡8ìØþÂ@Â÷™ëð[J^î'¾å~øæe¹oðr?|m-w:ÜŽÊZøæTø¹€¾ê]ux$Ø…€Ý×ÀùTy :ªïç²ôq‚8â¤'‘¸î˜îRp»;/ú•îBgw‰,ØÕÝ›ØîÊ1£+'x¬îèñ%¹;÷è²sbŸô ©up:zÇ¢”^œ5Nßmm]lm½µù5þ€|ôï±rdøõGì±°ØçÙZû,cŸÕµö¹—ŒÛƪûÜOÆíÊûnŸo’ûô#w±>ñd»î>ÝŒ¨œ·UNF™ût3¢Çí³œšLT‘ ˆ¶ÃŸª»dG†`£ðÃY•u…²E:•ªô¸÷ýéÜðßF;Œ`FÇjĺG¶.ÀŸñBI®«ϧ%P¢¡t=âÒRæ Ž¢à[Étõ$ÂGfážÑ3©§0+d‡äZ»Áv¾ÿe–ƒE¸må`åÞ AÚ›Áìz:üY•¿P® H‚ÖK1ÀáøzŠË„ÒÆüû€’Éìáš>fÿbáXÿ*ò6ïôÜ V'¹9!*ÖЭ°ü8”f½#)"Y3¯²£26¥!*ŠÇ§M”YäÇp^`TçŒïÓá|Γ| kòˆþÿaKæ¥=JC4 yiЬ%ž—–'KÌžš¶µ)yY)÷¬4Dܱ¬ÙYYeüºŸ1Y«+kãìCe%y*W˜ä´ó¹Ù÷¶;iC¶®Ç§Ý˜.á©«!îè’ƒˆáˆY;ĘÛ÷tÿ¡ÛËÛwHÖÉXHqª"áô ¹GJCQ–Ì$X”M âé,îÂlæ)8yN.JÈFŒÄ €h,‡M(]©0ø‚¾‹»%=¤ï’ïbÛÔÒ•ì¢g6+Æ–œn‹—CáoõŠ9ÿ}[OþÇpÏ•ÿ1_ÎëxqŽ«Ÿÿ>tD¤Î+–’±n»ÒêˆT†ŸôÊNZ´´®ïÒ÷!žJ÷ ÞéŸ*¼WeÈûzëý©}Œ|f‡Gކ¤+%3döøÓjqˆ-DO!Iñ嘹`‚ÈJŽuGÐjŽ_®r œl'ÒrýmBŸâ1n€ŠÌÛFx1Ãzv åðöp,É7|2¤¢² °=¢Özös6g-jrºaHÝ}Ewãj!:OŠ'wa_À^’¶RÙ"9*`«l§8ÆÄÃ6Ea5=ât .7~J‘7áa›ô˜ÜÿTÛ¸žÜ}ŽYlÚ ;Mb„e<Ó]÷gÚRÒýH¥8¾=ÜèIÊùqRSE£ÚƒbT#JažPî’g§ZÐkf}COM7ƒÛ!=`Ó…îãɵÿÕ‚çì,¾2ýÉHÚÕª ÕÄfµÎg­Úpœ ÆÎ™§–¸NÕWÞ U·MËw¥FÀz|¦=ötÚ­ê¥Ü]·SNãb@W2õá ýî(o¹ykhSZ Mi ¾ËZÿ”é&#cê+SKs´¥P¿ù'ä¢ä§º ¯0 Ò‹O¡lÜ(R1À}„œ¨u2‰×¥wbeP;Ûf–bâ×ûÁ”qÁ>NÏ3II~ꚪî ¨¬Ðá}ðÅ(×5Ëm¹ËùËAÉ&/™R6eê4]…{BSU¡eÖѹUsS5÷©‘ØîÅ STŽ~Jrè#gámþÓH8!AÐ4™_Ä0‚TQÚúªl0NŠ^À­h-¬Jµ¹RÛT^”Š< Åt£á…÷x±E‘Z"ÿõIÿ6wÜ‹…›!pE=^_ý–‰ï`/øfÈ……‚Ú ÀFv[rdŽ~ºíìSx«@w"µSÁ—èкÏ·>s‘F…Ç ÞjEÇ“ñ®VœäèÛÍ·õzá[|mšemR¨XùÕBI%b§"‰N ^Õm¥Ð²TÜJ6mž …IJ-2s4LƒTÍV’È.…jVg£AAÿ ¿óéb'ð•<£%©$Dÿ|¨FtÕÕ+ž £>YTÂA¡)äð+ …Ð^¬<g˜["œ®'&0 K'98Jl‰½yk›_]ÉÜ5Ú³…¾ ñɧ¨äG’Á¿p·š¹•í*-•+ çâÂS`X MTRüǹC¾ «ÀË2Ívi„OãЉœ¥Öö?a,²lw« ÓXÓ˜x‹Qµ§¯kùòËͶåi0š‰} raÛÉ.1«^z"¬àI±éÙ"Òe¦C•ø®®ßÕ$|WUtºð]U'DϱnÞ ­€ø= ã˜Rß³ s²ã\‘˾ôY¬S‚Õ¸F¥ÛìlƒPÃr‹œ×ò†îý©FR¡å-Wr·#¬¯ø/,@‘‚­½#»CvÛ5„4è}~ˆ§tyÎ ð_é®ËfC.x‘¬×FYî‰釪•ÖqœÔ@³t ôT çíNt>7™ÂþÖýº¯£ @Žë•Kã•.R4é¦ÐºÊx¥ô˜y”²ÞTñbì¤Ö¤£´~„×eJ»…÷eìi猾ùµ¤påµ»¬t÷Œ½µáÇ«Z»Úp]åÕÁ”®Úk†(²ÛõV§~uÒ¬¸Ñì½UceÐÔWn¼÷’¬•‹7¶äJ‚À¹Že\¢r[fÜÎÄÄ~2#2uצnuÍÜQâÁQ”<Š‘,­‹£à3@ šhɨ°KÌþ½uÕ§¤î-vîÊ]•в|Λ¡³çmæÌÝŒ|ÞÙRðP÷6ÓŠÁ’5ËI¨ªŽÌZ¼$,Õ-p—S¹9³]qªÁà±µœè™ß €à¢P<8bÛ¹›ÝÝ…fw9D,¶ ¨ÙV³ƒ™mJ¨˜žžË  øï “†² 6Ä’R£‹f[ñÝî™Ý6!³†Y”ß7Ë·â˘呆ØP>5âëÆÕ½ˆ¯ûÚ‚“ŠtñUÞØ3€ÈVz¥hƒò3´i"bëö„(µ<ÔăIšVŒŠp Š[FÖ:Ê Æ%ZºRÇÓŠ¿V3–Àa0TÓâÔ_«ƒ¤Z5=æ%¤%Š­šƒ*ÐŽí€9ʼð"‰Êº»üÞP–s§`X]ŸèqŠÔÔk'qx¨\© ³³ \ ŽøÍè{Î-ÑFÑ–Q´éÇʵ fªCp| !Uy^3¼$Ê‹ $‚ <øk ïðȇƙs gÜvb±ù0šïGô\ q‡ö€Î%}ÔÆN'÷Ó!• x®±¸õ¸4¥ãÕL/rRÓù¶òè¼½e“¤Y¨qî¯ßHQ¿}®¥7‘ç Í%釚­‚!¤?•Ûs¹îÆéÜs"ã.Ü-2»"vM®˜äx²œzGÜùìLǰ,5î¾Ì±lJ_cp;ß*DÖDlp®±1¸‡—~`'Õ4SQ`ŠRðtm„Ikdw9mì$]¿ëC+Æ/ÅÂ(¬*Ë á×—ÒÞ;©ž±Û33úrÒè;UÍÎ Æí³›wðö˜ËYÇ|æ'ä³´è`W£„ì%"äÌ6üsãA¯Ÿö2â¡ÛvV¹Ú•qZ[“9\–öçL1c”¸èŠ/P促Lÿ)ÐÝw¬d%­R&{À/åïFtUrÝâGݬaÔŸÐL3´v4˜©zå„]­D?뻩R¨eç2àƒS´É¾øŠ‡F|¼¬ê™Ø”Ü«ë!YkãhvÓL×Ô~Òšê*kÊD{ÅÅ+÷³®¯t`š[±ú¨úfµÎœnîûô¨2¦ ;ŠNµ‡J|3惯”þ¤DÂýµAþýÛðú›½´gÐM7¡çâBÃÜÿžÆ"ka«á4scûÈfÇc½mú¾¸5íë;`dm@ø§QèL/$]@r³ÁÝp[º\¸+·Xè±Ù‰ic’„6]hÙŽJØïÃJN±Ã4-ƒçá´²5ŽK™vfË”n‡‡ bO%´Ê+H›Ù¨!aœÌ"¢¢…™!‚q¦’&­ªYp±/?­¥€eÄZ Œ* 1\xܺqL¸wŽ„Ûªéi1E,ÊÓ¨€ž=2>_$¼ àÜYiÿf8£Øú"­E)ŽÑT1bØÓ©mH†ùX§‚”fjízëÝ®j-¹#9MÕXA4O ÷k%^¿Ì\ÍÛê_»òԑ®‹f>ø-XÒî}½Ýéúa«VŽÁ~Þ¨Ô_;ëè.Ò>¡wš•FÃÑõ"ök1[4Ý_›Gó>öVA”³áYÀ\Œ¶vÞv‡bÈj%רPÔ9Zêô)Çž‰ãhÔF§Ò«@¤#¶%îõYaSh÷qÜŸ÷£>@+ÝŠÑ ¶AOmÅnû¢V$¯±˜ë À2ünüƒv;æ§Rð÷Nmúé›õnž½Ù¯ïHñ}…ˆ‹ÑŠÈR‚3ž£¢bÔBäÐbl¾‚JúCÌ"Cç9Ç‹*uÛjþíâüïî´^pBhIXŸ¯ÄšÐTÇÃ9Ý-'ÎÈhøç€|lõ˜ôÉš Ch&†›?@ºâéd2×üˆ,°²¾ DÕ_“á Š‰ÏdäJÂs7Î4õ³ÐóÓ‘æ4ZrŽYYžd¨K3ŸÝvB„"§Û ©9¹õÇlë¿*ôùj…s“Ž”_ªÚ/(ñÓ_ÊÊw(±§Á2—’ ¢LŠ(eÌt’×-å?n´Ï·Œ‹Úè!%Ð-¯•…ÒF§1‰Í;›Ê[*Ó-‘ò±ê[r†µÛÐPQ).\Çk" ?*c’º/0 zÅr•ÿváø­Qu”C+0~jí…’r/H” +pèØ„q9À%@¤¤RkºA¤Q”½£0}MÓ{o:!^l*\£°®v7ï¡Õ~‘Å€8iðù™»~üHô{0ëVTYbNƒ)|9 7šžõØ‚EØDìàdz%×£I%K­GmíÙX,-´t¬8 ÚàÆÌv&ú-=ÍÊ[ä:=/¿ò5fI6ì%•4„hÆ‚³wvØMÍ“"n¬pºŽ6S¦Uc‚X>:å0%û9~Û¥ëÙ»íF{rêmWŽP¥±}—ƒ„¥EûQÕ~dïAbá¿á0¦áÃe Žkøõ2i_d°8TÖ¨s_~É넲0UÄL·y(U ÕCÁ7+ê*îÊJ³F‡qˆã>5Øu ‹q1CT*7~­j¿¦µ(éVßüÆ%1÷w{ë‰ÿv°Xö{å—û¿µ¼]÷ͽKÚÆlàþ›³?Р~f{Í ¼µN[Ç1—xÝv½Ò:¡µà˜*½˜Úsµ#q]‰á!n8ÚÐÐNÁd2öÕ›ŠLŽ3‡Òéã»e¸àkîÉ›Üà ¯…ºFË‹°Ÿ„òP,`SÜ dÈTޘ /š0ZL'7×j´ Ú¸ÄÏyظwãAȆ2EQ¢Côá¥ÊI– ¨ÿ¡þ†6|;œÒZшæÊMRLŽbb6ü2ú¹­±A£êþõ5…. xìÊI¬ϲvq¶‹ ôp;äÍÛƒÉ[ ôÀÄËY¹ÿ±pô€E·z:nDÊò\?ýî.þ#7=cC-»â3ëç¿H‰³À» å 0¾‚¼gáãÍHà³ï}Š ÈtƒJTxÏUrõÂÇmˆ[Ùʵv?Z»õíâ6KkÒÍ&F#sv§s=Þ‹z8Ø)ÎŽÙcNÑb$=ãr @ƒ€ìèÒP-ðCž­Éx 1iúDF¼!)!õÇäËhrý§Q¶ü1Ù Ü77‘}òçN@~à_O;èëv2‚s"®?ÚT—²:"úÅŸï0êú«°h·"€C,Ò⌶û 3’J0àŠÝFãGÃ÷ɘ¯ :·Æ<ÈBÅb±@þÔí³G|ÀøY/u 48K²}úïÿ yÉþÿ“û“Îæ;Gñ׬x°{Âüh|«äo\•ÞÐJ:3‚»×ð0°j̱AF &ÈeÔB¶¦Ý‹âVÊ­¡Ûâqq;“)ÛL´ûla AÉ#¡JÙ oúo8F1®ù*p£€F¬é†`j3z ¸%úõ±Û0k·ÈÓâ»EF† `øUF¢1Y{b·¢oÌò0fwfzŠà­¾nã'ßàBÂ24Ã`)ï‚ô眞lî*·ºžC0FPQJ…ü¬QDÑ»ÀfqJ$*¤P¸Gꡲ)e“¥â~øð.°?rß§daĺ×5²J.Ìÿk7(àßíûß¶E°I« Êܨè;gÒMŸ„?BƤ}ßO»ˆEÊ÷ç»ÂÖÊ"öÔüÄ6_ tQ|Ì¿MxÓÉœG§â±• [¹ÚIš+ÿÜ 0‚›m|ŒtÔAIM“$5Ëè…÷ˆL(¦GsÑí© AœÔ·0×Li¸T':‡ô ð«H'R‘‰z\v‹E‰ÜQÀÁF_Ÿ¢KKÕMt¾Ž‡ó‡ Åä…gJ¼ëܰ8 ¼Þh!®Æ]D-ÁëÜ&†Áèq;“ì`T‹¹¾Ú ‡Ï+h]´ê`k)3²áBµ¨v­ `ú‰¢& ]*p–ˆ4ÇÛÑeŒ¨%\’-”D1(ë°&áÔ%ÜD”ü<ý±±3ð \Lnü˜Èj (çg:¸}¦RØpü0<Ò1\µ-rØj“ž¨oùÉsž–¾MF7Ð7J­ aÃÔ†VÊ@xÎ(3€bbØ¸Š™ü†œ©‰Ðoéc%6\AÛ0@+_ÞÔѶé€I¿â«àDOe°ÅÜ”™IÕelp1%œX© X•°&¬"ø§LHÊzÃÛ0; h3ƒ©–K¿®9ïßÃÁš¥8¦ƒüxDÿ§ÂóÇv|¢ÿªµú·«¡úÔˆ³¸âiXŽôÚh§ò¾YG+ú?|ïð'+´æYF0¯ ViñbÇBñì4©r•#ƒ±V§æ2¤ÊjBV©v ´ƒ³¼˜Eâ°yJg pca–ÂY o$e*y~XaìC£;õ '~öW×HBÓãÙÃy_O¦Ó•œ­i=Óä=[¢tA›@&zN‰_ù²CÙ9ê4=“©ZâH•’îÊ…Ýauà1^†‚~R+î¹.m`‰»Ñ'/ÇÕš,ä‘^¸†É°0[²<ž¼­ò 4ßÄj'dkEE,OiMàêµåjZùÑô¨Þ¡·|D¿Þ>9%ÝSÊ¿ Yq™þ¿Oÿ BB þ„ðgþ”L&€’a‰"_Å´ªßP$P”eDvo6‹Î Æƒø‰´ÇÍÜãR¡œ]íÿHY£BUí˜å 0ܾ¸ä·ÈŸÎX¿u‡y°=f¨Ä–™Ù -°ü3g¬NµMø]ýæ¬W­2›g€¬˜}„íu$á;ö€|Sd±ÚÞN€ðµ|ÃÐ (€¿Î2Ë ïàwû㉞̩?šú7?…YÂýýH¹‘á F^2“¹//y—¥ûfE<ÍóY„a©Ä°~(»ÈŠ)éˆê±¶eK¡½•‚ä[°'(vº¬ñÙ«ÍÇ "\j㔯#p2ë^žZ;ô®._E£ËZÓ`Q/#µ˜èðwÔÈçÃüµDZFZŒ¢œ„ LÝâAE;+*²VHDEQÑŽAtI‹ùP;m?**ly¸ªö‚x¶†eBSì˜"3ïEã€tæ(ÄÐþLS>[DN»FG©x”TQ€EaÞãQŠyÕŽRóÈW3Ú°Þ¤`eÆW6'ïáît86­ìrƒ׃{I5âP‘3 Ž— ¾};â`ŒaU>ãWŒ£ißü î5t…Ž¥åEB“©•©œý±íS¹qèëmÄz›r2 ‡C”À’,ÍvzÞ+ƒ—K©çƒÃ ZÌ#¶·X²A9ˆóÝè];cŸ§0pXvêGR»4÷ž»k€×þÿz>XOþ÷RxX>°ã?¾Øÿ¯åň׊Gñþ¢uÔ­Ÿ¶(•QºÈ‘?èBû£^ ÇÏ+ü–ãžõ˜ 䶬Ÿd÷àámg"0ÄYoDæ$÷GûÕ1\îÍþ=çÀ|2÷Gþ‚¶ë3n€0£ƒ»eIŽ[„ N®ÀŒ3 N޼¢-ˆ. [8´¡dîU»…`¼ƒ¯}ˆ|´Í„ô‰0`ƒ lh€‡ˆÌßiU56ãö µ°¬W“ ßLi_SÅ¢žtN ,KÎvûJÆÙdJ§Á¿g–þ¿ä3‰ÓÚ,~˜šK] ¦£ÁÃò_¼ä ùÜp¨þ¨/Ðóð®ÿu8‡•ź“äÎoãɤŸL—쓤ð"I¶(;š1Š'Ñ]V‹Îµ68Žä%Cpã,Ü´Aå¡JU†§”`r<`›©ƒ”ŸŽ•cHJZÎ(Äìÿ³ëÙÿËÁžµÿ—_öÿu¼­ÄïÿzX®Ðý¿B·Íj­ëpÞ{f" ƒI)taw¾åýðûGj!eÑ¡]&Ô¼Ó@[sxs —SL‹ïŸxÄBÙÄŒNL+­u®ž\}ä•ÿ óz促ÃÒ¡%ÿí…/òß:^œ”ÕøZ·“‹b¾Wè¿÷2)©âgúáˆþ{c\L0ï1wÒåiû­ÄÞÚü­Ö¹htŸ—$éØ+ˆ><Ž6ÇVäà°¯~«æXù¸Ôst–”bÙ9–J' —Pÿˆ Çüýè½øá}RUÖ<¢*\åXŒ‰xÐO¿Ñ99xB»˜=EhÃðVf6ýRìˆþ@ghðï‡þÍ¥ ‹´:íÓ7Üÿ†Ç¥àQ@I޶¹BÒ],»B݃ȃƒ{V‹ÐŽÒèÂáÝÕv¯Á9×´ßRÛ¯íÇx\éWÐks÷ËÏÝV„Þä{Þä÷ÉôÏÝx‰ÍBµnZ‹Ý媅 Ê õ™`dçÌ]Bó^ƒèÐïú?rMÚ­úÓb êÀÀ™Õ,¨*¨®œ}÷U³Bs‹d‹VÛRb° ·CXÒ|-жӢ‚·ïÓ•:ÊŸyá9öÃsœž3Ï•€'Ö-1GZ:@”‘1XÕ•*d£) Ê ‚áõÆM(Ø©p¤ %÷ßä}ó­=ÑW3´Ö ÛüÁ^D!ÚÌpÑ a©ŸÿA÷ˆk²ýŠýPÙÎãûÕv"\»j‡Qí*Ö¾‘µ«FíU¿Á"’2x:¶ÞŸ:OµY=úpO-ð —ÈWÝ-…ÙÎˬÌÑäþ§sûa³}Ï~~¯ú¨E qF9ürlT;bÕŽ¡šÐ¸Rs6…hŠ‚—O¥ºÜY…I³U.®q1Ö¨rt 5š(Ü(ß’ÀY„6vŒEŽß+>ã€i*£hëØNDŽÃ¦ŠÖR®~/g—Œ¥ÉÒ½<:mˆÕwÔ|aåkú3³q¤cc;â_¨§û˜€ˆ%Oþ9Ö!¶åI=å%›;rým:wÌ ¯œ /0ˆ\ýçËOCÜ ¡ä%ñÈfW0Ç:eù‹-äŽ92¦Pa6 4Sa(¤e·Ú[¸ßËŽF¶ò¼‘;O#G[â¼8B9l[ÐHeÔ)ؼ@âŒÙÃííðz×R8q‚’ÎÔ– ÓMPô\ˆ Øñ@Hfœž–vÔF†Q³ |Pd8ãówý ÖÒ½ÈïRT+/"'“6w¸Æ\gøå¿É¸ íÏf”o¸-í‘ aÑÿÒŠB FéöV õ oÀN§)Îe0Õ¬ˆé<¦ªšâB‰#ƒD­G%é&¢gðȦëGÅ•n1ƒè8ÞR>­ H­Ë…QãÈ[C…uuú£‹Ujx¢æ.Œæ¼z‡ ‡:C´l–0–Âgƃµ!A“0Í‚X™6F]v³jæ| âiSR.Z„Æ«QpàÐW—…æöZë£Áøk”P9©òj¶{?˜ûë¯|ÓÒôr5EaŠò¹ÖÝ™ VØlæsMöHmCczäËÃ<²^AÉn ³5FÈ£­²ÁÑùzEÆc2ð9ö Ê2Óð`¢“Škó–Ò2âU(6ÆRΣtpDÝv¥Õ¹ˆQJÈGŒ±Ô8æRQ«Y‹0o[7sˆ$_Ž<GãÓ®H€‡ï­Îg¿N+¸+­Bå‚q‡h‹Ïr.Žý•”õ’ÉÔA, I•çCº­1+aX<àu”‚£±8Kè¿â¹$£‰Iéx“Ýb‹5 ßjçð =üpb¢È¦1Ú¶L™5CaQWD!Ý!*ß5Ê7£ƒtd:€D !„ÈýDwʱà“ÇO€~ëe@ÊÖ ´¥,8Y¤ä‚S` ÍÝZq2Z —ÌëL€Çbb]€ Ô_ÁòM ÇÏ{ ºm³ m¥†aÙ ­¸‹ˆÃcÔ¢KB¢nsžB> N´1 Bg‹™Pà̱ª#sÀÃo1ñq^δŠÑKŽ’á,VÕ<‹2? CÐ:¥AÇ,¾r%)•+ Ã"¡G_4sŽãf ƒùHá¡ Š‹©nUÚ#"lpZµâG¿Cz(‘ƒO,㵂Ã%Ó´R‹Ãß]ä̸ô.0öX6ê@|ûˆßlH1+èá‰_ ,Ò´ÉçÏåæ’囿¦sš³Ï¦ãpiÌæžœÍ¦9›åç6›-œ¿8uœ+Ðïõèûb3Zvͨ/>oF[öŒª£òèbQåòäf\ ¿âô¿åõèËû–ýWù xÑÿ®ãÅÈÖÔÿ–!å7°™÷Pü)ÚÆ{ðÞÓuÁî ¯¶‹FW¿«zfºâ<ê`q0G1Ç":@~,ºàZcFÿÑ…ai•ºã^ŽÁ°¸"¹ŒêÑþ‚VŸX ¸û½@\÷@EI˜‚–EîÇØ©³{È‹8þj)÷f÷}%?ªJdz(J{ÅF¸ÎçGâ/n’E[,¶QPâ¹5‚T¥²­‚ös\ü"½|o \ÌéG؇›=ò0ºj#U·UÙÊ÷â«JÕ¨†éªÙ sB¶éH‘øIì"7„€|>ü‚žZ¬#USŒzâÝ€äxˆ³)º‡ÿÇw&­¹Æx»G;r€UŒÓì1ÞœcŒÕi×̆Òôld„õî—áDŒGøƒ ¼ØÑËÒ#lì„“yŸãŒO8ÔIã,FÙ½·/´‡èNáB9%ËœË"±gD¥óŒ(îügòyZ|¦øÿÍÂv4þ¿ôÿÿ,/¡XŒóŸv¥S„ tvZ?ᓟ2üßÖ·orAÕ¹àš–Fùé®ù{Bâ°3â÷L²‡ÀÙŠïÿË;øÕLô6|Ï/w‘€„@æ E@Gq§ \÷Ð?1šô§F`,‡Ü›Ler ÖÙšyT±Ü÷ºˆ/oLX¡—dòíöìcØ ~îbšZvb9­þÙ7M‡*UE¦=¿WÈ¢ËFÁrð×}*”ª¶½¹k³m^„ûxÛç<–ÿ †|¬;¾²E.KÁªàÐ<¶I  GICb‰ôµznoíL¸®(kLQ*œÄÒ;ÅiUm×"–Ì`þ–«éà[6Àìg*9‘+{Ü»á^E]˜ºàÃ!±NcbùHydÀ9ÎÿÓsòÂ÷}AEÿ|NÊ|ìáEmšìÙ/§âåûKÿZ»0 ̈ØWË'LlSâ2¼;Ñb† ‘„½±˜È˜sN˜Ý.m/Åh[0 ºŒ®YˆÄó8GÞ+ܵĘ5sy2S†vZc\ݶŽ WКþÙ俇¬|WúˆúâqxÓÅ[ʽë¬!.ÓÈË­, ¼Ø7zjfä|ÍrG‰i¾˜T2r>é¡‹Èü2pqbfÅZyŒïûà ­p$P ˜µžŽŽö±ÒÉB¨2öxfõJܸÆjÊ7Âè¸ÞÜl,T¯&SÅAœ„g¨xì£L1_‹¨>\Ÿ‹ú¡b®”uõ\¦„%Õó½é•UIÓšXÚæ?ºóж{{Gœ’Z«yNF Ð…8; û5Ô t€H3ŸÃ«î×W„xx4Us7\ÛrM >Ê«7öÿèICÀü;Ež,wˆå#‚ÞtEOùϯš˜2Db´,{!àB#ç>_Fâˆ)zøÓ±” ä’xƒÁB9 ÊÅýõa|!'Ÿ@˜ø½ÇäßO¶ùk¨?ˆ´ã-ô'$XóÍ“VƒŽoàŸæû:ØãøÍjÏr’3Š7«ârKEü•)lnÆ$Oà>=,IµÑ@Ëë´Åÿú Ižó¢ ?³ñ ›P–oÏ„mˆ¸§g^•!’î¶‚L–†|­wõO«Ü\§´^"F¹h¹¢ÅéoÙ×Î|çC$í>$N’s<ä>“·bœ›)² ƒ¼©ÊÕU9Û}†’n:ÒÛݛǥ=Þë»@Ž·½ú0éÈ×¾®¾«t'½5 bå¾TÇc„—¢]©úå`Ä(:½z–²{v_4e·³L‹+"ûÊçA³[:<$’5( $Ò#NxeÜ¥~ /öŒÝ£žSæ™m‚ÌiŸ°4»·¼‰îù±>'˜gšÒåØŽ[~"’=#É´ ÓÿP‚¸ýh°=Öù!’:÷a>È t2ï>æõñ›<(º)Ò½Ø_¨~9ÍŠ ‡Üû Âñm±±dõ^Ï·YᦨPv<Ö¸A‡70Û7"u¤í{ s6Ó¤µù±¤ &·}Çâz×i+cLŠƒ _»1oàÈée·=5°¤ÄÀ|yÜæsIW\Ešò &•â¨h±Tõ²$>½ùs¬“L³îÍtn~jƒW¿ˆÆàã‰}ùZbéN µƒÁ„ÜæÛ+LFT÷Fh+¾ Ô\7Ïœ3~UE½“G#É£Ü:H.?±qÒ\×5Åש6BUÓ”„rÎõÍÌf©Ó‹ÅKîµ fj4—i-ÇQjMùŸuQþe4΋m^ú}ë›+<æbq†EúNq‘4-þ7•¦ð­gÒØVu)aB욆È5¥ÔÑf„äÎ/ðq£0kмb?æÙÕËkùWìùßíóám#ù_J¥í—ó¿çxñ´¶ÎÿéòTæô1`CÄÚîÿ^â‰`ì üÐhß÷£kÄ!ºÊ·è( ß½ÛÉÝ`Øûb¯6Èï{}Í®º\Ò úÃ[AeÒû÷#ºìò¦d…Ç‹b$ ¨qìôÆŠOM\quä(¢4ˆßTà2ÃÜÍsÔxh`–¥9_,—â2xs 1_Êô|o}[¡çù[ó(’λÆyïà #ÄÉ£þ…¹ù½¥7°‚^ÚXj9fjœpˆfŸ {ºƒÁè ­iœ[…LœErFu03v£ç‘—`8p³õ䟗Úç‹’@ÑC B$R(ET3$p2ñ™nݱs§K‚j(Ätÿ?0)¥ŽFKÖŹëÊëÿA+wнÿ|ÝÍ®WÖÿc?S¤g*öSÎ3Ø•õrä™Ä“Zû^›ìŒO…FcëÄô5†‘Ê{¼ÞÅS1:¬r‘ÎηìÌ8MÅ œgêøLÝab®³ÕÑøº7öœfZ`òsâ™y´nFC<¤›M ü§¹Ú?W (¸ö• ÏSoóáBóéø¨*>@¶hHò”,À@Œ7Zt™¶E¸„EZ¤Ž@xøT´¨:aîsË.WÐ²Ë ãä9Ü@Œ¨‰:ºÔì”MçD„R[Ûѿ祡7>*–öÀ©4±š’då׺D€Æå5BÊÔáY}—Ñ`gà¬Þ»™®Ù{5rvɆI~iùíxáL2½rZ” =$jß'mjÂúwBר@ðTì»ûLB›Å¾Šoù;=#iùÐlçgÜ~'ê9S7vÔh“F³Bôü£évÇÜ£Y\v4ã.nÌ%ŒªËî2 îrîÑ´ç媳”0˜•ò‚ƒ¹ôÔ,-;˜¥ULÍt0ÅP¦ÊÃHþ‡¿­ƒ;Öÿ‹ùŠŸ'ÿãf±¢ÿw{g{«T,íPþÇð%ÿ÷³¼ÄüŒÏÿÝ®W÷;˜×fdmîê}¸ï{ŸÇ˜Î¹b”Î×êÛGÔ !-æMvNbë<îDÄÀ˜+c;_Oþ=žf6Âì:ôŽœÌß",=@_ú“Æp+²:,SüçoA{ÿèx“€¡¨›¡ÞöaµÚH 7x1‘ú&æÖ’0;°.I !p‘LAtŠØ»ª,ÎÁ›6&­}ƒwf§ãÑ`ܾX›ZŒ?T™Î©9Paµ~rŠ·è 2ŒÛìSÙ¥_ð—Ë…µƒ|pP;ËÖˆNÒ=èT€Þ\Ê™sG:‡‘ŸåèÝîõõ„ãž1 ‡~ÈW߮г|¥H“H~l”/Rd?¸L‘&}fVt¤‚ÙÀ/kÒ¥’"ùyº\çÒ+ßÌ—9WºãbPÐ¬ÌÆOXxêSÊч–(Ý–&ä7÷lêÖA­‘cï!7O sšøW’AüœvÒÈ8ÿ©=•+¢EQòsøXÒºW¼0¿¿ãôWáõoàï øЀ硰îèkʬÐô¼laÈŒ¹awb\Z ÎÌàóB )¼è²¶!$ÔÁ‡VUH1ý›ë¢ËŒ¿ðÖX³kŒÞïÆv_ {…˜öÿŠö\¸ßG®9Äu˜Žw[Ÿ-—ªøÛÛ?à+Öþx®ûߥØûÑüo/ñÏòSߌÿ8¥ûßnüÇq¥ÜDäíS÷ø¹?¯!¿:e•4îy’X ÑY«¹ ~š™};zV˜† ,©Î5üô;] Ïð)7Zw¨³85Ô}wŠá¿HÇ‘á¹-Ž#“êÂ8=fù¢0ëž¼cKÈ•ãÞ•ƒá3nË™·ärÆf;‚ ÙìŒã ,mÜ‹^Œû‚ؾ*{.í´Tw¨ãK¤òêüµ L@¶qC£pލ(”yóê—à µl¢çNÔÑ}ØZÿ¶žùm#̾)2\¼õ2'R.S\nü–õ–îkí—aFÏOabá†Q!©{š‚r¾ŠèsÑF7˜ŽhOÅ4DÜTÊúWÀsÏ™ÏIªKHU‚2нäÂV _w/8Ê ¡Õù|þ¦BN¬ÖL9Êü†s¤f(êî#~üCþ£{SbW3R1t¥¼kM"El½yž wá1 u+î6ãúˆ£ùšÆ¯+íZŸÛ¡ö\ «ý 1OUŽ— ö¥äh€^)aÍ2"ƒ£Ì®©;]#:{h…]ãïöÐÔȉÓÙ=¿½.f7è+°Ùnï UºÕîºtŽOïâÝ*ˆàOп®ÔC¯¾.B?G¿"Îájb u< ú·ŽÏ¤{ÖŒ/àƒxºp¦3x¹\®ß5ËÍ·tÑÅkžõK¾ŠfåÒ}.çkìtÁ|òš'_%›…Ï Ÿ;ͽ—BëÁX„é„•u~¸ò)#Úœòm{¨¼ ql8:Æ»b)¡5Ö¤âAʼnÓI[K@Ä_ >±R¨œÓ¥ rдžÍI ÍŒ?sjwql¨å\}E‚X)“‰k[ý†C“,¢Ip5‘§êk6N¼ØœE¬ÈçÆŽù>È1?n or—†ŽÑ_ÚÄÐuC®|È2–HÍ™±öÌyk æÐ äLØï s¾ÌŒ×MUÝël‚p¶“¥oè|“‚ivK׃ná»þa2©ø±€¬`ô¹°CȽõæI§ºmå©P·«PæaÄùŽB»fòøÙr¼h¬ß•˜<‚šò<ÚÉj(çÞ[N*+…½æZê‰ïûhïJ K¢0Hc}“KIìÕèq{}Ú‹srˆ¢;äézÙØTjPÖˆáéÂEAž¿ß”™°/“'}ÞÈ!ß¶ñÆÂ.o:€‚3{{â—ìàŸ&›±“wÈ%]Ù'Y()ÕÆĤ‰hëçÿà ž¨+é1wæ$ÃEÚšJ8”Àý\ÐQ‡‘óEïSIü Ožc+;*×ß'U¿*Oú› 8wÂôÕ#Iqâ@Ä’:ÅÿC(U>o¦¸tЩ6N-\©óvù¼úlðR‘ÌéêB p©¤Â œ§¾ÀP¾8ýîŸÐ4U/ïÓG™›ýä´Ñi%™ÀF¡Ã4€ªPøçªr/è6/abúO5žÊƒ:áá`¢ þ|ØÑQæª öX¢$°yóød© °üayiÅ×÷Q$­(.zã-/¿^4­ôWeÄR·+Ê;à[Z*(¶f?púþq0Ph*¼Lp0vÄ=—Dm’A™ç†…òÑ0’´;.ÆbÈJN¼QU_ ÷~~ˆ¥ÀMAY –ZŠ×¢Ý˜$Ø.'ø KþfÎ{9bç¢EGø77‚òR¢ã R,H›ÀŒ*ŸÒ4?ÈØr˜)àiÀ¨ã=èa¬‡A¯77>h´!¡#Oc(óšˆz³Ç'K’Éü‡Ó×^Ë« -6(ÒÀ¬³àxŠˆl,œç)«ŽU¡¨ Úëx– ~F —_^t¶ ²XM—5`²#Ž Œë²¸PhNu7ø;µzIkT‹S1õçxóÅkヰœe„¯gO6§:’-œ$jâ{/«hTb/£©¼®ºíµ 3äRI`ÆáÃ[·Í5AŸ­ÚHìjgt@RU¬Ût+yŠV:£–HO¸ã”FH‚b„Ó[–•ºâÃl@¯‰„’‚ÛS6$ o…šæCj ³´v EƒçR.[ùòƒ¯‘*µK¨ÔËÖ÷S/Ô±%{)…rÁƒ,Sµä KaÌ)þs«“E”I˜V—8š$|2E":3¢FÂ¥´HŠ^@s„Jí ò‹ÕöL‹Ì6n5P§öRXõà‡ì]>$@mólr_Í}kWciSïŒ ½ZÔ¢†ZÑÜöÎv+Ðá>JÛZ ÌA+5’oA^‡ § \ë¨âç§93l¶'>¶Ù›c?’YuG|ÊÆ ÅÓÓj¯@x1ƒU`cþm),ia1ý~€lÖgÁfõïàU-«‡n wrúîiäô]¬œÎ‡ä·PD^g [Ê‹ï§/È®ûWìýŸiïêî™ð_KÅm÷þÏVáåþÿ³¼xò[÷:Uôk3.R%€8€ArR—jJ˜?Ñ-ß¡¹5•‚ŒnAƒ='3s¢«J`U¾¶S;\ðÊ ¼ê½iÐ D0‡yUEÝ|éOït$RO¤!Ïsù¼ ¼-gš‚4º¹‰<]QOÃ[ ‡Â»/,òŽGŽˆjÐÃfl“*„šYq¿äº‡‡äWWãî´ç"ßud—Ö¦""#]>ÃÐ àtzÝ«;¢XÃÛx^>Ä¿½1P…ÿ§}~€?oÕÓv.Ÿ^ã§ÿÍ÷½ñ-ÂvPrø^˜ˆ;FãX‘Ç >Ñž>Žï¢ï„Ã-‡Sz(õo¾)OdQPá|åfÁ]WÞǽ«i ´e†ª•'GØ×ìõ#¼í@«ü¤¾Þ(ïÁ'ø{A³‘oL‰oE䇠q/òš?È´åÄ9”1"Ýϓѭ4×-0àd*èh&óÍAÃ¡ÚæD: ŒP˜ädjù_œBLDÄФèwÁ ÏWMG‡­@"~…¿ÿܽV¼¥@iHˆôL»Î|8¤ 1rή+%fhL<ã¢ä,Ô8Š»È—dO ECÔ#UXq”´_ŸŽ½qæ%Ýz" 0y°ûgßÃ@ʲY42!ˆ9’×¹PH#°È#9… Ãñ@xÉNΕ tªl;V2@wÓë Ï”·ºö_Y…;! [úŽg]ËP,8ÕX¸?LÔQ?@øøu1LŠôЕÓf'Û¸3üSƒÿÀ,"×^ó¬Q§a×ه⹭R\­Gtà— PæìHðü»Š±:§§Õ–‡Ó…ÐBåö-t%Á4´0­ ô¥\Ž‘^$è…‚)Rœß®+Œáoh ì½­¶œYÊÑõ bæ)«/ØBÓ)«QDbˆm%“í<ìM•ÒºŠø°Q* … °Ð%Dºo¨E~çzuî»_±6 ´šÈ ŸªÒÑŠãB™ÀÀgØ6]qŠÑcT„¢Jpö貄w¢""\øbJ‘â¼ΊÍOmhqÌÄF¦Ú˜¸&(¾-ÀÌH¾Ÿ9t$Wøk1ÂÜK öêüÁp´1,‹:ž³W%v\¹Ójúw!ƒÊߎ’XÇUGNå,܃&-ñq¸‘äáÒèmÆôrµø`â@ûÖÄÓž%=bÎç”Ü´Ò'ñ(£ŠFý!_éC › õÙtìÂ>µ{r0¼¦‡p½s¶•Y½›iCA°I\è®È’ËJö'Á`4z = ÙjƒÂT¶""EK‡ê8ªBlyÄ2ލð´CòUœ¸Ib¶#<à@#aÔ®MS»ž€æv¤ ¦UÏb…¼—&·¤:ñ1Y!ã¡'9o»Z±ˆ¥?:k^BðLu›¸ÜñHÏ>í÷ì!'H1emý\Ûy4þWq$Ž;„˜¨(âa4"”ûŸ$zlhè'ÑÁØürƒ¨G¿âŒÃ†ntd»_ŸÆ#YmÞ%´Î: ã•Ë0yTÿ½•£l-…ïˆ2Èи£Õ«>Ú"âo#’çÈFÅ‹#{¡W’ÿ÷™ð_··ŠaÄÿ ?¿øŸáÅsÆõÿšJ©}T{ß!¥ôÓ{}›ÔŒ„6u¥nßô^îwö6ò¾\¨kìxÇkHðž†ÇFùþØo0ô:4˜*âÄHjg¼ëNDY¯ï8Œçƒ¹sq~ciUÈç¥÷Xö_»× >åƒã.rñª,]ÂU·=mu¯¶iYƒZö*´zèQ öÛ›`R‹mÉ„ îÚà ÷0…úaÿ8¡º6%sú 6óƒoAchßmo¿¸ Wí*$Á ’¡j'wý›iޝ©ZwL‡x ñT]3¥8ãÌQI.·øÄQ¨tu"®’šw‘Þ÷é4ìÐ4þæqË”ãœ2Q¯…Ç1ƒ ÉeT }Q‰õÓH®Ž`%®éu'ß‚«îχúëÁ#ü˜‡¼£nlx–Vó$ãëÀ‰ë^@]±Xq[I.;&ûÎ É]'ÞÀî‰ ØÖ›+ZüÖ3–/y;åsOr!àd p#½ì Þ:‚’þ£ÝÓÑþTõL,w½Œ}¥ªmþ‚ïÕ'çê{ùL@üž]‡gŒÎiˆ°/V­rˆqð2¾.’ßPWv$š,}ܤâô'»)È¢#ÒøÆ„UEÌÑ»õi5d4úýÂ.‰æRFsϰµÔc®ïVþ¦-„þ}턘sÑC/c(´DÖðéåFïá#öžX<þ •¶'µÓà`}œ”F'üê$ÃTÓ¿o@Áõ dɇbuÛ¬žKÓy‰ý7» ½½èëH__º=h}Žúr\?5žuüþÿ¹ðŸÃpk'Šÿ¼ý²ÿ– ®½ÿ'ügòÿ§+ûˆTïÄ·Çw?#Þ³Ç ^)”³„p.{1œÛ³ œÛ²œ…åx¾6ÁóÑDZLHºÙû&‘XðÀvBï›<±8.`'ø/ #÷¤è|‹ ‡ßœ‰²N °Ä¡)yÖtÝâù2³BþS´´Îú±3y+è+†¼jÿÚâWe¥=¡ÏgµjÕBàO§2‚Øô°Fq–öG°þr"ìd¸ðKÐha4‰¹d´˜dY~eD¯…q0I·ËNì—ÿaîö²‹¿@óIù•«¦Aÿn!F‰©Èψg_Sk^3!‡rH—”áüÚv,›¼â=IÕíM¬»©ëV8Uà,Ü´ @)LIó*3(·$ÊH.ØhÇC<©;âEO“æÁwÒq‚^èÅVÑäk6°S‚Å¿72й‹jÝòÿUÜ‚•ÜÄ_Ý~¹­ý¬·µWÛÔaÐÊY»ð-ìMÏôñÜ¿V}˜›û*¶+–Î(̺oÝùï['ù‹Ïãÿ-zâ¿J[[/þßçx±0ºþß"ù˺€ë?oê¿®`Ù´Æî–|Îé.Ú=ŒèéÐ× ûFÛPÞêcØùœ7.ÓaÛYÐ6}ÅIŽaöþŒvÅ?ˆ£FlÏT®Å÷³Åkgâùûïå(..ì(n¤ãĉ¹zèöÇ|a'Ž)“ˆÅß‹û:øk¸¯çuÿvˆ$­"¶£:Ρú38ª7µ5H¢Ë—ôì~þú¡•õð:ÌJθø"œaɼ"áòg’¸ï~…iȬ?©üoë×®ÑmôãSR¸µÎŽ?ü ¼Ú?‚[öÕnjÊÐx—µ¾žè°f/Nàpc(½ºu†2.E€r¤²_äµö;(ÈÚ/]ôù(S8ˆmßòkï¶H?#Š}(úé*mÚ•6M‚A\F»;lw\|1~ç³µ2m@ÿ™ˆÐnX}«ý¿ «_Ž뜀f5Q-‚c6"2 úDøÓƒì:l3s>àeÂu¦ûßÞ`MIÿ¼¦Þ”Ô^‡Éô´ô(ÆõŒÞx):ý`}|pÃ0 ibYo®‚¸ðŠZÍ&^ãèÙ`´.›®ÔÇ´_Sßê6Ø-Šnzï§é#MâµKóµAÓïpö¹_ã½ý éjmHOEHæÐSxûOèíoÄxû+óö7”Ÿ9JsAoÿÚY¼·ˆÉåß`çÖBÞþ†ííßòi%3aOEñQùô·æñé7">ý†_мkFÃòé7Òûôu²£ħ?Ï+ÖÿÿÇõsávJ;‘ûßá‹ÿÿY^,¸–ÿÿü@à‚i\%\Eÿù‚ü™Î¡/Ýñmù÷ü`¾ðl ¹)Á6‘ŒÛÄlS¡lJT$¢oÀ¢Yÿ9rc·â‡ ¥úZ$^¨ƒU^®àŸ1 Ì@õ@>TO é¹dÂêi¨ÆW¯ñ«YØžHzkÀžs¡zº*Ù“Æa=%ªçü]dšoÂB.Ì °?×ÓB’FÎ9vŠô¯(Â`¤£r!Fä'û´Y &÷ÝÁ¾c¯Ÿû‰’‘?Ýêcp?‘P2ô§îé`/™ÀŸH'5öç’7ú=3H:mŠK_è¯j‰Tæþ <»qç‹5Ny]‰|BøÏ> aJÐ4hž{ jÓ7±Bô\ÊӮߩc&œ§Ãýwö¡ÎðžÚþÒX*ß t0P”a П´x_ŸCÁ ãbåG–G]P£ž¡S6EàTÂ"xuá¦wÝ)àm!_O´º“ç.‚Œ‰<Lþ=žfÛì:½¥°¢löMã×QÆÒ÷¾^õz×ò8O?šPBby†v‚>¡CÒÁL!où¨«|á\€ ´±61°GÎ…4âÆ¥2o,ÜBuî„ {™ÎÙ`5™ˆŽÂe"0O¸Þ“(êèÎ}?Sþ0 âô/ƒF•˜‘¤YÑ„–¯à#yÜÄã@‘“í+,Eëq•Ûg—\U£)©m-mH Êèuü”%ƒ2ÒvŽ2ÒœYˆ”¥Å)Ÿ¤C¹ óU¤V—žÓ'ºáHÀ´tžœÓR4^¢)ë¦ËbüWçœü®@˜›O „ñÍÔhè8˜Ï™äÿ{üǰP,DýÅðÅÿ÷/×ÿgNàüÇ%œó¸üæ,®7Ñöƒ?X܇ȗžä8.ŽƒEª°žJ(.¨O„SÉ pxî»¿Ë ªzFtt„Y¥Û™"½/*LIv²‹‘M åÄÌpÜÖ=–;0?Õfð0x´úȣƱÈ;äñ{&÷ùè*äç31(¥Ã¤­Q.SøF¹­U ‡i´2ön»þ&&¶œg7Àâí¸×EðËHS6L@Ã¥Ñ7ƒÞ4A7‘Ê3ánþà^:,ûD~ºŸxóGAÛüéP/Xœ²g¾gq=_ˆ¹ýTœí¥08Û.g5ƒSt%ƒ<ÂöÙŸ³ÆÈLÆ>4à1#1.üZ)útoUš‚ÂßóÌ"57TæÆ_S`¶- P³Í.Òå_4ªOdU-ÐXÕÌê¤Yý”¦«{kv‡yûÌ×m¾žsûËóÙ$Òµ/ùœ5•Ï´¤þlQsW¬ÿïëtUð¯³ò¿lK‘ûÿÅíÿßs¼äì¸øAñðaÆg˜ÃÓŠ ä°™«v0øö F¢IEPRY+NlÐP*ä£3Þƒ‰=q’Fû5ìR$ÒØ/ÆÝ¦3ÁHï+P6>XÒ×W´ù>é7à <5»¥K&aNØÞaéÐu.Ë’¡8®àÕù+j8Àã2Üõ¨ÓL*^Á°¿"¡û„á= µshwoŠáH6 %CQüÜrÜ‘Åpá˜#½ S§þg²CÅÎ÷ $‡—_¬î]$]K°-Ÿ;e‹ØâìšÏ¡æóØD1ŠR)™2sîgæ=ˆ${ þpO8]Ëbç—"$€'˜GPQ>Ÿ?Ê 70ÊJL¡#ÜàîAåP{0í>âÇ?ä?k ã(®;²œñ¯ÿ„¸åì.øMÂvM‚™’‹è^ÜSnè–ÐsÜUïs¿ÉáF¿‰Y.Ü…tºçl>l×ñ Í!ˆ%ŠÙ")_E³ržËYèW³™O–eù*Ù,|–Øi(NÕ>E·Ó Ó—àÀµJ›azâs{kgk<³ˆ‡~wx;è1°;Êôyð¥ dˆ1v‹Q—Œéà[VÜ„QD¨$âA~î™^>ꂇÄb|8‰åcŽ ºt£¿~¿LT+ò\9ާÓűðe?”a<(&7ÚÂ4)FejǾÑòž‘“ Ë%~$!4©d¤f•F ØO#H^¬Âr Ðkh–Fþ#ðŠéúvy8Îå/[/Çi n$—AÓ›ùÉK_ .ý³ñ“Lä¥q9µÕŒÂFvÞm4o)û`;]=gmrþõÛÔPÒ sè …êræùS"‚º#¡Å\T{ž¶oÏcû¶¨úÖBϦ®æ]èp÷B¼¹å{ ^j@¥È `ÿ™T¼(«ÑeŽŸ’Õð>Äg{%¤]µdee¤Ê¬Ò¢Œ%×ëÍ“Nu=ÚQçtwV¤Ç¢ âDJ6ŠN:yülm µVD ‚HœvÆ`Ù-\0zSìYZFº Š-Ü?Ò÷he+ÅOgª cbvÓÕèq¯.EìkOz2¾úy‘Љ\îYÒðíŸþJ[ï5ÒòA§ëâo+)×ÇJó÷=!ò1NâTG·ºIË¥î£â8Zq6K.]ÚGÃòš|þ}¹Þ®æõ$éð“£eܪ‚Ö™·\]•³3›- ÐÒÝ÷Ò>yÔ­¾à>®S‚8’æÏ‡|iV**—7Èù@ü]Œ(n´Ê‹·ëa=Ê€=ÖWüðÉtÄlaÆî«s(yEëd6g_òˆ¹?BA4Ú¿#¡°±’ìŠò{†÷Ϙ;—c¤$¨„ŒÑD§•vÈÀÍí¨¿¬ÔƒšÞFŠÜƒN´‡‰}0GÂÀMŠøì<„“³ÆkÅÀ—KQÔ `q¼ Åš±ÙI Qˆmi*ÆJSQK“pÅn`®“%¤É*Y'9¦•S ÈËGãFý¿á½^,f}þÄ¡ …B‡„â¾î&5yBLó–*zÐÉíꨚõæë-ªIU"ªX?ϰõb¦¬Ô~9ª^½È¦Á¡Ì ˆzÇŸÜ{^¢N1à`ȼœrf9ÙŽÄYàtºÈßé“ÝD.©Yî#IÙuÒØÍ„yçH 8fIÁE*‡¡ßNÖ$‹‰â‡ùEpKˆ õ‡³š)„ïµhëÖêÄÏ j=¢J#~èqaá3Ó¿jáKÎiwD²´i¦RHÛCÎd+·gjx{É|W Í‹oÕLÔ›\z§@TC´Š3|ìu'<(÷öâ‹éÈ ŒòÀÇyËÅÏíââ•ß.`þ­b>dr߃ù·3™Wëò»¸ «_©K±+uI¯Ôg¼N×¢fØÝnè¥eDŽ‘·¨ÕÜÊ¡i¯Å‰òÈôhŸôZ×ßD1éý¬Hw9~?cEwÅ,9Þý'†ºjžêI<Á¿Å9xJÉŒ'^˜B4°Âì|ž}g½*%,ĘáËe2F²ß7g@Læâ8íë´à%“ö³dÒöo2U-«O´¾íbÜ~qIAß5z’tÌ›m;ˆ³ÆÍ‘ñ¸Xó_ÀDÜßé•ÿýLù¿·J;Ñøï—üÏòâ9àÆ£ñßäðø•ü<÷ _EÚð3 œå‰„(X,Üh¢Iœ^¾tâI)Ä1Ÿ¡Š WTJ$®J« ñ…Äu|ŠGþb|=±×ôJŽŸ.nôéì°ñ_‚/þ˜qE%}ì¸Ë·"‘"€œå+e¹~¥Ïêî â]QŽwâüw m–‘º‹Gèº1±nPÓܱ¹n˜çìàÜ9XH–« c0žŒ#ãu—Ó-.§›ÈZ#™5 iêäDöL’ÓÅù“ƉÀâĖʈãøHãàg 5Nl·ŒA~úØãD6dPòS#'2P—•Å&÷o‡(5Nr\°ò<Álj –Qɹhäâ~6·¸/žœÈ‡Œ[^2^9º¼FÖ'î,·l’P·ì ›µqNæ°ó¹lÁÚD>dhíß5¤6±sd¬í¬øZMä“ ÊµH7l²2÷ï‹J)øWQ§³¾{€®xd¾ØÜ%уðô›þÇóØÔ‚þ𦒒" v‘HÚ¡²I!²Îs õÎÛþµákÇÌš&d•¢/³ÂWŠ=•€^fXhª€ÌøˆÊY•³b(ù×Hˆ¤ö¬(d¼qÕ×lŸ2pI<'\ÆÁxƒá› K§ ~Ñ40¥æÉd¯ÎK©6=`ê%Ÿ°š¬É‡~i$´ÿðA²£¢Ðàý‡8?Xùî9Û½ŽŸŠ¦os‚œ8SdºÇ‰:ø²h±FÜ…^ö"áL Ì‹ÑvM ­¶ðÙ`UÐ÷(ZŠ‘E_è‡uë a‘jäÜA“_Øa +:ûn<áÙw#æì»±²³ï†:CÒ\ðì{í,ñì[Ï1/Ò)„0€ûì$Z“:Áž¡h…Åž›Š9ûç¾Å—s_ësþûµ7þ<è>Ëùoa+ÜÚú¯0 [ðk¸UÀóßÍíüçgyñ\0Î/ª­J½ Ækx%J„[9'µÝǯýA¿;þöÃ×®gÖ³¢‘Ô¢x£[šò³ƒÞ Üâ<¶Á›»¢õÐ*îAqhC òv'ÁCw<›^ÚßÞêxt ʧ‹_ W€©ÞWBàîéiÑóÒ²¦¾á[A÷ЯÝ[±ý{÷éØÅDþí ÷¾ãNÀoé]‡ÜS|¦ÊÑ9)ýDäÄÆRŸ"îŸ4'“!鬋kò ³àˆDN `Ë&½‘µ}ÀKÎt$É]šOó¡ã๺# Ì#ð>î³µOí‘^2ï{ògF¿†ùuO„äJ3𷤇^â S`z˜¢î<½ÓíìƒÞ´Û˜½éÊž•`ãŽõKRbà»äü&Ÿ†ß߃<~ŒðÜ+Û—^$êŽý]ÝwBT¿‚X“,Ýö¬~ £)P‘YÓZåœGi&IÔâ,¥ËŸsëbg›/ÄóÅ;)¿ˆ]%å2r&+_BÔöÄ@猃uqË^^DÏ\µÕJ®;;î_u§œã°;•Sú ÌaüžîÆŽ«jT×I‘ŽJ v¼«Ã(§Ñ>Yâ½Wà62Ç5W*šÑIVs˜Ï†p›îzµùÿ—¾ýû¾%Z3ó<0_o„|¾1™ÃV樽IY–å›9€é.u/|’éj©O_êžÂqaÆŸZµlm¸-ï˜zé¼ìpqf¬õ]Ù“)Xïȯ©¢›ß_ÕŽ§ªª§ªª®*fДuoÓZPÆ0gq‰ôŠŸÏ·sñ™¾÷Ò3¯44Bïa›TÆëwÁúúztòóJ°F~‹µàKz'U|WÛ¶÷*è ŸL{]Ú‚àïÅÓ%oµ~VuTƒÒqTobåm§Š§Š“!'¢C•'›ñ ݦR…{Ûr×ÅЇ |ÝJ¼Y“³Ýâv¼l·~ìWÜþoÐí ÿx¦ý_©PŠäÿ_ò?Ë‹'§¹ÿ«—«ÍsXÛÚ§Õ}X‰ÏËõ³êO¸ôY>f“Rîô¸;ÐŒuÜž–ȺA¬Âþ L‹ûëÞCox <`ñƒÝ;í³©ËàÂÈOæ‚i}ÿà“¾ÕÙæÀGÕ*÷¢h ‹“YaKñ{í´Üj´­C:ÊåCgéÓþ=hz¶âúÿéý‚–9Ö³ò‡7!†Cz¦5Ó»ƒÛÑÖ°{î†[Ì.‚´?Óþ—£1 ŠÃA‘9‡#ÌG½áî‚û•ÈÐʶv*×±¤¸Üã² ¢Ð•±8BE7Øn«’~»§%%nÉÕx4™àÉkð0‚­dеÙÏQۚĉ‡‰îp^N²6'›»nvqL = h„p Áè—A&t¶(劰«Ø²‡#óol ñL»+å$ù%RÓöQ]‘û\l"(2â®û‡™ú[3ÿ޳é>¡ÃÞßq€Qô†zÒeй|>ÏñJ÷Æ×[ôµÝ¬mÿÞ<¸öùF/õqïúñ Û£CD£Ò$BQ°ñ:ÀgÅ2ßw¿fîsÃìèBzô¾^õz×>0d!øØqýÿpŒE_ÄÇ0ˆ3…fkÑ)¢# )@@ÄåP¿#SNGì¸"„y@\D¹~ðí.tíÄÝ^Ë©n»Lû$ƒÈ>ŽÃÇËhwõ¦w£ë 2eÓ”E¡†'ÎÌ{·‹ÝI‚hÆËÂ^\@ù!-2šNG÷â šÁÝ:÷z*Œ¨ÿGÿº·Œo\†ÿ~„*m!’¡Ñ‰øz;¸j.¼mØ]vƒ~*ivQE#­Þš{…!Nc˜„ßGƒ:wìâ ºûØÓo󋘋×xn»QãAðõ¨]…Ñâ¸Xì1ôSj÷Æ$:aÕçUæ# â5¹¹€‡ÞׇAwHÝ*bžÙܘåœã1ƒ©—¹‰Xþx]Å&ù>C·æ»P3„ôs9 盛mîCnÈ)z½O9õ þ$"«ïc’w&yä5¬Ö’6ÕÇ£/ëÎv §ø8_–ï/ÙÓ5y%ë`&ÝÚ >µrÆ?Æ1®f¾˜ï²åöLu¹YÜÖ0ªÉWÐäy¦m²›½"¢å£ ÇÖ5 éñwÈTV&Á„!‘¢'*1É,æ¨Þ“ß¿OÁEзnzÜc sKÿ³—X…¼!0¯¤.<íÌ%7°ÞyÇ\-\Á9][Dr˜­å$ç´cé"ª¤HIBF|b_4^7%L¼(kM! 2_£Ì=eÞ-ë6[¯«»XÍs-aÁ|’»ïvˆÇâšóvÈÁkóz|Z]vis"ŒºÉ»m¿ýá3-Å­ŽƒËrû ˆ^H“Ü]GïlÄ<ŸÀGÚÛ —û'ˆŒ~yXmœ¯ 0åZ lîì¸X4y6?óñ±zŽ€Æï¤[ކq Db˜GCÊÉp4®ɘÛ2²Úž2äunõîýµ0O­K,n5t…àÀ T1 ¼””¼4V-/¥9ä¥!‰7¡Æ"òÒøåe8´G8Ü­–G$¶W-Fg(dj?Â7ãC×|—®lz,=()’bmC€n¿N®Æ•:,±•B¾~b™ñ,>8Òc¹" š½„Y}ÌXÉ«V0;zAš_¹`‰™ÀÏÁO½Ž¼4> vw™1z§ÅÆèÝ_z* Lbÿ%\”&ìœ[?¦%o/_šÈ± ëÖ2ïgÕL(¾'ö(Ñ{ÓüŒq3³š§-œ/´›úí^~ÂêÙqØÁoh&j¹ ÚFœ~xï€-Q£sÛ71l?rÇè.w§Ešû¦Vut1TŽºªÆsé4Nô¸ó1hT®«ÖwR­%ªt"Öýb)Yñ.ó Æßêp9éü÷yð Û;;‘øßRéÿ÷Y^,éîùoQžÿVPÍÂ?ûøwß½šÝšuôû—8ó¥ ÖSÓŸþ¸7Íñn%Ã|Ñyî~†ù‹@ùÆÍB‡»E‰GŠwÝá-Å`}îNÀÚÞgð\Ü?ñr|é“þõ#ÂqyÏP+„<ºì‹UO@JË ¢,ƒSàƒÔ ù>ø6°Ò¦:|Ì1˜nwÈ?4¢o£öÃÁª¦ˆƒÎÑøºçÂkQš+?«õ ²‡ìŒc–ÊÌsÅŠ:*©¤áwÆQI%Ï”¢‡lûó1¾?“q˜S¦Ì§Íb®Ú´¿‚6íç™R´Mnöm:Ë5bÎJ= ‡gºàrmxƒÑ6Ì^õN«–ÓI+9¨ú OªŽ©*ꘊ!gþÓ——ã*bôùŽ«bˆ|'XÚ~°Ž©x4q§MÛ1r 4r¼{Kµ÷øÌ§XËtêxy*³¼<óû]ÓZì[õÍö·Ìç 3!À|]E¡Ú©Y‰w’Hë]:ILHå™\ •\ ò–ÊÿQYÔÿ!êÐÕVf;?ü|ùX b<ÆÕh&¶6HçÜuź6<àWIûÿÒóÄ—¶}ûÿ—øïgy±8¸ûÿRFƒ4bȳ•ê'€õüœ‚ŸÏSDÿ|.€¹3ýpPø™ì‘goÏðØ©}(ü¼³`r7ÄÛð§¢¼ÛçòY[»Öƒs½‘?£‘;×9{ Z2r»ížè­'ÆmOúâ#ß³“Å„rK¤ÜEB¹+žPîs å>_I(·ÌE˲²è ÞÀ]­4ÜF4Åhì;9×tö0Õï.TëÄ^8ÏÔñ™ºCh.߃ôdX|¦ ÷fëð…¹ºaßV¸©Ñ=º,‡r÷“bΫN8¶'¡–Æ‹Åã]î§+ÚÀA?9FhVn^÷EsÇöùyr$7õ¿Ôõ:’û|‘ÜçE½^Åõæê¬­ÕlF˜õßÕy•f]Y4ÌÚÛ×N†=(7ÊiÝ^ñN)ª&'ÈåÜb«ðz­ÈÝU®´s?€Ï+ÖÏåú]ìÙ4#[yd"ØtQ~þlV¹%ƒE¢$Ò†ÓÎtm‡O»¿:Y45îüçêî÷ÏŸŸåüg«P ‹îùÏæÖKþgy±8™ç?ûGÇ• r»vY…MZã¼\gÌTø÷ÓAç¾;ÆÄY˜Ø7q'ø&Áªi¶°H­]­ÂtîÁä:"€÷f­£ÃøËtT ÿÆÓ©@ñJUÃMÝߟyU7ÃVEî ¸ 'ö Õ°÷E}¸¡¼ˆ9Ù ŠùÂpbƒò¯ ŠÊ:€õTôžè 1³FO ƒt„xó<]Ÿ K–yºåÅô¹Ê›hp‹#1”Yñ¶)ß&øyä‰ZEá+‰¬R‹-•)6·ì Îïç}+†÷4ÃCõ”hM4Ï€^íœaÕ¸Mxp6è}µÑXE2 :î!F° è$¸$lMj"B}&ØU Õ .L%8]râxm=¸ïu9ðÕhøÛãmwÚÓvkÎïîà“• >d‚Aýb0ƒP˜ÝÁdDyP¿Œû@·+Àaeä'£îÄx$™¤sòt¯î‚‡nŸŽ´Ä£Êƒ; ¥ƒª¦'0É)?‰D¦ß¸×ŒXþ*À’Ô×0é4#Ø@:êÜ)ÀS³v|°; bäÁUyWËH#øHÿÚGç{é<5¾oÏWŒï% ü,ßJÙ­ ZâôžjŠŒÄ†ÉËRHYl$,’HOƒÙhƒàOPA˜?Éþü³ü'qƒ†9#h-Q²È%kXr s¹?,ž)ég ðigM<Õ´žÚä§~eJû’ƒ_ÐJÅË¦BªqÄ^áØO^Q3-¤Òn0ÝöÑiÍ'Rñ…»¬oƒ,ÉnÿFþÂù˜e²Ê,§"T¼úí#mvg_æi¸û“)!ø w)ÇÄV»škõ›Q •1>øÜzã‘™.žºè#(:BѪUÏ—ÝDó<éz0ß:2¹¦L}dvšù|ž2ár?(„ëâûÞ øß çPÍ0ø±åu«Ni1õdÈú’F8†›Ûވᆻƒe˜ÊlÅWñêj€˜¼ _IÊH‘rýJ²ª*u¢¿ ôÛ˜sTôn.øü8e|凴öǬj2÷3tø7ÁôÜ¢vÒRx^ûH‘·ÔLÑ:q0†3X‚ó\ṙ™åé ¸F¼Â`õ7u¡Ù#ŠÂH‚4[a#™w+f1IBâ8U$ˆã8NC°.WÉi‚ -Á$Ì$%6o¼°˜’B’à… QZ†‘bN0!²ÉWw`? ùü:³æÂ,OÑpÓà#\h…[iI$´%)PˆMñ9îüˆÃúBÒ~CÞcÑ€ÿôÈ63i  ÍÛ¼¸GÂ=Š@ê¼Xˤh ãÇE@ìÂr… DNš×£a8Þõ‡·yÕ(‚÷‡E«;5©0º?G¼‘.ðÅ0ÝHÔ€î#*i #¡‹6ä«'©+’A&TäÕ£«‚£&h†Ã€pTÇQ—›eý½_›=íîc‘¬/E÷V”‡Â¨B'¯Ú|ËD™2-ÀçîÐMíH¡€y«O“˜–SúŽTÑB Ïlfå·+Eÿ™DÒv¥AªQ¾ò¯­¸>šijª„¨Ã]Êõ5-bIÚ:ÈÒNhÚuïgtNäEéKq€Ï`ýaæ!z}j¡Ì¥iÅUM8Q)”ºyæf¸Ë•²ÕÉYÔÜ|ŒâQÉa Êí?¡GDîø=bDc—u4I¼í{#·œÇeˆÉË»ž@šƒ0,ôX—ýªd0ÿc.µ y‚ª'÷˜•m,³±ôT‚ -Kd#{F'ÈèÑ¥¢ lUs%0¶°"Œoï,…LÏ3£‡h1ë°Èf®Yš˜e¹èX‰êäžþ—ýv&‚•“ ÷©QÍ?ÉäýS±î¼÷oï¦w8Ø'¼R›ÞH÷cM¥ÉÝE™‰z𤠇1mÒ݆›Mì3Þe»³UFZ’cIµí ÄŠW~›V‡©{Lgb%fšôz×rE¦ ÷‘IAŒîhœ§Nd-ª´”Îòó¹7ýÒƒ>)HoÞmY©t`S¦»Þ75Šœ6à#*° òSLFÂK‹›!ì“ ]_ õk±¬ùDÅþˆz×j èþÛñ#nAMzÿ~ÄøYxî¾?åWšS2Ùì„]8“‘IB´÷arb« €±+;@ºÈWši­¦ì–¦q¼=B£Ñ¨¿¡d*¯dj«W”o÷UN\‡Vte4¹÷?ã÷ŸÁŽÍÉôB‚4ÇFèh»™qˆœ³PL TpòI&Ìbè§lŠ–Í.:'°z}|³º€Æ[XÅ"K^/ =,`DoX( RRÊìþô–!+©¨…›e@ªvd0üèÿÒp=zü<èYsT‰„b¦MÄ~ó™šïýI«Ó*7ÉéM jÅ“Y¾2Ü%}ôÇÊÓr›5:¶ÀÖ‹Ó#P]rÿ ˳îšçò´ŽyŠ89½š.õلŶ1†¥» HñrÌxD,(õ rˆV€¼€^sÞ#g/þÌæ–QM7Ӥà Ò½;ÕM¯,ÜôJLÛ‹AÇ>ü²ÉÆ{öu(ê†Tã­[±AüRYëÊ7á’—VŸŽÃÑÍÍÆL.íeKèO—K…_Ÿ6²›ÎoR1A²ebÄúKϨÓù»àt±.8Mê‚Ó…»àté.ØŸ¿ öçSžûÁãÃu×ßòÅQGΖoùþ“´¼ #ýðÍq•È”¹oSÐ ·XëG$µ7@x A±cQ±[Žô™½ÉüJ羈þ+šŠ¡qëâ}~)DÝwD„Χ®‡ÌÜž^svMÅU’‰k$æc “-•L‹>|ó8xÈQ>É?F}KçKß©Üh¡ñg†‘[?ôe|#w ZØÁÉ1‘ÙXÍËâlÀ†ç«$çÝq/ðMT}µEgFIJôøW¾ LÒâYuçE|náÑ9oÞBÝÍb»#žì.^]¨‰!\Al!XuÀJ7çØ[tåÉx+_Ÿ3Y´ñoÀW~:1ô湟fÄà„®(¦ÐÐXvmƒtÉH0ýDÚaôòXwÚ]¡®JÝ$Ögϑڪ­V<æ•;‹ÒÏò– èX‘.Ñ—[ÍþIó¶Ù“þsžF¼zèN„:4ôŸÚ^g›ŒÍ©_M RþÅ á+¯(œœ¿¯ç‚³æ{qs"Ï3P ='Fåt* ÿÔšçôù=^Â{±ƒî3;ëí]q%*^ð7tH«Ãõ·:ÌAv0cÌ'<Ò—@ÌýÑã,]Ö5ùH'wè4 ƒPÜŒǬ÷&tßûº|@G–ž¥ÇÒh”—Á(äÌ„xâFÒ-Òu­Ç8hNiGÈø!Œí9‰«±|ØtjT÷©ï»·`'=B+3¼­æ$#5îÿÍ„oŠY R8ɨA–_þãù®x"¨öY-îϸ ¸/.fÔuÀ‚¸˜[ÅW3âÒ .“¶‚«‰ü”'h•{a¡þØÖ‰ê‚Mƒ¾P”qô›3èsG8ôf¬ÉùúŒâ֪чmgTP‰tõ1“/è¾4®-›ñçúYbE¬3ÇÞ–Š¯cÛY±Zô!ñÅ !u$±•ðHWÏ2¹!…CeHâŒ{¼èy¼½·)/¹sW%³´é­£ûüV¤Z¡“+ÙŽjÍâë­[¤~P¦k«8ܱýétÀc±â:ÊÆëè­mU4Ò°úÁÇÙ¾‹–:Yª‘ƒúÁþìR‘Æ øM:˜á¢äu·xE=_±äÔ ØwÐ0>c¥ŒS¥é*)/™`Ï@×rÁ†¸H£žKJm—*©ž˜NÕ —”åÌø‚¥›¾ˆGqhŒ`w™´Ð6Ô¸ÙîÞP¦PŒëXSMB[PÝ­$#O”¦HcU¸ú0éèbçºú®Òô4!±{V¤êr/ 6Ä{"D>dÕo¢~þ>h,Õúhô@ž5ÏË\•“±(rÁ"7‡Öªì7á•’¿Á5 ¯(c×Ç,\¨iY±ÓCƈã:ÑôÿD¶¼¼aÉ`±úG6ÁU‡°²aN#ËÚ÷¨Ã­‚Øbø×xÃ/¤ñù1ûN&-x¶!2‹´P®érxt¨:›v].8¹îa.¯ãÈ]ôã3÷Á¦~p=Â’ùf5]‚·Cª+EP¼*`=í»êê+Ž>k?[/èÎG2F9e•ukÂæä›'¼¼ÐÀ%²Ñ.Ö½¼Yp©H忯£ùùØëiʰÉiI ›î¯È¢Ø]ñ}tq™, bÝu³ÈKá¯Ê¯ò¾_aç0`ƒvû<5l¢ [~‡Ýå>¼äï·*˜vŠœy¶p,˜ù,|'¯dDž/ÉÐŒ ÷õa4;xÔ<´C'èéMõ¶;îOï }°A }+óå ¥²¥ÞŠˆ™Áè6ˆ­sÛ}š_ðð]o|ß~‡ û"ÕFèìÞWL­oçzúÿid°•X2÷y•ƒÕ[íÖé7Ï|yçúš˜—ÇÖ¤‹{¾®m|ȉmYÙ@9Óyh6ÄXÚ¶îÇÏŠ}L*#M%5;L” ¾óYʸqt#@@‡æ$_/À{YÕÇ¡m^.ˆºT*æB. .G¢â$NŠbŽlLº,ŽA‚úZŬáÖšSFÌ?KKNͱ×õl¾ü³+ˆE) …è‰þ­¿„¿£±©ƒ8ìÂ8ÅßÁð›pWMP0¶•ï ìîy—½"E«¼¾DŽ–: { •’ z mZ…x–t%îÌGL;9é¼WèD“«°”p‰%$}æšã`Ae4š`´r:†9¹ÏwØTæ(Y7ª§žS²Êâì*[£/Ó(gñ¢õ•âë3R¿ú”žÓÖäÚì~Ý ²>•)ÀíÈy {C}¶&Êý– þ¥Bìâü~è× ‹)6íê˜X¼yÍo¢lâõº›cþá5«˜%Œ-±&Éh‡äFê x6‹Îfq_*I‘Kö‘3çE#È‘ZÏ®]V*kqK­< à¿Ç*¿âT÷Û ËñXš1Éz^ûDÙÂ$ eô¨ƒê¨ãþö׺5, ÁM¶üÐç–ð_{Iº3"¼4“øõ12*yTì¢=ˆ©äàP[4¾>°AÃbe´Õ†–Úa¡:,µ4Áø5f9‡—òmX}²‹éÚ¾8Q‘ÚW5¬IPwhýci 婚S©Œ”`¬ÐKæÄÆcÞI¼5·†æm!|á8·ZFù^ñÜ÷·l®É³s!¬à…kk‡ÏZ[ñ9k“8‹só'½“2y±¼LŠõ’IkÑBò¶  yûuI¾/—,¿tƒ•÷ÛâÎz.Ì3%ovæfñ´#óÈ$–[¯#=âæàžv4ëA¼¨ŠÍ×ç±s‚Ú9kbœ?ge?<Âq)Óx-}ƒF¦¼–GxÆð䯃æºr™mѵS°ð.·é{™Fƒú1.%²ñ"ðȱݾµnžßÉ:0**…D§Ü +€C6º`#Ü•;ðâEhó§â.ƒÓ(D.‰Ÿix¢?oîÊZä§í]±«ŠüòvWcÎO!0ŠÉ?ƒ -~˰h¶!B0Û̲ln#ÜAM¢"HØ©¦ú±þÇJ»„/¯÷sæ<‡µ’ÔNG"‘›¼Há îKœArUæÄQ;1ó0â*%†–E qm£žGxu?O`c:íiëŒý22 ýI`²çÉN‘-žM‘½@öêá±Çn¤‡µž›Ñ•ô‹tiWž¿Ù ÃÇ1Îêl‡Œy^‚ù¬®Çâ©ãÝ3Ø ¿í…tX$@d»Þ—ku‡ÈÜXÛ«@Ò^G{aí¥°—àvFy>íeð³WžŒ½äìyp³W›=7; ¦:t>Á»£r]^…XmV¨<|(Ò&á‹KÆ ˆÀÖA!)„úûz/ º½½ZÐíÚA­|(»êªÞ·j>;­Ÿ¸¿®—䯧åÎQ|«fvX÷¬›y؈âYï´ÖšŸðö€‰Ñ­ ¸?&Áu8ݨâ-€îxN¿_u§Ú8…Ý#þ)æL ¹4n€»Æ¡ûáŠÁ¸cûÆDWw”7WßM Ú­¦¼N ã­žK¨7-œwYÀxìŸ 7†y’Ó(ß±§P¾ã{U˜ÌQpü[2¬ìÃ*LÆ:³QÁÉJ_-:xõâï!ᵓÃ0áRí€Ù·?º¿‡Õ=IÕ«-àøä8ªV„c1hè4: bJ/á]X;‚Âî²3;4NLC4Þ©}ñW’DærÄfRIbr_¾yBôtrð¯AÑÍ­ D}õ8êÀ´§ƒFçEæ+=+Ýé(.+ÖæÒºQöµQÔ'3êA«ÓóÔï#AþB–Ö•­3˜­¦Ðp[þðÓS@›GðÓgC›GÐдy#i܃~1»ÔN´ÔÇ™¥|øä§*6'B9Ël 0rÅç’`äó‚‘׆u7Àøš(68ÚßÄ×aLŸµKqïQm³×¬‹»„°R’ÃÃ@ÝVˆÅüy.øqõ”ô6è'$šˆ8ƒ‡ç$L¸¨Ç*?U-˜LÎûÄHnâ]Ö“ÃŒ|6 ÏÑgÜ?jÕ5?”¹–‰æÌ£6·!ÍqáxûËþkŽo 8KF2¤wZ<ïêTz$ï(Œ7öÚÎ, ïôÞÍjÇÅZµ²vD¸“з‹—e íFH+˜"½!¼¥Dq'ŽS7Xs\eÊwä—Yß³¡½Saz§óN‰â¾»×¿í ]èî(f7¿&ßîùrApEuIí ²^Àš]8¿;¸[ðñfÇAwË; ²R]`&z·§LXH*cÄ”g£Û¼Œ©Ïûðÿgƒ‹¹VpçZ ÜïT ß ˆßsÃ}{¡¸â€¾cP¾iÌÆ÷Ž÷N¤šÖ;Ó;F·,‹æíáv¸ÍߨïÙ¨ r^íÚ¥¾ªçAŒAØž^;[ÛÖ¦Ù}(H¬3,ó`jGµÿ§Š:îEph;4ÚFŒ¾Tþ³rôò€Ú~`ÏhŸlÅöI[«mCá'h§í‹öâ}! ¨Ÿ¦/âaÅ›Ö*6¦øÜ€âÜÜÄæÌèŠÔÍÝ™9fC„ÛˆÓÉâ¿4ì4Ò]z:RLÀO3?…d\¸á'&Hø|=þ6Íd[U—·¿W—7^ÏèòFßúð çlJ}ž±š'˜¨¡:G 1°ínÅqyY´åç8¢5à ‘í,{Vn…ÏÖÜcЯez´@ÎÚGßñÀ›Lƒx3*nŒ0¥O‰@Žaî´ØñiÔ©ç¼´Hžå©èÌXÉfÑzÀlX$¯3É4£œGbhåi)‚d¦f$§Ês‘˜þØ—‚ÎÌ!ŠéOÏüòaÅW)‚´úµ?N (þÚAö¥½ˆ[MÓ^¤ð÷@ò B'‡ˆIÿ R48XWn¶†œL×p=âhDõ[ùEm•›;ÍÆ3œ¨e(ÁndM$ü~…›5Bæ®TÖ?öúCš+.”> ¸«“æ5©éägC|e nÑé uvà}j{¾ô®ì2éÙ‚<_Ê«?bÖÃõälû.k|üü1Ú¸ÆG<»ð1Îç§ÕÀ{.ç3ädÚ˜ÔÐ]EކV—ÍÖ´«—_âèiä—û1ûãˆpœ4 SȰÓ5mP;4ÖówV@O>€§?î– mÖõávîâML¹D]Ä'5ª6”?eøÛãmW.‹XLÖÙÈúœlQ±5Õ¶³œÚÒšnôdco•z`Îl:·<½ž$›N'®c­´8IYqälš9y–Ï‹óÑŸ'±f§Îô‰q´Î°Æ"µFÓãxçÅÙ¤'ÑaZΚƒïë*µ-;2ëÎ@ˆÚ!üƒHö„!lF ºNØ ?åÁ³jŠ#2¢~èIsNOá‘¢g=PüJ(-¡—¤ß(¡)ù«˜—91¿|å¬0Û5iÜ ûÂÛf^*çÚDòÈÑfȲqÉX[á¶îó¤¤Rð›KÑ!­ô ˜mŠY˜:fµû9Ñ'ˆÈ5I±,-»§K›‘-fÕò[ªfâ©„Dlâ,}+âAK»§¶õ€œ¼ŒåægÝ`Qðè‰_™Û‚6©øFÀúÜ®éi½P|2½vJäÈ‹žGjºÌšP±óèÇ™.$ó“Ï—wO<_ȼÚL0¯ÜU1j*mÅ&¼¤²´hF‹m'›WgÑ;É%Î]ƒL[c%GúCm„©•”óÙ™/ž¿Ò¢ã•¶×b£æt™rd•[1Uzì>kÙ<›ÏsjÝžQ«mù‰?çsZN;ž$…$¯o Aè&ä!p,ÿ…Òáh¸ÑÚÈêœ @̇‰Ý+ÉÞ[ššhÚX?‹”¼5ã| Áª}ZàÔøæ½}m˜õVÿØUúµCîqÎAKgëõFbËSLجÁ‚8w[„ ýŠWWïvÙ•‹ã$ÖzÂÒűØð‘ä ÎÒÅD9z‘@Ö°˜|>):iUÀ²˜ÄˆïZ¼‰“pŠ_3ã¯9¢ )ÐÒ‰ÁËñ–(ô?oV‹Åø³ªÞ³K“Í¥âæÝLÎá<+¶×^Œ¨ o\ L{ú{/‰ŠÇpF7~Ô~b.fôgÜt9¥ Úg_àËá´?@Éã‚ø†„ Ö3t+zƒOŸ££+â” 9EïÝÓòµGËr“IÒDÎ4b3„ŠU{3²j«vÐatçj–Ð$íͺ2:ÚÓm™=Þ;‚E„Ì8g{M¤„[s”¤<®ñŽBZó9˜mAûh¦1¢ƒ$;ºil¶ Sz–S‡WEé‘ùuþMi·/ ädœí3['³®HfÝzŒç,,¦°îØÑè/?ËLøËmÎ2öÖS:à QÝäN;P~\‚ÎÍÜ,=¡r¤Nܦð­Üó&ä¨~B×_µ®ýçèsf­“CÙq‰ØN¸ÊbeŽN—8šÎÐðÒYbÖh7e4tÞaóø·¿ïdhkO‹èþfxê×äø¯'!µNÆŸNáË[xü÷µÛó¾²[dË/,Ý­²¹Ã;jéÒQ—E:j •ÃSài`½xï[¯*5S4ó+ü#š¥ºa¤nïDΩr?{’=‡=É6ÍÜ$¥ÆÞž•{ÛàxÛIˆ½m'Ķ“`ÛdTBì—ÌÓüJÊÿüû³ä.locþçÂVqk'Ü ·6)ÿóÎÖKþççxñ,pó?ƒQؤe¡2ö<ɪ%V¾MÌ–{,pè0>¨|œ3@¼«(FZí;$©|†D‡¯e¢ßùTß!b4‹|ë¯çC52%ŒA: ÖwE뻦si&ñ©Å@=ÆT†Ùb‚fT5XO ¸C™–6ô ]E\ZŽxµd›rI· íÝ"û6vám‰eäªÑÁ¨@Ã0æ*0ùµÞºøI!™û|°(=Mc4†Ô¤qÒú‰—<Äy„ð_½'T‘Ëe°UÖ*AÖZ#å'»3ÇAß±z`MiÿÉÈ2RPø¯µ5e øÒ{ 3ˆ÷<"JÐK[¾^‚ï75ö•µ§D b©Ù0úàW@D#û_·::y!²‡Vs”¢¥,Â猕X2ø‰Mw»‹ $ò…Å“–DÈœ¯º_5-±°¿³%(‚ºå©<Öƒáì‘CÜ€‚Âá“Îpƒ;j’5ÔDæö16* EœZû`"¬@’Ì™ªá8óµ‡[Úƒ°˜/©!ð×µd•4þƒ¿°*ì}í"^‘4½L½?¼ÉL‰”ŒWTXÛœQÛ¶¬­(jÛN¬í®ûuʶêf¦«m ô#›2ôÁªÉÈdÀuNg¥Ê¢ˆDOZ‘/€ ›‡Ò=”€‘-ž[•oÀ[þâxJ߀Ú%üÑm_Ûë&àß>÷Â|„~ƒ‚Éy\åy\>R¥¡–[ÈSPNç)H"!u‰ë‘|KÌ7ž¼0 ö#×§IQ©!KvGÔ…;Â(ñH<«‚¨×‰8 G?iå‘úGfþ*ݺSå~\’¤gA膲vBäÔw–ç#K‚W¸¶é쯨 ín£ì¸WˆðnŽtÔyšo2h:ê 5™MÑžhc86Sß°h[mñùHR:hJK;hvžÈAS.ÍsûgžÄ=ÕVÀóIPÁ—ñv*é½3†‘õФô¥vÐhWÐæB® t•´'¨´'h.GPý{;‚ü?½«gñÿ„…­­íhüÇ‹ÿçY^,|Žÿ§ºŸñ‹°Wlw(—ÌOêòäÆá¥ññgÏîÇÊD˜ÆŸTÝþ$òül`šk†oû"zDî Ìe§Õþµ6J§U½Ø§¿íf™ÿJġڳìWÝ ãßõt¾ÙGºƒ·wA7¸éÅ4•=Z.AõÆèÚAR•å0¼ä7¼÷‹tî1NÿûúŠzwÜã¤ðø=’€Ïƒ)auuÆCÑSybòš›œ£V5ËD‹‚W (r†5éço@ŽóI÷‡”hAFÓ(K÷°I°Àd ïÈ‹E^*á1Ëæƒà„X¾ŒûÓioˆÜ ‹Z8Ê)p"ÜVùÊ\‰°f²éè&ƒ÷ýkJñK8RPŽ âiƒCω­K*ÔµŠT_fs…¦c·w‡²cƒ$ÒšA!õ&Á÷ƒî-__ëƒè]Á.™VI¨Gdb¾E×$^râlŒ<ùú WéydZ+w7¦ÏñçK®%KÎÙw,&ó1É>ÿÅI},&{]ü^çÏ @\²1áž(Фñj‹=âá–¨6Kyú¨d2ÏͲøÐ4~Ij…*Ïzˬ¤e”X…³ æNuŸÅuJ[âï¶ø»#þ¾ý®¡E3ü[ 稩îË_?Ô©æ’ྊ5ÖgÙØ$Š,zIOÂ>F]¤àîèèÍ+,ÐBý~x§æ~VühøÄØYCƒnFÙû &ܲ°S¥ƒ$£¦Ž˜ bÞé Ü4vét{ƒ¾ÇMuÌÅ ®ÏEéÝ'×ïßëlg”¨kÅ!5Ž6¾7@>¤¦ú6굚§Eo©E ÍjÑNF¨©rB©hÝê’&gÖt›%*F~2tXÓ(On;Ù#ªhôÛ’üÖ ¿Y¼ßvXâ›=«ßÞf„^Í %.U¶^›|ý†z8¦ßð§™ý&ËÛ=$‹F¿]u¿ms¿Å7Ûßo¼Ú¢ã‹¦YðZH'¿Aƒöµ]û ø2¸Žu¤-D5xní0r+ØÂ¼Øî6é‚Â{3kä›Þ‡·ör»ÆžÜ=þ >7;üÁsYǬ Z·òºvâÚÕ,u•¼••j+ù«ÛŽ«®Ú|Šê´ì {Êaü“ñŠ7 J.Me¤Èüç–ퟑWœØÔÑ &Û¶F £Jo¢Öóžóa<ûá^ï<×\6<;Ñ5î‘ä]¨Cèà­dðÖ’¹éï»Ww¸3Õ9ê3` d¥;u;¿í[ ÌlxA†l•Ø^FaU{ѬÝì_óJ±Ü—ÑM ½;Âíµï‚šÞ¿Í±¢7J1Æ;øªûßÛÁ7ã•äÿë=‡ÿ¯¸U(lmýW†…- +ÿo»ôâÿ{ŽËæiëä°Un°ÈVSû÷Vïá{ßû<~쎿¡‡o'…[­*&0ê<#@D0>16€¨}ñ)}ËJaB9æÙó@í}èNï(Ûöôôl4ù©È‰Q= 2––­jr§L.«ðiÓ&×å#?ka>ñ£v•ò—ƒV=ßçÏèzÀä£WÕÆªŽzã{LR:LQÏQµ#ëé }Ø}[ïù/Öƒös²,V{=îcK‘Dõ¬¶Ï9Û{û@ÔzY=¤7ÆU¼à€ˆDy¨žKBm‡PûêîqÌÈ#±…Û¢ðùE:.ª_zãi3‚`Û%hp3‹H[9< 2ŒÍŒ‰o¯ƒy…ù…ùðâ#éï1JÉaõ㥰Î!¶À´ÑL¶ùyx';¾ŠçnvçªÎ?+ø{ + ì ¨p’—94M¥¢T÷ÁÅ*}ç3nAa_ £øRÅ,ùúxæ²RG®¢üe#zýö\ð ""sËÖ!yø:žÌ±V§~üÐíÝR‡ºòäʓIˆŠë [¨ë0ßaLZ½[ØÛÐrÚ]÷v¿¢B8„¢‚ÆÇ–M>c·> È®þ8§†‡ÈÇÖ{¡V[†ËaÛ™hé%…hŠ%þžâˆ¶?”)ìó!~àïi½.$Þ7:\)æ¿Êìcbñq·?ÔQïu¡ËÚÿ~ÄÃ4Oe@Bª°kÒVIp×À\÷onzcŒ´'ztœ2ÉŸ¢ðº;íâodûÐéšGû~­ÂŒüZmÃ?8U‘õ¯°¼\ÁüLÙÐñ¤hØe\à‹dZmÐ'nx'̦›þ8 ‘(¹‘ȵ@g Má鸥«»î†¢† »÷=²¹®Q(acÂÄuØÅ¸w¤(”D–^÷zÃë Êæ:áÂ&?â.lHÖœÉó2‹¢fJ+¥QbZ7/VÓ¤«ñh2¡9ñ0êƒÒ¼0kBÐäZs†ÕËG0³þ˜ÎÇVÕ­%ük/C£¢wTѧù+¢¸"xâVüëÞÍ€ Ü/ýáõèK€ÝgT‚X³µf­2w¿ ûŸÑ`pZaRFàÌZûè}§=7m%õ÷Á´;ìa¨Öä®3dÍ:p†×ÊûûÅâ¼uLzØn`»>^MÇjÃ`…ý‡Á·]D¼ q¡/ZU‚^°Âä¤És ÞÕIYÒîwŒ’ª õ†ãK0[Ô¢ò0†>VºŸ{¹§Ìc¤öå®-šh?Á¦ÌرE‡"©Ð,û7Åhì£4çF·Ü£;¡RdÀ›#âZò”C RFŒÑmÁÀœˆ3Ú¬~BDŸ+s²¢…öçÈ"0†6>…öqN\1òÓ—·@Š,žÆß9"ä» &zýszªÇ7~:H ñÆí‘ Q¢ AÍMlÁ/¶½£• DÖû¿÷ðŽîX°×TMR‰³ù>ì}eë]Ä;ÞÈ®$ ¬¢¹’…[» ò½i‹öûÑ#žN{·½±«Û¼ý,«ÉÖFõäý.«EgGŒ®®ˆ0o¾@lxv0Ö;ZðŽ ö°ñceJÿÍ\iï{@j£ØLÙ˜Ö]ÿnÊÙL©]‡h˜EÂݯÜ?N(߈ÞA GÃσîð÷ ?íݤ-2›o y¥iü^÷30¦´iüû6èÈ}ñ•6M öè“>*V¢‡÷³'=tÚØD°»„þ ˆRìã[17˜–²,ö¦#‹Îg!Ôï)ìˆbPsÒ¦*†ÎªòïGÚÁ:#²$ ŸE!z0‘C­6èɃM|÷¯†!(wý47©æ+a!Æç;PÖ¨°C–…°˜Wç–ü }ÿ:nŽ¢kÀÆJõl.×d“ìÅ)rÍM’{£üÊ \Ü¿#¸y±såI’m”½X´‰ÕͶhv“Ʊ›;ílxs¾€qŽ7,-ÄñBÕ”“#}qÞjMmÃp†ZZçK×âø.óŽ-oª,Y‹[*§FçFÚjœ›ú9+¾|ÁŠ ¾¢Çà+=“ÁW_> C ÇË\Ûsì¥%_kÞ§lf¬ªmµª¶;þUUŸy–TŸ,F½@üpM·Û Ð5Üês’öɬåç+Zļ ºKyceKù&¬.؈,ç+«ˆ­í8ÓakYÓÁõQ·a"îÈÚþ´öÃÎóÚoŸÍ~À·Ù^MMÆyLßáhMú×ðˆ;f´ÿu̱Ô?µÙR|³¥ôÚ-/~*®ä/â§ZÂlI4X΄ÁR9`›âóhzéb\Í-É›Š\Ù> \©‡ÅQms@šk(vÑ$ªž‹vTÛk–Ó ¥©”wíví²:sÅõf¢\_WäWBùÉm‹øÜÓ^°‚íÎCWá4¸Á/ÅBe‰ë (ÜpdÆ'\†vwgºÌJxËÊW»'ƒ’ ÊV9EuŽ^±lÄÍ‘°ôf˜[B䯑æº÷ˆµY=ŽkVöOôÚ8qqÒS“Àpw\ãŸ{¤ŠˆÖùØnéÔêåjóœDŠvûç¾Ég×»LJY¿ãmHøÝ2-<Ï]:ò9=¿išFí2mQÆ8Ø¡³”ȯ.ìðfÖ±íª,[Q<´ªÎ¢£B õ”î-:œ§bE×¹-Äíö‰¼¿¯^"àZ‰ºØKæ¨jÒ]·"1s2ÒR,Øê§&ï½ò9ò§_ˆtÀ“Yúv…±T_°U,`ÛÑõkg7x–õë-iBŽ{‚Az‚…Œnûú—ÖÔ>†Zçdžâ•Á|¦½úÕ ¹Äà$n óÃd¤0‘:B‡ØáÈ6XûÃ)a$[Ð:‘«+‡ð³ðnÒ—·Ã}¥¡)­°& D(¦2Y%Ï/ÖÜð¼9VÆøE ·1$ ä¬)L°‹ˆPì,ËÝá7?<¡XDÖôkÛÜKU‚jMTIKϳ„¹âeÊsCï8Z}Ì4ˆ%þ/'ᾑÙö‹”?ªÙ8Ù¼ê)Ô:Ýt¥$áà0Ar,*Q)J'9v+\)rOzwùXVpL¦# ‘€Á _7_7×׋üdN ’5ÝsNÜ®©ÍÇí#µß'âÓ«µ[ ƒÚBèÙI6Ï_FÑ^ÖMÎ¦Ž µš,ò˜ÃàéÊá‰ði/ mda­{…,ZÓ6…þ}]¿1~0Ìr£qé±mÕw*zØö¹}éO`,1¢´ …¦‰_Gï›bc0[P6A,iaÖ-Éóxr/õš’íéP³Éëڮ°·uOE¶áò7c59½éÜ\d¹Ç«³˜Œ0Çå5=]"µÆóзLŒ'4R¶'˜oºÒr… ’5’C\÷Àº«þÑâ=[˜»ø¸«ÓÍ­5äP ¨=¶9/"öó^á‰Öäö…jäm)Р©Vd³ó[‘“–ãöËrü—XŽ£ãø²¯x9.=ÝbÕÐÆiöHáéG¯‹—u?OºW=V ¸rEqáKªÖ†ZÚsBÏðþÇÑ÷bsm·+R{aYêãI…HÒŽ÷{ ÎIdÝ2©Æ×½q‚q¯-‹L²5 Ë…YÃ" + Ò'IA^¯ø‘AK½ÊÍi÷Ú[yeI„ÂÆ†ê¥6 qÇ]"êM:щ·ÍZs‡Î8ëo×]*qyÌ üGЍ´6Û„Ô:=÷Úì´+R¹ªû)Öj¼–óúE+#¯ˆµ[‚†y´k¿+‡§e.í<ÉÉ+ûfݳäÆÅ úÇ(§î"J7¹»ÜíÈ ³e -ÚÍDÃìfŸkÙVï‘^9x~9x~9xþ›ž§9|~:3&bżì>ÇÁîáËÁî|»«_º"ÖâË´’%hçûï<í Ôþ)V  {?l/;iVÿ$8—i’¢+Ì‹þÿ~úógÑÿÑÝ]º½½ðíîæØÑm=ÉR²Š]ÐKô’¨ä©¢—žv’u󅥂U7¯J§©ŽÉb8df5ç„£¸Þ\o>ÅGÆ>®U`Ô)Y‰z%»_S¡ƒî9P¤WwδèNY2TDÂïÖYƒT ÒïÎQ±½®=¿„Öˆ”A×ýî-a;³G •í—ÿ› ÿwå¿­Ã…¦E'öl¡,â œÙVE,@ª²ÈEäT?¸UêîÅó†5%–bp‘ã57Ö=¶Œ\£:wQd^ÑíäœÑÓOq/zåpF¯Æ÷ŠL·ÅÑbéz…sòü¨½‚i0K¤/à×GÄ5rÁin2bÙ6iƲ³®!wº(åÓ$Ê[óÇóiÊÍ ã Y¼Ê5íAsþ¹¿Ã?×§þÝð_G“Õùc:©ß¾Xr\Éò–ÜÛ¨%÷î™vëïžr·NúqVòÑÓy×î1ïÚÆajœ¥þ±õ3(õÕ)ñÕ)ímü¢_´ñ«Q±ÍÒÆ:ƒåêßöy’þm¯úšÉ‹QoT¿¨ì•ý¢²X•ºp–Ê6ákW¯¬1 d¼²†_eý#ËÂqªÜ§¯/ÚøE¿hãm«›òòrõ8Æäê0Æ$£ ,q¿H¨WX$–'£{3¹¹ÍеnýÓIëÄkZÏl­ãß×ÅBVF÷ªóq:š‚.À¾ Ô9}9è(ý`b2y„jñH€b„¡ç?÷oñO“O†ˆ}æ^­P`£hÕ&É6ŒQ+àssã󷦾ì__ )Ø[Å‹IÁ+ŸNuHz>ÿb)ÈÆ {IüzZn•ÕŽù{†ÇmF)›@e™}¦S,$’NL¤‚¼‡™@„ä ‰Š-(’” ›H¶6“nÍ&œŠ,§%Ô¶Yh:/RÒ95ŸKè¦Í'¥$·>×*©êã\àfIJÜí²àªrýô¨,;TªãÓA‹ßçÐ`Iªdñ¬Þõ¦PÀr-!B‚6“Y·Djÿ¤qZ¯^¬‡ÛŠLÙx.Ç+"òd}»•ÈȾXŽ×éßœù´/´H¦S>3º>Uô'»mñ4.äòë]Dª_Á|Á§ï‡W““8IëmÐ‰Íøa<¨—û ÚÕý¦´3ª ›!¦“sŸOà¯ýøYíÖ‡Êåz¹Uý˜ .èÎ,°ÂÀ2ÂÄßcñ·ž´¼ÀÕ}~Vü+ Ò² á£$]‹´;øà1-–ø×KüÛ&iÕ¼jµ’JÒøíË7ÄGÛõýþ¥áPã&:Vtÿ©%ѹäûÅoD_{ºì¤Æ†XuÚXÑýbè­Âbisk{çí»µàMB²€ @!'þ áqŸ.í]=N»˜z¾m±².h·CØl°*Î(Y!;¾Ï¿/ƒš’|Ó€à> ·2rKÜêMÇCÜ•ÓÍ2øK™ëïÓ>^J„ûD^kãJÁšÞ?ivjͳªA¥ËPÄÆíC î1ÓC?tĨ6´ªåƒ o³Þ7õLùm!»– ªMÜØ–À@϶9îàkü&ƒ>´’j8¦«ß+U&Û…œÈŸ ò'­¼çWJ*/I´cH´“I`]þÕR!¾'ÊÎü•a¢»øÊ0û$)ç|$(É~¨óÑrLä}󷨇Ú1µÍ‡ýšÅðthòtSÝ¡U]Lš]póÐ…ùÐQÅÿÐQÅx¨óPÅxM}Q•zècËÿžìÇÿaë£A¢íoù6åCxæã{ˆN{t³ê1ͪ›Çci7Õ}`¥j_¾ÂkYQ†"¦îz·Am¦Ù’ÁCÛÐä—ýìhÛwZgÊ´7›ZÝÏh¯ðʧnú ÁjÆðÀûˆ€Å^{/w^È;2)ü׊9ÿt‡ºÓ;ÁýKé¦eYˆ=ËpvÔJüà5¥® k¢™¯wò…”ë:h 4VšÍ`B]¢‰§IýYíèÌQ×VL3ØÉ ‡mªºßºu›n©ë籎t¨Ñ–‰–ožtò¼œ’iË«›Ë°¯—3ÂÁ_#5žu"צ0Ç™T8Â]%~hkúG[âÝG›Ö£¦\èŽAW‹bÅ¢‚¼(~ý‘46 ÄGÎltÁ-ëÝ,‡ ö'ÏÁÇ[ÆÁx*VT·éMyfÔ ¶ÐZcùœ1ú³ÅðÔC´NHþÐÒà7`5ˆÍVÔðËãé yù(%ÉÇéRò±œRÏœ.) §Ë ˆ‡‘…%¤4·„œj IÙÒ´$ k(°‚YBV!3ÍÙ2³™$3Í%e& –3ùXHjšËK‡•…åfÓ'7¶j‡žÝŠëYÅüªô >±å¥k®éµxnjN”Ö™MO53Nú}vÏq.’ÿÑøÑš$¸½T“$ÍhÏš ÇÑ8v&ȶÆãÈ9^~‚c×/9AŽW2A\Vž Ûs+Öc-”‰c¢DË‹ªÐ‹èfâ7çrjh÷±{z/1tFÃÉ·ûûÆâµ%'¶7Ç!°ˆt§,øeÀÌö']Èa¤ª¥^qäȎЈúHÐ=¡¡mêH‹"Y(”"ÔA¡c¡ê:QBCŸX$ï*4³ ÎC«pœ8hÕ­ºŒ©»fw×¼ \,ÙÄÀÅÂ= ‡q1¨<ò`ÊÃÜ<|Z’‡O’‡O‹ó@BKðå™Ih~DìÑâLâB“šŸ ñ&,ÉlbC“r׎X6œ¥ëþѳÝ\ ­§Šæ”Œ}ªdΛ¸§Â"ùà™Ðñ„%S cŸÚ4%ö©-k cÛ¶:Ú|,Á.ªàšfiÏtÅ  v-—ªØ…¬íbžÚ¨ÃEIÝùéJ~Â’–NHWeמǩÊÑ0í:S/UI¹]g¶¨ÕÚ:²a³A™Ö‡ç¦Ê0®uüp… ͈ÕÐuj½˜ ßÝdÐã„ çg€V(s´‹ó1`Ç"]€[ÈA&uüP‹S°ivcìSo­¦þ…–‡f[kÏS Ç×WÛ’ƒ¶ôåæAž?’ÓËøˆ®/ýÑReG¢?n1ŽÑ-PŒ›äg„¡{¯ºC¼c†™éÍ[y”Š i\»¼×¯¡ï¡±c¶ç`@õ Í~únÝG×ôE{Êñ·ö1KF1?±>±<½õñäœû,À—í] üîÕŠÙóZÞ<ž£˜‘Q ¡å‰`V³V郓`§`?ázMŒuu†³(q€guõ;ŒúNô ^iSúb¹zÇ•Ïw4›1¥üwä ©¨)–S«ºº"åh¦”- 2w&mõ”MŶz£|úž8¢ ^èH­§º·©„N’[Xè\‹jy¡S,-!t^®–º· ¯É>¡K1š‘CaÛw3ÆVƧð×wņ̃“ê‹t"^’/R«O¼v0[”/V¢?MÛ|iQ¾X•þŒpµœ(c‡òk^Q¾ˆÕŸi†Ó'Êa8K–e!Ëa¸¬,Ó’ Ó¿Aå›Eð‚À/@†uY¼ú_©dó®èGÏcçSâíô¢_L#ú핈¾¹+\ZôÛ«ýWKŠ~qQÑoÇŠ~šáôŠ~i–è·]Ñ/-#úe{¯ˆ<Ï%½rÓ–J|7Sˆ¯Apqùu} Ë °ÉÔ2ìåkIÞ\P„å¾;*ÂéÆÔ+Ã[3FØ -…xkY!&WtDŠ}w'‚8)Þì4B¼•Fˆ5½ÅeØ=Ê[T†¥ l-*(Âíï“”Týæ”­Y‚¢) 9ÙZœ|Z^N>¥–“íTròirb·.-'Û Ëɧx9IÑo^9™é,Q”¥œ$xÒÊI­R_VNè´*•œ¤Ù™kzËȉ}$¾´œ,ºV‡z>9IÑo^9™µÖ”¥œ,µ&9¡“Å%EœN¦‘”í4_ƒà¢ \XVX¶Ýcê“\´¤ê<Ÿ¸lÏÚf¤…¼l/µÏ$y¡óä%åEœI§’—4»Eƒàò‰0YZ^ݘéó{¼¤ê<¯¼ÌÚ›¤¥¼,½9#ð§åvg?*Õæ,½¢é-á!Ætóä‹Õ¼-å!V,-å!öpµäÆlQ;ŠXˆñ§Nï¾l–¥)ËmÙl3Êú ey¿;¸zt§Œ°A¿"}æÕân\÷0|KIµºÃ©qîéé“u}|ŠÇ~Œï” ÖÎ€Êø¡:ô¯¾¾ïïÜ:÷QCüŽÓ¶ŸöÉ‹ÉRI¤«“þ`4LCQSûY+èEBä§)`™¯Zw;ýŒ§$²@ì©•O©Ý Îòô3ñ‰\ã…µ,A–噇á õ¸pulæYÕ´Îý2?WŘôŒ¢²ÑŠúº7¹÷?§E‡N¨†0!U-µ‰„ߊ9Üé9$‚ s¾ô§wÁ¦„LÖ`Év=lÚ„½P÷ÿÿ;†ƒŒB]4•Û¦y‡ZLo•6E‘YuTP‰½µÐ€4c¬ÂS]ƒy÷ÎT®íÎÉé !à°ˆ6¼ÕÄ$”gTŽ%ná…ŽÂ)Âé C-¡‰µžM+'ó`Šñt}1¡¨^³CކŸÝáïÀMïÞÀÖT67ÞxLÃw1}™xÅ,bnxÌ‹¬„DJZ) D7ÂFÂkñø„ªˆÔŒ>jXµP|.†1Ì"‰ZðÚ “!û­ªÚcuÐ!>g*ñõâ¦mE–px1+0a Ï"ã„ǹŸ H€ú²¶KT³š_ ÖDœTä—\¸Fö\Íúj?TƒTƒQª…ƽvüù®‡°¨&»¸rõ¯ü:"¹£Â1µqÀ×™aCpÌs?ŒX‹Øý Ce‚ãÝàØsÑM—ØZÇÁ†õdõf)RêÀâÛ“wÐ µ\`˳®­@Ò—°i”܆…uz÷šá#ev¾F/‡é‰H ´ê ïÇÀYdW‰@û÷þƒRa Õnäsý &¦(D¶Y~Ò,þÖ¢m?γ-5Ï6mÙãeöØZfù®]1é.ªYµZ‚hÙÚ.‚$F¿ P¼¨U™2’Á*ÞÃnšQ÷„…Â&óéxôyл_˜úywüÍNT0Ñ?ë`š ‚¶ &ýÿôœŸ„Ì~ßöïïc»`*WãÑd‚ÛŒàa*Ó~¦ÍÏèøÒÉ]ÿfj³CçF}“ÇÏÂ>à:ÿa> MÀÐ3Ÿ%º3#Šó·n¼3ãæfh4|¸€ä6ÀÈ}È/‰3(FeÆ™ „0Cp±’¬êÇÖZ”8Šxâf8&†¼f‡j»ê0òêHòä}7jîM'·LÉ<JzpÓ<HzpËr'=¹m9ÿ Ã][‚æÑƒ³£™-¤ü-AÌòéÚ?A€VˆêÞ QÕÁyöÚXÁNÎÕ²ÑÇ­³0ó¼Ãòf뮌v9Dg¦Ÿpeå|’ó‹ºIcéSó\>ô«,§YN`ˆóˆŒ.Þ–Áù™Mýø–K*”œŸÙ‘8æ’ñÞ`ãm 2ïôãaÁxï“1ßE½%‰‰žcLtþ.ÒÈt3±ã9ƒ3Œ|¦÷þíꂣȂ8W <¸ÆC¿ÆDQèwì¥7rO-²äj(ØÈoíÅ—\ýl›ÖÛöŠÛf¥ýñWFëÇw0o¶æ[7Û ‹‡ÑL<`}æEsÁ¥åíÂKËÛU--ïv\Z"-fÿgLkÕ2ƒšv™ˆ×dÈ 5#a¥H,ù6”Zoiµ.Þ'//ºü¦QfËxŸ¼¼èò;F™·Æûwiù/…Ì¥¤z$‘Œ¡4×¼4Ë%¼|ËRÝ^øo"•„*˜¹F³–)Ò$b™Ò/ÏDÒ|Њ‚£ò‹¥™RJ˜Ò¾]Ôà <6!Ц¸¥‹­•ˆ•at™skö܈ˆÏfŒå’HÆ+>O)"4ž‰"R|7·qs¸„ÏÀctA0fŽzã{Lƒ9 ûúK{^ŒœÙFNÄŽAäÂÄàŸÂ)5EJ…ŸÒ¡¼@ÏeФX‰Mmï.á†M±„lÙ˶¹™M­t“Vp©‚é<‘z>LTÏ¥p^õ\ñæ á½'çYrïy~€{ÏþðöqÐsúëà€rÏŽ&}F»^„îäåÅ›i–—wÜ¿½›w”ϦÝ›xµx¸ýChqcX;žXˆ6z '0êH äßÙV2,|Q6}”ÈõSªF(,£^OŒ¤ÁÛ3îq}Ï…Ë|0õ²U\xÙ*®lÙÚZØ9‹ý¿à>Eˆ€Èiñò/aœ)•²Dm-w)q{“ûŠÙB§Þ·$l5Xü\G¯õÅN:Bo㜭<øO³C¥y<ïÕ­EÙ7iDdá˜Ë¾I°iŒ¡KAbÛôx8î›ÔV‚}öN]}©4¯½AIÆ–Üš‰4ÎgŸ$Xh-Ú¥>©ž™žz~BQ[ü¹w5'ÙEù[Ñ®GDBGb]ϳ²’Zwè`YC$0¦hõÜÜ‚¸dVwhf¸dâ D·üÓuÆd(bé²™Ë$fãJªPä# ÖÕ®þd*V`ŸÊŽ–b·W;áÛKMøvi_Ý=Ž1Böþez?ýôn?ÏôNã˜M>ÈN3±æqê#èUÏçö3ÏgÊí¹´?7a†Ÿ_¤˜áÕ¯½ñ4ie¿°–öœµ®ÓB¯3oñÎ}ÑÕþ™Ä<0Ó?‘‚8¿˜GAµø™5Û ù]€¹-ö˜mäü§­qG­>u– üžÈ¹xfÖ^3O¥V¢µÚ¦}òjêE7¥×MíçÔMËX0fx\g‘YùVœ&˜¹A¦Îê-šçÖ‡+9¢¶õÁ!žR›gÓ« w÷×úL‡"«k·ªÅ‹ÞúQ¾î\÷ï{C¼kK·‰ÿIJñÙOR 'µ:¢Hã;<ô++tß'‚.=ñùƒGŸñà[ -éÉ-óºþâgñ› jl®ìPc{¾C cІ’SÝaÕ‰¾ëÚ{„,x_ÅdcÀšÒ>jÒµ²üA!Ò…éÎGWu¸Ï¬æW¹˜µ,‘„w[Înêç:à<‘޹.’¤ZŽÓ”7: 4ú%Ô1c‰Tœ€±(?m áar‚~%žó®NœÅ8møì,1N6jˆ±YÿÛÔÛÕ ˆ5 ùJÁƒ3æŽV|Ú¸ÄWÚš÷ êp~éˆÑ×^Ôè“Wâ¡|­ÈVú¾nê8ã)XáNï°ú#_Ýò*‡ù7‰sÍg9™=^Ôœ[l—G]þ´»<ºÙ½ÚÙ}±üä~bÿŽwÎoù¦<ýèÌñæ÷ðä<ùü6¶&Ÿù¯<=û4ÍLŸÎÜæîJl]3Ò#f>ï'9x°ë¢5í¤«÷Ž}¢µZ7õùs»yVzÑ ç˯øçAF?ø†¨^Vÿç\ýÏÿ:«¿aÀ‹c'¿ú˜i?¸;ˆÅì‡U+§_ñ' ]FC\¬BCX‡ÙREèÛÓ›EŸÎøû˜(uòúií‚O§ÝÛ.´lgf™áÊ‹ÝNq0=ˇå1K2Ü9l‚lSܸyºÊ³PU±S •sT±nHVp›Ñê]?^ÍsÝÆiÅ»—x†£–™ Ði17^Ÿ£b䂜/îFŒqÎ߉÷÷™èÉRï®­IR>¾¤"E<Å…±e¥³RÑ âÏ-›xR•\½]´àyØÂL¥Õ!0Éó0÷ÆŽ¾S‰Þ¶ˆŸjt5'aòXÝ‹-¶Åõã¯ÜX¯Å”Ü›7 Lô`ÅQ£4VzQ+Í XtXo,¹“ÖE€–c×ûÃ^w JávÜ›ÐùctÝ,T‹3ÓG°C3“Ú»ÈïÖ6’þ=µB‡\¡NaCÔ Y®èo+úÛX",\¦à–몖cî–tËÇáÇÖ²NCv>¶ÙùØ"ŸjëcpÓÅ=Rÿ?¹>œ,VÏŠ¥Ç ~¨¤çcËÒžM%;‘´Äk–lÅHÑL?„¡ù:å³rœÜUfÑ©h:­;d%#›‰&×ê$–†"¥Ä¶Wâ64¤¶ízVu;>NzÓ hûqü©kh¨ÏØ"·"™Qj„©z`û×ýî-ÍiKhJFûp©Ø …56Ñàw[UˆüoçÕV»vÂù¬Áš]ËÛoDÑ0]×Åx÷"-r»¬Ž¼v9¶TDü^<*qIJ};A øvU‘òÞ•îò°R‰•‹[qŽ’F*>û…b;Á4tm­í'š ÖÅX))ÙÛ|š*ͺdU¥'¯ê\VU|®Ž>c‘P¼j¦Ëãq÷[JžY3èT•£’1<¬¾Vp$Ç4͇=¼òøf‚!\òû'Ózõb=ÜÖR–áZWç#aÆøPâñV1Ë“Hgôû™¥Y¨3<>TŒÅÛø&¾ð‘Yõih}*Ÿâ)|4kn[Úé(tÌ2g&¹óTmP#ªA0„ ßž>ŽaA {üâïYñÁ¦jpraÓ8¼5¬F½ctT±‘XÛÜÓÝž·GÄÆááQë@¯O‚2MùJÐgðäy@ŸÏ‚¼Ía¢íqJÞ÷ºCô5 {¼íN©mÓ1|… ‹¡;T/CP·0ùÈE4†Ý.oŘ$þ{À¾)xöaQü–7ϽÒ5…ZptXýx©ZpD„;Ø‚àcÐ.¹ ƒSx+›pJßµ¹ö‡ïq8üHÿ^ZÂŒžÝÁd$m=8c¬é_ÊtwÝL˜Í}îMño6—Ïçsâë¡øz_3kXžû-»×Îü–û-K|ÐcðÕ)zz÷8Bðe°§Š¼Ï!èô.Éh*7"³DJöþuošIØ`â C+ðÏÈÊ=W)jz#«ŽÖG"0íwƒoAïß}¨®Ç`ëþ*‰0ÖkUyÙMϾÝáb'\Çš½›i Îxª…TŒ»õ¤Ì«.ž|èöÇA/XYì!þŠÅ9ümÔ?÷£/¹ PEcb‚>F*ÁâW£ñ¸ÓcxMyÊG Ã!E†#+æÄ§»ÞPj èfXh½ët·ÆlMx…p,“WAæÕpmòŠe§‹$¢OR¾òWÄþä¡wÕ¿é÷®¡Ñï+¾{uGÀ.HçUVŽ<}Å4™\0ªþ“~mnž¾a)ôrÓü±‘QuÔx¥Í da‰ÊÓ¦ZÖ“½IJ‘ÐýKoðGÚ¦ÞÐÂÉÝèq€S©Lî¡ópþœÀdä²ßQ2èk¾‹A ”ï`àîîFPžm‰Ý-EºHÂÛ?Iˆ…þüöæ™àÏòŸÁ0x<ÙÄòE._¡ò£|%±<.qá>“%g–ÚÔ¥ÎÏS”R·¸àŠVðz”®­Û\¾CåOòmÝÑ\ü˜º­ou©ËKo©Ì;|ä¾û5 ô(+†‚¡ë:â¾j ˜­8OY æY˜ÉkØ‘þùO.KÂBåƒJ” 3…,ÐüÌŸ¹àOñП‰‡ä­]œÛµ…Ø=Rìv€Ý5?¿GšßŽÁ/¿x ¦ÂTÆ@«+¾‡9÷8 uOµPg~õ¡)ðš@ c3Ý£õêÍ|8©ì­UÖ¤òÌ„¡ÛI¦–žÑKcî¤Ã6žsØŠËp´Ç’54ãÍ8ih.T܃.­ ã^Ï8¦zþqòHÖ¨fÒÛ¹àó#- À ¬ƒCªV‰»üÓ‡eØCcÜÃÍiÒÃ\~$•½hɸ\õxu6µ>«yXÖ Þþv‚ÚòÖYUÉ*Û?ƒvæcîRÚ&×Y O¡oð|^+ôZûOKÓ„›Dâ4Bâ4žÄ©Cb‹å(#F4BJk‘ûó 2“sæ>ÉG„„úÒ¥pŠÒóùanÀZê^óÁ\N,òã{´oºò|£Î‡94´ï!#†NôxLÌÒ Ûw)4(% 4 ®8’ #Ô#TMYBÒ%Ѻ…l›'øŒŽønÜý†ea£!û f;(‘UÒ°xÁs`¯J22„°Î¼dÀkaQmÁ`tKâJ•*ÇT+®´ü¢‡dÄ/l]³RߥÉEÖØ«ß^Em/bcÿ ÏátðGdПðÔÁÔ œŠO€ö®(§LPÈx{E¾2]¶Œ¡àzã‘êF)…E*Ts ƒþ5ÚÿSö#uÂ_eÑ’¬¯6wÑMYkÍϪ¢à°+_Sü_2™àì?Š–AIím¯ƒ£ñ5ÚzaœyãyMÝ/ðúPÆþ²…2ÁE.øÕhŒØn_À^ÙãÇÙÿ•¾¤³©¸È`q¬5ë~÷!H"ÕÕxs÷{ðþ·†æ|ùýu˜ýJÿÆ“1{î—à÷½Ls#̾)ŠÁÜ¡ö؃Éí?ÀºO×Ð%+ö˜Pñè^nÊy _·˜+™~¾Ó‡Œ qß½*×½  Uã~oOfDÛAU_–u×A¸‡ß‡´¹ iI=*øè*Jzÿœ„™0f÷ ®z6^ðL1WÌîAŸP…ð¹™kf÷ â|VYº4;,Ë6|îß®C?ÓrºŽ½Í½ü ¾Ek*k£Yr»\j =º¾' «3#H-$YÓkR˜ÕÔd5–á#KÖ¸¤ñc)«tˆnZ5*îuĺ㠨HÈO¸wº®Fˆ)£Tb•L˜AŽº<jnlò@‡9¡+s3ˆœJ—0#¾JO9þ<­§BÐgJSeqw¨ZiúÓœ ºLf‡Ét€ûNQÒa2ÝgEí3ýb÷ƪó2gn±å´ ºŸAª¬ ”@™P#)Ð t€ä^RO¯'³ QL¦ñq=i¬e7¾õu£æ10ø€ÿ&‚›‰ [¹æ0:ÅÐ,á¬ÒÞzc°9ðHü»$–÷°ºB”Ô³q-ø 7@Soeׯ÷æ<°XO»dz^À…™íÐßõwá‘U´Á”b˜–‘1þ_dÆÐ¥›Ù•±KçôXÈ×jh)Å"·U.¶„µ«j!Òñ“+ͨzäïÕó#øy1øŽülºüX=ôüülÙãeõÎ÷èŸmß,ð®(riÂ…eC/,IÜ8Ë—:ª5NÔä™oÚÐÀÂõ¬<‘5©ã¾Ì:—[Dµ3œŽÐ_¾ØALÑ Â­‡eŠ ?üõ¨‡ˆ)¨Ú[>’¡ïÝi0 ¸@,*Øn6¹°Ãos8zFì<ÍËbwŠGnÓnH‡j‡Ka×|õÁ:ÏpM‰KÜC9è“ßû0Ò‡.~tÛa1›Ä{Õô½-6μ#Á[¨×éhÑ»&‘´mbp‚סI†bX@à‰Pl£»Úi¶°ΩÒðœÅGï/ÔáA]ÿêŽÎ4IXà3ì·Ñ‘'Ìø>µ°Lj“èOد¥nè^üp—+å}>Cˆ»&¥xTrg¸1"ü„Ãà2;KÈj7 Þ†ëPZòÜ5K‹¦“·†…늋;è¢ø-ÆAaÔ.ä ª&õŠ–ç]w(äù+¥вDŽ Ïè™Ór«Ü¨v`n‰.M`WWc;½oïLz„Eg—ŬÃ"(­[;ç 1k£bc%ª“?xú_öOÿv8SïS #H9¤oFÓêcÓ"z2$ëù› £U¤>z½k銙;ؤ z`4ÎÓlf=¤f²:ZC7á—ts†}³ðnëKòoøÎ’yÚF±ÏÀÂýˆ lC—“‘øBNt“ ]Kme±¬ùÄÉ…^‚Eh›¥A{ÞŽùHÿox{…>±û>UÂdæ³AqŸkÂÛûÉÈ$!Úû0!ëÊÒî¯{½!:Fl¶&Ôk&¡c¡ÛyHØ ë ŽÅ²t Ÿ(zK„^遲hùö¾Néù+ÒtD DøÈû¬I÷>a`eH¯*»½•îp”¬õˆÝ©4ŽW£Ghtw¼ºéö½ëWtß½ŸtÙòUNùŒá!{Ââ‘úgüw†9húäDp’ÇH³iO9ñùL'Ð[²}?¢c.P"ÌÿúãàAÚ<¼ g…nãÝ÷&“îmOvIåaŒÚ5nmŠì‚nÃI7éá½Æi†›@–GJÀ&Ö< Ú’LŸ.õ—w<ÝnÇÝ{:dfÄ|ºê¢eÕšT,nszBà)º‡å·[a!/ö(7:ÓV}Òê´ÊMrɅ冨ìiGò¹dÃRiÖý „âPÜqoú8N‚…í¢š½Û%µ­¸+Ëò¼ÈŸ%Ý÷Ügâû3¨ï òUAAN¸Ì¸ÏLdºLÒýV+oˆ—#W‘u5Röj}„a°|u8ùöm¥|ÐlƳ‚6µò†òÝaÄgüÿíÃÿ-øþà])ï†ú§ã“ÓN.hˆ;èxÁà11áLvÚ3ÁÊ›mã?xI)7OZ\Pá?íò{Îî‘õNµÞ üSL¨ë¬~šÃjÍó¹A*±OW “û¾^n×ò>]®Øß$ Œ°§KÐÇ0BÎ"r\n”-šñ<.s|´®þ¸Œ2ž®pÅ©¾qÈ%vê Ž÷¡3Úé wZµ²]óe([Y¤wñâqpÖh”E·µ¸  GK‰úA—ñŒvõ+(/ô>½äP²";¨—ûG`êÕËÍÃj|¥ð{«y ~¯^ÀüoZÂcÓÉÉçøk?~Vh‡ŠC?eP 9üÛ>ƒ)tQmUê°ó¾ëµU¤¿­PüMšD¼QË »—XÜ?ý•Y}HÛÕýí46“Ñåxð¬Ù(¶«íŠ >ëoÂB4 ›¹².N©#òêlŠ¿¡¬ß ï%t“?Y Ü9Êæ+|f3îñ¢û¸ÌXšTGÉ-$ )¬¸rÛn¹úAs£† yNŸ:y›Øæ¢4Î,g³i¼‹Ð AÊvòìØˆm¸ªáÛÍÁ1pèÒŒãO&&\£¢5Xo\4ûVµsÖjº5°\||ìƒ\ðÎò^¡O>(%õ†LΑ¥…WT$‹òFááÉ€ÛÝ›^pßb(àšb6?æCÕ‡I0Âïëê»JwÒÓañæ ’0~£9ˆ»á7â iûb‡±Í™QÛ4QÀ`vbª<–}exxØœ/î–²FÌ›ôzŒ.’W½ -BDA1¶¿é{ôÈjê£Ñ_+§èàœŒ””êˆ6¥¤·Ä¸³5?ã×Òk ²Š›Þ@Çè-LІ*‰1d§Jƒ¥,©bþ‹Ä?wâ:Žä²v3X2útI=]k®sW¯7C75Š·&Î>O ¶FÊ\r‘ü¥¾‚xï)jÏCч¥{¸&r™fž.ÈûÀüxÖÑð̺PTß:þûZ­9ÆÈkXõjwÿè‰XDÄ®‡©Â±F*0É¢‚ QëW$yÜëàÔuŒ~öù/ÊÌuÆbdòQ" 2žPgl´æ’ªÙLÈ/‰žöÁš)¥•î³£Vâ^9¿¨?Ð'\9 4žûă9Æb{7Ø FÖ—7£`ëôj¢]¤)ï[Q›0ú…]q™»†ÂRý C_QyŽ:Š¢Qí!âÀ® ó‘µúb¤ ÃÆÐ(Ƶ9|ê%¢\ç4ù8BRa NÞôåÄNIúÿvUœ1#s ”T´çáN¹†uêS55ÏÈ=î°ë‘Cá2${w9"SºÜ?$±ûÅ)Ì|ÚZS€§2çü#æ¾È{ú$ -ÂlöÅ.5ØðÎV~w´-xχ} €_g><Þç]]QÖFÞ0E†Ý`vvÁÍ‚[Ê›Ñ[ÿ*æ/ôh¥×áòŽîsEâîIùcB¹z1Š11Ó~¢¸Þ|-šÃg¦Ø­LÄ“1Ú3ƒÒ4óÜlæùÂÍMHlh)¡¡çizîmè–=Ú CMÇõiÅ zµI¾•ø>MçG ’·éüqð†—Nþà«{.FÏÓ2Z\OÃêf«>eV~x|³÷OÎÆ¯Lv e«H¶…"‰( sÇPÆ„jÁR•Bz©.:θRšº¼ÁC,Ÿ•€ÏŠÍçv¢–ÜI?«H­ÐÁ©©QQÇPI¶2óv÷ÒBÁµ?±Dˆã3Ç_ëlž¥ÊPônÿðÎLó¤H¼þh˜èø¢ý¯ø^ñ·–Ùf|ï £á¥÷Ý$ExŽXã éß#K˜ Ïâ{‘x¢ÉŒ~ÏÞ3¿’jtÓ=‰û<áÆÆfŒíl…ÑŶ~·rÊi7¾·[fò7ÖÞ¾9bUY‰ÕEª,&WYJ¬òl¡*K‹Ty¾T+7=g ¼ôs~)c™7‘'0KàGaä‚k!n*+f ÀÏ.ß«æL‚€HeH‘BFÒÛ²¿N½¥¤ÔÛ²—¶fÔY†%uµTØ,™‚SUyúŠŨ^Z;Ô)ŸF[q[«Ùï«îãäí½¾¢ü~4¾f±J’öjäC¥âüqå£ýcÊGÎ Ö_üù\f-›OTÂ…D%L-*µˆé"ªTTþ¢rþEÅüR®o£Ög7ßÚØx;Ûúq$¦óS¯Ò[iÌG¼–­s;1[çÇ…êÜY¨ÎË¥ÚùÖg ÃMê2Ça‹` ªf‚(„‘€!> ]ïv-¤††Î|1zœº~ÇH©Ý)}g}+[ôζVL⑌ðU»Z¯îw^£ŽÑ”FÞ]wp£Y:éÕ«?¤¬?W”𠻆JõV˜ ð\—†CcÀyÑúï„è ÚZäÌZ¦æÐVu±#ŒFÔºTEÀ,ÔûÚëuu(«‹+¡/nÖ,ÈÒH·¥[Õ´LUíSÏÒgÆÆ’ï° nrXŠÓ§TÀÜ”z®Z:ØÃì‘”üt0ÉK­ÖÍô¢‡ts¦´lÍ'-J·V/,ñB"³NSãÙ“'7ÉŽ ç¨â$Pz)fÔUº¤É:áæVV·Š»èQ‡…­õc‘?ƒ,Æ3 ˆÏù†Ö´5\·PæÄ|j4ÝC³ÜÓ0]§a‚ùÆÆk_‡…ôË]$D!õb猴r Ìå.:ìÒ¯ìpi›ƒíµ:¬©[ùKèùÊO0+]ç¬9'åÔ‹ïå…æ¤¡ï5)+O2)C{RFQ¸’Ð9&f̉[øóØ¡Û Ø¡Û3-‹EíйL‹V*;Thžú‰&[ë;é§ÖÏa‡¾]Ä};SZÞ-h‡¾ûÎÂ5JM¹ùNž%%P?®*¡â­‰Ö“¢B?ϳèa~‰ù=rœ<—)ZœcÕ[bÉ+ú»´8¯-z™‹èÝD[´•Êý)týk‹3ÓkŒ>ñ¼,~ßyù$Ö(;ÏÃÒ¦$Á+»×h¹QjŒÑÒ×÷K5ÒT‘ê%îNrËe7,!püÇE{º¨S7ÇQ?®ãCQC=¹÷×­fèéêêöáë®AÌ€H¯Ê¢¬aýVŒù`4Žû³A™Ð/˜#ÍQžd½lð·€øñF¨J&™¢ C3Š©Ð ¹I¤Xð–Æ6žÿ¾á:$° ¨îu‹w õ0)9ä¿ITŠìÒGE "G˜53áH µÙ‘ ¾{’–túÔ¢lÅ>³*úÏb9;áµllK¢žß²Á¿„ ]Ѩ©ko^ó§ÚSLeCyl8ˆ‰“bî.ÔGÑÙ&bNƒQ3)äªáª£†½·q;ËÙ„H½?ž0;eƒ¬øð(OÐ îz]º~8â»<vxÓô\î5„p#Іâ®ûñ Ħ­y[/aFÙ0;)io{ç|B­y €8¯1Pl xáxèÑÖë]ÏÛ˜Tk"®¡ëÞE“_kW£áo·x¥”ŒË‡Ñ¤e2TJa»|W^ƒ¸[ÍÆ0â¿ñw´-I­wòa^ùÂÁb‚:É]þ j8¶õfõ¾æùox'p®šo«o‹>Ÿ€€k;pQ‘húöãý=ˆˆY §Õ>k þÉJ¸eVd’U Fô{XJÊT,òîb€ kaÍá=4®·áë<¼y¼»À˜£=GHéÑ•ª€¸Æ±—w°¾Ö¶ð»5ŠÆ·Ù5–S2"ã™±ÎÉ)·‹ü¥?¼Çð Ø~?k2ù[ïšÙ^ *}z!X&ä±pš ÃB¾Dlå°e6¦Ñ’9Zf1Z¹£ZB'bPÞ­\#ÄSù*n‹»)&0ÅÛçAï^“Ù6:ËTžAñÏD.K\¯{SX &YèKUxË(ÜYìâZÒ.´¦Xr{!óammOi›ëàÃh|©5£«ß]û¶Î{™B®9ÞËÔèM ¿©Á›Müßlí!ÝüÜÁÛÞËPîl|¢–Íq"í=œ£y ï *æ-Ý%t°GE ¹0WÄ$î`8‰òA°³—9 V‚w{‚Z?™Ék.¡,ºÁåc5ùØ~]2J‹ß©›üÿÛNE {A@Aƒüº&¿†§]NÀÂ2J‹çU«Â-lLà?zc¬?^È©ÁÜ-„/`D#qEMÎ-õïú†9ÜÞëD¤¢‚R1±Ô_ønï¶7ºï!½Hkºƒ‡»n“ßv÷`”T3vöºãþôî>Ðÿ°¨Fº…^Å‚(×›BeqÄßî] 'ÓfäœÁYe1Ü O‘ީãðÿ'hS†Ts‚ Å¢1‚YO‹Š%1Î9z2K,ȱϩbAqKÒâç|cUÜ–¬#š–No®õBI‰p,˜[AæÍM¡v½ø=R,¹Ë?,C§Œ©¥2¸ä¨ýÅ.!*Y•Îŵ¹4 ß è1Sºë) ΰ=€š -£Œ³Š¸ì&83&y¨xt3&[‡#ÌÊyÁ(hâSÞ×Ù¸#ü3(ÁYpœ{?¿eõgùÏ`<‚¬0*Y¡’Ä’URHT‰ŠÖ°èY|9«6ñÚT%Ïj´kÛ¢2GPæ#HÁe£G&£ÛؽÛT¶CeOËvÜFî(V?~œ¯‘oUÉË„íÚÞA™ûîWø-ÂІ²]`8ë+> `›O¦y 6KQÉÎì’žEÖ0Ì ÑÑgÕQŽ‚«53¼P 5+@§÷ÈTb‡Ì úX¤˜ÿÜ57ÁÚTÖš’“ÇÁ4…hÚ‘åõþm¾(–¦ðùj1·<Ú|†£K8ØpRæ5Xíÿø¯î5è>t¯~ß(å‹oж¯5ßTk‡oþsu÷ûíïù›•Ô›ºíÍMú»³½M Eþ\(„›¥íÒ……­âÖN¸nÁ÷áÖV¡ô_Aa%µÏxÁºÝÁÁVhÒ½M➃ÇnVÓ?Ô‹e³}ViœÁèWYjñR&z aûב‚ ‹zù´¼,y‹äQ4 µ”C`cC̳aÿ<΂No8Ä5,õÝ>lJÀö»A¥7þ½7è}£5±Y> êÓkßýÑ£¤gE 3õ§' Ê"啲ÃÍw£Zb ÍãÛÓÇ1ššFn*þž{@xã`\)çŒüѸÂÓ¸/Ý1عÀÇð áK~iWf{èöǘÉ/¨È¤jŠ[+ÿ<o³²tŽnû˜!ÈM‡M¥òLæ_AATH£·8QNU–t4ÙgIäåG:”¨Ð-ÃsŠº:o‰§½™®ð"Ë^°U BêÝy]¿mÑ[åÎðÖYÅ'ßã?âV r$×[UU¼WïÉ>Ĥ0mxj{Ý`+&§Y V:3EèJ`¦g¢x—wÌ—¿ à#ü§NIÅðöC.8nb’0>¼Æ/ã;ÏNóU=mS:'0%Ïáß„®:8k¤NÙå%:BÙLÖz{¿Œ ft ¸r>rMÝÆñpZÎȹBåÊïíÏ•ŒœE•Äñ«¼· ˆšOI¿¾g!O"s^Ïè ['´¸ú{ç«„Ò-z´%æ+–n½w¾Š/-zLNÝ §ÅU¤âš™jk)¶.«FN-Kô·.d­8¿U­Q>¤ôVº*7KÊÛÂa*:Áuï¦ÐóI*Ÿ¡IH‡}täÊ€â;Ä‚åo‘oýõ|9f¸6ž«…T°¾+z¾+y¾Û´¾k:ÈÓ ¬ŒO-ÎpAJ]íNñüD%Ì8÷®úhf­É£3‰Œ SÅ<díðÄ:F4ä`ãÉ[$LJ†¢2³K`kë¤ûÈg6Š²ê´¨©² DŽE9c@ZÒ•8Ò%?éÍô¤Q'9´ ÔG{kÚ­8Ú[Ú, ø/ž’Éo#ˆRˆR,)] "Œ&KŠg”÷uV¯Gê(¿·/'‘µTÞ‹õ©‡ôT†ÄŒd1^ËqUç5P.~^Ý.cÀÌЪäÔ:rþñ_ë<Òœê0 z³n†bÅ5¼‹™´GaY“ ZŠbbù¢õL®dž>;}¶&ŠÆv”Å‹¯×VÙ]Å4Ýe±ßJþ쓧f¿Ç>¯œ„júšB¦ýÁu/s^Ï®­—×ŇV½õ5ñ¹œ]?—»¬/w=ô3‹ïamŽ`cÉ9¨e4gïZ1»=k}ÆFe` —šÄô4…‰íyOÿ9§–}YKîE ¸IÃW‡ØLHqÎÆ¨¶¼ÒƼŸ³5ÒÂU­97VkþFÓ ]¯…±hk‘ï5’ÆsÚ|§*÷òŒÎÚvOõ±VÇtéz ÁŒàp/sÓc„{áD‡1Z³åK†fZ3zÂÊh1öLÎ,ŠL—JÌt©ðt™GXÄ*ósIþ«z£Úò3Jþ»É»BÉ‘üw?¦äóGiS+ØÎˆÕ§ã‡œt'’Ã:Ö`ÃBWöÇé… w2kÆðø‰¾ ²-âÔ‰ŠáX F‡¼2ÜbY‚È OJÂb^'»öW¶d•=åD¨¬½¯]ŒK‘.F^Ù0 úÛžÂêdµÍÕmËêäÁÏvªêŽ3õ¬Scªê¶du%QÝVÊêZ U·)«ÛôD\8ÕÝuÿ@'´KgSU‡Ñsì8sÎîDéÄ•NDë"ƒ–¶*šQÎQÝt4í|Õ¡h‚‘IªH%f”Áh¼ü˜‡pÇ?ø!Üw|%ÿ žçü¯P(Üó¿Íí—ó¿çxñ´pÏÿêûó¿ºyþWžÿÉc¿—ó¾ç8ï›}ä†G}EuÔGïÔYšéÂZÁaZÔŸ¼ÀÙÕQ­¦Ü!õzod%å,u¾Ç}ê¬RR_:'X𱎹y½Zñ lÙÅÄ)μÇ^‚Âüç^\P>ùsŸ¡öZÕ±_|žô0å‰N´íè9:16Šqç&ï jÔÆC ©PAiæ8[¡yçça3²kŸïh¥OÚw¶â'"uRnWXDbË´bÊÌq^3ïqsZã?'ZýÙŠu´²nL§;\!êu"NÂäOZyd˜¾A9\ùEœ7*ˆ"ŸXäûÀçÉâëÄÊeÌ„È Û˜ÂjúnT¢…“À†¾xëkILrÅÑÞ0¦†ÍpLÙ–Q¶-ûÖÃ]z7))uî™N0¯£Îò)Îë¨[ b¼tõå¼tcÌ噯K·<™‹ÎtóP&vYÝøç@Ð4˜õXã—ñ¶XéêšÇ9ï-KWצé*Û\ÄU–®ž’ö“•ñ“éZR8Éê/N²¿á+Áÿw÷ùYü[›áf1âÿÛ)¾øÿžãÅ3Þñÿû¿Ë*^ùF³ôÓAçÞ#ªÞ[ÆÁqË’tÇï¦|Bß$—Ö)ÞŒoWS磩{f ;õgöO²ãGx*Îr²©êê½îø·R¼BB—&5·äúñ1[?9¬í[1ìÜ%´e‚έPfèa$³”‡?‰…°n;Óûö|cUœàZ¹·©?×µiÝrçÌrU„˜àÚzן Ò Žzãûþ´÷ÖQ2„1PÆ}™Îé ¾@.xÄ͈ëF¤tÙè­|ÁÖåQ¥Ó:nºŒRW_sÀgA;8[rÂÖXç;¥Hƃî!®ÙN¾Ý‹ÔÃ|3õ ø!yƒ™+¨L#‚iðÛ#š£äOþ‚vˆñÍãÃå£Çkºê[è³ò/²S¯02d|A\u'=™éÓ]o(Ÿ<µw®wmêˆv¿šôÿÓ›¼ 2¯†k“WYýŒ¨ ûèKÿzz7G~@Ó|¤êà^ÆÂ„0¸é÷®ófb zÝ«»kú }¡è#ùWÙŒ/”è ±Ðû÷#Xh P†k¦bX•®:G±÷ôo0>÷‚[ÎÁ‰ /$Ñ™ PZìÜ;KàG-™Bç¬#Y›Ùx5$*Õ÷²y ðJ7¾øÖñ9HÌùºïޱ€Ä¥ëþBH¼à… ¯³ÓúÉÞÚ™€ÂÉeÅ|óxݾH+*=3wuÉÝf îð„EŠ'^1W…lÀ uIÙ‚2 wY³g¡a•ñ$>(,°êP\<<ú[V‘™Ð ý¼ªMK°S›:êáJ¥î†ši- ²¿ þüêy'¯§8ï5Hðê·WQ9%6öÇcàuð-ǡϔ o&}t 3œHbʲNÛIû(Æè_¹þô›)G¾ì¤‹gÀÌ ÷G!û&`Î"Ü ú·{“9ÌÆÏüO+^0éß'yõXß 2 €%¦ mÇ<½Ñ„ ³‡n@è°%˜ÊlÅWñJaN¼’”‘"ÓdUUêDè·»÷=\G =¹àóã4¸Lû!Eí-X”ÁÒ߀¦‡n÷&w£Áµè„´AYyH‘·ÔLÑ:­)ÀuímD^ÚÌ¥ Û¤Úw{ú‰_¬n¦ž3;BQõIðe¢«e½[ gIòÇ "AŒÆ1²«`0Aš–à ¦‹’·‹HWXLI!IºBPÚ~2çÙà«;0†Œ •Ùsa–ga¸ipÔiÈVZ -IŒ( Ådæá¿6hRÖ"ó€•ÖFžàûS”ÔÏôŸ°Î®G=òeÝõ‡·ø<¶&¬ Ý)CÝ { e\BShW›5^•Œ ÚD[´ŒXÍËrÉ[vÚíÑq‡²ÆìËP)ÙH€?(,‹o\hDF¹„M~†^G®¿“H;L"f“h¯5GoéSuóñqên&îSu³Í·ÛןMEºïûÔêH¶DÒw¤0‹&˜LÍ,±»RôŸI$mW¤å ÿ:4É€gZŸ$IhÖ]_Ó•E4ûÁØÉ©ÒðœÅ^nÄ] Ã|ö¥8Àg°¦@{HýÔ§–©'m}NI‹¥n†ùîr¥lÅ1TtàŒxTrg|~BˆtxĈÆÎ£Z’-ycí§ u ºñ« =Öe5 ¿Å˜ŸFíBžp‡‹€VÒncÅðµÿxoî‚"42:AF‰.M`C–+± =z¼µ¶ü<3ŠÞ~‹Y‡E¶,ÍÒÄ,“ÈEÇJT'ðô¿ìX•Gcêü•ü1J3¼á#ª$±i=Ò ùMÐÑ[Òý޵´;Ärª·âò%z`4ÎÓlfM£f2¬q°ÈÛŸ{Ó/=èæ ûfáÝÖ/–äßP—BUßTKi÷‹7¨FT`ú¸<˜Œ„cmtœè&(4º–jßbYó‰“ Ý.‡®ÕзãGÜÀTŸ :øð w<`]ðFä¤{Úƒ±ðî22Iˆö>ŒGÈ:ÈåÕz*û°ð?ô†¸ó±ÙšP¯™dfê1$¸õ»ѹű€ÑúÚŸrÅ賑J»OÓÀ$3ì}’›ù–¯-ýá#§)˜ Ñ;°²„  ¤a¥;\/Ÿµâ°KƒÆñjôˆPÂ`†"Ø0Ú }–¨Wt6÷*§7ó]gÂN®ÆýÏøýg°½rÐô+ȉàƒG”o¡ËÎ"ç(Ó ôôÂÙå`¼dS´lvAÔºÐðŸ1¸Ñ4ÞÂ’#÷, ½ümž€sA”ÂB'þ0x莧ý+­³X˜ÊZP¸Y¤Eý ׂ̤δà†ëÑ#쪭9*dR™b6Š­ólóŒÍ3—à÷'­N«ÜŒ„ 4š aÍG©÷½É¤{k«Ö wIÿÆ¥eX؉Ȓ€­W޳B^Ú¼²<ë®/£ñï´}Š WD%{z2ä)†E!Ólf­¾<.72½uOÂ=šô Ÿí„1Qnl Á¢*º£uâ£r{ÝkìE­…Ñg3zÅ ƒ½þ?ßäá”`ÃÐ$̾#íÑðyú0Ȥê!塲g8•eïÉn±T±ôÌI«OÇâèæfc6›¾Œ°y,Ä&F¤âUîÓ®‹0‚9Y•­³يػ¶HÍ&Ü)DmnÀrbv×ôæ¿ØªÃb†E…yœ¸m#¶a¾UïcF¨uñ^4†OŸ€i¥h‰m&;sÀHÎÈÝî,Vù˜Â´˜K‡ªiY„o9|×ýcÔ·&’ô;Hƒõi`4ÆÓ¯`‰„U‹ûŽo´5•>89&2«y ÷íØn~Þ÷1fxB"¦o쪇±,ý#þ•ï“´x–/¬"Þ¿Z=¨‚ÈPw³0Íc$‹M{±Ð…8ƒDl!×6‡ë0ïìÀòŠ]Ì#´5nÀ"P{j1ô¦[\3bp‚Œ¸‘@;‚¶A#âŒW]D@ñáíȬ‡;íØ–+¯‘ÚÝDk#ôÿä®ãκëþÑ¦бª£/·šý“æ˜û“þsžFlÏ=t'òM/äÊÌ7œD«_Mô¡ò±¥¦á+¯(œœ¿¯ç‚³æ{q`~"}tŒõê•“ÓžssÑç÷Ù»€Þ ;íÿašH«OÞäÖ$Z®¿ÕaÚ`I"FŒR/¬É?ú£Ç جkò‘NîûxŒ¢6¸=ŽYïá̸]÷·^ÏÒc¹Ù7Ês÷°#$È„è¢&é‡HºÖc4§4# düÆ ‡ÞÁÅÕX>l:56,Ëô-,¼ÐÊ ob«9ÉHû3á›bC N2jå—Ïxê÷ã'bnZ‘šÎO'˜H¨™Ä˜uñŠÕûžªàE/þÏ'T…$DoGåúû$fðw „L¼¡Êâ_x¡I¢&–¢=Ê]¤VpÌ2O@N¥|€!Zô§ÏRM%´#E 8|ëü·ÿŸÔ)SIð½› *’›|øT;èå‚ãN©‹\ÐqaM™,$ž-,9ZŒDJ™Y$~xÊMÐ9%Î*_*Æw>‘\ ®ªX ¨ÎMI}Sþg~LÒ¦¨ç¡Ÿ Ä^ägt65réÄ\*IZA¸ñ'‹ÖîFãiLb™ïÒù§x˜Ô^`¦3&š|ñ#T3=qòÞüC5©i\m©)R÷é‡è iª¬›€&2ó±÷’!«è³ÇÌ€}“0†ÙcƒYV»ÇÇ^fÅ×±ÌV,n‹‘{y²"¼Ñƒ½²²ž7PîcG”:‹Õ;÷uÄoÈáÁ4[Tˆ»1îñ¢û8Ÿb&×QòÖQ‰}~3R -kÉ•l¹…êe,†ž†¸öG: ~p†åš¾[NªT¤¶ ˹3¹(¹7šâΔ¸7GnG’ó\Ê‹½òG÷YÇcª0:9XËn¶[qÝÄ©åçãcä‡]Àè–Áb>9¢Û·t-PŒ‡ñK{?×¹èÒáå¢EB›&ãÞp»{{þO ×T“ÐÒPF Ù¢4…©ÂÕ‡I@WŽ×Õw• ‰½ž"U—֢ؾí‰`ú î¦vDýü}Ðó‘òV⮄C#rND™’Oݬ¦Ý=ëYþFfzÇ.Ñ•xåÕ =bŒ3Ygª5 ËË—Ì螬>P&ª' RTd†®ó ¡H‹ñcÑTÃÇ(ÜMG¹êRßÛB„qTÈ ­F*ÍåÍ;ýèôå›»REÊ[Wi=íK#è+þ:Œ#àË ½ˆ¨ƒdv0ΕukÂæä›'¼ŒþäÙhÇé¾Û)¸T¤´ð_OBG™hµà°È ìbEÛtE…Ýü®pŠËÔµuõŠd0Ô¿ˆ¼ê¯Ê¯".öç>ž-žaXú«_‚(ã\ð¥'¾¡waDaíè9ëNó¾:Àâ ðOû*}6é„É%¿ÃNwÞ NŸ:XÈqF‘g‹‡ ˜ÏÂw2P6ò|IžL½¯£¡8°Æs£¡}rHOoª·Fº³ Ð2_Þ˜'_Q [ê­8,Œn჊V‡þ¶(Dl»øÃðNà}‰¢æ «ØÛÄbŠÙH¹wþr°fõÉA'0Ë{Ñ!.x Jߨ¸?ÄEɺ9â›Æ<ÁQí©­!ýæ›ÂÏD¬ ]ql)‚ÈS$·{r[*ŸŠs˜3Z³{aз˜cVg±%Ö‚„ÐmT½$º‚öc9ÕìˆÆnÍA,#–Óu\»³ë´‚%Sßžƒ:/ãëÍu^è“ ï¤J.Á¤aߌ`ÒƒÁš¸5ÖÌ)Wÿ‘˜7‘¡uÐTôïŰäë°ämÅgßEÇ ð·*&_®U†;]hQúÞ¬ÜðrÓŠâU¿š¼ ð¬ü¡^|IúÔ×fšh;Æ-óV§EH(\Ñ)&fÙVºÚS Ã6 ·5¡^`o£¡@R"”8|ö­­iâ)Êõf×vbÔ¯¹à(îÿŠÓʶ¼qâm•ÚN£'km™íÞ­©;ì—Œ÷=¨f(7`þ[£Ü}¢_ȇ³b!Q©ƒt’ÐI[It¤—93>dò;ç˜þãÎ10hf™£KvÒÈMNEÙ›‹bw´b»ƒ{c›RtGÊu$"2ßm¾& ÓÑà2Åu»Ócç¯ÃY„„fæ±YLde}sŒÐÛ”BûW"š ‘˜8 ôü»¤ž?uíÆµ‘_Hoœ®Xo¤ÑýstQX˜«ì›Êsô#¸Ùz-æÀð°OàÙûœÝüJ+,¼ŒEg„vDƒ*ÆÚt0ì)ø*$H(No’kg7”*…º¬¶®GõÉ|¥^8*T3Ž ®Æš`üÒœíÑiìz´þY½Å§çQX¤C™¯dëÊ/…ÂŽŒ¸N¼î@¨ñ>XõÒØA„a¢T­Êpˆ5uþ‡,*vÙããŸÙ§îŽ—7Ëãëk"âá«W‚G]âÖ6…¤óf³- 芞 3à™ûvþC¢!wPùäf)R\ú´"#Æt‰9 ‹Y®×Î{ïØ Á8I”N™ª®¼>K‘®B.ógÙç’ Í´÷(Å|ùE(ˆÝ_:„‘ý»S~ ÷ÈVd ˜³ÝómDBF"„-$™,Ɖ€ƒ˜÷QII‹„3SJnµ×Aƒ1bӠ̳…êßèˆÙ²qB7¥A3to1ÐÊ-\GPÿÓž‰†Îh<µÜß»â#x ‹9W¥Qn6 PŒöý¡Å›]W>·—Ê~ƒ¢Uö_EÖßa££bÎ÷}„ÃMш&ú¸ƒ â0¦1%Ñ»%X8]ƒþdXŠgÜë[H[2L‹ey"eYJ¡,ë?¥²¬ÿÅ”eé锥ó­”Í-Zâ+³´(é¥'Ñ¢%¿‰tºº±aD=ˆr¿eƒ©ˆeœ±iœÐ*èE¼yÍo¢µŸâå*ºYe†Kã%¹-¼-´R(Bêb¤K6•gþ°š·Ý¶cݘâe‹>ßüdÆ%O1ñ²tC,èw½.ÚŠ@Þk ®ºé{ 7Í([‹ÓýäíAÜ ~Ë3xmî‚;qëRB™íÊlƒÊ3?››P\ÜBݺ¾–(ûkH0(–¡‚êvö~(ú’ü×sDœÜŒ%«=–º3'Til[põ7¥8IE…Þ£š­êìÅ\t#ùÆB˜¥¼ýx®¤—@bP EÄ(? ‰•Ó]ƒ‹ L˜#jvöÁ¬‰(™Þ5­”ùhƒÁ›7Á;ÌÖÜs†¨ wÅ^Þ•`‰ÙÂïÖhýÄ·Ù5«ˆßP ²rÉ"¾FŠp„˜³_ `• ÑuŒ;u-MÖÑ£kö€F!ˆpjd&½˜}GÇÅéÜëÞÔÌ$»+!•-Lá7ð­{V´ëô >„{—ð”WL±™vI(·µ'Ú»Æ)¼¸’–÷ÕTÜ«9HVéjÚ6j¢cÿœ nä­¬dòB!åý•íå(f Me›F!n”w«“òdB1ô†“žl!3‰£õv¯j7Fxþ&V_Fš÷ÚžÆÅ}•½Û;ôB5ÙuF++í5¢¸BÜ‘ aao_‹‘vh:B­mÓªãBl,#ouá^Ý#K³·eUÇa%nuj>nZó±cßHÛ‚¾j"02•ˆ\„íbáBÈ ¡ZÊY÷­ „¾µ³µµ˜™.` #Ë¢ŸÕ‡èÅ= ö), ÚlÔcØ(-ÇÆæl6ÄL3a›¤÷IÇÇœ.Þ#b~Ü̈ohXãËRî2R¤"häá¢A³Xø0,Ô¼IwÄ÷‚$þ£¿’ð¿'Ïÿ†a!ÜAüïíí­ííbˆøß[Å þ÷s¼xžºøßmÿÛ‹ù-¡½ã·.æ÷”ÝÕ)jØïKx ÿJ:»ùTÊÕóê~§.þ¶Äß_Å_X!΀V§œ´ï¨ÚÖÞ¿ÆÚÕ:PQ°âñ4æÄ_=âøûÞçñ#"Ca*™WB—BçÎdžP\Äèâ5&<5Àx¸i#ŒËýÛ ËDQÑãKŸYàég—”z(H}*ef1FÇ aH ¾ƒ`b;ˆáè6ކ»<ŠŸ.çá$Á}yX=20Õ%vúØT ;]Z™ÊKâÐ0`ÔÐl½Ã‰<üÜßz±Ó]Κ‡G-…˜0ña½œy‹5 ˜ 謣_$£võcK5þˆt‚KÝøK"6è8DðgãÌ‘¬DöêÔ[eìf\¯à‚Ø"TÙ/™aö ÄgØ h—‹ô‰Q—ù˜Ú^1“]±§:­êù¾Íé w3¥zØ9²æ:uƒ˜¯qÿöÎ[ eC~ :Œ1甿 ÉPW\_ oŠ’;…Ù€ì9Œºé1QI¹¥(»)Ô Ð8#"œ2ꃖƒa ¯ˆx®ÖL×Õ¿ÎÛÕnWÍêê_WÓÕGÑ®¾˜««‘À¯ñ]}1OWë| íùò%0¬“ ’”aV:Ab¡*» bæ8ˆ*y¥Ö >d-á¦$‘˜Õ pî__?ŠîÃu7!z:ò¤ÊJpO’f5HyH[Ù./HoY\_B ™³Ëì η-Î/"‘Çwäḁ̃¯B´{üŒ`sú;QiçO—Æ[Iã“CãSOï-(ØúdÔög+ò4BËÐÓulZ«Â7u³T=Z*¥Ž. ÄÅ'c”þ¼ˆ>]OÿФd¿š¥~–*‰Re»Ž²¿ŽM³Žr¤Ž²¯ŽU¤šæÉ6!ë\2áD°’œÁÜi'¤ðežsÝŸ|BÏðrQ6 ˆ±y÷$ÇîÑp-_Nú…2Xñù"äŠF6¦Ó\ -¤ªY&§ÅÜl’žZEŠ‹ ¹2SÏ-•ñB*ºe“^He“¼a ´Ùìä 8#H}!zÇî;ì(WrÍ.5O3˜0'&3ÓÐÑ«iäRY4‚ÀŠ9Újµ0’à*o¯,«ië¢ 9ž§™ÅU5Sòj†ó3s0ÂF>³$6ýŸÁŸÿùþ íi¿°Œ–ât º ºLíߤ*ð6)ožÓÍK“„gЦD“НùÞ6o>Q›Y(Ò7=FáÇŽ¼·é[OÔô³ö;øöµ:Å$6‰P8êÓLã3ËÎö‚«{ø6-•Ë{ë{ÓÜʦÌ=$úDÙ¥“Ÿw ¶ª¦¥2w";цmxɇ¤¯#}Z£l¶Ÿ÷£kuMl]å%ÚHÊ”MH´¢ŒD«II”²¡¼ûJ30éÓë´-*+ʯ³|‚UdØY.ÅÎŒ;ÉC%²ïlÌ—vgɼ;K'ÞY>óÎ*Rï,™{géä;žì;Ƀ-òò$) b~©xV•‹gEÉx–ÌÆ³Št<+Èdzª„<žŒ<í93ò˜)yÌ©aKžˆ÷ßHÌгš=ËçèYA’žå³ô¬&MÏ¢yz ¾õ3øÄ¯ïKæîY(yO2Ë vÃŒºðeL)ç| S–MÑ£sô°J¥éY–8¬ä”'D¶{5}ÄͬEçpâ$™â‡ÅŸóGÄIñþªèÊ…EDdl‰OÓ’<GË BGm6u„7e ^]mQ9²»ýH“º)Œñ%ƒ-Q±…K7©}u÷82{¯@œ'ý }òú*ëOȃ‘îÒH±>)­örm¢©Ž92G³‹+jvlÑ70äf™'yy‡Nß4!ø 劕B'œ1YθsMAÈÁ7‘”F«œ,"éÓÌ.>K˜, ixŽ$õÐåÓ2@£œÈÀÙåÒ °E§tgÁ M‚ËÄ:?¥šÏ±õ™+ëÖ®©ÀoÀÂïX-øaÐ@ ˆSËÑRæ\þdÏe«¼Só<“ùSé©ÛL6Nwv³c{Ð^¼/6L=˜mWö.¬K7D‡½+´$@ØÄÅ-¼'F¾F4nQ€.°´droæä‘¯½@ÃÊ&Êg-ßµfb¿s€çRòí¹])ù͸<ÙhÀ‘'ÔÉ t‚æÎP¤ÐŠKŠX¼VcC±>wB*^÷;¿>UÇ„›Y$¢Ý{4›ã‹¥8žÕ•©y9ã%iQ^ø2¥ì­å§Nù,/^>Þ?Ž yùz•üˆ¼‚3øiŠT„O2—a"ù&ÓOåQd,äÂÿÚ 6×)܆ÿ ^EA½%©/˜ûÒhÂÀk ¶g}P¡è ½“¸ü€§¨ä9ö>±Õ5§Õó³“DHt}®¬±ÔÉ܈|©Æ ÜŒÎò˜L˜QmŠnµÙ)!—Í i&…LSNé—ä9"'ƒpW:îÿ‰X¹ÖoÅ]ÎýÈ‚ý½´+=³Ñß¶w¥›'úÛ»]Údãù!èN~ËI\ø$“Òa`zP¶ò±rÇÐß7wiï¡hœ ÎsEàƒ'ît$¼Š¸ÊZ´O@” ’ÞV•·ºŽý,˜L/ç‰yûéód4@ø§'ÎK$@¤ZyJ"6jWÊIuÓÇ­:Ñåt׿™N"…‹Ò½TkmºÐD‰þ2¸±ÛŒÂÛ&Ù€=ÿ’4J…õ&0‹N[ÊÇôÇ€'/!òîy‚Dcˆ uøMÓȬjŸ{tŽ ”èd຅W’¦?5¦º„ü2Ï›é±ÿ?{ÿÞÕÆ®ì Ãëïù)4ò¾cc;†¸Û6·µXgØ@'Æ!¶!™œqÎÞ˜Ä3€ÙØÌ$ûÉóÝÕEjI-u·¹%™“ ¾I¥RI*•¤Rý¾¨êS‰ZîÅbo {/à°T„(™³îN·õ|8ÐjŸâ®ÂßZrvL¤q3ÙÛÂÇÞ<öÖб.~¢ú ãKGäÀÉ6DèÂÕp!8ÙÛ€ÉÞ5”l6ìÀÈ‘¥"±Ï&eÆgrõƒdŒË'ü™ÝdUÁš ”=›ý÷Õ¼$ GØ)ÕøÎãDš—gã?G󕇮͉å$‹¢Ãf]éý± ¸·‹#ëò¬’êÂ`±Rsk8ÐVìK0¶k ÆöläØ7Y€«¯^)8Yñµ=V,)ü4d¬TráÂIûiÕ¨dá%~8 Y÷ÅdmÌÙ´lFVs6(\泑9ÆŒDi™üÌàµr€TÙb¨¦Ál·ß v-î>ea×¾ØÝÛÃtèF¯q\åè*/ÓðuXËŠ{á€åÒêr·ê`ãVùVs!¼w^å‹äQÝL÷At댣ۨ¬VÅ*ü©W6Š€éÖ=`º ë;ü:,°ºÎXT·žªÛä÷áÂ(Q3I*•@V©4Ñs±M,ê¶Z~+‰ÏK_dbð°¶?ƒ7§šZ[O6ZËŽR2Z%¡|«n>Ä¡ KDJeTÚLtÙ4‰‹D€Ú†n±hñÏÓQ;3!ic][BÒ’6vrW´:•Z'&)TRÙ1 ?¶ªb¹œˆU«ó!Æeó—Ž. ?j ÞÀm¼z3€Û^d ÄôÌ_|з½ÈE^R¶(žl*¬wq$Ù4Τ™‡![@–Â…ÇN¸ðlèX7Ö\­`Ó‡|i'âxD§ºj÷|Å m¦§ f³ðeãTü_›Î·=ƒ½OÚøL—œ€ÛF©¢u„b3Þj(Ô€³Mý’B«ÐgÉJÈB¡5àg#þ* CkàÏòK­@« ˆ–nÎ'ÉZõ,ŠDk@ЪgA(ZƒÖ¡@ïE…óPib©›Œ!XZ'_ž6„Këdd¾–÷£Ò:Ùÿ§Ó£ !Ñ€¡-„A›@»0ú¬7Pw6:›I#n6€5›I4 e61®º-¸¬YÖF‹u¼¨ÛÓÅÒè¬)`‚´«—›EÐZÃP­EpZç¶ÆrPZm‘æ³ä“ã´û6ÍëÆ-xu¥úœ’f"éYä– ‰ÇÏÆMª†¦½9.­ÅrÇÀòS@”z×·à xq8–wƒ3j#XöÞ˜–Y€·‹ Ý.uëÃN4å¹- p®#Së¹ ·…빬ç 5Ù¬%U{µ<Éä K“‰æÅ5׌z(Æùiå#š‘IY§V–6aÒ¤»%·=Ó-©†‡]Ü}hüè?Ü'z÷žZ›š>»w}!™tTãÅ ‹«Ë%1Ð_BÄ¡‰Ä%Γs ”øÇ˹F»s9‡ˆµ†û‹ö懔r–ñЈñùוô=ê°oï%y'«B€ Cè†Ñ©üÐpÿ×ùsZ!¨²5ئ±lç|~>ñ­£ýFÔŸur\’&]Åd˜’x¬VãöSný#l Þ³ßu±n2²öS7óéliÓá[é˜ om6lkÔ,ŒîlÐ]Z1ÅkFiž\#Ü  +ÖH‰óe”}¨ T› Õªˆs+Ê(û ›Fz"K’5ß“d°×3F9‰g .T ïpêè‚ áw/8Õ£_mYs¬‡W¾Øðs,j“Í|l”t³ z‰&ÝäÙ–œ³ÑMé'·œªÙƒ!I–j'þIŽj8Wæ›Þ‹µ˜TI‡£¦ó4%E“¯é2MœŽáñI:ŽÝ>ž^œN¤œº|‰‘2ñ–+€Ö×çÒ„¼˜[pEùöƒ«ûÃ×à.óËש}K¼$e9”ëtèZX3ƒ„L%\xpH JÈ)@I¼R%‡Š½‚£„¯^g•âTÇòÒO?ìµµžZæÓ£ûѪíCæèÙ¾Ny~ZÄÒþIxÈ¢­ýR©f)”P\ói‹ðŠ;_޽QÜfˆlÁ꽸ZhÛÙüPZö¼jêðøgñc†~÷ç›W£N¬ñå]>,Ý,jbÕKÚ¥mßÄÚ½éÄZN¬Üa’t¡™µqË™Uõ8=Tº¾ÊÜÁÄêÆíºé¼š¢“9­ªzf̪l$å̪?xhýʳj\»£Yu£ø¬ÚMϪý{šUã(wVݸÃY5NŸ à!‹ömfÕ”¦XpRUGOÞÐK­Æ @U?‰È=~Ös¬-­2ƒG»ÐõâÂKmÕucßå3ŸÞp†«9‰Ññö g‹ÉÅdþ§­iôÙwÖ}QK¿Pè'UKÝ_R-Ũ–~Gâl bÏsSµ”ZßXjé÷[¨¥ô GXª£^\-ÅΊ(W-Y‰‚«£"Z©q÷Z #zd˜K-C-ÕCjÉïUåºÕ`á†éM“ Ìúx×ðŸÊÚÀ„YöLwÿÎ6T‹_SÔ7‹BŒ{ž;³QZ?¡RÏ·Q +ïdoŽªFhT5ü£ªñGÕï£J=Y£ªASlËšb[=Ŷ~Â)¶‘?ÅúÆLCx,/ax˜òeñoÚLØô!¶g”Aã7OéMz8Q0¯ÎÐzôðÌñäTD[ê„ò%«ºÇSÈjÙ˜ŽÇÍ–UO¢Áõùùè*¹W¬xì%<šäU¸;cZG–¡ÁöüM¯×¶0nSÐåŠ%1ÒŒÄUùõŠ|óLl¼‡î¶åX,˜€å£3ðÕ“­’|W—í ß-á•:x[ÆP1h…Y±Ü0p„¨_&ÇÓ«+ùËÙ7÷~à\íÇà'Äô’hO(þ(†kûUñ"ª­Ô‘©*Ô˦Ñ3ê±@½l"ºŽkž:ÔÆuNem’0ƒ@äÞóÑüøSÚd&¨2Iìì7i$Õ y4*×ßôÀýíÏßë9]ŽŽ?/×Wâg f:½Ïv;/žýÏñ§Ï³ùÊé”Q“Ïj£¯k««øZ‹üZ«5¢µDµfÜ\‹QS~5凈ڔžó\Ïæ£+!þ!µòlt>…ÒÉd§w#ŽŸê¡¡?8h÷ßÈÖßE¥0ªxU‰OÅ’R˜¸ú&"O‡áùRMdÊ’iI]-'X14v"ù?–ÿ¥âÞiÈÿͬ£Ñ\ÛiÅðG¦×Oœ…å¿}¶qr]K»–}Ôí[{MÝŽéqšµEeš¢½ýng»3”µíñH»£ß%ñþ‰ÉË«ñLŽ ‚à™¸Š/§’€иÐXQ€Ê X–*£äjç )ÙË‘ZœN®4J÷Å2€ž]Ÿ_ Ý}HR ʬÅtò­u`¶Ì>Hædª Ê»ZrL#(èË9áY´ò¡Á‘DŸ€• ÓT £€ƒÞ‹aŸÂi^]C<|¦á€Œï9ÁÄÍQ“@Z×âó`q2û:ƒ!ÜœT"`O<’JD%]AT ˆ3ÎË¥ÁâÆõ}‘ù'Ð̪+j¸cÙÓT#»(‰Ô”*ÇŠÔd±*W—ÄyÍ|:#ˆ÷Ê™vdUûÏÕ3œÈ-â&Ù*ã¥pÞýw¯åpœšžTä{ôm2>;±$`Hwß'݆TÄò/ÈvFœ8Ñ!gùç˜p&8ô'Ž(ÕðÚi¦„T@<œÙ/¤öQ"$íãdÐ\1í›|Fªv‚“9_>º— €Àž|T}@#Gޝ¯FÇߪäu29=_1ŽýDZ˜^¢"Pu~×/\ÆQ%rAöèô’ÿ^5ºf²ƒ*ƒ’Ì…Ñ)L‘Xäv¶í&ÿÆ“(-u–XåD–Ëèl¦Bf^_žÀ$#»ßäBJÂ3¬Ê‰‚ð€¨œÐdΈº†ôã3Ön²W“"}Æzª´t˜*\µˆd&uwÛ¬Ei©—d´„¼×ÿé…Ì|*ÏxNés—”ÂìO?@ÍûjzÄ ‡*\¹ÑñœF$ašo­[¶ÂR¹0F_ÅŒ8üD”ž\,ÍžÐÍeÔ3é””ø Mb*X˜dý9„IE‡0Z’Î4€~3šLUJ"Á´gL©I 1f4?ÎùÂc6iCÉ(^ÑW• Þ—¤‘µ8¸,‰|£ðPvÃJú6!wÚ’8Øï¾ÙZ:XªJÓoEm;\ÑÀ«…š€ÊÌõøú øè:47àÃ¥Ñ\^‡”¶f¢åAKžê‘J¡p´ro+m¨‚x‹tF3?0˜G xU–¨ Ô#ÍôÑQˆiÞˆóʹ Vº}÷gïÙÙc+{=˜ •‹šªaÔ¡kJ«ÊÑD&F×l~}uhfsëR*L8”@g€mI'õ6ÖÜmQùëN${z\áDTð7Ì.ç5@:ºÚõlrñѤœo¿ä ÃP¤m†ªªX£l´¢¶=< ¹ïmŒ¦Ùf^·-ýÙWUc4 1šœ¢}ßiØ ¢(X͉::8Q(M+uçÉô|r¡éR)Îâãèü|è˜ZkeRü_‘Ò¤ Çd}xU=¾ü.¦çã#É 5±Ú“l‰Xª¹Ð(c0øR$žŠu*¸R‘½ï|µL_”+•Føì-ðVK-8^Û¥Á¬EºÎ"•F˜ÝÁëNÏ#D¯÷ŠÿB÷#ÑX cÖ退þ_ñÔa‚ÿ°¿µIÔ‰D¬H”‹P\DLOíâšÑïGaýîëöL¥Ê† ÊÝþ÷$ç…_ÂnîØs!Í)”µVƒf»^Dqú³6,õ0ÉÚ\°T#ëjAmmçÎ@­ ?*O•ŽÇßñ¨‡“É àb¤±A¶Åùvâ¤up<‚=6Õ² 2¼ÉåÅ|<6V NÆî¡[ dÕ§@V2BµEe c_·Õú¯]“ŽÙî3o¾$"õÖ8or'€>ÀµÓ ³^º’}ð @¯0Ä?˜¿8¯_ÿûÚUŠ7XifKõBÆPFþèçUÔŠå³,þ”æûv ‹¨E?Q5õEt£/ã‘ã¡OŽF=š7‘c¢ê«7‘£‘í‘cË'G]À@U ekù ¥\“"ð+¸D›t>Tþ'Î, æhàu|†ød Ø®ÈÌpM ôWti¾Å6–€^¤BÕ‘,™aqþ 4ä‘åÈ9<èÌœWß ù5½ G6¶¯¯`cíìmsMf¸ ¯v­{23WÒÀ:€«˜[¸<†Jò£^ù¶¼[)MbíÍ.Gǰ±P~&I„V†R¡íA;›|¼0ÐàKÉT­µ­H/WŽ '–‚ñGq àæãxJG'¸¨¸1S¥f¸ˆ'y扢 S‘ÕEy¨#}³jý.ëCë÷óë³ùäòŒ{áS)ŒÞ{™…°V”‚¾Yï$¬c5“]4\yA58»ÚSnÚ~3,[oGN»3°ÄŒ’3¡)¸'ÆvÅp–ÕB jÈhˆAع3zÓ-x“ÃE÷õ›ô.Øv)D!«wÁ.L²)hŽ!ˆš+| {(´÷\ZŽªá¥ãn‡æBR»IEšEIjÂÛ)ahÝÀó@‚û¶Ú¼YÑ:óÆ¢™×Mîk‹æÞ0s¯ÞD|°î.F",>X}·¼{=éƒ0Oº<Þ¤öéaÌ@{nÀ œ&ÉŒ”•·†iuÀD˜l­£M¡7ÇÇq.× +BtNÅdãæSkuÅûújqòirñÒƒèf°Š5ÍÙx$ßCVf»×ãÙÐf¬ˆª¬¸¬zð”Ø‚1Kl)‰G“ @¼Ç3odŸPÙaמåÕ ãñؘ…! Þ#U&Çìóäò†Ê^š¥êa1«DOqië. ;ªhÉrA³tM"EmR`…&ôm¢2ÁŽ…¶X''8Í‘ÝlªªÎ-ÓY|À~íXŸ+OTg‘Ÿ¥Ñ§@ÜÏ'Xà Õ&1áèÅ2×éõ™a%F›T(‹tåßÝxᤊ;îÜ"”"iåÒäédØvV'ëd™¬§Ö!“¬ìÏ#3·9YÊfÁd#rF;÷€•k”ÎýIè~Ê<¤þüÀJ¾Ä©Ö¥èžEÊU {™ ‘mËû& †›CFa×ÁbÖa‘ Xû°@2«à5Sm¥¶?øü•|ää*ܤT©šôçf©†EôͪÒoL'Yñ úO”yóvrt§ž ¤`G3é!=’å\p-'Éö‡ñüËXйF1MkÍZ=ÿEŠç&ª¦²–× õϧ˜aUʸu6›²(,` ›Td¦é‰ÒVË Ÿt|+×i²;Œ¬ªHíùñêša"g°utq +iÄ¡JN.æcÙ¶3òGšMM\_rŠ‚~yü ü/'r‚¼_œ°#DÂÖ ¥fRPçѧÜ$0½ç‰0ùÆ_'s*|¾”^Ÿ˜Þ ø\Œ¿Îñ\øæ £ªËÚ]\—¨`Ã*pGã³-­;\‡Ek>¢ƒalGlpœL¯åâÝ>Š¼Ò“¹¼BÏ·*Ð]6w ~þ¦?ì·z¸TQã4úåÕºËGp!ùŠóñl6úh«Ö‰D¶ëH{Ó _žƒÚËî4ÂÞXS'; _žu×—éÕg´ó´3|II¯ØÇ¯¡ÇÐvûŠao{½²½ít0cï"0W ¿+ò04OŒa b²µ»\‘ÅqÙR)Ð3h¦::ž_[&­@G¥ÇÏDÁ–’-| ’T|7ÝŽ`æ¢>‘ãˆê" ˜¢•'NkŸ[B·ÁBÂ×Ü””¤+ô*g¶g±-õa"è–áüI^–¶“å`ÇåJ÷Œ”»tÁþ‘æ4Í^dL•Aj¥bzχe¬èþ0 oŒÁ®ê)‚¸m@yÌ%4Y»?DÓÓÓåÅb-)H67‘ˆm:=Ù‰~ˆD,¯1¼=šÙ‚»¬Â»ÑŸÓ‰µÿ­²TcÃÆƒ0jãéÃSžFÅŒÈ(x†[bâÍk‹5±mªÓ‰šýS¼) t3{¤~®oª}áÔOÍMµ•úic÷þ%‡ Ă·½½Ö{u¶ ïÁ˜Nº•£{–ãú&ÚYšÄ“p’AIØ·æSÞâtwÞ¸*¶áuPÕS¸šYq±]ë¼EtÐÛÛŽõ¶\Áý¤ãéÉ8e À£o”)'>ºQ‘e°•—ïæ1BaCv§àÀs8’Ḟ³1Ý)Ú]ÎÇr¾‡%;ùàþ«Þ “4§%â7=^Æ‹>Üö¥Íð(‘71èÇV²tDÁ'I&ŠûÌ„ãN_¬©BkÐ Õñè"8Ë™wq`Ïô0¤Õñ!Lç£d12ŸÎeEƒì0mƒF»ûfûuB£}6=þLÇEIãƒNÙívúF>ÆÓ…9ùP÷Á)+ñp”˜>ìMî=¥¸ÄøKÙ"'!ý9æ­kIÇ ;~Üb¶ßôä(ëì½Ù¡nsHÚ‘ö³/G3ÞÁ4Ö‚ú˜Ã8ÛEìk£”ï9µþiÐðå×Þ"&Vï9‡?x£|ð>Xúôß(}£8À<ÏÁÀžëÛœÆ68Кàé/0KHô‡T~H þû懫键Cón:…Þ…¾Èéwˆ^:g’QPò§Óë+šÏ`D¢°FÉè~­;ü$:¥h÷Ⱥ›D³Éq kô;r‰½’ã[ Rvˆ*H½÷êèÄ!ª)ô“€QpBõ”¶3šÄl.íw'’×NkØöƒ=_Îk²š²† û_Óþ·žQõuøYlØÿ¢šx–Q4ŒW*Úü'Ù¨{>†‹ögÈ.ìÑg°RÊR~]oóc–AäÍ_—%ûFÛøøzŽ7ûVË(ðõx|)NçÇŸÆŸåÚéòò›êF n€vR’€¾¸¡ mé8½5ÝÁ0¦sMgíœ_N¯æàŒŒÑ—Fè4̉qöNÁ+Ñdî‚HáÒ3›¨9÷Œ~Ó²â´-LÛ9î•'"$ó×¾àÒš7ÍDTKG+æ…ôkÄp³DÚ.OA` b`9Rÿ5:ïàtP2d9R»…l¬J€ëáDóæ&YÖú\Ê3QCÉc79í¯e—Qw3uwZ[$”i#é 7Sœ**&,é˜D.Ê•J ð¼å"£ ·Î0ðx0@:†u¦¹Â:£çŸlêe7ˆ9‡rvJ ö|{=‘íI›-pj¯î”ùÚu÷­dbåME5~atX3šhïÁéWÖÈÃ5þÏß² ƒÑ鮂ƒï’®˜uz5YÔJ‹£Zˤ ¼1©ÊG—Í4ñÝËÙälz!éVôwíÑl¼df€­ ]TW-kÈV†ñÕ–àSI¥…»ŽøWIšo_lñ¥ üüƢߘe%3 ^«ròè¯*ïæDáÄ5Ñ!…cÄþWöbU&Ç¡ìP™qÍEa£-­D]ÒéK]N44|@»AXtP\˜ÄÕhÐå½ýåâÄ’#Lù2=‚àyE™+™‡d:~<Ñ…¿.XÝ-²âšªÇWø=®ô*”².ßUl¨%ZJqúzôNÏ'MpÌDé“dˆ àãiÝ_ôš¿ÊÅ~‘k8ÜAèUäÿ§7…‘×\zXP‹é)‚gKܬ/¤ÒŠ|}€ÖjÊQ~òêÒlFÝ}ŸFÞ¬) HèÑüˆÖöè=3nlÂ<ª»¼”¼œî4„÷ )ZùÕ@¢W·;)ÐŽÚo6̲¦¬ÐC½.|eíWÄ‘ƒ«bäU¨§OZOR¿H}zÞÌÉYGj£ V¶Õw +åV$p£Q¾Õ×å@ïd;a,è¶„™P~§®#Û‰ëÊ+[Œ¿^N/ØY_”.ä{ûRùVC¿]MæŸd…äÂCˆ$¨jéË3ÓÑÊÉÞÔoÙEÎiàŽUag·s¯º¹éññ¹&¼çSìÚyÖ3óhíLþL©€SN;Ö¼¹rîô9½Æ -˜ì wüD5w,tx|¾¶ÆŸ{ã–ÚìPIü=Àœ"¨è’hÈ•LSþ_•ï¤$´dº4:ˆI…NZP)z¨¯q½š…h”Ø(¨€Éâƒ;±‰®"J6ˆœO<6½4.º1÷¤ÍôüQÁ1̳\‘«Ímz¡ ìnƒéå˜õís–÷JWÎÍüìðùa S³ƒ›šä;ØY/xÌîCIý²§N——EG…Iøñjzu·pàˆ2­(PÓ¥ª‡¬dï4hI¦’ª›M!VRew´òt©Ëye]Î+Ûaˆb¹nÀ=ämœ[°ç@ªuCúDšÃFÃ塵Çq!ÿ7b—üv¨ é¨ž7Ü”Ugi°¤±–^.%x×´Ž;®²±ëL[Ç´“!Gr€TUÉ­q3Xccæ0Ý{g?¤¦L-«¦Ùõ\ËmÙª¾êoN’á:öƒu$ÎVùÀN·²ë¸4TˆV XÜ›ÊÍJ¤…ne!b†­eo‡ u<É¢^ê½1¤ÜYLÌëEºÓ_TνŒü}Èy#(çýT;^é¦EÍ€AB ’ޕվÞáT5J·÷—vü*TãêyR EczˆqlEì!}þ&™¨>áìWfw€Â<4Dhhx{ú†ð¯e„ˆ‚n§‡±G×k)²(Ïæ—¡Ž¡šó »cÄbÙ\S@Z©qoÀ°Pü¯Ýêñ=´º©,v¦ì½J7Æco§@W<ÎZ:åBÍ%JC õ*-<ÆÝ.Ð7¡Ð|ÀÌõ‡à!¶N;™‹›+dûŠœtže«æî¢ª¹î—ªæîO®š½ùNiýAUswQÕÜðSª¹û#Uó¯ÝêiuC÷vAܧÞKÃw§tï½óÐðèÞºBëØ¶x©¯Ãï»z)µÓ ^:qÆF(ü‡Ý}úýÕ¶§Iñô?u¢Gàêµúãn£,£È·*ÈŒó¥wÂq ^BNZÔtàlX"]ø†iÔM_óïÛöý¾3ÜÛÔ°ÿë[íÍ{VªÝV}:~ß2¿5x­¥÷ªà÷}Û{õ¡lï&äU¿þßÙÞû½ËMÖ¾^Û éýýÍ}we¯fê{Ût^Tß7rô}õ=ùzÍô}= ïÓ'É?ƒ¾_ó7»µhxX}ÿk…k¤ï×=í¦ô}÷‡éû_»íÖÆ ßôw§T×òú½•½Ü<¡¨`†Bۉ윃Øû"VnœRúĺʪt#R{fJÓ+Õ­•EÎ;@‘®KÊëÓ³œað€ó({i¾á!J؈1OzTfâˆ[¦o¿æoÙ¸"¸ÝH'ö鑾qÏ–î±ÞýÔt_ONo|Ç7ª¿õ¸¿Åšoý$]®÷Kw¹è>Îo¼}®.JŠ,Á>wûC Öªz‹èþ$²|ôïÑX¡¢~éÎôÇB„Ô·Ak\ßD¥9М衋”2pR'‡ž#Ëðìçœ0˜ÊÙ5 4?Ù‘«X•C̽©âÐõÐ õCÊI?j&wý\é*&ð^ß0Ç>²ñ?õ9æÏé~£øÕ4b›ÆrNÞº™·*¿žI£aÒh¸å[y£´s³-2Gÿ)$O÷µd/®˜S¾1e?XÓidÐQ·ùÃ}I®ÔÁ½w€À‘ý™žŠÝ€£¿ý¼˜ŠëKN¤"Btš/òË‹ùä £Á_cû"¬{;1E ªÏ2úƒ{:â*uÄš ãඤV«pË­gPu†–¦ sïø% þµ”¢ÑU×Êð ±(í³Ž¾0i×s“’nøºnøÈiQÒNÝjHÂ:)s9‹¡‹9Â$Ð5y‹ (–}.û}Ô¤µI´*ܳÚÄq]QõûÖéY¹Ak—FÀo.=7Ò“±Èž]Zù«që…Œ0:sêÖÑÞwÖ3›®g„ß¾M‘ceî{6~f8ÆŠß6…ÌQÜB!#Aía ›œcJ‘a-¯Á 6ƒ0§iêîQ3ä&ê7~Ó!³K¸þ#>•/Œb)=›÷4Ã#h5{©Zó§A½¿ÚÊ9÷0‚ +¤ºIÐÆf® ca=lµŠ,õáŽÍ á(²l×ÛŽVö¨À#‘j‡´™Ùß„h«³1}}ÁÑ£>ùê$Íü$«þ$þ=Ø)gˆB±ŸLNOljszIÑtl“em9Zw7OFtEŒ²´‰„ÙÓ;SÁG3 ÷ ™×«O“Ÿ’øŽ£ããë«Ññ7×`:ìúê}xàû¶ÓM_<ȸ;WãB·ë´n]s¡hb0²!2ÃS3ªDÒʆn•€º*–vùtq·ƒªŽMÆsYfŸ„ûùì]Ÿ¯®¨`…¹²Ý›5÷¨ßY­ªl쿚ŽÏ9·w¬ã/MvI¯Ž*WLŒ‚Qé-CÈ…2ª°ÜšzŠ)+xÁ£JìY¨Ÿ`òe äX®TÖ‡"^%í}—ì'ig/ôOá(ò|?x<…×9P¤ýiû1_ƒ£_ëÝ”· (æ0( %½§n=à†œ±‡âìÉ…53={ä&¨”zÏÞ|!Œº\"¼éÒ l¾`´·eù1—PW½lC‘?#HÑV•£a#w¾ûŠ¢î†¢øLAOÐéPdù C¥å» =ƒ¤/ZqIÞãJ˜MDr0{|Å»!Šžˆ"ÛQЬgú#Š;uIy^‰ql#å„EªµmßD_†[xáˆ[9∢¾8"ÇG±áõÈQ5ô:åˆÀžt£€gñ¦Uùºÿ÷‚Ú\xzçV ]Ü‘Nyj½Dñâ:égõ. jøNž† *y±€ž‹ªz‘­íEŽÂ†ÈñøÔOŽÚš_˜Êßs‡YÏ®S¨~²'<Õé" M"w.40`º „‚s̯–;]tÆíCîQ؈öä`ÒJfˆz K-s’©öa§'ÿf 2pq!gµp‘/\pø¶S¢îvãV<ø%O_é·ºf]dÚÓsÞ†çÇG‹Â¯(ÃÓ»qÑvñ%ì‘ÞÁ’M«Ó¿Ü[x’ïvÒS¼Gvw¼x3ŽÍ‚ þâ ·ß5z²®‰EnÉž=Åå©×R“»¡Fo½ƒÎ?/¢8E®ît)¼#/  _x=YU ~ó”Þ8­»+5ûôTt§ÓKÀ‹Øþ4>&ßw®áeñoFlH™gûWÖ{=ç Ñ_>MŽ?‰ÓÑäÌõ†‡ÖÞHà‡‰G$0n”XeÂòÊ‹Ý*Ø]€sR˜¨ Æœ§´=¿ä¬¬¤œûås‰ŒÄ§ñè8§˜÷d4Ig©hS ½Ý~Àx7Xý®“FZZ,×ZhÕʰºh9Á.½„¸^óÉèbAî¾pôôùp9¾’ýé||r P^÷×;¸ƶþiªIÕä³RÛ¹Q“®ËIÆÝ¢¨`jpü›Å/¤ùC¬ß5YSƒÀqL¡uê£Òü&ª¥¡`×ç磫oº#¥Ôm öJxk ®6cU)/Å(Ϙ’NðÏßô÷Zp|'޶_¾ 7Ŷ/q šñ NÚ[0÷¯Ê¯Wä›gbã½|ÛÛrs1 Rg`ǯ­’|W—óz¾[Âxð¶¼DÆŽmÅÌ3É VѪT¸y5þ*ô3¯1]^M?œÏ õ¤F{ðòUÌ¿]ÈËl<æ:¢v>Ï¥n›•e…5«Kbp9>žŒÎˆÌñx¶éTÒˆhëh|5%,™¯+Þn''§Ì×ÜÚákT›âøìz6_IQ/$™ñlÅWR¼Õ9‘¿Oæß²JK—´j”t6ºú8®ŠñŸc¸å6»O¼…ÕLVjÍ¢¿°5#ßì\®0ŠÖ02}OÏÇó«·8Õ¾M£}wƳ±î¯™Í´¾µkׂ;ÐÌbª>Q¼5ðÔÂÈî+lcëÕbrŒ·äüe¦ «oqÅ[rCöM)*gõ‹¨¶µô#TlN¿ˆViØ3T™YÅE[]O'ʯ\Ó*ûFª8nã†ÑÆÑêÖ¾{ 1T¶¬µã5…á:­ûû„ï˽áËMrX¤:qÍG‡šo!:‘uÆEN€RW÷;!¥šÔSŒÖ¤uK“:f̦§ƒ”ðÂéJ—ëkø”0r@ûbt¥Ç{'¢¸öÞ&„?‰w}¤ °Â3Ýà6@aIBî9^^g²sÊJ~ø&^N¯gãOÓ3°w9(ÆrQùxp‹k ¸ÁŠ{³duôrwØ—öÇÁ~WκKKK›XÎ5â»h‰eÉà@À~f+r ý޾·¾‹ q}v) 24ÈŸ;2ûAffÎÈ…:ìt‘ß|‘f-ƒwÚh¤XK±Ãº!6-„÷Šªy;Q­ÞLTûEDµv;Q­ç‹Ê;%É4™ëH­#·ÐAN¡rŽáBR™Ã…FÐ_wJ¨ïÀeI¾6•o1ã÷ï³ìt%íÒþ»×”ëm¿,¬<¾Âd Ö8S`¸Š^Hu Õ"sŠihá4‡ï¨aWQ‹Ç[nS‹&S 5]Eì`²,Y½& R®¢¤¸ßýyx&“êä+æ,M@6ïúðÊ­ˆ_~¥øbYš ÁVÁô®AÙu·þ=œcCû®s¹­zib”œ‘;®)éþŽ¥þî|þYŠÅû{*§£jF“Ʊ§¿ûÇ¿Ñ÷aY`õBê©®Ÿ¥ ¸›y)5žìy+0 J‡šRÓâ)H'ÈÓ¡WÔÔ'£’N„£/.m«,I{Gß-Ù¯o¤W]žW¸âÃU~Œñ£\¸ëdž\6ôòV ³ë³9.!q)8‘vŒ¨íË•ûúJÌ%¯?\ÉÑ>ÈÔVêÊÊY_3­Üâ5mÿ‚“Ðe^Ïóæ!%Ó«úÝÞÎoÿø»=g#iO~^®¯ÄÏ`Ç¢Ó{ñl·óâÙÿþxv¾rz'eÀFÕj£¯k««øZ‹és­­ÆõÕDµfÜ\‹QS~5›QüQ»“Òs¹Ž] ñóÑÕlt>…ÒÉd§w#ŽŸê¡®?8h÷ßÈÖß•ƒâõ‹î^IôÀ¥ü°Õ­Š=ü»{rÜ xs©ÊûëY¡Š÷ZïqáÐz^mùO¾¼·£’‰^§‡»gÃ¬Ø²ê ¼¿ËË¢ÛÚom¿&Cãjz=\‡ÒŸã«ÙDšõ9//óP?¸˜ü¹ƒ}8¾¸Ϥv¨&ßmÎ&RI\LF¢=¾ú<>Ã%O¯õBtç'++L¤7ýs|þA®@bÙ‘õ®àÊŠÈ5šì=­«×çrÉ2“ßý¦8î¾Øí»•PÕ%1’xz\ιóæ ÝÝûýÝíΠó¦'¿Rç\lR~ëêjô­hñÐf%Ñ] MZxÛKÞî«·aNø5I³ýfo¿»û¾­ê‚ZL®õœß´Õ«úBÉhò÷TJRgx»}u9aôî-zè{ê´|œsôâ|X³ëªwÀT0›žý QÄåzp|%[þä óLþ8º c‰ŸOOÆgj·“™Ðâ6ØPŒôz”¯4¹¸¼ž—U;˜ ?ÅÅ5v'Ù9B“|nØûöÅñôBÎZ° ÌÑÇyýj’IÆ&e’o˜?øÅÃ\ÆËÎR•ËsÉ<Ž”R¯Wv9Køry}5ýbdëq9{w^ÎñôìúüÂȹ§Úýþ‹ÚWÒƒ¡¹H ž›ûÝó©ø@+ ÙxÐ鯣ãOàåñar1pP“N’Y³ySfâßpúûþî@”ˆó¯“óës“‚Ÿ 9Âdú †„ ”˜Ùñïi<(†w9JL>þÅlÀÆËT¼(<&!@½N@Çs,št…oÊêz6>aÑ£†Ò¢&‡nNc7¬¶~s{šß°öhpªbyÇ“¥Åõ^­PS"]“œHÎ>M¯ÏN€Ëãù—±)…ÎnÔ6¤‘‹¢ø2™!¦Ð7ñe"ÅýÁÈÕøä6ë¤<«„BFЏQçÒöâÓ““·"_'sªÇÅøëœ*úÀ®Œ^uNçcK‘©ÖÇYòœ·éŧџPYÝì,}>³ÖßÕþö:ìÌÑSÀj<+Cg‡ÎÜRVýÄÒ^“‹ã³ë“¤RÔÖxŠ ¡ÿ$'èÿÄ4ÔY·šIÎøßŒâèx||R…>¥ª³%jÉÀ~ïÑ!nµx”q¥.ñðK=¹Ê= }8×]Q“ÔèËôê3u-åÐÕâ_Kðnã–ÍéÓ£Ë$ÇøÃ–Oëù- ´oËAû¶¼_”ƒ†™­'wÊHñ3Á˜ÀÍ+ Í7Q ]_LæjˆBÏÁÔª#J[ï$hˆ(U 1Ðp”¤IDv} âëc9ðg§×g¨UÌÿ¦RÑu[ý†AÃÞ«+Yè±´Hi¸T‹IêÚÉœæ:ÂfV·îâ1îýÑÕèðܲí]š³ø÷ýV¿µ·;4S”Ôäº%Ö-CS•ÓJëžM|£¨î›m2GÔó¼Ó •ý¾ýR–µmµÓ å"^ä"JuÓVê*í~kø2È×΀ˆ+&§çªxÝmÁIùõ¼;hƒ‹d+ï£Í±%ÑõuïÍÎn‹^Út•øy <2{ýùAEmñ¬øZe›^¶{;=ð™Å×v•”xP®¸tÉëΕn'_í~•ýΚž__øº¦èYša`µßó^ ¾gÉ¿g”3Ðk £$¥V·õrçE^û»oñup.¬r µ7ªr‘Ò݃% ¾žäêE ær²×ËD5ž:àÛ‹!XuÌæ£‹¹w ±$¢MA%–$ÓKšt*UNšÐWÌЃŒÏ4Bä+ÃþÁ®n!ð£! •°,½2¦¦¯jÃSoè…§ìáà4%5³þ¢í|Êž¾B®+x Je69asÖ{¨íšgìûg8Xí_&.–密/„HÚ÷|’éy¾G4pÈ7ýrÎÞ{ºïóè‚´,żpÞÚ˪’v”Jây«;Ð-AÇ…ÊC•\ûd_Þ·`“̦ •¿ùUCìL“E\rÙÓj׳º)?ª),5J¾Éšé(™«×P+/QœxÒè;lËÕø H3W)8Ì[F_Ыk/hèJïÍpÅIžòá'æ(ú‘ ×b×—â2™6ñp4®HÔRÙ³òêuC ¶)+)-—Oå'©ªÑLwšùÔ|uLZ팩ʞbì™Ê™pÂDÌù7u‹AÅÓ5RwA8½ÚåD®y·’9à¢sùNêºÔ“ ”Ññg¹T _ ˜¢ó.9ßAlçfætS¸  û–ùeDY"Ï}mø„äÙ.Єm%Oî1Ž<ÑäiÿeäiÁjpòÂÿl|:—ka9g“µ5zSNÎ÷u©™wÞKæèf#‡ Œ¹‰ˆÛ8'ø?µ3š1jÜìë½~ìܼá ó>{«¦gº–ó/â˜ëÉÇ0 …©až,Ð.‚ëæMÞÿ“ 81Ä-9¹´Á»Z=Ï?ær x".¦¶6¼ÍÈ]_ï}øt5›¾à0Œnù`%™(¨™¼È™½f!ëSõWÐÅž;»^iG'_mjaÒ鑲ïüÊð£W×›ÝS&ŽøÉQžu×-¦ÿ”[ö>_‡˜‘{¶Þíà 'ÃS"Awm63±~Ö:§¦Ýè,ÿlZK‹„ÏxlãA7û@˜§á=<ón k¬~+åf¼‡ÝOA'ãV†Ÿ`3+94Çm-Èù"ª¯¬z|­+•Š´àM#í)Éç&™F‰?ø¾þäÚ3ÒýS¹rÉ·'g’…Ùé7Iì_²‘àEiGB¼Ì2“–Fr¦Á¢böyry9>!·|´7<µ£>Žmª°¿åqüƒ?çÿÿ}õ çÿq½Ñh¦ÎÿåÏçÿðÐXsÎÿßÞ:ùïíëÓí`ù„gev°ýZ°Ò—v`ë 1ÚYø´m©«Ûï^c–vÐ}à/è%ð€6 ïÊýâÞ­·êMßöÈèÚÓ`¨Þ¼{­Þñèny„ ¹> ¸ ¼í“‰Ÿ_ÈÏ7|y:}ò?dn Ý[þðmyO‡Òâ¿ÛWßµ«L¥ÿ¨ôßz¨ìAŽžMeßú®]Äga*Ÿ…½«‚Þ¿©,ä'°WØ¡Døe³@oÿÆõ º^˜þ 8#ìߦ>Ú#á>%ÁúôîÓ_„êR’Õ*{üF=,=,=,~¼‡ÅAwøèbq×.­··%п%°s&ðÓ8ˆ´nK`x[ï^ߺÚ7m€[û§ÜÞEæÑÃå×ñpÙ s<\ …”S“äoè)³§6­aQÝÙ÷z̄ׄx”QÌc&L„¶˜{ûÓÜ©Mb…ûM¦ÇÍÝy¼í£'Œ\ãÊ×° 1W™·ý¿‚«Ì«àÁg{ÉᡱgÆyiïí}‹6‘oJòûLÞF3|=öSÇ}ÞBzPHÏ-DhG“^ÚÑ„+qéùâ!òÑŒÝÔ#„žÂ~!ô¼CèÁk”´Ùäýý6>$ô,âIBåO²$Y[Ês( ëzï ·’<"®›c¦s‰Qå±GA0ó\Lв‘ëh’G(ñC¹ëêE\%˜|Ñ8è^· zrÑ4XþûZþ™.)…äß®æ;¦äË¿ýW—˜ðÇug/˜úKɸvNа‹šÇEy2mU“C#°yrÔ--aEó  ¼…/ =ù%ô°/ªšT­hD ìøQ†ªz#_ýpJÑÇ;5{t’ÈpXщmÿÌ7Ä,)ÛµÅÃoˆÖï!m9ÁôÜ`§ô¨9úmÿ§£¥Íû—˜£ º>ÎѾçæèBn£Ååÿ8Gós«9–éiOÏÇ9Z=¶·í_jŽö{êçFSôZʧôLÑñm¦h¡UÓ™¾çÍ”WëêOáÕú¶±!ó<[wVË›µw?ž­÷ìGË=*ä†ú¶ÿwqCÍðÿœýùPñŸäo®ÿg=zôÿ|ˆ‡:¹ãÿ984ý?Ù÷ó®â?TÅaUàAÀþK°vÁÈΈûNø,g·Ï‡ ÕIÂ3ù]?Ã-UÀ'[]ùfʦç·wXêmƒÊ¥ô€_oáí98LN w6 Ó&løîïî¥y»PNŽ'}^“÷2êÑ¡ñÑ¡‘ŸG‡ÆG‡Æ¿¦Cãw <¸-‡·%ðöÖ­F¸W˜J. ‹Qèß¶ka–•ðèÔøèÔøèÔ(îÛ©ñ¦á¿vÞŸ>évwÓŽaXaŽ^ÇÁáÏê ­KŸ‰869R®ƒÃ_ȵqçÀýâÐýâ­ûEÿÜ#ë…Ü#õ÷†S£õ½á¸geóùÓχ*~ŒCå>)7³Š:ÎÏà^%ûEYá• úþ]ÃUÅ‹„WÚ·ÄÞÎ{A¿kT«ØÍ/ÑÝ`ÕR ¦Ë´3`*¤Ô›.‡™¦5 µã8õc.dÐqKùü î5²TŽà ü nêQPÌ—`/‚ ÿÀmû²}r½<®|~Èr¯o@œ:î¯ÿÇýØù±‡ýÜ8¡ã÷Ááßåøý‡?áóÿ³ÙøaÎÿךõzÿiíñüÿ!eöù¿Tê„ÿt/çÿøOøO÷€ÿ$;mr–qRõ"@ê“ÿ÷µìs<ÈÑ+:#? ò¡üõJ#Ý‹’¤Y¾_¨Ò^u¿Ú+‚*¹c³¼ø9~qô§ŒhKwÍ” é1ZÑãáþãáþãáþãáþ_ápa@¨fåñdùñdùñdŸ_X*cÕøxŠì9E–߿ԧșar»Ã;:f–m‡žÚ=ÔY³¬Ì/tÖüK Ní?"Ný,ˆSþ¦°Æö#âÔ_â¤?Åöãþý N=žÍßâNÖ“ŸæËoj&¶q\îèõ=êtƒHƒ¥$–Ž^ì.ôÆ_®¤áŸ.åZXªÒ(KQN¥r¤,GxÀY¥=ý1Ò½;LAfh°RDAfEŒ)þ¼GŸ3“ºSGGäVz{z.'úñIªÂû*¼ŸQaî~7¬°…±•Çgʬ<ºsÄ~‰€9ZÀã¾ÂxÃÂy•Áá$ø°^Y1%½>à¹7¯4žE(#"ÄO]'b?Úë£x™äô®ÁËö5xÙþÓ½{/“Œÿzn+!ÿ“«reúþkÍfs ü?V×V›õ¸¾†þÕGÿ‡x¨»šþ;ý»çiÐ9Â}^²'¢öH »¼9èu†ÉÚCÎò’Ê0ñÈþpu Ê<–ú–^"tü­®³¥nsúN\F<;¢m#„Ú ¨dm›>&½^ž/‰2ªê €@Á{‰HÂø!»+%"PºøaP(÷Ð,ÜÌQBª¨· 1q {‚dÿ]L/fßÎÏǰõÁ{#°wz"Æù‰ö©JƒãO×xòsŽ)Ç”“«‰ìÖàõ²;à‚ñ=ã…%)£™x[TŽä _¼­ á}U|ù4¾’sº8.f°]ûÇõG¹úBó+ùÔA 3 ÁY@ˆkXÊÈ_'£‹×зK“•ñJl “{äè ÓtÚýÿ!8Ñ’fEt¤-t6›‚c,—H(% ‘ˆb&J£³ËO£Òåê‡ñ^%ñ?¶¢êÊÊJõñ¯gˆŸöEþ&-•ü'‡¯‘T Ó¹²¼Ž?®¤¼ÆW“Ù\¶¸‘{†ç`KœŒç%)Öe"߯jÞ{s ÙFg°ÝÆ•ºO¯NÆ´X6+1›ÒÊ@ZR§È²±šÇgrF"3ñHJN‹ø|ül<:O¦“Éè#'>œM?se€LÒYÔió;pá®'«/uÒÒN#OfRæ³'¢ô¤·4{RƉtJÔBO°1g—ããÉéd|"åÿ\m±% ó»,¯![B˜¸M°ýW‚ù¢¬í0í èà‘»å ¢ eæ€$UžNÏΦ_@^R×h„>EZve“$t¡ ÊêœÐ¾c²8CÏ^\¿/q)—,òJMÙKQDâ*EurÈ‚D%ù¥߱Ǽ•IŽºïÒP-‰ï­ïâB\Ÿ]ÊTº˜ÊqUqÚ¾¬éÄD§t†öbtêD§tÞ*"‹h$ŽŽ$ @T2ûäT d‚=:鬤HLÍ‚ªÃ¡™ŒIñU&nŽž­d hgøfÙ`œ”« uRjhBWb úö °ãŸè¦_UÀó]©)®Aéêåïú'¥–åü‚¿ØDvH-¹î üâåEV ¤™ù^ýÎÌ”ÕOÌŒü…™±ö:òÛuº…ºí2öQ)ÑaÙè§ø‹î«il⬿J뙽¶…Ìn[„BT+g÷\9oÌ&Ënÿ]°¦ Eî° ?öà…„“ðU2ð â¹a°ÓÙÃ33ËáÓ ’õåÓDÎD_À²ÚÞíîn¿:hŒ=žæRþ0œaVMl;íYÓ-\[]$^‹ÒîŽ6i™Pþ'¹«sNœ¹÷@:Ù2Š R™+Š'è–ùÄSš8›~œ€Wª—²Xvø§ á_È࢓XöE5BS¨[¶x ký±¾×9·ÉàÜc¼P;UÓÌ|ŠSÀäâš–N³ÑyF»*Üà®m‹6±§×àF6ONG“³ñÉhi(ý ÞÖ{RU'ª'2‘=\gÇW“ð=,öªx¤5>™%÷k{StÑÆ1]þ³óLJ€šNJ U8Òäª$]s—ÀgRÏšÙR\×góÉånOÊÉa¼òL—Ü«j5˜\.àÁ|r H&"mµ‡ìÛÔ _½¨¥™œ¿$ý?eo8™^8—OÅ %M2Ö¥ôÝ*æÜ‹^¹sïó7ýa¿ÕKÝØÄûȸõ|=g‘žg³ÑG[—–H ²)GÚuE]Ä$÷[¨0F¯é×VÔu`•Ÿ´U±;±%tj€Íó^¯li¯ƒµ.ž|â¥ì«ÉÇ Ì×­DF˜h4c>˜]½CºvKéâjjÊÝâù¶š7án™Wyà2VR×`K$çäJEËFÖžHhòÚó ÇÊ!ÓXQÁü« ôêû–zûÇK} êZô¾u°šCûÜJ‡â`muz%Õf ȯÅ‚0pf°ºgî9˜¦wu5ž]N/°Ì§Æø¶&ÍF¥‰ï´†þm9·ží¤ž¿Ý,Þ<: …˜(OçåÔ>£Á…S<ĽéØâ Î5’¢è :ZLì‚Åià-–Edà‹ØŸÙ¦ô}Áú g6ùö»‚Q° —Õéåçåù§£hHw§Š¸€î‹’ÄV(@:j†‚™M–¸9ÙJ 3¬êPÔ´ž£g×g—Ux7ús:9Ñç9j’ò(cyªŠ•ÈŽ)ñ/L ç$¾|°<¡ÃÜ tÁï‰O#8bÒ¨”M€Õµ„ðo$Ór "<˜7BS¬0ÓÔÍÓVvÐ ÕÁ0 }ó#bUx|cvûoªâMOÝ8ñ†™€DϦ¶ó´†©áž~Êò¢Ý&âÛ9Ô·™|IPcÒN²ÛÄD‰ÙHòdy “­‘Å o l‰xõ–5Ú­ðhït[ò’Q:°Æ@Zða†áÔ¾µ³“„ÌŠ¥*^ÉÛò_þ‡]¯ Y½âËÉ’~çn½Ãû©½ª@ò_”åd¡5vûýVîsð‹|í2o=ƒkK¸;ZÏ‘&¼Be‡»{û½ÄUqÐÝÇ?ÞaF¯ƒÄUá‹&Q8BG·5è¼èéî œÝ¶ýMF›½éî ”oúkÙz%±Jo÷ZͰŒ^·ÈÏ%)þu I±Ìm§ùC.+³SŽx½-…1(–yØï´ì’"Uû£ß…›¾Ol×0"‡§ñt OPOueGd4S·µ«»‘‡nkoûe¸›Áܞ؞0+T~•Ë©2½ªÊ—Q¿¹ )p‹T1²ÇïöÛp'ÿèÅî°ñk£JæZf—ÖöþïÄÙóø:ØrÈÐÛ‹ûŽoçeG Zþ•úûÕ ¸>/[Uê#9ðå(󥃿øŠò…îi¢Bdh?yâP„ì%ñýíñª;pM_”ÅSþ Xçïö—„à¬3²JÏd€-ð²^YÏ+µ´,yµ¢C[Æõ®ÎM•QñJjYÏk›¶Y—ƒïùB®¬²DsúèfYÖzE·¦ùw-ù:«fqn•ÌbÌ2ŒbÔ×·(§)m«•޶Ìäd   õV–:3Ó_Äþ*ƒ­${½’"›½ždoºÙ3Ùo3ûkiö–2ÙN¥N×?—ýJ«oîË ó•„µÂ%ØLßÖ±ºÔhw§¢`Î-}Ÿâ_½âhxhü›f•ÓR œ]B;'¨½Ò®èuÐÿßáBÇ‹¬Ëù,i8aÔBV±½ —ë!‘%Ýä´I›]FÝÍÄ42*šP¾U7_w§µÒÝ]‰(Ø~® LC$6Ò$ÞZ$Þæ’ˆІg†Ã¢$;-j¥^‚c§Mø]»,àí<¹´Æ'è`ñäÊ·ùDïœX þsi<œƒƒú9žÉu¾.J\ŒÇiO¶äŸË)ÅïÐ%N$£™ø2>;ƒW>T:•ýòYèø§Óu…lD'zªÃ¶f˜©çé噢»zxF¯¼B&²¾'9ÄŒüäÖZƼ ¼è­ߨŽMFÐêÑSlb á>p ‚…D©–Óù)¦JňnGUâ)ßB¸›·ýç܃2ÐðÄ¿´fÙ™ÅÊ-MÙ·}ÈÝÝv²+"¹^·ø$¿©&h­mj“§TÛvÕ¬¸™…nüFh{Rv·k'ò&ùÊÁÁÒ4”VŽp4(ŒBk+„‡Í²ŽËn'Káno¯'²ÃQ·8u§ñ¨›`@:ROø…Qÿ‚²Êu¿¬-£$ƒûêà5 ˜A›f¢ÁètLCôúÜ“Žß<ÚÆo¨þaé§P«@Ž'µoIïPp†rÂe§w¨óa%cw•Öºñf½l'Kb³1hÞMeqó²ûhbû{ê'°Ã¦ŠéN§—tïŠOÐCLÓ£m3ž%l队1ôº9¥Âl¹Q£m¦À” ái`6Ä$fLÂÈÇ=«ÿ1òOB¬@?ãµ–Ì™N]ש;½ ‰ºb$7B­çS?òÙSÁs%±’véq‚² š–r3>¼YSQÏR­ÃNIöz6íHÚ{f†¤zVàDJŒœ()ZùU#Ó«›ûHrÕ\?ˆáN-r;Ípc[í‹ûCJ±‘Õ°~É6Ù+lRŽçðŠøO‡C²ù0‚¾Ò‘Iºäº.9ª»E«x¯¬1UÏ)ô…I2=Ò‰‰¶^ÑÁéñÕôÌTéÞ| ».ƒM±qx„/Ϧâj:ÇàU±믓o½n²[uN©ºÍRpu¾Iž;Ðóž°W £óÚõA{À.h¹d@hDær4‡}+uém¦côU  ÔÚôómŠ’øúõ+ìnÅòƒ\áGYMí­,¿¡xt~" NIÉ8rÝVsÓôvÎ!±ºiúÔ«Ä+ÒLnHž°›så^ 7ž‹éÅ2^¿³nK2¶ÉŽe¾>Ûž@²õk›ì& ¢AW'?ÃRVèšXEA¡³“ÝD´jÝTŽ£ì­å½ÙÛÂÃ>ìÞÂØsJßÉd_³¤»9¤ÍÇm:¢Õ½ÚIßÔ¾kUñáš,ܶC×é$”9Ï#JÙ2 M‡³1 ìdêP8Špç™öá7ÉËNVtr~ÉwSydž0ñièS›ùòáV僷¾È¶¤·1Ú®ujRΑ­œ;Nê„¢ÚŒgm–_]Mm©›4ZaµDÉÔ&nHE¦›šêäAO'`•Õ}³'g„™?®”D‰¯>ÃÝìN(ûæã^Zô¨Ø–ƒ]ˆÜöüúìl‰¦ªú4‘^(ÒS:î^j²6øLUÀ0‰òÚH „ŽàðXCÉhQeì~A é<ú¨II„Í u”d£±BYùŒ†³V<¤âlB“+Ôp^)eM_©úú:ä€A¢ø¹ê$­’:…‚` %cD´í_dD´jD´ƒ#¢}ƒ‘Ê£ZíT7–k¢›ˆ4©b#"Ôöˆpë¸H/2"ÚÁáÖÄßÍÝIEöï˜ îѸ Í0@€ð”ôPšyS顸`géåTΩàyŠs¸4¯tPÛ™˜Oν׉“KìÊ?5]ÆSÿÛ¼RËÞ‘'TäýW}™<)áhåó¶DnÛ´^ÀÜDÐRÈû•ž£57—7lò«Šþüß>–wàp› â°¥Y.ú¡M'd4PJWzO¹:4Ha”ñŠÝ`"LÆL´eº©æ‘YÍ£W“«YÑzFEŠTôÈ[ѦÝÚMn,E»Û[ ¹ÝË’)W’ûHÞªS*äàMƒôÁWöBŒe4®aµ‘ŪOµ./ϾÙK¡$€_™¬Ê$¨HVY‘„ 4] u` ¨¾œv ô^, 'Jn/-œßà!Ègû'à³m󹚩%׊*T+èÐ"­©® ’OöƽWc)jVÀXz4ÖɈ"ØûD‘ÁO—…µZn ð(bÛ®Á‘QÔy6”|LÐŽR‘ü¦Èr*¤ç¯Ñín É¿KÆõÙWû>!})õàF¶²”)Ös5¥­&C«»BŠDÍI[­í-Ò5ŸoQäzXCmÔüßëÇ8÷“Íç¦Lo;-€ø‚‘žMÌ—¥ê‚í’v:–™<ˆ=Õ§]üÔª"$Æ:EL×3Ê©'’$xá-þ6è2YQÞ¹Âî»Âu ŠË ÷'ýaü< Iã³a뮚^u`ÛÀï|ÒÚA`Rz~ïêÔÖ ®ò­A­f@#¤À6\D¦ÏsBY¼TÖ¥²Ã€‰tÝ$zhÊ®ßÞÿÝÝÎPsÐ °ŽÎȪtæ0UhEâ)Õú)µD¨ÛDO!ÕSjMèA–Ó¹ÃÑ c¿túþ¾òÿí© )î2'ðŽW¡ê9"½Â>™ ³hØÁëUÐzÿ0tôo7¨/zOãp7]PV"[ï ‹éR;¢æz.\ Í…©^«úOƒûOzlÞ¯Š–—¢Äá¢gbmyyBß\¨èÜ I1E”w9ðð¦3uwܤ:LÞ¤å:PøC…Š·ÇÞÝûЍ¸„¥FÉGÛKÂ_¾é·„1ìì^î]Ç’X=Sbo‹ŽpW\õ WJ?ZT¿¸¥7’ÒCÃB4qNXÅ1¤qBD¢ÈåÔY1☗®éÐ2‰¡n]Y…iÛ¥ û3ÏŒ¤ÆöªÛÎïxIù ølÞ(ñ5ð ÃPÊ#Õ-"ÆÛltñ€'^‰ò2ìËRtDzòòõ¶ úØ(Ÿ$— ¢XàwH.ƒ T~J© ÇØÞœ M$ábXŒ <t+Ô·¤¤Ý ,`¸ï‘µ«uN±rpàwÌMrÏh×åó:(…·ô°ëK³ú<Ó”fâ{°¹ m欒 }ú–—K \Òeño Ws–µÚ9“ß<¥7N±„é‡Ð8•R¼:ÌäqÁ‹ÖŒ $摟öˆëû°½ç~àPD‘îødr5›søÿ)²âs\ºd0ÂOãü‘·ú Ü”;œ¥Ð¡þÐG5Ç2ῆ ¹D›Ý ¸b¡½ORC['9¨ŠÃM_3G«[ÃT¯h#Ĉ¥ö¢­ã)ƒºµá-jØžÞ’­¤«±¶5ºšÌ?¯Ð&ö@‹jJ,øÄ5Î74¿ñõ-FÛ“|ç0dG[ìl"œ’NšOü‡`tSs€! q̆[°ì©Q\çv®bJ»ˆUÛWu67-Jçk«xuËD|ÐÁ¨½P7”Ö’kÀÀØÂ¼¨­äZ MÞ®šâÝÄ»àUźG®z9äWäõQ¿.¥”¦)ø§A;ú⸢#è%ôüÙ%â ô 7¼‡¶Â£MÅõ&PH˜ÌïŠSïøàIíˆmºµ¥N%§QêÏC> þGÝ s&à~ᜠܟêGuÌËÐhÁŒVqü4tΣŒ"âš°™Ÿ†@ø²*ºìôTŽ2ˆø«"„'âwº=uÉ¡hw$g´CN#¬a¥Ò8t¬Ó¼ht>:ë7ëÆ ÄÕŠ‹5ŠòÅj‹1%dG¬ô?á ƒgϨß. …[jnô"5šiâ´}‚͆fUSÃÉo%˜ñÛµmClÍÙõY4/¹•okûÒŠ__‰¹äèáJŽ ÞxT[©ûì žcê³5ýSbÂgá¿ÿù0øïµæj ÿ½=â¿?ÄC]ÓÅ?|8ü÷·»ø>ëR€uîŽ"úyáÄbü_*~…éŒÏh¤‡@’¿?ôøÊ­Áã©G•òÀãÍì’<öüÌÜüÛÝ7ÕCŸ?\}ÞF›:j¤€‹È¡<˜ ¸ÃÞC‚Cy±üáÛò…]š ÷Ý.«.¡°Çr(U1Š !¬3(¨µ6€ìæB@…sÕËfÑaQ#g4$¿L|b-*P^ÚM_ª÷E”AdøJ¡T&´2"ÂO¸ž]#>üÕøRZrèP,wºµ-ù0M¸*ÿ"×D“™R8£Á•q%IÐ ¬ /D hýOŽù0•öò‡1x¸ `’ÊË#\:túÈLšˆ¥(¾ˆ’dÊW"‘Ð)¡¼d¢Šü ÂÙsت!ÞLjgH è ìÏ*•—’¦‰>„q…?iÛöâëri¹¬7´€ë3æ|x ÈõD#Ãæ8O0ŒÇQzr±4{B&7"ó¤Súàte]Ÿ[Ø>’ÎÉØ„ð5â÷h2Õ€Œ…¬k âGÑI¨äGpNºTæhÒxJÂá1ÐP„õ>€éåq¢°IaÙ.»Ì'D.à0U@ çín¢Ž0{ÏG_)ôì`»'=ëÙ273ð7㡃®zVÆ+ÿúàå»8ìrãã „€ÉA4ߟ•p©¥A¢Eë{•a­Eû»í$CÝ…¨e÷—îFç+ß»¥‰\R.‹WxP$ú¬~à ¦ÍÑ¡ØÑ× õ$ïB%!ÀdO‹gíW{BÊ5),D\S° Aü±wU~¥Âª0¯_®ö8•_Õ°–e7QÕ–oSõÖ?›¼݃¦Foõ“ŠëÍ8»æFyyZ›cˆ+{†Ô©&Ë–Ö•è{*Ñ÷T‚欛ÔÂÓˆF©7­ $Jº#®}ciÝÝÝíÝÝÝÝ €î€îé:<º?º?ºÿ­ÝÝ‹ºÓî¥IäWt_!ôv“Ä#û#û#û#û¹=¹ÿE܃SÝo? ªûn¿ÿêþêþwu?ü›€º+ߘ· óð6ÓÝ: šêÁõ÷Eu×m°{g HR0š•{—Gç“à–âž¶&­°{ãVØ]¡üÿÞBž¢ªê¿6hý¡¥­ù¶z¿ô¹üßuä»ÊDPìÓF¶ÐÞB±'¿[È)º­œº“Ïc®'; v”ƒ«¬ØŒ3¥ ]»Õ+׎ èLÉ>'¿ÛU F [ŸÙað¸>ïÀ ŸXF„mu'?LAÀ4Ž!ÞÜw‚j«ê Oˆ¸ßé :Û£íaT9þ: n¨"Œ§ŒGœúGœúGœzëyĩĩĩĩwIÜ)N½Ac×&²›OeMQyD»ÿÅÐîò‘à-„ë¿&â}\IÒBµÛfâHÁÌï‰çôõ¤Hàr´°x ݦuLÝʆÆÀ vdÙCP;tj’^vƒÈ[ÀÎø{{=‘=úlB©Û&>EJý†@ò@òöÃøð…€äë?H¾þ$_¸š¿>|q|œG ù¬>üj ùæ#üÝòéÉ73µäêÏ$ë· šü±ä÷ÆG‘˜ZÜ„ü¯Õ!üø{©Å‚ǯç‚ǯý-Áã×ÂZi}ðøi> <>é ·ÃŽG—Ö[BÇ{»lr|­r|¤! ×ÒÔ}Àñ>8z³ƒkdôCݽ·à^T0˵ÁÍE1PôP¦L8t Z~h‚–§aÊ]ò`ÿõÀ%Ûäžv´»/Nù3*,oç3Ñ©Cøy ã‡Ñ½öNÞ‡u4¥sNLÏÎÔ¸\Q´ à¥ _{«iI;4yp®ÕTg6[XçDý6±÷bÀ†:Ø¥¿.¥ßŸ¢ŽnsFQ9­$Zg‰6²%ª\Ã<"=²D& ¯Hë™"mÜR¤}F)*"ÓÆÍe Ç”¥¦_Œ®²z†™çUY fÃ_GiÅ?Ri™_Âô‡ñÎq·[㎃`蔣»‹Æ‡_}íÃ@èȨ§máEyGìº×®–7µ[œ÷¡æeÑ€$„hûi|þsôýÃú~Ʀ5Bü:½¿þ3õþúÃ÷þU§÷× Ø¸Í0›ŒêµÖ‚š¼%<ùmâÀD^U­Ý¾¶ËnÿHÉ…×Öƒx-c§ïÿô£¸—gtŸÁ4¨Ñ/0Š?Ó(^}øQ¼æ ‹<0x`s={¯å⣛Žb—ݵÀ(^ÏÅŒQ‡~™I¬oHpA”Å¿5öÓoA)íÂÉožŠ5§È}Ä™‡(I´ øðÊëä—l*¥¶RØã/vkÝ{– >RTÜO'W³9+¡)²áóÅÂèNb$>Gx˜Ik™¸žw:9ûÏ(Ñ߃Ðò&à³—‡ Ú«¡=³P†æ¢äªféˬ„/»h=ê¾#oñˆkÿ£qícÿn_¹¸öàÀ½0®ýá=ãÚõ¯ß ×Þ‚Ïǵ7˜Ù5ƒ=aŒ)õË䂱ZϾ¥0Z/ÀñCâ¬0Ðk{Bn¡è^½Åà©/”љSÈï=¬IéYÝS³†Y3›ˆQË5c:f …³Ð0¿²?I„έ#Ò%ôWÓ𯵴W× æº“ñ\ªý™´c“ÌM#ó}ŽlÜî8%€§ß €rxa…E´UªUke9 ÞÔáoÀ7𦹅°÷€uŸÆ_Ý*a˜hHÑ)W)ft+<ßu®™‡(.¡-Ì ñçcˆW^N@žÅ@È+bÀ¶gà—àÖG*Y_×Ü å ± ÈÿëPwÌR3 íUØ_P_wÔ×2u Ø8j¹9½®UÔ„ZÉ‘ Ÿ²±v°_Òœåôðþïƒß9FóY™t:ÉAUnz¡ÀW·†©^ÑF¨KoF[ÇSFDÌÁ¡×ÕXc€ûBìú„æ2Ÿ”Xð‰kœo<—……ˆ¯oŸ]Ïæc¸ý—ÃYd)tùá”tºÐ|â?ģŚŒ€êcf/4½ËI\çvfÀ{dAµ}UgqSÑ¢t¾¶ŠW·Lä Ô;Ñ uCi-¹–˦Gâª-0T ¬‰„¯&Úrˆ-UÎíxz1›¯T=9 Þ§æK\÷S¹2 ñdkp)Ð:_€ù^ƒ{ï($î É>ß]aÌ»_Ë“Uå?óäÏꦲ^y‹6²â„"áÇ5üø¡6züðãøß³¯ƒÿ]_­Ç)üïÕGüïy¨o8øßƒ÷|]QZÖÛxQ˜¡¾EœÁ¥ñmƒz·:Y§pÂùvN®·!û6î´™{da:jóŒSók›¿ý "zo'µT˜ÞÔÐa9Që`óqA÷êÝvQ·}5rÓø"ZxÖƒ…P¼;LïŒÞ‚ñî‚áÞ.QÃTØÛ‡ÉÎ}”d0Do³Àºïë.%A“± µn•Ëœ1¼qß{ðÞ@îˆÓ­.ùÎ+xò¿­ *GK´aÿ¶2„÷ Py‰/Njp\ ¤×A²-)7Þ>LGM.A\Ñ*Üö3kœdž¢y›k|]3ŒDlBz’p‚Õ ÿ¶ôGµå«$þÇa4] Â5Q|­Ï-¡’?ãä„8x5ÎÕÎãO£+)¯ñÕd¶4„n‡ þ½.¹Ò,08Ðjã®D’¾Ñ€æ+u5F{!X;›R‘´Î䂟êÉÆ:.êÍs)rˆ…È*“˜Â¼0¤ÈT “ôšÙ?Íà°Ó@v!ˆ x Q·ñÒ³ˆd}D2,Å ÉÒ?5pti áP§Ó$}8|2>=Í9V†9™¥¢‚c_ °á¢|˦Q¾ EÕ'Ä­ŠS9X““¶dí>\OÎæËdԀϦ«ê*©:ÜÒó5Ür‹FÜò ¢#ŸP êKé_q÷ëÇÅhÒr…ñ^ÄùTr›p_uÄç Ù…@RrO{ØÀ2…ˆQA¤ #ƒûaÁ±?æ#ƒ#NÅå\·0;­±sÐFÙD€•Ë:o¥F‘ê‡0©¿·¾‹ „—6a_åmL94R¶Ý”uJÙ”oU2;I#IrtäO0­°i1P‘©u›©ìXc>ÀVÕH<ãh–P ¤YÝØÆó]é%ÉØ ôGõ¹pS?)Mµ,†ô‹Md‡ÛràOC?ù/¸bæ{õ;3SV?13òfFUÅ6›^á†PEŒ(?Øéì©Ó#޳T›Ï޾À4¤F¸ÂÕÜTRœ3ˆ@cŸ¦ÅÎs ‚%µàé)hØGÅxu=N`e’‚v&§×Èœ|sF !ŠF¸L Õ);B#¦iWO#ã aì3ô*m¸ÃQJLŽ]ù{“†,Lb¾x´Dçù¢šÀñ"?œ|”®rX5S+ eQµÕ°=ª7uU7*z Ì‹¬¾ƒKd©1èŽØ°X- KãúŠ9Uµ¤’øß¢Eò,þÒ*ø´ñ·¶ü­ ¿¥¦¸ÿMbÎçù­c>\2àxÄ%5@Ñú øJD (@ ÛUš“*Æž¶¨Ðv.qÝÅ h&—QÚæw8bðíìÏ1Úý¥‡,ºÒ—Ö@·…Ë™_`%hëmJÐŽýÄdº¼ÒÐ1Ìþ>rØUÀ:PÉh‹‚kÖÿy^ŠªËì3ßúO$úê??—¢åQ5*¯¸…Cˆ¦ÿ<¯ *½óŸŸ­$UÈ>ª~00?>|[þl±‘™ù_ÿ5ZZÓ ‹†^ëCÿõ_0…\5H“UýdV%ÖU)þsòA°Æ¥•æòlrQš”ˤqªGéƒ'ý˜úÅ„Wšç°èœÐ[»­PÞRŸþá/—rä•{þ”Jþœ”üÙ¨qj\¥þ‰/¢1z ì­@ŒDDá|`…`±3ÃÎ]\ÓòÀEÅüÓäÊMeÑÁ\üùèd …›£f¶W#i/×dýeg6$€õ!1¡tÔ¯$QwÌ;í¤wÎS¢o)šµÑ`™EM$ ÕŸŒz6áì±s€< N9ç ãÙ7¹þÈRîçh;cZ¥ÊõÆ7:;… £+iši–§SM3™£¦ƒå)vÛ“Fã¹ø*ÿ«¹OðKefP0¹`‰„øàù%Iȸüó.ž‘ŸèéI äœŒP2fÎË(k-›ÞȨŸ‡õ¼uÉæ]<£Ê¯ ^4c„yÏÈOäfÔ“‚îRª}–Ýès¨Å¡n´|‹n´|‹n-‡zQNFì¾Ë¾^”îF±¿Ènh]¬m–#Y¶]ðbнˆJ^(ã2f¢:ߨ¼Ò݈ûGÛ™¥&€ šKèñ³¡šåâPæ"fJíß`\c3ÈŸ‰eλˆõääd“ïbê¬lë wœrM Þå]zûqÇÜrÄãìŠíq¥F`•b8uŒwŸi9Ãóõ•\s~Ö0Ý&ŒßÉhºÝÖëçlMþ¨¸VEf7AÅ5) ò‚¨¸ wQT\“ˆ›BÅ媘Hôæº!îëo>oÐ>ÒN@MµfD¬èéÙŸ + .oQú]Àð¶U ïB¢8̽H°³ù”—¶¬Ê¾ lŸe¹ù‚vªo‚§¶lÄÔ³QrR0:ž_£‰záÎPv¬°ƒ¡¾àxÎê¶@ñ)uLfˆ´ú\åª+3#Þ‹U«>³[JÏÅëý ›§½Xó´:wS•íéå7n²óé ÀÕ°Jlw\V;£¬Á_ƒe¸«xHç.Ê1ÚÕ忽£òßåÓ¹dAFgMÊ^›5Ív¢-€gHQí®¥F·9ôXeÜQ”ljJá$8l,TÍë9&Î͇Œ2+š Ç`ƒÈÉääúxnlpò®T]&‰Îs­þ¨r7QÛ+˜]ãï‚ÒªÈÿÏbqìCÓ.ú™Ý„O“3¡íß DÕª4ï£[ £ZçlüûŒ½àT½ëû1êÑ´KË¢ÁµêxŠT¾HytLpÞ› ¤Ca",‹ÓÝS+ëáLyR…G-Öé×Ã]ýíç€K­Š¡¾¡µ(f*æUŸ¢,G43pá‚Ø©·„/í Ö‡âì¥,{Û*z°ÛÓ÷Ã<yíÁ~K*k€9}~ÐÛFtÓ.y¦PK÷² N{qrkøº7ä‹XÉ}¬ý>]9{ÛΊÓò¶Ý7k«Ýëï¹ù¢w`çÃþA•Žñªb°×ů!$dV„Pø=F7ÖÁËØBG­Šw»/‡á–~l-!ÕŸÙy.EÁ¡sö»üF_Ü®- áééGÝíáà}¸Å‹A|"ðeï…ê9ÀM*§êƒô„|õ¸HÏÁáC{FUåEnoýÔ†……íÙô°ªž\™lÓ&z–ÄŸÂÒ†a#ÿíwà+í)‹  ãŒ¤ÙõöÞô¬j<“ƒ þàÝ|ER ËO“½ ,ig¯¥PIoûCŸ€°žºwÜ¢BdÀ›or1q(Bö’x~’^€Bó¾Ç¼Où+àš¿óö¾[£òG…Þ³ Ì^A¼4Þ^§ÑÀÛƒ­“ì,€;DÖspöhµ^«oÛ¢±­i‘Ʊñâj¦Èupæ~ÎkY?"íÝ+Ò^rúΠö¬EôÓk!‘&úª|ü8ž}5¯øk;v¡ÑÓ P>ºÂ¢v¡|Ó…‰J/\”ð ‚ÍèÙ©ö¼qV4§Ôµ¬…”ùå £UšnþØ<~ð=o©Ï¡‹%ÈÈÎóZ˜ ‘æãEÚQFµzuP¨².6Òã…„¹Yií¢¥eÕN.oJzÝM 8®¡(f©XRc¯PÈrGçàŸL//Û.Nevéå‘yk†}m©õ:m*àÐñCA([4_Í@ÏäÉÿ ¯$];Œ./Ù³ÕCâ| ÏE)ªFåe^®¡¯áüp!Jq5V?¬xòy¸;v g“Ù'p·žŒÈÿS­x Ÿ&A÷à8úú’!úl$VóÁé TC~Ø)Ü$’Ce©·äI MrM-‚Ρ¶[ŒZÚ²÷R;,F-­Ë¤ÖöRóE¢£ÇŽ(ÁÉØ  C%¤U3æ g&3L¸œõ«z{+lqXh kööRAÆÕ,Dh¿[åm/oøÃ<þ Þ]}ÃÛ“׎Úl㥈ú‚äàYLšO‘HŠô$!¶|ÑÑ T›©ÔÁú’’ö—¶)Rò§ ó§î°ðŒ¦ÇTŠÉ5†;èþ…š–í€[‘¼rh@¹*Üþ8Ýd0€ûÌb‹73‡«©ÁB\Qï¨?æ5®:óÏMB•âËK9 i$×……³îŒÒÔªÚFÏúf(úâã¸`,úl&ÚŽÍp'LÄE˜¨`"#Žk.éò 2qt’h˜À¥®)²»_“ïÛBŠ™^ŸÚ»ß‰h8¾º(¥.Êg kYŠ3±“墉͢ìµS ètJ\jI¶·ÇXÇw@3Ãב`”!Áu˜Öxª E€ùo2÷Ò’# ʼn֮æDïn³OY¸ŠëY­±×ƒédo¯¢,Õå½=Q®Ä†£Õî‹]Ý+ó#f0¸õWȹ?#öµ —÷M:îœÀ r3žÇ—©8Íøû¸7ùöCä3:;ŸJÉR>¢7íÆÑÖ¾~ñˆÄÜý<.á‚S‹ ±Wó¬"!hC‹¶˜xC©Àšà)+y/˜"±ê‡;&Ø úÀà7žY."H· L7Æàýr05=*0šs a>ä5[Ê%ìwÁjBO3\V@Q™]8›,&1\JUhß:ƒ}{”dM2Z¿p‹q¥+s¯¬™ #“ŠQ6#ä´¦¢Q!` Ù4r*l³ó*·ü3Ë©@§‚Ç,û™¢èaY}Zcó‡UùFöÄ·QxâSêöiœ#ÐÅ;µÍLV·¡Ã:Ì>ÒêvMŒ»».”·tU¡à™Ýy 5| »…(o¼¤8¶=ˆ0¡V‡ayé@øEA&8ëM &è¹àDÂpAØ züv²´`—¶_¼¢6ÐS€"«”F`oL?Á!²ÊSéG „[>yºoIÇ/”J”E¡’6Âó¦ÈÖ€¢ô=n·+Œ?‘% ©Mì…Ož Ô)Ûúü„„¥Èb,zÆ -PãÀJ[¼ôm¤€.„3wÌS¨9ŒŒÔäÃê5F_ª¡"õaŒ¼N X¶¸W7:>¾¾ãÕ«$2£º£C¡0NJ\_Ì¥ÞÛJŽÉÉ};99_¯¹+Ýþ.¸ˆ`ø_jºJe·…8bek W‚øEÀiCf)FVQÜk5 ݽ¼4 Q¦M’î UíM@bg#UCÜ/\°vf!@.WŒ¢Ì®ìdj¤›„ß$#íÿðÚð,3 æa}-¸Þæ0óƘÔÿòNâå\-{5œÅÛGñ ¿[Ìf‘.µ—<µÎ:^Ê8 œzú¨88p…N:oxº™}¢é×ÅëáSLî† Éú2à‰ë4ªì%¾ÛŽVÒJjŒ¢ÜL¯ä›NµÝ)ÿ¯ò »°yLw³ŽìkÀ¢'‹7;MLfÞàØ/ç¨6ã¨ïÇ{‹‡ +vŒ·Xaõ›vtÚ5,ŸßÞÔî%ç.rܦ]Ê[ßsäC»Å¹YÞYYÑã°EÀr޽'[ž®àœu8ßZðL+çH'÷ǵŒÝÏÙçR žEÝ7³…Γ²ÏŠœ¹¡f†GÊÜKŸ YîÊ3!þ•ÄeƈÞ†õEŠ Ô`_s LÎ~’Në=–±yÍ;M¡¢ê@ň-šæwÝá7uRRt#ºØ&]Æ~nѽå6“‹”v£íâ…÷‡‹ngoõ:¦]j?V5ê†Ó¨©=Ùâû°‹5«'ò–{¬Å‰/¸—šAØ+騖?îö»<ì2G]TsZî§›HU k(ࢵHÛpþQ@T²Ë!^n[’Á1íáV˜rp¨aúJr‡3I\jù°··ó¶´‹lcƒ%–ì]S~Kf ìY/¸O½àÞt¡ýèE÷ ³÷ýÔš¾½æÜýåÂ{ÊÖ®±ÇÌÝGöìPfïß`Ø_ØdãØ ÊÀÉØUõmñzé®o,F×oÚ!îxììFõ”™E{ë Ý`ÛÐNÞ\búB9»€áÁûbÃņ3„老nï~<¯øÿ)B/¤oRìcéÙÈ(£¹ Te°`k°“[áÕ<0á]B½zá¢L!C)”T…•åb °À–4’)üXVR(ÿØ-FM'P);𲺵(gu3Èù, ÄŠ]¬¹uäSÞ+Tܬª˜”B+˜/êâs%W}ÙëNv¸Êî„O…w+îE–:|zñÑ0ÎáÂã¯*F¸D”‚…,ûĬoû“¬jVðm·–fp5lœ¢€²¥4.vU¹Å†Ö­“brÉIãñÎx¨.^µìrÐï¢Wàì|TU-€ª‚ÝøÓŠ2ÖÚ&0¤u JA5Ñ„m›5…s&ÐMª_×1/C73ZÅñÓÐ92ŠtŠÔÛèꉕšÛ†’¨Ü€y«.C¤‰ù—ñø‚±èˆÎ•ì¶‚ÞÖÃ-ñAuèÅË^³xSàIÀžS9ž^znQ>h4_9ëV9´vzÆkÄ'øG0Rðâ˜êå1û:Ô†§ñ¯ —«Ë“¿+–vüñJ `!°a}•’¶ºYØ~êDØ0ÿáú`Šg˜Z§ó+­­Þd9€`“ŠƒýãÔ1¦©cÆÝ¬\qì Á{ÿm8\V)g ôjÙÈF ‚ß7H…©ŒtL¹%HUO–šCBLvUÔæõû./«îÿ&«FVó}<øÏ> þs³Þ¬¯þsÜ\‹Q³øÏòåÿùêoþóa‚ÿœ üœíqm™våÿ>Ä{#ÿ¼„ƒµ\yÉRúô¦‘Ê”—Dp¡ÛÅÎi;-Eo }×ðѽéŸcœ¦c9TÌà—‹ÁGƒLIº´ƒ!­2,ª_ 4Ѧv»Ù4H«¢4ÕÉeõ¨Èô â anÊB1¸<Þð9š.Ž964nÚa|5tCšOÅä\òÿç˜ígv¨“©imd…ü¸È3ÍÁb²øtÁ€³pˆáŽŽ† 6Ñ€9€’p`?|£ÈùI”m„AYÕx‚´wë´…;¶qEo az.¦_.øò“·ÆØìÆzWGýO§æ8ʦ8 ·©÷¤û"ç»!ø/ƒÜÿõ_ÈÜÙ·¥%B~Á€8«„<÷0ÀÆ UN磯i @0T}Âü³eª4#>–`-øŒ–…geÌàaú]œU*/å¸Å$¸ÜÆdB.~hÅ ëUDMøN)¾W%XÈÕ³oŽõoièv —¸“q*&@*[•0‡ZN-®¬Z`E<5¸Z¨Ü<ôô&©–'eýÜèÃëЊ|f z:¨¥ ê)õu$ýIQHº²Õ(ã44)Û…_ z­¬ÒôjXÑuÊ%•ZRª$âqД}O¡ ÀÊRñ‘ ºÉi¤ ð°Ñ¹ìÉeòä,Ÿqé÷—eè‡;#9½~€·ê‡÷e¥~0 ?ǼıĘ³Ñ¦ØÁŠûéH@ÔÅôŸð3Òÿ-†à›ØG@ÿeæÅ?u‡€þÕÊïÏ‹ +¯ÎŸ‘ÿ4%j:/寒ª1Ë ©^Ùâ2‹ôŸ[ÈÌ%°°Ì°Ù à²d†ÈeH (3îþ ña*‡ÝCÕ@ÌfïÅ3rÝi-À,¹8ž±ãWªUMB4ÍÉ Ý1 ’Q*¾ßåé½Â¬ÿýå¦Pí†,.ƒwßô»÷êW¨ßWú/, --u7«Õl_UöTÖ›µZ-”?¿Ñ|C:ªú²ª~Ž“ ¶¡«²6Ð<ßhöE›¦ÖæRe!–\Wœá}œÉ§tYjM óÿˆÙ_ÍKøç »_–M(j+Àþ¯ÁŸgNñÿ*t–ÛcÂ%;­5l Ži_KÍ èa\ÃÙ,@¥Fðêɦi©¾˜ 9AŸLÏeíïÜPöê18ÃÆI¡~sì9ÀIS ~±±c’PhÓ °©¬Ñ²/0:dSÍ:àn?!¸[gnô1³cýöˆôHoõ†‹ƒ_é­5¥%p{j#Yzzäê¼÷·{Ai»CÉþ| m‡Òvø+b”vïF.’Žƒ(gÙyéu¤*¿Gå÷SˆrÅètßõ,~Åé^v ¥£Roºf=VŸý;¡¢aÔnEvï€Jçù]ðBØ·¤rßèo]ß\àâ¾Å•^¥Á«*ìOºæ›ÉÛjEUë~ܼ•ê¨Z%àmOlÜ´­,Ý‚àoÀowü&ÿô† ¡àvðoYxb² N7Ÿú뀴ôýS·%šÖíö¿ ¶–¡/E" ­•`aÉ|YPX:ë#Ö¯…%í'ÞXÂaaÀ èŠRdâ\áàøG/B¹J1cf¹cÈ¥¸nåXrépÈ%î$¨pèý –2ð4ÜN¢èð @RZßùCãl$xF†ù£Á­yëWUë=Ýäæ•š5©­H½—JÈÒœN¾ØÊvN aJi9ß7Ô÷‰:©šžT‘s´^c»ˆnMQw÷ Œ%áG9„¤wmßB¡$Iû*ð»P@IÒúRIqÊ’øžŸ:gª¡`a TÏjI›~M˱Üäðýa·H´F§„r)›ÛÅB>&ÞÛùWUE¨è»Ã™©yÉØÏyfmwPÑ.ûu¼ÌüiO?•kØZO¶V\¯oÕœè1Kdh§"®„"‘…²;‘FrcЂ9¨bÐ&áÚK6ÖS±@¸Ä·ë¤I=¯_8 oС“WHðZcÀž7ÀÚÅÓ ¤äOjGUºQŒ@*À0¶?GH.J¹¢ì #ë# —::°\²SÈÁf‹›' sÀ=O.¾oÃúB;ó‹nÅ/¾÷¾èf{z+ݧtR»ë7Ú;Ïß,··Â}4r`ÜéÁåoÍ» h,ˆào»BûÒ‹oD +xÿÍö•ÃÉÁãE·Šs{X.jwñ­^›¯zövÝ \‹1«78 ›àÖìÂ{±7LLö^jX0©ÍSw‡´€d’¾dí}7;9lzÞ)¶Ÿ¹Ðfövàb[”Å÷$óKµßÍ6cÑ}Å›m$&Qãci•Ú nÚý[d»/ch¡ ½Â;x ÌÞ[dSn‘(óÖ†âí¶Î ï•Ýrs¬ðnXñí¯Ü0ÙÉWÑÙuß–?<6lYýZá±ÃA7ßü¹I`íÕ; ¬­¶UrwM~X´l3ªõ]Ê^/L2bÄÆ×n lx´{áBbC_»Ç؇Û,m×\Ââ&†úerÁTϾ¥Â€Â*…BU­p¨×6 ž@Xp€ßâà’/ Ø#âMEá ·Æ=+üÔäOmþdSÀ ++ÝïôÉ•;;6ön²D'Y‹½š»™Û=>)dŒÔ¼*.DÏ*Ôµ?P³€ûJ[â÷ÿ[Z~Y ïå;¸ßß6¾ýÀ߆(üþWpïñö)^ …é»™+vênbU‡ÿ¾Í&Ë¿NMâœØÔ˜¸Q4°ôÅ9wïÖVCd®(}ŠËŒÕžêƒ!Ñ«¾‹’dÃNIÑ•Uþ3 =u<½˜Í}¹cnŽXÌVçlré …öl0¿º® øû >‹tÀâ$¸VvæFà (ˤM¯ÏèÛ }7|”ÙôVÛчV˜_¼m Sl)&õé}J3Ç–b EÿµcñVRÑ’;HïƒÄvë¾¾þ°‘ˆi'ïfäïÉÔ¼¾úÓOÍÙÐd;AœDç[<áøÏ~8yøÏ«Í5ùÞÿ?Æ~‡ºªÿù°½Ã—”¤™ÀÇ=Ø9ƒNÞð±ê`wwGÇ‡ÎØFãíÙx•‡ðþ¶­Cù=þ=âË +4¦ØÍ<î ”^'+²ñ_#̳Üyç@‰³k‰@µ_XÔ zÃä~¢'•°nA ¬§‘p xKt˜"=C0 ¡¤«hP¹šÌçã ÙÖª2øWcÀ7Ȩ"*A­÷àqoEtÇs±×ÛëÀ•ÔóÉEIìá¹£ÿ+”DÁDØŠ%¤±eÑ;La°ÜÃ2ðw,KüÍ 0 ýD˜®ÊM±­É'¹ð‰(í-Q¸êÞÒ¬¬$èKKù'سËñ1F•Z1b-ãìÒ^µ§©–`Ei2[L]ÔVË“ëäÉ%q b|ÑÛæès"W§ç“9]üæˆÝBJ꫉f¶õÄŒvhÜÞ”¥«8 :26ô¸a%=b±- $…O£C¦FܶÂLG1o^«nÑCñÜä@ã¿…eÁPKá^ V† d/úMGoŒxt°tÀ©÷¬$õ$‰¤w8T(H=+UR ’iÔÁŒ1–DéL®dw¸ÔÇ…„¨a¤Ç«k9ƒüx::›U>ÀF¶€sP6ûJé¨q¿@½¤H=,T¬æU"-k U¶‰÷,âɯ¹Ô‡Šü‘Hê‡sð}ð]20Ê0£+p€g &j)·$H´ÊŠ*<Õ}v»Ïc÷Y¬û@ðUž,…®°F´GÚeÑ&Ù—e_šhú»bbMŒZSšÄr ¯É—$…?ÊU™ç2Î ª$ˆgNMW˜ßüìŒÄÙôã" !S`mMÉš¶B28bôõh~(Œb{žìF‹'<Á¹…#ÿë¹ûßöõÕ¦ Zg“Æ;‘6ÕlQq–a23pWUHV=¤†&Z£ù# ¦–þHSÆÕ9Ø;âÐ1´(xubdé¦ßASbüç0Çpž<ÑFST•æä g"Œb K‰¼H.ÊsZmwéA<€xÚîº^¦ØÂ×è"×rОÊin™ B'FÓXÑ#³0±"&‚6•7V³¬yp7Áší Ì& ¶¦N¦c ŽüI²ü¨»{{¬ÉlÖB±1V˜ÈÖÛÆ¬GUhreÜ|Ãv¹+Ôƒ•¢ÙbÁ±øÇVT…n –ørà€L¢Mãð ïЄj’QÃDv°zx°RV3™Ñ‡{÷(‡/““ù§Š+z[1‘"b 5U¼§²ʼn’Ôš,ÒN=Ó$R´“¤öZï%ù§‘IE@ƒk‚ªÅx'äÈ q”¥&¬êÜ2ÅÇøTÓ'UvÙ˜¨&?KU ëQ=A¹´+^±EBˆ©(sCøÃDÍG›T8i{ò´Ô£Ð…âÒ˜”¥HZ&#j#¶¡Õ+:YsΩ½0:¯^”a!¦Æ$T`€‰éÏœ„epï`æyF¶KŸ¯“óës£ÑdÅm!JIˆD1jÒ TžlT©“§×?qzb"i§X4i$ÜJSä£b–HTÓ-ÂexZž{<¶’´fyæ„Ð ÄêLÊ€ÄrªüÆt³7Æã5/ó¼IR5)°¦W´[AšJÛ$²¼‚‚­aoÔ6šÿ4ÉÈÍ8®ßtMe-¯a2?Ÿb†U)ãÖÙlÊ[±0Að6©ÀFƉRKË Ÿ0„ðpVv‡‘U©_?J+qŽeåÿû1lÏ&r™MKeŠ‚?¹˜eƒÎh?›š$¸¾—WS`]vÆãO°Åj€9ØlÍPj&V£¯›ñì:Ç/ŸÂECÁ¼ bИd.Æ_ç¸ï|óÜ Hþzœ …V àõàF=À½ñŸw@i­Ü`â°lïõÊ ÄÆwƒw‰<`’¸+·MÍ\^¸t‘v¶ÂÄ:XP¨(Ô½½¡êAš,×È[%°¾²”ÑÒ<ðHsv}œÀziÌÝJ˜7æÁ­…y8\L˜‡Ãb]Ô#Mô*&LØ¿©4‹àx¥y8¼™8{=-N8iºã?Òpó€ÐHxA%à™gµ>(ªl[3ˆ—q°`U ÃPUÓÉ$¥ÆÐNýýÉ’WN×Âs½;*7«±$™Ãçnjì 6Š”U†s°½½*ÔÜ+18ÒUt&0U¶Û½îªìÑAŒyÅíçe÷Žå 1Cê\ïžÁ œÝÞD”Ö5C'àRÜ5¸Lpå£^Ùëôðtá)|„7•J\m꯫2ÿPÆ:ŽèXM=„-J‡ˆ[ÎÖ1¤[|Â$k>†ˆD³‚­ê[Cc,„Q¡•þz¶ªáQlh‰BÝc­ì¶Šãºæ+:‹…•@v\L©½mse‡ç*Ux7ús:±6OÔÖ¬Zp@«èœ"~1lÀ.Ï7܈‚•–xóÚòºmª-¦9 Ëñ¦LÏÕ.cêç:ÿL»o©Ÿ›j "õÓÚ¦Z9?-GµM4_ÿ%grÙ/éíFÛ¦½xx +6” d;líro¢Ñ¦I0 'Yc“¬ß÷Œ²zfYTK§¬XJFõ|Ê«ó§(ìð]ØÇC-M,Hª»€†gôa6=ƒ‹Úúh‡6 •èÏ‚ÂIÿÈòÚ&âÛ9Ô·™|IPcÒ.@ÛÄDIc¨S´U–Å oÏmð3ø$®vkœåKO]“Ú~)Kܶ |õ¦ý¶ ðïá0Ì;ž[çÕ[øsÀ•¨ón°¿ /ý}¸ Ú+Ð|qB'óÛ^‚BÃt/_‰NUe2vn4€Sž·:]Ÿ®±™®tò÷çðU(nmØéÊîwø¼[5ñRäkïy7Ø\)Ô”t;lKá£/]†üßtw;f"¯:t@caø• ¼ ÿî?áß3ʹ1ŒJ{gX‹ªìQe­§áTÂ* v‡U­1zD^ëVo†¿Ò†PÔW;=Õ¸=:³`WXd­aKØ´=¸¼c´’7ðgZKâ™W´wëB);ç—Ó«ù×%3x“$N¡$$ ÆÏ/PáÈÏ||“|Û륾Ý#@uß³gÜs?»ÈVÅßAËã7-N¦M(ÔD{x/Ó¼™ wKùk†°±º”® %ÙzmV2=/mþ:@›$âÐÞ3‰“„šk>²,X%ʧô(| ^ç÷ Mñ)‹Ë- l~Ñ,N§*hYàešØŽ<×XÃ}Vo D¢, 0DR]gžl–BøB(žˆ¦:”J FµtþƒEò§êÖ©I —C Uê\4ìÕ tuk¤af9lï¡~ôöz"ûY¶|‡«¹$:™ú:AÿÞ7©ˆL_€¦ö¦Ò¦ÏÒ›`«f`Õ€Ù ÑSÐ`à,6ºÍn&ºb¤;^Ò%At„©:õmWX¯‘Pœ D`ØbCâ ­p»?(§hRvT2[Î=¢P Õ"ÁËÊ,Išº™ïËø4òfMeQ¬ÕÈ %Qì™·*æWzo†+ÊA’{™rœ¬5ìçG«táqZ•‘÷ /ãó Ž)§âÚ1T@®'­'žTE¼¼ÄÔ£é2 ™±î06t#¦ÂG%^séÐ*°—4Í’À^{h¹«5½´X,;¦¡‚%™ÝM¤žŠ!¤âíÔ}qØJÅéŠB‹€ˆœ@cð²íÈ´ús>%b0j+ŒÌ·L¿Aà¦z0?–§vUØF '†Tâ(Ð)ð`Õ´°¬´$ÔçºÈ”Ü›–#ëŒU¿sâ9ÞÞ‡’–_Q÷/ÒÓÇ}°«©.VÑ*Ρlÿ¬Ô«ôÇîªã¦,œfj¾JK7 ¹öeÙûÑMÐP‘Eô†bí>õGª½w¦|N-/7BÓ.î)¥^³3i }+yÑ&ÉЙTŒ-j „ßËib÷©dgÚžž]Ÿ_@¸µËiq^…¨ëå6Hd—ߟ~1 ïU=b¸Yñu_ñþ8ÜvºˆI²„só²7¦:ƪěºÚ‹á&Nª[‚x)Ò&ÚfQškànAtkÔ‹Jëaˆ­•›2e>CѸ‡4#÷ÇÑ/µMÅGtåÛô€U 4ƒP9*Åjnе` 9üÕt¥jzö¤45<̧ ;CR"ã—F7äbc81Cgœ¬ØHožNh$otL É<õLØ:%VC%=†ÓÞb4 ðLC¢të ôIô‰Æçw8† ˆŒœ ìÇ¢XœôàQWxÚ¦G¯™¹Öi°ó¬õ9=>d­ë7®uªÆEÇ=5Æš&”[ã ¨Œ¬ßlõnEXn"4±‡¹£øpøC†q¢—kÛ>Å›OŒ'~G6Ô]#íxFraFOX¤OSÅÊwZñÔð€U_|<÷5FÁ/Tí[ŽéÕô˜^-<¦7Ò;CUªµ/[|•.Ç2ŕʌN9`ÉõùR ŽÑìó×ôÜdµaV<¦s¡Çt)IúEÐW-«˜û1üÊ[ƒy‹°­t«Û¬%ÝF `Q€*Øðéï³7çv²7ç Aé¯xª>Ëw‹ºE¶ÒîbŸlGí“eo‘QœYKƒ‡Ø)ÛyÜ)sŸü²õ_j§lãÇî”EµÅ·Ê¢(¸WfÀ›Ý×f—~·»e.Ñ(ú¶Ë2«ú ûeQ v)$Œ­nzˆfl™Áiû«·´{äŽÃÆ.ÓÛÀ&Óív˜¬éƒ\•CûJ‰õœ7æŠÌ> 6{c)Óv½ÉZ”%o ­C™þîJÚ…-ýü5vžþâ»LYë³dÉú¶Ðb}q,°u7ûO™‚J!øƒ£"­•Fg¯Ps¶œ~Õþ+ïÌüå7Þîo˜ß…@²Ú|!µ—/Œ[ u‚_T/6Ôý;Q™#ýV{P m@Ù‘9ÛO7Ü{Êß Zt×)ŸââûMQÑvǺµ{EÃÜkŠn¡Noat·&}Q©þQÿÖA×]†`÷¸§Z®5²]¦<`xYm¢x W?ö¼_1TD™z%¢QçS. ³ñ é)@_-â7¦éüš3†6s6¼c.”z]”¹Óy4·©eRÚóœžD6_´‘¨¶EØ_eZ7)·O¼°ôW• kgU°éôn{ïûwÐX(’ø©E«xÞüÂÞ.^_,¯›h /\ž‚± X¶Š,qˆ7­w¬þ;»ß>e«‰ÒlëLmße š1 ÛŒ‚rz°ÌÌ2 šùÐ̘Ì"˜f@3±0¦™È€59ÈfBƒ›•æW£‹XP'eñjzu L¡J”ÑÒ̃>fNB­AVÛ2£îÌì&òv&OrÌ;î#€œ°Ì—(œRétr5Ó8&z ¬"ÐÚ˜¬ü}OÉÈÁÜ»bg¨@‰OŽÏäÒVöý“'&üÆšTE˜%gfÎ?½­áEoéHVÂÅ“1Ý„v3§ÛÑÖ‡&qsº€ë-Éùè Aד#Ê«ãwqd=3»-V·Ÿ› Ð,F¸íTE//¡ ^M’3“ÝM%³úëOR×hºÊ¹äÓT®nÆ`ù jßU«*^ÍI’˜ƒã%À†¸@xP3'Tý_âûÿ|ÇÐÔ"£BI-¬ªy*TUè=THG¼~ÏL_¼œIuð¶/×çÀ[™-ÊBCÓ$aâ_.Öˆ&_õ½unÜSo2³¯z`†¶¼·êÍ{ªzQû|õžj]`›Dî×Äw1„¥) gkYÕìéÚ$†‡ñÙ¦@´~kâ™¶@$ž¹ñdÚM,%C+ŠÒrTì˜û€Ãˆþ î¡Qø S¤d>οLÅÕôË …ïçÈhaLiñ:’N‰yé;‚l`D3ªL\3…µq·-G·&l ?ˆïoŒá+KY Ã÷^°k‰ý±vô^ʱ³0A?µÆåõÝìóD[…õŸ5‰<íîÀ$ò‹áÐ~å]ª#ݘ$þ"ø³²v²?ÌÜæŒ5šS²5ñh]D¦ ÁÑzZ'ˆL€£5Iä"Ó¦àhmc¼2­GkÛÈ´È´7F¦•Ýò™ö™öÁ‘i Ó†™ƒøÅÁiÍÍ]ÓÞ-gÙ£Ê-€?_Þ™@[|BÒ,È6=ч ¦_ÁËá]1ñûxîJ,ÈÈ»E¥áãah3:gw-UТ5öÔ|ƒÓ°-cž: [¶¥f`õ4Ǿ®yý‚¾ ²(ù˜øØÿÓÚ}ê'æu9œWä2F.·òI+Uùp°p#ƒSŒ¯â’ [Ó*3Õ䌱®Rw°"ö\% ¬Duåæ ŠQ½(ŠbT¿3Åë³ËFÑÅN\¾³gÀwö¾³YÁ#ͧ1½V*±Â稖(¾éYh/‚¬éæ}pÊÂd=Œ0¹B˜Ë„ÉÅP£æ&¸:r°8‘õMîQ9БýªØf@4|Ýe$IYm?¤U]AG…€$—ïæIîlAÛŒÞáèj¸g´—ÀKnrRȇø¯z'L²˜RcNríúcIžVN‘ ¯FÃ’V³¼èÕî¤Ð`ÆÓ…Eª§$/\µë¤x.HåpŸãÓèÏ1ÛæR=Y>¢Ûoz;&²3P ÖÙ{³³kÐ=$]GúåhÆ–œaÄé…›Þ­"ôŒäéÁþ7LŠÿ4(ørs~†Gú¬6*Ñ£0½±¨ 6ñósð(”+ºñÝ ILz 4Á,ðÖ*¾?DøÒÎ#b9®¦ÓùL™7’ÈŸ“éõL4h««qËÿL²êæt*'Ê8 ~2¦ËªÓ½V[6Fn mgÉlxqkÝ;T‰¯¡±œ¼Ø~ÔaÂæŽN~’5¸¿´Ö‹žS^¡¡ Ørqr-kW¢…\ ˆ7%5þßRô,FÄ·7%ݨêKU$öͤÌÁøLš ÞÐêÄ_y#OÖô` ØèÙ쿯æ%9/—å XªÉuÒHꬉœ½ÏÆŽ.æjÑó (¶!¤YþyAŒÙLÛ<äÚ\ÚûDܽÀmY~ÚJà !ÜfAÛäªÛýµRW¿î·†/ÃÕ0°na@–˜¤&_Ôýé×x;úÕö›na´Ûײ˜Î ?#^¦c£Úò} B·u@l3ˆôí*:ã…{C™ó ksK³Òam¸¨âúZaç`o¯E15LøÛªR,ª3eÝ µ—¤d­[(+ùòÙxi«¯á©,WSNþÛÓós9ueõèÁn÷°Õ-Ò[Fi2Õ»%ªâ‡>çH—®†‘§x¼%-Ù=æ›ý¡‡Ó@ß?[î½éY¢{&ƒîö^‘XÕ$.ëÈŒÓKÇSTR±GrGð Ë,ɘòWïÑXR’ )Ldc°ºåËËá/h¼[Õö<Á—y8½ ñ¶œ{Þ'ÆUtcðP_ØÇ\¯Š¸*ê$Û¨ŠFeµ*VáO½²¡î2{³ÃÈ…0ºˆ’¡þ¥†õ~a]gÌ.L/(®†Ðo”«¡þÑÇ&¿F‰šIR©¾²J%#ˆ‹mbÙP·UÞ•ß-ŠMTav'dAÁ*—ŽØûD[ÐKVB¹F¦(JK»ƒ%mýAyó± 5Ô4}$ ŠbOû1£¹¦yôýà4?rqq Õ·q ¿˜Ïxt8§@¾ÕTaxà±ÒõEéU™ÖÜLŒ{Î.bða?‰4‰ÃEƒ>f‰š.•f2À¾˜|©Tbˆ@ÔËD2ŽÖÛ!ïþHÆvÌ2N5FÐXÂïÉ’4¡MâûZ1e³Ø†”Ùp´3éè,øQWø&ˆÉq#19Œü#Çõ»F>–¸iس¢óuiyf¸[¨vW~³C="²ý‹´’¦gpX“ì"Z)ÈúPó3[ê7ˆN½ òÈèj vq…oàÀ8I r^Ñ/Fbù›º‰“d¨«ƒrýŒ¿^N/Ø‚ïã$ÉÂ}FW“ù'YIi í,[¥/Ïœë\ŠD3E‚½ΦåíY6‰„Âjˆ=¼Aο–Êï#–rwÞZ/”OW ɸQ(#óm´| ×ßÈ@C`Brôú‡ÈRDÙDW}Dà€"ÙƒKÂÂQè,ÓMŸ®±¨ŒîVÓIÁíõ,¼¼—ùX{àʲt(s’Ç“rŒè©ÌäC„á`³œ–ð¡{ ì°d‚mgš ¢8\«0B‘>EñgBQŠlˆˆLý¬¢Ó!»Š¢à®Bm;FÞÎî7;Stpú õ!½_s'– BG„<¤ÎÖèC¸è+@iñï±(ds¾,gœ·÷²Ak‚ûÁ@é1á?BˆABœa84cöŒ¥9ÃWøå†_¬]SAô"µ»:Z¨†~?d§y†¦_ùf²ø`’dœH}Öü *uÝIà´t/l½0ªewÃF¡nX×X(zÔ­:Ô­Þ1~TPp’^U_¼ß`¹¤Ú‘¿Ú¹šyXP5÷¼ªyhëæ\T§—ù•s;UÝÍ;RÝñÏ©º U‘¬Þ¤ÒxÛ1ÏêÍF -Mù£ `A"[+Ø£H)éåu%]2¿ñƒÒ5G_¯ȧ.+„~H¬y)û¼¤k"ʦHóÈd«/ab¦­e š@í@¿CçdÉå÷MîA¦ Î þº("b´Q î&X‰qÎjögÅJŒ jOY?V¢q]¦HŽõ…Ð×J½ºPêfrc(OÃ[Âpãház œG9Ö{|;Ic8†6ïè)ñGņñm!ã´SŸ@§Eç›FQ€Gº€QBW÷¾£Üñ™ˆÞKë¼DZ&Ä#îÈ<‡ ¼catG¹N³ÐÅ’æaÝàa)åï³É"Ú2€W,ñ¦@ÓÌŸàcsKÐnªH¤+NÒOUD¼åÀJÚåZe¬ª2\nd™‰ÇcR•PßêXã–3ÓJVµ¨Ä5£Vè[YµCËêB\B #£7íJRȺ‘væ7ÍT¡¤·¨ìM/–õnº…7¶ÞÏΖ!Èè PuK³åU”ä’4È·:IVj⤅]B—³"¨hÍ*r¯¤ËI7GÔԅ☀X}FK¯üi–%e¤Ø f¦6ˆVÍÊ¡aS=MX8|Yå2c«^NLYN¸ä?ÑšY"ùíBöÊM™\J=‘‚KHUÌî!IŽÖÍrÈëËIqd–ëÁñ‹6¶öÒÑQͰ±I—Ž#•Ö-…À4I|UÕŠqÍ*F Æ%df¥bþa3ü”÷»5øiû°_¥ršBžÃ+×úCŽuP‹‰Ò¢‘^P1¥‡ Dg¬!:›E*”¬#…Ò’”– ª:rˆd¬úqSŒúÞ¤ºÍDŒï'*9–á»ÃA»çvŬ&•(XŒ[J5] ÷̆Ñ3ׂ½Bw /Ã)©¯/Ø B}`£pvpÍì7o—(*Üþ·($.Üú·(¤® Qǘ³ëc9IŸ^Ÿ¥€› µV7: å*MsüWƒx­ü•²h(×8r­­Ô¹ØØÁIÝ,€“Ú à¤„o]ú" s¢E¡OŸdã¿þù0ø¯u¹&Kã¿Öñ_â¡¡ãâ¿Þþ+`¿FUqØÅS#ù÷°ïúdºý]Hƒ/ ›¦ó×Èeɰ4û)ÀØŒ¦y@$Ù‡A]»=x¬gII5?¶[b¹cÆÃ~‰À†“J9tvÃÛ<œÙCQh–±eMTÙCªìáßUvMQ( * vwE¶9Í}ùî]tÌ~ƒ8_M>~š[™I¹wˆ,â‡wÓ_ª°žïJ˜ – :m¥ò¸í·]à¾Èg¸`øl|jó[¥"(µ&r<½øãú£l¨e½¨0B(SÍf:¬ªâZÃÕ~—#jRþŽøzÀ+ðˆ®€ðíŒ"âÆéFkÃuZ]>æ×«u¨ÇdYŠ¡U Øl? o åvoYn7¯Ü®Q.ÃÛ¾+ÉUÀœ®½+qÐ_³AÔÏ&Us‘eÇþ0äÎ>²}ØÕD`8ŽÎfSš[B"o4©Y +~WåW*Mê?9¸Ìo²bœ¢`H€1ves)È·è&—éÁã—E"Í“#£P»„ñìú,‰‰›ÔœtºB¤Wv]£®·F]OR£«x…b¥>b¥>b¥â“ÆJ=|ÄJ}ÄJ}ÄJý‹a¥JQü H©ê¬üÎJS¸¤IÓëd@ÔÝúRÖÖE‚jÝw÷†jzxkTS·x\ëO­ž„ËtßI:$:ì.܇À±Ã‹Úõa ¦íÔnÎøñã v‹â ö¯Z?Pµ¾¯jA¡¡Õ­_´nÝþî¢uCÇo÷–´‚µ“@¸‰‹Ek)sÝ'”íZQ$ÛlóÞ˜­5™?âÚrMâÊ#²-ÿtȶMÒ¡ ²mwq"«›¤¬"ýÁã’.ÐTèÃbdâè¶(»‡7”]Nûˆ³ûˆ³kâì:ýýi÷ž‘v¿¶›ÛðPéÛTúùTR2À=‹ Τ¯»t³u_¹%˜íá#˜í/ f»ö׳]½s0ÛÕG0ÛG0ÛG0Û`¶G0ÛG0Ûfkæ^ Z?Ä­íÊöÊöÊ6y^ޝÎ8êâÊöÊVàT$øŒ›ø >Ü{Ææ_®l$Cð\ȆƒO05"@è`FИ‡,°O¼…qåˆst4 RBß§\˜ŠÐY Œ9W"'?`cIÞú™Ì)Ñ…‰ü–FÎÝC±ÉgPo8¤—M»<|÷¦bÔº|Ø*„Œ Í<–®4Ý¢£ ‘ŸyÔÝ4 º·Ý»ÝÔ(!ÄrÓQÐÈ@Š]Ìþ‚©cs™ó¸¶¹d/Û'ÌäõW5¸âŸßàj”_6 2ã÷2°1„qÏ@5ÖxÆNmÞj¾yû€]Ö]&]ÖcøU»mýWè¶bôq‘/}wõþ;ïêb6Æj`˜­grÊÀÐ9s/Í%¼œÁ•B þ\VÛ©ÜZpÆ*ˆ\´žàø¶´÷L3&pÊ/>Õ4~õ1»qÿc6âwÍ?f  áÀ˜E¬ìc¶{›1»fWιÖ˜ á ;õ^m<,³~o†6^ÏÜpüiÁÆë`ã?lüfðáE{Ü-ÐÃ÷‰X÷¹Bº5z¸Ïa2^M¡‡¯ýôð]mx,ï&æF PÖ,žÂ¦ ‹>"‹?"‹?"‹?"‹?"‹ß²¸Bø8çŽóA,è7`ªœZ©UÖˆnÆ·ï´9Õ.yüÛ‡³Àøöƒ£ykÈn/šrB!ÛŒT•îÉÅѺ%5OYÄ P×Ý’·‹Q÷ €? sÝr>üYœu¢G ç‡{2ðŸ?~|üçÕZ#Já?Ç«øÏñЈsðŸ_¼¸üg™`ð²WMá@·«BR“_ ¤ÎÊÿo³ÐŸwÞVÅ‘ÌÜÝÙ’Ë×öî^ðcLcr3Ét]¢ÝÌ®µ·©À¤ÿzÀÐouUDhnK&D|®rÛyB|xŸ3!‹©C…ñŠùöèä Óýz̘Å@@c÷⌙ÎócŽØ}1§#ÂÔla3´!€û[1G@ø­Ìs$T4GAáÊ ³†a”RAà0ȈÜz aÖepü飺!FXÉÍT®r¡ð÷î2 E@8OȨ#'Ï“(uެäš}tvùi1à>ÈÕº|-„–L¿]ðoðU‘~ø£¼5(ýQýƒ€“0üjH_QGŸºžÉL°Eº¥s=ã¤R ûTÀ>ƒKȤN6gOÆó’lŽe"ÞÆ=_¾6ÜœS‘\Ò3UtºHzxó[.YÆÿ}=‘Å eÇ_$†r­"¡—ÞÄø]á®pŠ8ж;0KLÃÁžñ‰RB®o“£>£)Zäçr4¹¥Vµ­"k|p9zoˆ~[pðÛ#ƒß<€ NX²ŸŒ®ô"âÉã¤F9zBñvg…ªÈ «  JA¾cÿdýD«DXÄ]¤ðºÓùcÊ߯üC#;3?e®Sæd~+ôú4'W#ÉutäÍE`× Ô#ŽüMºƒ±&Q#…¤¤õØ_¤®¾ëŸ”"Z¤µ¾ÛDvH‰„B׊§¡Ÿ¼¼@t_ÍÌ÷êwf¦¬~bfä/ÌL9й¶-ó’L`'Ãö mž-óö. Q©z Ò…Õ³2b0§ßÅ¡½cì?˜L´ËÜ"Пø;¥ø^eÉ Ù5ÊvÓ$q–€»' î8%*Lw:LÈ×VEL…“S“+«&XO-®ªžsª=K2îŒðœFCŠ¥@!Ž9ºíò†¯€º¾-ε˜ HÄmA®D¸FUÂ+ŸB‡§•3M#2c{}ŒQT´b*‰Ž›é"ÂÆ©ÃÄÌVY몼ÎÂYªÔŽŸU…;aW=sø¯UœPÿ£¦ePšû\‚YÏÜýBr.ÿÖE DmQLÌß桃 ¾šÀ%§éówüŽI— qQ‚ìPjÙýî•È"ÅuÈ6û,¾ÊÿVÓ¼’_—>?Ê_ño˜Œ)¹ŠÏ[¥ÞrT~J¦$vìÆ¤úï@ÙýûIDȦxÚȇÓj?&¶%á™h”Sµ3Lm°®:ÔŽžÜ6ð«“•Þ¯ƒÄØùý`¡§ftmLº=“)ÔÀªIv™„¤$;ºÀq¦b:ª˜„@?V9;”Óø±^Ntˆ6¬5÷êç&ü¼>€q"sydÉÅ.Xîuæ ŸóH’&ÌÕ[nPÛEUV06d<rì[="Ë`éhÖÌ• (Äg)’Ȭ™aÛŠ‘>‘ü—hÎ*N“ʨbèxƒp8‚ÂÎL¸Ý‘ä6”$·2rfµ Sˆ P6 ‰pÝ'„?“ ùoƼÌ<Ík= ‚Gµ1¶£¼Ü3™MÁÕ飺Õ7²XÞ‚âjÕ¨ /Ÿ0¿Ñ²ÔFÍrådëÆœ ‹õ¢Ó‚瑌ФZË­G"ø—?’Iî¢fÜbŒ\Áÿ˜É\I‘6ÊwÆJç+î;Tª¡T·ˆcªèH¨ ©Ã¼>m¬Bê©_ªuâ‡ùˆH{ÿ@~.?¶„œŸ¦Ý^¶t~?«¾QàMÔ´“ʲ/Ì…3uù‘¡{``è/¡ïúÅ “È#04=ÀÐÀÐÀÐÀÐø¤€¡åŒô7†vTò €¡©‘-Õµ0t‚mµÇbÀÐ&´IfA`h:².ÖhÃ䨴ùÕ"¾ƒ%aœŽaì_8:¡û´ŠÒéœò¹’™ Cz³èœLNOŒ ÷þ#ñÁÂã>Ÿ"ð¯ìßÄ…`6q:& ~§Z© “ ¢Z£b.!ü¥ü'Iž@˜!œ÷|,[– O·,kN¶È8+°«N`æAÔìéÇ«Ñù9Š™áu<‚Ißµ-‹ÛjÒVr,pÁ&¡ú¶¹¼iüìŸÜ»º7Í?wñ=½š|œ€íÕJz=&%ËĶq¦š>·’˜÷®µÅ6T5ψÚbŒ‘»€ÿ¶œ|hÑcÏ`ö`ƒm¥N¤Û&þö¿›¼=ô9´’ãòk2¡jh1ôù‹R©?€‰¶ËÄ ¾K&²+~¨ðƒ•YæXäÕ“öæAG\D*—8˜ÔÅÒˆéʰ®ŽCU.‘ŒÙét;ܿڋ‰ §¾rô»•LÛÑéú¹¾oïwoÃõ-ÁzÙÞþÿje›ÝM’2´Ìbz\Á€+=çîEUÞÑÝ ä K‚\.(Ü,ý4á<ÄtÈKŠÝ•¼ì'$¨¥ÏAy‚·Ê£áóòüSÈqzj/h“$ÜÐ BSRñ-$ÿI¦%'’ŠïCR‡Ý»ÙÓ/Ž"v}æT'çÝÀÔ6ŸËþr™ž.R®x7b“Ñå`r°1ÛUØô…w,ùÔQ²YÕ4‘µAŠ1Àâ ø€WJ½öSX“âñ¥W>?íÁföG}òù ÷6kIr}®‚äL¡6Óˆ±åééòìÓä\«$ýå‹Ý·G)K«×Výø£\üâzÝ¥Éùeöþs©Åz{oûÖ¤Çɽoû´Ê²ò*§ÌS£+«6Wà}8þ&IÞƒm Ü<ít[»½CµÔè«Ö1š6å®nàõJO@çvI@í’Ƚ–꺬ALÅ¡œ¤fî¦ÅJ 3nê(÷"s‡ oKUáÝèÏéÄj0å$¡6þ`M&ŒÊx:ë–¨mBw9–Ceʰ{d&ø&»Â±›¯ÓTÛˆORä²Ü;…4\ÆåJë`ÕìßH¦å,Ñ)”—œ9¾ÂL§;4÷¦³éÄÑ.cÀ f¡oY–À]dSéHeåZVÉÂxf 1Dòˆ·$±[oôW uŸâH'`ú-ÑÈWïÜ7h¢ªè´vvt#@1F¨qù¿¯€ÆóBdÈùúõ›ý¡ 8xÚðÿ( %±×²ðÆ †VÈG´žcx·»{û½ÄUG<£w@âªx”² )îr·5èØpàݶýMF Xä²)0&¼u ÆÃb{ݲ!Å!3tæb™Û)(ó¶C.+³SŽx½-…QC}Øï´ì’"Uû£ß…›žQÜQl}ªB ™= ™†îk´v2ŠF Ôp—:ê¶ú=æËyNô«LÓgð]L½%…¸WÕ ê˜ú‹½0¦z3+Þ&H@בÁç/ª6Æzƒ,ѸïaüVØêoz¯^ø°Õå€ò¥±¼ "ÝË¢¢Bdè zâP„ì%ñ¯f±gßcÌÙ§üÅ}OÞþ©¢BƒÇá¡všÞ^„ó¨’É~É 5…ß!žzNŽ˜r˜™²Ø¥¢ÒYè ©dgad{ÓCŽé Ôøˆß‡{'¥‹ño³*Ö«b­*6¾ÎNY,´´Û¡$´¬a룄“0”h™˜€—õÊz^ɨeÉ«-àÚ2®¨wunªŒŠWšPËz^۴Ͳ¨¸¤|×Ère•%šÓt÷™nMóïZòuVÍâÜ*™Å˜eŨ¯oQ ÎH0ÚV+5m™ÉiÚGAëc匣¿ˆ+üU[Iöz%E 7{=ÉÞt³g²ßfö×Òì',e²J®.û•„Wß8>¾žàšÏÀR™Ê=9 –ˆ Ü´(…€Š¦°ü†‹ão‘>ëAÈdÒE§´„íB¶j¯ä[Çà€ô5„wƒ j.è l=ˆJ{ÒÁŠëÒí@—Œ8‹£/’‘^’Ý ½ÃdÿZvC[\N´ß·×Ù/hKvÕµH_ÿØ}+™@ipcↂÒA(+`lñ:E2¸¯<¥–4s´ò6 F§cBúº>÷¤ã7™aü†Š6Sžq µ¼âø”²¯–ô2Ÿ3”.å_çÂJ8ÆV/-ãÍzÙðÿêa\+ñaÌû¹,n^O¢•o€sð÷0¶“T1¹¯ã–{Uy½*…¢‚yªN¢B€êϰ1bMV*–:´[`2Uó &1:K/2wÏêFÄ?‘Þâ¯bz‘'u]§îô½Ò‹Ì°¦FëíúÃáÒÆðÕÑ+~ðÅ,3…ÈæËŽ,ž¬©³ L~”áža&a~¥÷f¸¢6™’8˜ÂoKŠV~Õtôê NB0; ð£?ÇìW:¹Ç#º®>J<ù,*ØZ% ë'‘ì oƒs¨Ú8š/„N–œÚFŸS¥žS¦ŠPÏç…ί;xps©üÁOöjz~¼ìFbx »ƒM±QXñåÙT\MçèòX[±þ:ù6}æ!Ÿ­:§Ô—®ÌRpõºI³0ºŸ°3ë¥4ÄèȈvEp†¦3)°®Z.Ò&G5À}êFúLù£ê«”@©µéç5Ú”6Ãׯ_ÁxØŠå¹^Á²›ú6‘üÍ“@…œ’’QJ±ÕÜ4o#åXÝ4IÄp Üûjã'¤/¥ÜÈV–2Åz®¦´ÕdhuWH‘¨9©‘c«µ½Eºæó-Š\k(/ª¤™Ø8ˆjžmi3m!ØÐ @¿¥*°E14ݤ¨·:溻V°qaE và[Ì…2©!;ôeR§'ö*Ä‹Ûêcê¨ h6z`—BnÈ{PX†Zµ|­uë>…u¸çþÄê­^ u©tƒ4ÜC›)_»‰–—¶6#:‘t{J2[Yâ k "ƒú¯³YE¶†¿]‘qv‘õÌ"ßÞ¨ÈúMŠ<ºU-ž­@niÑÜTAæ­ëœPT­f®æ@÷|uR˜:hŒâ0º/zôãE rÀU7p^‰òò€°{qEù,T9<Wþ)x¿Db!"TFù)%å[<ÀÂð†,$$†8À½ÑÄ"%`,ʼ ]'JŸ›™mìfÌš:Í©C!å$W˫ℊCa×A%7B]«(wš‰o4Ïxs)½¶êÈj‰æÐhb»@(8AŠ8VAŒ?Ùþ|“ÍZZÖá*v¡µà|—´;jÏBxÂW-hn˜°Zd'«øúIzî±;M’,ÕTüS ÆÃ>´X£­ËFëŽOçK䕉—õÕH·©¯½­`‹SyõúäÙ¿Wy®-,Ï0Dt–<ûpûý®j©ÀÁÞ#Ÿ?ÅB*Ú,vÂOaì)ŽÁؘ Îãm5Œ¥&s$hr÷}¨ÜÞð¥ `°x:¹šÍgЬø|60n–‰OãyLi.ÑœNÎÆþ“ tI';öp¼RøjÄK¡@Ø&2µ—‡ Ú~ÄõŒ ÍE3HÛmé€B©kà Æ.Z i‘.q´/•¥ð_²áY‡b ¼ž!—2úš¾S6:Xi õÐ1±ÕQ»Ã•°Wj;7ë1"È[ƒïÊ+o﫞ÿ9ƒƒè®9ð X5¼ (jº€óà°Z pžî)‚Ë3ú;{çM¿úÄ-ÙB _‚? 7Ö‚›O3c·ÈJý2¹8ž^]É_ξ¥`£UÈÆq½=!w3ô kûŒ¤‹lU¡f6žQ“jf1j™ ¯?‘c˹eµ„3C¿ðGâa´;FOLh›ÀÛ¦N%ðÌæˆ©0?žŒçrŠ˜•¥€uf{À)M$ø¸îЦôjii+†Sö@FËn½UªUke!â­RßÔᛎ|Ó€oàMs èVåÿr}u«„Ú!E§\¥píL\æ&ÞQGjšyàÚÙ¬ýT€´•Ú½XÛ*í +bc«„Ž`ŠK¨ û„*Y×_×Üü{ÙƒD-Ä:Ô³Ô¶J¡EeÕ¦úº£¾ÞI!ˆ/IíbäæôºVQj%G5@œÊÆÚÁ>ébV+™‰>xR³%︫§“HCuÓ×ÌÑêÖ0Õ+Úx±ÊR‹ÑÆÖÇñ”‘úÜÚðÎ)ìšnÉVÒÕXÛ]MæŸÎWhoõ?Ì|ÒpÝðÄ5Î7žËÂBÄ×·ŽÏ®gó1àýå0dG[ìš"œ’N¡éÿC 0î²9À…8æNÃ-XöÔ(®s;W1%‚õĪí«:›ˆ›Š¥óµU¼ºe‚Öè ú‰^¨ kÉ5t`lalp ÈÈ©&fªË»‰×Ã=ªŠuk®z9äWä a¸/¥Þ“&,˜>þ æ5†T¦)ÕmB`BÏŸ]"$ D¥åf‚÷ÐV¸Û¢©¸ç­Kì|Íü®¨1ÛC~ã’'c Ñ‘; æÔÈ9,G.´ŽY ·1œÏ*Ÿ†Îy”Q¢Qšó{Sæ§ÇC\?'TAMÀ†pÏRN´©ÁXT‡ª*«b ¿®!R«·3äNš¾³9à'¬ùs2p %Kõöè=+¼8=MJ5F{€fqœ6ñcŒ!j¼kí4ä”ßÐS>ØKýˆfA “›Ï×Wb.9z¸’#ˆÈ†±ïÌëe7Á¡´NûÑåϽ>g£ËÑñçåúJü Þ‹g»ÏþçäêÏÙÇ•»¼‡•àj£¯k««øZ‹és-ª×åÿDµfÜ\‹QS~5›õú?DíNJÏyä¤>ºârý4Og¡t2Ùé݈ã§zh Úý7²õwQ ^”¼øžº¨[W•C1CŇ÷ Õ’ÓÚÅ”vø°ìŽcä×ò+ëz@{_mdö¬ý̮ڨ缣7\¢Wò“kªnk¿µýšöÈTP¿Ãp=®¾)tù\Lþ\M9_\踴ÆôwÛr=&Ÿ‹‰œrÆWŸÇgcB¾ìµ^ˆîüDG\èMÿcLÍXŽ àâN­Ëϧ'„Ûºþ¡9#¹´DØîñ—ä†Ëù#¹‘*G''fãS½2!C[`Û;/†µˆL¨ÙT3q÷Õƒ8B“-¿Ê4…ç,Øÿ°óa·ëvìÄ=5£+«á ‚¯A>.ÔIm-3Ç ëèÌÇù]Ddìs£3î¨ÀŒ·‹ÒhÅ\lí ÑØV!íOœÙˆ{¦ƒÜ€ˆðvÿú –—FÌLck–´›8†ó…iM*/ÇWçpM÷"ä˜7U4Ú\I»"ý—pnˇ¶3ÄÀÛ§±U1½$|­³oéxsa‚—•Óü-sÈ,+ܳŸ3dtçgãT\c´¸Iñçä„"­H›]*Àÿ8¥õ}¨:ï“ê̤ò=ž;a°&éïÿ|Ý>ƒ# >Žƒ¬ÿ|'Å»§+¥(ìZû?k×*Úbí‡ël$9×!ä÷ÁzØ‚ gh¨œnÕ~ènu‹¶ypT½r¤ãicº‡Ÿ¥jù78¯~ãŒÉòUÍx|¢Ìž„­Xõø|T·èWp “ÎÒƒœ‘Ý?$ž\5ìÚFóŸÖ 8EáÊ¢¾é:Ëú^ƒ•&ëV¥´[g³); ÀrÁƒ†;=QšÍb9áÆ¬ðÎdÇYU‘šöãÕ5,ž¤PgÔ&È ö@ÙÏçcÙÊ3º=9›š$¸¾—WS`]öÐãO ßO!¬a¡m±5C©™œUjD<”èã`!| ^Ð<ÐùºIæbü•¶A0Ò-Mgx0í¯ ¤ä`ÇôÆ`°»_!J [m[b£O¯án´náö˜¶®õ úÊ?©&è#g[ðU)‡cÙ;g*^=FWzHÎQº3)jG)6Œ8+OU!é¨#H r&ø`óSã³ ˆ{Årú¯|\à!ûUT«>€s”«ùä]S-æªèéILsÜR‘ÚE $ý?e×8™^8[–'{Ô¤VHÝÛØ'豜»Ÿ¿éû­.XÔhͽ0L°´ã­ò|<›>Ú*¸D2šÀ‰‚s9ãK§ ÙÙFØWkv4a» %´\øQtx3-uc³è ¬+ì#_°`ÕAWHyâpl)#ôæ¡o#ÕÑñüVœ& ²Y£ x‡g´ð–Ûþf®\xðLy·‹É»]TÞÉ*/´§ÝËžDÕœ;9ƒ£¥äT)I££}×Ñ^¸1Ú÷×;üSÞ„´ç-{Ž–ÝÜùlt»ó_Á®ôT²Ž 7cø ±›!G…>ŸÓ‹ŽÂÐ׉1iUf·ÝÑÂmwtФ‘kŠ/Þx­v!´ü2x§Ð›³ªÜ.VDûE´ö ÁÔ+•øu¸ïÖyf=Æ7_v‰ß:DŠ|*z²Î‚wU„ûŸ\¡Uñ:}N/TpàTù4..ö]Hý¢RÀê®|$¥Ñ@™HÉTÎ>–z}º^A •ID–0,a ò(Ù8J'-0eÁlá‹Ïn-ÑÀŒ+•Ïâß[2WîrÌî > c’ŒBö´]HÄÂMбY1E•Û©"¾2|­(4üZ­:¼#ïî‘‹\ª×xÙ;5ßp3 @âÍkûôj9ÚTÛDÿ,ó§xS ¦ráD‚Iý\ßTû©Ÿš›jµ‘úic­¾É.-ÍhzKÀc4Î -Ô$ËÑê&ÎwšÄ“°“ÅP3ì9óéÔ§±Ë ðð ¥õàÞçO!åL!ÔûU± ¯eû’ láܼJgæòG>ŽßÆãø”KÒWõ¡;&{_U'îj¡Pxd÷9§ˆÐiülz¡Ô8ïªÛçáþ´|7q€}‡ªGW@J¤ÐJû&bŽ’µ|ðÿUï„IZIKA²óçþXA»-QRAÞÍÒ­+h7Œ7Í’LÙ'˜ ‡(jÆO“ô¶y®®/ܖЮy±3Û'ØÅ*f>Ëj¸…Ñž7{`”^ƒ•ZŽš÷'­ÄÃA°Rú´ ñ ˜AÌú…ÂXdKEùH±ÐŽ…¤c9ô§*F”Le¸Óm=L'‚7=ˆ‚¿÷f‡šû¨ qdØçzÿ˰˜[½7ý=£èœUÂ’àŸ _~MáÍáónUôžómƒ7êT ºçhÌ(Ü@{ÇÏÏ-{.ÇäÙׄɖКà‰^+OHô‡T~H þûÖìWÓ)`à•?'Ó뙜Óh–YII~hyÉN¯¯hÖ‚‘:…B2$£òµÚ7ò³ç#mk—¢e8 Æ^Ê~,I©¯¡ÑœÜØŽÔKÃMì1ÉÖf¨Dîj—ˆ7B©£+p£R ¶mI™þßRô,&䉒ndõ%õŽ­»xÌ‹:‰zÌ„ ×Zé©H1Éæ¿~J˜‡Vj;Ok¤8·¤¦¤O2/|¢³n°(`’$À»·°m.­¤ËS¤3.¦lO%͕ʓu‰‡|/<l‰8²n¼(IÓäD£²o! ©’ÍKYÖ¶Uxê…í@_lCRÈ®ó lY½Ém˜!¦9¨bPÇí72+‚,ê˜;¯[ð¹2è¼nË{ tr€˜*4v-ÌRY×»p ÷ÐV{0[=©ùª¤ƒ«¬Ð•:Ã×p¤ïª¦ %%LQò‚­Ú"½–yÉ-‰ÙVÕX…t' $bú!F %­pÀª¬ð’/2²’Ï †K×b÷+@ðÉŠ<×(ÈY´;Ý?Ü„Z…×~O…‚Û}/;qÏ¢ƒdªnò î×x«ÛàÏC˜€R«<¿ãëà@ö‚˜Õv2ù¨f]aC‹Ø°²w-ÃY[ÝûydØÀÆxœUÆbªjcþHó¸ é@Öšr™wìkÙ×ú¹ªÚN ”cFð¼½*-öm衽äf¦8 Ñ 'ÝÏÙ7+ øÓ¸öõªX­ld‚Ê3t} õúáÖ§>†eI)V³éqh`YR»7T õÏüXË(‹ÀW+›A²Gl«Sx¸‹aµ×ôü)°ÚM`îŶӨØ;G‰£||íÎw\1Z(°ÿ á;{™`ÛqJb2¼ñ¤“’JˆN'›NSѹø÷à'ÿ&Ú{S¹öéœ_N¯æ£‹9¨¡÷ÓÆER.ò7Øf*µ¤KRXßdv`&ßÛ$°{9›œ!yE×ÍÆKfœE9džÉ×?èƒCæ”~c <î¸&:)feÃtLðåŽ_N)‹<¤ð"Àà«Í›ƒ£…¨¥B€\N¸~ógõ–v·°ð]¥™mjÜ5ì·¤hå/ûm~oÁi/䪫9—ƒ²?i= „}ÝÎEÔF©¢ÕÂ…úDd¥ÜŠ…`"‰A‘‡§0äÌf&”ß©»%vâºòŽã¯—Ó ö ¥ ùÞÆ†Þjè·F¤<¡}Ô«ûmœ@Û™›ú-{-M?ÊŸ”CAvîU77=>.×<íäSÌÚyÖ3óhÿ?öÞ´;$ižÏó+òô‡+„¦ ­žëç°Œ„4~Ï»` Ùt#вÛsúÇ¿‘KåZU¬Bn˜# 22222222½Ñ‰» ¯µ‡c-‰´u—OLα}µÕ¤?‚¼ôVœßÄ#îâðÕè‚õL‹T7=ý”n^µ:C¬®V…Âl”(Ðø¸RÁÈðM# ;Ônåk ÐÃT@Ù•­gyÁ?¼£¤ŠFÎbØ`P˨Ô7S¨B ¢ªÿú_Z®Tó €Vx“€FÁ` >ô×·ªk¡ë¾õ­³¨/ú8ø ]ëJeOâzñ­Jù´nœ ¼ü×éeÍ_ ª1k<{ò½Â ‚Ý͸EØó!tTXÎJD¿HΨj©Gcz ¢ƒyê¾Y„¨3Ë«›Õš‹ýªW`¯°çÄÙ˜ö›a¢={ÆË²âÆÎ1‚žµ Lg Ömí]jU^"½Zsý¨V¯\¿BØ6Å"t–i*îòrw)Íè{ÙípæÉîâ/7öAËàç¢å\¡ ‡i‡Ý~ÃD¼!¥ìŸp>t¾Üuw³å¬ËÛC6¡AYoÛ ø†”³%«ië:,¬r"[}éãô¦„7ý®"ɇ`„-ó”=poæš{`,|†ŸEÝâLäý¹ÚI„&Á¨¹k,qÓófð²V@D–¯x×D©` Èéë¸×F¬Ý)‹¿°)GÜ[Á•²4¢­àýU«m£®ô±ÌþÏ.DåYŠvWÕ”ÇÆ 7°Uä“0³²wØ‹ãFî+$Éò=;+#iMÙ•r’–`MÇî^Bj3äcéUðªº÷!Gl\´ >œ ~‰¨áU´ð*§Á« x•u¼TY_tžÌt¼Šöá,ñØ… ã9J?%ÑaŒ…£SÜ_}tû£©/˜ÿ|8ÏR‰ÃŠ:t!UNDªl"¥M†}~³*&é.ŽWÌÖJäîZý”†øeÝý%W’Ø"ÖFšìÍ@fÚIÒÞX–> qÈÎïGfØɬ[$‰ß%IÂú"sì•Dæ! =Û%‰Ù1Iì¦Iâ÷M²û YèbЍ»žÛõlú¶·ŸæxÁ-¯hÛ³Rœ )ÅìÉŠ¶=çÙEÇkß>¾$"ž´ííSOÉ~°‚moßy1•8¬©pÛÞ~ Ýh?É‚ìx¥ÝöÎÒì{©ÄMÙ>Aê^i h~)5ÈÒ7γíιÝ9Ù9™WGÙçÕA6~çLsOÄÝ_ÍιïSÈ™öÌ·JÆx-’+œsnú]ØmÑ]ã,½W¶›ðvžùJ‘lú{Æ¿?ZXÍ{à<ß‘Ôý XÍ{âŒvà<2-¶Ã¤Ÿ’â v؃¦èX¤öW°Ã¤PÃ’ür¯ø6Îÿ†$¸àç{¾ÝnÐö+ÕÝÙnпÂ=×Õ,ùÅ7è4>üÑÃmÐ)®Ãbñ:ZÑâ(xà<™-¶Aé§ädt £yR‡…lЇ)´¸Ã¤p Çkæ#pu»Ã®`‡­nwØí;׫,àCõ´¤Ê…¤šwºÃŽîYIŽ=¥+Gá÷]ò?”è§÷²-ÿãûC{FT¥|×nAyN¬ÍYW¹—îæ fŽ!Ã$'—«õˆR’cÔ±8jG¶žºã¨•À°uua¨ωñEs k|²µüŽžRJP”аú£o«æ°ÃkŠöîp¾…Õ{H¿ÎÓ?^““¨û@¿Ô‹pêÈ<ÁøÛ ý«HYï¾ÛA‘îî(÷|>&cÊ)ÿüÇöõ÷{ ºà=¿Ẇ¯‹«õóוêùëÿÞ¿O¦ùû¥ôQ ¯Ãý}|?:<Ä÷B¸Ï߃£ý üGP8Ž‚ýà€~þƒ–Ò{Âëi2íŽ ù]ô“îÃhâ{Ž>v¿rlÔ‹-ÿÖU¹yyEg¿ÂC[”¥¥Â Ä1¬¤»Ð%W)X9.kýÂXÈI±ïQuî,¤ÿ/Òí¬À?!üC?^Å€©Q}®Cû+]¡&ǽ\©ü@ _¹¡(uèöV+5J§±jž¦ýad¾÷Æ“þhHŠù`—>ÄéÕ°ÿ=¢´Ý{“I¯—‹¾;íút“ö»¤ÜÿÑô~bòÒzéœÔ¦w²Ò{}ô½÷ð¥7†˜òC)£óyÒºí(_–Æ_Ÿdéw>ºÝœWšÚØPåC#­Ä …'ŸŽ˜ùs®–ò=»¼*×*¤Ñ¬œV[ÕË:!r»çÈFX—ÆãîOÒµËó*ÝIÕÎDMà¬T8]#cõy÷¥úÏç°ôrÔÐâYÀŸ„ºÑì"ÿCèNÙØô…M¥7Ê«ò¯PþUTQ8½¼hÔ*7Ù *X[ʰ)ÁÇ)ïò†W6IñÝw”§ˆ‚Êçè{…þðgãiü8š`q“·ì¥hrlUr êÛ-)Qµ³(®¨|CîÆ}àz³p‚z_©tÎÈ-«!;!P¿GÍëKÙ(›ª‚*:– Ø£Rd™j…F±¶Dè±7¦çCïN-,š¡+¼þ"%²G>“3òy‡~xM2ä¯Ò_dHžšc& ªØ@>îx´(= è³g¡|üe=Ì6”Ï0ÇòçO ±Æ;ÒòØ‚>(Û+qVP_)•†H=о…8áXqÀ‘Ý?‚O%6€?(‘•j*§B‘WÁƒS‘/ ÛÓï@÷¥Šið†éÑ»ÿB¨L±ÝGC‰§‚Tdxþ÷] k‚œäõ~]ÌŒý’ÁèkŸ²ï^(ÕÔáÉî¿$ þ½ø™öH‰—o7¯*yd*)>ñûý7›Í#„NŸÆcŠ:8¾A‚%ñ¢B €+íÀâCÉ{ãQ$T¦ƒ_û¼¼CP ·•èÄ‹¢ËåH'²G¹€ª2*ù`oÒ_Ì’ô°™ÏÓÁ^Õlój“þסYC"½%™ûþ˜Kzû*ªÂ1$™}?r_{£‡\Z‚ì\Ž™g¿Ý¨6G—ÚÝo¢K!F°õNýD=ÒžZ݇TÜ cÌ‘/t©<< ¦ýÇçÀÖ§&=KAqÉûÖú jä·ÑàN¥ÎQZ0OÃ;œÒ1=’L Žèq#ß(&N®Ñ&IªG3B%'B£ÜÉã ¾:D>ß °»4|c˜p)¨Òå'¹éxn¦ ”`™2 ¢©õóÍ‘¶EwN„Ûoô€>$÷cú]f/Ȼʪö|(ȹÇuŽg`Ð!°„¢·±1As¥D*"åK>¸/½é^o¨Oj¿ ˆ¶K`+ºfà“SÖZTIw¤ùp~Ò§…ÃÒú¥Xb„-†)ÒÒ¥Ž¶¿H‰E=Cj àïB•JªdRݱzçrº a+Õtq®FßèãÃÑôÕóX éNøt3ïNÉ ×¥CSmÓ«èS£;¦$s\ëì'a•C#G—$šC3\ÍQᔄD‡Ón( l<à±ÓC]oU ›Ï $p†ŠÈäþã#jðm¡TM¬©@R‘)IÉóÁÕ5p;âJTž˜SÁé¯I; ¨‹Ò ÿ*PÁàâa¬ÓÇ%‚*èœw¬Ê1Õ@ëÊÉÖD/¬…•áñã[Ÿ*Ÿ}ÁNô3Õíà¤!Ž8ÂRYÑ¡L×,muÿ4P”Éà ë”é”ïJµ¥±3ðGvŠúI’¦ˆ5,È6ÄIÔØ°§êÞk'@:\Êé]µµº ÒyÂǺìÚõãßã´cÖ;g,ÚõäÎn²|4püŸý‡§…¹PavLÉ4JÍÒE¥MW§1S±Y't²© =}ý¦‚`Ï3D¡›†¬"SmÕÖˆ,‘³'w'~pÐ_ЇÊéÑØ ŽcŽÑÊOâD;þrˆ[êOÞ0:=±òæ½;¡Áðý‚‘Z…Ài1çq¡3™%9•çOT ÓðÝŒo`û…“ƒi‹â‰K»ú)ÇLÇû»#48¤Ô. &#~k'*Úht'$›†r„'¬» ÷(ctµ¡PIûuüç&*&½ÿÐ?oáTöÐã]çÈXÆŽÎò$‡#™ŒT|¼ã N9ôöXút“{ì áL¦£5Aª©¢š~lJà zK™è+Ì­?ûSÖñ-˜‚øÐ×øô5ìý9EcàÍ·3úl&ýá;×O`ƒöN¬ €Ær:»±ë+ûÚHÛȘ 'õvôD)Ší}·?­¶ÏØë·Þx<ÿ–¦³;ú¾Ž'·ãþøþ Õ·Ú•OMÊÖƒ§iwØ=Mtšá¡å³JtÃ2‰úd@Žé)âqÄ ’¦XŒlû¥¸8 ×6dº.ЖKA›¹Fš#Ö•^êW?â3:âæ;cD*spE×t¦Ñu)H7"ñx8ÛãÅY¿â8&Ȭ+·Èê K½ÆIï+íæyE>_ÕÏO‹ñ¢…a2‹ha®BX0xuB¦³0ÞS™2îNâÄA$Ê5¨VÂ(©f¢)o”°Ò »Xͧt•Œoª=Žë}7®¢£™pý¼læ3/› Ü+3Ýš‚.#9îê#§è+ã·ñŒµNñ~;v=_6?²g°QÆÁ\´ˆ6r=ÿ&2ý~Â\Ørϵ8L#7CÒ‚6ükD!a–/z’Αìf³¡ŽŽcY4Ù¨ÓˆåbÖ5{i‡ÞœgìØHœ<9¦þ“ç¡A7~&zÕyЫ*è1WµT„ü?ÿÇâ¾'©|;»66Î&yOc<ȉ ?õT¼~<æà¯î÷Q_³ö#kmP…&N‘^½'nçÓÔO´žÁ‰\~ÔÙa/x#ìbÿ›ôŸÂ7¤5¢'EvÁjý\|# ÖOoÄñÊúéä ª¹ÿ›nôÜÀþ¬_”nÄíü jQ´fŒ=d/8|ƒÛ™qÅAè…tdlaOGüoš˜ (¡}ÑÌ‘¼·r\þ‚½¦I÷ÓWÕr\±¼6hïôÉ‹ÓPžkÀD·£»ž¥æÀ«ûe2¢ªnt©Í–â^Ý?ã{Ëy)×.8»µÜ}wºã>=ø2WÒ莻½io 7Ђ ô…ÿðÅ_DÍŸ… ó¹¬WøçfvÁ @A4@n`“/}=3·ãEX¸Ž·.LéÇ‘ƒ)bÛÛîМ ùR]?À4pOðҼΗ®uãÎCV4D¦£)¨[Ì®¼j`F¤[ ã ´«j·[Þ‘Ë[ŽÈ«Æê yâILjõ­û½Ç--Žæ«l¿X7$£iü¤,ÜÓË:]WÕ‹Ë3Æ&™Mæ±;ágsEÍ—v;åb³(]×ázŽÿR`¸ÚK—wµ¹ª¿ãŽÔ—â6 ]ì+)¥sô`ÑsøùeLðq玠Š)`õñ¦œ•”¡Ùfý7Û ƒÖž`wFÓ‰°êP0ßûTO¤šÛ@òåÛšÓýèiÌv3X. xXlS´t? ;¾Òž‘‡]zL°·×ÈòÜ}%êõ#LšÑç‘q© ½™d}=–ÎëF£ñ`ô¯T)}¢£Ì0cž·›ËŒØFÿŸLð:ÜçïËŒœdñ%㎷Ëx(ŽN>¯HÑÈ‹ßág/…eŽ´¯é_mÝ]ÈW'oI!_8{U`Bö-•ªì@?…ìƒâ ñ«Ô¡ƒð¾T{‡ üN!¯±ógþS6P* *q Où3rˆ͘22d$!D›¸È¶ÿÄáÂw(Jªc-X€ÿÁ÷NhªQ.ÕÅ´ž¾§}j]Aˆ«Ñ*•œgÕÒ9}{_¾–ÊXyV"Äàœ]³jg7q<ÍKhÞ®\4àE"AL8 ±…ÐxÈpÒÿŸ^ÆÅ‰•QF˜~¤¢½v^Ǩ™ÊÙ)FͰw|óƒ¹È‘ ÚÙUµ.x€T=Š …ý.Ç”C?ÝÊvc?#‹XöRŠïÛHr|W2ßý=1¡ ëó¢°·½sêæÀ¶—¸ÀŒÄ÷²S‰‰òØh¥³«‹‹R†°˜z è>pw²1|Oy&m¯ã ð£/üpØÆ"Ÿt ©ò'•`«x÷4¼…{öxYHõ†‹Ó÷9xoÂÔœµnÚ¢òMå†.™º¶¬ÜÇ`Ñzú¯"<€KµR«s€éÊÍq}&Gn*Ír­Ä-Òá'óÞÏ1KHNØHxKN1TÚa ‡>rKJdPù, *µÒiãßøÞªÄ…§}æ|o9(U…S4=ߺ&Œrb³JO‹§ ¡ÊÔH§d]‡Tô¡ &çÈ¡«£—³î´K&Sª¥Ang¥v‰è/ä1º»Ð%G p݇r¤˜=†NÈ똶ÀÚ´m˜¥­åLÑñÑO5Ùþˆïô"ènAû¢Õ¾øOý·=Ãþ%›Ñþ\ Ý»}šÂ´42 õƒ;­+Éð\:‘áê2µ@AN.f±(È'pË¢ßp‡ÑŽ,Q9*(Aå“ACÂ?å8ø³˜†„ñ!èðƒ²+–ƒÍsbh„‘X ÿ ü8Rx‡‰Ð-w >ê=)dèP±ë×÷xh>Î,!ñ}ÍFµ³´@2ùØ®‡f«0‹³²ý”Ù ÏÛyn3õRSOcƒIL¼ Z0Ý”î]vrdÏÌŒ¢e61²†|zêÓùd6î"‚&,z¾¸¹&·ò‰b’¿læÅLà +É„¬ƒ‹=wUGãi—îo©œƒ?"ÆÁÚ[¾ÃÐq´º÷ô\Ó‚ãÑŽ¨ êSâ8=!’_P~Ê0Å€5¿3Gy  ò8éFCÚ>+¿+w'½µœ@…Ò ^žœžmŽ3ó¯Ä»ò7Ž)ûc ˆ™Ià¬Äœ sÂ*Zã¡,À·¯° ×5ª˜W†ÇWµµÍõ ס¶ŒÙóÌBÉ$fòP…Ȭê Óî‘:/ >bJàzgÞªÀŽuJº‰epSË@ê$ú¿×ì+<àÉ}ØâÊÒÖ¸* é%`Œ"~ 4EÅZˆÖ0[UÏÒÝ–þ‘­ø1U(Eìg<Æ€é_ÙP¾ÊŸ/Òß² ¬TC‰ÐÝá±®òµ™F•sÉÙl”VzŠeñS1¸¦”)€LU©àŠÐ|•LÖÈ\ _ΦV‚/äPØQoA½P“DØçë—í¼7bïÚLÀ²1H €XìÝä‘°ðO=¡–‹Ûõ¾ö ÅOÔåÊ«9&%9 …ÂÁ¬€ä·ÒožP§#ªcŽà-™­'™êÆ5*ñÐH{òm@ÐDÿ””ÓÑûI0$ÌIS}~'Â¥ô‡‹Âë‹ôþ| ¹g É éßú-ÛÛ}ùgcx{Sª;v‘#™¯Uÿ£ùü“ûã F_éô™#zs½õ¡Ùš½\x9f"j'ÐÕÛǶ‘8êNÜ0"fXÖê`‹ĵ<^âoÖÊL&¯ò•÷Q[Yú#ÈVoÅQW<¢³¡`åáhü`tÁº¦hª§ÐÿÒ-…Ÿ£#XªÿX®4ÌœòÎýˆë Œ ßã³ PìfQ”Æ=L”©t“p$Óá9ăú4Kì†ÇSªÑ¼{ vxººo Ë {c©nÌ “Ç ê%¿2¥>{-pi¦«öB\Œì푪Žü_äÃh|Ž´ƒÑíAõ…ˆÅ˜U«à¥Ñ®j¥ØK*ãBè-™Y•rÉ„NE8$U=½¬ù“xRÅ xì±]5Ïó±+‰]žû^<Ï„/Êóþ¿*°ªÿo~÷Ý‘¶ö8G´/Zž°n§µ#3#í¼ß‰Êý1#'Zëü§fB„YŸwê;QÞ$=ïdÒx¼ãU$˜ê´6y–qrhóó(q^s2Ï+¬µ16½cd˜ò›0ØÇq86-ƒhÀÄ6e @-V›0`ÌtÊy$ —FŒÔ;õK…ÊÕÙÈ|œ†~Q:#–k¢óI2QÇ€”«.\ı0á—ì`Þ¬Ÿá©„p­C!Yé²ç—@øïÎgHÌ“–%çä­ªÉÚÔWk ‘.Ü 'ò j£(‘ÛÄ‘!|Ñp#bÝqÝ) coƒ;,˜˜˜=ÞÆ<þ°×‡@IÛŸº ÅQ&êƒéz"Ê H±{2Ç#€!ü.ps?"bƒö’á÷rü¤eäÇV´ àÎ@½\逅:¢“È™™:Uê希Ëçâfß‘FÙÁ˜îÄÊ)ò);²"+ ‚m”ÝíÁHö ß,BÔó5]¨Y…o¡¤F=yFjÜ+VB—XÁæl “[ƒâM<—ð¾j®ñê•ëÀ Ûš?:rE;SD7˜—÷C‚TK`ð}z|·1=ÿ€Ð1•á_!ÂJk WQ²!SH¡Eä fù~ [¿=s@øŽ}äá vj;Ö8Ý™¸Eƒ+»'Qö)xŠ@æ!]aÒ>É{Úø7dF–yŸÅîÙÁmÁ•ØÚ.á8˜eME†LÈD*rcÆßò¢¤E¿€(“(ûè^äiÁǧ€Ç1°J¤"Í»Õs¿§Ëú>C¾wo¦wŽ÷Ù²»kOÃV8ÓóaâóÜStåwgŒ÷-³,ª$ô2?Þ›£Ü“üYŒ%Ë,›,ŸÁ ¹³&Š÷­DˆT|W¢¥Rè+±î\‰Å´ëÛ•¸‚•BŠŽ%‚ŽJž`è½äùí—qEbdT®¹?’rãý¾ø\äŸS"`BÌžÞ<ð`Ð^öD°^^³^\³Ä‹N^Vƒ!Ö~PLÈòdBà8–Æ^eFÔ- êJ²êìâ‚Ó»`jÞË5ùÂ2sª ¦Æ=Ö8†f3òë=öÇë=†þí ›³Ü­>ò{mŠ‘ûE-T4'–uŽä²1ôUJa 'P×ö2ÑоÔ¥ý•MÝ+ØÉ÷äÏE]f݉åZ©ë‘Òb=x*"ÆUKÄÑ™·4Äsˆ&ê¦í®m,vn¥&øáÆ¢jL˜øÿ³jôÑSùÇ›€¸Ñ‰ï„ñnÕ;?V"ÞîýkÓ–¨…ï£~0Ã4y“‹ÓßÅò@>^ðzgU ü jø W׸¢C^ÆãÅ-éúvIÃkéKŽ.YߟOǪª>Å;æPè =@°¿)*ýÁs«ô¡º•0\u+a¤„9\â¦~„›úñŠ6õPßÔµ=Ô6öXÞÝ.icOXxõå.¼"/Îõâ^}»ðàµô…GNb¶vŒ_Õƒ+äB”v6,Å" 'b±ýª`Š‚ 9¼`æ3.áhº‚ß¼4ÇÝMm{6ùÿJìï±uÙ+R#̇’釨8ïãþnzÁöJHñt´Ì+7ž§%ØjÍ`yKïkÛ¥GZzŽQ]yc©~–OÜ}gÀÔ‹f’ž¸nÝ·ŠŠuƒ•#·c¿1»Ü¹¨95fs.rˆz£‹Ú¨{Ç34bt±ÌߚΗ‹Dî\zÒWV”O$½t 8áÀsa R\®{„ÊNb eü¡c ûÁý¾ÑØÆ_‡Oo޾1¬à¸`>¤:ƒúýDµ—‡ƒãé)è€>uàëê}ˆ,…a!Ža’é›è ÇrëÀYîb¼æ¯9¶YŸéI4èxWøõ¸}wb­Å¯§±õ°s=½²»½p©ê~‘©ûû3úØ™éW~E·Ó¶p=> c[q•þ ö×$à÷cép°\oÝíÎ+àë_üeüÖq“¬@“ÀåV±ÀUox¸ž›a+êê¯y>¨àÉÄÊxP g3ñ%íoi0áš0aì&\妘æS\Ó¦{€).ý³uÞº oÝ…ÓRwcÜ…>wa¦.ÃY¸§¼aX×ÕBcë"ì~zef„âŘ͇p4á™]}Wdj(¦15×dj(ÆšŠ«45Ó˜Šk25cM ÅM º ·½Ä䦧ƆKò­g8¾–.iIàòØ\À^PœÓ^°r×ðâfØ Ì^2"É·HËÙSÒï‹k:Þc÷ÅUï÷Óï÷×t¼ß=Þï/x¼wªÏ=e `?½²ÓÁþ2c ‚–Ç£{:xAžË‘æûiNûk:!ìÇžöWyBØOsBØ_Ó a?ö„°¿ü²¤¹éPºáÒ|`‚¯¥K[º<··Ž›:ÔÍqÜÜOsÎYÓñbÿ8 >ZÓ†t+ˆW¸!ÒÐádMÒI K?^8ÿÇ‹­£ùôÊŽËÌO†ìxáJ‚ö7>^Ä'qãë‘æA¬ W)Íã³_ð‡Šë‘æÅX:ì/ýx±,iþâŽ[iN’¶ŽQ­8JÍfâaÇå·¾=ìèP7ç°sàL³ã‹R+GQjew”Ð-äj?òÓ÷#” ²™Kx,1ç•ü1gm 38HÊŠ›îQæ(¤žlè*oàãvÅSµ³47U¬Èµ`4lœGiv×C¶»Šj ö( vãTŽN†’éUðªº÷AJP·ÛƒÃØmôh!uNsÑvp,uQ=âÃ+XܨüCнN;H{6o˜WÊŽà5¨ï®æÔÖBÖcåA\\êcŽQ(ÏœcþõÔõî—z¸;`‡;WJ¼ FÇašëëÃÂ’eæaì=õaÚ{j¯Ì\¶†}«a.¬a¦Ñ°—ªaÆj؇ëÓ°Ýaê–!Júuø_1ãÅgˆ…¢òÖk¬+Ï÷ñkî6ëÑЖª¡3 Ý•Ùò—ý Âé(´l-þ(V‹?ZX‹?J£Å-U‹?ŠÕâÔâu±ke,Mì:“inžÜ=Žäî\Q¿¦Ü]º\$E—·ëZþѦ&ñ?úÛjúGi4ý¥ùn¤9 -û(p{8Zø(p”æ(p´Ô£ÀQìQàhÁ£€CÓ¯n·œòÜA¿æ–³Uÿx‰ª~‘d-ÆWdý=­¨:N£î/[Ý?ŽU÷V÷Ó¨ûÇKU÷cÕýãÙÔ}­ì¯Fò:Ówo´ä+àâ×”¼K—Œ¤W€w뇴Y~HÏpR8NsFZæIá8>®Ÿ?t°ìÝê V´.¼[¥ P9>Zên†rœ6 %Åne_ü­Ï [§×Ó+;'œ,¯=='°’±EÍØ_÷œp’&xìødÙ’76Jì$m”˜Wòž¤ &9 –)yObCFNÒ†Œ¤='¬Fò¾ÄsÂVòò×’Ñ1ªGO8ÐL<µÄÕÞžZ6ëÔB`†£ç£'*•Nú²>Â[–ɼt¥  ¡[Ó\ìèàŠ;c™³U—33\ÃQ¬¹ñù•£ÄÖ¤a.Óé¤Èêgó9QÃ@·¬ùyU.'Ë« êó>f ®î\pÅÍ[põí‚[Á‚ Å“¥:œl¢KñÉf8˜8"K¬¡•éûµêë¤ñ_89\OJ‚“X·†“ÅÜèÆãáäx=) Nb}!NVí=Où¥…Êë™Å—Ä{Å9 ¶ª¦õôÊTÍ °L]sŸ•ÄÞ÷—Ä~a!ˆ EP i<‚Ba-bû1^‘ B\Ý?鯹ÄtPHãµjìÇx©”Xu´ãœ‚zþ2yÏ%¨·G² AJö+ œQ‚ÂR)ùzÆC Ìœ‘˜\+Ûô*˜^%(¤92…%û|#@ã¥î5 û|…T¥Ö ËôúFh1ƒZ_èÒ2¬¬vK”·‚óœ]~Í+Á5_‚ezmï³ßû¿Lo AªCJ°dlh’0!ÁÂþØAêÈ,Ó#¡Å j}iT––Ee]rqŽ£Â¯)‘[Ø,úÞ¯«ÊƒÄ’‹fA|Šç9Ii¢ ×qÝ¡½R{ífðh:Óc”"7¬…ë rç*õn4N”ŒIuÊ …SV ¿Ø£ŸÒà®ørµ¹­ êxz…ZÚ2K¨î³Dwû‡$Cù|~¹î›ž‰Ãƒ.“vÖ†…¤éÿËŠƒmN|-¹’ý£¸eº.²¡91ùzNËfà¬È9¯=&…0u¶Ó4•êV6i¯TªÊ¶˜ùô U•ãeª*,ã×þ ÊÀWÿçÿ¬HSÙÜ¡y몢å,O’˜¡'¿¬$Ù–Ä×òW:9(ĬðÍ Yvð¨ ,uŸãS9œ![•#^åØ2Ÿ^¡Êq²D•ã€e:·*ÇŒƒõ UQ9–'IþF*ÇV’ÅVºcX+ŽuᙨÅ œÍÒ€¶¡²Q¨¬öš%‡ýOo¿ÿ0`MaEÁ Béq๭P@|m4z${{äô[ïö€,ˆüû.ùÊôÓ{ƒ6H}¹ËÀ6ƒhÏ ñÎj¥wmÊ;Ÿ[mI>.ΰ‰ØÓ„t‹‘Ï “œ¯õJ³Ùâ–½ùO(ÎaX°ÇÝzzxèŽÊÑ Ž¥Z©Õ¹ˆpTÁs,ÛÌ6Ciþî²yQjK|>kvZí7À”vȸ7}{w(’ß‚?Ì‘×ää†þX矵îprˆgá­U©œ½ÍпŠT`Àw;˜ÁþÜÝÅ…®ËÅâ㙂 (ép=A]¾‹âsvcÈʇè2ÿç?þ–¯A"çöŠùð5ðXµ~þºR=ýß»ñ÷ÉŸùû¥ôQ ¯Ãý}|?:<Ä÷BÈ>ÓoŠûÁ?‚ÂAxpìôûàààðर”Þ^O“)zätINº£‰ï9úØýrȱQ/Æÿ­«róòŠÎ~…­ p[nU?W@ô€¸„•Hÿ>»ä: ¬Äœ…~aY¯r)Æ¥™ð² òó=ýxMÿƒ·öÕ :­@µ3ú3}$ˆ$µ#2œ”tt®•¢, {M­Ô(~dšÒxô4í{$ó½7žôGCRÌ»ô!.6®†ýïyíÞpØ›Lz½\ôÝiwЧ;Ö°ß%åÞøÞ ÷{õÒ9©Mïòy¤>úÞ{øBw[º)J‰”Ï“ÖmvÞÒøëÓCoHÏ‹´‰À¸]9¯4ÍAp:2²p˜Äæ3;8«¼£³Ë«r­BÍÊiµU½¬"7]Že„n • ¶µËó*ÝÍÔNÊì”AÍØ?Ä x+Cö¡A½®>ì@Q(bÁ‘Œ°Q[œ^^4j•›lp(Á—2ŒtˆÐ{íC[ùä§Z§•átÇV”'µÏ×™„ö =®Ûò‹Ã;"6üÙx?Ž&=øó-{I®a˔܂º4Aål8N~><ô¨ŠvKzý¯½á÷îà‰rtëöÛÓ•µ]ò8}ô8ÞŸT œ’»qŸr=ù|^©´nòfO“Þ„|Þ uÀ[úí 7îNé?¦Ì>zü$w½ÇÞð®?üJFCä®;í’ Õ6}ú$ÕUÊîxjÒûÏSoxK×RwB~ôx§kñöãÕ^ïÇ£º¢hóǧ)¹ïz¸¾úÃÛÁv÷8îÝŽè´ÛEaÚ— Ÿ`ÍQÈoýÛo¤?%ðpwÜc„Ñ-¾¤&®¿õ†‚ ý ¢Ý»£Èr˜°ö¹JüÛ¤ÿßÞä7’ùm¸3ùmÑëj¨O>ÂÃ2yìÝöï)mò„¼£Zo¯K1`ê7Á–¤à. þèSú}é)ó­èìÝq S~(t3 €ÑKp @ 5KôD™¸ªw÷FR,C…&¼ ¤Oe%NyÄ€Ôë§Á#¡ÜÔÿè3ÖŽ^™áˆLFã)rнÂÄ“(Ë@&d=üEJd.?ÚK§µC?¾¦‡°!ù«ôÔ´ï{”ÐôÉþD=ÅÐb¬›Þít4žähâ Ljq2Ed•!©¢ˆè¥„³/È /JÒkdåaÜ“ŒãZ,ÓùÀè·Á“c§…>øò |Î-¿óC£så) óëÕ!t´S†sb'ÇÏÌ×qX*y’ÌÙ)!…]mš—ÀÛÕ{òc4þcBÏ4T´>Ýß÷oûTE¡£LFBêÓŽCJ£¹à"º›ôéNIå}´›ˆ}d¾É }¬ËZOéÜ–C4À¬`À¡>àU®átD ¼º~*°}€Ž_< ˆò­¹uV½kWêF?êj`ÚËXô­J­rÚî™ü›ŽØïB+@o_ ¯yzY?«àPè)ô GS:$ú#¥<íé5Øô౎дîH¤N:HR›¶ʘ¦_‘/p(ã†Pz°Þ°Òî¿°/¦+Kú£úCrpÀ§ß•&¨tAyµO—N‡}’Áèkɺ‡ Ú?ž¿Èî¿8:>þ#íòE¾Ý¼ªäs€ÞPwÔÿ~ûý7[ÛÈœ>ÇéÁOlHý fK¢çˆIŸªþnCgƒ1ü·7ñŽ4Ô¶à·þÚŸþ4/‘Ì”ž&pV¹Û%Fã;Jé/ƒÑí9ÆhÁêõ€Ð]¿ûu4ì %§$ˆôYÚ°÷½7¤ ähªé/=m-9ðbÅ›¦&³Ã2Æ ÷'ýêëUzeí³oIæ¾?¦´á+ž¿¿‚üÅþp© *Cü¾öFL‰¦Gƒå¡‰§Çßè™gB—Cïî7ÑÞùÂÍŠèBí9®3U¿iÁb£Ç/:9ò…Š€‡§Á´ÏŽmÈÆTL¦]º†==)ž¡èò~0úA?ÐcÕ·Ñ@Tkƒý4¼³«êHIQ} Sh®vè¾wEðHÌ+XQOÃþ´;þiʽ6ùF‘s²š6qHFKµ¹NV“ÏÕ ¸„¥& ÷‡Ö@ñN†]Å z†¦´œAÆñ놌5˜a¬tSý6’]ÛÃY,0ÒpY³*pUµi”¹ýFÅòm(jKúÿ&ý÷/úo Ë c@Ñ(´¡9Tô èt#tÑÖí4øj}j¶3ˆÛ.?±¤Zš*e>gœDŠkøÎ1ï¯hÌóì,é‡îÙ!¼3ïúÁІžbÕ>ã„®hÔ)± m¢ú"^Ʀª€Ü­éPã·kìÜ ª@p¼0ðX]  Ê@]5lªz'Œ ‰"If/È»šŽHORu»Ý)ôº1‡¨JR¦>NŒÈxôc‚ÄÐ'U(ôfxaÏÞŽOCù$¶eßMðÜúw¤xTb,w&Â`aàq3Q¥ƒ¼c|Ÿ3ìöâÜÙõÅñv8®‹û2¼ÑÊãùS„¦Ý>¥–¼„èFp¨† VîÄ!NYI¸6bµèr㊠Û;¥b÷+»q÷¿~›Òá|ïÂÒ™Ò3ö”Ìy´™Ó擞Ä-é‚Â?Á3ý€2ô§ ÇžK”%- (“¨ÆwylCADþâçà=z >«Të`‰ƒ±eØ÷ªµ?É  -Ä•;#“<ˆ¼e¡ Âî‹.¬sz ¤Õ»˜éø‰­#YK÷AÝ ã<ѰHzÑ ‹[^ÓîtŠ{ãñhŒK“õÔƒRbwooGOÃid[šŒà¼7åô˜÷Ó&ÿy겓.åé§Á0ë%wóe£ñÀ…0mƒ;õ×>UV€3ù£OÕ¸]m +ßD¡,#§ „oÂ8$f K?§Ü`ˆlÌLyy$±Ët“©MRüŒÞÍ?£.¥Šÿ+¦[r¾ì£6ŽVÉ®¦’ŠmŽÊ&°2æ¢Ö´É]ï¾?ìø%¼àwM“§ º®ÂÑ)YÂɃ¿A¡§ä ­îŸ¤¯˹é4xÃ:eÔw¥Z‹Î Ï()V§›=M·ðfqp0ΩÆÁÕ8ãí½v±O‡DKWm­'(‡àc]橈ßßýö^Ñ;ç3Ïà§Àm™l±üÙxzPÀ*>;$Ó(5K•6]¸œŽ|ÌlÌ:¡Ju¾ÑÓ×o*ö”ˆ7»°uL¨Xÿ2ø©‘ç›Ñ+‰n ½üW*õ‚„…BƒRп…èíb—n1¼`nÆÂdzhŸ­ÉIŒä;冻ÑÓ—AO[£\!@‘©…)@×SkßÕöw¶&íïï.›íf©®PQ¢Ã† Š 7¯ §Sõ[\îr‡ûÝd4ø.X†ùiÎÝûã¸?d—Ït·ÇÙ%T•¥9O2lB(Wu¥+óÌŸ0wX =åå..…BžŸ'4DÇàXâ =àÓ вS‰IºžJœFÎT$Éf@ Øæ…ÃËû¥´4D?JƒÇŸ‚ã#MïO@™n òþYóê|ß^ÿîŽ9?&׳ÒÃ…D™\>ŽC%ÑѬCvuTëÿÑwõ)¨¡ÚIebXßš˜u|ŠÜ.qýŽ¥ìŽ*­ð=¥«…¥n¡Gðwx0M¸Y­Ÿ§GEX¼ÌÙ‹ûy‰1_4óÅ´Ë1\ aÃ9rY¯ð±5{<;Ç‚êülìáUv¶æGp,DÛ¨$«Á‘™2/3У A>Š1¨^èÌg­.ߺß{ü¤@'H ðCgÿm‰Ý«zqyVQàv˜`ç…Çî„kvŠR'‘Ò0Wª_6/u¸*…-ò_ WkÞþ²ƒél dœ}wZÜ`ßAÉŽY¨9†ÔãçwÜŽƒî´ÿ]=``( í öKʽfAà[˜‡*ÉTôG£éDˆm ä{ô4!ûDn‡£·µ»œû•í¸Æaºq`«`ºÂ€¤´fDa5*Ö÷À­ ÜPôø&Ëh‹óÇÆ?iŽå ¯È"àî­t^7zïD˜ËWzXy¢£Ë°c¥§‹ËŒØ"þŸLð:Ä þËŒœTñ¥èy3ê³ÕP õt)ÜNñgnW¤C ˆSòÀ+x=ùÏxš¡»Õ.Ý2zpêRE®OEÞ ÷½;œŠSÐÛe¼Ô@¿HÎDAsŽ µS%Ad“¯ {Óò…³WT.³w%ë ,R±PAˆÐÀÔ‚'Å_dŽ®@–õp輡#‰Í8À\°¾%a EÏ ‚3aÏâ+Kgu‘sâô=íë”v•-ŠŸ¥ö{?¢U™(e&ØàšM€‡Ë^ÌA­ƒ§—qéC?€y]&&¸à1·õ( À»¤³!.ª³ÎÃA[µÓ¶Ìo€oïD"ÿl¢¸Îi›ÁìŠ7Ç/ cÐäfN•ÃLŽ{g©ÄclìëÙÕÅE 3~ˆ\ èi¡0çûš§#Ó8C ïrá§À‘ÎÇKh„Žh¹sq2ï‰4›²â ë×÷xh>ÎnCãû(šø5m„º™¯Ý¡ÕóÉ«¹RЉFGV£ËäFÇf£ÚY Ð Hþ²™ŸpZ½„,Ø0:- û %´  ³ŒB|ÏfCÊ3çtLhÍñÂÚ°ô¼q˜Ï›ÊB±­BáõäNŽ›göÕä©àªxcü iFänÄ2EÀí›A—²ìu@(ÎRø…²&x"ºƒH2 ‘8N<àÉý-ß‚éhZÝ{zðìÁ!aGTLúœ ^3%Q¡ÛtE®4|T´c‘\xC Hõ °HØ5qœ@ý”~¯8c«¿Teü(ŒyÊàØÊ|“r•Bˆ(4Å0Ùɾ)•^ÄQ)Ì@ á#¦xbSCùÄYQŽ@ÐU¥+òõ¨ ¬Ôw®†¯gS+å! 꼡‚€CºPSÉDÈçë—í¼xdï26âªbÄUìÕc»æ·Àî÷ aU4khQ¤B¹ìk?6ü¬ÀªÇñ3¼~u˜¡î”ûåþVúÍú…ji£AdBU¢*Ù‹iABOàZŠø "Ÿ~æµOHÀ¿’að Ü[G‡„í«òMy˜þ&¢5£Eq_/_½?GCîÎÁc6£Ç÷‰ùêŽûÓotT#%2 "G2?^±ÏÄ‚;S F_é饟#:ˆ¡{q˘¿ý‘ÕÞÌ ‰y{œª@Ôð$UCŽ·2óVýBW³(E£Áù¸E1M7$yÅßÌUvR0óEüQ[¤ú#È´oÅX<â^$à8ktÁz¦;(hÇ &Ó=…»#Xô¹¢µU(ÌüV±4©Ðù¸öÓÁ {H6Ú \€R‚-)ëÈÛªÃ:tõi‘á“é&öîi0Øá ¾èIî”Øø›3/rU*ìT*r¢¬²†hO6ºî/„sèÞ©Šïÿ¥Ep;˜ yF+rj%ýŒÒÊ’ÂÊÉBý^jZrè…\•¢Í„Nw¨6}zYó×¢ ZáØcXI¦žLQ–ÇÆ³èœӰì !Ãõx\Mº¾cÂúì¥ï·ÇŽ–Â"œ¢>€=ö}ïØÏD¼ÝO õU@>ÿßü¹%ò#ØtK¡}ÑÊðD­;­™qpçýŽLöÇ-­hªô艴ið?Ì.ò²\l,=w,ˆªÌO’/IZÑv§:‹Lž…ÚJIqè%ŹطSÀ Ã-ß0*,3mËÞ+TDÃdˆìlàÓ(&±t̬WpÖw΢)·'p³BÇNÚäŽþál³/Mü¼*rG<iì"SÛ§eŠ£D‘‘“šªFç§RS® …PÈÙlŒ‡xÛÄ •‚F¢¥X œ›ÔàM0veÁÅO,¾Ã³%ºS¿TV§’–ÎÇiäÐ2ý~óX®‹Ð'ÉRîå祒ÙhÉkT"ÆîTšÃ´*s Œú»,0 dØe@ÂîHÈ…FgI=0\ê{¬ªÈ,Ý.ú ÇÍ=2çFf/” à])my°ý•Ë*…¿ÿ¤¥—ðrÎUªº2¾¢2tÈ;çÂSÈQ.Æ1fw™Õcõ`Ô$˜ñÚp ×4h}æÉ@Ð\ÒÓ6+a\8ØAͪd„ä»þ˜ ‘2¯ ðSÉZ?{´GÙ¯ j©g9g’×$ô.ÅX8Â=$ð—Á»ìŒ¸Ð“)¢ò/‘åO§1zr¾+©ÝcÁî'½¥ÊÞ 2/|âRÍIhIãµÜðMÒ$!Qá+«R:ï¸~À[Li¸<Ç{‘é®*éÆÈ.í܃M,ãçÉã¾|@9þì ©Ê ânÍxuGò šÿá@šÝt¯ K-¦þ•âÄ•¦Å±scõ=}4ÓÓ‡3=}@v9Ç¥o³ïìARÚd¾)Võž™A7ÅÔ÷ò!^$»uî4'dw3a¯9µ{GoR2AºJ˜ü½¿bìë\ëŽúC-°/•^šßìt,‚‡‡A"÷ûCaüè41—ºÝÛÛ§q÷ƒI¢”)t»£Ûœ’€ƒƒ§ „ô4œö¤þ6²ÆŠ=RP/ݰ}7+p +êL°ùÊæ¸o¡¦ΛÌMáfÈ´y÷]2meôÍÞ#Àï꘽ŒÃ†ìf„+` âÊüÑ"·:EØÅoѼzAR¹šÞÊI„`Ò‰ìêû—¤¸¾ãòœa¨ì¶L©6[cCu­‰˜=Ö³º T£‰œ·ê᧦ÚJÍÔÜ8aòŽ#qtÍ^ºm2fwL»):÷Âã‚-Oü;ŸÃKÚçRoo©vµT›Yª=l†­+ÕŽemTšv \p’– ü{‘“EW|}»K´©œ8æ>n ‰¯\Çý!ãAª¦+ Ç\R3èè©ç(÷š7T¤Á† Õ÷¸§!‹B|±:gjØ)©°Š1†¹yç +Èì@}·~éãš2“^OdX€•×›vûƒÉî²#Ñ9VÐÙ±î&ßp°$xûYIP­N£…ö|÷U#ñ5q¼X‡¢ÚgäõÆz(¾mËÜÙÚÅk>nX¬Ç#eTè’ÓS¥ÊNL@ûJCgrÕ|ÔɱòìÄ.%V§¼8à‘Rð¬7œPìê£áž´@Û3|òöº7쓨fo¢ÜD„”Ü¡šÔÛjÔ”Mq4Ã& hË›BÇAAëZçí~ìéd§¸< ½‘2ÓùïjAÔ‡…Ž·1›ƒàPœ’êÔâ4ºvE¡6&#?*›Zßê ŽÔþ˜‡ȳöQÅhü&1$7"æ ŽÕ>˜oöaa#úälu¨°UpòöÂÎñ©&?9 ijf¬–ƒÄ Ê*æ.,hÝH‚˜€Ô¦¬Û×éé6dÊâI¼&+«ÌÄ£ ”½|wœm‘”Äð½á’”ÈH$×dydµxŒ°%Öpæ@£âålÔZ6²ÎnÎ!}Œ20>ã(¬T°‘e2Pîêeõæ½Eū̸@LŒʾ¨»ºŒ2Þy†{‘ÑY¬BÆÚ/ÖÍa4ˆ”ݘ½äìn8gî+œyäå ÉN„-ªÏÈ>8IÍ^ þ˜^‚À;ÿÊŽôjÒE: ½àèÈìAÌ^Š~Š¢Q¯†¥¸8šÛ´–«ç]MÄÕ¦F $´^¾¯¨—Cä=%¿.ü‘QÂTª9aÍ~&GœŽ€Ó‰ƒÓÙ͉ÅYT'«™|ÀJ!_ÄO!~‚Ltðq?Cªû¢,²1 àŽšÀv“w¡ñyPo¶²ã»[¶Õôþì‚{Tµˆ?Øð´îUØY2ú&¡dôÛ…eÝh ò쥢ӗ‡¾‘ýÂå¡cê?_WýçÃ#»þóÑþ¶þó:^ŒÁúÏÕ×e#Z'é¿f|ýç&}°Y§ñMdnžÒ· MX:Ï *Š!´uZªUø[â‘ß!jÐ_¯®4'5Ÿž¦U]:fÎ߈ü@"iµ[M‘é–Fîàå™oÉÀ?IUž[Ê&¨:(:‰íEaë@/lÍ5©9ãæ¹KaÓÙÏ&H¨†]Ëp6aÕ°›Î/j1lºÒSWÅV8þL¨€Ý¹!iJ`óHb½Þµs^©tŒª×mÕkN†UW½öÑFGIìYŠas(vI왊as(ZIì“ôµ°á œ¥KN±Mú×uŠ¢¾M»¨/&€e5ÔʾQÆ©k,Xã®(¿yñ®3¿«µx£¢ÚÙì{èÖÝ  ß$c\ó`<èÝëçXìi „òïïO_»²Xó•ü«lh™˜P -ËlÿE%O÷/¬Û¸ެÎK>€wCL0݃Ð;Ù/¶“v3LK°GéÅKõ@²È¦]Žú«ÍÙ_-©¿šÒ/Ã}¡ð\€_gxzPuÄÏ*TÕÌ¡§éÜ©‰Ha…@ð° +TVŒÅó3›Ù·Ú“àï3œN ÷ÒSí>§´Sú—y#bð²àtÆ5èŸrÈTzØ Ç$K"Itj(}ëa- ÃA€Z¸ã+¯8N¹E޵ækÍ1VkÉ98`¦¡Öæj3ÅP•âê\¯Ö “Öû*åzó‚"¸ò¹ùšDÄÒ·*IËß @ˆ9ƒ%£’o˜iPŠ8*“¾P{x«Vcà¸ö'ŽÕV1Éa¯²Ž$¹…T…Võ×AH^™+˜‚o„½ÉæíA}^cêd±Ì‡HòºB¸Ä‹"ûEŽoÙD¬$OÞø<"_{[8z[8z[8:êy[8z…£-uJÏXb8}9Ïmáè9ƺ­½­½­½­½­½­í¯Íé§v¸­½­-ÄlT.Z³Öz EÛ%¢•3Š>IQ'Úª]Xj¥aeé Dw’K §+[b8ºm03C‰aµ´°„2o}hÄ12¦.1ÌõØ¥Ôõž§žwg[Ï{¦zÞî’ÐÛšÐÿÜÖ„ÞÖ„F¶5¡·5¡·5¡UÛšÐ*ˆÍ­ ÝÙÖ„ÞÖ„ÞÖ„^JMè\nËBGe¡sÑC úf8BÁ:V»RK¨• Zºé‚­ i6·Híikâæ(?ÝY°è³…Ãi\íeÑW°œ¾VVú¹³xég³´öî56ôØ¡‘:µ™9œY<¤¢Ð•›-o¤¨zs-aý¹«7ת7#^b€ÍÙØô°é —ºk®6ga­Y™u„è×ícw Î;FºŸøg“!2ëXi«4ƒýçü…°õ åÄožÀ…ájjakÊÉ‚e±ëJYìúšÊbfƒðUHÿÉfÃÜ!«ýJ­”ýÖlïE^øÀÙ‚¾–T^;ÌZŒ2Cl<ÉÆ˦ÏAµl|N©˜í.˜m¶„’Ù ³‹©+fçJf#7½f6öùªfã)$ÜÖÎÞÄÚÙã··Õ³·Õ³9ÛêÙ/®z¶ús­T?5Ÿ¥ºvÊ'רf@œÕµYí›T5¶ýPD)Q¼´âÚvÍl?j1í¹¦Ï_7½“gÕvO†ÅÆL€·ì¶UPÛ¶YiÛ*¨Ó4±Òöˬ]|öŠÑg§TÎÝl+Gobåho[º`!µ Øiìð²P;å5W›îlPµé£•U›>’Rd[mzíÕ¦—Tº¦×€®%C9p@iêPšÉP¬BØh%ÓÀðÏñpNL8‡X„ú•¬E ù…뱕¨‹’.‹U¢îlT%êÃm%êÙ*Qüz•¨÷—^‰z[‰z[‰z[‰ÚÛl[‰z[‰úy*Q«-‰³Ê´»>µÞl[‡ZÅuêPoËPoËPoËPoËPÿbe¨[›W‰t[†zM„Þ–¡~yd6ZnËPÇö°-Cý˯Y†:ü;”¡.*e¨‹.YµxjLŒª‚âuÙ¬]M6¡¨õ!¶¤í]mg®cm.eAc03²óˆ·âÎS0ù†‹U·Õ–ú;úK೎®é«ÁR‹4^¡ˆJmªš±>Ì’ÛIÑ®ÈíδŸ,Xy"~¾ý$F:~_Öý$0î¤üzýîDTâëz“YK{“˜êÞ$¦À71k|Ÿ8ž 3WùVЉ+ôí_ë[·Ü7‰+ŸLRý&$¦ ª+Méo2Oõï˜Fîà1 Ü5Àc¸Ë€Ç4ˆ«NâÊ{ÿaŸ˜E¾ÓshŠ2ß1ƒ¡zµx¼âwÜ¢Ö‹'ý&ÄS÷›$ðnªêß$mp¢Yî×ÝB°o?0 ƒ® 0¸t4ŸLž„‹Œ{ •À0ŒëÏþíèë¸ûøg—Ëô‡·L·VçËOLwŽql¹«ð”§ ¹»j”ãaYߨYî» ÌÍEŠË‚âÚÕ“Sô K‰SLWÓñVº³¢^ND/ž:C¾^K›UùISH»0OÑhœ`ž"ÖŽÊðÌLóvg.„¨z °ÊÐXpZÔ£ÔzÔ6ZmêYëQûÊ`/£uhÔ£îlj=êÎJêQûê?÷Æã/wk©ÿLÏGGÿ‚ p@  Xÿ¹lë?¯ãÅJ­ÿLWå3yèÂ|t/ª´ñÌáåu…Ä!ÿ3¶î,£Ï "s(bÒ– þóy¥Ü<Ë‘ÏWõórß/à÷¹|Öú$ÊIº3GóÞ)¾€Hë£ ÉLíÃ'ä±Kµ¦!ìE"²ŒNf ô¼Ì,Ë`RÚ 3½ K¦“_cv×laxeíúŸbjy x8æ><& ®KŸß "w(`ž†~Œª9^;ûX%RGâ»ÂÒ9êtg¨D6¯3d?ËÁÑqVsæ‘§¼Y»h’»,–ìueBè˜_PD(Ag¿w¤‹¨µè¤ÉxA;jžÿÓOÚøûÓ÷o*°qíå<ëÓÑ“àŠþLHT¼ÅˆÊ…¹ühË ÁB-ŠØE;†‹( ±úê.â( µDÏ~rqY×fñ5B:åï" –C$ã"Чâ³æ8£>OL:à %3û*²kª7b8pœSãÓ#ÃboÊË4ŠÜUTö‡ÃÑíøÛD™‡8Âjì°}deàU×O„D·8˜šå¬@©ƒ§ß¾âÖÀ¼ã#¡u­rùQ J´µØxôlQ÷žL©Õ9“?¯YâÙRÊ w(Ãå³}´œàØÂPïC`Jüm'ú YK÷ë7BôÁ ٠Х„~htµ/Ë'Ix»H¯ ½5[«Ù_Nga±Æ´ÀTŽHèA„"¸¬‘}"!öæÁ#\>A! ‘pµ©³ËòŠ’De3”»6ÃßÒ°>HÑy½#j$·ÁhR„u¶ ,>íäǯb…œ¾öž À"ˆ< ‰ÅsÒ¢!gd ´° ÁšD^‡qh„ë"ÆIª0^>‘ † ¾ˆ‘Áieð…”Á;5ÓåÆWøÍsøHðÅÂ’úB’!¼1¸:V­‚kM ¼¸:Ö¶‰ë©g/\?²éuí˜ëGÖ!®<ÈZòsýȧC6trA¸I¸6†ÏÎ^\º†J׆ƒ®&®k¦kàÝ»t&p3캑M±!$q¬7ÈkÍÈ&P6\²ŠTÔÔ 4 zÔ ü-„šGÑ‚8[wp¼WŠ²Ù¼žs¼ £E´ ê•¶Go®©¸TtŸWK 2pÐ}~\-%ÈÆ•£ûü¸Z‡%×P9H??ªöŽbÓ5Ü\c×–”ÌÏÊ‘ˆz…‘D²•ÍH—L˜Ÿ0–"ÔíÜ—vîKÇ•Aä2Žwu¼/-VÕÝêXs4\·5×ãÈñXÞM‰š¼J–4Ø«6üŒ•6ÝXD)šÑ°·+|rŽo•l6‹ž*z‡¬f ¯C«§†…• /¿Wá…²}=×+Æÿ§w»ÿŸàè Øþ?û[ÿŸu¼ØR6ü*§[ÿ¿ÿOå4ÆÿGs½Á4ÝàT¿…_”(±÷°Ù÷!ŠŽLt-,ÉÛ+1üaGòn cçJ|„žL DF÷@e–Ð ÿáêÒ8=²“N¦µKGk¤Ü¬•¢•º}•·RTöãQ ŒË¯•ârˆ‹v·µR\Žq ]d W€ÊI²„k¡Jà^ÏN²„+ÂE5™¢‰î¢nÑD¢é]K•L ö¨=‚‹ÈHA¡RÚTžüƒæe?Ö=«ï~_'Ž):#lÂu`sèì¾#»×3œq nƱ‘[+£päÜ3µ6lŽc×XaC‹cê•c'¾¨ÒïѬê¥Dͪ^šUiI5ß¶'(üÓD›çMD³~’¼®—æ×¿á²Ð¿6aK5Š–öh#Ï„±)(Æ c·¢Àã—ðq ‡–6>Â)Ã’0Ÿ›ÄuØp`ËÅ…5sqÆ-?Ãç[w{á%qEz>^ÆÑîsbï>ïÞC£K^'*iò´m©ROÜ– ´(:ð»¤ü [¼z0Z÷|Y¾%5(Q©Ï¿-!Âõ¸méy¶¶¥áºo[Ò0vá)± Œ­ÕáÀ8\Äf„ÔB[ÛR„pdz-=/O1LáÄ8œãÂ0®hã"b\ÜPw–Šqq»Ž+ÿ˜uyÇè¾1ì;¿gLåô%zÆÄù¬'ÿK±ptT´ü?‚ÂÖÿc/ư¦ÿÇ6ÿKœÿG\þüN¦%w˜9Tó0q‘³oLÿèMnÇýGá>²G_ì_xçà‹¡Ø!Îïä¾?¼Ssz¿îEÙOÊÃÑPV%%¢ÅA´œ Z·ßžÐ}ãÁ s#pÐý**ÅsíÊHŽ[¢MôGúÆå3Ö2"‘u ó#°’Í{_~îq‚ÿɰe/hs–ªMæËOr×ÿÞ¿ë*ŽÂ¹ÿ<õÆ»[¯œ5{åd“\NÖçŒ3G!H+È Öe>!ªWžU/üÂ4„‹xê” onv"—7O ä, õüE†— Q Ç3+‘K¹f¯NÍJ`ÔL߸íHv$Ƽ*¿ lü톽wøûHåQ ÊLÈ-+í°U«œ¶ýhÏÙýΚ¨V©ÿ¿ôK÷r¾MçEf¨ÉâØ“>u]eáiîºÉ[ؽ?£ÿ¢F<¾_66Æ+îÑVí´ ïˆ°6:-œÖì­ú¼É To¯Õ¸x-ß‹«8K’(ÎNŽ´O•Ž;í³ƒÈñ¦~¢ª[ºÔO•Žj –VÕVË#`…<‘åÂU”TÄZ$’c*Àƒ©©¥bZßQ ¿ÏªXh¢Æaº¿FL­HuŽiGÇ4|~L]9»"¢v6 Uߢ’öÒgçÔÈLzæDKK<¶ÄcË/[iÅcKL‹R„O 7͈Z1Iರœ˜'ˆ¡¶  l©‚rqväÛ‹pn)8G¢óù‘¶²½øcpÞ_/ÎNáÔ+ÞF:ܤcYZEz¸#X‡É«s“¤ÏÝÄ(t7iºUdi.ìáæ Ï‘Í-^8n° „ÊvFòß,¬øÝ¨í¥È© Þ¨jWý{“Fä’߯ˆRèé›4"§fìQ¼>ï,?²Î!Í0$¿Þ?×$í¯fDnUûFÕµÍ!¹´îR¼¸ÓÇõ2†ÆÏ’þÿÀ±IÒ!ÍRœ¡æ’Ëùt!éEÙ—^…¥•¤°´b–VZ…¥uã:céû¡¡áyÈ·¸Ê`®s’)Ò)} ë*­×áë Æy(Óx\æfããÚÏ=ƒÑ·ôk+ï:Ë`öW6; —M'f4öÉtCF3#§m&£Ídvó£›Þoz6ú[ºM>hÜKDG$:ë´Ó˜&“‰H-&õ¶ê™gó±½l/7 [ÇYY¡­Õƒ®cÏ4ÐÕ¢ãŸ]‡ Ó@7T%”íÁ:±µRK lK¶áócëÚÖ▘쟛¸vÒFâu5'1ÞæLªÓ=épÉI¿ëôÙ‘ŽéÄôM÷vs¬"nä–$Ê~s³ßœ¥ÝoÎÄ~“J’ê3u¶°?|•N®[——ئ†kÄÖ¡¼Eئ’…kDÖq'Î-¥…kDÖe«‹°M% ×€­†{ê*{AÒPû>¬(_¿lçcÕú_€Ž(&ˆ*J»ñJ¦©c— “øˆ¥Ù"”¹{câ¾~]GüO„výçpÿ³–c#þçü|ÿãÿ9?­ÿ|Î|ºÏ¹O÷9óé>Ÿn„p~~^»À¯Þc!Zú±UÁ÷OÍwøÞüÄÞ©ÎßôýýyåÓg¢M¡a>ÉsžWòœç•.ÂE>ÙC~b¶±7øI5㦈í&i·’@¸¿lV ͦÄ̸øæ>G©ùÁÈ ,[½„ÈåùÂj`q ÑWeã«ø„£IõÛ…êD•JЧâk·ŸŸûj·ƒXðY.á·T–Kx0Ãë£r[`eGú„ÿ~f^( ¶ìy!û$G íÞ¯Ÿ%Û©¢¤ØM׈“}UdâäL1½J”lë§¥@±‚®%ÛÓÁD)´P W‹’} ‡R¸*9îš8N?N+&“]±L£Sg8¹2ê¡?y$.þ–Fâ⃪Äõ‹]Ôî™®îÓÆÔá§v`d¸."£Å *BF¿€AX ¦ "~·Ù˜AXÛ€=ÿþ´1£°v÷(œ;ÚÆ Âò†ðÂÞ7fÖ¥ {Î]sca_&"ܸ©â×vüÖ¼9£H±,¼›ù³Âpo¶~4™x¶~ü-ÍÖŠ­ß—Ñ] ¦i&Þkì#g¸-²Õ ¤›bƒÜ@¤­•£!íÍìnaíAù:“ÍŒµµRÜX‡ž³Jø,¤¶6Œ8¤íÓÌó moëšëðÙ¹ÚîJ¦õ`méÙ³aÍ6†uaí-Ýá´×µ:†ÁÎrr/æø%ú}Øk¸‹qq?Oëâ~μC­c$/—nÜæ â!iÅŒqg*eÙ^KwªäöÂÞåçŠÓëë—:,‡-Ãp”GÍ5,‡ Ò–~ø|!ãr2]ã*È¡½qÙþú¾qñ¡½q9œC“gŒ—2®xq¨F=8º—2./#^™óúÆÆŒ+|®qÙ.Õê|u–;®p}»rŠõõiÉã W8.åTXšX#Fk¤ÕÄ~ML=pFÞM>Ò˜”´ù¹Ê Ô.]ÅèÈ)H×XXQkøµ_cÔN=®á×ã~Q;Õ¼FŒš÷k Û©ÚÃ.8Ë'¿Üa;÷fç°•š_î°[·=lûâãEÚ­9ÛÃôðµ?l/“{PÕ2õ‚‡Ïä¶~ºð°ÃM¶[}møÕ×% ;|ža{µ[tçõÞYÑßÒÝYÑ—igT{jó@!‰`ßb÷^làK³DnèÀæzeà˰UnèÀ—†æÀµfnèÈ-M×=òEì:rÇ•«gäs[D7tä®+PÿÐÝs^x™#í ïi…͹㲞üjÅ»yá¹wóxnï¬z;/<ßÈSpû§•ïç…5ŽÜ©ÿúïðk3Üá×.¼wøô7¯åÚ¥²Ó3>CT‡8°Œ×æ?MN‹|Yùkc‘Ý8\6e«ËÀ¶™Èn"Ç:ì· a ‘³¸:â”,\] ÏŽ«ëVZ0Ã6êBÖŸÚ~I¸ÎäÆò>õ@ñnkÈ·@»T[}p][à´˜TEd׳̈¬CR d× V—Šì‹Áuã˜À±(t]ñ0#®Ž-ÀÂue[ÀŒ¸º¶Dv[@J\góäýÔœáð©éÝ>5ßy·ú[º-€>ho‚€Œ°Êœ'S :^LÎ#F¦œ_F™#0Ò„ùú0rH#)YÖ‡ãjÏBH£PaŹ‚Ê£@\'ÇÍY°<„ô’jêbm~ò/Vú[ºÅJ\êb…Ž[¬ˆÑëŒ9«ÀhY‹uFŒ‹UÁh‹uF„‹ÕBh±Å:#B®ÅŠ-m±¦DȵX½»öçsL£…ɳnxªÃ’3Iµ“S°“ç/›ySq=Ü™åáñ°ë× d©@Â_uöܨ¹½Zî*GnÊèçì˜ÑwV¡ìäá–;|å˜T4Iÿ)©“ÖªÜQI¹|$q\áıw6wÔó͆âí:›tT†5ÕÑMAܵÅjˆšä¦àíÚxKpSðv]ÝEîd>mc—7ö7ÅÃõ#»6ëɈ‹˜˜ÍB<ÅÃçb•”Bec„¡7o0yŠÙzÓ(;º²žnök]L]aÿÕZ”ôÿjM6Có‰šÒ)1…-•ÝRù7 ‚sK*è¤øu©àRç *¤Ôï^2œBÑAµî#ƒuõ“Ž ~b®’ NÅÍC†xÝó%3ƒë¦?ž >Mö%SÁ­á¤ Cjf(üdèhdˆ×ùb¹!D„K†Y$äûDaù!R]<؇ʢØXn×D†ô‹Âw\ ”#Ih–2¹‰)erã*eâÊésšá¥3sò=®ÂV“ö ª13t†Ü" “kCKx^¤-õ&i¹©?/Ò–6"~Wªµ|XµqXÇúÙ‘¶Íh&Ö‚æ¾µXØL´½Ä~¬#áyd¦ÔC‡}ù žR¯RO™RÂ@VšƒÇÊ(NÍÄ3lÕâÅ8òÂHÐ]ÅUãvâDÊÁà“½8jß ÝÖ—6j‡ð޵ó|úÒí£)mG_Ú ]eŽR:õT6mÔ³.ëVuacFm;SðQ×)Á÷<)–>l‹Ö9ì°àA±¶a¯u¿Þœalΰ—ÈäqY“ë1Y“ëi³&×eÖdYòΩÚrÇ¡óèùÇ}¡J¾d"ÔN~Œø—Å­ÊfãïJåáŸPÿsàÊKë€ÓP± ø»zñt›Å&àïÌŽ‹¨$¬à† À»„“H¯Ýç€K³œa‰3PXõ¼k`I3PXî¢ðÄÜÿ]óo„ÿ®¥Üÿ]ËÈòAìø;‘~à¡A‹B­äÈYõÝlSùïÚ¢Û!ŽBܬ¿Œa¸:9 gª¹M…koWGXIè6q® ÞEÌæ¾)£p‰8ç(œ[ü¦ŒÂ¹ÙÇ ÃØè7f±b*^Ø6h)x¼˜*lÄ0R¯ðx9å½#^ÓÖ»6^ÌÖ?ŒpÓ‡¡Ýݳ¯*õ3R}'´Æ¸?œ’.™<=|Ý®´ÚÕúùëJõüõ)Q¾Mò÷Ké£@_‡ûûø~txˆï…}.ŠáþQñAè¯ÁAá…àà üƒ–Ò{Âëi2íŽ ù]:“îÃhâ{Ž>v¿rlÔ‹‹°«r“®éj½‚Ìü¾•áéêêWõjåø½=R+5J§qýˆ…E2ß{ãI4$Å|°Kâ‹ãjØÿž‡åÑî éò›ôz¹è»Óî ?û]Rîÿè z?1‡_½tNjÓ»|ž©¾÷¾ôÆTŠ¢¬€ù>MwÕQGçvBÚãžÍ¤F$ÃîCOæP”’q:"_˜PìÝñ¾ÙÄGð9ÝLØOÃþ” ŸpŠ,…Hç0Þ.ã¥Nz£;¦øO)»EÓíšÐ‹Ò äÊü§˜ýfé¢ÒVŸÉà3p.†ç`ƒ¥³øÝ®Â ¢ßÚˆrg9'§…ðièG«Jwû÷ðOí’íû9òí8õ¶·ÏÒxÜý©tY»<¯RMBÛªÔøpvcú~WªÖäs9ö¹i´;»¼*×*¤Ñ¬œV[ÕË:oĨMËxüôò¢Q«ÜdƒCÙM)É/Úœš_´KW¢GŸ¢¯NÍl×išßPÌèÔÅA¹‘Ûä­üIÙhH)üîix;¥Ò+žÈ,§Øàoèœ×µøï1ý´ž¾Èõ&{r@b*bN ’Ï\|‚„K .=ü£g¢DJ.v(V‡SªANú·.ZP^jVë­êiøŒ2‰ŒXý!9=<Ðý – \Õµ…¶XKÌÄÃÒ‘æìÀ†£ðe0ºýC]²—ÈØÑë5B:åïR¿üÈôñ¸†ˆâ©øÃ…FåÏÞíÓ´ûeÐ#­iwÚ“{•P¡3?¸±¯Jv6Zt!ýÂ?CÂ7¤(¶f WoŠRý{w܇Q¬÷‡ÃÑíÓèiB¿<õ”Ô¸g—tO%à¸ÊÖT¤åÓŸ‚©º~"¸Æ©û@Oô÷üY8‚~ûêC“6FŠÕ©Bq¥œPR±†ìö~¢HOÒÓŠúág (˜ÒJ Ìù!åÜŸtƒS^îõ¿ö†8h¹Ïé‡"‘š—žOéÿwÞ·|™ýaúâ6á·Tq›ð`düf§M¶ÀžÐJvöÆž±\ ô˜°•â`ë)8„+E!:7­Ùü3›ÓÎæGq§ßTÏ-uz“‡òqáý¨†Á® ;ÀHE£Ý‹¬'sixÈœêÏŽF¸r4ìPX»$ás !ퟫ¤†êFƒMŠ" —Œ‡šé˜•€¥XZ9|÷¹¨Kz… ý-¤f¬KP^é>Õ0 §Å ¢`ÔNx Âõ`ྈ¹Ï†Aam|à2ˆAèÆ ˜›;¦ŠŒ \ |á(xÊó,iü-Í’ÆYÒ¬§EGaî%½L æ[Ò3c`-(ŽÁÜKzi̽¤gÆÀZÒÏ’^Ö’æ±·"bP\ þ%}³¤/Ò.é E”¦ è> QOñÏB)F‹-<†jM9ÎlªŽõ¡ *Ô›«u±p-¨'´gÅÕ±êm\][Áæ¢j훈j œ]¨zO׆js'§:h¸P ׋ªåÔã¢êf,«dT ¶›‰jS¡ªK Y?ªÁ jè¥j¸!¨6u °Tµ“$‘5|>\“õ€Í¡«×æÆ°«âÛ¦×gÅ»Mæ‹¿¥Ñ|ñACóU…ó6-IƒbÝ.¢Þ |*–µ~-øXü á£„3¬ !KQµ24¿MÀ'\>–ndá³ÞùJ‹O¸&|,¿…OèÂ'\>v,†PÇ@(\|VôñKÕjªŒ5ø`ÆÌº‹ál*#vXx[§ÉYÔ³“°(6Ìy†JÂ3) 1ª³Å´ûÒâø… Ä%ǣȫà͈Kž‘3ÝÐmâH\’È7’Ð=úõþóÄ)Âp$5ßHBÇ”lÂHâ×ûKIŠŸ4’0F™_ýH¢ýèX*E_T1ü–*ª̘é5¤à3eE4ÜùÎ6 ¯EöpÍ-©Ÿa;OEØ‘@ñÛ•fÆØ·sbª‡Ê_;‰íØÙ„C[&­aG˜,Ǹ¹©{E #¦Ö‡±zûǾùÅ÷™Qwï·±1~ï[/3Æ/îÿ7™®%þï¨X8­ø¿ýâ6þo/ÆÎFü_«½ÿóÇÿµÚqñï+mïצ²þôª~ïŸß7à{ÿ‡?}¾j°ŸZmHß1²§Á>~_–MÞW*ˆ¤o7ücÊìë2ÿº _³ öKƒÿÒÀbH»9Û†.%ÄýSÇV¯ñ\šቘ›`A‡u%Ôp¦hC¼@ " •¿‹ÊßšGG+”G\áYôt%ú³ÉCú0ì0up'Âш~èŸââS„~ÖÛ¿ÈD&\>3¡ÂÞo¤Tâ")†RFÑ÷&Çö\@2 õ™I¦88 Þ®ÁÚ éˆbŒ½£ÔdR4»\"_51¼ hLи¤`Ñm\$žºìàGÚGÑ×½žd`?¨‡ÈŠø­/œ)‡u×ì‡Ê—¡ãKpöðCq ¡™B Jhñ!˜­¶'e†ïæ ~Kusš!˜T¢Tfqêe½-tïÄѸÚQh+ÇþÝVð׆†¥¢á™•ä שшŒ-ûfôD;&z¢6z¢Ý4l&ñö‘ ˆ€ÎZ+ÄÀáka®ëæME`>Ÿýtøé"†‘.Ò2Ò…d$‰â ãv*Ká’µ0o1œäµÅúqry´E8])nUëÃÉåmoऄ,Ù#p6T]¾ÖT –ìX?ªŽeíBÕåkŸÖ½gy85Mò…kã>û^&PßÙå#/;ž‰R^¤šëg)o‰x<ãúôÜFZ=·a깊:•¤H5Vo–z»‚î# ê-ñLïÛ~iõ¸†©Ç!îŸ{&±Aca=®aéq«ÅÀŽÂh˜zÜjðeiá6Ï<¦U£±j”.sG´°ÕˆU V‹­:5bU§Õbc+M6ºÒ´ZtlÅȉNA_Œ+CÇ:"»Ñ WKœheê¡h~õ¬Lü-ÍÊÄ# Ë6&\R8±nY‹¢Áe«FÀ’¯î¾ªþ}âmæžIÄßÒL">˜QèW@·Ã*(J¡6škæÓ‘0*Öñ"b„c$9j/Ø4ŒÖ%K8BáºçÌg/iň“VZqÒZHœ´'­ÅÄÉÌX⤵8IÝŒ89ó9òâo)'ñìÔ=‰×r$AŽ—ûL1¦³Åüt>®I]B®IF„“|>–€OXd…ÇËÇÈr[UIdcTX5…¼ø˜ U|VI!ÛO"ÎD…•‘ÈPÕI#ƒ«Ãubäžµ} £•LZìÒ÷NÇ(ùrj‰ÅNš`ìµb;i+ÀÈ[«ÝM¼WÄô·tWÄôAÕb ÐÍ!ôYÇ‹Ý3ŒÔ¯kÅÈŽ>R1Òoׄ’8h¢ê9;® #k'²02h4ëÞ¸ŒdäÃH’øL4êx0³vz3š'G¼cÂÄͺc¯%7VÇK~”|SwÌQ:^áÔÅ‹JÿÔ¥Þ·—ˆR$‹/qò´ºaæF³O’´ûdò6™b(dáÍ1yo\6Î1ņ¸l<œÛ`ò.¸l4œr=y£YŸXl~Ãç7iùü&£ë܎ΖÑû?0@®Xëû$‘ÒÖÆ°^t½Üqd/^>Ž€¿mÚpœëN§d ÏŽ×æk£¥ ^„ø#ë%³ewr'\œÌ¡&–V4§x’ÑsÜìlÒ"pøÏ*é¾´á¸UK{Q2eëüè°AÄýêUàJ ø`2=LrÈǯbücwê#MKñmü8øÄ?~ðžæ*IV4x§ÖÓL­õ¼ìÁ;U${ðées½SŸj¦Õ§^öØÊWsåë÷ÍTÃ_HWÛØá;»Ôs? ß6oðñ‹~™ƒ×f~/؈á‡ÎCÊê‡ ~/Ãß[ÿð㕼5 Ÿ[Ç Hß¶¿¤Qûíæ˜ æFÚ æ†ó‚Ùqâ–×9sŽ·±ðÍsÃyó¼¨ÚŠwÃ}%½¸Úçç†óJHEUxODŸkBÖÖoLÂÚt5o²7U•®ºŸÌ¦ êdÍ ²~°ó&¦àóR|spõRvÝüêÇ5† „ïÛñÚ¹ YÄ&IXïfÿ ¸ú×ׯàšÌB¬œ  ¨hi@1 P:φËs@e£4—Ã…=.ÏU£áœý½ex8•’xd™høbA0ÓW ƒ¥»²oø¯ìý—ôâYURÞ´4¾¬oø/ëý7õÏ?'“û®é7yFl·5eÍ.z‘·Ê‘8×»ï|“§Ä¶C5ü·ß›<ç™Àwíí·£& $\ù@‚”«Ä5’͘Wu o»÷e#äOwæ²{_öå²+Çäø(§ÍñQŽr|ˆ}A^²ñ*I„*/œòƒ#£jSëBÆÞmTd„|^6öb0±)ØIÿV†}Mib(VÛ#ãðôáØ¨Zçª'Ê—Õ“ÜzeZãnÙ6îª.É˶E–6ñ–mï&!ìXÜCo2Ætƒ|5#Æ``\0üßc‡°­'N„Ãå˜SgEØVʶ %P|Î%Âz´…Äáòiì0þ™Döññ’Ìë+ÀئòR­ìËÃ8†/\ÆöuòE²€Ko‹šÜW€q•×ÎÉ^ŒùâXåäu²…ík2#[,jƒ_ÆI‹oc0Nͱâb‰l¡Øã,¥5FgMg/[öx'c¥±ÿ–¶Ê—-«üÚqЉTªæ*°qê‘©ÔÈU`ãÔÓ¨ˆ«@Æ©ÿùŽ‘«B&îé½Â(§½Â({®0ä°>©6@iMóˆ"ÕÆ6·5­¼ðuFÙsᔼÚؤA9e„ójc3+2Ü×/ˆœÛ´=*Mnþ¨ì ç¨T±úÉ^•~P³_Ì:(§`vjiü·úA¹•λ³´ª™*Êž‹´—4ªxùœzTÞM'|–QÙ—žiÖÕBÂbu£Òòw±¯¶åŽsYî¸ÕþõÊo_ÆËWÿùkoZ×Rÿ9(ì‡ÿ áÁQ°ìCýçb±°­ÿ¼Ž[ßjýçóJ»fH»Yª·dÍØæûî-µ3æX;£ÿ”á½Sr³y}ÙüH÷‘J«zF^féh0H± ÙÕ;‘2@F›ˆn¼‰£.ÒÅQËðº°rÁgÔB˜Î:¸ˆ]"¢Ë†%~¸É0l¡y„Glldr;zx|šöX ìqoÒ¿{êÐK†nÜ£Á…)¢Ÿ~N¦½ø6òî€ôþóÔe¥CI)û'Ýu¿B›’Òûô†#Ãç-ŽÆ™2Ù£Oßì’×$þ)íRÄñ¯ø«ÒhAhmúã[oÜÃÏ}†áC÷öpYïqÒŒ†)Š_ãlWñë@-PÝzìÝöïûœtüb ŽÆ-GûFmùÌgo(„Ùø­¿ý?möcމ~!†4w‡˜"è¢d´>e­ß›­ß‹Ö·£áïO_»S@ºà*só¢Ü´ÝxôCêÝé¸ÿ')åÎÿ@ER^î{V ·”†.¸u .]cóÂ¥ë@ éý6%ß@ŠPžÆº°ìIé¹dŒHYz]XÂ9r×§ü…b-+°¾kb5¢ö‡té\?é°äY´M’ zÝ»þð«Ò'Y— ’<ƒD1èþ™ r»þÍl¸É¬1pYp-üï½Ûéhy͹d€xÉÕ!Ç|³„1ßÐ1Wïù*Æ¥–S!@'’õÝ‘¾òl{„Ѥ#Öž“d+kd{Í Ò'R¯lSïrH¨øÿd\h𞟊*FPŠ:|ªóS¡ëžî‚ããþtÚ’ýé7z׿¿§²axÛ#\ÀÊy(/aÊ0ïb桬Ò7fÊê|qqïŒÆL¨ÛÛµ·H{*.¸&ÂvÚ\L ÙÖ+í¾ÿðô€„Ä1*ÐÆ,Ͱñ±½]ÆKÕuÝq÷¡7¥ZV¬>A~—ôÌ^§äÝö.*š"”Á‡«5ýª€Oƒ?Åé!§ `O @¶fTÝB%{^˜]­;nªc¨òÐÿ‡þ¡–êôtM×{£Ä§úüí,WN bÚQôÜU |ýŸÕJ§ïsäìs©uE»þ\+ÕÏÅó•J•ºÁå|Íb°m=}‘¦‰¯£ªÔ]¸†=k±w(WîBÇ[ë=óé©ûJ*XÿÀY°òëòØwY•qÞõ» ¹È×*ùÉ_6ó¤®þMÎW>ѦHh“À½ê·hÿà´‘ÆÙ_‡v°B9vdüpª¸{Kàõ¬]Êg¨Rá´Eá£Æ£^ÜH¤B.ƼFm÷ž15á: oÜê1îÉ ÓwäJM?Ñ'‚±x¢3“µ» a°¥Ø°¤_ Ig#;eº›Hç1ÿ´C?îâoB÷Åééö"GÉL£ÀÈÑœÔG‘z+Æ„'YÙˆõPë8Çâáˆ=ǻ⫠:]`g˜a_ yÅdg1òÙ% äp‚v꤯2Ÿ^&62Hz¤ÿ~À YªuöÆ|6Ä3¢óYà›Xˆgý•g©ɰ9J ÀkΧ@¦ù’Fɸ‰@*˜·vµ~UI2uâ‰öïjꌱÿ…µØÿ ûûEÛþWÜÚÿÖñbLoØÿ‚B†°„tä¦> zÒ®wUk¿,Ã^¬åÆk®£Ã}V{]Ô8½µŽJB8¡wÇ`¤ú1b6†[ú¡„4-㿺=Ž’ü„Ì p´Á}Üܧ.Ä•lT[Ü®¤à½L³’ v ¶òå'®Û¦Sž ñr"â奌S?‡ÏóÚi>yyŽw˜Ò5dìÎ0ÏZx®C<*¬Švè}<éXí8Ú±•þ S­žA[Ý{*fúC84EQã Ú÷nû°bUw…kqXõ}"„؉¦µ™’rŽŠL`¹´àìáóŒä² eW?39Û ÔðürÍ]¤”¬ë€RR!hÇq]ã‡q¶„âDÇòóvþš’<“ÇQÔÎUtÜYõD¥Ñ”C;Dqž÷ø ¨3ÌÉp‘:ñwgõ¨ŒÀ 9\^ÜàäyÐæIÿiPIuûËŸcÎášü?ÂÐ>ÿlÏëx167Ρðÿ ²ß+üýZCx¯€« Ãt&„âK?0ú©X}†Ð'=wОP¦’ù}—rÝ—YçCÑ­ÍÊ¿3hܹ„¶Î¿ïM¿©„È!ï±"”?ÙgpŠ0ìѼ¼YŒ~ÅÃø ÷'îqÂþ ¶îé7 ê¶;éqDÚïÉ_ã^æÏL÷/òŠüÕà£AºÏT£|>Ÿ#ñ¾/ªóKiçJŠÑ.k†£)S@QXÞï´;iá÷¢Úæ]¾/mÏèÚrj»¯(˜WæÇ¼2#æ9uÞé‚`×Љ¡;6wsaõ0Ûú†žERæz~Ê\/sNs„îµ=Ò´Bêá>ÑE°w]Å%8œL{]TÝð‹™ŒB£ñ³ Åù-ÃÄ@ÿønV®¹ª¬Ö8$=&*³¥â øµ)ÉKo› wó`~èÊ#* 6^âÝ1ÉÖÓ–LNºT ?.öÄË"¥S®IÝʨ[É3H6u¯g¡®MY6šîà / ¥Ápf»X=[±Œ¥p©§µ9Ú†Ú°fÜê­† í×øúý—u¦aÀ}j8øŒì@˜øb”v‘ÖAÑfàCq†S{)‡oi‡º\m7Q­Æwzâø@ÿ;½¬Ñ/ß½£ÿ6/áËNå4ÙÌ(Þšh7ƒ÷*=¿TšÍ:|ß®\4¼±^ôuUk0‹®ÆÚ†ftZ²ƒlU\7`³5KåVNZ6/ëÎé{õ¢t¾˜³:ìOûpè Ñ•e TæúÛ‚òÄNQ`‹Ó,‰ÊñJÿL_Âñ‹´ qvIeä¤L•häd+]ž”/®•/p%Áæx¹£|Sáßøü—J^¦’׃ItT%øHUD&$9¨@‡^Ñ¡kù4˜Nì$Ì0f<Æ×±Ð¯Œ g¥ºóÀ)Y#=_è¬+?”nlöbCq{®]’°€"Ï2rÓŠ1ËOü†q½›™(„u™áVUúß&f‘2»¯|r’µÕk7’¦nö’oµ½¤Zx…ŒfØíZO"ée!Õ•'£ݤLiRô“’›Tø"’uÀY Þ‡Æô§}WŽÞ˜ã“úeÌæ¤_Nm„W±¦·&NmÌè¹ïš¸ƒ8ZúìžgiæÛÑâÐ9ïöbEµ:Z£Îë¡£$\¸è@µ…ïZ@…Ù4J·&ÆðF¬ †ô¾¥XW¨ú[¹6qg¦ûÉ»§Á`Gô$tDöÆl°ueŸ…JÙTP^PÙ²&PЍk·ˆ"\¢ ¯3 DܵŽx–íþ™¨ãö&ëÀÂ#(Ù Ž ¨$zVg:ôWø¬<`¦V"Y¦Öчü¢KîTB¡ã¹b:/~!tÙóÉÌ=‹10Pq8‰ÁA½p#’Ãðí"f ËyW±®×%7kþºb17^‡¬³Ùéýª§óå°' ^®Kð.e¾ †Ãot¨Ít¿úh+xÞõƯÁÚz?ýðÜÈòþÝW²BÍ4Õ›RE}˜óJ6ÏÄ/?¹®e£Î\L¥ƒS€Eײ ó*ÖIYzêã°è³¤ÂZ¦cF(nkl³W÷ò«j}è9·G±™R¶É ±,zò]‡/Ùy8îþ·¸–û߃£BxdÝÿÒÇ·÷¿kx1¾5ï‹4väHµÕlçH¹D&(‡í7à¾ó=]vïáÇJå,FE­_^Õ«mM‘z‰e®éfÔ©ÁWðo§ƒ>Ò¤6QÜã[“ ü³¼Ó7ÈwzzÖ©z«ÃÊ…Ö ÂT@õlÑ]§Âßq9x•]Ón´yZœtŸí°>ÁTûvlòcÌu”‚Q8ƒð o>k|¦cgYn¾Œgü¦0Æ{³\£»PÆÍ}©lº®Ú‘Kø%9ã1ùøˆ}ˆã:`OÙXPýÐIl/öÙ@¿ëç ›Ôœqõ,ÞïÕtê2bã;êÔ2|ޱ!ÔfkV÷2H¤×¬~„»" ó;>ÃÉχ‡øt+*äq<ú2è=»qnÄOÏ+•Îàžê=‡*ùw%ªïäÙåÕ}L—ñ±¸ý¹ ¨j‡~èrð£?/â>ê‘j~T[éQ­€]>á¼Td.ÒaœÀr=é‹›±ÉÓý}ÿ¶O¹wð“ÐÕûµ'ìsû”­ÛÍ«JžBgh˜D8D&QÐRá—/Y:9ôèHÿÉÊ ˜!^Á(žøzô9é» ®üž†ý)hÓnÿdK¼%î’»~÷ë Ìâæbå—ó7Ì×™ßwTC‰j6û°­¶5À¾HF¸æAxл×ñͱ."? |ùrb°¹c#£ÿ}¡2WÁº(°þ‹²>¸\ˆ»)ÀâLÒ)¯ŽÑŽŒ{Ý‚<¶#w½áH`ôÁ¡„݈¦Òß~Ô_mÎþjIýÕ”þX`ÂëÌýÓ`°‹güÇîŒíà ûº³À¾pÄ`ÜÀŸWûRo9eæˆßzCÐP+`òQ11ù‰W¼¸†DC>5µ' ÀßãhHWÚdôÐcTV»GȄҿ€ èP!LA#úg"É*•ì5f+‘P:dôŽz“§ÁTÂp¥îø(p¤R Q –Ž5¬Eëà–™P›—Í8VÀõÊj Ô¢÷U8~ÂñXPÅuUík"06ÚøIiB̬»Þävܧ»Ä·ÑUHR©ö…êŠÃ[Õ§‡ãÚŸ8VfÅ$‡½"#8’äRZO‘ƒ' !¹¢$¸‰LÃQZK}¶oûT€ k*îïúhX`±a""LI^ƒH—€Rö>BûD¬$ObùØ^5øžÁ'më³°k@öý®E@±Ÿ*øYD±èh¢É>£ÂÅQ…¾I?RÈâ©é˜êi(¦#v§ýOž}ú;Ý{Q§Êk8+ ­4,Ô0{E¢“i÷Jt4%M˜«tZòp:"ÝÛÛÑÓpš#ÊTN¿u§ŠÄ€&ÿyê§ý)‘o£§Áè`—™«Zc×Â1ÚŒèIo@çñ+ÕE‡kÇÈ^³YT&.P'®Â&®bN\Åš¸ŠcâexŽ«,6c¶¾)“0F÷òÌžbÊ*ú”I( jÏ9em<ÉSÖI‘Px9‡ñs¸*Ùñ!§aÁ÷o¿ñs÷r ÿ¾#È“ ˆÍ©š“Ë–rBøNG®^_X6Y˜Á¯]p°k6b«{v,áÝÿÄN(¶_z"öøŽQÌ*.xÊi 2Û¥Ã]ÿ¶ “²€ØÃÕNq;Ó„¡ÃqmD¸öG[Z#ATÑ´wgQµ@zô(`)®èk8³¥b“±?¼¥:7ú¬ƒîM@è› ƒ…A÷º;nüÓ‚ï8Ð2NpæÇ=žòKìÌÄãð VžIÆœ¢o?è €ÆèÙ‹Í6㛼9Øú¦1"?°ÕK?Ë#ᄊ(úÕ®ÁÚE¾ÐÅ@¡$6l9:„¶‰ ËfÀ*v+h‡Ö®xfnÿ|Ä­ZµäÉæ‰Ñ£Ú—Þ€0ïJX:ì†ct{û4éð˜½+ê#.D¹Äl h@aø7–#ú7!~ÃN~ËE"¢«­!îØI7GzÞözwŽ xG0ë ­N;¥!Š×`6R1”HðvauL(]¿ 4NŸ<€yã$öãÉP4ò_)˜*( dˆŒß¿}¢G^-­=óó^€Ýïz½¡´Ë< ‡+’UDáŸäÉÝèéË §éÙ"븓i.â,øäቒö….ýû¿½ñ(/¤\¥rf3†Ã]v7aݲ| ûуPl¨¨è» yMz½;µùg+ºãß=ÝJt“„+ØBÑCWO\„“ûgBQ430/3æ&:\¿»lÂe/3Öpp B&x”O¢óÝŒ»_uiŸa¬Ñ‡ÐatgQÎfŸ&€‰@»Ÿ-F@ó/å!I§9óîH´y!Í€Aßo£ÁzPS£¢­ט¾÷iêÿ"ÜòE×<@‰†­6f˜yS¤Î;/’ÖuݦFiˆç;:¬ÇŸ‚+QÊE–Õ‡ÑD¬(Z«éŸÚs^ëút4œ‚úcmѪs~°Pµþ=¸ÃØ.^p׫&å`;›"SèÇR®¹ãQQæué~òT! ø;TèGÔé2Ê÷òL?4°-öîµÙ‡ïœæ`x¨S›yö;5cú) X]©µlC’ÙYŸ1Ì^s1z§–'æª6‚;:ÍÙGÓ4GÓtÆK@€0×pšÉé5+³.ƒ ö¥@¼¢ÒÚ?O¬ûYF[%ŒŸãç z‰ºç@\ƒ‹± ©`s ] .ŒaØ=ŒÆËDG^u3µk@šŠ!`F´Tm¾ú&fžZM|Ó%Þ0Ù¨²De,áæ÷™iŽUáˆÊ28¢²,ŽÐ±ÃCò²¢²D†`ÛS~¦5´’“IþÑïÁÃÔøÑ šÑñø>ÒÃeß‹N÷œ}ÏÐV ¢y—Fõ. Í÷ÑÆ2ïiÆê§ñ˜_x÷úS¦ù¢]?¡¥v(ã–óÆFâ•;?ÔDtdÚÌqâÞº?ÄŽ1vŸêmæy@fëL‰¦¼ªg³!ÑJ'ò4(æ2óÎÎPƀ⠈(sî6¹rà€p{KÏW÷OLÆlÿ7}†Ù1Eø#ÙCðߺw ¢?DÃÛí”ͰÙþ ÍÓMÙñ¬‡­ØÁîvt×c§Ýî¬# jø‹™¯éLpÓèDÚ”¬é9Ò¾ŽÍº¦D{jÁžl ‘Lð!Î1©ÒhUëq]àÒAþä°pp¶wm®PÞ¶3†”ÍúµÅ‡ÕÍÐÚO*ùÕ'\HœAž²ÀÉ+«JO§Bî¥I{Ç`—6šõ¦Ò,×JBå¸7†·ž.%gŸÞšÖzÖvÉD hå¤+µKDÁL“×¼ðvg‡¼v’#!LöÜå˜þ„wjÒ{W8<8Rxý‚ñ^0ÊHLªa¤òé†05…ù\Ë D•¿”£þp{Qâ`!ܦÕlç똤°T?ËËÏvð o¼'yLDìäë—í<НMÑlÃÍßµ¶;×¹hw`¶c6Pw&EÑèÈjýøŸ?6Ÿ¯• EÀéÉ>ս탂  SÓ °1 ¬‚µBÑLa í þ9ȉu3Úˆê@ sfçì¢þL5²º+îWð€$“@ Ï0.4[c,1P}T¡î¶YA5® ‚™ªŒ ü*ón$ñ`ñ½UÜ¥*¾ÃUŒŠÙã)"\'³±Xºh½±.pž¬><ŽÆÓî¼v†ø#q1íì ¶ûjÑñZH<ÝbµXi32È4DêÞœè%Faª?>èqÞ8Ûçe¶õÙBµ…Ýû) €ZˆV®GAÉ6W#X\a ¶¿@æŽ`úߣý™ÇÃa_)eÅiDÛ¿çí¯ST0·ìÈÇŒûŠqe)Š’`Î2è‘ï£@hl+ÿ4ôØ16í ic¼R…Æaè 1•{1°D-Ù»ÃÈÉR¹vYñæ(Añê+‚o©zz;ñôÆÃ G k4H&[0"­:‹H8‘6°x&ˆbÒ›`ÂF¦ÈæÂœük=ƒ¿kzéI”ôùB2Pü®%J¡¥S‰Ò©’dÖ9Q P*îªb²è Ño×y­Ð+1E//8kˆ^‹Jœ~ô•WýÇèHq€À)‡>÷”øH=à™-¬<p€°¾ä !œià¬!8 Ç¥Vl=,6xâR¡Û]s åàµã94à°‡ b„»¬E%OÖŒ6š. ÄÐým¡…3çƒ x Cáñ±{ôŒÍã:ÕÎôéäRQÛ1 Û×8Ì™ÂÁaµÛ·9lÿ™8l?‡ÕVÉaµù8¬¶‡Õ,Û_"‡ívàà0d/,¥;pïª +\!üvüˆÃB)#lê˜^¢&Qê 3°GUR§Ò·É>E‹Ì¬ßŸŠ#·/‡ŠCF H¿îYâgaSB[“ˆïÖ ê!¢JÁžæ~ î$‡¤RzH½'L¡÷¯êCÚOL·'îný¹T"bkE$A1¢¯óKÒ¦ç“Â?M( çJá|°ûO;1K–ý!ùt LQ‘dÑPÄ<óxh&ñQ9ÖP‘æfAñ'0ñ¤ì€ö<”ã,"=x+¨¨Ç¤6áýÐUÀbòSÄ«Cx_Et!Î W-À`ËwV(1,rbÍ ŠBØfBn+¨ÃÖ—Ô%f’D”/Ÿ%œ4K'Æ0âò½Xcó–m“u‰rÏi5Y”«ÿ?i^|i^ÜXiÎ" ™~²™~’,ÓÍí%ð%Ú9µâDžjà^‹!Œ±÷üs¬¬8Ô‡~ØK‘Af‡²É›jŸ Â5lTAø·ß¨ÜÓ3Ûv8m ´åìWAqû•#`åÛU'þä‘o«b»TšÃGÌ6U r/v»ÚžíjÿemWÁþJö«`?YÂYû•ï<¿$íWµùö«#ñ×~•êD5ï~µŽƒU°=X-e¿ZËù*Hs¾"°òµgà»°à°ÝñøªœpDu8®b€Väï:ö"ó 流ÊóïrÑaŒýSÞ™ùöÌxè±®­-y÷8H¼»#i7†ð vchÆSKDZcÐû³;ú:î>~ëßB´ya:’ …©”Ð sbÈô0”ÎuÈ ¤!ú‘å^®Ú’Üg|Ét ánp‹öñkæU`쨎í;jÇlùî†öV ᇩ*yå]þIh3 NY’a¹}IáA^k-ñw7·‡@ı À½§…S>9Üh°4oïa|’up1$˜šûÒG!¿eOTퟙ# ú):‘ùíÀõŸ”gÍn”ïÙp#OWoo³·Ž§·ŽÕ[zÕS¯D7cS”uÛýƒ®ëÛ‰R&Zâ u1KéV F! "ªä²”èàé+ò‡Gt?G©léƒY.¦¹'Ž!m™6 nØô ”{æè²¦ÉK¤t`_WœU§Ö½Ú˜rÜ7Y®%ÊZtÈk/C¹ôü;–БaÇ2=ÆbÇO¶Jƒ[·ˆ¡ì! C6,V“|”ùt½&Fe[¥ñ0æ4õ?c>È¨ÃØc@v{Õ¾têЄ ´tÕ¢ð,BpíÌèbæœhb @ L" ¯ T H{ ‘%5êÈî"a¬æã¯‰rš}WâœÄj†”Ñ|à;æðŽ]†VŒ™Ä¢‘ eQ©hÕí!L&íÏ “båE¼dùã’ZéäO‚ÌI‰‹*kÜ2êÙdMÅ'k*K“5·¬IÛÍHÖTÒÈšJœ¬©,QÖØÙ]$ËšŠCÖTÖ k‡¬ tYcùÛ„ž’3Ñvï r Ô@á‰ß< ïDáfp‚{ ç¾CúužþñšœÜ€Ý—~©é<ø¤÷n\µIå¦á2„r{¹ÒÇ_ú &F+è úEªl °³žK 38¯¾ÍÍ‹tþà÷ )þ¹«‹)bP|ÁE ¶¯¹_qõö×Rÿáðà¨Øõ·õÖñbKÞ¬ÿ°/ê?8+>8 ;x¬}ôE[½o37oxkcÔd -ø+*Èà‡ÁKàU®átD ¼º~*°}€Ž_< ˆbvŸ;Ò:«^ˆµk§æg/u5°Ô>?`Ñ·*µÊi»gòo:B`¿ ­9¼}1<žÓw@qy îI zz=‹äÂÅCt A꤃TqA‚Ýc†²þº]ªÇu¿ªÉŸ˜ß*К½@ÀR*,©DÀ’jÌV$§ïhw¦rIõ8útæÆ}HÎ0yú†]HD,?ÿ$zërD0ØlÎS˜ÃÂCÌá,•9" J‰ŽÙæPåfÝôµ9¶…’ =¬#7þ6Íú¶FÀ‹­°ÍŸ*7>Ù&Ç!ÇÙñ¥¹î}{ñþÿÝ£òcÌÐßV7@_†þY‡¹¦ ý­Å3ô3ˆt:d£åÊÇ3VV.²j Q¥,yõ[3³!XÎÄú-W^n>QNýVÂ’wçÔoy3Ï“¨F@+XÆXDo×ÊŠ\R²nµ›Õä寽 ³øòc%E{ÒP,õš2Ý|2‹f–—K,}'*±oÃS<90Õu>Et$úeæØøÌäéM*ÆN]ËžLÊ×ÎÀ1¤r@­šIˆ~Y3ÛXT0ʰÈ;:KÕ·t­åóy’ã÷ÀT«a7~UP«? ?4‘Qìh ‚î?@½cQ'Ù-Ôšô%f,{Ž,êŠ,•&ĘøiÖ ‰\>hJ]«Î&ë~ËƒŠ˜ÞÄ"zö,òpÑ©jè±™ƒÐŠ·ßF°suqÐ}ž  É#%Äøéa¼çJ?”:ýüÑæ§Ÿ³u™˜}Ñôó"a|wÂub®YaRzŠ¥“ˤôõl¦þ*Ø}­d¥ö÷öõžÁËËM/Pv4NþV›—ϾõÂóÙ»’³„ö§‘g§3Óü)ÏfŸÁ|ö¯(=Ø{¬7Ã)KzŸÁ´÷j›8¯ ™`?%·þ+-¹þ«gL¨ïÊ×NÏôüWO¦|áµs n;Uô™âIïé¿´Iõükvª­g£~å_þ¨|9pt¡éF!B@ôš‹òp,†€!emÙ(*_ |8¡òAèËüi'ûIÌ“ úl3ŽÇ!Ôï ž†…S£8¶kÏÈdqA¤]§<ßWäyPp ôýûÏDu•§×ÓòÙéÎö]‚:EнÿÀAÓ­« vÕýjW[×»Ú›­x¬EñJ™ YŠ×ºsà‡¡+ÛX­­Õ“ýñÀ³ˆCíø·j.1çžsÖ]ÉÓ¤Ó?T×Y蔇1#?Š‘L4 h'H‰C׎’±WÏ£ÄД™¥þXtŒ‡¾˜5X?p‘Ÿ>n"™$‰ò²9gPBç¼2Te1·]ÅÛß«{tra/žÍÓÆ’ì$q¢®®˜ 50ë|ÞI÷t¨.ÁwNHpãè¡‹ñpôôõ[¤gçÄ¥š4ZÐ}´eˆàíA/ï ðŽÑDÓoc¢1“VìúNæ×DŠR‡âûe4ý&¼äÙ;:[óè•Y]f Iš}{Ê?.¼):leǦˆKßV¦j¾ÉÛ¢ˆ&_Àa–ò‘p…›fÊ’ËÚ4×]jÀ½iÊÕ`š ô j\7™_’ºðæiÿ—±ð\Žéõ–¼%ÞÄ©(ĬGP1d= ØÐH¯›¦$֯Ÿt=E´t9<›Lc¡w9ž‚#V­ª/&•3ÃÿÒR)efùeI¥ug”ŸQ*iº>¥ŒQX&lä{ÏÒqÏ©€Ð‰ t|<‹o^—Iti"4¡PÉ&‹P—‘8(®Z„r.âjàêä¥C‹«üròrYÒð`½Òð`s¥! Ã¥ÈÀ%H0ŸÉd©ÌW<„l¾ÛwI°ƒ5J°gPú¶BÌ'Ä×+Ä·B,•[’a4^ˆùìÎdó…Ø¡Kˆ­EˆužE ë¼T ¶òCéÑz%ØÑFK0÷Qô9’'ë` U©6Y‚¹.BÌÂVZ¿Ë–`Ï †m…˜Oˆ¯Wˆo…X!®ãB!|¹ ¡ëB!\ö…ûU¹×…²Pþ{]–tGžÛY™r‘äC f´ˆQ~ˆ|$Í¢€ —½ÃĺûôPÂÜÄ!¦D$ÌŠ @”â`ôŠÎ‘{éÃE¨7ê€1§GæËO-A7öˆeÚ´KdDŽ»®}Çóç¥ÊÆ’±¼]}±xMÇåÅÂôŠw"ˆý&¢“' nˆ=À+Ça®e»z7âò2qÚ³fÝ ûƒu”ë󠞪bŸ¯­»hßþJŠö! Õí‹°!¥û\ö±è%J÷á8\Õû”äsV ?9—Ž2~UÖƒ\5þµ„;pP€çXfÝù8°ËaÄýJfyö’«”õͲº ÿ‘Ð:ðû‹ õÓ•×3"í24ÎÖNªË^T-= ãó{f‡‰—½G¾'’µ¿“%ÖZ=ŠUì|åÈ0 2!)²#² eýéÄä+OVò;ØîùQ_©Fæ7î)Õˆ®ñ)K5¥Ï\à(yf‰V³Ø™5®17»C»²™«K£¦™¿Ó´…Ìf©bf–0³«—ùêŠ%,)£–—Y²,%T-¥Z™Y¨ÌèÐ] Ì_›l¶á˜UÉ|ÉÃQ ’ÙµÈ,N1@él•Z@°z…¾äO‹‰cf…eß·­E–°í»º†5Ä‹Æ-Kk±%¬Ìʳ®ÌŽcev×{+3*zš…KSB5ÑRj–Æ­ÌŽgevR¬ÌTÃ1k“&®Ì#uev¬²¤³¬Ì£˜•I`K‡of¬ï·ÿLõý–ѯYßOVó[¤‚ß¾J¸´übê¿ÖRÿ-8 óo× ¶õßÖñb cÔ+ÐE޹[jøo©îëmüûe•LsäsÁÈ¡ñññÇ]%Ãè“J&øÓWf‹Q[}?·›­ÓM/J½ *Æd4øÎË“ÖÏÁwHÀ>æÙdcfùòyŸ£ÇLi7{C^Q1q^ÏÞdée§˜B;{š–`e´Fv'“§™][Öñ¹íGCfæÃŠ>Ð.bãÞiÖÅ$ý£Gè2B‹°æ·å×€Ü ëU'HyŒm¡¿°œld@gÌŒCxN&˜¦'á[ȇ;”ÙõdJ=ÀR¤n‹ÂEÐÀÒ8‰ò‰GõÃ(æý;Nûï(!ƒ7’põê¡Þž „äJåŽd`ç…´®<|>‡ïåÝÝ,þq³»W€3ð óå9ÔÒ½Šph…å9)Ùz6ikMެw–E^(£?Ð6mC¤ ê·~ï»Ì1Wçõâ@×£$„¬“ m)í)_)¹Íéú"IضGS:mC0«H!Ç ù“$V1…Ÿ°_+yÒ×™CÏ!djg¨åL*GóWlB+™õ.GÚ×—qДÔwZæ»¶¤Bø×W­Ô”IÊÜÃìa\½ÄĬ z fÒƒÔøTƒ·²& øûò Á¿gøVÆOs²>æ9Ø¥8q aG˜‹ï"2q;ˆY®žcJ<–X¯Âþ¡Â¯uZ‚ìh2c^½yÓÝM=.^óâªæ%ž™ Ï•žîêmpPz;È"û+Ä¿ü½b1L4n¶¡A íÊê7eí£pe«åiÊ–§­RÇhiÀš1·ß¹û–Ÿ³B,“Š$}¨C,79*>­OMW&»Äôrç=HíL·a/Ê›YÕÙ½]”À+JÜåH¶ƒʨØ=[6Däöb-/‚á'#oe”h±«P¦Kvi›ê³¨LDEš˜ä ì®?'ü8µC ;–›É¾ÕuÃ.»`s›DÑ{?=Þ§1°÷]°Ñ…–î0ìÉbŸ{¾âîcýH¢º-¹~&2¶,Ï$ ¦Â]Œ=:#2"Šmg±O’(Ì´H’˜‹œð['Ä‚§5ðËr| „ÍTz±`Ãô`OÓ-§Ç¶<¶åôØ–“±•8ò@/–ãÃfußÃÒ#(éa‚:wÝy«­î, I\Ö]»w$Ìâ Š»ù‹€ó{™(Ä~9ïË}ø²+lùwÅ0[“IØÆ¢ªdÏ8ô šÏøŒöÃG~.ûUVf¬ìš±ò3V6gì(ÝŒ/@-L^[÷Þƒzq×LÐö‹GÛ§_7'³Ì©2 §®Y8M3 Lý‰¿¡åI*ÊGQùþg¼/¦¦À¿Žd00ô”@õ5£ÔÄqë‚ß'Ì\ôB¿œcï§ü©RÃpø˜Oèi{ =½'䦮{\ì*ˆÑœé÷ýö N}0ë Œ ƒ€Þàö tPLµÃVÌy\R½0\×~Í–Rªæ¾(3nPf°æ©[ž²³žvã¸Ý¹f{BMøÈy|Ø,ÑY˜VãÕ=dÖ,ƒëx0ñ4Ó3UîÈ¥v›ŽÒ~1GTöv¢9±òf4Ú­p”Éèƒyij2€4‹£‡O„õš±œ8(²÷ìM¼ÁE¼2ô¸µ!îfËfña$KŠÞÃ9-ÕZá<*XäG?ÚA*VçÙVŒ—º„Öv¦çOû÷÷®ÔnÁ¡é Ç%cÃa^AÁu½Y<˜çzsûJxÅÝÿ®çþ7íûßâÁöþw/¶¢ÌûßÃíýï÷¿‡ÑýoåæÔ¼ÿ÷ð¢’U˜ì~Å›VQÚ‹R¢ `xí<^}ÐûSIø¾ž&hr¦ÐÕú¡p÷%梻äOPë÷E#vH–´úÏ'(èÝÙ/@mv§7ÊûH‰ ¯l³°ñðT&ýÝgZí]òÕˆþÒë É&V#›W-%ÕZ«òvWÞé~Úɶƒì§½vˆ£¡âsŽ=HciyµÍ.´Yå=qKÜÌ%|H€,/ñç )xË‹Ä{Ý;r?=Pß÷¼Ž ãÂø(¶@üö~øïz?¼Ê’fW¿Í}Î#âðwâüQ¸¶ÎÒï²¾K=ÏE±ç ˜.ü®vvë°·¯scîrÅn µÛ•ª’¹6‘Gn0H £™}žU!¸‰ß~Ò¯CÛAÊ›Ôvh44¯d9*¢(€5¹nU…ï»M]Æ-ª¨xö¾Õ.J©³Z©UiçøÎ<Ûõ'ïË{¿©^ɱoŒ;;ߟMØgXAÊ»î¶ói@êo ³ÜäÕUFë!ùJÏeÕÓ®ù¯âbnËì[>_àV€AlºÕ E‹PoÁŒÚ )æà™º··OOºåQM쓜`Ñåèèi0})R•®9~ÈV™ŸB<ìAŠGŽ»„^«F;ñ³ÌÛtZ?póÞ'­$ ù̵/-$tž™a-º—V¡Rn¨nc»¬ÿºïˆ¤–ó²ÒIá¹ 8Ÿø'%Tü D´Õz?Ô–åÌzfì fÆÚJOÀ¾0x/Qí°ÊCk… +vÀÌØXg™µ}l ‚ ‹låFN›PtvJð*ç8F„ÆäÊbPbE¿ r¸Ë©%¡':]Åf™Ö¢ ÿ¨çc(²" y‡°_ƒÇ=Ô x•ßFO왡ŠÊ÷x—SaµÎtP2 ?÷#~¬ ¾'Ï‘½ ùWÔ^êb†(‘?v"¯ZÌy½<‹³‘­CµÈJÔ•pÁÍÒ®¼ùÁÉO Ù)o4¦RϦýéO`(SXàÎ ¸7ŠH¨q¶.e‰‡ÞòòåúþÂÆ"]èˆ_©êœ=z˜ýÒÃ2õèªJ°Øº‹“)דÎÒdÊDÌ'¯ùÍ ‘¬Û!ZâÌÛ.µeÝÖ+Öî{¸µû®ðgÿ=Z‹ýw? ÷ñ?…­ýw/¶²LûïÑßÀþ[÷—¥N ¦†WŒè8R]§=fdöHÔm¢-ùH‰%‚ÛhÝ–Lê?0eÙŽgÝc8‘’´‡Rôµ rf?°’±hxævã ³…ÒnéŒäÈ]ŸÂ@¶Êñ•l žÅ)@í2“'ËÉÄLò÷÷½qŠS¥c6lFz L¨‚ÁRÛ°¥»r?©M£—˜&PN±ï£6LCPÃÉî‹Kê~8š& ànÏñ"™º^¾pÊYȧÏn¼m:qfq}õw±nR:ÛµE%ÖZZ´Ii0½Ñ¬Ã¨e¼ožñ`Þ 3Ys{5¡H‰®ûLRöyÛ7!¼oU>5SCÇRC("„8ë|"q™ÄµP¡ ¦¢„®r<´Y b·íö*-Ûíö*%¬ö›s{°!—kˆ ÃÔkq]°ÜloÉAþä°pp¶w¼¬›€Ðº €Ì†¯Ðij„ S8аÓZó“áud²š)ÆK‹èb©.x‹8¯Î)öÓA%«Ãÿž!ª«vy^=ÕìÞ: æ©f0×,œ‚¹6V]‰âÃøD˜å·-yñЪ42‰· ô!(Š5× ø1ú)‚Ú3ƒ¡Òu]MÓøº©ô~Ýj¶ïVN£¡ƒ3œz!Ò¬¤½ZIºYI¸zù’ã)Ü^~|»™angà™“÷5â#nB1´a»Œr±ÓnV:§9]W[$\ŽEÊaÁ¹æ8 ž7"Nç0›Íì…û°ßB®Ò>êT¿üñ­ûM½vIàáežŠ“j˜µQ¹ûb_‡î¯­Z¦5HAû.t|WÔ¾s\«™ ø—¡ëK —¸Ø@øÝŠ äI6²&Á{µ—§Ç#ÌÕÀÕNkTÅŒÆS™cuÐû³;ú:î>~mdð—[z$›€ªþå'œÎñ8%ý{ÜÌ`d9ÞZ”¿ö‡à-d.W0÷¼òΔšq5UYfzskÒIù`ÆðT—‡vªKu²µ{=$3ªä 7¡#>)Êë‰â‹r‹ rÜcè†nÔ–%UÜ‹“C ¿ŽËnÊ¡Î9!aÜ„„ê„„3Mˆ—_mþŒ)?.ÔöªžàÖ}£H”›íÜlCÒÙÒNŽƒÑ¨ j Gâ/«_ˆ«°¦Féù²ê¢"63n-nT ‹†\ÝDsV†(Æ1DQeˆâ¼ Ñ¢»·%½lC­µ¯G¦Â6É-­¸C8¨-oϯÙ2Â- °¨bæßΪ¦†.葦 5 µK’­ÊNYZ uå68¦ ;fLDJ×]lÌ|…`LÌx‚pµ“Ô ùË´oI÷Ò½eÓÝ|ø8Ç`ç³r“e:?ÛjϨÓe‘ï°/%%Lê‰rÓq‰ÜYc¸c†és'HW1ù“ŸÝYF:z1QtçÈÔ™‡ŽušœrT“§_§ÉÁŽà\Doù’¸·t-'-{¼n^qõ¡ý¤Lèñƒ3~MLŽÁù1MÅØôiá]ÄÔq7Žª Ú¸vªH§·ìòw@ˆö p!ù'N¢Íœ0©`º)²­TrÊ+yâåÕÒ*ÛJ'¶|b(Izm’ì’CФWDòÅå—ÑÃÌð]H²•nBIBÀ’d€eÈ2G?vIuI4ðßD¦—©Ó‰ÀŠD›Ïü¨îcùZ%ÏT¿0Ë•?© åéµJ;ze;ºƒ¤ðb‰Î^„5=">O¢ê[R,©n³ÖII9&Þc’×ÏÌᇂŎɤ\¼=ìý9ç’Aw2Õ­yúDønB mà]‰1±"wè# +Ê^ÐI…–êÀEþ¼Î=,j 9tâþSòe¸É€?”1@×Eù1P<}-kzËš¯¥«+·3ÜÐ1\î›f9wˆ!×yŠÔƒÆê°ÃôÃŽÚÖ|mý~q ˜ÊºÛÉ.d\z²0”¢Öxx«B¦‘¶Ñ…"OƒŽ@Œ M£’O„:SÙ̬_¦…Æß`×9*½o ómµJîÏÍ|s²Œe•3Þ®ï`>îù<Ü·U4Ix°î[²šZøÙ‰À"À¢…Œz™%ÏûÑ6ßÏ_qùŽ×’ÿ§¸xX´òÿ·ùÖñb+ÍÌÿs¼Íÿ³!ùŽ•ü?•úŒùX2ùÛÁ–‡4v2 >ÔýžLF·ý.è),7PŸ>4îw‡S2yú2¡¢÷“MüY&Iix²Á Ë&HPw㙂ÜYq<éƒ*u«»mú mú a)éƒ*õmú ‰N‰ NôüÅé—•…‡=¼¬Ef•5KÑ«U¥)òUPˆƒæ¯°„ÌDVN¢*ž¯µÌDô¿³ê…Ÿz~"yˆbÑ$.íŽ(ž†ÏºR©©‹üpÖ”Ó¨Ú¨·e¢Ÿ*6ÒÛÌRyAÉ3äXªlBFq†Ofõz?øOVÖ vÚìCVÃô½Â£Ñz›¾Hˆy‹ŒLEQB"½â„Ÿ;“<‹ì»Ò`ø.é—:žôKi a¹™i)Ù—â™ Åäø…kŒK“7†OÌŸIO˜âóu2cé41Sí¨cA‘¤ì9G ÙsŒ~Òfé±sáÄ¥éqø!–‡ædãÒÐÄ¥"ËHC§|²`E?ƒâߎ/êð\/µí².™ÕB‘=½$ç³®#½ÿ§FÄ'‡I™2ÌÞL…`úäª"Ÿf<­ðð%Ü¿:n)Qa¹HJN¦ ÏgõypˆISÆcôž[Jù‘ÿäš>y!âÊðgTZ“å eòã.¶D¤ÒI©·”Sm8&É7Ä "EÀ¯V/.í¬„!p]gµ}ÆtIFÒ}©¬ÊL‚äç`=—ˆ§?;ã‘«G=ב¿Ë´IBfÉ¢¥62³ùvø½‰Ô°|=‹Q,­™¸ÈÌõ¡‚wå*ò§öH‡²ž›È—ÆCËI¤§#²³vXîŠxv2WšL±i:RåèðêÅéeKຫ-çÆŠÆtþem-ט•=úζâ×¶¹bcW÷3®m@ÓÎú³ÈúŽ ¦†gà¡$öñ¯shàÎ峨Z×ájcÑ7V|æo¶æõ#;ÈÌK¿3—aÇõk,38Ø€gÑ{ÔüG  I,ᣂPÒâ,€H-øÙGËáXOFŽØt©rqx%ËÜ¥fYv²ožšdÖD€±JmZY— Seº¯JK9³RµtHq†MØk_6Ë&„ ;’rˆÖWw`»þôϤ¼1^C…4P°+öÔŽOÑ û“«<åëijZ®/u{HÅe‰.l>E¢UÄs†—>#ÂÏäEØFpy`. ýÜë]YÐ (Ê£7fi—Ì“§!v–‘ç½¶•›C¬%Ÿñ–’E#‚øÉ€øiVˆöp18}:‚ÞÇÞ&Ã#£voƒ7éé¨4 ­fNB)-ŠoRR¢Î[ÄŒÝ'ýÿö—2Çä<ÎG AÁPšÜ~7êa(ô·þð«6úê”<ÐÈÓ’AÒíAKo`¢¬h;v}×Ds4îCXÄ€dž†÷]H0Ô»Ûóê³RšSôîà&꓎¾”w"P[“¿ˆÿòlƒ+»'dާ<÷xÊsçj¶ñ\¹Æ£;ºCl6æ'èÝO÷¾A§“þœá[µ©&95« Y渥d’â,”ºš›RWyÖÞ"U裑K‘“ª3©:›AªÎܤêäYû9H…Q8ÐíÑø4$+ÌÖ³Ù‹²&o®¶N‘,£.š3yéO´aŽžx‰ˆ;ÝšŠœ ¾Cà·HÚ<6Ra0k#Ÿ·OcH“AÕƒAÿ¡ è&¼¦R:u¿úôüCÕÁûÁè‡6HVÁbÌîݯ_Yl$oƒ€Xgp}Bà»<]Îø^‡£  G¾ûbÕsp¢¬ÄuæXQON‰Õ’¢Ü?œ‚·Õ‡³*D«~h^^ûÉYª_‚¯êU­Aÿ©¿£Í®á›—ELÕ†‹ $¼´Ø_ ú½p¦5JŒù•š“ruÍ"$kg„¤X§·iw¨¥†9"jˆp÷ž*Pýaÿáé! %¦Ó©>Tyœô£!ý=+¿+w'½Enzlù“S`…¼êð¢%¥lR8SÚU-µÈÑ™PiÒð*NÜM<$Õ@D¨T>E”õ³?ؼ‘¦çkÚ'*àåÎŽQ6[· žÔÑ™$˜9Ãì¹øO]üwŠ2PØ „ý€‰+¯Èáaytc‘yu}àÎ^OÕ^÷X·°Xx{E%$jhuë¨Lε›¼å”´qvHD1HJqã®Pzzä„g^Õ³„¶ðøïo2í}Ï1¬ð¹ = 5]®‚˜^O\,×»pd£ûx–¯2×|õ8ŽžzÔ^1¸ð@&0.ó¯ ÞÏk¾Z™ãi= r+Îå4ꆊ"Ø<=•²¢~. f×5ÛäêÙ¨·Ø~]]«`# RŽÈ8 Æm…!ÍeÀÜHEB/xò1nˆ– =šïPvªº‚Ÿ=ËZ&â=N˜8׋"GÅõhØ’àaÁ°&àAX¯eɸ~7q€ç÷¤RfùÀx¦,S»F?µÆ$;¸rÓpl“¯þ½^q÷?áz‚}ÿnïÖñb‹Ý¼ÿ 3¤Vy×v^ÿàíý§Tk¼‡¯+íRB¨ÜK¾rä#ÒøO¶êÕ\ -zëãÈP–þ ')c_ù' æ“7¨dØæº b|D˜i¼;ÔàÃé Ãà€ÄoŠúÿÕj4ŒÇñˆžXòQòÙ/]8#¿@s–­V-“Kú׉öú‹|Ìž%:À>ìѤ ïeöñ/µ-'>¦¹|èþI€ic_ÞŽûð»… €2ä/†Â_9òëý/±,X* L°ªTž÷½1åvxî56{K~€ žéïM¿©Š_ðéÀês¤÷Ÿ§>ý-o9$Ãë.ƒø B(îiˆ씓§ó{öÿÿ—}úáÑwtÊÀ€«ÍeRB™“þ¿›ÃEû…°«»‰L´Éy©;˜ŒÄ?X~]qöÆJ÷ö›Æk}¼ïš<=—Þñ«*Ñ”~ ¿u§ü–çO0Rߺ_&£è©8æßÂèS¨hak–R‹*ìF­Ð`ÔìNè>ˆ>TT‡ÒÕ¥Ho;fwBîz“Ûqÿ ÝDº_¨b™c™)é&6Q”1 >ˆÝœ~=yJ®_ï‹ô°Ô³âEõKzT»s£:óæ/0]¨>b9o5 Ê1HUGªN©`¨ö2rЧ‡Ÿ ’ÅÝ%ßr…&ù&ܶ[@P áÝ]òGf½¶|Ñ÷”§ï)>§:`9-QÙÝn–ê•Ùu™#:•S?]Ke¼+ÕÞ±wf‘¥‹?–ÙÇ ¾ùY©7/*Mú\³ÉÒ÷”4xÇ„T¿ÁKç‹F&ºïrO/+ïÞñ“c•¢Æ?ƒ<¢o^úµkg ×­¥r+'ò-SÆûp®æ]vÀ—W®))Dá©À0Ý7 Bó ¹A{5ý;íÃ7h~Å¿b ÿn< $å}±+²’k–ÛdöãääÛcÆù2"€5û§dïô7Ënx^0/kpÙSh;§;Ñ—L&À·Uñ­~#[Õ­.e+ý¬ÎrÌØºLåDÑyg,¤“çÚ˜SS­œ Bù| *ΛëKyW!ŒƒÑ͵r Á„¤`³÷šÁ{†›Äå¢ûI~-¦8 ðhFt ~‚ü78H‘>î Üè³'Ì=»Ìàóšd„FXföà÷¬TÀ[WFLLÂBc–6|H¹RC±Iff5óWÜ9Ù²åÁv‡Ÿ+³þ0\irê¢ïƒÖ~ä…õ}1ˆ¹ªÄ-E®3ާ²éׇ’Ø.Ë>jO‚°ðSô»•®ÐÕ»:ð,ß9µ³;TÇh£Ìv;:eýWs4^©¡fDF|¡“«l>U¶ž2I"oI;&gäê7—¬>3ã8HÍèÖ¸N&œ%‹ŠûNgùPG×{RI˜­oÍOÃÓµšà]ÞM¢þ£º\{ÞûRˆcc†ÄÖ]ϮƻaBªÖ­Ž‘Œfú™¾íñûf—ì@=Íʽ>\—Ó¢KB†Zç|Jƒ‚àBXøJ±K,Y®S"¸=”ðhQ#»“nô$óÆaˆ•ÅÄ*¶¶À”ŽØý¢¤”l£HqEn¯¨—øŠ»ÿÝ_ÏýoppxdÝÿîmï×ñb+ɼÿÝϸn~[ðÞŠ²úF€þ³f!ø"oîw[¢\öj‚g ðkeBñ×»¢‚”¨…þùÛÏu ¼Ū–Ä´ñ€ ˜me;;Ì‚]ÆÏí,A/Ö¬ˆ Ü™;.P G±de˜×,¢W•{Ø=Eg÷/¼¾Â'àú9;̦ º[bÚ£ò¦†¡ý75±Ã{Þû›ÖlÃk¥ˆ³#-9¢ÖÜ#jÍ=¢öl#j§Q[ލ=÷ˆÚÏ;8O¿¾Ž€ Œ‰ctx±‘Ë&Äˈû+jqsîñf9`âÄ< {=ï%ÅàñGþV÷XÎ+…ÔQt®‹œ« 4•¼ô+¡m$Þ¬‘xü¦\Z@fJ¹rdÀ1rŠ= ‰!e1MÔH)°Ö£Ð0Ö¶ä¼ÛAaV5 žAÅ%¦N7n]"HŽ«û°@ÝCî›…‚™!¼¡˜ø†œB7Sðœ8{{ã]¤Éz;Š‹—«+árx"ttfÊD áÊCž“,"ÂžÇ ™Áß@T{ Z&2ÂLD†Œ¢"n‹‘U‘ްÖ\êvÊá Tƒå|‘rŽõ ]…²Õä“sÉ••h5­¤ÝŽ*=øï<ñqYé*¶W«câ+«rXÖ ¦z!“>²j3ÍÖ^ûïàa:Yý·°šö߃âáÖþ»ŽcIÍþ[»h·ÐþKWD·¯Ò»È\~ÇEðýþ}â4Þ^(Sr¾à0 xC0׊Sá[µ 8Áª “Äc!>ŸŸÓà×eý CGú0ºë Œ8›%Ø,EÛ{:?&¦S9U¯ÐŒ›xÿç/übVàŠŸ|dECá… ·±¸€oC…;³ÙôÂ2eÔ÷¾üÜ»0ͤ¥wpZÛ€¾¨U*¸¶ìóí0ø)s‘«ïÎkQm¸GÞ0G^ž}ä ø¢æWeä(äò¼ü,ýÈ3Lq‹:¿²ê9i¬"‘±Šã@W²èi6Rd"5ñFà(ŒC±Í.t$1ºˆÂcƒn„Î2FW3õÓˆïçÊßÏ̦2”Ç‚)„ƒy½lü;Ç\êr\[¢-Ò팞h€„‚~N{àLVÅØWþW¬u¬9¯áðS¶¬y?:'\q¨ZÎ;öõ;ùŸàw¾+){ÁÙ»ˆF>[¥20~hJ4o*£ág+£ 0 žÇΰÂ6º-+Úà»¶kš*à*õ<'sò$'Žq‰õ¹yMÑ5dÿA‰êà2¦_îît7µ3g©¯øÝkWú=+Õ5Ê¢'ìN}9šH.àÖ?Á 7„}GA9h¸,‹nð ^IÉ>ø3¾¸˜HcƒÔ†wc}Ž@)d7•?G¦ÒOÍw<ú]Üb³l2ôî3¦Ävt‡hôÔtÌÃË0`•ß ›ê§lSº¨~ʶ³Ÿ·6ÕM³©¦0V1ȺãÙYoÚí$þNvásƒŒ ãÞôi<Ôs¶|ù)9 *rŠ£Î|ÿ4¦PÇäŽõÂqþDèqÁ¨adÓÿ$ŒZ¢‡™,ÍôPÆàœ©„C~ÒÜ—ÝFh$é©C¨i¯ “ñl2åüòúù}D³ã{«Ò¦ïWuú{ ÀÍOK¸4XÜÙð'nŒ{·}wéoÜV|8z©Ö{ðOX›A>6 ËÚ®5Þq ­ç¾ÛP]”•» “JÈj®nØyçµØ¤¸8G?#k]:¬Ù¢¼mºz3™½Š›´ÚèGo M÷F}:¬­Ò|DŸ´Ï\SÞ/:„Â;94‚¸ÊJ;‡ÛÐ4õÏñÃmàæp?ë7@Òñ¿aÌÙOçí|äKõ³<<×ΛE¡½L¾WWfús¾xHRE¨=±ÀµÉÀÊl:4‡'ÂFƒ'âFzœ€NCàTßk¼ŠØ"§ÐAÍX2SóS†Ïª`¦Ú¬üPƒ™PÞ5WÉEN*ì­·F®Ù´ð"”h£uÞNì¼avÞNͱ^¼êlZƒUÀp¨|ç™%?¸yMQ$å,~wã)š1öQ– â©|—O=ñ—L¬Â5zwˆÁ©׎ñ ®ëGà@F7±U±kC?(‘iô'-Š©zæ=¸ˆ®Džˆodyž˜B‘œ.Y'¯¹ß>+»Î†Ï²à¨Et|kG}»™Æ<]ýx9Û4rÊM’Í8åTŒ&0NCeœò¢Œc%@ô0Ž8=§RŽ¢3¤GêÃñAZàJ†Ï­c˜iä‚qö¯“,‰›Ó÷bNUñE>kî9‹&LMÒ¥Òl ©41•¶m×¢JG[Ñö³wë½øik[HRS¶!ň‡²û±”m”mÝ.pÉö7u¡xÑ/¯ÿÇø?ëóÿØmÿmý§µ¼Ø‚Õü?šŸÀÿãB([ÿ­ÿÇ‹öÿ~Žü?šŸ<þÍO>ÿ ÍŠ%ü?Ú·Üÿ£I5!áÿñ9ÛΊ{ö8ÿ™]4,ÿeøg8€ZÎ3{ª¸œ>bœUfvþð¸;ÔWíüáâ•t—åÈ~ü²œþ½bçnÝ:¬Øùã Lê§ó:Ôcœ?N~Þçôül9¤¸ ߺ€l]@–ïr‘CÔ¢. fdçz=?JÙO;‹y~|bæ…%z~Ô·ž[Ï­çÇÌž¸‰n=?–èùq¡e^KåùÑÐŒÍâù¡w6«ç‡Þïª=?(«©¶äù÷<>XwºB\¨®˜YL&…‹s…€¹ÛSïÅ?Á]î…r¿["»ŽžÒ¹\ _ üÃ=S´ðNñ¯iŽ„Ñ Æb.÷ Àé‚y\¤ÃÉåJãw…PüjØ•ì†ùÕØî#1¾#uéÍ]û{œC4ç"ŤÁ‰°\ íbÐé³rܮҙ*0X {Êwnñóª{ îÕuiÔ´Ö]œëˆ`ã@uüjjߥÁÓ¼Mö†i8Hï¼8t¸’Ô](.Ðó½Ú­¾û:òBÏG頄ظÄâLí’pI¾Ø¿ˆ¹þ}ùþ â|µˆ7OCú\y&O陑Æ-Ääg§õd_Á1{©ýAô3çœþ |ù¬Ãäâ™üAìE¿$à Éá"Ü>ãÜ:‚lA’Aà¶mëòb^^ÿÉ÷5ù„AXtø·þëx±uªù´:.ÿ+ÿoêêo¸¯|âÅY!q.êé?UvðñÚ8œ_Ü_äì'GTHn~—ÉÕtq^YcæóÕŠñO±G>“û ú›|âЭ¤™À[ÖN÷&Ií@ "r iuÎÜ$ôæ3b:!·Ïˆ~S¨ïdé© ,¤Ï$Ò¡Ú2û&Ì6·Þ$«ô&±S‰¬Ç›„3ŽëÂ߲ϩàÂ}sá¾,× D -îQCÅ)ƒªˆô\´ŠÄÆjY‘ïÃʨ¿/€È’¯R_Þÿ”‚ó¤céàw±•,æj %㢻›«<’ø_ü;³áßqàßü-ÏÎ*½EøwòȦÿ,[ØÓþZ€¿×_‹¶YþŸòHâ/ýGP ³ù1°!€º@æj©â­–†Ð<*ÅêÖ=vûÌE®R£°ßÿ÷ÿÝõ»Xpg'ÚÎ|ü,ÄJu·Pküt …îîÇ£µ=;ÂFõ–¸RLAYíú*—.tóÏùœÒ ŸˇÌg½)g½¹„Yoæ=ëU‡ó‹Ð ݳ¶ =š4tøöD.žæ…ÁYÀÙç µ³íêÃÂ=¦¦ô÷±½}¸¹‡Z¤ÓøêðøqûûPŒ®ü™^ÜÞ>´ûŽéícµ9˜Å¯ˆ·9„6ñeÿž/äþnÄïz·ã^D ïzãYê6¾Þ‚]«Z‡½aùþ¤—ßz#=[õJ×ù•]æÈ‡«Ì)Öå>Ô®\4„Nõ¯çLt¥’g>ExLuú½W!¶(ß"c¿V®W¶>DÏìCDY n?àŠj;î|’ø7Øòt$™wÉ Í ™u«¡jùs©¦ñœ8»$aî*oñ>œ1>¾ªáíÞ?#ž¾$A| ÏPió‘¼’R†½šøþÞ”€U« ^÷j¯>0 îBT¶«uæ[I{”Õ<èÐ ” ÖÍ$ÅaŸá )Ôô‘b š¦`K«î}4p-ŠSEwßñÞQ–Þ¼Õ5“t Æç ýž¹äõ@¼À·.î2Ã/#ý¦»[¿ÉT½ÓžÁR;Àü²éPàˆ™èõxaxj6ù4—³¸§–‡vŒTëè*Ö_C=&Ïì s¡ô2Ÿ;Lä¸äs‡3ùÌî0«ÎÂ1þØVG~"«v…™‰ÜPzYŽgŒMä¹û,ÆÉ–K×§D"Z©W—ìÅGäƒy»¾õnÿ “ј¿ê>“¥›ø#žQ¹"Ø1‚4:îìÞ¸jFTóõJþƒ%`é ,ÀÑåëè™îgØÞà¢_¥Ë=ŒÀRþ” {]àÂCÿéLúð"4á´">ã·h wÉëäóƒKö­ßØÚ_>ÿ¯o_¦a°žü?ûû‡û¦ÿWq[ÿ}=/¶ÞTÿ¯÷åvÐÃX£v‰âû#• [ÑYê,G")Éqë{l¾/5K§šUhâ7R Bq¿.J—et–Ô?¢ÚlÅðÅ çòÅÒÜ¢¢Æб^PÈD\Ò~’[Ø'¤ ×,TgMúS宎Nʃ¤3öÒ"WYöýo½qbðУº \Κº e9¸È¡=PÐÝ!ùBg¶w—ƒRÑèùįÉs8ã-xV\“LÿžÎÅÛÂ.ÉäçÃCŒÐˆ¾›Oâ’°õØ»íß÷oa|otìÕ›¹¿(b{|,ô(F•þ"Cò4x¤;`–¢ãj²¶x8 y£d¿.à=&=k{ª=Uïñ¹·hœ—˃^tƒÞ!?úƒùBŸ˜ôîà+ ´ÌL€bÓÁÏ]2€@¸¶ަÐzÜ»§³8¼íÝåxÔ8ˆùð0ãÅcç² XÃ5?µÅêÏÇ1(gwà?ÙUAÜQðRHdúù^>‡Kžƒ’ÕwO·S ïû•EßFƒ;åQmSMrä¼ÿB´¿ºÈ Ló;*^åY{k ÔÍy‰VǼYŽêÙl(üŠæóOª/à–Z3ÎváÖŽî¯0ÕÓ#îþ~כ܎û_`–¿P:ÍT(ºÛ=)KÒ› úTô1¡¼¦êNþê~õ©¤:ÿ=sëô·Ù ŸöÄj€ì£‡Çߦvy^=ÕœIèW×t¹püísÐiüA¨ ûÁúß)ýÓ?Hî«#“ûÐS +naç–ãB¿E‰s¬ryá”ù»¼Å°}ll.©y ö³fzßh²Ã¥ùìœRæ¿™×wG˜ˆ‡“i)†ÍѺÁôÞþÈ2!Õ–(ƒ’‘„»KAU}öc‰y”)°pn„Õ‚*Rh2ÖͲÈÔ^þ]©Öªä£é´™˜í K6l7¯œíj²^o>ÉS‰?¥»BU'ý:Beåwåº6µF=R©²ˆ†ð‰üålDÚ=¦±IÓÇøu»7~7¤÷en·?•f\Ä>$ó² ‡¨°=þ ¿x«”uלz`“V¶‚VƒL¨:ÝýÊÌÝit¹Ö÷Bd¿_ŠSvÉk¤ÿasä°Äs·ž¦âûC‡‰Aꯂ= M7»ó>?€ÜüAµÈ—èMqª÷±üg$!ÇXúf‚(u>œÎÕ¿XJ¡¿c‰‰tÒÐX°{§'‘Úá>ïPzÜÃ4-tEïY}¤¥=Náž:û1„)ŠÜÎ2‡ÌE@ç*~çÖhf”U±w†H 1-ȱ?fMch¸Üq”M,=ÕÇV¾ò RÙî_G*ú…ŒŠQ¨£„"=VB ‰œW3áO±ä>Ú lçb$zºæ„íy–ðPœö 9-ýn®¹CA¼ã {Jñ­Q¼Á9ZV.,ÖE­…È!Ì>5¯™.RÏF=ùû´ºµ F0 ¿Ö¬óËLL•†{„ë¡%{ј¸Gª ¼(–×ÂÒÛGØïÅ»êÛãà˜ºîlsìZ0l‰fVëÊRf„uþŠÑÃÿÛžÔºc.3Ȫfi ÉnõhŸrò¼þ 7“hýûeo&½÷½uÝÿ…‡AñÀ¾ÿ;ÚÞÿ­ãŸZ»ÿ«àý_µýïÈ y X¦[—ï01D»t¥»rÿ=®99í¢‹A¤ÉfÝÒÊØ÷„þiuäU˜å6˜l¾ËÄ…ïÙ¢v{ˆ—ö"L¿CÌŒ{ÝÁ®~Ë >Œ(ø¼¼M¬Þ³ù+n`°Ûq ¥tr¹©T³þ+Š@“·œºeÕc1µÍ¡?¾Ñ¡“ï,Q;À›Üo-´Hò[ç7\¬d›è­8ãc;Úà7Ê ¿!§^Ó§¾ÑYƒ»#vMÑ›N) ˆžæÐ-Bmüö]a’a)5&ßFOƒ;0¼öþóDIKá\¹®gs`èÖÈ]ØÎyW›úšVNl˜Üs‡öÜqôl@*ÆCBd:NdÞQæD䣄AZÆvn.bõžv”Ïçßg†{!]Î|M½ÏüÝW©x¦óÕ}‚ßÅ?YvÔëÞ~(ŒÑØÏßh}Ê9÷ý1•å¿‹«‹ )`@qÜ{èö‡Àhýè±h'óû«àÍ0÷» P¹g$ˆ5ùsöáéZ¦?ÙÍ/¶ñ¾Ž<öÆ@6ã2;xCIhÐ-ZýfÄÌæ2Ûi`†¯Ð©X±Ý#ùxN¯¢ŽÂ*Ïü3oTèË%ãæÁ8fÅl=)žÏ“¢²'ì¯É˜x¶î C÷„úsz$<¿?ÂFx#0-zI ‘R ¬ˆjSµþ)Õ'Ú–¿‚)c]4}<¯){œ!—m† xV™C)y;^ò†’¼==ïH<7pš›™xÔC ?}°‰Êá>à˜&„ËÃ$oo…ì)Ñ;¦˜S­ï–xhжõ¡è îwÂÚhÜ­_¶+Y›Jàƒ‡Ñ¨—¸÷R†`Ьí"1yú¢2#™9#*“'ŠŠã*~5*ÑM¥7²âVºpƒã%~:¸ÜÐ3ƒNÿÓft2ÝŽžÆ¹}ÓÖíÓµ,s_Ô´œÿ{}̦,û!Ürr,!ùV'ÏÚϱ è©5ý‚p¯H-ÄOzh%ù] H­TETó„‰JœÅüÇuvÒÒÛ«§g*53šÏÿ­¢é•L3{)…Ù­Ÿ’⧉N ? m†äzõø¦ О´e,Õ¦ä‚|9âZgV¿#l Ÿ /?Ñòý¢d£§—µs h^^ûçÄç!å%j§UêÄæZULÚ£8Ç©¥–R{_i²C-éQó]TPÍÏ4Ÿ¯êa-ÇÞ›´žÃãŠAòúWa*ˆîPnAÏ«­K•F Fãºp\6óüóy;_Lpaq¨&¯ŠHm a‘Ê}K›táÝ Vö¶÷WÅràˆODåIÝ y¹±•>/ŠÑoox{Ãi,bäèy5?I]õ¬Ð’uE£T5RºŒRBéž"•4)½ƒ$BFž(¥7ÛMNÎnO!"Ê|ÎB*ŽËñ"Òeh/p,ÎMõl!†ûÍ}¦?Gä}AYg¨ÐËPaÄPÜt½©Øb(c¶¼N‡ì>Ôfg‰t£?âÔ!5mw8è$ž ÔþL÷‘à´¡=¼ßÅùÎVìl)á ø{):žRúÃ~²õWšØ•ì„w‘íp/I#í§¿ËeX_¾P·ÙÌ€ÓZÎ5å'MF}ò9§TøÃrˆrj;œ 1ŽØÅ`P;ÒÕsÊ쫹|X2•-´îKu&§/ÎçÑôOc%„ÀæÇÃxi2/~˜ƒ"Ý.LÔ~>¤à¾WšÍSrŸ„)Ø0žÝ"¤R°Û…ÑÄ(…»¾oBÖ-zÈqm±’“H/Xz09„'%?ŸÁc¯ê°BèƒÙ¹:~órùs_^³£™êë5q¬1"#ò÷È'"/·d+—™Àqi›tÑ»I£MúŠmÑU[%¢jwheœQthbfc%r#×S8j›p,Š®ô Há5U'ZY>·£–å>nþ…ÊW©g“È1ã@¬‡q„S-'úo8N)‘18œ^x2 ÙyLIŠcc’2ë9Uðý.qkâ*ç'¸»O©[O÷µxº»–²—áÝkÆ{HôeQÿaq™ŽñÄïoÌèÛí(_ù•åÑWœÿ¸žü_‡”ÍmÿÿÂÖÿ/¶XMÿÿÐöÿ¿ˆð+Ü6Àpñ·ŽÀã·E‹±Qàùi)¿1/ftþ@ƒÞŸä}äçfx¶\áeðh<ý6‚Ô§ÝAäîãI/¦DĆàKÆÌáÅþ1®Ý¾”*ñIQ m“£þE~¸C$”ô!&ÞDЏ|¥ ˆ^ºCñÕòØå„ÈúÁ—òM úoï\ñÖió¾ Çöµ8´#û«„)}Úwòi߉óÒžß;Ûô‡6=ÕföË6]|“³g@!­KvÔ\- '+᫽¨v8—v,jñ¨9«¼^Å¢§‚˜ÎŸp.ÿ%œÊcG*¼Í“¼ÌÉòÝÌ%Â+u3½ð?_½ßy,Â!}]Žè±ÈTAfi~éý¯Cà&ÃÝç¨>‹ãyìà…Gúüžè.'tk']Ì=‘©¯ffê9½ÌcñîçKq;·7TÛû|bÒ4µûy4A*ˆ˜‡.Í]¨0f‘E™§mN_èX<„“ôú£w6È9:–DÂk:§têZ¸Ik\èÀ…SõÌò7tîs½uµ¾GÜû´A¸g÷Äæ$9ak>ØË÷¹æîÓ3x\G-¬û ~ ø¸IÿþHp¯Qo~â-'©d‚ÓsÚ¯ËönÆ·«z»8ிˆëBiÑö"Éy._­šì‚™Å…Z¢kl’7,ûÕrvìJF¯÷ìÞ²¶£áµZ™³¤ïâAtF=[—|QWrîéµü°rŸ,f]›ÊFï½)÷-€ŽvU ͹V„4Ðׇ!é_HÿþðOà‡ª³ +ÙyÆ©…‘"ÎSÜט‡-w·uäá㮵¡†b8ѳüÔ¨¸R íq(C ´±°;à ‡ïlj B«A8[?É/r椭,—ßÅ =.<Kóp¸÷å6Ì9=v®b=¢õ%¼è^€%7Ñh¶#¤„¾@Wú3]åCûôéþì[|ìætÑ>RpCÓýqEe õÙü‰ÿ<8Ì›ýÏ.&¡Yƒîàt¦E}¶8¦ßºÓ,)ÊT]p~q%?Q|`_‡ÎTgG¨€îÞ t‡ÈÃ92ax»˜ r¿¿C]=tÉL{tÝ៥ ýñ÷XˆUÏ’Rƒ®¡Vÿ¡O…/›hqýodzÑÒÐx¡iX"Ó«ˆBǰqtW±ØBòA€b#܆«ˆˆÒôÙ~ŽÙ¾åº‹¦DoŸþ~Ïf~ß v_‡è¡¿”ɱÚeÂìpï÷]gk%ƒ 7æKD; º°ÀĆæøî\“²´.b½ò뎻õŸŽpù%%˜ŒwäQL#{òÜ”Ã=nÜdnJm¥Äç©”ŠÜ“<-%=*ËÄ”El ËÍN&xCCX¼€l–0›¯p> ’Ãíóï,bG´‚nß›~=Á‚œÄh¦h5&""Rf©¤©¤‘·K%›06ù8Ƚ‰1Ažß_…»{øÕå¾~££ŠFmîKà3ÄŸœ¬üDékr=¥ê«ÒÙþ~HiŸÁ—j›$t›$t›$tc“„6¶IB]IB:‰* f긭6O¨æò¢èg¿ÃŦՋuö²žªíìjÙ™Æki¢/4Ûç6×ç6×ç¹> †Óœbac“~æ`–"úÈ#35m“r:ÉI9·Ù1ÎŽëñß/13è6æß2¦£¿÷¥Ú»¸^àw —tÂmfθ̜ øÀ’sÖJ ?ÝgÎÍÙ®\ÐGŸ1CgÃÛç³Ë¶¨:cO:&Ö:fL©=ÝJ7˜²óôßd䋎V 9.‰g”õ²}’ÏW‹ö¦$ódÏÌP>yUé=)cã"„üBu–5 $Ã6ýçß2ý§]¿.I~©ÔŸ P2Àöll2ue0kÂÏ˯?Û粪w¶ÏÅR}¦­ü²ò|‚4](Íç&3਷÷!ÊÄ¥²õ4¸ Ò6¯èó÷Ù5~h¼ùþV—):ñ%ilÈŸ‚9Baì¢HMÆtT/ dJÇFD×c N§ŽÄŽ$Z€5µ(s—dø„Žz‡È3 ‡"¿ñœØ‚ž ”Å?+É:Z†ád‚‰Kð¡câì T7Ÿkºæ ônH×r÷¢Œ™f§ ½X”0gJN²ø’jš’PíÚ>g2W.q>¤–4 K™àÕÊSÁB±R&bfÁT° ‰¤„—§Òž?619 D3®‚ÙÅÊÚE}Kàù>Ã0Ÿ2 ³4a=5¡Iä1´ÀÚ\"üb¿G ÜÅs§–®ù~9%¸fþ„ïaö†tÐß.ùß°8ŸOÙ÷ÙO;pÅ̯ŸÉ®ÿùå2¿¢þ—zýÍÜ8![g Ç —®øui—޽Nÿ_i´ØØTwYÖœ@?íd? ©=-¼éù >Yžqäkÿ{oNEƒþm®¾»ð¿øÁƒZØ!˜ü~è&ù¾ùÿ³÷÷]mìÈ(|þžO¡{×s 1Äí ™É¬eƒ“8ØÆØ&Cr×½çqÀ$>lÆ6;ɬóáUé¥%µ¤V· l÷Ì`«õR*•J¥ª_Ó³ôçóî»÷}NáÖ”ù×p¾GÖBî¥|†C7ð¥)’/÷èT^8‡Jho£?Çd·àg×áXí/ñ'óýÍãèÅ9›_1¨>%„ Òºà "œ¿ZÌÖVŒ,¥™z’Öª;ê=,×É”Jï îˆ(ƒXĽ¦] û=§å‹èu#?ÎÈÕäúnñ¯ç³[ÃäŠd²äNŸº™Ù ŒÖEk4àô‚“·{@õ¦à‚1iªCÖåñ/SÂVöXMtŽnG? í¯ÿ}¶¼·ŒÀ\Ûbïc"Ç"^íš›îˆÂVËô.Á è“ûeL×•éˆÆo.IÂ÷k áû=VS’„gÙHxfe1îÌO<V(ž$ñLQCÛ]ÎöXMI"döÂ=‡ Ú¶p“JëÜôkì´Ízoî‰À àV÷¾ZŸUþ­Ê¨!xËúUŽOxÒS<¬NCº““æµ"VTû¦ÚÝ=~l¦„*’Óà¯3贻焉zõn-0Q´ÆFý8v›ž0kËZƒïËÙýäò*Í–÷ó)è(T¹\LhqÍÚ ÜW¼Æ…шdž¸.ØŸaþ$°¸\ðR¬0ó¹­T¨ë`aSà|†EÅ{ŒÁŽI¿ÛëmKR‹ù‚¼Ž3Yˆ´ëÜýdú7.é„«E¸Dª•ÓeÕS¥ò ’¸W´g’•0Íâ8}D•Òÿ&#ËAEø0 .>}ŠÓ¨øš]¸1¨X—wx.çbò†ã( C6œ]>wïäXÓ‰’˜V*áícX¯ü‰~Sm´¢›}ƒ–Ý‚Šãýïr4…³ŒpF¥šªv_f÷Ó+¦¶D/ Ýʾ*þÝ ZTÌ©84!Ëñã\ô«®¾”ʉ¥äÙIÕ™·Â,u ;ˆnî°·³a, Pl¯ÏÔg}\ö?ºÝ^ÿ|ûþLû_­RÙØÿãaÜ¥ÚÿxrRy]÷±H•#‘Àç8þH^l¦¼ÑýÉÍ|ž²Q/;œŽÇ-ô›wý<‹éÏæx_`0<žB¾¬:lÉèîîÂØGSÀÓ2_ß`|V›Ô˜Jó¾È JôÅ)ùAÿ“9sĹ”ö¦·Ía®—C`>ùúm)- öÑ~Þ#@Á.ÀÐaþ ÿm©p?øDH4E ²ÏX¼™°:]ÇÅÕø\°q@XÒèñ”D8š¾é39cÂw´D1„í?aÅ¡á”èj„+Ú±îFó%?ЪÕ$É£‹há3èfMw¶s-^Û(цm-¸6“Í/ÎÏ‘0ˆé†À#ÓøÑhÀcPO!”în´½3ú²(ÀRÜN2!P–%c–8cÐ÷†9™^ÎBÇ—ñòû˜2Ëâþò’ʦɟcc× ›j-uf‘“e‘ñhmßç“årŒ6Ê÷t•ÑÿÞoIÛÒQ¥Ø–ŽöXMܶÄÏ%¹CóÓ bçÒ RL ÒrEEù"]rD_ñX0x§–;úÊvÕ¯3è}“…ü4ûåŒ&™ìÁMîè¥økî~ìèÞÐéßBùþú .š?Ó VQ¸m„ž%µ/ÕE]Z@Ò«~yÒÓW––µG|î±[du(m©­ð³1Á¾ïâöü}‹þò]ìÓúHÀ.>@•ѬV .ý„šÌƒþÒçü÷mñ(ç¿ò~µRKžÿ6ù_åaKË8ÿ½è65|_$* ì°_ï üI›þ´´gÇö¥ øIÿiÀOúOkÐlƒ`@Çgäb9AÖÝ¥y§fw`(›øÝÅø<)¾”'ª©ÓAÖwv†¤ ­·o¹'dúÍ{R@³x4Ö‹œaΡKÉscÅÔ%àÜ·±ÌY«xX`M¼ßÌ÷„¨GS ¾öe2 _vîD <ý]Ž€ãð‘®+zô\~[À¡çæþJ;1ÒçÇ»&=2¾Ž¥Y1xu¸ÐëÙÝÝ!5³ñ^h¾us<8Û 8Á¡Ýøì„ÉGj÷¬I}³“žƒÕ`˜Ù"i7D&<OÚ©õ&çd„rˆ×iNŠì‚Z‡â|¶`È›q]_•MRô“ò+/ Õb_¸‘Ç ö©õÐhÐeF—<Íht‘p”¨%ò7@LúogW -œç"n8AâÎÅÞ$ø´®™Zô‘¢k†lTÐ@þ ldçðoWŽÌÒΰ_„] 5Dºo“¢ ¾K°aÓç#ü6Z°«ÑC>ƒË‡R”Ê…]­8)Ð yt³ÜÖß+¿v7ÁרÜYÖ–¡sKõœ_ä0•›JT²×ç‹'@>–©5cÊ3Líýò'cͲ¶âž³'í'ç/"WÉ-Iµ§"(v1wÄïê/ž.yY„9TvÄ¡âB#$â¤&íýVš^a¦&ºº˜²’àµ%öõ­m~evá̱k(|÷á¬@IÊcѳökµ]Ñ ª“(ÿõ)hÆ7“ÿèªà÷Éò›ÐSd…‹5°Âe;9öO“Јâþúw‹,;Ü*êät6Ät†Îb#9‹Ãä9˜¯ÉÂb[ˆã¹“  @ú ã=nƒv›ŠÑ좟’ëÛ,|@h‘tÕi]K²7Ö@öFÙ*UmdoXÜ’ÑÜAWfÂ0’$|5AñÅ˜Žž_2 sî㢒«Ï=Oõ ‚Ïíú°3€d1¿×¼ž|{ª±†…€T“yMÄ}äõý ¾¯ø D¨í Ù°ë½ `ð¸‚ò €¡zF¤O䞌yð²±YV§wM°ÆÉYP$ƒOf$…[n{áQT$Ç­ú»„•°,K({NÜÝTº–1ä,²ÒAÖ‰þÇ‹yZ ½å»höí:x*7ðšOàü5ø¥_Œúç™Üè¯ß…×ìí ¤s• þJ†¬ô°ß±¹~gõîÔ퓒⾉¸Pq›¿“«F¹jd+º$XpY@é(€®#[•åçT¬ÈÏ)é7ÒÛ«©È„¼€gg|q;63¨>úÛüοx×Tj”MbÐâÖ»ø}º0œÅÎÌöÙ÷ì9ÿžWC§ÓYMOT£Í³½ìÀÞ¤üþý–B³–³Éa\ Ó ¼qŒ —ƒËb¤!/ B`ë37ñÞ)å ¿w!ÍøDÊÀê$P#¿ª]J¢øâˆU¾XöæÊfsœ¬h³Íqë°fVøHµSüó6ï“£•d€ï°"ଔ> ëÚ¼ëo¶j6‹øɈQ¾f–ïúËï›å‘‰8 `ÛÿîïÝsÿ»‡‰~RõÒÿÊ«ä ±•VéÙê,)nb=â„(o9¸‰Wg¥ZŒá€æ[F‰uTRNÔt¡Ž§ëû­Ž—Á" c}h„ÒÔýV×ßɵ*N¢}8gÐ˃íÞ*½ð^êÝ»&pã´%Otô„GÏŽê- Ì0½¡:®zJ5¼n`Ìfçº`ƒP²uwà\ÓUmíE;.z¨bÛ¦‰¼á |(\Ôåq5T])b"¿ïâ•*Cä´‚†Z©Ø¹¿YNînèQl!âJó~§+ªÝîîæ³»ù„ßYiºïqEM§+Sñ°wGeØÈ›ºÜV¾:ë[¶]³PûÌý~;àýþ™BfÅ÷NƒH‚}²HXÚs•\èÜs+Ã5Á®%2·+æµ`C«2{Ü;uŽø}Ó>ÓÑ׸Ê3ÇöžE!µÇ×Ë-%?/œm`Ķ>°Á'{ïãk ރ^þ zÿ®ÂHEf‡¶t^‡ßµ¯l8ÌìN2úÀ‚ðw9ã)eUèÝ\‘›!n†t%ɲTÒÈò¾¡y7IÜäðÍ6Lx‚•Œä8ÆœdcϘ«ic<蘫YY çf^( ÜiIf ‚ÔR™ —tqµÓA¯“$‘ â™aîƒMνw°û©³ÿƒÝÏ8Øaß>XÅÃB潊£5¯õk@,q9ÖÇpCF‡OÞü3¾™²ß“³’e(™(en "ÞXÁçÆ=Aw4ÑOÎ5pp•n`a#j bÙ…ºj!w“õLDæÆÅe=TâÚÅމ Ü·†–MÌ¢gŸ:5RÇš*kÊ${ݶOd]/ŽÁBiîâö<)}˜J醛Ұ‘IÎNÜõ‰=U1\¯AnH7GŒn*¢O¨<šòlm€¡’×´„‘Ài¶"¾ûW‹6pûÿ/o«ãÿ_©%ýÿ«•ýÿÿc<ŒÙuÿÿa§Ê!_™ðú Ââ3’ýAëÈÛN~ôéJ?ö\® û­z—ÊÖqk0”æ&>žkè¸å ‰"l(g{>zFN”œ Mÿ&är®H%2§¥åréýþ•ÖЋÝíÝOFú.èö7f‹ßz¡Ô É÷o“Ëoè¼Î2b2xDnš0Lâ‹ÎE cp9ãYU Z›HT 5L¦Ë1w9Ÿ`á™Ìo½ä@’°ÍpO3p$!ã ý‹_|Ájƒ„VÌPäâ-ÕtÀ˜H—ãýÜVÝýPK]^Ò¾ƒŽûÅHY±¢Ë êÅÙÞã½@'˜ëÉÍô¶JdäŽ`˜¢È|"€Y8y@EW‚‘}q -ÃÙáÄñ‚+Öÿ #{Ó$…(YÔÖ Æù8KÜÑ]»0¸¾@§Aû++`Ɔ/¾(1èTÒ¯áÐ? õB«øaÝT· ¤»ÛÚÞÛ¦òmL¸YÌŒJXÂY³¾á8l.`v @t¾¦#„/ §=ð½€ œÐ’’™¹õ©p“Æ×à½7ŠÃK®ÈÊHôþåfvù‡Q¶ò)ÙÅÐì«+NÈùãED~࿎z PÊÖ­^1ñáôÇŒÃYÞKÖ":3þs<å½ÁâeZœñöˆQFr :£%+B”žÝ›¯ :·Æ<‹Jp"öŒ„Ý—³éb²`qútµa»‹¢‹þxÓÝ¥%èeX(Xצfæ¹é÷ø1YQ÷8eÕèãD Ž'µÉ8U:—T$ìííÉúW5öß°þ®—ÚW*ˆ¬%X‰ýÿÿ[æ%Gÿoá:›o,ÅYñh÷ þ)ï\‰Êwñ•+ÛK¯èKº0‚ˆ¯È0p2+°AD†ËjD—ñе+:óÉæaˆ{()Ð]žÝŸïmgr·Ö _sÊ)PÎVdÓ?y~lŽc‚T’˜nÂP«Ñ1!€áVh÷3„Ó:26‹2Mi–«3ú”°¤Œ¯EÅ…ºµA¾—[}{7&w¯ÓÉòþjL"CÂñœ’¯×Ñ †O³`àÉ •î÷£ª,Àî8aDØ|L÷*ÎYlp'W7Y,´‡:EÔZ°E1O°V[7ù¤ªðÉâ–Ž4 ]êÚÈÅTÑ´HG/PPJ8.áÏŒ`âHG}]Wd±ÈÝq^ð‰Ç»Q˜ì©p2jˆé¬-ñ–˜g&Z¼ 1vœÆ²º¸›š¼ŠUPÍuzf ²â*TRSfdytì“)Œ Љî°#ªFŸw[oOûèPI†¾½Y^¯¤½{õ¶½mº™‰¸Uî{?…ÃØ-è°”~'ñkkðÍSÃëѧv¹ÐטC­Aúíîi)ÑA]Ç*|þÕ·c—]¦Î\ަ†œå~¿L ÿXÒ"”·é¬óý <ê'Ó{¶£[mêÅ‹ñ¿ï!1½Æ`¨ÍÏqUzöø&€àQLñLV+Â¾Ž–„#s™°BuVˆFû óð¶Í;Ãø4¢¾ÃÖÇ „òO!6ÅÙ—òÉšíýY'c·ÀÚÃPŽé‰÷ÃýT?¡ÿo4ßÑ› Òž´¥©ÛfAX!7i +\F/h;bsìÖjƒB•S˜…­¸ËèóÍËyúŒ‚„Éj×à\o ŠFæòæE¯z_ŒãLÿ9µw;ÿÈ™jœ“34÷®n„ʧ‹û9l”—³ù||¹dROk›v» µŠàœ ~kZ¢ôø{€Œÿx¡$Ù˜°N%N3ê˜v^‰´ßh}d™³¬Ît˜\¬1àeh×ß5÷ª¶ëX0 R3¢à2"ÏPªn¢?2f+M–Çcn¢|¹ñ5J²‹oÅE÷L¼7‘­Õ®­êd깘TJèuÄPÝéóî” OAFQùT¡ÿÕ臠C”àŸ2üS…öKIAÉr‰_¥´jLPtgÔ»ZÜôÁfÑêŠG¤?Ð1±$$«˜´;Öòx–5±á•Ë%g§¨:7ts žŠ»U¥‰ô©ØÏQ¢§UG}ÎÉ2ªNQÅ9¢¢fŽ2¢gõG±¢AÛ5G¯Opƒëb’[-Å-÷äàä9 "Í~VÒœhíðöNXÊìòÎ Š¡Dˉv]™6ÓIMõñ¨ÆÎ,‡nfy%z'÷gOÏúø‡c0 1™ò*w/k¯©*fù×19fJøkì0]åÎG‘Òc dp¯Ù!:¹Vx]ˆO¬<™‘7}PûlPx7å0¨Jbì+×d’È%`$LÙ‚ºìdÔÁkªÜͦ°öЂ"¾tÉòA.ø(]‚$´è A÷ÈëiÍ,-0±ÿ;;žw%X„7w“û"–ʈé)kz§Ú-ØR[lgmi”ÂwvX -Y}TKÍ·›¶‡¯éj²üFO“Ë4âºDÑÚˆ‹TÝå,’ n‚¶¹i«TL¿ØÁö_(+ô`4~õšôñxì .ò Âàmsb»¤¦ Õ§-« È’I¨RÝ\°;TpõVp[~ fvÿ¸ÑH.qÙ#vËQ–1±SQAóÀÑ”£¤»P9áÝ,‡çÎ1(h'5}³“BÓÓ%¬¯eõì•G›* u*>Üzµ†D;ò;l)áÆ+ÇÚºæ–zaŒ/B´ÉשDË£¿/à,¢žXâ÷•£‹æ>E—>«×æcFÇWóS‘Wa!pn²böñôñ‚**+¸ ³Ÿ/Ù)‰ýa+nl‡PÎ1»Ú#…GÙ#Å9eöý3Ÿ¤L<ÕO€6ª&kRGãI}B²ÊKæëÁegŒ8â¢ßäBv*¶r‚h¬Èö´À‘IE^§‹2å–MH•j¥ð¹ú—õe_qAZ —gÃâ£;ŒÖ³‰eHbž¬ƒR…f»Æv]Ñ ¨]? ˜iãO6ñoág25\TŒ =¼xq-Œ%¡t9bZD’%`+í3¢}8JèÄœ}üÆÄšÛqï?¯,c­X÷½PÿÑa§úÜüGþŸ—Ëñãà?—*ð‰ÿ\Þø>ÊØ5áÖøö¼{4óøç6• t‡ù\$ÇÏ ¨9iɇäˆÁ^0nàj˪UŸûïè脤š§æjNš+~‘äó;(Ëp‡®ïáXº˜á]°ì£pô9~æsžeJë`PJ‚(#y§¬Sž7{\õÕx:»päðÊøNQl¿âVÑW¯û>1ËÝ mTvœUn¶Zº¸ÎB_ìdíAWYÇsdÕM¸4r0Õù3Õë©úª¦ý0nJâó”)B0“}|¬|lQ‚•&aPV†cÅ*ÙÁ‚½bÞí&_8V¡_DgYeF'å‹9z)ÆÚIAdõÖè‹»-<÷( ù' ÝWé«úæKVíöŽìÅ {‡µÊã·b:™ A U  ½|45Ò£ÿ-~<–þgÉÿQ‹6úßc<ŒËüúß@À‹¤ÑZbwž™¨Œ%P‚êvÍ7&©YýM€cRj´TU"ÕÇRè… Þõ@ú”)ÈT/TÎt/»š„0¼ÏÐxRˆ«19ï¶›ƒù9»Gÿ4x||ÜøÇÔ–AƒWÀpaàý/÷“›åîd*‹¨nÌÊíÒ¯%œßŠ'µcd»àRUï¼M椠LͶ‰ˆ-ˆø8z~lÑ_´”(V2E9k*éí-I„Fæ©LÓÈš\#k:52¡‹Ñ©>šÝÞR¶õ±½‘Àvo®ý¯}>/K[¼¼Á×—^Ç ÙKÒ$ç ETIxkËi3ýIÏTB_‹ëÔ?6-Ń”¼·ƒ¤Øuõ‹x´Q‚gSÇ¥ô .buŸÆ"‹âÒ¡È©¦ÅˆbköíÀÖ$@ÉQµ¡”z†jmÓÝ÷HDÉ;T£É´‘–hÄÆ£r$¡ÕÇ2EöYšîQÒmÃÝ(×äv”ᦽø’펖·C¿ÁÅcÛúä^zýï Tú_u£ÿ=ÊØM‹ÿ4‡ô EEtO kÔßJ4ÒxËs’ÑÿÓßéÿßz|Œ/DÞÇ6ûÑç?šƒóöðy©’–½QIÑÆÆÅv6›W²%R;Å Y€ 컣»ä-)Ð:C˜=Hš—Þ*ÀøÞÚsÇ\R幎LÓ0sȬ!µEg÷ËÏÝ®š¬+~Ë+Mn,*Œ­HGß_ˆ•~Æ\™µÀ%?E'FÖ— ¨ѰP£g¥F#;5 5Ö‹`!dÝG¤ÆÀ †Ì3Ћ©¡§æöv¸ˆ®jË8‰ù‘ˆ!‚ÏWªh!Yx+~¹å­ž³oÇî¾gí[OôMf9 ˆ:*¨­v*ÔóFBÒW3çG‘.˜Š¿ÂTŽÄð²í)½H3“}éð~ð}3&VÀ»e{zÌ'¦£‹ú Ü Ogó[ªÚîü ûÎ%Ù~É>¨oïàÏ‹ífo`}»¿ÝÀ·¯äÛ ãíuå})¼W »é_@|öBZòÓú[W*T·ÒÓx«fL=*ðŸoù/Çâ'ÿÀ]ë,c>–{u'Ëý‹#Ŭõðœ5FéèÓ/¼kKå"WPŠü,Û霛Efw?­{°R»Ô[öñ[5ð&–Q *@á“cãµ#öèªzÎr­­#”^œs®ù‰ÓW˜ž,2sÙx¨…JõË€þ¶¨¦mPŠôP¥ŽP«ÖR°¨¢§‰5c8¡€ªJ»ÔØß²Z •ÜÆ}j^f¢d¨˜“+ªaÆ™†„ü¥òNÅy!UyBeMtÓhLJ'¬;‹qQä\Gæp—5Ò'u„@anàæ)îo–V!H\R0 ³=ÑYÁh¬³0Ü^Hg˼³âS» ÎÏ͇ióä\öŸÅ—Û?×dþIÃÿ+ï×ʦý§²_ÙØãa ]µÿ˜ØÕEq_¦ÉV÷è‚ÝÒÉ'·úB‹}ò!ý=Q;%eçS1¢|Bz1`zi½ýr"ú¥)ª\«üd*‰^+L7!wã9€t,ãÊ.?Q©©‡y¥?bmts÷m´»ù €‰íü,² , ¿Æ/ñžrÁÔÓ"ùŸ3(ž)¡S‡÷;Bã¡ ,Cì”`²Ï©’©VÉ[d`Q°ì®pΩÉGÎTïºò3+¸/X4™ã5™sZ{ß‘ZMu‹cü23Ci·ž f˜~ÔR“òBû[÷[„îîÌÕ²u3¥®ëÑ;´çn¹ÍZ¾-;ón¯§åó©Ä¢ývm‡re»fJí$*˜‘–¾rkBp4­€n„uëÄŸ²xWËYlFDÇÆÕÖÕ]©‹ëŸ¥yïfL?ë+¿âßuÜÞ+Ýe% ¤&Jqɶ'hãµõ0Aª|¨´§’j,¬èòO,–öRø T>¼0‘Š˜PQ×%OÌÈÈSß&P7÷¸šÕj‰dre3[³ûÅ?å’l©&yl—΢´WóÙw­ 9Bm,E¢Ng%¸TŸ£ËÈHK Jè1ÁÓ\™7Cþ`.Ç‹À=f;šÝ1@µ?€†(±JEM1¹=ø*_Ó­az‰K[) Õ29}¢ÇÛ¯óÑ-YŒ¿â¾€Ž4xºV…nš¬Ù· èHç÷Oaf!rJEàà,Jr€wtîV’XD1áˆE‰­n—vü0ìE0‡ToºàÇå€Ýñ AE Cëm±,Roø üó53òRÿ¶\²%ßÒ“;Áz—ž¹¡<‰¥GÇ3»Ö¹Ï¾ä¾X\¼È"#K0V^N,¸/³å’²,Ëúl,:Ûžð@‹.HÁyª‹.lÁ}ˆÁr>P¾=I®ù<΂smŸüÂ/Mµ€búNÍXSXdÌ«ñ%F¯Pܤ@ .fÊÑÛ‚Q0ábB;²ïJa*¿òª®†"ÚPáÐíˆ|Ç3: ;%OŽ=½œãùTo–ü=!‡´*ø±èGب°é3…Åô©’“¶V~PZ˜âçb½Ý†%ƒ¾ôûo¨~XÒªùÁ/¬µOkŸåOùfùSÐ,ÿÜÃñ#êã'Ûþs<ÿ>Ÿ,—㩈¬º¿»B¤rùŠœùOa3ÿ)÷ÌÚcïç›ùuÜ»åÌ÷ὁéÝwc—δ–h&Òa÷í)ý @ŸŠ°…| ¿~K¸7&ýû„þÝvw¯iIøQö]ÎeHë.LøŽtîë¸diw,5åÈ›Ž;ožkÃìÉÓÍ”®ZŠê8´5Qµ5•n"¡°?ýs"±ö‰·x"U0ÏtLßóå9N䘆-|a %²Cƒhñ¾§RÎBÍ[E’%ƒðÙýäòø A´<‡‘˦wÚà4^(ñl"µðÑcäH7.Êã%ølïž6>ޤ[h0 ±R©¬u ÿÎ6Ã'÷˜_Ñ݃ãCì@-njÓ‰²·ðÉݧd ŸìàHÑf&lÁ Xå,”EïJ=Ù‰›z° C1DÏ0€cŽ"†'0H v7ZÀ&HåÏ×oÒŒ¾(®$ÍÌÏÌä¬S§‘r›Æ$Ú¦`h+î•ê/îÁka9ž[6àGö|¢í0ä#¾'E¥øK+"H—ž€Éf Ï;ì/(VNmÍpÇO´ÞÆ8ù”“8•Ô^Ò¨c<Ø8ýçìXÉI¾j`G$ý>Yt’ªf¦°%LWþ6!“’'.iÙ¯’ù ßò%·&‹0Å㡚Ù×e'™¶"ìSúº‰7Hšêj²£ø(™RMÊ¢Æp5ˆv@’Iê£:ä`•6ô”uNöÆ·,%­fCÛe4n QVÿåëà\°½àgúä[¢ƒìç ¢”†!µÔ4µì±ò kÿƒhÿƒÞ¾P#ÙÇŒ^LQ$ÔZqbY|€-åäBÿ̲Öõ$‘éw‘mæZ–n»Ô!ó|yž?ɉþ´¶™¶Ð@ •þƒ²#1bb.Ì"ñáSvQd‡®Î!c|P{¦õ› … qœ¸QÍNØ<»ÂfÜÑD,'Ó1©øFžQ]ª¦d¿$\Eâ\íC‰<Œˆ¬|Û–†Oã ö‹O›+­ž/N¬ŒüâñU.ñ¨36G ¶Ö°Š Þ„ÞeœqF[l1[…ê‡ÄÚâØÉ ‡$KŽö%o”ªd;Á×' £r¨œ Š…ƒñ#8b:ýÿ¾.KÑ£ÄFå(ÚOøÿÑâÿ¿GxiþHæÿ•~€5§=s@þ ?.%€á©}ÞήÀø~Eê÷_Á½zuP$#2퉤ƒþhWW<¯l|1ÆkQ6=Œ“¡’A˜Eœí;vD§¡-ÿ ÷Žâ;¹ÂdÔÀ"_öpÆçA¸¯âÑ1°&¹ü6˜‰\ZÎnåm:·8‰HÎ@açÞ@¤âgrLd¬:~ð†èŸ6°<ûTuedžˆä= ½,©þ(Ý ðEü1ëÊŸ3w=™N–cŒPùŒx1ôÏ\÷°Ðú‰’JA¦9q)¯„iÁ+"£¿ gèº,­¬fñ¿8Œ]>æÿ%/©æú¿õÿ%ÿûùÉ”ÜßÜÉäk¼‚²¥‚VXA%QAƒ÷!¥‚5d#F“ §\<‰lÏq(`ü:#]}ç?p3t3ºýr5ÚÞiìüG/SÆ2 ½”QÐØ©'Ê(~¦qè¥ÝÝtà^êp)U«1˜T £RO;jç·Î·h÷Ï=^nèàCË´î8ŠûeŽ$¬®ÅWgŽ4W—®!5¤fž9b›$ƒ”gó dA¼Iˆi¡^K6’C‰´ŽVˆ´EBbÅõkŒ¥Æ0z%fZ—Ô:.Øðãb‘ó÷"çð6¾Ïkßç=VSr|fÜu`¤¯w€2CeÀø2Ç¡!&jfŽÙ€<ëÇiÿ°ÝGÂÿ>Ø/ýÿ`¿V)Wÿ‘þØØÿáak׃ÿ=h7†ˆylµ_¿ÝþíøËüÊ”ƒíë'ñ@;3s@î—dæ´øúò³ eSKÎòùèýI5’¹Xh3Ÿß5Ó®`;\Ï+¨$*¸JÙÂí ¾™¼ ÚG×1ŸÝ,È·ÙwÍð€‘ü17BššíÓÞιn1ÕI((ˆ~í¦ðÀ½ÉÍ}=Ga Ì<Î)“ÑhŒñ"›nÎÆlÑBé&ÎÊnc…£««Ac+¥û¢H.^bTÓ*þàó*¥_vꈘáÙlT~y‹@[EéálýN‹ê)¶0ÈrKt®Ž[TÝaêº @çlû¶»ï´Ô¿Z¬6ü¯>#ÙzLt\rð“ó¦2´``À–ØÖÂ-ÔÜ9˜ƒ7íÔ}Ö_{ˆ_–YRæg€C äqù¼+Òs2G‚ä-Ž»¥jö²11‘ýx^´Õ”ÿ g£-¥Ñ–%¥ áì4Øu»+UÂ$Ñç–Qyì4b5 h>%.'h«¡;õ¿å²üXþ•ªÿiãÿñ(ã Íÿc8,Gx>iÔ! vþ£²bp kjop¾¹‚ˆ.í¶°ÇZ  e6¥g¬ “4›ŽõŽ\óãib :ÌðÉoZð-à=µ–dÙŒkИk×pÀ©ëT¼êÔGnâ†È+÷Âýôzt‰ÞÛªóƒ Œ5Z,(\ñS¥{IˆN7³wz7yË:»¾ÞÍÞuµ8“i]·÷z hÂÝ QQǦ†™-”‹´$DYŽ_(+ìLW¨ÐWãRãå%'Éà!æ'¢ óÏv\Jò7ïÂÃÍJPâjºÚú (ð ™hàÒ¯ujÔJp–lS3ðLZe–ÎEÝa~ç6¾(àhÚLR+[jŠ+aeÐµÅøPÛ”ö‡'ŠŠžÃE…ιê£2]Smp2ÜÞßnÉUa8²ôæãË +Õ•åxÆ>"ŹåPÎþ¿ÒËeBíÂ-ókÙ×O§#Æëï2”w¾ðؤO„ô†‰Ç,B¾XªFÉ`ŸQbzÜ);nQBRÇN| …ŒÈp ÔBžì…áᤨaQh·âߪߋ޳\ÉlQ²²Ç¼ì Í V‘Qs$®¸õI'Sû ;™K|Õîm»·Íd‚2ÉÒéJ<@J[#ñÄ¥{îÜÙÌîØ‹pðeQtˆš¯ù”-Cb ýn¸ñxOÔŽìpÌ“À>çj·ÊJ¿bÓ"Ÿ£‡N1ÎK½ˆl#±º#×÷ÿ²ùu‰~™N==˜Ÿ¥É¿¸NÓ•Rü ’މ鬉öÐ Úai#ÿŘª»·än3Ñl¢Ö¸NQ‘ÈIŽÜê¨Ó“|RH«r »¤eH¨wÌo¤ s$ETW¸“›ø© - ߨbŒ!a$—ŽO4¹¿Û•ŠJÕ²„ôÍ©*ÉXL¸ª(Ìgå}á¿¢Ó?-l Ÿ”àÇgÿ/?Žý¿RNæ¯ìoü?åaëÄ´ÿ— Ü—,ä À}þh?‡ðÏU®Ä׆ùËoÄX2Þ”•ÛÅÌ;ºÃÈTÍ)ÆN¡urÎn á–qŒ’zÀÂnã”çhs·Â'F3'î¬5ë—è“í:€îê0˜]Úx|p›~°sÎËßþªë€rîë€|Ázw£Éݦk\R+Ñú÷»_Rhìù.)¬ëi…û‰Ç¸°÷Y¹˜|B•Eµý&Âeà›ˆ‚Î뽄»‚éA\M®+mòøT× éô7ï(ð›Ý4HíäE$s#³Jòô“ØÊ*|Ðï,¶#‚`7·ÏéòB»»øí®.ZÑ}âQÃe¨ª~eá¤Býü䃥Kk¸ÐH8Þ° =ïnž õÞ]仳`Õ¬t3ÀϹ¥°„ÛÚî(˜Õ$ ‹¼Eó¶îEËΦíSXÑ¥åœy½¾ˆMþ‘nò/"Ê6£tÀ€~™ðº:ã2»Š®+x5à*@VØÝÕýzu£­ºùÕݦã¢á|§Žg6ÃZš Ô þº÷0;<ËD0G ¨?vyqâ€ñÁoP ªšžËO¬Px (¾ÛÜ몜œ¨~¼@rŠÚ^Ø¡e}Qh}~Ž¿Xk4¡ýù‚°µh(0‰‚T­²+¼RÖÖÒ+o¡Qzpl¸OãèÜ÷7¼DË1þ¸öÝÈhn—YÁÁ¾‚¿Ûë´ÌQ\Å ³ÎJö›±]½Õ|Roud¨vçÁnu:x«ÓqÜêtÖv«Ó‘· É:sÞê윻ou†01]61ü·:ýV§f“GŒ©>èkÿ¹+”ÀZ–«›Nâꦣq˜u“Яn:áW7åÍÕÍã>®ûŸûéãáÖÊ–ûŸhsÿó[lêýÏyñ?û§ÿ::m ¥Ç|´ƒC?ZÇÏëºÇ‚ÊÉá>Q²{ åHHèdä#ÐcÅ[¢\ÎÕ">pþÅ•ÎòÛh©ZÇÕ( 0¡0s bU‚›4u©·túß8öÄmÇߦ´KÍÞz8¹æ4œÁþ ¡ž»+Ù¢{í6¿3±Wr´%ìÏ7xøˆ»›ŸEÂ=ÓAL· Cçõõär‚é.…e Ì7,œ…Ä]žÍeËÅx *$'fí6ºÌÔ­6츎 £f×hPd"º_~ƒÅv'<ëö[Ë@t¼ë ÕÝ­ÿµàÿ$Ó¢RT·¢£§ ,<,ú­(ÞÅé¥ûrV<·[¼‚$Z¦j‰³ceÎgß0UÚýàâÛìþrÐ3ŽÖ3\Bz½Ù|ùm†öëÉò'¥Ë¹J Я»&\f 0 6£ÞÚ¬ñÆ‘ó µ¯9/ÕD£ê*ÝËtU×¥tÇR]f§ýTK:˜¼Q¤ðÉqG»àl 3-ø™P[Éjµ+7cÊÿzê”Ì»Š…?FŒ¶~‰)åÙüð†0ï K{Zç¦_ã‹OÖ#nÝ;ƒlžtƒæ7Þ£éå˜ooj-ñ²Šo)vº¦<zvv:ôcõ]Mê‘/÷lƒA­³ÓJ¯ ØøÏ1¦wcƒ¢³YZí>áv2-t(OjL©-wÙÕ¾BþPÌBFÅ‘ØÉ6íÓ ©F»>Pk¹œ] 4J&¹=·)’»î!»Ñ9Ú¶MBM¡[Æs¹œ°DV$õ)Çm€E·öëÝÁ¹[·ã·ŠŸOÌØÎáP»Õ²a§GOÒÇçYÃR2|¦\&ÈK ÎñéðHœ·‰B‹FmEþ–g Á7 ï›@Ó‡Œ–8nuêï¼òÖ!ð¢æˆ¶Õ#@•õ*ñýòs{6GÈ`ŸI?v>þ8çí ʱÀ^tåÏÔŒ„å%5Îd‹+‚C«r¸×Ù8ÿ³Ë}íyj;q褎]–C¶^Aru·âOÁ´.S…j6Á¸ü‘Q^ØÌ4{®naþêèá ,+–@¯hü èÒæ¶.½§ü–ü&1ôÎÉ"%[_X¦WÜ•ÕÌž ž¢0>ÚŽ)13Þ·¸(“?DtƒgqêE)´êJkÀ±†ïJ”ø‡¥=6²Aúâ®fÅ?<ÙŒ…Ö#æ‰ØôˆF ¹$4»¹Aud&€­RGÿö’¯`aóŒ÷ Ɇ<Š‘%oã„ê›Léþ£¼M¼§@ul®8b`Ô&óG‰›‹î„ntÿ"öLV¶ œò…xsË 2Õâðï.Ûcp ž+œzÄLòJL ÞüáE!o¡Zí®’è·L.¤V×Lw¬3}B-¦cB«Ž{G Íô¹Lh§ðC‘Á9±Û¼çÔŠmR«'µ›œÔ%4˜=×{ Ÿý¿ò8öÿZ¹lÁ*mìÿñ0¦5íÿº2ލÀíú#^œÄõGøùQ¿ pè „è±2Ïûs¼ØA3:ŽIšlGF:@~d<ç„—‚šîãÒc_|,°~æ¿/¨ !|4§>p¨Ô¬|‚è'ã#˜Rè¼q;ü-—³9}ín6Es™iÃ]ܘ³-]›c‚¶žóÌdEi“X ·óqãHXHF|ÿu¡ã¦YPZ@¸—©´˜³={v-™äÉÇ[pËÏ#6:YÈFQov6W_ÙÚùèåh‹ÇÃŒ uÜGÙ 1A¶ "Åžè;/LÐdç#üò¿.©†“° P:päŒHáòË)T…~n+‚à¶?îèdÀâÃèä‰ 3Ù]~ƒþЗ±/Ûh´fdþµ—ûè5ý Û??˧dÊjÅÔVìþ×’É`žÙ•gJ=áU+¦¼%œÈ]çÏõçÏí¬) êÆDÖ!•G±Û8É–ÄŠsFít,.äjÔÎÇœcø¸–1| ÃGï.6Zj_—Ö[îÇoJ)-èƒ_oɵjTÅ®¦âU6Æ.žé•Jl£…AxØ҇h›¦¹Ÿ!ØŠ1²FäùÇÚÎ?ØÝž:Å-Ä®z®'óÅR\ô(=0¦ïi(Ë~ù jí¯qÙSKv¡`GÜH­n¡õD¿9ßöóVZæûú˜n-t[Œ/éf˜N¸H¸„ûî£$ÜÇÜ„û˜$ÜG…pS ÷ÑB¸gí%¶yå¥è˽#®»|ß‹ú#»ðR4œ°›)2“Œ˜2%ƒe¤þ¤ÖbFÇ8ƒcðX@”¾Y¦æ'TK¼-ÇkŒèöoOÕ–‰FàÝ?”’Ðç?@'‰Sù~Ñ~SZßÜŒ¿ŽnØ8×|öà7a‰0ä¡!STL |(Ïw.ܤ“áYŽz¹Ïƒ"[ïàãzïºl]ÿ\ïÔ=]f—Â8ã¼äbՈˮ‡¹Œò†Ád¼;»hömH…Ä­O–SÀÀ˜? JÌ ×a|#—üjæ(¾–Ñí‰-tòC¼Õ÷ŽÜïEÊ{æw»òKóf„~¦ôݤk?Ándö‡* í¡¨^¼PN¼ðÑÿBÅ|¡ë/_5ËŸ°òx†·ÇÚ ÓN#_ì¯v­×p¢'=ù¨õäc–ž| ïÉ+'£Ð`ON ^R±eT [LE§{õ.·PÉrÜê«Õ/ÖP ®w1û*¡çæû›¥áOŸ Lëœsò`dÚGå.Ï£ư7w¸ße½Ï §CLŽý2޽pŠ0nË"b^h¹ñNâÏéC·ú1“¦ÂÜï6ïC§>bxo:§_D:./-÷¶K ,ˆ—éJ3hãWþÖkI^e@/Ïóôò<´—碗çF/ÏÃ{ 7ðt¸/‰thaŽOh6ÍçW\®DEµÈö.•DWÎ 4h¼$ ˜ Ñxns5—LÍa¹Öæîê[}ZfKš«m6jÅ]6’ÚV‚ô=L_ Õ ‹ÁH'(¾è+Xà—‚hF,ñwàRÈÞË\KAëåyx/=K¡’g)|ÀVÙRø z”ëÚq奠Xw|«áˆã9!?z„¹ǽqA !ùîÆñ=]i¦æ(*€W$=vÐý•˜5B©nQM¢ZÒÞþ¿C pµ$­\xû·Wh¢¯Feø·âz»—|ûo5l™ª4e|ÑÙrï³”w©\Óyþé¼èý­\ÚÓßÕžá7J·o³›+nU#$^zcÈÔÐK¼Þý’ e~G¼§›Ïé<Ùkñ·Èûî%xu2]Žçwó1{1_ýN=’Üþ´'ÐÖÏ;ý”LÇ?–äN“k¸7 ]Èô< ¿Ð 6"ûù>6ùÿïù£ÊúY9!ÿ7ùßçywÖ’ÿg}uKüŠWð¸$¾ø•ø™xTO‹Öb¬OÑÁZ+E»ÏPZÓX‡´6„µmý/þ|\ý¯T‰’ëãÿ÷(Ï»ÁÇ õ?øx¯|'âãÖõ„ž÷Š)\%Ô×ʱÎåÑóþVe:}¡ /ó÷k‰7:È©¨ÄµCºèk‡ ø©áÑc³úòó“¸ÙwÍP°œØètÇ"ÿÛ­î˵¶r¿æÖÿèó_}JÑ~¥þßÕRžÿkkí…ãù‹ËÇünFWß®Åÿ¿RÞ¯Ö`þKµÒA?”¢Zu³ÿ?ÎöÅÿ¿Þ®¿8½ÓónkH·íúðýsuØ—'„Ç…‡èïÎèCîæhôÛxtE;7™¢ÓFý¢ðÐó óàæÞH²»ÑòÛ"…u)Õ£ í… (U¾›\~ÃÆ-ý’¾kj%8 éÞŒsMlØ•„ß)øãsO:ÛÛ>¸‡ÏÔj¾ŒeótÒ¢2#pëWžÿ~פz*×H¥Ën¢PC)ôÅð‰ÄC¥À0Æ~7ËõNi¹Ìµª¥`ߎE|w¢«½AÀË‹ñíd×YC/Có$ø81Ô^#K6bõ†YjXº©9ø¤U4™ºÆ=è9 :Æø˜¢Š7ãÛJ÷ÜM¼ï¥¾bi,vh¾ü6š.Á‹Pxoƒï&] àîU$GB>“Âû Ð"†c®h{Og_=‹?ÜÑiÿs‘ NûǦ¼SÊD´'•„<,‹ï{åÄw¯ÄwƒOë¨(²ÒwÆé|Ç‹ÙZMÁ7@¯”•.ˆAòÅ[D¯•»÷£Šü¼òšTäç˜[‘}^V?²Óo¸oyk°Å=š´O·”ð«þgã#ë;Ÿu¸„½îép¯ÀšÄ²XѶÕC(~‹Ñ²Ðzuë]Sñ½Sn˜Až AxEO»cõ2ù_ýÖ°ëo;p×ûŠ>d[ÙJ]· dk‹t¸;6_Ó¿··Ô‹{G ‡¯R ±Ú‡ò˜¡r:ïQz)ÊEåÔR´£•ôR‡d»š^ê€l×ÒKí“íýôRe²}6?T%}UæFuˆ±³RÃÁJׯ¦›ÎI‡ÎI‡Nzºœ4tpÒ0æ$MŸHg¨ƒ †¢“r°á‹ø"ïŒ÷Nõ-Oýª·¥îiì±—ØÙ´õ^B!½¾¿Q4QPÊSËôle„6SˆÛ²ÅÙªO@&©Ä*¸C 7^Vê jYëMñ¨?ªPRœÚ<êÝSûjŸ-"ªwî¹^¯Ù_7:¹v^˰KäY¯µÍzu¬WÇ^§Êä1w}ßq±XU°XØÚI¯&dY­c«ŽýUëÐ)ÀŠ‘äX‡v‘‡q+ëaÜÊêŒK'~ÿµ›ƒÊ†÷ì¼7øäÔn=;[‚MÌjéÒU°ˆy bnáSF¡¼>ŽüÕ¬KçX©‡µ‚Жµ·ÂûŸk‰U}‰-±Ã_½ÄÞ7Kì½c‰uØjßÕ—X„½f`÷kæ^bVŸ}‰ý§ò{Ìfèáh=¸"ã®A·ì%¸D˜ÎäÛ‚ŒþMnÀJ¾b))i*ªÑú/9Ð'hvÍ›€JÑøûö´ß© ä%‰.Ф+€_s.”k5´&Ë+:œt4ø…½ G‰ÄË/+Zxu?åÕ-úÑ+=jËr»eö¨¶žj™ˆIÔ^]OíVZVÖS·…Ôå šéGŠŒ5{åé]Bf'ª-Ùª} îbÉ5¤fô|×”8< "ÙB8ŒB•Vµí‘cA‰")ãgt—t˜é˲ Ùp'Zà%¼¥ ¼Gˆ:š~½¿q´o–;Ü#}:¥³Û"9êwÏÁz´ø÷|Y(íE/›½Á¶½ú \/~·UO¶^YªäµméÕ¼d£­Z^(Cu³Ù¨Ä¼4èt`ìÐ=%Ä|½$[µ=.p¸ã%#‘VMÄhéu øû€÷9õÕZÕYmØfõ01«öq&Z«å›•²uì$ªAëûY§¥b²…RæD/]u³qË8Ò:-*µ‡6jÇ]×BH!ÚÝ'ßFà!Á³ü\âÁâès_—Åök;KQò~×ÉÈj¯¦ì™{sÓÆ“’Êe“毬3éY}v¾8@z”2É¡š›9¢RbyG™Xiß¹€'EåtVêYYiÿ¹²RB¸3¶÷uظ- ëùÙ+¸/Ë›%¥~gruu3oâÉóÝ)=iöl¼WKSɹUxäÑA†½¢/ìTü¬–˜ÓCÅûþNÕËb‡ŽtníÉÊk©ì•x§°Cv9àžbA®ç³[Ô'+FùaÿmXq(æHxÛoX•‰êÃ*I²”3N©WÁ°¶PÉ6«^EÃÊ3ÞiµéÂá\ó 0€¤HƒARò}þ±JŠJfI!7n†t-I’r’d4›Ô;Kd^>sªœù„GÊf&*½à¦Û¤&úcL&K² ª$KB °Éé ãºèôß`rè˱2X¥"v&g‚ŸäjüåþëWIé‹íÌeÉé‹–"âr!Â9[ñ&Ù¶j ;‰$jø¦RáòÛhÉÃŽ¯âiWÒ[K ~`jü^\ž¶­]G¦¨ôÇÝøÒ (µ[*E¶àÔø>Ö#IñÍÝëù˜§Ó`-ÓóP1­¼e_ˆøÔD‡ ‘¥‹´2Z,î¤I“±ìºØG¤­íû|†in &Xñv&°ÌVÌÙ³;ÆÕ¢Oû%å×Ñr<¥ÿéA¦{,&Ó¯7j €µÿÊS`ŒŒ 6‘JÑ^pµ·Î·´d˜Ä>ò@Ç-*M1/Ê„‘rÅ(gå;,*#ð76žŒÐذ+²quxÑŽà'n ð%Xƒ_id"Šð/L,Óû Ø» Âö%µ%AÒäë·%nat\Qé ¤ˆn±áÜ1 ØV³‘б´`âöjÂvœ;*BX‚*ôwµœPº„¯€·³G µSÓè1ý¨È¾ôäW9¥pº„mUÏq…R‘îu7sÚÒOìHá¿‹.©udéÞòÉ’+1 *'ÓKÚÚ‚e‰ÄP@eL§µ Š@UFJÀàùJj7LkKü‚Ýpt[‚µAÖ&TC_¨¶T:*²½_©5=J»Ùýoú¡7Ô<4 ;1á'œ-†D‘C¢G1ÄŽ1älû-êk²¯Þ¡÷žŠˆ‘ªëÝBù¢fÔÀ%¢eqtPÝf+Eæ¡:øH~³ñwÿUH0°ì$Œ,’pVïx^QSµ?غþ ‘…€B-£"fDψӯÊ)Áz:à5ð3B® ùÔ?͇ý·ºªI˜êÉ&5V&øùÜ—“Ñ5âÌ|œ£×bq„¼½mœå¹Ñr`„½Pk߆Óoí'eíP|‚M¶kÏ? ¤t1{oíUõ•žS=ábn¬É8sÕÜ3÷ÓVÊÞ›”9 #÷Å#‘ûU9/¹-t†ÓŠ@)ò¿è~€iœT ŠWÙ{ªuÈÙáÔ.†Oí‡sâì ­Æ`¾NÕŠrï-ãÞK;Ø®;ƒŒ]Ì!K™èJí¡ ÛÑi7[Ÿö_­È ´‡&?÷¶=p C{os³·”žf‡ÁÒÄqÇ/œO{ÀØÂ²JÂ9%‡ìŽm审Q¸² '7]‚ 3ÌÛÓSœr,,Mq¢3ia!0ȯ&þöWá-Þ~nðûªV9H«Vîë¬'6‡’{VŸ˜ò•CjåU¾z­¢„åÐ2+aþ®¦Oäºôž §.qPÿYu §QíêuPŸrìþ¡}J²Bð^ìÀ¾ø¡á*!{OoKÎÁ‡±Ø^A0çNÖß uc«ØØ*ž­­âɺŸß¯wêØd2e[wîn öý‰lK9Ä ~0&3Uϵ'Ñ™¿š¡ý ÿIŸ‘,iZ}þrÊDgžÓF–{é<úF¶ªåò16²ÌF÷õˆ‰ÜGP°¿Zè²úþœƒ­ä°ònÄù—¬Uä︼ÛÙ3L<¿m×êzþ ›ªÞâ_yËôÐþ6DíŸÝvg#Û¯ØÌô~<­*mñåÙˆ†½9:½Ê6,„B76é{—Ûıƒ?±‘¸GÛg, ^ÏfoÙéž÷þ´9ÒmŽtþž>å#Ý:ÎM|µz¹ˆ­ÌRÍæ˜e;fõRлms Bü£×+Ò µÇ7T_b?ºòyl¦¹/÷}›iþu¿:ÛjÍn6ÑÍ&ºÙD7›èfÍ0臑‡¶ 7¼m/bõç±ÿå¾­÷횣°úE¸,Íá:%™€7´1ÿ¶;äaŽ˜…ôr 3›ÃëBî’Ùgö‰í¹'%ûÞ¹úT½ÊaÕÉåGú+÷ÐÌvÓZÕSM¹7ÆÜ+Ç-sî•.wM̸îMV¶qÜÜ8nn7ŸäÞ”›Ü©{Óê'¹•3œ÷×㜩¤Ú{”èË–{r½qì….‚å‘.V R°áêÜNI°Z÷üœQ‡}Ç:ìÓ-t£P%“éWÖé´È¡‡z5;]­³ÄÃVQzß×í¶­÷ýUA€ËšÕAûƒ,cªå8†çû«úšT# èñª«)ã,ä7ì ]Þ¾ÒÔû‹µ/¸‡àt6ý­[o³ØžÊbsYQ‡ }±9 ¥ë`Ùu[-Rˆ%ô™Ù¶‘mvÏNa[û(z½j¼iŽÙÈϾg.­ì ´²³>¹].góÉœ7qϲ)kæÈ̆l½\ h&ó”´ÏSÒ>£SÒ>Ë6%í³Í”¬<%gm×*iÃ*ig\%íÍ”¬<%}×*éÃ*ég\%ýÍ*Yƒà:·Û†òYí @1Ï&¿NÜÄPò½xòæ–B^+_3‡žª³«¢!“ŽÈW@ט\ªÉÙ˜1û' r?ýc:û>µef74½Ìò¿ýd];/.çĉ—èͲs…ÑÍÝ·Ñ—ñrr9º)’›ñõà[Éh§Å ¼­ ³õßâë7-#üÙÙÙ!M—RëQV{C¶(y·X]o¶¶à‹ÈHv•¢ÐþYÅ?s~¶ÊÄßQĨ×!vÌ~†õ›ˆÞ¼„ßßü3î½Ös:Ö{lYŽ.9¢“¶úÇù£ž”qGÁãNŒ÷àÇKŒ)$|,údg˜ÏØyáØ2´ý‡4ê›Éã$£ês™‘ic?Fs€µÇà§Ž‹q·è¨ÃÃÙB¾O¨ü„jâ^‘Ét±0K–Iï²eä0´aSyÔ‘úd9ؤ<Ê/ƒTIP£üë©AäPù"/øUô¨÷ȯXdÙÊ$H ¿ôˇ¿þi77ê€MÝh†®Ê”©²í¤­ýuN\JFc•!C5Õ©õÕ1RëŒzÒFÓÕ†ajIkËŠ¤já¤öì)‡¦Ö³FЧ²Óz×P’›L…ç¡Æ–w X¤Ûáj3NÕ%[¯¥dVzý€š‰ÈæÖÂrt÷UYPHÂɱs=ää-¯ qø€*DÚqÀ3ÔÕYÒ˜ÓTÒç4ž¹üG§tð€JAÀÐV;÷t ñqÕŠÂ6ÃŽ“‘2J; ±–<Û‰9V«¼]s퉹º­³þA^kƺ¾ãÛÔƒ@Ë…Á.îкšMÞt”ÅhôÑܸSú˜PK½ä6Ecæ]A_oæv¶Þœçž°ö]*è¹ó†²ª³?^æÌ¾É$ùÑÜ>ƒøÑujÎʃ¶ÝÀÜèVœÐþ,•Ùßð[ù ú¯¨T+×¢jT£ŸÓjÿEJki=å¹_,GsBþëv4_Œng W9Zìz=äxR¢ºzNg¿‰K}Ð)^}ø¾HNOŠè¦,DÐî.i×{õ£²¤²„Ìg÷ËÉtL Žç 0•½h›’’oòçÈáx:/ãq1þìht3¡bh:‘ÆxþÇøfü“@Pc—žÛÚË«½=^IwöçøöËxNÊ”‹¤`ÚÛ#ƒËDBÖç_ïoÇÓå‚~ÆåSûô]ë¨Þ&Êsz¿;z_ï׆ÍþNE|Cåß¶ºÃæ»f_}†/eí÷îçw³Å~}Ãö9£¹Ïð‘Åý-e«Ÿ0ÚùxqC?Dñ>£$›17ñÝf¿¿+è¸àõË!)-ˆ6 ³Ð—Âdzw¿ÜVÇû¦2¤uó™BOôéèvÌk?=aED œZæÛ×7£¯¬»GïO.(M–°÷LèVrIwùþmL0 Ûél‰ƒžX¨õHÿóñ ü݈òÀï²•Ò Nz³÷ÓÉ’Lï‘(ƒ}ÿ6¹ü&©9šÁ}ý˘ÑëÖgŽüó )ñ߬ãQ9°ùc|y¿}¹“Á’E²¡Ø(!˜‚’Û ˜pb´(œ¨;8óÔªoÈxÍ5?º ÊDo™9—ñyˆ§L0£2W[šæ‘ ¿ù­DÍףɻfCŸÚb\AkÚ’xŽnýcÐÙèëÜûÿ·«5mÿ)ûÿAùà ò_QD5€(ªE•ìÿ•ÒÁfÿŒ‡-(}ÿ\ ­Óón‹ÊÜnžÕæŸyƒgC ßâß‹þÛxtEû6™Ò¡Übd(?XÑÚäúz<§=c´‚=8dwg}É´)ÒýmŠÐ¬¥G‹o³û›+ºGª•ÄÛeFô!ÔQ±€{Û§‡ÌåL­FÙ­élÝÏ‘JH ØÏÕ’ôùïwM%ƒu ~hj(…#Q@̓=ŒáÍr™R™&^Μ•-Qƒ/=@’î$êhd©ÃF,D¡ ®a馦‘>(Δ(ØstŒñ=0Eárv{w3þ±mMJ”x¥—úŠ£1Q,ñµ)QÊ‚ßb– …¯»o›%vCzI)^RDºÔÙcýDgÅËÙÍý-å‹ÉŸ3º|MŒû3Ž{t7þÏlr•d‘6¬™öxDeäàß÷tý/ÈÕœò×\ꔉ7Îásò稹L|ôž~ômv3^üñÓYêlÀÆ`ûO?“9íÒå·Ñ|t¹¤½¹¥zH.~tf‘aRϤpÄ~‚ÅM­hrMÃ=Ô¤=£!ß ý'à£Óþç"œöÍR)‚Ab#-‹ï{åÄwUñ]³õî¨ÛInÂâefN|ÿJ¼?øÔQö`1¾æJ}À½}{?½„ýÄ?HŒr/ò`wqZ¸ ítµrz±d«­)eý邊"K³tOî·ºƒÖ‘RѶ àŒÈ¶ý½¶7ËCbnè¡vjÿ¨"?g8>s%?/«ŸÐo8R&ÌxŒ§©}zŸÊ€wŒwެï|ŽßqíuO‡{Ö$–ÅŠ¶-cT©aB¼s¤©Õ@ìéWãéb,k!òÄ,ôXÇ)ÛUp‹q·HñµÐp¿xMÿÞŽGçn!N­’Rû•hP’Â+¼(½åŽrz)Êk•ÔR×]M/uH¶ké¥Èö~z©}²}^ªF¶Ãf‘aÄDNÅÆxç@a5S×2ÓùíðÁùíð×ó[)„߀“øí0ˆß‚øm?ˆßjéü–›“Hïpœ¤)Ðé uÄP±á‹§Ê½SgʹžoަÉÔ×÷7ŠN çÇdq"‰Ç]ÂMÙåCõ0˜®º$ÊrÓ ;|]>™çÖòëç ­¨Yªúº¤”<ŽÊže[›ë]‹‡éϺZ$úÏ 6¹A÷rÞ"Ý$ÒV§¹öƒkñÂÒ¨eò{<™2¹a1¹¹˜z°Ñ] P ¶Ò« Yk—õ•§!ë7:WƬK`îöæ\Z•½+ëaïÊêì!Æw*¨mN+qèàSJ"ê$ó‹õâD?À‹÷~Å­¨ʨ¨—×Ãí‘¿šu óëù ¬V: -gi†þçZˆ•g},[ˆ¿úXð¾é\®®lðpqi½zÔ—+\Vzo(Ý˵™{¹Zw•ìËõ—è^å‡ÜÕ6‹éKèe]L® Dp1¯\©ëK®å-·òî…ÓϸpJ¦ºOħqOG^¾)­²/¬ÃÄ}UZ3½Av­p?Ш¼O9ÀLý`‹–×FµylüØà¶D†ðmI¸¶¤Žã0q3æeë†Ê֮鯆²qåW±q)„AØø0ˆ‚Øx?ˆkAlœÊ u~r¥:ëÓs=xâà)ŸáâÏÇ—K-G¤‘SÙŵRÑ¡­= FjÝË¥Ñqau?„ «tÍÁöÙI_žUºêªE©BW ,JÙm?¬(¬¾4ÞÛ߇R%B]Ù˜ÚgÁ¡´µgÊ¡N;€CkY8´Ρ!E9‡†åP4„CsKGGÚ©³öƒHÇö³å½Ãt\7ï¹òkõDîõŸ¯Ü;ØÈ½uóÞ™Ã|Ð íþìéŒ|x~HÏÐjNW :YTN¹‘Ÿ‡ÈD @:áük02€åWp[_$™oì×>Gëš#Öbúé¯dÄ€ÓN¹õb‡‡Mzx Áí¸öÃ?øÛ†¶ŸlIØLlCH÷¯¤L ¦RÿK'u-ˆQ‚LΕJ£@‹ŒR b”rˆ™ œÛ%kêȘ›Îõ<žJôO:_dqïx¬Àµúëæ¥¶‘IRR[Æ`å§yùÁi^}8š‡øëäÖiòÒL±‰ÚуS{ÕÙŸ‡SOs9¹&Ó™ F^ÑŸ£É Ä`í%;¬kñ-ÞLX k"¹ñ2FÝPâŽ1FIi¶ ö·Àœžxé å%Å{I¼²ïx@<^ˆG2´×lµ–½ vï×ĈªÃŠT³Wk%J%{=:•ÓjQ®ãÍDÞ5)ë(9ªP.XŒW]|—¸þL¼éâ=ã6'ñž‹ý`œ,í•&„èB1ƒŠmŒpèbÑ„T³ÔDß\Lj&ñFƒø¼ÁzöCÔââI¦‹.캨xÙňNýC¼èâ½”­T¼îb?ç® ^t1]W Q)A·4ÂwMN5¶üÍLrS¥UmE{äX,±")ãg{¤ tœ¾,ói\ÿŒç³-€r¤%4æØ*ï‘ó»;€ºlI Fûf¹Ã=Ò§Ü:»¥:v÷¸{W‰‹Ï—…Ò^ô²ÙlÛ«¯@õw[õdë•¥J^Û–‰Ž#«Z^(Cu³Ù¨ÄPL貜ŽéB»§¢a~}3û.zI¶j{|»á¬ÎH¤U1Gz]³?õªô–÷9õÕZÕYmØfõ01«öq&Z«å›•²uì$ªAëû–:÷Jži©X†lc¡ƒ”9ÑKWÝlÁ2Ž´N‹Jí¡Ú*T´ªj‘B´»O¾ Þän|9¹žÐºc|O ³Ø~m§‚c) RÞOã:YíÕ”=scNcÚxRR9£lÒü•u&=«Ï¾\¥Lr¨æfލ”XÞQ&VÚw.`ÆIQ9•zVVÚ®¬”æ³ïhϱ0@B®çg¯àV¼,l–”úÉÕÕÍ8¼‰'Ïw§ôTÚ³ñ^-MHt&çVá‘G¶ð ¼°Sñ³ZbN}Oìû;U/‹Z8Ò¹µ'+¯¥²WâÂÙåh*X§¢®å‡ý·E8^/ãC:qÂUÊýr|µ­òÆÑ{_T7|ñ\ù"|ê{ƒÄÔªYì,SŸuWPf¦;›ÂPÈxBšŽnîÇ>úš¢×ýz÷d7Ú~áÀMÒã|¿MÛˆöJ/ã«Î ò´âªž~W~ØBÍ×B *`/¯ív -:À—>Òm(·EZoØØ¢?Ϫò®Û ÞePå§,;+Û&Ùr [3&e&ÈC55!¾ ·“éýBò)åÝéÅ8íê—Ÿr¿7 âMãbëi(ÉÅk= %9£œQöØ&W¥d •lâÇ{R²®¯ü±æÃÅÛƒnaƒÁ§"ý§G)ù¾ ÿXUræ-Mž<(E IRL!Œf[¦aƬ{\6i°Ú.—¢Í¦írµ4#ŒM½=‚ù?Xg=Ê6ë9'%õÀÍF•u޳Í‚­¢pÓUö ¦SÒ¸™]þA„_z½¦1÷²Tã¬oc‰R6–ÈosØDSd¿Ë:f·€f³Ž9ÍŸ“e€iì̶ä´ü´º=£,챃‘ðµ†tj>ƒª%¢ñ1°å¡Z…®'?ÆWΩ8ŽÉâvts£¨m@Á2·â&ŒL¼:Çd¼Ïx¤öÕdA~¹‡ÁXût®›”t?Éb £ËÕ¯ÐrøÙFËC-+«Ñ2Våıo>Ž¡+#i'F ]ÓÊUy±\é«îî¿Æ_ñðr2ž.F.\þ¨öÏéÈ‚2,Ü4Ù٠ײH³ ¾²ïZUêôõ‹dh]NóÞ5&\04¸g/aÍs[†òµ[W”ΓåÏœ¦:’8VQùq(è±È2šÎl«³éÐD6ÁœÍXWJ4!úÃnæ´¤Â0©Â徜_Ð_!Õ?¼¼¶kǰrÖßpZÐvO页H(å¾ÒítòõÛ’®xÊ‹ÉÕØQ‘<…ÈÍôrt¿€*çŽbâô;»¾Ž 3á4¥«iAþA"G+•5¶òOg+”ÞÑ- ìñn4žªE‘,h(ô®f´]Èoã?”F0í(ãÌ>®îéŸþL´Ïä$ýe|¶¯à%*Ì2økV¶Yz¦dtu\2â¤ÑïÞ‹r É%Å.Úí¢J'ÛY˽Šdò–ý4Áb“K)‚å ‡`±É/`9Ì#XªÁ¥‹.ï¡Ìµkq!TY‡*­KE"„Ö)êÜB¨²V!T]QÕ² ¡ýu ¡äò B±-çofJt¨ºUFŸ˜‘i“rNvIlù ¤K?À¯êÛô7ºP¸9QKPž¨¦UìÔ[ݨž%fµì7Z:ÑFÉÝF»¹C.XW“mõ_è•c<«¥r9¿ÆZÓÙtw:þ:ÿ¸­m#cx¢S´Sõ£!ôÉÝ)(½áBH³’Ý{­ÕƒY÷šî(W¢ƒuµS`¶Å/3ºH·ãqìÛê/|]þñ}4¿bIV¬×) ©•—úG§Ýãx@»p] ^¨ºGq¾µ¥°³‹›±Aê \Óè ¯Š6­Ì_‘V3¹×4ÓbU÷ ‡¼Ÿ;¤—Úˆ«·žêEïCªçD­xˆºs¼sž»›*QiE9ˆªe€¶M9ôïWöNÍÑË^©Ü©šô]ïŠÇbç ŠÐBÂìGbÊ<’²O«:Ccé8§¾ênm.q¡®4ªz¤X;K3˜B +`P´M|M¿?ØJú;Û¯Eÿ= NSü¬“v;úQè»Û$¡d^$&г6 õ‹ÝÆ6HªºCå-»ý÷KsDsîÅÊØq×ÇŒ·“©6.OZ—ìÑ·ñåtšídŠi á²hq7ºÄ˜:$ëªom‰j<+s­”á;¯^íè°_ïÞlmui3p°éì½kîu¡“⛡ü¦=Ü뽘A"æï“ÅØÞÆe0I’ãƒ3ÜÕx ˜Žà(q9ZŒ%ýu‘³Å}"G X¼`ù•{5Uâ•1üÜ?{Ëíó¶åD¿ÿüV®œrzëEþMíFUã+­j^¬¶ZûoWu¸Éj jÈ,.lráSQôUýtP]3º-KkrÎÊï“”Ýùçã¯)°?ÿoí—£ÿŠJµrí ªFµ*äÿ­lòÿ>ÊÃØAÏÿÛožƒRéR®‡\‡§ÃO½&ý~п»-*…0½úрå^g°äù«Ï磟¶F-Y 9 tgØVjJI;Lg _7cáw÷K™kX¥üÝ|öu>ºÝ£ÃY‚´§´¸aÙH—32†»×8ÌÑ·XÈÊò÷ÒO« RG¬™ôÊkgÈËÞ 2\N—óÚ‘FP¯y:ãk^×N8hyÊÇÌ©½f_wãÞ°ÞD¢Žo"…k³‚I’1k²b+ç³Í:Ÿší™'z¦´Ö¦„Nè—1¹_Ð ƒ=[á—ßèD@£¼ FÚ]’؈àÇ0l‘\MèPqø<˜Íÿ9FË4mþúfô˜ïjr9ÂÆ¨NÄD2~ŸÜÜ@–ÈDbˆlÚÓ†Hµ¨Éíý­k¨ŒÓõѵIH:ñÔTÙP –Þc¯ÿrym Ì²×ÆˆºÇßWêû…‰^ß¶úƒáÐyñ÷$æÝ¨Ä¿£Ã û‰ïÅ÷T7°Å¶LêT}¦:Ië¨H>ÉIò¢ö@fZä%JM=·jBãv•Jš°ÕäÈÔj©åx´‘…–ž•?®ëD‰@ñ+EåJµ¶pøj‹¼Ì›úejül¥X‘@®Áɇ.¶è˜àø§ªªÁñ)%==S^”Û•Ú±ù´ˆ"qé猎N»T 8“¬ÃTӪ˪~[§ocÝe[ÝD°ª"ød8ú# ´ ‰Jù§Â?lDP(;„œºIXï~³~\`¼@ž¨–à”€oà{+Ü.¹§G¿k|©ÂY@«pÏjP„ì—ÈN1èö5ìý)V2¿lEâÓJ)þ4IǸùyA¢Äb(ý·#.öa¯y¶Ç»WïÓ9I(Ÿw§dµ|›À9—Gß`j•DU¯Y¨žòJ•l[)«öíÐÚ7Ý÷)‚°ÐŽQB¾þÞë6÷èq™)ñMqËCf˜Ô–å ÌðÌ«Š^C¹muEðBx˜_~-éê`JÌdº¥ÒwªÍé²Q‚|('VKä„qbd#åQ,À¤\œ¼¦ïXqñµ÷Žh½'paå,Âæ¡æh8&zµ¤}áâuââ†}²M·!ef •{jÁ=S×tTÚ‰ÿ|A)ål¥’ „ÿI]„®èX~Îå4ì‹Á&‡i.ÊYñ® d¨ÌHÐ2å%Hé![H]L‚®o…Fá%±Ñt‡>Þ„’|‡QŽ«…vŒ>²'Þ¨âM-½.–­·KÿN¤p°ÐQPSšº?ÇïYæÔÞø+ˆÚO®ìóx`Ò°µ³³Cµ)åXÄσš»V‘}eZ¢b’WÑzz{ )ôŒ°¸þI5 ò7ì½`[«lÐ8¦ÄABQ8´ª%*éÔ òt×6ŠÚ)#sèLŒ Übv=08ßк°,ç?ñˆ5C1+tÓfšprãÕ*’ûçìŸ8‰Ù¹mœp(bÞ.ñ™(®O]pB¤‰ ÅÚû×h>¥5¿&äêþîŽlñœê›³u9‚$€ÔK]Ä„®ÝpåÞOÖjiÓxÆÂEPïÐŒZgèw:Èo¦;£úïtvÿõ›®ΦŠ5@¯Dõ=|óæŸÌkí£üEáé’)›óÄŒŽ®þš‹%Zún>þs2»goÄÈg^q2žö,FY*“VÙÇ{ÜößÅýí£ØKåƒZÙ´ÿÖÊÑÆþûçMÍþ;8ï7ø2£çÛz«MôÏÁÚì÷ÏÞî ÃóØø€Ùèãa‡[k) ©”˜ —+¡K‰²×On¾¸¿¡©3v¶ÛæîÑû“]é ½—nˆdV½TCä0¶KKd~“@¯q[1lb̉ƒE³ŸBFn+‰¬é-*†ô²&¯èFŽŠw£ÅI¶üF{ñmvsÅ®ãDt¶Fµœ-G7fK¢ äð ÝÔÀ'á v9›_IèÚMav% µýÔàTùšW»Õ äÔ¨øëÊ{ªš†Êfé¨Ï¸ð´ M¸M²6xÀœË,L ûÛPA[]&àñNÙ7ÉRpNŒ ¬ß܈·¥~g*m˜j_¬ZdÕÌï§â>]Qà Œ“•r°V¬s8o{© P,<ûÿŸ¶ÿï×’ûÿþfÿŒ‡ñ‡±ÿÜìÿ+ïÿ3îÿÇý¿dÿßìþ›Ýÿ7Ùý9ïâ—hqóDÝùÆ¡ŒšÆ9®¬ |tªŽýÿòòۣѣìÿåêAé¿¢ˆjôÛ¨VBÿ¯jm³ÿ?ÆÃ˜¢×?}ׯwÈ=…ÖëÁ[ûú7÷£é=ì”to?ðﱬ«àu´Dÿî# ¤sÔÑi§×n^ ¥ŽNôøß÷ U»-Huñ6°é¾†Kz ø`tÿ6›/ɸ €ixyAaŒhTåËwê76Òʨ”¾]lœŒhcvÇÜî`ÿ½™,–»WH~Æüµ„£ ´2ÃY18ZˆÞ_t‹gÐo ·ëhÆnC{è²4šÒ-v`ã£Û»ÔNFP5¹M0³/ËÑ„C§]Ñé6lN ¹ü6šèXæ\×ábþaP¸rÈó½”dýjD±˜;>Dc åüAÄútåø%”é@ù‰H™v³~Ѿ(ÿ1.E à"-çn;c+Ý Vº¤ÀmåzCQ††úïQ/-Û_ù¨$…˜#ŒXÚ6\ËÐpƒõ´‚ÿ+—\Í6Hã  0-&ÿó–h[¯Ì*¯]PÒÌg‹x “»Õ/ñÅ ±>¶ð¾R‚»ÛW%㕸-Dƒ)Œ@Uÿ¿°mÖRiÏ|ž¡ÜÁÙuW™ŠrÄÞÃUE†°ò°´²rU6~×È<é]"%é;8HD&˵'P\Ü ï%Þçvòú"«¤/欄²J` ‘ÉÉÁ=)c%½SxéUÞž¼Zc%½uT²ÂöÖAØ÷È'æš®¤Ä*é­¡’Á'²:Çzk¨dvƒ(ïìDlv†½uT|™;Tp%XÉY ÌÖ?[C%íuTrÖ^G%¸Š÷óV²Ïfç3¼dn^Á•TMkè Þ7Ó_ZSªœD*j·⥛™LëC·S¿€æR<¸G ß¡u‚mè¤Ï5lZ:m§šT®&××ãùxº»9zMpÕ=Þ¥ÄìZ­¦S$]sGå„7 jO¸ß¹©éÎæYœÌõ[¶Låd:ŠgÚïqM‰Æ¿íÕé±°©¹'¼!Q%öã±Ô‚“í«†qÃØ–üÕ€‚믦ø (ØÞІ)ãb%hE•’¯"ü䥭ƣ¤Þo×NŽSz†ÀŽþxÁ&àE„©U«W|†`ú°Þ.’á`HÏÓøó¸ÿ6û‰8€ø5K T.ŽÊ‰ïláVáÑ¢êzzøAzP‡ÿÞÖéícú{·Ήq4W×áÁO weø SþR‚ßà\áyûc³?øïNýÃi¿Èouåï”G‚ý¦>ôiöhƒˆþGÛ¾ï7ÏØÁ{ç,›!žx3ÎàNlýë´R åÚ.òí"é|¬·ÅZÝöѬ¡d—ƒÞo^ö¦Eµ×úÈ¥Õ¶›ä}6ä¨VÂ1¿(ïpB+PRìh“„òÔ b…šÄâEr¯7Xë¼Â",VOÿY?ØëØöÚ‹ÈùÒüÁ÷oKà‹…0ƒh‘'uScÐ ":òv½#µyA—aW+«UW4_óôvpÿEÞËþZ`®qE´ó‰Ÿïüg“ÿ²Ÿï›²b+ØæõxE¹øÏ^JE=ÞâY…ÿl󟼳>ûÙ?K©hÀ_@lqúsÈ{4äŸyEÃÏ¾Š¨¬FšÀÏ&ÿ9d?ßó¿qèôg{RQW„4ŸüůpÀÿ¦=vWÔj×?J%G±M¦ähv{KU/³ÒͧHNO’‰Ø ”]:C ë¾=…»[Híjéš–ÞØê¢{rgàŽAãU0—rë|Úéœv5ò¼¤:|½ÙýHa•úŠÂŽøO1 JÉã{‰s$~±?KÀnC´²ò^‰þ[\gÜ"^˜ì(HK·k®êðPGQ|ï…FËCÄ®îooâ‘'®8ݵ£ÄÒôÇw`É …wR/Žk Ùæì\ØÒ}>À,Ä$D/ÐF¦:Íjí[·#Øß'$ ¼dÝ@•n®1A?R"xº=&M΃“ cTh«ï†{|ï j¹¦·¬‚[×’„)p¦û±ŒQ‘³¥KvâÖ`DòM §5øÆCÑ®)ëÁ6ÖѨ䌧Te*Hhû5kûÊ‚J邤i”ˆ¦ˆ'º¤ÆÔØûQ¡ý Ý€~8§ÁÃñ]?ÇwÕ.u³s|ù®«s|7Çwóq¼lÙäø ÖÓ9¾›$uWåx%†·«s|wŽïâLwss|wEŽO´ŸƒãËvŽïfàxØŒ‘ãÓàãx¼Êó2ý@ëÖ Û¶ø©VãûA6Æää|Ùx‚õƒ:Àû Õ*÷Wîì?Xÿaò`tƒü ` ®q Ͳ,}Ðìg)‘ä­8–Á Ë:`}ñL‰o%4RÖACëW#ë: ¯0!Ü0ÖA#Û:häYjã‰uÔ€uа½¡®ƒª²Æ:h¬´°Ñ52¯5ÜÊ~,ì×bØE ™ßm¼äÖ*îÌ ¬¸£ãàýtòï{c‚P™,õ`#)ÎiÜø‹cˆ—è´:Nl&ÛÒ „<ɬ†~×8¼«øCÇ5ã7ÛØMør_™ß*½ð®Ò‚°Ýy¸ðÀÃ…+qáráE~.ý"~Óâ#^Y–J4èh좚#¤!xa ج>·¯”.áÅ\þÆ ?±ÔÆŽûó7¦8–¥6&L5bqZp°B\ãê5®”‰;G7—÷7{ÀÜn'Ó%w¾üWã»ñÒ†áb9šªÝÌÞ7ü>£@¶ÎE^#:ÀÓK*„·Ô,=´F{ݧæ©ZfWñUݼ[LnXþ¼´úîæãËÉ‚åŒëóBtÙ½;Wð#A{èÒF±—²pRö{({¸h«P?(Çp]Õ·Õûaj|îŒiß^“JÜmI©y€p©ÀïIWKÂi”UùƱH¢ê@±º† EU9ÀŒJ¼óªdô þ™nt¢´*ã-+ЬèNY(N|\e¥V)þ£¤‰P%C”´§H4Üý¤^À•éu`eÊ ê°_+܉€¿É-{+iÄo‚CA‘ù7™g‡$”,ž“òsAüžŒÅ3N7ÁñžZ!xLfô°Q.\QL.7åÒÈUŽ‹+oVÑ„ÓÑ]ÅZ|˜B`÷²k8–]CYv_èn;¾²®¾6\¶‚›‹îÁ¢x[?Â2g¹„Á n<ø V8­Î‘V]Ï~·ÅÛ^¼Aë¶]/ZˆÆ>Ù ”AXçv׳F2ç_ÂCÇ*K˜®\=ƒ½s-ÿ‚58´òúNZ—TV©þ»­#;½r¯£§F©ÜK¡wj_ ½Sº¤> ‰Û§“åØ¿^=þ:èÚ×¹ñUáž–R™ð Ý(MZÊÇ_¾nô}þÊ㣯³c Ôu¶ßNvCÛÎ/Xnƒ€å–â­ÏMÌk?¶õZu‘êÑ:fY¹'¿ç˜üžUÈ@ˆãððKemom:‡[º*3º‚.úKÙ€„KW;E7ÒÕAY÷sœÉ{ ëóœÎåÁºg?ìm”™u-·ðÃôf¹ßrsœŸ{Cër{Ò'éÞƒœ¤qDüõ hͧè§D¥Ü‹á½ãæ=\ü‡<®ËÉ€óÃôzõ.ñ±ÖÀ{ûÁï²ñ<#”ƒÌOkÿ±Pnítþµæ8H½ï¹ÖZÈYê—,¹ßí0õdÙs8S=éE6ød_dƒOt‘-~ÞÞŽa-…oh¿ÀÉ`ði³¡9c}kÍAæÍZ _kŽ mÐs­µ  íW,¹Í†ö@‹l³¡­¸È†}û"öé"£Ëh4ýz‰ ükêÁ{ôÉlcOÛèîž|‡„öôÉ’«¿‚E®®iå?úä:ìþÆ>¹!ÿèàL®Ãâ¿™\:¹g±}bû¬O®G—ËÙ|ò/o™Ò_°\Ïú©Î‘\vYˆ¢OTZ÷x†W–ÿž¼_0°_k«‰ýøÂâIœ^œìÔ>³³Sûì5üó4Ù©}¶a§äóØé¬íNmNí§ÉNgí ;%Ÿ§ÀN}‡têƒtê?QéÔßH'K%Ošvj;5ÿ}?¹™|™ëI]0†M8¿cü®y‘¯BiÓGhÓ¤À ßf÷7W€çñe¼ü>O)õ ž¨”‡·€u9*>;NŸ)ñ†óÑÝø?³É•pføa]•_p˜øì_+ú¹'ÿ)à°ÃVÒ¯=D8Žÿg=Ë!‚|Ÿ,¿‘»ÉŸ3Ȇd×ý_°i÷žÁ¼:äœ6ŽÊúv 1fïܯ«cMÒÓ±dµ.ämp!oG‹%Yüû~4§™'F|,N3a·i3<€ <4WÙÃ6øÀz‚mÍ<æI 1—‘îFŒ£ÞÍÈ—Ñåñu¼¤;ø aG0ÆúËpKòÝÆ|4½ü†%ß& –åû7ª ðÄ p(ËÚYç㇒ðcGíSº BRið&v±3;ª÷û²MkÛ%ƒèofrÓ—d‹Ã(ÆpGËåøö’ô]Ýcú]F Ä^YX2–B,(ÿ'SŒn‘!¦Ã]Nnyr•7€)ò6*ïÁ:' J£éÕ‚~ô’¿»¯¼Ûšþ9º™\ñ^ ðæ_­Wé»oDŽÓ¿ËŒŠÿ|c¤DmíóZk+Ôúg­Uuœˆ~À3.É¥ÞiTôãE¨¹uŠè­-º&·öŒ_Œ÷àML)SJœiòõ}rs#RÚ¼3S‘=†Ü¯8â×Õ•`Ô/IIháþBY›ì¾šž\În)Q‰¤µ5c𾙤öfŒ™pGóö¸@Ì|¤P³?¾¡B.ðt`~€a 'çèXf§-ÑþžèlIé¬ÌÜûÒ‡ÂZü:ü‡2 LUÍirøÊöVŸ#¨Ãׯo¤ šÁ16«µÒS™ÌV'ëj»g©ÒÆÔƒÏpLùÜðÕK¿',-† úË®7ã-Уå{§ÿJ©¸‡¦¿ì࿘‘ r’•} Z-}­¼Ã_X)y™-AŒøN9Q8R…ußž²daôèvB-$s³àKp„ ººT«äÌa‹ÖÐ?B£0ý‡Ò> ÎÕek‡ÍDŸþ«ÀèEÿèË©˜héIÏ$ì+o»¹²^\„gÍþ݈?èñ‰Îš€Ê–Y*%£ÔúRGIi,¤sÏ&--µ¦Ëùdº˜\Ú†D¹¨ßêZG ù ÉžþÓêæÉ#Pé"Ä^¶ Åiåʯ+¬\ól+VFuÀÇ^ õ¨å6©Å‡pÁ@-¬L»$Ÿž)"Ð`.ö>ª;tý·v#Õ~ÐWJ€d{)_2e @$œÍøŒÉ±Ãiž`V dɸ~†݉¿QŒ DÀ› `mõEù½’ ù=؃íæ^‡ìÕ»Ç{äü‘D5Vºœ¨`ù€£fã}ñѲ ȃtzñÁ0Hòi4 .ÖJÕ­I{[Eî—:ŸÕ’ù¡N1fCòxÕz‘ ÈDÆ[QˆA&A„ê8A8úÅ^·iGG&1 F‚A´6Z ð!«’MGÇW¢ ºH êGÉɺ¶!¯{—±s‡ïoê_¶¹\SÓGJÓ]­éîC7 ӻ˚zÑ‘ûºü µšÈÙAyÏW^ÇÎñ«"GE§aëEW %¤ ó%MMO\žDÚWº‹ ‡è&àS¶û!Ë8wp˜ûaÃÔPÀµP$$²ØQðãMׯó=Ñ|_àÁårvs;]¨›Á+»L¯í@³W'†¼L‚újO(A„«EvFTÄÚ¤¼SF@¿‡Å$¦!˜Ûv6¶$:©PÉæ»~*ÞŸ‰R¬ ýsõ¯—ˆVm¨ C(לzD¹ª)*3÷tC=i³¯±Ûèt))Û ,ÕkNΕ²]QvÇ. ¬Ø­¤ÄÅÊêŒ6ìå`†U^6eŽ£JÕÒ$ª¦Éw¢jW­.ê^œú;ÛÛ[{ïD²‡ìBòÒ>ìR‚o‡khìBœ¿ˆ^´v?Xõµ¹©>éú{bÜìªwV\ÛŒøm(š›8ÑÖÙI®¡/Ô´Á¥«xì Qôâ’ºiÈœ!ôj¬’ÜÐÏqÚ;í{&ŸŽñÅÉ9TÐ5*(ïÀ7bó3 e«*ËÇ¿pªë)Šª¼K`@ÙVP0Ê­Å0|J1Xˆû Qi—¢0c°Ã›»~¥'LoáVø½h?ÁâÄ+`x­`Uña¯^²ŠçQÓ üáCÚ£ëúØT¶ùovö—D@â…ÍZJ1˜µƒ4«7¬ÎÚ‘–"ÊßuÖ”÷¢ƒç6kGyfm°–«0^ósÆ«àõŒ3ì°hU†1QvlÜ©•}šoÁi{.ïç$;9wÞfçÚã’”—ãýúж,HÀÊ ëâ6ÂŽnV»lD|žò®X÷"5 6¡,U.…q)ù«³ÊÞ‹_ÎRÀYûåV•b‹@¹l·N–+ ë$Ás™ñI-q>Õé þe;¢ý_;¾ÒŽ…ÊZ/œ&bøvßwv“¬Ý•gHÁãf꼦c‡"šj4ŽÙpßF{Ãtcbû2J +qßpH=/ˆé«$•òÄ05Ûob®$Wˆ¯É—4þY`×Ñh¬N”wººí>ð×áP#€_cn¶0ÌJ='.ƒk¤­•Åp\>tÜdÈÇ”81K'­}6[šÍ¶«ÜÓëœn˜½l¼Î^Ëh4™]ÿ\ýË*Ñz†D«ìmGçüîÒõ% ËÙ|ôul¿J¼ÓÀ|½¯Í\·49S)9²ÐBµ‘ƒ ¡ZÑŽÊ5åX–wðc¨=JM=œ°­ó-v‹Õ[«lª®S6U“‹ÍË…”ZQ6­ÒèɦJ9H6åê9yÙTqè1ñãMj˜Äì{–åXÉ¿+ŽåˆÚ‹ÞJÕ³:?ØV#Ñjû@^@÷våZ­®Õöf­®½Ñ‡Z«µg¶Vk¹×*ÁÝÔ’ ÔêôFvåRŒ¡EŸPY• 7Óó³)&×럫Y óæ¬ºï¼9«ÖŒ»1å¾KÊ9Qó½©~X«¶r˜æºsvf½ «Ø9¡rh9é ¾r›Ið.©ý"*êòƒ¯‚oz Mi íò&E$’ln75ë­GŠÛMª§M-¹äý>Š’‚ù„äúš^IT’w—jÉ+0×0 ’"6C*Ð_¡TK«:¨¥2R¼ŽbQb;•ÅýɽpŒŠ’òÕ"]cBù×PBÏ#\þݘúžSþUË)ò¯å’ÕÈ.ÿªå4ùW­øåŸKøU“v=Ÿðko„ßo'ü\'е‚<Œð«>ºðË+ù²¬£¢|µBbÕ¤­×¥þÅ”RVêô•mÅÛ Lê¿{¸F”qª/›Öukt3¶ dã¿6øO¥£i½Îc-Å$LCˆx×aÿm‘ìût¢vûoé¿ÀEp°K…`T1ÄÄŒ`æŠäjB_D¾.0d´mÕîh ’,ÞQMáx“‚!±GHG@g4-JþG­§…#ò7äàÞíC².€âœò?ô`§Ö²7ìŸ7÷þn” {oëô³WýtÊ!ÀãÚxE‡÷Å^Áq+è08Àý­C.gÓ刊€“B=øÏ1 ,"‹òúáWKý6BwDŽÛZÆ$ŸÏ¾+¯uÄ8º¹ÇÑuŽ££>ŽnØ8XžòfW¥‘{( ÷XÊ`l4!ƒi¤ŒæËÍìòÅä?cZ«À ÷úïî! ”! ‡\½úâŽÌ'_¿-É7#‹É-ýÙ Å‘QÎüà€+>—¨` *ê„–º¿YÒå¨V0™^ÞÜ_Å£f1äšI`qÓÖÏÛCòÏ7¼'´¢áŒöõO ¯wL7äŸ* ÙÝ|2]ޝаèÅÆ… wÇ„Tk|{3ú ˜eKÈN5¹-ÙëÛÁ‰&T ƒØb‚Á}ñ꼚Â÷ÙüÕ‰ÇÛrKINV»Îõv=h=ߌ§_é1Oäˆí»{ø:%Tᤠ¨'çˆÝ¸½Žj t´ÓX±Õ¼pþˆG÷ JG>7ˆ1Âj?i#b©z 6^Ë9°/å³dEÝ´zt«G‘P°g!4-.iÍ^ÍCkúæ¯^Þù+‘¼‘‰·¡•î€þËé~±âëT}ZáuÐÔB_O’Œ÷k½ý(TŠXw>Øæ-ôyj ¨qW5#4|™w×ܲÔìÓ,ä Ÿ3V¢t¥AhéÀ\ h׋’ï€!ñÁV1ð5ç!¥éïÞºÿ‚¢ýº_Œ–¢UyIúkeE +z: GFqˆ“pVq±ãÖ`(.s eHN€çó øa¾—+¢ÿ•épÔ‚¨áÜuêC¸5‚ÿ+Ë}Bj¾¥Gœ¦LhAïèÙðZ<ËÐúÝÕ`Î(ú³ 7’«szÜÄ .<íR-¦ÿm½åMÞÀºß…v»0$–Í¡Û?÷|Õ[Ýp´®3"ãÿIGrÔ=îžwÒc¨ñ{kÝâ?OƒÁ,SÓ ÐÎÈq¾ã÷ Ù<æ×øû'þîLŒw}]Üzx1Ïɼ‚XUk@;j×»ïèìâO:ÙƒwÍaIà‚Ûð½ìå=ýE«·ëÍ>ืëïñÇæüèè´÷‰þ ÜíÑ3=,Y7!i<èÃá¿ñŸeþ³V”Füé3ŸÁȪ8Ò#ìA»ŽœLšCü9l°ï‡_Et`Ýk€<;¢;ï…ôL=ª“ÍnoéÎæm´Ú€üʼĀÎQgèáz*›`±Ÿw[CKwxØùOYg§ÎiW£ÑK¬êˆÿUBçŠØMß›ØÉ#ñ‹­Ç£åˆ,48öòq}X'úÃ/€¿:¤ûý÷üûª„ÿFô _.ÝÝ‚ì!ðÏÑy™ ŸŽ•iM!ƒý ›éi—ö¾‡c'h›súËìVè‹ñø* lGB‘íx¼ËÖ»†ø¤5(âOùêß°(khwÕ¿é´î¸B*rºÈGÃSrX<ÁœE•Û]æÂAæ-Pñô‘°«ºBSדùbiœÅ™¿КyÎBÎÈï“«å·ELe.×!¸Š&gXõxt)® Ñ6FW)ؾ4<"Àèp§%†>bV]ú­æã;/…­‚­á¯Bö=îzÜ{Š¡,þ%?¥v½œ†Á“¬±ý¹ÓÙu™eª¼Œµ5+º@§®J'"q…H¥{õÀ§ÌŽ­ä `ªlÀìÝ-ÃSÐMHƒ 4BÆ“ÎhÔea¶Ñ™E}0E¼`LÑn’¢q1ATW³0´›É-˜`fSÞu3›Ý‘ Ý«§~a®‹Næ )èË‹¡}ÏÜ«šg{%’ð[bï–úÎE}]W}g}çÉú@Ý$Â2n©ªh0§ý=ÚMü=Y-¯"Jºƒ"žŽ"B•Ö +‘,+\ñ µJ¦í—T/(Tè*Àß@ØÇ{ô쨛ôà™Í¯ÆsúÊ{ôT9-&à¯:#‹?&wd>¾ºŸ^Qñ/Ø\ÜŽnnÌzû9„°>òeƒ²E˜&U ÉŒ>OXó¹sW޹«Ž¹ës®a[*AB¨æaËÈaðÐY¾\`€fœ{޾!Ý X2ë8´ZÙòËä+Og÷_¿±l(m9ÆÜ&–z˜ýÞÞzÈÂy ‚‚öã…¦–†«Ù_x¼ÅwºÌÿ©]gÌ^àuÄŸC…i@Q¸Ñ³ÕÇüëp§w,ǘj&8¾¼ëZ©¼[&ÎxŽ’@Þ°c5ž$‘¶[é”í "³âÙO¶Ÿ’M}t’r: ˆÅ­Ï[¡T`Û.2C'÷aá,.æê€8^ήè©`NÞé\ŽÐÈÛâ›h³ÿ^p¥ ·È—PçÒ-àÓ°QÓG¤„ƒ·Í¦˜pÍ:¸á7™ÏÑxb¹á*áÛAd²C4_ÃfYJ—!ç vŠ_P"ÄÛPWPŠPYâRÙƒž/eòå'ໟàJòÞÑzy|—;Ü#]°€½’¢¼ÛŠà€Ó(Âr…¥HðE =ü{±5„M>oåÀØ6ƒƒ+2èæÙt ÛÎíl>èÍT¶×£lKž]¨Ê‹ëÓñ-ïçà[q9›ÏÇ—Ë›ŸîÝT\¥í?) çö2À X-¢]·ü‹Ù‰W[ÉP­@Æõ‰c7 ©³. UwªWÄ¿>»ëÁƒ>ÖØTTœ¥•núÕôµDŸÁøøƒ»1o eL¦¤á[ÐldîjŒ^ÙÑ* RquµÈP‚ÁàÄ_÷W`]|Ʋc«Ñ»)5A»Ÿó•%$nCÛj+yæÒØŠøCD(¿æKƒécù8Zæœ|‡ªsLK \Ÿ>I fù„`ð¹ðÇ Â×A-7Ù};“W*¿é&ùMEPúÑ/“.“»›ÑåX¸Â\Rå~Á]EìÕ nÉñÖ÷rt¿+ñŠyMÍn¿€ùnD÷wˆA¯Þ?Z°Œ“{ΕÎnU!8ïò dët«¨AWs-‰9glûªi©Õ´Rªqê¤Ñ7ö›oÃ0újoq°ýnCX€ÝØìX†;Bà n¦E!Âîëp¥`a~ˆ >Ù4µÏâÂùviŸ=ˆ=ÌX‰J8ª1 È·F…¾}BoëíýÍÍV1^¨]9ÁªóÖfXàÂÀC.åd€·ªi',”Jç.ìgZ²dõ Ôߺ;v#Tw×ö.Ï4˜ª;#ˆPÝ™¬ž®æ«dBWPßÃõvTóÕwæ ;…U_àMzŒœ$îñrr~)áHd¶D6\&Î:æãÅäê~ä¶~…JQ‚¸œÑ)ƒØAG¶pç ƒíæª¸ËRE¥Ö-[ê£/ Ŧ©i£9*ÕÎZ®&Wèh™‚µÑ4ÎTú ¦ ªÜæ6ð²'›™—=Θäs§4ÎN®‘6K¾†Å•5û¹‚ÎͯÂñÇ ¼#rڳР—óãÛÑd çÈ8ç3ä@ç¡N€>ì6·Af2¤’kwÅ{Óñžënƒ=Lh5`Ûˆ˜I³týóÊÏì‘ÓÖGr( ÞŠ²© þѲäv‚§ç[î© i¨šÕa©~õlÊ2Ü“¯³™Åû7~ ÖæL’¥†f):œ)­ºPß&;ì7Úýk;å˜Ô>n(:¹ï¤Iâ~ÐÆ;}ÿ^A<ùjôiþ8ƒn ]òvÃØð=¦@¢îùÚçîŒ,ç£é¶ôI÷ysMWˆû^Oªæ@tå.Ú…‰?œ« Jüøþ¼ž2Í̵Qð|3^<ÝÌ=O[^„- ¶\áVyEë…ü,ßyOZàFŒ'íĪVUà)¹H‹ëš·ïù‹=êlÑ­™ŠßåOç¤ù*Ê>Ÿ­Ç˜ÏÖšæ³µ¾ùl™óÙÊ6ŸÞö½“} "0$¼d6}Îöþìž®ú1R3Nx]ˆòØêü°Į̂!ƺ`KD˜"À¡õ1ÍþÍZfªH13CA£ ]gÐráòb¿‡`Û÷kæ¨áÙt£~ /3„K¢M§¹õeÒ„j9Ÿ$)nsiÎTQfíGÈ×ô`cˆ1[œsSH¿žm:×­n¸Ù7Ü5lµ97Y'&¸¹øÒ{ÀvÔƒ¢Jˆ4“e“L5¦Á="ù(»K”̬~[vfIˆ*öd#QÕ’l$J¤ ˆö-¡ùŒGdq{;šÿÞm ¥N‰s=8ï¨ñøñ¡ƒ€/>¶ì4€õ-²³³CZSŽã °«o@^ÔÀXË¢§xÀ';ü;mþÁZ$ßÁ?ªìsþ‡öÆKZ÷›7ÿ¤Í^ÎÇ£Åá–3B—ã ýsI°2 h{¢«Tôÿ’Þ‚“ž«Ã*ø;Ý3㦺$ÙnMm×ÒÓQº‡Q[ Äþ¤R¬ þ܆rï¢òžè† Úñ›­-€Î‡Â[v"¤u†ªÊøU%{oTüx¦K¬ØúaT‚äáý Æûþ®! mpßÇLJÿ>~ü÷j¹Vªqü÷ƒrm¿Ìðßkü÷ÇxØÚ6ñß›ŒÿŽ`‰Dš…Á]ãñà×ÿa4½…¤Lù[EL\+<¾#Ý6àïùÀßÍtxw/’ñùpà›¾)pà[v4x»ƒßÀÁŒcï ”ÜÂó¡kYFeTÆG!äE|oo„³cð„ BnÓŸ‹åøvƒH¿ "=¢}§ÏÛíèÇäöþ–Óín<¿,ùìPYÜW”á ’»¨lVë¢D5ãÂE.H|ÜCXgÃyO¼M·êüo¯x…AÀãçNÐuueÿ†0éëEH/ï¨é/ºPé)ýA‘Ò}K„ô(òW”µÎáÕýõ¤!«ÿ.€êøt JºûøÁqNâ{&ŽÎ¼,ºç,¥â¥KXt †.ënö D?>ït>¥¢Ÿ .ºç|ù0ç¡Ðæi.±Ì›¸ZèO8º§Ý®˼ɱÌéÏJ1†(‡ŸEqÐõWg`ü9HÅ6÷TÄ@Ï7ØælsëByzØæÍ§ŒmnâŽ(ZÁЍç–ú©)+þ ÀÉËAàäòs†t+"œ ÜòlXßѪXßÚ+‹] À3] É4 †)ð/YÐKÜRpŸGÜÒ7n©¢Ô'­à¤¶þÛaI«™ÇDT 5ëñc‡f ÕÐ@ÝâjMA MÞÌ‚·™¡?&ÌfwF࢚Eºù]Ò>h.ÚifÂÏJD5™ ›™Š§3«ñ…+â7†u¬íxáuäF³žœ@Ž*ŒbÍ"îÁeL 2îUåÇbt;¢fÃ_tzpc.ªh‹Þ‘i@¾îHy;p^Ã×ã즎P¨ÄÐ?,3°ˆþ‚ì¿À³ÏŸ•îŽ~;ÑF]K+36 g0«l¾TH¾Tô=FG tT 6'䞎œ#P'ïZ”L{Ç­ª §¤çÃгêÔ‘ÚÖžªžàM’Œ€Š1ìd¥ÒÂã‡íò½n:Ñè‚qèìÞÖÍ$]i¶Eâ{NßC*qí’Ùñæ2 Í¥ Êù¸%žPæãb˜8NâÑÕÍ%S„LêøsZЇл`!TèŠkôúªú>ZÅýååx±¸¾Od’¡JOîêë¡©ÌÛÓÊ¿ Îe³3Ú;ÃTÄòuÅ…èp$N9´ôB9¸’Áãk…Yn]/Ä’¡…±‘Iàqß¡¡þh iyó^„„o8EI+¡GwÃCÜV—$„h¾f–Ž[xUÞe ¥yr‹¹†l9{ n»o3û`öz¼°`±ä¨bC …±ŠS´é ¬ë™‘tb§Âmyˆ‘E¯±WàãR(ê­c= [éðZÞ ¹¼Z¾ÐÜ1lÁ‡>ˆ­0p-òOâÆÖ BÕÊÂ…î VáD¯4,/ŠW&˜Xk©'4à‹ÁÖŸ8,7«çо^) ,s˜3ÙWGÜ»I‡FÆyÅˬ⌻JT­Å|uíi­2 Æ2tXKn¼X'Œœ¥–,ÀrYÁf%´œ½*?:{ùÀŽKÇðé±èPèX†`ü¹¬Ès™cÂCc¼Óâ¶Cã°mpgèê:ÀßÂaßBßxi˜î™€z“'õp,v"`¶ùä6³-=•™,K€O9ÏN$q|J¥-RÑW¸5õØF• ñN^8ÿf ¾Z†ÈuçéG»E`!œÕäHÁøX)תl‘aŠüìŸhÊ}y+& Hb|’''$뢦¸Ñ³„ Õq³ÔÛý*@Fêaè¹7câÕŠ—%:Ê•tà-G¼;|Öq[BÀ9b²@ß41ÇÅçtf°Ö€á‚É\…„¬;̃ž•mOýË^Q؆¦îQ‡ÏÍMÄþXîÙNX8=2OyF\ÙU8)y• £‚AÒošMŒÏ[Ì’†Ý§ZK%ĉÌ€ ˆ_‚ìÿ¬%ZZ†9<Øoy—Åø‡ W0UU>Oõ¢#ÒÓúVE¼E?{ÑaX–×íÃÐjdõ•ãúµÙc±ØŠ;ØÊê’£ îj2ú:ýQ.?=æë÷SûŠ\8x ¥!‡ähM:š…K2pä‘;܈Âp|Ã÷ôïßf ¸l¥}Mmù­&·£¯“)ÜPÊíF¸þo:+ÑÿãâîsH+¾Ú»/Ê;p ²Î¸ ôƒe‡i_8=SO ²FŽÄhg m4n-ù(Ö $‰›‘D$"_~Òéºû ¶ä/#. Ü2îmþz‚žìNª0;A†µR¢SfÔ \]û¬=¤Âˆñ”¾Uvº»eQ«3j»Ž^º»‘ nç*þ~ùGZHoŽ6¦vҮ·›B;Š#İuÍÔ–B^³UH3ˆCÄ›PAÖXMcݻќ¨+& Ïaz%6F9pj+8P~bµ‡a†lDXC¾‰|m¹k4Z¼J§…í»Ï¢õ˜ïS(Æ™ÞN5eéØG£¯K™(CV²”БޏլKv]>Dñúóõ—Ä+/½˜9ÉãFºÂ%ùÄ5§C¼EŒº}¤½sžá€S@Ü}Jï’:ÌDaJv؇ôÏÒì §MSá\‘DÌaÀä&ÕÑs˜ÇáþC„Åé²@óáêü*5)öm.%+¶LÇåÐ9´ÀèèØ]8‡.è¦6§@Çeƒ“ÑòRÁ·NÚëbD¬NÖ5òª¤wwÑ3'`‰7LLjˊ,ñ ÌóN¿ð„sú®: œOÅÝ¥e攊S=1ó8`†ú]:£Ñ¥£e¤QÁ|ßïDi‘¦Ëdc´æwr 7õ‚w;¬;6·W¹}óNí̈®z‰Û9ÝT$µKîV¿!jŽY±A5bqñx+P#p´ªJÙN,Ó?©l-rÑŒ1ûJ:^Ç‚þJÅø÷1ù:³«è¼Ä±Ç°àntƒ VJ䃷 }. ´ŒºUU²à² Øvê„7‰7-ü/ —Kò PA!Yj\±½!1hƒwhìeíE1Æãªº£]’Äà›¶ Ĉpc–›2þÆØÈ!ŸUóbÒȦí3æ> É5(??3<ÔFâ±°dïsËûn¤IIf§©q‰ݦˆkbžæ—“»9Þ¡ ÐI L’%R× z¨éd¶à±Ͱ§ræ]Nö5˜5o}FD`ì|º1Ô³³J#.g}hÀ‰®æLŸ[m"¹ò½çŒ^É·±rà˜ÞöÔ(ûÚ·D¦Ô,a&êÜøÑzBðs|p7êu“údõaÜXÑm|%MµXœ'Zà<Ùœ§.l¦½#TZ£ej\fZ‘Ò“ÖlÒÆ&é?/‡[Þ·EÙ°kõЊ¥îp8ž¬»—7ü3`Çu†kz€Æà2YRwUõ›Íß ;ɰwtBKf°>ã°÷´÷Ùqº!Piü€¦ ;hvÇÔ&„ ÊMº2HŽaÿ°"`8”_Œ“Eÿ]‹òëEÔñ˜PA±NSŠ”"<Ô G‘…8?sHkˆ xhâß( ëzIëö…Ùt§œÄÁI@p­³nŒ7ŠÏ€T‹€z«{ßH ÒMÊ`´•ìÀ²³éB±É5›yõnâR½Ù0•úJàWf$œ 8NÉℾYE²Xánž–dYÿ©:¦X ÕÖÇ·&ìRÛ&w’h65;šMŽ€Û¹9+õ€¡ÖP•tßR€8€Ö >€áïà‰ÿÿ6~”øÿjTª– þ?*UjZãÿéG›øÿGx ñÿï›öøÿF‘eÛѰÜâÜ À\L @à%ßðŸ$×°nÀ€.ÕöÑh^.AŒÍC! Én@ã)ƒ4ð€‡¨‰_[`ÍSQÜL”„È…*ð¾)PÞ7ª@ËŽ- ÂŒ7àpFî14܃h(£hC @É”Ä)غ >ÂÁÄG€}'€„· £ÛÝx~;Y.¹ØèeªC9¯ÜKEƒ3˜Íÿ`ó¿ÈÍ àñÂÛtWÉÿößá©â;¼Ã_ß! ÚáAÀR* s8|L0vô9ïµOyÞó…,`³0¨  éÖ‹ð -?ts‹uD‚>HlêÐʮ͓i°It‡bœ·É†ðÀ‘x–n͉dÈá@ ^yĆds 2¼o†!1(å<í®ŠÀ@'ó} ½'àr7Ð zá}“A/ð£ þlñŸ1²‚§¢v½Õ;.ò$7 ÈrÔ;e˜ð³â« ÔŠÁưN§ëäK|ì»Ð'y V'¶ôw÷‹uÑ@ôãÛÙœnm³ï"Á<„ö,,QAz¼õ’í£%›*/æãåý,t—³9Ýô–7?”N‹ÆVbŒ+^W_Èu"\¹T•ík·W«| ¢ƒžrF<#¥Ñ MÃ>t’”9â­Ó¹€Ùôgúž ÊÓbè5<š‚w¸w²õ‰ÃŸ#~„t‡?³‚–i/¼‘ËìIÍæÃ;‹?^°æ}=­èÚ½L À¶õ‚S+|–: oVÑHÚ«¹f#ÿ8ó¥aR«ÚMT-óÄì•Ìñ”ÚKg¸—G°QÙR×:t'¯NïLïa³™Òi‹ŸO°ÔðIèaéV·V -˜ÜYó~ÌnŽDTò±Ï̾mfH Cä\xéH6+ÍëÀyˆÄ&xù I«š¸æápÝóðjK.K`£ÌÅ¡‰ùÕAšÄE @£² ¸Õ;°tô/8š`¢!û¸‡à†z Žß :?È­ÃÎà ˈñ[î#E¾³ÌÆèŽ”TGJÔI{çx§½:â9ýí|‹\#xÇä?ÌoÕÐI<1 Í0AU•éS­ã@c´Xe6‡†¢iÐ év…ǯ•Þ$Ò¾ô]ñIAëdj‘ÖéýKé\šÐ³®QûéÙ8=á$iváÕÚŽ·léˆãí‰v¼M[ D Ahd<áɉ‚.Ã…2©lñ»Ì›È;.H#öôÇh0žß_J¼;œ&3ZH_H8^¡¨B)‘^ZNisa‹¯Š]aîô…-4*ܲ­s ¾ãŒa‹lŠLfÆA ¾‰u4î]DɺÉd¶;±»±A¸2„Æ{DKQ»(°$<ûƒga·&•'¸XÞ°RÅFB —§õ[6x×g[ñT„€:ÉG¬‘;@‹:´÷¸ÅvÐñëõ$ø ÈîÉñ²O¸ª8ts˳ úyE¶ãÅ.wÿª{ˆˆž•3^hÄO×¼b]˜¡ ¸0YŸÖØ€7º–ZàâÆ/i}ئ\O©™W/ì9ž±Û*ÙE¦¶ž\K30ôÕÆItdˆœ·]ˆw¶jSª<WX"•œ ö¸Ð&<‘ÈD„òÛvz<ù‘ºðw s톶êÝ“°„åª[‘€ W+òPRš`‘Ê/ƒ|€TÁ Òé„>%©{÷@Õ8f©HeFÜʸ‡;„Éöpë Tæ-<(X…#HéûŠ@DÕÊÉ)5‚yCU2›rœ ß'Uçt¯‚? Ç´¾HjbSë(µ"ÙgÑ$ P/². b¬Q‰×(Â8&4^«!BÈ ÎM,Ý_  AáD + Oà) ŠY 5·nË•š“ 3bR’„HpW†ÞïÛسžs :j¦J•Ùi£R¤rÄÕ÷Üç ²â‘ƒä8uÚ€Î)-‹ƒIÐéƒ@ˆzIÞ™ûM·Iì¨âÆûŒw½C ›¼/éþëÿ³k¶A«~É|{çD.HÑdÿTŒ\ð+ÜŠ¶ŠÉÃ>‹ÚH±B?eŸ½1#}ö~÷1m…z ¼y«.IoG$«`ư¡ÛÝ‘2Øk³Â@’XJfC‚$h"Q…Ña°0Ê/†² '„¤œB6#‡î‰Tç‚Æy%‘„“Œjvô’h߆^r@/9üeè%[ÒcÔƒ.Ò`UCÀE¸eùÆlÐvnd°Ij³¹M2›¼-Ÿ5°Éæ z|ø/w‚ÿR9ˆJ€ÿRªÑo©¸Bü—ƒhƒÿò[é&þKÏŽÿ"1_Lh·ÚâÆ|±@»¸«ù«b¾­åࣳì?!t–ýç‹Î’èúŠè,µ<è,F!î¿âZŸ¶Ôw]ë2=EAhÎßø•¾+ëï2ÆÚ­…Œý4&4¦¶Ù€Æ<4h kæ¥5XŠ=è˜D/ èoÓÄ(¾ŽIŒjc}:æÝÇäš…õÇ€`À™ø+@Ç„n°ˆ™²qŽöÉò>j˜– cÌ ã†éöz ÷ì@vF³E=`ýÃf™°i‡#áßcéµêôݳ¼pïž á¥å÷Ü^­ÅÕâÄi iñ,…¬ð,y°YBYrŸäÁc cñuÈ!'\kÂáÐß³°¤£¯Ø]ù{n蕇9$iSW¢( k%heM(+R*˜+š`P€%‚½¨*A*«à©HûcZ€}RÂ2Ù*†k²$!g­X)±¨M¥¨)Y 0XãÚãdz*ðÉcÆÉð@Ã^Ì„Q*‘=­7¡ø%vð—ˆ[CLNZ@N`I¾èÁ_°ó*°ã™ÃÔøÀL;.‰KMHG$Yì#é# æÃ‰ñá2Ž¢{ä€öX×#ÔcýˆipÜ ŸVËCÞß%oP”ñ¬óaì9²á×€‰í²ckr믶5¹.2lMÉýpD®Ôík5x ´bx\˜•¤ïÙ±;VîX7NANÈŽõàuh‹ÍÖ!›©C[oñ O¶! z#î†s;A7VYǸ'´Ž×Ͻ.ˆxÍ[ñ5L´ìÀ*¬Ú_7¨Æ£"÷¥bi†&ÞmàB¶Û1l ë÷³À¶Óý,­gn Œ5YÏ]Í Áõ§¬ Ä;Xé"€ÉNŒ9BQz0v!Yøa,R—¼Ý˜ëC¯HBW¸O¥BAjP°(4Â>9\ >ËN˜ˆÞ&âwx<ø7ÿ~ü‡ò~µTeøQT‹*µ þÃ#>l øí3ÿâ\¥Çl'˜ócÇwΤDŽËÓ“@XTÐØE”'ÜïCgš×‰ãòâ›\ôú„[Ú4‘ËîE®Ýè¦e@G‡Z;,Êî¼åžíi Ètw°ò¿$u5×eÀg'F) @ tC)ŽW~`¥q®El;_”°<_~ò¹š±² ÑÉ/š4/Šú~ j‰K—¶n¬AÌ„oàw>QÇDÉ qÖm¢*êD½Eçæ$q¶Ö™ªx—WÌïUiZô4ôÏ7]î'oh—QaVPN,6‹ß 9«A^ Äz#ÊÖ³(œÑ·qo1~ŸÊÃŽ€Ýë6Å#_ay¼)ØOŽ3]÷U Gåë# N3ÍKhÚVwü€k>{Ô@„Ö³MôûŠlKůÛR…&¿ì+ªƒ÷®–ì©~-‡YRý²Isåú%:Ÿú¹-<‚$Â#ȯ 訡 Êï'ZO%‹g÷â®à £ˆ£²/´Ï6Á üñøÿß}yÿÿjù`¿œÈÿH‹müÿáa«Àðÿï5ìù¯ÿ8¤[øzœþ\î:’I"ÿ*NþºƒÿSÊ©9òÿ®™ { á—ßkˆL‰×ü ®ùÏÎ¥}ݾìÎA4”Q„û›CÉç›<–ó§šÇÒãõ«{–'óT†¾jÉCøªÍ¯Ûûêƒ$™ iÑå ú®ÍÛú®ËÔç–¬dÊ-P3TŠÊ‘H*ùܼº-ZÑi·YLu¥¦…Àƒ "‹YóEƒ<Ç…Çw1ö"?ð+‚ÿòVØøx/¬˜<ò×'<9v8ŒcúH·&ªæ•$­EŽð3?æW˜€Ò ˆ†aúOÃïfžbïB‹q²I7/‚€ìÆ^a«%œÌäƒ~ŒÇ`š‡sCwäŽ|'’B6ÒsH:Ê{ú±¾$’½Ó$’î܃æ0áµî©¨×`Ù({ –’ž„н~–ùÏZQœ¼ááéhð¯zo^ïGôì~ïçwíÍó;I:¿÷ÏØù½wäüÎEhÄ-³çŽ|õ ©#•[2ð~½™ÜNЃÜ8ßÝÌfw&“ò„vÝE·/ÑRTdžì´Åª~ïéÏLi¹¦²f¦äDd~Ep9ç¨&J1æ¢?wº»®2U^&®Ewê‡/8<ôÁ<6.ùäaºä µZÏöK*¿ Ú&þ §À>Þ£Z.=ZÌæWc=ÛÅíèºýPåwu-&æ/#xõd^IÜ¢‘´‹4bKB¬Áuµh›k"S<{‚[mDZ¥æýáëXO&lÚcµ|ÂkQÏÉ—OØÛS ³'TÒ;ļ#Ýp° wþMŽê(KÁù‰Ù³^+ßÁs³òV>6EÞyQû˜>¢@÷p$|’ŸØÐ~h?¯~q2ä7FrbôçØ†ú£M3_²–#ù IÉ‘܉8[r@7ÔlÉfòõ€þ•Œ£üV¦¶9#»ÐŽz Ú‘ÿgö(ø?•juÿð¢R¥V¡%ÿ§VÚäÿ}”‡ñ…‰ÿsºÁÿÙàÿ¸ûö—Àÿ9•ø?§ÿ§eGÚ€m@€6 @  ÐZ@€²d˜MâexÛô°Y^(°Q&P†×³dyýÈ@Pó‹²Öãg dQƒŽÒŽx°C£%К2¿¾òד)mR-]3ÐZ‘œ`?¦[U€~”„²6üw°OtÏ: {,†ÁðrØC5;¬ç$ð @>ï›a>J9O»kÈ/« ö`÷”[{ôü²½SÈs OEôÌÂzN9RÏ)æ›ÅŸµ¢<ÓàÏVJEpàqBölv¬;9ò÷>8LóU\ßôM„ÞØjo=HŸÓßÒ';zOT~øž¸/¾N;y%gÅױħBߣ4€’ I‚AI˜¿3í‹Ñ¶‚DB¥h‘HjY‘HL ’ŠARKôÙŽ>Rï÷j;Qɰÿâê+i¹›üÅ9{Ý@%ž³wuXGÎ^¦öփݟb®^yuûàÉz)_›ß¹â¢â€þÊn-0 ŸJ³šœÑüáúá¡õ¾@ýD”~5¨*Û×nïùà|çº=¤×ùjÌkƒS–3W [† W-v_Ä »Œd4*G¹ƒö ðSvv¯ÂºÇ¢n¿ ±¬v, ukô˜ò ÁünïªÙ)žwXÿ­ÔJvS†QË63&ÓÔ2Qܺœóàñ¥2ÏbžˆñÆ /K¶m){ ·À²ôp‡Do‡ng‹ÛöEgk1ê®(öwé¡gí±êxêÈæÞ§z4¶¬×ë»çrÜ;uFag Á¶ûîºâ¯Ãü÷˜N¡çŒÌì¼ç‹¼fšÅ+[ص¤!OÀu¤ìOj¨u†8ë”j7ãÆŒå§”|©ÅH×ÍwC½Ã¡Ñþ ¹D4«‘vøÁ‡o,Ý–é¶TŤɷt[+ðšsŶú}ÀZ«5EÅwÏZ<ýLÇA¥2w@bñÉp©Ä Ù 0€À†–RÀ ]O'töä#x N½jè~,ºýk?$P ³Sï¾Û_׬Zsö-û%ÿކ\+`œq?½c<‰Öo©%%Ð_DùÓÅ›YûÊYËѩӓӣ’mq„¡!É$$ÚÁœ%¹’CóŠiÎÂ׃lì,)(§zô±yœ%Ú4ßfŒrëìsKZ àVê9ƒü‚"ü2Äû‡ãm°œœK#$44ÖÎ3œŒ±„ûdwÖ0ü‘zØ£*\+’}ææi ÔZ[œ°¶8ÝAÂbBõa}B•E„‡` NDST£½ðë\ÿ¾hß׿-Î÷‰®ÿaòš;¶75'w52ËÿD@oî½ßOG¸ZUã&AJ7ù'@ﮩtpu}•ÞUÃwóÄî¦î"G¤´œ5b7<\7VÇ2šh-Qº‡^ÛË-\’;>WCSjšhJuu¥¤Á½b!둽ª B ê ÛúÓ#zÒÜλŠiÁÈûà¦Áχ™£sW ÍUåÈa°É/A²ÉŽôp\FçC÷ô(ƒs¬ßá¼=´„ß¾²ÇØ‚ÏCòÃÈŒ±W›_c 2@/%Zd-ᡵJ«F{Oh-¾ê ­Mi;¨ h\ jM‰§õ6Ë£hõÈY­Ñ”9:ƒhO=A´ÏøñÅÿÞ=Nüoy¿V‚øßR~ÑßKQ­zp°‰ÿ}Œ‡±´ÿÛ³Çÿʘ_3´×½ëºc~-¡½žjþj1¿O)Ü÷· ñíÉßÞ&Ä7®e⻉ÝÄÇ>»øXÈ% Œ¶_–sÏf­:Cdmƪ7a·O-ì*EÍE„Þ>·Ø[‹“z+<%y¼­GwúM£myÔ‹ºµÜÆqµnÝÐpËM{zLm¯ç;rüˆ[ /‹¸->«èÛ^`ômï1¢o!Sd"×=ß<:7 ·A¸žŠz=<;À©‚áöxnáöx.ž:¼á6Á·ìÍß>ø–0ñŠÁ‡ýç‘ÛÛDäj¹ÑsˆÈ¡žO%ü¶ôLÃoý^-üöUžè[£ÓÓh1®Ql‚t]®Ð™7aºaaºÉ`šM”ÒýEÁ·–P`ÖÄKWÄJáºO5Z7CTk Ê=‡PÝ cêB -”}z±º¿U¨nè´„ô–­)­C²¼;Œ¥Ç×Ûíõ@üíÐ^€ƒªMª°¾‚}¡€F$èl$®¸-=VÝöz¶\î³×³ÅãfT°’% %×ît×óDà8ÞzÝ%_̪ d©M÷D Œ¦]S(m’½c ÷ ‡I2gÙ®TÁžxØU‚as ÀX"ÉÐ×x‰$ã^s,[¼k:8W†+ÒuM*²ƒÂhP´Í·%Ã_@¬@JXë<ìÓ|ëS£YóùÓÿZ?ØW ?Xϱ/Õc>›¬+“ŒVc"\Õ(š#4%þ3-'mHðçú#?ÓÂ>¹Ñ ­gÌç> aê! ~íõG9¤«#€k—ÿž#t3›Ë2n+3úG*òCΈÍX¢[Ã5/ÌJ‚1 2„i®£¹îصœÑ™ë ÍÔ–‘#.SL›#(“­¤ŒqsŽH¹ ¡:aA˜ÎìŒÀ\e;b/ŸÐ^?Ûºâ-ãÅn ¶43öbÒÚ\%È2=Âò1MR+Ÿ5 I"˜’±³¯åÀHÊÌ&9!MÑ“¡“ùâ&µ Éž%hÒ/©‰o[°¤X…¶HIKdèTfQkÌ}uF>ÔI4gH¤+òë|L9|Ž)£À%û¿á4@·mgtdŽÐÈœb ƒ= º""ýá© ÝnL6£ ‘”¯lñŽ¥D¼£ÍÙâéÄ;Ú†j¤}rŽ|ž‡½G 8ôÅÿ-%þ¯\ªÔÊÿwPªV£2ÿ+mâÿãafÆÿ Róöë]Øé¿+åí5a—íµ>¦žnVNþy4M¾’öýåhÁ"¡Ô¥Vg4½ü!sòRÆþñ×N/—³/ãyBÿÃBÿÜÑz\8¤§ûdâÈËßq‡ŠD†EâÁœð_ÍP¾p¿´„¡ñ¯tÚùoœÔjR¢ãQ§Fù d”߀_ílBùþB¡|Ï0['1ÒuÂúÈ7|Ó5 ¾ìx+ü¯Ç&ñ·@\w‚N؈Vx»õ1ÑsKç‹·ãÍV²FÓi >çH¹Ó®0Y£Òè×`ÜYwœ\RçqÄ·Äl¡L  êiÛÝ=˜~¦ñ:³Cò¯C¦d…L”Y!áäëâÇ­·âÔ(Ó,iÄ깈lƯeŽGó§˜L6»Ö|Œ‘‡ÑM\tP¯ñˆ¯aGÈ5@˜ˆ<ÉÓ¢©ØG«Dm%»óŒã±Š¸raÊZíV÷ÝS Ïz‘X½ÔH¬Á*‘XC±à…õ†b ÖŠU[[(ÖƒæA¬>¡@¬ªÐä¢8ž2(Ñù"ˇ;–bãBËF¢îSÍ||7¦š2êßP‡kØàÕäúz<‡;|º^þH\.ž¢2Íô©š~}sƒ%í<†¢=„0°Ó>{7Ó¬ˆ ƒ>ÂGvè|N¢Š8Ÿ“Ë.h¬KvP bK£Æ¶úø¼„UµÇÔ¦õÅ•‘8S¨'¶Œ¬%¹c-WÜØÐŸ]…V›³Å¹·wö0­+-tŒ$¢Ç†>/3úõ:ÈH"†Œ©xfºÇ´J¡¡dމŒ&óÄ“ óap+øÛŽKÊ€:RS8Ñ¥aùÚålž=3Qƒ½ÙÉHX‚2’3GÙÝäÏXÜ‘– ²—¢»ÃeO`Fô«ûL؆^^WãëØ–³*e¦—cW§èùŽÖ·ŸW­ÆÖì°ÉxI!‚é¬-W@N8󩾇á*„°dÐ$|®+°Ã´àÜâpƒkžíuÃÞm'Þ¥mw·Ó|nìž ƒd4II 1]ô”naUž°'N­lý:4¹[`n7žâÀ•ó™=yCQ’5¡ ² ´)Þs¡ñÿQjü¿Ãs¿Àó-—²´ð00¥®C͹5^–缃g0bœŠW¨m’ï#6¿¸>|SÜM =c²„ù±GX|h ,¸+ßq7Ë(ö¼<æT·™Tá+ˆ¢H>hg«™ýæ,U$Æ9fxL‹ø|ÌàÓß<&%?¬&¼qjOÚ‡q-sѦŠ~tLq©HåÂ}¦/œu´Z‚=hâAó¼ŸÿÏòqð¿kåR”ÄÿÞßøÿ<ÆÃÖ‡éÿ3\þ7ÝÝéù·éÆüþ‹@{?sPïcᨓÜ›Ãx“¦éL$Q»Ýl“ Î{(}†Î{äýW÷þÙyoühòû²ØécË«Çù^3“¤ë Òõ£øïSá®U/žâƒ€_G^xã è×~ìBã¸Õ-רõEºeô¦Y À¼vW!]‰à®[ÝÝøRŠÅx3wuA_?Ü5o>©¼~ÆHyŸ’݇%ÙÅ:À ;{„ÁŒ”ìƒ#æ›”›Íê+ºÞóôw}0Úï†Ù`´{ÃÑHš$Œö0 F{Èa´‡ÜûjÈa´‡>›iùøÓw÷w4 ÄjÉp$Þ!üt ÞJõí¤tYÊæöWFéÎåÀU*òÿGˆ“½ªw«=?ÜõðÃ]¿¦úXÅ-kÎSÊ‹ßK» ð´‚ê×ïi%îÛÒ­ª žBâ~$‹Uâþ΋Äl6ý€Ê|W·9ĘÚ‡„¶qI*¡jéWûâ¢)q?7ûC´»ÿš¨®Bï1|a2¢çÏùDàSŠsþìÚ¬äéìûNëW¼ßãj6eÛÙwp ›Óª¾ÞƒAï ©é!~ô51“äAÀ¢IÝ'Ä„ŠÞjl Í÷X<6´Ÿå"}`h9ñ-ðöû¸Ø­Òz÷SG€¦çzà†¦Lu ³†$ÜuàÚJ Î\þ¶î‚iŠ¢Xè…Qt…þó‚9ê9îõWb‘d»¡…ûØÔ"P«}¹ìFe}½Š%JåæÕìv2M¥ßˆ/³–û©{ÅÆf¶…o~„/+Gé'NMîm§Ì¡O›ŠÙ&˜ˆ.ÙnOW1™G7E&n¹Y—ÒÿMy6ú[Qh¡»Ûm¯›®}\àZUk â/+ç:¢íUPîÅ¿›î*‰Â˜âÝ®ñnw×÷¶DÒ.»W§l¨¥5Ô2⧉4¿÷,ԶǃˆžÆb ÅŒ /æ7¾afT)ÁÝÃ1í¨IÖ…#û±}&Â7H‰ 7ç⡉á3#*ÏK~üwVËø]¼\®¿Ød/&ºcݣ˓dîÕ܃M™™7¥1ùò“®î»ŸpIòeÄ÷IH0¾㛥NS6!Jw—ÑgÕ”a©¯ëö0ç„Pjª8W¢Þ·®·oraöi#ÊRtÁ-š 8z3ŽÚO­¦QÐA ;ŒzjâˆÃ݈ª3 º)äH^9´ÿÿ±¨0úÿnêÁú…ÚL "lIžàò&@ß9H³röŽðúdã¾ðyÛá¬Ç‚¾ÏúÃHü,cðvçHL›%ˆ=å=O¿2„Ékáñxp(ªaïƒæP†¹{¸CF£Ÿö=9Er%Ï ¼õtÑ[§ëDguþÒPtg.“=v~ÔÐõ³Ê/ ]g¥Á½ø _•²Õ¼[LnhgýQèàqÖáî]Ô t©Oj7!è4Ç<Ò:î tÃá{qYà]ÍÛcà‰; :›t£Õ-À&a~Û‡ÚÍü•|QÝÁ÷_(ŸÙüöJl#ãƒ1"ë9ù“‰Bà {® æ–|’+ ”.öôô¡LŒ4îr .§‹ÛÑÍ YLx@7’ÜR¼‚ª3ªmÍ©ô¼š,èÏ/Ì+‡öC݆÷\¥ï3ǼéË2?u/è'?ôã,j´4Æž…†`wv [N· 4âåÍéàÓ…“`›*üÜÊ+Ö ³œ 逩dæ`Ä¡’èâç¦ôLH)e¾¨SO'®Àf»‚÷ÿ·³«±ÍmQ¤6¿%Ò É JŸÐÀgFŒžp5£›uìjÖÁ[ß#æ©(~0£µËÝ,9¸Rg)D¤Í³¥9WÂ\ qvëúÖùìØ·[Ò³u«K÷“Ÿ·ð 3º»5ö0”97{ÂÙ“W߸.¢“¿•ZQL8Ä YTááæ^Õ뗢ͯ¿(”¦º»#€ŽÝ_N>ÉKOŒbÁÅ»X ìbPõ™:ìŠþLtqmT´E …uÊ­Îüøa…ñ“?–A›îöTá¯æˆÉN~!Âý©ÎNÅÆñør>-p9ˆ¿Ú²Ä†Xuˆð[ײÁØBœÕÍì§Š—ReÖÅ4ku É+cM*c© üâù¥OPU8º:€#púÆÞŒ§±Eãç#Œè¶ Àažfsâ^W…¾"­<â+hÉØ?Îf,TOþ©Çî%êø—°d‘)ÕåÇ×¾ö¿pŽvxuiεx u;×â×b—ãÔ»_ƦIv°däµQ^FÛd—À/ómûpÔX³7üènö™/¯ ~ s ³=ô’Ôwz´g;}ÁUGð7ÜØ z¨¬ÿzÜ_ jj?õ‰à~é>ÛÚ9óö³S’õ“wRí]Z:úóùUœþ®5æïŠGŶiRô9;½¾"ÛbA ñD¼¯an™|(××ZN×W>C8“Öx)¢¸ÕªšÎypöÿEÎyÑ®—-0(Ns©IL´ùòzÏ)Îs¹³ÊCúËùü¿nÇÿë *—™ÿWÕ¢J ý¿ö6þ_ñ0Æ2ý¿Úëóÿb^ûF¾¼ÞÅeUKÿ;{:ýÏ¢æIø=_÷°<¹D:‚~š™óúWq%Ë’¤~$~y+~Ý©Ÿ¥u¦áö7“éLre-9k+.hmÀ3>ï¾;cG8úkçLx6l¼Ò6^i¯´Wš³z§Wxd™ @R˜ †8š™®hͯ LS7t–èV·ø¹XŽog·¸‡ÏWƒ>péó¦ûÄÝ!p2Ÿ*Ô`Ý™ž(ËÓ¸Ó¢‡c¼Eþ„9ŠÿUýíJoŸ­ôv{¥·Vy;OâºBE ÕÞΑ€'~;›Ca7ŸCa’`|s{þ6~Áþ|‡~¿À`ÿÂCŸþæó§xù•rùëŕũwÌ2Y|úN„+_œxGxò™™t܇ůÕítÕœ;Io=Ÿm•[ž†~w>‘n§{Ü=ï<€c2ž´ÒÇÏr–¤žn÷X˜¶,¾|ì{O;«¦¶¡uÖf>|íÏmSËmƒVDN›³6÷>l§T*¿µ×ßo™~æ™ûüµŸqº°IzÓÕpnPïšËEô¥-0¿nœ—KøÓ¡BÂÒ™]M« u/ÎuÒEQÊð:Ì—?Gø H/D•E}^…°Gy¼ 9Œbœ‡é6o¾¼rˆÕ¥Ðž‡šţЛW’“Bqj3ë‘oYS¤8³ê°Ë¸^Üܪ²…y ^±p[ZÈßÉ í Âwfžp‘6ñîB¾\fpØ0°Ž\ÒˆõÅ2eL{d»–±(ÇžœÉ/+±§VòËj\µ çX†õ]Ñ»x¦{bkB:ÄÉ*ä ×Áü¦ê ¼Ze\?Êã™§¨»“DNnÛåF/݃½2AXN¬kN¥·ª?s¶þõ•íqhûa?ÑbÇR2ëY°yÈet2¹Á#¦J9„n êšOØ©m0ÌÄ^p¬ÁóÙæ¢]w¹ï|®bHó¯4'ª@w‡Dywhb"Áz7ißæ¤TÂjxÑZxÑý0õ±è²EØëøÚiÄ L:§†´²„£ HŽ@â‰5^^¦JO~uZTï]-aÑDeôr–`=’ ;€RžàZW¢k¦œýD,ÂÁ/ î¨aÊï'Z8‚нxcÆ"8Q† âÏm5&½åô=‹-K@ßçöøâ?î'þ£ÑïLü߃ þõµÁÌbs$ëV‘9¬]VwI÷(Úý󮛌TÙÇC•‡×G—}›@—õœ¶¸':ƒ¨Zƒcù«àZþäüË7¨²OÑü÷DQe×âÞKñ@WüÀ!TíÁoU»ÿ0Pµû¨Ú TíïU »3²LÏe­—Þ Ûnm7ȶd[ñÎ:m ÑëÇsuÇ]³&CbïFrÖ7\KÑ3ònòç íætç¨{C°ðäåÁÂï¬hª™rZGÊke$à©Y‘S¹©À/蜰©0S0•:&Õ‘ºn€Tg7֚涤¢&‹H^0Ôü>JÙ¼“Rü’$´©³¹TÈÓ$;Ø©KêþFHó}›ïÐAÂwèðWú9LÝI¾5ªC–ö6AÏäñùÿÌÇÿ§¶•ø¯µÿÏc9žè 8Õå½80WZáAýc–ò Q˜s\Jqc‘å†Ò¡À6²¯¿…Ð’ ju3Q¨Þ§æ5‰ÿ¾ˆ¶·_–Sßêåy©ÿ;—éÅ£ÿ†Wÿ[\LWÈNê°Ä+½S¼CÈR¼>9êk+Å- q &¼x÷}3¼¸2’ÐâY<)2á1ˆ,*kšôHæñÀ3ÊyÚ õÄkµëTlÉÑqÿ#U­Ä/‘ø¥,~©ðã× ’|X‰j6§+>¢Âp8IxÜâ #¹¹÷Ç£+z:½¢§ÓŸ¨)ÆõP¢خŬ;Š¥¯?¾›Í—BSºñrô•Æ{_÷ø»LYÖ¹Œ>…€=GöÞn¢€+ó€KêR‹)éz+ÝÐ*ÓÝk-׿ö®Ñm{ "œ¶ØÞ¨˜6ºªSš:1&¸J\±ÑVß ÷ø–ÔrMoYUÉ‚[W­r6„zÙŠ{l9[š+êÃ…#o9­Ž Šv0@_i\÷´°ŽF#§lœR•IšÐökÖöU5¥ ’¦IL¿x¢5Ÿ½Ú8RÐ~8§ÁÇñ û™~ ukƒí[\Ôø~ñ99_6ž`ý ðþÀBõÊý…ûûVà˜¼­¢Ö¬ ` ®¡^dY–>h'­”ŽHòVË`e°¾x¦$±Ô(à”u0Ôú5̾:udÅ¡±†ÙÖÁe?ÄdXqë&ªd`VÂÐBö¡¶”[5Ñm¸ÂR€!mµd] Cm3°ØKcK,ž©Khd] à K÷Å3'‰¥Žê]"š#‘½keY*Ñüµ'r¼=-~ô)Ýa6ÕמÑ>lÕĶú †§=}KyõÈb‰Ì ÑëÐà z”+hè+Jâ\øš\Þ]/ç×EösÂ.HaÄ‚“è©®wºÍOsÃo“Ý,fòÆZ«iy½¸-ÂVý¹œÃÏùrymÜò£¦» c3à{µÜ ÔôVñ0•$Eiè*JPQšvØo ÷û ù"sÅÁߊÂþRT 1ö:4{KQ·¥è:BÐ4»HQ·xu‹†½ÍŠQÔ­n Óv3š~»¶MO”œÄIά7‚HVã€ÖsK?¨t k9 V’W—ß(ÝÝ-¿]›<ÅÞ1Ï7Zd9·²Y99Žðþ3³]Ì]^R °õ ²Jê¼ÌøÛÆÆkciœÉãηëù¶áTS‡÷æ\[80FmPŠ-¦}J5!vã $î l1ÙÅðaÊ÷d›Ö¶KQÂYá%ÙâV,`S¾-—ãÛ;@t¸ºGœ¼c‚z¶¨UÀü PrŠŠ?Äp¶Ýåä–ß'¾½çmTÞ7ô½ ½äïî+ïþÿiM©R4¹âAé5ÔPç ô¢Ø§¿ü]ưü3áL±Ï+®­Vñ?œWzÀ€YÌÚµv÷ËíspÃ+m—F}@L^ Œf­S´µ¨˜ÝÚ3~1Þƒ7á*òz °8|ŸÜ܈+Ý×bš*²ãÕ >ð×hЈJ0ø—$Š.Øü…²6ó}1ôßb.ºx³ óD˜\«'“Ä·nÆèù5ýáí!°„`ƒH™­þ˜*d“?c%ŒÅŠmáÕûèiDúéq´¿·oŠ_ƒ§àó×}|þ?ÿ~üǃ¨v`â?ÖJüÇGyøÖ¦ã?öÏ6øüÇ þ£ò<þcÿ,ÆìŸqüGú¡ÀìŸmð7øüÇ þãÿqƒÿ¸ÁÜà?nð7øølð7øOÿñÙÀ?öÏŠìäµøÇþ»‚ƒŸÞŠ Àþqÿø¨ðý³g ÿ6É üãþqÿ¸´ØÀ?ZáQ É ÿÈT— üãþŸ ü£³Âßþ±–ÿˆRæ)À?v`ÁÅH‹îfØNâîþîn<ßefîÛÝ/?woA¤RÅÁÙIBMvpk©¿-D/èxw ÝÝÎö6Ž}ݨ“(‚V¸ÝnSÕfqÿåj2ú n?Þ!X%»®äåöqw9Âf¡õ"z ñú¯b€Ív6€M8êçØDnZ¿`Ó¾•°GÏî7JÑr€dZ+ §c¢Â=Ã'êwôìŸ=e@ÏÎÐ3ùüÖ€žÁ ƒ­e·ó""ÛŌȞ”åƒ=i¹§‰ìI;öÈž@§ ²'¥Ã»¾,K}æùþUSYþ@Uçñ·0wp…ÎtæÇ?àñtGÿ ,G¥;å>¸ÂV–j7ýA샞ÇOÏßÞOMÊ¢…r‘ÕæŽï³yòÇèú‹²Öùßßq5Gù^äö žûQä¯(S(ARà ÇY§šU˜Š8H¡Ë:=üA¥o …7Ûy¯}JU¹UÝþ#f»PÝþÁ.Þ:}Ku¼”[Ø”ç½/’‰8ÅûíÜžÃ7ãp³^O³E€›´z^þã(8$ÀBsôïx=´‡ xôýµÇ ´”=Ý |Ï€RsûÂÞ” ÀjŠfqOïV08:Åxà‹O<À ºJ€ý ?êõ†¥š¯¢AWý‰‡8Î`dü,óŸ•¢8æx+Âþl"ž}¤‚óU”€!t—Úí­çÕ0è=㨆Á§”¨o ‚ŒPC¢{€+B€EE°è‡"‰Ô¯pÛw•÷.0Ñ\ñÚ |²Ì*ñ‚æ•Ý×¢àWã–o…ˆƒàpæ¿Mûb´=øcrÇ-/TNR\ÃÌJûˆŸ 0œú0›‘Åíè&áƒ:0m®+Â'þ¦ÔÚOt›½Á¯ýýŠî–û¼‚®äÀ1°¬a aU£•Fý°½eô¦‚Ax:/ ·RþWXÉÄŒ7Û×àhû@}×å'SúpÝ'œ;רñ+ýä+:,­Ö-$|·i€Û®—3›Xêàlâ7!ž“®3äĽi³‡©¥iQ'$ ðDíæDY9ö„8ÃO„úxBÒbOHæðBž7‰ ¶fi£!qJæ@"B2…xÝ(Þ‚AIºÝý"ùÏx>£Òv âîv6ÎïÂA0^FÖ9þ¨ò¡z´dsC%¤t§Åà•ËåÍO7ù™ô‘^®äæ™/Ø‚æ§k‡wt)VC+t”ð:ÞÈw!”Åíòàa¼Ñ[º=ì§»U‚$ ¡xy7èLÁt§ys¢”O ‰_ ‡j:¾kb—¾²Ã³„î¨æ[ÃÞØõ8„°§^Àö^èáIöøE´îã¬)½æ-¸ÀK›¸ÇéRÖî@éJÞÑ¥ù‰¶Æ\Í;SùÆÝ¥ àØ«kšÙÝ QÖò̬Á‹µÜ³•׵Ͼb½Îªî\ÍôF6¥ ± ,ˆ¤²m’‹”þÀ5ÿ4N(‹àå‚Û¼>eD†JsõJöاnß1u$ŒßˆÉÅ ôÁJ«7hoF4‰¯Â'1‡Ì,“xÈ×_@Ä5‰‡kžDE8‘¯da»¾s¯x¡Px´>[]6N:_`ØÅÝør2ºa–/"âÈLåntƒ6Ò¥-V„)Úüž¸L~Ðÿ˜-åðŽGR]®óÃE’Q\ºìQÀBÚ;Ç;í-ÐaÏéoôô©Çi×ý–^u{=ÐÑvèa‚lº ë5Xx Ì–O; G§(Ùk嘅VWG|?~§’ëkù:õ«ÿ¹V¨túà–Yš‰ð%:m£ËËÙýtiÂöÁs7ùs†î$–èn—FÀÂ|ÞiÙ‰¢’Û±Öò:÷):ñd9r•§‡³Ý“4mú¾¿ä,ÇN%‡¼ó.JKÇüýB‚¦ôÉ×!Çšv­ ûù¹,~á$ir"ŽC/chHK9ô> ôBà)]=’d†)N5»TßâAÍ×$±1Ï\syS/Ô£|~)PHí™ ÒCî4 Ëd«®EÈ’„œm¹ÍYøµJT¬•S4ª ÖdV²ÏsqµÜ¢äÞ˜ñ®Ðà=™&S8»¯.j¡Å¶)´¸D\¶ ÷1«H‹þ»xT")Ãø£†üœ‡üäöÉæã ð‘³ÊXÃ3‡Êàìm„óÈÍ ÈÅ¡&$Bwl'x1ÄÓ;]MpþÁŸõìò“ki„©/9¤Qš b|ë6\ðíºêF2>~³x†&s¡*ãÇïEO K æJ_ˆ…‚[öTÈIì;iØ¥THP´%úBõÖAÔ%¶õs«~š\H‹gæ· iÕpaíî±»,CIE#"9…0è áßUЏÑÇÊn}v¹‘có »Óȸù¬á:ƒÁ²ýÔ‘ºA¥M¬Ü§<ÌŽ1ÉY‹‡ãÍ.u—³@h«¶jŸQ‰w€óã¬P•Q~ë;C£ƒQ!îÿErIñ=8uJЯÞû\…ï³@ˆs `A˜,¡ßj>¾žLÑIó–ÝÞÍg2õÐ?m±õßzýÚ6mÚz‹WxÚ°eF„­@• ¨ LÇao•wâ÷2¯c:¦õ¯c ãÓ^ÇëçÞšCÁdí¡yôw`Ö íï¾Xm‰kPrIºžK˜jRfªn¥H¸µ¿ù”]²bp{æÈvgvFcÊS-qî³#†³ÇJp9Ø\¦«Â5x¹bÓ µ}æÐdwã%•Û±~<»f+ ”ЗÌ#ƒqEä ƒWtÝ ¯2ZºG[Eí˜ÈB ü–PZ¹ÓJ¿sYB¹Ûw„N—Ì™e0­8ž4Ü>ôKß5ÙÇ]ÕAט¯sA÷·¤'Ók«i"¯é®§(Xé"VËN¥Ù±S d¡GßCÇ,(²­Ë´%o7×êË^ŠlQ`"ú•Âop !÷)üBÇÃKX€#Là!þc, KBËcÒHoü³¢6nkMG° Y ,¿sŽRþÃÏGÁ¨Fûµà?D¥J­BK°üŸûü‡Çx_›øŸìøJÖÏ ½uy’~Xî:’ Y,ˆÆS„Ps{þ¶àŸ$8ħpˆMÎο:Ä*I.ƒh(£OD %s¤¢Ü\l.žÀ…-ëd8†…åí 0ëÉü¸A¢Ø Ql(ž$ÅC#PÈÄ“ …[‰eø ‘•Ò|gORÉíŠ0Š„ mâS:Ú„QÎÓîY*øFÂÍ^| ¨¨w øpÐåâ©hð‰ãK|âøŸ8¾Ä'Ž/ÁNJø³å¯Q›Œ˜œ‰'Š3ñiƒ3¡áL>œ KpŒÀÈx*ÐÏz"Ñõ¡'öó@OlPžÊÃÿŸ½?oj#iú…áûïëSÔ‰8,0j±ØsÎÜoH,¶l²$@,ׄµÃÁ¦ÉÙlÐ)5øÚ°ÉfC¬x¢—êÊ"Z/¨ñàZ8h Ú$ò\˜Y¢0.H<Ì "]ÈàÛyð.HäE˜8÷¶ê|]æýìð$ƒ¸Œü?¸A0r¨ÒH«±jxmF ƒøN¨&‰„Å •!ciSÒÁ1ÔýQÝœBc¡8râ­GerxD 1¢Íô³QÄwŠd½“¢‡¸§v@X15ˆ|F˜°ò0ÄÆÞͯôú\ql`eçò¶ÂpD4„îèãSüE–㢜-ˆ¶mAd#ïÎL2æHøâBð Þ½z©.Ž4òÄ}e÷¦ì@ñ/º…x8¶ z8ÚÀ>ˆ¸;K4edÓïÅf·Â¶8Óu ¼b)®Îü-åýZ®Ê`–m–G$!q $$ŒKB<Ð$Ä«€Ž(!…0JHi˜‡TBVBÂx%1G»QsB–Rj 1Žn?a v‰|€‡磊áŽ{;RÁn½¸Ë}„›8‘E1·HìÀûQMˆÌ XM„ƒXŽÌÆÇœ*0NÒ6UA #ªÀNˆ¶Fx'$Pä‰&óÄlB:H´B<(+$¤¹ `­Èùýp+¤(⊟Dwåƒw%[EA„Ô6ü’56E£&ã°„VhÑh=HFåˆXܘ,9Ôµ`U "³%ªH ¹‡F3݆t!!T’ÍÔÈìw!6„íÇ]öåÅ£†}{Uø¶ƒÃ"áÃ<œ?9ª¥´6Ï@ AÞ(•–Dù°ÔþËÝÇåà¿$í$ü—Ímú–.ÀÙÚIjü—eÛüs›îøË¡RÌãÁ1éTdÂʬ É$/VÌ=ø-Æ ó`Ø(„oáø+ÜV¬ŒáŸ½'›2î>aØ”ñ0›’»¥à¡H·7‘˜*$ ;JχÒÒ~O *æýN†¬büšÖR¯HLÓÂþ[áõÙ#*7BX ‹Ü·XÚƒoáÖtY…F»¿ÞZ}¾Å”9 Z$ý²A¹_*{\ß\Ðù{5ù{ª^~Q¦x:¹Ùè5¹CÒ›éÅýü‚.!oC-ˆ¥"Kü6€—Þ[Ÿ¯<#Tù5sÁœ‰/§ÉÙÔ2\ XFƒ´×úë,tñ–¯/E„?ÖÊ0/¾€‹£9h¶g*>¦~ÄR t‡äÀÝ!Â*öå¦Y wW•QhV¾EnØã²1«Úƒéȸ˜¸2ÍÍl2ÿ|úiÔ§øœ Uø—lWVj.œpÀ˜ln$Û§#C‡[й®4¹„”¯Ï8ýNW0úg:ž»Û¼ŸQ耡À^_Ï×Q¼½âúR:@ø~t_e#ÓÙàtÓ­¦…ï[Ôiyíñáå¹rº=®AtÏéÛkòÒ“9p¸ãý|}}‘Z‘XJv%{hXÒ˜ÓBU²Fð/Z4ý¶ºêw4¥|®joÚd¬ [`ñÔ Ú®†¼Š¤aá“ì44, D$èªÎš\wÃ;ßàÌ µ Ÿlö²ûŒy#PO˜õ"wÈeiäžI w¤²†ö×ß< LJ-U¥]ÖBl~\g]ôFê"ÞÄ×EÏNÉy®µ³\r·Èæû”—M¨`·“L¨xŸiÛ–§ånC+¦rÕ íÕ(r¾v×k [,®Õ“á¯>ý-èI]»¹¦jš‘-ûç¼ge`ÕÕÙüÓŒîê?Êno9ƒk©æñ n¯èàö ®ùŠ£¸ô)²¦”Å·ý-CpÅ-j AÉë0æ¢ÆõW8=Çh5kkc`¤Ø‚ž¥ ê4Pð±*Ý֬ȃCšXØ->­WNþìIÙ¶4ICpQ¢6—³¯­¶ž»¶Hßpô áYû‡VùÑ7‘þa$ì"Æuè}±oD‚BYÎÍâ3î75s+F€íõ#ÒrØ 7·œ[QzU”¡*1QCíTe?Nû*®kRq"ähFœ†ÅHR/‹„»‘1ë˜ÌÈ8®e„ˇϟóM…þ!)Ñ“©c »œ“×9‘†8s6«|ˆUÏ·h/%B4‡ Z©È[-í—J]t¤ö$Ÿ5† Ûç¶½iyÝÖì¥Èû3[W¯ïçt(ö(;†ÛÏdÓIru«l:vw#%<ÞH^§7âÙ´|~o¤ŠMKõ~ûÉ7­E-ζۅŽÈæöÂgx^¦£¸žÔü-ŸÉëËâ,|\"=ñˆÀ6å÷ Û>ƶŒ;)ï‘GŠ9å‘ ›dáÚ-³0¯¯Éã®Gä[+l“ÑôÛ³´Ê¥ìÄxõíØ§^´cŸþ0¬TIuÀ™æ#dÃ(ÁÐ+Fˆ„Qò cNáΉ$Û>Ñ?‘YôÔð(”ÇßMÏùìôV$%ýÒYä=™qØèi,ŽgíTŽ?™ ø:ù¤Ó½]cA ;è4$Š·ïbíÙ# ;O  œM³ $­_ÝÊÀ°‘ßQºÛ½Uäвa8QêHËò^þÂî_™!ü–!ìièëäŽ2ןg`—]¥ž3‡ ü!óQú‡ùö+æ@«°N|ø;nJž,·õp·Üf:4ö)¯¤™Ô«¥u©h]|%Wï$îöx.àÉ€«£Eª˜«÷ŒÝ±Ý¡”EµÀۻ镬†ku×kfš(„Q"[(´\ÛKFÇ®@C¹§ ý­{ËÿÖ"}Jÿ¬óÿV©>E?ÅÂÚp^añø•h"듊[ùX;uTÑÔ ¤èyñˆ ˜dÆ}÷©1î”àlbÇêp̃ÍÇ]e[$÷^ A†<ý>ÿ ÷ù‹fm†,@b½’µ@†”i9i"MÛ@¤Ùz`DšßUpõ7e°`t´,} Eæí¾ RfÛ„tÉÐ^L„7Më ¹V¤Œç›Ža#`g8dcc®B)…Øán göoF¶A*P ¤:hU›Ù2:7R軤œŸóñáÿ|] þO{ws{[Çÿ¡Öø?ËxغÑñUãÿ ˜äÀ ä)¢FÒzäi#Á<à@ƒeC Rh ÁxØ£’š h0ªñj| ¨Æ O†(| H.ù‚|yÅ#Þà¿à›H8Aƒ’eÔhA5ZУD jmÊpA˜Ÿh¸ —5\’¯\*ˆ#¹™<ÀéUÑ:DP ûóH`Bÿâ‡ûþÙæŸÛüs§)$A5ÎO–µzœz6ÖØ>Ubû ~lŸÖƒ`ûГ¾¢ Ö„# Щ"™ ;¼_¹…q·Â`€ L¢†hÑVhÌmW·@ã~À^ë³r¦g‘è*™}× ¨}—fÙ50lœ2›®A<¨JÈâX¢X•ò *yTœð)ãr'pJ”Ó°?ÅÑŠ>êné\ÙÈYNø¿•ê­-¶6²¥úÀ™Ûj ¤pÈ©‘/Ö5h.Óò=¼qØhÆnN>°„4–-Ľ“Ä5VÔ÷ A¥‘˜‡Ñ­ â7¸ò³arQšÁ‡ËàX*¹\X{–Øã™¶/Ûý„vzvEùòÙa†Ã(/o¯•æ9QYÒÕ’ÅrW†Q “Ôb¼6 ¯_õu‡Ùº¥gÝRЮ%‡EKÀó+íM¶L]ˆ@R³,u­Tìö)º-¿Í$}+Œ  BaøJQÖæEñ@rüü®^A—û @?*Š­À}D™ªP®²RÂBG” óÄø¨4XbůpÅ&*F†¹ÂæÊY ¶ÂÀP´aVäbB"LX~q /!É%,¶8],”óÔ8_;€):ƒ¦6Ú|¾vÎ3oa³YÃsv>ü ÎßF”R€ ÎŽ‘ òDª( ‡îj¤(‰4QÌ[íÁcoKs#]BÓFÅ8¦U’›8Br[Hn¢…ä–Æ=‚Ä@eAì>‚Ù==Ô•¥Ê¼³{ùwvZ"žaaš»<Ü’ˆ Dâ¹CtàBÄIôA(›C»"¦«šÏÃ=íŽÿ ܹya§¬¹¬Ó§ø)Ëz*×)[ ÌCôuž™5;m®é-6(¹FÄæÉ8é®èÙÔ~éœÚ…ìs˜GÐ)<•?HSY”jw4FÓÑypëŒNgFñ‰ý2À‚–Õ;D(йù?,³ºÃ½ûÑÞýê¹ïÖ_Šc•»öåÏÞµä®}Ù”¾pa•ñøq)ª‚¦ð˜Ð68ˆ®±h — 1L!†ÀÃâ†ènJ×Ý–®Ô˜n<,D7Ðæ¡aýnlQ#[,ÙBÎ$a\` ®…Ø©r`3dÐ pTÏ]cYÔX5–…(ç°,T(‹§„dѵÁY¸yR†spÉ¢[šÅþéññ¨…›áCUƒZØ+d…æËj1ôQó@-†Ô 9¨Å0j1ä Cj1ä Cj1ä Ã¨Å)8£ 쿯Á-DÖÜâу[ p‹äAÀ-ÜØ/vÅ ‹Üî#îV„]1ô`W +Ä®È,~ü íw€ÒïŠU×õY0âúËt9°üºÚúK,’«i¡|§Í;Ù²ìêÖQƉ‡Ù Du@e†{‹¡gÌýÔÌ.[Ùm¸iøÚ ­ ï²™Ú6H)›ù¡gûZØ£ØÊ£èPÌÝËÆAªÀã $ÇЩ!ͬÑÁ9<%¥cík½»ž’ÄâA|~*¹¡<ˆ̓ô°êÂü˜–‚BÛJæÚÕwˆhFÞjø!Žùa$«Ð7#÷ƒ<´M– ’n Îz[Í©ØÃ6¥GϾҹ|5¡›Ñü3g÷èXÁýŒ c²ðd$p4ú¶í.ìÚ-WO3foÇ*“ÄB“ht(!¹0JHq˜’©„ä+!Qx%$²„PK¤Ú<À%Fmì_ž @LH4Ž Y” ÑÑLLé(wkgB" MˆÆTF5!{ì^LðBŽ‘ ó¦¼z7‡êF2 ñ`ÄíæÇ3 UAJP ˆ—ÙeÏø =ò/ÁlŒ¦S¸àKy2ºŸ“Ñ 3ÜÍ™a„aÓUõ°5³Õ]`Æ…p[ŠÌº‚ð-$7‚ oL8.i§T CAÊ ¹°'/¦‹³ ùȈBv!Ú>æw!ÙŒ ã»ä™QºKV®¹¤ƒiäÏ Ã{Àµ•ú@aH[ihòx·RW‚Å®OR ‘7ÌXL™é]3†…!y=¸œÅ€gW$x ‰Æ!å dHyR H†DbÉ„kצV^8’Q†øAeHW†Ä@Ëh¥l9€g‚3ì)3C"‘fȯ™i}§ú’m‰y?ΉÅVæÀu"Ò²(lÃܸ4¤*hR†ÈGW &úðÒ4¡nœRZJž~luyuôCjQú,/‚z±†8@k´ßwm`6/ª³š`6­G fÓ²\â#îÎ#@³yYÍ$Ǫál ›â1+pÁÙw½€AÁb!mì*Ä‚6Uc i­„­Ä¥f,’WµøX`m†>0ÚælÙÐ6®)ýa%c“U÷óÏìåÂÛ,nf×7Ã2¬!nM×>8ÄÍK»ˆÀÑl´[ÄMòd n¥ßÕQOz[H™‡À»áDÚ S2ˆÜ•ˆ„Ó\#ˆÉ"ήÒêjPÍʯ„r3üuQn|ø/ÿY þK’´Û›&þËnÿ²Œ‡M{ÿåO ÿå¸IŽ9æ‹@‚Ñ]|Ì; À<6ñ/ú1îœ6IXÞƒÊå8z ŽO>”°XF‘ˆ.8 øßtè .y€ZþLZþ¾;dˆ,ôÏ?ž@ ÉÉrÌiÉrìÄ9Î0Žã!YŽã Yn®¿KÙŽ>h™ä†I>øc $#!xKjÉ1ôÎjµÉ™T¤ôd¸_àÃÝÏšá"éT«±5DÖ0¶Fµ¨¶I÷øà,þ| 8 –šîh4[¥ ²rðõvvI‰•®vJÁ]üwè ÇÜÚâ8ˆv‘ò}ÊÕäg4-Ê wq¬^» §Ò†«ú”Äwß¿ÌèËc~ÉÄ0£sap~e½~ƒk@@7rCPÇZÿÙÖÚñ³¾qq~Ñ}Ç ·ß„cOðÐÌ&£¨J[|;ã–&¬.f·tWü(üCŒ"è³ù!ÿ™Þ\s Ëžˆ®r=Ÿ’Û+°rQ+±ç K‡N¯4Ó–ªB‰õš7™5}ÝáÒŠ³œ Ö÷¯„Õdhú…nWäã2§’%ß’×Óu©luEüÿ¯®/¦Ž«~`Ú~“æ¹…÷ûôÌòŽ‘×Á£©Áص¨@¿j~åìºcFê|G©mOGR½Û¤«™+,§Ûâ7µo85x»WNç r¼ZÖKM_éÓàÇåßofç+©š”±žùvÝ_ù¥;§¤OEóÉùßtJ¬ÄP"»…ùÜ5…§å†D³;ŠOÓêá¸ÄÆy×'¦ÙÑõ÷é Ì3ôk©`¦¡?›wº!Œk£ìOÏo¦“[Ö¯œÇçCf7ƒñ@6Œ&ߦ¤ƒç>h8Ôõ{k]žªlGZsb¸Â]xÁšµ2;?¦=½»&7Ó‹ûsfþvÿõ+e8în&_§ÿ¹ž]ÐMOè;¯-åˆÔ©m Ìü ½ÖëAt×ú¼Â+Ÿ÷œhŠÆí·‹Æd•nÀðÇͪÝòEF‰ø Xë±Ú‘£XÏ´#éF#†J:ìëd¸öÎa™#ûZþÎ…Ñ+|€•ÎÉAd uïV(e뤷jNÙm’SgìÒ5¯Úô<ü³>å²rž‡í2ç¡ßH{êóÐÚìú<|úçáŸtþé?ÿ´Ÿ‡ÒÞº Ãq둎ی¾áã<w2ꊎK³peGoÙ âpû-ìðûü¼^’Õcn|‰úxÿ|ˆñáÍíßår¨µ­Xnâp¸"•[êÙÑí6Aãõ`v›ÇD¶v$þÈ~ü«24ô'vÑ,›ÊF|3nÄ÷ç¯kÄWâqÙÿ]Ü|ûüq)ö»ÉnkìÿZ›íí6ýÎìÿZµýß2¶bdû¿ýáûW]kü7:0mÿÈ‘î‚þÛuXØ·.þ!‚¿‘0!\}~!{Á£Žè6a5ÈF€çxPÛÁžd˜+ô[¼Á m¹ø‹N-\7ýÉ=eÌ€qùãÂáRH9­)¹¸™ÑyEÒkä½WÝÑ{nôþ¬¶?ü5CÂÌgž¦hÌ8õb83p4:ŠåÜ’XÝb˜Ÿrm8¸<ÃÁ£?pŽ:Q3÷r:ÿ|÷EÌ¡ Û70;í(nS¶ÞZÅOÓ±ï &&O;ìæjÄa7mËY¤‡Ý ^4¥Íš’”n ÝÔ ŒG‘ntŊܹ*Õs‰ä&å.È-Ëm ª0Vÿ ¸BÙî³ÚpÐ`^pÏR°Ï®üéÙl–·‘|¦I>Ûô±q9ìA«Š@·ë/'G:“ÍuØ~Z˜Üƒw§¨»89Dùc0< €/ç!FÇ‚VnÖ(s#š‰–è$¬î5Ï$¦ÒÁæZL)ÒãUôX½·GðÏ©†ÎÍýòÐt'‡‡"4éA³šä ±¾¥u@y´8w!ÌÒuŸIpû]Ù–#£®?$ÙgÔ uG(€ºûЮ?ò¸D¥ïXôpׄ=þyŸÃãÁ{Ÿ5&BÎ~øh/Ù2"æ…c OŽ0=ýè±øøƒ:xÿjøG´å®ená¸é.ôÜoY›z =ÏÊmû»ª=šr©qö^uY ½W" ý> Ѱu°‡/¢Okrïsë`¯oôž[ ¿?+á.Â&“ }ÓÞ³ôÌŒ>þ¹Í>‡‡üÓ¨…”Í’ßñ®ÁLïe»Ðh®ì Ô—×<¹Ó5¯r¿zåþãµPvfu†èsæÀM 2®p´•o¶¥¥U YôŸî“ øªû„C¾? ÚF³J ÎZ5žØ@¯^ÍæèÔ&ý,k›R2X0³ô 38à­Öc–W ç+¤;žÈ „ÐÕÛŠyuÚÛîà„]aóÜ׬Ôø,© ]t9»š!b¡Ÿþòúú«ƒ§ÓR¹h¥üŽlVØ´F Õš°\‰²Ü-¹¸ShÒÛ#é'vq¤zd¢Y‰ -ÍD½¡nX…ȧ٭Ô1Ĩ³“F›~¬>ßb`„þ3ø²Á¢+\ß\L!æÔßZ°)*jÕL\“[ççâ~~A³Ð¿A=Ì\[RþÙ  )¹>à·ò e1ÉY_V6A ¡›Ú}°^LÛW eäÖh)ßkË[Ì–¿´"2 1q€`4Á0 g Žæ©if ô4Ï€ê…àøæS½Ï1ʧ¨gÖý…Ô»§¾±¸‡ÛR˜kÄEaîA·æ÷¬0ûзQCÀC%)³«­(D?Î>“éüúþóëóîËÌ0!q¢}2o—·`ý@鳘@ ì§Àš'çÜï¬a •£‹¿‡9ÅO´ w¨ÎbÆ%¬a?®D'Ðgîâ´>9bAßC2w­AÓ<{{úÌuóì³ÞZtß:ÛóÚƒW“q-‚ñ_\›8ÈoÛ\ùîè«ó8‹1 º<”Š‚³'ªXiK²i¥ãá±»?Ê(µ1ºÛP$ÝS5××l“µ“„ê-tTêŒÁŠ+á«¿SNÁØ\x3X>¾Â6ŽÆa=RÏÙÊIÝ%_3-(B‘21wª ØfÓ&Yƒ§ ž©arwK°Â\ …ÿ1­ŸÇ\Áä–“ÙÃ4aB©AëÔNáþ™Q2K²Å–xa“ÁÀšÑÎt‘)™5„ÛJD™K‹p­šèƒ•?W4#æPAAÖLxQX]c¦±†Ìî-h¬Ç2+Y!9 UE? U­y³io¾ó˜>‚H%­lX”ÿB¿Fð[¤¯¯®o¦ü%‡¥gj¡ÌÖý8:tc¸™ÞÝßÀ½ùùõ •yï.8:_\!xw‚B'î'~†K­ÎeB™²I¼@Ó¥èHá â‘æ¥ë5)†Ûjwd×°,Ø!×èJ tÝO=üOÜ’¤Hzž&ëŒZO¬ÎDxýò󵞇ËózrgŽ–ìN™ á´ûYÈÕ’„‚ÕxG‡*¿ŠØu†7ÎPæ£tÚ›8ÏW¿½ñö{ì½a:Ú°'½‡¤“ ?ž>Ÿ¶ t¯kâ†ü2&t×øúC³Šé€nî#Á —¨´GåpÏhèŽÜ)bK 2ÑP§)Íà)ÄM Ïâ0\~˜".Œh?á²ÀÔyýŠ;0¬e4YqÎÊx:~ƒÄ²¹ç,»¥éñ>¥Á/5WW|öï'¼5Oß—ï],+ÞÈrqN––7&@ŒŸÓ›¶3.}Øu ´‚½ {"¡»1éY†2ïCÞ.w0%¢Fw׃¯£V¢GNnf·ž “ôA^ùNظe ÁÇpY6zFlX}…À ßLïo§·r€¹Ó ÑôçëÍôÛìúþ6Ó˜2Úø¤¢sÏá^“õHpo{J|˜C´:¥eÌú‘d“µ|'¡‚u+jPI6®oÈ‚€¢™áíùä’rÉa(eúïûÙåì#Wád»s  Iê½·–B¦H%!©3¢{a10Bc_ŽÿÏoÈó#nêÙ½ €4{R¡AÖñм1A y|{âæ+Ã8ð#óÂÛ±ihMebb8Cº‡htî¥3ªV™Ì¸†¹èì.¯?# us>zJë: ¯2’mWïÀ¹¢š…F¬k-g ÂvEYn9Ëð²XY*Ȥ¤ðò¢Öc‡q¦¾¼óëùº´U^ˆxOp~‚2Ø  =E`D³m?j£•ñ–T÷ˆ?@${bzKfZëà¾Ê¼«çŸfóÙÝö í¸ÐIÁì¬ÀŸMmèÛZ)7‡ùÌ>Á¡º{rݽjëööà!žÁyNUq¤Ž‡‡–•žZÔõr&^ [F+Œ&P:›ƒÿÓ4fd­¨ýbX¼D– Tž«©—ó~€“’ôŸhòä¡J䦻 ;ÜÝLæ·àãNŒ(e{Ì‘É(¯v,KÒ¶•W$šEŠUq­È~nÊ#Ö ìxl€œÈñ2*Òßâ¶C!Tø¯4­Õàv¾OÁ)#­Ê TÝ5õAó•Rh<{ËÏ^EãÙ«n<{úxöògàµ7øyl4Î,Í: ­êãíŠÌéÉ’/ä5{¢¢Z³'v|Bá«yi‹k8½½ƒK܇kÅR¿&}óD¦ÿPŽ€ÜR9!r€·œË<û|Ó_ •ÊmàðuÌiˆéÄØ» ýÃÝr‡ò!ŠvÄBQ‹ÛÑÅ ×€ðà·”aI>5¾Û‹j·2ú‚`Q+úšç!Ø«Œ$Üâ„)îø½¹±$C’äúú:>Cbø­(‚yvtÊUC³ÿ0Õ™¢”„V‹x«' kòóHŽyµm.2Œ1Ï'ÀFŒ9ÑT:hÞ©I2uô¾aYM·™ƒRΗž‰õÁlgTlDxÜå{xå²ÑG±õJžõ¿’Ï©`à—}Ù%~ØyÉú°Þ·\éç-GB ð<Ã)¨ßÜŸ§Æ*ØùB¯8(ès.ÔÃSzjÜO=ò“ÊF€‰¥IŸâ²-ß´³‰Ey²ËX›¡õÝ÷Ü¥ÎI˜ &c„únOëM±oò^ }ıŸKåçݬrμHqZ&]‹¬r2›9)°ðåZÒTÐNÃ«Šˆ=-åÁpQeÀ È¡-d,Q9ØÈÆPlÅù¸"ö°– ÿC Q5b`ûžKèô‰TkǃÌ t1€sòÃãß ‘+^HaT:ùÉcJl>vÛ]1ÌÌX:¤žpo›Q@vJq vò“ ÝÛëgàBtà;ÿTˆ™Ý*Ÿ}ÆùlO¡éÍ|¤UyšZ;ç’¸ˆÅZPýJde¦ܺ_æ:ZJý+ZqqZIV8xwn»¹ mcö«90ŽÎL ".a>”ù)R¶y¥ë‡VÚí¹àãe>>Ó¸=wt¹¦ÞžG\ÐEݽib#·X°X¦xoᘎò2©„7ó‹[ãÍ—j¼~“GÝŒÀRÁk°h9rh :¶û~Ë] »¹¥+„t&Áæc©œ´ÛÀ6å»V²3ôFWÔņÛÐ;fLóKšN1ó,µüf‚cžƒ»ÅóçÒ)&mV"j 9Ób;¦|ÌÄ­Êýž}ùÊ"_è¯7ˆWñuö²tŸo®¿ÓüÛ"v#MnpGœ© Þô†1ŠPO˜;á1—„03ÿE_ßãÀüuñH‡Ì_&íIˆqJ¬EtéÅÏä0'G$aÇÍw8&™ça³€ßRá.þÎÉSK¹ƒý 9Ö[¼Ws *S³n’dmS9J–û§ÇÁñD±ÛBüý‘º-ljq #ȧ×s±>…‡Mp".s ÏÇ#ÏP6ŸþH¤Ö)ÇšuJžÕŽ\ëƒ Ç4˜Bȉ»è®€û «{ÝàâcH'¸BM†"¾ Þ¿ÐYô@¿Å8±rqBD­°…'Âöm+¤°XFXˆ×»(xwOtëߨ !¾e°µñæÚ r¥b@;̯±ó |¼vXQ Ûx]FG.Q3½yOõ¢L¨É©.¯ Ž3ùîÌeRoÔXD´Q3…î3SèØÃë)¡ãÇ"+ìAœ=04ÛÙ-d9Z¹^û^nðèdÏ¢F†£ æ˜8­¿.¬s ®î’óÍ+0Òçfúi6G|®<§Üví~Ée«A8»”m•Å;œõvIí QC'ùÕmá ›Nµ^Vy—j `µ[õQ÷ ÌÈm6ç»F`äÕ`H ±¡‚o†¶øjî§ ]N¥\$Ѝýkÿ„¼`×Yoñ>KÂÆ Tõ³ÜiÉ^˜ñÄ×eØv.‘#ÓZT½9Ê]Iðòë´¹ó^¼EŸ_ÄÕK;ÖK…ocWRòbòEÅ“»d®í’»»¼à[Ê‚gË÷ˆ‘ȹЪÙ"JìÅ6çÎNäØIëºÊwoÃæ|«)a…\ªs‰WÖ\Ñ€Øròµ3raXÕêJ eˆ"D^‰;…ŽÞzQU¸¨všòh<ÁEµ“{QŵóÉ.ªÝzQ=ô¢ÚmÊ£ñÕnîE×Χ³¨²/¨O€äyÛr¢m%ö0³­¸JþqK4 øÛå;/hvmmôæuüß:þ¯RNÿ·Žÿë($2þ¯¯„¿huûûÙçÉ öåÆQ‰âÌ9ËŸ\(a*´ÑQdVu^¹¦‚¡þ«ÏÒ6‘dñãÿѱ?Søå[ùÐbìåÄ[!†í óó„-ý¶‚R-‹¿r¶~¥­üŠØ÷U`Ùç´å‹1ÐóëÖâò¼>Ó^s<·í–n‰ç2Å›ÿE ÿë#ì´\— õ",õBžoNÛ<$)ì†!Tº7Бôãë·Ï7ßÿ‚­§IhwÞ4¥ÆùÊ¡i É_ófúç9¤²eº$!ˆ½–x!<÷@æ4¿Ëmxç6¹+fsgµ¶3ø?ÇÍa^¨Y0›ó/V¡—&‘ž<5#5á.9f&™Ê¹°Ñ#°íÁÚ²_Žè/lxÇS¶:IÃ>5d® ‡4ÊC5[ª®ÐÇ )‰u” “ÑßþÇN…Ó€EëU´'‚ 6+ÊF“¡Ää²SÉm¡a›"¦­³Œ«”H{”(_ÞžÓ¤9ÎÆÄg]â•>‹¿-I.+’ö#•XŽDó¸9l~üÖ"‘v"1W·ËÂÖa±f""Qï7þPM;¼-ˆ7ûˆ0+(à©mQÒBg‰5숱D5æK×Õ÷tÓ }Þ~ˆ²ˆcŠ » ;Änÿíå„MJÄ›¤wýö‚â r^ýHûvŽKÿ’×ýèF‹*F hE^¶gñJÂJT¢î«ãÔ¡ÎÈA•µ3§%BŽÆèAs)AE‰tYØžàÅ{ü•»?¶EÌ5{œ¿q {™EYhEæ]Žk‘;˜)æZˆ¹n—#o–#–`Äú+Ó¶E4*¸ìr­¹Ø+‡@µe.ÄëE -‚¸ÛàÈ›àDzªmÔ£_y/°ëE -‚¸ÛÛÈ›ÛDzªmÔƒ.‡$¿}ˆ»±z ÞU Ë öÁp+Y_§§Ã ³÷–Å}½¹¾¿›Í§¤@@AÜÞh­ÃrNç³oU?ϧ··Ói3ûmor9£'×|6!ÝéÍßÓËé¼Píw^‘£»‹ ^HÿúÛñ³:§Ó mcƒŒÎ'—t"un>߃Cä-ýïkG'¯z”›Ä:¿ïõǯ†ò{ìTÖõŒ¡]Ÿn¥jQPIJJFSçæfò#’$«{-eS-tõØMÝ\ओ[JÉGrÚ½“ãÁÑÁ™œ¶ÃÓÁlÒ™Âÿì²O÷$éfi¥JÏÄ'j¬þ¬“àÏÁý À±ÂŸ¿³‡ýÎAz­0%73:©Ä »eö"8AÖ9´Í•v´Tž(‘u/!ÙüëýÝj:¢&¹˜ÑŒ8g}H8Z•ï.ÆRŒcŒ—LÙ¡Sßtì7ÁÜ äXØsà 'öÿÈå4 q‹üßßÉÿÀ?¼&—?zYRÌ÷ÿYUC#²›¦ÿ£¥7àMè¯9¯8C¸ŒÒy'õûœÞ|–éÍÍ‚Âà6¨¶tw“oœÍYHÇ)ÜÀ\å¿gÓP+ßÖÑ}£“³º$ëFž0ËÙUÑU™«)Y¬ ˆÀ©Ù]IÓq Á@—´Ùtɰë×ÄÂÏ€%¨×žÞtqÇÝO<°Û1á"í–Λè€ÉÌæç—÷YwÓéO+"Ÿf—S~&Ú’ÿþSB _Óö©ŽãSºr~Hõ‘¯ œM/šŒ·áw²)…{£±Rä/'ŸÙmßl~1;§}vK¾™R o¸áÝôŸ]¹0±YßBíÙ¤»kĸ]Mþ™]Ý_ñ~û:½¹šÝñÑ]®˜™4/`Õh k߯oþf3ïVìb)«[Ê{MWÓÝÐ2E)¥kð?ð`s,‘›î‘Åsw PNˆÈ] î,÷Y©ºa÷/ž{d©Ï:3k"÷$ЬÕeºÂˆ¡±Ñn"I¼ì!/<Ž&°ª‘ëY2{vÉ,#²^áus?ŸÝÉQzÙ¦ÁçÿïU<2ß5˜ÜL®¦w”ãËØ +rÒ?hʃƒÎ°s|0–ÙéwÒÚØ®ˆ£¾‚Y (»å/H2p)hA»þr †“·ï©­pD¢Kа•1´~¦B6¹QT“kŸ›Ü(…õ @‘Þ{M ÙSèØïÆ©žX¹ñf¢ÆÄѳ¯µEvP¤yXÕ&÷sh²PàBiÛë§æÎ'‡‡Mf¾äa,y$ *y¼me `4e;bÉñÉþ³‰óYõ»Ç=¡Jä‘Ì3-#·‚fÊÆ±{³x`Âk…ñÿ¤¤îõ÷û§ÇR„ïƒbxÃ?{üóD`Ïxä20ºbÉN2Ç aûŒIÌY…"‰4©,ÓBD±ßÎGsoÃß"lX_ f{ˆºÄ À¿?à ²zŒwµ™M_i¶õqðÝnæ´1‡÷ós°Dò/´ t×Íbß5˜"¨™YT“ ÝØí¢¾’‹m†²{¨ÝLå™”~KEìªÉ½š\]Nk¤Sù=†T¢CÖd2‘oÚ¡}“ÙµøgÂ?·øç.ûú {MnÛd¾A¬ r:ºIá縻å+ˆ&8+?Ú²þ{K_õæT á¹m¨éÄöú£ÞžÔU]ÜÞ#rK‰bW…°»×WWô„õNT±œ¼57Á„§`@ž¥@·:ØZNû½±…NÃÇËëó¿åUyr||ÒWúê9µÇ?E‘@\ÉôåD"÷Ä6:ö'wr{G9yMS±ßwˆú°MKk½|ñ¢ ÿ¾„_nâ¿-q›`ËÊv¸œÒ•1sBóåÀý2 tS0ê÷d`»WZEêç!ÀŸ[—ãôüþnò‘JT#¥ý‚ÇéQvj6¹œý]ÉhÁ{!ñB‹þq}%¸­ÛéT2h„ó‘nj¿¡‰=xˆ]_}½œþCůéù ˜»%aòÚ¨Ò„¯Ä~‹(|mÄ dúïŲïû'¤ÅÀ–éòÞú—:b ÒÃâņÜcrËr{‡×k™ si³àš›ËˆÒ5:¿kƒI¾È“N :i‘TQɈ0ĹOåqڿЫW³9J}ÒϲŠ%%£ß•<ðp—¶« h8Q³ëu±e{Xì®ÀÍO+o²žHæp»B‹c©µ>¿¾apN³ù§Ù|v÷ƒýB;ŽձK ˆN‰•V¶¿gó‚]à:“]èÈeô|e8ÚrȰh¢6èÔù}xh™Ä½è£Cè¨l6ó»©¿›|§`VqÇ{âõHEpGŽz­6³”óc¨áåACfœå09âR/€ódÎÛÚñL¼ÈsL“˜9k‡Í5Ð0¡èŒ+8ý-´°ûç<üÐ?"{ƒ«nøì‡XMŒ²‹P]yeû¸W°{¥û¸W®{z÷bûØùÂÖi,x Ž8ÆÉª©Æçà[Z´¸Éí)7¹Ú“\$U"ú‰pOï•:? hÍð¦”2‘Þ½ïNæŒ [·ü†C3;ŒÄ›T–  ›¦úÆ3¦`Ða‚"8Z0…\épÀ¨0z\ßë“ÒËŽ½@ûK‚&§¶%#F bÆlvó£ +˜óàé!‘†ûè” q³ÿ0œUÅäƒç¼ÕÀ, AQÉ0a)6º·Ï]MT(Lè1wPjÁŒÞKH?&¿s=ëŠ~¥N»Ò) aNi@>‚ì0Ø#+›÷r„äèb¬·ëî@º3&¯˜‘Š Žxo×·j<Ó†KÁ¢ yª">aܲÌYÒ¿y4’^¸ÝÝLæ·à¡‘ÎÁbâÏdz%Î/‡L’°*¸9¥C P2儌oFÞH}«?}‚j•|¨]ÎbòEî¢|l›EàjIö”ÖçéâpÙ!^"Äßð}v­i òƒa‚"¤pT¦¸Ó?U^êŒóRÖ‚J‚¿³M*ß…$/N»– ±N~@øÜhÕŸyë~Ò òúA¯à‘sÝkä˜=ùî¤h%Mcœ]ò×lA‡WE7œ¼](sÛvpøØBÄ‘(LÚcw=Ôg4GcA4. ïž<€“ý´ ï!LRìfÑË«r‡¥à¤öR†7«ÝNy„ýUúÈHèýñnËǰA Ëa>ðo¸ßdEÿþéqàV“U 4ª®kQ€u#¹„eF:(Ñ´"‘¸€­ 4ÖuàO¥UÁUs W$¢³c)µ©¦$k^ ù©ÍMæ£ÇUÿå‚ T2Qwšr>Ú‰šƒÌG?Q¹•LÔø ó:QsùØAú·Ý¾¶;v”}ð 5|¡£ìÚÄÒPöUl| ٘¨€äðu*AFNa)¦Ž†xŽÓDûÍlï"ÆŠÜn­/Y¿±ÝA“½ðñàµÔxí?ÓãÅÿ§x?þûîÖv;aøïÛ»ôÿmÀßÙÝ©ñß—ñ°¥\ã¿×øï5þ{^ü÷&‚¿7Sxß¿F«­ (ig·-û–F#¼ÕwDH§Åžu)S„0Õ“o“Ù% À5¡„k€²þ>»ˆƒ\àÀ-+ò6…n¬¡çkèùz¾†ž¯¡çkèùz¾†ž¯¡çkèyýÉ=ï+å/šÿ¯nß#‰<|zñùÆëtÍÃ'VO%:H Ž‚âéš Fò¯~ƒ‹õH³øuOúõñïñ÷¿ä¢Xø~ ø¿œ jÀ|¹Ÿ$À|Þ몑óÓ§Fί‘ókäü9¿Fί‘ókäü9_yjäü9ŸÔÈù5r~öÔÈùJ#jä|å©‘ókäü9ßþÔÈù5r~œ¯vHœ_#çëOœ_#ç×ÈùK@η–OÓ e€ß_žÛ¸5z«ÞcÈÚ?©Qúåj”þ¥¿Fé÷uSÒo«³:”þ8l¨'ÕïIÿêd §_H¼úiñj°ÛSƒý×`ÿ5Ø¿þÔ`ÿ5Ø?©Áþk°ÿì¿û·<ò=ö‹Ÿ»Î-w<½®,Þ~‰þ¬ƒ ÔÁ’êàup÷S¨ƒ ÔÁŒëà¤.`>upmup:¸@\ .@êà1M«ƒ `eup' …]¨ƒ ¸*}Tµ.PpUú¨&j\`©Á¬l¿v×~æ³4¬n+¶ƒŠÉ.H öúsšßæ+CWŒuE1‘JYçlð˜ 0L7öoìÕ)ñ*âüÆr}õE?±ÇúÊñ×½r|bwŽõ¥#¼ý9"šËáð" ËtéŸ"ŠŠ\öÞAwï5ܶˆx»P \LÖ¡ÑëÐè>¾øßwÕ„ÿÄÿÞjílaüïÍmú¶µ½ ñ¿·“Vÿ{›¯züïq|üo¼Sðf–b}s´œ_0ž÷ÏÉ[R¾ÞjÐnK@n÷t)©{Ìõ‡{¯Æ£÷i8î:46ù‰Cc›1±ëÔ…BR ½•Æ„.œµ\Hç‡ ÊüH‚+C Ï™°|Á••€ÑuxeR:¼rRQxå’‘sE@6BëòÄxi‚‘÷Õø˜EàÅ@ºy#ðîFP&ðnswI1w7›ü¿ý"âƒËu݃Î"íÚ–…3.ËX<íøçd›»¥Ä‚•LWüád³WàX¡ÀÂÆ‚ ô¦üJŠ) 5˯* Ûj?žø±”­no$Öe„UÅCUõ‡¥}¡…¥mm]!^í8­€Ç¨#h­ïüF²³W’fàïùõ÷¹áb±ozË¢SâäIÖ¡Åíui&™>þ°r÷æˆëg†ˆöϦBò)×ÑŽ1ruyWxü*¬á`Å0…áör…íÏ–È G{áˆYšFÑ´¶¼¯„¸s4Ù#¾]ÁPmñqê4ÖÖ\m‘ |zŽ™µ¸%»½J‰¬¼$+ÏQÞ¶:VÜîz+‘—]p³Éçk`'Óåg‹”x?·¯È[ÇÜÂÝǧëbewÜͬ…m摯² Ó\¿…›áô’Ÿé8³ÿÚÁ­ÿ×nð˜†ûàÁÑùÂí?KÖ@ ±^¥VHÈŽ[|V62œ´D.)ÙG6è‹xö!Â!Ęĵ|9InCYwÉdëÏG/ÉV^8Y¡àâ¤ªŽ³Ä·Ü’(Ñ©žÄyï[yæx9ŠYÜãØ]§l4fWæ±$<"ºµÞ9ö³‰ó–‰Íg6Ù:Ö:[úC¤p{œ³@£àÎ!ã,lüBÉX£j ÑqA²#³˜ójßL”H£ã,D¢»[S¢Cr鈴ˆ3 ý¼±¨è0ãµCÂKKûš#ÙÝØO)wƘpv²ècxý“°0š»›]’ÄRÂlþ­Ñ¡u1/$`éX‹ÿ™]Ý_¥Q´éŸÊŠOÉçkÇȉ¸”Ž™ÉEpEû>ÈÂżñ¦¡•¦ß({™ÐÄïÊ¡%D™ŽŽròdžø|éP âAÜŸ0E>Nгfæ¼å8j"wŽà¥w DvusÌ…bºz<û*Zv+KYw;ën»ÈºÛ^ðºÛ»žÿÏýg¦°,¿È5gÙ†µåQѰºå·Spù!\Aøß@ìßÀ*Ìõ7 jj¿‹ÚR¢ýÚ`sâ£èæpÂÇÏ ôŒ7r®g3JT&œ®”‹ë«Ì#Ÿ|¹4/gA—öãn¶%d†‘ÚãRm5¹± -ßé™uÓžÁ’‚$»9ÖÂ(Od^Aå«ñ± 6*2gäѤ}DBÇfRc SæÔs Î;ÉÒVtâÙèV –êÕäþöv¡Ž/gW³9sô¶‰>ì¡ÂÑÝL€æ€µ¤Ë'$()xr•[+CiÝAkÅÁ¢E¬u2êQ¬˜|x1¦L|©±/j­/ÊIŒ*jl†ªÅk‘ˆ“Ž>}qȪQjùåHdat(_ÐÕ¼WY?Ëð/UB¿,÷e¬ã¾°¶è½ˆ=ÊŽdDX+C —»,Ø—XdaÁÙ˜(\_HU?ªÇ’á2èaü‚í'M_Õ2¸âEê :¡S£BdÇc9ÄûLfœç‹œ‚Ž+Õ¡JöL2õ°wGJÍX ùJÁ1m{Tb úì?S0§‚+ÜÙùfÝËTrl¯>ÜùE˜ ¥ê°_æé3§«k•ÑU]¡U­üe^|P~ªÔ¡A&7cÅÍXÞg!v¶rÍ¥ÊÅ Q¢†Œ š/ ¨Ô=LÑ š“;+€ãiñ4˜´ˆ‚¬6.Íå`# l.¥ƒè‰×Ä êü‡Ò 1íc`Œn]}Ñ㸻 ºX†áÎÁm‡Áµ«á¢ý,tŽ8Æ1üs%Ìó8g•mŽDM¶F4‹‰\– ßv¥Ã§9ùà]GODØ2'¶ó±yÕRÚ~Ë»Übw! ¢”ø_vð᳌¥˜|^ù*Ï )?¤-t»ÒX¯Š?]\huŠe´>&±0f¾b`YŇ=ç˜çp:ªÎšãG;f¨’‹E¤'÷3zrðÁ%EÖ™`ÔJ,9­¶®KÈ)Škÿ*Ab®Õ¿ ^¦ ¼›$ÊE>™ñqd<ø/_¦ËÁI’dð_Z›íí6Mø/[»[5þË26Ï4ü—×ñø/àEî9ûRÈy¸{m†Ð`Üåü01qæ‹éì‰?{pÁ+#Ǹ§ƒ )S9æõAÊOÉÅ *nHê_¼÷ú F“ùeÑdÐÎ!O4+aÁÇ1½é(x0à_zIÛKw¦®álÊÀÙÀ1nÂŽõÛ×éÍÕìŽHk¸Th¿¤ó‚ÛÎÉÅÌ ›r·Å¡t$Ø K䦻gñÜ5ƒãI ާã‰ãiFaéPžÍ¦ ¬ã.Ä@o™Ü9$) Ï“–ðÓÁ„n, ÎÓb"© ¤±vzX—›ëJñ{˜Ðs$»‡{t#¤O¥€~÷¸×Ïî‡Êáõìõ÷û€£h Êï@'Ɲ²1É‹Àá©çõAÎSoi¼h‡ñÔ>Px†éÐýòÏž‚ŸÓøðÀ^ôõÈÖÉðs' Á>·=Ñõßר8,g§8þý§×¯ m§õòÅ‹&üûþ}¹‰ÿ¶Dð?[V\ã€Çs x"$t,¤’Ñ!‡°³³¥¿¾ÓD#Ttœ¤?_]C¼çëïÂ\ œ …>P/&ƒ ¹c'×äŽÝ/Rýóë››éùÝåû&£í¿ ÷ †ˆEÙ^»ÍÂÒ\pῬvZˆá¦9ö¥±6:HÒñÚC&ÅX Ìɨ¦=†¥ÆA¿b{ŠYŸ Á£Å­*ÝìÜ ZÇ3/ø{‚Ñø8±øñŒU­bDPÀ±QÁ{Ët6È1WjãV¡Ñ(ÞέÒ·nÔvîÓ¦—é4¤ÒicâÙ X«l"ĵÝÞ>‚kg|Mc—-~¢{•z8®¹×o€FK1±v–œ¹¹÷Ü~ ì±ÌŽmdHÄ"Ž ¹[pá…ÁØJÃËÈqh é%z^ð*š¸ÆÁô¶aOáq0]Q‚¥¹—œSËv¨:ñȬ‘ßÙÕäólF\à„+.D6¢Í™[ðĽÁ¾0ާ­Ʊm­~òÛ ”Ó²Û¦ž"ðdÀM’Às7€ìöÖ>ïx6®¼eÕ†„ŠÀ6'rê/ÝVÄâ7‘”%Þvl¿©·¿¥‰xš<Æ5l7á I# lŠh):²Ý»Û<"‰hFÿ²\"êb¶HA{Ô:K%¤ÙšŠ#FHÔ!D\Џy¿2˜$¦œüM¿ßiÅÍUöf3ë¨&÷ä&‹l¹›…[â˜Y¥YQ&ˆÈà§E!Jˆ´Èœ`3^&7Í®`•ø¡JHøÜ°1”4Íñ§Úm˜ Eo2|mêMˆØñz$Ôgò]¦Š zЬJý5t¿á‡Á”2¡bœ33Õ’î­çƒk!b‹Ÿíþ¡b<*+£÷@ÅàkãØ¾³c-(¨Y‘]Tè–Pvd.!DfŽx©@ ðK>QÂ*GäE«. ArÈÎHéãåÇ Š ‘òB€¸":NP@­'$8%„3YB@[ðôI ?Š‹ 2‚OÛ] &M."RŒ@"IJI˜Â‚²ÓÅ;D<ÐC$ u‘ ¤ýkH4êáôI7ËB³ç°ä„”#Di¸Þ'GG¸€x];9¼ãœ²’Ïf°©¬äf,eÌæ|œËÅ<8hÑVZdëCòS`‰ƒ^bÑ}u/²ÈÄR´"•î"È ¸Ù¶Üà›ÄÍ®qóâ@ÜÀPØÀf,3Ê€9ÁfŠÞøÈ0êÁ¼Éyóú`‰7õ#=>üŸ¯KÂÿÙJÀÿÙܦoé’üŸíV»ÆÿYÆÃŽÿ3¨ñjüŸìùyñ^üŸAÿSãÿÔø?5þÏðüX4 O¦µú<)”·èÈA9‹®a…jX¡VÈ[æòa…€sî==x!+ðA9Á‡+4<>p!O·>@¡A$ Ð`)€BÐÀrÏdâ›ìq…WhÀq…2®§8+4\!OA`»Yã )9b\¡'!4x ¡è°èy™Ö ®I ½Ž¤ ÷8¨2ì/b±5²Š-/ÿ©ìEéã¸á–hö•74Ëóø@×ÐF …6bF nTƒÕàFêópàF¬šçž(«5Ä‘A$ýéŽ ö.¶´†82ZUCYŸEC½¤5ÀQ¡Q¨à6‰_â(ö€µ@!%šxím’%?r˜–,Ç/‰®4¨Ñ•ÒGAWXЕ*VÝ{ƒ]£t0&83í²LZ9ªÚ 0¥Þ€‘dz¥Â-‚d I‰Árd –VÕGé󈎕Û2– j4ˆ5ANP£Ï(Ò£¨†0ª!Œdb/„Ñ`ÁFƒÂÈZàã€0ŽÉÊ~—yGôõS.8Ü|Ïôr tÄOàÕkMRc=8fÑ Æ,ŠÃ,äÀ,âÃ:pÞÈÞ«v,!à”[UÁ…Ç/cäÖ i<¼Æhà…1RŽ6Ÿ*{*/ÊÖQ£y³Ô¨Eq”D-ò«kË  jÔ¢4åãE-ªR8 VT¶†èÁ䓨ÑÀ@ôë‚ jð!Ûó3€ jð¡|è‘‚ ~að!þÏåíRðvZ›Û-ÿ'iÕø?Ëxؼ×ðŽFþø$0üŸ ¨rψÿíwÇe‰ÎðCÇ¢ÛÜwüºHBy"*6ŒXúÑb±ƒªGz3™ßÃfžÐù¿@ð >Dt@øÑv§»ß#:ðAM67ÄߣôoÏ8JéÏÂ0D8Uxú¡DÂ(šˆƒO„SUú;¤("ÑÑHB$ºœ‚…êí¿éä™ÞšøD¯(KÞdgüsÔÄ‚àÏ8ñÏý¼(¼ÈÚ¢”RHœI«*ú]_^^¿ýMÎø?¿·~#àryº¶¿ök(ñ§8ï±!ÜYp6`O¸âbcŸ|¡ÕðSð€¦=×øo² {XÂqzÅ´b”r1»¥¹>2y»±Ùl­Ò ùty %ÿ½¡RŸü†m§g!ê)7F3³,·t»¢ ¿ÿªei³\\Ÿk™¶ªî¥öÚÕlÞ8nöWŸoy»Ì(CíBK—eŽÖÓ«É °€Œ2DMhkvMkcí‡^¿˜~šÏ˜F@î‚mµß¶"ºzGͲíìj…IJ€á:vÂpg0\Çñ0\Çq0\à•e;~²pbܧ˂*ÖïnJ—ñgF“äÜu WžZÊÊE÷vØ<%ÇW±¹Ê¥Ðr¿Nfôeƒ2ý³UA}—õTLGu=Å%ÀƒºßÅŸUWüùÍõíí5œ—_¯A¢îŸ¥#0*< çœO#iBâb¤jCœs·HO W,.`i#FCÔÊH`g¼C,[wSÚkÇé‚Ì’Êå¹RøN,òŸ…ˆ…Üù ØXîQù¶Žb k Ú;RÜ-F2f/ÞbÈ>²d·¢´¹.ÊÈ ÃjÖ¨QõÅV‚W—ÎòŒl‰?àGqä@®ÛÆüë­B°u­íµ§ˆ\gE— £Êq ¹Ö Ÿ=:>õþôÄRÀ}å¶O,® KÏ":ïaá{¡Ò÷Xñ´Q²O ĉhðÄY¦<Èy8¶ñ°Óé¯c¡ïöhfÐ@Á}…¼ë¦¨w „éa w»z#z¤ÑNëðZ7†‡7zGûx!ÐqýA%þ4þ1èìú ñòHïtÌdÁ£a—pÙžü17 Ð ÷œ: ºixÜa]~Áæ&ï‘Âß½Ž[I“}nñÏÝ&uFx2:êï‰ÉaCÅ‹Êî¡2XžÉã˜y +Žvª!â>"®AR5Jðóø8ÅÈCǧþ{_9ÐÎ6oï6ÿÜ¡Ÿ#˜ëÐþ3(Ç]€//œ@kâèÒš)%–br¯wR=æ+³*нj!òl3}i°w×W_/§ÿP‰cz>&Ãw4z <–šî¤`¬€[Cƒ¬|½]Rb%C…q*Æ“ &Qf¨¶ŸÙUüŽ3¾¥®’u`²ïëìWÀ‚‰‚àS0ìèØr~#åYü}G# ¡O½ñ†J¿L't ©8‰Î³›€gÔÇ!À!WåìRºãsppí÷…Ù³wà)ýM^HiÃ=Ójà ƒfC x,ÇÜG@r_…ŸØÝ}k‡ß£9ŽU¼®}4Å´Âù7¢ÔÖgȃˆì÷>Ú{Ê3ȵ²&ÚàüôG¢ò‘òžpüßÅÝ ¤4,0ߪ¢Ô<Ãl«ˆ*˜Àá ¤¿ão®­ÿx­ÿlk [÷ ‹d¤7ÁÒìٱђzm —å­ã©679¯Å’µ-ÉèÓ㎲ V$b&µ³:òxƒXˆp0}2?=ŸßP -üàÀö$z•aÚew 7Ft{¸ãàÍ vâßHy×cä3ùU.2­ŒtŸðJSaOô÷p$½‰÷›Î¤„#tò«Åž„Àén±3œ¾^Cb=¶Ù©5Ö:°ùî‰*?8 yÖWú <£wºäñaýF$ª&?^{Z“JÒMeDë•¡œuÙä.i{c¥;-DÓ‡ÃKNi™ÝÞQ¶†Ü|¹õO ö Í3"ð¤x]–ã8bIh¢¹Ó‡CSDVŒl}£Du Xô†èâø¨òã„HŸ¨qÆÇÇ 6Q¸ùšÜQfënîW„pœƒ<.S39œëI² 3GAÂP›}î15T6/B&åBÎOÍÊÞMJ¡Ì>‡Õ\èFGtߦ7 B»ÂûæµFŽÙú8¹…‹ÒÆ –sâu¼&øÁêå!ÈYsÖûѳ j H>sÀU¸p/´vAÒtÍ«víÏ$Gû°Q|¾kpAþŒšŸ}¸J«“kw›sd,½€¾FùV!B'¨ Éæ,B“¹\sqà¯`î†÷ŽÌö8Øéæi‰Çvh6â™)•5 W›>çY…ê.©½<+깬ӟí,yèÈÐR*bGåGÇRð§fâ´Ät²Ñ8—ƒ>HÔTÀލ]*"I‹8cAI&}à¨Á„.ÂÈ£Ajo‚ê¦qMG„ËÂyçƒ2†ÊÀä-H›YEX.r÷x?fúˆN.vk‡o©KàÁz[:9bÏÄPÅy ‘ý†"Á)Ò‡¡3{TÚS¬B)¤ jEú4nþÇ c‘N¶X2Òmïê8 tîH심¶hŒôÉ84+Š6{b\‰îÀ„SÆŠe­•XÚ¿†b•O¨ëµ¶ÌS¢fÌï_‰—O™ŽŠÝÃZåXv_Ù»™+R¹÷Œ(ˆKçêîäè´ÔZMô~CÖêø¨}ÁУ ®¥ßPIê<äèv®˜ë¿Áíï6L¤mÿ40øÀcwû2µå™Óíßþ¦"bòx= 3õ'>sL™kHß@ÄÐé5rFÖIW²Ð†(2AÔKz(RaõîË5bsOùÙ&ù}·M5©_lt’Î^Cð ƒbozA 1EÃ!½±úB7éým¹™„êµãåb%8§àv& n 33¢Hk%ä/¿Øe[ÜìjçY{­—ì »<ñ.¡¶´>n¦—Ì]âÍæäö› DÇJÊopƒæ_b[0Øuš}ç`ÉîóœLbÐù‡˜BlëŒé>Eð åb'lIµoñ==NÛ{y+3v¡ðMÓ»pñRWE’3•嬪£…L1À72Û¿ Ý‚€µ¾YYëÄ žsôà OÁí@ä‹T{ˆÓÒ³±¨ ARïûœ¥S´ás&²E~ ±8;éÌ>‘À —ÛqCàÜ‚K:~@ìšwu­Ñ–e'ÏvßÏ3,;Џi]¥Ç$x„|ˆö2rˆ‹,Œð`m'ªyH†å _Uy êiSo(†– (yP ·\óèèúú«ây1ûôiz÷‹YèJG"B–D]¥ÇߣçºDÞ »¶ LRøàIÅÄ Î"ÎòË Dˆ Ü*íïõ›é·)“l3ÑÁ™7N¤ I¾r,‚EÜþºü“ìø¸¿Š92DVÌ d ´¤Æ xt0'Ó߃ÒU|ä²l¿sÓ,Æ3 Ö„ˆ²îPÎôw×8߬‘‹Ùì»Oɯ‰Üwz™$ø¡"IØ…An·žçbÃyƒäºûs ,Âc´öY¿íSåÇøbxA÷œÕ¥ÈTj¤¨ ÿÂü裪(¸¿î–#IYI’dÞnX˜ŒìK3$Nžò¢„HIòJ•d‚% É–dâ%©FÂ$Ùtxü,"g’œ¢¦DÔËpœÅhÓ(Ö+sÆß…ÙÔÝùoÔl7—!¡‡ðQimV!}’(‘.À7ƒB(É!‡š%W!‹ÂSÅõg®áan?!¦zô LõèýþSfŒ]o5†ÌlJ¦ ù²XÕ´˽= ²ª`ÇFO˜c°4WÍ9eÂ;®&ÿ4’4cs~óå¶ ¿Á·ðvÛ sq~•\®FÚT☡C_C¸œ®§Æ­Ìäfä ÷Åžt'eÎZè™Dz“ç9¶?µAIÎBÐKj%3¡Î‡0²zךèe‚¶(l˜?oZó˜¹yÌ–¼šˆŽo;¸Ì0Ò^ ¿ØjWÉ0VÄ1–c·"YÆpŸoÅõyn®oë'àúöC\ß~» â5½Vμ³o³‹)I0ÿ÷ýô&Š ””ð,‘›ód ó Po…ã‡S°Ë)i¡/šDÿŽ·ìî޻жò Õ[¸µƒw§¨Ð8a‘tÃ䮡à´ã~¿7¢‰i^à9)÷ @ÑŒËgQ¨Ïà‹^J,>`à·˜¢¡Çk걪zo÷E<_†è‹þÛ;9<¤‰E½?èÿ ⎊#ÊzK{à-$s—òö4…ÏïP¡ãødÿ ™‚áw™OF OR!±ô¡~®NòW„Èö±ƒü|°!šd¯¿ßàw%µOð99Ú‡¨—¹ô-££1Bˆ6ú#tÕö ¥z:å˜Ê‹â·A®èzrW¸wÔé¿:@dúþk¸ËÆXßByeâåcqMW6µ9ù÷9¿ægˆüpAÀ€ùß3€ýñæ–gHû½Á>~¾Jëïh¹cüw!àKgC“‰4üã ?Ç›-þ™øÊÛ,áðB¹£?:ƒfuÀý{ô è~Žßo)ñ0ûûÕCö÷/b¿3+î"4çÊá `£Â?+ô;?dðþúaå©ÿºü¾@צ¡ëó\)„=ûÎ÷ï÷”5ƒÛc“]ˆ±«¹±—ü³¬€HicîÄéM/°É<ÞÁÊ«„ŸËÒÍçþ5Ö‡‚±-­^@À[Pô]ú*_³n9ãðŸ-]ÁB]ή@Þ¼žkù.Á){v7E¹w®z_S~AFB¼~Zã–j‹‚¼:iá½¶åÂSdhÉUñÁe@|p£Ç=NéZÜ2R±IO?×úë®4[|˜€n)ìYkõùý³M+Å¿`š5ØÏT"™ÑÞ½¹˜*z*¡ÿM[*¨L'·3ÚãTÖ¿ý{ö•ÜL/îçtcš¨íöjryÉPJ©£ßo#i¼±Ð=ˆB§‹ïñÖlÛ솮W¨XU˜1§+\&ÿx´¢UÊ}ðù{а¶ÒŠR¦æ ÂgôX^2¾^¿³½æu‹ ûvÿY²®G— Ns)©Ñ¾š»ÆëÔdJûYˆÙιp«iÄþµdÿp=¿ü!©,Y«‡ðÆåÆmFq`™¦,‚ËM+1#˜ŸL{K÷µvЮ·€ IÓˆû)Pt}Íf­,”ìà¡Ô€…TÅïG[ަ°|!ûh¼Ö[Íñt /¬(]Õ »rD|)îì÷ÙÝθâ6ð9ÄA´Ãû.Í{< B°ÑòÅÙÈE8üg€$y*$47ß›>L’ÈÕQ¨kHªu S48qL^ç@ŒR~ †õGÐ)(ä¢'JÍû©ÔQ@§Áö‚U!Bk¨mÖáa_Œ9¿¾˜²ÐÚÒŒ|ýæAV3_Ö»’™/SD£½1ó^ñ?Ÿ%…ÑÞ\¯Ó%f}ëe‡­–õ¬>Å®×1 §·ÌX£„óƒŒnHm\m[,~=ûÑ^LB>þ £øõ¨¼?NèÀB¡ÿ™Þ\O/@SÈ£\7ã ú®d x-§!Sì‘ÆS³Ã‰wÆæÁCú™8¤]Ùá[äU»;¤d®‚eÔÓUD¬c!Ïz-Ìê3`‡> ÿˆ÷³gψ™Š03’€³<{Rmšì8—/B¢´A³þ¢xÄ#Žó…ëïeúX;:ÜÍ$›¥ï^wÝ=§›ü¦ÚÙÞ#,kD0”bL`©Tn3V=;÷}yç×óuiΊÐ]¸}å-ØG ™I g³õn4K¢Ͷêø¶µ.Ü­C‹ •Öàœ‹†9t#j­4Ksí“>‡¸EäYôb҇žïW™óº¡géƒË4¦—Ä*Œ¥°‡ ¾ÌgØ+³`‰,ØV®FàžåŠ-¼QB³îiÝÕW{,G¤D´ñ‹éaËL´­¶àÔDÃ>>7_ð¹Ù—8ë [ÖS ¬6œåp…‡Ã„§+=ý-jÃN9&:lÞ(—;-ªÁC2³…wÿŒ²ˆ.ðÚ=FÃé-]~ñ‡n4«=RQÈE"®ÒÉœLÿ¡[E„ž\hÍœ?œ¥€Sˆ¯aʵáðu‰Ë°3ÙžÑnúb•Åu³oÍ‚ºÂQ/Wø^¶,Ùýe€mI n<‘àí^¡]AŒy4}A ˆ‹[1Üçúú:GÕBW1ø¿­­€ÀéÊÚ© âøç+§ †ÖÆ‹¿Ô}ÈÓ±ZØ—ólÇ>?n(}.¥f•Þ¡$Ú)EÇ'ꔽ×)¶*¤s*žÊøcÊ~ƒŽdGppâ½~XoÔY7‰ufŸ‡¡N;®ŸÙäÅl¹ˆݱ³‡)¶¼Š†ìz'Öô GÙ<ÿpŠv­7÷ô$wô0ÔBPe,î¾bn¦ô8¹Ÿ8Œ‡Ò'e½6[:§Z|¡§F)zéˆOÐ-4›¼©é©Zd÷2¶‘|–ƒÜnÖ‹‰}oÈ¿1HtJÌc|v9ürÔÖ’r-8Û2oT•§‰ê}+Y¯Ÿ‰Í;åâ›Á|a”H‚þ˜LL%ìmpÊ€²Á«Ÿ}S¦‡ÆÆ[­–ŠÝòcr‹ªD­Uû–`¯|cc˜Æ\4ì.†®UR²ºéR É…!>èÖâûñá_/ÿ{k«$€ÿÝÚlo·i †ÿ½Sã/ãa‹SÇÿ>©ñ¿küo…®ŸÿûÄ‹ÿ}Rã×øß5þwÿ]ã×øß5þ÷SÇÿöœâ~¿ô—Æ—0ÃMí¿+EúÖ¾UpoÃÛÍÆiÀÞŠ o,xÝîrÄõ»¯û§€êfÃÆ~÷Œ‹¶Ûò?P÷ëƒ\ÝRru¥¹UDn¼íp‘ûÀ‰È-€·= N8"÷ Cä>áˆÜ'‘û¹Ùç¶¿ŽÈM?{(î8Û œ]¡ÜRØ’P¸qS¨m@ž]9Z)€ØíÎðt¼O~f »½Ìî¬/¨öÑA¨6š„ˆK`G£3ÓAJ‹V·5ܦ³¡†·óB ë Ãm dxÛ Ù/œÄÓ]Aß=ÚüçšXJ‹UDnTbò¡¸qÎoƒ8ˆ>\1î°Ž8ÌÛÃäN´C–Ë 9'´p¤g_>8aŽ쥟> a·0_'-Ã6Øe€”!v¶×·#;-ð7á:# ¢â±3}Hœ çVTQ¶×n«•ôM§qˆ³Ï m§«'@‰¹YÕN瀀n•â°('ëüà0„NêÚŒ:.ü»¤RDB‰®ˆÊ9j©éËåigbð²½-ÚÊßß[ez”ÅËz ÛùÆE›1¦y“¯¿­KÉ1 NT`ׯX?ÒpÄS \ß6­ÜC!€FÅž^>YÄ™ZãÚNuv%ʘ‘1£‹Ñ½ˆ|(Œ‡(% 1øbnäÅܰ‹ù1£cÑ7ñÒíh…³Xd1Â"2Ñ΂\ðŠ'¼¢„¡è-lj­hPt”XѽäSï™ÌK0àZ#±€Ä‚èˆÜá¡e°¯¦Ž»â­³¾‚!–EB,ƒ˜ ±(bæì{ Í&[—Fw&‰õö%åq¾ ƒV‚t sqXàPA7<ÐÑ ¥q £æ„,ËPÅ+”j ºçÆ)to}Y­A ÁŒîžLw,ÑU@ÿ)¸–Q‹„þ« ÷/ ô/ä¥QîÏ·ø7€\(QçfÆ*[+Ì…ÙçÇæ‹æËƒÊÇ”dû´ < !òÅ:ÝEÀñ±ørñùÙòìIh''at½j õ âê……»6/"/}'ã^œxqïÄ«€Þi€w©¯g[‰&a"IœîªC’8)q§©„ñ "ºœb»‰"¸váRÃè­åáìb "RV@‰0VW>µXüºJ *G®‹äí8Éã¸m`ÕEã T‚ëà6Û’Ÿ8ßþ îÜCùWïDÂÍ=]ÿjÄßʇâé–+èøkºê’ÜŽ¿lHwó—äß·UÆÊ #!§à¶ÉÇdmAî©bи\ˆqåàâJbÅ¥@q1G¦9*£‰ó*ŒÑ £á¸n/Ɖ wâƒ$ÓXc$\Æ›xpê M…‰m0p2Â[D9ð”hÆ!7œýÍÛÕ¹v'·^ ÷Íú¦°ìqÅ@|óßÂø±Þr½Ay{ê ß-8yð¸‚@m”¶(Ä 7>[bТňLA¶I"«¯”0Q¤oÙÒGeøkñàk ·ZÕ“—m-¼ÜJá¬Å¬ekcÛ·6╵„XÚxÿjøÇ_ÀR>]ä0Ê´ÓÎc· ^Ö¦‚þ«ßàò$Ò(~Ý“~­ÁÈ~602Q mž×¨d5*YJ†ßkT2ñ¥F%«QÉjT²•¬F%«QÉjT²•¬F%SË®QÉôÔ¨d5*™ZåC¢’Ñ´=á“)é‰Í‡_­5zþdí;ÞÕhêS# yÊ©Ðj´M{j4ù©ÐÖh5Z€V# Õháþ©Ðj´ÐS# eO€V# Õhì©ÐŒ§F@«Ðj4Wö­F@{ähô€èCM”Ýô\NÔ€iÅd¯®Ló>5`Z ˜†O ˜V¦Õ€iæS¦Õ€i5`Z ˜¶LÀ´8µÄ™ïÂǸO$r£Ý¸{E™²ß,æ+Cg¨º¢˜Z±â¬¾V¬Øë}¼Š•xÍŠCµ"iVʪVœ*•PžèúñõÛç›ïÝ~ûçŸ&¡ÝqÓ$ó¿èÇ_i«}…Ð4ä¯y3ýóS˜½vˆûª\óu0µÆE[­„©•0µ¦VÂÄt©•0µæq(a~y-Ìv­… kaž–æÉêaèdÔŸBÀõnýS®—Á^ðàèòƒƒþIO;„_’ËÞ;èî½ T;C% ª©ð|þû×jàßøï[[Évò_ÿNß¶¶7ÿ};Ù©ñß—ñ°Y£ã¿jü÷ÿ]¡ëgÇxñߣ÷)ð{û^ã¾×¸ï5î{VL%¸ï ¼»µú<)Žþn–‘‡Ý(£F‚¯‘àk$øŸ 8èÞ“E„ÇËLwvøÁ Õ™ŒÝ®r˜wçx—Av‡á¿/åÝÒŠ@²òA²–ɾw2ø` ³»ÇžC¶«Èì'2»· €l„#³2û€#³82ûÙ=å@‚m–!³ÓÏž¥Ëj öŸˆ4]ˆëÄ3wpŸ,{zÈÊyº@ìƒ_ˆ=âùVeˆçôt…Lkô ZX=—íM ‡Þ~Dpèí' ‡nÐ]=)‡®%b<*Mƹ_5]{+C]Ñ5Å›¤=hu!TÔàê‘àêI ®®5ÿ‘«?fºÁUñÜeÆù«£¬÷ ÝO†±ÞˆtH[£¬›¥Tˆ²»0-hì‰Æ{›dÉGŒ¥WK¼ƒ£Á´`´â–¸–o¹@Ý[¿ ¨;â×G¡º×HëêÃ٘͟j}ðPPë¤Úº¼ÖÙ*¶8–Í&}ž:ÂúÖ5hçb½8ÄúÀÝ›ÑýHjtuõYºúÀŽ®¾(`õ X}Q˜êòÇö5ÆÕ„½ÁŽú@¨›CS£§“Ð/€žn=Ïk­¤FLÏÏ€˜>xˆé¦ddÕ‚’>ˆAI8QÒ…û_aðóÁÒÀÏ5øyt© ü|`8äKlM y.u“òü¬P}5Ú¹í©ÑÎáY6Úù F;÷‘†äD;ç?p݆³Óí0YÀÖ´*ÄéK“§KËž§k  šŠì1£o baÍAXó֜͵P^µ Ì<ž/y`æÞ®kP£“{eœ'Œåàãşëà°ì’ðÌ..ÔHXVÒk$¬§„5p#aEajJÏÏ ‚5¨‘Èk$rx|Xƒ§„D^ØG€U 91!°Ü XÚ«–+±ácµ |¬­%âcÕ°VK‡µ*Œj5(ŒjU?±ÿën)ø_íÝ­Íÿ«½]ã-ãaëKÇÿÇãÑ-Å'' 眢}I!û~D¯§ˆåµÏ¡´2L/qܺ±¼8j9p"s¹gI!È®1gí÷ãž«†çªá¹žÔ"`èäD%}Nx'+)`<à®íÞôw¯3è€Î+¯éÊç¡÷ŸãcôÔo= <'OAÀÍ6Ù<9ÀÓžØç6ûúËÃTÞÑN;Bã oÄéÂ_+À9êt…Q 쨔²J€ÚlòÿZyÑ–XAÅA“Æ?7hRFl¢ !I÷M~D%å®(: ŠW “*Bj-‰[³± ©<¨H-ɇأW½à~3Ì?ÖÒ k©µiô‹xµã4׃ÞZßùÈPD·?®hëoèŽKÿBÞ½þ¤ò÷üúûÜt=£Óðòú;ýƒf›Ì?߃ë#ʸT¸|¶9(-/ˆ„ÝB5´ •îŠÀP`åøÁ€¬öjKR=°¼M¤4­(PË…v¡7/Ç0; °! *4Ãl8°uSÇfH¥`ÉôÈ&éÀ v³£%É3»?’@ÿyÆ,²û}¢š%ÛŠlWápéí¤ /‹íËsw½•¨ëS,IºO^\_Íæ“yj`g¸Ÿ»Wh¦%»õ‡°þãðm`¤¤ì³»~0„#º­òÒQ $4i¸Xþ:+[ÿ¯Ý²c° ù2‡eoµÔiQKÿÀa¬q<ù›Ù[6;KO»A”úa‘ýçs(“Ú߬sÔi<`/‚ÎSü~à5Ș ÏÛ×òö×}¹S´¤Ä½þÒŠzJE=­"þ=´i‘,CFY>8%`"@ˆyy{Í·'¾?½D^ØæÝlö3ä;{rßå 6M =qæž¹(1 ô[~Îsg±é–ã„i`+B ë@-úÀµ“yíÁšº v;ðr’âD `Á…ÁÇ ?+"nzJ3K1¼×mhH¼µŒœø…ö§Œ@»÷+êw¡‘°¤P» ¢9{iK×–ét§M«³ îMâ@‚h W#læý½u %tt†L+øb½EYðe/sÊvl¹°ºd$¿ì@" ë)¶¤K>8vœ3yöyf ëi@³ò âA .7Ä™Ò/Ã}áÂXŒkIK´¤oƒKÛ’.<­!ê ô]ƒÒwmôGË㋱" g©ä4¾{ÒÅ·¼@zòäá‹7fq—èvw-û¡*,å[÷W‚Æ‹VŽÈZásnÖМ ™¡%¾áòDf ‘>.nRô‚£Ül*ã Î(³s´ß—[†Í¡©tˆðÔ ÆÇ ²r¢µìš@ûx K6Þ/¦®‰ÁŸ3æ6Nlx8‹3|0Ûjód蛇HY5¶ÚØîs :+uŽ}|(u|ºl§2†ÀÆå‚lRÀšÆˆñ¶ÌƼr¼Æ®6q«e¾åxW^,ŠpXðR°­½ÑHQÜÉbŒQ}™æ¬Óâ)åyÙ­è3 Þϧ‚u™€ÉðÝìjjQœ°¤øÖèÐJ˜Çä• !ªŽþ9¹%ß§ä³Í!Œ“cëfÞùBuâï¶³íÐ)ÚQAçMq¬UV“ @OÙ¨ŒÔ®e¡(Æš íCæÄ5)»ßÃÉqÖÌdë‡éyäêËÓU_+€¬å–"Š iøKãÒ-,ñmaPØÖ9`r#rP“ ɹ“u`ý­í” ̉tÖ€ëèÚ§ì€>v€)‰50J)‰öÅãyçÙ4]0Kc'Ì’Å¿Û3N†_÷ØDUºóˆ}ƒm;*˜’ª>)Ä¥`ïmò)Ñt!¤†ì&BECý‹|° ¡nòæªÁgÙ:éÀ:oÌÉû~]#ƒ‘¶+ݶÁ»/˜QÛІˆD’·×Ôõ™«¶ƒÞ·9P|nÌYÓoÎÙòœnÌÌI3ƹGä`E¸ÛöˆÚnÅm5¾•Ž•ûA5*ìRYÊŸ2¿3¥¼ˆo‘’ÿ ¯î×ÂH¯ÁŒ]Øu:óE[€‰,e3Ge!XCG˜–ℱ=î·d tKx ÿ@E‡‚’ÇÝÀ¥&aŠ+-Èù˜‰^DwkàúRÐàQŸ9˜¼Êà\ÀGf<‚¼p?6#+ÐC' qX&ÄOÆ^¥à>Úé`;'»þþpãúþúÞr”,1x=>¤Ö$ÌÃ98˜GêÃàA`ßÌ™3KaÈcaÔ|85‹fâÌ÷nùÓ ˆãá ŠsƒU°‚Õó‘L`y°jöOåýB‚ A%ˆ”’u÷vCïe÷,4Ʊ…ú!O³ØsâÔd§ÛX¿~½A{ûÅI=²,=R°¤v:ÄKïH™ž¤]œ…ÎÉ?û:ÆRGÊB;+Žæˆaž3Îùe„mš`#ƒÐ0Á34ØŒÇðƒ_$)¼ÿªt<ý‰ùþNŠ`¸*Õk‘pUŠ[b\cKàãÁ¸ùÔªÂÿÐÚÞl3ü‡ÝÍ­-:ùÿag·ÆXÆÃÖ€†ÿ0øy #PŒØZ+òsÇêå}+ÞÝ¿ :ºWäÞÊãnñ8g}{‡èk÷ènªÀ©œ¥ë¡/yoœ*¿˜«Rö&Ó~=Óg!ºç8e³Ýýy0 ):ÃWŒ¸ÿ€utL9øhwpGÓG¨½h"×-þ·|#TÚ•<§ ¹å\C À}w££ÎñÞkî~À?… „ÅÁ[J?É\Ëç¡7Ö…|o<m%y<ŸÝ~Íf1y<–äwÜzùâEþ} ÿ¾ÜÄÁÙ™g!͹rJ¥²•£_Zœ¥¶i÷¼iû"í1¤c¹•Þ ©›Ó#š¥‘î•?}ïÑdza´vå<eP%mKN?hTîWéÍÒƒæùw>Çdeúq§‹÷9Íhò‰²%³9ؼeÉp7bVK0{pÒ ÀÏ5<2Ù¿ZVöù_Ὴ_583)ŽÕÙfÞÒè.­ù3ƒbÆêxø ò›*ÆnYÒ$z’ö‚  Óýübzóéòú»%gÛ›“Š<£¢¢„»lûè+i ¸+Ò³f•™„Ò‹nÀ|/¶¨Aûû´¸Y~Òݶ t®zib’å±Fô­ÒÍÿ$p3‚s¡OÛ·ÞiZÚc\sÊíi/«=Ðy]”kŽ<ÏY`vCYiàéaã]웈Þ&ÿx´b±‡„'@ÛqCÌ_rÆ€¥µh¦2ub–áé¯{:!D²cgiì´ÐG™–Þ~}&Ýôâ!ë¶¥Ã× ÁñÉ)2eE~39~²[j±ÔšûíV]øšK‡­'”-Nì9|PÔNý;¦Æ_ÛKG ût¥ø ó=1UØ%G¯ŸN¶-ÿ5ðäò’Náû¼¶½ýÍÂ@¸.pyœf5º®/ìù1Òâ>éÓRÒ¹ ňbŒiªß¬…p漵ʧ°Èõ”F¸Çf¿=6ÂA‡r“ÑrÕ$Ý'µª´É bÐG¯=mx \»ýñ#èðÓyå ‹K×3Vþ›ö¦³öÜ6_/Ýî›÷–íÂ*1.¬Ú%.¬ð,—&>æöNÞ»@ÑÇ’°­^ Ûón+d ìʨ3òpJZwz{piÍ¢&µpÛÅÛ Y[[#p5nW!ñádvy3…oß¿€–NÂÊBo6·höÛ}Û «7*‹®4;;͆µ“â¾wZM¼‚ƒ|øƒV¸x¨ð½m¶<«…“,ÕÃrÐ?¼BüÖkVCR:ˆBY_P&~€Î åá•#hG%¨C·|¦âÞ…“3¹ÿgv9ƒ).(àŠ}Ê>ƒž•LíÚळoî竼³·ÕËÍè £–ßxn¸ê§K¿éu bi=×–  ¼Ê­´Êdç oLW8ór5½½|F“†ëÐõ6X»X±äÜ×¢ÃÃl‹ÿµïE•Ç{ÿ›,åþ·ÝÞÜ2ï·êûßegÙ4ujšýƒOÒñãCqÁŠ:^óÍ*h‘Ň/ nN?_C®T>Eµ}>9_8\kbû&xósôƒãê)¸]h+Ò¹\†¸\Ì¥¿Tœ‹}`_ìƒ| ݹq%ÚzÌŠLžøŠLêI¢œ°FTœdÙ°K¬bSúJ)^gâÈÛÆ¸{Æ<7ŒÎŽq_¾÷›qQ~‚7îR.ÃMº<Ëq·¨9¯ôv²û6ó"/â®M½]ƒ¶¨Š3ã^ˆ ‘‘×n´Ä¦E'îÇ´ Vl!™õK±ë=œzíe6&«šß|5Ì{jûM—v¿æ(6êªË~[µ²J¢n©2v¿¾¥*÷xïÚ˸ÿI¶[[æýÏnRßÿ,ãa«È¸ÿiGúÿuéÖÔM<úG2ú Œ”þ‹pwØã__¼ƒüãÎéOwƒ$¶¯‡sTú¼ˆ! ¬ô»{x»‰tWå¬Ct^ùü.‹íX—Åñá踾ãZ¼¿âþÉi÷è€ †{½Qï¤o¯âçö]\kE\I=åû½n+ÐáæwC·zá"”M-6ä0Ï«l@9)óìpJå¥~ ב6ïMËîË ¼>œi|…M¯X*&¾ÃÝ…0[KÏöý@÷{WôàvúTNõöÜ$Ê7®®k×c†5Õñݾʠ+=¨’~02z£ÁkP“!=žó’¹z°ÜvuP gQ$Šq7Z"r@ãŠÞ ;[WÒ½4à>šz&¸g¶¹•Òò<ôås'ÅÃÈ"ÃçÞ;Sž¯Ÿµ1êɸãQÞ m—ÄõÍu®«ëH×U\!˜ø½‰ÙŒ,×aFÆéC_¡k¾°_¡³Ô>ÏWù’}.Ùm—ìÇÒ%»v3 wœ·óÄë³Ê³oWu? …m…\üˆÛËÏL)ÜqaBúJ$lÎB7³Íåpú ›œ»‚ Ÿâ4™8kx>gñ$3b€ ®€°•AòƒŠåóU@2ãÆp1†³}ŒùBÖ-\ ì}Œÿò'¥|=mÆ'Ø”ÿœ,‘NuéÃÆŒ=¤= FžO¨T+åžÝ’ï`b#~A;¡PAëÿMå`šóxýãõcJN7ýfnöFcèó`J{hÞ˜–%fˆ9ZÖgm)Ú2ý€°´,nÞ§ñÖ:¼Uûu eV’EöÁt8$ì„ZÚÞ¸ºFë ~?s{M¾[4(ÊsAÓ@Läx,}œÒ t妸©óéÅÿUÌç©-©üL0纜SfÎÕ Ós'" 9ì³P›¼>?z§BAŠ¢'*öà ޳t/ß OÉ|,"5ÉoN¦=Î;wK¢¸}I¶ùË¿/e¹Õ{·zß Õ1u†ÜÉÔÅ,°€öÈfTa÷;(ù§—!ãΩWOb+O½ ɰ’£KðÅ×JŸüªˆyT¼;*;$Gïò Mý¤†$’úD¹¾s©ý‰F²i¸ôð&†ÜÕäÂâ‘›éä’‹q·°’«ûË»Ù×Ër>þÈ6C€Ï¿œþ#Ý^L>"àù4tè° ¦-Ü Ï‹|›)Ýߤ -ošÙ"6Éí<ü)n~þ†ŒèpLi@ÈmÞÇhãA°7¨øA ¿nc ȉüx,z;êõlžÉëG‘Ÿ”=é¶?9æì ‹§ºžÆS öLîAÚ[Ý$×|Ès¶ÚŒ¥Ìî<Ëœ­„݇Š"Òâª>•ñ\mÐ)¹J0P` œ¥?ÑE 4W4晼£ãع;:n„¤3Lš»\‰.&=˜#¸Ãû)tWÖK‡9{é0º—¡—œ¢lŽÅ-ukÚch½áµÜП¸ŽQ&w’M ™|¾™N0ÑJ—µ¾ÅB¥#½ž¾X6-ôc D#bCÅgs^õ²4,ÆÊ”d?Ç ‚oOÅs¸] ²Æv…¶¤Ñƒýù Â)ù=P2ž'Ž=S Pú…U0ˆ!ÜICâ +Ä¢ŠéÇe©ãŠÒÇj¬7ĆNäJø‚%ƒ Üõjˇ´m³™Þ1l¦w)›…ðD^RYÄ"(ߘ«™étKh»¹Âoòe Ì2{g·únÅ8‚ßpæ» õ g8ív3‹P‚çÇÚþð‡bì³³ “Ú>ûq?^ûï­¥Ø'ÉnË´ÿnÕößËxØ*5ì¿·Üöß{”+ÝK€3Ý£ ÓŸy@¹ÌdGמ¾Á7vÀÏ`õ½‡¶Þ{â["¾ùL¿öŠDœÙŠ5ß~}8|[›o×áfÄ“Ód{¯Áòžlm¼WÈ`yO5ùÞ“‹X´É÷^¥N iOѪŒyø2 ´-wmažÍ ¯oÐÙ¬9``ýÖa`ý6m¥WÛÌ©-}Í“uÆô_ŒÃ#àÙ[°)µ§;eôHµhæí-n!­–׬¡ëõ„Fn¡)áu9Âñäµîtéì ›Dm ­<‹3¶Ù<ۦɯhƼ]4|˜÷Þ:̘ß͘ÛUš1'•›1·"ÍóÚ[Œ€·<׬rc ᤠ%+ji¼ "»ÁGiÈnYT5âWûIÔÕ>¯8G¦ yOAÓfÅÔƒßÞ ™9¿Û´Ä™4Ú„9Þx™Í$4Þ>°²âì–™¢}ŸbÇôOxko¯%[Ý·A3~~“üÖ—ŒD øÉOóËðÕq̽±&½0î#·Ü)p_S¶$´ ž6toѰ:rèú$zèBƒLíн•áß5té–ä¾Ô°kvõ…a×ëéÍ0Tó°]ù1˜^ß•Ý^B¾L˜¢ï–îqäþë×éÍóËëï”é¢ÛÞ{Ïj ªh>e&$t]\“ùõ¹»¾?ÿ² É™ É ûŒq€ÐàÐøwvç³>‰´;‰ß*öÊØ’í% „íw(þŠ˜x×îoŒ¦À(_M.'`sÊüÈ÷/?`@ÅÆç=FœåÀ ±pU ½µµá›‘(n[v±>»`UÚ‚ÖB¼¹¥:UP‰W q¤M,Ï!HÙ¾LoþÆiÜ=êŒÒk‘õÿ&ŸgߨD¼ç;s¥ÆpLBƒD •¥àG‰bXÕ>¦SáýÓÎO¼Ò€ÔÌ¡=î›ÙÎØvB;m”Öܨ–2[CÖ\ˆ¤æk*ÃGÃttútaèÐB8kªÏ‰1Ê©µÔΉuâÚ®ªéz}õŽxºÍémÆ"6Xu\ç»æ"÷ÊÓÛ&ž*·Ò±ˆNR´3î//ØÌæ!¦¥|¼Çƒ ½¦î®É9·˜ä§$žìô³Ýªðç–¦½¾efá^ëüËdþ™~Šá€%9‹¡ ÑJB÷:5 ³³œÆ‹îâ1ugGUõœY%vº£—ÁK€qfü3žäg¬”E1{L9g/É©é4ä‘}"UQÉ"¦‘9" ™C† !}&°­‡M ÝÛ~”1c¼£ß€Ñcºè2Z´š+š†Šš‰âƒØò¡(d{(ò.ÊöY}’Tk{igHx^NÙ^ØÚ ûB!ãxv6ÈSèxö÷û§`Tqûï›»ÆæFëùÁ`ĦPbI•¨íZ’ð2 ˆµök;í¥ïØÛç×—÷WsòŸéÍ5/â;*hŸÎ§ô¼¸Ÿ_ÐN¦“óom£‰7;y©æ§ÇQ–}{ƒÏ...§¶ Ec¬ó™ÃPˆ¦ÿÌ@‚ ³!ñókÙçh#ïé@­2ûU„£€I[`6¢xý8|=’F6U™QÁäú|†?!š”.,€(™0ç¤`9“K.ÛpÈi@ ¾UêÀ™Gåœéíß?$H¢/G¤…’î¹WÒt9üýq{7ÅÅ@sNÿ}?aækt\ß`ëœ)“Ï<Å ò8Q3Xx· ÒaÌæå¬¥O×#Šu1†æK×nC w›Ó¯ r´v´B®ƒj,Pi­±PŒ¡1ÒÅÎŲœ®¬ú³ µ‘ð:ºx팥ÎRâ_gZž¶ «‡™ uÖjØ_ô­–kUÔq¶S^÷NúûDª^¼Èò}ÇM¾Ïn¹EþùÈ…eW“/S°+É‘€Yk@YŒþ Z!¤m­ÃwÜ—­fÒ¤ w6ÿ$½ÜZÅ=U#t‡:?¿¿a0>¨ÐONp'»¾ƒY=ý‡n¸Çqµ‡œ Êš(« æ.8!&sÆüÕ!¥+õׯ·Š¶ÁVçlÞHjßHn`LûFQ ̈Òbn‘¶´µÒÄ(ÞÚãe}ÎÈøÃàÀÝè±ÔèqÞFƒæ# ìi|œÞ}ŸÒ•·‰Kõ%NáÁÉóÁàùà¥<ŸÞ¦ Ó¯ä¢SÄÁU$· ÖJ—AE±ÒeÀÙR²ŒnÑþ ÿÓu$J)Ú#J)È1•/¥’UÈ"-K©re)RqdY¤#N´"PXŽ-ÂU@’§ÞŶrڹʑ©9{Äá€Eì¹Á€¨hn³'òænçÎ]‘óXn¯±“þAS6›¶úvÁMôïipҬ"§±­œ+Ö%ãI€r›àKÍH¬Ã 9%:’QÇX+Ü£©$ª÷úÔÆð &qtQvâȪjV ~›j†Ê.=ί/¦üÎÃ?¦¸Ji±ýƒ°a'ö*cfpâÑÅÆApÚ›™ÙxD+ ¢B®·²ÿ‘G¶|ÈžGêa·%&ßp6mŠ=~¯ËCб}t}»ÉîªÀÉH»‚Rµ²wW#Tr¡6'Ý{o¦w÷7 k<¿¾¹™žß]þpÊ;pÔÂÆúê`£-øN÷Öm÷(³¬ÆéÐÃ=»cÌeBQ+óìMKÝÊQª;QÈY7-2XIŒÑ­³ *æˆP‰%®Óo.L?ìÊÚ´`Ä ÈûÝ5ñÂÖcG!1< ¥gK’òe¬¢õ R*¸2Òv=c\›P˜p§ìÑ ìt³nÂgŒŽÕmF5—¦C¶äœb…Þhr`Àèí¢í N6^[D«·ŠŽU©–oU4²ëQmÜ.2²Ú\Ü.La©Oª$Ÿ¤FIÚŒÛ"Ú€#ëÉéo0âÌvtÂttäËŒÖ?þÆ—Û/à@ì,hrù.r>NYþ\ƒ P ”qkL¶'×S´îòún_NfþÐlvmÁàpôž¤ÚÆ%ÆIøÊDê6AiYˆ¢Zi BjƒZÓÀ¦¦ÌRƒíœ[Ì¥•‰UmØ)TWŒ+ÇæŠá{2¬¶!DíÂb……ÈòáxA ˜P¶{ø×ôpŠ(7÷ç ›­j¶Qßrws{7SzfÞOl t™XÛ¦,ípÒ‘â)„{HlXVRÌjМžÄM+èbN—"->VDf>¥Î¾ÅÞ¾¤ëãød¿Ño&«x-² Ä ÷¤že8È@¶ê?Oø$Á¯>o1ã¡9}ä“2-„4Iƒ–µš‘’—yV}/¸ê{ÖåöPÍå¬dôýc€±l^Ñ#¼»-;‰ÐO¾~òAOW¦'g/…åÞMŠ{™ûKžÐ<$•Pì·ˆB˜ –mN nNn[lB/"œ;R©'nv1þ9ÛžDnèIÃ8R…˜S¢Þ¦æhÓ缯ÛÞ¾Æ”Š‘¸|Ä…ã…&dº­aY³ÏLéŽOƒñ‚ò-÷Ö‡½hËÕ*†u1›31”?>AÆÃáÍÍÅìÂÍ›ÎöïŸM"ðuÇ®sCFn¡©Ka·ð‹xØ08LG SÅf¶ÿz_¸u#3ïGfq¹dNö‘Ÿ_ fˆ+оÊsc®Ð¿v|ˆ+¶:$S;µÅÙbÅk‘~“-Y».‹ÀÑûãTãîù2>3ùYµÂ¥ ‚G3ƒ)!:_ñÒlߣÛ|m©ãÊ‘IìYY…<R"D>ðŽA Þñ(þÇmEð!üöæî.âlÓ·­mÿ«½]ã,ãakRÃÿ ô`c¶@íÚc<Óí¦‰¦ð|¯øß–M6'öðŒ-ž†죇îrRžw-S£µHD8D ‹­;ë3þÞfv}™†c=žî­`nXHbÃ,ÃØL¾ap,<³îô¢ Óäâürau43(ŒfÏÑäžé t&>S¨‹¬GàOÔÂHFZ¸¸™J5à (›³a}ôþ,¿•õeæº'ºÛâç Uʱdw„†JØ\·Ñ³¡8lÊ2óDvÎëÿ‘Ëi@âù¿¿“ÿxMè¾­—ÚL>þÿ³J~—KÙO6þ–‚lvŽFÜt’U.t¡Pºæ˜ëqä¬Ä7·n\0+ÎÓíê“-Æ1¬>e^ððL'ç_T/ÍÔåZÚ´çÏœnŸl4–ˆ\âáåä3‡?_ÌÎiŸÝ‚:Ü (xH€} µgs\³Âãv5ùgvuÅûí+‚¹òÑq— í—t^pd¹ðcSîVsjq¡sÝ̨‡™ï"÷S]DÑÜ)rE ¯Ö<>±¦iÁÜÜ‹µXn8`ªéU—4±h^ö¤îY"Ö³dö왇±@_, /âÂÏéë'd3ÊçRB­fæ¹ã-œ.Û±·LH€>Õ¹Q:½‘ïδ1²‹â|ѳ¯µEöAgüÚÃ2¥@bã°*˜j[Šé‡¾–=I_dcê¸Á!‹ü÷¶•Ý£‘™åoÜõÉ ÝãžP…dê®j RU‰ËN¸XrËÅÓ² ‡K袑ùÇïh9¢6ïŽPàØ.¥tžzK;^î >Ð:¾ïÏR?L÷|àŽ™²ßåè`lñ¿¤Ÿ´ž‚ƒñæv“Iüã ?™&|&ì3u»´– èŠ9£ ë¿Ïç~iY÷G(„Ÿ¼5×®æ É¾Ø¦]¡°8Nû½²nœPÔÿEqM$Ó—3ìš7zã=«Ï0~#ý§×8—R\îà&zÈŒç–ì& [wƒ´~C£¸Ãßé?ÕŠ’0ù /hÂÑ@¼Yº§)kò˜¹ÙLe®?m܉pab5[lì6 ÷†6H³‰‰¤ŠJ„á7ÎoæK ½z5›£x ý, á™nWòÁ³ÎrYmÏÖy¯‡º™FD~•4yÖ쪜¡Í 2ecº'€ì«8ã‚wlæ‹›ö¶ä‰ëˆKÏGÈ´Ö`Æày“½DyNJ9R¯YàŒ¤¡Fw×#éŽý«”6ЊÝMáÛâçµvÁG{$»ÂCçÛL7Á²"ÔÝÝͽaõ ÔlôOÆZr•4’Úaíê>­†î6zâîäõÄ ù~íd³©ëíx’®'ñ¤—ðÅ…aÙñ;âÆz;e[^2~”»ßjï¶8;òLS—QMêêÜ?Øàl¾Ç¶³ ÇÝX¯]Åe—mi²Ç®â°ËYV7óÁžhoÝWÝŸ.#kù±æyÏ[!¶(NîRøµ‚Û„(¿³m¼M§b>ÄÍãe›¹[CŸ€é×–ï;6S¬ì5»#yÍÒŸ¯À5âæúû­ä' JUK)ŠGm çÙ8_#´ èð~Í\_Sì„È)¢Ø.¯~»À”ZzVì„íÓήt¤`¸+uuµ¸â²Êž»ðØS»ÈF©AÙ>ø´BŽÚE–½óî0Öë é+ä#ÆD²!5¶ýˆÍ‚¤½ìrÄÀ‡v-•b"B H2½~T†Ü!'…™ë‰ êÝuØc:ÓÔ,}bæÑgñH½[jõFâådIƒø2~[BÍ3ˆ/øú‹Úm⋊¶"È— YØ®wîïóˆ·çœI§àâÁ"%L.¹V$0©1w“KÔõZ½l£Ío©ãO¸j1 ý€I’lÌî¤ìbŽ@–…=›ß¶´šüf&Å3 ò.™¯ñ2šØéæÙ¸ª¿ÇUýV1Äç„ÿ eˆ²:»¥¿‚°è`°™’(e¥?þàêÒ¬4Î §ÂÅ‹mÇ® úþÛèÉm©:ïé” @†€¹d8ž³KY·ÃSß~6iᢢÁîœhñ-açò:â¹ðú ¡ûÎö‚Ò¬Ô%³ù7m€ÊaÈÆÐA9èe” £½’DÌÄIV·¢`X†K ŒNil˜{8E@ ‡ÛæÆÉpƒÓ–þ‹qqÒwìÈ^î, V`/Óy0xûJb` ¦ 9“¯ž] neHA€«žBÅ8'eªêF8@³÷Ö××Ù峄ïn}‘ØÐ’°Â¨à–98 ùr[› ©€GWÂ&ÇÀJ`×x]!…é0%ïwgqª¾§`çâîÅUt’]ª`VʺLÎϯïçwºy^ö|}»V/´ç­_B†Ùð0?%Õ¡%J0‰àqb1Xð%:GEtÖrõ6Ö߯‚†–­gY©C÷øPÛ2†@!8†^†(ZÄF0äù¼SqUDy§›jÕ1³U'tÌouU¯‚™(ª–AR4GËàÄœeO6ü9!œzkYÈh+¢Ê1Ê~§;çzûš_©¨>ÿëV˹½ ¯,ÚÊØ|eÏôr t„ß¿øá|^ýmPv­IÐíµ]Û+z¸Ú Šv{‡ÈGá÷êìX‹ß+ì“…Ý^Åæ¹§²½s¡>¯ŠS*otnŸWóNÄS†g#UÙâ³X¶˜ë`Ày#{¯Šýgt0–öà”Áøl½˜FÃë5”•¦dà›0˜¿ØÈ^µXöùêÖ*ö²æ#×1V —Ç ÔÆ„ÐÝ`~q+sñÝÆÃŸ¹e:|ÝàVÅæf®m>›]öÈ8 ©±mÀ+=Üß *»%ųžké‹H‰Ð6È~Â'=XEó²Ï¿ô  %†âgÛÚYð‚RB¤ˆ ®ˆâ…ñ™Q£&xÔµqrS(8“…TG?NöøéclË'Ä©XµÈ£‡´sO¥Ï~uéc| %Å!…„X¶¿|0ú¼mù-büwªiù§—OìñÈ*^Ⳏ³؈Ù´BÇß@èx4v4/l#¢*9cÈ—Û¬0 Ñl Ã¹× .’œ§^Nyàhé¸`æ£ÊJA¦ÄRÆl·ØÞÓ¢A;xEÎüxªÏ“c°«‘<#ÄN9·˜Ì Îa¶>$%ÎRÒf~QÓ.g¾r&œ×cí«»ßÌ'jFÊ™™¹åE2ŠVÄË]²NG DzµmCOÂ7;ü¤Ö®Ÿô¢*ü¤Ì-$|R>ô¤D0ŽžÄ_Áó•—A”Øè›uÂ$Ðêô‘aÔ›‘G>n$§Q äôS=>ü§KÃJÿ©µÙÞnÓ ÿi«ÆZÆÃ–²Žÿô¡ÆªñŸ²ççÅúàÅúPã?ÕøO5þSÿ´ü'9”ôäx²äÎâd殚j ¦¨É[æòšž@Ó‘äãíµŽèw›~œ¦GÑÔaÆ/“üHàš>DÂ5}X \“ŠÓ$à˜Üs# § 𜠶¯ àÞ›ìqš>pœ¦§éà4±Ïž§œ§IÎùã4áœ&@GY9Z¡6Ÿ.xÓ‡ob©ñ(~É×kÎMºHª1ž–ŒñTÃ8Õ0N†‰Ź–Ò‚Tƒ$=z$&,ÔI5DR ‘ô“@$Ñ•ìËQƒ#…Éá]ø Â#ñ–×àHìݲÀ‘j@¤ì)„¥Ãçí@"Õ0HÙSfè~B$EJþ-ÉÆî)0I%@‘>X"üÖÈHRG;‘>ÔÈHé£ #}° #e¦òUÂ#ÙBÐ[âÏ{J@ ¾•ÄÖ€>!7-^ÉÖÞŒàÔ¹'Üdj©H“ã™Ì)‘UZÃ2Õ°Léóˆ`™>T ËT~«Z2DÓ‡Hˆ¦Aˆ¦Nˆ&yÓñ‹Gö›‹ÙnkÐ&[®´é!@›>,´éC Úd-ðq€6}0ü²Õ­?ì¼>:ëôDá›>8Ü£hæÛÒ?_´5IáôàNj §8 §90œb@›dö¹À&×FõS6¹UVGïlúàlÒŽµ  &ª‡n:Ê“YÖ¨œ¼Yj§8Ê "8ùÕÊeœ>ÔNiÊÇ‹àT¡¤@La!”o øô MúTõéÄú¤¨•=è§5ô“íù Ÿ>ÔÐO5ôÓ#…~úPC?ýt ÿiúñüË·þ©*„ÿÔnµþÓÖæ&Ýqþk“n I«ÆZÆÃÖ³ŒÿtÐÝ{ýþ쬑"=)§YïxpÔÛëé.Ú?ˆArñ ÚáÌnÇîáÐ=œFÊ]^’›û9ðº#øXr;½™1„—׳ËÓ.ûdwºD$ˆsÎZìªb+Æ ¾»×Lá)&R@1“ùí÷é €•L?dryÉ<U…ÏKåÞ h¿!á³°6|ÌØ¸ í‚ü¾¾‰×üaO@õ“Aİ ôglÌ÷kr>¹rÖ ~ºï««oP‹<'Ñ»!8žS¾h F«XZïËÔb3:†Gè™Ìë9ZJÒ-tÀùìë ºÓëJÍ&”5C< †«ôù~r3™ßAïeMn$ˆåÈéîçZJ“uÖo|ÆMïÈÙ9ôÚÙ_)û c{vÇ~¤"ÿÝᢋ8=`ZÃP]Xm”kÍgw?¸í–Tp1eL±‚®x颟ei±ØD)å“¿On.äÙ¶‘æéüƈlP&ú¶Í[‡æ€ÿ¿á Pv¥Û§ìæZ“Ì¡’¿fMòq~ñ׌¬ê:e_R, ŒŽq>ôW›­M>#6ä"pbLo%ý5Cß¹šÞ55¸!è]4U`žX2ž+4JÒ'0IÄ¡¥¶ž+duc®W_è+6«ÄJ¥bÄýåAe/[§0ÐVÐåô‡‚C§6mÊÍP‡˜üB:âèÞßêèô|šÌ.o7è:šÞ®‹¬høš¼Æ×îÿO¬ôâgˬÜÔ´.˜=ð¹*M!üÅœCçyrsÀЖîiä¸XäÉfÎ'²” eÐQpBøÏÅÒÍÈw{ƒt)ÏÃqËÆC‰±‹þ.%Ù^§½ž­ Ð_º¶Y¥ÎŽyµëB쌨* »‡PwÒ¾¾Èôt¾)óWœ~LÙÀVÕÛQp.¶@¦“°œ–rqP'&¼S³aé8Ö°U³CgCÞ쳞“‹ƒeTqÿqÎZ¤)·E è¨Ñ‚©ºÞ2~OøïÙ‹·xõ)'}{ªÿ‚øt¿“yöË1wÌGu®†þ**66Ó¶Ó畳2&Ç?MÂxp šBeÕ|úš¨o¹¥g{&kí7ZÍfB©]ÝȨf0ìSÁÙ±–ZKh dÃøUT¹E{×_¥›Ž'žP–jÁúf…þú vxD–ƒgR¡£;@E‚RÉGh03@ùàU—)½³ZèÐ[áèï|;x{ôìíé3ãIºþßà6Ö`ÐÂMö¡^ŽÃM÷¾d°©P€€ ôå›u:“V› {ƒö›gt®×ð@Pû¬·þFׄƥM—NWýÆX„JúçȾ2Gxµl¦t…œÃjeß” ë`ommÄ®zî¾P!üÓ€ì¹p‡‘:€Wÿ‹KwRôIƒÔˆ¾¸×Þ£+xŠÖ ’}ôYÃnÒlžKšÞ“‹a”0£’ˆUºL’¯àƒ3þ7“ÍB„à¬FV¡‹[8nqkéœÁ‰·sU¦sžf·¼>ðvËëƒ_yμêz;‡1Ö ES‘9”‹^bËß$ï‡BÒT» $t{`i[÷9zË2K=Ýgí-ˈšÝgëœkçž:¢?ÝìaÖd¥°«ò7Å" &£/¼ñ¢šM´ÿ•=ëdfÎ=û³A„Ë9Ê9©þò³[òéròù3D&A$ù¿¿gå ûDËyÖÚ P®•2Ûwô´9ŽôãÔ¢´àÐÓÜ?Ùq#Ë-ˆÅRÀbl2œ öÃ+J;-X§]t†a’§§@sAÒXC[Áß_lnn®’¸ÿD¶ÓT³êÞ 8 õ®Ãø-`¬ð™ÜÞŸŸO§†µäw*J¬B7Þ^_M%‹dìÞ¬ Ê€Ð~¡Å|žòŒÿÍÝP¦|Ö?ÐÂÆ’ý·†Yû'¢{`ort‘·‡øL•9óûËÉþ’J3çtVLï¾O§sÁŸ¬Ü’³ÒЋəÊ1ÆËàÇ(ŸÖjJq¾²w ,ë5ßvÆþX,=~ÍÉ0j-Ñ:cÈA€$Ï ¦{Uóð 8áíü¼Ò…ØC6cY™ê`°ª‰m/\l±R~<#£Fn®™J¤ƒßG76ëZQ%û|Ƴe£E 7ØÝÐìXJoÕ ÐµoøŽ‰Á{OT†CFæt°0]/MØ L÷Á~àT~曇Á£¼¡}ðöÊ Þ ÞÞ£<ý\Õ±ÏçiûiŸµd’Ù™Šxž3ºà*ë]õm(¥§7âxÚö8m€ð²¡Û" KÚ¶qÏJ=SǼÜÙwµ4Ûå¹MgôƦÞ0ׄÍHœ‡ØæP#‰}v}z‰ÎHOõÙü\]gÖrìV{í~ÎSk†Žëöšé¬R@´¬00;|óžñ”]¸Ø4´±¢é¡·iç_H‡4Ä”Q‹—HíóÙ›Íî®OÖ4i9d—kÐxf†$µX\·I/•Á¸úÙŒ7˜–ñäWœ–7éí¢}¸¦·¨ÆÍؓނSÛIFH–8ˆ·*‘–@Óe0v-KJÀqˆwzÒÈ ÕkÆó\o1’›VbnÀâ$;c½“`¡h?y0<<:ùcźÁk®Â–µ°aóWß—êÃõœ §Z…h•H_l I6/µ¾gžÒÆ*g ‰Ü™-åèæÙ=UÐþOp—è .™ˆcÛ·ƒæX¼®]ßß^¢íý®…beR²3C;É[E$»sRd¹ŸÀYAŸ=Ûqñ\iµ‡¦}­~AHfB LMÞÒá`7‰ë­UR¡ÀÌ´Ì$Ùu±«J_eZ¾={>E[ðýfv71zm•¬ • ù üÄæhÂ4HX"?ÔäÙåÉ ¿3ONžcãót#û1Ta‚þ-ªù˜ÕHG¥ CÃË‘‹ÁÝ‘)‰^ѽ1;ô[$Ø7ÁUë‡ËJG 5)›àG™—åßÓýGL懗°… 7·Ò?1•êÐmCÛ¢ä:ÿ¬˜´Ku6W®‰¾§õ¤¿üËFÒ6ž…œ$‰sŠcTº¶ÃtmtmÛéÚÁuA—uSéÚ Óµcе³êÙä Ú -ôÔîqæsÉÜ”|eN¾‹Ð¹·w3*ÿN]EÝL¾û tW¢:¥VÚwçÕ÷Ýyu}wîï;4\…å°Ò›ºF°œ¼f%ƒ-ÈÍþú—6ËbØ)f‘¸Q×÷\‘ÀeøZå7¸õ¯õŸI–¢N…9‘JØ]Íœ‡ÄòTrVÈ€Òà¥ïû³³ß, ›aFµ&<Î w”!°ql°$ ûfÏüYɈüIc¥Ùk5WV=h:]@Ä„·CîëOü»Yö­°#¹»f LÕ ¯h×Uæ™^ÈÁŽ?)(+©›µ„o°…¶ÏxþÆ µ?'ÛªŸƒ¼ ÁKþ7€‘°¢ ¬h]t€E€RË0‰ÉE¹Ž¯°®Þ¶õJœ¿¼­-[ç,Ò¶mi=ÛÈ—ò9=ŠE-kt¯Jsª›–È·$ØçÍËKyñÒU»šÝ$á_Lo"÷f_„µõ áD(/ÅšfpUSÚý Y•6˪Èãĺ¹ù<­ý)„ÿÔÞÜmï2ü§öv›¦ø¯ÍÖöÖîvÿ´Œ‡-ÿi8|ubåö{i|¾õurÔtöÞr°æ˜GpÝ;I{ƒÊ:ežÎgß6àÔOçó)= §Íì·½ÉåŒnÑóÙ„t§7O/Ù¬ù;¯ÈÑÝEæ}ýmŠêˆ„N!ÙUß 8å”âl“Å Ú(¹ÍY§Rä)èÜ2Ýÿ‹,ÂQø› ÏEÈïŒëeê2ÆëJÛ Õ&êCì-ú4fó¯÷w«rãdx àCóur÷…ÌUD“:P"† Ò>½àu³ñÍÊçÝ£—}?ŸÝÉ‘i‰49/ã÷*7 ƒ{Ü2o0›oá`[)£%ûD:¼ú}Nó6Wcacú†§±xevúpº'Û ºÈÑ]¹­ÎÍ ánë¬q(’ÐúZÒ߉–ÕêM27diAÿ¥Û; ÿÀÇ<ÃYZ­ÙnŸ£°Ûñ–}±¸ó÷žzbŠ}ãöªK‡ ?Þâçðp„ŸãÄ}ýÎÅã!f8àð‚xA¼ ƒPA4A'„Œ¯ßž¥+Uq÷å“z6öøŠnÌÞ.Eóÿ“·æî)V‹/á™’tŒ¬ª…N‹g+-´“ã㓾ÒÀçXÒÿ  Öð¦Dú2"‰{ây=´1îs̶N§éùýÝäãå4s®f˜1¼DDÉÿ-ì' êïZ¶ ¯Z±Š8Õß&73¨·ñÙ|~}~}k„ÚÝ?¡Gej_¢øËˆrê[}EHæˆ*kô¤µfuèÿÝ{ö–òºþ“æ·»EáRZ:ð/è†Ã Ü”m0[Ö_Û¯Ø~<³ý»+û7ôdS'çäm¦9#„ò»Ì,âôÜTÅû[fÇrt ~% LÝ¢üÅ ¡y&*ƒðO6¨ ë±h›Ø>"£hKñaðtÑ… (àÿ)t<ÄÖ…`›¨’èðƒ4¾Š–w¢FZ~S]Àb‡‘ó‰ŠGÅ›,PÅâ*ÞrTœ`•Õ« Ìaâ˜Ã$r`“BCË/90PqÉW±m` âüã­W_1=ÏŠéÅ®˜^Cëœ?Ø_á9ÔËÓEmG݉VuR}Õ;Þª“ [­ÐÈ3@£ØÑšŸ¯àÒQVO7–âQéÍ Hè¯4ͼ¬sEÐ`,æÅаí£A_×ÝØy›‹„Q$$ö‚:)«ïœ¿ô]Üü¥ -󼃕á;Çð‹Ñ!R #𤕛ðŒfcÂû‰vPüGsD[VHF´²BÑ–%•-/) 9‘WÖþû³c7ŠæDï祹µ™‡èD›E´wº‰N–¸w¨Û#•²œÛ#}·=Ò„ÙöÈg?êÞ¸ÿwäJ„úÊíyŒÖвw,ž çœQ’,Žu(Þ:‡’¾‹JšP“qÄ”*È¢¬1Aú¡ÞrCŠ)‡Á2 ²Œ,”Hãº@z§è@0]Û‘Æõ‚Í(³®ëQytcU]Yå¡K¡.ì–V|teÅÇ¢«7™V} kÌ­]È[½9¡åêsëòVoJ±]¡üa§#«½]IíÚDu«€º±* ®¬Ê?SÊ*‚º²"hÑÕÛ&*T_x¢–ÕFÉÕ˜¨ùª·MT® +4QãUb]Æ¥«qéê—MSØ´»¥õ.]Cï²J¬Û¬ $›¿K ÄºãJ”ð©¼JLÑÕ ¤ ^*/%¦@ÚÕ•Bú‹ÓNå%Ä"eª”,jªKÞ£¤êÆ*©ºº’*NUå’3“X¥[ZUÕ5TU”t˦’‘Þ2åGDºeRHߌV.t˶¥“©,\:é–}NW¥ûW mYÕoK§üeÊÛŒòöã Ü¢ƒSI×¶tÛty(Ò½«4Dz²Ä™®_%b7V‰ØU”ˆºpS@wÖ-­NìªêÄ Éràd4Ù¤°%Ðd™£ M ¹š,Òš¢€Õ™ÉêIR„GÛUÅveU¬<÷<úFDz¶­´š¶+«i±–5„ÄZôO¬eqIÄÆªÁ—D¬eÕIÊq™±y Z¹¿¤X›ôÛû««ÉÍr9›O3å7ÖÀŒ…À¢=éjšjx0>f:ðƒù:U sB¦Gñ‰òúÿTþ=ÿ}g7áñßw6ww··Áÿgw³]ûÿ,ãaS¥öÿy@ÿŸþ5F šÜ±hÖŸf—}ýž¡Î_þÈ¢‚žu:#Œ”<ù6™]‚98F[¿NC ¿=ˆ”¯ä &jêôP»=^—£¬ ƒwÆ\ÎéŽÔÌââŒÒø éáá£ÄâBØZq$á°óa´xO%JÔ(Âßh8z`×&Œ–½ýW_”Úö–“¦ß“Ó‹àe¤eBµ»TIw)Q`W”ˆ )’B+Î,UûZÕ¾Vµ¯U!_+ØØ-¥Z­ý²j¿,Re½µ_Ví—3‡j¿¬Ú/k!4Ô~Yµ_RûeÕ~Yµ_Ví—õ(ý²˜Ö#+,S*ª ”+‰·OßLÏ¢wÓ3¾¼sn©¨ÒecêèVªÎüˆqæN¢ ÜbLü믹+wšâœæü *bšM|Æo g÷êƒwÐyÏWœ}Ôç}äØX¤>J<}”<¹>jë}4 ÷‘ë˜ûi'’E`ÓºÄuˆþ´]b‘’~ñ•dá¿]=’¸æÈÏÕ#-csÙ˱'®iã[HO°“ì|n¾.ñÍ›G¿·Ôþë•SRû¯»è¯ý×+ñ_O¸ëánôw+ãnùAîV<ʹH²s·ÚqöQTDX×@å,¡k ‚¨ r¢Ö@E'j TPØ)Ù¬ j ‚¨ *X(é5PA TPÔ@ *¨ìV½}«ÞµÞªïÖý’m™«êq”yøÊÈü_Rÿ$áýÒŒµÎé.âr½k½ÈhióȸÎp43[Û êªõTÌ»ÞSëi?=ÎYµ ®Ú*ÐU‰Ü[Ù™°õ“wÕv±®jÉ2ß/ÒUŠi¾ááå~ÚŽ1MêÛ%›û;FeDÞŽ‰±èˆëªí\kë v•]x¬®c’§±éÔÀbK¡©«Åj`±rÄÖÀb‹"ö‹ËÑiÑÔ¶hê*M‹Ÿä%­ºŠµÓ##×¾(»K\•% ·r—°.s‘k_˜Ýå­Ì0µóO~|øwÕÀÿðÿZÛIkðÿ6·éÛÖö&àÿm·jü¿¥^5¦È<6‘–Gå2m¬›Ü.Œu–yŒ]DZƮcÝØU¦ýˆ‡x K-Aã.Çi££‘PÞ!¢Ñ¥ _džákL3mh5—Ó Ë¼6`Œž@3ZÞv˜ ¢Ð¤Jß ó‚³X3œ¸R‹ uCð\GŽc¯#ÇÊu¤m'“EâP°e¥¯)9©½÷ð@´š–(­Žn]_­AÕA^>ŽyÇ~›²È3Y ª7ØcgíÖnËÚ $Ö;6ÐGƒÌÜÀÃÌ b™¹ÄÌñó éŒb ¥Ù7Qý©t>.°~ã@ëÛë7œäúùN^]õêdqódƒXžl ñdò`íó'fdøŒ”æ¿ÅÆüz4$[¦dF²2% ɆãˆL²<‹ Š“¢¸åœÊ’“ev²ºVÝìÒ –]°s=›>ê!ErY3$NCºèÖDÃro.ÇÅo.ë§ŠÇsÿûeº”ûß$Ùlï°øoíí6M÷¿[;»õýï2¾)ª÷¿¯ëøožûß×E㿽žÞ\Qj2'³y*EiÁàê[aÞÜÇ›-oüµôäs„Z[ÊÍp0ºšhå’ƒ¥=ÉëÙ×<Ùk‡ì5Cöú€Ý²¾Æpcî®Àr²×^à€8à B êû\ž±ŽEVÇ"Ã_KÆ" ƃ]Ûs_Ά,ì`zþuöíš¾ÿÌKù49¿»¾™ýg“•¡º‡@0²×®`d¯=ÁÈ^Ç#{ÍBs©µÑ†^—ŽI&ê ©E`Èä2‰VÿVéúµñrâñ½ŽQöšEì2Ç+LhI(>Q³9RUWm£´ê¤ÂšõÕä Tö:6PÙk±Ëºš"fR®paÖ¥Ôs-¥ªk·®£žc•¬\&—Þþul¸²×eÕ½.®L )âMƒ¡Y—i(†‚—›ãê^¦!‘¼ý£ñïr“`ÜøZIH*ìuþºï^dž+{½ôpe¯K‡+4~q‘¿rmY!ÆÝÓ£#Ú²¤ô«œE‡+ËM³qïk¥9±Ã}=ͦ9¡èD›E´wº‰Îq×Wšhu{t_õ½Ž ÃñÚ†ÃæS$¼¬á“ ÄdÉMŠ…?ËHI–I‰áé)S¢ôÉzŤ<ŒLwqÓ^\òýÀ#ßbåû.ßÇÈMƒÒbýÀë+¨Wï§¼6ˆ•׺¼)± J kCX«¦j½œÌæ VXX„¥xÞxPZRØ$¥Å`2›˜´8Læh`P*«_0éd+ ,Ò °n¹„8â‚+-— lrÉc!×2mÉc!×”­nÓ 6yj-}€\ [¼0rÕuéa‹±lñ@g‹‹°ƒÒ<ñÀà‰—A‡)&t6´EÇR ò^—€©Ÿ'øxìÿ.ÿ½û¿Í¤mâ¿lÕöËxø‘ Úÿ½«íÿÜöGï Øÿ©ß©ÕXƒ™ô¿VÛJÍ%ã·øs£ó-ÔÚ.—­]~ˆ’ƒ£w ÿ<䟲IÛiÿÕ‘óš ÞaÂ㣄¾«MÙž¸)[m²&«ÉZŒšiqf30;ÐzŽ(šå4![¡iO+!Žé‹•tÒ¨â÷b†$Zhã®Õ¦JwJƲCòŒ.Ü)•*¥ ¨tËV©|ÑÉêÔMJÕ¹ë­3©¨ÊÐ'®¡OÂCŸX‡>DZØHË=î‰uÜ««ÑôÄ6èe*TzäêýQ¸÷G2oG(¹˜¶+n’„ÕXî‘É€ºQ{"œ¡;Ba¶˜ÊÛŽ¦+ópaµo;šžýžT_ù [å-[å hyª6ÕkoI7ËÖž®KäPŽa âmšÀÓ&;7^ŒY”Ç%6zFÇÐa M´8:ô "ѡƵ^4![~B,;‚ѧ¯Iˆ¾bŒ–$:-›Ž¡ £¥Æö]»þþ`ÛK¢ÑÅ·WAÇP—Ĥcý¡±ð¶ÑγEâÙÌø I–²t„ m=RñQŽ#Ëuf¹Ž’Øã(DmqnˆuUG„y%ÑQuT˜§P} UG…¹ãêT¸ eRá<MDÔáS掟˜­ýäY4Cu“µ;Õa9s,]a?sÊP±£+IŽXºÑ•Ïþçv9ñŸv6[›¦ýO«¶ÿYÆÃ¦nÿ3ªí<ö?£HûŸËé„vÓí¿ï'7ÌèâfFû*³¹i€þzÄ )FâóŒ~àŸû«µ)У3Ê Ö¡Þ°ÿ6= L´®¥@‚I6B£0`]ý‡?ž4¨—´üöË•c‡âF¢¶_Z\h%Wô¤S'£ Øíl<ñ?µD O”8%Y¢¶/‘¨nËžH¶Øa¿쥜XûÊÁ¡Ÿ~ħ£‘Ã#æ²+l}E¢ÂF©ÎY²‘ˆ]±B ž›ÕVÆ „“a“ÏI‡%£C—ÐI‡­W¡C7¥YfÞŒŽÄ–Äz±Yf;‰Ô Ã1*££¥j+}‰ûÖx\¬(HhÞ¿2’G©wð2¢ ÃÂQL¨²[ÅhéqPkÝ0,vFƒZ32£Öº”-Ä&Ë$Öðs¶›xzv‘ÄêKò̳$Ïb—ä™kI‚ã¡ÞºRM;+½ Ï\ òaiµ.Ç3×r|XZ­‹ṉ̃–TëR$m`ôñë>žûÿ¯×K¹ÿooµ·6õø_Û­¤¾ÿ_ÆÃvíþpRßÿ»ïÿ'¥ã™Á”ë0`˼ëŠAÀê_æ{O=ù|q“A—ÅåtÞâ'‹Ï5èBÀ/wW@ àŸ˜á„t :á„ :á@$0ö‰yİÁ€ˆ‘Ã|ñbƒ/¨Ž&2>a¸^]9ìa#‡y‚„ñïåc„í}¹¦ã÷÷žÙä)Â'{Ü„\³O"Ä1aCGÓ÷Ëʬð2z*Q«†œ_qµf„î[4°rµj#⌆ï"GÄ,HdÉø_¢Ö¼#R2ö—\mމŽû…´gDáÈcÂk¤†¼¨5÷)éK®6ωE­GVÉ3"Q&0˜°a†HŠ‚Lgµ”k´£ÅÔoèÌåúm÷p×o(ÀåúSílv¯Vqõ†6ÛZ}RQëÕ¹êÌÇwqsÕΫbPwFV¹ÉíåõÐ[Vƒ?Œ×ClY>Þ^öPXˣײ޼ỚޗyèM¤ùð@ô¶œ[„›àd‰XÝÝ¡ ð]Üh‰Ø¥#ñ#vî²Á !*KµJ,\–%^×±ìE–p]F˜„ò”¨“êàÝ©sRÑwq“Š&lHÈ+ƒQÌÈR 5•;x„dQ<„F"o|³+¾ÙÀßlßl`Æ7 tiéØfKl³ruê½â”Gc㚠̸fa K £–€fåêÔ{ÅÉgÇF2Ø"™Å‰¥£˜ ¬QÌS¹¹ Y#˜-¦rãh`‹^VIÝêñb±‘Ë®ÈeN!܄Җ3>YÕRKéØdgl²‡&ÕX\¾œ¬å4™B‰‡&;w_–&uyøøØc#ÄX>±t„±al d˜¼`¬× CB×<ˆåšȲJC˜›iäd›-Èh°j"‚sþÖQñ|s×Å7w=|s7–oî*|sô¥E·4÷ÜU¹ç…ÕlORÍ­<7&yk6Eè®r«XUÅÚ¤p_,vc/»ÊÅbŽ¡){·ØUïV³mR¤5çœùj¶M ùb³ªŠõÂÉwc¥¦®.5å¼Ìê––º†ì´`¬{ÇH& &Ád'ºŠWàV// ¦(×ÕE¹S`àBhlVMºz<"e7V¤ìê"eÜm™C0Š`»¥%ή!q>6š-ë3£Y_Ÿ„fË‚VÄåø‹ÉåÑlÙt5înry$[¶ ;É¡ëÉå‘lÂÎh4ojÝÜré)–H³wÛpÒlÑc,Œfu/÷h7º±Ú®¢Ý(sQÙ-­ãèª:ŽecÙ}MG©‹Ó¼ÄXøjåât™´X¶K¥cÒA*¢ £Îv"¨«ê*Š ”öÜš˜niuPWU-ËLÏHQfúÂI±ÌóŒyž/†’¥ú5Nj¿æ×ÿ÷Ÿj€ýþ¿[­­íæÿ»½Kß'àÿ»›ÔøßKyø_ûÿŠ’kÿßÚÿ×áÿ›tðΘl9}ƒéÒú‹Î¥¿ºýýý‰¥‡›Ïa˜ÊBàÛè"?Âmx$¹ ‡<ˆ=ü¿úÂs¸ yÓŸ÷äŸÝÅ(M¯=•Ý%ýržÊ‚¢® é¬ö]®}—kßåô×¾ËìÕ͵CsíÐ\;4Ë#R;4×͵µCs9/¨Ú¡¹vh~ ‚k‡æÓ[;4/–Þ§åÐÌ´Ya™–O]‹\ã—{¿ŒŠÂRòóàuשËZëI­¨ª%3 Ÿ¬ÖKÕ•z‡ò_c]z±¥·Þ3> å¶ýWmúÓjùÁ;˜ 6ûû®þ3÷…‡×Zn;Ô~Š`šˆèM·#õÄyš-7 óœ-O´1â-wœ~¾¦'êtºMorΦ'Oj¥×˜(•SRc¢Ô˜(ù)0ú¬ëë´nt¯uKw[·|¿uËvœ†M¦F“©Ñdj4µòMFŸ 5š ©Ñd\¤¦“²F“©Ñdj4™M¦F“qwk&S£ÉXè¬Ñdj47Á5šL&Sˆ‚MF{"ÆM¦F“©ŠæM¦F“©Ñd²Öh25šL&S£ÉÔh25šL™Ç‡ÿr[ üKÿes{{s ð_6w7·¶ZÉ&à¿l·¶kü—e<|WÖð_Fà¿ìÝLfŸÉÑýùä–¿@ª»°²Ž'óó/9rCž§/<ÛÉùÝõÇéM_^Ä!¾81]øà„%G ¾Œ "¾ì FãááF êòè@]¼à,Ñà*a¸’ô„1PX†œ ßf $nº½÷1p%ÅaDF€òÁçj>„>û¥ ‡IÍEØX<´Fq zôz04â@4Z›*ÊV¹±u” œÓ,ç›ìW¾$,HìPð,}‹´ Ð ¤"ÛáJ]°ÛëÜvÉz;½šY+$™h$ßšÊÑHº2Õ¥!Îj,ø´3¹ °AþÒxmÑÅÜ#êRJjѽ`¶œ$$ £@2éNS²ìBÓ9d&@Ej#nùœCf«X0 Æ™À•S°¶,©pôÓH…ùïß—K‘ÿ’ͤòß6}ÛÚæòßV-ÿ-ãá;š*ÿ½;ªñ?ÝÒ໣Ò Â[Ð,[Ÿ§óé eäž¡–*3&Qfl‡¸Ìp™[b|uðî(ះüs$I’§ýWÉ‘æ‘&xw„ þùÎ&Õ ŽO Ô±o¼1ÑÄ^´a-h‡ =G>MÎï®ofÿ™À|H²jXð…_`Á$ òìÓªIcÏYÙÅd^©nKVu¥[¶Jå;«Ô¹k«³%ÉA•Ô© ½UVÅá¡O¬C"­¨lÊk´Œ{u5šƒžØ½L…Jï\½? ÷þ¨aXº ›¸I6žqÄ(‰ª½%,v\yÛÑte.¬öm[í‰j˜q&¬”ª®üE¨òd-O ÌôQ—÷à kO×%rž¶u‰/üë“X×e˜@V|±5Á뵬ȥÔk®Å?LÀÊRÕ¶ÍÕWaÕ͵ÖkNª«Ý¶Uk.ûª«}á¨6Q|ùjåÅ–¸[^l‰s±¨KJÌøÄ¹Ò\©u™UW§1×ç[p¥‰´À’êë4VWâZ]eê”æø±ë@9(ǰñJh¥oúcœ¥†Ê1‹ò¸ÄFÏè€ü6¿ÅÑ¡O‰Ž¾ÅÙcq„lù ±ì "DŸ¾&!úŠ}0BZ’è´l:†‚Ž–jØ¿8:výýaî0Üýd9tÈý‘,e¢j,¼·C’…âÙÌ–Û#vB†K˜"òqäb¹ŽÃ,×q}¨-Á 1"¢Î¢êˆ0¢$þ ªŽ ãJâO¡ê¨0v\ƒ ÷´L*œçÏ¢‰ˆ:|ª#ÂØñ“è“gÑDD;Õaž9î®ÐÏœ2T,ÇœH’#–nNä³ÿùºÿÖVË´ÿÙ­í–ñ°i§Ûÿ jûýÏÀcÿéÁ!¶ÿl×v<˰ãiç±ãÉ´·>GD[øØÊ4"B o[¡qç4OøÛgíµ'ú—ÿ<–GµÑ ˆ*22C¾ò®ÿ„|–J¥v£Zæl<Ûd¦âô4;KšÈI‘41’&ZÒ¶HÚ¶%UØI·Ô¤²™û%`$ex¡ !ÏP5ä!ßgtƒÿ:ûvMׯgo¼Ów.Pk\"×{|ãz 5ƒÞ7† 3ØÄà±Y]e¼î9Šð¹h" ŒND²¸ŽÐ¯í¼vìàµ=ƒwOw»ô¶q¥ÚpQ„X±ƒØ^&PFGz¦Ò±ÞÚ¬”¥B&¼ü4Î1¿Àã“ÿoÐÿ'Ijù?]4ùXËÿùXÚÿgXûÿ<½Aíÿ“SúrÿŸ!÷ÿêþ?ÎH „[a¹ÿÿ|W‹ï¤öÿ©ý ùÿ =þ?vŒ |tCõÿ) +Á+-äÿSH‚WZÄÿ'G†ÿϰ ÿO\Û¤]Cöÿòÿ–ðÿòÿÉQ£9èEü¼*½ïòÿ†ý†¥ý"`ÍÝ#QÚÿ§lí-Ã,=‡LŽÊ ÿŸaiÿŸµþ?òþ?9*7üôÊsûÿä¨Üôÿ–õÿ‰BÑgœ§Ëÿgöÿ–ðÿ–ðÖðÿ)Y¯iÚçÿ_­é‡3,áÿS²^sV]­éÿ3TqÓ˦ÿϰ¸ÿ¯ZÅÿǵؒðbKœ‹-@]RbÆ'Ε¶àJ­Ë¬º:MWç[p¥…üJ¬®¬Î ;WñÿqÌñãðr k°2ÿŸâ3ÑQ•ÿOñ "ÑQ…ÿODkŒñáxØë‹CÀM‡¯ãÿÛŠ}}È?ÁHc<›Y!–l<„Ÿ™Ãü=Û=F» BÆ;t×[¸Å(çhðš'݃q§¤mð+Ì„ÿªÂ$'5¹‰™ ¬˜gÄ|prôœ“EŸ%ž‚øÔ1Zö¸,yªò€y$AElxL‡«»Íþ&i²”wêF¦Ã…ƒÊ£+‹xÓÙn†c¤f1RDH㎟d¥\Eu}Ip­´º¶»:)¢G™úý0WÀ$Z?³¶[ [(*j* ê•;|1õš=?Ò{~1où+ÎÄðª+Þ Vœ6x³\½Ž9× Ï¹^þµÝ+1Õzù×v|uæ ëXÛ¾ú,ý <ñ÷3$Ý|$¨YÙÓæãø4tÈj+ÖÿœŒ´û—FFÛIFªŸ\[~2N•~YÛdìi»ñÈØ‰%CÞœ@Çn:Ä^½:ZÖ5ë!DïÍ¢tX7•àæ=–7oY¡ØâÆ%v𱾃/¤N}»ê”ï3*­Sßô:ÅõEÉJíC=\)aóœ³+¬ìÂc•j§uÕ•ƒU*ÙUתo~Z­±lY¨RÛpƒìnHbw )ò’ƒen^©6ÜUWÚvWªT¬´Öm­¬©›¥+u¬îAxu¬«;4õ%–öÀº´««Ñ\×ûº.S¥­Ãáõ5°®¯-ƒ‹k`]\•ÖØvט£ÃU:6´Ð f3<ÝVb[á Î+T·”jkÜrÖ˜n'e+tLï·0ȸùÌ|aNWhœ×Ö¸í¬1ú¬ÔgélÐÿD{H"o%’mG&´ØÅý×E«©X÷s ž|¡$´$œJ{ÜBIØò“ -ކí0 †ÈZ5 /¢hPºa³4 q¶±ÉžÅóù%}RZŽF¡Ô/²Ô‡rx2<uò:¿B”¯~É×ÉííôoˆÙ]1]¿¢;Û¯H÷Õ+PÖ+*X!kkkjÉŸ&³K[ɬKùxN‹YI[ã6l¡5ÕX@ûñÙÿü»ÆÿÉž_Êþç]ÿã1zWÿ‡–Pãÿ³ó©ñ´Yz–€ÿ3|—ðÏCþ©áÿ “þÏð&)€ÿ÷¤þOžÍAOòãÿø+TzßÿC_„{¿,þTR|$Êâÿ”®ÝtäYLå:þhzqüŸ<µëø?¢é‰ÑïQN¢ù*×ñŒÊÙïþÖÞ~d•÷» Iœ¦¹.ñE’$â¢ø?´øbk‚×[ÿ§l½æZŒB¦ÉQ­›[ÿ§l½l& ¬Ö@(὜ƒ[i/ø?zµIE­U›•ÁáÅ–Äÿ)ŒBÈ+-„ÿS¶Rë2«®Ns®'ñÊV*/°4Ô\]‰cu•©S\p(ÇáåÖ`Uø?%6zFGEø?%v`‰Ž ðrb /¨„”Äÿ)q8˜„”Áÿ©”– ú` tT„ÿ“ƒAíÄà]ó€»”¦CbÐéX@˜X ¶YŠ1awTBZ¥ðÊRþO,Ëuìb¹ŽÃ,×1œ••àÿ”à†Uàÿ”àT$"ÊâÿF¨6¨(ƒÿS‚ƒ2©(ŒÿS)ÎógÑDTÿ“ƒsÇObOžEuìTG„å̱tEõëc9ø?’ñ˜ðn,Çþ'ÙloýOk³½Ý¦)˜ýOÿ³”‡M;Íþgô¡¶ÿqÛÿŒ>°ÿA` WWÓ»›Ù9™Í/¦ŸfóÙÝ”YûœOok{ŸeØûlå±÷É'<³b?Xb|wúÃã&îÐ}ÞEGUáÄ3k aKú;Ѳ.ÔIÄ3´Hz´qÇ……Óh@‡?‡‡#üd¸IðÙóY>AÌððða|˜°OVЇPA4Á¨6™zâ&S¼:#(zmJ%«)ld–_“¢fW|" į¸s›¶X°kCn1ÄfœevçžÙ‰+›_Ì&Ÿ¯a+Ê‚¼c)jx´ v³ ÿ¨~+zhøÑGhxÜlÑÅñ]LtqL¨»HBk‹V‹’«&$ÿS[dÔ¯zL.Ž#˜¸L@¢Õ¿Uº~m¼÷x&‘ãu˜ØÆ+LèaXRŒÖlŽTÕUÛÆ(­:©°f}5õ<«©»šzŽÕ1“°!ÂÊ­K©êÚ­ë¨çXG%+ׇiä¦Qì0ì'ׂøa§8l.¬QC9Z0 m ›úœY Û>dcNN‚nBS /¢HH*ìuþR‰Á9黸ùKZæ/W—f„Ÿá¿Cø5ʉdÑD ­Ü„g4ÞO´ƒbº©,€hË ÉˆVVÈ#"Ú²¤2¢å%Åﲕu†ÿ>ÄìØ¢9ÑûùAiNo/¢ˆN´ÉñPD{ס›èd‰{‡º=R¡Í¹=ÒwqÛ#MhãÂ$½]_–Ûô%&K¶hR,üYFJ²LJv|”(}²^1)#ÓÃMÜôÂí[Â.ß\òýÀ#ßbåû.ßÇÈMƒÒbýÀë+¨Wï§¼6ˆ•׺¼)± J kCX«¦j½œÌæ VXX„¥xÞxPZRØ$¥Å`2›˜´8Læh`P*«_0éd+ ,Ò °n¹„ ]ìE°q¥å’M.y,äZ&£M"y,äš²õÀÂmÔ&C­…£ka‹F®º.=lñ –-èlqöoPš'<ñ2è0ÅäΆâA£èH¡ÂØ.Ömô¡†ëúÅýßÝÍRìÿÚ»»­–ÿÕn×öËxø¡ ÚÿRimÿç²ÿ#íÿ¨?™¾:… ¶ò[†•_.T¯¼V~ý4h ÍèŽþ#zDøÙʱZìÑ¿ÿ(`½—ÙêIaÖ“ŸÄRï¨3îŽØç€²È†]0Às·ž&`–yã®…È,öÆÜäo<`!ÇhÑç+hÈ3yÆá¸—°OVÀ°¶äãê0§íû]ކØRC$&øc"ý˜ˆÛê,û–ø1Ê\LìÝÒqzð1³¨ƒÇC‡:'œCÄw12 &l1tÂZ$VC¹OT-ãt/¦jCi¢T-EÔY@݆˜iÔTTµ67z.Ó2|97zºi,¥½r¶e¢ê"s#_Õ¶¹‘Uwnä«Û67ÔºsÌ oÕkÆÎáÒêâ»Øc$Ïà]R;FÌêr [AH6o9„Xw•‘ò ¯¥­)6­ÇbI±l^n•ÇbI±lK}G¥´hê…G½0ˆU/ ¼ê…¼²× ´naàÕ-,–›baàU,,–›VaàÕ*,–›JÁF4ÿ+%((¼œÌ/Š ï]—ðÞõ‰ÝX!±ësÞôvK‹Š]·¨¸`Z̼ëL‹¹“´8È@ŒÉ;Z‰Ù,d—S‰î"¦€y@^bLÕJ ãødZ’êi±°Ÿ.b6UbÊwŒº%yDìn¬ˆÝu‹Ø¾«pãÉãtK Ú]· ýxȶltnqûñmÙ=B÷ã¡Û²}zDïÇC·e§uвõX.Ý–MÙ-†ûÌ=–K¶mÿÑm7ùX2Ýþ]ÐC·®üX(ÝêåQ~tc•]‡ò£ qC·´ ¤ëP,‰ ˱âP„,‰ ËáR‡,‰"ËQ`£h³¸MJ^ŠLÃ8+E²a\¥iz£®GoÔÕuÝz#»C1u+#©¤N©ëÖ)=(­6}S×­ozPZmº¨®[õ ´ÚôT6Zé!ˆ58@±-§©Î’ˆ5Ø>±òv¶4Z— Ö1VÖáÃøÏRð6·w“Mÿa§ÆXÆÃ&ŽÿðgÿàÁøÓƒÿ°7þsøîÛþyX#>üˆ®Âu,‡<†qçÔ‚Èð¤ÑpÖ7ù”¯1 ¨"l„øƒ4”ÏÁ3”WáSK˜È ž0Ñ&ZÂ6Oض$TªÞâ ·”„tÉ(©6YªM=QL” ˜áîfòuúŸëÙ](æÍ®lÂzãû§ëÆÖ’Kwï¢tW°¡ tß KóXA)%«y᛺Vq"YïWQ±64z†æÏØ¡ùÓ:4Qq‹X5%èOÛ-¦zÛ0ýi¦ÅToj¿´ê“ê«_®øg)1Ð#ÿ}ûg)òßn²»Ó6âÿnÕñ—òðmL•ÿÞŸ•ÿª—ßLæ÷°j¨¸ûHÀ÷g‘€73Ú7fàëËo³ùgÜ&˜ÊjW[`úï{ Pã.Ej, 8+èà]A‰’ ÞHÁK‰¼'! †Â{ î†‡% ÕøÂ{¯º£÷MöqŸìëÿ:f_ÇðÕÝ{¯Y¶×<›Ê_ØÏöóêò”2àD N0|àWVÊ@”2”2féF,Ûˆg}`_é‡M„­õUéšuôâ_+zñžµÐBqŽÞ$K„«jGxMÆ«‡&ö1‡´ ¯HŒ´ 5a9:€ «¤Œ¬ÌjW¬5W»!*³Úå«Ìèà–¹+7e­ò¤Â–ësäÌ3IÎb'ÉYÃa° Eõ6†wH“í+Ò¢Ârgî…wȲ-J:Faésì’>Çnés+}ŽåKa’ÜÌŒŽÅŸm´p+B½0.-£Žå ¢GD©yŸ3Îħ8BËÒ¤Ï §<5Ž•§Æökž@kk¨s(å;”2fýÀÿÞr—¢„£/¼Ç¥%³±ýÚè×ëSÆÛe¼_°oLiQï›Èì'ì‹Ú[Ísy}S˜ÉÝ7&ƒöxû¦$cè› c48q0F`Pç8áUc ®8g–±JÊ2¼öSý*1Õ¹Tý¦‰GUuõ†Jª>QŸT_»Á¾ÙjO*j»>K]Œ¾‹¦)£vj¿¸gOÙè˺Ð2f¤–ì!CœGÖëŠIÛ`,ÛÇÙã6aÓ“>²Fç¥ÑˆDˆDnCÂ÷mƒ¡Âp·!±ŒÃ£hƒt‰èR‚ŠV>½Ê´únÖã_ù&Î`pÆ%f#xÆ™bD¾F$0ažÖZ ¼B\Ì –§˜dN>6ÖÌp ™nZ¨¦Ö(R+ª?ªK$#ë|¬-1wL©%Ö©üX[bòRKlK"gC’e5¤å\&9Z’<À÷ÿ×.ø¢×nø¢×±ðE¯¬[™ß1[àëÒ@FœÃdÑ„+Y"dÓî˼B æE"$1;$Y†–ÇFGRyèóÚuH¾Ž…\z-C.9Ì&4CÞh®¯µð_—ÆZz-cAx°–Q¬ë)hâõÈaèxŒFØ#¬›k4"1µ"Љrynk1m°nF!¯GÖ“1 6"iêvôÞˆðºv7"·T½¨FäŸN%–D»’F„¹C—éÓk·éÓëXÓ§×Ó§h8“ץ͟^ÛÌŸW¿9Çm&P‹«ßPe¿¶˜AUV½>WœW¬)Ôk¯)”Ûiʵ¢¢%¬×¥í ^{í éÖ9ê1‚zL´›l•ßê1ÑnèI Úg·'Kº…‰¡=y€nžv£ŽÓ€Û¼Š:í ay]«®ÌnÄé(« ÉMˆ±·H„”Ñ…ä&ÄàÓ$BJè BtèóÉu"â»Ø õ°:FjÙÉø°:ˆÜm°ÎãÖAän„qXX¾"w# „ш¥ë r·Áº=¬"wL ؈…ë ò7"¼®—®ƒÈ߈üÓiá:ˆP#Â\™K1rë F±:ˆQĨ´bTJ‘»~sŽ—ÒAä®ßÐAŒÊè BÕësÅÉqÅê F¥ƒ•ÖAŒJ‘›të}DnÚM¶êÁt¹i7tíËÒAä&Ý€<”"Žö\1ráL„¼ìL+¶D'{I²*…û„35”ã…šCPÆ ;<wÆ Ò¢Õ¡çý êyK¾Nno§,48†½þ¤G]öb ¢˜²¶¶[¶ZÖ§ÉìÒ]ÖŠ:*+,Ú(-h…Ä„–¶}#D°+þïçw›­¥Äÿm%­Íÿjmn'Û»­­ÖöÄÿm·ZuüßePÉáÐùCÇqk‘»k¹”·GÏÞž>kq²h-¶¶oèõ^N'<#Û„m¬(Úà«É?V“ײ*ZSUªÆÛlØ Ì–³UKFwÑ+ˬÁ*è&p7™ÍoÓÁ˜^Èå°2è.€[ï)Û ©±-4ÉDZ‹È¥À–3<¤UžÂ‚åÝM“Oæäþ+„Ò4™¾‡íZÞˆ`ž#¡O&yØÄX5‘\J§œûêþònöõrüØ=pv÷70Bwi_¥;Ý"ÔIa·ªKÖÄ䀠¸SÞPŒ“þéþ†|C.¦´/o³ÙƒX9¡ÉCËP&/6L@ך<àœ±ÌZËtºšÍÇt6ÓéëìÝ5gó‹Ù9Ýôq"ðqeUÀ9„U|¿¾ùû–rS߬M{Ž3Œ‹ ¹Å:—¢ãu¢,1*½…!øó`xB… ¾H¬¡é!]nóàÙ&¦ñ¿‘ÑêQçA¥úÎ#&ö¨8÷†þG¿¾9…ÿ)ñvĵ¾'4}§O…™&ô¨›+±Å³ö…a·T3ÚëŒNi=££Îñ^*™AÔµtžz£Ã²wΚdoïd𡺸Üßþ¸G¹êüºYšw÷³ó¿Q²$³O”[ Ó„ž_t¢óSQt%,•ßq&IôñÆÑÁÆ&Ù8n>û{5ãÚ5éqfó°Y°nøf‰«‰Æ™@I_ÿλžJ·Œ)[IÖ·@ Ý”Ÿ¥ºDœ=*y,Ê·.i7Zô'Úm Z̳Öút$‘^CrÚ¡øú^Þ±¯$àÞÉÆ«ƒ^Kn®D–ϧ4›Je½×‚c"Œ·088ÖÍŠhI³E‡í±“ÍÊdB—ñ)ë8Ö1G´c”Þ¡]±%u…¬À½þúGáÍúÝQ-ùØ\³²éóæ4íØGiÖ•¾{s”½§³rýü–¿x}ÌB£¯ÓŸA©Ïd¥0^VÐįÆ04ý º!XG,¡PÞî¯ã†ƒýÊEHup‰ˆ Áß‘ g)xs¤’Á&èô0À¹˜\ɦ D0ö³3ÿeH°oïçtm]^WyÎn+}Mùî [åôÑøòõæú‚JNx,ßLæ·ÀbMØN‹‰2(Wt¥ãʰ±V·Y«Yÿ¯‹ù÷á´§zË{Ú`ö´Žä#Õ;rŽOô-§çëô­ïë?ÌŠˆtØCxÒŒ³Q‡5Õ“ÊxÖrCz‹GŸœÞЋ"²¥É¢Õ}ºúîVg…ZNˆÔð¬Öº³ÄL<¶¤áºFç¯íÀô¥^tžÁÜ=¿¾¡âï×ë9²†ÙÑÑg=æÅ|ùD÷•~è5šæÙ›#ʸ²£<Ä")™xÒ5ia°ïÀÁ­#[Á—ºoœYw½áYø–«µXì³ÐàÖú\’\Xƒõ¶ŠÃwyü’íò´&FwºýÈ‘–g¿G3U7øϬoñ°y=}^B $æ-K¡tšhtòs‰ S5Ý"UƒðÒhZ`;€ºU¤“«j©î›bU)£‚È­R®Ÿ'ôøôÿÉrôÿ›»»[†þ?i×úÿeÏà"ѽ«íw›Oñ `ï5Î÷Ù{Ä-^k7]Þ9¬¡ãÜ’nÐ5@·Á(À/g FIÎ+€Ä®ÁGåÕ„ÜÒÓöŽ+ž&\1HnÜR©•þ…Lÿ}Ï9^ÒYû‡E «¤³Â¾‰«qR±“´ çèÚ?I³Sÿ:ãçéê†÷fàëÍô|s)BuƒJ$=ª÷µ–ÌwŒ¾Ò"?Íx_È Ó´ÍYƒ“sþW𿺚5[{7Æw¼Kš¼MÑ$`Œ‘ÓòîåË[ßT<ÐM,þ¢ýÓÝàù7öʣⳭ>kBŸ O¯ÒÝëÛ”Ý_À¦¦®f°@™ÜÈ%¤ë;möYÍ>£Íî}âûnMUs–õHõÿ€â/M;^•îM5ݱ賮ÒgQwd]³ëNæ„îž74%³Ï_îÈœ.³‹©» å"Xo*]¨–ÿÏìŽ[°uѳúæûÍìîn:Çå……^Ì>}¢»Ûü|*Nˆtº ¬²Þ¡gºrçz¡+ÖFäÕÅ÷ÀfW÷WØz¦kͶ`µÃoµ®Å“‘wŠ÷Ô$‚ '|ÿÁRYØŸ½@±{¬ /ªÉ+@‘ßd¼r\ªð•7ìâ¤ßr7Ÿë˜»éí eÍàïœ7%G'¯z{jáh/î®8ö"‹i.â>åU÷ø})â¥øÝÉÍôîþfë/M(«ÈNWú·¢¢±\–°¿ib~w¢©m,·.$Õ ðžQmàw8‘·õ¹ÙOéÝ„t«óÈ/Zª¹MÉÀ¯#séÀœ=žŒ“<oWû‡V{±'¹\¤…÷¡ŸÒÂ…¾:¶´P¦ÒM!ü²²NJ »ñã“ÉŒDh\a!9dóuØâ$á×¼ZW–¡+%d#’xôwÿ{oÚÕÆ’¬žÏý+ªïz×BhÀ”Û{p¿W` $„Ø÷Y§Ï lÙ Ñ’ðÐkÿø›‘™•c š v©w ™Q™‘‘S O,°WeÜ©ô¡Ö¥xÇÃ¥:C!zÐÕAz]8Ê^xÊ‚ä\ÄŠd¼T겸õÒ «Å<ãºÙgü/é#jª@*AÚ«µ­ZZÛ8ýßÞzô{/v·mýßn®ÿ[Ç‹¤ÁÔÿíÉ5ÆVþ¡b þ­s5—Ñ1HñtQkôð†‚1 Žÿ2ÁoõÎ~"Í`]U Žý` ã”-Æï0zKNr!F}a­ž =ŒgèHAv(£¦qÇÐy?±Ýj†¬öxrÍă_E?Ýê:&(úéjz!ÔÁÓØ³jp?¬‹Œ1׃û™gY3Qj¢;" SåQøµød‡fúÒ ¶›Ï•í7Q1­j“ä÷ì¢Þ¿}@wé êx|ü_Àïù–Í%ðp/‹Þ¼*4/R _OçñÙk¶Z;?Ü Ð’ÍôÏ"lr¥ PܱÃÑÑ+øÛ+(zÞ9lAµ»áè‡A¡9- ·7‹ð–q /77Ù¯›&\þ ðž¾¥œ]FãÑ“1zŒöGß@ó…ú¼rpû0 Âï£LÖ4%Š29@1&¶tÆ‘²wÓ(O f&}Q•BÏW¸Á ¿Q 7Æ£ïû3U¡ü*PIÌ¥¶Ëà5ŠÆ$ ZH^º4sͱû!.ͺÍXM¦,ír]ïX¬v¹§^VWÒšS§¬(’uu·šâ_Å™f”0¤„«”ëàu3¾½eÔ¬2lÇûôP KÃÊÇòG\¤ Cxû ©ï>V>=lþþjøû+ðx•?–>ÝnF ïzŠaIRx×·8©¼24êºÞ6³Â¶—EM›JÓ½,%«[CºJÕ>{èAÿêÿhøé©T4Yb{±t]¿¡Ð`³rA ¾‚#Ø’»O‹ç¶qAAIÌæž[>à9×f‚›ÓÙµ›Z¾ô'ׯa‚r‹T2ÜsÑëžDfTvjuèl-H§Þ†³‡k}“¢>㹋æÐz ×€ú&ëÎçá5†Âd§#IJ¾»`ưÞhöe8…“Û-á.ûWŸæÁQDešJ…ËTa¸5Ø"ÛÐô®{‹w7A@ììÉTÔÓ”ÍhÔɧö®ÿ 6+üÑÅyS;ˆ¶WøˆÕ]Ki…ûžeäDZ¾e¨GôTgo«*Ÿ='Þ'o™±/¯#ŠÃ~Ñy 'gÿ"WP÷šgvYþÓß“ÚE•Þor cw  Þþq®Èí“r·a{¡ZŽ;ñŸûçK¶Ì¸:Ö¨±~ù{“ÒbCdb,6Y -µ:hzÏ_§[‘ö–”q= F=LE‡Ý—Ù}rhÄú t¬f Ü·•Çîô-v!úz~»‘ˆ¹éȘn5ÒA*R›ŠP'j¡ úoUço~ÓF’yoÌJ³þ [sÙš•‚I"ØP…O1t#I'ªŠ7ê(à¤Teó´¤úo÷`_õ˜L3AªÅ×r¶ã )±‚_ÈkNð0ñ›Ã Ò7ôWŒj¸8¤¶.À"8Ý  ·óÙ .TsXöޝbª8pH”:°hYcN»¦e±‹Êã#hÁS„O©Z®É)ímA`[ ÕÈñº·…>ü¶ãõÛ FªèK‰Zm!*rËEZZ9*CФ°£RPæBUïžÖ9䨳ÈCzÒ#‡¡Om2Xl#:tST¨ÌÙ)·=‡~Ó ¢¢Ï©ªwN¥S¯Í«U‹æË‹íàØ5_ØOÏ=ÂË6bö5Ø:Êè±ÎA>f|éqGïDÑr8HÍ ¨Ú1Ù®DMŒ|ë8Ãs¨ðoI4Ôàp /5ÁÄÊ;éPyGsíHiúî¶RÂ’A—\P/öô^œ½hÍÓ‹£Jƒ­²÷b/±vÜ…Zœn…ž±‚“µ5‘!¼(öžtÐÃMOž{f<ñ†Ì"Ç"4çA)vòWÀgˆ/7MÃï±·[ún­uÍeñUÊ »¯øÊêbÔ¿Ùl¼{™"s¼ößÁí¿§k±ÿn?¾ká?íåñëy‘¤hö߃ÖéYA‰[ˆ|JzµóÈìKAs­ô'gØw©i×uCcí×b:¨Ûí¹¬¶™Â6³ VW ˜Ä&¥·¸ò“B_œþ)ˆÒÔï°ƒ¿þBg¥JPgoá‡è<Ý:Õ!QD5,mO5»ìå7*òä‘”ÚÕ¹Ÿ°dD»ÍAßÛþÿ} ÀFڇ͑[º£[ wÕÎSvº×áñdöaŒö5ѵÓ:ÂßU.Ù}ròajÙZøÃën/wô˜“u¥Ò²8,ÉæÂM.¹`xpmáËw‹WMlÑèýìƒÞ „§îØ–\ƒµž½ÇMF³Þ#?Œn¯­rÅŽtÝèÔ…Šþòv|õ‰±þ?šòœ,]¬È`ôy8`ÍpG°+ŠÙÑ6% ¦WWlºy¸ÅÁSÿ~Þ­WAeH#;»dŸ/qL&®A™=¼½¼gR‰.kTõºåI×›è/ϵ½©ïó1ûQ6'ûìnä­ÚÙAµ½×=cpã¼Ón–ƒ‹ƒn½Us<`÷òy4„x '%“¥à^Žƒ¢$* îaîÂâÒ$œ¸¥v¥CåQµˆ ûN,êV­º¨ŠŒ{ÜŽY…-ÐP¯)ìòÞvèHDÝ=»n]­Û‰©ûÒª‹K«r¯lñ÷É­ZgŸw›èx*||c ]añòÊJä‚Í$t½&)€c< · „çìo†°³ÙtÈdÊP³‹¦ª>Ž>¶é½±él|û`÷Ðm§þzWþ5ÒÑó8LÖÖàf Ð-€¹7ªû}UgƒÎ¹¸:›ÜÞãâj@·EÝ{6˜±vÜ•Â_G¬%àëÎUfŠqDœÚ‰Óœ5ôðáö–µ¡S­‹ýaÇå6„ÄàÇèmª¿¾ N7Ø©ºn°—…7§§ åBÔ–w=×{MŠnCšÀX·x°5ákøïÿ£ÑõzîÿÕ½íÝÿ Ãp{/ ÷Â=¸ÿïîíå÷ÿu¼ø4á–ËÃóN£×|Ûì°¬@÷\’u±Ò5Ù™¢Ùhö‚œ!¾—çöáàròPñìzÿ2Ûõž:Åz4ÏÝ]¹°§¼qCeb§psf'Z€NVN‰€6ôoËà…Z±Ã"zOwÁ•ÝœÙ-¿¶è-Y¡‘íòؾƒt JÝl¹®?¢5k9b{¼)âÎÖŠ#Å\žoÏ{†DƒõÄ”Óf3îHì< K+?7þg9 ­c60²Xì¿F ÑJöb D¿Ë€¬ÊQíP˜ó¡È&€cp âö|ú¾ãÄâóíU°uXc'Ë-íGí˜'Aø°/F/".[шëǼ'~åßÿÿ}».ýÿnZúÿ<ÿÃz^$źþÿ´•ëÿÕöÿPúº'ÎHuÈÎjÓ³SÔ` ˆ¥lQ¿K©ÿ?mùõÿ§Å–CÿÚúôÿH·óDôÿæ Í©ÿFîèÿc;üCèÿÍ@•Æ]eT ½[‘‰@ŒFn"(þÔ&‚ÓÀŠ•ü‘rÿ´õè”ûbÔV§ÛG}¶í9ùHuûquŸ¦nŸ~n?Vo}ÚJÔ[KýygQ½5µG·5ðMi)ö†ŽßÞ@æÄï¥?7=˜ßÕÓ¨ØÙ8¯IÅþ¨_1÷ÿɺîÿ;aÕ¾ÿ¿ÈïÿëxÑ0îÿÝüþ¯¶?¿ÿÛ÷ÿnÜý¿ëºÿwóûÿºïÿÝåÜÿ»ùýŸ^OÙÿ/¿Üç—{ÃÇr¹ïæ—{³n~¹ÇQYáå¾ûÔ.÷Ýït¹ïJGÂQâÅþrô.z±·ýµ±q\à»ù~ñ—ÿþ?Y[üß‹]Ûþ_ÍýÿÖò¢ù£ßÿ»yüŸÖþêþ¿œø¿nLü_×ÿ×ÍãÿÖ}ÿ7iÎû7ÿã¯l‰pxÎZô«,² ÙTÇnµWãëüHEÔüµCéØ",¿úŠ´ l_®Tø¹• ?VPa7*|ôº‰/¨°ûhƒ ….`Tá|‹ë’ i˜+í’féÇ/ K?o+²öUî\‡C Mê±Zšî# ìf ôßÿgÛášò?ïîZöÿ0¿ÿ¯åE‚¢ßÿ{Û¡¸ÿ‹›í°ÖÀ·ø·yÒü£t®þO0ë³CÀ¯þÔñvc·Œ4Î.}c­š­ÅõºöÇgtQÕ Ðö‚ìC–ä, laWélòp1‹Ñ¥‘gg™­â¹qÑìSºgiþp„ô„š• Æ±ÙD°šL†xožçœÆªž’^aéù}ÛÁWFY>fE—x#ç,HYD?ÕUÓîÉá¹ß9˜†Oâ×`žKkhÊŒ® çQ¶‡´NMeU]""o]9i•y1y.dÊ’¨œJGIcËE?dÛ‚ƒÂhlIböÐÀââúD7 xôýðóxÆn#טO¹)e»â"¯¨<àìm¾'$&ÆMµF|ßX_<«fø}9m hÝßéšLaëo|/îrž(¼Uë¼>0òÖºø´ÿ¶w{ÃWÈ”yñe¨^´Ù9.ÿ}¸ ׄµ?cç[¸Ä2+èAšòKÒ¾B¸V2ƒUÈqœ@'ê)yC||2²Fʘ@€Ì:]C‚èŽ ™_ýNôçò^»©÷X.Žt( õ×/GèÚ¢ºK¦²Ã6ÉZá¸þÚ.G7Rzõ ¦I#iíGìg))söTvfxõ3=ÑÔã’³±j5˜‹5H渒~2æÂ¨OZ³ÊA®¿Hh´1ct6ƒ¬Žwà .«àa@†U­@ý”?«Hî·ÚÔ¤á…'YßIVe[“V©s³3IK¥Ï?O®_¿Æ†e«B\k+¡g1QoâôÆ­ pJE8©3~Ç•l›’Y¥ÿ†@ ¡Àlž“UªT"¤åNù,Ë¡ÃðÚ`ŒYƒ¯ý«Ù²»ã%9€m\$œ˜Ce îÿü)ó_ÿéûÁÍÍðjˆQÞ¹áÈçÝ–V àtµ@á¶¼ˆt/‹Œ‹Ì÷פV,¯×d›È‘¿5ûÍÃÃŽîù@?8ö¤?÷ϳúE¸ÚÔ¨‹€·EIWzªs¥Ïz¯ÕÏxVÓr€”=WsyO«£`„ÃTt‚ëÁÍp44Hbýrb>êg"ý)ÿn“]¬ð[žýT|½$½‚êváÔ1D¾KŠŒÑ.ÈãÀpô™¯Ó«0¬j‹|±Þ††¬sø)hÆÓ°(‰´úø#,‹ë]ÿö‰I¼7¹Ë'þ«ÃzhÊàÉŽ’±v.wT—”)YŽ– k\}úµ¶B,9â9"v©ÂŸÈ(õA`o) = B(EñcŸÒ9÷îgà¦P(„¤î§j¢É §"{6"Q™¸KôLúK-L¡Ø]Xÿwÿ±žøŸ½}²í=¯Òý?ÇÿYË‹¤Ç¼ÿ¿ŽUVð§ÒÔU#‰ëìáA·Ëƒ7Çô¦Žÿ2ioõΞ–ú !2Èá"Ê;§~ÐB‡LEDƒã|œ&aþ–8¿Œ¸¡˜±_H¡ñ¥€ôƒÉ„R.ǣ멀Lصã3\lØ¡ŠZÜcHØ7[C£… ï µMB¸“2pÁ‹žp_0ŒÌÑ‚PP Îkh)Y¯÷ƒ^äØóP(¢;p;„ò(Ûüª¥ôK½è"äÉuª€# ¤˜5µ€ êû¡€B»%zïð†JQcøe4ÐÓ)ð´Ï®˜£Þ¼*4/rßx9NVóÉi¶Z?#¡ìaÓ £R¸ [;ÊŠ› BÈi½~€¿½â¥Ï;‡-¨|7ýï0(ô/§äùfÞ2>”àïåæ&ûu3Y鳊€.-êB è Pš¨GªfÓ(OA^Lv¢*…ž¯pƒ~£v` €BâÇÑw-ÍFŸËëò ©gh¾#f¨—%R(U°Õ²â|ÜA:¹v2×NÒSp³ tí¤Ë™ÉÉ€élÈÚMp_ú“kã(ÀÞÒy<àE¯{~ÅÎ*¶: ’Ä©÷£áìáZÛžxŸq³e;8ð6”6i ¾Éºó™ÍK‘ËLGˆ%?-Jvñ¥¶G fpœÙ‚‡nÁ»«ƒ«Oüˆ½uXcÚ-Ü쵟´ÍꟀP‡¬€Fð…Ô.··©p#(óÿ¿þµºä74†ýŽ Â%øø]'6bÑ[`ìaú³6Œf_†S8{ÜÒ!ä’]WI€íX•• Ÿ …áÖ`‹cíßõooñr!È]±åô=˜ôGßøh˜ÕŒFÎL3ÖÍO|›2ææ¦v”2´ßŽW­î¦V‰“¥ s= \=d¦:=ZUñè?³}…ú‚®xöEÊ£cw\â:oá£ï.MT+' ç]ÔYIÐ%qe<ãv¬Éoÿ8l•ƒ^û„Ýb;ðvùZú„èÅ(ñy4ãêuùqXy¹BŸØ˜E¡º›oùÁáoUçoþðÊ$í=^ö”gý›HP•‚I"ð  ÿž&'ûÅÔìl(A|˜Q!üu…¾µx&©ó£|IÃJÊ7L¶¤5pö뜄‡shtH1Í5Ù\0ì#@Ù°¨¢¤§E,À;:ŽŠ^ –.käƒX»@TKR™È(€/+Ê/b™^÷¶@*ܘ‚¯ß=°hßËäИ \E®ÜÏFÆ,(GÕá-ª’Ú1HÉ)SuôÜì7²ôYd!åÞ‘#2Ùh‚Øvt:hKW-ÚSaÙÙvvFw–ÕV"¬Ïݪwî¦V4-¢_¢f29A0žÖ d?=÷L¶¯G&·:Šù±Å`\¡i%s!{À® PÐx ü[«Esª͹#åù»‘°¹¥Í5ð¬){s4åˆü…}MÙKlŠ*1ך€z¸G.jJb¯xQ…¤“tÀ‰ÛÉÞ=÷-©ë¤w?æî)ld! HfI¼'¤z‘ú§'=\+¨I Æú:­oÒZÇ]ÆN¥¬0yН,D½‘-öúÅ“÷”þ1_^ûïlmù_ªÛÏ·-ÿïjnÿ]Ç‹æ¤fÿíaþvzÜg×PvFØ?‡·ì̶ÿ?Ǫ-7!ü[ÿaÜÅ“#¿O*˜}nòÝ?oZòü*1Õ,rYVÔš?l¼çÈ+3› ¯‡}-{§šcæÜN8KÑ×YRÌ,=½LŒ­gkÒÇ“ëÈÏÖ(¾ßÒ‰ùíJh© #öe0}¸¬HfJÐn½ R?ÄzD<áóe´þ~0IhëpáÇÜ=ÜΆ÷·CÐ<¢vÕ9upZÒ ®’0eQkØáüŒ¹Y íy€”z0Eú£÷°RñR^•”Žmàùâœ3[w3œ€A6öÛ¹|f5õ3mÍ8{fÕ~æV똇.-ÙÍohg ƒß_CøgT9{¯Oä/z¼üp4LȺpMήP ×ôáæV Þ±Ÿnoƒþí—þ·)XP¬ä@Oõ ú¼a)üMVv`Ûú°ðõ©5Ñã %`þQ‰Lÿ~N×?6BšÐƒ)ÛéÙˆˆ­âWÇ6¡íO!¿jç(/=´à­ÚY/& MJ V3£Å Ð#„DpKL `—·Û1Gzž¸Þ¤¨]œ¼ƒÜAÿ¬Ì¯ÿOL»°ç>ÿèUãGÞò÷ßÔUñŒÐ8×UZÕ“çB–qåGšÝÁv·=¯IenS×áípvnºÔu[¯¶ª¶»yT½DúL<4{)ìÄR¨r Uƒ‚Ô`c7œJänXê ýNß·&¦X®„óõNjš\yMÚtvûž–èN1¸™ÛE+3\°`MÒž‚ tØJZI˜Zð^‰´vÌÒ‘¬4!§O«YÖ˜%!ÜW(^j*…5•( éÊ×4U}Íá¦k„E/Qgɸ‰©lb˜çWb«ÖgWÌV{o‡vo¢ÑÛuŒ[gpŸ0 TfQ&Ö5íc-‹O¡žcËjUJ•¨œt“ý>×õ±ò‹ Þ›iÖ+UDKµÁ ¥9ˆBÏÄÒZ ¿ 4+¦%Ϙ³ÚGlDâ 6¾ î4U¼Ûrã ‘ +#ÅiÖu©Zƒ‚éE0RñäÁ`žArúåÃðêbØ’ðþ­Øq˜òØÞs)®nt…zª£Ñå`òÞŽµ¢3BÔ ”ˆÞ äãc$ªëÍŒ$‚‰ȆÔû¹²!ý|¯8ýÿzò?m¿Ø}nçÚÍã¿Öò¢™mêÿ«vü—b Èó?9"~ëÑä}ÒB¶ö-í¢ÎžìP½øìP¨¹ÓB²”PˆI›deƒâ‘[Ʀ«©¯>”æ˜í LpF Õ9ðGHŒ"y5”1Ä ¿á…CqQBó12‡™Øùå òÚ¶‡þô2†¨Nîwޢܰ’°²Ò¬Pë ½ùQÓ4ñoM!\«ÐÀgZ»jÍ{²®ý;e3êÍ—ÍÈ®ÓÚÔÚóVíuïѤ3òg1rhÚþø”Ì(:‘×ò¥æ¡Qg`|¾²¨ÁÿzK‹‘F©ÃTÓ[XõšÞz«L‘´ò|GÆBΙ'*gÒl_½*¸9.`<[‘ë/ѧ,9ƒ2¤ z,ƒ4×…ªíZì²ögŒ>ÇòY‚æ=Çòɱ|Rcùð"pÝÛ}rÀ>1à=é‘{æíqbö$ùgFë±¢1¨ž48=6ºNF„7­H\Ê£J~5&GA&0žÅx2uÊDA¿-p'NÓ3¯‚'š/Ï=P;ñP9´<&CÂDx4±ê¹]·êjp ÆÇ8£èå2ò6$jŠˆ]ÐþIO¡`exü¹£vÉ9xôŠÁJDLr0ª#[ª2¤Ãân}ÔÒŽÂ&…t•=̆vÄ?›‚Ï5u<3̵¸H z-0×οï\k-o®%B‚9å˜kçOq®Ÿ]¸b´ý–¢=V_>6ä°çÙ¼/ö~`ï‹ïÿòù|¬ ÿ+Ü­¾°ó?çø_kyÑÌRý?Þ þ×ùIë-ú+ˆÄOµÃZßâ_BÿÂ/?K°Ä¯`ãYœ›OLËò­/È^àWø¹‘ɽEÈÄ÷z3˜Ü gÃ>$ àʶ(~D}AýËÛñÕ§ UÜ/¶6@vÎÞoF©À¿‚†Öð½Rx·:ÀJjÑìÁ5o`9&xi°†ò_¯v&©­2¶ø<®RŒÜ¾ œÇ ‹ÐÍÔÎ ¬—€,¤ I1ÎÞŽ¿è°R÷ý‰ðVQÉDc'Lš÷4ËÅ«`ã¼Î ¼*£L Ê´Œ‡/âz@Ò`û8B“––GÈfʪS ñ°¹™º0í>ÐT"óåƒaø&¡³þpDâŠsR%czLí‹dò®ÚÔ¢ðÇ—@Ê+jFÐÂIy ¥™ÿ*™þ4²É_~Ãå§{²kÁ±`4¶$1Û–¼4¬1b‚Öa+I‹ÕÕP€ºBgƒ÷ƒÉ¼½§®»ú½Š¡æ -n¸L”¼Ê‚Äqt,åç‚¢xOÜ0J¥{|ƒˆ7¨78ù‚|€eŠ9â5¨%ê,z¬sø66¯¹‚:f?jù±Oo2Å<)ÅcZ—!Öé7Dùì · Ë+]=¦Öy¬•N åâùÂ÷aòÜÁ‘ ¦©ØfŒ‚'“d™TCŒÞðÐ$ë¢c½` -4öÝõaëŸ|Ãs’â!µ~àkCC‰ãs­ŠÆs wˆÖAçÙ—n÷UÏ"Ú¶:o{[-W¢»v›½ƒ—ºÃv-ü¿°W°IÍ7N@ÔgvýU´Gȯ¾5¿g"ž Wß "îZ%äžA-8d›L γA±X š··ƒ÷LD(í%÷â²/4”lmVõo`džœ"ìˆÈ Õž—‰¦Š¦,7(˜“[«Ø¡¼ëÿýóÿ„¡mÿÛÉ×ÿu¼ëÿ‰eÿs˜ü~.ËÞS2æ)v¼¹íw'iíw°xH+YnÆËÍxÐŒ×):¥pó™¨cÊ+«Á‹\ÌÕêV*Ñ¬ÔÆ9³b­sÙæ5çÙ6<ͪ–Êœç±á©„Ò­¦ ï$²€-ݺv’[×rëZn]#ëû¯áçÛw°°áߓ̖6£ZLk3YÜNr‹Û²,n'‹Û#0¶5`–+lLgqè—®‘d¡ ’Œtæpiƒ¦~…}aÿ”Èò¿ÙI’‡Ä™‘éñôb$dœ‘x†¯ÛPy²ˆ¡ò$“¡RÜÃ]›F¼òÄk  üÊ“,ÊÌm[®ef[ì]¿¥rgnKåQ£ÔTÍ‹¶8J æÃFÉ6*“¾ßMžÀÚˆÐÉ9-š —=son{&ðªrdDó8¹å™îÏs‹çò-ž'?­Å3©/Ÿþÿ¶ÿax{¹@‚þ/Ü!ûï‹/vw·w@ÿÿ|g;×ÿ¯ãE €ªÿoÕÞ4[õ‚~nqFÖžM]×èByRë½ÙüÛßÿöwÕЗ†^Ÿe`-GBY-ei(s ñä€cÇÀ);ñ±¡ zØ1£¦™I›Û²#ЇÆÌ¾qÕ—Ù”Ëd[ø;ÿ~¿ÿyxüñü~=ûüÿ^M·.y+¶×ÿà…Þÿ3Þ ¯ûÁïߨ[_±£þ”u¾;\ ~|œøÊíooØ)nøžÝj~¿þÀßþ¿FQ±?µOZÍF³t@!Ab "B=áÓ–E4ÓlÚˆT Üú»œõ 1}T“Á¿0˜f eŠ‹V¥I@Ä–[¶fSØêZ¹øs|ñf±ôñfNø"KÄ’î³KXãaÂ.ü31]õEK¼²,8>ðÔl¬PÀS+ê&+<†e3óòÁ—ìŒpïΕ]rÆ ¬›3 °®à 7R¥´Rý/ RÙéhΫ`ûWØZÙb=½y¸EÅ·þ{ø+›ù`ˆi9ý-ZÞа=dKLÄ÷Ë–oà}¥ÒÁ×å²PD·Ô_‡V o¨Å¯‚Êï,•ÙÖCZ’Øš†žŽCÕŒ:º{WtôJ°ðôÚå ×,]ãû¶ñ¹…U‰9¡}Dç¯jШ*×mmôu§]»øß*¬îkѸ“g†¾Mð1²Æ½´1@òµ““îÛ‹ÌäùNc¾úνGÂÈâ&$ÿÿïÿÅr·ƒ¯°QNƒã/L†Fßhe?ŒØQVÛ^Κüï¾e,(üc;¤V $<5Ù‡—›b,®7ètu-ÛìÊsÍþÜ&w„ªM“|WˆÑ-l&[ÆØï‡…—þ¡Šš?øð¾ã×¼`¿Ö«±ÂÁ³B%,oo– ÛåýË>TBü„è'ö%} Ù/Ï4*U•J%Œjl—5"YŸˆ **1l±Mok¯¼µ§STï«X ‚%Ô7ìï3“xÕ견¡vÚ¢®Ð”‘ˆî3b‚ÙUÓ:IVŠ2)Ã[njDÓ"}) °¼¤ëa±º*9¸wp'Ø”7`¤­˜­ÝrœF7PZ+…"¾yÈÄ<Øjõ¶X¤*ë– •/·B©ÍÁ `šÓòÕ©šuàXƒU:¾*»v•‹„*Ïí*õ„*/umÄ,àîbȳ¾°Áï¶å U-½Ëš«q_òû€ÐO- uR™BÊu¸°Â°³ÃGt£ëhðß!?…ü¿™òuš“`——)»˜¬áŽM+ð`×9ºëJJÓt· ÷pÅéà*¸)¤²­´rÿ­€P+Ð(êO1R•ÏP°©° ~~»_ ýRÅJ}ü“±ø (tÐÞ³ÑlH¸×Ô¿â]í+/}àì¾b…rH`ÆJ±ó[óoZ1ν×|™§û¹W‡ÁK7o‚/º¼N=;̽·);½ô? Øþ¿Cöäýêÿ²óÌàvÊ®qÊWEEtøúXv öÿ³wƒ¸ÏÌæÄ˜ ÀWN!`1b» 0ë¨L[Ýf ϲ4v´ÑŒÓD‹v%7uKŠx¦BÃ2/«Œ×>[æðïÜ—ê"}Ñæ®.'uPL‡w`úÕo%§!.bï‘Ä®ZÐQ™XØÞÚ.³ÿorTtR!o:Å[Ë@ú5¶¢ÔW}vþbÍå¾ ©/6Ë.R0#>>ð­Ëî7'”pˤޢŠáù;ÑZtÄá£qÁb(p+Ðg8 á¿(ì “…ôðÛ 0Å¢ x‰‰ŒmÀÉ´×zãgË…œ-Î @çO{9 ˆ«ÍÍ"ç¶9ÇÜÏ(*OYòš1#¼|¨.«bƒzÖC2½ËíÉOãå·ÿï¯×ÿ»»[}nÆí¾Èã¿Öò¢ÙªÛ›'ûîžÙì€búøó´‚¼œ‘¯¨dçÝÉ¯å ´JP…< ¦žîRwmõ{¶²úBýtdÔæºTò@â‹]«†Qˆ(éí|C9¨„FË{¹‚sÙÈQv ä GH±šXð| >¦ðÒÆAi¡BþH!=P(6›]M¥õ,Él¡F5è¯BX´zEx[Ý,¢Ø¨‘oGd¼+óH0bjAruSÔj}Îʜـ0ùQè°©7_wÎá nmÏ‚³Ú!&Ï!…¨?Ô æ˜Bˆª‰²S%[‹ˆ¿é )~€†£« ¥Ô¹̾ ì> 'dé;>ø:³º%F."ôí~x%èØiåÇW`ž*A¢—é¿€Ò”‹ÉßmËEk¿¦U‡|<`ñÁl“VpØ ðð Æ|Ô7j$: +è.Ž¡U4Q3Mlî*ž,,Üþb*ùcH!3jx=jÊ#&p[úªE™¡é%—ZñJ˜È¸Åe ‰-ï¢ÆË¸2/ãŒË 3G¶­¥¥×j°•ïbžµ¿îXqâs<5kjdÅ|­—¾ðe  ¤yCã ‘k2~ >CÔ*Öiרm'¾è™ðÃâÑ¡#Ž®<ý‰./þóÿýìn=øìø_5Ïÿ{áóüü¿Ž_n´óÿI¯­à?p/ÐÖɶ8î—ƒÅô WmžSµ€/°‰X÷†¾…úóÈ.s DÔ9K:šÈPIŒÖe¹‚8(í'`AÔ Ô.D8àhjg¦Ë ˆ( \ñ§í©Hß _¨ ì[qzÑ®.èõìîƤ­REÍ-Hã{LDϤ¥xP9„XÉA¬¿¾ ú·÷ú¬?”E½$øX§Rt¦2àûq ¦pDP·à*Sa IX‹ØÞ*³_Ëüçä ŒÄ!ÂtËSžÈ—ýp}e8(ŒuÀ8˜ æ#&òŒ¯?Õ8AêÈZµK³R¨‡ñä:òSô¡:dN oägØ(E°•>^%ãÎ$_à ³Ti‡Fßㆸþ„dkKT¹“!)]¿cmð1)« ˆ—M¥é”‰^¯QðþæÌ)ôoðÅ};&cˆ-6üqÆãæË4©Š±.a®›ú±Û‹Ð*S¨wÊ¡f€ÅÛtÀº²ÅkÙÐ×—,"V#é˜NÏAn‰uý…ÅÍú–YÕuh$HýÂñ÷dVq¬5øzÏÖtS»»RËQs{(f5ÅCѵ¥_-SBO`è°{ï‡P±&Ê:ÅâHGËÅnða1,ãºú¶sôzž‹ªÌC¸­šO#ì>Yf"”snêðCž/enð }+F;tÅ»ºÃ×E²[ѾŠ+O®ÏìhßNºöUê*ΰ3†Ùu¬—b$,l{Ð`W{ãö‹êÔ–^F¸TÔ!­vñBê2cO.&žûY¤ÈXI¼ ¯¢÷%ž²(“3›U]¹(3‹I­ÈéË UçóéYåYñ,œY ŸQ¾D*DÙÔ=¹ã{rª¤–.ˆÑ{µ…Ít-¤F6µF6©‘Ítü ¥¢N)T5ídàÏ<©%5ôE¡˜KÖíã¶úpÆï—?¬¤GÂ@¢0È Y/j¢œðàt‚þbA^Ô¤7YTçoeR >ªrþ"«œ¿Œ‘sÍDìgrpnh l•ù7ˆp{Eó¦²Üyc“ *«Ú!*‹í•”ç—ù'Neá¢bO¡$~¾â—Œ3dÎW4y‡ð {âÆœgƒ§-ê‹o÷‘ôàt’†‹ˆºsH!¬óxü†Y%=&{‹é-}ðÕ ò9ªYÙËoÿ›|˜®ÅþW}¾kã¿ï±¯rûß^4¯tûÛ' ùU.zïN&V¯[뜕ƒ6Z¹Ž[ìÿçÜ<è_c|è1ͳƒƒ}îi8:lƒœ/Ä$ä˜YÖ2¡·žäk9‹0-¶#뢭 Ë„5¼/»©³Bk–Ĺ,ˆgña<†Ú>8²Á(È Å¬J؈Ï€…&TOp˜ &ÀN[%‹•0“6ZÓoÓÙàŽ7j|_@ 8P5¿uQÅ/ÜÚù ŠÅ^PЀÞk›¨Ÿg¿¼ ä½õb)ìƒ0æÐ$ä}ÇTn(‡Ðg ‡BÅV†”x»ß?CFðæû¦’aÕ.‡#þKÞYÀ3ò»ºêOÁ]ô6C®ƒûþì¸y]Ý>\kFFöúúúàW›sÜ_ƒ‘íÙEëJÁKö( ¸o–i}¥"?6¯è˜kzP€ Ô†ØÑ76ÑN"W¹ÃG ¾ïp!`üä±Á¿ ~hºe6=ˆÔVtD+ØiDiIJIm)ÂX~B¡—¥;}±1¥=Û§­Š?$êù ú"Ëö6Êz9–z\ì:\µzöõ—OÅÂtSÞƒ£# µ^fXB´(ÀR`waÄE—¶úb8Ul¾iMî.Ýe+–çu•¥.ž×Ù“PËX>rþäQ»ǧÖ{b³ä1=¾BòS3û­€—Cí|ÖhÕzí3€&m¯a¸ÆS2›2²Îƒ§-ë<åw î¹ó}J¨[ŸWœCÁ”Á+ÎN~£pô&YÊâFçp€«×:ûåàõ¨àÞ‚ø•ƒÓîY98{×&Í(ü+à{JÂFXö›µ×–j°*KÜ*‡ÊXòÂчy<ù 1v%^,æ©©³)½®·!7Èëƒ6ãXã }zÃ?à§V­qò..V«Öí@Á3ª}FÕØ‘}Ùƒ/chôºPš µ–à²Ø®¹%!™“¢&óOŸFF­J@6v@ #í­ÔF߃PBÐ,¹Wp%5[0ÙT@6ã‡F·GÎêb‚fxÏ`âQ”¬‚ZxãuTŸM o±Sóùôû¶œÿÎɰaõ’9d´v—=s?RþþfCáYÓûÈ^T ³œìA] €”I®©$,xÞ½®T¹€u<øwœœtšáö8Fé]?4ˆ¸þ’ :RÀ( eà {ëúµÂ¤étåQÅ¿oñ6yÚ°c·Éйâ-ˆžÍ‚ë’ëNüÓvͧµ‡ÏN¢&Êï™å;ñ埛åQvˆ‹Ç­øº/âêžÇ×}iµ“)ã«üb3™«<•]U€[óÐM£Œµ¦!Ê‚RË#Dœ\ÒPÅǬ÷±¸ÙcMŸ‚XÜ¥ µ?˜þøkµc,tȳцzZžúkuâÛ ¥VG†,` À9´¥Bž 6Ȇ'€'UŸ—¸<‚J¶ sT,~B“ð0ºXå^ª{õcŸÍÆu.t|Çv]ÁbÓ°hÇ(ÚöñC]­54. éZ%àðØi½’¸¹»ƒæSî̓(ýõ²$Tr2Œ½§³öØÇv6&”Œþ*:û¬×ìÆspºUu9ªƒbì“Ñ×–û¹(ÔQ I‡©} !27.¾Öß.æBI¹oõ<"kbœÌ>vSìTüœê)sÊd{͵O¾È:_<ƒƒÓÜíir:&±a¿L¯&ÃKЉ„qÔzéÚJÐýÊàÉ[‹x3rO¨XfÍíÒ˜†8÷VœKܧf|›¨é*|®ŸSãÖd”9ÑËHûÂtp7Ü”Îãκ蜪z¾jp°Òg3ÆA=LЯñ_†×L–bûhú,&'¿âŒÄqâªÄ] QLh‡H%:žÜ%PL#H=ñn“7˜‘O¯ü—‰û`ÈHðZöasŽ8ŸlUJbL gwi‡Y‡îècåƒ=áž3àŽµ‚?‚´”ì1S ˜4ØT2 þõpʸu)ý×Ñq‡ƒXiÞ=* ¹Z~g0©³7Ýfç˜íB¹Ñ8]g¨ ‚HU÷¶y ü¨”÷6<†² UG¦÷ÏXßö3( 2C\9\Z›Ý³žµ'§r¬aûŒ¿õÚ>Xìá»6œ@^ôZ÷5Û±ÏÚì.²$_œ˜Ý? &šê——]«ƒ>»ù*O»½e¸ý°¦1þ9(õÙ1¾1³ÚþBÎ#ËåèCC`?cÒ€NÉ 1±£þBÁ³`«×=?Ø žÍãÔs6ïØ;LzÎ ¿ÞP¾é0-Ù¦[ãèé¦>€¾}lÖØÅz+úÀýPîÅ•$*„ÌaÅhæ?ƒJúàPã\àE•ºÈmõn„oöÂa%aYx&&†¦ÎØþ<þ4 n‡ŸÁ—Áø™àk]013ò†`ý'ãñL‹© ¶ÀöKÏ‚\ŸÇÃkD!¼¹åðõ£kþé~2fCt§xR\y@ÂXÐdÉÙk\<‹¼ ±.©Ï|`tõƒí›e‰ŠrBÿ¶<6†³àþ¶?¢Í`ú£~àŽ‡‡2þîÔ¯‚Iöë)Ä&´NËØVæAkð,å1ê‘X†`hº\ãÕ¾²#¬HgDŽ,Å1öaåºè·§¶Cçèjª\_bÎf²W‘ ºIn&O”(Xòø‡§?]¬Ð‡‚m"^ •ã–âÂÇ¿:׿’zJAÈ©ôBÄ.ÙVEÔ"ºã%ŠÚOK3×÷5PwrPXo÷pàˆìåüž«oüˆùŠ–ºÎMù B2I O8Æä7ã[vìÅÃxÂŽBmUýZU)–Aµ$µ&¬1ìˆÉK†_Cµ¤¯¾³náêÛ»NL÷¶„!‹k ¼Câ„ê@Ý2üû5ÐýAÿêœé$ñ‘ø°ŠPoÂ3UWqf% r2t8 žÒL¥af7Ó’¬,ž¾,¥fÔÊå«r“ÉlÌ(vŽN±Ð)…›ÏªV:›M# “ýÆÅ×VjÂ-r8aú§¯;¸ÄÀK').ë¤Už ¦·3.Õš¥pÊ$h0º™8ÛJ{2$ìÁL-¬úT#`>÷“ñr2—Dé~f"‡IBòÞêÛþTË,Âöfü0ê÷ipÇ6Láñ5(> wFb“Í5êàëêÁ»Xýû9à¹AÊp=2eqçå8bÿï|m—©uòrÌŸrP?èÕüíGÁ QºŽfÅ©·´~z߯Hâ¿/®ÞBЯz+Aã@„K¼ ÓÊS"ÅJøb ÝTž/E“€¥à‡……+¬(û1d'Ë-•ÊŽ(QTþ•­8„LYÅ0ËLIåš®#~Ù-±çŸŠSÛ×ÚT¹xegŒ<~’Éôë´…4×-¨÷9ʨ` ¡ï1ZÖŠ=ë»J°WdoKìò¬èmŽ žæGÐÇd¸WŽÒpN &îIz Á^tj÷4'ÎŒ=Xc¢ï€oGÀ"·÷m>cÖ6cðGöÛNô­)!r°œ~×û5Ç´²§S%qBqþy'o ™õ*™¦oh“ OFÎY_Ð@úÅŒ“·ãÌíÓy…±¶O#ˆw³Ü+îY›¤ÒüžMϧ¹/–âfy ÓTŽJ1“1Ŭ(ÅÍvþˆŒ³×Š[%Òí‚ÐÜ[­>™+’Zö]2ª[2§©B5åD÷ÒJ?ákv<©Ü1KöŽÙêmu*îð—|6ëŸM´ò–’wO¸ÅwÏ’dÏ2vQZüñtÎÝÔ¬§>1ã$ÃJîÁƒàÝ]ã|’pŠÇû¢÷Ò‚«÷ÎNrûÞ“xÅÙÿ¾­Çþ·ó|Û¶ÿí<ÏíëxÑ5íïtûf²ø¹Œ€Øå5YñYÍïVet›þœf* ”›þйéoY¦?˜D³_Y˜ñPÌ܆<•†ß¦gÈ3[a˜ô¨çÓA‚)õ( GÙêzcqy\ä†Á§fl–ƒÜ.øôí‚K±Õ)Úig|PhÝšq_.ëc`&&Õ.nd›lÒOº²>À3F³l&…€D©‡«®dÄÁ6FR—6Ÿˆ‘ñ¦éÖñ4+Uñ[Ýý›Ó¸ýZu(bð×0ª›¬-iVv øNêâ»P|7«bEyŒ¦^QèŨVx©UMQL£dqSÏö(Y–¦©lzl{Í'bÛ{ÜR Üm&Ûæšq¶9ÙÃ4S CÓÔ)@0Ä_ÒŠÿP4Oˆ.~N'øV]ùÌ$Ý¢`¬KcØŒ³Ç¥å¦xÀR-r®-Q½ÜdØ÷ü[â.íAGæOsKÜum‰{™·DÃ’HI„›OÃr³†”bÖüÍiªˆ~õ­!¥0ª›b^—`C)¥Þ K°{”²ï„Ñcô¥ ¢·P)}“S-N âÙž%ÁʽàNhÙìšOÆf÷¸å˜VÔDK[3ÎÒ–e/ÌÒ´¤½0¢;Ø íºò™éöB·õ¬g=˶.Ã>öî‘ØÇbì?³ËµØö¶Ÿ?ß±ì?yþßõ¼H ûO¯^à°FŽÔà8/(C8ûSó%½‡WkŸý Š«¾í—ƒ.ýá麟z.`àgL¼)‰8 ½&–W–d[ŠŽ#2<ÁþT«x‹ŠÞ½^ ¿Qͨ™IF©^]3J)wÕ.5ÕŠÔQ÷oÅù€XP0jx§x ÿý0¸ýFö­¹ŸŒï“RøA¡^F›júÑÐYå×BÝOÚôZ ‹ÎwÁ¤òš‘tÌ·!‰?®&-rÂ~D÷*•ÀÊìG8ìkð‰þlÒMAÒ¢þL×f{¡ª3ŽJ¿÷à÷žçÇüØ>>¼‡Á‰žXx}ØxFl ’ñŒì®±þÀy["&šL´g1Á;Æíz9çx™E–`*ê ŠJ°DjŽT°$´Ï6·‚ mØ‚²a°¡%9jØ~*‚¨Ûô‰º°à!(×ôáRùLϤTGî$u ÿÐ&ðå¥Î“ÆîÉÖ_Ûð©Ï`e72×ʸ†ÊuN¥s3œ°ÅñxŸŸÁŽu©Vgmm fÁGàaŸÚá/å üýÕÇß_4ylÞ(vØò Ÿ®KaiXùXþˆ—¬ÂÞ€ŒÜõ¿ÂòÇʧëÍß_ -¡’TPžB±úÝpT•?–9iP%¾.fP%)6`ÀN½.$òËxòiÊNƃØHU¾8À^™¾Vµ(êuyEµîâþGáÙI*Gÿ™æßÃÕ;"Ý<Üâ”S üކ7DíUP’ExX™}`Ϧ]1øÐ¿f;qÀVßÁ{¶K#DÜ÷X{Û9(^J9øó  `¦â •583ªKJ¿ÅOŸŸœE뎷Ít˜Ÿ|š8ÍÉÍ·‡‡ìßwhX>j¼=ï(°£­ƒÎúÙÇñLëÍ׈ÊZçÏXŸÊ«µ{pqs¢?;¬59¬……{P8赡{D¯GôÎ[qdÎ;‡´Æq$=iŸ±+?üa÷ð³^­:FižTÛ1 nÔÚµ ?ó¶ 3mGÆó9ŒëØŒ2\Ù [öÛÞ3ÃÄ5oOÞq‚”9|v™oÊìï÷³Öb¾xÿX–S@ƒñí‚'o7;eäø<¾D“ðÀ OvÜåí^¢¸i 8 χuñ HdˆÎƤZ-tp?Þ"F\Q~WïOQš)¬Ž"ñ4Ñ{­S ¹‰ g­gØW£éÆ+ Ú ÕâXO¯ H­³Ï±è[ˆý¤g±qªðT‹»º#M''~îÈŸ5DwÚ<¶åB~ú0¼úÄï\°» HÔ¶sFß©ÀQ†ŽŒÝâo¹°Â!oª§€“IpD×`ÖœYÂo½/”çR! § ¸L³¯çÁ¼6¯å÷„À¶}k9lPA‰àÛ¶A3Péè:N3í#0 §îñrt§²šþ´<ý1ºìl|Ý&éðWîß_{î›O„=ªuœ`Eû¬À{O›1×^+¸BŠ0»yg=¬àÜÌ{:hOhcAkBŠ¤ê¡£*¿D§ÿ}>÷ôË©Ãp}¼Ü/ñîÚô#øáì:EòK5;¾‰“­xÖ«à9{V;ò5…sß5[P‡³oš‰6Ï?©‚XG¥@õUBÙAöKU…)kBñ¾®kÅÑO:0.ólTN÷¢.:FU]fÞ¨ßfGvýò:m£.÷ªâ&'šâŠ»‰é玧ŸNk5ï†cbýÇæùÏà+î_T«æ)ôÈ¡Grè¿!.Ïw‘’¦9BeWÀu¹lÒ±û?×ýiƒ ÌAÅèðÆmªxÐFâÍw×°'àÑ·HK©ø²k›.ú3‚d‘~+Ò{‹‹ôÞ" 'Ä‚ϳ‰öËØ½X‚ð¾HÙ#ww^¦ñ€kÞ˜X_±ó(ýpq‹Òßmîé€ ã7¾>ŽonlwñéÖMM_òŠ(ð(d¤+ ¡9Þ÷úÙÄÊTÔy2*#ý$ó9{Áeô•Ó\8ÃøöÇŽì‘-SÜQë`e#þ‹”(èchm‘ ‘ŒÜ¤V“½€Ü/IÃî²ýñj™á¿7+Âí4¼¨/Dd¨Í ’ÀÆ-W:&Rª#\QU߇˜ô*ãú¼EsB#Dñ—ß´/Åë/6; ëW(à©/Q5U58•ü%?yž÷4³jÆjާ¦­f<5K5|máÿ”jŽ4¸%÷»þÀíp<ûÁFq#Úd1+Bÿœö¸QìúáJÑò uçõÇþâ$§ÍÒð`´§léd h¯>Œ§L>n&vÊ,£Yh²ZÓpÅùïê’9Án?ÐÐÆ{dÂùðô²¼}Sv³cMzÏDùáš5wô´´q˜âËX]«±ni½aÚië2{¡â(íZŠ-y~ Ó„^•RP‚L" ˆV¶W%Ôm5lã3¢n’k +S S¢"¤(3Š`à8۳ةÉéü¢=‰¯dØ8o)ö8^NÑÂ:9¥ô­j,aôz¥ ¾Å *™I6qǽ̾ @Äþ=™pT6d@0ñGSè*MÒÚĹöDì‚òàz…Šb/Ë‚HÀ*(ERçàÓ6Sl]{ÔI+”K™(ÛÎQê·¡þ¡Oc|OÖv5ƒpŽÍµºÉå¤3íÀ Žä8õtëËü0‹Çº;Û}Ñ+WËRñ¾-iÙ—ãÛTU®ós6iÇOÂÚô×µ_Ø!ö¤?û0¾¿^‰Ø^8ÝrtÞéÀÚü¯b‡Õñ² ÊJ+„©¿à³< ®Ë°tùÀæ·Þ²Ï·ŸaKés2ª÷·élp2ñ=ŒÑéC™0BdãßRþ²ûîpZZVu¹‡¼ !X§^Ç$¦Bn%|‘ˆ¨TB\­à5¤ºš©º\Vª Èw%ƒ ¾ no+ W‹e[$Ò˜ ß‹£ŠÑŸ¬-ïrãcDxH1eqbÌt± c”%ü€‹W°£ ^,}Éϸ»ÆWÜ+ôñÈ, ì[¥½Æ)OA˜Q{î¤ë»Wº»†™jYA8kzãô¯Æt:Ew2ÝByn S`Ô3 ›Ë´Ù±éõíä*ö­…%´Õ¤ùRÑ–„jÎ:®:Ñïu®A÷]¸ ¿ÓÆ?p…&ËÂ3R_ µnž¨Ih6¢g‘‰?Ò?Ï]—šçá¯Ê#G9OÅ8ZW ¹ÑXfc刊«ÐðŽˆ‡°ZÈõ—µëáç!º°Ãr¯~[ªBˆÒ¼„!i ”#f´¶à)ŸZhC 7ƒßƒpsžÁêqfSŽÒt cÆf†¥"F™j©0æ“ït“fE©Æ­(¦ÀPQn¶ rËeÉyˆI^«`ÖÆ¨G5::£…­¨}°°ùÂŽ‚ù¶¹·º%@uÆ'p}/‘ë¡Ðð(,Fø2–Ë%¥ê]RªcI©&,)o ᦲ¢ücÎ%qµˆQYϳZ̳û&-é¦sŒf;XÊt~ñdÏ)Àžë™w;Þy·#TîRÞñŒN³‹ü-§"ë°,¢Îº;1ißOÆ_XMÂ$ŠrЕƒËˆZ#ŠÆñÊRY©Ç-y%¹¦è‹+ftúC:¹[én.8¿H¼tÆÎŠ¥"/-ÓPXáк™ DáËæTø`sAçãŒ[ž N<.ÉêÖ"ÕDÖ 9·Ékþ¦¸•ZÔG6ÝvÓM²ð— ×ÿ`WÃX‹Yu[7™¡±¬lñ4Ž™c\M´Çx©ü(G·ê3ÑZ‘âŠÖ¿E;ô¨Û0êp¹I¿N‡ÜªQª„DaR±4¬ ^½j½ á âÆ±šå~Îhvü­Ý‰¢Ö!úß¡ÄNlp)EƒÓ\¯£öëûÑ®w?ÚUÏöLœúøaïý¤ý ZÏ|ì9cP¥Í&c/èßFz–U® FƒÁ5(Û“2Û(/#Ó´*^=RVÇÝÅ=’³µUÔx¦ëÜY9wÂÏ:bg‘åyj>c¼y:>W3²9ã±rqãqÒ’±ç]2Àïíh@k¿¹dè[hÝû£jc$ÄΩ‡í:æá…/[4̃-T¦<zU£Ú+å©ÐµUÈ“B5ÎãÇ5{~I}kóO›D¦†‹2syœLÉÆ¸Ó®q*K©i0•¿…“¨ú}îlÏÕýÙ©&!‹Ü¢ÅŽ­¹³ÄÖÛ⮇„u•‘œ×h<+ërÑ~Œ ƒ“‡+Àµžê~˜î¨:–Mgƒ{}Sç;6<ƒ(û7=¿ /©ïî~¦ò¬v¼ï:R»ö…m‡”센£è\¢¯wrŸÈîû ßÑnÏγ«J 'qà8ªÐlv¤£>‡˜Fª Åè¤Z!v+G+3ˆVŸV.ªªu]}Éc0𨨌£»¸„93»ëkÀTU:į•Bàê”sçŽ)Lœ"cx¼¬ ´‹ ò‡!NµEñ¦äRªÑË}‘¤K¤LKéNu[+á;ñPÓcSQcä³ ŒT«;ŸÆ;>/ŽE$Ou#rÎ×Ì”/uLòà…ÇEˆi´q2ΔÀ».fžÁc*0Ðx8šgªÉ­-nžežgìHkö$Í<‹:D‹Œ¸ÊF“-N(ôy˜e^)HMI“ª´ÎIµ›iRÙ _ɤJô—÷zÚðÖå…÷ÀòB÷IñøÞjŽ) áÆ&SÈ—ò.­wIDh!7“E­AKw3Q½ýw2/ì<‹ÖɘnîL’âFñÒ;A_.è4F­~VùÜÄùÉû!¸Íþ»ô!Ji$ÁIé"ï²)¹;¾^~ŠQ$|¶óìð|Á@Í3V%¸Eܯao7×íqö*ãÕƒT¬XЊy‰b>Ä.)/Ûé´{sh/DP4 ëJÒp€^pcÞ“ªA…×v_›ãæ}`lÅá(ñÇ6žDÓÜc¨ÛÉb†‚ØÃ{Ó|ú Û}údv;9¼]FcBg2ót×cÛM6þ¸Y1Ÿ²C#,³‡ßï5õ>Ç%óaXq*0ã¶:o{[¬Ï“ÂP>OR¢|ÂÂÂNÀk‡÷<Éñ=s|Ï|ÏÑóé zÖN8ÁdÍN±ÐaW÷gÕ 8š€&_¬èBÿeàZ×ûÁ-Û¢X|0šþXÁ@{ Ÿ b !qRimU9 gJ“9ýUýeh lž +áfñã3p3@›!Ákþæ¡ÐÚ(²’^aTùé§? ‘_@½byþæÈÄÅL1 ûMõ `()Ö1˜©9’fޤ¹$M¡ ÿï\ô"<Í#ø¾Åþßeÿ¿ˆ9Õ °E 7çEÝ47#ÄMô0ˆ!tQXßÿôŸ'Û'e³ËÖÇ.;èŸ=.0Θ^̹DðMêf÷mþ}-!8c†}•Ø›·£×‚ó{¡ožü0è›/ ôMŒn×á7_ZŠ»~s=ð›ödã;gF-é& `>ÏŽ‚iƒ4® óiÛŠÑ!B\Âå‹9.mpÜ„€0g|PÐKÔ4WÜÆ¦ˆ|) ©LP—TõˆWµÌ.Ø`öO);¦»¯q¸˜Øw;"TÌ#°¸9j«|H…éî'D­ «^f´ÌÙÐ2“]C|°™} p½È½Ôc»þ4±+ÿ ¯SЦ ì‚øÕýØ!ß;ê.€ ¡°Âd̶q8+Ä l†¶Ggò|Ø6e$bfŠù IA*”L>RÍ…,Ž'î¹ãן0^Ì;Ò kzæB6XÍáèj ¬™Wèøàq¶Ør, hýLá½{˜Î@íòŒ$SÖ`Äú¢É±©(1¾ŠŸ¦› -ÏøûrðMüP}VUª››Å¯ä_õöÃ×b±ªhâ`“!Ý çY=¨O³S4 †JS¶¶¶è»g ÁQ\;Öþ+#ÞþGÓİBÛø– ·c˜XšÁKðÿœÐƒøSB‰èn HµPB (¤¹æŒqUR—$ÆÎ/š§ ýu}m­Ã=%¬[®šQîDx`k¦1ÛÊ[[[&ïKñèþY–à}Õ(¸y‘ðòÊñ`…V‡ÉEc8rpÉ-LB?B›Tï%;RdœbÏ)ô6‰&EŠJ"eB9̰À–±R«È9Í;0%JÚ W'ÔÓÿó¯=šüÇ­?¥äR*Ťuˆ &®Vj‘ø+e)ùèä•+Ýú†Uîw #ÿ%xF›ú¶—vÉ!NUãÍÑU fnoU÷bq8Úëö–’Œ=5À«†”m»&#»ÆÃº&aº¦tMæšÊÕãjâઠy“ƒ,Ȫ‹Áªz¢'TuKD_ýb¦]—e.3!;¹Rd¿‘§@ãR<Ò ï$A0ÄWÞN=y‹QY‹ ï¬16ûô'+qÁhÄè+–pOPü (|Mœ*|·f… +N[óŒgÂ̺¯^¨½ê½{q çÈ#Îjúíÿ8* … ŸSG “$´O¨ªb3¯âˆÒo¦¡+BÓ.\1z®uûO‹aaÄ0×µ[»:ÓXÁ²0Ê™[*T[û ¥‚ç6zÔŒº£úâ…;Î!³;–“¸qšÀP]Œ~©Cô«KL1râ%;•#·è»ÙNÍ{?ã˜gŸ [Îù­@º¸K\MŸ£¾º5pk@v@97»ºuˆv³ñI}ƺ‚´‚6Ø´Ïnmåø÷ßpNšþªðÇ÷ °®þG ŸÝnf¦ÊÂO;²gk<ºÀžb—½ $F¨P*¹–EÞ9°ôÂÎ]Dö\àŒ/gò£'J4àâu!Ï4%€/-‡;š‘áy„¡ív—#î\°^4ÿ¦B€ò'y´d¶hÓKQvš­° äˆV¢EÿÏrìt“.qI©ðCçªCŠg‚WqJ^g€îmµÂQ™ñpÓÑSþaÌ’æ_" Àßâ=SêHU„Å䉬),Õ—2¡]3ÇT6JžŒINžèºX¤“Šh¢ÇË[ÀuɈ æå^€±Ñ GrL ×׬Jª5ëHËSc?ç¤K·ÏáI,A´PU¢¥´µªÒL^=*͘õ )VR­Xêš•î¹é×-û¦ØŽŸ/¶~EëB),ù×…’¶"¸úc¬écX¥{ßžË ãü§ÉeàYùcÌcžkeÙsÆWëw³t°JÆÝ* Ô”§_1± žZ†ÈrŒUWf¥§ãsuZ;é'DåaèqaèO€|59 "N Í”!ÅsùÔ,{õÐË TüèÀ=Çš¿ÞTãu9¨v(ò$Bˆ,¨buÛ?f^¬â ‹}c´é³§rd0’V3®béV°8È_þ„Ðdá2±ÎÁßy9<²ã·¢ ?aò¥Ðù­tòÅdAZÉQ å$ŠQøK™DñÍ?_¾/²†½“S@à/gv&Mºœ _^Ÿ— #ÌgæëØ7 ,/r*eSù…ÆtÑ™=ÓÃB§„% ÁÓc=] º×êó¼\C‚,×ëø<¿¬'Aš+qÔþ, âO?Aâ½nõ) Ü‹£90q‘a—t˜ºwÉÔYXüöÃîŸ'_ßþbòµ—~Ö݉¿Í•¨ÀÃü˜S­ Úì7Cºw& Á7E‚æ‡ÙX?'ÛÕ=`'þL½”ñ°ê+Ìaà‘ƒ˜P ßu/î²—Wpºcg,¶¾ö2f^\QÊ)“uÅQ,ÅÞ3°sY¬œ›ÚLŠ;R¯3‹A<(pžÅ@ý-1‹¦*U,Ѿ#<Ϙ• ~K¼€ laß Y‘rå¼ã²Ÿë‹Ø;5´¹}óô6ÌL ÐáøöÑg‡/£qhñ4ÕÆóï;¥ŽËÄÆé0:"9P6ЂÖ-­S F8¥]~_ê>*Ž»†áZ—~ø—6ô1Î1Qã|¹!2A\ƒmìùE€÷êo*xnü6›$©RK?9äw¨Ç¯—¢£wmÿÆy)[RNW/vcŒƒ«7ÁÇwQ¥»1Ö¿Üàžâ ö‹wzþ²$Ü÷Qe}°ï' Á¾§ÖÆðTÎQw„Å1»iM~{éî€ìñxàq`#YÓ£~L@Oƒ¿¡/m™à­=M{«ÞKôp•׋áìŽL ”B£~,:V^ãeòžÂUþÏû±›Œûáfê ÁáûW“ñtŠpW «L*î 8žÓY!|üÑ‘mŒL'ÿ „ây<$û,AG.ЋݽHœø¡Ï|õ„u+ÍÒ‘ÓÅVýY”nùK¶èÄêø™Úâa»iðEaG eÎs82ýS J¾­ÝL@#-{HއäeÂt½Cò"ý´hj{­/ݘÁó‰d I*°9ŠÞë‘µŠ´™ï&c¡hR`õŸ¬«¯8üÿÉzðÿý»þÿÎóÿ/Uÿ¿›ÿ3Àîçßå .Ï@œz4‰ ԞœtS&¨V$3;ç¬='@ž O §ø1R‚ÉXô°ÆÙxôü‚…Rá÷)챦²NðU®Üøz0¦ `äÎ$*­8è•ÓަF†{BŠeLB`M!úmÆ–@+]Œ¶$œìM7ƒÉ`tÅø¤u¦åêLܑܳ]*qÉ5ûâe™è€JDé 9È4B$ú‰€Þ-¢ôW¬™_ !“<¿Ažß x4ù –•×€r|ϱù ‚¸Ä ñù žDbŽØ¿ïïÆœ ˆìR4Þž¼+§ÊWà2žÈ€’*–ü´ÝœF·¦½Rlæ±ðÃ;qx|AÙ_ե籲.Ã2?QXfß¡_Áñ÷¸¾ëË÷ŽËÊ1ñ—߬ Í{±™wT輊à/ÏËŸ»ð®Øþã‘¢ç„_®âŦƒ¥Á+Pö>,eÅ-dÍCÕQ¬øsU)Œ¨,(™†*æä@ÈóX8w–oqlœ;c‹vRZ&–yºp5{)é«~bëåRÜ} ÅYÎuDâƒgFHâ—ñÄÊñI¾#ÞñÜ3©s°ä9á…åʱ<|áíx|áTl²qƒ=&„ÝõÞ`4Â>P`'ðï*! ÌnZ,ïÔ?1n¥ZÔGßplã0·±>müÔ“ ›£O/ÒNúÄ…0E+"JÇ^8l÷ÑÃúñ_?¬ÿuþ3ñ_w_„9þë:^$:þëo$"Іü îÝ7g¼Fó¤ùG<ükk¿îƒ}í?|Þû“o?(ök„úŠLàÌs e€eψíŠOOê\‚à~0¹ÁC£rª¤ýªÂ#–•B,ÔPÿ_Ù6]ü€¯/ÿô¯7ů"ŸÂQ-Æ•éÄIÂà( òTr‡¹™ŒïÈ·áÛÝÝüyá°1ìè{wÿ0£HèÆ›ƒ^÷P°›>ñH]„¬Õkj‘éOÏ÷ÙÿÏÿõ?CÏ@ºù×­½Ñ{wX‘Ö&vR füº{ ¨ì)^¢ ±€°Šb˜.Õe|<þ×›M$se£™F;ѺmïC7¬Ã#Ž_]ÞŽ¯>^+!œP ,­²ÏÕ¨ Vá¾ß"nv(`–ä!8¨I†×1jMDHýmúÞ äJ7¢ñ+ ]¸â² ÞŽûå-fsÙDéõá#Ñ+‚¼õ ¯ç¡­"c6.RRknb†zI´ˆÄ­M"¾ç£+v©}oaÖrPã4|£¢ãÐä VEŽ`Ë×Qö˜¾†ÍÁL†Dï—-A´®Z\°E,P×Ýt]æØÇiºŒEÝ¢bÌZ˜¯‘þtúpG6¸ÛÀâ'V7‹ Ì\$û6}ŠÅœ.⤋ʈœ¥ã5®¸@UNuLÁp€×ô'v$ªŽÔé€Á7e³Ø#M³ ˜Þ²˜ÅÐçMË‘áÖ`«lÔ {Àf¹®áþköž½@k‚ó>Ø\~ú雞Þ+`Æ}sÿÓÑ‹5êN7¾qmt½Äx0¾òÁpVv­”}x.Ûìu58rÒ C1}Œ…¶‚\ƒÖ\ØmµLhÚ^Ùáý} Áôá2Ø„£ÌûIÿn ɛèó«ÿUK§ëmÕ~9FÖ?¨XY©'Tvæ~ƒ»ù5°Kð5@DÞ Gü°xöއ€©éŶs:£*ê¸ RH0¡_€›ìØSí÷°?àË}õ`§Ôˆ]„¾°o€ R­hd×ðŒ%# ¯}~n£Þ’\% CßhO°%_ˆ°Ïy[*!Ò|å×èȆü¥Ðû‹7† 6¦¥5¦´šÆŽÿ¿ªÔùÊé“Áz$€XN¬‹Lo£÷¬}-«*“¨ ×vûý2Îf¬¿Ø¼‰MÔbP— @=Ò,u¶Ý…Ž^·'­æ g>^òÔ'¬rwðG~ÙL&§à¶ÿÞÃÉ>·5±žmÓ”ç™I s½z-A\-ibõr0ew„ ›à iÔ:V±Ï52€ðdâ o­Ý¡ ˆÌÒ1èç‰. Î;ï¼=ï4E^/‡㨠‹çñ‰¿Ýû!“Ÿ}·Û¯Â»*{׃³ª£a `|û°·ãž’[ûõA0µYçÏñÒ×x 5¬ì‹ƒn½UsŒl Žíl¿›ÊôÀTKHm÷*€²bèÍü£aŽPP”9°´ã×–ÓVÁó oEi\õZ;lúâçÆFd›Rt’îVãHê>_ø¯,Û1×Û¾F•—ß5˳sÔ@ó(‡¢ñÕ}n×­§­û‹¨«awƒ±›§D»Éh†!y.°A ÇU“úWäöí>4ðûñt:d"kâœzðÀ©-@„÷V†êoÅJêW¤%…"àZ ›1[>Õ,D¨ÞÎ@9êLŒ)Oñ#Ð[p^¬k¾Š¨r|œî6‹€xÎÞl`´xRÅ—áfä¾ ?]¹öÃ[ãñ=¨÷¾ô'ì8uûMàáW âXDÅþ@CŽÁ+ÞáäòúmÐ×d«‚<æAÅmG«éeŠã±A\± ˆwµ~>¨’:¿Ÿ·“ ¥€{ WÒKhzz åãMÖ ÒãÍMLÐr Ñ«žv󀇨«cêPAÙØÖ pEV!ôÖ Šcnwzæà‰úÂÓu]ÄdzùRî[¬ßÈŒ¿¿ šî¦ƒK”GäÏ ¬hÇÎ û2öT0ú|¢µÜ ᎃÙqlE‹¡ Üê¹u…É ÆtåÉ(Ä>sv2#7 ’^W‰j•—ƒû±Ë“éT#:¾2UxG(‚ ÎBð=˜Øì2ìÕR4pîäµP¦ÊËx—è%‰°ÂŒEF¹­+ö\qB¼BÂ:Å«TE5:2ð‡½ØNxôú^«ƒµÜóæ¯ky˜ëÑW*á‰bÌ´I¾’Õ =#Åc]¤tÙv”¥:ÄÚöœñeZöQ¦…G~jiÁ©EeîÄ—ì|hLu,›xl¹ì_}J<·€Ö¶î:¼à ï2Os¨å é#ž<ß6&oZR59øJØÖï'v5ãyD@+^Š=ÕJ¬2…†|N†²KUs™mž÷üôëb¨Ö£:@µ”%òwÔϹ—ÈŽ¯7°NË=au@¥¯c´±¦^ÇÌU ”yëkŽ U0›ÀÂCJ1T“A°’îÃÁ-ÜÝþþë\ÑÁµÒéŽcYf…uK3'’Ïc°ß»"KõLæ?µ)ç:<³‰óXÕSÓ¸¤?UâÎZòD–p‹‚¦SŸÈbÎc{«9ͳØ<±µdÎÇWÒÊ*æ¡ìñ.gOçxgBxw»x¼‹‹oâs"½*,IÙö¯7\Ýæðt˨u3´oæÒ~˜œ\Áö¯7.[Z›¨‡ÎŒèÓõŠndÿzƒÇY,OUÅ×wøõÝ| º Ëa×{Εñ_ÉGÚ_Ì#­uLLä ôWº;éÓPeY½Eƒóc}có³¾Á—¿n–%U§Z%\½†ø¾ë8X|ã¶ 4R¹û»º·ÿ¿˜ eëö]'%,ðºz€*¦mD¦¦»Ã¥ÞA ÚêùR?ë$i °AÎ`jTjÕʈŠc}ÐXeL{ï>I¥þ ‚9æÓtyŠìžiŵ±…5O·ê£šnº\I{‚\n§Å‘3êvʆdì@šK‚ûv¨¸¤~׋¡TÔWÂøËc²¢þ忾Ìt14¾ÍxÔ~Gm;¬×}`m¹¬­ &Õ<°¶äµ¥œL•kK9ǦQÂ:mÇ­JJëqBRždëqXM<®.vZU‘£–Óêê75S] ^öyì¡¡ÝøÏ“¥ež'AŠ+þ[×Ê“ž$1Oš-ûÜ*“Y>µRÌ%òúÅ)…F ’ãDl¨ño¤¡35™9?–ú-uÍGÀ¤l,ZÙºñ=O‡ ºqH³AÉ:Li6çíÇ¥µ£×<Çà †v8Ææ3 ¾TJ^ŒŠ?Þ¨5FEþZÝ+ÿã~Møáÿ±Vsüu¼h¦›ø'‰øú#AãòSC¬õcAÀ“ðãDü8É?~ÀR¿£“ÛpÀ®Å¾¤§J0¶”0º™ >NVñá#C|ä?#ÄGÐ| Éá>r¸¹à>:ÅB§n>«>nľaÍ úñ8À1N$8ÆIŽ‘ƒcäà98Fެ£ÿï\ôr Œ(#Rêç@©2Rƒ]¼tYH2ƒ]œä`ñîö? ØEôMc‰øËr`z<ð÷ÂÌ¿ùØñ/بçèêËcï†ÉÁþ)ÇÖO cXO‚sTô´ïŽœíItÈÅR¥$§\^ÊK-GÐP^?‚Ʋ˜9Œ)ÇÏȾÌ!ãJŽU-È!6,vuŠQ6C™Ãx (Žq *Æ%—BK"s”Žeó~JŒŽ†tÀͼL?ÞöǪ¾B‡IQ9Šu š$šë€òàûlüñ0Á—†9‡òú±<–¸àÌñp”¶jãñÝO™¾eó»#|¬àƒ76Ç÷ö Ä¢‰û¨©`É¡A ¶´œ¥èõ $™c%š£ìƒ"UO#–Ó¯á6¨/Ä<Ö:•ƒ9„HôšK=÷ý±;V27r‡ªü ;ÉF¿ê?TËx4ÿ9n‡úZõÙúq@z8=Öçap6Gøxœ‡Î§‚ðÑЀžÀ™0ÕyPÇ;p£Š³-ýÈóÌ'D¾~œ©"ÎqBb˜$´š?5JˆÏÚ ¹¡$Y$´Füäø š#jáý¨PßDä$y¯üézð?vž?ßÞµð?vrüµ¼h’øg9þÇO‡ÿq¶\üÞ÷Ãÿ8Óð?ÎÄÿèág ÿ£·&üG†èIüt¨§rÔõãlu¨^Òl(%êGO%ýosÔ Gý0J÷¨ôLAýèå¨6•õ#GýÈQ?Vú‘c}äX9ÖGŽõ‘c}äXËÄúX!ÆÇOîÑËÁ=–îq–ƒ{$øÚçàA{8^9¸‡ñSî!]o–îÁJ»~Ë1=rLtÎ1=rLuÔrLÓCyå˜9¦GŽéñT0=XY÷i0‡òÈ¡<‡òx$‡Kßjùx¡7=QtR´ˆ¦XÇžLÐí÷_ç˜û¶ØØïüPÕÄÚrœ‹×É~à€¥.!s>¾’þ,–C¬dµû^ø>…ÚÆB¨B•(õœ.}°5ÁT¬€%Bl¤€ 'PÀÆcÀ ÈûÏ@¶¹ãï•÷ºÃ×|tƒöRãïóÐúèåUݬ)¨=«è­¬â¨ñ„"ë<ÏKµj%Œ?óç±õK8!e  wœ3掟çŒÖ†3~~côy´¼ë¡O鱌hùÒS9p,)>s—¯Ççß/çþ}ýCŹ/h–jÉ’ÿ“G»ÃkIö»”ìŽ1aìïM{þšóåÿÿ÷l;\Kü?›Û{ÿ²?{ì×poâÿwªÕ<þ/š¾Züÿio;,m Y¯±ÿËÁ)Ûˆx0{¯v^þù¶ËVÃþñïe]*Ö=8;oõl€ØËiì¿ÃBù©KÀ‡¶7’¿{ ;¥ãWÀ•…é#§²Äõ×ÕO-åƒ8NÕ*lù³éÑØ±Ô $$8‚S86µN™|ù0¼ú ‚ï)‚£ujØ÷GÁ]åò[e„DX$E«C8ø° gM¢|ÞyÍHa‚"À`DY}<™}kÁ|§[Z ¡5ý kM‹¢ljÅÓ zÖÕ‡Dƒb Ç)FäHZ±±Öô[›ó´€Îô›®P–žh9þ2µbAÎ?^Ûzœiz¢„ë¢ÛQéÖ º¾°§ òÑÙ4HÃ¥†°"ÕCN•ÍàÌd÷³þðV¶Ü%'5LN¾â<^M æ9 ø×ˆEpó0Áèäk"Ï[z,ÐÒž¸i“»ðe<ù4e;ê é!5ÕfÚÔÂ<“†ÞÔ ćLårÞÒ8O`2!ž+BßkçiYs7‰ëšÒ*ÊA:D‹¸“â» nn):NR•Ž:ºð=®Fé Å'yÕNº9ˆÏåMè BJpw°FL¾áELõT«Z¬¤-¦€!Ï7‹®#¶²õ:¨àb†èß+[¤jàŸppbÄ-òúÕ¨~“Õ?ÕëóZk `slŠtß–“ÂØ D)ñ(6Šj y,›ÿì¾}}K `€\©…Œ¸x—-HÎ ÔnvÚ÷k·]v´`§¦æ¾ã‘qáo’ìžÖy}€$³wåà¬Uk7Þˆ[›#ŒÍ]>¦äð˜ZÖÉÆ›8I±ç4NÞáß³ƒ^™oùK•k0¸À`9d{™ã +o8¯…;6/m¨âN•S=cj÷dx]Ž1¡i¶ßvõõŒˆ4ĵ˜`>"‚‚Äd•ý¥£º”|˜Å¯ø°‚ƒûéðv<ÚP4{ñý7í¼~²ÑX;ŒCj1"Fëðáöv£Ý ð4 û ì-ýC¾“ô‡ðcû!Ĉ'ÙÐŽ_Éëȡ‰N^G§ŒS«OLÜ¢>uð?\äŸSÑ1.c™öÚð¥Ð9t6œE 6„c:ûS%Mk÷©öYiïëÁPdÊW2\œÂi¢s ¿*ð® €ˆ>¤åW+žI48±ø*¼i}léLÓÙÓxžH‚Ä`¶Lf÷!±ÉÍ‚„QSãóÑÆxôñá=òPùºÍ×q/âM¯À²I´àÿ™ÿêmd´ŸnkþýXqlÇuž #-¶¬+¡5­ºü>Fp3pWh9+€°âS@`il ®¸†¨Ÿ,Àþ‡y† e!ÐÃH¡WÔjxÇú#VÍp¢Ó„Çê E“uâ’fnºÅΕ l0Êœ4å…ÈVД%†?´\²7ö¾³”2âêº" lšc•ŠÈÒ*¦¤A‚¡‰êº5·p3Î5·ù ^qúßêšô¿Õ0Ìõ¿ßéņþ·*\ǹ Xy—s-°©®jºZ¡~ϳÓHÝ+³¨‰•Ú[¶…ŽîØ5¤¨HÙ ‚tõ§.ðOŠb hDº%ÞØ×ÃσQ²òYÑ<ónÈ&Âï³Ô}²aÜÀîFEäµOØ:®õ­ý gŠ2ºþú©þz·ÉµÒüóh³xÊÞÞá[ÒSUU TOËPpñnmŠëSý'8v½"E¶ý•ª¸µÇg}¬SGÉ$u…ÌшOÍH©¦&¯PßΧD¶yãúp<É™êø9ú}´ñ©uå¡ÚÍ\³½RõºÐ©wLezâ´Q¢³Ù2a«ÈýxU q=Ž5~€Öû45ëí\¥ž«ÔáåQ©ÿ¼ºôuëÐ(õy%9?Íiç }uÕ´ç zæv²žÙ­Q>^L£L½ùZÙ4Ìòj˜Q»,O½ñ<¢›ÕÔÌD(…š9:ŽW”³8[¿•Óø":h~W\‡:~KÒAgÕASÏ~|t;F&ÐA·Ú1Œ+ÖAWsô÷ÅéwÖ£ÿÝ©†¶ÿïN˜ë×ñâÛ¾¡ÿÝQõ¿à³ÁþkÄì÷¹x} `MçÛÐ>4¾‹x'Ò·# °ô>-‚älÀ¿â)f[`ûÔ–F@jFQ½9˜>ÜRZ¨>Òà ›ˆGPùQ! # —NƒÁ×ûÛáÕpFAPZ}p%æ¹>F"IT≬Wt°× À‰ou Ö‰çhÞø-h€F]Bî‚áJý–ÚL‹v;¸™•"×#o삚ÖØ y`æTãjyn\>²†;ò:Õ´1ÍÑU¶«Õžšf‡²‘‡Á¡WM§L—õìÊÔFcÞš (p—¤†v$˜Ï§™Õ¯Ëpe~äZXžƒ„õ¯¢ž•‹©M<œ~?Ü2ñÓ&O»Ø©—9ŽA§.²rŽÜû(ûûz0ú<œŒGÀ¤Õ«xwãT¼b' f_Ø( ®>Œ†ÿ~P¢B¾º#þA_›}Œlí+.®û£x§ÿ¨²­Gf^Æì2¤_Ä)5ɰOVðßLv”6lP#àÏfz »Z6¨1rÍöšmGšYv½>à¹ãÕßå Ie› íˆJÙ²ØiÄh±TŒ'äX‰Ñ›'éË‘LÙ,¾Duy¤'ïvþ0õåe~ÆôŽ\vŸX“ÄÙÁÁ~!ØuŽÿÏ¢}ßïÏúÁTÓ»SåýZ¯è/d#þòòeþýþýeÿ ƒgOJ¹ŸÂ‰|%Êý%¸‹§Sæóa„|´ðþ‚B€¸=ð ¤p -…o@ke{Ó¾f"ÅÁ å«_µ£¯,Aªë Õ¶I)Ôm ÉÐ6îÿ¬‚8¨H€;ÁN4´gˆ¡eKK!¨–I´i9nà0 ´B~°1N·p\ÎñÀëбs–cM`9©¦µ»¿  ¥Þ•ê6ß7¬aädéWïPZêZí' Ž,Û0ʺÐLpŠj¼ÌÙ#Tóƒ s²Ð‹@lPÁŽ4p£7¨kÓ¥MõÙøCAÝ £›ñ)¼%1ª˜8›½^L(5ämì—³ [«Œ^(P£ÔJwF.µSdË’Š ïûëï‡eÇ’ö+—+–NC_0éå§8;œ12LmmvÚàæh»[¼ÉxC)yhÔõðæ†ÝµFWcLÝáBî½+C©ùª HVÅj‰Ïz8ìs[ŽÙ­‚˸SÄ¥¤(ŽþHq¢®dlgPPòD#¼6 Üô}_>ûÏýåÚð_vöªÏÿ+ÜÞ«î½wýÝÜþ³ÆM>ÕþsRGü©†£á¾ìY£Õÿv“l?¸¶<)›ã2Œðßø€;dâL‰ ïöݶ3Ù‹²ÇÔÈ,„­+¦7í “Á»§Î&ìÔ‰uß@úìÙ°?‚ÔCÌ¡‹š÷!ÛË.a ¤Ó²°2 Y½V‘AØ>w¾Q<7îWÅ¢BÆLÓáõCÿ–7“{¶J]9žh5ðQ±50];)7á3×nÞõ¯>€\èÖX VþÓ•íÛÃÍO-R¢ž' ÎSØ0v h±å=^Kt&“½³. ažûJàô-¸@©9çZ‡ßpU2ÑxFqÚSž»^s—Ådῲæá"ÂF™”iŸ3(/å$©`nŽ÷3>`úÀúR ‰}0œ)‰Òu³]¼R— !¥bkc [¶Äð6yÞAý ž6õ(甑â]%ò`Œ¡eðÁÛ¿¯ÒýͰ=YÛý§Ý¨TŒ¡íß³Î=£3HÝ0È…7Jd)§ZÚˆÀƒ¸u7°†4†H™Ih‹‡2°%°g}󨳶Ì‹7háóxž°|¼_ 7¥e²ÖH--°ÆÛC+.X~á2iÏ"|„–<žj¨tZ¸~GFæ˜%}ÈåøÜ¯ 7!Çb( _ôÉä‰ŒŽ˜Š]^ÈHˆ}2ñ€¬“ǬUÈZÕ„õF³V©ÏkÞhS7±¥ 00æ0–»Z ¥Zd¾‡MÆ>e (‹ló iÛœÛçþ׎Ao#m"k1†¼©ÆÇ!®±ÿ¶'Œñ¶’ˆZ™×ŠéCj“É›ƒ.ä¯çyì{ÝöK0iÔšmÈÔÊ“˜Ìž‰¾1 a'à»+0%^we1šÅ/8ˆOY~Ï@·#Q7|†çÅéB½ÆöÀ ¨xßÔ¹&ÇyÕòùR³nù|©±u0›Tïè„î5 ¶×Íá]Ž“o¸sË­ÓÌúHG2žÂ]Dò¶€+³®Æ×”—kô ·ÛÑx)/õáñ'C’­Öuí–ŽE©À¯7°˜s; ¦;”È&³4–ͽ®œÔÇ7{-m¶ut×^ ¶†½¦°+ôäË„2!¯ôBŒÕö\ üÏSm4/}}hESF£S9²1ìCv#ìE‡ä:ðÂÕ—9­ŽÏÉä9EÙŠjG};â¬ãŒ3K0d¡¦ô‰²âì?kÂÚÞ w-ûOŽÿ´žɬiÿ©öž‰‰_M.àïEŠT}QðÏÏdªsöt´Ì4ÅT/PñÃEššÑ,Tu›lPSÚ¦ì|! %5¡~O¿MÙC;þý@¹çX+‹_Ù’|)¬b¦Í¡Ž¡Í|oˆö|wÁwˆÍX‹Îýdp5œòüÎÅÜ“a´Î0¹Æk„Ëii¹(êo Œ´wÈåñ3$ºá‚­Š·l½Ògµ\'e§/ÒL³„>_°>#)Ùi™¢®õøYšÌu»ãoG[a'ßÊQaðmCÃëŸ* â…Æþ×áŒíj˜Á…ëfƒQ(ªÜù&"YX_ ë[DÉæà*ŒJˆ×ÿ:¼{¸ÃÞ  Áà©ÁJÜ,9b7Ò@ôai†$|þãíi$m¡'UæX®êÈß]n~ª+‘9ð>£1*ÎÚÔ¨·ÓAV9ÊÇ´#½A©¾R»v±$ƒ `Åò¶Þv·°DnKJÕ=¡Ï ­1âËÖɵ uÐikm¯4H *îœÂZ‚J߆?‰j])(Ã-,´ª_\pAMw7qhŸ¹ÑFƒê|”iFb¼ŽÝEz]ØE/‡Ñ[bn’ZUµz‚b0at ²C•ˆ{66Ðsärü0ºž’ápá˜à_>Ad4éó‹"°¯Ó³1èšEØ›_ÉU!ˆÿàTÝlÉ«pafÜlo´T3­ Må; ;”Ã`p„°×&_ïÙý·û0€ÖHø—á j ˜ÂþŒ¨cŠàïìæ9èÍC̈Hý*œ3ÌãsÊlµvºAy"ûÛŸèU ÅMdž^9Àß^AÑóÎa ªÝ Gÿ; ýË);áë} þ^nn²_6M 83ÿ ðö¼¥œ¼¸×†¶ƒ'Ñdü…Ãßß>Lƒð)ép5•Å÷ÒáªzÕ+Ö[²ßûiörµ®`U€žºÂozYÚéRxÛŒÓSÀ3T%s]çM¬’¹îÐ2;Å\V MݳÆ4]ÑJ€ ÚÔ¤DŠáàceöwÞÒíFšiNO)l¨Së ¼¾ß²–ëÀëúøÂ.ô麖†•åèjPÂDìAÚÇʧëÍß_ õñ7¡’Tp)„>bu€}•?–¹Hw\O!IªcRÖP ¼uêP3+O{YT¦©tÆ«Ux®RIÎz~XôѰض cQ¹XºÖÜ­4‡aA ¾ö¯fËî>­SœØÆ9%1›xØQøàS{;0 ï Ù Èø—þäÚ8²·è‘g°H%sAÆ·‹^÷ü@XgvÔuè¬,H§Þ†³‡ë±ä¡Q klÕDK,|tÈꛬ;ŸÙ¼” 2ÑbY_€]0cرp4û2œÂqï–Î}—ìR¯0ÎÃ*ÓT*\¦ íÁÙi¦wýÛ[¼† rWlbV~£À†`ìÎuÊQt×ÿû$º„k⼩^çÉæaéêp˵LjÂ÷×™öCžëSØ­ªxæö“Ÿ¼ÕľŒz ŽÀ—ó“¶’Ð{wlN?(B§ó§¿#µ‹:+½ß<<äÖÆíz‡Ý¥ßþqØ*½ö »ïwà-™I¨–ãŠûçþyV#JBD«c%¼½I {FdbL.™ƒmê ³Iq#­&i KŒz˜ŠŽ×Ibý9˜ÖÏæÿŽÝé[2!¾~<ÖT±Xy”ߪÎß\þ1Á⃷l¥ÀYÿ†-‰Œ¹lIŒJÁ$‘Z{¨"jÃüd?ØþѼÞëETá“ï|ˆ£J>ö`WõØOÛHú¥WrÄXþo/äý*x˜ÂAµ#”£o ¤˜Épm°ì);{ ¬Aì{šm±6aNÁr\^Ù;¾ˆ¨ÁQêÀše 9™¿š.Om^Aëò |J…”lÜõÚ ¦øëG†×½-„,²í:¯ß=08E_‚9«B@ÞA†ŠÜZ“–€VDŽŠ;h‰(쨔©à YâCŽ=‹ŒW¤õp!¡;Ã<°­ÁÍLm$]^L,!~P§o¶°ânZÏ^-(VP°e)tïvœÒÏ…fðÑ{›£¹^qúŸ5á?nãÿìåøßkyÑ|0õ?;.ÿ¿fç|‹yæòý$õwdÓtÿçòäÜ¢þÇy *¬Y»ó kdA66ë‡h‹eTíĆ[—LÁ» G ¡ ¡}´‰û(´Û©ó§wì×l¹ _»ðŸð¸Ù\ø`fŹðqé6yWÖÀe‡U:¼(ba{×€§×„:ºg_sD°R|i¥‰‚4øz üŒ ÂgÝ<ÜÞ Â}áŠ[ȇ„u ãƒÇ÷à* !š 8 Òÿ2dÄ.u¤qĸþ- °á2+\¨åÔL•±%íœ?6x˜û@; z$’È¥„ÑØ’Älí WÎhÚ™8IÁuUH}\´‰@cK[Ž v« A‰î'¨·àí¹®1\Y>˜I•e_cv y&ÖrXÝ£Õ|+¥ kD{Dº-âÖHñDÅ'_š©˜sÁª´Yà#£Ðb×i¯=qëkËÓ¯RÜ7Õ‘‹àÑ÷pÙÄ¥ä•"òÁªT^pâ"‰Y½L>ÇSI»E%éÎPAHýú4ÎG ‚"‹–M'U€jÏ"gjÂr85ðÝÙyp®Ñ¼æøÙá¯Çtn¹ÜÌð@1§¦Ïu+LpÝ›ES À¿m*^O¡Ë?ÉQÕ‘¥Ò׸ÿ©”Ûq5..»"/«0µ´¥šÄ:ö¾¹¨ Eu î•xνfëÆpöM^ñÆtBÒ\ˆ÷\`tñl nhKrOÛ‹ñýuân±×b6Ÿ4H²³X‘fWgª®cit—;+Ò]ÆéÿÖ…ÿ½½ûÂÖÿåñ¿ky‘L™ú¿=¯ÿ—üMà±þÓáO‹ümø„=Ðï4>a+ü~û¸ ¿Gpê¤ô› † £R¸™÷›JgAò*W›nõ‡†ìþ.Pز*:_W†E©£é­R‰I¸x5ÍúìÊì×Fj<6Uµ"ãáØ2»ý“†Q¥Ãg:›­ä>v½eEÛ="Ú*™äùš£Q‰ïQl¶J]ó¦õhÅzùh;Úζs í:9ÐöÓÚ¶Ž¦OÞ\cßWƒµíïD޳ãlç8ÛkÄÙÎq´síDZ‘G{é8Ú J®yu[ÔÄG¦fƒ]–¶F2ñ"øØÒV—pYGÁ¶ºéíD36zA\ëÌY*êöÉJP·OTÔí“GŠº*‚ã1ᓜ8Â3~\¼íc€á •Ž¥ ˜#Õ¤¥“Ñ`ºýîxv9˜¦±Ný ûÂþ)±¶•¨Saª‹êãîM‡m,²Gî˜?Öñ2±Ê±Il <¥+ìvUÑ2ÉÎxœìeâ™Ãx(hæü£˼Q:®„‹£™“îuÏ«uäpç'Kƒ;Wºàêž"*68ØIlí¸‘Ñ ¸Ð±U&hKF 4íÎ ¤A_û¡¯Ùà4ùà_ ̳ø•Ó`+cm|¡`RËï6}‹|¿·0yu"•äDÒXúüÑ€Íoµz1Pó'±Pó BŽO4ß(!Ð{ =räkq€ùF&xù†.oIÌ2¨TUí/Y&•¸+$Lª—žI¥lEjuÙv¡­¿ ©x‹¶ŽsíØœŠÇÚT<6Œ6ΩèÙ¿œ¶“U`²Û縵`±Ÿ<,öïñŠÓÿ¯ ÿ}og'ÇÿN/xSÿïÄÏ¡ß]a~õ}9€ï'~Àw:´Þ;êðGB :Íþ{ŒŒCä-ðops3¼Âeƒ+7yÐFÌÉXˆDá½ËŒ Ÿ ¨6 ª9„üO!¿VD ŸÃçÀðOÊâB¥r`xn@É o—iG‹ËRŒ,90ü£3¼˜ð\Ðý‡¶nªÎÚ> u¡&u°ìY„Œ¤Æ:H yùûNʘƒX½ä㘯æóZmRûÌžžP›;©Úìwl«"¢ŽÐî‘7º7¨¦´F¥Ì÷UïÞÕPFÑ ×žª†”Ä=\>¹¹Èé³·eÏÞÙ¤?¼Í2}Ùÿ+¡ØåaæjóSNBôjÔ§ê5 §Ë¤)¦ÃÅ{Ä'tcè—¤äìÅ pÇX£P5ÝðÔ Ü©c¢sæâ›Äϵîy'ñ‘tºµ¦„.‘0‰ñA¢—/æšE/‰%L4«èðj³… ±t6uÏ¢Ê"³È‡ìÜâ]šgˇ¦Ÿ©qîÈ”òà—ùSüò#§<8Y]ʃü¥¼âôÿkÊÿ°÷bo×Òÿ?ßÎõÿëxÑ3õÿŽü'ykiBOÚ‡“¯Ð•¤|8y\)¢Œ™†Ï)åÍÌ“@äI ò$ÞÖ,# ĉÎyl4ξ•v—AɶÒP_É ¶…«'¶ƒû–¬Ì>((ïŠX¨„¸#&$nÕYÔÿæHvÐX_ì>,œÚ ê)6fÁž2[’˜m‚…;œbWI½Ç+Hª /:YA[Od8 5}1ö ÍZÏ…tœjþá’&è¤Gà æÜÄh›ˆL%ºrEKÚpÄ-qiâs6˜ ¤Z ~ì †î‘Ýî0…ÇâíØ­âƒRÜ®•²Â„Î-8¯ä’†nE_XõG AÞŠõeŠÀüj®ù…;[„82,”+‚§‚è.-„¸Û]€‡žðÅù’d•»½TrÇÓA¹5Ï>ó:½¬geUP¾Æœ ¥–`V…ƒØ¬ ¥Hšýj­0…–òÌòó+`s¢ï˰ Í½ÐÊ `Œ lë!;ü*WõV“}1qxéÚ@øo/<¦Cþ ¼[4Ù®ÂÆß{,¹Q&=ò— „*M. áWÚäpTwYDRP¡Ÿb«ln³•Ãv£~º’A„/­ɳÂ`\{Ì`8£#ÖÊÁx~0^ÿÀƒñ‹c0€¿Aò4ó%-IÒ(dN&C^õy5Š€ø(· íc…g¶§±©Æ#PÍ#Б $SªˆS$tçಲŠízz—ý‰:g8ÚÁ‘g›ÍÀ™—œ8‘b3´lœ$hª# ·¥ÝöT±±EÝ·aCZO†—³Ÿ4ÃKüËkÿ­Ëþ»ýœMLÿs7·ÿ®ãEÓA³ÿöÐþËæç~9`‡×}pz>±ÿOÏsýùÝ÷y°íþaBXî/xp¨¡tf1£öÙÞg“¡¼HËš’Ó}Ÿ-ûhAÍžÐ*GÊíÑœ¶ÍYTœ&»žmçp‡;}ƒFŒ¹@':rè¾ø#\Üå;0àAåÈgFìKÙ™çÑû‡Ë塚8+¦=mÀcOñºŸ 2м„þ`žô®=zW èb nݱË;Ñ ß´rÎqÀq ï]oÖ˜4¬KQ,äÈ<}¸Ld÷3”»¨íÊìT¹Ä#II8ãq”…ðkVŠ_…—¥-ÉŒ e&$+p‡…¥’1A¤ê€½ecFý<œ%@À `4ù0UàYx$ë ZE"WW}°Tõ§“°5•V)ÍòùS+–¾_žÓ^Æ<§vùÅUM¾ô¤Y}~Ù®çæË#QQùt0IK¬" Â$݋Эါ跖ëõ»ò ¨ÊzŇ¹p,­³|ç©~¢§ ¦x¬×´|KÊKš>÷³Wb’µþII5=Ê…ªQqG‚‡"Á{þÔ¤q÷ÿ5áïVwmûÿ^˜ßÿ×ñ"™0ïÿ{óæïÄþ ÐN•(¾ž:ö÷÷A÷ÞŸå;I7°ïÞãùvìþŒÝzGÑyûç†øîü™ß›Í€î¤SÀIøg€÷-å¼À£‚¦Ãs2þÂS@Þß>LƒpNߟ KûçÑ‹äÈÕ9ruŽ\#WçÈÕ?.rµ~ yòð‹h1U\êcv³ø3F«ùq©W<#NçˆÓ+EœÆ»È®äIŽ.£K{ hErt饣KÇ© æÑèŧ-;€m+—ìÞ„¢$0p€=7d·§o‚òyç5#A„o0Ì “Pýª'³cÍhpº¥µZÓŸ #yN7ŠüYW€}7%MÛ)ºJZ)܋ۜ§óÛŸÈŒÔÖÌHY‰® š˜†Ë4ËÔD|oÇN“ìþ`ÖÞÊ–»äÆI±ž^~ウYÅÎþ5ª´o&èÄ}MäyKOƒL-m»p#mbr§ '†‡€ª…%¤ï°§r¹F ïšè¾ÂÄÐŽL lHËv-Ö5¥UTÀ¯ [:øRr2¸¹%Uˆ6¤*utáûlñÙ¸x N àxNzL2"F³˜ m¸E‡ÃN7‡BžöB§žv‰HÏÎD­‚«¿´ãщyýjT¿IõO•ú?8$q÷íëóXºX#+H-Ü.Ëw}ku~çð-*žÛ1 #*>±/ˆh¿ä×|ö._²£|L;R{¿>h³Î‰c $ãs'ïðïÙA¯Ì÷ú%(ýL.Òèûùà G «ºcóÒŽ+îT9Õ3Ö©vÏA†×½¼ÃqBÅ„n¿íêëiˆ7.j1z|"‚‚$Ôp ¿SÄìßÓ àh¥âåÛîÃlˆ­Ã‡ÛÛrt%àù`ðBÿoáý!zŽtå!Äp"ÙØÐŽ_É{È¡ïúÌìäut¼8µúÄÄMëûWùçTtŒË´pm Un,émµƒ­Zg‹}xÝÛ’«Ñÿ‰cf¥£÷ìÕ€ìk úiêqxK\ Õ¢~ªCÈ´"Z&5 <+öŽÀ ߪÙ])Ä“¶MíJÈÿ6aûÚ¥tmRµE÷„=_Ü@¹!ÈSšKâp¹Ñ%¿*p‘À‰&d!­Üµ…‘ÄŠïf›ÖÇVFáK”7 GËÅMŽp˜Ìú–U8F°-b"´ÓOe"´œÂŸ‚ è)  "dézjö š0lˆƒ˜1ä°Ù´è( áFkŸI œ ´¸XTÐêÉ¡X}ùÏü×–¹ë@ÉgÆÀ óZ`6êK¿O¯‚<ZÎ Q4 R_4 *GÈÄd#O öV2"ú0(L …¦bÓôŒ¯8(§Ù?ÜSÚ• ‚œèâ¦|´E¼Î©W„ñçðû•WÇñìÇhõ¶GS©ˆœ­òÑJ«h¨½É «Åéÿ׃ÿVwÂ][ÿÿ"×ÿ¯ãEÌÔÿWŹû87(¯cqBÉ­RÇ^ÕtõÂ ðžŸÆ§‘º_žÆeâÔ§²íit׿•ºlTȧä3G®Ùj 6æŸÝ"‰Ô‹¼½¯‡Ÿ£dûƒb|à=‘­*3˰4¾²aÜUÙ¢O>ÊL®?EE_û-΋Dá®2*…¿Þ•G•OìïhS2æ´_óŸ7ÙÁ­ ³í³õA§"§š`ðÝÚl§ R¸HN^¯ÈÆa?G¥€OÔL ÇYëT_3á†dšBI¦fÈ´ PŽWhŠá³í ›$B¹©P¦¥fއ~CMj3ŠÀeÍn€é¬ÐòÒÚæ–¶igIŸZľÂfË„­-÷ã4V%Ä5}Öø G\%WÌ.â•]äë ]üýþ)¬-k´²ü *“ Ŧ •"@ByLïãÕYV¤„¢y¨%ÄÆpˆþ=cÀÇܱÛÁÍ ’#r®ÞØ5£À]2ÃÖ©‹á¬®—_­ŠÜ´9Æ\%áPž§Ó˜ Lv½w£1oÍìZúö’uíÑŽóù4³Ž}¡ \Õ~;½ŸA¦{Ò®‹zwì¸v³> ‚^¢M<œ~?Ü2ñÓ&O»Ø‘P‹º€€"Exùzûz0ú<œŒG"Ýüjõø»qz|±“³/lWFÃ? îß@´4´/v›ºKoÑ®û£ø Ÿ¨²m,`ܤؿ›~Ñn¤4À>YÁ3QØQÚ°A€?›é)ìjmØ FlÄPÈÍ ›/ iØÝ˜]×{]vÉŽ·q”ƒ&•mbaÄŒj7¤ór§c±XÐÒzûºÙЩböødI’mÉ”ÍâK4D6‘nçÓ6RæGMïÖhŠ5?ì‚]§üTñ,ûýY?˜j†ª¼_ëÕý…\cÄÂ_^¾,ÿ¿À¿¿lã¿að,›5‡KAž”+œ&›%,ÛêC¿íÄü¶›ÂZ¤),Wg J>sLÎûJhÀñêìBíG`j§° -!HÅ4¡4ºŒA®Kû}$”1ÜO=©‰pñ"Éðj²µôb«›\ÚWøJ©lÍR]©ŽMJ¡n¨éU†·ñXÇ*ˆSž 3¦§–hhÏ"¶ Ä[ÂUŠvÙ†€Zs˜Eœ–”< ï1óg9Ö–;’w ªpþÑ»ÙSñ8` #'K¿z‡’½DõŽ>ÖX©eFYk0¾i¼|Óß`P£aN&zÕîÙ‘>@½;©‚¢Æ ®M§ö©! Êê´iN1áÚ0á”3YÔ8{yò¬ ôòLÔ†èc‚.5<¦]zB¡ÿ’мÝ=\Î&l78}ÇÖ蛽nä9É 2‚r.XÑLœ+ìo\'<P9Ъe,–NC_âéåQÍ€k4ÚÑN¦¶‹6Ÿ.©íî)CF:‚ æÁ´Qª2cLÝÁXb.yW› :Zð•PЊÕ_Ià´Ámvf· .#^—§¢¸%.Äô¸`¨%Îm}+xyí÷kÃÿbÿßµòÿìäù×òÓθ­žw½&»ð5NO8°((²üáϤœAvãŸ+a!cÝüñ>Òtçßhæ³éDØ^¨ÈîVô "áÇ3P¥¢™Nžê‘FÀ=°»æhÖŽˆV_¢¿ ¬¯M›<…H$ia‰×mÈìRÏŽéæ¢,ä"ÊáQ¶ž*¹=v:”HmÙ…èŠÁÍÌ‹^´osür´ï\ÅúcªXrÝêuª?”:5ƒÒÔôt_ŒvŒêñxnÕ#u$3 µWiR§QCʳo¯E¥¿€7ñü*ý%x§Sáó‘Ì¡‚s¨`þú¡‚ ©Òp5üpÀê$€«~eLœ¥Œ^9¬/¼rXßÖ·›Ãú~çWŒý'\þÇöóm°ÿø¿{Û¹ýg/1?ýø¿Ý^Hp Š7€yB´ ;Oצ“Å “ä ¿¸u% uDHÙ¥î'ýE–þJЄ÷Ï‚Âà~Ê|ÇÇ…”x>ö!øóÞOSÖ9ò¸ï+þöP_Q8–[lÝî_}0¾>p·}øF6ôMál8à—0ë?À‡Ï⟠­ô#kÖ”ÝÃX‹Øîœdß|æ?¢’ŽEåÍ ÿl3în±Ãà+ÿŸ ¡Éü*jQU®-½«|âO ¯-|¤ñŸ6—gøI€™ÓD¢FpË;J°V¤+G[Õ!B/Ç.‰ˆ9Øó¸µ[ ÛX\Û>hÎÄ—@‘iY&Ú«äò¼(¯ÂT¶&³\!>ˆ™-†Ù‡ÏlKbÙ ôÞ?”ÖvP’žîOEù»\œVÒšMqú¸ðS#Ýg»ºäTÂ2=Jíþy»ýÎS›»Š;§ v&éôáæ†Ý¦Y­dÈÕv©¹ cÌ‹U ®úQVç¤æç¸T ¦j%#@Ôw&tÝüP޶i(;¨ ¶ó¥ÙŒ¸o£5®vHÇ_k¨˜¦æSÔ†&nè^¡]ßVÄê:áD¹|zàDÛ*œ(N…X¨ïWÉ… -®óg”嬾Mì¹õÚ~ŒÅòŒ×Œ‰SpãrÝàÅ̘‚ÚârE÷]å;¥jQÁM,iy’¯øÕ¥^ñ=(ŽxóÇ+¦#‡™c§ x:PA%<–…¦Ÿ“#u^0ÍÆÈº4ÊñÁ·‘2‘S‰Ìý!yµH—øü-Uí~M==˜±µüê0ï庹Eá£z‰m`˜¢ü|²!›Fë¹Ï@Zž¶Ñ,+ð_Ä‚¦Œ¬œä7HÛcPÿ ”ÞÓá5œŸFïÁóúTý”à\Ý%¨mgá!BlJÃâ®HБ·[µÎþ}Ŧç—ŦD­æ[8¨&˜(ÓŒXŸ¹BKkßkÖ¾müÖwÁ£Í\á"‰ðV‡b:µÎ´¦ ®¦hçõø ºíQ•ô-;QÆ–Š‰o°[fl±Z,\?Îþ؇ù¨MÄ rka+|ÁlK”½K¾owâI{¢i«±%³£©ÈôvÒV£vS·çh.J2áoòú%'"å!chóá–Øhy]Ùü²fÐsÞ”!!=$KÐØPc€,nò7²ål§5wS¶SÌÇU¶Ó˜è¼¥{îD›ÞrÞ=ÁÖŽË_ÒÄ¡Sò³o$ö†wÆ3IuDÀý™É ‘*PN$x¨+¨â(JºT´ÅlÑ‘JOù„{»;çoóŒ—M£éu×ÇéÿÖÿ½½÷|wÏÒÿ=ÏýÖò"0â¿Ã&·l†˜Å˜`Œ;6ÿz=êvÖ ô%ÝÌ’ë[‰ áëI¬º/‹~oG…Û nØá½ÂŽ”ŸÄ™ïKw¬¡—ä¶0¸†ÃfLfÌzDÁ(z‘Î#%/rŒ^Ä*d¨[â ”òö›x|qm®þ*ZÍ‹>Ü»Ší˜ÅàÈ÷¸4†–špž49.=á*ô”°Ó¾4i¹‰Rí­¢ÏDuvÁ¼g,I ß<@à8>ƒÉ9ÉÅy<ù¾ª´%ÚòJ¼-gK¯nl^­VCUP¥Ðgéå—¡ÉR‚ñ@E—éå:¢0ªŒ+Ô(&è²2äÏ%¢—ƒÑðýH.“‘j%t©V|aG2!ªrºä­9‚8/5TÌ Å _j`d‹AA{„ÿÞ@·?<òF7õFEˆÐ¡Îá‹0ÀùZ0}€€ž§`8ÁëßSê`ð ÿ=eë Ī€þì™üð?eé"·lqÂ*ýw­|ñ?@§0¼Qƒ‹7¡ÁýQÐ:uÕÙ`•6ô*(ÏÙìà¡ÐTqáÁØ›Iˆ½Ö´²Ø”.1(ôÚåNÆ{<]R\¤© ЉÄmÕMÛø+ˆqäöZ¦ÄûÓ…{à  áp µ(éTXÛc¹Z»È1–gk “HU|=˜–ƒáÖ`«Lcn>T%þ½X‘Ð*nöÚxA’«>©©MbO› ç-¿Ð‘š‡êT¤*mWêìÅ:+¨%:-à_ùE>Ds2ø÷Ãp¢ç³5ù&ý í-…N©ºù›ZG_ÃÔ:Q§Íêü4‘7¤¡ÞÉÙ~ŒExÁ. Üówƒ¬_]ˆ}aoQDF ŒŠ™§ ¥Ô:­òd®U=ãÀR‰juvÂl¼í½^š7Ñ®Ž®ÀdHà NI8ë%:ÊÉŸ@Ù[‡5v—ÝŠ¾×üŽ Mù€Í߀Mz7‡Ãßh—­á¶aiÕ|ŽåÝQLìq\Çd?É¢ Ýl9ƒ3xÎØ,éuÏc8Ò‰8Ò^GÚK㈡Òq4*­[ºd᡽VÌ´§ئæÈ·ËïQûÆG’sw£ñ«>*Ñ .ÞE­ä®¸’<\À1übƒÜÍ$lp‹{§dÂp¦)ôP‚\N3Hi‰³à¨þ:*&lû~ KñòzQŽn§L‹Ô8Ÿƒóìuáa>>ÀAX0Ëz€ÑéÂ3@1ct¡´Ã¯áŠi ¥ý2ÅÌPp•¢.Û"çp|rÝå.\.Pl)xŸàé¿c™b´Ô${;ÙU¤{f 6v“è-Y§3îôÇnW–KfTd¸0BÐH¸5G&vdÑ÷±@uºçv°X[U º`òR¢{GÆŠ*Ÿ‚*xFbÛq³©Y’š‘ŸÜ2Ë3SýÆð2f6_&ðÊx ðÎkÖ]é=Ô1»¸™HLÈ‘n—ŽX'šØ 1­A¼á¸Q}JS±šì¸º¶ëîZà^Hx;ÒýNŸl+˜ýÎú—Ï"D2ìÒ¤øüÙ± IZ…6×Rø *³2ä30Ë\»€Åh® GÆ\‹D­ oGiæÚs±6Ÿk¦î‘pš—ƒjÂÜ’bÉ¥pÏ%…Ï=L7OÈÃ/<ø™ì)(Þkî(âÝ<Šøi¾âì?{ë±ÿì…Ïñ¿»¹ýg/š´¦ÿßžôÿ럴ÜvŸ:ü­ƒÓ¬ga×Çci‚…?uéŸðdíB~ÃOÝaø)spF¦ñ4äœZ¶Ã¡ãq™âëêâbÁÈ{š³"WcZp\„#¤ò pôbìÓ6ó¹?ŽPö¤'í¤ˆÂß2*‚-CÆ(®b¬MP¢1OzåfnsB£þ”+ëYY§CkhMóâU ´3&mtV'êKè„àô™Ù w 4\'ÛŸÏì0 ÑFX5ªŽFF0þ3˜Œ]q©X¥«éÅŠËm¦š‚5 ú¿Nü_×8¯¶¸H ›–fÙ‹‚èÁÐ]ãVâüT…à²Ç_zÿdïÎþ`Íãųæ A°ÂÒ'ÿY‚D„ô" j_#ÁŠÖà­*ÈvmóÌ%1­hPÛ ²õ¢Îr|”ã#ú…K fw½ƒöÉ"öµU†ó7 xZ Ð/ZaaL×ï®ÓÊì)Kº‡ZÆ’îÛ®ö# gp‘@ð÷m—þ®Â\§ÿÏc¨‹‰ŠùQqQ‚ø»v§Hgl\tÒ…ñï½æy²Á†>¦õž?Jœ?Ö›µÄhG!r¦l¾júcŸo0 À>,œwp£’ëÂȧ›æÎªÙdð”éÅmüU´*Hó›¬SõÕ);Åv»°«)ظ›;+9bDÙµåH‹uæÓH´Ü$T£°ã¸¡¼í°GuÆ0E>Ù¤¾êO5¼þ3‘q:ZßU7]¥;!üTu©õä VN’ ¶¬ £½ˆ¼SK¡ÑŒ•„–Òä–\C…#ÒNαðúmÐë‚^PH¹A$òlµaÜÞ\M}° q6 *%ÿÊHç†zäï‹ó‘^ (Í.£Ÿ ajÙ©$.¸Úð)ÓàpBAF(¡]ÝFÌ î);¼P˜¸*w#dKY—?LBmÀñc3Áe]Ñóë\œ•¦ƒkv#-Ýœ\¿bKüp:Ãk÷ß5# «¡ÅÈ\gwÛ°Ã/ª¨OܽVÙ+ø¦ñŸTT6G•%¿¿ îFAlj9¡¦P×HqͲÍQÜæ$æµWÊhªq3B¬v=SI.DlëëøLA&lKECüã?&Pc Š°L¹¥õ-=tÁˆÏŒí‚€ßÍB–ËI„繆ɉ¾4mƒÆ`±}~TºsÊï”$||Ð÷ÃÔ¥½Ð5a;Ù‹[Õ<(9*§cf¼Ue\¯­H-çŠîDBˆ'‘jfµñPè\5MD•…ibނİ#•OY"ü’pݬ³"LˆŒ„‡RFœ¶;ðdÌÓ3”ŒzRçên@Ž´ÁUAŠøª´7C¬V:,òaëµg‹‹³Ž+ŠÝTÓO-ð¯hÌ05¿äL}iÁü^>¼ãÔ9±L¤° ïå¶áÇûгÿ>_þóÞÎnnÿýN/š˜¦ý÷yBÀùNòµÀ¿vù‘3Ì=)ïܱuÎ%òO,và€'ýò|hÒ¢åY¬¸s†>×¥'ƒéðúÝÉÁ’Ѧìâ.|ÄØ§oìR‰6“[6Îý üûçà jůl˹Dš ¶AŸ~åY1ïx=¨°Ò›èÂ@½wåѦHJ^“ï.dzrŒè£¤Oð™ç¯°Ò°-/Dïì~p5¼¢ÄWš±@vüWµ¦î«Ô}ã·þö¯ý(òX±/D—äµÙóWû׳öQûÊŽWýâ²,Ç@ç`YrðRé.bV.«¤‚š) Ÿ¤ èä—`n×.²Y}© ¥ÃBÓì—Û0ñ;ò ì¶€h€¨…úœ:BýÄqRwè³þ:"!{àJ"‰"¦êTš–ÂÕ ÿè@b0Um[UB,u ’E>LI¾m÷ôßo•VQw!ðBì°°Nø§ ö‘²Å`VU°)Õ•˜ÜäÌóP†²TËAE7÷8agð6Cå,Ûhêl~¾å=ØRôd– ê¸nZÐR¯\†Ô-˽.̲U¼ß9ËR(+E…¯kß9Ce]SHk‡ú"yÎ’ í«’d|,aWÊ¢ ~(0€øôŒÏ˜ ñΩÐÀ—)}4:ѯªóù“SuÆéÿ^¬GÿWÝyQµõ/rýß:^B¤cñ¿^ȺÉ'®ôi]Ú ñ„C?²«à õàJñÁ4_Cùà×Ô.Rì…¡ÔòÂýõWÐÝ(Žïa‡¤¤pµ¿þ*öoï?ôEF¸9KË[á’X'* GD„]h92YÆW>I²*ýUgÏdʦØ6 Nä©°¼ŸŒÙ©ônÓªÙ5jVÙ±@Ò¾ §ƒ4Éà3ë ÛàÒfµt\ ´ë½ŒØó ÕGZY?þ—¬"°¾xÏã.ÿ [‡£ëá†ô8ù»å¬VUªÆ£ ú÷‹ªK†Sï@´Š­^÷Vo¤©~±\碽¹X¬7"îaM«$wÅž0­˜ž9Õ¨wÒ3Z™ú”kOÛ«ÃVaÀ/õxݹª,S‰×f®íĶ’lÓ5§™U¦.¶Yo’4.GcáJë BsÕj8ˆ»3Þ&‡!L&˜ˆw±“\sIk<Çž¢øçXÖ\àZD`’xÎ/¥š’>ÒQ¥Hª×À«®;n.ÎÛÖ9©œ0aHŃfö¦î\ˆñäàk‡1ÑÛŽ‹”í¸p/´rC0U)2'FÐUi’j¼xrÚùÕ¿|úÿÉ¿gÛášôÿÕ½ð¿Â0ÜÞc¿†{Û¨ÿßÉý×ò¢ù úÿvO{Ûa!:›ÔËÁ)›ö|ïÕÎ5~*÷ßóVïi)ú½¾‘Þ>‹ÆÞíü˸R %}f/ÞÚ¡úéTù3j6Œ…œPHp§p¶èž‚géðêƒnè:`#û#®®BBSW¦­¿?pB¶÷sÊç׌¾Á,"‘êªÛñÀ§[Z ¯()ð4è’Ã[­xJÖ‘üauNÑ9NÒJ¡ßRn±«ÑªÖ9Õyð—ö³þðV¶Ü%' SžS¬pAÓtfgƒÿ$o&hE¹&ò¼¥§Á-íI‹‘6±P¤ÕÍÕÊÜâµ)´lËPQOårÞÒÁ{"Ïßvä@É–´¬a7OÑb½QSZEiå²Õ&O 2nnÉ“UR•Ž:ºkÑWzÔ¶¨QÈì[j &ßð’ð² U‹•´%ÂÐ#øfnŠ`&q\ÌòBêhîGèÐâ¨_ê7YýS½>¯õ”³YQ»o_ŸÇÒÅèŠZAj!#.Þ- >©ÝìÄÁ'ÕOT_pМ€Gð÷ì]úL¯Fù%*Uùi¡ñæNRªŽõ Wæ[þ’u¬q¹CÄà Gà xÇæ¥ííQÜ©rªg¬S힃 ¯{y;†S…êªÑ~Û Ô×3"Òo\Ô’q’@œPIi\6ï¿iç…€§gàvÎCÓGShü4À¡ðý†°ýC¾“ô‡pDû!Ä´z¡llŠ+ö•¼Žún!Î×Ñ)ãÔ꓆ÄÐÁÿpNu©¶ñuè' "?ÊvX‡ÅÌJ[é;˳/J!Gž1`$ä“ÂXâ-@=ê•ÿ†j™Hsº1WÞ£B$cš‰²Ï¤nSšÓmjW:ð˜tmª:˜b¨@%HtQ‡5—Äár£K~Uà"MÈBZ¹ëÆ G Ñ5¥ÆÇî<ÂÇþsH:AoëÃÔâе Lj¶¥Ã'B'¹a‚)•Ž>Å»NáOAPôTÐ#! S Y×*ì4áM.bn}» räÖ¿sUf“Ç©®nç¿vÍ¥X42:3žnkþ3£â¨ž9´@¸u9*t"‡q6¤Nïp¡#!4µBÀ}¾Yë=0¦;¡„âªxäH®‹¨NSñc÷Œ¯8(§Ù?ÜSÚ• ‚‘µÌbø_mDbÈñC×üà{ßyßš@G?>€êl2‡Q©ˆ,­òaJ$šgzÔÞäêúÕ¿âôÿÕuéÿÙw¦þw'×ÿ¯ãEÌÔÿWÅû87(¯cáÇŸ[¤Ž½ªéê…@Éñ02ôǧ¨‰—Ú{¶=îú·¤  ÷Å”¾}RøßOÆ×W3ðOŠbhDºEÞØ×ÃσQ²ñA±<ðnÈ&•b2Xê^Ù°KºA[ôáËÛ>êOØ8®ô¯ý gŠ-¢pWùD9Þ*”tJ²¤&‚¯‹§^?:,<å7]q!źÊ×»µ™2NA…p9<¼^‘iÃ~ŽJÚc³>Ö©µf2 QB IP2UBÒ$@M8^¡†O²/lz ä<7™š9ú}ì3©­'¡iÏ\³½Rƒ‹°²tLóJâ´1«°Ù2a ËýxU qÍž5~›ü4m-íÜÈ’Yàå1²øûýSXWÖhUùA *T† Hh7ƒÈOvàYqÃqE¸xôþØ‹7âV5¦Î$="IóCµãš¾ hfŸI;ÄF)w*{Á9·r,”³Çi”³§VIãÁ¦Âm}8ÃÃqd}8&#Çq¢üÔYZá»fy@ÞœGålVy W,œQb‚8S„u׈gºÖÆÚ&\ êÊÑqZ Ü úcÒ/*uÆ¡ë,êPz:®XãrÅ6cãzµˆ _ó§PáÛ"/×_Yè}lö+üãÏ/I Êàìjr å?ñÄÝæÙÐŽ™C ÚÇÐ^»1 šVòŠÓÿï¬Gÿ¿ëÔÿ?ÏõÿëxÑœ2õÿ;ªþÿ£¼/ˆÜ°>€¦óoh©,§K¶ìD€vdq§Eœ ø·Q<€öGÀÌpR5ÎáÄng<ñ[¸¨ñµ6*d 6Ôt§Áàëýíðj8»ýI­>„€h°ê£€íc¢R”TùŽ‘B}ºéà8¸:uúÄ£ñnü4À"‚®Lwìfª¸…þ=k1¤‘Œïèî1¸™•"×o삚ŽP Ï©´O®©'£‰ްN¥|Lstýjuå¦Ù Tç* ‡=ê<+(H¤:o4æ­9¿º~YJ÷hG‚ù|šYÙ¾ŒP†G®sðX4–;vÜZ\fïÛÄÃé‡ñÃ-?mò´‹ºHЩ‹|¤‘÷^‚%g_FŸ‡“ñ˜´z…þnœB_ì$Áì …ÁÕ‡Ñðß&šÊW÷o Z}möQrI±ââº?Šú‰*ÛV¶ááýªÁî7ú½»‘ÒnûdÿÍDaGiÃ5þl¦§°«µaƒ±C!·c,lÇp`J²óA9Y’ãaÙ&‡p€üÜ éµÜiĘ.´†ü°>"«¶b$)ó£¦wM¬$×Ð@ÞËB°ëƒŸ*e¿?ëSÍâB•÷k½Z ¿(·ñ³ üååË2üû üûË6þϲ™u¸$¤ÕvÅÑd3 e›è·˜ßvS›[ÀÒB)£fŽÕÐtà?^‘…¨ó-Dô¢%ĦXV!E—eÈÕ`#ñ.e'ÇÝ„€è«‘`ø ûÅdІMnmh_³µAƒ LG³ Þ©®ƒTÛ&¥P7D^exu¬‚8ãÉ~&þ~C{†/xU/„­O"åLAð}Ö ‹hÀ“8z’+I°¼¡ƒñkƒ(¨ÂéGïJu›¬aädéWïP U©ýäÊ^ª Vêe­Áø*¤ñ>ðL“A†9™èU»gúµJìœ jƒº6ÚÑtŠøqìŠ( ¢ ׆ §œÈ¢Æe[ž8¿¬‰Ú}L§P ÓÎK¯CH8'´_R-‚w»‡ËÙ„­ñgh?꛽d?•±n‚+ìo\ë k¨ dr4ÅÒièK<½¼ v=Ö\cD;™Ú.Úì Æš£íî)C†;„A1´QÊ.cLÝ1Xb.yW› :Xð•¾ÂD³X-ñ•ÎÜŽgv«à2ìqy*Š;"+VµVÇô™5PGœÛÿVòòÚÿþ³.ü¯íçá‹çVþç¹ýo-/1ñ¼ù?ºÚp`†зÔ=ÁKÆýÊÀ#mqþ½c># !¿ÈFf‡¿þ jA%èOá-høÚìáƒû)ûssÐ0§ï(xÏØ:ïÿ¯AB(QÂàšÌsÞŸÝ?Wg*32Ôpì¥f})‘&ºKËðjs²—/¾Ö¼D5:ÎI¤åNŒV¸³¶ û£÷€ý;Åd$“?m\/3¡‚Åáyƒ% û[ðfü0|ß^›GS0ôò|ÓzÄŠJE“ÚG—W¥àî§ÆÊ/s5÷‘¿¨×ó”U"Û/ ã^r»vaxü·»>6ÌzÚ‰\˜õʽ]ì”lpmÅɰ›ÍËdwj\Jï~ å}™°îš*Vl|¡]` ? HŽ*ˆkµÅi»šôýQô} …àoíR/~pFi¢¢Ë­æªj9ê#>wÙ9âì¢E&[Añ¤pgúž£Œ²nvÁûDñxÕ^-„$8xºNHòˆFýI" |®°–‡<5³D8ß\ Êu†â+(¾½ŠK7+ÞÄ4›žÃ›àm“ó6Trrº®ÂrªøLö×tÁêÒ›”`ÚŒv,Nºý-Ýwÿ3õxl¯¸ûÿzð?¶÷vövìûŽÿ±–—˜°±÷ ’_þ¼ü»ïûó_ë«®k}“<Ì{=&o. RAÁÛà°17( !ÑÐ]q}·ý¯K¾å+ô–}Ù^æEyé7äÇ~Ani¾‹DoKI#ÇvüVü6¿ó>þËn5ö²‹’œæ²[e‡þßã²Ë)¿¾ ši|bƒyV&ÕÅ «—Än‰™ë¹)¶73Ghdgž›bGì»ý¦ØqÜyCï67”–†ø)©©îxaw‹]U‚­2·܈›êå6t]nõ»i‡ßû]ßVÄ’ú®¬U_*)åÊÚ‘WV—=9ëM5æ²™&¾|÷¿éåÝç%]ÿîÕêóûþ·æ÷¿u¼hz¨ñŸgõö…àü¤õVF€¶NÞÔ´t‹ÍNƒý[?è±ïüæJVì}ì?|Þ1šæqÞùÀŽ˜²z[–!¢b}u݉ŸÀ¾e“/øeòE¦¼EÂp"rª\Ž*Ÿ1Ð) #Þ$÷¾ÁÞÒ¿½ÿÐ/ÖŠ_ƒRpÉ.Åoe*@WLüG~hB]5-_ñûoøåH„WŸy`û ®CDÄ8ÌQ0ývÇÎåv„»„Ê"Ž-Ο‚ékdåzØÇHiìu”÷†”õ¥¢xLJšëÕ[Ö4vndW,:½\ o†ˆ<`(ðŠùŒMh:Õê“vÿ„ [‰Û—Ò|êãåî~¬ž©G7ã[FÊ´¯¹L‚cãù<ãa# Û¤j[ОO3‰¸^zƒ¶üOnÑ“oÅ“Uóñ ž|>ºúÀ(3±¥bðu8Ó•×]RÅŽ2„33nÕi£¼0÷ŸÁd¼•ªYÇéšul4+ÒYBÍ›ª‘‰R~ñؾ)›©Ó›oAÀÎö·€¦JÕV\’p2Ð"ãi+ÓÛËc&q¾§|˜`ŒOcÀWµŽ£ÆÖy¶F ¨-4ñ­)PæФO)°•¡¤\r¹Ár¢ÎH®e!^G³>÷³4g’NFd¬d¢J,NrN“öÉP¨ðoËQP{¤¢!7„sˆ€R ÙC­/Ä…›áB"ˆÅ™Ì0r¦b›Ãã?ªü1Á':f£·Eq–ã{ .gÏd<ü$Í—!ƒ§.¥4¥Út?¿Ÿôï‚éà=î_†{*u¹MZeûîÍ‚"äÙø~f´‡À }¡e÷XQrÊ6¢þû¢Í"è³c¸¥µ,Üë8ëãPU‚#w¼ž•ñ~&¼iXécØÓ=U<´]²Ð¯x¤ÉÖ¨f˜o_]¦\zù§žÜ–;õÌ­äQL=ÖŸñ.}î)wéœpÑ$ A¯Zîr<›1‘EpsÒ¹vƒMºTG›Ç:éÒM¸£2…v€d)8¶gŽ|­gÂùöNnQH:T@1}›&ÑÔ, 5Ðö_®Ø0êÙEœ`Ÿàdf½)…@ŽÍs‘{WJwàWÿyÀ÷”=Ó+ð¬bÿrZÀ«(‡¶¼ËÍÔáèj‚×8qã´¹°!¿ }M×%lFò0a1}œdÃ8¼‚„Ÿ˜škÏÅÕÇfÃ|gÑþt ·Ï ùćŜ>¸Ö¥{Ô»åŽï»ùÆ÷]ªñý¶…ggiL üy0ù2Îfƒ‘0>Ü_£õSV‘cþ.ݘ¿›{ÌßmQýùÆ|-Ö2‡š"ÁNF–±‡e(s°EÅë ©„>ÇÙÞ ùA!jë\æðHm‚Æç".±·G ú9iŸAð0û|Ì>·üÍï´OXIøSÍhK^ð*,ÃÞ¶4ûš3ÈfW£2=ð ¡Y&÷{)‚‘é M!¯‚mññ°luÞö¶x¸#é6áҸɃÒ¿:ƒ!9áP°¨uvÀ³Òµz^¼j?Ž-¾cgû-T`õÀèã«öܬ›ƒ™€×xé¨ñ.¶F({N&Lj¿P\íª†9õÒ\%‹ÍcÑTFüLUˆÍšð *,¢j>ÜÜÖàk´LF+Ãöy6˜±Ÿ6>8ʳ‡A"Ù8¨²UYk2þµk„/ é1b» ÀvTüÜfå~Â;ÿÞÙOxçføö•dBù;…YNpOB[olTê…ŽÓoÿê t÷ì ÊeñO0KŒÌÀ®{Ç»4)Ôe#é´"ÔRú¼‰6PY4ÕÙä6Ï# “³xâpè}ñ¢  Ì2U¨´ ¥Ô䊷@ÏÞÛÖUgRœÁå!n6ñ7%j`,j¥(ÜÁÓ@ú[ ”ÒÐ%>#÷’ä…ž$ž¤?_#ékâY½çÛ^ÂÖ´8‚-åøBÿÎ1×ó^f¸‹l#×t4#p¯:AŠq~‘yœßÉ~·´‘vð@t•ýƒk‡ÕãÀµ¸¼H),²Gï2ˆ‹úBq8ò5ãHm™Ön¶(qä&çFðÌqLçiÄ=ˆÖÉ—12®­¬ ðޕЈeY YñÂíÕ-y1kDè”Û–Ôw?°†þBÓ´›¡¢ì,™@ òÑ+[™kyÔØî£°È:VW¸ÆNãŒ#Ú¤Éì\T¬¹= 3 À+™ÝÛ®¼aâ!;p3|y dXM»Né)œ<‹p1^¿¿¢×ÿï~]ø/áöÎóÐòÿcÅsÿ¿5¼HÜ4ÿ¿|‘€ˆùRk”ƒæIózÕ(+‰šûO+Ì+³{ö·#g¯+‡ƒ>×ëÉçÒ+3檙ü1Ié¡9°L­QPRD4Ê™|O0æj<šÎ&W¬íªyw8Âx±á ´7WŸŠ;Z{‡äp'Mà÷ÃÏc4ëH£>^Ü/’ó|j±O­ JrÌÓG!žïaxý ­Ç£b·ýÉ­Ê‘7bC —+ŠÚ „Cáÿxõäv@èœ £È,·OáY Bß JæÍ`r7œ û#ÍN¶ZJStú•5/Æ‘ }8X™–åq¡øÖeÊ9¥é‰ÒCètŠ…N)Ü|f'o•0:¦Ë¬Sİj÷¹dªÕ¾RûWk,Ú,‰€„ KƒÙÆÅm• î~4©8ñ}•Ïn"ó˜€]îT¯³q0¾”¾5ÔXv¶dÿœË¼!*!>áwš úÌíOÅü¤P¶^tEd ,dqqÓâ".°¼ 6L£5ÛECÉ<Ñ¢7¼Læ Åll-€çé-„ìÙ3ÈìÕ¸wÔ5o7«2-o|hØÂ—*)±Bâ\àcObmöâ5#û7ˆx#zÃk@ŽAgkÄX²íãÁ<0Hì¿Lÿ(ÃñrmÊž Ï³“ô™PGµ˜ÖfˆýƒS>;pAÑgµQgû¤2d¬¯ 0Uv¾ÿñç±Øe'Ø­éAÝ÷a&ÝÁIæ¬XüG|ª¥GÁWSžpØXõ`b5Gpü¸…$0 ?¼ãÞ웲¹ò‘‰ &£¸Y¨HIz‹Æ‚[+üJÉ$m䊋1°ê\—XWÒ„^ÀûŒšÅÕáY£vvÞN‡ç(¿ áÙ ø\X„ægY’¦v{܇@ÑâP^+°,â<&Q7|†gž©Ü^"1êX¼vÁ§=Hè•P‘ÈŸ\Ïýg¶lHiB7롺ÁQîHÒ`Öð Mž\Λuùû²J…— ¬jðæ]d3œ}ÁõÑÒ)¤kü4¾ÔùÐÓ,Eß²ºÂ ÕÕëÂ.zá) r+!ñBbùвè>ŒʨtÂæ EÓ³ þ—Th5éÕUMŸ½ ïQV§ÿÙYÿ×îÞî‹\ÿó^$•¦þgÇðÿjBžlžŸrÿŸ‘ó›û?½èŸñÎaÈ£µk`ÈtpqhgFõÏŽGýƒ9ÁWZÍ µ6ì>1°`8‚qííIMÜ“ ©N½c¿º<ºž’¿Ö¨—yäÚª›WÍÙò»¸k×ßæÁOßÇõ6rf¢ê‹i Dº±}™olq]¬uA‚®´§÷¼¢òö\Gׄ‹‰#ã¬ÔNéˆˆì¤øL¬°jD«ÄVJÖˆÖžtKÏ“W>,¢'¤ÆÛw@‚7l÷?Æ7ìFÝò·XØ€ëÈ3‰~pab¬Åiéµâ…¤i\j™ý·½s¿ú@ñi²©–yíŵ kwDÂYüJ‘¶`UštüFY©žA>ÂS·Iª T½%¿º‚³ÎäR&%†N áqjâ~Ä6%:]ޝyNMØý|ÁD°§Œvd’À»l¹’"Uêν³þ'ØDPm=–‰å9´ûvFWâ`÷â|Åèeö2ŠB|-¿Xƒ¸“¡Ò7‘%UôžÑñÓãëÙ‚ßÕäò!;R‘ÑÔ~ \âøs(Þ‘ò£lÄ fzGvüÆF’ú‡áGâ ;Ü?ÿ”‚jÑÅ|L…®ãgÒUG¡}Vwx+{Lä 诨¶ÎQEoÛ1×PE öÄÜñÖ‹.Y­!´·IíuÅíMn­þØãtýI„ÎDréðUéAÛ·Ë/}ÿp Jðq`Nl.$€ ¢‡ƒéÀ]m@-¿ ~@=!¨Ž!MDâsÊÑÞ=mÂ|?Lƒá@' Ä ¯¤" †»µŽz(•ìÊt8Õ³@‰£…µH…aÉ´&óÕŸRAÙïTšð”"½«ŠçY³@Ã÷-çá#Nö(êGFj:‚º£)†MÊ<ÍÄ<òɪCD_’ˆ†~h‹Ì"ª øºÄTdYêeÆ©çE!8&·ZçR’ЫT …lqœ×är` dYÝb,…Ø1iˆ3áNª-Ab9;ŽbfG`ð‘"À•Néh…B†RŠçï¥Kq*ÔµjÅî.G‰Àý.õäÌ~à’Mž÷ºÐÃ4æµëkWD6àI·“îùSJ5ËšKŠ,ñ›%Ôô<]:šxÛÕóP…FªÈ†áp—.èEº‚q+ k€tIOcòÛy´&?íåµÿ}[þÃópÏÎÿô"·ÿ­ãE"ªÙÿÞYø˜ƒBØ[ ‚Ýiü™P"j{ždD”CŠp#D/æÆxçÀ°m< Ž„@‚"Þ“bѰˆ•#E”cÌŽHƒ5”ÿ*cù@N[”ÚáÜýëyn±,>*‹¥'Çs²µROÒ°hÚç-¢¤˜æ²Vð‰l÷%¯Â?¡’±(RÂO¨4ÜH©&¾JÆÂ£xaF OÁ]#è$fK—Žzñ.G½ÈQ/rÔ B½ðól݈‘.–pñ.G¸XáŠ~Wœï sñn˜‹w™`.øÉÀ5«uœ?/ÜÅ;/Ü…íâ]´‹¹›¸\Ô‹U \Dà§N”‹h«@¯ˆZåĮȱ)–ŒMñî`SÄéÿÖ…ÿ°»gã¿>Ïñ_×ò"á3õNü‘ü=pkþ#D¤Ù[â‚âd9;Ì¥ûÔ°Ò…kèçŒøê¶IÍö¹‚/‡vÈ¡rh‡DóöÓA;¼Ëí`—_†²ìì]ÛÕ¡ÚaЉ´¨wkÂw¥}Ú@‘@ÒIJïMeHëCkp3S»AwÍA»òp0×e–d·êq€6øÀ,~.І0hÃ»Ç Ú°ÄWœþgMøÛ/ªü‡½\ÿ³Ž ¸©ÿÙqùa”{«ƒA$¨T ˆŸI$¸EýTøŠ·:$‹Æc­¼E;”Qq”HB8|Y‚ÄÂê¡ÜK¾rw,ÔD*ÝN¸NŒî"Ü„¦Z/^T ô²ë/Z”û3¨SÓÔF>÷²Œÿ|½g Hº#ÔåÞ<ÜJ7/öƒö8áë…žWÐÀ1ÏÏV V°ý/CFìRov~?¸þ-n ¶ÊpA‰f‰crðfj Td ñÎ=©øcÉ!±Ô$êI")Á\PJ äY³Õ49ðÇÜÀ"">dë¼k‰RøKGõ4½ÃâT\6îH6åÖ‚à"ÙüÄÕ‘ l‰nb?"üHJ]˜ŽAbWÒnWO‹ä |{vž‚+tÁTýÆx}¬8¦ƒËíàf†'Š @j<~o`5àlüQ<Ì–íÊå êäÑ›"¤‘>®Ë‘˜ЦÌn\¼t¬ŠÔÒj¢ëØøî¢j ei¦`Ó9bMŦö=ƒMI²ÂxÓwsÇ›úô³Ëuù…ÕðyÕÒÿ턹þo/Uÿ׫+þ_½.Û¬ÊÁ~³öEúx_:„¡»ü{súÓ|Å”yð£è‰1œKñŠA`1ì1ºŠ¡{X­îr“ÕcÆy‡2”³½àÌéŧ ¨®\ïS8••á]±ÈO”Tˆ}÷&Ð’¡>­¯R¿á‘Ù†Þ€æI±íj¬ä'×:aSÒ¼Œ¸ë~|xߟÙE¹F…H—ˆÂÓ£‹ñÉWƒ)ÏtDÓÓIÝed`IccÄí’íyã{¶Å¿*&FüFîz_]Q²XDöúÛ+ãyšu¼¼HFõ%èWUå¨Wת©Â×—â¥Á¤%Lxó=)ј|×Ì–uà©5)¨ð5|bÓ(ÞÃ⑸³â=_Ù/MƒBÃT¾JÃb7ט0î3A±‡fÄ®hþÁn‹ðÿ˜Ð¸™E2¨°Så®?ÞOE+šyÓ6¶"Fv ,˜>\*Ÿ-¿{ÍÁ–°‡/â`i.e®gÕ— ®¶Wɨ<ØÔ œ×àƒf¹^ÖuödUæû-"/¤þÛJ<œ°¥ñÓu)$K„ªòÜÂg|¬Ì>¨à”‘éD¥ÃçFaEÁ[íñÍø–µtªÙ\†zÐ)ÛR¡5¥aåcù#ÞÎ Cx{i\?V>]oþþjøû«¿yµˆ¤‚"¯úˆÕ¨ü±ÄÈEÊìz IRf“»aMñ7<Þ/…â!?°›j/ÕÌ,N©©º»Z—Òl¶ i xœŽ¨ü˜Ã<—)Ž:Oß!Õ¾3<&ßÑùÔë½zz×RE½î¨ÓÚÔêõÚÅ Dc7ÞâŸ^})©Älz±{Ôv;U½ÊŒÕÆ»Á†Se˯ÏìÀçÐÙªºö^]S›kZ‰H¡+Ïum«E­™‘Ú*]lWî.»°CjöEÔ+E‰)Ö`^Yn¦B‰¤ù›Ry˜€qj«hH½$`Fã#q‚ ðyS÷‰uVwøÑ:J=ZZ0åH£Î…м°#-jy~GÚ'úŠÓÿ¯+ÿÛî Ûÿw7÷ÿ]ˋ楩ÿßÉ ÿ÷+…Ù:ׂ#{ðÑ ÿ)âÇ×b&( †#§4à =N£Aœ31^¡µ8ô)'ЫjêÃè–mÙ ¦EÝZ@Ÿ!º(R“²ï¸*<‹Å@3HÝ*Êl2˜ÒC§(ƒßÕ‚ÀX‘Ûèõdl0fÈ— V¬“ÚŽ@¥sKBnIà¯Yê¹)á)šÀˆÀ©ã‘E¡îÒüÂ6¤9Z,•eÜe;ýg‘œÌrè©xÕ –•tWrô•¨–Z¡«ñÃh&s£ñùÈŸŠG°lݢà+ZÁ~ÀžhKõUgÇŸÛo:^/8ÙlQ±–›nrÓÍ#±Ã°CÂw°Äd¶Å ¯«¢¸tÚbTãKY·Ì,çp耘ƒn—]þÚ­X8ztݾàƦ,ëS±·Ñ¥Ü&Ùöv–¼o:œ{«Ö«ŸEÆ„W£+ÝTŒI¤jqÛ’R† ¦uBûIi*Ó{Šz«È$¢€z8â´êfɧá:,ÄÕêü+Í“¥Ï eH×@Ù:³Õ˜VhÒc†1ìxÚãmŒõè ³K´e¥ßˆ¨ºÛšµ»$kVó"xÅWÂ$C¡X Vöw iµ8FyøŽfá¡UÛ†k%5™V͵ZÞð^P¤–§±À¥àÛ%YeðH‘ [&%Ÿ‰N ‚Åz}½aO-ÒB ‹¶`½µàD¿×=T±l?üˇ0fyàON"沪sÜÙ‡^\zéûÐ[[\ÆO¨Œw³3ŸH^·´¯8ûßÞZìÕí½½;þ'Ïÿ¶–‰²iÿÛËÿgDƒ0ù]Ô=|‹ñÖRÇÙœlõÎ~v3ŸàŒ0÷Ù‰,<à,YàÕü-qzÞb´‹3í±Žd‡2øöpÜI5˜LÆ“àrü0ºžŠäphïø –¿&À ¡ƒî˜!§É õ^%š RdÊC˜Ûš'µ$À±( ü²£4UÕz€š•ðúØQø¡œ5Âï¶"ŠÃžù~|îß>  9“Áìa2Íà µHÓ¨ o™¼³¯û£`<èÍ«Bó"Û¨H­åäŸaf«µ#ö AeüY„q)(7A${zå{EÏ;‡-¨Æ®ÿ; ýË)œ»áë} þ^nn²_6M 8Oÿ P·µ¥íGãÑ“1êDû£o £çZÙûÛ‡iæ†Aš:jj7‡ôû,„ΉTÖÁ¨p‚eP)é° Â±üç°pY–Y ýb@ðiáä4KÚêlŒÓ¨¨pP3Héí1nÞÓ‡K…f€ZÜ鳟1"Ô¼¡9Ï[¤ÚÔvl£ó²Ü[`г ŒÖ5žÀ@‰þtÊÖt†¸¡´»¬Ò˜ù“™ViDd=è_}à#ñGä;•Š.÷|ò]¬Éª‹Í‚|í_Í–Ý}Z9° rJb6ð$Ù ˜Î†¬Ý”‹öKrmœùÙÛ°Â`‘Jˆ­½îùA”aù!r¤+ Iœz϶ñ‡k}o¥>ãœ-ЈÇ‹,Ýú&ëÎçá5&2ÓbY_€]0cØa4û2œÂ!þ–Nó—ý«O óà §2M¥Âeª¹îLïú··xÕä‘Qœ°©°ø;.3Æ„OܧÇçMíNb–=®ZݵTü¸[.œãx9Òw:õ¶–êfUÅ›”çòóó„ :ŒÂ·p/)çfô'l]¡_<Ù\ÏÙ?h(=*‹ü§¿oµ‹zO‡‡eiä®RòÛ?[å ×>Ã[UîPfü¹¾äèÄïhŸËB]c<Í-ÔífÇk¦–¶é´Ù>õ0à” Cƒ$Ö/à|XRÈ$Å¿/²XB¢¯—dcWc#õÈÄÔwT¦…Ø| h«:sÅêñ FyT§Ä˜ä©Li*¢6LRöƒmçhNG%ÔØLÙ‚f/*Àíí* ÐÙ09+¶¸â0†r z°Ó„¿zL¹¦™6Õr»@ )±'\Èû âs0¡ ~C·:%4˦»ã±éÂ"–ÍJˆå¸Àƒ±VÁõg8¤JXô,™Ñ g* Sy>¥Búئfuk{QéžjŒÄHÛØ÷úmЄèK0àaUhL¢×âé& ‘£â°ñI ;*e.9±yçcÏ¢KR¹}Ad+ÁbÒ‰ 5]¡2g§"ÃåζÙt}±!*úœªzçT:Ýí<*[¹fž£ÓRÄb\%“-•£¹õËvpìš[ì§—Ag›>Än“p×Qžun‹‡ã2çKþû[æ¶øRç.¨>8ðÍ ,g!0  "Yud#áß’hªpª4K«sóÿgïÏ›ÚX²uaüü}>E¾¿7 0šïs܃lTIvã}ãÞ~e#{«7 7{»ã~ø_®µ2«2«rªR1ÙUÝÛ”•ó°r ϳ‘ôLöI–聾í=Qffë]êOÏ-½É 3ø> aßú»Ï_AaO‘þ&ž#ÆwÌåÈþÞìo½[^þî„õwÚÙÀÒc(UøgÜny3nÅæïþüÓm¯¼éÖØ|³Õ/¾¶÷ŠÏµìŸ «úÛGgÛ ËTƒ»5Â;mER캒AÓ×-UØ·œ¹Ôid‘~+™Zð$ÚLŽœóT†ücƛꭵYº¼­5͆ ¤•^AòO™&&í{™ÏW¨óô}…\þ?»ÄÿµÓ6øÿTø¿òÐôLûÿìÖb^*ø8pc䨷;‰õÛü$¾=¡N=.¯÷>¹ñ}óøâì&ÁöS5vþ:½[5¡–×(_2¼#N–Ýej ¶N9Ón›€æÏ¡“OÚþk"5°ç|Yà ˆ'ˆ‚ë>ƒ›Lœ9X À‘DZÙÙеæz ¿¹]° Þ¦ žõw׳›Ï—‹ïÒôªæõO¾•€/ÂE@hzL˜ãˆŒó–Êí„?'Ûµ!ò;I34óN’šÙ__/çŸ@ûeæ–Ü]"øPÓƒÇÄ;RžzËÇŠ~ÄòÚ¥ ¾š˜ož§éËcõlyÎ~-Ï-ò½raOÇ äþ3Š`’v'4C\±°ÉHè €Äí29Ò„Ã :-j®SŒJ‘7U$`ë/ðÊ•ú#ðÒ¤½f(‹:8o¿/âýu‰£Aö’ŒÕÀø !›:àKû¯1V ‹# ÝäýÓLèB) ¾WÒeË-ÀSú‹|–1Q?ÉiDÖÓ,Sô#©%H§säˆ!gÓåöiºäÓw@ÝîmŸL4ÈÃdÂ÷¯¿q¡ÿB¸GÃ~B‹MþÀÅGr˜&ÎmÕ¨Aë$QºÇ­—f ,ûµµì¬m}mÅ%¸KÄ¥BO½ÀΠ…š.{ò)`jÑ=%GX-`O1”ƒ¦#5k5‹Sƒ \7 À´«)gºÊº9¿¼ÜŠ6 ß@AÀ¸Ý%åh<¡I8Lÿ%?ãBø!zÁ÷,Âî2eœä`.A¬ð\äÞ?§0¯”lÈÅ=^>¢{Iì„MD²qSÖñ\òXb™tv :kœ@5Zh¢/Ô0P²EÕ“i®¨ÐR†f‡Þj÷éë­ª§œÇªÿûz»Óx ý_§½›Ñÿuš•þï!Zæšþo8ÙiÔÒûSwHDÃDwõóñx¹µ{.žè’‡bë‚}]ú!X§£ëÐ4*è?byâ9©²¤þ(¿L™'/W^6eø5éŽbÌ™a¼Ë `dA0Èçôõ“†@©ŠºC=/vÕF-Úl¬¿Èº/næ_æpu³ëj5 M\5 Ò¥ —5…’\Nègò+h„†bªÖjÿÜj¬oüóE“m²yJ!ÓðªaRš†8¿ÚõÖ?Á!bÇAî[i…éiâ…Î ÃqzM>ätͨ%#°nÓFçèUÔ‡ÛérÿšßÖ%œîmE„ ‚;Ü?¨n?b­}^*û|önêú{àÎ)´ëþ:J"ƒ¯7¸™Úåð©9p¨˜‡z~2Ìlj3,fm2,P­Dü4£?÷3皟 Íü7 œ;Øæ­¯ yþ “ÍkÌ$)ºyéê 1ëÄAnàßoæž Iz—´Ëi=îÍâÄÊœ8qÒaí0ë±&ä÷7›o¶È—Tê‰} ÑûÃíäšBŠÅ@\CâZC‘s œö•þ59ðop¾¤«”­›te׫Åwžå§[þUŒ)ÇéÞ.t 9mÒõ̶<ý—-}1Ê>çÿlfç¹xFÉ–2Jå üÖжÞx`WÃc•>Nž1ÅöŒ÷`|  ŸINq‹)‰~Tn4†ÝnM^iÖL{^: DŸ7hJ@ò"Ü tÓM… wìg¢Buéÿš£ÿktv³þV¥ÿ{ˆGì)ý_Ó†ÿ%°¿†ë%BmaÎW^Ÿ‡ÐJÕ¡…°§/L/˜ ^Ï`÷'øY‚ž‡ÈyPG‘°˜×I7iw ´i,±×Æ#a—­‡Z¤§†¹˜“žU­Y†ž0œÛÂè¸xÆV”>ây6”>ù }òÐùTd>6=õ“dÐ)Aw®2×µ²j>9Uæšž\ÍçyªÌ+†•Ÿüª ÃÊ=(ø09EIYƒ’ëñ4­&õ¿½fÒ»4ÖüKp“Jû^ :Ë=}`Ð_sÔ¶ ïJIæ„j¥$# S ÿ%§¥@…g j/:…„¬- ,™*3èêÒLý <òÛ@­Y+„­ïm ÷HRyH£$òUËlÖàÀ@†Óp øKýF/Kmïà-QRÙpsÛpÏSÌw†´½TsÕÌ”º)<É36S5răfäé*ƒ]ú߇âo4ÚYþ÷ŠÿáAš–iý¯•ÿ=Ñÿjäîví¯‹õ½Ò?=J÷{Ò ßg{.Êv©§,¤VÔÂM1Ͱ–U5&*÷U³ŠÇýÙ*}+÷Jõ[©~Ÿžê·â4¯8Í+ûSѸÿœæX“çÅhÎÿ_±š§k½*«y9Zöûd5/ˆ²þ³Òš ´æ;ÛJ•JjþæîÍVå9`3‰x¦Ø7àûça:7×zòó¼µ6x4›kþ+°£w)fô(k"ÉA‹^š¦"C¯ÈПúð§#Cÿ—ýï¡øß{{ÙøÊþ÷ ­Þ´ýÏÊÿžØÿ¤%OXöÒÛQòT¬ïÉó¹Þ¿ûfy>1–w‰<›ý@1=ý2KâB„.é×f~¯]o6ÖƒÉß)u2¡ÊXñ¶?E‹àñ¶? ú/l3œÃ>&톹m†zµ&˜ 3Ù$¦Á$›‡á:ÿÅÌCyÅFþŸyÅFþ+±‘gò_'4«tBò7uöÖÞ¶Š¼"$¯ÉŸ!yE9^QŽ{3Ð’T”ã¥SŽ{”†Eu…²kŸ ñ8bäAÈa€7ú8€ÍtªôäüÐr銟Ýx‚0ØwVÁÖ]¹ëR¬|™—yx¥$ð£uh\ÕD¯Ê‡§.Ç ˜º(á4/¯XÏCYÏùxÃ#õ¹ü™N½t÷)tèZÂç̉>|œè¿Òãòÿyþ÷½Ön3ãÿ³[ñ¿?ÈCK1íÿãåá`~r÷'G鞟ø©d2wK(D:÷a>:÷9ÅIB>™ûÏCæ>¬ÈÜŸ’³Ëƒ1t=W·‘§j^›WÄæ4‹‚Ø<€bÊË-U›WÄæ±ùOHl>4›w l;Ú´¹g:óaEgîz¬úŸ›ãÿnìtYüÇv¥ÿyˆ‡Ö…¦ÿù¿!d©[D{üGü¤#Ñ®øÿ Y|^ݤwžaxjFŒá¼rµ¸’yTH£²¸ÃÌà «¸Á+np«æ!•—Ëͽ[Ï‚ &)‰ƒê-ÿVqC¿¹KS:Ü¥Ž}ÞÜêNê]º ßP³ÈÔ"ŽbKâ«mF-"ŠÑô2"0 Ñ[sbl åm©·5銩ùX[cí4Ù5—tkÂãe4åÐår‘êOÐ Ÿ2!Õ¡Ðݦœ²± ¸Ã…N^Ø õù[„H4^j. .IE¸‚òKur§©Ó©Æ+÷§Æ™e{°"hÿµÚsR°<ûú(éʨ\öõÑSc_7ù®?wòõ‘™]E¹¹8ØoëWªgÊÆ>žÝê³<)øùÚÀÁ€_þ˜ YSÅ–MššuáÏ´ÍXG›7äqÏ+3_¸6-„J>oÏQ'àÁFdí4¹¬—lju*ÀL¼ŠI§U0Œ«\ö»½ž±ú N*+l—æ2Çx´è$5×è%¦>k´_c¢sKŸ4¥—\ÄåÖâ~(ÌGχ¼zVx\úßâo6w²þ•þ÷aZàiý¯ÿ]È; «]¬Òýü|Úà@Ô¯nýIÁ«Za á}`‹0%2Œ4âO1¥ðôqøþ 1 Hõ¸fPLšÆn"XRAKœp‹é:…Ñ`‹dd—åPH¾÷Êf€Ï³±À˜a¿ä°à;ÁvJ]Y*ËAe9¨,÷l9@9GÉߤ2ÿ#~ñØ!hF1Ճɰ ­<·fÁRáI J¹ŽòKñå ßð~è 'ÝÉHAÀ™-ºÒÌl(‰Ñzä%‘™¢z|¢¨±ˆ,=w`ë›B›cð›ãMÒ¡¶ØkÁ™rÌ!÷ná ߤ­³ÐÁr‘×ÈÀt¯Ña¬Lš¤^KŽ‚Zð”˜?â Štuq¡úÒ†ò@Ö(•7¨Â!V©€Î"ye¦“¶¿¹îÊÉGE’éq%+"¶ß Ýv2+}‡ÆBF°´ ’êOÌ* 3˜ÀDɾ̜œ¶6L\m˜„·aò`m0‰ï†éÔ ¾Veà{.Ëþ×yû_sg§µ—µÿUñ?òÐ2MÛÿ:aö?iÉ;wÆÿð=ŸX‘%Qü1^Pzø¯àbüuí²S¤0{]ÈcÚ#² ´Ó'?J"‡‚?Åšç²ù!ß—lNNË_œU:á*û©ë…–²0Ç YlÈg.¡ÉÆy(w¡¦+ŠÆJÄ87Å•F©¬ªÙ`,ß“ôõÈÍ*a—´PüAZø@Íxɧ:0^º^=$M̦ÐwPIcÿ‰Å•®µvUgñŠŸ¢t^•õ°xäÌ2Ì^›áœ2®%‰=æ?%¥Áô·„_à ¨\“ß—Y3ƒ’ö1¶êh–»{1$*öG…´^« …•¡ð§1þbœû4ÐñBOEp±'d S!É'¡TP¶²ó²Ø!­îj= óÁ—Ô|ÚeE`WìÈ0Î,Û(:2¿ÛØTüæø÷éÍEJÚæ?"²Nª‹ÔlÎi9ŸŒÞ%Ññw‰w]=d–ÔS_ø|w¡ŸŠÔf}¹<°†`Õ&‘r_çÍùÆ×%ªýsç#§eo…î‚Ã…ìë[$¹™]’ýqúéO¥ó@DS;MÍEÌ©Zâä³¼š^^âíVf÷‰ï@_}zýC4ö`]†àúoy'ü)¼RÓy]» ¤Œ¶†gùX2&2æ|IõûŸN•¢Þ’©´ÕWñc¿tü:±w«+q°Ö‘´NTÃv5C¿Ntž‚ö»ÎÞÚÛE,“Äã--ÈÈ8 tÚHýHŒáuM§nÐ!ü~ø®äp¿G´.2ÿvy¿®Ç¬%Vplø å_Õ |ØÅ ùæõ,+ ÁœE†,Zâo@=DÆMhBòç’ Øj°¡èlÍV¸È3Ȇ wiH<¢øÕcñFý…ÃÞM©`‘Ä6xE¾\௠`"àT~e uŒkП$ \ĸ«‘†½a¥aOÙqƒöcÜþù!…YÉMÿ<¾R*&ûù5Nµ蓦D4J¾ù0£oŸhxrØ1BpL{C­‘ä&ïÀ¶–™dú7r½‹ôXm‰“2/e‹T}Ízœ2û+T'šÙ#³fÁ×§lNÉcÞ¨, ˜fVÛ¨9-I<*k`œCKÍAY-FoÑ8ì±I|"ižß<.ÔZ`˃FÏÍíJ.•˜8Uû%}§o'”‹¾¦šÖ5¬-ª •]û=’ŽNSSŠF²Â^î°·¦ƿڷLw"©S¼g! ÇÂq;3SkÃ÷Û|;ÛöÑÄk œ¹ÙàÑë¦ï ƒo?-¦÷û kï§kO¶,K÷uŠó±:Ïvÿ|Ø]e>x´ûóχ½Uæƒg9íŸÙ?AãûVªzF·–¢©gæ¾I‘7Œ./)zz­ û–³‹ú„L¦oå Ÿ²›¼‚°§oÊŸiëNž_T¸–0ãÝôÖÚh]nÕn ØWÒJ/ù§L$­™Ïw§SùîüJËÿg÷aâÿwÍÝ*þÿ‘ZêiÿŸÝÛi–ÕQ…ÁqÀu'?‰oO€S‹ï­;©ë]º¢£ON|ß<¾8»IþT 0‡¿NoàêOÀò5ŠÑ—D;䈓åÚ1²Â­+4Ò¤—– ÍŸÜý' l×ÄT„±Ñù챆—+…Ï}'™ +llRÍÂó‚·é‚§EåÉÝõÅìæóåâ»dWóú'ß=À—A2 ¹‚9E;ËÐ…Dªgf}½œ%œ™ »!/Ô´ñ‚ö£ñ¢–æ1ày¡Ï¿ÆÇtP^»”ÁW³óÀã ô4}¬ž1ÏÙ/¦âê«/“²Ø¡ºý¾HÀ£eù’¬îÀø ž:M‘¡\˜HGáÉû;§Ás9/u\^“¥4Sæ³ñ‰úyŒg#²ê˜fiœ¢I-N:…œ#‡ ’d¦ËìÓtɧççùÍòV· BFÛ' q#™ðýëoüÂp!ü«ÁÇ…›üK äqM0Ûªñ†ÖIb\ˆ[/Í3XökkÙ=XÛúÚâ’÷ü>âR¡§^`gÐBM—Ž=ù‚‰° µèžƒš)¬°§ÊA™šµšÅ©AŒ®›ehÚÕ±`®ÙÌ//·b™ovwÅ ãv—”suwy;'$UÄaú/òŽW a§|Ï"\0SÆIæÄ 1ÁuAðs [KÉFðŽëÎGô“‰½ø¯µ)ébÊ:žK›23Ò‚i³g£F«LTâ… K·z2Ç fÊ^îPîVjÃgùXõÿ¾Ýi<ˆþog·µÓÈêÿv+ýßC`MÒúÅ×Ä­Ôƒ!ÇarÿßÿËï`[l´q?‚íkÀ Ÿ}]òÿïÿíò¿a .M¯ã áôëìß‹ùm»äŽú}º€UüEÌs^Þèì8@#65Y-‡´X]Y`î¨[M*ßU5‹›ù—9\ ²=9@tÏDÁ! <^±@¼Ò ‚#‰y©%é墨‚Ë™A[QâÅ;ÓÃ|ú6x 5öpv;_ÆÈþgq·œý±¸¼ n¾^Æzã%xôÇÁ•iý¢2kó¡eárÛ܉Ôøºæú _*š"ÞÜ–9€6bãšm²«gvõÖnÞ+£]9Á®@ríZóïÒ$ 0¢4,N®¹ïð¯ÂîðJ:G¹yA­Nº“ßø9>šÔÙùѨwbêžâ¼#E­Dt¥î˜ˆÓ„Óž_ÞÑfÖµ¡o¨)ü DÙð{оzSrq\'²¸ ò #?!—s^O­ÕY¸'gp|ë¡pÖ‰{Ùë#^)~3Fÿ×µz"%¥®dT—ƒÅW]³Ê»k”t‚üààñLï./ã à]î3¿ Ñ$î ]JÑ|^ß$gR¬¨±7[àÆ2Øì“ø±t°‚ÄY\«¦žG\‚BÈŸÛlcX»Jî¥äÜÏÔN6ŸÏaÞüDæñö÷a|€ ãT™8Ú$h ü—lò’lU_´ª‘À—ä¯÷Ë0)òBܲ¶w ‚u’¶M¾–*ˆÓ C)Ò­‘‚7™«dlN#v|Ì8ùÄkÎ>Sc©6­=HÞ¥@<4¨ú6(‚µ £¦Eþ|±lGGt¢lb7÷¨~¯xÉK}\÷ÿ‡áÿÞéð›æþ¿[Ýÿä‘«ÍyÿoÆ÷ÿêò/²)xù7ß÷‹_뛦k=øQŸ­eîõ˜1)µµùÜò0d,‰³uÜ  /³kÀ“‘þ9vÛÿ«ä[¾’_Ù—ír-Ô%ߟú9¹cZÌo› øN Ö~3ޏTýÊ×âêÒ{ß·].M¿y]Æ¥·é¼ôâL¹ô6¹Ì¾÷—^‘#ûíL;×]5rÜUÅ-‡ÒH¹cÆêe‘Ám‘œ©*qo ²íV#ÕSñ­ñdö.âÆ­piì+WEz9’¿Gê•°a¸Š&]­¯)mjàoZ£šþkp@ƒ,ÍÀù[‹[›4ÇÔ2gWhí5]ù±½g»e¾ä+[¿ÂFBÏ`úë–Ü[MгñÂ2Ýl#åfÅ7ÛlüNþ ­ãNúl)--÷¿‹Oü9>Èýowo§³û¿òo¸ÿµ;Íêþ÷MÚáèô5—_ØáÁÿ¼ívƒïlåßÚÞL¯ï¦7?àÒ¶ç¾þPUÏð·z~½Y|á\Œáuxú®wrÄ[xtÐÖY¨WŒä%›¸Â6Yfv%dÏ‹›ù·:åNÙòÅÍ-»˜ÞNÙçùål_@ç4Öhƒ‡ûâæïAKtìþ™ñ3ø*Œ—زŒÅWN]ár¾¼Ýº˜ólø= rAqY°þÝÌ ½” %Y´W³¯ÓÛ?–*"ar Û_zrÑLt!Ï——Ó4¢ëÅ-ÞófM¯¾^¢û>bÅ­fŸ¦×Ð1J0¿L^Îbº"ê`ÝL?¡X-aIɺ|y¹ø‰[»ÔÄ:ŒóÇa¤JÙ†2Çëme ——ŒOwºjáµQkv¸PÜäuíÀ±ÞØ•éß'©X_J“\ÏYJTJÄjhL/¨‘£ $Ü4¿ò^KÈjv&,¸“£àÕ´…ÿkîØŠíQôÐÇËŧ?—óÏDwxY/Ó U^;ç]sÃ…YD(ùº˜_ß⋭𠎺®}.Vtv 6ÖV¿ÿÉj€Çþ_,Kjò»œ¡¤É7³%ܨ…÷\´c'oÜLÌ5ÞÝò¯øòÃÔÊòU§qð»¸;Ý{—̱ß;| lô”;™CrÜ3 `gö×-.>¸cì°ÿfÑäÃðhÌh4(„DÜ/˜ Û§L  ôL®I3b¸ÐË¢5yI™ŒËÈdXF&etì°ŒŽ`Ò4X$“ÊdXB&P‘4ŠöIƒúd2,#Fú\Îd39•0Ä£³29)#“³“22Áµ³[4“]ßá¥ô‘œI‹úd\BMŽÎHÒì_ åW¢{´¨6…ò\Ò³i“%PÑD+TO%âöÊ3èGöyàbþ}¿nåŠ>BèÃÛ2Tu(t‘À£ŽÎãÒìÚS»T"º¡OVK6þ(òˆ]ßÄ›§ï&9Þ$åþê› *ß(<4ªš#жi´š‰ý=› Ž»+š¯àXpg“ÀKÙò!¬?.à:3šxÚE)xF­WF@-°:û›Ö¡„ü'gÕÞzj† x.Ðó›4¨'{ÁÚ+â|w'À"6Oø?Gïñóh$? 8ôwñá~ÐÌ|ï€Ãîä2߯§1ïšñ$SêÆžÌº{Ò\`´Iø£u.ÜÂÇÝ¡‹…!‚‚2ìVM$"Lõšðï8ÞZpK…߸\ïxûýÑhüA÷Íé¨.~îGñϼbãEæŽ)85Ç þ/{ò?££3ú› f3ŒaO¡êñwÌÄ>éG› \äà´ô^()ù„vy‹G=-!ýÞ zsœz3õëy` `XôW‡ý÷b·Z·wy·&â*Eh†ÙÄ4ðÛm0uXk®â©ë¨ç6›â-È`“dÚßp,³  6[f ^œÛ:}DöÎ8D5u‹ÉGÑ¡T3[qm)»zú5GmCmnÝ“.N~P½ÉÏ×=ñy$>'ôyræèVH0/OÅçX|ŧÈè¬åÉèìD$/žès$j8ðd45šˆ&"£Éïü“ïÀØTø‡âsâÉh,òª³þI÷},ªhÀâDBðÅÕ¾*²³¹ÃkcÊ‹Ÿ¬@áÜ1/(‘©‰4ÏšÁi¤fÄO]¨×ø”õƒ–ֱͮ7±Åò‡‰+éÁI÷(z¥`Í UFÕåR³‹å§:Óˆ÷`Þ!v°8CƒJîè%«‚pé*†£©cjBA“²4öj~è Æ²bãFïù&tgíÛÝ£íR ßÑÞ4¶FíΤpÞ«$„–ß1–¯,(Oâ>md ‰“Ö<1Ìõhñz€GÝ OZ†Á1ã#÷ŒÔ*Eùg|„ó.Òg|”kÆGÅf|\rzÆ•îŸñQ¶«#¦G^Ä×g|´ÊŒp¤£Â3>ZqÆgÊ/0ã›æå˜ñp㌷ ƒkÆ£IÌ9éÇZµÆ¦ýxMÜNµy?Î7ñÇg~\xfêU `î ½>Vg¿âôSÓ¼Âü‡ÁƒÖ‹/€±ºä=0Ï0ÔAÓƒy*âÀ¢W†=tP]CâZ =Ï:èiõêå]üÚ„{©uÐË·zEÖZxfU `ô ÞS×÷¦ìÐÞJçµ®—{Ä­j[¦_/ÏôëÉmØÖrúg·Bë$°ÛPl†žòw×óÝY&&(ú”Á"˜xS—â˜&ÕH¾H ò镦ÖO4€˜$ub ÑDr'NŒ]¬FÇ‚".ªŠ›Ú„9ã7ëXMør×EhX¥çÎUZ“:8Ç,ÜsÌÂó•fá9ÎÂóâ³p¯ŒYx.g¡­'Ý+“îEÔêå ì,TPkÓ¿z‘8U…ô®Z ÿ¾+{µ‘Àü•Y©þ]Ÿ”êûE¦%–-Õ+’SRÐjÁ;uS¹„eK=xF9W‰øåðT„iŽU‚•ùÙé1‹Öu£g´2+ç6åá$Ý+7§¥[C$,&®ÎkÆ©2žœ~!Ûóüúbþ QìbT_»û”§Jh`+^XÊßÊ[Øáè}ñÂ-oA ïTC=h¦…í/ÕCt<9êë?Æ2˜^~º»=òa_K âO€ËÃÅìëìú>-®—·ÓkµÚy(ÝïßÅÛñ,[óèüø&¼#s¯ÕÞ§Tާߊd½o¹²Î ^Úóû €×àÈ©ågH¿!cð÷mRÂ4qía{n½ŽÙ²Vëî5סNöÍeÃuÕž –aþwüS HæZ w˜l!$GµàÃ&Ò‚Ÿ_fwF5 eZöaÛkf&¦1o&¥±FLQ¦m”¡¨hÿ7Ü»¹p·ÆÖÔ]’2x¹“jü»|ªÊ¤í”erˆ51ÓVCÙÕ¡ (™ù5öö7¢ÓÉ ýþþ[€üÔþ,ÙÌò°1,5UIµOY ‹l"~‚Q“—2$éNKz]üއY#{™Å^ƒ‰ƒ&aï;hÆoj‰üDÄE¶¡Â¥ü1ûô§p ÝÇñàù´¸Çx/+™Èe⡵ÃÅØI’Uhóâå Ý#2€«Ø¡S¥‚•*jÈi1Ú«²HaC˜-¿ý,o TË]ý—¶j±—wiw0oéë#¥mJ^ý&ã¶/cˆ3µ\á›ö \wã?¢†¬¾5»ØUƒ¼ÿ é£#Bé”5­ÌžŒÇµ$ÇiÖI‹‰ŸÐíïS¤ãJ_Ô’'’tÐN3Âß„@VN“?¥i&˜,-áv Þ?6™ô’7)xRÈ•#î¨8y†ìÉ= ’÷tx֤ù¤aïp4a+žt3zT˜zÎ×]¤»ì=çë®f’\y³Þ° VNï{:ؾìz–e×S–ÝG~\Ï.Œ«ï¬²à‘¢û¼¨ Ž»˜¦eM/áýGXÁ½{_ÁÊL;ñÏÈ¥C_³Ÿmñö‚oк=éÖ FÙ è©TÇZ—°=Ÿ»¹øžX–ðDYÂ|åÆdîS´ùkpbœè,i\RywõŸm™û«ð:zj=Ux) OÍKaxÊ—B,Ï šù™{!¼|øu0<5¯ƒô $V…}X<2¤2àA§‘o·|ý±¼åcéæJ†,ºêÆ–U7VWÝrv5ß ]z°øÆ‹Ïã¬/4Ó¥_â†ý÷úëAïguÙhü¡qËÌËUâQwÞaiˆ}¯UFtÉ4l<™½ÖܱÕ^[t¹YîëÞq¹9nîyéš/‚• Sòâ ¿oW‹/dñYnÚÉqñ=é;÷ð¾ïÜ¥LmY=þzº¿{÷“é­Â‹cüÁ¼8ÆøâXþ¸ºšÁ _ ;€jœ|¨51þPKÖ‰QÞ2²tóÓ:– =Wú¥«øZ³\ºÆCÛZ ¹w=Ê’«.^÷´ÈžÃÅëI/²ÉȼÈ&£ß²ÄêÖ5õ·+ðÞy2ÇØ³XVö9`Ùh'ÃßR\öÛëcL…Ù^ŸöP|ð-º–IOü%Kcïߢe©?`ðÏ,»ÿìþg#Á:ÿ7ð>½ÚÙÈëÌ"Ž€:Åž¸:Ü(*¢LqKF7Ñöвü4žÄ%È:NÎÌÓéäì7øçiN§“³j:eŸ§0ÎN,»Ó ìN'Os:TÓ)û<…é4²ìN#ØFOtwU»“!“§0Î,·¦³¡Av"êõ¯óo €Ê7N®ÝGØ«†îÉõÈnv–ÕZÐ*oyÈÖÞÏ à±îö¿[®w¿óY:QXî)4Í83[p«ûýIÏ̬-Îg'à|v2›.oÙò_wÓ›ÙRD½šïç÷°Åø4´'cßM.ê°X§—ºŠáAçWqcÓH9{XárVya-î‘E´9Ñæè_wóËùÇEãߤã< §Mû*î6¤æ‡ÕqùÇâîò@C>În¿Ïf×¼!ŸÆN‘ÓP€÷Þãâò†òÅ…©,¨+^/ØÇé§?!r÷Ëì–·vqà]žBa¤0ÌýøÝÞÍôúÓ3þÇ|IÀóßÿབྷ°‚‰“(“nfSvØÈâÁœœòY@pÙ²—ƽ™“47pßóý[ç¹m±1òxcÄù1POj{)p-a"ñƳéííìê+P]ÜÍ mÔ ¿ÄØ^,QË€hÙ0ÈR¦Ø‹S¬±Éâ"9æWÀþy7šÛ0ÏÙ’÷ÑõÅ’ÿé…xwWy·ýmz9¿µ@$„ßàõn›¿û øêwùÿóEýíÕš¾Òû»"×Î ¹þ·5×¶ÚNŒ2”¯6ê¤x±¦r„ŽIBÞ€zðÍkm;õCê=x™°bf§T¯|Ÿ_^Jþ€ßäµâª·ÏEÓCÆ4ÿk4ÎéñBSõ‘lÈ×érÉ>-®xWâ~c=1W9y`¤š¼v9["¿éïÃtS ¡tëhv9Å]L"À@ÁÌ&²éŸ°Þèˆÿõ°±»-+»£TÚÑmQûÞ]âür=ÿ7Ÿ‰ÓÍûJôÉþKÓ[ɘ}*gX%·G,ßÚ7¾•«0½œ"6ŒÉàâ­ê9VOÐãâüø üÍÖ^kù÷vÚíF“ø[íŠÿñ!ZÛÿc ÿ7žôú~€G„ä9pBö$'d^:ÈÃñë£ñû‡ãáéø½lÛ®ÊÙ¹7*ÈŸ• ²±S˜ ’†ðḒñIó*PU,!̰ æ$\¯âÚª¸¶*®-WFĵurØõTRÕyiôZÏžVë­$ÒJH´úÍ m–=m©|Y1ìãèH þŒÏ6š÷A£eæÐJ^ÙוsQRIµ®FJåVöôŠ$¿‰÷7’ýÀÔa˜“×Jªõ¼|T¡DS¼U¦šbvR{“¯ª._w´*7o_ç¯ÏésÈ?Ÿ §ÒãÐ e둇ۨb2ª˜Œ*&#_VLF+3U¼.î T¼.î~æ¼.Ϙ]7?UPé¡Péc¯ˆ•^M² ¼ÎTøôqJž.°€º¡<SÝQ^TuC!*Ðú8 i•…G_»HÁLë}\2D½¡´²Që ET@ö}dÿŒì³®~ƒdŸž&í¿â=‚Û¯òÌ=Tãr'Ãà™ÈEŒ³9%ò¿w{µâž¯] ævlí"€Š9]›µHŠqI®êkdè]Ël-46¾‰ô·k‡¼”ЕkÎÔ\ozgÍmÖ”`oڔ췫d¢ø¸U;ãj.HkÊúX«‡T_2ѲîÍ—»”1Òä²’x«ìÞR·)²öû˜‰ŠßŽÎÞñ äu>‡§âsÈ?±A‡CøŠÞ+«y7 S¬c5f[|—Õ{ò÷›‰u5Ù B03è}¾]mð ¿ÕP/À#%lo/âW MÓ yG• YܶC¸·2Øwp$ù‡ü ùFQ7Ð×üºúFT]}1þ^1g¿gRU{r´=`ÛÝèp›½_²rõá«—o-o°ÕÔÞÍ7H‡WcÐ=ØO›oR€bÓc¦r°Ò/«¦ÞøQ‡³½“þ£Þa¤„ÁÞ¯ ¯ín¶¢Qˆ­.÷AÚaÕõƒ²ßøÛÑ‘ÙæÎ’ØóCK`ê TS–4Wþ™"ø"­©rìzâák»TäÐÞ-šÍqÀ©¿™†²¤¢”¢#­è辋†áÝ¢¢6ñÁÿÁ›MÃZA¾ð:ñ˜'üªHÚ1ÂGôa3’M É"ý¶¦£‡¶¤6ÌTCw“è¾ÊO|¾Aˆ!Ûz“§©w°™»aÍÔ´•ÚŸpKØÛI¿l²¸â¾AÿžÝ,øUá;Eƒ}Z\Þ]]/Õ³à¥yKïÖ¨ï@´•š\}»ÌÚJµýNJ\9ö<ÊEÝëRUPuäÙíNiXEóµŠöKƒ5UMMÇ"™:&}d°{–ßG õçê'ÊBÿ»úÛ 4õ§Dˆ^J„hv¬2D³­ êL†oùiúö„¾Æj Ò;Ù Òr™æí;%m$Ón˜w°ëÚ”$YSО9 p/+&À»©GâF+ÏfÖèøv³C´•zöv¦ Výe7›oÁ¯‰ÎõþökéÄfÙ·°wy o¶x¯‡ gô@?½}·ÙØìo½1Šj!{¦úøE;zƒ¶sTlGŒi‰ÚS¤6yíÒ±§¯S_ãüâ=!B^’P®à# ¾˜R¤Æ,ŽÎ¶áïxþlŸŽƒÏÛ¸ùöd¥2hnÀ7òsO¹4Âgü7ñ…UR÷©¦ŽUílm5śØ #Í<É`!î,D¥`\ŠR‡A÷6{þJMHf*佯®)رÁˆ\A¥íÃZ½ ŒÇQ“žÜ_íÑå|¬ Úâ'óô;;ï lÔ<É`Ôö|{¬^°:j$æ5彯Þsµƒ"£VfŒ¥À,R¯¹gÆËàõŒ#lÑhYî‡M6¦œØxR+ç´8‚}g®¨›˜'Øu´Yl¥šü‡€]TJ´ͦY3Ùle4“ ¯e©¿t2×S½ÔßL·BÔýk·Â—Ú­PY+ðåžU; ßnñÔŽâ» 8+Û'uQ­±Eõé‹“Y¸kêú”Ö&MÔMYK)ˆGî{ƒ÷º G¯••É3­T¤l·v¹•] n|S콬Þ7HùZF¡‰4Ñ܈tµ+üÁ‡EŠ€éºŸLfÃ|Y©æÌ¦kmhÖÏ£3nî[Œñ“Þp’)Õô™ôh&=ØV2ëô‰žÒy™¦:½–S˜žëúßÕߌûÙ0µŸµvSûÙ†ìw_¿BZ†Ìjy»¸™~™¥¶¾Vrˆó€m?±ìkƒ¦hÍ„ØÚÉ(|“\–9¹ð|6Ô9ÓL¶Âæþroø6¦!Ž×Ú»52_ KÝ™ÚeîLíìRsƒþcO­¸3­Rè=íL­fÐÎT¨æìv¦–EˆIËΤâ–/¾çY­Â«±eY(¹è…´‹ói12-·7lj·/ÕvàR=©–jé…Þ×Rí<³¥Ú)¼Tž¥†àJ£·ÛŠWb²³Â„:ãQ¢°ÏyQ`>i"=éõ¿«¿¥‰´Í¬½kµ™µ;)«˜béŠw9™ó]Zö0ls”mkß簳糄™l`­=óϵõT[ßO·õÙn¥µ‚ÝÏÖ×~ð­¯à¾—gѤ2º‡}¡D¨wX;+@ëy©¿½PðZNߢœ­øx&]D gµ¢ší#4i+Oç—ÞÙFŠžÙ_Ÿf³‹ùõ—t¼³ò&Ó"éÉEíž RÃîIiOu´‚†÷WP[+辺ŸÑÑäÝ(AQ¢¶Î™_Éÿýåaø Ö»ü? þÙâ)ÿ§½[Å?ÄCs/ÿýÚ‚,T7‘ÞæÁŠÉ4ëì0dŽ»ð~¸¨9ùÞ|Þ=˜Ô]¼ÌÏ(BÝf«±˜(ºqG!Ø$G{ò…·Ë b¤l`ý$ξ"aY!ö7|}ügŠüyÿì˜52½Q]‘t‰ø±'>GI-ìE(5=—Ÿ|†Q©IWù^÷b$€Þdt\g[“­Ññ˜xX¶N#ð?õn/` #TOH‡X¤ÖU-ñ¸èp‰*cLÂä4 «CÓ²ªùÔ qƒý÷+öOøG”ÄëÍ ZÄŒø'¿h¨¹@î¥RHTö:ÈK×¢pb4È] D]ÜÀ×&'€OÜSs‚Yú6†tœŠ"øÑ¿©£™NNʺMº\#…bÙŽ¨p;"k;¢¤Qx;¢°vP$˜òf7¥W¸)={[zJczÔšÆô<­!Ž„ù¿g<׸ã LGkÆJÆáMÈ®^½ v.&¬Ïv¼0œh¾I1žêîò–/M5ƒùõ§Ë»‹¤„xÙøBç5yw2a{%jÅ3š,x½¿iÏ3~ÿP‘ yvQGÊ9Ñ€ë $¼ôž¨æxì„VIÈ` £Mñ6Æ©„YdSû¾¸ùsÉåàY¶ #xÒÂÆI7h‘_ή¿Üþ!GwJ‡î6¾Î{¬ööX\Þ¾C¢ïu¤•QsàíáµÇD’ØK_ ùaÂ;T É%‚_PîoOÈOՔヅ„çòæ4Ÿ|ÙŒ"_>„Fù(ۜօzœ¿w:åQ¤Óù›Û"èùæÆ¯Ô÷½b³™†¢1ÿw=Û5øwkeÔ ò¼„Ò1.¤•‘ȹóɆhf5ý«Öªc!uøÃº(j$Ê*§((©§š¢=¢”¾¡û)ÔĹ¾þüÑ JqÀ6â(éÐO ,Ô¦›èN‚µ‚fÄIÁ£ÁîËÔüç=gÞ½¿CÒQ׉`ÅSñŒÚ"%ÿ±µ"š¿£ð õ¼28ïûã‰4q@ɼHpé÷òB5øMþ˜UúBÛ+Ê ;[ üרQö«[ÿô˜_´úÈ´Ö‡Úñ{ƒŒxœ‹ixþölÅ–ÿC:ˆÃ‚S NÐìƒwk.Àðwû.X܈ªA¹4IpìÞ9 ®ºýè=\ä»ÔÉøÑŸ¼%Ñaônà(Æïeàq_|žcc†‡{\3ÎuÙ å=þüAü‚' Í]× 8‘ÌÞO$ZÖäª*"ëõÑdgùæ¢×=ñ)ç´èʘÞQ¼tG£ÿ©ÃçÿâÇÆüðàtøA°Õ!¶ ,Y{Gò¨nÄNC|6Åg§«&ðÓ¥¬Ã–¶±…Xƒ“.Îdþ9>šàç¤GßO®ŒÎyâ÷%`9`¿*оÕ)úpÕèìË}~pñ_¿/wðßÿÂŽû úFku¶6rüQš>—,æÓK¸µÇ81'È ÿa3/g*Í@Qh·×=ù ìÒ,aѽ^ýŽåw í­ýŸzWJ¿T¹ ¶† ÇF`Æ€à_Õ°A)@tœMJU1=­DD¾o*¾£J‡'Ôìº^€¼ª`È»ô#ÿñûüâö…œHìôÔù²\±¯Ë?Ê" }uLN>€å :9 «`,C¶üp*'Ƴ„3›ìõVÄu×*DíE„'z×S˜ø >²Jîz: ¡&›M0þ¹1Ø’y¥Ó´EciÆ~Šð:¥ö‹ñbˆC,ÉW0sù_I®àÆÓƒB,ƒh-åOgïÈÔ$Ð:2t꣈"L­K'uøˆ„IFÙM’ÉNµ M»œ_:hqÒ³]._ÙœŸÞˆC¾L7.BGlÒ/Êvª?É éèLgySßm¦ò{'ó‹lù ¬ù½Ëæ(“{CVHî¨/¼šDô’ÉVdÑÈ:M"ܶ¢Bnª_YŠA =ŽŒQÅ2„F™‚0²©ÝŒ ~—m°Òæwq›£¸Í‘ÚæÈÑæBÍ6d‚¡ª­ -‡ÆCeÅr¦c è!ÊÔªv± ¨/êÇù6»^Ü}ùƒ1€pçv†ü†|È®`® ‘÷òþß„Jm¦˜£â4P0à»ÂGVîˆü„Nº4Ùk"äï¡G EZ}䇆2€e9&½&¸_þçPú"!瘬ËÙ@¯lTÕö@2X½×À:¬!SÙå6¦l-KJ>ôiîyæ@%PZ ¨µÓ7 Ö¦îCSñž«µJî³½i‚1Ã{6˜:Ñ;p6cãÚd¸ñH³ œd—?K+屎 Ù›»™yí1.,õž}z'dn–ja»"ó3—5[u¾±ñsm®™Ñ,u[,Ì™à>f­5ê¬@¼æ•“¦D4ßù±Ö¶7–^Ë ÍàKÙÓ`k¶Ø‡"oØp´>%Oã4ÅTºÛf½¥P‹“ßÝ´q÷·Ù©54©‰>Ž_Œ­ÉäeK‘— ÒbѺ"e_ÀêJ¡È"šT_щz:)6 ´ÍæVZ\U -_NÓ¦«•Fà΢5²DºoãûvÍß³ƒ±D $m*Þ e×’SXÏê]*úY"®ý¾:@5ê°uAà%|¨dÔ‡mrIq@^U?-.ø­à†ßÈý³,ÀP”%Ñ£ÑÿÈY)û[r ì€&P–‡Cð(xpÑÚZR7‡P§Ȳõ2õ¸N˜±Ú‚8Ú·‡¼[Ò-~É·¹ ൠwãî"|/± ô GN“}üÁøëpñ!æ3ž/ Ï.ÀÜ#œDü h0y#š[ý\pzuX®°ùÜì£'¼õ,6zÅÏqÜ0:f°quB5^\ÏàØ¹ZÜÌ$°1—†Íù(ÇRBÍE^\HÉv{w>‚¢óò‡ý4•%ßùãY8îp–ÔfÀj‘åÚ÷¿d:‰l[9²•À±®íØŽÒiÍ £¹­âs¯FÖ¼ècÞÝÄ·3§òC¿í_KüßÂüù!\¢ÈsDYókÖs­(¶‘>Õ¨+œ{G¿)»Jˆ«uÑ…“xÝqñ¥–­Fç¡ÌTê²Ø¹Ò2–”¡µ­¢øk¾iEøö8) >;bªè§ÇäM8’›eXÑìÌý“…(ŽŸˆ:/üØdbt w»ëdrîÊ“?füŽËe„~ôåËäëåôÓL:á|âÂýR8©˜³A=°˜“øÓôn)Wâyp-®>‚únÊÆw‰ñ°;:X£à¶u¥“•½V=`a_«kÈÎBJ"çuW6}5›¾'ë¥.Vú&Œ óí¥”¾Ú[‰>êI °¹ÓGlxÁ>i5»äÚsˇHàHÃt!4à9ÿ7öì” §´KD)+Qè‘W5’€\kTÊÛ°é­ß]^®Õ“…ÅC,ê‘G9AeKGw)7´³ún˜(ƒ#.œ賟ãr(¿gdw¬F¨ì®]ŽaH‹îÔ!Rt§½:x„˜¯v:‡€ø.·£˜(¾“sL⬽º‰_ñklÃÚÅ£Z-oî>Å×pìdZ ’h—‰5›Ùr~q7µk?˜2v™ $Y™Õ‰8ƒè"("k„»Å*ÛgÕ\wùÅw­+ZêÓ %ª©%ßÒ¦7(T[s¹˜_`2Áj”¾™©ÔTAqä°W¸-¬à¥'Ÿš—kìnfr{ §›kC%WÁÒ˜MŸ+ÈÜÂHŽ›h#²ê³P VûÙÕt~ ÷È„Óx°EȇUàY£ñ$•!ß¹æ`+Þ¾žmÛlôЦՃc£A*9$ˆÜã*îì «®œåÜ­%n†=ÃÛó•ð†ˆ8ͺ°T¿ƒxvM,çìËbað;Nˆº•$DÉ¡ZŠ7çšg]뮳 ú‰À[÷\“N{ŠLîºi²ä¤M’“>Âÿ+œ 9ÎNQg¡©ãÝ¡øcê ?æ5Œìöfz½„à1}ˆ]Þ\©Ç$ˆ½|ƒóñÊ Lå[0ŒàŽs1'ú÷ØZÞõ *¹6Ê~”,•(wÍ}‹‰Ñ" Å 6TpáS-â¿“÷¤„#õøî§jV5ÁÌ(6ÐPÕœ8o[ô¨£Åb¾ÙÞþ°š+£üãÙˆñì—4žýòƳŸÏ~¾ñt–ïìÃÙúè2,‡7ÞˆùñëÙ=£™¹¨éJÏa+AÜ9΄ÞI ËÅå·™*8ĺZ.>,çóå“DCNþ—®ƒŸØQÁÛ\^²Ç®®ˆ(¡sÆ×œÓ]÷År$$.Ö¾ˆhèÁ¶4yréÔÝלºmÊ‹FØRcÒ`‡È Ýû¬ hú©óPeAë3S~?¼ü¾·üxæ&×Áæo®õÊŸ1NbåîßñP×Óå’\ø4É,e|ä3ÊW])(ñ¤ò.~NfG¼S‹€ŽBÓŒhÞW­Â˜€pÀP‹žø$£hžL̈[é’äª:í+M}ÉFÊjžçª" •9FÕ/Y²”pazTÂïý²®šdy.Ç%@\dNå’Ó0LOÊ<쯶Uɤڇó´ž1¥'u;qÎlT«rJÝä놠)˜§:±Pæ]'‰F©Ï©iZåSÉL*pWaIØOSê¡’·åÛxiRrâ…$œ’Ò‹æ‚Íþš~²k¤è‘ïú§°doì´kɘɶ'^®¶Ë˜.Ñ­LŒÁäÝ©³]_W€k€ðkþç¿%`ôØRæW_oßfNULÞîÐö´ÑqðžÆ“:ö´ü“ÏxkÎ7 bß§Ï<î:ôhrç Àt"z}Õ ™÷ðÃmÈ0òånÈ8zK¾ßeÝ0'ûs§Ôõ‘È5J‹r¯Ž‘‚Æ¥Lõ"û|' 3ˆì K›|ëó‹÷ªàmN;–É*ƒø)b9ˆ+@gnY^Ÿ:´DÂ÷%¥;ƒênˆŸDUb¤·¥'Ð=B·[t µ‘}5•£‘ŠR áK„‘=ç üÔéך¾w¸À¿ ͹ؔÝ“¶ü±½¢p:ê¹×wÅ%™Ô—!J²` @Øõ?àî¯ÕÑwïϧ%SxÔ{,%ñ‚ƒÌ<]M€0Ø|Âõÿ´W ïaaO&)W á5ðùÐå’F,¢ôu1Q$îx“ÿp®ŒrK r›ÝCw1 ¨ÉAØÓõ~=º»^Ì–¾üÆy¦Ÿ»{ùÏÝNÜ‚g­¨:½ý5 ƒu¯®v„o«ÉsVúwœ´ÍžáQ‘}4‰F–—V9„M+v£e¦Àh´  ’}c×#OSxÊ–wWWÓ›Ò™Œê” ]9Úãw50>ýyˆåG OÃý^c¬-à<eõìЖR°’ˆ¯­í@|§ÍP×ÄïÀ$Á_ÚôË;ñ‹öÆ ž÷«WãÅ~º™Mù%ý¤ Wr¾ /ù¯· 33`‰gªÊÏ€G©-øÄÙ*¬b’óÃ3)*bÙr;j¹†šö˜R= RX#!ø•ïc5ùë:¤{ÝhnËj¨ˆå(&¿Z[DwH¼fî_e¸ÌŒ_µò×F…5'¡bÅÚð?6v³>¼rÁØáÈ_÷âDG^=ü¸ðßg‚ÿÞn¶vÛÿ}¯¹»³ƒøïf…ÿþ-ö4þûÑ=ã¿#€!‹µà@ñpðåCÀ¿™^ß„Òäó[Å0,aß±ß*ð÷,ø;L!Þ^‚_üQŒ$qàûf4x …[ÁÁWpðí¨àà” üV€ðâY¡µýãjú×üêîJôÛ×ÙÍÕüöV숈Vˆêqd<Ð|›TóN¤fšËÕé Ý:t.³žÉ†Ÿ©%dS?ðøýaŽb¸Dߌ € {üž±Ç]ǘã†;#?x¹,ßwçãÃ*ÿY Ê-€äÜqûCà¼MLG7NÖиã.¤"Ç@ã1¼88;nIaã‡ïƒ>ˆñúD··üžAÃCÁÂï$iœÊhÁÀÒˆÌÙAÁcn|J‹_™­ï‘(sPBO ÏXwÒ H“LÖÔ¶ Ú±³µçÄCÔ¡ÓùDB 9Tq;nn°aÒp7(+7˜¡ÝÇ4€¡Õ++´P…+Üs¶LCµŸ›‘ç² ¸_c{ï9 —®¸èŠü$k+¡·Ì£eìeK-­àœ¶…”ÊŽâÒÙ”ÁÎ V§£ÎH(ŠkfE¨Óf$lƒå]ƒh‘ î¢è}Ht!tÁès!¸s.È9cÔ¥Þ;±§µ±¦ªK÷‘ø-Ž#J ßâLc÷‡'µÍ{úÈ Þ Ûfö—>ʶåÀ[¦ÿ‹¡Úô/$Û™˜ž-0›€Í5[’%?Û„I‚Êbø¶núÅxR„Eêpm†¾”× ¸ÀÐQ\(!¿ë«êûtÉ–wŸ>Í–ËÏwâþ¨ý)\u}ÓÜDRÔOcYÛl —Î1,³|m:ž‡p »ì1xYm‘¢ÖöB²3ô1Â0;DàthŒ†;ñ‘ô4!Ö­¤Ÿ‘š£ðXµÕwÆ4×0CÅ s5¶ƒKy~…Ô<&ŠÆä‚Kùår¡Í~ „–9'®V²s´j–mC†ÙƒÊÀMTá×SÁöÆ7r "þÎöâU9:#\cÎÀg¥ô¨3rPªüøTÎè·¢˜T®à<1LQ„.Œª0t*ö7f§ ‚¥Ê3 í¬2w ±|`X¬\¨ª=ÕOhÈ¡¼¿•xRö©^(Œz¥@®Ü!\Vn¬4³E;‡D8Fj%ˬe›Êd­EmEf¨ «¦jÈïjÅa3ä’™-/6kŒÍfÎÊ ïF/ï™ÝH Ò-Ì-ÆH ‚ÜòB·åî Öö`‡T›@ÔZv,ÀÐÓÂqÓBÓD h˜ì™ÁJ‹Cºá`4t# M¼úL=ó39Ц$z“õîÄ2×'oßb"ÃDÁ+S¯=a½r.ß)Š~ä(Ë{n½ýh6jxXëS-¾)`+W­:-r ‘{ú$7šfM_^©“e0¹Å7+„ðÛêæÇ ‚Är€é{p­ k¤¤£‚‘6Í=këV… i¹¶98aÀd¥ÀôIla]ã}is(ˆ×*ð]9q2¬[”²kõ-J‡éz&[Ô}­'7URöž}ž&.ÇÙ®Ö›æ-Ý€‹NTٞݕ<<—Lzò¡ƒ\8[u–ñèPŸÁ»žˆÈ¾Õ f'¯«9P· bˆ‰È¼èSt­,õ˜šË®å¬Ëûæ©¥µ|ÙÐÞ^ô¬|W«@ĬÐë—%Ëy= DÆ ½Âùа\ŠEM&°#`ÉVǾR ;*‚UÀ©DŠ—p&»P«V4—èHUqÛíÉIlñ5*Ã^ÂÀ=b¾DïT2Ífhug0æ€ñr®ÙÉ-o¿V¾£ 0sFaçšzTí?7éž‚nE³f?H?º_¦~ÔE½*ʨîë/-àS;&ð©F|ªùˆàS¸Ÿš’,ØGÍ .QŒøÓÄ–†Ú÷!i…1Ž´±o©{>À#¥T–Q¾VŠ©i…5:ª`, ÿçöAðZ»Fðv:üÛF‡ðöÚþÏC<´*Òø?ÿGAý×-€>öÕ7x5.§lŸhñm†žM>SïÁ'zÂ= 6O>uÇ®cŸ +¡îLbÔ‰DÝÉàíTp;áp;ϦƄOS»Tà.p—U°UÚ1°ÊêyTp(?Š †RÁ < ”fI0({ `’~!rI‚Z‚ñ T ëŸÇoâ˜D,A¬“·D,Q1IìeÀJ²¤T¢(ù2°#öòÊÃ#iÝ+ Ÿ5 FN^L¢BŽÈùf‚&1&wÔbU„’ƒS„I€JgÄ>€\†H&”ßA¦'À’‰,៺”õ¥I^OPÞݘDâ82'ÈŠp$ ½yOH$;uñD1€ŒØ¹ú½XDdò”ADV… Q‘>t¼`ØÍÐbCæHPì];êW:bˆö– ´-1&”#DG>Ç àÁÈ6H 'žEº4+,ET–‚Žn#"Eæc?óÑØÉt…ü*ŽôÏÆl£â¥±µûK:®u˟׋ï×™8#ƒEï-êãäinA‹[[ÊLʽòÁkD!ðÌoÚNƒkü¾Fš8¬>1Z!knhdƒxx`_k–©,xtóbcË#Šip7Å!±]ÁPµÅ8uë–¨Rã[-ùø2 È›Áðº¹ZŽ”_3ÉÏ’›9î‹VÜÞV£©.9¾à.æÓ/ ãå[Oúõ»kóŠ\Zæî†ì"G´Ýp2l;Ï¡ºG( q3œ]Š#göÿâÜøßîØï‘À½ 7ÚlnÀ¥Å8xq| ¬¸ûº¢ðQάÅ ¸FóÀÆð'Ð0ïv\mÍ$þÄå4F-bðŽÿú4ɧb©` ¸rÜ™\ýd_9{°:^÷(˜¶D‚SÏœH]RÖÕß­ ¹ëwõÂæè*Œ3÷Ô­µm5e®ÖXož°É6Ü ±ûe‰÷››ŸÁ_/LOlí»®h®§kÌ*–ÀÄþg@þ|fK.Z®À‡Oà #±ñ'šuæÈ»ä[æ&.Ú<`ökRü¢†nã·±p†‡ðÄ/Tüuî;ßÍ^wCìÓd¼LØï‘Œ—"çõOó¯7h•8–ä%Cð¯GQØLA=r1¦Ãy¬’›s5™—`^Nû°X «ôgòÿXä?KØOyà™ªd—/,a±B”ðƒcr„Å„ÄìYFÁMíî ‚1ï†À—N&Š%eíqÂ…ô¸ðtT“úŽ@|uèás2ó*ÖÏbrAÛ£/÷¥Q/|nÒò¶”Cxކ¡±)t¥2ÏÙ ŽEò6™@oÞ5™Àqõ8Ó–!ïp¼Ÿ¼g™3È4àüµ…:ÌÀ‰SR÷iu+Ø_OÙàzô.SÅsß–¨ÞS•àzºZ÷$®•ˆ_IPB¬¡œø¦+#í¤Ô!F ‹´+Ñuò¼¥H»>X‡RÅ‚vVkU®.‚AHíØ¹ÑŒ‹ÏX?➤qt$.…Q}ã«öyºè žN3‹§c‚òZI§lÌ; Иµë k|×r—ÀÍñ´G[Òd9¦6LœBcZTäf6©»—¡i¤D}åÆÕ ŽÞ·î.V,Uv#~ÎÓÚ]Ê_9m‹l”ìDòfmÂ)–4íLð8+?_æÓK¸€ 1ò¾!Ÿ"~ÐóJ?ËÙL1[ź89{ÆX ub]ˆÉ 2–7ë›)K ( ä2<ÁB“§;Ç2°ž@™ûáD£39ùÝ tCgð A”—`x¨3Ԇ̅ÃèGÄtú^–$ø$˜Xè‹bh°0Lz9vÒ@̃¥‹çK`Ž÷EÒ‡¤ó‰ß2(XA8…A8 W<¾-H,/xÅ ¼"¨>iøŠˆ_¯§¨¤Y‹Ùtœ9¢ö˜Õ äáÀ+%ºog_Šçjêï6wL˜ÁËÅU¬-‚Õÿö·„TìWwüÇ3!_¦3ù´¸¹™-¿B¼øÓÂäÇ<†ò_lÊ QÌô&G òÝeür“¯° Ñýõ‰@TL‹dc§Mf/J@qµ™Ž¢/éˆÊ8Är©ÌÚqŒÔõX77]}ôÖTDÂg኉CO'GÛ-OŸc[H$n‡Î-ãaòÆúÑè ¡d’rø­¡ð B߯&®– :[Ei,”·xœ¥ÔÁ6'œq=yÆõ ‰ [ °`Aj‹kŠ& y½-e.ÅÂÄša .m¶”¼%2DO½±gy­òŵØۈ‰¬4áLì§oµiíà““,_Æñ¡GœCg˜œDl*¶cô »°oË¥G¸¶j6d=¼Øöf"Uà]1®Î±pÒõQ‹éÌ6Í a–µ\™ÃÅ)Þ `p†£ÒC=Ž6FPÃvþÁæÿFw7ë‹7³Û»°À|ü!Æ"hÄš²‹Þ>Ò 9²Ô÷]‹AIêDk`n^¨×GÛoÃj`¨x@¬9䨖:PÇèŽAng¥ŽT˹¼’ùÞvtMŸß†þö*ÂÍýí+^e”DH©’„ZO…Êš Êäv”Æ^O…z8…+DÔÙ`?H°»¨¸=2 ¿*ö¤Çzª!6® <Ñ7ñN—ÍŒŒÙkÑì;ÀmR$CØDáHÿ·7Óë%xHÄÂ3Âyçá ÙÎÁËXŠiÛÙ]ÆðA6¼'¸l7c2KQèñ™0@˜N®ë$((^Î9ëW×W¶—G9¨ôxÅ<2Ã-³9éc?¥îgÁ-æÚsè­ß pbN?aq¹™ÆH~ló ‘s>ßøë #)2Óc‡sÕ+·0ÏÁÌÒÊγÙuæÿ­ðó¿ž´žt7Lª(…òМG*ßn ¯ΓO¹näbñ]•·¯€'ŒÐÚæÝ4…­¯®6Þ¹Z‚y{“‰Þ̉œ¢Ç5РµìQmKÌC6É8hõ/{É©¨Æ(?¿ÕÈnÅèüU:¡“&]ÌF äa <9{¢±ÿÿ¯Äÿ¿ÝìðŸÓü»•ÿÿƒ<4'SþÿÞ™ÿOñúO¸í[¡Ãéï–}`cè¹eÐ_20åçÿdÙUßþ¢L‚‰´*­ }‚˜ùWòÈö¤Gþ°g¥¬œòs8å?;gö²½Ø­è)­÷4‡”|Í+jÄÊ·üž|Ë-nåiÝé=º•“öªÙð“§„l*ŽÇŠãñ¹º€? Ãc=ÈÍ\º‡×u²F{Þ½¿;3ìý|V¤{ ¢y„»I"¦Þ ON¹hºªcyƒ4ý·‡ïò>°8ÚEgÁIµéÿ=Ƨôä=T#óznŸtÒ<‚‹E —2 ¾ò~Öñ.“æþ|ÖM4*aã}Ž¥—ŠÙ‡Ý”ÞQòˆ‡§!DY—öñÑÄàÚ>ì!¤#£a˜"ù5 }àá³)>;õøú†Ÿn¢Ç¿w‡•k|åÿ€®ñÃÞ3vžv§oÄfÚšN¿÷Ø7]u{iöK·9¥+œQŠwa‘hMµ®×ìåüjŽžç©ëèåbñU‚òÉ¢V¾=d û$zÀóS¨inJƒyËÈC):‘ü‘À¨“pä´3©hÚߌ-M[¤IrуÅ›‡¾›‡)c¤fU‘r¥Ø–/<„I¯û]C„“ܨ¦m"Ÿ"Ÿíþ6êâ F‹ÍZsµÒ©ÍAjÆ5[4E°#’•|ûd² /$|]Žæ8ºÆF¹ØpS.²a3ælTÆFk=xlíaüFVO h³/œ&UÑ`FØ€z¦Cké?qï È ›°ÇÒe.ÄÅ+g¤ =ñ6Jgy£nè »ÊŸ(éKðM`>¶zâ%füÖê±”“â“41Bó¥&W jµqCjájk+ü£9›¦‡T üÔ­ãúwthQËêÁz¤‰Ôtv‰®€ÍléMyHÛ^TYçè]P–yWsÝK¬&àöã•ØÂL6û6¾]½ø?›‚·p‹õkÙe¬TOD\ƒ“º ævQ·ø¤çj·?\oÊL˜šXp³™kZÙÛ÷Ö:ïì[‰Ýgð8Þš[\.‡UŽ´d€FF¾ïY~WC6H÷Èé-\‰E0hðÓíå‹fã{eªHãÚ#TÔ¦w7q0Ã2±ª#¢NÏВ½Àä»^è0¶ YS:¯lÒ©äWgœuõ–UnI6nó÷š·'Þh›üÑÈv«œì›NrTæs[LžíHiÈë -g8Ö­K¥ß”aé´(Qël—èô¸%¤ºyÏž°]CÛhÊ=®D-•]-Ù¢ mÔõ°ÚÞÇqeéñ•ÏžÀ&±;Š\ƒVêœ*r™•~½8„×·Û¹ï¸]Û¥Ga:Ù8YƒËþ»µw©è<é‡Ã7c×ÝÖ{ŸÕâ‹Ä¶+czÒ—'¥mʵ "Îk)¦¨Å*¼$%E¼b¦A÷AI^ŸÿNHMK1)c3‚/…ʽ0ó÷ÂÀ<<È ôØðèñœø’ë-fx“B¸Üí„Þ¹­ÍQqPlÔáñ3š¡©äæîÓm|í„ñ¦u ÅPš3ðOzÖ€2/Ñ™8`”\ %^e®¯­ú9 °ÞêøY…^‘ž¼LÖÚ‹Íò’­k=gçfÃŽŸÜd!†,2DÙÆA<=ôÅB¡(,Œ|…ç™bïLÏŠíþǪÄe.à"zø=ï Ë_ƒ3<ž­]¶\°ïÁrÍ¾Ì "çËbqÁf‚+Öœ/a~aá^÷®äñÑD';“Ì|Äó'—WàYæV±bŠÔJ6m¡!ž³/õœ¿—T~òqwTc­nÙ‰ÈÝÍÇ'MN "#êî¤ÉîH-ªÞ׈@¾Ì ~sm̹OˆXùd«”÷1`2§˜ìŒ‰Ïo•‘³v“°f±Œˆœá­ Ï(0>CfðØx' :‘™gC2r J¬Ì¢ÉÊ ÒT[X) =ÅI5YY¼šôh ß®©v&r5îÁ“«—áÅ̰`fÇaYÜx¬ü˜"ו7žWæ³ØxîkØ(4ղхÕ=5saÛfÐUÏÏ£IOÀ,6“ ~nfMz ók&¯¯‚QÁŠÁT0ã¦:cü¥«k)zS¼ŒXÁÔ›u+cýa>3Rr¶íf$í@Ý3O©×pí½Ž¯¼ñí¯mäKc`Ú)Ã_òÜAy ‡>UøëPøBÀZÔBà nö"zÙ˜èNoÙæ¡;žŠ_Ž¥…:ªEKÔôø‘‡ÒÒí=7-Ý^JKGC´ç¥±©¡c Tèƒ `Möï{&t›ý ºÍËGD·HÓÞª 7‡&”m€ÌÀ6ʯ8­œ¿¹*‘ÐÿT#”þ7G °^x®²ÅD¶¡û {OÝÇÿ¸ð‚ÿÓjwš Àÿiì´:-žñöþÏC<4kÓø?§þO…ÿóëâÿœÆø?§ÿ§oFª@€*  ¨ª@€*  ¨ú‰A€r𮆠þ¸²Š‘~^ºóÉEL›•ˆKÆø)ÛÇ ç£¡öØÅbÊGá—5!ôØóР{ÂÀyÊå1t04v\Sð#Â{약_¨žñ©rCôðtŽrK ›U0y$ôŽ}È­4³ÃSÀâO¹s ;ŽŒ AS$l‰ÏN=¾Rág_|º&¡”§BÒ1"éÀ*ºw<뫸®ù›¥±v²ö\°{NMìžü0=æ½àô$ù8tN²6L#Ž!êÞð!‘¬€AŒ>BÞ¼.©²È¾½¶r¤“r$ 6ÒJt2u6ÃŒ4Ãë½’NcÇ ¥#¾ò¥4s™Ô׎Hòा«ãXH}Iîûh>E2ߨÖ}ïl¾|^§¿³‚%‘û­­N`ä>ßÒ٠ۈˡwEägÂñÛAY™¾¶‡„Dá[̱»f|¨Y&0ŸŠÆhœÛ…-r/Gü¹¤/ƒí^Yq¨ójÁùÔø!‘­µkQíÄÅÔîçG&3s–^¸@/È:˜9Zà˜"og‹Úùû»`«ÞnÞL¶<­èä—ÔŒéäêoãR²Œ‚$µ3Ž\âH:ƒÈC"ȃÃÇóÅŽ»"ĵØõ ’Gnìeh¬±êÄxj Œ§zDxœ¯ÓÿÐæ|xjÏnö?<µÅ€‡ù Ò1¯ó<æv@tEÓaÿÒúíˆû.ôäÈ×Çî#ÖÛÖmŸ¸ÉÄrÇÆóR‹Óî¦ß õpÏ„g»ƒû2µ)ªà{o~jéöÝK·¯vQÒ5Å–n…¹f]±}‹È°ÖäjõHÝöq@í¤{%ñ[Þ‰$Ü”(&$æ•y!_pA˜0¸üa«úÖri¦§p(ÄSpLVá’­Û½öC‚r;&ïÚ}ŽÓYkËM÷η5!Ð̸»¾œaLL ZÀ‹l@" ðÅë‹}i†‹ÈÐþ€j4µ)þ14”š…Dl¸©óDQŸxX1´6¯HM>]Nìtêdñ +œêQÓ©ˆé¤‘ŸºêJñ+,AÉr!ëɪÞA F;îWØÍ­aÈ«¨,È÷®Nóy?wTñŠ!Åê>²¼ßAòíþ0bêç}ûð(³¬ß€=ÂjÄ3„ ¿4ǃëAötl0x¼•hÛgm›©÷jѶ/‹Û¦‘xÆ“ A¢ŠÉ}¼˜\)*WQ¹aQ¹Ù@*(÷Iå>R¬­!ò—Šxa ®øÕ£sûî'‹Í ´ÒVѹÙ\²'F9‘¯Ñp[Ã?%ÁIÔ´âè,…+w õ*pÜ5¤ÚÀªºÎ M¡°ÂonhŠƒÍy@b&žÒüjv|:"_œß=ß²/æ=(óDzú½£XK aÍN/šXÒ¹Á0Ãâ ”X¥7l4ÁŽ8ÔU‚P 4 µD²!§ÉÉÆ›X"¦8Sÿ<°® [„iI⣥‡Q×fo#`€¿¾'œ´/wŸ»7Š´˜Oûãú¢¾Ìø¢:®D^¯õ|¾¨6-ÇL˜h*AXôeÐKOÜ¥Ã6$è²üˆK_¸¥¸Pû²±ÆZ–h™ÚLƒ_[B,eÔOÝÕDµ‚ÛýÐ2™Ïí>;•u˸P0R2ÙÑa’çéL‚±r„G®YvüXÁ¨ÈrB"µed‰‡”Ãf †¤•”3vÍ­–‹«5÷¢µF>®²h-1OhÑ–?UmqŽÉ79¦Y}±¾2W nôG6>$xˆ7 ñYƒ‡d‚i:»JŒ`Ì ²W>$µ²X,^Q V‚-qŠÚ–m R”«Ð¡hN Ùmsoµæ°Ä·O{@â}Ý> †"Úâ¿ÜÌøÌ÷_>QÀèü/¸ð£Ú•X $±à6c½ýÙ"ÝaˆÞ…nV®º¢³¡‡©¸Ã'eh¦Õ:öÉÅŠQ¶†ù Ÿs˜ŸõqÅÿ-$þ¯¹Á~ÿ··Ón7šÿ×ÞmWññÐŒNÇÿ½üŸ£n2ÿw%ÐáœéÃþ{¯3ÂhÕÀƒ›éü ;¹û4]R褺Å]r0½þôÄzܰqПxíôÓíâãì¦1ûa1ö0=±ùy>i;†îïØãe…BÿÂBó`LÄJä}dâ4Žæõ ñ‚8î² šHj6ž8ŤÙÞX¿që7Ö·* ï è{†œ,EÚ ë£XðM[+IJ¥ˆßî±U⯆xo4pN•‘Mÿ}¦QAQe…BëDù­Uç~šØ¶ÓHj¶ŒqdükÐC•Ù–˜,iQV¸‡péöôÄ^½ƒÓÁÄe+±£ø:ÓÑCèèÅŒ ᚟ò‡ýc© à¸L§LE×Ù:9q–;‚ÌÍ™-¶T*Åq]Íšô:î ®É`RG©“b°ÆkU„ÐÐEZ%à*[çJuÈ×lá}êà¨Ò^?¥ÈªçD5^%ˆ*g¼PnÕø! ;¥ÅWÝ+—aû EWµÓQJ¶Ç» ïtq1É(5ÀmSQ»Pa’ÉûZs3û:ã27Jò-¬;XàÅüóçÙ 8ð…ôgÆBzŠb¹@Üçÿç»ËKLi¶zˆÀˆ“ ÄvŽDh×ë h˜e°ÔþdÆÚ]Ô2 í‹vŠM ‹ØnwµDB½±nê}|^ÀzÛ&j£¼`1–°}:ÆX)BÁ`7 Ï6f ³Ÿ÷ô<æ‹c™°‰Ë=Ž]FTˆ‘ð—¦lôe¢¸:ˆ³ D`ˆ˜#HlR À[ï¶XZòðr>ñ¥aøº<*3¦Dû:éÌX£+Hjöuþmz{ˆ‡!ƒº3Æt?¾üŒgL÷?c¤‡©9àžv1û<Òíâ’ï2ןf¶Jñ›Ïo+¹É+¥™1—Ñö_ýS Jô­>fwo[ùט8ÂpB¨1.÷8àjZÐ žpx¾mGaïždÞåeGë>¿!³·Å8УŒ¥Ý2t ¸°,fèIØ‘_‡’ÁrÁ±pzm3=ECh²9¡ò4»KTNÞ‰=ãÿLpÓø?“wîm/Õ&â.ee¡m1Ž—¡æ”›¬Ê‡sÀƒÆâ˜èÅ 6Ù÷)/®×GÞ Ù&Cè=RÄS`­ø{±ÔcÏËëOuýñî½²S”]A4ÚZjnß?C÷ 7žôErq&èñì7 oIÙ?¶3>E'íSD³–Ü|´¡â:ä·8/ʹtI—#-—`? ñOåäòÿ¹}üïöN£“ÅÿnTþ?ñÐLNûÿLJÃÿæç0¿¨Ù1¿L阮æ]Á[`u³CñyTÈQhEìîIìÏ3‘ØÝj÷¯îäS¡vWî2w™U\V$¢ôa y•G…lý³"[?s'žº¥Zuå©ß fuÉJœ´zï!@«Wŧî0ª)rñ<†ÿyS:µ= `ê~ô>JLN†vˆþÅ@ªïtšÏI Âw9™ÝO2U9옯µäCáN¤bOËébðF¢ìê–×µ-²úõ$dõp2 èjÀºÉBWOºÚ‘ YQBá65ÐÕY=Õ“‰Ó6w8N$‰Uü‰º½qÝ‚Ï\_=¶ 9WíÔÅÿy¤(£Â¾N“g ýzâŒN*«#A+ ··“fopk‚ìËwkz„èÜr¤5b5¸h–qºè{€$‡¬Éû$ B½Ÿ¡N™$c°WþÕ®4ëd¬aÐ-4¶vcª_ÎòÇoý ßiù?óé—Lâ¿øœÎäÏëÅ÷k¸‰_ÌÑš&]> /ßÁ ëf>½þrJ¹x]æôé—ÌH²{[¦.µ÷8ci°åµÞš%›a¾2ÉðÐxÊ:È–³‰ü¦D‰„u’úÂlýJ| 0¢_èÊüz³áÈÔM]ޱ†ÅYaã€UÍ%GZ’Ml¢¬ÿg“¼á,:ý•d+2ÙAÁêi­¢µš—çÞV£©¯O¹$ù>y±¸š_O¯c«>lWé\î®í+4Q™-]ã!E®=xHjûì[·î1ü9áÛªÈ5OR©†‹åñYÙøßn/¿‘ðõË–½å-&þ‘Å`0ý“\  ›¡§í^p‘€ú°&Ä.œÖäoÆ9jEQ6gÁç)þ~dÏ’©SP¼¥Þ¶\oÇhÓMûú‹ êkõS‰ß}›K^Hj–ŽÚá‘Ão³x^.b{¢ø»Ù%A›q±Ï˰Ž"]õð<:4¢°B‡€¶îöĹcæÂÕ3"¤žâ¾mÍV{ &¹þÞ½—©y\´eÙ—ïhJ`R4Æ»ìã¾£|ýŽSq~þìô[†lD—.í+ˆª¾Š~W9­ ùEvmÑJN-ëBÔë9ë/"ÌÓÇl¡žæÙ9ñÈS–ÿ]ë‹—þ¾°"<µ¤![‚ À¿<ò´†éƒÙ%²fé†C—â@«gLßAû'^¼aËÛÊ2 N±xC÷ Ýn/åÐW„!ÿxßPÿ¨œÓɇ^ u¦{͵ËkY¡ˆ™i™9 çÑ9–uÙtÉN6Á1>ƒÖ¶Òô†u½¸¹ª‰¶XfOíšmÐßù¯ìh8ÎËÂ=v‚ç‘Úæ¤ÂÆ›¨Íc|bð¥+0{iO \Ê%Ô‹—Ÿ§À|ý4Λ¸eª0“ÊN`è™'¨‘Á1EQÍ-çè‘y¼|ÐHiâå»’PýTH¿F¤_ßP¿^«;oŒá×ÐÈÒï»s LÚ 7µnÄ:ŽgEj¼Hñ§ùõ7þ[fɉWEât§k0›³)&Jf !j…l"0ŠKÄnGñõLJHSpä½_¡~—jT×ò -I@ÄWñö’ÿÈw°ï3ö%#G‘Ï´" P¶T1íöÆò-øuèv´(çòÖhˆÊI¶GÒü5Ì+.…®žÊ$n.ÞפóœŸ#|;¾ev ¾×ÉO0¿ üРŽc¿! Jïñÿ6¼%Ék© ´"Ž<†Ú“Ä|nѪí&CÉsÌ¥†!?@¸Óšµhx?>ç« |odNÈêàñlÕ¬œ€ÃÉ@ÁšÆa =Y›¦Óªç>¡$ö¿•Á…¨ºñf}ÌÏÝL?`|;™üôVÀü–”ÕŽ?#&ØôÔȹVlrsË \É¡ÞT»˜¦Q>–€ á‹«cEb€R¡Öí„c Mí‡înæèZ‘@윘Èä¸ @j\L  0@²‹<Œ¹–è¿ðJAü?Ü*y:µMC²Ö:™15ö¬9ËPêô&;W`jÍG»$ð÷ù‘¹kÑ<7Ú¥}×ÕÙõp´K{¹i—tx}3¶¾Nsr$õé@ÿ4çÛ8³ -eƆFײÐÂáM°àÉ£m`}¹NUߢÐÑõGžg¾=Í€¨ïÙÐ,»Y K_ßÍ‚ôÁ™œr{9@ôïᮽ÷äïÚ{uµ²¥ßµŸø}Î} Û>EoºÀ´7àØkY¯¡K[PûÉOÌZ=¹Güï¿Zƒÿߨkî¤ãÛ;;UüïC<´øSñ¿g-%þ¼ Eü¯‘ à<Œ  .tÃücL?ñI÷](“OÎ(áòã„ßL¯ïà\iò9&l„ùOü‹¤ ÜWârJT°³ß1BçáaÄ8”ŸÇâ籯>cDÒ„u é"_äðYKF¿>:¶*&€AÂQ—ü¶ktí ‰.„ ‚„Á=$ymðlƒ…ù¥lbÜãÎ3MRß–Äo@/@K)_ 3)§x¹Ë)©ÇósþeozÑùz~Ò„¨B5bL8//ûO7‹årÁOöu—ŒèüW‰Ï.==P ö“²)àx Äë$¸UðÆ âÙ–$Uóɼ¥…ªl0:]V«5d3.Òx{èïüK¨GJÜ/ž}÷[?1‹á½Zǽ̯÷mùƒRZßpm_¼ÍçH…°Z¤ónIÎ-—¤–3ª[êÞÉB](þùú¯!Lêäôï ‡‚ÿ0HGçUpè/Ç“£!¨œÉ8pòwø‚}øÿ£ä#C¢ošrA*á¿G€f隇tÎàl `>éxçž )@÷l4iÈOéÞh4ö¼ç¨WŽPf-„…|±áttˆŸã#WT»ŒUîS ´•°!o$1úÒó¹õt"‰û§å‡SžKl%j0M²§F¾pÖz¤€dJ >¥¯Äb­±µ£¯Ëù%¯¬;¶ø%Dæ ן7´8–ò4ËúS‘·ÒÀZœr†žPưf[ñæÈffn†ÊÁ™ÕèG58#Òßãé¡Vs¢”›í |Sù›cûl€é£Iï”dòÛÛ¡SO4=]-+ËÌo˜ÉÈsuÏC΀Þ‹f¼}þð±ö†n‰Ë«éå%[ÎEP/!y £"”øb¾äŸÉÕ…×CÝ„°Ûæï¯Áõ‹¦¸N/ù_þÒï©âéðÔž’žéJµdä8E¤O‡.ÓPáàyÜ2íìÅ®| uß¶® Äêš_ðxO¥_Ô{Oï\‰·uïÿW‹‹ÙšÙ;¡iwðd±z‘¶Ü«Bƒ`©;Üa\Òa‹Ÿè‰ÃÖmÂäªGÿ Õ³ > Ilùψ1©«ìk.©- $oê]K –ŠN_{w *髵ØCr-âGÏ+ø ©Îí»=$¼’SéÑPz3Šì#~ퟢîfÍ›QÒq)¦lRem·½¾'ñ躓Bj.æ["¬DçÝ)à !T¼p±%!>¢ŠÀ*eŸ«Â¶ðÀLwKëESˆRX¥PÖäé +L\ÚÄ Ê´—§nXñv˜ÝìrÍñëß4gŸnfÓ%.yù*Cô€1”ƒIÿg|률Uô²B?“|(Wc¤k‡‘ÃÃøW NPV-¸åZá_ÏÀÔ7 †Ø^´³¡Rn~}»€H(Þ²©üÊ…Ð«ãø»#úÉQ·«lûêŽåØò1ƒ~ &¦ÅsÅ¿ê^Ù<§í³‘NsBˆ/H‡ÝÀ{ klȉºo47¢Í¨·!ÃJ¶RÅZ R|Äðbl'¯åa$»Rï‘Ärë;@@·ââ)QC`–ß.jÓu¶Åà‡›u3q’íôJhÒ•Ë7¨‚Bv¨ën yåÎ6F&¿W¦{l¿ŠY5ecé&…~ôVPïzá=Pé³µ3g=[IR=E%ÕڕЉ÷@”aÞ(ØH’Á©šÐtò˜eO†¸B.a¹çE}[÷{Ò²Ä0˜¥½ûÄáHz˜â««þq?í ˆGòlœãzYý…â¾çe£ÐÆËé?¨øó\øÎZ+¹ð¹ü¿.Æÿk¯µÓ&ÿ¯F£ÓhuÐÿk¯Yù=ÄC3'íÿuRžÿ¹ø§ø"д‹ë¦{Ìÿ;¥=ÿÏ ¢òG(~c#Õ}ìá’ÈþÓ\É´¨Ë_Í¡¬{ 8–?È¢ºg¾‚zY “£™#‡Uè,ÎN§´@¶=½>£Ûÿqp&Ý*?µÊO­òS«üÔ¬Ù[ýÔ0À?Ϥbæã¦!‰-æ+Zó.­Ö%%~Ö-,ogW¿Š£Üý™ §” uç8 ÖœßŠ‘âìuÚŒçÊRM† Ó@}G“pY“Šâ¤Õ=.'›³r²9)'›ƒR²Y‰à…¯qɰRR6«µ$Ùt@ŒVt@Ìön!*­"ù|ÏÄ`Â}·gb°‡ã¾Kä÷9%®ì‡˜dVWË[题ðµHEPÉ©<,ö†âžØ‘ÊØ’õBtR‘6kâvS”d-Ñaônp‹¼Éx¹»OßEÓõõõQJu™ÁG‘¾w”³*­ ¨³òM< ^•¦ÛQ:/ºEšOåìDxSžx2‚­ŸÚ›ñ§äEyÞ¾Œ'Ϙ\´ Nr1T»x³Ž~²ò]ŒB(é'ˆ² ¡}“&Oh u›”n€±ëeÜQ)oÊbl/Ò§!ö®Tg¨Ë[Ž(‡·¤L¸\H40ùåsaFçG3‹ “¾ƒï£“ʨ ¸ß¥ó‰ß2zX9`ȾW„rÅãÛBÃòò¤PU<<)AõI3¥¨iÒøìÌ(„PåÉTy¶ ’©tl\*Ƽ\\%l¼[Þþ†+‹Übi¸ºã?~œ ù2ɧÅÍÍlù`‹”æ'ðß;$ !ÿŨÌÅLo2μRñ ß]Æ/7 ëÝÙ_ŸøDu1  tas‚fâsšý²•x•e¿l'Y›@»aÊPÝÈêo›3Ñ[S±ó^œ…ÃÁ³ÈT •Åɸ ;³h™²°%n‡Î-ãaòÆúÑè%n€ÒEã­¡ð BßæPR¢ðüUÝö²‰X˜³ ö·ca.wé ¥×1%o‰ôÂvx¾°äZ¥{1góCËwÑÄî(Šûé[mZ›‘ÐÈòezèÂ]FqõRmÇáÞTø(NT ~££m{8 Åü¶¦1•Ú )̶.gŸùþ¶õñÇÐ(Ýp¹ÁZS¼–Öê¬{\lE›ul´YœÑÙ°}ðæ†°Û’‡TH£j×[Wë\¬YÞ}ÝHŽ£<-àYÉ[ÔØ¬E[ƒõ hѽµ+:´y''Û©>²ži‹†Ú:EVèn˜Öof·w7×SA:hÚÇŽoiæÛidXÚ%Ó¾£°´‹¤{ó±VÚ•ŠwŠÉË:~b<ôÿÇWŠhöß D$SØDá\¡no¦×Kp3‰o H¨œyju3€¹AXÈê#.‡ñõ̑Ԉ·=Èâ™—ms÷Ý þ$d€0\×¢—ŽUé|õ«ë+ÛáŸÔÃ|£ÅŠy&¤::Óàô%—ú)uÉ n1ÔžCP鞸òæÉ$ }:ÓÒ°×,+DÎù|ãQ¼[¿РIíæ{ÎÝœ©º=|ËyB³4¢­óv¾A‚@+\h‡'í„'Ý /,‹._À‚9 óí‹Y`éÚ‰µqjÔB?OÔ[1pˆ]`Žð…XBBÛ¥w÷–ÓºÚxçj ``êDoæ ,dÙHHå¶ÑÖÙav3á {x5ûéScÅ µ3Šk½Œ:ôxʸü?nÿ³³·ÛIãò+ÿ‡xhn¤ý?Fÿ9ªð?ÅSáŠv®†ÿy&=qüÏ‘âÎ2’øŸ£ÿsTy¸T.ÏØÃ¥Âÿ¬ð?+'§ ÿó?Ÿ"þ稜l*üÏ ÿó§õúªð?+üOcVøŸÖœ\øŸ#r•ƒÿ9Š]×<øŸ£ ÿ³Âÿ|`ÿ±ÑsÆÿUøŸþg…ÿYá&}Qášñ?G«àŽ*üÏ ÿ3~*üOk†?3þç(ÿsdÁÿ=0þ§ a)«s,œØ|H:9A+½ÈO+@WŽV®!"ŽìЕ6håCIš;.J2¸ãŒP’£g%9ª $ÓO%ùSBIŽ¡$GOJrô0P’£ J’1µ…!6çà<ÊEtÁ>V€‰`b˜ø\G67p‡ÿ÷Íç’=þß;€ù‡þßív³±»þß»íNåÿýMŠáèôõ¨;À¹2:–±jýÁð¤Пðé…:U7·wîÓ­zßïPË@7¶júõfñåfz{’eÌÍä¶yÌþu'îsÒЋ÷ÈvÉo{Ó/èÆÏ9(ÝB®…q8ñ¨°8lÒîy¬‡^7¼‹ùçϳ›Ùõ­Ôná)úiz­¹ç¢lñY͆ΠðöêÅE¢ ÇkÌê¸~,ä¡‘d£z¦yòæ7ÂÅw4N&>}±‹hŸ¬©~1èE£{Öäò¨y\‡~ñµÑƒ…ænšÌåO“XÍÞ40,¯ðÄtäBÃS˜:¼:P§`÷ž—Î|ú:F¦9+ìŸŽÝ nJƒ×ÑÇà‚pÜ ®©'òâýÑhüA÷Íé¨.~îGñÏ\R8p{Q¸Ü8"(F²¹`;nʸ™ÿ\Ňl´4§ òbœú}‚¿‹ÁqxãÀŤÛ«arù»ïó¤ïÉÄbÆy’S¬Ež7zJ…ËÈ—¼{ q(9z¨åê¡îˆ_JȯÿÝl¬¯¿hzßyitŒ•Ëõâá?àÕHƒq‹mx›%_ž¢nߟ|r4Ròføà¨¯µB{:pzºééå†z¼õOº|ä9ŽÞsYIþÐ?4å-q×ÙdÙ‡R´ó97Ñ«ãÄcsjqÇãÆžDŧõh6½àWÁ ~ü¢_’Ïè¨{X£cˆ®àŠJm4ûº¸¹•2°”zo§_Xm¶ýe[|±Eb°~£¤þ©"qíÍú°MœDZSoµ`‘ÈÙØØÏU ÑöÉÄ`Ÿ6WŸÃkº´F‡¢GˆTï/u`0ÚKÎ*iË⥾žl‹3*¨äŽ^²*c—®ª¿LS“þNèÌ* ÆÊ"W|ÖTg)l‘|ºÓè1àèÑ|+…ë. ÆÖhÝÎ{•všÐò;ÆòÙÓS…¸O³ènÉ@kÚ4s=Z¼°¿ñzX‡Á5ãAÈuOú±V­qi?^ò6ïÇù&þ¸àÌ ÏLý  Ìý±¡×ÕSWA—JzSvèx…ùƒ·V×*wŒÕ å…M›¬° Iku­y—ÂD; ÌììcC ÀŒÞ¥}d\ “KAÔÅ1&™¥[ê\"šÇ޹jÍ8U¦øÏŽ0Pp«48¬{ªCJ Õ©ú>lÕ$ÊþŒ'§C}Ü[¶Ô-ÓËOw—èMq}A1¶b¿úô(–/f_g× ’ÞHÁþã o>_.¾'C¼æ¥ùƶv'_ãó °yŸ~+’õB¾åÊZAµõå—Ä[¨ùÒ«WC—ˆ~ ‚àW¹š†«¢f)/†¿±‹¯Ÿoo>×és.>—¬6Å( ¸Ö O×åunòÇ|ɦ—ËElÖ²ºý¼¼ªÃåÄ?ooàóæöösÊL'.›²õ*DÍXœÖñi R% UÔ{ÔcÝU=ÖéÔcm ýÔ³¿ß‹_$¯ü©.U*uE·bÎCS¡ÔuõH]WØ2PTu]‰¡çgÍ@QL8ÔåôzùÙ4 ì€H Ñɤ‚‘ÝbThU7U„o |i¦šßbN›¯0m¾òi“žFâó+n;˜äÆ8³šÙ†„7€”oÉ„rw&ÌzSZeô¥>iNëSÃ9©É„³‘ZcoÏòóÍŸ¦ö´½íIªˆ-³7(^PØ2ê­UŠ æä” @d9í¸iЙwß}Ï÷{lç¶ÅÆŒCÀ ¶&”W0Q!¸az{;»ú ¨ wˆõ€ö,ÚŸ—x`‰ZdËÇíR¦ØS|&‹Ûé%»_ »à+8rŽÍmp¸ÍKþ§âÝ]åÝÿçÿaýk. Í/DEP.ú r肃z*ìòþ+Žù[ÆaaWdÜY-ãÿ¶fÜVúL1aŸÍÆ\¡Ÿ“m¬»Le ½*’Ò Þ‚êðMvm;õCê=xl‹Ÿ`ÑÔe¤ÆáûüòRÚh“ãÕŠ[Ð>=ð*4;Ð /X£qN¿ˆšÚɆ £ù¢{cþY,™gš¼v9C«)ÈÇû07ä|h(Ã6šqlþ-Â((k êÓ?} àIø_»Û»fàAð"¨8:Ÿþãòÿù×Ãà?îµÚ þãN…ÿø 8 uüÇÑY…ÿXá?Vø‚ÿ8:KðGgÿ‘ÿQâ?ŽÎ*üÇ ÿ±Â¬ð+üÇ ÿ±Â¬ð+üÇ ÿñáÜÕ+üÇ ÿÑÒ‡þ£5'þãè¬Nw½RðGgd„OgF Â¬ðÿqtöŒñA Zá?Vøþc…ÿÈ,x&þ#|Q)ŠÿH’K…ÿXá?âSá?Z3ü‰ñGg~üGÜežþã\µh/†N"Øîî¾~Ýl‘^ýjëã­+ØR¹à`-ˆe±&x´tkMÞÞZ´5X_Ƕ— ;‰›CPÃjW[×ë\´YÞ}¼˜O¿€;’³I°­²-»¶¹Ý‘€Ø¬õ7÷Ô^ôU‚°y’anú…6q¶­‰ÇGØ4%ôèl×ö톥9ªÝ;S©ˆž– Cô ¨ŸÑstö”=¢göù©=ƒ ]ËÖ`³ÁÖë9¡=ù”‚öäéž&´'¯ØC@{B?UОð<=hO× *ÌsHûD%ïéÞ ÚáI;áIwÃÄ‹ ë´Â:­°NŸÖéè¬ < ñË’à_=ñ­ÝÝ]Šÿàß,Ä4vªø‡xh¡¤â?ÆC%þÃRŠç°ïÑJ Þv1RSåPo°öl~­øŽ$¶CȰ"ñ“‰êÀ3z(‡½’q”Æq§è‚øcÏ]¡Æe(?®t1Ê ‹ñpaÄ[“Qÿ…ËÇèxLö¨­ƒÓ¨ ¾¾xvA ¦h…qá6€žËÚŒ±ÒŽq¸Óv¶è ±C6c}*üøy||‹ï}ZýY’ï½MU¤Cº¾hÆŽùäÅ~¯eð]ÿ¾ËXɉ~L>ÛÊXðÙ1cøw *ÏOú/0-ùiÀg(š•¥½’ïý8ñ_Éù~¼¢ï¼»Çù ¯5ëTH~×z—S<©öl6µåsÂonå¸Ã@íëìMÆë_ñåGµµã6%´2Â_l8”ºiéÕïÁU~~áâýy(>‚ü }£ÉÖÑæ {eË÷ü?óéi/õÿ»èVc¬º¬[?fSO'wÔnÕxƒSôþ‡yñA”Û^%\`8Dg;ül¹2‚ÀâÊãŸx+‚ûƈ{~ö]A‚qoðìã ¬¯âEïÀ6}²öLbÆÃg›„ÎØg$Aìí¯4öÌ®þ6?Šm †:t~òž¶ÐÇ‘b7„¿+OàY•¶3É4ßš¾”s’?AÝwµpø1e¾[!” 8Ž€³y]ReÿœÊŸ1u ®ác²‹€]‰. ‹[^M/3/(ýÀÜâåƒ}¯%]àwÞ»™jÓžpÃt«^u˜>è#“:Œ*¬sT©.Qñ•!(eÆxíÀc·&d9^>ô¾ÍªIâTé ãµa±O'¯Œ²¯8¼ê1.$z:q!Ñ}Å…HA^zùý'žbDMÚèBBá1!Ǡϣi‹Ë±ÿžÝ,ø®8ƒméjq0žß¥‡ º,Sürð¨°ò1nõô–Æ€oc±3+†Ž|º½üaéiÚ¤¬½Œƒ;ÜÑ™+È%gƒÉ¤;ñʬÚAY™¾¶;¹ÄoÄŷ …«ml)ߨw=ž‹°ýrP2F¢t>0šV,æ¤'îD¤æ÷[Þ e¾ÅÓoP1† ˜øÑ\V(ù–ÃÏ‚¡JÚÔC²nÌçy‘T?6©xWMi…¸œ;ÝdD-ýŽFÙZ@ÒVþæ8ý©d¾¶ EVFÓŠùóóiV4l¡ÍêƒVöJ8Sò³·±V×nˆä]îV‚òÌ­JPþM *<„7l€ƒÁj;2/Æïn®(ƒFß«§A¦ª:¬¹ÁÖtgbS‡ cbg• ð3?Þá:ë^Æ™{G)6d“(¸=äØBïÀû–QPdZ¥¾ À¬·Õ7¼Ô0A42Ç„dk€ý ¬›ðoG `€HCˈ¯hbih•jHi°—ã¯-µpSi:FËR0~*옮øÿÿßnÀÏ huZ<ñ?6«øÿ‡xh¦ãÿ?˜ãÿÖÇ À~Ì8HSXö<² ¿,@ï)¨ÜŽÏàC ðÁPQ3þjè«pZÑSZÎ7) 0VÀÁOp`",€a`ȦLAÉt~AA«0A@)PŠ`‚ Â ßVð89ï{ &Tì22!8$» ;RËL6(Ô‡ A&ˆÝ‡3ðAj€ŒD„j:G¹%*È@À> ìȧYàyñ³ãø >dYàƒ@ø€×.ütÍîŠÑ°Bxš~f„1qŒì‡T|ìýgŒ=°÷„°öž/ö@¦ê+bìÁ¨ÂüÕº×0N« ÿÀ ÿÝ*È¿ ò¿ï ¾­É«ðþt-Doýôþ¢Ux¦UUx¿ñ¹ïð~1!«ÿBãP^€¿‡çÞo¾šöbÚ`s˜UÇËBlä6MÅ܆<¬¨Œé/ª+eqòÓ±» ÒXÎÚ&µÃ"8¨®ºLxqmð댷.niáÉavÖ¼Ua˜é€9ÀXÞó-¼¨ÙW‚€X8öó°@ªÝ< , Á_9ß^d\£WïfL‹ÀlßìȾ•À”à›^΋gàM™y!˜K’ò%°@¬V\S6¥4b‚¾?ꛓo,´»r‚[ DÉ!œ¹¤³ ‚U`®S$éR¶8S„h©gDkA†P¦MÇùàXØT–Y)ÖX—w‚Í+U¶0 %Œ Õ“K·˜“4UļfpôÎäÊ’8×@PfÃu`ÎÍúA£ß<왇¿©±.ɉâ^u÷üÖ(üf‚€`Ò`N}è7GÓ%ó¥tjM®èh5äö÷NË…¿†m 8WS WÇ©`aPÌVÁ€Ì© „­`…+ØÊà,˜­½| V ݺN´î¬ú X,sv»û SX-Ô<ˆ,^(t†Û ÑW>Æ¡ÜGx6D>0‹æó2°.˜* á.´à÷P‘Ì$‡À^°2/â6•‡!À ã_°² 0XjZP0X²F-@©KOÈ&”ÍÈñŘ7Cþ'9ߊžÁVÞ#,Oq¸—…`ÃÓ`ê–b„ÔМ¡Ój[ Zƒ… k°²®,è–Áa6Ø W ¶âmƒ¸p°`È OÉòNtñ`ÁwæÀÞ`>­­C}ß ÂÁŠâp¸«¨¡q|0 q$«È ™ùÁ„ÊÁ’cÆÌ¡iÓTtß 5œ …ö}3F[ 5郩#‡â¶êfA¼ö€º’øì±Á.÷‚>˜ëƒå»Ì¼ìý`Úf#0–ÿHýeÿIÀ~k‡às(¸!OgPŽbùsP%(P(Z¡+¢‘|x"h$ÕóÐÿåöãÃà¿4;;;€ÿ²ÓáßòÍ ð_Ú» ÿå!Zõ)ü—IÏŒÿc¾¤¡]ìBŒÀ|éip/vTGF¿ÜËSEzɉîÒ³bº¨Ð-öq/ ÓeÒ“˜.“žÇ…~ ‰(Qaºü”˜.ÂÞíRá¢T¸(ÅqQ.gÓ XjÉ ŠÒÑN’—0_Þ·P5LRîFL¤B6©Mž²ÉsÄ5±Á‘ £N, ¸ê¿¬+%{%B”8òu#w6<\òØitT÷â¸ðDÐ,„q©gP]²§DňŽÒ} r-¨u¡ºãÒ@R(çþ['!RÈJÅù1R8Ê¡F9„«KT×AO·¡Ÿ…p‰«"£8¤d¾-Gƒ”Â;ñ†ƒÏ¾øæßÑ*(*8$c9•ÖëOVŸüðöÁ–1éšÊD^¿ )˜M=ÜQ»UÁW€Œ0X&£ƒÅ>¾œEÅ`M‹ÀdÁŠOzp§qd4éæ í=~v |¶ÄgG|îºóá—©§ƒ—Ò?-0…ò, 1¥DLšG_abïÆ¿‚]kmÿ<\–Iïã²LF\V¥­Áª(f¾@hÁ¹çƒ`i¤þÞô`³d @Kæ¯qf Ý––uFÞÊà×hFTm„ôO•>Üo è$¼ß‚±}E„Z+Új¬¿h“.©Æ³ä¿ls©—ßi7|ú^MÿœéVR. ϦË98/Ø\ofw×| Èë>”‚,ªÂÁ„ÓëŠö§ŠjM¢­ðͦëM‰µ³“2b¦ò°a7`5ÖÚˆ¶ˆ¹íÊÅÛ r‘4Ê©<²RÞøüµMɇÉÐ\7p[ »‡å€ïaÒúåN6ë«‚ÙXü‹âåЉß˜Ž$mÀÄU!pnæÓë/w WÐp'É®¬•$!hÀ&Aµp«ŽøÈðÓa *ßµº¸Y„‘ûE$áw{RÀ?÷q´2 Ç[Œvçõâz ï³WBO ðWðüÑîì€RfMT˜ï‘0\ž²LÃ×\ñVΙLßlºl¹`ßùá<½æ# >_‹‹ØëÈ‹ôC:@G¤Ú5Ï´Ö]g âYóßÖ×ÝAÉ\°Õ]“é"Z§¬; Lée1YÞùz™@M¼‘úT;škÎyøg˜oâ“ÌB2‘ÔØ ÁBNL"L$—£™}b&Ji ¶ÞlúñŽð¡%§5°G-Äæ‡uV¦‹Þ(]”`qu‘#¨W‰›llÁ¤Um½{×<ƒU:ص:Ñg©íÇÑr»Ÿ© d1#s1Zp¤«ƒíåÀZÂ(†ª íÓѶ(>þ›7†¾rsMÕøEÒH½= G?_|Tçןç|“þ±úàöfp Å<ÁíÜ~ÁÁÍ~%pi F“Sª×»û5`‚Å+jAIkñ W†ÅW8 _!ÎÆÆñù&î³øÁû6G*è¨H»33ÊÒ& º…¦õÚ©%2„žøT§¥iMꄵRJ³Åy›JëÛK „`Þ¨@š¿x‘]£ÈüÁBÉ}#è”Ên‘H±q”CX6:#¶3R)ËáÀßÜÕ ™Öèbô‰‰jz§jûqÜWa]_ |!†ÌêIŽUr͢Р"fñ*§ŽI¼ÊÃZÆÄ=ïÅ ±©ðÔ#%x2¦tla°æÃ`Ê'a†¥±ó–ÝáEè`%(ÆRjh–Òž¦!L‘°ƒaß옛–7RÑœ‹º1Ó‚ú¸¸»¾XnÆhÕðoJtció¨p„#s9†žÅv(WŒ#+c‡Ò#òê¾dË.ÉÔݱsï³:¯„Q<Ø’¦-éòE*Y³¦À¨K&aW…q ã’bW ½d«G_²b˜Ì‹ûB“Ì_ºaæËdyB3™j (U›Ñ4 Éª¹ì†Dpîš§^pgú!WåòiAcÍw ¸ÝWÀ€û_ÐåÏ…%¨É–@T–lŸ‹Jî7Õ9ZÍõC¼èùlEe+bPä=™qØøi,çÔ©~2ˆdeêI—ŽaµY@mè KŽ<¥õüØ}n(awœÌ6ey¹ÊÖF‘¦É®66ö}%'x˜)‹Lð‹/spÎKŒ¥Ÿ("ÿ¤hýC šCÔUú>¾›WÏhư¶Ç²cgÓ¡;Ïêê[¸´:õ·6å­í4(ŸÎÂìëÌab×®BI|ÿrסȄzĤž?–·³+U3ÖÜžãÿîóýºqˆÝÃU ´Oi T¨a¾*%jê[L¢ö#c½Òáyp|ô¿iƒ£“z%Rp„Þš@…RtÉ ÀTÈeÔ8G¨¶µZ TÈñ[ÅH‰:²íím0Mù*¤eb<*P¹lÿ&ÕÎTj UµÔUof#Ó‘øØ±’&½Ÿ +É…ÿóõAðZ{ÍV+ÿÓÙÙ­ðâ¡™œÆÿ–ÿ3$_šȞ…P¡W@φ]b h# '£>¿69q€†ã ¨‚ª`€* {€ÒÀÔ h(–Zy`3ø/D«6” á=—QA=<„PapŸ‡ÁúÅ „;*†û'Cèe…!¤½WCÈ$`‚ìÂ*€„Àm•ÙiÜ  è‰` ¥Ç4|ÚØ?üŽ"0†€Õ3Äû ÿ„##~ýÙiÔé³)>[â³#>wëòšäΨÿI^½ðŸ ÷§DܟᯂûÓxÜ~ðñ¯x‚è|¦(^É–ˆZáÈœ@±DPo§¨ [°ÿ9¯í¥}×Dl±Óom5§µ@ä•Ä3lXÔ3,å6Ì8I%Þ`ÃpÀŸËHD^Œ•ÕVò¢«X¡U,ÎëVP• d#¶Š¥ðÚϪ{Ššð_#Ö¯¼tTOø¡‰\[xy ZíØ½Cdk4›ëúÐL“íw·1»«UjlA ¤z ;g áÆÖì Z…V†Ð0#†f0D Nƒa{Ÿ†É’ÅŠ8.ËRÉ ï`î80pØ'êÈdÛ“ªôù—Çç·±è@ky¹\ÄQ¦ ^âÕ²ÓÈ®–ÄÐ%nh!‘ ™HbýkrsÐÕ¯púÍAñÊÀÕEjRÍ NÉ>Ä/¦ GL_OdYÜ›´LmðBJ³ exý[Ìž-i÷“{Û4ˆ2âƒ!°¦ õ¢à"¹E~þP2o "%‹kØ!AΧ:nÈP¨ª4vñ€\B1C¼€!¥Ó£BÂç7tà„$ýrŸìãX…{ŠêAqÛo‚»%¨dêyj…÷(22:‹¹Ü‚µ¬c÷t©Ä³Œècèèÿ‚)Ò8/@ddÈ&:‡¶4}¬ã˜Â?·(Š£Ah¯u¥ß‡8uçã­ô15y¼ícG%ø}Ì yH­ÓÀ0:úÓˆv äT@ÂhÖùÎckËOÆ@®N OéQ½ ìE:ò|(±Ìua£#g:œ†äÂÏY á"ƒ­h‚·Èq!ñÝFüWû=Äw ñß@ЖÚ)êdTǯ-(Ýa]C¦ðm?+œz÷À N ÏuÞ¹À*„°K‘69H¼0±ÖÏ[•L h&Å*Z"V4híÑiØ•¹‚.‘R-…ħ•ÌÎÎŒììLÁRÿ˜âfWÆ=‚ÄPB%ì>‚œ—ËðÆk•µ¼½| Ë[*‘ `¸75\€ˆl€,À È–@ .DØõÜa hwá@„´lh¼sæ‹pûaèÆ {nöîçE×ìzŽŸâÇ+õT®ãµ˜‡`£\öÕ䘵†¦7hPrˆ)=LbÊ„¢'Sû¥ujj0ÏaAŽSx*P¦²ÌË×î`Œ†g;£óà2<ÕÏŒâû¥Gö\Uå o(æÿ¸RꮈîG÷ëçJxXÿJ¢ªÚµ/ö®ý ví˺Úð{¿ #8.FUH)<%4Ú6^Df…4EaÐ뢗®£0¬éÐ öÊi™X*º¼{!qA«Æî=£,¬ZaøSA+<‹Ç…ÿpó øíF§ÓÌâ?ìUøñÐrKã?ŒÌø@…ÞKcAØ¥ÇH„Ä‚´U „="â—E‚è=e8ˆž‘BÂB ©ßãCŒb`ˆQ0Ĩ†øE!z…›Ò³·¥§4¦ Ñó´†‚Ý ¶*êUÈJ²Å½"[¨/)ØÂk!w­"H Rœ%%dS¡S<<:ÅÀLÆÀ¨Ð)ì¹?ct œâ9aSôLvi™+ BbSôJÀ§8|7|°ÁTØk#££*˜ sDü,µan˜Š‘«6O¦b$a* ƒÉHÀTŒ|0#S10#S10#S1òÁTŒ°ç¼Ñû ®B¾ZÁU€KX»$T‘ÍÂÑKX€ K‰•…1LXFÀôv/&òªséAcýÒ©(Þ.£ÚÁX8ÞsÈ«ù!XY¨¬àæwé™üÁüKðbŠÙ ìÍàQÏÆw×l<ìŽ@›æa^ÁøAõ=lÍt¢Ú3L$JK‘Y·X‹¨`-qCKEŸ`«·Ð“¾Åš‘z ¸°ÔÞdÇqaÉ,ñC¹ä™%ép¬` fÀÐP] žÂ[¢ ÿ…•±%AaOwK´%¸ß5é…aêÆçÃ…YeJ‡aEbXÞˆ-k6Ɉ¡bØjh1luÀV 3†ÂÆøKOM­¼È1,x sãÇ0„ A‘IåÒ¶`Ìx±dè)†(ÃAeدtiüN;è-P3,Ùh3ê~\&Ôš¨€íÀµBϰU×F¹hXY4¬ S.?Mðá•ÒiÚiØÊjMöü¹ÔÕÕùÔ›üy8Æt4 ³ Ó¤þ¾gB­Ù/µf”E­iüš‘íC ÌÓǰ9h Û”þ°–G¢IŠûùgöÃâØÜßÌ®°lpeTaÙ<™®}t,›—滀­Iý±‘Á²i>,€:‰zix“~ÛóÀ6¢’æŠi/z*¹§TNóT…èbíªTY @¤Yû•àlFÏÎÆ…ÿòïÁiò§Qá¿<ÒCó3ÿò»‚ÿ2¨³À|‘H0i`—” Ò=Hyuü‰LºïäM:'KùP.o¦×wp¼4ùļG$ÑwO½eP¤ÇQùy,~ûPZøx‹¤1^Kp–ßcp–ßGgÇ8ŠcþãïÇ7 ‚a €aˆºä‡þXq? `Á †eÃr³ø®¼6øùàd*Ü’•qK B† ¬¤.„Ñ1P :2%è>œêx–$IÕ|¼@'¸‘®VkÈf\¤ñv´Œù5–P¨ Üæï·~8Â{Á&‰{™ßmÛò‡ÁOâÿk«Á}ì>1 Ž<€øïôðHÂm+à'$¿bÏ À{”CTÏm¸ 6ކã`HŒ'€na†¯ðÂáÙhÒô†Ñï„æŸˆæ ~‡Oéƒc@¥È™£Þ9p04ü ˆeÿ/ÎFͺŠoq:ry¶ð㣠_ Æu!¿ÒçïÇå -ðéÕ YUˆD‹r±(L³íÉHüþH ”šïd/ËWq­}]Î/yeÓËJ ¿{@&( @F7ˆI"õ4Ó ¼O·gž•Jb ›Åd\½ ÅÂV|,3âwßÿ˜ó/ BYƿ͆oÁÄ5ëG56H\@½QxR@06¢ÍöÆ`Î-þcs3àŠ2–>ŒEŽ,&ái 矂–a Q4øÛÀK‡zÈí¦³ã…'Àë0ïÍå\¸—Pÿ^Ì—|§ý(A²blç7Æþ=»Yˆ[œ9_Œlq=cË+pmÑ 1¿Á—%Ÿà_ùK×° h51šEïQ‡lYâQqÑñbüþµtµQ¼k¨[ø.tÅ>þ`×üÇ«ox×Ñuñí²øÿ®3‹™ç o°¢9,pÒ¶ÏOÎ$šn€òÈ~òß®§I/s±sá 6§cL*²h3“¢h. M»Ënì§0×DÖÞ]ƒZòjMºÙŇøY‹ø9ñãŠË÷7óOk±•DÓ€÷)ŒŸïÃÂx.jñëûôÓŸ|x×B< Sã³\q“2TƒKK²Ù]-¸‹´€´³ò0ûË“Sædñ}vsSR³Ê›ê+Ž ¼¸ÃÙ§›ÙtI½($~1@fçVÂxúmƺ( €ÎC_yKãÂÒƒO»Êj‘].´ï2ø4[*¹å‘nõvÁnfwŸÈiíîëW.…ÜÞL¿Îþ½˜_ðíJjC†|dêØ•æ¹×Ë Ëu@©À×éY„ö—wŽnLˆÚòÛEmºÎ·NøáfÝ쯢Â3¼W ,u wä8ÐÇDœ«Õãã½ÅFgG5ò•¸ëÈî#«õJɵ;[ã5Ûbýuó8ª!¢v™%¯{\ÅÆGØïÕ@Y(|„¹ƒoROu„›]aÏíûý‘ްßÝGØïæ#LÙïé6ÿ¿‹›oÓãÿ·»ÓÜCÿ¿½v»ÑDÿ¿ön»òÿ{ˆ‡žêÿw8zßí™ýÿ\ÈD»&\oÇÝw\YX'b<Æ&²7JÚ Oúý ÿktì7øàln‚äí q» Ìtn å›xut¤g³Ól„0¾ñI¡3¾Ù§‡B—e| õ$ÄI-= ǯÆï+ïÁ_Ð{°"@{†Ž„ôdºã¿Ê_ÍooÅ âhT§%3WÜ1S*Ã,›Ù ~†j2¾é•ÍÏAMö\)Åš*©ØfÈÒÆ†Òð˜Ì׎šÈº i™-óéYž•ãêNƒ›º×àæŽKôÉá Ùh¸3 öläñc4ÈtÐ8)7ùÈÆ“8úšú•™È ² 2»×'ýõ[~CxûNèÒ‰w¤ãZ¡»MŠHôš2BÞ!0°§æMI…¿ŸÞÌÁWÌS>Þkݱ‰&mUš/ÄTÜ×Ü%mx/ÚǬB½¶to,Áñ°à Ò©‘ßÏF&¾GrmŒÊ÷lŒݱ®¯uŒ}Ã÷ñß—ü‹õl„™­øut|}ôhlYÊL^‡Ô%nÏBÕ9y®ïĸ…ÑãOùU…ÌRüïb¾¢‰èg]©/_n¤¡¸v4",øññ¸vÒ®€ÈÐ@×îNí"ßÀ”¯\‰¶îå òàK×OVt¾ëNÀfÒüwÕ^¦Îô†0“lŸL¶!éV;G½güÞý•}MD!Ò¡½“ ›•¸Bh™Ä¯ 2`4±=¿×–6:PÉÄBò<£Åê1ÒÓùZGA#cõÓñ¬)<+ƒw‰+š‹ª#”‚Õ•–mHûx¶X;æO¶›Sh?F#› ìg ‚ý°5›Ã}P‘X=©7’Y¨þÕhÞ?­§-~X k,¸¾ò?_-nf"Ê1­…IYÙoÉÓ{zK=Ì×ÞÍìöîô)Ÿ7|¿½üaêJZVænÄ®†ytö%+yš¸ÉÓ´Lvý™Ø¼©™‹-û&¿&ã£wdl$eœ¶øÑ¸Ág²µ3øÖ³go‡îkHÀPQ en:=cm–PK/X=£¶°U› Í×Å9Ù•J(Ã`d»ÒT398–e þQ¸ò»(wBÈvTšÔWQÑÈÀãe`±¯àF¢ñ®ð-ÒÙŰ}¦ÈVÂ0 +®– 2ÞÐX!âǦ.èÕ˜Wto ²=Y˜Wè},^Á”—¯ ëS DÏÙpÝz…·6h¿¡èþ1«AX¨;v' W eËìž„|›Ü´,öÃ6q,ÿXÜ]^`¸5€WrY„M—,ª¯Q¦…[äèØBr)O¾ÊZgó±,àn’ÃÑDŠþôiœUÆJ Á~véôýXö÷Ý‹æzwßþF“AEëì×v§Mcù{¼å -©hães $Y=TTÆ´”4>O¼=ÓÈ<l5“Êú׿ŸÞÆ.3 UJÐÖ’!un`®Ýµ+5}ã5oª~W7…ÂG(HM=Œ½ f³¥ü éwV#„Hx „]3[©þg3Í|où8›]“qéi.§ó+þóí"³éð=iy÷éÓl¹ü|wI›èßv¸ð}ƾO¯ <phÔzl‹u7Î×_Ôè÷îúýp¾¾q4oŒGg“Z´¾ÎþÛcÅk~‘ÒB¤jùïÕ+@ûWúýÚÁçm2Îðn›ÞÀÜý6K,¿Rõg9kjÂüí£ÍÓ-@Î%~ÝÝYÇ]¯F$RVW?J$æc AsWuô躧$< ™Pùë+œù6é}t6\;LIþwŽŽ,øÂÎÿÿ}}-òãþË=+P£µÄIb«-P —a×-^ö6ò%7ýâlŸXÚœ-±¢(;£Ý€@WZ/÷§×±Ó|ppðwMÀ•;¥W&“—8ÚRsÕ*q’„.˜³èhY(ïª}ƒ•Ã…”£rm¶ŽïèndÐ.MЖš)Ìüµ¥º›jSÈÓÈ<è‘»<Ñoè© ?9F‡~×r_Þçéü’Ž¡,ÍÑš(£—ññ-»——òm.`¯a±©Ìc; Êz¾¬W²¹¹»^—…µãÂvÏe*’ä¯ÄòäíÓâæbv¡†Øßõøu+¶×ñ)ˆFhmI/Ç®u.¶‘ß0VäCYm°s¾ÂdNe[“ »ë<‘øù~Ћ 4`r ˆ¿ü7~`qaäÑÑ1¯dº'ÿâåò‰ZJÁP OhoÁ‹yr\[ÀjÑ;²òÂÿ—ÿÿ§‡ñÿßÛkµ2þÿ{ÍÊÿÿ!&]ÍÿÿÀæÿotó·«-ÿÿØÍßžZ÷ÿÏ Ü,ÛÍ¿ûõf~™ØèãþýƒçàãÏͯÿ ö랎ßW°ÀâØo‡Ó½WÇþ,Ž®pê¯|ú5Ÿ~‹;÷Wpç¯óË1¿r¥g«ºÒ¿tçóÄ<éQ&&v¦{t¤'FϼþôjØþÚ{ÓºQ0–6]ƒþ<<î ní&ô1Ÿ²R±’uǧ¯¥äõëŽüö)òðO9ò»&Ïáðtã$g—ëò_yû'o>4Œ±õU\« €Zⵓµ†<.)0`xú<¢<‘?0 Jx¹âòùþ7žïÃáûßâÆ¾ÿU}ÿ[)ßÿN¦Îfßÿfx½Wà7ñ3ý1ó…gµÊ@`ÎæCˆ ‡!0O$ó#°TJ]Ьî8ø´aB4œ E;Pæ[6Ì7øÀœ(pIàÇ&•j­z7:;Ÿ¨™V¯€ÂEœHIˆ°2og‹Úùû»`«Ú+ŒË–§|ã’š1\ýmö¨vÙ7Æl[|Q+,,p…é±+¦Íwá+¾œÙì¯é§ÛØÅørFÞÄ)Å·aÕëÂ\á.t@aÐKí§¯ï¤²¼øƒ?Ëļd;G¢‘B/œlð HukïØç)æÿ&Çk:¢ ï‹C {€Éýǒߺ¼½ˆ—vfêFo¤ 3ÃôFæX›uæÈkQSêð$š%OÀ ³ÆÜðþ7žAa7¹Zkó„µ $Û¢oppg]h {8û°`crÅÓ0wH ôœi¡­Ú…&Âl1-ÌuèÙj ‚j”D¶pæ—\€Ú%ϰøf¿˜ÒS ІÙRxMœ *³;GxMŽøV,„†­EÂiXI±4¬@8M)ñ4¬¤šcjØ*a5,Od +\S(´†•]ÃV °aΛD'ôZÞ0[áöHW¹ÁÁ6¶bñ6ÎöúCn˜3êÆœ9Þ¤öQbc=:ÕÐKYÙøSBG}Ó‘8˜f×  .ÂqRlxbtøZ´CBÂJA;2‹ÇÚéRÅì1<ùcxñ_†ÿa¯¹»Û„øÆN«Óâ¿CüGg§QÅ<ÄÃ䮯¼Vù@F¤ø”eäÑ2Ó Ü¥§ëÃ=ÿ펻ïñÚßÃøš=ïpiÄÏC52QB<#úƒ³õŸ”ݲ®H']Ùm8DÝÃG@¼ñ¨ñ#}%^#JÅ8£Czò'>ô8œyBFƶÐÓŸnyÃK^÷bÅ —!næ ˆ¥ÁÃ×½ñ{œ$[ã÷çUèIŽÐáõVjèI¤Äl„‡žDa¡'B1D €­,OSR0Q{9œÒÃÇA ±w1©¨Š>¿@´í•™U£æx|9ýBºUÉéºn^ÃqÝšýœ”0É©Ÿ¡ôx:Œ 9éŠcè¤4/g×_ø•LL¬)íËÛø:ï1ðÕXß °þäeAÓàdiH&?ßh‹µæ¸·‡²(ÒžãÞ¶ÈÚÔ¢65Wn?V¡•âlø —Ù«F:›•¢u”løVB6ãbµiªqL÷7bgt¯±C2rz¤ãFª'ª˜ ¶jLÐ~I1A{î|FÝÈ OÀsi­Yttö•¾§ÇxÝáýÞürp*ž½G<p.¡Êåóhî¤/ŠèS}p™éƒÇªŒQr…#©LP»ºô›z”­ìm#À ´ü¼0ö”€¦nA=¤… ·Q{&Õ>áeG„h‹¬§Ž(ün?zû]"0$ç]üè‹OpßFƒáû<òƒÓþcøHËñÙŸ®8¯Ñé ¦ç}ú8…¿S¦Ã÷¯G_% ‡|,B­ çøÏ-øgØX.ŽÕZ!ÄÊP ‚pîb€Óà€"¤¢×=ñyDŸ“žÔ›YB´ê¡Ù8Z“#”ë¸Yª–ñ{plçSÿý9Ô¤ÇÇ­N—OW¤|Oé'; ñÙŸú‹Oך¦·5’˜3ÑtS(™##cvÎ[•AÖíΘ*~ŒÞ|2ñc´‰€<‚² üs°æz· xP²è­#ç ´ÅEŒ¨þOï¡£Õ óÖô-Å_A§^ͯßAù³ªÈŠ«õ”h”ÀR%Ô†¶¤Ãá‰×M_5…¡.íxQ:ÜÁ#é@ô6:,Ë´ÆÁ[ žÅ…ºèr~5ǹVÈåbñUz|ñY©yùqá†)\@@1ÁKl'1sr#“ÿ'½ÝP³{Mz{¢ü©´ÈAˆ  Q(3„ÀñÑÀ;À ÁSÕZücý?}`¾Ô¢MøEàÔƒÑü†]Mÿœi*ÞQ|D—s0’.Ø\(ofw×|-KÕ”ƒ‘ª^ÑÈãòöÄcòV]¡ô$:ôjÓõ*MhèNÊÁ'-b³áRÛF‘6`tfc‹ÙD›ÆL²®«0𹂳Gó]ÖÑOè»<šÎÇ7ט¦sp 1“£üÎIDmH¡ôî;×XË ìÃmÈÌ#†™ÙÝ™#JLdfzf÷O–.ÁÓ[ÖÅÁ•èW?ο°ÙõâîË0XqÄèíº&Ò­F…™ß‚¯Ÿ! /Šp l8Að„ègyÒ%¢3|Sþ‰çá Ø[â0À>]ÁÜÄàO ¦Â€—h£ÆÓl¾}·iÆÏf&Ÿþl{ܵ%¬o­íÙ‡ö Ù3¬E0þ÷×&áßÊlE1û®øx‘´x”<=Á±òZ[šf%nž J-Œ›og ¬!óô¤盩ÀùÌæÂ\áó‚MÉÅnx]‰k÷²³B±ìöû1=¤öJ…³g“‘.‰÷5¨c_ÄÐ<†”ÞÈwµå¿3;%ßïkyÂß™=ž©Q)Áð,8ž±<,}‘›Ç8~d?äˆgê´Ï~çˆ"J"ãieà h;YüL«B š/%Ïá«,(ˆžéqôK/Î⟉¦wæ+ZR8£ÈBÂê™ã4b¡L€"­ÂèF €Ä åÉÏÓæ–6´¿Ñd‚ÒPœÀø^c³&ýô+hêIâòÉaMȃò™/þÛ9:¹þ&$曩‘ûZ§½q: %¥ßÞ8ûŒsodüéqw=±õÞÜ …8N¿˜Ì§Å×)‡›.èaÀìï>y5’®¸GÕX]ô6´ÇJH#Ô%fÔiZ3D i6¯X —¦ð£T0a¹kc©+ßuo(–¸ $ó¨SvÖÂD:a.¢×ìs–¬<=ÚQj‚¹v슢"KiæÈõY3¯­Ùã•X蓤±‡PÓcÅ®Q²ýù`/d¾LhoL|–á@ôaá—]yñ£Â|Z\_Ì1pUqMøÄLoæK»<(+ßJ÷¹D øø,Hã÷ç¬FÃêÊùfv'#m³ÕáÎŒŽ?_ofßæ‹»e¢1¥º‰IÅçÞºyKIzÄ»·È=%h³Ç½_y’°ö¸çÞéa$iR£ÖBì$übÝT–Œk ag ±rbi@@J=³ÝÍ/ç… 'Ù=]ÈbD°VÖt­3‚{1é0Fÿ߈úR˜Ãód#Íòdä ÷+ñ¥AÕ™Cí\YˆíIøZ¬ÖàÀ|Ÿ1ÑÖ€M#ÕTº&ú_ˆ÷T=ŠÖ3¨Tµša ³Õ³÷pýXQ»ä“Ni\gþUÆ’íê 7ÊYh̸Öræ U´å–3§ˆ•¤r\™´Î@YÔxìX!yâçzq½¥l•ÂEÏOpjæ²,ùQxF4Ùöƒ¦1ºñÙHÒD@â¾LÜ_µ·T±¡±uMÀOàŽ—?è/äæi19Uñj‘K ?pk«Ía1sÉQÔ9uȱK-»_nÙÎ<Æ38Ï©*ÔÉèØ°Òc÷¹~b-~¶¤®0šPÓù5ÄVÍBFVîK㣉ΣLNur7ÍWW0¬;‡TÑv¢c“i‚©ýÉ÷¸µhÁno¦×KÒ§Ajžì8Ä7½r‡Ä°M—wý¡Ç£\GÉú‹r×<`ÅÁþF+ìò-Õ"þ[Øæ'¯P)ÃywNeUút±+E”ªVæv©ï‘éAsåRh<û1žý’Ƴ_ÞxöÓãÙÏ7žž¯í£ÀgÒËò„ô5wΣ/ºÐyÆÓðb¤Ïn_óÙ5>x™dAš)zb{“_ÔŸƒÒd‘Ñly &ŒÜGiÉwüDÏè;JC12]Ùá3ã'G3~쀚²b¾îà.QQ² 4tyŽ}׫§6oÅ®vAíÖ¦‚ŽS'£ÖsÊ)^Q_¨é„•<³$}÷Æ­­-rà¤Hdø=X-„(¤fìQ ¬{ê Ç!ÕŠÔÛç¹'æÕ­Ùª‘ó|×Õ€1g)Õ‚Éš­)$­VS"m権KÏåz 6™¼áwŽ©¿ÆF<õš0ÀçT'Ó^~hàԣ¦iü¼ù(XŽg4Coô›»O±k v¾Ôâz þ|’Êà?5î¦ÿõ‰ïF;Ì]3†ÁÍ5íL×¢<¯ë°î´‘Ã?8'†V4 PÖ¤zS—}ƒÁyìçRð97«œ3/¾ x»’©s¡i¼'ÓÜÈYƒL°ZK`צØ5Ý0ÜÓb U‚À€Ú½Œ%ªkÉÊ­8ŸTDµ\†Šh¬&–‰Åä?Jìpð[OF€’…ïó÷.¡ö¿•W®0‹Œì0~ÏM QóØŠn§ž<ŽÃÙÇìN»БâÀ ­‡²ÑÓ§ &{´I0Pï+É¥;Kž?!î,, %êž !³[—³Ï…œíÈ4¶Ãº U¥±os¢2ͳ5¨“Hˆî¡³*kq¢¼èßB±÷xQœdдm2¬úö³å |—‹€„$½{’(B@í­…_iLö7q²å 3ÆmiBËu)Bãv€ý,È4–ºç ‡ƒãˆÓHFJix—®ü|¸¾X²;ÀSk+\¡ÉƒÔûcTÔ° j‰“ºk2·#tp6šCráÌ'I`kOhhТ|öZ_/®R Âî€2˜ùï„Ö áyì‘ÝϽQâ6ñâ…27ŠÝ K¹†ÜÐ!kFàwuµÇ7¬»D'½A¸ˆ¯óo\ìúr³øÎß§{eŒ0:†¾0ŸæCÁeº=òÊmÐû Ax$]sÉ/ƒps Òâé /{‚ŒROÜ@¬€-ĘEoàê»Yco¤Ÿ7:·`ví"Ó¥¤½•…)š 4#ùNÈw2F?—ûÞØjˆ^Í1,¨ç‹ý­qHš[´OåÈEìÚ~Û7l?óá¦,¦t›ß*À`¢f(¦× ¹>=™û}cì5ž9‰ñÈ3”õç?±ÛÈ å6’gµÇ¡Ph,kL½)ä•nãp¿¡²·H @-›ßÚ2aaÆïJ|¢|y¼NÍë¹Í W¬°ÛB¥J…'*õmçJ X5˜‰3ÊÇkUgi/Ü õO0k 2m¸Û´E·›CÝçÑÛ s¾×ÛjJ[“lKõÈu§Œmâ±Æ²€sc9µ«kiÃÇLµÊ‚#Kõª‰€6¦\’#rI=«žz8ì,,âKB‚Û ø°èƒª“Ê×éY"òõž”ôÜ×Ȉ¿<¦O_Î…²WOLçÉ#!—ËsÊujv=K./ ÆZÐÞ ½M]½¢–„%ûVÛ7L³59™J}UT àR/® ß³ùµØ2<Ã.ûc…HI¬ép—¾ý½³Q!›Q,BŠ¡Ú¼OÙ>Y™Þ¢™IA£õõ³˜šÔPÈðÊ3½YŽ%˜¨û ÝùÀ–$!o…•+ÇÛyíaÁ‡sðÈ=R/6†ž¬lE{á~ÉöÂ=¶Å×öŠ»»ºàÚ‚§e‹ûNÀHä\hål+ìÅ6ñ¡˜È¡“ÖfæÉg‘„˜ñ¥÷­àUî Š,©¹^FÏÔ“¯ »ÀªN“€–Pu%î:z«EUâ¢Ú­«£ñ ÕnîEÖÎg»¨öªEõØ‹j¯®ŽÆ3\T{¹UX;ŸØ¢r^G“ʾô€/%ôׯo;Ö¯š>í–‰O»áÓî¬@Ÿ-—êøý@… ×X±…ÇÙ~^ªü¾DÜ¿¬|Àލ°+È”FY„ß¾SˆßžÈ_$ïqÿúÓÍlºœ#×í‚MoÙå Øg3TÉ‚Ý9ÍÁ¬Uï¸WbõtéÊ÷RÕMª¸§3j]·±ŒtéFÞç†Îâ ¿®{H¼ëDh¯‡ë¿È•R½ ÜÞÞ^W Cêѹ¿zàbD·×M<­žrqØi}_÷âDÁ´¾Á“ÿ÷¯r€ü¿ ¾óìîÿïîÎÞ^§ü¿{;;ÿïC<4¯*þߊÿWæ[ñÿVü¿ÿoÅÿ[ñÿVü¿ÿoÅÿ[ñÿVü¿ÿoVª®ø•lžÿ¯+‡ð"þÑ‹W­gGìzüƒß_έ³üyP óK$:rìsÞy*ßD5¡ÔÀŠÊ¿(5ôÈc°»9uÿñº§¬JbZš£o*®cëX´àÏž¸â‚~*#QqA+OÅm{ž·6·â‚®¸ ÅSqAûÛXqAW\ÐaOÅðT\Ь₮¸ ãLž€µ«â‚®¸ C^®¸ +.ègͰYqA›Ÿ§Æ°éNTqA?©EUqA›Ÿç»¨*.èG_T´ùyj‹*„ Úr[N¹Á»B_2Ña@ H˜µ=ë8G|Xˆ‹âÂÂK2èÅ…Þ‡gcÎ'ÜÑ/ÔÅÏëèç÷èËãËçÒã¯æ·²_^¼ _¼Pp #–†Û¥Î½€ÂÝèœaÉN:»ÓUÚwÎæ<—pÙÃ׺ß:_p™Õ›Îè%çÈHjg¥ú/a"šžºÒ8W>1WBЃ¸£´l|ÆÎ<žt>:ûxætŸËí8gw™+æ3gô–'ø/‡!0/„+󸽹׬Tjß|ýöåæû?–ßþúKžPÝv¨£›mðƒÝ—Ia•þrÂÿBÀ9žªÏḨTSå Ò XÐdÅÚ6B—xç­IhHª¿Ñ!ø2škau?QÇ:Ðy]O”÷ò:Ÿ¹äv8 p5‘ÓÖšGˆ“I {IPÔ¬àæ%âòqND—Oˆ[^Îå’äß`é6‡×ŽÛß#ÐÓ#ñu%}öø|<¼;‚úÝí¹¡ûe8Ûî³àP ¤ ØÀw‹/„zê•â5ê‰á¿¦—ßÓyü.\õsöC?LÊØõ ÂYïÍùøMú+óÃÍø±­ÞœQ˜?§é Î;9Œö+šëKÐmUlÐjz¢WÏÕ|¥¨4 Ø›ÃÔ™VþÒÚ™Ó“ GCô˜¹”˜2G¾,L×pn2w3D„˜ÉÃâxCðÌWY”…VdÞå°iö…L1ÛBÌe´ ,Á€õ·JÛî£QÞe—kÍ…š <Å®bЮAj„Ys-¹Oe”Û¨'¿ò «EZaÖ×@ËëSYå6êQå”Tꥇ»ønß6v¬_©¤Sêßcú%õD¡¤þ¥c ফâ”-ï®®¦71 ¿òÝ]Þ*\Ïr™ßTÖíÄúÀ{OØ ÀDL™£‰ü9=%àAÌ«ÿT³><êü˜Ðhã E ¶fd=>ñiTcklccƒõ¯ÙááèýkP£v_¦¸x*A$¢ÙFâ;mêý]üÌSùË žÇ«WãÙº™M—3ž9°Íñ‹ò%ÿõ6 ÔG_i\*Žê÷J¬ ž.]Ùã^ªºI÷â*6ÎQ ZPcéÒº/Óò}ÅG·)á×uxçu£¹-‹ÜÍÉûg è!9ÿAÿE¨üêmøãöööz\§°ztm¿ÒÞwÔM<­žr‘Ž&ïF‰ãèúÖ#M¦8ßhþó?ªççx.§_§ŸþÜjm7_€¬½~qÒ^\\Ü|û2Ûþ\J;üÙm·ñsow?wšôûÎN§³ÓÞývZ{ÍÎnó?vNcç?ØN)¥{ž»åíô†±ÿà‡ÏrzµXÚÒñdŸËéŽ'õÐ’¿ëøaÚŽh±sqŒX•ù. §êûî‰Ô²Ëãq2ž‡›ÕÍÝé/&¤AYOzú±×ô5R0‘b÷Ü¢¶¶ø©3ì¼%FÖ›ÅÝíüzÆj@ÑJçÖvccæóîzþmaåg×׳år6«';˜^Îù‰x=Ÿ²ÞìæÏÙåìšd£îkvr{±½-2‰ßfÕäs:Þ(··ÙøÓô’O¤îÍ—;ˆ\ò¿‰ýòäôuŸ‹j“¨óÄ÷ýhrôúh¤~J]O2ïz‘úðô]ïä.ýqÿ4‚ÜpHâª$uêÞÜLVI²hoÄ¢¯¡^›f|i`R¨É 늤0ä|ôÅ=ú´|/I;R ‹ÏäOö,ÎEZ˜kTÙ¤—àÇáÝ `§Â¯è¡¿Ó*ˆm3vq3ç³JN±%qúá ÙèZü­¸§•üⱫͯ¿ÞÝ®ÇC0…1ª³‹9'm-‚„ãuÕ 2Q臑ʘËYgÀ¬trÔs~ýe›±tð9DªùÔ qƒý÷+öOøG”ÄÀ¢”ÎK¡cÿçºÎZHæ«ÿJ¥õ:ô×µ(DN°ð@¢HÔEt„˜féæ& .hÆÂEà•w;¯âüšØg賓Qæÿž&v*SGG™NNÊRü$s`òf$‹âË2WSbd/µ—Ùعù8¨™ +Æ%o6ß` ù ¹ò“ ¤×`º&±)MDö~üK´}‚¥nÉçPWܾøà©̯?]Þ]$]Ï—/”}ž_Î`*ÐÝ™ý함Ïh²àmÕÃÊg|ýPÊc_áþ7»¨#M˜hÏ+¶#ˆefÕ¨9_N¿9q~}1ÿÄûoɾÿ1ã5¼~|³¿æ|Ã$§~†Ò“éÈ·Ú€1¼šþ5¿º»ýöuvs5¿#Ê\=seŽÀ Jq¦}_ÜüI³p)÷ ¹,á«%ÄfÙ!4Í[^å øGƒ°½–‘ ßnKȦ·J£ø‚’Ù¬R›$›órjçG ÙŒ‹Õ¦©ö/‚CåÍÃæoC5ä“»Öªc=E!#QJþŠ‚RÛ¾!#ûެ5%=ÿʼ»žßªt½´-‰öªŒGó†Ó›éÕì– ˜‰4e|ÚMA4vGÝÁÑD•¦ˆšéklïn fÜùàW—F§¶+cJy7Ü)ž–Œ ÏhÏÐ;9³!*¨–&É.=AO\’ŸÝ2*2CÖ…_W](Ð믆zPLü¯ÈVÃþx«º5£=Ýt.'ýúFK¾ú@‡d\ñuâ—zç~ûgŸ×ÉË!° ’ ~ÑyÛHtØè€wB Áéáyô¹œ¢Þ /õ¡‚ÒûâóTbß8®à7FÉN8fé¬I²³ o@ʤ2L Ig߆{‚ uoÁÏ’Q,ÒÅLc„L"üùþbïWifËË´(Žþâ{Ì5oÁñÝõ'ð r¯ ôg´Hî[uáÚ\Üxô9‘÷УsÞ/‘–/f[÷½î¨ýøîc|eŠëo(ˆìguãPŠ~^Ÿ¿ïϱ|œêtírL¢Z5nˆÏ¦øl‹Ï=ú»3šŒúuáº[§@&j2ªA(¦ ?'½¶+#ž`Þ‰¼eÑ{C_õ¯ù%ƒŸŸLCÍgÛ¨ûJWõxn|A²’{(DWWüDuÎÔßœ¾ÍnyM‘‚”Ÿol°‘¼‹úCuD>^.>ý©®ÁÓÁà4Ò:éfu >e–P¹:VÓõ&Vò@þ`ªÇáôvÊ–·üfRƒv']¦?´~yn—ûûuø÷%üûrÿmHˆéUÚ/ÀŠ ¨k •s½» ¼p,¡S!æÀñíUqq40¿0®ÃÙ§»ÛéG~Ckí—MŸ OóéåüßðÆû¾‡ë)Úàø‹+)[-g3ÅNÃkü†áǶ¸ƒR¾Bl ÈrkZºæoèSËÓ½>’ß«§Œ’Óøw´ä%¿ž²9óeÝþO}Àj¬ÙËÝ·O»oÃ`oD“`ã…wøU`–WNÅì/샰©¦GåHàs«*  "CœúüªÏ»:õj~—HåϪö&®FÔS‚(ð$Wb#°6´› ôq”h_5ëâÕÄK×H²ÁvJ“¸xÁß)É;ß4S£Þ¯¯qlBx¯¸ŽêºULB)1Ž(°Wº(+ú?ÖÔ´Û…|¡¡Z¿ |K~#äš”K2orât¼¸¾ü¡h­èÕu4‹ÞÜe¸$c¯âTòŒCÈëS6ª¤Šÿ9ÿ*ÔuDºà]¿Å+ª%œªY6] ”iafó²Á­¥#ÃÍàwÞQ{™*Ó2@ød² I·ÚáÕæs÷î+ûš\tгœ:œÆROŦ¤È1Ð%Ư 2ü­2"†ç&W“Gñÿ$‹Ç!K$s¢Ìë0IE ?å¹3­.¥LÕHc å5^3×w0–Ut“<œTá‘*œ{EbÑ,ÙJàñ3ßÖ’0-YÄËj!)4DX¿1ð”:IÞkv4J@Dj¯6 Mxäh|n¦cè(l~ Ž|3w7¹NÁ¤à®óDËÜÀŽZ¬ùܹaÝÐDPSg 0å$¤±†ybZ;Ži‚6:Ë4 ™#°vh®> ¯(PÆñß| KŠÖÀ C$_¯ E˜ý@‚EYuê+oÕ>îìãþÊ}Ü_­ûé>î‡ö±õ S§x_Øýe|,ãdÔK£9Å:$ø-ÏZiûš‘6õäƒ>‰U†®CÂßÓ+ÐNÿ¦ë½ $Wzû¾;½Nìà±µöŒ”ÿb¾!ÚK-ð†²Þ<…Ô.ž“:U6"_ ùdÐc@ÉDÈ'´»®{@lÚ8ð´Ïþ$ëdÕ¶$•QÐŒHýŸ™ÍvyTÁŠŸeT,Ó÷Ì“wâ7ÿ7¡¸è*&bè2…¯Y#K…,óÜbƒ{ûÜÓÕLG焳3[K9`ü^Á!ÊÊ;çÁ³Î¢Ö×Ê4«ø±¦>D¬褫BfÈI쎂,ÍY+ʶœÑfðdp÷ŽܽÌä•"P1‘w/2j<ã†KÉóRH•A}¶,ó‘Vº7¦ŽF³†æµÛ›éõB=â9XŒmþ\­¯"ù帓‡³–†§uH2M;!Û‘—D02êðãÇ«Vɇ)fÍ&/—c[ÄïÕP\%ÏóE 30¼D±á»\Vãä‡ê*RÅXËp`)LƒY° f0î>šH–2f´"}”Æ¡§c$l}Àí"Ò;ÍÏ‘þ(}DkàæBkÖÕÏ‘þHÄ)«–ymxô‰¼k€š×/]¡³U•“ÍHó¡™ÈÃLú™‡Ëi P¦ÄçиÇ–wŽL±Ý*³?Y”xÌ)Ac]í¨²AÞÍ5pŠB=šŒø®:€=éôéÿúûK¹+¸Š¢ŽT4!úCµ®.;³Ik0ªCt†ä@­µ‘½ãa­RQÌ]ßà¤-þZ?¿aQÎ9ÙßAƒ³Ê˜8¾³ƒýÓŽ‹ÝPÿñ[¿$ÐÙ ~1ÝHŽÂ ôÿþ@ÿói=BtŸBß¡× Ø¿“‚ ̪9´Ù8«~iäÿ‡P®TÈÿ+ôtäßN¤ü è pûûæÚõ?ϯ1F+lßß«eo_É:7u1fèA©~&°—|'HöühÛûõQ(Ì7‰Š1ÁòcÂNŘ`~\ؼGᬨiuІÉ(%<$I M+BêpoœŒµKP'WœŽBËBºš¬@0hËRjԈŠhmsWóÉC²ÿr¼¥LÔÝú1 ¬6QsTóÉOÔ_Ž; ”‰Î7ÿ¨5G5Ÿ0¾?~Û±‡½îš!ú!l3ûÇý4D??<DÿF Z_†gYüwÖoêxæðë:$Ô&‚ ¼¾oȦN 0§Iêo6\|[eŒÀï&ÌûËw¾[êdî|pïGÜû/ñ8ñßÿ*Þÿ¾×î4š„ÿÞÙãÿuÿ}w¯Sá¿?ÄCk¼Â¯ðß+ü÷Üøïu¯Ç0ð>Z ËÖÔ·ó¥@È^H4bP}G„tžíy‹KM=ý6_R[rX|õ÷ù’,˜8ØZ–”å2ÆU¬ ç+èù z¾‚ž¯ ç+èù z¾‚ž¯ ç+èùg=ïÊåüýô¢CÇÅçÙàÓËÏ í¨m>°z~qã#Sø(Žá©`øþÕ„ê+*ÿz üõ‘ñïñóš·sQ,|7ü?¬l`¾ÚO `¾hqÕTÈùr~…œ_!çWÈùr~…œ_!çWÈùúS!çWÈù¬Bίó+ä|lD…œ¯=r~…œ_!盟 9¿Bίóõ©ó+äüôS!çWÈùrþ çóçiåÕß’/äjýuç1 Õ:<­PúÕ*”þ ¥¿BéwuS…Òo*³<”þ0ø©gÕïHÿút§ŸïzõÓbïU`ÿ¦§û¯Àþ+°ÿôSýW`ÿôT`ÿ®¦W`ÿÙÂ+°ÿ§öÏO¬‹[$Î}Yx~¶WœýZ‘ <+ûŠ\àIKE.`~*rTÍ+rŠ\@-°"¨È*rLý*rÛS‘ Tä2ûç©{­ÈüM«È°°Š\àYBaWä¹€­Ð'5Q+rŠ\ÀV蓚¨¹Àƒ’ Åþ”!üÜ團q‰DØ.*&{e¹ÆæË#­ëÉlu²ÖÉP™ò+SþØòÃmù6c~§gwÌR þ+[üý–þ…±fáOô®®´É•I C§`Ï!ö­Ÿ–\ó XÑîÿ ÿ¿¢åÿæë·/7ßÿ±üö×_Úð”mþ· £Ñc°é2)ÙÑ_Nø_h»TÁZÚFžXêŠ(G-%˜ öm“…[™5Ó*ë<—¡VÛ*Smeª5<•©¶2ÕV¦ÚÊTk«[NS­ù»Ç²8V&Ç|&ÇNer4?>•ÞÏlsü)ŒŽ|j›žÊè˜yž„Šü™Y+³ã¯kv|fvÇÊðøëŸ™å±2=·?¯¹Ê—p„†€žâª+ùLÔÌzÿƒVI¯+LÅ‘^q¤ßëãâÿ¾-‡þÛÃÿÝnì¶wÿé¿ù·Îðwš»ÿ÷C<4Óüß“pþo43¸Hœ®oqó òyÿÉ ;o¼ÛùèH 9̯¿Õº¼, o‘ŽZü×üêî*fÐæ?N¹$>c_–‘“œ”–™Ix„’XѼUÌg†Þo´½,KfâŽÊ8—û­»;Ò±‘ü¨‘eßÀ2¦ÍË@ER䱃›/ Ô;H› jñq~ž×“ˆã¶å¤ \Û9xKKàuõºÚæBt®ŽˆÁ’VÝÚƒ,»Ý€e×)²ì:÷¼ì&?éšÛ-¸æ S—@÷ëáúõ,½¼,¿žëeêï –64v_O8knŽˆn?_®§gœL¹Ž(ÖI!-8_(‹«$¼Ÿ\ÈlÚ–sËå–÷ã^²$.•©Ç¦Í’î‡ýs{˜7–ÍÿÙ„Iör¬…q&^YËדAs}QTiÐ+—)Ûˆ¸M7Åú̪ےÒv3/…­‚7ñð×f³êêõôn¹œµñåüj~MQã¦ë=üBt;—<àé—sÜo­ÊS«ÂsMì$µò4I1ÔZ…ó £@= œ€UY°ª‰‹¥Ö>e­Œwj’¥¦EKHÀñÆŸHž±:+­°‡æá‡šr‘¬æeX¥~V±dÊÄ‘¹'™IDFÀïEôh;R†Q5,=îCaȄŒHO­ÀÆŒ¸(TÝ!Œ½Áã}ÂïoÖ]´©«€hÿ÷ |Ëùmìt®Y÷2¾.¶6@nct¹ÒõÖ/óô™5n¶(«Q\Ì !jX5â‡Z”À,#œ¡CÉÄ ZH:-]ù¨ eÞL4êP 1¨/`tP4¨}„‚E-«œUÞӈ홷22:¨x¶‰£í¦g›XWÑ ª˜È?„¨hQÆ{ãÇ&Ãë“8 #1Í3lô!èŒVhFû­ß Êèˆç‡c Åb\EtÎ!7û¡·Ë‘‡ÝÂpãI¸1ød`]S6҅К%Ã×)uøRÇM>ÔAÛ©Ài†ƒN>­œ+AÀ}·U6/ûºÐ]`¥‹@þ[€ ¶e¢Fˆyå*™·4ô‡ ’?»«Õ²)¦FÙŒWoý8´ù° BŒõ.è­Xw̧„>€|ÆEò±¹#ÕPªx5­õ¤Éãû-"-cÓ|c›¬-€?ÊM8\\£ó,ñâVƒbkì».ÒãÁɸÿ»+#JvÙŽëjŒ^Ó¿Ÿæ±ÛÁ7 kúE´ÛÉ gCKŠwÀ_]˜O$ \/vj=HŸRØ/ø}8J€ãH³õ•óhº;9Dc©“ìùœü_ÍyB`Âÿ ú‚^”2§p©þ=‡PŸ¼Q•£ÑéßÇR#ͱíÑU?£A—>zÂÜb¡4,Ü} ¾ /ˆô†\œüól4i4Åg[|îI•¸ùÍýº£–9à$œ„# ¸î¹‚‹;Nü6Píd@BûƒŸƒA ïæÈGÁ{MD;[â³#>w¼› –™·*zo蟼øo‡=\hXÂO_ײkã"óª x$h¸þiùØp”磂Ã5^îï×áß—ðïËü·‘ôÒ(þ˜èq5…ïc5 igÄQ¼œÍ€¢hq'ãGB‹£Ô|c¥HlAüu9¿ä•U[5ÙÈõ¦É»U‘€Lg"aI\(Ê©öÀPþ ìŠ1ª˜%@¥pAzS¼jy'ƒ±ˆ™@ãG {4 (pIžXƒØ@Æd´—n‰²ðe‹Ï¨Ç s°ãˆfú"vP ªÅrÿEtajFŸäg»<¤5‡£–À‹ˆzréõ¬Ih*aöÄ"ì¹£A´= òΓ¾›Q±{bÜŒ–šl§ §4K¢› ø8ÙïE°$…Û—J}ˆbãZNrÔ2 õ²–¾±ÃÒUÙ.)wWd=4uŠ‚Ý|yËE?vóÇÒ=A˜pÃ244>÷;̇ 9á>ÎÓM6ÛG°, ‹–F`t¦‰Îl)å) té=H¢Å3°/¨MÈQ;¡„ ýõÊf™#éÉNŸJ̹gßbÌâ«/Õ"±¿¾ËQÈ)¹QùÞEQX|xA¯ømvsš¿+´fQXVÐòÐÒªÅÖ‰Ö™Ã+çZé:c¼Å«C³ä¤÷ƒgAÐ PãÖønn ªOµ ’Æ+f ‡ Lkja£Ät× ¯Ü¯¥Àƒýš»°Õ ŒpÎq1ôÁ y3ŠT-Î+g©{§í!õO‹››Ù§[ðÓCs69{—eö˜Äó:d¬0¥¶¢ÁbN‹:pðîiAäÙVQ hœü´¯ä©‡X+j- ‡zÈZÈÆª ›4ˆ€«(èJW²hÆYœL¶#7ªrês.$| ž L×z%ÔÑñ€ˆ[}Þé  ¡6.y3JM¬¼º{7x#Ävö‘\ì fÆoë+àÑz[96BD_…Åwy2Q£¿±â‡@i*ŽÔ³ „–É*¨ñãQ:º+LD<ÙB«ïÊhàlÁo"L$¥åáú¦'Ïšü„øqƒO$ÅkqK8e²è˜ÙÛ¦4î"Ýk(Té„ênÐù[°R0%jÄܨh™KtSÂx=“Ce}mï¦èÊR³d$nåúîdé´ØÃô~CÉj° lðÞE¦Âø·æF´9°f¥˜™„#$ú‘¸€?B0 EPá@¢µ /dFlØû#QožÛ’з¿é@‰üTç(ÂIŒµÏ-Slék ×X—m°s¶ÅPµ'Ð>¦9³A(îØ—0ÿ÷4}Vê¾cZ3‰g{æ–§½é†Sƒ5ËUÊë‡ÛS\«ðEñ_øBïyÖëݹr½#–˜2‹v§[á–æ¾œ™ö2m¶6x—K Ùjœ+§¥,‹›Ù%…ö“!t~Í–ßL`7ƪü&ôO“»ø¨ÁæT¬³J…#¢b³&ÇZ|È™C;lH÷í£Øú¶Òú¤Ñb3o94ºš78÷rάÄÐ…!6IçÊ·Ï´–²Ð5T[¾šº1àe:¨›Lp ®Aêü&µþfm£>:x$ò3Ò? ;†XˈSÓ±¹èÊ;gzr^>­· 1}³Ñ®šA«d7€ùgö8 ×õ›ÅwÚ†V8|@jdY^ߨE›Mï ì&ƒâ°ˆFy†eW»™WÇÊc’ç&ï„|"æ[WwC¿&6¾Þ'®àîJ¸‚mÛD:Y,¾jÑ óÏŸg7`ƒD¯;±7Dh#ÌÙÛÃí¹,í^3»mJ® ©(Á*7æ¼,Xß¡K„pïûsëfömF×àäÞ`}7sŸ°%Ì{ßci¸oç’ÎÜúöœú{5ÁDŽþÞГÐ%Ó‹Ù¿î@O€,®êÒkʽQxqQ¸·!Á½›r,>÷6b Ú–¶”kš+ÃM-ìTq^çXæF÷ÁnËK.uJºÔ1ó½Nxù{ìy9,yÖKÞÃ%/X™œ¶Ýé÷¼ðlRèŒÎ­koÅ{[õªÆñiÏ[ ì SÄ#ÉžØ_áÎÆò^ÛØ}ÜܘïòÆîãþÆV¼Â1×-n?äø}Yä"ÇrÞåX2O_z®s,Ç.“­óRn—2©žó[·LVÄÐõÔØ)ãzÇ Üð˜bŒÞñÞòXŽ‹^6ç2.{ð”aŠÌ5<§ä“YÇ*³Žßæ&QxB2’íÛ”„”e]OÕ ¹%¤Pý¯Y: ñv*C:Ê¥?]é(­ '$›«ú5jü{–x®¦Õšñ‹õë›?–uøüæß@~ÙÌ­EÓe »"Í4y¬ÉØ­Øm”ZÆnz⽑ÂęȎ^·F˜˜=Y“œ™`€ÖF*ÐÅ®+ñø’§šè¼ž4ÌM·àY « ± AË"BúŒÖýƒV™Ò`Iâàjò`;Pô÷y;¬Ïs‹tíŸ@¤;ô‰t‡÷'ÒIŸë»óoó‹™ t¸þ×ÝìFÊxåê÷‹ê³Ä;LÓ-Úrzê¢h°ºî0D=¼a4Çæÿ‚ëá3\i³í<[Ù±óóËŽ>,;îV²ã=ÊŽ»A²ã^aÙqïždǽŸNvÜ/MvÜ¿'ÙqÿÙÊŽe¸°\ž L’ý3È^]‡[3>+”VP0  $ïVÀA„å HÜD²TŠ, @wáoþ4‰ž“Ff’úªiá9i™xNÚž“Σñœ¬©F åI¤þ̧þÚÎðD=ñ…d$Ñ Ijò×õWVF”µrµ²Ò•.; â„Ä3í P~ñÇÁÿòõãƒð¿tZ{íV†ÿ¥±[ñ¿<ÄCK,Åÿ2ì)ü/ ë ž>iÀpuœG Æ8îr ®;î¾G¹¤‡?œK¾¼±÷Ò0Z…ì¥lª—hñm†wM>§U¬Ø’¹^6»žÞõ"õ“az‰ÂZ`Èùèë¼-öï%iGJÁŠ®¥H s-/˰§Ð¹d\†½ñ{œ![‚½w£âhñr´ Òó³c‚0P@€ÃVž6¤˜b2Ç„˜†€šÉlúévÉÛËw }¯¸âgE®0÷¡_ÿ€nÅHÁ• —Í\¡ Þ(j6à@Óo¹OA”Bü‡}µŒlø>[B6ù(ðÓÙ¬R›$›órjG Ùâ lòcùÐ`ýÀ·¤…±ÚÒ½dd@ð¬&ø·'íÍGðyl¨ûá€û›:ÈþæŽKò¢£ºÄ5)y¦ûõ„w`×™wïïÎ {ç9´ópäË£³w¨ 9%ú\Þox-€hÝæ€Ãþ˜'æï2x“Ëû€²MדwÓS.ÞÁ/é\B €Y A:о(©OEõßJÒfâ8>uÈšýÓãcžˆjÔÿ;ÿðø¥¨°!¯·¼ÞB2{.oßÅœ]~[œÕc‚Ñ xB¸#ª½Ô>Q"(_h¢¬‘Ý~ô˜&»xéxDD‡ ëkìήÛéÉ!Ðuæ¢%0Œ>ŽÆ1|hôǤíJ3t>ÞV`*ß« ¯~Ìד½@¢ÍFøþèõ}Že8›|³«Û^sÔ6»Á¡ 5,DoÆ¢7x.*ÐvÌA\Ÿgã~¢öx Ž&ø9éµésà$Jöø,¨Ó}K|œãçd§!>›â³ãÎg2:¦„`?ÿ½;¬—Ç{ y Y=ÃAT>ÁAôtù ¬¯â¶Áß\;^ TøçhÍõm:ð&þ°öL؆½GbOb0ð¼?Oˆ·Rhÿbo,Y2ÄjÆÌ}>Œ=-|ÕÔ?«Ê’¸nIÿB`üÃÌœæ WãéáËÃK|–ü-.^‚¿xl¤ A”ò•9ñ¯­Xq¡‹.çWp^\§h!/! {~;Ã{ùµyÍÅ5’ x‰mݳE &õIÊ BÓ¸Áfúÿgï]›ÓH²vÑ÷sÿŠš;BHYUèâöŒçÐÅ…Ô-÷ŽHÂ6Ýxµí‰ýãO®•™Uy¯,ª@’]5Ó–Y™+o+×õIþB(6Å&—öS¥Ê’­¸§•¢‹žüÜêÔleöX™¤å¶H#Çþ…()^o6}X€0šÊþ©hó9µ*uÒ(þˬB?Þ!ŠÉ˜Œîìv$Ùp‚ûá_äÔ%úÊh8“_Lƒù_ãÏÁltû0¹%|[ µùýðîŽ} ÕKGu‘#i¬³ÐõÚˆF¿GW®Þ·ñŒìWh$VX1—Ìv'~ØÞP¥¾øûÞ„ö®°£¤å€ï¥Æ'ô¾¤â?|ýÎô5k›/سãí¨¦Þ§Xƒ¯„N»Znj_ÇXÊç4º”¯v&Œ£+ާBÅtr÷M0¯Ò 6ñrÅ™-÷\¿å¾d‰V 7<¼Ü5Ó‡õI-Í„¯Õ«‰½ VQä§@ÑtJW­™,Tðà!Ô@ ^Å¿Û';{–®Ð÷8Œv{°/ÔBî8††U 7ÒHC¦À2Ä|ávÚ/ãÅ'&Ç"ø˜àÂ$š«ac¿{ÞO…^#õó³‘irøß å%WÔìâoüP}’+t ^{¡­!©N´5,QaÄQµ RJ™Û÷ “SÈ4PTžcåߣ‚F…ò‚M®IKyk–Y¦AcT~¹™ÞŽè½â)¥„ »#ŒŒAÃtt… ajCð†{£ÁÂü?¶J–†{³}o1ã·Väv`µtŒ`÷IQ–Y¸œÓ\¼!íÜ!Õq·‘=7?4W×ßÈ,~þ&ùë!™X¨ô¿£Ùtt CvÃwÕ:¯`öж@Ö²ÆBùi¬4=œØPàÝ=xHoóCÚö"Ýb ƒówÁbE „L¸ÐÈoŽÉ®"jXÉv X]¡Ö8äŸmÚlP ZžTF¬\tÂx”Ã0ÁÚí!ÕÎxêdäCqØ×7âÛ¼èx|»¸–•½O`b­ëÎÎJìaî§1ˆjD.‡]N¤(Œøe D°×eÇ®¡Àú¡jìpAÏ "áÌF‹‡øœÙýwß,·æ;E@v‚"Ô§qÖœeÞ¾Ë*¬ûVh)áÞ`ü]¸Ôоò܉ ýáß#•I+H”g\u[ÕºUnI·ù{ŠUÎ ¨ÒF[DQñÜ±ËøbßnI1á:¶;ô5Ùx¶#%Œ¯àÃí bu«´¢€ÝH7%ùíÝZ+°°ŠÌÓxöøq ‰Ñ{\1*®–°¨¥uÕÚUW–Ï}öxv)XÛQäš´B×Ô2Gr±!JžJ QØD[˜ÏcšcLátð¤X*Aû‹> ^÷ðˆ é7ÓÉíó„p@ÁÎÆs7Za<ê/óˆÚHýŒA…Nœ« z6z˜ærÀ‚ „©ÏçÙèïñôažá)mlÙÕµ™rK ëˆ9†FÚf\ÆQæ’.V4«1A´|Kaí<ñX–ôà Žƒ+cJ-£ÿ<ŒïÆ×hYnúÕ5tìÐÏ\‰-/hmJÆÀ?M>})A£(²Ý 'æœe»>P`Ðtü½(î³ëÊÙÆu2yNŒ>ÌA²Jßõ›ö‘Î2Ì@~Ulç–t"õžAŸ‹—b}EÛõôÜw½;™NjšåW[!û‚ˆX")Ð(‹”‘Mö_ÚtcT™hʪý9lXã™Êi› µ×Šñ(„…Õ\óÜKMG%Ï)²ˆ,›žïøAïÔ±ãݦbÖ6Œ ´<ž@ÒÉÈg”ø.èŸ „[ñÿ4` ã3\Ê—z½§`ÈÇðç…™Éàô•ÁéÈã“B¿ñ4¬;ÓÞJ]ˆÅÆVâ›¶;‚]×–£Ø[¸¦ÁQ…º žq´öø3/öËGdrl'ýv긪 »š˜n;ðpSÊ<ØZÊ×ö9êæd³ù±Þ‚‰÷rЉ¸'‡“`ô•0†£s/X H’Ža­Ò4\“œc½_Ra±wù\‰Á«ˆÓá»Ìoh0g§Óäét™n²¥Û’zéR„”8¬ä(½£òu§œÐ&'æÜ›¾T}‡)W>²f­VcÐW˜¼ûs£öV{Üà—[—2ؽÇaÏv .A¼eÝ[qBc|mÀ—³°ã©Þo*]‰Ÿz“Ω ”SŠÌ×)ÕÿU=¤è®Î)*ý)³ŸÉö׸·¸å~ýÆt˜¸ß˜†›gŸãë$öÌ÷ÜÍiždúP³ÂžÓ¬81|ìêöð{# Þœ=“„{¢aª¹ZJõUä®jf#rœ< -!2ñ‹^»¡*—.¿ÑãÐ õÊeÆÇéævLÖÕÛøT]†{il$ÛuéÒn2Š‘™7dg ‚ðèÿºx±k‰¥\mI~¨,Óx>*‘•dÔ¯8óŽåÿnÐÄéÂ<÷­CÔìì°? [^âÞâã ¸r–]Zܱ›ˆé“ÿÊâbî+æGÁqöÛŠ­WÇg‰Ò¦¢ü?ÐPýòáDoñ¹$ØÚª:DgÜx¡°O}©ç‡,o^1yÓV]l÷±Êm±XHÍÙÄ/{¯ÕtœEhÖ›·º¹¹jÑ4™EÌÅl¬„HVÐ^ƒßÆ¥ÌGözã½mƒi3± 3K¥ÿœxY4S×a_Q9D©E6_Z«`¦x‘J½„EOnç —®oOm˦)‘Xˆ;†g¸ßPŠÚËð\B‹¡?Kd"u"Ç`~Ix6©ê’¼Eßpû2ʆUÓ¸ZVÓ@ýÅ “ºá]öåtTÿ¥ÛŸ¨Î?çªÄËý†™D¼ªñ7›xpakï^лUu+5'X›z¿lêàF6v_ˆ~h§–.Š?ÿÙN½«S›ÐÖN^¡ÀÂxŒj2F @4ä¢Ó¿¤åÁ ¡ÑKʘС‹š7] äV•¿bÌïìì€Ð˜‰†ÃÕÐÀ,IÒ«vºäJ2agw›þØÙ.üçéZðŸ÷ö¢:â?‡»õý:)øÏÑn‰ÿ¼Ž‡.ÿù¢Ä.ñŸxüç 'þóE‰ÿ\â?—øÏ%þs‰ÿ\â?—øÏ%þóðŸ]ǸÏ?»ëIÇ0£u™òŸ EzVžepg ÃÙ.U*ÀÎ ƒ ò¼f{=܃mÄkþ. šé´ÑÏób†m¶wýQšûï¹qÅ  ™wP—˜YFdæÀËö Ç¥÷©ˆÌ àð²£"Ѐªô"2_0Dæ †È|ˆÌø³ç<Ç­b¡˜ µ”(̉Œ\0•ct£í`þq›/¾gÄæïœ¹¾pæ¤'zr[¿‡Þˆž „FiP³9@f½áei´¡Ei[À”­“U‹˜²ûY1eU4Ùº‚&»¯ÑlÆ‘üéΕŒÈÞ¬dö“’hIC AføY Äxv ÈY@×4°ÙT˜Ù‚fUhYÖª_4¼s’l»1d=“Û²áÆ2HX'ýäq ÆÚÃjÙ> µpZ[ÌNÍX¯í{B3ð^–ÄeôÀDòItA.jx‹{^U™¾¶zøÀ,Zã)Ìàlf ³‘†¼H›ð°¦îÚAÈ=%FŽüf눱ìò¡/Ò!À oÎJ]RÇ”}{\Q ='ÐåÑ8ƒ§ÔÓ™=p, V·³G{ÙÇ{É^éIUþóRKéÅ~¶yQVŒäoãV²Ì‚þÕÆ— ”"ÃE†Ï®8®ÔtØòk/RÀ3 ftaÚ×¶ БºÁ.ªðÂ̘03ü_vì?oà?_Ô?zÈÿlO™ñÂûËö—ée[kE6˜¿ æOÀòsÖcÅø3ùY+ÊðgßòqH’ã–’N™«¯ ¾%QúX(ýBô‰0TUÿ-MäMÆ"”//"ßp|™°ø–âKRUÅÕdRïÁ |sUƒüTKƒî‚¸ç ·çµ·О„²÷^EÙæ1=/#t߆2nžÐbj2kf¼<;ëKZm¤ñ½„î–H·/ÑE€ÒIˆt†Yó¥+ ‘Î Ž.-ß`y :p3€Løs^çf"*Ì„&çFó„ŒË‚GmW|ZL›W°â|ÓÇ<€âRQâ2@Ĺ!ò@¿ 8é¸oÅ€¾-‰ø–®Üyˆy¾àm© l"jÃ…‘sX ŽMb‹³½Ä O\á"ƒ­8L„‹èkŠ¥ÿ0¼ëY áÐ…° âZz­é¸¢ùÖ|@bQ@‚;ÐvW6„/_dµBÀ ÇTó”$@å8É’‚¬¡¨ygô•Îž=%>~Yꩈh•)|à „ö|3…]àgŒ•§Äýñ§³êÙ’)¬zÒi9…•NéaöšÜ|[¬œgþèfƘxLŠðb©bP¤2W=ùÈrÂÅØc>çbÎÉcsZqR®póÆcš³¹+ÐØ… ñJ‘Wm(c‰°ªCŒÉ›/ò6!‹‰ aõX°9$Ä0MÍã’[3 ˜sx3KÎV±y9(1Ž˜$;ûU³ˆ˜Ûâ†Ë„¶ pØ£`§ ÐÞŒâ)û+øË „ÆùåB³jy>±T­G¤OÚË%Õ/û¶n5 0H/<¯GFdNÛÅ“—À+}»å‚îòÃíJöƾkoø[MƒÀ¨Yf±.¨Ò€—s¦]Ø[îI0¢n]Q·¨·Ý\M:äV.¼­l*4ªÊæŠüôg¢<¿ôÙÊ£9çU›—Ò™³Bk¹pµ˜Ð‡Òvú²7ž¨å«m{ e¹`²–$63•©ÀWþ&ƒ¤®—Cïl`W?[á¬B•þyh‚³Š48«ú3€³€™¤°€U•)ûRc¦ö‹ÀÏÒ±«ò6Ÿ ¶ŠÃ(Uâ[•’¥âV•O1ÿëk1`nü¯ýý½½âí†áAø_‡áA‰ÿµŽ‡n·ÿ«Äÿ*ñ¿2ãUü«À•8`%X‰V―8`KWS―8`%˜C2,qÀ~L0×ë÷ÿhvŽ:Bá`a¤x÷×7½ßþ¹÷ù"‡5„ õ®85 R FøN…)ÂH#ÿôHø´#+ÁÈâ§#‹ß,ÁÈJ0²Œ¬#‹ •`d%Y FV‚‘ѧ#K¦ #ŸŒ¬#+ÁÈJ0²ŒŒ”mñTLÁJ«?ÌãVi¹÷ulù®>“ŸøÌQO |VŸ•ÀgÊSŸ‰O |fi°>+ÏJà³ø¬>KŸø¬>K{Jà³ä)ÏJà³øŒ>%ð™ö”Àg%ðY |fu½Ýø¬>Sª ¢ ŒÈ}/A‰“–²ÌÍ•8iΧÄI+qÒð)qÒJœ´'MJœ´'­ÄI+qÒÖ‰“æg¸ry^4Ç v4Pmú9øDaÈìâËV‡*P5y5¥…#yJ Ç*,þ&G^#‡Õ¸‘öÎ F‚üøü÷ÇÙ—?æýZ Èx̪ÁäòãkÒmW%¤ ùcR½Á” º¬Ód"†”•Ïò­!¥9ÄF[i)Í!¥9¤4‡ø XPšCJsÈÓ0‡üðöýÒ’ny^‘glÙW¿û‘‘ãEX’<8šÂÁÁæú'±òã“æÑ/¨vrd¶WJú…þ‰>.ü÷ÏÅÀ¿§à¿ïííîÿ¿“oÃý]À߯G%þû:ºÐUü÷n‰ÿ^â¿ÿðøï]'þ{·ÿk ü^â¾—¸ï%î{‰û¾RÜw›‰Š‚xSðípóE”>kË`´gl£„“/áäK8ùNž?…ÁɃâÐz¶°ò耶×aÆ’ïvc;×À¾à ÇŠ·Îwxx˜>þùZ â ½X!®{—Û üpÝ».êrãº]tßkðîö¹g¸ï4t©› ïÛÜwªm±ïÞeðî]ïÞxwg=€ûN¶ CU²Ù‹A»4X÷ jÃo‹ ¼r¥{´žg ëÞý`Ý3à§ï†ŸNNSxi‹|ƒQp/Ę ƒ«×Ÿ¸zý™‚«ktçW–WW Q™”cÒÍ€Á®|+"t‘=E ë¤= v®D”PížPíQ Õ®tÿ‰Aµ?»ž6ñÂjû£c¶· Üw†ØÞÀu([b¶ëµŠÙ*}…Z„ȱr}hÃiœv„¤÷j/ÁÓå‡ñ»ß?zz÷ù §‹nq’Ú–RðüÓ»ˆ˜®@5—éËC¦wí£é=ŽA‰–.?kCKïšÑÒW”Þ5¥¯ #]dp”¯Q‘&=•­«á¢?$º>5%z¶Á—@C7žƒ\à56R" óç{@@ï> t]-KÕV‚zÞõA=ïZQÏyîâÒ`æÝµ™wK0sïZŸ˜yWCÄšÂ\&#„ùÕRí•è妧D/‡gÝèåݽÜEF::Y7#z9›øn—Ù6¬ƒné±&4À}ùmU¸(1ÁÌ͸õ”‘¾º¾XæÝT,ó®ËœŠX,¬i‚¹¿DáD0ÏÉ岂 ¶º%à¸Sßx[™Ø[)qµ WË,¥ódéåõRËHz ©õ< µºvH-/@NáùžÑ´º%¸x . L«ûœÀÅ—$ö‰@i.hPZr=š–òUhÚŠL@[u hko@[%8ÖÚÁ±–ÆÆêþHØX?ÂãÂÿZ¬ÿ«~Xß­—ø_ôÐͬâ üñ¿ÿr)e'(¦Çh_Â5? ”דñÊÜÅ º‚cöóD‡ã²O½Ù• †kÀô…ãî „Ü*!·JÈ­g ¹µìCâpPÇÔqR@ÁR=-<©§‹emêG¸LU>ø:átÖˆøäíD]Àyá›vè¦+î Þ‚}É.÷¤6É Löz251ˆ&4Ì£÷_²Òzã/­6‰,Nô7d„O2‘r ‘ ö–}„q‘øèÐŽhuUËkjN©;8§pJ_—‚SP¥ƒQ0¥ƒQŒþìºëÀB>î'òAØ F“TfÆ*™ŒÀLKA*íVÙÿìàE´¢¥1ˆß7QBl$ ž17@‘äÕò@"‚ê%$¢Âp…Âã ±H:ê:Ë2j C.µéàØ°Ã–Bظ¡‹^*ÐEá®6.ü«k`Ñ”û°vð*‘}æßîIïg„Ó’nÇÃS8 ˜=ý Vò×dúe¢'¬‘ex7ýB~!¯ 'ÀúuŠ3ј‡MiM+€ß Ò“Iðæ £8ÌΉ­cŒ¬[ ¾Žœ·åì"y kËÂë„6ðµ{1Ö„>X'!Aê¥VÉi˜¦/ š¥c ‰98àl˜¤N¤"Ûæ,($ü³McÇ"³çS~%aE&§=¸ç­”¡[Û¼=ka$ïO¾% Ÿ¼Þ'ÃI hÂx˜Øwhbz›»æƒÇ)244§’øì¡?¡MØ*«íIÜ<‡›å“Uþs FœºØùµ’msØöÆY³•‡…b +9þEã ÌÎ0ÒvL¢N:êÈq…‰9D8­ð¿ŒkÔæ`®‚¬SüûÄP™,AönGy·Ss½ƒEöý7Ô’j) ±¿Ó˜V¼P– È?…¸|]ΧŒ=QdþÑŠª vМhó´_—@•Ï£c[R%èÏîTWì+T¬ˆf;¿`z·µÚ˜åXÁ¤zaÈ5ŸXÀy’T?Øò©™ =*Áñ»ƨ€j(Bà„¸²£×F·`3TÃ}nßc”ÿ}ö»ˆßœyð‚€o¨×ÜÞ`(!Ü_í¤-ÞfX§57Þ«Ö.Øyĉx–Þ îwÖ‰RÐ2fhªT0¾—µH4¿¬)Ó©eC¾qñ^:øøzt¤è޶ìøxá˜QÃÄÕçX-t¤ÿÊ1‰')mÙä±ø9},lˆ…~= yOp¤o,½ äIéØ&¥c­ZÐ!¢ó1âô&¥Dê?<ñæM_lOúñ+~¼¹s »œã´& õùÆ.£ó–Á[ÇéL˜ÕÌWÚF¦Øƒo™:‘„QÄ]ø¤p’ë]¥"Á‘uÚÇ ørO ŽÔm¨œšîà\ÞG¯Î1žãB :õ(4Íà :¶rqÙÂ÷)'mfÚKŽ:ú –#"/èš km`N}óhÇ,:¸PëRðê>¤MIöÊ„â$á7 H\O,0„•E1v§CSò ¦¬ZÔϰâ©bS½Á£X®Ça£:"ÍI#ŽÜÉK"ÑRŸ+(è zs'#.˜ !ry1¾¬bÄ[ü]iFhâ»Ã+Ö08zùu8¾Œ‚&!&,Œ™&ìs»ˆUwÛO˜Uo#ZÌÛåqIiTñ³b?%³BMx¡yb®üa„øAñС‚Æ=›è›ÃƯª‰º|`‰{÷Üs»òm¥@lÙ5ƒe`µRdzCçbƹ—€1x¼€Çd?6j2À"YùWv}{ë¡L¨NAc $‰¦y ‰ùì ªßi€§“¸ü^s°JÞÒÀŠ·dH.wÌ“–T>Ðᕸ9܃cP®#£*ÉqŸJl6óÎÀ¤sŠý" ø!q.È0ahS ÂsàNÎî+l•Õ‚ìóÊ$Ø¢Ÿ“?·‚“nߎß3kHÿîpIÓ´†¼¡ |‘Döç]3kujêo8$WuÒõHÜ>TÔV+ÉÒsgþs!ÉÏ+À4òHñíXá´í&Øbò9=’9‚, Ôhé4Î\9œÙ8]àEŒ3 9‹®¶}Ò=3)áК@¨Um&2Ô©­Yr°` %‚HÀ´pem¯¢-0¡c@ü€è[cÀ“…SÜ“µA)èÿús¢zé=¬)ŽHNƒÃf‘í–DÒ¯È dB72YTzETÒ¡9)ýQø½éÀkºÙ¦ïGËúwÖ³t‚Ë‘.yYÅ.ËG°Ôs$E貈Tf±I¯Ý_ñžŠxå‚¶Yµè¥o×­:Ž£}y®®Xé-]tË/·-´É[šÖfÄZIÅTIFy_eóÌ^ÆÂ&Ýà(–ÅkD±›c®Ñ§ŸgÎã=ÉÇ’aD–„6)@N“€ÎÌ d²œì»¼à›Qêuaz LXðµ6ìâá#ò&òîϱa(ŽlC‡ÙP69à “Å@ìOiàÉG4Iðu°\†­Qµ[£ø8P(% EQÿaö!,ÂÿîÃï€ÿp¸»·Göâ?ì—øëxè6Rðz§!gà ü~àI4àBuñþ˜t‡hgw• /ý@ Y?Ø!ŽÔÀŠ‚Ñ`…_è$Q/fü$ AàÝâêCVø2—±h2âÔ;íòù™¿â :šOÓaxj-} ¶ôIM³íHéO^õåF*0¶•ŽWPà‰ZÀAäö\ÐI¹èSŒ}2‚ ÈIhÓÒaíCN7c, 9f\ w£á-Ø’JÙL éNÝ¡µ’žCþxH[ã¤÷N—'&½ã¿Ûáææ‹ˆ×ÊSë—ª5€ú8Ÿ-(-陘v:û25/½ üñ0Kþ¸!Aœbbî8ÑíTA8-×ÂÔïÖ ¶¡ÑÔ£­ìmbDÛV×_¨‰ÞDl·çI—”l7zoN(q öŽ×þ9Ѽ³·-]ï£5¤ŠR<ÿ½CßsÍPîÌïŒߦŒîvãüè–“ýžýÞepLê² föŠx5ïy5Ú²ŽmnÆJ˜nÒŒ'¬²ÓnoúÙ #,tHÐÖ’à‡ ‹ŒÀJE¹÷ÞjÙô ¤Â[ñõ÷L?YWvÅ0 ·Ðµ´Ý„ÿÆ£im=s„×Ïvˆø] D|hrtEš£«žÃÑ…g¹°Ô97ò4È‚V-{”Í/ïË/kš¹4í”>\“FVon¼ÝLóç-É•›ôR‚d‚„çSƒ7/ŒœáÃ×ñÝ–$wK€o~D5>žÄôZa¤Óg“M6Øû²Wô†Bkå{bÈ^À¿Ô¶8±dž©áPÖä^Üdtp…®Ö &½ÜæóáGŒ…˜ÎÀÞ[¡ýbùž³ûS{§ /ª?ÖãôÿFkñÿÖë{‡šÿ÷p¯ôÿ®ã¡»^óÿFºÿWÒª]z WðÝ9usâšœ»nek“ŽjR “£72;zo¦2 ­ÆMÛàù¥—×ßË[:;gg£›c@ìµF9jU†yUNTTëöÅo'VÂ?·OY3_—&¬’òª4Ù¬U2ÅÙsë¾9‹ƒÓþyéÌ*S˔ťI·úÛšaqÒ,Ðw'q™e®±“(º]m¾×s ‰Õp¹`E|—4I~P2Zv÷°•!=öÙÃ4R,»Š|Qlœýá8þ Åü èIJ.`k'W›aŠòi†ÌR¡¼ƒŽl¥x0ŠÆð³Îd"â O$­¬wíâ]Rýw=“ç·tGgòG{f¯âNÀÂm(Üs¦ͳfÜo —íWÒa ö‹ÓÒ®äWÑs~žós“çü\ðœ+î^xñÀêrœi«ìõý¢œÎPÙ^Z–_`OôÓKòŒ\X®ºf!ý—2qú†5åˆ*àÚM©8`Kœãg {ÏZ}D&À‚Oo  ;– =è{®‚$bÏÐ$óØñFÀcð°_aºS„>¼;®pü°Kfr6d½åCjÇ¿>¯@©z;©T?˜¦?Ä‹‡³Ü7÷*åÍ à ¨ÆÄ8*L¡(–^ ð>Q”²=½“9mˆ#ÿH],žyuñCç:“z³ò€>y3$J®ðöx|¸þ ÿ¤UTû7Q‹É›çµëoµsBN3þKgæNã­å©%Í·êúô,Ò{ÖËгí˲=SCÏüÖ}|WZ#€„ÕN£¤ÔH#É¥Ü)UP“ÎNRì‚TFÒßë!xw¦Mõe8»eN—ù4øb0¨HÏ-)×7 gézD^ ;7†^Œnÿ–™#Óí¡â3Ä7kâ›â=ä´SÕtzüràŠæö“w½íw2xtJUäÅ¡ ÿ°¤Î³àlo¤/!&Ì£t=FLy¬ŽtC!?¾$òeçKÉÛÚî½ôÛ½ïzòœZïØ!~Õ,¶€òp´g4w¨ÉÇNAãÒi÷0<Š$Yö®ÁuVüdg¨|J Õó¨x×Î;%íwY¦„”~VSâwôÉÂÝñp!3^MÆBŠ: Öd0øn¦®’†ø8A²ã/Ëð88Ä'>›!ž€ç줷mÖâÛ6ÓŽ(&Ž ­f”>V©±RJaƽM16úž·<Ü; ^9^E\]Ñ|?eaâ} Óϲ$7¼ò òÕ¯âÈ)U`ú93eeY¼ýsßµÛ?¯¤ÉÿX>mí2³+_ôàè¶_'Ñ]Ø(f¥SïQ:…Q²*K6·0¬ñˆa\€3&@}ü–CþB(Y0ü8,×ÐK”®kóJfº±nMDáÞx„¼¡SÅVsÖSÙù–®(‰”$¿¿@t…ݹâOÅ °_é/ …¾Ä·Ïºß[«FzßWâx²€Õ˜_òB­‰Ÿøš”&(Ž r’þ¤›\¼ªéø ß$¥ý`pâÇÔªvÄc+¹.Û#«í«= èξ)Ôö@ µ=|$ж"–ÂÜáïÚ wò¢â@ýÚZM"nÓñjö«Ì÷+"Í$½¸ºåï64ø W¾­Øê çÙ[¯&×gàïÙ1nö¿ŒŸ°ÞÄ$_†õñ8ã÷ÖÿÕ£ÿ呺—´øß={üï‘"È/˜Ñå:âQ{Ò…Æ­çð‹ðT£~0Ö÷ˆÿñ¿\á;Gq¤°Ç›)zwÏ7z·Ú;+£wðè]½çͽ{”5XUoVŠ8=#N²F¯f©œü)V^H¬°þš5vø(kì°³ovðéüCø˜áÖE ?£€_îËyŸîý.b˜lJÀî™%`÷,/I Öõ ÏeÅš'ò/Æê w½­8d×1O*··¯Ò]Å•s <àÞÄ'OX_ºÃØÇ[,Þ:»‰;(7–ðüÃî–yú”É;Ã]ÏÉëØ‰‰K¶ü¦9x²“w&¢…å<qN¦‡sÑp®çš»'LjFÄæÔxås郣î( > ©AqNx\ððùóhöânú…]„í-ì<«‚f¨ÉˆŽ%t; &ÓE°˜>Ü|Ú„ed}ÃÇàõ1•¡+ ¡GðïxáŠ9ñŒ6ñgGy"ÈŽ"ŠØõªß<–]Ê×ö‰¯ôG (߃Ü‘0cñåÁ—Oß`À|ÇV9F¬õÀ$Ñ›(Ôg¸ãZ¨F¸X‡:,Àä¶¢àdéÄÙäT¢KÅÔÔÀʸÿêvþmö.ãf»ÑÝ,µÇøÈuæ å8HëªÈ";J¤p:¯þQ[ Ÿ~~`ý| B7{æ+Åô~žúôóúi’ ”îzõ”FÒîÂ%]®®R0-,G¸Ð‡¼á ã‚“®º’ãR•žZ ÑñÇÝ€E-×éýg8à ›ùÒÙU0X™GÖ×\%¯|?šWñT™ Ç"&ßÁx¸»¥+›Ýbl­åú6ÌÆYLƒ'ÉNI<éégòذgNÊNç48ãüg7Ÿ†“äonè¸?NÁš5Y«ŽÈ5ÍFä²4¹™Î:XÖŹ¸OÛÉï^M½ ±ˆf¿Â4B¸3å2R·éû¨nÔÊîÉšïÉnõséPËÆA.™1öq©¨ÇôxGW¤#ðñôHG;Ÿ÷ŠYôVtÇ):"m±‰Æ¨D=Q‰D|”C6K…òwWbˆ2ºHŠ 1ô ' ØÕz'xÆcãjÊØAGì`bq-cùãŒÿû¼Žø¿½Ýp¯®á”ñkyè~Ðâÿºzü_O½>û¾ÀïÆ£SÀ ¥pïÓQm­ù½i~§‰¯G¤ê+Žß;…WŒåÙnpÞOBÖºƒÝþœœw韖\$±H]ŠyaÛÕ$­Tú³þD5â\ã,ãô®3ª‘­,ø£ Ø_ƒ”ˆÇ-ç÷dñ¤ÁëöœEšiß§WË?­ ¾t–Hï쟴")ßK˳,îºÔ²Â–ÌP¶îM/ÞšîMo: ÂöÎÛõ ‚ížï ~ö©k oñNp€pQ”ó“Ó»»é—Ä NÛαñîEPAîÃ#8ÁLU1KQ?¶5t§óñbü÷(8}+7© ÒWg›qÛqÕD–ý<šA 4¼óLO§XaUÄx¿&òv‚]| >̦÷Ø´`©"BœÏ.×ü0çøúqÌ5™rc1µH1úNႨ*h&ŸG7ã±SPT>sˆÙè€Qâf6.F·;Ð!ÊçÁFqñí3©…ºnÇ>/‰¢Cëôûé|>¾¾QþîÇÜ byv‚F„i¿sܹ„H†ùf‹ÊîNø‚¨æt E†R‘\Ñ¡¡«ªØªïо“Qú‚£}3½{¸Ÿÿͦ¬Š—”ý“1ŒÈð0¹%ƒL ¾¿·´‡Î׃Ÿå÷É“¼¾¿œooïF¦  De+¨±•C!eF_Ç Å“Õ¯øÉT -Æu&À2Q›4d”,Æ\TÀÖ’E_ï—¾0³±Š(Ó›1~„ÀPQŒ4a‹Þ ®„ #ëÞ1ý‚Ñ´ƒ \•¶‰÷a¤,Ñ5Fó¿¾ ø2 V/ 5=0ãî$¤énŒ#8ÿ6_Œp37GÿyÒ˜±æˆïÐ}N-¸WŽj9yŒ¨1l¼ù‰¡¾Ëì¥SøC‡/O‹÷²!0vMÈŸ• ½ÕÞ ×@S˜•¶è 0ja².Q”9碯\nl]º_AËe%bm4¡ðÖ-”Äß®”wꜮ¾½36C#ß*ïïmò6®j°„àëÞÑEç8šç_$ï}A&ç,Üþæ*Å<œªÊª/cä"!K€†H@]”þÒ ” kð7òåJXª¤ƒ|áŽ'„/÷6‘ç y‚p¨››‡ÅdA+zéœlº€U=úJX ò8fz_ƒº†Ònƒµ†[Nˆá„ tå½À…&c€0[D߀ÕY»×ú×;èÓ¿¾W¢,–9Ò÷VXË÷ö¼ADŸ«`ð¾{bïô@èô k§©f3 âAP¹-¾ŒÈÎÛÅ­ú3.áîÅ‹n÷E÷”–¼Ícéùåß<ô|L#èÕòEUF”¯â*ƒ#¨¨Êš¹ÇŒüG6 ¯.÷¨IÕ¡ÌU`uÅv¶à+âJ…ù-¨RIŸÎZiPÇ(u¡¾¹.¹&A_ª&6¦ ëËUhêér£f® b‰Š¨iù13Õ´Ü`ñš Ê!Ëœ‰3ÆhÚ]ëâô”†jЙg¥¹RÏZ­áCcÈ;nõI‘#žLWAºxÖ&d\Vƒó‹ø¢ “ñ±ƒäÁñ×9ç6 ¦­ }Í1#O"cpîJ4f¨Á÷Žv|3ÒíÆñ/ÇNÖ8éý‚?û¿žã݃Ý=!G­Ý8êZœœ$\‚ÀN›{ô'zMÐÐXUŽŠ¸…û@¸÷„ü¤]ЊlYseª[–L·§š»Æ¯‘-*yMLM«{§¦Å_@¦ök EᄯšÊWrBÛÏ/¡¹>oN žBÝû5÷NAASV$¢µ¼Ž€§T3`Õ L-¢êcÜL5˜Nî¾áŒ%›™ðÑÚ ©¡vˆÍ¢7;Îñ4°óf€)2o. ‡P¨·×ÿkü™™ÀÉ&\è›û & F 4¸‚l: æ÷û;CÔ;4 öö‰Ò¾ã­}ñ­ÈMõñ”¨Ç,»76ŵXm•'ù‰iƒöØ’5%Y¦†ç.âžÉ‰?=2Ð$¹bZ¤^*p¤Fêd‘§?ZŸÅ¤0 +Š'ò€Ôû%M"%bÕ µXÚ¿ ÎÃó×ިћ/;ØM3]½“€™6æº]Gš Jd¤bëMÞd6&‰aP`I€Ø&éJ#Æ¿º2NJüE£¾rðw §¤/;M ©S˜âìJcwæ°Ç¤²ð}×¼ í¡íÙÙ–0´'4’MéÅ ½”^zð§BÍ@†éÅå+˜q_:¤æ²àÓ˜´¾b2ÄüdöZ+Þ}—ÉõˆvìÓô b€UŽ«ƒTp¢jvp;a˜3©ún8vßÅeVÜ»§ý_ƒXq§›Ÿ²--d®¹Óõú»g%’–Ÿ¦À§iði"ÚBãhga¸!¼Î®”e²øŒß*ÆÍɱ„¾aK†mCùæ,,ž€L€æú$Ìý¥{#teÌnx¤6ÝÔ”OÏ™jÌÜ\ÁlDŽÌ‡¡É”-kâɃNG%,1B“Â’š|6ƒ’ÜÄ]š`ð9lBŠp²¸$Qö—§»Ç’ló‹ãJ§m¢‡bvˆ…I>Ìp’mïx±e‚ºò´‡¼a%§Êg ¥THm› 1YI±’eë·R·~Ë¸Ç ´©ºžíŒ‰~4ÝÏWÔ[öoùòf+êéwÁN?éÂÌÖÔ²´ÝÚÉ©X†’Îd²L€’)ùèg•P=,áPr¨‰›ónáI ±æãǨmÂƾGž\=ªhç*Wur´[U’L}ÆœuÝ9Ö¸bU·÷ÿÝ*ŠæŽ ²ß»:ØÝ«$ݾÒ5<¶ Òˆç”ïÙϱð¢=[¯(.ÅxB3ÉPG¾,DCGÊíøÖ.#ëpÖåv|ìüv`=9”R:Î ó‹Ã`)ƒÊ™Ùñ/Ç<‡z7ŠŠz%Ñp±û¨ýÌG— £À¸ÏŒB~;p¡£˜Ú`FqîT„¼Š[Eø"H”bõ*|û¿žÇºËÅçiΦÚÑ6ª ¤HÐ ëa·Œíã÷˜Þ†ò¼2‘ ý*ØØ„wPD8ˆ\@Ýhã¹<üyAðiøáADïÿÚ'߆ûôþ¯ún‰ÿ±Ž‡nSÿ£ß­³ŽFë xÚshA@8PcÑûø_¾«™ûÄ*)€˜CÎú£…?ìõÄbð–ÄF¸J€?€ C°93ö½)îÆ2¾RŒŽ8+]‡$:Í"‚)æ&‡] Fã/Ý@¬hŒzQM8ª NÃ1Õ=¡5á×+þ3F¸Hz¿ºÐú"Ãíl Õ^ ß%Ìz­ÿë•G ,³$»«!m Ê9–!C†à"dwcÂzØôcšZˆ’ÕŠõT püëuð'üÃZ oµ.°f²yþs3x-Ö²3è]žìüS)ìœ6Úý“ÄHç¶P¨]ÉÝuäz’¯›9S7KŽ.øféƒâycdóyLtªI¢<<£áÍ'@ÉõÉÍ%ZH~hÆÌPÊõ´í"Öxz7üÈ J'·ã2~sH[gŠø8ÎÐz²!*}ï‡_Ç÷÷lÜ>f÷ã›)ÐZpÛq‰×"«D-ºüæJÞk¦.›·FN!LÒYëJÛ`‰«lƒç».•6«g’æ­†å·æ¬ލ‚nœ‹ªØk¤ÇZY‚ÖíH¤¶e¨ÈÎV#1[™#?¤ì2'ÚÃ÷™­GoÕ+kJB»Õ$…ñÀY9ÙúgPñƒŠK„´æž¢à¢7XxÄ$Ã+øC}}«Î_ï6¿8äKjhhÁ…´ j..çÃlÉ–`ƒ2IŽ,¦^áw&qõ4m“j4¿ãÒ5ĤΠÃL÷ÝnlzqàâñIØ/åI‘. ÃÓç³þÄÓ$ÁP|@/èëw¹AÈ.)—s´›;mòè¢ûžü óûëUœEi_,­RÌžìŸ LY”ÝÄVo¬ ìW©ªÁ~\áOšLI~bÒ$üleKš4lå6*ægúvTÒ*ÙR1¬²é`Í_vZy“/¡ª#ö“W ÄU‘L×›éi›Yo`Dõú¼Õ1Tµ¦ PܾÕyJìÖœÕ l¸„¯0r|¼Óh%†µÚÊE¯Ð§DÊõ»ü›5ç…ÒÒȹy'•IªA,‡ N¯Í‰JCÜyð¬0]d3ÙªÔ§…¡‚ýV"pÝbx#ò•ƒBGU ÔgÉÞ}UJe…ÜÒ$“5î½Çê›ÆJŽxi«Bà o%ù_šw(¼眂Ð! =&‹¶—øÿ’_îƒ^îòüÕ‡Š?ŽŒHâqÃÔÕÄž@_E»ÅìA Tjv:ƒ¥¸LZÇNª¡Zë>æ±dÍcMËœ:ÐȦoĉ«ƒ(Z‹üIÏ‘É ÓràNcõÍJ6|IE=–¼ª|g žhvÕ§G–Øô2'²²9Wëq§°JÉ«”ˆ¹«Rꪔ˜j?õ¡Ö”¤ÕÔtÕ´DUJWOm½èQòN¹DÏ#RŒñ=\'c’©gø¤¡C'Ç‘WÊboœô“Çšc6e{ù@ á´­^17ô@È %ßCÖÁlúe.dÎ-æqÒè²ù¡ U™¾¶‡çù$p:bêbò×>H î¶fl’¹€Ùt‡Ÿy'k2Ii3/lpÁ2ér;S“é²dufKéÌ’Õ¨PE©œîÿ|28³§o.ßËäZBqcêf¦‰KKÚÌ–±™!]3e>l‰šž@{e ®7ïFw¢v‚»BçSãÕi, Àñ#ò³Ï]u­„ÿV§,–vâ*O£Ñø‚³3 ú˜gF£¢Oö¤î·PôpÉ—> wü³ð³ç,„\óž…—lxÜ2hž…—…Í0œ‰Ÿ‹ÜrÆ/,Ñš(m;ŽA•ÃìØa•Ù¼SÑvØ hJ‰5¦)ú ©ï×¼ ØkÌÚb†TSkδé(àÂ…•ã9ù” C îˆN„´ëoÌþg&Ï/ѹθ™UÖeòê¾…+ÊÙÚ&zqNhÎÉ<³æoKÉÛ]Cª0u~ÙsT2dcSu ÌÀjÑ'Õ‡‰ßRÖ7U«¯D§ž-íÛ®S§å|3³EZ5ÖE[:KM½Z­FÀ4¨ þ¶+€œ¡EÎÕ“‡e¤¥¥_¥¥ßi¬Í”[ÎîÌÁ.ûàÐ8» „žÞ"ò;)ÇÅ>‘iy]Û?¸ÉžÝ_‘ØÔñU"Ü on¦“…Q•<ŸÇO1hÎÖù3·ö«á ”áþÕÀGµ‚…E£!ó£=ðº+Wy«s²S;ó»bzVK^M)–#O äU"HûЋÓàEk:¡N$gª·ÅD‰»Â+—0µ«Fs%ÝuÜ\y¦æºö HM6Œ%½†aÔ°¯àME¡jèìëmÂ"PÚt‘¡µ›äG>v¼œþcÂå¸ð_¾­ ÿåpñ_ÂÝú~”@ü—½ÿe-]w*þËûÿ¥ÄIžçÿòÞ‰ÿò¾Ä)ñ_Jü—ÿe]ø/E$×X âÅPÍ2(.z5%PK ÔRµ<{ –ï …¨æy‹[4¬–'ÓRn¹w òƒlqÝp/—s´›²EÆj‘oº·`¶¤`µ×ï»*µ J VË{†Õòžaµ¼Ç ï¯Á_KÌúæ÷ˆÙ‚{0[ša£½A~­>[ —÷%KÜÏ-Ä=AB`ìïÇT„EÅ<&£Óœºx ¾Z¤†ò† Æá5cB¤¯"v’ }|™B¦„Ñâ ØWLx¡% Ë eå-T†/áYJx–žE~ž…Ýžn|J`Ë]óß=4 ëg Ì¢õªf1>«fa ²„fYjŠƒfaóP³Ðw¨‰eLf°}²ƒíLd™NÈÄ’æ07ãÏ3Ì…U­cU¨kŒ(!måãÃp6œ,`t€²* ÃzÄr¥$GHë[oíÑ"¸ºQ»ú#¦`n¯ôC¢@.>ñ<Nïü¸uJpw³}4z4û¹×¢?û—ç=úo« â„ãM8fq!€ý¾ûë›ÞoÕà"­¹£ßZý“?(œiò+ý”.Áø×´J˜¶#üáx…|͵lÒ$SŒÓà†LP }²ˆ¸ƒëgîW> t'TØŽp™Ìûì>€G¼ 2u§•¬ÃUÝjt(>Z}³Ê?9Š?±¿Ü Ð6H~iµ›âGWâŽjšÊ jáævüKH‰w: MzÏç’oŸ6Á´ÜËèØ C´µà©Òˆ7=Ç¿ÊÚùU«ÛŠ õÍ׊ÜòøQíÆùÑ/¦÷}q H 0ëøÂ$5±_ÐØîŠ(?~ÓdE)JTÐî“C¢cçgìûåщ@˨RŒ¢FХȈüd)¬3A¹E‹³œ–댣%hdÞQò‡cža÷AÝðÓQ5–£'&- &] G(yPÙd:ýãpç‘jiã§<Ï<ááM D ûÏ/ w1ù“nŸ¦‘µUÙ8ù<ßM'¼ÇrQr’ ŸRèXÞÉ€ßcجIS(aÜÐü …Ì`c‰Ïýù]ÒP¡Ä5þða430ŽñËEÒ H¼†wóDl:¾@pŸ0¨Š}áÚ¯„ଅÚçû<ùâ ýJbѳKõezL’OÎY.jװ؉Š:6‚/ÆÝ'Ïù¢­¯Õ€J¥(*W¹U6yUÉdª¢bNŽÂDúnWÂêÎN5"oî$ò0ztHaì@Q¼ÑIƉHýÑôó7¢W“¹˜R–jh"6Èïq6Tƒ¡¡Ó78ÿM*í/Qj ®¡sÔ ‹Òñ›&5ù&­™6æD“ÏÙî?koŸ]nk.A8ýÈv‹Þa:/Rp 1oêß) cþ5ùòm¬—Í*Í‹'»MV”æÉb€ÈíVí-§©Áéó!K’&›“¦2)9†‹ùy†Ì°"Xkt]4¹HO£IË V8w6 iævôaðÍLALzKÿ`ŠŒÐõÖiPa'â‰ðÿ~mš]*½ª˜ƒJcA ±). =0ƒˆæzD©UèæRy“ÊÛ\Ëã‚c"0&º ^ WÅËØ&Nf‰Æ*§{á*päœç9,ošÎa¡ÂUEÒ;“P>>t…뤱 pÊÛª¼‚@ß2ßfi>Ëh&Â1|ÆÑ2,t}øLƒsbœ¥w'·zh¨‰ #Hâ–ø—® ŽRþKô;Ò…ö¸ê1zi¬çø¿4@ |-䨗S\ÇóàÃÝðãG€œGSð¯×I=W"l‡;ÁoDê"Ââ‚0Ô¨®‡`å"ÏÀHÞþ0_;ÉÛœX¬‰‚]šZN?xCh'«´óÁÐâuÔKT¶0èõËÝÝÝÍ Q¾ƒ¸äWÕÐg\†êÐ!0?øž?󇛛ÑþiO^“ƒm†q>½ áŠ8¼IEäh%ãBªù8b/þ»»#-ùd|`8xýœ@É¥ŽÇðo² ‘s„ØJÙ›‡»á‚ÁúÇÒø Y£Å—Ñ($ؘW1 +@NW²¨AE MÒ HX.mI¾J«úä‹+úKË£øgFQHé‰2=†Û¡J2ÔœføÂqHâÒ÷.iK›z°Þ™¥+öeËú­M¶“*ÆÛA¿ÒŸ#QÆ+ Yø«_ykбã­ÒŸÛøR2)¼ Ñäe¬£µ¹ù“Z‹:Uò » M˜Ð„FB<X®l¥,û~b2v¶ëLÿ ÎaÏ4‡Gyæ°GçðçP©áQ¦P=Eysôç Öw2Z¡H0=?ùÍ/(aàÈĆ7]µÌØŸ‰‡Ÿ‰¥)³ƒvä–I+ʨ5šæ=©œÿ¶-Îy>–رuÕÊm”:ÖµcQ»×%®FìuZGó ÔEÆ$>ÉÇ“¿Áû˜†;æÚ;©TbæŠ#ièNjÀ¹ ³Ò½gŸkÓ&!Àt‚òuÕ¹H[VítÒº_f^SRƱ¶7ä#û.½QÙ e 7þlá&[¸‘ØÂMÂn|ØÂ‘?[8Jc GK²…([8Z’-`«G[8òa GK²…H` ®ý•Ƣܜ!R9ƒL cÿ{nó£”m~´Ì6ònóh™mζ’ž@ST mÔ¡ Œ—<Û|ú3}ÿHM&Ð¥&VÃJê,dûB7ÉÃøõL[–y ’jıUÅc±1Z„´ø“‰°} Ï–èý9öÚU¥Ðò*ÄÙÄ‹ÈPMª‡0̈́à ¡7ÿë%Û@è¾åsÂÿ¹Åø¹fóv7ìåß$éy‚Š ’ K9Aß?ϸÁä4GëŽ\/[•4‹ÅUçð ¿?q¾Ezd«j6üâ&ÐÞˆœ³XèØÝ?v7ÅÝ{ì0¶ÃFkòaŠ/¯XxËHÝ*ð6ýí'e•kÕÐb€î¡Wy.,Ø^eøÈú·:ÛB$oS’X„7“Ô¾=%XŽà0ÐuüëÕÕ+ŽA‘-h©ŽÅ±ÁÒ(`;´Ú8Ò?–^D‰¥²Qm…ÕMt‡Fq÷Ø<ýÀþÖëžó¸”Å”æçK˜8¬¡C[CøÎèV¼ñòƒB°gá éï;XéA\iýŠ á«ôtsÒú‹`_Žw!$Q¿”cú†2ÙrÒé%0r:1™2Õ“Ìâ :Ôû¦QñK§æ³µgªB‘¥yÙº©¬ƒ ñ÷¢”÷¬ §¼‚ÐXáUñ›2Óâïí¦ìJödµ¼üÙÖºüºNÂO„òxò¯„¿ÕU†pÁí |OSlœé‚úM°)0K úMùXñf³áu!è?iø?»ûûÿîîïDäÓCÀÿÙßß KüŸuãÛN寂 IöBä1˜1m0hm«`°ùRʆ*Ö${È.åÉ[ÇbÀshù<2þ›ùã+óÇG–ÊÍ?¢Ÿ¿…£]µg‰Ý»xKì»xé¥$ Ð,© ŠTjau·Ú¨†ÕV·Ú$?®È˜Êì Š¬ULêÀwéö®ÄíTåÝÀ·k"0"»UBºØ3U…ö#Ò~´ºö­íGIÿWØþÏiíGE¿ ÑõŽœ!ÉÊ Ô…ŽœïºE\à&[“€Wz+Ƭ×QaѬs;ƒxj´¿(Â݆ÁZ´µµ…Ö&©.n 2×%›=‚ *8’Š6(|-ef W==0\ó<.ýïf=úßùð_w÷ÃÃÝÃ(ýoï ^êëxØ9£èGéQÑúßùpݺߑS÷ƒTáR÷{TÝïûÔë Hð±êwBÉBõÓt:®yA PˆÞxÃezXðž ± ½T­lŽ>Ÿ‚ \0ÀéŠ@¼N;1ºÝù>,pý°•ʈÉr“… OÛeÎxë0St ÷H4ò5z8ހݵ6ç·Å:iÉâá0OÔf;\/ýÃ`¼`ß` }û09Üò¦Iæž¼»ÄŸ½Ó>þœFnHâAï”ìá '¬¢VÑ «è$­¢VùÙb?û¥æ¹hXw4áÒpe¸Q\îìÃß–ðÃÒiÛÒ¯´ÆˆmQ,àW]Ƨ/\³ö0§íK@&„ðÙ9FÜ&õ׆²¤ðU¼¬…1ñúUÁ´„ß ùŒªu)îî‘ÎÁ-ã»^0' ÂÝTJ'º<­?͘èV%µá]zÃùêÞ³4a‹…µ«LÌidŸ˜ÓÈsbN£¥&†ÔŸsb á%&&[扆³OŒ³]uÇ´;¦å»cZep~¹Òkµ²ŒQÝÒxT|Ûê8õãÔ÷§>iùÅ®`i7éoé÷só ¡³QÕ7Òjh0ΧAÛS«¡aßEƒº½šøQÑ$¼ô"!*päõKdjëú%ßù­_Rа~ÀYš¾+ü·ÿE°-2|ËgmùV<%Z[ñnª-$Å+ Ú°Gª¥=ò”¨6쪄jqWÑ‘¸¹®ðßGY ‡^DGêH?.Ñánª#e}<ÕÎÍh§:Z'‘¹$Ñ|¬\’|çÇ%IÁ„K²€†-†Ôí»¡Á|¬RnHd ¤$Ù„”h…”ȳyòîÒ:›ä;¿Ù$¥ƒ/Ëžt©íM*ýÐn¾IE‚¤Ca¦ Š„‰]!=±‹–:¥\Ù±j#^Zd´D4–ˆ¦¯%¢)Z"T!m ›¹íMѱêæuˆ6b‹™•þ¬ÍëËZl>³êŸµùKó?'iëõBZWªÝ2ÓôµÌ4EËLö•’×>Óí3«nÞ´P¡ù¥j^#‘Øü 5[ó¦…ÊlTK-TKUÓaiúZ`šªfWWþ=4ïfn;LS³Ã¬‡#›å”$ëw ”9®@ [Êk D×c5J–´Se¥DWN›ª‘HÝb~Öª¬„N™’U-XyË;ŒVM_£US5Zù™®,'UG½T•fnÓUS3]=UÚ l%¡=Ôæ§D»I´ïz×O»u©´{š×O»Ù©Ö¡˜Ù1ўѷ~ÒÎ@z’^"¤Œr2í g7­˜G£Ý¹UÓhÖ¹ÚåsÌaVlúš›’YQÕr–±¥5s›²Ñƒ(ËÀMªá¼ 5LápÄàå |ä—ÌáGªšÇéeÊÑ3J9Jj=y§­òŒéHdOÃ…@p£MŸüŽ”s„w¯¥*Þó 3•ŠƒsQ›ªÐ?:œ°º³Ž¸ü‘Xž.#¢à‡ÆUR&KåL–â5yMWnZxQ þªÌ´*3­(Áe¦ÕÒ9l”yYq¯í‘xe^V™—eh¸ÌË*ó²lãTæee›±2/«ÌË*ó²\{¤ÌË*ó²\are^V1Tk\òJd“‰ÅNÞ¥Ìz –§^y3Õ+ÆUOÞY9+¡÷(™Se¡ÆŽ2ðÊȼ(L»â9‰YèÌ2¦UñtùB™7^æ—y㹦v½yãÊ7]3ÜôžâfÁsÜÌ?ÉÍ‚g9Iæin;Ï.ŠJ€_wD PøÙ—%@@¾…Z”%@@””%@€Nz P”%@@!¤—P˜»éíßnýÛé^ned؈l¤Ï2È…»¹›FÇE¨¬Ý}¡Ìã9p2Œ³[˜Z<,®5£ô(9SžÉÈì-12‘88 ßû¾Ff¹‘ EÅíûƒD“pÈ^ßË8è±K1W…üD@z&Ã`Ò–Ýã …ßË!ã9á72ûå9ŒYQË<ÆòtF “e&Ê¢~Mj “µ RK˜¬j “UÂd•0Yöíh>jzG5¥è£Õ/òœ‘IM)2鉑kÞ”Í5îÊœAV¹kØ—™È5oÌæúvf:µß‚]ùäy\ø‹bàÿRðÿ½ðððÿv÷É·áþ.àÿíGa‰ÿ·Ž‡nLÿoPâÿ9ðÿYñÿ³ñíxøq:ÞA%<ƶÄàËÁ÷Ÿ`;þ^,¹ç «GŽYö­;ï"Vu׉——€á‰˜wG§ÉïÇ8wÇBùáWáãSj,øzÁoɯ1Þó½0¬ºè0º@Ï9ƹË^ì²»ìEøÙ/açü`çÖ€Ǧ á Ë–|ág‘ðÙ©©à©¡ä /X—>£åö„ÏNMO %‘ñ`Ë»ñgÞðiÏ„~¼ðäáSO8ÖyÜ6SÀÀ7 dg‘MB™;¿ðêA†<€#¼zà^=PëUН¼bD¹Ã«Zxõz(Ñ-  ui=”|’5–x%”È«ÊÁ;ð਼1ÝGplœÂ÷Ak´A ¼‰—)~;Œw …ñútÀB½`óYQ kXCEzÒ=P–¾k Y‘VÝÝ[œµÑ:÷€¼ånÞ¯›w ¹yU>%ê9ƒÜÞ_FjkÃÌÝ‘V=:G Õ0¬µõÑššÆÛÍ*•ÑLÝ¿Gÿ  ÈFú˜µ®CPëú jÝDP£Ãš2FÝ âY×!žu}ų.ØDiô:ò»¹2Ö4;=VÙ´æ`MS®Y`ËòôØåœ®¯œÓ¥<^šÎØÍé]È+»0š¤y[3Mc4‰ª‘­”$]¶vÓ?Lòê³¹]ß#·Kφdšõà â¼!?Œ„xñΣ"HX¯3pP:ŸÔãðÿÝýg-þ¿hwïP÷ÿE¥ÿoã²ÿ¯ý®ôÿÙýíwyîÿ’quÞɸ:ŽË%J/áÓñ:/Øòöô­î¦«¬¾µå}^'íwûyÊ~‚ ë¢÷¦í¼Ÿ ¼Ã‚çíˆý|WúºžëK?ÔUJ¾W#¥]aÄ„cå!G‡áÍb:ÿwH¡ÖXAºÉⱓ@üÈñüË 3uA¼¯‰:„ªù«–+¬;M‡Pf©Q)@s;ÚfTd›‡Î6£‚ú)M}d›ú(}êÕ ‹šºúh - Ë>ïêMEE·¨Ozdšô< J£ß·~?}ôû- üŠgüIº9Æ>}1 ý1Z„œùh…×-]—ÖáÊZß·t=ÒÆ=*¾ñ—¦ÆCSã+èylþS[Ô[÷% ‘¦}‰_¸÷%1îËtiõËí Ö®aG®¥]}/¦ŸŒÙš­[º«î¢»klW_„E7»oåH›ÜBGùeZ³QA½•6›QÁ/Ò7[dÛliÔ-+…°FÍ;mÅ·Yqmêk=²í±7jÜ`ŵ©ï®È²»ò´)¬ñsÛrž~ œÃÄ ¤,v†xâ³)Ïs0zJGè0଎utÈ«&dÏMˆ#¬ˆuùꄨ;öÑ ÕiÝtô8¡ŒW·::ÝãAÙK¤Ðá%·AGO˜—H§c㡈ð¦QγUâ`fl…DkÙºBz¦)x‰HÇ‘Eä:O¹Îá¬ô;ŽÒ¨]^¢DxEÅ¡D‘÷ATú)yŸBÅQ¡s\• û´N*¬çϪ‰ð:|Š#Bçø‘ÎhÍ'Ϫ‰èÉLÖ|ìG„áÌ1 …ùÌÉCÅz=âI:¹âæëÉÿßÂ2þ籺DÕøŸ~ÿãˆÿégÿ¹ ÉxÍÿó0œÑ  ÛÙ˜ ZsS£w¿ôáÿyÅ~¾g?7ËP ' ´`9šz£b*/ÀÞˆiÔT?èg 4zÞ™û¸÷ðÇ1ûÉÿ¶¦íÔ/Ü_-=±ýµJ³xŸÝãí]é ž~/ñ/êú!K¯¾ðM¦o÷3¦mI'…zL(ÙôdõYoõ$g”ߥžmí2 8|ÂlU 4›¶–+i’aRÎWI‡ž›Ð¡ªç«¤Ãp‹¨H‡G³2: w½·µÛDb2"£W³2 7®Ɉ„ÑXÄ€„ŽP6ÿ8+êwíq?¼(¨;_)Éý8d’ ]ȉ@i2o²õÐdÜü†€¡uÒd¸Ui2n>I~» ç­T:I‘c”ò“¤nˆ+džð»  Ú6¢Ë+}ðèÀ²·òH™·Ã:(2n†+ÛfXEÆ­peÙ ë ȸ®,a©Ûà½c¼÷Ýï³lƒpwYô$)ïyŸeƒ¬VãÖyŸeë¬Vã¦zŸaS­Tãv{Ÿa»­TÂ1­÷(EÎaõâ.¢TîpìàǾÜá8‹Ô¸‹][~Ès3ˆã,åZÉ5òˆã,²æZÉ5²‰c1t½Ô9ű¿„º^jÍÌâØÂ,,jÇj©]+ „`ÃzÒ~Òïõqø?O×âÿ­×¢ü¿án}¿NJ ÿ7Ü+ý¿ëxèÖSü¿Ý‹Òÿk÷ÿv/òà?@¡ù·ûûÑb6¾1À´!èÃM ¿_ïÞ*}½Uæî}ËÊ!â‹Aˆ÷@…/[Âç^ßú¾Ý»MÌ·êàOÐÞœ:Ñ-HŠàÞèwòó‚UtÁ*º`]¤UtÁ*"?[ì'¾ØevY…]¨ÐUQ—UÔeuKlyöâsÄÛ`ÝÑ<à?p"ãçQ>Ü6¯qqdßi`ì%të…g ‹äYDŠ:ú4%Óø×·ä}pTª\ñU!@öbCJ¼ðÅy½@œWDÐð1gÑÊó|x«—ÒM¨7«c2 ÍFµªÌÈidŸ‘ÓÈsFN£ì3rš»2#ØjÖÉÖ¬iFâf3̈³Uu´{¤å»GZKì‘Vî=ÒZfdjÖ¸GZKìW«êŒXÑ…/|ÁŸ/Ô»9$7M:µ9„Yó|jVܾf€Û7¹© n_³(‹íÇfÏÄõTpóš‰ØØ|TPïåµê@¾ðE¾Poü ƒÅòalÀÓË‚ÕSºò­nJ°¶ºÛ¨õ:ÎJ±a?$Kûá©PlØA Åâbùb1ÌvôH‹Â°ç Gâ?.Á?g!8–ÄcZ…âhŒBf„Pö _Pö é¶à;Ú%é„ç½æ„S"‹Vë Å n%¤D+¤DžÍ“w—ÖÙ„Ûá½f/¬W.ïîÀN§Ø}½F‚í# Ѫ(H¿×¥û$ŒàÝšm]‡ ëk#èª6‚´íæ6t5AÎ6ÕQ±j…]_­°«j…æT »šJ˜³MuT¬Òn×W3ë43?Á¼›[-ëšÔ²Õ4®3£®I'[Mãúµ@]ƒFTHÛòq¨C]_u¨kP‡Žx––oº¹¡®Iz´–ŸIz´êºD× èJ¤%”g%U×"¤+§*ïC‡4Þõ•Æ»ª4¾ŒÔÙÍ-Šw5Q|tÈ£ç~»¾ÒoEOaô2 ŸÝŒâ¯aè( ÂÐMDºÜ|ð5DåߦCþmúÊ¿MIþõv4sKÁMY ^YËúq"´fñ?dmY·Œ5%]Q +‹Âî¦kúºéš’›.ÃÔäõÔ5eOÝÊZ6-Š¸åŒ‹"[˦E!º ‹jXåVá¶é«ý4Uí'£k¨™[jj:ЊI0ò޾¼LVL‚nUkJÊØ>²¬$è*YSUÉVL~µ¨LÁnÑȻǡ6}U檮ÜõÔÌ­#65ñÉmØ¡ Ñê}*Dö´¤á®ÅÏ—•hPõG?Wßi6ð 3ÍiÞ¾5Òl¸³X&zWèÐf\X'ÑNæa%Ú`fXÑ2Ow˜š¾f†¦dfÈå÷kæ664ecÃZ©1pᄚ0¯#2+5[rD®’y‘9¬1M_kLS²ÆÄÓšÙÒÌm“iÊ6™õ‘bX^ )ÒòZ9)†µ•"®­ÕP²Ö ØîÅcfÀ:ó?¿“êÎÿÜÛ=ÜgùŸû‡äûò?ÃÃ2ÿsc™eþ'¯¹Ìÿ,ó?Óò?“ŠNÞi«.cn(ÙcEõG³sÜ'¿#±}ö¢;a”ÈöÚf#ÿ9§:*J`‰>lt8Euç«qù#±|À†\Ç2Sõ©dªrŠšœ¤«2wµÌ]¥—¹«ÚÇý2¥5‹2¥Uj¶LiÍ4#eJ«c”)­9Z-SZË”Ö2¥Uuê”)­eJk™ÒZÁeJëjSZ©!"©,±äÉ’Yõ@!³³M¯» hIÆ8OÞ™g_ÞÛÊ@¦CÙô˜XÓ„ßb“¤: ìSïäRìan|Å–tÝĆå¾?³®Ÿ¼ƒÕ` Š03÷ïz0²¸ÒuÓáö}ì=Lí»á˜ìËÏ3íºSfíz¤Ìúsïºåtõ=’Wü3î{:§³ö=z^»½DÇ(Ñ1~tt eÌš®AkzZ3÷°5ó[3ïÀ¹h(qEØH—¸"%®H‰+"5^⊨ ¤Ä)qEJ\‘W¤Ä)qEJ\‘W¤Ä±ÐY⊔¸"v‚K\‘Wd) J\å)qEì;´Ä)qEì|£Ä)qEJ\‘‚©)qEÌ‹¬Ä)„”W„¿÷qE\øóµÜÿ¾»¿w°ø»‡»{{a´‹÷¿GåýïkykSð?úà͆ãAûáf8§ÀPjñ –çùpró &fÁ‹òƒ½vq³˜^fU@üx釸aÅô`ÉÂkö@üèçEü8îö½ÓÓãÉaz¸ïm·U£bkøàfüvÑ;«Ñ–¸ah¾ÛúÕçöôå±"úåÀVd6…úI¬šFÁ£°<\9ix K&@ ð:² ƒ€‹ZÀ`]Ã-aÄ;Ào€„mákl"L-X»¯o>º»1 ú¢«OT#ú‚ŸOÕ!˜€Ú7@Ñd’3ÊY UOû>Î/Uw)ƒyWLž•„he(S&8âä)K¼pÖ)Ó± –¡ÖÃ5e2nÁŠIЦLÇ0(œ‚­uéR}]ê9>ýï?wkÑÿ"¢¢þ·O¾ ÷™þ•úß:Æàdýï]»Ä´kƒïÚy´AIä UdŒ£ÉhFD|I–(•Æ•*ÑÓT—[ü-ÁH¼Z©.ùæä];b?OÙOë»è½‰Ú.”?Rà] žGìç»v‰é÷ã)£Ï»Ï‹/ _I™ÊBŽ„ÛÅt6þï¦6.H7™I'Á/Ü: ©hO¿éÑ6ŠNë^N aª1NE7ºgjTt欠ÍCS›¡ êÒ¦4õFu¿HŸúÈ8õi¤-«~² ó^\‹ú¤G¦IÏÓ 4ú}Ûè÷ÓG¿_Ѱ®xÔ‡ß"Iæ°ÏD?ž‰Gj=ä!$+n¼n麴WÖú¾©uº •®GÅ7þ2­ñh…=CžÔYùa­Çû…HÓ¾Ä/Üû‹÷e:´úåök×°#×Ò®¾Óá s5[·tWÝ…Ewר®¾‹nvßÔ¬¾í‹nö¥¥ÙHÞðù›7[dÛlQúf‹¬›-…º(ÇŠ¬;mÅ·Yqmjk=²î±7 ,*¾MmwE¶Ý•§MaŸÛ”óôåö z}6:zžÀU9ë³)Ïs0zJ¼oÊWXêèèrVGÈž›GX!êòÕ Qwì£ ªÓºéèq:B9Ò|utºÇCç0,%b=tˆã­e¡*"¼s@¢•â`fë3!½5,ñ8²‰\çé"×yä}¥P›C¢DxEÅ¡D‘ÿATÚ)ùŸBÅQ¡q\ û´N*¬çϪ‰ð:|Š#Bãø‘÷ɳj"¼ŽâˆÐÏûP¨gN*Ö1$èO:bÈÿóyMùûä35þ§^Æÿ¬å¡KTÿé–ñ?ŽøŸ®#þ¬×ÝSì þZ/ÃwÖ¾SϾ“õ®ÖÄõ´óì1ÕÑ]â¦ÕAãÒpQêvèæyò—•â¶`?3& ü¸1?k¸€“ço°h–Òv¬T6¨/…ÑìoïJ_DøE¤|ñ/êú´ª=ñ‹ ÏÛ'ßùbc8MO§ ¾Œ ëü<þ{JVîG)柭ǟây‘=ý]/D6,¨D[´º¸—uÉ5ЄWÚNžk›úôüÞRù½ù½¥ò?2´¨Oú2ùΥѷåôÒó?z¹ó?<à–í3‘;ÿ#oë¡–œ! "CãZþG/wþG†Öµü^Þü kùjã™ó?24®çôòæx¡{S!Ò–ÿÑKÏÿèåÈÿèåÈÃèåÈÿÈÙ®Úá—ÿá߬ž‡ÑË‘ÿ‘³]}ݬžÿÑ“1V3ÊzþGoùüW³Rþ‡m³Eé›-²n¶ê¢+>²î´7jÜfŵ©§bX÷ØŠ]*ÿ#ÇîJÚ,pp¥üË?O?PÎa–ÿ±ü ¤t•ÿ±üè("ÿß=ÿC"$oþÇòËW'$WþG‘„Xão×@GQùþtèyÒxä îÏKGQùþtò?¬²DþGBÌl½#b&¤¨üßãÈ&r§‹\ç‘÷q”BmiˆQHþGŽƒ(ò?ˆŠ£BÏÿð?…Š£BOzð?‚ÖI…õüY5…ääàø‘÷ɳj" ÉÿÈsæØ‡"kþ‡{]qÀOï‰ü(#þgö¡ ´øŸÝÝ=ÿ³·…‡ÿs@Š•ñ?kxèUâz§®ž-ô'ÚÙ]eðOÞ«@ø»éá=¤óYã{ngp»‰véÇ|z÷÷xò9 !wþm¾Ý#ýè?èÜ3zŽ{¿Êíjm°á‡R¼W<çxp aäÇ ×"?û§¬ ºì'YtÉ×§ì'Di ºƒÁi5©¤K‹ zð1Maß»éHO1@h©(rf°oMÑ9íî/ä0jž 9ƒ|@Ú¡±<ø[±9qLŽÏZ Õlúƒ‹£e],ê*qTÄ–ŽÖ³2¤§ X1š„~bÍÒhZÓ7`Iãoêd‘ò¦ÛNÓ/°8M.°à7¤6Ü­u9•“7×TÎB›«Û›®[ÈÓžeœS °ˆ2δï†+• -ëäç튾švõ‘ï«#¿š†÷Ü ' tÑ ¦6wXÍŠÈØ®e͵Ò×\+ûÞnåXj­ì{Û¿9}…µ–ØÛ®ö ã çuàg(‡¹Í©Ù(ë€J'lÚ¤­-7þŒŒxø×FFÝJFlY\{n2.¥qYûd n¼2|É™ó è8ÌBçÕ+ #4îY!êxì.K‡‘©¤2ïȼESl ‹äàà•ƒ¯¤M•]mŠžˆBÛTyƒÚ&w<älÔ<ÕƒgÑÏétq…Ö½ô\c£Êi]t£Úd' gvÑ­ªÌOiÕW,KkÔ4Ý w§L7ѧ;DŠœä`ÝKN7kT™î¢­Û•o»+´Õ}w«´«»¹µìînúîîwwÚÒëæØÚ]ãÖ.®E}_wÍû:O“¦ï¦ï¯®q¥ÑÒͱ¹ºÆÍUh‹u{‹<¥I CK[á½d…ÇlÅg³-½ÀYƒ2K)¶Å=k‹1;ÉÛ ey§I ÝDZÏìÔ‰_ZR` jçu-î[[ô>«SÚ3 6ØÞST{("²!*#QBêt ÿÚˆ£--7üŒM&_) u+ —[) {n„P¡ÕѰŸNƒ¦²MÃK/¤aØÍM‚_À?AqŠõðÇ…ü3ybZNÚý“´Ò/“Ò†VrzÑ;o *AxU…hÅ}'ú_ƒÏÃù|t‹þZê¹~ }¦ÕÆiïŠyFxKÁÖÖ–\ó‡áøN­9©Goƒ:¨I5q·ì±)¤¥çœR>+\ñ?ÿ)ñ’燊ÿyWâÿ8„Þ†ÿCª*ñ– ï)ñ@xÖˆÿÓ{±Ÿ§ì'ÃÿéE)ø?½w÷„àç»2X¨ÄÿIVÈŠÿCŽ+þÙdfòE )²þÔ½œa5º þO–FU(l4R9š>ù÷ÙÚTñä6£‚ú)M½ÿ‡|‘>õÑø?Pñòó-ÿ“¥E}Ò£ìø?î¥Ñ·àÿ/ÒG?/þ4²üLäÅÿÉݺžÈ³šÆUüÞõåñ²´®âÿð®GÚ¸{%‰fk\ÅÿÑ_å¸kø?Øz( C;î"$ ú¾Ä/R!I@Ë]ÿ‡T¿Üž`í.‹ÿ“·]}/z!ÓdhVƒ aÝ] ÿ'o»tF+lVC(a£i“[è(kø?j³QA½•6›QÁ/Ò7[´$þÏÒ(„¬Ñ¥ðò6jÜfŵ©¯õhIüŸ¼ŠlÕwWdÙ]yÚlÊyúr{°(üŸŒžÒQþO,ÐQþOB4䙜ø?9<ø?…Ú Ö@GAø?èÐäñˆ4Ù5 ¸Kn: •ŽŒ‡ŽÅ`5ìvG&$Ì…ÿ“Ÿ‚ð|E®s›Èuž.rÃYYþOiˆQþOIE "/þÏÒÕyðrHP:KãÿJ…õüY5Eàÿd Bçø‘ïɳj"¼Žâˆ0œ9†¡(~¬ÿGÐ#žtˆ•#þgþm=ñ?Ñ.½ÿ9Ü­ï×I‰òþç5>t‰*ñ?ý÷eü=þ§ÿ>Oü}»¿-fã›`<¹}OÆ‹ö¹ÍËxŸuÄûìe‰÷Ézat D?0EútzçÕ wtA™î•&mþ¶ÄÓËõ¤Y8µµKª½CžümÕý.™#üÙ;íãOŠ‹?[®'(€/¼g¼g¼œFô'­è}ZE¤@¿Œz®±Q¬;ÚuÛ?TÌ0 ãçQ¾+6¯]þù[áÃߤõh,`ÁE·âu!?V>»ð¼–¼ÿÞóZr–Ê‘ÀbDp“¬ÚOµ³áÇûá$©D¾Ã£„íBÄ×±}Êh,×dãw>×dcA5®f6Ø»M'£Í¤i†nGÒÚ—32WG€v;¶H@¤´¿—»}e¾N#û|Fžóu™æ+ÐÓt>e¦°e}¦ŠnÚ4GqÓQ-«»©åØM-ßÝÔ²ì&•”K’2Aظq+ݺqµ,û(gãê4õÓÔ÷¦~EµcäȨR¥MV¿"ƒ(­˜†º‹†]uͬ††} b˜'#A ®)€„—^$DŽ‚¼~‰¶`]¿ä;¿õK Ö/3¤&„_á¿=ømÍm¤å³G¶|+ž­­x7Õ’âPmØ# ÕÒyJTvUBµ¸«˜Ó!Ù\Wøï£,C/¢#u¤—èp7 Õ‘²>jçf´S­“ƒÈ\’(lV.I¾óã’¤ IltUï- æc”]:[9q-!'Z75.j¤±©¡Æ^0=±¯Ý?1«üÝ' òƒÿntkÖü»Í¿ë«ùwUÍßG£êæVø»šÂ_@»êèX5¹®¯&×U59O]¦›[ëjj\1M«cdC»¾jT× FùKÍÝÜ:TפC­Ž]8욨ՠ‹L]ƒêRXûò‚qè-]_½¥kÐ[@ä°k,Àïm2GZïrk,]“Æòdè5,G“®òdèÕï®AÕȉ\ƒ¨ŸB¯A\^½òætˆË]_q¹«ŠËËŠƒÝܲrW“•×E‹®JwUÑty¹Ô‹˜¶ŒÎïjÃÙúïŸG8[ùd|ñ‹ÙZâÿövëQ¨áEõ2þo;äø?ÀF-ãÿlñƒ^Öø?¢™'ÁP·”~ëôËì•5Яãº.ù}röšBŒücü–‰ëk z¡ODŸÅ÷}ÅðµƒfŸþ첟ôNÃ&„æÙ… 1{ƒ&¿‘Æò X0à K/K`¬Ÿ«¢{±Ç^ì ZýI+è•1~ìÅÕ\–˜18~.ß§G„Ñ#ü8’>ŽøÇuõcZÉÞNæ°²AÏÓÆÌù=GLõÄ¡]{m¿óѱ`E»Ì'ݨD[È£ýñ¦EÀðÕ4­YP¤¦…«}Vж¦hjmG5­¬–- ¿ó\-5Õ—ÒV¾ 4Þô2k#[Ó¦µ‘4umdkÛ´6ä¶3¬ gÓ*ß°™xñ;_¾Ñ׆ˆ3/X =Öt>ã-'$¹½o=„yJ_œ;-lg5„h._ñ*„Rbdu:%jÂò (Ñ(fJÄ™+Ÿ ´Ì„üœ‘¨ ‘÷»Ý¥ƒßùí÷Ä¥cÞïEG¢QÒò±†ÄŽof N³‹4¹È£Ól`8*ÍÃyt¢ ¼ÉD´Ä›h3-²±¢#ç2ÓlàxNš£âãæ2ÓZÙ“èBÃæÒˆ–9ºÝˆßùqôÄ(ÝDR&m4¯¦Ô„*¯^5.,P£ë «¥ÆÀ_UjdµdµähA|fr¢•P#®z´úYV=~ç³ê± &ÇÈ‹íŠ}}‚±hÃyV>§H–RÖH‘¶ú%ŠLW=¯š"mèé×Ô®”"M|°P$oÌ•’¤ ’¢UP”^;ð ¯å¦O ›nùtD~|#?]£å3aåŽûtfÏ¢ÛÕÏ´®Ù晳au^¬š¦o´é ë´,ù©Ç¹cN]§Yi5TçÌ¡ ®† ]þШõ»Õ¡klF2m5dhÑŒf2bÕ *äMå0ßøFäºNóMÑ1£ƒÜ1¹ƒ®Óvó趪ÓpóèvµÛjS¸õ#+Åà6Ù<:Å^á4#ûœ™`=ö9âB£ŸÓ(–¡Ãêáý<èÚ­Ù4×ÜÑÏœ“Écµ¤˜—ÝÞ±ZR lÉaì(”ŶÐuغ¾¶…®Ó¶Qûêæ6,t†…•’c²*tV…•’c2)t&…•’c²'˜ÈÖ~‘ô¤«îÍŒªûõpr륺7*bÓWElÚUÄŒ>îfnE±iWWL‹ÎÆ›vuqÅ´è|\£Å‚ݾbtÉÑHÌîRQY‰Ñíç6b–ŒÈJŒ.¡‰¡ò^ÆØˆ¬´„O1»21ùFfI»é«`7í ¶Ë n›=%œfn5»iW³ŸÙFgW¶ŸÙžèP¹ŸÝöéP¼ŸÝNk¡;-Ìc½t˜²] wEz¬—lÿN£Ûí±fºÝ\ÐA·júX)Ýòå0}4}MM‹écɸ†fnHÓbYA†cÅbYA†Ãf YE†£ÀDÑîòá(Y)Òc⌉1q…¤Xš«QÓ×jÔ´[Œá ËÙZ)E9-JM»Eé1I5Y›švkÓc’j²D5í–¨Ç$Õd¥2‘ª1¥G Uþ´†¶ 5Ѫ |Z•…µºVh’A¯„&Yþqáüw-ø»û{û:þÇÞn‰ÿ±Ž‡nÿã÷ÿÃÿñ»ÿãxð{ïÝ)ö¥O~ýý´Dùø.P>l•«ø>؃ƥlãY#lધ??-q,ž6ŽÅ¶ÈbÛ‚d±m²ˆ?'k8d×2íJŸFú§Þ¸¿gô /fÃÏ£ÿNÇ·d[|ǰHmV0øÎË +²ºB6tº]Èeî¢-¯¼aÝŠDŽ„<€"V¦æwÇÔüî;5¿§ÆëŠ(ÚLÎ úÝ4A«iÞ4M¿›¦i5Íëv4¥ù¨øæ×«Wþþ#è•ýïï¯kÑÿ¢z´¯ßÿ|Pêëx·•õ¿_¯–ÕÿŠ×ß'°¹‰xøDÀ_¯²@ÞÎÆdô{ §w'‘q áZh¢´Ýãm£ÿ<à½%HäZÔÇånƒN*:y·¤jIO<çMÑÏõŽè#ÒF)bNÚ«-ây_)+Éošý_Ù+øyBÿ>²Tîuµ~WõÉ;P…®ûQÞœ˜(Èt,ê6|ø¨ÛPPѶ½¯”¡äQ¶iëRàÈêZ×tmÚºè[õ¾ˆ4s㚦­4Øsu\9É•ï"¹ªX¢'„OÞy€¬ZÖËÙs%ÆãÈùƒ>=¿Ê½â +ÆèŠ'Ý-ºEêŠ}ñ¤ûbÜŠR_$žð¤û¢Åœh}9Œpç¦Ôk)‹‘]KW´{W"û¬<‰®ˆqÉôÜ}±aëÝé³ck"Ví]/½wφ;ˆ±Ù´wGßSïÒ™ŸºËL ÃÕ—õí² ÌÏÑÇXÕ¼¤f¿¾±d¿¢êo“¨š¾bwS»w—¾›¹…o¤!ÔsVGƒ.ÃpÔ<¢ÕÑ o¿&SBÔœ ÕÑ o>¡ÀÉê«$Aƒh¥$D«[‘겪%M_µ¤iTKÒNq ¯‘2À–â8ÍÜÊIÓ¨œ<›··IEy6=22 ©Gþù¤{¤…ó›z¤rã'Ý##3U•I•·?ééz˜aŽÄ“‚ÉV{OµCz–hZê´Gõ'Û#MG1è—M£~ùlXEXWûhÐ2Õ>>3/jcV]ó¹÷1Cêbß2=ZZïÌÜ£t™·GÑJç(]ûØ´Ï]ûøjŸÑéÃ㊫I(1ÿµŽqvcCÚ( rë¨ÑAô„(Õý9ƒD}ò#4/MꪰêS_}j`vó¤ôƲ‡§Â{§Â‹§É8°ß÷ìµ$ÚgžÝ8È­™ Ìn£ohto`Öñ~À±ÑµEul<9Ùw86³·:8~Ìs}c³´8“yltíéŽMNÁ(elR£î…E0‚à9Ë _y FP°b»m-¥g´‘<‡ kýRu實y‘ ÍïêÐXE7¯Ù¡„æ#¹óQñ­k⛩õ¨ ¾««Ô&¨áw¾Ë4Ô.ÍŽkPqŽ$FoÙÖKmcJjÞÅžˆóÄú`Ü1q´mû4;¡ÃZ'LvÒ'Ö í¼Ô:)‰}ˆØñþ¨}ÐLö>D†yx}œˆ6#(ïÕéóáUzìÐûôn=ý¯C¦®¸HïÄ#¯8]ÈÖ‰èf"]¦µÜ‘†‰6a¡ë+Óvu™ÖO¬éæh»v5mëgs× Í®¦mý4êêÂd!M«kÃ*Iv}%É®M’„£30¶Al»'Û¶éæ–!»6ò Ro\¡éñ ’¯ó]•üd›=Aò…Ï*©tm’ÊìÏKµ?EíÏS^^z„€¶¾"ùÑ#“ïæMò£GýtÄûڵǾv}c_»ME ÉhèÊøÊXîŠ)ÐYBA¸”±/wЫ@µ t!IeçóÑ-½] /¼˜~Pï¼Ø€þb ¼š`kk X¶\ׇáøÎ^׆<+ô> RÑFàsWÀö¿ã»zVñØîÿùx½Ø ×rÿO…»áÿ„»ûÑþa¸îïÁý?õÝýòþŸu¾›NXoà¢Ñ×Ϥ\G¬jx‡ÑAÎ òÒÍôîáž'ñb|OÖÓ|JŠ1’aÔ‚!in2]÷ÓÛñ‡q| ’ë¦s6[)7$±Ë‘ÈÚM¿Ä ÔÆÔóo¸‚]»”µRÚ7S½±Þ³vÆzç×·ãáÇédx7¾Œdô±\ä{hT*6q™¹‰Ï£Yz#—b# i|^Ðë¦6õ2„íV nÉlOpmT`»t6UjÈþ8†{}øÀÁ-6Øüœ,îáGX+ä²Èç8a°˜Šµœµ·Ï.·CFiÅ4;j»w£á-\–È&pHùÄ­Šôü~øµVY+›|`Í Íøõ؃>t“¾zoXGØa ‹áx2§gt+ÖCë |™ñ%ePTcÕ`(ìÎëob-À„z§¤ÉKØÂlÜIñá$xøLÖJ@hN>>Y¬mJÔå%Ο´*’Kèß¾¸[Œ?ßA~}IøöaSµˆÇ*æy„iÈ«C_4mñU×ìŒXGñ´3Rñ,¸‘ñ½›'Ëg8e/¥­"R‡´òXµñªº¶Äu'aù–ÓýxR9'«I[NŸÇ>:žÜŽoÈ1€ Í+mN&lâËtöלȡ#¯å!“)¨€Aª±±‘.¯ƒgwÖôßOzD“ìp­Îxq øÕÊXtdü+Èp—åN:°ËѸMõhЉߒÿ“?ß^ÂDÜ8;·ã¸¸®Ñ!aF´˜¯¿¶_Øf¨î¸Ñ¿$Õ·çG±&«ß¶&s´ê{}ÛqãªûžTxtÑ}_Ðí^Dr„ÛôÎ[æûå¬÷|Ñ2ïÆ7¡öŒ?™¬rx‘uÌÎFÚݯq¡F†óöÉÎn°sÑÛ :ô÷ÍDvW4ìcX¬÷ lÁ¶` 7 =’¥›|ýšy%Ø8¡¢ÙF,¶ž%„oÇöV\2yô®0~˜` ÉGdÀ*¤ší°öM„¯á32”øõ9| ìáX*—‡E;oNvZ¡Ø]¬Ÿ­X\BðF­nÓø$ØoAš†{α†P¸£‹×=ÌŒ’&Œã;ɸÑqi“q‘‡ŒÄž0‚ûhúùNÂÛÚâoƒÔ| g ðÓ¤nò¼½Œ‡8&éBMº·íä{²kÒ¥k°¹ù×çôæµùwjÝíæèÏ!…wÞ `5)&¬€›ë`ÿЂ\M9;®!;Áqez¤<·¿\nC‚¶¡$Rð¶-“Aªí´ð.5¾¶¢]Nˆ:aô9§Çü7"ƒàØâM¦wÓ/²˜Á$Œ6ÈÓS2É‹OdnÛRE²¨|žMo‰ú„'ñl8™ƒTEouŽDd’{²Ñãk^•^×i¯éø×øú{ “p fµç-e2[Ê@²™jµ­óÄ ýFêiYæ:~À°ÈÆú7½¡€O:ðÎ ž#ƒdÖaOµ„I‡:¶ÁcüQ—£· ô¢žlè2ïõN‡lþ®½×IEi=¡ãÉ(tm'…»Xx`(Ã̱ÖOë)Ë—ddyÝÐ+o¦3¢žNPLDC]aäçëÖá?2ý0j¤ÌöÛ6‘UéŠQ§Gœb^”¬L"‹ Ï­†²Ûá®é¥£ô–½Â8­ÒQÎ^¡Ÿam"è(´Ÿjùˆ¼ÿˆy;iˆR3±ûÉØï9¸< ±¥Á%L&#Š' »(¿©«J °Zi iÌx‡@Ú{µóãWrðR•€Õ_•ÙAû vèmÊuÄNV‰ÑÖŽ¶¡ÒÖþý<.û´ûÿîa¸¯ÙÿÃÃÒþ¿Ž‡ndÕþU‚A¯ÑéW7@§÷K?q\ÁÏ+p³Ú9{û¸Y}Ž.Ã%ï8"v½Yñ4ÙàЄ³«¶™=in€f…R°Å.MGJ2º"³MUÃ`NNÜ33 ™0˜›}•|•ŒþóÀ„Ý ±õ•œGר©AcƒþÅ]ü¸¢ÇiÓ­+vœ&G)þvÅÕͧgàólt3†µäaºÇI 3Wr y(ÊýϤÊc6¢y4îsÒáW⛯!@ᘫi·•ïø’*ëScƒw õ˜#”á”w²½[z*ÉS›Ùñiî°÷­ž§ïò(ØãqµL÷¯ª0ŠÚÄŸý=¢þ `sòþ†ˆáL¬!Þñqÿ¯ èÿéëãLÈ>ª²åþ*šÎæ?Á—l%œ¡*—;çƒ×”/›×¬©áÅ$ ŒuFJâ1þøi|Â4¾ÙÇR¬‚«4–rý_Ç r¢W#ÇøìËl¼XŒ&¸ó°ÒÛñ‡„ñMnFüðˆg£YÀlÀl:f£)޲c6šâ¬í,Ạ«ü:¾¸Ç‘ ÆØ„S˃?W†P6@ÎÃ5àÄý¨þæüxK}ÐN)³7GÇüžÑÙѾxÓ:’|4>ÞÞ°§/k©®À%ò¦yþk¾ü^Ùhñ0›À¦C÷ýèiI~—ì.·ýf^ÅcðŸ±Y„ŒáydKüÝðJ§b/ƒàŸyâ.“Bü"Éø»í^6»–uÀ“Šq‰ÇÚêFàÌ*_ ù%q妸rɈ†_›'šce¥z þ±ªKL õ]ðéITÀ€ÛNaYTmfFåª6¦O;í¨X¾)”£ó9,˜‹'JÆóDžhy ×-cÔdk­»Nhê}®ô¢W–¢°j®œËѽ"åu˜ÍÌ`{¥ä‹ÖÖ+Ñîj68×¥éâ Xm±Q^[¬Ëþ·¿ûßþž!þ·´ÿ­ç¡‹GµÿíÇLI7þ¡a þm23— -¨áéªq4@}žb¢Dÿ%»¥=èÿ@–Á¦hä#Âíƒ9 €hôk4M&@mŒvLÕi\†MKE3:Þ†žTâe45î³”$äzú0¹ó(ãÑŒ¨†ƒ òY0\¥„*t~1 ¥n˜ ¦ŸÉEŽè×°x™½ Ë!Ôóq4! ÝIñ„äíéì–¬¦pþu'™ è_ð¶bBc´FÚj€ØØÚ"s;ú<¢®YB&.›D„!¡<®~)=‡Cò…rƒé9aÌ…#^˜M¾¯Yʉ:>¼{Aw©Ô fh>€ño ðùŽl&ˆn˜@‹L^ä%–`Úiœ!¶}Uª%™ã®Lê9ý} Åí ²µ ËgG~9Àï^CÑËÎi^»Oþ•áõ¼‚£½¹¿’؆Ÿ×››äÛMµd¿¨ïòÎd:ùïh6ÅÑáäX¼Ð W >ß=̃ðq¬É’=D°&¸Œé°t¦‰µwS)O-Ìdõ%¯T¶ÂG¬ð/Bá£éäχÅhQ~ˆU,eÖ,Ë$ŠÞ$œ ÊH A¹t?–¦cs#&Óº>°ÒšÒÌËM¹c~æå¦Ë¾,²Ô†Ñ¨,X’å:þ”ÝB=¥„²\˜M¹ !Y¦ww¤AÉ?CŽÍ¿¶ÃíqíÏêŸÈ­+cøj­û³ö×Ãæ¿^ÿõ"'Õ?·ÿºÛL,ÞMùI³x7wXUÿ~­˜Ôe{íò†ÚAó¬—©»(ãªÙ2º#?iýdxó‰ý©„H«‹/äÄÎ\”Õ_1íó¡ ¶¨¡}…@±‚Ç26HlΡ€ ãÊôAÙ&Û€˜c¾“>Ð|—/ÃÙ­"|BŽ3 ‹2\b5ÌWs5è]ž$~W"eñw¨¾Ã«¤£öq2^<Üʇí?ÊiDøCŸ ð7*ßA훤;o1S&{=|­6 :ØRD:œ,¾Œç õÝQñïzxó—0 ƈ(ÖÂÖZe¼3Ú¡Þ£ùýðî?^Ý áUDneâíŒê'u4i,îýð/8è GH^æ›’ë𶘒M´®k3ˆäîIÃñz‘¸V¨=ñ­Áí&RÃËY«\ :J„Z–ì”Ù·B¿“­EÞO‘u?ù™®–µX%{åp783íòÕeé’à YX®M\¡gòø±cLÇœ“ä áµj`ÅFàgäA-Ì'ë“^hóðï6%LÓ Ón·À׌“¹Å7Ó[º½Ý¤}‘™&žº/z©ÚÎNèÛZ s”,„çôÐ4¤“w;¡eÄAâ ä¤ö™ÅRA:±i!áÀ²ki÷©oàŒ'°àZÞN,e°ØÿpSu§žY»%Ÿ¶R×L~T¡,÷¦ò´.&ý;Ìæ3Ý/óW’ÇêÿÝýg¾ÿïîÁþA¤ú÷£°ôÿ®ã¡Aòÿž´ßõ+BÞB…2h\&n_š9×NAbPzŠ÷‰ºvMj¡_Êé Ý>/ÌkkMÛ ƒæ²¥I“H’·Ã• 3C®œÐDJÕDC¾ þïÿÅè¦ZÐ$¿Â‰¸ß~' ð× §´½õNrË^£‹ŠÃ~<{$¥ó'ÜL!dxÔÙâŸëñÿC ·&ö«SXx ÿ9‡ñj\fíý¹«çÓÙâÓn¼ïÖ_»&šðìÓ\ó¹0*šæ(wŒ¿‹ßmŠšÃ¡ ß s½tòáñ ÿa,¾ÍêH%mòqñI¦Ñ+x ÷äX®GŸAºA~ǃHòëÁˆ~š>ÜÝjå¶:qtG§É­ò×wÓ›¿ÈüW²—S×)2šü=žM'À—8œ\`-6ô…lÛWÁüáæ†RîpÅïÿß?к^µ1â1x,‡Œ ’Åq 6ëñÝÝè#Y§¥ñZq³G™·ý“A•Ø;o¿#?½>9w¯NzÍvÃÐÀÑçËØ+Ñ,@M^dYŸã!,•tº¹… ›P7øÂà1Þ±½§CË£¡MFºžÎß´wÑ0êj®®¾BØ0¼JWHăՆ¿»¯¿Ûßí8Þ}©½‹»ž¼²¨mþ7‹;Î1ëþ.û£cÁ¢°+ŸI!GUœ”˜}04›®2@{FyÉUThW.€š@D±ù˜¬)ŘMÔfјüyN·C3õ§w¦éTÂW÷ÕW‰Õˆ—Ãv!h>,!» €6ð‹,DÿžÔòfƒŠµÈhÕÑeáå\ :€`{ûíðÕ„ñI¥¦`à*Nê¦dâ.‡«Cîî '‚±!ú/Ï·ùÕcrÛÍàÕëàÝ‘•›Ê ã†` t;VnÎÍúIêUžD³‘Vƒfp€Õó„ vý2¹]þՉΆáî~î‡õ}Ðÿ÷Jý-]—ÜyzÙ9€ @Öm‡p´ ÕséþଯuÞm·ŽZƒ ÂcEnŸŽ®g¤OÔû—ÙÔ{Ú)Ò£\º» ¹{ªÞP WîLÄVÀPDAÀ ›†O'ŠŸœÀiù~×¶X¾cûz'¯å›R!»"Ø9Tˆ;¢“æŽdüŽàhPGôYÓÇHOf÷ éWø8ôÿÙºôÿz}W×ÿwKý]òŠþß+õ‘þRÿ×õÿžKÿï™ôÿ^©ÿ?šþß+Fÿï•úÿ÷ÿW*÷¥rÿ”û^©Ü—Êý#)÷½ç¦Ü÷ÖªÜ÷â8ÃIªb ÷óæUìõ8CiF |ïUàs>vý¶¶ü¿Ãݺ®ÿï•úÿ:ºcdý¿WæÿIôWú1ù=Gþ_Ϙÿ×+óÿMÿWgkIý¿Wæÿt»ó†.ÚM¨ØGês@Òeöf:!£0!6_uèMm ‚_sEÖ¬¯4*”F…'šTØ+“ Ÿ‹ÉáûK*ì=Ù¤B®ìOj<Ÿ/¿ÂŸšXHg¹v¾-yòñcÒM8$äÕîM ‡™R 3%ö=¡°WdB¡]ÿ_ì†kºÿ™(þÚý/QTêÿëxè2’õÿÁnÈõ¾§#ü¶º­_«A/Eõ†·> Lõ§?OöЏÆÙdo C‹j¿§ÉèªÄôÑÛ[¨Y Ë,0åä`!zÃ|1{¸”ÄD'd—°ÌƒöÖ¥¢Gé­$Æ‹¢Yãˆ, oÖ‚ƒ˜ã7„5âÂP·Þç<¢X«NóÁs²¬îßóà+i"noEʺr¥,,½¤þlš4.[½Ct•Q`ö{Ã0b“LËe—¨à’õ¢\á2¹¦Æ°~窙j€1I%¦+g…2â÷ZÄw•$åÄz„[jÙfHfÇ/çì:vâÊô9¶bX©áÐôçñßÓQLnñ"Íx  l«çÙ4üsv2dº׋›¬ç> M7öÞÜq€÷Õ\JµAå5!_ 8 8þì¼á=7)à¦ÒE(öoNÎÅ û¿uÉÏ>‘ØQ½/ä¦ÚcÒé‚ÎÏc„sÞÜpMmþ{iaÅÞÃA »ƒq)Ü3q‚<{/âœß K'”7ªŠœØã¾Ö¶üy6½%ù^xÄX눲s»Îî|€Üd9\¡dAøç|¼>¸üšÚ;!Aj8[£„êX¬‚NÒS û í¸P51•ÐÖ$0ÜÛja¿Œµ^<à¬22—Û¨"°tŽ0¹["Œ•H¾t­UΈ¢~^=K”Gú «>ê¥/±ŸÛ!¬2cOãÎÂN‚ zRÇ€“z¶m$V| öcE¬æ¬"Çs(Ø· ˜Æ*SEFŠ•í"1,´ÊZ>Úʋà ÇÁ6r¸ ícü­ØƒtZEJÓ¦>|-iSŸiÆ´æ[©±5L¿:¶ÇüÖEXYŸ «"²×/k¡…‘²¦˜é„F#qHÜíuÓ-Ùôzf_qn˜V†íÿZþ³Æ°-ÞÆ,2ºvÝqå2Š*1Õ.†ÂÙ½‰çJc˜p^úbú­ÛP«‹%-!M¿íd¸›—‚éï/ð´¬0›­xÿ±P‡|¹†ÕÖEôÒ2¬g•Ëþ­ÉþWµøŸzXÆÿ¬å¡[KµÿEÊ¥ôrл¿ØaØfÛš¶Ÿ¡!0û%ÏBˆŒ D¿/Â^˜)~(1º®mN.wÎb,ŒÌ&?ô|“àŒ80Ý*™ÜÈ4¶¾’Óã/r ô/~_?\ðtl‘¹u%\X„çeruQA¦D‰²‚«|¥kà„«|±ÏÊwôÚ^6ñeÕÉ%ƒü*^õB¼ø_ïwŸá4WÌUU¬:"ÇêÈ÷-¯$:ëñM¶k¹]uÉ{e‹ºLµõíaÜhR˜rÏê?Á,—l+"{¨*—‹ïQ#ÇⱫ`ádæ+Ããˆ2ŒZššìÙ‚BŘlѱaDØwÌFSeÇl˜âËÖi}¦¨”ÊõŸKT8‰2K±'Zùˆì·DpM=²SÈLØMÁ’½‚k8MÆîFÿòÜßÚÍnÝ4¿UÕÛÔé5…­¹,Ûâ%žiFn%Z)Í;iG¹J“p’M&q´a.ë„`þŽþÔhÁ¢çJQ‹-þ† ù.ïSøÅÔ±u}7§AžnÝ$Ÿ ŒÛ,d3ûXG\6pñXêŒýµAþÜ”-tͤ—±¹ø\¸÷T6TvÂ8­ô¬&åˆ]™ÔTj°˜Ýe¼Í1#3ÏÀʃÍ–'ß…ZîBmòÉÞQÁ!h¦\†Ê‹Fö{S“kHmóï^¦[ûZñEžøGm”|Ñúw%ÚÓ Ç¶Á¨´ æ}\ö¿úºðötû_´_ÚÿÖñÐí£Úÿê)ø¯ÕùÅŸ,fõ˜ÙöÒ‚É~>~–&@G, :®€@¡óEÚù€€JLˆ¿µå 2Â3ÚüêN›ßÇÑd4K²¬ÀO?Ç Áñ¦uÄM_ÔÿÕ‚£“¿evÑßÈ÷Åf6I¡ –Ô£õuÖh!ŠÕjýìÝ€õ¨÷„-mäâž`[9{BêØ‰++. î•ÏD;¦õ䣕'¥ÑÊ 3ip"‘ëL³ÑÍøó ÕsFçÍtr;F[^²ó‰M}rš(5_ðÍ Û9Ù¾;KYðí„Aøñ‡Ú^Òrd:†J ˆ÷óô{²ÖˆOÈoî0ÄïÙböpG¾VH°L Ÿñ¬.tÒ‹0%cûØ ¼Ó’À˜f€@› ­În”`#¨V&S…\U…½–(¨”ÍP€¼ˆ0øÚh´0$¾ÉÖ þf¸€Q1Ú,èxññ¦\E·Å[wÂ8rI&*àÑ{wظlKêJ¶ÜWóuóÞ”P%ÚqƒÎ`ˆqŠCˆ¶èŦ1¤ÈÇ.P/í¾Kÿß[Ûý?‘®ÿ—ñ?kyè6Qõÿ½Jõã}®Gü~gzýUÒ³ô°â´z!ü†p%&#£v¾'kç‚G÷z´ø2MûCõÔ³d¨e1{GSCäŽæ¬çŒ›Û¿¯j@; ç_±/Tmžs›Bª"'¨'{hÏr6Q{…D¨+¤úUdxŠ£ %e-1o†þ £În ‹*ÅZ\AÅOŠ êP"7øPÊ4lÛájƒ1ú:¼Y=0‡ñ` ¹9ƒ. V™Á†À–!YÎ@?}ø0¾c.DR ëèxb ~[Æ` ¸ÀYÓ‚äX‹Œ éñÍÞ–ƒüÉ-²òß:ÔûÖéi'OP…©ÕãDØÛD½Ô®øÓ÷yE€Fb›‹zÐbŒ$À¡ ¤>‡- >RÇ“¿‰uëoÀŒxÛzgkÜÞW»Dx€äuW=ê€5H÷¥m›bYäû;¬,†F‹ÏÊT{dñ¸·÷†.5”©@æô¸“uTaåp[A$IRŠn%m^mÚ»øÒÀ·"m…'ÕX{¬¹X©5ë*ðô÷C!Úä=RÒfÞ3*€õ.àz¾PQl©‰´²8_i‹´ðNìÒä˜RÞ*ÏCBsgº¹`ï6¸ôÿƒõèÿõ°nÐÿËû×òpޤɧ—£ü‚ä +½ðãèy)ü{“EÍ>HÔì!ë4H· /ÃC¢Ñ.¾L)Ü" ڦ穇g:«ÄN¡;v«úzñÄztüB„¨A­Adô"†üý#ÅCšGI¼×(ª#EÎ.L¾Fi=3\£Ë[J}c‘RãGÖ"ä!#K(2w#«óÑÕkªP°ëPjjD£&a[t‹«²“蜒_ÌÒFdª`†…eyT¦@üƒñ¼×¸úXv9êà–£žëã’ÿדÿ½wp°û?!yvë‡ÑþATúÖøÐýªúãH|-ù›_ÿ ¹… |‘=ÜqzÒëUƒ£_Îè/Mü—èiíAÿyI“)™á†Œ"Öi»uLIWQúZL‚8ÌÅÙI ¥“Å^(Îquˆ³Mý?£ÙŒHÌ×Ó‡ÉíœÃNŽ@ÀþÄËd5 ¶9Ë…„*tÇ…â¹J2ͧŸ‰$I¡ã”h°’¡ñž‡¯N@ Ž/ÜC”*x ,=Y³µEzx;ú<š qž´‡“ŸØ¶aˆB(k˜ ÂB¿D‰7à™í&»½`ZøîhdA~QÕèŽ/g hóT!¿L¦\?‡1N#™¼ÈKÂw9:¢q¨Ù&T©–­x¸’ôÊd;ÜóL°T¶6aqàHËïøÝkVú²sÚ†—ïÇ“?ÆAex=¯à˜onÁ¯d¶áçõæ&ùvÓ¥G­.o_ʧòö\M´GbÌϦRžæò“µ“¼RØ ±Â¿…¦“?>‚²—äî¿Ä*¾¿fñÔò¦^Wus™~òÃY²Â½2ì‹Êé6'd—~éåýÒŽ¡ø.¼Òx eó`0ÛÎnÑü:J¹&‡AD\ z—' 0ŠC¥"^%µ“ñâáV:ÎXÿñp&'>B9€œêPû&éÎßd×¢‰-s=|­2)2:&hJgÚhâÏ4ºƒ&ÉO£›¿˜è½sÚh÷ÉÇ H_I‡Ûo€_ŒCD0¶®Ä»»ZlΜM(óÿÀxý?âëñxá°îÉ¢¸† ›élFæ€óÆ‚ÖðBÏdñe<¹åŽ 0×D¥Våâjka§2Þí°K—î‡ww¨€ðênãýˆYËÃÉ763*ê©£ òÖ‚tù/vÄ){vSÆÞGZ×½Ã"¨qŽHV½¤PíU$í²ßc³5(} Dí:Äa ‘4ªùªIJ‚ß”dÑn‚Mòâ×Óv5œw‰ÖÛ_W±‚@†‡±²xŽ‚0š‹ ê@…9ÄX|-s¿‹ŒßÙq-Òlã¨L úÃ#~ÑcR Oœ6¯°Ïé¢%ß( ?¯ª _åéИJZ@GrïäxBTÓñâ^Z)¸ pWÈ# ÅMujdDX)Þ$ I‰±„I$5èÖPÆ9‘_‚ ­Í{àŒ IÞŠCC<ChX>°B2L4@äÍ`V„ úÍE0€ÈéóøÆ- 6,¬-Žó©µ`<£†Ü±ªºRU¼]"CÏÕ~〾Hâc¨ì­F! §€³b¹ô åí)÷ÇÔw‘S›$ŽC+–÷mdÝ·ÞFœ<¶J&Yå‡}]Û}ä«Ë g¸jâ"?Ó†y3åaæ $Õï™ •FàßmÚT#ÙO[|·½ÚÞK–™y™¦œ±Ÿ™Œ·4«ËLÆ~*â:IF«€K¡e´@ø d¤öˆE¯)•Y€x#Î:ùíÀ¬F»MíÒg,X—Ì(Ü ëq›ÿN—}/1USŒK¥UBÑým–e©ã¦7¡,tãiôþ0ÈÍáJ½ª.ÿßË5á?ï…{eþ×#=te©þ¿—%þs‰ÿüDñŸ«D1×èßwÿUbA³wK,è ºÄ‚.± ãúK,è ú‰ÚÑŸ2ôÒÆpohÙ(þq“¼FÓŒ!UBEó¿ŸTt«„ЦÏw –Áf%ö[hˆÑÕ·›–Ö«ä- ÁqµP³ÅT&äÃ`þp]‹G5¾5˜ßû ­Ù[ÓÚr·pYh>f)=jŸ×ÞýÃÝbüùn j2†÷Ýbr„8í8‡B²d(ëU¢ð´€1Ÿ˜G{øü„ÔÙx8ùø|Qz‰”ŠAi'¥—Ž¥Jæ‡ñ ‚Lå%ß]ÆG§™×#%Iã‘Þø˜Ï­£u`¿Úž&Úgn>ÿž=wr éÿDƒ]üëu0†&U0˜“ße>ðEN‡Oˆ’O#Oo©/á™0ÞÜ øoä«»»`x÷eøm‘¶#Rr$YUÇ ]·ÃƯHÛâ 5Is@ „ ‹•ÌFÿyÏF·? šzV£àœˆdÊøQôÊp I§Ð#Çɢ曆@&ôª…ã‘u1 ¶Ýè°d Á¼×ne´í¥çôg¬S§¡™'å 0ªYV³ÚøWÝ÷„¬þoîòö9šT6&"¸ÍǤ¸)ð5¿ÑÍn®Jl/Ÿ¿‰ìñ²p¯‹qd‘)ŒÊEca¿•ouô,~ŠÆŒêµºÃ¨DnÔ[¦¨µ7';‘Žº•¼¾MƒúPB·ÖPwÖ±"¥†8Œ»aŒKë†fÕñè·ßZ€öEäŠåz‡êàós*ß}ƒT^Ì¿}X@žN;YfȘ;- "„…Ð!,òÿZ˜4ØnáÒVûBm—°K+´Êé7ð²ª4X1LºYíbEáM¡°á1tTwl©‘o­.ÌpË4ü—ÂGF³Š`ëö ¦Ýn#uÇØ•j«F©÷&™½=Ãì渘AޤOÅ3G› «, Vú³Ês(»;­ïâøµH®%¢µ\Vä˜pú=ÿÔÄfãj¨¤ «Y~Iy…S*M…e†ÓD¡ecIÄP Z55”]Ù³ÒŸHDêV> £ÓCTÍáË&ƒ{ˆ1þ\Ö3’‰–¼ƒäêØ‚e1ê'mÐuúåÓøæºÆ'„%|| "‘‹‰4GΞk®ÞQíê°AM®G³ºÕžÊ ¶ëd‚ÒÅÄd©ºý21RâNçÄçh3ÏË›<¹–ã)6D¼ù`·ÛÁàóÃÛŸàã²ÿGëÁ<ܯhöÿýÝÒþ¿Ž‡nHÕþéø?‚3 Œÿ5:xèïZâ~¥PßcÍúŸjóìûKÜAÀha“ y„jpDÄjA¿ ¹G9%çùêC}E3=З‚1¦É.’ºò‹aÑXØ#–̳¬»"s®.Q ’ä{-LW¬F…‘iÒ Q†LéBÉçBYOLðº`X¾û ]Æ ×ð³Nƒz¦3à‡6¤§›ÎW k²±7ú—çJ@+Ç‘µÇÁšßrÐêm"o7Þ ŠƒÍk|5˜Ó¨46‘ñÝ»ÐèEqÿ¹cÕ‚ (š©ÂÇrÃ&T2Nhﵬï­2¬vå1² {§e©íW³®¨ÑWƒºÆb\M:{eû$=Ò÷(Z(›)7¤$%m ßODéàùE”ºì?ûë‰ÿ<ˆöëšýgï°´ÿ¬ã¡kUµÿì;í? ´ÝÈ _ú#?;mBÅb:Û`œU;}f¸H@~¶<»'x9ägXdëB~n¤¡>œK¤jý˜XP áýÚ†!ÔùÝšÍ#$ׂ»û÷ÕÔA®L'ÿͦsŽÛQnôšÏwó |œ´ÿJzPÒ¥0Ÿ°„°.!¬Këº ëõùûC}–½ª"/ä3ÑwXìKØçöùiÀ>³" `íÅÃö\0 8Ïþ ÏÙžðÎ)·~Ù€µœÕÙÒYbÎæl®@*’‚l¬8‹«>r\hž ·9hs¦N™S èwÅ`3»ì*ËšS’½r`Aevã*SÖ˜Ž#Ì¡›C†[̱iþÖUò<àv¸aÿƒm‹“–¿Œ_ˆL$bÒ‡1äž>fˆê˜*tí_¤–LÖÕ¤7-öRZo„þðW¶ƒ* £ µ9×ZënÇÐÝïn§–6¼«ö‚…êl@Óìou}+¶í³b]I"ôIY±—k[±íÜ+6]ë®¶b/ŸÌŠUþ6£Ó£`;á÷þ9ÿð©AŸds¦ï?3gú3|lþÿ»á§ñÝu1©øOàÿÃÝÃÃý½Ý:øÿêQéÿ_ÇC·—èÿo7~iµ›•4Ôw–ÔÖêœ^lþôŸþ!zñ‡_Çwãáì›ÕŸ¿‹þü`ãYýùÕØ™_e5M Q/hMæ‹ñ‚ÈÏUðëMImAû =¼®¢6Ùߌ°~ fñU½ Éb¨Òˆ€°Ï‡oƒ_‚Ý.þþÿnæ;׌ŠÑíÿéè±¢ï§ÿ¿Œo‡Á¿¾‘_Ý…ßçd zãÑí·à_£?gZiÞþNð ъLJBÂ'öëÿ§åFŠón»uÔa½sÂ*ð·Š'›¡Ø_±9†ÙMêñQh ÒuÐÁ@š†\ˆÃzÙ_˜ƒÒÙŒ[ £Îƒþ‘ àçle2¯=B—LÈá{ýüÃ@7~!rKê%+›ÑFW½˜“T5*NÖñöˆÚWaâ!GíBœè}¥Fû1éü·x>Úk>þï0q>~"ß çÁEelm•úÎþVgÐn·´!x·*uHÍSøzô °}†±1ŸT‹~Á¸~3œ@xÄ5ÖÀ—Ô-5Þ3úÛ"/fÃàólt3†×)]þ;Lúèë§!a£[¨å ¿ÁãôhG‹qŒ&YJvÐàœ¨â­jÐS>?Wþ¿ûè肈'W[áš’¦d,ý¸C4ÿ?NX„ˆxî%³L#.åC„͈6êä‘F«ot»½‹«ÌÕ³sH}†Æ“)vùã¥ÉÆq/«"Iš¹" 9¥Â°<ÃÍd8“qÕý´ª•ˆ½ý“ABó“ýe¬Ïâñä º(K%{-^µóD‰ k›»eZ§¤g0Üõ€_I잆?¶·82× ç`uÙÞ‰ÔwàœÂW:¶WöôW®R^9Ð_i¦¼òRvÍ&£ƒÌÂD«“^³Ý¨l0ýe£Ô¨Ö3¹~¥ÑÇû„úQ†r±nL=Jç,Z—É¡JUŽà‡ìù?Lû`;UAÄS¢¬âšBK÷Ðh;Õgâšæ>€~]yø Bl‡.|¾¥Î*/¸mºB/ÑÚH·$  `K.øúâ¸Bù›Œ‹ôâ“ Ò ú†Lˆd·ÄŠ-ù3¨¼'}d­FöXpéBuÈ("¥ÈÙÛúI*ÆFï ãLT³ê©É°íŒ~ãFX7žnP9GÃp+Ø&UÔ‚ÐF¸…H8bjÙ­:/ Ãê`Ép$CË’±¸]ê|)øXS+0ö•`/æ©&W…6O!fE3ÕRf)Œ¤ú4%ßÂ…Óó"¢Ò\,2/Ó{ ­$#jÄ`BB0Ád×iPAŽ'ó™ÝÁ&G¾îâß0…tÝ* &hö›Ö$˜LhK­«ª¤ä$—‰ö V £æãøïÑ„Ž‰uÜLï¯Ç“ø~vz!ŒÄæÝ ç#RÓ¯dÝßb[ws§´‘ç뛓W<¦Ž| &Œ­`S(xMš":º¹d÷Bbs"Â1†Sߎ¨‡l̨vŒ–ÄáGžn×ýrçÓèV{­™ò¥X}­ÿ^zm<ñ¢±ßµ¼e!®ß´•7S5è‘òƒÙx8ùøp'C_â×]ékK£ƒ¦\ÊÜÔ»žçô·ßy|×ö,Øó©1‰èçÆ›OCÈq#‹<¹³žÅP°´5fƒÆd@ëý4ýBcndXÊ«à dŠ\ÃZ"­ÞÞr+AèqÔÞÎèKüÖ?ãÈ:¤,íJÅúE8^¦.Üþ²óˆ3k„4š¨Xwà4 ²t‡ŒË¡K”=¾F¹ÃB\;3ŽF-VÛücøÍ*Þˆó…¬öçús‰M-Œ‹—”iC™¶BExåÄÓ0ü .Ž[ž+)؃õ©êSpYÒ´È}%_\+åj¹ s¹#{9(yÎJz:f:p2=Î%OC¶JÍhÉÆY;µÞKH!ÅÛpùr"gauþ3˜KÓ“ Ö!˜Ó©Õ\¨ë£pÀÄØë3^@ª%æ§SiE˸Ypµ™ Rœ)’A_!ÉÑŒ4.¬ÅË 2¨»ËJ“ü{»¡Î°fÏÁõ„¸Ñ˜°(R¼†C¼j›!Ó(Hæy €öìvãžÚôªpN¡ÅŸœDb£œ/‘o ©ÎÌxÀmø@NÈØ÷£p\ÀŠN¦“šT<¨#vøp·P УWö&ŠñâÅ+ íc8ÖìÎ.DòZðÌÖc¨±}ù²* –DŽ‚ãõ7œ’ØÍ`NV*MMv,.–E|ÖÞ>»Üm%»¤$‘ŠÈ?¿4“5’¼+¿x{‹xŠÁ|nÆç†ú¼ýCf¿[â`‚²ú *Æ?³76Ñ2ÂÍt²Že7­A˜`‡“ nžvóŸHE‡SAä €1¬¸1 )Œÿ+‹yx¹“AP¾H`Ó‹r ’©¥§7Ò'q FüŸÐ—¸ì`£*8×îhÌëéèŠ"Û¢•ù¦m>ž ©1j;ÞŠyEô-0dÄj$ù€LC"&’í'‘"ÜRœÇÏ9öMqhMco‚»G{@ ùZ¹å@ø=mÄç#Ò{ïÌǘ-AÆ9™| ¨ÛK1–œ¦ÇíÆà¼HçÓ[87nQ&›!¶äˆKìÞ#.|¿|ööãT5DQ7€—úælOˆZ ÞõúÕ ÿþœšá_žúh°Ž…€dÝx£ÙÄ¢¸Ïù5]kY Î!Å|áböpð*ý'ÛZ±ªY1G«Þ×N¾ižÿJÆàÍÉ9½Öò¨ûö:ðqŸ~Ûï’v;ê1nx{@KºôG>¤ ÆR×t¯¥’Rþ9^Öb°»”T~’?@8¨€d— -EñçDr«ÇŸ›ñ©)éÊGp5ǶÞ!¿íídA'5ÆM"|áÆ›ä}²Ô­ÅÞ©íÓïëH9ûžUCfÏZM×\Mü}C‡–µšAR ¶¬Z.¦ª)ß^‰ãÂJÂVÝ8ž>\‹¨@¦[;- þ¬¶8†yèÍŸbùG žµ´î½°àNGX¬††4Bz¾C©P댩¢vz¢¹)D±ÏÛŒ& uXJX,–p5šÖlÇÝìžÚì9ÄÌëèó¼ü¾Z¾ã. –Ç5D»rÖv¿{èz÷ÒýîKNÖw½ò³>8ØB«Dm€:™”¬ésXu}B„·,«‰UjŠO-¸”A7rm#mÅxÛ¼¦+±?Gìo;XhXØ Mß1µ¿ÕqÓ¯Z£‚% ÌJ_"ÄF°A]MbC p]¶ÛŠ)¢Xl…à˜âêýÃoÒ”C9âˈŽÞ¹’‘,Λ(€¤E;JÑsÛxˆ\[a¦Z,—í.ß e ’t0¯¬x‚ñ²ã(Ær`νlôÞ†!ÚkgÓϳ1‘ Ø ÌŽqÏßcÒ”áéRwÁÙ|"ómá«w½ }Iª…Úïìï·=Þï½3§dÅŽ æÒPV(J"·gr-¦XtøíÌŠ·Ü,Òkn„Ü‹d9G¬{aíqÿ½%¿,6‚r IÉ;¦ö dS²ùÚ£‹ îóGL£}0wÏ¿coš>SQ¥¦Tñî8L6mDÞŽ§j"‰ƒ^îZ|}ˆUŠ«|ò´«F¼²ÅIµô]Ÿ9Gïmw£$‹½'úmésÜ7kçõ>׳ö¹k_È]ßá ÎSË€8Â^Ù€t¥áƒa¡¿öõ Þµà?ƒž¹³‚ó—Ò@„ "ç ÙݹJ‰›‘löS?d†¾þwbb7»öhÉJj¥Tö€/á*ê¤AÕ_BXdd ‹su¾$k!¼PG,¤¤mRú@‹VÙÛñP‰—5-ëɽ–%«Í¢kÍ>õ¦Âî=5ö”:ì ¯ÜϺ_,¼Ò0Ò,ÎåyŽ´#ÄtÓ>ÒÀÛã•­ ù}ÈÅå.¼{z< ¯§Â3^TMýpO"ßLo‰/Ðm §Œ¯d XÃf1~.y燥²Çÿ.®÷Öÿ»íï«ñ¿{á^ÿ»Ž‡î9þwÐÜãñ¿­óÆ€GžR5“˾ ¸7­ 8‰'³õQç¸s vëVðìã|¡tÔ2Þñ½8œ|ùð 0z.f:Žþñ¶d 1zV0ÆÇ~9ŽÊ;䮇4…æØÒ@U¨‡¤‰™1Àn±q±l%|®¡”»ûÈ@‰5¼} ‡ þ"Ó~K•ÀØ@qîêãÐ<:r ´¼³Tì»ôžÅ}8ké.ŸÊYÜcâµÒ©aÈæJÕPÇ>Ä»Í5J)Ó•ËÄÁ¸•ùè~¼¿ßÅø<",èMHj·/úÍ1ÂUÝ/ãÛEÌ9pq„VJå4š2cå¸qG@ƒÚ YÀc¸ön5Mi_x`6ð‡Œ}À P´¥! $3“*ØŸÒ…%êžÀ2|S•6H Ü,<v †ÖNYÄ¿¢&PÁš Ìm‰¡Rïá0pØdÜ·ã9¹ë8j‡Œ7†)°Œo)–A¬#梜yÝÿ¥×꜑Óé¤@Æ@Zƒ¢ýã]öþÒ`k)7k+Wi[«üæŒd _ƒe¡ˆÐ…ÓV¯ÏÁ˜2ÆóÇÞƒfã\¥ð#bt½â 9ÉûçDU)(TÁ!xÝ·ÝYÉEÛýw½A!Qí?CMý!99æ<Ð ©£ßøõ$yòxä©¡ @oãî˜KÁ ŒªÆ ¡4‚u/‚Aïòd'x±L„D1÷xci¾Y2xØhñZb*&r_º^Fþä –—K$=X»;öIJç1åÔg“—Û¸ÜÆöml\ÙÞÛøçµoãPV ü÷qh\hëÙÈM ÷ÚÈR¾ø:vòÓ:P²Þ*φdI lKj໤tðÇç|B˜™l¨lò=pÙ³v1kßxLx¯ý½µ³Ò}ªeøñÆ´]p Tf<ˆ×²+‘yI¬“ €ácŽáËõµ{Qä HÊ|_¥ø®=˜¼©Zé Ý‚GQœòè;Ñ-Ï$e‹Ü•隆kWO†•îJçq’¶ òØzvM¼é¦Š7ÉòÒó‹=†ºÆcBФÉåaœœRé]Ïb² 6ÝTÁÆà0å®Ò¤³Ô“)¬㨖²H)‹ø-äÝl‹Tå¨i ]:þútäv3á—0ÁïJàf¼‹p\\œ*³Ș⸥K¥^„¬Ð@odq”Òí-¦m½ì®–fË8®+á ®³6¸NÚõìx›4H•ƒ2ÌÜõñì‚P$³Ø|Vĺ\ÙúŠÆá{Ú8×ižµføƒåŸÈ—…Å]†ZRCµͽ2T{µ+þ{-ñß!ù5üŸ0 w÷w÷öê»ÿ]? Ëøïu‘*ˆ`ò"Ž÷f¯]Ü,¦äH¨B¸÷K¿pïÔÐkÆÕRcº¥€îö;Ú¤äe£7²1†'Öóa<#\òìx;ŒïkÀ!m¢Êý ƒ9dî z»SþëõŸÿz=‘fëƒp™è•¿n·ÃíqíÏêŸpmr£2†_`±Ð{Cþ¬ýu»ù¯×cR—­¢6­(®¶PÑŸøúýxR™TÿÜ&ձᅡò˜ë´ ‹p *¸]èx›ß[ß1óe:ûkNäÞ‘×üu»€Ós‰×£-^÷&Y.1ù‹Z&þz—˜…6ëM&¢É¹Ø{M.»]2ôôw«Ÿ$ÔV^Ð/"^œž’ßWá>“·G—ÁeÜ>é¼¥Žc‡@G}ÑÍÖô¨7ÙŸ}Ò§jìgï¶/û¡C‡ï£*Q½¯ºÕ Ú8[o_í½ðÕ }r:pÔ3 ­hë—mòÊeç´(ØÇ@7à†ë Q*»Zå˜Û¬7¼ÐêªêkŽ^x›â.Ø/ÍÆ±pÕ F4UÙ w¾ÀÚÇù¸ÿ[£[€›Á[ŽÉh1—óQÞúd)9œVû;­R¼»¾viˆTŽZdQvkòo`Ť›½Éâ |žïÐø¾ÖÎGÂE+¸ É;¸"égt×ϹԠÎM´&·“ÀÅjMw{Q¼.…YÐÞœ@è6Þp@£yOТ&sëÖ? íU6°i8¯rD¿C‡sßw㛿8ª*9Ðô¶»£›ãvEsœby#ÚóG $Ø\û„úË5©g_/#\§"´K /k0!Lv– 2R"ŒâÏ©iû8ù0œ*Á6µ‹ï‚F^ël‡Ò[Jè4eþ0!ïÌóeèNm5ýi[ú£tÙH|SYMñ­ ÿëu°oÖJÔ› ’Èõ“iÅy¿ÂzOOPf.¢CÑäR¼£tL,£ÁŽÂ`Õ 'iÖ jàÐMK¼kÿÆž]Zz…åÄX z•ßÝøµ°O€?dо#¢ßqsÊÔZ"Y W¡¶hÁiëœCèM«ã[Â5Ç‹oz$¶Ý­`ß:z_ôUÀoúhqÏO+|;ª!г¸t⇓Þññ:–ÊèElNåë>¤A¬æï¾…Ñ®õ-ÏZBÚ7U/×­¼[§ÝŒð$ã¤tjoåÝìîgÝÒÏ=G7 Ûçß8ï°{ÈÌÿ=&«Èº‹è[ K`@q±çs›Œ‘ ß'f’ÖÍM³”’­E¯†ûmc/" ªö`E›¢g˜¼òßÑlºcYŽì“Ý€»’ÐwÍ(’²s…«sˆ¾E¶‹ÜF¾¤œKz?ÿ’Þ_bIƒ´Tß¡àA¶¥ýÒÙ¡Ãï¡gÌÝyé½Äfû"Ëú†HY`vCæ–ä$îP·ñˆ,ÆoŒ?N?|ÐÃßæSz …`í¡÷8Ïîé"£JzL¢æ[3k*é|„I·Â•*ä'—›ú°ƒB†Òb§VGI1RKXîM¢šÚ ´JÉÔÿ/ (h™l {‹Ì»0ì5%|‹šîÙ þœ6ÿÚ²d•GU&°?™1 w}%‚A¡Cb¨$e@” Ö˜÷‘Eöf,²-ÑÔœb²QF޽Cw‰T¿œ[ú?ÿ—ÌI@Ó 0} ,¯ÁÃ_õz ä”ÿÿeiÕÕšújÆ× ­ú¾¦´šå5|vðÂk'ÛOÁèŽÆÄÝgpÁ ½™"ØØÚHŽ] 3þòsTÝ>Ü9ny¼ýsxU±*çRÛ,2˜Ô='Ì”,Á{7¹O‚³‘;«è*ƒ:É[óµØ÷"OàüIá[êVùñ~1Œ¾9ÑèIÉR~¸%ä΃”®‡·_¦"÷ÆwH@b€†m'qjò ñ(3ST,ZPAC.€æ¬¸Zj¯J­XŠpá]UçShƒj‘ê´µPÌ] ªÌ^ ³M‹`]j`/„gd¥ß ¨¶Äxg-Ešcå#ªqÈ„¾E S£Ï›$™s2úlÕÐFLW+žÊףŗ,ºÿÌœžMC5°TñKuMÐLÔ~£Ìš¡, ”‡Ìh´óZ‡,H–\ –ÅÖ5ì`k¦ªMÇ¡\PͶ½åQ> CM°’Gþhú™z»EP‡ͦ:~i=mÁÎÈ‚ü¨V™([¥·£Dë‹ürT—WÈn0£u@µuK-¦!uÓ jû’$ÕíUh¼QYû™ˆ°ÝáâÓônúq ŽŒ2ÙvNùó|dº#Uœðzx ¦šŸùTðw,Œn«À¦¿|";‡yOÉßw㘬¡ù·ùbtkâiŒÔ3„æ8Ú–‡2OïhòõÛÚ48)õ]dí´‚[é“nýøØ`Û?©¥âfw‚7?´-'È0"XÈ÷bL¤¥/£»»š0*‚£ðœG!ÏÆ?« ®'“3‰Ðòqr¤’Ùè?c¢Áâp“̤V†S fQ{[¥þSËŠ´È³L_ŒjôÏ·&‘YÕ)Ùñ>0ù+a3ÚOº_÷P³´uQHa%±ÿ „ŽÎÛz.v»žIeÊêÊ#\EdSÓóŒˆqÔˆo Qׯ½•¯n{Oh§^"´i6«4ˆMfAøÐÓßË#î9õ¥n„ÔŠžÐ¦*ï°ë%ÉÚõ­±íûݤ¸Ðý¾¶ˆ÷+{þ"÷à XL±¹ÑøžHÁpko—½ÝŽÿ£žȃ ¸ùwD³•Cj‡ÄʄǠd‰­VŽ`<*nÿ ÂÍeæjÀÆš& P{‡ºèSY†Ã(¹–!®(‡(s³ê¯+«‘>f¦Cï­Ô™ŽÃÚ)ÕÕ¡u¡[lKú8…KíÀ¥–æA"{ ìÍ:Þ‘{œmƒ,Žð~ꇱM&ÞPiÓé¢ãFi| z| Já•pS`ÿ^’ ¤nq‡µù1¥Ûu˜žƒB6èácnPßMt¸žMT·n¢:7}Ç‹¥eºUhäᜃ*ÄEÄ-tÏwàÇÙô yóÃ#0ãTºjpý°L@¬Q‘o4C‘(ïÄÊÁít4ǨT¾=ýÅe‘$û“Ùú`6ëê`5ÍÆE^j.š°FvP Ø5áK·U\°«áò’¤}&F{$kÂlP_–0Ø›Fc@<’ì—íÀl¢= çÒžñ\’&$ü9ƒj`ŸÊ(tú¥¢]Ù1åÜñy£T;|q—Ÿ¾§1w‘nR©ðÐo†w€†Q à_EMY…ÿ‡!1›aò#:ù`/%Û\³@Â\[íŽðe-”g)ʢΒ :vÒ˜·O³ºÇ2S·­Rç£u&ÄʧĞõ”ØE-]Ìá‚“§>Ά·¢4U¬"íLÁÔ´˜Mï¨Óá~ú0‘S¸™©$˜ŒF·`Œ®äøºN·ä5Óºt'®_±óu ^)\:‹ê|½—; ÚóåPTi !~ÔIh¶ps+m¦fà6êa‚C ´¸uƒxWÈ€{!.rqðõ¶zÎ~à=níÁNÇsÜ¢´aÓÇÌ- ÆLÎ 3ÞÒûÖ- d“åºê––™/‹:à—ŽÔ5ïYFB§­s²ƒö+_qÊeÌ”OËÄ»ãs:rŬ˜vÄÏmwðP©ïPzŽ£K”T„"Ož®.±©fËë†;ÏP£µ€º âc”ŸšIEx|oñðóŸ;,xPd!`eÞ¢¨*çV%g&"ÌÌn¤ Öª¹11eN š/FŸåƒ—ª ÿ¢Ýõïä uÎÙÑ6¹#%cáéìØ$Кx}}×°HêTÕ—M";ÈVc÷»Ájy PÀiy`6%‡7H€ÆP§Lß »ê ñ\Lß Ò"ðÂX¤;Ákd\4ïG†{.¹|@-û [ìÅxr3âNÂôú[—7a² €Á„[F;uáÞ?Ì`§ Ù-sB0B@ѱ)¾ò¯æ›°R^°ß«Á7þEô¢2©E››[_i\ÑÉ_·¶"Át‡ µ‘ šÖ@‰Tiœ£¯-HÙÙÙ¡Ÿ½KKòybØÿIþë%‹ )´‹ÿÇôW ©/L-d°ìÿFŒ:ü*¥DÒ 1P,”R I1)SäH";"Ãù…CÜ?Ü-Ɵɹ~ý¬*‘Ïaöš‰¬^ÉŒ}À/•Øþ¿³³£Žý6bš¿ŽK° }•j0ER…u¬ jHê0½H LG‰B¸ƒÇÀ—@“hн&¢d@}K¤Ê`“ÖIÓ(ãJª41§3àTVhCéE6Ò¬sZÇCîdYõßäÿÛy´þ]üg;½”Xc¢S¹•XÄͱ­Á§¯öE|¡¿MÊ@ øö.ö%ŸÖàSÚû"y;Ūx“Œ]ú+'/&¾0tƒ7ù¿¡ œ˜<ÚÂNHòþ¢Ì‘Oªÿ¼ ‡úr€oïmÒt°"+_Ha…_‘Þh/|NÁ?ww¤OcøJò­`h‘“5DÏt8O7–g§Ч„§~§¼S)ä¨#[ÂÏ­ C¸4c[úCofÀÝ´$+ú#n2’~–ÓÑ„%w¨xõD:e÷‡Ë0öRÿ;mmD£xWnÛÚ©aÇÖURVëñ{m¦Õ>ýNJ\‘:\Áò2Wâ¡×‚ËÿnD’Lr°iÅB-¤8U\U9NÅ!5+Wµ;²iWl™¿7­´·l¤éwÿK—KؾªÒƒâzêÎz"¡²ùj†,Yñ qµBášÒm±Ï¿kƒ&ƒeR©E½Ì€#—Å%f^¢Ë{… ‚Ak¶Üj%½q˜´hÙŽaØp ;Z¼µ|éMyY /)VAò­a © È„‡;µ·æoVù³á^žª“^T©&à“qW 9…¦¡¥NVÉN#>½°bæÁê5ñ^ûø¡¦pp¯Ubï(xDƒM](;äºÿ ÐüŸ(ÉÜüÁu7ú°P×m °yz [ޏ·WØC쪡—A É­D&&HtÔ’RG[0,W¸Ç·ƒ>ÿË’nÐ5u µ¾ôþ‘÷ûL¤!D˜‹Ñ®^‘:[?‰hô±±ôõIi^ˆ°Y#óB$ÄZ2/b™˜T”F²8XX¼ÆxÔ5µçÑTq²jjÆeÓaÌX£ò¶JFnÓ@†²vaäS–3ÛÜPà'7Ø£§ÕRÄãKß‚’Q|’­hZ#«Ø„l²¿ÉNv¡{º W•&ëÓOn¨à@7³M~š å °ûì°-Ë<»{6‹ÕÚtä+âQ¶kM}p¡ù¦H÷¹-ÒîŠûÓ‰¥[zœS¥®Ÿ­;óçb ¯+“Z¸ù¸è×VÓ†MËÞGžžÏªáÂp^Bm“A™ˆÌ’D†d¾òÀdæ ÌÉ[?ÙQ™¥GæINÀfOž”]ùMSÙ„2»%ÝbIOtke$ß*È^#)1?_ÈaÇð =¼™MçsÌN¿«åhVKàGLðØ¬ž‚d¿}«ûRUÇ®Áš8pO¿þñÖA°·Ÿ¬&&t©p+X½Zkû­1|Sø–•m[˵©´hø–Ùf!â{>88Xoa%`8òO-¨wíeB|hëÓñ6u:^¦LGÏ:‡ÞÓÑŽ÷¤úßò©³O›}:âÁÃéðœˆgЪ”ð«Å^ܽtH é$òn yù<ÆãŸ­ÿ}w?:Ðñßë%þû:º#Uü÷ž/þ{ûAàíR‹Ž<ö£Àã­ ÛÊßó€ƒ_ø{‰ý^b¿—Øï%ö;ö8œŽ7nz§¸B"Î:Íè¢OmÁ2R÷”mÀª‹W‰r" ©Ž'óÁ¼QcÞÆA”æ¶ ¬Q¦gÍH¬ V¬ÂÙèÃh6šÜ“zÓ6öÆÅ9Ò{£&ÖcíuÐxÄZÔÞ$øºUKV4œIœG¹ý¯Qù«ú¨JQ¤|@fý þáhödµø,Y>ŽÉ:“Gj‡Öôï×d$¾VB²K´ü-]hùE¡äSdüçxïs_¢Ù'ÏñÑE÷}ÕÔÞ>êížZr«ôÚ;qÏÛ¾WbÛ%¶ýj±íÅþ¹âÕoµ,‘D ÛH,K?n}1 õñºY!êù{™QèÓ!祪•W½@çµNÙÜ%žüjñä‹צÓ<^ZHYü…épð®5ê¯uÊæš+±ÞK¬wõ)±ÞÅ%Ö{‰õ^b½—XïÖ‚%Ö{‰õ^b½ O‰õ.b½‡ ½G;Ç»¤šu¼‹5ÆdÖ-ÓCM1`æëÜRB£”ÉB©CìGû¸aÊuŠ+7WÈUïUãõ,`¯’öl-¦RAŒ·Àv‡\…Ò0´©†Ö‰¿LAi§ui°âÚ¼åeòg´ÚQÞs´`e¨ùj`Áæo Qχ>.®aÞ/^îŸ1Å0è]@É1r50âd#2¸ôvÍ“¾V(rëúPA¡3|IÐO 1~f¨Dxð¯n¬¹;dÂ9Ýõ…`wWãs¹&ϼ등(¬{.®mJýz×Ê!¶·#enè'²í·²(gSöFòI-­)+ÏA½Ÿ]5yYd¸ç¡Äšþ±°¦Ù-Keô±åfLå+QAIÞ³àž(ׂxR)dÌå¢4W¤ÌÌ-± ×‹Í.p(tß:€ŸcùÈga§”=äp”\Чºƒi‹?Ja ØÈ¥ÙB"¹8N}3Æóvî‘rƒšÐ¹•‘ •öJ ç"`ýò\ºà6šÖ€Û$ÇnÉuÛB®.9p<‚–u ±lŸwá'ï.0yãPú"ëÆ‹(+¶.ñQÑu] û¾ÐÈ)é F>{HätùƒÌU¦‹æx¯h˜ã,J—æx0Ç>ŠVBl s¼f˜c”v7¦qÌvwÐ6éÑîF4®%ö/ /ÿžÃ¾¹àÎoÐb†úí——>ÅÚ¸¼ô'>ñvöqqKkÏ €˜¡m*È{#ä¦Ú—¤ÇãätâäÖ]0r†…ë)Ï¥??űqIh%@ðó¶‰Ë.¼%ÜZe·u“ŽA±€%,@ž;€‚Ví‰ë§½cY»¹Á`kB-ÅâGlŠòkP⯩n‡÷í<ÒduóÒ“µ&µ‹ßË'Ë!Î%Bï2®ºú&!â!Íz'ã§'θYJAN€Ýí,drwÑë§{¶º¼Hø¢þâgðÞCvh¯O^ î¦ÀZ‚Ęâ»B)¡Èó„‘w—Þvîs†YïÚm)y ˾€‹ßcè×/©[ôÔLØÝ ¸p]„€»aq—ë÷žÅ¾·V=Cª×†fkD¬]%V­‚m‚:e}ú­ÑÅç-y&•*†Ñê žâˆÎY‡ëù褱•èA%€øÈxÉ…¡›öž)º©ÿóïùçµàÖë{ûuÿ3*ñ?×ñÐ5+ãþÚïVLÈŸàçîýÒGx†V·õ+2Âö± þÓ ü9|ø:¾gß¾SôO†ûÙŒ‡Ìm“ ý“ 6ñd´Á?9î'6œ ñ“Lx|Í> ¤'ˆ‚ô «1TAò¤¡ú¬ê¯Á+"7o} Ê”ýµ±õ“µi6Z²ˆ؉#XX]0Q%NhŽzö±ö³)Æœ×wÓ›¿‚Ë­ã­Ë h¦M~ko°¢ãÿ"=Dd½ÿü° ©³Çýî wÊ:ÝúÀP.̦Êó,½DÂ/É`"©?hÛêëýu$蘔&¿áëñí@«à({P…÷ôu¤,"ÉŠ¥P—ψ´|52tI¶~G·¯”†œ“/Uå»Aò݆öå‘ò%îŽ,šuÀ`ÑØ¶Œk›FUMD¬€‡u')Ó¦·†óùÃ=µ_Ó:ªÒ„‘r.¡yø…h£hþ2&’(~³u·ulœ×c¯†ŠMß^Ç„£ õ@Mž¨£ 2ÁlúñR˜;W H̱PŽRøs¶d»Å¼ŒwF;Ô³œ”¢|NÂæ8¨1@~… M ¥Ó>°’[•Îv¸ù"Òà%)—‡ã8é?&g6§ùbðaˆ×*2 \Md%1Æ1h"áU~(´3jrÄfÁ ?óóøï)„FÞbž>žRÝ1J§ ®ë…6Û¬ÂÜHM^Lpç(Š1„*Î ›s˜þ»ÑäãâSÐÙQßüJö(y>"ó|™ ²IÑŒ# =°4cÓ¦ÏHA1mîКtSoLÐï”}™Ššê³sqÙiñ+= 2ÑiÏÈÿà¿ÎÉ uvít‡Dã=†øùã~‹Èoˆ Dæ@Á´¡WºZñF©|sr¨”d d”ÉjpuÒk¶†F–B›ÐN½VlIZfhŠ|Bv…F(Xm8"ûS1∄ ¤ÑðmÛháaÛˆÇYÄ6c«H¨_UÇ”â39üë#=‘‹ª"ٺ˾¥-Mc47WW›ë€CÀZÆÊï©å Ã7Ð(ÌrÂmï¾”m>ÉŒB©Ð›Eû]«•`ƒ)R€ëHÕÞ¸ 3I ØÀ3‰’6“U©Âgž¼³ÀgÒB”¿1¦0Ü?mÕ¼ŸŽ“žÔpz‚ Çáˆ"x?ê'jN:ã°q ™‚Ë­¦ UrIzÛ­ÜondÐ%ùes 1¹¶º•nnþ¤¸ù ›So¼=~¨Ÿ/Ã9³>¾ûÆ!d°ÿ i²ÖÉs¦…ŸÅ÷йê¶3ˆ³38ìÞ\¥RTC"S†LþA1O!—/΂M¨z×ÐUúˆ‰º¦pMXš¼5f[Þ1]‡©Ù;ÔD;Ú>«…Ìtq'ì6Ó’‰»•³MBå³ÍÍ<ƒt ag,„ÑÒò4`š sl¨0î 9¼HÕàé¥=â dÒ©ZîUJ r“g^X‡:WâÝýããúŒñ×AËLæÄkÀPǦ îÌ8kb‡Çn*½Â¿»åJæsÜgp'á™ö|£…œ£A”ˆlƒÈ± °%ª’Öü×?UŸ2®~[è‘Û‚×t}=¦x(Eb©móÄñO.e­ Ú$¥MßI¨³`©ÔËg5Ð97ßne"VÆŠ@Ÿ¸$)Ü"5om[yì…$Œ–ô…½ñWÄ‹À­«Ç!ÐGœ÷u2íà`䯃«do76ÚÔ™»@9ÃJX†kÄ|í©r6·m# '/|CuôðQËÐ=—V‰©­KLm”˜˜pÔá(–˜îù‡DŒ ¤q7ð\”Ž®‡7¥ŠG`òjšd$™;âpI×wòsÇÒ=Ø6æ&Ða;ØÕ"ÿÐÛG϶CmEÆj_lV}¥VسÑH8ÌWƒ!Á¤ è{_†Ôš&\‡ÒIÅK¨£“AhÓä¿Wù»v¡‚]v¡NdÀmÿ ifܱƒõšøS¨ØGÖÎ)cüœ¤çn–s™íÌ|rNûŠŸ…ë ¶"Ø•i¡†30ÈA<¸ìscŽ4s—•"“¬!è§TÚO|å–9ˆÒ¦["ôÙ6žaš<èðIÐ"¢¼HÊšåÀý,r`Í%ãÅ’`Š˜dyK‚9p5rà2lèq™ìMã ‹|…Áš* >]6÷ÌÄJ§ô'÷P.rÅ›³’×r¸ÁL‡ËÙ =*»?4/fÜ0Y}Mƒü=ŒG0Œ×TûÛ@áKÓÙ§÷øéýrFÅ ‹äœGhv'צ Í?Û„fÕp¢  þÂl ?~Úôó°}eáÿNöN(߈/·Ý¨jÊyjm[°Ð×T©\yÁÌ| 6ï*µ‹’ž8|šL§Îµ)9UòŒ¶±xÉ™pÒ’R«¶MÔ ÛPQeíéGj×G€'ûòœg]ŸÑ:ÖçŠHH¬\ 5§¼ä#Mšuï”_mH7"ÛMáXÆ®¤š_>sµáe&µAù´8qìO\=mÇ,ó´ 2O;ð3î©2O›Ë<íX¸Džv,ù˜Óvmy—i Ò{ºË4ŒŠó™ò‹QN½ïG—XTRTSx2Ò*«»k—^¼$—Ø‹ ëN[á£Íd}Öì2õÊ¥ y`[§š÷h•ÒMæ¥,‹ß)$aw"±;’‰.^Ð>ÕøZmVE4·øøVñÔ…&¿{š­u9;k>o‡{$1‘JÑÄhS3xFAxr^ò `Wˆ5Y“:íwŸiRg†Ç•ÿùm=ùŸÑÁá¾–ÿ¹¿[æ®ã¡Ë[Íÿ|Ÿšÿ‰)â< Ô~àòC'6![Í“úþ1ÒAW” úþ)dƒæMuæ‚–© e*h™ ŠO™ ŠY‹ªž%¹¢4P=«S`¸¸â1 )™‹Z“!s±è¬Ñ÷eÖh™5úü²FËLQ­‘2S´ÌÍ–)ÚðÍ=ÐßõÎ2ýÙd‚Êœeú¾Ì2uÇ‹ý0Y¦¤”ª/,›{ð„rJ«@~žäƒ§˜R²^-õ»\ÖÎd´óÔÕJ®¤åsG}—ñŠRC«–!MÜSàŸ9sºŸX=¶2eJhð¤„Æ–i˜»±Ý혚ʒžzü~™óY@Bg™°¹’„ÍÜRÓóLÙÜÎÁBŸn6Óãs¹\I›K‹`ÅäbÂqgÇÓˆR5A”s†^—Ù˜ßA6f‘ d¹ÆkÞrX™¹NW&]~çI—dT>½Ìɧhày‚¹“{_wþM$Wê.4wrù´È‚µó21r‰Å·2"¸ŒñŒR#sJñ±!µº%ý29²Ùè)d@nS 7Ö˜ù}&<þX‚F)ÛÏEè((§qédÅ‚eŽ2]QÉüƒOΞ[º"ý]%,æô ÇÉm»(S¦-ÂSßnE‰ï‹ÎH´æÿýg±®%ÿ/Ü=<<üŸÌÏ>ù6Üß…ü¿ú^yÿãZº˜¤ü¿wƒÝ°œcÊÜ{Z ÞU!]ÓÊËjðÛEìÎ6þ°óÖ-Ö;é_¶zàü¶O4÷ÏjMSùh—`p²dò¥¥é5NÅ¿ÚÂöÑ}'¾Bǘ݉ãÎ~'ÓUI©ˆ–ÆžeÈ„U‚Søÿ³÷îÝiäÚ¾èþ÷ô§¨1Î¾×ØÆŽ?’^+{\Àv±ÁH/§÷=ç\$¡ƒpŒþðWsNI%©$U`l'UÝ1¯Ò,iJš’æã7g°Ž_^³Qòõó°÷YƒPdÖ嵛Ǻ­;n÷>|ß!Š“Çž»ëNçÃî6?Dùªõ†‘ ÂŽˆ¡5²ød:ÿ<ÑZ®÷µBmºSV›KŠ–(ï\oѳzŸ~„iЯ1²BÒ¡7žh»:g^ºX¤hüQ]‹?JK4a\ÓÚbˆ¨ßÂçpòçœ|ª“þé`ÞŽd[l#FÉŒ;1óh#zZ¸L{0à_È >ÞO1è®Oäy•¯ƒuT¹#Ç¢g Š@†Ü×ÉôÏ[m‰Ÿ7uöÌí5FSͤLÇYp©ñN‰²ª‡‘>L†¤fÖíp,ª®×nF2—÷Šªq׌|QD”ÖÛ*µãá{]K°Ê Þr1¼uDIAa^—– ”®.FWó53Ë£™i……é3Ó"aùjQ€ò˜IU&ýƒ=#ÊÎ%lÉÀÊ`x?k¶ƒmKùbX¾ÆÊ_ëåy©ÇŒÓúý¬u•‹Ö‚› 2õòfð–“vëêÍ;/]¼#s€V!U$˜O ^kÔîJ•W-¶7a¬Ç-Aí4eŒ—-~ì²\¯þ+¯7gôÊŽ!t¿-VË~¿§)¢Àp›jƒ:®6ßãkû¬“ç{ {ߺXC@Ø)ãF„!×-E¯ Ç`}¿eS0 ±S*rrmÖšzÇB†—åÑÐ!‰«zýª¨× "RolÔ<±jDG–ì•6ùrÄ}Íû/lÝ͆£ÉxKÑQU'wßµxz*qºçácHÁƒ]ÄhßF[ùðLWX„`Á éŸó ?„‡GB\€Èr[ÚÃñ+y9w_4xÑÈ~¸¹Ž´‰ ·°M ü'»|¹ ム#«ÞÞ:‡1³`p"`/EÒI±z_kŸ•ú¾Œý` ìŒåÄÆ)œ&:§ð«o ц¤üºô3‰ú€Ä1ý½ÔY¤3¡!Âñ"ºîÒlºpz«—Q ŒšM¶•×ÕuÑ{äP%˜m;.á/x›³"ábz½µSv/¦Š³5ŠlšwL^²ê"¥ÅfT庽À¥µ ?| A\íL}£8=Pw–ƒÅ ò…`.СUTkxÇÚ#䇦Ö×iÂcuU—É:±ƒH2ÛäºîG°(sÊj‹aΉٻÝÙÓ®mÒ¿jw®v—¬š¥Ó”‚ÈÀ".ŽËÚ5ˆp$Ö5ˆ>ý_q3ú¿Bñ Ñÿ±Ÿ3ýß.¾<ú¿¢X6/2 r]ä3-`D XÔtuB ø‰ïJf¡ºOîJP'µwL’ŽoÙ1d¨ÎØþëãT<Ý™†oÂzüOEW4Bu¯ì›á—Á8^ù¨hy3d• ÂJEu:²bÜâ¡_§lXÿ‰µãZ¿ò?‚á\QFæ ¿þ™/üz»Íµ’üóx{çš½½Å·¤§*ªª ¨^#x’àâíÆ—×½Hp¬ÿ@ŠÌèsT ¨âÔ{‘ö±VµÁl°Ë1G=>3Û¥–ªp± }+Ÿ[àq/WƒâÊnªcWyúãhcÓ«HB·<‰úƒªW…Nµa*S“÷N}%*›ZS&rî&c¨µJˆŸÝ#] è?fµž©T3•ªS¥úóêR7ªCýaÔ§)”¤|¨m tI«iOcôŒõx=£]£x±šF‘Z1víÐÒiå¡2¥vQn—ý<¢3Yj5#K f wí{Ê– feÓž^y!:wÝ:Hÿ꧃¼H«ƒ¤vüø:Ⱥ2Ê–ÖAÖŸŽÒÒi¬ƒ,®Û‹1»–½|úßÒfô¿¥Bé ªÿ=Îô¿›¸øâmèKªþ—­‹UöÕ³jg à¥ÀšÎ·ª}¨> p)Ô×C °ô½Þ¡³«;×Î^¶ö5R3ŠêÍÁì~4Ç­f7`Ý3‚2!¯Ã›€Œ@¹ßîFÃÞpNQZyp%åhçc‘# Ñ^È ôíÏu°•{8ëԱîþ#¨‚F-û·Áð£JýVø†L’1|œç"W?FoÔAÀN@²_R;™ö©%¥¹éŽºI5­§:ºÊvCJSÓþ:T•„EŠ:ÔvœUœºWСV«+“X‡&wMjØpÙ‚9½¼úu®¬ÏE ˰¦ âU”»e»$0ÄtçÀwö¾N\}žÜØXÕ¦\}§QÉóìæ,™{fàÛcxþ™}=N'càÖã©x}*^±.󯬛½Ïãá_÷-„+þƒAØÕ¦0ã “ÄB~ã*2öû‰‡…£zd¶|â ¯ÊNXúY¾šP“ «îþME¡¤Ôa‹*/ÛÉ)juØ¢Jly(<¦f;qR‡ÇÓa[2’±óøÏHæWtçƒÝ[ã€èoÙþ• ÇFÕݘêŠ*𘔱r·þÉäÍÛD1ÞjüfQãnÔÙseZƒ¼Æ‡öÙÙi.8´öÿ¯g?íλÁLÓ°ó–”;å@¿SŒXáÕË—yøû þ¾:À¿…àųRã'p~5þƒ“©íy7Bf’83®N#ÞüÉ& Ep@BòÄi_׫M^ øª~–¤ZRõ()…z4è_2´Ž‹:+ Öx5ºbåÃPùªö ѵL¦ä‚bž†6Éá*vã[PAÑêѸñªÕ]å8îw-ºwÎr,‰ù=Ô5ì?u²°êm)ð#Òœ.ýêìË Ps.j?Ùp@”‹ú½6œ£ósú½Á¡jÕœ-tò*)ØF…Ml“º6_êá|QŸ?äÔ¥9¬À…ŠÀk£—q™ÇèB\$¡ø'bܠߘO™°2Z¡€'R-í¹…ÔF‘!K&S1¬¼uð*lîq3VU5{„¢Þg!>»šÁ솬N5¾:× ªc„dL§lÔðX•þðãGvþ÷çíÞûbt:'pÚb¸ð˜œâ.Ÿ›°ÑæÆ³¡9›µf'üŽØv"g‚*p˜W@¸D%œFRfÔy†—Ëþs÷acøÅÃãC3ÿw©”ál䢫ښÄÿ P]Øöª!{eQøÚгý @zV6Ë ÛŸæ¸Ã“|S<ѹ®#ô e²á“ ›OR öw0ôØ!s>e‡YÀŽfßoo|Å çÃ/R°ÙB÷x-]’…1aÈÊ]îPÎêw[;ïŒ3eáUA¦ƒÙ°ßñjr¯ °ø"ç&S­>Ê[BI?Ÿ¹:ò¶Ûû ão@'¿<€@òŸ#þ¸ÿ„'±µàV¦KÒz¾‹¹5x—ÀL´Rºn=1·’DTø)U%ögU;ãé¾Í$Ù+fð~ð,ͧ)0»gmÙàlú`ÃÞÀ¶kY³'S#•3ÛO+„”‚—[ûX³‡ˆ`³èÓ”Xa/js’Ý(M0{ÿÞèL9J”Q¾ü]•î? [cØRJÒëz Ñ}l€JÅèãî;­Ü18…€Ôh€A-a&zšgXJëxÈ]é[-n&¡}¨ÀdaËgdsئöÍK›Ðúât·°--‘åjúa+@tä “/œ£ó Ÿ%³Q‡š-•Î%JôкìòŒÃ8€€áÝOZ¿†e>’-9rÛ¾b¶pFõ²Vf/ipj„§H#§ÁI­Gí£6‡p™ ^¢c’ãbýóX«Q%µYe .-{"ÿ¼È‘ Ê—Ë38`Ëxýg‹¥X=ì>âkµxœ^utCF»"ÎÑn»‡­§¦‰­"·ö{H´ÝiÕ[§q¤›_›’CòxXr_cù)Ù³-s²P¶(ž¿?Mò<}ŒDÙ Ü5~”NÒI¬ô»êWÝ®peõ`åò–fÍryKcí`¦¨þÏ1ͺ*5¦$H>`G¥é×)ÛéCS¹î,+a£Î“¥ æîž"{Úv®bâ·¸g*·`fÄê)àI3yvQuh٠湋üŶ̆Dž?ùƒ™8» ©…É’Ã'ìÄ™ ¥6¿1ªÆ>åȹŒ`ÇS·)ne@kpaËêUá8ëæá™”›0ñTßq5Z`«Á!…·¸<ó)6µºï!“·ÅQuÏŸ.ÊÂl‰a˜œW¶_íà V:}˜]*IÓó’ÕÁ=šh¬ €Ì¡Æ^4M`¹Ï6´ÂEc vˆnÂc»›ù$°Ã ?âÉKlTRyþ™IÏOŸ£ùÆõ&¦j° ®Aé,¡ª=ÝA·†)WEFkâ l¬#…¤mš„0&€ /fQ'¯Ý¯Œ¨9ðŠ¡PS„ÇØ_Ê£ý2Òè0´Àim©¿3%‘‰@Í-—pÛ»<HÚ ²7jlZû‘Aü=W¢s.*9´òȜǮ6\†£ú¢±÷6ûMkT¼~¹BŽl 8NÑÉI5;öhX5k‘U3ª†´”Æ5¬‘C1¶ Ôý°¶ ŸþCø?Å£RDÿ_<Êôÿ›¸hT›úÿ¢¡ÿç¹Aøfõ^o¤ ƒ?~&;@…³§¡eJØ„= ’£Ç›ÑîºÉQ]SÚ Šv]>jκÁŒí>¤¿»¡´$ ßÙ÷;æ¡kÿ_÷ÓΫõÌ´óA¦×Îß,3lnò°DFŽT„Kù…G‹|äC;”“#&Áôy.%§lýM’‰ÓøÖx$%[/aà+ZÓ_¤BίD9p5˜ð~χñgÁg´ û7'TÄ:ýoÃ9[1¹W<Ìã0†P9{òõEò²²^Vö‰R”•›4; ŽX÷Ûðöþ¹`ÈLƒñ3ƒÅ¸¾ræx×Þ@´mm¦|þ³14¼õìÑÈ PQì 7ð>¥mÁf<(·ßÕ“[ì·{j‘ÜnPY‹©ÀÁ°Œ}6 rœ¶‚ý«Ö>Þ‘™5OI0Â@uõw¥†ãšÃ h³µºëH77Âõ=&__E¹OzÉG4ѪrqE¹—ìÔaQ=)£†”ÙVöTDôÄ(‹h 麉Üyã¸úÿÆÛÿþ!ñ¸÷¢Ò?äQ³F•Wui7ªVM­S˜Ü®˜Ü¥™?¬ÚíÉ\>ýßÑfôGÇ'Çýßa†ÿ²‘‹¦—©ÿ;²ëÿP³¹æOh=ú¥rµƒ÷àëùY«Å ã_&J.;íŸC+XQÕ‚‚B=¸¢þu~åŠMŒŽSžË{xðŠb0¦{s²E)•ˆG6A0xæÃä~ÜŸ‘«Ùp±vàx‡óûþÀŒh{ƒÍ®hÞùH›B ¾Íšó…ÍZ™@&1V+kbL)¶¥Ï¿g°UÑžñC·÷§ÂHØK« T©ð±–îöÉ3»íŽFx†äzLV±Í.ßÇQc` 1Vö å·¹íþ k,@féÃ|[Ûù®šÇ!¢Ä¥;bˆÎÅÖ„ò|hã)Š{wÇvûç1¥X"&Þ5›LÚÐ{{HG £ (°£ñ»çt|SawŸÖÎϹ݅q»Ò`‡ò«ßÎ/óA§ÞÌprYÎ ìa«úiLÎú’=@è<áDFrÖ`w)WÚkÐXƒÕðvå·¢õ7›ƒŒ±ºà)V¹¡ÝýÈDÅp ¢"¼ ÔžCQÆ-û!ê¢ÌoÀsnqUéä¹Û‡Yvu@r~uX1 Er‘ƒ1l?‡›Åy~ îg°ˆ£Ö`ŒÞß÷€’bªÂ9±j”V ˜›ì{£^[…°jà}læàN>µÔ9`(%`&G:œ P5›«4¿@R@>Ÿ±G ,îùl‡^R<åCãÊ›Î>t¿Å¶òæ*è€ÉG7©`Q¨Œu?;ÂZ’€v‹ì‹GR(©”i`uÐçC~½ H¤|k‡’µ@ö ɪAsBeÉF…$”†~ÓåQÑçSÑ9Ÿ’i»–Qr…óä…²Dæ ûé¥cزu N­0T+8:/tÞñÞ"ycm c °wj{ o0t¤fÞ*wé± V†óë^m—­²5„ Sç­RŸÃƒHtHɪQUj ëò»PÛE h4+¦:»µ½·|®Z«sW Tja“¯‘àWýb+wœŒW'œWËò©°ûv¯æë³“X&ÉÙ&/zóa¼ÁN‹êËo~+¶Ž6hÐ+Ò{÷Ò!®¨ídâ¸Q%8‰wÙJ+ >C|¹mZË/œÍÒwZÓlfrå^a,_Eš¶ïU:“øÑšMâNûïdcøOÇ…(þSfÿÝÈEcI³ÿ^éøO>ì§Ÿ"´ã™Ã;]¥„wâú@pÿ1°¼áOÎVøÜâ=2ŽB>ÓëߟÖFcº÷ ¯jx'»G÷o—áæn0µp4Ù²îÛnófWæø@˜óaÂqŸJGq€—Ó3'&9 Ê¬™'ŠÇó(^ñ?VäiªuÝP<žÅï±w<©xÝÀ;ëÉÇûPÀ;kRæ>?¸÷¦Ïü µ³n¤œ¶‡ ìC-˱bÖ“g×Íí£(¶Ï¸œÍúlŸf·c[jüð4½ æb·Ÿ†nVjÖŽOsáǧaÕ×ài.ž&²E ¹½“ˆâìQagBH™·æOéê¶6D™˜Ã¡P&º.lLæê‰Éøô›Á98)•¢ú¿Ã ÿe# DSÿ§â¿x±_2 ø@*tÜ—+?î :9_È'ÈH·T;ò ¯Œ†ý’,ú´B ר« -d©Ë§ÿ)mÈÿË–ÿïð$Óÿl⢠cêJ6ÿ¯$Bgoñ•'¥=Sÿp716O.o1Î-j¿ÏkLaÍZÇjcZT$¹fˆîO©*ùqÍ#õœtcþØà~FìÝG€Êp¸`®8\}I,ª{᪗´º.rÅØ£«ÖhìKbë×Áâ¤ÐûÝu¼ž½É¸?DÝd(qØ“ªË®6Ø9æ…ÿ° „ Àþš+,.1ÉV˜ŸZ UË{õPŒOz^qäK©Z‹OQ5½9KîÇg/ö„4UwÞéüZZÁC)©`cDCåáUVò9ŽBÚ¡&NÛ…*=¢èÖ€q>FÖÓèÅtR9^,TžP¦ÃbÎMëzô Ç&8”ñ%ý;/'´ >Îq_Ư©èö C´ßÚ¢*é¸ÂcM_ó¡ÏPÁæ3d÷å2ý™â}­ÞRXjÔ§É_§>Vj¯úUš¦>S (ý-g7õ4®(7ÁË·š}&%†óïòÜ5¡MJØÅZ¾0…t¬ hw…¬8ò 0Û–Xÿ k÷ÛzsƧ.1IS?Ä;míÐT’ÚFÕ‰+‰j±ôê}ú¿Máÿ–¢ù¿2üßÍ\4ªMýß‘ÓÿË@þ%ìH·6é§Eþ5|ÂÖ úëtþ !d_zÖù»²ïÕÓBöÃffœaûjh'¹ñna;1¼/ÝüÄ©\}jºÕ™÷Qo ,­üµè|m‰Ô¤Œæ¹JÅ“W­7Ï»ì4îVBjÌ65´"±Ù ê7}÷d[Séð)Ϧ-ù„õ÷#q¨Ñm•L|‹\ÕѨø[äMJ§ëд=°^>ÃÓMßî O7ÃÓÍðt3<ÝŸ O7²Åýyì6+BêzΜn§ûàt3¸Ü .×K@»%ƒË];\nŒiY½Uñ €æ’âäJûàñq#õr<¹ö€P¸…4è·1UI |›”^Öÿ¸0·l•Œĺïi–Q¹PÓ¯àßj7>gÜ«õƒàþÄ—Ïþ{¼¡øƒÂÑ …ƒ£ÂÉÁI±@ø¿…Ìþ»‰‹¦‘iÿ=NŠÿa E,¼_\·µ·|7ŽÀÔ{’ÁˆkIøcx‡þU›G!?¡²!~äÙ K¦¤Ï"¢R|ZSØÇS³L>·¨ û£|cÛT¬É&m; üQc¢¼Un€Öh«¡çv5¬<ÿÅ—¼·ƒ É[Õ­|²>cíÜÓŠù±îë }dö½8{³’!ÁSH³›÷Ö.r^®]úCFÖ]òP¶ƒÄ%º á)”`õÊ{HÎjö¿9âìú9ÀŸÔžüI€/Ü‚™·"{¦ÓëÝ ÐQhB«ç7Ë©@ELy(|”dBvetÐVrŠ5EIɿݶXT ÐMÎi‚Ñ ýP˜)Ç™&í羜ú¿»Íåÿ*£ñÅLÿ·‰‹&¿¦ÿkFòýt)¿>Ë—’àkÙÄ^Í”‰½`¢ËÄ@ä.Æã1²ì^4 2­Þ°\;¹ÆnaûEÔGЃ碣žÐHU‹+\×"y–ÏÙe¯æš“vÙšem‹Rƒ §öÊ’nmHo³¼¾f% Ls @æÊfÓ]ËGO½%ê–*õVs=úžz«‰©·šO-õV"ðŽ§¤MiZ9žyÒ­‹*¢ °5#hìxâ—"xk…÷l01«Žš–‹´'åªî^ìVNËE>Bo:NÇ(ž·«¹¶¼]J l­Âþ챞Á6j7h*‘`ý)¾Ô!±+‡„6žN °ýËŽ'XÓ›¬Jù¼’¤ÿªîbþ­`[Q ÒµrÚ¯jš¤_rÄèäÔeŠDó!S‚±EF€$áÑR}…k³dfMÍ£%“hIä?àʲɱ¢¢{#I±šO,)ÖOtùô›ÊÿuXˆâ?dú¿M\\<ú?kþ¯,õ—Í÷oÓn^¿¥ûšî¼^bv¥´^¨Ã í(DºŸqZ5à—ÁÇÃÞ¶Ä\3ÂCô1E:5ÇmÐkbŒÍv¥0$3oÁÌ[ð4š?ƒ`æÄ—åÿ×3ôÀ{Mî“ÉÿåQÕÚo_‹’v=zÙ,ÿ×SUÙ†¾oB"»xðˆS‚…]>aB½:IÙ2 ¯«úx ï·Hä}Á£iYÙ%nm)ÊYÊ0®ë-¦pkf)ÃüúŸ åÿ*Ÿ£úŸÌÿk#~Sÿcäÿ²¤üÒ3{ýìJ  gùR|m"±W3yb/ÝÇ,Ëï%®IwóÔ5(z֮뗓õÚN–±+y=³ ôK¥aC¶Ú/“œmÉÚ£îx ìm¼«÷²n?[·f–Àíé\NûïlcøÏ‡hÿ…üo'‡‡¥Êÿv˜Ù7qÑ,Ôì¿íþ3f ((ö_Ùæ ŸðÕ”ZáÕ¬ý¦G³—rãb9puÚ~ .ï{ÝY~á®9*vêÝqï3#ÁÎ$/¤Í—»bg“ƒiL¾/“™|ð-\à:“À &{ÔZ^ÊeGŽž{—ÎGpa¢~C0T1'«j‚P;Êz4Lu;Lõlp;”PÕvŒjÃÛ¥³&7ˆwƒéíýœ0wy¹¦Z Dœ¸ÕÍ€pÛi¦¯nîØ[l±,Zé9F+Åd‡‹rç¡3ÄýbÁºNÚÑÆ¬Œl6kµb“}I,j¶…-O ƒ‚Moú€kë` 5Ù £´¨ «ñ hh†wÆ1¤kaYí7ÛXtÄh…¡ÌõûÞg² ¨Ád¼L'hGáÒÕDØQW… XC.ðèPÈÐÅ8“I,l8ç¢+ì"¥#p¸HÍc±…MYˆåy!OMS㊿G\ñÖSÃOâõ”PjÞ[â·#MÛšÐÅ œ8NsT‰Æ—„ç'»öM¤ö ïzkÞHˆa²OÈÞ…²òR4Y…ÂAôËÀ`‘V ?òõú€Ð yZt ‘/ì`èbyZ #·Ö†t.ŽkÑÀƒ Åu—§s‡‰Æ²~k×ý:[É1ØÓ¶#s°©ÏÞ ÈúnŽfý½f}7Ëî3»vó.ÀÂMóÚ×±6–ï€\׿]áÈnë4ä)»ÎÙfJÙB«»çôRÃIh>Ž æc‡EŒ?÷°µ`zß; ”a‰ÜúÖ}O ´,‚t>P¿Öf†¥¸Í(‘˜êÛ¼@‹7©F­&ê·…cËü+œD„CªŸ_yúÀe• Œ>x“¼Þüx}ðÒÖ¯M*W¦‚¸sjêœ(ã[p÷tñ@ötdB¬“+‚ö‘òˆî(X8Q´F=ë=5(yjWt/Y)jW´Õ®”"Ÿ„ª„lÆèCdDÿè(Å ´ï£…23ÙÚY¶‡§s9íóMÙÿŽ‹…“(þ_)³ÿmâ¢Y¨Ùÿ:hÿcbá4Ü 8±ž‹`çgˆç·ùü®§<¼òôœ¿9¯â‹ôÙ^;3Ú|:”;zi©Qrºž²UMhéºRáPó9~ã–ÇÔ‰*Çíánœ?„:fýãÈùHZ—lœæ>[âÑ!š‡|xn̾eêpzþ°Í—‡dÅR$—¸œ6¢³%*·ƒ"µÔL%4 µ\¯¸³”­Â6Ç"Sì‘m ¨P¿VÛ‚jLÈë–†U!äÜ5ãf‡Ó³epã–ˆXoÀìó«!ÑS89èÔÙj1²Û×­Ìçêùð Ã×#óÀîðÂ!cðXkcOT§9E]«{ÝëN®§g¼\ |'ÏsúášÃUíF »w–]Ë-y‹ ìÙ]Y!| ãà Õà–Ñ9]Æ%!6n²úlJ›GNWc‹îC_Ù•âýü[Vƒ ˆÒ.<ã¥òðmCùV$6µ<1Œ¤P»«|Á3`Z4—êMf)&;£Ï$è°‡ŠŠx9kír;Q6¤>猻¨G¼m óJÍjÑr:»Vå¬~gø¼4©%/ áò[¹PÁMÛoˆ;´Ê»¬`ú@J{ú7Ú(ˆØULðÈ—ïü¿¡üÇ¥c þÿQvþßÄESÏ<ÿs!òi"É=À†Ó7j¸M§†n`™ÔwêF Ía *qßEtŠU6+¨%áéé̱èI±ød©áoÌ´=ù Ĉ€ä¨dL¼œ ÅÂîGáq~reÅ:ZÆ`ÙO?Ï”lQ@…MÁ­zÎHCržq’VßÔ:gÞòö2#Ô53BZ¢›Æ@¥~3Uñeà™ÊãѤ:˜w‡#ÙÛÈžSìi¾ó¡§ÙIÚƒÿ•ï§„Û'ò¼Ê×ÁrU®ÛYrëˆBU‘2°žê]€0• ¢kÀ—I™Ž³ e≠µr=T+3’šYì !ª®×nF2W 8 Ã+~ºÓï`ÔÑY^ëm•ŽÚñðý’±»(òoP©Ÿ·żˆíÛYñ´FÃb¹¢*––V«†–‰PÃÊFçÊD¾“®ûRyùbX¾F寕ò?,ª“vëêÍ;/]¼‘ÚCZ…•U·ó+ÔDÖ=¨*«+Re© hrÎ}sf ­:ƒ¤#÷{ê‘Ø÷ÍY¼…ù6ƒ®6ßãkû \q“@H«6ŒÙe0V½ú_ÑkÃ1(_nÙŒæŠß)9¹6kMÝæÜÌË~M`’¸ª×¯z½ "UñÆFÍ£”&"8‚ÄQ6°aäp‚(ï»ïÚ]_“kþ;ûõ`¿Ü8ÝgÞtö¥àùO3÷zË®Q¿Å¾–ˆ¦®‰¼Ä’)êt„Zš#¢yReÀ³¼Ç~3¼ÍŠèŠΘ¤uªïø¨Ö¯¾›¬NJåúèþãocp¨(G ¹‡³87úˆÃ¯r|HàDc!鸻Œl<_ÖèïeÊ¡;º$2)\²? ñŒ¾ŒÜìéx¬‹öõäû]ö—Ö¡ž€ h)u—2¤’µÔ¸Ù5¬„^^ì°Œ†5-Á æÊgêôºYÊZ=üo»4…«Ž5¿á ì"oÎx ˆ.ÌuìmgÐ(pi-F…°nsE… jƒ¬ QÔ¹‚| ;— À5Ph*F7GŠ]n’Aî=##Tâ_¸£ë–îæ”ì}îìf×¾\é\+&d(s£=¦DîyÄõGPHTÖda›¿|úÿÍà?ŠÅâIDÿ_Êð7rÑ„3õÿE±{¾ÈLÊu!v™ Ô±5]½°|â›êY¨î—›jÔÄKí=[¯Æ·Ý‘Ôe£B~8 0¹Úª9X§ÿ©¨ L¨1äõ}3ü2ÇÛão‰¬5P™#´DD­++ÆÝM#ôÉÏ” ì?Š¢¢/ÿ#΋Dîvo¼[øõ6?Þû“½Ž·%c®sð5ÿy›íÖrêmQûÅüó@}еÈÐ$|»1›Æ5h> $'ûdãˆ>G¥€OÔL ikÕH³ÁÍæ‹4ffȈ4P.6aŠáÓî+›-b@r n­LKÍ*OCMzë‰æ\ÁÓx@ËËå¾0·ÔM;Ë*=)ì+ljM™ º›Œ¡Ö*!®Ý‹típÌÕp;™Ñ%3ºüàFÏ®íg°¶lÊÊòXèžDØ/uð:ÞþÊû zïW~EÜþ5ÌzA}¹¹‡¶±æL_4KP¼†¬‘ÀfrA†E‡ë0„\Ð Uhp/b5¸×‘;›6 »A³º]„FL†TãŒ×Ö»ÖkÆdÿصNm› ó¼b—È…œˆ7PDN+þ®¦‡i i$°òß®£{Xá›·—/­·Z¥–óמyòb+«~öJ¯Å'F˜j]KÍËÑQÌ•¿.Æ= †˜n©Om?µ×^çYûßPLtËiÿmÆžGÒþ[ì5¬ýÏ@šåòéÿK›ÑÿKQýÿA¦ÿßÄESÎÔÿ—Týÿy>¨²ÿ«—†Ì°´@ÓùWµÕgb(…€zhq×;0t¶ào•-I“)¼lík¤RœcXߦô0Àw‰‡µáM@b@óv ¾Ý†½á|ôÔŽZy%à?〭s¢m¨ O<ìÑÑF'{½õiÑ5\!›÷øªzsRÎO§‡ê?‚*XY¸y¨%=Æpˆîc@€Ü©Ñàã’Pcò‘~ŒÞ¨)²ŽްI]¼‡³º^~CšqÓøŠr•„EgŽŠòvœ¢\¨VVÐrW«+“XA]__³®=\¶`Î_/¯c_G(ÃsQµãOsÈNÚuQî–í’ÀÚÖ¼:PJÔ‰«³Ï“û«Ú”«ï4$@_£"ÀH .¾„ªÅ¾Œ¿ §“±HDþ8züCŸ_¬KÁü+ë¦Aïóxø×ý€øZñ¡†ÅNtý‰t!­â*2öÇ ……£Æ¶|ÂiŽýÝô}5¡¹VÝ=ü›ŠBI©ÃU^¶“S8Ôê°E•ØòPxNæ ÍzñxÆ © ²óøÛñµØÁÞoáÈ5º·†7#:P½*=˜Uw›ª+š@.¯ÞÔªšÝrŽ'µ¸íH&oÞþ †‘Vã7‹7ªÎ,Óòä5>µÏÎNsÁ¡uüÑ,§Ýy7˜ifÞœr§è²‹+¼zù2_ÁßWø·¼HgËáÝd ¦Igë¶ùÐo%Ïo‡‰mEŠêÿ,AI¢g.È›_‰¸x8³Pý ˜…ê ÌBkˆQ1í@8m¶ […¥yˆ>b®$„T Çpq‚­ðb[²¶t1ñÀf—öU¾R G°X©–…T#JJ¡nŒz•áuÜÀ±b?§ÂféYªÚ3Äa‹B ¡˜¢õµ*`ì°\!«m¦ O³ŠÂYŽ%Qº¨{“ÿÔÉÂVGo $ÞÄ@¤9]úÕÙ—ìÅ·z'D:K½·cÜé€K"ùkþªVÍÙDWùŽíÞTH±M)^&um>Õ¯ªˆ§ms–ˆW‡§lÇÂÊ¥“Oœ_‘™ZmL¦Œ Ó´K×9dŽŠ3©QÁÞý‡ù” yƒ3ÐvÜg‰Ö±ék‡R tK)çB$Ò‰s^…ýË× êWÕDv²zŸmÔi†[£F'5duªñÕ¹NPûÀ&Ë!Ãò×0!—Áy{€•ñN¡„[.ë¸Ëç;ì ¸!ÏlhÎfÙÛA!²#Žm |¯”á •À™ð.§ýïncø_`ÿ3ò¿”3ûß&.šq‘ãöù»FµoN¯› XÚß6sg€QÖ¥ŸÝøgKÕÇX‡V9·Öà ô`&½fí…ªéÖž~ÎCÜÝðËdºO´Ò)ÈS2ÀÐvdÏ»Ã1ÑÊñÃðwõµ%Oñ¦ŠÝà ²AtÇŸØ™î8Ï~ý3Ïþm£ JÐã7݇Šù¼ 0éÃÁ,ø0M¾òU–ç–à«îÇáT;墿—šó¯Éýlðy2£Ý ODÆD°EΩRak» ˜Ùý]BTЈŒÆЂäj®1˜ÿ]Þi¢Ê·õ÷ß/rÿͽ·þþ{gp7ÛÊî‡äd$el ´B¬%rÇB7µ9P ©:§¨Ï]Ù €‹lóªÃE±­½:€hlp è¥Cr‚hì߆–\%k1.vìÓ‡L¸‹zsvÝ<§hÌÍ"šjò¨3G¥’z©3H%´Êd—6©Öe?Ôévà ŸmX•'xÉ“\é¡Sêbª¬–†ÆF 5Ar$ºx¢-V«ù˜¶G#ÆGP€P©Æncÿ™Š¢›†t‰ÐrãIó G³²ó)¦Âf°¢}CÁZו[Ä /. e-öšò ÚiªWøÚ˜V>¸9kU.mÜY»a%ÖÈÀwZ\¯»cª80 £™|rÿés çŸfGÀ™á03"TvP“sÁ=p+Tå€Ï0¨EIaÁóW„›Ryæ§8:U ÆÕx€yœÐ2º¢™k[/L-,O“€™·¨¦ÐÔ4¤ÙO¨ø¨ïÖPç;jÊ‘àSÄrÕ(»ÿm°‹I@ZYüŠù€CjÙ=ÀìBÄ9®ˆrNä#Ï.(¹(- ˜P3Ù‚(‹Áǹxè žf;lÔE=`’.>ï±y‹µà(T™«º°*÷µîÍ?+ µ®[¸ÿq÷ežnë¿… J²i0és¡=1ÐA‹§ÞppÍ~Šâ¬´¡µËéëÉò¤È‡rŒv ‰¬FãfÂ9´ß©™C¢aèÍ ±ÄèßšüÎÏy9õÓÍéÿNJQüŸÃLÿ·‘‹f¼æÿß²âÿ·~vßÿÍ!ÿ\'òûo=®ßKÇÿo9ðÿ[«ãÿ·–Äÿoiøÿ­ ÿÿyáÿ[FŽV¦e‡•i=ü!D2üÿuãÿ·2(š•¡hZÍ3€¢Éðÿ9þË…ÿßÊðÿZüÿVÿ¿õ$ðÿ°ãˆ°O›þ¢¯ûþ¢† ¾Š÷o+êýÛZ ¡¾•ÚGÅ{iù˜¡ÀL«Ô2›.¼ãZFQwV$é²ù@(ê-k G%‚¢nGK¡¨·EÝ챇ÄQi¥VãúôÂÿ. ‡QüLÿ·‘‹¯†þÏŽÿýÓ«7Šÿý\´€þwë©áûôþwk­øßÜ È¸À[¹Â¯còÂ"Ý$"ÍÊœ@ü†ßÐ1 àw†ö¡}Óà!1M6£–]duëC¢}·žÚ·ÙµÚw¦båBàÇW±þäºÕMéTuj ¥©é¿ mêñbiÕ#5$5 µS¤N¢†”›f?¢øÓ‰ô‘†ß£[îÝ÷Ô»Œ¶Ôpi°è§ ¬¼H¥¬¤vüøÊÊèsje¥ôyóÊJ‹zù••èóc_>ýï†ðŸK…R1ªÿ=Îô¿›¸ø‚mè3üç ÃÍŠÕkøÏ­´øÏ­øÏ­ñŸ[þs†ÿ¼9üçÆþs¨D•ðÏ^Íiÿü¼áŸŸ†î5ƒÎàŸRøçMö õœa<§Æxn 0gÏ=ÆósÑ®?]xç(ïWð^^y¿¿ádÊzÞ“*p† ,®ØV¾†ùWEµÕ¯™qÅèÊ|3ßÇEðme¾ÏñòØ ›Áÿ88fßFð²üŸ¹h¾úð[Á(æî/jØy¾6U :VˆÞ¥+…‚¨j§ÔEèï¿Éò¿Ôàý‹ 7¸›±ßò~!mœË¡}λwÓÁŒ5Ž»=”W”šXå>öÝÞgãëà3÷Ú‡odEÿ•ûV)ðS˜wïáÃñgK«'ýȪ5cg,V#¶¤'Ùw0 ¾ðQ«Fð¡òT† ‚ÿw÷ÙßBð nÿ_[B%ùM”¢\íy»÷'"Ð lîOÌÿçöúì>1ˆ KZHÔ na? ÍjpåØª:è‡ @ɆCÄì야Ú/"ªV/œm”âˆæKèÈ$PÖ ò*Ù½2¸«0À³„=€b®ëxæaþás]—Dì:ž8k=Ø•þí¥È}\xVŽÍšNQú´`SC]g½¸nÀÔÄ*S›nýô]½þÞ K‹¶Š«© m¦éìþãGvxf¥â‘Vë»õX¤Ux[tNhÕ ®š,¢šïtTИŠK^”P×®ÐvÔV@B9L©¡É :D].ÍjDC½í;Óºµ®:ˆa§¨îU  úÏÛ¶o÷„è)X!Cùt@†ÖUÈPî^ÌP'Rhüa½Á}f×øÏÿŠÿ?89ÂóÿÑq‘}{BþŸGGÙù—{ÞóQE)ÛŽ9ý;Ý:ׯxÛßþºÈÆÖÒ:€‡Œêo¯ª(ê€ÙgèøÒ3Êÿ7û¯[bo.2tï‹É²p*Ì~­ç ¿6è -rÍ ž¡Møûï`Æ–1"KhÄ{L@c nêL¼6pÌ5‡f×Á®ÚP°7¯Æ£ï¶ž = 7 ôä ÛNß(·{›1Îìl| 'PyÅ‘¹Ó`‡ÐÃÑ®`W%$Æn¡ê‹; ÚîáŽD¼ü9Ï®yé)T½$!/â øUjozû7V¨]¿dŸ×pü-·ßÕMöÊž#ìÏÖŒžRë8óŒ"•Ó6z½9«œñ9•ò)y çø Úvú ks9H®×p¶.ZÏÖWb¦0AÝî=ù;Ù˜ÍÑCmŽ*iÜüµOí$'öâZOì¸E<Ècš3{ƒ™)'œaC!ÜyL7%Kv¼`8žOßI"‰Õ(ÙP7 Æ †e¾Žpè­tÅŸs¥¨œ©os&»{Ÿa?y'eièÄbGuéjoa¢üÜÜ’U#™E®.à¤F"Kg›Ï9þ‹r ×Aš»ÐïlMAûwP^φ}ØQ? ‚ÿæå©øÿR"luÿz4]?ú‹ä |eü >»_nœîÓWlæp^ðÑ®‰¨Ö|ý8àà"d¶13Hš±ú½aõ;ÀÿIæ ¶uæšI„׺ &ÏeûL«ºàj‚zö'_ÑÇŽŠ$¯©XRÖTLsƒÝ2ÝJ¤ÆÂ¤ýÛ)Ì>mÚ¡¿ [,rf]Œ¼9áÇzÓ•F¹ ºHÙÒNÒÒ‡²´Éª4®t*\gCpøÀ¬{ì³Ä“pp)þ¶ ~™¢Å†ò.ž…ÕK§3š{Ïs,1¦h„A# þŒëF×Q^rÐY«™Ô «*&êWÕ˜/è±¥{–Â…B¯|ø@=gVÉæûh ԇ،¹¹EO+–Õ'‡j§°¶’ J6»®}b[ƒK*½Ùª ªew,‰žô¤N¸ÜÛ³:‰zЛüÞ$zÞ˜{Ÿþo3ñßGÇ¥BÔÿ'ÃÿÜÈECÈÿ.”Øæ‡Í˜3¦“‰q§ågÌ-¢öac݇#WBÍ4¹¾•€çs½aaIEÛ >²ýÛþ)¶Px»eý@N ƒ>ì¥0c2cÖ'$ Ð[t+y‘=Š=dXàÕÙÐ-Lêÿ&åè»x|pmÞ\üUÔšßzg»­dÞ;ħ¥rŒèWJŽcS4>„‘’szjkÒpû¥Úd¢J/)v$|b|Š Âl ˜œHIÉÙËÇødúŒâWRÇÅ¥ù;ÑÕ¹¥T¶­ÉE¨Ódð]õr Ú²6cØãéÈR$Ê%¢ãá§±–¡>¦`ÓǸ‹d Te·Ékój`=T”Q›óVhkøû]ä`Nî†Ò~æ<\„4”*„爂EãÃ;ßEÌ46â2åè/’]¸Þýɶ «W«þ¨û‘-ÃñðöþvK½Õ§= âHÑò7/l'†¸‡ç^â ;ø-*Š °,¬ZŸ§H”¶#y–ä;?]£RŽ \2OR $ëZJRW¾º§®­®©J_[õ kœr“g±Ö›ç¤ö(á3¾óßá&ñ¿²øG¹hÀÅøʰ?ÚÖ¿Úá¿qN©ËÓ›eEžÀ‘Ñ·´@n$ÐhÅ—„صNÍ“„ñ?GÏLyj< ¾~  Ð Xåxô";d©CkÛŒ—·öY›çL³íÛld>|—Nï&óÏŒp¾Ìî! „§)Nñø7à ‚:ØG€ÂϘœXØ@¼þWž0ºÈïV¬`Jÿ]Îßü/ “~Tㆷ¡ÂÝqpym+³Å méE[aš2èÁC¡ªâlƒ±7Óî[+Lmy±@}À< Ú«çyèïmp•Ip¦*„Ç·“¡ .ˆXÇ_a‡.¸yê@<*ÝØ;Î ÑåJÛS9TÛÈ1f§«@’ŸIiÜÌòÁp°Ÿ§Þ6ª’aßÞ<´óÐCœéo–©ì bõ‘5mÂÃXèÞ„ Ψv®NK*R·¡V߬¡Õ‚ZrǤü’BŸ¤ÐµhNݧzÚZ“Òo)Wß%™‘kì·ÿ¡–Ñ›Z¦!ÊÔY™ŸÆoÉ‚)Ôi¶O=jáÕô–fàžg•ECÙY ¢^ØÛUt{Ó¥+øÑ@“.¯‹A6¤ˆ´Äþp¼[øu¼;ž~ŽZÿ=,Å£ìM><«²ñ¸Cí𹵜g׃ùø aÁ¬È¬ØM7ŽòôÑÞGP·îËSÁˆ^Ìf†êk7lrtÈY¼¦l'»›ÿ[\rÎ'8šÆÏÊxÏN(jâ=–¢E¤'gQ&ÑZ4¹ÎæÜcº"Þ›aù1B„ƒ[ówb{} TMð„+Ad© TÿM~—hÞ[C¢Ê§ ç nŽØ:œãlªíJïÎС…|:ƒˆ[§úá.dÌl.&ðy pÎkÖŽCé^Ô0›X M%&dO×wß²FÔ°bZ³27ª—jÉÖ¢C{‹», 1zésì&½õn àÝA8tmê—¯#Ûæ$ÉÈú M±îƒÊd,ð‰—fŠA1œbñ1Å–‡·ã$Sì˜FVO1sàј4Õ˜)%G#ŸWG¶Qxì˜Wº½BîyáÁ/tH°PK‰À`K‡f!ÅÏîòÙŽ6cÿ9<><ŠØŽK™ýgÍWÓÿïHúÿµ.Úg—v»O^+àDë^TØñBšcá¥"=ž­]Èmø©X ?yÎÎÈ$ž†œS›u8dý™£&¬'jùHsJäª^ÌÞŠp„Œ¸‚ÞŠ]ZI¾t§ÃÉ=*ÞÑnô¬±Óý5£[°fÈÅsÓv«ܱ2Oúí<;ÍÒÆ…FåY:PV–ªm…d…Vã²æ¿«˜f1¸LÚè"­©¬¡5‚÷íô­cdÝ`~;œ!ê ÂQ{‚¥ÂáðOÆ‹Átb‹öXÊƒÕæ½Š²w‚i+º¿ÎbÜ_7x¯¸ø¨¶-ÍÔ¢À|W 4#îÈOEˆ{*™«óAçßì]û7°#Ðíé WH„2~pï‚ð H¡°.·`p¾pÓÃÔ ®sVo®bÒŠq]K|?ø¯ž.篕öÔ1}6«wH>×ü’[W-iærw¿DÔƒúÍa«Â<êF þ.„¾Õ;´£ÅYl±ÓXì!G`9Ž7ˆÐǤ~¸>'\wnã¹Ðù–òäªÉƒ]·ÄÜS2·p6‘[×Üý˜¶Ûæê¤Ù3pgNÅ¥ðu8¯¥éJ–)ºÊäùÅ&jZ*î*Ž·íZ0Ù6ÿ­yiÍ:kõ‚^.J[¨¡r{`±å4&0î¿ ÙÄìug\~[äk] U¯[¤ÓüT´éÆä²F“è´.bØÔ»ÐàÄ’̶ÜJ®¡ÖiÇg-xst@3¯ß(‹Ö× Tô2 Üô¦ƒ. °-q°4!%KÉŒÎ-uSÝ»Š(4àÛ fÑ€SUÍ“\³$4cf…8èËuÃ>ê‚¥ Æ)ku9’AÖð‡”En_Þpjœ L©G›2¥úìÇÂÿ=<Œæÿ9Îâ¿6rÑ 3íÇ1_ä-Çǵ{V·ø¶Ó’=+ßÒ±_Î%ò‹~·ùˆ;rê.¦Yð¸úŽwǺdìØ±I<̆ý{v”µu7˜±ó¦Ìw̾³ƒ*ÈG¬£»S 2øëž§? Ê;ߘüü€$Ay‹>ýÊ+#råa¦èJ°Çî¾ÙF÷r½Í·Eé²|w#JcHeýÏ<¹€bh}1Zí»Aoøq83 £JÈÙð_Õ’"º«Póß0lK°Fä1*o‰ɃŸ-䫚®ìúŒˆ@ç¿@彿¨/ ¥Ò]ŘWI[BÃ4>IyòÚbÀ&ì±CPÄÔƒoÁƒ™'‰I.äë"dh]ÑaP ™½HJʱ5“‰lÂ@\rn¬9,x¥™­ØC$SÛÿ0®@*±9”×ï“Ì“Ö^ÝÔ—ÐæááÕ˜|óмn^j;d«ÆKþ·áœ-0ÿÙª8ý:Îçƒ19fèiK.o×lXÖƒ#½QQ¹ìéŠÚk–,ì™éL¢ÂI‹M ì#öx0K #ðQS’½´ÜzöÌ‚üv5céϷl;ž¶Ew Ëpc£›^ÐøyïSÚ+—ÁK$"ñ A ´Äk00ÖË7éÌŠtcƒ¤ù F´˜¹ ùVRÀ3ŽF cµ gyÔöÅ7‡ºk¶Ï¼è eÃ?Tm1ne3÷z-¢ Œ8ò7 z¢ùFQ‰‘Ó•ò…„äëyGûݦQT\è…ði8埶ØGÊ‚I2ÁÊQ mÉ r„7 2(¡(X½ "x4ÁÛ"ÖQÑù rx9)ì+ œÈÔá¹´˜“Šè]Ò%7*[]7Æ­EDù°ÞJÑ{ìv˜$ xEûÎçh›> L7” õ8Cn´¯<$ÉÓ#]¹ý ðC>¨xâÒ > [nÄ;ë1VCÔ¥tæI@ÆD%œ¸ãŸ#˜Á§ÿ;ÙŒþ¯`Oþïã\BjyñŸN¤H¯ñ™ª«]ú%›¶0¨>c×ÿôjAÁ0C=ø øPš°ª|pë×)ub¨µÄbÿ´¶v&w°¨RV±òßïtGwŸ»"¥Xˆœ¤å-‡H9,Ç6 {0Žˆ;Ârdª<ô¯|’dEþþ»ÂžÉv 5±Ö‚¸ïI}åÝt¶±·Û‘’-£d‘íƒ$ëëp6H’ <µÊP€pM.knÑÍAsÁ”¯èí°PĞרBÒî5ñŸä牷×wÈW˜9÷‡= ð°rußZ¬¨OÆ{èÏ-Š®nJy¼»È[¼â,ÞIR\hMÖ¤ö\µ57«µFx¶¯¢l•äz¬ã ).ᱪ&õ<ƦAå T‘àü!qµÆØð%K܃·¶"ëÔ£úêÌÕ£ o-ùM‚ºòty­©f$˜Ï¶"ëÔ|úùW¬ññ¯"˜ · EMÚ‡@å)$p ƒG0ZàО›²s½™•4ŒêÕ%hLZWÿö˜’eÀ` èá¶ðÒjÓ«ª5pÃÈg˜gÞЇ:“(gé°¼0mÆe:Fþ”„g8Ô ¥" BU¯˜LÐkDéÙÕ ﮓd°ZJCEü >j‡ƒ[Ć«àsJiäÕ[[1Æ|“ÊëŠàØÀ-â”:@Œ' ¨‘é…凼ÐíÊÞeÜ¡`ºÅU…nW-çW$«d¸€êd‹€ÓÔx›ñH‘Q/_í9U^Ý(xÇ {š6#Á`ăD6‡ñ‰VÂ!Å5ïIÃZt;ƒ›8s<¦ £p˜3^ã0¯ˆÂ@[=ÄøT³‰Òì‹T† ;+Þ ¦"?L§˜à…7ArlsA«XøWï”m(JDðpx†'¥˜’EÐRd‡ºH/G\{l—ÏOÔ:)¬xPHÅe¶¦b­¸ pÕCt³Šˆç¬ÇMÂzÜØ\¢$Q|Ƽ£(I:…“ŸC¿âåÒÿOÿš6¤ÿ/–þ£P(±_ G¨ÿ/gúÿM\4CTÿßÖuç  wåó|pÍ—ëò;MŸÈý÷Ýeçy)ú¾¡Þ~ûò¹úéZùàá®Z„xœ‹xþBwÅù/ñƒ£»pˆÖõ98—{Ÿu@ËØsõ ºº<íºSˆ‹cÛNùªõ†‘ Â1D¨ªâÑ0Öë}­†=Ê; ZäãVÞ¹&sÈ~è*×è'i%Pð?+'ÙV°–Ï9ù•zNóîp$Ûb90JfŽÈÓUëm•ŽÚñ›Õa:”»¨lXÉ Õèj¾f¦by1ÂkZaaúèñ|µ(l‹Ð 6H÷P4äÕРЩÆR¾–¯±ò×zy^ê9)q-«NÚ­«7ï¼tñFjiÖ£®×>ÜŸ²âùêŠ.J‹ÔÙi´ß{£öûרrå» UõŠè:¸W”÷­‹uj`]ð:¢×†cðF¼eS0ê'²S*rrmÖšzÇB†—ý0šÀv$$qU¯_5õzADªâZ<æŒ +ìOïлïÚF#àPþÜDznºƒ íŸò/4D°Q¼¿ Îüþ§}qÌc4(¶ µûJdÎ]çk²‚~¸¹Ž´IC#hàÿ8Ùå˵d ÕÄQ<ú qÈm³î«ˆ0s¯®´ŒØ»޵b@)È'¼Ä/*¨ïø8›óDšÓõ&x%ŒáÓ´Q”©$qP†¨S}¯IV§¢…)†‚T"b„' ¹•³87úˆÃ¯r|HàDc!é¸kù[3£µÌPó1û¤# GՉхÄߊÜìéx¬KƒûF|Å öú„nY‡z‚¢¥‚ ©B¢!ÕŠÜìVÂQ]ì°ìºwϧc€ùàÿºÇüµÓÔ·µLá**nø®·vÊî Ÿâçž:.A8{Y ´¬BsÖmV÷r¡á <0𧇼P‘ì1Ùê‡5òÐ]†:MÅÞчb—›dEP«ŒÊqÞƒÖEˆ‰Kéq!B81{·;{Úµ5·Ä1Ð^w—:?ÌNS "‹¼Sâº:"Æ÷Õ6™ê~S—Oÿ_Ü”þ¿tÑÿfø¹hš™úÿ¢Ø6_d&åº~ü™ Ô±5]½°(àÿcCm|šx©½g«Ôø¶;"¹À:x{PñvIá7ôï{sèñ?]!ÐÕ…¼²o†_ãxãƒbyàÍU*sfˆèteÅ>ÐA8B¾uÙ¨þ+Ç•þåùb‹ÈÝîýIi½ö(ádIYþ_ï\çøøÑb¹à9›é¤ 9¶U¾ÞnÌ”q š€ÉÃþ™6¢ÏQ) ÑC{ìEÚÇZÑlLC†…4pdª„¤ÞŸªp± Ÿm_Ù<C‘FpehVyúãØgÒMB…¾<‰úƒ\„•¥ašW’÷N}³ ›ZS&…î&c¨µJˆkó"] ÐÀ?­¥žY2#‹ÓÈâÙ¬ý Ö•MYU~ƒ ÝCh'´èAÌ(Û)φìvÃK!L¸—xøþ mbWL¦Î%9øI óm`µ}ž¾ hfŸI=™$ŠÒmUÿ‚£ïÞ…P×^$Q×^Gî4l ìÖ‡ 0<\„Ö‡ 2r\Ä*Ư­w+|×,Èû±uÎ !ðŠ‚s"„â÷™""‡?ÓX³MHÆ[Mvmü)Ε²1,nYoµèC-Ç®=ãÀÅ–TãÈ•^_/ãú÷¸ûåèÐ5t¼Æ¥ÔùÆï4â´û”µ×VÓš~‽ûdÍ]™KkþëOGó_߸濘iþ7{ùôÿ¥ åÿ--úÿb¦ÿßÄE“ÍÔÿ—Týÿ9†{U«_†Ì°´@ÓùWµÕD€ëG·”B @=´È8€ë:[ð·ºs 7ìE ÎpR5ÎáÄïGsž¯ŠuÏÎD<ª o2*¸ë`ðín4ì ç£ï ÔÊC(Œ V|°N ³íÞ2’C(OÇlýN>uh¼«ÿª`A¤[vÀT aÜB÷ŽÕr†N'·t„|œç"W?FoÔÔ~lxI¥ýdÚ§–8Œ&f8Â&•òžêè ú ©ÈMûhÌUå9jÌÛqó¥Ñ@Byµº2‰5èí×¥t—-˜ó×Ë+Û×Êð\tî!F‹†ÌrËvI`vëÎïì}¸:û<¹±±ªM¹úN£"2 4*"Ó©ãÀ·—ðËÙ׃ñ—át2n=žBÿЧÐëR0ÿʺiÐû<þù¦¡ |­øƒ°«Maʰ(ä7®"cœPX8j5`Ë'žãªì¥Ÿæ« í°êîáßTJJ¶¨ð²œÂ¡V‡-ªÄ–‡Âs²cDœ”ÔŠa¤d'ñ³|,0%ÇÂ{kïÒJW¥ër£ênSuE[Èù#Ò@ë–ܨ:;ÐÄQ²u ¤Ì‡Öaðs„±œvçÝ`¦Ù[xsÊr _”É÷EPxõòeþ¾‚¿¯ðo!x‘Ψû?&‰´-Š&A¬ÛøC¿•<¿&6)–€µ›„ÆÌ\¨1èÐñ@ö¡Æ#Û‡ÉíCkˆL‰Ø„`,ÚìB¶ ‰g)7.#„y_ Áè°_ì˜8­TPåË-ík&4¸°ÃtD²ž¼ Õ²ªGI)Ô!¯2¼Ž»7V@læd»꿪=Õ<»Š:ò§!eM¸ð6BQ…'qø%[6`yU ÿ¨“ÿÔÉÂ>GoKñ€o"ýÈéүξ ÒRûÉ–ÂSA¶ÔïôFÀÅÆüÀ1ÿMU«æl¢«|Ƕîj£ØŽ” /“º6Ÿêá| ùqa 1 ÂW‡§ìÅÂÊ¥“Oœ_‘™ZmL¦‰ ÓÌK×9$ªZ3©NÁÓÝý‡ù” yƒ3 M_ ìŸÊ /š›à ¼ ³—¯Ô¯ªe,ìdõ>gâX‡×褆¬N5¾:× ªcØd°CÜ3èæà28o«#Þ)‚pýçy  â.Ÿï°%àö;³¡9›Ao…ÈŽ8³±ÛŠ!VJžm5À™Ýïq.§ýo±)ü¯ƒã‘%ÿo†ÿµ‘‹&'ÿGë÷(˜atIÇg˜àãQq¿ÌF]Ȥ¡±áᅢr°´v®á-¨äêì჻û‹¹9è˜Òw܃K,—wƒÅdØE „¡ƒ>YçN;¿·~?8K™‘K Œ}/uåk 4±Ð]º×(KëxÚpÂk­üdÔŠãš‹]„}‹DíI3Ð §[VÉawü ð}g˜žd:à”þ:s,Dx¾rd„aû×ä~6ø<õ‰ïãX€y"j=pE#¢Žç§—»3váï‡g—¿æÜ µ<×g¿uW‘Cü:žòðö+(³@‹]¾1üûë­ßŸ p=-U6àzç^ßiìF¶ (w$ÃÎF/ã‘Ü©r ø#PïÊá_žn¨@z$wMç*.wSãÂðýŠb–‚CWV)ú0RbÕèû·á÷Økä‚·xZ¬ïÖð [–ê¯ìÚ«¢vð£"t‹m+š`×Üa¾ì4s·¦C9EÖ¨ø¢(ž±šclöö¡¶ “ܱQ;`ܦ>ï±·wªæ^sí&Wñà gîŒ90 žk˜¡3/¹WãÜ+(™;m‡c9ôÝF¶ÈtÆ ËÒ›„xÚ’¶*=ú0Ýu²ÿ=Ãòxâ—ïü¿üƒ£Òáqvþ¤KÈ9ïù_Âd‡ÿÿöóþòÇú¢íX_#Wó\„É-KCTPà68ª…çœ4$ø:)nî´ÿmͧ|…Þƒ±×y>ÎƆ"ÑÛWÒDZMûWÉNÃÈžuŸî!·è=äâ8NrÈ-²ÃÁÉcr9Åà××A-‰³ÉÓ5©S@F=p:„X\Ç ñrðqn l,sBlˆå·¡Ÿ–"¯è­ZÑB’Šv6^Kpù­©Ù‚í «ŸRüŒoûvOȳ‚ëðZtå•R¯ yxµÚšSžY=ÇÎ,4Ùå:ÿÍî6–ÿé xPŠœÿ2üÇÍ\4GÔøÏv ¾ïš—W¡Í·\eR¦Yû;ÞTóJ`gíôyó,óÐXß!° MÛfÉáÿî<ÚölŒ¹xôsÂh\®æ”xÑjÞ ÷Lz‚Ä®f‚Ûï̧÷=VÇn0û~˶¸S¶Žñ\8œlÿ/aç0ÖpHçTº©ÆNŽmk¶_DáÕ¤¹<Ê¡<çQ»|ˆªÅ®SyØ/W×V?éûGf“3ékÈkÇF4; •Ð9V›®7vªâaÍ2€N¨ìHßÏÖÉ ¥¸ì—8MeÀ°J(Ùdž‰¹L* &GZB‚Ì2ºl<ðònøe2±ƒX=öÒ1®U%º´*Ææ|ði0]VSÝ'Z<[V!Ì–µd £„­ÄÕèV´ö‘ÄNø< KÞwLŒ&‚TH¼$x§ûId Œ—{ë ’ SjQV‹Žk7ã-QrJ±uê^.Ë¿µ›kÒ¹¤S·¨ZÁ·át€¯Sü9˜*Ä‘¦œ­“KÂÀ½…mL!’Ç|]('.S¹ÚMîç­nÈM—Û¤ ÙŽyÛ"‰5ì3N çß•µ¨'ÓÒÐ>_uK êMx.w*6÷) Lh䨢o!& úÌß 9ÔM'²Õ˜Œ÷îY+”|,ê™Ã¦Á¯‰\§T²û —½‰ŒÔ†µê ¸ÆTÎx{·†ºq_ÝÅ?à[^}Lòø ^™w¶øŠ·Æt~Ö<<ô8 “ÔK8t°ßÃ÷€ŒÇžº®õáwG"•D]ØŸ]¢ Ìp ,QÐjè®=wÂxkþ_û½·Òå"Qý¬è[öŠU;´¶ÃŽ—èø¢8LXp×ä ×ÎØJ©+ïòÌŽ•wPz{vvñ\X ½èxxWk¯áCØÓñFÊ9Âré*®WqùŠJ3"-ˆ¥1 ɇP@†µ²ª3õâ¨ßgêÅ4—Kÿ7ÿ°±üÏ…“RTÿW:Ìô›¸hž¨ú¿N¾HZpL¬ÓZù Až²—Ö¿ØWå .(ìïGutyz“ðΊpþ1tÄοbxFœB. KÄÆ5*m;ùJŽ?•}øI|SC¸;ï&G•M¡øÃÁcWËqÜïAxΟMF÷;´µÖìûŒm“¡_Gl@°/Ý󀤠¼ó­ÜŸ}Ø øÇ¯ŸcRA®•ØÒÁê_ ícŸ*Oîšpÿ CˆÆïdTf«À²°î’à0û&Rx¨ü6¼½gõf[¤+¾ °=øŒØzlÓ+’W\Yù­î“;¶žï|£%¿Åo¶ÅbÿͦºÄ[¶‹žÌ¸†ñ…µo•å4–ªÚÑ©½ÔàfV×Dœ]Š cŠ»Á”k”y~ 6ËfÍðÔ²jANÝno÷vðÞ-yoÇucÕ¸±:ÿqÿ ‘^å |¨Åq’1ѳT·°ðžHï°“‚§O°åâÐãîê:ó–úa-‹ˆK|qšˆV8åf÷¬{…žÓ¬Ìî?(Ÿ#Šs»ØÀ𰇫ÉQ@ ¤©Š9ûóÁp°Ÿ7d׉«dLdªœÚ•}^US^ÑÙ“L¿\±h—Ý+ÒÁÕ¢N2º¿[Ð"yyÈ&<ã½ùgÞ^’½ÒB¡Ò᮫ÆÍŠ^·Êã“«©žy¨kÙrµÙîý‘ÿ¡LrCxƒÉPúÇÞŸýí¾þóõÿpº$B’ ~…ÐXR†Œóì2r¡»’`´Äé°+ûœä¯9Ý ÞoŒ)–¨ßoò0|"=]ž¿ð&b7×f•‚\¦e»o’Lؘvß쥨Һ²LË+ö–tÅvWÖÐnêÝK†[/¥¬ï›Ä»¼ÂM [çö‚ ¶6?wøv¼n¾¢$߸÷¯©/·ßÕu |§âÖ« …½µ”§®iA̪WøÒ©Ô[ƒò>u<7ÝcÑÝÉk3xhZÔø]ÍnX—V_UÑö¤6ŸNV ­ã¶©hUÝ~§¢é5U@¨Ð0§uu_„X-1½¥gÀgÄ\*¼ÀSÎGù ƒäFŒx•§K¥™¢C–•KJNçÒ„ê‡@X`:a’ˆ‘£@B™Iì2õ~˜w>M‘Þ£V„¡&Wâ\ƒ DK. ,×nº‰Ü¤6ÈÌ—pãíÿˆ`Ì‹{1`?äQÏMõV5Û7ªŽ[­I=ÔÞ¡÷FÅËzoŸþwSù¢úßÌÿs#Sÿ[J¡ÿuëÛlŠƒ}–v+øÚb‹RØM#Ó'ÖçÑÓ¨;ÆM†TŽ÷/©G.Åè‘5õ1&ãݦŸ OlõñlG*ÃÏ BæúcC­©½ä|0#4¥E5-^M£ TRípcÊtÊ™N9Ó)g:åL§ÒÉtÊñ:eÜLxúÝ| ,wðîÎýƧÙ:ý~ ¥Ò°ð i< ¥ƒäˆŒ/R|ÈQ¡D”ó(¥z“ûñ\TELX©Ù&Ø’Í¥-‹x†¨äVÅS¦J…ÚÌŠ³MÍè»îªÏ¥lÖnGD)dêþLÝÿLÔýlúôþ¨zReV…¿ªáÏëêÿU½òo¼ù•Ú›Æ;¡î?kµØ9¯~‰ßtèd}Ã_Ǿ,¶Êž–AOî¬-éZ…Êi 2Â6ð6Ër¥ÌŽÄ§¤uX—‰ \mÈrè¯tÅZð þ!FN#J½¥ÝýÈÄÀp b ¼Æ¢Ô…R1¡÷à^éŒï99Dy»3ùX‰\‹@a±½ÛýL,¤´*G[vÀM™4ý®‡]–;•v¨ïpE°Â&ÅBZ»$¡/{`jÕµŸ” >¸£hÂvØPÊ¡šö\ƒf¹{8›æžiÄT8¨Ù½ôúçéÙý…fçZÝàéÊÖ®3NëÝÌ ù š!¡ÚGšü¼Fª­.`8ÚùP¬æt`¤£Wé@ÀÝÙŒ-è‚ña¤Åæ!§?«j#–Iöô³nï3ÿN̲ RÑgŸŽ72U‚Z+ߺ½ùºù@r’³+»"+€ $ensÓ1ÄÎŒÙ|x‹éGÙ øÚö3{;¶ìRÉ@¯11sÓi½; ½øîCŸB:ž ’ĵOlÙ¿ïëk1µ·ìLŽ3É4ý²˜¶ú@}›5ç ›µ2·j*:b¬VÖÄ:˜Rì 0žÎà0¢“À‡nïO…‘°IT¨Rác-ºÍn»£žÓ¹“UìÃwçÔׯ®¡—9cÈŸÜÿÈæÛÚyÆc¼¶´>š§%bÀmAÄé÷²ô…R=õ%:ÎEŠâ‰Ìqˆúy"Þ,&çÆœoòÁ»F­Š“&“=ô‹Ãîüûƒöã·ùÒ þîуÜTj Á:?Mè•Æ)kÀoç—ù Soƒáí„Ò=¢})Ó6’¬×V.¬gų‹7s£â©€èZ¦±›~+Z³Efñ1¦pTWÄÂaðHÛ¥að²¢¶c~õð5OÖ Ö oàVj•èDX'åH I:1cèˆH㯨iÜL$ÆPjR²òFž·KýpŒÈÎßÑóM ÄÃI±„––P˜Üé¬lxŸ4µ‘lP;…ª”Q1®©áýø#ò1øŒ=ÒuÖ4sjA·Oï(MS y0~,†²7WA¬öá—`ü¢P˜,0wœÖB;íÙ#û˜¤PR)(óÈ ¨Ç‡üz†Õ‘"ù­Ý{BÖÙ+D³NíÏ •%ýJfÕuACTôùTtΧdzÑeÔ¡R^¾ ÂT/Àb”й“î(„óêÕApa›Wì§—ŽaÎBa¬®àh¾Ðy-ÎÒ“ü÷}&àö¹³ß¨>Øíµ=d˜Õ¸i‹ÏßYÊÈ*ÂßÝ@sŸÙ«í¾…²¬Â;!W¢—˜¸o•Öh·XóÃ(Í78ï­Þƒeä®ÿòùˆø\cpÛ„ëFmWkÛSŸ!Ÿs©ù|”ŒÏ¦iÞÁ+ÜCIJãu2­é¶æÿØÃèd]è°ûv¯&檑'Ë“èWÀˆÚþÙõ~Á1Làt@•ŒrüVl9* iÛŽ*¼t¬Ä2À^(W\7vÃÅ63ø ñeÄoèÂÙ,}g¬5ͯ®Ü+ü_ÄW‘&†í{•Î+æèYyÅü<—ÏÿçxSùŸŠÑüï¥Ræÿ³‰‹æ¤éÿs̤›ÝL¸ãKÕ×âÞ pÄ×rçqíIêÓãËüTîäuæ®×Ï'u®&ìï0Ô¾«Æ Ã·Ý)í±ªAŽñ{û)(÷ÈÛfÜ¢ 54ÒvmÞüÛØ;b<ÍE¾æ´^ü » TôcpaàÔØXqF Ñ˃‚ð>‚/Œ$ê}ð‘©&è%€þ3ã=üe> ú¬M}v/*GîÇýÁôãhòU˜UUZ0ýÁîÄ´ä1…ò9B -9ma3fãA†iå $w UÌàÛÝhØuÜæ× bÔSh±"šÂ+ÐJ9cß1Zèô.µóØ¡ÓFeP¨døøˆqåyšŽwÇÉEÓW¼a;YrÐ&Ê}ÕÐC3/4DÈÖ S>ûóÙúle;ø!¸Xȧ§^ 3hê›OGN¾ø0¯,µ(߀*)Y-@JYžƒÆ4•´JâʲÏÛ÷â$'•mÄPA­ŽF{r8èK&P(1 Ðð92ƒ¥¾{Änú9Ó+aËuŸIA³)ØŸÀeÆ‹Î0 '€÷/N†<ÑK溡H§ÿ±š†-Hœøã³ƒ¸my[±µž±Õ:þvr4Oùs^¨±¨dÞˇ³DÑs&Kø„Ç×L¹¸ìåÔÿÝm.ÿûQé0šÿ=‹ÿÛÈÅ%Œªÿk*ùßåt/7Ù¿Zã·¦T^ýxÙœüÚ=ŸNï@Ö‘³ xÌ#íÊâMzô¡>Óª  غÆnæ9Ø…Î(„Ä ° 2xâéî\œ%E 5é‹v !`eµ%+¤wìðä#fYR ¡çç”H%Tnê´’œÅwrÝÂö‹¨ƒ¯LîîÖÉ„êÁ* Ò™ _4lÉDÚ1®‡I¯ˆášˆfR­K3—ûc¯°½óÇ‹b° ÅK!VÝbh$½Üxïpüc'÷2¨ï™ŠÒÇÈBHöË‹~×ö8músal»TÓi{¸ ûææ¾ùÜoÃyžCç2t'ª>[¨¦“ïR/UöIu<^=¥J-vWCà,¼ÈÙ$âc ¾-%²E‘ÅÇœkNÝ{ðªúùF=ÿX©Ö;Â!$Yªuvû:´EæZØ6ža›Â¡,“ %IÚÄØÆ¡¤Jb¢×›öl-°×ÒªÈyKÑŽ_+M™‚NüDÏF…³1âß&¹ŠNJ`T…)5¨ü/ˆi‡ŸòèÆþu:D|Vø&ä1NhŸÓ}B@¸·UÅ7ð¢Ã '½Ó¨—?¼­î¾Ý#—dRÝ©kü¹HkonKPŽ«ª˜@Âo5~k 7«[ÑœñÔè·8XÌE«&<ñõZ1qÀHöæì' 9!lvF¢4¿ÙÓg`/û³K€™…ø¼î–q¡á%éµwž œÑØ{ à€eÁñMv‹Þ%1Ýêå·…8¢|‰í½‡ëaOsoˆ°-qÆÙ²2³¼LD¿C²%Ä» éUý½KÙ|Ž™ç}ú¿Må/Eó¿ždú¿M\\<ú?gþwŽýÕŒäñq ¦PO˜àkÓ¹Þ…®Ð‘å}©$<ÍÍ'sŸD2w·ÃŸKÉðN•1“¼/‘GÔg),Ù,Ã{–ç'ǾJ¤~’)pÖ©§N®žÖ5ž*”êiM'­Òyžêé,ýÉÏ+õlÓŸ<ƒä'Y¶óDÙÎèÌ­¥ýï¦ò¿‹GQÿÏ,þ{#Í/SÿëÌÿêµäîní¯/ë{¦ÞlJw«ŠXI殨‹Ýº¤ù’¹Çår×ÕÇ@e ²™ák£%y4r–áý¹è”qP&Ö*Ó݉ôÊtk¦YÎ4Ë™fyEÍr–ó<Ëyž)ý3¥–óÿÐ9ÏÙÿYÞsW­×”÷|=Æ‚É{¾$"|–øÜžø¼¹áÄçoßêžÕÁª¹ÐÁÏØžh<òØ·àk,ýÓdC·×z…éikmñ”¶×<Ë ×–A½µ%OŸ¾ºU*KšŽ?dIÓŸPÒôæsKšþ]>ûßfò¿NŽ QûßqfÿÛÈE“δÿ9ó¿‡ö?aÉã–=SŠ„W–õ=¼,×»Õ´fyW’¹»;Ê™å}…dîÍ'–Ì]¾I‹¨±»ŸÂò'UG?w‚÷Üx·°8Ç;Ý&¯ÑNfBÌÒ³?ECâ†Ò³?JÚóÌÔØÌ A  scjS£N!W c„LhQ Él&¥ùÏj(Ê’ŽgIdz¤ãYÒñ,鸥¨žt<²±ÿybÏÖžwüm5\xÎäYÞñ,ïø’w<Ë,že÷ÐnÉ2‹¯=³xŒBnY=œ`í3É/Žps}XxÀv_Ѽk‰,ä…Ô)¡9L¡3‹ñ“Ê*ÂôÕ¼p1*e-’<Ô’«™.KÊò¤U(‰Ž.ñUÝ7Ÿ¡+`cO˜º|É¡¹Ð5 nzRÉÌù¬§9Ïxºó~¾ÙäÑ‘k®]`̓žnlBîó,ñy˜øœõ&ôf?ïiý2ûKɈ®ÝøœÓ¢7Ÿ@ZtŸÿÇfò³¯£øŸ™ÿÇf.|¦ÿGlþïÐÛðgIî½Ñ”Þ+%þyjɼ›Y2oÓY2o… 1ŽOÓíãçMæ9<©¸å,±u–Øúé%¶ö@&Æ‚$f‰­³ÄÖYbëÏYbkÑ[ëOlÝ´'¶.GóÄh£îÓY77›ÎÚ©ÿ™n,ÿ3\Ñü/ÅLÿ³‰‹ODUÿÓ²æÆLïyžG½ÅWZ¡ìºu¸~<˜¿¸øžrÈœ %ŒÎÑS)c4{pNV`IRk]¹£­™¡ƒ0×Wå†ÎrC;5 ­DžÌå|!Ë2Zi3¦žæçЧñv=šráÞèÁà®;ë~ÈeË K¨$"µÁ#Á b9à¨QðÇhú è­¹´¶†h;*Û³b*gkœLMP©˜­I-¡)F³‰Áœ˜ 6d’ŒØ'ôò>QŠºŸ£¨“ôÓdÒæB\ÏË$Ò&M—JÔ!Fà#(½tôJoîlkêlªñʼ„´¬’X”£Y‚î,A÷ŠiE9û¶ð1O˜}»å«]òìÛ­§–}Ûæ–ýÜ“o·ìÉC”ó“'·§°vèz¦Ù¸Ûƒ¹¾”‹µ„­Èì øð¹Ë·©*TiØÔ¨oz¤m 2:½%wj9ªìI¤í@XIR‰'DPó Žq´§VÂlÝ4´œ§pjµáânOÑœeL«`² Ö‚ïîzJý‚¼UT6 T™™áƒÉÌm#Œ5 »×Ò°ßtX1Ei¨í£L‰­ãéƒfm)®[¾×.9ñ0É®[Ï1ÙuvE.ŸþwSù¿ON¢úߣ,ÿ÷F.šÀ¦þ7.ÿ7ßÌ„Y]Ü*àŸ;ÝK9¿ñDàª>Ø‘ ÜÝ[Ëdwi=V–päпB¬'›’Í™ÃEÍØt’'m±¢¡‰, ø“Æ[ÊÒ€?#õÿ“LÖb´/3Ià•™$ž•I"K¤ò³ác=ÛD*Ï Ê6s<¥ìé lÖRžº.›=}=†,{º¸V1€x’¨·ìIÔ”²\êÉefD'ü ©Ô[ž¤JWféÔ2zË‘NݧÿÝXþo þ?{Éô¿¸h@˜ú߸üß|ÚRrj·6±ªäÊr€ók)¥ðz;UÄJ2pw¯†zäeÕÅ›N¾š¢x& ¬–ì[¨‰³dß?¾æ8Köé3ýq¦?þõÇYŽô,Gz¦ÚÏTûYŽtdüCçHw×.˾Žüèë1+ÃãÏjãÉÒ›géͳôæYzó,½¹¥h–ÞœÓ^{zó –!Kmž¥6ÏR›g©Í³ÔæYjó,µù:R›o$i9z ¸?©œåëOݼtZñPLYÙ¶ù´á«diÌ“Êüý„ÒwÇL,w÷O–»»õrw¯ãòùl&ÿwáàðà8ÿ}”ùlâ¢lúÄçÿV=íÂgÏO’y±Ñ ᪟ÇR)žžZ–ðV–%\çt–%\!ÃÇGŒÈÓôù‰³„´2¿¼2¿ƒgåw%WÏ’«?½äêDÅX Å,¹z–\=K®þ9K®.zkýÉÕ[öäêQøÎÇȱÞÚlŽõ§|9õ‹Må?8.Eõ'Yü×F.š‘ÍÆù»FµoN;¿c:øº˜»ås>;åw1ú¿K9ÅŸþϯEÐÀ…ujîÊçê'ÆÑdØ‹’±²&~ut!_Â…ñï¿Ùák/hí\Ã[°èÔÙÃw3ö÷ï¿Ëì;|¦|Ë“`÷n°˜ ûlÃW&WïÝÇ:b+".³çµ®ÏèÊê¼&«fN«,˜:ÚÃ_aÐ]›.c2~ÂŽ9ÊÒ:âH†*þäóu= ´Baß"Qõ‘zUm0Xk<ƒGxÎ&DÚ–×µVŸæÝáHömð¯Éýlðy2êãÇ3©lžƒ·ŒÇ3•Ê€^R€S–‹ÂKN#–YãOl:iZ (¹/(€ªbgì·Ïìü­¿WFIò‚$Án±ì¤_¦açk[‹DnÁZËðo$üŠÿÿÆžoyI¤Ërû¬ƒ¯ßê¬U¹´±g™¼ÐK@ñ´@çAäÁñÎÚõÆnÔg&ÔvÜ 2ìÌñR=•øà÷ɽ–ÛØáŽ-Ÿ³!«§V‡ºêVË}jÃZ1¨7~zsÆ*ÅN±èÔ¹•·P¸â·ÔÍ´er§ë[»Z’®8‚±ÞcDÏïG#I&ýå»Ù~ 4H9ÑiŽ›oÃï±ÃÈo÷ÀO£¾[£¤·çÂonŽÂ-éoÁg·Å6Mðïßa¾ì4s·á‘\Yk‘ډƲ!ÊÛ‚P-ÖÚä®c.aªL佇\»I¹E¶§?yŒC.§üúšïlÚPΦx¼¡5´¡œx‘Œz8 àtÈ^®Õ?§ÖñT´W0ø"O‰—ƒpHä'ÄÆ ‡Äšr4¤Â ñ¹¡ –# oÒ­Ú¤B¤IÅøCïæ›c;Ács®!¾È~fWF©~^mpµíÛ=!mP¡r–ØŽ± åÛÇØh¼IúÓ«çjÍš÷ã\Žóß°7¹û¾¦ã_Üùï°xxåÿ{¤‹†¶ÿQ“@Úí›<[«ìoû=¾{=Îuï¿ GÃîôûs;ØQàQ)OuZí~Œk¿O†œf“;ðúî²µy<|bíâp0ßÜ2òõw¬ä;pL»O'#H7šLîfÜš×›ò½ÀT€F!Áá,áyJ7I Hƒ6a´ßóµo¬Ä,»ÿÂn®±W nè‘íÈyŠ·Z€öÀM ê ç8G}Ì¿}g<ƒý é¨ÞÇmA·ýžWY8é&®ó{g߇u~¿Î: ºk?ߤ²¹@{í=jEêÍ‚e¥v2½ZÊ+TA>‰îXÃ[`àPté~¹qºÂ£MÃR"4ÊôÉó~LÓI™_‰e~¶ñpÞ…u¼Q jïÕ¢jlû¯5‹ä‚= —Åa¿k–z-õÞ(õ^)åBë©Å Â~­}Cþá„߇:(ßÓjïéû÷æ~˜î1vU’™èÐn•Tá½£Aw¼w‡¢M¢gôÁäê«ÍQ‡®=ˆvíáAÈ «é y²"jìÑ]gÿÄ>è£um‚ý£®wÇ?Û4iSå§ÝBøãn!úsQù¹ý¹¤ü\Šþ|¨ü|ýùHùù(úó±òó±„Hð ¾ãÆ%ñÇÞp?±Ëµÿuã/›‰ÿ.Oþ£ÀöçäðöÿGÅlÿ¿‰‹Ë3s‰—öŸÚeù¬ñ›ÊíæY•I)J»jvÚì=H­"ûWr‡¾#Ã=-„xÖ¸›G*²Ùž=çPÈÖü¤Gä²°åwÓ ÛðÜîõwƒqüýïBÕ³€¨‰pl6Q‡ÓÉZ±Ïdð`@U!ÏÍ ?˜õ¦Ã»¹bL‰‰ê˜àçy?P”…·VÂà 1¿%P! 3:¬½¢Ö,·êmRÝ›ÜÞ²J|`ÿ3¨R‹EÄ!Æ0 }jˆ{ƒþào«‘0êø„ÉµÃêâÂAä(îƒÂÃÌ›ã?ø”¨ßð{Ç—xX‹N­ÎÞ&8*Qµ¼Ûyì]²WLZSº³°íFˆ(o¨úÕk@§Ãð—;%#gÃÅà2€Ì,PÈ£Óîï) ˆ²ü4™2fÜ2–ŒFÁ'8dípŠ¿LÑþ3î Œ©<†„w%TÛ×ÏÃÞg"ƒ?X3°köyr?ê‹>’a5÷3Üæ+DYCd„•°Áz[¥XÑc´¤D-éM'³âôÝMØØ…NesF«~ÛÖÀšX*ѧ­‰Ãø«‘Ymöyøq>ËËÌã‰fßoÙ(š{‘J †Ÿcêza Ñq¤w‡.Ï´¸)‡:#Œ€œ=ÿˆÂ¯õfÛûPÈöo§AŽ=i̪ݿdz5ëÛHd8^Ü Ê@e˜yž|›o¿`,Ä7Áà[o0èÛ„2‚ë÷.ÒbÈÓcL!< «"ŠSœ(!ØP)“'æx6^'Sc$¼ô³ ƒÓpüAÕ¡®بû<±4õ#"„ãR‡|ñ03Y¼úUBâ)0î?ˆ0vP‚Læó‰È‘y4¡DKçÓÁ@LÂ…Þc‡¿¿î“K:­&…ƒ_ƒá€ltÁ* ¿æ¬ =6B> nõ ü€smÜéÅ™(˜I‹«®0‚qFËDÚsì¸ ‡àƒƒmA¨Û”ëQ—-ÂñíD€B4ùFn'¢ˆ³uGf½îŽ0/õLZQ9EØÕ$¦Øû̳¬e“;ªõ|"ºPH;Ú,1þ³† Æà'¢Raà sö ÑÃ5¤˜ãOli?ÅÊ·îíÝhWñ´ª`ÒLvB¨k ±Å·=Ê„õú BX¥òa º€cä<¬ÓØì.Э–žQtÿTrÿtèüI\Mš ¡ÝÚHGëöqâñµRÀ%ÌÏM6 àÀoïÇØ|Kuˆ‘»î nꆼØ#ð‹’h­d ßQ…¾Oá)ƒõùwxPcŒõ‡…`8V™m¸†p ÉaÅq7ÀäëY•Nd»mwZV ¤Í´¢T£ºY~pg=µE7óhìàÅ‹0{¯ þ…èú¨Ü¬€J”ŒH ­æÅ}cí¶‡´ÖöBR@ÁÔÙÍm§÷³³³ê…PÄ9Xã­>VU刬j$®êõ«†J(x!NÐ/8Q µ6HÁ™°š„äÚåß΂ÀAnY É7g¡…¿`£èÈ‚Ñ"w$1 e;UG ¡ÈÕD°ŽáaƒD¦ çž]ï[ž+À¨ál`l‚ktr8Ä8"I>Ä-쟸kÀXqb²âÕ#±¢p`C)aC:Íþ÷—j¤–Z).ZXÒd¸€]ÃÆàC)s°gH J«§‰[ÓîÑ7ÒăÄMôƒÊð½—¥‚ÒO. ËÌ.?ãå°ÿÔ»>Gƒµ<ÃoÿA·¯ÿ(€ñçøàääèí?¥Ìþ³‘k8îîû¶š¿`ÿCÞ¨}öÕ/¿üÏõ\¿üO®«¿åŠ­º„„š ¤;¶_ÿĶ܊a3îÉ4{@Bú}³mÖö¬< K&‰OìÆ;:ÌËm1Ö¯2ÙvlQe«ßÚLÞÚom“¦âPKQ»É0r«zŠÎj4øæz`õÒ( Gš*/£¶Ÿö²àiøÈÓÉý‡¤5ýÝSÌ_ÓÓß/’¨€¡·¾ ãXÐzœ/Åa<ênàdÍ¥“Pwõqr?eç¹:1:²²˜°o Ç5a¼×é´ÀŒÐíd* õ»ón0ÿ~GÍéf¨a܇‡ñs ÞT$Iš*Ûw‚QÖßúÄÁKþZ8†›Ë#<›€k×è{^îö5Rð,V€‚ YߺÒV)&𠙣ͤ}šuÐ"¹qçœKჾ±éƘ³¼x×—ïzt®æŸPD qRBóÄàÛ<ø<üZ›þpŠþo߃;ÉŽöyÇÃáövÂÍL“°{D¥>Î9:o¤¾R$ø3óýn0Õ™Þ!øêjL#‡x²V}ŸÜã8cC«GŸ1†õÄ„Iúg8¢§ÿÐ#àôžûžØ·­}Þª¾fÿ ™k’™¿Aõ:øaOÖuûŸûûx3˜~æof·ôFü2üÅÞˆ³{þóì ¼é}þóÛ`ÊÞc7{% ë]ñf0ý0êîO~ù…Ë¢×ÁlÔLûðŸô¯ƒ>ÿ*`·ÉZÎùnW<>a]àͧâÍ@¼™«7ŽÄwâÆ»‰x3oîÔwsþõ_%ñf$Þ܉7Sþfú—Zt&~Ÿ}çoæâ©sñÓ|ª–˜/ä§þô VÞŒfü ÖZþŽÅ7âÆ™øŸH7¦S"ÄÞPóáÍLýxofü µÞ܉7SµÄT¢¦±7Ø|³ào¾|“%>}x· ½)Š7Gøf0úkFoþ‰7Ó°zŸSñ» 1 â÷ùAI|}(Þ‹7'øf.ŠÎµ¢s^¶+ßÒ›éç½™8oø=sê=xŽø4¥¯9÷á 2eô*¼ Ÿ Ÿ°Âw‚)w‚)w‚)wú‰JÀ§¢øº$ÞÐ3AãN+q'J܉w¢„àÅÆ‹;Á‹¿FüwxSoÆ_Ú3þšŠ§âÆ©¸q:/ˆŸ EµDAþ~(Þ‰7Çâ͉,1,œrâ¤1]ˆŸj;f¼Ž³Ùwµ²sÁbxSoŽÄ|ô\kÞ\°p.X8,„7Tbª•|˜ >À›#ñæ8¼QT}¾³a0£à~ì>ïÚg7•Ër[ʼÝ×$ßøÜâïà»âÝÝ„~ýÐûüå{ûË`4DIH ’€,eÆlãóË/U)l{š°í aÛ¶'„mO¶ðé³øúó3ECAÖ2¸'dpOÈàž¿=!~{Büö„ø•4P>õ„ î ñÛâ·'į,1¿ÏEÑPüö„ø…7Ôxs§þŽÒª'¤rOäžÈòÆ™ø:”Ê=!•á ÑâYþNô…Tî ©ÜRYÞHMR¹'¤rOHåžÊ²D(š{B4÷„hî ÑÜ¢¹'DsOÍ=!š{B4÷4ÑÜ¢¹'DsOHäžÈ=M"÷„Dî}?óIÙu‡w}zCº'„uOëžÖDŒ}"ÎÛïü žá=!¾E Þ×ð†ÿþe&ß¿”9ߢ½'¤zOHõžê=!Õ©„í=!Õ{Bª÷„Tï ©ÎK©ÞR½'¤zOHu^b.nüR½'¤zOHu*!D{OHõžê=!Õ{Bªó\´÷„Tï ©ÞR½'¤zX;_Hõžê=!Õ{Bª÷4©Þ›}¸…=#{£Êhü„åg‚!Bê㛢x¶S¬=±ôÄ:Ðë@O[zbè‰u 'ÖžXzÚ:Ðë@O¬=±ô´u 'Öž²pŠ®¡Jóž\zrèÉ¥¡'” ü¾4DˆIZ’”¤$ …kÄ©\#úÚÑkD_¬}±Fôµ5¢/V„¾Xúb1è‹Å ¯mÈûbEè‹¡/V„¾Xúb1èkò¾XúbEè‹¡/ƒ¾¶!ïk+B_¬}!úûÚ†¼/ä_Èÿ¾ý}Mô÷…èï ‰ß×6ä}!ñûBâ÷…Äïkûð¾ø}!ñûBâ÷…Äïk¾/„}_û¾ö}!ìûBØ÷5aß¾/„}_ö}!ìûBØ÷Å`î ©ßR¿¯Iý¾ú}!ÚûB´÷…hï ÑÞ2¼¯íÃûB÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯íÃûBb÷…Äî ‰Ý»¯Iì¾Ô}mÞò·/äo_Èß¾¿}Mþö…üí ùÛò·/äo_“¿}!ûBþö…üíkò·/äo_Èß¾K잆’²/Ån_ŠÝ¾»})vûRìö ±!&iIR’’$ŠÝߥØ]hbw!ÄîBˆÝ…» Mì.ÄÖ|!¶æ !ˆÚÖ|!¤ñBHã…Æ !ˆB/„ ^h[ó…Æ !B/„ ^h[ó…Æ !š ^A¼[ó…¶5_ù¼òy!DóBÛš/„|^hòy!äóBlÍÚÖ|!¤õBê…Ô mk¾Òz!õBê…Ô mk¾Ð¤õBHë…Ö !­BZ/„´^hÒz!¤õBHë…&­BZ/„´^!½Bz¡ é…Ò ±5_ˆ­ùBlÍB~/„ü^ù½Ð¶æ ±5_ˆ­ùBˆõ…ë mk¾[ó…Øš/„ _A¿Ð¶æ !íBÐ/„ _A¿Ð¶æ !íBÐ/„ _A¿Ð¶æ !íBÐ/„ _A¿Ð¶æ !íBÐ/„ _A¿Ð¶æ !íBÐ/„ _A¿Ð¶æ !íBÐ/„ _A¿Ð¶æ !íBÐ/„ _A¿‚~¡ ú…Øš/´­ùBlÍbk¾ ÁBlÍÚÖ|!–†…XbiXˆ¥a¡- ±4,ÄÒ°KÃB, miXˆ¥a!–†…XÚÒ°KÃBY8E×ñ{(ÖrXÈ5b!׈…\#rXkD„˜¤%IIJ’²5oë{s®ÿÖ|ozû´¸tźCß@C_BŠ‹T-hÐŒÂð?¤Ú?ºê~¬†E¸:^þ^ÕW5^á…¨ðBTx!*¼^¬£ÂRÑ:orÅô£ÐÆ«ï ò]Q¾+Éw¨…åâ#-#ÿCÕDsÝ´Tt y¥ë…‹FÓdUžHVˆW²ÛÈCµ¢/[Ñ—­èËVôe+ú²}ÙŠ¾Ú uφ<&ˆVè»êÕZQU[Ñ“­èÉVôd+z²=ÙŠžlEOm…ªƒ’'®ƒâ#$Tuiz©ÞY­Y¿«ÍZÈf-d³²Y Ù¬…lÖB6k¡6K]¤åBÎ'oV¸MÐÖH¹4®Ö¬îhôkgÈsó|²7~ð¡/\ àƒ(¡}*ÿò ù|Nж<›Ï~¡’êwý_xõËÞ/’Žúõ‚UZ­ŽúÛôãìµvÚ3fÚý_´ºêTz¿ Ñ*ÐÓî]üò‹Ò¸à×à?sܦ»ÍÞ¶•·djÝþåügîòª|zÖ‚oáÄlFA~·Jãÿ•îäÂóŸ¹NýÍe­²-?“à ~õŸ9\ñ=û ßïMYÙÿûÿn¿„ÿóÿQÛÒ3ÛR]C[ªÔ–žÞ–´%PÓ7sª¼ýÝߘÿüßË×ÖZÙ¾^Ù¾YÙ…YÙß“WÖhåï—kæüBoÌ"ÂyšbW䫸é²#ÝÆcct÷g.Ó»_Å~_vØÚøe ÕEd¬2)†5 75¾º)w­¡vðl­zðE¤~4›NÕïtÍõë›õ‹L&¿±~ÕDõ«®¹~=³~–þ¥ þ{¢úý¾æú-ÌúñÊ ¨Ûy«ºýK(¹•¯„HQF¿:~õ»ùÕ/ìﯿüÿ­øWÁ/èðžÞ{ƒØï /¤_…?ÒGààùU ¢EQðµ~#î1öÿÀÙ—¥ú)Jõd©^ŠR Yj‘¢&¡ŒqoôÆeüþß‚ƒkñ1öûŸŠàÿ}pÄ~-€ÿ÷áq!óÿÞÄE’£ÙºzÓ*׃võ_år✠ë‡ëyÛ߃Wv‘?dU5L” ž¨Š¬ô&‡Ø-Þ(f8—+€"¢X¸å òý©@¨èÇtN^Äà>ºO!ȈåP8D/Ò)%P4ìwk0ê¸/Ÿ!†ïáØ‚1°{ä>Ka¯#Î=ݧh#ÝŽÕâ ÐFµŸîºóÏ3«DBP(þÏàøz?#àÈMŒ¡÷å1+8žÌѵ—;½b°3Б­nÛ“þ‡±¦ÏztŽè!’!¥00z¦E[‡!Û¥cj \ŸJúØuT)µû¾ïk@''õjȆcÈ‚gböƒ Yý޳dùõ[xW›N¾†¶ò)DOi9‰THñ Ö¿0ð³h/ò›vcSrk@R­à3FPûÊ r”âÁªi ÿ+¸[ rb—yس^™ UŠÝ0ÖèÑ™X°”¼‚l‘Äù^:ðÁWF‘ðYÓîøÏ ×… ÿÿ ŸO*ì›Eàê|žf'C ¥Gሽ†Íû9û  áneʪÃ8qY”HÓåʦSth¶Uû DÌ!w Ñø$'˜ŒDï~˜|€7pü3htÞ7ÏÚìM¡@D*Pèå’D‚—DÚP0Grâš‘Hó ½Z¶&¯ˆH{Dšë ²Æ6×ÁXH.˜s"1‘"Ò\‘DÔ–åIxÒi®ƒôNÁ\9A"×­5tqëz D.×AäúrDpî/Kä˜zçw(d.‰‰”ˆ'í5ÔäìZÀ,rHŠ0‘KƒƒÕËvî HZ]ØNaÐTÎc¼ZÃM!ÜÈà:±„"` ßèb,ÝÞg¨òÂÁö‚ý­PÀXãF>¶qõwïJ8j}á s?Î ™Ðš—¼z×IQ’@‘6˜<Ê‚}εæÂ1ñ:(”BTg ìw¯aYð“ ¦ŸtñkØàz ubÚEw0ãP_ [½<¦Ñ€è£xqS3¼QÎïR úö‹à0M®®Ë«7µª)œ—;åË|ÐiwØY_O[¿áëY«Å‹I4¶°Xµ`þ¶#÷j1ò›”€Írç_‘_åjL ÅÈï'‚4(ÏÜl„ŒÕ|ð6°–\BÒÄòy¹Ê3`h€¤`½ r¢á f=Œ77*€.ÕhKÑ‚">±}½§ôog­öÿ©—ß^µòü}­!ß3Tð\©_gMö€výcÏîü«uvM/í9{ÙÌ©féäÓ+¨ºàž‘X£lIÅ£œä‘ø7ÄÁ¹êLó<«h7Òçb¢’m£¤ññ&a  [ô¢ÍÚo\Zm»Y^Ή † àv„òÏ*¼C&sÍ÷xbqn·ÈKaJÆPÁOwyž $ˆÀnÉÓäÖ² Ë6"¶áKÃÍŒöYõªqʪŒÉ«ø}(*\Þ,æ©mÒzåË2~P±‰×7þzÆ_;ôzyía+ÜÐä›WüµÍ_›ü•ºv£ˆ¡ëK~#/xݢׯa›ß~C¨ÃkÔá:œPçwöÊ$06^Ï|„à†ÝxÙ¦×&/ˆM…×&íÄjó1ÏÒeù7¹UÑмøŠbA³9¶„䃫‹ˆ@/ Þf½^ïxÄQãüŠ5°ñ®Qëe«z _¸˜0bÅýƒ³öšç«-{»uP(–ŽO^¾ÚZ|­ ‰EH䤬…|³¯ÕÍ$î5ØWûçåËöÙ~˜´~8œAÿþöö;bö°¨òiŽv\çuØGí(É[ƒ;P…‡ 7Tž³rÒ€Î%XšeíÿݪuÎr¸}Ï~õêd%I°¾k-“¨—Bûëi[CäAÄ:¤w‰âyÙ«Æv˜[¬H°Eû¬Q×1Äd?tZïΤ hfì©o:û| Môä#ýÉêÆ?ñÓ #Ì͘߈`*I‘?¨.{KÏ+¤$ÓÁL<¢$ÏU…Góp´@»”‡h%­­QÙ>œq•6IŸd}¾2¡bª yM‹v´–¡È^«dÎfõpvƒgÄ7ü#^ÍÕh¤ñ w }Ä7RøÆr#^>Ùñ‰ž?âQV7Ôæpm4ôßXeÄ7°§KøÆŠ#>òü%F|4QWØÑ G<,Ç8âÝàñhóú¶V­öþ½ÅO§Ú¸o§øí%G¾|xdè'ª@‚±ß¶p½­Ž~%°ä¦`h{…ñ­k/?Úê çÀ4sÀRMSÉ^GÖ8êö¤ó€êâéßL¨Ä̃ŠV¯JÚyÀŠ®ó ’nT–™êÃ#ó QÌƒŠ…éu*ó b̃ÊJëµ®’zÈVES*ÜN:ü*B »8!†_{0çZ'ލ†@kìK6ïÇÿî}Jg1–ÛYŠ}V#üÒ(¾•EŠŸ8–ùÙõ¾Ð‰½ Ó~‡ÇqÊyŒÕ8B¨Á»°ªø²« xNÙÆjÂÇ–„ê¶Yzã¥9¡ƒóŒÂÏ(¼YiÞà(¼Y~ž¬cÞˆQèℇ½\1é—„è,¢V/ý–H ³PA­ üi[b£ ¦TLZx¹(•½ZO }eTªßëƒR-¿Ì°Ä'AKõФÜ)hµ` GÝTªÍ²£ŒPÊYÂ?œ^©ƒˆ¦˜%X™ÿ+¸:[Šº1¦·"3gnx8 7ÊÐÍiæ×q‹‰yEyWäñGÝOd{Žû‰Í⯟˜Æã>S%4°-ÿ0Ãß*öa§­ß–˜â û Pbª9h¤%“¯´Ä½«¦>ÿe"æî¨w ¨¸ß*d #‡ÛÞgpy³CB¾òyw¬Vû¬ '2Lä‚­wìÆéÇÑäk8ʶbt~LoÝ‹bl¦1ŠvÚW_–!=¥|¤ÏîfÃÑdœ„ž„%ÖèYîßé^ºv ÝÐWfÉôºòzFËV®|R܆:±ÎeóŸí ·U{.X†Ù÷øUÒL†9¡Ñd¼Ö-ø DJðþUtyg?ÕÌTå ÆNŠ‘i¥ˆÝX¡t É ¯híW”Ýls·l©R’¼:0ÚŸAÊU®¶Ép+‚ ™5«DµO&E~.¸ø•Ý·mMÿPeå/‚=uO6²¨P•í,D•†*O Q ‹h"¾‚Q—=7I—˜L ¹Î?ãbVˆf‘k0ppÀ„)È«Eù}QHä'²eí©B.%î4æÒ‚…§7™‚3|ˆö­§œÙo\uöÑ ½yŽ Ìõ-KØ'/›èÉ/‚ …Ô-¶ *¼æ˜pîn2 ·2IaÏ0ÛRhI\¬ÕxùÊU 2ö2–æƒYKßœ)mSjôæì×€ã©HHôÐJ>—û¦½×]ù%ÚiÈê›Ã¾“®ä½ ø_ÿ%Ý ï Zem3É“ñ8R¬“f´¸ þÝ>ð°åzзξK°Ê‚GŠîó¢Þp^®â=%ç=r ¿|„\yð¬Œ´ËøY¢ûÐ×ìG›¼•Ä“7Ѽ½,ç-L£oŽpÊ`¬s »é¬‘ÍËOáŽc w”)Ìf®Lí_E‹0;ÖqÎ’Ö)•VªÿhóÈί¥çÑSãÔÒS¡yeŸ Í+6ä~¶?ÀzÿDxµùyм²Ïsâ³ÂÝ-1{H¥Ã­FqÒr#òq}ÓÇÁæl¹ì¬k;f][u³Áíp/éÔÛy„É×N0ùbœõ¹fz퇸fí7]Àzö 3»Üßtt~Ó*r›Ãq”xTÉÛ\ÛÄ-k•]agšl<Ykgl&k—nŽóz³bnž“ûcº›öƒ`¶ÑYóäK~ÞÎ&_’Éç8i7;ÖÉ÷¤ÏÜ͇>s¯ephÓêñçÓûŸ ·–ží÷öÉÑ~È»ßoo0ÀW Ñ@5NnjN´ßgË’s`¬o9Øü´–% çÖ~èZ~®9]í¦k®%9w=Ê”Ë^4ÉžÃÁëIO²NË>É:-6ÉØ4êŽ?ݺӘ9õ§+ðÞy2ËØ³˜Vî1à´¦>‰×Ç ¯O[,ßù]K§¢w~%Káä:ß¡eÉ:?Aç_;¤ÿ5HÿëVð±Û›O¦Ã‚î>½Úu+Ö™…/yŠ=ñ1ܺU D™å-åPÛCoÖå§ñ$AÎátymN—׿Ÿ§9œ.¯³á½žÂpº¾tH§KN—Os8]_fÃ)z=…áÔrH§H§Ö•N­L:Yˆ<…átí85]7-{§àëpþ9¸~™<¾up?‚¬jú×#»Ù9:VkAi}ÓC´öaNu¶ÿÝq¼ûÒδ{7XL†}a»ûf™¥G8Õýþ¤GæÆ7Öç³Kp>»tgó`ö×}w:˜ñ¨WûùüDLœ†ö²7AÃ:LVÏê¥ÎbOøA¢õkycSKY{BXáõÌò¥µ¸gŽ­ÍlmÎþºކ¦z挎ó$lšöUÜmv ÍO#\ÄÙçÉý¨ !ó¯ƒÁ˜ñè–™ð0 9xïN®ØP>Qh V¼™º½?!r÷Ó`ÎZ;Á8p„.7P) óå,[™vǽÏ3þy8#àù¯Ÿ× Bx3˜òAj¤é Ëà Q<˜êå—-¸Ô†èMLÒÞÀ—1¿ŸÛŒÚ^Ð.@0âüüªÅDC`/9®% $Öø ;Ÿnï íPÿ~m#V`0ü c{ñ‰6DD¥¸ãDÞ±t&sˆäÞrû×ä}^(îÃ8fŒGãþŒ}õ‚—=VÊÖÆ_º£aŸ×‘~…âåCVö5{S;foþ!sDý×ë-}¦×Ž9Õ£¨þÓIõPm'F™'ôlWá5¨óø-›Y»B,½X[ûÆ£”ÄŒW2ƒ“Dý+_‡£‘Èð«è–’¬îá oQ8€&¿ …úÀ µžn‰†Üug3L@|?Gý‹­ªyx`àMÞ f˜ÓóÏ_ÂÝ^PXÙŒº(¹ºtŒÈ2Öýæ€A }áx_Tö@©,´£\¢ö½ÃDü4.ØèÃ8þ1ãçÉËW¶RaŸ}L83æ;,J½´–2*l……ôà³F&z“âi©ìÙõÜ/OþÇÁ_ÉÿX::>8øÂÁQñè¤pX8:„üG…R–ÿq_ößUZlõ®5δ=ì‹å†}'QJÈu'„lL¾ O¡ÈÆ”b=(O?Ýܶ´!aÆ ð~$ɼõåd›VZwÚoÎήßå!½6¯øk“½bƒÚMø‰ÊÊÊjfè7ªDäpw°õÔÖ`&5=¢Ä$ ÚÎ]4oH†#*)§±‘¬8–úý¬u•®ììבk¶¸ ^iK€5™}Ø=À¢üSWb,íßá$ù{Å÷ö{@9fØ ÚØaoö¼ÙtØ Mvóêß1„›ÀÞìà_Ì6ùfоC-#ËŠwx•ÓØÒˆß”C# LãüŠÁ°Óõ› øÅݵUÊ^ÉWlohj£Ðª¢>™½€Þ ·%ÎÃbO5":u8ü\ ¿hrÞûÎìÕœ¸±;GLgZòk6‡/;í\Œêº¥”N™^Ä–7$&_ÈúƒH1'Ä^Ó&ö,OªÙ‘<ölMbèUk´kU¥³*oÌþÔË$EÀDäŒi·-Ñmg×[.ì²fÿ¥áÝ…zÑ÷5$‚~‹B9éèá¡8€úÀ¸ òLXí°ù_Û+¨*Œ–r·²ÜS´€‰Áñw˜lÛ)(DJÇñÒ'4Ñzø‹¢çä­[U Êßhèèï@Ÿº<Û¯ûåÆé~ð>D‘.Õ‹Í]&XÞb«©½»o%{O»o Õ>ïFSçc%*:Ë,¬‚9ËKíÎÃóKa¤–Bîçx®¼ržQ+T¹\Ë )H$¨®#|c?ì7Î쀙A8 b|h7ØXWD’z£î£y›¢9õ+Ìã›Ùó ›½G£¹Î—7õ“­+×ôèªòè†öèÆC?ºwµ[—˺ü"–LÁYABAæ¯nð«6"lG %çam·!š’„„Y[s¤ç„‚/« =%ÐC7´ŠxѼËöÞ¦i§Q›yœ¬™Þ¡öŠ„“@µ Då>‹ƒé„¾RVxJ9>SׂWv‘^Îï`c+lº¸ŒÂ?jòNì·RÈ<¢¢Ê:£ *baTÜ) Çt­"yiˆä8¶e‘HCY ×Ï#Øó§â‘пW?½@ôRc Q1¶Å#ç¢x¨m"Ô‘ ¿²Õôâ’~ÆjסÒQÁ÷²=ÍÅ;åÞ†¸wÇ.ªÒ½A o+ªZ±ß\‰n ÅHnx¥‹ ¥4¬p'Íà¦Ã8Ù¨«Z÷ow/ ˜ÖõÚþ=í[È]ö„·{ŒßÛÉ7gtŸ.Þívk{o­[µ$2S½â·vt… ©‡Þ^q-1¶aÄghEÙµ‰Ãl™NŒ}žÆ5.~{GW’M^x'âŸâ¾‚õ4©‹-5’€œì{\ö¯ZžÎgmܽxâü"–0ÿ ò£hÝ|Ê˲¸ñœ;õ˜Mª‘¼J ;Ñ–Sj­·a†ß˜Û`"'˜ˆÊƒq* ÛÜô•šÐž…+@Âr…ãȼ†S… ´kõ‚'ìGm÷äwnÑ.}ŸÀ6gþ’ ȼj²^‹¹ zí$NÆêV{­ªe ñ×Dí5¥\áä¹õZu™^[g¬¥„$Œbþ‘ñ*ñ|Ævè 4’/“ ¶@Y±q¥VÖi¾Ç­¹¼n|œ ëHXì,¹ò&ìü¡6AE£$¦p¸^¿´M‹ ÁÌÖ5Ú>àØbµG-â3ö•wƺ'lX ‰…MÒ!U›ͦÛ G>Ð —m¨S±”Ú@s¬ëß«Ÿ¬ò¬iȳұ!ÏvwÞÝÝAÁl>™v? ÑW qÖ°ì‡v}­À­™KŽŒ„@µàƒ@…ÑÙQÇL1…Åü¨âSûkëÝ™¯šk•L‡ë”L‡Ñ©æÿBN­(™VyèI¦R1‘dZªæÁH¦’c^ɤF°L¾¦™¥¥gcÉ1qç¢?äÐ39ßÚ&c Q{ìBíöäT=L8U/³©ºö‡>ÔT=zfSõhé©àZjÉgõu öäL ç`t3¡ŽxÜQ¸Ç<`ºÝ„9èõïÕOÖÝ„i3;J/-‡ýy¯Ü ´"]îòºx|+à«Dî6ÍŠ¶cÓf¶‰ˆA:g›#«½#ÆÙ&Ö¿æ(:áý>…’ƒË‰Èõ=z%AÄ8¹xÅåZÄÍ$ô"ДÃU]?Ô¯bR8BIb9…ÕYzÞ„¢ÒÕ"[C>ù§Pdpé72÷zNéwXŒ‘~‡…e¤ßaÁ.ý‹qÒï°ä—~.ÑwÕçùDße&ú~8Ñç:M¬­ÁȾ˾%å^šIcz¹àŽPgØat­ÓR?½PRP_]à>[ññM:9âÎ>jE5ÛGÒ[KÉo=´ÝhãUý·Â‘H;ì‚«(6€3û¹¯I, ¤2êMǨÇú(¿ ¶UgS\f¥^LMý$¤^Œ£^JMý8¤^Š£~˜šúQHý0ŽúQjê‡!õ£u1¥4ˆŸÞ*D 9»maDµö4%&ÂÏ”‰]Ï2¯alqßÎàcw8‚Û¥#.†ÈcªùÂÁ>n¾õƒþpüÉŒW ï·@‹Ú=HÅC ¥ý=èH{Póát¨=è¡X‡Wë¬ó®"¨(Q÷g×O*êÞÿýéÃFâ¿OŽþ£À®ƒÒQ‰Ýñ߇'ÇYü÷&.‰Füw‚,Ï!ÚR9žy6bÌ@,²7{È0I}S®v¼iSŸQ„º%ä–8#¶2ÑÀÚ˲dôööÂ^¥ oĨلõ£áS÷[–è_²ÚA[0ëxþGŠxß–ï=£FÜãnT™Ó–ð·þÚ ká~„RÓñÊF=5dUÀ›ŠD¨tZçù`¯Ób²×:ga´ì±íz|ð?q7ŒÍÐ…Êý!+ˆã7G`jÛªN¢ö t/˜¿cû©!Ð#+`?êy ЂحÁ*Ü\þù:øþð'±:Dià°c‡Je¿Ózw¶ÿãŽ`ÿ¼Ì6ÙûyØ=ùÃVPj€º)¨óºøA 8>k‡bïêAo2žwÙt„%Ü¥}r&ENÞZèÛ]09|ÖŒ&½?gÃÅ€Q• h/Ý€Ö¿Úî&´•&´“7!:{õ&„™?}žŸAŽÌ†}vÔg?)^ˆrJáÛZœÁð½ÄÊš1©PØ]÷£9›Ž*á¸7ºï‡­& à#Û0ÃäfOwÙ þë5¯ #Ô™°º~Ñàþláý®bsÝM‡ãù Ÿ‡I/Úp¼Q¸ Fä Jñ|ÔýH^sÈ×4ìuç€wõy€øyÇ6ìC&Al‘ $,þ„2'“û:™þ9c{ß±ÎÒS—e¾©¸,'šÌ£Áø;Að^ìÒâºÅ—r—ñxñ·wðQ¥ÀÚÀjŒ7!Ü‚ùM?çØ¢Á˜È»a„€DýâhUý8^øäTÞÁØeƒ,J¨G‡ ìˆŽ"ž`UNÌev¯d4•[†Ñ¬ä>'Ü.îüLü®$ÕðˆF›ýÝŽ²¿wV@x7K>˲ֲeaß–¨l”¹¼ÂHò¶û-WÊ#á<|±ÍÉ·8ýåÉeDB/òzsÊ5 e÷*QÄñºýü‘›³Iq—¶bé0M „Óîï¸!…AsÑö= Þw³÷'^Ú•í­²mŠÝÅò;ÙÛÒŠÈKì Á Äq¤“ Lám§µvG$àɀƧõx1Ë¥o*°EöŒ 5x­Í£^î€åþU8“ûhU»:g¡æ¨AíØ x(¥Å{}7L¢ÄþŽà´‚@Rõ«Ó34ÒàÙ—í ûÏË5o¶ª~žÛ€&Qú‚Fë–ª\küí21_jü•µ¤Ú8m¼«Ç‡ÿâï"L¸Æ_¯ãXYº»»ã#ÎwoŸrU;¾Ï?à*Fc×wBÆeŠßææmsbV­ÎêÍYçà8ÐK7þ*Æ´”Êz¿§Iá®Ê—å³àø_–ÿuŠ/mèóvõªùž½°Ñ÷æ ±ÿ`ʺÉn@u¨ üµÈ_òRu€¯>e¶ô[XÅ\–q$³×öY_;ú½S÷ºa kü¶œ.D—vlßPÜÞ²EÍ'÷.Q-hÃ+ŠÆ³Î©w<à %˜å﵎¥:¼tÍʧT>Ý!€Uº« |Kzn~Ÿ.ÜÄÁ4hlÞonFƒ@cdØéģŨZgÞêƒÜá7†mD9Þ&˜êz,4m4¼ÕÍdlèÁF“É]0d«7¢¾ÏÌÆ5Ðmš`ov)å“ö;ù ]ïo*[4è½ô.zu'½wQz° „FÝBê¡M®Zû¬šø>J–“(D][QÀM®Á×@Yá\ž;ÚalÚ~Áv ¹›øI޾Þg§I]×dÚ@öæ?ÙØcçÌAw6ÌI0ûsxLýûqŸ­ bxÂg·ÝÑȤ£(ìÍ~ ª#Ÿ†Ð([È,ÕÍØàwÑ+m~'ÛÜmn¨mnxÚ¼T³-DªZÙÒrh÷ÜË(çÞ¼iÅWµÚ ®È<Ìöš¥<ll]j&@4›AÝ&;”cÎZ£Î ¶×¬²9Rø#ð™-k‡îÆRQ>ˆ Ê„ÈÇ1 v’ErÚ p4ž’_°™èÊdÛb­Â473ò£“6J_)f»N"hþâ<–Åëm'#q˜À§ˆÃi±h^‘²/Áì /®È"šP_Ñ‹êz:± ,ÀÓv‹{ævU½4lk,¼çš©¼Z&^v[1H€ßBçm ¼À­ß·’vP޶'Õ'÷q1®Á%¶â¨Ú›ôÙ©`ÊNäñ£,9Ü _DÏZÿ£Rð[àþ€ËäŒÓd­f—‚® ®­Qêš4¸*8šáÓ¸B¹áºÃ·‚ȼy¨Ð†Åò ^†¼›Ñ)~ÆDˆxlCi\B)Âd‰kóHz̃ßYß}J Çè¾ï æîÄ/X@ƒÉQÜ«à€SÉÃt…©Èàn ýÖk±5,K^ç²a´Ì`ãò„A<`Ù¹L†˜í†ít”e 2Ý‘:†myq>`f»ùý|2z“étЛ¾»WSaPŠ[b&ö;¬eŒ™`¶ˆçºå_8œ8ÙR ²æÕ'ŽÝ˜šNZ{íÜ^þùõúH–˜8‹g*[ôãç»Ús?0>¸Ëyy(³`8*¾9-˜«±Â+;jEÁ*¾]Íä-(œxq?ëä3¦ÍF‰Èbç»7ÂghKmiY´´¸aEhôæÈ q˜s”W¢föÉÛä¸kŽnIˆ=gçOPX^Iå9ðe7àóàhi¶ûV&¯Tî|°ER…Îò°éGN6MîFÝÞ@8ÒôØæ~ÆMìdP7Tƒhîuïgb&öÉÛjrûÔwÝ }ïp‘h7Ë­êŒò7î;g:ÙYƒ×ܪ— ¶®¶ò3ß%‘ÃÆ¶LM%S‹!ã<ÔI¥oèa:ߊ¡ôÕJqÜøFEh€Ý8ãxw”†îA«Ù €jÅ¿?Ät™ÔM—ïŒdòÂiViŸ>ˆ.RVâ¦GÕh䛣b¿]¡·u~?måÉÚ]x«Gßl-<ìRNhg;àMÔoî„@¯µ‡ƒ„û÷ÈÞ«‘tï®­]žn0·îıu'Y¸ø6_e:‡Àö=ù¾·ù ·ïä:“Wwñ‡3vŒ-8YÜ Õrzß“Çpd2Í‘§‰“Æt0öï»níG   ƒBdq9£ ¤„#ˆ‚<ò…»[Pd±{T5ÁÍ– (&µniªw?ÀÖ(TM͘HëNqSí¤ÒöÑAóîjaq#S©'¨‚dœoìævi/]éÔ¼t9#m#ƒ;æátr-h½ä{°0fÓë {nn$Ç—]´9õY¨«ýà¶;Ã92Ì  éÄyH†s À.²Fã2H*C&¹†`+Þö]¶ ºHhU`Ù(J¡üþ~ågö‚S×,±aðJ·eð·–2)$Ðxz¾å~¾±†[³2LÕ¯°=S²øàÓdbñ/ˆÑ¹•$D±¡ZŠ5gÌHçÊÛÁ½c`Ÿ¶cŽI—§eOî;iáJß>ë„+}ÿWòw¦X;y¼5–wâ/PWø6«açÝñ ‚»ô.öys—mgÀe5ø,&¦»Oô­\aºÜqúC”¼Ó©äÚ(FøY8U©k7™š49Á€œøT ù]"hròž´@fWÜùT%•ãy¹ýUÍûïi‹.µ·ØBÌ„íü»³Ó|„Ò÷gmýY[SÖÖן5³?kéúÓû|ogŸNÈÖG‡aѽR³åQêÙcz3Üäb ¥ïV9†ãrHæxoŒÔró0›Œ¾ ÔƒÔÕ²íÃlH \qûÞÐ+ÿ+ßÂO¹LÁÛ\²Û>V4èF†ŒÅ¼Ã]÷ÅòÜH™Sk<  ¸.tÒd· §îšæÔíºp_wÂÆ¢lªÂ@‚È =¶Ì hú•wQ ÍÏÈókÉŸ_‹}¾¹áq°ø«o¾²«ƒX9ûÉ3êzÊl§é(â4Éa|d#*®ºb£Ängñ2;♚t¤Ø„šÂÒªU‚€C,`¨E…¿’Q4 ;>–ù$1«ªIy¥©¢‘¢š7©ªH›Ê½¿³ ŒÍ¥ìC³W’ŸûE]µåè—ÛÅÀ«\ò†é2ÌÃñÕv*™TûpšÖÂIÝNœ’ŒjU6ÔMqlH4ÓTGnÊbçI¨Q*Ê1U· «´c*IKœU‚0ì§(ôP¡à-Å ^”lq›$’‹¦ ¾u{n]¢lü¹V;‡¹°ÏDÛC—ªí"¦‹ó áALÞGùà8ŽàÀýš¿ÀúÃN }¶”áíÝtòeàUŤe‡&ÓZç‰e»Õ#ÓÒ>ë©9]/p¹O¯iÜuèâ 1Ð2$¤¦ÀÁnT|UÌ8¼9 =¿^Œ#aÓ"ùa§õaÓq(ŸÖ:?Â}Ò¢Ô³£¥ e)C}9”€”š€F‹LôÅoïU;ÁEJ;Fdƒ¼–±ÈË §™z/¯š"Éå’ÂÎDõNnW¨*±&£¥+¡{„n·8‚»­¹R ŠÖÄ‘j_¸9ñ®Ào@>Öôå(àÿ‚4ç\(ûBºèó4ôŠRÀ먳̹¾Ìɤ¾L¢$K¬HvüOpö×êwîO§%H¦"ˆQïÆÆˆ=8‘Ý—ã ._äú’ÕÜ{˜#N§Û“¬wCÂjçC—j7âØŠ¯—ÛŠHÆÛü‡SJ½böÝÅ€ ':àÖÇèÑݵ?ôZúÒç}Ý=I¿î®aÅ]r­uÂJ›s0¾´°žäUFĉš4ke¼Ä1mö.ÑKK÷Pˆf‘U¡Bщ´_(ÙV- + Üù±%Fž†p7˜ÝßÞv§ß…3É)Aº¢·Ûïêj`|¸õg,àÓ&ž†Ò½ìììµ1‡ÛÔ× 1Ž@[JÁJ<¾´¶uþ›6@]#ËÀ Á‡ôáÿ •xÁh¿~ý_ì±½é Ëé—e8’³ 9bç³ GªÊÖ€G©-øÄ¹*¬"ˆ³Å3|T#ˆ>÷H}®¥¦•@©)lŠ|dr,'>nÃ}o Å}Q _·É¯·¶nÞ²3!®2lÏŒ?•Ò×F!§MÅŠµa_a>y=Ä„qƒ‡¿©È›ÖîÃÿlÿû°X89áøß'Å£ã"à3üïM\4˜Lüï³ÆÿF€¼@*Á@¿9ðõC€¿íŽïa,²ñ­bä­a¿‘oøwü†Žî~‚¾6ð3‰~&pÀkv4p‘šÁgpà Ú‘Á{wf€à¿d€àË‚#ärü`¸í~ÞÞßr¾Ý ¦·ÃùœKÁ:xÀ7ò2ªNv.*` ÿÒ ˜¥G$'4ä8Ìv¤([/—,šM/6½^œiB‰HÓ» šáM?0Þ´°Ä™.ü„â«9HõK?8|ê–ÚBmÁšvoûy,úEh. ˆi:DàÒžó‰Š:-Á¥%¤48þzN.É`¥OßÕëïã`¥óO]ÚÝòŠN ý ÀÐú g {…“Ÿ»±fˆ}Æ¡Ùk)=ÃëI^*ý„༉¯íX„h!‚ŽÎ¢3„è'Ž}ö”¢MŒe7ðàØÑ)€œ‹‰€œå÷„ *¢A Œçt¸È…Uq‘µ"‹¯{ûq5ÔÇ4x<úÀ‚ô¨`<‚ó1b<ž¸1pŽ&ã‘äxb«¿Âñ0uR.ªÀŠ&?ÎbxE 9Ñ-Mj ªb,HalÂõ1! “Œ~˜Ò8QœŠÐáBäâ}BÐÁTXƒÀ©1!àdB Æb„ƒÕøÁ/Bàíx¡ït”;“Î’ w ðìTȹ#?à²Ã.‚^wœˆ”·ÎíN˜«Î逓ŸNE¦;ñ¶L=uÇÛAÆ¢x§·R7w¬à À%B¦¬%:þ&ùµ(KöÞ²rÙQK'£k"¥F-#t“  –Å‚•Åâ’é#5¡®BX9ÁÈtL¡ï(kÙZ¤Â;…€é8б$pc‰Æ’@ŒùÐŬv:w¤S­µ¦ª÷î™ãK†Œ„è^’¨ô$ð8ͺeÏœ8]‰ºì®±gQl®к´ â?‰Ê¥¯xIˆ¸ÖÄôH\)0¸b°¶|£%ìPr)q ˜0~H"u•Í‚rP$ .Ó‘¹,¼Ç 5Fݨß¿ë³êkwÌî{½Álöñ>’cƒ]*?¹W¦‡§2£IClõMØ"k›‘±)º"ˆL_—/¿ÝàÄÖB}.ܦ<¬–H?ë*J†“EG‘MêŽïw½÷’š7#@_{§(©EvÍäaI«K’ м´,·ŒUiž[äá-fa±e3 1aÀ€=šM´Ñï@K²ÓñB(…’£”sˆ Q(îOÄè¡æ>oÄU[K¤ÚˆÄ3;šÈÃŒ4û;t‘ÂQ/õÅCy–…òÅ àŠa óÁ%" þ+pã%B J3 ÝV; Ðâp<ˆG©4P¦…NÒèô¾ÐATÄìJ1;©£uœi꺚(°5I0k œpš•œ!2ÒZ€NÞð'ž&áfZh¸‘4[*i@¸ÒÂpJ.;)?’>±cxQÌxô®ä¸] »Ÿ>1VWZ”®Ôq¼Iãrãbm“ÆÎÚð²JnØ·5e%‡ÈJ ŽÅÃý’í=#°X#¢œw„N¤‰A¹Rñ­â“ቦ˜Ó§—1cÒÊ…g yÂq¢%A*XWÝâ¡¢¡yðbtYÀ=ª’5RGŠÑ È BóÄÙºUÑŸ’´\^Ä'Á#ëI¡HÆ" í¤¡TxM« 5¥„DpЍt¦ÕE”ŽÈôLDÔCÍ'?ØPøì÷8 \е]­7[:/;PE{ŽWNÖsȤ+¥\‚g)D<:ÔkEœ¦§†ñRAeJŠ[&Ž«)––„‹°æœŠ²)E³L©TŽÇ`m]~ijÉQ“N¶9Šs,PRº£UBp¤¤Ç¯8@$ïñ,!RÒ#\ð‘O±¨í Ü`GBÐê0GªaG+J #• í5¬É>€¢Í%:(‘l{B;G¸;|Öa/ ÌXÞ¨d 4ÏéÎ`¥€ab¬¹n"ïå2`Gé–6\Âì„’­kêRõò¹)HO #5/éG_®S?j!*2øT¹þÊ3t`Ã*Dp†Šˆ3„òԆ〹)F h$¸KÀ]eæeæöP+œöD|LìSOâ°m”§Z`kÒµ’M'‚ÍÙºl²k•ˇÿ3ßþOé¸tTüŸƒ#ökáèñ GþÏ&.šŠ&þOGÁÿQPÚy {™BžÇ× á³nŸÆäËÝŠl¤>‚Oã Cö(Ø<é xtÔ¸Ž{€¬„ºÓ‘¨;ºÁÛÉàv’Ãí<;˜>Mî’»,‰­r(U–+—A£<h%ƒDy(Å5A¢œ<*˜‰Y ŠIˆ`‚A lIP»‘Qo=Û%^‚¸'ÃD/QñIÜ„"À%ž½žZ¢hþ"$îç­›¤ô ¸$l\äx9iñI8*ˆ ?"Æ› ¦Äz»§«¢•T¯"$-Ìw²=6G5éàþöÜ^Òáà%ìõ(/öâ^B&HÉ›NÀJÀ囃”,¡v¸[X£$ƒ'¡’Orçÿ#$‰yÄÝÉK@’PÁ¥‘E:OYdUüþCáHŒå¡Y_\puÒ#Øú“#¢•r!y yÆÝaÅíHÚ±bGb¸Î…äÂ|š«¢±4V-ÝV˜ ûã¥ýQ8ˆ°Bü$Ãÿ£Ü¨)ìÿ„ð·Š:äÏñäë8|d1ó]Pô>žâ´¸´§Œ¤¨%,æF# æFoï67~ß"MVŸm1JI¼Øüx¡€xÌÄØZZžuan˜Í“ÈÖ–7(ÐÁßlÜqq]uÈû©œw„šZK•D)pp¨“‹ƒ¥¸½E¢W é9¨ÙƒÁhÆìŠê”c®?ì~šÀîQN?=fñû±}FÎc ¥!G‚pM:x†K2àN$ñ|¸R…á`Ä—tÙÿÍ\ø_þ€ðÃâ·±[ÜC‹µódÐ Ì8ûúBóqŸ™“9t£½c%& pÆÝ¯í­¥u%”Qðá;cüÝwÐô~èò©(2àßqoóÿ¼òDû`ub}¦`Ø: =ûMê”rÎþrŽï»~WlVaðyLÝJ;½¢ ê g7ÙCÜÎZ¼|q—ƒ6Ä?Ž=L¿ÙÉ»2on kì°*ŽhÅÚGÚ€ü䳚±­€ qüvcÈöiÌ`7lÀÅDzOÄæ‰Bœ'¹œ( öˆÎ$âžTòulÁ÷,7øÆ‹Wñ¼°ýö»xz8îc8ƽkÊÔ±·FŸ5–{bP}¸G@2Yî !’¸Ž«친‘Âùç«oμøÛ¼K·Ôõ0.:Nlx:jÊ9Â}°Õ«; .wÞEñ<À¾bJáÏÁÝ{Az"7vèKöq'8k¶#û}mÏÁ¸|P «½9šTÇÑNg‡û‹va§A`Ã7.ðVî‰è{\LFb.Ë3´cAäI€Åc÷í¸Pxhƒ9—oNÞË­ºµ³Pï&À'ÂaYc¯Êzw=}b`Ÿx#~Œ¯‚%Þœøts$œ¸‡`ˆ à¤),‹–žSǺt.ãÉ™ÔÓØ.=6 Ìò~oL‹œ0}/#à¤G~§ù„‘ËI½êÝðŽÅÁí¥n_<…“<)¿U¯sûH·)ÉÝŒKwo¿!´Ñ°5¢{4Û…¨.xžð l¥†ã/L’ZAÜ>üö¿;¬z$¦ @IÂéÍØ[&Ò¿Ú¢ú>Mìx‰’âX(”‡+Ý…¥ƒà­÷ž½qÞj Y) ¸jËßѨ³‡ã…çØe±oä£íæ>&É‚äñÆÊ™<®Gâ¾PÒ×¹æ-›ÑR²À³íÓÓÑ›càLQ‘G{ox7Es¨·´À1Y"‚àŠÚ†Íé#&£ããܹyg“} ¦Íiž,@ȹû³ÇÅG9öŽX õ!Gªºdvñ¥wXÁR)Á—Œ˜I+“4JæÄÑ þÔÞ±‘1vI`‰†9Š„¶Ö/FPÔÈŽjcRËpX²ŽS'2®¤~oç¹$$yGZõÂ76-þˆ}£hé—BW8 3Êöq|$û³pHçc[4’ 1W>-Yh'J»–y#O¬¿ÎHQ¼X qHê>§~û›N=qÞeêöü¿îŒý¯‡ñÖõäõdÓÉW¥XýÙB1p"Ceé¦N·qi’ZšÛ HÀðÐR¢‹s0ä”p1$uvÇý˜cµq³-j_IŽõP‰áT˜¾¯QäoÖG¾7Ìfl šw8»4nÄCÀr“¦ ³€ä0 †PEÈf´†ÿc€HÈÖºÙ÷Ù|p›ÁW¬_«|‚~.FÄ·»Áôv8ç½Ã„Ìû¼Ì)›*`À"ÐÀ›-‰Ÿ¡ &¤…ÐP‹^/_ôrù¢Õ¥‹¦†ý`óQ`p¬P4-|GX”ínÒ<5-æG”C‰A=´¦ìxŽp«!a¼ôíÂS@s¼ôm±ãC¬ƒ4ÈNÈUQ6à8X×Ñ6* peú­"—<à3ù¦ë _£b`l Ÿž›«ÿàxvã9Çph DÏN ’‘ÿ‚5S© 0RB`XŽ‹ìHÓhœ %œó‚~÷Ô´äÅ<ÆZŠ'´lÄ‘dÀ\s¦;»Y/ê0Ÿêà™ku¸8£s8ùÑÕuÃe 0 ž /ÄäPG¨ iKT Ö tÖÆïÄ®9¸ù0騲.&ÐÇÀG«k3„†‰¼Â– ÀoÔ 5WÊpõ© #U”´\YŠË™¡~u9Õ”`‰«ˆ5®b¹ Ø7p‹Üíp5Ñ6˜¡Þug\„¹I))ÁÚ\w²–ˆ;õĽı*.NúÜ•}È™ <àòôBÖž¤1°b’¥ÉÚ?tñuèÃLÅV‹>^`‡¹tqWUÍf«‡ »JÊ]euιÓm\þ0=}Mq‡›A]kü˜ÇeIJÞðRºˆãhÓ5,ˆóÜ?\ ûš³àt0¿Ÿ‚ÅãÃwÞ‰z¬(XtñHæK&CŒ{s¶‘œquã$ƒœÒ1®¤2îÝÈ-áz­œ+y‡{8þ=¬©±Óɽn °½xͪŒ;Rr„¡Ì]n„q’Á=2…õ˜ØãF(…gúB,xmù äS]€É5* ÅU áCIOu¬§Ââ#Ý"¯ä9ªkšê­Æà+ÀYR¤@²Â.ØÏ§Ýñ <äfá2Óðä¶N‘¬5ŒôÖ^vYÃ#êÑð™ÄÏö§)Œ¼ul¤'è ¼OÌë0èFNç”õËë3;6y]àÉ_Ç*3 S¤• \NðÈ'ã¼”¸ÅìR9‡Þð•NÂæ•,î5Ò‘”Ú>CĘO×7úÄH•‰8Ðcs½c5vøJOì^°žŒ±)ÒņèMñ»]Õ#¾–2[쪩b—ÉëÄt‘{4øÄÊ nnÊ«÷ÄùaÃaRL Æ¡»Ê7P£_r;Ú:Üè£Î­U¿9yÌÜ}ª;»òþBKâ§äðkܼ6]ÜÌä~Qô4™î.¯Ÿƒû¹ÇÿûîÃFü¿‹¥£3ÿÛáÉIæÿ½‰‹¨áÿݬØó¿)^ßa.8·\ô8}ãÙªhÿÿìgOgøy?Ùìqªo÷²™äB'îhßÔ´rîbÏ7·’Gv³"<²›gZ¹Ì);…Sö³sf^·³³¥É=áÎ%|³Ôx™oñ}‹nŦ¾pÍnÅä§»LQ¶ª,Y4Ëë÷ãäõ{ŽnÂ’Õ/ŸÈY¸çõ}nÚ•{ Vþ öðSü%Jíç…ZG8Õ¼k^^±íâªÎÇRÔ.NÈ5ÈÜçÞÎòœ€T›Ú¿%æ48.Ÿ¹ÿÜTPµÉþTü~Ë1ŠÜëXÜŸ›Hè!Ô¬Pv@vtB?ix-ò×£¼s4yšãa+Í^ÁŸf/X"´ÂNFÍÒçtò§k‰Ü¥î¡¼xΘ` Þæ¸ £¢‰³€&¨§~qJÿø¹3r˜1”sIÜŽRFcЕ0&CaVldaAm²«òÇ ‘Ž+Šƒ.9Ŭ¿:rR¦u ŽáfÙT3µÎ(J8Û!ŒøÒN¦“ ’£®äýúotz†­–ÓÅ$é’Æï¦µ‹³„Ù.Ò»b‘vT3QYP–ÉŽUs;6™–¸ Ÿ«ÄÙ­¹r¬ê<`vy®º½ –°–EþŒ•ê‰(X°Ò›`lû\§hïÊù‚ÊöÍq|WI–'HÜìÀ7¬Üí{ëwnQâvì;—ò¡¸Çöå0Ë1 D‘?v4§§… ‹Ñ9²;§µ‚ípd0–õæ£ïŽ˜+Çg ni|2BÍ}YŒ•&žl %™¦'êJ'è¸Ã?ÁDYA‹­um²ºh\ÒF²£3Žº|ɹo ·ýwÍ%O´ÅvŽ(DƒÕK ö]oBÌ Î¯0œx®%¥ Ž74aYwN•ZQ„.Ó¤D­³{G·Ñå ”ªð´®=ɤ†&hÖ»\ñZ*R-QK ê|²Ú>ÄråàøÊkOÂ&[Š|¶Ö1µÌRdWúUd˜§+¶óè¡c;]‡%ëËåÎåößmí¼3"Æ„o ƾ³mìyV‹yábWÄßT„#GÛ”c)D¼ÇR¼#'TxH ±äy‰&:Š„åéÏ„Ô4#{.6#ñ¡P9ÊÐ~.LH#&ºŸ.WŒ?]1+¾Èï%³z‰M¸ÁÙ®Ó•4¼GÅÊp¥‹–Wk€¦’é}o.Ðß4´¸>;Ø€¾˜9 ŒKtðMÐK¾‰"gD"ë3@{ ½O𰹊åµJJ=ºÒf/Ö >v~ˆWÁ¶ÆñD±_þ ÈòJ ÂB"’ÙÚ‰W ‡îO8X†’yu!÷Ä"3‚ô˜Œ™±Ðÿ8•¸܆.vλÅçÇà Žkk9˜M‚¯Ó1> dæÓdÒ‘b°®\Štiß‘QQeÞäïj”‰W%’ 1Uп=#"BLFbIÁã̉ȩ®,xŒüˆÏBð<ÔšO1á«´u?xÆW6®Íß\`aä~iï(aä>“&™%ÃöÄå'¡÷EäGÂñ‘²ýì1H…ït:°ÇîÚñ¡‘À|z4FãÌ'®È½ñçZ¾ v{eÉPçÕ‚ó‰øÂѵ+QíøÁÔíç"#“_ÓÈÃ9zAÔÁÌÓÏÀà´½-:LÏï%[åñv‹%²ÓŠ£týbŒ˜£Tü¶N%G/8ÑARå+öÆ‘ Ioy’òÄáãébÇ}âZl„ºP‰%WzZk¬:1^9‚¹ã•.ézý]·WÎHðtaàvÿÃ+W x2DZæõ܃©}Ñß´Ø¿²…~{â¾— úNäÈ)ëî"Ö;&¬Û=pÃå•ãR‹Ó.›e“z¸G³ýÁ}‘ˆZ#}íƒ7ߘº5ÿÔ­©, Y³ÜÔ­­0Öœ3¶æØr'˜kb¶ÆìºÝý€ÚIÿ ã·bw¢˜h˜W¤@ºà ‚°apŇE¬ê…ãÐL×Ò¡OÁ1Y…E·î' vHí˜|ìö96IkËE¿äŸÂiï hdÜGŒ‰1 ,TbÀÒ›¼1p±¯ìp±:> :>šÚÿ˜4”:H±á ¤NE}“CkóŠé²„O¯'vÚXYbЮô¨i#b:M”ìr‹Qb„Yg œKÒjà²r¹d b¢(űѾ°çp,FûÒeM/h‹uŽÆº|´:ët~€èM=tSq>ÊÇä¥i 6[[|³69ÝÁÍ¢CõÈf½C•IšÇÁЉM@&iìšsÎû¢”Wœó¶øä':çd`¹c’CqäQ•Ô2?ˆ¼Ìˆµ?ŽGÖZu—$Úh"ßìµKy&\U_%òøéä®WŽqDÄ<9m¤ñ2™ëOVÊ\&Ï—Ž]¼¶~½´Œ’¥ãŠ5ä§÷&òSY)ñJGP²˜ÈzD²ªwPƒ‘“-÷+Hsgò*êGòƒ«Äx~™:ªxÅbU޼L,G–— édG|1ñù¥»{”Æ9æoá4âY†_ÙcƒÁõ úeÁŒ —G  ‡ÅZDpÀC‚•ø[÷ž`,ê Žyvœàáj0nL°÷±<úWøÕó@> Á¿WYðo²Ëÿ{·™øßb©pñ¿Gì×ÂÑAÿ»Á‹&‰ÿÛ´Çÿʘ_3´×½Ž»c~-¡½n2?kÌïS ÷}ö!¾MâÛÌB|C*Yˆo›ÅÇ>¯øX&þ…ä®Å´Á³ié&¬MI7 »ÍÂn³°ÛçvËSœ>Xø­=ò6 °uï%‘·\—¨×6›¾ƒÍ#†Þ{)ô6ÿ,Ãp›B7†Û|È0\H‰Æu÷7ÓõDã6y4nŽBìÄqPÈÓk‘¿–øëQ^žHðµC¨Õ΢p©ä…XÅ/«ðeëÙ„æ6äÐÜ%p Ï!WDv>•hÛƒgm©÷jѶ¯– ¶5n¢í»o$²˜ÜÇ‹É[å,*7YTn4P' Ê}RA¹kk‰ü¥G¼pWüìѹ5¸ï‹Ím@h-Ü›EçF©DWŒõD¾6šM ;l•'QÛŒ£µŽÜ9Ô«ÀrWFaKžPÕu®i …å~sM[lʉÄ,1Á¯vÇ·¦'ò5ó[BÏ·hÁ´ eúXÖxoÀ„Q¬k a/XÂáÀ2Âä2V©„+M°'u• Ô%`L‘hÈi8E¢ñ¦KL[œiü8pÎ W„éš¶£®ÍÖß–Œ€ üõcÂI×àåçßEºœOûãú¢¾Šø¢zŽD±^ëé|Q]Yh4Š‘0Qã†dÑ—K„^ÆÄ]Æå°Mt¹þˆË¸pK~ Ž#㌵\C ¥!L=ŒÁŸ!–"êg éê¢ZÁí¾é™LçvJº‹¸°d¤d(Ñ­a’7&‘ÄX)Â#W\wüØ’Q‘ë ‰Ô¦‘#Rt›#’fRÊØ5G´Zª\­©'­3òq•Iëˆy|B“výCÕçNpk£™Õ+÷ÌU‚ã#7 Ðø¬ÁC"AŒ4œ}ONÁ˜>ädIøHÔbÂÅåâµ`Ŧ%Xѧ¨‰l[¢˜…¶EKpbi›ZÔÚ×>}ºêô¹d(¢+ñÓtÀF¸ç²Fç¿àÀ–jgTâ!‰KŠ ééωèCŒèvåª/ú0zhÄ>á(C{zQ±O.®÷²3̯™…ù­xùâÿf‰ÿ+”N ÿwrpxX(òø¿Bÿ·‰‹fÿ׎ÍÿÙ*7`¿Åþ®”´yû‡fí·XLJ֪€Õiwø)¸¼ïugúwÍQ"×»ãÞgˆû˜/dÐ/vÕ›O> ¦yˆù{™,æÏ¦Ç_|žOýÀ^^ÆG(*” ô/Yhô «DÞ¹{FÞãi^Å/ˆý.DI%§6;6Ö¯-cýÚÜÒ·“ôýD}Ï0gg`$í„ù±\°¤«|Úñ§ðOØŽ, ñÇ C\kšNXƒ–-Zû-RáDi‰Ãïø3Kiƒë~˜ø·«†Ð~YcÍØÏ «Zwô[t£ãˆZK‰…r€íJ¯.ÝÕ«^Õ›´Íu&ä?'Ìû“ô1›P&}U@¸?­ %F‚<˜æFž‹ÉfTZê(3Éècךn±Wã·:•# W§ÞÉãn‘â´ÚµLÒø`)új• ¬hužq¸U§.›¦gµËZãÍSоz VÍØ@«ö*V)#­ Àz#­Ú›L‚x´¶¬Íwxø„"°ÍH&ÇñÌÁ˜ÎÑ ¦¸¶ã]Ô.TtDh_Ak¦ƒ»Û7ãn¼›ã#|`øñã`  l"ý±¢^áÖš£ò³MûÇûÑï´[FxðÄeâ¿®Z<üëM´Ð" ê_Ùñø9‹J4~ÞN.Ôàa`%].Ô{7¶mÜÇëÌ·}ÚPí¬/ ,3‚z‚Ê‚µ$q¥ZuÓÉ?fuÁ‹Jœ´úd Õ«âS—-Õ¹x#áÞ® ÚM#0u­ñ[#4'QÚ)y`,Rý ÓlLb¾Ï9ÈîZ­JÀ|OnsW!{Z ‹§‘Ë;Šyj»>Èê7tÕÍN «ë& ]Ýèj!@²¢¹KT‡CWw8du‡CVw:Þ(óv;\éWñ*WXmìøÌøµÕk)Ç©ƒ<ÿ¿ÖŠ- ÝyÆ€Ño:±€Ñaeu$hÅXá÷dÒL \–€üú]–6Ý—ahX .Ú‡el>ú ‰ù"kó,1A¨_ Ô†µQ‚½²ŸŽ…Å&bèêÀy¿°wük úÜ߲̾ÖO™¤eúÃî§ ,Lü\=ùhùs<ù:†Óqˆ†2¾ÑeÃp4ù VÓawüéeðËÍÝO‘ž n™Xêæx˜`Ë[•-´8“ùÁ„`ÓxÊ:È–·‰ì‚¦-‰ óÄøÁnØ ý-0¢wßu ev”†ÑpfcSÙ†c¬añ6ȰR‚°ªÝWäL»e×›(ªÀþì’§›Ãø¦ E‘ÍÄ MgÍ­Õ>=Oö E}~Š)Éädr;wÇÒ`âʤr?vÏÐP5óõ‡på¸öàý¨ÉÙ“`Û)cØuÉÄ*§Žš!¡èÂÉòßlTþ—߃¯Åýxù4‡iïEy3ï‡æ°ô×»’w“EØY8íöpkÄPŸæø6‡mNsâ“uŒ:Q”í$Ø8ÅÏgn’:yÙ†Q¶±ç+-Ѧ‹îù'TÓT3Ä?Ç ­ ,Ö,µÇÙ†r\Î&\ß§VV`hß^#'n<#Ž>Hˆz^ð󶓬V ¹^îŒÊEjÂÁ£s‰,÷ôm @IKŠCé|øÎ$ÊÝw°:|èò…ðó}ÐoYÈp–ÎÜ3ˆª“|ý®æ´²Ðk¸}±9#J%çDÔëÖðÖMN"¤iïµ@™‰Î&¸%À™‚_ÿJíçÖ™q£ƒv¤ñØÜ /÷ l¿2c«À¹`LÙÖ$¹šæà¥¹È“.8EóÕ1ŸåÀ±ƒÀ«£Ï3ZˆÓŒÌ™§ÏbžåÆ×xñ*žN„§D-)ˆ–àˆŸiZèÒpuJÃI:‚g.âA«]‚&gœ¼É¦·3Ë€:xøäM2¹W`»û)§q°Ð—rCýR9§•= ÖirÍ'å5R¸Dbg1ôü9ú½å ; .wNÁç=‚Ö¶LS`'ÓÛ/°”aôäÆÁ}Ï>îgÍvdY枯ô%o¨m+l=‰ºœÁ;gð¤é ìØK®å‹—>Oýøi7²eêfÆ Ç1ôìÔšÁ3DQÍ-Æè™½¿âàŠÌÄÊokBõS!ý ý–ñÝMê²ëôÔ•~-™‚YÞïsk0¦‡­1oø<–£¢€UNR|7aŸ"SŽå7›L×`6;f“”HGC@ ÙD gˆÝŽ6âñ@ìºà£;Þ¢~—j”×hHâPòÃKÏØ[&Á¾‚O‘}Ùøl3"LaÊ‹*æð xëø•]ì8ôV[ (PnÄ©ÑpŠGÒüì3Î@W7ˆÈæâyM8Ûä×ÜÀÒò”ydq«/9hÀ@þ‚è¡Aû~‡?È”ñ ÿ]xÿÊ-o„&ïå1â^œksl;æ‡Ví8ìJF1•†|óàLk×¢áùø†Í>Ö+ð»5sBTk«îôäÉ ØìÔ¬iì’É Ü4­Vÿ %°ÿ\(µByçkÖ‡ô¹[§°–?•J0þï(«=’?²Mpé©"ç:±Éc2·¬+ \Ô‹*‹i¥ËIøâÊÕ±bb€µB­»´!mêyÍG–®ó¨A›[2Ñ/˜ ÀèÛ¨$è Á¢˜Œ©¦èé)d@üon ­y8Ú†p®EúÔ ØŸ`Î9ºRO`Ûb§ ñ3¡ÐâÒ.qü}¶d;ôÏ-íÒKÜ®«£ksi—NR§]ÒáõíØúzš“3¨O zoÈÄ8³q-eĆFßk$´Hw,xxiâ/¬/æ ¢ê;T:º~+æÄ™N¦YõcšCšXúº4K¤7H,ÈÄ;I¢ÿgí“'Ö>É«•]ûYûÉß'À¹7°íM,zÐ}L{ ޽Fz ]ÚR€Úw6§ê‰ÿü«´ü÷ÂÑÉ¡ÿyX<Îâ?7qÑ@3â?¯KJü'x¶ñøO+üM2ø2¸k5ß³—6½c/ò»¤YcRF‰®?Nômw|2¬ÈÆp²0Q+Ì»ò.¥Á#†‚Ö”¸ÌºjÅl÷ôÐMò0R Êû6ߎ{1üÖu>dQ\äèuID޾9»n–2$øA¢u^—ô–ugte=ŒL«'­' W„°XýÙ»rUÿºíQÆÝDš¤–΃„oO ¥DC`È)ÕbHê1¦ìŽ!û1Ç„^ãf;=h~£’jÞ@Ì¿YùÞt2›MØêÜM`CÛ¸ù‘ãsSDÏÖèõðy”ZWbRu`z ¬Au9ªÂ[U:‘RZøÃN@«Húšâj´‘î°Ñá©æJÌ(®eë'ËV½4]²¶ [É5vì;o”'Ô,Á·î‰VÜyŽð÷«EÀ¯)¶äÛU¥ŒöÕƒ}Ò„Ö.û¯ÚŸ¹¼ú7è'àoèXú½V»sÖU$)/ÿ ÿ(„ýߨ*ëÙš0ûB©à =È(k6›2ðÕØzY®WóÛ×M ܼnu âU¸½YPcÊyê•"ÄU m­ñÐVÜ—k`ýW-_ˆ»¡}Ö CY ýK¡Ñ³±õt"LkWë1%šcêç· ² îǪ^—)P•î_Ã×|²æ‚­³»ÙpÄ*ë9}›Ü%¤r*wjšFýlÈ‹¥î95œd¸‡Œ5ÜÕõx{Äkàz…ÊÁšÕ¨5r°F˜¿ãê¡VsßÑ»‡;X~WùÎ#ê; /RÚ%Ù<ƒNhÕãM7¢nygEÑø¡„ž<Obùñ4ϸhÇXgñèƒï¾ÂÓÀ]mvÛ‚Ù{bYn/a4Û„‡˜ö‡3öú\ X=ôâ6PÕCVž°ìÇ/Šüè;cß|ÓÏ”ü:bwcØJ’›!–ŽB3Õ1 ü~³;xwa'غ Ô’µƒDoG;Hºx)ð÷Ä&¶n!ôfÌfŒSfA{:sNRÊÿ·“þ`Ënµ.ºÿ© $ñƒ²*ip$±ÃÞ#yØŠ:òÔÑVH.\ô—«‰]pàa¨Zïÿ,7Ð+Ö4WÅR²\îŽ-D™*¾õn êãÛ-é9·Õ`KÏ÷[ø†ÔÜnéAm^ÉÙð¬)¼Ü8ù;®wQϲK(dœáç½UÁgû‡±> ²wý·ÂÝl›ïˆ¼á7ÀvÞ4䂞à¦0ôƒWñ(a‘OUaWØX¤ŠÇkã¢-t%Y¥<èÅä 3ŒÚø žé~ž*:°â‡KÄrFsŽ˜Ð8ô¦ƒî §ƒ8üqc’Å«Üêâ¿X-ß‚-6R]JA…©èP¹.SæuP´£ÖÈ$™¬i,¤Àï–[‘*Á)× ýföyP߀&b>Ñ&†Šµáx>Ö²®øÉB‚ëÀ±ÿý‘ÞäÀYVľ*±<" Ôdàjç#?ê?QŠ3ïuKÏlAH ˜ØÀ8P¶6äR•ÅÆn£²#ÂÈ<µY2ë|â;„'bw’üY,F‚•:GB+kܺ_j 54bö¥Ÿën{¼™nÛ“å¨Q0¯¹öÀ¬,Ÿ¾‰*È÷î ª”wš¬r×;-›?d {ò¾æŠQ5E°”Êc+¨³ž{'¨ôõÖε·ž¥…TO^Iµvk`âäF°  B ÀTM¨ÉÑ¥<)ƒ'“«@La!óþ@®½ÈÇ{XKä*8J¶L¯/ÞCØ“Ö@@ñáT¿|izŠâ‘<Å 78_¶@¡¸uÅ& ÐúËëW¦øyY\»®K›tíJtùü¿F›ñÿ:.OÈÿ«P8*”Žÿ¿p”ùmâ¢Ñhú]®Ïÿ‹ÜÉ|hòŹX>gÿ®ÁÀþùÔüŠßXKuûIr Ôÿ4W2-Âïgs(+WÅ›sñF<ª|÷ J4‰ÍÑÌCa•t×—ŠSÚ% ¨^µÞ\Ó‰’½­_ w‡ÌO-óSËüÔ2?5'y§Ÿ“§é#>[r˜CÇÊf´æiš²ë%¶ÖÍ¾ÏæƒÛÙQîáY ÇU|¿éŽr•q8ç½Ã„Ìû< à¡2= 0 Ô€4ðfKfÒP¼Êç˽^¾èåòE«KMȃÍG‘Uc…¢ir„ES86–p(Œr(qšíéü ïÂÄ^/ýÞ…‰½_ú¶ØqŽ…+û†ÄÖ“‡ãB¸†¹8„—a dM÷Ç+.†µF½¡fãˆzz—H#Õñ»ŠD˜æýœY“ñ0õþ‡–ã";Ò4§Båeñ3¤ß=ÏY5eë¨ëKr,¼lóœE¿C¡ðf Õ©L½„’$ËxÄDõ4èIK&Ê8råɰŽàÙä6Ì„ÀØrñ+Î,rm%)p{ÏÞ²?í/M"½Ét:˜Ý$ @?ÒÄì.Øqò`‚Šþ˜î4â+ý¢ìL.æÖ4¨ƒo=¶Q],]F›GZŒðû ÅÐo4úc)ô ‹þx’¶2ẑåÞ5f¶GHÈÿãz­œ+yåJ8þ=¬©±cà½nàªvñšU·`¤M 1½»ÜÚå$ƒ‡‚t6Ó½@ÞAê kË:ýÿgïß›ÓH–}axÿ½>Eˆ!$#Y4ºØsŽ÷ ‹[B°Gš'žð‹%ìa^ ÙãõéŸÊ¬ªîª®k_@Èè[VfVæ/ß²<6<`·¸/)0i”àÖ"2h³«ž³|)jí“ws|ÅøÔ¿b5 ;þN¥~A6QèjÏý|4]€+F¬5`‚Óà2˜7SK0 ¦•/®ÐÅ*•ãQ#þñ¹Ž/\·ÍÍ>¾T÷ó³Âçĺæ½t*»&g£¯®®l‡SzB‡Y EÂ<Òå«58­˜²~J)¦Á-¦—ÜsòÛæjj–BÂЀµÆ0«xͲBÄœÏ6~=»ÍÝàs­7?trs P÷ŽéÈ&G²úÅ›Ë(Ã>×x’ŽÔ:9¾¤_„;Ç“‚þñ$‡‹×D•¯c‘Áåá´5DÜROdŇ“þàãyëÍE¿Î¿wºñw*•¹=X8h8]Â'F¿À…$ªÛƒ2‚~Ø‘0›RX1Hý=Ä¿ùØ8œ@jÅÇã0·|Z²<ßó çyœ…Rdy£-XG¶Ç[§f’¡‡:ÝL=ÔêSý‡¹Nâ¿Ï››Ï#ï[½Â«Åùt“ly›%^é]àQ‚ÿñáÉy=…ŽüZ3´Ç“ÖtW!¤%-‰²=ÞŒ××y^ô´ªj¹ëÔçõ†:ØuÎZ” Òû¨¨$¾4Ä—H|irµêÑ/öÄ^6_*þjBα9µ¸ã‘¯'ÁAñfÝn¨ÖyCµÎ(ù%åÐN=®±]ˆiû[’¯?þ:›ß ±Wº÷£/¤6Þù²Ãol3ÉWU^YÿÔö˜z³éŽÂ6"¥©÷J,H×ÙØØ­­-ݳ¡á8ÜL݆7 2iƒíu’É¢+;›ÉƒÁ\bV‰£3Zëëáߣ‚jÞWk–E¬àÚek›©cj½ }gÅùtç÷÷ŸS'‚\Ù­—h|·Žw93QÒPéB»G=¶]Õc›N=¶Ö°omûûíøEædƒßê¤R—l+æ2J]5ÔUó‡­ÉÔQWjyÖ$ÄcÐé@ÝŽ¦‹Ï¦iè"~x'3Œè£A@!ÝDe t)'5¿Åöœ6_aÚ|¥Ó&=øçWæ(Ì3+ÒÞf|K&”»3aÖ›Hh–Ñ—êüesZÎ!HM&œ¬5öö,>Ïÿ6µgÏÛž„Dl™½Añ‚–±nPZ%™`Î.¨Ä£D‹‘™û¾ðÜ?$›´´m2hh¾ÏÉ7^ÁD…XŠÑýýøî+0Ü< ¬g1þ¼À}kT `nÈ.Ň’{Ãpv?º%÷“;~,ø ¶œÓF´^ êyAzÎß=Þý_ÿ‹t¦TšÜpBP.ú Jh/:EÐ/ÿ'IùoÍ7‼_¬àÿk-xOêh0 Aûœœßr›œÒÆöÊTaГü10”u.Ð^Ô¡Œuc'õ%õ¼ ljŸgpˆ©€Å+Ã÷Éí­8–ýMŒQ3¦zï’·ú74b4v¡åÏI£qÉþà/Dʰ÷ECЋ¹ÛâÑ4 6öÀ䳌G2Ñš¼q;F/®È §/`>ˆ9Іª?¦BØä["x±¸¯ <;ý €J€>B=nì˜ñ ™c«w=Zª+Ëåòÿù÷j𚇻þã#]|«Tñûï*üÇ ÿ±Â\ þcÿ]‚ÿØÇñéÿ±ÿ®Â¬ð+üÇ ÿ±Â¬ð+üÇ ÿ±Â¬ð+üÇ ÿ±Â”:ÐŽÿØWgºU)øýwì¨>Áþc…ÿ¸JüÇþ»'ŒÿVÇ ÿ±Â¬ð+üGbÁ3©ðñ4…¼øLr©ð+üG¼*üGk?1þcÿÿ¹Ì:à?žÃ‚K íÕ°ØÝÃׯãù6³cßmú±},• ÖŠˆŽ5yŽ[Kë´ÖxFÛ»UënŸonbÛˆDæÔ°ÚÝöt“Š6‹‡O7“Ñðr6 Ø*Ù¶eÈ6·»Ë!6kg%µ×}E²¡pžeCák@nN\AëæçCá´t\ gxÇý (œýwëŒÂy^¡pê×OÂ\1ØG¶ÏŸ5Èf=#'òApœô¹õ„㤄­Žú©‚ã„«‚ãT® ޝ ޳‚ãdX2gÿ]¼`¸þÿ‹’à?=þÿ̓½fÄüÿéÝÆþ.óÿß«üÿWq±‘òÿô$ÿcÌmÊŸßÎŒ%GÔä0”Oöå—µ3{1¿–âÛÏ峘»­‰W?G&Q]ùíDÆ^ú§‰Ÿ>ÂÏá×¶Ï»^öË—¾qºô„Óý 7„8Óía¿ƒÿ‚`Ý?°ó‘mºƒVÎ÷áÎ÷OÎiÝä­>ÈݰáX›1Ú1wúÖg‹Ú;¤/ÒS9`?²¶Å÷:mÎ+à{m3w¨ØžÏ£Ø1›y:—^.åèË(7³sõ€ùK}KG{LðwNwë/0Í(G§3/¥å™Ù'{xgvÊäð¯v÷ µ¨Î s¿vÌø•¢ûY¤PžÍQ;ÚzŠ®ÚÅ\£Ÿ9Qº3øj7<er×ÅÆpLm*6Q騎ªÕ§äôÎP80½ï]P¹­¨£wƒÙdGo0«v.N©@×A{d«rè@}¼Ñ<Ã%o4“:4ná>E½ž°… Ïo‡\,{}S% JøÇQ°¸¡Ï¡ÑtÇqt ÙQÜNlùÞág:=í¢½ù]¯»ƒ`LwýÆbêéÇÔõ)?º@q˜W¼Þ½".å½:dágÓU<°_WýDMtôIçº ~v\ÁƒÊ'ýÉû¤[_E3ïá,ôlã‰ø¯zOØPäþëNoóØ#\v6ošÝÁm¾àÌÿù¹×¡ó“[¸ÛBw¥sÚ.÷ O|âÉxÖ¤yÄ Š/GGÈ9ÉO@ûâr_SçgÜ̓}Í™ó.¥%U÷àïÉWnpiÒS‡d#tLq)±`°6Ð0›‘ÅÝèVó°@éæ­ך¹þ¦x ‘ÍÞà‡i€ nGá¤ÃôA?b˜D°ÐaTa£qFþñl#E- Dðè¸h>…ü!Ø“ÚÉ´·Ý—åhýÐû¶#E&þIGš—€Å/6y¥¯¿âð¼~ÄØîúÄt—; yáåâ?¯_Ǩ6i»+h„Ç œ‚½q¤m*Çþg<ŸQ®8¶t7›öâwáH‹TN0¸d,ðlxtÏÆ€²±Ø™à ®ïoXzš1)k/ã`‡;yçr„'ÉÞ`:O8EQ{AE™n[˜ˆüÄXöS`ÈÆ–RF}àñ”öh.ÉñÚéXÀhZ:°˜“žØþ4Õoiƒj¬ðmúü«Æ8_ŠÏ{|Ûáä@ðÐjz¦º­ë>ÄçöŒÏXõ.Jy¦®œ;}T8•×z#ðh3{sìSMªÂ×½\c‘£•]Z4¶t¯ðÀmû›µŸyàRÓk?ÇxØÜ¶<µJãÌü®q5Ú½ Ü– el<5^ícD—¾áò²sˆ#ìùFL §s+åÎÎ$Øe™ÓÈ€)DÒSò ¾à Œä&j_1œYÛ)V‚ ã˜4QÉ¥ˆiôt Ž»w•Ä.E£´[_†…]æØ|,1ŠÅ6›i<ÃæÃ:Á°ý”áÝ |ïSŽÉ>ú¨%ˆÉfçÝåL‘äʪÝ3h8ã™ (ÿ¡"c|×<ÂIæ^-¡ÿR_R|ö6‚S¿§Q?€£Ðæÿ~˜nÈ{* NînÈ&3žLÑmÓÝ}Ͼ1ñÐÝe±õO‹Þ6 ›²Þ’îk¶$̈°(’E<É8\µë²W2/aÚœò—0táz/áò'î¾E¶L–û¾iÞ¨›' È¬ ¥÷@,4í‰ä[âq “J"&å6ëtméÍ'ç’‚Ñ™C…­yÜRCî Ž—8¹Ë„œÈ¿Q°¥L•‚÷áå¦IxV¶˜é)ðz|OYv"Ï>³òçsv˜ÏfEÃW,_xêO^qgJº÷66ꊆÈ<ÊÝFPZ¸ÕJïÙŒ Üã€{Ã8ãÈ´¿»A¸¡ ½TOTz‰¹ÁÖTgbS‡ôâl¼r†¹Ït{u Ö½ˆÕ1÷ŽTm“ÈÉ20†Pø…e¤™V©˜í¶ê↗¦øý†¿ßxÌø}á@¶ø 6¾Ðv$Ñû†¸ü4” ¿Å&–ª¯ä¿ © x9þÙ”+7Õ¦,ƒ_1½¡+þÿÇJâÿ÷vö1ÿ_c·¹ß¤O°øÿý*þ›ïéøÿ+sü¿”õ/Á°oiޤ),{:HÀ/‹Ð^g@9·ß“¸ŠÁ®<àUj¾_  H.;k#ÚR+ÂóÍÁ“92ÎUÀÁ“80%— Ä00¼ SPBš· ‰àŸZ3A@ÉP(ŠE‚ Â àw+ ¸œyå–‰='™“ìr+C&pˆ tîH-sB:n>¬`´ vÎÀ•°“ÕÉÏ9ê-!i„, ì“ÀŽ,pÁ‘.0~î;®8²ÀG¸âÈWYà U!ütÍî*ë]…0°žW?3Ÿ8Æ y¬ú Ø/ž0öÀáa>]ìô‚Øy°ª0#YK ógÂiääPùWAþËò§KÑúxÞŸ¦‚÷ÖOàÏÛY…÷k­ªÂûײÃûù„¬üsCyþ|žNx¿Y5mÇ©eÍaVûÞl²!©dydMS13¡ +*!jÄ‹,Á YœùÎØ‚]D¾{œµk‡Ep]u¯Lx15x[óÖe[JxrX…=K[Q˜âD: °†w@|K'+êþJð Ç> ^øâI}–„á ø‰óñ"㵸z_™1H,±9|_Ù‘|+HÁ7팊g ¦L¼ Ä%Iù€H V) .HL)˜ òG•9ùÆB ññd× BP Å@ˆbž£•Ùì‚`ˆkIz'†”°-ÎÔaZ ò¡c-ÈÚÙѱ?8¶•h+ÅJuy'Ø °RE ZB7=¹lKå8“tò˜· ÇAè,A®$‰s u Ž,õf½Òè7Æyâáor¬K²£¸WÝR‚ß9ƒßLD˜€Óúµ±i‡%“…p4MTt<5”ç)nNK…¿†m 8W…Åq*HTñ£U`qÚAa+H.ä R¼‚g/‚”’Þ[Mìí$½–Ñönw?áD yJÎÍ^ȵ‡ÛpÞÃC™·p=D>°ˆLÛe`]Y0Â](Áï¡"™I8½ e _Äm*C€äÆ¿ eA`Ôµ `dZ€0RJOJƒfdL½nÆÍPð—$ç[Ñ3HaaÁÐXG±”…`ÃÓ 2K1Bj(HNÐG„(ÔæƒÖ !è¤,ƒi$fƒP5HAmƒäP8H0䆧f¡“)$X÷ ì â³Úz8ä÷Ý $/‡›DãʀƑ¬"/dæ• •ƒ$ÛŒ ˜C±¦Éè¾jØrñ}3F)„šteGêÈ`¸Íº™¯ƒ¬ÐV’߃<6Øåa0Ðña}Œ`—ÚËТ0“ùƒ4øGê—k g¬ð×^>‡„²>à 8ƒ2TK¿4v/Á” A¡(•D#¹Z ‰ÿãþÓjð?¢æâìîÓ»t¡ þÇnTá¬âb3,…ÿ1l›ñ?bÌ4´‡}Ãä˜mîÃŽêá(èWƒûXW¤Œèm+¦‡ Ýa÷’0=†mé1lp<Ø7ôöˆ¦ÇO‰éÁ}¶MÐ.F…‹‘ ãv<ºå• í"y Ë¥q¯jÈax‚qÀ‰ å¢B¹È‡rñ1.lÐè´QnÛ/ë\Åa‰pŽrú­®»ú…]òÒE÷¤îÅô A³Ò£®!|è¡PÈ”Ñz r'˜ø€ÜAi€¬äÎ[3á2؉ TçÇËà@Ç$ãT‹n]ÀphÜVàýVFÉpH±”vÏSÆÏÄ3 >;üó¯@7©“"ˆ8$1•6ëk ±a_€\áö Á®=l3d¡P xXL=ý¸ƒº¢@›Šáq û1‡c|P‡ŒÇ18r\ŽÏ„Û s8 ¶þ}í~0ølòÏ}þyà.‡*;ëƒÑ¹(<ƒ•YzF‰ø$ÄA8ïÆ_áŒccÿ=ŒŽaû ct ûŒbcOØŽ|a:H”ž Ž£‘ú=òàtè‡B X‡ök\XC=WÑ»oE d÷Œ¨Üá«(üyß*h¾…ƒ×]jÍîvcóù³õÔh‘ô*õRe6¿¡Ó÷nô÷X=1£Âðx´˜€ÓéŒ,À u>¾y˜ÞÐ5 Ôq¨á9dƒ€ 3¤óÖùÍU~M"oðÍÈõ¦À]ÙMh¥Ê°Åñc5ÒÜên³t¸{®Rl!ü¼‘R7U†~ZÒ}ƒ¾öLEu!"LÓ âB ḠP.DøÔ¾ÜÕKáqŸ2°‰ÅG8/v »áQèuÓ‘I0qe8”ùd4ýò&k % YÜ0áÊJMŽÎ ˜pÍ]l»tdèî°“ìFka‰ÞºLÂoµ…€éË×IXx0j0ØÓÙtõÙ;nG($¸?Ú¾Qʬq‚)„ùà:õun;bÔù[£%´"ÊlZd1#ßéæ<šÒ‘†óà/³ÙMìb(Eø¤¡SJmJ ­µ6ÉÁo´hú׿¦;@• ¶ª›*SDëLƒuI½Ì'Ë{_/3€ oÔ6£¤æšs¾Á曇x%³aÔÈÇÁZxÈ@&§#ûÄ`ø¥5´»ýæ™û/¶ä”¶Y ±ùa¥uÑ©‹t0W9<¥ºÆ6LZ)è"±‹·Ì3Xö¦®%ySñ>K±GËí>WÌd ªé›«Qå\l¯Ö¶D14í\ôwxõñoÞxØXèÊÍ4Uã™Eê9ïYØúYõùGu2ý<¡LúGñÁí¬fp Õ¬Ïàvòn'çàê·8FIÎÈ"㓲cwÅ|nxE 2i-~Â\e˜}…Íð&*ÙÚ"6ýbʃ_¨oÓw„ŽUiwlEYž ƒ‚naÓzãÂ%À®xWgKÓú¨âHªÍókª­c¯-0Dœx#Äph¶þ¡U~rF`”ñŠqxWð MP»¹‡|"ÅÆïaŨّQcDZGþæ .#J£‰ÑW%>TS;UáÇq_…uM¬øÂ͈իIr͢Ѐbñ0f“x‡µŒp=ïùsÎTèyK ž„„H›;ðœøbω4ÄIÈYéC¬Ä¿… Â8xÑHIÁjq‡”¦#µ'2„¬1Yà›ûæ¦eZ3—"3f¶ >ͦ7‹@fŒ§~V!Eº•6rG»wÀ[èŽC¹âÝHJzûÉ9Ô²dÓ:GdôYUÂÈxG !´–ç²E­X‹h–À<" 8ùáÀ¾KŠ-†GŠGâ‘|ÁxÄ‹Â&™¿vÃ,Ì£G²„éù( l©¯g@•K9‰æ;0O½à€¾ôÅ?%åÓ‚Ì™M Pƒ´@§  ÿ).\9E.°%’„}b\"s¿ÉiÎQ(W7ñ¼û³5.‘ŒGg=’ugÆa£»±ØžS»røÎœ#ª‘È;]:žÑ6fÔ°.>±NáÞòþqðÔ£ 5™mÒòrÕ­Œ"›&ÊØØùJF )SZlejXfü/La—DBÅÕ|?ØêÒ×Ñ=øÙ— 8ç%‡¥×,bHF”þaŠCÐ*üÿ›’g<Æà®Ç:ÇÖŸCwžâæ[PZö[›ñÖ¶”r¸NÂÎ׉ãˆ]Q#¸‘0Xÿr®'B‘ ‡;- ~,îÇw²e6¬¹m7Þ x^¢ªF©k ¢Ó°ñ•$Q‹Ùl€.p9öpÔ‡Ý$D1`äñUHH`½˜UH0êîð)ú)ô†K˶D¯W—îÜÈ&ª£Šþ ÙákTäP·1šÀAˆX9Òr!£/£É”%#‚ 7®6¿J÷ù eQ¬NUëS:Ÿ 0Ó0«J ˜–ücSçÙ{d|šW*T Žú›2X0:©Wº¦ÌÛcÀL*un6c˜±ÃÚ4.¶k£–˜qü•F´ 4œF²³³GS>‚”BÌà79ˆÓû7![#(R-´ªÍlh‰—7gØ^ nÎÏr¹ð¾®ÿ§y¸{ØÔð¢Ã ÿg[)iüŸ^Ùø?=æ ٳًà&ú èiÁ°  Þc"õb &±ßvâõ PTÁU0@þɤ€ÿÈ%p P/¯b@5ø/D½FJPo åVBÅ!„rý,{èƒjìÊBìŸ` ¡—†ò^ !~‡ ² “Ú³Ó¸AК`õ„ÇÔ[oìªCpÌŸ`õôP¿ Ÿ q8 ¢êÉn£Î>#þÙäŸûüó .ÔwAøOòêRÀ*ÜŸqz¿ îOãQpèÆGoѶj„£Й"y%["j¹#sÅ ‚4¼¼.lÁþkÌyí0í»Æc‹~kŜ֑Wϰ^^ϰ”OXOs’J¼Ázá€+>—ˆ¼+ÅV²¢«X¡U,ÎëVP• d#¶Š¥]ž(ÞЫ²{Ššð#¶¼tdOøž)Ñ2÷òèI)–c÷^¬mÐl®ë=sÊd¿»Ù]½'§IæÉtdtçì#!y’û¿BPaØ3¢gs€A´à4¨`¶÷Ù0YŠ(ˆóày°,•Ìð6àŽ#C>óÄt˜°=aêžÜQy|r¯9ððEÆÛÅLI“žâ%^-I~xeÅP0 -$T‹$Vo37ÕT »ßŒ¤\]„ÕÓ¼à¤âCübrzÄdð…ñD–Žɖ© ^Hj–¡¯‹Ù³%íþoòbßó¢Œø FXSƒz^p‘LÈ"?(™7Œ¿‘’’L+Ø!AΧ*nH›ª”LÓ¥„b†xCJOE wœ_Ï’ôË23Q# KŠêëåAqÛo‚»åMVHäýÔ ï‘gdÔŒÖvp c&ùuO+­gÇ@Ç>ó/0Eg耂 ÅdBçP–¦/5>áŸá,J…âÈBÂk]éKË'ͺóñVzALGËB½çËBFðeÌB-uÕi`5™özD;0äT@ˆê”óØÚò“e£–§†§ön='ìEŽÔÔÙPb‰ê–šš¨pf S„ [Ño‘A!ñi#~UÄ®‡ø”¿‶TvQgvm¼mA±hõê 2…ýØõ–M›5<Ó~ç«àÂj@)9DÚd#ñÂTÄV?/)Z ¨öD+É´öè)¹¥¹‚.‘2-…ħ•œ©›3u CHþ1•§[÷ =U°øæ¼ôXo”*ýäíåcœ¼¥â –f†ËQ 8$Ž“@ .D˜zn‡‚0´»p BZÖ3êœÙ"Üã~è¹ñ˜^Àƒ›½ü<ïöª¯çøÊ¿½²žÊ´½–ó|(§¿šl³ÖÐô”L#bŠF“˜´Pôdj¿´NíÜ@ æ9Ì“ãäžÊWÒTeùÚŒÑðdgt\†uÑñÌÈ?±_zdÏ¢&‡{C¾0ÿÇ•Rxt/8º_ÝWÂÃú ‰ªr×¾üÙ»öJîÚ—u¹áK×ÐŽ£*¤ÀÖ Áv Œ„Ñ€X! BQTZÔÚU† zÁNœRˆ…ÐBðFì…PÄ…Œƒ%£,ƒÀ˭Ы ~¶Ë…ÿ0_ þÃ^c¯éø ÿa[Îiü‡¾ÿR­·ÓXvé4!° DZ, Â^† ñË"A´×¢-ÁAd„†°˜4ðñ€!ú10D?¢_Cü¢ÀíÜMiÛÛÒ–Ó‡…h{ZÂé v«Û®-*d‹e"[È/IØÂk!8U(òB‚r{FÎW+tŠâèË™È{Q¡SØKÂè*8ÅS¦h›*ìÒ,C®@€ MÑ.Ÿâøýùù• ¦ÂNˆŽª`*̲ÄÏÂ憩軨Y˜Š¾€©€†}SÑ÷ÁTô9LEŸÃTô9LEŸÃTô9LEßSÑG .i»*¸ ñjW±îpýŸ®‚ýϳ•YÿñH:iŽVdaÇ©x±F8/ Þr‡k†SÑ/ §¢ïÀ©è—ˆS‘¸GüüX©ß9ÊI·-–[Ûåàˆ /1Áºk§^|a‘ÜŽ å[=“#€êÛi* Oƒ„Cj¢›²™Â|ÁŘ³Cjª¿.;á÷MqxÛ£áÏ&os©ï›Ñ4H!—ú¾ SùLØ¥¸Ò£2‘/̼AÊÀÞ )ø¾>Cš ’âp”µ«õöz ¢u7`q²d†í vä’¼ÃP سãw ò±Ô9ôµ›æð‹¼;Õàc ¾)5x#åƒ<¶ï–÷³k½ ¥/͵•¯a«Áß“¯t6ß(;š~á’+8š‚dòî6GãnßnØzšÉy†\š$ˆ„c‘? É„HBòƒ’Œ¸$$+4 B'!%ăQBü‚¦Ú,H%$¬„]%@–`Ô² à’Æ.уªƒ"²I8z 0!)±27† ÑLo÷âCž@õà\zÐX¿tÊ«·Ë¨v°Žw@òjvÈRê)ø€8Å]v ÿ¢[þ-x¿Ãx gÃàQOS2èµúG`Ms/ˆ`|¡ùX3ÛQí&’¥%Ϭ+Ö ,²%nh©è¤p »²Â·X ’· ’âMv’Ì?”K–Y’Ç Ð  ÙÕ/pëÉÍ]ø/¤ –˜†¬/K´=°Ü5é…!2ãóá™ÒyàaH^„’5bËZ DrâÄ`¨R -†Œ!ù0cH lŒ¿öÔÔÊŠC²€Ç7~ ñAÈ™T){Œ/– »ò!Ê@Pò+]ï)½j†$,Ñ6#óã2¡Ö8¶ × =CŠ®õ3в0hH."o]~$šàÍ+eÓ´ÒÂfMòôs©Ë«£ë3oÒkuÓ=Ð4Ä‚N“úýЄZó¢ Ôš¾ŽZÓXKÔš†ávÖ¶æeAØÐËÆ­Éí@܈Ã3À†[ãåz6Ÿ€åbטm€9±k,¶Â»&ØŠZÚ‡ÍNXí#«mp]ðkú´>0ëas¹j Û”¾ÚÈ"Ñ$Õýü3{µ86˛ٖÍc®ô+,›µéÚGDzyiÖ 8lMêdž†e=,€:é¶Óð&=vÌcÛp"Í„)/zˆ<”ˆ„ÝЧƓ5Ï"Êy÷Þc%tëè† nã¤7†ÇX¤ 3”Åù•æïúà 9ôÿdÈð‰Èüoøþ8„ŠŒå8è΀‰¡`a@\ûŸ‚ñ®Õe¬‹‹¾ËË…>082ŒóAËšu.h–ƒ¼@§W§[¡[ˆWýèåâR˜fÛÚJüùH€ìiÊÉXì,]Å5²qòu1¹¥ÄJÇ0…'þôNH°€’pÎ]"ν¨±¸¦ãÀûLÓ¥EYa%ÎÕ#2coB´°UË}xïû_zóœ@0Ñ|ÝlX„ïA@Y§[#ç)À  & c«ûloëüì[ôk´…ПºÚ©Œ Æ%w-Ç+Üëö? 9îhð½— Î7ìb.8û»^¨T]io.&ÜÕ„õïÍdA9í'¢DÈîo„üg<ŸqËü]Œd6“Ÿ¹¨•˜ß Ë’Nð¯ô¥)p…ãq!ï=Ö!Û–ØT\Al{1Þ-Ün$OÖ-” Ý‘O?È”j^”|Ã»Ž®‹u­(âÿ7»[Žüq®Ðð5Çiœ8ç§;gYwŽòÈ~âß–³sιp›Ÿ#D3¢h¦tšv÷ÝØgá|PãmØx?â݆pE²‹ñµÑ¥ûÄ;*ßÏ'ױœ‰¦ï³~ʇùA:§¤KÕîÑõßtx7B¼¡‘cµ\1”"lƒJK¢Ù-%ЋYìg ÌÉì¯OL™³Ù÷ñæ ©¤f —6ÕWþhuÇãëùx´`½È%~>@fGnÂ`ômLZ( €­B]y ãÂRQ[Òj]Î-å"U¯•¹è1;èýŒÌÇ7×ÌíáëW*…ÜÏG_Çÿ™Mn(»–Ë™¡ñtìÖóÜëñ†õ:`Uàvz¡­ßå©ÃÝ¢¶øvSmRÖ _æ›fߪáW5°Ösµ#þ&|_ Ž÷6éo½³8ÕÈ1‘¯¸®#ºƒ¬Ò+%S÷nƒR¶M:›æq”Ã9uÚ’—f\ÕÆ[ØŸÕG\Ƚ…¹qRWµ…›]maOm ûó‘¶°?Ý[ØŸæ-LâŠKÚÏöÖu?Ûg„õ×s?;H¨Ë»Ÿ­ÌŸ”½e…%º6w\í:„S½$›çÜÕ-éîù*›9ŒÊ·j(Zñ“Äá°eþ6Ôsö’›Õ£yIžÙ·¸æñ?•¡¡?±ã]ÙÁOv™›p—¹?+—¹Ÿë²ùÿÝÌ¿}ù´ÿ¿Ãhoÿüÿ»Íý&ý»Êÿ¶Â‹-fÙÿï¸ÿáuÛ˜ÿ ¡tß?ræè[§è„ÿ¶-–ö­_Dò7â—m~Áüog-ÑmÂwc}ò¿eÈóv*Ò»ÁLHe|kÇ?y¦êwhHg?sv8\ ±8&7ó X$>œ¼n>°qƒ—•G⯙;³4%•ÎŒS/†3ÁD£ã øâÁ9àÎQÃ"–+W¹žµøvsÖ š¶·ãé—û¿Ä1þ»ƒ¯Ó^ªEè­¶ÝØÄOÝ;±ëL,&åO;m‡·à´·½–§ §í^´£ÉÚnåýYG"s7ºJÅ«áÕ¥_ÍœÉMz5k"·äÕ`P1µ–’ÿ Ä?Ùï³ÜpÐÚ\)à”?ŸÏâ>–ÏT'Ëg».‰-ƒ?iY©äÝådH%§K´ßQƒ<{òî=ZP.NQÕèõOèˆß<Å4WÐÂYΘ.n@_¢e +GÊ3å¨pÖ¸3ÍtxVGçíüó^Ê'gjy޹‹ÓS‘cŽtØ Ät‚}Kë€òhqöB˜§ì1SÖŽÛ²/,&ýÆ£jd—Q/ŒV•êîB[¸Ë§®c‰Â6~tø'œ«tûç½®ˆ3Ä—+õÙQŒ¨¥¥¾ó§è_œáóô£Ã>.àãVhïÃëþÁž¿†¹…C>ிÐs<ž­§3æ9&ÐúgÉHЃzâ|Öê¾nóO‘¯-,Šö,zaÅ8Z“Á£ø˜»‹l{ƒܵøÃ%PÒ¦ãVgŠŸË£î³ç™Ï3|FüsŸ}öOù§3ÍKè'û2¿ãMùûb×å¶'ñú6[ÓìeõinµiiëçØÜ-߯¹»¾nÍÖW­™õ¬o ‚N78ÈÆ‰óÆÀâ*ú¬ úOû©dð{Ý~Âü>\zªY% -N ÏÜp Sï&S `“~–H1,áXüóRa Æ´`†["¤c¥À ÐÕûŠOvÜÛöÌmá(ÝMyF¨Tb­ºèvr7A,ÂTòùÛÙì«€v§³R9Û¥ÂìL®Û´Æ^5ƒú7œÂ²·rqï¡IoϤŸd@ÅAºÐ3®J¼ÐHùµ7  «…2³k;>™¥Á¡¥Ö¤›Ï÷Ì`­û þØaùfó›1ä…ú;•ŠêUà¡Î3²`™xn¦7t- ³ÔÃü°%›ž ä‘’ë‚÷}+¯Pv{”üjäz•Mhènê:]LÓU •Ú¶h)˜ƒkÏYÌž»ôOÒ Ñ~`4Áå g Žæ{ݳA èû,š.Ç7Ó˜¦Kp 1£üÞâÌÚ¾!õî{×X‹ìÃm(Ì6â¢0û  ³{R˜yè‰Ý‹AÜ¡í“ùpI윟&_Èx:{øò—‚âyÿ×DóZ±âx²™·àpAé3x] ¢»À–ã!L yÜÚÂ,'g-–#ß?Ñ2ìé4óù³OŠãW–4.«ÃËKÕîS°»[5ú̳·ïŸÙó¢qƒ}æT î[k{^@{ðÈ1¬E0þËk‡ïmê+ßž!' €á«-ô(/ü0»‚Aˆ•¶Dæ@(ÌXÇŽô¨ ÔÄük{@‘tüÔÌfŒÉšIB[F µ†à8ñUƒSIAc.¼ì=¾ÂvΆ;ð¶'éµ)T’zøJ¾&&OÄeê)rªYØäF'ùŒÇ/ž[P;c—çöž…¹Í ÿc&:>¹5É®³‹™½„ ÌÆ©ù3wgö¼Ïû[âD×mF;3æ§Ë (YœKcoh¶FpëÇÑ¡Œa>¾˜ÃqøõlNuÞûÛ–ÎçNNàƒàD~â¸Ôêl^›±˜Ä t]j–'œé9âwézò!òƒÅ5, 8ä]IžŽ¢üÔ!ÿñ‡’I÷Óh›QëȦ‰Pa¾ã{g áòwo'Q—ìÂú Açh÷3_Ü%ñ¥¡qŽó~±³ g¡$äFé´7aá¶~{ãì3v™{Cáa—7/‰'~<#|>íåè^ÛÄõÅ€Œ(×øú#åìÒ; Ë$kSqÊ)™ÑÓÏž[Sd@[¢fNSšÁŸÇ&üË€áòÃ'ÂñNsL]ñ®›¡ØÓõb* QFg­Œ?Ç‹Økö9ËN;éóxŽRã'˜§.—û ^‡úN×õ²j¯œl8sÆ…m8ɳ¼1¾Ô`|ŸÞ5íqñÅÎþ¤ì|°#´7&ÞËP'à}ÈÛeO“DÔ ìééhU\£ùdáHI/”•ï…ëZ"|ú'Hƒ—¤Æ†ÕU ò|ü°/,ä€p—‚AK__ção“ÙÃ"±˜2Úø¤¢sÏÑ“ôˆ—·žžÀ=Oi”þ´íæô0’lR£Õ‚sªX7‚•$ã 8†,¥'z.®G·TJ ‡?O)ã?Ln'Ÿ¸ 'áΞ.$q\$œV "Ö„¤ÎîAB„{À}o9À??ÏRŒ8–g‡üžÏ슕Ùē熤äEpöÄ}-6ú°á¾OokÓH5•©‰þb’¢ó(/AµÊd†5ÌFg{uýH¨]òI?i\gþUFvõ‚&ÊYhĸÖ2– U”å–± §ˆ•<åP™”'œ²¨qÛa’©ëÝélº-±Ê‘Ð öOp.¦²,ó£ðŒhÂöƒ¦1ºwÊHåáq§~dWHoÉbCc"fY$÷ôód:¹ÿÁ~¡çÛ)˜Sƒýê Þhl›Ã|æöyÄ­¯îŽ\w§Üº=xŠ{p–]Ul©Ãþ©a¥ÇîsY2W“€äÕH(xÑñ…¸¦qÈȱ-ºJº›f£ÖC*Y;ѱɞ •ÈýIy DÜÏGÓâ¨Ó È´Ç.}Dø±?sZ|… ‰aš—wý¡Ç£X'Éúëf¦<`Åc+ÎÐL„ò-£"þ-Œù Ê#e8uçTQ5nOç\ NDie²K•G¦ÍUJ®ñì¬b<;%g§¼ñì¤Ç³“m<=·IÌC³j&ï˜|‘Ð…Î3Þ¶ ›ŽW²¥®fWPvjv…Ž/ 5/-`qõÇ‹{8Âȼ•–¬ã»pgâ딉JdüÝÿÉ‚jå òbñ¸Ÿ\žç*"÷<­TÎþú¿‡ì†øœ8îºd¢xäA†íPÞDÑ[X˜e1î:˶ÏÓU¶ã3I¿Þ»Úµ[™ ]A°¨#Æ3Ê)^QŸ›éø)¹¶$}zãöö6CÃ(`ø;Ø,óìì=7Mþà eŠ ÞSNØTÛP«ßnŸEOÌj[³‘¡y6u5`ÌIJ@¥ƒæœš$‘Qj†Õ”H›(åré¥XOÂ&±æ4ÅFøÇ]>uWŽ]àY¯ñøŒæ~´—Ùûã’Œë}Ã~Ör$ ÇÕ£7úüá:vMÁÎV\ÏFA¯ka Ó]ãadñß‘¯X7Э”®)ŽÖ²M;“Z”åuxÓ·¾»Žó°øÂ9 3BÁi 0Ö¥zSðMÞ˾Á —Øö3øœÌ*ãÌ‹UoWy.DF=™ÍŒd‚b-©+¨þUEO‹e0\T úJhKK4Ö’1¬8›TÄ.ÖrZ(¡¬ l×qä_Fìp;OAã.ÑN¾†ü[¡r…È䂺K’öN¾²8ë—Ùö2ó 3”‰Ñ³ îm=)O)# 5O¾¥{ßâËBÂÜYHYÏ=Bf·*g_r9ÛQh|è2`4•ƾ͉É4 kà°±„è:«±ù“Œ*›A(ön/’“ m›V}|Ç|r¾Ëɉ€„$¼{’(B*çn´-Ïòå:ì3œv¸-ŽÐ2)Ex¸p~t4–Òó¸CÁqÄyHÆŒÒð.S#èþ0½Y0,n¾¶Â øxyŠ v‚Á,‘aR·LÇ-ü:¸ʼn!Q8³I@X€QÀÁÉ EÙÎk%l»˜¤ #»vÈ`f× ­ áeì‘ÝÉÌ(‘M<.Í|za)JaˆFx„Yc<ר”{-–9œ›Éh¨-n¥ 3ùTYâ¨4M´1å’Üe.É¡{Õ™‡ÃöÂ<¾$ìBp;pÖû`9©rž%¼\ïNÉ®e ‡øË20aöø´rÎ-¸zxhÌ7§O3ñódŠ0YYv¹ýšÝÎ’É‹‚pé(eÉÞÛ¬« ZIˆš+ÉmTóÏÖdgBó¢&:aÀ¥žß$À|Ï&SÎ2<ÞJ‚„ ‰5îÒÇßË96Êuf‹|(‚˜×ñyÁN™Þâ1“„Fë©êg9j’C!É'¶3ªýpºé•˜û Ý åK·ü”+ÃÛYÏÂ7/b륃Gë¥Ü‡€¡;+)x^ø¢äóÂC²M×vAî./ø†²àÙ²E¾0Z9,¢ÈǬœ!žÈ¡“ÖvÌ“ít†ÍùF]ÂETë/­¹¢¡ådkgàÂαªÕ•è{!ˆy%äÚz«EUâ¢:¨Ë£ñÕAæEÖÎ'»¨«EõØ‹ê°.Æ\T‡™UX;×lQ9Õфؗð%ìqÜmXSÐ6"s‚ÙFŒ%ÿ¸—N1 0ØÅSÌ~È—bvkk‹t¦<#d&Œ“Ì*È”F×å÷”I&ï¥Ì´oÏÄÏi¯^ý7-³›!KÖýŒŒîÉ-ýó>í<ÙA•ÑJä¶K$P}.Mìi;EnBâaLbã›àÂXGºvž¸Wmy#Nâ[Û`Éc66匽Œ;¤«¤ý³¸ð8ý¢þ!*”¾¤z~ÜÙÙÙ”’ ‡Ð±¿<:G¿RÞwЦÞ¦šá˜ýÚ?¾ï'§—ð˜®#6™â‡~΄ÇÎü¿ÿ”“Ø™ÿ·ÑˆéwÌÿ{°{x¸¿ùUþßU\lnWù«ü¿ìªòÿVù«ü¿Uþß*ÿo•ÿ·Êÿ[åÿ­òÿVù•rªü¿Uþ_K!ù]%|¤U|lwjΓKìzøHu‡Kë,©„©G‡Ž9ö9u0úŒïÇnPñë‘ô«¡G#;±;§îÇ×m%h¤hãÐÚ}Så:Vsó—X•ô˜_UÒã*éq•ô8&£Jz\%=®’WI«¤ÇRaUÒã*éq•ô¸Jz\%=N7¥Jz¬öG•ôX-°Jz\%=æ½V%=WI«¤ÇUÒcÍœ¦4£JzLª¤ÇUÒcóU%=v^UÒã*éq•ôØKf•ô¸Jz,_UÒcçU%=6\UÒã*éq•ô¸Jz,®*éq•ô¸Jz,]UÒã*é±áª’WI«¤ÇUÒc!å$=¦ó›ùš½¾Â>ú^’+ ~ü/1Ùû\XGšªª¤!pUù—«üË®–Tù—«üËUþå*ÿr•¯*ÿr•¹Ê¿\å_~ù—³¨§9uÓ_&s³û¡€Î’ì©Êmy¥Ê]e€¶^O>ïp•z]F¢Ê-]UhÛõ´¹Uè*4¿ª Ðþ6V « ÐaW•:àª2@“*t•:.d »ª ÐUè—« ÐUè'W³Êm¾Ö-¯¦û¡*ôZ-ª*´ùzº‹ªÊý苪Êm¾ÖmQ…d€¶hË)/¸KWä‹©ødmÛªg 9àbaaá5ìâÜîC‹1—îçêáçõóó;ôeqåsÙñ‹9çvËËãW‚+žÕù.ģν€Â½èœQÉNÿ9»ÏUÚuÎæ;7ýH ÿø ¶ú†Kžu®u¾Ø2«3ÑIÎQ°ÎΡ#éÇ×o_æß?.¾ýóOÐîœ×¥Æ¹Ê¡ÏÀ#§õøë5ÂŽ²eã;ì4:Ò™ÇÒçAgÎŒÎs™Ýæìsù<挾ràƒÿg8Ì àJÒÓ‹>I5²A¶¶¶HgJÇý¯ÁàÚz§5û€ '§’DÜÛ.¿§Ì>8r¿SUüñœ–ñêÕÓâ¯çãÑbL ‡¼tTW¾¥Þ§!†:èV«ÅAÞi»DÕçÒÄž¶Sä&$Æ$6.Ñd &PcéÚ!ÉŸÖò»EG·OŸ›ðÎëF´#ª<Ъ¤ý³‰áqúEýCT(}Iõ6ü¸³³³ÓFÇþòè@ÎýJyßA›:x b™õO†ïûÉyÇÉôV$›LñC”Ùüë¿2\·£¯£ë¿·›;Ñs°¶tº¯ŸŸuºÏ7óo_Æ;Ÿ³e½véu°·‡Ÿ‡ø¹±¿ww÷÷ö¢ÿjÐk·yíDÿµÛØßoîþÙ-¥vÏõ°¸Í ù/Ê᣻ÙÂö}ìs9ݱV›5ƒ÷í>åØî ›OtÓg)~)#Öý¡u&l¹‚CÊÐé¯î+xöÕ:ÞKÕLÂÌ<ð­ô%€žø´WÁö6el½ÖÑ[–t>{¸ŸLǤù"À´ÙÜilpÓÂrÞO'ßvã|<Ž‹ñ¸žüv4ºP¦;ŒH{<ÿ{|;þçƒÝÖkrv³³Ã éξÇ)¢s:^‹;;dp=º¥©5ÿòñz ú_’g¯;t“›Ä:ßït‡'¯Oúò}ìTÖõl#¥]sµ(( ‡$&%¡©5Ÿ~’$R:oÅ–.îÛ±ž0)äÇ „µø£0ÄW:úük›}Ú¾<Û—*ðÏä'{—üY˜kŒØ¤—àkïa@žðõ»ØïlÄñ1¹™Oè¬SlÁÌá ÙæPOô­¸§¥òD‰¬ ©M¦_î7ã!ÁÕÉÍ„¾ˆ“¶Ö…›²Ù}(åÂżºt+ÿ4†4?7(*“é—BÎ…»!k°Ûü\N nÿûŠüüÃk"pn‘.KÊ þ?›j =vHòROˆÛ:ô×”WR œ#@鼓º]N ï>ÍÒÍMÒ‰àa 6¨ >b÷£ $ù›LYê¿1ºÀdå`ó0U¾©£»Z''uI^{<]òfWTE—e¦¦$(û¥Ï©Ùœ¦Òq Á ·´Ù”Á$¨ç[bå'ÀL×ÒðØÒÏ<c™p´ ó¦ÅÅz:`r“éõíÃMÒÝtúÓŠÈçÉ톟ieä¿_qJhAÃmŸØ<¦+ç‡Tù ŠÅø¦Žyªx^‘]Ñ(dŽÚJ‘K<½}aU“éÍäšöÙ‚|ÿkL)œsW²ñ?ºrab³¾…Ú“)HÙkÀ¸Ýþ™Ü=Üñ~û:žßMîù耋+f"Í X5©¤]ßgó¿ÙÌ[!–"ÜZPák̆Í4?)™[ðßî€æ}•²Òœ¯¶³L…x5k­É«—ùk^ŸóÕAx­‘ÜGòžÍ»‚QB'\­YGzxÁ}^rAR/QÕ1¼lç†JƒPÊò¯‡éä^ÎÛÊØŸé¯Ê¸d«7šîÆ÷T¸K$ƒÔ9¾$l»^«ß:?Ê’ ËÑóŠ4vvOžqÏVä@ð§Kb;¦«`ö”Ýp$m[ ‚'hA‡îr ϳ–¨©È>¢KÏÐ)“É®nùSÖ¹çN›HëÜs‚õ @>úr¤ÐqÜ cc¦r,Ë´ Ì›’~}«)^sC*­sOý:K-,‹nìª{qzZg>6a‘g[ JÆÛFb¥Dçª3¦|œ_Ÿ0o-— K·}Þ/žÛ:±…q^fÚg1Ë%üî1™ÿèðOJêQ÷¸ûþÜAŠðÞW¼Cøg‡^‡ žA챋$4@øíâ#ú¬BíCšT†i!òšïŒÎó{7á»H-ÕURK™Æ2óððûþaïWaHæËË´(Nþ¡elÀHÞw;C9œ†O·³ë¿å5xq~~ÑU:é9uÄ?E‘@\Ét½‰D‰/&:ŽG÷#²¸§zÊqܶˆz±õKKk¼|ñ¢ÿ¾„_îâ¿ aá6½ÊøéscÈ‚¦\o ·Nˆ&8Ÿ;^`¼*®"ŽË‚ÐÏëp|ýp?úD5¥Ò~!Ñt¨ð4ÝNþƒ¡O´à>¨†xÈB¿Ìî„lµ%;Ø k¤ñºzCDUwø¹– gbñßxT“ü}|A Ò—.뽩V#,^pß㾠Þø$á>¨£Å­‚ƒW®úI»üø8‘|¶$m tÎ"©¢’Ïh‡SŸªÙ´{¡Sï&ST椟eËILF·-9ÈãN.ù½#5Œ› n7qôVnEuþjâ‡i̶Øv‹¸zžÈQdq”NŸñ mn%Ù"zr¨ãn]õ”‰³Ñu¥h7”@È+U”åýß…ô™éƒuñBCvòd0Lâ—kRN§´É‰[élzûC²±W7ñÔkþ %ŒýFSkGþ¯/ÈHIU=ø{ò•›Êöó€vý!T/™upȧni"P¦…™MëÇ…}yÓŽ:ÔHfoˆPѳá<º½N6»_É×DÑAßa¶Ñá46"2bCÞ¼ø•s-‘§ˆv ¥‰ÕÄåQüÉâqì “9QæuH˜LE ?u6§Üd QÙ“)Š”t‘”â 3½çYÃ4 ž‘Ü—…s¯HÌ›%Z àŒ2$^Çs$aL`ÉVgˆØvc "ë$¡×ì*¹áx<¡lzÁ3áA„ñ4•4úÁŸ/eëm›ÊxÿÏgtÉaÝÝA(<³¡¦-«÷3¥{¶?ŒîYÓµ9ß?ÌÁÜ{=›Óííþö‡©'Ù²3÷"ö4,Ø“wpšjséép€æãn2J!þB´{_›øyº:"“ƒ‰Ù´YL4Œï tzkÃ):´ÓLyïíg'§u>c½0­DVg”¶[ãô·±U€   P(òqêSÙЕ&ÊÄLùÁè°áëÙשiÝ‚mL®6þ«E›I‘‚åA „d¹:@Å8üžÐ«;–x} ÜÀrÔåpZ$¼eTÅ󶙬…‰ðlâ5n.1”ÌŸàFö‚ÉŒûî½dÌúp ¦§y Zúé®ùi´i[cV}¬)yÊë9Ïñ%Š;Î%oÏè§'ÇGLÔÆŒå.Þ1îÛ#zJ»×5YÐ_A*±G1‰8æöŸ~pk© ¼ :$óñÃbìGÒI€ îPÕèÛdö°À»6C<ŠN BÇf6°–®Ó‚&R t7›T )ãx£›ãð×ÙwÉŒ§”‹ëÕEˆsjƒ•¯±¢Ä™Å\„÷Q:…<·QÅ«ð1lv™AFû!#¤è"TW^Ñ>îäìãNá>îëãNº;¡}l½aê4– ºÃÏý1Ž|,ãd´KãqŠuHð.-ZÒv”CÚÔ• Ü"6º6 OÚ?4øF?Óõj‰Jo绣i F·­?ÏHù† Ýáy©èNÐMŸÖÅKfNHcÓH>†¬öòCd JÍÆ­».= >Ú8ò´Ïì#h²Z[b$¼fþ×f³]•PCÁ_ØJTžyöž+q“ÿ0œÕÄäÂŽ\¤sáÉØU-6¸·/=]MTœFè1{Šc! >HH3º¼s<ë,f}¥N³‰)õa¥ð]™Ñ±;r¦ëÕO ä´»ÁÅÏ Ö€íD`Ó&¯˜† ž«(S­k´xÆ> —€æM&TF¼°e™-}¡›y4¢¯ÝÏGÓ„YÄs0_ÚñK™^IòË “‡ç½+ îLé KÙ!Û‘5\×hÃ/¯Y%j”µ˜l¢¨Ûd™ž’«¤ñzº8Pæû—bϾËe5nAv0¦\0D„4=ì–Ê”@zÛ`#°ãÑ“¥ŒD&ï¦ÉÙ6¶>€×±ÉÇO›ü$½E+0×ÜjÖÕO›ü„ÇIK‰¼6dòDÞ5€Ž«JWèl•åd3æxh!b3~æ¡Ûr:$‘b}3XÜ=v≯sd²ˆíV™}mÃ=@–8M¹£ÊÆû6Sà_J*øaŸ§‚ßx/|zyÇÿþþ’t—A‘ÓȪ!Ä~(Óê:§ó¡ò( Fsè9ÛC2˜ó+4ç}nTUßà¤O üT?½a‘ö9ÑßAƒSdL÷ì¨ïŒã¢¢›ó=~ë—D|/Ûà@Ó­d+¬Ý—èžÍêbûäöe¿–€Ü…˜\¡næPfGà¬ú¥±ÝWa\©°Ý ôtlwßN¤üO¦wûûæâúŸ'SŒÑ ãû‡5]ûJÖyøQ!†æg´’mÑ÷={¿> (¾Y“¨0ñ-`âgIxÿtm¡%c⟄çÇL›Sòd¦_% ~¦åí_ª=!{%˜“+T{G¥easKV ܯe)…gt/ˆNœ—ÚÌd®=èö/‡<_ÊD Ï’þ¨5™k?Q9tøR&jxæñG¨È|Ô‰jÙå»ûö°×3;„mê?¾Hc°ðÃÊ0ØUät ÷›èðÞ¤©pÕðç&<¨LWû…¡h˜:) °rª4Ñ‘©q| G‡Ð§`ø>vk\mGBůGÒ¯ŒŽŸo×¼Xèn ðV´ú 0]î' 0·À¸j*äô 9½BN¯Ó+äô 9½BN¯Ó+ätõªÓ+ätR!§WÈér:6¢BNW® 9½BN¯ÓÍW…œ^!§WÈéj‡TÈérzúªÓ+äô 9}ÈéÆòé³Bõw‡dsGµZgÓ¹MYÇJ»\B…Ò^¡´W(í®nªPÚMu–‡Ò?ôd ÚÏ¿¾ÂîçS¯~Zìµ ìÝtU`ïØ{öž¾*°÷ ì]Ø»«éØ»^yö¾î`ït@ZÜ"qfeáéÄÛ^qöK d.ÿ¤PÌ+pùµ– \Þ|Uàò)Ê+pù \^®°—¯Àå+py¾ \ÞvUàò¸¼(þiÚ^+pyÓ*py¬¬—’Pȸ|.o«t­&j._ËÛ*]«‰Z˯\Þ(ö§Â/]ΉšK, ±¶Ð0Ù.Ë56[i»X[h“µN†ê(¿:Ê_ÍQ~øY¾í0?Ó³;fIþ…Oüý'ýcå„?Ðctu©M®Bb: {±7ØjñYÉÏ€‚çþëxðÿ+žüÏ¿~û2ÿþqñퟔá)ûøß6x„¦K„dÇ~9£¿° ìÀQké3òä¤.qÔRƒé ÐÎ6éP¸Í™ú1­´Î3Ô*ü¡:ª­Žj WuT[ÕVGµÕQ­¶ŒGµæ{uâX9f;rܯŽ͗Ϥ÷3Ÿ9þ‡Žtj›®êÐQ»ÖÂDþÄN«cÇ_÷Øñ‰;V¿îÁã;y¬ŽáîÏ‘×ZΗp‚mÉUWä3‘ œ´~‡S‘ÙjÊ*Cv•!û§¿\ù¿ïËIÿíÉÿ½×Øß=ø/LÿMïÒ? ÿ÷þÞn•ÿ{[EéüßÃðüßxÔáJâ,åúæ8;¿`>ïŸ'“·š¼[I̽ô„ÜCn¾¼>ÄY·« Øä'΀­§¾®2OçÊ<5ûó^œú9ß{’7?NæÇϤl-Ê„ÂëìäW\eYÆë±²,G%eY>(˜9S"d-rú…,©-)1Ù1é\ ¿6òÆ!È91Wrœùø\ÎzŒþiöRÌ9ŽH_lI\œ´ºÒÓ[Ç2 ǰkn.9🵹MÉ}[Ha'%æí¾½nÈœk~ÜAEᔼG˜7ÉÌ ™uí#Š’e}àóCž™wÈ3óÒÏ}öéÉÈK(y_ÏYF^L¬›5#ï`HEòðV)xã7—”‚w·ÎÿkÐ?Drp9¿®}°Yâ]Ór°&Äe/æÎk;ü¹óÚ&Äî)©a%ÇwvYÅéÅ–Gr,°,²à½+ß’RÌBÍò­Ò²É6šë“N–Ò’ªÛ™˜uYVq'ç9VÝYj_¤²Ô6vµ®·¬>ÈC44¶~#IÊÙ;É0ð÷tö}ª¦¼«Þ²d•8y¢mhqs[šIúq“;#¬Ü½’º% ¢g…ýsƒ™‰|*j4C\lm±ލcvX1L~ˆ¿Ì9br+@û³¥‰%òÂIݰ¤0Ól[ÞUràYšRgW0T{|œZu‹oˆñ­¦x "tΙ¯ºáus3”YyQRž¥4<뵬¸ÃíF$/9ºàn&£/3"ãågJ¥ø05¯È…en!7äéªÁ·Yᎇ‰¯²É9óu’ƒš›·Žoù–Ž3ûÿ¡ÜøÍî–q>ž+/Üî³h ´ãàÅi|`E€Zlñ!`eƒœY‹ äÚ‘y`ãü¾ˆwï bìCJ\Ê·£8ý6ä«„4°`óü4âKR oÀÖ`(Fô•¹ø}·›5L[–•§žù!yIYW«Æå®?eÅÍÑUh棭¹ÕÝŽD©V­l7Ü ±ûHð÷£g"’Í[­L}ØÚw-Þ\O×كͻó™ ÿ žs2eóüéÙ̶š*8µ‚½ ©u®œÎjý"Gjlz±žƒ¬1§eJ&¨9iT»g5EE®m¸ê²ŒRº/^æÈðÍHlù¼÷ôŸôæ^“–޹5êª1<ãÉ:ÎCR!÷¸á©$/8·~uɶÍC'Y.zI²òüåJ5NÊê8C®p“¨-‘’½ZëIœWpßÃÊ“à÷ÀQLò"‡r¢Ùšmyš‡f<ò€ì×éÎ1ïM\´ŒL»¾Ìמ´×ÉÒ"EØã’z$·N™da’ æ"U‘“ “-YÂLdW33Q2‘“ŠöBLM NEÊC«†")ôˆÆ¢¢ÓDÔöé"ìYÚ×ÝŒ_0Œÿ¨îJ­ZhãQÂV]éT‡"jPÚìpðˆð ÍDò|‘Q»IçOµ˜“LÝìíÙS‘B>F°LÛÕè†>ùÏ|©¶ çt®Y÷2V›[`·€Œ¦\©vë—YúÌ[›¸Õ(.f…µÀ°1F-F`¢ 'FxÑD2qÁ†æ’NK7>ªB™·%½¨%y¨¯Œ`Q|¨}„‚E-«œ•Ôˆÿ©‰[T™òAdÞŒ¦Àh#:¿—‡!s·€v8Úî˜S­ –̹À’©³±ßñwÇd‘ž¿ ǤP4G⦔ô½í«çaƲɀOs6ˆeõ1¹C”ÃâßtbŒäfN•¡9‰c™©M½´·„žjnÝM¦µózwóùž³Û´2Rݨ÷Ö¤à»ÑdJ'¡V†¨ ÂJ0z„uôñöÍøóäzV ¢vþÚw{Ý} ¾²oínÄi9g¯ål:·6'€Mçá€Mça€MóÙwéµó' <Å'uü)º÷æn ¸XY[3š3`í iŽÎÎÕö$„¤ÜHOܪvîVµ™Tt©5M~›{’1±€¿ få"Öl R ¸Ø:Tl.úĄެQ1¨{¹)¨o‡÷WÛÓ_ vŽ9»mQüeyÅ_Ïg‹Å ¤¯3ÐÓ»À®Â5[6®Ù9"~1¬¤~¶yÁ=A|§c<ˆsè²óxÞ&Êåho)([LÎle§^ͦÆ^oå ´™ÀÔ ¥µ©íôâ»9ÛŠÒsè»6פJ µ†½¿™4gP~±Ä9[a¦yBž‘=ñ~Œ1D\cÿIbă_k¼p)·ƒó³AçOWAì 8‹Ýw©«è)<üã" tÝ.¾E³?$»Ý, q6¤±ôíPì·#ú2Ø_àÈD ¿µcG°MtØv¥»@' X³6½Aƒ<×ã3ñØË9ûƒªËôAZBÿëžwxÚ=0”]€¢Í}¶nò>û#wû „šcÛ“šcúç-öÑæG,ÖJCÁ-åÍPyNt7ÌÑI?ßõ‡ˆîñÏCa·£½¹_wP™ýM ¾q8þÖºào±±Å‰ÙæÍ(Ã-2øy~Cº9Êoо&ÿÜçŸÊÍ‘L[Óý`è—¬Xoô§:\u‚y¶qYÀ(3R < \ç¢|8Væ£Á5^¾xQ‡_¿/wñßFV€7öŒä{‰ÞU#¸›4˜¥„oÁ‹ñX:ûÏ‹ w6x$d8ö4e¨,êš'þº˜ÜRb%o”a¬ ÌFÆEæ=7Ÿej|…¾†¥n’mس“¿·Ù¯Ïñ@–—íB¥ÃSS¶F1h)«PîÐAç‚A,\¸áìàÐE³Ssœ¿Æ£:ÂTWÃÁ]Vœ ªò•TJ·„s~.±zÝ®ðþbÇô\Û£¿¥=űåhÞŒ´·ht<òKŠÈÈFžwnGÈ;W=uä>y¥Ùðø 6 ÜN·BAú>.äZÙ:D ëa¨V®E±¡æóJnÀ“š¢&ÊkÀHkìO×8¹›Ž¤Ùì96£Ò±Xˆðç3’äME i,xS!á›[èßò|‰;ÇßlûÓùV÷ÙÞü ‹dG™[ÄåŸ[œX[A/øcÐCÏøWp³ª‰FnnmE&‡T"™;„$¡œ(fÚc9é…¢'†•b‘€nBåàgüUË;,"bÀEŒ/ÆÑ0·%e"!á|„*œ8ÒǨÆffŒ‡£ÞL_ 3µXl?G ›ŸÞ¢¼ÎÄ_»X£4ø¿Ã·ŠC™Äzìq…q3šJ4±=‚]y²D“$ Ùi£_¨Ö?x”' f“|…å©f 2 õ‚J_ƒ‚’¾2…Sb—¬tW0»8Îéå³ÉâžJpdþ×Â=A÷œƒ:=÷;Ä: %! O¿Í.l¶/on\1G Ì[‹ßg{ïàLñ‘âòd2%ƒ.\¨Ï“o ©¨ã6f~À­^b–ÊÎçìS ÷ð-B,îõª»Ø»|o …2oV¿wQ`à^0 ~ÏoÀpw‡D,’*hyœ³¥ÁJó­¥´Í+ãZi9üÕËC±æ¤÷ƒgAÐ CÍ(7·ÅÁ§ÚÆ+æ\õÚG™ ÓÔÂFñé® U¹_Káýú+4Çba«äߌãbèƒm.²Äí JhVÆ"Rê£íb.æ×³ù||}®oxBÌ|„½ËRß&q¿+|RYÑpÍuàà-iAea«hÌ3N~ÆW²ÐÁ׊LEŽíP2 a¬Š°ÉãþASA@íRQ\ÄÙp§ëBN]°O€BB×`à¾@Ô«WÜš×ê³Ne•qÉZPjbån„êîeðFTlýœo#&ÆßSWÀ£õ¶´m„nˆ¾ Éò"lÂ5ÄÑu˜8RWü¥"@ñ屺/+²C<ÙBɈ¹2žOòÁo‚B$µeIáÍ®D<‹4ȃørãE$Õ+¡F8et@K½Ä=Ó3î*Ýk(Ôè„Vk0Ý[àMðI´ˆ¹cGñ€-±Mñ³g}O•õÞÍX‘Êo@A\+W¹“¥Ób ôyû %«óg`À‡XL(¸ÿmuŸ[‹’N‹¸o!º¸°:B`¹Ÿ?ƒnÄ󞬸šØxnïļyi*û¿©Ø†tWÿ$mÇV_Z¦Ø ž¯x¸FZd‹\’m‚¦=Ð1ÂxöÛ± ­@òpf“ÿŒ²½ëæT·Ži-$žíš–€€½éF@ƒ'jUÕ× Žg¡¨Ü•įð…êyVõîRRïXb— 2‹¢ÓÐÒÜÊ™‰°Ã¡gÍ-Úå∅Õ8WNSZóñ-‹Æg癓)Y|3áÓIù Ž|нLpp1æTïZg•Œ ÀEŨ&Æšˆ™Ã8lH÷ñQlýžÔú¤Ñœ„·š]Mœy9k+1tap&é\ù\ûL[)s©¡ÊòUÌ/³-u“ !Á5Hû¿ +„ÀrŸolµÂG·DºGú§á¾'mBleÄ©é`.jBçLCFåÓªñéXŒ¢j­’ƒx&ŸÉ?àëË=Ãç³ïŒ pø€ÔØÉòæV­û,òÊA2(ŽÑn–a9P4Sãê(<&Y4yÏ dCý0—‘A³dÞ ~5ëäÀ.æ­`qÀdSæ†~Kl¬. ð àžm"Íf_•Ë›ÉçÏã9œA¢óp ˆ3‰Aa‚ÎÛÃÛ3´{ÙmL(Q®O±Šh Ä©,XßaJ÷Òû{{>þ6fjp¢7XßÕô ÛƒYõ=’Fèv.iMë;tÚ ƒ0¾gîÚГÐ%£›ñ¿ÀN€±$.rÙk’ÞÈ=¨(ÜÞø~^¦‹Ïí­X‚¶=[Ššæ*Ç ©…í*NuŽhÝ•ý,/Qê®JRêˆY¯ãNúžó¼ 'yV%ïÊ ä“Ógwªž^L PÑɺ êi¤¨ªFñéЯ­v‚Óá‘‚DO¼( ³‘¬jY†æF|ÊY†þF ªpĥŽÙ~_æQäHF]Ž$óô¥G#4:­X§R~.e2=g?Ý2"†®§ÆnêÉ¡áé0z×«å‘ Šž^rÊ\eEffä“Y*³>gÎ{°F2’ínJBÒ¥§(ÇÜR¨ý×,…x;•!é¹Í×W:JÛÂ8Ì]}J…?Ïâ×ÝèŸZ¿XŸÎÿZÔá7øËÏ@~ÙÌmE£Ë@wE6Ó b±&BX·c·QæÐ2p¤ÃaWÌY´OÆ‹c¯[#LL—Z€ $c!gµ• t±ÛJ<¾ä©&:…¯§æÈ-xVd²áËÃÆ i!ýFs9Â`£Y¦4X’8XLÜ ”ý}¾Öç™Eº½Ÿ@¤;ö‰tÇËé„Ï‚õݛɷÉ͘ç`˜þûa<2^¹¶Åym‹z®¢Øm%­»(l®;F—/Œf`þ+\Ÿàʘíþ“•÷~ÙÑç@‚eǃJv\¢ìx$;æ–—$;þt²ã‹ÒdÇK’_ß Úø‰š;ýœ ñsØÞcŸçN@ü^›Î‚:ÓuøÇ%~wü3âŸûîr†ýSö œ ´zõòp¡¨GB´ï–hß]_<{ë«È6è›§€¨ ÿœl¸^`LÞÀ‡¯6žZ~¯ýHhùAˆõàù—)àyþVŒîÎþæl¼Á}uDÍÔgMÃ8SìiîÔ$ÿ,*bÚXÈiüCm`WŽÒ4 ?{59e;ža}¨@ë ¹âêJ¸`Þ†./ÖwSN—Ip˜¥ã>è¢ÛÉ襳i*%ß-DîNîǨOÕ]*6È!eOkÜS] PÄ Â–#Í ¾y˜ÞP¾ ,>PÛânt{ËPJ©“>KEÒxc¡!éü­6ÞÇ3?½m“9]¯P'H¬0cÞop»™üãÙFªRvhÛá÷M°p áJ+J™øžY<¡Çp“‰ÿpûé6¯[LØ·ÇÏ¢ítâbõÒ‘íª¹­ÝŽ=uR¿37D1Û¹0n<†?žIgí³éíÉ´É ØÄDxs[²ž€½d9Öf©^ì‰ÀüdV^ÊךuÀNÞ‚$‹$òS h6c³ÖL*x°PjàÄ^ tâßg';{–¦°÷ÞòÙp^Øn4ÇÑ5¼PÈ@¢tUËʡե̠ß'÷q9ÙÀ—pÑ\ ï»øÝ󣋖/öF®ÉáÜÊ÷BQ³‹¿ñÅôI¡ÐzË…¤:a¹ð‰'Ž©íyŽQÊOаþ:…\Eåù8Vþ hÕ/Øš´àdeæ]Ää—ëÙ͘åtö TÊ·ÔíŠbô.e½+y—2B0.ó*ÿóY’Ìv;^bÆ»Vˆo`µ¬`õ)Qx¿`N阚¯Ü!5qµí±üéìGs1ùôƒŽâ×`ÿ4¢ …þg<ŸoÀ`ȳ+×­ã f¯h d-«ÓLè–ÆŸf›ï Lò‚›ô3±IÛ^dK tpñ.X¬Øá#%2ß„1]@Ä6ò¬ƒžŽ.Ÿ\ìúÏ3V-Ù&@*#^G!:á ÜÊ¡›`n7ì¾·NÇÛ¤çr·¯®ÇŸ‰BB0Bà m6qM+{ûÖ``­óÎÎJìþЧ1ˆ¶©\«œJQèÊ#M0“ºr¨j(@a˜;ºg{•pæãû‡9œ÷r úÛ LXó"‹G ;Á¡Ì}Ü„Wg·„ïò›¡Zžp/0ñ.$±³Ï<·Gû`ômœfÒ©¤Ê3κ­zÓ*·$ŒÛ|ŸZsƒª´ÑU@ÁÙ¹5}âjüLzãtÃñ;óÖÞéºÞÁãrí•“ gg˜‘<Ëã |`ŠßEñc;ö£ìÄR Ú_ô JØ"G._Ϧ7 X‘ÜA.}4Ÿ,ܘ]h…¹w‰˜GÕFvÎHjlà\…ÕóñÃb¼°„”cVúú:›Ì‰žÑƧ ]›žTÖsŒðÐ!æ1͹Œã9K6YѬÆÕò²‡rÚE„ª*éA®†1ÇŸ+£§”ñ¿&·“Oh“Y®?Ç ë;_Ÿð™Ø•äèz<·ÅÀÚÂ9 U¨›àÇJ bϱ|D×ÉvüiŒã¢j<‡-[vpÂÍ( `kžÛö1êt±…o±Á‚IðtЉ¸&GS2þ‡2†Ì㸣H a-B$\ SÇú¿{ñûð!qäs);¯"”HW¬²°N`Μ îJ[„²eJyÊ–%;¥ó)±[É‘¿¡j^LAh[cLŸWßáÊUˆ¬¹½½Í1’0p þçFg[gp þ~c뽊аÙó•‚SÓãñVLãè‚P›ðå,ì8$ã¼w(]A—z•Ρ$©]ŠŽOÐ.5øÞ¤Øªö©p*÷)ó91’ ¯‰ÓâNøþa<7fÝ$Ι»yñ9î¸nrž9­á¸Ùw’Ì.fVØsš’CŒÐö eHøý1:oÎèN"N¢a¨…ZÊôUä®bæcº<Œ,.2ñ‹^»´\š¡Ç®éܼŒOÐ-옼©7ñ®š‡{il$[^Z¯´›ôbdæ ÙƒD§$<†¿.g­ b-±Ô‚³-‰ÍTeš ÞG%²–ôú¥`Þ±¼Þ ø¡dVs§§a`gƒÃ‘gÜêtŽ·Ç›”g·íÚMÄì*žÛ¶œÄ¶b+8ΞÖÖšÓ6ÞK‚(Pãÿ™iHö,µ‰Þ’MÖZ«‚NÃFܘy6¤<ïþ¡Ê›—\Þ´ÅC¬òFB,23B6q ÈÞk5] g‘ª æ­nnž¶hšÌ¢Næb6V‚'+h ¯àÜÆ¥~Föjã*íméƒi3± sKeø˜Y4½ópR9d©E5_Z‹à¦x‘I½”EOoë•Íï@mŸõ)‘ø8rìáa])k<Â3‡Ã6~ÉE*vˆ£†¤`ÉxÕ &$q5)}ÃÙíy” «¦q™WÓ@ýùs“º\ö|º†÷üÒ}žLÒ‡3a‡« /; Ð6<%\§÷ðÓ¯Òt¢¨à[•qy°KÕVÜϾmØ}Ø`VÅB,޼…qEš“°›†wi¬¼Tžr%_ÖÓúS¸Æ¡Í¡GÒ¥$S#žÄÎL$ᎠlsñµN8:„~ÊTâH=.`ù,…N†#NfÈMm§\Á¹ÁÝ/¾yl9Ÿ'SŒ÷ ¶æì—¶”™%¿_Dt! cÞsކoÆ ·µçÿõŽäzøŒÙT–šīG°\kÌíg2åëÁ5œ©äΈ¿PSñ0Ö^wŸ™7ÄÞÙd u³Z5d?¶@3ŒÙ r(¬ —Vƒr"àc¸I$¨˜p³I¶¶îE ­[V³¼¾8$7ˆñ~ Ƈd›. xØ9ûЊb¬d‘iB1ÞÕPŒMh «A1n\¢ÀÝxR`Æ´$aˆEg)Óƒcã)UCn¸A‹EÕ5¢Öšú+&À\ùÎΙh8\ Ü’¤¼j§K-$Èr¯mY^ãË…ÿ<[ þóÞÞn„øÏÝæ~“>øÏ{»þó*.6UÓøÏþs…ÿüËã?_8ñŸ/*üç ÿ¹Â®ðŸ+üç ÿ¹ÂþéñŸ]ǸÏ/Ýåøñ£%Ìh]ž{ÄçR‘žSÏ*¸³‚ál—èRÀ΃ ò¼f{9âÛˆ×üS@5³ac¿;ÆÅ Ûloú£5®„q% ™>î ®00³ŠÈ,€—íŽ>JW^DfP.xÙQhuöˆÌ‘ù‚#2_"3~ö]€çø@§\(fC) óc¢0#LeÀÝ8s0ÿ:ˆÍ?3bóÏÎÜ\ 8sRŽ=ùLOXnDOB#ÔlÙ`xYæmGiIÕ-aÊ6é¬ELÙý¬˜²i4Ùf Mv_£ÙŒ#…Ó] *‘½XÉü—’Ø“G‚Ìð³ˆ;7ðlÈÙ@Wجf¶d€Ù4´,oÓ/ZÁ1I6ÇÝŒ²ÁmÙpc9$¬“~z9cínµ|44wZ›ÏNÍØÜÞ„f4à½äÄe ÀD ItA.jx‹{AE™nÛ=B`­þfp63†ÙXC^dUøX5wí äƒ £@~³»uÄXvÅÐYàÇ›³R×dÔqeßîWCÏ_Jy¥rO©‡39Zà˜¼lg‹ö²÷wÎVéAUáã²íiÅ~¶qIÍÝ#ÈÕ߯¥d+ü«1æ T<Ãe†/¶®Ø¯Ô´ÙŠ´pÀ È€Y`]˜€ö¹íBt„nðDA8€@3#f†ÿËŽý üŠúÇ6ù—ö™ ¼¿â`þP¶µdƒù»`þ$,?g9VŒ?Ÿµ ,ö%Ç$1nžpÊX}%õåDéã®ôÑ'ÃPÕÓøo>‘7é /(_QD¾p|™°øòñ%¡ªòl2uipg’ÐXUR*7è^)ˆ{p{ÁX{9€ö”½«4Êž4Ž~ô¼ŒÐybª¸yRÞ`ÖÌxyvÖ—ÔÚòñ½„îŽLw(Ñe€Ò)ˆt†Q ¥+ ‘.ŽÎoˆÎÅÜ þ\о™ˆÊÆ 3¡É¹Qã!ã²àÅ1ÛUŸ–ÃæSXq¡ác@q^”¸ qnȰ,ÐoÇ…÷­зœˆo~å.@Ì oó‚²É¨ ND6Áa8¶[µ$Vâ"è˜ ¶ò0.  ¯¥,µø¿„q\N>,„CBÄ5©~\Ñâ@k! ±( Àh«+ÂW(²Z)à¥cªÊN @j;É‚¬¡¨Gô—Ϊî÷ž’¯°(u/"ÚcE ¡=ÝHaøgå¿?qus¡žå aÕƒNIæV6¤‡ÙKrómU°rœ…£›)cò6)ËyÅ ,He®rŠ!„‹±ÇBöƒ”9§ˆyÌiÅñ¤p Æãš³¹+ÐØ… ñ*%¯ÚPÆaU‡S7¶Pä#|Ø„,&ƒ†”cÁæPÃB4µ€$·f@1g÷f–œ­bs>(1Ž˜";‡“DÌ}â†Ë„–8ìQ0нt°ã€xòby€¿‚@hì_A 4Ë–çKÕjDú¤¾BR}Ü·U«¥Az…ãy=2"³o=”O^/ÿr+݆ە¬}×Ú·šbÔ,³XÒÒ@—s¤]Ø[îA0¢n]Q·Øi»¹?äV!¼­l*4ªÊæ‚Âôgª<¿Ù*¢9U›séÌY¡µ\¸Z\èCiÛ?íã…—Ô Õ¶²\0Y9‰ÍL¥ø*Üd”õ"£ë ìê¥Ί#Té¿7LpV‘gÕ|pV0“2rXÕ¹²¯Tfª¿ ü,»ªhõÙ`«(IÐJ!Á¸U‰#Ù“À­ª®r.'þ×?倹ñ¿ö÷›» †ÿµØh4ÿë°Yá­äbK¾Âÿªð¿*ü¯Ìø_uÿªÇ0`X…Vá€U8`R1XÎW+°­ ¬Â«pÀÈã〹^ÿHßÿØî;äóÒÁÂè㽯û|™óé"‡Q€v;]qJñô)èáÝWB‘Fñë‘ôkFV‘ÅWF¿Y‘U`dYF?T‘U`dYFÆ® Œ,‚ ŒL¾*0² Œ¬#«ÀÈ~02úlG„bJVZýâ'_µŽ{]YÇ–{ð™zUÀgŽr*à³ ø¬>K]ð™|UÀg– +à³ ø¬>«€Ï*à3ÿTÀgð™ïª€Ï’«>«€Ï*à3vUÀgÚUŸUÀgð™¥×õz+à³ ø,U¬díaTîsœT8ižd®®ÂIs^NZ…“†W…“Vá¤U8iúUá¤U8iNZ…“¶Jœ´0ûÀ¥ëäE;ØÄŒJ£í°>Y2ñe+#-PµE1•…#¹* Ç2,á&›cú‘þñlví$Ф¨!Äjñ½3‡Þ¢_¿}™ÿ¸øöÏ?uBûl^—Zà*„>|œÖã¯×vÁ¦¾OnâHVÅ &ëh1©L&6Ú*“Ie2©L&•É$¤ÃHe2©L&ëa2ùåm&û•ÍÄo3yZF“'k5¡“1}åB—™6¾Øàå×_^/9Á­£-m|´ÿ%>8iýЧ@1†ZÀ¶R!ÕWHõ¿äåÂÿZü»ÿ}¯ypˆøï»ûôncðß÷÷£ ÿ}[Hiü÷^…ÿ^á¿ÿòøï='þ{oð!~¯pß+Ü÷ ÷½Â}OŠ)€ûn3u1pôÝØ|e…ÏZn(v{Ær+8ù N¾‚“'¿6œ<í' +‡Ëö2ÌXò½^lÁÚ'\éXñÖñ.Ã'~_ T¼¡KÄuï ûR®{ÏE]a\÷£‹Þ•ïn{ŽûÎ\—z^xwGA½à¾3M‡ ¼{û÷8¼{àÝåî;û캪d7²—ƒvÿh°î¤nÃo'ŽÉ‚Œ^9‚§û¬œ' ëÞû`Ý3à§ï•†ŸNwSxi‹ÞA·ç²¿Ï’ÁÕ›k®Þ|¢àêÝÁÕ£<àꩇ˜LJãÒͯ€Ážº+#tÑ5ÅÖI[ v¡DTPíPíQÕžjþšAµ?»žUñÜæFû«c¶w๟ ±½ €ëðl…Ù®—R*f;¨ô5f¢ÛVCŽ7l8í_§!郀Ú+ðtõâ[üîÏžÞ{:èéòBgK\¸Ã4lS‰<}Äô"¦§ š+Èôüé={o÷#©ÐÒÕkehé=3Zú²€Ò{& ôea¤Ë Žñ5&ÒøÃÔz.ú#@¢ëCS¡¡ßφnÜ…Àk¬¤B@×Ï€€Þ{èºZæÕ–‚zÞ A=ïYQÏE\bn0óÞÊÀÌ{˜yp©kfÞÓ$±¦‚0—ºÉa~™«¾ ½ÜtUèåp­½¼W¡—»Èð£“õ2¢—óïõ¸mÃÚéf.k¸¯°¥ &˜Ù"£·Ö髊eÞób™÷œXæLÀYáUÛÌÃ% '‚y¸-g—•ŸÕ«ÇúÆ“@ϲÈÄÁªH…™õH˜Yf)]*çÔ+¸,#é\ÖÓ€ËêÙᲂÀ6¥ëgFÊêUàâ¸8\. ¬ÞSÏIìZÀd•.N 8Yv , TVê÷È¡ÕÔ ´öV¡U_­ø*7îUo¸W.ü§û•à?5Ñ¡Žÿ´_á?­âb*ÿ4 Ç¢kÈ¥œ ¨£=I©æ~(§µqÊÜÄ!šÈ1ÿ<Ñá˜ìC/A6‚ar™uÐVKäR¹ô¤ —‚a8j€ :ÎùÞIÎ÷ À=¶Ðã£Y †2ÂU@@e5œ0++D ‚üaGƒEa}ZvHŸKqVFÞ€ÝÁ.‹øÀ|T°{9|8tìŽñTX±Þãò,N‡NN´Cg„Õ1’'Þöš­Dn+x9¢÷ (8¬¸ºå5µ³Óž3˜î‡\0;C¯3äð:C¯3äð:C€×ÁÏþ©»œ!LäÁ Ù¿‹ÀÉ´Ú´03¦LØcìɵ³[çÿ5²‚Ú°‚rcÓ nlš„ØH‘NLÜÀ5ÊiGB ¯ Ô”†7ÓX2Þ ÷°bG*YÀgøŒ %]õðMøfË MÜ6/R6]­_Ä­«ÃÉîÆöÁoDF|Yü¸£­ŸSNKÿ¹™Œ¾Ì`ƒâŠíìsº¿§³ïS=‰NÃÛÙwú…¾6š~y‹Ô'Tf©;úb wY, ñ¦@Y6ÚhŒb÷+'æŠÑãj%¸+j<³‰ô‚¦å…]iØ@ÒÍ‹1ôΘj…*È0NLÝÔ2¹)] €DÌÁÁì8s¢<ò̃$О1Ÿ¢È|"¦¾’°"Óa.ÛZ)ÃãNóò<ÜnDêúK’òÉ›ÙÝd:šÆ.b¦xô‡©}…&æ°…k<„ÿGÉ7…ϺãêÏ([奣½G˜Ìp±ü?tV6þ_óÙ|ÒÖýPƒÉ—9,{ã¨Ùž‡‰bq78ýÍüR ÌÎÐÓv¬š®â¸ÆÅ*œÖÄ_Æ9j=þ6Aç)þ}ât´K¦ ·›z·»íz;¥‰ìë/®¨£TÔIUÄÿö1-’¼P– µÆK„xb^.fœ=1äôñ-Šª v°XYó°_¢¬ØǶ`;Пé£Ð—Ž™ ªÄ¢`Ÿs½ÛZlÌr¬AÿJ¹° Ô’O, -I,y¯{,°ÿnG1Z€]º  |ñ­€¸Æ7`3Ã;}a_cŒœðuö§Œë›¹ó ê•°7žP» r;i‹—–i͌תµ vq"aù«NßîÞ:I=hé 3d‘¤íÅvƒJ4¤ æ”iײ!"Éxi/mÜ5ÖSlE[V|&_LB ‘,Œ™r »ˆUwÛO˜Uo£ZÌ›üx•¬¦øY1’Qa&¼†y`.Ãáe¸2qס‚&N6ñl+¿¬'êòÅ:pÍer*Àä^²kyà–<2½¡q1ãŠ\ŒKŠ$¿8Kùc²5àr¬ü««þlë‚Lh?¤µ’DÛ<…ä8ç¡mG¬4ÀÙ‰I̿֬҆Ã3´âð‚Žã¤uØaàŒë¨h;ªE<¤›Í¼;4éœ$e¿ð$‡ *|ÚTäíäx„ó»ŸeÛ¤ë¼6%[ìwúç9é ì¸N1³†°à®4Ms(8Ä=1Gf¯q<.·V{CB3Àä¸bk“¦Gòòa¢vº,-wÆÅ–»¬›€ÐÏ®fÙn‚-'Î/ Èï ©|`7¹Ãû ÅöeìsÚpÎ(Ų¹ê s Œ`K¤„Ck`™V´°ÆP¦6sTÉÁ‚A“">àa)¯cm¿E[`&ƒùªXlD‘zŽ' ³A¥PáõëDèEp·z" K˜E¶Ë”£ÃÎg…‡1¡Þa,*}JTÒ!a9)ƒIñ{Ó†×v³M;Œ î,'· ‚ËÂá—¼¬bWãEê0ï>âº,"•YlÒKW<ȺˆW.È“e‹^ú}»ÖhÅVqlíùe¸2¸r¥7¿èV\n+[hS%6ŸÖfÄàðbm$½¼¯õr +vÄÂ&Ý –Ékʰ›c®Þ§_çèÎã©Û’¡GrB^” û$àc€¹r\ä“}ó ¾¥^ÖÃPÂzˆ_kÅ!à!"o"ï¾ ð ³@4$ :üB xáÑÌð Q ÀÿT:žþÄ‚ø^‘|0 ¶JÓµHØ*ÅËN0\:Au-ûrà?Ì?7Ê€pã?4öé=À8ÜÝÛ£kð{þÃ*.¶dSøýÓ†Ø,øü ’´ ©·œÃÄáíì.ÄáEˆƒ!Â$b^WFƒ~¡Û•˜ª IBЄÀn U%+|ËX ‹êŸöÄø,~ÒjŸúaD/»Á¼¼Ó|!½]%Ô*¨¼ÂHƺüx ¨4@­/ [@€]¥À°+#˜€äÒsâÄ9m4ãD¸nÀÖÊGdÄVä+•¶bÒ¬6Anÿ4¹,`ÿ}ÖØÜ|‰’D(~pIÊ|³¤v¬[fJá‘íü¦7¦½¤ØóF–ØsCp9Û;:Ÿ#8€·Sñã칆w†±ý…-uXaoܳô<#$$NE~{žôè“g­þëF\‹Àv98§ÚDp䷥鴤ÔQß»ìûžk„ GgŒ7EƒŸµÎ~çñÜWüó”GO ýAÚö¼ç +4.|0쇧قí¡Ìz1Y‚”—jÜxùâEþ} ÿ¾ÜÅ!ìØú*Î6úæÆ{ª nœm¸žÅÙÏváÙ¡óÙ®xöžºÎËÈš1š=#@!ê÷ÈLÐèâÊE*eJžŒ±ÏxŽPf(4{ŒÜ¯ø¯‘^»/Näò3ƒÑg*uL¦à —<†\‡¹5ÁìAf“*?·pSdÿ¦^eŸÏñþ«ÄRC“L i!!Ò©fˆ<ìpÙt*~ƒü&†ŠIS†g¢ô3,©é A´¦‡éÍxþùvöÝðfÓù&Õ!ø‹Šá‰nsù£·ƒ¢H÷”M6b”C%ÐÓk÷˜÷/ÃOéPmHÐÞQÏgt²NŠn¢UºùW‡08',6¼cãé§¡=ڨܞæªÚÍ‘×E±æÈó Ð&s*)ƒÈŒìgÀ7šMþñlÃàRŒ„?€.åš šßä{Ö` WÈ@‰9ŒKtÄ¿¥ !’{;{ÆL ½D!\aÏ›Oê¤dÜdíÎvx»&$;9BbqÈîGÇwvC­áIÚ¼–z·‡‹bß²ÙÍÓʾ)æ7\ÊV›?zJŽ6—"¶@öiu_qùë»3¾¿Üe¢¸ØE'ΣÛ[:…æxB¼øÍ @ØÎŠy\Nf5Z³¿£´.Üü1?B9¥§¥d³$йÅhÓ:¶¡ áBxc“EKa‘Û1pdÎ~{b„…åô¤a«I:Ãj”é½åEN^égý „xAÆ­˜íˆA‡ŸÎ+»bHXf³Ž¶šð߸7­µgö{i‡ßµÀŽ7L‡d‘vHÖ,pH†{¹4 Òcnî䥓%­Z=6¿¼¯¾¬iæÊ°3úpNY½¹ 8)çš¿¨I-ÜtÚ·A¶¶¶È lBµÅ&d±=Mnæcøëû_`…p¯ÜàŠ%&“‹¾¾a:äÛ`5ãîF•Ñzë ¾Ávb¸òV£Žç~ðþ*\Ü0óξ ÕÂI–êaoÐ/€X!¾ÇõêÕ˜¢PÖ”‰ 3hyxÎÈ:P jQžÏ Ø ¼prFÿLn'0%Å1œë™Æ§Ñ³‘˜UkœtVâüaºÉ;{_=Q=€®Ðjù¿ þt-à_麱´ ž™!¯$¯r/®2:¸ÄcÚ .½Ü‹Ñô£˜ÍÁ–[cíbÅš³ŸÅöOï;ŒužÿE+9ÿkF‡Õùß#]l–hç‘~þ§Há-žÉüt‡ºùiE‡{­^mk“õjò@¦ƒ¾È|Ðw=›ÒQ@Ï(a O¯NùÂOù~Ùƒ¯V/cÃí%EKJuá²Ñ‘Ï.þ8A Óü#Ü}ÝÇWvF’>¸bgV™«@¶5(÷Q“ƒbËñ’NBöC#ßáPi‡@§Ã!CüìÕ¹éˆâß=~¿W•|Xd¾Uû¬æ˜'> <@‰ù~^Ӳ߮l6*ËO W£°$Ê-fÀ‡wÈFü0KKâ²{LÓC“Ük—5J{ bå;øÏˆçäÁ‘ul¶§ç0¦;ªVh«îªBHñÀQmÅÃ=9ŸrOdÅØJ¿À¨Ä%|βijµKºŸÄãÿÆ‚µjú›M09¡T˜C9ý| Ùžr™5ÍóÉzÃüÚô7?G?X*¼ì"µ"­Ë¥ËE_ŠáKźØ{æÅÞ˶Э+ñW¢y¡‡¬È良ȨZ‘ä1úÁŠ’CUI†¡ \b€â¿©–âŒr <› ;•ÊreíûQm·nPåË{>+uá*Â¥¤“– 'ApÜ–ñüç 9œÑO}fÔ£h‹j+Óh±xFCK¬¬oâ0%UÁ†)ílúeÃxh£ž‘èIªæÇ$5ýTÓ|,’:Œ±t.b>ÚØØ$AG‰¸_Å—•x9Ïš«8ÿ‰öÍýü'ªÎVq±%¥ÿ4ã¿Ú”Oµ#‡1’ >‚ËG8ëxñçë“wðþ°õþ§;A¼líÂÇÚ éwûµ#ùueÀjžW•ÁæµÒ!Î³Ö YžΫì*dM\UÈZØy[»Q¬áí‚çu §M›zYRÆwaÃÉD÷ Îõ`”'\/ÆÕßåYhEúYâÚ¤1b_k¤_[ÿãNë5ÝWú­.ä»ìŸØI”Qmg©ç ©å:R•±>:P%ý`dtZg½ßÁö…ôØGÃñÙeÄÿaåü{3€bñ4"ï‘®µ‘ËDù1C¤ ô¼ƒŽl‚˜EWø<ÃÃa*‚à1H"Z=Yó®²ô·ïú¦“Üêx9Óùr`4"®|ø î;f -°d\o ïûœ;ÞXò97{ÚÌ(Ÿ„ÂIø¹é$ü\: Oß‹Ö#tâ Cä¯ï—uˆ …íù¢¶ˆ=pKRDX„t•HØœ…nfLœ½a !Ž8w=>ÅécbOáïY‹'‰§Lx„­ ú ߨ{® Hâ€{hIêxƒ|ìѤá?ä`—¨ÅŽ1_<áHÁЬ”zÂË rY”²]Tž »Íð‚€8ò¿¼“%0N*¾Ø˜Cc¼YfRè×#ªJoOä;øÁˆ_ЙÇWÐöS–¾y¾ýéÇö9%§ÿ¥³?s£1ƒµ÷Is†Õ–EzËúZÖemÉÛ²ôahYؼófµ v[Û@Ê6­$IÐì)‚™\vˆç± Z<0h{?à´f†ÞQßGó~ˆ²˜‘ïã‡rÝÐg µm bP>é tåÆ0œÓñÍÿ+Ê—±)“¤|ðÍmùM9'5kTÝOϽHÛç ÁÂîñ®ÿüì $ì)о8RÃùwˆwœ¥Ãó–òH>^O“ì>_©Ëz0nx(Œ/ÉŽyÙùRò¶¶z߇­Þw}uL­ùäKŠG5Ë+žºò/š§»-ÔäãCŠaë½Óîa"A=¡H wƒKp¥TНì U ‰¡nïΊÉÙ»,CBŸ~RC¶ hBqH΋iªøQ?aÄ`Cí¦¿wCäËáØÙRæ²tQA¾â °ÝÀðœo€,óâvœyÑ·ÀcrÒÞjGþ¾òú>¥æÜÛä3£_p2V„{vj&Šˆ‹+›ï{&&憘}­Ñ)¹I0ýÄ_Æ?Ñ#ra¨ˆwm*EQN |m®&´~ü‘ýú?û•‘CÝ œÝê½ ~Ùo+ÖCú…sðÔmÖ“T ø=;fÉþÏ€Y⦛˜ä+7ݧp9ý÷VâÿE‘îÿÛ¨üWq±µªùÿîÙý¨lz|zD¿`˜K„@íLJ·ž¾Ã/vÀºzý¡¯ï‘ø+¹ÜƒŽbOaÝ7“÷î^¨÷îà´ÿ¶òÞý½wõRÀ7«÷îQˆ«^•â•z${¥…xµf)þ)XаþšÕ_ø(Ä_ØÙ;`òF¾®zLWê"ÈOÈX¸sßõÍã!»ÏzyßZyßzp‘'Þ@·]þXûdHÿE^)§ÇÑ’]yݱVž¹}ÈÐÉV’Pþœž¹òó:‚=sWñ¥‰ºâdÉè‘Õ#·Õ¦£Nå«\ËsÈ5ùØš¦É¯è6»Ÿ7¸ªvÞZÜfßzÝf›eºÍF¥»Í6Ý[³ú¶œN÷‡9¼@CMaò=fôDÂiðø æ&¡Yz7¸(õùÉæóågxÉëN’Ó•Vqüàg9^ÇY.Çûƒ–X v™ w–e³ ÷Gë€.9Y0×§ïcì˜îoíb&ù†¾õºóså·®ÇH¬›|q÷ó$‡œ"ËÙ%âãã.JÁ­§Ç†sc÷ Ë<|©Á{‹®¼ƒ×µ?Ù f²¶ƒ÷VF+:xâœL)vó:bn^]áæµøqG™ÔœŠÍ^?æspõ]ÀÞQDþ1Cà‚ò8òðõëxþüvö ]”íÝÛyV MIÓ1s(¡SèfF¦³{r?{¸þk¦‘õUt+ƒ×'L„¦€„Á¿“{—/J J8«8*âYv1d®WP | ˜vžÛö¯ Æ (ßMné ˜s¿sòý¯0`‚ã3Œn#Ör`XÆéÙØqÍGT£ \¬ËÀœ¶¤•î|éÄÓTâQH©^‡ËkÈs´Xü˜ÿÓ¸}ÖÄÇ#ÛÿM¾L¾QøÈµçJå˜øÕT‘‚o%Š›]Pû˜­„÷KH;?óvJgR3ûæÔQz;OCÚy í4IP©æµ”y²æB2&WSh>G¹ÐçÌd…þÂIS]AsŠ#¡ ©1ÕR d#؉㻲¦ëìî+lð”Í‚|élÆ2¬Ê#·9×\&¯¼/긫,¤mƒrhg<ÜÞ°™Í³ÕZKùô€FéÜÏÈ5÷Ÿä»$îl÷3ºðkAŸ-˜ÓÆ'8÷ºþk4ýBÿ†Ž›ÉèË ¬iP’µhˆZÒ|Lß¡SS˜é¬eue,‘‹‡Ô|ªê9óQlµ5®BnH”ËÂI}ÆÞGÝp“0+{˜»$¯¾KÐ?’goséPyý#óxFfô‰Ìå é÷ƒty@÷{@Úù|/c¸£ÛÑá¹hóY4z+ê~Š)ÅGq=äC‘ËõP¼»,×C” Ò“¤\×Ã@7CÂS¨¡ÿà[áKSù:| ‹kåSXöåôÿûº ÿ¿æáþ¡–ÿí0ªò¿­äbëJóÿëéþ]Ü=ü;ÜÂwã,a…2xøÖi‹ªÈ­N—~o›ßiプ­#Zô¥À–ïŸÂ+Æçqx>H\ÖzÃÝü9<9ï±?-±Nò#MÅç „vW•¬PåÏæOàÕˆc£ŒÃ»J¯F>³àþ5ä =[ÎûtòøÁt{ÎGÚ¾ûþ"`úûáΗÎ'üíõã{Äs_YXÏâªó>+-É Ï6ƒéÅ,ÛÁôúi–wv'Ø^¨lïtˆxrð9`Gtø½#\:á Eˆ´‚Ÿ|žÝÞξ'†uV×hAŽiå½ RCî#¼9ÁÜEq‹Ó ¶Yôf‹ÉýäÛ˜?ƒµœ–á±ó͸î¸h*Ï¡æêy &¬S,°.cÂA¢vÚúèý_äó|v‡UK/* JñòjÉ Çûþ0Ó«0:3˧ïJÕAÃù:¾ž|Ž'¥å3Y€ïGŒ×óñè~|³ á~A¦Ð‹÷?¾2ŸZ(ëfòù3½I&V åϋɧÛ1ãor,¬)–ë`‡ôѳ„j Ýãî{ðˆXü{~_ÛÝi<§*>›B‘á©H-èÐð/ŠØjî°¶Ó^ú޽}=»}¸›’ÿŒç3^Ä ÆþiŸNÇtx˜ÞÐN¦“ßßÛ!g#çëä¥ú>Ýb’×÷wÈùäæævl*ž¨m‘m>sdÍøŸ ht6Ä3~:“ÝŒq€)ñÔ&s1¥“ñ'°µdDñä°ÿû@ÙØÞE•ŒÙõB`((Æ& mX"€gƒ3aÊIÁrF·\Oá43RƒÔj›˜Ÿ ½i©Î2^üýC¯iñrijPÒ7¢áJBšn'؃‹‹û1.úæøß#æ{ÖÂô¶Î™%øÒQ¬ 5…·#1LÂÂw9ƒ€µôyÆ…Xc²µx½!£Ù”þY#g[gtàZh’óÔ»ÑãS…[p.öÊû­÷îWÐZ‹xmxxë’=<‰ß.Sï4]| Zg¬†}£wSïïmŠ:.·a ÁíþÑE÷˜HÕ‹É{ß‘IÀß“w·¿þ •ká–UçÅÀÍIŠ`®P£‡VÏ6¶áoä˵F=ªÓЉ;™~–nîm"ÏA3åP××s†ù‚ÖøØc9ÙìfõøÊ‘Çq†ü”5RVÌ5\:°CŒ¦L «ò—ŒÂlmVgmÞ@jß@n`HûA LˆJa½,¶¸µÒÄÈßÚó}.ÉðªwboôPjô0k£‡ÞFóñ€Ô>ï¿éÊÛÅ¥ú§pïây¯÷¼wÊž¼/béiÄß<z>“H,…|‘¨bU¬ØRŠÐÎÕôºpD¹zA)壂EoH é ₤q)P¢Ë†Dš8¸$õ>ê·Aï«oKoðÛ¼OM…4à 1µ"¼ÌoƒOOÞ·³õéíðÆ‹·KŠÓÊ uÑ=©ËžÌÆ0*8+~ç[PµJŠÏ2g_Ïh4 í”tRX<(ºM {x=η‡{F{*këqT më\œž2wÈ!ØÆ‘_®ð®Ngˆ®1D\wô‘#,Li M|{FÉx_'çq’ “a®‹äÁVÒ=ú:×–"摵ˆ £\B×£ÀྣžÐ¨¯ÖYëø÷cpÙjôÇÏÁ‡sÌË0ÜÝ“âÀÎZG=‹A_„SØc{}â‰áêi£ qö ÎÄÉýd]°‚l‘iU8Y–h²u)YË “ÿšÁá_ñ ˆ€~Ž›t«º¥½|Õ Dui%ÔK_‰“xÐ9Á^¡(c¨;9ÁnÅ y1C“³a‡ªÁè›R'³éí1ª€ró6ZBA[3”þOÌ«e§Õ=Þ v^1 åõDºP õúO¾ró0]Á”+P½lÔ)IáGc$Xˆf3²¸ÝÞ<Ë¡zh P°Ç)èêw¼µ/¿¹©>žñ¾5’GÐá‚B£Ÿü# §ktrhÑ.[`ž¦LªÔˆø@\³19ñ¯GzH'‡êOGø¡N½ã{òðU¼bž¸ ø" ˜ÕÌ\ Ÿñ»çklsÊÅòkdƒî±˜ÄÜ$™TÂû_\èÉ$9@±;½K.ÄH¬Å…8&:’QÇ$'äQ‚ÔÕú€ÔÆð Œ lAžÙ)Ì!ÜÍÝ^Ì »”T\ÏnÆü Â=¦¸Ji±FÝëY‰½Êdœ§°uñq‚ônâ¨ÐJ‚¨ŒÛä…3JßÅ€M×î ÉήƦØå):ƒã£ÛûuvÀa=©s#Õ”zo îA˺DãpRÞ;ß?ÌÁ@x=›ÏÇ×÷·?¬Ã…ê lµÀX_Ÿì4ņSÞºoeöªg„q:tg7Cs¹Êçð*e±´q©{Jµ?ä K Vâõj-ˆjqr b‰ÛtÃÛ¢ ÓáU\95-1²~?cvGku§¦¤Ž†Ò½%Šå2VѶ©Bi»ž1©Mèø:Ü(»RAþfºY7áÇ3F‡‡ê&£š+Ë>gnN±Bo090`ôÇfÞöy'¯- Õ{yǪPË÷JÙí 6îçÙÔ\ÜÏ=VŽåìGÁ1ríÀýJ’)H›æU€¯PEõûZâÔ•R! O¡¾ü(9N7Ÿä’3äØó9ï¬ çlô„VËÔò³dôBpðE£xløGm46¤x°ÀÀ>Õì ;e¾ò8º¨cCˆ†‘šF•?ô üøéyâV_'O}†þ7N瀠°èˆècb{.žuÌæüœÏð€`¤8ÚÛ³\Ù†Ó´"ÅJ ´«)^yòŽJdüh‰ƒžHyæ8¤Nœ~¬ô*úPÿwŸ>DŸˆU7ÔbYû6H뮽1£·˜vÌé™E“ÚrmÌ•ÙF pØã¤bímQe6&‰.B`I¿%çßN]%vŒbQø;º•3Òóö@ÝÍÁ¢8»BÅqâ1©ÜµÝ5nR}h{vÖ‡Oê“*ɦôbAJ/Ûø½p.Åyñþ7qæ{9bæ2òׄÖ?þÆeˆÅ_=k-htûŽL>YÃþš}‡°Ê u NLÍ&7³1zG9—oGw,³âÞ;| ±âζ0e[™ÈBsgóô÷ÀB-ß§Àû4xŸˆ†¶ÐØXênp=³+e™ì#¡FãÝÔ‚qsr|B_0œ%òaü ˆ ‹æ#Ë³ï Øgq0 óp/éþ2æ׋™-jƧ\µFfn.`>¦[æÃÈdÊ–‰5ñd‰ÁI;Š£4 IaII!‹!ø#Ž4Á²)Ø„igqI"²ì)u®³u÷%] çǵn=ÚÄŠMX!v¤#u3kÁNö xÇóˆOüÓ3¥]ô [/9U>)uR£¥m&Äd%ÅJH–¥ßñ.ýŽq»Q}5˃àX(\¨¨—wï„òf+éÝï‚ï~ÐÓ¥™­Ù9Hn»µ“SñèÉd€T¨ r¾À~ („éa ‡ŠCy$nÁC„mDHÄšO£¶ ÿÛrõ¨¦í«BÕ)Po=€Ò缯›Î¾Æ«’¸|ÄùßMJÑܱÁ≜§ÃݽZÒìK]ÃãÓÀG¼ |ϾuíÙZŰ&Se…:ò'ˆ×O9½ÛØGü‡ýýf…ÿ°Š‹MÅþàW£üœy¤H¸£ h‡á`HWYý­ùùßÞ«Rû¶D¶ÂVNù ûèà‡½œXÔÛ Xh,`á `ÁàPÍúŒß7ùvC_Æ)¥XÇ,¥Il˜åHx“_1 O Å| Ý@üÑõ ž 1Ô9œ‚c¨ûRmÒ×Kñ#$-‡¯®hüŒ3Ÿ€Õ0 /ôè.£¾=øpÉú,‰îÝj‘Õ»¡äå‚n1¸¢{1ø‹úïŠ. -Ãݶ£ÿ‘Ë©Áà ò_‘ÿxMá›. ,v|œÿg“¼’KÙöߟìüŸÔdç´Eµÿî¨Ç*ö>(=»éˆõ+%^3s¤f–MpbÍÒ†Ôé'[Œc¢7|N¥á®ÿRÁSƒ¶XÁÂQ‚¥ÄfŒ dœN["r‰§·£/Þrz3¹¦}¶€Pe8$P 0fûjOæÄùøÇínôÏäîáŽ÷Û×ñünrÏG¤q\*´_âyÁÁ'äb èˆM¹E*îÑd;yPÃÕ’°7ÍXz¹<˜®ìrEìcpؤm˜çUë˜ãUØNJèÈ&Õ±\^pŸ—HÓ³H¦ªcxÙÎê"9úTDã{V3ÿ猒ƒí°-OB»õ$tîÀY8]¦Cg™ðbº”€gg;EaÄa°,ÈÁm—ðGúõ­¦x½×þîù˜‚Û°zV3ÓJ‰×0J¯#Ù>LÒ÷ecéÙÞ6n.ȤæøÝuÉÿr0!ér“q¯«ü¬2˜ÇÊ•ø¼2Âô {bÔ×<< ”,ùÚ ' †0=õ9G½…ÃõŽ.zWôƒŽï‡Ë8zÏ>x8Ÿµ78š¢÷z‰ØX<°_gâ?ÿ¸ÄOÄG?1X>;Ù‚õ Kù •å‹·úrL…ó±?L³‡.:˜óﻢAPÔÿEqu$Óõ¦?\0kv=TyÏ;ÝÇ‹<Äå Ñ„§Ì±kÅÑ„À†k¤ñžXÃÙ"Ao%¨¡ å¹è7<ËÀãNqgÅñˆìiäÜ"zÉ$uË[ÒaËÅlŒe¡>n;‡éHD-xrã'²ÆOú"v4²ÙqÀäpÝŽÂI/A ÃràŸ QI*6Üd¢šLݳ8mH4»ÊÓ=lŽa™(ù˜§Ëq‡N*A“ŒÈ1“JȤißõ¡TO°¤7LÒ ÉèêK¢m=©xG!Ñ‹“sœØÝD27ºí)ž!lpñŒÜçÃI?½.!v'G¾–4×AÛì•c¤˜Dúóx»ÏgßRÚÂâØ+æK ‘#ÁÝQ…®xÂ$’0E)ÊtÛî8èðåŠÉ£\ûÀãTl¤c£év{ 4D0²jžÛÂÐIž°Â 1…Þ ®,Ñ„ÙB ³DÓ¥¨€G!„îæ¸ƒÎB"³‡ æoebüàqcÈ`¦ó f‹Ì&è[€ ƒ'°VYœºÍ«Ñ œà}°ñÔxµì?*?‡ä!ëD üwº50`ñp×óÌ JL8;“`—ydt÷ve&~æ\xþa¸…—£Ð*Xð(¼àë# ƒœy^”6 Àp$^–¹äŒ7, Ñ kÛŽE¦ynÇnÔ¹ÍÛ‹òÂ_@SJ¬1ÍðLÇš'R;ÜjªÍ®û\HF8YÐ_A¹0q/‡!íÓnÿ3“à‹Ü HçÜÌ*ëryußÂÕ(a=‰8'UçdžY㆕ áž!D•xÙc#2D3u ÌÀ5fѧÅ7„Û5<çó쥇ñ¥÷)r»Íó.™L¿ˆ8šê o1œ9Ce —Q*|œHVbñ%N²B¸±5zX,Í3:…£˜aîá+ 2—‹þ§-þ-4þ¢›Gô‡5›ËôpTS—•sp¬D3µúR>Ô³…Ûuj_¬17[øŠ±NÊØÒ‰^zïmoo3#0s´‚¿í  `h‘söa¾pèK_Ø—ÆÚL1Í< 69$»ÆPOèa2¿Sb+ìé‹'jÝüσ0Ùóœ‰M_¥ÂÝèúzö0½O{9%××É·:²ÙÿÖ­½Álx @}’ Ê[“„¨V0±˜'!Dœ ƒò ¦Þêžìl¿ KŸ -ÛN^õ<í‹ÍÅ˵” Á!ôâ0Ñê'Ô‰ ã 1¶˜(qUŰy›j4W²U'Ì•oÓql®5—À-™-‹ à¶E²+þŒÑÖÖƒµª c<‰WC÷~—ásö57Ç«áÁ|Ç¥=D]ÏQw™.'GG¸£3EÆ9û"kdœ» JXŸñ Žk–‡qpDÂÐà8›Z‹è8kÇ¢ã€OæŽÌ5§2Þ¹Ôȸtöm’'2N·Ë;Êp0RU,¾ ‹ù°öz\62÷ªà?ƒ“¡Ä@RnÔ9H ‡J†°âÀ×Á4æŠÄ"—krÊÕƒ´øœÆRÐôSž^+u1 ‚.åéÍBÁ-†”~iWÈðv;[êœXÙ—ÚÞ•C¡c?Dÿ/‰ƒc bð9‰-ügü-P“3C ²¿[ðwIýF‘_?7r/ÙÂ~NI?ƒ˜ÏÅ­fNÑ9§t(Ú{ˆËc0arCâô•éfÖ0yÞ*Ì_ÊÂ<š‘Ÿ?'åø2B2e“èÄy—õ×w<Ãöò ;ôë“ÄŽâÂø+(Γ‰ž,E¨'1CdŒ%@Ñëmþì4<â‹–£=–ûÓëæø t 'ñ £ã’6brm€äÊsH®Œ.Þ KºiDTãdùr›¥HkItÈÐ6û:ÁErq×À£»1O­*mÌMPY)(”ʘLù›{Z4èÏzY”CM± v9c€ººâÓ!\ÆÔ‡¤€¢XHKÌ®"šõÃB?„ýZ’©]uwëÙTÄ@ý0Q÷¬'ZÑŠZxH¶éHáX6öMØ(xçÀ€ŽÒ8ÔÐQ^”…Ž’¸ÍgGɆ’ ¯áØ(ü|°Pa"…¾^'L‚T.2´z’ÂÈÀËŽÓ2X3˜–¥].ü—+ÂÙ?Dü—Æns¿IŸ@ü—ƒ ÿe%›ãiü—« ÿ¥ÂI®§ÿråĹªð_*ü— ÿ¥Â)ÿÅž°¾@ªúIê+ – ¨¥j‘Ê\=PËO ÐBEûnû¼#, VËšÁ´Ô¥ìêŽN^3ÈWfuõ9G½…![T¬5ú³ÅƒÕ"%Lßw¢z} VËÇj¹âX-W˜hý’ÜýPa¶°7FÌ=[<©?Y —« È%®DÄâš`!Ð÷w“)ŠñÒϲ²“ÑmK‡º¸IgµH ã 5ôÃkÇ„(·"¾“Im|™ B¦‚Ñü ø-.¼°' '–@ËÒZDBú ž¥‚g©àYäëñàYxÖnãU³dÉîþ3A³¸r¹WÀ,¦»0ËRYø„¬ YrCyÐ,|*`–µf¹ª€YâKf¹2³$¿e¢³ÏÁŽ&Z ©…áOHØ'> „q$±TtO~c£ào²Žô’§Éá€0ú”H*­Pa*T˜øZ#T˜«RQaгª#Ä\"Ä\yb®¬12Óq¹kŠKÿ a·fŒé­ 3æ10c®–ŒsUaÆ \̘+-¼Teý~WóøJ‹NO=&${¸ðmèŸ ¼ÓøH!óè2W„L„ÌU™ÌY|Öðb¬Lç) ÁØ­I)aÛ…såDƒIí8^JÀÆ” sô²‚SÁø_©àaÂ(Ë ã6ö‡¹ªàaâ'צDùè"¼‚OVD…&ó¸zF)S RæÂ)£{=\™« WÆtý ¸2W®L…+³¦¸2Wk†+cúþëÛ?ÿ”‚ãÁ‰»M†ÿ²·»KWËíÒIÝܯð_Vq±¹(㿜´~ÿpyY‹‘^NÜ9ïuŽ:Cʺ'!0(vàÎ\,q¯fLéÁi¤û÷í-™?LÉ`kk?ÀöIãù„!?ü>¹ý4žs½ 4x†_s±@µï£×'Xðý ¢½Dô‰xŠMßÇs1®Àèö–ÅZ Ú%ž—ÊÌNÐ#@Âm`mø”ˆ ;ò÷~¼ {>¯ùÂ!€Ù"Ž`/П±1ßgäz´s±~ºø» oPƒ<'µÁ»>ĨÒ=}‹œô›XZç3{‡t&t ÏNvÐ}ž H³)ZJÒ:àzòuŽ‘·i[\Êš NÃ[ùò0š¦÷Ð;@Y»a9òsÓÔ“K"é¬ßøŒ;ß“ËkèµË±èc{yÏ~¤êêý_"êñ;ÀYƒ¡=°Ú¨Ä5™Nîpo ©àbMè„cmqÓF-^ *úÐb±‰ÒcTÆû>šßȳm'~§õ#²FÀE š· ÍÏþ;þ…ƒB·Úv—ŠJ[u2…J>NêäÓôæã„l¦M¡®G±,pÞÄùÐݬ7vùŒØ‘‹À‰1^HfW†Êq7¾¯§`H wÑù;BÉx®Ð@(tJ_À$s„–Úx®Õþ…‰üEo±Y%V*no*Ù:…á€F°‚nÇ \ tÚ´)ó1 ‘0Ù›ntÄ1T¸ÑJÓóy4¹]ìÐu4fkY.ŠõíW“·øÚýÿÉJA„Ál™›:€â³>7¥)„¿èsè:EžÜpݤ<üé¯éó‰¬dBitäœP>äS±t2äÅÝÜ!m*3Áp,Øx(#1´Ñߦ$›ë4׳·¶7›Uêlé'"°.gD5—raª£}}“è¾t¾)óWì~LQf«j‡±FÔd¯ dú´a·”‹ƒ:ñÁ{õ5,ÇX5ÛtvdfŸôœ\ ,£â9+•«×÷ìÏëM¥wM¥±Ž˜É;ñ[ûJ¯ÇSÁÙý¶!OnâP0Ÿ´]f.Àú§ëélÍô•—u˜šr23r÷@¶Ö_ZÄZ¤·^{:wë%ÙðpØÏˆ3EËU¥(c1ÿU‹7årÀŽ…2Í%P^³Ÿï€êÍA èñ?¸PnM*›v>UÌiÑŒg}j,ŽÕ`#‘оξ3Ý{®ìxÏGˆî žºÝDY è¢|ôõöaÁöÃïM®ÿ‚j£=Ü)@¥‹ø¶K×øü0,ÿF¹™=|º¥b’Ð$¬ø‡Õ3`…6®S®­ü} RòŠÄ…€m=.¼9\¦ Thó_ɤ° ™ÈO…ü©¿©“¿c3 ÃÓ9n¹ÒƒÐÛ§¤ó±õþò£ ‰dÁ³©“a¿ÕˆCè“wïOŽ5ÅJ •£(}¯ÖÜÄ¿~ßêÓåü)$ G}ûøåar3¶kx]i-×É9Ø‹úçÇSöe(ζíýÐg¡Öýû¼?ï³;u&oÂ.‹ó z^÷ÿ¨“ _uGt'žiò•ýÊf`üÕW·ùv¥?¯ÐÛBͦUrÅØ‡mdR©tPi§Ì&vÜÑ l%ÔøŠpÙç[µý@;1Á¦ü“ýUZßï³¶Z@<GâË æ+po‘}„ Uм ¤‡N¶ÓTkN_mµkŒ“l76ŸÅ_ìEçùF«ÍR’æ|û´ g]ù^fîc—áÞ57ëâ—#ñ‹ouâ>ï^‡Ïif…¬:kýnz?zŠ–Ó)ÖêæÓ%‚Dñ/¯ÛøÅÞ)˜Šœ èNѵs5~?? ¨u‹Ôjþe“(¬#À¸EG°œŽk‹cO07À£äÇøÂ4€²/àÓQ4>ÇvLö,l˜ñ48BÙƒI'³Ù×WAV¥mmbŸ‘‡'Â*Dá?à¦àÜà>¦þÒ°':±j'_“ÛÙtC4ZCJJöOéWµs;ùð‚ +.yàž0®J±—B$²Œé$:ì|DÅ.¥«Pæš|þ<žƒ!Mt˜Àù%#e“4ÞÏ£ÛE"8_ ˜PƒÔ嶈1Ôp¹ÝÐ~øïÉ·xŽ%?úö}úzE¦É/ç<âõkXýTÉF-{g7n;½^ |mrüS'L(EI¹.Œ²É«©°©: t+L„ï³£óZ£¾³S(µ›; u§íFŠ ߣRGßIx‹LýÑìëªVÓ˜±}ÐP¸MlÐïqèU‹Ã¡³7øN#:¸ø(•|‚Ʊ3_Ž_·™Å7©…³1›þÎWÿÛ³goß?ÓÎaÿ¢Ëý E3Nå8™<–ìÒ{*Æ`ozóÍ6,›u„OÿæNÚ±)D>ël¿4µ}!d¥‡¤ÍǤ”ÝÅ6í"]f˜¼66/Ú\ð畱¿”é3\b eæfüyXÎ\APzK?rEFjzç”Ôø†àeGp:9¸Ú@ÓŸvh/y°^Ö̬1 5Ù”ú–9u¦©û,½eG÷{Ë0Ñõî3uΉ±sr¯(Ñk7{˜_‹$ (²–ü—âŽQÇ—xìÈ&ÚÿŠ‹žàÁ s,ü‡yCÁQ ÝöÕxÚÉ‚|¾}ùøóha"ÿ÷UR:¢CN„gò¹¨¤xOê5ˆSŸF`ä¢ÏÁHßþ˜b;ÉÛ‚X,|—È.‹cg?¼¦´Ó‚Ó´‹ÎМƒÒO ã©m¡×Ò«»»»›$Fl¾=ÆÔWÓ~Ö8 Ó]‡(ýpôü…,®¯Çc€ýg-yE7¶MèÆÅìn,ùFb÷&Ñ­•ö -æË˜¿øßØÜeÊ'ýÝ!¼½Ø/p”t·ºx“¥‹œ=Ägª¼É^?ÜŽî9Æ,Š_ÓY1¾ÿ>Ç~ rc¾¾%¹TEŽEÔ"H’¸%¹ ‰DʸŒ¿oÇÆ“|bQªU©ŽésÀI aV5õ7Ç6‰“?X¼°u!h¿3Ý ]ÏtÃ&Ó)ÅáÇ3лkƒZŽ[µNý |ÔÞlšùD…쓽+ƆŽ#à]üèèE¤ÇDíi<¢B»%”¯½÷>>׉ìxÆÝ¾kŸXG‰oè:§_«a맆í¨À°õÙ°­Í°¥·KQû|N[Mû©!ÂöHL¥ðœ•Xá¦kÙ£ŸWâîÀ³ÐPÜájOnÐ4ÔIÉâ16Ì™\×Ö΄·Éͱ‘OáÝt³l3Ø= qþb{}M$æ)EÒsJtE¼CO¦ßþšÜ~Jü˜ØyãÖÔYH¶4cËbÆŒ'1øQR8„=‡)H÷kºõßDz¿Ð硯iב©‰©<¡/‘Úå3——÷œ7PšüÉy´šy†HM' ÒMe EðszwÅC%Ã0òS'ÃøÀÇ<ø¶9-*‚KqŸ·`ÃûëHÈï]Ò7ÞÊ;?ü¹“i%0y+y”@ n‡ÿ•è®Uߨõ\m Ò—ªóV±=]²ÎÈF¡°ë^|8韞]ü±aäÝ©0CÊØ¹«ïJu‹ÑyÎFO­B´J<^¬§I¦—®cRÒÆ*Û 但rÒæ`vŽ*ˆ›Ãä„bú¼Áõ°»¸d†ujãëîÖ’w·­ “äs}LÑ!s…@)$d/HÞ~»½Ž” á¹ØâúNu§Æ´œäì–s¾¥£À¬¶›%5ÒQ©ÃÐðrtFËŒ9¯)GLöu c¯8Ï»:Ñáí°¬x¸Ð¢KÖ݃;<àYWãy-ÚÙÝ‹’i[ú—áõT¾½*Ua¨Ÿ'³ÓðZ²}Ä/d­Š¶­q`i1o#z!6H‘û@qò:H#Å{‚Íð¸†ÝÝ´AŠiÔ½ðÍ¢3Ñ)Š_¸æçm½s- ýɾ¯Ó«ÿš­þëðÕiõ_+«ÿ:Yýצ՟îê£ðŤ,~Ó¸å\ýQÈê×ßNU¾"±¾#iñ…,þ£<‹?*cñGŤ,~•.Û\ÉGž•|”y%G…Vr”y%ó••Š`Ñ † šPú&¾Ý|ŽŠ-{ÿ(í·¯Ë?¼„=´¹wô…nþ†në›V%·Î'ÅÄ]špåšè}ZOüË¿L$íãfÈI’„§0QA¥kßO×¾F×¾™®\§t¹˜Jן®®ƒM«ª&;õ*´ðW;|Ñy8 ¼ ¶z}ðø:þøú}çøÄÅXXÄ<ð~×}ð’ùò%m’%®]yŒŽˆºDyŒN¨fÀctìÿ2.ýLJÿÓÜ=ˆöþOs¿IŸø¯ÝÆþ~£Qáÿ¬âbËXÁÿé÷_ŸÄ8_f^ ×mo“³V¯uô–»³@.Rƒ#'àhͪs5–ù~:ù¶»ïp<Žé¦<®'¿n't«˜NF¤=žÿ=¾dpqo½&g÷7IôõìÛÍ"Br¨¶pÈ(ÄÅ7Cð´QÊoŠ‘‡ wb`>%:ËH®8'ÂÜà-¸Áð'oãð(^QÜ©*Q/Ñ«6™~}¸ß”[&ÇÖú—¯£û¿È %-q´h á,gýo¸T>ï›tÙÓɽœÈ–Hçe¼*ã²ÇàÛ ãlÎþø—a=œðhð=xB&¶X¥4Ô¢RKŒ·+„ÚG)|Tßðg ¡‘­.ìÉ>¬6rÒa¿¦{5J:ˆïŽÚk$‰%,(6õK»æ6í7’jûQòR@{£t‰µ¯]±¤öØLö‡!R”ßwÔs €Ñœßß^žô1¾”Ž~ž¼{ŸýÓ~O#WØ)} Êìã '¼ ^Ð /èÄWÐ /ˆ~vøçÀÐV1s'SÌï(/vv)Æ\¼Õ¦˜æ ß1ïè42H5œ„O·³ë¿åÕtq~~ÑUøK:âŸC+yxÔH׋Hâ‘øb"#k/¬ã<_?Ü>ÝŽÉàž Ýñv#€ÍûßFØOtÒ­x]ꣂý‰ì­ßFó Tˆ\{2ήf -Q'Kh-¼Y”PP{Óݪ·IðÐn ŽzÅI:ÏÒÎç­SÏ“4Ð(¿(ÁtÉÀ6 ¿F¦_ÿ0ýxiúx ûõôãÊÑn𯋷‰)Vô'˜vÌÎÕ:H:äÍ_€§Æû-@é=,˜ÍÙ{?MnÊ_R}m¤ÊÿÈ€<œÈ€¾R– ¼'Ÿá"" yŒb É7·~-=¹§zPŸfü¯—_W§àò{¢âÈRñ.ÃÌ_^Å{–Š#¬±´zSsÙæ4 ˜Ó(×ÀÐò  Tœc`²Ul¨8ûÀ8ëM¯˜ŽcÅtBWL§–êœ?@’ šD,}Ô´T•_wºŸŽ~„öÓ€Öü|g°2‰Û웟âAa$t7êúBZ Æ4hkj94ì»hH/¯6þT6 /‚HˆJìuþR)Ú:é½°ùK4Ì_ˆÒU†ïÿíÃÿ¬F‹ÔÞ Y£@[±ψÖf¼›j É@ñ¨6¬‘„je¬Õ†U•P-¯* :’×%þû(ä0ˆè(ÝÓKtc7 ÕQj~<ÕÎÅh§:Z%Q¹$Õ|¬\’Þ ã’ôÁ„Kò€¦,Žº¡Âb¬QÒØP8È H1H² )Ñ)QGóäÝ{ëhÒ{a£IL)bZöäFÖ/ýPo±AE‚”Ma•† Ф]"=qF‘Èω˲l#"S-m‡%¢j‰hË–ˆ´ÆàëÈva{D[¶G,»z]bÕ7°ÆÌJÖêõi-WŸYõÏZý¥úH쓬öf)µ§&ªÝ2ӵ̴eËLö™RÔ>Ó–í3Ë®Þ4Q¡úܵ¨‘H®>ÇDÍV½i¢rU®‰n©j;,0íP L;mÙÕ•ÿÍ»]ØÓÖì0«¡ÄÈf%Éü]%FŽ+Q§ò (ÑõX’œvª¬”èÊi;m$J/±0kUVB §Jɲ&¬ºäF«v¨Ñª6Z…™®,'SGƒT•vaÓU[3]­+í¶’ÐÞÐ7æu¢ÝÀˆÚwƒ ‡«§ÝÀºÒ´šWO»Ù¥­C1³ã6¢=£=nõ¤¿Ì@z“‘Þ\Ò F9•ög7͘G£Ý¹T}´G«œíê>æ0+¶CÍŠmŬ˜ÖròØÒÚ… ŒmÕÀ@”¥ãË&Õ°%¤šÔ´Ç#Õ0§R5ÑóñH5(ŠY7-›.aRªëÊaàm‡xÛ²WžÁ+fÞþ.lümËÆßõ"Ö°äXƒ]äñ‰5,:‰ØPãúŠˆ5,;Éä.ËHD+¶´åJ¿LÇz†ô“Aœ!|XÑ34±ï[Ò‚cHÁc¥wÆÿ”“þÛ—ÿû A¿cüÏÁîááþ>Äÿ6ªøŸU\lÒUñ?ÿÓa†œÑ=Keüyr‹©·Hýí$%äeû¬5À4¹£o£É-ø‡cªíYœ×VíAî~ü 1ãð‡*äè …%¥ž¼ÓfvÆp¤z’:fçˆ7¥€%–Wâ F*IJÒWsü’½=° j`‡~ì š¾ }ìù#ùy‘œ‹4Œ³¤ –*,% j‹’œù‘ø¶ þÒÐQU¤Uiõ«FZ ­b²ª˜¬*&«ŠÉªb²rÖ]Åd•BC“UÅda!ULV–5RÅdU1Y.¹*&«ª5.y)³É)àíüþB]¥Ó¯`›„wí<õ2˜©^r®zòÎÊYû"ï,Žiª?±=ðæHÈÆ\øíãTú~.7¨NÄg¦q™“CŸ¼ƒÎz¾aí“.ï 3‰û$2ôIT~Ÿ,«Kšé.éû»Ä¶—­zž,«O ÊPªlûâÏÒúQü/¶, "³­"ó xâÐÐÃQ^™'…iU<¥>1KYzÀ4+Ö—/TAãUÐx4^hhW4žà¶k„ÛÁCÜ.yŒÛŹ]ò(g"É<ÌírÇÙEQ…zQ¡Tè!ö:@…Pl¢Vè:@…P%:@… “^¡Tè:@…P é:À# ¤¸“•wò`ûw;ø€»m<àös§z†÷Xö¢FÏ$aÒ÷£t!¼Y"¼#ü˜»½Œcî¶ñ࢑š7úñ…Þ3Qù=³¬Ž 9ìNwÌvÜ-®9“jQ²§<‘žÙËÑ3‘Ü9 ßû¹zf?_Ï4dÅíçìƒDw“pÈ^?K?è¾¹˜kŠüD@z"Ý`Ò–Ýý  …?Ë&ä9Ö3û å)õŒYQËÜÆ²¾ £ÂÈ2eQ?Ê&µÂÈZ©FV½ÂȪ0²*Œ,ûr´zµƒ½ÚŠ÷Ñò'yAϤ¶â™´fäše{…«² “•Bî Öe&rÍ ³½º•é§ö¯«®‚— ÿï¾ø?þ_c¯±· ø»ûôncðÿö£Ã ÿo[µiü¿a…ÿçÀÿ†àÿÝÏ'7“Ñ—Ùtt / §Û ƒ¯0߿ĠÚñ÷"’r/Vî»ñŽhÀλˆußUâå%`x2æÝÑiòý8çîXzþDú*ý|PŒ_ü‘|ôž6èÝcÕ 9FÝCÐ zÎÞAƒ±Ç_ìñásPÁÎ…Áέ/Žý~ŒðŒ ´î$¿DøKÿrª?tª=u"jJ¿°göâ_Nõ‡Nµ§Ñ`mâ(&>m/"6û!miéýŒÏ*œÿ6KÀ04dQ¶EÙ©0ïêa†0€¡Ã»zê]=L{W§)¾ rö®jÞÕ«¡D74 5Ô¥ÕPb8’¦]‰—B‰:«¼ÃPÞaÚ7¦ûˆ~| ;rÜɫѲá$ð&A–øaa/Þ¡æÅÒ õ’ÉgI 0Ìa i­Ðp¶ 5õ]SÈŠì´ìè‡ÅY­r ¨KÞqÊ; =å*§¼i>%kÏþ†…9© 3wDZuç‰VC·n¯ŽVoo/«TÆu¿ÚÿÒ¨&v™µžCPë… j½DPcÝêé£^ñ¬çÏz¡âY |b4mù½Â¯šïˬZ;ŒàU3®YbÍêðØåœ^¨œÓc<^ÁØÍþ&•]8Mʸ­˜&‹qšäÕHŠ–J’.[»iŠÊï&uöÙ·Ü^è–Ûc{C2Ìúfࣸ¨Ç'!žü†ý¨ V{8¬ÎŸÐå8ÿ»ý÷JÎÿ¢Ýý¨¡ÿ5Õùß*.Î?Õó¿³wÕùŸýüïì]Öü_*ÐÎ;hÇ‘n¢:%\ŸSBg‚­à“¾åeºÊz¶–ÿÌëäì]Ä?Où'a]ô_Ÿ9ó3ÁïðÁ󳈾«ÎºžjŠ¥_$•RHz$_*#.$§¶ º|]ßÏæ“ÿŒâšèQ\Zq)X~ôÆF<êªfÃM^ðH ïºDÚ¶`aÙ>]"­8+•*~šK¨tÏTi$EÚ±:£2ëÍ=~vOží*7D¾z#7šú¶—n„†×Ÿ 2r);Ez›HÅ×ÓÙgMóI÷¥°,ŸgZv Ø‘Âl_!šèÍj+FÈÈ0©éˤC”MèH+êˤÃVT¦#íQ³4: ÉßÏ´ô"1‘ñ|³2 )ØdDRo, †@BGC5–8*é%îZãað ~ ËHÄF “dhBATF“y‘­†&ãâ7¸­’&Cšy¤É¸ø $…­‚‚iªt’"G/')½ . ",9¹6·!èÃu¿š³Þ½ežõÖùqï›x4@Ä—ƒ€ _¶„Ͻ¹õs!º÷Ú˜Òìà'hoOèô†àÞèwúyÁ ºà]ð‚.|]ð‚èg‡â‹=^`؃]õxA=^P¯Â–ç/>E¼ ÞíüÁádø5Ê‹ÙÁG2~¶ȃ¿d‚o½<õ§ÂºËØPGÍèÀýý#yßå•$þQ¡ØÐ/B±^/ëU¸ ´B X¬ð"&Qëû %jÉÕ긌RµQIµ¦Fä4²Èi8"§Qö9õûm{FkÍ:"Ùª5H\m†qÖš^#Çé„®‘NŽ5Ò)¼F:yÖH¦jk¤“c¸jMˆaø"ú"ŸC9˜ñS[L˜W/†fÉõk&g¹~ÓÁTÉõk6d¹þØÐ™6•\½f6V•Ôzu®:а/BѰ/ÒY?XgñXøt^ÀzFW±ÙÍÖf·“bµ`ÇY)6¬‡„be=¬ ņ”P,¯ +CmG4) kÎ@p$÷ðãü2 Á‘4%‹à†•QØ)ŽVÉ(TFèf¿f¿Pr¡ð ßÕuø /šêDP¢ŠV« Å n%¤DK¤DÍ“wï­£ âƒFsÖ§òwKi°ý»SÑk$Ø>’-‹n—ÞZà¤o|c¶ô6‚^¨ —¶ø:¶WØ@ÐÓ ëL÷ŠU+ì…j…½´V@aA•°§©„ëL÷ŠUÚí…jf=ƒf&˜÷ «e=“Z¶œÊufÔ3édË©\O Ô3hD¥Ô­N‡:Ô U‡zu¨åÈ“[¾éV„z&Eh-h5L?“ ´´êºDÏ è*¤–%”g%U×"¤–+{HUסCï…Jã½´4žGêìÅ{š(¾:ÔÞsH¿½Pé·‡¢§Ô{™…Ï^Fñ×ÐuŒ©ëÊ&Â/·×Bþ>FFù·íÛ¡òo[‘ƒÚ…¥à¶*/­f};‘jnd9ÈZ³nk+gteUœšöcºvè1][9¦Ë04EOêÚêIÝÒj6MŠ¸æŒ“"[ͦI!–UqšSX…Ûv¨öÓNk?†Ú…u ¶¦-™#ï¨ÓdÉ$èVµ¶¢Œå8#ËJ‚®’µÓ*Ù’)ÐÓ‹ªì–Mºzªa;T5l§UÃ¥=µ ëˆmMG\;¢ +4!:½B×…hÚV4Ü•œóe%ÚÀÒúcØQß i6ð 3;ӾÒlÈ[¬½›êè†Í¸°J¢ÌÃJ´Á̰<¢Užî03´CÍ mÅÌPèܯ]ØØÐV +¥ÆÀ…jE"³Rc±•ƒÈe£N2‡5¦ji+Ö˜xX3›CÚ…m2mÕ&³:R Ó+!E™^K'Å0·Rä¹µJVóÚ»XϘWgüç?债ã?÷vû,þsÿÞ þó°yPÅ®ââÌ´Šÿ%WñŸUü§i6%¼ÓfZÆØPº®>Ò‰ô±Ý=ÐïHì ÞB\£TÒ‡Ð6ùO9lÔʘ¼+ºícWPÔt¾?$?Ox—ëýXEª®K¤ª ¨-Hº¬bW«ØU¼ªØUì´* UüR´*ÕV­™F¤ hu¬‘* µ@­U@kÐZ´¦tª€Ö* µ h-‰à* u¹­Ìð–XîÔÉ­x ŽÙÙfP®ö$gœ'ïŒÌs ®íTGH¦BÕÔ˜XϤïG± 2Ý¡ü×àÐRlaa|ɧ4ÝĆն?±¦Ÿ¼ƒÙ`r‰03÷Ÿº3²xªé¦ÍíçXº+Xºí†mr nš|!g×£þ€§îÀÔ=M¯ÿÔ‰9yC~ð×.®ïgŸÆó: ~¼Cü°bzðEf% ~ ò ~ zƒaÿt§õX;Pwâv[1ipàŒ?.úok$ÚR7 Õ÷:BÒ§ç‹–Ÿ’Ùp<(ì—"` :5Ž‚G!?^Ý^€ ¡ˆ ») ¨ÞÆ>NC!àœ–°xËpEpðw¨ÿY|‹ox V~î·ßMÜøùØOV)Ò™_ZŸàÂêÀK@{’KÑ;»Œ§¤„Õ´¤:9K«*ª_ïr)سR-‹€ÔxI'rêx%ÇqÖñÒA rpDe/~Ár)ÐÆK‡2(›€­UiTƒ¢ÕÓºúß¿oW¢ÿE»ûQõ¿}z·±Ïô¿f£ÒÿVqqž§êïÎ*üG»6øî,«6¨ˆôuƒœñe<Ï©„¯È•θT1ZO1Øâ FâåRUÉ×'ïÎ"þyÊ?¬ï¢ÿ::s¡üÑÞáƒçÿ|gÒ—*L¿Ÿ\}RØ}!x|>”=.e¦¶ º|]ßÏæ“ÿŒ`@“Å¥eRHð†[!ÁGjšßÓºÏMJgeçSBx¥iO§²+Ý3U*é,¡ÎCS IÓ)¥Neèº(Þð}dziy•O^£aÜË«QôÈ4èE*Tz`ëý¿÷5Í ëRø~„M¿O‡}$ñH²®´%Wj\fåÕ©ÍõȺƖ\i$-°¨ü:µÕÙVW‘:¥9~nÛPÎýÊ9¬A<òÙèêÑ—±ÿlȢĿçfM´¤‹Ùí·Éô òJââÇâ~|‡@ôã?à1ï‚Ó08îPëÂry7ÃQöoÂéf0<W ú1ìwèçà`µáÏa‚cEÞ>åŸà™1ì ‡§õ¤{l؇ŸY¨ |ïùŽÖÑ)(—çÝ1bÆ®{äœõ~§[QûdØ*èØ²óßÁoeøãÄ~8!sóŒèNŽŽu²¤g‰£ >u´–Un<%ùßȾ$ìk4FÛ¦S¿¥ß “œ¨7L‰Ný‰+N“Ä"KjË-¿±Ró)œ¢º®¤p–Z]Ó^”j¡H}–~ö¸à#©~fm7¤U6P”÷ˆ_Ô+wørêÕ{~îùåT¼ç®8QŸË®øÐ[qÜàtôCÆz-s®ãŸsìk»S`ªu²¯íðêôÖɱ¶]õúökâîgxDtó™ fc˜šL:áÓÐF «-_ÿs2âî_M+±]qdì¹Éx¯ôËòÈØ c˜âÆK ã ” ™9/ŽÃ,t^½:Æ5ë $Ý»yé02/óÊÌ[6ÄzXܰ¦9øRêL³ ©Nù¢Ô:Ó¼!]§8v(X©y¨‡ž£ |Dß§ýâ +;÷Xc¥©ÝºìJµÁN*•öì²kM3¿T­¡b™¯RÓpƒÞínxDîRä$ËÎ9ܼÒÔp—]iÓ^©šé®ÔZ÷ݵ²¦î®Ô²º{þÕÝ3®nßÔëXÚ=ãÒ.¯F}]÷ÌëºH•¦ïù×Wϸ¾|´ô ,®žqq•ZcÓ^c†÷Tiah¾ÞOfxÌVB[î Î+TYJ¹5îYkŒÙIÑ -ÓÛ'-ôiAÞ³½Ÿ[Ràjûu‰5î[k Þ«=õ:lïÕ‘Y‰ä“‘( vè@ÿµÇjÊ×ýœM&_* M+ ï%·TöÜ$HŽBË£aßOƒ¦²–MË ”nØ-LB˜À<Áã Ó‰ˆËyü’^1-'gƒßÓ/’§à +äô¢ÞÖHã’6ïä3Wòu´XŒoð\–ÐÎ>Óv²¢âðöÔñT†•ŠÒ7ÈÖÖ–ZòçÑä6]rRŽ^;|¦ÅlÄM±{£Ðš2¹£¸ü?þ]á¿$×/åÿñ®Âq8ˆ¼+„ÿB_¯ð_ò¹zTø/©½AºVˆÿÒñÏSþÉñ_ú‘ÿ¥ÿŽá¾ € |¾«G*üqýbø/t#°â¿Ð¥e†¡ 7|0ô‘|ø/Pv>Õ’Wšÿ%K¥i(¬4’\ùÛ!ñ×ÙêL㿨uF%µSz þ ½áú(þ œÜ£ø/YjÔ=ÊŽÿâ®Pé} þ ½áïý¢ø/PIþ‘(ŠÿR¸v=c9•§ñ_DÓóã¿d©=ÿ"šiý$˜­ò4þ‹Vù2û]ÃÁÚ2@¹ý.CR€¨¨¯K¼á…¤}6/þ ->ßšàõæÅ)Z¯¾ƒI2T«ÁDðææÂ)Z/›Ñ«Õ*x/GÚà–ÚËþKºÚ¨¤Ö*‹Í(‚à ÿb‹râ¿äF¡ã•æÂ)Z©q™•W§>×£œø/E+•ت¯®È²ºŠÔ)ÜÛ6”sÿ†rk°,ü—ŒžÑQþK,ÑQþKB´È{•‚ø/6"ø/¥Ò°…¾¯€Ž’ð_2СÀ«ýi²kpÂt¤ñÓt,¡?ôX|S‡¬`Åè°+*!Bø/Å ) ÿ%Tä:·‰\ç~‘ëöÊRð_ HCŒˆ2ð_ H*Eñ_r#kTÁ) AéTäÆ)• ëþ³l"ÊÀÉ@„Îñ£ÐgÙDm;åaØs ]QþúX þ‹¤Gü\ø/‹«ñÿ‰à{€šûMúúÿì5+ÿŸU\lâ¦üW•ÿÝÿgp•Õÿa~ÜÝïç“k2™ÞŒ?O¦“û1óö¹/*ŸUøûìeñ÷Éš$8ñb?˜<}ºýó:é]ÐmÂFG¦\´Î?räÎç`Ôo$ÕÂþ­%&v=Zû Ń#üìŸð“aäÀgÇåâà W¼€+^ÀÕð4bŸ¬ +_AôAåõT}£xs´Ë¿ˆÏ° ïQ^ÿ*>’=ñëéÇ?”uO,`ºØ&¡„ ÿU~¹L<=¸ L<Íú“íVöÿmÓ9ú×öÛÑÃç»Ñ4)DÍR>Áv‘៹~ÆV,‰ñ^H"d|0|Éw v.¢éb¬ŸFHtû‘V¿‹·<´üÇ2Qªþ½Âõ§Æë4²×i8^§‘i¼ü„žúuwÏHaÍúH•]µiŒâª£kN¯¦Žc5uBWSDzšf’Â3@X¹q)•]»qu,ë¨`åéa8†i:LƒZ ÐŒ“kÀ’0Sìw ò Ö ¦Âç,™†¦‹†ÝôœY û.d÷NNBÚ©¦´ìóF¢{A¿T7°Î_z/lþÒ ó—PÂ/ñß>ü6f‹îÑ Y£@[±ψÖf¼›j É@ñ¨6¬‘„je¬Õ†U•P-¯*~Ø,®Kü÷Q&ÈaÑQº§—èøP#ˆê(5?jçb´S­’ƒ¨\’ªkV.Iï…qIú I“,rõà% •cŒ]:[9q-!'Z55.j”¾Ù¦úzÉÔÄÇvgƒ³Âß[…ÎçÆ7f½¿çÐû{¡z/­÷‡èS½Âê~OS÷K¨7Ý;V=®ªÇõÒz\ &Ó+¬Äõ4%®œªÓ}dB{¡JTÏ D…Ë̽ÂTϤA-]4ì™Ô§å  L=ƒâRZýê„qh-½P­¥gÐZ@à°ë+Àïm‡¯u…õ•žI_Yz ÓѤ©¬ ½ºÚÝ3ˆ ¹Ñ#‘kô=ô„ååÑ«.N‡°Ü –{ia9¯0Ø+,)÷4IyU´èŠt/-˜æ•JƒH‰ÁªØè.×…mpõ”]ت«Àåðÿ»Ÿ¯Äÿoo7:Ü×ð¿ö«üo+¹ø>¡úÿffåÿgóÿöCüÿ¨¶>š~y DÂ{Â2P9ú­ÂÑ/°WVG¿®+u—tG>)äã—ǯ¯-9è5B<úT/¾ŸË‡ï¬5lØg²üvmpͳw }€ùì Û"!óårgÀa%΢¯Ÿ« >±Ï_ì;ûdô+?þârçetÎc¿«¹õ”#ü1’~ŒÄMõGöúžø1ÔÁlØ´7 >/P#“Í&½Óð)€s΢â½Í¬i ]ü&VCMPT-ƒF/§jÍš¢T-¥wYBÝšÒ©Õ•TujntlÞhx/pntÒQ¨¡”vй£‰ªóÌlU›æFRuÖ¹‘­nÓÜPëÎ07œU§ù†ÍÜ‹÷BùÆ@ž2Ö¸d ˜ÓÅ ¹‚$ƒÛj1ò”39ÑR¨‘g=Zû,³ï…Ìz|P“cÔÉvɽ!ŽY¬â"3_P¤J)+¤H›ý E¦t¿Ë¦H[:EzªÒ¥R¤‰ŠÔ…¹T’4áÀAR´ м®¶ÃPW[aúän±~˧à tê:ì-Ÿ>†UØtØ3š=Ë®WßÓzf›gÁŠÓãbÕ4C=O‡=§e)L=.ì:ì9ÍJË¡Â8fmp9Tèò‡F…ªß-‡ ]c3’‘hlË!Cól4“«¥P¡.*‡ù&Ô;wØsšoÊööÏöœ¶›G'ذT†›G'ذªÝV›Ò­Y)60·ÉæÑ)6ð §¡l?èÌë~Ð~ŠKõ„öQ¬2B‡Õ#Ôzس[=²i®…=¡)&“ÇrI10/»½c¹¤Ø’ÃØQ*-)ÛBÏa[è…ÚzNÛBFí«WذÐs–JŽÉªÐsZ–JŽÉ¤Ðsš–JŽÉž`"GšûeÒãWÝÛU÷O£éMêÞv¨ˆíP±mW3žq· +Šm»¢¸dZt6Þ¶«‹K¦Eçã-ôö%£KŽFbvsyEd%F·ŸÛˆÉá‘•]B5Ã佌¾Yi1Ÿ6bvUbŠwŒÊ’ v;TÁnÛl×)¸El”pÚ…Õì¶]Í^² ŒÎ®l¯ÙžèP¹×‡nût(ÞëC·ÓZèö¹y¬–nS¶+á.OÕ’mâß>ºÍÞ+¦ÛÍt§MK¥[Ý¢¦v¨é£m1}äôkh6€´-dØV,fdØ0lÆQdØ LíæwGÉJ‘îg¤Hö‰+• ”Õ¨í°µC­Fm»ÕÈèÞÏÖÊ(*hQjÛ-JIªÉÚÔ¶[›“T“%ªm·D=&©&+•‰T)=­šðç µasÒY­šÀç 5£°RW T2ìW@%å^.üÿ¬ÿcwo¿¡ãVø«¸ØbJãüYá8ð?þtà †ößb[à럧âÇOøa+<å‚Ó1l½7oå+L‹µÆ´8y¶«ü.`-”ߣÙ"ý»·H~§s¸ÁÓ5í*¿Fú¯ÁXf>7d¯ñB=üsÀï®Ü¥ÀýËJµ¯RRãU¥¤ÆÊ…$¯ÖóTŸ¼e—=7ÔLòúÄl&AcQ¨á Q¨áÁ”>œT†URDfµ+î"Ë«]Ó¦Yíò‰jp"ÒÌ•kºtªò¨Ä–§çÈ¥c’\†N’ËšÅgBÊØxòŽîþtÖòvXvšKÙ G iùeáM1úT¬uS4Ÿ¥)šÏÅZ·Å¸•¶(‡ò¡ð®'ÎÂâk½ìÆ_/ ë¨Cù€h(ÕÏs†‰úFhQšÒ³ÂªO Cõ©¡ù˜ÇÓËjJïJ/ž&ýÀ¿ïÙKI´Ï"«qXX3š~½®Ñu¼¡YÇûûF×Ó}ÈÉ~¾1˜½ÓÆÊ_Nõ#—ªßձʮ^³CIÕGjã£òk×Ä7SíQImOÏR› †÷B§i,¨½7\ƒŠs¤0z˲εŒ©E'»ÏgÍÚ`\1q´e»žÐ¶a­&;éš5BÛ/µFD©ˆä6D|{Ô6h& {"Ã8¬E¤CD›T´êôéð*ÝwèÊ߬õ_ù:СwÆEz#yÆéjD¶FD0~™Ö’ Ã:lÂB/T¦íé2m˜XÓ+,Ðö írêÖ÷æžAš]NÝúnÔÓ…ÉRªNÏ «$Ù •${6IVŽÎÀø±­žl˦WX†ìÙdÈ5¤Þ8C-Òã’¯óÝ4ùÉ2[Cò%…Ï*©ôl’ʶçEº=%Ýžuž^º‡€6¿"ùÑ#“ïæMò£Gè}¿@bó}íÙ}_{¡¾¯½vJ Éhè*ìøÊ Xî’)ÐYBA#—±¯°Ó«DAÚ5j9èB’Ò©.0ùe%@×·Û))­Ü1H/«¬êîÚkeµk…\{m£Ð¶æÍ0.a“ôæi‡¥yS2·ÃÈ”v¤Òz¶C?>H·Ãâñ¹fíÐ" 㑎å3³6C‹&p6ceöÌ"~ªV5¡mT֜郅!ݲ Žöè-ó³æ(¨=÷ü,Í׎¥7‹z2ölžŒ=»'c/Ô“±ç÷d æ {*öüžŠË¡D¬½žˆ¥’J«|ê~Ø“Üîu‰7‹e¢Ë>.O'”v%G·cÜ·Jç°R«Ü.mkÜ*]f‘Zåô·ÊרhjX—Ué­Š–6TÞ=epeÙSÁ̇àVОœÀ×À ¸[V]ÖÁéÐüJ–Mˆ¶Ú%BvÍñÑË!D³ØH„ȇ¼%Ó‘žO¶ ï…N(Ÿ»VÊ)7X‚k qŒÔ¢“17iÚ`œÇ^w­5k„f¯Ña2r¬Y#4Uk„Á]Kq7Π›í-§ Ffäs×Z³6è·Q=íÿèð¯k{#2kÈËjDöéT`I4Ki„_*³¹1 ìnLƒP7¦Á)šdPØ•i`reZ^ýú7¹3-¯~Í,=0¸4•V}z®X%®P·¦Ó­Ée[QÁÖ²AaŸ¦Ó§iH7ÎQ‡CÓ:Ñ®‹Uno¦u¢]³[h´GÖn—tƒB»ÁÒ°"Ú3¥£=Þe`\±­û%½È¦”²öTß/Ô7e¬°Ó‹þykX# ÚQ-ºßoðä òu´XŒoXþ,Li1ûœÎj±íÅD1dkk X¶ZÖçÑäÖ^Ö†:*,c-hƒ„dã‘ØþOœgõ—-ÿÏ—O÷»•äÿiD»Qã¿»ûÑþac¯±¿ùšÑ~•ÿg[RrþŸ×íán£FÎ)Û«“·gôÿ÷ÈrÏŽ‘ï¶Žð+~vz”¥^ôß:GôOcò¤RȲNˆŽÀ^í‡>Š9—žÄnHê€é[«…®IùÌ©[¨-f§oÕbúð'VDBŠ3ÃN2_Ϧ‹ûùÃ5%qD>A×Þîç“h•„|žÏîpð³­÷”ó_ßÏæ“ÿ`ú"(çzv÷õá~̲$ÍÇ‹ÉÍÃèö7NÄt6¿«Á«Û¤µIžCVJ"þJÿÞ"'½5Ї¿ÿ5žñï +êntýÌ™ñ×Åäv6å­lDã¾Òzpñ¢áNÝIèK׳ۇ;J"ìÓ÷“;:Ÿ3ú'zŒhuÓÙ=¹›ÝL>OâŒH®lLç|(<Ù’x¢$:wç³ïñöÈ;µµåü7f`)˜²ÊÚf*·+—ûö,c¹‹‡O7“Ñ—Ùtt» ß'÷´÷±œô>Ô@ •«xŸ¹Š¯ã¹¿’÷r%-¥ž³ÔS›l…Œ`‰ÕÉ á)·,‘îfš:i¿L ¯è,ÈbƒU.è„}ùA¿ÐÉCÇAkû™\ÊÛ³goß?kpšh-¦†ï¤ë½n XB ´ã ;¬(ÚÚ»Ñ?µFײ)šóTªÆÞf`z³Ùz¥­¢üóÎ0_°|ºüïG“é"†ñ\+ƒ®dºïC€G5†P'#i~ú!—̦J«|K•÷5}|4%_éœ ”¦ÑôË0j™Á ц!=ä1UGr)òÛw·÷“¯·b@¾y˜ÃðÜÇ}ó6ÊÔ¡O†ª‹¶ÄÌ€Ô:cÞPL’öùaN ž“›1íßÛE2upT=kÆ7shÊlãÅÆ3 èÚ’çì0†)k˜Nw“iíœÎ&m:}|£ür2½™\Sv+«v ¬âûlþ÷‚Ê›cë”»Ë Lx ¯ÊË[®?h#Ya>:ÃýçIÿ‚ê]¡Ã“ÒÁCD¤JƧA#Æ¿H†¼óz³)e°"Â8ë‡=(ÔŽ·ÇÛÈN°_¹^¨Ž-‰ã ;ô žD Þœ©d°‹i/Ìœ&æV´+I»ÎÙvþƒÊØ·ÿ{oÚ•X¶¬¾ŸÏ¯XçŽ{‡ˆ` vYY;ϸ€š…"bm³Î8ã\TLÉTpf³Gýø;#bökÎÕb·Ö®*Ì5û.žˆx£”ÞŽ~˜× ~“hÀýxÄyzÃÆÖ8[¬+Ip?]1qOÜqo8ÛElŵÄîwl¡Ë®V«7©ÕÔÿE1ÿaÎN¶[^·³nu$©zÃ;N<Ñ?Y>uÏXË`DÞ×ÿ ˆA‡½3‡çHW:¬©º6èÇZ„©˜xì©ÁëÛ†ú¢Üëh²hõz‹-þ¶¿Õ*£¸–ÖpÕ mgÙ*qwi8øêýt3fú²ƒŒM¯K Çx93™ö~4Ä[ŸÚ *ö c‡¸˜/0ŸØþcÖz¥Y;l°;)Í{xô!IÙÌdwÜ3áZVÄ»_áQÃK½tÈ_á;­ÕP±½B;KÅ¡&‹P;í&Š#÷vüCîí¬ ª­Ütô櫾ߊØåñÒ(‘ƒ¨Ë¤êQ_@›ÏY›ë×|Âm¢`"÷çª;Z«¿8(ÓvW`/e;@ÁL×V5:,^;V ÷Ûñ0`›æ˜¥ÄýðåfÜàD\õýý§gA]iôŸ™ÿÏÁ”V°c±#züc<˜NûC\U˜éÕàúšmjÃ˾8äT0°¸ê#PÕ{6bªúH­'T]tqëû9¸{¸ÃÖ«v^³Ã'V×âÈ;%ò° D…Þªþƒ+?IÇÑ*ùkÊñ⪦è8‡ßS*;ÇŸê53s´†÷œP‚¹A%ò©ÚüsºÙµ ãþôa<„…†êv•£Óýnà.µýÎs-ˆ…Å8ô'„ExϘöœû ‘Á­H¼[z‡·Ík©eÐô3Ï\e²½ˆêÿhܡky;\eŒS\JŸ+H#k}QÓ¼Idæ-è&™¹¢áWM÷@ P 9SðEdIw!†G‰tÀNayDg£ Ñ¥#qTL_ÕÒÑx”#Ìé'JÊóÄhs ozú¨Êç Ÿw­’«}ôœ‡“ž{’¬9œŽÑ3Òœ'f앪¯£­ç:îêœ7áx±Øò²±Ø(üo{9øßvy;Œÿmeö¿Kyh²Ùøß¶ÜÄÂà[ðo•Ã\^ž´ àé¼R뢜‚?ТŠÿ²ÕÕèž¾!d°ªCƒ¢G>8'ˆ _¥ê‚¡·Ñ8b¨d>,¹|ñ6´$'[”jÜæ#Ê[äbô0¼š+ãþ˜‰ßƒ¼fºBˆEX¶ŸŽ¡ sÁèžhìHÿ“—ãe |ö Ÿ/ý!+èÖ°3doÆWl~p¡ôÛ­ 2AÒoð¶ !¥±²* )VòyÖ1Wýû>©rY5qÚ(iº¼éqöÎ3؆îT¦çìĆ>׎l<¨a4źªl*a"{ïö¡Í¥[6@BÒ³ÖA^» ÿwäz“ööj~e=°?/VWÙ·«v.¸ü Ä¾®Ý†£á¿ûãŽö†¿ýB@¯Üß>L‚ÒÓ Éf¢¡ÉNcê–ÖH¡½«VzB˜ÙìS¯äº¾Ä5žø-qm4üúð¥7ÕåžÅL pYãQÔ&áÑFâ0Ö¥õ˜AÇîB\Ðz¸c9‚—«fÃüðr5 _Ö·ÑŠTÖd3¯¦1\E3Äâ=f¥°¦Ç”«`¶u=º½e:vT~{X+­ Š_ _q‡Î à8TÅûZüö°úƒ|«çaáëÚ·ÛU…xWŒIâ]]çYý×G R7±Ût m7 T›ê^ÐêFI Øg%î÷.oøŸ–)Ÿž‹1‹Ä„=_8ÒoÁù¢ùl1ÎÓüþO0[pÛiƒàÍÇ ÎÙ|ÈPfÄw‚»&Ó«7ù²ü诬 $x1CWX]¤gÃõ0çÝÎÙ¾Ò²›’x‡d‘%õÔ—á`úpeLÔf¼k± êN`¿¢;ä¾Êšó}p…^0éós²:GwÁra·ºáôÇ`·µ[º¶]ô.¿i×½Óô\øœÊ Öû뤚ÜõnoQ`Ù]²½‡Ý7ù5Š`ë¯YU²¹½ë}ƒ |~Ìé¼j\>-MŠËy$Ô܆g]HÈ{oÁæI¡_ËÝ·C¯â•ÙsË};z‡J¤u ·e¿Ô ~+¨P8›IÈEˆ¾çU–z¯~pÀµ6¬»«Àqüç˜*7Û…$†GQ縪ξ®œûë›PÏCÙD(zÒêg*U€¥çVÒW•–tUá*“í"±^±†’aâo~Wv~çW$ÄébPzÔœö®Ù^1Â^¡RÁä‘1¼Â?§‰  ¦J¢¥^EéR9j¬•Ùü]Ó  »°_–>x {–O´éàÇvbÌJìlçòÊ\µU¥GÞf™§­Ñ4—ŽTK+4¥â£PUûvÓéC·3ß”Ç}¼úßþí¿&KÑÿnìlo”mýïöf9Óÿ.ã¡Åeè÷'§9ÍoAY­t+gJíKžvö'N´géwŸ©j×%ʱú>ÔìæÂ´¶^· ÖÙq*[r²Ä*%V¸Š RO<äxiC=ìËàï¿ÑªTÙ¯ð…!'&1Šx |PùC-{ñ‹&• yñLJÍgiÜ¿Gt2¢Òö‰ÏÃöÿ=ƒÃFê†ía[¸¡SPwUÎ’´¸ÕÚÑxz3BÅšh×ÉcÂß/˜ä<¾™„ô,¼äªÛÊmñ仃 )¤oáê–VzÜOø–ÝàïÅVgøezcÖÙ+Dwì˜ .ú@ŸÁªÎ~ǃÅÐÙA/ÞŒn¯Béò-i­Ñª „þâvtùõû¿ ìœT\,Iø}0 aŸDGpŠìh [†‚ÉÃå%;t®nqäôïÿß®)¯Aq@Ã:mdoklB\–=¸½íaó­.^!Ò›ÞʼQ9Ýï‚ÓãN³qÂ~v;§ì=ßïTG3XŸÏ‚i"t@°›Á½ìR ͤá@ 7@w±nˆ‰!l¼%&Ô¢ô†"¬–åÅ»åлžF·i¿Â¶Xx³»®8ñîvøÝªþn+âÝ÷¡wqÕ³·KÜj[üÇÜz¥µÇ›¿Áÿhy¸(|ý*ÆÀÚQ\g)€f!ÜIhšM³ °^¼ßÿ¸Íå `{'°«ÕdÀæ”x3ÑZ¼ÕŸMúÝOÍt:ºýÜyht“+}¸+|PÈ—Ãra hô¯§À‡ÝBøE7þ¡¿‡E ¼Y¡k*n´vïrórq±§;½†OŸö§¬wk¥CV°ÕË(Ûg±Ê›ª‰«…>ÜÞ²*´Š¢|¢ÙU·¹&™eWƒƒ“v÷­Z=€‡Ö]­ÙRXiºå×-Za”¤b̆(³ç~ù8¼ZŽü_Þd¿—J¥íRi»´¹ òÿÖnfÿ½”‡æ±PqœµjÝúq æy‹í€9’si=‰­²Þl7êµz7hÁâ©,·úã Ùgâýûtâ=5е(µì®Ië ÅmØK©/…‰3»Úo²v]n±!Û´‡ì¾ˆöÂHðÑf&ÜWæ޵ixo‰¯·æE¾9^e¨"øÙ³uD+NÌø-M-P!EñY5 HÏF÷ôøDÈÿãeÉÿåí°ü¿‘ÉÿËxh‰Xò'“ÿõúgòXþïDÉÿ—üßÉäÿ¥ÊÿÅÈÿLþÉö™pŸ ÷O$Üw2á>îŸH¸ï¼4á¾³Tá¾#í ‡±‚ýÄáW°Û#âà;™¿ŒÇ/ÿ—æÿ·SÞ Ëÿ[™ü¿Œ‡V˜)ÿw2ÿ?£þ¯Jþ_Œÿ_'Âÿ¯ãôÿëdþK•ÿíšQþïdþ)áð˜7D²è‡B$d炵/‚ªŽ ¶—£!kùP§ÒüТ(lŠÍ¯úHh‚EÜ— oTx~N…Ì©ð¥@¯Ï©°ól …°?, ¾ùþXÇBåbsÍÐäãN§?r8dÕ+Þ¹S¹¦r(ì<¹Caç) ýòÿt£´¤øÏ¥ÝýÿæVÆÿ³”‡¦)ÿw7JBþ¿rP©á¯ø³Þ®ÿY:1¢ÿ Œúì¸èO o*ö¾E„qvá ¬kQìO@½r²~½…`41X`ÈÙAÄd‹Étüp î‰J>äAX&A#fÉ”=ŠJâ Í G¶Rx³T8mˆ(V‘ÅðÒîçÜ'þÖHøà%á‹ãÛ ~²le$¬[áeaº©üã¥jœžáFÐl"òö;Gwa1\âåÁRð ±hàê?SáhótbÃQ]´kP™»ÂÏj+¢/bYȘ$*ž±–Oz5"ØgsŽËc]fØ>ãkNEß¾¦L`¹Â€!Ø›²£ mGˆíñÒ~“ïú±1pí –sŸ‡¤›"€-Q GZ¼Ún”Píy]ìä{Ç]A:Ž?[ŸDË]¸+õ"ûOûÍ?1ÃÓ¶ÙÏSvcGñ~1‘jë­‚>ç`AoJô0º#Líüqi÷`ÆÞÁÁ«ƒïF¸f¤#</†]Ä„¥Ac)J+ëÞ׺^¶N¯|?]±÷9 `Ä·Ð>mÛÚ.:y¸Š®˜²7e—Œ)Û3Ä'òƒ`à„q‚STo<… ²ãYð Zª¥D žë-¨ª ’@Þ:í1%CÜV¿ û™”zñ óÞyÅ=Œne%d!¶ÈБJ7¯ï²SÙM–æZîˆ êÍ‘ééS4f}„Y_b;×J0Ëœ-•…•Fõ,®¨êÑš³²úk°s¡®ÁlŽŠ%Üñ"„@/H`®¾J•‘³ÆÖr1û&Zîˆu­èm«‹õîä` w¸µQ~«· ¾®zMㆾôJ }ªy*ë:ßL•hX8´ÄcþÙFêS>,t !/KžD»3‰K‡îárˆD#píÑWû¦+J6…gæ4MǰrþÿæŸEÎaq(,&÷fDÈe¼ªÈZG]a¨"b»wí¹Fª—^Œº )0{@,)…1ü¾È&¹·Hé÷wxPæ8f«Ç?Öò0px±.&gff=Ïé‰ÂÿÊKÂÿÊ¥0þ·¹“áËxh)Úø_Ù bošóøÅ@8ß@`ú Ïš‰ôf $¶ÄùñÂTöC Œ Û¬‚;§ ËnÈ5å=eÀ€V ®h“*"sPÉÿd§Í„ *+ô—ˆÁ&#¨ÇÛã&¨%N ØFÇü¯ö窉ÊUU+%DÜÔ⡚àd«$]ÙXËŠ†_عKDAÁ“…,ºœQSnæ)¶ò`=„ß™1RKž©U1¸°wä° ª1AREÒ²?žª Oêÿè)àŠæW—>ñâT}ñ;×±¿x°8XÎðÀ§|¢ð¿Íeñÿÿfÿ÷$-=ÿÛÌÆõÖŸø+þä6®{Û‹3d{ÁÞ‹„#lyPDj_$ÎÈÉŠ$Gû¸¿ ¯xJÌo3óûÒöÇÊû ôú4 aXûú"}YŽ]Vù¼[eF¿±ïo ˜’Bœ ¦ÔRúZKDˆ¤¸ =ž¬ê0ïµçCê!Y{ÌÎÚ³<Öefó¹¤Ñ:h ¯´=zw¾ú 5Êl.HCT w‘ Ò÷/÷cÏy}.Gëâtj2³ DÂx¦Û'»j¾ –¤Z‚ë |C-ìdëúMc$õˆížuR Ì$8²»¾¤}ÏáXŒÁžÃNÏg›‡+ï£6C‚Y ö’€´Ð />pÚðé3Ëó†qÑ‹‡¡ìü@ïA»³RÁfV9þšJ©!p÷"¶ÑÀ×N Âáàf"â¿¢m’fv”èhÚNôû±>§$M“´þ¡Ðá²f|–¨ÍFºvÝèM7ƉZì¸ä;Œ˜¤PžGâºÍP`3žè‰’ÿ·–ÿgÓ!ÿgñÿ–òЪ³åÿ­œ²úÖ>ç•ZÅŸ¯L®?W-‹7ÛYœT¯™ßPçd5RJç[¦t®i}/úÓýþùAl >w€\¦ã”d:rXî„”øâØùyêçŒ:ÄWü [š§„)Ä 1Pc…@>éM{fÃt©¤Î±.ЮEš§Da™¢<š=‡à¡¡?¡§ydT©ç¢øf4q_™,ÊÀòâÍg½Û|¾¼°ëBÐÿÙ»œ.ºõ0V²°Šsv >ÏÌ'p@ë†Ù°ú¼}=¸ _„Ê„7n0ô¶%ÅœÆ8:!£"Óî"åóô°BbDa~çÀ:›á‡þÚìÕZóX¸J=­€µ·L’Wý€½/Œ)€ Tª`«¼ˆÝƒ)PÆ rê‹Àä9~g×¢«äàz„ÀÛÞØ¬²0Öˆ  ý»­[æ@Z•¾EŠiqèÝÞbf’ Mž|±º÷²G÷^Öšhx›¥ëU¤îÍ¢O‡‹ lJT*ZH¡Qõ‰öúX±©árTäåñâ¤Ä¶ÏUPó‰¨,ðzt8E{BëÞ6i -#‰Þ”CþcÒW)ÏÊFj'›ÈˆÊH€Æã[Žò‰’ÿw–#ÿo–6ÊaÿŸLþ_Ê#–”u„œµjÝúq‹–ÕNN ½ð£ö²þ[“FÌÞQbv7nÀ /Ã=&ÑNŒˆž‘ »éüM ™Nr“gØe\ªX“jýô|Â\(¬`]š¨-BšH©idWö÷[²™v7ôNe1÷ï…Ý»ñ߬·ÒÝ»esÞ^?yn¯2EÍ›ú§Ò•·sc³ýÔí‹öu)àaRжÕc讄eÑR¶ïUº2Ë|1M;x%c/m˜Ø¼©š5Ðÿà{ÛGœ}<ÿ-k'»e½š'êþ·»ÿï­mÐÿ°gcs·¼½S&ýÏfvÿ[ÆÃ׿¥ÿÙ•Vü!çoþÁP 9öKþuÆÁ~§SjÑ/Uü—Iwîé˺MÆx†;¼‘x£ýhšå:n+¢ÂGëbÄa ÈbG'Îx”‹¿°8ÅÕ.Ž6éúã1»1_Œ†WA;Ù‡ öw¸v^³Ù€\èÜ_²+1,Í•ò4ݳ&Q!K—h@ÕÔæ«C¸Ë |Èj¯6„:ù :ch˜Ï«,%èE¹±ëí*àŠÇ4 A·Ùfj ~}š‹G0Òà¼f«1pLiÇ`…ۚᇼð»²ó;?E¾‚–à´wÝAU*˜<ÒU^áŸÓ¤eßXL­'ÃP•>Ìa°ÚTâÌ5TŒÈÁ‰‘ƒé/ 0©Áþ¸*Ìž„‡£=4&Û«aâo²‰dÙyxŒ<eçI¥-í¥Uó%XСq"í>Ô[Òð#Ù}à"PPÝD柺ë0#Ü4ÏŸŽƒ.ØÅŸËhZPX0±ò‚Ï!U6vB9¢=«M++¹\ÊŽ–ÛíÆ}§¬_²:tоX•Â![±™j€´Œæm©Ð©ln8cº3;el®Û²wÝ&\æÁY¨šl–ï³zhõ±¯v< €uœªŠ“ü(Ô½¸7Óæ@–ý–‹åÙ*þ]£¢*j=åÅj;ÔÊÞRÓÌ=Ï\CΪ±º‡äÐ宯vl5ôy¢z«ÄJ%OoÁ僪Û"ž5ŸtgÊ;9ÔÙo;S4j6aÈGÜ—(Ä{ƒù¸&~§iGï)X™v`,ÜHhÌbî÷5Ú<–†»LØ´´ÂM|êÕúÝtd6»/N3êÕÿM—ÿ­ÌþŸù=ÑC³ÕÐÿu1þ»Ií1Q…™{gð+»ÁìÁÿÏ🲠õ¡1ib^»X<óËrBÁíquÜÞø¥!‘ņ‘gÃ)ÓŠ·™O¦ë8ǤȫAÏâ­Ÿ; Gœ'Z–4±çw.BóÒ Ã­£ñ•r¶ñ1Èì5ÌÌ|ÀZ±šrCöa0y¸(Êž”‘EDl (!HVB(ÿè\Ïæ®÷}SóÆÁ|eÜ=ÜN÷·€¤ö»Be§> ©Õ³°çŸQ«ƒûsèîQ¨ÌDá…5Ñ~y€½‰×ŽâÜéAêÈÚÍÙgvÕ®c–ÍÑbßÉˉ #¥¬Àr¸À lW%.,ìÝï¨w(ÿø àŸa”¤ìwsÍþ0MZÃiLhó9ñÀK¸V×ñûêö6èÝþèýš¢Þg)û†Bc8Ö`­ô»|êuë‘Í1ÖF5u€žÉ¸ÿ¯‡Á¸õŠ‘’øNؑΆC Çq<1ŽD§qžƒ:è]X¸aîFå´áN¨lÔS‚Øq¬DI°%Q†8v"•>\BFµ&1×Qå¼ýâþ³ÒžÜŽ ?·Û!ÿÓ‹Q+W¿û_úÖwšG\Ó:FTöÄãò!¤’âæÐÕÃ~oa×1ƒùFC$Ñ\˜ë.DjýÓþz9ì/§^_#ÀoÊÞ6#s(óÊV¢Åf8q±¸f„íNÞ¶:x굊¥ÙZ'AW<µ&ÝË~IêÐû×Sе7Ô4ÃI£å&€&B‹íè¥PàÇ|…rQb€‚Uš£,‹u%بŒÎ’ìGnñ‡'…7µÄzøÉpuÕª·a„ë®­DxŽõ&†Ð‹`Ó‘í6FsœM±kí•ì­Q£·å=¶9NÇ 3·yõ΢À¬iÆŸEb•¢†/¡®cË×Êf.eÊå,gê{è{0¢-êÅÊŠ(,k³Ù|ÉzEÔÔ †ašá0±IèYXF äTƒzÑVSYkÖø+»‚­¨wê:üìVM¸ü»KÅ¡féÒÕ@lt]Å(&‘$‡»*ƒæé›Áå †4²-áË»B±;/»Í±³çBˆe$!ýXÐð¢?þv§»ª†Õ̬Pü5QMÕåFdÞÐsD`ìf³G{¢ðÿåÄÜØÝ*…ý¿w62üm6þ_ûÿhÊ€,þ£S) üw–÷ÑðäÙ ¡ÿ±˜¿†ïϲQ;Ã%G»8@ÑCA¹çŽu1Z?ì£a¤ëuàô©rBÚó$î"<è&ŽöÑSÎá(2«º"µWˆ•§(#ÞïˆÃ¼Zº‘TÉêÌáC’©Püe<^Èe¹^¼ÊÀŒ|“[’óÎc€î©öë7 ¶ÇÃëÏ#(¢à‚H1’¿$1ŒÞ¨|ê>›¨ˆþ`ˆÈÝiuN1Õ}Ì’ÏÐN_ÑñIU…Vä!8# ºÃÔ0BïÕ½ï=f¤ÅG›hmã”–ðYœÍa¡Š¢ :D+öÐu‘é¯Á“Ç| ¡»YèAx¢ðŸíåØîlìî†ðŸÝ,þßRšÿ6þ³‰ÿX0~Á ðÊ™_"1¡Årºøh\lÈ?2 Ò˜_ü/Ñ<ó L²e1¿TâX_J-–¡C ¼ŸÁøü’Z%faISº&™¹àêþ+@w]»+GÃ÷Ç£‰ðÿË9"¦¼¿}˜¥ŒJæÕSÉd0 ¿ŒŒª&£ªÉ¨j2ªUMÆîòrÙ]ÌËWFí’”Ú…ÉfE ó½KFïò<è]xz¶^×KŸKr2—ôL.N—˜Ø=) \Bþ {Kê–0áJJÒwF’“0Q‹>ëËa‰Rñ³ÌGÎ’ªQn·ún1,QXǬ‡Z+;ö•hþÚãùBEK‰ó“²ÉÏŸ«oÌ÷ÓŠ$Ï1Xó‹”þL¾PvU!Ð@œæ÷ô¸©hd­„>”Ã~1Jr!žª5uþR\k´öˆWÖœjt£‹%–¿&ÔÜ–£¹-ÑÜV1n$DS[üO­ÓÊð¿íô fl#ÉŒr¡'fÆž-mÆ6æž±±TG¡æ†fìÙ³™±Öß.$: ÖÔ~¯ñ‰ŸÅÑN:¥ùv¦4MOÿÛ»Ü^,Æ žÿiâ¿lìîînmml‚þgk7Óÿ/ã¡¥¬ëÿ•?êj.øÅòúàÎtõÖÁñêüçü§®Åï=üÜzã_^}þêóÿ O«Ï/He~çP=€ƒ`PN¦ƒ)»«@¯7b¹-T4ônƒF’kgpÙÇü¡2Ó_<‹òû òð…M†Yü'ÿ|¯÷}püùüãjúýÿ½œ¬_ðZ¬÷¯þ‹z'ý<ú÷(øcpÕ þñ‹ýø°7aÑô¯~ÿè‡R‹ò׃?˜>øÒ²*Üð_ÿ_+©DšíF½Vï2Á µÏ3HDn%›‡¢9çc £«ò‰6Q¨`H† …Æ2ì:Á¼ø_èwÒZ•¹RO CÿT†ø9Ÿ\S(Cv¸_übÿp‚?Ø>ÕOµ å• w;~AËAÈ‘#ÔW5ÓI–R‹“‡ËÂŒ+ùóU^Azí’&¢ ¬:F4jÍø#X³ÖÙÏ| uq#Ê d@5èŠ!T$¹|é£*EªÔô*b8II¸ƒÍ€,4]h3ÈþrÅòe³™×fºî„£2ƒ´ -Åê`ëÂn«Ö ¾ÐñVç|A…pÿ')¬ñ¿äx×dðï>pë<|¹aßô&Áq®äóAns};ßZÖœÊïôÊAFq ¾èÿŽ žT°lQi ÷—½!˜D\`bJ]‘B€×mUìïé¸ÜC KxU¥-~‡Aïÿ¼é±¢¹üdû!MŠ¿7!“/ã>+{Œ–OÌWà•ûÑÕ©ª‹/ Óx®×àj¯)À®zÓ^0ýuÍz˜°¡…ëyÍ“º¼…z*@ìnûFãhlëCþuµê`ÂU'O Ø‘vpšÝô&u¶©û!M¤ß…ôøR©Äg“2½øOÝô¿óÙü§ºð’ÝÒ*—ôÿTÛ­ml€@Š•&õaPmkkm=Šz‹ºÅ:žàvh—¤õ¬kã…ø"ÕX™%TÓâŸ'®½ØÁý 05i°ÕÆc6¤bÁª}FÏ$Í–ãÓ§ëM7.ú¡š¸ª±ýš(é;Â}v87wÙ3n£‰t=£MˆžIAÖ«nì¦`t§£:ƒp¼²ízrýp‹*óûÒ¶òA;>цú»ÚàÐÀÔT¿_n5+çÿ»ÏAô#K (Hšû?ïüP³Çè\̾ÒnwŽÏSgÏûé9i€§Kè*+[YЫR?ç´î`'™‘fbiUu§ê×° ×V°²ëé~WUŠ«GÑYΕŸG*äÔBÐ.É–•œ uç§i,46õÖ²xš¡ @å¤7/DSÂW‚#¹Ö‰¬;x^¾wÊö;pÜà+-ß+[áWÎc^Ù ¿Ry彩µU½ƒ ÜB_óýNµQÉ­pÑc¥IÈ•É\Za£÷eÕYÃ’™eIÙÔ䯵ì\Pç$I Á—øñ?\pà+gÁn–L¶Ä9…›)­¡þîÚ$ŠÈœ&×× çîáþÙ¢‰/–TS«åÞ±€­st6é@(ŽÚß°®u|}¼—£­Ì¤Oú'ëâý × €!‡ ˆibÆÝºùdÞ1>òæ=»§i{!»8±Tìh­ÿ‡‘Œ÷Þ'¾3‘ôä1U·8yïœ*åJvi€ga7È53®k,‹bPòUÜS=^—*ÈN“ÁP§Y¢bXLäyˆû„tlà.jlßÊ­<ÜÞ®h~ëQ_þ¬:;Ë0g#ašÍÏjÿ’IKà÷Ñ}Ò«™¯\Yèúõo„áòŒb®“ÔV„ÐÒªeaÙ-L†C•¥ýͦý;ü¦üÂÆ­Úú4©aò°¬±á•£k mxÙ6œóè\Î#ªW}5Ïë›nFÉ¿þ#ÃñßêãÇÿGã«åð?míloÛþÛå ÿ_ÊC{€‰ÿwörÁáqOs@kçaW=ò¿=Ö(K\Ðh&lµ"ëÙ|óÎsiüà°³ÙI7~pš§FO˜Aãc0¼„‹:›ƒ«¾ø ²AOµäF¬ùX­Hr£àŸÿÕU*Tð•ÉWÎÒîéiUµDÚÎD·ýá&ƒócœ·ýÜéÂÍùb{ˆiO®´†n3yìF^:x¯P­†D=‰C…Ôêæ›Èõ¢½HÚL+PÛûqr9\°OôñÂÅß9€Ã@·^ô§?úý¡€QP Öæ º@ŽšÔb mÉ¥coÕØ?°‹œ·˜ì_8Ýý¦›0{f£iŸÑóbŒœÓ™6‹œjÂÖ…oªüsÅÀû.[Êp2¯æ‚M·Æ²²12.ŽuD6ÀR‘›±J@yÐ}¯~ÎTl³g@jÁ̘bä6E¬ù )㯘ÞÊ/q B˜B¬Tž¹ý-ÿX$ "‰xm>Òœ4Ju„fC“e}rëµ.a­Ën»`iÞkŒý^ôØ;öXY¦i™hì7çû­YǾ‘|ì·^䨓õVß2ýᱶ»Ác[[ùïÿ÷Ó»%ñ¿îll†îÿ›Ùý)M.óþßî ·ÿi´ÿ¨ ÷Ǿf´ß­4èŠóñ·ò>X$‘‡`ïØŸ–ÇNŸҬe.®·ð0eÜÝõÁx¦f•±×PŸ >½’à•eŒ—}äôè)#ØøÞô&‚¡˜äpTƒƒÞíýMµ‡øÖà2 V)i‡( hõd„¤ ´2O‘ý€*á[<ÁÆz}[à_ϨíÅŸ’ VU´¦c`ºê†ÄZ عëâ•;€TY'Êîý=Aƒ–­ çžxl.M&¬_9¿âX°zt±Ï|AXû ‹‹¢tPÄÆÄ”ð¨|©áõ÷˜nÿ­BIÒ¤²ýÉ®¸g^À’ZçoˆYa.­4SC,ą󴆺²štõÂaÔÿ ²¸DîPIT¡ ÙÂEõ—Á‡ŠÆ ³ˆÓÂg(ŠZSFªÂ4À)>¸ÆŸ s,™¹áÇ,C'µ¡çÊPÕ‘¾¤AÀ=y\Ñ®‚PÀ« ,.AQÔ¯èr!5#¦;ê猛®_Qþᣄ#> 4Pa­¾šL«˜3?;јÜZò쎿E±.c’ïuäïk¦g×aO±¤E¸TAκ˜],•ÒÒJi‰Röm¨Ø’ (GI‰üÐô)¡~Çê˜h±Õ¡)÷3•æ^v˜Ðe,&4½\*rêͽ¢cî½_øÜ+.jî…3 Š‹Ÿ{E÷Ü‹,)ÁÜÛqîÝs/²:cî=so7ùÜ{?;ªÓ^ëÇEu’?~üg|3Y þSÞÚÜÜ ã?Ûþ³Œ‡¦¡‰ÿt fZ»Òý£œw?·ÙÕð¬Ý8.’&B$G öÿ3ù Ï{¬~º¿¿GF¯ƒVtö˜6¿)ÒB·F\„Yw¨®åÎX—jÎDëdb}Ÿ ¶äÞì¸rTËéO6ﯰ,°¿»¼µHߨóóÓþa·Ç*ü †¼*¡„U-á+ŠÉ÷î”íc0p"ëÂÚg_õ‘ˆ-Ìrq‘ÄÞ—P}Úíè—8ŸúW¡×ª1¯Qí×N?¯ †‰êxÚö¼å©ÜiÕ—Þ]«n‡¥ïŽ½á—‡[“*¿n_{ íVÍTî¢N: ‡¿q’0áI#aÂN’•‹€Q.ozàïÆ&9ëÇÁeOÄS.l§ƒ7HÁÖ{3úA67&½åyð¼L.`.±RïØÞreÐõ ÖÞVÿ‡|ëwéш´¥Û\¿HÇËÅŽ«ßÁS“8ƒáPH#ÔÅ›§I¦9¬ç,‡&ÑöÀö5Ú¦úÜ 6j=‰ùKÏFÙÀ¿ÅD¶Ûsí9â¦ÎÉËÒ4 MêÅôÊJÓлÇ•ð›ÔpâðP-k "{?ÙVº®nÅ®æO)›±§öézëˆBû-yÐ8(! ”·÷7øøw‰ ¼eÄDë¶Âs{³éþ3Òª} (Ã"ÌêSAÀ”Ò3þT+{ 6…eô›ÉŸØ‰}ÚdbË‚Ì"NÿD1¼[¼ûô¤Ó]ˆ…D£ÂúÏ‘Óiat ò8­ü¹˜ö›Š«ºï£^Æý)¢¶"ºé…+ëWÍî{Ö<º–&YäÙ2Ζ±;gvâeüÛÒ—q)l¸$_Ç%çD[ÎBöèÎÈõ;ÑB6ü—±’Ÿ×©€7ë|v6¨)ÕõM©nÒ)&|É'„{“-…zV}»ìQc1sßyL$žû[KßJ·IÊH¶7Æ­‚+3çA¼”Ua¥§ìž4 ·=_* ©Ÿíã0l€#æçñXD­Aõ¦Æ/t ÖÊÒ5äÉWbô}F¥]䪌—4¢V¥ódxÔUyœÄ­Bç}l9«Îw½iÇ^oÔô×Üð{ µÇ*‚ H—ÊÃ98™Ð»œÉ仨´c/6ŨP‰ª|Ü·YMmÖ8{5»‹dw‘d¹ëƒ}V«‚Ý#n¢ÛÈ?ŸÏ½ÌIDà%øÝ2┫û%j§J9ÝÝ‚èÛ‡'ÓDyD€F.d½—âñײžuU£åì×GÙ¢ÎÚ¸- ê¤]Ί÷݃º±÷ ©I'·Dy<ýE¨ln±ó¡ˆ›ffË+#éi9Oç™kŽ?¸ÿñ¾ L6r‰5ÛîV·2³í§y¢ì¿·—bÿ]Ú(oìüŸR©´±½±»†ß`ÿ]*eößËxhÑÙößÛ¦ý÷“ׯ½Á— ñpÙ›Õ7¤šþÂXñ½áå Ë‚]XÞI{oþÚñåtÄŽŠ˜{¿OfîkzÍw»X›nà{#rQé¶ÞÛsØzC&‘vþUÚz§¶ÈF[oºd¦Ù™ivfš™fæ“™fÏ`BM©f²éW+Êúzëê…YUgÕ™AufP½|ƒêDvÓêíô0–_¡ŸŽVä@¯‰Öx1d¡±µ8ñÀozé¬\X…#q8s¶Ôç¼C¤~~x+&§‹šëŠÉ)Ä…æ×…:á y'2ht„Oôƒ™.(0îÝš ÃŽzÍømg€ß³x"ð¿éÅRð¿­ÝÝR9‹ÿöD­A ÿëVsÖrðÉ(Á#ö£âcJ‚§±Ç¾ÞœwŽ^I°7ê-䛺ö»‘AÓm¯À»ÃÅ;½ðèm±­RUñÛð' C.]à66äÅgbjõ¸ì2^.Jy&Íp–¥u ðÉ0-ÃÁ¿ú·¿xˆ_<˜ö™B¼^åÎc·Ð7˜p¦!d™·VÄA•O4ÎÇI†e!©ÌÀNzF4õñ„ir4ذi­"ìÉöLúWv})¸ÖH¥¶¾ÇHM]Ï—<ÆÖðëÃUbî£úcU€Tl‡âAªpÓT,#r–Å–çiX$÷ž¯ñ^þesH¬ÆW„«ÇCÁ{‰2ôÇ5‡PA™áðx!ó% ˜ÅŠ×"fUxü’øð%ló ‡òñÇe3i€¬¢°ñMNÏçz0f;ãÑÞZIÆ«@ìë¾Bö¸Š‚":¥|üúCc2Ö¯µVpˆç¾]­•Öů…¯r¹’À/0A(žÈ×â·«Õ|°¼|5(#™ Nf-£¯øúÝ`˜¾®±ìx—BW%߸€EØDÚ[±ªd¼™£ñ· »ëö½cÖâÛœ’ _)çÅK‰c˜¤ bòЈo/!ˆ “cÓF2ÑaæÅÆ59k·Y×Óï^,Ü>ëóz±ûÝñÁû÷sâ™ÖŽÏZš:¸±ß:$¥pÄeôÌÕú'Ô–WùŸ§¬M©Co7ÎNKWmø¾\`ÙŸ· ÁéA¥øn_=íV:%P2ÀWÝÆþA7"Ÿ.•Þ¥ÒÏ앳ÖÁ¢¨N¢nµˆPâí$‚Myh•=x#¼PvûµˆV$†ßkÇ<ÄKµ²§…zA+¦?!æ t ¿ŸOOÿYi/@µ [šõV{ŽΦR„ÂÁ‹¹S–zìMí !F:Bañ^VßÀŒ‰‡ºÙäÒíßO·¸çågÕÞ¤¯ZÁ ÍÞÁIŸÑªaŸáæR„˜kc„²àÝG Í4àƒ~!¶WW ñ¼šVt"†ŽØ}O—ß«*;qÛX£p: gnL2¾l€ìr51M=áP¦éª²Å3áe´p*Z¹”ȬÁÅٚ̀Ȳ’Ÿœ½§>€ N•`°ð ¶‹­µ’ñ–e.M›? ȉ{¼Í)>N{žöXMvV¾jÍ&õDÝ| ¶Ý‡É@Y«ï»uÑÍÓo=  ¢®¨ ã'ÑPêOoˆŽ‡0 t’–© ð" ‰¦ý¶ìÌÓ*L§ÛdP(¿ÛÁJ€=€d„ú"&»³k刋¬ìf¥…9­“ßÀ+«ÉŠ¢:¸b»æ`ú+l}í×&ø—N`Ç+0¾ D¤ºÐö”`†¯•‹Èâ¬Où`wRŒòVF>ø˜šá>Œáú,Þ=„å ï[a>kƒiß•½™·õî&5³Œç™¨J«xh®æèvnzÚ¹Ñ Çòù/wX=lä¿Ø,ò®"z«âIt‰[)ܸ¶d€›ð‚@êC„’Ž‚²¥Eá!v­ÔBç ØÙµÁì•÷Ç£uÏtä'˜9éºBƒ„új^#Ã#W Ãä*¶\Ì2‚ø)½9¥·çŸÒÛ3Li¸#åàwH¸“nj¿lÐî&ïn¹›ó>ñ8®Å¦õ%»e¤†››òC\'UqŸMÆ_|]_‡ÍÜ&# B¡!9£y|G“Œ„qYdÍßóz-FÎ)Õø26nº9!´Ð%_; VÃÝÞ[ÅM¼)–ힸI$É!6Ê” ýorb@BÏ`Cµól¬xÀ°Tñ<Áò|‹ÿд䙗 üÂþlú¤´‘¤SÊÐ)Ô%®Lb:ÄòZ•{›dŸºj’åu¨%8@£”;ö:­##„ÛøP<³1 ØÅ4\ßBÏkðˆW½÷”¿å_žR£J³_Mùš£Ô¤¯Y¥¦y ŸuüŸöÚ~ïò&èß’Ü]o V(2E°’_QÇ.š–ö¾Áý+¡®.5DN ŒW_{—Ïrbä¹²¶Â-€YÞ¶™²É ¶—±}\ûìÞY@5äÉÞš`œÅ¿×7ÑÁÎÿ¾a²Õ%•É ØøÉjðúM˜DǪô…Må‡+VÝIÐ5\ôÐÈöÇHß½ñÝ.V@Ͱ쌚=¥ÞT€’W ºh˜ Î’Ùr¼*.WØR´€w…ð>…(d‹µ~GÅØ‰äî–dþ­5J‚yÙI`{a{ܬ‘í’øÞ†•ó¦bÅñtˆêì2­mekS£ç“ràöù"bÄ4[ñT¾èOôaÒýk<Íáð¬:²©Š_Ús‚€ ¿±FÍ‘º Òƒ74â¼Þ. Ô”+´Èç ØÁÒ\Y»ŽC3-›56Ö!b}Z*….VfÏ×F÷¤ÉÖ‰ºpi®Tíþ‹»áÐi 8#7ì#9¸TàWÙEFmG¨-æË傜^%ÁŒò€l7=¹¸º4ºNeMlŸ±J›þ,B¼SXû]aÛ½éÍèvôeŠ´ €»í„öçIß#g;áEï  òÃ@_)ø[ÞúWئܰ•Ã5£ìïÛï“g£0ù5™öï`Nüb…±|z`µ,-l…ùòè–H'ë“à ww}kCÕ¨•>Eð0ÐÒ—Ç_þ*—b {i=ø¾AS9Á £ ùÌŠÙméGÿö¶¨õЦl ËãñàË ¨ª <á€I¬._úòc™Œûÿz0 »›õ`*±²•ðË, `‡Ò“zf¤ç>ËåÅr‘þhKìäz×^µ¿€WÈh¦#íZŠ»ÑàŽÝ‚!j¯Ú—p{»| ¶]»9Pç¯ë°ÙÇ—J„Ci×JµÇàÍKÍÕ ?r_Wƒ¥ÕYƪËûšœï°'}ì–J.gËÐg$ƒC”«Yï[³‘÷¦Cq+ÛNÚiäÕ¢¼P-–7>ŽÙ¥¶°KͼéÛ[)b{óöw9ºŸ}¬÷ðvl—$&£º·d•é£q sE…öòóØÊ1ûÀq®´ªmÿ5ã6»Ä#Ðæ§¼øhô,dî>åMºˆv—³ˆ6½‹hS@ßròâm™– YNa‚L¢/¡;±¿ŒG?Ø›×=´®”îs…àâa <€˜£u¿ Eú}G W£þ-NÅòL~]&‹$SŸÌçǬ[(ƒC$yRÑ”ŠlÀN¡¨)½O Ö@P« ¸Š“"O•`¬3ÝÚCÍ 72`¿lðñ7`€ìIþËZà†…¨ì\ÚržKÆ€”~K!ø‡²\ŠÔK•7LÅTäŠÜ#XŽÅე#8ûð=±+‡1!» ä›Þ- ¡UèWQÇ­"ù‡.qC‡0øe|ÀKÙ2!0Ö^ܾ,–ÌQ*§gY-Õ¸¶O³"ªÇR×nÍ®]©SUÖ<%¶¼§Ä–~Õ _sÄÅŠß§¾Œ{WºŽ4öZÅÊÔ4nIép7zšnÛ* †ýþ€QšÂ•_JqkÐìL%; ùŠŸ¯yxeá·³r„¸_oÍm PÞJºC‘Ð@&~¤$t#$n¥bŠŽÝÆ>L°+¡.Ѳ\&ÉžãWޏÄÁ×;Ôm›óìì;‰û­Ñ]o%ì·r\·…û,ú*(7¹D$˜rIo{—4Xû´ëÚKÚÜ|,jbÜ<8bç|„¹Èr$¶Öþ:âWI¯SQ`¦ñ$¼b¹önyN—£lV\+â·§Æuh€4iW&ìǨ«¤u)J¸§[À%¶!¶Üñ.¸ý u¢¤&Ǩ85UFx|ö®ððÔýœºëÜx˜cÁ`{ú]¡¨`úP©3YeÆ—S–0Tª»0ÝN7šLû÷æÁËOU4†ÖîáïL£u±ò¬!}÷z´””—§£=×…Öµ×on8&É&]dÃÓFÝÌ=Oîýé­· â›†Üé<ß!¿·ä¥à°H«ÙuUm.­„Z‡dtu,Rwkן²óp ô«î0è‘÷R裼6Žîä¸B Óì¦DjÂy…ÊZƒøeœ á®F9OãèGË`ÓW{³cŠŽcØÑ;<ö!nžyñËÚ‘Û\ ð‰qôði‰9}ÊfyÃHá»ÅPÕcKÑèÈw):Rï@Ö:±Œ7}vȪ‘Ž=fþ¶näâ\®•)ýŒ³A…â¶ÔBÓõÌXÀ„‹XgªÃ@ã5ýp–¥%ÈÓS–:iÖ»¦Ú-I²ÎTƒh“²¥ZlQ“Â\‡iÖUI·¨Ö–¹¨¶R-ªp‡?Ê¢Šµøv™ƒ†ÎÎUAܼ”3R7¼ÞŒ²#Q¤/YèÆ´kvxŒU ë•…°òÖd|x—ÔDCe4—­ÆfB-êç\S7‰ TJ£•1Æ-BætNœ„ÛpÝ­Y€YF9‰ÆÅhd:¯€ÌÃZŸï½ëóýœ†WTéwl¢@7ó&ˆŽfÿÝö{àã3”ÄÐ$„¨ À:kB¦ÁýŸ—Àíá ôùvw‘ØeÍ>í}šÏéÉL1 ¸µñÔh,àß貃"S9(ò·ÝT` Q\”Gzý›Õ`-îdÃ.Í«w`Yz\=¶\2œîv ­á ”¤$áçñH½¸åñjÜŠÒR,1òÛÄÁíàÞé9³•‰çëh½uÜ]çNØœkl¥¥…ñ‘uŠ]tš-¡Ë³Çœ èˆ=E€· g¾Ü”Lw‹Q$½J[âª]¤ò¶¢”7®©¿õÈ­MãFʪÖÔöUTk‹Ð#¼°­xïSãxÍnušQü÷KáÜÞ.•7Bü[›ÿã2š?6ÿc;ÿcEq;úWÁ[&}\ Õcní„°W°;æBÈáeÎïKîØÎØ3vÇvÇnÆîøÙEЈ8BÅV>×Z+­¾+§àTTdŠ|ß"éùÇ£Gèùô‚[v±W°`îÎûµˆà’Jƒô謌”ÚØ`Úà}{=ºeu™ášãb;—ûZ,­æ¿¾›‚EºX"ªÅß=94V –¿¦Ì/7,²<Ö‚¯ùÜWì/Ƚh“:ãÐæHŒƒPßÛM½r’W^I0g¦`UÜÌXƒ7Ϫ(øáÿ­ýó®âV<„Ïìÿöÿ󈫧“/âI¿˜ž‘m7ªdbt“1ús9íî7¦Ñäk ñ1‚óBð9"Ÿ¿2ÆF­"ÑTã.ýû)’°±VqÑ`ÎNØø¤\íWÃÕ¸kq5¢Ÿ´IÖŸ’‘5.‡¬Q1Öž˜fQÕ¤Ù¸“ž3Ñ:hœ‰˜mIâÎIwg I ³¨Æø29_’ð&"[t«xÀïcMØ+¥"KÄ7ù›!ÅV—ý³–žEÑÝÒ(bE¨Š»ŠUñ”\Ž—µNHƤèn%øp =Zj²ÅÝtd‹ñf>ÖEIÕ$PdÛéQÜ~Ž~ C¡[™´#2`âdÀÅA4$ïÃ}ÀÈè4Ø}`úÍtEÓ¦Ûy`sÕ³›)nRØío¥µ“‰â³ÌT&®µUDÿü¹JjñçÐHÛmú‹¥8gyDÊ›;’0»~ÐTù·}R<ò[ƒO"ÖraÉIhµïp6©[°ŒÝeŸdŧùg×L;ä=MßýßáwPÂ×UÑá$óٌ̧¬åÃ_Ñáac ¥›Z-qÑj¶Þæ¿BURå§u™:ÌÁ!+ÓâsO]­ýˆ‚ÓjÖ£TW­‰€³(mËÑmØÑ­­µFzÝ›æòÐ^OúÖ1…ì äbÄ­â¡{Æ»Åýtœ—¶´Æo.ö&Ù“sUkþ„®®%«ÑèO§‚Æ<™»³:Õ@e/‚ÁAµ–“šQІ«á YS»Óý7\~&¿ã-æòýÖmÿzjÏÛ@Ûæéöq‡çØBlª£•¤‰‘k¤•´,U-ÝrŽk|-8y\-šSçò²P<5Þ¯%~Ÿ_iX%Üɨ©ç,ÏúèLôø¬ðü¤ÇvÑ,²qa·Ã¢4ñ L,C#›ÜûKÎ1aqMX¹‰³YStN›VmÁ*¹Ãë¹UG5¬¹ =3ùâ†ÿMô˜±Ô¹øâ—  êZŠ®9ò‹vl°Õ*Œn¶«®˜ÀÅîŒÕ"­ëÏ„°ç+ßGЉö‘C#dH¸H\Z.äœPÆàëÚ<Šr½ƒk¿¾ë±;@±ÚC0—bPK•Kòæd]œr;óí(jÉ®• ‡Þ%»¦/VWc¬eåËéT9!qú«æŒæ~3œñžM9Bäq ;”§’ïÂ(ŽöGû"NNIC†äiU?’ÏÑ<£[ælUt‹Œ›q<=Qæ„üšY ‡ ÞvenÙ«l&ƒ’ôûB1jýèCnðË n²ÝÛ™$¢›¹©”£ÁÕó< rܹ8Yn>QD´þͧ ÷‘‡iõÎãÇø-k†®Ów¯(®W*­äî¶ùx©ŸÁ²Þ|äîž¹aø5Ó2]ä’‹GǶä"¢Å̸ä½x"@±`žÅM×ûöHݱûù˜wð•oï»`ãMk5™œ‚7I¸¹S±„¯>)M¸U€P4ÈÅ‘\ò{xœ“Q§5†KNœxŒgßg:¶Öæ—•ž’%þý¢YâÓH²Ñ,ñ¿=K|iTU6 ¥ôËg‰•©Ÿ0Þ½£yép›N-u¥óÔÚLÚ¯Ë05ÓNÎsãH²¸~µVË;äf´Ì‘CÞÓ“—F{ׯsž k*yO–¢û1Iê»ðfôtFnùhªëGä–÷ j„È xf2ªó™@ÏD·¶H¶sã±ÖM”ëIÂå¬bF 5yo&ZcïF³ô ±j¢î¦K¤”&HÍ(åõïb)å5!‚°Ers_ßIɽsÅŠ¨‚4ÖwUSÜ"œn¹Ô„±Â`b’é°øæ«–ÍÏÞâDãêo‡õ›y‰ðT4Ì«ÞÊ·ÖZ.3†0§sDk “£èpí˜Ì­2Ú¤q5ó'éžûÞ4‘p\óM“¬ÄC¿°a°ÌUóô'ŸQÕ óÏ;ø¼MÿMh÷Ítƒw‡JL®ûâȯ=Ó<½z6 jí:ò­ëQºƒ®6D1ùÆÜîçF¤£¨¯ÏHÝLã{ëúÍ»2[ íunX,­>-óµÚ°¨¯)ã}ÜÓçC5¢ø›gÛLBf'³‚˜tÌÚW ø˜!³zë?üŒÌÆcîI‘dÍ ÷¤ôÂoœÈÆé“yl”xÄÙ“ ™­­ž<´èõ¤±ù%¥ŽèžÓ_÷.Ç£É=Ó/µì‹ŠzÄEÍóyD‚ìÃð.uü’̉hÒéCØ?]ô[Ûj6ñK—ýÀn“ S¬¯:Í7µoyÚ†7]ƒn‹Žo©’ n"¾•„ã;ë&˜óŒÇþ)9-ÞÐV*¶‡Fx8c‡ã}Ìpt¼Ã±›x8rMÚö­:ÿ°ù‡CvG"¾ 9‚^¡DŒXQjq·âé(Œ?°·ÀBž=OõDñ¿—Ãÿ¾±µ¹âß.güïËxhåÚüï¤üï=$÷ßnÂìdo»hILðXÖütðtðË#ϸß3î÷Œûý s¿Ã®æw½ßγNÞ~=Ô· ÁÆhòƒµt€pu*ù–h÷As›Þ`8Qì îÅ)÷3A®4g±)ÛCÄô¼c{‚Y3oÜ¿îûÃKÖKFkÎÖDíñ­±+¦çãm·ÓDô\ìÖ(ÞÝ‚ÇF 3êÕD¤¬ä¾¾õ˜ò±õü#ØìÙlI2ME?ªyföÔ:åô_YOüÌ•ØÌØò3¶üE³å/Š%Ÿ˜ñ_"á}šûŒÍ^«Hí¸ý¹ŒÔÞßëÄvOhnÂÞ9*÷B¹í;·}qÛ?.·ýS°Ø¿T¾ú&òÊÈÖïŠBÞoýbHêeÝ´õâ½Ô,ôñ”óFÖÖ«‰HçCò©<3>ùÇå“_ y|h8“’Ç)Î0ž>jŽ&"„5ʧžË¸Þ3®wûɸÞõ×{Æõžq½g\ïÞ„×{Æõžq½[½žq½ãÍtLïåu–É2IÞõe%7=ƒC ¼PÅM‘2›&›`ÑÑØ«¸Š9yc3‰rbʤœºr¥eÕ/>)¯nÝ~RRäjtN ŸÞú£œ˜ãòŒUª‡OGp¼µh‚ã4BW4Áñö#'´Te3‚ã%'çgf3–»ÓØå'çff2.*ôËÃÀ+¾toQ4çAb²bÎöÕ+ï“0[½ò>q¯D²¯¥ï•è›ÚK£æÛ ½Ä'æÅÅ–Œ'Á©ÉŽ»E瘶QÔäsÉÎϱo¢ng-ðˤö]•56xµ¹Ùnºôrœ~}üÁÍy9°Ú¨rÄFܤ³Äòrç&€-j¹,–¸Œqo Æñk‘¨û }[O4T-M³<óP­•T.‹eì¥¡Š¸Ä#ï, ºÍ€~ÍÊ!³3ùÒç\*¢Àœ„ºkiª½XEoW;÷bsE’Ò»Íw¿Î&7­Å í¢6åmúg¥&Íys$-»)ÎÉi2%œÓ: oÎWOú‹Ïĵb“yal¦7Æfêçÿü>¹_ ÿçææVy3Äÿ¹µ“ñ.㡹nòþyÚι˜?A+Þùã)êíúŸ¸6ö¢è?ÝÄŸ½‡ŸƒÛAoü땲rÞϪì2ýM*öOÖÙDâ)ö/ù§àýÄ‚S1~²‚ûþøoˆÚ’ξ"g"O2êçYÿ >°ûvþg6©ü¯•üOtè&3ľØÕ±%í]x^0PħGv˜ûõx„ªÁÅíèò[p–ßËŸ­@1 ö[c…'üëîºw÷Sr¯==mw;¼ÑõkÎr‰„7áK„ ,éVüŒuÖ°¦±Ìñƒ|°j¿Þ ¿ŽÚc©Ùoøºü ±„2¨¥Ï²póž~\)7»Pž³DuùˆHÖ³‘³KòùÛ¿ú`ŒäœbªZßuÕw+¡/kÖ—ðµdMÛᱨD£qn“ `)zÂ\¹U»ÞêM&w„(_PcÀV¿†3(~aR,‚È?ì‹ßä÷äwù=ç¸î%*XÕØÕýñy ƒ‘–ä”uT±ŒG?S…Ë¿‹Šˆ[@ë(¨aNW€‰wL Á`½¿Nzh•Šö9ƒ;Xð ÊM÷+¬ÔA«SÅj´b2Ÿk­•Vß•CT“´kÊ)ÃÛ¾'ÉdÆòÐͳØ&x$¡ú&3ˆÍ¾Yô€nŽðj($ôoÎìXsô|".ÍûÁ÷O^¡ÿ>žFÞ’¥Ó$Ôõ2ÌV 0F1ÇC$ßù‚¤¤MÅ‘âc Ã|Û~™Þ­uûÍŸl-²á€cw›ãÁtÊ#Â<óé|P•Ì¥Õ$S=†¹´ºN9…™Kóƒ¾JzPþe,'蜴Ÿ­ã³V]„øpÜå˜Ì{Äþ«Áÿ[ûçÀÚÙö×{¯Ä$â=°ªß+Ãoeö[¬ÉËŽJÎÁˆéc²Œ*%1cå§ý&0T²Ž0' Áù~§Ú¨8 ™•yÒY_/Ï$¥é@M,(lUhÄ„ª#XùŸÈ£±rÂFÇ· 'Ä—‘°À˜²CÒò·Å.+y×]ñu-ª>å¨ú(äk.ÿ–¯dè.nÓ.® ƒO¿e§g¼ 1÷÷½ûÞĄԈB0¶‹øÍU`%i8I¼• 9°dà#ÒdÂØdÀf¥M¥¹â¡Ò¤D´¿’SëîÿÈ?Šš“Ng81ᢠÇÛu’~”CRä¬j³gùªM[rÆZÛÎÝ­æ>èŒý²šG~®|;W–VWÿÃR:g¸ðÆht´??zcvfÝßßþt2Ø~(~ìì9 ɸtÑ.öP·#°¿s(ô>]0²²ÜVKìîXâw¼ÚY•Áé‹ ÁQ° Yo8šJî¾ë2â„©)ˆ Q2öy#Ó<Œõé!ÀˆU¬¶vT,qˆâHºñVã\ŒÛ¹£UV å£ÕÕ*xN*žŠqÓFOûÙSavŒ±#CÙvx±¬AL-nlÐ À6[ã˜\þÞ.€Æ@ˆ¼K&g|éC›±#þócPwWóLäp$À¾iÃwäµÀÂé±™V«ðï¶Qs+ ·Ý9.#ˆQxú ¾ ¢£–!Ô)e¶ ÊËK‚K•*-ùü'‘)åì÷å±{[ð‘æÔÇeí©Êe=Õš{àØõÏLåÍ Êd©]ß ´€H†Ó°§ 9И»£ÝAš2Oã!J Gf‚U*åYÎkP·|×U=þ‚2°emᯔÅ+ºÛEà·ã Û)Уû27•ÐÁÁ«¿Œ]%}±¸x°èØ¢Ž42ÚeKCs¹¯=× ûmͱ‘j‡3'¾#;:üK(e„5›ÞS#|cjà‰_Žp9’7¦;ñ!»FF¿;ö\¼]ô.¿Å^ÚªºîHæîˆÝe„ó=m•Hk°áôY nÛÙÄþ¡h¤Gk¥ÐŒ”bŸ„’ú? mý2î39‘†ƒ)}!èÑÌÈ€ÞûÑ#MV{ÆI%Rؽ“âÒºÿ}˜ïb×XèÅ.ý¥N߀ÚüÒÜpËOÞ„®? ½ö±ùÞ)%«Žjyô–)w™µÔûd”wĨ…ó –"àÇdfçÈá9°7uk\aænò“I‘ÔHì"ø!ú&(vrÜÄŒ¾&Y6 o„q÷Áˆžº zîx_diÝ÷Àí4÷ÀbÔOÞcîÊ›,ñM0â¸ý8÷ÀY¶¡´Ë¤/gX9ée°h_Ÿï6÷®•¾2áur ïEQöè|¡Ì‹®pèp6Ü×ÇÞî€ã‹ƒ+.d0)4(ÞC»0·øHÒß ^Ž15½È?½ÃOïfƒ47çy.ÍÑN·ñ—æß|—f8 ]@“_fóI&M¿ ì+Íþ¹ý7YÍWdÛ•BH85´£²5ä€^³oåÖ îÍgÁ𮕻~ÓÓ»/t§³ÇÚå¶j_òœØ˜œr.ö4•ê±±‰¢c=jͽð‘ÚNr€'ýôœ¤ŸåeÌÏGª‚B¹T5Š‘÷¥$·I·ì ìšæâAd?4\ÒÓ8œƒXøøý Þ§¬OwÛÅ7ìÖã¾ó4wžF ܳï< qçiÈËvåiÈ{PHЩ0mgW™Æp¿Ç«LKåÅéLó‘רH¹ï­ßXlRcöd¬«)î.ýö’èæ"µ˜àωõ/ürQ¦šŸEÿúÑo7^òÀ7OCڣǼݤžÊæõ;¦JØœ²Þ¢“:I6IQ›Çª´@|’fñÜ/MIôîqXël8k©ô²î¥Ò‚nL,S„}¢` Í(\ž"?XÜzN^§Ï?OÛoÌéS{¢ü?-Çÿ³¼³µòÿÜÙÊü?—ñд·ý??Çú¢k¹põŸx°¼i'ÐÊx‚b©ó¸ƒ~~ wÐGòýü¼AçuôÍ\A3WÐÌŸ7ë [~ØKò‘Ü@Ã^Ú& ä, :1Æ‹±²N99¼í5ú9óͼF_†×hæ)*$óÍ_o¦§ßåærÚœù ¶_L8îü|娋šv•‹4½Î¼1_7æ"7Ù /&¾‡eþ˜²ÓeN—¯Üér•ÏÏsò9<ÏÐwRÛÞ—íà»’[y/Ôwrv·ÈKç™cä “ïÑ*!î/È5rÎ[¼R‹¥è›~æ¹€»Ñsð€\qº@®,Ñòu:<¾­‹Æ"\×^Ê¥cA>3;+.øÎ‘¹+ZžðÉÑKsWÄJ¿*‡Å9uÂ\ó_e2·Ex¤·{$ÄÏËòHôúÿýkºQZŠÿ_icgs÷ÿ”ظm³oKÛàÿ·¹ùÿ-å¡Iføÿt7J¹ ‰.k?ö œÀ]Ýʺ•³BðÏã[µ üáßs;”¬³zÖ膧 Ï}¦¾lrå£&Aç¤ñä‹sÓ«è5´?ü½{¢¿B}Ìc@b¿óßÙpåb2¢Ôز^‚0Kp'p¾7NØ,ùq3¸¼Ž!ä™Õ8±|óذõ†Á]ñâWq WœŽÜ}o<ônáRD9w>±,(crGD×ùúh<½Î-'ëF ¡6½1«Mƒ¼(*ù“*ëò¦îG>ý=.d^Âõ&ÂÛ®É;//RØÿ¨iø¥Í4¡_Ó\>D4V*ožåÏ2ÖGÆÎs¯?í ne]3fÄ1s#œb†»Ìi¿Ï?†™\?ŒÑ¹îвçÕ< f­fWγˆI&uîÇhümÂNÒ~d àYÓdå¬.ÐSj"÷hœÕ £4ª¦òèa{B¢N¹ EuÍMhß亢:Ül=ºû×·äídŒ¤ž>¨ð9n? »ÒŠ>äïÅô¡Çë ^æåwDFñå[ÃÈÏ·Øî Gi¤¦ýÄðTå»y n¸C¶ë±Ý9(âÖ…ôŸLž`[:~Q…ù~û4Xu¼_Vï×Ùû'æûü­§ô¯úk¿s\ˆó²‚DàQƒnVÛéÊ›wçøÓYd¾˜=j ¯R*.¯¿³Þj¶ü•ª´Ž;ìîÀºìú^Jß,G–L\hÖþ(ÀÏÖ§}úÉÄúÒåcåNQÞ[x q¿‰×ÚŸñçé~·ÀÏrpèúÜ9Z€#W³rŽý]À^qd(Fm0­ù[‚aj‡üfYÔžµ¦ÙudÃßåÞÊ*‹ãfó¸èÏ;ʤ&~qåácÆ›3ˆMKö“.ár’ÂýÈÇ/¬ìßO·£áІ-ÕF÷¿Œ‹Xhj>µªfpˆX^··+uçÇ‹%*p€¨üøAÝ7 á.ÂáB¨À󛿯ŠQ8~$Ÿ|aЇˆF^©KÄI¨Mlº©6µð?\ìòljhŸ\èõÉÒê›=„Œ¼‹¸‚;ûQ&,‰ÕûÄø[«ï§þØ úÚÍU^#\=…ËÄì)ü(Ç›‚D´!i5¢;‰Æ€¶cú·av‘ÙHݠ拺†Ýta¬"N/«°O°Üt/°•‚ 6ÅÉJt¶KœÁo0™·"ê0=YÉWü‡©f$[6­;¶_²ê–B ¥ÃE'z÷u÷ ç 0ý°˜‚xÚÙ8¡îJˆyåàðÂBÞáÖ— L‡DhÕ~cíû‡Ç›yB±&Dew¸A$Ymò\÷Ì#8´5eÏ}ÄÅ4癹‡Ý;Ò¾k6¾úpï—¬šcд±Ë|Pâ†B½ëFþ@d]òGOþW^þWÚØÚ á[Ûþ·Œ‡?þWÇòQjÏQ!CC(`ÙÀê ø…ßz& î“·Dâ$zÇvêá3 C4n0a÷»ë@?½‰Á{ÂFü›†3@ jà•ý4øÞƃòÈ›!« ¹ ­T÷‘ãšÀPþøá`̦õ7¬Gý*¿ƒ©FæJ¾JîV9*Éÿ®æOدwø+ᔋUB"×$O½x·4àò„³‰»z$ 3\ŽžBœF±Gi‹uBVl³É.çøÄ6x—H Uáè±ðV¾žÀú^L6‰âmÁ†cÓ–ø4hl2¸´%0¾t¯5^˜jËS£{¾9ˆÊ–ǘm÷£!ÔTψË÷¡a¿ˆ¬63H5ƒTå@ÆÛÅR—†¡¾*ø4HʯiÆÇÜE ô4glÆãŒnDñh>D‘Z1ôÝ Ò!ŒRèK‰.Êëlt‘Ì”f¤×ÀŒêV]Ô®ÔlcÖ.Õé1È#1¸‹Æ £OŸ8 ò(-IíxýdS›e3cÍçƒA:í‘1Èòr1Èìyº' ÿÝ\þ[†Ïlüwg3×ñðË…ÿnêø/;wkì¿ZÄ­ €g€ Ì·füQ{!ð¦B€› –v 'y˜:+ðo-âìÇʺ‘DFÞìOn§x•ílxná"N™+*l•²¬0'Aÿçýíàr0%o ã}0%åÌçC#^¢»2d#øÐ/éþofWÅÇXÇž|í÷ ˆ8Z܃k=#´[¤2HÆmÿzZ€9”8¸'4@$èN`²ŸÆ¯¨%ÐÜ6G]&LQ²}DÕÖ9žªgá€V“á©B’O‰§Öj3½6+z» VC°†OÒÁ¯‹0e}Î(,(ÀªÀ«xïŽÝn@Ò›Bÿ²ß›Ô{“›ÑÃ-›oÆRiæ[Õw±na qg6_0§7ìãþðû`<B=>Ä»ñŠs#˜þ`Cп¼þõ‘`óãN{0©zÆrc=ÀvJ±¿â.?Œ¶õV/‡qdv¼¡„Wc–)Ë×"Ép*ñßT9ljuX¡JÀÕä9luX¡J¬Däð”Èvâ` O‡a;"†1y|ŸG ‹º AÒÖ9‘ù!»_²Í®Uó7¦6'ê!!÷ãטMÁNþ(Àx§õ§ ÇÛ¢wä*t¦D*N÷÷÷rÁ–sü_=ξכö‚‰°ÓË{•n%0ì)–Yé·÷ï ðïoðïoøo)x÷¢`üæÂã/À08lχ"ÐŽC¾ÞšÃ3ò„À7$¢‚ÚÔ(Ž›ñq³&XÔäÓ‚šê£%„ȪãȪÎJË=ì¬/;´‰‡:{AœñºW>ø¸+÷šQ†Z¶§ä‚r¦6íÃ5ÆCÁ,A^æaïšÓ\÷q¼¿:°wÞåø&Æå0#sh™Âh¶¤¼ÁÏ‹Ð(ò\é[ïHÑøÊÅÞ¡…?4Óºˆp…]Ø‹G öVÿÔjöZ¡‡ø2B`×¶¬íÜÕÒT«E/¿È鳪À‘íˆÀkƒšø”cô ›‘€%¤¼Š×ð‡‹é˜mUV+4ÊCª¥;"Þ(RcÉ(–.ƒ·~ †¿A\‰UÓ•j@ôt®¥U³:»%«S‹¯ÎI‚ê¸'!ébúã1›5ÜSåjp}ͤœáeßêy·í¾˜Þå(M ß:Ü&_^ãk®Ù\5c74çÒÕäqÁçÅ¥;‘ôí†mßu–¨„W¥³éQéøðÿû‹¥ñ?”·6¶ìøÏ›[þ¿”‡æ„Žÿ·«Èÿ@d«p­ØÓ]Â*´ðg'ûÇ)ÿ¢0‡æz‡y¦N‰ðþô‰hsŒWHG€%[˜RÇ;÷/™3³£i°«ÿ¯;&’™€Ã^Lßû°ØVz}-ÍS˜<`ï5ò³øl%fÝÁ) «Æ 1îOW½[^Mnƒ(Ï¬ÑØx‹Š|C ? sXë®wyó¯O’EÈùW¬#¾>|Á‹¹8¼¸–¡AèÙYLÒà,š`®pÍf`f-ˆ22hp)HÏF§òÚœðpÏvä9#8?z”Þ£½”LX[Š‚´+”?èGp4°íFÔäÑØ åËnlZFÚ‹•u¬Ù¢¬ÀÙÊù2`Dœ±î(ð‰Vm{Ĭ”3Cy°ëîéùþné—Të(`«wºi™®cô\¬qíݳ;ð=Ë— duÛGG}œÖ¾e $b‡Æ3"/˜bvFëÜhí(%‹G±nXÚ€ÆG{k¥U©}ªÔ’MØéó…öZPí¬^?˜¿ŒF¬=ŸîÜJ‹±™³^ÅIÜûbŒ5qB¢±—Ub{çŒÍò°ÉN [g§PP´”‚¢;¡ ÐË«_ëq€%²)·0¦çYD áSÃð 00÷¡²‰l "2ˆë}pˆgÇró,âʤ¡än›â…"ä{Ç]ø>­ ÉË“»^Ѝib´\ÄPþ •»æŸ‹³£ˆ7bã(SZGh+àg&/‘‚úº"ä ñ\³ ¢ÃáîCh3"Þ-½Ã[àµ4ªÝH‚:Ó÷ºîi•ÃNAÉg]Ëšå³®ÅÚÁJÑíecš'Ð ÝGv‚ Ñ*ÍÎõGÓeFŠA1[µh’…!:Ë ¶Í–‹6+¨4÷€7˜ígG5.5ÏŽVeÔ3¾É“}ͧ Ø,––°V2îœÖþĪÿz3¤² »uƒ°*ƒ#Wô¨ çÓ¶…a‚Ã`áé¶ÆºuùJ‹SÇ®ðý, 3ê^ÄN^¢g1:,£W°%-zBlÜÓ N:sš5´…d ƒ„SûgÍ$¼5Ô*†ÃÁU®ØeU¨ôûú€˜*v‹™Ž‚>î¸È&q êÜé Û=¿Ü„ãJ%M¶™êÎ x‘gv±¢$ŽJªBkŠ! 5Îľj¬'T k™¨"¬ “‹UÔ-éµùFƒÈmHa«çá)EõYv£-¥±1ÚÒ<³w"›i˜kº ÙYoHF9uA*lü ž$üw»ò^ÔzdËÙGöØñµ¡¡f?ŒE«x¢w¦Hquz½Ù˜£Û®ì¤ä¤HÛ»NÍzèÔ ÃŠŽ÷Ã>'-§§I ŽxWæàÀŸ(üIü/¥íÝ0þ¿›áÿËxhØøÙÂÿyÌ~¹=‡Ÿç  )ãÿ·¤¨òîi úËÐTsT¼mýï¡óÕ5¥¾ ìÆòEëv[‘¶Ï€I$°“_&¢i÷¿x0é ’ÿÉvù G‹mŸÎ›*úKžóãF5øÛ9?tV#¡þûqÿr0áa(ó:Ÿ¡óz=3t>Cç=èüyÒ©r^€ ?4[$.7ÆïÜ£àšOaµÞ²Ê\Ïr‡”->O²Àb|ÎŒYÉKzðªÑÜw±ÌéÕp«‡ÛXÇ¿ Ê·(¸AÁàªïo½žu„Ñz3ÿŸƒ);ñ¸ŸƒÓþPù‡ir(?;dÿUÐÕuÊ)Ü}¡j@^¨ÞÏÁÝöÖÚ÷¬žX]‰g$ï„Èó3mX˜zË1ʅÈ{)ªš.á~O©Op) *§gÍäwòˆZ$×T¥XNxØZ¼úõãÎ:¦ÈÔ‰š§ÇÍ@7÷…ýâhal£î&ʹ0މÅVÕÒIKêú¬Šsî{É$ܤͰÝSc Ë-ñÃ-¤ç<”òÜ“Æÿ"ü ŒÞœlQJq›Ó† Ã=ºg\Œ†W2ALÁ— ÇÈ쀶\b„,ÂBõt„hcY„Óÿc }Û é é@oÖ¥L½ŽÞSn`ÕÔPÔ ¤òœ]7 ;´ë^2 £Ål¯l‚}a‚pïö¡µ‘ ƒkr±G÷v¤ýëþÉŸ™:ì›ÕC/r¿ Û=gçñEe×Ú¸c]ã¤!•Þ_耲äò«0#°óÌ—üî#$=k4ൻÁðA®w1a·¬<ü`­_ƒŸ««ì›U;\š(F¯kw»áhøïþx„~±½á/‰8ñýíÃD£~®]<†«ãª—¬µ¤Àî§ÕË‘;`Õˆ]^:à‹’dšzºïpÇ™”äP†2W;ñƒÌUÊ윃dýB°™{6zÌZÉU McJ`…¾§7¼å!lW!ÓZ.36JiŠtŠúÎÜ'(s=•½ë)25 ¥ÖÉoä¦Z'ì«÷žiËÎ%6aªVqv™}ÇG‹ö7…òoÀÑ©a¿A·ºTÿ®Q±ƒÜY¬¯±S¶Ž2béjõÙÚP™„§”¬Ê6U¥{]üêk¸ZÍŠ©ÎZ½xÈת³:ÛqÕqÑ )7ŠPW±ý5äØá«_låv’õÕ.ï«Yû©´vX¬GÙnl'ÉÕ&¤ýŠbü‚›Õ%¶¿yRl]РNÞ%öÛ{ÏvEm'uÄ‘ðÁE¼¦V*,X†øpÕÖŠy›eÞ2Œ¦¹ÔáZZ¡…š¨Ú÷[:Õ÷ö P}{õ¿£¥ñ?ml—K™þ÷‰šŸ†þ÷ØäŠâ~z®/œÞé8%½ÇÁ@þup;Eº{<;]áKó÷X´…,'Ò¾?­ŽÆ6ï–×&ñN¼­»ƒÇ´u—nè~2ýåp°]ÓÎÝeÙ®­å¾PûT`‘NÏG3†—Ë0'3°Í,ž™'ÌÇó¨ò¯‚Œ+ò<¡_?OÄaöÔÄ;¡[ýÄ;‹‰ßúÄ;ošnç³m?ÿz©vÍ”âöp‘}èïr®˜Eðã¤$À)òºùmÅuØCW⡳Y<ƒÍÓñÓ¬•`nK”)šž¦U<2ØiŽÖJÉùi(±ÎP³p~š£h~V}ƒžæèQèiBW!ÕÛóÑÓ(òPª„Àµ'¥Q”2‡öWéê¶0F™aÏM(>–J&süÂÉd¢ð¿åð¿lì–7·CøßNÆÿ²”‡&®ÿéü/‘Ü/| Â×ÎûrÍû‚Fdæ²U…l¤¹ª›ù…WÆà~Iæ¹^ —ç3,p>,pûjAÏÚáÜmho5íe¡ÁHF0’Œ¼ÈôÙŒD £îä ÁD?7]ÍÉF^@"°†„kô¯§z%Iº°¸DøE?tòKÂÆ¸*y¶T\!ÁzO0ím}d*o-¤”Âdê8c Yú…ÿl.Éþks;ÿog+ÖñÐb³ñŸM—ýWm³_ñ'{ºÿp31¶ì½-k1Þ[Ôþ(«1­kjÀABÔÁQœsа<Öefa†Ã0Ip¾Š9FÎ[?Èc]f¶œ£ 'õû1b¼>—£áÕqGµk°ù#aÉž1ÀLŽy'¶pØÔÕ&¾ž­Â7ÔÑìdxÓÀS½‰=±~j5 šÁ^JÔik= ^ú´ŸÜ^ÏýÚ3B§–n¤‡Kö£6µ‚ǦàBCSåña*YŽç%C‰C¸Æ£ý¨ïÇóz,ÌÌ*Ç_S€ ÕAët8œù!è<ŸƒKðǹ †cüˆþÅßÇGt=¸í_OñÜžÅ~©ì·RîÚ‡.K3¸ßéGþ§² *¹lƒÜ6[¶ÝR¼MÕ!¹¨†m—¢ë”–JÕhÓÆ0Í Š»¿CæÒ¥h ÐkB¼:^±]b0ý%å¥]:ÔqÁ´Ž )®.ºÀøsMìÛÌË®#6ú„uÛg}ÚçK—:É€ â³ò´”$¨k%7381æ‰Âÿ–ÅÿëŠÿµ›áKyhuØøß¶×þËbþ%îH?šôf™-›°“þz¿坯ìÏú(ç`ö=~^̾C¸ 3n_ƒA%7\+­&¦÷¥ÔiU¼àêsÃV_53ï“0ÞZ= üu`¾®@j£µ­çWír4œö˜$ï$¶ÑZØlõ›ÞþŠˆ¶¦ç×9[ªd+vµòU ·ˆòÖ³‰o‘¯:F.Ñ-Š JgâoF‹—Ïøt3>ÝŒO7ãÓÍøt_+Ÿnè:úvt5sRêFȈnF§ûèt3ºÜŒ.72#IF—»pºÜ°gVŒ‡ªø HsKIyr¥Npü¸¡zyJ®?"n) ûmLURß&í€È®½4·ì”þ亿Ó*£÷*¯ñß _2 îñË Á}ÃWÿ{¿<þßÒÖNØÿ£œé—ñÐÒ4ô¿íÿü}|–_àwVbßvJb_Xè}'2áú،ݗVAæË1£/G+Ÿc7–Õwa¬1ŸÃô€ ÙéÑyÚûtœ½îª-˜´×Õgýµ,™Ú7#Ý}yà°ýD`¢o·ýµ|rê]Q·TÔ»í¨š¦¦Þm#õnû¹Qï&2êNÄm‡Åþ 'Ý=ª¡•1;x\7ØlÊÝM¦Y"1/«ŽNËËÿt“òÖÖŽŠ¥¹iy GøÔõ‚'œ··½0Þ^­®Ö‰AaÿÙÈ`=ðËãPüêSbMN c:< àõF7‚¸I\#>ß$ô¿µ5äß V55=sÓþÖÒþÖ Ê_sÈø„wÊ”çcR³Cf€œ$jŠT¿êl–Y×yt%‰®ôH‰vĘ•7¼u/…·ýÂIqßÐ…ÿ-‹ÿw³¼Æÿ63üoßÎ-üÏÉÿ›QÿºÜ<–ÍúIø;¯oÛÏë+¨'æ¢õE o(PJz_Ð3ù ÇþõõàrWhŽ˜pÓ]ô˜F­`ŒÌ[—š(8–'øè `JfLÁo™)x©ˆfÆÿ›ñÿfü¿o½}6ü¿ð¬;ùB€ÙÅ`±ÿïs…i%®Üyý‡4Ûàt#Bc®€´‡”-“Tºù­à Yä–"ЕçC\Î(ƒ9¾[Na`ÖÎ(ƒç{¢ðŸ%ñÿ–¶wÊYü§'zh娸Åÿë ü5™}ß:´d–_àwľí侦YÆï+ž×„Ý´ å­UöÈáÙ-°¹g dp,øf‘XÊ„ÉpÐóLà’WîFß…¯5™½é©§#IQ›ÔTO37ÂÖBStóŸCKÔß&„ò†$ Ö:r†XÑÕ nå4Nâo£©›ë}–o™"¥M«ï!0ÖrL*p¹b2ô¸|Ëe˜¨×¦å­Mˮ֣M}Xõ^5q(O/žšF:êH?õ-=ê­ß}nܱÅ[Q´,·¥LËÌÕÖ¯¶é¸7¸M³ÜØÿ‹%q ÃJ3Ö“\4h h.-SŸ%á™e{’—Ü“§^+d˹ʶ§¯YÚáZĪ8,Æ®*–ƒz_ΕC‚uÓõPTÓm#DÏ}îPK <õå“OW:ç~q޹ïä¡NR¬e<É Pzf<Éô}Æ“¬@ߌ'9ãIÎx’Ÿ7Oòa«2ê¨Q®Û¼&²iÙ”Ûl;|¹ðþú2Å-ÍÜö97sÜ%÷QBÈj¢*ƒà`•êÐNHZaÒ[ÈÑ…wå£!\¥ÒFøÃÀê"£Ñl׋#?/èp)…>p ‹chúsÎnÞY»¹¹Â-€‚KåER–§s[‰æ'¯>tcžɶé™l[i'Û¶=Ùô²—H¬¾V‚ ÇO­þ9’Z}MÍe¿Üm$^ãÎXx!^8É:ÖÆ1ñ=4ëÆº+m»u Ö~Êžv™Ò®Êú-9ý. “aW©•C“yÇ£)ãeà]µ¬Â(âïÅ¥z£Iýi”ˆ¬ –ñGce8^w)+çJ13]¹†µ)ú§¥Çú+í†6!Ï®ýü[Äø´•5Ÿ’Á§×7ï]cð[¢Eå‹N'¦Žƒþ¾%ÿH—7äH‡n ÔuòD0þ,ª0³ÿ`.¡ž(;= Í‘‚lFÔ®ì?²RÔ®ìªÝfŠ:ØŽÁŽÂ=¯„yÝ÷hÈ/'ÂÃiááu<^ýßtYú¿ÒÆnÈÿsw#Óÿ-ã¡lèÿº¨ÿc[Ê^!`wÛ=0Œ=NÓ/Ïoùñ]÷¸{åÞÿe_ü¤öÚu¨Ñ¦ã”¤¦F‹éºÇN$T¡¥èJ/+ÔtøÊ­P7  »ÝÝ(=+ÚÌt’§¤FÉÕ»¼¸ý„Å)öY`nÈ>ÞYÊÝ;X|3¥ð¬i‡ÄÄW/´Ÿ°B3uD¨f†z„&¨·f)X÷ÊùÄú ×Ú-'Ö' "¡½N}‚®@(˜Ú…y)äü5㪆½ýYxãfð…xç‡ùÀ{ríò“K¾hŸÿé…ä•ðÂÏ[ÈT“[Iœ2E)8ÓJ(Eíå4ˆÖ´À7 ^÷öù{u°£<È™5§«Z#Ž–¶Ç¥#II&™k”횬þ /Æ‘¾—ÐÃÁ¿ç‚ÇsJ¤Ï´†Éi¿)ôF¿hÇv³ª+E Sæ­è”Ó¾¸Ïß*À§-íSÀÔQ¢òªÐŠ]Ó>à‘.h¥žÈ~‹í—á2‰:¬Î©¢BÏF»Ä>€ƒ(RWåìssõ峋h^«Y=Ü@žÏš5SªòÒ„L|$¨ ­ÙBPš¶Þ)ŒÊû4_æDJ+ñ[m™¸Åÿn&þ¿’'Jþ_RüÇ2û,$ÿgö¿Kyh Ûò9§˜Ÿ|8À’Ã7¼M{60KèÆ®?t£¤ì°•¸#Åj—Õ’°ôôÆXŒ±øl€Ôô7vÈŸB ø B$9z66_N•ük×Ãô8o¬˜— eïáøf¢E‘ 0,‹neá1 ]­óÑïT_NlÂDJ’MäMc(Ï&N 0M'°»¬ÅÞ/­é&»‘tݽòL (·µjó@hƒ»ŠÞ®kγXSÎG7ËÔv+JGK8–Ú”XÍ›)EÿÃë©s-(Ð_òð¦Þ™æðíEù+¥ðBîfQþ뉒ÿ—Äÿ¼¹]Îäÿ§zhMÙòÿvHþwr? ²`'¶ŠÏKç~^"»³ÔÙ ¢ûZô‘<ûßžý¹û¼ØŸ×&–aC%¦¼mîçÖ_‰‰ŸYÒtGf¸ ÿ PL\×®[Üép"ˆÇ£<ÜýíÃ$(͈ ½)’å7‚"e”Æ¥qFiœQg”ÆúÝàUP›—·ã„CX ‘ÄÿŠ€•°ø‰3*âgIEŒ÷ò-Ù'ípF;œÑ?íp”(>‹®Öɶ‡p8†5Tª‚t¸ÄY^,Ù¤æÏÕ7=›:¯`Í…Pi°¸ìâÄ%c¯ýià#Su&§P@½]Ÿ@V¿Î_pdÆ¿Y w“Ñ7.ÊÚú„P;Zá¢[¢­èvˆF´xjWEc‰um7h‡.Mñ555ª\ñáscÉÝN§Ÿz©,¹>ýÏ¿n—ÆÿZÞØ- þ×Ò6çÍâ.å¡9«ëNèÿÙìLvw9) ÎÓÔ­œÉºøÃ½Aâr‘.£gî+ÐûTD“±sæT÷X¼­ú_ íïžè¯P íô.ÅáŠÓQê†` ­ŠÔúà,áZŸÓOû'¸¹ 0¹fŽzÒ{èõ†Á]ñ‚Ýõ!#ÀFøHLbø%r>î|bYPÆ×è°ƒ×(xý^§7#7>Y7jµéûÀ‹V0'+y^ÖåMÿòÛ„P—´¤“y%°MmòΛ]ÿ@j„¦¡FH›é28Pi¬lX¾"?c-!í<÷úÓÞàVÖÙ5C`„4½ÙÅ/>Å }Èi¿Ï?F`óúaŒ„·W”=¯æI¼šMwÓï"&™XÔ œL¡€z¶T‡.€;v"÷hœÕ›CT@ÌM1³=!Q§0aCT׬фöMÁÄ,”§¤Ôébò–ä}c$õ|ôA…ÏSøëâV%úPF÷¡Œ¾}ùTl¦Må- Û P,}N„¶q…°²VÄ=‹ß¤›Ñì§üý²z¿NïŸhï¿ÊSoÞãOg‘ùb–Uó*Í Ý¶Ž‰lF°Jè$«>O’™œŸÉðöӾŤêu†¥¨GbSÛOûM°æ×–q­ýžî;+âÄ¢êâÁ@ûÛëŒ-Fm0ðåŽ-Áp,÷üfYÔžµ¦é2\æï^ÜŽàž ²8n6[þ¼£LjâWn 4oÌ !jÃSy'ðæ¾ÿeÜÀ‚FçÝÔ²!by<ÜÞ®ÔeŸGzÀ_´üø Ý7 1#k…P/ 3MŠ£püHJ>ÁW–ÝÈ+u{8 µ‰M7£Mì?\ìòljhŸ\P àž sgrä¿»Þ Ö+­½uöǧîºÜxþï¨Î,¶Ì– ¾Å>–l6Ö™—"3,¥ˆé´ˆ‘4G™Ê€²"Åž~”튘À ujKü¨Ö¯¹–¬NZåU]LÛðOý!<õµ«¿¼‡¹fn7æŒÃr|JàBs!é¼kÄN¶Vkôo#åT‹]’u”O.9ž¥øŽn„G <ÖELûfòiîMû†sª'ÈP´”†K›RÉZj%öM+Ë‹–5Àp¦åBœÀÁTû›½)ÜÄ„rV¿Ád {s5yã/|Û äÓ>w17s“W[ç´^h8_PlØ|=$L7€˜+ì¤çòØäZžšÒÍ3†â–›äDwÏÐ •¿G>Vè¦c¸yNî1÷³ï^® ®“ïQí¹áÓ^ÄÞ+󉄦¼Pˆ;{"ž(ü9ü¥òÆÎnÿßÞÊðÿe<´ mü¿,nçG™ @{ŽÄÍ&Ó(Œ½l`õB ð…_Ú' î——vDâ%zÏÎÃá]ïVbÙÈ&ƒ#3]=>ôoÔÙ(´‘×÷Óà{¯Д¼%²ÖË©%BЯ¬7[ åOöªlbƒ\4ˆ¾ò{0˜j‰Ü]q¸VúpW¿±ŸÃUÙ1'9ø˜½Ênƒ9=YX1½éëˆ(N¢ƒï–¦Ó8äá¢/{òê‘tárô°DCr”¶X'šÍ&7[r.ÒL˜Ø.#RI@U8z,U _j?Ø “kKðºfkjÒ–ø4ŠšdšAØ™RÓzDÍKc]¨[š¶ž%­‡N ý [c¶™Ü†PS=#ކ†m0äP]>Sºà“)]äó¢”.·ª· mY†–å•(X(M"^—&X kí÷#ú=ü ™ýk0ÌbÉ{¹º‡®™öÉÜï MP*Ú’;YMÙ(=ŠOaÃºŽšW³˜ƒ¿¾Ž{D„:ÝQŸh?µ×]ç׌þ·4Ýlè¿KÙóDè¿C_óÈèFÀô*Ÿ(üs9øÿÖð?Ûøfÿ¿”‡–´ÿoêøÿA!¨±ÿj&™`f€ù׌?j/D°©4M¥~'y˜:+ðoy£1üXY72 8ç°~¸%r˜^p‰Ä#ž¹¢¸U‰ ð ¤î$èÿ¼¿\¦·¿Ž4ÞWÎð3 Ø9*^¢ ;dà .It23€»äâPtƒWÈea>/nNàüØ#Ô~j eáòÀ˜Œî½{Ö@%"x§nû×S` ÉkpNh‚}ÇvGX&ѳ&.ÿˆ(¹­pÐ\ÏŸ'Í\“ý®Õfz-%Dß\0Ö®Ž!XÃ'é0öE¸2†"øøãâø[Q8¾87‚é6ýË›áà_}b:â{ù/˜TÏ“è®FÒ„´†»ü0Ú×G½V°ã ¤9öïj` ôµ„ê8‹øoª6µ:¬P%àÇjò¶Œ:¬P%V"rxIê C{ñtÊ ˆ« ™<¾Ïnd&ØGk8 AÒÖ11²5kÒ‚¹Uó·©6§ ¤qü©^3sÅxâI5$~ýfS°“?Šb¤ÓúÓ¡ Á‹¤w+tÜD"íïïå‚-ç4xÞ,{½i/˜jzy¯Ò­æƒÝÅ2+ýöþ}þý þýmÿ-ïÒérøðÇP#¹œiÒé ƒEë|è»Íˆï¶ëŠ4èÿ‘4AI¼gŽÈš_ó8z<µPó¨…š ÔB ðQ±õ@8]º W…¥zˆþ$Æ,öiÿ¤}@+ÍZ†æ3Õ"ÑWˆžKêÅ¢¯=£yxŒÅ³(½¢9ê¢tÀú^ò L6ÀÊt—Ò3áÃJÕ€“ÁѸXï¡6ìÊ@§.Jtùgµ—­“´|Dà*•o­µÖ_¸b)| Hø5=!A˜«xK±.ÝJκÎå#dÂ8˜…èw*ç¨×©ãÀo:…à|¿Sm¸zgኘX¥¿9qüÞ ‚ÇÐo XGõùèáËM ל¡wÀ•î°2B˜ Â#Ôdø€®‚Ò†'D) :Áh!/x¼ uÉ”(½€³SÇ<އ}Œãॢ1iŽÎÙ¨-«€œC6 À„¦4û ¡’æZQ¸!SL…(à–ƒ©,ýa°†…$ÈZ(e¢¡YÀµìˆ °‡'qN£7¢…PÙ%-vÅ–²QXf¼2ú×S/QÑ‘“lÍ%<4E=`ú ÙŸ‡va[Aì:zV㶃âôF ®uÒÁ÷ëý÷in°j~§H˜dÓ`Ñç”Ý=9=àÄCuxzÍ-ñ®t±»ËåëŸÉRòãS9#Å#«‘CQi(°p ­·D˜f•©ªýòN1ˆ];)]ÿ/ÿ}c{7Ìÿ²³á?ËxøÔ×í¿;Nþ÷Î[·ý^óËI"»ïÎÓÚ}wLþ÷އÿ½3?ÿ{gFþ÷ŽÁÿÞÉøßŸ'ÿ»c†¸iE:nZ‘Îò¿‹ "㟕ÿ½“Q‘hß…­‹;É  "Éøß9ÿ{ÇÇÿÞÉøßß,ÿ{'ÌÿÞyüïÚidX§KyY£×†{yÙ`ОÇú³¶þìÌÅPÞIBí¢ó}t¢:C£Ö©c7]ØGu–Ì¢í­HÒcó‘X´;Î^FˆEÛ9fbÑî<‹¶=bÉ£Ñyv,ÚQøß’øŸKÛ[aþ‡ ÿ[ÊÃÏ& ÿsó?¿yp©üÏ/4øŸ;Ïÿ9 4øŸ; 忯1Ÿº“+}’ua“Èd,f‚ñ¾Cûµ$„ÏÛó[e{î<Ûór`Ùt )áÖÇd{îX逗¬ÌH_û…ÿ.‰ÿ·¼»»¶ÿÌâÿ-åá ÿÍøƒŒÿW4+6ø;iù;)ø;sòÿv2þߌÿ÷qù(|ü¿ PM†¢fô¿Ï‹þ÷é°×Œþ7£ÿ}åô¿1Hök¥úÍ8~Ssüv„s¸wäž„ã÷%¡ëÏ—Þw)àývóƒ÷ °NÖó‘ÌXa3VXz^1+¬5© ¶?󫾆kg4nâS‰Ñ“1¸f ®OËàÚñ1¸Fàÿ¥%ñnïnm†ù?3ûï¥.„êø š`Ôy?îOXãÈວ™[Ãû fÚ­³í¤wyc}Üp«møDVôÜ7ØA>í=ÀßÅ?+F=éKV­ »Ã³±Mz’}Óà;ÿQ¢”·~,.þ;Ø`½»Îþ-?!ùÿ¬hë§x;P¯røì®ø—yz—û†ñ§¿­.÷a„˜!×Ì90ή’²ÑAìÈ9M®À‹PLª)bvj«æ£|ImÙ<‰•6‘E>Ê.ž‰èQ@Æ¿ÀŒÙlåØh?bX?_ÓÒ‰ „›MDÍ`MÚ:?ø´Tœ§1Èö¼(NÖ,/’<Ñn%g¨Ü;k6?û)*c™ñ¤t1/ÂÒœ<\_3Ñ‹½ϺØ\kƲ.Baì@Ù} ÒE?Ñb2o\~‹Ñ÷Aú´A/œ‘Œ¾ŸKPÓ9e¡%SÂæzv5ÂnÂî[gÓY _è[öÑ`$›<ð¥5×§E±õ”œô|zè›:} N÷Hþ@/k`¼¨WJác%ÿ-Éÿwc·„òßöN™}º›Ù-ós)Rþ+kt€¸Oc¤?¯Y×â…ÀÃÞðî[LÜY|L¯ÞÓy%À²)Nœ¹ý{ï”Ýÿßä;ü\÷7Áß»ïÿ{4@Q¤‚\éC³PúÐ"JÄ@Kšdä„mu”-E ¿c‹ÅlY2ÑÂÈñàšÙ]MKãÛ;Þþrõ>ÉÖj¼zAæ4YCü&0Ö|rw×SI RÁY—o1!d+/Ú¬é‰yY@Úâr^#RZÛÊKö»·)»¤•A­AÆ‘le`WP­jAÿuš§BàÜfƒý½ñ§rzÖ´ØOVŽÐ^9Ùß#ÞZ„hÄÙå«{§hAði¿ºWÆrª•=²0€žã”ëöIÏòøè W ­ÊNÙ ©l:{ÄíÈ&Ô#d!76[£[ÆÕ(³ýýë^ÚI$¶òB%6U rH™o3yÛ¬ù¸¨@Z€ /á­ªd›88"ƒát„ýÄ Q÷°S²!Ÿ¨>–ÜíjÂÌAÀÍ¿_6'jç§þ”íÝ—7pW¼—{©š¸íèæ §+èÃ$ÿn«¸Ï´g‘¢’Жev[Ï9þØä´^‡Ý´½ ãÎÎOH9\Ámiø¥ü7Ÿ^ÿÍ;ÏÔý7ÃÔñ\ô†í*°ákóò®wY?b+‡÷Ÿíš€jÍÏl9ÙÄA£u¾g[+ƒv3V¿O¬~øíù¢[¬:sIZfÂk]‹§qºoT]ôj‚z^~ }½’¼¦âtJYS±Ì­î–Ôû¡ õñéŸ{°úŒe(m7;,rv]¬ êÏf+"B–Žmt¡w7óIßÞ’oÛB•Æ“N§úk‰Þ°ë[–( '7eÅ-é¦h±ÞÂ*©Öðš²øg Užof‰9E3 QŠŽ×kp³îë@N:gUC‹:aUÅB}äªZëí=Lû£MuP˜•WšñS6]vS'_°ëž‘LXBqœ~l¬_€ò`KëU3(÷–£á†iÂMm/¸f·ÿ"»¥~×,”ÒîXE/HyÝ¿‚ûFÌdõ3%Ù8:µ¸˜ÀvX‰ëPv2|ˆ“îö—(^9\Ú‰ËD­yÒ‡{W²M;Ü"ŸäÂSÊp R7«†v^#®ËÒ›FÛ€¨Æ;ñ:Oû_XÄ9söÁi”Í<î‘Å»‘ÏåÑøùÍÍÅ…·ÒGÅßRo 2FКt⩹€®´ÈÙ)ë°§ÃËRP¤L/úÃÁ—¡Ü6Sra3>O»yòÚB œF‘CÜðß×°sòf¬eMn,^ACå¡UAÉ%úÃ7p~[˜݈Û=\šÃâ^(êd³÷3ÄÚnB-Kê]³m0Ü=Ü­èI£¤ LrH¿¼sIq…Z20õ ‚˸"¨1æ–D‰»í­”+ù ÏDW*q.¶$)!Y×Í$uå§xêÚš¨UúÚêB¯%ñ&njN¶©ÍmˆÿDO”ü·µûÍ öYfÿÿ4˜­‘ö[Ò±ˆ¦|«óÇ©šøçÞ¥ÖØ;ŸÕP䈌wîGn2#Fk¶$Ô]‹´(1,IXÿç¨Ì”Rã– ÿqÓGr‘sÐÜqÿ(&¤ÍC»¤WVÖY›§lf׺ɲ¹ø%¡/FÓ–ô|%˜<€C§)ŒQü› C¹Èt(ÃÃ>¾ p±x'ÿøŸqôÝ 288‰Uþ»R8ÿÈ'7¸Ö=W¡Â½aÐ8q½³Â^Z1_i­(šuRúA¡PU!ó ïŸ7ÀÖ u\A\ÈCð_³Ð*Àx¯‚©LAšª D9åó]ÒJ¬ã˜ÆÊL³@ˆ"Ô¹{à¬,ºE7Åû‚¥é¹Õ®ìXg§«P7,_õ'…`°Þ_/ÐhÛ…êÙ°OÏÃxè1dúó¤<§ÙªS7uL ë ]Í«}nТÔôåG¯4]¯PKÏÐR‘[´aÒvIÊ&I™6Pžãþ¿c3œ¥ÝiÒn)×\£ý ×Z+¯þ®¿cnZú;-ñN“½ófì–|$Ýöé^t"¬šáØ…Þ‹8AQQ¶ß¯öë<øçÕóá¯p¥qRæÁË&9ØC-ÌÜ©R…ëeœÍS2k¥-“AXó¦—þñ.wzšB`׬ѥM~ó}±~Pa’íºúܰkÊ´Ö¶p¶ÚÝûÓ¤-¶øKíO®™'šLÝÒÁ%VÇ—Â%…r0ä\‘Õ3Ýèž wI·sÑ#-Õ#ÍGë‘æÂzÄx•JjA†Ö[xÉ@“;0¢à¿¨8âor‰iÏ ˆ³,¢än.oÝÀEÉjÑö5¨Cwà"}?‡ ÷ù Y¦IÞÇàþMÙ ƒ©ïá rYÜ`Ž˜—¸û ×J†kÃñMXûÑ¥(¦ž”ÊæcžÚeÖbõ<{Î=82*ÀÉûrî ˆ1:7ÇêáÇ»"*ÂÂìifÁ]kªÉá)ç°šrImç.û)v¸ä¼%xšÆå`L“W[M¼ÅRøiÉ™ 0Å‹h-ªS'Sn1È$ªõ¦zæpnˆîåjröNì®bžcn± –ð Un¿ÉS‰æZ;ª,-WðrÄÎáï¦úš´îT-dÓ„Ì:õO,s!keómEÄ;èïºfíØ’æE-»‰›J=bw€éæÚ!kD!–5{ç\·RÝtµhËÝ¢À½МUDæ{„Eï,пxöî@M]Tâ³udœÌ2t>K,ù ¶K|á¥Yb·À¾¦–Ø`h-15à ðë0ÉÛ¡™ÕäKÌžxÛ4'm¡ÃÊ5fIÉÙÈ×Õ¶kîxÖ•©£w^(øI(¤H¤šÙ¥të9)-²gaO”þg{9úŸ­íÍm[ÿ³µ‘Ùÿ-åá;ˆeÿ·-íÿ:G§û ·Þ§ ?«`hë?x˜Py$Õ´ð£*-^¬^ȯø©:?Þ¼#“XòžZ®Á!Ï5a1^ËÛ†Q"‡€1z(‚¼ŒýDÊÖŠ=:m¾÷ƃÑï¨7zÑÆˆ8èÑ5£$X3ìÍrÓ•ŒÕ RUçI»¡üóÑÓ̬œÑò¨¾ÊjâViO0jY1ìt5,:šI]\¨Õ´@ôñi²€Ù´:ù4ìœ!ꟑ«£’j臣á¿ûã‘ËÛ#±¥ªËJ÷Ò¤/‰™Ó´ucÚúèNõ¦òŠÏ"¡·2TwŠá ´×kbˆQ-˜—•ÁÇë¹D´-ݲßNÿdÕãÉÓ)¥0ØLñÿíKÀJ‹2óv¼fwHé/¬ÚºûÍö<êªsÖ…øîƒ=êÞÌ>üÆÛuL%à¸Ã Œ ;ãÎqGª°"†_°¥ÁIÿXª®Y”\Îç–“ý¸µ5[yº‰â*vè`ºŽmÐuìÄ+;xO%´«2ªõsþ[eä”1-ÅÏÔƒŠú,h©s÷`—¹™B^9sCº¶­Ú'¡«Àû—Ûó¹j]Kµ”|§ì{'€;/6aË@ ¸é7&[s8W²ëù¡áUéd£ÕhÁ(—e;œ£¡àN»áÐÓ´F0ï¿ØÂ¼ìM "íSÇU™ :f[&©¾*»p/ùÀÞG³‚íh„.|ÏôT¨Lb)¡¦´g»ie¯!"‡yÇó™:º€º› ¥âÐéÎ(—í@¬·÷ú—ã~&ØŠ-¶‡@‹^°³sE¿ ÷ÄM"Ìß <µ.eXØAÀ†¡yðÛ‚…±b8…Ð¥û¹¥ûôQNPã´³ºbj—5|í¢Ž@ÿ¹›nªŠõ>'T&ÜÞ!ÿøÜ ƒ< âz:!±ë›¢;Âz®| Ù7­hÑÙ>$ðÆ–géȇc-ŸnÄf:)ê@ÿR‰ðy¬zÄ=?¡ªl>Vì<Êb®# )îi2xʱ40ô¡­!³FŠØÃµ;çÔXÀÍVo&Öm+²Ë˜Ãc;f‹¡•ñ¯ðЋ8¹õwµéÊ{Ä4£ ÂO<®š×À›6!ˆÞ}I|p‚X7œ ¤çKæ‰ãŸÅÇ!´© C>‰Hd7|³´ çE5®qU7gERg£ ¿QÒÊÛ.G:,²°e ‹Þ²y‡ÅY‡ ®ªm©x¹IŒ?Bn[ŠÜãT/‡@!¿ o85Nl Ô¤Û/MM¥ÿÛYÿïæ¶#þËf¦ÿ[ÆC“ÕÖÿíÄ8|‘E_þÝA¯¿0º™}¿ª¼o4Ï/±i„íÈ=1;gv 34xZôwÿÍè;¶cRû“ÁÕIòî&·ÊØ×Áä°\¿eÝC&ý=ð°A%ÿ“íÃHATV诼2"F¢­E–ú|M\€ìõ®0\aj+ò·s°]º(ê üÍ# ªÁ>L‹óÑ:½ï_®}ùF([TȆÐßÞ]•€šo}‡n[¢kD›ÊŠh ]._µtï.N‰8oøzŸ×—K~. cAÏÚáf(J°$=b¼Õ¢TjÉ+j N3ø<šz’râäÉ¥BS¸ÍãËè5r¥ç1ÒE ×¢\ ö 9aj.VˆìˆÖêï–óì>l­Ìt²Ã¤†×TFèyCýv<$›Å‚f/gš¿ÿ ¥v¥Ñfþ?SvÀÚf'ÞøÇx0ö‡dta= ø^º`e²éªÞ³#PÕGJè’…Î3Uˆù:êp£xX1 ¢À³\@íÝÀÙΤæÌ·f(N׿U‚²+XÔ–ý5¬PPóªÛü~O©»œÁÕ.-’ð¸{4v$@Œ llVÎÓ©) `ÃŽëj°B[ò8 ·8†öHùdA\ã°Œ_ðLì(U£Ïe ²¾¨¹|Ù*v|æz ì·Jf0êVYó…3ŽPö¥„Ù7­ì=íOLåÅ&;à˜ÿµÂþ¤ è4U¥WNI¸U’ÎeÁ´I‚â& i&DE§sìóíÂÁºæ„f I½eø–TÅ讽Q é5è9·’–‘©Ã™”¼ôxðoö»j|æôgt-ŽÞdô¸BÎ"²$m R¬‡&º–m ðB”ðÔKïøZ€a9¿9EQƒ9—‚'!•ð¢q;/ [þ…ÿí.ÿ+—··ÂøßN†ÿ-ãk(’ÿiWu¾ÊMXЇ/¹ÐB+ÿbMÿÓ¢Ã,xðQù¡ °¦ýáÇC)µkÁ‚F`±¿ÿ:+ùÑ=ÈU¬ò÷ßùÞíýMO„SÌIFÜjð¦Ã÷Øå¥óˆ2ab.g¦*ÀøÊ‚0KöÊßWY™ìöZçT)ȉqQâ•÷ã»ß­†ÞìXo–Ù H²~ &ý$Á SC†‚„ktYS6Í“CèwÓBQ÷|D8ÉHkó?É„‚牷7 Ð:s0¼\¢ƒ‡³Wׯ•µ×†£am¾Å« ¦›ÒŠwpE¾^õ¾ÞMòúùbaÏy[s>_k„Uü<`«Ìî’ <1Å…<«ŠŽ…dÀIâ¢ú Þ|ª@Ê‘=G€öì¥-žÂ-¶jÇ @L:ÇÿŒPKçà 0]fáGç”~úéV?E|Æmé&ò8”fèâ1‘Ùn Ã.òRR™áT³@E˜„:®˜†Lä× çç†A–^»Éè³´† _,*ÏI,b]W°œÍ4EâÖN.±¨“S†›@p¬ópÌ$ØÆ“9×È0ƒb傚2Ýp²t¹ˆµp*Ø&r5íêïEÉz6|ƒp²cƒ3 LfI[dØâ×(§Æ«&I£×ÑÄŽÍ $$±¦„-›Óõ„+áÙÅ KJËZ “£m>9î_ÐÕz˜w¼Ñü"Zºê!æ§5”V_¨*0m˜¼wß ú ?cðÞ$Ãq­£bªßèT\lI”;ñÞð(MÚkZ´@Ç+y"ó SÝ~^Q6£ÎEáä}Â\<ÄOvkªÎ­/¾zˆaÖ™ï¼õ8OXs÷F'(Á;” 2žâ"J*a7ðùñáÿãM7JKÂÿK›ÿ§T*ml³oKÛˆÿogü?KyøJÖì;'ÝRNÝT*…à„m"üLèVÎ ?‘ùïY£û²€~¯¯Âí‰ØWô¿N´?"zW…ú8²ü…ኳž‰âg á.“0.\Þ˜*€ŽƒV°7äd$p»Ý$zcð¯cW žóqçË‚2¾Æ0 Î×Ãî°'ëF /)’ì$è\%BêýYWNÐfNæ•àQF²°Vx–©YyöúÓÞàVÖÙ5C`6Lx Œ®Á§˜ öûüc´š¼~£劲çÕ< f­fWγˆI&6ˆD0]¥ÀÕ\«s[H=‘{4Îê†Iî¢Ì›Ê–’í ‰:…Iž¢ºf&´oҸɑdû/¬–Þ"$\ß’E«1’z>ú >>nén`Hm`j #?ßb»³êG:aÚ›þ|7/­ ×6ÑŠ¸udãÔ2Œ›Ð`Æñ~Y½_gïó·^@ë°FõæÝ9þt™/&`Y1¯ÒbðÞf½ÅïSѬZ}Þ?iyÂd:­ÓÏ §;ýáT~ÐaUdÑÁ³Øt>wŽ…®FÅŠ£6‚¥á[‚a;ŽüfYÔžµ¦ÙudÃß½¸ÁuAeqÜl·ýyG™ÔÄ/®Üâ¹}`9é}’X~Þÿ2.§ãçêÌÛÔS {†k¿@àP!¿~‘ÿ?¨ûf!œ6#\õ¨¸hR¬XûH >ùÂpàJ]"NBm2XZø.vùãÄ$,p˜7†¾B2ÉlF‘R„:³ØÔZÆ®õ샵çT±(dI¥ÈÌ@w ¹KüÊÊšçqÙç•°^PsÌ@š(ÚHâ:µ :-Q§f±Å$«SÙÑ)ø)™/” ¯c®‡Û9ã𣟸ÐÄ\H:ï:Ñ“-ÌÑ™eªEuö„ ¢šÔÑ¥Äƒß %Žx¬K‹OûV|ÅD[æ‚î8§z‚ EKE~4¥J‰¦T'”Ø7­„º¸a¹qu›·§k‘öà¦5ü‰WÉ:öæ**¢.|'+ùŠÿ§ٰ§ö9ÆXŽ:Δ596§é¸@ ˆ÷+pƒpV{ Æ€ˆýÖáÊÊÜœ†fžš‘»g Å-7ɉ 1TY3”ó}TDNÂúJq±…ðÌÜÃîißÕÜá£@w5>\úú°M{;°Ì%nH` bìêVÉ`ù×òDáÿå%áÿ»Û!ü§”áÿËxhÛøY\Ë2€ö ;þL  0ö²Õ -€Fþ?´ äDâ%zÏNÁá]ï–rÁôöýöð¿®.§0âß4œòPP#¯ì§Á÷þ0^ù ix3d•!—)’4„p_Y± ´CùÇ·=6«¿aå8è_ù=L5]Dî®øB)(‘ì’Šü >Οäx üÓ¡¹à1›I†Ûz¿Þ-M•qHÃE_öáÕ#©6Âåè9 ÒÃ(ö(m±N›ÍipóæÎL=#© *=–†¯°lmˆéÇ•$x7³4iK|ýL2JK@îé^k>ªÂEhYZ¶z%ºç›ó¨UØò³ä~4„šêqÄ/4l@üu-ÍLÉ’)Yä\Äeê-hW–¡Uy% JCL&tXO'»ÉN,¹eŽô$Ü\ý~ä¥-qS¹$'6I¡Þ¡ ¦q37{Cí£ i&S„Ù¸ð/ñ\{”®= ¥´ ¶níÃ(Ž”öሔG±Àø‰3µÖï†æû~è¼§ÓBH[Ó@ðžP”ûQªˆ=Î$°º ÙñN•€?"Pà@{7¦‹;Τ<Ô!-ˆ©–H”¯—~÷E¿~%î¿Æ£!ôÐãú[Q€¾87‚é6ýË›áà_3ªÊ÷ò_0©zÆr£HŠbÅ]~íë£^k Øñ†r\ÉQ¦4_K¨7€S±ˆÿ¦ÊaS«Ã U~¬&Ïa˨à Ub%"‡—¤Ç±ùxs~T-†ƒ2’Iâû…XâH΄iëœËÂGפér«æoSmN]È« óážMM ^$½hs$¹†Â<æ‚-ç4xn,{½i/˜úzy¯Ò­æC{ߥßÞ¿/À¿¿Á¿¿mà¿¥à]:¥þ˜`Ñ./št !È`ÑÊún3â»­ÄJ#M°p•PBŸ™#Ý1 úI?ÔzbýP+¹~hž)!ÌE—^ÈUa+À,ÅÜÆc„øìËjbEûÆÍwÐIUn¬³½Á  € Ìd qÅ‹¬:ެšá¬´Ü­)¯wxooìq™“ílÿšQ†/Hv 1"é§)å ¬ð6äBQƒ’8µ’+ÒtyM°úo„`x¦pË1[RÞà—€Ð(ò\é[ïHNJi|å Ô©qSšiCcðMÈèúÀ³úíþ©ÕìµDOåž]ÜÄŠØ}”m]vîÆjjªÕ¤úãÈå`¨õÖ„õ¦ÝÄTåÒíN¼¿Bë´&Ú˜ ' [ÉKÏ„‘˜–;P†{¸˜ŽÙoõŒÆèG­c‹×Aè§wF$O›èø)”^QÍ qÕõbjõtÞð°®5H-YZ|uNTÇ=±I]‡ŒfÂÍUEѲzÞíT%f¼wKÔéÏ·ã"›@ùò_ïp!àÚ;»¡9—:/›H^Hl,Y9´…m&£øl¦õ{­Wÿ÷ïeñmìlìîÚñ?¶6²øKyÄÚ÷Æÿèü¦³”€¾ý÷øxRÞ¯GÓÑÁrW)þþ;¨Å “?_òk²Âû÷ö/Ææ 0¤ï0x“8ïûÿ ®(!å†Ð¿"íÜi÷¯Î_§)³b Tpì%ξGG¾‹ ÷îÆ&J0^z­™JCDOo CÌÈ %³Š zÃ/À<Á0$ã>¿ê\-2®B¨ogò˜°oŒ&ý›ÑíõïpÚ]dÚtVÑ31æêÓSçßå‡Áü{ñ¨ó'´^àø÷¡¿Šœî×SÊcRÝÏ~?ê]9·üš¿ž ‰==.{ÁíÞÌ·ÖÂlÛ­;fä©÷ñ¬îT¹„Fÿ!Úw .ò½žÕÝÀhÅÆÏ÷×Ô<2üþ!ÛO·4üŒ@¯:}~¨>ÄÝ!¢|Ù\«£h W:â]n´«lˆŠÔ"`‡î°kBô y6àëA¾»³ Ðq*²FuÀ¶D³¤5 iC4Ip¯t]€ä ŒÚó†°ø»Èþ ™ÉS5‹"çh(‡­é†+ oºœÈeê:Fë,ÈÞ«óÞ+iQ<]â´œúþ #[dïªwé—„ÜÚ«v$mz¸“<݇ü•q¼²'Jþ_ÿÇÆöæF9ÿs;“ÿ—ñˆõ)ÿK:LøŸSøwËû³‹õe—X_'S [®ÇŒÉ¼Ë`TÐè68«E„,yHò4X\ž´ÿsÁR¾–ßBåíEÊÊoHH6m)¿u-¬»ð±ÿW3Éœà3¹÷ù ¼åHçq·Ì…ݧxyŽÁ‡A=‰¡æPÉÃ8éÖV.( )‚¯GZlô¯§·ËÖ,ÒbK­-SZl9¤E^Ñ;½¢¥$í.½–`.\×…Ú’K¨5%Ö—÷]ŸÅ~Vò ²e_¼)MmIAÖ¥©N+¿Fˆ ™êâŸü7¹_Zü'ö¿þws§œÉËxø×ü?OÛ¨ð=k7Ž•Î·Rc;Q»þ'7í©4ÇÎúÞËóùÐØ(!°¦6V×…Êc_ï• ]÷:Ö¹( F9¡4®Ôrš¿h­`»{&• q¨Ù¥á’݉¦ã‡KVÇ^0ùuÇ®Ácv_ Q.LûlL.tèk8 9MʃF~/ßX‹½3öÛÙŠe~Œ¼…zd(xTJÜðZ?-FAɰ5ᡤÕ_Uʃ7xš»Þå LÅ>>‘â*ï˜xtq‰EÛ— áè¾9¸ôÁ±>zPÁý¬3t½êLHqÅÅ1=Õë*¬Â$˜ ZÝ -û¬œ­|`ÕÓ ±•¦iVá3ÊÎ(ˆÓ.2ÜT+Ÿc×ÕwaÊ6©.÷J÷ ˆ«=>-õ×µž¦W¤€_©ÍU'iã"³ÝékÅkÄf.Їš««MÏð?ÛÓ3âîËÒQ¤U&Ò_ìè²ÒLÿƒ.Gé¬g”lÑNÄš%¨‡íÀ†å˜E®> õåýàûh Û Z`õŒ¼SùµÖ4OÓš˜wÓþ—þxVÈ¥¶NyñÈY%9+…Ÿ£¤ªÄÒòsÔ+T¿¦­m6<>.l+LDE¨eq&²àE¤ OÝa„#"L‰–ÌçAwÚŽ'txÒi¯-cù“çÈÄþ`+éaÝèÿLÛhü¬áå`8O˜v2ÉNîPµ÷® °DÄv;ä{~%¹šÎÚuÚæÖàú¥Ú6¨³‹Ö€Ýzÿ Wî­5¸b=1˜þÒÎ2Ê=Cwuݸ,hT¡<Êt~í=¶5°M#Çø<Âeþ Í¡–ØÇJk4,>°Vh1[t¹Á€àíÕf·Ó*Ùû‚GÚHzsÃ9tÆ6<Ýb*g“À- nÜ#ÀtøµÕœ“Ü ƒWæÌå…q®NêoêÃôÖˆ0ì€z #ö½úØóX€ñpt‡§y3‰º°Ö(÷°Ó@`;mà%£ö[þÚsËCû«øÚ¥™E¢ú·Ø«‡ì'VmËÙ7‹\"D3’pp³ÉnÈÉÚ[ŠO¯±ïæÓƒ†Þ]” ‡a$ƒ¦ óñµ¢XøLNR‡rc½†Ç‹ÿýZþWÞÚ Ûìføß2ZÂþ÷9„ÿñpòa ƒ®Ó“o o %¬¨îy>¡îlR!F9¬a?ŒÄtÀâç¤Àâã!ŠžøÆðÄ×›p,ÖNgÝ·^’¨TB䑯Ëp"G?ލg‚âˆznH1ÑR5LRü¬`?ê‚ù ¦*àafa oáÀåç ¸Ì€ËçåõT eJ°rq åç ¤œ¤ A>‡¦å"•ŸçA*?§B*ùìº ›Æ^Äò³±ô–ŸÓ–3Wq±Àåc•¶ZrD bÉÇ U­œðc/>¼ø9ƒ—õøð¿éÅÒâ?—v6ÃøßvÆÿ²”‡Ö˜Žÿu«èðE; gÝÚ«W>5áûÑùƒ}T©âaÄþ=€Ž{ç…SV…™ðëÀ©Gx÷DƒÐgÔSØ Ø%-êÆ„.) šã#؇‰?Thÿà稲)€?œnRdèÖ`­É¯ »bø޲ Á>èÿë;*•üOvò\¹?ûc%àþ¸é .‚Xzf0¤áÕ€ö±×8”'o\xw†)™âw•Ù‰-l¸$9̺ÍD®pÁŸƒ»Vo6±E&ðŽðÁ ²÷± ³^p°ò‚Ý F÷ì.ÿI×ü?Y…Ÿ.è“ì>š"q ëÖ¾9 Ë –:ìèE/ šù‘H"ÌKQa XqßsD™ÇÇ`Ó±b׬¥VÄT rúU}ÕJÛÅ´+2m×—°f%¬†_¾ “¬œ”ýuȶž™†… ú„F‡Ic‚-“Xhèì$)ða#Šˆ >ÚK”—Zr“6¼ÿÄ0+“‡ íïpîÞ6°&¬p=8 liªb¯þB0Xﯬ=‚câz663Õ9.íê:¯ƒŽ”WÍîñcÍUÒìW2=!] ñ` 4ÔWk%Ã{—»rB_‹ÓÞFÚo¥VBχ›±Z‰5Œ· @òõè–ÕÔŒê<0EvBmÖů…¯Hw’À/ !Ò¯ÅoW«ÿø8øÇǯ¿{2jPF2œðZF_ñu12,|]cÙ)<»š`†ÄáÙÕužĬÙ[ÞÏ­eåëóL“Ðh‡áï<Ή8¨í3XÏADz­çIfL[Ï×)§0€]MÚÚª»µÖ⛳­Õ´•†µêhk ëÄ`}׺œ$¾™à£."ì¬* ®'oÛM;›¯j:Îá÷ÇGê+§gMïVý¸ºìoEÔ5-qYít«Í?Þ7+ç Âîá Äó,40>yQ³‹Bõuˆ¶T”h>Ýæ­¤ìvA´:¶ß­ø¡!Î+AÞ`¦6á¾Pfõt™™-݇~F®PÑK¥w(©\Ë‚6’+1â!O¤™b@fÝ;gÜ9½sÈ j  „@h`9a ‰sÇ@Ò—I¾2==¬»(´ÇQgÄ›&ƒ"Wã ®ŠÉ[KN9‰ÎC‰ôÙ1Î#Ç?z „˜èEZtLÇ? ˆsS½udû\Ǹõ:ñ™¸]ê=¸7‚'Kƽ£ðßeÅÿÝÚØá¿[™ýçRšk6þ»™ÿõ㇧l{Ý.Ýtºð' ÅPØŸG†'F‹ ¢Ã±§;ÆMÆTŽégÄ‘7cpd>Æ@ž€Ýø”’êBðñ$/dõ7@È?¶ðhBŽD Á„h -Š0-¼<¢ ¹¤º{ॕaʦœaʦœaʦ‡)ãÂk;k8Ö knÎíÆYï²óø;|AG¢¥ÉÒ(0ÅÓp„æ"rô5ÏJw ËÑÃp*Š‹QPgžR–¢Y¢QtùŠZ@,V”8õ\¨mìuvI¹ýešäó 'Û€5ÊW2(?ƒòŸÊg7Äçæ#¬¤`N0_Gï &´?¯Åýy¤±}µþ©u& üýN‡ÉaÍ~Ò%É÷œÿðˆes üÎàÔÀÀ½µ%U`L^ØŸ²¸ÿ#àýJµ"+¡‹‚ÿ+Uˆ9ƒ+¥qhýçÄ`Ü4£ô$§½k¶ †° ¨t4%ÎI¯ \‚[œ³~ÏÉ)Ê_pŠ5³…»g=LÄÁHç›&z2øvÌvÍ_¦»W£Ò­ž*€»ËA^­›4õ¡&níFB;õÀF̯´ ÖÛÕª<›J9„Aà~įùð‰XQƒUEnް¥OVAY;»åˆZ³Ï¶¢ßôÔÇ[™PÑ›)ìâ¨_I~œÑën ËÖ‚4,õs– í¤qjLBag`XÙxꔸo²ùq§+ ÈøæjXA/Qi·]Ž2…‰L‚R¦…¤¥£Æ8f¿OàšH¨”‰c’2å›ÖHÆ3'Øø´qrnCs÷x:Í¢­ÄÔzÐЙõ±äõÉÃ…–‘¡óš_áé‹Önvœ1º™Bó¹*4UFõkZð¼Fº/`—6ºíæ¸o…¦×ó!€½É„mþhvqÑJRÛó˜ÊÓ·¤×z4%+q¿wyÃÿT#+蹘3ž/»ó%©0a™§ùýŸ½Ëé¢ÛNûo>VpÎæC†2³p'àµ5¾Ü0™î0„(›Ý?zã+ëžÏ~íCWX]¤g£Ã¶ónçl_Yâ=(»@1E–ÔS_ØÑýpež§Ôf¼v³}™í4ã_°·Òur_eÍùÎV¤Œš*1'«st,vÁN &pq¿¥üEïò›Öyp¹Ó;MÏ…Ï©œ2šÜõnoQ¾Ù]²½‡‰üVM €=×:í« pLY'|ãvCÖt^5äK‘íhq8ÖJH€Gxȸ÷8 Dæ§Kh‰D¯Ð«(=yž·ãÙæP?·ŽA)g­z@Ž6ÛWèWÝÁûU²‡…ÂþYœWë€6(uzµµÇðçA£t›m(~}—¹'T¦Ï®ænÖ[ ÒrëþnNÞºx•7‚D%dѲßô]ÙùË‹ÿ£Gh!V)“Gêàñ6L^öEXÌÐ\W)t;YƒzW%àk= À/Ø å:… ›™@ DvàÒ2ÔVt&ÚÆp×F:ÈJì•çR6Ò´öƒ!²0ÿB«6Íá]H+ºéÑŠÂâN§qÃtRíF{C€H¨öl¡ã xªÒc´Èb°Œ"á’uCµZ2uÕy­iºRæCiöé8è‚_}Š0|j‹&`Þ«9tg`$‘#âЕÉ6õ´uä$ÎãÃþz§Üçô=t[RÈZ`÷Š­ÙÌuÑZ.36J)77쪛 åb®§²w=%Ã0g.å~y¨.ПChªOJQRëê·àȵ®ØWï=Óœ„Bq]ÅÙ|döµ(78ÇHòï×Ù·Î79wª@·‡Àa¯a#Ã(ÅuC|pæxGVþ] Sšb}íÞeΫ^ ?báj­ÛÚ0’8ãÀhÍ·z>²zçž~ 3wñEØÏÛÔÏuö^›ðܨ¯áÉá|ÇUŠègˆ›Ã·¹Ôý¼¬Ÿm5½§¯ð?Ëv5ËŒ¦»š·óº§ÑQií°XkÕÕ‘»³Ï“ðGÐõõý“õ’gš€t@•Œr<)¶œ„ hÚª§ ï='$u )Ke+žkêp Ë –!> Ùy›eÞŒ¦¹üÒµ´ÂF|j¢jßoé,d¶3 ™7óDÙÿì,+þS9ÿ}{;³ÿYÆCëܶÿÙa; Û1Ø?jÑ\/þÛg|­t_‰iOR›ž¨ÈO•nÁìÜÅÚù¤ŽÕ„ã­\í{º:|Ú\€U räˆ9¸`HÖ6ë²JIÛsy ¬âèˆù4Õ”†Ñx t«,ÀûC0aàŽÔl®x=håAN{×` #3ÕX‹È0 #´@û™a¿™Ž‚+Ö¦+–—‡áU|};ú!T¬z^_Ù†W œÝ©Ó¢ýeÞÍ–½ëèZŒÌƒd(”G ‚ þÏûÛÁ%ÀzCXSý"_…Íb¯À7V¨˜r'=þÆòBCz‰ìã .®]Úà¶4bLvž§ÁŽ×|å%¯¼4wúÌÒã¹Xz<¾õÅ,ž¶•.M(O[u’¾ùb´u¸WªóŒ[¥ Y¢aP)BZÓý`õЧևAÍUÔû¬LÊbƒNÍé‘Ü\'X0ª_oI5Íî°Âô-((#ø5u¯Ü¹„²þι)U‡1¯¢x4c™3g ¸ôëýÒϪV\q"4ˆ<³Õ\‡´B®y/SÔ[£±SÈHW]ªß›ü .{º{ª©Ÿ„ŒÖ]ƒû/¯–P}ø‰ Wܤv(Z¾âv%#kb¡\×@´ò”‚B¶^¨x°ìOÞ²«°[˜«•ÝÂ`n!K…žz‡AKß.{ò]ÀSÀºrÔ¢rS²ZÀ.å(•lzÖzÇŽ+uÁ}Ÿ¦}R»" 4æ™ÁímQÞÿúW²ÈÝ7PUŽŒNiÞ q˜~'ƒx­v,_±]ˆÀ\«Ü%ð=ã]W¹Àï*.ž Y&¢ÅÌš§HÃý¡†-HîÀDûpqnÜ2Yˆ±µ™±Õ9ÿò9Z§¼œwº¿*©ý j•høg²€O(‚f ãS<^üï~yñß·¶ÂüŸ;›þ·Œ‡ïN:þ×Öâ¿Ë­¢Òfÿ¯·þlKðêõEsŠF÷¢0=~{YDÌ&ècîiW¿¤Çô` #è3]ÀÎD–˜Ç`ø‘¢ÄTb.l< uo*äMá£MØQš[W Cú%pO>a”õg½l?§DPQ¥mæå“×ó¹ÖZiõ]ØPXw÷c5 ¦¡Y«gAX ÚTÃN„ãøLz€†#í¤hL;—ûZ,­æ¿¾+kÁÀdJ±0Œ…4ÈürÃâW03üšÏ}ÅŽƒÜ‹6àC8\U°ñȱxc³í’ã!Y“`S£°êƒ£ÓŽ ô,Ü­Ûëv¹?Ó§"N¥»6 ¤®+v G¿$l/¡ù(ì'‹G‡S‰\÷ vÍÒ»œk·{LV¸™¶Ý·9l¿ÁèfÏÞƒQ-ú n5 Oj½+ E’…ZgÉuÛ ai[z„u®ÚRS-˜%@K’°%È“S#HÄÄ×Ûîh-p7ªȂ"ߢ[»ñb8d ÷S~þ0*¼C¶ýi‚«˜Y +Rƒêâ¿tøª€æí?Æäd…OTゎ2ÆOHwXÓ tƒH9a¼·¶Þã7ùÃÚÚa‘L• ºÓÏìÖÞ¾fà>®C1¤èjE× ^8WÂ1ã©Ñ‡8Yì…«&,ôÍZ±í€ey9e_IÚ¡³ên¤ýIÑ\u¢{Ù?kDªYŠëîc^’Yø`àÍÞ;­â!VD/sXÌ!‰€—Ñ;%ðx D¶·îÑWw˜{k [rÊŠc#³ß—èó´·(N<^Çï}@dû­EžÂÿ–ÿ½´Žÿ¾[Êð¿e<|k±ð?oüwÎýÕÅññnj¯'LDðµìXï+ôDyŸ)O{ùÁÜÅ_"˜»ßàχG†"¼Seì ï3Äãõ™‰«6‹ðžEãyãÜW‰0ágg^œ:9)ái“Öóy™ðt"åµRI=û)/ @Jí |î|Þ^ràóÃCÓj:˜7:Ø»‡Š=;biKœ&º»ÖsHO[k‡´»æYux^[õVX”<|úü§,h:~‘MFAÓÛYÐôWûDéÿ–ÿ½´»µ[²õ[åLÿ·Œ‡µ­ÿóÆWú?¡Éãš={—ROõ]=ëÝ©ÚSQÞµ`îþòFyŸ#˜{û™sdqRãvïK_hþ$õ¶¼ç†k¥ÕÄ1Þ)ušXIùL…˜…gŽŠÄ%…g’°çoUÕ8€ML¨S«ÍreÐ0†²QE•ÍrBš¿%ÅRt< :žÏ‚Ž¿‘ ã¡KøÛñ1[xÜñÃZ!8ŠŸ³¸ãYÜñWw<‹,žEÌÀH’E_xdñðlVÌLtí ‰/Ž´ràeXÀ|‡¯l§š! y)uHhNGèbü¬¢Š+:¾zd|•²I uÄj¦Ç²ãÔœ©ÐL =«`æ|ÕÓšg}Z„u¿Ÿä!y‰S1†ö×.pÆAO77!öyø\>g£ ã‡ÑÏÅït~Ùã¥ED7¾ä°èíW=Êþc9ñ¿7v··BüŸ[Yüï¥<4¡mûØøßÊšñ­÷^jHï¹ÿ<·`Þí,˜wÌ[̃çiÞñvƒy¿Y£ç㟜¶Î[Ó,zŠÀÖ”‰±$‰Y`ë,°uØú& l-Fkñ­ÛîÀÖ•pœcÖ=r8ëöË gíÅÆK‹ÿ\Ú(…ùÿv2þ¿¥<|ëøOÇÿ£Äx 6ö+þ¤ÓÍ×Ãóúhþâü{*ªs–0:G¥RÄhVpNV`F©³¨ØÑÎÈЊd±¡³ØÐ^äÁÊËkí\)„™³3”.oº”?Õ¬‘‡pK2@‡kÔ‚ûÞxjÚ*WL¾+|CÏ"T é0LÀDÛ,‹1p á ¦ÌÖ4œ­¡¼=Šm]1=ok¼&š çb·&¹·„ÝNFVçĸL°)“d–ƪWÖ)§°‰:no2ÿ¸HÚ|³6çð,´ õÒsÈÄrpÌd©ŒŒí M5ž»ÿ t«Ì,Ü‹Y€î· ;eX‘'޾-lÏFßîDÕ.yôíÎs‹¾í2×~éÁ·;îà!š ƒ;âeCpz¡Ñ¸OûSóhç;aK8ðÇM_5uJRÕÔ°Íz¨mɃ¶8ÙV!‹, ø³æ[Ê€¿ øÿYk±Ú—©$2•ÄËPIdÁV^+'Ö³¶òB­úb þG‰þ¨H?ÿãí„Gï,$®È7ûb©Âu;™B<=·(á,Jx%\̃[çi ò†£„[yeö™}Á˰/È‚«Ó¤È‚«?EpõFÅXÅ,¸z\= ®~“W£µøàêwpõ0}çSÄX<ëÏùñâÿ^Vü÷ÒîNÈÿ«”áKyÄ"³.*g­Z·~Üb í/ ßë¾rÀ×~·rƒÿ5äöðbð?¯¿yXC/,¹«è±Mƽ(;VÖ$îƒ!ä'›:Tÿþ› hÅ “?_AKÔd…÷ï'ìß¿ÿ®°Ï° ù>”Òbï¾ÿïÑàŠ]+d²ø£7áÜHì4D¶fV^çä VÖä5™Ï1ƒð­Š(0µ·‡Ï¿ÂÊw.Œc4|À ;ÜMäŽTÐ/í`žÒP0¥c†Ç3Ò‹1ßÑ!„Û¾ÄX <ê[6ñ“´¶i´t¯?í n希&ý›Ñíuðp"ä {K_;pÔ&k 4— ßÚü½ØN~aËÃ@&àÍu‘Àùa°ܽ0YÜÅçfUŠ$U‚›cÅ›…¦WTÛ:´…–œµœC˜ÿ$éZ¢…y–n8'MjTºQÄ…Óýn!8ßïT®î™ -HO•Ä+GŽ%"Îw&t7ó­µ°] )Ôu0&¼×%”(*~2Áå"ôØq8°zuhꦷÜîV¸RÜ pºqyèÓ>«“hÑðs¥ ®Dx‚wôË´etob¬¬»:2_!ޱQc™<ÜÞÊ iñÑ¿üÖ!Ûo iÒaÜy¨>Ä!Á–£¹V§¸¶‡éÊŽP¸`×Ûa—ƒ6øäÙ€¯ùvîN‰dîZÕN4–MUÖØ¸d±ÖÖ!®pã Seš`m¢.—90áñ]…D«ê¼U%¥mŠ?›Ñ/Ã, ¹sÓÛÞ"øj¨n¹Ì u2Ÿ¦ˆsPɑŗ"ñ U¸$mùB¶,r ùgž¼’v,1\½K¿ÀÝιå‰üÅrÈÑ`M"Ó66ù×[û!Bšp|[Ž‘ÙÿÊ?·'Jþ_Nüß &ìo†ù_Ê™ü¿ŒG,ØHù¿,åÿLøçÙÌ(ü»åýÙÅú²K¬+ã“•\>­!à' ë]!]ˆôÅŒ¥ /ý!ðŒË¥Iû?,åkù-TÞ^¬îz‘Bò³–‘•|Œi1¿õ É6h°`Âq‹ÝØZoY2ÎäÞg,ð–#^œ»IÞ2»ßï>…ÀËs >|„‰%§¶49E:[šô‹Ùè‚b’"ûq¢ S\fm¢„T,Yý"%ÆFÿF.-¶æ뚘H/·Äß-],9ÄAÞ¤;½I¥P“Êñðò›ã’æ±9'àä–ßµYjÊ®-!¸>-Š­ÑE3*W‰K¤mi"mKŠ´aÿ”ô’l„0ºðhz/ïñÈ?ûã‹ÛÞ’ä¿Äÿ+1 }[ÚÞùo{c+“ÿ–ñð¥©ü?ÄitÊN^$Zh‡Å¸ÞÃÏÁí 7þõ\e9EJNÉÔHlQÄõе4¡ìÕ²FŒ$7{nv­g­¢䆬èŸ0Þþ‚ûµf/<F¢÷ãÑvõ$F*°0b¢QÏ•ÄD‘;òž×$ì›}LxÇúµ÷EбkÏ”|" AßÁÏ.®±Ï¨àÓÓN³Òêj!â(ô?&êbvh˜$I“ ¾Íq³)-ô£ä=*ÉEÈF$$¨±Ë·$D”wÁ€ /ß¡.]ç‰'7£‡[ƒ‹“ 2—7˜Õ‘Õ}< [¶‡×'t+–Ñð«Õå誯FBÔJUtݘ=øPýDìÖY)ìnAûô0F{8.®i½iÏ;0E¼½ý€òEV|à{˜kßÙbš½Ñ›·£Ëo,¬c+G¦öAuG×^û?Ù´ÆYÄæÒ—¾Ñ(~³Í"´ŠÐÍ€KÜ0›q&ªé,f)¼|D¯ô1§ý),šu ‡Zó€Å¼Ô»×xøTûȺ@Ö…Èë4á™T§û¸fœ3Ê_v5ûjpÙãázS±¤ÁÖ¿¯º±ko5²ëÄ”Ïèx{£ØQ4f‘ì:Èš||Úæ6Ëzgt£·9àfC¸¹©±ßú_ö¡Ë2ºfÌ@µ3Ó:Пw|~¾Ó+­,`{£^¤¹,~qµ(Vzk³>½&7™Û§-º‰]H¦îaÏ?;õî~Ž·å  v‘¿±Çt§j3¹üƒèÉœ˜XH¯Eп]•yÈÚ]Ô®£¨}GQûª(­ Ë×ýˆ6Ä2r$þÐÞ³WÜõ|ŸªžÉ{/yå•ÖGè´Y ðù|>¼øé$XAÝï Ù<ñ­ Ôš;¦Ì¶ÂödÚï¡Ôß— ”/ZïbëãŠ#«*±Ça¹‘ETv¬"v­"އœ‰Žmy¢÷[¸³-7=ðØ{ìþ¸õ Ù2/É’°4óÖ%¬çýøä¿Û^ø}IòßFØþw{3‹ÿ°”‡§.ÿ5*û­?ÙÙvÚÞ¯±“øÏJãlÿ €NêA­I %=ê¸F²í¸?ŸK&»ˆUeò»Zܯú÷ýáøu°?»÷NtÕýq3`Rɶc·=Ø^/À1š]²úßIVÇTXý Rp1YæÕ–N²(Ü…¹{;¿K‘Š©Þ®tš§–‡qé} >/·ü7øwÿw¬@†1(ÐBxˆiúákzïöËhÌΰ;ê†/À‹ y_ üÛ£jxÙ·jP¦pgªAU@é‚ú³Á/œa)‡qQ\úÿM~ÝÝÁ$½ U¢?øÒÒÐ (Â,bÛ6Ϋ¬Ô‚Ð@¬3JW$ù=TÒ˜ÉQÂ7™ w  ¼é}ïkùõ RF}þ VÓíH+Ðo0À0õ†jÑåÊ…õõub©¸Ó>ÞÆÍfí¸ÇP‰Ÿþ¹äXICVí«‡Kh»«:>\û HÏiX˜žà¢|W®¾c]ˆ¿ýŸ—ýþ•kBhs!8épCüÁ¿‰?cÀc0£ó#”†U /M!ŽñT4Ÿp¨”Õ»öŠ6]Gck"¼ÿÀº€üü¬^+ÈnCO:œƒP}‡“¿ÂÝÕŸÞŒ8ƒµ>7õ¹È·a;tÆo$!.r1‰`þà.2šNG"(G¨ DWAÝ:÷ûb©‰u‘Uüÿõ€$¢|· e’ÃÑ`3âç'&Á‘'8ûõtoÏìâÒÆ‡`Ðg…´z°EC^ý)kî%›QHÈ=A€a„ƒ Îæëlë$¥I_GP‡Žú8`Œú›w¤:b&üè¡3 ŽªÇ2bçÊn^â:óñlcâ†[ûž¤¨Ñ]àÏÔ‘Û)lM2¨ìN+î[“Ae7 fèvò§ýõR°^ií­óûë¿…Ñ Þ t‡õ¿Ñ׉|.é*” t¯êñÈÿ¾¼ùÖ[Žþo·¼½±iëÿ¶vK™ü·Œ‡Ör»sü©SiÕþ8ªTÛl.^Ð;ì @¨drÞn´`FUUNöp ‡ôi$é´ûçùÒñ"ãº@.š6MèWDwÜðìj,.=¸[§ÁUoÚc—ªÛþ:)dðzUÚ‚ ëhL×4: ‰k‰º®N„Јe€tŸ»øí`2-^ ƨ?€\ð ^ç‘lúÐFJVR¢M5HíïMo&zt*uQw¼_÷ Žàrðncù²r*¥‚Ý Ð¶³ÿ³ww‹'=J‘­ š,¸b#:„dÔ!›ûbÌ.¤`S'tg‘R`m¾§Æ`œ‰=™¿® Õ†·ÒEC Ù œOKvWg²ßPc±”‚2«é6Xü°"øó§J䯣jøVS–ÒJTJ+ÈÙbTJQYv¿ò§‘0Èùã„cÁÛ) ®RM7ñå _±Ub”8oà+ë7»¡Úkç¬kLá_ÜL^ÁN¥u„¯lûóoÖ+ª¬qoø-ÈA\ àÿÁ²©¤uûxº7ãþ,iµû°ä|­Ä]ÃöÔ}÷nHíÐë§z÷¦ñlïjF¸Ÿ~‚jÉžr$ÇÈûú?§¸ANÝþ´ºŸÛû§ì—R‰2ÁYïgÌ$xO™@JöLN\“2fÒF%ÿo³Öä7Êät™´‘É":¶½ˆŽý牽&g²A™´Ééç`þ{Ú^@&]9K³ŽN‰F§Û^D&0OJö •8“]Ì䤳€ÉÖ9Y@&EdrÒXD&¸ŠwfÍd‡Fç/xÉ>¼g²I}rº€šìŸp¥Â[à+hÃA"`¶ 8$À¶\ñ¿PüiÂhŒåPoù³PW“«Á5ÒOLÅi޶8üöIȦˆig’p’³Y•EbØÕ˜ZûoE¼ñu‚„<Ùi‹]°#3êÆ´‹R€Öf#*£°B¢UTaÓ¶)!(¢r<Ú‹©&èŽýX£@ÿwÁÖœÑç*Ý ƒ;í2©îuþÄŸšùU˜½V²¿ËËËE­úNî{íJ÷зò6Àºæ´*5¿+²®4ê­(3ÞBP¯QT¼»\Ãÿ*5îWѪ²ÿÃöÀFù”ýhEp-µ0q«Z†O)ÄPo¤ð“+"Þþs¿sú¿ÍÊáq§À¯·äï¬dŒ»½ã³jc?hwökõÓ:‚ÎÈ>zZbÿgewÿèìŸÐSW ;·˜c÷Ž¡êr‚GÌÄ:ùv”·ó¸ÈKáOî`Á&t?U«j$¤¿Ë‰Þ<µÞ´þ-…‰ª6œÉÝõØdõöˆ)熈ߊžñ-½J­ô3¾…ó®eÎøVªßšmÆË’ퟨôøß wuË¢’“Ÿ›3¾5ÏŒoáH·fžñ­9g|¨üf|Ù=ã[)f<Ç8ã=Ã5ãQ™9éOjÎ0íOW¸\kÌûÓtÿtÆ™/ MýDH0÷O½~ªÏ~ê ujMÿÓ9æ? ´îtöpª¯!‡¦YŽ:ZLE"âHkÞtP]"†$j%TcÖAÕ¨W5í:`¯Ð&\µÖA5Ý:¨Î²ôÂCë Q¬ƒª£Ó«ú:Ð-eoŠ­ÎuP목×lÕ–gúUÓL¿ªØ†}=!¦ø^ÅÍÒÑR¸Ä^ÃÁ¿< Bm°(೫KqLU5Ô*à5½R6ú‰Fµ4M ¯ÄoŠg¿ƒÕØöÄæUÅkÆ„ç9ã7hŠõÞqÑ¢:Véyä*Í ô.bîFÌÂó¹fá9ÎÂóÙgáî"fṘ…¾žˆè^iFï„hæ¢W/ý•²ÀÎBhÛ˜øÕ®ÄVì]1i5â÷E #ùk³RÿÜœ”úû³LK, ZjV$åMÁ¨ëpĦR]–=õ`¥\%ü½c}B¦)V Væÿ Ž‚ÖŠ/ÆŒVhåL-Û,a ª ´&Ñ×µDu^Y¦ }Ûã´œFBMê7üŠ©ªæf/̲‹-l¯óçì…i¦e±Þ©{5ÐLK¶gü¦¢§Ýã¶¹þ%{ïöòœ/¹í-øm‘Ñ0úqÊuór4œL{C½Ú±nOŽÉ@Ár–­Ä`~l^‘ñ…W0¶ ;ïãï³d=oEe ´çÏïÂö‚ ª‘Ÿ#}^fÖ"Í;¿à—ù{ßí¡§L•e\ÒH3åˆY´’«ì–W¡®ʘÝWu 1èšÙçøE›ªÚ >š6°¹lÂï¿…}öU]»7¡lo»e}£‹XisCKÆ‹¯Àš]åV‚•ð;¿mX5ƒ¿aO·*R+©Q–êÈ*•6‚#Ú KÚ•¨• d‚ísÁчà‰òBÇE½ÆÞ?‚¸‚ÆÇ¼]e-W¹ý—Â¡Þ ¥0ž"šˆ?Aù¿ÆÊ¯£ùßxt•¢+öLœ%¥Ì-ËÏË4=äÆqÓ¿üÆÍÙ¥1;'—£1˜ér±˜®Yë­ãî:jE¡× ÁÊ_#°¥ÿ©Ò¯8ºÞ½&Ù|F{‰PøFì9Îç ÞÈ«Á›dìHmÁú¾_&Ô€3 tÐY÷¿ùªAÊ_ÖwÖ“¬©Ÿöµ¶i5ú´ÿAPGßÊ(Kz¹ÜDí#UÊQýBZà’´Ý sÍ Cä˜ ¡Štxº¦:fOÊäœÊ±I€9³-þÚ ˜DЕ-©÷Aa±!¬h¸ E…(EšPš2Ã_7¹“ÿZŽÌ¤ªÞ$VÍý¨sŽMê(™<¥œê=ÓsPu8»@ø;5ÕZ‡«nF WÏÅuWIu—¿ç⺫¬’kon¡H ß}°˜~ÓÁþeWõ,»ª¶ì.ØiÛ¿r®¾([ÁÐÅ´aÑTj˜fÓ›F.á÷O°‚«¾‚µ™ÖˆŸ‘›”Ï^Ûâ­&^¼‰Öm£Rpt}²“ §¬Žõ.a> ìæÙ—p׳„»Úf+WRFDŸ¢å'Xƒ]ç¼@ëIç’J»«¿¶uä×Ñsë©™—BûؽÚÇl)Èû,†-LûÑ á·å¯ƒö±{Ø'_þa‰¹Cjžè4ŠÛ-îO¾n<ýûò/K_g§žuvª¯³IÿnPLºØòO°ÜN,·{}1/\lk×ÿ4·Ôˆ[çã,+ÿà·=ƒßvn²@âžt¯m/ìÎáß]µã.ú¤Ó H¾»º{4Û]==ë_`™¼]u.°éü)ë¶[ØË.3‹ZnÉ…él¹QËÍ#?·»Îåö¬%éö£HÒ§!">ýZ°ýœziæÅð‡G ó¨aþèïØj&÷a²{½®K\ÖøÃ­"x-Ïs¡<Ýü¼ÎGÏ-ü=ûZóR´}k-‰,õ$Kîµ SÏf‘½™êY/²ÓÏîEvú™-2Å ø@{#ƒÓÏÙæ‹[kžnÎÖZòµæ9ÐNÛ¾µ–è@{Š%—h´È²mÎEÖí¸Y·Ã™ƒ!zM= Ö£Ïæ{Þ »ð=;l·m~¢}õ)æÀRöÕ­ü¥®÷ïVÍÁMø—vŸ`p=ˆ6¸lpO<Ûö lÛv žç¢Ã9éÄGò½»@.ŠQ[¥óŒ'ƲÙõä¥` _·çÛö•ÂâYH/ÞéÔ8qO§ÆÉøçyN§ÆI6ÂÏs˜N' ÏîԀݩñ<§ÓI#›Náç9L§ŽgwêÀîÔy¦»S'Û™<‡é´ï™Nû0öÿõ0¸\ŒÍ°.èÃ&ŒßÑ×VäëdÚA oÓÁÿÏÞ¿7µ‘, ¿ðþ{}Š:o„n€go¯‰‹G²$ÏÂ~â9sd#{´ =^Ÿþ­Ì¬ê®ª®[·ÄÍî^k,@ÝÕu¯¬¬Ì_VY˜ÆÃü8½ý6^ñÚƒtjÛEút]Aä}ð]ÅǮ⯼ñÍäzúŸùì\3ümGØL|ðÆ%íÜÈ)>%;n$=î&±ý;°l"(üõìëB"YÛuçíÁ3hWÇ<§•£±ºÕB–Ù[$÷ãjYEz:𬇠ù ˜Ÿ`dÞÅ¿ï&7|F&…]Ïq=8¤Â>…Z>Ux@/ðÔ¹Ú=ˆ&x3wøZ?¶rÊGò'’Z>ÀdÛ ¸ø~—­óԶب@ÀÉÑéwý P–FˆÝ;¹½^^C¤¾ó»)”ªÙ+ „Kàµ(+:ÿË;v“;ÖØx~ †³K^å50EŽjõ0ÎÙ‚×ÑÕù‚ÿé¥xvGy¶ ˜gç"Þùo7ù³¯ùÝþÃ'aÿùzMï‡Ý‘jk‰TÿÇ™jS-'ÒDãl„ÁDô4Ò‚*·«Pù>,×^?ÏÁ“*2 }˜Nœ¯o³‹ ׿Ù8$ÓÍ3Qè_ÖTÛ†‚¿dµÚý"¨kí=”¹ž,j khe¬ƒ™¶º¿Qä5Dç¡'ìAG_S*t8½˜ L.‘:ÐDÐg <çä/i@Ôã=¨í¼™ÝV2 åh7¨|ï®`8~¹šý‡÷A„Ä\ñºu²÷ÊöTÚfß Ø;ƶF²…|jÏú”AE²=lAN"¤&“Ôó‚ì‹ÿûñAâÿÖ»ÆÿÝÝn6kuŠÿ»Ó(ãÿ>ÄEÝX‹ÿ› Uù¼ØÝïŽù*Õ§ç¸#c‡ÂSIè¹7‡£ß_~ØœŽ~—¥úDz[÷øGüª@8`j;xâa‚ÿ>ZLÞúâ]&–ìÆ’ÍDÕÌTó`ù®àðßPÄ#ëTiÖ*çó»î:^qÐËÛVÄòŠ\¡A~¾ Æ´aM›eÃVhkt,ä¹ 9Ì„Àqýý‘‚‹°§_²±Fgyk™¡ÒÜ›! ;’ehƇkx²‘Ö‡ÉÇÖS1}t‘ì¡q$»Dþçv§Rܨ±íƒ#ÜAâmNJšf”8Z‘OB¶ÿ<%ÜøÚKAKÖL_Q:˾ÒY t—}Ww‰öÞ_™×~¾î²T?C?QM¼J;ÔÒõìP­fI¥UêC[¥îÄØ—f¬Rw"íKÆ©^CX›Ujç¬R=öŸÓ?ˆýgc§¶Ýü¯Úv«ÞÚ­5k­&ضêõÒþó!.±v¼ë ùÀ÷ˆš“#¬îª|aþ¹jãÏþüë7uÞ‡ÔÓH:eí›/wÆq¤Í‚%5^±œxKí¦H:lczøVLT|{pøö]•vèsp*>ü ôa_ѳIf5c'ahŠ™`¬‚KÌz&Ÿº•Ôúª¶‘Il_6rº¼¾Ðm´äËrÙj½x@c-Kkq¡÷´ÊNû\`'R­Õ†î½È‹íƒm|öyü—Ím|Tü¦ìí³–û†ïûâ%ùü€Í„'ÑSE5eK“²ZÁìY’´uðÑØ?t|éòï…‰¿t\ü‡-¯1¿aÀïœþ+ð3ÌØÀÁõŒÿï%ßay¶o¡ƒ*>õùÊ ÑÓÇ]žÂpíølç†p[´±“í=Ôf|“ÄkªBõÅ&æSÆÉxT ¸•§Ý½²]Izîâ:ø{'ýÃ@4ôÊlŒ¤´â2 Z…ÕO23Ë™z`›©-oê^ñ=þÕböÉV$Þ‹†Ýþ¨»Ÿ¾¨Ý¡3ZþO·oÍyÀÎEU6ÂŽ'«ÕÓn$í#ÜxøvÍu–1HýšC+ÝúÊ.ÔÅÄät—ÕÐòçëé9p:!@† {Ñó|ZÝà3@w«¦n͇Ê0·½L{ê–3Ô¡Q›%e;€½4ƒi{;eš>ÿfw›õÒo=}ͷ«&ß+GÜÙï™T*Ÿ¾è±íþÁ öü’=ÊW/> øÔò–šÊ»ùÆL­0¨¬§Íß ·tÑŒ¦.Ú¨º8iO«§ÒÉ¥¶gsÛü£^c¤Âê¯kóv•¦‡a•í‹©­*'BšaÕµW²âø/ú‡vó–vÁšì Ú ¶º@õ4%IÍÑó¥Ÿy¦õOž¹S\|tWøú†ÅÞ¢îÜ+œú›­-Wôê}åÕ}íÕýû~54ï½j³—¬ìÉ‚ÉÔœä#¯•Œ¼ž½Ç/[ˆ´CœrDv7û²(1I˜aiZºCŽ1cÝI§ û.(—ø !šlë·<å4žÁbîÄS;ÇÔþ„SÂî¶ù°íp'~äügz3ç{šoä¼öi~qwyµPƒWö9½]¡ºÙVê˜ù2{®«MxR Ê1éQ*êdgäAUßgç;¥Tp‚›³X4cZŽ~Å ¯me£u$“I¥–,§´«¯%üsÕ%¡ÿ]ýí%&bDÇ#ê-§Qoj‚„Ú™á[¾ ŸÐטídz;;·Á½\®9~§ÜÛ—÷nØ'8…v )émuµE;öû …;Q6.¥k<Z­šÑðì60¿3UºêöQÞømó̰hmï¾x#mîsV/Ão[¼Â×ã%4º ¢ŽßmÖ6»[¿Y嵘yS½Âò]©ADÓÛ*®eÆÖÄí(’›ÜÓ¶i/×Ñj¨pa®A/½mP¶à- ¦£R®Æ$ß¾€¿ãôâtèi|^ÆÍãw@ßH ¾ßÈeÌß äR·  ÉeYàÄNq= ¨Ú*Rd T0·©Æ$ÖÛÐK.p Ĉ¨¼‡¢TdÐæÍ¾’’[„$}®¶cs^öL0"UЫ@ù0W/)áÈvÔ$(ÿù²vé²>f…mñ“½û'•€•·×jÛ ÕvCs¬þbµÕH ÌßjÊsµÝçÖjûEZm•°n–"“0ó÷ŒWÑã[Ø¡+Ð’Ü‹ëlLY±q¥VÖi±‡Ö\‘7ÑO°êh²Ø(¸òÆtvñRÛDE½$ðpº^ïÙ†‹lU½‰Ç«-*‘±¯¼#Ö=@b­EO6±]ª¾×KÙÏÞ¥ ¢ì¹xô.U¯å_Ü¢Rª¨×íÚÉz#£d¸/3þÒÊìOõzP³m ñ@Û¾Ò¶…ÊX/w*bøvÇ·wKºv?Ù›€mµ»SU;Ñ Ò8í†;¶º7T7JÅÐvk²bh‰‡þCp¿ ›¯‘Ê3ÅTÄl¿Š¹‘!þ¨]X}Yåo”v/MʼnúF_×½Âüi8Äè¯{io¶t˜¥rÎ\ ךViÝ<Šãúžã$#¹Ì'íÒYmŸM—fS…m)'õzO7Ô^¶¾NåT š]ÿ»ú›uF3ZcǘÑ6dõ¼»¾¿¹L ©ÅíüfòejL~tç%€#þô€_k8$îjóLc;£÷M“­9z!$ÃÚP{M= ëøgH½ššØ`kïÖèk°Ò¹©¹Ê¹©™l~¢?ÖÔ’sÓ2/½§¹©Qš› åœÝÃÜÔpÈ1é嘛TXöü[žáØ(>ŽáˆÒ‹þ–¦gtþfLKí7¶ ÙÛJÆj3r¬ž”cuå/½¯±ÚzfcµUx¬2\M-þ V³7¶• ÅtZä µË£Páîôâù ³×ëW³ æÉYsÇyrÖlgcÊyW2ÏÉ”ïLñÃ2ÑQ²½éÎnè<ÌzÖØµ÷„Æže¤¿ð•[M‚gI'›µª>Aþ&§ÀWQ†7ƒŽ&´ÀŽvx˜Y>³›–õÔ#`v´´ie‡¼ßJ1©Áb“äê^½ÔTÉæ.Ím‚R°À´“€þ¥¹½¬ˆú§`GJÇQ:•Øvei~ #¡ìüj™]ÓŠò¡ŒœÇÄüwaÊ{Îù¯YÌÍZ¡ù¯Y³ÏÍzhþk6üóŸkòkfõz¾É卵ü~¸Éϵ£XY)ØýL~ÍŸüŠÎ|yF‘Ð=Ì| ¥B½ÆšY)ZOKýí¥Â™9=Fa[±ö•ºð›V?jFµCØ[ñ·6m·2­Ãªß‹R8h9iœfî9Tj¸$mÊ‚„ÔŠz36òñÿó¥¼ÇÖUËSêk¤^Ïúnšz=”z#wê;iêPêÍÜ©·ÒÔ›¡Ô[¹So¦©·2©Ë!¥¹ãƒ·ðZûB:Nƒ“ÞúkoSÜ—Áçzj°ã²NúkÂÊ“}žÌ.àöÄ*—0sè2½ýcèLÿþ4žÏ®¾˜NÚ œNÞoñõ'[µ{z‘  Ýý=½¨¥½hp/jj/º¯ªÃkx8~7Lq(Š«ùáÛ'ÒO~yüÿ¿¼Ì z GæOÆ]PdUgÈ…4Þþˆ=EþÎëªr|1}ŽßaïuŒ*¤¦ÀKÂó7É`—\ÒøõÇ^•¢1.4B©Ÿ ÍQ=‰À _ŸÊ;èͼÛeê‡Ò!v¥£LY°:ç¬kþDRÝôt‘êæO¾ @×7~¦Zïäíákª?Â@X˜ÂÙò)pÁj¹@ŒË‘B¶úD0áËÉß•F“¯bÀ/ñ’¡x‹ú’ŒDý*x F «‹’ˆ·t-oñI!IKÃîh,zàͼh/æsy0Y5þ_ÿÇK]ð)îÂiR¯=†3%ø¯#XZîÝT÷ôˆo‡º¯ ¹ã„tû â·2ÞÃÓw'ƒÐaþi:ˆìêâñŒÍÔîú(Æ}Ê~ÞÛ‡"‰ˆ‰ÃwX»Ûÿ¶ámªdüèŠO^’ýþAÿ]/ìaßKOì®ø<&†Yš›{T=ηUˆC üù½øW,껾M1.Iâ6Ï.Å¿ŠU« ‡½9oïð!pÒî¿éˆOÙ§m$1ûýž|äˆ'x8üµ Ÿ¿àÇÚüŒÿ¹ÿ;Ñþé཈6xè©Èo:4¦ßtP9 ƒí𸬋ÏVU*¼ ¡Žá”¸‰%ÝÇœ´±GóÏÑá?Ǧ/!~CϤ3/í`Ÿ¯Äg^*Zc±gËG®P‹8züj/`üßWðï«mü·Æ¿ð1Üq¾,s­ÊÖÆðÏ~î@tO—K³Éì°“PFIl—þÃ< ;½˜ª1! “ïÞtä70]³4Núêï°(¿k0¼æ?ôº”ÖºrZ˜ºš‹Vä õ`g÷'àþ7‡,A²Çî„YµÔ+ÆÁˆ!úVÌÉ ®É°ö#ÿñÛìüöO%–”˜Ø©ŽeEˆi\þQ¾ò`ž†OÂÊ÷`”‚¢LÃV¢Ç2±áO"œŸÂ_£iï#û¥Hò® ¹®èY@nò/yû)©ë÷iˆžljÔøçFoK¦eÞÓ÷Xßf­§>ÔS_­'–ðr(þ7¨íÓ¯ ò¿’Ò[úÓ…2töþšaHè®H£h™6:ÕQŸ¼4l¥3oõQŒÄiö³5šÞ&+ÕõZ(ÚÅì44ó+Cõu1Ÿ_³_¬‘¿0 ×Gt ýhÓ¨O²¾:|«åSŸ­齓éõ]éõœé½Ë¦ò&“jtKRp¨7<›|'“¬H¢–µEÜ–¢†2­Q¯,é²ÒR¿ÒÚàÕ´þ’ •øL$úó ¾yÔ5~pÍoÎyc\Nþâ}o+§“ÅŒ¢ð-þš]³›éùÝÕ9Ÿþe÷„..'f:Š–ÞlGÆ(bB¡l(€¬êb5cße ¬”ù]Ræ~Ræ¾Zæ¾§Ì…ŠmI+BÕ$[J…‡ÌŠá4Ý(è¢0L¨èlcPZͳ/lz5¿ûò'…*H·S ™G´©³WDéß!ÁG z}d~‡+½c8¦µ&âòüz M°0DœÖ€ïÙ@{tJ‰lN£=8ÊÕÈ\nñŒé/v¾KÊ7ôi¯yæ¡2(¥„ÔÊjgQ÷ ¨¸?ÏUZ%÷Y^3œå9§üSÅ \¥ÉØ:6N<ò$V²‹ïÊñ'¥±ŽÊÛ›»©}ì1—f<çîÞiì=G¶F0]Ñ™0ßa6ª|bãëÚL;÷Ó2ÈÛ|nOç1g®QEB4Ï,@\ê’è¿óe­é.,=*†3 Ýà™((°3Y¬C‘6L8Z’…µþˬ¶)8®)‘àÉÜŽ6Ô8û&ÓìÄ™žr‰:NïœÉä–ß"· ¤´¢qEº½ˆÑ•^BoEú2©­µ¡—“j9)Öàm›õ-S\U/ Ž›Q"Íl™ò,­’Eqh[;I¬ÛµpÍöF’–HÊSÜûɪ%s£¸šÕ«TÔ³$0®}X‹m  Uغ¯& ž¤·‹«sIq@nH?ÍÏù®à†o¼Ã½,à(Þ%ÑÃ᯲WÊú–¶Áö"ÌÇ#ˆ^%l4„r6 Ã5Óš_#@\ö²)5.ß ’DDýµˆóšCÞ-h¿àSˆœpÛ†³qg>—¸„GºÐL¦Î>~ç |ýìn($O¨ÉÓs8ݖቕ¼õ­n 68* WмnvÑÀ¹[=Ü’ë()-3X¸*‘çWSXv.ç7S wæÒ°=eYJ#}s‘ÇÆÊ»½»3 9õâ»{5•çG¡õ'0°Ýa-ÔhÄh‘ïuÏiwÉ6r$+Á¹¾éØM)u¦…žìNñŠùÇ£ÃÜècÚˆ®âÓY¸Rù¢ß %~n¡ÿ@ÿvJdÌ¡Œ‚ÙëøÆ¼¶f®jTÞ¹£[—U%ÄÕ*A„Aá$÷'`|ư£Ñè]”™¿‚è|÷2–¾C[jEùs¡nEŒpç|!Š…ëèšmò[<ÉÎÑ,‘4?{ýdÍɃècÉ`ÀM&ÆA«pµûV&ï¬<þsÊ!>º¨‚ÐFœ|˜\_L>M¥Ì'.Ü/„ ‰=ÔÃAÐy:öý4¹[È‘xNFUóË ¾›°ÑÃb4h÷ýñ…s¤Ó±*´âUØÚéZU#[ )‰,5Ö}ÉtÕdºdœ›ºD雂ηc(}µ§‹¿ß‘`7ºïVÓð€»Óâ$BGŽ8Rðf|ˆÁ6©™NÀsÌgÿÁúOì$a•öéƒè"e% =r«FoŒJy{&½µ£»‹‹µj:PûID‹zdÚM¨pià©.eg€Ç©¡ޔᨠ›úìæØDÊïÙ³+»kk—§LÑ*DŠî4WG·ƒóÕjB[ßãåvó#Åw²…I-È¡V7ñ‹C¾­9«x8ÅÃÉ›»OÉ6+™Æ‚ 6‚ÃÄ™ÆÍt1;¿›¸µLé@ÛµL’1³ÕŽÙƒh#(Ü`„u¹h»{Õ¬iùÅg­Kê“ ¥ª©ŸÒ&7(T;S9Ÿ£U>FíÕüGC=SÉ'¨‚‡é p[XÁKW>5/]N—åL缜v®5­•|/–GÖô¹„Ì-ŽÂñcψœú,TÂáüôr2»‚}d” ? §À/:ÆeT†|æšÁYñ‹«é ×Ù]4iu`Ù¨‘Jƒ#ôýí*öì5§®¼ åü¥¥Øz†»çKa îk(šµa¨~ñìŠÂϳ/ó¹Å,8½À1çT’àÒ†j)^œ+žt¥½Î6è'þþÛz`›trÐQdrßN“¥+ýèpœ®ô}Ò°¡YÏšƒN-Ÿ{Ðu9B¦¼1–|2©«þˆçº?g·7“«xyéÍÞÏ'¡˜ÒBš÷øt‚²ÓÅ»Ú4-XâœÏpÎOOÐÛ†&ëFÙëÓáÓÏóÐc40hÀ¹v œ (Éߢðd@iá‘WhϪ&U!+Ť:Êš÷Þ]jkñÅ™OÀ·ßæK({v¢=»+jÏîêÚ³k¶g7_{zßïmìƒ9ÿÑY6o29ó%3ѽZ3|Ñ£ÒwkÒ‡C‘’ÊñÞìÔ‰@±˜_|ªÂD¢¿å"ÅbF̳l ! ¼ò 6 ÎåÆ{䫊>Ý(ü”ñ1ow×í³<7RÚ®p¨éþ® í3ùíÒ®»«Ùu».”5àN6jqCIst 0‘zðAPôSï¢Ê¢ÆgæýÝø÷wƒïOznºE¬ÿâ¯üa'VöƒÉ¾õ?m.=AÐv™’¼G…²+…'~«ÜŸŸÑQ$î³…OG!„ikäáWÕ˜`0 ·EG|ÒAižDìð1óMrTíÇÖ•¦RêËBÊlžåÊ" •9Z5,Y2C¸LÚÐl•x]€Ì«&YžÉv‰™Wáä=,¦Ë82gÛ©xRÏŒó”ž1¥&õ³ãœÉ¨'͆ *T Q]0Ov"·6LÕ2Õ“>Õ³u«¼}*íIö*,õü©KÝT:ñ6B/uJ.CÜ¡„]RZÖœ³éß“On-]òÙp–!mÇÛÍJÚf²ìé„—«ìÒ­KÔA#S#8oUÙN¨*À\@Ø:…õ‡ïÐñÎWf—×7ó¯S¯z&ouhsÚð(zNã·zæ´üϺkÎ× bÞ§Ï<&‡·êÆqÎ3 -‘e3’«È©Fr9™©¹÷zï¥Q??*Õ•ïøÓ‘äJU6ÖÐÃtEšnèg*-¸Û×HÑ&Tu"L…¢]¯$ðTýWš.'"P$¼$­¾èöþðŸ®ôÑRSNxˆŠèÚb³NjÔe]´&"N ¡ƒÐòÒ?äÓVÄ©*jFfhüÅQÇü¾ŠàA¸ìâÏ!h¹–Í+žO6FZ3‹B¸„!þêa_.IÈ!A%ƒ’·5çJ(·ô#ç×]´a#BE¶–蹪_Í2]hVÜÝü î –Ú‚‹¬n¾phEÝ­ªšcò,’á©Æ4$`¸Fd/eu©eC«ßÖaj {4’ZÓ¤–‰)PÛ±8çSž°ÅÝååäæ»´o#Œâ7,Ûzô®§zä§›^bðѰÓìklccƒu¯ö(­¯a¾h²–ü§„Ë'({â;­ýA[”<]iÒ/ïÄ/Ú/yÚ¯_ÿ“¿öÓÍt²˜7îvÎøp¼à¿Þ2LÌBuÏd•Oý’[0ÓseX¥Ãó53}UŸeßÛRßkÉi‡)ÙC¿‰5âÁ¯|«È_×á¾7µú ™ •Òñëµ5`ëÃÍköJe†‹ÊøU#nTÀ<ÉKæ†ÿ±¶ Ñâó!Œ ÿ¦“ÜT‚áŸÅåã¿O„ÿÞ¬·v$ÿ}—ÿ\þ{«V/ùïqÑ`5ùï‡÷ÌG"Kô¼`ñpøÕ#à›\Ý„Qçý[¥ ®”Øw¬·þ^ þÝLçÀ»s‘ÄãÀ&øCÉïÚið‡[âàK|D9J|‰ƒÂÁcÖò”ÊHL”BÎéA¼á¡ŽþpàUÑL¿/n§—%>¹–äÑ#å;܆—“¿g—w—¢Þ®§7—³[ÑR|ÞƒžXM¼=“žÆçi5¨4@PS\âª;¥T禼gà‹÷R ,G£Ó€+º¨âw½%ÓH¾nGy;9/ ñõØ#»kÇJZ"Ü"Äò“EŒ'’Hœ˜½­5ïȹ8ê\¹ñ|äÏ`&x¾ •/àÓI:ÒSYmNêžÏ‘Ø Ç³q#dï(!º^ W/š¨ÃÒóaô¬^£zí$ÚÖœª¦à‡˜]â•bì’Dû !¶ËøúÐ ¤‹FÑÙÍ­³º iZ$ñ¿?§¯‚1‰¸ÖÉüȹ°¹TÎ×[Ò%CW‡Iýá$]Û|0éq“:‚ÎR—rË¡‚,•a] ™^Uß& ¶¸ûôiºX|¾Ë“á—ZŸÂÖ×S§Ièž¾ÿM>—µÌNwïMÁ2Ã×å¢óHœ9TöÂ}pBƒØ)o]¤3C#³=@8~ÇúvøÝ9<I×ú"ÆÃ9•t3’t?ÞÇmù™„1Í6Í’qK_Mλ¥Ø<»ÄpC¶°=ŒÉ'⋹Öû0{:^.X:s4*ŽiCb¢üX¥Ï)ªõ«,ÀúD.A$\ÙAÞ–§2òÈ5ö<<.¥F½i¬†²æky½æŠ2µ|¾'¸bؼ}Œ­8ºû'sõ¢°Zyz¡;eúNÒ+óò`¼r‘b%Ö’N¬Ç‘ë%ËÝÕ ¹_/å–ÛÌï«'^£¼¤c<£#½ÒaÖp:^e’Öœ¾úöÈV9À±ˆµ¤áFÆ:9r–Tòåòòf¶œ=)?žŽÞµƒé@¤‹‡ÑE`è(C4€./z.·Sx¬“wÈq;ÖÛk8}WWA‹ç¾Åß„ iœì™a½%Ì“vS”è¬åp]wî~´s*x\é]-Ù)¥‚q-Û-r4‘¿û¤;šzE^ƈÉCIL÷@Éljƒ˜Ç®¼…ùgQH/ÿHŸ „¹U\!uò‘N5£CY˜4w¥[iSrmrðbÌd3½¤“D\%¼2­å‚-ƒ+sÎSäØòó”Ž{&óÔ} ª–'–¾{×ÝYÓ^—cWóM—¶ÁE{«,ÏÎÒ¡I;MºòF(Àì:U–1õP¯%É_O D²§p¾ba|rÏšÙUCb°DWYÐ\Ù˜jj*;޽°¶8ïÙ»Z<‡k7zÇ-øäAôV¾ýU$n+vBly÷h‘X­Ø}\¥åÓ.j‚Ÿ%'Zœ¥žî¨ø«ˆ9Rw[/¼ûWK–蘫¤Ð‘§éì°>ZÅi ãˆÙm#PÅ4‚§ŸÓ˜Ášz ÈNæºIÎu{EðYùÖ4\»ì Å-hêµ÷ÜÔ£» ‹zÍ^”vto•ÚQKô•ÉrT'ôWvÕv†]M(YëÑèU8•ÚKxR=6JAu@1“]´")i/µB’´7âk‚oÝ “”·Z`HùJ):§“‹tøT¹H>þÏíƒð;­z ø?Û-þm­µüŸzÉÿy‹:¥Éÿ+ü…ú3ª:€>î)µ'¸)]%ÂgÕŸþüëþë¼§ÞÁ§ÿ„‘= ›gõºcë¸;P!êÎ8¡îŒ%u'ÃÛ)q;ñ¸g‡©±ñi~D¸KÉVYš­R mÒL¸&Ë<]2Iž“I"›u­%‹„=‹¤¾"Éî£RDÌráCRt:L(¼Ö=K<(~óX‚À‘¢QCT0ˆ;¡ 1ÄÝ Zˆ¢W˰?Üï[¤q¿@ñþ¬€ü¡â؆| ^—ÊŽè‡÷{ò±$@äÃþ)Ò:Fû°{wÓ¦|1 ¬7cÁ žÈXðDøgË›ÐXðCÆ&7ä͘J>D² áA< ­ŠÂW€BOÞ*d»*þx ÄÝÊð ô`qÊÇø)S>–ey¨(ˆÍÕÐÎ=\茞¤vôáøi[ýJGzhO¹¨x0bÃhXQ%èÑè s œ0ßæäFô s#hY·"#LÇžÁá¨mgªB~•¸âg¨QÝRÛÚù…¥(KEÉò×ÕüÛUÆéÇrÀvLžôØyê[PâÆ–Ò“²gPùøýþ 1›ô‹k¤sÃìs©¥c=æg_¤Ä£ð/¢ ŸµK«â_˜ÅK<ú­%¿Ø(‰é šª)Ú©]u¸xZŸjȧøß6{dyeyÜ^ -EJ¯ž¦çHÍî„E#nw«VW‡pç³É—9ÈÉðƒ©Ç|üîÊ>"޾…³¡ ñ€‡6;ÈÂ530°àIØ:BUˆ“áôB¬éßþœ/à”•çyre‹l5»œ|™]Á‰,ŸP…V ‡Ãÿá­Rû¿~ïí¡ Y‰ÑÞ߬oÀ.ÈÚ≇ #ØLûüèI²®$) £½;$T¨Cè­Û¾N%Bâb’ÀˆØÇï¼¹®¿ƒÖùãDLÀ{Œ;›¡ž¬aof'hÜø"Øaí7©Ñ9g´+B\û n=U…®â¼56ú[u™ªÓ]»æ¹[5AÜVUâùú¦@,„_Ç_¦ß쬻¶(n jì‡oa÷3‰-ÿ„ˆf ..H°äMJÕIÓ÷nð·b²|ö‰Ø,G¨æÀš­âü¤Ôî³H0© ù¶æ{—U£ÕÅ«p]ؾû ßžöû@‰No¯5eèØK£Ë=Ì5‚*YîJ!GBkÖg[.ã¡tüùòËÒ‘¾Í MòØ®¦â²ýÄæ.§3NŽÎÁ—¯É‚l¼ËÒ7à|Çœ Àá¾wo±6´DåŠmÐù¯ìp0Êì4IE,pUV#˳7©žã GvŽ‘‡Ó§@òâü˜HRô ] ¶¢ã²ä[ø9ä»íæØÅÌ!±9@ËGŒKÜäßÚX¨§“¨ˆTœlkÕ«V½;‹ž61H%^ÿÃ!«fqL “;ý8öé38e°?•'›––Sš`±¼Œ5¸tº¡'–5­ÌçýÖ“–y´•ÌàE[~ëöH?ãXów·¥ºcqp›“ÛOiÍNJsÕ<ÜÞÓmÞD‰4#ÈÝâ7¸Ë‘öD#rˆÇƒÀT€š€(`b¸(eÛ±\}åskULÍè¬¯Ä i,ø|ÿ6e_æv=¥–Ø×òª I7G°±Í~óÞï³ ¿G]ªy‚”-§N®Iºh~µøy)¹"&¨(_,Õ¡Øþ"Ù¨ƒ’ghtˆƒsíY5q5Ýn.ÙÊ‹vâQÃ…9Y”ñ'êFv׸t¯ZF“¼ÚÞbîPò Æ ñ#hÜèÌx›ÄBÈŸç®÷Ù<ˆÉ¤ <’&Æeœs¥C™˜š]ßતMZøH]'íP“Él^7r4šþ6NáÌ;œìc0oÄúœ0`Ì|XêYÙ ¡Îá³:p&«ƒÆ›X¡HïÝVr8¬Äºª¸Wø#¶ÝSìcßâ’Ò²ø—¨mãÇôÄ€s|œõ¸I}FX}p+Ö&Ó¯U-Þ.b,$T•ÎÖ§ÎlªbîHу§hi—šVÆþä)Ûݳñ•üŸM&HË;6— ´VwýlXÒŽçðä]½¼~Ÿ+®ÓOÓCƒÃHì’ºQ«_mþfÜËú»£š*s‡¦Duó©ø»Ó~¹#y3~T)Qæ×$!('ttiü¡à°²-Ò­DÞäpW"ÝzY9‰=åêêÔ•XpÑXP7h"7_¸xçHÔ>ÊïØ$ÛHH„UÊö™ùê ᦞ%ÜdàZ˃mVMßpóyF¬Yž Œî³ ‘ ›@a´‘ì ÔÈÖtñi µfQÁš¹dëN>ZÒPqË͸ÉA·qÎ,N¨Í23‹dó´f–Õœ¦C"Jg¡Öêú­ TÊPk"ûN–SÓ²sj ¸òÛ6Æa ê.ñh¸Ì¹cºž55Ë¡î{u$q&·³<˜ÅB–Ù³{ú§€¬û¿ú›ýåÃøù×êàÝty7ÜܵöY['RÀ#xö›¯½w×~í…xy|ûÇOÕ·?æòøÿÿ9}ÿÿf­Vkÿm»Ñjð;Àÿ¿¹[úÿ?ÈE×ðÿÿõÐîÿß©RôàžÄ HƦ ÅAJ„ºïø÷?;2«ŒÀ§Lè(ô€û$ ´÷å]PÒ©Xw'Êò a~=”X_%V k‡ Hßâ’.ð³Ð:…ËÐq¢£”¢Í€;ICªõ;% AyG HÈ` ŠèÒ „êízzs9»½SH¿š„1LÚX¢hƒùÍ_ÔKÁ7{X1–K€¯3K%P2žã¡*?3ã!„w¸ C ¡h ÃÞChŸônpr*‚v˜ä:ÔH ¡‚:‰i/"º~ns—2’€¾ƒ$;œD׋4ôC–ðPMƒ6Ù(‚î ‚tk†$Ë` „#Õå^¨ Ù ¤2€¡è¯²Sxh â>Ï{—¤0PT[Â/ü ¢,¸;ßçÐ0øõð ¿~Aìð³+>}RÁ.tUé&Á.WRþ98®ƒ'!¸¡!nl­ÇP…€Û%“ž¼'&CíÕÞ^þ}ÿ¾ÚÆkì¥ûQä@mxÔ†“Ü\º§Ë—ÖÙä6:‰wßÃFüSФH¬¼‹éT9Ÿ) tøõð~ è%~fƒÆ}ØÓ¸I±\(…×Ð7¼{Ôgi:+8XÜ!ï»Oˆë°›á: yjøŒHÖ ¼Mv ó> œ¢9[\N.2vI&„¡a@v2Ù¾×t”øâdünM½ÿÂY‡îq±ÁH‡V…Žš"õ'f(1hž'n°y”ˆ¯„˜@wZw½\ œ$¾¤Î⸧5ÓIž²Â ™ÊJÕ`÷¢ˆÊ¢ Y´­y“ÉiÈñ *Ã* ¯³‰q²ã"Pd*äÔR4ô·¸èž÷èÄÿ|9¿áKÛü›Œ.î= ‹gîs}K«Æä–Ú€Ï7ÓÛ»Pç}šßðEïö⻣¦CÙŠŸqÃk­às»Î¸,7£’²}í¶lMža‡1AÒ"ž’òѧ¡ &ÞHJ‰·ó¶€Öô‡ù€>¦KáÑÀÂBÙz¥.Ð5±…t»@ÓŽËü›^ïeº‚¡|Dfñc“^ïËiCwÖŽÈeÀ Û– Q[Y´`¼!qäKBeljâå,ƒIMj+\¨Vî†3ºW6ÀS0—N—/Ïl@¥²Åÿe®qèŽ\# ßIî¡ÖÌÌÒ¡ÁϤ±XÐ…rXAºÛ¯€Hs(w¦¼“v7Gªä²·ÌŽ­eXDb޹[pà…i6KµÃ«Èv¨É Mt;ì‰Jš¹ÚaoÕíðj•C.s£èâdûê &yj(‰T6Ç!)w]ÀK¿)ˆ‚™Ù÷ÀÜwÔ]pú—ñ`òƒÀ:´îXJŒß ƒ ¸Õi^Kú<¢Ñuñ¨öÇ”“ƒ“5ßñŸÞ­±Ïð˜ý‡L[íNÌãשÔz,¨¢r&vªµ¨Œ–ãNåpH(Ê–ÕnkyüZÉM&Ƴ0=:‰²öDkkŸÿïT¶ü}ÍeäéyÚð9>‘L>}šß]áV×’Äõìë-5¬µ{ì‘`:Öè]jÈ©´J¼cW12«â“±o¿d}„o±¶Ž#ÂaBQ¶Òç|·:y|Éå‹Ý•î´LóˆuÎ_ s¡IÏ:Fí»[ìÆa7…ã¬ÚE$kÛÞÒБÛÛcm{ LñRèäÜáFnÉ™B˜!«¢\"[ú,™yÛÁ…5¢k8E…ñÍݧ„y‡ÍBsæBóú‹ñøÃ£uRÊÄ–Ö&§P[Ø\°j_Œ¾Twú<*.ié¼ÃÉiNÏFjâÉä´0N¬¥q¯"JÈMš³ÝQÝÂ4]#ºjsÈÔu¨PÄð¬žÝ½Ÿ8žTp9¼a¤ÊF”„ÝC Oë·Ôx”giSÄ€’KŽ?@sL´çz‹m£ã™¬WÝ3"´§`f Qqìî-ÏÖ/è[O{²¢øGÝ}8‰œiñb‚úæy] xaŽ6v ta¶°©.Ot-©ÀÁ¦õñM…œÒ2^è:˜Ói•NwIâZÏ>'j`È« ÈÉt:D kÀ­™mÚ„*†H#Àš ËEœð8+3éío[éqçÇÚ’àœÌµsþVïš„wȹüL5+Ò!Øp´1&¾–¦¯d'zJ‡A>(UNžA¸žÐ–$¸vT9A` LA*7u+çîð!f+Xí'P¹—ð¬/qd~N’÷%YL•êÙ&5ü}cE2›pœõðgMgs/ƒ(HÊ´:gkfú[ë ‚V•íëIìÅVÅ*`Æuà X:F‘XàhÐt¬ÆLBVÆ@¤Ç7³8}ç|0†4À<…6À–ž( äÀSž(îe4´Ü²}:¯´œÝ0'¶‚±,q Ó»rä~Ç k5û µÕ`$JÕi·Ñ¨òyÄ•÷Âû ¶ä–ƒØu0@ï7ËIÔîƒEo@˜ºÉž™ûU·Yyp8Wh†ìÓ÷#7Ò§ïWÙ¡êÁy‹·ºfz;’-ƒ•¡¢ÛÍ‘rèkó¢ Y:Kíå£A²T‘¨“Ñ^ôdT|Ê791’IR‹ì¹R)œcˆ˜hœGY¤d­eœÔvl€“Ý àdïÑ'k‰Å¨@Ò¡ßš1ü…ˆBn˜¯=쓈w†ŸxØ'ÁׂŸä`ŸüšB-Ÿ!û¤¼üü—ëá¿4vk;Mà¿l·ø·|þK«Þ(ù/qÑà5ù/;ÿ%a¾˜h·$âf¾XÐ.îd~VæËSŽü°ˆ—A‚x/%áå'#¼”x”ò¼ñ(~¾þ»Y[Y/ÆNÉ›z>°JÎÔKêÊ ©+õÂÔ§~z%Ù¬ke)Ù+%{ÅÃ^ù¿û ¿"(+žýŠ¿BAÝ¥&Ë·sÒ™+ƒA ^±1=l(Žïžîj¼•T_e)*˜Lռݓ»%ñ,á”è,£÷Qt– ³ e è,Ag:Ë`Ut–AˆÎ2t–AIg¡•t–§Eg;ÃÒÜ*‹k™dYfžµ²RÒ©6 JQ)y0˜âÊýd*øä!ýd„£á 3¡šÊDLå&–_b‡—¸¦¸øä„r"€%ż×açUÆaÇÓ†AÿÀ\;—Ä%&„‰$ËÃ>bH!̇“ñáRŽEÒ=  =–äzÄ@=VOôá<„>”Œ“呜ßeOP”ò,ù0ÖOµá×ÀGÂöˆrÙ.°49œõ—[š\‡9–¦¬~<‘+¸|-‡ñH—@+ÃãÌL$¼ægw,îX5§  ²c5¼m°9`r°9HÚxKGx¨Ø>8Bz#wÃ9ŽÐeƱ·ñ„Æñê{¯ ±‘Žy+_äµ`–é:±ùuC5”Üdiƒ÷êKâ¡Á‹P±ü¿·àÃÿóíJTfĸýNGüd|ˆªÆˆè$K¯jñØ“!EôPDÇðõœ³“%®Ä‘üAf§ý6” €®'~Zqâä­$N¼9Ö{¶Ä algt ¥CÓìY¦HêÓTºÍ/â()¥‹yÐå§ Ù%u8¿cÆ¿¬ð µ¶.s߉Grt5EÎàðÓïÈäÏV—ü§›ùbÁW v=‡ÍLÿL¾ÎÄò´€A Ij˜&†T«nI¡¿Ùo%¾Ô-¾/n§—%e$¹Ÿ2ÒcnÔˆšTÚÒ¨‰¥H í£ex»l'Ë&°¿d©$|üJ8ÈÒ £‹¤ p(ŠI²õ—ƒ<âÈÂÏYžÞáI''²ç“ÚsðM¶óÐDœ˜e‰ °ÃìéDŽbÈ©>Ü[ˆá‰Dƒ^_EtRU´P#útñ›ow%khêG<у÷g ÷àÛ¤~ÿ@j³p ñ½ç=Kb:(ê*q:NÞVißæÅkÀ¹A½ªb6ìx“·Àïð$7ÔÅ KK¼ÆóÂkØ:é“Cfœ¼}ÆÈ Ðdz‘¢7¨á”ù«+§„¼I@þAÄ,Fá„P¤KL©ø6G”Ô'$ÕŽž°qì¥"ýÿV;gô>´cEášga|07æ^k”ô£ñ½pÆLù$ØŒO‹28X “¦¶€wŒmè=lCï¾° k}¾Gž ¦e-±Rõ&TÈwàAà h›Û{vC<ºzðb~™¨|`ôÿ¢xÓ,p n§BÀ4A&Ãâ,À.J“¯óxN‹ÒÇ‹•â5“›LÒ&Ѱ%ẹÛ·¬‹É1´ñ±J‹Jï'º€ôó8¶d¾£Fè;¬ñÔ·‚âUÑü ,.g†N×eo~ÞƒÖ¸Žå&¨¸AœBÁݾÈaRÀXçNgpÇT± 6`׿º“—¤+—SeËž½ä¾JwÞÎ^ÐæŽïœÑ™˜O#ù( Ññ•Çï]¬CoÑG¯—:è¥ç¿hþ g»¡)—.aN®‡B¡§¥C©‚6‹IvŽ„‰{(™nVßG«®×õ‰€æ±fLf˜ú±5Ž… Ï…é\sÝv>˜ðy>~mÕbuYEÇÔh^&Šú|_¢:Õ…ÆÕ›™‰… óŽãªçh¨¤Aœ)äk¨†ÚPGhRA¦oWÚR ïðJû{ÓS5]¾úçë>Nîǯy–Q!m ' rÒ'IÎdP&Ç­W†so¸Ûz…Ó 7Í-:òóù°'ù{ýNäôÈÀh8Ù^$*˜OœÀ¬ûHJåË#‹Ž7M—ÅGm­?ýDOòŠë(üéÿöfrµ3‡DxÞ†ÿG§±‚pÕtéA«½Õeu~êe½Ú¢ßí tL—Ò@ØÓ#ï“ãZºÂ)Ã9gþªúÈöÄ9LóaߌaÆ26À­R`sFõdìÏ¢KÌ/µæÐ§á¯`^ÑþàzaHù[qŒÙçóµß™>0â#!Ó%'ñ]ï$Î"äX˜—Öfßšµþ7â×ÿfü­­ø[w⤊•Düµ§NKñS`ŸÕ[Ÿ.Õ#¡ûl#þ¾bë‰`„ÇmÁISöUÕÂ{GKþ˜¿Øaž˜¿Ôh® ¿LGò©·ùI°ŒŸ{L?‰žê£ ü|¬ÅóTÂyöÏ^›~ NŠÔ!ÃÉÛЋÁcÿýñAìÿ›Z³–‰ÿ¸]Úÿ?ÈEýÙ°ÿtìñ«ÿ4¤{õý± ÝidƒDþ,FþºÿSŠ©òÿ¨‘ i—?èÈH™¥i~ÓüggÒ¾j[vg!:J)âíÍáÎçeËÒÂü9ıŒ´ëÕM̳+‹$c‰LY ›±wt2÷ˆ2ïÛ]ãEÒ±Ù~Óq)%ÓД¡)#Þ/@ALƤ|n¶à ì´X `ó›@/„ñ%«yÃMV£ìÍ¥x5µ=ßõ ÿò&ØùØ<,{òñcN8ÌÌ1ú¤[êUÃR²î¿ª2DX§3-Œ_é% ¢:™ÿÓñ§”ç}xc«ÒÝa¢í§¶dËÅ«Ìe¹~€[è4÷g¼=ùæPÄ””Ö*tÇýž|¬Ê¸=E9ðÅ9A*}!$G‡ãÄÖÝ“Pc²CA- jÉw_Ô>ëâ³åAIÛ5ü„FÿjÛ¢v浕?ØçU0—/mæµ'K›y–µ™tž±Íüà4Êf^Ì¡5aŸ™?öä«{ =©®ÑìÅìr††çÆfòb>¿–˜MÞ'´S2¾~É7ÕªdÏߨÔKý‘--§[ÖÈ–¢É ÎtÒXÍÌ]Ô¹øçFËuOSÜ“¦¢û@€,šng‘¢ñð>ä*­ žÎúK>ÁWüø œ ýùsù^d~s>Õ£e\Nþâë—~§“ÅŒW8˜ó@<Ì›éùÝÕ9ª3†½ÐRŽc_bÖDY¡ ú‘ˆ.ø=ž¿­2ªå®?¨å1…¾ÉœùÅÆ…IócùR$.;äñÁf}ËtÇ +iù66 ¦Rh_zwŒLãïÂáĘUܹ”kËç¤Ñ}&Ü)]J¼V.f40Xk3o°VºÌ­u#dkÆ2›ù·Ö"Šã©‘èéð…^Uµ4œª'Ú`.¯{2¢îü¾3t|ê“‹v2!?Qæ7‘ÑÕ„B‰ž5ôŸØnF$ЮÐT±.÷p1^9mèŠt·Q*+:bjD9ùÕOëÇá{™ŽËA‡®dˆY¿y£O ÿäh€~#Ô›µ$N®Gs‹äödê`.üi~ý´®'¼a!QˆH7=õ“ ôTíú/´gQËiÀ²t,Q\¤7å"ízPkCÏ‚Ž„÷x6×!ÄMT‹8w[˜Èfqâö 8Jð6“È™ÝÈ\ÖÅ;–Ê'BÓ`¥‡j‚¾]Ô*>­ùšZíWã›2‘z7^±Åf¾nå.ßhXg¿ <´Mi8çúVS çlDÖÎ4-Éą̃pKôQéŠõ(Sq0ž´tåˆCkO èCJ¿D»èˆVò ”dhqqh¯¡Ÿ#^fuÕö:2‹B—êsT{nÁ‘Ô¸(Úô½»¦Õ­óyÃ#Ù’0â¦8ñôñçsÁƒIÆè-øû3:NIlL#¶z0§2›ùøMteÂ)óe©Ísö H4Wì Dfb_æóó$:“=!² ‚•Ö^V®xº•ö:Û`øOÿ¶¾ɣñ1±*ŒÀ2Jò”O€ÅÕº2(#W@¿‚ï0Æ¿m²‰õ¯¬˜B˜X¦nµxX3–69"c‰tвH$ôæP$Dd†wn4y·ÅüÀ™ ¶(ž¢PÒÉßRR¼ 슒ǩ‡¼'»”ÀÊkýV|qué G×Í„=§+c7bW¤M3Èn7#—®ÔŠ-és• .%4¯;ö®^ˆ%bìÒ9I0ï<¡ÄÜ…ÏUâ¢Âµ(ƒ&à”¬³§NqÅbÁ:È3>¡HŠ@Žà¼Ñmì€higï iWÈäHÃþšRd=×7«[äléè¾j W%•.wœâkV!Ø/̃;åãýÒ¥ |GÔ_µ"ð&Sã ݹ:ÙȯyèÅâkÏÆD Uàš„œ±ƒéZ~²Å~ê“Ð}™¦÷œ/‘Zþnš dËû2½T•ìF鬂ðÁrA>˜¤#"²Êç O¹ ‡$N_öÁŠñ>XLâ(¡OK‘áŠÅƒÑè¦îÍ™s4:Jc¶0ÆçÃHE[\3±æéŠil¹´ÇˆXäGŒc=±©‘Õ"GŒE=`±ÉÞ¤˜®Ø™Þ1Í;G+qWiáä(¡ŽgŠŽpL×jõ|»ÏMÏ·kèù¨‰v½í¢ö!u|Laþˆ:Ȳߵa‚ö2˜ WNùµÞX¥ØpAZ9#.kQ–_³@”åèL¤ñ–#²¡Æ[6s°[,ü‡Ú¶±•_ËõnÑ‘]˜¤AçÄ$ý°—ÿ4þS£ÙâßÕÕh5øÿ¹YòŸâ¢jòŸNKþSÉrçí§à?&ü§SÉêÚ)P%ª„@•¨UB VÊa8‹Ê—€üôñ}ïöÿ^æ)_ 9ƒû>2Ú Þ²Y× ðl¨N™i?DtÚÎ*qª&8§ü}åO'W⬠»b„ÓJÑMNZ“er ¬ ©I‰#l0¹ÓÐÈLqì¥U0—, …áѾ§Öì\&϶á^IL¿Êæ˜ø}ž÷®0¬ðà´*ÉJî&÷ —ô°ÂƒS *yœ ÔÒ©@- ÔÿlˆÏVUn„¼ á ?G% ‰ž ’ „m¾wÌ’óQßüID§¬¬=$ÓéŒdÊO_ªÕï¿”¦ãå#dT­|$‹1ä½Ì,–‰†Ê½:Ï‹ñn…$ÃgÏ&’dZyI2&C¦a0dZ™<Ûé1õø|/Hªmû Iâ+!Ж“åGÕìÍàïî¸iÇò{Ã&ýRóqo›ÏÆÚög\Ûý.Žod#Úô½ßº]ÿÐíªU”VM±¡Û]¢¯9Gl×!ßGŒ59Z"¾»PÓéïD©[°# k%ò†É:»eÈç‚î6Ž[Ø!„мǎ:]…@ž‚I¶Š^H§nÿØqóÈm’½ã¶¶6“ÖLµëþ™ÿ¶†B* žqwu1Eo Ë`I%j”>xÈáWvä° ‹‡ÝÊÃ>å6/ÐX‡rã«âs'ÏãK~¨¢•yÉèöNä«ñ 7V–câT÷7üÆóø [Œ¢)ÅÎ8—¤åʼn YÐE3Ê?3‡‡¸Ïù;]ëÙ¶4zc=%mßYiˆPÍÎ*ܽïÁoUwZÕ½[U¶C6¡67»•yykƒÓíâ-T÷ïÖT¤Q4 ‹[wÆ6"íÁHwmçø÷ùj/9þm^ÚOtüßK'o¹=³Óé¢åì]ÜóÆ»Hï’¹ß Ê–•¸Y”ÐÍdü»U>;¸²¾Œÿõ²Î×E<¯Ãnר#oÎëoïlŠã»9U´ë=‡D¯­e{–^RØ»Zcaš,¬¶:R ‡k¶Ⱥ_¶ªƒP]²ã–þ°?¶s6w:c/£Zp¸aß»jAöç½Ü¾ÕK:V«óÈ^ôк߳öÒÀ E/tº@Ÿ>hŸÿïõÃøÿÖwë-ðÿÝnñok­môÿmÔJÿ߇¸¨—šþ¿»ÿoâókºöºR·Ï¯Åµ×“ÌÏæóû”Ü}XßAââ;(]|ÓTJßÒ?¶ô}îþ±~Kr€¬­¿¬sžÍ›z>ÏÚœ©—n·ÏÅí^€bŽt½}n¾·'äz+-%…¿­GÐúA½mEÛ{óºµ;ܦ~µnAÒáp+T{ºOí`àÛŸ<¢Ç-T/yÜVŸ¥÷í@ªJÞ·ƒ{ô¾ÅHŸ÷â|;9ß„óí@8ß„óí@8ß„óí ä|;ηƒÒù6yò‡w¾e4½â÷áÃçã‘;(=r5ÜÚsðÈ•®žOÅývû™ºßfò½œûí«"Þ·ÆM$§ñÛ„DQ:é>ž“®”™K7Ý87ݬ3Mé¥û¤¼tÉùÖâ L¯xér€XÊ]÷©zëæðjíÂ}ÏÁU7G™úàh ÷>=_ÝÊU7v`Z\zëÖäŽ"YžÇÆ’€£Œ+òÀí0ýmð\€ªmV¡¼‚~¡‚J$ÈlMž‡[r¬ší l.¹Âfo`óÇÍ)`"! à„k7ºxŸ+pø4&SOÅà×WOéqT`vu8p-aò?p¸næ3ùÏúmå¦É=6ÓÝê®yf&Í,Èᦹ¼æª}× zg®Æ5SF¿LÙl§LI9ýæžr9\uâœ0Øé¹Ìvø^>¡¼únëò·L»ÕÙÒŒ·Œ½s'˰‡åCM‚Ž•Ïh’q¦¤îì{s¤'en¤ÉnA¤IÆ{2Òu²˜ß¤æ49°8M:ü%µéÛæ,)G¡ÍSÒâ$Ê=ÕÚÝ# ïDÝŽ‘÷µ-èéò‡ür3å=Œ’yGCöÃn€/ÛNïÈ®‘§@ìNÐåéw‡ t»2Ùô‚Ī|eówÜÎø;ÚŒ-žŽ¿£=Ü«VµOÎÃQ´³ÓápPÔáÐçÿ·xÿ¿úv³¶ƒþ»ÛÍf­Nþü£ôÿ{€‹:éÿ7 Æÿ¶û°Èñ—Š:8„…sÐý=¸aY:øçþÍdö…Ü}š,ÈîºÅ‰¨7¹úô'¸yܰ—‰ïŸxìôÓíüãô¦ ®{q®no=1ÞÃá>iƃêÏ¸Ý e†"<ã<ñ MĦ+_Œ»_(`hú#ovñ“èGj2oÅ´ÔA/¿Qâå7§]¥+ßOäÊ÷ £u2#\'ŒbeÀ']¥ÃN¼Eüvå(&Ä{Ð KÓr tÏÁÓÏ »Ù‰77–q¢ÓÞÿœäNûRKduFã_ƒNçÅöáJÝã²r‘í-ÂU ç .Äžž¸³½¤bgPHñud<È@0È K0  æT^?èÉÍ~D|LóNÃEÏUɦÛZn74dÉìkï% #9tíÞ»+íÓ[Âák\E!“ü¸@ØÌç†r¢¢?-㬕ÍÎsuÃ:àC¶Êp×´Ø=éöß<%¯¬'á€5:`–qÀÊé¬Ök´z¬ÖÊ<°î5üaó ù_5M?&WãN„WºØfd]˜j`ØŽwQ¹Pû‘IûJs3½žr åòˆÉ-|áùìóçé ÝóñòWæLñ…lÁÍçâû绋 ¼Ó~N \'NÆàýu:Î_oÆ ‘•î`Gø“˜/ª¨aáå‹rй ^Ög8«URmÕÆº­öñz £ê‰M«s'ci€PK[ILÇV!w±±?¨ O6ã1fss/ët‘Ôòc§±±Ï¸Œ½ ¿1–q#ÏŒòJD1*àAæhˆH'2Ù¸z[Án;Î&#ÒFnâCÃòµËÆ<@2¦ø{ƒ’±¸¸d¬`h²ëÙ×9h Ü–"‚–1¦[Áå[ÆôûúIØŠÆ]çÓÏÐÝÎ/ø,sõiêÊßßñô¶Òýª5Óø6;-2’`¸«Á«K“GÎ0jL¬a8 Á$ ŸÅ ¬pÍç—8\àß¾èÇ={’y–¿»¿2µ±(Œ²N$UʘiÉ Gr‹K"Òß„®4¢²õëØ˜n‘!ÝX|dW¨gºŠz dSB½(j¨k¼“Æÿ;ÆYãÿo¼óϸi¶ÅßR†žFFÀq¨Ù´¦ÃòálÖ ð„µxŽÒ&û6¡öÅñákâ~Ðã@–ÉâÝG—Ôøð;ðÆ­ä÷k©Æž—¡œj-œ|e¥(³‚(´ó­¹Íå,Id¸âžÖEº?&jxö†Û¤ì›#œÖ“6¡^Kv1ZSñ?ðm\P.­f†ÒFGK%ÚpfTÔpæ¹|ö?·ÃÿnÕwv3üïfÉÿ~‹ú¾iÿ3^ÿ›¯Ü|o{èf~ÿ$hïgõ>†:9àÞãÍMc¢„Úíî6…pÞãÄÐg,qÞ%Èûg·þ)AޥŎ¦˜-‹NXžŽ´çHÒ8\*%òºD^?ªEO5ȽNìz6·«÷BÁ®y9Ç90Ø»ÁŽ6ªq– ‹ÚöµF½> ëJÃx‹ðkw‰qQ÷ºÛÿ½ŸS‘³×šn¬Œý0Ükñú¬Èû]æ}fIv«–LÚÀvæHò°>l5x9ÊŽg1r¢ôª®ç<ù]ÒŒê€xÚ'í!XSŒö½^"¿M÷¡yÇ›q‚áViÛƒ±ïØöƒx_Ã= 7| Úö¬´< Á uqc«šl)ðÓF×Îk¿Ôîðl$FLùìÄ~f\w!“®íªø ÙËÚkQêŹ×ãg̽~3Z]¥™­kæTÊ©‹ß$K;‰°½‚äWo{%OàïÓЪ¶CòÄ$ÕUæDÏ‹d6_}de±ªÛLdL–öžÁÒ6ŽMf-ÿjG=eNìÆ µ¨míüÂTã¡_ÑÑa6á;Õ›™UJíÀü³™È_WóoW°Ç?Ÿá‰Ÿ³y7¼˜S±žÔ—;P~Ä8ßúO¾dZ’Ý 5šªÔ]㌙ÌèµÎšDiÆô¤3ÀCc¡uŽ–·ˆü‚¢AZŽäí't©¡¥…zý]GAóí?ô†C[5µm8f )Üwn“œŒÛvaå­xÓ¦…(³ÂÿÙ$Ó=Çi¢þH:%ÙÎlá„6˜C$¶Ú‡ëîV­®W9Dù¼y>¿œ]M®K˜¾ÌTî®Ü#6UÎ-|í#­[®Ì:µyw—­;ç~ðiö”IŸhµç£˜ÝL'Ušn…2‡Òÿá}¶ö=†Š$W`¸ŠI&/æÍ¼†Å¡Ã ¡7ù‹¬¸,S¡¥Þ݆|ý0eû "¤ .ÖVäoÖžëDEÛ“à½?t'É”Ž)ŸíÏö·|O'Híº{t&/êj/ê/¿‡¦4–>æ,sÛcSÄwS9Øb.&/rœ^ÛŒ %¸z8š@Š´yÄÕêÀŠa… ½ák¬‰3wÏÅmšÏóRlÿÉR—A/×<¤3YO¡÷h„F3™{4§ }&gbuÌ>~ç£ûú;­|œˆu¢LÏAùfIFÔ© ˆÍ˜’øaôAUeXÒë»mÎEE()5œ#QÏ[ß›·dašöfcÊPtÁ=*”þðk$—Ú_[‡ÆŽÊ°óÔƒ$ö¶j\œYðE¡@ èS¶%Ê…kWƒ9ìyxEž TS4`:é8vÔ½Úû<½…jš'sèiÄÃÀ»Ü”{­.^…ëÂÉuŠ*IM–¤o#Ì'eI†GžÒ0½Qú®Fé;“ÎÔGÍ#ŸË ñðêÓgÐøêIo¸Oˆ178ƒ.èƒ{‰jwgç ô Kúɼ¡þ‘B9§¥¯Š KØM³Ö|³¼FLG;ÔóÀçо—µÙdÁN6À¸?Ãk‡CZsºšß\VÄ[¬ ½§rÅ6èïü× v8e–eaá;F£ù¾Zæ4ÃÖªËè}l1z X`74[¢({Ô /¤ûîÔÚo’’©ÂŒ‘œ çÙ;ho,ø®¤©À»/-·l ‚5™±”ïVóSI~µ’_#åXÛd§Ir‚î«iñÌçýÆÅ–& çÓŽÈI·¨áHMF)þ4»úÊËŒ9ñ¨¸Ù¬t®9tMÑQ2 ®7t^­¸@|;ž`_M¥ˆ4cäÛÙ%ê)GU- š“$ÙĈ§üG>…}›²/AŠmC"ÔÊ‹ª¦¹Í~s|Ë/¾!úM[ šŠ•3¹o´¸¥ó#ß®€â‘*µfz1\h;/>©ÜÖÉcY:Äñ~VMwÙ-‹•yz%] ù_R‚h€=dC¼É\ DœB_lW`å–7R„÷ Ïø„C.t@6ÁúÌ¡›ÛIœ§˜CýRvа÷µëàp}ÆÇ(o2øÞbÁCAu¾µzÆú÷Ú7¦9¼wQ$Ð Òü¸ƒq/êÆþAKJ ÉiJh1î¤ |ah(DD{ão^¬ybÐ(9Œ¤àJ@Œc£èöq*{¡€ ãû¨0þI*ŒmD—ÍSÁŒã nòtƒ)dCAŒ ¨n‹LªwÌ‚¬>˜ÂØLal ¦à\C¥6aúùÚSËDWßGt…ñÏ]¡é®0Æè F²†VX**‡ëaQ³Ll\ÑQ¸,³cW­”Q¬×FMÀ–³ÆM`6»¶¾è1ne’‚>Íø4 v•BA9M¥¿kI¨4|w•F›»3‘äpÃ0 mN!H!ŸîÈB!0“:æP#x‚®.ŠRENs7GÔ„{вì>y-ËnUÍìʵ,‰Ã¶êf]D7눰F(3ôÀrq ¬Ü,OfâµÇ?¹£ö=]ÿï7&þCm·Õ2ý¿›Òÿû!.R†ÿ÷Û†âÿ ¶ŸÂÿ»j‹q¢ ƒ÷ücD?ñqû]l¸¤îsu·{¨ê¡Ä­êÞUܳ{Šo¸5tƒ»°;œÉ±õ3å¼cD:–c??ó.”‰U‘ÖVÈeümCºŒ¿9|;h”±!rx‡÷D^ò{V÷œnÕ½ÔÑ´ïÞ‹óóœô±Þ³õr§_«uóÝY¦HêÓÒ¾–"^ÐPRJ}ƒ Ë)N²KêåüŽÿ²Âç¿þÙzþ0ýNLð #†ÆÙê’ÿt3_,øRpîç é÷Ï~ÇüÜnó=%CúVò:ï)NçzÀ œ$x±zI?KoUÓÉ<¥ùmÐRÓ.š_H`d)ð¾à³+|Cµ¯8‚ãrx¿¯à«dþf[±·=øÁ÷ÐݾWíƒÍtsóJ¿È¿/åƒÏ*Mµíº–4Üþ¾ñÃm,ç@¿³"ÿù†OÜ3aÉn –€Ï)-±v·&ø<þþ…Üôí¾¯º“Ór þCŸ.="ˆg»3ÐKNþÿ‘oÿ¿éH—}0n ‘%‹ùáÀæÞ¼¢¨1NöÙ—ûœèmNò'íÞ>¯üoŠãíp\“ŸÒÜÕâÊxΓ¯Îòš“üIûtÈï’÷{z÷"~/wé?:K/÷8¥£oï[Oǽ{ºztJóQÒ1Flì¡ã†Øß6Éî#ã×b´VØÚáõbvÁ3ë÷E»³ž0òê]ÑáS;AÓ9²Kë¹]Ñ ³7aËeuƒw½Þî ÏÜÎð9X Ý~ ó{\>ÔlnàOtçfsŸßTþf³ÞÛݦ…LÆð¯ÕŸ OØcXqòn †*!x½ØÃBð‹wbt§qßާ`xº¸œ\\°ÅL¸uc•[no ŸêœK[7|ö<Ÿ-øçG²Íáùзq ›üy2Ï»zY;öÿËßúVX\-~7z ÅÜ .ï´k[¿;q7÷›Í!š ÁÖTø—7¬ $[;Û@‰¦±ƒ*‡ÏD—àEwÅ÷¼¦ÌõÚÓ+W²ÜÎáùÿïr~>µ/êþÔæ·,QfÒ„‚³O¬û3U‡ßSOœñÅ758ëáÙï>Ù+ÊRx»ŒÎRÇÓšê,7±D_ÚÕÌŽq†o; G@Y_{w:ð˵ľu­Ïדï—ðRØ»EºH"%“àÃ4ùÉ÷ç Žšxã¯J+Î@doUúðዦ×:Ek_ÿ­p7—ÝntâÑýwÀ.@£”¼ôx*¦~\"‹­È,F%Ÿ+Ã.ÐLwVV‹6?´¸LyëdÍ#LìÄĶ Þé~Ÿ:y`Æ›<³³_H§.óóiã`úéf:Yàp;:q,fñ±ºë0i½®E‰±9:«‹)è^å¯PÂ&Ñhµ®Õx,&ÞŒ5ØŒ%)°ŽFQI5`ëêÀŒ&`ú¹ì§±Dãß'è×máÀ0©Ú¦¶1o«“¾2[y¦{L ›xŠnF{ɯº_&IM»â²üÔaàwò/l£ ‘\ÈÄ÷›n[üZ®²œzvÓƒÜÐÌšŒˆx7ªÒâëye²Î¶üp³n/ŽêqöZlÙÍ<‹á•O©n!=dD.Y{cÀóøvcè¨pÕüµP2È*ã¿æj5˜O½!„uzD¦ß®m¼õ泑Ö$åSdRÍ]žºtäçâ®8­^[dõŠ[E·iÖès6}}ÅÖ倖ÓŸà}/šÉû2€m4€-„-iõšbŠq­úÇ=ÓDöþd¢W;Ãñ²ªÅt.ÜDk/¯ bBg±š{ÛYÍùì¿.Æþk·^Û&û¯Z­Uk´0þG­YÚ=ÄEôÿ:YýÙßñBð<‡Fûˆÿ÷tâü?Ÿ7‡?$c7ö|ÍÊÄéÉúÓŒÈ4ïÕŸÅ”,O<’ö¾üáHþ ³Ó~ÊLÇmo–„3)µäí‰b‚vˆáwý7oi¶ÿ®ß{+MJ«´Ò*­´J+­ÒœÉ;­ÒÐU#O ®þI ÓÄú%ó­Ù’zé‚·_êß·ÓËŸÅ,îþãÕ \¸ uƒ¸kÄ!‹–âÌUšŒgÊP5Îh ÒÀbŠ:áb©€9ŠIUûhÙÞ.›Àɲ ì/™@Á¨=|üÊà9K'P,úNš@nSÂ~aSÂlý´ ,løÃXF[òíù-£- ÷|R{ÈÚO±ïÛ.d©—&–†Þ1ïÉcÍw,øÒÀ;҆ό¤ãÞB(|Ý~¯¯ÆÜÉÚéù´ªBç4öòÉp;ýƒþ»Þ=˜ôñ"ãþì>­ûl¡–ÞöûR©•µ±ß{Þ³dh›ÄL7ØÛ2×;ñ#Ì¢®E±AH&HÍÛ“@P¸¡.nlXŠøüíý~Èð3ÏÜÚï䇫M¦7\è ê)3auå ¬ûúi\.iI‡Â ÒI§Ãêb ¥Y]bœ˜T”aoX,~Ž´HìÕ.ê³'„5ÊcO(0Šit’ lv|E#ä0«1¡=.“¶„-‹-¡78Ž%&…bÎf¦“Vh’&ìhU#¸ìM,ÎtE[¯±863AiÃf½“—DZ5{ TXº¯Òm‚³´ùã»þØmv‰óé±Ö­mH ht|emºhÂYF1ÌRÏãžðRlRP£w=‰ƒìz’'®¢15X…Ûº˜~æóÛÖÇï[ˆê†Ë Î÷05àîK+„kUz[ýÍÚ:Ú.Îè—,Ø6x}Cœæºn§(\1…ª\m]®s±fqw=½‘q¡ò”¨‡k%/Qm³Òßê­o@‰î­\ý—­o:ê-è¶xÚZ%Oö##Ìþƒ†hÎo¦·w7Wä£@:ªÛ'öˆÇÔóÝ‘wXÆ€Ò9£°Œ%£wòqµVÒPÇñ Õs4TÒ Îò5TCm¨#´K!û”·+m©†wŽêSSð“÷TM—o)ÿùº+äñkžeçH%•R÷'â8Ι nl§®ý-LжgPøèÚ"·¼Ñ)Ô”ÚïD®1Lq8š¤ ḑ (÷%`—'—¶¥â•b3N®„ ÿë(ÙRô§ß ²0yÅu~Áêöfrµ[‘d‚‹£Ó k«v†W+Q¶Ñ ‰Ía²=óÜjåo÷²äôèw» è“K·]?‰i ¼OŽkQKGª%s¾üUõ‘í1eOóaßÑbÆ2Šõ¬ØÜäR=›ÜèóK­9Ä?w"¨ºæ;µ†4èÇ‘}>_ûŸë–°š/4BŒÙ|×;›3uBw;CyWhf’`½‹´oññ‚@3þÖVü­;qâ…cÐåó+°§!ùÚ!×fº¤Ž…S ºyœ Ø’þ¬€‹óx$^gOqtZU ï-q~LíèõøYá}*Þ÷¨t¤()ž±#EiE¿´}‰¯-ñµ?(¾ö‡1UÚðÚV‡Ó3^_f£™K¬[¼„Y]V7L÷éÃw}w5–TÙ§Ê¢ùë@àdósw ®'{°Ï§Y°0rfæ%Vö)šž(Vv%†èƒ€!ºb¾÷ˆ¬Ú݆U»s?¬Ú’U[²jV--ÏÂÛ2ÓÚ¸½„Û–pÛn[Âmå3«€Û“¯éêvÀŠ$´f}ŽR3Gövhؘ¢‰äõìëÕî|íh{}±pÓåðÅÂï¬@Õ\!1™#öµR’H~j^xªÐø':'956õ>˜©¢¢¤T?&uÕŒTg6V@G Ù/i\ÔŒ‡+ÊC-n¬”ÏL)` ”ÐM¯ ROcL‘ì¼S×DªaïØŒˆv3FD{iDäd˜º£}kµM-”¦AuùìnÆþ§µ³ÛÊð_»¥ýÏC\4ÌLûŸáÃó_‡%ÿU\%ÿU”óþù¯oåÃÇã¿¥¡ä¿Sþë°4[*Í–ž±ÙRÉ-ù¯¥åZÉ}ü×á² ”ü×’ÿú,êJþkɵÖaÉu¦Ã’}Ýp5ü×aˆÿ:ü×aÉ¥•ü×û7Ë>gþë°ä¿–ü×’ÿZò_Óº(ù¯vþëpþë°ä¿–ü×ä*ù¯Îdþë0‚ÿ:tð_‡ÌU¦2;GÂ40DRÊ - ’¿–@——A—£ˆ˜C7ºôÁmõ(Q{ÅE¢D£+Ί>3”è°D‰šW‰ý!Q¢ÃH”èð©¢D‡ƒ–(QºDÔFŒá¾z­– êÃ~>a`¦WÚ-¡™%4³„f¢±àª-ã=öß7ŸW€ òë‚ÿØlÖk;»`ÿ½³Û,í¿â¢Î4ž¾¶{ØÇ†GÒ{°Ûœt÷»c>lú‡±FÕõÛ÷iV½¶¨åH±\ ©„œ^ßÌ¿ÜL.S2ÅìDX¬Mÿ}—ì“óaÜÍ@‚ ¾Gœ|AS4¾:ÂËКäJœ)§†;a>Ú>ë¡cÐï|öùóôfzu+ub¸ö~š\i–¹¨<›V“¡ ½:É+Ñü/`0æ4þ[ó2ìH“QÒió}äüži¦æ|‰uh—a#ÍiÐøF7ÈÉeˆó¸v8Øüâk«á õ.Õ™Ï '=‹´á@³¼Æ5Ö“ uŒ@n ëðìP[ÑVA¯¼étuü©=)¬Ÿ–ø &›!hd±\8j‘hð¹øýp8ú£×þítX?wûÉÏ\¶Ø÷‘£ìSú¸+RF\Õ¥ÇÌ?–1Ü¡“]êSàs12~ãï¢q<°i'§ÜйB7ڿ繿#o=.p;¹Yäy¢£d(òùnowIŽêösÕP{È·1d‰ÿnÖÖ×_ÖƒO Š<4<ÂÌåzðÃðèò˜¹Á6‚Å’ NñD ÏíõøÆQkXkÜÆzÓK{ÿ×ÃøÛ•’ÄÞÞHnÏN yv£Ã}Ÿ=qŸç½±vuÝ“6Ÿ6«ìÃÁðw.ZÉjò‡ºü¡!6S›,{ÑÍ|&Tô訜/,N%©x\R?£dqN'ç|¯yÎ÷šßQRLÓ¶*´jÑCÑÛ §×ó›[),Kñøvò…U¦/¾¼_l‘¼¬oY©~*kN’{»ÂÀ#.­¨·š[Iß[ØÄ˜u,ý'cË!¸=k|Ù^'§5ZEE_51SýÂd¯’fü­oÆ/Ä’õæ–þfU$‹~»ªc³ULEU¡É¬<•V¹b§Zda‰ä“PV³OöÐÉ^y¹n7a-VÉËy­ÒLûþ–õýЍÈBR§Y2_ÚКºÎžÏÌo<Îfðõx‰ý~¤ekT ÛÖ„8¨õûQ¾Ž?*Øó“—gº~T"úþÈRë#µ÷7”Þ?2ºÿh‰þ·VÕ2wŒÔ Å‹Ý] ÉÆÕ9yãŠùêÓŸ >Ÿ^O¯ÎAaš¸E¤µa }ßño>_Ì¿¥M¼¥ùĶv'ãýxæÖ´O¿Iz.Ÿò%­‰Cé¥Njz–ûÕ-‹ÅÏ‚KD¿ÄºZð­\E°()Ê}á/ì?ןoo>Wés&>¬2AW#ØÕ N×ÅnnüçlÁ&‹yrþ¬¥tûyqY…JˆÞÞÀçÍíígãPl5eÙU’ÍH¬ÕÉZ F¸J‹©\¨$©&Š®j¢ª&ªú©ã~¾“úRhƒ%šDìðþ;qHùgÆ2bG$ÜZ.áÿq&ÜTê LhŸÍÓ_¡¡ƒ3ÞD{i$ õ)nµèO!#|¢]{aü`<OÂaäç9j©sø6»¸‡º¿È–j$yož‰²ÿ‚*Ú6”ÿ%«ÕÎèñ@]kü¡,Úc‘É-žmC“c=Ì>«p“Y¦ÈkS´äš€q´½Bö„šÒ`Ã)Éf_S1Œ|¿Öðü}òšeÂÿzPÛy±cÇ=‚ÁAÉ{|¤Ëgÿóï‡á?îÖ›þcÿõA.±°éüÇáÛ’ÿXòKþ£rÝÿqø6å?ß þ#ÿ£ä?ß–üÇ’ÿXòKþcÉ,ù%ÿ±ä?.—@É,ù%ÿ±ä?–üÇð‡o«´o[ ÿqø6À„êâÆ’ÿÈJþãCð‡oŸ1ÿ4™%ÿ±ä?–üÇ’ÿ(ë¢ä?Zù(}å? ɤä?–üG¸Jþ£3Á˜ÿ8|æ?â,óø=p)jÑýZ‰`º»»¾žÞl‘rürëã÷­K˜R¹àà|˲&{¸´´*µM^ÞJ«·¾Že_5v'‡¨‚U.·®Ö¹h³¸ûx>›|;!o‘`Ze[®˜åör÷b³ÒݬÝSy}è«”°y’° [ü„MìíQcâñ ›ö¥„.#@¸sºQn­GÌL+%z:*ŽèßP?Ñsøö)={%Ñ3{ýÐDÏ胮e«·YcëÕœhOÞå£Ðžü¾§‰öä{´'ÔS‰ö„ëé¡=}+´ñ²À"•‚«{#^hÆßÚŠ¿u'N¼x’¬SïXrNKÎ)õ·Ÿ˜s:|[z„<ÌåñÿX¬ÿðÿhì¶»äÿÁ¿­µ¶Ñÿ£Yú<ÈEƒÌðÿ ÿ«¯´áÏážßGÜ)£ß¥êË¡î~ÝÉü\þ©o‡ÅÍOÆ«CðdtWw&syi¥~È!Ä;!ÿŒycŒÒc4ƒ³ðÖxØÅaC3<Ñ×Öþi¿ôʈ÷ÊxvÞ 67†Qá2€îÌYŒ‘RŽQ¼7@¶·èq1?¥e~r=¾e¾Ã(ßT©.m”ïR<é¨×—õÄbŸ Þï)u>»ß_ê-íGdð­Ô9ïS†—Py¾ÒîÇg}ÞáZ ôG©¡yA ýQa3{Íò~[©W)ùüVø>U§¸Œ’lÖµ²üøöúËÙÇozï9 ök5B¹<²âh<‘‹]\ºBûêS)ø: ûAþÛ»ÁÉ)—û–µö¯‘ÊBµöux÷ôˆ „]Ô#wñUžý ä¾Ê~˸(Fÿ¨Þö위öFØ• R‡-ÍÿÝýG3ýç›+^Ÿâc?ÚÀRçPèíz*Ðî-àÙ¬ÜEàdÄ»§û…pN°ƒv÷ýQ‚›ËÚÿc2UóvOî–t,ø°ŠîÐ/ÞWé8£ésùðÏൃñvË—Ðh@#n4Àì}#ŸuñÙ¨Ê=‘7!Ü.áç¨tPxö ÎGq&ÖÐ;8Ë>Y{.Î £Á3vf½83x]÷Õó ¶k÷ p939=TYMý —]¨ã¾rÐÞ&÷O«ÀË<˜’hÆ8ÑÍÙ~4÷–p4ˆö2 ³mžãÝ£¿f×BMÃçI>·0Ór¶R­úþCæs¶¸œ\dìaPæŽÄß§ i ¿óÚÚÉd›ž§}À †[·êñY‡¾‚äÐc`XC¨F•ŽúÇ“5#·Ð,à"nàí’±&_ ÁîÌíA9p±­ Ž¿jßuæIBdi?cÓá8½NfѶZ¶°âû‡þØvªœÛÇÄ’†è&~7æñ4é;=MÜ‹6]$–†œMX„¿‰š?Œž²´Ë szHñ?Æß„…\NXn¯íxÂ7ßXg¡Ò°Ô÷$·ÿ K&„¬ óZOÆfº-.ÿgz3ç³í¦»Ëù à<¿I»@Â,ŒøtâRQó ËzrKmÃgÈÄŠ}V>Ý^|wW?M¾ªOFòá[Ÿ…¸Yì®F‰%±L°› ã¯½Mò,x°¸-\S˜HDæ–/;akJ˜É€J”6¢Èo)hî'Îò˜ô¾©æå«Ð+¶ø#ô2‹ÇŽzi&5ôÄ–Ç„®vß·©{Md-CèòÛ‡hÙÇMÊG ×"ö…Pxë&ÍqØ.Êš¸»Q´t!s3ù®ˆ27‹¶T±r÷ù °ì͵ìVT)[EZÖ苭­UÔ¢Ï>b½6ª#aSMr#5ifÚ˜,XR˶5(¹ÈAú7!ù‡zB]ú,ÿ&{›×”Œ%Ò¢ƒzgºìM·ãh:×ߘًƒ»w—½Q­x1y F|߈5¹ÉÌÓˆ{büE¼€¹qoÅS6ä«{Ø®ïÜ#^ ©Ï––­'½[ ·ÅõôÓlrAš/&ÝÇLánr:Ò[›‹ Úâ ¹Îþæÿ‘-°ù+¥D\n‹ÍE¶£¸dÙýÔo…llœ¬ ûŽÿÄwŸº ‘f`ÉU0mƒovÀ7Á&»P®AÃ[!]>ÏpMZEÕ²¹V¶Y¨uu¸õãwj5`z]ÿF§}þ¿wR õ7o>8†NÔDøo¶É§Oó»«[“ñ×õìëmO,NÝ.‰€¼{ÞhqŒjÛn{ZËãÂéØÉu?ßœm‡¤QÈûVúó>±qÚvÌwÞAiɘ?_X¡<ù2äÓ®1aßÿb/ P޳*'æØôR‡VøYʦ÷~ˆ ‘»t:zdÙXT¢Öì³jú”ˆj>–T6F¤€c.Poê7 §¨¿¹û$á#T÷4éžvoºdV'kurÔ&²ÂŒuhñ:ö¥²V)\Ý,ÜÑüæ§›_YLM¿A_‰ݬ¨f?ÛC›ain•ŵL²,3ÏvÝê,üZ­TLUÔh!˜ ¦¥V²·spuï]£ä^˜ñ¬Ðè{I™\^Tt^]Õ<ŠmMh縦¸|®?èåc&rú½xm›I@†ÍßGõô9Žöô)îã“Ï»Çéד´*u O*…³¿#Ƈ'Y¼ :Ó²8Ä„ŒÇŽt‚C"Ôù ÛŒ_/A/?ûœè¡é·³Qh"¢~ëV\ˆåºé†ÿ‡þj#0#ÍFMUÊßËXŸ ,˜f…ŒÈܲ¶ @ÎÚlƒã¤cŸ¥b|¡-.Ðgªµ–héZýмrc§ ¡dÄdíα沜xÊ—œIä@Å )„U)Ó¥t:VV본ËOÜ™FÎÅgÇT –å'"àjØdòt4ŒÉ¶Zê/œ.vÁUÎÆ}ÐFmÓÞ¢ æÛ3…²Oÿæ"cò­oF•4ÿgÙ!%Öà`!__=÷#8 ß!¯‰]³  A˜ÝB¾!†ÔÍôóì D0ÄÙåõÍü+‰‡þÂhƒmxälük[³iã-á¡b+ÂŒôq$‰O'ãÐSõô¹Ü㘗iõãêñiãÕ÷Þ–CÀ¤÷¡­óè+‚ÈÀ2]'6¿;r´eîXËÂr.#ѤN¢n£Ê¸5¿Å„]¶¤O{n‡vg G£Éƒ< e:÷é‘"½ØS!¸­.ÓEá<ܰIÐÚ:³gv7Ó[>o§òñü3(B_’EõŠšËû]½Ðt¤b´£å pm­ªmÉ­À¯ å‰;5¡ü;—&T˜CèðÌœ{æ ‡©¤ñú1(¦}ö]‘~,“UµF6ÏÝrÜV!ƒ$·Nò3_Õa#]:sÙkGymÌ´PpBÈ1Än}÷­ È6.CCÞ®®Õ‡3Ò¡Ä8¤×2MWBVqx¯ûЦ\ñ$»¢“Ä·{Ôµ‚!Ãcâ…[ƒ…[÷yqΣ¿FѹI5–•JFW.¿&<õNåpˆiªAö{š"É ~±É¦&Ö<Ñ—ÝÔ-K´`^¨óp-XÚ‚…&‰¼€‹ì#QŒ ¹`AÒ‹Œ¹‡wÁâá̹§U÷Æ×eÞÿÞŽ¿`1 æ2òï†`äP $VcÕñÚŒ ƒùV¨ƒEb1ØÊÈL™”L8†>?ê“S¨-4G®@˜õ(X[Ž—Ád‹àÙ¤Ÿ"h0ß*’ÖNBq Nc°25˜ºFd±j3ĆÜͯôÃw;¥âØxÊÎámÅpD„1áèãSüE¦ã žœˆ†m@¤-ïÎÌRæH|s<˜w®~PÇ̓=sGÕ½)]Püƒî^<k=m°&ÏÆÀm©[à¹Øl! ‘S]îW,©ÀÑ™¢å²_ÍÕP)fÙ–Ãå‰$,JÂÂ\æA“0¯:P 1JØÒ˜G*a÷+aa^IÌÒF'jNd c« –°ÌÒí¯'¼ÃÁ.Qð0H 9ªØî8·c+X­w¹—ð,!2‰ s‹Å6¼ŸjÂTYÀ 6ѱ™M6Žœ°U0N’2­Á “Nت`'Ì£Þ KÔ<1ö<1“‰GÉsc¬ !…傤0ÏDá䤰¥' -å)N÷2\ä”ä­hêì†F—Šx±šÛbÃQa«Úg°¨­‹ª°%ölÉ-+°ë`Ñp•À›åÆ$j÷Á¢7 ÌCYa!Ím€µ¢>ïÇ­°¢Ä5îÊ{ w%EABê{…¥k Á¢iÔTKh„ÖƒÙX9뽛ɒC][«ZÌÂPER€ä›fºta!ª ËI3Í<ìÁ»0áÅøãnû²÷¤±/p® ¿5c8, æé@`°ÿäx-ÿ¡¶}úy£½tIêÌû¢ÔÿåöãÃð_êÝ]à¿l·ø·¼ç#ÿ¥Þ(ù/qQ§1ø/ãŽÿ’0_L´‹{Ì—Ž†{±Q]~:œË"¹Ü±¥ãä´Xp,îþS„Ó2îHN˸ca³ÐOèX!)%§å‡ä´Óv®¥d”¬“⬓‹éä†ZÚˆ¢¡t‚Iú¦Ë+ã6JQ=&ål$!%³ä‡`–4 3K"Þ/@©BÂJžtÄÅ A[‹(fX™¿ª*üÝòC<é Û}2üPãúD©Óþa5Yá7A±±RÍ W²ò¡ƒpbE—´ß€ J9ÈîheJ¹{¬CL_Bgðº0ÀDK$µävýªN$ñì>„® >À¨ùXÅ–¸[æÏ~ÏPW¦MðÙŸ§ž·øÚt¸ â›d$»ÒzõI2OlŒïÄî‚&zÜ!ÔÉXî–,L¦jÞîÉÝ’d F`”ñ°et8€FÁŒ;°íð$4î…?ö;~>â³%>wüéØy(1éž®žbBi® c’s°Ï`Ÿ1FFabÇ¿ÂYÅÚþÙ6ДqçCSÆÃ 4%ÍlS£¡(g7‘DENÔó‘SjÆßë¤Jöt'åªdþš$VÓH²†…ýcéóÙß„U !m ¥=î±*ÂkðÎL·QV¨4ú[µõ—MÒûTx’ü—\üå;’ùÍ9ï¿—“¿¦úÑ—Ч“Å ŒFçlf¤7Óó»«s>äÖÞ‚$U9`ût}žò”Qí¯©ã >Y÷=)9ÛÆÉ”‘† ‰€iTXc£¿E‹›¾T\‘Š ~l¤‘=ö1Ž?ÁÛÔWBþ’ÎÊÚ›¤'œ”-Ldû¼eøò°õìZUl1âBòõIÔow¤¤f¢ßÝÆàûŒ»h ¬Õ«ùÕîo/…j•7~td£ÔYùæS%t ß)¶|§åk¯x*§ÓCÆ1ˆÏ9m¶˜³o|‘ž\ñ‡Þ/óùybCbIEZ•ì£YIåŠ'Zi¯³ †?ñ¤ùoëë~7S.èêÖ¦U! &hØKÞ»ÛõW‘Ò0¢›½ 5 AD‚®êT ¼+ÞüöÍP¡ðJû/~TØo’zBÖ‹ÂY —¥‘»/wdeíoý¶Ž1„ V­€*!?®²2Uô›REY¼‰¯Š<žŠó\m ú¹ân‘j×ÛöN¯šPÁ|§˜P‰:3&.OÉ݆V¤u¯Ú_£yÈù*ØýKX"âp°¾8¾¯Oþô$%‰Ý\]5y†ýKQ³ 4Ðë‹·êìêóŒÏëß—oÜîÃ4®å5O§q»E·[°q³_ ŠKAŸ"ëêÈm `¡»E%4èyÆÁb³1¿†õó5†¶ÙØ#€‘ÿ` z–\¸UçÏH½ÒmÍŠR8Ü‹ÝÝzíÔá@W"ÐÐtÞÂEÉ·¹œ}moëºßé΂¾aØ4óW~ôµF¤ »ˆ 5z_ÎQ‹ Ô— ³øTþMÌÜã’Ñ#`{ýŘ2öÃÅ]έŒi5ŒZÊÐ+ñ¦Š^©Ú|œÔU\Õ$Š£sc–‚h¼/æ02¦ŠIŒãJÆÄñåK1©ðÔ%%º2¦Tla—sò:gJ§Îf+obÝó-ÚK‰1ã¤5°y«%õ²R¥þ)7Ïž–[{¼sîì}hî³¼’ö¤^-­KEëšàWrøÎâÎß™ç^ÛU`ô–*æð=wl &•²¨ø¾¸^ªjظRwüX°ÔÄMÏd ·05×ô’†Ñ±+ÐT®ÀjÂÿ¾Ë-ÿÖ‰"¹–Zþ©ó.ÿÖ]9|ÊzŠÅÚYáþù•h%ëÛ×ò‰vz«¢…~~@.jìf5‰6ü“#G.lòe2»¢hQ°£ÝàÚûµôj•ä}9@”Ë=@Þ—¤èÙ{B&Upß}n‚;ÏpÚ±cu8Ù…úã®6ƒÝ§ô^Œ Þ¿7ë|¯¦Í°{Ø1^ÉŒZ "ej"MÝF¤idˆ4ÍG&Ò¼Öá,Ø>úß´Æ‚Ö1é+™ãRƈ}œâeìH7Ȧv†`®µŠ”ñüf2l$vF䑽xñŽBÒ±ãn d.[¿i¶3Y…œBVyÕ‹YËT$^nRθS””óc^>þÏõƒð»µz–ÿÓØ)ù?qÑP0ù?ƒUódÙ8p€õÐ&"¨Äþ<ìÏ@*_ü¸ŸÁÓÆüðÀû Ë3ÀMÿ„m„'!¾çØ®Ué³.>â³%>wªroâO¨äü¤®žóÃׯí³J´ÏàgAûÔíÃW>þ¿a£Âf€wÅVØáú*Ì‹SÚ Q€2H¢VhÑ&hd¶kšŸ '`¯éÙrvg‘p•Ô¸kPÔ¸Ë0ëd œRƒ®ADLÖMh>÷ö¤:~øm„gó½­²Ùa\ÅWYª©\«ìjÑÇyÙGÓÕÖé—^£FÉÕ"6WôHÁÉôCO»ö+g×.Li°÷a@§pW~¯te™V¨ÜÑ€†gÛ£ó@žjNzFñŽý* ‚.«wˆP:óñ\auG¸ö¢]ûõu%Þ§)‰U­ÚW?zÕ¾W«öUU-ø½oP™K Iá)¡<¨­%‚8æäÄ"ô¼èo× k:wÁ9-GF—bXÁ ±¸-;÷ŒXXŽ—‡«0(¹ Ïñòñn„ÿЬ5w[þC³Vòâ¢!kò†vþÄ^ï˜,·j@"$ B¹RHî44ÍÃOG‚è<5DGÁAÜBb!0&àÂ!† b†–`ˆŸ Ñ)\”Ž»,¥0x,D'Pò»7¯~§$[(ï(É÷J¶PRlááZÈY+!Å1ÀʱT%Ë¢dY”,‹'ȲÐQωdѱá,ÜÒ+q.g!IÐ,Þõzï]P wn¤U µ°¿Â9KÍ—j1ôåfI¨Åÿ3lªu¸…»]õ ·J¸Ð1ÆÐ¼,Š!î‘`ßDp‹¡€[ Üb(àC€[xÂ~–p‹äÑnñäáßnQ¸…›]±÷„Ø{;¸Ý'Æ®®ˆ]1ô°+†+dW¤? ¿Âø» ô;rÔu|Œ8þR­ ¿Ž1þ’ “ ]HßisD¢ ËŽi•al°xÌcº*u2ö–MOGä~š}\µ²Ú¸É+ðk+Z#Þe3?´6ØR6óCgÃ;ZèÒlåqëPÌÝËã`«àq0É1´#5”~àÀj0ÎáI)ik_éÝïY’àÁüæóSÉò`nš+ô°$ÊÄüLKB¡éwÙ±kÎhFQzì!ÁüÈܶBߌHî{l›¬,$™@œï­U¶bw [—ý5»æ}ùrÂ'£«/BÜãm'QЂ$dáÊÈ`iôMÛ˜µk®š&aoÇ'“Å¢IX4„…%,£„Ç”°œ¤–V¢x%,YÂÔåmpIæmv ‹Ç—еˆ ‹æ˜°û@™0“f’õ˜Žr·fñ<4a†PY˜jÂ2âe°zñ¦€zt€<(lX6¯wK¨n’‹‡0´šŸgÀV…4`+¡0¯°K×øO¾ä_€˜7L§pü –òltwÅFƒöp4g> b“ Uõ05ÓŠêN0BÜ–"½® ¾…å&¸ˆÂ¬‚ã’TÊJ1lš ]y™.΄Ô%#ŠìÂŒyÌ wai ó]òô(Ó%+W_2aùŸÄÁˆpM¥>( [ÅTZ ÞîTêºá~ǧ‡ÃÔ 3‹Y¦{aư¢Ø–׃˙ xvEÂcX4?†-‡aËSdX1 ‹dÉ„ßnt­¼8–‡(ÃüPâʰ´Œ‘JÓž fè*†™a‘¤ö3 3­ßi‹¾ƒ@ÃÒ)Ñ¡Qçãœ,¶e\'‘†-KaææÒ°U¡iX!: S—®0 &zñ24¡nN [ZÊž`uutôCjQ~=\øô±†9 5Æßwm0›½UÀl†Y˜MíIÂlj–C|äî<šÍ«%i6°s\5Φ°A‹°)`³Î&8ë îicW!DÚ8T Ò&Z »ˆK͸$¯jñ©`m†ˆh˜§¶9{h´«K¿_Ë#ؤ¯ûñ{öÃâmî¯g—ˆ›Çæ° KÄÍ“©ÚGGܼ²oÍÆøc-ƒ¸©?Ä Pú“zÒmz2Á»™´gL{0É]%“°š¢½ˆ³ªŒwÕT³ö3Qn†?åÆÇùσð_êõfÃÂi–ü—‡¸¨3›ü— ÿ¥We=Á|‘$ìâÉa+"aâãö»êO‰u5øDP.½\ôl;qûPa±Œ"‰.Ø Äϼ˜P—< – ¨åÃðíYøŽ$C D²D Yz"/ù1 ='¤—â zñH–^’åfþMy¬÷ã¡eJ†ÉÒ “ÜøžBÿHsA쎞‚îÈ€KzPqØÉqEIoUÓ âNpV,š_H`d)ðDÙ¾¡ÚWp8óßï+ø‚¿ÙVÌ,Ij–òå=…Ø%¬RW[ëÙ“IÂD’‘FýXŽA²óÄè!y( =øïôàP2@Ž¢Ç I½=ÐÜë÷à9J¡_ÍÐ?|Üà ž`çt<ä†%Ń“voŸo/>¼Žk€’~ ´|"ZBüŸÒèÇ‚ÊÈ™Ž'ß9à*”ƒgàtx hª`õøvXO îöç7ŒÇDáè!\dݪtW€€8ØçSäY•!k’÷µ·! ã6V ʰõº§G¸øðH„ º›Oiü6ζvx½˜]ðÌ*§=K0>Ä0èн #‘µÓ"xžvß<)'£§ŸÄI€ ¾áz}"nâwßþœñ/{ \•YƲ΅å`b1‚œuûÖ3ØovÇF³¹ÑÛìgΡ!ÐUºï8´&°î)LÓ([dÜçò/fÂø„êà|¶àÓâGé2’I‚_Û¿0öŸéÍ\lÏì7ñÃæWS¶¸Ãý%ö'øÐáðš?tCUˉõäP™Š¾åðrÅ^Nkõû7ÒG±½¡jáSÅ%ûø]ñ­ϾåYOÕ%›±sHâÿ»œŸO§ÿØÀ¼âpÍs0'üù2—úèõPØ¡µ©B[Tð_ã qí:+#Ëu1'aç¶ßǵMSRÚÌ«Ómœ=ôFQòµwW ±¼\“&Me_ëó%àû%áofŸÖ-+IŸÏP€Ï°â$^ä¤Ïwó“OñN±cUŘê+æóá”î\’ÅnkŽf¤Äv‰ þ~Ÿìh'óoÓèièì²’¾†nnÞ‡Y Ygá`úéf:YPÍ A_4šÝ:ÆCrM¾NY×~P‹ècxa¢ºsl[w²„Æ^:ÇfßJæ¤~½³›éùÝ'²Š»»¾æBÇíÍäzúŸùìœO|Ra:·¤#ïNL¡ïÍèð½Ð |mö, Ã7ëvƒñZì0ð­=½"G±k'Ê‘HL.y³o±áÆ[‡ÁŽê‚ùZìtd­ˆÖ*'G&cr÷vçl‹u×íÍ©zSŠÜefåœÈ÷ÚdMüP®‰ê•{Ml,³&ú=„Œ«\­Å.×ÄaMüðHkâÿšøÁ¾&*óë=-Í'¾@¶(ç¹@+º@>˜ñ+ÁŽi qxö~ .`¯ØzOØe¢bÞßbÜ{s»~¹|m-IkFØ® æ–÷ì˜& ùz4“ÎS !™?èŸøUkþ':¡V­Uû¾™°ïûð£Ù÷….—ýßùÍ×ÉLJ±ÿÛÙnÖÐþow»Ù¬ÕÉþo{§´ÿ{ˆ‹:»jÿw0ü½Ý±Ûÿùh .1 Lc½µ÷ýNh¦3ÞHH#šq ÝÚårfw¿;æí>'ƒA—A ˆõö„B¼õìÞºfø¶!ÞÔäGyÂÀñ®£‡sw¢L|¸X“BìîÒ¤pÿÍáè÷ÒŒð'4#,£¢=C‹ÂȘeºß__ÎnoÅé÷´_¥!3Sì2 `6ÄY!ƒÃL¼2>Å-•ÀóWv_ÑÆ6ê÷o¬QSÐèÒ’¬\éò庂ÞTm!»–Ä]3E8«ÏÆâpy ¿MÝÄosÛ'ää°f¬Õü E›3ÖòZ¤7(œ”­ÍFãÄ)›D÷¥c™õÒ@f¿ìôèHD1s b]Èg•ó½Àñ;¡©ê¥¦Œž „nã(Ôc—‡PaOÍô‘^þûäf]÷óæáµÖÙ­-( ‰‹{Ö€_`jèn8Žé4¥-â m:Àfˆ|ß÷vh3·{$;ÄþêÍûn…Ö*ü»‹ÿî`øj†=\±,l•øæðÑân)]E˜RøÍUKBŒ¥•š&y(dˆæyʯ*YK‰@ØßmSì’>ý¬ëÎåÃ5“ص­Û‚Óµ½m¼@Ð~ºUe;Î`Þ¯ìý(&l¸çdÊgæ—X´Âkáh¢%Îðw^U»™<Óâ4âÅÉøܺÕÌ‘ï)ßP_³ëT&BÐMº8šTºVj %’<ÒËÀj’õNSªÞie¥“ äb-VÒÀ19-´U”82‡k:ïªgð®,çû$·‚eGè#³!2-Ë`žÒˆAž“O7([Í Èz–å‚õT[cÉásˆ(Áò1žH{¡úWëaúlþiDÓfé³Ôd/ÐìýÀ%h3Ùáá]ÿ¾ãûÖÛÄ`% º5ÃdBI #,ß$ƒÚ—Š>ÿÚçÖ°¡™Y bh/²¨a¬m°ïš.äïpÐh>³\8‰4Š„8ÇÌfªûÙ çO>·|œN¯è0Ý\Lf—üçÛyfÒásÒâîÓ§ébñùî‚&Ñns9àÛ”}›\Y¢\À6¡Vé°-ÖÞ8[Y¡ßÛëôÃÙúÆá`´1¾Wúëëìl>X<ççó;P‰$Ê #ט‘ÿY>#<ï2Ÿ¯ì~AÇ3¼Ú&7Ðw¿NÓ“^©t¬5qúûþÛ‡›ÛÛ¶1Ê ­K|¼½Ž³^…BW9 íè&ÑkhÚ½ ¨ù F×oÂÐ’å˜?¾Äz‘o’ÞCS¿µƒT¿~)vtb/Îõ`¯åFî½Úuòo§g³^ÈEÙu‡Í¡»Œ|ÈM¾xËç fmO–bª(3£û€vºÁˆ£A³JûÂe¡èïØx—Û+å]¦—"Ã}ÕC‹¸ ¡Ëö$ZZʳjÝ`æp åÈ\“­ã3z‚H¦ˆ©YwBOÀ_ª±§Ö5¬xG€Nîð›~A;Qø Ž;¡uèw-õ5±à}žÌ.hÊIZïh%ïx‰XÌöÅ…|š ØkøZ#ñäås=]VI2HÉÜÜ]­Ë—5“—íœÉ»H’¿Ów´Oó›óé¹ê&?z×á»®ä<ÿKÞ-B™KâiÚ@"ãY©¹Am#në’¦âÒÂâv:9§jÔˆÿ’ßñúõ?u;^{k:3«år·eäòÐØÅÈ\§9Dcñ«Þ ª1Tïžj|ü’zL{Œp&»`çÓ«Å4 u±FOí¦O5¡Ô^°ƒÙäËüjBcÿ¶û‚LøŒ}õ²žhÐ@µ¶•ÄïÐsVÁÞþ üÆÚŽyßÞ 6Äóy ÊÇáâß7·•íµ— LØ“oÀñä7[òlí•%I‘šÑf/©´MËuH®a¾¶¶M‡z¼+¡swu>½ù|1ÿ&sÉÖZ/ØÔ´4ª"-™ÕqMOkþUOJóލ}5Uj;>Ï˶kœ‰iäôÔø£Va(«± vÆ'@èÌF²yc{ß$~>ƒŸ\±›\âÿ“/X\ygxxÄ3iÖäßü½¼£®äÅð:žð7æérí`Ü¢5äÏfÿ3_>ûÿObÿߨ®Õ¶Mûÿæîniÿÿ“K­fÿ¿ï²ÿ·šù»•Šýbæï¾[·ÿÏI~Q_µ™oòM%–°ðGëþÞs°ðwg,Þªã)Ùôï'6ýƒÓÑï%øAŒúÝLÝ{5êÏÂt…AiÏÿ³Ùó;LùM4ïgÊÿ´òïÅ$¿/ Ânµ¾!léáòm÷j©_ÚÖ³emë_ùÓyb¦õ(S§{´¬§ y ì%(ØýØ›×[ªQ8­ûýy˜à[ìÜm¦è#Þe¥&%kŸO_{Þ’×Ð_±ìï|œ$Åô_±ì÷užƒÓ1XŽ“0½ €Ôö¿4ûOŸ|hø°óQ« q„(Æk'k *^•‡ÀàôyxôóxôÃ}ƒ›åsÈçP{BN5@ƒ7:´–uhN­LžíNõø|/?ÜŸœé—=¾xÖØHžÅ5ÖM‡-ƒeÍÇdó×± —Ëó{í@Í ¯Z|@ær›a¾UÖ•á·£ä ïòbÍÎ^‹qÑaî0]u˜{ Å»ê$‰ º3;ƒÄ{êäpÑażtزŽ:,ÊW‡­È]‡ðØY‰Ë[‘×Î’n;lÏ–Çy‡òß)ä½ÃVåÀÖóáa>7ž©8ê±¼ž<®—»y|ïöçq½ÖãÒã-oØ«‡y{쉓o1J/çÒ©z÷8Þ•uñ±Ýèɯéìƒ÷ìØ éÂãÇøc-àÄÿÐx¿ –ò ’I<†_t—Ò-è±Ý‚úæd#ú­é̬–ËÇr ºž/f(ƒtÄ…¥ÒAHI¦t*î dVä½ùÁ–Gõ7¡ýÒMè¸<þ?_&þÇnc»^ÿŸÚv£Õà¿cüZÿãA.&×TÕÿçÿÄvòÿAá]zþP@mRŠøT¨í#P½à¿íQûwÔÄtð>žµ÷¹€&•®…<ƒž@ø‹ÅÕŸ§³öh'mYmØ.‰·€xâQ=ˆºŠgN?oëèØùï,ºÇöŸÜÎCÔÛòú½é$ª4.ÕÝÌ@c“ÈçÞtF¿cÙý~Vúåð1–+õ1ê+Î9ñ>Fý8#!Z\à3OQŒ£I‘{ÙœÒÈ ÛAó¥‹A©:LŽã6~· š*3£FMñèbò…´Ý2.ïBZðÞˆ ðôoˆ œêÞžtÇÜÎ?'m±þœ´£:òÅôê ß‹.5¡ ù>ÎëJ8±lÕÖ7(vCú°ˆËá Ë‘v{>kæ-ÇQ') =\¤$G"(MƒJS_º4|š/Ö*]©øH– ä}µ™@AW,%¾X-•ÀÈ’ƒ «•ìŠ÷èRdÿ^]¤CÔE°*”ÝÒËkU^^{+òòÚõ§3l÷ýÉðx*%}Åß¾C¥úéî]x}£uÆxx´گƹ’ñ4Àˆ‡RXmÈ–馺â]zGL“º`‚,½Î|fªKä®* á~ƒ˜·ì¸aê„àüÜýtµ>li:ñƒì€Ý‰ô)÷†Ï¼»Olb ë*´»ý߿Цh”d]ñ öØýaoð{i~ÿô„ÿXeCÞÒòc_|vŧÏsoxz‚÷ó.}œÂÇ¿(ÑÁïo†ÿZÆ¿›|$œç æøÏ ø{ØH•zß@D_äoG8â-á?gy7À'íà¤ÝÛ'÷·þ›Žø<¤ÏqGª(þwÕØd<¥Éá§w‘x”À<£ßy·:ã¿÷Ç©cøûDêéð¦ôùïÁ¶³Jtÿx»&>ëâ³EŸÃ#:c°ÃG8mSs |+ªà‘Bµ;£j'HF*éÉ'ã$Hó œ;ôÁKp ÿì¯ùžÀY ö=uè}€æ´äCzÿ§óÐ.‰Å£uÍ‘Š<&¯–©ºÖ¬ ÄþZ±ð!+8œÔ€íÊÚaº5JCsìûädµz9»BT‡ògUU•d£ßQ\^P:€ÓA9 74Kbð#~óºí«º,”Ãb··eßô¶›ÿ¾4^OkDÈ\]‹þÁ…—·¥Ã|ªèbv9C¿Hûr1Ÿ_K+;Þ-5ËJ.ð0%òáol¦Ž‘²û6›[zº¦&÷Št|¢üieî¡àþA/DAÍâçÈ[o؆( ü®Jƒ¬¿ä«ô—J~áÀPá†]Nþšj:(^Q¼E38˜ž³˜­ÞLÏï®Îù`–Ê;xºwªšCkÔžãŸ#ѱ:BéJ½°èѺïQê [Âm—ŒË- “á’ÜFÜ©àØ›ŒË%L$Óß´&’5†Ö÷$ì-Øšï²Æ•²AßåiP3lß\mj¦àib&[ù]À]ŒÊ`~¡Ôî;_[ËÜÍmIÌ㈉¹Ý’˜ÇP$fozæ¶ —fØ“[ÖÆÆhP?ξ°éÕüîËŸÐX‰[ðퟺ®.Òž[Z…¼ÕÁvçÏâfˆ›GX6<7Að7жõ¤MaíðIù'ž†×+s‰8#¾ fsÇ V8 Œð/êoTø=›Çï6íXtfó£ÈÞãvÄÕ­³<{P<׌+´ÿý•I8"4ÜuÆß0ƒ‚ n-ŽB +ˆ •¥nwªPà\Pj ¡™uîprè2éuƒŽ™\˜‘P+X”¨Ëã ¼ @+`…€î2]¤ 3˜ÙÛH¿ÄëT´/“åÎ Þ@-ÇjÌ€ñÃZÆsc˜ê M;`ÑÀÆòÄdìûÃW'—¬‡ÜÔ¦vûìwÏ­@#F@Ó³Ñ6*T2BQóø(³(RÓa KÃç!ƒLðÓ”wx=÷bØ Ì³±Ø¸â^%ú£7×”]$_Oë[ÂÁÓýD‰–bÆçj›¿Qß‚W _ C ç,ž¼ÀBNþÞÖ!<Áo1ŽýLÅ3h•ö›×ê(½õö›·Îè²×F–â@—¿BèŠ(S+äV:ù Ä Oóëï†IMô0pÈï_yµØkIªþÑhNèöé”Ü*T&fÔiZ1Äò(E<âh0~xGEÂÄiœ@èºòYÿ„âð•’Œ(™F•’s¾LÜ'Žè1wŸ¥P~?¨TÄ©æÚ‘ÏsNO3Ïô}ÏàÁkæ‘Ã5·‹]pÒ{EaÜnët9EêEç!¶‰¼±+ot&YËpO ê0ñªÌ޼äR‘ŸæWç3tVÌ>ñ&7³…Û°.”•o¥\*|ü§h£ßÏX…šÕ—4òÍôNz7g³ÂL‘\×7Ó¯³ùÝ"Õ˜RÞD§â}oÝ>¥¤5œ[äœ5Ùã…&«< Žø¨ãŸé¡%©S£ÖBÌ$|c]‹jT–¶«QZ€¿‹À},,˜+ãšþûnv1û(T8éì¨B–„¶„ãÊŠÎ@Ñ*#º“&#´îS]Š#ò<ÉÈ£z:ø ÿ#ɦAÕÙÝ}IˆéIØ_¬ ×`Á|ž1QÖˆIÃ(*mÃ$sˆ‘Ïý¢ùŒz«šÍ¸‚¹òÙy¸úŒÌ¨[ò1ï´Ž³ð(cétõ<3V3Иu¬åLA¯hÃ-g^+½Ë³eÒîð6Ê¢ÖeljCJ®«ùÕ–2Už #l\?Ál™Ë²dHhÑtÚêÆh&Ä{#I7wåÍÝekKj[WÝËotrýNZ_ Ädh# mkø‚[[[®‹žK¦£Þ®CÆ^ê»»«}··p γªÊ%u<<²ŒôĤ®¥XK.†-Í+´&²â®ÀyjÓ²r^ŽõðØÒz‡¤ï<‹|”žë)¯' K)P4jr?˜ZÇ|Þ[ëÏÙíÍäj.@z׈R÷Ñ•m›4ç«m&Ë ´MfÁ1‰–‘r\¦c²Ÿ;ç£æ<šàŒ€°\ óR.’¿ÅMˆr[<¼ûi#©ŠÐ±‹™ NI)k«œBõyÓl4_*…Ú³ûíÙ]Q{vWמ]³=»ùÚ3ðµ»xOzµMÓBË‚6éÞþaµOB»º@{ã=ü5Ò¶·«ÙöZ/ÜàÀmQÚ*º’3¨°øÛ>û+“O†ÓÅ-kä^^W¼ïOu¡å5–YêKÈ3M®®ir¹§²~’ÐìÑU¢.¢::´vÑÉ ã€t Ðɧž§ó»ý¨rk]AçJWõ<öª#™°9!Õ89Ï ÉÐ^rkk‹Œ:Éÿ~V!Ö΂uðü+ž «½>R—Ÿgï˜WßæÊF¦Íóma#Úœªƒ‘›Í)ÜZ±Œ¦TÚÌ‘S!—žÉñ!l2'D nw O6œcë¡<Õš8”Ï©bÇ}ùQÍÆ¥âë´Cý¼é( Ï5œ¢‰úÍݧÄ\+_jv ¿>Iñ”¯w‡Mz%{£íZfÿ™àˆsu;Û¶(Ïã:>ÕoßsF–\Ø'¬‚%#xûFmÊySÔr¨1ø%—ý\J?ïd•³çEn§Õ  W‘uŸL}#g,2Ár%I]ÏêNÀ®Y0œÓ UÊ]@ í^ÚÕƒ•´ åTœO*¢‹J.]E 4"ÆÃÄq \‘Šíxq ! „d1ŠáÚ¥p ÇrËwJ#+ŒïsSDmžs…âàsãÊcLœ½ì&¶»€ð fl>”‰ž8…\Фid ¬ÁGÒMw6jFrظ0éêï 1½[—³Ï„œíI49›4#°ªO{ç\;.Æ k\³*¦¿åú_œÞ–UËÜœE¬XŠ-ž ÛÎoCS™ý€L¤S¡K¥ÞŠzí¬Åï’lÇ|b±Ì'kfÎÐåI]®}ž¡GÓEÀ[Ga·`±OñžÅ‘žž¥ _r®ÎìPùb¸ÆëHðö¨ƒøCjØ‹¦#‡¶ m;ÕgÝÑÉÐù-!ÔÒé.6ŸX%©J˜“ –)ßÁ°ö8AX(_Q‡nsï˜6Í¿Ûtn5ÏûoÚ<æ08[¼|©t‘b;Εl7å^Ó}Ç>ME›É&[Wë=1ýò¥#·A€˜ž]ß ¶âzö•‹u_næßøóqÛ„‘†7Äïˆ3ØàÂâ.™×¨}ʈl%í€É=~s´yíâ²<šŒ+) f ˆ+±&ÑáSØoVØoÒ¨-i0 ;nÙ‹éâ×îÒRõqR5†ù¬“ï$ —‚ëžØª‰ZÍÑ,¨@LŒ»±Iê[4MåHEÚ¼ëÛ·X~Ø%ÄŸ‘1¥ÚÂW'1j‚¢{½”ã3xØ'â (Ðú¢=ò4eõù·Db£Ò3lTòŒv =„u°Â6 Þ!÷Š»è´€ó ½{+# ÄoŽðNp„fŠø4DýBuå§´g–Í\Ü&¢TÚ•Gi{\ )m#†&âõ1 žß3Ó8jB ð[J¾7Úvh‘s(bq”¯áã5ÄšzØ&ëR>rm5“Ó÷D7ZÀŒŠ±œ*áåõÁñm¦žÿ‚ÉLâs‚‹ˆ2Ñ}2ˆŽ]¼ž":nq,bµBâöÀØ,h#4‘QÙ1ÒõÚ°ˆtƒK']÷Õ2:˜§aâ4ÿæf]è`pô$i¤áó¬r­Š[ý’Ë^ƒ q)*‹W8Õö’Ú–N]ÍPKEtØtqBZû²Ê»DS£Ýªˆ: %C·Ù•˜5-/ëcKÂ5VtghŠ_ÍU¡ªDŠM5œ²=:Ò:Æ3-‘xÕr®¥úbÆgžybÚå‚©ТêÍ‘ÌJ’Ã+ŽÔr<÷ð-zýbžàTK…OcW¶äáäÞŠ'wÙÛKÎîꀯiž†-Î;-‘s ­fŠXb~(69x¢]ŠŽÛi]@ùÎmdT-Úið©èQ¢âøW¾rFì£ÚŒüº‚Œ¨#q§ÐÒ[ªªªÚÏpPíäTqå|¶ƒj·T=¨v«jk<ÃAµ›{PÅ•óù ªôŽWöSñÜúmmÛùUÝB½a ¡ÞÌ„Po-1]ÔÑï=•Z®B&tøóJ éL£»W"ìD_TY+`LôØë;bF¿SbYŸÈ_d¨ëîÕ§›éd1…À_·s6¹eS8œ‰Ž-z›a·µìuV˜Aý>3³G#»iwõ ê¡ÝúóíÖPß5=p;üºˆÛ^…HÇZ¼xýùB壶á/^¼XWb~Çä£uùÀúµö¼'ozãiù”ƒÃÉùM'¹©Œäü³]ÞøÏ¯&´7þs­ÖhÔÿyg{w·Õ‚øÏ»õZÿù!.÷eüç2þ³L·Œÿ\Æ.ã?—ñŸËøÏeüç2þsÿ9G&\Öeüç2þ³32þsÿÙ‘Hdüg_ ðWüÑéxöMÏ.H´ïi¼á¾9söògJšoøx+’9¥wÏÇþ£_Ê Ì³üë¾òWKåÊ ×z‚eÐë2赨µ2èµ¼¹ z]½.ƒ^gÔiZ1ʠ׬ z]½¶_eÐkïU½.ƒ^—A¯ƒÙ,ƒ^—A¯Õ« zí½Ê ×–« z]½Ö®2èuôڸʠ×eÐë2èµr•A¯Ë ×–« z]½.ƒ^—A¯]YMÐkÞ¿ÉþìÍéÖÉØçÒðey¨þ?AÄìà}q©¾*C¹ÀUÆß.ãoûJRÆß.ão—ñ·ËøÛeüí2þv[¿ÊøÛñ·õëGŠ¿gã[p×ûÓDîößQÁrZpßQF=RF/#€;¯gwºŒþTZ¢Œž½Êà?ºÚ¸Œ^FW<\Æ2x<î*#€G\ep‘Z¼ŒþdNÖÊàeð˜‡ËàeðgWµŒn¿žQ\UVFbƒªŒn¿žï *#€?ú *#€Û¯g4¨ÄöM®aoGwö[3^hmx¹ÿøÇ'ëË¿ÝÌn§•êÆ:[û8ý·ÿÿùòqñõï¿%}íö¼çp`‹9)#ǵø7YôéÂʇ'cO'Þ1lƒÈÈ#d̶ô[ *o Xü-gë·´•_û¾Xö9mùb ôüºµx£<¯ß´×Ïm»eZâ¹Lñ®þà‰ÿñvZ¯+†z–z!ï7§mžŽJ »bH•î T$ÿ¸þúåæÛ0õT¯Î›ªR8_:ü¸å«jòã'„¥Ò° ’Ê0Æ^K¼ ž»!sšßå6¼s›Ü³¹³ZÛü—ãä0/p–ÌæüƒUªÀ•N$›çWÍHM¸ËFŽÌRS9Wã1j=Ó.“¢-ýå„ÿ…:€·=U«“$úSE•š°I£¼TÓ¡êš}Â`0'±Î²álô@þ±çÂiÀ¢¶õº Ý@¡‚ÍŠ6ѤF(1ÏGÙ©ä¶P‰°M‘ÝÖ™FŒUJ¤=J”?o×iÒgcâ³.ñöJŸE‰ß–$—Iû‘•XŽD˸9l~üÖ"‘v"1G·ËÂÖa±f""Q•ï7þÐM;¼%ˆ7ûˆ0+(à©mQÒ"´ÄvÄX¢Æs„w׫¯é<¦¾üyë!ÊF N(ÊØXÄ!:ý·§6 XÊ Þ 9ë·'góèPí­‡þK÷¯@7ZT1Z@+ð´=‹W®D%Zà¼:Nꌴ²ræ´DÈQÀ=h.%¨L‘ Û|LF/^°Ñ§ÉïHí›/wà̸àsÒÉé›._ÆÕ"Qå‰ï»ýñá›Ã¡ú=V*U=I¼êÅݧï:'‡ ¤ïwGÝÓ>¤†M’d%ÍSûæfò=2K2ÚöF"bZòÕ¥S¶ 8|…N¡ÞnÉØP¹}¤Þ»ÚœžmÔvÒŽ"îƒÞ"ä=EüØ¡Ow'é¤÷*/=“Ÿ¼«ÑûÓJ‚w7€S…_ÓE§A LÙùÍŒw*ÙÃdëdK`±øSIE+éÉ©z«Ì®®ïnד˜@UÙùŒ?ˆ}¶Ò‡Gëê¹ÃX‰RŒ¹(óq ˜ÎQTæ“/ëI[LVaµý_5 Ü\cÿóšý/ü#ÞÄààÆLK‰Úþ¿ëzpC:%úoãyz]…úº/©R uQIý¾È‹¨ÑËÌâ¦A]ð´ Ô;¸ÛÉ Â/ή((ãe /Êô§~m¤o«è~¦’Ów)–‰"À`úd_¾ŠÊ\EIc`@‘{Ùœéq2o5 ”qÁ‹Íç—”=¿!~šsš9IN¬„îg¦‰fO8[ð>Ô[Þxj³«OwçiÕó¡À_Ê>Ï.¦Ðh‹ÊþùZäŠ'4žó²êàS>о+ïc×°ÉšžW1š˜(Ïk¶- ˆódfÔ¨)]L¾Ð©Ýìê|ö‰×ß‚}ûsÊsx# è¦Ïø(†NNõ oO»#Ÿi#Úðrò÷ìòîRÔÛõôærv+Z öô8zfJdÀÒ¾Íoþ¢^¸ó…–ðÕ‚ËaÓuuf´ôXžÙ øG¬0W.—Ÿ5—J S¬|àÈŠå MàlÙÀÚ°T#K2‹a6™ºZ}(>.3ÊﬕFs(’Šôóg¬i”|v- yfØôAÛÂãìîjv«Æè¥IFŒ—׫¸T™m0¹™\No¹´˜ŠF1æ´XUÑ‚ƒö°Ý;«¢Å^zÍj/¶6…=0Îcð«O¢¢5Ø—0Ýi×ü )掄àžÐ®?ˆßäM†b=54iJVé ´’0ì81dUCU…Ö¹*ŒQ¨%AzÿWž‘}-ÝÑ8Ñk'Ý´mÁx8æã ù8(КÁøìŠÏSÉœñìéÀØŠn;M*¤Í3Þ’íU¸Q:•¥[ÈöMúE,÷ü,C†õµa¶¶‡ˆK"üù=þâÙä¼ëámj "Fšm|þͧ›+^˜£»«O`ä$hè~7™?U…±pUÄÁ£Ï±Ü_žñ*êkéb²ÕÐãžÜî>&{¡$ÿ–ÑùSUx T…šœOþ{ÿwåÃßywäû)Þtžƒ®ª°±¯’‘]M|ÖÅgS|úÎTà†áÝ8ìV…l•|ƒ¨èä …nR¾„NÚãNo÷F–ºê^ñÝ_?Ùššw¼a·?êî+UÕIíU°·$)§U.iîÏ//ùëí;¨Ÿ9=Î΂uqyþxÆŸë`ny×ïŽ-Ùyøx1ÿô—:,O{½Ó¾VY/1©}ñ)“„ÌU1›¾'1“ûò[>&·¶¸å¢¿¡æ8hÛL¿hHóÔj¯ööªðï+ø÷Õ6þ[“ǶGi “”®ÉûÌ÷N@ðÀ‘Äš‚5¿çš¾’W$nü¥uò-ØH+¿rº\žšM.fÿA2^Gð=ì?ñ$‹ÿ0¿”âÖb:U,aä³Ú/h[®aóËë‹éß|¿6ý4énM»±þ §òßÊoÄñ¡t²‘GÉïx –þ~pÊjDYæãºù½Å*¬‹É˹K3rÍrl‡çj©ûîþ’bÁù¶ØT*ççâ ¦"õOY&x§Å¬Ê—ŒDôBìû|3Ïëjõrv…ÛDåϪ~&ÉF¿£¸$àê®x`nh‚D.q?5­×¾ªWÅ£©¹«5²fæ P‹$¯A;eÄNåÏ{Q±×Õk‚ˬ O÷«ºARy°¯ø ¢TÂ^ëâ­¨ÿ>„J5íä5õ™(Xò!ë¶½¼È©õîüê⻢—¢G×ñlñæ.@21Ï5nÏXV¼9ecÈŠñêÑ_³k¡k!r‚Wý.¼^QaPÏ6ÍL œ =›¿ìCZÒ“ ~çµ›É2=!nOÆ/àÖ­f|¶yß½»f×éæM´iAÃn,5QlBªKŒÄä‘^&h«ô/á©ÉÑ$dTü?Éç‰7É¡({¤NKQê7L ’ðªü–î4r¤…å9^³ç·7’¾J´»Á7)ÃCU`ŠÉ¢X²”¼ ÎÙÀÇ=õ€ œ{XÝD‘ ­ CÒ·útR%ɽζPøgº³Í/¸'Þ)3é¦ê­îG0—ÒxÛÚ­²ÿLoæ|ÈOaÜ]€4µ¦þöv®%rKëÃä–*˜Í›éíÝ (•?Íoøòv{ñÝV“4ì쵈5 öð-œY»,§ºB-1¥k$-‘p"™ï&MÉý|tÔmv~*V‘4Þ$7Ó»ÅÔã –Í,Êð ß.}Íï‡ìRÝ£8•òOÖ.e¾¬@pP•êáÜ@uS§B/T•æô!Oœçß„¿8ž.>Mø6T:’‹®zMío{éYÉó)e´¤Œ: $4ÓeG¸¬ë^Ý6êçð°n®ÅbÛ)»qލHáà$ɰ3rµŸ?Wá0(I¦Bpåªs¿uÌVÛ6 СS0ÑáJ:6sõíPü@¯÷°Ÿ^4ùꘉ…pr5¿ÚR½ƒ‡"ÐG0{ƒ-dH©ëõ®¥9,Ä9SððÆÕÊ{[WÞæð{AËe©¶u5¿!’ÓìêóìjvûþÂ+Å=ÕÑ9Œ Ä»ÄZ-ßÓ~A繎Ƥ35®/ GYŽC5A'~ïÃ#K'îÆPŽ jàe³+°Þ›ú«É· ¦/n{—@<ƒ}™£f«A†v~|žTTÁY#Ïõˆ§l?±O7Á³^IæÉ©mI3£ ‚èH Ó›Ýò¨ÂrKe;=´¥ƒæ>y'6q³ÿ"EW1ùÈœ ƒcYˆB¥Â»ØèÚ> T5Ó)˜PcîxÔRý®@~²òÎYt¯s¨úµwÚÕþ˜ÓnÊ`<ú2d'2ª©kѸº‘RÂC:X¢hE3Ü[ÜÆš+ÐZ—q P$‚¢¹ÍÍ'Uÿéb ¬¤£îT(ZÀr5G6Ÿ|Gýéøÿ+é¨ñ1çµ£æÈæSgô·Ü·;vÈ>x‡fÿ¸gBö9ñ`}¯€ÝY–ßκuG¿®ÃZGPÁé{–¤¡ëÀsì&Æß\\{Wf¬àv³~É÷{íŽ<Ùë/®ý°Äµ?™ËËÿ{5x?ÿ}·¹Óü÷Ö.ÿ¯ü÷Ý’ÿþ0Ã’ÿ^òßKþ{^þ{áïÕ/9ðý9š\M@Ã:[Bö‚ ÑH¨ú†„tžìY‡K4ˆ¦ž|Ì.äV…怯þ6[L™ ÄÁÎQ¿ $ ~±DÏ—èù=_¢çKô|‰ž/Ñó%z¾DÏ—èyLçáÑó¾TþàÏÿÑéxv1φO/?ÿÀ8®~øì`õ|“Å©"(žºáwAKþѯ•æYþu_ùë#óïñóÍò¸( ß‚ÿø æ«õ¤óeÎlhYr>ÿ…w øöÚoJŒ>=YbôKŒ~‰Ñ·|UbôE‘KŒ~‰Ñ/1ú%F¿Äè—}ý*1úFE”}¥P%F¿Äè—ý£_bôKŒ~‰Ñ/1ú%F_¹JŒ¾»”%FŸ®£_bô•ËÑ·¦Ïï•ê¿ã¼°‘«t×½Ë4dëà´Dö«)”ÈþÙ_"û}ÕT"ûmï\²?õl¸ýžûßœŽaõ m¯~XB^Iþ·]%ù¿$ÿ—äó*Éÿ%ù®’ü_’ÿKòIþ·]êYÖ‹_Âν÷x~Ñ\xë%’ZF(# hY*# ”‘ÜWi Œ4PFȼ±Œ4ÀÊHÙ«Œ4È[i Œ4PF(# °2Ò@LÑÊHø²2ÒÀ³äb—‘ÊH®—>©ŽZF(# ¸^ú¤:jiàA# XÅ~ã¼ýÌg™±¼öl“Ø1ØßŸÓ7_¦b¬#“‰TÊ:{ƒÇd€8oôoìÑ)ó*âüæêûʃ~¸~¨ƒþø“~×QÊús€)æKÛ„í"4ÆÚùJ÷#&^U)“/‘Œ§ÐðûA£%¤&Fù<,ž¢)ÀÏh psýõËÍ·?_ÿþ[kž¬ºÎžN¬!€«ñµƒÙ–I™ŽþrÂÿB Ú@@+æiyzFWD-êxƒíÐ=_ò¦ð+2³¶jÛä9ªUž+iËCZëUÒ–‡´å!myHëÊ[ÎCZûwuÖX6æ;ll•‡ö+¤Ìû‘OˆãFÞµmWyܘ¹ž„rü™7–Ž?ïã3;q,Þ#ÇgvæX:·?Fxs5HÃ!t„‘.ÿQFVQÓþpØÙÿN[dü^x L–qÒê8é¾øß·« ÿˆÿݬíÖvÿ Ãóok­mˆÿÝj5ÊøßqQÿ2ãããã€/0³ë[n~ÂxÞ?N$o¹¨ø"xëA»-¹ÝÝ¥P¤î±Ð÷}x3ýž„ã.Cc³84v6&v’zéÔÅÂB7“˜ÐË<½t<çÇÇü4C)Cj›u5ŸùB)kÑ¢Ë`Êlé`ÊõSÞY2 r®xÇ™@Çæy";"cLcÖ=“†bì7¤ †6ÆÈI€ãžÜ ¾Ü©ØC»ûP¥ØŸ8=¹ôE¶F%v¶eD(a‰Wn¬6Zp&Dð‡J¸¾¾À½Ú#ˆH‡ðYí–°¸Žû=ùX6àî‡ýS s{0ڇ͈»ënÓ4 î˜âîŽEÜݱˆ»;qwùgË›ÎXÄÛåŸ#-Þî›1•|ˆ€óÅÛµTUÞ0»J„]KjePÝÕÕÝ®Šÿ×ø/2¸1×ÝêJ×6.œ!néÁâ‘jÇ?v¤Ú4³M-Ø«b•â«Y”¸"ÃB„Š æÍÛêWJÐXx³úÕÊâÃÖO'@,Ï‹ñno¨Õ‡ˆ›Š«ºˆšê;»gÄ­mgªB~µã4ð£:¡¶µó KƒÈ^*J„¿®æß®2îÓ¥c ?‰§¾%nl)=){–ãñªVoŽ0¯~iˆeã¼~X#5fŸ‹ûU—ã„ÇeÂïU6S˜¤—;êkDd(¾À¯L8ÆŽ ¤ILkÉûZ;G±Q>Ó4US´S»ê0¼°>ÕO»N Á-Û‹¡¥HéÕÓô©áAªcÄínÕêêãî|6ù2y2~¶@ˆwWö¹pô-œ Ej0ÖfÇÝÔØfùø&*-Ta8N/ÄšŽ=ûÿð ®ý_»-cÍCD?·¿Y߀µñ’ <0"`‹ì8 §´Qf®$)Š­’½e“½ˆ«ù!„$Žå‹IQÂMBWP~œˆ±Q§ç x°$#+Ë^A=ßoÄ ý–íb߳ߤŽ)çðoW„äõAÝÅyª ܸByklô·ê2U§=TMí·jþ‚¸-ÄóõMé'|™~³³îÚ¢¸ª±Î.+çîg’@þ v 2‚_‹ð›fÌkR¾ C8c:;-›ª÷ D»æÕ¸7U˜=ªRÚAí1Ÿbæ{zQC¾È×°5ß»­dÖÅ«A»)‹5™EÑï5&:½½Ö”¡c/>j,÷‰ U'n¹+ õ-Ta}¶å²IÇŸ/¿,yáÛ Eg«ª8K¨o›}ì[êZðéLMb¿‚ïSyêSÙŠiXãØYgÙ`Ë®0Ëc;ÿ;"xµY9öµIÈ–u›;l(pu ju:ô#šH“ö„dö¾í#’,lòÂ’¡Dõ8¢ã4@d[1SáÕ>™hDÇiDw"¶¢DGŽKcFêdcù¢£TÖmFè^^×RôPÇ¥3Ò\ÂÚIÁÅðü']a'`w;»%‰%…ÙÕ×J›¿‹Œ@¤£ÿ=»¼»L‚dó'\Ÿ²/sGË%a'í=“X€2v¢}¤h0¿yïáßMÿ¦ÍeÙx%~¿ˆ39ß:9Úi“ެñjf+‡–1­8:Ê“|=á÷’¦@Ń<@!M>vгjêôÛt,5‘ƒ;GlÒÄn nuKÌ…B¶zœöV4ìÖdÜíDŒ»V‘q׺çq·?¿úß»/¤° ¿È1g™†á‘°puÃo§àð+!xÑ}¡}£0oPßÀVÓø;ˆ¨5-˜¯ˆ$7‡u8ܶ­]|st;“<0¬t¹{w ž§– K«R²Æî˜´ra1Ò:õ(QL] ¼ø¨,:jì JkAA93c§@³‘hñX$b¥ãW_.²zZq8™Füä‹©š7 *Õ³JvY%Õåž.cé"9lÑs]ÚŒ”  —† ÷¡ˆ.±ÐiÂY˜(ä‡/bªØñÀ$ ¾ïG¿^õEI]iñ(¢¾È¨c5*v<¦!Þ2•<÷rntÌP¨U²§“鋽;j*R¨G ŽnÛå;¾ Ïþ3Óq¾q…3;_¯{•ì wà¼m´tö«}€Ow3E‹hNù¬¤ÓJè̈i Y­\ÓËá‹z`zYšŽD#¦rq ýÇÒe‚ÖÇ0€E·¶À‰VôxåÇCc‰ŠËˆÜ9äí09{5r´_ˆÎ¤8F‚^‰ø|²³.8G"‘­áÊbÂ’¥Í×ZiókN>v k鉈I†ŠV>Ao5[‰ˆ}Z«Ñ¸ÜïB{ˆ¥6ùw>øÊX ø ú•ïåyYo‘;ˆD¦…j× ëUò'ƒK!R' Ú ý1‹e ÿ¥ÞØFþKm»Ñjð;ÿ¿.ù/pQ×1ø/¿Æó_À7ܳœ%ˆx8P­†h0ît~L FˆùÉ`1í}ùcNmUrŒ»;d‘2…È1¿&Bí”ßð} K¼†?üzXÒd~Zš /ä)ƒqô/ D;¦»iÞœF/xyù,BšÝg“\Kâl`>hCiäFõv=½¹œÝŠ–‚Í^/IÆqj2R¡î·X ¥£V`f\.>Ÿ.•@Iä‘WJä©?"OÉã‰äñT£p:’˳]ÕÙ:îÄaèMS¸‡Ô—$ôä!ó ´þnpq—åóÔhKêâô n§‹ïr‹h ÂG#õHFωê îѰ>ß2ô;½n?=ZÙ³ß?èBFÓ@-ÃÞJÉ6_§6©.÷âY‚¼R~•½ÅƒÞ÷yÞ»,rçŒÿŽhbíH¤Ž»o „^¥3ü$ÖÿD„|v„Ž'“vwp@l_G [Ç@èðÏÁ)@|< Á ­’ŽCO†é8K ˆø?ݾ%ÉBÀÚ«½½*üû þ}µÿÖdh?Û£8ÈÉó<'kêÁ™þxìç&ñÐ=ŠY `Oà{ØV î”Ì©ÅR¾˜N•ã• ÂÇ…ìùõð‘=t7Îý •dCh=¤ä¦ôÝ3Ù‡^"M·q0ð­¯v¨ìËÙn ”?«Ûð$ýŽr^Ž •r޹¡i+T'¢~UkœRv?SHãíi\¢¤Q\¨!…'Ô7ì¡Qp0ÝZWÚ}B¡Ý dè¯ÙµP½4x箲FŒÞ,(šì ‡ùœ-.'ë“Ô0ˆ@;™l ˆ}2~·¦þëá¬C_™Ýð±=f&hB˜˜PM£þñdÍâC Y⛵øJˆ5t§å0Þ iÂ!õ%%— ’€jÔL'yÊJ湺¤*dB+â‰Ý )*?‰¤ûv´ù·Ÿˆô84$*CÍÙ›~É€ÏEpH;.R¦BŽ`f§¡¿ÅE]°CEßIþçË9Dsž“öbà)µ‡f2)5ä–V®É-µŸ/§ýOó››é§Û‹ïK8í RFÃî‡d ͨ¤l_»íÂ’§€qá?­všˆá¤9ö°Òè‚ɇ7’ÒFâí!«b| ôɨ€¥]© _@Xlg1ë•BÍï®nMã®ô BKŽýûWè+Ç9ëÈ!*,¸½„nG”àQs28àYŸê¾Ø:Ž £ %ÛJ Ü-•m‡ BW Êp*«hŽÉ/6CT^ÃõåÒtp(hqœDaZ‚Eµ*kiJeíqºÔF¬ãŒ .þw˜æG’2µùÃJ븽õP~ÆhÝPÉJÄ™i0¢ªMÑÉt ÈQª—-íŠÅÓÍ1²Ë‚án-|[jãðšµÞ"X3O†'ÞgÇb×ÿseä\9Åæòe…°2š (t.¬Ì?ToÁ˜4¢€3¨#‰–¡íÕ¨a[Tñ9'±…e¡-~ÁûÇäÅxÔV†TïáÅà×’ã˜ÂÓ¥-¸Y³â]t~K( ;ÞEì"ޤ¼¬`SáßQø¶Ö½D^hu]DÁ-DŽýƒ3Rryeò‚Û†È=C sEô4XP@µ·QpîÎÔ]‚ä “+1þ(¾UˆØ'ø4Þ+Ó䂱ìXÄVÝÇne7 ÚL—D|ˆyøC, uRˆXp·ýsìjôÅéÚá< MûÍ’“+ǘVp;ã'GE¸(@h×NÎåÏ9§ÔPê:CF›Ú˜AiÆ’ÆìJ´ó2´˜G'5Sr‘­Ù.’ ½"¢ûÞ}ïÜ"WlKÒÚÎtI7D¹iÙ(7øÍŽs³›áÜì=Î 4…8c¡Ìh æ$Î#ßø²‘yo ø&÷æ×Ãå¸7åE—ÿsý@üŸÖvø?Û-þ- Èÿi6JþÏC\4„LþÏ äÿ”üŸôúqù?/ÿgPòJþOÉÿ)ù?÷Ïÿñ“gˆS[Y/Ê›z>rPÎÔK¬^A%V¨Ä QâO+bv÷ùá…$WðAžM…+4<=¸§ZŸPh •3 ÐàA€B 0á ¹ûƒ‘ä/>+4\¡à €+äI‡€C±\!OBƒ‡è³ä ‰'d®Ð³A  !T²‰ ÄDxh›ÔÐëH9l/ÁA%8(c{ËÖH_lù’Páme|ç8ÝVòìKo˜MÏã]¢îm$÷%ܨ„•p#ýz<¸½æ¥'Ðj‰8ÊänýáG~KZ"Ž2¥*GÖë¾G¿Á­%à¨P+¬p¶ÄÏ€8Š]`-(¤º±½öÉò4(áC%|è‰Â‡? |ÈÃÿ¹X<ÿg§VkÔ²üŸÝ’ÿóõbƒÿs2Rø?àe@üŸ”Ô‡]ÌHüì÷°¥›ÎðÃdñÁ '¾m¿fnáߌèþ‘•”´zHÐo“«;˜ë¼›ß##H´¯wѼÜâþ'C êIJP•º€üy”üìé3ÊýgaÚöqÿPÉÂ(’@$XCLbˆ°G*?dzˆr€‡NF xèb ¦¥‹óÎ3]d1Do¸ͳgâsTÅ„àÇ÷Øñ¯%£(ŽQd-Q’S¸9ÝbNø~m~q1ÿ¶øE}ð_×~aà+ùnã`ãw€Òð̿öø "¼lsÂ¥¨ŒÔO°?ùkÄSð]æ5Wù'Û†9 LØÄÆwÉÁ#“ÊùlÁŸúH›äÊvµ¶Î8äóÝŤü× =÷õ_°ì|ÉCå-¡øÃôÈ‚OW¼àwׯ#à#çóoWÆCÍU×RcãrvUéUûë/›Þ*ˤ¡W¡¥ÊRééåd˜ŸLòMh$6ço£òCoó}ü§mãÕ*héõÖŒ¨êý‘–³ª‰rD mõœ´­^JÛêÅÓ¶zq´-pfJë=[j˜pƲÀÃúÂEélq–)’ú´„‹áâ*€’Rºè—“§â±*'W5žîõdÆ¿¬pa¢¶.sß¡šŠ©¨N ¦®ÏýŽLþluɺ™/sX/¯ç° îŸ%-0*Ü@~sö§‘Ò¡FñÉ.¤zAœ¹æ§dÂ%×’L¸œ\6Vé!û‹ÐXi.h)ƒïЧ?C‘ÃÉ•W\/Ÿé­j:™§ŒƒÈ/Š£Eó 䯭Q£åK<Š-2 8(õH/v§p®1…¥Ê )Œ,)1l®C° Š-˜Á¶YO‹9ºßW¬ŠU—ô+¶Éšòø£\6 RëZ˜ÖV­²®ÖÚxŽÔ:+Y.L”¹Úžo>ꌺ| ÑpLÙòm¬WÆÑ³l¾÷1ñýPêû”|%yLÙ§.™¨ˆ›Ó‡òPó,(¶ñ°Ý™_Çbïöùંc »ë$Ä;Pãtñw¹º#¾òJëB>àÕsĿü“< X üëdô> } ʽ>Að•Çúû§ m KŽFžÀ dxú¯‘<@€R¸ûÔáVÃ^›>:â\ÍÙ0&"ïÚ#d¬œ´{û¿òaðv8®ÕÅgS|îÊ /êqO.s€ò$ Oðò“wÐ>\ÿh8N°yîÖÿp}‘€zÐ[„Š ?ħü=ÀÛÃÎÈ?{½ªŠÍ"¶ÊÝŸ-_:pÃŽ¥‚rsà:0Â$®ÊFñ÷„y¸¸öûÒhެÄn–ÿME/$yéÓjÞ âÓ&"KOx (¬ð':$áßÚ|ü‰žNì:@CL+й™~ð¶>±‘íHÆ÷\tPßJ7dyo@úéäËGÚ÷L ó_ËC¸3cb‡ò*ž›M|l¹‚uXÃá‡äo=ü›kêïmô7›XºML’²^;³Í^¦ ,ñÛ@aË­wmo ‘‹nkXnãWW¸ÊV(I¤&5€„:žÉ1 r0¹RO=Ÿçä .C~ °þznz“RíÒCP@#KD1Cf¸W¶‡â¦8úEÙ•DB÷ ¯æDiÀ |J·2Áèg”]…Áé.Ù¾¿‘œgâ{l½Ó(ŒuöÝU½° ÀíQ´¯äÂm‰ît](êÃø¸v¬šzy­i³¹ÌR ݹŒ(½Ìe¨@w]ºhó¥Lo”ºÓ>4¹`r‚BËlqËÅvóçÂßA˜0׃w~+!¾¬ 9bJh 9“KÀ)"_Œ»‡Ê¯#:ëYÅñQÕË H®¨v—öŽ^…:* ›çì– [ 0X“{äÙ[kÚŽ uI:aæHHšiÓç>!ÔPS˜¼s”Ëí~bTökÒ%{zpd ÿoaÐÓ}Þœƒ&ífÈ!,jŒôh|HRn¡Á¢ÕAfËÙñÚ^üàëÕ&Èùæ´ö£{AÔP<æ@ªp‘/ŒrÁ­É˜ééVí‚h’£|X(Ñß `ÿAÃÓ>üJ«‹•;ÅÁælK- §Q¾ÑŘT j<ÙœI{.×Eú vsx€I–ÇÁJÏ®–¸l‡z#®yp§6¦áŒÔç>«åú‡Ô~ž‰ÕVÖîO3Kž|¤üŸ$±®£êeÒüwÓvZ:©5zàpЇ5ß`G¼]I¢ž$q2Æ$‚;™ä‚¥6&|F. Jyë„CDMkÒ"b/œ·?hm¨5LÞ„ŒžUDÄ[îàï‡`&—¬äbk1³VxSVÛÊÊ»&†j,Î/(ˆê5‰§H.â3{TƵ ®BKdnEr4nþË ²H:[l6’iìˆ?úéHúEú¶h Fr¥š•£MW Ë•™îKØe¬4k#ÅhÿŠU>¡®ÔÚœ Þ‰š1¿w%2¥:*:޵,ʱâ¾6w“×%©F$$vçúì䨴Ähmý~AѪ· j_°˜Å ƒÉo¨$u.ò„Ý‹…Õÿo8ãÙF–µíï9°ç._ª¶mãàåb%4•JHË.&‡ø €€çåÎ=¼3#3v ˆIÓ;ˆí¥©Š,´ÏÔ†³®RŒÞdê¼_Ë´~‘º ¶¾YÛhÇ7 ®s|á wÁV öE¢=Äné™XŒÅFÒ¬ûœ;JçÖFô™Èd´ýcH„ÀØI`ö™ý F¼ÂBà4éø©Ð1ïúF¥¿Y6ÊNÚ(žé¾Ÿ§Yv´í¦uH,Ý&y¶çFÈÇ“°§‘c»H<@k8™ìi° —Gî±uu êi“ ß=r -aPòp ›®~t2Ÿ_kî”ç³ÏŸ§7p¾˜¯t„p`2hIÔQzü9z®Côà ºk Jw ï=wÑ 1›ggù÷ Ln„UÚ_[7Ó¯SÚÙ¦[ç³q[ ¶¢]…/ËÆ"nþ þ)v|Âñ ·+ s”Ù²ú£ùc¡A5†Åã99Ÿþû”èÜâË.=öZ˜f‘Ì,%x2Îj¸B…ÐßÙrðb›M¿û”üÆ6ð½ûL/Ý ¾_ÑNÙ7ƒÂ|=ÏÁ†/öËuöçÜ<¾·l£µÏæiŸ¾ŒOFƒ ºû¬¹‹Lv¼uà_è}Tç×Ý%·‘lÙ$K%¼Ýðf2².5ÆHÜ~RVÈÞ[J–wWÉîccÉB{KvÛK¶š&K»Ã^Œ|ðªÈ>“åÜj*™zŽ´½áÌ&ëÛsÆŸ…ÙÔÝùOÔl'—¡M­RÛ^Åî“Ø€2å|;¸ e9ö¡–”W°…kÇŸ¹š‡Ü{BBõèQ…êÑïÏY0v}kdÖpSjÎð&¿@«š¶ c¹§ç AÖ*ıÑ3LjosY½ââOx†×åäïJ=y°zuóç¢ ƒßÂÓm-,ÅùUBp¸iS‰m†þ†éyº•·’ÉÍÈð‹®d&%g-tŸL’£ÇÙËÓŸž€ÌIÎDÐKjƒŒ’iSçãK‡¬Þ"zE† - 5sÝ/›–2fn³æEW3Yñ ‡”–A÷#/Ö«W$1.'26#EÆp7ãê<·Ô×ü¤¾ƒÔw°ŒÝóš^H+ ç³ç³¯³ó©Hpõï»éM”¨x¨"ãùJÑŠ¼ƒ¹ñàiÉá8ºl5ÂãÁ3iîk=[ù­õãËo!-¿í”òÛªå·(ùm·°ü¶{OòÛî'¿í­L~Û»'ùmïÙÊo«0&a¹ìIÇî‘IÉnU‡›Y¯%ýVàqPÐ× ÊÆ$ʇ/· Ëé+Z›ìŠº­ÛœÔêÔú¯|–+f|oõ«š-ŠŽSýc# ¥ùh±PÖÈ]Ɉ>ÒSb ôÕŸyÀ_›™¸$ýŽøB)Ñc”Tä¯ëî)k1ïÕÞef"ú½x¹ƒ¢ I$éhÏ:(ÊOtyâ¿\|ø/­f}g;ÿ¥QÆy‹¬ÿeÐQ⿤Q_p)3c¸~Õ³¸%Û£öï(ätð‡3woÜv …wYup—þüë¹quÞ™U¾ëŠ£»{ëœÖ#^çâîGíÒÇa){º†ü‘w ="‹»GtÒ{•—žÉOÞ¯òÆct”x,™,ƒÎèwì[":íFd%dÌÏ.¤ƒ%–Xaå)ƒðOb5P;¦‘eŒÙÓɧ?Ù//ŸLȾ„þ'גФ•‡ÛP'Ó_ÜàV´ìåpØÌ”xÂÚDMŽó©û-Šè˜$—K€O—K%;„%ZvŠå MàlÙÀ¢°T…‚P2+ñcÎÀº£AFº"ù‚ø}Hm³®–ôÙPôï“Yo%ôà Z"õÃ<ѽjJíßñ¦Ýù—7Áοx Í<{‹¤wøö*7N)¦.¯7”Ì¡$|Ú‚½?èŽøÍüY€ˆ'¹ä ÐhÚ!P<ê3øÅL%–ŽXü)ºâM]zU÷ø@Fö%hþ‘/p÷ôèˆßD9êþ‹ÿG¸;¾}€hÉÖ1¯c¸ÍÊñ»„¨ßæ–ÞéÁa5áãwÈ?#ÌÇßWÔIT€>¼_¨–<!Æ=Dylã^  œˆ*Ûïô¯£ömšNO bf.¸¾¥õ±5Fˆë¡Ö¡Û¶§)í4~¨|ÜC@W¾?6¿ ¿>âãÉýBŠòÐùþ›CúüUº¹Yú˜\Õõ˜'·9ýÎ/YýéT~ö ˆ½ÿ{®?ÞnjTýîà?ßþÚ!Ê>lèùçèpìKè¤=îPBã<0èð^Q¥m‘ø8ÃÏñvÍ—ÜP7¶èsx$>!ÝÑ¿ÚK æ†øïó5õ,Åø[’|$€õüþþÓÅ÷;Åi„?¹v´ Tøçpÿ.Vü ÿú~í¹Dt) @‰?€ÚÿýÌ@í‹§ž=ý.&ðšp›”oÈ$ÒúcU Ë/õϪö"Éù'¿§^‚Ê<®ÂÚWu±0+Ç s|ÁÕ’×K¼©ïâé+ˆþ¾aêr&hðÀÒVÎc¡Š.f—°A_áþ.ÀC{v;Åò•îŠÍ‹ð~þƦn˜‚“ ¥á!·åôS>PS_%—¨|p¼'ÜOùXlfî¢NÏ?7ú[®{šâž4#ðõ±|5”ŒŒókÑ|xŸR JØfmý%_†* þRü ºY…þü‚oIf¼voΧšR…oéÿâë-ß©L'‹¯ñÛ9[ü5»f7Óó»«s>1H5¼mq9¹¸ÐR®cvcÖDa¡ fD…v¿ÇCÙlÙf7|¼Â;AV…ónM(ÓÔ?ž¬/ùâ{Òd[eDiÝŸ ÐáÓüX¾$Á¾~kûZ¼[vØãƒÍú–j‚9m§”BûÞÜÉ|ØO'ÙÛ…nµ“8˜+Æó«‹ïо“XÇ@†7.ŸîlHzÈaw@áö¶­™Aÿ$Õ/Ÿ×U@_7!CŠšçSÈÑ|N½Öž-ÜÚÁÂs&’®Š¿Ÿ¾h:ŠBÏI\öÉø<°U‹(ާjD¢sE«ªZò*ðøJ4Ûo³Û?…`ŠÓÀ—hOFÔ]òloä±ñôåÚ(öpøa©[Éwr‹æ|“‹v’r+ë(fÕ‹`Ã;*"s´aÔ@Ê©8BÃ÷GäSæPì=qÛ|lû#hWh.X—{háfm2ÿ"ùåÓü|J» eXüúm…¬6¿T»ŠÍ/i¢Ñodë+ÿ½¤0úÍõu2Ĭß: í0ÕRÁèÓŒ|­ðnA–û{\ŒÜpBjàhãcn‘üÑžL}üÎ[ñú;èÈ?NxÃB¢ÿ™Þ̧ç *±³«Îv…W}d-§USì’&î¦ÅITêÁEzS.Ò®iˆÁ®[> º*:xäÙ\ƒË¨6æ£2±…‰lvkø¨Ïšê€ÿ³I¯e[¬™ËºxÇRù„'p)‡j‚¾]s[D{͡Ӛ¯©Õþp5¾)‰Á©À[læëVîò=†uö;÷Tâ¶R?Jæ‡ú—Ëa”s) mw…;Œuý¤Õ’ 0th;¹¥µ‚K87ÓÛ»8Q.¾;$0©Ç÷Š4¾9§ŒCšMÄëí–λ"ÁFl‚Ž;üL> ÁùÜ=Ïïg0š|š“´Ñ€|óŒ½n£ÚpƒX“‰Ûþ=Ʌ·´õ ¾QñÜ3ÊdgßìjÖÝYڵ߈5x®%¥&÷/4œAìq•n]†Ô£A‰êý¢ö¡–+Ð¥ª“§u퉛5´‰fµË•È¥2«¥ST¡‰º—ÛûX®5¾ôÚY$ö`K‘¯ÑVÚ§Š,ER9»œ|™] 8ß5ÞÊ¥ç|6A´žƒx˜c„Ê}Wwp€û.Øñ ¯Mìx¶­¥rwÓÉ*«PÃù\ßLïÓ…#; I1,ÕÌëúfúu6¿[¤‡”7ÑmxïZ„› LÉŒïãF¦ãb–ñÜmIÕ‹b‚x3މ„+ò.ý§u‰âLp´­T¦ÿ¾›]Ì>¢&RrÃqz¨îðd½’h Pë–ÖA¼Ó=]#²!;’€ç<]‰6Mõ¢Ë.Q™ ©þ£r<áÇÅÀõ×2¿­®f–öÒ·¿vÜ5§š!ûU½²½KXZˆ`\Ř(Sɾ-3êiÝ÷={5¿ÚRú¬Œã…Ó˜êrIÌH5›Ž¿Ps£]ohšªãgØÚ–ô½ &TZCWB‹>ÕÖªKµsýɯ#œ"ò z9âÇÃ#ψ÷«ÌÅ»¡fP轘iL-ÉQ0:+1éüíghÝ´À%ŸóÊõ Ó9ÐÈ44­°‘Qa}½ÎrND3¿˜:¶ôEÛx vN´í½óÍ¡è}E¶NQ³žd`¼a?‡CtÊN©š^UCzÀk|#í©8EËÖ›;¾’ÈSzhj¹U¥=,ξdn¦|9¹›8̇’+½¶k¦¬Z| 'f)fÌ鈉Oæ[ê6EQÏ“UµÈì•™FòÅ[J»i-ÖísCþ‰Aɧ"<Æ?®FcŽšZ©{[ê̪Ë4QµËJZëgròNä…øb;ŒXТ‰”ÂÞÇc“ü[ì›N!殈ÚÜw«éZ>fój6Ë¥à ¸fg¬æd-‰Ê6¨hþÏ…Sbù£/§û–˜(Éηjh%jqkDå˜ô‚ë‡.ož yÓ•\¢(ÑÔ[õ ‰X¸¬jA<§vª8p¶)”3g!‡© µ©T½“]Ñ ÖÀ°»x g>¾Í"çk¯×Þ›¦äŽÚ²¨ESí³ÐrÆë¡Áþ:2¶&ªt£«>I «š{®ø]JvÂ|œý—¢žÄsƒÄƒÄaA M¨tÒ`"^Y´Ê+°÷‹>÷’O"2Äg3f€Ë©j°o3ޝýÏçÙ:PGk€Z+J©üR|㿌ÃÌô®»B=g[wØì`KДº²*¥ÖArÊu¦AæC³+1|Í©ÇD'’EE'‹þ÷üAøßÍf³Þþwm»Ñjð;ÿÝ,ùßrÑÈ2ùß§%ÿ»äkùúÑùß§^þ÷iÉÿ.ùß%ÿ»ä—üï’ÿ]ò¿fþ·/á„ûýÊŸN˜®0óÒÝ#¿WJú6ß:Ü[cx»E@ì-HlxŒ`áu»Ó‘çîV^÷ê¦f£¿{ÚÅŽíöˆû êþUÞèæ·{r·207¹%xÛÝàV"÷a†È-ÁÛÞ„‘ûT¹O‰È}*ˆÜ§@ä¦Ïº—Ì}*ˆÜ§‚ÈÍ?»–:+¹ÙVnö„rKjDáÆYPÛ@ž];Y+@ìv?ð|AÞ§?2ÈûÇav7î…Ù¦ã…jŸÆAµ!£õx öp4u˜Œy^Œw+¨á﵈nåE ›á†neòlÇ ×ãó½Aï„¶øJˆMt§Å"7•ØA>ôóˆ ˆ#8¿!q>¼bî°Iå¡ G;ÚËeœ-é×—',HÁÞüóËv[‹qRËX»LRbgc«Iì´ào â:#QñìL‰3ƒálF%eûÚm¯Cßtš…Ø™}N´Ñ>ôjàN€Ös{iªç”@@·uJ‚8\ÊIU€CèÌ]ƒr'vÿnó¨„H¨ä+âå‚Zšõäò”ÀÓ1DÚÞ5ó×wÁReýÉâÛe+PŠV¾v1zLÖ°ÉWßÖ¡äh'Ø51çGfޏjãÛ¶Uz(hÔ,éÕ•E®‘‰®mU—aWPÆDÆ<8F‹Ñ=ˆ|F«‹”Å_Ì_ÌM^Ì]ÌÏ\Œ.ÆÒIšxåv1Šâ,.YÌAXD!Ú™ ¯xªà†¢7'[ÑPt&”¬èò‰ßLêpE]‚‘¸@bA:¢p=8E4¢ŠúªšÜ½lÖE†¸, ±1±(1uó=Tz“­J£+“Åúù²å)_…a‡+!Fb£‡‡ÝðФ*í¦æDÊa¨ó •7ss ÝS_úÖ f0ÍwWÍwl¦WþÓ¨–V‹ÿ­Šú…ü ùg‡ýùæÿ‹ñµn¦¢²õ…¹ˆ}~2_$–/“”dó´Š0x|±îv0¾ ‰/†Ïe˃×SX'§a¶ÞjÀz©záÍ]„˜ È ‚ïTâÅ©—z'gX ygàî/Ï(±"’#‘eHœ8w«cHœ.A¸3TÂøŸÂ„ˆN§;b×ÃŽ(Bµ §f·.³‹D$¢€†‡ÈŒ®|µXzÝJ` +çÖEÊN@ÁXNò¸lgHuÑ„Uáb]ûÃv[êçÕ¤Î=–gõN$lîùzVûsb*XÊ«_ˆ,WÐå7ë¤Ër»üR“îæOÉ?oë‚•"OÓ˜mê2¹\[P~Z52./n9XÜ’¤¸³üÚ£e´q^¥Q ba4NlÔíÉ8™p§> ™!»€p©lœ¥Áéëh,˜ o¶AàT¾[D:tJ´ðÿæc¿y«:·Ðî”Ø‹QßlÈ7MlK¦ïÍã'½å¼a¼= ‚:(»Gož<4® ¦-Àh‹â¹élQ¼ ûÞJ¤J²‡ÙM¤ï[jCQÑ÷Ð;•Ñ×âÑk ܇Õg/k-<Ü–¢¬Å!ÖÒ±Ñòx…-cÖMmņ)DÀÒ¼-íäùÁ H;µÒè ßžL˜Ž¶-ßîwéö„â¶î|ß¾CD[fӾ쎽Ðv=/͇@BJÞánŸ <ƒ}»Ñ€šùˆf3›;—AFY¼¶"Mk/§y¡‹KöÊI0±ìßk6òX=Ck<ò˜ÂÐÒz@ÖXUlüµ—ÙÞ¿ ÔY3¶ìëóÆx– µD¢c© ÛO‡óò¿þ^ ÌÏÿjíl×wˆÿÕÚ­ÕvjÀÿÚå·—ü¯¸¨Û—ü¯’ÿUò¿¼ü¯*¿ª ¬ä€•°’VrÀJXÉ+9`%LM¸ä€±‘æ{üþüþGZ_9,Œß>øýÍð_€8ú|Éa\àç•G ^±Ÿß5üG¿"ö¢˜Gù×}å¯%ŒìGƒ‘É„lý¼¤’•T²’JF¿—T2ùKI%+©d%•¬¤’•T²’JVRÉJ*YI%ÓÓ.©df J*YI%Ó_ù˜T2~oWúd*Šâì%Îâ*]ÿ„l8¾+ húUÐ<é”´’€VÐŒ«$ ©WI@s¼°$ •´’€VÐJZ¸~JZI@ ]%-½JZI@+ ht•´ÌUÐJZI@+ h–«$ =_$úð&.rz(J`Z`0Ù_WÓ¼W L+ix•À´˜VÓ²W L+i%0­¦=$0-N5qæ;ôÉœ)J¤Òh'îlQ†ì§‹ùÒ0ªŽLæÞ”+Et+«U­äÎA©Xy投xÍJ„jeYÝŠS§zæj‚\ýróíÅ׿ÿ®2^7Uvõÿøã#/¶/~ÜòÇU5ùñz¨ÑvHüZ¹æ)*aJ-Œ+o¥¦Ô”Z˜R Sa¬Ô”Z˜§¡…ùéÕ0­R VÃþÿõjðÿþ³Ùh5þ ñÿüÛZkøÿ­ÖnÉÿˆ‹Æ¼Éÿ”üÿ’ÿ¯åëGçÿ¼üÿÁÿŸ½mj#ÉöÅáýz>EÍ;¦J\Üžñœ¿ÄÅ !K¢ûÄÙd[Ý y$hÛûÃ?¹VfVå½²T%vÕL²2WÞ×õ·ú¿ÆÀÿ%î‰û_âþ—¸ÿËÅý§xìáú‹(ú¿^ÍBüZ5e&€2@™ àgÎÜwëÙf@3¶½s€n7Ö– ì ®p˜ë|çAö‡é㟯åßЋ%Bòw¹2Ë’¿ë¢./$ÿ‡ƒsØÏ…ÈßÍ…Èßeˆü]ŠÈßeˆü]†ÈßMCäï2Dþ.Cä'?[†!+ød þ jCÜ‹xåJ÷h=ψ¿û3ñg@¼ß) ñž\¯ðÒùë^ˆ®FK†Ã¯?!8üú3…Ã×èÎ ‡-‡¯¢L*)ÆØŸ5_ùV„:#{ŠÖI{"Ðú\ª(Áõ=Áõ£\_éþ×$Ì|‚?mâ…̓÷gGÙoA¹ c¿ùP¶DÙ×k)eßwcÐø#… vvÉð>^1† l}ÌðzŒ Uƒ‘†CnÓm þáOêù ¼PýK¤}ùalÌöµß},¨ý`´}q¯Ó]Îy ‡Mü5%z~¶Á@Ï7Þƒœç56R"æóçG@Ìï> Ä|]2KeÕ–‚’ßõAÉïZQòyäçÂà÷Ý•ßwKð{ïZŸø}WÃbØšò^&#äýåBí•h÷¦§D»‡gÕh÷ÝíÞEF:¤\7#Ú=›øn—é6¬ƒn†H¶&,|MJ|íõl8m]ùUÔdO}­ë kßM…µï:aíéjóÀÄaMÛÀìýy“§fïà‚€Ñº%:½SÎy¸h^Ü[*ÑÐ Í,ðÐîÅ„ÍHz „ö<€Ðºv 4/HUáù‘1к%}‰D ­ûœè$ö‰ Dhhr=šòUhG‹Lðhu mg…ðh%ªÙÊQÍ5ë– fi ÿë~%ø_õýý} ÿk§ÄÿZÅC·‡Šÿ5ðÇÿ"'‚KÌ9BÆ7Fû2.þ,ˆ^ÏËëAi%˜^ü¶´cy1Ô®àÈŠÌe_% Av gþ¡;(á¹Jx®žëÙÂs-‘ű¨ o{ÂÅuå¢ 7ÖãƒY•PT? UèúY!•è5­æ–jØA¥.¹õ08MŒIIƒ“’á¢ìõd€bàQ¨Â ¸ \“¤svß ƒÐ&Ç*«5F\‡›åÿ’Uþ?³?nÊòV`C²mÛÞ8kq¸¢Rþ‘ÅEãlø'õü5v†‘¶Ã'uÒÁC+ŒÏ!\j…ÿe\£V—sdâßGNçÄd ²w;Ê»šëí')²ï¿¸¡–ÔPKiˆývhÉ eÙ€”PYˆýÀ×å|ÊŽ'ŠÓ?ºE^Ø×lžöK8%P&ÄûèÐ 6¸UàëÊEa¢ï`Äò &™[«+@ݼbØrÕG$^ö|j@Gpo‡1‚!€“Ø®†ì®p¸Ñ hÍ Õ°Q7á ±ÞRrü7Ú|:óèßQ¯¹JÂPB*Háí¤-ÞgX§56Þ¬Ö.؉#œ-½î)ï­#¥ e0Ì0Z©À/k!ai Š}à@XS¦kˆÒ%bø½t :°éHÑ-mÙòñÂ1#œ‰«Ï±ZèHŽ•cRÚ²ƒ›IcñKúXØÐýzòžtLÀbq_âí‘¥7<)Û¤t¬Ukã:xt> FLᤔx‚úO¼yý¶·BO\˰¸cß{ÆÍjz‚Km#SœÄS&O$ñcã&y0¸Êõ®Ržà’0;íÃ|¹£yêJèNMwpV ÖÚ Z‹h:Ä ]ðìN‰]jš1tØ9mmã†ïSîâÌ´Û/tô,—H^x5ªÚÀiæ 7+ Žy\øt)ÈtÉI¥M‰;ËÖ$Á4 åm,h”yeH!”]­âQK#òñ®¬Zá°â#©bS½1¢XhÅÑ¡:"ÍI#ŽPÅ ÂóRÃè3(¶ š„'#κ ÁQø~|72(Îpºø«Ò Ð8–ô+B8Hùu8¾Ž‚O&6'œÌG7Ë窫x·›‡VÑŽ:§‹£¬Ò ¨lh…xJf¥/Ÿt¡y†¼Â^Dôcx Q˜ãvRjàÃÅqYMdë=‹Ã¹çîˀЕY+SË.E,‚£•Âÿ:a‘ë À%Ï𘑅š,8HÖ“¬û¿½qP&§ ±\GÓ¼„İóF‰ï9PJ Œ›Í'ÞÎqhÚ–V€%CT·cž´hÄuçç=vd%Y}îS‰MÁÞ˜äÓ@Ñu¤á3$– õ/âÅ‚>y ÉÙ]…­²ZЀ}^™ôsòçFpÔíÛ»âcâ®;œ5­!oà($ñxž™j;5æ6þ‘+x9ézdâÍ[ž1x™†fúD ~¼4# ÛŽKÛ®¸-&¢Ò#œòÀÇÒàŒ¤ÌE™=„Ò[ÄŽH!jÐÕ¶O@¡g¬`Â.ì[Cø´ª D†:µ•#³”¡„#Iƒ–2„Ñ3îU´º%4'ˆÑÀ¢  x¸nŠQ3 Š+%½þé…^zkŠù’ÓàPŸY˜¼â`¬€Gz.‚¬0?&ô"#ÀE+ ðX:´OÂ`Å >Êý`º)›î±ãùhqúÎz¤W|pz\=½I:geáT@a S¯¢Ξ™Y0½v!&x*¬š ŸfÙlœþ½]µá8¸ƒÅùÁ"˜Áâ9AO60?X4(si¢ 9%!%îÝŠ:Ê*Þ™?XŒåuCXV±ÞĪˎðý2C—û½I¾² #² PI u7}àdNX’Åøèř茴 ¡c tÄL´µaHö9áñðN³k$Ð:h†—ñè8fЋ(†u`JO>¢ˆ¯ƒÅÀ/lª­ØÅÇ)1ø±0%ø³a1nü‡p—¬[ÄØßÞÙßÉG{áv‰ÿ°Š‡.eÿ¡wòC4àÀ<%D"‚âL0´žýZ­y¹sä ìmm/Úᥴƒ!$»ÉñX±B¬  Ä!ÆÐR° 0˜fU 33#>q½ã.Ÿ·ù+ÎS åùxë8n‡ìÒǸKŸÔðÝŽ5åU_nc[é8 žhL@nÏ)4‘ X€>…À Ð'#È€»æÆ‹‚Ä¿ _Æ¥q;Þ€8ŸTÊæhHwï­•ô¢ÚCÚ'ºw¼Ñ4Hž·‡ëë/"^Â×ë󈕠>.8âŽtˆGš¤;û25ƽ Xô0K,º!Øœ"òc”XÐíTA<9-×Â0òÖ VzÑ ¥­ì4Ñzmª+/Ô qÂ^ÛÇó¨KJ¶½7G”¸ûWpÿŒpîÞ‘à–®÷QkQEn›ÿÞ¡¿ï¸f(wyÆèqÕ‡¾‡öÛ³ƒý}Ä~rçCl·P¾¹òžƒ^ßèñƒÞ``ªÉólhÖ«É«¼¤ˆãð——/«ðï/ðï/Ûø/D[_ÅUHÞ\» ÒØZ{ÍUW)”í@ÙgÙ/{eÁMn­µFÓèfŒ…¦e‹â¥á{àA©>ý\»AxWAË’1•úEDÓò q~ÍÖx%XëÆÜñ¦ÅóD,Ó~$ËxÞnI1<¨¿¬<„ä èÏ ¼>é¿Ê«ôç ü ÿ•"ª!ŒI ©N¦4‰“Æ@i%’â[Ì%VM¾Ã¾^ñ©¢œ˜¡L¤–¡ihoD€z˜ÜŒfo§_ oÖoÉ„½()á6¯>ò•Ã)É]³NAɉE`vÔŸCRÝß ©Û ®l,ÑÉrø!º‰–éf¿`Á5aÑ£­™†þhN±?õUõº#î‹|Ý×` Œg„³NÐaÁ¹‰poâ‡í5ƒ×8$¬zkz`ö%c hYƒFZ"Y'ê.Ðz ì´Œ™òðJsBË›Íf‚…/Y»~]៘"Ñndwc7»¡Uÿ´z©Úr·ÇФß°é®Õ‚¢¯‰ù ô´UïÎ&¤ªð׿ZøHZÝQ\.ùŽ*Ô¸ÑêÄ‹mÇmþÞÞ’%ü0Csíü•°nYŒ¦-ÚL”‹çžü˜Y!ŸÔe)(ÛìñjŽx5Ú²VôuÊØóp†La•µ˜F°_ÓÏ^a¡C²`„¶–;RX¤7V*æ¼÷îP˦o žÝŠvÈdúɺ² ŒÍE×Òvþ¦µõÌÞ^¿ØÛ·-€í¡ÉPi†ªzCÞåÂ"PçÜ<È{Ò Ò¶l6¿¼+¿¬IìÒ´SúpMzs`­fÞ’\¹Éâ¶lllGp Uæëwøx8¾}˜à¯¯ŸAkÇ!dE©7Y\äõ5“¡m¶Œ·Fת½ê…Ù‰Þamoð~ TοøÖ® Lž¶ÂHÚ¡o_·‚ÿ·«7ÄteNÿƒÔ‡¶>JОLPƒœùTý Ì #gøðm|;†%É`[Q‰O£g-QÃVé´ÆÙÃd ö®lÕ܃¡ÐZyÅÞ?Ù ø—Ú'– !Ð35deMîÄMF{—h*]cÜËÝh>~B_†é t¿Úo –ï9»=´wœœñ?„Aô'{œößh%ößz}gW³ÿF¥ýw%ݹšý7Òí¿’dÔèÒ´VÁObüÕ…¹Œ»¾–[èÊÆ:ë¤@&ƒnd6è^O'dÐŒ+­= óK[®¿-·4iB}Ý…Á^_´P}Ê .Ë<ê}Ý>ÿíkCø‡{O» “öF5IRkd&3$H3¶-lDtPl1ê$ä1šŒoô{G;þf¼ãÁ€Ì!þìV™òýÄ¿»ìûniî+ØÜgš¾UîVc¨‹-Yž&°ø&XÔ8n0›Äxª‘"4-ô5ÁÀ; %.L“Õ¸lY ^–_³BªJ³8ËQº/H±¹bÞÌ‘Ì!Ž&à(´5ßšàò„Oõp¢Úª‡ïÄ\â]žyWDÑj?ÇØ ؚ¥ËÔªYvO~Ïÿ© ¯jTZÕÓuP"·x(´ýlÙJ¹ÓæõdýÂBã;¤Àé1SSêq¡ìHëvéávÑ·¢ÿV±nö®y³w³mtëN<ÆhÞè>;2zæ;2*wdðã`0"%ņSb°™â¿‰”â ö´.úÙ³X­c7¶wªqQ|R-ì®"èL°•e°åÁ4£o/1¯év;ÓšlLƒ¾È:4Í D*ˆ…HO+©±jÐÊqs˜ÒÀš)å²j[3šÝd+—Þ™¤ifèªèvi³aK1§Yªõ²l™Skë—Q*a÷K£”óqÚê«°ÿD»!Ëÿ,ÙöKûÏ*ºI4ûOÝ3þ¯INžfäP/‡¿ƒÏÑïàÑ ØŸoŽÞÁûƒÆ×^ü0¶"ÖïG ”Æ|‘ˆA˜Xásûô6#Á*emCštÖ™ùìÁ‰ußàÄÁqÿ¬´f•‘‰edb&¢­f·fXÄ 4 1ÞI§Û"…Y=Ò©”-s2«n¯ú³C¤)NÓt0#HWJ´fœCa›%%æÙˆ×½AøZ¨¾ö#>[7äNê5:DBì·ì$жV›ÁõŒ¢I5\vWV¥M’”ŒV£Ý=Ò㸺¡˜ mÛå E¢ØöîAOøйEíÁÖÞå $M c°0›HI}ú²Žb‚`äžág-΄ÝAÃ3p=Z;Y³óbΩþ»žÉ<\Ú¬3­=ƒTq‡`á6î9 Ó èY3îÄŒ‹Ç6ž+Q¯ÏiiWŒ«h^ßóú™É¼~&˜×›0¼¸gµËÎèTöúnQ–i¨l'-˜/°Çóé%yà-,HW]³åKwú†5²ˆ{3àÚM©8`Kœãw {ÏZ}¸/À‚Oo  ;– ½¨è{®‚Ä­/Þ$ÀØñFÀðPraºå„>¼;”pü°T39²æúÚÉ@¸7ƒT½0TªôןGbèályé^¥¼œá£ eØÛG™/dÝÒ«³ò_£¹mç°)O],žásñCç:“š_Hy@¼Wx{<¾‚s ÿ=„Ò*ªý‹ˆÈäͳÚÕ÷Ú!§ÿ¥æNczóÔ’æô»>=‹ôžõ2ô¬Cû²hÏÔ ÂÐ3¿uçTk—ÚiÔ€”i$ÉÞRUïl)ÅÎIõ¨ !ý½‚ hŠ.W_‡³f™™Oƒ¯åŠôÜ2÷¸¡IW#òÙ¹1BêdtówÐÒ|™²ŒŠÏ߬‰oŠ Ëi§ªéôÜó,Â=ìÌ5*ïz/Úïd°ç”ªÈ‹Cåa+HgÁ"ßH_<‚ã˜Gé »#™òX­í†B~ç’èí—ý\JÞÖvï…ßî}דçÔšVC|'³LÊÃA™Q»Ýi äÛI §žÄð(F’ Ù»W­øÉ~ ò)1¨žWÅ»vÞ)i¿Ë2%¤ô³šOè#ázØÉ%'ºÇÆ)ÑÓ1¼àî†7ú.˜†·LŒ›ÃqÜ=ÜÞ¿Ü~O©çê{r@þíè›`Ø^!¤ù(íÒ¡¶pkûhs{;}]d;LÉÙxóœVœ…’»YøS<üÜé“é‘´ÚlŒÑ»# ÐÝ ýýzz}àLÄÇáËÛ-·Y¯E|bö¤"rÆØš3µçLM»ì¡˜8‚d´šQ¦õån5¹Ié˜CóÜ­5•ò*âꊾ•S&&\™~©%¹`2: ¸Œ?"¤TLјeñöÏ|×nÿ¬’&aù´µË”è|у§‚=…ŸDwa£tœq”޽GéFÉ*ÊfØÜ°Æ#†ŽN§õñXž7ax/xÃO³ÑHKm tUû›oT2Óµø‹U3Ð"÷ã@Ü!:Ul5gåAà‘ͧéb¬HIòû 4TX*^€uȘ¿úgv¿· `ô¾4ÆñdA 2¿ä?)B)MP0!¼vߦ:ô3›ò[W±ÀÅO|ò8b¦‘},Èb:˜ØtÜAv¹±€åØßfœîShš¸Ÿ>\^‡…d}]Êàõ1å¡+À¡GðïøÞå‡âéâTäñ*;ˆ(Ûk¨~óXx)_Û'¾Ò£||tp;ïS|ýü&tol‘kÄZLMQE\Ã-׊DyÛpŠu¨´kKÚ þŽ—NøTN%ÚIüHMu¶¼†Ädÿù<šý‰Ë¸ÙnôcÛIí_Á§ñ_D$>pݹBç@:Ò:…*2KÁ®ÉÅΫT©ÂÆÅ§ŸY?CÐÍž9×›ÞÏcŸ~C?M”Ò]¯žR¯CÚ]Èžæê*ÅHÃräúø€©çÐW8éª+œ1˜Sé©¡­yܶWÔrÞ}+ž³À_:»±ŒV>#kìÔ\æYù~4¯â­2®E —"ƒñp{CW6K+m­åê/6ŒŸºŸ×Ìw’Ý’x?ÒÛÏdnaÏœ”Î©ÃÆ¿®?'ŸÈß\ÑÁã°&k5¤#JM(@–&‡6°–Õ±ÀSܧíäw¯¦^PÿDÐîU˜H”5c?ýiÞd¡”Èë9 úy?ßIFO'@gI–Ñ%T-ê,¹ˆ›dFÉ…\#Ó"]îp°§»CÚ~/ÇF—F·3£ÃÑæÀht]ÔwÅGñCdS±"wY~ˆÈ$¨‹¤X?DOŸÃ€%ADg·ܱ0®¦t0t8&*ØÒÁ0ýqúÿ}Y…ÿßÎv}/RýÿöKÿ¿ÕË6ÝTÁ¡Ô†ôgý‡Í‹ˆ —®Uº>²åôñ¯ûkâêèv…$+,­f_ti¦}Ÿ^ì‘´"ÜëÒU"½?°ÉÒŠ¤|/í>ϲ¸53”2”­‹eα ½nGÚ“#ϲ½)eëÙ½g»¾Þ³Ýã¢ÂÏ>5ëáï-î æÎõò³çãôövú5QÆÓ¶†sl¼{Tð¤â®Ÿ ¢‚ª˜–ªÿýînt?_Ýé||?þkŽ>‚†Ôá´³õ¸í¸jÂ6Í êz j¯c¬°*¦ ¸" v‚½ÿ|œMï°iAKFøE!¾^®ùaÎS6ÄCT]ËÕTÆè;†œcU‚¾Œ®ÇI˜KmŽÚ9ø‹t@!r= ïG7[Ð!àÿçÁFñþûêŒ uÝŒ?~$_™ŠÖ ¦óùøêvDÏÂp+8ä˳·ôÐ…ÃÎxQÌÿ=»¯lo…/Žº}º„"C©H®hßP„ÕUlÔ·hßÉ(}ÅѾžÞ>ÜM‚ÿŒfSVÅKzU1ŒÈ}ñ0¹!ƒL ¾¿³´‡Î׃_ä÷Éu”¼¾»œonnG¦  De#¨±•CˆF߯ 0Õ¯øÉTôIÆuêÇ2QëÔ‘(`QÁ˜Ì(Ú{'}afc‘C¦×cü  ¢Ë hÂt"\ F Ö3¼e¢ £!hȾ·Žè KÄšÑüÏïQƒÕÃËBMLñ†; iºãοÏïG¸È›£? ©ÃZcÖ·è>§ÚãKGµœ _î¬ã™ƒšrB]_?Ì(‚jðc/<ɦ÷°ªGßȈgÓrˆ¯A]Ci·ÁZí7ÄpB™¿2¥t¡QÀøÑ78ê¬Ýë ýë‹ôé_ß«ƒ Q 6Ìi‹{+,ŒÅ{{Ö ¬Ïe0xß=²wz tzµÓƒÔN³ö ¨\ÈÎÛÆ­ú .áîù‹n÷E÷˜–¼Íc†ég ÜY0ÚƒW„¸ ÝŠ¨†gETNþjš9ƆüG¶¯(ÇèH!?UHEEu­°quÂÜå®N’Ÿý« ê¸ ¥”¬3Ôb«#ÊXqSUõ¬U‰4ZGÇ#h+0×>GEÔ¤Sžšê¹j*((-s4Úy‚tolc̘·_ÇÙ?¤Ø´‚‚Ñv²£µÏß´¤Ø ¤i`§¤¥„›±¨ï&ù€ðÕ8¡$Ú#bÚ!²Câ4Ç×:?>¦N´1Çan®X¶VkEâ„ zxÙa«OЧcÊjèâÛ6!㢜Ç)OLq$.¯Î×0‰e ñpŽyü8z’p £!àŒ~ïhÇ7t­Ñnž‚ÛYã¨w‚?û¿žaÖÁöŽÌÖntß;)ÐêÒè:\Šp¬6wèO4 r°ÊÕ(ŽŠ˜F16²0Ë7¡ÀOZÑyJE¶ø»2f.KÈÜS ‚ãi†‹Š‚cÜêÞ1nñþšyPQ´9᫦ò•÷ËKh®Ï›S®P~ÍÍRPÐm­¯c ;nÁuÕ X5“Ge‹ÈíèoS ¦“Ûï8cDbfúxTÝ‚xi¨|º¨§ÎV£s¸ l½`¬Í›sç!êíõÿaúl²µÉqA„Ç]ù jOA¥5ó»áí­Á}š‡;Œ‚ÎVûHißñÖ®øVä¦úpÊÆd]&ˆ µ”â‡X­¶Ê£ÅøÃ@{lчšÄ+Sà qÏÆäÄŸè ’ C1¾R/8b,u²ÈÓÝ_Äè2ŠYŠWžŸx¬Uó™«aë ~÷¬o   žÇX%X#WÄZÌGQ_Pʶ0ŽÄ~wÄãJ€uIx`ìžý‚Ÿ4kñ“ŽI…¤ÔQÖ Ï(Nª‰²OÇ rgX9“F9:/÷sdU ·«6g¥¦•ëé͈YVÜsŠ»”T»Õ9J÷ÅQ¥Ì .€c¸ºØC¿oœNröÎF÷3Ðh^Og³Ñõýíwët¡¼W-¬o޶êüB€¿ÉÙºkŸeújÊ ãrhá™]÷q6f2¡ÃS– ǵîd¨Õ^(-8®0X‘'¯µ""æk¬‘ oƒlLGèœÊʲ Ä Šüý4pââã@i97%wKóe´¡Z*+DH’~mR®+tðÒb>‰³ˆ_{­EÚ3Œ¿qÑ8'µ—ygDŸ[¹xÕQMø ¶"ÀO„’âèooD3 d›NÓŽä;‘wÐ.¥2±w„- FßÈBKܨÐnÏÎ/4å'®QVz%!¬w’&„‘±¼ˆ¢3íßZGú‹ŒTÏ—õ5§qºÞ!ÌLtes’fc Ü©Øz“7™íDG*P_€w””ò‰ßN'%v£~c9Îwô槤/:Môòý›´î ÂwFàǤ²ˆ×¼ í¡&ÜÙ–0´'4’MÒÆ ½$mÊm¤å@|ìùÅ+˜qê¡:¤:ºàó˜´¾bŒËü3Ä%[+Þ~CÎÕˆvìóô+¸r€*Ë ”[£²}p3¡™3$üv8vç~3k ºÇý_ƒX[@¹D? _ZÈ\]@×#( <+‘T iZƒ4µAÕÀÆÓÂxƒ‡ž]̤•ñUm˜)”wŒû(ÇúŽag2ìz xÂ|‡¥‘å‚Cpb!Ðø£äôpïéÞ (³‡kîìMw5=¨çL ÇÓÜ\ÁlDî̇¡I.k:”…N¸R•°8 KjòÙ JÀ·´‚ÞÁçV°q)ÂÕâbEDæS\°ìK²?ÎÎ+j´Žf‘uØ V)ù.kÀE²UçEÄ þéŠTÓò†eŒ\R¦jP!u­'¤d%ÄFF–]ßJÝõ-ãöwªêjv2ÆÒèC_6oÑ+¼å{,[‰Po¾svóÁH¦'§†—…åÎCŠÅ7éçK– P¢3¥4ô3J¨ –NN)Ü6?>¸^„‡ÄRßmcü3ö=ò<УŠv¥r1'G»U%ÈÕgÌÙX×c(#qûpƒã"d¦ 7zÃT’n_êÒ[iÄsÊwìWX΢[¯(€ÆxBãÐP>¾Ѓ„‡CËÍÍøÆÎë¸Öþž{Û‡íØî †”Îà ñp`0ì”Aå‡ÙáÉ!)GfÞ ÷bňI$\ì>"?3 &0.0®Æ3¹ßö\0.¦6$€Tœ; Ɔc>—¥X=Ø ŸÀþ¯g±Æ Dl}êò³nÄ`AXj‚}4ÈzÅ_Xδ]üƒ#àÏPžWwR¡_këð"Ÿ‘ ¤["‚XþǼ ø4üz¸"þÇ.ù6ÜEüÝݽÿcÝ þG¿[!— õÇ@ðzåЃþ€lù*º£³ýú߆ƒ.é8öÜÏôj¾‚ÊôG Øë‰ùÎ ôŒp™Ø{~Øs:fì{“ë;ŒeœRŒŽ8+]º†$:Í"pÉí&§BÓƒQK'ÎA/.Îï*G5½¨&@U†¦áXA—üg j‘ŒüêU苘 7³1¨5”€~—°°jý_/="YéX&Az|¸ ÑJPP•¾?è,Ä0!Hãö(^Ã(ÓA¼²áÎüC¬§…ÃàŸ¯ƒ?àÖj«uF‘ÍÿëÁk±–­AïâhëJ‰`ë¸Ñîm1÷EÚ8×GBíJ®#d³°ÛÌ·YBmÁµ7Kó#›Ïc"Ü|LâÝá ¯?ËñüJà§OÈgî`ÏBÂ<3xÒÓPÛ.bÇ·ÃO åtr3¾&ã7‡ès°hH(C€ã ­'ëB¥Òçðnøm|÷pÇÆí b¶²™ñ· —x0<±ˆá¢Ëo®„¯zFÁÙŒ%rü`ÈÂQ—T;‹t\NíÞñµ>Áµi‘µ”@fÀ–ÓȳÄÊr¹Erë·×ÂŒv§Ÿìá±þ^˜’Ã4G\lìòcï yRœ}œ®«ìtØ3¹„:\VÅ8×=!Ε||Á ³é×¹Ù*XC-R lŽpW¿è f 5d5%^5 VÑ<+´”ð 9K Ru{òÅÔ’»b/ݣܞJf ¦»ÐàTCð,mì… >eP«9Pú' ií@*¼QµÒïœ'ŒqÇ:sûrùˆ2‘tJµcßã°âQ¶…NàC†–H>)¡Â$™V§:CB“ò u°ã ÔyêÐÇăCù/ö›£D'ãÂíÌ)ÒA°! ÇŸªyÞ†n¯÷‹»jŠÄüÃË(æ‰øä'ñÉAÇØìÄøúiågVÞS:€‘¦‘>ä‹}–o6!H²ïÜ${o 4ŽXRiẠ.¤ÒNA¦ÄPÇx¦Ø<Ò¼C{h&§A=9ðÉ2ÙÅHŸ¢'È;Tî„1Ó9„Î\gvqÓ,k¾ä²&Ü×cíj»SÍ&nzÊš‰ ¹c…2Òª–DÌý Ff ç2Ü5aá7{Ô£p_C=zYêQ’ô(æ‘Æ0ØWðƒFÔ‹ÐGtöõ6a(mºÈÐÚMHò#;þR¿„_z ÿéûªðŸvwÿ)Ü®ïÖI ÄÚÛ)ñŸVñЩâ?½/ñŸJü§äùqñŸÞ;ñŸÞ—øO%þS‰ÿTâ?-ÿ‰c %<!ž dCqÒ+(šøS5•@MbåO¨é™4µ…o§sD§Yuã4=1ˆ¦*Ï 99ê'×ôžkhRàšÞ¯®‰â4q8&ûÚðÄi¢!Aï]AvÄizOqšÞ3œ¦÷ §é=&D€Ÿ½c'^Óû§)~óGÆiÂM8M€Ž²Ö^#¿VŸ/xÓûGo¢¥ñ.àqÑÓ‚pNN0"•O+Æx*aœJ'Í=ƒ}ÅØZÒ€T‚$=y$*-”I%DR ‘ôƒ@$‘ìz£GJ'‡ áOÄz^‚#ÑïVŽT"%ÏBX:lÝ>$R ƒ”Çm Údz«mz Ц÷Kmz_‚6+| MﵘlùèOuˆ•uz¦ðMï-¡Ñ|‡7óm &ÚX¤Äpzt §÷%†“†Óû N> M"û\`“í¨úA›ìj+…«w6½w6)W[ª°Æ‘ЇnjgyYÖ(œœ¯”N~”-ˆàäV-çApz_"8Å%Ÿ.‚SÒB  ™ ìXÿKÀ§G•jJÔ§|¨OçÔ'IµüóA?½/¡ŸLÏýô¾„~*¡Ÿž(ôÓûúé‰?6ü§ÑÕõ翾}+* ÿigŸá?ílo“óã¿¶É6ßÛ.ñŸVñÐÝ)â?5N~½¼¬ÄHOÒÝÔ:ë¶[­9;G>0Hzä1Ã-b§­žŽÑéfäÜÃ($üÌím0{˜66úð°Á|4S|—“ñíÕhÆä8ÌaA”ópÍØ$õ”|¿XÅ÷Sµä‘_¼T3œÌ¿ŽfO2Äáí-\BB<«•Ew¡?†€ÈBûp•°d[ Ìy!üx Öòw:5NC_ cg¾Nƒëá|ÄØ(øè¢©îƬCað"¨ôßõ ’œð8ÁQ·¿Žµµ>Òw¨‚kLf°}´…ñ%ŒaœNÈÄ’æ0×ã/3ŒW”U¨kŒh@UéÓÃp6œÜÃèeUæô‡õˆå&JIŽ“ Ö+¶ÞÚ£ûàòFíò÷˜•…¹½¼§ñýþ3¹E”p•¡8.´5ÂŽ'ãûïÌK¨¸(2:áØ@“i£Ÿ°‚¤Zì¢PŒð¼_‡³qµmÅï4^Q"+„!žW {5èø ±Ïñ/œÂz4;„uܨhä÷q5¸šÜü>ÖUý°«(ÖNĸ:ëÕp›­ˆ-± \£¹ ‹¦x;w£ûª0£‹®GÅãKÆ ‰†€A–ô9,¾FH­á ‰¬æ+Jõ™|EWÕÁ›#Ü©D$x¸½ PqK÷)Lt‚Vt;šãæ ^ÈÒ&]™gˆÊ"ä* 3ŽñúaC¥çãp|;ß"ûht¯…"Òq àêòÛ»ÿG’" ˧Û,ßÒ¬.X=ðs]XBø‰¾†®òÄî€ã,9Ó‚?˜ˆãxM_OÁJ”FÇ‚ ªÏ¦|·nB†¸¹ë[A“pL0s:ÒL lô7 Éæ6Ííìl.ÒvÌJm6t3ì ~2¢ØON®º$c}“èÈz“Ö/¿ýPqÀvÕ=Q²¿æG Õ/ˆ·%+-VmbÁ{ù5¬çŽjzél‰‡}2rbu0±”Š´V¦n¸§^¯K£kªÞ€dÈÂLÞ‰ßÚ•F=^ Îá·M¹J¸éD€ŠÙ¢íPõ þ ºJgëfZMq]{Ê’#÷dëýµ¡÷´÷zïµÒ ÷ÞX“ µŠ~Œr¤^™‹¢‘@³OÐ4ßpÆWéˆ+>S”UFí [ Š`€PõèÛçáÃ7*‚* u“ÁŸ}‡ªé™õ n¨73Â%DœCû2ýJÝ£ï%PÂ+ð7g´}œ b…—ºÞy] ø#ôåöaNïïŸÇן¡Ùh¯°*ߎ0iˆØµKöøžX¶â'7Ó‡«[Â&q9Š~Š€Z}ªaiâŽ@È#îXÌÞ7Án!%¯É×Ɔ¸&p¦qéÆì¯õ¿%«ÂÖe¢?6“Q”¬ zZ þŒõFnsç÷ÆÅåﬧ¤(UU7U1)yƒÁ~õ>7ͽ»8:Ô+ŽDêw•ú:oÿÍE£lùÁJ€‰ ãïŸÆ7#«€Ç2¶§Ï@Ö;;lÓ_ÜâoÅ)èµèÏþÅYþÛª;áx®YŠG^ïþú¦÷[58Okîà·Vÿèw gœüJ?¥K0þ5­¦ï8^!_s)›4) Æ:fî‡Ã‹3meªe& à>Y%„ÂÕµŽÃú+#ºO*l¿¸Ì}ö Þþ7Dê8Òñ>™ÿãJ‚íã*J÷ëï »X_¯òOø'ö]Øê¶XçìÙ tP2È`œ´ÚMñ£Kñ;™ØqJÐÆ.zIýkzö¶‰œ=Ë6+ôœ«…ë›ñ/!}Ñij4i¾èß>n‚eÒñ²°0³ѵg'¦÷}å>´0…ˆh ì´¸B>¼i²¢ M®Ý'7KÇ~²ïG1Ñ„a˜5šàaFF ^Îo„Zcp0Ïa< u…Î÷ƒÃj=äªð½ .hÎ#V¤ø³õ`“} $&ÿÍÆ;Å=×®H<[ülm¹.sZ‚º›$8¶>œP÷9ütTå(k@Ëg@{s€,e¦Ó/1¾ ·Qª*EÎÎððÖ#îJ— .±𢖠´ð¶–?éB º*kG_æãÛéd÷XcKXáSŠæ{2ù É [7)p %ŒÛ›/À aãøÜŸ w) ²–ãG3X{|À8hyÌJ¬@‹ÞÎþððñÊ *ö…Oh¿ÂR­…Úçû<ùâ-š/Å¢o/ÔOgîu0I>9cö¨FÀÝÐYGe"ÏÆÝ'ÏŽK¥­oÕ€²ß(T¹ú9yU Ï«¢ªeNnõDÌhœUÂêÖV5"¯o%rozwÉ1ÝôF‹”³Ops¡œ*̫أƒé—ïAƒÐM¦/'C³àD³F~Ãþ,}ƒÝdB¥ý{8‚Zƒ+è0õ@ÑàM“껓VÈì‘ÈçìDxÛÞ|{±©Y£á~$GÀ)žd:YU>gbA0X ~—êß) öùò´FÓz•ÂhQ8Ý$ËM³¦U@íf«vʉkpB}ÈRç¦É&§©ÌNŽq£ÜA!cgX#¬YºRš\¡­Ò¿¤û€Û^PSu3ú8Ôz&ÖaŠàÒgr0­ã ÂîhR<ëuÿý^dšS‡àæ|Y1»9Ç4‡g“ã€íd‘Ttg« Â…”&?¸ÐËYà„õMDc½.3Ë)UÈæ&Ž9Χ{îÊJåœç9,'GÎa99ú™×Ì›¦sp(O]‘tIl8%ºýuÒØépÌ• Uy¨@67ç‡6 Ÿe´ «Ô1|ÆÑ2̨>|¦Á92ÎÂK‡Ç“[=Ô)L`³$ŽUüKr,ƒG©G[7Ú¨éBû{\õ­ÈÔ+{üêJv9Â9É¡ïãyðñvøé¤!AudðÏ×I=Åir6íà7¸~ûžÜ6×À”^ A#J*žÂ˜¼ý@·’·9±X 8þÛr‚~ð†ÐN*Vi烡yÖ©%Ðë/¨l Ëßë—ÛÛÛëA Â.º[ʯªA ¸ Õ¡Ãd-à§ð)˜?\_Fý…öä5‘&ÖaçÓ»‘àXŒÃ›TD2.¤šO#öâ¿°»[Ò’OƆƒ»JÒOÀ`˜ Pêøx œM–!rŽ[©"rýp;¼g©^b暬ŠÑý×Ñ(v:Y›—1:7—2CF/#|ZX|%ßž¬U=.ì’þRã,=þ™‘aTz¢ FáùTë*æàpÁ›ù-øJ>|/Ù„eÕV(‚M]¨ 6}ac‹¥êðÇfЯ´ÀhMµ" pø»_959Éò&éÏMöZ2[¼ .7äu¬¥µnÄÚ:ÔBÀøÄ ÉÕàІöro/è¼Ê­ð¾ñB™jNé˜)­ã^¶¤×Ò}xžÛæªÔtœ‘ŽV‚´ "À”¯§SÜD·»ëpͶ£ׂ»×r9Øv‘£I. Ìé$!ž¼ÏU’¼ý .ò˜î“ü6‰›=ÖýpUÓE$Þ"¤ÂØ•á-™jy¬…ë,õ£DþÒAêK‚›‰Ö5mºSÞ;0¿'©¾ÎÆ÷#¹7Öƒ5ô& ^AlØ=&À)q/Cd›ªìuqqÂç4z“½±õi´•|˜Ö`„ þÉ›¹JZ$³R…©aõˆÕàaI5JoÈQ™p–ãÜ À4ûþH‡ÃĺâÙBµFÌGXo惃fËðE%Â=¿š-ÓÅe¨@iÕã2SZMÎðÉ 5¼–\.ñ ´Fúîm™{hï¤R‰ùd 0@wRÎM˜•îûÜX›6±¦{”¯«ÎyÚ²j§“®Ðý2óš’*0޵…Å!Ùwéµz,\ÓcáÚÿX¸Ît,\KÇÂur,\û þÇÂAÚ±p°à±å:<°ÕáX8ð9<"áXpí¯´“!Ê}2DêÉ èØÿžÛü e›,²Í£¼Û³°ÖZ“SdxJÉ:ÀF2èV·éoSV¹V ý †<â–|õÌåo6 Û« 1þΦàñÁÛ”8¡†ýõ$\‰oO hg-ø˜6hlþõòòGµ¡X5ÔŸWG×Yc¡9[´…Î9Ð?–^DŽ¥²Vm…ÕµuF±2À‡|ú‘ý­×=çþ+÷SŠù ¡\­±†öm á;£1_òG Øb-Žì ¶°Ò½¸Òú%ÂWé¤õÁ®Z!îBÌÈF`ƒ5e²áÐ$Rr:1™Ð’hõ5:Ô»¦Qñ Ñç³µcªBá¥yÙº©¬ãâïE)ïYƒ˜y¡±rVÅoʇo;•`W1«åå/¶Öå×uþ€Ëçy@ýšð·ºz œs=(ßÓíjDº ~¬ ‡ågeŚ͆W… ?¥á?mï‘?ÿi›ü·¿]ü§Ýý°ÄZÅCW³„ÿÔëA¼Bç¢ÓŠsíÕjA»Ñm¼e@4(/¨€ ¶t}+Ü"bÀ¿c}“ñ_[p F“ɈÜK£jòÙÁðvLNËÉx4G³?G·€ký7Aûþ&޽?N¨/"«FŒÓ·cM™"Πñ»\),uˆ]q(ãCçØŸÀÿå"\°Zâö…zxMtð‚ 2ž|y¸_焉˜Dß‹) ɰ’â¬þ×EÐæ€]G9ßÀ܃“·—0»tãjä+e<ÎêŽ%qu¦È[ôX?ˇ!ÁŽã4³c¥%7 €žj 4›ª!{~v†C˜bãK}À£êž·¬oÔýTˆ>f@;Ûï«% ìa”‚})ØÇ4—‚½[°Ï.ÃÃK‘á¡HeíÅâ©¿¸ðŒ­-(ÃS2.Öª±:aEtÔ-tÄú„ѱk¡ƒ+×&d"cßIF”C‰Œ_RÉXTŸBÆÒô âVô×'Hoýxú„ƒRŸðl‡üÿi´ù¿Nÿmšÿ©¾['%PþKûÿJÆmÈòÿ›£8ó]F/€¢åýÎô¯ŠÃDèßóúõŒR4¥¿šr«Þ9Tð™ ¬qa Þ…¯i^ÖÛ?ÖCw€é·‚Dw ôOÕ°Ùù2¼ÿL µ§(–é0‘ ’?ºÙ*u&Ý„ 8ߥ·8µKôÄHˆhT¾Ú o“!M_±tå‰EëáÐ=db;ú6ýà™`ߠ〔ê}˜7®ëxÓ$S‡?Þ]àÏÞqŽ#ÇP@Þ1-ØÃŽXEG¬¢#VÑQZEG¬"ò³Å~öKíËò´/Õàð€ìKãz*L ú¥al?¦v†ö»bмØhM/ìRê,Ò„½'¥ Êè·A§ýòE†‚§(ŽooHÐø0§Pí À©'é9úU³JÈ;C™Íø&K¼fÀ7& 9»éa#&×tRøÛªª¥!£|4Z#ËmC-BseÙëJéDÀ§õ§é]¥6L…¶—×ðŽ¥á[,¬]ebŽ#ûÄGžs-41¤þœ /01Ù6M 4œ}bœíª;¦åØ1-ßÓª(ƒóý-} µ² QÝÒv¤4ßôž³é¨À^«ÔwLPßw‚ú¤åk¸u¤ÝÓô¥¸Ÿûp:kU}/‡ãZá4h›y94ìºhP÷uÓwÝf"ᥠQ£ ¯_"(X×/ùÎoý’‚†õ hãÒô]â¿=ø/‚ÍhaÊz]Òò-xJ³¶àÝD[(þ­º ¢ ;$!ZÚ!OˆhÖJˆ·Ð‰;ëÿ}ŒÕ±ïEs¤Žó£Òng!:RÇcí܇v¢£žòñH¤,ëñH¾ó;IÁäxd«5x OÞs'B{ùΖݼÎôÐæCl1³v!kóú‚›Ï¬cÈÚ¼.Å6¹ò‡ÞŽ´õz!­+ Õ®júª€š¢ (ûJÉ«jŠŠ e7oZ¨Ðü 5¯6Jl~…š­yÓBeʰ…ª¿J¬éи4}5.MUã²­ û’v3·Þ¥©é]VC‰ñ˜å”$ëw”O\¶”W@‰.ºj”,¨—ÊJ‰.6U¥ºÅü´SY 1H™2%ËZ°ò–w(©š¾Jª¦ª¤òSUÙäÌÈWFiæVU55UÕ%Ýp¨$¤‡úµü„H7œBéÛÞj•“n8¶TÒ=•…+'Ýp멐ʿœcJ¡£úmå”ÿ’ò:¥¼þ4(7èàdÒ•#Ý´\‹tç.M#=ZáJ—¯/‡±é«DlJJDU¸Y@wÖÌ­NlÊêÄG Épá$4™¤°ÐdX£M ¹š Òš¤€U™ÉâI’7„CÛôUÅ6EU¬¸öúF˶Oí[n5mSTÓ>-b {‰5è1ŸXÃæˆõUƒ¯ˆXî”ã"cóH´Æ¡ctoºƒÛ°êẪ9ÀR}¢ºÞ•Q]?ÁãŒÿúVL˜;þkgo¯^§ñ_{Ûûû»»ÿµ_Êø¯U2c*©j½”!gO7ä,©èè¶œ3†£Uƒ ¤>ƒLhsòûèϸä£V%ó6›=z¤!ªïoÖë?rhæ˜ÃÑþ}Âk­;ë‰Ë_‹å6Sú¸—‘r9#åxEM^Ó¥›^¨7…€•ave˜]fGŸÇÁ\ê[j·|^†å•ayA‘í–ayeXžÏ*Ãòʰ¼¥ÐP†å•ayXI–W†å•ayeXÞ“ Ë£ú“¤²Îï¤äïÍÎa_Þ T©Â‡ÛöÃôÒû4½dÇéÑ;ë‘ J¡ƒ~2§Ê€„±.´‰}K¯ü·ß;Âïj ¬KÕ€ÿô?0.<›ÞÁ`½X³ŽI‡‰å Æ$2ŒIôlƤ®ŽI/}Llר³P ˜2¶Kñ‡ƒ”ó“í ¿lȶž÷„ÚápáÀŒlË´1žÑ ˜ùÎlC`ZOöl(á §¤„°Ñ_ÂOpÓ5ÃMï)n<ÇÍü“Ü,x–3‘džæf±ó좨ĉðpà/q"ò9¢—8%N„çB-q"]¨%ND‰a¦d»Ä‰(q"Jœˆ'b©¤—8%ND‰QâD,'¢0«vÓÛªÝ4ZµSmÛ–qI ݼ¥Ac¯ëè3ŒzáÆî¦Ñp*ëH3_Xº™ìí% Õ’FÊÇ®ŽT-§§¹ª–4T; U$ŽVr'ìüàCµ»ØP…¢Ì÷“ •A£¢»[8x¹v`t„òĶɿî‘Ñw`|<6ü†j7ÓÞz†Ce‹˜èy:%®ÛJh*qÝJ\·×-±%®Û²ˆ}¸nÚv´z45½=šš’GÓòyNo§¦äíôÄÈ5oÊæ weNÇ-‰ÜìËLäš7fsu;3ÚrÑ…ÿw_ ü_ þ_¸Õ#ÀÿÛÞ%߆»Û€ÿ·»–ø«xèrSñÿ%þŸÿoàÿw?ߌ‡Ÿ¦“á-¼ÎWK ¾U`ðEÁ"|™pöX#žÞy,¼-Cï0Á ;5Ä3<§°¡íøUM)>b`ŽÐâ6ø…ÄÃ0„kQ½éC—¼MøFX â‹Ã69Wàœÿ"?÷åA?ûÃ}yàë¾Ý°ô!¬®¦†u­a=ƒn„Î~èb¡E-¿º•t±nXÁ¡–1òà°i|mšɦi:ÉDaÆ”ڳܶNFjkÍ~<­º;‹@«eXk«¡55ε›•£!¶hŽ1$/ô1³v]k×õeíºk‡›2FÝ Ì\×ÁÌu}™¹®À̱û éôb º¹Ù7Þü…p?.±}íBÛçÛÛ×"ÄöÙI^\óòb±ód]_ž¬+ðdâd²'ðcúÓÍÍqеõõdH6,É„diI>’µè‘dqkGDqh]Ê’£U²¼WíìR×—]êÒ{=Y>ò%îEr^_&FC¼éjK¢aµæÏA™qnåÃþûy´ûo…»!ÍÿVß­“hÿ wJûï*vÊöß“2ÿ›Ãþ{’#ÿÛÉhvG$§á$ObÙIIWZ…YwŸVn¶¬ù×Xkªµ•X†S³«ñ^®8YÚ³6Ïž°¤d',Ù &#ß½c—yö„%#;aÉÈNº¬¢.«¨K͵ð³å¬¨[ÚsÙ‹eB²2!®'‘,5ÁœýNk;ùlȇ±-ýËø¯)ùþ«åãðú~:ÿg‹ž!Ú”|d'¶|d'Ž|d'¾ùÈNhv.5×;×ÐIî´d¼}®ÎZ6šD/)íïän_™/+$à‰oš²š´KŸ¯tBs¢ò–õ™*ºiÓÅMG¶¬î&[®²ß\e'4i—q7y¬¤LÃŒ[©eÛJE·nÜG-Ë>ÊÙ¸:M6­ÿ‰oƲ“¼ËNrg,ã$jüeÓ éåEâËLƒføiˆÀo¾Ì$höb# Q£ ¯_»ÕêÄ7cÙÉÊ3–äÎXÆiÖüò’e&Ú°C4ËÕ“#Ú°¥TCв3–e¦Y³iŽÌˆcD³îŒè":RÇcí܇v¢3X s-vCá‰o&S&SX*áyݦ8%:K¶lR üYBJ´JJ´`S‘iLj“ò82=˜õFrœtmò}×!ßw}åû®*ßûÈMÝÜb}Wë hW«¼Öõ•׺ª¼æ)±ts k]MX+¦iuŒ¬Ìf×WXê„%Þ¸›[Rêš$¥å 3]“˜´<tæ¨kP k_^0é¤ë+t Ò °v¹„pö"µs¹å’®I.y*ä£I"y*äê²u×ÀmjÔFC­£O!×À/\y_:Øâ®/[ÜUÙâEØ¿nnž¸«ñÄ« C“»*ºêEÇJÝùNͤ|²>ÿ¿Û¯Æÿo{¿¾­ã¿D¥ÿß*vŽËþíw¥ÿŸÝÿ¯ýn1ÿ?9Yá;9Y¡œ¦0‘Ú7J@¡»Ác£Ä¸=þlÕ¨Î|Kõ¶Ëäk·8DÉQû]Ä~³ŸàÂvÑyÓ¶ZȃÞaÁ³vÄ~¾+]Ùž»+[é²–¡Œ.k¾.hº·™ÉµìH¹±ÈM$é”ã‚toÇS%åW&_¬ÅËNôXô3Qò*7ÞTj03Ö&ɨbÔ¨d"]B£;¦FE'mSuÈÕæ¾³Í¨ ~JSÙ¦>JŸúÈ8õi¤¥»gÙç=2Î{q-ê“™&=OƒÒè÷m£ßOý¾ÿÛàê-ªçò[$é ,ûLôE4ßÇh=âAÔ ®*[NãuK×¥u¸´Öw-]´qŠoü¥©ñÐÔøz+LÕÖCÁ¦\`ëñ¾DÞÕ´/ñ ÷¾Ä"Æ}™N ­~±=ÁÚ5ìÈ•´«ïÅô›1[³uKwÕ]Xtwíê‹°èfw-£i“[è(¿Lk6*¨·Òf3² øEúf‹l›-ºE¹Ö¨y§-¹Qã6+®M}­G¶=¶äF¬¸6õÝYvWž6…5~f»PÎÒ/”3؃hGãøqÊbgn‹>›ò,ÇAOéh†¼HË£C] rRíe²ã&Äp",‰uùꄨ;öÑ ÑiÕtô8¡œXxytì»Çƒ/‘B‡ß^=a^"Ž%Œ‡Â›D¹Ï–Eˆã0c+$ZÉÖµÒ3HÁKDºŽ,,×Y:ËuÖŽ|¯£4jç†(^wQqDèQä}G…~ EÞ·PqTè'®J…ý Z%ÖûgÙDx]>Å¡Ÿø‘~КožeÑ“YóµS†;Ç0æ;'«q·äˆ,îV.ÿŸùjò?ím‡uÝÿ§^úÿ¬â¡+Fõÿé—þ?ÿŸ¾¿ÿÏíhHFjþï‡áŒ:ÝÌÆd¸Ÿ› hŸ!Û2üà?/ÙÏ÷ìçázé ôä\²ƒuÀG¨ÕëpZ×J Á¡þ0`Mõƒß~P/º ñÇ!ûÉÿ¾tù3á>-ý—–—ZÉ–=©A•ÁèSA@¥M.ð§R(b…"k¡()TwâÍí˜ ‰þ6ô“w)+¾tq¨·†©©Ý·DrÂRµ%‹ _^É"ŽÚrP•èâaV‹ÇL[˽ÁÈ0I×ˤCÏ{’СÊ×ˤCOô+Ñ¡:Â,=ƒoBG¤MKd4K@†ž{ÃLF$ŒÆÈ0ä‰Jèeý]³¢nq×÷Ëuë)%¹G%/ûÐ[8w •÷(0¸= j†ÁKèiP«çC¢Ô·²Øh•ÄjñÉb#ÇÈ.“XuK^:¶ä¥ï–¼´mIT{—«k—¹7ä¥mC>.­ÆíxiÛŽK«q3^Z6ãã’jÜŠ—–­¸RRÕøÞ±ßûnÄ÷Y6b¸³{ïsoÆ÷Y6ãjé5nÈ÷Y6äjé5nÊ÷6åjÉ5nÌ÷6æjÉÕaÂ’åP—‡·n¡w‰äªgÉ¡ã,9ô=K³ðÙîÉèzI‡¹“Ã,ÌöÊI6ž(‡Y8î•“lZ¹sg(ld–V«›ãtI§x¥‚6°DèøI‡ýÿËt%öÿúÎÎn]Ëÿµ³WÚÿWñÐí¯Øÿ»ç¥ýßnÿïž‘ÿKO¡\¦[¥­ÿ9&+|éß;ÚYØ Û¤y¹ºÍ£wø“æçê6!Ñ—}( &ð‚ŸøÂ9«èœUtÎ*:O«èœUtN3†ÁO|‘e ëvY…˜9ÌUK)Öí²ŠÊÌaüÅç ·ÂºUfû2‡9’„˜#ìàó”,ƒ?¿³— àc©¼IJ†°î¹Åï3[ÚísOq,XQÑôÝ27­<¾‹·ª çܬžßûÜ” ,_«ÊŒXs€áwž3bÈ–JdÎü_¼Õ¬3’3÷—Øl†ñÎû…½cxáÈcÁöH> yÞjæ=’/Ó—Øl–=â‹Z,—cF¼\i°`EO‘ä™N[É;5ÆlGËi_Ó½‹í›ìy·¯)ÒÅöc-obŸ+¸yM+nl>*¨÷òZµæãw~kՙΫ`PwJV¾ÅíNåõØvƒ;×clØ>Î^æTX«£×°ßœé»›Þ_²Ð ëá‘è ­G„àh… X>í© ð;¿бKEâïyœÜy“pBd–j”¸,C¾®b8‹ 麴4 ù)‘ÕÑ» ë¢"ßù-*R°"L#î J1%?•bh)ßŃ$DË¢à14Yó›umùͺŽüf]ßüf]=¿YÊæÎmÖ5ä6Ëצ:*VyÔ7¯YWÏk–NaNaÔÐ,_›ê¨XùlßLf]S&3?‘ w³®1‹Ùr×!c³å4®E&uMÙË i[^ AÌ7sY×–¹Ì* ¤w!·°eÍOV´Ô’;7Yך›ì±IÕ[¢/+ë_8MºPâ ÉÌÝç¥IÞ@>Þ7ÅXWK1¶Ÿ˜;ÃXWÏ0¶2t^K0¶לB†<…®¹ëË5w‘e¦03ÓÚÍÈ6&Ò L`ÑD<ç|ŽVþ|sÓÆ77|sÓ—onJ|³·Ñ¢™›{nÊÜóÒZÖ¯'¡å0‹Å$k˺Ý”¬ŠE5¬, »a±ékXlJ†Å S“×¶Ø”m‹KkÙ´(â–3.Šl-›…hØ,ªaõ¤°2ÅM_©©©JMYÍܲSS“–L‚ñìèËËdÉ$èìDSâ°êe%A嚪(·d 4| …‚í¢)wC¤lúŠ”MU¤ô³–Y#†±™[âljçS£Ù°?šÕýùDh6lhI\ö7L®Žfà  Ê¨~¶ÉÕ‘l82Ì$§™'WG²_£Ð¼­ shÓS¬fç±a¥Ù ÇXÍòYîÐn4}µMI»‘ÇPÙÌ­ãhÊ:ŽUc8}%MG.ÃiVb |µd8]%-†ãR˜x’Q¥#¯v‡"¨é«jJŠ ˜öÌš˜fnuPSV­ŽÃJOH‘VúÒI1¬ó„q/‡’•ÆGwÏüøhgüï·b€Ýñ¿;áîþÿÝÝ'ßGÿ»¿–ñ¿«xØÁ\ÆÿòšËøß2þ×ÿ›TtôN[ocƒÉîú,§ß›Ã>ù‰í³ÝÃD†ØFùaÃ}!T8-‚ØZÇÉÿ½Ã#‡ëðnüñø±½Úõ€hªl­é§ Uæ59I¦ÀÚ2x¹ ^.ƒ—é³âàeúô˘æ2¦Yn¶ŒiÎ4#eL³c”1Í9Z-cšË˜æ2¦Yµ•=ˆÛ2¦yÙ—1ÍË¥·Œi.–`í”R‡L~'²ÑïW“›¹¼'_@7 nÛÏK¯D#´$;1ÞO;¼­•`Ê+BiU ¸ðß~Ÿ¿_W9ñꀲO}£z±ƒ¹ÞK¶ ç¦óWîúóêùÑ;X &ó©þ#…ƒWznºÔ~ˆ  {‰¨]7\}ùÆyž=×}ó¬=”9æ=·Ü~®®Gòr¾]O?ä¬]žÕN/aQ §¤„E)aQ²S YÓ5hMïQkæ¶fþqkæ8 % L (SÊ”€2rã% Œº@J@™ ”±‘/ÊP¦”)eJ@™PÆ>¬% L (c ³”)eì—€2% ÌB”€2ÊãÁ0–€2% LQ4—€2% L (“ô°”)eJ@™P¦”ùÙe\ø/óbà_Rð_¶wwÃ=ÀÙÞßÞÙ £mÀÙÝÙ/ñ_Vñ°sTÁé€ÿr0Ž?í‡ë᜿@©ûï°Ά“ëÏ€72 ^Ä/ìµóëûéÕhVÄ——~ˆ/VL¶k-€0¼fÄ—¾â‹÷ò¡ÛôŽK@—'èâfñVIG*a ,½ßÎ{o<;]ÝÖ¯>H%‹#ˆôàƒ-Õlà)Ðô“<:5Ï\c¹ ‹ƒg›×žáŸ¡£T` ð:²ŠR‹š¾zš|Êö„§‚~Dl ßc#¡6¡@K$Ç\.³h`²ŒNL¦ÑùènlÀ™$™¾hëŘ¾`èTeÆ ÷ ¨d@çN†¥J‡Ka‘Uþ¸ïcþS…™Ù{Ù4ìXiˆ–G‚2k‚1RžµÄi5Yb!r=ìsÖY3ÀL,›mÖt̉âIØX•D×r]¶Ç!ÿýûv%ò_´½_ßFùo—|î2ù/*å¿U<ì(“å¿wíÿÓ. ¾k/†ÿ)±¤ƒ—Õ§Ñd4#̼Ä2”rãRåÆè)ÊÕÅ.3á[.,5¾9z׎ØÏcöÀ/:o¢¶ å‘xׯ‚gûù®]b:>wLÇ»1C±}±uÐEÄâ‘rc‘›èãðú~:ÿg+*.H÷¶IÜÁ/Üâ©he¿éÎL gOë^LÀaª.dE7ºcjT4U-¡Í}S›¡ CÒ¦4õFI¿HŸúÈ8õi¤-*ز ó^\‹ú¤G¦IÏÓ 4ú}Ûè÷ÓG¿_ÑÜ.¹kß"I÷™±ÏD?ž‰Gj=äŽ:Kn¼n麴—Öú®©õHöǸäÎIE7þ2­ñh‰=ýÊÔYÏÃ[÷%ò®¦}‰_¸÷%1îËtiõ‹í Ö®aG®¤]}/þ¦ãTæj¶n鮺 ‹î®±]}Ý쮩Y}ÛÝìKK³‘¼áó7+n¶È¶Ù¢ôÍY7[ uQŽYwÚ’5n³âÚÔÖzdÝcKn46XT|›ÚîŠl»+O›Â?³](géÊìA4(­uô0ŒËØ?ÙgSžå8è)ð¾)dyt¨ D £cˆñX!;nB 'Â’Q—¯NˆºcPVMGÓÊþüË£cß=ú âNVC‡8ÑJªÂÂ;$Z*!ŽÃlµ#b&¤·‚%"^G6–ë,å:‹¼¯£jspC”¯»¨8"´‹(ò¿ˆŠ£B»…"ÿ[¨8*´W£Â~­’ ëý³l"¼.ŸâˆÐNüÈûæY6^×NqDèwŽ}(Ô;'«ñDäˆ,žH.ÿŸ/«‰ÿØ wö4ÿŸÝzéÿ³Š‡®Õÿ§[úÿ8üºÿP&w±/ðk½tâY…O=‹OÖŒ½ðîiÿæíÞcª£[ñˆÑÂA|…‹,©o7ë?@Ú[ÜZìgÆ •Ò{ÈÛ{¨H¿!=Ý+ûß  ¬ÈÍX¢lPCŠây³}¸‰¢þ¿OËFRÙˆ—´²‘Z¶ÎËÖMeevxÙ¹¬èfC?Iñ’ÒÂPЧ';â_Çä”ÿ2þkJ6È'gšÒw6,j¶?þÏ©ìLÐõÂÔŠCG«‹' òWä@ã‘i[y‚å’ð¸l"4hFD´¼P'¯î˜¼ºïäÕ“×ö§»ž{ë¸Y͸,BŒ“XÇI¬¯’ À'¡#6gÉtÔÂíIY)ÒÁ»î3‹ùY—ü?{Äøò£”ÿWð°‹E‘ÿ{¥üïÿ{EÄÿôÊøŸ§¡:(ãÀ{,þ§Çâz<þÇšþ `>”=ÿÃ~¾ëH,%ø2þ§Œÿ¡C¾ÜøŸž#þÇ R_¤†!ôÿY–‚5ºPüÏÂ8¬ÑEâ2´©ÅÿôŒÿñ» Ç»mêÓãz ÅÿôrÄÿôŠÿÉТ>é‹Äÿ8”FßÿÓKÿéåŽÿñ@3·ÏDîøŸ¼­‡š[z† ˜ kñ?½Üñ?Z×âzyã24®Åÿ¨gŽÿÉиÿÓËÿãžOyW[üO/=þ§—#þ§—#§—#þ'g»ºk_ü³zN/GüOÎvõEXt³züOOÄYÎ(ëñ?½Åã\ÍJñ?¶Í¥o¶ÈºÙR¨‹r¬øÈºÓ–ܨq›צŠcÝcKnt¡øŸ»+i³ÀÁ•â,kü,ýB9ƒ=XXüÏâ+ÒQTüÏâ D £ˆøBôø‰¼ñ?‹/_\ñ?Ebõ¿^EÅÿøÓ¡ÇÝHã‘3¸#/EÅÿøÓaˆÿ±Èñ?qf«3!EÅÿø^G6–ë,å:‹¼¯£jspC”ˆBâr\D‘ÿETzüÿ-TzЋÿ´J*¬÷ϲ‰($þ'ljyß<Ë&¢øŸ½ýk<ù„Ûž:ÿ>¿Ýa‚Ñ¿Ðò:g”|8ìý*·(ÔΆ¾ç-¼âî8Çà¤A~ z-òóäpÔáÏA—ý—‹.ùú˜ýŸAw08®&•ti±A>ÆYÀß»éîHOÑ]h!Ÿr”ósÙà«Óîž;¢y4hätù&„zöàoExêÄ:>kV³è.Ž–u±¨«ÄQ[:ZÏž–ƒOa±1OÄSh×=ŒÅˆs¸TéøzhúĽƒ¿¥ÕHvWà.hJÄqœž>å8IŸÂs7Ü­u1‘”7×DÒB›«Û›}äiÏ2Î)ŽXDgÚwCFsE‹:ðvÅ_N»úÈ÷Õ‘_NÃ;è†÷SŽ;¼¯]Ëšk¥¯¹Vö½ÝʱÔZÙ÷¶sú k-°·]íÆ‡À=ÎP„s›S³v ¬Ê&±eh#¶¶Øø32âá_u+±æqdì¸É¸Æeydìzq œÆK cÏ— ñp^ûYèàgõè{ÖAˆ:Û‹ÒaéQvüwƒÒè[ðÈ食ÿY|&òâÿän]äYNã*þïúâø?YZWñx×#mܽ‚D³5®âÿh/sÜ5ül=äqd…»I¼ª¾/ñ‹TH«Åÿ!Õ/¶'X»‹âÿämWß‹^È4šÕ`BXwÂÿÉÛ.]Ñ›ÕJØ(GÚä:ÊþÚlTPo¥ÍfdAð‹ôÍ-ˆÿ³0 !kt!üŸ¼·Yqmêk=Zÿ'o£â[BGõÝYvWž6EÀÛ…r–~¡œÁ, ÿ'ÇAOé(ÿ'Ç ,ÐQþOB4䙜ø?9.<ø?…Ú V@GAø?èÐäñˆ4Þ5 ¸Kn: •Ž%Œ‡ŽÅ`ìvG&$Ì…ÿ“Ÿ‚ð|Y®3Ëu–ÎrÁ]YþOnˆQþONE "/þÏÂÕyðrpP: ãÿJ…õþY6Eàÿd B?ñ#ß›gÙDx];Åa¸s CQüþX þ G„ÿ3ÿ¾ÿŸ(ÜAüŸp»¾['%Ðÿg¯ôÿYÉCWŒâÿÓ_úÿØýúïóÿA ïww£ûÙø:OnFÇ“ñýˆzû\楿Ï*ü}v²øûdMžøÑ i¾ÞY5蜓SÚFGQÅo ^(ü)¯.Õ‰§4÷ôHzò©Çû]2uø³wÜÇŸ ~¶\žOP_xÏ*xÏ*x?8ŽèOZÑû´ŠH~é2õÜ]¦X·´¼è¥+U†62ºRÁ1hü<ÊçzE8“éçxþëþXpöÃ,lmǯ™\´´ôð,ä"¹¹EWâ›ñðÓŽ´$U<Ö"'“Gÿb;ûñMŽqQÌ÷ß[Ìã¡eÉQŽßùä(Ç‚j8%äÂ6è¶Mþ¢Í¤I®3ÒÚ—£+—G€–’\$ RÚßÉݾ2_Ç‘}¾Ž#Ïù:ŽLó•Nèqº¼ž2Sز>SE7mš£¸é¨À–ÕÝÔr즖ïnjYv“ÇJJ‡I™ lܸ•ŠnݸZ–}”³qušúŽiêûNS¿¢@Ô1r è fŠÓ¦Ò&«_‘‘–LCÝEöºf–Cî‹Ñ¥“‘ :Ò@ÂK/¢GA^¿Dò°®_òßú% ë—)MÂ/ñßü‡ze —×óè"–oÁSšµï&ÚB19T–@´a‡$DK;ä mØR Ñâ–bÖ…dg]⿱:ö½hŽÔq~TšÃí,DGÊâx,¢ûÐNt´Â³C>‰Øf=Éw~Ç#)hâÂýŸ_ æ;ô(%:K¶lR üYBJ´JJö\”HcR+˜”Ç‘éÁ¨7ºÑD{À¡0Ë÷]›|ßuÈ÷]_ù¾«Ê÷>rS7·XßÕÄúÚUGÇ*¯u}åµ®*¯yJ,ÝÜÂZWÖŠiZ#+³Ùõ–ºaÉŸ7îæ–”º&IiyèL`×$&-9ê”ÂÚ—ŒC:éúJ']ƒtì…]. z6ö"µs¹å’®I.y*ä£I"y*äê²u×ÀmjÔFC­£O!×À/\y_:Øâ®/[ÜUÙâEØ¿nnž¸«ñÄ« C“»*ºêEG +F§t¹îhý÷%®×sxþ÷³•øÿÕ÷÷Éï*þ)Vúÿ­àa'¹ìÿP¤¥ÿŸÍÿoÐó÷ÿ#â÷pòéHå‚~éå· /¿L¨^Y½ü:qv@“Ó½µûä=òvð3ÕcôØ#¿ÿ¶€÷^â«'@„YXÆ øA<õÚA³OvÙOšÂ° xöÞ“Ô3oÐä9©ÇÞ€¹ü º47â=ú\õØ‹=öboЊèOZA¯ôäc/.'¥aF×;ú¹˜õ0L¼èÇ~IGüãºú1­dg+›»?Ã9¤åasgPçzu..<‹ ‡ßùÈpX°¢åËI×ÑòÈm¼i“{9MkJ©i!{ÎÚÖÄD­í¨ ¦•µÑ²¹†áwžk£¥†úRÚÊçÆ›^dmdkÚ´6’¦³®lm›Ö†Üv†µálzC;9lZYüÎ÷äè‹«CsÔ†«:ŸÂ•’¤È[ !ÆS¥/ΞæO³B4Ó¬Nˆ˜o`‰”;5jx ”ì+ Þn†Àïü|b†0/øl>Réº@JZ¾½‘èŸÍ{ãÑi6l#fã6ztš ;N¥YÛqN´asšˆ–6磭Ù.ÍD‹niÙüº–@ó/i޲ºu-æÐzÜ9‰ÎàÖ•ŸhùD·°ð;¿=1`IùhèBJl6^ÄçµcqjBõ¬^5†SX Fg×Ká|U©‘9óå’£yœ™É‰–B¸êQëeYõøÏªÇ‚#/¶K¦ôôêm9ÏÒç$ÉlÊ*IÒÖ¿D’)¥ðÒIÒ6N’žu¹$i,„…$ys.—&CpÐ-…¤TÝóàtªþ¬îœ›;çÀá°8ðuXtú¿´3+·»â kTþÝ®~­uÍš¿œ «ób6}$]§vÅOhÎí*9è:U+Ë¡Â8gp9Tè,ˆF…,â-‡ ]h3’‘mË!CóÃ3“K…P!o*‡ÇבtÐujplÎŽV™&µ¹Õ7]§úæÑ 6lU§îæÑ 6ìj·â¦pHVŠ €[kóèÎ §&Áæµ»²E¡»í¦SltÜ]ÅòAèP|øzîºvÅG6á5·÷.'ŤõX.)†ÃË®òX.)†cÉ¡ï(”E½Ðu¨º¾ê…®S½UöêæÖ-tº…åÒcR,tŠ…åÒcÒ*tZ…åÒcR)˜èÖ¡¥ ïWÃÉÍâÂ{Ó&¼7BbÓWHlÚ…ÄŒ–ÞfnQ±i—L‹~7íã’iÑOr ŒøˆÑyG#1Û ùd%FW¢ÛˆYÀ= +1:j$†r|"-Qñ´ØO1Û21ùF>’"vÓWÄnÚEl—)ÜÂ8{ò8ÍÜ‚vÓ.h?² ]Ü~:dÎD‡Ðýtè6ŸÑûéÐm8i-t§ùz¬–nálÃ]î«%Ût~§ÑmvùX1ÝîSÐA·ªüX*ÝòåP~4}•M‹òcAç†fnHÓ¢YA†kÅ¢YA† æYE†«ÀDÑöâ>)Y)Ò㌉Žq…¤èš½QÓWoÔ´ëÌ‹©[)I9uJM»NéQi5雚v}Ó£ÒjÒE5íº¨G¥Õ¤§2ѪLA¬Æ:ˆ ­®:+"VcûÄŠÇÙÊh])ØÆ ·0؆ ÿá?+ÁØÞÝö5ü‡ýÿa]5*þÇÿÁÿðÁÿðað¡÷îû¿~8.á~¸[å*ƒàqa€cxÖP ¸ê«lÉ—€KJMTdR"ð!UÏ&Š©ðS)I%#V2RKFjÉ:+Y7””[ßa%w¤’dßÈŶi±mµT”^*(ÃýløeôŸéø†ìݪëœ0Z{?ج½°¥lz+øÎKo+²pAŽŸtIÈ¥ ¢-/½a]ïCŽÏý"V¦æƒcj>øNÍãÔxå¢Í䜠¦ ZNó¦iú`š¦å4¯k¾”æ£â›_­øa1Ð!ÿýõm%òß~=ÜÞÖòÿîî–òß*v~Éò߯—‹ÊÅK€§ÃÉl"î?ð×KÀ›Ù˜ žxzû×xò !¤&âÚæýûÁýKœÀ•Ž‹eN*:z· PIog¦à•ä>ÓÒ; îzÇ9 Öü±ý¦Ùÿ•ý¸„ŸGôÏ#öç€üiüÊÐ×NØk']úg—þÙmºk鲯»çøüÀ?i-]^K -]FKŸ¾Ög¯õßÓ?É“[ªŠP”Ù‹ËìÅñçÙ²X*_0×ñÑ;‡. Ë:V‡AòæÈ¢“Ð"sÃWÌ ‘Û;… m$ÄM[—ü=–׺&pÓÖEc¨wzËÌkâ¶ÒxT`ÏÕ5réX$—¾‹ä²bqyr½ƒ¼Áë‡eû_Šn4ràŸOÏ/s¯8èŠÑ#âIwEsI‘º¢9L<é¾·¢ÔéLxÒ}ѼD´¾ˆ'ŒÏQêŠÕý“¹¶®¤+š‰½+‘}VžDWDwbzï¾X³õîøÙk"Îí]/½wÏæt]ªiï~¤Þ¥~ê.3®¾¬n—e8ü}qËš—Ô Ó7¶ SÐGØ8ª¦/ÛÝØîí…˜ïfnæiõ¡åÑ ó0œ5ügy4èۯɄ5”gy4èÛ†C(œdõe’ Á«R¢å­HuYÅ’¦¯XÒ4Š%i·¸å¬‘·:qš¹…“¦Q8y62no“ˆòlzd<,¤ÎÏ'Ý#ÍßÔ#õ4~Ò=2¦ª0©žíOºGºf˜#ñ¦`¼ÕÎSíܙ֣:íQýÉöH“Q òeÓ(_>›£"¬«}4H™jŸÙ/JcVYó¹÷1ý„ÔÙ¾Ez´°Ü™¹Gé'dÞEK£tés`“>vésà+}D£wo®&þËü×:zØ• i£0È-£DÑ¢T·ç ñÉм4©«Â*O |å©ÙÌ“ÒËj ï /'ãÀ~ß±×"%¤_x7rKf³Ùèç]Ƙe¼ŸpltiQÏ“ìƒÚ[¿Ãsuc³0;“yltíéŽMNÆ(elR£î¹…1×<Ë _y1FP°bË”–Ò3ÚHžK†µ~¡šò—Ó¼v ÍoëˆVE7¯é¡„æ#¹óQñ­k웩õ¨ ¾««Ôƨáw¾Ë4fÔ.̆kq¤ƒÞ²­ÚƔԼ‹=Íç‰õÁ¸câ>hÛöivB»†µN˜ô¤O¬Ú}©u"R&"û±ëýQû ©0ì}ˆ óð$ú mJPÞ«ãçsVé¾CïÓ»õôw¾ŽT˜ºâ"½¼ât1"['¢G˜‰tžÖ–œ âKlÌB×—§íê<­[ÓÍÍÐv írÚÖïæ®›]NÛúmÔÕ™ÉBšV׆•“ìúr’]' ;G?ÀرížlÛ¦››‡ìÚxÈ'H½q…Z¸Ç'H¾~îªä'Ûì ’/|VN¥kãTž`^ªý1°(jžòòÒ=´õ¹È™|÷Ùä ?z„ÑOgHl¾¯]»ïk××÷µÛT’ŒŠ®ÜޝŒáÈ]2úÑŸP.¤ìËíô*P ºF-‡I’Æ@•_Vty»©piÅκm¬¼š¯»k·iäÕV,uævrí6LÛï†q ›¸·”~X:±¨9%s?ŒÔõ@zšýÐÍj?,ŸO¬º!Â0êt,_™™µZ4³+ÓgæñSµŠ M£˜ðÄÏ/=bÐ 0¨=ó:ѽgéGsäÕÇ^{éGZZ?–¢ÜÌëÉØµy2v힌]_OÆ®èÉØ“$ü˜¸ÜŠ]ÑCq茴ày¸Ô)³ò±¾n†]ÁÍpÛ@uï8öFzQüUÛ)°+8é—àSí‰~b =1.å§ÚïzbÚ;­ª#¡u›dèIôS’zþŸØà‹NìðE'¾ðE'GF‡­Äï7Ÿ#ð$7£CóY6!ÚNÙ6Ç2/‡y‰ô‰–E‡¦å1Ñ>꺶]’'¾K'"ä’ÅmBqäõæúB¯’kéDÄ‚p`-=¡>÷Sª‹×넦ãÑ:aRŒ<±Nhl®Ö‰H׊H.Êä¹åôÁx¥¹x=±>èŒIj'¢ªêGÿèHß×öNd–ª—Õ‰ìË)Ç–¨Ò‰tîÐæútbw}:ñu}:1¸>yÙœäv:1¹?-¯}}›\ –×¾¦Ê>1¸AÖ¼ºV¬—¯+Ô‰ÓÊ4eÛQÞÖIn?¨§ÔS"ݸFNPO‰v­r{@=%Ú5=‰F{döèqI70 >´G0ì©·]ÿ½å¶xË_yÝvP0¿.„6—ç4btäÕ…d&D;[BòèB2¢ñi!9tit¨ëÉv#âw¾ êqu”Ô¼‹ñqu™û`\ǬƒÈÜ í²Ô:±zDæNh:­+×Adîƒñ0z\Dæ>è,@j'–®ƒÈÞ‰ô}½rDöNd_NK×A¤u"+³é úvDßWÑÏ£ƒèçÖAôsé 2·¯¯ñ\:ˆÌík:ˆ~DZóêZ±r\¾:ˆþcé ú¹uýÇÒAd&ݸFG‘™v­z4DfÚ5„Fûªt™I70 ¥ƒð£=S¦]¸á]zÆ ÒœýBž`]È wjÚ/å78e´²ãóÞYcP B2P r߯±ü óàËp>ÝÐã˜[túQM/ºýÅx5kÁÆÆÙr]‡ã[{]kò¬¬ÑÔ¥¤¢µÀ'ѰpìgJ4\>Oò±åþtu¿®$ÿs…õÝÿ ·w£Ýýp'ÜÝüÏõ¨Ìÿ¼Š‡îd1ÿó›æ`;¬gä´­oÛä¿ <éÛ‡xÜ7ðWüÙê¶~%'ùyï­+3ìQ¿uø§.:tgú×SGdúe6d å£ÀûcÄ^1¥ï…Ž’pbâ^Ïfa„+b¾Mc&]$jƒâÚ5*1}øL­"!Å™á@0]O'óûÙÃ5!q\ÁÐÞ ïgão¤É ø8›Þpq´7.È…s}?ÿƒ‰«a žëéÝ—‡ûÍ’=ÍÇ7ÃÛWŒˆÉtvWWkAc=xù˜ ‰ø)ù{#8êöšþúy4áßcZÕÝðú3¬™Ñ—ùøv:a½<Ô£o_H;¸ŽXÕð£ƒ\`ä¥ëéíÃ!؃ûñYOó))ÆH†Q †¤¹Éô>¸›ÞŒ?Žã\Ø®<Ügl*Ròd³ÙdíΦ_ã[™ jc êù¤ÙdÉ·³VJûfª·#Öû¶±ÞùÃÕÍxøi:Þ΃¯ã{2úØ. ò=´@*›¸ÈÜÄ—Ñ,½‘ ±‘†4>/hÒñuq‡ a£Uƒ2Ï\Ø(u•²t?IÃñAblxN–õð¬ò YBäsœº0¸ŸŠµ¼mo¾½Ø e¤S÷·ÔvoGÃHŸȦnHOˆ-ZéóÝð[%¬²VÖùÀjšIë9 zçéÞ%}#géaí`+ä(¸Ž'óxJF7b=´rà|A(ªÕ`(ìÈ«ïb-pðôŽI“°mÙˆ“âÃIðð…¬€Ð4œ|z€C[<Ž`µh“¡.)qæøtU‘\B§øöÝÃíýøËíé`Éof0I÷ñXÅç9(äu¡/‰š‹6øú€´È#ÖQðàãÃŒT< nFd|oçɹMÙ?ië‡Ô!­9Vm¼ž€® qEÁmcX¸†åt7žTÎÈjÒ–Ó—ñ_äìOnÆ×äèÇ…Àæ•6·6ñu:ûsNxÏQÊÂq” ð ¯Þ¼"E^× ­÷uÈ^t‡³áÝèÖQ|ø"Sa¶ÃËn£×8;ˆl@ pômnnciÓñ¯À”í¾=½†ô,£º“Á \¨Aoݦ¢|‹ˆå§äÿäÏÓ ø0oAìîœÚûÑè¡´ #jgULξ‘!‚Ã×àÜÐÌa»qvpR ?4úg\½$ãÕiˆ â•rŽvûWŒ Z6Ôø¡qÙ}_ >œwßœ©p’ ø§Õ1jÍÙN˼{_ÿ‰*‚`ü‘ðd+¬tvWÒöè¾yKIЄœmµ¶¶ƒ­óÞVС¿¯'¼¼¢8„å|Ìlvxâv¢Wt¢ _¿fsP ÖŽ(«¶³±orHoÆJa\>2y4ï;O /¨©Bò° ©f3¬bDð5¤¤'C‰_ŸÁ×p€JE £{´õæh«ŠÝèÀúÙš¦k^©µB¸6 ç|ˆá±mZE(d@çv@o:#ë CÆŽ¦dàèÀ´ÉÀH£C†bG A0ýògá´vÿ™·Aj¾€‹Û¤nòœ^Äc‡*éBM»Óvò=YµSñKØÿüë3ì=¡ý”Py*’ʆ o½ÀrRmW*ÂF¢¹Üòö°†'Ž+,åÉ¥cm-B ´ %‘‚Ó¶L}¨øÓÂLõ|q‘÷!ê„ÑçŒòß ƒ‚cû0!{ëvúUæAûÑ{J&ùþ3™Û¶T‘ÌÇ_fÓ"Oá5=NæÀr éQ›‰0,wd§ãÒ´Ñ^×i¯éø×øú;…I¸5¸Úó–2™-e ÙLµÚÖyb…~#õ´,s? þdcý›ÞPÀ'Ñ ^5ƒdÖaOµ„I‡:6C;6;Ô¥Áèí½(8ºÌ{½Õ!»¿kïuRQZσ@èx2 ]cÛIá.Ê0¥±õÓzÊò%7Y^dÁÚ½žÎˆPüe:AV19 ê #÷<_/°žÈù#Ó£FÊlž¶ #KWŒ:=âó¢deÒK®‚l ð~®†ŒÅiÊ,Ç+┽ÂÎ\¥Ëü …‡µ‰ ÊЫå·!óøGrÌ“–(áñù#ŽD2 ;ŽYÌX áb=“ÁÅÛ®`äöÔ… %PX¸´„4n¼G0È/6L¶YðR•€ÕFÊ'Ô­#ô\—눭¬£qõF¥qày=.ý´ý¸í—úÿGzèfUõÿQ%ô~U1tz'ýÄp ?/Áök?ÁÛ‡Íês4œ9ü@ÃqDì’´b!h²Á¡gj3[ ÒÌÍ ¥ÿ¸¬PJ2š"³ÕVÃ`N®Õ{¦r2•`0ÿ>'ò)ù*ýûñ¶Acã¹s®KƒÆý‹›ø•D¯Ì&\˜—ìÊL®Küí’]œë[NËÀ—Ùèz kÉCu“JT>ï¡È`ô¿*?ŽÙXˆªÒ¸ÏI‡_‰o¾¯‰W ®¦ÝV¾àwlHª¬O5Þ%`ŽeSÞ=Èöni©x$KlþEǧ¹ÅÞ·Z>ž²É£`‹Çe¶Ž_Vaä´¾Çæ‡ø ûkDíp´É{\‡†3±†x—Ç=¿, ç—¤ç­ì4Â#£*kî/“Aé¬ÿ}qÙÁœ«ä4¨ÊåÎø°5¥aóµ”5õÑ;Ÿä‘’x#Œ?}¾>ã¢ߌì£(VATE¹þoã{rÁF.íÙ×Ùøþ~4Á}†•ÞŒ?~$ÇÜäzįŠxšÌl·Ö±cšâø:æ¡)Î×Ö¦‹ŒßÆww8TÕšœËòàÏ•aÆë’ ó* 8qÏØþAKx¢ƒ”jhEVU•5€¿Îe0ª0‹Ê)5œtB{÷™Š¹[O¿¿g´”´Ïß´$sõû·7ìkHÁjªË°§¼ižýZ€!%¿éd6º˜M`/£Í„ðôÊ%¿K ƒ­„þN 3Ó‰¢´1]‚XÂFFö]=3žvüÝð²¸cÓ„`Ôyâv–bŒ)ɸ5d6 ˜uÄ“Šq‘Ç2ïbxâÔ*_¡3q姸rI݆_™gš« c‘§Òþ±PL 5xðùIÉ€+\a#Yöq‚ÄŽz̾bÚé M¡ ‘È¡í¼ÏqWe¼©ä©–WqÝ2JM¶ ùÒ넦ÒçÒPöÒRVÎ¥sIºW¥¼V³V4µ´¢nöRÔÒšÕÓuiÂxVÍmTjnÆÇ¥ÿÝ]þwo;ÚÖõ¿õRÿ»Š‡nyUÿ»_'ºò›ðo“©9­ ¬A@—ƒʦøó£wšø/9ãÚƒþO¤nŠªa>"\?œAl`èaD+Tã{œüJG8Í…õÅfŠöØ1ÏБJÜ¡Œšæ]¦”Ä(]M&7sîd>š ïÇ ú#Y0\ÇUèêœû)(¨u½l0ýBø Â[½†µËÔ¥ iB=ŸFÒЭäZJÞžÎnÈò`ˆ?oe#ýóÞVô‚¨ „ÖH[ P 466ÈÀÜŒ¾Œ¨!ž‰«&Q À4…P¿²…Ã!Ù»¹¾ü’0N0æç„ü¬¾­YÉŸFÁ_ÃÛ‡t—Ê; ÛƒFàøüÞoÉ^_– x-ÉäE@^bà^¾Æb»W¥Zb?⢥ÆñÀÉl•uXv8;òË~÷Š^tŽÛðÚÝxòû8¨ ¯æíõ ø•ŒÀ&ü¼Z_'ß®«µà9ð!@õÌ–À¦N¦“ÿŒfSôN¾ƒÚõ¹ÕàËíÃ<ǘ )ÈcB€Ë˜Kgš(ûוòÔÀ@V_òJe`+|À Ÿ…¦“?> ïEƒÂë@¬b!€fXa4&âуÄàŸM÷ci907b²¬è+­)ͺД;–f]hºÌ âaÚ0ÚC‚\DzCcCp¦c㦔P 3)4Áõîãôö–4(æÈ¥÷çÃf¸9®ýQýÏéÊ~«…*nÿ¨ýù°þÏ×ã¾w÷IõÍ?o׃GÓcfÒ Í-VÕ¿^+Yi¿ˆ¶~EGïeé(JÃnV/ÙºCÚ=^f*®™b-ÒŠâ‹713eîQl:|ÈöÌ?£oàþWðЃƒ ’™s Â¸2}(‡†Bãyõ1Æü~Lú@Cœ¾g7 “ ñõ0,Êp‰Õ0óÜå wq”˜× 7Åß¡<7¯’ŽÚ§ÉøþáF¾¼hÿ‘#LÓà4£|Ô¾Nºó×øƒ£²×ÃWi³ ¡ƒÍD¸ÀÉý×ñ¸»[Êæ] ¯ÿØqÅZØZ«Œ·F[Ôl8¿ÞÞ¢|Ç«»&çáOÛE;£º;:šÔÃúnø'\h&/óu‰Yu˜ÙLQFZ×5}&Þ“šÉ˜ÍrÐòý"²ô^¼ºö*²ÛùÙíta×b_3˜¶:çÀiÛnjB³%ˆpýÁÞ“Æe“”>l3ëî& —œÿz NêgÝjÒ7ËÑŠ 2ô‡C·Y,»ÑÎÔ± Ò/{o¨%ˆëq­Æo­Ý’ok©k&g¡,w ài]Lú·ŸÍð¿[þâÇjÿÝþ{¾ûÿöÞÞ^¤Úÿww·Kûÿ*ºó%ûÿQû]¿"Ä-%îcƒÆEbö§Ñ±íô7†ï©Ø÷Ÿ¨iß$qú¥˜.Úí³…¬ö™Â¶È`WR¬î42Iò¶¸sÎoÈ¥9-­êîÈ—Áÿþ/ú%Ö‚&ù¾Hä£ö; ‰¿!äíw’]þê;]TèÙ#©=áàžC $ÅIW牮Çÿ %ôªØE@¼Â}Î8€_ã¿ßg®>Og÷Ÿ§heå½{·Ü@˜»ÚÕ÷Údöy®™ÛXûMs” zÉÆïÆªeÍâTÙYÝ:‹"qá9ÃŽò6{;•¨É§ûÏ2%JÃk¸#×op5TÒò;^8’ÆòóôáöF+·Ñ‰Ýx:Mn–¹º^ÿIFÿ?’Á„Ú;I‘Ñä¯ñl:󇃞Á æC_Èö|Ì®¯ÉeôñáçOüþŸðýø#­ëuPÓɃzÈŽ;²,nÀh1¾½}"kÝqV¨Æ7ÅÇP=~j˜ ÓäWb]>“qÜMÙbk2G\õšmro~h7úGòsÐë“KùÃEç¬ý®6¨ÙMd¦hQÁBˆd-_âyô¾tpu ,1!ððÕÄc7bÍY‡–Gµ1*ßt}7ÒÞE5³«¹ºú 9©á ACÂûô_üÝ]ýݦønÇñîKí]<*ÈÛ! Æàã¹Õè²îo³?:\Û¸ò9Ô¨˜ %gE$Œ¸ ‹ðé‘Y† *޽+ÆG:"|Ú|LÖ”b8z'™’?Ïèïvœ¶þôö/ßD®Jøê®ú*ѿјØ.¤íÑÇ{Àôo¸ü"º’Ñ¿'5€¿Z£ƒh"j”LS3xõ:x·F8ì¦24x„ccp€[„£³¸ã¦v­"S"I FÓÐÀ[¢†Æ.ÿO&7«‘ÿ£Ýp÷¿Â0ÜÞ Ã]À‚ù{¯”ÿWñ°­Á,ÑǃX]ɺëC«Bå\º¾ùéÖ"|Dë 5:À7<–çþñèjöÙ=ˆxÿ2›xO;Ez´ ì.ÈìžBwðåžî„‘ôt9€ÀÙhx[GäÚ„ðˆèÃ=F—&<A¿‘WPêÈ,¿ºû(•€ü%ζIöá­„¹îÉ~A ÚeSÜcŽò‡9¿(ëlb†ÕÚj¹øa#|ÖêHþYXaZ×[)41Ežsë'”<„@ô¾ ¨ùIàÓŽ¹ŸY x æ¨A?ïØ£/Ù®{l7[¹%})ñh‡|“jÀG/™t™Ç{ŽÆûýÿïÛUéÿw"-ÿËîÎnyÿ¯â¡‹WÖÿ¿k—ú‘þJÿOeÃ{ª1$¼Úüß„‹Í›˜œåwžúÿwm»þÿÝFÛ ÿ×þôÿXoçùèÿÕyZPÿŸLÞÓÐÿ;ûü£èÿÕp)±Ž»Úd3|u·$Ÿ“ÒDðÓ›RL+Rò'ÊýwmCÅ£Üç³¶<Ý>ê³u¯Ø'ªÛw½û¾óæÈÞÔ‡ÃóÁ…]æ—«©²â(Ⱦ8û•ê~ë’Ÿ}"" J¡¬×48;WÚkŽQcÔëõ†”×ùs\ÂÆ¹ƒ¶(;*qãÆqûì½ú8™5Î)®UƵÇ#¬møúËlzCŽm<„1;ßGôNŽøùÃí=àתï 7tO1~üòú›2½¢*YˆáÎîá´†êX¬‚NÒS ÛAóHÍœ¨g)lt ©R@ÛÝê/bIoY+ÓΙDÊ2†ˆñ¬@Õ#Pñ†xǃJXqºÖ*o7ÃWgÕ·‰ŒJŸúcÕo±jéKìçf«ÌØÓ¸³°“ÀÏŸÔ1ाÝ4+¾û±¢ Vó¶R¥Cœ Ä–¸Â4XÎ:˜B#…feÃÈ£ K­ò– .oeÅ”é`“jÚÍøk±éÝIM›ýð´¤Í~¦¥Óšo±ÆJ8=£|¬ú­‹¹d7¬Šø\æ­…–³Dàé8SÇÌ À¼"@ °e↲F$Ódï $ãÌ0¯,9ÃkùÏÃÏ8“µ2ÄyÝ‘¾Y¦˜j+E ‰O|ñ+arøÒa‡7œ Ó¡VŸ€zHÓo˦.£§óR;þþ‚‰PU±˜I]¨CÎbÕª™øÇq6réÿ¢éÿvvB]ÿ·SêÿVñÐe¬êÿ¢8eÉ è’å¯fºi‡ª«Ÿ¡"0{’oÁEÆFp¢ß¡/,BhKîE'™5{h&Þ è‚`Ê0šdäßÈA}… þ‚Æý‹çÑãç8^DM¸6.…Ox5%©ž Ò2w”%¤r–Ò ©œ±ÏÊw4móÿ è—q¶òÿ$é'y2f5UbœÇùNÔ·OøÛ׆¤Î´žg§-Íå€U«†ŽÈ®üÐè_œ)Úl{WËk©­MÝ^‘¯›K5-æQMÓR+.Ny”ÖI;J6Sr@­3'2ù‹ƒ5ƒGZ'í®ðw©Fý=SŠZ”éG0Txœó>…/óý«Ç·sjÔéæÑuêÉÀ¸•:6¥uÄeõ¿˜à¤ž±¿ÖÈŸë²~­™ô2Ö÷ž ©ge5c'ŒCåHÏj2€ý¥I¦EA‰–Ó<ÂŒé43Þîˆ`K×ÅI iCKBÚ&›^zlTpš))i㲑=}m’ Ö¶ÜËÀ”ü°çRÅ?ª¨Í£õw—¢&/]õë¡Ý‹~í^úãÒÿÕWÿ·»¯ÅÿÕ÷Jÿ¿•4À?ÀN „v‰›¾ÏÝ ½;”ð´jñ_ˆpO¥Ä©8ôª'¸}OÆJ•ø~G}4û<'*ûlÈQôSš•\"Aô¹0*G‹‚¢ꄘYOþ" â¿ãJàmžDÖJ((Á¶qSlÿª]Péùc;ް,žxÃÛ[¬,†‹¹€T»d±û·´‡näì)«é4û³•GKâ‚«*.G mfm ñ ¤‚:¼¾Tc-²cÅ@¨ñ[§ß¦ÆÖ ˆÒT”6ûžÞ ¬±K×Å ŸH‹F‹#Ÿ6HÛˆO…¤HxL´UÑ„ZÓt•ÃŽSåà’ÿ÷Wÿ³íìýWHžíú~´»Qù¿Ìÿ³’‡® Uþßý¦´àH%© ZCöpqöø¨×#›ýä-ý¥‰ÿ’•ÜôŸ—ú %2ÈàÊ:íR?H¡Cª""ƒŠÁÀÀHSaœö+ù"â†sŸK¡±«€êF³aC®¦“›9‡͈ñˆ1„m¢¬s”‡*t±VÑh$!HÓ/•Æ:Eµ‹e€Ç@»/L&NÍ‚`ðpdhÚØØ =¼}MP„#íá¢H$ íÊãÚf‚•Ð/Q” xÈ“‰k–&’ïšF@ê§EþºcèÞñGŠN 5…o&S:؉p9ÉäE@^â¾Á‘rŒCÍ6§JµÌáÚCÒ+“Íp.6¬V6Öa áHËïøÝkVú¢s܆—ïÆ“ßÇAex5¯à˜¯oÀ¯d6áçÕú:ùv=]鳌€.)ØBè p5щF—u¥< ò"k'y¥2°>`…O„Â|Aˆøªøqô]E:ÐÈÛyU4Íl=0 ²„ y[äcŽÐ)u”¥ŽR ¼¸»ŽÒäÏdŒùý˜ô‚Â}Înü:JNg‚—ƒÞÅQS+Ø@(¿Ä«¤£öi2¾¸‘®-Ö¼„ÉÍŽñ| ¥—7Ô¾NºóÙ©+—¹¾Jc4¥»ktlÎ4º¿]]ÿÉXï­ãc· ¾’.±ß³‡ˆ`G (\nok±z` ÌÿÆëÿ'¾7KàŽ,Š+ðú»žÎfdøIXÐ:€“Ð3¹ÿ:žrK•+"Ò «®lq5ˆµ°So¶ ÿÝðö^Ý59l?aŒÉpòÍŒtMêh_uOºü'»Ê”=».±[}¸¡÷‘Öuo%9µ¬Á±/ ‹L©·©½Š £Ç{|{No<]ð²hÝ B_çN‡¼´P…‚¥wÙlUQ³ÄÔód´›`}>ÿõ¸] g]"õvà×âõö)ÁŒKPë³àÆÕh÷mèy¥ŠŸc?êB$_s…Ãï"ãwöhË4}> ‡Bþðãˆ'4JJÁ&‰ýðàö9Ýœä%n³³&ÄôaÖ…ðU¿vx¦©÷“üJã ®”I0sàî—G&Š3êÔÈ(c’IÞ$»@± XŒAbÀ¢‚ÒžbÊô8+òkpti38íÉ[±¡ÀËL@øhá~ÉPQsÁ›Á¬ 3Êà›ó`¶éó8Ð×>ÌTZ0žUƒÃ¨XU]©*Þ2‘¡çj¿qH_$Öª <5*+Dá$ðkG®­ëBEy{Êí#õmcgdYéÔ¡Ë{7²î]oÅT}%“¬ó} ì©í@òÕže {=1Á5q™¿ÕOhz’™§4°cÂTš7ycdOm${îTh'YlæÕfšxBÊR‡a)»©¤ˆ+&µ€„–Q–‹’’Ú+Vq")§0By’ßö,FLÚuª§ËVÈÌB®X™›üwºé{‰º·'m\*(­ !kë´|IK7™>…²ÜÊ?Ò éý~¶ ìý§æ(ýƒ>.ûïËÕØÁò[â?>ÒC÷˜jÿ}Yâ?–ø%þcPâ?–øI5%þc‰ÿ¨ÛqKüÇÿ±ÄüQñ­yBoÔHÙ°ò!Ê8 xJÌàI`¶JLöüH ˜‚z[À48L-ìE ^Öð1µ—K˜ÌòybUÿ{¿²üßQ¸£ë÷¶Kýï*ºƒ%ýïów€M$ÿ‘ÿ_À¯Çäøïÿ‰xB´øO&ô9j‚ªÞtäϧ“ ü…üó_Úñ/ñG•”X2åqYþÖâ°¡C^q"(ÜŒ‡Ÿ¦“-TÌ1®¤k†z(úf–ã…§w¨6º²d:»IPlúÌö\™S­Ô©…š>®2!ó‡«Z<žqjFž_Ú ²´£µâ®û¢ >|ÍRzÑ>.¢¥»‡Ûûñ—Û1¨GЋ¥À‘8Qí8$JÒ`©iÄEÚŽsðÄ<Æ@Ò×/ÀWÏÆÃɧ8¸4Á¹X”vÒxQÈø©~ÏÀ\ž?òÝEÜl”¥YÝý™4éÍÎáH¹q´[Xîó Z6 þù:Ã?“*AÈïòîþ*c¤Ž'÷£u'¿¡ò*¼„ýx}+à¿‘¯noƒáí×á÷9¸ÏHÉ‘¤5ƒ`¼þ#~è@Ú†p)5Is@ øþ‹•ÌFÿ~ÏF7?,nV¥ïœpd²øÕòÊp­H·Ê#»½£hž/#*l«…ƒÍtÑ©½Ýè˜3>IâÛ­Œ Ö4 é€þŒ•iè°IùüšM[ªö¬ŠÖÆe÷=d“ÿ­Ñ]\µHc„A=F´ù˜÷‹ͬ/´kڥїïâyÁIxˆ.”‘%U²Í…8=•üÎu‡ƒºL뵺ý|Sàµ[&wÍ­7G[‘?’¼¾IýY‘ɶÖPwÖ±"¥†Øƒ»atM놦€òè·ßZ{Ò©…‹õ.Öc™R]ŸQþî;Dæc˜Ýèã=„㵓e†– b¦Þ³°:ä¤1#x-Ll·pi«}¡jWØ¥Ze­iÞÛ­ª4X1æ¬YäbEáM¡°¤K§Q*"¶Tc« 3Ü2Í0ï%ú¬’ÑÄìæŽ ¦ÝÓFꎱ+*ÕViRïM2{;†Ù#‡ãý BéÔ”â`…Uæ .ýYù7”ôôðþ×wqüZ$×ÑZ.*rHý|¼jb³ñ5”³…Õ,¿¤¼Â)•&ƒ:MÃ2Ãi"‹Ð²±$ â(­šÉ¡ìYéO$"u+ÐÑi‰>ÙfÏ}“¥ ÄΚ”ÉDK†™A‚ã+ª,Öˆ¤ ºN¿~_F—ˆ 9>=ÖŠpÊ„Ë#wÏ兀uª¦ÉÕhöÉ`n@Þ !Æ%-”Î>&KÕmRŠ!£¶:G&\+›%AÞä Æ5–jˆ¶óÅn³ €b§´ <£Ç¥ÿVƒÿ½¿[5ýÿ~XêÿWñЪêÿ#ÿK0”þßF£wý~2~ß’«÷¡¦ýOÕù/â>p{‡£’N‚än|¨Áá6­yƒ3ä.å•Ü–ï.ê‹ìÞà|ŒˆQM–Ƀ9¾¦"FQÿ†•†Å Ÿ°ÂÄ(JÔ¢FŒÌNÙªWH5H94×m±CªIé R¥a%‹aeÙ¾á«B_úµÙù·",¯U*Þ3ñ?µÂ=]ÅþDrÚ¸P˜-§ý ¥y»ñfðd’ÚÛÝx v# õæM7E/ÔSÜ„`¬Š¦¼ðÑå° •ÔÚ{-ë{Ëô^ºÃ¯rÀÓ²T‹«Y—Ðjxä4æ®kbô¹/ý+Kæø ‰ã†¼ñƒgêëÒÿì®Æÿs¿øï²þgg»Ôÿ¬ä¡ VÕÿì:õ? ¼C ¥ŒûÁ‘ß:¡'ƒé^ N(OÆ:Xc«xo¤»ŒN¤ªç˜XÀÞáýïÝ«Õùà öNŠfDÖ’kÁÍý!@quKàn'ÓÉF³éœÃ¶‚?Í_þåöa„Q"Ư1¾TøeQø•èô%:}‰N/E‰NŸZ_¥% ûè.3qÏ–Ä[Ëž͈xZùѽE|‰èîk\(Ýywâa{.ðîwüöEÀÛÈí)é]ƒ¬˜íZL†ØîƒÖ®c¬gÄi7W I-×±ÙÅ•92×f‚dχǞ©SæP ú]1°ë.ýТj¡d¿ìY×Ý€éôxLO`cBElÒ¢š¾”¥Šyhtw@ŒÚhê«ú»‘‰à@Œ’1Æ(ÐÇgo%$!…G0HÄOük¨hòš¿0¼½iœ<ú8áSqó Õ‰)¤ÃÄL}BiG&a8:~/[:™ óžý­.ìr¯‰ó™a¯¹âè“c¯]<î^k·×RCʰ×.žã^Sþ6e— ×ïfrÇ I$ø‡O-Ä^6gŒÝçèŒñÍÿãóheø_áξ!ÿÃ~éÿ±Š‡îÑÿãäñ¿.ºísôWàxãÆþŠ?)ú~pð³DÁØUe,¦ƒç‚&e‡ê+q/ð#üû “{.!ßëd4»߇–©Í’ø‘è Þ¿º^ÿ´77Ú~A~»XS0Œ¼À¿‚ ­a·w[5€p3‹@öè†Xua„Pwf…v)¾p•ƒŠ¬"³ocX‹ÐMoçÒKà£ÈÈÞN¿Ê8R_†3î­"V“Ì]2€sÈ\|5Þ>f‹í½©ë« j}¤§ž#Uާ€Ë$z4œõ–*.xl}¹«xæ6PZÊ”šVžš¡U_‰àALpYiÀèÚ9&TûÁŒéM-'ê QAÒs1(ÅÔeˆrêQȲ_5f5² öÕ‚ “Fcd˜1ÚÒ!lž;àÉ`›òˆc¾2YÿOŽXP’& iÈ.ŸG¤£h×»c0ûŽŒTÌŠè~w@#aƒ$Vx˜ ƒËõôfƒî)ÃÙˆ;³J˜h¡ š•ЦLYùSflK b2بØãchZ` 'RÙ€£&W>ŽÊ éóøþ;côp&²lÉX?ÜÞÒX.òá@âb¦8â`e¥ëAþZú2›Þ¾°!ÀjCªø•Ü ëz«¿Â ÓÉ]‹Ýb×0K¤ö@ú#‰¾¦ƒN’†ñT²;ü„ Д³GßU¹@BÛi4*ÉÖ. $Q°× AÆL|2÷1¢.L±}²ÍZZMÌOM:ì¸/ù½–d&†âŒ×Fín²î_ ¿×˜F#ÙðVÝX%é-Ù‹35%VȬf§Á¦1%²×(ì˜F! ——lƽÒNG¾´’Ó1Y3«Å±J¬è, >®*4~H²Uÿûeuù¶w#Mÿ»[êWòÐ-黚þ× òý¹4»ÏI™+èqÖßv}õ·pxÄZÒR[ªqŸ¦·³Qél†ë/t¯{‡*·*F«°•.¾®¥_à”eQÎÚ)sjg³ÓfUçê:\I«ê¥ÎµèpÅŠüNU‡ÛM4 …kW»¥vµÔ®–ÚUœ1—v•üÿà jXÙOîlä«i_+Zãjª±Ô¸fÒ¸v ×' l==€]žYfTÐ&íAš†6HSÒªÓ%Mšøö…ü³I5OL¤+ÀŒ)8žNoÀ6î‘1èBYÁ«VTwó(ª»™Õ\P7]nuת ìên ufÚŠÕLã‚Ù–öŽ]S]_XS}z°ÙÕËúrŒ«HQlêêcaÃç;éX:Â%³ FûÀ¤ÏÞ]XŸ cU;U·£eÙî{¥Æ»xw÷GÕx—øØôÿ·ÃÏãÛ«b )úÿÝí½íÿ Ãp{gg»úÿ½2ÿójº¿Eý»qÒj7+1ð÷zP²>號©¸Øm NÖÿö÷¿ý]4 ¾oÇÀªÛ Ûhø;V”Õ0P­UVÃÁôRú&oNø9rîWA ;%µÔ4ñ =¼¢ÊÜÞ˜0P?sÿU½ ŸÈê¨RÓÂßÙç‡Ã¿Æ7Á¯Á?oîÿúÿ®ç[WŒŠ­ÑÍÿX¡÷ÓÿLƒ“ñÍ0øçwò«­ØépN:ßn¾ÿý1³•;Ü N6þDd–Þ|f¿þJQ~ûœuÛ­ƒÖ 耺Và•á:žqæÉ~É&æ5©Ç§ÍƒZ¤ÁÜj!^fÌ(”Åö(0 {+Ö‡×qeÅtÐùàŒ¿' üœ-b†ð‡ Q'äR$¬l‡'ô'ÒäÙ}øô™|3œç•Q°±Tê[»uÈ Û¸¡ Á»U‘8¨Cj4ÁW£ï/xC‘j.HP£^'¤x…5ðuC¡€}ä8#чÈu£ë1¼FHéòßaÊGß>Éa2ºZ¾~MÌxJöÑ„J>ÍF¤íâ9B=\¿  † j2ÄW0h\C ôóÍð~Üÿ‚ÝB>â"’‘ò£E;ˆV¸·#¡stf[ö èdlbÐ"ì8@&A-È“¼‡kìópС–1Ÿ¨NÊïCy|) Y‹‰-íï"\#~g³8ý=æ—Úž¢|O<÷ÿïz¡¾}Ä: qò&SESv!§˜S¥$ž°Ää¼T†Õtr±vlJeþVñe–ð³ÜÞA ްƒ‡‘éïùv•-þd9plˆyÙ†B@ÌãCÑT‡¢wÔh[ÀÓÆA[.ÙÂ|oOöxdÌ€ŠÙFFTä#cJnœ2‡x|€¦GN9¯ƒíWpµ’ÃzþñáuÛò÷á+²óÁ?ÒãôÉñ†ÆmH¥žŒûÕ¬–ï˜ ]¨Ÿ«BæâÝ¿ý'P1þH)~ÔÆìf©Ý&=¤G9Ón€Ë Í>öñyiG‹1i%,XŠgpV ­jÐS>?Sþn%žós–„o'¼WDBû²E~Ü9k\þ~ÄÀ$Å«-™zê !ßlš´© 4 X}£Ûí_f®ž]6ê34^?1F ÞC¼ùÿóþ–»}ƒ»r|ž~%Ëhò^±äk•—އ£*Ò^ ú­G¿jVÀŠ0~ä’”^‚Eò7É/×ù\ܬQ-é0š¶‰èsC~|Íî( *Ý¿àÂ2BxVnÙÒ§ÿ&¬¼$¬øM„?È9Ë>€ßà3Îì7à0 ^Tjau{½ZÙ®†ä_òG-Ä¿ðýŠ|Hÿ ÿ’o^HµDb-µ0yc»*UR‹ß§•ñZÄÊZ_eªh}[»Õ­]¹FQrÅ5,!þB~¾P+´.ÇoˆÖjêŒy!H3|oéSÕüÈŽ¨í0 ™-€Š…••45f1(²e‘ÕRW@ é8‚è‰^ÄääŽÏÀy"„Ò“’kÚ[Çd…Þ;ààs z‰Ë\Ó‘²Ã–k­°euÙÞ‰Ôw€©ÁW:¶WvôW.S^ÙÓ_i¦¼òRVÂ&£ƒÌBKËåQ¯ÙnTÖ˜d»V jðŠ †7™k¥ÑÇûˆ"Ù) å b} ÕžŸ1ÌwÂz$¬Fƒÿ2äÿ1¹”Ѭ "ºÌ‰Xk ïkzøŽ& ÌQI7®iþðñ#èd*_@Àéà¸ÎWå™@åá9‡Ã©Pö'éÏñî„¿¡`K.øúü°BoK9ëöodˆ‚J/õ<™ÉZògPyOúÈZ?Œì¡`f‡ê*›†”"Ü[ëoR16zoØ O¥s«ƒ•n} ¾Ž¨èXÄ„•ë¿çJ·9á]†ŽÈáýû,óÑï„›ÝΉ'|´!,v~ .Ñùo­ÿÞbñ¶ÙÑŒxx«&¡Ã°ƒuZ¥·Üú&r²´fœ¡¦…&ëZ®Ë¦þlð:ZBšýXxéoÍÞýÈ}‰òôEÜüêb«¥ ê“ùø,¼²´aP±:¸PÁw"…bý2XÊEC9*+̯‰þXgh·T¡¼n\êæ5Õ´‘Ó¥9º6ŒtâµYT»°Ñªšª‚ÝñÇ»ÆôÞ³ŠRäMÚgTt"ìrâ$Žë'’Ö ÃRo¯ ýØ!ü ù…¬‹ZïðÓ P—Èæ›dùÄKB>*{óK‹î=sïäÛ ÛÆ¸=*tèZëlH=7UÒHÁgÄÂ]Žž|—Å£¤´ÿxÝþ;þr³’ø¯íz]ÿÚJûïJº³eûo«{XaÞ—­(¥…Ï+ÈËäÑŒ}é°îd‰×²ZùTá˜óKw&{®ÚWÉC®w‚zâ¨Ìu&äC‰‹Uã$8'‡MTìÌü‘fáª,%æåøjû¡~°÷7z„5Q Ž€´N¸sg”*d’…œIŒb]>ɾŸåÊ 71¡Ò¬ø5ZßÀ•#Æ:ÈIÁù¸Vâ]¡¤·0Õw67f2'd õIi¶Þt.@„ǵA¿q|ÖêðTwöh7ØfBEô5^v.@ïóà›Ú—Üs4ž\Ïh~„«Ñý×ш¤ÀÇÞá£o÷Z·øä%}ÿ2¾æúsì´ðåk°Nmjÿüß0±%ûꆋöaCzÀÉYÌâƒÛÁáB@¾lù¨i”ªè$Uhqw®* z¦ c’FZúè RN–!Ü~a•¬–Í~úUˆ½Kšš3¿ˆˆHߤ3´¼¤Œ¥T¼¦Ü’"€²½À­wÙˆ9=ù&Á. ¤N),W *9 g`Æìåôýøˆ1Dq€Ç©;cG«!O\6Pò9LÆ×œO`.è,Lé®$îÇø9x Q²D”b¬¼A„¢d“F/á‹_yÛ¡!³¬?ý9D;ÿÿåþn5ø;õ] ÿww§^òÿ«xèr—ùÿ.d—½Ü™h»{ÒÀ ÐG‚+èÑ aË,Ož_~Ãì úD…‡"x¢çޤ2ÅKÒ„¡Ë"‚˜.,©ž„¿Ù_x! " |)A_Ê“5Â"H„TY]Ðãb×c¸R1¦â‹UÓÌ~4ý‚‰ˆÉªø<œóprˆ Š'±¼z o¿|’þÐ,º›ÀÁŸMZŠ2´ ø}\ Â-ejä„o±Û[Uòm•}.ÀXAÒ!0/kÌâñ©WÉGˆƒ![µã &N`Ȉ|¹U…}”‘¤×®Ô—2@=Ð|Ú)¨™+ùf‰›$~ÔÒ‹Õ˜3 7ùtÃ.èpE̘In8£ël‹¿~沞â•ö` 3Ž&U±ˆ×%Ûj>'K Em\„æäžqÿÊx™¥fjÑ—kúHizñüÉâ —ŸIˆ/&/¯~D-3£n§r´8Ú]3fY;pm±·ùÊ‘O¢,ˇŸ[rVgˆ%¹³¬éз¹¥FG(ƒ¼x_gãû{"³ÆIfñ­Ñ·/äPõ0Îc}™¹¡…I,\õ„¡À0b!ß!âNTePŠü¨§Åâ8ØpŠl‰wš(UÆóOm‹æÕ82)»Ê£8å¨xƒЖ*1Xf&˧;4¿šcÙy’CN_Í”Qn6ÐW÷£¯ÖA'Íæd9ÒÃbáb‚Môºc¸7Ľ{$áYÑ„tª—±ÚÓÉ稃°g¢À#S«Uòû&K ¶'åT_5å ËP#¥«?~!2¶OÛêmuâ¶pkU  w¬øá9°bZ;´éŽ­i¯lf¼“ß%[~$R*[•-JeËoDTþÎf2­b±ÀžsLJge+ŠËb¡Õ®³çbãdÀ_þ°k]X t-,²êùjßsZË^K}?ÏRçK|CZ¾éku‘õ-n+>âJßϺÒ_:Vºä]Âï´øŽ0^j9.‰Úâ—D¸½¤S+vçèÕµeݵœ·DÍsëü²øÖ©å¿%jú.JÑÀvKü’qïÀª³M¿%lË=õ–\mð¼{×DÍ|M¤¶ìµÖÃ0Ïb7Þ«u‘žrO„aÖµî€ôW½“?,è5¨².Ñk<»ýoöy¾û_´gòÿ#ÅKûß ºCdû9ó+÷U .ï»GòjÐktúÕà ­\oÛä¿ f´6ô˜VÿèèPF{{Ž…Û :H8bjÙ:/‹ &ôW£‹"@èð¡e8,Ü´x–Xu•W&¬yûJ°ãT²$.dAÄÈŠÏÓ)ÄÎÁ‹ f‰¬Ð`Õ2â¯BSÐNp˜„ Œ¶D‰À``²NÈlÍ¿ÏïGwŒ¨é— B¼öø5ب7¸1ì}ß`ccT$ ÷Æ:jÝÉ7'A%yG¯G¹˜‡}æHÒAÞ몾9¸Šš{ ¶2¬‰Ñýiü×h‚†ÓÉw±òÚÕxÇýR×,3êtu=œƒ»è¯d‡Ü_†÷ŸÁÇëúöáF22’çÛ›£W<ç6¸ ¾Ý­‹l ¯HS1à¾Z²{þJD¡'£8Æ`kžO DµC´d?iôt»î— 0èøZ3å5J±úÚÉ‘ôZ’óÀIãI×ò–…¸“¦­¼™ªþ{R¾ÿýînfK_ªú]Ë[ªúM[y3Uƒ)?0f À¯»Ò×–FM¹”¹©w=ÏEÙ~çYð]Û³`ϧÆ…€›ž®?z‡l=ÄŸòDšµzÂÅdHP‘ ©BŽ»¯yq+œ4kÉ:`ÞÆoý#Æ0$z$_ªNð2oþ^àÔÅŽ™Ë`Ê „[™2[\€sùtrûð5¨C¼î¦¢‹è?‚¹êA!yEøæÃÈä3±Pê déùd:‰;/v÷^t†«~‡œŽer5g•h—&7¢R`€›P/p 8¡ È+’-ˇîr&ù€d­Ô3cÈÛvj½úœ ñbuª““ Ö!(X¨WƒP×'á’ät’õÊ Hµ˜wÍ>çg0¤¸¹H N…$G3Ò¸ÄéÈ n$LòïYìõöb¡Áõ„¸-YíÕúHÙ¢×ÀˆTm3dɉ =»@ܱ¸g†v½*ÜjÈ!’{«ªMð ÄÏ(¾[¬‡àϸݱWŽr>ƒ§¼PtÂ`¾'ž ¹‡·÷ëò{Ñ+{ÅøWÅì9‹N ,7(É..Ã:J€¬+_¹9cÀÀC¶÷ê;NFÁÙÖËŠ¡¢½mo¾½Ø m%»¤$ឪÀØ%«#yW~ñ<ö摳¼Ÿq¡Bv„‚ú þ;¾>Q‰Ù]”ÙÀ“=¨€µÆïõµuôð>‚ç RïY…á`·[ dH™86ú7Eš›]ƒD*:œ “@D[ Ó/HîÃøæR¸s™Vz“#}ÒY!ø}A–ž@_ⲃµª\ žN ?.m nX]f{²2_âd.âI:'YB¼(€Q B1âŸÇú™„‹$»N"z\¸;–s؛⨚†½iÈž„êŽ@s³çÚÑF|>"½§Ã1[}ì¨dì3ù®‚˜c‰QûÐn Îú€Oz6½‹âÙe²âø: žt¾°ð„ïU”º?©«ÞŸé(u«óx3hš2x¼éIŽšGk2¥,.rç¶f£sX Þ.î–_5x×ëWƒþû3ª"…9ŠA[xB†ŸÆMGÅ%8|•AwwZ Î]ÒÉ•ÝKOÁ³gQbÅ­úfM¢PVdÎß4Ï~…Ggdä>œÐ¿NØ_]ò—crÛƒî{̼ÔëÀk}úv¿K¼ÇJMw%ZzÐ;3ÅóeuG«Äu.e¼Ç³¦€Ç&»aÑŽRôÌ6â±­¦®”ªãÆ#ì º1x ªÌUÇМŽOÅ3žœ Ã.¹AóaŽРϦ_fcf± b­PœÔ1j†üiÔÛ›#ùܾz×3\»j¡ö;ûûm÷{ïÌž± †ƒF(ƒ ¥xÚ3–ã˜;—U*q(Ž f.‘æö£> B‚¯xߪwÏ­=>92wFÍ;­òÔ¾`ßÖÚ£÷b*2Ú9SÇhÌÝóú'PŸ ½¨¾ü¨ÓôYHUª…6ïôa‹ŽÈ³‹ŒÜ1¾Û«ä§U6a O(K%(}A6í Ò2(ú‚t K=mXNpX♆!±‡k¶ƒÀ0õŒÃÑ·ôY_ÆŽ>;bªØ*_jŸw².®} t}—Ãí1Ènê"èJÂÃ0B­CŠ!7æÞÒY}îu„‹±Ù_Fg÷2vvÐ3wv B.‘tŠ`»Cš¥GeP8Éâít?xý¯Ä.e¶’Ó’”ÔJ©ªsäÔºx'ÈnƒØé5‘xŽÞmE&7tаQ‹eò±æ\Î uÄBJ–aJ¨ˆÔ‹‹õP‰í³A£xÞ[Ë’ÕfѵfŸúÓà(÷ž{Jö†éžÜϺ_,ƒa¤™ƒÛóiG é¦}¤á"‹W¶6ä/íC.Žhë#œ±“ãðjúרŠ¡±h*$l‡WÕ„ž©_Â[|÷ç °ûÿß_í¬Æÿ·N~Wüÿwêû¥ÿÿ*ºÜeÿÿAs‡ûÿ·Î.ÎPÝj0µtR\9L,ÃÎÅœ!ýÁ³÷ó‡NÐaPËxû÷ãpò!äÃ'¤ ÐáÂè0ÓqÌKèWn÷·'SHá†sRl¸æÉ6c‹õÕzfQ< êõ°‚P&Î1U¬Ã;[ àˆL¥ÜNJ¬Á`oLxƘàO2í7£ùõl|0 aœP»¶ÒýÊ å­<ÞŒÌÊ9X »4úTÎü†·³Ã©_`®Tuîƒëç\‘‘”2]¹Lìb_™îÆë±ó¸ñ]tN=_%,ØØgÓáŽ%艋Bû×ñ YKÎ>ª>‹)•S¿âŒ•ãÆ+Oƒ" x<ƒ”¢ÓÙ]J <“i¯ÇîBù3³"ßÊP€ÉÒIìO) ±º'(¦8Ûä„J¤î@æÞ;]Ó§,â{œgÀ#)¡‚5A·†JM+Ì!Óà²É¸!nÆs2rW±GoôãaxU’³XG|Š>2nTÿ¤×ê¼%·ÓQ'¾€Œž4´ âEE»‡Ûì ü;¤øQÖ6 Ÿ¸£f•ÊUÍà7§«ùԙѬ .Ç­^ ÝÕ^~6äþ±÷ Ù8>ü ÂãQr¦7zoÈMÞ?#IA®9® ;š¾_-CºÑ­vX¾ë Šð"¤‘ñ3ÔÔ’›cÎ]e’:ú_ùÁ‘Ç!'@žºô6!/èÜòó<ÊÖ¼¶½‹£­àÅ">>ýøËÞa"tÒ,|û‘æQˆ©ãa“mr´uU+@?}l7ˆx½•|ˆÿPwWð,I áàbtç¿€—ä/Á¿æ¹ÂŠ ïâh‹M˜Q¿ÉƒBJ±ð‚o I0¾'÷öôÏyp;þs|­Û)Á G&fªÂ±¡Xÿ³éô^е ´ÀµLÛ‚MÇ78øñ–aÚ?LnØ__fS2Ew‚cUÀTt1V¤µdê5=<7XA:ti}f#+!tW-m©œûWrå‘9¼¾Ü'ôbìþ¤xã!³Æ>À[ûuP«ýöbÚïªðVeÁlЖЌÈ*Ç¡’FWy΂o„µåÉÐ\¦äÄ^ì° b¤Ý^ìm%†ÎQ‘Uk<[Ü«Ä)]­î>æ4qaÅl!r…ò²BO r‰XqRÞ¶>öÑ…üQ¬­äÕƒ¶ŠÐáI¶Å%ªUZ·VŠ5œi5X(Íü¾@ÙÕAz•ÝÃYvÙ:ò»¦¾1vó5=ê#³—úv䂸`ÂïÚ9 Ð»oj‘J¯¥ãÄDîK×Ëx29¨ååO'Ön_·ø6ÐrŸSF;JÊm\nc÷ÊöÞÆ¿¬|‡ºï\à¿CãB[ÍF¶˜Á(ă×F–ðV±“ŸÖ­€<õFy7$Kj`[Rß%¥CÔ?çÂ|ȆÚÈ&ßÃ)û¶]ÌÚ7^ÞkgåGé.eúýÎÆ´]°§Tf¼ˆW²+Ž¢]sDK  E'vÿÜïJ¨g§±›ÇÔ·îyàx Ìùþßúï«hƵ¥“:$àÕ߬Ðí}ÅaR¾ËݼRR¶ÈŸ.Ÿv¼ñÖYêŽw^Ui;ÜÈë­fGÛX§n*ë”ì£Ø+®k¼âÐÔDó>ê†ãä”õj“iê¦2M3,7À&õ˜9ª˜LaÕGµäsJ>Ço!ìz_›s+G×I[è–ì±ôy\™œW^ƒÍŒN‰êëï"×I•Y»dŒæ Ü܇¥R/B–¨ü‰7²8JéºÓ¶ŽwµX•YI³”Mîº<Óö´ëê\Ͷ16ƒTÆæ^Fs\¡ðž³‰ä33ŸÊ±.W¶z ¤ñó½>œë4ÏZ3üÁâå¶b‹ÿ» µ¤:nš;?ŸãvAËÿ{w5ùŸÉ¯á…a¸½»½¿³SßFÿï°ôÿ^ÉCwêÿ½+û?šó÷Ál8þ´®‡sêõ ¥î¿Ã¾?N®?“* ñ"ö÷f¯_ßO¯ um´½ýÒÏÝ;ÕõšW©>Ý’Cw'rN´‡¯÷n_o¨Äyãnü¾Þ™=²Ñ×›r¥kvéš]ºf—®Ù¥k6ˆT×ì\¨é‹ ùtëd¹¼¯ð®.Ì«ºt¨.ªK‡êÕ;Tgð›^L?e7=gÑ$»M.’JVVÃXµ½’êEµ·¤«hG÷×FâtcK¬À;'´[l€5xI»â*­* ÐÏ®ÆJ«JÃå³.ª@ë¹Që'ÏžAßgȤnWTšÔ|†r“‚O&LWíèʯÌÛ-•y«{ú¿ù—Õèÿv¢(Ôó?î•ú¿Uƒù$ß±¬ë5A`Ïï1Tý[O˜æØŠ-wªXžæ·÷laKªd\ˆs²ˆF“kžŒÁ¬¤–!aæh!¯Ï¥ ÔöÈ”ÿg4›“³$Éõsϳ—¤¤-aTßçRN6·§3®Ÿwä΄IžÞ€¾³r§¤4Y_¡ºÍp´½wªÂÈ×Ï ²]EI cNsVŽSò_‡ƒj›¬Iíî ¤š…õjÐ<4ì}@èÀà ô d¹´Y†ºsúЮ7bßç×f!F€U›•¢ÐpÁc•N,à 4ÿËáö&Õ¤„û[tæ‚ÁKò++  ÎWøJ _ BÂh&eè$ðR¿1=Çp¥ Ç&œ‚ *Èç2à÷‘}zþE H–ä¢dï×t½Áçä$ñFq~=ÃÑ­A ‚˜o€Gs+(P軤®¡cWû¬ìn_7‰Ô,¨lN¡–$ØÇ€d¸[Mò°±äÃXß +©ì&£XPÖõ"¤5:òbѨ”‘9Ûhn$[š>=Э…M”Œ6nÃ絿iJß`×É?µàÔR'92÷ŠVbÑž¥jR¤šÞ÷oEÖ·RÈ’«©/Z ,5ôcÄ76Y]ð¿­7ƒ­ä›À”k@h ßÜÁ2Ô€°½¡Ô(½¦y¥Õ£¾¯¸k²cÓŽ¯¾ƒÛÑpR{ø‚÷fs99|>ªw%¥'î]8o’Ï`ìNa˜Ìî·å¾Yá¾Á/ÉwõäSuÄÓet½Îد6—¾©j©ÛŠŸc#Ø6’þf-Ó&²MhÅ¡‘®-vÀÿXcÕëaêUj”p´«TI b½8w7vµ S AFÂ'›ô¹Þ‘›®½¾ yjj§›ö-é³76]{ž5‘qϳ·g…çmÉ+ZøÚ•·t-®-û™¼»©oU¡^Ïíî¨ÍÛóá©[²/ä¼=7õÛ³=ØêÔ̱0åžšXÝž¢'ðfúM S—ÿ&ÝŒ‡§ˆUªÍͰ.|³êoŠ­fÜjø’yùDXoÚ|£Ÿ¶@yó¶€>_ÔõA¿[ÚûïqÙÿ¾¯ÆþWßÛ«kö¿ýíÒþ·Š‡n<Õþ÷^¶ÿaÞŠŸËˆ]^‘%ÛÊh|¿,s Ùôg4SAE¥éo£4ýhúƒ½ÐI5ûU¹WšÙ'Öa·é¹ y*ŠIv~>J1å‘ù *‘˜n 7Úàâ—¥að9[Õ ´ þHvÁB,u‚¦$¶3>uݪ`&ëc æ%•Ä3j›lѯd}€LG«j0LòÅ’äŽLÙˆƒlŒTEÚz6vD2>-³F§U‹øwMówF³FòmdP»à·aònºn¤U«Cñºwñ(¾“U"4#)S„úŠVª.«D’:}T*¶:xû•JaÚɖŶ×z6¶½§½–a|[é¶¹–Ë6÷Ðg#d MÜ´ eÄu97AÈÉK–/~â·ü oÇí¦éùàš´„-—=ÎwDy…ZäL¤(ûd¸ wíä½Nկ˹cº w3_Š-‘æn=Û¡ã,Ùtœ%øÑL‘|k;K6Ãä]ý½ —˦÷½¸ ÷Èfö{1iF>’ú\G-¥Þiq^ƒ¥Þ¾åhÐRIç¼5«]ëYížöj¦gkª­­å²µe¹³–v3&u9·A®›ÑôvÜ®ßÍh¶Ÿµ\ö³l7c²÷˳9ì?÷W+±ÿìnzüWXÚVñÐe¥ØÍ ƒ52$Ç¥Nó“ [Š{xÚ‡äkÐXývÞ{[ zôKÎýÜsÃX°q›’èHB¯éÑQ)ȶ”ÜóÝ"xŠý©Ñ¬0Š6 ™{³B&o&d¦¥MÉ(%0ù¢]j< ¢Z¬ Þr DZ `ÖPhx˜Œÿý0ºýNí[)ÞË—ÙôËhv†&µWÑ&…j~4ô@ùÑ ×õSUzÃâó(˜TV3’Œc6$±æ±EŽÛ¨à$V°4ûn‡œ ÉÒ¿Ÿ 'sXiI棕^D¨êL“ÒÊ÷ø~`ùò¾<˜Nþxø““´Xyü±Îq‹È)¤ãé]#ýFZš"²4ÉÒ¾wLëáÆårÆùR‹`'pë‡J1DdOÄ:àH8ë¯oÁ™bʆÁ†–d?Ô°C¯ P·ùYêÜ|‡@\ó‡+áoÚ&MidÞAñ¤naóÿu;^šŒO»'9‚u缉U@ÝÄjܨâ1ub=Ç3r>¾=$L1‚Ø‘^5š„Üöè>ø†qÈ0íð›jþóõÿ|=‘–dë£`ù€[¿òçÍf¸9®ýQýŧÊ~er7üV «Ôþ¼Yÿçë1©ËVQ›VׂKZ¨è|ýn<©Lªl’êbƒ*Ú|U:P™3V{“/ʯÓÙŸsÂÒ‚UÙ7f¦£ þj½+¾ª]çö–‘¡WšaDȺ À‡ëkÂ7}|¸Å}(ø'¤µ½jcj#×î?“¶éU|Þë9 Gò蹺+îqÑÕÎ;GU@J©ŽzNô2­*a™Ñw™ª/wÖé‹n÷ˆ+¬ Àó¶ü€@ÙÆ1—[çÇÇäß÷hf>=8¿èX¤í£Î)E$µ9m¶Þ Tk“ýÙ'}ªÆ®½£Ë®ƒÍï76¬…P8´Ž¡{´¾­ï¢íªæ¢sÌáj |j·}Ñ'¢=ü òvÐè…†YZ$϶c€?4ΗöÁ£˜]˜f;1¥/`jG2ª¬¹ªRmÕn‰_#ŽÕü+©ùà¼KÖ·C:?øÇˆ©í˜*zµ“‚ýßÝ¢\Éð’Èð]²dãg­Î"®´RŠFñ·à¾ùÀá¾ÄnRA †\c“K2HÅf#ËZ,tôe>¾E„¸ø³æp>J^ […¼#,yºÑ™T5¨s!ÏÚ ú°­F÷{‘× ê+óôæ24:‡ ‰¾}„°Orn¢ y]¼èùB’ÔoüëNüµ„çNoíø$÷0¾þ“Ibp½ >Ô¶ rF?1£e‘íoÙªÖo.'fáWdR-„ÜZÜ›]0„vi! ¢ F™6¦Á`/‚„­À`ÇŸSüµÃä8Ìᆠ6)xÛ6è jY™©fâ  LÈ;ó|ºS[NÚ–þ(]6ßTVSìÿ‚ø?_»fy(A$Nf•¯uþг~…õžÞÆL§E‡‚©©(’7ë¬e(ØhñÁã—:èTèÍ‚.…ªW°VK=¢JŒwú_Øç K±œ5 BåÍèv|…èLÎoŠÐ‡÷ŸÑO’‰Ú„ãÌ.oëu°GÚ:Kå,pr®@j£;°ÜOO¡ñáˆÇpZÄçk7ã¿Æè@˜åA\¶D…Mò†T%°˜ÉÙ‚\&¶Z9€©ü±ü3×™¬lšá†j:ÐWc=ÃQáPGzÊ~²q7>'Jä:QÔC‹2ë°^²nÙZ221égìZ‡zTª£CYg´°mH§l¶h£`±ƒmተn©-2ð)£¾›:ê!×ðC*DØò•ÇGJd=R¢§q¤D)GÊy%\N”-x¢¤ž•õ"§Å"·oÚAá·ší í¼ÿlùžýÕ컺ußÕ¹Ê=^ïÈ£ÓÝE½0ç<q\DÜuw|Ó~šM¿’7)RQ’®\=@­Qa¯4••ÈnÅ"ÉÍt4G]¾£ý™têo%[¸ÙÂù%†L'ÃYÓô/Pä¥f k Q7“(|éaNA…’ :cÐzÒ‚¸ñØÂHW/X´^Y®ÈxÍÄcÍ~Ù ÌJ-ÚG²ÝvŒÛMš²ð— b‹}²£Ði1‹¶e“˪'˜:ÇQªÍ È8Ç…Nð“œÝȈg"Qá!¢ oÑÅ=*À6Œ:'uvìÔÖ“Puú7(±S Þô ØG¼Nè—ï£ë}´#ò:ƹ>Æì}š oD+p*ÏGÚ™‚*í~6¥˜ûéÃDαÊTAÁd4ºe›`R&åUbš—×€*«]2"—#Ù°nÀ+ÖqgaÖ1rÈ7ðõNnw‡hÇ÷¤£¦PêÞH £f‹«“™+º—V‚ª3àßtæ‡Ö²PݲM¼—x³ØªÒ¨‰óŒœ'|Í#êyî”=ï‘Æðr¿‘޲´×(»9Ùø|uŽrÚ±±k=6Àï|2¢ç¿zlÈ×hÞô#ÒaœûÊát#‰d¶9Î-pщîm¡2Г9´ªG¥Ç—34\1·¹¼~LûçoÉ;qR5Ì;˜Å¤ç0º8^…3óÔ6¨ ` ÅIUÿîY7ÛžxGU%ÔÌ_ÓüVN*Âëyxƒ—³Û6Øbî‡#|c1+ c´!Ì£¹xŒr¦vÅéoÀŠ„1‘ V L2ÞÝîG¨@'² #Á:4$¼àøÐ&8g»ÁÙ4)Öèc&éÖ%ÖLÒz´-•°ñ<”4ÃÀV”òE†Nw¶ë6O†CVþ®èJdܦ?â-˜æÅ Í%`iôâ$#³ °àû š©ÁD£pºÈV‹¯6×>;ͼÏS«öÄgŸ%¢‡ g“ÍæZò>̲¯h¦´Mµ¹ÊMµ“iSé¾”M•ê3oõ¶aj ˾•aÙ—ýR,þ·’sJRweãÎ)ÔŸòÎ×Ã$©(—«I=¯E¨pWÑ㿞1€¡þ\¬6R'"néPâ!Q¼´nЗ9Ç(Õ/*°>×q²~ðÑ&ÿ¿ !Riã’RA ©<ÌæÔåyôíUâéàEÂõ¿€÷ köÉ+ÁítøBà‚ “|;¢±S ®HRÛ‹ãëVÒb©˜…IäûÁy|x Û~Ú‹Ý´<0+•  V\‡©è3È¡œ5ö¶Yl É)ùƒ +NÇ&k¶Åï%ºÍ-ƺzSÄ:lN‹é7LÃnÓo¤·q„waÔ>“yLw,Ʊty(SvHÇiÄoÇ_$?C,³¡[±Z`ÇmuÎ[,|áÌ­uÖ LjÚöÜIM±PòzÁÐ%÷ŠЇŠr¹3·!pl&L‚‹…Sös‡3Ò Íz'k$n}ɽã]c.Ü Õü4qö¶#ÂÛI·jI¤#ƒšy‘A]øŸ_Vƒÿ¹··jøŸ»û%þç*ºxTüÏ®þg£›€{Ú÷@‰úùt°>»•P>»ž(Ÿp°>wåðžÝß³Ä÷tà{–ˆžÏѳÑezhv6*"£¿ˆ2àh&šì¼¢’û×1¸{K½·ä–"¯`Ã,DúFÕÇð™°$$NZZ:XºÑL3eÎ_‰ßŒ”Ín¥òG-\ßøãøŒ ÍÂkþÃRC{­ªDÅÆõU&µ? ­ô•?p¼ öš äIñ7'*.¦ßLh3 ªªè2¬"â$m 9rj‰¤Y"iâ³R$MŽ¡ ÿuŽ. žæ)|Þ&ÿõÈ—V—ã€åÜ\uSÞL7ѹÀQÑe5 H;ÛHFò¬[U8{äÄìî¿ÿ´À8í½X„s‰à›fÔM®iŸ°½s2Ãðï›å`oœwNß0 ÎÕÃovøÍ}~ÃÛeüÍ—šÖ®Äß\ þf>yðÈÈ™ %½̽ì0˜:JãÊ`0»X·®ÿá¢ðƒ«‚¸Ü_âRGÇM‰3ù ^¢š¹f¶4u!ôe3ÎY™ë’¾zÊ^Õl.H0ùg3; ¦¹¯.`L¤ÅLG‹y æ6ÃÛâ8øaašû a+§Ü¤—.s?\fº_ˆ 73†_`/ê[j1\ÿ9™~™Š}…‚Ä”l¼"b@LE'vÈ* ¨àP0›’k¸Äf¨»s¦ï‡muxAfzìixÁd²Ý൲x˜÷‚é?e/ì/º| 5-{!®æxr=â¦Ìkôz°.qrØ20 (ÕÅ{÷0¿mPȲ”Ì ÁöE7Ǻ ØøÆ¿š¯ÃjyÁ~¯ßùыʤ­¯o|£ÎUÿ!_|ÛØˆ\2TƒÈyZëS¥qŽÁP ekk‹~ö´:‚_G@ˆaÿ'eø¯ÿ‘´3¤Ð6þKÐ_5Æ0µÁJ°ÿ±ñ«”Iƒf$H±PJ ($ùåLñT$2œ_96K9ú"ë†ÒY‡zB\w|j&)}âœ™Ê l ÿßÚÚRÇ~1Í_Ç%X†¾J5˜Ç"©Â:V†† 5¤ u˜^$P¦£D—ÜÂÄDð%Ð$ª}¯KP›i§2X§uÒPѸ’*…9аÀ –²Rz‘4ëÀœÖıÝðt²¬úïòÿíg´þ]çÏfz)±Æ´sˆL=­Ä"î˳TÜtúÉåw¾aAqô;4’Î2•Ѫs¾™Ù—´‰ùÉ® ?æÁÿƒ_Wö+þZ#ŸÖàÓ×û¢F¾Ðß&e |{ûƒ¿’Okð)m}‘¼0bU¼IFÈ6ý•“_ºÁ›ü¿ÐNHLmá+'$yÿ+êÈÎ'Õ ^ÐKý+¹À7w¨7&p‘ò…äåÊa3··¢ÝÃm'Ô|ÝÞÚ=ÓTø¢¼JpÙÂk:¼«Û5 ØÕÕÕÒÕÏÕ æªb«)Y’ƒ,ðªù°U-ᓹPU ÑÉG¿¨©Öã2—š•€p¯4¼_IV R\ÒÈïã ÁÃ}y;5tåݸLÊjƒð^›cµOH‰KR‡+¢@>µ¸úƒàj@SÈ78ga“œ…ZHq*ܪ|žŠ5k¿8Z{d•¿Ø oZ§l¨éwÿmx™+UØžª‚˜âŠêîŠ"¡"²ój†` Y: M!šzášÒs©Û´ “3‰Þ’ø ƒf Ž ã:3¯ Ñ¿ÄUÁ0T[)=j%Ýq¨¿XáŽaäp°;𗏀sš2 ò228¦&( É·¦…¤.#CU¬d§vj^úfå@6¸ÓcU¶c|ŽÊÿdÚ2îo!Ò4ºÔŒ+étħ×w(g®^ÂÝôH|ªB \%¶„‚56X×ù·3ü¿À+Íÿ´ðŸ@i\ÿ?v;úx¯.â@8øél¹O/±§ØeCoƒ(”+–LÇ"ëØ{I©ƒ žKÜñ›A?þÓ&°åuó5jI¬ÀÀH•Ö°Ž bsH¸¹žKÒÖßD PÖ’EU¦¯múHSJXÚ™Ò žÒZ2¥èõb™S†`c/#Ë‹ÅÜ%Ë”{¢3ý!Ž'+¯f\zº¾5*§U2†ëBÔ “–¶)Øþæ†÷ôT”Š8‹é;YÒZа£M f½¬”ìƒ9YÑé[]^~Ë"Ùêî…AŽpyi$Hóñm€8ËÒQ—¸|jÕ¼N­S)]Þ2nJ“†Ÿ¡”¦Ø‚䨪%g` H§U­•~|ÔZ® «¬yYâ©å×°ÿÉ ¿Åoä½|'Xr2l†ÕSûɰ) ¦þ(§kìö÷£ç4pcÿ49 ,g¿ÃJf ³Î=cŒµ,žùA+)âU¸)K¿A±ªZ†èrŒWv¥¥ã uZböÓA¢ÊPtW(ú³"_Nnƒd¤¹rJYÅ ¹Ö}zH“Že9:~Âr/pæ¸Ï›È­ÎAÍÃK&„è‚"f·þeæÃÊal›ë´ÓHÞ=µSe ·šñó;Á\п¬…PÂ"1ÏŸÀ¯?\–µæp‡[Ò…Ÿ²ù<Ô~KÝ|ŽlHKa<7‘C粉Ü@Í?_âœv/nPd ƒÙ‘[€ã0gö)õG_ö™—÷en¤ù¬Û|uXóJÜøo¥l*2ûâЃNtfGBphÿ…Pà"x @9O AøZ~>‚—+ÈGE¼vç#øe5ù|Dâ„þ,ÀâÏ?Aª\·üÔæÃÑ Œ¨ØÈpKš@LÍ·dÝ;‹Ý£˜þ½ÐòåûÏ—/=2³[w‹F‹%,° ¿ƒ¯¡›í¶HóÝ$áøz$.p ˜qðxñ¨»Ùêbr¸áÕ—˜ËÀ²QA6‘Ï%ðùáë/¢öd=]ûÒ£l>W¼‘ç¦rd`± ‹›Nù9Ãp5” £´•\lõ*³¸ÁËlâw©Ù „è0Q±¢)ä;a/cv÷ –*„sŒa—,¬rí¼c²¡*ç‹àÛâ\—>­„©é: ç>ùÛàÒ¨0.Ru\ÿÎFg³cò&Ñ1ÅývA% Z‘º%uJÀ gïñûRöT1ÈЇÿô6õ™„8[Žˆ ‹ÀE°ŽAŸw°^ýMÑuó°Ù@Oå 0ýìà-KÝaÀ.FOo¸þ~)[‚NS/v˜á]wéŽÃXÝ=x°_¬Ûó—‚ðß'µÕÁ¿wsÁ¿{kd$xZÎð>Þù”1;¾f¿]?ЂAî °6Òµ=âŸ)ä>PòÑ– æÚ2¢¾Rõ®¿(hUöžcdëqz EŽøç†áäUuì)b¸8þ‹C€ì¤C€˜u‰ ñÃëÙt>Gd„kÐ׎fµÇ ÏêY"Œüé©nx'»ˆ‹bÏ Í~ GЩ ÿbg7YNŒéSŸ_G½ZkóÔèf+~ÍK·í%Û”c5|M m³à¨°SXeF>üS *BÞ­L˜#m}JNS§äeÊ”ô¬S²ï?%mºµ­-=ÇäÙ§$@œ/Ü“x­âŸµZl7ßI‡E‘þðÀìïæÅì/òqáÿÏVƒÿîíîhøÿ{;%þÿ*ºUüÿžþ?æû€»Í~‡Sð·2©'“ BéÉŸ  ç™ ªÅpË„‹YyN€2%@™ L ðc¤àzÑÃ1§ƒÑðÿ)”¿Oƒ‡h ëßâßeÇî}Œ€Et½Ž'ó ü'ùIÃ]Í!Äížœ‚ZºÖŒt*ÁRƒå7}ÍF“k2TRgڦθΈôΨt‰õp)Ví‹uÈxÄJ„¾Ði'鳎x“% wc‹Öô¯×„Ìo•¬2¿A™ßà)ç7(*¯Íeð˜) œù Wbw~‚g‘˜€áþÚ»±`‚ZíRœwß[óØg%2óTi~E•Ï?mA¯L[”i –›¶à1<çTkDR'a ×…ÕO”‘ ˆôBNæL¹0ã·¶ž5³¯>]­ZyÕ#—€¡S6+b™%`¹YŠH `˜N¯ŒêBÊbKøOY£ÿ†NÙ ]%z‰Þ¯>%z¿X¢Dï/ÑûKôþ½ßZ°Dï/ÑûKô~þ0ôþý߽?,»?Ú:Ü&Õ¬¸_¬1&³n™Dª®u0Xçšp)Æ%R?’öaÃäWn†Ó«Þ©Æ+9FµÅvl-¦RÉ`D`¯P©Òˆ…N%¸Nüe è>­KCˆ×æ-ß(“?£åŽòŽ£Ë(§%À´$[h âÏ/©@\\Ë`°8 ½œK(àBª¦ÔTò·bPƒ)qÛ<é(o]&Ì4ë_ô  Ÿ*|Á«7«S§{^\òô ȦžL<\sò:pe—0©–ºçRÛ¤Ô²Ô”’Oðº)H?y2€ç~«ž‰ÊvJ>©¥õ#e•Z½“5ÃWi²„2dú(ñ».ün–?d¡˜à˜ÍÒ£e5¹X$Ìœ¢¤†1ïÓÅ¢~…³`GÒ!KÊ0ß[{ÅØÚ,ÝFÁ;ÛŽ¤-0\Y÷ÑßÄÔ¡#búÅ¥œ0MñÔ°é7>:ÔÁ’в“ÃeLJD7ˆ ¢PÄP¡ „É.&;OŒEïÕ¿¹s\¹¶Ñ’2_,~ùþÍÔ"(l½—ˆÖÖÔ.¸êíEü;"oN/ˆbaåÆ(N[Œr%+)v¥Eð…¡NÁ«gøþÙ["oPÏr6_§âó?%<éàIgÝxÒ»«Á“öúK<éãIû#ë»À£…Sn{ Õ°þ°úäh&LÑŠ½°‹…Ì^쨅†fí®‘|™ŽmÉ—Þ#i–¡Eޤ›Ù|æÏ :½`yÅ„ØGÇ&=>—º †¸îÂå3,væü²„Ÿ§:t.v³„g~¦ðÌ6æ_@ô·xëGxÝdeðø9 ¸óV”fÁûà §WXúy€zY»ù x9àÆŒ^ˆ9bSä`¬ƒÂ –X{®²à'²âÉêFý…'k3Lj)4™O–C¨JXäEìõâ­"†ë³ž1è¨îi§(’Ç0‘]HB«ŸØ–ùcA÷ž1dq¸sŸ8Åü™ ¸þÒ P,0QñïnhâºENέΠ“ŽOŽâІ·ÝhÃ^ä£[ ;«•c¤ŠmÁFàe+Þ&ìXÚ)€÷@ÿõ yö77zëôpc|O&¨l†E‡Nú[„Tž”ŒB]TloéP±vü׿>V‚ÿº³nokø¯án‰ÿºŠ‡®.ÿõדúDB~ã蘭àh´º­_Ýð¯íæ öuøðm|;ξÿ Ø¯ ê+<$Q&X2â±]±uT× `K ¾Œf‘ ¸DzÿÔb$À²Ò( 1¦ÿ¹v7¾àÉËþúŸ“o<֞Ƣ²‹0‰ØÛ‡U “G…V©³oäãlzG=¾ßÝÀ›˜ÿ‰!¬ìÝ—‡{òüáähÐ;æÃMÿb!¹Y+¿)… 'Ã~Aðüwñ?'ø7ô V7û¸ý?'rï.‚ )Ò^ÇNŠÀd¼îhà ö…b ŒXALE>M‡é*6ÿÏÉ:GŒ¹ÖÑL{§ƒJχðÎ ¡`|O*Ç®n§×*>)!™œPˆ ÈßQR_ažÝ<@vÌñ”b¦FPZ<\ƨUá ã0o¥9ÁY<‰¶1-ÕÞÆ (ªÆUˆ€À†ŽS[§‚*Ö&kU¾ â΃ÑÕªdM]@)\¬åÿ!ÆžfbÕ´ê봪ɓrl±‰Õ'_À¯¶ÒŒhüZB®Ù€lƒó ‚¼|§‡Ã\VQzm@HôI¦ƒBÞÚ¦W èN Vq`Ö¶¤b]¸ j­¢M«¸Õ«pSq1¹&Bê' ³–ûŒ-š ø©ÈlÙ9JšJ8Ð µðFä~éë1HÎUmô%ˆç®_—ö±O—±¨y©(»ö«TÉp>¸£– Uàðã§›6 ž\²>õúåZ´ÁI`ç’‘4Õ2aHf~£Å@k&üTa¤:êÂ0€7ä;1|N¬£3®'Y„Áð! ŠÉ”%,Š~n^•*o¶ªÊôâž°9>×ðþUûmçèbƒ¼0—1@`Ý2˜ñP½eôb©ñ²›~4Ýu4<‰ Ãô ªÆ÷UÓa9„vÉ•¤­~ƒÀ°ÓæŠÉÓÌ­läPs3º&4ŒdÌvÃþz*Áüá*XnæÓlx·…Õ«3)×ð‰öëp·b¿ 3kŸT|Y©æL*a»ÆMÁŸü!W”Søà ïÆÆ/ö߇HÞ“9Gú²àoQ»ô¶ :OÈ 0£= ¾ÂhÎÕñÚ?ÿE~€³nòÑ¿‚mÜU" }%Ÿ@-XkMª†²iP2©Öë±n´·t]CMŒ¾BO°ä_H°Ï-µë}cKõÄ„ü¯Pßÿ2b(ߘ“˜¶DÌærˆjþwêÁÒdç§m6“5ˆåøéHVáíhò‰ØÙÒ^%[Þ¡‡ÈÀ_gãû{Òeì€ÕDöêFЌπføœM¹ÝÞÔ÷=ÔC ÞüXqÁ»Ÿ‚“›{„_2‘g4›A¶‚Ûá'ËH™‰ôl›îz–ŸDA5—_oˆ…@L|½̉¤P#{<©"6U½ÁÎ¥jÐI>ßZ!ò¹A%˜›pç•ðœc›çD7ïœ_tZd# $#\%»ß>û"@6¶j@žžúðoFDf®×À$ÉZtµÅ°223rŠŒá­ê “F>¼>hüZïð X{ 9¤öBA±Clg¼ØôL,°„Ìv{§&+fÖÌ?V5™I;~=qš xFáŠ(m¦^#†M_ü\[ MNŠjÒ]a9ªBÒúùúÃm¦©nÛ¬® &{l*~Ç|žÉ^P­žtÆWvÏ.[MZöwQVÃê6{<í&£u…&}.X㪎5¦&-°|›=´ |èß·£ÉdÀ¦¬‰ÿ}ðÖƒÿMÑH8oe¨~Ë¿B^g­ !=^_Ç”,Ç¢êi×1)ðpˆ½*0¦Žu”ó,×aB' ò‹8ææÔ°gž¨/¯«"ðÒËèrçbýFfüíUPw7õ|åäLq<€ü9ƒíØ9pa6ÆžêFŸÏ´–$ÜÁa°:Ž­0´l[=·®1)¦1]{RNbŸ;9ÍÈ»‚f¯ë‰r™?vôc—‹&Ò)‡t|Ï”KAˆC%œOiH÷`j³Ÿa¯6Т‘s§¨…gÊü´½$h\©”g”7 uù¶+ˆPâMÊ¢HYQc X‹í\G¯ûÚ¬ýž7UûÃLU ô¨˜Ři«|)Ûz"†Š‹‡ºKésÛñ,Ô%<©m¯,sbË2'(Ëp±åÄ)Ë܈/™€hLuì›(·\vº_bPÝV]Ò nÑÎð´†Nœa{Ä“½-£aòª%õ“ýïfýqÜgw3ž8´ã¡ÝÓP9¡É*PàÇ·Á¤oh¼T]—ÙæY¨—óIP'J‚:Q¶È †Î½E6ýà¼%f,VÄj‚&JßÇèduÕöµdûXGs`€Y« ,=¤sP@E„"é¾ÜáÂÝíûß犮=LK³*,,ÉšˆÈà¼;vÅŒªPæÛÁÎG…6)•=Oaâ–äY1JØ’"YŒ@¦DF'É"²Ýåd³ì6l3™±úbr©¬hJew?{<ò‰dà•ïvP¾‹ \âk"¹2,NÝößp…›Ãå-¥ÞÍп™{û!@orÛÿ}ãR²%Õ²‰rèÕˆÎ]¯èJöß <‹ÏSQñõ ~}3›Š.H#ízÝh ˆxA÷wSе„Çä‚h ¿’ÝT‡v(Í–îx40MÖ¶h«ktùûzÁñ¤êr«„¨WpZþ ¯Áp–ਲ਼VîþEnù Vh­&VíZÁº“W‰G1»¾®4 ‚I‘ªéîr¡7ƒ¶*uªãgÉ—æð¸@äq¥†O-[EQt쫌Åbèg‰D ˜a=M· HŒ÷,+®¤µ(¬x¹•ÔrKÑåbR±r±rhØí„ IÙ$7÷QqX½×ë¢ÔßKÑWÊúûüºø"ÕuÑø6¥þp;Š×-Æž¸ÄØ“ ™‚ÕcO¤{¢È«Š{¢H·It³N›òI1¡U9&-O¼U¹TŽ•WçWUØè§"®.ÿT3•ª ‰ÖÂÔyü‚åÆ"J˜ÅEÿµkéò¤'CLà›Í–Ùn™òdš ŸXUæšòúÍ)ž 2ã„l¨ðo¤ý31™åK)—¸ä`R:-m߸OñpN÷iMØð‹‡I­ ¥Òãöï3ÛÑkù0…ÄȤc´—JÉ‹IñÇ›µÄR0)²×ê^Qø·+Âÿ(oíZøÛ{þÇ*^´’Mü³Xüý£SyÒÐ+Fý˜ðãì—ü8Ó?Î2À_ðƒìèÜ6pj±/©V ¶F7ÄÇÙò >|¤3ˆ âã)B|jÀÇ î#ƒû˜Ï57JëÏÊñƒŸY3‚~< pŒ3 Žq–cdà8FŽ‘cÈ*ŽQƒÿ7.ÚPF”‘eÌ”‘ìâ…Ë’ìâ,»ˆv¶2`á7µâ_,ÊQéáÀ_Ô6¸»eºð͇ŽÁF=C¿P_³6,öÏFplý4'0†URam÷Žœí‰õ¼Å§6â¼oùS^j‚†úú54µÃÌP1®¤ ?#ý>‡ŒÛplkA±a±«™³Ê Å @ápŒKP 0,y£dÍÈ ¥cQ‚Þ“Äè¨IOÛ ¡ã¡ t˜ÉPì帩¹ (~ÎFˇ1Ž·$f@êë×òXàŽ3Cå8Ýʌǽ‹™¾}óÞ>VðÁ›á{È TÊ^ˆUž®¦Þ%ƒ™7ÖÒr¥¢×˜ÞË /Ñ Ïþ:è R!ò8B9ýŠoƒúBÑALaש3Ì DÂ×LJ»ûÇîXÊbxØÈª^ò wÔâm~‹@I}ÆcÈp;´×²%î‡éáôX!œ‡ÁÙ áãaJᣦ<¡0‘@(æM¸RE“.3FÔ™á„Èׯ€"5ÇNH“„®óI£„øŒš{Jœ¡b^#ÅÇÑ P9ºo‘³ Däa¼"ð?&«ÁÿØÞÛÛ~náì=Ïð?Vñ¢EhàœgøOÿã|±øíûÃÿ8×ð?ÎçÄÿhãg ÿ£½"ü6G†hKüd¨!§2Ôõã|y¨^Òl(%êG[%þo3Ô Cý0žnÓÓSõ£¡~ØT2Ô õ#CýXêG†õ‘a}dXÖG†õdXËÁúXÆÇÇöhgØ‹Ãö8ϰ=bí3l ÃöȰ=¯ ÛÃø)Ãö6 Áö(¹œ2D Ñ#aÅ¢G†è¡ŽZ†è‘!z(¯ Ñ#CôÈ= ¢GÙ:Š‚ Ç#ÃñHSy†ãñ@„Kßnùpq<Ú\¡¸ôŽö"Ñ;Ú½£íFïhgèzǯ‰ÞÁ¤ÚbÉ®‡#CÔPžÊ5lBt9Ø«jDz´Š‡ê·Ô Ÿ>;Ú¸¬ ‡œ5;Ö„³2¬ I3Úf šwlÈ÷€‘á?ÈgøøZØT~ 8÷ÑìE"+<Áiù >µo†ŒðXÎWŒŒÿÿcEñÿ¥=+þÿùvÿ¿ŠM53þÿ}lüÿɾàß›q3Ò •{@ÀZç„x¿H8€µ{Dx¯¡¼Ÿ `>›hkÁjÐÖˆîÚÅñþÌWƒ1ã¶ß\Öˆ˜f}¬õøæ\0¹»d·qç äæü   P då>¼9È@2ƒ ä 9È@d• 9È€ ìZ2`ƒ Ø@{žÉZI ö첉A~eçExŸ"Dû/?P„ ˜f ’{@hþ7¾ÀÌbØb`à¼ó@•c…5Eœ‹ ÍÉ€~à€…n!3V_L.‹eÐKÙíî À§P[› @¨¥žÓ¥¶˜Š°¶@¨€5°æ X{8 È‚ýï3mæø{eû_uøšOj7h/4þ> ­_^}Ί‚ÚÓN½¥5BÈ(²~N!_êZ‹¥è‹@[¿±)e½Cø˜9~^'kÎøùµÐgÑò®J“±ˆhùÇ"p,(>‹s—¯‡çßÏç~?þ¥âÜç4K]å†_ŒÉ¢Ýáµ £^Â@vLJˆ0ö÷« cÏ^3¾¼ñÿÿžn•Vÿ_*•¶·ÿƒý»µË~-ínAüÿönÿ¿’­Q-þÿm{«” ²^aÿ‚·ì´áÁìíÊ»Bðçi‹my'øÇ`µè±ÖÁù»“¶ 0Kùýw8°S(?u ˜ãð¾öFò«žg­ƒZý¼~ÚĽ¸’£0}äTš¸þÊ¡úéDùàŽ·j6Œ¼nª;–$€& Žàd£“·l’|û4è~Á÷»qòÖ°ï ƒ›âå≰HŠV‡pðAçJ¢ü®ùš‘ ÂE€Áˆ²øh<ý4Ò"ùÞnj-„ÖtƬ5'_SÉ¿]£ººŸú Š!o1GÒŠŒµ¦ßœ§9t£_w±´õ@ËÑ·‰ tþûU°¥Ç™&'Jp¯.ºM•nÅ óä`Š4×Í:iÄÔ(V$|È ³E< åýþ´3¸–íwÍ– ¦'_q²‡ÓM æ9ï÷ù׈Hpu7Æå‘ç}Ìר¶œyÓNĂ侯_&ìhí'¨b§¬¶u-Þ3n8C»€XÉDnÝ8ÛO4~A l~ˆzE|å] Ý †¢Ñz»&´©rÌÑ(î-„p/ý«k “ÓÆV¥£3|›S*¶B ÁO^:†Ÿn>bÕ¼-AHi…µ³;8¥/?C6' Q¶¸L‡',=–ž+%¸Y ÙŽÉvö ˆÛ"„CHmž~¨€ÃÁ™ÛÈË—ÃòuVþ­^ž—ZY›ãøüpÐ:-Ä…ºÁCÉÄ#Ý(ò­ÄãÝü'mëôõ»HºøÑ‘Z‰ïÒÒyƒõf£éï~¥yÚbB”¯êûŽ*£Bä$÷O*Ú„*i¾> ¿ìGÏ;BÝ<ÏG´#i(@éÂ:ùáÍÈ\Œ~íì=þ=?h¸p°€pº}ƉB°_cóàãêûÂbôCpm¸a ÓÆŠÊo—9ÙsÖ«FÛA†—åpj$gã´¨¯gD¤&Þ¸¨EDüœIl²²¿$ÕË©ËøÇ\°vp;\†kЦ¯6ºý¡‰àLî•ðR“á1Z‡w××k…ð‚'Gpô„ôùqß×+áaÈv%Ĉ§9²¦UŽ_ɛˡï¢ᑉNöBQä­Õ'6ßÂ>5ñ?Ü䟷¢c|’aøÚk÷BçÐ;@»á,5"HôìO™4{¬ÝoµÏJ{_÷‡8ÓWda)†¸8…ëDç~•ã]Á "ú”_'ÑL¢1 5Å÷áuûó‰ó¶¢rRçÙ Àû„ÓJŒð‰É!áx$Ž>£­°­0jjd#ºV ?ß}DÆ*_7øˆ;Z*ºS„ƒe=œç‚“âwþ³³·î†‡'÷Ûµ|År+nòx"°ñ¦í˜u¯d­¿¿ãQ<6ÜNœ`Vc-0³i e°¸Ó–P±™ƒ“+y†{l.ЃR¡WÔjxÇú#¶%Íâ¢Ó„juM¤É:!®$Yľù)Ì1á0R–¯9‹ˆp­`bà‡Ô£ï“»”1W‡0qeÓ©D¦–ù@Å  NXÖ­ô…ûv¦ô}l¯(ýoyEúßííç–þw¯œéWñ¢åjêËBŠ:ÎTÀÊë¸iM-pYÓÕ -ðG.£NBu¯”QQ+µ·ì°Þ°Ë!*HQ;„²+DèêL4D$6à_MЕI¼±¯_ûÃxå³¢yæÝM*„ßgiùdøÝ‹°k_°u\ë[ù{0˜*Êè\éå—BéåÍ:×JóÏÃõü[ööß’ž¨¨ªj¨@P}‹X†‚‹7+S\¿åЂc½%)²ízT ¨âÖª=N[­S)Éf0êŠ9G#>1cH¤Þ—šp¼\};_UÖ"¦W†£Øeªãg«÷~´ñiåM¡Ñ¥pc©êu¡SošÊô$cјG‰ÎϘm*·£!´W%Äu5Ö@xï/¡Yod*õL¥žP¥þtué÷¢CÿeÔç)”ä\ðÓD&}çÕ´ç1zæF¼žÙ­Q>žO£L½úd²tfy‹L©]–r4è¶,53QO fÅù¢"˳]]‘æçÑAó»æ}é £º8ôqZ4õö××A7"'ï:èÆÃÑA;rÉ:èr¦ƒNóŠÒÿn¯Fÿ»]~¾cëw3ýï*^´TLýﶪÿeç_ýW‹8Ä3ðêÀšÎ·¦}¨Ý‹x;Ô7B °ô~›‡™³ÿÖòo!Õû³¶©šQToö'w×”ªƒPô 6ñ$?|Ȱ¥·Aÿûíõ ;˜R¤“V\‰y¢¡HÒ…Â,G"åG—¤uHlËS°Ž=òvíïA 4âèçq ®TBè·,pndZ´ëþÕ´¹qpe?¨©‰€fF5®–çÆåk¸#¯RMÑ]e»tÕ©iy(IJUÔ¤Öâ4©â>“&µV›£ð|:Ü©aÃÓ ÖöÛYÔ¯‹pe~øZXž„u¯¢œ•©Aœœ|Ý]³Ù¨-§F¾Y-pø‚fUdè U xñQ>@öuøu0 O÷§â݉RñŠ3'˜~cÔï~þ}×§”†ü@8„޶HgØ.+öf…·$Bke3£ ý‡¼£,w9³½Êè…‚GJ­t§íR;Ef+™ÆÈ°;ðÞ±¿þ~Ø&+±›Ä² 0#áø©¹&T”ÑÍ›fºÖ‹¹ôvQ­wOq²ÊP.DÕ\]±‹Ø°Û7ÆÕÙ!æ¾wwBm$ß™Ý*_Þà+$~n¤1{™sYmò¸ä…üˆ\(ênÆN9O4ÂkÜÙÎŒ; ~ùì?·—+ÃÙÞÝÛùÒÖny÷yi§´»“ùÿ¯ðE«IµÿœUÿ…ªAÞÛW#8+´}àßVœí7‹Geóq\±þ{p‡LBœ)AÛ¾;t*{Qú ™…°uù䦜Á¸ße·Ï阉R÷ äΞ:CHÚ8À침y°ÃéÆ@z, +À•;É3Á‚\ïÖòïŒKB±¨1ãþdлë\ófr/ P ¢"!Gc­VYsµ“*>s]æM§û æeŸ®‚@[å?umßn~:!•默Gƒw ìG˜ ;P4×òr®¥ :—™ÞYÐ*õÞÁ-8} .LjÂy€Öá×V•L8žaðõ„'®×œ`1SøKÖ<¬!$lΔ,éºY‰nÓ ©K…Rðdm[¶Øð¶~>@¯ŽŸ¶ú(ᔑâ]%rg £œÊøƒ«G¥ûwÃühdm÷O:…è&v@¥bŒnç–Ý\n \<@êºq.¼Q"E9•Ò*âÞÀÕZ0ÑLB›<Ží‚­(ë›ÇŒµiŽX´ ëSPyJ…ãýÒº4NVji& ìôöœ¡}ì¿pO´×Ö¢%§*ÜÅCSsÄÆ>àSXÝù¨8Äb( ßúÉꉼùнžË<ˆ}2‘€¬“Í3Z¨š¡…ª;×B¥¶£~¥­<šÄ!—(¨ÀXÞø¤8ó",Ô sv[zJPYèAsrØìèn¼ó·¸r ªiY©äMÕ/â}Ø?m b2ûÈ›j—ŠèCb3É>Ïhÿæ Åþm·,ÎŒQo@ïžØ$÷”`¼ÿ}€Ù ›?{yŔݕÝ\*NBß :•ùÔNI¢léJ“WÒz+‰¹~Wý§ßT¹âÆyóyE³nù¼¢±u°šT?ç˜îÕ ò÷ÓÁM$Žñ<Ôå©jfƒ$§vq¾d.ຫî¨Gùº†?ð$ކ S’¤p®hêuK­‰“(Ç/?°És:§;Ë&³4–e½®ÔG7{%m¶Ur×­] ņ³¦° öøÛ˜  oz–1ÜÞ¢|U^Ôñ¼Ñ8Ã5Šl ËES] {8 ]ï°?;ùŽk½)´3ÂdFm„3#Lf„‰2Â\¤›0Øû­9#ír“üÊ㇮øt÷Æk¶kék[î–²ßI[L·/X·‘”ì·L QÕ:ý,a挪Ý÷ÓaÀ¶ÚñBm|BóР×÷ó@%AìÐx Óÿ>˜²ã S¹pUÁ´? #F•‹"?M$« àbu“(ÙL\¥] ±ã:ß7w7Èc‡4?1XŒ§)gNäIˆ¾-Ì–„õ?ŒˆžZ ÙÊqR^ÁÜ(UGþîr TU ȹ€÷)íQ§ý•ów ÃðTe<ÑŽÄ6¥7Õ…X‘Üá/³ØŒ@€Ìk?ÚFd4Úóû!°/ÒÓèšE8z_·õ ˆêàÔÛlÊ[pÁ¦Ü0o´T3ž Må;ëÊY'< Ž˜ì•€Í¯ìÚÛ¹¾ëCk$öËàŠà3¢aFË1Aðwváöõæ!D¨~n™Næñ5e¶Zp®p>‘…íFnm¹ü:Ìdž^8Àß^Á£ïš‡'Pìf0üŸAë\N˜ˆ“‡?¬÷ð÷r}ý²nRÀ•ù!ÀKó¦"Xq¿ ŒW_¡ñè ¿½¾›¥Ç¤ÃÕ4÷¥ÃUõª]Ö[²ßûiõr®`U€»Â/riÚéRxÛŒÓS@ª’¹ªó&NÉ\uh™3‘üR YݳÆ7]ÑJ@ ÚÔ&6ˆÃÁçâôï¿¥Û 5Óœžò°¡N­‚òújtÍZ®#ªëC Ñ—ÞFicPü\øŒþ¹¼A(Ô¥}.~é­ÿãÕà¯>ÿÝCè„I*¸ŒBŸ±8@= Ÿ7¹Pw\M0/âTǤþ« þxëT Î¢9m§Ñ—&Ò/WÛ¹d=9«÷\®è£a'±-Æîr±pŹ[o;ÃüLèït§‹æíYœ ØÌ9™%1›(ø(¬H¢ùv2c2Ü@˜õß:ãž!4²·è‹g°K%sA¹‹vëݰOÇLeH†$‰k‡ƒé]¯oìƒhi!Žm¥h؀݄? ¾Îºó•­T™((1K« b,&&:§ß ¯I6¼d…‘ 3« T©ð¹–lö7É„3¹é\_ãUMë²ý‰ µ\^£ÎÀ‰aœàUÊctÓùg):†kÓ|]“pçÍéa©îðˆ¶ŒoÂØ™üCÞ øVQ”Ñ=bõ£7¢Ø—W½Ã óîìŒí6ôÞ­SÇ ŠÙi~ðw¤rQ­CàÈá!7Ž0nW›ìî}úÇáI!h7Î ÜP„Õ„9ÃjÞ¥µ©ÄÄø¸:ö¡6 ooH¡/–Þà"#‚|`8©Tç’ÆàH#JB;SQ/%¢#Êu’X>‡D.§Õs:¿c÷Lþ-Qˆ¯Ž1U2Vå·²ó7—=…Œ1á­\yà¼sŶDÆ\¶%†OÁ"‘J|("JÃúd?ØÓü¼·—ó¨Ñ'oúŽBIò± 'Dé¥Çœ¢˜J’o­¸“#&ó§P¾÷±àn jA†8~’b5ýÁ2¯l{Ì+°±ïiµEšL„uŸãó•½ã›X€Z¥ ìYÖ“5¬îòÝæÏc´ß)a-ERÊqgl7Œ˜âÁÚy^·7˜È6ó¼> Ú` ¿ëX:<„ùs(/ 7 hÈQq‡1…m•‚²œALA [(ŒJÐRÒ’¹q®d+Áâщ eJ¡2c§Bc–ŠD¿é{QÑ×TÙ»¦’iðfQÜ…kåw ±±Ö 8'.;ƒÙ×|²Vq~ëÜããE»Ž;Ô¢{ŽÄøÔ‹°ë`P $*±Â,dµðÔÞpC/Ö7Ž  UQI‡Š;\]GJƒw¶”'¬Yg׬V¢v^³·nmYÛœ D  0£{nB:ê¸ÛG3c£^<â;FZfìÆ1ÅdžØÌ9’ZËÝ Ü›o´”¡J4(Ï2(¥£b]LOw¿žÇ2^n1ò…PQ( JS{bÇ?Š=$ záD³ O¯ etϾúÀ¥øK˦Sÿû-Bó3*¢uuw}-wtœ+n ²4p„nÁa/|¤ÿmÀˆ]ê`ãˆÐû{@pƒ+em¸€Ë©™*bKà9¯6¸›û@5 n$œ(8–sNFcS³U3\3£©fb& n°b¾ÑÇy[ 46%±Å+à R( Ãíõ¼ÝѰ‡!ßÊþÂf—Ôfv´ág·gb³‡í?Üî7gPiaéð@IvžüÂÚ)"«¤âäs²¡¥Š"–¥Ù—å¸fãÞò¸¾>ˆ×z9¼9•bHùÅ=8Ù@­Ö…÷˜WÊœ–¥ÿùŒ¦Ìòµa²O!íΧHCm!Qô+×8-Š4*7TŽ u2Ô…é _ðsÜ)b]@tÀ9 ~t\ÊøÁËcÁI8×ý«)Š3údúœ¹J1Î\xSâñâ¯øüÏñ¯ëŠ#TÉå²äN²êH\ékÝvŒKUÒÖm»Z•q‘?©AµÔ§Ú¬uü„QUŠ.\.Q&î±½c0ý!/…#’¦4·â]Ü]Uë‚ÚÇ y°íFø»D‚h‰ÀíCöZ¬hⓦ4‰w ËÓ “ºMÕ¡,‰"s;"3Jÿ·*üïRù¹©ÿÛÙ*eú¿U¼h~˜ú¿]¯ÿ—üMà±~ïÉ">aô;‰OØR ¿Oä÷¤¡>Ê@¿ 2(7Ü(­'Æý¦§Ó y•«M·úKCvß ¶Á”¿¯+âT†Ñ W©D$\쎆Ó»ûU‘›M=­Èx8ÎL¯D¤aTéðÅÎ,9Žõ6­ða»GD[%ß#_s4*Ñ=ŠÌV©ëÓ´-Y/Ÿmg@ÛÐv>Ú΀¶59à©m[¢ì£·ØØwÆå`mû;‘álg8ÛÎö q¶3í G;–€öH†£½pí¥Ø¬º0jâƒ@Ó.¥ƒ]–¦F2ñ<øØÒR—pYGÁ¶ºéíD=6zN\ëÔ‹@XñiA±=÷a~žü¸¹éƒqííù5_ÁwÖ­U­ÆŒwϰ/u¶w·*MPŸ­5õlÞ†Aïï ”϶º|­¶VÈ€caB®FŒƒb]nDC†=³b[“%^/ ÊÇYH³‡‹Ék°1ó@×D·E–,.:6è°R?‰Žòßxùñ€ìW$tþ^\¾Ú±d±ˆ^¬:¶ÈiûÅlb‹3ŽEÛÆÞ>p¼ ó÷ì‰ú ¢×Ü(­?³P#àt(šòjq…ßZHØ,9ûÜ \pÒ>W‡œ½PZ°âÔ~YÒ½é‰f×Í¥X)`Òžš¿5ëÞ™¿)3dÝ;[hÖ½35ëÞÙͺ—±å)Þœ9àX~Ý|{dž«¤t,F?&I_4»LÓX§~…}aÿl°¶mP§J‰àTÊ»7Mv°È¹bü¹Î™«›ÄVq’²•xªª²h™dgtž¼Eæ3„ñP²òî\†µãbiþl†än÷ºíõ1äéÏ–îPé‚«{ÊT)²ÁÁNzæÖ¶;3¢ÁWv<• Ú–¿ZçÒRßûSß±Á©óÁ1¾À4oâN’Okã %'ünÝ·‰À÷»KI&©.¤ ¹4–î=˜d“›'íˆT“g‘©&k”92I¢ÉÚ&z ÖÝ6½æO0YK•^R.³¼sfÀ*ƒBeÕÛ:Í¢w…˜Eõ³¨”£Hí >·]ÙŸÓR<ŽÌ¶ˆkíØ\ŠÇÚR<6\´KÑs~9=¥—‘“Ñ–ãV’‹ñl%¹ïã¥ÿ_Uþǽ­ ÿÿ¾^4¥Mý¿3ÿc–úÑåýûãó{æOø(àÆçÊ÷ˆ:ü¡P]‚6³ó‘±³[þê_] º¸Npµ&‡kAÄ,éû04¼w©3HÆ&¼Ðj˜ªΑøW2<G╚ ~máÌ¿7K ù(sù#YbHQß"C ËLÒÄg 2º,ÄÎ’%†|p¶ËÇSlô~)ꙟºèfyT<âÛÙó7ž%Ïߨ»’fiÅëWRÑ<\E‰žœqæ–åd‹Ö“%fLÞÂ,`–ð±é$i:@öß#H ¡ïˆJ èR{,<“_Z-Jíôì}Á«LÉ2&V‡èIíçu2ÀÐÉ^>µÑí-͸!~Ç'w—¡¢wž.WzÙ,”_6וŔƘɛ™b°@± "­ 愼:Âý²%s" ³‚›ÑW~KŽ‹êÓÓ‘ÌD˜ÔÙR󺥴Áª£ÐÑ‘å(¤èW,;Ò=ÁzCxEžþO(›HÒ5 ÷Ó²†b²ÀrÜ(92 q?>ÆC½gG¸ðˆkJœOâcˆ¢„óM¿jÝÇjt3Y£ýN“ u’¨c¤ghôŒÉÝCTS ZãRà‡«÷€ K(ãèLט¨Æ<‰ª\ÖÜ Ýæôõ{b¯ßé¸3¸N³€Ùÿ‹%qÔÃÚÕV¨\†èé¨/>TtŽ˜q‹LOé™?%OÍ 9uv£¦pÓš²Iµlúæ©k¸Y<oEç:A¦è[Ç{Z޼ëøHzâڋ˜YÇX“èæó™ÖÑ â ›œetƒµù§±tAu¯£â<ëȇîßâ]’ºeÅ%ÓûÔ>R%=ý}ö¤§¿ÿÚIOÏ’%=Í^ò¥ÿ_Uþ×­íLÿO/Z*¦þß‘ÿõ,Ëýv-©SèÃIûz㺔”¯g+å+?S–Ï)«‘ý¦åÃÊ’ÀfI`5?¿, ì’Àžé˜Ñ@ãäki¤q”l uõA&=áä‰íàî埋ÓOJrGef¨„¸/<Çù=“ÐÕèš5MÏo7Ðñ%؆<€õõ™]€óŸŸár®ä…Ïë¸ÿ•þñjðWŸÿî¡pbRÈ•‡ÅÏë™ÏHFD³©YŽÔ,GªÊŠ,Gj,,Gªº²©ÞŒm_°–’#õ¨–åIÕÉgyR³<©YžÔ,Oj–'5Ë“ú‹åI=ªqûÚPóu×G¶b¶lªgl\kQ©?çI§JÔ“çþÄÎÀ äþ¬;z9[ºUlGD½Í@£öL¹X‘†«³eh¹Ò4?O WYûr3¸òÉXÌ’¸>½$®gY×§÷òÚÿ'+Ëÿ°»ñÿuëùÎÎöÙÿ·3ûÿ*^´Ú5ûÿ¹•ÿsØÒ{‹™¸Ô€Oø×ÜÃ×Yý=qûSiÏæPwƒ“»ngB–xjŠŠ½FgØýÄH°»Ú3ióçÅNÙí²?.€ÉÿE2“¿¾‰oìÞ4°‚IÄž&õV¨ <~¶>Àë—ç•ÀýD3¢ÍúÐÄœljè=$äÐÁ6ÒéÒTœÛi*†®<“þÍ@æªp'©à úºœs‹hpËhÝM 1Ÿ—;Ó²Vo⊳<@æÏRf¯8Ëdl±¥°NP–Â"x\a‘1‰hm¾H+Ù’’ÑþæHvߨeìnÌÚ"ì,¶gÎÎ2›’˜m„íûœb ·K½ÓKÈ«¡ï>\CÛXd8(µ~> Ímƒñ é:˜UÿÃ5ÿ<Á !E(+û®û‰,n[B°õhƒ­¤£»±«(ž)Çp°vm)K,òX qô”/ž4Š®?’4}ÏeÄÛcg¦odéqJ›\Lž‘¸t%bbL{®˜L¨ÅHWrPà¥"ú"ó«š®¤µÈt%¨²Ø´%ÉâIvÖ#Xt¥IRWŸ¼­Q¡qLW§i‰;ޏÍ)*uGtÞ3i‡TœA å˜#‡aƒ›"Gå·»Lá¡xv+uá)nÉ Ÿ²¢Â Ïmv¯äž\*¹U»¥²?6Ì0óV¬.[æ Pó…È/ÜC„,1W¾ž¤µ°t âÊnw*.yÂUgKX‘vÞí&šw<%È‘ÛÖà›pÓVi7턳2k¨•¯0¯ÆF ¶`fƒÈÌálö+n´‡)”˜ßnŸc›ã˜ú¾,ÚÚ+YY4Œ”m=dÒ¯rçQ¯;é7S˜/\ÿí¹ÇXÌëÀKG*lñ½Çv–¨Ã£Gþg¡l¤ Bø•¶8Å]6°Te¤¯8+ëÛRé0שߖ\AJ/¬ɳŠ”AÄh8ƒYCÞÊÑx|4^ÿÊ£ñ»c4€ÁAüB󥮉S6¤N)c^öy9~‚) í#æ«‘ƒSŽŸ ’G:¡#AH&Ör$tgb³rËíxz—¾F3àâÈsЦà̶kž8±#"óôÐÜ8‹Ñf‡ZpKî)‗uÞw„i5y~ÎÙR’äÅÝÃÈ.¬`C6 ߉¸ä%Œòïà€¨PÁ£Qšsú ƒ‘Æ!e ÑŤ´¥¡ÿ퇕”6{­ì¥ÿYþÿζÿ¿³µ“éVñ¢%oêvs¦æÇ‰ý/@á:n|=vìÿûA÷ߟå?N7´ÿöÃùwwŒi=†áÕêiCü7?$Æ÷g¦@kÓ)à"üàÕvSyÌ×DàóŽGßx†×Ûë»IPšÑ7èIaé?Y½X†bŸ¡Øg(öi—~†bŸ¡Øÿ¢(öº0óè‘3æQp«õÇìVò!Bá}õK¡ÏÐç3ôù¥¢Ïã=fGò$CšÏæ½´G2¤ù…#ÍG©/fÑZ„ke׃1á~HDêg¾Äá²Cdmr©Î_„¿Epw&zÁ†K»Ç^Ü ¤wÙ…N(ö^oêÀ©6-t¢Î»õÊÂ.:{V§žÕ#{¦öÍ„+¯oØ\ÖXë߉Œ%7ûÝtõ»éïwظ¦»ÓMêtÓÕðXÈs5À…nN«f#\ ˆ¹øò¡á—ï¦3bføåi_>ûß¿¯W†ÿ]†dßÿ{¯´Køßì±Ìþ·‚­Õþ÷öã¿n®ÂD±·…à„ϵ+ïD,ø þqï͸PeÈø»“ö/`÷«ˆ.#sæ4÷W„uÏØŽúV?(üÃñV-†Q 9?ȲS‘V?œ$Üê÷áõÁÛ“CÂÝOºGùÛ;ÈP‹—ìî„ ½0p€,8`7 ‚ò»ækF‚_aÜŠ„PüŠÆÓO#ÍJðvSk!´¦3îF8új½]Ë󺺀l8!ÍÙ[ôþ”´¸—78Og·?‘©¡™‘Ò]45˜iŠ©ˆ8¼&åýþ´3¸–íwÍ-ņzùƒO7Í6vÞïó¯Qi}u7FWþ‘ç}¤mlÃ͆›ˆi'TR‰#Ç¡P領Du^È÷DnÝ8Û[&À³0+4B³ÛR0ˆ]«D£õvMhShü´N>À÷¯®I»¡­JGfø>u@>ng‚Ÿ-:šŸcŒÃÍÏ ;Ý¡àœSýN§¦S«çI¨Ugs±ˆûÿÑ0Õ¼|9,_§òo•ò¿86uëôõ»Hºø·‘Zi« ßy´«)”÷ÍÃST07"àiT j_¸ÙŒêàðüú€þž¿÷(¿ƒºñ|D;»–¿>h€Ç;(-óé×ÎÞãßóƒvK Pñ ¨6.¢Õû|ôCPMݰ…i‡æ·Ëœì9ëUÃå°ÏË^^@òPÑÁ§Í@}=#"5ñÆE-BmODp& ­H¬aèÀ†ÛšL>YjRÛ‘œ£uxw}½Vo¼noÊíèE1³ØÔ{öµ~ìk‰þjªmx)’¸€-FuT“ ŠsD´@Z¨+ò:Á†?e³!ºˆ3&i›ÅÿÚ„íkl$k“Òø°-zLÄëþ\èúÊeBÊq®‡û>ã𫟸ÐÄ\H:ïNb'[SìMü<[·?Ÿ8y‘jFÆNB VÌç öRüxœXGÌl‹Xä«g‡²:Nœ+"AÑSUeæ%ë©ñ°oö ã†ÏŒyG`NÁ“8ª¸ö™f‰3›˜*E4}…³SìÉâwþ³s&é{¶ /]×ãS?#ô„*(¨QàÄY  bÃì  B… ™žlxÔJöCÆEP‰ v¢ÐTlž1"u’ƒÆ·öå€i“L‹;éÍYÓA^o½>1n}ø®ÊЫ#yþžd¸ÑÛã©DÞ–ùxÅV|WÔ e&õ¥ÿ_ þ èÿwmýÿn¦ÿ_Å‹–‚©ÿ/ aú83(¯c!adV©c/kºzaøÈEìI¨î—"¶L „jTv o:×R— ùÁ„üÞÈ[MoÂÆü‹¢L2¡>‘·÷õàkoPŒ¼'²Õ@eŠ`)–¢W6Œ»![ôÉÿ˜Íë/@EQÑWþ ¦ŠE"wSn”^Þ†Å/ìïp]2æm¾æ?¯3!+§>fÛ/¦ŸújEoE*=Áà›•Ù4Þ‚žà²/9Ù[’îG¥€5j&ã´Õ:õÕlrC2U1i&LÌ!i &/×ÃÜ7¶NÄTäv”vLKÍlõÞ¡& EàïÎd€i.Ñòr²)Ì- ÓÎ’(|jû [3º(ÍÌŒ.¿²ÑÅßï'amYµ•å0°Ð3‰ðŒà@)â!”÷Çô>ZKeF(‘Åâsss ®¦Ð¥Ÿš%(^•ÕL`39&È¢œõBŽéJ*T³Ç±ªÙ·Ö“FŦMÂmÀŽÇ¡‘óÞÕ8£Ä[çÓ ë5c²è“ySÛ&è¯Ø%r!'â Öý$z¨©²‹…‹K¡‘À9Ln}8öFN†ç£Õ¦ãbV4¯dìXÖ/eóhñ‰sé´ø‰€©2ö1z‰þcg[“hû‰+î6ÿÊÚÿf¤åo~íóáhÿÖœ%kÿ3”3ã¥ÿß^þ×î–­ÿ/eúÿU¼h1˜úÿmUÿ¡˜ì¿Z„‡CfX@Óù×´µ{±l‡€Fhqoó0sÖàß;+Fcø³¶©JqCwMP@ ‹Ñ#N<„e2¹·Aÿûíõ ;˜^ÿ¤VB 8ÂÓ0`(Dâ5á)Â]ºèè@¤[œ]Õrù“Ï«7'åüØs—¨ý=¨•…+“Zºs ‡èÜ2F4ŒÀ»î_M!Ñk0$©Á•ý ¦b(Kf8Â*uñœÕõòK×›f'P—«$šsT—×âÔåBÕ2“Æ»V›£ðLŠúÆ‚uíáékûí,:öE„2<|Uûuø‘mž¬¨]ån˜–´`‚ú¡Aœœ|Ý]³Ù¨-§F¾)Á›UøDú6pæ%ô4öuøu0 O÷§Ç߉Òã‹3'˜~cÔï~þ}×'Ô+~ü€‰§á±kTo$EkxB ££‚¶±€p…bÿ®ú»–Ð\'jÿMEa[iÃ5þ¬'§°£µa±A!3_Ìm¾p¤.b—bvOo·Øí:ÚÆQêôlF„¨FMú.7k~îÕæ4‚œœ¾®×4ËCprÎø”ÔFâ·` ™‚ùøM#¡M¤Õüô¸PêÀ Q‘æ§óƒƒý\°ãœO+že¿3íÍлUiWý…lcÄJ¿¿xQ€‡ßÂKÁ³tÖ> bà£\á4é,A@`ÑVúm;â·ÄÖ"Eù¿$[P’ø™crÔWÂŽ—gj<ÃP#ahQ*¦%§£Ëäj°4ÑGBÃ…Ð’ÊáÜîá/^ä^lM¶–^l{`«Kûª _)…-`Aªå Õ´I)ÔY¯2¼‚+ ä<VLÏ2RÓêS„ˆ¯„Û³5­æ„- )8Í(5¨ ï9Ûg9––;2· ª é]Ô¹(XÃÈÉÒ¯Þ¡d/Q|­©5Vê³5ãYk0¾i¼|Ëß`P­f.&zUn™P ŠÉªlï2©kË©ñÖ˜ Êî´n.±à°à©,l\ºí‰óËZ¨5ÑÇdê× 0m»ô:„tHBW&•(xï»»œŽÙopúŽâ–è[½n¤¹@·r.X‘Kœ+ìoTë}öÏZ<ó ‹Y8'Ô‡\“T³àÍ6Æ´™®õbìüf·”­w/²Ñ1¨ ³Øãê´ëÉ»ã¡|Áw{@>Ë—7øn"7Ù™½Ì¹lxyÜ¢ò⮸·“c¡V93õ%xyí·+ÃÿbïËfþŸí½íÌþ·ŠßmÌ;øá»f­ o>¼=SàÀÂp Ðxtö‡?rJ=uãŸ+%cÝìñ>Òtç?Gf³é…Ø^¨¹nõKán_GSP¢™Nžj“F`8°ûãpÚ ‰VŽßŒ¬¯u›<HLW(v·-H Ò~dxxâ0Wzù¥Àþ¿ŽF(A?têí ‚àçC¦çËþõè?yŠ~J^ ÆÚ•ÕÃÔ7£»IÿÓè¬v_%zYÁ9¥F…½í(hfw·=ˆQA#2JX)@U~%¾I}0 þú«’?C½p믿žåþú‹{]ýõW¾;É ørCy M;( ÝqÐMmTcª)êS²/ôûÀE&ÊêhRLÐW'Í ŽœŸ!&'°ƒ2Øìý8p$«™Ó®Øv/² ¤óúàíÙ!­:c•hfÐT F]-*•Ô G]5*¡yxi iQÆD}b¦2"G„Õݯ0ýxN3=jJ%—g…£‹±!Cg°Ob¼¨Ñ¦uv?†H#àGP€X©|s£¹ù¸¬FšÑh™<Ðl‘³®Lo-¦õÁå|DòAÉ“bޏqóŠ‹gY„±æâ U= ÞÊkj§øt1-ý¥YUb- \²âÊx õs‚Um磻Ÿ¹5#®Œ–€bé_PwA awyª]èK[êå=JûŸ0¦EÉñÁ|„B¨¼“Sœ¥ª†átØÇÄ^]ËÌU­Ç¦ –g‘@s̪4õMmö*&uJ”r(HDia¹b”=l`% H K´âBV°C=;¦ Ì!ÄIœS`ˆ()GÁª»¤$ëØq(HB½d ¢'úWS/ŒÐ±;Íu¹hˆvÀ$$M&|.²‡©`7Ô—«ºªwÀ§Ÿ”Ìjo[x ¾ý:Í ÖõßB°$Ù5Xô9/G(Û(쀮X\ÈÞ9-ïˆ|RÇèÁÈžÈ*wØ5»®¦Íæ¥æÛDož‰ã!FSv–Aâ<å—Wÿ7^™þ<ÿmÿÿ­Lÿ·Š­{Íÿ¿åÄÿo=ußÿ{wü÷kß&òûo-Òï¿¥ãÿ·<øÿ­ùñÿ[3âÿ·4üÿV†ÿÿðñÿ³Å +ÓrÃÊ´îÿ_ìþÿ"ðÿ[ÍP4­ ŠæáúrgøÿÑøÿ­üÿ•jö¤¿ôÆÿoÙøÿ­ÿïÁG„}ÚË n:Èíe }ßß–íûÛš ¡¾•Ú'¡¾‹PïÉ eˇDÑzP(êÎÞFAhÄŸÑKBQo9 üJ8*‰PÔ[®õ»puïì]Šº9žËÄQie*ã_æ¥ÿ]þ{i{¯œå½§-bSÿëÆò*à‡ÿòдÀþ{ë¡á¿GéŸ5ü÷ÖBñß¹?ñÀ·r¥—CrÈ#Ý4 ˜ @|‡ßÐ}5 à{†öþ´ÑÞ[KC{_Z~š™ÔíËD{o=h´ws 3´÷LÅþäTìO\·¾jú/£NO¡47Ã!V£¡z>žYõLI HîUE[€äIÔÐRLŽæQ"üñ™õц¬_ õEU¢—€áŽŽ,,ü!)«S)«©·¿¾²:è÷Êê ßËVV;ŒKVVg ßþW”þwEøßÛåç{–þ÷y–ÿs%/Z¦þ7Ãÿ¬øaá· üïVZüïV üïÖœøß­ ÿ;Ãÿ^þw³ƒÿ;T¥JøïHýiÿý8à¿ï[÷šÁgðßü7¾©>{ðßîwjÜïV¶ÄÁý~,:÷‡ ù½•þÞ䳫ôàMžL…ÏG2CŠÎ¢ùëFŠ6f•†ºâGƒV‘ÀÚõëm¢,eôÊPé•¡:ÿš¨Î­ ÕyѯûOi5ø/[{[»{&þóÎV9³ÿ¬âÅ÷¥üçV»Dp0ŠåÞûlÃÎãµé¤1èÄ9èÏo])•tD•P…¥ýE6ùbP‡÷Ï‚\ÿvÂ*¾áãB*;ŸGû7º“ÀÁÊï8gÌ07ï÷"«¦ša÷Ør^ô&ØP‰©3º±…Ô™+ÔrrÚÔÏk'䂉t ÞGÕúëæ;Øu[ó?X¡óÆ û<Ï…2æ>™îÞ^9‡Æ‰kù>ke9Á->ªÔîôû”g¿ºÞJ¬žjeÿ"ßå•ÿõAu¿a¯üÀ ÐÍrŽJs¤ÒÁsÍu­G€3‡*“ïÈSÝw¿on”ó V憖˜#þÞ_^è½ßƒÜ‰êL¹c:o˜Ywp½€wÌ.(„R[ÉômrdV ÃéY—$(9.à6RÃÀ§z—È1át™#ÏOtšŸ²vé&v¼îOÙnßýBé­ÜMCÿ(ÜxTw±ó5 B”ŸÏÖdÓh×"?p€£MKá%­ÉÿElsÊàÀ~ÚÇA€éÁN!Ôáÿ-ùdЙkø±ü“—§âÿR‚ouß †—†« ļb ¶|eš Y»YiîoÒWl­p^ðE¡Ø¡¨Õüœ}›_à=#vmcÑÃÚ÷šµo ÿ£]_°Åh3×ÂH"¼Õ%±ÆNδ¦ ®&hgoô ý÷¨Hò–Šó)eKÅn`°[æõ±Z,ü?Îÿ؇Eª­Î ônazÎlK˜åM¾oPÚ&ÏÖoäv ?&-ÆöѦ¦7ÓÛI“ öÚLÝš¡¹8“‰[*¨_r"a£÷yƱ¦ˆ§?7™!R‡Šœ‚2_NâI§âÖV׿ÙÂôÌ`xâ»Sƒ a‰Þ<ãÏ&Ñÿf±ó¿ö+Jÿ»šøÿ­Ý½=Ûÿ«”ù­äEkÛˆÿ/m3É”mv&¼8¦äÞ꿆^—ú‡õ_ó}‰v½jßèˆ~˜Dª{Óèw·U¸ÕàŠÝΊìzðEÈ·x!¾a ½$‡•~]̘Θõ‰‚)ü"݇J^ô½,2,ˆT¿Ñ#ì´~(éõQ}qo>\~)Zͽ»u=¶m>âûÃÒ[jâsd¹ôÄËÐÿRšÞˆ[“¤ÕÎÒÆ šôL §ýŒCq1ºç}À`s‘ÚrÆòÙ=߯î4Fkºx·"oKÄ­Á« Ñýhÿi&“º!Ï/BuÉu•jäeídáªÇsÆÀ%êc”—)RhÑËþpðq(·ÍPmVr©Í|±e2%²rqà­9‚8ï„Tº ¥¿!Õ|ÀÉŸ9­ÿo>t I®ë­ /‡%‡®Žïú\ĘhœÅ3®AöÝJEÞè|·R¨èбÀ©ùë\±³b0ÜÜݬ©Féý‚8ÕŸ]!óÌ¢S©¡Æ ®¼Ý,;”KAà8uµi`(ÁpC¾–Ú.꺰J\8”©ê;ÙÖí$måGêÖê:Æô­Uµ†ê"yÊ{}²EÜ×÷uÿÛYþ[igËöÿÉðßVò¢9ãÿ³#>iö6[oÎÃ9|á]5'û1aBùÊèÀÛˆAÚ O!è´â.DìJs{LåÄøŸ£:SÞwDF‰oŸúˆ+uFRYÊ.ENÑ"ÈDòÊÚ&ëó”m·L„›Œ€Ìåq9š~b€ó•`rA` 8`«Þ´âp-Ûa›@iË0Ÿkîer}nªª%V×.Ù5Y´+­ gp¦Í›%íÖ»Ž4CŽ4–Æ‘ÆÂ8bèrJêˆÞw(~ /’™ÀXàUé´ùj_ƒo‰sù¢ÇÝ9TÏ£ð.íø„®® \9<.@ ¿X#ÏB Ü^ãá)™0˜jš<œA.W(¤ˆ´„T8Ü(½n ÇŸl§–â5ö¢ÞSÙ|ÌS?¢Ž γׅ‡ùXƒ°`–U°ëÂ3@ct¡´Ã¯ÚŠh ¥ö2§™¡ÙÚ»lO9‡;›ëVwárlc‡KÎ[ƒ§küžŒÏäí&Þ‡Í."=qа¡¹DoÑÜ:™rWNvϲ¼oÃ20‡sC„Ÿ'·æÆdý TWZj»€uTªc-JtïÈØQe-èv„B;sœMõ évªïÉÙ6°ümÕo /ceóm/7ÀïºfýØ‘.aM³‹Û¡qÄd€鯯ëD;!–5húQÒÈj¥®L¶]}Ûq÷-pï 4{›Ò«R_mKXþÎ ý{gÂIìRªøÜQ™h˜“$­“B[l \K•eYâK0Íb»Íp± †Æb çZÞ“,¶=šc ¾ØÌ)¸K³Ó¼†Tc—œ—|îºfážg…é† )ýBÅÏtжPW‰Ðm3GŒïdƒèeÿÙ]ýg·lÛv¶J™ýg/Z©¦ÿß®ôÿkŸœ¸í>Uø[ÿgÿqÂ.ÇÒâ ªÒáÑÚ…ü†ŸªÃðSà<àŒLâiÈ9µh‡CGu©âÏ«9êâ|Á軚³"WcZp\„{"¤r!HôbìÐÙòµ3ŒîPö¤Gí¤ˆ“!ºeô¶ £xtºcm‚'Š!ó¤·PþáXnf6×(4ªÌ±²š²UÚ7´¶V4_^ÅL‹Q€ÒRgõ£º€~~Ÿ›ýˆ{‡keÃ`û¹c#Ú ¥Vƒ£Áá”ކ?ûã‘+hg&ŸVéÏj:µâf<3Á¾9]c'1®±+ÂTÐ_|æ »—f ñÀ*¾!¦óòS¢  &B!hÿÉÞÿ¶z¶áf—œ#-0Ø™R%Öº3¡Ž€Á €@ð-‡Íª9‚5òuÀVu·3ÑÒ5œ‹\âá¨úë2Ý á§²Kó'_°uÒ¬`û zá‹8=õ)4¬±'¡¥t¹#Á%×P'‰´ã“l¼> Ú`ДFTgDvNy¶{1nï÷»ã~&Øš¸<È%’‚g fçšzAèÉÆ:Lo—aЕ0ñô$n¤¸ÛÐ’¡½<rJÀÃìP¡î)G¼P¯¸ ·C SY–W¯€²ãЮØt¶†.Mw“~]`7n†N¶wÙ&?˜Lñ–þÉwIÂkèE>´éÙýv§lqàÍ*Úw¯Uþ Æi@-›#Ê’¼ n†AìêsB«¡n’â>fÛ¬¸aJ,lï4£U¨FÕˆyµãYKr'bg_Óg.2a|Šú<Ä?~9E„õÊ=]O㣖~>`ì¬wn8²ühFxê5ÌRô¥i@4‹ôÃçü‚N…zý~š£´üÆœ'»QÛš5IãtÄ’·Šâ×K+³–sE÷4!°›P“³Üh)ô@‚’&˜ÊÂ$IAlPR`@“Å%ùgvÀU¹´’ 0ÁQb*#Œ”(åxà…F™¥g83ªq«º¡X’†^ ¢¯’6Þ ÀZê°ÈÊV1,jÏægw»©¦3[à…ÜÑ>˜Al r͹Z©Åü®@¼ãÔ9±M$°ïföã¾¢ì¿{«±ÿní>ßµñ_¶2ûï*^´ÒLûï^LÀyLòÅíßÚZ\ÆÆ”ÊÆ;sì_•óF‰ü£ß]ñž¤Ú³¡‰‹–§±âÎ:¸§Šû“AïŽÝ²Á>Ñ &ì*.ÃØ§ì–ˆ–k6Î1éÿûŽgB *ùïì ¹Dš ²FŸ^òƈ4–˜M¾ÙÓëè·°Ì7…áºH5_‘ï.dÒyŒè£¤_ðy0á20A|öIg¶¸½óÛ~wp5臉τ-dìøKµ¤î«Ô}ã·6þöÛô£Ècƾ]’÷`oÌ_åÿ¾1K¿¥»v< ¸»çe9:ÿ ÆŽÿ)•ýÖ=;Ç߯ƒé´?$ß=›pÀ÷ÚûèQ¡Ö8TUþFŒCU¯ùpù…陚àW¬z°è #˜asß0Fi¶³ì‘ÅzšfñHûvœa{I6ê#&žÏvÙßí ÜqÙ’¡?h§¾€÷)M˳‡w&ä2Â<Ë…Zø˜~W2ÀC/=Cpù°Á¶&Ë-Øšò Ç_±F¼uDÊ´éš›”Á× ÙOy¬(Iä$N1U‹R·T¬VPHRéŠÚ²y©ëŒ,ò¥„äyOÿý†haÂ1Ä™›ì˜Zc)¦Ý+R5´î«æ—«[}š%àR.EÝÀãÄ¥Áë=gY{DS§slð³mïÁ¦¢³æ ô¦Å2Uùø 6`HÕ²ÑëÂ|¶Œ@ç³Êž‡…¢d¨jß9#h]KHAæ‡ò"}®’ í«’dr ݬɮ<‹^ø¡@vâÓ3¾``.Ä;§úBÚÎÓ%@§ð*7÷šr3Jÿ÷|5ú¿òŽ+þ#Ã^ÉKì0‘ø_Ïå\çkJW ú4€.maP{Ä¡éÕ‚‚a†zp©ø`šŠ¯¦|ðkj)öÜÐ jyÿú+h­åG·pRRÀÊ_å;×·Ÿ:"#`ˆœÅg)« FË1q¡󈈰{,G&+ÀøÊŠ$+ò×_UV'“ëâT(9p/J…åíxĄΛu«dË(YfR €¤}LúëËÐ ¶À¥Mj=è.ø4h·z7,±çꎴgýø_²ˆÀúâ=ºó+l {ƒ.†ô8ù»é,VVŠ GÃ"zó‹¢ †Sªw`YE¯z‹×’J”é<çíÍÅ|½Ñ óhZ%¹.x ´bzfW£Þ@HÏpiêS®=m,[mˆ}¿ºÄ£vã*²H%jT›¹n´ÙJþàœ®9EeêâœÅ†«×Ud‘jÏhÎUS¢8Wì…Ç„:%yŒOÈ=(¿yWÃÀ Œ¼Ç¦Ý\lRT%#j³vzºŒÖéŸfc7ˆzh5üiÓ_?,o°€,ªOë®ÑXÄ•5Š”ˆp\fDåµ%„¶Ã)g¨ý`2ªš¿4€p‚^Ó¦çVT:ÜÚž'ƒSS:*b~°ª<‡2‰ ñÁz¶ÓT©YöæràlHŒ ¯+fcC‹´T¤cv¯€Í;YÈ‘Ìþ)öN~ =;œm.X5xÓû¯&4­j¹hÅ®J†¶EÇn&B Ÿó UâwþsÍ­®j.­sÛåYkMwÊÒ£âXãαhd ’¸“ÂvΜìFxvxÍ•ÔðCËîâ&æ ´p\Y‹ø@©#›10’ñÄ2é4ž0G0­`«é0ÙÍò¶?h A<Æô@¼ËÖäXaZó9,…8G³âÂÝ"ê„ Ä3ƒ)Å”|¡Ž"yR½^ˆÝñrQN¶Î¥æDC*1³7UçöŒ…¯b2¨hŠÞv\$lÇ…{û•ÇœD°ŠO•¢Z%É´ñü¡©è—úòéÿÇÿžn•V¤ÿß~þü?J¥ÒÖ.ûµ´»Eù?v2ýÿ*^4ÓUÿßÖÛöV)Ê"•ÃBð–-h¾w·+ï4~"÷ßw'íÇ¥è÷:ø†zû4{·ó/ãJŽ”ô©½x+‡ê§·Ê‡ˆáP‹°aÌÍä„“GprCëí!x–ºŸt @ËÙr- jºê1IJSS~×|ÍHá+Ì"jl ¸áûvSka—ò;O‚ù¹UòoÉZ ’Ÿ  Î[ô‰“´è÷•[ìÒ´ª•CNxF¦ýþ´3¸–íw͘ž“­ðé¦)ÌÎû}þ5zH^ÝÑ–Ò#ò¼±oƒùÛ–3/bÚ‰#…n®RàÖ¯u¡b[„®z"·nœí':6OèÜ}(Ù–‚Aìâ)­·kB›*¤[¶9ÃZêŒ!MÆÕ5ù³jc«ÒQ‡yU*Kþu s9™ÃËÃ48Z¹²Åe:i( Mü·ùç­à uÄ6¸ý„(AäQو갘Yl(=cb?ûb£Äag  YS)’ø  ¢õb‰ÿw‹rHsº· Þ£@8Ç45¥§Iܦ&4§)ÚÔ(6¡šdm*;˜bhB%Hx§âœkÆá~£Ï8ü*ǧ.41’λVôd£¹lêKÍÏ-'/ÒÏȨ1y©*¨E Râ9Ò²Ž˜Ø–&_Íø† N›úºo9WD‚¢§‚ͼR¢™×²öÍ>ál.Ä3·.ÞD=rëæ¹’3‰ä­¡Šç?;g’¾g‹†‡ÒåÛµ|Å/]*¾í©£¤7¹] å,ú˜³av:” ½ a®o8UòLÍ…€‰S('¹ê3úžëÓV§©¸¾{Æ\ˆÔIßÚ—¦M2"“2‘-ãþWD«’˜ø!õèûî®xùªkÌH¥ 2µÌ*n˜`pb<ðQ'ô¤Ôû±¯(ýyUúÿ‡þ?óÿ_É‹–‚©ÿ/ )ú83(¯cáÇŸY¤Ž½¬éê…@Éñ04”ÇoQ/µ÷ì Þt®IA.àí!‹¨{;¤ð¿zwÝ) øE“4Be"oìëÁ×þ0Þø Xx7d“Ê,-¯lØ%]‹-úðåu‡Mê/Ø8®ô¯ü=L[Dî¦ø…2»)Ó”dIEþ_çßæøøÑa¹à)¿éÞ )ÖU¾Þ¬Ì”ñô—}ÉÃÞ’Lv=*4zhÕ§­Ö©¦fs¢0Ä,¤9€3S%$-Ô„ãåZ`ø:ûÆVˆ˜„Ü<‚BŽi ™­Þû±Ï¤14…R}–Â¥\„•¥išW’ŒEc³ [FûuùÑBLœ.Ÿ²<»Úœ@¯O\q·ùWÖó7"×ÑzþÆÃÑó7V®ç/gzþ$¯(ýÿöjôÿ;Û;»¶þ;Óÿ¯âEKÄÔÿo«úÿC àªÕ"\2Àê šÎ¿¦}¨%²¼]°`;´4B €Œx›‡™³ÿÖòoà†ý03œ€Ts8ñ»ë)OåÅFçnD<« 2ª¹·Aÿûíõ ;˜^ÿ]¤VB `j°âÀK¢P˜Tù†‘@yºôè@Â[ž:}ìÑx×þÔÀ"‚þI7캩¸…Î-k1$‡nèBÑ¿š€"W®ì5¥ žQi?÷¨'£‰ްJ¥|DstýÒå¦å ôæ* ‡ õæµ8½ù p ¡Þ¼V›£ð\ûE)ÝÃÓ ÖöÛY”í‹exø:÷’Eb¹a˜Ô:Sà5{ß NN>î®ÙlÔ–S#߬ŠÍªÈ @Š7ðâ%|röuøu0 O÷§Ð߉Rè‹3'˜~cÔï~þ éá üø¯£-RJ,)öf(ÄbPrˆ!|¶Î 9wM:-7k~îÕæ´†M)gþù€´V´C jâJ®t Àòš˯ ¢  âÞ•ò—¬aädéWïP f©ýäÊ\ª`ZêÏZƒð]Hã}àYþ&ƒj5s1Ñ«rË$úPLPe{—I][Np9…ü8vá‚kÀ‚SD²°qé¶'Î/k¡ÖD“é^ƒÀ´óÒërÓ E™Ô à¥ïîr:f{¼ÁõzÇV¯ôOeF$º›àJÉÈ&_¦-Tì`µxæ™d5}“§—7½®ÇškŒi3]ëÅØù­·)[ï^6d¶C<4G&ö2ÆÕ^%Ö“wÇ Bá‚ïöE6=óå ¾›€¼Á­xf/s.³^·¨¼¸(²ÇÊÖ¹<Ϫ”3ë_²—×þ÷sUø_[{å’ÿc/³ÿ­âÅ7þÖÌ0ú¶²G˜àcÁ¸_éx¤-Î6Ìf¤ƒ!ä·ÓÐæð×_A%(­ü[x z»«¼;aÿbnªsúƒ;pä€Óð¶ÿs4èvƒ"P„~ÌsÚ¬ÆÃå™ÊŒ {©J_H¤‰ƒî"3¼ÚÌlà¥Ã‹¯5G¨.Çs‡ÇɹÓc ¥®·¬yƒÎð# þN0%ɸυˆÞ"s*X|ž#L°ÂoFw“þ§Ñu˜=œ€Å—'žÖƒVT*Úô}(Xù7ùa°ÜÙGË1žšY BŒo®ýä*@cVâ‚˩7{¾Ž‰6=ò`n3·¤dåt]Ãäv²Ã¦ÓmX–Þ$DÒÖ0´#AÒí t¨tßÝýC†Ð±ÒWÔý5ø[»;¥rvÿ¿§—ØÔ"ïÿ$»üÏyùwß÷g¿Ö—]×ú:ùó˜÷z$L¾[¤‚‚·Áa-".N@C¢/ ¯âênûß|ËWè-ᦽÈ[ò2®Çàv|¢¹,½M%“ßšÙ•ø4»ðÊ ïýé–#oº8•“ÜtËL¶~7]N1xù*¨'qõ‰‰gôÊš[Ô¦Þ¸"B,®çšxÒ¿š:!›³\›âXnê×ĦãšÈz³¾¦´´„ŸâšêŽv·ØÕX%+u‹Áw¸®ÞlK®›­~/mòK¿ëÛ¢ØK¾ëjÙ—CJ¹®6åuÕi?NyK¸hf!¢þûßäòæë‚®1÷¿ryo×qÿ+e÷¿U¼hþ«ñŸçÕÆ¹àÝÙÉ©Œ=9{SѲ+Ö›5öoõ Í>¾÷›+Ùcïí+`çîûàz€á3óèð³vDÈaÈèmA†ˆŠ Ôu $~ûiL¾à—É÷Ašð Èpȉr9*~ÅȦ €D‹x/Üû‡GçúöS'_É6‚KvµÈÿ(ÐtÅÄŸqDàG€&äáT“Bð¿ÿ_E\üX(5‡–¿µ <šT*9¶?l(7\>Õ`SQ×%W´»£á´ÃÝ'Íõ¤“yë™pŸ[”\Ù¤ƒ2*üÛBÚª‚hà):@¬(„ì¡ÖâÂÕ` ÓB›Jf3žbtãT#ÄŽˆ†v”y5Á :b¸I1”£[ 1gu2~‘vKÁS— ‰ò4¥}Út;}wn‚Iÿ#ž ß*uÓÛk;î#ƒâäÙø~e´À }»ewXñä„G}ÄœE&ÐgÇVpkjAƸw;ðÃ?Æ¡*GîGðVÀk˜p’=bOÃÉî)  Ð`tÉ ¼â=fY£˜a¢5~u™kéå_zò$XìÒ3”±ôXFWúìs/¹Kç‚ Y‰Ôèñ²µà.GÓ)›²Ñ`.:×™°¤E—HÀy¨‹.Ù‚;*Pt_HnÇöÊ‘¯Õ,8ßñÉ q¢<¦ŸÔ455#C´ý½~— £ž„Q„ .f6£×ÅD!xcS:rŸJÉD‚ ú9R$ðUTbAÜyªËw.'9¼“hÓ»ƒÑb »c¼€è+çÂÚ‡4üZô=Y¯°ñ#…éC%ÆQ$ðÄÄÜ~.6©<6–<‘äb*\CƒD¢>é”üàŠ—¬¶÷ å÷³òûD£ücûÏÚÏîÕ˜%øküm<˜NûCa-½»í¡1T‘#ÿ>ÙÈ¿ŸyäßoRùÙF~%63‡Ö"ÆZFö±Ç^(pDE¥ë ©„7GYàrÞA!j«`fpJ­ƒè=Â*±·G  :;ywÂìó1û|âo~û qÆž„?å”v¸tjÂâ¬n °²E@Ä¢1·Á¡„V ˜ßoå íohúxl‰‡¹`³yÚÞä!¤ê„Ûã:¾m>Î^(ÀÊ‘ÇWlÏ,G„}€—xá(ñ>²DIöœìŽ!áp ´‹6MT?®Ió”|l³¦2â‡`š’` hÛ„oPyÆIóáÎáÉ_£q2ÜiÐóþ”møtöLÏ*ÀŒdGH0 ±²]Yk2þµk„/ŒÙcþÄN@ €ã¨ø¹ÍÊ]Ã{ ïíÞ»~Ž=E™ÐO`•Ö“PÞ•z³ãt@ßÛévA•Ïûþ¿ïà6À¤K~™ ûlýNàdûÏÇO2†½Qp5W?“ÊYç4#›u4ŒvšK1¡Ñì’@8=\áÍ>+©|½¸\rƒ„zÙAÿÖ¸ÈjÊɪ6çéSöL•h)5¹h)PÝ»[º­H4¸¥§iò8(ÂÅxþ‰^ÿ¿ÛUá¿”¶vÊ{¦ÿßöóÝÌÿo/š_šÿß¾H@Ä|©Ô Aý¬þ‡±ª”ÄõýÇæ•Ú½û+öw'(®×“Ï¥HfÌU3?øC5âÒCs`™J-§¤ˆ¨Rùž`Lw4œLÇw]ÖvÕ°;b¼Ø` êšî—¾âΆvÞ9ÜIã÷íàëß:|(DÌ¿ËïçÉm>°O'k”䘧B<ßàw'íÆy"³ýÙª ¡7bM`•+ Û B‰ðì~‚yÛ'ó΄aX–Û§ð<¡ÇoP%ó¦?¾L¡æGH¢¬–¨¢^²æE¸0¡÷{æÄòµP|ëRå€ÒôÄ© tšù\s£´þÌÎÊ*atLتˆ `ÒîðÉ©WXKEdø_¥¶€–I$ÔSÜHß6Þ.n¢T°öåʼn醙xŽ™ÍÌqw qŽ‚Ñ¥ô­¡Æ2‘’ýóNfQ ñå¿Ó2Õ×og"V)‚²]£%"a;sL7-.âv› Â0aÃ4Ú3$¼¨)i'jbNûûãY2k›D °y:ßs%VÁ|‰d&kÏÏ8P¬zC0qêCO®!'LMàÄz`î›þPŽ^¢Eª,FqõPÑ“ 7'T‚§.Ô$ ÷ÙnÅö±;Áà-ØðíZÿ€q›J[ÍÝÚ ‹w¬²1ú5ȵÊQÐ6së*ì|ÄÓw$3ÌÀÁùŽíxÇ4ÎÌ-ûnmãpÁ:JpÀk}Vú­O²Š£šâfS]©d Ú• =+Ã÷”—Õ±QW¦¾ÛÂþÙ ê6¢p`ª±DIkýŽ¿õÜÎyäÐ Æ´¾x$1µÞŽ„QnÇÙwúÙD—$EåHà*׸víWJ…‰xOÜ–axi»`¢”záhŒL½‹OÙ‰|›Qé{“©ÚΞ.èT”þoEøOÏ÷¶·íøßLÿ·ŠÍySÿWVôÍÖ›s<ã/` €°_ø[@¿°û4TƒUÎΩj çTVsÔ:Œ­L©,‡i\U%œˆ ˜Œ®ïd~K|ôºÿ=T誃 ák6ÞŒëýßq¡b‡_—Ü@ËU‰"þcÀ•l¤…°;ê_] ºðŒ–*¸«£KZ¨Œ€XSÞKqlÐQXÅ÷ü0 B|wÁDq'Å¡C-x;îw0i€^­V/hÀƒÑ¨^¤áu"r™JCXT©*PèV *i¨c¨>a\»ŽL4?y¬i‰êJÿè̪¶¼HÓBXÿÐE«rÝÈå,"ñEø¹ˆU r=ËФ‹$"F½vÁ¦’²õkU­ÓÏ„š,¦ïU»ïa ÆTd@§†Ÿ* sOÛ4écàHÕ ‘ñ†Ê‹ïM’‹Õp±ºI”îWIÙÆ%ø}pswƒ\0¢ÜÍ5i°÷fΜÈ};}û%•’qÚÈ%)#°Ö¹.±ªd½€÷)5‹ªÃý•ów ¡ ôkö<Ï/Bgx~^¡\¤)q*P´8”†ãÆX”ñjÇ K”-=C¡èJj·– H ;­]ðibz%T$R$”û¼_X`Û©•&tC¡ÜÕLåU$ f%qòí p®Ø¬ÊïÜ·©’TxYqªoÖM6…p ζÆ(œLºÆOãK•=­Rô6«*¼P¿.ìG/< ¹ˆœ!Ñ“ÄòÏ¢C1~( Ò‰š¯ª™.T…“Ú¦ÐÛ«œýïôrUþ¥rÙÆÿÝÞÍò?­äE;€ªÿmWÿ¿v‹ÉLî¬W^ãu¼/ÑÝ þ½ˆè5_AecûUtÁÄÎ¥hÅ0°Žö]Ñ=°Ru9 Êâã<ƒC!γ½ðÔé¿b"W; œ ð.ßä'J*ž{hI¨PŸÚQ©_Âä‘Ù¦Þ€æI1ùc¤ä§×zAÊÒü¡Êø|÷±3µåº4’x/V© ²,ú`ÍÝþ„gº¢å鮤î:´‹Æ$1!£ˆrÉ„˜Ñ-“Yòß 2~#Řï®(i|DöúÛ.à‰uœ¢ïÏÿRUŽ{uíšt~}9îiLúÑþ˜‡±ß’ú”ÍïŠÙ²&ÔZ‘*Q£cÖÇÛøx8ÝÙãmß³5þl¸ r5{¢ò]6»™Æ„qŸM{h†ìÖí춈Nò ›ùH ÆhÜ£Åe­8ÞOD+\y“;6¶":z,˜Ü]*Ÿ-{ÏÁ–°Êçq°57×°ë[7Û¨dTž@Tò®kp=´\o«:{f0æøb;¤ñÃG>³ÝñKo£DÆ(UÙ½‰u|.N?©€£¡õL¥Ã­&ÆÃŠv¿ ¦ƒ«Ñ5kéD3» ô°bvªBk6ÅÏ…ÏxãÎ à o¤kÿ\üÒ[ÿÇ«Á?^}þ»‡Ð ’TpÖ+„>cñ›Á07,|Þ`äBKF5Á4‰³d£iEñ4=Þß(‰J~m7å$^ʳ¸'·Ó8%'êñr]ŠS›«¤ èqù"sQˆ E— Ä¡Çï“lß+’ûðìVÕ[¸]Z®X«ŠQ,¢µ‰­*•‹³÷Œ`íÿ´« É&·_cK]¶±ë±ê[*Êx}¼@¬9õüŽÍ¤B‡¦^µ±´«š¹DS]„J Ýh¢ëØ-jõ”Ô–éf½t—é¹’Óï¢ÞY›f–åj,4MšÏ1=+0J·©—,i¬’–a.(£×uÇhgy‡3µã©§èGº Ìq¯(ýÿªòÿí>ßµý¿·3ýÿ*^´âLýÿv ý¿_)|Î6LÀ³!9° m'°3AA09=§Ñía ¢œÉñæ¬áLØ8^US†—kËV0ÉëÖú Ác¡š”}ÇUái,š9@êVPj“Á„*à¼W cEfC ×£±!À˜!_RX°Lb;=Y2K-Ï’PÍL Ñ”FN¥…zœ’N=¨†ÃstaÆivðÉç,ÿ£‹÷Ve‰°zIc%g…ðT)àþÔÝ §2_ª¼(ÍÞ]ÑY’D¢Eìì¡¶RŸYq&%]ÿÐù¤”ýÁÖåEØTfÞÉÌ;Ò>ÃŒ{°Ð¤¶Ñ ã³¢ÏtÚhT£LA·ØÌör÷‚–™ƒV‹]'M°|´éª~Áÿxî‘sm\üPC†·•¤ ªA¯‡ÈcÎŒ7û¤¿X”§R½Jîë‹·ç,Õ†Ã?ÄØ)hJ©œw®Ø0°æAC– ã—²þÝDœxtp)WQv!¾³-ð‡žà¤Ò®ž‡F†¶°í„ÝTŒL¤§qÛ˜¦ÕBûIiêØÛŠn,ϦD•* ìîú†O}Â4ø×¶ó¬¤_–š?"°%YeëÌV”#Z¡Í3¨eÛÓoc¬ª·S /ÐÆ•ü$¢ân+×΂¬\õ F…¶Â8û>B‘90¬ì8¥ÕÇQ\ ùBÃE›À\µd¸YR“iÛ\­E¯yjzË\¶±s’=£¬8t¡³Ë¤ä3݉Q°x¯o8¬Ö<í¤°k Þ[;Nh|ÝváXËöÿ| #ö^s1—EQ]äÎ>´£úÐNÞ‡öÊúà2ŠBa¤¸“ÎÈùà‚®¢ì»+±ÿ•·ö¶·-ûßÞnfÿ[Å‹&£iÿÛMÿeDƒ0ù]Tjm|‹ñæQÅÙª:iŸ?u3ŸàŒ0÷Ùw4<à,YàÕü-qzÞb´‹2í±Žäd‡RøvqÜI?ÕGãàrt7ìMDr@´w|Ëß›À ¡Vî˜!§É_%š RdÊC˜Ûš'µÀÂhaq‚òûŠÒTUs:V‚cdÒ"ðC¡ñŠÄêüؾv®ïúМqz7‚ÊïŠ`z¤éôŒ×l¾³¯;Ã`4ìëÍ+CóBÛ¨Hªæä_af«5)ù '¡Ÿ|ȃP»äòë0%{zá{¾kž@1vóûŸAë\N@t†?¬÷ð÷r}ý²nRÀuú!@uÕ¦"Gßýñ•áPÐsÕëíõÝ$(e†AZ:jR?Çì÷Y\‰¬ƒkáÃ1–AåI‡Uë§a!4àÒ,³úÅÀħ“'´Ò,i˳1M£¢ÂAÍ¥·Ç¸üzAfu5LRRLlcGå[ ›oa-âoeço®°=þ1Æê—+<=‹DZC ˆ( ‹”ý`¾ù´¦Ã'Ô0MÙ‚z;|€›ØU ãa3,GÚåb ‡±$¢ §Né¥ÇzkZfm×x:¶$gÂ…¼?*nƒ!NÄè_§Diâæb™q·=f\ØÄÒÙñ9>áÁÖ¹-*ÇmÎ1–ü÷M¶Ímò­ÎýT ºqàÀ׋°•€i€Êúã(# ÿnˆ¦  b}ƒƒµ®çCÎØ¯pù)=ÜÙÒ²f¶Îƒÿ1M¼ðp3pÌàeT€WàwAaO‘úž#Î2îz¿7êÅ#¾åÍÀïÝdü6Ý <C©"~Æí-nÆÍÙý½_º=_Üt+m볯íç³Ï5û+`U}óàífÉ3ÕànEˆ¶üQä ]É ëëž&¼ðœ¹Ä4²`‹Ì>xm„Ç ÎyªC|iùO{»¥ËÛZ×\°ʳÂH|eu1ìßï鼃vWïåÿ³·šøÿ­RyÏöÿ)gþ?«xÑt3ýör2/ü©EÃßø·/õ[iÿ"¾=Iz¢¾UÚ»s:ú¤Æ÷M㋳ÛwÔØqø¶3†[2ÁÐç(_$ð!G;yOÇåÕOÉXÅL›*ºÍŸ¼ùÛUöhõ‡”ΠÞ/Ù$òF P†(Šš»7I,àH"¬ìÁеfXÄ_¦£ ÇúÔcÏ¢žánØë¯®Gß„ÝU¥õ™m%à‹ÐKš.s#% ”õÅu˜*Éfó%„÷!Ã4‹3c˜Ðjô¿ß^º ÙrgãyÜx„¡¦ã–9–¬t³Œ:¿K…>èrú¨L • Ÿ1^>ÓÇÇëñò˜ý][D|æÂK>çå;lÌ QZiÓ„Iž¡dœ¾0 îªá)È\ÐÏQó¶ ¨Fq Q¥ˆ`ýÞºŒ/!7‘éeC$¶è¬~É­w‚£}öšìØ:ò F ™Ö_cˆ,Ú[¨Žo¹ÍbQ–˜TpQ`¥Æsv½im}–½ão_ŒÕ©E×,•OÔ›BQ`>!æÈ>eíw&?‚ng¦'é mž´5üÃ|8áëïìžÐãÕ°ÏÐbo˜ÄI>քʹ©Ú5h„zwÙ{a¹Àº_{ë®ÂÚÖ×äCï Y+pê2ƒªY;ròYÀŸ€UàhEåôÉZ{Š£´©¤U§±¹à–™iWSŽ{5Eëàúº(e9ÈÔÊ™@¡¿¸Ý…õhIeC8Léae%ìpí±=‹à¾\„C îø ÖÆuAðÞ€ÉRÈK":À\¢‡‰ôÛRâaÉb"-çRŒ16p@Ð6’BÐ:'P>G ·ã™üIæ¨B8Í-šakŽP]í=´À¶ì•èåÕÿÝN·J+Òÿí•íü_Ï3ýßJ^´f5ýßY{«”37›Êen< uW¿^¯hí^”N³dUÙº` x@_…Þ$ÖéÁèFh:t;/ÙÃRe Q^da3!]VVÜ(E5é‹0g&˜'“¥ÒV#gƒ|¬A_¿hT"•PåL§ G•Ï57JëÏloàÑxðqW1¿N&TÇÐÜUIΨAÈùå¸&½"†k"Î’j]Îr¹ÏÅÒzþó³r° ÅK)VÝbh$½Ü°ø|ì>çsŸ‘q@½h*vH#×ì9óÈé¼Äéæ aݧ‡N;(ÀX¾Ï6Íz¿¦ª;•DØ'¸–õØq5ýº{©ŸOªÖ‰TÈcpªTYw4dÌÒ³œkû[_z* BÛLûóÓÑ 9¼¼ÁÁdß/1€7M-B³„ùÐ BÄ«1ËɃ÷JáòŸ‡?ѺĠjí³ÅäÀa=K§¸¢g^ÝNOnËu›Û½Â©Ì’÷&I.DÀÆ©¤Ê £é ÎÜIp@Œ×“ÕÈš"‹qÉ_+ig¢A÷w"èÏNÃiy¿§ÉY£“ÐTavjƒûÑí”~À¿ˆŸ ß„\Æ%实¸¯‘ pÂUmßöUã’þQmã¨H޼¤TöCˆówØyh'×ôPDÝ:Ô­5N×À]_‰õ_„óÅl’Ý6áÄ®7‹íŒdwÊ~’è2œw:"x‚ð´1Ûi÷Üü¦¨/FÁsöÏ¡^–œˆpšs—c”|ÈxIFiñ#„Wï5‹G€XÃpßc¥SÌ>û#=÷½½Ï%§D‹)¡ZTnÙön·&.?k®=Ï$i‘ð}ž¶¡¯‰»n1ðiNá6~¯šÓ(ý_y5ú¿ÒÞvÉÖÿíeú¿U¼øú7ôeþÇþ:³òøxwŽ¥ø j á|¥Mâ³ í¡PzöÌ”—&ML^70·ÀúCd ;Ažž‡’ó ‚"Ìb^ ݤß%Ч±D®‡{œ {b³õPô§a.¦LσªV;CO2¨Ú™nñäÌRúð×£Ié“>¡Ošt>Y2ŸžúAfÐYŒî<¹Ê\WɪtRªÌ5=¹JçqªÌ³ì)Oÿjöì)+Tí;¡qfM¾r©W°Ó.àRüû[&ÜI¥Î_Ò¸”ÙËPýkYî“›Œb­1¿Ê¢  O¦¢¢¾Ìú’ÒH b2Pb/:'¹­Û+¸+Vf³ èšR‹F=ôæäÛáã}B³ÂÓ„,"IHiAIBT³[Í™"ÝB¾$H³QµSÛG$(Qžò¡å„À3¾= \‘ÞV®ÐôRËUSãBfð¦4Q•RDƒþä>ÁQúßUå/—þŸYþ÷•¼h™ú_oþ÷Pÿ«%w÷k£²¾gÚà‡—Ò}Iºá%ålO•²]è)gR +ja 3›fX{U5®Tî+UY÷G«ôÍò¸gªßLõû U¿YNó,§y¦•”Zù'–Ó[ò¸2š³ÿ²¬æf«çÍj¾íûR³šÏ¹þ«¦5?s¤5ßÚÜWA•šÖüèH÷•æÍtNÂî4âVµGGºSw(Ϲ»Ås¤>OÛb‡‹³»åO!7zåIåEoÚ†“IÑg›ÉR¡g©Ð^*ô³˜ ýI¾¢ì«Êÿ^Þ}nÚÿv¶²üï+yÑ 4íÞüï¡ýOXò¸eÏÜRÂW–õ=|=Ä\ïN‹ß²³¼Ÿ=°,ïFNšý@+ÝùØãB¸nèig~Ï 7J뉓¿ÓÓi’å3C`–·ý!ZW”·ý^ò¡?m›á¶2a7Lm3Ô)äÊ`*´È„¦ÁÌjr?=»O–<Ÿe#ϲ‘gÙȳlä®lä–ÿt´žü¨VŽý}Ë’g ɳ„ä+!y–ru96ÀÅ¢0§ùÌÓtFN ³<ôÀ2™ó}€vÆÙbÅJöM²—8ܤµ3,¼}3 zÚy ‰Ï³¬çI³ž³ñ†ÆÔçâ=z&û”tèÚƒ9'úÙ½äDJ¯(ÿŸÕäßz¾³³kùÿ”²üO+yÑÒ2ýbó¿K¤—§“ÜýÁ¥tOŸøiÁÉÜ=Ñ iÒ¹Ÿ¥Kç> ÀH “%sÿõ“¹ŸeÉÜ’Ì*3w=Vw’‡‚ž%6Ï›?œÄæ@“±I¦²ÄæYbó,±ù/˜ØüÌØ¼âH»£M›%§3?{Bé̽úŸñÊò—Jåí ÿñž^4É5ýOË™ÿB–*ž>½Å¿t¾ùù¿`ÖŸ¸¯JÈ”0HŒ*‰ÙLÌ´g ÚçLÄrÏÙ×E¨AÂìë­¨Ö%ϾÞzhÙ×]^ë=ùzËbE¹FEå`(­_¾i6öóþT?¿ÅiÂŽá|øÔáR© 5vÕvÞ·úNGW #ò5—óÊ/Ü’–$•|Bh½H:ŽÖJ˜¬&—÷:N½6b܉·“BÐi L–«\ðÝßN©hŠÆ&Á±3s™cT¡)+F&5×qçÝ¥>k´2Ñ¹Ž‚¥Oš…%.oE%.÷nËIaÞºïæÙkŽW”þwEùßËå]GþŸ,ÿûJ^´lMýo\þw.Å„Y}ü*`5Ýϯ§ NˆúU)<ÈDðªVØ“ðÇ?°³djÝ[–x À3Òð¯dJJÀãPÆaù‘ä …y~Q)~"3¿!oNŸ¤ }€H–ÆýyeiÜ‹IáAæò1ú—™923Çc2sdyvžÞÚìyvVh7qB1Íš¦ç$éyÀFîs,m.ýÈeLX†éEKcŸÜc‹híŒyxe˜YxÒbh6„¡”V„RÀÑÇoNõº òc5a.ÓŒ® ·HÕÓJoJn²Í?¾‘HhÔYbZ˜$;¨­÷ÖPJ Ê £Ú/<éVøX¦H¹‚pD R­TíD÷yi”§|HN!(’oDÏW¿•ï¬ÔrÕÆB Ñð…4¥°”"ðE™Qa¯(ýÿöjôÿ;å’ÿ£”éÿWñ¢fêÿ·“éÿ)9½_E\Sr’©ÖÍ(YX¯‰—sÚxv¸‡gØŽ± ¹>0"ÊÐ͸€ð\æšM€>3Êz¾säiÀPkÖÅ4tÔgü&‚ U4Á gY H×ÉóX €_LCù ò½g6|=›Œò%…ÕË$¶ÐÓ™å ³d–ƒÌr°|ËŠ: ý8Õ.œPÑUÓF<0yá«@ɱ¼xe( ETæÑAë- =•òW²ò°ƒxÛÝ §¢)ªG+œç¤Êœ±»¢³áGÑœMàì¡¶‰RŸYq&\]ÿЧ-‡F‘ýái^3£NfÔI`Ô¹7«ŒžjúÚe¡@Qd:í2ª!¦ [iæ´Ë`beëD’ŠOr_9Å/øÏÕóq&¢˜×`³OJEnÔ< ·á,ÕnÃ?ÄØ'hJy\aý™ºER%i[Ê]–ݨ¯Çlü¡#žTÚ- §- :a7íè§U)"ºDE­y[ÑQ¶t¬opUŒäw‡ ˜Ñ¾poÅV=[~’ïÒÞY‘ò"­ñ'Aª{-7̘YêµÇQ” c B«ˆŒ«0›‹ûµ—v”UY©PÊÎS‹“X«p‹òÈ+St…¬äz¥¸Ä$ËR”Ú>OÛ leÞdZÆ2Ž™ Lj?å¡P“2Ó¯9ŽXd _ÚQ}h'ïC{e}p )ûM ' I`øÛÎ «{EÙÿvWbÿ+o•JÏmû_†ÿ½’-4Óþ·›Ìþ',y‘ñ?lצ¬È"Qü!^2ªø/ϳøtí‚)ÂhKüiL{”<ít‡á[‘˜aF‹ŸbÍ‹²ùaþ.Ñ”–¿]pÒ@é‰U!„×™ºž+N€„;fÈc Ä|æ‘l|@C¹^pí/Ý26¥fC&âĹÉo%JcUíD$Ì×IúzÌÁ*0'ãÔzP |!,| K¼fS²˜]o&û ͦÀ;h¤“|q™­Ö¤ýäY¹äkÖô\ùÌúG(=ËÌ’ío¬Þ€Ká ×ÃÔ.%‰W˜@AÙÓ.VdÃ|¹s3AÏû¾ ÐŽË™€Íœ“ @P³YbdÎzídGïÁ¬ÿÖ÷ )œ½Eƒ]*™ Ú[.Ú­waÔü]èµGWA’¸ö‘Ìw=ý´¤þ£HÌäl:36‰Ò@}uç+[©¨ÑOMGÌÒê‚X‹‰ âÃ)f ÷¯IÒ¾ìt¿(Œ1Ne J…ϵ\è4¹é\_ã Xë²ýé#°w†?xg`“Öå ¶#²‹Á”1ä ÷2¦ùºv_ˆ0Ô:zo'i±¬(`XF}‘vJ=Šz«JžJ[-Š7ÿ%åéÄá9,­”ƒµ€@ ”jد–¨('Oû]Žýý¢,“”Ç[X1ã4¤ÓÆÔ”1¼ iÑ:‡ûïúwåyL¾Œë¯ Q‰K¤­7aòL šˆNÐëc¾y$OÀ D`g`ƒ!#ÿòÑ·ÐøðëÙ¬Õ¸C=æ/±[ÉEná*¹K“„&ò1FnÔwD˜¸é)X$ÒªEDiÌþÊÈà9•_¹¢e êíðQ²Ó°—¼iØ Óm¢ý·v`!)±é_È+¨b¥ qªý@ç4%¸Qä›Ofç­SžD|NIpL{\€Z,J’–mÍšdíwæzçÏc´%j™”Y-ERÖ5ƒ±aéWòœh†JŒ%´ ¯Oƒ6ø„_ʤ9ÐX0Íò^k¨›€öˆ‡ýORØV)(«Åé`À;‡{F*’¦úÈád¡¶,ZØ*3v*4jªKúMßNˆŠ¾¦ÊÞ5•X‰:«îT°ö:û„Œ6SÓ¥p…ý¾»Vûé…gºS’j>Å«ždáX9ngîÔÚðû&ÛÎ6ãÒÄkPœ©³Á££M="üÎÃÊô¾Œtí»³§k·,ûvgÏÇî`žíñóaožùÓ¡½_><Ÿg>Ä,§ç³Ïû+è|Ý›ª> [H`¤©ܼäbÒ0º¼ééµ&¼ðœ]Ä2±ó5lÊn°ž¾!ÞÓÖmž_T¹ö åÏtìí´.·jw…î+Ï ¿ñ•Å€°÷¿§óÖÙͼuó+Êÿgo5ñÿ[å’ÿ¿ý|7óÿYÅ‹–®éÿ³g¤.µS4ª7Q à*í_Ä·'SOT¾·J» ³tNGŸ”ø¾i|qöÂ(üŽ`ßvÆp•'¸øÅè‹´:äˆcgÖqf…[WrB“Ê[X 4ðØoÃS`[RŽ"Œ¾d³Ç@‰Y).î œd¬¯Òžjey fõ©ÇžEeÈݰ×_]¾‰ôà*­Ïl÷_‘û(ʃEf,Jæ'ëêó¨F—`N6òÉèN"T/ýï·×ƒ.(ØÜ¢%2†PÓ´óÄ¥g93S£….üZV¦Úrú¨L • Ÿ1^BÓGÈë1ó˜ýe²~™ç‰|ýªž'ó¢—VÚÔ¼¤q²á1L|¼„Ôç´1‡)òƒ'/¨‘<Û•¶þ™+S=ÏÙ–gu‰-¸é·‘‘ Í×d‡Ô‚O5è3”s+i Í-·/Êæ9G*¹Øri­–6Ê3o_Œý¬E†×,•OÔ›B‘c>!æÈþˆžÎäGÐíLØô¼Œ'S݈„6OÚJb>œðõáWvÇèq—lp¡Å&Þ0¡•œ´ ´sSµßÐ: í ²÷ÂBƒu¿öÖ]…µ­¯-&¬À DÖ œz†Ì …jÖŽœ|ð'`8ZQ¹MS²VÀžâ¨­d*i•Ä©Cò.¸ÅnÚÕ‰a `ß ®¯‹Rì÷$(B·»°ž›»ë逓TA‡éïäP¯T\vzlÏ"(1á‚»¾ÂŸµq]PP¼7à¸2<xò\¢«Œtü"ÐSÈb"-çRŒY9pÀÓ6ÁÓ:gO>G«Œ7â™K6·B8Ç%¦a2ÐîešÃûyõ?§[¥•èÿ¶ö¶Ùofü_i'Óÿ­âE Ð0ß5kmxó¡ý¡½Ub{Ø9*‡|÷hWÞñ pŸúïDî/Fýç×£hwàBÅ]\˜]åPýÄ8¬IZ?ÉXÙ’h¥ !?ÛÂcõ¯¿ØE«´òoá-ز¬òþí„ýû×_öV²Og(o}ÛþÏÑ ÇäÔ ¹š~ëL8;ΜÕ×z{˜@#Öà-™/‡4WQaê¨_Aw‹Ñxðq"¾ÍÌ|†Š ^çáüuâ“Î\O$§V¦—QÕ×}‡bbwl‹Ïl$ïsCëï~Ú\Ë‘ ÞŒî&ýO£ë1{8‘ ä ¸óË(KS¡¨LßÔHX¸4ù–w"”q ~dËFÓ<@ÉMAÔùa°Ü<²;µv¥ž½*¼ DÒŠ—~…¦ZƒJÉãÀ:óåüµD׉¾œ¿v'TO RuqЪž°óD€UTÎÚø·ýÁåi=Kâ÷9ªˆ?ŒÛ#â.á¼g×òF¾¹aû-"” u‘]nˆ »á¼Pï@Q¹,È͘_òØU—“k§Ö††ê^Ì}‹ÃYÞg¨N;~ãz}ÀÅî¼èܺVE&ã²Em©nu]*cWKÒ%Ð=FôðîúZ>to·?{E²†d“!¥Äh^®G¿©…iuä‚£"8®46êä~(\ªàa¼ªìH† .Î-&cœAØGžÍ‹Í –» ¯¡äù[·Z'xÂf2ãI ¢öSêY¼™Å©1 p­ eÔx,ù$*Ñ«:ïU)8oˆèÂ0SKâþ»ííoBuÂ+U¤¦†O¤’#§7Dhr·ÉÙŸ’ôu´üz•è¿Rð5µaYz¤Cµ—§ ÔE 2‹\þØÚlXDv|“Q-|È’'EÝÿW“ÿ{kw—}gÞÿËþÏJ^bGмÿ—åý?»üs23^þÝ÷ýÙ¯õe×µü¢ß®Y÷z$LjEþîwÆÓF\œ€ÆÇþðd„ÎÊnûß|ËWè-ᦽXKôâ¯ÇàvÞŒñY¤·4Ø– ¶~v-n2á«ù”ïÄÙWÞx—{ÕÝg²óÑëù®¼åÈ+/Îå$WÞ2“ÍŸßÇ•—S ^¾‚‰uSmFÞTù}Æ+>4•k2Ö¦^¸+²?oÕ뿵6»¶X2Ø'ïŒ'ý+¸2òûbsŽ+c]¹(Rá¦øÜT/„%Ç…wéf}MéS ?i*Ç_‚tÈÓ šÏ9Ùݰ?®®EòBë°ëÆ~ ÁZî;¾2Ýõ l“«\ßÅžëB— —›ã^ÛTîµMy¯µvÒ_g#n¤5›¥ãþw=éo† ¬#æþWbÿ±ûßÎÖÎöóíû½´³»“å\Éëäüà%[Ži'¸\“«ÜÑ@­±#’I†x38Aè«à¤ßaÂ×ù¿ï:cv.‹ú·ð†c½šRG/?ÙÂ9#ÏÒ&Ý ‚Ý x»å¶BøGX øÚ–ÏÉï~£'÷ˆnY‹ô ŸgËl[ýàìL˜ Ø?gßÊLNóô¦ý‰õ„fî³²´tÍü­ígû´ÁI‘Cóbò[É_°6êõ¡Ü`È£[v“ƒe¿ßû <¹ {Ž×Éjùq ÝÃþ÷)‚—°ü#h¶ßŸœ³7/ÐV”½îáåØÿ/}Ø VGôþ¿ý|owë?JìÅÞ–wIÿWÚÚËöÿU¼þŸÅ¼~û`oLy ’ñ2À ïv<úÈ®Ó!¨"A)JüÄð(a„DÈAð±?¤}V^C®IT rÕ ÔKÆýà#+rK¸}W£ëëÑ·ÉËß°™ø:?a7¾óváü þšýE åùp·„„êŠqŸÝCU…åD–¯ñòµ¨ò±tÝÿî!±ÏIì+$öGw—I›ð—ÿUÞÓ.m\º!èTúx‘%@„ô|z£ u5º½Áº‚LŒ¬ ¡á Ö`¬q¶“–‚ð©›ÑX’êÌGéõ'ƒ1¸–°÷çPaÿ{š£Æ; Tƒ 2Ùõè«ó·1F°ƒÿ-íÁÕkT9€õõÏ&tsÃf¡F >€D_Gj|qª³úˆ$ªMøMZ‚³¨"ÀyŠ“´ 0½°‹ßÙ²˜N¦“‚xדïº<10}ú‰Äf@X”U΋һž|'ŠÒ'*Ê&XjL™LEtc÷n #ËÆxŒ@N?‚ë>ãË&Ÿ3#6#oF_Iƒ¬.» s5å‘t„äþ© ˆýþØSÄÂþXšîu¿3TèÙƒÁ„¢Ýºœ Qí`N$È!%Mõwkã›`2ùÚÛdÍú{@SÍ9åšü‘5ý·éèÐÙoƒ¡(›Êf¡Ìe®ïó?ö©™›ëÊÖíÈ›íPH  ,£ô‚öáßÃîõ77ŸAݬ;Ýß~cu¾ÄÆéKÅX¥=þ;›¼‹?Ò{þ„ö¡´‡ûo¢¯‚ɰ Ýþá~2q}GìѾëwí¯ì§>~´¿²Ÿš\ò¯þ“½·K\v®ß}±)»üèzòòÒ~îúÆþîßcû»ÉWë;¸‚³ï~û­&XÛu°¶ë`m×ÁÚ®ÍÚ®ÍÚ®ÍÚ®ÍÚ®ÂÚ®ÍÚ®ƒc]ú.Öv]¬íÚ¬í:XÛu°¶ë`mW²v_°¶ç`mÏÁÚžƒµ=›µ=›µ=›µ=›µ=…µ=›µ=Çz†õ\¬í¹XÛ³YÛs°¶ç`mÏÁÚždíÁÚŸÖþt°ö§ƒµ?mÖþ´YûÓfíO›µ?Öþ´YûÓÁ±Ÿ†ýt±ö§‹µ?mÖþt°ö§ƒµ?¬ý)Yû—\Ùf ‡}É¿;k¶Oùÿ3¾ºå[ˆ(Ð Ô´]½À¾(Ð ìkz²nz&,ûA”ý–ý •ý)›AÏ„eéìy);ý¿r¼_ëð–¦Ôúoüðy>U Ÿª‰§èìRií‡Oí´J{/ÅS§>ˆ§”3ñ¥Ö.쑤"-â¿+çèK­-zy~œ¾ [ÁGÙBX(ƒsvE?9Ñ/€ ûy”á“ñT0û%Ÿ/LÌBæoÿùúÝO#¼ ªÇAåD¸ix¯gÿ¹ùL”þÒüïàýŸ üßÿoIo,7'jío¿uÃÆvÆvÍÆJʉÛÛeííÆ´—[62·¶·g´·g¶×²™&ox5¼—ŒÑL‚‹oûo¿ý þÓhøO£râÿd-þÓbšÇEÉ6Õ½mg¬V&rÏœÉ=k*›Ä ¦ãBƒ«g"öÃDï%œéÅ”¡LùŸæœÿé›ôEkL°C ûóÂϸ•À·™ÖáY¢ŽhgÎKå »3¾ŠÜq ¦4Ý`äÄ$*Š]I{ÓÓ{Ósö&ñOß3¹âÞ³®Þ³®³gq›múɽwáú©wè§³Cñ›Zú.É=ÎÙ%ÇRbâD‚C…ÝàÅ-úeo \µ#zÑ<8{)»Ò '?nnúµ„Ó³ñˆI7zã9!ÖtN:lôoâ¢ÎV¯»ÚsµÚóêœ8ê$¹ÿ%×¼Øuþ±¯Ô9àˆ3hÀ öû˜zc2°I©“èªuÒ½â%jœÝ¬½Ôw(ì!XC9 UË×½®U•è]ßÝ»ƒ?Œª|£¹?|í­ ­¾Ñmè%êI\¾~Uáktì¼°{Vša¥º´fˆ~t÷ûõþÍè!/ü­±˜B—¿—¨rµæ¼j´f¦ÉMĵzÅ`L܃qnÆù¼#1±F‚_X_’ÒË9ÕÊIØPM²G;Ã.|Bü>l9ý^sÏY³bN\¯ù‹¬ù‹·æc³æîÃUiµ‹±Ä׈/ÖD ûÿÑË€×q ¸í ЃÁfD×1ÿ¼ø2㣗¯“sCkÎw‹,Æ\Š5qé^U¶&d[.;Cȶ4Óþ{i- ®yÀGݯO!Ô…À}PZýãþ5ðQ¯í«š“ת&u «š½qUý¶å®úm‹p¶ÞòX÷ÁO‡h TM䵪I«Ãªfo\UŸÿá®z®ó:Ôú¹ée@î]Výè$å£Äž?z½œvŒ6 ™$ô[×#u%urP×#u"urP×#u"urPWÈA]M’UÖT9H]¼(„²¾% u…(Ôí;;X;8·kÓÆô¼ûénB†\K¢:­ i¨«ICaª4ä¬3ý1Œ-±¢®ˆºݽW¢YZâ—‰¨Ak„LÔÕd¢°Ao™èM|Æ»3LÃKê q¨;q†*Í# QõÖHI « Ê ÄJBbh¼ÂÖm ]yþwõã_¯<éñ/šá—‡x;Ìc¿ÊCÝ^6$–‡œìè:¦Ÿƒ#¡HÔýèåÉ "‘›7îFYìRQ÷Ò½*!ÑÐX«Ã#u)uRQ×#u)uRQ×#u.uRQ×#u&uc¥"®6L(õXQ€‚bw~Š"xPìÍO’ü¾%ÅŸ kdiO_-€›èøV4x:¾ZW‰²ÉÛñÕ¸K¤ ¯Àe­Ñ ¯{ cµ93Íil4-íDmf4\„‹k´ç§N~I›Ÿ¤d)ßÑÖHà%Fª¾üí?™x_¼ ò¼Òûü—»[ùÛ÷¼ö3 ûõÿлWr$ñ7V!ÿ½{%Û„¿ñ^ñö-+þß…ÿPi¿>h>[\ˆû°ëÅÿá?Ç£S»°²7Drf<ÓÔw [‰/Ù|î²-mruwmQÿü>¸"Z¯‚â€:(²­QŸ:ÆÒ›ö?²y‡Šã‚Y;N™4`Ö9€³>€´Éô72oA^çôZ+²¸œPŽ3õϦ¿§”À€sVB]{}Ðø£Zµœ·µ×àßVþž×*L¦ ç@SWªç™ˆ¹€]O áíàÖy­Ùj”ý]ä¿»êñ‚_Ó3 š¤éyç:á!,»ˆ«dK|$Hê6ÀPpØb= ˆg™Í¸ý|Ù|þø„ æ5ûðº½ÙtaOùm«ü;µü;(ߌ(¿c–g[5æ¹a@xFawÙç¢,!{‡<‚ÜÝÖQÃIü[+E.®Ëç¢ÃC°©"R=ŽÌóÑ@ª>² œµdR ‚u€Â,e€èA\ò(IRÉ Ù‰ ‚ù7ƒ2¡Fï#–5üæJˤ ·B°e]eG´Gxu$pRaaãá ;Òka QݸuÝÇ…ªfd£I{I.Ø–7°F±¨ß&sA…OVp[fžÁ®’ dNø_>Ì ‚ŽýÙ4s‡ú U„£+_˜#ÜxôÏªÄø†Š7X«ÌGˆ°b‡Dêé?«â2TV2]i´%ÙWʹf´vÃ4ã0D§a¬ z…Ó%7xyS¼®+ó&ÈàjÌ>#ÞeÿjêV88`ކŸï>ÂlÀ› \ãÖä7é$ßö±ræó{+ï?Ó5@w“O¢%­ZΨ²&ú J&•¤QkÓ6±@Y$Íå,’f²EÒüÕIó1.’1àgF­’æ(fy(3Ï;9ýË£9ûò ‡´çZ;®T‚¨QnÖÚmžÑìªGšú€zåædàÁwêaö<§ÔçhÂâ–»Ö8CתªK6Òh¹sÁ«3Á³àÃÏ0}#NEòˆ<ÿ5 Çïâel[ ²m%ÛVì×cÞV2á?þƒLøw¶øÁ ÿæg…çû§Á.™Øõ~ƒ‘ÙpÚŽD bjïêvâ§ø.¤Ø4)Z–…=˲ðܲ,¸37’áäfn\Ì+ÚÿïÓ üÿJÛ;Ï˶ÿßNæÿ·ŠÍlÃÿïÍAÿžšßïé/áï÷Æíï÷IÆJ.Ìկ㴗~×\ýÞ­‘¯ß¤3(J?_ðEwêB³ûõ%tÁ{¤2t»KFk1nw3ù½Ùîg÷éð6$‡7{Ò9Ì&ww-kLT2“éˆÍ‡õeyÈ53¹ôrå|æ!zÈ‚7•!/ÝO.¢4ƒW³û0|ë*'goر²h»ÊÅÙû‚éi÷†>½9h•¥¿ŸWqŽxó¸Ì9QÛ?m×ü=¢âþ˜Ýš™ÜÙÅæè5÷ô:.Áa/ÆÏrØ;VýçâÜç,÷=Ã}NQ YewÃÛÛìîsoæqŸ£6–L¾Çý|uGI¯¾©ê’É]é^ Õ›ÝQóäw¸Ð5ƒ"ÔLÎsŠÞ'™çO:·Ÿ„>?é~âÕx.ž¥º‹sò™ÍÃ'ʽ'F)g«ã¸"Îrâ!åûËaaàPÅÉÂ<³³ÐÆËàzrÇÆ:ø¼|L;wì¶Saÿ¿³Çú )ðN`®­É‘ê°8÷±`yþ¸ZõZõ&ê³2kµ/0ùèŽqÕh&°óÀÉœg Ëã¯M8‡»Êvê)x²?T W!×¾lØ›îröÚc}·Å‡&ʘ®y8ºÌ÷X;䣰¾çk»®g(]#J<Ž}V®{í±ºÛÎ6ŽUìÊ2mMkæÅraf‰3Ühx±v÷sPìâ'J6|ဟG À²Qx Ê)21ôs«‰/RX‚ÞüŠ– hûÏäÇ ì?;Ïwž[öŸ½RfÿYÅ‹æ³aÿ9ŸÙ‚Gnÿ9ï´ÿ„ˆ«µÿäóí´ (¿d‡Ìtï {Úe Ì”Y€ì×òÕA|fÿ=KsÁÏ´Úù{(ý+›‚2ÐBm@çï3Ð,6 óìw¨o3PøÊl@†^²;~þ˜»s(Ìd܆o9¯Þ/×b”°U)ÔœwöåL†%·mÈhá½–òzÎßÏ`X’4bK¶':l¦usÃäfhÜPÌ9]ØQiKU?ý¢E8Iêõ"êóó¢#GGôE²âÍ ƒ€(…w¶?•½<™6‰­´•ÙØ‚ÌÆ–ÙØ`cKp–Ůϡ¶Ó\ÚF.óŒsÖ™À}bfS^(¸Æ›òâN·d¦¼¨ó-ÒœÇMfÒhç8çžÏxΉOuõ:NsŒ±CŒ?ôёܟŸ»Ž°Þ°h›åï3Ø,7K8ë¢l–Qw™’÷Æse“Í’×7h‰uo+Ù÷6¿±òü}2ce¤ýß— 0ÆØÿvKå=Âÿß~^Þ}¾ö¿Òî^fÿ[Å‹¦ˆnÿ{S?©æšl¢¶Þœ‡ö¿ øËþ©ÂߪشÔõOV´³JûÍúoûíoé,ƒ[hüJk,H³`S¨îØž= êÃÉt0eÇP,D#F-hv¸Aé¤sI:õÖ€ Ã@3ýÁI”_•»lzȶø7þý~çë üqü£7ýúº“ÍKÞŠM&Uÿ7èýèç(x3èu‚ü`o}u&ªpÐïýþÑÿ<ö=·¿¼é\_>v†¬ÚOüíÿ1z­ÆÙI½VoM#‰@"ƒ¨roli׎׊ZQÜñ›¦a³ÂíDlå.ÔÃ>UsX~EÞTZ•Zû •ß[$Ì(Y?ƒ°|þ-´|â÷|öª¦Ï!»µ\þ`ÿLú=6*׌oSiu2Á¬s=~D«æHWüóc2è1BìÁ*N—ÉèúŽ4°ì« °p|bB`gTò¯ª¼`2kšˆ&°æ4ØvRkäØyP.°nm²¿ù&Èä“Qcƒ „À¼4€~ŒA;íd“t“è[M„gЪ† +Ð   @Ê7@þn‘eS7­ Ù°oœÉ™ðôƒ!¬³§ º2gxٜڬùˆXúýï·£!4Œuý‡›c“ÁO¶‚Ù®ññû¥3 Nsý ϤÈíÍÝ|s}1¤"-Å×ÜÇ4´êºŒS—ý¬ehØf7T¶òAÜ»aesW—Ý`Ghcû[ X4ûß;Ý)odúég·"0 wPŒ5åL¼‡!ïÿÔa›H¿T¾¥oñGØÑxpS°››@äã¸ÏêÃÄ2È Päµ­œ©!‹/iœêÕ¸Ó*¦P&Âv‚é[ìÖÝ„õèöúŽèqøÛ§›Ì¬ÂòNÀöXžúIél}È!F‡¼Ó‡:ÎêE*M°cïáûÔ™b5fÃÿ6`½îÇìYxþ9Ú½áŸR‰×š÷ÿ¦š÷ñ7Ÿyÿo¡EVpÃ&ÂðÿM®z…ŒX>*qÿßwý ÚµÃ4Æ*-­JfCØžiT¦°Õµsñz|–qƒX*Ë8¾HÓ±¥ûû@ÓAî/¬¾ÚÝx̆T,W}Ó¯4kÆXq±I”VTMVx\/”ÃÌËkº¤g„ûÜpîì’3Õp¦ºI”θüü~)ãÛ‡Ïy@iŽÓy@û½ô’­ü¨+G´þ=ÜÞà¨ØòýònŠÎFlKWéàë²_ÓÝTÝEáoÚF5—‹B(zŘîÛBÐfÈ–ñ}Ãø¬DvŠ5ÝnœYòW9¨••Êu÷úºÙ¨\üÏÁ{ž}PϵpÜÙ‘Ç¥’p,øYãÀ^Ú ùÊÙYëô"5y~Ò˜¯ŽóìRB¢úÿý¿ÿ·ô›cå$ø4úÆæÐð¯ìgS€–ì(¨m/çõÿ³ÏŸ]Er ÿØ ©‚^%Ù‡ëb,zk$…F¥$7ÇÝöÇ7wðÀÁÑ {Žô12}[öK¹Lß/ãŸzóþ¼ƒï¡â¨´+ìáàY®X*l­r[…û—}(–ðþ¡ŸØ—ôþe¿<Ó¨”U*ÅRXb« )ÊòDLPQ‰a‹mz›»…Í]¢zYÅŠø„ú†ý}f/[]–%ÔN[Ôš²Ùð>#˜íq"8Â_„ÝnÎØÜ:9g¨N>îý®ôåÉéëz•àOº*óøð¹QfSî]¹ ü2ØÖåõ×ë"¯Ÿ¦_›æøXÜÓƒ}zÍ>)s=¡Ã#2ÑJè&‚Òi&LÎòLL‘=»H5¦È‹P§ú 9|ÀÝ)Õ eßm…JŒŠÆ}ÉoÜk<-,é¤&…Ôøpa…agÂG(ŒÑu4øg‰K!ÿâ7S¾Osìò2a3˜kxbÓÜÂuŽîº’Òäîê ´1¹»[¸â4q\³²¡´rÿuªLÊ‘ö§ Ï)Hcmx°®° ~>ÝÏÑy©d4ÿd,>r­`³y¢›á€p»®Ä[ÚW^úÀÙ}ÅÆärà<Åä·úoÚcœ{Ò³ïç^º~|ëÓå'?/S~3é¥ó¥Ïöðÿ€COù˜<Ó¿ž°kœòU^™:|ÿÈ›kìÿkçï×nVŒo¶â;#ëûÔÞ … _Q)Ì:*ÐQ·¾²luÆœ¨óÀ~´¾î47äºBC«Ðd¼öY·ôÞ_ÊóôE[»rêðyRÕÉdp#œ8ÜŠ®$â4Ä…B¬A&) StCêì¸qN¹µÃ»ëëµB¨LÌmmnØÿ™DÁÊ ýñºszOÇw}C¿Æv”j¿ÛaòWPå[uARŸ¯\¤`E|¾ãG—ÝoN(æ–I½Eg †»îEG´)sÃY‘_à}IÿʼnÁÞ°¹Ð„Eß9-ò°o°)#§6àdÙÃX$\-rµ8ÉŸö*r>œ#®Ö¹eòhÝ\cî:òJ- Þ3fa„—å…ñaYlPe °3Ò»_$6ò)¼"í¿_®ÊËÿÜÚÝ-—ŒøÏÝçåç™ýw/Z°ºý÷ø°,ò ãoCA ÁøâƒúùÈ>¹…óCúüÞq±šUõþòÁï)s ù£v%ö<É%­œoäÑÖIo¤‡J^ÖôEÿ ¾ŒGÃ\}ÈF—ÉEü·ÊúÍzð/5@‹½”‡÷åÃâá'\­>4:˜B ÄôbM<'½ {ˆÉzHÿ¢¼_³oúÝ/lÀoÇ£Þ]w*C㤠 z-ÊÈ¿_Lªïsh0k“0Џ¼ÿfgyòÜÞ ¨T *|~iªsž‰>°â,e0%·õ‘B]|ýaÁ“ríoÙ8'“Lo4Å.PMÜ…&uÁŒdíóAÚ,&ÁAc'㸭CGýû ê3l_f… |­Y•Žû“»ë)¸ „˜=˜/£ñßð:sl :—l[Û\ãõaæñú@Cô†H6mQá’3FKZzoùŠ‘\@ìâ1Å.BX?›IMø¿;qÚøC¼éÎTWÂ>Hÿ¼h¹ØHÉ {ec'ã*•Ûu ®×ì)þ¹ìòÃÓ™³áXW™ín'â:¢ °"ÔcÁp--{òøR4Ú‘ë'ú«~£ÎÚìïQ±dù8òØ´À O Û Ójæ¾ÙÌ3·ãšÙhZ-ÝW[ºíjéŽ×Uù^_T¬owË~Êšß•¡‘tŽà!6A6‚’ÃÝ×1’‚KÚ±® Ø´¨a;¿äm[E?ÕâÆžÅ o|Mx×1$j+ÔVØîÃz%ȼ#9~Çbc´~wŒ–×Ó– Ë(òþ7þ¸‚ü[{{eÿg»œÝÿVñ¢‰«ßÿZ¯)ÿÃÓAþYìÏ`}ØÐ¸3×4”r ¸è+⚀—µ(È5_ÃjquôkгY€gt,–Ñxðq0´yàFH©Àu“M¨ñ·ñ`:íc™wù ãùAŽnD ºZ\ç^ð.«ÉÀj(XÍLw°`jæ½¶Iq+ÎÌ¢fLdQƳŒ–Ù!h¼3 &šËv(nÏŒæÂÒ´h.Îs—íÓpV8S=ˆž€N2ªøáƒœ„Œ(˜aòÒ…z2_=¥tä€b¤)yw^FI,؇ž _M4úMÐc¥>•ôK4Ÿ¬\¼Q¹t›’I‚CBÁÕ>‡BÉ!L¿Ú„(¨ÝJ¯Ûº¯4“Ñ÷ÿao%ö_vç·îÿYüïJ^|p‘êð]³Ö®Ÿ6é è~ý¼Í›¨[ÿ#ºðCwÓO~sg̸?½'áõ[Ü×ùÅ wÈH¨@eÏ! ,aÄÞ`ÂdŠKtgKp7ÇnÑÆÉÛ~wpŠ‚ é;¯…“—ú}©ô2 X`«ÁMnÛl&ÜvÆŒ{ýN÷“ìzÍë…ËÉ c`€^z;¶4ñÍUóÎË@Ðfg–ì5Ü…‡‚Ý s9Éý\ÇD½øn\ñî`ܽî X>»º³̘ý8öûÓÎàZŸ°ê´mbEÅf–õ5MN{£9g+ªÒq)>w Î÷ªÂ9¡/'TÇTGß‹;vuìbýiÔ:n5žŽBÄ3±L€y%&žcµ®Dà¸*xµí?“Øb…€®øâ‚Ïʺå×|uì¹³zT-ø„;m–_l—^ìno=/=ÿ}÷ÅÞÎó½ßË»å{LFئZ«\ 0¤H{oÂk5δˆk5ý>¿> ÆÎà‹«â¬ñ;…àümk&+óëpEÜv¤ ëAßÎë‚SP§¯”KÛ%¸SbosR"à?•?…Å\Ž€[£ÄwUn©NEx§Cõ1.Ç\¶IjdÝåÙëæ‡PDåžæÛ¥¢XfùvÞG4f;ucô3Íј/9v{aÕ³ù Á[<›P9ÑLÚ p æW Üq4PðCèà݇ãðô¶Z7kÛvgi›ëd¶—¬EªæÉ©c¹‡n޾ÿÆË¿ÿ•K{Û»Öýow;»ÿ­âE³Ó°ÿž¶rÁy}ÿ¬½õvÁðæšÇ‹Çm –qîr à…ŽG\ýB{qZÏáE˜Œ/ÒØ‹ù¶vÚ"Õ5»NZãaÐ p$éIÊ>utS§iå,HC)X/+¬Ç¬0ºð;áu!@ï ÄÓ9ø²èzjº°½ †¾Cøé~7Ž›$£Ã$y½ù'èiÿ;*y)˜¾•Fp´4Ù(ŒYYÃ6ƒÒóBPúý“foo7Ùeg»È.<Áº¨+W=©œËŸ¨ëñ·l˜+¬`QAMÐî‹ôÀD^´¿}êã5ÍÍräÝ1EÙ0q©BGe §ú*X;Yc¡!B%“cc.˜Š ÙwVñ–»8ÖÎʳ¹¢È[j €:@ª‡H;=‘59ÍÑ4¸õ€Åâ¾ K9r`ð{`På2e˜|Ý]÷à†¬ÏaˆpE}@TÄzY‡^*þŸÿŸë°û²@gZǨK£¸öò¬D+…uñÎ[{s ùv¦Cß ‚H§ïøêŒ®}¨xJW6UÙKï'ìŒqââ,/è“ßA„bn°Ùß,ˆmESsàäg é ?ÞÁ¾=³E®$H/î\ø%°â²Ïz®Ñà¾ð“þp‚Î÷ »þÒhï!¸uPƒi¶¥¿j’úç&A}|Î Xn£±F„-!R´ ~Ù7@œ¹ì«­fÝGÙ} ~‹™¬æQ¨›V UfHP¼E#øœÊÊbÒŠ˜€{`™ÁÇî‚‚øšÌº¯¡§Eˆ-`K±ÂànEø“¬R£‘¤bb<=Bº œ%qú76½Ù2OÚS2qÙL¶ûßÀXŒ†°cÄY÷¿FwZ†*À«»fUâR* †Á¸û‰´ýq¿ÿ½þ/‹¹ÿÅÛú_ærrìi^n>ž8#i6Ù!GJ×Μ¿`†W.´&6B)Ä;þ\…\ŒP+& z ½1/<ÑTþ^5²FBª”IMJÎiRž“¶&ùïú¶|…G+«ì‡\Ã"ãë)”؃éz2*èêg]ê£þ™GÙ¸•ß„ÖÔ ®Ù½£36v‘áÇñL2ü›½e»Õõàf0¥ÓŠÀI I#~j4xŸÅVwÃ6x¸à †½þmg´¡jCÎi$Ð5 — C¸w0Hêt¨ºÛʳ”6ΰÿ}Šzrh:öÙ;ÖK&œßqÌÎMÔø &èó¯¡Ï=~#‰\îÛytÞipçÜŸÂc-ô+6ù‡§Ÿ4{¾ÊùF°1ê²/8ƒ€ˆ†¾êíǶóM1ñy•Ͷœ#;ËýÝk»2H•×lÖ§iÓg3{dôh‹Oz*¦ýXÂ5Ã`I/;=cZçÃÉ” q‡´±F/Ù,¼d‹Qgw±v›µÖÝI!h‚ZÐÖÛRÜÆ§øhÿ#"¡OìàMõ ¤ÔQCÂt;u²™Õ¹¶ZÌægà ¿‡äaOe%¯û“ "âcÅtrzzÞèZ©­'TÎåGItù“ÅòV”& Fí©Å¸sÖfñç¬-Ë¡³uú'ÛÎÛïÏ@›tqØjPP^í”MÈãêÁk¶[À·þA8d×·S6u/Ð_ò¢y*v±è¼þºÉŸ:Oiû˜iÊ qPüM‹MúG:`úà0!ùB˜ü«Œý­žÙU¤FDø¸¥8²rë&^Og´âtÑgôà­ÈØ ÷ r‰Ô³ó0§ §Sd¨Ð]¢Èh;‘òb¶ªV¶UÖNE¨•­E•ÝŽ.ÛŽ*+êtgÅÚ§~÷ Æ)HOtØ,si¾89ˆçxŒønm]·j9د öŽkæžþ.fwqöÈç&µœTM‰m4—;ÎaÝÎq6F0a;¬8Ç90“’JR¥ˆc$°¶í’²g«¶s¿V6ë’¹Së;‘cÖ¶ž;ÔZÜ{eª8ÀçÕARÙßô Š ·Ù8Ž›Á.Õ.è -jŠßÅráÅÖah È/æÊ‚  †³%é–­8 H%ìºïBÁTL+ŠZŠÏ¯‹ %>ñùü"m+lü=q«L6Rs¼Í³r Z3Èï0ÆÎ»;ŒÅøMWàÿµ½û|òÿm•K;¥­Òvÿ³ÂM6Óÿ‹ÝOØþ©àN!ã@«þú dµ8A²šðÁ–|¬^b. ÎäS¨sM6…âØ¥#Dn9³Ò8•¹ÆÒûˆµÑ‹„PDr¯_ûÃÉzxí÷QÐé}îtѼ…6fqÙæÆâ·ŸØ0rû °.’=ŸÉ3&—]ƒå“Ê-\¹n‰?]ö$/þÁ—8š¹oÇýIüµoð«ÅÞØÃʇyCÝ©žôo; ë¹þ!ØËØ@Þœâ'Véx‚Ið_·ÿE^3ÿþ¯$“ý6b²ÿ;Éd_±âoƒohÞW:ÖÝîh ÎXƒõ ryÿÅãý^M¸Ë4êM¼ú 6Žßm²F©ø9²¯ï,Ò}K‰Šƒ6°)$¾È>³ªØà?>c׳Q“gt¼þú'lï\厥aý ÏôaP8>tÿRJžËCÖbÝù{κB ÏÚà8ló5¦IeOw0Ÿéhxý#žÉ‘<>†¥8 'f/ç®ø&kÀSUÐv±ô¼sÓdz3¸»½MÒO£ÍbªŽÈm'Ÿ#ƒÂ AG"F¸ºþ'yCuH9gë³ÿ½Û¿¾4ÏéµIÿ‹ê—˜øÁâf¾5ñcÆ××ð¨%ËÆ}¤Ñ-±‹“H´Up'¿Sþ$lЂ¯’°û5åÏ>¯¾ rc‹.>n”´½²jwO_¤ïì„'3ì„ïÂð$ÕNÈÎè"NvÁÚöéû·zÚn7ÜÓ!œ ¢x8!°Ÿìërq°®M à¡>\´ñµþ/rF$n9V®/¸9+/ÅTƒƒpðÖãwu­šú•T”Ú„Œ·*.b˜Ž2=Íz L­bN·}‡ç.ª ’6×¢ô原“i¿#|uµÒ(–²58D‡cåÚ]Á%^¾å…Öv"ô!M; Í9pƾâŒX‡ë2õSý¼nõCÈIS‘ç<¢y¼‡ èm<7i—JÈMzxìDõE7‰Ýé™Éš®Ñ™…™ÉØ$}–Û¿•IÁ?Wº†ƒÂn®ì þ¨Ñ0:M—(~7¢eF“œ+„øuÆöd(ðŽc=ϰ%ÒûÔBJ”V÷ú®‡ƒ«wŸmÚýͰ©_ñuøJÌ WúTal¹‘úrÖ/‹«›jñL0Aë¥Vœ…×ìÖöµfä ¿Ž®¿Â0º8q£ƒ¶ "rTsÏ[ÖŒ ‚†wJ^â‘è£gr"YÌû¬t•w´+ä¥o8ÒKÌ1¸µ&˜e Ø —qíyÂúáRZpFr]MÚãzø døSV‡H§tÙŽæ ìW.øŸ€ý—èÑâ„mLŠ@}W£hÀV°ÃUSìÉö…ÂRƳ+ð{÷7î³±3:hÕƒ6lÍY‰­ðõÃ:Bøxˆ èÈÙ±÷Ö,{êfÄžæzö‰ø‘ ˜#¶æk$¢éíà®N×ýï›1Õ1­üUû+Ÿ/3)ë¯s|CKS£ÃFµDrì`~¸“x¼Ì'wÄѦµy‘þ¸ÂÃÁÄæ^©´¨;¸¶¿† ÂI à…þâ)#2T¡¯}ßê#DpÏ:Ӣ‰ WÿÕ¿º‚Hѯýÿò$ê¡•R=7¦’X¡Jtço0@¹>óé:‚¾)yj‡+•üFƪà^aáqSÙ^W/QóóºÊZZ-˜Á—çÕuG³Ã‘ʃ:‚ òd,P¯Ñ ;¢DÙˆ–+­mº›à1ÂŽÛ¾qV©]¯ 6y~(‘¼ÉÛrîçu®2£©¤ù º.]²às‘ŸÄBTÕg°.«Ç*¹²Y—¡± ð‚1;PÆ=Œ·é'8œ(!9·ž„ãâfÐ?õó¢ÛâQÂhõ¿bôkwzÇñ4†M‘±¤Ö¾2g€2Ê(Xñš×LF ¤‰¦mÅ8¿Žûð´ÕnUš›úU¿®Ë5|¨`=Z'$Û¼Ðöôm0ÑŽ] ¬‡åá<ÕD~ú’~]'2 e.Äî‰âbá:cëB`‰»a¨[’Ñ*)+ì*­»%A˜Úeý µ¥ßd[á…ï}}¢ß­N9ýd½*š'Þn1ù±´˜~-<ˆ)EN½Y´–ƒ Àòà–÷ðÿ6†â4Û¼  Wý qv!k4«F£t´-ú¢Í¡šßÓ­ÔÁ- ‹[™!V…ž9ïƒ*ެŠÐ!FÀ ±?ì)°è‡ÜÂW`#‘}öÇLjL±J”ìçC"'(Ú¬x„¶Aê>3á jQ¾~Nçìk­0¦2——æcø^þ‚[Œ³Xõ–YµQ'6ºÑ1®«4û¾­–gsl+†ôQy½oØŽfÕÞZךmê¹bh}ã?÷Üû¶ fGãPŽáDÊD»ÝGêöZAA Ü( C 4æ Œ¶Ùlž¶7iö‘ÿ,aÜÀú¶àERx|Ô÷C6 F+G¹úÅz¶!öþ½xwÄuÊI#BCà;5þg˜ÛÂûnÆ ¨nQà‡™‡a¹Ø8ÂqF}ï9~õ^~Ò¿Gzròc­±èP1—o“p ¬ñR¾ª.ÔªhO txpƒk ‹oJ°m¿IØTMÚ.îÀÔ>âlyOïõÉ}d1",¢ôÓ*{!ËÊž•=;ŸÞ]] ¿‚Ë["ƒ!c5ËC!èO»› ö¯ŠÜgÚÆtÁU<ïµ’ïB5$¶cÒÐð^ÿÑ áßÙ~h€€‘þŸÓ›Òòý?K»Ïw·¬üßþßj^4uÿÏv£” §Ê–ñ>[V­¢ÁcRàæãÆôÁÃ8ÌŸè7ñ¢)—·lr’‹†ÜOïÙÉÆR„)ÒUà`=²Ÿ+mn6×Au#€aºp 8òb“ËKˆðÐ= ©s–¨´ä oÕ`Â5Éàf„ßµT´0^žÆY$ýBA¸âív<ú8îÜL@âC‡ŸŽMåôú“îxpÙ'­ú>¦!Gm‹öÔ-ÒH”I'ÁM¿Ã®½×i” Æ}ØÏ–À;lÜ_UBNîçÊ/›ìÃæÖ3e&i…ʲÐËfQ)Sl[«¯¿‚gòù\1Wgžå€Ìº«ÌŽ(3€jŠìÂ+ŸÏçà‹Vç,»ËËÏ ¸i®6gÜ÷§PLêäcm)$w0®G;c&ÝLÜÅAMí„æwŽÂzõ¹ŠêvtÑa°uN8öX¨¤sábÿ`³ä/€äaÊ€}1MðкpœÀŽ›uNÍlŠª·3NÕ1hÚ, h.áå”°ZØ~1 CÒ>¶Hì c^0ë.§h|P £_|äà]é² Á“°•¼gô Óþf"—c -t»@ÙÒMÅÙ ]ܪŠI ÷²˜  96ä€Å½Â!Û|عï±Ísðqh*PÕmVûa+xõß "üªoŬ{ÿI{ºOËxz„¤m Ë„i–ô¸z{®ºSVP.ÐËÉèúÝo™l.óUPþ?€fÈ&zT‡›þ¸Ek§Æû¨eâuæp¦€M›Ñ éïšõÃÓVC¶kÅË)Šƒ'ŠY~;¾<ÄCؘ£ö(màÌr¶72&;Ë=X$¸hð5]@l Á× M­Ä–|M76Ù@l1àk†éÞÄf¯1©F·–űyÀ×j:õ}ú1ƒ ½Þ ‚„Q]– :Ý.;PÐJ:òH|úAF– ªN=[†£!GÙ„‚ á&ÕнcGA²Ð[[BŠ#@Æú¿§?_ÖŸw¦›ñóE¡Çõ¹˜kÑÔq p0B@4ƒÆŽFÑÖ&¬àèÐâÖ¬uÏñÎsA§)õû^‹A8 ±ÕR%‰I—o¶rrö¦R@¥–ÿFVßíÌ“cf 1*¿P1žôv± aanoÊÛÓË~¿;êõqrYioåÔÚT!“¦qü¿xÄ9ð°Ý·wƒîŽÃ+A`¹ðÉ\˜d\ÉÉ®HšQèp H,TP³õI(gðùu{s/9'Ò<@"¨Ù_lŸ*~cª°sbsW …ß”"¹,è³E4v9à fÌIŠ-Æ+f#¢ò’},Fu3Ȱªô~f°“…,&·ñs¿Ö9 “&Òf((Yûú¹.Otà=Íy}´OáFÎ$Òmöÿ]öÿçìÿ¿ƒ„ZbÏ# ž;šï7„Ʋ]”$g½¤ K.T„@X.ê.H?)RùÏHÇ qÁMÉ™ù—úQ*o™$œ_½‘ÛþFî$h$ü°ão]ÓÑ™ˆF|¿ IV6®m¼ÑÞêÝT ¡ùûºí@© ø¡Gà' + ŠÔ\J›Ü,ª+’5{Äš²É•;HÖ‹Ü*³·ÅŸ±n"=9ÙSAUP Q„Ñüq¢šÌÈ8î=ƒ¨p%”">»®sÏäÝ‹¼Åë`eÄ6¤TòbN.¶ð6âá_€WŠP'·ÎêD8QºÉÇB©½F{nÜRÂ\4cŒœrH 8럡‡¨»â)a´o›Ò²¯ëf&hÑç¨TöbÝÕ-A¥|õ&!® ȚδJay~m„/Q!f ‚Ã\pXò¡Ûö ]À%á(ô&{œé Û¨,OA_ãë‡z;v~«CMÊOy!úÊw—„üex¼‡Ê>ÏTöõ’šÕ³æF©è~„ÿ¼â˸´“ ›Î^S3ê"Â2^SsŒý·¼ûïóR©lÙw2üŸ•¼Ä´³ó·H“ ëè(x ˆÝïl+°)e›¯úëVKû¬ü~‹<û£ÝdWÀúŸ§­ãBpήøçÏ„^%m­BÈ$ÞwÑg…H‹2qÅ0õ>«rT[¤]™sœlÈú¸+/²1Ãh‰7­Y¬Îe™ìnè¹záh=´\˜Z~4p%&'’ö¬+æŽEAà?x×çWý©nIê¹MYLœÁÛÎ@z7¸î9mË }÷v¤‚á)p‘ ãP{5[ï²ûÝe R2W‡-’áh`Š”ףѭbñè)“ s=îwz?D< ¥ u’½ïxV+âropu%–øÝ¶POÛ¨Åz^?Kq¶š±èj€iPŒ‘âŠZ±`þµ¤ Úÿ}İOƒ¯£©Œí\ÆÐp¬ßTˆn'%Ê©ðF†Ä˜uŸ'"ΉêßäñœgÝŽ(%sYw4d2ã]wªq2EAb>†áó† Ä´‘fZŒ×àá}"^X ž’]<¬ê2T*«ÕAæÚ¯£ÞéEè…e®QXRHåúÝt2è‘)‚kxb½1¥‘¾ÓaÂA¥ö'#‡˜º®ÑúÌÓ˜À8‰¡—¸]_c4©¶ZÒIáÀ¢–²ÉÏu +:®+ ôÑ?2¿n®„",ªª;'"›Xë¾ö‡´g¥ë’ç"üˆ‚OÖÕ] pµ„ùD[*ç›bÎÐ  ¤mR#éû¤Áì :2_ܾVÓ¸ÓSñD Ò{A@ r€4z²Î'›Úm=€lïðqÝû‡Yj#Îúã64zÝ22XŸÛg"C<éª'‘ZGU$yä eŒ@&‚P ?N°Ènï"¼Ã€ÌhÒ£!Úé#ófX 7C0›;ƒò¢DU@tø6œ÷9”£ç0œÉº×4µ×Y,Sû¾ØÎ•ƒ jáâŽë™™çr&~Sà­$F0Fx¢êN‰Â.ŠÓ}ŠˆB˜$˜o‚p娹`M6µP˜X/Õ²¦X²ª|vtþJ\ßβê ¿æÔòzµ»Ëí&_ÀQ­W»·dîšsÀ1s÷Å®î]4°D@HÃÜ·ÛÛñèv<€½Q§}ÌÁÓ¯:߃œ|Å”‹ÇÙ†Ö‚ÚÐBáh¶FpÑ&Æ·8XBµ*cœë¸¤¡îí¢zÚ€M½Aï”ïàû¦íC²WÚÔ bÜ_d«à&ˆr¯Ò¬¨¾Áî‘aꥻЪŭÕÍU ¬Îä4øˆné†Ö ˈ#õ˜§‰f+à Àã/4¹»5ûíâ-À‹šë»IªÑ‡¿ò¤dk“µ©~sD߉ê…UHÅ65 *tk&ÔxråäℱÌrv>›øÖÙtÝL§C VÏGTò ¦º×Ý uæ³ YX“5mÓ4þ®tË~J˜éUcžÙb¥bÒ :ÇKR„¿y0YÕ4ìA2h´rÄÌöÈøÚ‘ˆÜŽp‚7¢9lÖ´|/ßÝŽ0Ž_2_˜Ì&ó…qûÂÜ Å¾h¯˜(㲎ip4Q·[ÃQݰųÎ\z2—|e.=™KOæÒ“¦›™KOæÒ“¹ô¤uéÑxTï¸ÇÄzôŠ™”>åÌÁ'sðy >óûâÐ× vré–½>™óÎ/ì¼ëH­~:/›Ì_åüU¢½ªÀa«Øßз ¾<¡/½ViÇþ<¬M4[$ó°šÅÙ=}"Ý|îÓÇgnŸ¹½{„kO"¿têIFU¸óÌíËc8ò,À‹G¸ðDøïl'÷ßÙÎüwžü+Æÿgwùþ?Û[;Û{vþÝÌÿg/ZÿfþÝ\pÖj¿?;(p JR,Váo3ì×Ð¥çd? æ`ÿÂ_öO þÂ?ð—ýÃQVßVOjÇ•:ø@Õvýy˜?Ôf‡ê™ˆDöïˆ?Èä²¹îç†Î6Îÿ}¹¬\=DÛ½ Jw¦JŽZN<Õõ?ÔrÔøàoó~Žº‹ErÔmü€ÉËãÊŸäˆ?X¤•#>%w$¢y-Õ¸ ¹¸CXo²hxl/8ÿÁ~™Lɾ ËpÑS,òÖ‚¤¢gA˜®‰ö•¬˜‹„mL^~ 8æŒÔäê˜áC›÷à'éà =+꯶æ?ÙÙ_< þÅîÝÿ„LÈÅZð¯{»Ù·ëø«ð_x5ÿ'%KæOÀ;Φâ´ädàUeïéí'ÃÄ#Æâe¦Ù ™2˜wÝ¥@ý¯³Ñ€þ/};A·?ž C/7ÊIQ—LÔFN|åØ2®îÐq«×Ÿv×ÒS£!ñ×®iݤK…²ª¯§z7”Œ5ÜÕÓáéÝŠ=CÝU¤sà¨[˜¼]ÕëµWDí”ø{=*×rCs<åpî• Q¼üQlbU@)hñ4ʼbž¿:ªÛmoîhN£š¦ñUpäs6¾4¡ñÍ4¯ÎÜø*§QKÓøš·ñ5â|ªÆ×fn|M7”&kü¾wÚìÏ0mögn¼ð :HÓø/çf˜637^Ð8LÓøCoãg˜6‡37þÓh¥i|ËÛøÖ oÍÜø– ‘¦ñ'ÞÆŸÌÐø“™/÷yDÚ i˜‰”¤Ý@æ+Q¼úøñ ‰ÈàìØ ]†‰8 •‘ ü2nK:ÛÊN5Hí",MeàQY¥py=ê~‘éóÇZZÙ NE–u!á:’ºûè«ÙÃ!è¿Ñ–%»P½·.Tí.T“t¡*»€{ÃÝ¥›}’n&MÜbãù’ 0ULisÄ& $­Áf¸Ts€? O˜ÅÐ+^‚ôª/Áò–°:ƒÏë”c½’àæÞpø@ÏP`i•­BEw©þõ¤¯<µµ¹UЈ²ï±ÆÍ͆Õ̪«™Uµ™LWo?±Í­Æô[[MÒÚ¦ÕÚ}Wk÷“T¸?{\$©ð`¶ž°_@&ÅŒJì6$cú?‹¥-ö|ië_G…Ü ]_€äžû ³>ÇBWˆørΗÁaûeг ÄÇ;¸‰s'\vY› ŠÁTþ°1Éÿášä¬ÕÐ襟³Ñ£‚°jÃ݇ªv±îÝ_`z‚/4K!ÿøöi=îñ˜.° ‰çˆš ]ÌMø â©^_(»)!ÅN±BÿáZ¡q<žq¥¥cqÕbq5ŠÅÕ´,®Z,¦/“ó¸©ð¸±¯üõ¯ˆnο»x÷—ÈŠ¼ÉÀë¤z›™c—Ùa‡±‘˜.Ð7 ^¯90+¨s Oµç«ñ$bH6ç[ñ$OÜ$‰`#(Dl÷0 3qt—Š1y©Û™`Bº&H‰ø‰k®é> ‘tÉŽ5Ô‡Îó´É.Œí?O è@SÞTNዃfû=/‘ ,‡)Ê6¸“ÌÆV¤z“Õ‚EÊÉ‹h®8 Ë@x™ÝäMƒþ†­+…¥æM¿Fˆèþ¨7ÎÎ![ûã¨)m²«àóy‚ózÓA1}¢´×†“ׇ7ïPYÜ6w-3Rã7¥JÊ¢¹~ "ä«’CÞÛéoÂ:¢Ÿ-ØXSÑ™2Ä®«_™åo˜þ NÊ®bI(KzÉ•ƒÃJèŽÈ u ™¤Ž<‰R’ OUg¾¼ÃØO,l˜ª±Sâ`¶QªÆR,e9J΄0;Q£´ç_D»þQj)-Êá®Y<‡èÜAÀã9tëyí8¯…€$íºz°çî¾p£(“‹Uø…í+æ•ruúyÜÎqâò”‘¯JcSâV£«pþÈ_|{Àsר¼ˆš]þlV§'+zˆæt5†YÌ ô5å(žžÓ ]Ç¿;8m&ö28u–f_Éùäë8fxñ’ë$±SƒÉôõm/gþݯaÎÈcä }ù€í¯íd—“Q‘¢,•+º ÚÍÈ÷è d*®»H¹y>ÃT]Ü$Ë[>çšfrŽN‹¯Ê‘÷Öò®ç=ˆ`PìFPUçXú jìÅÙv;d̬a!;Aõ¾w‚êŒ;AuI;Ab¾Ó.¿PîÓtI3Qswe“oŽÂ5ýRîÎÜîž³ñ'al £l1m5h¨sÁZs­@ÿK?û͵_xæ“¥ƒüÃPáBì¿"R>ý"H¿LAH´ˆ-¢‚ÙZ$¢ðKIȵûÄb¢bâöVÿywwç¹ÿ³·“Åÿ¬âEsÝŒÿÙË`¢‡þ\À[öÏ{øû^ï8ı´YÁ?Y‰?ÙÓçleוž ÎÆ!`•Ø•q3á¤òÂa.ôFâ8¢yöáðÁ0˜óð];fG|¸ÈQ¢cnÞ稓)Ãlö”0 ”ã·C$Tr•íا¯ë;¤v;]^÷o BtGãqr;¢r.€±E”G*Ù\Yz~Àe3îwŒ"Ø£eL@ÅÆt®¯•Lœ z2D•…Ü—aí£Ó‘ Rš~"/[öW©‡s± ÌiHLÃÑ?óm| {XgÈÍïÁmg !M镃y²Æ`˨Ÿ{ÿf]n¿Ã–Þ%¼?\àx‚ÿŒpFP$d´¶ïxÎc3–‘-AÛî{îyG@aÔ£Å6÷¼?þÅ’™•kU °{k¦ ¨*#3###cˈ¡ LdÞ?øXþ¥ÿ³Æ†ß4BôÓzf[ú§éÐO­öá¶ôO+`µÕí3ÚÒ?[ â·¥öŠòu u#wàÖÏ‚¬WG1é;™øŸz&„bÈ,9”7àß‹òèÁ(M!URÅÅAQI©d + ’ù’†·‰Eí”1HyJá”™˜ädÄ¥">Ž>«ôÃÉ×áåÂÞÓÐ^Ü£´°˜¦JÆûáÍKØ«8Äê=þv¯{¯žÂÃêWþOXyœô:¸M­…üªš{MÓu\e;lÆÚç/]hß×+¡¦Ü¼"¾`FfF0 ‹ Ì—çžs+QJ[d¿’ó‹£\.pü)ÿ嫤ÌìòÐòÃîÝÉs†ïf\&,r¡Ž1ïÚ¢ŒÄàżÈm“Ý"—”žêZMÀ¸â¶Òý¼ø ÝÏ3æð~•nßG»}¯2øËÞu‘)T˜;_cïýƒ±÷^Âø°Êè?DGÿ!:zWJÿáÁƒÿ¹f$ÇNÄâ¬?RŸw "–Ò¼cô!е×JRûª¯}¾{oo°¤}Ùžº˥²8JpV$´»|$Žûk׳B¸¥QY-X†Iý§B¡©ë˜í×赂U»å¾g”m@Ÿé§a¶goú‡J— FÖö9´VÖrÔ¬Š™¥Öì/£S㊛”RûwVÒ¼•âkc‘¿”m÷^ÃßFÁ™ƒhNõµ•‰~§±Zâ¯%ñ¼"ž¿rìíîÞ ¢"p)/R…ÆZìÏý³' Åür@YûöO?ÐÏã× äx’¾ÈùµÒ¶ö{ÍŠhú¸€­ f7z:ĤèðÖŸyåŠñu.è­ŠØr† Fòè½ÆœªïI¨úàè‰^Kbíõš2_ïI£[Ú4È4%éO¿³·4 CO·²7Z£°™°‹N”M‹Þ{ZP^»ê»÷Ö·­à·¼æ— Àù2о¡Úã·Ö‚±¦¨§±gŒ — 4æé' cÄÎ#=lxRuEžÔAù=mưkn=ÝøÎºÞéÛæˆ×Ó}{ݘ…¼*ßfò·€›oKر·ÍÙFÎÛ;åwÞv=džO¯ë $71›gt$•¤¸±AbÅ:ž_LÔÆ¯Ýä ²¿dp¦uïƒYÀƒÆ·€DŽ1õ=€f|ïNTŸïÓîßë^2a£{õÝ}ëÛt¯¸òº÷ÝýÖ·é^žF÷ê þ ï³Ôñ¢×‹¸å^úׯ,š™H2¢Ïéÿ¿Ò¿$þUÿ[¯(IAÕƒ"-¿ÐÄ­Š_Pé?Fußäû‡ßy›Z‹z6¦ÆØPSSý±¦¶›ZFrÍí?‡#9Çÿ›|{ÿo«ÑÜró?no¶ê?ü¿ßã#ÙŸãÿ=,¡lf¤ ¦ Œî ÆP€t‡vwAd;å ?heå*FÌ»$¢Á»œš'’•‘»db$A€Fï•32z‹†~Üÿ=,âFu*;RÑ«å%;.áÝåÜ©ùõfºœ'7Ó1Õ†Ù͹4'RJꄟ›dÔˆtú2*FnÑH‰mÈìUb’|„N>'³ˆ ®(–XºR•*ÍŽn‡_G·ËÛ*0SäÕ jÕ3í¨Ô›.’—¸—fO¬e‹R-BáEr:œxƒœ{ø#•$ÕÙ>&Sâ •ƒ¸“˜fXf8£¹¯VÎ÷$fÖ¡< &æÄ"E˜ ´Ìé,ƒ%­¨R!–´RÁzÝ‚œ–+\©Z!y·-@fµB£®.±­ê3‡ÌMªµ 8;—¤´¹mÿ”X;_ÊSNUCTƒð òGUNÈNr³6°ÛÉr†ØnÀíR¶ì´ìQK»¡ {ÜI x¢Ó쀚©ÑȪÊb/Åÿ÷¿ÿì§R‘↾kÆ«g¨ë=qc§ê;”d«Ø’"­}Èi„£Z›/¶€ï\ŽkÀVµ€PÁY:™[e¨hzÅõ·båmÚÀè‹!t9À¹>ÁÆ£ÛÑ‚9n²Œ&‹ä#pE¦>L†Ì³·9lÿË®t®C¬övUg¸dÛÓk‰aÎ ¤ÊBZÍÑ£Ê]_b~<;j’|]P]j:Ýîö‚É¿LÒk 6!¬Q ¥^¼¤šQx›IŠëÙ›2 ³$àä <É^mVdÆ&„3œÏ'ªÞ‹¡Ä‡Ê0U ñ­{].+W¾°€8²ýv7^òrØìÊ]ˆ§ ŸIY™ _¥oóêÁr{%ÇÌÅÍô‹‡3$ž…U-›J)qेJñ öÞmç0®æZœ³øz³ŽÐÄÙzùçà<(5^öàÚæ3DR¨QC7z §zÚ0§YS5k—_á;ëë¥j© ž•L9Ô¦¥ÚŒ°›ª(ôûë%ü¢NÝÛnɶ†|§B&%AÉJS"ð)IÈ\cVÌ——7Ðd¸± ãéÇá DòÛy¸9{1ß§g¥[OŽt›ÄÐÐ@)—íkó¼ô©Üíó…]³/Ðç?Fn†Fà îøƒø¨7É×ËänAwû´†ÑŽ¥ó"³(Gâ¦3eª†glu^0µ09(LÕ¾Ã%rkÌ Y:½Žãe¢"è T•aU]`. [ãåFˆ6cœºô¦µ#¢“*iO<ÑÒV–ÄÍxê»s±Ië2Ý.ç$rþ £ ‚¢0-a°l’æMɈʪÛXxJÄvE pþ©EÃò™„8%3âuuB–»íÚò<Âg(z—†ónär™«œ&¼¡è Š,`[͹xæg$5ª&M9þ¨ÍŠ5A…9YzBùÙpÙáîþ0Al§†ã­¯Ö^¯ñE:“„¥Â)‚¾HÊf,ìÙ>÷A½gUæ’+år yKbVø2¹Ê-£ËçY†¼o 4‡£¨cÊÔ¢D­Iûºµó©kaÂqÏ5»T°V–Å¡ Kºädd3¦ËÑìtŸiÏX V1䦵šÂÎíÐ&ÛéØ6…….R0€hH¹+FúIÎmÅÄc¢»Ì,ëŠé êÒrAÆ ³?Àƒ-Eš8©©¡£Ýæ±H´»ÙºHÐvNx«ç$MT$£%ü41~Œ‡®½RÚâð“ª.œe|‘Úü{¯VlÜZÂÔçb ~Qf­s¢â_ð”)H•Xë^ïðí ¶¢¤V²œNZ0\ãO†á‡­=¾@M8}íàTZ/4ºÜs9tºpÈa5ô÷mÀ†§Úä(E3J¾ ïåáh©žRâgR§ÀiH-bC…³±Zú%Âüj»Å„ÿ#üÓZe†v€C‚´'ËL••6È H Ôõ«ê6AÙØ&Ag2DÃ.Œ¹¤-[°éQÓµ 8™Ãæ‘EX”±¼õx\ÕÁ ¶ÍY™°ŽUö°™j4wVÏ51J2-~Üye3Š´=ƒ£›43vh‹-0c48ºŒNïâjT›ÜLî¦8>_m²<à¬ÉžG'Ëc Oöü!“uCå°™›ÛD‰tC\¬.\.}¬9ä ž@.3Ó°•` sÁ-=Ap¹¸f{ohÏdƒÍZâÞtRµ hùEK%\À6¼~RÆß€ÅŽk‡ž”!9gJB’O†‘…¯,¬v|ïB†UƒB1¢âæé=¼0Ÿ²/`„ Út{=š\÷ê1—c*ª>òA´U!“’ާÃUZŒ¦¤|,QÁû,5×]½›Î>ÍµËÁ9lcx8œÍH¸bª–ö9jâH[Lí RóHÛ>ƒ’^ýKY…gÉb9s”yÐ]Ñ¢¬IÓyÚÀ§d•‡ÑÀ+cVW?®nákt˜àæP5µA Ç‘o;/oãˤҦ»³ŽIÐqë2_}t`¼@,J˙ʉ֫Õ:a€…̼W ,Eæ½ÚP3¼bË3¶¨úéwÎüšÓ¸©«~L¢жå¶j9­HHå2üÒD¨Óš–ˆ¬Œ·hm˜×o‘vm‰·ž§¼Z¿2y ·Z§UÃ-jw¶'^¿ƒ×xg0ɲFiÐCYÙC’wìp¢A-÷ÙuFœX©¼¢¬µfÝ8™‹M§y3ÒñÀïxà4mÅÇÜ?²­èb‹ÞýÕ'³·ßù^Šðžu?dÓ¾m”sÏļҒ ±Ÿ7 ýè•L°9ÃÛŠ;-“£ö¾˜½]¹ñ²ÿt@ñR%Ì9ü¥ÝÇÿNÞჼð£6EÕ´eÒ[øÿ>þׯV_fl0ŠhÇÓ:œížWÄ{”BBùé ßÌÁ¾v)†2E_„ \´ àµ3€5Œw»±w”‘¯‚«ÆËç[6¾"ÁTÔë£.|}gÿ„nív¡ý}¾Ësô wóú¨"yIÆzÓx¸pú98ÒÙìã]£ýÿd“çýa¯ª™»ê½'¾öÄ÷ÈݧW]9w’êe†w ¤Ä‰P Å#“#}î4[s+½´õ=[q=~œ‹ÿK>g£ [¯ð·lùórtùIqqPXî¦óùg•/èáMͲ‹N@¬+n^«!ÑPIFÀa @Ù»D;Ù¢"•uËn;ÈjÛÈnÛËjÛÌn{Õ¶e´õŸVõ”ì BY2êÊÇ–ŒDi,Ð5Ëq|©Ö¯3[o†G®ç cC—Ü72t–KãCW­ÃCW­#CWs†§DhàtxD†2r|ÐÜ2ŠÀ³çÞcYE@Ï›Žò¾š´K´ß‡L:í¶j®öjÖXríMÛ¤l éðçr4 ºüäˆsÑ!Éž°bï¢ø"0§eÇ×¥¸iïAÿ¨p„T•ßHåE²0!`;(Ùºo&Gsv_â½: bŠÅè6©9nGs¸ó(‡ë§î<Êá }6‹«çs8Þ]˜Q«$ïÇð8†ý=xœNÔtô‹ì·êäÓp =Œ)öâL±M´m pU¦ÈôþP¦h(ÀœC.p p·=÷0¨?”)œ´î6Às9¡‹wÐ!¦¨7à L±^I)¯8S”=åL’)2û7™¢±mÃ(Ìb‰.„*&›cíæøŒôʳ¼A-ÒkÒ–pÈñnG^šIØ5 èìjK’ƒÉÏ슾y¦‘¾ÚâýçG„ª8«ÙçjýçŽ*ñ<·Ê¦ƒE9Àx£Ðá9 ÏïöÉÉÿ3ûæùê­†—ÿg»ñ#ÿÏ÷øðÞpóÿôK²’’e‰|è†óÅÙ²´Zõw± –bÂÆn ?°¼~ÓÏŠè€WáµÓö/g½# ürr–æÀœîö‡*ƒP fg1 ¹DBÇFe—fœíßœ ›Ú)4¤Ù3¢ íé—¹šŒJƒãÌÁÌüˆUh¯ºkêP¬ v;ýbf›EzAu~g¶“lˆ(ØE&s ³Ë.^6ÙPhr.4ÃP*¡åÂX]³?x2a0ÃÁr Î5+0îÚ7Ì4KJ ØõfKš€¼#“W8™“³ ¾Yɘ4ˆš8‘9,dgÎ’—öÎS‰“Ìo)¶gÏÿޝE :H7ét–îìr°)#d•¦óÅt–׸¨-Ó剃q]wx‹Sº™®LtE:4ûÈR¤CêïZçæaOQfw±f—ÓÉoËȷÂCt'ª]»£ Ñ&{BÝ^¸rß>¦š¥4ï×òæk_‹Å—)]”šë¬>}8B®¯1“^£“WOøÔUa´±+Û:½tu“ ãAßc~ÑgØÉ“´àëOŽ ….’¤7S>QþñJt³¼‚ò ¯—”ùÊPh2)ÏÅyYÒPaã¼–PÔ¯x¾l ˆìÇJH8dŽ1•/Ⱦ¼fdâŒ+ÃŰÆW:±j H ÄÜ™àÜ;äòîÐ-@AH4fóVŽƒÑ¥¤º 8|W­§“¿ÑL£ùÞ2³Èõ¼ r°¼qNÂDÌùF÷7©ÞÚíðãh‚—﬜=)–ºK~š/îIú\9×Ücz}|ž:Ì–êÑ f9ÀÕü„` ý™›¤@ÒºÖ”u‘”u}wg?eÊ:ÐÊðav†¥÷¥G‰‘,Tí6/ƒ„V CÍ´LnÖ‹43•Êüìü$ë4(S¥n¥WŽl–EšŽÃÞ1Zc %Æ’;ÉŠ$­ ©ÐÊ‹Àf:»±>•¡†MÕü¤êGŠ•ÙUc]ê}È ‘ùQš ‚º«½ÝjR‹TñK›†›¼ÏÎÛG)ÏÒóìG^¾yùTŸʼ|*óZ$!aÀíÛMÈ—fåø&)ö~ÿÔzѼzš{¦ ©‹$Æ«àqNä¬L-*£ÏÙeÔf7€–‰sªy9yñ4€P¾”Œ”x¤p^¹ –Òi>ú81'cK\siHv2iàE8MÝ“Œ6xv¹Ð&•3 rVâô:pf{¢x·ÎÌr"š<*'Ój ÓBÁÊ^ ˆJM‹aÔ€LÏYFT#ûq‡«Òí³ÄÆ΢$:³ѧÄz½…)Ó8êCßîh:_{ê?¾§½¢Sòtvûó-Çøæ‘#A:å‚CMÝ ¤ÿEÇ=øÖ¸-Ji–U.cÀ‡ßlÀ£Éç’Ù>è”×£R&8vØpBñŽ•¹Ië#®ZÊí•rÒA wÒ$¹F§4ÌFx j†dÂIuœ’–ÔÐ)H£ã£Y[=‰D`×z¢Š\Úõt"ÒôHÖYòjH,úë·cH%ÖnÛƒN-¼ú¹Û©ÜNý?ävꇶS¿øv2<Àßy;¹¥A2·DE¢ и9kE,O<¿Çm”þï°QúÙÅ[òGn”~x£HP¾+ÁèünôyJɾî(`(kêdÁ¸šbEባ ¢ (‚K椔ä¾Q:¢u;`úl•§´ÁÚÏÔ=2 ï©lwØ yæàOò"©TÒcL“ŒÏ1À˹c~Ú^ÕËáôr[^øá!|Z¡ÕzE· Ǧd:IzH Ž|v;6Œ]ClÌÝkd˜nË‹!&”J­®¿i´M%ÅŒéÁ^ñ™êŽº:uÇní2âüãä’ \ »àÂwÔñúx8_¬ó%ô¡+ŠÕlž`·Šjº#ÑËh¼nòЉ‚náœÓ':-ª‹i;À—܄Ԫ#ÙV/ËÞè Õ‹üšúñöÀs†Öxrè¬þ©Q½¼¿Jø©â-ÒÈ6a–ꪛz¹,J õWþªÕj0¨t²6Ip@šÎn~ j ^ÉjtÇÚ ¥{­Iúá ³u™}]›a›]’A3]щè´{¸}k\ž xÑÐÆåœ­[×C¼þM ’ÖW@• [M¨-ùAN2´í‘豓ƒªR{å…‚NP¶`¯˜íùÒ魇ܥ÷йËKŽáÓQaFK_€ ‹$ˆ ‘#½²,˜®cÈpÞSÛñ"_fìPô>­©®}§€Ýu``–»»Òh(O%C@ºìÏ·Cµ‡X»–mžÍF¼=ŠÒe†yðÈ)/5µ¢Ê3~ÿ˜j^ܘ5ÈÆä:•­á,mº2&y~Ø.ËÀá6~Dl\φ”XOá4òWÉÞN‚`?q|(›xVêôä¥Oí8œ“¯C4|b\õ«M1ºÅ ?÷ÂÐèqÝ~lIÓWTRï4£s5miûìà tN Žª‰n*v`zÛkðÉZÑWKÌAe^rö8*Ï Tºvô¸n?ÎF幕fý¨ì< *ãy×x´ƒBƒÓåCžÜ»d=’æÞ³×£,µNÊbïöÅ\×Û±#4xûYÙâ'Ê-åÔUÉàA§D/ˆ«Œb¥6T#‚ú ë 2õU´AŸíùÀX¥£\1øb¾¼Èôñ«õ(먔%§ Ø:OÚÉ>u ÜL£`ƒ½d‹MSwP5*š«t½häêw`n(/õT0ž7»qá¨^ß“…$K/à ;¿¼In0§÷Ÿ³iè÷þ«Ó{04¸@ç4-VË0«»ÙôóH#Ÿ¤:Ì$îÆ@pÝa "£!í*%x1ލPƒ  QÒ%ÉmrÜeÇJp.Ç‘ÌU阕u³HÝ Þ%4>¹mÏDÊ\MzzÁ*³ÍöœV)¤ðo½vºWoöpÁÎöÌפUågçíSxû”Þ>5ßÞW6óbÖ‘ïÊm€xX•¼gÖóÇrKŒp­—ÅÍt–‚)5«iT·|ô”˜ «ˆ`«tRl6Ô«Rò9¡ÛY4À¢¤)ËjAÂápû2‡3®-'ÓËËåŠ—Ó v¾&K¾Û:mHnª‚Çv¶T¶ÞÌÊ)Ú`_¸„ŠÕÜ)§â•PqIi‰ ñÜGÂDÛu°Ì f‚®µw…ï]b8š¶# ê‘v{k¹…ì†Ýv2ŠnÔý6ºñ¯±ÞŽÏÏ7Ž;lL6 «9ÉÛ!m.1³ªy--1“kû TŸI}²éÃjÈt­ò–ˉ.9ɵeX,-ã›5@#³Ms…"4¡›ùÖÎ*¥jž?ºT¬?{×(1jY™†}Hö{´/´ë6aХɦ+b¶"_îHÚej‰×BpäB"ɽYËò¦ A°¬Žö•ñ„È­ ê!³tÚèj:à’¦t¼É!VBƒ‹Ì_VßaׯC & hN°E?´­æ×ÏŸ_Ÿ{ÝsG¿£Fߌ^7ôn&kâä—öŒdMZå'¯ WÓ*4«ZwÔAbò–”»‘uˆ¤ÃCS–¬_ʸ•–ÄÈÐäì¬ñ¶{ilÊŠKA®VmÔe©¥4hÆjsIe¬±:r çU´g¤¹Ð"Íž:U˜DÉ$#†–‡ŽÌsí¤Ë®ò£qß[3ﯙèwI4ÎÐåÇšÝ&ÂéÙßu àý(½è˜žgCÁÁŒm«ºU‹iè‚ "?°b•hx«¬ëýFé*ePv«V‰fáÎ;nÓVá¦}·)¶Ú˜•Fo_¤ö6²«Í–èqù¯q-¦A2Z,’Û»…¼´ÁX-ù *ØŸçOPëijce—ÆZ¥†•,a•Wkµj[P…Ì«+•Å:ýå¬"8ñÙëóΞ.Ç©“%³ôÈ 0íöà|óäP&˜ö©L›“_(‹ZQ’,“õ–þæÑQA b@ èö@ìÏÔíQ›î{úуþYËO$]kk_& Û§×bÈý–ÙÚ³êdõòïÁ©üù!cÎÈ~ÒI¯ [d—ãÊí.»n–Ù_z ×óR¸dÉ­oXQ èE³Šé;ù³×êÊ"=X0äG¡­oPh “b…J>!D¹3T¸éƒ[¸Éož,·Œ‹¢–asËFx¦üð±ÅŠ×{\=²À㜡³’»ÊpÁ÷©´ ů›‹Ç5ïd67RÓ9ˆ&³<ˆýLˆ b/â^&Äf`Œí%êìjù( ;L:+ô͡ G톔‚"t¡Ì*±…U­ÃëªZÇö±j^CÕ:Æ-Uëðz©Ö1~©Zf¶öJY9­Ã|OµöÊZ9­ÃLµÞ/¸zœÇ (B5ÀH̱Ôð3¶1· Ÿ‹²ml­eÛà¶±•–m÷³ÚÆÖY¶° nÙ6¸mleÛŸ³Úúʬ¶¿fµÝ‰°~#Ìw™Ì(D˜‚F'œŸ@Êjš`HiQì§ËŽ~¢=ìÈèVÓäÏÚýax?Òºf×t5 ïþæòŽó%UgDý=!ýAǬ‡NÖ‹T,<ú£_£‘·Ê|-£p]G Á*²hZ7ý^ÂÂD–m®Ò¸.ӨDZRF.D)S˜òÙ’hÖŸFžqxL8œL#M$m¨ŽfsÎõ‰•l:‡JB6¿È|Ú„*RÊQé¹6ž¢&ewÅš”TÉ©'×¶Dbœ!í«?Yõü\9e1ý2‹Êbê)~È«ÿè±* c«nóìèïÌšš;.ˆ´ ÑÂ,K§þÖÕ5Ý¥·ŠmF:~þ-:.T 3PjS󀪮à LHezÃí¹d5‘PÒ/îÍ «S»AZÊ4¥àßi([ÞP2w_%ÖCíA0~¼niæ›î­œ nEqí£–g‹uÔ+^-õ÷ž»Í:î>ëäîðÎêµ\KÙt˜9澋õ~.Ö=éqý»8ë»8ëç⬟‹3!Ë#ÜfNú»fa椛(rÓ_4ô~vGâ¬ýƒÇÛe_º¤t_B×.œqèz\K!m*œeýº2pïЛôñyÆ\w“ ;²Æu%¿;Ê^û†/8Ð]#ké/õBÊ¿á5S·œ×ý¥¥ݨé5Q”s¬XíÏ"¹f²&a ±‡x‚böÐˤÃF€ÿo:øðÑÙÈN)è®9-U<LKã_¬Á¸Ëæ‚ÙvÁ`”Y•ÜqZu:ªe¡š¡>²°uÕÂÖÉ%æþàKB¡³|»M_J]àeXÙ”½xAu&ˆS7k“¦g(¢ÿÇ‚ÀªËÃÊk7Ÿ ¼v3T^Û¬šÝX7Ël‹gX7,«~öW¡(§>å0M®Fÿì×ãýÆå´Ù¹),:È&¥ÇÔŽjO[Z»¥KkÓ-µºPyí`ÅeaTšåÓ…Åg€†³ØU•Z¥„¶ßYF ÛýÕJyë×íRxnÏ\‘W™Y<êýÃàÖùo|Å+fkÁ7¬InЍ |ó sn:µ Sm˳Ÿl%úIÓÆwÂ%›Ú{tãM%G£ËæèVV"Œ/ŒÃ!¨@ظ¹¿Óâ›ÞæîP]›`íß§ªIµ~1¬•€œy÷uµÞ}.ÁúÀy?¼ä±,,¯ Ìpô÷(½»nÏ?Û*¸£©:`”µ ‰²Ûø(XzOv$ÒÀŒ¹Š]´ø %ZYÛN@ø Ý2ŒûÔ&ÿq}í˜^{‹O³ªâ¹Ü æð‚ç@ ZŠÕúc/V­îÇtÔ’Ò‘qW‡³èkòŸF\}åH/Ú]쎿``ÐüK’Ü¥ayáò•À%lÁ÷ððvQÙÈJpÒöWÓ„³øppÂtâ;°lJ4NùsÇá`wÁ¤+‹yé y ­$]kµ°nE™™XF³P.«Ä®¥ï…¹DæqÄôPÔãå!å›zë½ ¼Ÿý´¼%`FU¨kS´ZÛ VãJf®ša<ÁOEÏ©ªt2n. W‘“qÇÞà–ÕÃcÁ+ i¾üVâ©—¹Ø(Ï»@LYxIwS½¾ü>ýx¦|ß&Í\’fî¢5"ž§t¹E«7âèo®ŒþFú·rÑßú±gDpϨµjÅ×j+w­lƒ‚ÙÀŒ’æfS\›øêáãíÌ¥[qÝäÒd >wÑäºd€ÈX1 ùU®rsáBラ™ó.éËø>âšV×w7…v€.ÌXä07u?žD• .B•®öhÏ¡ Ü-á„q¾[R!ÔŒ]êNƤ׷ÃÄ[ßñD¬LòmÄÉ÷E6ù>ÿA¾+’ïÛ‡¯G#_Ü·%_o·(ò}!__CÈ$ßf”|ò&ŘüyÉ×5ˆÒ€¥‰õ:Ê!o¾—h´8زº;¥îõ Ðml—üùVÇKï¯K⤠4opŸ‘Ùbº´^LaŠÞ=U| ÆG­eXàýÇžTòÖÎÛ·O³Õ}py[½±Þ”új›²ß”ú>nü§lÊÊ[o;þ›/ååj ô>]‰ ±UvNoCíê*ì½^•:ÅïÖÓ¿PyÇ41š[Uâ#¼mÓ‘ùùÃs‡¿?×hD¸Fs5®±çj0>–:ð[@9]O ñêJ¹³3ú¶ÚÆT(íž%±xóbñϪq¯ÂeÄjŒF<–ÐE*½*æ±’P,²,xÜî•’ÓÝъ쎭ÕvÇv|wd›ÛvÇúdõý± UÁa+Olxˆ‚ÎeÒsAcEsÁN˜ µ=t sr#ä ßx^€ZÅç±ê‹Vq„ß¼cNª÷äsy±£y¼^a÷"ÛÆó'%ÎV\…h=‰ ÷w¶²UˆVùwôw¦í ÈÔE—Ñ׉š( (C;z¨iÚžïãiÿɈ5ÖœïëlE´¾ÖŠZ_Ü×¹•­õmy¦ÛˆZ}«mžO)†>• E·"ÊÊÖŠÊÊã_‰l¹èQK[Amðû ;¶§ ¤ìØÅLÈÂR~tÓŠòÎ!'ÂàŒfæKÿ[ð3¢¿Ú¬5ž ÿ£gÝݳ£ÃÞ³Ëñpq;¯]‡Û­òÙ„Ïv«E?w¶·éçfƒÿÞ¬7Z­æößê›[­z«¾ß×·7·vþ&6ßuþg9_ gBüív8›o§óØ{ðÚõàâöaúœïõOÎaõ™rJ°ÔªRrP±©aŽ­ Í@™Q8¼’eX%‰ˆr«UU±šÊËúB¢G2Õ…mÖêexIùùdô¹†d~–L&É|ž$•ô»}Q€NFC±—Ì>%ãäžÃõvDgq¥Ëõ༧Dy  N³é»³K]'HîÐ7»ýÝ}« #ˆ§‡eøÛP.˜mjV"4t*K •‘ÒX”5¢ŠW¡†ú× ùâÁóõ¬’hÀ¿hàëÈÁ8½ÏºUJ =]Îîdj·ºÓ–Îc3W u†Êk£ê9ƒ¼ ÂæׂÓÌK(¥éLܨ$in“dÐùu50Ì„T…’«*‹Î…žç5whÓ;9² š»»ñ½Ò¯§c 9q׿—X}8-áΰlÕKãˆÆä†TÏÛ,e(‹,‹˜ó=ÖaæâRS+áWD¿«™áÐÛuªÀ¤Ùt8Çúá—³Ñ4¿H`ÈfEAi¨Òö¨âüàän6§TŸ›‹.gXÍð^L'VåÎ)—a¿M7Ó+kÖ]úJì:µãÓŽ¯’É<]ñUôÔ þír¼It`²$Ó8¹^x®X>œ¡ÐƒM% -'#`ä÷š–*øÖä¥#3õ“«%,ÀY~]Áü-4wdÁÑŠXÎý\RB¼™.çÉÍtŒ‰”@öšÌ¹’9.ÍGÄžåC¶PÝ¥Q-©U4­”jP9ñF6¬«÷h¨âhô° ÜsÁ㩈Ÿ.o†øè'pØêôºJk <’ÈÈX ¬#OU~îÿ᳚âÀ=0öDê4`㋆`E$‹ËO0† Ú¥³d8‡é_€VFFS@sQš%c.¬{!Xÿ´WP#˜?ìPÐWç\åWÖª¯*ÄÁä'±6¢„]g«†¹ÃæÓ .e9ð‡Î–Ò›aÌ»¨Z}ÄzžF¯­ìâ —7À<©*œM¤#=ðÂÀ‹fÃK°/Y› ¾4îqÑŒ0TÝ÷®(ͧ !•! fz‘ú`´å”¢3FiÁ×xKÿõg Øïq4VÄ?Hÿ½.¾d™L'Uý^™ªàʹ¤Eœ‰(ùZú‹=Hó§C¬×r“RÄ5òO4vÔÄÉ—"Là6t| g‰µ­'SŠ”q¸Õ|Á‚Ê”QŽsÈa®9rðmàÙùoÓªÐÀ àNN; Ó¡¬vðaÒÄ36ÞMxzíÁàÓ 2¡eT3Sõ:ò»0!dtÄhzLG&„ŒŽ€ùhzrúÑmÚ×ýÄ;•X²ÖÈ ?>Ñ\ºÖ9²ËÄÈ(3þÐ*˜Mhu–¨U˜$ÀÌæC.Tϵtiæg]nZUò¦…´³]A+Šc¦Aø¹[Ã3@ÜN¯hN²“^q@2M¡‚‡Õ\Õ¶î*~Ä8ñ˜‘æÙ’G/4ÅbŠ|$`91»Ös`ÐTe­Õ‚õºÕæd‘t¬Fé…œÓ÷w(B‘…Ç/–ÄÐáhƒ%ÀZR øZ­+Ë>,ò¬[}æHÉvyR¬möê_â¼×~}Òï–0=,ÚID‰ž CÁ ÉCØóÅRnf»j–èɵu:-{Ô-h QbË·Dÿ ,W.‚Ie1¨‚ãQJ‚$µõ™ÎecçX–UV²t „Nœ^CÒQäfº_‰ñ6S²ø’ÀܤÚÚ|±Ûìr Ò×çÄð9«\­²‚K;½º"¨ñ\í  :ôAb~ÎÉÇÙÙ «WJÈxd ³Z„j²cA´ A3_Í/¢>‰Á·ÃËT³GÎY À­öÖ ç• i¿ú#ÝÆ‘z=ƒ?è¨4åÊHŸ,ÍÐàn }þhäF6 ðH0¸Ià;¬‚/nž|½Lî4q·O7ûxjt‚¿q{Ã@ÐÚïNùìf97÷Oz2Јp‡ŒØ”ü„pû&³¯ úé™Jø’+‡ïT‚üeU[†öp2BŽ‚²ívÅYQÝfFšµ=Qb8Ãñœ$}iö”\(WÓ2}ÔjÊFå€j½–+=Óœ‹è%ÄX·lÇÁf¦ì"† ÞŽ¬€Á\þÜ!¨ÜQ–à@Ú×J‘›„RÆ(qw=4âYâl›ŒW\ñx _!L[ d•˜Ûá×Òðb^BÖQ.ãÙºd2>Ý.osÐ=Ac½Ë=ÖìSO”¾ÜŒ.Él‡§ãð^Gž•õx¨;è½ì× óÚ•y¾+âIÅ…ñ)¡Ž©ÙR’Òb¹¢hÎDšj¥„iÝ Wv8f·QLY7LsÃÆ“Z2åþWÌF¼v僯C” ÐYöjcÆÉ5¿ÐãºýØóƒ˜ÚGÞ¼0ì‹„X–6¢ýœ>Å©C–d2)äΣF˜0ÌÇç±?ä£û|5t3¢‚îsÝ®Y×íÇÙè>wÑÝ[ ÝÎ<¾ºÉÀ›¥(:(—¦4D³Tpä-œÛ–4Œ„ÅÊP£ÍÀ¨Ï—Ú{¨Î9«ZIè`7gëXf:¡.ËOÚÉ>uµ¼šVd®Lâ;1ä'Uª ÐPf•Y;f”k}g,޹ùiÇ’i‰k{Ùc‘–bå®^}bCh(æP Œ+"g¨?g/áwjÎ ÿê 5h~/0R­*L¥ìUw³éç‘4Þã©É^Všb ¦wÊŽËCÚUªFéQì¬4„Ç/~L7Š=n7¿ð¹G„Ë=JQå3(S—U˜ƒ¼¾- ŽUÙFÊ\MzzÚ´«)í…F[%•Áz÷t¯"ðß›=Úg{æ»° à; 1»É)^H›œšMö¹IÍAC›£Ј8O­ˆ¡²G3Ð\ÉÌòS3ÀG£À Ä#}çÍ„: -ííÍ=Fv‚TMÀÆB±4½€û+ˆÕäá¤ø|MQêçÇ×£|§­PŽí—ÑÒrÂdP&/PEP¨Ëý¤ͧ©…À6°Ç³Æz÷Úµôšôûž#Ÿ³·Fj=T‡ õ…,ZDZôDµ$ OgÊ‘f“m…N1t;ñ€È¡ÙÃ1Æñ_ž¢æB`ƒËôWS’ÇAáÝùn:!+”‹ðª(a– í|“nצ$œ›ˆÉøÐÿxª)™‘…T»KàžÚþn¯à9Š ‹JW…M³t×.SÀV¬È½Ðwq0JL…lšÞüÒ¬§Z¸æª´5š!1hdõ²¡S±ˆª¼p|^!ƒ§£r§¿®U¬¡qE2™.?Þ Œå!Ô #в¿”Ã8¯  ‹¥líam€â›Ç¨öa?h®S¦Ïž,ßl|7}šÃ“LZ¡Ê­ÎfTæí*©i6#£0µ‚È4‰A+¡]¤càØÖhŸX›Ä[rîÍ’Åræ˜C@þ‡º©êIÞG½”=ÐÆv²º µœ®9`ä_ ë½¢Úħäp…IÁ+c eó¹ª[øy|³ÞÚ¡£9wæáè7²€ôOÞUÒâðƒãCü“f‡ÿžÓ­ê·ûøß› 8oQ6x‹Ã[èZu:X«Ý㸮1ßÅÂÌûPÎu½•ÀâS™q¼atÔý‡/ìWÌRç!2„}zVáü¾qpÞí~¨\+€ë68 ÁáWØmhz½œ\r‡‘ö{ _‘`*êõŒQ–ò.‰1î`›U$ãNÎøçÙýfåaæ CÄ»`ñþ°¿×Ù Œ°–6ü.Cˆ…MÒo÷íýîî¬Ð> ì}…s3àøŠ.090d®Ý b+¹\.†p(  ²èË$ŠóÖå%úƒ¥G:ÌÎPE¡™/0hÝÚÑŒa.4ïŒGÿ ªÉxøq.þ/…a¥e†åáMÝÛÏËÑå'uÊ`¹p÷®1¥V7²æõ¼|aúÊñº9nd-"§’¼Ãƒ’MÙ»IüÈH‘¥ï ÚmYmÙm{Ym›F[ÿ©®ìíÜ”¦Ë!þ|‰ŸEºEYÒJÆÌÐÎw¶ÏoÕ^ï¨j‘Ùq/§½4ž¬—0úWê嬞ÓÉ›;©˜Š(gEíât$Ó1†ÌÇ_d‘IÂO›¹Ó•mÃûA¶­Û#?=ÎØ#^' ^cuxûYðšx±}(áõ³àµðšÙðö²àm­ïç,xÛ«Ï÷×,x;a"•OcTŠwÞ.“…cað)ÁéÙ )—$ ñÊŒ2S2EGH‘öýè<­"M1úQ·oÛ@ êQo_=Â3rãœê§“¿l9—ÏýL ,À¼s+b‘Dº)Žm# ðj7Œd¬”àÜô’7ñð´L¿|ù†í\Êä ¼#5ÑÅT §þ ÃO£ìÆéI;ÇDzs áS”JJ8sF?æìج5×ùk²yaºÿþ¬U9UyþÛ«Ë¢íNëЂî`&ˆ¢Íq°Ë­9•þytX“‹a@tÁ™´O² x8 êÊŽÈ‚óöÄòOÕ£&ÊÆÖ3ËÆ³³EÛ÷²ûó¸ ¸ˆÕx'‹R ŸÑfËmƒcl+c®Ÿ©–;nKn†xØ”x1aÁ׋ N'‘ñ$âpÏÝþŽ;9kæ¡ÇçÜ‚X‰™TGá¯ãóçU0ãllÀ=•Ù¥ìºBõHʳMÃk£GwÄÓ̓ЌA8/ÁX@Iåøð1¹Sã[4¡eïy‹ûÃ;<·5åô`ý­Âù×*¢*Óè÷¤®áôÀ<ÁP~¢>dK,ª®óv[ÒÝÛçüw@èrû_—+xe›Ç0¼l+ÄL°eš "¼a¬|…ésJ4¬ÿÀ“JM©¡ª%x±Éß&W£K÷V«D£Ì4~`‡è‘™\ÙÅõH ç¬B—¬àkm’qóÓI[JÛZZØøÊJº¨[Ãý›éNܳé]õ`ú…4R W- ï@²Uy|_Æ[@xyMå²ÙÞt±˜ÞVÏï ®Õ f­-. ·qSö¨/Xd*ÈœíkÙdúŽ­‚ø¢ƒu“jq""¼¶@i*Œ^¹:–5§ô)Õa'ŠoÈuLŸ¥i—³ÅJÁi§R'p å¹`3í,ùˆlhЇ µ ™yù)%Ù4¬/-Êñ1*MËÄIL­Òvw`'&ršrN!²7ÿy½×dÞ€@cýƒóªe¨›r“ê¼ {ì;ïfe p-7xõ¾ÑÁ ‚üåpN~Aâ^¬õjÓÛìévß½ºš%sêç`/†hR¢Ë˜eͽ¨†å×绪óšïnò–¡arh;JãJ{þ{Žr‚±Æäi¼˜.nü8¿Ò¨ò[¹ ³ôáãfùî8FèZE«ðúoÀ•­ù· Ftçg>lK%þ­Ú:4uÔj’ŸñPÙ¿§ŽˆíªW멆Z¤Ãô‡hØN4ÔM—„åñGÖwÈ"¯4;ÁŸVR@{Âz8.]‚á€\ò9IÓ¾º ­à(÷>ßnư§…áÁN&l²àÐ{Œ¨‡_ø&ÍTE‘ëmNø ³ü™§cÚ*Tä¤ÜYÕªx—PxÇÕt’T@‰"wßH¹9\§UoNŸ NŸž>;;%Ë͹¿f*7lò$¶|~¾NXJ5 U®2Ÿ«î¢]¯òb–×ßn("–IdÑÂLLV'ïmf²X#µœ¡=s:5KüÓÈk[6,-ÔIµÊ?]öo’ËO˜6‡x`oéë¿föŒü,Ä6&À¬eU3qUX›¹õÌ4¸Îd€“ý—h½ bÃ|,9‘RžõªwØYÿ*N¢VV–q9g)b„çûö¸ãžÇŠ)A¢Ñ¢Ã+T|åL-#3€ÔÄ¡ülœxFý„ÑR^±/ †.–ÖGăqÈ'$ÂJW™ÂqSF'‹ü²Ør cáÎdvúþ†ädëðÇ>&U8/†kš6Ó—¾ôAêåÌé•W¢èN³H3ìSoëz¤mªƒÜYùï:˜rÿM•öNöNÙ ê[Ø<¾·TQä8ß"€ò5è›·]œDìÝšnMV Õöå­ ëVlá‰xNÞéÍjlÕ7ª ¨`~B$tžõCèüäÝÓQºñŸŠÒ#lKMÌ>`˜ž³NÙŽÈz_‘uÖ‘! ÈrÖÁãEúŸ1ü}ñÅSôí‘.œ3šؒuÖ’WS^äžò¥>q• f’ò±­M÷™™09^¯KÈ·-„BÓ+ý!Ã즔`ëʵ²ŠÙ“°[Hõg }a¢é}C^ì1±t¥¼xþŸ!/ºÇSÖéDòâ> 1í#}UË‹]„ºAüAÉ‹™gZð‚^yC?J`4¶òÛôz»ê)ô½ÅÅ}:»3dÉ8BÌŸkqqŸåÕÄÅb«-~ˆ‹O%.†Ž×¬£u…sõ¡ââŠÊÝSH‹O¤Ø}yÑ"tðÃHúcaâM!"zR'GW+©KâÁrez ©-Á¶¥‚åJ‚åóLÁòET°¬k2úeFüã6õ W«r=[Hg:©à '7¯…„Ô˜µÞüNvÔ×t¿tC*·x¤%•/„XQ~,¼…ÅaÄHCJÒ®Ùµ*(—©4RUÿC¥ép5#¡åé£Pà“ûª/OSžKÔOC`d¤³º q±T¦.ƒoɽÌ;2O&S_M¿DKÅgJÕHÔuCnÞ` Vw¥p?ldËÎt3‹Ø'-oŽèA/¯.zà!ù£šßY´6ć<áaóZ®mìCDI®ÄM&€*‹y&ÚTDfB -é‘‚wD˜¶¯ø‘¤Ð¨¶‹*¾zŸ>–V,Õ7Oxx”@mŽ4ÿW’¤¿¿åõ )[˜Ü^³"ÊŽö»¡° ß}CYwUÙÖ!F)è{¥«iB–?ÞhDE·|N¤ÎHÒ@µOïmê¼>ªÈ¿þäJ6%ÊÈ9÷ñÆIÄDŠýããAÛaºVp¥,¼sœ‡!ßÍxo`¼7È‘àÃeÄž?Ì¡´ULÛw(Ež¬TO¦@_œö³>àqSa*«b‚šË^8]3o–pS2§o‘¶ÅÛZ†ÐXIê3ä,Ë¿1sÌñ2Çqòôí—±ˆ€£Ó†¾<@z\Ù¿¿šsßâªo ¶úÆæ«oâŒUçY"—m‰lÎ%r˜—X™‰â,Läb"WùÌfò'—«ÆæØûû±|ß(6Ç ‰JÂÞäH¢¨z’ â E5ZT&ÂjƃÐYT'Vìµ¶zf@F=шd8|º}-¾$\VǾ%\—Ó»{¶LÓEâZZ‹Çb•³ÂfxÓ9-Œ½˜Š/ÓÙ'ºGºöï5Qý—X»XËæ{ ²x-3k¨o›qÞ‚nÓ^3WyYW]`ކnähØw]Ú·1!¦¶ÁîËK±†‚})ý N¶‰g°#Üâ3Iplžjøn aGéøŸLn‰ƒo<Ýà%_tæPXç1ežtã“VÜ·ÑŒÇûýÚ9°²–Ѷ%é 5%©=F)O6iIL÷´q¦S<Í!:Å±ä… ß¾`ϯ‘}QÀùDÏ+–£p.0ëݸ@ö%ÆÈÍÞ¬Á¾-f¦ '3ÂÓ¶ò(k;…‰ß’¦ˆ•b‚v€í'7B4 Ø«dç/òçÆ¾ª³p3D¤./èq3=™}¡¾W”~ÄŒqA‰Ž¨mKirEóÂ*Ü™²¸w3¡zWز=¾é== e:)äó•Vëì×.ßBŠuÐݫ裨‘ºObfhìX†ÇÅV²4øˆXížÄ÷²/qMñKe°P[yúaHøƒž€xWÓ|ÃüÍ·´ ˜lýMÊ׋MËàta /Ær™µ¶˜æÆN–|ßx7¼XÕ<`×=4Íd8x"óÀ›þý0ó@,ÃàTPêD/[¤üV&‚榩e§‡4iÙññðgU3AsóéÍÍúÓNà›˜ š±(þÚŒG…zý: ]¶© ÙJMSa½'}µ™fI’–²¬nh6sPÑÌŒOp?ÍÙf“ßß<Š<œÌ—³$Mǧ‹›š%øó: “8Ôz'gµ 6€Ëº•mœ´ÙΆs®„ut{7±VΉÄí‡rgl…x~7±o\ÛJ+;·æÅ=—`ô÷>%«ƒs^‘Ù€Ï'£Åpv¯ËŠúù)9Íá,¹Z^Êš¯FÐ4çñ4ÞšÛðüü¼‚ οÄCo~3]ޝÄÇduy¡ª÷b6ÈÚǤfGF?eÒ<%¯–Ta$.šì€2¥îÊä§2õ/ÖSÌ*ääfi.'äÖ!.*”}&êù >Ð]9šZdVþàE˜Eh oÔaþ^ÈɤŒopVܦõe$+®Ó cyKî§SÔc*lH ÐS„±ž ¬à¹SOºBuUéOkÈÁŒà¥ƒÛæÆoÙ ŠsE®¤ˆê šõæ|鄺Ù3mDfÚ¡™vœ"ß93}Á3mDfú\''‰‘ Îôyd¦/V›i32Ó}oMÇªŽ«Ø×ÕÝÝ›ÔRŸ°'!£M1­z& ´6SÄdqø#ìïàüw'ïPã<ö’C‹Iñ<-úî+*Î賓5]–´y5ÿ.hŽúc¬b«¾Ú*¶"«Ø÷èõéW±™½Š2ùÛð&þk¬b#²ŠÍVÑt9«¸G«xÜI¾ ¥JÉ<C’_T!sÂÏ‚­y‡ð«†ð$"3Çt¼½wŽ›ÞPWÄà"D›ñ6?×4Ú äéÝÒD¾S×j1YrèÈW‘D½3¦ËãzWߢ{£®x±E­ leÑ€Œ< YAkDz|IŸˆUÝœ¡?d̑Ӳ埖ú5_ãi_ë‚÷X$XL— ‘|Eñ8ùY—o·d-!>;Ó§(É)@HÕjú^ ðs2»§ôÒbx½ Þ-цÄýXöäªôp³ OM:ˆ[¨Ì¥Rƒ|ì¹T¤«ªØIÜM¤´çV丶>‹m­rŒÇY‡D)*R^ùS—·=©&ó, ƒGjiT«ˆßÊrA‡ÓÏIši]n1³¿×ž*A{Ýü"ãC¯ùÓ@O@¡·L%Ù V·ªW~C+±§`Ù=T°ð–Çwúu½µ¸DXÃyÞÐÏ»ÞSÌ¿ÛÈе)?oaK˜6¶"B€×‘²˜õyJºøn••óÕÈr«îz«‘ˬ?Êò ‡@vÓkÁ%~ÌrÿÛ_þ3"W¬6kgg‡ÀáѳîîÙÑaïÙåx¸¸]Ô®ßÇ&|¶[-ú¹³½M?7ü÷f½ÑÚi6þV¯×7·6wZ Œüm³¾½ÙÚþ›Ø||×ùŸå|L]üív8›o§óØ{ðÚõàâöaZœïõOÎaõyœqХаÊ-QÔƒŠU˜ KçdØaú»½ã UrÄkÂ\¸C™'¤]‚Í´Q Ø¥“‹„˜>Un%8UçXå°Y«—Ób6}ååp^AK½µ¸Ç­ÜN.oœÀÏDo÷HtWJR<¹\L/І››Ï5¨Õd¥s±;û¸Ô¿ð*Y§³WfŠ@asª]®&Ï¥¿ö·ˆÙxÿÍnwߪÞΘgŒQ_9Ìt¼»³Ùð>4Ü@aíÝ÷¿Ž¬_Â_ãÓ;0Ÿ‡¦¦‹ƒÃ_O—³»éœª®¼âOZH‹(K{™+#¨2~Š/#¬Z‰Å†®G  q“$®ÏÃñ2QÅ`JÓ'¥IÎi’Œ:¿®†.6¤&”É$qÝͦgÃ[CÖ“C›ÞÉ‘]Ü‹áÝÝø^™\¯§c8»ñ¯yòïe2¹Ä:Hª¤&5BãêKC¬Áòh–U}1Å­ó…ìª0ç{¬Ãųmƒ£,Fse×KóöOK ƒ> Ü\%óËÙèš“¸aгÚ`=TjaG “Mï@Æ]°yY̳ååb9K*ˆ‹é$1» ¶ø2•5G­Yw¹ éîKK2:¾J&󘯢§ðo—ãÅH¢ûz£1“k߈ŽcÇ” Ï0¤/]C:ÙÍ_:rfÍè‰cD·Ð|Ü¡.p¿’qÝ@Fu™šˆ=ûÓ 0©…=€ê¦(jI­¢i¥¬Pz#HÖu©Ö`=¯Šøéò†JÌýäÎZ^Wi­•êC‘DXŒË¤$mîÿû.yàÁêYæxpÀÆ 9ÀŠH—5v4` ´K±Lÿb|/«Òj@sQš% ŽÀi/àypze.5ƒ:šÁ&¦ÊK²ªX…&¿Ô(0™úsÒŨj\‹A¥,+CiÏAÜqC¾Ø8–#…Ø4F|ÀèÚ!ÒŽx!ÖG› /©æïôÚ¨o%;U!©…¬ø ˜'¨ÐtEi>U±@Hä\ÂLu™ªZ9¥èŒQZpà5^ÅÒ?EýYö{ñOZpo£‹/Y`&¦©Lœä\hyx&LdÜN¿s1£ibÞq9à„€ŽpÆâäŽ6‘q¸·¡ãc8K¬m=™’eÁáÚ&À¦¬›áøöùuŠrðm6å¼Öj6€_jC©ÝQF¯…œƒÊªoŒ& <½ö`ðé™Ð2ªe©8·#¿‹±ããÈDÓc:Z:n£HGÀG|4=9ýè6íëÀ~âJ,Ykd_ZðÎìYäÈ.«žÞ›ZEÀŽZåúxµ*“˜ÙNR¹M´titJ¤ërÓª’-¤¡ VÖºv4›~™ãÏ] ™·Ó+š“ì¤WS¡†ÅEÿ€ác>Å”ÿЂˆÔ<ÛbCòè…¦è¼å#A¬õÖìÄaA£|NƒÖ²ûzÝjs2Aj˜Ý³¥’k!.î﨔æÕ$­ÑÅ’:WùÂ>Üàkµ®,û°ÈC²nõ™#%;öðó5ñê_â¼×~}Òï–Ä&UÅBÌø2N”ŽÍžïÚÀnW­sÃ=¹¶Ž@§eZö Æd¨±e[bEX®\sünJÀwAßA) ’ÔASÿ°q.Û8ŸcHŸ<­jÌ]™¹†¤w¯b"Æ#ØLÉâK{p“6jkóÅÖýƒôõ9±|Î*R«¬ ÀÒN¯®j¼´è€}ЀauAû8["{Üi%d<2†Y‰Ðakýd‘|˜ù V½ä€¨ObðíðòÕëp¨»þ™ØÂ5È9œ‰ ±ÈÆJ— dN>"jí’©ÉW4ub×R–@ÂV|i’|]À÷cÒ‹Xûrif JÛ’i~>¼u±¦`Sü¾ @Òîm‘µYÛ´ÿ_­½Y#>k0ÒTXÔL£BŠ“sFª§-3(µU8D*p$Yß;@¤Zô…Ý àéッBB-8ìÓ'vé•«s—ÃSq`„&Æ' 2S:UxáÁ÷2âŸ!%Æï ¸ê+Žw1ÞjïãäkÙnÞØd±Ú°+¡9tvñ“*[~|U'Y§0:û8F5‚,Oð mid>4ü{ÞªÎÔ¶fžâ ˆ$ ›ɃƒºŠG0õW›Rè9Hkóg8ŸƒXr¥ØÄPrÕõ3£Ø9X8W›Ãhìæòm.Šv|>7^2c;°ß•HGá‚ ¨3=Ë]L~|ôYFZ­²ëȚőÉ?^LmÍ'I©Ë6GP÷¯à8»M†ZLÀ4iþ€ŒÐ›u`º‹¹8(Õ˯ꌒRã%Ú1áïÚæ3DU¨]C·£—«FóüÆMÕ¸]~…אָ—ª¥6ÀxV’ÀÊ¡f-Õl„UAУ&=øw½„_Ô©Ç`Û-Ù‰À>Õù5ÃS&àè(é0dÁ¢ÏÍ)*Èv„ºÒÇá XÀí<ÜWP eãûT>L®j¡‘nãHƒ¥k tlš2f¤Ofht·Œ>ÿ ôr#x$rxÏÅîÞ „/žž|½Lîùw#HiR(øû€ÃÑ–ïNùìf97÷RzJЈp·ŒØ¬ü„ð|Ɉ)^úÓó•ð%Wß©y?ÊH¸z?'#*K œjãëf¢ºÍL+4k{¢Ä|¨9lQi•'ÀP®¦ ë–+•e£Ž2Aµ^Ë•¤iNŠÝGtYq9ºeG^Np©hÂÌ ]Ä`@æBW`ÿpŠ ¢‡ 4<öµ‡RDä&¡”1Jœ^c z„8 §ãWüK»¦-4¼g@ú_KËy YG¹Œçì’íÉødt»¼<ÌAuŒu0÷ˆ³O@Qúr3º¼‘¥ßçÃ{]f¾¬ÇCÝAïeïè–ú44º“$ÏzEü/‘Šé)¡Ž©ÙR’’c¹¢hÎDšj¥kÝ WŽ@þ+²w âO¸\©=Û2R : aÏÖ+J“l¦v§%êd£þ²G›¹c:fWVlL†IenØ RK«äIŠŠ×®üòuˆúõ^mŠÑ-îÙ¹g¢Çuû±æM2Ÿ'@÷Gf(0싄ب6Ñ¢}Ÿf}E#`Ù@Æw½„EuæQ#Læ‘ãó‡ØGòÑ}¾ºQA÷¹n×ìGëöãltŸ»èî­†ngß Ýd€ÎRd”KSŸ±qä۠͜4Ü„ÙʤÍÔ¨¹Ï—Ú»©Î^4¤ê©…„ s¶Žå¨ê°ü¤ìS'Q˰iåV·_\W‚ü¤JŸ¡¡ʶ2»ÇŒÆölÅ1‡?íX2-å¼›5iÉVî48?n@” Åjq…@ä õçì%ü®CÍYá_¡ÝFJ£½}žRƒ´§ÝͦŸGÒ¹€'9{Q‹˜Þ);3iW©3‹Ùp4ÆÖÒP@±À<.éø–ãv³TœËq$@¸Ü£Ÿ>ƒâƒ±¶* CFdK§‡cõ¶‘2W“ž^ ¶ïj²G{¡ÑVI¥…E°Þ=Ý«ˆü÷föÅÙžùî^ÿB³›œB“Ó´É©ÙdŸ›ô×4´9JœóÔÊ ÚØõ5ª>DzŒ}‰hS‹df+©™Bû€z% ²]Rátwƒ  ¤¥½Ñ¹ÇÈ®B  Ø€(^¨0°QŸ<°ßÂþRØR‡8?¦k©´çئù--'LeòRUT€ÇDk#¯Ÿ¦ Û´ÁÙë†LdÜk×ÒµÒï{ŽÎÀÞ$©‰}ÞÏISÈ¢E¤ÕIOT; CÒðt¦}6ÙVèC‡µ3 ˆš=cÿå).6ȱžq5%” Ðç零’¹Ø¯Šf ™ orîÚ”„s1ùÚâO5%3²’ºy ÜSûìU"G‘a[骰éD“ ÜŠ¹:8Fi¨©mBÓ›_šU ל–¶¦¤ÄŠ_­— =E@T?á…ãó ÊžÞÌþºV±†ÆAÉdºüxƒ 0ÖˆP§.î¹ËþR«[â06œam€2žÇ0"Päðƒæ:t÷¸„‘ÍÞMgŸæ0À$“V(Ô3F+‡³ÙÝ\WIM³ª•V¦I ª í"£Ç¶Pû„b“Å[r>Î’Åræ˜h@þ‡º©:LÞQ½”=pDz!µœ®9`äÿ ëâ¢Úħä†IÁ+c µóͪ[øy¤³ÞÚ¡£‰w× 0Ó÷ëô\ÌiŸÃnçô ¼EÉ&u::„#›„"ãñömE^ÑkËûªâßÀTŠ99UÞ1U•ïpö¼GUѪ²€ð]àþ }„5ì0±J…2vð¿§ñm…aÞ±8U±Bw³Že¢ Øþ|¥ó©VTÒŽ8”ô†kç䨽oãzŸFuÔþå°7ð+{q-~…݆¦¡×ËÉ%ÇkfReŒ/÷À|egT,Ãû=ë9ƒ¯H0ùzƨË yÇÅw°ÁÇ*’‹Ud‚·ŠL¾H?‡Y™Þ™ùÂ0³ŠxØßëìFØFK~—!ÄÑ÷Û½A{?…»»«FÉx*œá  (a …2ðÊ];¼ÆÉår1¼€Ca€%:õeÅyë2ÈA‚Ò#fg¨¢ÐÌ,´níhÆ0— šwÆ£ÿÕd<ü8ÿ—ÂÄÒÛ™2½É¦îíçåèò“:e@9½›Îç#œ•¯„râlòµÞÿnÜ w®Êq#«°€ù”äE ”lÊ~Þ’$ÓTúÆ­ÝvÕ¶‘ݶ—Õ¶i´õŸêêÎml9aº¼âÏ—8A¤[”%­Ä ÌÜìùûü–Ìz™÷ršÑKãÉz £¥^(qcf'oVì¤^`* œ¥ôfzIéˆ1¦c ™³È"“„Ÿ6s§+Û†÷ƒl[·G~zœ±G$¼N¼Æêðö³à5ðbûPÂëgÁkà5³áíeÁÛZÞÏYð¶WŸï¯YðvÂD*ŸÆ¨ïä]&3 ÃàX:ƒÓ³AS.I4*ëGÁ)™€2y˜öýˆƒ˜¦ý¨Û7a¦ý¨·/Ì‚Ò\|ÂÏ|E¹Hì$~úEÈ„[ÔÏOóoÊ©|W»a$ŸÏ÷&š¼)ˆ§eêøåËAlçR&oPÐd¶9 –AÍ©¿ÂðÓ(»qzR³ðèñ±`–º”d^«ì˜¿Ðk7kÍuþZ'1èoôÒ´‚B 0i¯.‹¶;i¬CT ·3{mŽƒ]nÍé_ñϣÚ\ ¢ Τ}’eÁÉHPWvD–N¨Ü¶”ª5u1[Oe£EÃßÇÚ÷²ûó¸ ¸ˆÕx'‹R ŸÑfËmƒAll+c2'Ÿ©–;nKnÆ™ò/&,øañ´Ã!PG÷ò…»{îvǵ•3–Ì;A¹ž¹”KKƪñ  üEUt£0ã\plÀ=•©ø ú_rgl¶ixmôèdAø<Í„óBŒõ“Džÿ“5M~ÂéÀ¢Zö–·˜4ñ"¥~dõ­²¹×*¢ê&y´1:œÚÐ}¢÷QdK¬?˜æ¹³¤ ÊЦà, t¹}Œ¯Ë¼)ÃY±†—(ˆ˜ ¶Ls TDƒ7LÝÜésÌo”þ'•šSCê‚Èî–wèün4¹]º·n%9jãžÍ°A2“+»¸)!Uè’®M,VºŒm¡,.½ÑÜ­õÊI¶))¦^lu÷o¦S8Šuᑌ­- ï@äz|_ÆëKxëmè²YZ3(Øà*Q jÖÒªcá\q,r­¾ Ár€þe}ä̃3}ÇVMüR€ñºy§dgÆë˜ÄÃÈÆ¤j9˜SJŸâV¨óVhX9<¬Æ´ýÙx¥à´µôPçtF¡”YT9š!£"«k %¡®j˜#=¦Tc狊äg5´Žf¢’Lâ"m¡ÖnfI2[ª”´ƒÃ3àK¯—ãñšÌ|Û€ìÈú§1jœ4³+‡“¸¼±Ï±éèwùþ+¥L¯Q¦}"Ø«M¤\`÷êj–Ì©ŸK€½¢¥‰î˜|¶èÞ¯Ãr÷óÛyMˆw7 9ÑÐ^‡¶:´Ó¥á&ƒ=?U91Zcr@^L7~œ_iTù­Œ©Í¤k·êÈ÷ÚÀñ0Ò ý^©LÊ¿ ;?û\[êðoÕV­1U·­m›‚YÑe²ï@éqŸtÕ«uRC-ÒaúC4L*ê¦KÂòXäÃ2¾EÞÄvbB­\€öEûp½Ãq>¸0䊒|u‡[ÁQ^¾”ÑP ñL(eÁ·0ø~á @Sð®£É9OzÏlîœf×ÖP)wVµ*Þ%õq5$Ð­È ¨sáqäºÎ!Þœ>œ>;=}vv*J–÷sÍ&*ÔyØJ\–\Cº@¦ÚȨЬ͆T­ßÈd±L¢pL5L­šZç´“ºßÌ O€¤ºåŸ.û7Éå'L÷CÌзôõb3kHF^â“)¥•¬y3y¢ì9, ˆ óQ(?y¤xA°LR@3»FßêD™ØVNZÊá ¿=îx׃ł‚ *éä­¡J]gj!™¤ÆåQã”9ê¯ ŒÎP¦¿^.–ðGäƒlg.º±JnC†¨ òçõŒCÀàVš/ÒilÎ. •(úÓ” tÊËõ«8óŒƒoûÒÈ“]Ç(û„Pµ¬ÉàY }Fë^A§°k‰Œt­'®×R:èáúu}·ò)3.}•Y³-X’$%Õ·û‰ýÄî–wÑ¢vTž§[@™/7ü ½¥+Þõ1#*bÓ+3‰ã¶ŒÎ–r~Zoá—Ék÷7êºì|{_W-ÕM³Ãf•Õë剕Ìj R #£x^NÉ·´MuÛ §ð[ ò:mžì­4µ‡±y|s©Âw™µÕ8*A¼R¥Ö³H$\‡MÅ5XÚW*SgÔgoï{õU»GBçY?„ÎOÞ=¥Ëÿ©(=·ÔÄœ¦DÏYÇŒlÇEYg¢hÕ@;_4¡oð!Ãß_eO$1î£Ó@ÒWµÄØ¥ÅÄ ”Ęy¨ ®ëLý#DFc/¿M¡·«Cß[`ÜñÈ9éÜ,‘\åÀÈÆbË-~ŒO%0†جÃu…“õ¡ãŠúÝSÈ‹O¤Û}‰Ñ"tðÃHú2caâM!"šR'G[+)LâÁ’ez©-Á楢åJ¢ef-ìz¼v=R ÛêÅ/™)LqµŠÙ³…ôY ¯ žpjv·¼È²¥6ßÉ–úšnŸ®bLå´¦òõ+¥·°<Œ©KQÚµ¼Veb•fªXõ鿺8½QϨBqQ@p.R< ‘]Îêb$ÄÅR¡º ’¼%÷2/:=™P}5ýâÖ‚ÖŸL±‰zÓ›7˜‚ÕÍ(ÜÙ²3Ý "öIË›#zÐË«‹xH>Ƭ&Äw­ ñ!Oxä¼–+GûQ’+q“  Ê¢ÇFž‘6‘™HKz¤à¦íËe$)4ªí¢š¯Þ§¥K÷Í%P›#MÅÿ•$éïo{}BÊ&·×,‡ˆ²£]o *‡÷æʺ«Ê¶Æ1VAß"]Mûâ I`%%Px5×ilfɲzT–mëÚ®d&ml}3éʨm5}ˆ<Ú+ ÒU&û¸ÚRUK®!žÿgH ¡€ ´¿¢ªƒL tå0€Tío¨ô!h0 à™fñ‰ï/‚f… U7 _ÿ“ðCDÐþ7Aµ©ÙjRóC•ë«eÐ~–¼$õFÒïR4ÛîëÈ ¬Â=© šºZ!ä „öWW}j)ª+¾qM]ßV µôÚ“ö!ôQ®üßS}XY-nNm43EÐV\Ý*`NõÂ^ÖA(V÷ÜN1öF¯2ßYwc[㱺”\ŸÐäÆÄzG³¾SýëËçvVÌoéŸÒábð.ÎÁo‡Êá{ ¬f€ô„â‘Ë ÛÙ!É"•|Jn êÀÎ_lŠãÔ(îwï1½x|…oE=ŽÊ¯šG½Ý߀w7QÑ-Ÿ©3’4PíÓ{›:¯*ò¯?¹’„Mi4rŽÅ}¼x1‘bÿøxÁv˜®\)‹°ƒ0ïçaÈw3Þï r$øpGÁ'Çsh-äGÓö]J'ëÕ“)Ð'…Àœ8FÜT˜¬˜ æ²—N×L~&Ü„Íé[¤mñ¶–14V ûL9ËòoGÌs¼Ìqœ<}ûe,"àhÅô¡/Wöï¯æÜ·¸êƒ­¾±ùê›8cÅy–Èe["›s‰æ%Væ_¢8 ¹˜ÈU>³Ùü Ç媱9öþ~c,ß7ŠÍñãB¢Ò€°‚79(ªždƒ¸CQ•‰°šñ tÕ‰ûC­­‘шd4"Ÿn_‹/ ²/ WÄåôîž-ÓtŸ¸–VrX¸°^xNËz/¦âËtö‰®“®ý{MTÿ%Ö.Ö²„ù(†,^ËÄêÛfœ·À±ÐlÂk¦à*ïìª{ÌÑØÍ‚ ûÞ”ömL©m°û2S¬¡`_JƒSkâì·øL›§š¾[CX+ødrK|ýé/ù¢3‡ÂÚ8Œ)ó¤ë˜´â¾ÍFt—xýÚ²²–ÑÖ’ô†š’Ô£”'›4%¦{Ú8S‰)žæ‡âXò¦o_°ç×̼*à~¢ç•FËQ8S˜õnÜN {‰cä~oÖàß3ÓF†Ž“ áiŒ [y”µíçh’oISÄÊFˆF1!;@sëÉÍö*Ùùó|#DsÇØWuîc†ˆÔå=n¦'³/Ô7âŠÒã‚ø1.(ѵm)M®h^xB…;S÷n&Tã [¶Ç7½©G¡L'…|¾Ò aýÚå[H±º{}52 C÷IÌ Ím+Àð¸¢ÒJ–«Ý“ø^ö…"®©"~© j+O? pCÂïjš¯s˜¿ù–¶“­¿Iùz±iœ.LáÅÀX.ó¢ÖÓ<ÐÜÎ’ï›;Qŧù|Uó€]Ñ4áà‰Ìlø÷Ã̱¢øk+êõë(tÙ¦‚V35M…õžôÕFš(IZÈN°ºy ÕÈAE+3>Áý4d›M~ó@(>ðp2_Î’4+Ÿ. lj–àÏë4L"àPëœÕ2Ø.k+Û8i³ ç\ ëèönb­œÓŒÛåÎh…x~7±o\ÛJ+;ÅæÅ=hô÷>¥¬ƒs^‘É‚Ï'£Åpv¯‹Žúi*9Ûá,¹Z^ÊŠ°FÐ4§ó4ÒÞšÛyðü콂Š&/ñЛßL—ã+ñ1Y`ÕÞD¨Ú¾˜²ö1©Ù‘ÑO™:OÉ+GG‡%U‰K$; „©»2ªL ŒÕ³Ê6¹Iœ‹Ç ¹UŠ † eŸ‰z~ƒtWަ™•?xfè›ÃuX…¿rÒ)㜷i}ÉëôÂXÞ’ûéõØ€ ’B%ôÁ¡E¬v+xîT›®PUAUÔšr0#x)Äà¶8‹ñ[6ƒ‡â\‘+i#¢:¤‚¦CA½9_:¡nöL‘™vh¦§xÎLŸóL‘™îèÔåo#1RÁ™îDfú|µ™6#3Ý÷Öt¬ª¼Š}]ûݽI-õ {ò0Út³µ™M/RÄdqø#ìïà x'ïPã4÷’C‹Iñ<-úî+*Î賓5]–´y5qµ‚ŽUA¨q¾Ì\ÅVdû½>ý*62WqK¦#ÞĉUܪGV±±Â*šî g÷hÏ€ƒ;9¸A T™™çbHò‹*snCøYC°5ïâ~Õ¾€Dd¦šŽ·÷ÎqÓêŠ\¢h3Þ&àçâŠG›>ÏÝji¢ ß©Ûj2YrèÈ׌D½3¦ËãzWߢ{£®x±EÍ ´²h@Fž…¬ 5"=¾¤OÄ*‹nÎÐ2æÈi¹åŸ–ú5_ãi_K¨P a1].DòÅãäg]Üݵ„øìLŸ¢$§!U«é{)ÀÏÉìž’L‹áõ(x·D÷cÙ“«ÒÃÍ.K4é nU 2F ò±©H+VU±s¹›HhÏ[‘ãÚú,vk•c<Î:$JQ‘²ðÊŸº¼íI›¿`‰nÛ­ýÜÙÞ¦Ÿ› þ~©ooµþVßÜjlíÔ[uø}³¾½Yßú›Ø||×ùŸå|ŒQüív8›o§óØ{ðÚõàâöazœïõOÎaõÅ2dPɼõ—d£š9+æD(ïR ÆáòëhÁ9wOU™z»G¢³¸ÒU‚{À=©rUMoZM–»³K]6˜gªÜMŹՌ¹¶5ò#-»;› ï‹BÕ…ªþ®ØÌù^çPœö÷ÛƒöI9u·ŽÌ^¦Ÿˆ`úÕþzºœÝMç‰QÁž¿ç…ÓeIPV$S(1·h»›(©zƒ?ïfI•0 txÝ.Ç‹Ñݘ|>€>7dÓñe„Ç›§³ÅÍÔx~™Ì_" ²6­¬ÿR3ÄjìŠÅcmœC³{¶R”«å%§‹)Âø4¦Ÿ–8ÖáÕÕí€Ð‘ÑgØF¨—ÆÀ’ÂSW.L‰jC—Õš™'XÖB*„ówŽ?²-»5„ó/$d‡½Ur ‡Üž ÷¸³"\8íéÀž//ÔºÍi½Fm€Å÷v-åcSüóöÿv«uÕ÷ùƒû†^¹÷sü·§{?p0êm›!n P',4q•ÒíhRêVzå²;DMÁJRVh÷H[Ñê8WÑÞq÷¼®Ó*AÎþ“=¡¾]ÉãdHµéÒþä †ÌŠj (§+s‰üLMDq(ü-kì'ˆšÝW¸˜z”e‘Zÿ•Ç„£1®*]$‹/ löMÚÚ­Í[úùd«¬^4L¯®jîྒ0ªÆ"íòîʨñ‡Ü“ðоê9È8I¡EìnôäiF'›I•}ú¨ýxÞüz9¦A™Ïÿ‰ÏG׺ÖãˆGøñ^éÅ' õÆœl_­P¯ó5Žõš'·£jzÓ3ß%>ÙA]èQq]C°tfƒÌ°«b°ž&ìêÑqO~ÔÑ"àiÂO>=Šåz9§w\L0óÅè¤ü­"¤z?"¤!ÕXÿ!•FHUěݎ’EW“âÆôpë[‡MívNßÀAð-¢§vߟ~¨dQ >À³¸ZÏûŒX«UC£NÎ*¹RÆK~ŠîŠv}ƒ«œ*/äêØŒ€Ê €ò°œ(ÃÊáµUÉ45øðˆ(ç'žº ‰z[TÛ[9,ÊY<J'ïð'êžµ(+G§aÞ(Û±Z`G±¨Ž"!ùf©AÊ3Eå…q<,†#+€#bdòÍKÒ°ä…i°Ù÷å¤2 ˜–tcL;°~p9½–’q/^¾‹áŒ]øoé/*òhØ~t“}M/©²ô˜ANNG˜¯{±¡Q}ÆQÝ#E>kÀ¨x|%Ç°é “Ž0d1xj®ÃÀÖ‘‡[”1׊'Šç•n%ÏE'¦*á 7ˆÖáð[µžaƒŽZŸõjW°®cÇÀ%ÂcÏèßdS¶ûKMÊ…-ÊþèBÛ5Œ©O>;ý6\ôØæ£4âãÔaö0|~C^zlÓY{Óæ¦Ç?,dhR™%ÀAÍÕ*ÀEM>º1ÖFX=ÚÛ×òIî† ß@ž·A·ÀãÛ4†°±$Kº{aw²EX=(3i…ØñFö|¯ÅàÃ7÷Züø<Õ'ÓÿgùÅ8€rü?úVóouøl6w[;›èÿA7ÐÿÏwøð>µý?oÚ½H[½þ›Aêÿy?áŸ=ü¹g:‚ÊÿÇßÿ±šh³ŒÉRþA¯ê ªh?PEBØŸ.áìXˆöd¾-à4¬ §` ÐDo(ïŒw†lFí@ Fø8˜Å½Ñx.v—*ìLú‡üþ`øyt%~YŠ^->ÿ?—óÚ…E äé1ö䫦ÿ;oFWCñÏ{ø5ûå·Ã9 ¢?J®îÅ?“ßfÞÛªÿšx3G‡Âüõÿq^Uf–îi§½ß>=/@!o˜^lZiZfZc\ÝNÔ æÙàvKìKƒƒô}‰À!xøk¯Dpå_¤àôʺƺrxý#uxÑ÷’2M×Ô“‹{øgSL®ûcÀÌB»& ¦ ÇÓÉGòŠ왼ê RÃ|t€àÅ="Žùt¼dk|õ-×7œevwýý«=9@t7¸=ÍÕ`8]8O;ûݸ L«?×{(•ϧ –¡ÿ`„ó˜¡ío‘|’¬1|oˆCÊw›È@Bš‚0òtQêC+âÀÊ–c«h¹6œ† €NR‚Ñ÷ˆ;W —Ó »ï µrá#ç#ePH¾ÞM'82˜ü½^ÐÑ|ô¿°cK|¼' LŸ”±Âk³¶µÞ+—%»ÚO8–98„auw ¸ºHîadäÔev:Š™·ÐÖpd\‚²:%7Ê?„á´J¾/r|:Í:O/GØ †rª~ÇEO¾Þ i$Wå :9I›Î>"ã#ÿ.À06ÈÇY2Ä„[@„Ó@ܑٛO"5Eñ"MB½ž Y¹Q¾áb(÷w4­åft7^ŠNÃ_nF@ÎÐa£EÙÛ1/&+4&ÇkÛžÈgŒê;Š‚xêÐ3Áé¡s›Èìf8GŒlTMhÉ1¢Hf3xßß!'þS¯KjJ»ÿ0»ô,æØýG*ɲÏÓqü¥™þ‘²^¢sþíBš%ÿ^&sra¦I@œý¨Æ­Æ¶¢ßTh®§{5°bf²Ã˜7Ô¶’7”¿ÐLgO†ÉD³èx9›ÁR«œòÈ*¬†ñ8y_cHNö„“½\œxÄ´:RÂçKðÐXÚ{,íÕ’¥:’{$6»‰9’¡ÉÖóúKà#4eN™ÿWÊñx^ŒÆcc .– ŠLCÀ„CŸ‹„Ò éÖ̧wWÿÃblrW§YŽsø¬[g Õ÷ï»Î߆çxÿDÈÃ÷ëõmh}jte;Æùë^w÷ýÿ{ø~wÿLëÜKWù åb·¹"ÖácaœÀïžžöOÞ¯ ^žCîg<™””ÀG”'ëYVÌ!y>ÿ’8­—‘<ëå)^}×¶ë²±wpx湞`áEœÍJ¡‰:›µá:›af·Bºá¯#øË˜^A/4ÂÓ—aô=ÓqÉMzóuй”ÓdÛo²—Óäyر-JôBxR¦g{Mê/Ê³ãØ¶°¯ñMäaÝ uc¶£R‚ËGz¨²Ê!þ».Oÿ‘Ú‡Üiˆ§ ¬M‡å=”LP`g}FCš/¯¯Q¿.aåø©è1á«-Õ5FypB†I8ÀJ|x¥ó9Ã÷Œhí3|±m  Ÿ”˜¿ æ;@ñ¡(õfÜÇ UÂøà³¶ýï[_Eá#f ‚+uÅ3| ÎÞöß­×$ö´»žT°¨žš¢%hÇõp‘uSÄpƒR· C)¡ý™ÒÜÇžË*`óÑ­ru†ÕC©kJJàPë|F%Øä˜ÔÉ"#€—•Ö^/ÇãµJjvPÑQgXQ‹ Lå þ³eâ(é@²{É%ha‰Ø“4îIOæÈ×Û•(T‰[JÞèOZÊGyªdÖ¨ã²ôìUµóNÓk´z% +ñß°žÑ¿HQø ,eÃmø[á¥è^G±+®ÜZmŸ®-¹¤õ^“«]^—ã]Èô_ÿáø#~2íÿŸ®ßþþÇæÖÖ¶{ÿck§ù#ÿïwùðþ´íÿǯ*ÿ¯2þsqžÃŠø¿øÕ¿ú¿ð‘fEÿÝùvî_WOñ›wcϹۡÿ»‰;šM~-ñ¸Š_y=qCc½»NöpþE;‰µÃ]ü üü¿Å§ÙtRjO`uá8©Ò_(•¶oËâœûŽÆËúåCõr…³Ö&«`Àþ@ÁF˜9¡}¿¦ÞÓבéîÇ5åÿ}E|(«—Žá›äò,øÝlzµ¼\èøxmãC“ï{„à?¸OHGd2$bpŸ*ZF毪ã˜qÐíù׊ܘ^ï³d¾/Ѓ™R;¼¸Þ oý";/Óäjµ²ZÓ_¼¦¿ò2þŠË¨‡öT÷*x­Â³«ès—âñ×%ÚÇ €y‹Wÿ€žzø_8gêªW"Ød‚”s †±ÿª£hº¨FÃêè?±œ¬—úÂT­„Ò­à-ùÉÓã[¢áØÖÉ·6EGéÆÉÛÁ<7œ»ÑHîPޡծ‚£®}¼ÑÆð?øù¶Z÷#‘‚E2î5íÈ0Üa¶âÃlæ ³ÛóFz`Ž´i+z¡œðÞÆx1êokÓË]šÆÒh8oñ% ¬¶eOÖŒ³Ó–¬sßIR`g-Û[úÉq{MÖal„ŠF†pÂNÞÔ’˜£84G±“SŠ÷V/Âó¢«õ"°ZÑx8¦ÿÀñp™úÈgßAÿÛnìøõ_š?⿾ËGí6ç,~}ÞÛ?Ã_ð®Ï.Ö@¢Ë²7þWÝïô‹éWŒÒËÙdž^†§ó2B€ɇb9g+mV8ÓÁÕhrÛÙ (&ÿáW’_/gðp&’Åp4ž$Q~ïìë|K‚‰Ef3]²+ïr:ù8[r¸‘ÑófzŹ nA‰/ vc}½õœæ¡CßÍæ‹­Æófk³µÝÚj²À}TÔ^æ7·Ã UH[ëftAõ<ÔýÅKôË "„41ó~³Ã8™ 8tš àPÜ gÞ|¡àK­ç(ð 75r÷ÔDýù‹Š¸»ƒÉÔ«ÍV«"ê/^lª õ­çÕ‹‘á³AË7_¹Gŧ¥H‡¿¦~½AÑG«øÈ‡5ñ&™\²…^- –­œÎXÖ^Φs,ôsyC²3­‹t@¥M†,`Þ·0–Úw¼à`]”:P€nÂÊ¿ÔIºXû®õ¢…ïÓzQ+з6Ÿccúµõ"+HN© §¶Fœ³¾kÄ;éguMq›/¶+äÿâkMôõ#õ¬3šÏø^=ke ±_†ô¦U¯c£ë©‚>¼Ut0Ö6F0ú .JΚBù‚ñ]ÓËË%µY.Ä$ªj‹#~Çãy¹Â¹ˆ¤P‡Rt|M®8A‘ †Y×DúÒ`„pe{*¥ºÀ¤¯(:R3I[ªõfmÏ4’‚(q¨ùmBc’ C¬pÌ9`poÙ€´—ÀÌA›P¨…Y¢•°01G—U}9¶Ñ‡M¶Ë©¸š2%aÔÆh±Êà݆òôÃ{ v³?GCrëÕöjÔÕåp®çMF81¿™.ÇW‚ã¨1±Ô|lÕ*{tr†6 Tÿ5Sõi`’ñKâŽiÒðîX“þs~²õÿïQÿÁw?ôÿßç#yšåÿícý×ÞLæ¿ß'íßÒýÁº„+aüj¯»Ú$¹isRù™yü¾oº=ÛúìQ9èlÈt6ú8šøø[&vñ<Êš}™‹„Úœ¯ïBø¾ žØŒ>ËÐábRœÿH]÷#uÝ=u]–9à÷ŒìO]Ùó¯WÔsÕ s+äˆÓ:‘#®¿z‘ÌT‘´rlÈtp½ÙÓþpÙÓ¬ªw“J}õºy‘8ñ½Uê®nçBs*ü)PçÎʇ¤ú –yL›¥#vëåA2pSWyäV¬˜UH¤ç•T°âù ×4ñS° 1‚ ü²öÍiÓÿ™øŸO¶þ?¹úú«±ãçÿo6èÿßãÃ4íÿï¡ý =8«üÁÃVSþqFO§õ×âáðZ%–Ï fš?$žç(²C”ï’ËÑ5Z8?| ?¨Î_Ú:Rý¥ð£ÒÇ óqµî=oÂsžöpüPoAÞ ž‡·¥}1MåÔ¡aÈÈ d±©ŽL{Ó¯Õî}2¸‚Üù2|z1M¤*²q“ÃK®|€¨/í˜D˜³w™QÈv wxéÜv·´Ûw'§í,°ôÞ¯5ž7ëÏ·š›;õ[Ï·[;Û/[çÛpv6WÔÀCÁl”™aÎuUvÈðóp49l¼~VÕ¯÷O01ÕÉ(Ù?÷U}dP}â…èä’¼ýÈ©ìGÄÉ‘¿–§$yJUà6™ ¹òPx%Î<¥Zld”Œ5ñÝÉú^!M5+v3ÛaÊ2¹ó]øýâJ•@P‡îaåJˆ9ÐH×a)%¡¯£{:dˆËà wÿ5eðßó“-ÿOgß¡þ×Îf½î×ÿúqÿó»|x?9þ¿P·íƒCôöµÏ*Î]Piµzÿ_àï¯ì¿¶oÁÂ"½w ÎuœL>.n¬M&ðÂXWl` >s×Vü·ð6x×Þ²Þ[Íõž"4o³ª½T Hjw¢ò:‡ÐÚ J˜éNOÁfjêg÷‡ù˜‚©ÌhªOÌÒ>ˆ¦2;©3ßmaf~½Wv*$¦‹áÕïls6Љžœ º,+qV9QnÊ0Äpå›ÕÆ£ƒ¸ú'ïð*ׇS4¼Ýïr"ý“NEïyã·ñ9¿Áþ¤úlïÓÁŠ6éÎÉQ{ß29‹Î0–m²Æ+9aV¥â¼1¶‡F£ Ïž>mwoðJ¤Å}þ¬*…vùw#å 6ÏÊHNà¡OH®ðÁd3?ˆÌjÛÏjë)µÚîc[š„ýýYL'0Míåý›äò…kVD\on`Π# EƒèºÙAwM÷ýžQÖÕè±)j»½ƒ<îÖº‘x-‰2Š/ÚbÛF‘1]ŒÝƒîŠÄîô‹ÇîêW®%vcdµc×ÔÓH\ «ê‡lUp¨\%óÑ̼(˜Ò[Qý.››%œ˜‡Œ©Óßuk×µQøåcÁ×µÔ½ªJÉ•†om<3U®_Ýôâ^Ö‡CaúÍ„£›éøŠŠÆš,•ö÷¦Ô(WàßfY¦•SšÜ`«Ôdeô1™¼Àœ¡~=\/OЬ+W¤áÁã—Š^¨Ê9»>éµ?Ï$Y¶(‰M !sŽ?_•kóŽ*g"*ú¥Y1}]ñüC†£1Žm#ÎŽÇø9¹DAü½9H:ÓøOyÈÂÀ?n˜ŸŸ:TªêmëUþrƒ\Ömˆ«Á&|XÛÜͺì`°|·B%Õ¬ŒüD ÈS'y5"ÃeÂá"´ªÏÁ¨ü§ñ¾ÉÆRôbÒß7´„’®5Ûç2– ZI„lF<ÛàØ¾6í¤ôÉ©Uiݱnôêš–ÊŒ¨U&öœBž&ŒMøÔ ˆÑV˜fÚqU yDVlõÀ íŠŒÎ áb¸ñp “M;Å=fär²F૚è·DqÚ±‰b»µ‰õlÛƒ¢X¸…Èõ4d§.ñù¦q¼¡†‘X÷ÁH%«ÅÎúÈ2êAÊÄn “„²…YAé„F½_æhjRg "^æ¶ Å#7sœX&”¤PÂmsœ]cœô~Y­”úKR‡_BT§.ø#œâ?þ“ÿ±øöñF³±‰õ?7õV}³Þ¤øFãGüÇ÷ø0pã?@]éSĸ»ÎákPm:ýöÑ,€Ó©ˆýŠ0Ë‚Ò qÓÓ{jùg Ù˜lŒžâ¦2vÚ(“^À&ÅØd,Jd­T)#"d˜È¹¨ù"yéhô9™ÌË©‰Jñ—©^ý6¼$£=9Æ”}\z¹*2ø–Qz<”»„=y°&Ï@Ïáwnó I ×ìŠ@£¾NÆœf%£«×,Z³Û˜Š%Š#5´Ç*ÑhW‹}åÜôŠS†±+ôë\Q¯fл-— ¥1›M?®tt¶@7Q‚ù]nïÆ”çlèUæÆ!öÔ€K0ó/£«ÅÍ«œÝ×q\ñü´sòŠC@Î<$“óçføYÿ$€©[^¿qØÇºýÿšþ¿ùêF]ƈd¼-ß_[_CõSÜÁJh´j„Ñâ ?&&†”—a­–ÓÐjŽEÙ$ée“ï_g#ÒÑ•K¡ú£™ò ákWhb¿æ¦}Ù\.È=LiMánœ.´¯„ Z~NÌáúÄpf9¶,/,&`q®\SXïOVˆ=€ WËk?±›>Np7T°4çe‚QXØV¡‹]”¼qõ¾eü\Â?X?þ^nqòÝÝÍ’y2ûœ8øªd¡7wĸó‘nxúSsÒóänˆ–‘ñ½B/ âºô#èt6Bãô\üt÷aÿ§ÿT„Øï2ˆýßEˆý£jÇ߉/ä´4&þ,™ZIhädLÈH"žÖ(YÍíŽ3+ÍȾ0R¥7ÖtHÚ|˜{gHÉ¿:~ÃÛŒ´;özÂ*"ô©ÞœÑ¿%L”t˜Íæ„0ˆØ Œ¾²r;¼B›Tñ™Jt§È ½îX¨¶bØéàMæË[X;µÿ.ÐK TBGÁú7vl`üþsVáÙ=Ʊ ¤{uþR—¹÷9 ±4Ú¨—«sf‹j«üq¢Ø •ü#™ÅŒ}q›è£/gƒôS;ëŸÖ*µ×»ñÈýÊÀs¦êÏniT©—+tèœw»är`’3q|Œ[qÄ.Œ^‰]õMÔŽ§¦ Bé`x›ÐÙ)–wwEæéL£W]i"zBÇÅidT˜HÆ ï=É ÿ7Gy YÀþL¾^&w‹—náþÔøYóR„/žŽò=ÂÏYßÐÈòÆ ?*2ê¾âÆê(Rƒµ*øp´œ|9´B¬†ƒøG‘£{/EiæÁ¥gÈåMf¹çÏÏÞ¥çXaç¬ðµô™QxäÔ¹½ãÙy=§Û¬p}ÒÀAPʺÕMûZ/ªÎû‰BªURÆB9„ ~[žõj:ZxÍÒpeãå¨-JÁTa¸½Š‘ö¢Žú“móE2TчVk’KaN(`ÒлwiË¥Ú·Öh½à8 lŸ¢0 RsitÍ}%QF}™çi>¤—½y(AIŠÈIÖðä -8Û|l2—*ˆM~ù ÑIö‹ l2ºWG& Ý‚ódC` ZÕPDŸŒ¿ÅøC슆¸z*ôЂáLšµ(©ñ6c"—!¹FNä6Í¥b^ xF#¡ XÔLÑ.dÜø¸/¯hqíéÓNj‘©_Ë}øJQÐ+›T-ê¦ÿоÒ2Np͵P€ø3…k–Vs8 Ç ¶}N£x^Ž&Ÿ§ãϸŒ!LÜÚ‰T†ÝIò‘ À\j óå\ܱÝ'÷¿£à9+¢P,çlLUNÍ+yì¤ñGÑ%-Χ2´l•¹6J«!_ç¹™/Tºg¶Z0Ý0³Ímö<[&Æ6QµÒÄ%°¶€xàJÕ9l}Èœ'­$–ÃÝŠÎF$]Çs³ÓTBód ea/3_«ºsIc}s±ðGJæuû`B¡²;ËDÔ—©V`mä-mØüYó8[E1^ZÞµPŒ!Lþ¼SlÑbZé´K3tÃL½µ˜Ú³Má[ß÷ ¾ò ¾mçs?%××x©ësòS¤ê!SÝ®š¹MwúrKj¨>:¤XhmEÈH ή`éuýŽi§½7Òf?IHì;q‡Þ™R@ÇAîÙ[Ãqº>ëhÚ'óù:Þq[0Ò9øjÐÆ@Ïn–säÈVc8ÅÐ`Îz—n½¬—‹nr|(2þVfó“K#Øåoh7²iIòPSRŸ½& ³il·ÔÐYÀ%P–ì]9>=»BtaoȜӻ+Ò‘.Iþªþ÷.Ú€‰+,ÌhC»\,Õm[a D¬-Ü‘¹˜êÉà|ŒU&Ef8,ÔØ)éNr}!‡áÐû×'ý³þn¯f«Ím[DK…»Ð;l@Î'?Η‘}ç ¥lïe}Î-¬ÓWdl«¶LÒcUž©¹,ñ½’Ñ3«¶:`yR»É‘œáiùÉ Ôý t…4Þ°÷¨/Qã„ï•Èœ;9~Ñ›]@Š.6½z¥×‰Î„³úÓLðÉ/o¬p¢ÝÛÇØÄÃ÷˜ Ó"|ÀÿÐ[rå2`rèfûqߟɌ™ø—¬Õ¯ ^6Èͤ3HÐÅþ´¯|ñ4»$“+#ŸìkAàÇ‘¶P?0òyîœë^‹ºÿ~ $™ÅÛÔ ?s@½Ç¿±Â ôb|ýƒ“ákkœ¸"ºH© ÷A?!>œu½évíôICÁéeLLé\Ä~83ÛÃÏ0N¬‹¹nÏÆÑ;#ƒ¯5µÞÏ€ƒ¬¹ÉG,÷áÌMÜã_“àÛöµ¶¢ùãÄúbkKäÜ 0‚wÓkµÞÉY©¯AÈK € ê¿àžÍ+L&ÒDÏ–-ŠdO¤9Æð=îdf„ÅôOÒ“ÊÆ¸SÏ(–óÿoê͸X^_+WíÅp?š€cÙrAù]\Ö lŒ]MÀgm¿—JóëAqÂ|¯”mEcV§DOz/@ZúCaŒg?ÂñÉŒÿ[ÜÖ¿Cþ§­–WÿukgkçGüß÷øðαãÿκõÖN;¬`hñð©>ÆvW¬$°q@þð?s¨XVØŠLó¤æÍ¸P,-ÄwÒ •|êTP«GöÁZÊ+`2‹æ7ñúƒR½Vë•ÑÒ 2!T)pŽSÂEM¦”ÕYOÓð ‚.oYSÒD‚‚FR熿Õh. ‰f2ÀïúfÂÙ^6&*Òq(bHB»›M?Ά·*cL–Ÿ'$bÖ ùá*™_ÎF Up˜lX¼²’Ä:™Öèj*Íp˜¡€î4øïÖ1:hŽØ/¿ª&J—=ø£¶ùÌ $«QC7zÙ« sš5U³vù¾³¾^ª–ÚàY Á”CmZªÍ»©‚J¦ß_/áuê.ØvK¶¥Bxö|iê˜!fÂ&Ù’„,øÂ#·(Ǥ§‡³Ñâævn޶m™s|Ÿ&ðt…r¤ÛÕ(k)LÀNì“7†aÙ§>ÿ Tr#x$4‹Áwxa_*+¿9MÜísáT2£]‰Tghò\@hmC›5 ƒ óÎGìG8 )ž€kƒB ¸}×S¼>äJI}„/¹røŽm~ 9ðÍ\KKšÛ†­ s½5¯Öhœñt¨>¤=Ýöµt¶¤aîƒÐ`˜¯åp…ŠÆÞ$Qøqu»Ë9F´]Iy VYüˆö[Ûýc°\ëÁ¦xõ/4q}¶Ù2LO¦8±Þ®ãÛú 0eÐb–Em€‰ÖѨ úÆx1¼€Cxq/j[7ÓWc©ÕŒùò«vœÅýy°¬$áÄ=·]0×´2G×üi÷Ú¯Oú]u{×z¡a½€îM|/hâ婄вs¢ jFj #­»‡grÓeçä±]”Ÿ§`RÇg'è)•Ç6DûzrÒò8ÎÏxŠ//®A>'G™˜Çh¸oç’«~Àcn/{ù)€¨+d)#ÛSA‚-ˆáå%0gYx5,=Ù‡{œlF&ŸžL'Fú²ž|ˆSõ´UÜä$aŽÇy}Âp€'áf’‰z˜­ ½ó˜ ¾¥™â”|,t´gÄùoÛï7ì÷CLÔõXËäϪ ¿nIµ™Ö€ƒœ2äÂr`´,@SÃñ"GåæÌ­©Ò™Ø´áì(8=}Dþ¾é… —ÏL_ÿf·ó: >§¼D[ß°DÜnçôÍnEœvO³¬áß8ýêVwYyîi“üp‘ûÃ÷§”ÿ!Öüƒärz•u;âî4mÕÌô(˜åk.þ/vÜ7 îÏËÑå'U¶‚Ê`Ê3Ê-$Í› Ÿh€0”yÆ,¸SÑ® ”³áßGgµíâùv$Þ!!c±úbÓù¡Ò7é€ùSRÜÝh”~SÏȾã¥0zŠá ›C¬àÆ.œGHv +bâþ¬fM› @WêŽ>ý Ð\%ãPNÁ¸½y…ŒC W¬Z-P%Ó9°v}¤#†|r çèDœ z ²iþÛ‚ÿvà¿(«Öá}Ê—BG‹÷ © 7 ‚$®—Üa=tí_¨Ì6íPz,á¤Jì‰gl°^*óõ@E>žG½±é’3AÚƒlÆÙ*0H|LÂÀïõ“Éäá׻鄥fÛ6 =—£fTˆ"„é÷è,‘JÈÓ šH˨òp‘oc¹?§H#£f›QÓpQcb‡à"ÀvUúc¶7å;þÀÝ7Aôì’]%Yà•¬lüì•OIQdU[Á\\y[ 䃒¤§l BÁþ0C2ɲj:Ʀ¬2¨¶O¡‡&)NAS§Ùj{’>‰ù¦*¡ôBÍpŽf™´½T ñK²î¦…e„x¢sX Áduréš‘¥zgDëì¤#Å7qƒ‘ü]¶Ç`B•CÌ6s Ý\s6)jÕèŸ$èYƒP‚˜òÉ© 踛® õI·.Uû¬†_‘O°äïæz«À$ƒF}ÍdœHÛü%|Í9þ߯wðÿnonúþßÖöÿï÷ø¨=šQÿó rJ·6åù=Æ,¿çÊà9Ì´—¸}Ôß= ¬`ð_þ>ýå¬w?¹dïàt·?8üóùSõ×7a¤¾r9w5g}ÝL—2cÅñõŠ˜[9k,Ú±,1ÎNähÇìdÆÕR¿ôâvnè"§hU(µ+oË©»ÂõSAZ^%¢§lø|d2ÎþBö ižXØ®äôšÅ;•áŒ&Òy†vÛå“,œËh2U¶‚BW*PùÃT¬©Ém„ÎÞ ÞËM.‡KºöaTãLG¤¯# Å‚jðŒ§Ó;™ƒG§ÒgÌÅpºbG _‘Eœf\¤HoàM 7{.C:»qªÇ˜ûšÜϸ幦­ž9o%€ëéxL· ­ÝBøÓQ*”? !–Íü 󷬚Ʈt)Œü­ûu˜–4>¢ûÄ´Ï—ÔMÝçd2ÂÛ!MbL]ã\]—áåš1#ϯÎaI^W‰7Ãc9KÙBfÞ¤NØêz5r±ÔF¬žfÃ+3YfÅÈD]±¯¨‰q•²$6sÚvfS~±¸£×íðyd™ƒ8Mf·°4vßúf¨MÛ‘h"^C:Y=ÓÈìcO“DP¾fnä|èP{º,fÂ6Þ8w1쬊JIãNœÜ"‘D :ϧÊɈàMÜbŒ:BÀÚYÀúÓ/Ê;¨<—j·½Í¶ÏW˜Wwœuç¸c/rÀy€sº;˜ @G?dGzügF>X"X öaÈly‘ãæ ¼ïîÈÿÞÊÅnæ@±KƒÑfm âh‘•Oë ~œñEL ŒóÄЉeGý)'¹jâ,+ê0„´j£d2ÈéKÀw½¥6¥UíV}où‹us®ËOáþZߪ¿ÑäsÉlow»õ§é.F€„ûŠÐ.R*Ê"TÎpxw7›ÞÍFÈlÈ<§ç”ûzˆYÿ9˜UQž¢áàúO2‚>I‚<¿s"hSÖI’6e«#Bå$Œn*ÚS“$À%ñ¦ª‚Vóy¤L©~ƒx$&@ÔÏUþ¬ú¤@É1?‰ ‰,>ã,ˆ÷3<¹…}¶¸áìÞÍyJ%¢%,º ÍœÐâX|b*ÖÑÇWßuÒ_è¥ê,œ •4.K‰äy^“tˆªQ¥J£M€…H‹ÛÕHV«×ò…B»@×c´¢Gkµñ“Þ¢‡˜LÅfëâ^vOr2Þ 6½SvÏØ® á*"â«]–Øå6¨Á g,p×”NƒZ‘wf ¸„{zó4ò““aÉÆä^•­µ®5OœT,Õ²Z«êõ‚MiK‡°´C®^+‘È}£Su˗˸© šÙ›ãG7¥Õc‚åÓäÓ¼Ši›žK„c“2Íiç{ ’À¿ñ!9ñIyJ“c*¨ |±X%ýžÙwõi>ö4âE*zBßm)¿ÕQsv‡>‚~¬.ÿþÖøþ-~ßóË)° å•I"'¤C 5’ÛŒ±P?í Ð3Ò!´)׿Sö¬ØœÕµÔ<¡¢V/æuÉõâà”á<às ФpÛ‘˜ùò°w ÁÇai eqÀ^Oú*Rô ö ©~ó–¿y«ºW!A)ßyª ðqf9óÁ5ŠJvð6½‘êƒók|ä·F:óyÜ:É4ZØqH¬ÓØÈ‡pXÔ“;2ÃÇJYù/Éò-¦oÞ¯Ñ-Û‹‚«%âut(x};ü² ôKŒÆ þš„ÇPXK…ó!f{‡™˜uàc¨J'¿‡­ÂÃõ€™ë 7¼Še™~ìÆ_Îýãó°OŽÿ¿ù=üÿÛ;;žÿûÇýïïò‘ì#Ûÿß´ýÿ©¬ÙÌMAîñìX€˜ÿ¨‰^Ã1´ˆÿ€8‚¦G€8AÄdFH†5¹h4Ñ2šËäq¨·isŠ4R˜þOö4+“òú[2›ëÿRSüÏ `h?~0yô;êC|þy?áŸ>þÄð'ü#3úý¼×Ù?ÞÍ€C/ìùL¿¿ä¡¾H$ô!î?„¡‡°džZ‰6‰¸PJX6dL5öh‚úŒž|ù{%žý±_âÙàñ1”xºÔä°ÄÓ¦?¨„Ëë¼ö㇚ôKŒ§âñL×ZÏ››>.,Å™æ¤eÇæ;¼ƒ{x2_°›“‚¢ `8æva}¬D ?QlÚWŒ˜`SÿgT»tŒIxÔüú½q©ëkô¿l<À’r¤ì«tpÿ §Hµ#þ4ŸÿÆâÕ}ñ?øõ@T_÷ez:üJ˜õß\ßQ¾¿I4ý7‘¥ƒŸ=ø=”`ä B½â¼¡†,×S'ÖòÂ\’å‰é§Óéÿ„rÎP\&³Å« JÛ¼Ö§/ÙSåÔ O ¶±¸^RüÆU²ŽÆÚaÛU¯ÄûXF íêÞå¬úBùáìJ¯ŽEfŸ¸ ßîØÎ¬ô͵Ñ}ë éîíÞwUïÀ©ûyŽiSwí[A'2ñ®èV/î«]6G©4 Nªc^n9Yr3kþgÑš—ÆÞƒf±‡>ÁYì‰΢·Ê,ö<‹= cÿA³ØÎbŸ×b¥Yì?xû¶£gÅYD)êàuðàY¨0‚ÃÍâ0º‡ ¨ÃÏBÁxý Y¼ŽÎâõ(êõƒgñZÂè?hýè,ú˜EÿÁ³è+šE':‹ÎfÑyð,ôyAI&SY9´éV'ð7†ä‘Åmð<ÚJ£¹#T3ûëŒj8ÍŠãH@ýk(cñÕ0!\Œ§—Ÿ´‘\‡ÁHwkâDU›UR³,hk˜%v‰žùÒ¿È §°÷»MaÏŸÂ^‘)ìé) YÎHb:`‰)`ã·D8XÏ—R(Ú£o±Š ³"%¥Cz4ÂÂèéQKo ñgW¼DçGi}Šßʪó¨‚Pú€Çü† FX°ÒkT ·JÆóÄxk³¶Y±€Â÷Ôc­Öõ†¹æž9LëM*w¸{9s¤ÑîmÏíAh´E:1‰¿xz$2¾úƒE´9²Ö©¾ö‘ýFêÕ¤žªÁŒõ~_ÕüÎîÄBLµaª.¡"Iゾ±gìDÆíˆ¢¤¡¥ƒDå°ì¿…˜Ìàâ'àâì˜z&ÇÍ=(Wod*fl¦4³^a£™ ¨¤EŸÃðg×ëIøíÎ0Ì6 ÷;­Å†TÀP@—¦—UÌ£¢»yrd[²h¢¡ Ý%V ЂUeXÕ00§Ÿ ù<_¿àWˆ ¢+ˆ¨LñU–Z 7ô‡-žïÙãJX ãü¤útD¶î’{™À&­¾jd*ª­Èz˜ \F°gÒØêœ`ÏáÕ‡qÿbÛÓp‚½ß›ì=ì}#NPïÌåŸûL.«¬Aí~7â{‡‘ߊ"XK8rhv£¼š“p™T4I—ÄZo­Âÿp<>üK~—¯ÂêÙ¯ÀÑùZIÊÿ¯$¯"üéË©ÉΈ8üÿa#RWèK (t7fëGZÓU?9÷¶¿CþÏfsÛÏÿÙüqÿç{|x»¸÷¶K‚/˜ØWÞã¯ðÏüùA]Þ HЇžAÃwÐâ¼=æÐ~ýW¹Âó^â0„¨’ïÇîÞT,\\Œ»‰£þ8À“~”r®Ó¼/ñ$èí%žÌŠ×i¶ë4VJº’›&>äPÖdQ©pp7›^Œ“Û ç—ÓÙ,™ßMùÖ6;üq )©·L0É1ð ºM3K.G]ÕúîŒJþGƒŽÇÆæ*ËEdµÅgiïsgœ‹©R_Üpä+ü4ú‘XŽ>«¤¢É×áåÂÞºÐ^Ü£dŽ3•bóÛ—B­ ±z¿ÝëßÞ«§8¿¯üŸ°²Øh¬»M­eûªš{M¶j›±öù‹ÚÝõJ¨©$yBÕ̵*€Ï\T`2¸:÷œX†òT"“•üåà€ÃlLÉ’áå §[.\’ï®p‹Nž&|ƒ0ãj`‘ëypXy—e üc¯ÙE.ì¹NôT—ìh&Æ=µ‡Ý¶‹O¦Ðm;c2ïÔÿûhÿïUÆn9Œ´Ä8K&OÐø|ÿ`|¾—0>¤ß¶Ô·æ—[ÁW›dòh„¤¯2›¯ôß—på›Ì{ëÛVðÛ-‡ñeCp¾ ´o¨öø­…zV_ô4öŒqÁÁ¸‘N|Ïè°ê=ÒÆ'U·QäIÝ”ßÓV` ¸3âî»ÖØ×ùÏ:íŒwðÏ&=µ˜SZç¿Ù-Œ™]Teƒ=u»0È2˜x Ìb‹»]lù]hTœ…G ر×ÀÁ›ó½A¾ÖKØ|ƒ¸Ò nÄÈN%9mRÜ#ƒFÔ îD¢&óµºb ‹ä€Ï›!‡›4T ×zÜT¨sÛµ>؇êps~aËx§a=ßÒÈ×/»Ï·ÔÀ,º‹ø=‹¤uçÄÛˆÆ)6(¥¸Ïè4/ñ5¢ ’fÖa5@>.‹g±‡ßÓÈ3¶@ÙœôÑx|¼XÆ®qûhÆú úCÌé×;å&^­ÇöÀk™r¯‡­ÇöÀ”“2êÁXouúlÅ< uÝhÌÒY¸—þõ« $°™žÙçôz»B‚gEŠŸ/Jôº™Qù%õgÿlm²lvNÞ ),ЫÏ3fØ"Æ +j†ê¯?à ·"3Œ y»š§·!w\`rÓœ%Aÿ—Dù„ÛD’2™ÊëÖ_òŸ òQ?ì­,u!<.-‚aV FýU”`XÝ ’L½Y„fZ6͵nÙ¬äEf‰2´5KfGj–ê¯?æ,·b³t¢ó3Ò£nÿYé“ÿ±ó=ê¿¶¶Z«×ë›[›;­Vs“ó¿þˆÿø.ÉCø Âð“míÚG½Š_Í5+Gi·w¬÷ùB>ögÃÑGÑY^çë‘èBÝáäò†ÒrÂ9¤¢•+hÔ*vèóŸ@>7C#æi ½dðÝîÞ „/ ”|½Lî4q·O+u,må±´—Ó^¦j¤6áL™ÊÈŒ®yXK–ª }N0—ŽHq\bÀí»Ž˜âõ¡r˜“äãa¾äÊá;vÊœ@z3T +¸U+ü1œ…œ—DMgx1ýìTœj_S“ W¸…£·õ¿Ðû¬ EÌ-·ª ÂÞ$QˆAu»Ë9™Îü¢áœÒ4¥µ¨ùc2\'„æÕ¿Ð5ûÙaʺt$„EÔ¸þÙ=‡VèjØÈIë˜Â¬Z炬è(^ŒÆxzÖ¶þnWPܳÛßÝ?;ì¯×#óýϬ¢hùN½ŠúðàÆNÍ+,°(·¥ÅP,i½ErËǪ /16jhµy 1dròq¶Ä¤‹Ã1ôùï%¦}„‡·£c LY-G“Eò¸ů ÌBÎE´€B®–—Ȱ.o¸Ò¸ŽÞ±Ú»‡8\üL¯%.8–*iSÿ×Ñ‚»¾Ä$’vLâ$ùº Y€êÿ’t`5æÓ 1.“”oÚXSH°©êA,íå§ú•]—ÕÝ‚†,ÖÙƒë’JÒ¦e âÂDÇ€|z2ÈŠ]FS^É\““9žüQ8’*?E4ºlÊ1ÅŒ\õJ£Ò¤RÖöÌ@JÅN6ê/{¤ÜoÖr·#j ±1ér³[,M¬vèÉU®Û©5t¢jY·ÆYlÛï7ì÷CŒ=RRžª ¿nsÒj3:ÑÈ8™#ÝáÀhY0°Áx ‘ËssæÒÖTéœnÚpvœž>¶÷thòaNÖ³M­=¾\\Þ%Ï‚cdO[) $~/À¨úRô²0ÁÑ‚tÊ(+D÷$X]ê—ŠxØßë„ʬ‡¢pE£¾?­ˆÎÉÑCÂF’KàQ´K(O wšFqp*VQ\‡çâÿÒAn$yCÆô £h%ÜŸ—£ËO²Z6n)¥ç#†å¢ëÉ*s©¡Ä±^bqv `ß'³Ö­7 àŽÇ«°Ñ)_ý}t¸º*GX­«5R ¤wH@è6¥úbÓù¡Ò7®e§¤N.óJ¦þ†]ƒáá4¾Åp]"VAÄ:nF:†1q V³¦œÕ¬zHÃ43æÜr»î!„@µAùþNØÒMqHð £ÆmLF{Þm%±Æ2ÓZET]ãz‘ꉶТŶ¹äÎщ8;“VÁìAÌ2SÁ|&̼Q¡eÔoù+›F‡;©œ*Œ„DÊ—Ô«›LJw&ÓEa\WCÚÜ„ñáZxÚY%íyu? *…&£ÄH&Ú¤¾QåYã&ƒ2_ %0r­MwÒ$¥;“nf 3M#B#­Šztâ×9 ¶VœqðB³ÐBžï¬¹~½›NX{±m4 s‰Œí•ðÌ{-v·›Ý¯„4‡ñÅög2‚b¶wQèœG1J3Eà.Ýÿ{$I‘ úyö"„Öáyn«lÔï’í,YŒ.ópÿâ q/ë"†ÄXùªônY¯L¯Z÷Eesjd¡Lµoët@Jä’)•ŽÆ>)Ÿ RS+f™1Úˆq 5qJŽ,©•w)²WAP’1VëNmSå&;zÌ ¹¨8ž†<µ×RjKŽ K?¯ŸPE£í©N¤7™º™RÄ5Ã9ÚÞÒöÒJ€_’mÿÀÍÜ÷xDJBÁ H‘FXåYsߢØxw)"¡$/šªºl#˜§”?Ž4€kÎvc­kþ“$^kJ"õE9Õ4+^èØËšªWëO~émÔ«áWä¡Ë¦6¶‹'÷+M°ó—&Èñÿ'ßÞÿßÚ©o»ù¶7[Û?üÿßãÃÔíúÿñÈÄl¶·ß 8èî¾­¼ ¹¿œH~ÎOOû˜¢½ ­ eÀ`àÇqþ;¯ˆ]´ÙcàRE4qÒã ~¯DÚÍbp1B¯Œ ôª2ŒAo 0ÆuiI$J›½¼võ¸„«Ä)¦pØ.¨›•ÁBæ¯8 ,d4XñÄBF:¹)”—`:©ÎïoAð.ÅüßKtUè+¾è*“Ò03eå´C YRÜÝlúq6¼×ܾ§w²ë   »»ñ½º—~=§_ð/í±Ñ.Bn„V±´Âl½F"«J0yû&@¾6hM-Sž?Bmc¤q¢C³±åe½H`Ôé,5”Éü8ùŠn™ß–ѽG©*ÈMG3hH®ìW›\'¬áký5Ë-.w¥f:”ˆ1A•€—XPp›“F2ñPªÍܱeª ³â2!Ž µ²(æ܇—¼ˆNðˆÜ»ñp‘bq° ĵ ëbIŽsžéÏ…! dÊ.±( (‘èXCAdÖP›p¸l¯p¬lÏ ”Íi–%‹`‚±­½¸XÐå(AÓÕU5ùœ°†qEJ—”.¤]VEg.¾LI°vìÌØG·Ã£ÉEöè†õ#ÍØG=üWöxy3‘ú%«8"õO‘'+…±bê„Îgk³ºµiFVV8Q "‡ñ#ÐØ 4V8ïÊV$ÞØíŠxcªÊ°ª.0ˆËüM£“‰ƒªsê[E)ã9‘?¨¶q„ÂÙhÀÙ§W½&O,®VÑ @ª9÷ê3ÔtJËy Ùe¹\#T'Ì¶è ‡¬ÏØ'žŒM§z°ô&͆-Ò-ðŒCcQðÈÕc^¡[IF7Î GÆ,»´£D©™õ;hÕök¶ÒQ¾Kçvh¤SNË>ªs4³UTBƒyÍI\Sxð°kA°0]»ƒvŸdbW›g ·»zzÒk@4‘ÑOóÑíhŒ"½}°jÃæO€EbY6^i4|ïmÙ¸Q–SÞž‹øEyÎi üâ1¼ V,ðìÐþ|{@Ú¶(©¥/§i,í£Ú±1gؗ٨ì „Ó×N%ãÔèr…ÔxÅÉ¿•¹Â)fµù€TIZÿBG%ÊIŽ=ͳz„£4zà”¤™cC… ‚qêH;‚ñ°˜ÁaàhÝråÖNX‚ÃsAbÓ'£RyÓ‚¬ðôAcx%oGll“¼ƒS¢=SÚª\sŽà4‡%ïRp TU§c²}ƒÊ|~Ü‘Ä6‘æÎ2ºî ©b)}¾²¹GÚžíÐŽÁ_º8:´ïx¡´ tv¸GÞ"Äö®—ð›3ê]«#ŽbȀ빻éø|5„ð¤²rE?Œó‡ ÄÌ!½3<îØ6g -´¬.\ö~|Yë 7hip¸ †­|ºém G“7֣𰟪€Âwh™³°Ôªé¤jAÑziRÙx;ü¤X¯r0× =)gXÎô„$±" ›W<œ†[ÊüÊymTas@;w˜Êñ¡Mä×£Àu³r£¹à¸²6ÔÛ*°-äz2â Æp=jèå¢ ã) £«¹îâêÝtö‰ÔÖL„dÞá;Ä.¯äÔ4îeH#çññp‘ÆPèXea~6+‚|;Ç~¡J÷ŒÍ pÖSºdL¾F ¼2h‘smSÕ-|­ØýBü^voøÕ¤a v-ÐñaxFKQÓ$åS?èóTŒ§A;n–ʈÜÌSEõöÏ*‰êF‹ÅÖ«Õ:­Ë×y¯ÒZ°Ðœ÷jCa| J@ž@õaH2Š#ÖÔœÆMÝXõcZÛq9aÙ¶ÜV-§ 9©Š_š ê´&áÃ8ã-¢ >¡Œ·H“…¶t"œ§'Œ~%´ªxL8ÐiÕWXà>!øÂ,ïLy¡¬¥ä¬‹+Ƹ姆૳û@g¹ÑZWf_s ›NófñŽNÓV¼iÿÈviŠ-z÷WŸLÌÞþ‰ÍåÓGÝa}šµoÂ2œg”A}¥±“£ö¾u}Tìí`@)üUï|pxØ–ïFr¨ïã'Aš˜JedÂÿNÞ tr&† *mSàe[©¾…ÿïãø{?Žuww÷œ/ðVÄ{”UÑéÈçŽpvKFŠ¢w~˜ì `Áâ]¹÷Ž+¹Wƒ LÅ}=ct…o ïŸP&ø£Ãî/ô£ÏÐ_Uäö­¨ÛÄñ¥ƒ‡g¹y1d°ðÔ·É)@pÖ9÷Žëe9Ð"÷vþ{ÝF–cÕ—zTC"…’ŒYƦÀÕW’™^ ïö±ÝvÕÖ»*l·íeµ5oûúOÓKÑÎýכЬFÍ–4¨õÏykÂ/_ïôšŒ„¦´¯(“•ËÅÁ›²º œ3ðð~Â,fº ç€zK ÚPá&ÕºÑ(¼'5ŽLÄéO¤X2öSëœÕ¼ñõÞ•¾¼WϸäŽ'Óº èÜ-2vÚ§ Üm€nõµѫ֯3[o†©G=ŽÑ½:_9 ]žˆ‘¡³lºjºjºzœ3t8¹C§=2lÔ3âƒæ–á!sËÈ€ùa6‡A™FÚK•ú‚íК•ò˜AÅPfÜ2í4 _5äb'º¨‰0> oUÀî¶$MzÛKAïàuQg‚¹,rrxëÁ0-ƒ?ÃhR #¯@vvŒ-·¥™Ó€lÂ2ï|ÚY'<ÞîoÛí9MlxÏ=lè«¥èxáµ¢]”Óª¾é5“¤•ÕÈ[/¢šèëÞJ¥äë`{ÀK·‡åeôpañ^1–’ÝE9‰Bê^ºŽãgüˆ¶ð¨èøÜÈ¢þÄ‹ë<Ø«f%J©{¤Š;6)´Ä·i3¿pw§|¾j ‘ÃUSˆ²j4¸Z+#¢©ï·ŒIð=1¾Ñ k(·³ñ5eÔ±ÍcjZUŒÒyRËôÎU9ÙiÒÍš>‡¾Œ?60ç–œRCŠîÈÚ–w©ëš-ÕŽ¬¾R uT–ÂI–Y±MïÙáŠÆ—TD={ñ,¤å1?Y…@O{@vôÍÒ´'y³›@ÈvƒV$gƒlH„ε‚ÑNþ{Ò9Wãùd‹çþQiFâ-aì8|ŠÓŽA‘صï´[áRõmWërvªPÔŠ,ÝÀ•v†™Ç2¼ÁE2Œe¯–ã±®|ŵòø_®  —ƒ[¡Îw}ru#5Ü‘»~~f Ö/]’„§¬ó„u—­'Õ]vI_QÒð/ú=òf…•Y²'ïU ’:ðÒ’sI» ÿ 1€É­tï™èÚNÑUq(‘HØN#‘¦‹ˆU²+‚­¢¨*†§IÁì>ÎӔܨLšeú÷(½!×¶‚w;0Ô{M:Çîe ßl"+¾×8Ëö9ÊBUíºìÀºì‡è˜–±OØØgÆã0ðy‹ê¼WuV7¤D§ïÖ#(ÖŸŒD,oûY+ ‡Ç«µS`iZéÒè¨&ºð,ÒÐ%禛"=ø©ÖwÎ ô"ˆ÷°Îï…P±IF°ÞÛõ:À\ªÐŠ^–¿¬‰RýÙ ,Î×ìåEaÒ\\Ž:ä8âÆð¤19f¹XÃaáI- üÀÒT ›ô% ‚È• „>ÀšÖ—Þ楅éªlÓpêÿ¡`k¡÷8y„*A#Ç+ó6aT_ivèç2|ä¿Ç™»ÍcÃí}bÏ}xpܱŸ ‹ ö°)<†—œ–'õàó ë:e!Nz¼è˜AؾQyɧ$öW ]mÉy¬Wùõ‘†ÌMTFކ¶{î´Õez¸ÐÑñStZ(O{ò¨®s:‡ µ×â~ 9?%ær§vtØ/9]WɧÁù€¢cŒ×.ÑåλǺì_͙߾š°Itæ«O8í3¬3ÇÜnÝz35)H@zFý9 ‚.»;z Û¨K’Žb#åÈÁ¤…Ž&s÷»QˆŠ 1™[ Åbt›Ôn€¹J%;8²ƒ~ÊΣìÚgóƒz>;`¢ÆRÒý ]=†!0ìoÀzQ†Ð&0æ±"C@hfvûB{Äo6CØ_Ó½ö&X C(6aÝg˜û™³Îã~QÖgÒà ¡.QRõ‚G#ËgᮃC—Ò+2e‹Hó²XB§Eä¼4¡c夵®6É(y‰Â=\©¨ ‹#u]–ÐY‘ƒB­ˆ™—<³žå7 Š`ügF&Åt×ÿU3)þ9?9ùgß<ÿc½¾µÝjxù·~äü.Þ“nþG8º/äàC7œ2΂¥O㨿{@!]ܸíáÇAŸ¿égÀÀWáµÓö/g½# ürr–æAœîö‡*ƒd &ì3ÔÕ¿\"I‰cž¦B–Ê.ù¡«Ž®bi%ÍÌ’µD+%˜”kÜW‰mx™atÑ|“¡¡ÒÚË̦Ÿ¯¦‰Œ1˜g²£~é?$ËdßÏ2©/@|ÎFÓåœÒ”Y $%Œì4’ý§K#)ÄQZ‚M 8»œÆP¥AKkEyéMkªÎ•’f!]#½Z¬ñ}† t­šMÕ{½5Óü­Ó[®žÝ5^™Â …îÈ[A²Ê¡¾b àŸa:^¢uz°®±ÒþäL^4™y˜š hÛéÛðÛx>uK­ÂHe>=„7µSh H³gD÷ ¦_æj2*Ÿ30sŽc¢]鮩CW°2xwÂéSò-Œûòwp ;Y‰V]d271»ìâ ³]…j{pÙ Ž€r .ÆêšýÁ“ùƒuì÷ަ¼“áÚÌüJ›ØõfK…¼'Ón9)³ YY$5ˆš8‘É-dÎëTšñÑü–®¯àìyø7Ãñµ(Az¿–ƒo3rÞž/¦2¥ˆœ)‰r£Y-×’dB^Ó¥‡^–HÆVïƒGú ÷ä5dc&°?¨ ³‡¬¡i§ähBdÂåò`MW@áã``ÆÂYJFMqœc´}MwÂðžá\'ìW¾¾ÆÜOxeU^˜â#KE®Ç’XèT›ÐÕM‚ž?.6ÇÕè3lމWÉY"CI3™ÐíÜtë•`K¾]Çe(/N½ÂKQ2¿Kh2)ÃyYÒè|# †>ÞÓ*ˆ4_¶Döc¥Ð °Z™%W%´ï~9 9GØp1¬ñõix6‡ã$€{#+¬›èAÞx»(‰ÆlÞ%s0ªnÖf•ÖfÀy(i¦ÑܯËXªÓè–C6»–í_<ýkëGò׿Hò×¾KàO™üä}|˜ ‡uºóûTˆ”±i´Í{‰N¤Fnfj"ù™_øI¡›ñ —º•^9² ‚©Û,%'”ªPn+Ø´&¤$¯‡›éVíÆšÅ!‹@¡:šÂ*ª,HmaårÄÅòËÚ©e)udÊe ¤Žý‘0ö”064Òÿäü¦*Ye$±)aÀíÛMlšæ\ùæ©Jÿ@)J£ùI5#Lë(I0ZÁ#—h\)Úð DÈE“wy®Ù A eªð‘sÔ¢!säd¤E(…Óñ”/”kИŽ-Í¥ÉÐI–‚÷ä@ft%Ú÷vNC™Ã0´eI—0R!‹Ú–ÝÉk»“åDž,yDM&³,Ô ôì•,­U2Ü F5²wø±„r7Kl<à,0ÄZx6ú”X¹Ô£0%G\ïÛMç‹`OýÇ÷´WtJ±*÷òó-ǨÀ§j|¬±•SCöÔ¬Š~ûm¯  Lœá~3&ŸKfû¬Ñ—h ”ˆÜȺ2A7Ä$öÇ.’ú°ÅZÐ}µv¨Ò.vùl¶y~.ª•.¯€ÄÝ ¦WîèÂÓ²·­,¥naÊ¡$&b‡$MÛæ¯tbêQ)ƒ [¼¹ðDÇÊn¥¥sWûâöJTï "7)¼HSš&…šÐ‚_]L«Ø¾äfW©P¡xYöF_¨^ä×Ô·æ˜}µÆC‡÷Oêåý%PÂOo‘œ*¥ºê¦^.‹RCýÕ€¿jµ *¬M÷£ÓÒß‚>$¨W2ÏܱZDtk’~8i¯d]æ±_×F=Øf—dNLWt":ín_Y²xÑÐÆåœÍH×C¼ÓI ’MêrØj²@£‡K"c¥Ðxî+9¨*µW.è… vÙn ‚|È] y¹”»¼äP)|c´ô% ɰH¤šì8 ¦¨ýÐuðaØâÀ2×R: @H±[Y<Ð{¶¦†áûþ,ì¬3³Ü±Ü•ŽýÑõ¸d¾ño¨}°Ú]j»ºl–âíW”(a3̃GN9©Õx8ûÈü*Þ?ÖP¶0f²1ùekF8‹¢®J>6EËZpÐ͆×XT·¦Äi ‘²Ì´Ë~ÆÿPf÷¬T÷:ÉKwÿÚñÄ&_‡˜uƒS_mŠÑ-nþ¹ Dëöc L𾢬ë„ÙÀuK“tI®tN ž©‰n*‚`ÒÞë|/åªyñ#ØËËÇÞ¹=7ô‰×íÇÙØ;·²Ü?{‡b¯XFûíÈ;@àt¹À¸Òï.Yä¹÷ ý $µNÊç`ïï…ä¨$Y>‰šˆ}þ¬<üå=p*NkŸÂ”| ®n*K9=…o –1µU;ºuëèC£ã 1a¾¼ðÜñè6¥ 9 `g¬dŸ€DÃíÒˆÂnâLÍ€ÃBQŒJ‹† >¾ÿÜGT0ÌÑw'd ^Ò xÍ/o’ÛÕ&âtøsöj=}‡¿:#) ôG}j‰S†ãÜͦŸG2™•°'I0‚K¶S° iW釋ÙpDe!dœ] I°[/IŒ‘ã.; ô¹G2OT‘x–óÕ-u[6¶”W˜«;Љ”¹šôô‚µI›[í9­R¬àßzít¯"{HÝg{ækÒàð³óö)Þ6¡·OÍ·÷•ѹ˜áà;E¾ YÜ/·ôü€¤ÜÊ&\fq3‡¥CJª”ÖŒD?3 ñ=,^BǤ­öŒT•?­‚”¨¨0|QØŠ$¢) 4A â0å2Ç¿­-'ÓËËå¼2SÓldë´3e´ØÙRÙF3 ¶h+wáÊ-Vs§Š‹W¹Å¥=$*Ž`ÃÓ) ¾Áê. ¾º«Û¾Ÿ†áì§A‚ ê‘v{k¹—ì†Ýv’YnÔýº9ºñ¯±ÞŽÏÏ7Ž;lLz½Õ¢NvPœ’ôNú¤#Ÿäm•6W¶É2A‰ *­h“«7‡ íŠÝ¤Ùôa%kº©àGñÃ,DËêqµ=+ÒÐȬyÓ\¡æ Ætf¾µ³Jeœç®Œ#ËÍÄÞMïeZ¢aÏ‹ým íùï»4ÙtEÌVäÁÁ-©N¬8Dî+YEYG»‡ ydU}?duN]ù¦\Á•¾¦=ép /õA9½´Ô:vÜ…4‘°çû²‚ݨÅïXým5¿~þüd]¤=wô;jôýÈèuÃJ”x¹Ã%‚—|%@hüä•áLY…àTëŽ:LÆ‚¤2ª$Múš²d•UÆ­´E†&gg¨ÝKcSVG ²¤j£.Ë"¥A‘0V›Å){„Õ‘Sš¯Ú =#`lÖ(¶Ò©˜Ô J&Q/´%Gx;|$£Å"¹½[ÈP~ÆÂhHPSÁ®ø@8ÿQ…¬Ô ÓÑ®Txêô¬$Ä †^ŸwözòõHí)™C&]h·ç{˜š‚’/´Oe¦ŠüâSÔŠòj`ÒÜ·ô7ÿ{ŒfmÊÉ¢q·Âp nÚtßÓô?ˆ£Ufý9aŠ¡B1äýËVíYõ¨zù÷àTþü ݳìÊQg]]J »îU~9ý4*ª¿ ü.œõík]¡ý… ^ueÝ,Êð£øU¬’·p%äK‘!³žâ•±Z†Ì-£5x¨å›‚}zs&š[¨©x©¥Ç•y <Î:ËÔ¡±«\?|ŸJ Flðº¹x\óNfs# &OhßɃ,v¦!6|ˆ½<ˆ{™›1¶{”)¯«å”(ì0é¬ ;Ð6‡2d¤¬OR8‰Ð…²"ÄVµ¯«jÛǪux UëÇS­Ãë¥Z{Å€œÖ‡™­½’?Në7ºŽŸó ÌØ­ðZªÇy»œ¢ {œËØG]5c‡rÛð±%ÛÆ–Q¶ìmnÙv?«ml eÛà¶±”m#{ÛzÕ›ì¶?gµõ‹4YmÍj»Ùéü4F˜Né2™Q8'ø¡È˜ŠRš`HMPœ¥Ë{~¢-êlPï9´ް§¥®éþhƬD7@/©žj¢ ¹‰:fnÒÃS©í@*{~U;Þ(’µŒÚ]p®o)ëFuÓï…ªxBu‚âuíô0ta»zœ°\¹O¦^ܳIÌ,Ø,:<9âݘÊ58£FŸ¡«™Í9Ï–è*ùÕü ó9*á'Gõ´Eüº+ñ£J=]±ðC7R(Ö>§h _U®@ÑÀ@ù¸yåîEÇ…ê* êý^ÕEò<€©†O^·çRÚäèP—ü“ßÀ>i©![ôV´N£_×ÐÞA03s¼Ô¡ CÎ:ý¢é~Ñ Î:}¾¥çW’ÌÒ!ÃŽ¢ÃÂsövÄ·±Kzƒö\8ú¹]€³³z9GsV VJç1÷],÷5– ×q|\ÿ.Îúî~íçrŠ~.Î<&%Ï0{Ãêïš…7¬n¢ÈIÑxÜ~õ+¥2d9ò0̯™i×ýÌ8v<¾Æõ$65†ôLtÝOÏñy¹4<Æ#Ó[vd&x-¿;Ê^Ɔ.Òk/õšÈ¿á ­o9¯o{+X’‚nÔôš(q¬¸m5üÝÃP55Jˆ­8Äó³†Åg€•o:øðÑÙ“Na×®9-U<LzâI€õ wÙ\0Û. Ü)°’;N«NgCµŒ"TóÆG–©í¯Z¦TlÌì òí—„ÂùR¾ ·À;x²)»€‚¢=L§nVö%¥ÅЩþÅð?X±\³ncÝ,š+ža)—¬j¸œÉBOú”¸h4¹Ql©_ÛïÇeϘ°è ›”[7*@«B¹4EKE|H±ÜtþªÎˆR–¥dû$uoš“º¯ À¹eyƒo§¾á@·\QVY <ôé½CÀÖùO|c+\_ص (Цû+*ñÝÎ š7ŠJÑÆËõ‹¡{›$;éí%ó–ã{ª"‘ÙHêCRP(Ιw_—ðçÝçkœ÷ëÊRµ:Û>G¥ŽÒ{§öü³ÍDÛšˆf"Y¡‰¹‚•teGò4 W_ÞÉè>h™T¦§¶_ð Yé`ܧö0ùãèkÇôÚ[|º“Q‚Èe \Éç@ ÒQÕúcÏW-¥Ät¤êê— 8ƒ€¾ÖúiÄ êQó‚pÅîø †nÌ¿$É]pN”^ \š|¯?”„z'½{5M8g²u L'¾CæDã¨<Ç$Ÿ(Ý&,nä­ ä%´’t)ÍJž¸¶afQÍBy¬J~–Òæ¯KMþ¨z€‘J\BÕ•;ïmàaÖ¼¨¢Û­ýÜÙÞ¦Ÿ› þ{³^o€Æý·úæVck§ÞªoÁ÷õíÍÖÎßÄæã»Îÿ,±r«»ÎæÃÛé<ö¼vý¸ø£}˜Îç{ý“sXýC¦ÀÒB,m‚r³T¬‹ùxk;C±PæΧD!Ö(äå\ÚÕªª.E•‰d.dQ‚©è*hÖêexIn–óÉès ·ËY2™`y¤’~·"pÔÉh(ö’Ù§dœÜS¢Þî‘è,®tB㈠”x¡Ôif9çŒábwöq©3Ë®*æ,†ÄÓÃ4ºüm(i8Ì65Ǻ •Š3r^§X$d¦ôÜ¡†ú× âŸ£­#§ƒ—é'ßh]·ò{㯧ËÙ,妊gÒW7ç*Ó…¾ÔIW9Ui%KG\¤N¦Ú“PJXÍN]Q}v“Ìn1sÆÄmœŒ n¨†ˆWd‘ŽPÔUE˸úÒ¼ærz'LjåïîÆ÷JÉäò†|kýßK¬”XãF˜Uû¥q²cz *²eV(•ÄÌþ‹#q"l»V§.AoåÈðö™ªa6α¨×ålt%)²™ƒã(­Ž« YÊ Õ0ÙÙôn6§²œÖ"XΰHÁ½˜N¬‚S.’‹q3½²fÝ¥¯Ä®SÙ-íø*™ÌÑ_EO "-¤Iè>PÕk±À½ç Su«¹l=4•Ô´œŒ€ußkªâbÙ/Q«Ÿüÿì½ûW[9Ò(:¿žþ+ôõ=ë`ƒíø$™Î¬Ã+ÄÁ6´IÒßýÖ]ÆlÀ‰±?’Ðý­‡¤­çö6t÷L<Ó¼·JR©Tª—ª.®â—–NµÐŒå`©ŽH‰KñYÍßL³äf2º¤‚ƒýñŒK‹áÒW|$ìÚHP<«órU†•¤RÒtRThAMÆ›~Ú°¦Þ㊇ÃÏ€Yà•\‚æÿóà¦~ö€?-O®Ê´ÎÀ™]\ÀÉ_‚…ÀÂn”ßò×Þß ‡^óAp"5°ñE]×^NæNWüt'óDVÔ¦‚ýÌþ48*’™‰Â4q«@EŒ³ó"ÏžbY½)V®Åº=²v\IPBR¦¼@qWüp‘Z³ø´ØÍ&\7:-©™R—}Ï\!vœ…(ëêê Úw¬³Gùêm’Äêæ\,6­Ü(ÙlÞeרF| —aèÂÆ¢0›(X T2.ÌH%/+Å”†3FiÁQuªEáQ{V‡Ýma®$~ t7:ø½Õr<—ÓÒ›T½F?-¾Ä«Œ+”~ç"CËDöI³ÓZUÈeÕÊ8æ²–Æéì„·þ4±ön¸€­®:kL—™ÕosÔ%o»åMéõXƪÿÈÙŸHÍW·\ëRð~%èUÀ»ÅY]”Ñêȇ¯z^ÞQ¸ ì*eé]RýU÷£Û´®[¨¤ë¤ªa òã#Ë¥k«ätbdÀù, h%Ì•´:MÔªŒà_³>§e†çZ`´Šñ³7 3ÄBœ2[ÙäJÕœ;Á2ÓÝü€dŽ8,ªb‘§d5+,NÑÎùýŠnpÜb¯‹…ª¥ ˜Á„Ö øZ—o%™ƒE ’1ËÏ9Õ>ádmëónëõq¯SÀœDhØzrEQ1¹uJYb>y³]¹Æ ôÄ>Œœ–\kmh¿PbË.·”%—×ÎDå`Ií̦ðkËRÜ7¶qŽ¥[Ô)e¥¹³@è”wTã䀛Ébt)FC ñdþ%­Q¥ýÓ¬¾ØêŒ@òùœØñ9+7Í¢‚€‡//¹rl4Ëž耎_Ð9û˜f|=]à®ÇÚoJø AÿÀÒ¹¡g˜•ýtUÞî°'å@@Ä&ñó¶?¸A…v8æD9Üjo rÆ—yÇ‹Œa,¾;ÐH­æXR”»–§:¶bãä뜪ÐêâÆ§.Íc‘¿áxÁ4OEÁm¬)$Ø.‡Š…XDÖf>i—ñã*Ó)›SŒvf ¨·8LÜÐüì}_iM¬AQ¢BПH¸uE8©•¥Ú¬zƒx„{siô'O2ìÂ+Wù-†§âÀMŒù=JLÄóyáÁw3ÂYöøçC½#çxCg?ÉU[B%NëA(-“EV6 Ms¹ç}àÌÓáæ2RèÖC Yÿb3)²HxxU•ý¾pм÷g38Š/ÕìË-«º~ftôˆ5QX³·¯F% q¹!A­ˆÏDïFýs}{:rP”¦*»L%roÔ€ßÆ{}P¾¦Œ3q3ù,1;G÷CeE‘š­gS÷¯à¬¸M@C§jïû¬Òº¥Éå›5ÌD8û…ZñUQR¨¿ì•ê3ÄS¨Q]7zÙ- —4k¨f­â+|g}½P.´À³‚)†Ú4U›!vSQV¿¿^À/jÔ]°í¦l‹ o+ê@ ê§á˜ã‚„,X–˜¡m€4vN6š\÷§Àngáæ¸jRʵ^ \´yý‘náHƒ¥*›t™B[¤O–8¦h7¶ôâ@Ÿ¿ÜÈ 7 |‡)Tñ%ÐG“¯ƒänNwûtóÉ¥ÖôÞ2H ÑÚòÙÍbfîŸô¼Ù§á²¥ô„pû&{ ¯eÝMO*—\9|§äúÆ«‹kãV–Å`Im•¨d1/Ùüùßéf$MK“ž< úrQ] ³áõXYÀ6j8¢r­²TB¥©…Ø~D ^£»e#¥ðž<óiW\åf8×åìÿUFƒg¦¬]:¨Ö•‡j£:4ÄÈü5VÑzeAˆsuZH&uP}X\;„³ëÞö¿ú³r–bå†ÛMñÉðvq 8™:êë<î©gŠ¢ðåf8 ãžý{žUÔã¡î ÷¢w´Kc mŒ ƒ”ÔÞxIÕ…ð)¡.P%º E4tWøT­” «,•3ޏìfL5´ø™aöHíy’=(^$^»âÃ×þíÝ(A—Ы*䌒k‘ Ç5û±mŸF÷צvÍ›†}‘GÓ†@´Ó¹¨yÈ"Š<ÃiÜyT´¸Jôѹ²  ˜²ïr Ÿ¯†aÆÍC0|n`Ø5.Ñãšý8Ãç.†»«aØ™Ç7Ä0Y6³T1ËÒ†„˜•úŽ™ü`3[â’¦‡°•T™B´ýuÏÙâBûÅÔa7†RÉ9 n% {$j2LÍŸ!Ñ¢À9dÍ¥°Ð¿Ô‚Hõë¬þÛèãûÏ4•R ¼¬þ¥)SyM€sÞÀáž99ŽUñkö"<Ñ –¬ÄoÎ ‚6Ýc q¨\ÞÊÚr7|J‹0ž;ìŸC$br§¬<¤%›cH…hJëj ypGt0Ñãv“ªËq$ qò°ÿ RüRå—×.¥¥Ú±‰ÚH™©IO.P]uU±Ã]g eRÇÿÖk'»%qº‹ëv¶k¾¶Ë"ê¯ÎÛ'NoŸ˜oïñÛ½5gÞ-vV£Ík–½B©¡åôe%E[lNëk# 7à$ }üzrÐ’v.åÉ; -yìÑ ^¿‚xJ3Š7ѽ:£NC~|5œÎ §c³äó¨°3É©PRwu—tÙ$U¾m­œhVq˜¼¸×Ž¥+¤ßÛÒ±2þKM‚’–£.¡°F«IË”žS¶“\Rïdªü26Á–èì@ÿ¢3 ˆš=c÷”Û’X¾œ, Â:¨¥w“1x\l„WE¼Ó„´chçÛ ;6IáÜDL‡¶ÅSMÉŒŒW¤" €oj»±½J€Cä%2Œ&]¶%R0=EëÞ,ÉMÐ!q0J«JTšfÒb¦Z¸– ´µQÓ´hè#,K¡š/—ÈÖâézÜéok%khì†OÆ“Åõ ‚ÀøB] »*-ûK«~*ϱ‡µ ä2Æ@…"ò2†Æ:%Àê Y:Êþn2ý4ƒ¡&™TCáw1ª9ÀòŸKW4Ñ{ZÍbêĈÐ~ÒÑSlгO ¬ÀEâ#¹§¦É|1uŒ Rà T#ÿ™^Ô® …B«F‰mH7'k˜:yÈÂÚ£(7ð)¹ aRðʃ ¼Z åM| ý™omÓˆQ)ǽ›ˆìl ë〷œ—ŸãËdÔHÃj•ªa™ Ø ,åát‡àäÊ5 (–CÃ6)…¬q{Ôv‰Ûó'€¼ƒÎb{­”.Lw͵úÓG·ÙS[Ýl¢”Xƒ¼/J¡ì œç‡bó/b^²¤y­ŠÔ­88k"Îü e¿­™q;útƒ…IÖœ%ÌXDM`ϼyc±u çØïÖéݽþ‘Df’–ÐâR¸íƒòcEšz`U›ÏˆF¼¯ÃÃ"7øíô3œWOñ1uOtì4ò5Õj\L=5¸s`ð„, ]­T÷«YѱiÉ© ¼y‚†Â%PÎÞŸ´²àÐ h¯ÔŸ7jÏ7ÕíÚö‹Íç[Íí­õÍúó­í­­ÆþFÕŠÈU8iƒF0’!ÌZÚLJ­½¶¹x‡­tO©·ÞŸá}Ï6—;;>Ù§"’CÄðêþwÜNs,t÷÷ÞÀOŽrná”]J0¯èñë×x¹~Ž ¦ø5ާ‡Ézõ, ½ãw¥´6ÜéÑþI.8ü÷äˆîоÝÃÿÞdÀy‹õ[<½ßBÇÐªÝÆ´ö­.‡is‰¹–”ÚË€r®s=‡B«±Ô^,9l£+®$öÏ;%¸‡ïOù~``A¾Êzï¯ãG¯e­*Õ¢vf¯»/ŸCß½®Õžš—Ôk£9]\È }c<€û{Ç'J’#ðÏSþ»w|Æ?ÏéçéAV~f_%¾«S’¥ l¡U¤¤A_@ͽV÷´µ—ÂÝÙ=EÏ(ü³¿‹+CaÖ¼ÞÇxå¡Õ b!,æý à—§sàuô½bN5yiy?AŠøü*g(Crü·Ö9Ñ*y5ê_ÏÄÿ¡hš´D‘¼£YÕ½ýº>)Œ¥ÆÜ»\Ž=-WÚ•W¥Stë+žëæ¸qs[@ˆ< òÒú:Ÿ$N¥¹dô}-»íiV[¯†­Ý¶›ÕÖ,hí?MËÌ{µAqÂ[ïÏ—8J¤[ ­Ì9ÌŽŒÄ@î,ÚI´úÊÐÂèŒC‹­C{óh^ƒ%(· „×6fk OˆÈ*tG’l&XÙ¶füä(M^; ^}ux{Yðx±"áõ²à5ð¼jð6¼Ý,x›«Ãû5 ÞÖêóý- Þv˜HåÓ•âžA2¥È ò£Ã/eÞšrIHPi¬;l´ã' K¨ï¥=@?:O3_KÓ~Ôé™À6ˆzÔÝSð”Ú8§¼ÑÁl¡jÝ6rXÆxçVb¯<™tSÛF@àÕNɘµØ¹Í"oáq–züøºÛe”­” xGjQó‰ ÎL-ë†óDÙ9Ó£”e`*óO ƒOQX(àÌýT¾Òد®ó]Ö»·«¥KòjÑ&í—‹C)º©¯CT'<·v±ª2n”é><¨Èå0 ºàLê'qP êk‚šž#U´CµKU±oždÅu£Z{÷ „âXûnv s—±ïÄcRjé3Úlºm¨3ÙmŠ˜¾Âßiªå¶ÛÒ¯0mÂ’u¥ùÚ‹t^ OV÷÷Üí悔dͼCôèœ[Ⱥò鲩úçø×Ñyˆ÷*˜qÆR®™pOdƒ@äŒT¢×mê^=:Y^w„F Ây.f‰p¦ò |ø™Ü©ŠqÈ-‡Ð´÷¼Åÿ£Ž)ÝëN±Æn±µ’(»u’CÑVÀ¾öìk¡ö\™Ý,\_ºõ’Ÿ¤«dUº7þȪo/þ5íý¢ö­j¯«sßL&pæžMîÊû“/¤4Rìb¡² h³Xôw8àM4ôÊf»“ù|r[>¿ 7¸LTƒŠµNV‘{Ìe¢¾`¡© s6Beé;ÖáØ9¬›gˆ3´`@;]½7zåB֜ҧT¯(¾ªˆ!J¾*;3vyF: â!c` Ö«™¸Ú¨Íáºæ…z\ æAwÉP¾êZXòüÏáíQ;”›R¹¢«‡eÒóHÚ3µ4¼ÃS „òqî õWF»O‰Œ¾€Œ8_P¸2•™èÄpüQ¸ Yƒ6ÈOդ秂 âm§ç´žŒh)Gó·£/*3“/¹¯à òQ®³—ˆô¾¡I*Œöª½ãÓ‚ly ͧ8àÌ·Ðí¨$(ÌÉÖ+ã”2²¿íIûÉ’ ømèö¶‡8c%OXè3ÚPñÜÞ1ð\–Vî/")œ²S4Ë}há‚6LŽw€Þ„bÞ¼çÄý¥“‘\Ž1\-©Eqƒ2ÖÏègJ¢M´B’ßÛ^l‘±D1JEÆÐ]K ù„DXé2“.î¶èd‘¹å[na,ÜÙaò1÷6$Z‡?öé(œçÃ5Mnƒ¸–Dø9v3Ñ.²Ë&vr›¿÷¦LÄ™MʰT¸›G_•úH|Ã8ùôÌT_{3¤”ϺŽÚ¼Dù4'biqŽßéÍ`l…7ƒù\‘ŽxÖ!£ãwOGH<à|t$|îÈ´’Å"e;"™=E2YüNä9'øfšŠ6˜?ò÷ù1£‰Ç£ `’ùÁØÜÔb”¹0‰d/H&·“/õhÃfìÓ”E4ªî33ýh3š˜] /x œ%£s¿j9ðe,š@RUdVœ0± ·'²ÐÕ6† ÓeZéHæü/.ø=‹¡“ ³‡‡ZLÔM_Õ2L¡nжW2Ly…Ù6ôÊõQBŒ±Cߦœûíªœû{‹0{tàeÈ7q„ýnife–•D˜|«-þB"LèXÊ:’V8&¬(Ï?‰óDÂüw‘a,:‚ñ>Œ’¸áêRLHâm/‘zÅJ‚¯x¨“2GEI¬^ÿcVc¶2ŘxU¬êãgˆ÷ÔwU.cÔæt. ²hˆ‡'œ^¶‰b–¤Zí;™’^Ó­UlIÜâ‘Æ$Žê¶âX¤K_äí•‚›ky* Êj'Õùò¿›ðf›ž­×Y|; E\¸¯úâ•Fx°g0+F†:»òqæ×1. ’ó$W2#ÞŸL„»œ|‰ÖAÍâ€Z_RÚS¦ºÈ€t¾‘-©Ñµ b‹´ºKNbzyõ“Ͼǘ=„xbAÎ }ÆR‘´·2ŸâËìV©”ÆÈ'9øQ’_Dš³o¼Ð‘[/·ò*6zcøÁGá2§l¬6 Š’µÍLÁf+.Øl‡ÍBÎîn]‰/ 'ü¶oÅ”Ä`rw϶º8SI³„»@¬<üØŒÊÚëÂuó‰ø2™~¢{kÿZ刵 W6¦$Òq•ey T}ÛˆË'ÈL^ÇuæQ-/§¨ ;Y ê¹´aæ"mÔØ“7ýƒ­[{œ ¹±sJã3ID¬xÖžg.ó‹¸6ŠCJ9¥\áõ¸šD 7Rv‹¢N6©J|tµÊSЉ}F42äN®W½iÛÓ«×2}ÓÎ'ªñk¬†3/XïÆ…tÙKX˜5›†L(áÁ¾Íá2×~Û¹Éö4þæ2ÂÚ Üxç·¤°²PÏñÄ@½¹\¨7ŒRcé$¦¤fOIp[<‘p_Ûˆ‹yŒd_~¨h¯avå¹¼¢pÿto¦LãEÉ•â‚\¶Õ: ¶&¿æq^ùC¹5]£õá*‘j–ÁZ yE|´H?‰_¯[Îý£’ÚM+ÉùƒXÑxß}¶ü÷4’ý ‚ý b%aÔajo¾¡¬n2‡7wÈ7/Þ0ß[ó1¥õz¦²7CÖƒfÈ,iÝ.Ü`Jë$Ç?‘´~ÁÒú¿&­Çî´ æ ʸÖÍ>VW•Øë›¦Äž2p’ØãýˆÕ¥öz¦rV+gÞáj‰ÔþË, 9CȘ#‡eÓ?,õk~$(±ª–™®(™|Eq3Á2xª2—%pj‰ëÙ™>DIJB*—Ó÷R€Ÿ“é=¥oý«9PðN6$îÇ¢'‹¦‡›£9¨ÀâÔ¥Ææ¼kÖ¤æ¥XUÉΘf"ÝW·š‘ÓÚú¶¹Ê)磨—XhåOMÆnSå/XT ÆŽÄR/,‰E¹žTÈ9ÍN¦?·˜EÏkO9³¡½n~‘Œð¡×|„™Æ Ð[ºò¨7Ì]+}Dc§¯Ø=”0EµÇvz5½³8™vÝy^×Ï;ÞS\øÍ '$>oäVÉä¼~Tî)#mAr¡`ä_«e$V®¹¹tû[(„;u.€è°â6%Â5“Vþô·ÿϨŒ±Ü¨ÔŸœ&ŸuvκÏ.Gýùí¼rõø>ªðÙj6éçöÖý¬Öùïj­VßnTÿV«Õª›Õí&Úߪµ­j³þ7Q}|×Ë?‹ÙøºøÛm:ëßNf±÷൫'ÀÅŸíÃz¾Û;>‡Õ?à½pÆ×}KÂJMLÅAöKVcL3›aÚèítJT÷ïp¢LeŒVe„€‰zW¤¥R¦²À(ÀÁJu•Z1=$ö¦ýáµh/ýY SôÖü7t§?Ü8„Ÿ‰îΡhÏ/•°x<˜O.ЇëÕês³œÍ;Óë….è£X›WH)½²S*eQ1,5y®%¥°¸EÜÈÆº>·ÁN óŒ1*K#‡™Žw‡ Žæ%»Žüw¿À?qè׌)è„ÙÆðדÅônÂu«ÝÊlLA:‰êLÙ•ÝP|b-UM–ŠÌ‘pÅ•"%”f<Õ"ØM2½Å´ãc·q2„~¸¡"z~PS޹l©!àÉANîä/îEÿînt¯ì–iýÊYò¯E2$i1fn„Ê—†0ƒÉ鯰”^ sƒN1Sø-¬Õ…ªþdWª—é^/ílâÞ.SͦT¶u6˜/ 9 ¦ «­¾}¥ ö¨vôàäÛy¢J_Oƒùb𔓱UMr•¹&‡5ë—éØqª@§_&ãYbËWÑUƒø·‹Ñ|(ѽ/&ìó%W¾%Z#æô †5záZ£ÉøüÒ‘.{h‹NK´…棶,Yb µÕ<#]kÅG®„½ÉXÒÜî¼\…a%©”4Z`0}oúiÚ.cÌ’]?n(ùúÏà£åÉU™ÖYW!F{ bpƒTÂ쯽¿û{™>C¡´}㋺`I$ó›´[¤ÎAÚ ˜(f1º—[4œ™(L“}O<0Z®n‘s2O±÷4‘õ3eªî+úLyʜ쀑•Au¦ç ç—™–µ±=¥.Žsr;N,;E .°E ‡çðÊ!É!˜Ë_MûT·.TUWûPSCyɬ"šVE…ÙDáÀ!‰HqçôÍ•bJã´àÀk¼p…_DíYv·…¹’øE€nÛÝèà÷V˱ég)RÚc¿P*Í W(ýÎE†—‰lÇ€såÑ+âøŽë¦§‡,^މ®­½;ž½ÀaZÓgÕMt›ù*t1ø6Ä–¼+2€´ùÓnIÅñµ MÙ*"àÑd§× >ÝcU”]f[·:òá;™ò3:r„«w´p\A‘Ž€YùhzrúÑmZW-Ä›“ø®ÖÐ ¿4g¼Ù³>©¹Ì¶™‹^oG ­$fXh^¦˜w¨U'À¿fpTÊm¢FCvSÒ[‡›†k‚£aU–z4|¡Jö;•P1ón~@L…°¨t#ÂÒRòº]Çë“çÓ{VWœj÷óû;*q9Ä¢Õ b­œ»Îv»–;|­ÐÍ2‹$c–Ÿ9rªc|>_ÃZÈçÝÖëã^§ ª ŠåðÉU/R*;ÉVn4Û•kܰ@OìÃÈiÙ¥–]h†e8T‡Ø²Ë-eyu»YÁ¡™.V¨à|Ó£p.Û8Çz¥ê”²jY t½  RĽrè†@ãÉüK[£Jû§Y}±‰ÕhF ù|Nl>g%¥YT`i'——5^¢È€t@Ç/èš},z?¾ž.p×c¡s%ü† À¬æ²Àœ}ŽçÉ5hŸ¼Ý±žDl?oûƒTd‡À8îøglË¹Ö gÑ÷•ÖÄâõ'n]Nje ÊQà,º®ûüŒðJpô'O2ìÂ+Wù-†§âÀMŒù=JLÄóyáÁw3ÂYöøçC½#çxCg?)û6ŽÏâì ‚3Ð#¥e2 À/´_pgÓ\îy8ótx†¹Œxr¼$l!#gŠÔ(^UåA¿Ÿ–áO6ƒ£øRíÁ¾Ü²ªëgF'@Xb…5{ûjT—ÔŠøLônÔ0ר·W¡#WEiª™ÅT"÷I ømì°×ékÊX!KÝD&KÌÎÑý.’”Ôl=›ºgÅm:U`Ùg•áØä»5ài ïjÅW5FJ¡þ rðw¥ú ‘jW×íèå²Ñ|yã†jÜ*¾ÂwÖ× åB `<+H`nœ¼lØT ‡Ø]D[jÔ…× øEú,†ÚnʶHö1£ˆ)²ñ€ßJ (ÁË3´¨rIC”Ô¯ûSà·³ps\E)õ€š¯°ä²éŽ48P 1¦sÉâ"}²2Eû±¥'úühæF6 ðH@ä¾Q]6| ôÓäë ¹›/k&eAYW&²@Þ½Â3wÊg7‹™¹ŸÒógŸF„;fÈ–ÓkbÀs"¦x}J+=¹_råðRð0`U³¶v2¤ZFÀ´¶0fl*Ê[¥ ]ÈŸ/ñ!*h»UšøäÉЗ‹êÁÊWÊ"¶QÕk•¥+M-t DôY¿‹½e3]ŒqõhòÌ·]\aÀï\×óú°°ž‚÷–ªuå¡\%T3¦é0ÐXEk–!Îåi!™ Ô‘€EÃh,²8àmÿk¡1+ g)QŽX°Ÿ o·€“¨g ±äž‚ö!) _n†ƒYlÖ¿×ÌŠz<Ôô^ôŽzi¤¡Ñu)¨½ñ’ŠNâSB»¤ E6tqøT­”`«,•;A‹,}¨û.Wj˵twTÇ$léZ©^j5Ñît¿@lÔ^vÉ^]:¦£6=‰É°4Ì ÓLjs”,KñGñÚq¾öoïðžÇQûUU oq/Ï<« =®Ùmz2›%c@÷53öEB\V+ѶMg·S‹Ï‚ƒ|ñj‹êÌ£B˜ Ý z èlGçÊr€bÊçË1|¾†7Áð¹a×Fköãl Ÿ»agßÃd}ÍR,K;—±ÓpÌä«›ÙR¡4„-¹Ê\£m´¨ÏÚw§à¸Á–â¬}€¸•€ì¨Y35цĂºó`—¯ôíÄ1+'EßZý;öÛÇ÷ŸiÎ¥¸Ñ¬þ¥¹Ua n@àÈ‹Ç*ƒø5{žhKVâ7gA»sŽ1Ð8'ä—¡»éäóPZ­ñ,d"ŠE1“;e)å!í(}a>í±©²Ç—6&ÕÐVãv5œs9Ž+øÞIGæœÌ_Ó!†f*¾ à•ÖtÇnk#e¦&=¹@•ÚUw–Ieü[¯ì–Äé.®ÛÙ®ùÚ.‹Í¿:oŸÀÛ'ôö‰ùö¿Ý[sæÝb‡:Úåf©aNV–•W™ÝrúSÐOæÉÔåSå_›­\ å (O-ºGA6ÃZµÊ•¹”'ï(´ä±±puÙ€qø+ˆÌ;ªÔ®tÁqX: ù1Ý?K%%Ç®ÊçQa1f(’㣤‚Æ:ª9ì$5Ø–vòUXíbòâ^;–þ’~oKìÊA!µ›/ýûé7 k´š´Lé9e;ò%õN¦Êwdl‰Îô:ñ€È¡ÙÃ1ÆñwO!s!°½‹eôË É× @€ª|7“ÊÅFxUÔÁ;MHc‡v¾´c“ÎMÄ)|hËQ<Õ”ÌÈÀFjÛø¦¶mÛ«8D^"C}ÒUa{'ø%<²K¸'KrSôZŒÒôRÕ„¦€´ê©®µ*mMÙÖ0f»\+:ËR¨ºÁ Gç%´ç=ý“;ý 9ë¡q¨@2ž,®oƨêÔ/wÙ_Êa`=Ɔ3¬ Pj—1ŒyCc‚€»‚“XÛ âÝdúiCM2©†BcTs0NÐYs™T4ÑфZõcêÄ Ð~Ò^lt´O 9‰äB›&óÅÔ1€€H /tR¥’||zQ»*\ --%¶³ Ýœ¬9`êäÅ k´¢ÜÀ§äÖ„IÁ+# Ôr¥YQÞÄ×Ð÷’ùÖ6 ¸÷a‘íO”·pÀ[ÎËÏñe2´¤!µJÕ°ìŒrpºCpråa” Ëéb§”BƒÖ¸=j;€‡Ä‚íù@ÞAç ±½VJ¦»æz&è£Ûì©­n6QJ¬Œ BÞ— EÖBß @9ÏÅæ_ļdIó"Z .¨[qpÖDœù7Ê~[3c‹ô;!è “¬8K˜±ˆšÀžyÿòÆb‹%É@Ûö»uzw¯?F$‘)‡¤%´nû D üX‘æ'dÕIá߈÷uxx€SåÛÒÌp^=ÅÇ )>Qr[vt®‘¸äÔàÎ \ çdªîWu´nÎq÷ þ÷ ¾-QöÌw‡£J]”è®Ì‘¼áû£Ë9=™LI‡’Þ7l¶övÚæÃÃÖ?º§~–wÎXЃ¯@àhïx½8Â.kU95X¼ÿö)Pœ| #8èu­çܼ$_ËÍéâB^ 0Æl§Ä)ÞJ’3”$_(É”AÈäŒQôâéÈþ)L¨$ÞôvÛ;¶Ð*RÒ „/ â^«{ÚÚKáï잢÷Híâ> Pp^çc¼”Ñ ¯I2XÌûÀ/O±R‰¾! ˜SM¦]ØOP„">†ÊÊ£®uNGc„AŽ14ü$õQÿz&þEü¤×ÚdRˆªîí×ÅpðI1`ÐÕî&³Ùgey ÜU¾ÙåßÛ´ÎÍ-9nÜÔ"‹‚¼=‡~ÑÏAâTz[_U´Ûžfµ­g·ífµmmý§úf¯s‹UN˜âÿýù'‰t‹b¡uáœÙq“ÙC;É€V_Zqh±ÕahoÍk°å”éG㜸µ1[ch|2DV¤Ó8’dÛ0Áʶ5{ä'Gh’ðÚYðê«ÃÛË‚×À‹m ¯—¯€×Ȇ·›osux¿fÁÛZ}¾¿eÁÛ©|£R¼w4H¦=„ˆtø¥Ì[S. Â(æ©e@NQ`Úô#Îx`šô£Nφw õ£®.J…¯8o±ŸÐ‡’,Ø·ßýDd,۷΃Ÿ_d;Þ”/Uû¯vÂH>Ÿ%îy ³ÔãÇW"Ø.£lµ dÈ´Tä—¤©eÝpž(;gz”²4“) M$ºé¬R’§(,pæŒ~¬T­4ö«ëü@ßÐîmtéZ¶“¹"í—2$†)º©¯CTh(ón6mýnÍyüðÏÊ\¢ Τ~7Å ¾&¨é9RE;T?LŠ(ež:˜gª«Ò "ŠáïŠcí»ÙýyüÎ}\Ær¼I©¥Ïh³é¶Áˆ&¶Û1O¿ÓTËm·%7ã`Œ|°øÚ‹¨jz©PÂÝ=w»ãÂUKæ¡\ MŠŽcÕxPþ¢’IQ˜q¾86àžÈc}È-ˆ/¹36ÛÔ½6zt²ÂÝ2„ó\Œõ“Džÿ“5ÍìÀ™Ž¢šö–·Ø4£%°cÕ© ÖØ+¶Ve7Cž•aÎáÕ†zþ—-eÉj™ÂË’7èÞs‹Bq€Ðåö1¾.–ð^'üA^b&Ø2½C]uÞ05ss¤Ï1uKúžUjNu©®!»[Üa4ð»áør8poJèC'¶=)ÕØ¹p"‰'0­£‰¦ “SH+ã>Å8›9`LªkdçQ _Éví&xÁ˜ƒÑÛ Rú³ŸO®P2}bÔ«ª·Ó¼sy9MfÔÏ`ÏûhС‹Ÿµ¹7’ð£œÌ|WpVâÝMB´o¡mëp—=.»~Þ"VqBgFä亘Ìoü8¯Â°ô±ˆ)—¤#·ÙÐ÷kê¬ÊÏ)ÛêÇ š$ã'ÅjIÉþ-ÛŠ1¦á¶ueR0½¯Lô¨%ç“zµæQY¨E:LˆF9 µ&?™÷TFSÈ«¤N(ŸuÿÐ^¡ |–`8¼†œ Ò”­.¡*8ÊÇÌ·J1êfn8O“1E<Ì9Î÷á¾Í1Q¡É:îW^§ŽdsV7²:NÎàØ½ÖdÂ8e_¨9wŒQP`_ÛÉX.‹w Å&\NÆI 4*ò[éÜ^›¬o¾‹Ó“g''ÏÎNDÁrÖí­Ù”ˆJ['‰ HeH~ÉQ,©Ý® W8nê¦~ÌIÔ¬óÖÉGm¦&@RmòO‰½›dð ““C”,| ×Ì𜑠ƒxÈxB™ï*.ÓªœËKØAæ£P^îHFnÿÐxÔÂ.««é Š‹¢{9ÂuÉôó4eäª%ÓÉsÄy;2K¦·ûYÓc 2J¤³•hƒüVÝPeaW@W™ãÒ&\Ð8^ó/[ý|Iís6¬¬\ûü•Ϲà:чQðyÕŠÁºç(’Y;eåºç‹»ha™¬ªç-•~3üØ-Š^æ]†ÙZ™v3 ¢S á\ë-Bå©­Š”ºdîzÚ4»T¤\ZðÜ«ÑHÔ™MË­ž¬ó–Yˆ9Oýr³&:“u|bµÎYÛqê®RÓ(åØÚ3ö·© óØ*çOGH«V;wË_­dñHÙŽf+’Ébxâ‘åÐS*Ú`¹byô”x<º.™ŒÍN-N™È’"Lb)»“/ýaÓ=βQ8—6–&eɪF13+ËN˜—;°e'¶NoYÆŠšt¤sþc¼Êã,Ę=<Öbònúªc:T¸Ž6¾c²,«¢7ÉcüºÞ¸ñޮʻ¿·³'âÅñ–ìX¿@6áp)&ßr‹¿:™²N¥ޤ‡I1+ÊôO"Ä<‘@ÿ]ĘX}öÕ(IÕh_U ½í%‚¯XIödœå0.V±H2+I2O]!Ýêey-æÓy:—fY4ÇÃÎëVYö$*«ý=ìI¯é:×*%nñH‹‡z[AJ,S„Å/³˜»k}â:ÌJ£•süËJoñ2ÃR~; Åc¸¯úòÂ}¸g0+F¶:»òqæ×1. £Æ³uùàÉd8¬wü )©õ¹Uâ˜HS]o@BßÈÕ(¼Ÿø"-ï’£˜^^ý(6K?Äô!V¬¡¼T’3h¿­e.R™ô·2ãËlW©˜ÆÈ'AøQ¢_Dœ³ofЙ‹u¾WÝ]•ª:?F¢ T ^U”{ˆ §)@o+"‚¶6±×©ŒÎ›o'§­*—D÷¡¾í´BÁ{þ<ÒWûEY-Ã2ëÿÖ^ÄK_WmPÂÂÚßÀ ´²ðdÛ—"JusOÆÍDž°ù[nؼ áéü/.<…eÍñ‰%þ'ŸR3°#?¡Û ä§Þêš…¿>y‹7®½ã› P–ô`ZúëÈOŠ þâÓÓ |Ué)¿«^Ë’žêõ¸ô´´¤AõàŠö!]t1Ÿf—ÆYyÇŠ!‡þu\¯SMœ«þ¸È ×5u±i ~+ôPß‹950–ÒoäÝyãÖ³ÃÖŸ™[Uq$b%‹å;f-Ò¸§Ó·CEÅ(ÍFÞîa‘à£zT‚XÊ,T<Ó>‚·©¯é°$ÿú³Ê YÞÎ#ÏÅ“‹emd‡%Óú•JŽS,‹Gë¹äèŠï£âuT"ÒÄ SÕt/Šž+ócuf ¬L’ÒakåLÍÔ12ì~õ¦åž=bçìQø}4¦Äüc‡+Èö𳚛ï±ûÞØÛïM|ÿ‰eD$XÙÅiÆc<߯Åé» £,PØ\ðÍ6(rŠM™¾A™äCï|.sÊÆjÓ (Yof 6›qÁf+lrvwëJ|I8E¹}9¦$“»{¶õÐý™Jš×ÜbUÀfx±'-½7Ÿˆ/“é'º>±ö¯5Qþ‡X»pe#aJ"]WY6—DÕ·¸|‚ÌäyFépÙª¼£¢îíd1¨mi Â|FÚ¨±'ó[ Yÿ{ƒ%É"àæ)Ï$±âYßÎ\æçÑeöæg'$ÈR®`rªD 7Rv‹¢Nâã…ÄGW«<¥˜ØçaÄ­ˆ^áMÛž^£š…÷Õø5VÃy¬wãBºì%,ÌšMC&”ðàßæð™k ¿í\h{ samù÷áå[RXY¨ç@Œxb  ÑX®4êÆ©±tÓR³'ˆ$¸-žH¸¯mÄż?F²/?T´W‡0 »ò\^Q¸:‰7S¦ñÂäÊGqA.Ûj\“_ó8¯ü¡Üš®Ñúp•P5Ë`-¼">Z¤ŸDÈoÔ,çþQIí¦•äüGáA¬h<Žï>[þ{É~Áþ ±’0ê0µ7ßPV7™Ã‹;ä›o˜ï­ù˜Òz#Ó Ùˆ›!A3d–´n—u0¥u’ãŸHZ¿`iý_“ÖcW[se\ëf««Jì¦)±§ œ$öx?bu©½‘©œ5âÊ™7GG¸Z"µo§jNXpI_ÝJo¡J!Dö•%õÆÖ2I=Sƒq?9%õlæ—Ô¯W+È7³ón\Üs­ÿtîÑvØ¥ðŠÌt>ÎûÓ{]ÃÏaÁ©¦Éåb Ë’1œãøhn_Œ÷Óò®töY’¬|ÌÅM2M„*ƒù *×IÅÌxÊ»ôê(9<ÄDpœ,˜ ½“v°#³/ÈŒ?˜ø?+¹±›éÁÞ=²ÓFJƒŠŒGw»îQ“µxæ!|ƒÓÈ4¬/#id¬?Ôô6%…ž øüB¯çVÉä¼~T*#ËmA—w¡`ä_«e$Vn³¹tû[(„;U0€è°F8åÉ5sWþô·œŸQK¹Q©?;;8…‘>ëìœtŸuúŸ’«á(É )þ©Âg«Ù¤ŸÛ[[ô³Zç¿ñQ}»ù·|ªíúævõoÕÚVusóo¢úø®—³9ðEñ·ÛþtÖ¿ÌbïÁkWWßc@ß÷3F‹ËDT*Ïàÿ·°æøê§ŸþŸ§ùüôÿÈÎ2uå­$*J9MТÓ£áÅ 3²ê¤Q$›ë¬Í3ÌQHµ¹(l…+¯#¸e|œL¯ûãáï,(é¢Ð4øœî] 2@,¾GCìS—Âú‘X—.êL€íövÚ”+yï¸sÒ>x/Áìÿ¶·’c~ŒNÖk[j¸´ŸÓ!+Ód0¤òŠ€¹‘%~èk9 b/ ¦ê%_—CÙ7 ìOÈoY ò „É(Ñ”" üÎ86Ð’"c½hŠïïúÅpLðˆ*ó:YLÓ!`jÜ3MØð’Ê¡ÎÓKXŽD"¤_„ÃÔ }qÏõ%áÖrðSЪô-tq:¹MTÉw¤K¹ú’ÊØ’Ðw ?Ág—ŒL…Bù“ihgDµ@°®âèž«ÞÂó[ 6 þñe8¿¡怰þôzÁÕ¢3{ƒbå {îê Õ6ÐÍo¯áa¥_ µt•\VÕy¾\ `¯ß‹ˆ££Š\ú Ú-ŠH䈹øï¨}O’êÜéaËE³17%}"…㱘áŠÌîgóävV÷“΀{šÁDŠÃpÚX y8¢¥G0ÔÊÌ$9¹¼Åàj½îí½‚ÿpNOÄ]ÅOŠ«½³Q~[«LðP ä/ãËÊä§Ÿ3‘oÍøáü6Q¿LÕ/søåÿE9þº¾–ϯg÷ü˧«º„«M'SõË\Á¨0æ· õõ¦úeKý²Í¿Ü G8Ê==Êå@r F9°F9P£Ä_nÔ/4Üî@ w †;PÃU0q‰/þ¦®~i¨_6Õ/[ü‹·:^‰KêR­Á¥^ƒýŽõÖŒòì.Õì.­Ù]ªÙ]ªI]ªI]ªI]ªI]ªI]Zkp©¦p©¦p©¦p©Öà2Ëoz”¿«Qþ®Fù»åïÖ(W£ü]­Áïj¸¿«áþ®†û»îïÖü®÷»ZƒßÕ,~Wø]Màw5ßÓq¿yù¿Xˆùß…³Îa»µ[üé§vûx÷í«ÿ] (þwa/ýUnüu?ýV¢ ø¿þߟþ<àÅ`ô—b°ë¥ …¾Þéí½Áïðçkô~Àÿÿ¦áÓ+½.v ßÿô³§Õiž3øx[Õ‘‡Ky¸¼ Ï5w·‘¶Ñnùˆ{i/Ñäù½FÚ.›lmë¥XeÕüŽ#m£§XÁžá´(þ”.•ñÕžÿ•‚o~å¿õ›û•ø ~¼üéý_<žäw?Ñ)ùRüw'}¦·¢|%Öq³U®*|o÷Î`.8½ã“3À@y þ÷/¢¼·OÏw{Çç°úâTÅPíÌá€7ã£>xå‚_'åNJñ}­“./•2QøœLIåkTj*UÅùxø¹‚ŠÅY2½m–$¥ô»½þhRõxØ»ÉôS2JîI}èîŠöüR¼í‚j@žê@hfým®2-v´NcÚõÊESEh5c.¨ŒöH-»3öïóBÕ´ Ï®w,ÈtHÝ­£u^¦Ÿˆ`úÕþz²˜ÞMf‰Q¯œ¿ç…Ó%@Po#휿-uÕ±R³¡7ø”¸2a ÎÉx}»͇w# p“´ÝX6Ý'}QEÕL¦ ;Ï¨Û ŠñXß_ÿgÅðªaWìÓq53hvÏ7¤^]. jßãÓˆZ|ZàXA)¢}†CnôÒXUÝùYG"½@eŽ‹jÍLË7XÖ *œN¾Ì”b¯°WA8ÿÀ’ì ´»*PNÈ‚Û5áµW„;žŒÉ`?[\¨u›Ñz Ç:ž ßÛ±|UñË+ì þí”kªïó÷ +¼rïçøoW÷¾ï`”Íq¸ñJ@‘°¸ÄI ·Ãq¡Sê‹î°4Õ*ç˜BµGΊfT‡À­²zÄÚõºK+ï8ûLBG·zd‚ØEµÚÒþä¨ûÌr* (¤#óõø™¼âDþø›ÖØÇhÁ˜J–ñV=Fjçý=Ž GcYUºHæ_ØÔUÚÂÍê‹ÍýÆü°YT/š@&——wp_É餯6œÿ¸4jÞ!—$¼bî d™$ºp®<©èÔ2—:°°Al] €ŸÍ®#ˆùü|>¼Òõ‡<Ê!zì” MÜô/±*ép4J®â>÷G‹„‡ðê)>æQw¢+þ¦ÇQà¨á2JÇ]åo:ÙéítÎÌ3«@/!*Õƒ*½¾7úË:ŽTßí œ³ò°]r¦FÁíÀÁûަw»ð_¸®½,p|º¸Ð¶^ÝáÁ{˜H×{zxÐùg ôJxDöºøÖ+É:“^Z°#†@5ñz1ÐÁbͪ×êž¶öÒN:;ïÉW[‡™ÃÀ àá´ÛëÔ3æDC½$ƒÅ¼áSL聾E&g(•"¯HM½i°"³YÛ|Õú¹«Ö¿UÕ^)Š€k¡vV)…kÕ~åJ¨ÝŒöM·½[×4£¤©.Œë1¦Óà´íz¦,¢­ZÏt˜Ö3ÝA+´s€™ÅLë:$Ç9Ua~vÜE èQ8E¦Ës½ÔtVƒô ŠkÈ\?•‹Dâ³FÕ¿©aË Jþ„©¦‘ÛÓœuÓˆ3âqx1F´JVu;ŠCߪÇir5Jh§†"”™DCkCr ãè4²Ã„¨Î'íØ‚ùW›´^Ü¡ü‡0‰w]%þ;E:åLÞu1Ò&VGS# Ý' ÷¿Ãð®´³ ‡û Ï™kfÂø@xÆLšÖ ã~|T ö•qä8£„ü(H´o{ˆV ~(ÞªÌð´; ›ktÿú; ûWÚ”>k t'¬BçÙÑ @Æ‹à.è>x¤mSÐÙÍÀÑÓ#kƒ¡ÁZZ3µGb¾`ª¶ ¾xnHÛéÙˆbÈ3e4+uñ§•AZ @²:}`[öÇãáÍp„Ó\ªnÑõ'Q'¨§ûûJpÆÿPåÉv¥’2ò˜RyÇ»¬”²„”²`®Æv ŸFÃc a€}öµywpÎjÁB›Æææûþ˹¸ˆ2½òFlÁê;Ä„{<â,Mþ !àÄcóÂî'È*D·ñä©ý;dö ò²á¢ÁÒÉ:0E晩ÖT1ÅÌÛÂé$ygÛp¨A²,0áÃC8\ų¯«e|%?Då¢ò+*»x¦{‚då¦" ­P꼊¥zPd¼i›µmˆ[ây ±ëBô å[ž¡|Û3”‡ïk±àA÷µžú“ÿ5»ÿöñ_µ|éÅm7~Ä}S ÿ…ÙW0øë?*îKNó/ïuúÁ÷JS=Y¨W?æˆûj…z¯q¬×,¹–ÓÄIáø.ñÉêB@ŠëÊ‚¥Ó¸e†]åƒõ4aWŠ{ò#þ°€§1<ùt' t×n1Ò]g&˜Ù|ôPüVRÝR+FHÕ×DH¥R%ñf§­dÑU㤸1=ÜüÖaS;í“7˜|óDOí¼?ùPÊ ¢:=ýÏâj<ïÕ3b­V Ú?>+- 2^ò{|PtW4°ë„\- ¡òB®ŽÌ¨eP^–eX9¼¶*Éù£ N?<"ÊI΄'êãB¢ÞæÕöV‹2@æ†Òy.ý‰ºçk ÊJ¸n˜7òÅv¬Ø‘/ª#OHÇr³TÈ å™¢–…q<,†#+€#bdòÍKÒ°ä…i°Ù÷å¸4 ˜–tc L;°~€w°¨â^¼|%æý(;ðßÂ_TäѰý(IÝš^Reé1ƒœœ0Ž0_÷b;B£úŒ£ºGŠ|V‡Qñø $Ž`Ó&aÈbðÔ\‡­#·(+b®OÏ+ÝJž‹NLUxؼD”~ÄÒ<8ç|õ©\—‚•½l!d÷ê>²Ë$QDÆÁs(®åaq,&³ØJY®– 3‹ S6»˜K¶ã^JMØa vÀv0]?%w0»XÂŽ|Ót†eÚüx>á 7ˆÖáð[¹–aƒŽZŸõj•°®#ÇÀ%Â#ÏèßdS¶ûKMʹ-ÊþèBÛ5Œ©O>;ý6\ôÈæ£4â£Ôaö0|~C^zdÓY{Óæ¦G?,dhR™%ÀAÍÕÊÁEL>º1ÖÆNmo_Ë'a¸2|˼ ‚¼ß>EH²¤»çv;[„Õƒ2óQŠmodÏWðZœ~øSx-~|žê“éÿ¡ä*wz,ñÿÔá[7ÿ_m»öÃÿó=>¼—mÿÏ›V{·Y·÷æ4õÿ¼ÇŸðÏ.þÜ5AÅŸþë§ÿZÍT-b²Ôÿ¢ÎWu•´¨$!ìMp¾ÌEk<›çpb–ÐS0h¢Û—wÆÛý 6¯ö† *#|Ìü^‚¨?;‹k †;“þK~¿ßÿ<¼ÿ\ˆ_.çŸÿï`V¹£¨€ÌýÆž|õÃä÷‰x3¼ì‹_îá×ì—ßög€ˆÞ0¹¼¿$§ÞÛªÿŠxÓ†×ý1 áFþúW•)¦sÒníµÎDEP˦›Vš–™ÖW7…uƒ‘n§Àþ38`ß‚„¿v KþEŠO·¨¡2¦•“ë¿R'}/©ÑôrAm¹¸‡f0­ä0>l̵‹a â[4_“ÿ`Ï,ø•ofÃK/îAÌ&£[á«÷hѾ¡"@bgýý«]9@t=¸=ÍÔ`88gÛ{ÄõL«?×»(­Ï& –¡/a(VÇóäÈPf²ô†ˆï … iÂÈÐAi­‹—¨YŽ­¤åÝtr B0:‰†cÜî\ $ &cvÙêæÜGÎ5eMH¾ÞMÆ82˜ü½^!ÐÎlø;ìRà ×7ð”ìãB"ÖA¨mT6×»Å" dGûUþB98„au7\]$÷02rdŽdÒC1»Åt…©ƒcJì„\*ÿ% Vòµ?˜ËñéÌÚi‚CʉÎV9ÄIÝôQ$—å :6IËÀg€Tò éö c\SŠBÌ\Ø#œºJ8yG†?‰Ôň4 õjÚg¥G9øúó¾˜ßßÑ´(GêÝh1ü”%ßÈ:¬7)'æÌÉZAŽ„íZcùŒQbGQO½™N½–[Df7ý`d£ÊBKŽED2»øþ6y9ñŸZMRSêÌý/Ó™KÏbÎÜÿJ%\öy:NÀ4ëÂ¥ì–è܆»¦É¿Ɍܙiâg?ªq«±åð› ÍétOfC Lvó†:ÀVò†à÷¹G¯8x|LšÅ@g{‹é–TmؔϘ@Va90Œ'ÀÃû C2ð°›»KñàÊꈟAæ®1³û˜Ù­0$3+8Œ»$úûˆ9ŒáÆÖóÚKØù˜*z2a†ú÷”Ááq;ŽFÞ/sŠ.¦n¡ÏEBƒˆD+æÓ‡»¥ÿËbTrK§BÕ'ðY§$Î@{ï9ßwœ¿ÉCœBµ}Ýüu·³óþÿ;x¿³w&„ud¥ ú…*‘Ùü_"ßC0|,äø““Þñû•ÁË#Äýôƒ‡Š:àùtñDY=Ë’9$Ï_0Ð'™õ2Rb­˜¢3Å«ï­v½Ð ±žœyÞdÜ@Axÿ±Ò?¢þc-ó»þc˜™@_¬aøëþ2¦—Ó± €ðàdX9ÝÉtêq“nÎtÔ,i²å7Ù]ÒäyØW- ôBxR¦³zMªÊY½ÄWma_ã›È+2š @«²lòE}‚òbïuÒs’µñß5y@üTäN“ @²Ý’hŠ˜)ï¡dŒ²6«"Òlqu…êp³¨w™ðÕ–ê£Ü?&[#œO>›Òùœá{Fö¾Ø2Ð…÷ ÌÊŒ†ó ø@z«ãá)a|ðYËþ÷¬¯¢ð³û†SÁ:â¾Gkë'ë5‰=í'í)ªb¦h šfý6YäÒh‘EnPèa(4)SMºØÀ#ÓcÙEÝi6¼UÞ˰f'ÕD CÉj•ãøVaíõb4Z+¥j¥ZRãUÆŸbYóé"q”i ÏÝdÚR"v%A{’9ÌõV) U× ÉýJ@KÄIž+™j¸]{ í’Pô-U½ ü7ý3úÉuëb¸ +¼êYëÈ6`yõêZKë¢e)½×tÄãj×åxW£(ý×Tºÿ±ŸLû?ænÿæ÷?ª›Í-÷þÇæöæöûÿ÷ø0°íÿG¯ë*ÿ¯2þsÞƒ’ø ¿øÍ¿ú¿ð‘VEûÝùvîßVOñ»ì:Ç®s·CÿvM6›üVàqå¿òz2å@‡úzglãü‹v$k§¼ø ÎŒÿŸ¦“q¡5†Õ…#«L¡˜Ûº-ŠÿqîD/ïë—ÔË%Îj]k¬Š<9ö HÂàÍ1-èû5õž¾²Lw?®P\ øïKâCQ½tß$ƒO Vœ™\.s7¯í}hþ}0ü‡§I|І1){º Úÿxç¾p’ÊŽé˲±ÈLÔ»¡¯YH³0[^Ô׿=Áµ ½ñ± ŸtòÙ®b»ùÆßåñ‡n·Äg{°l7Hªdô©šîaDý¦:3 ‚no¿•äæòzœ&³ÅhŽ^È”báÅõ:y‡èÙaW|¬Õýöà5ú—å7\=´§º?ñÀëž±Eœ;¿Ñ:*a Ë[¼¾tÓÅÿ¹QW½úÀvœ¤%!ÿ­4\ý7-ÓAÝVGÿ‰%1a½Ô¦&”oÉ8HLþ›Á G¶¢¾Ym¥7Ü·€Éû;ÐõHŽPŽ••Ÿ†ãªu´ÑÂ0?øù¶\ó#Žü:«‚‚ç…ð#¢¼aî»ÃlƇ™Q뜇Ùéz#Ý7GêWp+ÂÇ ï-Œ £þ6«þ[îÒ¼0–FÃy‹/`Ál{²fä—®€°dÝN2+Ð7kÙÞÒOŽ|Û¥¨±6cc+P72„ƒØ¶— A-‰9ŠsËj;òÞêExžwµ^V+÷ñ¿iÜ[¦þG5xßDzú¯ÍZÝ»ÿßüQÿõ»|áÃÙ÷ú¼»wÖ:îÒ ,|Lg3nùÿ¡úÞ/åçÓ© ÔÍÓñ,½O·äe„˜÷Åb<$NX¨–8»ÁåprÞÙ.s(#ÿáד_/¦ðp*ö“y8š$W~ª+‚©Ef0Ø8˜Œ¯§ 7 ªÞL.9Á-(Ž£Á®¯¯7ŸÓ­µB~³úÓ¯ÍY9@–”àpjnÄ9ÛÉ»z¼“^VØçQ}±U"'_w¢¯©—¡}VÇð"éY3cˆÝýãóžµò5íã}vT­¢³±vâ ¸:Ѷæ[ü»Á4hWO˜¡¤òþ®}zܬkBLàxþÌ\4Ùþ-Ó×ëðžÓ¢Obƒ ¦Séûuù¾Óƒ£{¨;-ê)ĺÓõØpzLÛ×d{§GV÷XsZÔRˆ5§ÇºÓ#FȤýÔ =Á’%!Ë5å³\>´ªé²é¡ðèì¯ëòëºýuC~ÝøÉ¯¨îŽŠÏ艴™0]ª´ 4 ¬ê3|-% µwh£ óx½ÀYšqqÃü»îüÝ ¿-Ô Üûêy“nûÓÿRd¼î o]Ö**LBŸë­+gà7ýfrÎ[šF!“Ï6¾‹´e @ÞÝ%cYtãj¢@±¬)”/ 6 Ôf1<@5ZÀ×ÇT„|V,qò!)Ña£Ä]ãKÎH¤â€aÊÈ~DëààÀ ˜…#N28N†ƒR hŽÒ H܈Bž\Í ®Å+ºx24 锾–ƒ³6[Ü¡PJc’T«†V­Tñ´„¦ Ä~›pÕu>Zb‰£Ùayöð^?0ÈËF"â˜"AŠÖP$€AƒT2 xíÁdŠÕØqrh9ˆË Ó(• 狾 Na¨@xoÎýëþplÌ·[Ù­p-úþLÏ›Ìbv3YŒ.GhcšªÙvÅÔáÏЕjâfr@ L)rÛÄtzx÷ßT§_å“­ÿú¯ð¨áçÿÛ¬þÐÿ¿ÇGnËÿÛÃú¯Ýÿ˜ÌLÚ¿¤ûƒu WËúÕ^ÇvJrÓ.Iågæñû¾éöl賕óÑÙ6Étx=û8[&vðÔjš~sjhs¾¾Hàû2x®2Ê,C‡‹=qþ#Ý4vÆ4vY&€oXè3>²¿t•Ï¿Ÿ«f›[!_œ.Öùˆ|q½Õ f> ¢¤•oC¦†ëþȤö§Ë¤fUÀ—j«×€ÌÈ‘ÄIð­²w5;/škHáOŽšwVn$ÕO°äcšä,A°[/'’›šÊ)·buÀ¬¢"]¯, Ê†Ïu”»& ‰ŸœÅdàG…7o~›ÞŸ$+ÿ÷ûdëÿãËï ÿ7ëÛ¾ÿ³þCÿÿµ!ÅŠè¢E}¿uzVú“‡¬¦ü㌞NëϯÅá¶J\(¡cÌF9zHlÎQd‡(ß%ƒáZ8W| ?¨Î^ÚºSí¥ð# ÒÇuóq¹æ=oÀsžövüPuAΞ‡·¥e|>Iå×¾aÔXÔbS™/v'_Ëzd ¹öe¸õ|’&QUdã&ç—\ùQÿQZ3‰6gï2#˜í4ïð2Ò¹í¨i½ïŽOZY`鼊^©?oÔžo6ªÛµí›Ï·šÛ[/ê›õç[pv6VÔÌCÁŒ•™!Ò9uXv¡ðájr±xý¬ªwïcbªãCP¾í=("ûРúÄ ×YJòZ$$³'GþZž’ä5 TŠsØd*üÊCá•8ó”m °žP2ÖÄwÇëgxM5Õ¸|Øl‡)§ÔS ÀïWªkYb‡2¨ŸëÍ36î¬îTLYM¢ŽFN›ñ"ÑŠ˜VøfÿZ`Ð7’!L£?¾^cÌriÔõÍ7^Cc̡ӥŧ]B´KÓ[+ÉXð/2î"1`šp0Ô®?¸\½F§ÑûÆ]Üéa›_ð RöÖäupŠ|€u˜éè‚/7“™L82Cœ¿¨ÒÏ r€Š(c&*zv&£Ï`oF%£'ü/ ›Ý†ÁvïQÍïš@°à`Qÿ0Õ^†(•CÇ€bÉ’šfQ½\ˆZ:mgúé,ÃnŠ¨Ð¢XÊqíÿÌJºJðdÕÆb^RFn#cõX‘ì¢ÂE‚&&7¬K2b(ƒAf(m|q^µ^ìE^DˆÈÜÍwõòÍ ;Þö¿j¥Ž‚ÿDÖB gfÙC£ÆC‚¶#²m̹C“J¾ùðïÖ©tEÇtu¯¨ª—z;¡[x.Œf“’mr4¡ ×½¼T¥ÃöNujr¹}X·šf˜ÓGÃÛáœÏN&§.ñ”dm„œ¯äê4áÐcŒ–±-Ê„5EÏЦá%Á­?¸#‹E*¦mìxÐ볎ƒçM0ãäëœÌ¢8n) Ão0E]2Á[ÿ6ca$¡éÔ¹ËCëÑ¡ø‹ÜÞ©¶8¿Q2¾žßXKà%±ŽØÀÜ}æN-ùoáñ޽M½·ë]E\ÞUû'GÔÎXårõ¯¸ZsÊ,˜¹N@55é³›Ã|LÁTf4Õ'fcŸrDS™ÔŠïž0³ÃÞ+{ÐEÿò¶-…EÏŽO;í,kpViQnÊ$Äpå›åú£ƒ¸zÇïðúÖ‡4¼Ýëp²½ãvIíyã·ñ9¿þ¸zk÷ÓÓmÏíãÃÖž ¹} Ë6Mãe‡%aV¥ä¼1¶‡F£œ=}4ÚÎîéCª’Jx÷uð«ªÚáßô…Ú + 8c„>e("Y“Íü 2«m/«­_°Ôj»‡miö÷gY0À4µ—÷n’Á' ûÕ¬ˆ¸ÞÌÀœ@G@%óÑu²ƒîîû]£Ä«ÑcCTvºûxÜ=¨t2"ñše_´Å–"cº»Ýå‰Ý;îåÝ Ô¯bKìÆH7kÇ®©§‘¸@W¥Ù¤àP¹Lféy90¥9¶¢š]47K8yM ¦¿ãÖ±k¡ÀJÆœ/R©O¥4’+ ßÚxf"ª$Áºéެ‡ô› D7“Ñ%5‹Y*-ïM¡^,Á¿¢L7ÿ¦0¾ÁV©«ÇÊúc2yùGýÚ¸^.Y W®HÝ‚Ç.½P–/r}Òk¿)<²lQU !sŽ?§•nóŽ*g"*Ê¥Q2}ZñE†C1Žm#ÎŽÇø9 ðýÞ$ˆiü§¬áMîf]vpº|·BÕ¬ˆüD ÈS'ë5"ÃeÂá"´ªÏÁ¨ü§ñ¾ÉÆRôbÒß7´„’®5Ûá2–‹Z‰†lF<ÛàØ¾¯5í¤ðÉ©[iÝ~nôêš–ÊŒ¨U&ö%E=M šð¨2£)¬0Í´ã²ò,ˆ¬Ø8jAÛÕÂÅpýá&Ûu&Š»ÌÈådÀW5Ño‰â´cÅvkëÙ(¶D±p‹’ëiÈN]>âóMãxC #±î}á9µ_‰õ‘eÔƒ”Éß@' e³‚Ò +Œ&z¿ÈÑÔ¤ÎD&¼ìnAŠËGnæ8±d((I^¦7gœcœô~Q­”úKR‡_NTä›.˜6±Äÿ?ÿöþÿz½Þ¬býÇj½Ö¬Uk Îÿõ#þ÷»|˜0\ÿ?ˆ±mØ,wÕ>x "o»×:|ƒU@…݃}o”…¤â&‰÷Ôò¯%²=Ø!<ÅM(lÀoë]êÙ*›ŒE‰¬U‚ Âùc„ 8#%_$.?'ãY1Õ/PYú2ýËýpÉ1¢l¥ÒËQ’‰ '°ŒÒú­LçìÉ5yò憎s›gH¹b³4xuòÞ4C]Ãe‘‹Ý†T8O¤­ÏTÚD›Ýí+ǦW”²M]¢ÿ’z5ÓŠ€>f™ï)¥ÕtòÔÄËÔ×vŒ3üÚ¿½QΫ¾W½‡|º«\¸€™^Îo^5§_iÄqq¾ó“öñ+8ó,sŠ|–… `ê–…WÄGvû¯Ûÿ¯èÿ›¯nÔdŒ@ÆÛòýµõ5T»0ݬ„F«F-Nÿ:11¤¬Ïk•%mÍ¡æXÐK‚^F1Nð^n:á ]yª=œ*¾v‰¦×[`hò•Íå‚ÜÔÖDp0<êÆéBÛй¸áçÄ®O g–c“Áò‚ÁbgÊMõádµÐSØp•eíÇvóáõwCIf’éÏ9Uèbwo\½o?økŒßË-N~œ»i2K¦Ÿ_¥,ô.1î|¤žþÄœô,¹ë£Æ<ºWè4P\~N‡h´œ‰Ÿï~&ìÿü¯Ÿóû]±ÿ+±£¯Líø;ñ…XÆ$ÐÏ!“áÈ‚~œ>Gâ@JÄÓ%s²ÅÜq.œÙFªôÌ™Î)›sï I#ù#¡ã#ÞŠc¤Ý± Vy¤OõæŒþ%a¢¤3Çìç0'„AÄN`ô•…Ûþ%Þ¸ŒÏTÒ3ENèÅ¢¥%ƒÀ¾Hg_2[ÜÂÚ©ýw; ::Ö¿°cã÷w˜eÏîŽåTºÚf/%p™«¯Ùà ÃZ±úÒ.H?•³ÞùA¥Ty½Ó>5~¢b±W:õœlú³S–jÅúûçÎù£ èÙÕÆá®ÇßÓÏG4zî¼Ç‘ÃòQÛÎ?OŸ.ªV—ÔŸáÆÑù_Þ­•?fÎUÈÉÜÊáA¥ÆÍÑœÓU_朡+XœòÇÒGš:¦s¶äûšªüü7²÷DÖ#ÃÖ¸¨ÈÎaX:jÃzc= ÝòT²êN?HÔ•„>kÅQ:æÕ…·û”Ìk2Ý/Gr&Žp+Á¹Ñ+±«¾ÉÚ!âÔ´C(=íß&tvŠÅÝ]žy:Óè–WšˆžÐÆQ~–†9&’±Â»O²ÂÿÍÿ> #§°?“¯ƒänþÒ-|Ÿ ÿ/k^ŠðÅÓQ¾GøKÖ74²eãÆ…æuOqcu©ÁZ\8ZJ¾‰Z!VÃA|rÁõÓÝ—¢0õàÒ3äò&³ÜõçgïÒó¬°ýVxž²ÂöJ¬é2Q»BíÙñ ü»{|vÖ ÓCJªyJ4Oøº^-š@Úä‚MŸJú¿LŠÈ=rêÜÞqì¼¶¤Û¬pmÒÀAPʺÕMëJ/ªN‰BªURÆB9„ ~[žõj:œ{ÍÒpUãå.¨-JÁT!p¸½ò‘ö¢Ž“ÁM³yÒW‘hVk’KaŽ)xÎлwhË¥Ú·Öh½@) lž 0 RsaxÅ}%QD}™çi>¤½y(AIŠÈIÖðä -8ÛåØd.•›üò¢“ìØdt¯ŽLºç!È̇À.›ŒÊ¡H/‹‰qi:ð þpõTè¡Ù4kQR9âmÆD.-BrœÈ]šKÉ F#¡IÔLÑ.dDüF‹KZ\{úÀ´“Ê52õ+¹_) ze“  EÝôîÛWF ®y½ ~¦`ÍÒjGáÔ¶Ï cÏËáøódô—1„‰[û"ºÊ‰:N®)©,Ì¥’)@1_ÌÄ Ûm|O•äŒ%ÊÃKIwör˜4Ì&°B]wd—@YF²wâøñôÑ…½!Nï+HCº$ËWõ¿wÐÖKÜ`a"sÚ`¾P·*M„ͱ¶Gfaª!‚ó1V™dyhá°P3¤Œ;9Õ…P\…C¯_÷Îz;ÝŠ­·lQ@.îBïPyžü5_†öÝ”¦½—õy6·NYy`±MÚ2NOyv.eƒï•,îK-ux –Iä&r†¤eK$)P僒ÒuÝÞ—¾´˜û½WâppBüЛQ@*Î7¥Z©ÛŽÎ „­ÚÓLêɃôWˆzou÷0íà=&¼Âkîð?ô~‡\³ ˜´Ù~Ù÷g23âþ%kõPsâ”Ñ ò¥™QN4*±,Áë<< ä"ÉøÒÈúZFøñ€-”¨÷¼„;'ìÛkQóßO"pxkzÁg¨÷ø7V^Œ¯?`*|mWD¬´±>è'´÷ƒó ®«n×NŸ4œ^ÆÄ¤ÑÍEì‡3³=ü,ƒÄ‰ëöÜhÝ32àZSëžñ 8¨Àš›|„AQÎÜD,~8çnA3Ú•HuŠV#Ï„V8´_Ó0¨HëlÈ~„}‘â ¸68 Ä€Ûw 1ÅëC®”ÔAø’+‡ïØf©cß Z`ÒÜ&l‘˜éíx)°Lß”§@%í)¶®¤»È°+ýïÁ‡À¼l '(iŒ“!…—·J°„c`>[¥”ïa-¼k´åÚ.ƒÍZªâÕ?ÐÜõÙfÅ0=™âÂz»†oëë ”5‰ÙµÆYCà (…TÜ ˜áEÿÞù½¨lþd¦€.ÇÒióåWí(óû;òZY‰¡‰!z®º`~aeš®øÓ:ï¶^÷:ê&§õBÝz£Ü7ø^ÖË4¡eçD1åŒÔ0F*o;Ï㦇ÉÎÉb»)?KΤ,ŽÉÎNÐ’#+‹m”ö3´,IËâ8<ã)Z¼¼, ¸Æù%9ZÌÄ,FÃ=;GŒ\õ}~XŽ¥já@¡Ž¥llO pöù/úƒ0aY3,%ÙÌŸ=N“'c#MUW 8ĺÚ*nr0—ã¼.a8À‡pÉD-ÌÊúÞ9ŒßÒŒpB>:Ââü·ì÷ëöû!Æéz¦åGòdÕ„_· £ÜXÖ€ƒœ2äÂr`4-@GýÑ "åæÌ­©ÒÙ×°ál+8]}þ±éerÏLSþf§ý: >§¼4›ß°DØNûäÍNIœtN²¬äß8QùêÖxYyìi“¼¼?‘ùÏW­n®ˆh?L.¢n§Bئ­Š™³<ÍÄÿ¡.ûDÁýu1|R%Ša+¨ ¡<3¡Ü2RK9œ@„¾Ì3eAÀŠö^Ø œ­ÿ><«låÏ·"t‘ÕUço„JߤæOAqw£QúM-#ûŠ—Âæ)†ƒl±‚;wÙ1¬ˆ‰Kø³œ5mJ]©;Úô7,@c•Œ3KêÌmÇíÐ+dœYbÕjq*™Ê¾}°ë#1ä“cp8‡ÇâìÕXGðß&ü· ÿ½@ù´ïS¾ :x¬xY¼OHÕ–a$e½äk¡kßBe6i…®—c©UbM¿× L&c_ï&c–”m€ôLŽ:x£>Цßó@F"!O+h" ,¢ÌÃEnåÞœ"}Œš-FMÝE‰‚‹[eé§ÙªÊwü» N‚èÙѵë—ágû ñƒÇxd 쑈R¦w‹6ö\Ü=Ï;ÕþZç6Xœ€—ž?‹=ÒE"ø¤S¤†¬¢Dè‹BÕô©LFŠ"sÖ”‹iÙV)¡ )Æ)ÏA @°ÿÌ >²|‚ޱ)« ¦í;è¢é‰SÔâi–Zž¤Ob¾©J(½PÓŸ¡)&m/•Fü’¬¸i!žè–@0Y™\ºFdé„ÞÑz*éHñMÜ`$í1Ø„Pæß³¥„n®9›µjô zÖ ” æŸ|rªÃ:®G¦«h}ôö©Úc9üŠ|‚¥mx7ך9&ü3êƒ&ƒDÚæßÚ½Äÿ[ÿþßízÀÿ»ùÃÿû=>j+dÔ<ÃÄtœê«Eù_0ûë¹rx3 í%növÐJ¶íö{ð÷É?Ϻ Î¶¸”ëéÉNïôà¯çCNÕbß´‘úÊåÜÕœ ôu2]ÊŒÇ×+bn嬱hDzÄ8;‘£³“WKýÒ{ˆÛ¹®‹\¢µ¡Ð*½-¦® ×;@i‘•@ ˆž¢áÿ‘É8û Ù-¤Ùbn»’Ó+Ò©¬g8–Î3´ç.†˜d!à\FSª²Aº^J!¦èLMqCtöŽñ^n2è/è ˆQ1‘¾ŽÔsªÁ2šLî —·JŸ1ýÑ4é_Þ«û4[Ã>£Ñ{Î×m%–/‡WWÚkIß5”¡g p©—Bò\é¨EWCJô´:« óÝN<’’Fs~žÌõån…eº]‚Qâh#/P E22á`Ob`Èù|¸ÿмœ q6è«…2ª§ &cƒ¹……A¢²ž0òé¶ÈP‘öÓrQ ¾Þ¥î‹ªÅ3*f¦]]¤r³»Q"úŸ'C²O¨‹žãÉ@UšfH{ óÙð’*|ADñ™r‘¼78ܬª éìÆ©bîkr?ã–皦zBäÈ•®&£Ý&´v áOG©Pþ(„X4oðƒ.ÐB°j»Ò¡°ó·î×]`ZÒ(‰nÓn_P7t`tŸ“ño`4‰1usu†oR+Æ`Œü¯:·!y`%Þ ßŒå8eË™y“:akìå°ÏÅVPK±zšö/Í$Š%#Cqɾ®& ˜^±]”ÄfNÛÎxÉ/öwôºþ#,s'Éô–Æî[ß µi;MÄkH‡ «mx™}쪂R¡€ÊÀÃ×ÌœmjO—ÈLØÆç.†UQ)i܉ó‘›'’ˆA/óЩò12"$x7$£ŽL°V°Þä‹ò*¦Ú­A`o³€íñæUàeÝ9nÛ‹pžàœîfБÙQÿ™Q–ˆƒ8Md¶¼Èqó@O¼Û-ùâ[¢Dy¹íì+i0׬Í@\,²Úi ¹ë)_ÊÔÀ87 Rv¤Ÿr˜«&ÎRR CH+õIƂܽ¼Ö[^³QZ™ÏnÕó–<_W1G»üäî¯ù­úŽ?Ìöv·›ßxšîbHh_±,ƒ^‘:Qæ ²uý»»éän:Ä­nCkãy<£ÈW}ÌúÎA«ŠÚÝ{í=¸×îëVžÍK¢cS¶HR4e¢#á@åŒnÚ;ã$Àñvª‚VñùŸL—~ƒø&7ÔÏUn¬Šº¢@©py‚G|¦˜ïg(Tr ûÜ0pÙ9¼Ûò”&DKOtÿ™£3¡Å‘øÒÇ4«Ãë!WVuR[è¥Z$œË•4.KAäyRî+R{‚¬SdÊÚ:  —UHöªU–…mî:ÃHD+.Öj â$½E1Ï—ŠµÖEœìžäÀd,lh§¤š3°´Bz°Z„øj—™u9 j$ý)éÜ5¥Ç V䮚+áÀžÞ,êääV²1¹Qek­;Í'eK©¬¦ªú« SÒ>,gŸ«‘J¤rÙ¨ƒRÝòår]ª"bö†øÆQL© >X&K>]V«êY¥D8)Óô€Ã¢žÜ‘¾TzlÌÊ{I•é0}ðîxnÙþ\- ¬£ƒÀëÛà/¡W`4f@ð×$<†\Àš*l1Û=ÈĬ_<#Ȳ6s×f®ƒÞð*fEdú«ëöW/ñÿ6¾ƒÿwk«¶íø·àûþßïñQ¤•éÿmØþßTdÒÎL¦¾€ؽ1œí ŽùrKôŽ¡Eüø‘Žq‚ˆÉô&K†e1¯7Ùè@ÎdR1”óµÊ-•ZÓÿÅžFe‡P^_ëŒwýÚaûëÀnØõìì'v`óVË SfJœÛGÓ/ µò‘áñ ø½]>ôí½ß(,†à'?|à?|à?|àaøb¬8øS{Ù¶õ’g ;[ßfÁMGüÐ?\ù?\ùB®àW¾\Þ®ü®ü®ü®üÔ•o9îM¯>JßK=ùŽ9aEÇ~=‡cÿ‡Wÿ‡Wÿß«ÿÃcÿÇxì—:€…¶á®ä[ÿá¦þÜÔÙ¡è/Åh ø™Tà—mþ2V±âÒÿaþÝAŠ|añð“{?Ë·ÿ‡9öéÕ¤K_ùós9óÉ“Ÿ¦òá?Ò¯¼÷®ûFn×}ã½j¾Äÿ¿ùíýÿ ¼îýãþ÷ô‘4ëäÿÞ,ˆ“ÞÙ‡“ƒ’tüïÈÚ½»øs—*´÷÷È£ßÞßÏpPà ðÏkü ÿôð'þƒ?á™éí×ÝöÞÑNza×øsúý%Ïõè„D ¡qÇø!äF=„õ86ÔâH´IìÄ…X²!“ª±G”‡`xôäËß-ð,è½Ïÿˆy¿ÀÓ¥&ž6ýA%?^/kß.0~¨I¯ÀxÊOÀt­õ™éãÂRŒi~RY }ø;|uzOfsv³`²HT ÇÜŒ ‡•Há'ŠY{êÁ¾ñ/JqáŒjWŽ0!+€š]Ý£7.u} g–#ƒ€Jößpê”Ûâ@Súo,äWÞÿS‚_÷Eù5|[¤ Ãÿ¡DJÿ͵þäø›DÓã- ?»ð;ÿz ÁÈ„zÅyC)Y®!¦N¬ý„9‹!3ÔÏ'“!4þ墾$Óù«ÍIÛ¼Ö¿ì©rrÂÓ§ÛX\-(~ã2™÷‡#í°í¨WâýŸZF íêÞá¬êBùáìJŸŽÕf¸ ßnÛάô͵±}ë ÙîíÞwTïÀ©ûHÎ[ÚÈû¶È±ÌK»#:å‹ûr‡ÍT*%¤“ö–—Xö*Ë/fÍù,ZÿPÂØÍ=ò]Œä Ž|WtqäÝUF¾ûà‘ïJ{¹G¾ùã|¥‘ï=xä{¶'ÇÈ÷£Ô²ÿjÙðÈUXÀAî‘Dq~ðj9xðȌ׹Gþ::ò× –×ùk £—{ä½èÈ{yïÁ#ï)¹GÞŽŽ¼ý€‘·iC·ñ‘îTıª ª$YY|Ô0M(4k€ùÒ?È% §°û‡MaןÂnž)ìê)KXLIŠÙg)&`§·Ä*XÏ—RPÙ¥üo1Ë> ³$¥—®Ž‰ýÑ[£–Þ âÏŽx‰ŒÂú‹ªèî°„P¾ð€G|ÄC,:è5*‡[%£Yb¼U­TKPøžz¬T:Þ0wCÃÜ5‡ ²¶©å,îî’9ÒhwóŒ¶ëv?4Úý<î? =¡òtxð°¶á ÊžTÔ­1{!ÿ»\«Âûµêÿ”ʘS{r4Þ •©@ÿ®( `«DyMóutÞ6^г)( × Ô¸eÌ(e³aYÌõƒJ‘ÿ"r5úV§ÙìU¡ Û”ûp×!Ô ~ý ɳ$>1•buÎOðW¤–}úú’)A P MÁ.fCúN‰tƒŸOœÒ³ƒ¥Ÿ§ÎØ¡¿„vè2?p§­†â]Å»Y(Þ]Å»ŠùËü8î8ÞÍà+¿„øŠaåñÜ%Ê_2;~b&ƒŸvie6ó.Ó„ÃØ©¤#lF!ûuÆCOÎÀ©õþîrK@v÷{ËA¶Ã `G”2Ø=®Âƒ0ºÉÍ@^ôgTDç).=ÂXúdx­DÒoŸ 1¬R"'`Iœ½;èž}(Q¡ü+3j!-ª²Q-™1 ø'C³ ¿¨e˜6¢*ÜðXµztÎ8Ÿy«sprŠ•EàG §U –tŽ÷¹LIIœ¶º€«×T9<èt‚€¢rt¯•#ìñ´Š(t~2ºä„ëâmè‘ÈtÜêBæÈW'S~ÚGö©g’z*³‹û}•—wæùº…ë\B5ËY»Fk¡<Ý^î÷pFùˆc,:ñ6’S=ÏòìÚÈ׺ƒÿæÁ“-ÓîR’8xØ*í._¥¥õ*SÆ7³Vi+¾‰6ã«Ô3FÄU¥Ê§0ÎuZ⇋â:³Q·}Ûh¯aáK›¡ l…' W/åuŽmI¿ðƒÒ ¡9o/cíP°‚þì,Á‹Âɲ½h»þ6Þú{0€íÐÊ<Ï"­xÕ‹c¬§‘Ͳñ¼›« \ {?ù­WÇó“ná<»å?ðw #¼£/òIN¸/o¨B’ëá ífMh78¡¦ž­†:ãÜu&´›Ðn`B»î„V(ßásëfˆ9×2N¤Úfœ=/a½K¨y óuJ-tLÕ"Ç”úó83¬mÇ7i~NšV6§sÏ”ZˆÇ×2y|½š±ZL>›÷¼¢õîãN,ÄTë¦êêáA ª4.è{ÆNä0aÜŽ(JZ:HT‹þ[ˆÉ .^.ÎΨgâqÜ܃Rqõz¦bPoÄfJƒ0kËÕ™€š@Z„ð9 v¼ž„ßþð Cez¿ÓZlH<4jzY…'1²¹³LŽlIM4”¡»Ä*·Y°Ê «æN³á"ŸGàëüjžAt•)¾Ê²Xá†þ°Åâ=[c\ ë!Paœ?€TŸŽÈÖ½¢_"³¸À¤ÕWõLEµ¾9@2´”ìš4¶:'Øu8AùaœÀ¿œãöð$œ`÷æ»ä»ßˆäÆ;sù'Å>“Ë*kE»ßøÁ!Bä·"‡Ö}\è™Þ(¯†æ$\ÒMÒ±Ö]+ñ?#ÿ’AÅÊ«Pwö+pļV’²ÁÿËIÉ«¨{úr@jD2J߇ä?lD*¬Ÿ¾Ô€B÷[6ÿØû-?>ÙŸ%÷¶¾CþÏíZsËÏÿYûqÿç{|xkº÷¶ ‚/˜ØWÞã¯ðÏüùA]Þ H5Š_œAÃwÐâ¼} Œ¨õúßå Ï{‰À¢J¾»{S²ppg>î&ŽúcOQúí´°ä:ÍûO‚ÞþPàɬxf˸Ncå ¤+¼iâC•M†ð•FwÓÉÅ(¹-qÎA1˜L§Éìn·¼9¸×’ºq˳ è.(òß Û4Ód0ˆè×wgTò? Ö­O0SY!(’!«-–¸J{Ÿ9ãœOÚü†£lá§ÑÄâ"§£c0@ùΗ‰ø4_RŸ)6¿Š»þpjnœPŽ©dsáÛ",]a¿p¿ªïåfÃ!LI°üL^c:ÃK75•ãe¿ÒF_P–$ïŸý |,ÿÒÿYÑ"øM=@?­e¶¥ýÔjnKÿ4SV[Ý>£-ý³ J~[n_búÑè«[è£ʵ‡¡¯¦ÿyú\+£( ¶qñô•kå EŸÊÔ#óú`dÌ.Ó¿M,ª¦ü*š˜S:¦|£$¥# Þ%q=ü¬’Š&_ûƒ¹½u¡ ¼¸KÉ8g*Åæ‡7/…Z7bù»×¿½WOq~_ù?ae½ÑXw›ZËöU5÷š>lÕª±öË-´»k¥PSIò„ª/˜kUŸ¹(Ádpuî9 å©D&+ù+02Êهو’%ýÁ §[Α\’ï®p‹Nž&|ƒ0ãj`žëypXy—e¼ýC®ÙE.”ìä¹~ôT—ìhôƵü·íâÈuÛΘÀûÜ}¾öù^eã–]§å£Yb0÷»ÆÛûãí½„ñ!÷Ð?D‡þ!:tWÄIGþáÁ#ÿ°äJ£"ð½ú¼KŸ”©÷Q$½RÒ×W}kóÝ{{;¹`ödcN7é.‘Jb'a}XVX,T Ns®W× È>- ‹j‘2dBê?ñÄPݦl½~@§(±¯Ú-ÏxøÇ̲‰ @gï0pöMï@©AËR|a”«;kƼfh-Ô †ù?Qpl«û†þ6 †Ô²lVùxñP}«åÈ«a’ãëé“:öGÐ翘VÞçŒu*BeµŽçÉ5pŠY˜yœ m…\.Ȥ7\]\GìXí݃.ƒ|&Wœ KŠ´©ÿëpÎ]0I¥‡8N¾Îéü§b\$X¹¬4H‰‹$å•6ÖlªÊ]µÒ^rªYÙxÞ-bÈâ›-ر.©ÄlŠJ6ó&ª86ÄàÇãÉXVò2•–•Æ5¹GËá …#)ñ“Q8өׯ¡ÌòU+ÕK *YmÏ ¤Qìd£ö²KƃêÒZd¤ÄƤKtNo± 4±×¾wö–¹V§fÎЉªqg±e¿_·ß1óH JyN¨&üºÍ=ËeЉ.ˆ@FÉ ùìFÓ‚F3hˆœ›3g¶¦JçqƳ­àtõñü‡§X“—dR«jÅçñeä¢pð~z##ÛJQ&ñø£PH¡Ë ð‹D Õ)£[¬@Ý“’`Õ©–ÄûƒÞn;TVdÕ8yKÐÑII´K¦,¸RXÊ~2E»„îñÄ `2q§i§bÅÕ¨=ÿ‡o#q2¦W-+áþº>ɪظ¥@fž a– °+«Ï¥Ç:ŠEØ 4@€}ŸL§XŸÞ€€;¯SÂF§Tô÷áYà:¬a¹¦ÖHy,$ꋪó7B¥o\ NA\æ5Oý »Ãé‹á »D¬ ƒˆu܈t +bâþ,gM9«Y ‘þ†hd̹évÝE*„òýí°%âœàFÛ˜œ¼Û b夵’(»ÆûÚ×y:Ò-)ñTYîψH?hEáD`˜!Áìè¶ÿux»¸-KÊ.£¯‹a¦º“yò—`˜€ý1vz‘è^$÷@ó<ÒÆp4]#»ºÕm<(ç!˜Ü±A×±ÿ¹?¡E½R\M•éŒ< V,.àµïÉ—Y‘Ký†Ü€“+(a¥˜ò3»Îd“`¸é‰Å—Ÿ9dÎT+ÓÙñ öÖ¥d´»í{ÿbí|-Ú€†f|‚e„’ãh^;] E<`»Sn—žaNËîš !¨Ç.·”þÔ¿FxĽŠTÎ¥ËsòIÒ¬¾Ø2Áö‡=gÑA‰…fQAr˜\^f]¸1,°Aþc‚.Ü}ò]ƒ.º!Ý gü2PNÄôtϱn†TÆŒø±hARGIªC8ýÙ 8Û¥š]_"ÃUþaAÁ­M’ÉAÄ7©–s D•‰*üŠoÈ$8N$ÔÊâ—|p7êxáö@¹_ã¡#ùb_çˆk;ÖÅ ’ç9ÓŸ CÈ Ž]`ÑAQ q °†ÂÉ©¡6áÙnîøØ®»¤YFd,‚ ƳþûÅ‚þFI™./ËÉç„¥î0 Œ1R¸¤t!m´*:sþeBBw€µc§ž>¼í_Ç} HÓ£cèGTŽ4Kõð÷0ìqp3’Ê%«D"õO+%±dêÎg³ZÞ¬š‘•%NÊ‚HÄaü.v‚‹Õ¡Í»²‰1v{ç b'ÆX*3¬² ÌbÆ/?yD2qMu6}«Èd<ÂiXµÑògÀ"1,û­4¾÷¶lÜàÊélÏÅ©ø§ò"œÓø§Äðb€ú0dzCûJðíSÒªEA-}1MiiÕŽý8ÃvÌcÿh œ¾vp*§F—+Œ†D*N ù”¦wv˜5ÔÞûRÁ#Iü (9ö1Ï¢b†Ò Ó&ŒYh %,ÆI#mÆÃ|Æ„Sǘ@k”OOqª°õÞ ú ›/}Ê#d1˜Q‘ý¾’76¶H®Áiôщ†Þ%m‡Ý6G@šÁΑ÷$8¾ §¬S9Ùþ=e?jK" ›¹‡3gé\…T™”~†_Ù\"m϶dÇh/ÝmÚ_s¼ š:,Ü#EoboW øÍ õ®U GÑcÀµ¥»æè|5„ð¤²rE?Œó‡ ÄÌߑƘÝÙT‹´E•Õ…ËÆ/W =Æc-·Ó°•_6½éàhòÆzä^ö5E”Á¸#ʹ¥2MÆe ŠÖ¡HcаºÛþ'åx x«S¹¦cèI9±–LIH²Š1cN>ð2púl)Ã+G³Q1!ÌÝì<ÚajƇ61_ §×ͦ*ÿ8®6ªÛ*°'än2: Âp½Uï.EÆ>d¢¨±îâçÝdú‰TÏL$dÞ½;À›)¯ÒT4¾eÈ#«1ý{óOctŒ±0?Uãjߪ±_(Ó`óâšõ”.“/F¯ŒZÏ\;Ry_Ëw/¿„—Ý›y©ÜÇ®ó90ž# Ï€¢%j‹¤@ê=~€Êí$hsÍRûSyjž(¿ÀþY­PÝhÑÖzµ\£`yÙ«´,ø.{µ®0~*>@>@ O2‡#¦TœÆ ÝXõcZÆq9aÙ6ÝVM§ -©(‰_š ê´&áƒ6ã-¢ >}Œ·H…¶ÄíÏÓÓC¿ZU<è´jÈ,ðo|Ñ•w¦¼ˆF–MrßÕD•[ÜrŽBð•×= 3€â‡ÐâV¦^qŒU§y#ǧNÓf¼iïÐv9ŠMz÷7ŸLÌÞþ ÏåÓGÝ=}š›°9o°2œg”Y}¥›¬íãÃÖžÝëîÎ>|ÂP×ÎOZòÝHnõ=üï¸}š&ŽR“ð¿ãw§:yà }¶(0²%ƒHßÂÿ÷ð?ü½GŽºs»sÎoKâ=Ê$§ÑéçÈóŽpv Fr‰¼wu˜lŸÂ‚Å»rï”–^é%0%÷õŒÑå¾á»wLâ:ÿ¤=†þú°$·oIÝŽ/oZzñôVÿôtÓÙ?í­ar Ãœõ’ûµ"ÊuoØaçÔ-b9V}G5$R(Șb 0 \Y%™é•ðn ÛmO³ÚzW|í¶Ý¬¶æ-]ÿiz™Ù¹·z“Ú€Õ¨Ù㕳Þù"bMøåë€^ñƒ‘Ê”e²¢q)8xÃU÷asÞ !@˜EB·ØPo T+*ܤ\3…÷¤Æ‘‰8ý‰NÆ~*Ý㳊7¾ÞûҗîjwyÜñÄ`ZWøâ‘»EÆ6ûT!ƒïQ¢ Э¾i!zÕúufëj˜zÔãÝË¡ó•€ÀÐå‰:Ëöñ¡«Öá¡«Ö‘¡«ÇK†'whàt G†zF|ÐÜ2©î²CúŠ*œ†Ñï‘7K¬ÜÈR>Ë^Õ ©/ˆ0÷Wžt òϘÜL÷ž‰®­]%‡ˆ“þ!Mó«p—[yQ•O)’‚Yyœ¦!¹±\4#Êôï9zA>®mïa`XöštˆÝË`½éXVd7®Yís”…ª Û…uÙ†uÙ Ñ1-- c°±ÇŒ5ÆaàóÕx¯ì¬nH‰Nß­EP¬? TÞöJ²†Wk;ÇÒ4ӥёIt!Y¤áGÎ=I7…yðS®9ïœ)èEïaß ¡â‹Œ€#¼Wëu€9P¡½-ÿ¹& µg§Eq¾f// “æâpÔ!JA!nLNcc–‹5ždpªEƒSÿ0ă4•A•þ¯ä‚Ó€` –ÊB` ëKïóÒ¹tTfh8õÿÉá\k¡÷9¹ƒ*M#Ç+ó*òߣ¶Ì¹æ±áÖ±ç<8jÛOÐE»ØÃKNËã¶zðù…õ²'=^tÌ lϨÈäSû«„®Âä<Ö«üúPCæ&*cF]‚?Û9wÚjˆ2­[hÈèø):-”§Ž=yTï9ÆÚkq?œŸs¹wÊÃS;<蜮ËäÎÓà|@Ñ1Æk—îrçÝe ]ö¯æL‡oOMX$:óÕ'œö™NÖ™ãÒnÝz35)H@zFý9 ‚.£;z Û¨I’Žb#åÈÁdƒŽ&s÷»†Šô1ÙXõÅ|x›Tn€9F%;8²ƒ^ÊΣìÚgóƒÚrvÀD%¦{Aºz C`Øß€!t£ ¡E$`ÌcE†€ÐÌìö¹öˆ;Þl†°·¦{í:L°ö@†oºÏ0÷3g½ŒûEYŸIƒ+0„šDIÙgl9Cçþuº”æ@‘)UDš7Å"8õ0"祉»('­u´IFÉKîáŠHyMX‘ëÚ°„ÎfjEÌ¼ä œµ,¿iPã?32 ¦»þ?-âögIþÇé7ÏÿX«m67ë^þÇíæüßãÃ{ÞÍÿ'O§ä¥€<ýР猳xé39ìí`“ý67nskø±ßãoz0ðUxí¤õϳî! ~9>Kó žžìôNTÉ8LØg¨Ãÿv‰$%Žyš Y*»ä‡Ž:ó¥•43K¶Õ­”`R®qO%¹áe „éEóM††Jk/3Cš~ÄVš&2>Ä`žÉ¶ú¥÷,“=?ˤ¾$ tð¹?N3JSf%”0²ÓHöž.¤‡i96)@ípC•-­!å¥4­µ:oJš…lx…öjítïKŒ¡kõÐlªÞë®™&æoÞrõì–€¬iÿÒ6)4HÞ4’Uõ5\ÿ #Üñ¢­ÓƒuÕ•ö'gò¢ÉÌÂìÐAÛNßf€ßF³‰[jF*s»èù˜ ¼©@c@š=#ºg1ù2S“Qùûœ9˜€™ÃpœíJwMº‚•Á»N¿˜’onÜ©¿ƒSØÉ’H´ê"“¹‰Ùeoªí(4 — šá(âbn¬®Ù<™ 1˜áÀnpïwÊ;® ÂÌ©´•o¶¤±È»t2—“ò0 ™•ERƒ¨ˆc™¼ÑBñþ4±îY¥Íoéz Ξ‡Ó]‰t ÷k1ø6ã`ÉÛ³ùD¦1€3%Qž4«eàÚ“LÈkº Ñ‹éÃÒê}pãHôž¼ÂlÌöuaö54íôމL¸Œ¬é (| ÌX8MÉÈ¡)ŽsŒ¶®èÎÞ]œéÄ€=àÊWW˜ ¯»Ê Y|d©ÈøX¢ jººIгÈEHà¸~†Í1ö*9ëOd(i¶ºÙ›n½lÉW¢ã¸$åŬWxéJæ€ M&ec8/ BýodÊÐÇ{Z‘ækÀ¶€È~¬tZV+³äª¤‚ö}R#_!ç ëÏû¾z Ïfp\ƒpod…u“AÈu·!јͻjFÕ Ý¬ÒÚ xYeJši4÷kÎò–ê4ú“åÍ®kûožþµù#ùë¿IòמKàO™üä}|˜1‡uºSüTˆ”±i´Í{‰Q¤Fnfj"˳Ãð“èm{¹ R·¡ü`J7K± ¥*”Û `­©÷È+çfºU»±fkÈPަ¶Š*RCX¹4q¾ü²vjYJ™rÖ©c$Œý3%Œ ô?9¿©JbIlJpûv›¦ùZ¾IªÒ?8Ei4?©fxi„< FKxœ-+%žx8OxÂ.o5»!(´HÕ2rŽZ@4„`ŒÔ£%wšÃ žÒc„r Ó±ež™4:‰VðŽȃîñCûÛÎi(s†¶&é FÊcQÙ´;ymw²Ëdñ’9, 5§zöÊÆ•Ö§N]N.£ÙÛüXB¹›&6p±ßž=€>Võ(LéÂÅ{vG“Ù<ØSïñ=íæR¬²½ü|Ë1jáîi†klåÔ=ª¤†ß¾A»*Èùcgøß ÅÃñç‚Ù>kô%72¶ŒÑÅÐiü±‹¤>l ‚´A_­¨´‹>@ø‡m¾Ñ´ÍŠ(e¿]ôŽww]a"ÒpD¶5²ùJ,ú‹ª?"}ª¼“6¼}¿íR ¦õ J7ïh?„ÃK†¨“M†LRúÔ~¬ýv%¼—zÙ{©ÜK½?å^ê…öR/ÿ^2üaßy/¹ž2÷C …4Ôùw°–Çd“|ÜVéý[¥—½U¼uäVé…·Š´ç/7ß ?O(…ÙùFû²>Z†Œ‰«)ÖXÒ; ™ð€|Ã\þ,í  7Ò¬¬ãØÓ#0œ¿Yû ¢ Bgyô]•Ã;!Ï üI^ÕƒÊ>ùªñ9ºE½«zæ§5æUôg ÍÚâÂÏÓzx¬Ö+ºuØ]ŸiÝïRUÎh.l{ß»†Nؘ;WÈ5ݼ }Lî•Zg5~Ó„RŠ-Òƒ½âSÕutZ2ŽÝÚeÄþGÉ€ lÜñ7炯Ôñú¨?›¯óݬ•ÕDY‹å v°d„+ÚËP¤Õ“à¡ÝÂa§#´¶—ç“2v€/¹™ÁUG*¬§$^”½Ñªù5õãífb­ðäÐýs½<¸%ü\òÉ©šQ¨©njÅ¢(ÔÕ_uø«R©À ÒÉÚ$Á1::Íü-è7‚z%sË«9”A·"釓öZ@Öe^úumŒƒm6 3`º¢cÑnuqûÊ$À‹ú6.glºêãýNblº P7ÃVã91ü¸ׄV¼ t5ÉA•©½rŸ@'(`°;ÇvÙèTã}îRÈ‹¦Üå€Ãšt ŒÑÒ—"$Ã"1"hvãà—,»Ÿë€Ã°œ·eZ¥t@c‡² ÷iEuíûæ,ì§«³Ü¥Ü•ŽÍѵ³d¾¯¯}¤Úi»¢l6âíQ”(I314rÊÿM­Fýé5ó¨xÿ˜ó_Ù³˜5ÈÆäó“­á,rº‚&ùKØl,ë1Àá6í_#6®°0nG‰Ó@"e%€;i—ý þ¡¬íYiì#t²,•ýkÇSš|ícÖ }UÃ[Üð3/€‡×ìǘ4Ý{I%O×I²óé–&é’,éœ.ÜRTìÀ¤½W˽ˆ«æ¼`oYÞû8öΠ칡Iô¸f?ÎÆÞ¹•ÁþØk?{ñlõÔÙÑp€´Ébޱž]°ÉmqïèA‰iÞÏ•¯ÀÞÓs¹÷Q²|rÚ4xûœZ9öÇÊêïTÖ¾€ ù\½S– rt ©ÊÀbj-ªžs.«8Å*PEÇúalÀlqá¹ âgJåq@ÀnX ȉ†À¥Q~!Ä5tšA€¹" • ã{|ÿK£ PÎÐCß 5xüG/àñ3Ü$·«MÄéð×ìÕzús: F7æèúÔ’¥ ‘¹›N>el$2*+O_ —Q§ ÒŽÒçÓþÊ?ÈØ·’`·Ht‘ã.:Šò¹G2KTáv–çÕÍuƒ6¶”Q˜“; ‰”™šô䂵F›[î:-S,àßzídt«]¤î³]ó5iXøÕyûo€ÐÛ'æÛ{ÊpœÏ@ð¢Q (\‚—Lº~ÐÒª%\Sf~3™…¥@Jž”ÖwDŸ0 k€&¡£ÑVi†ª"ŸV/ Tè—Š³ )”D΄— Õp¸p‘ãÐÖãÉ`°¸ÃÃVfdZã‘ m€v£ VVÁ;[([gf1mµÎ]•ÅjîThñª²¸ô†„Ä‘dx""U¢7X¹DAwr;Â÷¯0œ½´òGD-Ònw­$÷ݰÓêRÒÊš_G7þ-ÖÛÑùùÆQ»Ig·šÃC4®ÉJ‚S/° ÞNŸ´å“eÛ£ÅUk²ÌK"d_J+×,ՉÆóEmR‹¾lú°Ò4TØ£8^Mu¹2žÐè¨gÖ¶i¬PÛc+3ßÚ^¥ÎóGWÀ‘eebïeî3F- ΰ'Å~6†ö^Æ|íšlº"f+òÈà–T§T "÷•ˆ¬¢,u£Ý= †<©ª.²:§®pÓ®àJßÑ®t …Æ—ú”œ^šjÛîBšHØõ}SÁnÔâ·s¬þ–š_oùüdý£]wôÛjô½ÈèuÃR”xK‡K/ùJ€ÐøÉ+ÃQ² Á©Ömu ˜Œ!%HeTHšë5eÉŠ¨Œ[i‹ MÎÎ0P»—zUVA ²¤r½&Ë¥Š0V›Å)»ƒÕ‘S^¯\§=#]T+ïèTFª%“xZ:ðεŸ5,vÊÆ}wÍh¼·f> ß%Ñ8C—kvU„Óµ¿ëÀ{Yœ…bvxž =;t0¶¥jIÍ'¡{ |úÀ*R¢îU‘²îë夔9Ô­$%¹;o»M›¹›öܦtTj#M±{‘Ú‘È^4] ¿¤Ã!ÞÒžÉh>Onïæ2¼ž±0œÑ”°+>ÎTÁ*5Èt´+˜:ùçYIìs"¡×çíÝî¾|=RcJ&¨ÉZ­Óó]LAIZ'2cÄò"SÔŠò[`rÜ·ô7ÿ{„ækÊ¢q§ Âp N—ÚtÞÓ.ôG«ÌîsÌC©‚bÈû–§ÚµêNuOåß§'òçéz­/«¥Kd×·ZÞß’~ê%Õ_~rÈRµ­¾]M+ ´£ÂVY‹/ü(r«˜ó!\1ùRdȬ§xeB¬–ásËh­jù&gŸÞÃ%]Z)I¥Ç•s <^2t–©CcW9w"ø>‘ŒØàusñ¸æíÌæF¶K:žÐ¾³ b°¨™†X÷!v—AÜ̈́،±Õ¥Œx-§Da‡IgeضK(CF¾ú„!…“](+BlaUëðºªÖ±}¬Z‡×PµŽq<Õ:¼^ªµWôÇi}ÙÚ+íã´~£ëõ9 QÝ ¯¥z¼l—S¤``“`ÛᨫfìPn>¶dÛØ2ʶ‘½Ímc‹(Ûîeµ-¡láÜ6¶€²md¯s[¯J“Ýö׬¶~1&«íoYm·#;ŸÆˆÓ ’)…jRðŠŒ©(¥ †ÔÅY:l°ç'Ú¢ÎõŽQxC›á +|ZÂéŠî fLAItCs@uëPMÈ5¼ß6«m“žJmûRÙó«×ñ–@‘¬iÔèj‡ ÅpKYª“~/aa6µVVý:= ]À®–#÷+Wè“)÷l3 ó‹OŽx7¦l ÎŨÅgèjfsÎ7‡%ÚJ~5¿È|Ž„JõÉQ=m±¾ÎŠÅú¨bFWW&üЉ”е_RЯ—£8` L܇eeíEǹê*êý^ÖÅð<€©†O^·çBÚäð@—ö“ßÀ>iª![ô–·£_¿ÐÞ~0s¼¤¡ CÎ:ý¢á~Ñ Î:}¾©çWÌÒ!ö¢ÃÜsövÄ·±Kzmƒö\8ú¹]h³½zÙFsVuVJç1÷\,÷4–s×k|\ÿ.Îzî~í-å½¥8ó˜”<Ãì «¿käÞ°º‰"'ýEýqûÕ¯ˆÊ äÈÃpymL»¾gƱãñ5®QÕÒ3Ñõ=a VÌ•ÉÓ(\ey;£ø eR™žZ~a_4d¥ƒqŸÚÃä?Ž¢¯ÑkoñévF©!—)pÅNœM€JD•kŽy<_µdÓ‘ªŸ{h\ àìúúê§!'ŠGaÌ Â;£/º1û’$wiÀQ8ay)p9Rð ¼òP4’ßœôæëå$áìœQÖ0û ›£òFÅØ]0ÂüFÞÄ@^B+IѬÄ«f†„á4”#ÁªØg)Ma.ñºaÑäªû©¸%TP¹óÞ^f½0À‹*ŽÓ¢h¡–,ÄET<ÅÙ´+:©à%UG†-eáò52š2T]p]7=8Ú ^=2óÝ·2 Êy÷EÕzÑØ>²n›÷}úñ컾¡’?¸Jõe«T‹¹ôçßk™Ò2oü1Q__Šz[­!K„QbÓlЍnÆ727ÌjË QGäÒ5xŽCÈX ÙSŽ7sBï¾—ï¢À¿ä]XU30kû‘vƒï¢8$ßÏrl!Ê(O\ý1)¥é|™4QÓÄV6Mlþ ‰4á.ߓЄKhŠ&6#4±µM4â4«Ð.oÿEiµž®¤*…ò+]Û•7 4VjQE¿«{•(tÎA$¾ÕáxéýuI~ä.DëÒ÷™-fÀ™Cëù¦ÈsäIªÉgAï@ |Ë~ðB†ðÔøTx÷H”ñ-µ–‘þûxRÊÉzgåv„Ô}¹?“Ô›QR¯gH‘HêÙ2ä¿ ©—ÞzDþtÊ3dJþhê<öX«Uè±»¡öJ¯­–©Sün=ý OÌgqDÓ6£¹•%>›ÁQ<ÍÏ_m/¾ïÅzuµ½¸ß‹º>–ŠÂ[ªâ~Þ‘Ô•rÕÄé£r‹ÊÛotÍÃÕýĉé/©•¬²uÅj»W¤’ÚP9$"m¥©×"äU_¼¶âä•­ýÔ9ÈëÏËðýGßZ*S#vIô¡zDu©¯¨ºl‡4§•¨ž¡ÞÈ76s¬»ø±ßŸœ”¼Á¦£³TLzƒ–e £Ö@ص|ª–ð׆¼è’ôfÔtSßzJ«Y=C“ol»T ÀQ»ýoD»Ò‚V~kЖ+”Ô·ã+òüÆ4û:üCFôú7±h7–Z´ëKMÚˆ4$†¢ZÜyO&=ôG­3ƒÈ¹ØHŒì8VsÀUŒªOj¨n,5T7–ªÿÈoÄíÏolndK`lûójØ•È[‚¡¥’WÙòyÇËÛ +ž¦jyn5"bQãÉ,ºl‹n#Û¢kù¯ƒeM Ëiãil¤R«®Z_Jµ¼æ­G¶5µ‘mM•]µâ&fp èžUÐ¥÷¶Bctgðv©9Ãà»»ž‚Š'á"È#¦ÅÆÓ˜sùÍ¥G~Ã<òCf$ñt†=5îåö7ÁÆ´ˆ7šˆ¸®¥ p-6¾¡-sqQömEUdšÞ„g}Ký™¶7¡7Ië›Ðΰ¿e™ßÄŠ)í‹åB{n8Q®ÝˆËiÍ\rš‹ ‹.+x3-ášÊ„á–³[±Ç˘®ÈÃwEëY¢iÆEÑæ“ˆ¢q[s3[mæ1~?[³â)ÏÖ':\sqšx›ñ·¹¢ø7ó6³Åßfsî§ò[mtxRœ?ÒCû)"õ6W”zgrm.5^5=ãUœ­­° yR6kËe5=F|/«g¶²ä÷ m.ª‘lâÆµærãÚ ¶—Í¥RpóÅ*æÎ¿4Ý4ã’ÔærIj©IÓŠ7ÕÝ#.mÁå­&Ó['Ž>jܤ4wŒÝîáAA¬uÖJÅ;”µšSàíø ~|sQèé ”²‚®¶žl{5°þÅ ì‰?Úe›9!¶sCô/µXwˆ”1ïüý4 aØrþ´WóÂÞÎ&/[ 9 ¶û‘Rx"›4oJ9V|ùΙys‹†¦>ñë^}ä´ÿ²> Öæq“åÉ>øþ˦õ¥Î’§¿1.Ãêá­ds@ú¾y詺iÛoªï8'Ãwêýi‚eïQ;îž /ÅÔeÐv©ìÕhò%$ÐJ¶›Ob x}-“×ó5$Ì¿H¬úL%Óܡ˼oñþe-xÄ:w"Í6ƒ¡ötB;ß¾å1ü8ð,î|‚óÈh½cµË0zDù‘Ë­+›ƒÐ÷޳è²U>g–A¥/HÂ3,Ùr}3¿šL¿ô§—#×ä•›`«,ç$Žãh3¨ÿ|Ús‡öT”¡E‹lÈÂQó©Åœ¾Ë¥ª†¦/ýô·ËϨ¶Þr£Rvvp ø;|ÖÙ9;<è>›úóÛYåêñ}Tá³ÕlÒÏí­-úY­óßÕZ­ÞhÔÿV«nÖ7·kÍÚ&|_ÛªnmÿMTßõòÏ«Á ñ·ÛþtÖ¿ÌbïÁkWO€‹?Û‡éûô|·w|«À”ª´K‹¡œ°û%+!ÞÏPh”Ùƒsò)Œ5y)˜v^¹¬*YQE$™ƒY°+º(•Z^’›ô|<ü\Ámz–ŒÇXþ0)¥ßíhœ|<ì‹Ýdú)%÷”à »s(ÚóKH¹ b %|¨ušÙÕ9S¹Ø™^/tfeÉaTu>ƒµ‚xz˜¾—¿ %+‡Ù¦f BCG¡RqÄ@®íËDД<4ÐPÿ:±D¼3à¯4°uä°ð2ýä›´ëV^qüõd1½“¥ªÜõLCúÊèLeØÐ—Ié ©*éâð âÉJ+ç©«±Ïn’é-f컓!ôà Õñj.Ҋت@W}šUÜANîä±täÝÝè^)·\J‘oËÿk•ˆÒbnܳy¿4$ LËAŽÌʲâ’؇ÙßcQ&NÀm×Õeí­ÜÞ>Sõ*̦ýL‡Xþ2!›¹?Ó껺h¦¬z “Nî¦C|*Kça „Å‹#܋ɨ*2á‚l°7“KkÖúJì8UäÒŽ/“ñ,ñUtÕ Ò¢„î}Uw”\Í='œª…M5¦±©¤¦Åx¬û^Sà~éˆx½är1àŠiiV ÍXn–ê—”¸ìŸÕüÍd1Kn&£K*nØϸ¤.}ÅG®å9´:/WEaXI*%M'E…Ô ¼é§ kê=®Nx8ü ˜^Ée½aþ?núøègðÓòäªLë ‘ÙÅœü%X,(Gy5íýpè5'R£_ÔumçdîT‰ÅOw2Od•n*äÑŸÁì/@s¤R%)œ™(L“×× Tâè0;/rAî)–ð›be\¬$kÖ•%BeÊ ’ÅÁ5‹[‹ÑlÂu©Óò)uÙ÷ÛbljQôÒ¸& ª¹7Àú~”'ß&I¬˜Î…iÓÊÐ’ÐæzmÄz†.œ, ³‰ÂB%!à"T½ò²RLi8c”U[~µguØÝæJâêHw£ƒß[-Ç“q9-óIUsäðÓ¢O¼Ê¸Béw.2ô¸LdŸô1+®Uå\V[¬ˆc.¡iœÀNè|èOkåê ·FqÖxI[ý6c]ò¶[J•^eŠ ºs\ð‰Ô—uKÃ.ïWš^¼[6ÑÅ ­Ž|øªçå…+ήÒQfAà%•fu?ºMë*°…Jº&«ÖÐ ?>²\º¶Ê['Fæ ™GÀVÂ@«Ó$@­ À8þ5ës:hx®F«8?ëpÓpE,*³¤M®T}[±,iÝÍH&ÿˆÃ¢êyÊc³Ââ ßß¡èÇ-Ö»X¨º½€L¤m‚¯u©X’9XÔ ³üÌ‘SíNÖÑ>ï¶^÷:Ì…„Q 'WT(“[§„&æ±7Û•kܰ@OìÃÈiÉu½Ñ6‚vÕ!¶ìrKYÉryÍNT–Ôìl ¿¦-Å‹qcçX2FRVz= „NµGµeA¸™,F—b4Oæ_ØUÚ?Íê‹M þÁ$ŸÏ‰]©Ÿ³rÓ,*XÜøò’+ÖF³û0€èø³ÉhÆ×Óîz¬9§„ÿÑô,Ù*­†Ùà¯AWåí{RDl?oûƒTh‡cNÐÀ­öÖ gÑ÷•ÖÄ%Hý‰„[W„“ZYZΪsˆG¸W©—Fò$Ã.¼r•ßbx*ŒÐĘߣÄD<Ÿg|7cð œeßp>Ô;0rŽ7tð“hõmYtA”8E­sì „LFYEv3ÿžiß™›Ã'Ì¥£šÓ¬½@v±þÅF_d1æþª*÷}á‘ïÏfpü^ª}×—ÛTuýÌèhëC¢€foY>@ÝrãZŸqÞúæû6æ;ë(>SE_¦ ¹HRÀoc¼>HGSŠ™¸™|‰N–œ£ï¡‚¢ÈËÖ­©ûWp>Ü& •S5ù}VcÝ2èòÍf=œ‰ýB­øªÆ()Ô_váJõâ)Ô¨®½ì–†Kš5T³Vñ¾³¾^(ZàYÁCmšªÍ»)ƒøªß_/à5ê.ØvS¶Å…·uP¥Õp|sAB,?ÌÐ@Z:§iM®ûSà·³ps\5)Ù€*¯…,Ú°þH·p¤ÁREO:{LA-Ò'KS´[ºp Ï_€Fndƒ›¾Ãt­øè É×Ar7§‰»}º¹ëR üÛ‚†jwÊg7‹™¹Ò3fŸF„;dÈÖÑkbÀí›l,¼>”á7=_råðRÓ‡¬.ä[Yž&µU¢òÈX(9dûñçK|§?š‘-Íx’û÷墺@fÃë±²zmÔpDåZe©TJSS¬>"ïQÌܲ…RøO˜y³‹®¢3„n3:ƒþULƒg¦Ä ¤uå¡Ô¨8͇,2y=´LYâÜ›Œ^±zª9‹˜¶£J8cïmÿk¡1+ )Q&X°MŸ o·€‡¨Z Ú°>ãžnöá' _n†2Lá!Ù¿×!_E=êz/zǶ4ôÑÐÆ¨ Ès^í—T±Ÿê•§ RüBW„ 5ÕJ ©ºÁRâˆ1ÝÔÐÐg†I#µÕI6 xŽxíŠ _û·w£Ý=¯ªä3BH®µ×ìǶí][c˜Ú5o^öEBœKùÐ&LçŸbØ!k'ò ÑqçQ!Lõsåé£señ @1åÚå>_ ÃŒ›‡`øÜÀ°k8¢Ç5ûq6†Ï] wWð3oˆa²Zf©Y–¥}1+e}3ù¸f¶d%Í a ¨2shÛ&ꕳŅöy©C-nè¤2v>@ÜJ@öHÔ˜š6C"DóÒšKa¡©ujâYý;vÏÇ÷Ÿi¥ºzYýK3¥òˆç¼CKÇÉgPa1æE/’“ ¤èêZ/é³IªXÛ7;Ä*¬¾0Iq¯KH¿ï:ò,ó¥–@ÉÏQOP˜¢¤¥IÏ&Ûé-)v2U~›HKt^ ¿ÐŽDÍŽ1Ž¿{Š íD,_NH~TλɘŒ7.6«¢ÛiBš/´ómŠ›Œpn"&<áC[v⩦dF†)R…À+µØ^%À!ò“® Û)(Ÿ¢þa–äF è‡8¥=¥B© Mozi S-\+OÚÚ¨Z4t–ŸP5‚ŽÎKdGñt:îô·µ’54v«'ãÉâúA`<¡.¥•–ý¥U‡‹ðØÃÚEq3 ‚YÌ ±NɳºB–²¾›L?Í`xI&¥P]ŒR°t¨ÀrÆÍddÔV§˜"1ˆ!´‡tèìÓ«w‘˜H.¦i2_LãˆÎðB'UÔȦ²«Â™ÐJQbÒÊÉš¦N^®°–(Ê |Jn?˜¼2Â@&¯Cy_CßDæ[Û4bT¾q¿ÃÆ!»èô8à-çåçø2)Ò…Z¥jXZ6 F¹F8!8¹r0Jƒå”° ;JqÁkܵ@„Cb»öü ïšs†Ø^+¥ Ó]s-÷ôÑmöÔö6›(eUFØ ¿Ë†Òc(»(çù¡Ø<‹€,iþC«"Á…u+Κˆ3?0Å@Ùokfì~'Ý`[’7 3QØ3ï_ÞXlíã¢;ö»uzw¯?F$‘y„ÂѲR¸íƒà€rbEšt`U›ÏˆF¼¯ÃÃ"7øíô3œWOñ1ƒmOtõì4z5™j\j=u·s`á„,+]­TªY®i¹ª ¼µ‚FÀ%PÎÞŸ´²àÐ hí®ÔŸ7jÏ7ÕíÚö‹Íç[Íí­õÍúó­í­­ÆÁFÕŠªU8iƒä?’aÈZÚLJ­={,‡­tO©·ÞŸá]Ñ6—!;;>Ù§¢ŠCÁÀðêþwÜNó3t÷÷ÞÀOŽTná”WJ0'éñë×x1~Ž‚¦ø5ާ‡‰zõ, ½ãw¥´®ÜéÑþI.5ü÷äˆîß¾ÝÃÿÞdÀy‹‡ó[<±ßBÇÐªÝÆ”ø­.‡Zsyº–£ÚË€r®óD‡Â£±L^J9l£k­$öÏ;%¸‡ïOùna`A¾ÊZñ¯ãG e­*Õ±öc¯»/ŸCß½®õ5/©×2Fsº¸öÆxO÷ŽO>”$G(I~ÀŸñϳÒäNYhÛ;§Øïù”dÉÀ[hý)iÂPs¯Õ=míë²{ŠžNø‡‚¤y¥÷K„<è®Õ b!,æý à—§sÚu½bN5yáy?AŠøü*d(7r ·Ö-ÍÐ*.y5ê_ÏÄÿ¡ˆ˜´¼‘¼ßYÕ½ýº>)ŒeÊÜ{¡\Ê=-uڕ׬Stëë¡ëæ¸qs[@ˆ< òâú¡$N¥yhô]/»íiV[¯þ­Ý¶›ÕÖ,†í?MKÔ{uEqÂïÏ—8J¤[ ­¬;ÌŽŒ¤Bî,ÚI´úÊÐÂèŒC‹­C{óh^ƒ%(·‹‹×6fk OˆÈ*tG’l&XÙ¶füä(M^; ^}ux{Yðx±"áõ²à5ð¼Jò6¼Ý,x›«Ãû5 ÞÖêóý- Þv˜HåÓ•⽜A2¥H Ô£Ã/eÞšrIHP)°;l¨ã' K¨ï¥ @?:O³fKs~Ôé™À6ˆzÔÝSð¬Ú8§œÓÁL¡Jß6rXÆxçVR°¹Qàûð "Àè‚3iŸ„ @0(¯ êyŽLÑU=UeÂ=j’µÚ:ï݃‚cí»ÙýyÜN}\Är¼E©…Ïh³é¶¡ÒÍdµ)bâ Ÿ©–ÛnK¿6µ KV¤æh-Ò9Úm(–ÓN¹sð£üÇ|enVâÝMB~2g}(‰Ã]v¬ìº÷,„Œ=q"aFä˺˜Ìoü8¯Â°ô±XiWúˆq£ }·°ð!:ïÐè¹þš2¥~ j@3~ ¸–àáß²­ÿPG%6!ù©ß„ý{ª„Ñzµæ‘Y¨E:LˆFæf µ&?6.«@ y£Ò‰Ì³®aÚ+3Âq G‹à¯CZ®Õ]LG¹ùr%ÑÌ i2¦`†9‡Bc„3üÂ&*ªW‡ÌÊ[åœöÍà­aŽb€’…¯ÈÎŒ]ž‘‚xȘ‚µÆj&®.js¸®y%z8¢ÿMFdAl˜‚Ô]2”¯z§Æ£ÖŸ‡<ÿÃsx{Ôeu§$°èèa™ô!VºÌ¤‹»-:Ydnù–[ wvX Lν ÉÖá=d: çùpM“Û ®%¾GnÝL´‹ì‚ ‚]Ü&Åï½)qf“2¬Á•<ÁæÑW¥>ßðN¾=3UÇWÀÞ )å³®£vïQ>͉XZœãwz3[aÅÀã`>—@¤#žõCÈèøÝÓ8 Ÿ;2­d±HÙŽHfO‘L¿yÎ þ„Y£¦¢ æü}~Ìhâñè˜d~067µen L"Ù ’ÉíäK=Ú°û4eªûÌL\ÚŒ¦tÁ’ gÉèܯw|Ë-TU£ð˜•'LM‚ðmÁÉŸ,tµG€!Ãt™V:R†9ÿ‹Ë0.GÏbè$Ãìá¡uÓWµ ÓA¨´í• “E^a¶ ½òF}”cìз)ç~»*çþÞ"ÌxòM¡@¿[Z„Ùc™e%&ßj‹¿:–²Ž¤Σ‡‰0+ÊóO"Á<‘0ÿ]d‹Ž`¼£$n¸º’xÛK¤^±’à+*ŤÌQQ«×?ʕʭL1&^Hëù¹åýC õ]•˳9Kƒ,âá 'ˆ­„D¢˜%©VûN¦¤×tGk[·x¤1‰cº­($)ÂÒy{¥àæZžÊ‚òÒIu¾üï&¼Ù¦gëußCøFE,ÀÌ ‘a„ή|œùuL„˃ä<É•Ìx÷'á.'_¢T3…8 Ö†”¶Á”©®1 odKjti‚Ø"­î’“˜^^ý$Ƴï1f!žX3H‡±Tä#í­Ì§øÆ2»U*¥1òI~”䑿ìû.täÖË­¼ŠÞ]KµYr ?J 3šJŸ+Ir‘ã4èmEDÐÖÖu”Óà»o'¦­*–D¿¡¾ÕÔ–ÓÎ è龊Ô/òˆjé‘%…ÕªQ)¬–£°•È6&ÕšßÄš´²ìd[—"I* Wv¢0m&ú¸ìÔŽ;×âeÈNçqÙ)ä¼[";õV”´ûΔVvॢSoCD‚.¼œ‡ƒµÿ¿¿ð”åÄCr­nº ¦Í‡HO½o(=i› ²õÔôøæŸz¦øÔË:í¥–AÚ@*>eÛÌñ‰þ'ŸR#°#?¡Ë ä§¼¥Ú ÅÂ_Ÿ¼zÅ×ÜñM(Kz0-ýuä'Åÿ@ñéiP¾ªô”߆U«gJO¸ôô²ƒê“¡x¯ó57P*ËEðñ avi€•w¬èèqè_ôžÛ)ܸê‹ÌpáG›Æà·Båð½`Sc ýAÞ7`í0;^Mð™¹]G©¹Ð¾³•ú>»q?§o†:ŠŠQš¼Ýò˜Gõ¨±”Y¨ðw¦]oSWÓaIþõg•A³|Gž‡'Ë šÈK¦ñ+”§XÖsÉÑß7Åë¦8D¤‰¦ªé^6Ã=ié¹ùD|™L?ѽ‰µ­‰ò?ÄÚ…+ S邸ʲ¼ª¾mÄåd&/Œã:ó¨–—SÔ…,õ\Z‚0o‘6jìÉ{þÁV‚-޽ Nˆ„ÜØ9¥ñ™$"VºZå)ÅÄ>#r'׫޴íéÕk™¾içÕø5VÃy¬wãBºì%,ÌšMC&”ðàßæp™k ¿íÜd{ samn¼ó[RXY¨ç@Œxb  Þ\®ÔÆ©±tÓR³'ˆ$¸-žH¸¯mÄż?F²/?T´W‡0 »ò\^Q¸:‰7S¦ñ¢äÊGqA.Ûj[“_ó8¯ü¡Üš®Ñúp•H5Ë`-¼">Z¤ŸDȯ×-çþQIí¦•äüGáA¬h<Žï>[þ{É~Áþ ±’0ê0µ7ßPV7™Ã‹;ä›o˜ï­ù˜Òz=Ó Y›!ëA3d–´n—g0¥u’ãŸHZ¿`iý_“ÖcwZse\ëf««JìõMSbO8Iìñ~ÄêR{=S9«Ç•3oŽŽpµDjžª9aÁ%}u;½€*…tÙW—Ô·—IꙌûÉ)©g+0¼¤î|å¸ \A¾™pãâžóÿû§s.¯Ã.…WdšŸóñpÞŸÞ§5íýV”aš\.²¼ˆ³ÁÉ=Œ ðæöx?ñŽàê`/‘%ɹ×É\Ü$ÓD¨0˜Ø rTìÀŒ§¼D¯Ž’ÃÂJ Ì ƒÞI;Ø‘idNLæŸ•ÄØM¿ô`oÙéŠ"¥AEÆ£»]÷¨ÉÆZ<é¾Á dÖ—‘2Öjz›’BOPü H~!žÊǧyYdu1õ' îÜ+£†™ÏU%ktx™¼‡Òæ^p®Ÿ·lÄùÚÑ”ŒÍâk/Âþ¿†¶L„BªüÌiõÈDÛ4ѶWÍ,s¢užh=<ÑFšÆëmÄ'˜h#&&¨³U&ÚˆLtÏ[Ñ‘*Ê!öt-7¤_JOöä‰_õðÒÌ$€F#ÅKèd‘rþÛªøÊúñ;=9á[ÆÙÃÐb2 O‹~„ûŠ€ÒܬDzAx1qµ‘Ul®¶ŠÍÈ*ö¹H@›®W«ÏÍRd\pKìL¯ºâ9^¦töÊʨ²E…´Ô乕Âàq#ëÞ3&Ì3ƨ¤f:Þ*Pšo¸;²öì:rïýÿÄ _3¦ ÓmÀ_OÓ» ×¶v«º1é¬3e}TVGñeˆu TõY*PG¢W™”P ˜/U p7Éô“–ÝÆÉúá†jˆèƒ@úA1NAæ2§†x(9¹“c¼¸ý»»Ñ½²z¦µ/gÉ¿Éx¤›¹Ú7_¢¦§ê½JÈÀ2|%Ì,:Å<ã·°Vªr”]Í^&‹½´s‘{»LG4›R™×Ù`:¼€æ$¢˜°¶÷•&EØ£úÒw€“;‹ç‰*=] æ‹iRB\LÆV%Ê ]æzÖ¬;\âcÇ©v|™Œg =_EW àß.Fó¡D÷¾˜°Çx”\ùvlY¼˜“;¶ì…kË&ÓõKG6í¡%;qìØšÚ²Ðd‰íÛVóŒd¯ »6ö&c`Is»órU†•¤RÒtRThÁô½é§ kºJ0ÇvIü<¸¡Ôí?{@€–'WeZg]µ½õ%XˆÁ RˆÂ¿öþîWøeú M„’^ô/êr€%‘ÌnÊo‘ºiƒbšy˜ýÅè^{Ñpf¢0MF\0v>ñÀth¹ºEÎè<Å2ÝÓDÖÞ”‰¾Kl&`ÊSÆhŒ¬*ªóDW8+¹ÌÓ¬Mõ)uq””‹ØqbY9Rp-b¸K‡WIqÀ\¦øjÚ§šw¡Š¼Ú›šÙKfÒ´Š²(Ì& ID²Ð;'®SÎ¥^ã…+ü"jÏê°»-Ì•Ä/4ãîF¿·ZŽM/M‘’&ûEViV¸Béw.2ô¸Ld;Nœƒ,§^Çw\K0==d±sL“míÝñ„¬ ;Ðv6oÝôGW°™¯ÒIƒo³9mÉÛi¡#ø@Oí–TH_ 9à”¥#ÞMxzíÁàÓ=1VEÜe®v«#¾“g?£#×ĸzG Ç‘é˜%¦'§ݦuØB¼9‰ïÊa òK3Λ=듚Kt›™ìõv”ÐJb†…ée‚z‡Z€qükG¥Ü&Z`4d7%½u¸i¸ž8šee¡à@Óɪ|¿S ?ïæÄT˜‹Ê>",-%¯Û5±¶ùx>½guEã—kÌï勤Äå ^_,ˆµræ{8ÛíÚïðµB7Ë,jŒY~æÈ©Žéú| ë(Ÿw[¯{‚¨R,)Â'WTù|H‰ìXõÑlW®qÃ=±#§e—Zv¡ñPbË.·”¥Ùífs|gºX¡bõMŒÂ¹llãkªSʪ0dÐÕ†*H÷*`4Oæ_ØUÚ?Íê‹M¬e3Éçsb[èð9+)Í¢‚K;¹¼$¨ñG  :~AׄÕiçzºÀ]EÒ•ð?‚þ³šËâtöY8ž'× }òvÇj<±Iü¼ínP‘ã¸KàŸ±-çZƒœñÀ™È‹Œa¬äÞøQkËhÉW4Kb×òTGÂVìbœ|Ã÷\Nµ—æaÆ ,-˜ægý[k 6ÅïéÁÐ$-a½P‘µYOÚõë‰ l.õùÂê-74?ûDßWZkPˆÔŸH¸uE8©•*;D³èºîóo0:<Â+ÁÑŸ<ɰ ¯\å·žŠ#41æ÷(1ÏçY„ßÍ<gÙãwœõŒœã ü¤Ì6ŽŸâ| ‚sÖc%d2šÀ/´Gp7Óøï™ö¹9|Â\:<­@ÆN¶Š‘ûÅh`òpßO‹Îð§?›Áñ{©ö]_nSÕõ3£ A,J‚š½e5úuËj|Æy7ê˜SìÛ˜ïH¬£øLU¶˜2ä~ I¿ðúp M(dqœÈd‰Á9úÞE’’—­[S÷¯à|¸M@+§š-û¬Æ2€|·| ÔÞýB­øªÆH)Ô_¢þ®TŸ!²Bí꺽\6š/oÜP[ÅWøÎúz¡\hŒg ̬— ›ªá»+ƒ8Kºðïz¿¨QŸÅPÛMÙ Á>ZÔ¡0EÖðt ²`yb†öU`iˆÒùu \ávnŽ«(%PíµÐ•\VB#Ý‘JAÉt™‚[¤O–:¦h3¶tã@Ÿ¿ÍÜÈ ˆ¾3ªä†/Nš|$wóå‘Ф (‹ÊD–Ô›¢yæNùìf13÷SzæìÓˆpÇ ÙZzB xÎTįO a¥§áK®¾S r~ãÐUUik'Cª~Lk £Ì¦¢¼U Ú‚üù¢X°[¥YOž}¹¨.¬•¥¬`5Q¹VY*¥ÒÔëÈÿ²Ê3wË6ºãŠÑ„™W»øÁ&€Ó¹®úõ`a}ëòÒºòPŠˆ¬J£Äô5öÐReAˆssZ0^xÅú±œaÚ!ËÞö¿ú³rbe„ÛHñÉðvq x˜êªë7îig†¢ðåf8¸‘eÃfý{]Ú¬¨ÇCÝAïEï—†?]Dç¾Ú/©%>%Ô1Q[@ RC÷… 5ÕJ ­ºÁR™±ÈÒUŠ?ár¥vZK/GU @ÂÖ­•ê¥Y íN÷ ÔÉFíe—\ãÕ¥c:bNlL†af˜]R{¢dMŠŠ×®(óµ{‡7@ŽÚ¯ªbx‹{væYDèqÍ~lÛÇ“Ù,º¯™¡À°/â¦Ú‰vk:£*}äW XTgÂíHÐA@;:WVÉSö^ŽáóÕ0̸y†Ï »Æ-z\³gcøÜÅpw5 ;óø†&Ëj–*è`YÚ°Œ†c&?ÜÌ–þ¤é#l¥U¦mEÝw¶¸Ð~9uÐÆ±íƒÄ­d€DM–©ù5$ÖÔm»°¥oŽY0).×êß±Í>¾ÿLS-E”fõ/M©º<ëlp‚EæXä8VįًðDƒX²¿9ƒÚ”sŒÆq7ü¡·OÌ·÷øíÞš3ï;ËÑæ6Kn²æ¬¼äÄè–ÓŸ‚2O¦¶Èž*ùÚ$ ä8)g@lÑõ ²V±UnÊ¥Mg894{8Æ8þî)[.¶e±\~9!™”Pƒï&c20¹Ø¯Š:l§ iãÐη{vl2¹‰˜ð„mÙ‰§š’ÏH=¯Ô¶j{•‡È?dèNº*l¿„C¾„Çt ÷aInĀΊƒQ]*”šÐô¦—;ÕµD¥­)÷Fp—kEC/bù Õ5xá輄¶š¢§gr§¿qYg=4vý'ãÉâúA`Ì ¡N]÷r—ý¥VçÀal8ÃÚåu3Àø/‘Å ëÜœÆÚf ï&ÓO3^’I)Þ£”ƒét‚—ˤ¢™ŒŒÔ*S$Z„öŽÒb#¢}мIL$7Ø4™/¦ŽADgx¡“*ä§Ó ÙU!Wh9)±ÝiådÍS'O\Xså>%×$L ^a°•+µŠò&¾†þ“Ì·¶iÄhÀý‡ly¢¼…Þr^~Ž/“á$ £¨Uª†õ'`§°`”k„CЂ“+׃ 4XŽÛؤ°ÆíQÛD8$¶kÏŸò®9gˆíµRº0Ý5×»@ÝfOmo³‰RVeò»l(²únÊy~(6Ï"† KšÿЪHp!@ÝŠƒ³&âÌž1PöÛš¤ß A7Ø–d'ÀMÂÌDÔöÌû—7[ IÖÙ¶ß­Ó»{ý1"‰L6‰ÖžÂm”+Ò̃¬:Iüñ¾ˆÜè¾43œWOñ1ÂO”|–ak¤.9u·s`Eóè9™~ªUq€sÜ=ÈÑ—± åpÊ‚C/ ¾RÞ¨=ßlT·kÛ/6Ÿo5··^Ô7ëÏ·¶·¶U+òWᤠ’ÿHL/ QÖ3 >%ÕÁŒ)²}(oC–ä•©– GWI©9À³½,Iâ¤Þ¨/VÍwÑñfKI_qÉÂw3{§­C¬$€Ù=J”‘€ÿ=ˆoK”?3ÞÄá¨b%º-s$ïøÃ~ãqNP&“Ä¡¤7ÛLJ­=ñ‡­tOý<ïœ:° _ÀÑ®ñz1p”\Öªrr°xÿíS 8ùFpÐëZϹyI¾–1šÓÅ…¼`Œ' ØN‰“¼•$g(I¾P’Iƒ2É9£èÅÓ ÓS˜PI¼?èí¶wl¡õ¤¤A_@ŽV÷´µ—ÂßÙ=Eoì)¥–¡µ&y‰p[œÇA,$ƒÅ¼üòk•è(Åœj2ñÂ~‚"ñù3TÈPnä8s­[:š! rŒáô£áï ú×3ñ(j'½Ø&ÓBTuo¿.†ƒOŠƒ~v7™Í†08+Ïeç¨ò…È.ÿnܧuînÉq㦶€Yä <ô‹~¾§ÒKØú²¢Ýö4«m=»m7«mÃhë?Õw{{¬rÂÃïÏ—8I¤[ ­+ç̆Œ»Ìî,ÚI´úÊÐÂèŒC‹­C{óh^ƒ%(§\?çÄ­ÙCã“!² $Æ‘$Û† V¶­Ù#?9Ê@“„×΂W_Þ^¼F^l£Hx½,xͼF6¼Ý,x›«Ãû5 ÞÖêóý- Þv˜HåÓ•âÝ¡A2¥h &¤Ã/eÞšrI8F9O-r’Ó qÎÓ\ uz&0¼­uuP*}Å™‹ý”>”fÁ¾ÿî§"cÙF¸•ü #Ûñ¦|­ÚxµFòù,qoÍÈMxœ¥ž=¾ÖÀ¶e“%C&¦"¸ M-膓DÙ6Ó£”¥1˜LZh"ÑMh•’ Àìç“+”K_õªêíãt'ï\^N“õ3Øó>šsèÀg`mî"ü(·2ßö›U„xw“»†¬[Jâp—ý-»~Þ"IqdFä⺘Ìoü8¯Â°ô±ˆ)—¤ë·ÙÐ÷kê¬ÊÏ)ËêÇ ’$ã'ÅjI¹þ-Ûj1¦á¶5eR0½¯Lô¨%ç“zµæQY¨E:LˆF9 µ&?™÷TÆOÈË NÀžuƒÐ^¡Pi–`8ˆ†\ Ò­®‘*8Ê«Ì÷B1¶fn¸N“1Å8Ì9jƒ±á¾›1QÈ:ºW^ˆŽdsV7²:NÎàØ½ÖdÊ8e_¨9û‹QP`_…ÔÉX.‹w E#\NÆI ô)òZéÜ^¬ï®‹Ó“g''ÏÎNDÁrÕí­Ù”ˆJÛ&‰ HódH~ÉQ,©Ý® W8nê¦vÌIÔ¬óÖÉGm¦&@RmòO‰½›dð Ó‹C”,|ýÖÌðœ‘Ë‚xÈxB™ï*.ÓªœËKØAæ£P^îHFnÿÐxÔÂ.««é Š‹¢{9ÂuÉôó4eäª%ÓÉoÄ™72K¦·ûYÓc 2J¤³hƒ¼VÝPeaW@W™ãÒ&\Ð8^ó/[ý|Iís6¬¬\ûü•Ϲà:чQðyÕŠÁºç(’Y;eåºç‹»ha™¬ªç-•~3üØ-Š^æ]†ÙZ™v3 ¢S á\ë-Bå©­Š”ºdîzÚ4»T¤\ZðÜ«ÑHÔ™MË­ž¬ó–Yˆ9Oýr³&:“u|bµÎYÛqê®RÓ(åØÚ3ö·© óØ*çOGH«V;wË_­dñHÙŽf+’Ébxâ‘åÐS*Ú`¹byô”x<º.™ŒÍN-N™È’"Lb)»“/ýaÓ=βQ8—6–&eɪF3+ËN˜Y;°e'¶NoYÆŠšt¤sþc¼Êã,Ę=<Öbònúªc:T¸Ž6¾c²,«¢7ÉcüºÞ¸ñþöÞý«$IŸýWÔιçC€$«zõŽç^^Æ=ºmïÙó„­nIØí=ûÇßxä»2K%!Üî´;m¤ªŒŒŒŒŒŒˆŒŒx½¬ìþÞZÌ^.Ž·`Åæ d —ÐbÊMwô'Òb|;SÑ®´Ä–´š³¤N¿%fM ýwQcBõÙ—ã$Y£}YEƧôž,P|£¥tßhUEÆ©Qx±‰ý¤É,¥É¬»BºÕËâZÌgóÁt.ܲ莇'œáÖ­,ù“¨¬ö÷ð'½¤ \Ë8”¸Å=Jèm…(±NáW¿Ìbî®÷‰ë0K‹>TÎñO«½…Ë ýíÐᾚ×ßîêœ!¬ùFhï*'X^‡t¸r0ŒÏÖÕƒµépXïx%-¹µc•8&Ö”—Ñ·‹U5 î'¹HÓ»`+¦——ߊÍÒÁ«¸>¢%k(/Ôä Þ? Ö2´ÎGö[·ñíE¾+­¦1ñI~êPçì{´çbïeWÆCgg©ªÎÑè<¨—UåVQä¨eELp¢\ì •ÑyõxzÚ²z™ ª»NK¼çÏúˆ¾ŒÚ•ÑÕ´VXÿ7î†K_7ìPÂÂÚàPZZy²ýK«¨R½Êq3Ó•',DþZE„>/Cyºø“+O¾¼ÊSIåIá™ÊÓÒ§xZwêoËhÝÉ{ŽWrs°Öÿ÷מŠNò]cã¨n›ysí©ÿˆÚ“rº X×ÎÇW˜údÖv;êíöÂÌ s@«OÅN3G}bê“v;ú{þÔ_Þ²ÈÏOYÃâ•ëïxTʲVæ¥?þ$Åà¨>­‡äËjOåXI\¤=%IX{ZX 2AµrEû‚.º–Oˆ² ã¬rÛŠ !‡þU\¯SMœëö¸Äô×5u©i ßò=èçbN Š€Ì7ðÊî²qk‡Åakï™­Ft…J‹wÌZ¤á“μê8¨F)1òz‹o'A b¡°AðL¼ÖgM‡UñíGÕA‹N;sG<¥D–×GvX5½_% ”ØÅŠd´K‰®ø6*^FE‘'–ªâûhså±²<–[`¡ÂÊ,)l­Ì¨…6Fß/ɬãÙc>œ=ö¿y)¡ó±Ã%tûÎYÍÅ÷ÊX}¯ìå÷*¼þ¢EL$þ±ô§Í¯ |çˆ3L‘-_-ƒQIµ©ðl0'LÊ‘ $ø Z–Ôå¢AU2É ›fX±iùÝBÎê>ºŽ¾9¹}9¦]Nî¾±¯‡îÏÔuörˆU›áÅ]‰¾N¦¿Ñõ‰nDµ¿G]Ý(25‘¨«¬ˆK¢ò×4¬Ÿ 0é”}0£Š;*òÞN‘€j Of3RN=‘ÀÛ*õ¿·9M’(nîÒøL0žI»pš;ÁiÎÏNGPd\ÁàÒ† *7Bw ’NУ+èÑS&O5¤öå(âVDOº¹aÛÃKEtq?A‹_QåП•Áz7¬¤‹^üʬÙÔçBñ#çùµÄ™¹ÒðOœ mëÑ𛋫•¿/ÞvÀÒ@R‚0Ñš-€4]l¤‰±BbÖNBV€v{‚J‚ËbMÊ}¼Vóþ;¶ªj/7aTvž¼¤r¿>·P§É…ÉՎÊ\±×Z\ӹ曲ú‡<Ötև˄ªYk¡x”UñÑ#½%?­Ãýãª\MKéù¢C´¤ó8¼úlýo=šýŠý±”2êµW¨«›Âá•%Ê‹Ì÷¶|Lm=-tC¦a7dêuCiëvñS['=~MÚúGÖÖÿ¹š¶ºÚ±Tε^ñ¶º¬Æžf¦Æ®8iìá~¢åµö´Ð8KÃÆYnŒŽrµ@kok3ǯ¸èW[úªPÒIe_ZSO[‹4õB Æý”ÔÔ‹ ˜?^Sw~rŽ \E>+λññWÈïÎ}ºÃ«^Y€.Æ£ù`úM•»Èç°àTÓáÕý¥(>bÄlpŽã¼§¹}1>Ÿ–'âzf?¡HU~? çÑçátÉ1˜ß þiX·3Öy—^n%‡‡™*˜Ó¿“u°#²/ˆŒ?˜ê¿(µ±›iåÓ…ÙÙ{ #%¤ø¨n·rÜdS-œyßà42©õc ŒõE¯)8ô-ªÍÏ'ó}Ùú”, Ì.&Ò]䊬a^tYçÁÊ2ô<ˆ›h>k®Ã ^³ÃwÖŽ®<l–\ëøÏÿRå™ð…Tå«%žÐ@OrµÎŠšÅ<ÐÄ?ÐL'ùz8“ò 4ó†‰EÔÙ2MÝËÍè,Ùí©òZnL¿Ðžì1ˆ¿‘£KZÈY¢éâÛY„ÿø}U|mýÍ/¨zr>¸‚½‡¡…týãï+¸ w³TéYáÉÄÙJ³˜.7‹Y`û9v]ÿ,6‹g1ËØ¿„ÿ5fÑ{8"Ò8?†gÑôå9³¸K³xî©37S%ÆfÑ€K­ùêc¢`Á-WÂá+hf^§p{›O¶»es.ßF¸ÇIÉ©‘ÛVLé‘ÍZÌ–|hµÍu МY.8ßµ×xL°KQlñ€÷|&"LÂ< ;!kô‰Çc/©ý°Æªƒú*86Ë,¿Yª×òq`ÄÊÚfªªäðwT7‡X OVê²N¥q=?W›(i)ÀHµš~Oü2œ~£,NÑàz¼S¡‰ëq3§‹êÍÍÎßì5`¶ÍXX`ìÎóɱfCX^RTUíÄi&ÑóæV3°[[CÂ6—ÙÅÃ’CP틬ü‰Eì6UåùŠ—wd–¤ök5úuSÌ'•ÖIÊÔç“éåÚS>mh¯šÞàÃ\óÌË4³€ÞRÕGsÈ`Žè¸ú+:{röŠÝCÓWçÄN?V+‹m'ÎóD=?Í=Å‰Ï !ñyRÚ$÷³F@Èõ#PYn+ª¸ › üZ†)±rÍláò·¾H‚;50€é&×¢F¤™»òÙ_¾Ëçf€b©–Ö“ççg0ŽÃç§;燽çÿs3øFìõÃûhÀ§•eôo»Õ¢ ‡?’f#ùKÜh&ÍvœÅMø=n5Òì/Qãá]/þÜÏæ U£¿Ü¦³Áídz^»^-~´óÛÙÅnÿÍÌþAôAz(s#ÞÁ¸ú / xàfÔ¡¹¢ëàþ÷ÑÍ=5T T”ð‰*°=QeÁ´ojQ{1}©ã"8ŽÇXîzXÕ¿í nFדéx4ˆv‡Óß`ŸüFé{;‡ÑÉüJÕËéø¥Ñ ðšY¾‹‹TE;ÓO÷ª€ÚWmŠ JÉAs=¦ª*jçÙ¡Ú›%¡ªŒÐϤ ºØ=9ˆÞööŽÎŽÞô"*¿¥žï½9}{rðn+n™²‰ÐÙBñ…´ç÷5bøçÛûéÝ„Ë9[…ÌxNUnQÔA1ÏçÍðwñÛMt‹n¶±TX¡#øz7ÖˆØtN³u{3ÝÝó|M‡ÐPíI¢é~ôu„[{ìîh$çÑÖþÖÏuC]Ç~œÚä3hö=z”ÌôêþkÎNÆo7Ôâ·{Dtpu5B`!;ô;òÔ|Y•âøÙ© t…J'mú V"¶"9°¦¨‘l&^Ý©#œ¿c™7Ú[¨¬›‡Û3áŸ, tRŒBè3š)QŠ˜l¬ËjY4èo/°/øïi-–}_¬Ü·QA½tïøßžê}ß¡hn-åë˜ÞŽÆ•ÓjosÓEQWsw åæ˜Ú.ŸU@¢QïÆJÍ÷‹ ¶—ëTgøuÖœ][wyo†Ê oUÕ¥ºÜ,™ê xæT–b¥0 ø¹‚Xyü3 w¬Ï:žO¿qÁe,&{ äèÿOŽ GÑZf)þ8œÂoЊÎÝ&WÂd±™mÊM “««º‹U¸Š|weäÖÕn£ÊWY¸vÁôn÷ÄÎ&ŠØêi÷Ì ¬ÍŸ€Ã/AÈÍ®ïoóùßðùèZUW1®#´B,EŸX]@¥’˜Ï¾_YKϾÃI›¥µ-+XÝr»Qÿ=s!Ë –²´š,SoÒ_/RúA=»ì/½ðHÏw`Ëÿv¾_v=,]’K`T£‡§?Ó?ý½*îÄ{‡?Ó¿ýþ‹yì=Ý­T`pklÊ ƒEƒðõé$zýÓ$Kù€[Ý•ª. U@»ê¬9äÌð•29?)M‘•!ØöDIÕ@v7^ß i¡úNYY†T¢TÙd§µ#ôaÒNg»:©V ¯×Šù—̰ÞÜ!± žs66b®²¥¾Ùþ¡—؇¡Ò  X_ˆ”/^áôX뎷+÷&—Ñ(ÿ²+Í£„& ïòÕ`_ûšƒ%ŠÒ ¢ñ bÃð^r×ìRýt[ý4Þ4øFO$G+ÍI»ž{§7 X£{“ñ¯÷ŸÈ–AÃnCMqÿüÃ[¬â|aÉŠù–…˜§| È¥“Ĥ¿Wqº¬ñ>)aÙPÊ"c…øNü­”ë]$½r‹¤÷¯¶HzÆEB9ñŠVIo²`yœdÎðòè­¾npÅÈi3¿¢Êxˆ–n®`$qÆC_å#ìJ&¥`œ´¢” ÖÒ²BóŒÕ@i§òÛÍöh;Fvô\˜pöÍãžåô¶œ1ßúq„Ù‚d„ùƒÛº”¤ˆ‚Â" ’ȰPñIÈÝ]qئì!D‘ÝWŒDe$IN+3¸CabÏ-O(N'L*È—¢ý6*¹åÊi—"´0¢Z›—? ‡a„)ãßx"WöX¨±ðÉõµ ø/Š,ŽVXç»vf´æ°Ž·ì޽hY€XÖÍJ‹vTýí~›gxÁ¢íAjÑ¡cÛ'fEKϲUmä²U?|÷e«Q)±lyàβ æ8Šìž¾ãÂe1Œk-\Ÿiõnïðç%gyQ5 •XìôžÑŸ…õ-w 9G·º-êK!é`î]ð&'¼þž¶vCó(Üÿ-”Âo.ð$V¢'±ò$VòŸ?³XyRþŸ”ÿèIù÷büÃ*ÿîwƒæJÇ”œóÈweCðd’µ›ÁšÔ±% ^hˆ=bîd¡•;YhçNüqz|pòÄé=Ö§8þïówˆÿ‹ÓfÜÊÅÿeÉSüß÷ø0;ñ¯(áÏñ¿[ÜŸ¬Xý¯ï÷Êï÷y8½ÅSÜ5†ú ¼§£¿[¡~ë7ÞŽjúF®?¾/úÍêC@«Çõ• ÁSÉ ÃîÊÁZOØÝƒãÞò±gpÀÛ˜Þò<U‰ëû›}eÊÃ¥Þ7+B®÷!·R„\²õ!§#äªÑ«©?zœ\ADCtÓü1bëvNÞ¾Âä2b·óîíû\¤Ý+þöê ŸÐjQ ÞCBæ|̲ÿæ|/<"n^¯å±y@Xà>Ø7¯é<÷{Eì-ˆÀËEì›t‹âçrñ{Nüœáʵ•©þ?÷ê!ñsÎeÔQ÷º¬í»tT²|,Êö’¨»û{b謴ƒ†ã§\èÏrq?%ƒ~–øYìÇóyðr¾»EQ>«…øÅ÷,ðÊåýq—‹âaïûOãêÈã‹SA1ÝñêZ,÷0×Ñ·è§Ñ|pÐüï>?ׯ؃G6ÔLKXAœ_È…þø°ú‚X}CF}žVŒ_%é¨ê IûJÜš·±-’ðÃyâ…L²óHq§S­Ä®êÄâùñæ9BBÛg$€Ÿ~«%B´çÍGí~’§v4 .Bû¢žV‹r2…HK‹.œL°î"Ç|èœ ¸€ú8Àà=pr§ë”f‡ $ÇqÞË_àä7¯O‚¸¾ümbB˜ ø«¸óK8òÕ|× àÔÈ~Î^¤ìž·;ÔÞùœs¾hyç¼ò%©öÛv^è>ެ=¶¥-a|¬Ï( -@ÑÇ”¸ÇÖ&_´€m™{lIÝÀTúfHk<9kNW Y{lJÛÕØéØ<™5If­ië|Ç8º)8gYtrÑÉKNºŸ¡s‡?Eºa' ·‹`…@C)¦™nçpì,qôêÏ~T|þ3ûöβv;vÏàëÓùÏ÷ø0ï:ç?˜»ñéüçÏ}þsöÞ{þ£Ó‹~ßóŸ­­óeO€°ýZ2;<iÄ~Œ <>==ý N€ŽPy†ÿÿÙ9ÂT#_½?ýù_ù(èéhMG@g€V9r·÷öéHžŽ€·äådüë§Ê½Ç_¦îm„&QÐêýã•Äj /ç}~\é\É4ä`ø‡œ+mÙ8œ½_á\IÁXx¶”DGazä Lq Mõµ'™-ÂE‰ªEËoµ°f¡™äè¨Fîü-9ׯù‡rÍ{ÛÙ{3Ò–óÁ.wÂ7žŽØ¢§#¶§#¶5±•ØË®‚À¦ö('sË"ù˜{œ·ÏÑ+ŸäiÅuñIޢݭÜI^ÑþVxš'NÌÔ™gŸk¯¸ÏÉoGæ.t¼Ì6›˜xôë×J>çë@Dt gþRúȲ»Â‘e×Ý.q¯+:²,²eâ Å¶ÀdSh™…(âœÝçí¶ðQåÙ{ßQeáùlÖ×p¸àü¯Ùh5þç‘¶“f»çIãéþ×wù0CØç¯ŽNv+=`Ëþ«3}þ÷ÿ…ÿìâ¿»ž‹¥|ˆövçüÕæ³ÿxöË 6è`ð?вƒUu*Xö&÷  çÑÑx6ÍaÏ©âÑ E½8O:|dzš/ÂGdæßˆ¤íÜî¨òÑâˆß÷_FWÑÏ÷Ñß®æ_þ¿ËYý£À¢*ôßÅKï'ÿ3‰^®Ñß¾ÁŸ¡×^f0øþhxõ-úÛð×iè½ýzôjps3ú4C·ŸÅŸÿŸóªtb¾=9Ú;:z¨32€Rç¡jÆiºi®i¢q^5œàAhÎJ¢¾ç9ãÜÇDÀSê»…o»ê¾ÉV¯vú;{çý­”8KáÁó!@ÿC€ÒÍÐ1˜*¿Áf@ˆáÌÎ Ðo®N›Æ  n&ãOt8‡@ÖãjŸ‘Of£+/îÛÌ&7÷ìv…ŸÞá±Ægª<íl½{±+ÄS(·§™DÐ9²wZM ©Â°êðïVñÙ„¡Ád# Ç5,Ìyž4Ÿ(¥þð÷»Éƒ¡S³1^›þV2HOŸáÉ`½© £-PÓzs«·¹ ÙQÆ7âN ‡0¬î.R‡ß3:ß³$êx·ÐÖ8㺳uBgkÿ'™Ãß—sŸ*æ„çè—#l¨¼•ã”ÿ<a2¼B(_ñÀ›L†Áô D:4ŒÄ‰°ŸšäÓt8À²NÀc„“ â‰MîÈÅ*ˆªIü‰& ^OlÁÈóÞÁ|Í¿ÝѰîg0¢»›{˜Ñ1Pøëç03t˜dTë¦bI<58žÙ£±x„ִ‘ìÇ~ J³[ÄcŸ3À¤F³€&«ìEÃéÞÅ÷Ûtüÿ‰cÑ£>åÿ󔟞…NùÿCkV|îœëôûÿ¡V½F.ÆtøÏûáŒÎ³u5gJŒ%VÎñyàì<yétfÕ'¹D?¡qØR'âøÝ2²<<f%_ ¿½ûé¦T.W[hÉÏ2ÐX)ÞÕ’AŠ]—ýƒ/vÒ!Ç.Ë¿ox%»¢Ìî(³[gHe|qâôH9$ñŠ0ÐñF XÏãŸ`åÐG9aqúŸZ¼áV;ˆÑtÿx?§˜#é&ú|R…ZbѺùtõ¸„ÿ°Õƒâ´ ¶à¼þü´ƒÕØw~?u¾×9 åìüômN÷J¢½Äèß‹àŸ{§;ïþïÁ;x?Ь­MOýW*’mïbšrSküÎÛ·ý7ï–/6÷3ðn?Rà}Hvÿÿþ¿ÿ¯Š ƒ½r}ž|6ã-»º´"GÕĽ}8ø¿ûâm"R1蛤ՙ<–-áKgSÎÅÕ+hzÀäŒÇpwÃéíý@ïùÜ]QìÕ&sÓW: Š_%ôÈYñþ…¿Ieç|'Ú£ç•Z\mlV+j ÿ…/µ˜¾Ñ?ü~ä/ü_xòÜ‚’˜Pj±nѨZ@jª=“PL`G½Ÿm¬^½Y­7mˆ¦åJ/Ôè óø÷¹ <É Yµ0ƒnÀT<7¬¹¶òA&Òg#CDÀ¶9;¶:9Þéi¾x$ ~ÿ=~™Èúßòðw—®‚T£øÃ‡üÕÏ?Ù…OqÄùaùúÞ‹îjîš_ö/Ḙ³É‡ ãUþ¶çËɔВ­Ó-:ää?T<Ê–êéì;ÿý6Œ+Gc˜]P/jô Ê£ÛÍè¿ÍëXð1^ÞW/È—« œ=oGtÜãq>S8)ÞxÓ„¾Ûï©ØA/jGðßU£÷›ò¥cøexùLøÝtru9WwáÔá žäÑÿ~=¥¾ÏaÀIžŒÊ‹x‡m½|mïPv(š¿,·¹(FåîVª ”âœéòçk¸0©–?’ìáŠ*,½Ý“‚`w™Qôxî}Ö2#?X¡Ÿµ_èÄH†ë8â0é>È.ó`Ý>?TÅÒËõ;Îîoæ’¢ù^ÜJ(€þÝV@,Fƒ åê›rî>¬àt)ÔÖuWrÅ«’9ç·úÜ\ÃÅÅc¾¸ˆ·üŸzø?ñâ%/²µ»Êº#}ìƒ Î;EÌ”úŠ^X˜;u©Ò°°#ibÃ[â?¯+þ«7kA†cÛyÖlD'ÒP1ö \æ.áÄ•&"¾|íµï’©Ýoa¤6üûºçÅÅ´(w7-Šò!˜94÷]4³0šé"4O{9L÷MLS¦Y0N•è~„¨Ô_³‘Ëš®15 Îk| d;Š=±¾ž™”T²vy³iä¤L+š¶×ô/‡ÚîRê S£•£F…ƒ íE(È)1±80±ÈÇÛñ^«IG;³ÕõÌV0Ìtç?UF Bûoúé;Ôh´Zi3Wÿ¡Õx²ÿ¾Ç‡9Õ¶ÿú‡\ÿáß'óÏã¤ýy„´>05þ:õ#+ËÜÈt+ÒF c­(eY¯áûæÕ±Í ç+&›±ó¯L¦£O£qž þ¬(;hqOM¿NGóùÚ\lí)8rr+/›ÍmFO jžÔü¸ jV2½VHMóPkM©ÁKå–y¬¤2n6™Â‚—eõ´3Á¼2?jþ—%2¸¤ZË^9ƒ l§Ëfpñî¾ ªq»ðnªöÅyNnò”Ø„;þñ›è ¦ÌTUò£/ÓÉÃ.ÎsG‘DŒ}"qPòzò’,Lð!/ÌËŽœ"¯nú(Ø÷£ :Å2ÝK1rõw‹êçö‘$…dÚ„ðMöÕ(¤( y2ó›(Q("§VÙ;ºýï_Z²Øþ_}—óßvš·ÿ[Oöÿ÷ø0³ =B^퉢—½½sT(h¯A×çþÑÙ¹ØoŠÌÿ?‘å#ZŸÉ_Þ„‡=f:œßOÇ3m‡KÃ]˜_$$¨HëÌÏ1&V¢JˆW£¨)Œ­„‘NÃŒŠO)£kô p"X ßkÎ~²M¦ø§ˆóã\nhs'Ü ¦@½áàò³…ÌÛ“òéV€Ý:]Øšéæë9û)’°aÛR£F‹x, q >Î*ÿ³I—íæÍEÍ/GÓË›¡@íŸ x0b¦ðpíçƒÑͰ&Ûž†¦R˜À²¾aæÌ š}XQ;=ŒWôÀðÓwøWñ„½œÈ)³;ù½vzÖû4Ûúóä áŒÄ‘ñ|¢ÉõàÆTW’ñ<«õ»x<–¡‘¦öü—2§°ÒÀV¾´ñ¡-®[a釻ƒ÷ÞõB/àm§zÒIãN3m´ãv·ÙieíV7i&( )÷RÚ›àCs žô–´¬‰Ó ,k~þp—ÀþlÃïªÐÇÛ*^â©Fgÿè¯tÀ|¨—ÄÝ`Ä÷”qAØòÜ»0“•nz£Eí(•@/^6rxGÆï–9/‚ìMŸÖ`EæNŒÇÑ)gERa¤ðm`ŸsºGœUuJŠG—;0bʨ0¹“yw´• Ó_ÉT5npðÇá5æÒ3ËÍàÁ«$èå½Q÷Ûïg2X“Usd’Ãú/0ÑóáWØE+dßÓèu=êÁ,LE@¬Åíjw; ÄÞÝÕÁÆIk`çD›²¯ÊîÉÎY-‰£n.6®‘W aÍÈ•`™‰üÂLÙ×_?Éú¡³f5Êd¤ ¢0MÂ5jÀ1I" ¾ˆ6N6àË©>‚0ÁT`Î%QÉ{‘kÞ÷7§Þ¡=ðŠ `+a¯la§C 9_ȆEœÞdÝN®ÄÒÌÄ¥\81ôB~bÈÓ2$fŸ'÷7WhÛ ½r@Œ Ô~8;Naô÷HAŠ@Èo\PÃzôÆ ¾Âª`mcðXNZ|ÄãÂ~¯ïá]lÙ¯îmßܰß<ßØÄ ý›vŒ—Ÿ”'Þ›4uØçØÝ:˜cð2ùλˆŽOµ"dá<®¸‹ÃþH±h<³œýA²B9“ÙAÊÁiʃ¬·Ê¼ù?mÉ|M»+töM-cYôFŠ-Z¸'ÝÌ&UÛñl+CCò<‹›5~·7§iD7`z ¦Ž šÞs‚I À?áOX7£ÛÑœ7,NM"Ó‘TE¶O †³”v· ãÑÆ¯†wÃ1nÓŽ(g ¸0Za<1¸‘ø`}éØõå`¬¶SÞÛ,8ãáïsò#êB߇¿`” Ÿß‹Œ!ƒÛ¢ù•D°ùïÔæ=‘pÑŠO·(xçTïX‘A{°Ö¯ÿǟ柭Ã$ú$[§Ñ6&‰1W~ÕóÞƒ8µ~þµt«'yÏÐZA`EŽWÄ ú—÷ÎX&ª¼|N<šSN›!0÷ÄQCð½Ì(f=Œé¡u*8Ä|¤WgWFãÙfyÀžXg”Àˆa=Úä®ÅzØ€.½“jÔ¯F{U$À¹K-¥·OéÕá'ʂ漑Ñ=ó dô±G€ÙF—}s nr‹ž:à[Å*´¼Îf”è”^ûQÎMÞ¼9;=¯.}tÂí|q” W¼YKEþ€=ÆgoA8çÞ*ñœ{ÐÙó Hôó÷oѧôîeÿ”ïâí½†<Þ=8i¿†'á%qo€ußQ¼ä»Þõ²DgG‡=ñÖÙ’?2išñ¡(aÔúc×/ñœøª.ø'<Åa¬À*Ë!R¹õ²Š£+.¶¾Ü‘•€LQ£ÿUOùo#Á‰r°‹ÈUNØ)‘Tú0Iȯ‘ŠfùT«m¿¨m¾¡Õv¯¨mZÜö¼¨­ÊUg‡+î}^þF—T,:í93ƒºù]*ˆ\6L÷´8¬77¶žQÖÑè1ê;½}°/0ÏÚiA¬o–#–ˆ¶hÙ$2†‹ÑÁÐ]™èà7ýòÑÁ‚æ+W’3òÒÙ±òi òØuù¼©°^ g#Pª-”o±ƒ]4›æ‚òß(&Ÿ¿±ÙÈ#îóˆôšédÎYFï&³Ùè#¦笻*&ô£ =)Œw2‚fþ÷÷ÿÕ3øI6ʼnD„}Ù'Xk\V­W`¡?On®ý>çvÕðèU%Ù¬ÂÓM‘>ùUeŒùãÁèr:B;Œo2Æ"A:Ù1¤¶3Vî2šNÁ2ú2Ïõª³.F›]„ ¡DuÎ=£Ý’Ur4ˆ ½¾e*=LnšƒmÑ)=zO¿Á:b†-·*üï6Ú$‘@¼¿‰’Uh¤žá:‰BÅ€JÊÎÈŸ>â(´9ÚŸ¿PI‘Ýœ‚m¥ýi>c_w‹a/ë"¸-Íiû27/ë»/DBwZùmÓ>å¹¶»ŠÜ‹JQî)ù[k/.|7‰B±êBŠÃ`4Ïäƒà#;^÷]“á’=ìõTˆƒÝgvÍ2g3µfàð žu89XLò-<- ¿66íã-ý­ÙÎ|¬EvÕ»âÅ;"w¢{¼× P{Æõ óq'Z÷íŸhg K"’w¢#·r´l$QNpdžÔ6E¶Wbâ:veµ-‹š:¼“ôU%â0I¯uåu•ýzHU,)\r"Á Ö¾¬ÖÍ)iŽUôžAí6qnð¦YçáË>‘q›%Ë•“Š•à$72ÏH°ïÞ›|¾g$¼Öxôþ¦ä4ùMpz¾èí,½ôm•Æ*G_Æ'ˆ_«?þŽ"ƒ½pQd â¿æß!þ+mÅ-¬ÿ×Hâ,nÄ)ßÿ‰Ÿâ¿¾Ç‡Éÿ;ð„Ö‚;9x‰ÅúG‡¯°–Å yͲ€ôBPpDï¨åŸ5JÌç ´)BtÒ^1o¢Éžtû|•DM¦¢ Ö2Aeþ€±åcÄÎ)Š„³ˆTG_†ãÙ¦¶ìÑÛðu ®~\ÒÙ1K#[WÅùù¦QÊ£E>χ9yêØ {r›çH¹æ3;ÔÒÔyü ˬҡeß`Ec)øhà”%u2GV»:•´ó˜!)xâ/Žz¨W2æŒñÄ>ÝD‹þn:ù2ºRçB©±< º0ð…A®,¢|¶+®|„‘]Í?¿È`¸V„c7ÂÅÛ“7/6N6~Š¢ó‘é˜ôóà‹¨èGu( ¼ýúý¹eÿ]ý¿ùêvÌ/½-ÞߨÚ@GÁè’Ê'*²*‚Ñä > M ÉÓ·ú‚¶@f_s¬Î$=ES.Æ4b.ŽÁt=FoP¸Íh*OOñµ+<¹©¢¢h.&ä i#ò"ÈP7Nê ‘+Õ}šèæ™áÜŽ!°,¸ú¢öc»ùèÓWCkîa€Í,Âj•’\|œÏ W­[¦Ï%üKKœÎ¸ï¦ÃÙpúeèЫZDÞ…ãÊG¾ááOÌAφwôñÜ|“ä2p4§|NGx20‹þz÷WŽšùç_Ë0û]³ÿ³ ³c \ñwÑW:Û7纗“)c‰êlc–6Ld$Os4œ“G’ ˜`‰¨ñð+U„-˜§ö¶æÞ’"ò¯DŽ_ñ^:íŽc`QFæ¹ÞÑ?LÔtæsÑQÌìFìÞ®ñÆ5|†SÄÁms.x‚õ'«ƒ}qÃÙý-Ì\1–¸„¶‚õOìØ ø·»žîa1[¬Q Bf? à"Ì—S늕Ñv¼Y›±X”ó\ãû/ª Ê#p(ra™!pn0 ~Tj Ð~êçý‹ƒzµþr Bý/¹bªgù ùÙ©Œ°(múû§§ïÅ?›|pSÀ¸µaîæä»þüЧ;ï°àߨv|âVে†ÊéQ ¾ÑöñÅ6çÔˆk¿Ž5ƒ%¸èf‰¹9z{Rã+3t“Sûµú+ “4ZúŒ)B|þ Å»pµSk\?s‡cUO°Â-ÏÔ&›#ÝÙ{Aºj¤öÚèXã|CõQáí2Œo¾-&r!q)Ž˜À¥É+¨+)AÚÒÔT´}$=ÜiïŒîïîÊŒÓF¯¶Ô@Ô€¶ËóȨ:*1‚Þ]Ë ÿ‡B X9ƒõ9üýrx7ÿÉM|Ο:ÿ_Ѹ$ãGëãüã/˜ßâEKæ}T龯r'’¸Z Ü9îT¼‰ZÒUÁArráì³ÝŸ¢Ê4—/;nÇ–¬ÜÍÏ^¤%$áÉ ’ðBK“¥$!ìÑ5bvIÚó7oá¿»oÎÏOýì ¹A6× Aㄟ“ÚhÓb ¤¡Í >Øô©ëÿ+äˆÒ˜Sçö‚{`çñ‚n‹îàŽqzÂV·º9ºV“JZ›Ô±Ðª*ªé¤SðÛb«· PÓÑ<×̶ï Û%—AYi-ªðXõ9›2P×jMj)¬Á1Ef÷-9m|+ƒ6A:b}vRš+€‡}!±‰æ2Ó|HoæÆ!õ¤¹,p^€ž¡G»˜š,¥JR“_^#9É}Q@M&÷òÄÔ-8«³{ìÏòG¶rZRŒÌUqáè‡È£«†B-Πو¶/3frás4˜æ™¡*Ný<'LTÔº…Œ[Z—7÷W4¹öðAhëŸP¨_‹uøBrÐ ›U€,·*:ß‘ú‰4ݬ«Ï%¬QZÍa+¼«íËP×á¿Ln¾à4ú(qkçj!G§1·0ºA…Æ÷F5≣{ÏäD‘XŒÙª{W8D¿*Îò-’ÇÐj-ÁeèØŒìxq« gúæó[Z ws ‹ù‘}kú D–Ј.A¨yƒü§ýßþ¿Ô«µÈP$Èå'<)VÖ¿Üe‡ë•ÖSøi}©‚Sz)“^ÑÕ¿é¦Ï`®:½¶â”``¬ÿçÐs‹O\±ÁÃ#ØùqÙÂ[·x[¸Úgò!è˜Xö{¬¥Ùxˆ(§›áïu¾45p'­ýïÞÿnm% hýïýÁ«Ó‚³³*;Ç?"BüK°TðÒQ='ÂØ‹‹„—¤$ó¯W^Ú9nIY-n(©_Í!ßrî‡ð­ßûCJ|•ÛÙŠná¨þ:¼¾Æû¢_† ÔêáŲ#Gîp“\!Ú±ŽôWtÀ0¢ÇŽ”ºïªCÞѰR¿¨ë*$1Ü«xâÀÇÅׇãGòÿU÷ æÙî¦m=S[è”ÄË[|d` oÁÑ1.ÚHÌ lÏ?ßÏh3MwèìXæÐw(=ùÖ&Bb­Sà‡ÚÂqƬdù=^¶~!xQìÇRaµ9ØÖX‘b;•Ä툫 ²¨öU£)l+Ó+ºo1±÷qÜWt6rq†¢çÅO ÿ²wËÁ˜6€5üBw`/ç÷"K€E°9–Û×Î$³Lê•Ø‡-46¹ØÍ’ÅÙÅ1÷Ë7ýóþN¯nüG¶v#¦ ×cnŸùE'P_G3{âÀ@Ƚ¬¶è¹¥8ˆ=˜½ì6±Ö„:°P,¾“æE`§=’Ze‘©aJ%1¥4#cÅ›~•¹;±·Ó¼\N¾“z~Á°ø•ܸ‘&  D·Ã˜WáÐÄ<.tÛ#ÿnŒÑa3¤þ拘(¹_I~êÁ—zã¹ÁIV£D5ú©W3.h–ÊfG›/ð­­J­ržW̦¯M&ÛŒ°›¹êý­ þSwÞ¶MÑiæ$™£)RÆïn¯ÈßEÝÓ[¾Š;šF7“Oƒ)è<·3sôQ{3ò{g¡EQ}>DÉ×Na"vòkoŸ3‘{L»ç|y©Ï¿—| <² úÎà7¼É„/mÊÀ ¸ÛçÜ­¦hF;«NÑÇ–;DŸ%åvyÃYZ@^Œø iŸ0’2a*’—!ܾc¤Ï¹?õaÑK̾c{"}'Cø&.DW’zWdUøofji^Á4#h8\*Ýu ñÙ¡á‘û;æVñ¦Ô"¹¶@*TõÆ"`­U…éƒ Â*ðR‚ }»nTSäZÑ‹¿££ð‹-–ax"”õvŒo«;õ”VEµÑÅ–ì»õy¾õW­àº g“›{ ŵ\•¬à"ádššLüªclþíŽN>­TÜ$SsǽÞ2ò@ ž§Fq’ô‹ÞÑË7ýSy¹Ýjž,Ñ£RÜöéâöxÿï‡yzϰµ“Af,9 D<ö¶ûaSÂga³Ý𔑭d6ÇSkgd+‘…Í>rÊgd[…Í9ÆgdËea Ç>3[˜‘-…mÏN 'f}Ÿ.JÆFAp§‘/릶j ./a¡ãÒI@´÷5>rÒÖ™[Íx2I7±aÉ쓦0ô í¢Ül˜q –—(‘À’9Ÿ5 “£Á[J®Oè°´ÌDã·Oj‰ý¾op£.ÄGl1² ¿n³&_+†Ns@“¡3£902 ¥]›Aà Âá)$él •¶õ̆Ӗpzj—ÿc3°-Hu¦“¬-U*f¹Â³;'o_íTÉ¥6Ðöèqƒ‡TšY!£·”TbTzt ç-FÙ[Yæf•×ýáåäjHÌí”§½S¬U73'a¾ÆYôh—ó¤Å’pÿq?ºüM$dÄ• SùÒ”ùR“ 'X DÆH .TtÃÃúädgøýð¼Þ*ŸŠKéòíËÎw„J¿¸>ìŠîF#ýK\˜+—mè ”CªPÑœ²)ÆDÇ0#&-ák­hØTBº’ùè;L@¶L2²EŽÛaŸóÉÈ@¡X¶T±L–µoïëjGG åÙÑ‹Îá›èü è ”¦ð¿&ü¯ ÿ뢒Ãû”Šƒö+oÊ‚ÔE_«Z?q‡±/B$O.Ž|)°¥¬é=g—[”K+e¾î)Ì㈓†‹$çüµ‘LÃHf%ÄÞtü^Ï3˜$~¿›ŒY]v,7ôL`íÍ}$óïá¹'Y]$6=΀‚®£¨Æèrýä^ÍÌ»¢HÓbÒ$.iLê\xT³2bxw>yɳCž¡á/Ó§½Fúàv˜Dƒz¤¡ÔèÝM›z.í:%h'›á)#õ°­´’ΩØ'ƒ$@¿ˆL í¢Ûí*‡OõÇ4‰ÌQӉD5¸˜cœÂr xû_a„äÊ…atHLYeØíS̶#’Åá”wG9EŸ´|Ó’f‘f0CÇ’n/,Gü‘üÓº²X­i €7¥˜º40u‘Є‹R8åç™ÿ¡ÀmE-ú=±nhªÓ…ümN5ûB•Aô7Òï,*Iý+¿á‰rJB£dÔ‹FÖÛŽkþWÄ”²bÇY‰az¿šÉ¡Ûèƒæç¿Éw8ÿmÇY’;ÿm4žÎ¿ÇG²zAýïs̤ɹ(Jð“v_Èã`W«VëKöwЕ´íöûðýíÏç½Cø÷—7ýãjtFýÙÁŸï Yy?‚>+c—c6ÈwZx¤ÌTqÎz£Ð±r.ê`YPœ‘¥€ 2ãlÉ?ú«;'ªÈ9Úä•£êëM}\áºöét@¸- ’gÓ8óÉ(8ûY÷¸ŸÛGÉ:žþ*KÆÅá:=ïG7WÞÃeô7JK Ðå40ñöWð°wŒ÷²‡—.dT¬Ö©ûhƒhN™'o&“;ÄS`'Ó§Ì¢ÁÍt8¸ú&oÃpÝ!íÅPä½e­˜ÊW£ëkujIÇè©ôIçÓÛ…ýrÞz5èzDEPœ™®Y¹`~ÁS#Ƥj„€Ñ˜F_&su¹_R™nå`L}Ýš–* $50М®zòRçsâþëâ*w„>}Ä(]v9ƒ–x9·¨À¥¢ Ÿîá DF’mÔ9-]Õ÷ûä…a9yFUqÝÕGíF6»Ãbµ_&#²âå­‹ÜA*}‡B¹Óïç³ÑŸ?ðQYoÊuädð^çpó@3¤óÏN1s]Óñ³¨`‚ó$D‡·Àõ俆®“Z«…è§¢T(B´j¶Æ|„`å 0vå”ó_»?÷6«Òu‡g¦s»"/5v_†ãÞ±ÁhcèŠæòæß;Ù4+t«UvO:@t30¬SOö/™Wé‡ì³¼ TÁ¸}«§éàÊL#Z5R¼Wíë‡Q3Kl f3‡m_äûH;zÝÿ[–‰ÄÛáô¦Æî[] ¶y;MÄsH› 7¸™}ìÊ*‚ @ÊÀÄyŒœ'Ôž.ß™°7.\ ;³"S¹ç-·L$ƒ.[‰MD„¬§[°£"`ýÉWy´&ýäjõ{]lï°/ï¸èÒù‰=É~.è.f1ÆPéñ°Æ†hµãÃwMÑÐp6¹›áªGê‹ð óõ#äëÜùú¾”èÆ^P´vIè˜óL1ã§)_»UÀ8•mªv`¢<—MΣX"†   9ˆ›Q¶†¿™tu`»U?Çeåº ž‹Oéþ²Çêo4þR1ÛÛÝ6w˜|ßwk»ÛÖ#S×åçîKÁ^´np• ªF%pwwÓÉÝt„Ò‚jÌŒ2§_°¼ÇúJ®—ëÇ‹F}hôIKZ ¡ã,ˆ2ÖÛ Y#”Ñ‘”,™·3¸ªiQ‡¾vx ­žß)DÞÿ´`’Põ\&Á;˜µëÅ™ŽH­+”ä%§àõtnaoÅ™8ÛM.q¥ÞQ )]Àç€Whq}`æâîu7dµYmÕ‹ÂSrìe%¼,››‡ŒìÁ–¤W¼ W>ä5²?ª‚j6帾ˆ}(– vì²"­– ¸Ó[ô3êɨv©ª8Ã_`BÁ©íê ¶£¶~%¡ˆzT}å¤êƒ)+OÜ5e¢¡Vt|<5M¢=¼™Ž™emF4¦c]ÑZY©³¡“Ï‚ívÈ2!`{PÂßÌò€K´ ¢xÒFÉ=^Þ8çB žrÓÖxä *é U’KÔå Æ¡o ZfL£@f#çTŒüñZ…ÞÍ‹]P¿à¿ãt¢²šK ,®Ýk°E€óA¤aÀ9<Í©Öbň~.5Hþà;íOŸòŸñéw¨ÿÔh¤nüG³Ý~ªÿô]>¼NĤvü‡Ö¹U0¯wOˆ›1 8$æß*DD× pˆ,Ñ¿AIêÄ‘ M0…Ñ$€áª/Mbt €Œf"#Ú‰Ê?$\-æù7GHÿ™Œú°t7÷üSñß7€%õ°$O,O,k`á¥<¦Œ¾8>öë뉴â‘ñá‰{qåÐãG¿ ~î€ñáSÞóGÆö<8°çÁQ=2¤§T<ó”ƒ*ÃxÃãð¬!zG†îÄí¤åãvÒ§¸»Ï‚øŸæãÇÿ¤fò”ÿåúðzwë4+ @Ÿ¿{P?;U.®¸‹ÿîR ¢“ý=Šè9Ùß/P9Àà?/ñ_øOÿÅÿà¿ð‘Võ»'{Ç;pè…Ý|Ð÷Ã8{'DD¢ ‘iÇô!âEˆžˆùZ¹*fæ7ÖâÖ©¼ù`³Å^EgßàÉlÎǬ˜QM;ã`~0èc)zøµç=ù`ßx€Ù‰…xNÅËo0w9€š]ÃÓx}ô=úö†aaVò^Édšÿ{}í$úo°´ÿ Ë ×ö¢ÿ®ÂŸûQí%üºI/@‡ÿMÆøq¥dñþ%Èô_Ä– ~váoþó@€/Dòç i8 3wbuLÌÄ»ésŸþõídÿŠÊî ºNç#¬Í+Îæ”Kè’Oªš0ô©À2Ž®ï)~ëj8ŒnTÀÆ©|%Üÿ™ågS¡.;\U%’çðv©wÇŸGR ˆŽoŸØ‡Ù+ô½Kp<}Ë“o_÷vï;²w®ú½Yœž–ó©}ÁñHá¾Ö>~«²gU¦Ov2ÄóD‹¾EñꢑŸ G »Kâ¿‹Q}^üw£âß[ÿÝ•ñß0ö–Ä/ˆÿÓ)ü÷VÆÏ>8-ÿ~öWàŸý•ñ—áBKâ¤ÿÁ üs°2þÆË%ñÄÿå üóreü_ ý%ñïñ﯀eüûÆ’øŸñ?Yÿ“•ñWòŸRîjE–Ôi‚ªcbŠ-‹•áþÒÔÑÅÜ+ž…Èþ‚•¸œ´êœmaüÍK¾Èó§镘>ÞL.Sç6*<0Ý©God v©{J¾O‡Öy‰G‹â¥¿Ó —Âî6„ÝüvË aW Æý”4 }Ö€<ÇN–Jóù“Prv©ÔÍk`F,fChV…æs@FX?åÔ…üÙ‰~Âó¸ÊúŒ~ÝäÚë;•Q¿PAOœ6øŒ°Úr®QÍßjx3o5êª~§ëõÓš»>4wM4AO7-¤…èî.#a»[Û^Û}¶ûe:Ü_<¾Êtx°ÚOà ê­Ti Lµ1·ÿW-nÀûqã¿«žE¼º½9’÷3UƒÂ˜†¨‚J±4Ï'¥þOÁÈøtÖºˆ×ƒn6ªEsõ ^Àäó19`Hÿ÷ò<[<+ôt«¥wí# Úæ¿!{V£ß˜K±,ùoðmsÑë †L1^ahv­2ÑoH üüÆÙ³O±l¤”Ô+ôo¾ºˆÆ+®´åH¼›#ñn‰w—%ñnŽÄücy÷ ïÈ•¿ùäŠÄ°þpé”/…¯YÈà示´˜y€”É`3v ÖE¶ ýº“#Π©õþîb @öœ÷û‹AžøA2ÀÓ¨Z îqV¢h“›¾t9˜Q•º[P¤äU‹¼‡3}’*é#‡Ûð`<~Ñ7=°"ÏyS¥°šjôjçä%þpÐ;/ZT-«Pݲm:³Ý(tB/Ô$)ßÄ Ð)ÙG Ú4Ë£†ãÕØÅºÕCk²qÒôð¼=&;€<=-[™lzxGE¿«ÑÙQÏréòiNO½€‚á9¿—ò$ÆoÕK:}ftɵU¢×¾GQaHúìTˆøù¢8ºâ7ô±6õTóÉ÷U[ÜY. #r£¼}ÍÊ@V§ê±¯2G®Ì‹\P)ê Ö—z(ŸRfzvmâ+#&ÿæÁÚ¦iw!K¬6K»‹gi!d5KÞ21YÑ,µÂ‹¨ž¥¾Q…Äfí ¯‘°ÁøŒçæmnY‚úœ4|©éBË?5ZR$y¥ȇÐèrS¾Q·‰Ž_úì,¤Œ¤Ê¢õèm½õ:Üþ{ˆ¶ov:E .sõ hËbZï.¢Övµ"{]ùÚ/Oëµ.殇ÖnÍ/‡ÖE[bü€å¼U~1/šÑ>öm(ùºaª {•çµx…íläUdN+mÂúÂ)g% zû vg °–ŽQÃÿp9?ø^ÅÁy_'jˆ—·eñ@OQ¯-ÿ€v‹´ëP¦d[Çž»Î€vCÚõ h×Ðå»ò’;ó ê¸`Š›aQ½P /àè…‚Ø-±oÛŠÛ–@¿Œq;¼X—‘z¾¡-’zîûd~\(ó“FÁ¬ýErè5¨G“Dîà|B6 Y—i<ñ¯dAïØ7v"Ū~¶’JÖ›FMÜÍü[HÍ©ž¬EªóéÙóè¡Ò='ñIù¤ÐlHÒÐh ³Èl’Ê€”j‘—8üÙÉõåÛžcx·Ç/à´Ž¶…î–6½ €¬ Ô’ºHÇ<"›ø¨À² •pµ`ÕVÍÌ© jÃBvðÕ ù˜n/¹¼„*Tk¹]Íß0v´FºÛ“KQÝÊOóXu}L¶•+ú 6ó€ó Zþ”š±I3°™h¡ Ø5ylyI°ëH‚Új’ ¯Ìía-’`÷–»+J‚ÝG’¥éÎR~­ÔgvYfŠx÷»1ß$„ý–”Þð‹hÓÏòðEßÅ¥ÚÖè°®D½*ÿ‡¯Àé¸C^Ñü|òÁ—ô…â@ðÿ5‚$ïÈ‹ôã€$Fâ"‚ƒß:X #ys~T€|÷¦šâ{S îÿ´¾Cýçf«çîÿÄOù¿Ë‡ùÖ½ÿÓªD|Áľúóÿ„ÿ¼ÇßËË;ž-_ ³ƒshø ´øÞ>ƒUzôò_å Ï;A ’JJϽ¾ádÒÂs¼‰ãËg€ ]ƒ9[ƒ7gG~yWá1ß¹y_áA.yͦe\³±rÓÒ…m•Cb‡#øöepsOÐ7ÃÛ*ç".'Óépv7áKý8€sKɹå³ú¨.(ªß [6Óáå âY³ºS#“‚2ƒ›™L`BQ Em±ô¥î}æà9ŸH ñü3GпF?‚ŠçHœS_é1ˆw¾N¢ßFã+êSSó÷èn0R™MùSA>C½a4Æe4¬¼µ sWÙÀÒûˆÊïh>16FÿRn<€>·›Îñ.N,SíЪØD”,÷ŸýøX|Sÿ³pÃ_õ4.lKÿIê©ÕÞß–þ“iV[Õ¾ -ý§ ªù¶Ô^r‘.qH7r·þ-IÀ¸6 AÐïBàÿąʳ찹 ÿý¸9Z™¤R!U]™’J$°Âp ‘!ip;´¸r)&×N ŠIçE@¼PªÑ§Ñ™…xøûàrn¯ih/îRvXBSæä}ÿê'X«‚ŽˆbíþõMýõN>…‡µßù‘•¹I̓ÛÔšÈßeó\S=Ë,‡F¨ýâ©ó­û¸êkÊÍ«ÑWLÌÌô± £ÁéùÆÙ”(³-Š_!yAÄQòØþn(㥭¤í%ÒÑòÃ%î݉}†ï\&,s¡¶±ÜµEe¿úżÀÅ’2“Öu-Æ`Üo[ö~^x¥îçÃx·dÏï‚=¿“ýªh€Ð.L høne¾0Þ/9€÷Á¼ÀUŠ4þïWÆÿ}àj‘FŸ´Û(øT~~"…)ÿ;¦G ¢{-u·ßÕ-Ð_ÞÙKÎlO€àd±îÔÉÄŽâû¥!úL ðÌÍœšžŸÓžÂ}Vmʉ,Ð4 ­8F#ySóèå@+bY˜£ïqë±ú:äöüUÿ@Ú^Þ(Û>‡ÙÊ [Ž •ñ³ÔÿE¤jØbw’ö}¥Õ[*Ö6üð Ù£ÞK@ùu Yœ ͹Àš…¤áw’Z•*Q§u¼È/‡»·¿³‹.@ªª‚r9¾ÿ蟯)0÷ìç}Jí·÷ö=ý{ü2ñB'Ò£wT92ѤvQW0”V·’á»Nȇq¢‡)Œ 5OÃÌ€»m€ènÁÙPø°-ºUýeÀÄ9G5Ãñ[ã`uP£;^@…³¡#eé@ë~Óz3!×>½ÉY¸tkûÅ´¥yjÀƒ¬Šéʾ9)’›·Çͪñí‰.ìf5jºH°„{/1ûê;ÒÄÞ;NzbÚJ´ñrCº°w…³Ž=t ä{”8S=ÿb=Ï4}› š§’¸aðI1x_ó²ÃeǤøŽ&–ç°öË;ë×Ìû+ωùc"8?zÚ'²=þjMÛ™j»^ äl£+P=I ŒG mxRsžÄRùžšv,ì¶ôêÀw¶ÔºÐo›oézÝ…¼&ÞæE`7ß°Co›£õ`ΫÎÞÌwÞvÏÊrN@5¯g±8Hê<§Ý©"”mR2¶h7c®6ÿÆX'W9íÄ[†ÚÊÿdˆ x<"‚F&ò'‰4ŒÄ/oT·ï Þ•DAÈeù“Böh(HQ½•ÿÉF¡ùh(ˆÄDAþÄj£#3AŸáµ§rÔÜ‘ÝÕß>°òf É<.íÐÿ ÿ’‚Xø¿qUê‚*ö*½üBŠ/$YU*˜]ª)úª.,û¾XSüN'4´Œz6†ÆÔC“ß~¬¡5CC+HÏÙzŒcæç¿ÃÇ?ÿÍ’¬•?ÿm5ŸÎ¿ÇG,çü4ØžÖÚµ[Oß`<ègøõt”®PôûgG‡E¹ /Þ¾=èãMÊShuÆPÎÌ™ªí`}"\Æa@´¾y=Šõ':HÞ{µÓßÙ³L^MB&‘«À°'«^R3¸Ñ´²T‚$æù#ò‡zœÞeN© ëņQÚ_ê[V”ÕÅg5†EgÒ‘8–>0Ž¥e‹É¸6ûv{;D¯}4ûç=颕£ùg@É3O‹é8¸]š‚ Áòÿ4ÜåNEß“;ÑõÇoX,åæ›\$·]»Íìê]UTôœDj0Ú• ÙåT9¢ŒÎJÆF‚hôNFjÔ3Býø$ú[ÔÃZn„¨Sà‘Š‰^Ý_òÁ%¼{?sê~½šÜφŸ'7TF7ã È)u*z|avPP*ÒéË(Ù$LIlˆÌTÑxø :ù2¬še[pF±ÀÒ•,Xivt;ø}t{[aŠ2£6F»˜`êŽ*½É|øNÁ¥YçKÚb§T’1ü8üVXô %÷$ð'ªLª2yŒ'ª3TÿáN”_šbÉ—Áè}wõÍÅ'‰…å(Ͻ‰9±D&Ýä\–ÞšVT°kZÉ`+¶ 명K-¤Óm Y´Ð(¯Kb«öÜas“k-(ÎÊ¥RZÜö™T´q±õ¦œâ†h¶à”²€ÀfãÌn'ªb»3n§Å²Ó²G-íz†õØã–Èb fûÔLb#ª¬z„½Œþ÷þÖŒS©LÃüQK®¬¡ªðÄ:OXóP [å•,º"§ÖpÊÝ&È˰T- Tw–vælSB.š\qõ­PÕE›70úb‡ŒÐšÞc®8 ¹ÚÁnF·£9K*ÕdçÃO ™û02#{'.sXþ—Ÿ¹à¹ °ÚÛÅq!¶'ׂœ÷GV‡´šã)*w}‰¹ïì¨ñð÷9•§FÔyëv—Œvüû¡Ž@±©&‰`3RùR•vê…kª%¸™«¸²½©¦°TanÁÀÍìE£*2!œÁlbQVóžI P€‰Ì_ˆo}S5²ªGÝ ¿în—<#û6 OÅBÄ„R·¥±(Ç…¯Ò¯‹*Ãr©{©Ê̢ϓ¯9š!ÿÌ­ºÙTÿKj?åH ö|#ºÂVŒó©g¬ùÞŒQšFo¾à›û•ä§|©7ž#‘|Õè'ØØuÃÍRÙìhó¾³µU©UŽÀó ‚ÙôµÉd›vS‹*#õþVˆ©;oÛ¦hk¨x2jR0”¨.y>™«ÍF³ûËÏÐd0á 7“Oƒ)hå·3sŠ÷bóMo—nŒØ5d\!ðzóð%°p†¿_ïæ4p·O+g81í8ŒÄ<Ȭ͑Æé ™JàËFnÌDæþDÄdÁ;œ"·Ôl$ЍÇH0ž&*‡.AÕVÍæ°0žn„h ÏÆKoFžb‹MJº'ùh/÷c¤ Ñbð¬y›V õb“*Öeº½Ÿ‘úw "ðjv À"[‚»À”¨Ž(Ĭ֪€šµªB QÎ!–Ó´ „*Ñ›çAU(dMÜ.:ÏH>Ge¼2ø8«àºÞÜ䪧C^_ôÆV¹­æ\Ló r•™¦Œ~Ô‚FÅ6AD…:YŸB¥ò¦#ìóh‚"á ¶R'7A´[¼Øx¹ÁûYQXPf ‡šù|¸iFΈžmM ~6ža, õ¾..oéð ?ÁD¯×åí­À0šÃÎ Ü1anQû£²­ó*»%¨&kiÆq·9»€°2ŸÉ¡õKÖåxdË©ËÑô¬T¨iÙXV5Ô浺¤ÎíÀfÛɤ8ŠÎµŠ@²¤…3FËšÛ.‹qN¦î°„°ü- §6¨³“_¹/Ìþ€¶^iÒ¤.QGOÎC‰pvtšc[—Ê“ÂémÕ˜„ÓŠ´Vâ„¿Î@±¿Á=Øž)åƒø«¬6\äŽöý»\½Ø°ÿ„cª/¢³ègéèº .þ7}Ÿy€\9˜êüÕôöé¹QEÎ䦟´`¸î Wûòú5Ñô¥CSáÏPär·ißÃÁ†žÃk1Ü‘b̪͚Bk#}åëà›Ø/6goød›07pHÂÀ˜ùp¨rV ®A¼|õÝrvÁ™cм-T'Θá=’”BQ’¨)ý¹^!$A!4^ÔZe»Eú*Žj€.`À¿¢|` Ð&¶{8ƒE%곋cì››š L°½ÓÒÙu,«ºûZ£™3“®3R虺TúñÉ [€èöì6rÜsÂ!yBKoŽaưI£kÒ€j•´£æ2 ËñÅrƒe„‹{,ãæìÅ*ƒu¡RÙÇ,åŽOl7ð ]…±ºp¥÷ˆ”œopöp…œ‚-O n`,¸¼Çn!­Ù3¼hýºMl-•p2®YP”Žˆê§T@`IÞ~“.cŸ‘뽞¤ûyÁð"ÁJÅ®¾åàq÷ñm _ ¦Çˆê ë |~f_Ûðó1>´Ùøz4¸îå ´x.o¨þú(¯/¢“ e–8±ª3\iï(ÆZL(<+A¨tË¥Ò/“éo³»ë)sHA‡½!RL§d5\1Ÿ ß5qô2æÿôéKMÛ±ƒ—™^ü]z”§ÃùýÔñ€Ñ‹ÞhÅ ÎÓŸ’G°Wn"t'¸†u­‰¯Ñö‚KDàÕ1o9/·ðe²…õz19:.f’74]„ÁJ·X—Z£´^­ÅDVG½J´`}sÑ«‰ñÙ öZÃVŒ>ƒmïŽFPw§ª±ìÇô,!9lM·Uæ´"ý@kpø£IP§5MoboÑܰô7Þ";Ú’´½ÐÒ[½âó,åDp-¦YÃUjwV(^݃×xe0˲©FÞl°XÙ,D–wxQB-÷øØä±4Ž£ غue5œæi ãý|ÇgNÓ,ŒsÿÐöÀGMz÷CžMÌÞþà;*Fà{Ñ]‘†}óÄhÁózKQ ÅÞ"„ö‚·W Á.@oo÷[NÞíY×6¢Ý½¸ý²‡ÿ{s&š¬wΡ3G}üß›_ðÁ¢Ð¥#ŠÈ9L¯áÿ÷ðýðlõE¶£àv8%ÄùÎE5z‡ºˆ/o}é[:Ø×EKz ¨1žK7ºžœÁpõÉNï° ×—˜Ï=×m|U€©Ê× °.{‡×^€:l>Äi÷ JrinéG™[æ‡!t÷>a]¢÷RøÉ¤îíÐÍ!šáî `ê/wzݵáu+’ãAÃ`e’PR^„„‘Ÿ¯£MlKŠG.q¤Äá¼Á(äo æˆq‘$`| Qt„ÎÉ9 —¨,Áj¹ù e‡HzŠbÈF9AA×2ÈÛÄlù\²eÓmÉÍÌìƒ&¬çäh²à`Œ{ŽÆNäﯕ­ÍãëæZѲXÐ*näš ^)j”›bƒàë9Òk~tÈwÆs‘OT­`åd¶ ‹™ß˜öûË9ÁÍ\¸Ç'ئ€9¶8¾àTÓC~óPàÁ{µØ'.$ÐÜ܃I¹owød¯¨q×]nâ9R Þa¢¸­é’ +d•hƒC©6ªQͺ ©mßé´¡{#Ó”ºjܥΌAp:ßo¦ŸÄÆÏ›U ™k1NædsœœTÅ´«4¡V=ýSê/Û˜J )ªʪû;Â;JG÷’w÷í#\rþHoOîZè¦+¤[:ÊR7:zÂ,RÓA3žRÁqñäYD[$ͨcØgäuÀC6º‚ {B3ú&û÷Ú6—SÂÙOÜíF4$FÇ¿« Æ‘¾µΡN7СŠÞªò—îùö÷ faX‘ç½ ¢ÕÕ"d”[jjzѲ Û9ˆܯ²åç_¡’%ÀlÁ‹Ó÷77êîôžHÚÊÿðý9ç‚Q|ȸc·wcSÁÌö9úŒX;úŸ;· ‰}ÅËy\Iëõžo‚å ÁF«8<þzEøÂ,4“•P%2=2u8N×6"}îDÞç‹Çz>µØyç\Â@ZôÈô.’ɳÌ3ïùçû| æÑœZÑ+Ðòç¨??ÛŒ.6lÊâVfÒÕ€#EÌ>ºGÁúh×Ì‚c8ïrréL ¦³÷îÂIßkÐÿK©tæKÑBÉ©e•–[Vj§§ð eÎÏQ°‘_vä ¨˜ùP¾âBÚÊèf@—IM3î$‚-ãÁì+!"ÔpZ"¯I’Ør@F*ì0œôÀçûÏf/q•ÿŒ>|™F‰šîï.•"sëiº’ÜK:>ù¼øáfÚú¢.âYÔ§[0´&Íqc¡›ª »ÐEk}Ö]«E¿á_cq8¨…Òmßã.AL”ìq¡4Æ—jx¹¸Pº´q±öÉEµ–‹qU³^y¹(zZ´; ¹È;€)…ë§a¡Tt É:³ |Þ¦¡oM‹KØ‘¾im©ˆüvPã…³„Ohž§Ê_ µa:nvàE’¾\ä èºH"YŽ8TÄϵ+úšèŽAÑYX|Ó¡¢@0œwǨ|ø§+ï²ð³ ÿÏôÑóÿÄi#nd¹ü?íä)ÿÏ÷ø0c»ùúQÉr¦½?õç Uáx>ìï`,«„O¸5üƒ¥šð—~ |^{{ôóyï?Þœë8gowúg2ƒP fg1lú¹DB‚ÆÓM7v(ŒÊÛ1ºFÆ{±q:Ä«áôòÆê×W¹D:cÀ-׺·aúÕ;óÑò‰€„ÓÁ•©Qx…ø¯ê[’tý À?—ùê¬+f´š9³ fæž&Z¤*œ¹Ï®0¤ëå•]šr†s<&ˆÜÐÞBc š=" ´ž|ÉÁÈ48ÎLÀ,8Ö„Öª;§·ÁÌ`p¶Ó/f¶™ë먳;سdCÄÁ.1Y™]žâµ‘….ï´A3Ä€R ÝÏÙ5ûƒ'³ÆÓ1,Áà\žAß®ÂL³$UøÜhI[Dæ 'sPÔ7+“QÞˆH1H² ¦ÃŸì•''™¿R|<ŽžÑÿ<¸¹Ž*Ð^¤“©^Ù›Þ¦LešÎæ“éиœEm™Ç(ÙHŒ{ú†wó8¥›y‰'\ dØ!C tHâmÊÁÌ#¬)êÏì.Ôìr2þõþÊm?/Šî@ÕéìhL¼ ‡™n¯+ÎÜãÁÇtCSÍó9ðJ¿Â¼bG×Ñüë„î;ÍTVŸ>l!×טF/ljë#¼ëÊHØÐm•^ ºú<ij_ý ³ Œ¾ÀJë‚wî‘pº ¢ïj9Qùñ":uÅ5’xEd“¯ýø£e.ŽË‚ £}[ïJC‘¼âñ°- ¢+‰g_9Æd² ûš‘fˆÓ­ æƒ:_ÔÄ1 q€óÍÈçÞ÷n B"œÍ›5Eåݾ‚p§ Ø߬§’¿ÑHƒùÞ ³Èõrä~°¼qNÂÄÈ›ónbR½µÛÁ§Ñ¯Ú[Í9uR(u—ø¬š/n-}.kî!½>;o¥<Ó[ÚS^¾§¼|²Ï?e^>™j-(àöí&äÓ)6=ÅÞ‘Z/˜WO S¢ºLb¼*nðÄÝÒù"3Êñ°]¹mvCPè& R™#oA^<À— ¥ %)WÎK%½AÍFŸÆæ`ll&\ËN~ ¼ÝÚª»±Ñz/N"ç[³b„^AÁfš¾ïo/Ì™ÈÜÅγˆéÉÙZDB]:XzPPÚÙè' hùœ;D6²ŸðcYÌ}:´é…£¨Dû'QÎsDŸ [ú SËq оÝÑd6÷öÔxO»e‡”³âíÏcâøê‘qäÀŽý“Í’¨êƒ²ƒxŸ=6mËršå§+@øàÑ¿TÌö~¼öÚÆ××6ÊDòÃîEhA„ ò¦òÞÆéE{‹­™¡­Ðê8Ýô‰õ•Â{RÚþ°MK}À7вSÐ ´½Ó€í‚öz…•ôËñ)§?±R2) ŵU¹½4WNÐì€~Iç¥&!Ü—…D áh«§¢t7<)$ìxwV®PâX¸9…EÌîÁ†ˆðG’Ë–Ž:óS=^C‡ãKNNÈ;Í Ú0-R£°²™ åÙÉüåjöxò÷O´m$O?m½ãWäR˜^"• o?ßv!Ó|-T¡âc’\v>·ä¢Ï`Vçºû'uÿêê—Y]=ïêêÿ««ï[]ýò«Ë8%þΫË-R¸Bª¨$UiËÆµr¶QÆ;Åã{غéÿë¦_~Ýä¦ÿë¦ï_7âühñуÑùÝèË„|ÝQàÀ@Ôà)P‘qf£ V”ÇŽ±ˆ:2< À .±£;¨ˆ5$Hk·vÀôÙ‹OI…Õ¹T”×2)€¾+3Üa't’_éÔIö S"ce|Ž1¹4;æçh̳z9˜okO'Šë=Q´Z/yŒÈ±,…‡*=äGu;m!ƪ¡ÍæÎ5 O7kåÇ&‘Ò.ZE_SÕÔ ìŸÊî¨à£*Ð p·Ví7ÃK‚ì9ZÀàÙ9Ê£Ž·n³ù_ºÁó2<ºb#œxZC#ÞÑ÷EôÞé&>dÔ‰ƒnaÏS»rÔæ“v€/¹)ªeG2®,¾)z£d/âgê'·f˜'´Î ˆCûö_“Úå·Kà„¿Vs“4²ý•XvonF•D~Kà[½^¤ô`m–à6•ûüŒžˆz%ŸÒÛ>”åµ.ø‡ËZ@¶D²ô-僄evIÞO=£ãè䨇˷ÎåÌ@ lZÎØ÷u=Àß$ i~%4ذÕx޶T>(J„¢óò#žð ¤jÔ^žZA'¨gð)š}R¦’\¸ËH\=ç./9æOE‘-óÊ„X¤Mx=ŒVÖÝéžbüÒ`bŸ˜ ª—M3V+«jÍÖ%ùãQ •Æ Ì¬£zîJ±¡ž5ÀˆþòË:]VÇÒöi -Rrë5J* ã`Ì)S5µ¢S“ùþ1½tͱ˜éØU´f‚³êêžtdÄžsQ06ºéàRãz: Äz’¦ž”¿R'wçÓÊûò‹%SðÉ¢„ê/Ãêáït‘bLö‹F4ºÅÅ?Ë…°ÑãØ~lщɫ2Í·Nê\Ó-íÃ>Ø«êÑ©VA0½íuä9ϵ"·–ª=@ÊEéÚä¼0HéçÑãØ~\LÊ +ñúHy²R–ËÄî¡©\ ÔœÜÏ1tÚ#Õ+Ö#±x¾å¼ü¨cÍã¹€`Nïÿ(æ¡GîýƒÓ»7ĸDç„€R·E¸ÖÝtòe$”QNR=gRƒC ¸~1£J;Ò8žO#ªÛ PCH-tI:œÀ{Óñ\<†³¡¬˜ÌF޼¡$o"ìÊïbŽhe&=ùȦ´-wDk—ô·^{»[^íâ„ oË?œ·ßÂÛoéí·æÛ{ÒÍ^ÎkòB +×Á+k½|Ú¢#\ fþy2ó+Å”¨-8*>ú¶ŒF€uEH°­=¡E–WeøeH½ ¤`Ÿ «n^ÞáÈýMŽŒÜ¸O./ïïP«¸œL¶³ Q=Þ6‰hMrS…îtØÙ½t ÖRQ~ýÒEU¬æN•\Q—ë8V·~äMtq{ ¯€nÑõöÓ(&Åp{@Äv»U±Šì†§G=Ê/ºçKÚ¨ÆB½_\lŸœ`crgXÍá!úEÕˆÓ¹°]r¢Ÿœˆ'‹ÉYÖó¦+Î,ôøJ£ÑG¢éj%eN­º˜÷cU«’k$‹[šÆW€¤°&MºDM ö-|«½LåšÎƒ+׈r4¡wBÒX‹B5|Ôd¿GëBø†BNi°zFÌVtd…+’V™œ¢ƒ 1‘Èr¯6 €¼* äÌ[eG©ñ€èüZVßCaé´QÅuN¼SJ Mq>'P¬ú Œ_ãác‡LHÐo7’NJ0PKޝ¿x|}îuמ-±ï°W s—œ1 Ñ¥5#D“‡WùÉ ãjž•­OäFbʸe‰ÄYˆâ,Qø”i+‹ÔÄè,ü@Û½$ Q€É+ÕjI,*/éàWÀÕ–’ÒwcuäTÖ«%´f„÷ÐbFbh¢L q2©‰¾é¡-óBeûÕWñQ´ïm÷6Ìô·`uñ±F×@8=û·Sx?È/ ³Ã‹bè>8Ø¡C±–,c5ŸøîÚ`@󊬢$WÀÊÊ`T²’þe·ˆU”–îüÄmš•nÚw›Òn«üY: ü£v¹‘kmz‡q _â°ùÄËFóùðön..0FsO^¨*vÅ;ÂùÔÊZO©¬âJYË”´­UÉZ®ø–TSSu©*Yo>¯FûœíåÅÉ®ªÎ(›%þˆd2GGg»˜r‡’ʽx×Í¢V”/«f½¦ïüßc<· \3`œö@í/tÚ£6§ïèŸôV4ýÄÒÅ¥·öDâ°=z-DܰêÖ®U6«w&¾Ÿ½ÿ¾™ÄO"ÎïU™‹âê\ »+.£eöW@ž²å½TY/YÏ‹ªòj¶€àn™-`Ë¡Z[§¢fÖyª»õu·0Á–¯J@T<}uœÞ»uœò-ýƒå–ÁÚQÔÒObn™øGÊZ`¬|‰°‡•'ó<^€:[>Üe¶´½ß ·PyÕ(l«lå´öË=Ù:WåÊií—`²uË?áòñ"Q@Ñ«A@znH  ‰_°Œ¹­_mCs-Ú· Í´h»WÔ64Ï¢m@LpÛÐ,‹¶ÀmCs,Úþ£¨m¾`™ÕöCQÛv@ðÓs`ºËᔇ) t̉„®¦†¬)~Nù¤„Ÿ¨£ >É8­é4ÐêüÃ8þÐeήéRÞÍÄéK*ÖˆüÎì÷OÌúèä¾Ðjá¾0 ó%yI Î—uìN„è-Ú(j¨êß,LŠyÄE÷üUK•m五" Ÿ]‰f9JäþÑ‘„ÇÌÓÞÁ$:£´a;šÍ9o(¶99²ù+@æÝÆW R`¥Æš¬£Dåé’%*©°SOÌm…Ô8CÛ—_“¢ò~.ÈU2óUKTÉô”W|¿¨dN|P=9À­ÖâÑÑ÷›m„.J‡@Ô‚0«ÔÉïªØ¦;õVíÍ@ÇÇè¸T½NOåM%jªˆ¤G.0#mÒnÏ«‰€¢HÜR/«S»®lª9øB¥™C¥põ䋯æH»ïÍ‹.cZ8ÀÔý![0ÀfÖyÒòæà,±¹ÆÊOý£Gà.³w,\á'Ë—v­óa!Î}—êý…TÏ©HëߥYߥY!Íú i–Èb ·…“ú---œTÉnê‡D­gw{ÌqœµÞƒcÈÉvÑ—A.¡,®¨kW.ØtsRË"5$Í ·~U(¸wôñEÁX“œtÉ”OD±êJüvX<÷I^q {HÖÔ?ª‰ßÿœÉÇMçõüŽùG5JsM$çKBëÓGH.¡¬XX@ÌÂ/|PÌz…|˜xäÑqáGžœ…ìT†>5‡e“Ê‚ç‚ÉýÀØ Æ6L˃af%f²í´:9Ù–-ƒUõu®ûËÖ¹Þ^bq° ¾)|–o¾© «s¼(+šò1ž×‚âÐÍÒàdé†èÿcA`ÓeµjÛéªm§¾jÛfídˬº=ÇbEå´÷¹Ê…9õ)Úh|5¢è|yÞG®®Í§›‘ÅŬôÐúÚA c½•¶3Ui›†h™Õ¥ªm{ 0GF))àYÞ]X}h8нPy©e*jç;+(i»·\eoõº]Ïí™ ôJ7KŽ„jý0¸-þޝäjÛZð o’›\ª ¿ü†ŒŽÉ;ÒÐÚÚÊùOZe°ÄãS=ÁøŽ¿œ£ãó‘knÀÉ´jtÙÓÄni#ÂøÁؼ„GŒ›ë[Úhä÷ ÕÈñ–^W‰êbªõËQÍk,w_UîÉ»ÏYW÷êEyU¬†Ã¿Gú^»=þb¯`[qµÇ+(ªgá#o >Ñ‘ØH=#ærvÁnàƒžhéi'+܉À¹P¸"<Î-þ`‘Q…ë¹JšæË¯E$žxY–åácH*‹0z9ÅqÃû»þä|ùy§4pNÒ…³–Žž4ÿr³'aò§K“?) s!ù³§Eùš«,-Ì ,Aþ¨…ºb«,Þ¶\Ö5X|½uŠ¿méo¨‹<Sš$­&èá_·ŽûÈüüðbcáI@l¤Ë‰fXl˜ÂøXØÁ¯ætIÑ'<¨+y¦]HÑ×µ#Lˆr´Ý³t–ÜøƒTü³ZÝˈ™h9I=”Ó#­¿J鱜^ÍØè· ¢¬—GXÍå–G+¼<Š} I«Äòø¡÷Öü£ÛãP#¼²nïCöb1ð$Kú Ú~>T^M° œÊI_A¼Ñ)Á®Ñ“” KY¹Í‘•›Ü6ÑwÑF=tYDëXQ ù½Êúˆ dx$éyx ‚]çGñ¸- {ÂEù‰f­˜—Ý£Ä aQnŒŠI¬%T'è®Oºë<ÙJžG¦ W¾|rò¯%ŠÄ1Kíµ±brz>oLŸ7æQì_ˆí|‡ßÉ£œD§ Ï4Ób„ 2ĦœñÄžñÒ*’Dýa3M JÎ6ò£%ôX°Q>ÛL—?Û,Z€ Ï6ÓlÑÑòŸbÒð dºør‰Óâ´Ào9FŠúñVŒ­Æ€n…‰ß~Üãß´øø,->>[n"s¡!VDdÖ‚@éy]pÚ£æ@*’ià”']ò”'|J™Ÿòdŧ‹Å|´œ¤ û¨Œ¼ŠÝ<RîÌÂFD¶#"|ì™YGùw<ö,¯NÛ–ѪËÎcÞ,r˜¢4 iUÿ´5à50ÿÚ¸9á¼øÈ3 ~Ù’†_øÈ³Ylø5sîÛ€Z{­üžëTD×¥Šú”ÑfÀ\i.i®<쯹БÚLÊã-9 ¥yz=b`IGIô˜'pÖ9”´sŸ?-yÖdâ•S©ÔD•' ^‡ÅfTêð)‡VŽoÂÐË>5þïæZ}ßÍ…v[3ÏTtøô§^?ͰJÞ\冎s¸d›qM™x‚Ër‘òÉôÖ¹‰‰_&£«hòe8žG÷ã«áôúfòÕ§$ÑLžùèš­BYω¨BÉjÄô¹¬Š±C©œ^cöØ»¹¹­wíšÞÀ/{@¾µo'y ø.]<,÷œ;"ïHŠšïX QfXÒb*Š/*óÔƒ¦Ä€œ¯Á§×‡àeäVšýôy~=™~L¯n\Wmi¶í,Ŷ\)L¥¦×ü> èâ¶N*a,ä"*-qZRß9à´œßÌ|éÙ_ž>ÚÏÍcji=y~~p\røütçüð ÷ünóÛYýúá}4àÓÊ2ú·ÝjÑ¿„¿7â$k6ã¿ÄfÒlÇYÜ„ßãVÜÈþ5ÞõâÏýl>˜FÑ_nÓÙàv2 ½¯]¯?Ú‡WñÙÅnÿÍÌþ¯ï3iìYFU–Ù¯ZÉï0/Zý&½]œ´_jœl¸‰,R$_j5YiœjU‹¢PQ'*æ›ÖãMxIˆ¢‹ñèK…Ñùp<ÎfÃaUÿ¶š$lYãÑ ÚNÞ ¿Q2¿ÞÎat2¿R¥œz •QrøӬZǕբé§{UÛIÈÑW;ý=«vˆ‡‡E€øW_q5­öþN%)¥à÷ÔþÒTö”¢¢2e>D}ý«$ŠáÎàùVQ;Øeñ-Üg8%Ó–Uÿ ÿ|{?½ÅÅÝ’€Ì[*÷ÐLf™TY‰(‘, V˜÷8\@@©L¦Ñg™ØÎm2t~]"†™«Ð¾åì¹:÷¬î¢6¹˜}¦¹»»ù&-ûëÉ (îœlíŸ÷X2xM´åFXkì'C‘„”T„ݬ?)*cGû0æoX<› ‚M¬$Q\&Èͬ”¹U'«‚šM3,ú~9}„懀²™õRe½È”SD=Ä;ÜMGø”Šªs¥Éû)– üMÆV¹ULúôuÝçŸ'WÖ¨Oé§hÇ®ymt|5φÑiô{Ô“HüÛû›ùH{\!N7ÃëyîÌqÇSTM±©à¡ûñù7ÅKU|kü“£Ùö‡W÷0uGùutã·È||"ªÄV£ûY>ÿW½šÜφŸ'7˜ü 4äñŒËÏãô×󄨵 !û-j¨2ªëUÅ+›’4hBæ0Ð cù¡޾uAzΟjô×ËÏ|ô×°µÉuæd$   Ta2.?#'ÆÑ?úÿItÄL´ˆxŒ=˜6~H‚Õh8¿¬S%÷¡Æ`N«t:Ì`øÁv¦ª°Ð,ªL‡7\ ׂ·hmo@`ü°BGSXÄTšy6ŸLŸ€©x ³Ÿ Úˆ’¬åà¨ÜhuÌ÷6›T 9-rà‹Êñ¦ù-OaÌ• ¸Z}Â"¬FÞ5¯ìà —ŸAxR%?›IGˆ=ÈÂO ‹¦ƒKY/Y›IÙíqŽñÔaÌ*ØbO£Êl" bYí`¤‡D>ÀvSst–xg±ò·(~žÀz“±ý-­·}Š/Y`Æ“qM½·I¥‹ÅXtåmâJ˜§s)£4)ÿv€5v>kޏFù‰.©zôæŽëGêͤ mƒéÐZÖã …49Ò‚êô`lÊÈyÿ0? ¢À¦÷mًߦY!Ä àNB‹Ò¾L„ðaÖÄ=6ÞÀ¦<½¶2x½@Æ4M@jª¹Žò]˜ :b2=¤#BAG G}?9ý¨6GמõÄ+•D²@kd°ïh._«ÅåÐÈë(²4Ъ˜xu:ôp«0‚0› ¸¸¬ò®[{îhÉvIY¬G÷âïÑEïèå›þiSú¢7+ªÐÈ 8!{Döx±üžÙ®sà =¹¶¶@§eZ¢_ }V²ClÙã–xJÓµÀd²\Á£¨%C’YÈöŒæ¢±Ms,¥+÷F+Á½B%»¯#ë*òyrsÝŒ`1 ç_‡°´P³F· Ëìò´¯/C[Àçlre›Líäꊠ†óë0€hÓKx€9UÇŸ¦÷(^€vʹè°Nn¶6ÓçÃO`A³\Å/UŸÔàÛÁåg4³GcÎ3 À­ö’3F\Ti*2…a/é2I;¶š͹k¡K cK¹4þ>‡ßoÈ.bëËåy1m÷Ìó³Á­K5I›ã÷2„€à%\ÛQÑb=¢õÿbãÕÉYCjeñ³N§Ž†“³G¦§­3ìK³M8ªMiÖß Â, z„ÊnèôiÀÁÊA%¡îEûíZЮ¼pmîMÿP¾ñŽ‚Â”v…ù^ò þZ¢ár¤w`,‰ïY¾´Þo†¿oÊ­Ó»,–CÛ±™}{?©å½@kÔ¹t¤í9š[ÔBÖ­$ADCùÆËÖ¦#âLæÃŒ’áƒÈ&«J@† ¡íC_¶¬Í@E¹’"c $Œìú¹Ñ ¬"x4E%Ö–6Š’@ÅÅþÉGy™w3¸d!·oO©˜T4”àm±¢I›Â_CJÚ×È•>XÛ“¯ÁÁ’lžOl+h¨9ÍvMP÷/`k»Æ4™XeÆ*ß›1Ö˜Eû•xóEÌ$©$?õàK½ñéäk”¨F?õjFÃÍRÙìhó¾³µU©UŽÀó ‚ÙôµÉd›vSEO½¿UÁbêÎÛ¶)ÚâÄÛ» Ü¿¦¸ËøotTäˆUŸºSÈÇÁ‰Òo&ŸS·3sœ5¡”Ý|Óú!­Ý<¦-ÄÔ‹èõ¾Ð¶iê˜>YAš¢óÝrxúüðÈgÑ€À#Ãà"ß°Ö ¾vúð÷ËáÝœîöéf×(øŽËAÏ¿;äóÏ÷3sýè]rŸ0Â2b·ò'D)àöM.*žRúõþJô3‡ïT½²õYˆÖðp„õÜVUÛ¨ÖbAåµ=P8ƒ›iýÂ*v€˜MÈlôI™,Û1굸¾P“¦1ùÄ}À^!!#%ºåS¦< h—H\¼x4gà Æõw^£Jê,Dêè:Gj$pƒHÍ”&©¯¨ŠŽ> BXœÓD2'HÙH4Qýçvð{eðqVA‘²¹‰ûï=û™ñÉèöþh2ûÌ4¶ÍÜíÎÞ £Ê×Ï£Kríá®9ø¦b7>Ôô¾™ÛÒ‡,Sµ16B‹â'*O‰tÌåŠÐ(7«’M ÊVRáV êÇ'ô$dÐn™áÒÞN!¤Š^ºzÃïÔ²ð@íE£Æn’뢡DZýØó Ç0´O¼¨íCeÊMŠ>vÚ¥÷yPø`Ì—;Ž:QÂpQ_¬â£XLî‹åÈÍ„Z…ܹ]×=ŽíÇÅä¾pÉÝ[ŽÜÎ8¾¹É \dL:$î6$³0pt¢8³•0á<ñ;”¥3G¹ŠÑzžÝT'Œrÿ³ªÐø6|s´Ž÷æÄ×Py­ìQ'Aï¬éiæŠ3ùƒñц—a%¯t}‡·ÑFßÁÅqI¯—Bou´±[Œ‹ð&Ë#-ÕŸAð¡b¢Z/ˆ¨þ£x ¿+ª føƒƒª×E_SÂV“>­»éäËH8øq×ä“XT B &wÒ×Ë(íH“ã-) Z8ËCè¼þ†®‡ÞnÎè Ç—{ªÊ0>& GËPq_<8žg›(39èÉG´²] òpׇmLI˜ëÝ·»Õè þ÷j—ÖÅù®ù.,ø XÌnò/{è&oÍ&{ܤ¿ááˆ#ÐÑ8ÓžF_9+A)X4óáÔVþµ{à“Q8 Hê‚þ†ûÍ”:`-u"¼pÙ‘2Bm<î ¹éyüÜ¿ƒ–M¡f""é)~Jîãüøz4…ß”³ÊqóNZ¹3'lÒaQUÆYÈd d+Í&Úy`{ø`´Î&ó÷zj™<úw[É—‡: ¢khIzÑ<ÒéMÕŽ‹l<™Êó6›s«´‘á¹±ƒŽD f£càñŸ9Î…À¾0Vë¯&¤’ƒÍfõÝdL*—þY‘ZÂtHÖ=´Ë{~Omf±E!Ú U³9ßÈÒ»ªÜôö, Q¨ˆè)=+ìÁ¥‹+t3VcU,G)ŒÈHãPëÙ&4µþ…ÇO¶p=Yº5z(1¶ÔõMìb-­=xáø¢J¾¢œÉÊ~بZ¨q¬Åp<¹ÿôA`È‘ÎSð‚¦ý'ÆEÕX¬Rl£µ vð"‘@e-‹„t‹¸öDqn ê/“éo3ÀqXÈ.|b—ƒé”Šø] ëJÒˆxMe&2[bx‹o!©h9öDÚûÖ8'%—ާÃùýÔq–€/œj”Î)Õlödè»âÉ'ƒ óvÓÐI¤ßúj)>¥£Y¼rƒAo¹¯Z_£³á¢·Ú„1:pÑÃê!aTk!Â-çå¾LN¯×†gÉãë°`Ôb¢!˜;ÞÁÕb¢ Ø?Öù‘}Â-m0ñ‹$¯Oí8>qÀeI"ÛT¡nxA]ð*>Ù¨êéêm¸G/ôQmöäÊ7›HÓ\à‰¢°JŸ¡ìz \”‡b‹3’e²ªDÍU(† >½ºC³ i–]2HöaÃŒÕRïø MH4~9ÅöÌ«š—;;÷©ê¯ýnBïî ÆH$rQà*ú‘*·Ð)P¯¬  Ù°¥O”úÅëðPàßW8düëì=‹£ëø˜AÜo¥"gDE{"ž+òoÁ”?=°‚»+ôEêýíFQè´®÷í…ƒ¿ÐjñDXï-BhO`T8UnEØÿòæíQXzOêI';Í´ÑŽÛÝf§•µ[ݤ™tZíV+eä%5±OÀ¹qó½OÞí휘ÜqxôóAï ö÷9Þå>áñçoÞîÿÛÙ‡âzh°‡ÿ{s¢ó²ôö÷^Á¿`„OPcf(¾; Go^¾Äëãðàà}úF¬ú˜X¥Ÿé¿ùß9;:Ä;ñgÇø•.ñ¿oé–üë=üß«8¯Q=x:ÃkèZœ`³£ßÀªëð–ÝÞ+€r¡*éx&ŸŠÈã±ÃXýƒ“½ªYÈÞdž°NÏ«œ´¹í_œž¾¯F8cfïìÜÿÃjCÑËûñ%GNqÂÉpaiMýÞ~ÃæsÀì ß³àøªS•¯`}vÿQÜ:1ðöf™ ñJ^5zwÐß=Ù©*ñöÄÿ{ö¾`Ê£7çŒÙù!ý{và£ëúÛ@ñ»ôIÿ¨wv´§ïìžá15üg'|ˆ÷®*oT#º:Àlõ¦(ÏëÙQÏK¯áåý|ð¶…³9Ø-ê≔½±H‹°?Dý‘¶³s4IQsæËÊÆv,dÍÝ<7£ÿûäfðiý ÙÒe¤Å-ð†êí÷£Ëßä>ƒåàÝÛã”2ßH…ØË%S—È·L¼Q¸X@ˆ¡*â¾ê6›¹¯$‘Œ´gê&¨Ýö¬¨mRܶWÔ65ÚæŸªÊíνN1`ºH’/I´@·¨MZIÞXÚ9ì>ð[õ—;€U=0:îåmA/ÉÚzñ“©^Îû :yµd'q‰¡ä-˜Q»FÙ+a† Ù€ûVd ³+FÅ4Hf›$×FawÈÃ]! A¸(Á˜@ÁåôÈodb¥JÁ!–hBf¯yKþÃ;ŒŽÛšò´°1Xí’N7ªQM$9Pï kÃée‚aþ¯‡ˆ–ûo¢X¥c·ô ºåÏ9 ÑÅò1~ެ⽕ã0rtH˜`K1 %¼`¬$”ú9¥V_p¯’CJd’¼!^ƒÄ°sw£ñÕèÒ½+È(ÈïÛÁzä*—¾q…)ÑœíñŠž­Ü2nÎAáO9²f…&6<³‚/ârs¸÷y2=÷|rWÛŸ|%›”Z+ƒ;ÐmÀX¾ù¶‰w†ðª3ºËE³ÝÉ|>¹­]Üù\ eƒº5O4¹@v\Æ›˜†IþÀJÓ¦‡ÍÙÓV¼Aêwl#$¿ JX7Q'—ÂK”ÔÂè•ËžYcÒO±–#s|"æQ?Ói•³×JÂ9ÒZ'åôåŒÂ±`3•ÁΓ͊üh˜Á”ƒAí u¹œ£‚mëG‹sò$O‹dX̭·o'›ršrž(ò!üyys³!²Œr«8 ‹Qd<‹TeiØå#ôӢܮï/ÊsH8ž3ƒ*9˜ÑÙ ¨q/@×zÑÈ-v½Üw®®¦Ãõs °çt*ÑuÌœç^kÃ<Þç›­³zýòyH'fè…CÜÙûjt¨#LÎvó7ô9nÈ Ëº¡ÓÆ“ùç|_eTýu³:³8ÊÇÅ:ÊÑÀ60ÂãUô oý BQú›õÚÀwùl–G €ÿÖl+€:†µ )ŸÅ2ŠDÿ9ƒ$òñ®|5αª¯…F3¢á=QP. ‹í<ð2žE\€vÂ@­ @ö:øp´ºÃ¡=81tî$Üûòê´„#Oùù.4@ÍSìá˜bNæœ1÷ðßµ™Èxr¬Íé!DKC>ópLo後¡+«V‹~R”ÇÕd<¬‚EG~#yœÈá* Côêíó³·Ïß¾}~þ6ªXG{6S¡qÃNOË»þ$´TœRæŸËKÕT¢ãOææÖëmÉįE.gt-“”U™ÓBkä 4 hΑgéŠzG–Kiu®Êo/{Ÿ‡—¿a–@¾û¼ l&ë(HçBrc ‚ÀšW9׊µ¥[ÏÌZM®ØÚfQôŠ/5ÌGÞJ"šõ¬Ws»M$ ›…9`5&ÈŠ’Ç‹A %Ã?à×Ç'9ôYL¼ ¡‹Ç^¾ª:çrYh7‡ÌñÚ³a·¡d©Ë¥àù\qÞw:„Wè¸w‹ÇÈ*â»Ü¤çèÛ{sVÍ7·>ˆ†Í Ñïq†ƒX¶!žðJmóZök8ò‚ù¯û—³ ý‰áà{ÝGÒ²Á‚;5ôl(Õ«þP¯XsF¸f‰‹„¢ÌçÏE'µy(o' Ž•D@­-¢ÀfI@tà-Ïgé´vAµP)ªÏ¨³ý•ý•’AŠ,Ð…\úºš@VAŠRQ <'@|""Ìt9ep°(0ËMwdLܹ¨9Ðߢl ¾ìajWIór´¦Áa3Epq¢~¶€ôbäôÊ‹¨ìJ£0 'Pw[%º:3Õζ(ªkqÀƒ¹$÷^Õhõ¯5`’m*¬†ÍëKXo’‹Š× o^xa&±×«^œlÊÌ‹f®ÜÔû¼ùE-Wc±.¹TE`Kì"«ó¨Wáô7¿¬×Æ2^ˆ.94{“aŽ.ÚiD;bì=ÉØEÛFTjWãön1ŠÕ·yŸáßËOŸäðóÂ^Sн)YûMi ¼È‹)[¼kˆ—ú$W ĉ–d͆ûÌL…®Å•ȤEBÕÁWêCîÙ†Ðbc êZZQÅŒKØ­¨æG }a ñ=Cgì1³œ ñâßCgt7¨¢ý‰tÆ=T"Bˆ~U錧u›äƒÔ w5ï½ò‚~Òh,å×zz½ì>ô½UÆ=Ú½ ôÉ0AÍ;JeÜcq)•±ÜlGO*ãúTFß[´¹.±³®ª2.iâ­Cc\“y÷}tF‹ÕáÕ˜æµÆÒ þÔË" XK' ,¦h)£)ZY·Ô[‘\ìczR.—R.;…Êe7¨\ÆÞ’›ù"2ù-WŸ×j~=‹c <®‚'œ½îSTCîÔ8ýNþÔ—tát‡*·x G•¯‡X¬ÀùUb¤H"´i×ýZ‹(ªpVÕþM5êm­ªHéÔ‡¾(÷Õ¼NME–VÖª ™†ÀÈ;H»u9 â“bZ¯.ƒ”o!½Ì3kÓ«¯&_Ç+iÖÈÔ±¡;o3Ë›S¸¶‹õgº­EⓦwòA//¯|à&ù×Z}gõÚÐig ^[¨IëI²Pç&7@UíEŽZ­$3#¥ô@Õ; NÛ×þHSHjGe_µNÊ+–ù»HyxJmbª €¥téïï]#gG¦´W"‡˜òD¿¡² ¿=¢®»¬nk`ˆá ê–érö_­‘–2£2 ¯’:q\¤ËÆábÖ±·˜õrŽÒÖ£8J—Ö@mÇé*ú¨§Àcäj t±„Ù>¬6E €ëÌ54Ћ Ô°@í/©ªHS]:@+ ým¹ƒ®¢€z£Jîi–œøþ*hQ<rufœøo3 ¯¢‚öQUÎ:ÿÚ«þêIó«tÐ~‘¾$ìF²ï´ZìùutP6áÖªƒêÓG ŃrPBûË‹yn)k+¾r]]«…Zvíʬý¤„>è0ÿÔA×ÃK« åÝ©qV¨‚6Ã*h™‚ô¥ªžûÂu/ì”b¯TÙ(ó-7¼5®KÉgð MÀ°ØÜÖ¬.Aÿê¾Æ…{³ZæwiIr—æò-ßC~îAÕù¾äˆõ…vqXrˆL>,LŽËÅuÐ]£Ft¬½âù¾C#±È»Qƒ ¬R¯÷°ÊûñvÔÝ‹"¹I’ ªŽõ^ëìêøö'·€³)kÆ‚}q/Ÿ|¤Ø?>> PÛÏØ.ÓY.ÚÉ õrÁ‹gæ‹g ´xW1(Ç«k{½ä‡UÓÿ]J¥§hUƒ)ѧÀ,ˆ#®+LnUNYsEÌŠÃ53iEnªfýY\¼²E(•¼¾ÐH.òþÛ‘3Ç7sfм3p¸„qºbÌ äò§üKñ[¢õ•![_ÙÂõUXºFåW´PvEÅâ+Z Á¢å…X´„‹Êвh¡Z,Ä¿°m.¦c/òWÆ >R˜N>@$¨D¶bðjf•µS £BÜÝ¡¬i‹V…ßÞX‰œec)Ñ|‹ #3âpdFˆÌp„õÑuôuÈ5wì‹ÃÕèrr÷]Ôt·¸® õ¸@¬XØ /?ëÊÚóIôu2ý®–nüs#ªý=Úø¸Q¤Õ÷ÀBd=[$Û¿¦añ‚Šnj(±… ¬¸¿+ï4ã8K 5ì;ŽnÌ“©œ±{"ñR¨ać*ýmÎÁ‰±£äâ3Ápì§Jòç‘®“ÿ LD>YòR0:ƒ(m—óÇ3:YaÔRü&i8:Þí×ÎŒU4ïH·¦`84™„d=Ñ$¤î)7M5d‚š¢´"²†IÞÓ`/)¾6à|‚–"Ë¡?C˜õnØc z rcà²orž_Kœ)wÉ“-a=î†æ"Îjy23ñ[Â)±´;" Æëh­ß‘”p]‰Þ»‹ÝIÇXX1ëø!—„>ýÅWÓÚ< ñvØ^zr3DÿNn©?¢Ý-TÊ% k4½ òÜM…ÚqØp+>ÿÕ7÷(°éM©`á°öu\ÊÄöþJ)ënÀãݵ8’¶nx\•2i)ŸCžËÝ›ø^ž†2UeN© ¤¨mA=9~|‡Âøw9 ØÙÒ_=¦À”쯴h/7,CØù™¼ë ½¬×Åt$í"5?é„ÝÝeÝvqDÓM@„5¹ >²›àŸ«¹ B¹‡"Î%oEôŠËÇr¤ ÓÚÖû4YÛa|ø³¬» m¬ß]ÆëÀ㸠ÒU%RÀ¦á8Ñ\¿ŽaWì2H3í£ò›?úÕTçOò,ï&HÓ¤H #ÜOI7A±ûäwø"ƳûéP§êS¥‚ANM‡øïµœð„<Ô{oÎër§µY쥴åζ³±ømug9 뜲ŒÛOÅÒhú¤¾—8¡_\'KVœxóã7.Ó˜×Þû”ÈvxE¤ ¾æƒé7U}4Ÿ¼’s N‡W÷—¢4¬GÍI>dxžævv¼|òÞˆëÒÿ„ÛÞìóäþæ*ú4œcùÞa$‹übªÈú§aÝ–^gB=©±bºx®œÄU•@PÕ‘UäÆš‹E•žÜÎåC‡ÜrÅ%£‡ŠwE5¾³÷t}ކUùÈ/#ÐW+udE~-,H³ŒopÊÜÔú12×é…©Üëé-³;Ö§ùj¨)À‹XîfðÂ);]¥Â‚²<¨5 aF<“Oµ8»ñkö‡ûB_Q*Io¢Ú¥¼.Ĉzs~t¢ßì‘&‘žÐHOœZà FÚå‘&‘vTæòר)ïH;‘v—ié^nNod­×hOw/W ‹Â„Ø.a²¸²†&LÁ‡ÿø>85Þ›_Ð"ã$÷ªC éñ<,úÇßWPŸQ{'Ûº¬kól>‹hŒêcÌb/7‹Y`û9~]ÿ,¦Å³(Ò”¿ö/âYL³˜.1‹æ¹3‹»4‹ç ÁÌÜ QÊ|ͳh@ú‹,vnCø‡‚`ÛÞå!|P¾‚Fd& ·Ïíãæ±¨«bp¢F¸çÀ‹K5<9|›Š)ý×첌ْƒH¶¹Ì$Zž!kç»ö³·c)‹-È<Ð,âŒØ ÙBK<:=¾¤vÄ«nê«àØ-³ün©^Ë›­,£Û­ýÛHø{#Nš¬ù—8ŽÍF; â/¸Õh§‰ïzñç~6Iýåv0 n'³Ð{ðÚõhñ£}˜AÏ.vûo.`ö˜uÏ9UR5² (QiÓýªUj ‹á8Oú;½ã*UgÄë¾\ŠCú„3} ´€Psß¡²‘ó!IjªÇU`+œaå´oj©¾7Œ>E'÷—ƒYÝ_ôÖü®¿ÓÁøò3€€móyÔÛ9ŒNæWR½{s9Ÿ|‚ ›4µpëuQ¿<Ú™~ºWU¥(ÊÕ§Ö£—¾O¹rªH.Ͻ%õ€¶HÑxïÕNgϪÉΔgŠQm^¦Æwg:|ó¡ë)—½Sáþ·P^"á+øgxxûæsßÐT¹/1üóíýôn2£:*/ø£HÌœ¥Ê·Ì¤çRz,£¯#¬D‰åƒ®G°‡£G’Ô¤/ƒ›û¡,ïR™LÑ£(ühN“á óë1<CnBEJ0×Ýtòi:¸54ÚäN`öñ[4¸»»ù&ý¤×“ØpñÛløÏûáø+É2™Ô=¢?º<³|áó .¯ä ݇1ú.\ÛöŠò2Wv´Üš£rhš1èÉÕpv9}„æ¤#˜:¨ò2¤-CÔC,a°ÓÉ(¦sö G³ùôþr~?V‘“ñÐìØüëDÔµF}Ê¥Ew~²£ã«áx6­ã÷¨'‘ø·÷7ó‘ ÷>ôF8Ý ¯óžoÄ R¢;Ãû}ïz¿ÉÙý“£öÑ÷=t<ß™O¨ \¯äÏ!PP.¦ž'Ä®Mˆ½É„ÔÜF Öˆ*£ú°^U¼²)I r膱*¿ê­ÐUþzù™ŠÆý5$kmr]£¹–ö ÅUa2.?#'>úþò¡Á%#î­‡eâƒ?$Áj4œ_ÖùtÀc0§UŠî`øo¾‰J³ Ð,ªL‡ ŽÀi-àåàô6¹ÔVèh ‹˜j)‰:aU¶Ö™ý´%?žäǤÊKÕ¹¨—wÒ"k=)wø´…<`áXž Û³hŒcýѵä#Äd!V<›.©ŽïäÚ¨X%:•‘ÚùÍ‚BTñJß Ñ 9*³‰$ˆBçFª OÕ75G`iÁ×x+‹âç ¬÷0«Ñß"0]{Û§ø’flûlRE&1š^`ž1óy¤õo.e’&åsÈÏŽ8zsG‹ÈØ\@ÚÐö1˜­e=ž;À‘ÊgÿÓçÁÍ5¬ókMMïÛìïZ𶮿l¿TÞM»%’Œ^óèIWD¼MxzmeðzŒiš€Ô¢ø›ÛQ¾‹ç`¢LéèÞ9ë trØGñ“ÓjstíYO¼RI$ ´FûévfÏj#Gq9´J㩵) U#XñÀ«\ñÎáV `<a6ƒT,¥] TéN¹iMê‡ÑÐo*ª×‚8šN¾ÎðߊtŠn'W4&ÑI¯< æB‹ËøÀÇšzRÉC?RÉlK ‰­šâ‰+o ÑFoÃNæAõsBZéî[±ÕæÍ¹aú(5‘\Ýpþ펊c^@Ó}¼'εþ@¿°77øYÎ+ë>¬ò®[{îhÉŽûb#zñ÷è¢wôòMÿ´5¨†(–VÆ'(Aq¢´jöx7Îìvµ˜Vèɵµ:-{Ô²Ͱ„©ì[ö¸%–L„éZH`޼Õ\rìÔ’€!É4í›æ¢±MóF≽Ѫ¯lPµ–ëÈzßd ÃÍÓpþuk°A 5kt›XÉ÷´¯/C[Àçl"e›Líäꊠ†Ë;0€hÓ f4°OÓ{/@;e„ÜŒ€aTÀ"´ÙÚL?ž?MÌrëX2" ê“|;¸üŒæõ$ÔÝþ3¶•! É#ÎL†Td cíJP2ÇŸ´vÔáïèŸÄ®….Œ-åÒxøû~¿!»ˆ­/—çaÄ`´Ý3ÏÏ·.Õ$lŽßSÈ‚—pmGE‹õˆÖÿ‹W$g Aª•E%4ªd89{„azÚ:þ4ÛØ„C‚ Gšõ7ˆ0 Á‚¡²[:}ð_°rPI¨{Ñ~»´+/\›{Ó?†o`¼£ 0¥]…GáG¾W€<¨†–èÁßA¸éKâ{V€o­÷›árëôÆ.‹åÐv@,EfßÞÅOjyÏGƪÄégoÍhR þ å‚ˆ†ò—­3LGę̇;:%Ã!»éíT•€ /BÚו~ù3˜Í@E¹’"c $Œìú¹Ñ ¬"¬ ‹J¬-m%Š‹ý/’ò2ÿîfpÉBnßž„S1¨hPytæm±¢I›Â_CJÚ×È•>Q‘80X’Íó‰m 5§Ù® êþlm·ÃÁ˜&(M^ †ïÍð|íWâÍ1“¤’ü„>Mø^o€º2®ZÏÃÕœIÕ¹iTk±ÐòÚ( *6KT¸CÅn0³éÁªäÒ|ÙŽQ?¨Åõ…Z5É'ú¶‹¨­ÎÒÝò/ßqÚhð,¬]"a ì\ÕZÿ;H ¯ˆÂt1RG×9R#Dj¦4튪èô³ „E;M$s‚ܰ ;Í€‚P}Kâ÷Êà㬂"es÷â{ö9ã“Ñíý-Ðd¶*˜ll§¹[Ÿ½3F•¯ŸG—ŸEÁ÷Ùà›*.¿©ð¡î ÷ÍÜö.Bï 5ºn$ô¹(~BD:ær HEh—›UÉ‹&€e+©|« u ”ËQ‘qÜýN—öy[Ž 4$¬å¸šTSò«ÚîW¨“íø§õ7ât|BOB8n—™á§ÒÞX!«¤`Œ^ºzÍïÔñìïE#ÝâZžå\Hô8¶[`^ g³áÈý‰  ýqHâU¹qñ €6luùÂãý@x}“ꌣN”0\(Ç«øP“ûb9r3¡V!÷…An×5Hcûq1¹/\r÷–#·3ŽïEnrR»É…;ÐXƒ8:ñœÙJ¢pîøÞÒÙ¤\ÙhÝÏî?ªP¹'£³U ͧ„˜£u¼K'¾.€Êkíd: zMO¸¼Öâ7ˆ6 +Ö0È¥k>äX¦xf Çe¾^\ ½é•[„‹ðvË#7Ø?>ƒŠãCÅDµ^> PýGñ~WTÌðUïB L ۻї …:ŸÛÝtòe$ p'ç“bTêB &wÒÍ(íH3g>Œn°µpæ‡P<KÚ¾ÞnŠ Ç—{êÓ0ˆ0ˆV†jˆPkq0âxÆm¢Ìä 'Ñ àZ¸‡»>lkdêÂ$Xï¾Ý­Fgð¿W»´.ÎwÍwwñ^²˜Ýä-4y«›¼5›ìq“þ†C†#ޤ@GèL{BÁJ»¾F“ˆX©/¨1+k>œÚ‰v_¨sà ¨l—T¤ÄAÑÖR'Ö ·‘I #œÈ㢰¢žÇÿ;hþtPKa0|¬Êq]rçÇtÅQ+|Ž ›wÒÊý˜9a“³ª2d¬±QÜO´sÃözðÁmÍFæ3îõÔ2Ãôï¶á!„‘öuðmFfš¤Í#MÞTí¸ ÁÆ“©<´9·Jžk;èX@j6:ÿ™³+]ì«cSãjBfØA`êßMÆä@s©áŸ©%L‡äq€vyÏô©ÍL8¶(¤âC[ä¡j6#ç YŸ— @Õ1‚=K@C*"ºKÏ {˜A;©¢þPÅÕXËÑcž#2Ò`Õz¶ M­á‘”-\O›nMù‡1̾o¦kh ÇUôGmæÌhîôÃFÕBcA†ãÉý§ÏC’ˆtòRž;í? 4°˜%¢±í µ ¶ù"‘€ƒÑb‘nQ¼v‹Ù’á—Éô·à8,d ±ËÁt:Á±«a]IGªLWfK ¿ñ-$ÍÇžR{Ÿˆ¢+¹tL9Îï§Ž¬xáTÅtŽªf³'C󸍀üDÈ0o70 ”ú-ò¨–âS::†AÁ+7”— I«5ñ5:».z«M££=¬rZFµ"Ür^îàËä(Òñ4q½ax»<þ F-&‚¹ã\-& ‚ýcoÙ'ðÒ¿HòúÔŽãøÛ–åTc¤ìE†ý!ê´£IŠš3_ÆP6¶c!ÃhÆèæ¹ýØ'7ƒO³èÿPH™¾~)ò—4Toÿ¸]þ&÷°Pï&³Ù³’PÒ›ßÛíñ߯µoç~¡À……„¨". ¡n³™OlBº¤Î ®ÔÚmÏŠÚ&Åm{EmS£mþ©º‚î\·¦‹.ùñ’,t‹Ú¤•Å›}å~߉ £ã^Þô’¬­?ù—ê…r3vòjÉNâCÉZ0£”ÀLM)m2Æp ”yC L2éøº™;\ÑÖ¿DÛØÆüíqÁðNŠà%ËÃÛ+‚—zà…Ö¡€×/‚—yà¥Åðv‹à5—‡÷"x­åÇû¡^ÛϤâiˆKñþÞåpJádHK»°Þç’N#Ójp”œÔ (U‡édQ8ó‡éQNû&0L õö"³ˆ4יȧ¶¢d#vˆ|‚EVÉ"·_>ÏN;Ü”s äx^=õùb6to­‰[…¸[ê`¾HÄÎ.éúM¤“£  ­Ï-Œóé<Ö;5«99æMC§Yæ¥Lˆ ˆüX¤¶QO÷[ü@å)èo÷tæÀH©0º_WHÛÝ$[ÐUÀ-ÀLP@Ëc‡[sŽWüzxPÓa@tÁ™ÜOÚ x0ކh/;Jˉ¯È¶Ð€j9~:ÅŒk=™rI ß=$µï÷—“¤Và4ÖÂä„”œú‚6M· †¹±Oló5åWšlÙv[r3N†Çt1aÁÏ‹ / €vz.%¿»ŽÛWT.˜²ÜÊUÌ…fZ1f‘€ðjça†å ÐØ€ûVdÛ3øC,A|ɱÙ&ɵQ؉2ð‹ ¤!¥ ó'˜¼€ù}L,Tß„3~!dö’·Ä0·"ewd[°»%2nT£š›ÇÑʵèÈjÃú Þ^-±â Negé”5àˆÂ´€ÑÅò1~Þ¬â½N|…0r¹€H˜`K %¼`bsqèç˜ÂHÁ½JŽ)Ö Š»û; ‹y7_.Ý;º‚Ž?ˆ‘Ñf!¹Ê¥o\aJDg{¼b…+7‹•\c_ùG(g†Ëo4vk¾äÓ—›Ý½Ï“ lƪºðHDßVw ô€}óm/;ámô£‹fº>·ÁÕP6¨[H³Ž5^pƱ´µü‚7=ü/ª"nœúÛ8ɯ”‚×M-uF¾f¼œ)?Œ„K²fƒ9$ý—BÌK!±2~Xiù³KÂ9RÚCÌ‹|Y±¨^44CAEžWO²/rLb‚c\5\’9j®±SBR°ˆ0¯£Ï©"R¾è>¾›‰Ì–2ëìÙÁ9È¥—÷77"O ,ò%«8iŒQË$-ÎìO‰àºtð~?G¯ãñ3hø—XerZí PÁ^4r2@K««épFý\ìù}Mt å ˆE÷6~ä©?_ÈÕ£è—ÏC:HCçÜ«ÌôRuàÉÙn>±‡9ÑZ7tùq2ÿœo€ã«Œª¿nbö2qÂKu”?¹ía¤²öÿ ²Rº•õšÀvùsGÂ:€ÿÖlãÓqÛö¶ É›ù\$ôöϳ®|5Îqª¯…F3¢áTQP. ‹m‘³‹0qoÛ‰µ2?Ùë÷Ãõ GüàÄÐq”ðâËߎ<üç+Ü57·‡c E™ó=¼ð¡‰ }WqåœÕOÐl鬳Ä+ ­+«V‹~RðÇÕd<¬‚uE'*Ýǰ«ÜÑ«·ÏÏÞ>ûöùùÛ¨b€îmØL…6ûBI*Ô w¨Ã(T“‚jlÞ:lÈÅáºðI¡Œe…}*1 kNBhmÔN~~3ï;öV~{Ùû<¼ü ³‘4úÝçMc3ÉHAã ¥Ž¬çF²¦$ë d€—æ#_ò@…oM>d´¸ ß \P˜½VŒZhþ¿>>Éá/°Åò`,© ­¾š\çr&Y hˆŸÙá!Wªë»®ÈœY¹ÂUau6oá=Jªd÷WôW®ew,_GUxú¡ Iqý‘Ñ3UÛ®iO‘Š˜C™Y—ep´”Ø»Ô|Gù‚xGýíXš?ÚSuæÏÊVæ¦Ña³êò•ñ"]o¿|q¼ˆ— ,UdÔÉ[PÛÍhT;[ØbA…7O©uZ>Å‹ ¸„k cóà«„W\D£¢²¶z“ø ®Éø«$ûRõ茂ìG{Æj]r­~(Yh YG½ §¿ùe}¼.0^‰×—(­—ײKÍ)WJ]´Õˆv\ @2vѾ•-…öÅêÛ¼Ñðïå§OrxŽya³)ÅÞ•¬ §4‹+W.Ø6ÄK2›úbIÖ‹›ÁBkq¹’Ò¬Šú+ĘžÙ˜¸–VU1[v`«ªùÑb_j\¯¤&§Bk¼ø÷Ðݪhƒ"­qµˆ¢_UZã)$&!µÆ">ôoB\Å™´ú¨ÆZ~­7¢×ËnDß[iÜ‹Â,läs³ rC$—PËMwôã*ÜFz}‘ÒèÛb‹¶×%öÖU•Æ%­¼uèŒk²ð¾Öh±: ¼³süÞXÄŸzYD{édÍ-e6E+k—z/’‹‚ÝLOêåRêeaéë8\ú:”¾¶zÉ×nj̣âZ ƒ³§sqz§Vð„Sº»µl¢"Ÿj’|'ŸêKºŽºŒS•[<ЫʗA¬x@Öàü:1R$ê´ë­E”ÁU¸«BŦÿÕUêíxR}è‹r_Í+ÕwuµÚiŒüƒ´[—“ >)¦ër0HûÒ˼ý´6ÅújòÕ­ü¬>…ª52uÃз™ƒå=)\ÛÅú3Ý"ñIÓ»@ù ——W>p“|ˆs-о³zmè‹´‡³¯-Ô¤uˆ$Y¨s“ ÆªÇö"W­V’™ÈRz êP§í«f¤)$µ£²Ö¯Z§åËþ]¤<,ˆNNÊEv`ïÝFt¬½âù¾ñ#ð¢²È»Qƒ ¬R¯÷¶áÝãí$¨»-Er“$Të½Ö'؇UñíOn%gSNûâÞA øH±|| ¶Ÿ±ù#é,í䄇|¹È™wf¾x¶@‹÷wU„r¼Ú±¶×K~X5ýß% ”QzŠ6Q5˜}q’Ì8âºÂ eå”5WĬ8\±eêÈÄ‹‹W¶ˆ¥±RÛÉEÞ;ræ˜ãfŽÃ š÷a†â—0NW YAƒ\þ”É#~K´¾2dë+[¸¾ Kר¼àŠÊ®¨X|E $X´¼‹–cQYQ-´B‹e‚ø¶ÍeÃtìEþʘÁG ÓɈµ‚ÈV ^-Ð ¢²vJaTˆ»;”5mѪðÛ+‘³¬q,e šoIadFŽÌH‘ް>ºŽ¾¹J}¸]Nî¾±‹š®×ui!ˆUµ ›áh]|>‰¾N¦¿Ñ ÓnDµ¿G7Š´úXˆ¬g‹\ò×4,^`oHC‰-T`Å5^yµ9ÈYR¨aß áèÆ¬˜Ê»'Ò2…F|¨ÒßæŒ›¸;J.> Ç~ª4¾Y3ïù LD>^òR0:ƒ(m—óÇ3:^aÔRü¦Ip™äúµófÍ;Ò- ‡&“°#ƒ¬'š¤‚Ô=妩†LPóC”VD–Â0Í{ìñ¥…ÜOpÃRd9ôç³Þ { D/An \ù-BÎók‰€3ån8q’&¬ÇÝÐ\ÄY­|Þ&ñ–pJ,íŽH„ñ9ÒæúÝi ו轳Ø‘¶…³ŽrIèÓ/Pìq5­ÍÓo‡í¥'7Côïäfú#ÚÝB¥\ÒѰFÓ»P!ÏÝT¨‡ ·âó_}w›Þ”:þkÿWÀ¥Llïá¯ä²î<Þ]‹Ã!mYá†ÇU)“–ò9ä ±Ü½‰ïåi(sPU攪@ŠÚÔ“CáÇw(¬—³€-ýÕcúLÉþJ‹örÃ2„ŸÉ˱ÎÐËz]L7AÚ*RóÓvÐþI;˺ ìÒ‰¦›€kr|d7Á?Ws„2E$Ñ3y+¢W¬X>š« kZÛzŸ&k;Œ–vt×ï.ÈëÀ㸠²U%RÀfá8Ñ\¿ŽaWì2ÈRí£ò›?úÕD§Pò,ï&È’¤È #ÜOI7A±ûäwø"ƳûéPgìS…„ANM‡øïµœð„<Ô{oÎër§5+öRÚrgÛÙXü¶º³œ„uN9Èí§bid>©ï%Nè×É’çßüø‹8æµ÷>¥³ƒ^™„/Æ£ù`úMÕ&Íç°äTˆÓáÕý¥(kÄQs®O#%ž§¹#/ŸÚ7¢‚‡ÃŸpÛ›}žÜß\EŸ†s,î;Œd `ÌYÿ4¬ÛÁÒëL«'5–ÃCL&Ïu’¸†Èʦº#¤Š¬ÁX‘±¨®“›á¹|è[̸dôPñ®¨Æwöž®ÏÑУÊ#ùe„úê`E Ž¬È¯…¹–ñ Nœ›Z?ç:½0•›b=½EcÖcÇú´ _…µ3x‹¡À ^8E©«TvPµF"̈gòI¸&§8~Íþp_è+J%éMT»”×…QoÎNô›=Ò$0Òé‰S)|ÁH;<Ò$0Ò¶Êkþ:5åi;0ÒÎr#M#ÝËÍé¬í©ñîåjaQ؃»QÃ%L³QÌ]M˜‚=ÿñ|pr¼7¿ EÆ9ð T †ÒãyXô¿¯ >£öN¶uY׿ÙÄÙò±FDçÇÂY̳ØÏñëúg1)œÅ¦ÈUþÚ¿ˆÿ%f±f1YbÍs!gwiÏA‚; ºA£”i›gÑ€ôY ݆ðÁ¶½ËCø  |ÈÌCnŸÛÇÍcQWÅà FpÏDjäen3SLé¿f×L™-9ˆd›‹J¢å²æq¾k¯ñ8{;–²Øâ4ÀYdÄ^ÈZâÑéñ%µ#ÖXusP_çÀnÙÌï–êµ¼Ést-X J5†£Éý<þŽêñôgUÞR•†øü\í¢¤§#Õjú= ðËpúPGƒë9pðN…$®ÇÍœ^¥77»j•שƒ´•¡Ë\9Õ+ÇÚÂ’–¢ªj'z7‰î1Ÿ›íÚú"¶¹Ì6‚¤hHYtåO,.€RIç¯XÃGnIj¿V£_7Å„>N¾ u6võ¹Åìÿ¹öTF Ú«æ‡7ø0×ü³DÁŽ¡·L+ÙFKcÅÕ_ÑOœ3°ìªXµ+'wú±ZZ\_,qž'êùiî)Ì|+.0¶‘3º¥},Þ(nG-é33jûTT-Þç˱e«áïº/”ÖIr§¶è°Ýä:âò@fÉŽgyúü«~n¸ÔÒzòüüà ˜çðùxxWרG>­,£Û­ýÛHø;þ§É_âFÖL“F+NÛiÄY3kþ%j¬‡àç~6‡Ý,úËí`:ÜNf¡÷àµëëïÐ÷ýôÞþòj0D×£ª`͇3rÐõ&cíµ:}Ž¿ nî‡ÑÛéä#è ‘¬Hý¬—`ΧǵÂ@¼ˆþÕ{Öá›DiÔŒ@‚Õ·õçgývT¹n2MƛϚ«õÊWo—ŠlõÞæz[G½èþ÷hS ½zy~V¥‚^G;{{ î11@LÅÿè?ŽƒÝÀs—~¨|¼™\þ6ýÏînEúƼͱžhT¹G·÷·‘±À~iô]üO󎱸œNf3ªGt7ç$ޱÜIDÿF1BŠC@ˆ>ädçÕ?úÑ—Yt~þþAäÀ¬F‡Ý4–ÃL%~iÑ0z¿èéðrFžã«áõ ×ý:_Ž ‡-‡Ü`ÝŒ&X˜B;}ÄàùÑÁ©La=ñÀRŒ4ƒ¹™ Myöyt=ŸIô$XúIìUf f_ΣÙ|z9¿Ç"9ªÀÏÍ|twóí§¨É2`-&›Ï’FÝwšc|Î?O‡3t}3¯?;/~>oAK?Çع¬~N5>ÁÍgÏâ…í÷°„34§Ò¸wÓ!ÃÀrèÏ@¢`Ú•'¥áOññìÿ³ƒßÖªïÿqÚÌÚ¸ÿ7²´fq ÷ÿvÒxÚÿ¿Ççl÷öÿs³èìð`wOf›$ÂбҨÇ0EÛÿNŒ¿SãïÌø»)þ~–kÝà¿eþ~æ>XP®ñ2€ /Tº±ÐÅV¡Ø²¼jþ¦¼÷ïZ£ÞjµÚ„ü ¢ª}PkÄöàAÒÔ«.Pñ{áøøH@&Íe‰×ôoiÊ×\Š­ÜúÑð^Žb«ÌÕÊ\ò}y5ðwnü-ü»·Ëü]Hù´…/¥Yèï•úƒ¤„jüv½>Š­2W+s :ÉFjs7ù³™o›/ØÝâ4mÁÊh>Œ‡CTPüwÒL ³Œ;n4ó‚ÛiÜIS d#Áß;ݤ w‰ÀíXjµ:¸¶Kò6 ƒ¬Ù¤!#F)ýM¤iF—f6¨%!c(+ZPÓЈŽð·¦ig‰Å£Ç–ª±I6DZ-³ ¶1¶Ä[žHšÿGáÈÇe¤’ÓÆ»MÓ¥uÖ‚#KĪM[-9µ­ ÉDMs­»MBYXáÎÛnPôú‘È‹åºh5Ú©’`IfDîçi+Uû|³‘ªiN“D6Nx<Ì#­n£K”Ç—²,•³ÐлЩ`oo¹ Æi§ÛUJB#Õ½e‰­ÏH ,x3‹b±A±Ä X^b2Å’gÞ ’h0ÅÚÅZÅ:šbbÐD1Ñ3QLƒ)Ö6(–­b±A±Ø XlP,6(–ŠÝ&‘¼š.XmE˪XK„dŽÉP0ú„JnI¶›ù—hm754sýÇô{Ü B!Ñè¦> Kê6ÓT2^3KZ9 T+ hÙ¿Aâw Ðw Ò*Óö(Œ´2‘mÚVf¤g䜯`):ò»Mbü'WË¿œ±ë˜÷pê®ÝÍ$ªÝ´Ý‘§Y'–ïdYKh!5ž‰×r·ôßYÓÇ0Y+UC«'J·ÉÚ8¯èÜN3ù7 ªHÙJy~F¨I»«-Öz±E7íÊ!KMÄïY·){n6%zô ™xqM» …kÖHÔHãVGAêfâw =&¾‡ËþMVy³£þ„Sš>xÉ¿ ׸Ûa•û{ +YKèPÄZ¦Þ$Ö±–Ô³š¤¦šµä—G^æÚÔ¬ÕR¬%YŸY+6X+6Y+¿¸ˆµNÄZâob-‰w&~7¤‚f­e ›å˜À»d…"DKV*Bi#ÍI3¹d% ù€X‹þïÇ= óŸÿÜ|ÇóŸ$m´›xþ7’V³ÕNŸÎ¾ãçl÷Ä>ÿÁÚ͜ҳÜÊr$K*ö˜-TÞ|öZI²˜§]tìŸw*<‘n1éʹÃCÇŒk`×P÷j\ŠæËüAìÚ ¼¾ð,¢ˆ9–nb×¥‡Ѓ,±°{ÙÓ›5³ëƒÎy—TúøA缡óˆ€týwýÈ®Q”÷I{^ÌSªŒÍ¦7tÑbMdêY11²¿L*›6ÌwžÙ/™Í¿uãgø%Nš $ætcÏä0MXjcóo«Ib Uzb– sàag¹(éÐ|ò–`ά4GH¨îN”1qÈh3·º–Á5‡,¶ÄèÀ¨côÖ‰»É¢áx‡†¼‹áª-ÿ^mž?¨ž'ãýFá K‘º {ª,½¢5(ÍQÎã­ŒþN\›óWîÝäS€<\yN¼IN“AÍß3³1qt]!޵üzóQgÁ.¢É–y’k\f-u ª‘ìGÒÅÆ+‘-w|…±š{‚ójbÃ…n’L,GøÖ²ž_qsi¶lP±ý5+ÄúÍ\ÆÏãëAÂ…›™8;)A´Ž½ç˜ÝëïZ»–ùš½k‘Û¡¿Ÿ©cMñ §åˆ#þTüýL ¨¶<Ð ìÝ&Ð 5d%Sÿˆs¼Â_[6'µœ§€¥ó,õNaÍ~Z£–±4-ßœÅvËØä=§eËn™ØFÎP¿ïÏÏ¢gQÁ|7C›óÝ ÌwbÌL±,R¿kžh–Ñý›æïó«·RÏר©¾â|; OÜY”ëi¡|²žÖb³Óâåíbd+¥AÖö|5…3K~kkƉÒi²F·Å"Tív«Ã'õVg™š$s M˜ïïü³ BöX¨´žáT°·¥Ö”[ߌ/ ó ÂH:yÄÜ[ßÔÛ®Éñµ¬¢àj ¬o¼†ÃÎjkfAe~±¬,k§Mc¥#i£«Œ£¡TÙ£ZOØ[FÁ5ðcÑVù„ÒÚ¨õhuŽZÄilt­+’Œc[ÆÓUñ*ü!Êcr™ªM,ö.$Ã%bª^rFÿ³‘HùI‰Œ¢}LÙt7™(U“Êæ­8a}|¹NŸ5Dˆt,þ/ÿ—ŠÿÃ܆ô¿V$R„ýlµæ b¡UËF¾uoÅ,bǪWoʲÈîå8ªPž]*U°ù, µ(ì²×uö,Ž5þÙn°|⨗ ±{ÄÄQÀŠhôŠø÷úøäÿðò;Êÿ¸Ùh'Íœüo&Oòÿ{|Îö¬õy<ükójtÉ5Zæßî†(OFã»ûyN 8âCmÑóøÍЇމØÙÕfs@)§òXþ!l‚D>Jŵ¬Þ–¿¤¬j×ò€RùR».àL>jJТ}TëÖZÉVʼÝ-Õ ùB˜¶M 1‘Ýë‹_. ,Q"RëÑňšù@'9b)ò¥AŒrÔÕÄ®$_§`heþX š$þL…É “'¦zbªu2U¼fI¥»~bª‡0•⟇©:ë—T±èÇcª<ÄŽ©þ ’*ñ™Üú”¤2x®i'Ã(ªsÙ¬·/‰f "FSüÂïà<© K Y(ͱ9þ‘È?RõK1URIÃTb¤XPüRØ^ò¹¨¥ ÑXeVØ^cÔR|úo9™tf°ÂdâÐ~”É4eO“ùçžLÆ(ɯÌx=“iêO“ù£L¦V¤–›Lƒô?ôd b.=™É£í™µdm“)í¿eŬ»'ÿëL¦ ¨³žÉ4Ä`¶ÊdÆ@öZ¢=Mær+s­ÚìcOæ“ô/°gÒ¾Y0™­*@­uMf[þÑY×dfœÌTNFóG˜Lé‰2'³–ŸL¦jVrVCK´¥'s ÓË>V™ç·O×È0ëâœÇd¡ué_ÅLÕÿ{&8 _×!qÆ7÷K \Á‰íŸÊÁ±%¬ö¨ï•’Ö½ÎÄ~n>JW!Šu³[ß/]¦QÉZi$C+î/ÐUq£–AÌmMG}q%6±JMìÛyD,^p¾±®Ö¶À…9$ÜQbd¥A¡\œ=rvÇÄ»U »ðëÎyÓšUÀ¥~ØÏ(þ¼ÓN½Zõn§)² "¹:‰’OΔµÓ$_ºõv‹Rèwâ­†ÈXïòP¹F 9EBȘ¥5ßÈË­þF!BÁZMÝL:ŠÔ²]BpºR´Væ½%™ò§–g6„Ôÿ…©ÑmÉ,ÊH€,E5p'T0¢I¯Å1ehmºjeÁ{i·­ètš™jÔè4Ú¢QRïv)ßn®Q­l£æªË§ì~ôÁËÁÝ6–EHãÕFÍb­a%z. n%MiU®XI[+n)¥ÔœƒÅF­\ËÇd²Çä¸Çd¿GãÅc>Ld.Áç ^È‚ -mZ_žò‹ãá;ÚÓZûaÖÚÎ}?x£ÇXNßkg}I× ÎúâËš´.n¸€Ö²sX© WtÛ­Ò(<ÂD.hTÒf7j­„þl̽(/×·[mý¥ÛPOš`Ñ6¥3¾uÚ-ù¨Soe‰ ¡+¿´ë •%7~kªF àe©üÒ­·:ªÛ¤ÞIcÕ|˺ ò-ÕÄmýNÖÔ=¥-³Q–&-/Î]…k[´9mRa»|£ZÙFmôœÄ¾*]Ì!š‰'Y½ÕítuOI§•ù&«[o·“T;X²fSͰà,Ö¤n©Òb€H;îê'©¦'Ì\³©ŸÄq¡‡vÖPk§™Ñ¨“5 DÚz®²Ä`‘fWOpVÏâ¶1÷©š+„`Àκ‰fž6O©Ì¬³ØhœÙè44ª jæ­«™'í6tGíVGë*áy‹S=¾,3Ûî\š%cD­ÔXÍnW%M[ú=‹KÝT¢dh j=£¬IÒ–‰œ¦Ýéè”q»+¹¯¼˜*ôœ­Ó ¨n;]ò*â,a~™N»u`¥È“2¬4%{J3ͲðH/x 3iêÙlµbM¼vâmT+Û(AÒñ/ŽV+mªFdC)3 ¹îI:ò=µ<¸’ópåwÈZ`°kqhÙÀsª>‰åbÃj£qüÌ oϮŠK–nÖ¥H+(Ü(…F‰j´RO«Œ)»x§elUq¢ì]µÒ¡ï86G£©_kt´Xë€1…—è)l:†`lµõ†Û®Ç:NnG¿×iÆÆ“Xu‹‚_Ë@Š4 p­vªµ4âM<Ž06A3¦`œï5Må I›z޹G5]§«qJkaˆÉ@ iÚj[l°b=ôfÛÐ Úm»86$z·kØ;©6ÚJÜíèF s–ZÆ69gSl {Ý-lÂz.@ngÆFÒìè]7ÔT?J©¦d«c@hg©A‡vbðM#1梩ï¢Ûß§ù¦¬©÷F<”4w)s.º©ÁQ¤màvÕRÈ [EØ]ÛI§£É¥3kÑJÐtôô¦žÕ»q¢!‹)ÅÍÌœ‹´­§©Ù4Ô™DOL‚9 :4 U)ëê!Árl™›º^s©\ ®›ZZ¯…Y×êìÂ-C3N›†äh§F›¦¬n‰¹d:ÆÔ¶[Æ‚nˆYb:¤©ñÈX¨ÀQ¦nÆÆÚì¤ ýZ*ÔR¬Y5Ù¦¦q£i¶fK5ª¡IbÝm«ÙVµÛ½Ý7;YâkT+ߨ·¤níì­Fš©FÝn*ÓÁþjg¢€wu¤›™ùκX.²%˜ÒjT+ÙˆÑ[‰àg«é¶mV$Àmºlúl5î6SÕSÒÍ$Uðd‘´Á\£ZÙF |5•mc¡×žj·5É©2t`é§Í$`³$MÝ,Ay! Ly®®e¡GƉ\S wRSÆ6•PÄᱦ²«RC\¶Zmcå´Ú²øm '_GmQ–vÆe+Ñ‡Š·¹Ê›J¤e,hÍb±¶èt5@œ7šzRãnœ*ôÚ µF­Fµ²ºÈê^^‚•˜u»jº»´­Å¹±ó»Vib,³QK(qÈRnƒ¼W¬Û²vÞØ0’¸„åkÍvl 9Í”ÔÄäÆœ&­Žaâ4Õ“ÔP&@'S·Ÿbƒ+÷[†ÔN ©RªpѦ±×Ìâ–—)»¶ª@ÓܱÉ<0"øøö9¢¬`=ضA! ëètºŠ›–ü™jTÖtÖÖú2…¡űa×f¦ŽÖljg[›µ°†²†1mYm9§4ÃFÒU8´“Äh3Öö5BQÝŽv,mIÄÑeÓÑR+™8 mÈ÷.&‡ó4ª•m‚”d-ú[i¬ÞKRshd_£ZÉF± :‘¥¹IØh %67z0{ÕÞ³ÝÎ ¥²Õì*éÓÝRŒÞ6ŒŒªñÆÎ܈µ<@ƒ¡¡ßK2¡NǶ6›j®²¦ÁÍ`"¨% <0Vu«¡qM3X‚ÛoÇz‚QtT·q»©¿$i×x«LŒ‰iÀdJõgp¦1Únf,ˆVb¹µ²Cï(ɲDõ”&ò ^üV Ê\%µj¸ˆÚ8Ûƒ™ SMɸÑÒtˆce”ÕP‘44Ö†éµ 7KwÈscÒÑàk™tH µ-m›Ö$:‡”¡W(o¦n¬ôîjjÖÑùeÐ8Öt-¤iîQíVÖ0p5hÜI’¬@®¬c ›«`Ût7jîGžÌ:±¢d'3f)³üĆºß’õqR1ÏÆÄHÏ0ÏE¦è…›fÇ`äVÓ4ßSCåH†ÀŽ;© ©Æ¥ ·„3€Ë÷€àreˆM:ÐJ•b¾“d£cjÍ]ƒÚMƒBNÒÔˬ•ÉõSCO«±P*ky-ãTÂÂHÇ}µÝPÒ-ÑÛo”‚¶1Šv[S(kÆVG; pè±Ñ(Ë:©š³ŽRÞ(\CkG ¾º]¹ÁàN;Ú™5ZƒŽ”º'ݨV¾ˆZ;«ÚÔºNª)žµåþ„ëȬ´¨Nר1ÓLyÑãÜîøÕJ6±'mùÈ5: ­‡IõG4ʲDcŽŽR)ÇÓ¸›ªž€y[¾Fµ²ˆ ¼ç [µ3mJÄíD5B}Ëë±Ãí#Ñ€qä<±!$Läæ@Œ¥Ö?ØšŸ¦°M0¾Ñ¤ Y¢ªQWyí‹½Š‰±Åaž¸Qª‘±‡kî˜Ð nuISy·ÝN|j%Y˜£”ud£§À—Ü;kÇרV¶‘8iêv’nÚN”ÜméÝE‡ÜÈjЩÍÅ•„G9kEIM ›”ª¶Öa@åmªŽ²Ìðw'q¼x®P"4Õv´5L‰®V*ÑíS†_75µŒ kwNì5#T¦é Âðxf¶[¨iE¥M3Á¢¸ÙÎ4ñ’4ŽðnJ» J#Õn͸K‚8qÕÊ6‚™i6cߊê)cîÐN»:œŠ5ݬc¬mr'/³ ;‡êÊNY)p¡„ùa/±Y#Oü°WU¬ÓsÉ‚%åS¢ÜfÒ®ƒŒÕòj4õ ÞÜêz­%x/këÅÑiÅFP&¦ö5¢˜¦Á}mÓšv¼!0`з•×5Å“q­˜ð–àEÏ8#mƒ #ËNFlµboO ¢Ž:èrjËF­Â]°ì\­tÕå!<+Â.¥…•²7—m(a+R?'§Ä…TO£Æeècª¤©<ñ8XµÛpÛ‹W5¬Ýf‡®ÿ°Ìá½µ½D#<šÉiË¡W’ wºj튣™öCª Ÿ6Œ¥-v-"ZSnaxAÛhBÒ/eDDˆ¤M cþby°[C÷=ùsø|­Ã»w*¹ú*((Eêü×5DšêL¤_¢6XôfG#:@±këÐÀð„´Ð‰ji·¥$‡¯Švl¢‹ƒsv¥NÛð›Æ©YU©'ËsñîÄY¦h’ÆÅçV@MŒú¾Øk@HA`v•?ÔlT+ÙˆmR}*×jµt\°Å¿‰;b6ª•m„è© ôGûÑÃëŽ W0ÕÊ6Zpoé/ÏÜœÖÓÔP×j—‰ùZ¬ÂX¼$Úwó0ôEÆ<{0^6†ßëa4프{₆Žÿ&]êuwgèP‰ ¼Ê…GíM)Â\¿C7Ñ% ‹1ÌÍ}˹ZH¨¥m€ãkìáè4;òê½#Ï㸩ݮIF²IÜ:+£ék„ö­:£°­“&^­ƒÕ#†¹¡‚edh«.ÅF=GÍõ‚î&LkÁ™‹£e¯z{FLJ[Ûhp­9ý`Øùœ;‡‘B_~ìܘ£»†¡;×~ü±³m—æ»éüÀØ5‚ýpØ5‚ýpØ…\ÛfFÃÉïBÿMW`IjºÄ×þÇ&íøì&n´3©·P|TS4BÕ˜`·ÝFµ²0$Jù^]›Š£á(w&àJ§má6ê$Þ+dY”d¢§Çõ1($±WgÃÃSrO7#ÃiJQ³™zc ÁŠåé”a7¡TÅqìmD÷ïtÀ  ' îáiÔÄ"#ʰaÆu’Ÿx;?&P6;ÆýJY)X¨Ö1 æ!“î½,mª>à$ñ6J1LÚxc¤eßä|°ÿ¬@,‡×ëÃåhXl=\ð•éuUIåsú¬K´Øþ³ðTt0îC+ÿÀ¤’‘ja:€üH:úVESßV)pºĉÀÄ)Q«eý¬Ðhô x2Lˆ5%l(p>ØWm[ vIpea¯®TÖ½Á…`?‹8rQz9Q–¢kMòD·ÛÒ>¼f’¶|jeᦢvbmí´€MSßÌOô…j«Qm‰FmOˆ‘àiG5j·Tä"]}kúÕÊ6Êï^~¶U«Rï•çæ²ç+e…W°= 6oÍ”ÏæH–fXFë¥õ®>PÀÀçØðŸéFµ’XyjxÎìQ‰4VT»ÑP|ŽêœéðꉚX‡™t3/e6ª•m”—g\_I+5GÖRá\ù¯ãÆza&xŸz[ôÝHâô@z‡’݈—”ÚtöšäÀ²×Š[zæZJóC§1³ gSF .é’Lò£r\F£¥ž4Z©Dµ‹á–™êðn†°k«¸ô˜/#ÈF°Ù¶5v)Åü&æˆòàèdIº0;œB>·8¼Ã˜IB&`ÐÐ-;8°%Z \Úl5õ†‹'ê vÔ’SÕý´>éh?q§Ù4%ãØka,‰Š²¦[òPœŽ–(d0 ‡—2zqÄ Š„a&Ýe´È5¢3vïί uþøð ÃÍ©*Çc" ÀΙ®€3nbv w¥ž:Khõ4É‹åìÒÝ.詤~`º«â}wénWîién×ÓSIÓg 6[Y­eùá®Êå–ÝÝñFÏ`„Sû’®¾H‚Â=ó^¤Î@„pš’„ qï÷™ŽêЭnœ©FI7SÀ„ËšÞ{Þ¸_%R ÇXÒTÿ—mÇmuf_=¹|Ì&ï®—!f)h&ºQI’ÇÍĺٌñìêeºŠÖ–6¦%‘1Z¨Š'Æu„¸Ñ”ÊõA3¹w4¸÷þb •Z &$6‡´[*ú5£´åœKØí†< {µa§ò:–Ø#:úÆšù^dA°`[xk|˜ýÚ-#¯‰… Ûñ[4‘½Ž9$MãȤ~Íœ—Èœ±šžKq®«o 8<ÑNiCÌxšcþ"‡”·Š;ÍDQ¨Q.Íoµ™¯Q­d#ºÜ®®WãÐ úmNh%±÷6רV¶Q³Þ[í!øjVÆ ¯ÝV2Wp8°Ò° µ ¤~p®SÈözla÷Sà*'¸›65¬F)||je•L(éödœô‡a¾©¦¦žð¾ë–Ö)¼ytX3O’kºÇp°º McÇ"®uºÚ }±!hTsÚ¡¹*‚ËÒ'±KΦݨ¡žÔTAÍÕõnv H¯–PK’–éîév4ñšm•³”µ¤:p–ÔmT+ߨÙHŒžZ-³QÛlÔjøÕÊ6j=s `RÍà¸Ì~-´h-º»à²åÁuì%Ò2ÁÅ˃kÙà4óØdÌÚà¬nMTká̬á4¹¡ëG…E[ï­zҤ݄٠ë´ex^óiÉÒ…eå„c5ڬіGŸ ¦Ö2r¸ËµD£0!: ldzÃÍ:¤Ý¶‹aj#0+áÛñ¸.ânR‹NÁZR5Û~I‚³;Ç”Äry1ÐQnÓ/ÃÀÅgN–Ðm±³9³åï)¼&‹qÓ!0Øgîh‹ÄŒDh ‚Á<µ€²ç%§õ¤ù@ øÁ¢¸µŸ&†À®©_ëÁ¡éàÐ4{JM:úIb*ëÇÁ¢ƒ±¹¤æM”ÇÇ!3qh›8´þZ&AÕÒup¶1vtù–”ðƒv;þ+émLÀœŠ­ÃŒnå¶D‚Œ1N“¥™VtÄÍŶGî–oÔÒIÑb¾R›ˆ÷Ú©Ú ÛY·e¢gæ *Ù¨Ûm{©×Å-©{ «yµšt±¢•ÛÔ0Ÿ6[„ô^;mÊ/”[¡íÛ kË4òW†ôZ4 ^Fiù¼’f8⺰Ïd;Ée±þæ>2ÅáFö£¨Å×¾ù&ëµ@«|y÷#³Ø Ã|^xB/JF¹lb´u å° )³<ìò„.{Åy+XØfƒBiw“†ÝÅl°æy{ ìòl°æy+{l?\ài‚žÑ´%wñþrÚúÒà‰«~®ú#ÙÀz”<â¦>â¦=â¦Ð|ÄM¡UjE’–íÕ+­sJ­G˜';nˆ“»2Ú41ÿÓ©7•t¦IyaÄ—6æÌ•_º”ªWž·Þíè÷’¸¥ßkŪQZog~m*l aÕÕmBw9uO±Îïˆ)‚S^’¨÷0ú¿¡{jÈì÷Ï8ä7î¶dO­´›ézHb]‘Ss©á]ÌŽA‰f[°•dÉt¦Ò„2©1Å M#Np&QjÕ3ñ3Á{Ϻ§f¬ÆÑÁ»ÜšI;ÖÃM]ƒ–´kv¥g (ÊÆTsB}é¶Œ' Ô{2g71Ò<æ? f§«[µš]y§“ééÀ[úµvj€‹;úŒWŸw¨€„ê©ÙhkY–è Àü­ð–E01¥Ä±ªUÚ1M‰Ñ“ž]`$oÉš¸f©Î®Ôĸ2=‡ =˜£ «áuÒŽî6kd‰“ÏÛÆ tñn¢@$fê.ß„v Óc¤]‘}SŠO1ÕL³+«az„TÒó¶Ê•§ü±¦-ƽ·[²&£“³ƒ9Ú2;:~iÌÒĘíL1#yh:% S-:”W®\æVW’6k¹GÛ|Äh-_H‰9%rJt§ úB˜&ÀG-cà©è”S¿ë[ñˆiW…t)û©Z‡MÅ @H¬w¡˜ K|˕ӧªÕJY#»r>Ñq¬ÅåÚ5æ¢Ñ1Vµ!‚pL*®Ö¤¥w¹ÆœÅŠáЙ¤R."æªÒˆ$³Ø]cű˜§¸¡'&Æä Æ8Òv·«x Ñʺj7KšM9ÑXl,Ö4ÏŠzJ".wÈ—*¿q7…_Ò5ˆÙ‘ïјLÅc-¤’C xÒP‹ “{hqÒEÿ–±ùh1Müoм+-‰“µÔÁDì]5”kI&žÀc´«ÂZͽ?Ovzy؆rD÷׬?D{äéΨœ†8†ÄòC¥Ñ¥‰s‚–cŽªW+9[úµ8lòåé»B·Kô´J·kè©$§Ú=•}´3otHµbp~µ˜Bó­Á§ï•ÃRØézX¤»òfÑN@Y"AF“Ñ ¦.BW,Ú:רýumÓí¨6ÈQ·ÆÅœ¸Tw'ùóh˜š ‡_ö­>n–T Ñ•Šxº‚ųÑÅIé¢èð™$XRÛçà„R¤N·¤¬ŸªÈûšéþ)nÇž¸Ë©[r¸ª´dÞpÕïf eŽP§t‡ø˜Å¹’ ¸¤naý VtwØø5´¾Ã׺Û_üâFì—¼î‰ÁôHÁ°óžL¯!€n/ 0duÝî½0Ø[pìÚ:}È¥$Î`ÊÍ9àDá®VÖË/îÃT¾†=»ÀÄ*¤,©Û@k‚ÞÏ=„©1†àbèNqq|,j\IŠ‹ÅÐÕâ–‰bÌýmõ®Æ˜ÙIâ0iÐð5ð|@SŒŽNGôŒAŽ•£ã!:ÏØ ùNDˆ.¨’VÔät B—KwC]ñ½áŽ ½§Z6ýAsÔld°7ÀêÁ´ävìCë Ä3 8 ”kQupŽûuVÌQÒO³@9!F¾ÀèX–º˜û9uÈéÝ( y>仉Z;fJŽ r²ƒ+ ‘“ò@€(rã³hч€ã?ÅÀ)õ§x,F‹h`°&ih} †`y>J` `ÊÁi iàC‡4ÀÔ¢;«wî´;«Ãæ0š¨Í埫‹oÿ®oÿ·WÏÎ_}÷âù¿Ýoß]ÞLÀ±ë£)甚¿‚só·ÁÝsƒLj}ÊnTKÄ ¢Œ5_TÍ‚4d?ï.îªê‹ë‹»û‹ëÛûÜ{êµ_=AÇýœ?{]…Ÿo/.ª_/¯¶Õ¯·wÕÃûmõÓöâªzq{sÿ¯ëëíÃÝåÛêÙåoÛ›\\}ÜVßÞ]þc{·áUüyññú—í]uûku}¡€~¯Þ]^ooî/žM£R>¬º[L‡¬t¶úqðQåHϡѪU/«—^^Ü](¶w÷Õ‹§_©?~÷Býùù¯¯ŸýôUõÝ óøÝ‹ÿÓýùîéêÏù_þüê\ýýú›o0Þ`e°!•¯Þßmïßß^½ëZ»½¨î..oï7¯6xÐ&ʼnwÕÅÍ­âÊ]uuy³­þyùð^Aܼ»½®nº+Öl…î~»}·Ñ·ØW¤•²’’UDŠê\ýlªËÀm´P0‚ÿçý¶º¸º²¬|ø×‡í½zí|†ìÎß¾ÿxWýùöîz•ÝAdw^$»×?ϰ»g¿ØÞ=¬"<„•l DXu–> èã9xŠPºÄáAáOexB ÁâeÄͦ{=^Ü—‡ÝeŽNœÀ”ðð¾üÉ#@"ëb"K.ˆÔ—©jÞ©b.‹©áC¬(RE õbHH€!‰ЋºZèò’¯Û“íº×H º°åîÒÍ‹¨Ë?P‹›º5]êíîh6}h¼HŸçÆõáæàž}kbh"¶é‚`Ô?蛫̹ýmO¸ G4¡Ce@;5Åb æ’Î!PR[Ó@9F(†qpö:Ó§öŒ0ÁÉÕY½hÑåk€2fÇþ,Ä9Ù¸ã†TÝ?Ï€î`ÜþÚLíêDß!Ýü7ªKÔ{*`:"ÚîþÁ¨iÍ +Ý‚RšÛp@u)›k>¥ñhÅÔ`)ô…_}®@läïrÙ?rp̶›TxÕL”gòPáZ”¿XgŒ<ý}Þ¡]/¤WŽp᤻O_§Æ™;µÂÝÐמqŠ!iÄîŽ.ÃÝèfHŸ¥ïî©“g¼uÕbs°¢­©;œÍaî3Ìm)ó5(ÁÜáCÔ]9מ ä®L&úÜG’ªKô- Ò^Mð]žµÈ®ÕGêÉVúšpËiJXòLìïmd´»ÄØy2¥yVs†=’¾„x~*É1æK`®ªA¸ É™ µàšDF…—Å@EúÃq§î {âd¥1ÜTb¯<ýY”¤72 ¤Ø4@3]¤zÏ“ªÏÊ”^yÜQƒæ Ë~)\§èÄ_=¬ä†ˆo…wBŠh)Å-h÷§C2Õté™Bü•"ÔÒÆßǨŒ6ðž[sÛÆ"y93Ö÷ƒ{–…´Úg®;wäE¡ƒQw£#?k%²÷,ëå@­¹Fjp93én¶¶5êUVyƒ'úIæ¥É9¸œ¹?0ªKôµ’2y©©òÝeP‹…÷™À¯ÛLöh*ºÂótå²Î4v‘­ù ÕÒ%È›¾2Á w@}p2C´g‘´±Cv&(P·ÄͪiN›PÅ[BÂànZ$¥s}½:p ó¯5­wk­r#Ðyy‡NTÐŽ‘ põa¹ÇÇ}ÈnÏZ†@ rÕjÇïÐQåE€NŸ“샓'œééTzžuD¼Ç`r€ ó­Ð'¼úÕ`O]ëWÕkN#p[.À›öGV÷ÃØ|@¾éL€Ü@?í]6Èã¶ÔÙ´ d+H¶¨Râ@€ÊqÛ‹ûƒÆ{gÀÕÀÄËBùm Ið+î0L|nˆç$oAÁÙÄg½i0ó„ë;=[€Îëƒó±QOJÂ(e! Ш @‘Îô™£Ž*º @n[Ï.ì­° ÒC¢7 ytaÑÁ Ê‚/&Æ@:ƒ½`”]ȇ¤JTú&)sä0¨{›#Ö:tA îóZ%uŸéGAfLð~wŒ9ç;tJó04™ˆVp`ÐM/¥Ž„€"`¨zÈ­ ¶Ùºm-æÌrš.çÖ™,óH_pîÌHeͽ±ôj¡[v\cþFre9Gžhœ@u)¾¢"­KÊ©»¯YùËî>ÁÞƒÈ÷J10Äû$Nk€Í€…ò÷Nuyyè$5Ú„íkL Ðäþø>‰k€L1o½YæJH&4‚¶»ö¾ï¯b J Y qI•6Z‚<:F÷è¨ë×ê%ä 8n•GɃõrkÏúsÚ»”SßX8¤—u´ªûdu‘5Ü>¨Š`…èMƒ»0ŒR€üÈo·Ó s4ÆAÚ)|·–™Û¼(”0ezHMéh %±Ì]”˜ ä¨k(qÛÌôM뽈j¬U½)øw)¤HÕ¥@úÐ>Á¼ëç¹÷0q ñ;!P]„ì¢N¤3î3=1·¶8µ$•œI畸¹St:z‘¹AÞèCãßÃÔº‹ºÎs²¢ h³ê"8ÀÚ«v˜þ¿ôWv²¶‹ž˜¾GÊV‹ó˜HP‚q&:0Ô¥þ:;ŒÞ_AAp 3údC5]„)Å®&‚íƒÞþá:ís×Ò3ÐÑ…®%ž“(¸º¹NY­I±6paG´6Ûá>åÏÐu‡C>¶{“zpÈåÞBMç æÆ.ï®uम¿‘çCkn®^‚Û»M ­€Ç-n,[»h Çz¯p¸Ñk¿ÖIÚ"ÇÉ–)Ñ`œ¤ûü ÁqL`ìÈp' êø¥ƒf ™3Ø}' åÀ pب%تx«…73â®ðèìÇZ3Hy>Kµn¾Å Ù´0k–@jU†éÍŒSk?ú8hÚ`æå,A']ÇU{i®V~[•Ð !<‡(­Öè¦#DiKœÌZ—¼™å>;RîKJkŽªÃMZ?I›ÆgÐH±Ò×äêr åjy:¨É¦%žãTØø¤íQ±ÙeQ­“P7¨GœE›ª tÛ±°EqG m|&ÀµC ˆRì)×¥Ö$‰«I)/OÕ¥@F ’óúŽ3ê»HøMäzŒž'GìtøÀH)Ž;ñö,Ä68Årö¯ØÂæØb½¾xR‡ÁôDt£ö㣊„8%FéÏQ1ÜcˆÛd®‰“@¨ˆØ9(}9’À) º( \§A´µ@Š>2=qÕ¦€êR ~¦IJ0A"õHëw¹Úuب`F@ŸÂ`D«ÞŠóš·Iª„ÏaTÊË\E&Õ±ú‚Ú-+í˜ ך· +!}R©‡}Jô%Êy Ìò¤AùmμIØl íºÿ®×3¡€:‹{q(<~2S®¶Àýòôм3t=HÙúq‹¶ïJÄ@u!P¨xÊú¹£•ékÿ<ÁRZU ˆ3žFh©õÛúÚ?x2?AýîI•ÌlІqÙ; 8À0a ‰¹‘Mð4 Êýit{=¸$Ú‰ˆMÜŒx Aš¥í²{ &É÷m’ZçÚþj_ØnâæF@Tš 8y÷ Ìì¼qb$˜øá«£=F¼î ¢yîæñÕùÅúh:0ûR&:=ŽÛøáPÒ…dÞµ7ŽQHÆ‚û,Ⱦ漼žúSì,H”9ˆŸËVdx]V6`¡€½e²“KæD, –œÀñ¼ú[0«®úÄ Œ€á`1ŠGÐ5Ö_IêÓÜÎ|„ÄËT<‚Î}€EAtÆá„X*âF€O 18E\„'À  ï5Mëx‡!€ûD:R’ªKNÜÛÞ=DñDrêLjÔ3„rIL4è¹Ò?¬‰$µg×@u)¾6—¡”EÉ3½[Õ1Y_Ré†fºL—¶À¶Ípò” Mª»~Z¯³p°f"îA8 p#ˆ[Â’Y d7Mãž‚‚–ã4î¹)P 1/Ëαn–hL„¾¨9ój˜ŸÑ;·d²·d®áôÆÑr•é³8R@f Ú'à*i“K`T‡^¸QW¢gÆ}bÒ…„$y`ŽT(fzvvÅGÉšô:·ê¨ÕCNÂñÑ(X*«Y[]öYÈ3wQV^2A›Kpƒ$l&÷~ªßšjõº ?M…™‰¡Áå•6‚"±ÛªõÒ­ÙþÓùœ.¶Š @zjf=N#¯DŸ¶æÏØë"# ÿ@|ÇG¨¶ˆ>j¦1ÂôL„ £Øx?Òå ý Â,:½æÙ‰ÝZß›ñœn~­í¢7±¹~+¨JŠÜüoÜanN[_'î¬ÍS#~ˆ¦Nø¥yè뾘ÒÖIš_·Ú‘i?†v£‹¢R+À¸)"ÒGò†#< ]Lw‹(u¾É›Ø€»£Z}NM¼†Ü²Î½`?v³ó€ý%&{bèÌŒ{í‡ÁóÎy¸}0Tö°×gnÜ_õ’ÃÝT¨ @wã†ðõT;³.,wØ/,Q¹XÃÌó4Bàz!¡÷¶-2ÇÓn„£e­Ýzùs„˜vÅÔø¦~בêe°îߺ9ŠHõuNf}z±:k˜·XÆ.míãèùÿ CœÁAãà¡Õ‡œÂhÖÖ"‚NŒºt‚s’ÔEŠ”{8êâ5G'L]“&è©‹û'L]Øwa'M]tN˜º&KÐÉQ×d :9êòܰϬ;Né =~#ít>×lâãýø#3¿&nµy‹YÅz Ü"ªKô’(7ö÷©ºÕpÂàn¹™íý°Q‹“[ÈôÊ"sî>ïd&À4€JHP2gÓ“§fxšUÝ2’"ÆHr-¡êÅvK¤I‡»1‘¾SŒPÈì¿ó í°~FA/÷H1½€¬2làºN3Nü§a›T²Ù‚ý• ¸Ð™¹ÁVr0¼G sKø”~`œ"z9˜íCê#<Üɹ÷øÙˆ[ÎÛëþ~4ï¶öw|%µÎõT©AŸ¥\K8~–E«×}øä_)©U¤:Ïå?pëwU0¿[edÐMõ‚ºƒÀúY"ÎÁ¢Ÿ@sÈÑÉ<#:°ad€tï±êÝ,Ü…èJqÏAWtêÞLt9Ü›ª[¹hG9µ/ÕCkV'¤ä~ aÂS@u)*.rÕöƒ*húùØo¨€ê @­'Ô+ÁIë€w+ÍÖ7–ªK†‘coãg›“X½W®Í¥ó+¥ƒ…{£ Dûáî‚#ÝÜœñ¥´Evµ9“~BA/|F`üÌÕ…@]òÔîg'W»£¦B¼çqWãqwrµ³kš\í25v}賕f-Ó›;WËGzzfïNrõŒ^áÏü8–~#‰vî4¹‘š*ÒÓcjú<í®GhÞ„Ùs¶‚HEÂz Púf8E7ÍèÉ£æÁn¾rs~>çöUpsîzûêán_=/¾}µ2§êè­£@þ).‚@(U¼ë(XÅe›JY÷S“©jÎÊî”Ðú@õÙlzµEý—v"y=[¢{âåÇtÜåì-Â=SZ#v½·ð—p9¨ÅõaaNÇ=Sàˆ”©x ‰ˆ²¸ Zõé1õi‡è1ËŒX8.àeÑä€q0.°Æ^pÆàÅÌVz(Τ§¼m©‡¾(Í¿&@‡Zÿ¤Úë'ó[s ˆ«‰5£ {èCxr°ÅŸzIÌ鿊´€XÒ`P“—®R$–³Þê i¥Ä‘Åôâ@/ÃÆ @4!=¾–´¾Z*[†z.€¤ÞI Ü0›/6‘B¯çóm4ë®ûŽõ£ÓS}^“öJ)}Ʊ¼Õ‡ïZËÖK5ç­Þ¼ ¸Ò' Zé胄=â^?0À@J06uÊh†ÙÚÖ9Câ@kÎ4¶¶¢Í¼åÒ²–2p€¬èæ‰óí¶-7§qa_ic ¥Xé '}¥ÝùýþhM©tk:¤9ÂÖÙ!s ¢©/-qJ@qÊ\»3pµš£?¥•§ýwÄjs•@M ¬¸ Ý&wš”¶VÌ}TQ.È 9…Ó#‚îÜLM¹»LNóÈxæ>º"§±ú°éÆ é8@;ˆÒé@étÑ 3f­oŒCžç´qÜkÍIðykÄíSwŸ£KÀÌÖ¾gÚy„Z` Äj¨AŽglú„ïN¤¤ÁÇ»i£ÿ€çÒÎ=Mö^GŸ¦/ÌYöô=·C¤[KÆ»%)ùaŸµ«^Ž$GfóçÂÙñ>Ùc'njîDéç’õRÔœ…lÖ¹´&x?¥zu¡´ük(ßåeù;£Ú 5Í©vš 55¬©´hºf”Ž/,¯‡ô ÑÍhî66WêÛcºÝ&8PbÎ?3ö'»Ž6²‰Ô,+ØWrKXâÕîIÃ"ÕN§aùj‹h8pµ9ŽYmˆN¸ÓƒE9\mŽ†Ø•2“5ê,OÏ$£f¡Ø¾¨ŒÉל‚ã9/t .éüÓ½Fk.®Üᬎ鹊:¦ËtLr GÅ—ú–³LUß{]0[º€wÍõ2NÐïîIê1=òtRÍW‘z ^|‰ñáü{žÔå½<#Œ\ï‹î¾pORé©§“úhq¤ˆÔG£®ˆÔÓ .Gª Œ-ãú<ÝÇÑÇ÷˜ÓÚîýp3GÓêõBÝÙ¿ÝrëÞK¡~žôOaó‘Ý¡×WÝÂ4‹Ã¢`Ê>X,BV;Ä+2‚NŒº¼»?9ê"ÕÉ=œuM– “£®Ét‚Ôü¤© %;iêš,A'G]“%èä¨k²u¹´<¦ŽŸI=õÞMy°3†yÃí”ñ‹Êlû̼iÐ! ׊ÁùÕ:` Í·bŸ¾Ka§ëa‘îÊ›E;yd‰MF7&˜º]±hë\c÷×µM·-Þœ€º5.æØ¬º»ŽGÃÔl8ü²oõyt³¤Zˆ®TÄsÐ,F˜.NJE‡Ï$Á’Ú>'”ús‘º%eýTEÞ×L÷Oq;öÄ]NÝ’ÃU¥%ó†«Fx7k(s„:}þ£;‰É,Ε èÙÀ%u ë_°" »ˆÈ¯¡õ%¾Ö]áã7b¿äuO ¦G †÷Ä`zt{a€!«ëvï…Á^ed×Öé“J%q®SnsÇ wµ²^~q¯¦ò5ìÙÕ&V¡ ý €`IÝZôvxî!ÄH1¬CwãÈ`!PãJú£x,†îÀ·LcŽýzp5~ÀÌþ\‡Hƒ†¯‡Ààšbtt:º g šp¬ÑyƆlÈw"BtAµÔ°¢&§º\ºêʈï wdèñ²éO ¤f#ƒ½ÆW¦%·{dê\%žQÀY \‹â¨ƒsܯ³bŽ’~šÊ i4òFDzÔÅÜÏ©CNïFiÈó!רMÔÚ1Sr•Ó\‰hˆœ”D‘ŸEÈ>ü)N©?Še1XDƒ5HCëK0 ËÓð8PKSN…4H8¤¦Ý+¸s§Ý+6‡ÑDm¾X?Çþ\]|¸xûwåxñ¿½zvþê»Ïÿí~ûáìòfÁ:´pJÍ_Á¹ùÛàîY}aì ÔÐÆ±€T9¢Œ£/ªfA²Ÿ÷wUõÅõÅÝýÅõí}î=õÚ¯¿ƒ ã~Ο½ü÷Áé7Ûû‡Ë›ßªswòͳËß¶7ÿ¸¸ú¸­^ÞÝþrµ½®în?ª—¶÷‰Ãoò‡á÷úÛ p Ž9'ñyíß®ž¸Ãq¾Ü°y5>Ý ÝS6ÿG»«|Z=ùåêöíßï/ÿ{ûåëñ6÷ÿ] ?~§(¾¾¼¹¼þx],Hû9f²£X~®ž¼½»½¿¿ý‡jʇÛË›Õô&>Ã'þø3}LÓ7¯v2ëåLJêUõpÛ¤>úáë—_ó½ñïÌÑHûáØÞÝ)uÜþ~ùp¿Éð |¾¹}·ÕàŠQÛ»wÛ‡9†Hiy…Ñ_†Ÿ”ÿÿí—‹¿/Æý¿êWã&òÿ¬abõÿÇøœ?ÿ^ùÿWÊâî«óçÏŸ~ý½ߨŒS'flÔŸ6Øe0ƒ,ý¾‰ ðL¤Dð;™€tüNw -F¿³ÒYˆàwwðâ>-*¶Ý{s{‡g1i—.ÌâvJk÷›;7t`m©ï›˜ŽÔ÷MÌÔ÷MÌûÔ÷M,õÔ÷¾¥¾«æÕ I™ïæ% RßÍK¤¾›—((H}7/1Pún^â  õ}s0·-dBL@ZlÈtÒb³ .t–ý Šrö·—Øvù5Ú-íV·ù)»MÓ¡g{ÙßxŠÍe%À)Ûšì8¼?Ç`ÁD£æ» Q±í§ÍrÓr¬½œÈ^Îe/§³—3Ê:©•c38Ög‚C—Ö}G“¿Ha1DeH÷ЋÅ5‡@”×ùUlŸ˜Ø`´3˜ê‡Hð½é¾7ñï«r/Õé—Fd[©H×9âšs/åÚŸaw=1wÑ˰;óÒ'Àî’öCv÷aæ}“ãsIÞ7‘C4@j6=xØå¼Á"u»0f"êßwM[Åöyˆ-kÏ;3×lVšÍ8³ƒ=Y… Y…!YE YE!Y Å YÅ¡›~4§ŽsÕtè‚—Pµ³bZÃ5·ß7Ù‡½±˜ÌØUµ>sÕ*ù$Ç“õƒ©ïŸû ³~  õ½$ѱßSß½nÕ Mc­3Ðuæ{€5~؉©ˆÖ?í 5Á47ê"¬ ¾îçmh†Öro“•ÖTp ÇØœ› S3󽙨Z…*7N+-å@è“Ë8ðé²¼qå8€B…]ÙÌ] ³G>4cËY¾ûßøŽÁ;Ü“gör„ í'€}Äq©¿çX@QrâBPÄb› Ðà90èFú}´Ì}‡rëßgÐ49f¶ýU?bWw¼ ÀÛ„ÏuÂ4Ù2Õ¼C<³{1³M^lU2ë‚ãð}îU/ƒîÅFPRl°m¾â†uëÀ|`ØÐ2 ÷bƒ †ÁûA¤‚2'qûÃ&Pð;4*澩Ø6™'©ëÄ6Õáqà(µýÉÂðû&àg¬PX ‡Á ì÷ͦ©šj]¢äOfýÿÕñÖÿެÿçä‹uýÿ>çÏ×ÿÿ°±7ÍÍmGcàºr€t"ø}]ø?Afqûà ÿûý€å3{“ùµÞjx«á /´¶)+X† °¦…Ãonøc/uš‹tTxSkÁ.¤³Ô)Ù«;œó^Lls‘Îâö^ˆv!=Nø]íå€ör8?¾Þ'bxeAs×"Ëe10üî•„—´o1DEIø> Ïbˆò9Ø*¶ODlAøåš© iÆqûC¿/†~_ ü¾"ø=ô¾«Ø>I±^ø]÷Ou§ë>à9ºÅÍbÎe1‡²˜Y¦»õGU·2óÞϽ–÷hºïë†Öe5‡@”_½¶ŠíäÅÖ`xýªþ%¸y.c‚ëq,íÄà;Í %ê‚L£É ÍQ 6¡fÉ.iþ¦„ì’æoJÈ.iþfÛ'/6–¬®Î` É&›eWw‹Ç'¹–1DSBDëÆßð}×´UlŸªØÌ}Xù¼7ó=¿1ª|>o2¢Q¤sí@øô©ˆXé4DùÈ2õÌ©Ul§$¶’s¶á7Ü"g0• íd÷¦»à¼l¤`’Ÿ¦[“°.í˜×Íâë9«j}zªe.+É#xHÉ-‡un Ÿ'Ö’ï‡ÁšÖÝ#©Ö§*®O ëIªÖ”óñâïÁ6çüd'™ˆ6Øl‰Z¾n^·G¯Û£{)c{´Ÿ&‰ÔÜU0ò{â`Y× ßµB%gx(Ô+H Eü>0¼?ö5D×,´€":ü½ÈðPÆðPÆðÐ&/¶*ü=éùƒ£¤€‡I^̼:r†‡Àq³¡üë‘9IŠª E™EMCã¿GQ0Øaxƒ±êB›w¾° k€yMë‘£ 4ÉÔFBLëí¯òIîÿwÌû_Q£Ìlpÿ+Yïÿ;Êçüùytfw¬¾öý¶úi{qU½¸½¹wWÁž¿}ÿñ®úóíÝuõ­¹â3q«¿~õúBý^¹Ë[ï7¸âúöU„õµ¯D9ŠêÇøªÚ  ™ëa‘ÃùòâîB‘°½»¯^<ýª»cUýùù¯¯Ÿý¤þžëŸ¾ùë›áÍ®þFT{¹muwñpy{¿9{õÓ>;ƒïŽßA:@=zç¨â,.ÇÕ§,TWWúçž1ÿú°½W¯¾ž&„Ä}¼½0†·ñîFkÄaoá=ž0ºëi,‚×å"øyš€<ûýÃöî¡—@µÞüÃÅÝoºâXÕ“¦úÿ­øõÝ›gú ûòóPüÅX9¬÷ÅÊJOdëÿêeÕ‚”¯¢à¡F = Jªïn>|tÜúZc‰c%  ÒE•€T8 ÄÀ ‚z*¶+x”ðl#Ÿª¦éÚ‚Ò«èðéoÅç4’@øŒÉu]kE‘`÷ïiu¸ywù Uúü¯{£no¯T’¢Ìá~{µ}û°U:xw{]]ÝþSý†Ç‘–<Ã9QMÒxZÆy¨®œ§%U …;´¤Ë8½³€2:Sh‘ ½–ð3©ìæhI³9ÿy~š9æaΗsÌŸƒ^qåís`œ*¥käúœ"9CTp]n¹{cŠoUGÞbØzkx ÝÖÆ¤úü‹„ˆ´^<ŒbêB“Hô¯uø”“Ó^/FH×ø9Å@å8‘^^Ti•mZé¢cÛ&д¾ eDœö/¶gTº¥|cÿ@¥Ü©oŸþ erüï·cŽÿ5ˆñøüOÊØzþçQ>çÏŸÿ»Mg.¯¶.=¸¼ùmçÓÝíGõÞö~#9AøñCPÁ½þöBe:»!3Pë×þÝê‰K‹¾ÜÐâÚ>Ø|©¯wcL[‡„þßH•O«'¿\ݾýûýåoUÊãè%€*)«ž\_Þ\^¼® G{øTŽó¿|÷çWÕ“›Û3ýxÿþòׇû)DüøõÏŠþëW—¸z{w{«3ÐÓZ£òIßš··WgVž{Lñhß«±—«TêùÃ×/¿þæ{¯jÓ1¼ë2ï=0Àôí€{®ØÍO+d¤üÿý/Gõÿ làÿ9^ýÿ1>ççO³þÿ¼Èù§HøI»;ãÿäÀpð¡¤Æïû€ÃR±fPã÷Êý_ܼ«þyùîáýnG7ÝÕíëhÆ]ÍùÓ ±O“´ÿ#çD ¡ýÓÕþñ9?ÏçÏ·7Û»‹+•¼¼+ô»Á¹©`Þy5>UöEv8 l2ˆuÒ4êöJÒA=¸WZ9Àòsõ¤p·Êä哦&`K¤`öÏ+ŒN+ {¼OÊÿkžïþF¹|åÿ‘^$(áBßÿÈêÿòI{þŸž}ýƒµü+e²ŠCÛÿws¶Óѧ|í¡wgÎgîjõäîöŸ°c9ÿ‹Ýø•V=××7ÕîÈ‘¬â§¿œoÌTÌ0õ|¼¥úìþîò·÷Õ{EÞ_¾ÛÞgבE†Q* KÚ­AEq ’q\ÙI&°â§¯_|¿!†Í2Ž>¾–»‹›¿WO.î«‹êšZUéh…(ý²ŸÊŠÙQjvhGçÏŸ©wP–~¸ÔïêåEÕíMu³ýýÁSuù«’ÒT/^ý×Ëgçê B ÃS ÑÎÄPµ ƒ&ÅiI1 xsþò¯BÎ¥A* ç{cx¹7†½9ùroNžÿ—Æë{1†Fax¹/†W?i sù€^½Üƒ–Šy1±9ÿÛOûJó§¿í‹á‡½1ü퇽1»ˆ{FŸ’Å »úb Dñá|_žýmÍ»Oë“Ëÿÿïݯ–êìÿAwù?¥uù¿hÍÿñ™ÿ¼0óÞ6Uª~úóK t}ñ°‰ãuôI&¸*?|¨Ã*ù%Há»ÝäñU¿îñÉåïAu™\>QÝΜ¾¸ép¹yõäª8£é¨%5Ì*ŠDUöKö_™uì™4Û~f¥Ûö3ž?¶&¯Ÿ9Ÿ”ÿÿÇQ÷5HÐáþ¯uüÿ8Ÿó×ßæçÿÔ>^)îX}»}{{ýáöþ2´Ãæüa8B¤ÿg¼â~àC3 þOÌf1jþÿ:["U>ô»ç¬é!©†qd÷,bšîÄ¢Ruÿß5¡©?;gvÍ- Ñäg=Ìô¦w˜ïœm¨šyäé±3ÂvMUÀÏôi øYb cßôéŒq|Ó¦6àglšãõ·JûwFå„ÿÿï_.þ¾h÷ÿX0Ácÿ/_ýÿ1>ož~ïîÿ~óüÙÓ¯¿×«dµo4kåÜÿoÁ!ß‚C¾ Øï¬ÿ¾Ù<é€ÍÓWÝ*_ý½ù²zž K63`ªq ©Ä€„©Ä•„<&‹uy&‹uÕÇUHÂd±næ¹Zø»}‡jO-Ù<©Ï¸úˆDsj½µG•ÔƒæŒð >Ã,W’®hGƒÒÄÍ*ÖŸ u–„ÚD¹£èU¦¢½:šjgù³9>]IIh•í›NØÕÎÀ6.Tnžj$ K63`f«6á¡.¤Kò0G á™’S áhøtI8’>Ñ*Û7™mÝU·ÇoâÁè^øÞ»W¾7SÜ.!Œ+¿ÏÙ´™ é½ºÚ°IÅ14Ô#‚&ª¥CµD¤aÍ öÍ3Œú¬%DkXƒØZ‰[©JäP+ÊÐÆy+è di¿¡â?eŒ&ô@ñ06l1gBi›lé’´5Ž6ž¢£aÖÒÑF†ùÌ!hCˆ$dªµ!–Óë–±N¨$#Ô¤_7B]$´ u袭P“ g„:Eá߉|šÎ7Wòi:¸e ô‰Øfg®Ã~øŽ»àL8'I+å-–MZÛ0C|³C?$kT=(‘}MW*ÕB+/âTš‡p2–ðFà6}a¡\RRßpªÓÚè^8ÉX0Á%IÀM“Ð^C—M;ŒgÆì)%4é’¸âªLƒîÔ§cÓHç”´²zߎn’ä‚&güJ·õIw86MèÔǡȭ>ñY}Ìû«X»½>&$aòî<Á ^ãÞ€×Çaþ`õ±ÍécJ:}Lq¡ÓÇ¡2x}F;« «’Xû>v®öƒ.uô»íOÍŠR:Æ5™lÐ4L:ô†ËO ‰ÌÀã¶–!™Û òHÁ¤½ûtÚTÊÐH’¤3Ò³åi“ŒhPWF1ŸÂëS ml¤{mSKæbS½íëbÚ>?…;ž¡~šî‘î“5ÔGvpæŒÀñ@ ®1‰úD8;xi/rùvWÔV„¡†›i† „¤8ÉID›Ê‰tÓ"–ÄF)g(¡†µÉ3‡IðŽám¥‡|詺J§Î$RNd›"Z—ÂFEÛ$ú;&@!CtºD1[e ©Š8ipªs3&U•jË·gNT$‰»Ht(fmJ •,Ímå\P*þh–ÃnÙÐ!Œ’48!p“ló–å`MÁŒÏ+KI4è&°Ìl¼bw!‘Ýpœä±©ÎcS¢“*vâNìéÌ.ò©Ñ¯ÎÿåǸRÝßÎÿ%ÇÒŒÿKaëü_’ìÏ,Úø ‡¬ÿæÿKÆ”Þÿ%Õôþ/±¥÷“‚dçÿRœëü_ŠÛÿKÁtþol$dÈíÎÿMäöÔ’cy’¢Øžwêb{jt©‹íÉ¡Aó” Ÿ&¶'ǪÒ0›~ÃÓ ì™Lïÿ¸:âþÖ`.ôþ¤¾0.H·ÿc=ÿó(Ÿ7O÷ü°ÑŸ(f¸ïÇsã@x"qÇ]RˆsßOea*Öc†»†Uç¾÷ÃçÝÊÍU1WÅ<)ÅÄV@üàpWøÍ ¹Ú< P£qqG%aa^–¨Ñ4€9Š\mæ¥QÄybò È4z\Ž'@B¾äHH—œ y˜ ¥®þîÞ?UW[Ôôc&S‰;jòP¶šð‘’‡Éb-Íj§¯ü<¨V”÷hZ*æä9òÃjE‘X? WKË;IiŠŠ[‡³å$6⹇kçT”!»LdCÒèÆXgý“Öð‹xH¦IrÒ äÌS¶ÉiTùê³üËÖNf‹Õ’$yœaùú§!Ûlx¿A×,9ÐK£gìߎŸµtù d<†LõÓ¡—ÆÏ¢ · {š;Æcã2--³hׂA§(ÄÖ•¤f)X†÷OCoÓÑv,™ºÅð;ø–¦:ÆÖ"‰ oÚ6n¿ä¨<Ò2ÌKj +Öƒ!€!•s¤›Öý¹„ ý0Ñ*æhž×¢ÃZìÚBls|úO7‡¶9ØŽ!x¿r~h?&´’¬Å†£º0/fà{ ¾;E~Ô¡‰Œœóœ·,MpóQjã ¸òÅr/U’F7Þ Œ*Ìï¸x ¶ß‡C° –ì¨r$lü¶À'ýܺ¤ù >( ýÕÝJ*±ä‹6#eÕ%å,àx…x„NõØ %öºŒÀˆš‘¦•çÉAù"šÁ9ÚÀ®…´M´bgFX5öjr”Vce;ä‹`“Æ”fÊ6ÇÐMÅ™Z£€Æô©ðƒÏUø~ÕÊmìÖ‰wÈåJ6y˜ÛV—BG²$Ø<&Þü`aÛIí^ñtEî)Ó¢]8ò–O„òüÉד&:W2 mìr`þ1Þ?(ÊBíô_õV2B'uHs`â]‘=ƒeˆuÌe€ óü:ŒQ÷5"ˆRxž- Ìp3Á•±yðzòçË“>"Ôg÷´–” »qúˆáñ $KBzû8ô³£²™+ïqÎhn"…®lüsLoCõC{8‚v± dÜCÔàóio•¶W–.Úé ff[y°±\ëæç7£dŽps,ÕÚ×C„ÏAÖ‘êð…ºÌP7¶êêH³Õ-q\¼Mx|Æ1¢4mh0ÿwß×õ/wÔYÇ4q'²–n²Xó¾8Þfíb¬l3V8—‡Ãt@Gàvä"³è<1óè<>1c|™ÅÐN•1èwÌÃç(ƒ B².&è¬nRþz÷TÚœ•;s°•­uøh;¶4Ž90¿¬NY¦G¡mãvïŸD›çhÞJÛJÛ©{º9زNŸ¡‰ßÝ ‹¶}aæù@EßÔ"låkÝKÉÞ=“–JŒÛÚ¹Ë!Ùù~lzÎ9?ý6ÛõØp3OÕ³k‘'m¢Ã\ÁBâ¬ìKöO”lÌà4½\[» Rèv½CRRÍs›àÜžZr4l³¦NG+ʯßɘ÷[ftd@ªÏÆÝiQoN õbXÄúç'¨ÆÖQŽ¡t‘¦̉ ÊF0Ò|Î ¡‡“©ó¢ ‘|bÓ6}Ûú)ÿ)ô÷#¡Cþ?!³ÉŸ*Ã~§#“ØŸ­ìIMÎdÃñð°ÍN8m“ÙßæÛ–¥?«t^³²ÂÎêHå“:Oã<ú Š2µÍCÉGè1í“¡LreªÐO¸è!}ÉÌÚîZõºj–bpS÷ªp òü,ø®˜ÌÇÞ´Ï_gd—£E3¤HfÒ€9â”3»s¡j4«³@Sö:Œä¢yò\Èœ²=šàç3ÁŒÀÇ{,¶­‰4>KB~ÝöXÎ`Ï÷öëÈdµ>Q$’¹d¥Èíhj ÌÆŠxÅŽ¢Ki‡`£‰§4Ô2!ýZˆ)Q¤ou:¿ÊÕ¥éH'ÞÆÓ&yµƒnúw(³LxçÇ“ÚMÔég¼ÍÐAÓPAàL(²4¥rIµÊ*¨ž8 ¯·5Å¿Ûïý˜þ ù¶õ¶á°d¨ Îè2˜üSU†É®®T=•Ø"¢Š F0M¤v3•³shšJì‘õ °yŸ·ôñ†o@~•p}c@Ë(“·a, >#$~Û¦ð½e_ëË”oU—Q´Œ !Ñ9%Mrtž£’ª¼Š´\¢–H)¸Jϱ4Z¥…ªÆ¥².UÞ VÅÁºÜŠ}§Œàµ¼•ú c&MO¹U¿Vq˜SÙt7¦±Võ6ÎE*oõÏTÙ>áDߤ£Ñ©¤U_å«|›"„)džôÝ7XâÍfÓœÀÁ™ŸÉ'yþç/‹ÿ¹ãüÏF…,¬ÏÿTڣĸ>ÿ“Ñf=ÿóŸ7OŸþ{U}{ñpQýzyµ­~½½«¶÷—7¿U¿\ܼ۾«ÎÕ÷WŠI¯/®>n«o·oo¯?ÜÞ_>\ÞÞTw·Õ»Ûû î–U|^|¼þe{WÝþZýC#º×ß~ìOÂmT2Øý÷ÿ#ýÿî¶é¼ûWud8hdÞÍýuÍúņí"9Ió÷®Öcêãkù¾z¢ùXýóòÝÃû/7xV•/~úËùU»€_‡zéó8À«÷wÛû÷·Wﺺ6ÞIÝËÕ«êáÖ(Iõð~[mïî”Îl¿|¸ß ðßܾÛjðË›‡í݇»m‡ã~»}·QªX!¶ºö£~Rþÿ­–í‚!`—ÿ§H|¡Â{ÃhFÊÿ3,øêÿñI{þ7ß<vþúßÞ|óò¯ç¯«¾~ùõ7ß{Wv›¹ùä¾vdHyOQQV‰¶R‰%jÔ?Bq>¸ùêÉÝí?«w—×Û›{t¾ÜÐ2Æ})b#|@„«žÜ8„w—¿½¨Þk×~ùn{ÿå†ìt·Ý'rº™q¦w*¢n^6mèˆßÝ]þCÑÖ‹iDУ¿yþ¬*‘·çôõÅÃÝåïÕÿ>(Æ)´¿l æí»¯ª«K]ƒ)P©ÃÍö÷õÓͶºüUìÿ¨^¼ú¯—ÏÎÕ„6o^þµªä‘땼à“òÿÛ·ÇÌÿ9ÃL ò¾úÿ£|Þ<û&²¨ï·ÿRÙٻ˷&h³ÑæuyóáãƒI)¿ ¼\ìÍléÜÙ=8ãRÏÄ|Û|¥¯BS¿Lý€úP÷CK†%ñÕκ- ºn_dÿë~À;A?X7 Åo¸dØìª;ú‰U·ã‡ÇgíÁñ„¤.…£íY_’bz[VÃYq¬8æã†³Û£Ì h*Ò¢Fí@:1(ƱòcåGQÄYà¨ÁÉHKÚ² é,~Ô«áìm8hç33ÇT¤ NióKèÈëøüØ…t5œÃéqŒúBÑ0j1 õ»…a ±?sÆHÿ3k·?ë]‚ýÏ-§8K(æÔþÆD‹íÏR4ög¡PÙŸ“mÿ3’”Lh>iíoX_tk«Aœ»6µóÙ©È¡å—Mk1qÁ¥ý#W/“œy^2û³ Ürž50GŽÀ–l$ó<'\ NË[£/T¶õòÆ K"ä„Ð4È5µuúÁhãdÓ¶B:E@^6·îçV¸*±ðURÿ³V›ôº‹ ìØ¨ï6¶â#Üâ& 9Mm•îgÂ,"ZËt!±{›+²¼¦ºæ âôº%÷V¢grØæI7Îñ•YZÔô?`l°Ã $ýÀaß ™² u®Ú*SífHBH‘†L¯Å:˜zÁœšˆ¹Z2ª• _Ëð¾qµã©Ì¼á„zJ³aßI.[mdŒc¤Ãd"EK @1Ža- HnP‹%½Þé È`´>ã Êl¿3œËÙ<©µØ\©©×åH'[öA yY»µŽMÅ=QÕ¸¨~*‚ÓɘgZÂ_ÄöŸú6¬9ò±™³{ÖdFÃÈ!˜C“ÌéïùB¹v`çâ7ÐN¢pŽ[u¢·9’;ïdN»7sÚsXÿjN êÁ.gË9a"wªR&ÿô? ÒòŽv½£–M‚ôüŒCÎŒÀV`IÒÈÞ›µ_<‡Ç‰~±íFõ±°r¦ïô¿BLÉÖæÔµSª‚ k‹ßr˜b÷S£ ®ÃW”2ÛáLçI¦¢Ùæ¸wj²›y3ì¬b»Û¼D=Ã6ó¨Í6yƒ \ã!û6_ÜžP(‚BÃ?öè¤A]U\÷®ò´nI Q8"Gå$"¥j¡}-l¬0K‚Uñˆ 8Géðâd-]a.4~h§ ¦>¯øöÄ·b¨Ði :0çöÂ_ ‰IøgHvÿšàÏù+µÇ(<š¦ÄžyiMɸåÅ$K¬)¬DSlHÆc…d¬Ž& Kx*yØ×”sr™úÊ%5¯¾ùšPVßrÑ+]ßÒÑ1®/‘l"©:«u#±­ŸÑFÐokÂ÷¥Y£X”‰y÷¼L}å}^}ó}Y}Ëþt}K'Ÿ»QÐÞ(äÕ·Wé3Ý»@Ò=ø¼¬ã)*‹¯_7àf¬l(¦ÖËö‘ÙˆZŒbræ}«)çÃ׿V§ä¦\ _C:l°þµ¾_Ö_ãÚ”¬9!ÅÝÝÂN Ž˜ÔDLŽÞ¯q_>Â9zÒŒ þðUÝêI âô^šð'œð|±á-”våB!§Õ¿Í½Û§5¼sàY”Êꨳ_sJW¥“™ØÁóÈIÕÁsBæ1>ò´ž7ƒòSŒðÕáÈu„ÏϨâäû1>#³F¥~æ°pË0ê}¼Šþ-§ÖÄ„ÎX:÷­î=£ œ„J°pÆF=«;óQ„P,ˆx#J¼‹TæBz§¨òGÔ¶Ý1抚; 26'˜˜gÒ=÷ÁƒvåtV°1õ™rbËIWNf£. éž[Këèá–>Ñ=·–ÑÑãžeßXzDGOkŸeßtødt&×ásü’¼Ã‡ºglé3å¬ÃWÕª›Ñmü,n—¢†9$]¨«µ’éÃó®óh,Œ©2­c’6>˜v‰3¤¡€&C´²û®jÃLZ?-„I‹ù¦Ó:Òi®"1ë+T›¤ÕFER+Q}5DkÖß Æm÷]¥6B¸„@™ŒÀ‰ÔƆ;k¥éðW0¼O©Eï×™Èá:)á$¢*E¬o°íÆo ŽIøF8ÿ¥ ‰pÇ´Æ÷1‘rJ4rJ}6à²>‡gßqï}gDö1Ê/Û–Ø>¡>>ÄæÇ™Ôœ߉ôèÆ¼ƒ°ÕLÕ‘c–±Qÿ¾^º®ßï_ê2sÅžWG €4v@MŸ@'æÚX:"|jË·ïÓ5îý®§¢Oׯ„ë†~4NäxÚïºD.JT->žÄ—ðãQbj¶Ã_gé> ñ%DMÒñ8nï`Tô>M–¨ÞÑÞ˜?™Ä¼¸¾týO•§'ËÏycrƒú§zÎÙÏxLþ#‰¦E©ªàÜ`i­J B]†¢‡~t†¢‚¨è»Äú´XÁmdbnäGÅJl3S¡FÚAÉe¥TäÌ9\"„M”/ Ò%^ˆ·­ k¬‘ÌöäeKm·Fµ­µCB*M ÙdP»&4Ä0å†HkàØ’JʈMÿævÄJ¥Ú\¸è**l¾ØŸÝ‰Ñ ëžYÄþ´ùúôÖ¹zò:†o¢÷iX_›?‹ðÅõGð¿;.d×Ú˜˜þ¨þAúÞGÊØZs¯yø~Í¢gœ~އØíêôZwÓŒ´&’iÿ“ ù¦3@(ë„hÆ—¤0¾ú.¥DVešnÅ Ó±©¸ <Œ3Û—cR¶Ùw ”ð¾+)•*2¼«h@®w¢¯3½ iF£Z$z[eˆÄQéiðÁºà8=Hgg3Ò‰¢Q¦’ÜLrSR,TCÝW“·‚…o£ôÛ.d†¯&a4ßèÒNzÅ·'> R’µÊá ™ol]ª´þÃ-Uò|½à°³8z©­Ë†ÆŸ3ˆœ‹äƾÌ@´é3óuÏâ2žTßg°€Gé4ÂzU@7ÖH©¿{m ýzLí¢Ô­+c׿IõaeL^Û¨ F}î·®7´h¯õ&ÒM=š¹ÔMI†¬ÇÝÖ¨u5ÇI¯æÐÜqs!zñ³ x´í„¢œ4½uøµÁšEå¬XÀ>ܬKº N7㥜ŒDfº®!ð5Ñd}hðY{½’O¶`%_7Àê;ƒh¦ç¨Ö‰ñOŒ› 𶵢㲛÷ ¾vª'8‹œ›óí®ó÷ôÉßnµC¿xAÔ˜yZÚÏ©R'`jzfbb͵wbMÉçóŸbÕSd'.qã3÷CÔh“ÊXg ÃöÅ ß±f mÌöU­ñw½àóBûB:(7•žX×ÊÊ—4=YYùƒªý³óÄ™õtùržEª°F‡ˆõ‡%èpt<2™® úKŒ°™$z¨¥ANtžÞÎÌëùuýÿ?Þýl‡þ$ï{wÌûßDÃ9Ó÷¿1‚Žˆèîc_¬÷¿áóæÙy~ºAõ-nï·Õ7·×®¶¿W/noîÿu}½}¸»|[¿}ÿñ®úóíÝuõ­¹sr3¼Fsp/£»½óÞ]ŸÌôµÌæÞèŸõÍ“Te8XÿË‹» EÀöî¾zñô+õïÇï^¨??ÿõõ³Ÿ¾ª¾{a¿{ñº?ß=ýAý9ÿËŸ_«¿_ó Æ‰ûýåuñµu¯75ÿ´½xW]ÜÜ*ÆÜuHþóòὂ¸yw{]õWƒþ¶½Ù* ¹Ô3ÔV¤•²’’UDŠê\ýlªËÀm´HppåæÞo«‹««àŠKõÚëÉ’{v©ªéîé[%wɽ.’ÜùÏ“%lîÙï¶w«!@%™V‰u~M·%ç+ð½Od»YÇ—$×þ`@†ÌzÀžêˆE++º\´DòÑi:³ñ-Jà!Ø>À#ëòL¿Øõà±Zû¢6¦ú<¾©+ä~Û¡/bAQí‰üª ®Áàû—«Iì­>Ùp­TÔeTlÂîúˆÀC*j”/ÊPéÖÀû娨uÄ Ÿ€FÎYÍïðÌ‹Ž#E8˃&Ïî<¾Q1‹¾ .ê£Ò7³ª0óؽý`¯ó°Îã¡eÙVgŠFÆœwžŠ:C{žˆª[/™ãÒt^LÞ*‘kåôÕP"  èá[G»‡"!Päpá°Oe@Qò‚ó€”´aƒhpT$AUMØ`܆EÔÕ*$hpuª ¨ˆ„/AUáŠ*¦n<4ÿ²PYîðGð•º0Œ…½‹hcJ_’Û’ó<0¿ˆ*œ-ÊE¨E"üGnNc &tÝsvÒ8T4OÀ ›žÔûñDu$3ÈàEdŒŸ|Nœ³‰ˆÀºœ"ON“1.x˜d4kD$$OÅÈP÷ Hçø>OŸ3¼Ø!’ö–– ½¬Y…ÑaB‹‹uæ#‘cÍZ:ºJ«Ì¶æì®rxX¾Š2Oçð‘oäé–æ»G1{"|4K{=â•rSÐaÏ$jU¾ª€@ôgò¹Óó­ë:Áf$ž§ÎÈ*J£â¢ü ŽzÄsca—½tÃY®–ƒfkóêZz&wñ˜ýÞPÈ÷‘€¾7Ô¡CĈíD)Qáb 2¨G в=¨]|ÁºN'Ö/ÚâÓlÖÞ->MÚ÷nñäM’øã4¸LQÊx¡x9o:¶`ÀnÇ|ó:»“e×þ£uËáv±¼ž°‹Å^çšÑèüŽ’¿çp¢,ÎôâÓx¬Ó¹´YÌi÷tFÙFÍ꫌8ˆ2ƒÎÑH!l*@I£2 ëx*›o´à@]ànÂZ6,U'’8­t|^tÃy ¼¯î¤°ôÌѱµ2GâIYÇ ôÏvñ£lUL‘†Ÿ’•ÎØwlëÈ¥Y'e¥'°7n?ÊvÇå4<è¬à©d* P’Ƈ.>Þ‰;n [DQ ©L ©ŸùÕÜöÖGÍ®—ž-:®¹”¾Ø‹FñpD6B_TÁ>]€l£KàãI4TºySž§â£gPB>º8Œì­;Úš5¥qx8úÕ–:@Ú;Àe·‚V]²}œÍ ¦²cm­ºãq6„ö-Ëm ÕûPwcrm®jíwUµgLßž\ÛK‚[Ô/PSÔI»Ê[õ_ÜõÉímr„ÙkˆUÝýžK}‰,gfÓ)Õ³©‚ÈÖP)©«^n,…½%YÚ+Öû=$XÆ ¸ì¦ÕªS˜ãl[í{¿ÇÙ¸ÚëÄq¶®V½)¤7¯ÖŠ ˆ‰Nªü¬á°ú$qʈ¤[!©°µú¤/;fÔ¾„•¨@Óò@ï0A®µ¤Ø~×[e­ÆŠ³†`âjÀJ—­×„·V•Þ`«ú OkÐÞa<²DòsÜ^[²Ž;\É¥!Îlݶ[Ekõïšµ\«VgÏ Øxp ÐâÖ³­¦ž¢¿>ZÙ­”¼û.T`h¹õÊ“ÈoýÆ^#‹e÷ój->ÚŽÞj„’ÍÒ{z«J6Ù5Ìñ gá®ÞAšîë…ù‰RÒbìÌ–3üK< êo%qÎÀ¿$2H‡fÖÀ´6Àݹ P—Ýv<àÜ!7eÓåùyáÖã±ÞÅ{ô¶²-µßrlüý÷P1ƒmÉ*”v/ ذöIí(€/P5t‘|¼å©ó±Üűœ.»AºŠÈ!·HÇ•t“tUq›t5B‰QÀFõ”t†QŸ ¨t¶åÔz@¡Sð.÷Pë“(¡Òe4X8H½z'¦ˆ¤X«½@(€T>Nú°«ºVÈl%†¤; òñÔÄÝþ[¹ûnÓ£oæ®:ú};wÏGßÐÝóãÑ·t÷tLßÔ]K•Rø¤·ë}"w°Žþ &5y¯Ð;¿ë†ë^3´ß«H£Oc»¾3¤¡€&K´²û®jÃLÚ,BÓ æ›ÎIgÖŠ<ÆlP –Èm²F­DIšI* Vz§õÁ¸í¾«N‹.WþDà\§%Ìð>Ï}ê¹u¤ ±žµÁWqL¹¥‚£;äõÙî oŒÓ¸ƒnŸŸ3.<=<{lyÎD¯ñ²m‰BSÜJž 3jAMdFN é¦{©;7ÂKʬJD=@c6ˆÒMÿR7j¡äÛ‚Q '¡f¼DZtîÆáûåŒq @Ô8€n(‡õ{ùû!4ßÌý7ïWã}Ò9Û÷ |8x:’rä:ÀygaÇ ½í¿…¿ŠwÈMüU,œý·ñèG¥ôå6õôg„È­üc(gÓ?ꦖÝÎ?ÐÿCnèŸ0«Vº¥ ?‡ÜÔ¿Çôon[ÿ¨ÿÑ}6Ñ´¨óí:ÇÒza)u%=·ò'úÛý³Jü‘à6dnnEå§Øvïu5ÒNƒH.ûÌP¥ø‚¹ä‚[ƒî§Qéz‚ˆ·}mºŸ"™—-µC^ª¹­tQI?¡ÈÖ »$¶kCC,S‹´ÎÞ¨¢;˜anç„Ú3Ì…ËhECûÑvÅ1l“U=ëDƒ.e|}ÎþG! zþtBLÇc‡0pŽ#~:̸–=a¸>Ò‘U\8²º!8¡Öã‚Æ>Z“iÛÿS˜ö›¡BYïôT–f(F}—R"kO 8]AårŒ3;xȤlÇI”ð~*mù¨¶ßO…¶<6 ¨öCæ§A[†ªÙnªOD PíÇþ7Ù¢U iiRåO„¶<¶¤{9Úò0Ÿ¦+O†ÍÍŽˆ:±d³gldQltQllQl|1lª3¹¨PëE…Z/*ÔzQ¡Ö‹ µ^T¨}ŒO> ž£yï9ç˜ì±h›Hõª!'¡!'/†9M}|ÚæÃãÓ6ÇŸ¶?††ÌóIƒd7ì dJvô{2%;†52%ƒ$5ìÏfJvôÝ3%QÒY¬Ê—„Ée°*_&‘uÀª|I˜,Ö«ò%aRX¬Ê—„É_°*_²ùtF:ó´=~÷xmÇé\–¶eG:EÛœ!¶Ç§md¤s5ÔSP¸S¦m5Ô7Ô}G:‹’¿\ɼ¤p&ã&–ÌK"s%ó’Ë¡ÎI:s%ó’Ñ\ɼ$5W2/yÍ•ÌKjs%ó’Ý\ÉÆ®Ã;‰$øbè)ÄÊSˆ‰§_N"á;…±™S¥;…ѸSu[“›ÓHnÖtä$Ò‘ü(ZÊšþ |)ÙÌ€)–§­˜ê“¢-*ùDh[VCŽEÛ y|Úbl«¡ž˜1œ2m«¡ž†¡24²¨´&š $,H'KK`¢É@ÒÈ‚t²´&š $,H'KK`¢É@ÒÈ‚t²´Ž¢™ÀL, ÒVRP$§¥%0me eArZZÓVRP$§¥%0me eArZZÓVRP$§¥%p±fbIqlŸÇŸÌ¥-Yr8Úp[â`û¸Ç:rœ!'#NˆoqÉñiKÖ“–éj¨Ÿ¾Â­†úG4Tû}Èì‚’u´uJÞQò»]~*Y¸M3;=À¤³e@f6Ý“k:ÝG©éDøý©êIžî<¶‰%cØNžîÏMO>YÂ?eºWGø)Ó½¬CÉÀœ<ÝŸ›žÌ«j^gm^§l^çk^'k^gÊ@ P&¨LɺUl‰­bºL€2@eJ\‡ˆ”Ù-êÏ í63±Äc«:ÃOöPö{aMÀ!¶þŒqa?Å-ÊaCYlù’îyü&C~ïÔ“ÐPÖe´“ßËêwÛÄ’}ó€¤~‹î=ìòO XéÐàƒù“1k!1Ýe /ó(!|A‡2GÁ¡‘-Äð1. ^„/†Ê9¨1×5êžvr!–øÃ\HOæÌ?–#|Tº÷àwÒï£êÉÐ&6ïž0˜òßQêKp3±Äw úÀL,ñ«¾„0K|‡«/aÌÄßëKx3±ÄwÐúÀL,7]TŠ0½ÄwèúÀL,ñ½¾„0K|°/¡ÌÄß1ìKX3±ÄwûÀL,ñɾD0Kà²3߇i_ØÉ§ Jw™#à;} –àT=# =1MQ G´U®ž„_'ÙzHŠjÈ·8~øAЏ¯m;øx=§È\¾%se™å›¿+¯œo,E5¤-¥5D=µ©zàP‚‚6[O’£e¹LB>"-§×6’³ž”éÀP“¦•¨(o¨¸dSKëÄÖ¤’Æbða!¡p4k@ù>c¨y¡úö$êI*t" G³Ê“W¸|KªïN¾åaòÒNЖwI^çå‡Ös!YOÉgprn¯aÈHjÞ~vptÐÕýT§Wl#ذìlÅöØØJñ;eEÎûºcÑ–§`¥miÚ’%X|øø´¥±­†ºÃ'AÛj¨‹‹aÝ{±î½X÷^,¿÷¢©šjÆÅ™û¯Žvÿ#Bê'<¼ÿ¯÷?ãóæùáý?¨îŸÍ JËb{üs–ç`[¯~<^K?Í;׫OB ëÕ«+ŸÓŸÕƒ”2ÿ9‰CmÿP"Y£ëêÖ×èú ˆa®«+Ÿ]ýcT‘T@©*`0ìe1~?zÎØîã«Ç)±OUÝUCNACN^ sšúø´Í1†Ç§mŽ1<>m ™Ð>åf¯ìŒvÕ#í©«È1<>ms õñi›c¨OÛCCŠ{¿$óŽ…]Ó§Ü~üa–9´­÷þ¶?н¿«¡®†ºêIjÜÎOsåQç§kòS"ùfÏIZO™¶|É)Ó–WåS¦-sÊ´åKFúÑ«¡®†ºê‰êiö£Ù)¤ç§†ŸBº} iõ)¤¨'Ñg<…1¾Sí=…QÝS½ö&&0;¬db°ÛÉ”S !_r 4ä•ãh˜¡ «×\½æai˜¡”¥Ùê~¹nùmåÜÉS½êj¨«¡~†ŸÈ“ûnU|‡½_Úa*9óÇB$1©4&q€;ÄV^2†m6Ý“k:ÝG©éDøý©êIžîe]LæäéþÜôä“%üS¦{u„Ÿ2ÝË:” ÌÉÓý¹é‰"ú?쓽ë“Îç¨çJ÷J÷AÜï²\8ºóØF³ÃÏÏ~~ ¾Ò½Ò½:Âý±d‡»wºŒ}w§ÃcɇkÈD´¢Åmágb!ÙNæäŸ•–ÀAæxIVÙÔ³_æVG‹óò5决óËÂÆ5ÆmÝCùŘ! ÊbË—$cNæ7ò{§ž4€†²HrjcŒßËê÷QS¿Cm8¾ Nè•ñ;± ÷þdÌZâ£E#œñ*Üý_СÌQphd 1|Œ †á˯ë¥Ùšr3É¡ÛÀ…\ˆ%>!ð,¤'sæË>*Ý{ð;¹vÿ¨z2´‰ìg©—…Õæ—òçM”šüÒN1Gw `êˆ ¥Û0ÑäKûv±¨‰ ÝX2 aòNlàbí÷½éŽùP’åeʾÝù¬Óù=„â¶žHy‡ž =ÉÐÇ–ó'eþwÒ¶L~‘6ŠREIfY;ÝFž†5%Õ8¿ê«|Ýña=²»,·[nèô÷¥»$`–ó{GàYîet«!¿cˆCY:?ÝylYG¸s„³Î EÖûŽp¦·?ö¿gG8ùæIí~Á‘2ÖY#ªÃsÅs<ŒˆêK⎽ǖPÞ7i(š¢ 0 ‡Šq…0$[IQ ù«Ní`âzêžêaèÈózTEûz.¸çA"è&)0%2åF6®$Ék’­‡e͇g)`i QOmJ>ÇÑdzÑfë™ã(2Ù½zil9½î°‘œ-ð”l†š4­„òä § µ3Ô¼/g» (ƒ¥ i¨4k@hW=‰=í¡úö$êI*t"q´õª8)–°¬‘¬ú⬡æ"ÎÖ“ÏÂó®"Éë¼|6±³JÂä\ù07ö’+5n2†šï½ìàh¬Ñ™BQ”° ”/Ns‘e¬Ù£% BO<ƪ¼Hê’t5c.À—ä}g>º&ZºSÀ¥‹&´íÏ7™åÛŽèš,Ù]“´±,¶6Ë·|{Úi8¡³ÊggtMu¢vE×H¦;.O\ÞPóưӄ —wItÍûõ)N$o¨%Ñ5QOFáòNdTó 7™oy™–Ä‚¼´óØ&É4m'L¹+ÏÕ³otMØÏNŽFØ6™nnî!šëmê4ÉÔü^r‡ãÄ’£bË ôX´å)Xi[š¶dÉìØ|Ê´¥±­†ºÃ'AÛÞPÝJ zúF»¬H_ùVÚNÁ0Ÿ¶©RX u5†O‚¶?¼¡ŽÝFƒ2ßøîfªg MÅä§¹›jóÅ¢Ÿ«‹oÿ^“3üo¯ž¿úîÅóûïßÞ]Þ,X‡æ6§Ôüœ›¿ îž›J›/PCJ¡H•#Êý¢j¤!ûùxÿpqWU_\_ÜÝ_\ßÞçÞS¯ýúë1:îçÍó×Uøùöâá¢úõö®zx¿­¾¹½þpµý½zq{sÿ¯ëëíÃÝåÛêÙåoÛ›\\}ÜVßÞ]þc{·áUüyññú—í]uûku}¡€~¯Þ]^ooî/ž ®xÕV¨©®p£ßþ1~§ª6¨ÒÿÃÝD‘ù¼¼¸»P$lïî«O¿Rÿ~üî…úóó__?ûIý=×?}ó×6¨‰©yõþn{ÿþöê]×°íýCuwñpy{¿9{õÓ>;ƒï¾üøP½ªn»×4¶ww jûûåÃýf€Z±èÝV¿~y£(ûp·í`î·ÛwÍ\ðæ•Æyqu¥îóð¯Û{õêùd9œ¿}ÿñ®úóíݵ•›,'Ò|Îr8/—ÃÏûÈáÙï¶wVx@äw¿éªcaTOšê?þ·âÝwožé/ìËÏ‚ï?ïå\BfNó1Ÿ÷–TÅaÍŸ9÷ôiËê?Xe…ä~<Èa Jˆ/©‘ý®rÙJ•Q%JòOU"A JK¿ªqp˼4”Ö“/i6’£­n÷®'_âù¨yj[­ç¿ wÈÎUÊKêH¬5/#.ÀFÓd›z Ù< ³{ŒÊEh+lϾ*´§RªÈÛ–ts|X÷SD··3›w—:ˆýÿuoŒüí•ʪ•o¹ß^mß>l•åßÝ^WW·ÿT¿áß1´MØ´P÷p–¹¡m …i¦m5%¡™ùŽ˜&Y”ïyÓd”<0ÍHÇ¡€$„©C}Ýi™˜½-³Î[&ÊJnËDézj™9(K:à ﭑžIBZ]2×2›es¶?bÖ±&k±&“U$rkì s„;W¦ßbmçâ4¤ÿ]CÒ};pu[ç”î7‰Vtï’3‚ˆì¾«ß[ºïJŠBˆq|ÊkÞÞÝwÌš½¬ÙËš½ì™½È†·Öy‹ˆ5QÊ ï¾+W@í÷ÝfÞ–[|TàÖ™vƒ{“—g-á¬s';̼Yx¶åô>ÉùŸßŽ9ÿÓ ÆÉ`þ‡ãuþçŸ7ÏŸÿ»Mñ/¯¶.[¾¼ù-›ã¿¼»ýåj{]ÝÝ~Tï)»ƒ9—ôw†ª¿½P‰µNöIÅÌ$Äpx÷µ·z⺠_nhqml÷¡¯w£{úîÿTù´zòËÕíÛ¿ß_þ÷VÕ©Ó¦ PõQª'×—7—ׯ+€CÃÑ>Õ€ãü/ßýùUõäæöL?Þ¿¿üõá~ ?~ý³¢ÿúãÕÃ¥®ÞÞÝÞßߪ.YõáaZkT÷Ê·æííÕYD•Ÿ…ï…l^½\¥zb?|ýòëo¾÷ª6Ã;ÓÝì ¢УãùÏ»ùi…””ÿ¿ÿå¨þ_åðlàÿZýÿ1>oþò4ëÿÿ²½»VÉÑÅͨóO9ð“vÿ¬ŸûÏr`8Ë]Rã÷}Àa©X3¨ñ{åþ/nÞUÿ¼|÷ð~·£›îêöu4ã®æ/O+ÄJ)ÿ¯y¾dØáÿ•Û_ „ÖJ¸PþŸ¡uýçq>iÏÿÍ_|ùóŸÿ?åŠ{û¿R†«ø´ý/ÌpÙ.—Ÿòº?†~ž9ï:®Õ“»ÛÂ.æü/vãW®Xõa?^ßT»cH²ŠŸþr¾1s”Ã$ôuð–ê½;ø»ËßÞ?Tïu>yùn{ŸMaGbÆ«0@i„ÅJÆfGL™ÀŠŸ¾~ñý†6Ë8ùZî.nþ^=¹¸¯.ªÿijUu¤ãV¬ôË~Ú62fÇ«ÙAj<2½yþL½ƒâõÃ¥~W/0­”íÜl0U]þª¤ôÕ‹WÿõòÙ¹ú‚ÂðTC´31T­Â IGq‚RLÞ¼yùW !çÒ †ó½1¼ÜÃÞœ|¹7'ÿbô!Ö÷b Âðr_ çÿUí©“ç/÷Åðê'a®,’Å«—{cÐú€â€RŒAlÞüí§}5ê§¿í‹á‡½1ü퇽1ÛŒûiŸ’Å ‡›b Dñá|_žýmíäòÿÿ{÷뇥ú»ÆnºüŸRŒºü_¨.Ášÿá³oþ_ýôç—ôúâaÇêè“LnUnøP)¶?TòK¾w“Èá« wÝ5î“Ë݃ê2y|¢ºù|qÓáf£êÉUq6ÓQK*j˜#”÷Žªì·n½2»˜2)¶ýÌJµíg<~l}^?ëgý¬Ÿõ³~ÖÏîÏÿ(ç ©p espresso-5.0.2/archive/iotk-1.2.beta.tar.gz0000644000700200004540000157356212053145624017333 0ustar marsamoscm‹ÜNì:iwÚȲùj~E_ ‰ÍÆ6¾N†8vÌ\Ûð Îò’ RºÖ6ZXç¿¿ªêHxKæ9óÎ=otl@­®¥«kW÷ê¯ÊÏ~îUkg{[|7ÒßòzV­ÖvjõZµZßyV©Öë•íglû'óEW„šÏس±©9ŽûåË}ó{/$þþ¹z¸ÿª> ̱ãúü§Ð@y4¶¶îßÿZMîµ±ÕÀýß®W«ÏØ_"Äÿçû_TaùêøKÆÖ®¹,‚Ìÿ5G_åEöØ9?n¿ùiaàûüÜþöv£^ûߪmÿíÿÿ’+¹ÿ?+ <æÿ«àìÓþ¿Aûÿ·ÿÿù—î:#s¬Zî8#‚<Â(w‘ÏU;gL'ä–êéÖ*NhQèÚ[!WuMŸð¿ÃÆæ•´©ãˆÁSÒxÐÿWkµ ü^³ÿFµö·ýÿ×ó°òÐtÊÁ$óœµÂÛ^ÈB—‘0éšã:¦®Y lž2G³¹ s;t½…oŽ'!Û<,°êÞ^­„ŸuúÜ¢ÏmúlÐç}îÒç^‰0Ô@P%ü¬Òg>ëìØçœõÜQ8Ó|ÎŽÝÈ1´Ðtk;ºšÉ„¦Ía×lï ó•ÊŽR©å3€²?162-ÎðÑÍ>[¸®†ùÜ0ƒÐ7‡QÓB¦9FÙõ™íæh€rŸ…ÎBîÛsGtóæü’½á÷AÝhh™:;5uîœióp$˜pƒ €î[È>ã&<÷Ù”ûܳZLBâ+1×›ZˆlûÌõ¬¼.˜¥…+H؉xÙžïŽ}ÍÆ•¯h0Ó!Ä׃ÕL!,yfZr|Y%3Ë»vÿ¤sÙg­óì]ëâ¢uÞÿ°sÉ…ŒO¹ÀdÚžebX“¯9áXà³£‹Ã€h½jŸ¶û€vÜîŸõzì¸sÁZ¬Ûºè·/O[¬{yÑíôŽTÆzœÇ’÷ÈvD»4x¨™V Öü¶3Î,ƒM´)‡mÕ¹9¾@gA1ß3À¡Y®3¦ÂÜ•÷™9bŽ–ØÌ7AIÀní&@¯+f‰mï±>¨_×ÒtÎÖ‹A½jþÊ BœzÖb•¤(©År©”¿Êd¢@óƒì§Ì%þh²\…}ìtûíÎùçL¦…^’ÒJ+¤1J èÓUÎæy\™9 ýe¦ãq9\>šÆ”I‰)Ê„[‹/’µŽ—©CÂÃù!ÎÇ0¤PZÎw@X(5EØqá!RðS„‚^<äDöûI Ì÷\:H3¿G·³™ŒÄˆ²D’LñØfnI —ÇìMÍü¯"~"Úg‹ðdL·Cx ÃE1Q.}½ Nf˜ˆ"ö)8ïdâ0µ]D1„û3ñ ĉºpÍôý…P-©6ùU2á(08gÑu5?@MµmÜ6Ëtxf6AÇ¢çË=gÊ8d¶Vª¡£óÊUMÕ"¥e7ò¶ˆ¿BVÈH]•Æ´ÜÌ, C¥A¬ûM¬Y9½)ÞGF„'Dur –L5{hÖsÖ ]O&0èLuÐ<ذK01Gá>ú\»^³ÂÆsv‰^<4 f:`òj ”ž]¼Å“ .Ãt¦še1å\5‡Kɲ¿Ô–³‘åjŒ'&ŸšžÿÆ3pwñ–ýã€UöÉ:3)¢¡ëB`„$MóÇ‘ Ñ!HQ3#rX_óX^ 䉫n£¶@ÿ¯.Û§¯QŠ 7(‹1“Üp¸Š3*;wCûlJç(ÊS(‘`à4“²@é!‰â:‰D$Š:Øì AR!ÿ™“1”C s} Tóò4@6A™K§Õh›Cn¹3Š2¦H*&\3°;€°‡ØGq·”¡7Ó†`# t€<ósvIƒëc”´%v•F^H@0žÞ`W'^px˜WÙ;ÔÈj1y),Ÿ`Œ2øŒÎ 4WòfpòE\‘íÆ¼„`e,_.b©$)'ð`TÊŸ/3!%+º>ÃPÀ;È‹ýÍâþêe>å^î³Mßfʈ}Ê!ÒÚ‹²Á§e'²¬}æÛ@Z(°_~šó)ãË¢¥I ©´×jV¨^´B ýÚ?ë¾n_”à ±¯(”ƒ«ÍÈÖ‚kVÙÙAvìkT¦@àþT_À”õñ{º²…$©+ ÃQôR蟖#F<²Ï¾±›"·œ ÈëΙ˜ <¬ÈärŠ|ˆÏÖYÃ#ÒBi ^ÉåD‰“U¿Ó|¼USêЮcDX* ™x‚`Â)èØ8¥á€æ¯ìj¥j`’½Qìœî‚Ùöây+ÓOÜ|¹ÝÙ ©:“?Üø‡Ï-ù䛑%iR¥œ4“ SÄ)• +7Š É|øaK û™ ºÈ¯®³1üë»{LßÛñkƒ¡Ámæt¦ÀŸ{‹#½ÀVŠJò .Üè9Þ$w°0=»Œ 8adâ7:cüŽÝñ<›ZT–°yk ¥ãbÏÖ Y­ÈÌl ¯/•Š…uP0ô¬HÓϤôp† ¶¿êAÀŸy»pXà~ (d®®±îjpÊÞœÍ0ÃÃÜTÖé¯z¯aª‰™Ú,›ã‰öÅüÕquÕÂ1 «Üˆ(ßR*»Jm«€qiS͈•U¨=°ŸCäî—v·Õ?9Èág3!£‡)H]ž·ÎŽg­Ã“öùúZƒb¯Ù÷Í KÏŒœkÇ9þâèô¨ÕKÀû÷ÁÇ3Óð½½þÑÙ D#&èV‘HÐsÆ“Š©9·f“:·VS‚‰uç”arÊ­ wr ÌC´GdÏt¢'²hÑùÂX;H1¨Û6Ä8VnÄ!ô{©ûØÞMXéõGQˆoÚ¾_¤Å³¾Û¸±»×7NP¯]ßÀê‹7(Ÿ~3Õæà68@,·ž›Âà‘¶r0¦¨ëré²ãœ[rïAA66nØØçÞhõŠ ²! ¾Ž££[, ÑàL¾l&vŽÁO­\F%¡©h›+ïRP—È.8HÆaâÙ§h£ki¿)ç¹Á˜Ë¶¾> . †0Ðo¬tAækà·¶¾ÛF=Ey͇&¬åÍùeYš½T¨@t¡5j‚÷…ˆo‰2ÉZ0‰‚å4 ]”r'vâÎøTv} 7t)’àl„½æ¾é\\Æ'º %¸¨sRưGØ{6D©¥‘›LYÞhãR¬rA¸°D¯Êt¢¹‚=£uõKE–X>ŠnC å  ù5Á.ŸŠFßzl»Y¶üÊ•ÁgµXþ¤–óWkÒH‡ÝËAÿC÷H9k_·û—GÊ¿Ž.ÎN•N÷è¢ÕoŸ¿‘a´)¼½lkCņ%ØŠ”¸hõð¿Óq˜€î&³Žs,CAT2Áÿ*÷ÿ›’ûêßr_åÊ¿'N·D åkMð$Î*v4âØó(.<E\—Ø-d¾~'*Óƒðõ£È&^½Ry*Î@õ„Ø<ïÎ¥z`-¾§ÿ0©͟’?@·{ºÝ?‡îi×ëÙÚüé4%›÷"þ0²È©?Õ>ÌÆ¾<¡IïBµžÃÿ°ÑZÞ<@ï¸*±.;Š)8(`³o·ÔJ6.Ö6Öê¨U¢˜_À‰)SáÚìšå¿Š×¹ú7ô¦ïž³–®CýBù¬Ë1þ£”Èõ¼ÀGïH)ËC1ªM5Ó¢pá:ü–«”4÷ý¨±%ûˆ”mš€ü4öþñµÕêM³ðű Â€UÆ€Pí:‚C[Ĺ;vµ˜gz\¼ßwLs!|7O¨›ˆ9o•BÞ „[44EñÓ1¤4«€nvOZƒØµ'¯šDGÑÈ‘éwz} öŠ}ÚT‹Ÿ qÛÚõÕb®ü©Zöòµäf• §é­ÂföèíÛ¬U+­B¶°Üи\αì2MÅéêöœ¶$F?w¿“ ©>D„O·ÓjC´jÜÕ=¼ÌÓµ[p;ß ·“‚#jµ‡×•¦Ô”j¬«±FGÝ=|%á`àv×áZ§îÕÁ¾—p¯n¯%ÁÊp·÷ð÷R°$—úòLKeGÝ“0ÒÙ‘tâ|¯ÅÞ:ª³Jqñ­¹Ì¦ŒÕyšØ¿âÈä–!Üjæý:ŒµìŒÏ¡Ä3ñ• MC ›SnhU­aÒ°,üÊR 7²Ôû"T7ŠŒîN“ï¼Ë¿|Ûÿ¹\F—ú,ßzuøúèøÍIû·žwºÿuÑë_¾}÷þÃçY^ê'濯-Ûq½?ü Œ¦³ùâ úût´i¡”E{{ÖKÆ1’¿2ñ”©Ü õ âß;Ó1ÜY08ïÇm&¨O°*¿‹QJŽ|ÀÚdÑæœAu<¡#Sš¨.èàˆ©³n§×~‘~(œÿKÊëEc ðèt"Ý<$áØ(¥žx×>]ˆÒúü.µeä‹~:u¤ˆsz§o½L-’&S°¹¾Xr°‰•6·+ÍzZJ¸‘3Óqºº}KV˜Ñ›—çí÷ѼmBà¾'•L·bË<ãcKûŒx>vÜÏ{ÁçïJ8¨–pom`;³?»¾7ù!l6BÜ…­Ó+×÷*If}§¢˜C›R.޸߮MìæE»wXlVÕ•jí3Àßà ¦hæ<1ºµo+d)Ž"¦Ü—HI½‹ÚËJµyÒV.ߗϺ]d¬§w±[:&5S˜xžVU«Ê*a¨×à;šÛž·†X6æqáó¢ÄzÖîݾïu¯•x˜ÌC»æü×™u}¥®Î'[h,÷€šSŠ©[Š3oÜ (¬ í¨Vlî 0%W"w[¾Ù`ŠwµL¯qÝ"²³|sZYšDñ±uÒìEN§×ÜVš"L4K \K}¬=ÞÃø]ý\,—o»`$RLA¯žkñâý´ê h›» ($ï ‚Cô‰O»¼Fl©rcu¢­$.˜"½‡êØL[ЬøhT3 c*ƒÍ7Vgèø\ÓC<„¯ÄœåIV˼æâ+ÀSdÂk!Ï Ða=±j©É–zŸôëO#!Q"¬Ô»õL¹¾ZU =Q<(Þô¶Š…ÛE_üòj½Kö›æiܧK#mÌãgÙ‘L*b¸ÚR«j]ùí4Çê#Ç ]ºRܽîzzÝ«8¸Äýt>à¨/dÖe±‰lTÿ`eêeÛ µúóÐßÌm—ª¥zá[>í>3ÂÇÞ 3èW³s:o&X_m_¼u‰}Ã5bûØJ—mRÔ%Ôšðï[¾l£`âݸ@=>ÿ>¡‹nw`†‘8óB‡äÌó¾H¯-3 -qÞ2Âã[â]Üü¦×W‹lCOM0áaBìi/ÀøÁ#l&~Ï&&¾'wC šÕB4»0‹/âž…XÇ0KSç½µUU.Á_ ð!„$sÉ3²>&šxžÐµY—4€–Å“ˆt/‘ÈãÖvÛhÏcëÉÚ YY¶‰¬á±DºERÇâÐd ¿F8Ûïô²Ìà°JN¼Å³åêÁ¥ 1­Ä€ìÞW÷Æù©ƒ/3—o2-:R¸©"΄‘p$<#墄`¦-ÎÍIy~ä"^™Ï$‡qMw ÷cÝbòZi:MSîÑæÎ,Þ&]|œìÆwÑ[2—NbGšZ›&¼L^ >Ézñ\÷Ùx(I4{€&Mù‘5O4âHŠt<”$=@š¦ü¸ÓrN|Ô²ù~b²%ÞD/rç®n9{àŠœðØ–‰¢å &¯7© D,H™·ÔúÝ—§ý‹öû;a# Rþÿ¡îÙûÚ¸•ý>…jrŽaovýÄ8nÒŒ“ø„‡J.¡ÆØkØÆ­×Дï~gFÒ®´«µM›sïïº `­4iG£™ÑÌ(U¯‘`Îw/$Kóµûð (Å|1_«pL`Þ‹åRô]‚ì =D0®ßN»þ EKaã€H38;l¶ÚDÓ¢§` ø”cgܳÑÞ±†¶Ž×¯YãøûIú…­oxƒ¾;`NÏ®ÿ H„—¼F7à‰s÷c9‹6&Úæ›d™MÈìkå@}BgŽ®7f›øWwzÛ{‰6†)³àﯗW[ìÛúWˆ¢ª¼VØb²ÙZ³©Ù¸ï @àŠJÙ&(ͳÎy †Å85½­XeYÖ/,žº¿Åjß´ øôièe}-æ¨  #Eòe—!Êe IBÒ ­þ@’Ÿ7/óö«+ëóžD£yÿ:„ÃÉ_]Îʈ–­–C Î)èµ²£ÃÝ‹Ž¾¥I.5õl*u†ªJÅ¥Zë j'€ÁV© Ž0n£óÄdZ® Fh:yx\†çê] êòËà ¡ ÁeðHµ~‘;»¨íÄOTEÛÞÃüaÇØ¦¸QYoΰf„‹µÍ头 ]‚íïž{ÞñQ­;зµ ¶ÿ°gSò^ DEb]èƒ „‡§Vsô´—8-µNŽëvûøäÁäA¢Ky^V½eÔ«V ù<»Â¥™^£5Ö×"[îÛéîÉûÆig¯y´{ò©Ó<:mœ¼Û­7ž°ÌŽÐ8øÏ¡ç̲¶ØVT U4±ý[&WmóŠÍJ­}Ó3,9l@6,j Þvµ’Þ 4`ñ5V­ZµýÉÐõD?:üÈ`ç'%8úü™™6”0Œì»ÃY—A;©ÈsP„»:Í]ìsÀ•6÷Ël:5Dâ Ïàñ¹ó™leîZ•KÄéG Á$;±"oêmò­ ’í¢îÈâ›qy‡XlpëÙˆ;+Y"n“¦ˆ·âSÛm^¼­]ŠWN¡VÜ¢Õ E¬èjšüK¾€urškÕ±HÚE@côÉâÝ…!‹Å-ý Ù­÷Õ¥“¤*»E›±ñðÙSGÉ´ÏF´SŽöYiÜ ®³3‹Xe¹%ϪVpº¨[`•°üu+e¥>-qû…ÜdÐÙ¬åЀÜÜ;„™=WXލte•¸s˜c\\)'ãß4ƒß"^¤S@œ<o&A©¸Íñ"aNH„qÿöÈ"žæûJ¡f1tmM‘:ƒ'ïÞà¤ÏuxŠ"ã&šmÖ¾át½ÿ¡Ó¡¬ã÷6·èi“Ä–µ5> 63rçPÚÛÎð T9ÏÿRÎr1'’pEl€vt­'|‰Úl–Ÿ9›f¸eýt!QÁt¶` ʼ,o_Ád! ¿Ds_õ΀³ëEZy˜ÝV|S¸üVø=´ü‰ÚF¾/0\^w6  ‰oQ—xKs’e­ã_'ÙÔ À6äIÍǨ- *ï—øÿtÅI”V^l WÑß`‚¯ÜŒ¦3?Ëd•ýS2Æš4Òêì’儤ÅaXF:—žCœ££-9Ñ&úHœ­c[‘¹û+ç«Ý>ÄIåÉ1=¥PëZØuZ?Ÿ´½ã¶iÖn€jlX]‰yÛo]äŠoóùÚžsì´„M‹÷áW7wY*_Á.ýÃpk'ÞüÎ7íªÜ§S¾,² S Þœl]Ù©"€-ûL·ÖÙ'æ•ÎKœËüž<51ÇD¶uêµTxË4êøÐ⫎Û{C×e€J}¥ò—XUK$ælq×x}éÞº3Šô¼ W.6zž?ïÈàúëDõvxŒX²úñƒ‰è ÷ðîÜx³À û<ƒ }Ú^PN¬ŽiD”ülA¯—“•áæyôÐaÜ;ºµÛAO¡“OPM(˜Ò”Š[æ'€b*Ú°•ù\4lü`¿âE'?ÎHÊ7*åd›{îЄ4’Í&g8ãÙ`´xX!ïÓG¢V›žÉx¢X±èŒbebôš*áC)é}Å£6ÜÄ:ÄÚÇg'õF¼ŠjÄz7(G¥Õ˜=¨D’–^%2ÖmÅž|K mV›}ÍÄ›â‡òÿ …À¤a̬´D³ø+ö©`°ØXŒ4…4CK*Ä6¡q˵ø9ËÔd¡”É6ÃU»%âfã¸b «7†…Xûë󿦎ßA¢BrìPoTœiá¥"Í›”Šñ&ãM`Ýùpo² Å“ù›ÉjýCÚ¬ áÚ01+öl$F#þ ÉâÉ@”‘iV/—: þ½Y¯·NÛoâdI…%žÐ@òÆk^ãZäqÌC2jeñ=ÅoTX°$ûCîqcÍÖµêÃÄë³þdŽòDqÖ=˜˜c„&#ÐcÌ12…§b³(Âî U)Sˆ]ÚT5˜½ÅÂØ:Q] ®#48+Oî7š½L{\)g"Û˜¢ȉBIïÎGÛ˜ßú¾“ Ç­p…~Kùí¼Åýø¤°ü—ΔÖL[ žü¬¯ÉÝÕx…s/dÜk´Ñ³€ÇƒS6°ið’ݸ½î\°Æf6ÃÎa½RýÈÜét2v'ó`ø(-ÁÂr:›Îyú";LÂe¡¹7™bªÑ|ê°¼¡ç;2íðø‹'_ˆA MEÄ:~“†[mÃá¶ !;-ÞX4ÿÉ{·¨p3„ÄîòLÅÅ¥8˜xßÂ&„L¿ˆ]+“¾Ju`®.%‡`D5y®R3:ÿZõ„ËhúQC³ã]5¹H T´ÃêÛËWWꃄ­QÛUzÃ|JCëÕÛ·Ví°ÕÈyò¸ÚÅ5¯– |7iŸ¸óqP2¼ |1ž°Ì0šI0Hª*€ ÝÚ‘VíŠI«¾ð%ºÒ²ž,‰- …Ñ—ÄñÆÂú&ÛŽ5=«vàÍÈëÃàíÛC|oY/XµúdüÕ}àÇ"0³=ú•b•ȵ `óçôÂ5q"‚Y\³Î$fx xÀÖtåî°;ít{=¾»ó 镊j·4_â‰þ~Ì8•ÊË‘Â:ÑHKå†Zª®¶ª­®vd5\WAõd÷“õÉ>lÕ4yùvoÚ}ó §ÞZ8Ëg‡¶þ9ç"—MP¿ܵÿûŠG,ˆMXÔßçõ5µK„êXŸ7àÏ[x†ŸN)¡Öc.=¬&—T“Ó€¬4ºÓ¶>°Ù«üwœ»ÓRC/ÃíÔ>F_þf/íó‚ÞKðµð}AÁ2õãvnä«ðÇ:ü‘¿z,ÞÅ»Rþ2_¸ŠEåðòn' 0PïÎþºØ—‡®Ö£¿‘%W™ßþÔ¡ûº>%9’²ãýÁô¥ˆêZkÆ]¹Cž \fÔIy²óß@GŸÛQ9Œæ)úŸ2)|…6ǽö~®¿ù«‹BîeÕvƒ¨³ŸYctã¢É>§{¡$x„ßC^æ-u'G_hKéLw’–ç* LPRwâÕ¢²°ÑÿiÕ0±ˆR"0}2ÚÙîï\fçJ9WK°Û¡wÓs¾ƒÂ4p»äB*Zu:÷ͽ:*§oÈ”øåÍíxŽ[$šPAè¾E²,aqPxMF©ÿJ`®qÜÊ\„±ãÂõ;ó%Ãü©;ðÐ Úƒ1™#†b¾%òPG¢u6éSx HL«Â“cªî¦x‘©O^|ÃîŸ0G mK4ë`œù›ì—,Úo…þÂ7ÿâ›Òð ½ÅVH…²‰©P`)r4jÿe¿ t’²f­þéý/Í£%‹£÷x{ï%Âó õaóèý/KÁÝÞ—Ê´n-kêÚ=ÀrÁ¢V Ïh"W†m$b4LÐg‡¦' m_xÇùj›øI¢¸j,FgåãD|IHÄ^,<À¶ÜñÌ›þ“q³Íl÷ªz=™ÅÖ jqö3°ÝÓž²3 'жEÏ´Åt6yk~[†™9[N˜sYú¢§êC7\Yf’†)ðuI?꘴º\Çzyiç`a¿ÀÔæ!À^–¡ð2'uÍC#,—/âä;Âôa Žç‹›KLÃüPq8=˜Ç$,µ»ð#µ!Ù¿£Jõ» „|Ø58q÷ÄK"w ÿAk_Ü¡æX½Ùé·øA§£9UËb½ÐP&ŠÖ× ×7a|G6ô³gîgÏÐÏ^²Ÿ=¥Ÿ°,Hxoÿåí¡É½BáûSóm?DIyyiò½fT‹˜ònãÔö]ßn¥ûúâ‹ÿ…wLcûÿð–1gV‚Ä3f¥®hmbH¢}¥¼Ïì¤BàAë2Æ ÷+ž.PnŠPlQ"µÈ&ôšåÐÏ-µÐÊ%CÛçÛè¡§O‘*¿ðe:•­´:Q©UßÅZ†J”sG©µ³´Vã¼’Š”Rg' ©ÊNT©j»Ãü5ªï—¹'7¿Mù̶ý©÷ä}S0¡“˜¸ÁJ’×°ï§ ¢…™^¼E‰¼°À2R72¨5èú´ò2üšîÉš ¡:˜Í®iYÚ×ieƒL&_äy#7@IAÜ?Éçò×®ýÇ•UËê´[_½9fUϲ,³EIG­ÝKäGÆÞþ’v«jUl5'iKAEßO´•öËP¶%± )ܦ½ð°"冰•e¨>KJÈÄš÷?5/rþì¡V–ü¾°²“ç”*ä» f*'~6ür•ÃÌw§C/ºŒ’߀ü¨hîókÊDæû1Ⱦ®Déù)/õcÀýó¡ž|.îˆîïsàßæ M‘’-ê°…îìj æÙØ{  Æx¶?XçÁî“ÆÜ•à îèê#Øîà ‘6' ì< o‹¥Dð4/EÇq”ªMÖÑr÷'7Ã%O\€ï6ØehǾ§óøE ˜½ƒ®Sh²ßæÁŒÛ¸akÁDª]¥5j7t3N‰Sœß<HwÆ -7 Yj~BÌÿ$!ÄãKR\rÅpSoКyO÷JˆT$tÇ ?ÛÊŠ{ë‡ô ôëˆ;PöØhûHvFÚoá: ж;2X³‹Ó¶±V­}zÜZ*ü³‰o„ƒ–ØI°Zú=ªj–~Çxô^t”c.QV¼wWÉrX~ñȾPÒ‚ËÃÌ ˜µ¿ü´lô'Aÿ·[ß<\® ÇSžSJCKÏ´øP‘Î#[/¸ñTÆM¾¢È¦Åá6;S®¨R£Ï ïÖ›QðxZ×BÒÒè^o‘t–Ó±]»Ü©^)9è”`ì Éñ3¿ò,H™(#U®V¬-î: ë·< £P,qj`®¹¯iýiÕ]ØÎñ&àXÝŠ¨»ÊéTlèÕÅn£Y‰%X@ÑE-µ-‚îø{A®wãàd%óX¿¹Ž²/8Ö¹p‹Ê‘)ÄázÑ U2J ½ÎCõ7¥îÓÊŸ&¼6µ–Ò>áIb•ÃÇzƒx Êš©…WÍã{Žù<')!¥yV’”#)$«Á"Å p{U€Ìj6W‚XyЬ5<húúìMô×¹|9—Œ¡¦~/ôbÙ`îvVܱø­¡ÊŽTS¶ÖÐõCܵ‹•÷ÿõ¾Õ’÷òdý^6D%Øñ)¥Ýó£™yøªÌYî»,è\¼L°óÝ*\_}tn´â!âç+*ÅwŸç+J„úÝi÷v2Öý{¼j%O'zCá>˜H%™—›¦ ê(ÎDܽ bQ)K+~ rónF˜ .V\ #ÆÈ£è.QÑÍ9Þ.ÝU1!ËÝÛí÷…¼>·.üzJ¼³’.XAÁî¿‘¤‘E¼’‹–ü¢ $âé›U«Ÿ6/p/µ¶)b&9o0Bˬ‡‘—ùBžûç^-ÆŸGkPNΦ·oFZüæ‡ÐÓÛ|mßF(ÛN)ýÙ÷º7vßpfxXÙ,Î/·+;"w/çùS†ïù¼R •‘,O[¦¦±Èê©XdI„¢Z”&¶:ÈŸ²l×TøÒ2•æôÒr9Ÿ× ªÛzAûãn9V²ß.êÞ+0Ðã6mÙ¬2fL=‰7,z}äs0:QÉQ¶¶Ë_Ù•ÅøO‘dˆ~D‰†ÐòA‚íDË÷bR0µm%JSD” ;Š=îM…h_zñãô¤êƒ‹:à§Ø‹`é©=m/íÉüš-ÃûTt¶gž…ó$$ñá‡Æº”®–•4i\KM·š4ŽË4_Šû–‘Ö<• Qµ=mcM M³ÓÚj(ñu#8¼þ]PM\ÈéÇܦˆK*NŠXEÈ…M;Y«qtÚ<;ä VH ÚCuv]áxÚ•˜}8l±æœÏ’¹´@æ@†š) Uýl€$0^Ÿx˜o¯ï:{Ý)ˆ!?÷z‡]oèÔѼ8ïÏ£¨áˆÍ 1"³ˆ”ÈÎoÕÞ^ð}ø&ƒ}ïN»Ã>ûàÞ»€ÇþúsÛºÓ/îÌAñ'G:qñ{à Þ<~#à;»Ç{sP ™Í=¹×[f÷)'Yxö&j¦‘þ§#¸Ýñàçà¾ßsD[DÌQ¥·%0ÏCã€Ùê·Îû) þ³dÓ¯Ik²9«¶›;Óbt8g£¤›]SÞ-ÆØ½¬ÚQã—¶¥W–ÐdühcIÈ‚›25K¾[Kœ‡”£4òŸÚÒõûÄR“Ë«1:}.³ŽÝ^4¯ÑáÓ¸I˜£·X$B.ˆBÙs÷&µ=7JA†‡ ¶@MÆ•BfÍQ·OZÄžû’µZuºɉñÔþO¾½=Ô†…½Às<-À_½ád¼  þºÍ½Ë_Ô i0 àFyCªކ&¸í »\kŸµ'¶N~ÁC™¿©¹ïN—ÓÀÙN³ýL8•8•çÀ¡]v£»®Lú&g>ÙSQc¹{¹ Vb_x.ÐýîôÞ“ùv¹i,y+ƒU =N¢œ†¡¡ kˆ1%k‰i­°¢Ä¼Oø,Ç•ññl"9…Uû÷ÑE /#)•A«©¾ºRíœJ"F=ÿ¢ð#‰ÕâÉã«•ø­mÊØKdøÐ÷p™3*m€‰wøÛ¿—’æÂŒ› q¼òQûľÜÿñà¨uzþËUíèømé"O©LíYwÜwGö8HÄ%‘8šŒÛ³‰[ÄiÉÿn'c4É'½/öÚEdÙä ­‰W7>°Ïx`Ts÷Û¹øÎ¿ˆþcÖO{ù¸ZÃîøU¸£f¤Ù(#Ú+·K“Ý£Ã_ôü9e*žÕ#z Ó®µÏøMØø¢„•Jé=ªn ¼Ù$¼“X*©÷ÇÈΈ*K U"ú1{¡íbúÓÒ¢¼~r¯óqZ’³´Ô¶ ÚEB~ß/Dj@PÈ6Ž š¹c7A7ÛÐõXÌ‹…þñ Q„)‹Ëj™ÞfÛF¤Š ¤.>ذít`_†)À¬ôFêÔ˜6OÛé¼YrÏl4I²„ßgñì$m¹þ[¼K7^ßàfžÍ£‰P]`-ð7¼MDàR˜º½ÉíØûÃí;[YVøéŸEÑ>q^‹­ÃZ“° º™˜à­§¸3ôº³È{½~‡úÒ? Ýø÷h5õ ¦e|¤+'Ñ«!V>ŸÑa5=á.2‡Ä·u-S6J­[z‘t¬¥èErßE»qæ&ègÔ@‹ v3ˆ.mÇT[\{q#/Lë¿ä¯¯ù?ìýycÛ6ò8ÿµ^*«+K«ÃGâ$vÕÖqœÄŸulÿl§M7NeJ¢d6’¨’”mú¼ögHêpŽ6M”ÝZ ŽÁ=˜Ì D‡®‘qÎkx̾dlÜDD³ãmËß6+AØÞ.Q8<`M1zÐ$¦Ä¿ Ñ…·F¤ÝNcîKˆü½¼ò±Žj4¹¤‡šD#(Qþ؃Öl:ÁÀv¬QøJX2]H—Ì6'ßKö<£6ò—G€¿1âÆ6\ÃC^z83€º¯Îx)|c4ݯìŸíÑÓÍ&¤+/Z‰Aõ#ˆn°¤~îií}ŽüГ.¨éÕ¼VÆê‘€¿iç¶ÄÁ¡Û å à;q¯$-kd׿Eè&¢?°^Gß²'÷d›+ªUä6ˆ–A&d±ç3}”_¼<8Û±óÊÔe+õÍÄ.| y~²æ“p¾úËŠ&mÊî‹—“aà•K6ŒI%&/¥é{íǧOpù‰7ïú”ú5‰qbݹ$X¥‹Ó¹…Ý6©É&ì&¾Æ“îú\ 2»­6/Î0 ÆíHHÌ 't®FGÐÊ¿ÆCåm —6d¶£•ñ°&×VEäZ‡Å·^†XÅÇ!–²û<ŠnÖ“íD¸΀¾fAGäÿêÕ+¤÷~ZS*V?瞉ծM®vb™d‘ì±¼r·¡¢ž›ø}ŒÙçkñéüäç{™‡­t¡£÷6$ª×ÍS—ðË)©éM, ÎÚ£G««›ÓaîÐÏ‚ãì¢ÙexÙ™¡4úšDœ\Ž8]tÊšwú$š¶Ï<ùÙ[e€2ë´í¯):§f‡C¹»¸nËt>íßùý¾jm?é^²;导Àâ »µ\Ž¯Ñ¤èÍ¡ÒñåÜfÿô™{ŒnL>1ò§ìÑê6l¨•ÄÚ‡¤7 ÜÚ‚KÂ_ù ]à t=—³¼ó°[”ºádæMŽ˜%œBi…a9 A‡ªØµ åU´½6ÁùMÒbrý9´IÖ³³ý 5©œ'¹Iæ4@NƒH4‰‰ï­K²»°º…S"µùAGc•ärô |ؼ°Ì}|ímàÃ’õ`¹"oëÅŒ*¤«Ùu¼>³Êš·È‘ s‚#·þ8vPCjÔí\yH%Ñj9|\­ï;Z¦ôRýx„Ài)ŠH¾6ÌZÊvò{r|Ät£ÑV½k½á¸æ½úhܪC¸ÎEê¹Ü>ƒP±qÁ8ˆØ®~lÀ­QyEŒHñ(Â]ÜרCHwHqÖ¢%M(°¨Žò¸ºÞe\C†FÕ&ðwܞꈕD”Íý÷)ûµ#à ÿÊ븬¹ëº·“3ë@åT¨æj ähî–Ï}òìêI cs9­bÓúkP²/{ßñB—ìì…*˜e‚ùÊ„f™p¾2Wf™«er©gZ¨t*6qGgk¨á?*eÆ&Jä4™oÿÃr*)»~DØ.1å}á\ò‘R³X")«BJJ5Q'MªLyÉϨL&e•Lco]2•”PÛB#%×ÊYâ#ƒ˜ò adŒœ%®0Òµb%Á„A×ðH;ðá,WNà!ª ·6¸rú[@t:ÕK4,^^äVÑVŠ"BQÄÝU¥í…äXüEúTÑ–Èëí×(æí¼©!Ë·[·ÕoW×ø§“ÈèrPÑ=æþßâß—òïtãÉ^}÷èðéþ³züZóÇ­¸ÀÕÍ{÷è÷Áæ}ëBk÷ÖþßÚÚúƒõµÍ{›þßêÚæúýõÿ'V?n3²ÿqñÿz@:ýÿýoR¾YéÜ™Uýûù·ü²žf‚À8àSðŽ×á ,‰À#!IŸqJ»þè6 *ce·„,ÛzÿnÐß{ô÷>ýݤ¿èïCúû¨BPBPÁ¿kôwþnã&qêw#ºç~ê‡ÜŠØ¶‘}ˆñ毮>¨®Þ+"%2’ìHáwhd‘ÚR%’R3õ²sp€î¥D(«¨åØR˜ µÚ.’{Ž~ݘ86÷zP·ä6N^ìYrü²$(SH€j‹@o0êߦ‚…¡1ÉŽ  )g›h<¬XÔƒõZc TáJë~À„ó-2÷@Ê;Ò( CEÇbÏÐל6ÇãVßk‹¯íJpk¡Ù*É-ƒ&Ͱdl"©ÈÚuU…„WA£Èe8¿"&Y³¿Dtkˆ\]Òè¶4Ì¥—u;Š“D»(Ye Ür¥a%.*ÔÍþyÿìùÑË3±sø‹øyçädçðì—mºCC 4 &H8È`@Ÿ`œo¡éàÅÞÉîs(±óxÿ`ÿì¼Ôxºv¸wz*€O;âxçäl÷åÁΉ8~yr|tºWÃ×Û‰\Î-OÛ.Í*»01!÷ù˜Nóikàj\ Ë€¶‡%;º=gÃ!ÖtKC¸"XnATƒ2•¶fJ'wXEÜ$Î\ô&Žûlˆª8#€UäÇ@obæ;bu}mm­º¶± ÛûåéNäôÔõÈm{ÐV÷¦íŽß0½#l.òdËÆÄ›×&P4¼=Õ*¡¥gŒ(š â´ðc,v­åD´¨ÅÎ8ò1W…öÒÀ¹Õ/µg云×m¡NÐ>RÜ#IpZÉ¥4[$ˆ æÑx'ˆ“Œ×4^ —Ó¸5ÀMso"‘n—Y>„ Là&ß°S»t5tà÷Pw7¸å•e#t‹G¾Bïl~ ØÄz@{/Í•åAG y:!΢aÁ¹%æ<g “ôÆ,í!ƒA˜ooHÕVÈ‚삜è'=Pvó¨F05ŒHcZÖô¸ÞB;B„síárÑ`ˆ9WPl:µ†áá¾Gxá¸ÝvQÝ?‰bɶ=d±BËç^½Ù‰‹vä´ß¢i?î7€¥¥”K ûº@¬˜Âg­ïÁi]9‘4•uP -©‹e@ŠåÔÁ´‡78²jl)¬²j´ØY‚|®ŠlRéUya{^B> ôá# ùaá©K80.•W=@{D8$vA_$ËCdFe$Áã“{lL˜Ü“rø]Ñóa¶hÇS œ‘Tä†üqÈ\Q¤\Ü9dS?8ꘖk²Í€Eá#¢¤Ò¤4%‡…¾š(_¬¾Ø9|ùt‡î NªGÇ{';gû‡Ï$35Á`CÑÐ'Ábˆ³Ì’k¿.nUBNÓÁ²NMtO]ˆÈѳJð”d­^Ë]»'0Ž·¡9^ÕÏ“û¸Z¹NÞãrcÜWüyî%¶DaU¼>:>þó ®Øê‹§Ø[h‡º¥53ììïœær»ÓnçŽXþèé(D»ªêeE¹´PÿÔ~…¾b¼4Æ}Žù#̳ž:?a*è¾!lËË*…å-bÔ§¢ØšÛ,”;¡ýtC7ê<:ŸË©ëWWܱ1ó$VbqW FîCˆdƒ@ÎÍ"Š ¥‰ÅÐ•Ø h[™¿n_@›;í(Æl*x”SÑ6a ¢—°ÜûPF0R8Í|î,¸çmÑŠ(Æä!\Äp`:(°Rj%}ØÞ9@nˆ—ðˆ-,‹jd΀ÒrRH_XSâxk½“Ÿ¨§S„Ö|‘{FÏy²$Ùñ:z‡"ÁdI™˜UŽÖ;V|Iµ^¦ÊҎ̧ ÊgëÐÐÍIRY™¢O[ %¼ôº‘|ÂB¨`K®¢`)ôi0#í8ÀÎ]Nµi˜AϪæÂZ»¢Ý:³œ a°R¥U±ùБäªgä ø÷hÞ%Óù$ÕRxš5l¬Ú kV«º†¸•Fó銡ãÚÈñÌ/Ó̯–Ì® <2M†pOðF"wÁ­•jÙ*ùx ouñpRy©ô?Þ’¢bå܈ŽÕôt!¦Eo$È“à¢>:Åý£ŽƒS`V‘º»-á‘ÿ·"Ð6ô‘&3x’⢰O€‡ç³±–j¶å6ýPYé¯Åvù¿²×¹êùÊë_«oÊUú{^*ÔÏ×ÑXŸGS•çí$õMq!k4øñVº5.«ˆ¡™ŸÀƒjûÒñCü”0Dƒ·Õ¡åÈ•-­êJ)¦å„^»)×˺±¦™ÓB‘ÌÇå Ú…:?)e•Bo+Pä ¥ÓÙ‘9¾µrµ^U`貑9Ù&¹Z–Ñ ýÇs+…²¾÷/âÞ–KªòI]Ot…P"^lÂô¼uÍc¨ã¶³á¢¨nàÓð×~ððüÏ.¹¦âqõDÔÀŠw²\ fµ@Ú3”E¨+#íÒ+Õd2¿­ÉEÆËk©އeX!ìmé˜ýu×\í>½¬D%ÉT0’h…ª$’cORxÉN(Uß( õ"(Ì*7µïo¬s†žÇ¿>ÒÞô¸}8*Š{°±ºJ èà#î\ƒ4oåÂãáëutj-Ð;JòZü‹jOtÐÉà…\«¼úÆP?â‚åc+^.Û$ŒëšÃMߨTÍ[“ùò„ Êëµõ j“¼¯Um¥˜ C°üœÜ·þE‡ÎÊÈS͹rÀ£ÜòÉ{®«wÉ6ðÑ#æÁ¶ÔRÊ=€ƒÕ¼Õ°¢²>õõÆ qÆasÀ_{{ÂQ ç2ôTm´©¥o=ü¹vÛôã [@¾Ì¦ ¼_I}]ªæêÕ îˆpJQØÞÁ8”Ë‹¨ˆ‰e„*tZ€|ÌR“ULȺð±&]~¹Iwá¾J‚ðFmýê~ V±£Š‡›U`H+Œ¼±hx÷ðî} <|üõ=Ô1”€eq?´ÊËœò÷Ša|`½Wq½Ëâ iÄ5Ùsc¢ßSâê)»Ä³Õ>°îrb ×?Þ¸ó–à½7Ø&ª=\¯}PkÚ}ï&£9=¼ÎÞß{3º4jÿ°æ£Ñ¯P¶VI£(«-ÓaK¼oTpÍŽù¥N]¡:†,#ŒÂ¸}d0éÐF¬g›nmlò- èÂ%ƒ‚|â’ˆKʉ˜Qs”jZ´£MìñijÓ*x°.‹}¶#ÉH9bù”–…“йÒ÷бH ƒé<,[¨ž8$Ï$¤VÒ])åÑÇûÒÚƒû«x€Ü¸Ê/59ëÞÊ:÷ïÔ«E°o¾‰?ïoÆáMt¼¤>ÑûðëÍo ›÷„%aD ¿,`›÷àSY6ì,é,÷W­,øifñBgc]áTb`%É ºóN%†­5a¦³ÖÞŠd„™-ºÙx$â N®­®sï „CÁÑá‚ÃC˜(„MšÙ…ºùh7\[}§H²/ü‹ ýFdEÊ`ó]ì4Ý Õ§ßâÀð¨Ý’ket8v¢h}x‡—H·Þ{ÃA `]A-¹ð²Å1}×È-?6\µÑ{³à5âÝ.]&«ÐÃÍ컑âu— _=ŠC- +BA-â úŒœK³G—ã62ò!ÀïC7ÌÍ9¯`s þ‘ͺvõØß”-˜<¤`gÓ¼Áïe[…ÖÖuÌ:“O/$W#6>ß][«¯­§‰¤‰õà±6D±Œ¬ò!T)±Ê*MÒæù¹ñƒ¬yƒPÓà>¯Ò+B[×›÷…î"J‚ ]?“8E\ŒÚEëÍœ Y{3©Cje­DŒq1ö4  û}òûTA –XY/ÑéŒ@G¨§ZóFºCò_ä¦bËíyl´ŽB²´,óL‘gìÚ:M$4ó%TzÄή(%Ù'õ=›G1µª)WáÚ‘ñþ0ëºåü¢°v^ÜÒò5ø¶*?/&ìðØhNúVÌÎ<C’Z€#¾ZŽyÆs¶ZNôfÄýMó‹Îg«ðæ½8]ðv” BòuΛù츠­ òùÞreê ¯CnK…®ÊºÌU ‚Ò$Y~Å|w{c•ʽnÿ½yÄaÀ ü{_îËÀæ! mоíŽJ@š‚b‘ªà@_—rû7¡§>ºü"åé>XåÊ‘â.ݽ‰çÈŠ%DG£s塟éý‰ïa¤Eô7M"°Y(šÌÊ’&မ èFÊD‡‰<©–*Y•¸DÅllÆÁÖU0Exˆ£R´$mt´“,kòFå¤3‰£ƒ}«ÜÚ¦ù%×­"u줫ÀHDrÇN&ÇÈ!Iž$ ¤r,8Lö¤²m$³mde»¿šÈÆä™¨G’@© A"KÎd Ž$…R€ú±ó9”ΆôO"#“DfV¤„t&&‹t2Q@ê Ï,Ê8qõø)ý"q$CñÚT3F”‡H#ý&xÕŒxZ‰ÒŤ?@ÍX_ûÄo˜•å¤0í¤>ÀΔI:õ*+Bˆ"¡¤>°Ra"­äG ),«¨þD*Ke«™ÌÒ%GŒ[5©‡nÞÄ@n¨Öl¸z'ÝÅŠìâ/9Qáͪ$bI¤˜Žö.&ÊL…îÁû:¸©C1rÄzUi7ÊAD‡…‰œS7óÉ'4(ˆ¾¸<z2(I=]’è=õuKS«ˆ?¦ ²Žm¥,¡ˆ<©-ý©$F’"ý}ÎKý"uΓƌ?pé–”ïX¡÷27n¶ÂNš 5ýWK𬄍µÄì<`¦ PÔŽçjUeì¨-¡Ó…¾@Í»GíL‘Ê*CÐÐ3/<q&$T.½n:#Q0Π#=îxªDÇo¹›Y·ôÛIbQàXWÅöxò”M§³WfÒE"’GÑïÆêæÃI’$LWeÐò ý‘ä¸= ÐI¢YäERUes.ûé|Hõqšê3y`‘e¼Ixð·:If³&”—{¡ŽÎ,†µÊb&\) æf.ÒY ›˜ÉNÉ–Å2÷Bº¤1 ãIm¤kÕIô‹Cù[Nß¶Ýt˦Z#ËjY°ý(céµå³äj±Ó»ÛªÛöµ×2Š)ëÆTwT¡õŒBë³ md•Ú˜],cÇæŽ“‹eÌqlû˜.Ë귬aümÚ0òÛx8q=c™î×èñL< Ü(p2ðêuMY®ã&î6LTÙõ•0JÜî87ò‡‰'3Ê ²È0£&r¹é¶ŠèÚw.&áéRÚÙŽ@åȆ±®`¬Ï c=†ÑmH9 òIœüæ|çÊÐw¼T;dÐFZ%›•?ÌÂ(íÌ §l¨‚£›unüÍšWIàµèi;^¯~xc”.ËÒeÊ3¡¹Fq³v·5ð‡“”øˆ¤Œª²žéÌ‘ÒßÔÆâëxÜ"¼ì'%šÞ2TÁpí!MßÑé ¬ýÐÕŽŸÐe|\9 }uø¡‚Ù½Y¸š±ÃMÃz™µç³ÎnèPíÌÞÀk~:Ñ‘œ˜>Mz~*”n=dvÌ#³_n¬Þ_%Õ}{l—T~<¥^@.ëv™¸þËA’by@¢ì 4ËÝò›¯à £I.yb÷§ÕHj¶'f,gòì39^ŽÌl“OqÊg¯_*Á>‚¦¹éSʼ};'I‰ñ=iWÍv>z»ž„ðvcmByI$[Å7^¯O®09*Þn&jÛ¼s{@æ&3bʪµ`<4Š?Ô%—ÅÓýW/ö¶Dà’tW ¥¨ì`¢4p Aˆ_}½~k3‚˜ÿÁÃ7d~„øGùhãã4‹Æxmcóì³3ç˜=LÌÜÃ;ÎÜÈ!µ%uç­|?mü0ƒ•²Ãx¶—ÉŠ©‹ª£BxŸ©©ð' Er.°,ö‹ièHÌü)=’§ kÔw>eƒR&kñƒZµõX´•…‡'hØÊ ý(üJàîͯÀ îž ía B¿ÿAú°®î*Tc†²  ªBÕ«È4ü™K¤€Uy&ñç^ö&'x=Ä:³HB ž¦wŒ§sŠõí&b”¨r;½áµë” uŒ_bOUä}/ƒHge¹o3ÊxÃÞõlêCf‹ ñK&žX“Q)§µeà«üÂ;„HM`ãQ¦t—âíÜ72ûͤü7fgýÑzVÃ'ê „­ ÊRm²×é6M/áö“eÜ,‰ƒ|¾AïøˆƒÎ/=|g.ˆøÒ˜òfÈmÂˉÒxÔøÉ*Ú¯±rÏu@¶6Þ ô•!^¢²æ’fz ,|0ßuÖº.1Î`ú06ÙÎh}2ó`‘²òY´ 4™LÍ¥ù×p<ÌØv’è„D#›f#VNŽ·ËV±Œ9É.f4jcRmo§Ôµ1©®T!£¦{™51i:¹ª{™Ue–2ëÊn¦ŠÙ2Lì.Rø™xidMÕŒ–)˜D¼r)ÎÀw:øZ–@‚÷f\:‹1 ³3Uàv0p£ ãb.±ë“ª"ÑFÆ¡¦T¶'VeiFDS4#XïN° tÆK½¼‰¬+ë ÖœžPþþôòdñ³KoN+|³ñ(“¾©RXëtrö~`Yd̶~G(—¡ã!±Ý¡ßjÖÁÎü)‰Ô°Yó\ïÇ'Ù„gì[V1»kT7PÖW×X@ÖÆP†¸ b y“a5råÜdÜoHúNUÙ³®‘íÜWúȺÊï®nàÿY[»»±ºVíŽó¢p¬ ðÙ3Y^3阒_ÕÉf”›<=“ ^oÞÏR~ܼ_½îdŒòõÃGo§I`¤u}.C sC–€¬Äš •[/¡ªÛk—d,t‹®’yQ§uŽ %WÚwérÿK+òyêhÆ>fˆ)PÃÛÐÄ#a8[Ñ>;c'¦C ô>eØãJ76BºíòÐY쌠àc™ˆ 9YG륰"-ÒµÏù‘?ÃATã¹™gf´Pm– 3n®fèЦ3"•=“öfý£Œl¬—g¼ÊR鉷'ñ"ˆÛ09\ Øø˜|ïл£ìhäÉÞ®zZÏAÍ`4ÉŠ& Éç…ZùÙuÍh© gl „öpxIÄÁ%[&‰–"éÖg1ˆ@N'hÎ;Ñ"Ëq6ùADéllW„aÙªe‚¦ Y¢UÔÔ?ÌÌk«÷3@Kó¥d HÇ»„Ñ5þuÚUM@J –¦‹&–°G•…Êjyi½pÞº¬ @Þ£ö%ù¨ä7ª¦ûËŽ¥;¯<Ëü%FxÊ€ÂH–WN…{Lÿ–ÞÉÎÊÕŽ×6®·ûÌbX—åjå:l•XÆ€˜y0ð;èNç® uIÚn  %{¤?³Uåý0ÓKBÆ‹˜üÒËM¾à‡yôát“Ï«×]Ì»*å›Py0ãBèÜ|ÊF¹ðŒ³³ƒgòî‡G¤½h‡­%y˜Ž@ÉÂâ8Êôê‡4´4rU 7¾hªýçÖÐí—EÕ ®MõhñNe{Ç Ò;Ç §”r™œP5¼ îÅ>N >jº¶Skëãk•_>¡[ÔémÓÙÞiçbqûÔl8mÃ*55¤ä»Û‡U€®K•¿)Xh¸@e"?ªN?rôžqåŠ/OÏÄÞá±(vD¹b †„¿H9oÐɲ:†,·^$k#Öátѱ5æîÕx4ÈÅ:H#ÝhJY*Axì–‰´J)ÄDQÔSLµäj¨YvãÔöé× UÞ]_9žöóDƒÍ<ªÊ& TJäê†ìw ïè·?²W«NOfÑ ÷»EÒ£¬ÃùAºâhYyœÙï& a‚Aצ”÷êH<"²—ûŽ Èº”£2¸J€ G6À ó¸ £þ8T#Ì â)ºáy°†Ê“ãÀ6O²K‘ ¢¿Ö^ñðà óC”6\örà Ão$\u]Ž¿‘;þXº0ëóùN˳¡“*$3gÕ!rdÃ3ê㣥<Ž!:23!¿Ç 6¶Ï‹\9J®Ë~ÓPù˜[4NtFûÊŠ?‚N+‘ç¶w-«I?lªÐÀ`^CN‰;HL§T?’Í3ÜVÇ7£+JW¹jGuÞÚ`È‘JTMÈU¥ÞA磧Åõ<»zÇRn ·^$'Amæ‘j­¾“·$Ü$J âëÆ:’ ðeßD B†%Œœþ@­ó6c`ª>Üqr4YáG¢ z¢^üà­°«F¹Ž:^˜€A´×Àá‚ÕíáÍ&ÿ< Ø®ÇeŸ¸—ýïºÓñ TÌ'ÌïÒ_Ô$¢‡š¨î=ÙÝÖ@‰ý†‘_ Î3¥P¢ž[×ö–1ýHƒ ïd)ó¨egvlº`¡¬¶/b¥µTxw\=|Ø£-½SÉåvC;±5îIŒDG2'=2ö‚5åN[okyõ<é4QêœÉ ‰Ú'¼ÑÇ# ¦dxGõýŸƒ˜Hð v•Cy±³ž,½9GéMUzÃ(-w½"tø“œ&«0'혢/]8ì~'Êo#ÙLÒÔUä¾Õñ± ‹j³œ¶{&‹m"«è(ÅðYÆŸ*16àM@kG 3F¡Eàé-À¾[9A£® •hjtÉĸgÖ„Þ1>¼\¹Ö y¼áÉé9’I÷‰þåÐŒÙÄLï°ÉÖ4GÏ"gÞŠ¤RnÒz¤ŠçRfÒv™Ð a#»Äí¤2ò-r÷Û&lD@Vc ’hÏRÜ(sMéõ$±KFʲY"S7ùW³õq«J!·j+ä&´n«N`®¯ ^]o#á­±&•€Ns|ËâpN×Qïœ\T‹BºPŽýî@Ìr-{Ö«´®ÁçàÓ% Ÿ~8?oN/»N¦ýÞÊ÷IЩs…–…~¨Þ‚ÖŽ]ãíGúÊœ\î8ÜaÔ¿E÷ß#` å[«%Çèzñ ÄèÙ ~AàÚ¹­¤ä•ëÞŽ†¢Ÿ,¾ú‘zn‡Þf)ølƒÇDÁm|Tç­—òÌ"­„P-€É#Η¤ç}|9…Ü" Wºµ¦“íKQ)@¾Â çQ‡¥¤@©·3Ìj€CŸNšý¯ ó¥ö­Øò¯ð½z5(ôzC§?@ eï³k@Y/ÕAž¤`%ÞнB‡ßnÄïÜà#<0LøÚíd¹ ¿g¯P)ñk5…-`Pfµd•ÃÔK¦ÔÐx1âWžð¬7œ\Ü£ë%´Ð÷Y*"µÜ.;§rEŤêU™%éïDUjÝDI(ÁÇ÷ CºÉPéÌèÞÓýl>,Ksy•…™®îE5%yFmÕ /º­,„e¨ƒèù}·ã^ò…\õbO…žº–î¯ñM',.÷w>R×ÍÔtòTœž 2%H¤Æ×)œXN'Äj®‰È2*h¢³š­–ž+Ó<áÖ¿vy-¢{3zSD£OëTŠ]µ”3Æv­¶¦km¹šXˆÉˆ2 ûuŸõ±RF7Í*Úº>*'<7'Sý·Þ„”Ë‘J0 *˦v­ÒžUëEy›*K7#e¼åoég£lÚx— k• º§ŒÎ­uW-ï°¼{zÉöŒÆIÙYä»h³r SRêÚ1a(D;¬Ë]R/0ÌzþÂØð¹Œ¢(¤âroE/þ}”é÷ŸÕä:è•çû÷3ß^[[[]Û¸—|ÿyíÁ½ÅûÏÅ?ëýçgc7 YÁ7ëÌäï'GyrmøÕÐÀůP·Q ‰2ž™Ï¬âÃxê©U±^»ÿˆ âš«À[¬«WJÍòæyZrs1ë&ßxM¿~7ííbƒoH†b<ì{Û >=ÆÕâ;yó%Zì4¿®,<|ØtYT³þ‰åeL{q/¼„öz‘‡üºiËá㺮xìå:—>Q‘Þ¾«E¾ðÇOŸ7Ú;9Ý?:üwèFæÅ¿þ%VÜÁ/ ExYß×;îU}8î÷Åú÷ÿZ£‘@E‡8|¾<8Ø}ñ¤O5.‹ÿBs7j7ÔË{ð ƒ(?d÷ØáíUH7…?Öþ/ü˜ÿ³Âþ$©<ÏŒ,Âמé¡;èô/ägEéOX5c|ÛT°F…¨öDQC,¹¿ÅœÛ·ûüx'³ÓÒFŒüл™Üm3ÓO^îìîœî5Öð>zRE vŠùâ?§8HòÝ[Ì0"”k”_z€µ†ó²"V^ìì46W·eü,‰wï虸ÉrÂ&åoÐ_–.±]#ò‡Fü ”–p\¼üT%½mîV7j«âåÏû‡âmxYËTa±wø5ƒþïœ=ÏŸ®5ŠQ„Àz£ø=î5ŠÿôpúáÁ©Žaš†mÜÈä4lÂ~NJΡY;‡ÏèÏËg{â`·¹óäÉ >ýˆÁƒüÙ=:8Ø9£Ä]|ùûOöÏöŸîïîà{¢ i·ùboçôåÉÞ HãÏÓS€J°^îíœü‚áÃäð勽“ý] ïï(0g{{ÇÏ¡}ì¿ØËÑ{8'8ÿ¾Ù– è"±‚Ô‘(p¯»zÞeL‰ææ"_ÒÓ#Äô9~ãrÆ'ÂÌñ+…xñùûØ øuar(\«—A[*ú`ÝÅóç¼Tœ¶^0oÿ«…ââÅ‚½WðE=µúpÓРä_]ÄÙdçE¢ëy³F•§¡FÍ:ÍZª‡Q óÝ·=&½œZ àkµ£ |µö-\¨£`0jå:>ðWƒÿ•ÏKõr¡(Îé)1ñJezu¾R¯Ÿ—&¤˜ 5vÒ ×p×q¹-+GSJ7 õ_kås»çÐú"¬ãsƒÛâ÷mñ'ä_¢þë+Ì ÿaÅ3²” {Y9ðÁz £ðé^| ö®ºn'»'ÌÔìîéHŠÃlx0î\ù^Gð‰MŒ]ï^:pñn Nð•ðæ¢4ûn‘a£è´Ú·Û»ô~{Û ýÑïA¯®onÿW”YöÎÎ÷6Š;wŸì=}ö|ÿÿþsðâðèøÿ;9={ùÓϯ~ù¯Î*¡¬J ™•ô ¡~ré~óÁÃG ˆÓŽ Ä‚ ©'¤é™Mí^;·¡ B¢¦K87pdš§{Ç;';gG'òäø¦GB|*ÒÓŸ11”ß#qQ(Ô蜤d‘gÞ+kã{+¹} D`aFâ6Īù:ÊrPæ Ôv 6—Î6ùhÂnv£¸]4ñM"u‹ÑÁ@T»F;hKÒ^ÅGt‡~s­QàåcÅ®gÆn4iâ¦,åÅ¿ñÉTc÷àk—<Ö7f>c+jìÌÌ0¦éÌx€þ‘c­L¼e¹Ä'Q=¶ò²·R‚$Ò%÷5 óItès,>´ÞïŒÀí³¦ >ÿæÓ»¸,›ZU å×çç°ÃE ‡`pºýn£ _ç-Stè\¹Íý§§üÙ²çBŽNJåc‰20ÔPàéTàDÒp°QÓéN¯#zâ,ª:ãé•\yêÄ×;òÉ\…Ÿ] g;$ìâ ‘`®PÍž¯¿Øúó…ŠÁ˜Þ¾Úp÷èÅ‹Ã'E&ö†Ò“8 YmŸd‹>ÞIt‰P1&¨Æ[˜{î97Ʋ7‡^-jUî\Ûy£¬Qîõ|/2[|§·…*Ôº¯\hVvŠ.;Q¼ú}$úß?€š¦ÛßÒ¶zëWüÉHššÄK‡çæéó= €h‹%Õ;/Ä=‰õqdDØ¢’µâLïÙ_"9r‰$„ïÓ›ÚK²ƒºqSG ˜`įG (/ªmQü§bš¢U\U¬4vÄ Y hI-*Î:Uoéì M6ª\FIà ¸Ù -h s!6’s#óÈrfVâ¶¡V3%Ï”™æÊ(g×CQ§B&ôP ý‰ñ á‡]– ðv¬ñP#"qˆ«&}½å+nÈxq,£ãä?î¨ï´Y¦@×džÁú€ôr=«y‹"ÐlEX­@DPAÁ¼U©JDåäu)i b BÎŽŽ„Ðñ¥ ºï$(òñä³8§9ŒÑ ¡xXD¼7r`¯h¸f¥ C©Wp‚ËÛ3IçŒFüèTàxôÈq± Íüêû²Ç­0ò¢1)±„>k)ÈÁ2,£ä£Œ´y!õàÖÆÊ‰ó›#NÄs'À$a·{@ ¢ÜƒhÝF‘ÛrìŒûb’`µ\¬þÁ=°‰åq)ù×{5ñ¢ý¹„6’ø²…"¼…3ùòmUK9¡ªßÅóoÜraÊß°R¨T+òcKô}¤S~²¼hÑ„E¢Ïéqð×…7<:H»«\DT›oÎK•óµóuøoCÁŽlØÕB¥W”QÍP¦·f¯qB<š"´ÓÞ½›ã¬jgìûÐÇG§û¯Y»ýþì‹fŽßÅ•ê:´ßa/¢ÙÂ%1¢ðzõME 5.>|h>DdÛ)‚¾;y ‘Æ‘ %‹‡ÅÔò£“·i|É–1tøª%äî±Þ ¾-"H&¦e„Ê•‹Ü!IY”BM ×qMÔêÖØØ=ì1êC6«t"Å‚öVj8¼ppr0,|ÉW4yD¼Ðóó6гVY¯l\T8¹:2ƒ•ÊG~¹]®T‡@îí>?j6øw·QÌ9xÖ(.å‹ô·,„Î €en•U½\/ñkæy»hæd|ûñe&¡¸ X5*ˆÒ^昿7c ý¡¨†f6$}¾Jr´M o¿‘æÑ¥Û~K˜ãÉÿ=;>Þ¦cD†t.:%Báh•pŽéõ¼Š›=¦mI$]bå®ÀEÅ!i‚åaQH@y$ËC¬4€åÀV8a½¶z¯d©17Mµ—PŒ½ecW{‡âI­ ÍW ¼"ûÃ&°¹í‘¨Ž,>N'ÑÀ™¼$É'DÌ9Œ FhL¨U!ÀœgFqo‘૎`ŸM¨‹r4GÀsÊÚx¸:°/¡šÁAà—] ^^´à”`RòrÄó$n…c—£«åðg„‡[°ôb9³»0s,GQÐlIíè0¹ý¶l !¾=¶Åßn‡ß¾þµio¾m~Û+Þ¹%êfÄjNx™hÍ¿¿¦Õ‰®«†§âTêj‰EË{è^K¢Å¿mÎÏ[‰î‚*iØa‘OYƒ¼X*P uh÷ ‹‰bº“cRb»Kæ–é—qýÐ4‡„]súÓÉFm½"P%±û-C²gô{€ƒÝWÈ2¨9„ÓsaïáIù>´µÝT5 +{÷Næ®K¶œŽrí÷‹\ŽÎ°MÀl9ºC²¯Yð& K¥½&ŒT×»i7ÕÇksLäÛ#àZ~ë7ɵ?„iñ#¢Âpºåia#÷âéÁγSøÝùÏž Jzû“r®JÒŸ8¦/œo0ªì8{ô¶(ªæ¢9/ã¬,ÛñÛcÔ}Õ7\zU….Žº¼ª¹ìv@ê k–½…ôêÀ¿r;üÀé2{ pPঠ#×äÊcc´U­å¶€Ì—™°œ«±ñz°÷~^tË+•Zö[¼ÔÉïìþgçÙ éE¼Ô+긳Ž7:n-ooEºý‹ãOÏNöŸ1‘H{üòÙÉÞñÑ œ¢tQñÔiG>í?¥r}é:°ò¥E4 1›„´º¼a»?Z üynYFŠï¨ãùµËï!ª+žïü ùå´‰7§Íç9”q¨Œ·a­M13JV»v™Ó³³t\ÿ‰§gOv›Ï÷vž  ÔÌu`!Rf+ÚÍu. ]çÙ“ƒýÇTc6 Yc²©4ÎÜЮøÆl "nÊóbïÅÑÉ/ ÐXWÁ­Ú¬§#sh¨¾ä`RöÌ¡Ü?<Ë}oƒŸ(”T¼ž2/÷¡¤] °›P0n`LXAÄxá…œ¦,ç±E1ÂÜ"±þEbá {Á‹Ô'Ò\¢+¡H-Îg"CÜ$ÜØB…+à±ä/Ì<–Å`ljJº ÇQðÒ~“të)3âÀøËk±‡ƒ~¿c|yî¿H@ÃOkìõ;M¾¹E”-ƒ‘r—OöžžJšU’°’j°lO„ÔeH:ð‡Чˆ§„iÅÁþE´51aïÕÞÞ«3qôøÿðgwWìr ̬˜4Âޝ8ÝÿïÞÑS\eMøØ;k"*O©I0¸0Ô!|øR´Û¢Ýí;½Ptø§+ÆÀÿdä£U‡þÀ2š×•A8›N«/¿›Cà1QÈê64EO†yÌ»ÝNùüŸ£[}VµÐ¼±/‡! zpB™oÔõ}™¬K7CàQ6QQ Vê[m2˜®A:ÀjÜ6ùÛìÜ¢ôÚ8ÁÎ+YëЫƒ0Ã…·Üæ!Š_ ¤Ý~3pIN³“ S&CÅx;’¶‰<ôÉï2…«¨ }Ó‚ƒk$I:¼¹þ¨¡¿¤µ™¤N•-Ž‚ÁF*(õÁ='_Ó”î}.»k€‚NòPrÔ|Ó‹çûläÓv€»¡†74=“3v{ãðèp/7ô›Ìþ70ôݘ—33)„Ž»©8q4ÂÊ ü/BS†Q~±¶0@ÔÑÈÁh´ü"nôÙÉÀnpêAC8¤ßgË*(îâÉl 8 fÈW}·‹@N£'Ebýé-u”zˆüݳx ÎÄz×÷Q—_0íë7NyvˆîEèÄÖ…<ê-¾^G¶Ï@`1(š˜DTl&AÏ6ø%^Î@s‡Ô ,Hu Cíî!¼¬ rL¿"ܨ]c£’ØIÅ –cœÜ(þ0ð'†Å\8!1¤Ô§2ȤbNâwÌ  #~Ø㛉ÐHH²N3¨]¨×<ÌTljÕ„sñAa“±Åœu”4ŠD‚ëDy²Ø»~1ÇG1E:!âªÁ7'í&/5¾ õÈÌ æ ;N•÷äxÕôˆ¼ò8Dë/Râ28~T3’5ä“Z :¥q^Ð癇W"»+à %r™“Ï ÙJ¨ºqAB¼{ÐåQ`sóúׯ›rƒÅ–xé]Ù‰}žxrm2fí¶7›jo…¾ôÛÐé ñ< ™ÐâGßUéJQj±UI8¼ÕTP‡T@þ–¬þÊR$°’ ežùa„ã 5¤}š,WÐc†À : ”Ù ©€üM´Ï Td#1FÕšÇAÒÍŠe´0;éXS±IŸÖ)0F8ê È_þ±û/²«q3dw&G$¾ådë¬ æ‡Žƒ:¤j#0=ŠU^ÕqÏwS…8GsÈbŠÖÅŠÒá8¨C* íQTxž-›Ð­/óÃÇAc,;Ž)=V“¬ÊòêK7RjNNÄ$Õ²*£± ‹,OÜßàp–ô‹>5Qj/T‘ Â’a…µœ¼5T5ÉÚ±ª|­üúת-ÃÊ›2gº™r×áIël “jÜV-³oâcBqLl^­7ë=9ŒÌÝ!IÜ¡ŸWÓÀ©rÔÇ&AÁ›§Æ›Å4dMCÆ™Ä -7PÑÆ83e³UL>¶Ÿ)Ö‹çò_±Xïå/¤¦ëêh·n¨txôÍõÄUPŒk*ÆëˆžªäÆiILºúN¦ó·Þý:Êú2?Œp´Ê«€üµQ—Ù&F_F«$B2 ër²å©wéÈD&ûÓú2?â$R¨Ñla=örhfüòOIn¯#)ݦ˙j3ÌÌ[¿šð¥BDV`˜ù‹?—zcαÆÔ<Äô”5#eè2(g“,Þ•kB ˆq8ÊÐe˜1¼DîYõÅTÈÈ_{ý’ÙˆócuHMZ\4cÎ 9–šôi}™zåðwÔ!°ûcTÄý1¸r¢)Ɉķýi,fŽ1“pTãdT˜5N,dã2ÉpÔ!Hv›‹ª>3U6ÁZ_懎ƒqã¹pºåR|ˆù“A²)³q%oY6˜FX5EfÊl‰’Ê2™ŸÖ—ù¡'–¿ã ¥ú¡*Ð}QÜ{9Ñ„dDâÛþ4ÖǘÉFØUMƨXÂ^*:5&7EÇÙŸÖ—ù‘(uHäobx­fʶäåtw2âÒQæøêØd¶Ä·ý™‚`&á8¨CzÒ¬f§çMŠÛ±P2¨C* ùÇEY–‡OÊUÊTóÃÇARÕY>Ýòa—ÏÒøwÚ í£jwdœÑÝã–_• Q)óËü0Âz†èS‡00äÅâVƒ&€ß§goĵ3Œx€Bù¬†RFgßúí€ÇŠÏ(ìp•‚«dgu ”i}Ðk8V::˜uÙ>EYèª5{DMv‘ #3¥Ã·ô‚-`;²Äo7#ßï«‹ª\Œ¤ÍaFÿQvF#¹šËI·E,ÆGJ I#íØà‰fYºÙmtÝÓG÷cèò68qêñùÜ/)ëýZ±ðÊ:?8JÙùºÙMØû ŠwŸtÇýÀd°#ù2‘…lîCè°™8J|.V:Òï zF*%ýGÆ, ”x„×ßœ—êõ²v 9Í%f¸»Ë»¹¸L{¸4о+ã¦Nõt)ý\bÆ ®,\ÓÁÌå ÓYÊIÉY¾á!F³Œ‡Þïc¶06ƒ„Q«å¤§ ö—‘±~†>n;Nf”Ûân.ëx‹„b%Qe‰\ ÆN ks±ÚóÈ×.7á|óàÿ+íŽ*¤}ÐVòæ“€žX·ÛªÚ禀³7±ó‹¸:éÐ û…df7Y®Å„¨ž*Zô[dÈ€åO4AáÛóµoa2cÑ4Ps9[ô5ùuËÊI~×í“'øê 32gCÅ\1—ã«F> Ì8ÊãJç—Κ ó˜´hFY-´òJˆmW=/جì c¾§Hh²Ú†)²  ÐÙEŒD»Å’e»*Ev]œ® Ò— tJq;K ¦I|Y^~Yõ«²¸ü4ÀO‘È”†‚©»»²ôî®U7ÄË»»°¬ìq’U‚âÌöí¦{¸k5m7Ù¿iÅí,)”&}(òÓnÊ£ Èo³Š`’Ù2 ÉôB² F!dF#Ñ(En{NØÖŸ©i²Á¸!½ÉÖqª ÈG9Ú`ä ?bGt7„Ü‚òT€'¢r—£ìdÙƒÓ[WúÐ}|ð lQrÀ^ù!Dn¹’ó}A&lZ®½?Iß¶;õ—¯ÄFmM„—ìR8ß}×ÜÙÝ;zšƒ3H™êc«ÝÐx:gqÓ†·â­‡n ñÍ[ö´TËå^bS¶ÐQñë£cô¢ÿ¦V«‰×?íœ4~Ú9x¹‡Ÿ¹Ü™¯¬ša°½Àì;VÜZ¯V»»é*J•*’Ä&yr*“§.zËìû×Ä«v\&”i$±~ì/ Ø”îØxŒÚó„ vËcøK`{}EØ“p pÚo]ôØ“Û5kE§ÖÕËŠZÖ¿ŽŽúÎ-ð”ŒÚÐäÚ3(ó²†IR-‘­hÇvò‡ "6ѱꥷZƒˆ+‡aPÞ ´Ž­†\Hõ§Šqšî…J1dÉfª¿cqÒé©­¦ƒÎW‰¦øÈ,6tŸ‡ë¸V+ªê¾ö¿O÷ö„4­å-«’æ fƒ_K;Òά~kµìséßQ“Û…ß4ÔE—vÕ!ˆu·u÷¹ý2ÖGè‹ØAÝjI‰=Ù?Q…º6ûHmÆä×±Y¼$ˆÏ/` Þärr7&wg¦÷ ÒŠ%Ÿ{|²÷tÿ•n±rQb¤Lªi[ŸhÀœGD<‘'ñÀ#'qvÈÞ»Í6Óµ|]‰½‘ÎØì^Ö&ÄÞW:Ä"¯¥h oÖÁˤ­”püI»F׳ʛ;¾C|1%Á5ÉÕ1múa…6?0Ñ7[(Ô3¼Å~e.tëj¥C4!È&úKP¿iˆš)ãGyª´© –l®òëy„r• —ÅŽÈ×jõ<õ‹œóÇ+E Qc¸rD"7Í®If4*¬³,°\Z*xC •§ÀÒ3 “BQB^µ¶ùÐU…™‚ášqj5EÀèo½¦FS ·éÛº0ITn^ Ýc«¸–§Òã{S¤19ôH«ó]©¾Ð6.QqfÌ;ãd/ä¨ØÃ¾K·§`*G—K¤#ŸúÉ„›hxf=YÕd—‹½°£cpâgôDés×Ç×n+~Mr0¢G$­›òŠò*‡Ïè×T!œ[HGÕ¤¿zK¥Fº”,^Rz7@›H§…JÄ{D-°d9‚9q¢¦Õ¢T:Óàêv6"5RúÜ6KÙ]²v y'6cþ¬YÌHOvÕ†—¨zVÏçhŒ9SëªO*Ç2%íÑÑÉ0ÊÝe²ª3û<l=Qà=VAb÷Mèlœ”5óïÙéiÕ''|Ú$ šƒÀôúˆ¤Ïe±«ßA@ÊÕ4űÍ,ôµ’/uå0Œnå”+qt¿ò\ƒ’Ö9€x] ìêxR±´lLž3ª|êÞ·ªºË{GªCS³yÉr”xl·"y4NPúz.œ()ØóBƒîˆÕðèY1½˜&ËÉ–T˜À ±š½ ïucnHJ ^Édfˆç‰ûFÜO®7õåf”ÍÞõ™æòHó‡=Ñ,;,Ôá?*¥Üÿ^ )û~/‡ƒóý¿îÇ¢Aj¸zvuEBzÑCÉT‘¢ïŒå{TŠí ñ=¼¾› ÆC.é~WHÈOr¶Æ½Qn]cXPB‡'@¯"%¼‘ ËE©š0^f<[òÝeÌ7câð­€á•Ò¬‘Ì¿ ……ah xµPøQ3䔜ôô%z1·Þ«–ïW……Kº–|ÏšÞ°Ö/94ÄÝžué*¨>’ ¼ëÆÃ·Cÿz¨Ëf™`¾2¡Y&œ¯Ì•YæjF™œzÀ¯. Œ¨t*v3/ £ ŠkCÀÁäÜÜú§aaRŽþ—n–êÁ¬¾5á%’²ÀfÃ…{åÞÔñ¡ÛÄY^*iưáÊ#éþª¤)Ý0 Jš˜1~2iÌÉãç‡}÷Êí›ðIó/‘¿›Ñ>•4¡é£1@î¯ú”V±¥Þ¡ÌK•×?[çÒh;ga"«vÑLƒßIb+‰¯âòâ?®‹OüDè\]˜HÕ_Oá°á}•u«…9΂è¡>÷V_Ôá‰2%AÈû<å]\¿$…§xv eJÐÁ×Úp|»còª Ç yXßAçã¿ýˆr‚^h*8²ÈÀœj[=Må^Ð=ø5>Z†,ôrúêªÎ78fEg<ê{0ÊnU«££uùR-gHM¬¹‘ŽZ͈[£¸Ðe/üƒq5ß°7‡î~õž…PØ8\Jkb’Œ(D1ɤ9‰ §$Àž¢ÈVˆÌÂ2:=¯¤SJÁû}½*¼§_‘j@9/òåwåüþ}}þúüÍùÿï|ù¼pþëù¿ÎËç+ç¥ó?ÎÿV€@®ÉøŽ3ªçK±1}|4~Üëß⨙ueÉ$/§>èâ8 Ÿ¯àá©ÊÛ¼…hˆ'/ÅýÚ*0·ž;ìTXׂl .Ú}?t‹ÔZ ,€À¿¢ˆƒÓäGò…è²âïí¼aä#¡Ûb|²Á¼öŒ™K\·ð EY†Äâ’û?}|ô*AY”a³X‹+M.éÜ–®‡7=Åì#ûg¶ÖuàElláJ#`u/aâñ²mè^ó«tüZçÖD›¿k±DO—Jc–~¯àvÄíÙ(æá‚þnó½i7™ _¨3«¬ ž }>â1XEoYKx"(þK"8®Gø)¬ÿz~¾òÚ6È,£vc2îü¼Ô8'§ç¥úùùZC]gp£&ÉnÎ{Wõ¤ª ™cîÏ». µ.ŽX5kæÂ˜¸2lk@y£(ßU£ %u›n¢§€ò¡CV¾8¤ÒvŽÂy oH> a%:T,0^”²¯Å¦Ž=2T ZNxÉÔ}×ñúdΖ̱Lu…4­»"Fõê±Á’z­0+Œ3“ÆŽý]wBsf7o³ð”aÎ̬†—¥ÆËbÚXÖ¥yÍÌjzüÊüWC»ÏT~ÉSdž¹“:K¢½¹{;=7w÷{#Vºákx:Û䳂mzVÐxaÔ‘ÎabÖ†/ߪ·ûðÕP€DŒ ËK© ˜E¶¥’¼°x)eQÌ®w‡Í°€?pªÿÛ©þ·¹Z}„îÈöªVF3êQñBîaE<úý¥Óó…Ò$‹¤P럘bä…s5Î;-#Eª4Ÿ •úOŽóOÈû ã&W q“ÔÄhÅ6MZ$ÒJ˜ ðKºU%ï ¾Œ•í/ª9ÔOGãaÖJú ×åîbáUb9l)†­‚Kà½úG~h > G3€ÌÙ‡R’Á5NÑx¤”÷Šxy(t·4Ï/øåÝÐCK‘d»·æëýœ€p&68»ð¾ßÂêmº³òϨ¬=VB§Òæ@fV6=?U–5­Zö{ ÁÓí/2pc,Âb–Æ<ÞòÆŽFåaø1–¨ý/[¥E8ç6D±ÊÆ­ˆîþ웩öeÀ1[šy}’·U‰Hf*ò†kM[VŽþ…P9–Ƀñ(¬ z–()t‡!Ù‘:m˜J§}[‹Û¹â·2ñÉKt‘T%J¬=G3ö%ï%8µ %?Dqoà}zÆQÐ8Í“Qp8©¸S“,þÞþcÅÓ"ñMÙ¢é#šÛ¡3ðÚ:¡ùä—Ãû»êíshË5 ÚáîÁË'{МŸs£Þ¨ï«?;>8’m\Îy~ô¶‰·d=XèdíEÎþÓÜ?<Û{¶wÒüÏþá“SÎÖ÷{(°°²=ÛßÝ90³{cç9Ù³3tÛ2áé.´€|$Ë«’,O)w„̇ÐU·(”Qáb ‚XÌŠº@ªé«kµòBðÑ cÉðXfWãqù¬â«“ŠËÚyÇåñô2Šë}8£î¸tº0Ô¬ˆ¦&"žb#¢–¶·6L˜x£RºwróæÉ>c™Í$³}eŒf”bõ‡Ñk[•1"_ú±9èu ñ§3¾i²‘e¬¥lR”£ªZÍÂÿ“b®RC®Khƒ3*2ÔÔ1¦ì0`L_Èl8jX®Þ‚Õù6—¡±mä¯}œjkóV^¢/»ª’Ah[údµ!eYaÉâyƒ”šEL¹ŒáUFñÜë9æ~…õ«˜ƒlÑôh“ a\cõ5¼’u  y£D8nMËÉyKßlJfzÝZú{‰=þJƒ ÔB)ËÑEĵKD'Rwq•µ\Áj!dÞ3=õ²(çݦ+°Îž¿ì2³&$7AÂ&‰0Am¢'£!…½ÝçGÍC‘Ÿœ]Õp¶]¶8ò¦û¨ˆÔA±YA»Ž¢—;%\llÙ¶ŸÙ.Ϭ=hgÌó%\ÀE!±P/æ3ïü@ûÝ&{gT}Òy}ÌžóùáÌZF¬®ãzNw÷bÎå<ÉÐÝiüß]@Ì\ì(ZÎl/{ÀÙ²À[úƒVÝÙŸÉ ›Êå­ÏQÀ’ kY•»´þýVQr[5CøE…¸Å èÊvüà`­Ç°üðàl bÀÈYÕóã]å§ŠL“5Öì°ê³CH‰‘Y§­áéŠ9m4Õíß’[\éuh‹]ã»3|Eìì6OŽž¡k<â–Õ70ç’çlÞ«–‘+ßTÑÎOÞÞŸ‰‰‚•5—nn6³²RFgÐÁœ”±\µÓð4Äu¡3z­AÕñnʺ2bˆÞPÞ(¬†=¯š•UF§?ºtÜ«rµã¶«~ØUù"&&3Êî$2bg a·«p¸'ꦌ”¨:ÓœÛêxèµýp0Š3SFL»YãŒ#ÿÚ `„P\áV;Npí I –:ãÇÞæŒÞæÃÍT.Ýk§ ÉÆ€·o{%ÝF¯µi6ÔÇ·¹pèäÆbRÐeL‡Ì0Ë•Ð&Ôìó# n›ÀLç /ÃÌQçƒñ•£Yê8EÊòÕ} %%c·«îJ)±É]Ï÷;¬FT®fnƒSäù—áSDïÑ}ÑS`(ɪ Œ£ám/é Ø›JʨѸ vmw‚~)·¤ëó°.@má£D’ÙÚQ¹”†ªòÜ6;jž4›p6½|µy/Ÿ[‚£Í’ û½à2TÜYhØL™NöŸíÊÑÎÎ(°spü|Gå¡MmŽ& f¢?JóNOZv¹Ó—²]rÛ[uFÃiU¾Z“#Àx {š„Yqƒ¦¬‰S_zC `PŒ|è ¹Z¤}qØœþµsòƒ4bn§bÔ…Åxœ~M?ÿBZ¡;ª­¯®nšÞŽpõXä-/½°˜â“7=]ûFia¼Òy:ßEeϾÉyúá÷7Ý윤¦µñ~D,ÿR†~Àˆ ºœÓêàËbï-1#cf®ÑÒï¦@$”<éWy|9H{•ÏD²”&\x ZËáÅJg<ÜŠ  ¶±eX_£°>KL‚ý(ÈìS%$fÆÙÂlFS9ÿùˆ5Ïz;è§Á©"VË$W—–?4Z ø¯7 –ë…^Âu ‹¬Ï3u˜àI_/–xó:ËH×PW³Q0àæmá°=B^Z\/“.1–S+ÔúŠ$B놙o"Xs[P°[”›<¹3d4ÕY2™ —Ït8ødŽÞÌ)û»8¯JZ®œœXÒòÔ*høéB2oÐTÏÄ‚$>'¬ ‡ä£â 5CÄÓ`æ\`‹ll‘­¿I»%«9©“99ãsˆHåÌOêä‰B²Ú£r¿Úˆ3PQ2ð¯pI¦l)za0ăAÍÞÕk›ëk[yi؟زYN[¥ª8÷Ç •ˆK^Iy6ÅmËmº~‘C‘5jeÓyÞ(¾ä¿‹/™ ºó|¾$—C›«©ßçnZ£NhJá@57¯+$#&_ByûÝzuu·î$³6ýøénýHfÿ„ý`Ë5§K^ó¤}mÑò#u.o˜“q.°R2“cÙ³jn$ŒÜyäÉaÁQsà/`9ÑÂ0J'èÙ6_hß*†Ì^HoÈËÐùNÀ·‡.u  õщr™d =Æ»§7Äù¢–õ± :^~“Wê1yÃhìIþf“jó÷Y(A)›O¡1“$¸ °Ù ?ed*¼b|ì¶Ž#YV+áõ¯âM¹Ž=pL̳ðÍJ2—º™áÓ-nÃdG?1ÈcTaÕJT¥i7ÀK¾÷ÖíßÖ„T€¡Çï¦Hšà·Ñ‡UøÛxø–,3jÅ ,(” ô|º6òú6,»P¬8µrI°k}„õEp¾ÁÖä‹©•ÞI’è¥ÏsúÞÿ\¾,RÊ€©uîEúAΖ´-éà²>ÒîaYøäæ€möûci\ ý¢èsÁ‹½W{{¯Î`1’¸i„TÖë„oÚ~·K¡¨Òo‡þŽ:-N?ýåZ-ùÓ£_Ÿÿ¶~CÁT…NaDH’j"Rd<\YÓÅ^;­7ÔeÊþ³+É9òé+wlŒÂø:9ø@‘¢,$–l»Ú¹Â:"g‹P‘7Jý¼F2Fkòä³áñðm‰âë_koP%¾†·°•—ôëªû(§óÜ+Òe1\z(p„wX0[ÁrØR´·T2mÔ{RžÎiÍ =f1$×;°—žøä÷ü¶åwn±<žØ#ô Dœ·Þz–Q}¢»ØÙ8"~ö6‹¨”zúȺvBiôa f‰Ér¹™ª ™®üY CžRƵrßNRï?¡ãÅøŽ Ãѧid}’ºÊ(툒:å´® Ö¼Ìæ Ræw&G ­íL˺˜æV.5Cëe“XÛªFOéBÿ+Âõ*á´ñ¨.ìÔ[»víGugžÜ×—®|šÆÍ|Ô§×sAHÑñ£ÇôAâ¥àK§ý6ÌxާwÇx>·,GÇ­ªHé=ÉË Ý5Nô¹£öŠñÀr!¡\@æYæÃ¥D ,¸mùõN²aȉ¹¨(–I$@ü§¤ þ4 ŒêC²“T–×SF¢!èµhež–ý²²rvU¿ô‚‰Ÿ¨åä ÔW:´V ?u„ï"ÑCÞµÄ<o£féoáè’ï–sLÇI0™èHÆ&2Ø¡ cá>I­$ø˜C¼ÏgÛL&a¬ê9ZvÑ6›qF¤öSÖY‘‘is¦’*.&~¹Arkj˜grX™¥²$°órB9 ¿„ó…Ôò£K~£FÑâl^¦£Š4—èÇÓÂ×ʵÛïWðµL7¸Âþ—H)&j'ÁÔè•¢ø16“ïÒÕxE\ôC×€¬7éåo¥7Q hW¼š[Ã'iÐYò'ôR…=h3±IP>¹ÅïañšËˆ9 åçó`.„I¾‹»Sï"‹RÇè±,¦ÐÊóžGê’Ìaå“Þ~œcçÓÖ=I¥òí”q ̧9Ìy§©Ç96“õ©u—cÎ=A‚¤9§ß -ÊGíØÕÙüxÑ,6ûj sßDz%õ1D“‰‘õ`ë·y1º\jÓ$¸^Oྋ×&:¶-Ì´²åê[¹ùD8¯dÛÈëʼnâ³ÕX­¼¨ûMC^%£?™;!‰Œ>þûuÞïÕ æ¦ÑÓ¼f\~2ŒslæŽÿŸô8‘ž\FNgfW{I§×¶jO‹(vÕ7¹åµ#vûæI1`lȸÀ%%AÒfå¨Kw?¨½…2¸¡ëvBm €£‹lÄ"Q²Æ¤ i%1ш:j<½#eΚ’Ør¬$CˆpZ}&°Ù¸<©Ñõ×cõe¯;ì¸]ÑlB'v›M…) Î·®@ßJ€ð½îlì_ÐËè#cþ˜ ÖÒgy¤­^‰â¯¢üo!AfaEsÓD‹™™O6åÃÏ4W[29–iNü5a¦&jÝæé‰iåCúå Tµés—üdw5ÌZŸ{W,SEOÿ¨LÖ2ôó§j5”éC#©4 ‰Zæ7ÒK‚švÎdåÝTˆº` qŒÃf7Y%¶Qøƒ„ü4¶W‰Òó…üœß“&®Ón»£(ÕùD0‰2s*‰a·{Š·e諾¢2°ÀÌ Ìü…cfsó}BÔlUóa¸ynœ×8 ÛÚ¹6í· ìšDJ ­Úh6;ñHÁ©Ë)ÃÃ`&Þoˆ³„®4_í‰êѺå…7N’^c*³ïUMvúR#÷ìÁƒÆEÜ[*w–ž|Äa‡ðÅ—íŒO=x`Ú˘N‚ò¢êþ.VŶ4hVþ©PÜ|ÁZ,Ó $T¤‘/M £Húõ@Ô'^_Þ2û‡ü"0p&j ü¼ ŸÃi­Z‘½R!GZtK¤í¡2L´È÷’ì²´cµ¬„”`!6 …Ø`hÉùZ,†¸ï¹…ÑÐÂhèó4X }®FCu,ì†vCŸÂHŒÖÂnèi7´¾zïÑÂnha7ôÅÙ -îß÷o‹û·…”÷k—ò.îß÷o‹û·f^`æÏ +‹û·ÅýÛâþícß¿é 5ºƒcÁyéG=“SÒw"éÿT_p]_zíKÃušË»ªëÀAÎ §®’8ø]%¥5\tˆ‹î›2[ãBfB¦˜íó“ßFn夔¿@o»½îì¿B.Êí¾õ3r«†YeöþstìD—T¬÷è~V1»d¢Ìñ¾´úÃOâa7ùZsiiV³’Íz‡™—”_‡ZYÆ×Áü\¿Å?F7„µ°ö'–ÄMNÁUÿ´o4BAo¢ÚÄC,¡ÚdúÂ$·t.%0¦)¨”­#íâhÚ29Ú4Aàý¦õ¾‹1³SÆŽ{häMŽÉºÝ2ò¬Ë­¶Å.wÍF™Í1–ÎÌæy“ÍÙL5‡]üf6HyÿÐ$cYÎl’‘7Ù¤d“zÙÍ饚“žÈ6¾ú×”ƒæT{¦&DL™å£]â©Dtµo&ð[T”&ïs,ŸÎ»ìÞżLtÝn7òí¶èµÛÒe4IàÙM´ú¶øšð_y‹gY9†E@pá¿GHǰ±=O6^WF¾QÏʤ›¡K…Øõì–ZfaˆJÖ({«,‘6moéÖx¸ãÝl•oúÝr30ÁßôÛ‘Ñ8È `$ L(Ÿ(^ §7Ý>ÏÈNŸ·¬úÛÙƒK§¥mäøyjìäy ;[µ˜Žœ·ØÙpij3ùîÆÊ!®¡‡ßlݬTu âpóqœÌlº”ý" —÷R$i·J$ ñÅîîG½$ÞÝͼÞÝmPÚâ>8û>˜ÆgšûKî…¡«=¹‰Ó:ƒ‰ÝÝÍf[ww?ö¥¯°8Ss$¹6#v|N3Q|*#( SFÔÂç| ô0M]DÕ_­-’À *2KWäx"žôÉš"gd48­'¢:L½$- ‰`™&ÆC_^%?˘®“³ëçœWä‡Yìjf>¯ö!ú2jŒ&¨Ì­_hÊ,4e>WM™R9‰×øûkšÄ0fîí¿R½¤Î@;n7¬]Ö„(×Õ¤ºÊã$ñ} ß{N‡¯ô%áç¼a”ÃkP±RÊýqmtB¸Ñ8ŠÕíÜŸ‹»ÓpwÚ^Üœ~Ž]ùtZ²dBï¥ÑÒž[Ÿ%s3÷ HÃ;]ÒMì®ÒsÙÍÐsQ‰ü›Û5îCçÕuÙݽ³ª‹UdN±ÝþpE—ÏþYœ ‹“á+=ŒmþéUj¨–;î¤PƒõÍÔ§Q™²Ôiv3Õivê4»ÓÔiü$mšÂ3”,؉|–âÌî,Å™³Áå¦;ÞµEŒpˆðˆ¨¾ÏljØ9<Ý»³Å““ËÎ…Q§ý¡R"®J=, þüN­eù~²øšì½Úå÷vœç'¢nÃzt;rÃt4bŒ…ª^à›~—¥Ý~¿ï_ãéâK›Èˆ†‘ßÇ÷+ñ“ÝSq¿ö Š0h×±µP¶.Œ‚q;­1Œ¨Upƒ¸&÷tÿ`O”ÅJ9h‡þÈ–ÄŠ‘³ŒxÐ6?¡di;'_Šm_:(»be ÒbŸãÊ#vJH5yÛpˆëó{ôÚ{ƒG¸£+V8-é•Ô‡¬¯¢V¬ÄA㨫¹rš}éJ~л#båª2*aL+±Gm„4˜LA°%™çråªd!¶Çþèô©¸W[»@ 8¿‹v jHȆŒà¬8}|B¢JÛ¤u«@çÒ‘¸tÈ3yw<ä§ZaEG>M8iG„ѸÛå7)ÐF§x~óüyQ\º7Ô7§¹„tÑío¢À[º«g v… 4>Òƒ§¸£Ø/ÈíßVÈ_°ëtx‰Àù0Œú·"âWF–ŠâM‘^a1ו7d§Ù làF^ÎÒ¨³†½w:~ç¤çF9Ö{ACi~mŠvÇçC¨ú´ºZü¦5©§[ªð$• Æn…¥ø„ pn¡­ÿƒNE¢ï:!c}B =“ï]^äJÐÆªl M =f‹°Ð I>ŽÁ&MtãCàí€ëÒ»÷Ãpů¢h4ĪøA¬‰-Q]ƒ•JY Ù­Ðb®ÀŒQ²{CwÇšøWÊÝgsJÛÆÉëf²,Î90zäx^K…TT¯öŠà͹R.ÍÞ“ôWmOj@Ðkoç$(ø¸ÚNPÕr­Ã΃YÀ ±ZB%% ¿^}#´’×âd˜‰Tù²xBK(%TëUgzÛÒÈ 2Ãôw»x›„¯òÄ4¸)ðI”û«]v ‹xâ®p:(A'w¸igÿЫÕßûΰ׿ê7°ˆ~Ùï†vlÝúÚÍ8$¾’ƒ6ÎŽØý÷¿ã;H|ñDº¡ß…sü”m»æ¬¸šŠ2p¦R×Üc,ÔqÛ}$„<¢(†ì‹O(,_CÕ­ì·L¤ ½ë ßÅz­ è—0§Àj+Ôéu\ùª7€ïdÉ¿¾ÅoÎÃøq¼Ž;pøMDwxåþp”[m·ß±´GýqˆÿåÒ7, ¡ÙâÌøÒÏ I†™û . ‹òIN Yó»yqå{Ȉu¶¶.Òß%ø×@$oËK^¾='„ù fÕ:;¯Î’ŠÏɧ>7ÙHÁž[.Ò÷Z(ë°ÙîÕ½õÒFcɘì‹Åd[Ÿ€¼m«'˜>@ÄÿO@/ T²@% T¢QÉßÎ-§±Hû\Ni/[:¡Ã\Ž'Áð%â`¼ oœÄ ýËÊXd&©(ÌVF2ŽüœÆÐù‚mÉrí6]óÙV§»|Ù6­ôð¾Xê‘HÍLé™wXCRÜ!Ùe± ²cæqù$ý‘KèJwa—~¿Ã̾JýœË}Ñ£>ã†ùNô&GâË×ÜÔûå©%3Þg>ŠÓñ0¬ð­Ž‡w#4Ì|M∎¸íÈnk £¨ãc²à˜ŽŒ‰UŽi$3Ç‹¼ãã½ÔfûÆ'|÷óû؇ZDËm;(º¢ž)Ÿ{-z ÞvøžŽÕð!ƒÇ6U¢Š·UX¯›Ó¯Âb„”:pSu RaiX)Ø’Š†¼é¿mtl”ä•ã”k'Ò.miPãDÚ\½$aœq Ã×9|›G—k½v›Œ®Øžaà´÷ 1m*ÏW¢¸á%¿h[Õ’2~¤›²ó3¥ßõ½á½8ŽÈwNºÞ‡ãô4›§gOv›M¼ŒÌì ÝŽ¥£(œŠxIî^¹äýêvñ2•övìÌJñºRlÉ,î7 øÎóóžò¢[ÆNè%åãW4ËO ÒÓ_²ð~¦ 5‘ÛLS0Ê5§Ñåý>ª(·#މƿ{¢¸â¼k•Š%ë‘û]B=är1ÙŒFQ–-RrÁ˜ÎC?œcša]–lrø²Õ_u®ÍœØ{»¼‘Jo¶Øúβ~˜9wefÏ$çþ(Ö{Ÿ3á+›Í2ÖCnÓŽëö}¶É[X§/tJ:%)¼ñIíÓÍz>ð͇„¸9a˜½ŒWÐG§â^íF(„ÀÎôQ0£L î \Áj¢@Ú'"þÜ9°Á¬¯¢‰Vž–x}+б&òÐûö%^ýÛ'tšðœoËls‡)Ú?ÝëµÕÚºP¸==E(§û'N‘:«>lа÷ãÕ[Þ°Ž†ÓC±x7Õ{0Y÷Ñ`7$±Q+m4ŠŸb<ì#÷Çôd:ZË™z$ëmj“œ¤;…­Bfòæt¥(Šâ_bõfõéÓÙ߬®¯–€sdq4,òƒ£Ÿ÷NVÚ%±RtŠâ»†Àð¿þE?ðUü_ÑÈ~vôòøXf7Šþ Š;Eño¨>ª•ÄB(iykº¾s–´®L¨×+ê,d/¼Rü-+[ÊNèÅ<Ý ¼ƒQº·jô€È-˯ŽNÐpí­WV\ªå›•n©Dµ#c0¢” ç´ËÖ¼Yñ`}­n O|'ÖïoBàßÿf«9œ9¨r„}h”*jèð£”[BŠÅFœŠÖÓ²SœÎª9xЮ°r2k*¯–&‘1/9/ ‰,i&¥€ ŸŽT`‡¬Šà©ÕÓøÇP:„ÊŠœÁÒ@ÇÐ}HÕñÉ¡‘h­(Í$‘à,×è§7ð‡øœ¬hµè'CD1Ål󼜳Ѳi¬s"Ûæ¼§ŒŽ%Êþî»se)Ñ]6=ßÛy²wr*ÖÔÞ¢³ŒîêöOö_‰ûµŠÐNYH˜¸@zh!GXGßk£.j-§ÿÉkOÉq"1»ˆØ›KL¡hjÈ'ÔaT1˜ŸÑ¤Q/:ŽA!9Œ„k—xƒ 5>§å2yk” ºAy@•8A ÝåżÍUÙY>ƒtÖ,+4‡çùó³Ù$g8—‚†ü—!iÀ|ò›ÒLÎ8÷ãáú~!$X ¾x!âVLlˆ;ÿ äYU ýü'ufwÏ@±ðGѪ¼øgñ"ó´›§P|öÍÊà~2ŽÂÄI(‹ç;?íeÀW^$ŽHvÂ?ÏÑ´syæ©A¹f ¥ñt5?øzárRØœ±†4T¢\«%KÈŒ‰hËâwÙßT¹d§/„Ò‹óæë;o’xã“ʤjþ§©q…ÓØ(;׿L´mXÄÍ@ÝVÎÙè›ÑÓÇAà–ï×D'“GthØvPmÒž)ôzC˜Ò¾®¶IßÊ èG´Æ¤—Š˜ÏÅ.yy$×?E½)òüøÑú½ûÕÕ5ñ¸¶¶†ÿ_ßx°ú¨öì¸"_Ú<îhÖ¿…)û ¬e؆¢ï½…×<óm¼~­q·n zê+ÁÖiˆÕ7o¶‹5Ù/äf†ØÄÓ1ZÀd>Ü\Ý\_ßØØ¼w'áè²xâŽ\VXü¡6‰¬ê8b#ɾϚdžháP…3ý}ž¨ô0ªü7*?k¢*ÖáPýfee—E)u’ò4”ÞlçÌr«oP¸¸ï]­_éÑÚ÷«ø;ð:Uˆì×wÅÖ¶²2ýÚÄw<Ž0 T±@ Ta ŠK¯!·Æö'ó>Âé½jŠ‹µ yÏhÞAST¥›$Ÿ`צñG¶ZÇr«ù‹^I—Yùqë¢X.Ú5[%’²|ŸO_V^Pn t¼@ÇIt\]SØ«º¶ ÝÁ[Ðn d±@™lÞ_A»Nb:ª¸SQÅR6¯¦ádæPtÜ¥§É¸¥ ·d‘o&7•ˆû< 8»s&g~ߢËâ±7DåÙÐu‚ö¥h¹Ñµë3$…|°°8ò†iï<*¾ñÇ¥——GŽ5 j œª"Øq)Ôa~þ-#.þ©÷x Ãâ”ZœRŸNÂð‰E ÉãéC}:%è ‰è¼aî‡rIÞ]š—f ΰ½+K³MwÛέÔEŽL*âÁƒ´Øýhðgêê÷@Rw3n·æ!òB‰õâ 3‹  ýãŒÖÇ­k–‰ó?KÝ…îdñâ\áò›pbí ÝñKOŽqÂK0 ü[Ö[I+y=P{¾"ò×yRàGµœoDW¾«CÚük:aºÌŠŠü‘c•z‡¦q僊ÉCŠj"¸RnɬšèßQ©§ mý¶ß9æñÉFNÆ5¥]:¨ØMš¶ŒÓm¡]~Öp¥K6Ývß”‰_ßàÝìöܤ/Ñ…ÉÄ_|>'ϲ ‹’ƒ]|îf_ÍûWØŠ$¨%˜ÛðÐZ+«w±.1KNÓ‹JæÛ̲Išìÿ>›û‡gÍã¬ú´–lÎÌÙÈÊ{,÷ø-_~ÄsŒ&ÄN0K×G-Ÿô½<ÁáƒÑ~»v9Ñ[gh^NV®š®¬«*˜©¯«2ÎíGbvËf¨}ÝÑ´HÕ7‡y‘™U«—-‹}vÍ'mx˜0sZ}÷‡YêsjlÄ8tZ@ÌE·S‡3=5¨ÿê-&œTŸ6- ÙÃ×!{`T¢¼/}:-ãdE¦g<£&ꛈN3òmâgcQy–ÍB¹@ÛƒªÜÿ:W.\~µ.ã$[÷‰IVMóa’;a zÒ0²mò“¿?ñ3ú~vZÈgÿbÎûC,'M`œ­4À­ Í/)ÃÈn ý-!Å,æÏ;'‡û‡Ï¶4’Ù‚¡k»#äD[·–¯æŠTõSL†ßd±uºdêîÒà’ö?ñÕ ßÓ<§s¶|nXªÙ«Sè-j˜œ£òÝgH±L-dR™ené¶tæîÎ, ï1Þ¤XC<qQ^H>m ªÀý}ì…^¤ŽÊð‡9›yGˆïÑæÐeqä#.¿=ÆG¨ù¶ùš9È{Žf{­rÎóÇrÂÄíò„=v• OŽÆùôn@?Ò¾3÷óÇØ{á½G{¥QTwŒâ‰Šµµ¡Â~_DÎ[ª±ívôÚ´f¿XÕú)>z•[^ÕéÿÄò2æ:qG~ ϖȧªO7žì‰>:ôsÍKVŒM)‘›-^@‘ÇC8ÕyüW§~(LÇ7[ÿháL–Ç0´‘>˜ÿ2aŽIteçK\^:WnÜò5Õ1;š„‘9c4­ä¼¨]±š#ˆsL+Ký´È¯æîЙ9Ç™¥fOøÀEcÁ&—nªÒM*ýå™Ôg1YÙª8‰áÄ•ìôz[ÕËãRnaR¿w}å⮘äq­_,‚‘÷x <³À3 <ó÷ã™9*þ`÷ŸÚ3È´ÖO#£g•Kù`œV`¶+ª¤WFrBõbçzõô(ásJúfÄ'Q`°ˆÅW—ưÆC YÅÓÌ·05ãÈîƒÖóf^LëOˆ»Ëý©|þ@¨‚I eZÎç÷P@D#_€ýѤ¤m”ó´5ºö3"Ø(|Gäé|¯‡PöìçCž~ø£!Éq±ßÏÆïû}dݺÞM,ª–..qôÇÑÈ e;¶,ön`äÚ³÷^Юý ƒ¾b’ Jžžöó"õ„•£w/>ñ-_÷ za-‡sÝ·b¨mlÖ×(¬ÏëÞ³ÏåÜ3Îù ÌÛÇrsCsðò ô¨êip*ŒüË£>†E,ü+À,ê¥{Z F#D¦uÿéi£¶…ŽwΞ7O÷ŽwNvÎŽNØiØìxäÔRù±FÊlÀ€(ãh¥ôè:µx½ÀºåuÉÏ?Ê¥ÜG¨Z îì„Ò&„0 Í,#]C]ÍFÁ€›O\ùX#4aáQæìeÒ%Ç@S+”§™´ë|D:Ýì%5—°»E¹É“;ÇÓTg!q™°™y*¦à ýL(½©ŸµÛˆóʶTÒ¾)y±•Z¥„„?oÈ@gàŒAŸVÐCòQqƒ†š‰!âi0s.°E6¶HŒÖ_‡$ŒÝ’ÕœÔÉœœñ9HC9ó“(@ü1QHV›c4 „î6÷•H>|®×¿Â%ú°¿‘´ te¤ï†ã+ƒš½«ï­>¸Tÿ9‹äí-›AÙ)ÿn܃Vj\ .yeòÄÛr›®_äîÀe¢ZUN例_߀ê¦ñß“K}:6쎽ºº[w’Ù?›~üt·~$³Â~0»è Ú5iUuŵ‹§o1BÌ-.jO‹€>…ƈ•Ô ª+ó#vóG¯)`á‹p5¨øÐä›Ût+æû·b躺 CO‰´už¾Ô{&¬Ñ[„Ø‘ÍQ\ªäzžÎ:fÕs¶Ðt¦Ï/¼`˱’Œ=:õ(¾+°ÙÇu’3úÄ7$|u¨!âk0C~:cK‹u¨ó-¾4¥_9áhøXˆ?‚h'~!ü »bѶ¦,ãÓIÍZ>Lì—T…D-¹¹…|IPÓ{Yy7¢.Hã°ÙM-5 p€ŸÆö*‘sòs^|_`©jº…¢Ú› ­'ÊÌÉl‘`ïCñ¶ì]µ7ë *ƒ/0ó3u˜ÙÜ|Ÿô’ƨæ½Ó£ÏTã4lkç2‘“]“HI¡UÍÂð%n]bø‰;]ÑÍD¼ß7f ]i¾ÚÕ£u”thÝö8)Ÿ3uÛ?¨šì:rêííܳqoÍ+ê,ŠhØ!|ñe?àÞU‚S^g°Tð¥1•Ðù‡ÂS}i¥XÍ "‚ s¤œ†³–»éw k†Õ+ÒÃz Ú—[…î£Õ<ªÅ{Îæ½-ؼ¨,Þ gЉ?Õã„BÐ —3ŽüN«Ó<,Lq 'XT0\ѺÜÀm÷U–G«2Óya…'¾$ªCàwÆ}ׂÓúþ(Bh«“ õ;˜ýÝd (Ê™ª2âQ}ÒD ݽÈÜr³«2U»£‘€Èím5&í; ÁOÎMßkñ~ú€ž';*á~úþŽzÝxÐÇ:ßuÂhJ·çíì¤^>ž«›ÇÏö!‡^ý«FßœèÒè}Ý¡wÜ2 Ì1cz?´Ÿsusï?GYÝÜXŸkßZIæöF£Í/kÓˆÌÚÄ™ãïe—ÔŽÎ-ŇǣdÉï„$³Îkµr½^¼Õ~$@MìCqYøýŽЇôÊK·-Ȫ$pYBFãn²Nv¿R«{ÃÈí×F8ã"ñO_h܈Bäðþj káe*·&%ÿjÓ ¡£GüO-‚/ ™aw¾@ôUÞê=º'‚c–Úhô1Ë=2kžÔôgîCÁåé}çÞt%iv§.ME37¢ûè>¶½J2ü;ÌÕô«öA»ïf« $ã”Õõ{à:}Ô^m¤Úÿûæ=QýÝé{N¬™ÜúWA$hª~ÇÇmÛ‘8ÏAŽx5þ‡® wFmQýÿ €EFQ0uP~y7 \I"ð©{ fµ1%C<”È©–ž[Ýþü´q1‰½F“?ðFá¶å.;Ê@èqpäk«ðOç^ß&¤t7ujúè€cN¦h>0.#tèÊk&c8¾ÙÂõ<£G6À6Äö Š ïõ†¢ËÏù Ät©S;…Ò˜×lwj~‡þ°^:ÛQ]]:3¦vùöcù>]i%XÐ@,ušì‰îÈ]ûTƒ’U#÷?ÁÝŒp€f ¯i£‘u~Âò[CÒ¨CoöºrÛ‘Þ+ ܾôFqäb„ÂWGýqDGÈ„·áx8rƒî{áø @L´èý¹_Ä«#q(µçöfm«MFãèÇPH9¸;°±‚#ªî*ööH„m§ïÀ‰®3بðÐlTã¹0ΰçŠêa C‡ýçÞOÔ“9é–è™Ø«ÿfîd±®:C\í󜔯֚»G;q^{ƒ¸úö” œÑ¨½õ~GÎ8ΓÄÑ€G1w:_¦'™Çí<‡vŽ›ñðíпƻû€,ü¥|l>ráãr‰5O¦©±ìrº 5Âzù]¬JÍ眦`|‰BÇJÍhS“Zö,¡N­ú[0{Ï…²Z–º,·¥÷›©šDY9X‰zÕÌÍ®—G3»v9Ò…äØÇ-±ez4Y,Ö£ÜYÉÍã£ã3#ƒLd}´jÀ’íOdÙyyvôäñg‘Ckô±¡=*?î«Ùꈭ÷¯\±K.ßû>ùø¡Ú*¢çûi<¼Å×7Ý–IÛ$pÛæâ£TXzy¢Èmùd»MâÉ2poí6î ”dшÖF~ÈÈ‚ðdTuOè@×Fí6‰€ |Ó×Á ØL#"ŸÔNQˆŠ¾Ë(–IÙEF™#ûÀ…ê¼ÐgÀÞ|ˆÛ‡hâÅ35ûü£ÑéÿpT—‰wÚz† æ@"j9vò‹G5Õ-9T dÒÎØzmcãµmg­ÝÝxqs\Œ–ªS•0(^ÞP8ý>/¿í´N›Ô‘K€±³Û<>9zÖÜ=>†¯sKJ‡‘7pÑ{B­à(‰ÅÖ¡Uhvm4Jô º Gœ:´,få†FlÓ`§º|Ì}r‰;s#K[:ÎáAÅ<•äôŽFj¦ŽEúÓñP¿Òl “¶ÔÍ̘Ö?ÌX.é£3&²Åî¬Þg-¢`4ƒqã¦!à:Àë@Bˆpv2MvúªEŒ®û€Ø ƒ‘G— F[m„/7¿ ËfœzùdY'Èª× d1LžX¯dÕ+c5€Iõò!ѹ:vå‹B!dÜ´9¦V`ˆJ0lm7ì羋ä£?4ü-u|7D}rz–Æj0Ð÷ ¨æ`ÝFŽ7¶Nñ–ª:ò"ôGîEü"‘"ý䓤äâ §ÂÊë_KoÊ¥z½W¼ÈË2šh(0Œù”Àt[ä–.ê¦(zV*/gšÀtí¦H^Є2¡Q<Õ™0f–…Ù¢‚š8%S<± y×ÒE­y 7wÅuàŒ€h2÷iM<ã¾ô¯±›=8Vká“ØNLòÇ™'þ iò˜Fw€sÕÑ«¿^å¡0ºPýšF¯€Ïf¾…?ŠHý ðñÖ¿Eƒ§ŽÞã¼·sÒ^c‘ç‡eZU9ªqè'Q=_ÆÿI{ѱ9¡±Ò$ Áç@£zƒ‘zöPhÝŠ‘Ã::ÀÅŠôÈ &€Yc?„^(è⭤ܦôú ƒ~€¢6ÆwP4/»˜W¸Ž¬¸®]2“&^oä08L&Hæ–ñÔÁs©6C»?¯Ï9Ôùœ±¼”ÕåýG÷ígsJÊ ’f·É-^Ç|CGÜÿþ_k¸ÚÖÔ¹Ž˜æIà]Á`mߣ–œ …—Ø¥ÙÞ,ãT ÅóãúËW8 ‹6q‚KTÏ–È Õ2Do‰z×÷·ê-'À?ÿË#9 ÉÆW&ThÂ1•ìÍä;˜/  Ï ' w  Ñù -dä^÷}Ÿ W«ý2ÍR¹æà̱ǢО™œv=M$7‰ÚôóèB/|Ω…ã¯ÏÏëo°Žwâ‡-ã£úºp2~SŽ…ëGŸÂ¬Fé1€}bãÙƒ]“®7èOÊ«¼ Ñðp0ÓݯôrÝ% )JšÚo!Ó§ÉiÓ?‹6O;üýPÀèò7¶=øˆF$³‡Ä丙Þó³Ëæÿu¦)Ws™¦\IFe¶'”øüR¸ ÀLŽljÉùŒ¯¡Xø±¼¤äo OkË·§“nRTuHåp¶9£|›À¯•Š´×c9¹ù`cAN.ÈÉ9¹ 'ÿvr2—8*è±@bä‡òÒÜhË œ<03±‡”8 Áa±Ç~…ÌäøAh6€\ÆÓjMRá¥×øÄ‚j–ªÝ 5iOÁ¶ð¹ƒF×á³RÒ¾ž¢|ÎjÂW§7yY+™zÒ‡gúÓ2á©­tÙ”ë8Rldl. •‹`,ª¡nÙ/ g¶¡$¯}ØÉ«õmýQmío•¿˜ñ°ì‹“v¸¦®ìˆ$TÇ ÙºC³Æ¶úJ*Y @yÕö÷˜ ‰sDXF#U¤<˜ÀÐs؇Óõªýv½^]{SóÕWËíyCõI{mþõZo„«;@³7¬E`.>ôqèö7ÖÍ jRvyöóþ!Ñ’7Ò$yî.gW÷¸Ã_Þ”¬ÎŸÅ½Æ»p@©¡ ø¨Aèö¯\H GRœ¡F=5 ÆÏ®º ăp£h¹Ñ5âcBjËpaúܪÇ 5¨ñ°jO×.ßRA•î`ÝbYëJ Ýks%Œœ ÒÒTK¹%…¬ÖI‰`æQÓ¡Z.¡EÀl,-Iü¦6Tµï–ùmKŸwbí„O—–Œä³ù—ãŠ5ßr;ü†û >"UB,V¢e;¬oÕ‘zc0èüö7aSs¼7$ѻԿyÖûoI L-œ°ú'o¾”üáG”þ\`Ín«ƒí„àq‡Ó*§¶á]a¶,:Ä 2TˆÚL9Bäî åb2…ùƒ'Í“—‡M$æóè0îÔïŠðè¶¾´ße>#™TP%QÔ5r!ŒŽò%zC5ܼVà@|Õ ý>ê ` K5·†*Ë* péÑUäëy o }\¬ŒÉ×k5 J¦ŽÏ…¤~ò§ãáÑ©¸Ÿ×K ©NšÐÄŠ&Ò}×;!‚!r7¿{‹(7Dù|¥®™œB¥z|ÎL.iøÈ0ZÀ§^å©>ôø6€ÿõǸٳí¹Ži…v=±¬Çáõ›æÎnÏÝæñÉÐö¯ß°¬…$2ws|…õÏrx¥òlæH¦“j>Ö©ø2ý‡8ÿ@…‘y$’¬EI¯¬D>‹ËS¤ä3%”sCšObIàšî#<¦FŒ¶iýÒhæ„\Ë4´RZ™£üÜf,så ˜·æ“—/^üÒ|±³˜_ôJGYJ²ØzJ])àT¢›`ǘç­ÜgøTzúDGŸ‰9ƒÃPpB¦¬?ñ?ytúPäwó˜‰Ý€âQ2Œ@VJâõxÐ:“UNC퇊rwe(c–çUIbYn†Ú &|±ÊH_Ó“CñšøÜ{’¼ RXT£òÆÐ ‰>º»Œú¤%èn ¥—ó,¼›¾PÔôfaR `ødbvIÒžÝñ°t'¢–f“;Q)üMþË?Ýä¿ ÍôÏ «gˆ ©Ã”£ ë D½@Ô Dý¹"jµK·¥çããìOƒ’µd ùç"ÓfH Ó‘9Q9‘¼Mg¦FIeL®çnb¸ŽYÂ;çfÎFÆÌœÓgg'™NòÈÔǬ³"E!óå2ÞÅK<‹—(Ÿ€§•H²ü²¶­~6l­FÒ”Æ$é{ºkTÞÜûÿè½5£|§#÷ÞÏÃni^ Øï´ºéíÒ– s§®+Î/°m^¯Ö÷{|mL7Ã7Â,µ,õ¬OU|‰þ‰®ÖKq€±¿`óE3ÝÿDLu}7”3Wΰ×'µ È3pçVyË*<Ÿ IúKlÂq+ðÇîë®ï·œ`E‰Í™À”¨«–U 9µÄ€éÃIÑ…ÓgÚ½%WÙ<—"{’‹^¶')Õ•bÝIÅ„-ï͉/ZžËC4n£…7šÎÇâBR(€¡§GGwN´TAf;n¶ñȆ¬ù¼È7󯕽døBˆ¬Rêöûó“Q`ü‘ÒEFßJ½v5*PÈ+¸šÈnG䫯¹ò=ÖÓ@ü¡Þ¬O‰)L K ŽŸIï5Jm9Ž2‹×»Ä‡ì£ö%ÝíJ9U‰ØS{pôZc¯yC¥Ê8^Æj&q;Ù»Cyý>*9öo¹T±âçÄJiûï—¼X­YHaR˜¯^ £04é(¨·MÿAB¥$þ‰üL.¡>"§„x}Ë3Œ0”…õ)š[⠩瑲4ú>l<#©ü†ü¥hT´ãƒ×.8FOÉ‚± 9UAFͤQ­Îâ/˜Œæ>A ÃôŒ0^9†È™²”¤Pš)¥ Š¢o™² SdÊ‚LY)Sȉ~cbåEªºÓÿP:%©éjMK’`YrRQ©¿‰D þ‰5Ô“&ðo©{«ÁˆkGVÄЦ@`I¿XwW@i±‚T-Ïn=LJ5œiŠÓü4¬T'Ø[ZDy'¦ÊP‰¸%3J°j¼¾Œ¯5þ7…eeã:ñSø ˜q%½´•·2ÞV²Ú¼ÅúȵÌq‡õÉý˜Ó?ëÒÖÌ·¹¸]ûü°|lÁ˜16ÏÈkIè;`³Ñ–i4ÏÕ4Tøôåáî Þ¾Uw^ì•è"θœ~hÍIà˜Ö§H‡Äò²hNéÕ_4MV3þ†®ýãú•ìÉ_þÒÝ…?bÏLp³ûôéPÖ4{õMÓÇ^…wíÚ?®_‰ŽY¶©3]GI2v^e’´3©yHNþÓÞ*¾hÒèŸI=Å×¼ñõ©e’Yª‰…§~ÿÅ„Òó’ëZ?_ñnõ|º›ÂNd| ÞöU°ïŒœö[õܵNév##xm†›—Òȃàr«"ÉfxíEíË )~Ž+ÈNXÙ Ë9%ù=§ð«åØM¬ ;ˆ†„¼»;ô< ¹õ!3æ-” è(#Ó+„ÄÇãop¨¡ö¼ZC>ÅÃi7΋ðPÌéËC|#顈¤qE›fr3‹N¿¨yȤ;WÀ69­>Z\kA¶zNW•€|¨Û‰ß]p¡â¥Ç”ßánÊÕ@˜žž¼¡8x‚œîÉÎÉ/lkù>æ]8·-råpK®wœ~à:[¹hè%õL[…Ü·ïÆp¸¥ÜR¿ÓäEukC'kÓ>€¶ØéOëFI9ú&CÏñ]«½‘/€7úÙ&z²i‰ßúu¨І|}õ¾ßvúu|^¹^ãoÞxLfz‰¼‰ó–é--g5$~ß>·d½h¾´d.C§=èCÔxˆó¼‡X³Ósصí>º`b;qåôÇ.ä×~Ípš¥³x”KÔ¡ÔÛ0˜BŠ>šCQNb ô–ˆÑÔœ™Šˆ“ ÎVB4{ý1ÌXÇö‚™ÔzJWˆ·cww©§Nü~Ÿ;©äRs(!.î;‰_ÜGrSåéP’¯·wòÿ˜‹Û3†Ý)ÄJC?íƒ\À#2× Œp«ý‚L×¶)´ÄrêþYàŸþù¨øGo¾|îŸvõJ÷®<¶PËÂs_wØ(lòuG2ßæ dø… §bÍÄi€›Çòc‘½…ctMh^Fú!a7Vä ¨÷lúúøÙ>³z {Ac/θÅ÷¥q_È|Ac/ðÏÿ|øgAc=4¶”c;ÑåA¶Hü³%éþ(ªc¶rA„€TÝÍ{(U¯§ýþZ% 2$ F4>mjÝ+ä±ä^Ñ#[M ³$£•ÃÝ9¥x‚ŽhBP|¡‚¬ˆQ70‚Õ—$/ ‰jôž @¶D^‘Õ©ÒùêÕƒ 0úK“Y‘ ¼ˆì5ƒƒ±]2Y“o²àM´Á‚6Xð& ùÿÿ,ðÏŒ¼ÉË›®°•¥™ ††hÊ]úØDg›…,)N„8ÏÆ'Íô jØŠ‡/ä\Ña†~fM³?¨ÂÕ¯C±z™ŸÍ{„H🮒óI0 ^èƒx!Í Uû½1š‰Wû£èõټт7ZÐ&ÿ‰þ•Ð&_ogZÓuìÑ-PÐç‚ìÑÅi«œ5¢¢%ûò×0MÖóI³™w°y/šÊÿPŽ ´`,ЂþXÐ_ýñ5²@t¢-˜ Z ¡Ï -˜ ôq™ ÏÙXÿwEëSy%3¹í ݶS‡åÚ‘Ùh/ø¨µà£$Ì‚„ù¢H˜¯‘ÂCvÁF-pÐ}8hÁF-ب|—äÝdpQè{maË¿ ä‡èâýâѯGd¾ âøg>ü³ â¿$">—M¸Ç´ºHü[F§½^=ýÎý+ö¿ÜÙ¾ô†n[rë;ta¢«}"ÅÓ0"_ô}§ÃŒCŸÂsZþ•ËÝE ¸‚R%õÀI÷ÀºÍâ#A¬ï‚ˆ ‰w‹ô¿Ø%õZf:ò1LõK¦FÊú«OšÍ½ÓÓƒtUÄ©‹‚^ž3x”„?軲`Wä‚\øâÈ…¯]Iàõç²@E Tôy ¢çòUq.êŠUüpèu–,Züfñ¾Æ‚_œz‹Sï <õ¾:üfá_køçsÁ? ªûK¢º…ù–c¶°Üü7•2§— 3Èqõø¡¤c”ù‚2_œŒ‹“ñ‹;¿6Ê<¯/ˆó Z  Ï-ˆó/‰8ωWoúÍqC"`‘&Åå#ÕqW4Ô¼¨º¿‹Õœ2¶µžó 'ɧØ+˧®Õ#רöïÊâ½n› ÿ„MsâéílezW{‰Ÿò›¿ü¨ç©×¹©|ïÑý»ï ÇVñuÇ€'þQaï…¥õ'²´¦u¹°¯^0s Jêï§?¾Jêkcæ`‘N}e±Úï­·Ý}.»÷+ÁC ŽîKâè8LôìßbeMpîȶLá‚)üܘÂ7¸àTØßO»|%TØ×Æ Ne\àÿ|.»ö+Á? .ðKâÿÆA™|+ýAT8€cC.0.¤bë;mwà£p 22ÃЪýÇ/èýÃ'àP„ÒñƒHR„Hdå‚!ìàCì’Š1®Dè |wý1àø¸wÜ&é|Ž™ÕnƒõÄcêà .ž““_šÇ;gÏEäû˜weàܶУ{+œÀNôÞ 5hAëVtÜ®ëª"ZãHìää .ð« n¬!$k{'ä¾Úª‹z¯x‘ú[c¯ßîø]«½‘/S,3~0϶³ëÝ@E×08tT ¶¡6µ×S–ù]Üò]ÖÜœ{#cWÿ>N»?éF2 OD˜ÜKþŒ‡ a)t¶U‘’ŠÓŸñ†‡cTþ°#NXÑô²‚’cQ·¶4òÕ]ÃL}EKÖb?šCÊ ‹Ð>¢Úó@¸B†Ðéºìq2ÂÄ@-L~ùATaJï ç›ØjËK)'F©ÁlÈWg0€ÓNAÂ1"ª1Dd³þø`ç”ÈP’ïéJ&djžþ¼¶ûœò¦çÔ.t°s¼³ûŸ¶‘bÆðmG«OŸžÉY†#ùnþVWív£…oÕ¿Á·*7&3SÇ,ÛÜ£ÓîFÝÚC/€÷6öÀf½—v”›_¹ 2ÿ¥º]P߇«v…Tl![HÅô–úÂÄòŒû>O½®òY Ÿò±ÏB"ŸÔê²i·‰J]2Ûd.Ê0‡J—Ä—ójt!Åk ã^m¬ EµZ®‘–áM Ñ{šTä ï£SÙhNMz/ý*9¿ eÿK5`¨ÆW!0‹ãnqÜ-Ž;c[}aԶƒŸ­Uõ -°Ð ¥°Ð‚ìN*Â$ º‰š0:ãdU™e]>çU†ab8ƒ7,«cR|³êlëˆ.2¶iO@£MÔâhÔ(vþ!J»Hñ|}Œi»¢Ú†TJ‹se®*ŠHR–ó³VBTAÒøi˜ÔI Y©…4{ÃqC§›Ë%èþõ?ÖðãN…“f“áø°óÙZ^ìZÌd;¶¼P‹Q'FYfí™6æ¥Ï{ò¤<†ïÓrɹyRÎþWò¤\ãPÖ°8]§ËâtYœ.‹ÓO—… IdP3eHqƉ2$•e¶ )>ç”!IÌ–’!]ÛöTÆ…®iLe &YR­ŸaJ –º¶ 6IžÎ'7¢ìÙ‚£§..B!·-0ZÒ:â]bb±CR¾‚ï´únB§8©ØmˆØX†ñ… ئyq‘úåGä,‚ŒMINr“…ÜdAÙ.(Ûe» lr“;ÈMòùO¥ž±8XËâ`Y,‹ƒe!2ùòD&5Kz‚´.íz.Hb8ÓáŒC·0è!X»,›kËï‹õ>°7l÷Ç€Ä)ÙÇšäïÖ)­xd\G(uÔÊ@åŽ Ÿ.²^È…`yµœVÿ6‘_ÖD¸Re¬˜mñŽDErAÖÊÕƒó•׿Š7åóœMÕ>ÕU®Ÿ¯Õc‘RˆmQðëÅ õêÊd¬Ô71*†òŠŒ†…K0 ï£uÌZ]¯­Õ6(h» iV–bŠQk¦rÊ¥ëtÜ€¦¦yùÁÊ) äû©¦pÙ|uÅÙ7‡):*É|ÙR–l •”ˆÃªÉ"ŽéÂ^¡3%1œm¶ØeÎ6ͻ̋Ѭڦa´TF-ÚYû!‘ŒœEzcAYâÚ oîqè´¼¾ÝNÄDæÔP~~D=æ“Û5lJß@ñJŒð÷èû™Tæ¼$¥^f’2mAX~„¥±4>÷®˜”¥D!JÄÞ¸uÃO@JfT4ôï@`¦öþl<š¨o"ÍÈ·‰¬®?¥ ¾y‘'go»óàN•÷€:'bÉyqáh”šÊlĘ‘ñ%¿¯wÜ«úpÜïëͧˆŒÔéÌøFMˆä»°&,Ø€U`H853‡Sø7'k%ŠäÈIU|#¤â@‚n¥B霜ÏÀ!²uŸ…dÕ4¹¾ g¡ #a‹Sÿ!~Fÿ‘ìlŽœÖqÞr¤ãŸk¶Ò·&L´ c4Ù­¡¿%ØùâæÏ;'‡û‡Ï¶$‚Ù‚k»£(~ÈNÕ_øÍm)²^7 ýàk ä~LØëÛÞ­Tx,À×^tiÕW ålÎÕê¹!©6f¯ri“.€ܹ)ßufä±Bž³ÚÎP><¨\'ÎÙ•Y î<Î$ÊÑ,Êg#TDÒЋԱþ0WïïÎí ]v¢·3Ž|Üù¢ã·IòMR“¹š8Ä{b;7çùc9Mašvyš»bWN‚óäÝ@~”=fîÜßg¡Ý¹­Ò#bw·bmb¨®ß‘óÖU•mjlr“ߨjùŠ’ƒ:HK7wN½Ê-/‹êôbys¸è(ώȧªO7žì‘ ¼(0Î5,Y16¥$ÞÉFá!›ÇC6ÕuüW§~(ŒF¶[ÿT1‹AË$@6Òî_"”1 ©¬\ÐI8>t'µZÌŠtRrg¨ç {Ö}ÂÌÿ vÚWîÍè³µÒþHïã}€ 6Ïû(c¹¹Õˆ1ó_©DŒõ}°;0"¿nxnx¾r} ÚR_˜š)ã¾)J¦xf]îñï4+] ƒoÍa<”ù˪éB1;fŒ-?t³ïµ½¨Ë|?¤ëlÊáF°„}·¯åÕfGÞ‚—ÿ«xùxØaZšjZ’*¹©æ.9ýÑ¥Ã.ßœ/Ù‚÷cºAû8ܶÛw†ÍLÈþÐ{¯÷n,sóßV©¿’·*^õþí¶WÖ||&Xé&-,± ³ ngýÂD0‰qÚ#Hsaò»8vÇÎâØùõWvì,¤mbêÉ5Sì–Ê?Qþ–È9[—:Dç”ÈÙ8P› +Žý.–â~«}Å‚ž÷g†ĵãEpú5߇6ËÏÍ ›…þJNجwÁÿí‰9ŸA’jÑ‚YÐ# z$~a\°}Nó9LðâÈY9‹#çïGÔ_ב³à€Å´Sk&œÌ>‘ÿµ3Îf“§çœÜ¯…ýl?Yd{ŸÄ;ÿDÃÃCÒGàâGÃ{Ïël]xnþ]—ø+™w]é+•kH¹…6çB›sqÊZ›ë ãê Ì8…¥}B–n‹¸h‹Þ-È}1ͤõ­¼ }#×l*ߦs’øºÌìË­ø)aË‹­b´‘¿áÃÖֲζ>Õ ˜d:Énú£ÒèB¢ß™Bÿ;ôFŸ/ŽÄÅ‘¸83·ÖFÏEœÿm´ù-ðÐeã¡ež!ˆŸ“0Ÿ‹.¿ YþTyš(…î“ès´­ä÷+mÈã}ÃRM:©DÝVs°Q‹é&À}ŒG`±($:l#|¼ ÜaèùÃP’U0ÏÈ2Ò5ÔÕÌ ¸ñ(eŽ“&JÎ^$ä‡ZL­BOBº`BUmXÿ„»é=ÉFðÀ¤›†Í¡„‡ Ç¥ ç¦.Œ‡‚ª?ëˆÓ63ÏË4ôD•ˆ£é1@#œì:§M$»‚£àôzãÀþ8#1pÃÐéÞjõt,5tùÇ;§’±—±(éè;#§ýVf9Ø9ÞÙý̤S0»’Æ<ÊÃtÃx 1Ó÷$ŸëqRn)™ûc—XUW[PA‘nÀ9Rïå'Ýt¹oº¿úÆÁxˆ·´í¡É‘;@"—< J27¼tp‡¶ÜèÚìj‚à C"üãã@†zÖIÇ¡vö4Y­rd•XÃ×#ìâ"À¶€þ°9>4 íÁçwö»Dw³`?Ô=ºõÇÈ–#Cü ‚·®;ªPÊÀ¹•ÛYvq;ÁsYŸí5fÝ¡Âþ-`¼[èH4µS>Ä#ÏÝ%¨=`] ¤T«ÀÍð•ÊH• \Ôx6©Æ &—ý6»¾_W`7Djb¹h ©J•ø¡#vIw`ȯq/,‹¾ïÐsN‘šûЧ2-«:¾§œ×ºd£‡—@~¿ï_“·zT·^EÉæhQ¹F†k‡î…®/âZÕh :ÝECÑñi”âÉìÁ{·š›j-jOnçþ¤É'™'G¬ùÈ[æÖ¿òú×Àðýõ¾:J…ºâçÏ×LUÿª+°(k§`ýWoêߤ€"8h1Âjœ¯ÿYW âEi´LËÏçŽ×>—>éœñ¿¬J«U’ß[Û")(¸6L0wéÆHd.áF&†”Ù¸ñ¨ã&âÊÍBúÎÂh›‘ž3ž_eXtÚ(xã!b D$Ù %Û«eª<49ÕøQàv‘ûhˆ›Ã£Ã=l0G‹,Ýò69*Ç"$ˆ%Œ‡œ;§Ö4L#ÒlÄ7Š…?8ôg‘÷OäÂÏ<6æŽÚí,–"oÇXkH;áÚUca% Ú€ûJˆ÷ ðÇŸ´çäE7ð<Ì(Ç"Ï×P"Øv$`ÓÑåð` ¯O3å÷ýa›ˆËJG^_úÐ8â=(Co¹À «åÁ(º8€&£1° ·Ø`¨âÊ%cwLå’€‡è ÎàJ‚‚Ùòp“æÏn ÜbÇš)§ºîk뿾^oÊÔ 5êäÂúVù\ÎV¹¾Uß–‘jŒH5T:Jí·öŽ­ß X¼ Š×kb§CËb á©É[=ú œàŒk‹¼ÌÙ"«H¾eú~‘…^rPä\îàÌŠŽtB.ãø‡ûÓ³³—§ZÝ"ÿ$ X’C¦ÝIØÈ"±82‘GRüq„(Xuäs“^½kæJ0e\òæhJÖÍí?™£°“â[ÝåoDáôùÞÁl½gš†#”#qu2Æä'ÓºT#/ŸöÎàa¤I_b屨®zÅSJÒFß·¸¦“+Šþ§g­ÜÖ¸×ƒŽ˜‚¸ bO‘Ö0½=\Ÿ@š¹7ôLg.GÅ]‡ÄÈ0ØaS’çV\mF2ŠzÜ8'¿«<ÚÙƒôæ‘9ÍMxT¾úâ£èQÌsúÞÿxX¦¾)ŠiÐóÇ®xìÙÅï B9@è¶”õÿž>oþ´wrºt(ÉØâ+î`ÜÇY /KÙ§4‰:|¾<8Ø}ñ¤±E›ó¿ÐÜÚ !{ð;r˜”AÈ7"á¨ï±Ü_øcíßùÂù?+€Ò½ö%•÷ˆ™HX‹ºsëô\èô/¤“–W,â`G÷= ܪ=QÔ‹"þsnßîóãÌN#5T…Á½›ÉÝ6s!Â}òrç`wçt¯Y¤\IE‰eZ‹/þsŠƒ„ ÉxDتÙ2„â´Ð‰³"V^ìì46W·eü,!†×Å“Œò7è¯V"S±¼Ré‘Ñeñ3ðRB2S°ÚiGÀ)Xݨ­Š—?áe-WP…ÅÞáOÔ úC×$ǧ@]€=>]o¿§À½Fñß‚‰ÃƒS8Gaš†m$‘å= ð4X …vŸÑŸ—;ÏöÄÁnsçÉ““½ÓS àÏîÑÁÁÎ%îžýrLý'{‡gûO÷wwÎ`ÞÒnóÅÞÎéË“½ÆŸ§§•`½¢çlçä î¼ ‡/_ììïbðxçxïD9Û;Ø;~ŽT~ì¿ØË©+Zÿ¾Ùޝ=.”:õª±«ç]ÆHÞ+_2(Õé%L3ø8QÝÀ U¬ ì $ÓÐ× ^Òú¨0ØpŒÏWœóRqÚzÁ¼ üc¬Š‹ ö^ÁõÔê‹ï^]ÄÙdçQ¨þªž7kTy*`Ô¬Ó¬¥zˆý®¤-”·–£ó¤qQ0 ¾^Å[÷\AöC@íƒQê è©úü¨©z¹Pçïa¯T¦Wç+õ:06Ù)fBMr;0È5äuc\ t ÊÊ™i'ª¦þ+ðMv;Ρ!õ?€g#âNüŽn…„XBîëf…ÿ°âYJн¬aj…/qÀh{¾ÿÿ9xqxtüÿœž½üéçW¿üWg•P V% ŽÌÚñz^õ¯®­oÜ»¿ùàá#„ømâÀÁ…”èŠ.•QÚ¿FY^€ž¬jæM¸}ƒ,OŽo2îÁó@ Õ[Þ°â+ÒHn 5:')YäIùgß"ùÞJn_ü`aFâ6Īù:*™ ­äÇv 6—Î6ùhÂnv£¸]4ñM"u‹Ñ©¬Æí -I{9¥¡ß\kHÓŠ]ÏŒÝhÒÄMY0Ê‹‹µ’¹{.r1Koä“<½µŽvfæ Ótf<@ÿ Êâ©+xGºHPøþ[%›ÃÇmp¸¯]%+Fá#ÅýÌ Á\¼db©ðÐj9)–+¬jqÛëósØá¢„C0¸ Ý~·©Z%þzN ƒU•E5P'`)2±7dÊ‘ç…À ×r¥Î‚1A5C2ÄÍ ÕÔ0†^-jUî\Ûy£¬Qî1‰"}É-ÿê^sñm)³gèf+ôûãˆÛ›Åf½?$|A\°#âµÒ¶à몎ò‚4Y^›ÅbI Î b´Dz[)ý´iødÇja½@ðÉRß'å™%ÙAÝ8ˆ©—K(1&ti¨Ñ0  ¸æ ñÀ <î#pàºb¯&^´_8—ÐFD2˜ o­á¤¿|[Õ’ºfiÅwñü›d¼\X‡êê§R¨T+òcKô}¤SPˆ[´(Í"Qýtòºð†G9•‹HÕbóÍy©r¾v¾ÿm(Ø‘ »Z¨TâŠ2ªÊtàí5NˆGÓ™vÚ»ww:Û{È>ÀøöŒÕ fŸƒw‡7ë4¤Uñ„®€#–%.}Žê—ĈÂëÕ7ºõ +T„@D„ZR@ÃôÝAÈË·à­¡dJ±˜ZÚD› @¡N@T ;Â¥£]-OX 2¢¤+Q_ogùHe#(Wn>>Í8$¹ß {!]—ÖD­nÝÃKUÒÀr"Å4÷P*Qó&ÃÁÉýIª!xÌ“Hz~Þ*ˆbÖ*ë•‹ 'W‡Bf°R™œ(·Ë•êZVümðïn£˜+rð¬Q\*2åˆyËBè¼XæVYe>õŠcæy»hæd\þñ¥&ã£øX5*H‚4ß›1ÐŽþPÙœÈH$}vKºM¾ã$iÏ7OþïÙññ69$ä¤3×)ŠE«„s<À‚TÖ<¦ÆI-A*.ù#¾rú@ŸûCX”Ð)Iã и)+œ°^[½W2Éê˜ñƒŽ¤±ÚK(x‚Þ2O´«Õ,.ùŠn×Þ†ŠÐì›À˜·G¢:²8ODWdÒ•dµýá¼Ã¨`ô‡Æ„ZZW¯“g'pð‰ÉêöÙ„º(Gs\²¬MiŸÕêP ÈØ`€ ðË./¯„Æw#/G>z…×M'ã!YÆËc/šdâŸt¾ÓE׿îc™ÝSºúŠU ¯¯ˆ;L*Ÿn<Ù“€Äjm­¶.ï€0c®gÞ >;|”ëµûP§oxå·YÛWžpLObᜰGY WU0£âÏ÷vžÀv0sȨ8Ð?ÿI@¡¨8‡iœ9Td* p¨ðc.'…^hùÅÊ¥FDR 5¦@uX²eÊ4ak¿_bÅ»§tÌz›–f"ŽøÀé %¨Ù7 íѤ¡…¥kzžÊ~žÏ§î3m\»©W;¡¥‰{žQä®5ÑÑ3¡J³k¡¨»Ö!×Û¤jT²]“ŠXÙŒ;byùL¡üyîü‚·N‘5+†‘ç "«ÎMäF}ŠtÚm@‘¤†I*†¹ Wí¹—} Wëë£c¼g;}#^ã†yx·Uõ²8èÒF>–@” ÆVXS‡MÈýSÅÀP:·Š`F3Qäw,òûØ -Yx"±¹$Y̡Ҥ6¦,AW÷šébD) Á øt“ÌJœ%Ö»…¤É¥øD7«Æ‡LÊCÜ›È_z„Œ±â*‚làð¼Þ:Û{qŒw–o،ӘÖm0šÑ!–#(¼Òß—dHÚ¸"®"ÜÊÌ]›Ì#·XœKFär'|‚Ñý0,™ï Pu$þ±7×ü ÷}-?K¿A&óÊ•³k÷šµ¼ÿ9F’¨ÌÓñðèTÜŽu£¦Ð»uÐ'ýFýaýµl†=@®¶ ÔâLòóìöà9]Ï6ZõQ6Bþ†ÀZxî°\Ü ´1‹ÍVñ¹Nàç€uE»m´½½ÕÃÑ'ñ0(2™_E¡7”Ç4ãcŸ–žàüjSæc¯È'Q,¼ª£74!GÛ³ÈC».®M]Ê’aŸ™}âJ/Q½{‡Ï‹’HÈé+Ã[m$RË$µúŽääpÌŒD×zìám›4"˜klÙÒ¡/#SQ¬ê²™{¦(ÖĺXÛk÷ñÖhþJˆÇ—["ö¬` K-ÇmŒ+㾫`Ko±ûHa˜gS#lÒ+ú—·u” Í#’j¼¼Öä“ûSèÁ€ c˜…Bµp²søäè$%›w_X¼„&«\Z¡12.²®ù³",¦Ü&bºùÄNd8oG!º#›"R/÷µ”B ™XÒ'Ýx]¹´¥X jʉÂ%©Æ„¼Æƒ±ôöùR"¢KKª|n—yã~øU[€ýtz賑“4™!Å’P…(€¡WuCòÓ #þ‰«­© Ÿ°^ù±þãõmÖ¬¨Pe;Ñy¡þ#þB  ‚Ddççÿªhi¯†X°"¡üˆ€($ ´zQ|ŽË Ž-ªaå@nÓ”„•‰àû±Â„ÀX[’í#ßîvží‘AåŠ?SyÎvNÙdL*§42rʘTÎÓ³“ýÃgFFŽHå{üòÙÉÞñÑÉ™‘UÇé܆=.ä3¾t˜Š'×qM@7Ãϵ&ÞQ¾¬]®å ÑÒ´Rà€ŽuB˜Hé{-l'Æ:½ãD'ÊP ó6Ä¥(Áê8<ƒà2ue+"nß¶9Îf}›íÔm4ã%¡Åiñ‡N÷û+‹õm@éú …t ^êPâ‘Æ³Ivi8Üñ—ÎW:Cü¡Ó™Ó9ÌOÍ}! t+Ì@,ìøChÇŸ©øxu¢ã+ˆÅ»Wª?‰¾¶GcÝS'R¶èøÎÀŸ‰<~Ö)2˜hARA³‰[ˆ¨ˆ¿:ötÿ¿€U›û‡gML4?ã<{gÍ;ÿA4¨‚ñ8Ê)~jÍ1û°ƒhXëU®Ô¸Aû{?:®Ý†˜v;þ&™Gs¨øŽßÕ ÝDJ{4B0£‘£¡Ë` çÑ*Âx´ïUz[÷*ÌœºJŒÓhÍtÕÒÕy9ñ†¬ÓêcŠ &Ê4‡¾?ŠtIþ4q}3î»ñc¡›â8UÀKäe$†îõbć_1ÆDXÆ.îëºû‰zµoBÜž*—‹bÙøËè}¤’UМ•¦‚n u½:WoÔ÷5`ã+ÝîfxíE´R“QY½ˆs§#S}Š3'bÒ9å$˜Ye”1kÀå¾ê•õmì:ÚsÆ·š9J¦4;·@xí8‡Š1÷@00”Å¡ßÐM¥_‰þã~iÊI£ž}3M¹XŒgßHM¸Ä`ǘçúi࣠CqÊ™‘vf¥2¡8 éÒ~Ú-ײ8EÃvæ uøµ¼È­†$ÊynÛ • zH÷×  ö±ÒfÒúùà]+ð 9ÿOPǘأӧõ5âqŸW_¾’^0ÎM€ÒP…{9cºÓk¬A-‡ ݹI-ä/eù–Ë™ž’Á)T‘l ÎoòXaÕˆ>z± ë­‘úñ4(´—MÝŠ[ÚtÂÞëÓíoÁʧŸ$PLT-ª=bµ®*s=ùµ y0†v¶…¡áþž6‡ò}ü‰Å—\JSUº[i²Ã²LÎBag³Zkë‹&Áfª£q0òC7Vñn¹¬Q.#Zpj£ÏÍ^¬¬BjᾆŽë¤a 9ŠGß¡Xf%Éô^üX”оNÐ`Xà£8èVà_‡¬ý+bmíî‹:2xrÜ|퓤yX¥$%ìG¢œ–åªÒ+$N(náu\ýÇ×Nõ;Õÿ6ߨÀjõÑ›òõoZEòTƒ6(Öˆ—Œ™ªŒ³(«Ðܹôp¬V¤âÍ—ÌUš'ß_]1ªòèÅ>L­²&t©™2(¹²ì}!íÓâ(´O»ˆsâÎ.ðŽ#qÇ%á ¥6õE¼žIÒ;{ŒŒÆQWa&rÒ–X6„O–ìcÖåUâÆ†*’Ó"LÒs{Ët^¤Üqäýq„Ù^oogüÖjµ7oò%)f]0RùR%PhÛÿÆÂ«S˜Ñò–ü»…¶ÀËR˜Ä›aÔA«Ev¨C3ÎЦ{$î„R^ª¼þuëMy«R)^èSroÕʘU^.PS>y-¢Ä+@Õ¢ À€‰¤%ž?¡:“r‚U?Fþ¨©¿È—Øþ!,ƒƒƒùз”ÀÐc/|è(Í +Ê>'na)éŸ!vatƒÝ<ÔÊè™á¼T¯—µ›†„³ˆD tÙfd™ MVîâZÂýœ:œŠèBw=GÄ]˜êgBz™ÀŒI¹¦ƒ™ËJu¥ç{iaà mA}DÛàœm0‚³l¦©H¢Å ÎÛNlb¬É†¸€JSVÄaÞÊ`/&†2}-Icæù—’U s%¥rLðëHøG.#} =áC=U!½À"o$d@l©|'ûÆørâ\-=ÒážÏšqbéY·«l¾ˆ7ÊÃØ8Þ~µ†æî›†°¼â– Ç]ôðX7°5ϳBÖ¿ž×ÈE!wDÂ;"_«Õó„^ÉBغ‘)Xp%ÂE$­›f×$3Ö_ÿJ.1*PK¥•Æï N•zñx¸*¿‘ØÍZ Û|è£î G³v,ûŸ™²$Ry› 3kš&a-ÙšEœ+:Ƭ©üÈX”´GDG'Â(w—!ȪÎìó°õD÷X‰Ý7¡³qRÖÌ¿g§§UŸœði(hùR˜úÆ ~á軩Zž{fù?ÕE§y>52mò-aÅUç$;Lî˜Ñ‡D„†×£ÀEãFÒš »é× ¤Y£e§µâÕÜšôOOÆ¡2A*UÄÈõGh1IâøˆÂ8^È¢ô§ËŽ6á_½¬ àø³ü®ÚzøØÙ„LŒc¬qI käÁ“i À×Ã’ÌTHDäãf3Ÿ–’_DgÀKò9],(Élvœ­› 3©/ ’ÅŒ±Údg3cRíJCLgÏ›8ñÑìœÖ–Ê*±·?Æ£†3Cè8ßé:¸ ˆ®Ö:”´k±êá(dæˆgŸo=™ê{¬ØšÐßã‹ëÚy¿‘ʃoæwùÿ}Ì?»â§ƒ—{âI¾ÂîzPH¢|6(N 3(,VØ Hë!H§™£À¹ò°„•Ä/ú¡–ôn€/Œ˜¬uìÆS½^w!OÇ"½†(}­TÔsEÊå·Å8 yWvÚÖû+ú'"„FfÃBË›¡içuÈ$æ¹MöX¹å “Øcš9Ð"1ÀøZûL´Ašþ¬´Ç°ÀÅåÀv`Ü;7pèCq<æGA–#;1ôýO¼ò‘ Þû“Ï"Ò“cÒ 'Î!¯õ4ïÆC<ƒP+è· F_[«U´AAjDö…%twÚ÷øÝ¿!%2=HãàIïè#7vH¢@z`Sá‚Þf+Öâ·8Æ:¯I³¹ÈÚ‚m-þU‹7ŒìåÔ{oê©7tù‰Ûk9“6\yýë’XyÃÉá(Ä”àH9/É ô‚+Fuvþ<_ãÐã?Ñé(‡wÿ<ßàГ?+½QŽŸ†›£^ªkY•®hݬˆ‘Ë™¾IäÛc81ì>¤M¯HÁt^¹°:lÆ:Kìtåef¢¼5 >rˆÊÕ/4ƒÝsˆ¥ +~Vȉ§¼\ƒ¢éR“øêT6%™ú¸2j(£Â[YììVŸì=ü.]˜_úC?Àw¯ÆCïwÁ½SOÊÍf®ï“»/'+Žþ×{Åôý>¹Gã­l@Ï)ë%sOH/Æ¡ü¹ÕQ»‘ ôT‚Ú‹¡ƒv¼Ü‡ßâÔO\²zZ“¼µ6O^žìîg¾ÉS©×’Ïæ~êåVéM5~–ü[ò³ÓmD‰‘Ü“.½ÌÊüdbÌMf-_JÖ«7[nQ©—Å¿D¹^1ŽªÇèµçRc¯ì!¹ è£6”.1Y‰óÿÏÞ›7´q$Ãûoô)ÚB‰$¬ðµÁ†ƒ°Ùp=›ä1Ž2HÌcI£h$0±y?û[W_3#Ž7›Ý_´#ÍtW_ÕÕUÕuhšŽV 8Ø3ŸlÊÑ÷ºlJUÙ$”m@a¸±ª,.,(”ê« f ÊÆë<¤àµØ‚Ûl0ò’^Ç,^£œB¦áA9Ê&ZÌnw±|„•NGÈœO{[«B» y“]xÉù¢³æY4Þrλԑ5¾DÂÑP9[ÅÆ]èr$Ý0Û«^­°K溩£m,\»ÁÍDu¥gVØs "òätš­†ÙsYâ–A?ñ¸g™e€15›¡õº¹fvyÈô1·7íÓ˜õ¢7Q}Œ¡ürÖÑ0]œmxòŒr!Š!æÔ÷8n"ìhJˆsȶ„7¿æ,Ä4èŽ^Rk’Üi5˜˜¯Ü"qËÓZÉÓ©ýcáT»³¨,á™›-Å#ÙÔ¾W6[†4bSêk´"³IÄãi›"ó4—P EüÑ)>i ™ú]ûZF÷»¶5ؾ«íûß½©Y*ÈßÌôî?j/ëÉ¿ÇVvæòßɺ¿·lda¢fíc)’·åÕíÒþ;ï‘Yg€s M(ùÒ|³(knœã3¹–¡¾sÇ|?P’ gl,S$fw¹ 1i­µ:Ø:#×t«YÆœš ›§ú™ZPÛ*8FiÁ_fÑÿIö¬™Fÿeý—iôM£;f{íÞT‚ì½§3!{kí Þ¡àŸ&îõõ­÷׺ÿ ºÿ ®1†IÁãó/Ÿô»äÿ¦]³÷v:iàW(miJ »§{\ÂTÒàI¯ï&%ÄmÞMÄ¥\‡‰ë €''Tøh÷Z‰ Æ=’ø”&ƘđT‡ãDM«ä@tžë8¦t6q 7¸¥öèï˜) €ùCÐ>±9É-‡=N0‡BÔƒß|S³—¸õ(¸ÅÄÇ‹`Ñm–¾ƒ¡.º‰Ç™O¦©·û ñ˜cAE‰6ý ÏfäÃG±HQ&Æ'wwú'7ÎÍÛ^÷7v<~O·&:gã (Ll©&ö Öhr|A¦àz1è ö‡i.Š >ú׿Ì7‹qX¦a ÎÃQû}„i0eaQ1æ©ìûÌêýܺ­f ÁF@¢¦BóÞß ³¶x àãB³ï ½í¬c¡è í¬³‚¼·4šbÉ ·ö޾Çè,­×­ƒö÷[»‡0Ù*gFgTßÞ{½µ¾¶®îMÑŒê­l];!3*n®Û g||²èRQ®ÆJ˜F.fæÌÇJÎdPØãû|²ó´’3IŸÖÎßJzòî ps}EϧªrŒÆ©TáŒÇ™¬4íÌ•¾ì†½p¾lvË~¸ÕBÁÛßÀ… i*üí¯ÏŸþƒ2š|PÚÓ:_²ø<}ü˜þ>{úÄû»°¸¸ôhéÙßàϳ¥G‹O?}ö·…ŧOž.üM-|ÉNLûL€)õ·ó…†ß~›Vî¶÷ ü1ÿC>kë@·Ž*”%«¦óc'ú¨VQÈ'–b 'ȪKÆŽ&é”ó^À"u薃ɒ÷§ÉèLÔ‚ªçUÅ|狪,t`’„moge‘~rô¾•ÅÛ;‡M1^»n'±ÌY8¸ŒF1Çã­àÕ Ýæ%ÙzµÀgÊJéhocë €ÇVJkëo P³ÝÓx}½€¹ð0|Z#Ž­H\¶‚¶b±ºò€ãÅ"ù¹Å?Ïž=[ÁÈs8âáË· ޶RÚÙߟgR~SÊKô0*+$ÚÛxµ]èuWJÛ…žn[‚ÕLlª•Ò«íµÃ6Fe+8!¨ ä“ä:†6~Ät-êž<Òa³àÙÚ¡†I!ÞÖ+˜E:G8‰‰ …ß¹G©`QæE{ã§Ýµ­õ‚W &mw}ûx£Ýù¡à„ãZ)í¿ÞßÞ“>Îr8ÄR–(ä°~¥ìÑ^Hót¥Ô9]0lšð1l<.Vu Od‚S³íñˆL¦JóxôðƒFBÂÄÈ Öëáñ¶®·@Ñ0…©ñ•µ0t«ƒtšªŸW}aZuiwœËàzûð–¶mílehYk;<‘ÄãdÕ7 êê4@¶AÞ¨>7/›·HÞ¯Eæ”>e„a£5¾†ª2Æe'I=‚£žµ¨ÄWÕÇõµÝ½]BƒWÇ[°™Lƒ½Ù_7æ#k<Ò5y©uv=ÏJb¦&d 7QK«@Ú“Ùê.ó­(F^ð5ÝØ?Ø{¡$I×¢Ò²$ N ìkÅ–¼˜Ó˜óyáð(Ù¦N JªÔrx·|Á¸¦ztI¤¯‡®ØšÂ&ÚÓ’ˆK¯ñVhN=xð€Å×QHvm1ZêËOhÜX°†ÁeÓŒ5œÅĘþRⓎÕÉëHýh›~¬\‡tÊD]Œätv­RGhœˆ2©‹— †Ì‚êWl-àÑÄñ«¯¢àéãú<îÓɇúù`¢$?0Q~|©(ÒW_}øûÓv^Q*ô»X’ Îׇ,<ñÑ’2£Ó~=ˆ>ÌÛBbôAé‚ýh˜Ô“ó¨žW_ê‚Aox„—óõnØ©ÇÉ™.Ïñeº  'UqÁ°¸SO&ƒTÛT^êÁtFÁu}2ˆ:qÒÚÂTß}Xä‚Ãø*Á !Ö»Áè*G &€3´Ã£§š)eFtàµ3áës(’í£<Ç‚d„ŒI€InA¢@֥⠊ˆl`À]JÝGE.Ãçª×?èè*ŒG×m8ÞŠÁ¨(ßùŒ+Ž&—ÞsÈÙ7 ë[†ÎØPô›Fõç(èWïUù#'ž.-Þ “¬í‚Ä,±yGÆI£1Õš=VǺO.™&Þ«HOÅPâ#'_¸Áw*`ÇB¿:Rùéè pA ¾zÊgegÌÐ)›ž“%™Ó3bú¸×~§˜t;åvÇA[»ã”Mwçi¦;Ì}ævH3¦Sºä å­]rʦ»ô(Ý¥óüîœgºÂ‹ž*6`:e*Akj„&º=ò.í6…©v_°â’ÞñÞðÅu3€ÞÞ*Ñt€ãétÔy§#Ò̳g+|IÐ>&}ËL6þÍ/rÎkžD!„ÿJü@x(عK1Æ+§ÜðÜ+dºaH%Ë-k p+ãtH²—ç…hÓ"Û˦wÞÌò<°oó ”8à?ô:íQ^ç (¼˜#aJýTmPfw%’[J <²ìµßÉŸ\¢8çPÛ‡@2ÉÌ6XþXF™ÃkÅ•1–™®Îo.Óºn{‡ÖÐ-Öc£zXð 7?“Âû´¾^)u:Õ‚\5ø›koÉ;ngÐÛÎåaLºEIu8Vuá؉ÝÙÄé‹‹~/rF#ä£Ñ5\ÄÜrÝÅÝIzwÒ¾i­ßæl0•·ØØü»jÁÍÃve—ml->Ce|{ˆ5_UÜ’U;’Hâº“Ñ ruèóéÄ©/aß_zw¶+¸£¢_ÔÐe¤Í¿Ú+‹©ß 5XmG÷è¾–˜èaHM;­WÐÀ[î›éX5 Á»šÊÜÌ¿…ªì¤Yy³öÏV{gm{{kws¯šW¸VøÊÔ›5z¡G³ s+s˜à—âj§Hd¡v‚gÏRÑfÙA¹Á³gU{Ý•:K@¶¡³ßè~l¦_¢n£ÕÂû·Å’5ž¦DSåLЄÕ®¦È\¢룿kÒ£ó½%°“dÒôvCØéY݃:)UøŠ® ³ôíÁá\<ma4}_Wô·Y1`4)íFÉþ ½^rmC'¿T=›+MBç^SðÏà) ö–~×ÈÓ¸ÿúñÂñl1€~ÜcðgA2ž1ì»vÚ(_Ýi˜û¯· „ÁþglÀU8ƒ£_÷]ŸUþPâ–åý½ã¼Ó0AtË&ðHwÙ·Þ+wûŽ‡Ã§ÿ]›˜fä¶Mœ;v/ó¼üGíèÂýäg-TÍ‘C©”NˆIXb°Ê(OÎÎ _͘N¯†÷4ã°×vzÅÌAžg2{ÖLÉE¦´g8ë|³*¡\†ÿi$øo"f8œÿBò5¿|NràÝŽG€jÃág Æ­çŒÈmyZ×_“æ`nöØy4ZN¸×f’™ Deì{øÞ}­fwX÷/%ðNéö¯hæƒ"ËJ¦ÿ¿>}¬ê¿RnÔ•AŒ®ãËQo¨h©~ÅD œ „ÅÆ_Ç“A¨¿wñ–æ@E†ãÑÌIùUÒ &‘Žñ׳Q®8W_þüPsHò¯t:§rgêÔ¬­OnجÁ3Ëb/Z¹ŸÅå»ïP¨£ÎÁ‘3ZD3Iå¼3~»²Ã4o³GsªN1~ÐgPž‚ô ³GäìðAìc8ÞÂEçÕEÓ/nY#á1V¼ÔWThN£µŽ5{EEFÀΕËàv\䣷€zEâÈ}ý$ÞÐ}]'髉”ˆfn‘œ"OÕ[ö"§?ìtHß?ôÌרÌ#¢œÔÉpˆš¿Ë©–Ëù EN=ÿÀ…ú¼2f Þ|ˆû‡hêÅ35ÿü£Ù9#ùÇpÔ–Kw:f…áÀ\ÑÜÉ/žÕ̰óˆI'gëuœ×q¶¥c‘›Ë 2™•¤¹€ru¢ Èxa U}Eú\‚Í:G!F`§Ø5V_(íï“ñú5äâp–£ðŒ Æc€¹þ¡HîÐ`Jýq¡û‹Ì8 hNÝV:ñœ&;3üý}ûp(·ÆúÄ)bçH›œ°1*O ópX•åÕ.8Åú¾ªÃx8Eq€.Ï _åô¼oÙžy¾jÆLS* ¤pf \T_2Ø+x ñø£÷)³c§±^×ó–Æz@،ɑÓWŸàËæ×LÝœS¯˜®ŒòÚEãFª†¯§¶+6©v¤˜Ö.b™ÃZKº°LìÜÞ ÄêuÓ-ÒÉDøÖÄZ<ýØÖ“Æs h'(˜˜ø¿”Ñ7¤ÞÏ;kß·Ú‡­£Â[­«‹ÍÍG¤×v”v¿‡]oC¥.DiÓ]¨Øæ:a?ˆcªB¦LNgÔŽÂï@S=É‹íM\°©©¾ÞÜøã…ªÇðg¾±‰,íIá«™Mq1©gÛ½aɽ©ëäC[O[›`¬ëð× ÅèCsL(<âðãø¶T)²æ¢ÁXõB<¨ÐÐÒ³¢C—›^Ä5úqc…œÞ‹’F`Äle¸Øš7\Eã¶nÑmË™aUÛ¥Ê[ µün¾Úlž—)J-C JgEœé©•Mg”!ñZ˜3¿3ÂwºP¦v‹—;ÊjÚQUCŒ¤®fÂgTeOö®Á}8àÖÉ´Ø„„l6Ÿ=kÿp°¶¿ß:8¤Ûk»¯ÛûLJo*öÊ»ZØÄ›j”¬8àcàtÆÀkEn¦!¹C 6±í7Πýƒ¾– vÐ÷`ìüè¿ïé¯ìz©Á–4oÎÎÆÎ×+÷;0¤a_ç¬[g;¹ŠÆÀ*…@Ò†#Ïõí̼Óî™s’Ôá+{WÚ+y&6†7&Þ—á K¼Ew&/Çå†üƒ¢ ©ØèœJ"þ;Zh$çQxZ|…|&¿ûÐç²È]Ò“Ãã]äõ(†3r‘h¹‚ój¢³Çè“sJOÎlHís‡á ô]‘®ñŠq+c0!tƒsh ™SÏwLO„› x²í t==X;ø©½¿vôã“bYt/>¯<ô¤ zñZ†C Š¢Fc«ÜWÚ¤ØÎ^·-mäùµ9`º5³–› w(³ã\/Bbuæõ—ò‘‹SÖ~X{]m‰øñ›“dÔìÅ GÎÍä ÿNiv ËX“¯æò:b7 _y×õÖŠ™ó÷ô{ðˆ_ÄÖˆ€µ»ça¿Ÿk0å™ÞiB)Â6<—Ã^¿ÐŒ¾ÙzuHº´È>l¡'8ùW¨u¤¦ì–_TÖ˺ˆþχÅ*[RÂLåeÿõo«?Ãx°#woq³@i~ÙÇôLÁbóMĘ̂>}ŒØÒÌÞ¬z5KòMÔ1úGj¿àeñWØÎHÊ[Ý­¯Ñûþ³î؉kd^ÌXc÷ؽbų³öÙ6t ˪¨Y±Líb}›Ú1¦ÖS—}ʺ˨:¹hðYxíÀS)œyÉN&sÈ Ê,©S Íî_™ˆ‚Š"bQøJ cÓ†ÇK…Ònp*‡ÆUåßG5º·oBµæÏÄ5*ñºýIÐVãÏ…pâ%ðÅiࣥ™xé¾îDƒ›˜¹Jб×_8ûgÀYD?Ê’½McQüSð¹Øo ù“Dóâ\!èÏJjQGü|)ÕÅÖ«¼:¸ :µÅ[­÷hÜY Œ‘Û6‰­ {÷§”ý—œqâÿ“Ví˜kݶg”:fzŠá¡²zˆÅ¬—Õœeûvx¸mKû‘¾²>CF¤´ äHõéÎxb%#qú¤\7'Üþ$,v$‡tˆrjñÖ “ÓgÁqÐò†®U9r$ü)fA®ï°Ô™ëG•¶¨7R u„ vŽQ²#0“2kÆi.J­ŸkrgÆô‰ŸRÚäŸà”‡w¯?<´^‡ê“…ëÝ«Ÿ&^õ[ÚÎ\¼éU¦ùþ‹ù‚|ˆrBL~”¿uΞ=ËjÅ÷=Œ@ ¬ÏRçËp"xûsß}xú×6ükþ9¶¡Ý…3¸ÿÌÖû£Ù}øê†Y¤»0âîvM¤o…€{ο6ʹøùœç.ì¯;ßN:ÞAŽJCXÏÂWiÒ ï´M‚ݾ9$á·óóðr*I¸ç–tv¡s+˜³©Õš3€ZŠ‘vö¥tŽX[‡ö¤‘™ôç»vêÏ­×.÷›¢tíüùJ—š6y™r™™L—ÈŸVç>BO¨?‹š¤¥Áe¶aÛlû}òÚÌiø\yÍŸƒü)ð%7wü¹ÃŸ-½ÍP[q¸p¤å§òí2 zLïÅó2Š' Õ#,¯f)ÏŒ¶E¸Ñt9Á¹{o`ª2mÆglU~™3ïÙM™U¢±Öˆ e‡Â<,’„bܼU™”ÝÌ©¨Dé-+X=ƒ»çÿÏò÷ìÿ8›i~ÿ?V@˜MŸÿK„;÷;(<¡ÞsNŒi25swÁ|ŽÉ*Y¦ýì„ÝÐîÏ3ñ§šÝæLF8PÏ7ßäS>·Ù¨9K„”/°ˆFV²f'¾‰J§FñdLº}düûQ‚¡V1éR¼>e|¶@fQ&ígä‘·TѺð óÊÏQËÒL“cÓRþ·þó÷°~13÷ÃFdëÆtбIkÌ)¸û ÓD˜í7¹îŸÆ½$ÕèµA–]m†£Ú=«oÔvpÝ ÔN0‚ªÃ cð{ÌB<Îa„N¯Bî’âSSÅþ)Ú<ÇÒSÁŠT=µ<$XZâå«3LÌiäI™F ¬[a@ô]+†ª©¾~Å@SÇù¥ $ŒISžÌFPLõJù&—Å’÷[ͬ\à7µw9ú?l&£ö‚¥ä‰uó~É»t¡Ûì]½;7Ô°íNûÆššð6ˆlÄÉÒ8HxÛòk Î[PZºƒA³.tl“pÁÝ{53·€HÅ“¹ô`nA¾/ä˜ÀQ‚ç„Ú1*L(M¤ìÌ« Á­õÃ4Qt%_;^$¢ºÛ uDá‰Ï¢a—âæâÜqeèCcæ¨gàù}0nî>HwÇÍ‘³-œÏ—é÷¿t§KG",îe“DõUÈê}Æõh`ä¯?ñŽ—Ô„F'M ué:kÙP_341+¯Ø‹l£Ò¤nÅÉ–Š{‚³•_c|‚dØ…é U¦Ùvc¯=m)O'>Ò“yêPߌÍ}jgOœ†”‰ªjÒ2‘kŽidJ¡öá[GëoØE)³¦)w&›Ù)]~jÁ[àû:ßÍÍ#Çâ^ª_íð…4½Ú³á/5ï«æåŽHv»ZýtÎÆ_\id «3Âö<½zÚ,*“ëÌš0ðˆià¢ûL½À~}ñ1NÓ‰Qki¥ ÒшÙáÞ¦Ë׳@ý´’Åó¤ZG¡Í›*ô\úպܫrZçòoÒzà„+øgU{¬{èݱjíj^whO'Ò¹U!âô.áÉ©VÚ-rå+Cš0ÍP¡?KÂÜEânŸ½}Ü=öR•óÒF¢¼j6W»হg‹ò‚f7è,ý+ÆzFü›²N9 O33?eÞ‹Eú: P¥Ã…|8q%é¾l\ZHgõÈ¡IWžÞÇ»ÑqòH [`ô=Ða¢Q±MÔ‡[î嚎ƒBˆ®»ýâ:U^Z"Äp’W/Ú±Øiª™ÄõíôeUïÞÍŸÀ¡<_ïQkó͓ŦEÊ„¬²l“BÿáâÉS!0NÓÊ¡V:¸ô Ãtt½M,Z_j,6Ñ×Kθ)U©25¢ü ^I:µo~!ŸyžÆ:{÷þA’hÉÓÉÓ¤sÿ%9þY$GZ¨;»8M½ÉôN:„ùïp\º ? ÿ´ ù¿ÐPÇ]£•¼>æ¿È> ?fñÐX•ÓJ÷¤~Qx—z|[Y{ÐÙå)V>»<\×™—™“UG šâ eòÎæ“òÑÑ ¬gU˜^]_Uú—tÞuNº¤!ûê¹þÃtÑ5Ÿ›”1±!ÐcŠ6…­X¡`˜½¨{×Lv%ÝGEÉ$Zt(©âÿ"¥)š^Ñ“†2ÝýÊäÍêo¾¤Œ~ }{Á )‡·*çàgMiüqŠŒKâ¨Å°øî*ˆÆÁຠb>üÆcæxR~n;)þÍaág5:Ä—aH-æÂ¶J!O@Õ½3Ì«#žú»8ÿpÑmO=`n·7¼mByh82wí´æŽWò¤ùÇý-‡dI½”¾ÃQwD½h|MY®4É —Ñ(àmBA?\Y˜žhÔ‰dæ²BÎØ§Žµ¦)6u3ûv*ÑÞßâŒkkÅjêðBðÉ ¨˜5Ò N'±éÜp§9psäÇ<¸[nd¢Qb>4kRÁtÕxÍ,“« è¾Ô“go}êB6£K/š¤‰œ /— ö•Žõ¥Ô|³æF3NJ• 8#¦8ót¦'ÊHÞN¯2 ¨âñÿ ªê`mð q!,78‹Î1WY<áê‡IœÃ€åîn2•¹¯[q­´Ì…q.ÝV<Ó$ Ó…e´8´âèrÇi’±}űÙò¥fYÓlIUÙœœ€(‰bòÖîëeuI™V*YxÊ‘+ÐäbÅÙ¨”FÏyÙ ÑÖâeNÔH<ï.È4sI[³O+W&Ðm©ø;'!ê”#Y?oB¼,])îçÐ73—ÀØt0r#Ú,]7`ò×5úu+µsèÑÊag2F¥qÒÀ8‰,6Ü­m\2ÓþIá¤B¹¦Ñ4ŧ÷ïNª·wJÒË¥º„û–z•éÔg@cÅ9p®˜ÖA¶/ñmçá dâÄ!nMB‹8WíOÄç'fc´?ˆˆ8ºég™'Öû•©‚ÉÍ/íÙ}©A í¯Ìk‰)öÇN@wç)†ÇvfÞ[õ²ó´×õ~¤+âç–²´Îëë8ýHï{÷‘Þ­îp·½XWžËi[4Mù]ȾL)¨òÞÈ\x³ã{xÝFš¥g(ÖyÃGŽK5;½ƒ0olÞSMÑ3Óë?ÒÄÏ^{VY¯9î%jj—ãN¯ïínn½nonm·1A(ßW˜Ã²q±œó¬ ÞádÒZï*GQeë¾9þ“iÉ-n®Ið xx–@»·–à^øÐEC?|çVð4ø9tÆ ‚&Z×Îmº?\ôÇ?ÞLyŸî á©7¡ýà}ØH®E½7vÝúÉy•xª½ã£ýã#SÏýxÜRß‹JœI²â\*á 9Ü¢›G j4yŒ¯GnÍûaÚCö ëóf­Ms,µ±L[ã¶ßGƒnš‡Î¼_YÛÞf†` ´^| ?š÷þVh”™Ç¥”;'PJÍ„vÖñÂx«4´³‡Àuß:Ð|¹aïè{ºHyÝ:h¿µ»!2DfÆfTßÞ{½µ¾¶®îMÑŒê­l];!3*n®Û g||²èRQ³WaB¹˜™3+9“¡Nn®â²ó´’3IŸÖÎßJzòî ps}Eϧ’û¯©T%~#8Ñ´“Ð×Ô‹KOýmqqéÙңŧŸ>ûÛÂâ³GOýM-|©ÌúL’q0RêoçQ0Ä¿ý6­Ümïe0æïÈ';ÞïS@$RŒ³Œ‚ º—Á` ›˜%3¾¯Ã«–~ôìçÁ¤ÒZ X«¥ [b²Vÿ}Ãí7”:BÓÓ¤3ІcŒÇa8&QŽ,„ÐíªV@ý‚”&Þ"×ì%tâQ6€…îõØ’|07ä Œ¬QÒ(ŽÐ(îõâ+ò¦2÷[®|ií—øËa±é·f®é‡á¡_ö1u@覺Ȇ½PK}Ø:S˜\È6îù™]ÇNâ2 ;ÑÙ5Èß9·s;AºQ8]×YmàØìÃ9¦¶·^ml®s`Õ”Uæb»A3*6Q#78‹k ïdȪ¡w&}Τ…/‚eÿî­ò_ùqé¿l‘zrñeÛ zÿäÉú¿øäÙÒRŠþ?]zöì/úÿG|æ4O£A3¹ 1L0@ÕÍ·íÏG†Æ#ò[CoØn0PwF•ˆJ©8ä u6ŠûêÇÅŃ'ªÒÆÍÉ8ê5¹r¢q¬‘\Tkêê" uE.?=¨‹Î!D‰H#ˆ§ªò¡#„Š9ÔU4¾@šƒÜ£!Úhƒ¹sú¶¨П {ºn^UÖ«jñÛo«áá ‰GãhÒ§2ûáˆh-û˜ +=˜€)±1U"ÒÇÎE0:kx!­Æ´"¨‰<Åì.ä|ʦps씊.J1œmt{9œ’$îDDQ=B)9z*HF‹‡R£XÅfTøpí¥_Ò {ß(äìÃ¥¦X§$@òº‡¯´ÁóEÓ@Gè=±·pòÆ]8RàoHƒNNá<¸¨Ái€Àဠ)]Ìi ÇÒŒG”ÿ¤—vÃÕ=¤R”a 'v,SE-_]¢x£‰Î&£4˾“]8Èbjõÿà@Â'cïˆÔàÌ^èKDȨ}Ä,H„Vê®ÅÐ.±¼J.×OC¥íXñ^|Ž“¬É¨Fœ¨ð5ͨõÒ äÝ0ž½i©Ã½Í£ÖZjëPíìýsk£µ¡Šk‡ð»XS?l½Ù;>ÂK“ƒµÝ£ŸÔÞ¦ZÛýI¡ÜUS­÷Z‡‡jï€míìooµà)›Ømí¾V¯ æîÞÛ;[Göhš`[­C·Ó:X?×^mmoýTP›[G»wsï@­©ýµƒ£­õãíµµ|°¿wØ‚.làÝ­ÝÍh§µÓÚ=6lkªÖ?á—:|ƒh ÀÁÞÙÛ=Ü(Ç;êU º³öj»ÅÐa,ëÛk[;5µ±¶³ö»t ö Þã.©Þ´èÑÖ.* wÕÚúÑÖÞ.ö ÀÏ îàÈTþaë°USk[‡8›{ÐÎ#ÔØC0Xo·µŽò$AÂyö—ŠáïãÖíш¼ï¸…y5[:!²&}“öFTbü!Ãp5ú¡Æ—¬vAQÌwFà“C(@Á€^1º7_E:_Üg§|@Π²¡­.E¤ Nôú<1}ÉЄá(‚W£fhnOGÑoBiF²÷tOö–ÆŒ¸r¸©8Ko»=ì€<7*TˆDöhfEH, ÄDvËW IŽÂ3t»–L=–ž×$á%ÞåÏ©_PëXVQŸ-8û÷»Ìæ˜É,u©£{>³¨L„0®È˜ŠÜÆi±ÔÀÄ* {réN&t©pÑ©BŸ,êÕᆫ@”4ÐZfI¶¯ƒqç7̘¤!  +£… Ï yletÉ6’QÊBËS‚ѽÃrb ÈAŒbJlìmáå5NiBp¡P³çÌ>–݈ѕ1h¹®Фð¸ñ‡†4ä„^+$·×Ø&‹YâH7ŽÆ+ÅÒGÝVý¦Híɧhm÷0wånA†ABÅÄ€‚×èÞŽ…ž#c_ÂÁeC]#PÿG‡íìü“Zé_B;¡~º¾OO;C|zç”yñfgoƒßácz_ ìë½vå5<¦×ç# öÍëŒá5.‡y}xt°Å¯é1¼õõ»ƒz1êÃÓþ{—̾QŠÇ€qº0gXrúhÝ„d‚ÃÊÃ6°ø×¹Ó§¬42R~d­•–QÒ+’|§ŽÊ÷QŸër§Uý zzé·Œ:X²›ŒéO4Ò)oÈúV}(–é>þƒz÷–4€œus‘¬ÇêªÒ]/ñб×drù+Îh0 )¼X½[Uº¥ñ­’f–îWUî<”0{mªæT 1Ñ3V2(r? çDOuÉ Òý€$UeÖ¨d°í–Jã•yŒÖ$ƒ'æ1‹Ö2 5Éh&¤S’ÁÇp§w‡6‹°å K•ðЄ ŠibXi‘‰ÅÁÓ§NÜc&YÁxôNÔ­U|ô÷§HœD2z óóÕ2Óžj`hQ6½oÔZ×±g]N'¹’,raO‡h€T¨4«W"Ì ¾úÍ”ûGТX',ë;;‚)¸l7 C¦¾B{…¯d“‘!È[¼âƒ:ɸh‹~¥÷ŽÑ"»µÑ0ûËPk+´ø‡ s°‰2¦ØÆ^C‚Ó¡;ÁQØ/…÷‡E6ÙàmŸøeÎr™2vŘ&xì¢$r›ŽuÒdQ2ÄÓ ËY€©… ³Ü“D·Uµ0Ëó写’3%KóN}ú¤çˆ™e3vͨ Cö)°F8­´^zÁŒë/U268*`=èÂá‰RlD¡| 0¥Ë ô3¯ÙÄèÉC­Ûo4i,~á¦{.§%œ¼×ɘò…š¡ÐñÛ'È‹$½ŽfâótÕÄê)P̘ÃßY7]å ›1!&üÓüEo™ì_Rc£áÉfEª x¢Âþ¤G’>Ž FJ 4`x$EÚf¢R®ÔÞþÜ|7_ªÕž'µ&ÿù¹TkÔÐÞzŽØ32Ûfµ(Áw¦ÖÌ*/50sJDº`D,* …¹Ýƒ µ èÛ…~Õ/ŒytXæèð}4„I“,ÆÄN&šÇ$“ '1qhJ˜I% ½‰Å}kóp¥\øª\À/À ÀŸzɾCn ÆW%øÇK. {À0Ë4èÂ’c‰&mgZRØw ªQ ø×åò~uåL1õÄ™å—Í—_¿§£J-ÓM7JZ0ÌLÃoo£Y€|0úízÃgÅ´ÞðÛ<0æìêu–aÇÇ$·Å€m´¡IÏBw²Ö¬®Fgʨf FäÄW g¢]6%Ml¡HÂV\ʃ]³”gZ UÊ0-ì;8ïµùK¶¤¦Ô,–¨;bÉÚ!jNœ.8ÇBT˜¡:S¦É®’àÓûÐDëPO8Á@f¨7ûCf>ˆÄ!{Ñ¥}8×|š®ÈÖo¶ñ¥R»ðÕ¨ï½õé1ʺ£`Hƒì… šN†¶9 /†‡[ƒ‚@±2’ÁI²Rúî¹õùxÖÌŠôå›o¨b+.“9+Õ®ðóïªÏ©DY-ª%µøH->¡q£rŽL8‡×fv“D»G=“ùÎìlâ lwps´3r…™™º¤`,8¨æêfÝBŽ.qÝÇ“X—hœÈ Š¤º‚7ˆ5Œ5œ¢é(véê"î!.ÀAù÷ ›»“f6:àEX8Å#QQ¸kêÿ&”ÅInxÂC¸Ú¨:m«bjì¹L[ã3IÂÐáùï q³à܇ÈÍîÏÝ©\˜à]Øð’Ïn-1¯{‚yÕh™z]£™q¹ }/ þCˆÞÄj šì –à:U ì>¼'òœ¬ {½ŠNwbîQ?{ Y½ôBa»O1ZÂA&YÍÇç~‚':>ŽhI3íæÉаîtùú)¢Îá•3–Ú¥ —¢ÍrÈ …./.äÃR9KádÖI·0¥ðÒj³^6RóÓ'[‡”Sê²’©ü‘·Øÿ,=yš¹ÿ}ôä/ûŸ?ä3§^36ɧ/Mg[bÌyþ¤˜/‡Ç››[?¶Õ²û]5bÕè¨ÆüÿÛ(ÿ6bØw/Åtý%>£'¥Êæ³gUØKÕá¼{¯;òz}ß®ûoïÚYº69C>d …—‡­£öÎÚ÷­—…õuÏjqæ¤O©ï)™å¿TÆÓ ¾±§\µ°¾¿Ÿ†1¾,hYïñ 0›ž¡-–‡izYØÙßrßÀcöy‰R h7‘—ê¥ãÕñ¦5Óœ*ì´Ö·ñªLª6׎ö6^m;Å‹ä¥Bçït÷ž={)8¼ÇfŒ¦…ªkïîíí¹ÅØåea{#½½îKÈÃ{ÊÐ ké ÁŸ¦+ˆCÅË{ï¹Ø£âåTËTD#Ôññh#3vÝ»ÍLÇõZ¶Ò•JœvF¥Z€^î½úÇa¦:¨Uï‚ôNH0¨ÓFçÃô\g˜—¦ˆeÉÇ——…9*ËŽŠ©µ²4/BH¿P $J÷P;×¼Ô%ôeJh÷[Ò‰WÒo=sÓÍj'#†Ž™ÚçHÀøôŠ üªþ €ª236:ÿÍ ð¯ic¶ýœÿž¦Îÿ'KÿuþÿŸ¹Ê5K݈ â ND]P="Õ(_ï‡hP#æ ]-ÓH}ë„„J˜L¼Žv||H‡}ŠA=0¨yÄ °ã¡‰½Zù€±³¶{¼¶½RTÇè]€ Jküú¶~Qrzö†ïÔÛø‚=ÓWß ʾt6÷p ä–„pTç Üº¦¬èÈý*b3#äïYm?Å¡"w~1­ÄÚšÉy3Îò fÞYj¡†ä¾FI¶Ì½@™´Ò™€¬1W­Z©  Å/4Ùx<&¢†·:û+²Ãð C’B0ù`¯ J öþñ¤Ò˜?©ž49öaù…®¼ ötÆdE@ê!X‹%†ÁNãf®HÍŠtÔá2â´M¨Î·c¬$$OÆ$^'ˆsö‚W¨R¬_ ~½ÈˆPTªE„RF.öŸb1 Ó]X|ôäÉÓGKpþ?z¶¸ø7õä_Ø'óùüü7ët»mرÿŠ6nYÿÅG O,ÿ÷lø¿¥'ñÄGó§p€…ääpUÇxoãó^| Oâɨª-Æ’=ñº,® ’+L«0è\hËWkšýëÕ¥h$Mgò’ƒsàMЪróÖAkýhïà§¹€F[0%&fäMTªâ®Õ¢.Û°ËEejCá·È˜Ä”v×vZÇÛ-õîÝTQ [íj«;GÑu–6BHù= ˜”ÂPìÌx6Q¯­-…Qv†ƒÝ-þÙ:@EÉÌ ù''À€:RZO€üäáãÌðÿisgÜ>¹½_#â_;>z³w<Ýí{Sç^'«UeŸ5Zk;-õâ…jímP-°öºÅ«¤G­ô [•t#X§€(ˆì³ôÿ€cöOû±ôÔ¹h|iÏ/þÜ&ÿ/->NÓÿŧÑÿ?äãÒU(ì¶~t ¸e%¥ž›3ˆÆ Ø®€aoÖà¯`äl¾S“±Ú×'Íùe¬Ó¥h±Ä_šxRp°sn^ñD—8¡ÞñIæ<,ªÕUgÔJÑ2q—ðš—&@á‰m¬ínìíÜáâ~à) '"´  «øÇ“Ó4–Õ3™z%s 0R¯ÓçúžÓN´zy3Êy£Û“çTº9WSWRI¥‚M]‚fŒ¬Fd½?Ø·AM~Pù?AZþïû˜ó_¬µ“Qç ·q›ü÷táiêüºô×ùÿÇ||ùzb=$’Ÿ¹É¯Ð­'«“]q°ª´œoâ.VŒóprv}àHœYGƒm7i½£OVô«ër §Ú‰{“þ#Q½–•R±^ BÊFksíxûèИj£ŽÑí­Kㄆµöðx§tJ:¨ˆ_Í­HÔ©· ðÄ=ráb…ô"ÇŸï¸:h,pš$Ó¤F±J¦™&K¤í6ÎÓÊ/@‚)@ð¥Ÿé¨CçžS’2e –äŽPúëÆüwKÐê u';º>j¼Çp:àÿNøë|UýRVó%sp5]‹ˆ¾Ö€Î¡mNÙ(±G ·ŒC‘+:Îà*ËØƒÅÓhƒEº&<Ö´–·%ŒGXâÊ¿HÉçÉÍ™+4Ýú§IqÒOQÿûö¿¥ÿ@þEmÜ_ÿûøñÓ¿ô¿ÈÇ[ÿÎe²Ôé5†½/ÛÆÌõ_zúÄýÌù¿ôWü—?äƒç?¦˜À冣žª_¡Ó×ïù`õü[íÛ?ººÁÄeôèNà„\§`Ûñy¤uâ7~Rèîö‹° õeZÿ=c§æKáeDZZµØXT¥š*mãpY--,ú Õ‹³u×/;Ã`ЈGç«5â˜ät½{¬^ïo7,ÌÅo¿ýV}ÀŠoÆçaO½x†_ŽÂný4¸? įЉ$rÓǯêGëä\1D—Óµa¯ñ}|Ñë‡×áè%Àˆ;a¿1š\Œê“AT?…ß“~c&Ðã”C!<ç›ÀB./¿Ò‡ù¯Wâ*‡Á^VŸS™×á8Áååíx€7³Xí±ˆ.t\âòò虢¤~õC¬Üaû |ƒqÎûºÀqŽ–—‡W] œ‡ãáô‹ˆ9÷~/pð™dèä ð’§¥?é#~Éצ¦’!œùž#PƒÈÅkòy$K~vavš¼šˆ-1œ4† âH¶„ýèË û³QöÂ>ûº (I::gb’cy4Е ¨ˆ¢ ]Å£^—\]:è!`­"Ø/ÈDÁHp 8€H G¦ÃtrpŠe‡Ã†ÉSd|HB/ò:5S•Ã^©¿jˆ‰6‚Сãèç4§~ËÈ!³Nÿ9ûùàüQT‰·<ðí˜"x‚ÎZ½ëšZÿç!Šó¨Æq?êÌSÂ#ÝKò´Ä(v ¿-ÒÍt ý,ÖzmHüZå’ÐrBI’ÈÚAº{…#J Èó¿6`§ }í…½¸ºéÙ;ô®µÓ‰a—ŸbÕdþ4 Ïz¸ ¼ºÐ¯5¾E:%É$$?”QØ#)ŠQ~hÕ`sž…hâ£ô„R(?̱Sô}ÇŒ•ù7š3dÍ´ñ“ñuÏékddÛÄ4ÂÀãž6»Ð/^Cö¡XN™xÊcÂ=ÞÓŽ¸ ¢i{6 :¡c4F‹w$B¸WpsõÂK `¨Á&·a¬ òc?¡.ç™·Kº²ªç¾ÚÂ__5æâ²&ØÅsî©„‹*€äž^eÖ{9±iÆÎ1S\|€Q‰aÃ¥¥´Ÿ¨Ö8è«5ÄOŠW‰VvÁHÓ*ÖcÔ-ŠòäUX¾ Y‚DgMq¨—ã«(1Öi4~HŽj¬~ΰM5JÚŽ{Ùñ>œsFÉ'Ñ¿Ôë6TX·LFoéÝ„V…=ôžâ@àè…5bS8ØU¿4š°àÃ-u䃮óØyŒ¾åD$h$Ö:…äÇJ§Ä´Ï`Ò?…©Ïèò9Q•ŅƇ(j,<ªb(Ä¿¶ø N…±øíÑÇQt¶-­šRø”}X§ÌeíóQpÚ: ùÍC#mܦ죿SY\ËÛà.={F˜¬!S8©FmX±6i]ìçÛÇæ„ödІcpêØ °À%ˆˆr¥åwÂ+›\÷OcLŸ»¹eGÂåwá±§¨ÍXÚ†ÕFû, 鉯ތâK .ÜS ù §ûyô”Ö‚éÐìÕx¼ôXàÂY;_ó¬ÑöÉ™²Ó_¤€8½mŒ…}H÷ቅ Ç9:éµûÉy{œ³‚,Ü~4e^ÍgQãÎõ•憦}*eÑw–"×¶˜RX÷¡bò6«\°ˆ¿PúxŒ™¼Ð9}è÷Ú°Õƒáô LìSÒ›Œ2˜žÓÐ"íÕÓÉ´ šî¿VRÝöA0!zyÛgññùiÌ׿Ä4Q».8eæÆV§Ð õx8$(_/ßæ¢ýC˜]…å„Aá‘c9eâ%&¢L¤ˆcʵ'æ%p5p™ÿ êAFšä>'þ\žö¯§¡#Ü^¡gE×½Â^…Âät”ºâê]ÃùG!›!±vH:@Htxxal°sB߰˲ǢòçØq¸ÄCb¶û7 ›½í’!,ûüd÷[ZBßZ~.â»tkâ¼êIp›":U)žŒ‹5eòSàw§ Õ»õaëlêT^¡]:Æçƒ©ŒUc•½^ Ê3(#¾óò;6Šbè |®™ÿkài€¿ˆß6ƒõ|àµIo-íð!1p*Ýw;‹Vn8æJU6 0µ)«ºþ¤sQÇ ?˜¾* (y+#ç¼"§4 ÛÕ!ekJHìý~TªTƒšÂ\ €SsªÈw`TµmæاçËÈ0vÂ:'À¥ýfð¹šX€<9ŠpVªß,š,ê˜c5YÆVWàïdðÞDX2a×îzN)O1Z92%-¬‰õÛd06®, ¬g”¼À#cV|´9:~H¼ ' Õ‡h(1~Tqµhiµ‰bÄ!(@^ÃÂRÙÞµeóÆ0£$ )?»æ´tonã^A7 …çqL¬q8: :!Ç/s76:}š]u›Î Æ”=ÊË"3ÐtG£‚aÖ3óPðÎË(žPÀfšJÚ)ÊA‡ úuŽé‡ËdX:™H€ê§0¸Àd<ðõu/>Å£ä‡×í§n÷[ ÁfcQ;ö¨Ïrmy¸¢Êi•]ùyÁ¾þÿTÒ<9|x’<¬ÀŸ*ü…?ÍÒbó9)éþ`@©†'RÄ2ö‰+q!ç´uExýŽß îdE-"é!$ÁuÒœEÚú¹4Ájk N¯‹™-ÌåU>f1Oªþ€¨éF‡@)Wgaª6ÊØ_¬2<øÚFý\› jWÜû5<ª'–ºƒëÎ !I=´wÍ.·Ê/ìŠJ º¨‰¢ÃúhŠ4¨íu‘¢.íP´®@Õ»¿ÔxŸÓ!ìsèî?î…ÈÖx3 u4Oÿßûµ'²3ê|PÈoŽƒ1ÉÇtBx &C‘‘4×ԃŠ‘Ý?,–{YÙE5ÑtZ|š8tn 8}°ð6< ­ íq/”g »2„‰92DDh-¿ 4§vþ±*äGõ…¿×Ý’HHHÖÞó„A&D(]0¸&’‡4þlÒ£‰?æÑêIo}"’á!Àý8˜>†å!‰ƒ‘R(wÄeÔ(Ð3¡bµ½Òbn?Ønæù~$W]zÅOwj{ƒ‚ SÓ{¬%‡áw.Fñ ÖJ,8nÂÑwê­&ÇQB\êˆRnd ¾c”r_´÷ð…&¡2tÝp ýHÔe´7ìÄ Õ}ßLéc*H=¥¥réiáÝŸÆðã “Q}2î¡âùâ"í£¸}HOí*˜8U˜åÚÓ‘é½?á­…oÛ;ɹíëz˜ÁÙÆ8+!‰XðÅŠ_st¢öŠQùC$NÒX‹ñ¢ F@TÉ—-ÏA‡;¤£±*øXøª¸«ã#éþRowã6[Q‹Ï™Œ.€´7Îð¨<¿Gt2.:Ív%.?IæB!í¡ª‡“~3Ôêù8”,'ô?@ Jå´ûq=ƘAI2¡ø\„]aD^ÿS(|à8ç¤cœ“ÐŒ…(ˆ‹X¸Pz:‹ð[Üy·¡¥Ò ) ³•"7Ïñè%à=ž–Da&‰07—Áˆi$9‰¶ßð0V¤K4Èw¶U û®žxÐÖd#B±Mºtàô.ˆÇ:ô´0¶ðäbÒ0cކ!HL“) ‰ñ€ Œ1™7[‡{í — lÄ/‰ƒ‰·L$_¡à"`Ê ¯z÷ÿæá&êÍABªj sݳ³ºª­S8$Ô¢v!aÀ·LŒŽÖÛGT4¿6ïÞeøÆ^´…»¡ùU¾Ï­²\·÷ÎÚ?à{¯£*cÕe~ƒf#zu»8¾ÁÉm_ë o0 U¡x¯/~8À+ž\Ú‰8H8\9UP³H2 °&žõjÜ m¿¢í5SЛ$ª¢•‡lþTÍŸÕà<½øD'%¢ë¹µ½RÍíò´nã¹@^éÒ^ó)È ö ÍGy„Î8ñ>y¹IBœúüw|®cÎ‰ŽœCæë ^s{Ý¡Œ§|KE”›»Që¢dž‡† a‹<‰™¦¿ÞêK*c±¦¾\â0i%ÔW]ŸH\•° ZòívU1*â*ðíA½ŽÜ:ˆ %qwL*…郗í-ç¥^TƒóóìÝ™ªŽ0ì0ޏÇf…ÆÃØ4p@£n¿f‚$TpŸ£pÁ¤œ“t¢©7Š;•\”».“šÖõÂ3¾¿Â»+–2X´iïaʲØS€"0Íׂ.áþâ:ÿH¤Ûg,.·hœ”` ”Ý%rÑà2~O™SøwrŽ"± 5ÈUF¤¡¹5Á‡í^iØí¾iÞfªŽRÛ .E½3 f\ñ ½Ì®Ý >˜ûå®’HZ(Z'g‚±Ø]ÂûËÑtícÍ(¯éóÞÜB¥AÛÈ>úÍk´Éø!BYÂ㬿„NÍêÖÄiiðò2^ä%ˈ,/·PKqâr±Eí¾ééôðÐ[ጠÏùá×+¿Ÿ"QS'ô»&eŸnîÜn.sq«Û–ãë!΋+²|§Ê𫬖UåÔòs¿†îtñ–ñ./3¼ååÒG§±›¢w!×Wa†*¬Þ·wÓ+«ê$Í.Öî{Yà?„òwáÈý†« ¸ £ ßÃ<¼„*ΚLT}5½ª•—íêýq#\ M`=š F¥$G·÷ —næáÛª•4_^ã@×øˆHD‰­-iôÏP4ç§Hq¦’g5å´…\‰nú?Œ«e®MÇ'~~EùlÅÌÝ|D>Œp’1ëöqÝ3¥wþ,ܹö¬Ùú\XþÜÞ¹º¿U3×d²fB2Û\Š‘œÓ2½—TˆwÍä®”ÕN¬o•ðÚ§+:qŽŽ½8Öñ<éÒ;q‚ñè<D¿ÉOBR+¢EC÷}2 2Z™"ƒ§§v¤§Eo=št„6›%—‹@YøÐ…‰Qž>l4U•¶”î=4i,#¡I-SùØ\Nu– ãxxJ:Idé.£K9·¡ÀyÔi¨7œ…2hŽFhBfaÓ– GÚØ¯BŒÏ­sA£•Þ8ÑA­®Õ‚ò jd——Ùj¤R¬ 'É…±;LØ®Øà}X_ÅDïªy ùxR¬ž Š¡°‡dhØy£‘LHhF˜±MIPùò×_kþ@Á9ô²†*Bì›Í•’RʺæƒFÃê@9d#Æ” #&‚@6‚LòØ€U?ÈýJ/ ¢œõÕþ„Ü|Z_&üŒºqˆ×TòµÃ]⥉a IË9úÊýûñüó‡P_õN‘ U¬j€p"ÝýPºãçÎ —e@+z¼!»õ;V&³ö»˜ß߉¹£éEŽGXÃãýÖÁò2.ígàW¨NýèÃæö¼.€”Á¯Ÿë3+:'ê(OFƒ,ð‚ð¿†é0êm¡j;hË$Ý·ã|£@vtùýוÃÙp¨vÀk7§óX×…'ò@ã³Z©$¢tB-|…nÿpЗ®aÃ×x„°+®Žû;uÞÇÖ¹8PR‡;Lër(›ç ¦‹Í­8Jq}6ø—]CT{|¦Š_»øu"÷'ÔŠ™ œ NëÀ°õ@iŸd3Q¨+åB ÞÓYÉYnÆût×1È?”‹Ùýnÿ¦VQzH~ÝB„œeÖeoî‚yƤ³Q1ô¸Ð›èéU—­œUjR%ËŽè‹==¥x"¢ÑH|†÷.c9’°½I0tõCb>p|g}žÃ±‰gœÀ¹º@oqºcŠGtÓõê¿Nb²/À<ÝA‡lº8Y‡ÍÛbLyµñ]¿aØӽ¬QlZÖfR§u_¹ ]*8ÃpÅÝçlyBÙ¼`µs¯Õ»&5‚EÞÎB•ê>ì!PPž£ŽpˆL Á‹Š£„É JåçO'ƒjåíÏ«'É»ÆüÛŸ'ƒwÀ‹ÐøÖ,-––TéQó\xÎ}c¬vÄC“¾Ó jîM$]½±ë0~d0串è4Qߌ&CL‰ÉZi†ä*V´JÉ]»Ÿé¸ôœÎYKÄÇtÚÝg;Ì©7d“Rº82+p»_ɼŒ|šâfgf“5b(‰J‘‚)‘›cžΩBÁÇ+†«´"K‘„ب÷!iëzCúVãù»ÑŽ´\Ö”/¥q7„™º§Ÿ[/rÎlQ.yºf¢bù*IŸn<`å.\n'L‚IqGaÎ ´'Lúñ$a ÜdÀé®u&+29›é Y*L°[ ~­ÉsgææÎÖkÊœnNøšC¹°‘%SZr·Qu^‡ãïôa[S~`k<ù0÷pÖñÁ&„²^çÊI%5ØZÞÖüÁUkvyÍIüR·‰dÚt€Þ’"]÷³ØI#œàìCïšS]wÆhfˆkÚóˆm™@€˜ô‡’öh•än“A®˜Ó…2H{1ÝÅ<]6o(Ôæ²ä˜Ô¦‚!×Ga–è±P{}«¤9;Áöܰ†•ÎkÉmtAÖ[ ¦Ç‰È ’ äy9å+ÚAW\VECQ,Ó¢Ñù$Ýî&⾆›Ö0MÃ%95‚˜ÐX©£iÛ±À\!NE™'Óg¿[KVUÌzkÈòØw¡¥¢«ÔW|Õ— ÀeʨðWÝA§øG§"Íoœª÷§ç=äã¸/sf²z—RèIøqÄÃq§Ô!Löªº SSÅçÎËç{Š·¢šf/N«E[}ÀVŠHwÆ#wàöªcáò0®êuzɽ—âDzåêÎ ›v†cñº„£ã=¦ž«¡pÆ—V…Ô$»–i€„Ë5íÎ)½ˆ~c¶– $•R–¬|,µojêåGÔ«¬Ð½ Xé6üõR,³ì¯ZªÐÿáP•rMÁÿäŒÂÅj Ô·°idô­`²H¹ òžÞ²e¾ÓEJüç`,œ'qd)0:Ü?P­z”IÚ;CVÛê\Å_ ^R¨oÁtµn‡'ÊۓÕRÓŸÔIÁÊX"ÇÂbzñæd#²‹&SÆÏ¢ tQ4Ô8fãË™ƒ{mLŽ(Eð7ù»1Ûà[b÷´/w Ê8òÿ%ãÞŽ }» Å…"‰Ú l¤` ¥x¨~™"ÆQç}8nän{ýMÿõ1VhœÁ3Bu;¡Õ4QM ÇÁÈ/SU«jÑG7·‘ÆÛâÚQÑ»7ƒ pJùâ;’a†‚8õë•w08œÖä%ÃÉ­õI·¬% m’8ˆÅÂèœpïÁ0¡ ÏÓ†W²=»×ü™×;ûF·sjï}pýÜpf"òÕbBFØÉJ+X‹Ãâ$ÏøJPâ3¾jFÂʆj²+S­×Z`^“ wS9 ÿˆ'r/m©‚]¼ýèå™'kD‘œc×9`mi^Ì3 ÅEólä Í9”N?ÿŒÒ;þð¢÷cÌ&;üW-K)g=f´$…½OÅmY…b£Y¬¢Â oNs»&}›}8bÖVs&Ê=FmÇΩh~¡1£Ï9‘…·ìa·7ƒî¤/WávWÏ89ò*;ü,Ó‘búY–š?OmÛ2Ù`~óS‡–‘ü£5f3ËáaÞœ^tŠÑ£õ¼Ït¸¡¾CvûKäÍFºÿo7ZkïŠÓ{HÓ =¬ä3UwÊ~ã¡¡øÔVYU Õ,šqúä—AÞ“<ÎÓ¸U¹Ül¶æ$JÓÉ[%}«¦L8"£fÓ7"i²ö±tz“Òvæ0òS8ñ¬^3ËwçüÒimJGL=ç(8ÖÈ"שì*ÓAƒpdÓ…<ÜLÉÑ–4û'þÄ[Ð)¬)E™¹,¶š©( !}gÚ«%Pñ#FÍQ¨çpo¹I{`õ/Eùº\ôn&øágÛ¿@·IœŸ©à=s¬ BêŠÁ¨õgiúµ›-À‚‘Ø*¸ˆÔ(¹y`÷+Úä/2s4ýä\ð-U *[RƒB0æ~Â*¥‘{x`=BÌmÞúšÑçªºá›Æ¾Ò5Å9È‚ö]>³ßò¼”+êZÔù*‡Uø#>-¥EÖuÚÝí»uà xh/ ¤Ÿ PÌ9Z3»šè•” Iƒ  ˜Ô…®ÀÃo̪YÚ"â¦f›qÒ„ŒroVñÕK8ýB  ÿƒœ"Ü54BÐ?øF“jiè^«7çð<‡:é;©B¼iÕçFÉžcŽ´Š—ÝR|õMÝÀ$ÍÔ¤SYïXH_Ã10¾ÀÈBs×, +Ì”w—5]ÃÁiwñŽŒÒ‘† °ŠGÑyDîÎdq1 aþ0fÞ;¢ÝEr¥@á  ° § I‰fÓ¼hK:fkN$ r0ìªÉ0h0Îfz2]EÙ„]ÿI ½à~u´W `™ÙN]šqo]Üík"85È%NŠ-;7™* (YÖÚåù”âÀÛÂFÒoø žT éëPE³Îü.jZâL†E«SA…fL„åÏ9 Î(sæÀÝ*3fAŠÍš–þg¢¦0 BÃ#PXžN¯B”X=[žÜ¶ÝYð¦»scXi æ¹³3ŽUÓª{ŸÃÌÏäT @ÖÓq G0ŸË¤ §/éõ¸ò §X?ø“ðce`¬Ÿ~‹ÿ9ÒÍ {øNy˜•;¼…ÁÂ&ddаvÞª“ñ»‡'˜_=þ”å±2Œ"S¹Ý7¤å]&§¦ÝaÆê3VGœÎ4+SêczŎ΃þïŒ[3 ²þªŠ¦å®w>j&Çm7ÅŠ âûñYÛûEÚ!òÐ0C+²P¤cÞcæù\é9·òC­0ÂkB¯}³”ÚÏDK&ž~[ÏkÒÃÚû°¹j ’Æ BnÿnáKïÕ²Sø®€å‹é¶¦l#­!•¤©?ƒÅã;Ûÿ•”Ý`)Jb´x3v„¥ktE@+<øï ü·ÿ"´Šg&X}û¤ö¸ö¨¶T[¬-¼˃­nȱ…8 Ý ]ÄܸÖÞP<‚ÕÃ7o–wvTr=P5"]Á!²a`¥øõÂãnýë…%þçÿY6ÿüoqŠåéZ=T‹ß.,àPðkf8.³Iè1¸ZÚ¿Äî”Mð²Ö“Úv²R|ðV¿~<Á9â^P ÞU`(>"›ØÐ*¾Yæ×ô­- ©‰ƒ?Ô3âÌÑ„(ž…3Å=v»„Õ Y¾U½Ž/šú 4äòé@yà ¼`Ì^ý:yÑ”¯˜kàü¿ß˜¸üBŒ…Wgû¢©‹ÿyߎK¨Ì|z ÉÃÒˆÒXÛØ}Óü&èŸ3M·_4¿é3OW›ßœë§ÆÜî¾ÖvŽZRŒÉnÑJ¦hV¨£“àÖ#’Û&?vÉwê×_˺ìJÑ{Y,‹Ý6Ctc}”Ÿ+ÅÅÆBÑꆰ„ÚKÚÛkåß}è÷Ô×Éw«À{’¹Œdºúà¾ÕL#5; ÕÀz«‰©X&ZÊw²#Ë/ŒÓà~–Í^uÞaÕA²R¼‡ËÍæÕÕUÃãߤגޣY\-§5·Î`QcK]Õíg.õ@¸×R;ÝyÑ´ƒþ¬>ü[lS•x—šFpdsU[¼ø€­–>âÏ›MüÁÁzþx ×àßeã*«`ìSJû¿lUÿÓlUµ<åîñu%ƽŠÑ HÙH8¡yú "(DIøc枥ºìUmºÛHL+àŒ‡QIl›¨ƒ"^ mÌ"ëW ¦M¡³(¨6Î*Ù<Þî ƒ©C;Æl¤‰à‚Üc4ˆÈwœl#çÄ~¸FƱB Æñx¯)”{†ÁF7~èdgÂéx$Íäì¬ÀîÖ\‚SyÑ¿™Cë^ƒqÀᨢqÕ¸@ƒ¨)¦)ž%ª‹ÂËéÕ 2LrQu"¸*ƒŸ$.}rN;'Œž“ ~Þ¦út¸–…™Ž8Åó(&½…—д-‰tÓ¼H#™‹ÿ òˆÌg Õ ÛD¼Z.ü‰LqþÊ8G5øûõqwÖȹ¢ LŸ^ÅÔ+è[×W69ó«Ú Qþ¡âúANñ¦mýwš1 2x¡gf •ÓXà÷‰^¡N¾¼hêߟ%(9ëª{Üjèe.4èãß ëÁÈ̓Q¼×Io½(˜Së¤;ä$7×jdo6êHõï#_gõU§£-Eñz)ºAd’+üåˆkµÓŸ£I˜àßÂ]LFôesáŸCL šFè ©9rúÍ…^ÝôÛRûí»w´(÷E)犤R$Ç(Ž9ÒèœQ¯R1²é¦oÖ1KL¡T ~L½¾yîW³Q°r«ákS%ôʯâ¼6U21®ü*æ5UèF¡*€‡ˆÏÑ #Ø!Yö. &pY•Kí²Ö—ã!EÇ8M#MK{˜žŒ³•ž4—ç„s'Ë-šÁ«”À+'\X)?ZØM*¬Û: `ìûÃÉéhZæGWï>Ê®,þpÇCÊÝxÊà0švÜeG£ )ÝxWp“¯‘º3¤tMjꬿGÿüš.L÷*ä~cvjj€JIäioŸî”º^ýÛN;~õ%ôÐ÷ƒ¾e1ıývñݽ¡˜”wí(icà Øù†:Jä92tMq|NÔ9?Êd'Š›xöU†_NUÓäС¢:ìÑÝ hª†ÐNVe¥¨ˆ*_Ôu\ây£y~žU! ¤,H?RiNwƒ×*¥6ÙªZPÆ•D—½1L>™¨¤ú`©±õƒÐ]×ï2w*YyÉë85–1•ÎSÌ·÷^~ß³‹ôT®K_fÖñ¡}†ëñœìMt4Œ¼&qIz=w¡>¨J?Vàˆ¯©Åwµ,ÜjŠ}7¥ÜÒ7ªžù6èi ‚@øZú`âJtJ΃}rò´QzãYè ‰ÌǾmzJýLUJ͈¥ä9Ñþüv¡þí»‡' þ‹Ž´F…äè#e¿ Šû£‚‰È1m‚S‹ïU(m¨£øÉT»Û1´DoÅR‹í;a²‘qnîrDQW8>®Õ®ÄÔJ˜5Œ“$Bm&f²ÂМDìG°=(´wÀFËPÁ—Óžfii߯)´ûšµ]E eÏjØÆœ‰Žt3¨põ)Ø]bd ~c²V°cj?;0ŽFѥƉeì™?5:e'Àìå¼b$I/®‚k7jbpG] b¯£}wFÀ“N†ªÕ:‰Ÿá 8ª‹FÕbWEü"] Òj…¯u+>ŽTQ„õC+„¿º¿Råñî¿Q¬z–rlOg¶Kʧ_£?§´£5»×}2*kµ²¢ò;úpÉladG;Àb•wÕI¶ÒÔ^š Ó:›šÀÕì(2ʃœ •è­ã…GöƒOîÆƒúØC* ¸Ž“ ÍîSͦûЮÅn´F`ž0Ž¿ *Bú:ø,¢)˧5Ç ªÀótI1“"F•ÊwË0u'êÃ*iÑKM?>äi¦Å¼Ö°\?êR õÓ{tª{Då¹G)‚—Û­“-°c™¢À‚³2dŽÂ_™ã¨+ÒpÚÎÖ;ß¾Htçûïœ0qÂ0ŽOƒ ËrÎÍa¶6RXpìp›•Þr ª ÕÇ[D±9„ã‚*|íC.è+¼TPѽ­Ý×jcë`Y!('L¨seOé»ñÒ“R𔋴ÆAbOCLÜÃåÕs˜si8"¾v:®i&%½KNpŒ™×÷hÎäQ zñ]FÓGç¡“#„ní{çñ(_ôÙM&ìjßèˆ#<ôC­“4öfÕ)ØF ’^D–?À^å0í˜UûhA¹Ñe±—ñч^pîæÆÑ˲u€ï‘~›ó»ÓFx}ï€îHM¾^üü>øð7"è çMÅÃZMç80ÞÿcÍ^sú*ÏÐêf»TJ0ÒÔpäóó4xW,ý!þ²Þ¥Æ^ÚdÓî9·f.|*QsÔe{©1Ÿç—&—8i›'Mü?ß²!#Ž,s/ º|¤7›E²_è…} G:οÐyü£ ù¦Á~¥R 3­ÃàskÁó¢aF(Ìde{ïu{ïø¨¦Š«ºQ`\9g/*2) †uÃÒ'E]ÆøfñŠzx–\Ÿ‘srfXk4áôìXE$°²™hž[º òuÖx)0¶’ˆï)º*'ó±j¼Š×Ï­Š LtVÉËéò nµiTÔ츪ï82 È) ¦Ѫ)7°üƒÀİqÅ|óMšßÖ$»T“ªúô)ÞKñÕtr4-ñžP”+L†c *JùQÅÒ›œú¦ 4וŒdÖ!æú“Á9⦹ñÂõšÃ;l|Ÿ´‹Ú öÞ~zÞ߀0p†­¿î« ߨ­/—Q t‘YƒŒÙj5cKCÛon@³{gŠâ]ã¸Æ A2çxù× ;.ç²’="tGýu’vosœ,+©p1_[2üä±30ŸçÓÙïøÊå$\.€ò=­#³%´˜áªS(æi)'N4[}LU¹É«ÂVCÉGü× ’â~n ³~û±ò²ßæ8´BØ?­®‰’>%˜B•ܘ³Ú›:K''åël|Àt8€4õ•±eÂõL)—ÃB¤I·\œXÚíRÜ…ûøô˰½¤Ò#S¹8àyáHò8Ä¢™¢pƒhæ+ª­9I‹_i ãá"E7÷ö^mµ–¦ù|":UØpv£Î˜¾S¤kmZ ãÑ0Ž0-±³äš‹÷–ÛNÉTnÜ„›€AèÒÈù37î~i {ëËs1HÎ^ŸTJíj͉lá¥ãŒçÇèÍs OWå\ †”%´ä!UÊ«Î3P§»@ÊVB+˜ªuu÷8ï¯oÕíù@=d/Ët×ow%3Xå»üI çá ßAŽ ¥¿ÂÍ{ÓY²ž——/&”f¾ÃIuÖ‹¯ÊÞò¢òÈ-ýÏÖÁáÖÞ®Z]Áå‹…ÅG nØ×2¹ÀeòF{‘XÈíÙ€û]ÜN•ï뼤ŒZ¼õu‡6Ó'VÊØµÄ¦<'6'èÒÞ@RÒ“^rÙ ³çõ0 äélsˆzlÚ«:úˆÇ÷¹ õÛ®ø!JøÇØd¤÷€PV;«8+%˜IüÄ{‘ËJiFØ4Gä×" –›=ÛŸÌ$ ñµ,cw2ìaܤdÀÇA?Ȥ’lðµýé–z\!:Çi£˜Ór,RЛ(²ÔuºÔÃQ|ère¤ÓŒyyb•z=y\‰oN§¦MŸm6º‚›c–ÔÞ<øÿTÓ-ÒŒ#UÍœ”éã½ÚÝÃÏ‚LÅÙÍçr•Ÿßç?¢ËiÝAŽ@Ç·þY ­B#„VÝ+Áqß»÷ÃD ޳QMQÒÖ®Š{]ÉM“íÓiˆ, Ð èsúˆW“±ÂÞ"R•®ìð¶M‹1D)Όӡ™ªŽÊ[Ë@Áv('ú„6ùú?¡lÔâäzÐA½TºÂbFê"Ö¨w‹ƒ{e@—$›ÕÏ|U…»”$—ï¶~hÃä¡ônõÎ"iq~<Š'Èuð@e‹íE¥ô Zt("ÞÛÞÐ/¼>Ì?] ©Æ}%Kº 7*èY4J´uŠÚ‚ õQFxÅÒßÕ\8Jz_PQ*œ×¯Ük0¼±9éòÿêæŸ“äaåäê!ü©~‡¿—ñŸjú’Ž7Iî ¤ {i÷{›ËËŒXÃÊA-UjÏ yÄjVu—h˜¯L¤ÂóÔcYV{qåʸéýáyÄö 34þm˜­!û¢æ×umBîçûɉ·%Ð6^‘S¸ã*‡·'OOj’èºÇyõt s€P™ Ì}ÐSËõ ¨|̺Š*Råmgy9º¢ã#³¾ø¿ùÛFPuþý¦ú°úCCªÖ¶`±Úü{õÇA ˜oÞ‰²X÷û¥¿SdxûnÉy·ÔÔZ@éÝÛÅF£4G_ßi#/8Dd¢È…½HY·^špYæ½ÄÉÒ'¥¶Àw5U_¬RüÏ<ÞÔýã=·MZ© n€Ñ( ;îð3|‘m½·›ôÆŒÈ{‡É5eGIOI'5ÑÉÈaû;Çjžpr^õ¢÷!å7²9¬ˆ¡Ç"§á¼÷j9wp’Ìh^ø=^ß8~Ô¤ü©+x‘žD¿ìÌj £+‚Ò¶|Uãi 㡪pU×Ìß„7eï«cN­©ˆ°DDZÎÄœ¾¦ ÏMÅQ,Í&q¾uÑÓwû£¯¡Ù¨Ø uK<Ð ¨¡2vF§BcŽÖÐ3žÛÃ ÛÆ`ëYŒ¯ÌA)ÉòÊâ Vm7¸„.ìî±Ã˜—½÷A*ž ÆË¦aœ÷ö(DLÝÆaVûXœa‹Éh„L¨V¶“(ø`p q&Œ3ʾvÚ ïˆ@¡àhÀÈz^üfîåN#VS¶R›.†Öß=¼kíJ^åÊIõS _ß Z>¼[Ùùj]Ý¥oU(Zºó œTï ;Œ£³¥î¡uãDp„³ûT´!s»ÌáUל6 Ö!AÕjŠþìRJ£`L¤Ç¥UhtybNI Hb“˜².B€Ø¤¤¤w ëgqtbº99ïa“nXÏÎBàTx9ýe@3‘d¾Ù4&‚kú” Eä($A—4¥ˆÂ}¼ÕK«è:ÄÞžÛ#€¢qšÙ0mûó Lï¬W{ÁTTÇvÂ^fÒP.ëiTBúï¶€9TØvru% £ Å`xËM±@Þ>('Gi¤†õCÐ{Oa¿¯‚Q7aÖ÷v—³!ò¶^%òµZ2Œ1‘‚´•õsŽÑ9Èt?¨œNZšCCÂr/(鉮³ ÌM»0ôbU/Kz+›Ì>f]kª¦Äˆû$iN¿Â£ÇàNŠ ÐÃÊÜ!ªÖbJü %—1­¦îIÖaW ¼ ¿ggfEœ’S L—¿Uä^€¤­¿C“/*¿{Óˆ×ÄŽ“(7´ía{ñÞÐLz=̺Ö÷Úù¤ËëÄ¡d'–¥àänäÄ¡IVzz]qÖ0C{LDýIß"ž{¶o85< E…„Ýèœ[rš™ì†EOž;ŸSùÎIRÅÒ»6\’¤8Ñ»ÆÃ’†(Ø- ‡‘Rƒ¨C2U"Y>£A‚±%á Ô: @ð¨Þ{€ÑÅpö"; çj×$KÜq9„ì \úhÞû²Ä­H |ÙˆL¨í#ð°ì׈Æy`srÃÑÊþdiDš•–‘|ùäNs’3®…=‘b< ßü"Û76&G¯ãÂQœf–·C´1 0Æ}h¬ÊØžX+Í ßŸ7þNØôËÏÕ苦'RNvÄ¿¦Üô}9M­¨¥ômœžŒÙ 5S°ÐxNoì¶¶RiòŒ¨yìÞ²Qv¢.ÛÀ"ÃAG“²ZÀ £_tJdEO‡©ó[fèÒG²ÛFçbÕ&I§qqΆ̓ÉýµnûßYdÂŽÎÔÅÃîHÍÉ6‰ölNDÒšš\Ö‰GJ³G÷å^¾ÍƺmΪè±h‹z ¾þ:£õÀ¤¾lkë_¯jÚ¿Ûf‹K€à¶¶+·t6߉Öë¯i+ÓÛ”-‚ûKb¼4³k.Ll0¶tÌÚ‘v;×±XcŠ”+ÉÖÊeÜóÈuW/I_ãÍ€…Df8Šñy€çeU—˜ÄÐߦ“›”*ÈB`ºîáDbÌXå! éúP’ß"ªn !Ó–˜<Þÿs¼ûýAkï[îÏu޳¢R×3t’¤l1ºû<¤PŒ(ùe?’|ÈŽÐ{$Â̆qŒ:GJ~öãQô]:â-mÌv€lÖ÷žyq%L/{â=fÉGæô iE¥iGQÈK~Ø~ˆ—WE“½ÕŒãzG;W9,¼—48ClÙŸ9@É®d£Ö;kì>†»ÛFãÊInìòî$œy=á.03Ž4HÝC¡*OºÑÔÔ¨7$WÆ»ðr¹:õ%Mžñöä¤8…eóc$ZÍÙݸp?À"nÊ)|‚U­9Uàd°ƒryó5QX_0'`-Ë'VSÄ“A'ù´²ÿ^hßò;)~Óòl;½-d#77v6Ld>ç#8Ì[Íì4¾v‚t:#!vãs$ðÔÜ守¨6'-¸Ä£u®ÍÜS -åSESÉr§Nù¡dãÓfò.»ìL–’»nÊ %åÄË?¸¦D¯! R×6à¹ÉŒ(Š5z(êKïøgâ³i"ŽÊÂyUOzãhØÓô]nVx{ 8=(¤ÓD§MN TÙ§òuÎHY£l’&¾ ŒW›8%jfáZŸÒÅúä%µ\YJ¥%6G rƒ9kWM©9¦özaú>§Mž[ÏCÛÑB™¸wÓÑh iöÑMbæò3ÂYšijHòä3)múfë*'¿MAgWl#rC°»0ælžÝb_çk²ï•ö<¤z¾´)Ùg4ýø ßC‚D Õ¾]Á&çX!‚îMóN¼1V9Ž(vv¨Û2›ÅÈIãývâG•ÎRù¦¹ï©”Cm$á´T+f&ÚÄíJüûûÙQ„úLdº þdfè3PÆÿóçÆY“IÇKWõuR¶]ÎLÍgPƒ;P‚»m÷/¶§«÷wž6s:‹WÙ£9ÿŽ8º;ìàsÇyØ¿–µ©P áUÅŽY’ÍrU½}Wu‚žž|-am(Ql6èvIp—˜“º˜Ó r+Ø%Íy½¬lQ?s™y\_’ Rž21‚â»–%®5%µ6ái€·ÃÀ3ÃáÁTèóŒF°±¾#‘üíÂ;[ðÅrð”_jñÍïšFqNµ}²ÑÝÎdÎIÕh©”\j؈/U+úùCÐ×,‰;ÅÙ§»”hLq…‚qºÖEÜë&ÄÁ¿É¶íØV9Q,7 /ŠW¢¨ìcw×ïºѼ0ÇŠ9{9†]2/uÄkPØ ´ªê|nîÔLq¾™#*$¬ÑÁ‡è²$ñG h€)‰9?‘?R´;JÆ ‹át’Þñ¼¹ûØóðÃxBZFÉ4áÍC$±ò0˜ ¢¸£)€þQè^7kO@'‰9O¦½Ñw. $=ØwOÁ«Î#º-± ’Ρoñ9iEjU‘ÒQ^ký£ÿ hzôP–È‘hQߣv§¥Ï©67{¥3Gȵ5yo™~qÂx¶båÎõâs¨,þ‹UZ$6à•@E ÇQì†ÁÚa"ñ¹<ÃŒDé|D#ÙÚK²Q˜#ëfJ¼Íþ lJÍ,Ó;”69òŸ—hÿ-‚ØÕ‹bMŠx‰}¸ÈbãqãQcÉ¡Q>\$ gçýJU1è<‰Îðq_îóYUÕ Ü¤@â­*ÂÃÅbþBc ¥¼wºM/?w‹ápŠ|{ÜNC#£×Ô7Úwzx”9(Õ0CÒÍ›_¦R×K*Ä}xøAÕ¯±yXp:¨QF{®>6íšÄQ”]ÏÃQB@ˆ´êÓÍаNÆ6ö]¢bA²†µÙw¢®¡¥PŒ@ƒÞy€–>sm ð·r r¹¯ºº¹ëA‹ZÁ )L…jâeb’uéø€¨8µq‡iÚ3aˆÈuÿ4îE®0åD7‡Ç:u$¥…¶aW.¦ ™ÌV…œ:Ÿ*aKxÃÒŸTxd ÅãɯàðƒÞ²h®ð%#0› KÞ~^Wo\$¯B5Ã1ή®×®Üh–-ˆù;xKI°¥û¬cŽÓ Â+Ïs‚QºAáoSß0úÅ?¥QÒ–<.’عRÇìá†Ø•L]³ë[@š­þR©Šy¥óYQoÝbï\™XÍå=â„4hJ0¦DÁ”P˜¥E×µÑeálë7µÛç*…ôË]¦ÃѶQÈ` ”e2Šglá<^º{•…k Þ‹GIÁ ê« ˜)ò^ö^Q‡Ø¥›¼1´ö‚k­¤ëãqïÞ®¸L‡o„¾>!kÀhкÛúØ  ~@cfܘȯ"ªBºNjM›-­Î ëœW“ä#ȼ¸b·Jo2Ž‘k¡SÈIº­"E Á ÇÀc‰žaœ¹46ÿûr½šD=$x¡Ë Fgyyõ7Øu,Ü5qŽŽ#«µ­íݵ2!Å&ÈM =b‡Ÿs¦Uî\¢mÙyÙH•H+ÉÊ %Mœª|u2èè²¾Úó{Dº¯çö!ЗӰ·³m2þ“ÓÑzqŽ‹}_­*7‡š:3YÈóÁ&cx Æã™…Éât¤W­ƒ3¦­ÃõfߘHƒÙWÞq›}-ñkó_òÑ“}ÇgŒ3“TÚe!ˆyg“>#yEãr\%ÖÆe‰,¯îø™3)#ÈrE÷ ÷zHpçmŸç¸á+¾Ï[BÒyä®a µ(=[f¢ ßáΕ˙1ïþðãÍs;<æ+½O}F’9t²S¾ÏdŇ'ݼ>ÂÓÍRtnt7YFèà»{“/79ý‰ÎÙí4ž]šÔØ9:_p.cư¸Ôèwrßô„=9ÝÇ÷Q„ jáÆÖ÷ÓáápvÙètY¡*ó­µÖAMÍÿp°uÔ:0цœ@‚)o 0¸Òæ(îcx%¼Jaæz Ê!dEt¼Ÿuñ…älyXaY•ØŒÈÐÊÜñHB¬d*½—ò×OÚ3Ôy LðžˆÄ|Œ1x©íæ(JÑáÑŬ*¯~'gƒÙòXºmð(Óïîdˆ1Ã)‹5¿^ÍÄÏ`LÁĸd‹Ò'•R/!¤J†“Q„¦hWÁM´QQC¿¶v9;uÔ$v¦ ƒÚòKkÁñX¥h7#&1>7H©y€€ 4\~é„ÞÝ"mô{¢ÑçÐlPt’P¦®ZÔE:/êsïuÔØ`…ÂHh‚Zž ç ’ò©\ ´‹=)šê'Å*çS`±ÙQ¶ÐX4Š!£¡h’ ;±Œ*‘¥¬ìi4@¶ØŒ© ~ü±§ãɨC cud(.bC‘o-yp2*=x`Ü91áý@ü‰Û„òI™Ðà}44ÎðŠEãš1êDÓpà½"«=ÓaYÓ$ÜQpÈ;¢d‹Š(Œ¹)‹ãĆÒéÙ²—æNG×bæjå÷Ô+•×[¶§Iñ¿8ÛÙYñ8‹l{>»å¶qwP²öt/@ën/£ð²ÊjjÉ< '¤ÕÁÅu@‘”WAkOž75ñíÊkÚ3…rkÈy 0 ùؤ]æ8ùDvžu?ò¦8ø,Ì15åfhR±¬šù IA€™qkãYFlZ>úiíÛ2$kÌWŸç! Õ%ÑŸ-Ûë)ÈVzî‹*ÕtPÀô"²‚ÇF}•%c,ºšÃÕ;µa(ç<Éï…’åÔ.Ò2ÚÞC§D>Rì­>êóóµŸï ®coŠ×J*~ù2ÆWÀ±Ó‡`ªi—G©I÷Œ“C%ó•“Æhø®ÔLÕ@÷ƒ•t½ZV¬CC¾úbj·àeÓ¿@¡ìáEkùØ«®¹50þ¸zv1s=F7¥s•T¨NüåÏ[³““N~´'OØn¡ØÙÞIÜ@æÙyQÅ·ƒØ]âwÎYo#p=mÅÀ!‰ Tmw@ýñ|còq׳àË'[9Áô²L¿î¤þ—ºëžíY\ŸÛáȦÑ9Žn:í²^Ê5]r£WA4ÆwX ¦qsßJÚ`‘ðÁÊbÚ6™É÷9_†‰ ‰ó!ã©*ª~ˆÆMÔ”½fXïeõu·©ÿÜÃÔÔå4AÔ›ÒwjuUý¾|£—ž™o7¼Çç&¸òן&Fx{—µ·x±TÅ0䯻NÒÄW¹‡Ð%ó1²²¨e] ïó ¹²ôý!ø"ÞýëûüÄç@µË¯ÞÜ3 …Iœ¢Ÿ™ªTÁKÕðÃ0Ôª%¬c¬»uI¸²æ•æ9j.­ÿ S ï%îþÇŸ+oë'W'/®4j'Íw«ËÞƒexrã»=ÀX˜>¤LŠ©ÒˆòFT´2¼µûÏh+Õ>8|S¾Qßež,«r’\”j|HL fiQ•; ý—–Êê“!¦ùâAé£äÆ\ï¯ó9 ¿ðG[ô„Îm³³¶„¸–®ní¼…TVÒùnR3IÁkµé¥+új~:|ç0—М:Di…"ïÂE×¥‘Ël.;¥ys£Î–"'Æ=@2'CçÖ˜¯Tœq¸=ŠTÒKy¹ì„9a×UñÉ0øZ5¡Í ´‘9f‡)dÝ<‘Ú2rweº‰Z¦ˆeŠRÆeÏ¢±oY*[• Î`öˆwÓñ—˜c3@Ð÷>N邊ÂÃóX‚Ëþâ9ã¡x†C"K¤z¼œ…î¯stÈU…Þ¢=$ÿè‡ßpOx¨´Ì/>.ÔoN¾lÌ7}>i­—Ä5 …–*§èjÂæ§:ö»Xž_œ±R­¼@àðßj:…-—|4KM\Žù¥^ØB«S³ï Õ–™êäœ<në„É¡D\Yêh$ô.·÷¶®KWÜ’䪛G|!i#Fzåðjb8´×CîÔÓn©èJ°z“]ÞzЧX;,°±ÿî¶×w6,Ç‹ŠŽÊ[`.âdL“\ïVßÕT¹;HºÔ>,ãûËǃ•¶;*JÀ^‘¶pDÆÐ@„ÛðÚŠpÎX©~ ÄPPÑþÀúü+ÑCÇú‘»)˜âB_ò"÷:˜f&0Ç·HM—_äéŤXÑÎæ „Ÿ ºV)|} %žçž)úrp«x׃ũcά5ûha³M>ð2ã2èEšH“úáü3!öøœÿ ;qB¦éq­Ó´WÌ= ÈïÊÒÇ»±’w†Tʵ²nÁ΀›Cž^!il æ`àЦ|㊘ 8A¾›È•š³ì “—R®˜=„2TËŽæ…iiµè²Sˆ‰–ð„íÄãû>K©oy¥>…ªð¸L²±±:Q21ê’ðÒ9™4˼è€qb²Šv½d¹êRVT‡fûïE3òˆ±ý€`/"ÐEV°«Ì‡Ô³úò¢¸Øx»Øx·¨yœœQhà)]¼7NEÛ)/ÐW 8MÙ£ô”Ïh„‚ã=òÄt’Et ;j˜}¶&`u"Óã\šeg¯¸<›¶õªÜègÌ—³ â/Ý6´;Ë™±ÐáÓZ½Dñ%€I_UA¢)ApéåNy¢¥È îvþ¦–î¼QßýŽïw<Æ6õvÞź­p™…QJÈESÌüWëÚu×Ô*u¡·â–ú¼Q~¤ §1]TPt›¯‰Umãõ~ØE×ïÁs;-¹7ewš£t¾?ªYµŽ»t„M»‰³ñ]þ®’æ[…ÄþŠCPÏ(`èt̼ÒSøKááñVà5qÿ ;.z\«XVt+Â,¦ž6Š/‹ f°t+”Ƙ¿Rl‡ÝbàÜóp<¼‚-àäî4çF•s->;‹“)a¤þá¹<‘À¤¿Ÿ£„ãP|{orå¢s¯ªdš­¾}úΊRwn¹êdäÔIm’yŒ&ß”NåÒ!DQ×ìMXC—Jö¬ã.KËV¶ÏÅw³êÊ©‡á]ÁIA¼²ÌSMÝgÌzI󛿤CAG*Ä _ÕW)rPµyºí9èjúÔÀÐs/Šxô0fÁƒUÇìÈ–ÄIÑRkšÈžôc ]½R§÷:;nŽÙ£é–6} Ö7è4IÈYÍí;žýE¶ æ ‘ÃNJ)ÎéˆÍÚO­ÑÜÉxèLþ˜äYÉĸ#:§ËìH–•Ö_Vø~¢ýT±·w†Q¬$A¥ªÍ"´ª×I‰ Í‹g ^žã!*–˜ä$ƒfÄГ ‘†9=éo3¢ÐÿL„»3‰IkìhJ®ÅâvZà(\ƒP5 E¨ þ ãˆL‘)ž£²J);ïj±ñ¤±ôœÿ>†¿°ÏMѽ÷èD+rsÚ¡™Ûñù…ãàŠn§äc²†+=ÑWÔKryål:×2ã¶êôu&rIs./6õ3¶YüöÛo›‹ ÍÅgjáÑò³åG‡A2J/«ÿÃûиÿ\œ—UëYe'i±±d^laPGtÙvò7ÀZ¸£7¡™kÜu Rõ× fU&/«¾âЙj êu£3Áhh|’YE¶öÍ@È~Dͯâù:õÒ}yuKᦠHÜi/f†_4¯C¾ò=ùwìx®ÍÏTQdð"îнM±±yÇöO£óI<á¨zmû¬]K†˜|¿ô"àe …‚$™ô%šå0Œ1²Y·ñÞ%¯qÏg@Ð(`Ó6fféî%pU´Û†Ü¬ !áŒ"WþQHBHšj Eá@¶ƒ˜Õ P›ŒP Ç(Ï5Ñ­^{¾Ð.£Nà¨5Úôײ-6¶JÏ?‰‰ïØ8¤$¡.#hMdS\ EO=‘ko.ÇðsLò&Û÷=U´šSG;?•ŸÁóÍä)qpûX—i'h’Õ5€¢XŠåÖØR g«/,5¿UK–—¾]^xâlõ`x™Ü’ì^祑æU 0•KoÓЗמ֞¨Å§Ë‹ Ë–ÔÃø<7M 9¥iöZÐãÎ Iƒ!WÛÄzü1wöÎÎ’pœa¯Éÿ:kÎJ£Œ,aÿI·oëÍwþʵÙÅëxû/F†û°þî¤ûññMõ;D ÃCÉxX3ò|ËCrž¡ õ{ Ãò¤ŒwXEq~ù…úY.“暊½ ºü*þ´ô=‡ÅKüè(*hõé·ÌúÓƒjiéÉßc¾&!€ÍzGF°Ä½ ;˜#Ew²I0À0æä3YÄ%J¢è·¡u/öQ}QB Õ1`‘Íïh8h³T®ŒÌ^o’ÌIâEÕ™°|Tqj¡’ºYÁu¨RŽTù·iY}d8©$¦æAXj^=]¨bJw À?N³t ño!ê‹ 6†vͦÑ?\Ñ@µ‘ÖQ$Ü¡°Èt_£m"d”ŸâCi4õ^ÆÁ<ÁPäÙÃÉ)ðw¢(w 9Ú O®»ÈcÕzÉZŠ#=¢py.·bØCØøeªY¯Åɰk²ã0#Ÿr²BD«Ü õéñTÇK1‘`µQ5zjþ›Òô¡©ÙÙ‹gœæE1~‰ÄRÇEÒÂÄ_†‰ ɽ8Ã,=¬|ËÑcãçæ±Ä¦ò.¹ï›Ì2“Gœ,õI,A rÈVç-¬“õ)͵aÃ1!ÃÚm £(ê3[ünœßè¯xL$•ÓÖ‘DçØª / 9'w ]𮩽‹nª)ŠÉÈu°¯~y×¥Â5n¢Ë5u[GéÓ—Ò”\»àZOÜ'u*¿Ÿ× ]Ñ.š{\›Ô"eãŠc¯ ÅéăKÌh@{ÖÎÜÔŒ—øø·˜YRºÝÑk…·†IšLƒð*fÜ)hc=õJ^OÝÐѦh‡„mcO0x6£°=ö #ž…X>ù4Ó!ìÒóa‘9b1êο> 2g7ÿ@^ ئj’ÏáÔ1LÙ0(k#qÃP›Iø:íx˜ƒ®Ùx‚Êy˜×rM¦@‡UÌ‹¬—FŒ^¯Rô"*mo¶0³q¬Ô‡‡‹ÙÙÏœº© p?j[¬—À¡X`QÎ@“IÕ¹¯LP¢†¹ ‹„y.Y_?‹(-î÷‚A‘]Ã$\e¶ ? á…ä} ;:N§ d¨,=J¥b+3‰œf겫fÓlq’z×Mý¨L”h}Ü J#ÑÚ@hÇ„¢Þ]-}Ì´`òÑtaaòoÀ ãÛz™ÁúêÛRûquØRM-`"nßá e»NhÝàjÊ ¢”kéžqÍoŒ­«Ì0IÓèLÙj ¥Ê™ ë(‡Á­˜“±ˆPñ]A->×ÎSŽp»Ÿ»R0î¸æä´á—òíÞÓý ÃkØâ0‹ÉO0šüÐïeù}oêlr³“ð!Ê"øwÉÛO¨;¡°ûãè4꡸SáÌP4±@êÙ?°]&K^cØ«’¢…}0aÇ»ó?²3õ…gíSµ+@žø7ëAHì'¥tBMH¢Õ­¬¤±Yx¾Ó̵DdÄ("ÈsT´vQ£Ü”lJOB¶¬Ô¦Î v%ƒºlî@Ö+Æk'QIX…ïfâÁ1M’Ð ©2àP2=Ù¶'0¥&H¾#1Zº^™Àq&§»£Ç«#`GHGöÊa':à ï¬=ć¡v•ŠÉÓ3¡hý  #K´"'瀭±:Û .c²†ã¼]à!®ÕI½‰ÉI?>Eg¨Çæmf'B  Â‹œ´€ƒ=¬8Díj°PpÆàŽ`Í‘­~À)¿JüeFÛÖ¤¢¬Ã¬°÷Y šx|M®À  î#–œˆ–† ÂñšÝ–$ÙâŠ×:¨b8˜€`©gSh&=ÂGPÄ@LGÉ»px•ñW:Ú˜¿æTʽƒËáe…Ïø¿ee8ߊ¥v³XKuýót†¼ÅôÍÐ:Éï|‚yœ×è4<£°FNþãól×p­@x@pÐIÞ…À³Ÿš¦Fî­ØIµvº€¢ïñÕ@éŽäC+&ºu/Þ'æò˜œ‚Ä2Žl®{,ÝFܺ0'QrÑç,µ F`ž¶ ;f¸5ƒf`^â©;x»c ¤)¥‘z*/_ÓøÛ{C4´zIaƒèyŽa8Nhgéz<8‹ÎŸ« °SØ“=œF ‘ýÉUÚís*ßæãd&‡ª0 Æú‘30Ô•DEdÆ<´¾Ç“Y)_„½á§ ªç?]”Eê9)í#—Ü>Ƨ)~¸LIÙ> òø°¦QF.Ê2†½âuûªT ”²œe·ýO~U+¤ª â|:[IÊn©ÒÝ%’’˜ÓÅY»Tö‹³D.z–œ•ÝTtóp³}8¾ÎöcÔIl§uim÷šé[E|:–*Ü ×c!]ƒîÔÓàÉN"³~dÖš@¶uH’UyªhÚÞ<]‰¸„«O?¬De[i'øÐ&Ê ÚΗ®ØŒÄ©©_§‡°µ"Ú?#8¬Òõ½?mé~b=Ïx6Ól„zdít?­—¥±”of )aç§·¥Ò=l¿ÎÁâ5Ò‹’Ž’’S Ð95 {ŒàG1ÖA=UzQmüÒOÝ2UBþñÖ ÞõU§je±ªn2H€®ÐŸöÓ{Ô÷NWÄuÌçWÚÛ?Àà êöÇŸ&ãŽ_Ö¨L2# ®ëñYý* ߺ*Kiº¶Û®Û{gíàMvá$Ч‘ÝOTé@¿É,¼­wA‚);½âvàaº4êB?¥S`ÙÙÒ¤,útTΖ&)0SEßs~:MWÑ·•òDqŒ>mzÛ"Ü(¿N£ÈP5·ÎAí>½É`Ð'jÔ˜H5}¤™è2wâf£ÏMd2^dtm15ä!S^jýr 5&í7äͯ($E À{!®…÷Qˆ7D:`ý‚JßÖ;0)E NéI£¼´FÓ¡^DÝPl_ë:¼?#a~ o ¼ ~{M—¿kc ä‚òŒA8Ùòî—. c¿¢±.®Ÿk„Ç›œUÌA $bú ønnÈ»BŸS![‚Ê ˜ÖX-̪ÚÕ†FQ"ÉV‡“SŒ#DÃ9wdÒUÎQ´Vü4áPÂü Íœ¾1¨‘^þÁºtC—KB«ûu¼(LÏ]"®x´$w.HQ9:×ÑÙ3;…%;*ñÿ¥ßѧùsåíZýƒúoïäïBýÛöIýäÝÉÛwóèx?ã­âÆ]!çfÏzBå9бÀÒôxï˜K2ñḂ,êu»y°·Ó>Z{½|´‡p‘)bíuvå´–9wî°x,ó×AàK>i†àóÆÏŠO†¦ ™‚Z·žÍkJTë9õ²]‡úÜïÞè·•ö§u›ËåuúnÝÕ>§³Ï[»ËÝõºq–Å í!† (ÅCdzò¶?ÄKLø¼Ýí8_ßi)NâÓáŒÓ;ŸAùŒ]ƒ¶£x2¬siEåˆǵƒ×ÿd…šVžÑ=H›A7b÷;´Œ)ÈÝ^Z´Å;ò{I­&Ì(Ý9m´T± õ@:#ßÊðQkÈlØ0£SU„Ö”jjŸ]%Ôçu kÞ¿/i}öÅ%œ÷é ¨Ç®œ¡n8ZÏÏèEïþ½°¢$-‰Õóݹ}e9Hsx¯.Ìq|ŠhŽÎЃŽX8²Îš7W½;Ò¹§¢×z…ÙÈ<x–a8HÈ<ˆ.Þñ$ïD ï ' ‹öªV†®tÅßõØÉª(nYF#i-½Â ËÛÐ |/y¾½êuRþè-ÇÒ*3Q¥ïð-2îäc ÂÑ}Dļt%³ô)ZÈë,±cmG¶á01—¨ÿ¾ZÖ+œ¿ zhß"[U„1¢ ‚Ê¢1–€8êí™5¦Ôå´©+zì)µ™’ ç Ö†ù ;“âNˆñ¡õðrˆHÊÒj%u‡â_äçû_ü8Œ¦Üs—LØ9ÉA…¦flc2/q'Qn7|D#a‡ç1ÝçÖøìpûø`¿ÅÑOlPÀ]cx–Šàk;b㜈å`úFÈÀ€›‚G/¤U|,v_òÈ3ÿÓ}»ïd±‰†¶Çã«×-‘r^ÚÄ])T’8Œ÷·è×H‡-1È¢½ÖÕ/KÿÙ:8ÜÚÛ½yîe$ã«~¼Ýz½{¬^ïo³´vß>ð¦Áx{7Ì%,IÇý¸ ‡9ÄÛ­aÜ]âjU1±a‰ú¥òiô‹åÖîz^λ ®Ö)P I«È>WtóØçt+Ð7¤¶ý GDˆ+ª&Ãó)^£½ö~8êápÝðîÓ—£.×fÖ|Y•K/—-žÈ/a8vºÓ€•œNqtËvq¦Ý.VAF+,I©U}ÛmܺñM ‰pøÓîÞþáÖa¡ðêƒYUo·^ÈÐWßጴ¸ª¿-­¢ã»wÄFëpý`kÿ˜î ž™ÝIƒÎ í†yk‰|Èu’8Ð/´«x¸Àâ]´ŒuƒÃUÑ⎛átc‚š… íÁ»0j__äÁ5ãHŽ`5ƒIoì8ÝIÏI¸Æà´|Dž†lÖט„õHj¼ðjôšIÆdê$œlåbK–p²Ñ à֨ɬÙ>•±ä ¢í5ãÑõsòˆ@# àôoÃØnÉIv‹4Ssž^Röèjq‚ á¢Î¼Ë9(›œÉ’À€B%EØ5hå>D1y cÇ®Sùa#“¶ÀxÞ¦0[g¤Gļ»zþ°“åÄÎ@€d¼O¾¸›jJ§±zõ‚8øUáµ…Ýx,î‰dzòñêàH”\{\†"VÃÍLf.Þ¤v !ÄÜÆn§ÑŽÒÙRǃmé°›<}')³›B_„°ìJÇu~Dþ£â?hóþé<:€ä鱦`tÎ,üô蜔ï‰F6JzýDb$ÛAiÓå%i˜-·G» 6í …«x _ð¨À©½X­ÑŸ°7äoÎ×ïV T{è4R¸òCöºù€Y ,”ºœžº‚fòÊŽ¤s«+¥³"JÉÎuªŸJu}{ªk§r:ÉbÈ#h'ID6KÔX@!Âk0”9®âgI¨æ÷äÈV§«_„©!˜Ä÷7»êõ¤n®¦5ün—Ñ–CQÊÐkä$èIMP U§PÁt5è ÔA™yVS >Â/ÇMÅVëÊ&@ìC-SœÊ™s½Žž­*&ÿGb ?pòéX?q“Ræv¥~–œA½cέM‘Qç/íg2±gMí¯uÞ€µñ)ñô‚‡uÃj»Þ^˜³Ø?`ï[ë‡2 6‰1aHô€lÕÐÇ‚5bV«ýîñ®šk¹þêÅ19væJ,…ìãB¡…Á»&’mÂv°NôYô‘ClÐU¼¡³ÍÂÛ_;<üaï`CÀât&× –ã2lAŒ´„,qI&3 Ù°vàÇÄ£ø2BbZ3ˆ†Þ­VkD—†-‡ ÔÓW/¼$z0v{¶¾z¡ƒ› ½à¦«Á Ò“:=‚Î ‘Dz“˜Xk¬¥Ðtã³Â˜üðµR”¬ ;ÀH$g+pB=4èH¹Ì΃FŒ}_ô¥49Gœ™ðf\&fœc’Â\‹y4“Ï]>™AÅ×á˜WÃ#÷8…¯[ë{‡´ÜŠØìAëuëÇ}CiÑœÉy ‡€|¢hÔdÖ ÎmQ}í+FÙ}'õe¢hØ d àva+Ó> ý.ðñ(iÞiU$nÞçö€%G-çx'ANÇÕ‚§8ׂÉd[MMa0Ä„ç|Ý\t„ñ `\R?#Ö%“3çQ‰Ýc:’2­õ™X—ñ§íÓ ®u_©±’_7]¼wíÝÄy|u°¶»þF“W²çqË)BËkO˜b-±QÌ™ºØÖð©­5ò€n£…º~Íà@üÍYlB9pR‚Y ®=L<–9 ©&™®0øµpc°9£A‡Ù@Ó ö“ÉÂÎ5v^]kî½f0]Û‹¦¸DQ:§.Æ¡OÂST>Ž1èñ‡U/fÅ@cèY˜d¤Zí:âZeºªÔ=v8û÷oA‡!Δ /åˆ-þùÎ=ˆUÝ.EUv6Ñ–>–v¤ç 5ÏDŸ&c~âÅ.©`´=ŒLßåsÄÕ4 62 ø§ Ç£n}Í}MÆÃ9iGË×;GÍã£u—-°>†^»¤Ñ—qOsUSÀ"{¸ÓÞÕR…7Š+ÍðXƒDä­ÇGéqS¯Í°o YF¢Î6±–cN^u\«Xئ¸ä-vrœ%Ä«¼rþJ>Yf ǵ•±I¸æ¾*E¨¸Z$S„9J&Δé0 \yüšèìÒ5!v©µ»¾·±µûºAg¹ùé×ªÓ $Ú>¶ÀýLÍ5™:Ƈ=]QÁX¸Tbÿ1UzØ Q~ò§Ç»˜õ—ÍÊa>°Xì³fç­ ™ ÈÓÀúmʱF3n}i\@£N‚“ûö`oï ½aÇ&Ûª< ®ÔÁúaeQʰKÄ‘÷°…)BF¨ )hÁù]º_’@Bt®ÙÝÞè#›Œ„ýùÉäìõ‡áÛO:ÒúZ™¦›œ¨,¹fä¼…ýø’g¿ Ò9šÃºœ¡ïjq`+WjÁ÷c\è tŽgg0ýÛÕ. œð:míõp ŽÖ^[Ö£¢g‹‰šõyÄD¥ú$‰;Q`¢#‹îƒãuî02 ‡!–¨Q4ä¸v(x»†é *óÄh¼ –_¤l½”PZ€å´õ;Ün®Ïm¢—jB[:Ý@ym`†6|(å¨ ¼(’Mç)%ªã¨eôRËÒ<«KY˜_Ø\5µ‘y#PÍ»+_z@±ðÀ N€#2ü+ëñ¬ÚäWpdUøçÑÁñî÷ð…±"“ª5X-Äï ©9@Ø ÿGŽ‹MÅPm; ~»–œ÷8_œ\F³€Ej¯X+ŒP³úb±ÛëM ;Ç«Æ?Š9W–É®Ün¡Ç*.‡á&Šy Æn6JjLút¼;ÆKƒÑûôUˆ„×[–¿/^ÔOáHoÀ)U(pîÈÓcb›ê™Úå @ªþ§¡èz‘oµ¬O ÆÚ)ûu‹{ÝŽ@Òÿ‘Ï>E3ÀìD$‡‡(m£kwòvxH°9-|ÁᇕO9´ ®fŒ~ÉH‹¢Áe Ý·÷9“á\rô0 @ycí¨u¸ßZ/ …+б¨ŸÐFHö9Ö^À”>ƒÎ[}» ê]ÔŸWŒº AÌÏãÉqö× 0tþ`MÂ;Žž¯IYÏ¿hl5½UwR6œà#DlÐÒŽî±½¦°L±ÂÈní`}èPõF7„O!BRFš6c_LŠŽQ»q˜0‡%M¨ë‰«•vÃÝvu°Â2Ûê*qJ,ë(êúŒÀéäúªR¦X³ð¤Œr×ñîÖu\Ñ릒*-@Ÿä¬3_p®ôhÒ“˜Q8p<øjüJ¼¡iŒ<§:´ã8E€P‘J6K$õé” —ðÞ<ö ìL˜Œõ×[(Rï¿ÙkuIá * ¼ðñ,nuvÂ2¨s6ň®„I½ƒ¯Ù.¢ 3Aü+iÌ`ß‹–d.Æ`DSTþ6$†övuLõÅg\"ŒsÎ3>Ë1™)Vª3jžFƒ&õÝq˜5/ôÀj¢ÏGö+÷P®ž}$\eaíèã¬O¹ƒhý¸¶³¿Ý: ‰I«àÁ çø•d(‘•—Õ©šL16!%O_Ù F~iaáIv½I‚Ö`…)û~ ÖñÿOËÅ<˜—=Þßù 1Já£ÇéôV¼üøi^áÝ„ã<1÷;zäwèñÓ¼¦o\@†™2ù!s¾ÝÄ¥2Q#`#}6þB^g°7Å"7¿¸P_üûóq 2ô‹b±hPbíøèÍÞAöZêûq3>{úÉNØ‹àÐP{åÝ0êÙÇÁh|=Pÿh¨}`):¡Á¹u¼(FY¸ž2ìà‘±vù(åÉQ¼Õ(è&Á•~vuˆ| `8:×wЍðjt ‡•~¸—\p¼¿š€h3¸éh`ŠC§ÑdÃkÈ£µÑøÈ-H¯ÿˆç΀ޫª¡>P?Ý@ƒ¹V¯Óvâ~…p,µz½Èôþ0BjûÏ€17ubØÁê 25ÿˆ/Λ£p²é÷ÁÀèeöáhQßÛ}fzù>NÔ÷0õúÁ:Êèêû^h{×ê¢Ã÷ñE/¥§m;€i0O¿Fn ¶a¯Ý¥®¿h¿áØOƒ( í“Ið>‚É úÅ›p0ŠÞcå.ˆµ´´ôüq¨öFc;BÐæ w6"§6=ð è F@퇽``«º°¦à~,Šý޽÷ê°]¦¼laX”TÇáoá°î¾‚ƒñBýôœ®´F˜¤ÿ †Á8HSÆWǯaì³Yþˆ¶›:œÓÉú øVçåó_övwÿ uÐúŸã­Ã­#$¯Dú“ÈûcË…¬¿8 ?Œ——ÑYdø <†*þa•éúú 4H\^~ÝÐW*[ãqÔIÇ0ßá@(LvVO Û W)¥ °Ä¬±Ñ·Î­ƒµ£­Ý×êð§Ã£ÖŽZßÛ3bëÕÖöÖÑO¤W£°7BTÛ;´ÕÙJD­“özï` ‡&6šíu¶içeНïíÿt°õúÍQ¡PY¯"Á\¬Á?KøÏ#üçq†\¨g½ÉÙÙõËÎ&ØØÕZŽÃÃh·aR/ÞŸá_Mò«[ºˆ:âðGI|6¾öƒoÐVÀ˜KV¼4ƒiÏ Êu!;€)n梨Rf÷Ô>;ämGp ñxðIrAZ!:ë7±õCiF‚AÌF>×yvôÅý]±U4WÈâL•d| ¾c ¦‡çÚ# Jœ‰7‹ÆワoÎ&=¶†ùa Žã#µ¶û“úaíà`m÷è§ç&­)I+‡U»èßòȘ%;­ƒõ7P~q û¼¹u´Û:ÄŸUx¹ĉTVJÅÇuøç™zÅ—05p«Iæ s,2j3¼Ï=©(mòï?«8öÓÝO+Ý„ÀÃë0—9¾TÞñ•ø}ϰ9õ;O±9õûα¹YS›s’Í)<ËDù™Çæ™5ÚØ™Áç’ªÜ?¼üµÄ¨·_5çôRÎéå_ / ¨Js䫽Mmô¨Ž~Úo©2QIÅÖeå·÷ö¾W¯ZÛ{?ìmì-cTͰá˜s¾¿»÷Ã.qçô†Žh¾“ÔŒ¨µ`½Xs^Ùœ»hÀ¡ éæU'ˆÒ¶#,P¶œÑ„b4“ãxÔ8­Qᜉ¨otá0Ÿûœ·ý½ƒ´?¬íËovpÛ‘DA=kÔg]Âd¯ ªÖÝ÷c4rl¨Ó ¹pôž£]á8È€ ™ù Þ¬¥Wk‡oÚÛ{ 5 }9&š`ÔŒ6õ#U•«Ï³j+ ?_ÿM}PEt>ôž¬`çÐÖŸj”æT=üU-$ ½_[áe1 -~u ´²Æ½S‡ÿ4v3+„= C^«+ér¿§xö²¨[:‹ äÅT¨TTé##ç¢Ýͽ· ïn0DµŠCÿ¨ÂÎEŒð–yU,í%ã »EõœåáË Lkw#Gþ%ÈH§žÚÞzu°vð“FCºÄëE§˜³ÑQ¯tó °o,Âh¤‰;—¬ÊN¯Yˆb0f6 œ*ˆöœæØ‘ës‚µç¢å•Ät(kSÞ9K‰ ¹†ë J_·ÉK,Ï^W¥Jª^µ¨k–Ù¢ìVÄ=ë D½*P\å¨+«ù¥Qð@´¨ýô|é¼´xÜ…â~ÑÕ×§LÙ¤§´ mY†b}z Nkm<(Û{Ûp–®”K:ZײZl,=R%UÚÐ `ž5ž6—(ÌÒòã§ð²ÒúÐgk§gåvµ\ðÚZY*̉5e¶¹z ‡’¢DǸEµ<«ß)ˆy /%0¤ªmRè识ÜÞÛl{í´7~Ú-°î6Úèƒò½ø8}ÄÍf©ySôj“—N«ÝÆîÓTñá×§êë®úú§b5]ôÆî}³üõÎòׇXtjgçø,Á»NqF |2Ær^½2à›T=\ã¶ÓÅHÔ‡œ÷+¥òÉeÙ+ '"¾Ø7øÙÚ<„þË{Uôjuãà„é|¼R^õõàÑ‹T{“TlÓûZº8 %}[ý¯æ8Ô/T#%h2oÞíäcʼnXq~bןÛ[»-÷÷æÖÁáÑÊ5ùR›¾Etƒ»²à<Û9>j­è‚?#£Íáìr^fº­)–àYQIbËJ½Þ§$4RÏŸëâB'ïô‹0 0gA—ãòsšºV‚9ÃîÛæ*ìçÇ@ïŸkϳ·ÐþG,¶¼°¼xƒi<Š«EõN‘ï‘ε鎚šäƒ‚ëA-îGÀÑÁJ#NC¡¹”ZÍæ |èhN‘¤ ÑÙˆ(ίUÄ:E¨£œZ]ÎrA— Sêý‚õ~IÕÃÖüZ<2ú÷*û{àf›/iÄ.!è“¢} ™Uš´Ì$è&–m†Mž]ù ǵùCKzSÀÅ$“ŸúY ã þÍQý±x¢M]]£1üœ7‘ªDcÞD+Éœ ó‘œI°€[Äìîbj³x{e»åUóçmy6 ‡xȪ§«ß,æ¢5ÍO‹ ‰`&í2 ìïe¶ƒyÈYj1- õáqj0攨Ûü~½uÄÝÖÎÚÁ÷p(`sðŽ×zNjFÑ$Î('aÍ  u]F3Ùo+ÛU™)]` ^?7ãØ«Òô{o¿ùÆñ¨}ûV•°µH߀5l=,ÎÃ`Ž77·~,Òø³EÌëwï|ˆ´\«Rö™íÌV•?¿¯B¿\œ`‹«ß}¢j(4‰ãæDýqAsŒsjÿ`o{ïõqËï³~ZUóÞ¦ò_nÙ0uÁ%Éœo´ày ¹‹`…\Å[!¥»ó_~y¸™ÍãÝuº0šð/ݔֵëÑ8úãØO^È,š¬ÙG¯ÒMñ_2 |í§¶vZÐÜ_Ù•Ð mg ŒÄ¼ Þ†TE¼v|´·ÑÚ_)ì@ý6`²ùnÌËô­í•ŸZí6„äà°0 FówÖª«ŒB€ˆ³¼<Þ¥×+~aЩÇvs¹ Žvö7¶LI¢9+ÅÆÙ· EýlñZmQ/yÛÛ­µ¶¼¡ø´Fú¿¶ûúxí5ÜmýHóÒÚ\¡½ÏpÇú$`WŠÍqX,hE'ŸÞîjðáMG7/#PLZÂ6H /¹=aAJ²âV´ºÔ¡ý•"u)‘3_s:«¸ªðÞX— ¼HC›Y»£Í04‹NÓzeîy”`ÓÊo|B¯:Œ9Våù)Ö7ðèF’ &¡Sr¾ò¶Ô[«ÿï»ê|E¾.Ô¿­VÓÈ–¦³¥<Ùsõ›•EÃ'Þö °„G­}TóX ÙhϹŸ[»…¿þzeþf³økn~忤˜ÓÅc˜( ²çNÕqþTßgª>úOnxãÛÑßäôf z#ÒéÌV~g¶æ«þ>|[ú8—a~ß¹¼uã4%Í|" A'L·*¿óÛ–—ów¶ÖéØ^È“¼á€Þô‚Áù„¶JO>ä÷áÐ/ݾ¡=ðÌ–@%ð“S¾éâš°û; Ïòª24×{¿ÿ /ѱÃý`ôˆD5‡p›â±ø-…ýæu¾y wGͽžÎ,ì”$†ÆÌ$ÿ\)¦ àf¤ Qˆ¿¤QG ºTòÝFuŠà[õ ¿¿Rf/§h¦œí.ÿ^ɶIÔCN§òÒë$óÚ¦æ½3E¦>˜òÒƒIÑ#F7`”Àìú‡§?ôA<³°S²ªô‰™·PÐ9kqq<Àçƒè7“{OŸ{®É…Õêå/®©Iú&ÙÏkœ-ßۆ÷l[Ö™ŠÄ 0eðá] R0"y\߈ຣàÚÜ´ûüŒ/¸Ð5·fB†~னãÞ±ë]¬’Á„¶SY^V%ïZÞ«oÎcàßþ[߂Ɩù¦–OÓ¦–_ÄÌòßàgby'Ëßk^ùæ"ðûÌ*Qå—3©Ì ý¿BPÛØ[?&;Ðì^DöÚ߆'Ò!|S `ÊËbžõV¬<ß©·DéÞdc’ݤ^!‰1†³šÝÀÂ…€ÕÖ¡ÚÝ;RÇûêh|ÃÕƒBÁw®¢Ø€ðtõù±–½‚fVU2¿$Ÿß$Û+¶#5‡uÿ¡c¿¿ÁŽÀäu[(b¢˜¶B£ðòè.ŽŠÇ‚—¶B3&[H'?6µdÕÍš>úÖø„½û©Þ¼=ÆIäºr§êFhµä£‚‘SëN{·ZÊ–SÂf¸yƈ·¢3R+Ü èk}~‡ˆéW FèóĶ© øÖ>ÂpT@<1¨w<èH¥õÒC¢-éA-8²]NÃöÅsjiË»¼Fa'=QÐk½šqÓ‰Äi8ErJ&§ Ì" –âÀXÔp­9dK>€©‡-aª­ÍU]žƒ)ð£ ñlÇUYžÿÅ?×Leƒ}ü”Ìy¢ÿ:áðt‹³`¬À¿Û«·Â R+ô¹½×Ï(X ‰' 9¶sðnäx¬}jÁÜ7:bb¤';HnÌßéŠ#²økIKÿ Q3®bäGŒe?I„#¶gK¦L´^§i¸õaKÆ=f#‚‹ØQcê“÷Ù²%ÈtVâJ%—‹zÇ@–A¥8i%ÏÜ$:ý8ÊÅ0ăO¶n¿1¥OÌ2 «v"ªÇ±É̉R è 3Òo?5²â@ Åé]†]Šƒ‰Rg¦Ôfs|‰ô EHmƒ^!#"¸ˆqï©ð0NKÒêÊÇŒâ²;ùY$Ê𮊨¬Ñ~Ñ•ë: ÇÑ(ýì›-³qƒnW~ËÑÀVøt4I|2®¤^„m½äÆêv0NÈR ”(ýJ8eâ‡êXaÆÆWöÆ  ¬t?2 ‚Þ Ø.†‡ÐÐ9`ºÇÐIÒµ;ýrȬ.®Œ«qQ&æ±û³à*lÈÄzHH˜u§ 0 ¸º‚YP01‚WV@ñá¢@JúIuq Â%˜…m 8J†ÂU®+¦#;›2—nTCÑ#)š[ãôBW°Ø¨/Æ–%èê –Ö¹q ådÈ©ãR@©ã6† ðjAdm½ .>óÁ”ÈE‡^ÁI:v§ M(PÊðŸ=ö: ÏÈuˆæëeìR0 · íë´‹cL`x¤É…"qlo¥Ü$.ED¼®9˜*w¥^(ì½iX¦«'Ú…§Ï ¥v"›Πˉà†C<;êEãkQ;Æaš,«†’F"ÊÇù•ò@møì†Ê;ÑókçT¾{íãm§ø‰üú3Z¿Ký-»yõ}²œ_=§ö=ªïç¡T÷¹›¼êgU÷xŸaô æQÎÜÎJ[ßH¦èw•½W‡{Û­£VýØ0T%œI¡þÁ=zÓCNιøSÿ>@þÕÜb<â|¹PY¬j)(E~М_¼)"Z­,U-1®9*Ñ^?¨fã+_!¼O‰øH<ƒÇј"ð ‡Î/¢Y6ŽÎ° ›çø^Å ¾–wa(J8ɱ©|ØVØdL‚|lv↨‘P•¬Ä—‹ Ž~àØŒØ@ÞH¢¯ƒšïLÀñÞàµþ €Bò–’L$½0bÿ«¼a`—)¸o€f¾¸£´#i #iïËSÈB°´E…«F?Ç^HÓÐ ÍÐƱhkí^@û*PÄ-q‚â#.#ŒŸŽùxL£R¬PêÆ=ySåá=cç …ÒùXÍ,^<…ÁXD”¢©Ö»­Zét-ôšQk n‘#œJÚ1+¿¸<²ÙpG¡GÖb­»ÖBç^½.󊑺~©sÎ H{Ã,Ï&ã ¹)bìÝBÁ¹[âpêÝUå²7-³õ˜BšÐÖ„ES½°@Iv©ÂœÚUE2Û—½²‹à˜E˜Ø½“üäæ 5CÜ(X$Áë±%ïf£KÙ^ÉS6%² KŒÒ XQ£ˆ’þj&^‹hm\u6Žv+^w– †çã¨tFq¢Útcˇ·Û8¤v»0 Ï8D_¶Øj›Ú•T,©ß·~ÂD«h¥`"ç•pÔr†æVÚzú´²N‘TZpPÖ\xEÔ¼¸6ãH<2;¨eÄò²ä'.Ûž¬­ÜÊX·~[]í6çŸß¥å#pÚs@‰±‡”‚¤†{cÈ蘄†á¸L¸ÎWGl¡|-óWc;jkm?ç^AeLë°8ÚnèRÈô.˜î ß¶]ú⽞SkÇ?nmo¡éj}ÉØaAVI²|:¶É[»â¡Å_´$³Ž–<ü|YáS2ãÿÈOØãʵü׌W#¼ì`Ô€7‰’¶ó9¥gecÔ‘L.Gºê™¶7EË}ø„©Š~­ZcX<÷ŽÖ£ÀP Tÿ=´–áüÑ3Æ5Šª«•i WÔ4ü¸èÇ]5yx•)ýœ-—e}ù#ÆËԿȨbIÃæe‰KÕAî‚’¦Úr—M¡éDZ3èYËT=7:!¦.Î,El@?8¿¹ôöަ,ØÞì ¬9YêqWhÅu·ü¥þ¼¨‡šj,!$1/;ÓA€¥i(@És>}òŒåÉní‡×[‡‡h­é‰µ€W‚/Ô’Ø,re¼4W±àú8Å}2ÙÂ>Zzö ³pS‡qÁ9žà{Ô“a xÝŽç £+‘8J̨!­SõúŒ®ÁyYs¼7§ø|NYIíÔ‰¶vóÚ‡ÀDʯ™ÛÖŒÁaŽÝ^Æ&„*€LX~êft‹ç. @uºf íÞ5 kaCc´—¿k¨Ne‹€ÀƱנÐnuº#¢83&knVÚñ`H-5ÞªÂ(šykžy7kñó¨4…Êòg·õƒ0 2ƒM>sçL{7ÅT´Ô&è9À¹l§?t‹ê­ªf7¼l’Ô—Û5ú¸(«Aä•#,ž^ÀÛŽSÀO…Ý¿Ìé¶ Ù*·´z‡6söd~#ÞOgÛÒ»x¤Ãg(»¼Åù,®XRÁV°+`ÌôCi<˜Þn¿t!§_¼ÿ°ÎtÚxË1à†V¸)äbj¬™_ë4§9á¢{ô- +l8ᴠ쿞¿ ÓÈ»æòP9ˆÍJ¹ô±÷nÊæùë#|v>¦G³‚Œøq7Ê¥r³Ä0u˜ÇK¾Ùœ+¯B×GÆ7=N…½XUiÆ)¿Eî›*à|qaªp+¹†mR©DQ´R*=9Ɗ̈a‡ø&¬Y‚¸ÀÚIO¶Bÿ=Þ½¹…à¡ì¸•ÔcÞþçq}tõÁîKœCÙD+¥Êðª[Åè_$©‰ù3Em€¦'ý y¯‚úU|5dÂÙ]ÃØ“š‡ŸâP[w+Y.8{Ô9½Ð=ýÔfGÎߌ» {st®~fïæ<=¢©Ôp ÿY¡nMüWJ‹ÕÆÄ¢_¼Ùñ_–?{’ŽÿúìÑâ_ñ_ÿˆÿªä‘Mhâ$uv¯¯í]1Ý‘Èe›R  ƒâäµsÈG*Œ(§MLQ[‰—? u¥¼¿&óK„!0‡G¸ã6)ÕoNêÝBaž“íáÊ .xa W IÉÐbuÇ$Ä9—Ûz2’¥oÁ•š·Û^Ôjð‹ Èiˆ“•Ù@}GÄÀJ“µÛ¯‘*ÿüVŒßÍË«2–J“yâU¦ 4‡1FX£‘̱¾w¥X,ÌQŠQCaH眢¹Çy™sܯ4ÙbŠéýœÑA37 ÊÌ1?s—îæT£Q×õÙTÒk Ë€SÁÏ)ŸñŠBÁžé‘–ø‹…]”¥iXRσ%ðgÂE£spC°‰ËÅ«~‚’<;‰ÏYeëÿL Z Â²F“²º ‹A'ã½Nç"Šñrk³¢`™0 Æã€ìØÖ‚ŒçBUé„·¿EЙjAr-®0N¦fÍç Ó\ªð2õr•SM$ƒ94N^[V—ÆRëGƒ`L=UQý cÊ!:‰T¤QºI=Íߢº´z1D%˜íš» ¶P§a†¹†°Íé¥âC\ó-rÆç ùòcž 7÷=Ö_/ÿ¿›x=ÿ/“d ÉÅoã–óÿéãÅLü÷gýuþÿ}þ“=7ZÊï¯m¯O è½ñºE{Ç¢†z[¿x‡Çä@½À´ªèWoZü»ûNv³‹YbÒU]Ô¢«_p’l‰VMרXŽªb&<ä­Zn‡.¬)k$þÇÉÔ0uqïZM†]V¾£ý§5œ´^D@Àé;pO˶=É\Ea2U`FVN~A‡R=wò‹”Êm[Ž÷hIà•ñbÒ\~Ô{7ÿ²¹lš{ '€‚‡’ Þ½!<)}t¹ÁÝæ•’éÍêÔ(8W»ööö6°·ƒóÖ*èvm6Œ¨óþš³©Ë‰§QKÌÀ¦/ØZ·; ®Tθ?Ä£HïÜe%¸ÂÈRÜ8Aôÿ(@¡üVÜ']±û ÃÓ›Ìv‚ÏGÙ>'¥é\ÞÖ9áùs–K^Y^Û†nŸ…r Ýy ˆf3á&¢jØ^ÃòÂc3µ!6á\ç:Nœ-ØäC'h¨P¯Z»­evvsIä=pë³ï†ÉuLûOiLkœüµõÂ@› 2¿ #˜ã‚1ÓÚbêÏ©¤k ¿D?ð’U¬¼«ËÝø$‚WœÚ-ð_£˜ýkEl#9ºH˪lTu`ÎêîÃ4!ÕÓ4A¨ô÷ëŸ9õ¹µÑmEкReŽó,¦$aiWm .ƒH­b|ïÞóÔÔøzú ^gŸ\ ] 6HŽømÖc¥´ÈÍ?@â\²ë4¥ äòãÜÊ»Š]Þ{w—ÃHªÖæÚñöÑ¡éM¨þ º ž§y8hÕÉ~5+Sa{ÔÛë|`Ó”6ð:™­•ù½µ»¾}¼á’ps“*A[h©’é‘êV½b¢Úr®°ªT˜`î“W.cUÔ=0€‹©¢Ó¦ç—¢Ædo[}ó ã.«2Q“¥€q ‚ÿ ÐMÁ¶MÍýb/0N·úoæ þ³?†ÿӢ˿  6òx<ÿ[\|”ÖÿYøËþÿùdõÿ)D`8ç ]ŽnnÓýûÊyme¤C¼£ÂÝœ g1Ç$ÇãïV›Ø(¦(Úæ‰ª¶‘ÖIŽÃw 9G™ým3%‰{"Ñs‚.Û¹ú‰­½Xw5T‰A¦KT‰ZšzsPm ‰Ìê4Ò7 ŸyqÀ¶_8õ¬16†^eŒ#¡{yÀñ¾`“ FºYÛú‘¢ûV‚…°à^!ÌYIúw.¦øš{†#†õä@õÊ{õeµ÷ØsP,‰!½|Á(Ð%ä¤éºˆÎHDB•4-„h§ùQ¡/¸"š%ÅJ MGÁMšza (h‘º) <:އC *EåŠF/.m²9£Ó‹"eø¹{é%î‰Íú µ¶±Ó*°ªçjÑpºøiJÇ#AIüœBr1!›,m¶©çS ó=Ķþ9¾¼—ËŒ¯Æ—£+ê`P©÷é¶zØmgnßhºÛÄ…Ñ™GáiþÙÀ’Ì*)Ð<Ýl´6¶ŽÔÑ›­Cö†ç ¸ý“ÞpzÕ†'ʵ«4ŒñF¸³aNçŒ7L#uamcƒÂnŽm,Í“£ê ÓÐ<PÙb"ùd¡z+ÇwHÇ2³¯ Ei”*h%åªħ8§^-J¬aÐt4I8Œ¸¥Âl’aê*ãfõ €’]ÒƒaHI<Òé-8£ä0è¼§ gx‚mo½¢¸&ˆø¢—ÀêW‹Þ;êÆña‹ŒÜè©úDDãÚ]H)†‘÷pçá˜Wòö?ròŽ…S¼­Îø]5Fƒ³x¹ðÕKnÖ|9ú‡Ù*[ƒqxΆÄ!ú* éµe äМI×T)(HÈ—¡·zÁ}[uŠc‘}>L¿/ÓIº¬RåJúC±§ç¼âš8B•Tu@þ,S]×£K}Ì@WŠ™>0M}°þ8Cëôz2TÙŠâ7óé§ÙÆ#ÃÈl]LØ2 â\Ýâ¶?˜ # hß&僶NPT3J/îÓãC!SUr¬×üÐ¥fÖòx³Û€¤VȌɔ8øòÞ&9SÎ@S+¦WÈŽiJ=âñí’Õ¹„œD옱6nmSë£i:ím)Û‚z‰QC³1¬¡û°™ó6¼ùø4Ž•+Ih“\˜38@%Bø^t¡@_ùÄ«¡¦ô"USskñ,ði">Ÿð}N –Lk­A#ÅAÎÂó⽦LÝ¡,S§Xú0oW–³7¥ÎW‹»òÜnŽâ­Mð&O·rÇ&„Bg7o²Ã˜Ö„fž4wOíoŸ(nÅiRå¬ÖÌÙ¿·5D"3˜;¶ÁÔæ¶&û>·$&w˜ªßÑ‚P¯T#lØòGoSƒå†üo©cÐD9rK¯¨hýÌžV¥ƒ_^3íåi”÷~$OUÞùì8ÌHèuG%þû #ç <õJqJü½ËŒçè]^•/1à¬4³Õí¶Ijº´ÝîÌáLyz6`#B`~êß1:%¿¿9u„ºMà}7¶s‰V’Žg}­^Ž%Q’‰Pù1§ ¡Ã>4þß¶½ÿ3|Œþ_n¦šÿ‚6n±ÿ#uùââÓ…ÅGOž<}´„÷¿=þ›zò/èKæóÿ¸þ?³þlúúEÛ¸åþ_Öß»ÿA—¿îþ€Ofýñ`ÐzÐ/„·­ÿÒÒ³ÔúÃÛ¿üþÏœ$j·qáu2âBc±±T,ä¾mï¬ýcïí)o·váíâ”·ûkGëoÔÒ”·­ÖT±ø;ðG}fîÿ/dpÛþ‡ãÞßÿK þ¢ÿÈÇÛ+´í 9»}e!ýwùÊb!gw¯¤!Ю^ùkOÿ?fÿã]iØý—´qÿ¿ô,}þ?Y\|ü×þÿ#>¾ÿ6 sïÎD“\ÔÆ/æå¥Žú¾µ±b<÷ÈÍB’/ |Q|Ãj½‹ð1†`6«EV,¸þRWü6D+ŠJã™÷ïž¾ÿøÙÿ¨”ÁäAÀ[öÿ"ìû´ü·ðè/ÿ¿?äãíÿ9õZÛ§ *h;†9uŒYâ–•ƒ#…9kæÂ‰ ){c2îF2`3Õñ5æ‡)£¯`¾áÛø÷¬½Õ^X Ê‹‹¿5Ð1O(ãKÝ [»›{:DÅ5ÏvOäõ†N8's¾OÖM»º<ãÿ—[#ëëöR-¡OÞÊÜ»êò<…â™ï¥ƒ¢c„¯Ö‘në믗çÝø÷èå#7ºx\âÒ’¥OZ«¢-¨º*}œã×7Jü9ÚüÊÂóè•}.ñæ1Ÿ¯Ø{rà]]aOOŠE;'J»~ }ÀÓ=E¡¿(ûóñèÿ¿Àö?³éÿãÇKÒñßþÿÅÿý!Ÿþ U÷M¿ ݰÓCsh¶ûD!ï‰ršµ ÏØ„¿½s\˜iÁ]€Òܹð’ëdö½ð˜Ÿc_n“™Úu´¬¼Òñµœl¢6bãIå„cãž™¢ÍˆŒ‰A)¼"›¶‘þ+b[s K9ÅÈavÙZ/ÀQÜKü¹pb6†ÝˆB‚9ŽvðOŒ/u7¯tTU oë¿ вû'!NU-³Ãî-ܽåèÃ^Æ´ùg*°FK¨Ûƒé˜˜é÷„×ùR!r¦›·c}üÇ¥Iâ ÆWJ›·gÂô¼uCôÀL”´SY¾u·™ .;Usíº¿h »Î³cªîÄv¹Õb=[6Çpݶ2b|ÿ ÛvFm‚8;-â.M_z»VÿßwExEϪí­t¬õð/²=‚jbÀœ­¶¿¶þ=á)Õ‚Éø"%ÙjkÇGoö§TÓ¢=´ç 7•2‘ÿ”rœúÚÆ<‹8¼,%’'v××ÄáýôÆà`ƒÌJÞVI`­ä¡GT:h‹cY “½p <ÑG'˜¿ib%LøÙˆnåBdÒ@®|›޾Ùðqº{\"„rn¦¯Œ|2¦òΙ#Qüqý]Š`-ÓgT®lJÞ;Æqõ) Þó˜Va’cÝrŽ¡¿…e*¾…”ò¹M_Èï‰q÷' -Íÿµsµ½õ*ªî1Wx¨Ïž/òëpñ»ÌYØçOÝ´‰»Ç´ä}ï´ŽŽ¶Ôñ.œ®»G{ÛÛ{ê8нý}à`¶ÔþÖq$¹í= NÀ_üÏqëðhÝÝÓû…÷Š„èÒ/—rßJøVN`†²• ¦vS©ù±D¿Ì)åÄãñoL`º:d¸í¬ê²Î¨L ÉÔGmã zöïadÿ´¬ie] .Ô˜ V Ñ—¿Vš+Qu‡œHÌ¡ƒ_¸ þNõª*MP4ª#$ö„ŒRî'3wAîË´-z{ý»}¦Õ‡=Hƒ¼m3ú/Ó4{_´ÿÞŽ(·ëíB‰gJB3ƒ’|±˜p"š‰×iš„ÁÏs%±õM’/ùòô{°wŠy’a¥d9Eß^„{¯þ~+úžzÜä׿ûÇ«-¬lµ3úÒ´ïKãÁÁ°@$ÁXdæhënV  %ü‘ß`FaÅ«¾ÕPõ­¢;ˆÕf_*…q„‡WÑo/b²î6è`ø74Í­C,†ÆáhôгÆÓ>üa Mð¢f9ÆË™‰«="é8djVÕ¤Õ$Í”•9ÙalŠÓ]Nµ'ÑsÜÅ,ùpÍ¢¦G/oV¼YÅG)F¿I+Fes‹ž;ët+´ÿŸ½ïLÛf~­ÿ èCÈ‚ $iߥ¥ÏXBۼ˗~BºuOÓ x›Ù&i¶öï‹dËækº”î³¢­lé$N§»ÓéD)ÍÊ #韑‹Ò|òtü{at’¸g‘(¶¼¦t®â5;óçƒZn©(ž¿žSNåŸK—“‘+—v) |йl²¯9ýç„$Цúèu.ú>­xB2Á/Ùèôß+ä_ˆÙ‚©+…,Q{ z«ÄDÛ§ðt*g¤¥ùQ,ݦåù±ê("JÜËi¢hãO ð#lŒûfcVBJŽ„t<&|ãSDç·ÈÈ@´'èôUn¼œX¾A|û—†Þ§¨×õã32…7 ‰tZÌ’²â?—˜Èíé¶=´Ý6.fŒ\­€®DËËóiØT§‘I×¶ÄûÉðKÆmG¡æàø-ªÚ†­4±lK è1“Ì‹IÛb ©Itš–o±æÛ}K›jKØrׯÛT˜ ÖIÓ…ÁHG_0DÆ!„ ($­Ç|ËúDû2±)yWÚ  µË´ÙH߸exOÖ4Ë¥ #ô??‘þފꇴ ¢£»ô¾‰xåš]u‚м ¡Ž¡[wAi‚©± 0ÆâaLâr´0sP$X…2S%WªÒ½æûôa|.äÞIÒª¤MAàTd©º„4=·;Oúä&juì §m7g/ó,SNš¬nJ%W‰¡Ô·§_¤¥3@+qxWt0tƒú‰€ï+Uz’¥I_¨’:Tav¼Î>¡ß³ Ìî Íbm’3 2¯Ô>Ó"â$æël/<•têV6»äÄšj¨Ó³íÊB)Ü@0i:Nb rZLÏ‹„¼_ôñü°ö¢QE/Ñ@i×bЇ‘lä÷Æ$×#ÌÑ÷äNOH£Qç‘:H¢y椀0weM3'Õ§×£•DªùTº›n¤º+çkh ïsDqm”°áMeKãÂåîøä]gDYµS¢•Ú©¤¬± ÆàÏvZ;Ælsã½æ<ˆ, ‚µ‘›*¨@nj,¦Kør¶(0¥w –„õL\ÙÓór‚ŽŸ ~­¬ÇIƳŒÝ&Ê.ÚgzÓæÚôâŸ(h€ÔÐÁ(EMŠ·¦„+ºcZ(æ’$¦2mƒ+¢êv‘ôx2tyÅDˆãåó"Ï™¶È‹Ì!ýñâ÷ŒÈK·ÊóüD¨ƒëÅ¡0€2¹w @0±AèÀ=Q M`ÉŸ+…!Àõ©Ä>[æý¢‹ÁåÓpÄð•F×LªZHÎ-áU(÷Í3ø å“An<²0´?ÑÖÌSCà®¶¼G “ œc ¯MlŠq>Ó’ÂÁPe›„œdo“ ¥û‡Êw;9©h†‚@΀=¡Ñç‘û žqju´–•w­‰¯Î/RΞZ?Î/¬ ; ŠßM«d>>¦¡CZÄQÆIÊþ´VC &60Ž›yo¸*¢Ò¶‡! w’÷NŽŸ¼ˆ®7²5)*QkÚŸøßÿ6¦¯óɦø 4E‚]°«ŸPÁ$-×$ð‰ìèúÆ^.$…M&ñéØºc°¶YŸ)?Í ñDeói]Þ´@€•Yí¶67Rt#>úò’~|j C)¢o2d¶B<’äF¹±­Í¨Œªì1]_è P©¡°ª8¥íí'³3Œv}Uç$7.æm1(ñFÀ7ì:c7`r;ç›" n'L°hº¯½#5:­¢¼iäRI§lä€FÐúK’ »¸³•›î„=ß\ZVjâ";G Ø:n¾Ê-ÙÇİv?é.ûq^§†5¯R|×ÄÆU3±ç[&zíÚ7ØÕ»mo™¹j!•¿!eÞÀæ‘Âûï°#Ñ{Ù;YwF÷¼;³CÏ·\ÛBG{4NѱZ-ǃdèÀjæ §Ï=Žðœ{Ž,ß¾¼´}Ü–ðXi€H…NßÙ¶h[=`à¸/I NëŸ6Š;›,&ñ¥NÏÌ$ì˜(¨’I€bÚ‹Ä×hlåN}‚º¦ZÄk!@úÖôÔž-h¡´X‹âíÝ¿K‹""¾  $$5Ùqb§×Ž×˜âQsLYé—Ì=ŒÔ³‰=‹ÈÞôv# \´*}cB 4®M&¡W0ywC‡µPšCvïÓl—I!E-G‹¬EºuR°™¶‰ïGGwÔd¢S€ñÀLüRŒOj/Õ‰Àø< zç™t_bÚ]5Ú0'a1êćÈt&ãߤz=ñ@b(%RIgÖ,çãIC=ëèKD xd¶š1Í´ïZ¼ŠM“ÌãÄ0rtú–ÔÄœ²¨Ox3VWD’„¡}•w½“³·†X)Aa1>Í3ðÚÀ §R¼ƒ ¡RÔšÎø–уÈ.îôMWà…Öº(ï°þ^>éxÎ;‰sÅ¥1CêñϵÓãƒã»‚[/@ÓýS|ÞN=ÞM—ŒúC]Íè.(wõ™ºÏV‡f´ ÅôœçÓ“¤4DSCß ˜2ê“‹ºV6½NSÞÏbd‰Ø²Ÿ`'J¬2¤µD€~1kÏ,@ý~âÖ‘¬bìz !+Ï=dñÿÙjâ%­ue§ènººGèþ0·>–h ΋ì,{'•lZã„6²ŸBéã€þ2º8rÝsìÝ ¬Îïµ|›ÎÍDsAÚ$}§Û ÅÐ ¤?ÛU§sðH_$¹n ®µ¥i~ ãmt~xLþ_/døì^Ì0örÆ¢£ÖCÂqæäÌyºHw¶Ó¨¹«K!–—ñ¿ÔXÞsóâ?nŽÇ¬lo®â-#M‰ÿÈEJ×Ör¯E³Lhq!#>@ñ²â†ŽÚã4‘W´ñ¨Ëu|R'Þ¾Ñ@Ò•z¾v¬PíI¶…‚Cé¥& L5Ñ”QøÈòÂG.8’Ã9žg( ãì(ŽÉèQLG„&C8¼uÓC0ȼ=7tÜQ"#çÛÕµIÀ)GB çÐ<ÍãŒ+Þû•¤ÿ¿ç¸ÿ*Íáÿ•í­±û_vo­øÿ2R2þ·<žŒ7Î%ñã@®«ïœþRU2f¼7>ñôÕô°gÅÖœÈg¬–'"©{+t'Jí ]C1ïP71ðŽ\5Ô›êy®ÙÌýõù£ºäÀÁL¢0iU‘K•EF‹*ÒqàeÚŠÞ¾}«?MG[S¹›ë7ÏÇ…C>xÈ[ ÑkÇM¼Î~‹+‹ÕwG\YÌYùA ¬Ý­Þ xÓÁ§Kòƒ‡)ÿ°gA~½" 6ßZ¼¢äÏ*þ׳…‡¼'ðŽ÷èVšIc,Σ9ÏÌÉ+/ÉÉ%†inº:'—Àÿ¼2|¡N.Ôyeøš¸7ŒlŒ×|W¬„¶ÉÕT£n³PTM¡hjª)ÔÌBI5…’Y¨¨&‘ùŠÄŸxý׬¬÷\Çìõ¿ŒŒé•Uüç¥$µþÃDÆàϺ©½XŒn²ïY!+…¥-6£6¥"û|·©ŒÝ©¼enþ¹¹MF5€DáÛN²dV€eïŒ1Ø~«‡œ³òáM·ºuª8²EmƒON5›á`Ølšï6¥ T/ú¨IðD\D{4üŠgD2Ì.ÛÈЭNc×10ƒŒV¤u‘x…nÊ-ÀÂ¥QÚc{ 4tÀnå Z%ÛSMÅ{ž«Që7¼w‘I\ˆ²Î.â ytIïôÄ(ÉL¬Q5”‘$¿öÄ…ºb%+¯_À׎7â0WùXY5cš ËÉŸòO‘vÒèœ5gInË:-:.ç’².­huØ•cA›Ë ñîŠï=øÁ[{#ãs˜àÝðiF•–5‚OE«xË„E.í¢™öÚ6lÚ*:"ó«XÇÌ LJ„‘˜.¼ç=¦ÌëF*̸Ÿ–J€ÇÝ’'Jl€J%Qʧ¤"yØei Ûã¹Ô4?dУ6ÍI˜iMôÖéã&Ñ aÝ\‰üŸ|v8W†63€*ÂÔZn« 2ßg>bs£Q‹†éVÀ°û·@°Ð¬bä:¿ƒ¤þ±~Q+Ú*ÆT Óƒ¥"ÍQ€iöÑ… Êö„Aaá‡-MÄ$!9 EY0{’*ˆ”`æáÄ•ˆè‡ E÷¬Xb(L{mÜ#Ö,Sp®E橹þ XËÔ1Ï ëÚs”K]ßÁ«Í#€O‡Îp虽g3)J}?ÏÀ®ú•ÕÞ(¹©ô0¼×é<û)îDO÷K›“éò“`´½ÓjÇ}^øúûÈÃêÓÀ峊:òñ¨w€5evå*ѤҪ]hvÍœ^sf—š\Ö5`š¢ÅK F~Ë6¢É 8Å}ƒR‚ã–"n\JòLÉ~ã©CK̇D“cÆyt²:íLÞy^*ŸÃŸî§3Ð;ŒŸ%˜®‰®ì e a’÷­ ˜Ó8hI³ÎR†Æ>’<4ŠøŠf’f0ÑÊ”Ž5GSSK&XšÃN;I^ÈLñÉÊP};ärP yn&nZìyUŸ1ó<EèvÇ¢øË±¸õýÐ÷Zv{äÛ0¨©Þ?S&ä×±qTmBœk UzNãl@Ÿ,#«H"ýn䢋"Ȳk'àð% ºª–Î…×"%sõ&*~²XZõ“e'i„“Jĵ¥TE¹÷—¦ëIŠ]4Œ!;µ«èa_éì‘"ûßÉá~é3Õ1ïþ_4—•Ë6Ë[;;¶*ÿÚ,ooUÿKì|¦ö$ÒWnÿKŒÿY½qöˆ`±ñGûo¥\ÞyD÷?on¯Æi|üí÷vù~‰àîóçñÎæjü—‘¦ŒÿÞOû£Åç´ÿ³½šÿËI3ƿ«ñ×ë@|<ÚÞž1þ•Ôø?~¼µòÿ\JÚ_‰ë_uš1ÿOm:Áàù·±Ž¹ó„ýÄü¯lîlî¬æÿ2Òäñ_1…¯%ÍšÿžÞKsçÿãíôú_ÙYùÿ.% ,?°^ð}ë:lÿÚöÍŽ8-˹ÎÀ3p·¯ðfÊR°Õ¶µUaÅ$þiâü¯ü ôÿòJÿ[Fš2þ_^ÿßYÿ2ÒŒñÿ²úyµþ/#­ôÿ¯;͘ÿ_Vÿ´šÿËH“Çž–4kþQýuþg)i¥ÿÝi|þ÷Ë¿ÁþÿÖJÿ[Jš2þ_Zÿßz¼²ÿ,%Íÿ/ªÿ—WûKI+ýÿëN3æÿ—Ôÿ·WVóiòø¯˜Â×’fÍÿ/©ÿ¯â?.'­ôÿ¯;Mœÿƒýÿ­G+ýoiÊøý_ÿ•þ¿¬4cü¿¬þ¿Úÿ[JZéÿ_wš?ÿÍC¯û×ê˜;ÿËÛcúÿöÊÿg)©&öñòͤ'ø ÓŒùÿeí+ÿÿ¥¤Éã¿b_Kš5ÿ¿¨ýoµþ/%­ì_wš2ÿQ$¼·:³ÿ$ïÿ¨¬ìKI3ÆÿÞl€wÿÇåG+ûßRÒœñ¿àÜõ?mÿ[ÿ_ZZÙÿ¾î4gþß‹ `îüßJÝÿQ)Wv¯æÿ2Òôñ_1†¯!Í›ÿ÷a¸³þ_–°òÿYJZéÿ_wš8ÿw¾„ÿ®ÿí<Þ®¬ô¿e¤)ãÿåÏÿ¬Î-%Íÿ/êÿSYÙÿ—’Vúÿ×fÌÿ/»ÿ¿òÿ[Jš<þ+¦ðµ¤Yóÿ‹îÿ¯â,%­ôÿ¯;Eóhµ®úÁý_þý¯¹ú_ùјü¿³SYíÿ-%©û¿/-¼Ü8ª¿®V3ç†xݨ½¨ÓEœiˆ·ÅÞ;Cøv8ÂËçÂÞ¤[F1·ÕÅ{mŒŒcŠb€÷rvûÞ¥aÜôðB»®‹@ìöÄÉ«3¾ÜŒoìÍÁoáÐuÜk½‚òCnXF<‘—t‹'O(Ën”Åö}ÏߥòµÓÐÈßGŽOW ËïŽð2רxYÿOºøÈ½ºñn\­Ã‹ö$´±‚v`µÔ ÙÞjjµÅ~ýyíõáYƒ/ÿo]3ijÁ?³å¹ä]ãTkýôôätW¼v u¡':ŽÛN‹+Ç›ÉÍÔ[Ck4öàä¸apリ¼fÎW/ðÒ7õ.“[kY¡zSÈh`ðÒ9WºY÷Êâ€v+´é•OšxÂÃ#¡â­’Ø8^D`±%?¼ž Và¿Ó““3cïäøùÁ ¾ßdºæî¸vT?}}Xg‚èx#·]¥/”¥By¢ê-L7âí[‘CUú¨ˆwï°§J·6f½ômë >?B 8u7ÞÐ|ʘBÑÓ6C¤' ü7Uñýtã7ýC8¸.ÈÏ›‡?4)ê+2ÔEêQê]Æ—ÍáU4âÿ§õÚþQý³Ô1Gþ«l?Jíÿ–·w¯ö—’^Õö~>/[bß¾¶ûÞ¥¨»×Žï¹t¯ùOõÓð±i–ÍŠQ{}öòä´!^8Þ5`Ä?Œ‚ÀÙ5· 3L<>j‡¡cìÕuXSª÷‘Œôå¢H¸¢XœÕðû©Ø8ë9ZÕèzŒœ/emù.c#¼z¸÷Àr1,9¶ÖÌNüùXËkã­ßQ‹MQ…ÞÀ –8²®ì/®í[!]c "9ÞglcèùÈé;á­¡ÝíjW ·Ahøæ[à;t!'rs¼£Ôòm€oÈûv0ÒÐ ®¢xa11Œ=Ï Uòæ3(Z“$çÁº<¤71¢£~ëÄ÷‘ŒjµÂ5qbKp–ôCþ³ÔÞÔúoJ*¹×:æ¬ÿå­írzÿ¯òhuþk)Éx l”ßF¾ló½éCu\²¤V{àä»ÄëÀC91"ÖGÜžÙ°'5ënMã9ð$zöÊ?“׿à òžxÀ¥½ Ó—Þ›§ß˜¹šáBÙÿ|Ì ä~Àú¼¬"ŽY;Žz"¶ +Éb¢Ø EŽ»@õHëð«ƒú^vwWæ èÚKúòP¬ËçÄÊŠu‘ÉÉFæ¨g9Ê–ãÆdÆá  %Âãc !ðß»FTä‹ü; ^(È„iÇžÖV,¢ÌÏÙ›Å{ K“’èx(ÿ†>ȇ'Ç/šXmðמ1ÎNÎ06ç§34©“Ýþç“Ó}2Ê'JA£!ﯔ僸iáVÀ¼«¿yUß;«ï79Óû¡/r ^| €êÇD=kd‡Ïé¹õF1ÂZ”›Z'ªÚWБÊM!â=?—ϸ'.ÓHDf2o^Àÿ‰„p5<)[Š åPQ)ê7f“™&w”Æffëã–Z“esSMÅí!íÅçÄÿ âBÿ96€çñÿÍÇÇý¿Wü))Éÿ¥ºšÜ_ßÃT|Z)$åàn í^æ¢×¢¢å®#ŠžüÚ/d ×¾QEŒl«o[.}Ï­µô²x 8c?¹ÆëçÏÞÔͽÃzíXTž•ÚöuÉõûâBÊü“`ëOìâü³b{˜53±•Hð€='SÊi x‡1Þ_„´Á3e„ƒ¯a%úðAü9 p8–Þþj¾[É[• ‚Á!\7ß/DÃ&ÿ`¸r½˜”!mbƾ4ù®Ò_LÿG³ÔgªcÿßÚ„ï©ýßG›+ÿ¿¥¤éþ?ÊËG©ÿi»'ý~[ôßÁŸÿ8ðgÿàô0@S(àÖ Z#5¯íþíYÎÀq-Ú…k@ßlÑžYh¡ =}çʆÂâr «xÂóÑÖyy+ÜÑà¾ACÈ´H[¢&‹l!na9ìÔò|ä‰ Ë Á€¼EÄ*ë ØbÇ÷"ÛÒ¢Êvl^G”T#j}VF–+Ç m:FâUÐèã~.HÇiï&(ÜÞuwÿ¢ 3F$³u~Œ¿ÔP-ôYèÍÖ^µ BhK¹tœ’/]xÉÝJ½øòW¬ZRãH%ØÞLª• þ•ï]Ò®»ÄçfDùÙ¿+œ%ò§•F¤•·óÐ jOø`Ô#†0íC eF†”ã¹òoEùB6‡Üˆ4ÞôÕò=¨ŒD@n$‚^Y^ß/ä´s H,0ŽŽí¥€󠨔JEaÏ÷FÝZflkH]> åñƵ tH?)ß!¹@‘; b<è d)»KtHø#˶V±l¾gMˆËY_'ìóAq½ dþ6*›|ˆY¬±Q‡ÔhB´¯`<ØÃˆ¾íù]Ëuþ ñžúÍš— TCÄØ)?8–Gö !Õ!ªÁ#èM4î;­æ5LPÌ_l®1mñrYý¢Q¥1س|ƒ=ëÚúãÏò°‘%R\…î¼AÓBú06h¸“NH®ÔNÒm›¨®d>šˆ–Úb ±A^£Ðf…ÓX:¾³’†'Q]ôèÁ<¾YmWÏJñú¯Â4/GÝà^5»ËÿËxþg%ÿþ4mü»ßÝ_ø»ëÿwÊ«øßKIÓÆßŽÞÜyü+¨¬ÆiÚø»Î—œÿ¯øÿR’>þšȽÖ1{üwÊ›ôñ/£ýçñ*þÛr’vþ?+^Dú(/‘Æc›ӑËûV´yAûÖ-PB¶´F¾Ï[ØzÌ.(¶§BQIß‚(œˆ·¶:£¾Ü³öÓÑJk9Ú;н’pwÔqû=è@iT¬Ú±ÐƒÕj5[AˆšmâYmqCù¨ñ²~xXÍýÉÁËšô³(qñÑÈfEqRÙ,¾;ÚåâÃzY}©“™B¾›Zºôƒ-~ðF>í¾†Pt>tªfïoôHþó¿—MrïÛÀ?’îš=@]ÊA¯ âóo¢òìßåÈw9Î?Ž_îíWwá{Vüš»*%ªgÛð)w¸Ô­ÚÚþ:àÿYþ6“û>óqƒ½ ¨¼Ã;¬´££]€AÃE!ö€ˆ8WAÏ4rª°¨ÿDÍ ?¯jg/Wr5ŸyøR©æŸÑ—íjþ[øðÂÁ0¹-& mhÀŠðtóaíøýy¡ ÷šµýýÓz£A_ñcïäð°vF/÷Î~yE_öëÇgÏöjt|† í5êµÆëÓú¼ãŸ $L°ŽNŽëgµÓ_ð;†z¥Ï×GõÓƒ=üúªöª~ªÀœÕë¯^Búqp$O–㘠¾}ÿ$Žßz±f_[}‘ã^U÷¢q—O 46™‚~Hdf =ò@ŒøøetÒX#{!/`dAw®‰~è´ˆ%vEþ|Í:/ägÑ æ­âZèYL,Ø{_”ƨ' {ˆ³É΋*<.eôUžªú¢Õ½Kê1B”?û½Ý‘ë†i@Èz‘Ó Â¼ÞÌÀD!Â%<@íøa®—Î×ÞþZz‡ÿÖÏ ¥õ\^œ€± Þ¨LoÎ×J¥ó”7ú “ k„d‘¬ÆÐYùŽË€'%J¿šëçÉvœCCJŠê-—žˆßùøì!J¿¾Á¬ð+ž“¥Ý›”#(Á å/›8w…kÛí@첞ã?>‰Ò3̆«iíÚsÚ°Bm— v£!°ë½ž…GŽ`=%K=EËoöíí—Õ¼uÙjÛnÏùíª?p½áï~Ž®oÞßþ‘—YëggÀ{«ùÚ{ûõç/^üï‡GÇ'¯þßiãìõO?¿ùå¿QV 5—¨$—€#³¶®Bý›ePæv=þŸï«ïŽ ÄaBÜœq¨5ŸÜ–ú7Öm |§Û Íh¹Ä €™f£þªvZ;;9•+Ç7U\âU‘ޝÄrNFnû–44ðæ4¨Üìli ’-:äsI7þq]k æ-JÇL*wiwpS˜"Ùâƒ'ì‹nÊԖÚžÍñСœ à¦¥¬Jæä`j‘?ΓO²åø1\½R†ÁÎȪåÁµYPÄMfô”Ü¡âù"4cä£éË¢#pè„´›ùlKd)ÏcIUFÃÅ•ú pM‚±vjýf‰SñÒò1nÌöQDLò3F ºšç¶àF¯¨Ã+ –Ÿ¹ $1)?ôQ?8´mQ7ÅQëÈêÉ-`̈àcC¾ÝbÁª*ñ4]Œ—„u,?ƒÜFqCþØ}ÏFo~a?Ÿ4ó$õ¯"Px›{ÇØA@å"Q5ß|w^Ø8/ŸWàß–‚&asqEªqå{Г4NŒ'’3“ï>|¸Ó Øš0‡’ ˜xuÒ8xlÛî÷篃w‡7o5$ªØ÷Ü‹‘TEå´4åydêÐóóHAô¤¼QÙØºØà×EWÈ ‰·,N¬·Ö7Š.´õ½—'Íã*îUóFž¿žUóò,9bÞu!¢¼XæVYe¾‚äÝi˜ç­¼ž“yùý[=tÅGé?@5ê+!D<ÓŸ@;ú.†-Ó* ãk· [&ü·RäGµÿ¿/^½zBK9i͵ ÄâqYˆ\ßÈ_ÊaiœN¤Aô5òmò¥»¶úÞ-DI •Sr¼ùó‹5~Q17· ºX+~ÐqM4Vs O}WêDOÚÛô¼B™QÇX†r› ˜·†¢8LhžÑ+Bœ ´I¶Ú¾»(Œ¾« h¢B€¹Èˆâ®P˜,ažM©‹r4‡ %ëÑ+Šx‡1Ö ü•,“œ2eÁ›ŒÄx† İÄhqß(¾øNtD{9bâ‘݃‘cË€ ýfkÀÈÎH ÕíÃõ¤Ùä᫤áäá“àáÛ_›úÒóîaóa7ç–\ÂMFy½9A/Õšo‡³ê„JQ? ‰)ŽMº!QDÞè›Å ¬[¬Í·’ÝqÌ%ëö‘ùpø¼+¢jd“û¢”c1Š}CØaËD‰0ÄóA̵@ÈìVmmêþX°Ú}º£Dz´o%ŠEu2!âäG“»´Ã¶%y°þOi}R"NïIP:-uáóWÓ4KÙ¬(á3ÓÌ•D6[z2|òÿ(ô´Yküpò·›NG.ˆ•Ën4É—i}Ç[ÞàËì5ê'Ïå…F4o¬€½CÛÚC„×=É Ìftõ½Áǯãe²bî|g¢êµ×âÃGr}ci "‰c:UNçxY¯íÃdÐsÈGq~~LA¡GqiÐhh9Ô#È”CÓPî{Ã(áeZ~±Öó‚Š0¿ÝBÒ¢LÃUþýB“ŸÑ4´Mr¢R7KÝvôy3’öÏ0ÒÚùcœôÐrCdzrò¸4{3³“'ÞWÓ‚™ 3¦l½¯ú.vó­ŒõN¼EL¿rÂñ(ö6€TAlÊÅ}lD.pø”Nº,Ÿ@îŸ64ÂŽr«¬Ÿ¤ŠüŽE~90±¥æ'bIºøOñ à^Ń%ÚX‚¶r#]Ö0X=ÑQ‘àùñ)WéM[”½øc4lÇâ*Ò©o+¼ ʤɊ£ZB—2QÅEYEô¼Ý=«½Â­®wÆ2^Äc"ÌiˆæY„åèö¬Ô‹`×ÈéD'I‰ Ñ& àSøRTwK}ßuG¦çwŸ™I!»H#418? Í+]r5×vÍgÏYTGHˆWÌì©Ïw”“þ¶¢Á>þþ~¥¢Ä‹“.N˜ÞŠYª:ˆgêÈù³5Xɬƒb…ö»µù’†/ÒÃóÂÒ±!A?êQ6ãsºAÉ»Ët{£uÔèŒò Q7Z¾h'T³!È!MŒ•°>m‹‹+cMÞƒÄHñSÛ{~P!ƒL "ðä¾ÁP*#²iŒ#¾EÁð:ÛEôãcÞZvH][íûJKEƒÃ*ÒòÚ³mÚd«F™)†ƒOÒYÿŸLäpf€6Œ7³Ñ«7n«î×›uÝAbÙôÍÿìÚV ÐpÀDÃHÎH8òOd%´fXqbÞ²xºYŸÙ¸´YÿáÒ;›õÐ( 1’2–údÞÓÄ¡Ãp±Åamð[h0KgcX1Ô©ÈðOúýÚ´7ž ã– ´*וâBÌÈå§i6@ŽÇÜ1s߉ú½LhÙ!…)‡çœzàœÔ8!×{J)ø?2×@ï¿r·±‘žòD§{￾%Çœ Tf ãåb¾g]´íî™{sû¶ë» ×oº~Y€•ýj„R%¬¹˜v²Vð Lç)oëîߪ³a½w÷:ÌÉð=¾>*20Wê$×0K¿Ð§’Då'§\H¯b ! >âüîšÂ€ÆiÞ»·sïøàåÓW/àT:h‚ÅÛkp»º[ËIڔߡ‘ðY(2£|ƒ¥gK>(@åNþ‹c3Ó“c{'ktk¢]^IÕ¥r¼#öqë!¡Â˜ r˜\E¡'Åï’.Þv¢‹?¼Ft ê{p`²Ð”K6eš’G85¥eÞ‘ ö4µãù©umPŒv½ïw¿ÿ~÷[7ÚýÞÓyßNÝé½Ýïñà?îíF»ùí·?xÝ…Ÿ»—äá-žºÿ{L‚þâë)™]„™¸… 椎ýî»ßž E-ò¾'·¸‰‡Vº'S¾÷Ygh/zr þÞC“GæÔÉÁ1ŸE›Zæ¬ò ÿÞCÛeú䛓㣗Ï8]7ï‚Þ>;>|ýêøä{ÏœCåàôj^ô¯¿÷îý‹ÿúÝœÖgÈëf0>Ö)ÚÙõÔE;Ecâ÷^ä]Ãæ2(h㘶õ¨ß±ÌÌ%QÁ5‘}Ñ †'ó®S§Ì¥ K]g’zí=~à§Têšp'A×÷°¹…©«ÎÇÃ8OX yÁpkg¼ ÓæeGM%¢Žš«Æƒž}!UIúÔ¶3É\ŒÍy´Z'OѸ®p¨;¥u VAƒqæ +9™ÃO|ó½·óÔnéÝß*Ø$]õiª™Ã)lç‰SªÃ)hÉ3ÜÀurnú´iÞ]´ó¹&O s­L2å…lŽ’‡ì~ñüè‡7Ö×á~Z1jùñùÁ3|ÙËø¦§ê˜9‚Záô4{÷á/‡‡¿ØÏ{õÃÓqú§÷¬ë(ÈÄÑË“Ãg‡ÇéÃÏ_=;zrð<}øø0{ ÊêMAª~ÁñFÁñfÁñVAö2é«ã™ôÕñLúêx&}|ÏLâx0“2Ì$‹3iÆá<2)ǧ2éǧà)߀J‹˜( ¤YtÓœ\´‹OíŸêŸúcñ©‡Éî-Ôn2ÏORÇhT¤aþ ®¶b­ÃòÑŠ8 æLW`zŒöƒ«~xÎsq8ç-ìT5Ô!/ˆÂj§±!h²o¡:ÃSt<•öÕ›w}Òxz½óö—:ÏØ‡Áõ)$JQ·õG>ŠG.&Áeׇ§¼4¡ 5cBmSÝòE¹‡8ͲW†£^÷^ú‰pçsÚE˜`*ùÄÌK-%*«âœž{îîÆÆô{‰ëÌ~nZñºÇ™¦ýbü䆛PÔD>_ñ{ï[—þ†ŒÿþŠ›To,m Š-‹ñÞ‘”Örw«}%-?èÈM^–Èm²4؉!• ^;q5›\£0ö;: ÙÍI8½äüŠû“/òU›T`Q𝔷cOÅ{ªiEùoßo+ïnÖ$ÃÓ?­us¨brIQIt‚ZÝ~‰ˆ“§è¢Ç4afÅWµ}¤‡#¼#£ž?„únÞÓfûÚ@w¿ÿK°óσÿïô¯úÚåûÝ­³mœž O–xͪ©{VÇÀZT0ý?Ùl£[¤VèÿÃn¥ÚæÂ-NUo÷Jõ˜¼×N]ÁçRI©–•ìÙjÿ"ëïbd®Äž}p|;q|'|ÃLÓúoq{VÙ,*#+sôªPìstчP0a2¶5½í㣤'výØ›/£•¨²ÇSuÆîzõge<›âeyÚ õ»^¯ÿõ¯O›r˜!*ÖwÔû£J¼Ü$ÎZ¢¡®î?R?áÒ“o”ãI¼û˜óäÁuÉT§ýQ÷o1³à—Ð[üxùßG½ÿÈó¶ÿfn˜sõ£ú}¼TYÿ(+7þ·Æu«Ÿ¢o€sÓŽßãáâÜï™ß~ï¹ßOÇW§æ ­ï^¾99€é$‡³3m臑$ýþ­ªÝAãÖÒËãõˆÖkðªÂú}\ø[mw÷¾Y˜Z›˜ºW(âe .™›zH.³’Ñ.}G;Û¸þм.TŒ_aî²Fµ¨/,X·h]5?™R ÑzÓWÎüì‹gIãðGïˆKQœ¤"Ö²}NŒx—m ¬o±ÑJ­hù6Þ«Kß ÏéE+Q%qA²1q*óÛ’Z;S¾)%nÈmI™+æ%°B;R |•ÍÈÚ/MWøÈTU„KµåQ¢±…Æ,åN!ÓMï·Jiçù»áö–Ç!í¼ËZüªúzÔcX:xÍ..ú×Ý]KZs=kaý¿¿ÕiE$ wÂn¥^ß­ðfw¸ %ay½—HW \Ò&kÉ'© ­îþåi¦Oñ.á¡Ú98‘áL²(xpåñ€ÇÖz óürŒ(‘3l…fÿ3댔‚rú¢uu£m°—P=¡vk Å~x%¡xë¬%n·´îÔy.t’VyÜSEOm’FDµDõÿÜÿzdV«bÍØ Óo¡J%Yìß:Ùüèâ‹tŽõ¢ÙÜtSÏ}NÞcòï‹W Ãºáv;ïAƒÃ0îÕÇÞߨɋ•Ä2K˜Ö*¤ÄÜÎ4NýÝað‰¤eØuµŽ‚’ƒ¦R'U‹›”é 'ruŠÑ+õÝÀÒ÷Qš…5ï)š×g“ÛM^†E¤KÊh”ö]ÉWJôšuÚG~¯'^0ç|úU“饽èÍKdÆ.‡¹ÏÚ-ºÉ²%ÿ™,s8]Ö}ËAÞãìw.Hv7uà ­ Õû ^6>•Wó+¾ô¼Ç§+|^¤n´ ÂhI}mi¿0ô]ï$Šçê†(Ç·fïÜ‹öyŒV±âG;j¢ûû<œâ’EŠ)|5 Ñ—^mó7ã7²­üèþÝÕ~=¬{ìãL)Í"íº\Ã-HƸEÓGZt†V’ÉÕ¤¯6;ÂPÇ× >»÷ f„á/'„—Æ‚P»™*ÇØá…&¬][OŸ3©@ú¦XÒÝK¨ÄÙ¤Ép’ÉW6Åìå[L (Q”Õ%M¢Úæ<¦­Åy¼±ì‚åÀáW'b›ÞÚÔ=V˜[ÏáC8ßbw;Ý’ötKÚÖô¥ãUÊg½Ÿtü×Ùú·^ÿ·½—Þÿeßß—ý_n哈ÿÊ[Wð–‚)Ohœ¹cÔR×bÛW EƒfÉ—Ì®-Èž1zìòÚ£ßÐŒ÷›¿ ºÜ7ÌôΧ4ͧ„ æþ‚¢‘Òà@=&÷¯.K;÷¼çªkà{±^Q”uÖAYb¥QåÔ˜Òî}ãî„ÿp÷íR›ò7+ËÓŽç÷¾gö/]‡Ÿó‰ûo|#›ÿý¿÷kJüïÛø$ë¿~þÕÇë°<æîÿ¶¿ŸŽÿNûÿ‰ü¿ùožtÊ‹(,AòÈUï"u¤îW-ñäcRýcölŠþw+Ÿdý'{ú4¼^Ë3æÿF£ÝHïÿÒòeÿÏ[ùü¦÷~<€úü¿q5ýë¿pëóAø»ó[0›¾Oþõ¬?þ¯ßw˜EQŽOûÓAø/ZJaïgÎÂËþè_:Õßç·að>¤ë1òŒ2Ìîª !hË<Ü ½ŠiÕxúÇ\5á>ÜsÔ¦‚¸1%è%lý¦Þ‰T¸½NiÁÖI¼!¥¦"¶Q ž0¹/$z%·»×A^û=ô+<§PAjU §Ì¡ Éu1‘< gbt/Üx½î©ý2¢wè`f6Ø<¢ ìÝø£ŠáäL“ £¥ÚÎEv"H~¤£º'ÇÝ õ%Z@ ¹™Ìè½&j»xÜͲÇÑ©®TÁpøÌsÍ ê>ᎃsöÈ YÈÕ^ô¸Æìì˜\”Ê£Ù;ž6®Äˆ¸·cä`ØÚh¢îþ4þ~ÀˆQ×K™µ¼`¸3ï Õé|<Á½BÇ£®6´víGª–©Òtáã÷”r:ý¤6kthÁ"möˆ%×r4¶ñ¢g!t€ .f•ÖWMœ`rþ®ë =™#NŒ ’g¼ƒO¼Ì‹Ês÷UbŸx^‡Þ¢Yè¹aý²Nçx™š…z¿©åhÿÒm<Ù{Üt—âŠÂ̰EƒÞ+ÒS×8:ö–æmX¡%bÛ…Üê;ÏÉØl”‰1„"Ï!?nqC—ÓÅ"SûgXQ—Þ†AoL«y°ÔŸíÍWãN‹ñ°JíÞ½ï_9z²«Â:ŽÜpx5ýäþë·é”ú]ûõzz¡`<»8"õ /#½Z¥èÀß³Fd¹ƒpt‰þ '¸V·Ó|Ì m,‰eɯЗ^É*h*gІ¿;tMÕß«¹wf};÷zÎoá¨g]JëV#µ¥1ôü iÈc Ÿ½að;µBúûüwZVœhµü¢h_!0'›x!ç2þó<Á“±;>£€éÜyáuŸw”õ8ª/¨U#eU¡¯µªªa0yÝŸ+TÅÁe‹ •;ù“?þ¾–IÉ›•8šQ‹l¹gŸ¦ad6ÐuqmÛ9Wzm®>-9!OǽãR¦”„Å%ƒÁø#ö]®m1±‰1#KjÍ!&®ßÞ´çˆýLJb„’Jo»«ñ!§Ë!dX¢Ä¤h5É®“>­/.pE'¿Nš"éGŽ] z¯_ÕUPꚈ¡¸\–H«Ò°¥ÈIÀ»Åä Ät K~bÙ‘XϽÔÈ6'ˆ0«ÚM‚à һ¨ŽDCPpÉ­ù»«þÕÕØ º¿òøw.ø3îeÓpäPÜf™®ßNܰý;§TFzí7¶&†FæØšÌ+’ðéxšøóZFfÛd×vc´hGÇ?ƳVg; ÎßseÙ££ àzzLdçÅÙxÆbhúéŠD*Õ¢zizb•:+þéaeúÃQ»Óª£Óóz­®–7$“çaûb6pt€)ûY=E‚Î-ªÀ¨¸0Hë„×pÁCC9D OŹk!H•D!¨! 5*ÔÿÓùíb<žÂ`þë„Z½Úl®Á$H¸€ˆf¼iñÝK#‡Â Nû´ûU:õáC : TA5¨™fÏ»œ@µr0­‘Þ\:U›fàУîü£ác'`¯­žÕ¨.)>¥;¾ 'V‰ò¦í2%ß3'à^I1‚­!\5ç^4þ;µÒXFqoâQË¢ 7ˆ²âZ‰º*…ä(>§ïAìÕÜG\þî{ü»¡Ù÷–RçrŽ5<¨áaž^ËÈ}Èðû~¼Î‡o õƒXŒX†jK‹âDÕ£*‘ÝúZu:+ïÎs츼z:?tB(ï°÷Û)<ë7zùêk¿ÿ®æqŸÏv0Õx-!樘ð¸Ñ5Zõ{!-Ð ÍæY³H ¬ Ò*¡è‘óÛoÙ«·Ï‡ÕÕÚêlL~ÿ×`0€ÙË;нn'îþAGuSŒô ÎL™üí7}·Ÿ¼ˆBæó×’£ AáþF*u¨Äœ¾q׺³™º“ôªùÜå;[É ´¤*¸skg‡nÞÙá»ÛÉ‹¬bèê4™Q/2wÿÝû_|«ßø£}ku¦õrºV5óßkp wÏ‹K—š»®5«>¹)QK¶"»Z‰ù–þ¥“‡¾ ÝcMLA½«hû‰ê8\8Õ±Iy\=Ãíš»¸öþ}¸å4î«ê¹p•~ý¼«R=Z^é\¨Œ%r«&@Šªi÷ª©Ùï@Ë{Nc*ÎãªMÁšÆ`]pVÞ…ÃyJ±=kâpŠ biG† gï› •™“øÊœ-õâPÜ0œ½ä­TYPMr¾~#I‘Ò x–͉–ÖãX‡ð\»˜SwÙ96ªNâñ¿A—{÷¯«Á,úf‡¸C"‹WíÆo§4d•õª<(Ä«‚QÌ+IY ¹2+ÆJGP®E¶ÒLÎú¼3£ÑÞ"Géê´S)çªõÔƒ‘u¡­Ós'ýƒ‘ŸÉ[Yé{lNöU̶x¨Y`ãpé‡mÆ93œØh£2ád2«ô7VÑt¨êeÅ1‚Yå(üH‹‡ã—Âz XØ: ¶YÊÌ‚zž~ =wdi6ÉT!¦•b·H)vÎæ+po7¥ã1ò»Û¿AÛÞÝ5¢awm;[¬ý%ß*²ëR ›¦i$t?GêÐù¤ìkm:!W¸Ý6™ˆ²¢½Tú9ÊŠ*ëHÙõÔl=PøžÛãÞ(l^#ÏkÜ/¡§sØo–4ѹê=öä&¡Ók˜›´†Mãl¤” Ô‘yöŽMgÚ0sIY²ØÛçmW‰îàÑ*ç¸ ±A¼TWsôp÷ø÷ØG¡Ç¸hÔ‚g®Ý´X¤*F;ÙTÅ|>V¶–bÜ”i¯GeZlLHê›óG‚­¼QgBK1¦)uî÷:˜Œ´Nft:5‘ÌS2e7¸dCÇ#¾¥æ°FI¾¶U••9ËW}ty‡úë…ƒþ°[ù®â~‹[ºNÕ÷Ǿ¬‘ºl·àºæüävõu­Ôu )¥.I]ÛN]û_©+ÿ . ©aãK’ˆÐ%PÅ¿®ª¯Ü»tJµZí‘ûÇVÉr/ׂës;$6šEÔ’?©Y‚{zÛtdï0¢ –Ķaâ©2ZP?S JÜô-n!Ðz™K©;ÜßQ–e×W;(z´mŸ›©äøìïØ ´¨µ¬NôŽº6ÒOyóy GM… ÎM<@ŒÂÁ‚o2Áí')¢=+´YHœ·zÒ‘šÏ{*ÈôΑt°Mƒ6‹Ây(M{á}¦‡!žü`‹F-\姯¸O4M•\[†¦õÚÈshc "]±Ùrô¡áŸ•”°h 7";Ýþ(ýxŒŠÇV—‹½Ñê\Áãºçq瑦 ñmN4lêBÍz4’ivrˆ“þƒ¾“˜ö”J–ÔøÂj‘ äDï! š]`4¯dÃÈTøV¬@=rèÏSRÿP˛ӨYv+­ÊcÔýš×ƒ„Öe’¬¥õ³¢ë<ó§¹cIÌ&S”O\3{´µKØÓ£8^•HÏõÜê.4Wš«Íu·†©)ëç#ʬ÷T-9ý*dÕ=¨m4 Rõ„hþÛê¤<õGAµÚÈÏQÊÏsǶ‡Æã¡–“ZD¢Å-:nY¥7ëGïC4±Uy<àMšÌÜœ7;îõ/.B„„¢|¯FÓ#Ì HEbo=h%4›ÅYw<ÖÁÆÓ÷q~ØM­‡:Â,KßIb.aÍÔ:¨™*KÒ¾¾ÝåÀ«ØDë¿Soï§pL޼SIq7ϱ:¤Ý­t@úÍFc§7ƒfiÿ˜Á,q2È÷g„à‰R,³ˆÔ2èµ üLÈE8KöÓÒ/±ÉµŒúaÅ«@1ó_)Õ‘?•éD®¨z¨ìÖætnUEe{÷gu\DœZ ‰´4Žhúˆ;K°ÁËVTb4C®Þ¼':4ôé:ƒKÓXFëeŽQh|©R´2Ôqà•k+/tÑ5¶n"0†üH·êžæqïT–'­xóH£ØŽa%¨ šéÅ@¶Tpµ‰²!a+pl¦,Xj&I©Ç’2ªyÌÛq{-L eH»&*:Ié͆ÃOÚàj†ä´£Ô©ºI"™wý^Ä,ÎÇãh %ú.àd«;v$úÒžRÿžŸ¤ÿ-SÓÞ×Ó5=cÿ§ßnî¥ýÿöÚMñÿ»O¼œîiJwái¦¥C«Íîb´kkÐ]O9y{ðÜåíÜh—±Ž^ÿªŽáå§1cGé…³’϶<ç íEÒaà`ÀS ‹d³Cù8¡,Ü¥±Æ1ˆxqŽôÃ;GzÊ0Dy–‹ýYù‰,#–~ òIb˜Šr—„ð4Œu€SÞxåôOG/Ÿz±Ùpˆaâ,_óRÄ¥š–*ãº2 àÖpa³±sF¡øÁÍ'þ¨çd8? .8F'mGÙªÉ}ŒƒÓ7L¢ßŸV\Æ_wžŒ‡CMÔ.³Ú”Bùåíf‘Z;ãkç+x¾eØ ‹Ç—è$mÆr=fð,*§Îæð›&ÃÕë¶Ê>ä_íÊll\ ÈD¬¶ædzáUHC*/°¬G¸#¯JˆÎBGçÞÁèV³Ð£}fJ­oˆ»Qz„ƒåÛÀ±;àt6òT–°L@ãzO{ ¯Ø÷+6|ñ<™Ák#Tœ‡½Zš¸?<§j§'x4}æUÑ´4Ž#ŠM}'ªñãQÏ™asѳB½©:µ&jcvà†h³R4”ô<è xcÚ’:vQµB4·AW‡'òÌÅ90ÕF8Ò»­@6Õl^Šn$ÖÎ[?çï?¢âzðúˆR5}í!£©*©*d›vˆB ‘¤‚f5œ]_̦¸ \Û˜­Ä•8[9uŒB”IÝö¦P.ßzÇÚ"W½Y¥Ž&®µþ£©2«s2åî¶|²Ý*M9cÃå-˜ªÝA¹ªÇT¾°’mõP%q ç˜2¨ŽOL¾çÀ;§z¯n=Ö¿:v:xùôùÑËgôähãÄy w§ˆï$r|õ͸çäÜÊ8qX£»UHL\øN+¶zì|`²vï­¨Ú­î=ªm­t”IKÈl­ HÖ¦UH©f4kÝbÝ>ÜÍŽ4“Ú¶¦V< *IÔ„½Ø¨­²¥î‰t·¨M´ÒFêÌ‘3 úQoÑH90f÷øþ‡Öªp¡OT‘ÒöˆØôáµ£P‹=°›2V;H×]²Š›rB+ZÐWk`¼Ü€ì„b²Ê区?5cŠÓçg×ÝÏádöh;h•†sÎÎCÊÁCoh­Û©ˆ‡1ò¡JÕb–ØêÎÍbD¡ÃiÎű«8®šÖ{ uzÙ÷¶æmª¸PÓ ö¨ü×ørrŠ"µ*ßá¦×S…CqƒnÕ›`¤S™÷Rc`x}žq2L¦GÏ+H0®¦&`ʼà™ÙÙ§Øãü]èè÷U•CèïjB5SLî”gjU=à:<Ÿ©ýÐß`Ô-Ðfq'Õ#ý,lÈ éIHnEi“¬c){uÜà06CDìy÷àHû¾éy9®[ý)Æß„Ù{¡²Eد£ñ«©Š{ç©¡"u‹ÆZºµç"Š85;OÁYœ%®R-hÔ:¼ŒÉÈèóeç"ýt­%'ÞZ\ZBÇUž)¨Ÿ£b<_•É¿I½?5µj ÛèÑtsÄz‚G¬ÆÆæmaø<§]Kz|åãä•&1ûÊxãë †Ãã"R£ýd2£Œrjß%S£—™†Cþ†ê¢nÔÜðXfg¨S‹u,o „rÀ«oÈ•%Ó9xa. ¥â³È¥i´+£5‡Ÿ>ÒúнŒŽÔ´q;:Áa˜ËøQ£ñN¢MNÏ£6„L<õèL´êÌ®²:öDÚ,Ó”Ð;"óº<·®:©‰ýH–¤À4©ô`‡*¬]¬z.»70=~ùìù¯îñá“W/^¾|zøYΡO¸J¬ÆX9'¥å « tY­U´ÓiÎDìPû™)„{ѧå¼0™¼Â‘é‘sËfäi­h¦„izEØXOضñ!ÛÙ¡-1N&1]µ QÿräqÒ´|®¡Óž™^ \ÊCcÔK·RL‘ÞÖzOËILòœÜs¬‰t¶šTϾÉ<™¢$‰L?_#4-xñݦ”|Á’ù–z’XúNÊr›ÚÎ6ŠømÕØsJ§>vâ'˜Ì›çŒ>ôY¦!@.ÊÆ µ«Òl•Ý4[7i•;B®†˜âx’i\À&)ƒ;éÄhÞæãÛÆ A;rU­Ò+{ýöld¦ ÛÊ{]/ÊÁÑkí†  \ záå$¤ñO¥¢5ò¾xœ7Ýš_ 9,³éõ^ÿÜ qCÍÈÁ·6ŽsjyóÈ=zù?oŽYqÀé*Ž…¼Òzð©žZmÔÒÙµnÒ±c:Nš§}^yèüQ¦6{áF@z%wÅ9àÔ²[Á £·Ê «ªèïŽkÎU€+€º•OaTqó.ˆÝõ‚œJ¤ÒÒ°WPP-þ¨ß`ªßÑ8†.¿g/Ž`’‚“òTtìYxÀƒAÊñ’ý£&ñ‚‡‹0 Y( o²öÔÞÂöÜ–7 Ž´!Ìø?:Úv~Ä_z£Þ ;É©é$º¼zvLhýÇÏÞ‚°>yã@‘á–©‰Êĺ¹šæv6ìØ”¬‘‰¥$mðÀ¦Ýí٪ʼncÐéÐj¡3í+ý£µs,É')H#a[õ÷¼ 9KU¼ ¨>ªy(Ùºý>{½|uò¨Ü]p¾¯G¾¯ÌV_8¸N§ñÑ£aýV¿^Q4öÙ¬t¡M ÜJíê„ I ƒ¼‚<±7|kž0ÀÐšŠ±»,WBÞ®¬Hüa|ƒS5585ÕHå@†ˆSöô°PTnë+-³\õíojœ§oŽž¸?½|æ¿z ¿A˜fžçêò°ØþâaÉþõ/Tg­9©¬¸Éks.â|¥„¼§,¼V½_‹#¾ˆ ^¬é)sBD UIŠj½œî×¼ÔEÁqÑEøØ…áç Mpig[0À†)‹ [}Z–òã5»˜QÕð×6¿ÔøE"snsçO­YÀv‹ƒÊdH–73ñ¥®¢ƒðå4·ûØýŽ®Å÷{œÓ,èŠ]¼äqN{HÞ¿û8§Ð%ÿe®ù¯Ç9ÕO×líì`MììqO@‡9yå¾8xyôúíóƒ“C÷ä§C÷àääøè‡·ð7¼uŸÂþääù¯[±l㉔p !iÉúnD‹%}¿ê'¥À›'/_fÅ@œrN7$Õ.ÕÍ£ý¶øJÌÖ2ISk(qúz½ ý}×÷Œ©–Ñx0„3×ÅɨÞLc‘JF“¤OvBp%¤L3…b§¨År¡”X)/Whá™2ߪh±šsž\‰›XF¨XM=W¢ÄM(+NRo_ ¯I{ÂH<¶Æj>胈U"¬_Ýí54U²åÌèÝpbÜÓ â?W0huÁH (-vtG×½I/1ÔÓ[Tñ'u,ïC0€^…êOÜ«–ié«t˜rýNw—“__VÑq¦æåöqŒEÉ ~Æì ÿâ…Pø°¿ JN*$/°aðarø×âN©žBETªë©BJÛÆE¾ì{d†eàQÈ;qÍ+jþÁcWU/¾fýÔ$Q£a‡v•áèc9<¢ s´VW9׸֬}Ͼ·¶àž¦…ýÜÖXtåf¯¯Y3¬Cß@ý„lÁ«ºc9šªÉ ;/ /.@ƒ&sÇIb¸íÓ’q+n.½ÂÔ­©àb\ù¢¾ªÅTJˆ±KP°ÂHc/lLzÝ5™×”=û»Ç¨l£Í> xeÁò¸` rbÎB»BÅ:­ÇÓ½ÖˆÝi͸œîµæJ7ÛkÕX¨Ì-ðW8ŽJôbKEuÝR#V¹ž\B$öeÕ¸/ß`oN ±sÉRG[Ž·ØVÝan ï³P²@¥•Òçê–Ðá5Á6¼æ6ÝØ7Ð#¶³ë’²Y…uì||Õ's ¥8 d°ð9â‰_€œqdÏɆòËsRäwÆ;zu i!Át<1îhŒ#Ê ìaabˆÞG ìÆ'Ô,Ra0ŒÕ=®0Ê0B´˜»¢©v€Rá¾xa%ùö¯Ø{Zfn-XÐd;ãÚy„‹-ÙãÙj·—‡Æ*¦Ý¨Ø^_qµé~{ÛVx±M,³á{Z[xzprà$/±p¾ƒÄ¢”9fÃQt#ZøçÈÝ3ƒi ²0?ð® _L•Äš»o<Õ§zÓè]/”‹Ëc~ªF¹K£±³ËàvD²3jq+ÇÕaMš×†a1ëµ›XÚz‰Ø›£ÿŽ«7ïVž¼zþöÅË7jÝØó×,¹nåÇ'•ÇN½N ËEwz­ÁÓ8MµH¥Ã.$V7WµÐÔ%‹ŒÝSÞ®-ëkžƒ¹³’¢÷d7¸8Ö^*"íàSÍÁ±nゼ2*z\å·ÃîÏIÖõÞúîØ‚þtî ĵ¢äûá;PFúd`jMûñ•zµ:·Zw”²RnCyoÖ`˜ÉXÀj7¥mUaÛnÈArMkŽf"Fô §Ié +y‚ÀÇoäà=&˫ּ»ÂÒšyº_(ŽÇª½DxËH¥Xi׬T°#ЄF½8’Èıó×êµÃû•¤?*-Ð×Azµ*^‰=ý½ûµŠ&6SÚ¦ S%®²E³!W<Òçh¿ä¯GwÍ)W×ôSj¿˜Á'ÕØ‹Î5ÙYIÇ.rÌqb &,ø(ŒIêµ?*r‰¸ÜïxŽ”˜†tF=£B Tp†XÃbP‚ÙòCÒβɵFi‡ÿãìŒC" z<ùÔøM²ó5Ù)Ô‹`—®NN‹MLóºóœ—àWs¶¨f†Xýt'SqŒƒ¯ƒ™xsÔ'GUxåšÇóÁØXbûËO¸$¿Eü§RtŒË0ù8`˜{lëª1^±±š*aîH¡Zò²>U¾ÆXúxèT-Ó7ßña1Ä=$aÆ Nê&ª44À ¿#7—$ü1 >ÂÏQˆ?'ãqYéVN¼±Uk°x˜5w‹W©H= ¯ƒ×Y|¼ùâ|a‘”Îs%™‹²bI†I­Ñ±¼ùl•«T­DÝÆŸh;w,›9·%lžj¹…ZeA²JwœÉm¬ôôuºJqÁõC\ov–EѰèf(ÝÅK{VâM$ȨÑ`ÀSZiRÓÖZÝ.¹„/$MFaR™ÄghÁ#gë9åêh)›YÊ@ÓôËþhWñ=k\±Ý=µì«Ã•Xö­ÆÙ¥\Û0%‡Xã$XZfòA™åÀ–á$'¾:{è%øˆD\¡tøfôHÄBr’b©ŒÀù¢F÷ÄõŠš¹RD?2!EÌÂ…;"F¾vI`÷}>92O!åIí>%aÖ'ãw:!ËJo‹$½ =Ϲux>G)=…¶"ÂlMäÉóWoÒšˆu›’ 6ŠÓHLô„,¸‰ß»Ä}ØWiI(N¢é¦žT# )š²¤òƒZÌÊ…I*1#¯;–%×Ì9>zÿœJŽ:5?’D ´èAÄÍ܆ªc÷íÉÑó£“#z?‘Àµ¬áÖZ=-Ñ1TÏÌ?ý‡54ÒZ¢O °0ì* aé¶Km/¥Á*R°Õ]’V/¾hKábœ&’¥ËwŽõZ­Þ'6Ha2·öG&kìk¡Îu1|¤×ðš»5t7²rÕu+u¿Þ¨7+쉭mã2]rUV«íH¯ fõiÅÙ_ú‡>ö?dm+DÍ–ûêåáÎÓ£‡/ßh_ñãƒ_L%p›×sG9N–«_…äPew7Îwµ_à yˆYyõÃòáBeæ$f¹%†—ôÆé\Á׿«¯CxÞËWúqÇO¡Y½úÑ=zùôð—Ã7ýñàÍ >zCßžÃ7ZÖµä«UwûÞßwks_péWŒu]õªê‹ÿ‹IÒT F¥d]RƒÊ„ ÚoÖr&8hL¸EsNçt#5ÁtôDSuHO[7š;TÄyGGž×[õå]‹>IDo®qô›š‹92ѵ3 ®»(QäÈôÅzr–s1vó¤ïCövíá’¼=ÏÕ7{ïh$ù÷êó*^6(¶Ü¼«•ÔÉ=:³·£kbÞí$ëó_×ھɜӻ-™–’´t³ƒAeâ?Ay­1ô}Äjí7:™ýßÛ‰ÿtçˆâļâ81'ßéO&¾“ód|õ f/ïàÀ“šÛ€Êr“[;,I­È;$4£ñÅô#Ì^¾5k@'!FAÖs5RÖvÇô”þÅ'<€!ÜÔ+ádh Ï^¾uŸãÖ÷‚Þüš‚9Ïûçá(¢]ì(¬Pô.Mø#fâÊ„û#NÉœ÷­öQi3RºQ÷õ“TzJ½j0åÈ;lª`ä°$qhúô›Ç/h¼,ßÁìØÕ;Z–Í‹ÙÀsÐÙé磓Ÿ^½=q^þêþŒšÇË“_¿5{üñ¨ïÔF“8oG5gDÑ•œ‡ÇO~‚ë~@íñWÌöG'/ß¼Á1Ë=p_Ÿ=yûüàØ}ýöøõ«7‡u×}†º\ÜrÕå@ ù”öÂ)(™h ý*SÍiÁ&†&e q÷Õ§%êŒÂÕ(S\\ŠÄ—Fã©§tr5NÔ¦צçÎëžÛ~èž„´ÛkœÅ{î›ÞÝlîyîãhŠW¾8pݽ†ïû;~s¯ãºoß8ÎÎ:?ó{ÒzEÚp^L.k‚®Âû›¶˜Zƈá4‹"r¹¥#ra…Ñ, Ní hnTqËóŠÖÍëÛ•#x-okwüU…ÙR‘–&—¶Î«Âo\ÌF*„ºµm³ÑFáÎ`<¾ÂÊT›þ¡ÔŒðk-¹•(WýálhǺI•‡Ãå/*æœMx„0ÞVвg%›ÈCNÏΰ Œ¯Ì>Id6‘IªR'Þ ÝÚñ2ìñ“M dÓ¥“õwîÍÆ‹ß”–QcÁe—ÃGþ5ûf9èK¤d€B‡ç¨»Zl¡ÅþMBˆIä0‰&‘Ã$r˜D“Èa9l"‡åÇ Ë öf,Ã$`ØÜ€alWBI(°ëP`9á¾–Žöõ©Tx/w^x¯üh[ø†dY*$\f_IöR‰2µ¹Q¦$–Ô‹%%ñžæ.ê[O¸§uE{Z©Kà¦ÍÜtKÁ˜Ö‹i-¡˜¶îv¦[‰|ä$"¹ùèKE3ZW(£µÄ1º©Ž7Ê.÷>>xù'wë¶BI4"‰F”ŽF´Y†Öeˆ;ÕFE’@BHè& õçÅ rR1mœ§É›æØ¡fôë-g‡v¼Ãæf›_Éx;s¢ìx4Ó‘tT)Dñ›X‹¹ësLÕÄ–”Y™6Uâ:~%úˆJG$"Ën"ÌQ*ÊÑQ|6-@ÏZ¢ó”æ7¯’«…áùê#íPc¶èôZîÜTwù08οAзçI.)—Ø6kŽm³žÈ6vbÙè5ë UñÙ1(¾]1G£¹ úêÒ7ŽFâÉlb÷NYSÈ™¯²ßx_ÝØx1õ/ze#¬Hø Ÿ"áS$|Ê¿mø”L¬”L( g"áL$œÉüp&¶SK^8“D,“¾ŽenÀ„©õT‹£ž$cžÌIfqjÙkj½%IXg\‘aUiéà)ðNMW»/ž¿zC¾«eʨAi[>/¦t°ÚÎÃJŸ±ÕÓ‹ì(^1§§š´Š2ƒîëçÜ.‘†J rh?ª`ЊHk±²2ŠÂ©µÎØZa¥üdù:è)VS†ð®jUõO‡ÐENÑhêpùiªÄµM†}Ôâ>=Ùæ˜%i.Sw,‹eHÑ„¶=¥À'Õ?Öl5Œ Ѹu³™õ|ûÉxØ’…2£w&çÿzþêÙÑ“ƒçÞÑË“Ãg‡ÇÞñáÁóßÿEòÓký®Þ†R`¡ö$¡p‚;ôbfY{8©©ä>E¸ž£‚Ý£yyxãRÞ}6^êë(“k²Ñ™©ÔhÌ¥H%2Unc—}ŠÐ@Ög3†ÙkÏc#Ä«¹Hñ©”Q‘Tãà‰>Ql OLyô#Oí0  ªÜ^¼>:=øáÕñIl‡VÇÓ/œ`+²VCb‰N]Ð,Oi½v‚𤠱qVÎ/¶~´\©é¼Ò*ÙÓ·/N¨7’Ë.7¼%a21ë@s–k c"yÙ‹ŸðêíÉë·'©GÐú$½ú{Lav&qÒC¬ö A€n㮕j‡I+–ºnBÍÇŠíÄÄ‚yqô’jÑ>tð û¼ŸsV¬¸~’£•^/éžÆsX#QiY¿×ÃuSZvYÍÃZ¾gM¦™ˆ(€Ô”}B)”eöPQ C/¹`Üv0b§gª€óøãòP<ÄOÜ…ñ"dÎÖ»Ùbâq°l°ƃ±¶§Úé–ÔkP'×µ¡JŠ–I©5¦/© ɘ–#B…!ãZX#üŽìBÙªÈI“8Ú…î¡Ô2 ³ôI÷ñÌJΫ>(éx·I$:Þ”– S2Rê$rL“ÚUx­¦#œt8 0âÁ[À¬]¹ÅbÙ2ªˆ[ŠgKÏLÅÂ.aN^‡/ŸÖÝ3ņö)N‰­o…éÓ 3— Xè– XXQo•H…ƲÒX5N!«ê¦5³×òœH…S³6ŽUè~^¬Bw¥X…V¨Âò1 —QXTK©Ø„ªäÊÄ&t³± ÷;m÷ˆ/÷àTÙ“`x6é÷°ó¾8Àx„͇†"¬±±±þ§:ÊîúŸAú^»]¤ÿ‘ºäûû{~³ÝÞo6PÿëìùÿÏm¯?+ÙÏ×ÿ²õ_?ÿ€Úôªu=cþ¿çïµÒñ¡ÛˆþŸ„Ýα­ÿ鯑úÌ®Ù~ ܯãî8_úä³ú'§ÿÓz¨u>cQÿgùŸŒÿí7¥ÿ߯'[ÿéNþùÏà(ïEõ#ªþþ^Gâ¿ßÊç·­‚:ÇU]]Uç›þÌp.´óàí/LTOr¾QT.申åž$ §æ¹¤Qï<Õ”‰÷ðÅx¦É!ˆï× Œp¢²2„SòuÃG¼°i‰Ú&=&Ò™Ö¨å×MfYp;Î7!Ì”/(Ñþˆe„©­ðI’~€+ÙhâBÐÁ~ˆÊùÒ9ø¥à!¿(ž?ä­Æ_læH§gñ¸L’ñ9w//Eæhémþ–IÒ:éî[iþICé|~†Í¸3ϰNæëœÈb¼(l9CN{"˜×žð‚>ëQOŒwC+#å²##¤šŠÆ.[îÑúÍ'rÆíý}MR» &Óþù •˜ËF|­ö™çh‹ÉÂó -ÒÖ·|h´åÆQ¯ûÑx›Ø%qÅ_£ŒÁHT‚ç;¯Þ˜cMòrÆEÿåVG㉈]2œ¾âÚëZºL5Ë”©:a=:¯d±„à¥Ûø«œZ‚ƒ†ÔY‰±…$˜h;lŒïÏ(“pM{е[no6Ñ¥œtýàø[nIöŸ–«O~:8>xrrxì+©ï<…ëh š-Ú Ý89šÐ͸w;W¡Öɦ‡Ž~š1ÁÓ1RvZÐô´´ÂòuP¡¬‚{­Õ*«ø  ¼ÓÊMRµ£œ>–¿£±ôÍ¥ïháûw$kH¿×úfj’yX ·½Û¹ ÜË+ÿ›%ªDݱD•¨;–¨uÇU¢ßƒ«D}û:«]¡–¨¼|‰ÊÀË—¨ ¼|‰j ¼sàŸVl(½0²ä¸_õÉ JÁ|ÐÈË r·WZJj_ƒ:>©¨¸ú95¯ž¼zñúùá/~ê²p…xñÌ®}­õ’¥Ý(|t#uÙ¼G7Vyt³ðÑÍÔeóÝ\åÑ­ÂG·R—Í{t+~ôÃâVõ£Ù3L1cÑc³•ž“<¦Y jî&éìEß¹~ú"×ß+È@òÝÕ0ÕþÌû÷?óþÌK.yÿ?óþ‡Ÿy¿¿·jjPZ¹Ôý+W€ºå P÷¯\êþ•+@ñ+Wvë•Ko^¹èñæ•Ëo^¹Ðñæ•Kœž¼âî¬Û•]FÜÆNs9ƒ_|2gxŠOæ ñÉŸlÏ;¹?ïdgÞÉ?Î;[iÔï/mÿ[hÿ…úüÜg,°ÿ·›íVÚþÛÚþw+ŸÇ߬õóóøv¹±wå‚6”ðÁ}¬Úš^G_0®=7wÊ}o\S€%1f‹1[ŒÙbÌcöç³Ó¢®O~ÒUs>WM=\TˆÇ½±óØ¥ÇòFî=z.…s©Z¼÷/Lí÷{ÿÂk~çk «¤ÊI]¥JI}3e4÷qÜtºéçº-Z³w¿U/›š0ÜS¿| ͹|ž­E_Âï©ßo9ÛŠ5V.mbYØ$¸(¸’ªU Ù:¢2zàÃ)~åïº0o‚oøåÁƒZ-¯øRM%•‹dËT«äTë‹Ïµ6ñS0ÿÓŠìZž±`þ·ïïwÔü¯åïí7aþ·‡SB™ÿÝ”¯yÛÖãèqõiÒ¿|‡žÔÜÆÞ^Ë}ÖÀ=ÝfQÔw¶hÜèGvì„¥UÀý¥–U<#\1œôÛ‡›?g}ÜnVXÔýU×XäÁÜEýiz‰j¯ŸµÈuÙU–YØë,°0ó y΂ |õ%],¬ÃÔê U eV_™^Ñ~èž„¨ÿ¸¯1D™ç¾™áýÍæžçþ0ަxå‹×bøþŽßÜ븸 _kg­,§'¯^þxôìíñîSG¡Ò¨^h­Ÿ_÷ë{T¾ÿ3ƒ w# =o"''‰`a±¾G».c˜íñ(^·¬ÃAp=­TkãQƒÆ¦2âl.þª&:"¯NöO€Dú“”‰o×ÍqŒpõ/‡N=ÕQeÌ£Ò 6oÖ²cŽCêÔð AëY<·Ï3Ó¨bM±»ÿsÈëØQ_„YÂí´‹¢ è™ç)»jâÂAít´Ré¶0º˜yÁ·^£9ès±Ä5—Â'­êîlØ÷š4¥Í¿¥‘w‹ßò@¤×(K¸ZU†× [ÎûjÒHš±ª¸êéé˃g5Ժܼ<ùg.¡ãDBo~Ù/J¨áþ1žä>¨5÷NÒöhfq vL]éz«7äJ ¹¬¶ûà Š®Âs\Bbüü}T icioñO—öæ5º”3ï'Ž‚©ë³ÙO)èó5ôù*ú|}¾’>_KŸ¯¦ÏSÅç½ïžªm»(ÕÇ:~¤ŠQG¤ÁÔTÉ*ÛDSûåùÜÔ¾üÂwXðp:ÕÌqvø|áÓýE4Ëå?õð×ÏŽ>º±è‚V^ÊF ,{ãÁó×?|~yì/ºày72çsBG¥¬ÄÓç¼Å²_Xí­Ï~…%©Þ—­$j&@­ä:My&FUz&.SñMù,˜ÿ×û£ÏÆ‚ù«Ùj¤øï^§½/óÿÛø¬ Bã–¶Qø‘ó}Â-çûä÷Fê{3õ½¥¿k¿ªÔ÷Fê{3õÝÜOª¡ý¥aiÚ_àž-÷Pí—zÑÏE?ý\ôsÑÏE?¿cú¹ñ"ØrŽE"Éá³Ù% ô[ß§‹ðûì±FαfαVαvαýœcœcÌ9öð{™jÌý,Òÿ£àÃgÇ™¯ÿû~«µŸöÿlú¾èÿ·ñYÿíÀ}€®‚ÞB@á}kä}oqGaŠ£9ÍE¿Ѧ :Æ ÕŽc ÔîÀèµÊ;"—*uWœ-*?Õ ³ÃÈĦJ%µaÜšÊß›˜ ¿x“ÖÒŽ~ÉŸq?yuü”½óçÕtþùáËg'?å^aV©çÍ\µ•ÅÍ›¸j“˼d[îsNšeØyÏÔ–¡Ügj3Qî3µÍ(÷™l{pÝ9æøÝÙÄ“þ~ÆòâàI^µH¡.U¨ó§@©"~ôòí/5÷ÿþÏH}p¿UËÚ’søE55ç]vs.Ñ%8ç]Žy—¤jpÎ%óò’ªÍ9—ÌËKªf‹.±ê·è»–ó®É™rϹ¦Yâš\sʳ‡íâV£s®JSiS_ªMå›ìl«™TÌ­VLŽilÎ5 -“7]bŒĔحuñ⼘–4¿jæeÄ@œ²u¢Ì}…¶_ÑuuÕtùì(«|¾Ñ²N*ä3*D{Ÿh>ˆöðæð»à®2ßþ­eÈÿ=¿ÕNû´›bÿ½•Ï7oW‚«B³Ýñ:?ôz&–|£±†ûŽZ¢îòr·nËqÕ:»nçß¹û|õŸ‚þÇdXÃ3ôÿFg¿™ñÿò%þó­|ÜD(+Ö¿Ñ@}úçÃcÜNº[ñë{9Ÿ+ó,-ÉvøWw;wE¬ZºëšõßÛNò™f¨q–3Ým¸% ¯ ¥¡­Å³÷FzÕqr-Œõ|{E-K¦_‡Ëò+i ºÑuq%î=ú“V2 Žá¯DÚ|寡_:mÇ}óÓÁëÿìý5›¾_6}N‚.…dª¶ñ`œ”i5tZ>%f¥ä'’J%V¹÷/ûûïÞ£ ^ÅŲàÚZüŽzûM÷TU߸՚û/¼0>§m–záuü•VX›o:&E|DEÞPåÚ½çãŸú²î½~­V)Ýî¼Ûþ öµÆ3|w·Rœ!ë©ÞÓwz~íÑ,{¬—%å³Ûøöýñ]—ñ-}I•¡~Ƚñ_¿{> :dí_ߨÃ÷÷è¾é»pä¨ÙWxþnìÆwº¨è3:Uuà¢_ð°Ì›q†s^OHÔi&9>­²ÅÇàÈïP­Ï_¾998Öº?µ`}LuäÄ1ìÔ‰ªƒ'éÎÞÝöhcñm»QXÕ~Të 'È­yâ<Æ®ÓÒ÷Ó~ÍÂê=¼Îû­rïõñ«'‡OßþVñNYDzd"†?ð]ÿ¯y|øç#”Z÷¯Ø|òF—&Ù'~ãš»~«`:P×qï}ãî\N¡+ÿÕTó¢Ä¶ï5¶ñ~¬_;†•†ëFïúSøN¿uýPô˜{÷­¶˜ÿ8¢ q¡ü îüÏîýß¡Lèïoîw·›æå÷ôd¦`üGþ¶&íñúïV#£ÿ7Zâÿ}+ÇôÊçGoNNO~}}¨%»‘ÝæoçOGÁ0Lé…çƒ`²P#~K÷¨Æ{Ž›hVP^U°]Ó±êÎÞÙ½_3+“6J-¸øuÉï÷Ûoí›vôãàæäãíûÌUñýaœ;FF¢„°oG)ñÿ—J‘|ë÷LÞ¨;qgtèê s¿S§qøMà¦ô™šç^‰¢»¹£ð¯MdÁs­uíÕtâ`Àž‚'VèÕÉjÑýÿ M¡–>†M©F da&œùùì…¸eï§òYíR™]Üöùw g§ºAÿ¢Z§õxŸWëÕj±æ‡÷t›Sq›„¬{ñ2*ªZ/„16Œ“æ Ý€·wÓ1•š×tÊ鬩\…×}¾s¥’Áz€L-¬UÖ j$èqIx*ãË×Èb cjåÌÒUwdJÍ«Û}ìÚµeþÆywë ‚_ú’ÿÔâoQA-l܃ /Jê §èq»D—H¶|s –½i-ž˜Xí;q]Ü#èá‰JËí–ØÁ3‰Zµß!Tæ)&ßX£ý ÕXÒí$îÕé20MË.ƒÜþŸ*…Do5m+Ùi3" QD‰ŠÏê,çÜ™é vá$Ц„¸À@ïÐ\¢rDzJ<™ˆ;þkw÷Ñ£Ýï¯8G?¾éV¾­80F]Çò(¢é_§çtšÆô’ˆ¾¹ÿ=NwihT§pþÓƒ$õìÇ™Ÿc~€ér%N Dϳ»]¹~§;]… 0Ù·T¹†äàÿóûû¿{Ê™7xÉçê¨Ð}¨è.Ù¥cјéy­½¨'š¸ž õ nå—ãéØõ1J«VÝ Â$‡áNðíõkÛ"ƒ¯ÐøO}‰»Û5¥d?”nP=Û”žý¸´\ç°kâý´qx4 ç¿jzüÍíÒ¦O/ìZ\4Ør˜"£2ý¥'e·ø)˜ÿƒÑe8ºþçûYû»Ùùÿm|\^±¹õúno|¾ \†‘m¯ãÆ0Øõ¢AÁx³»[ч‚áU·òó•Âà¢?ø d·j>Àb ‡±¿¸÷("n·ë~ßýë_Y:j¹ÃBƒ¤ˆU±ìõ_¥öÉ&L 0íýV©µß*5ceå{Ñ"†ØÝý~÷÷ß*‰s”(LKëÁ ë•Ô3é žãâãêûðÓÇñ¤SsÍÝÓÉÌÜLÑA¨´åwu-±íÒ ÓøÂð¾h“LÊ»E9ئû·‹r ¿f­nªaººrþVÿïq­oÿVÙVÞƒJ¿§b>ÿVÑ¥Œ†FÌŒû]¦U¹wKºnþ'–ÿjñÍ ;|yx|ðÜ}ýö‡çGOàð“×o¼Œ>Öëä<÷¿gÐÅý‡}+’«ñ`á¢;^”Eb†S]uu–{ø!œ|B9ÚßU8öi½袴ތbôÅ áÚ3xþOöQÑz4Z\Æ‹Î@N1P£%xçï`ÐÃ…B}ŠM«™p~÷1ìÕç/´Ì¯ñš¢þ$ÂÀƒ0À0âz!¡Zî¦×>{ý¼îr {G9ÖÀÅ ÷,<0¨<ærF¼èÍ,FÔ©€ôçxø˜Ì_¨*¹×¸Ü+@ižÐÃèU"µB²¥W_ª=,¢þ刋ˆ–dƒO´¬ÑÁ¥š½ñÏDïèz(=*Ìäü‡O4XM˜Í™u|©|Ïõã)À£Q;ĵÂûÑ»šg¥”B"3 ãr>îaÇ » q5­£o„¶_­[ñÕšnDz†<žs.1‘îbÁù½šŒ/'Á0ú–«U'÷w…Ðéöh}d„)C9«æ7Æ[§á¹Z5L¢1¢Z…VYNÐÜ?gÏ;J ã¬ßs ùŒG*T͈ú¨z§„ÇF½çScÚ!#4«¦ùªºÃáü“OžáÊe”ádôqIvt'ûgýAÚWS†y<þÊ­QK¼ÑiUúf7•né^(Þ=}ÅâÔ>¾ ©ï\¢WbäŒ'jYèE©ÐC`Øv/ûªíAËèC:¸é‰é£Ê‰ÊJýmnp£êdt{ª5ã6"Ô¿<ÓÒ¬ÖÅÍžƒ e9¿ ¨¾ï!gª¥èEËÖ»˜ìÂ% Ç;ç´¼üøìïØBh©^fk½Jzcðað}èdŸ\ õ ^ {;7v“ª…x/ Ž©„á«HêÀA“Éè4m|‚nÔ´þž²¹ †Ï yusX„ ¡ÂÆ´vV5|Ì…ÕöÝwäæ#4Ôix=r«~†i:ë$_òSmÔ -]ªé[ã4/1ƺ¸ÂË`àÐøѨ©Ïngc@·Mëqôƒjö p}ßx²™÷A5Z ÝUÿq¨žB­ŽPôP+qZ­kG¬Ñ8^¬O{I¼SØ£³CíÊ®2¸€rÝçp86á3p’G%uD¼oæÎQ¢/²ÛdVÕöÓ¢Hr+Õ†uŒ>(þ@*« ©¡5R'«Æ:wÕAk˜S(wf>™ÑµÎúš“Ð×hRR^gÓ=ÑRÖLþëI}ßæ4Å€n"Kôb2&ß Jò[,c ÆlÃÂÉÀȽ˜ ,¦zãÑ6iÁÌÁÔé´iû4r Ý'ˆt£Î«Õµ‰Æ¤×Q+@%ºÕ²zů>°Bp$+‰»K@²ºÈ`Æš6õ¾²ãQü@nÔ$½ÎÂéÇÔH–Š˜id{=¥.ŽnÂøªFù ð¤ÊôyDcMjð ¬aœ#–8f2•ó}*ŽäG/•xDfH€¢ @TŒ/Ç3ªñÉl4âǧÚ½¶ŒsÖÍÕaÈñO0ƒVŒ-Ý `h»ÆÌ(qD8žzôè=´¡ð:<y…!" »ÉdxF Ò1ä ÚÛ¤ÿžƒÚÂEBŽ&sŸœÅå¶g‡6gŠ($ ¹³ówÔ.~P3D=_ŪŎhÕ¬g•Yú!NNð–¸Ñô@N¢„`!o1 bÂËXœ¤Aòž™¬ÒÔ²E9_Q|L•Ê, ­zãž÷3*<ŒzZƒÆ‡‘AʲN:$Ëy.?›'hT¦âf#­ÌRç8ƨ0£„Æ„‘hz!ˆ]Öšr1â<Ì\‰›æQžQxÑ·DÏX`°šiÕ‰ U¤(|ˆ¥Ë|aÅ­ÝL‰Y_Ibî[¨Ù!´ä1™Õw0eÒš–ž‚ØRñm1MlG‰ô¬y¥yð;¡£¹ûùxr5žqØ"ì>ÕŸ•\ºŽPr²8Æmèúð"<‹ Pù¸ & üh-’PÛ"ªýüÐÂb„ßÜSí^ÝëX÷bVƒs꫚IDq&Ö›j,@)¸Rߨ] 3h@ ðÆp¡’¬JÂÂè©iÜfµ0Æ-æúF¦ kÜd96éÕ'ê±>â.tXcSò‡ƒÎ@ù½@ `Šã¸RVYLóHtKåÀ©P¤™³€õ;["V(;ËWÐËÒFö%Ô.CDþCîm8>FÅPLOÐC’Cc=yõú×£—Ï<÷éÑ›“ã£Þ’ó$^øâÕÓ£ž7%¾ë^]÷yÎßÁ%4!jN–J‚ ›Ñ+õë“Jä˜Ú°/¡Íã MŸ¦<ÌÌôû nVJEÀŠtÿŸaÏÁ­4á Á'e¦TÛmÚ!Çrã¨Å²ª¨¸«Lˆ\t7‡4*SëM+5hV‡8IRšHHãr¯‡[¦ð&ŠEžV¹Ó^‡a0ât0àÙ ']£-Úö -C8 TòÂ91‹¨’c§‡üŽ.@~ð‚ö>:<ÒÒõô„óIÿjªö:% Nä‰Í]IÍÆiö@sÒ.ÇÕD6Žc¡\8&JH†sâ?–.ß²e‚,³³)o«†0H=äá õ s+ÿZé5àç±å„MZadMœ¹7 }uÚÀ¶8èœéønø|,*²¤ ¢?%ƒ’wPG ÎúÁ´ÈÌÄ4ç"4¼•?(Ú˜™’yä(bVPÓK'³Ð¸jàTN™qLb½qQý™3ú¥’Ú}=B8øß¯³Mµ“Åà,õÛ‘“Û¼ƒ(a³Gyï wöú³¡§Í¡<) +3ïUÿ|¼gD:N ™ãÄ„ãzâû“NåÖ±®²FN5°ª·9ý!kÄÚ÷­û> ¯Pø@£2=‘o3áæÑI:š5Ú+ÄCjéYDJíÞz’I:Uˆv L;%;Ð¥‘ðÔÏL•0$!Û·²BݾûõÉéæœ[ŸéágyÔ>©T’áK•iÕ˜"c'´®Õ‘ÏeK]#n'ÊŽJIò‹Mò›‡’ÔÐᨡƒlgÚXfw%7Ù•<¥vs«t¬¥ž›”¾j¬ÍSzÞ¨·óà :xªñQ)‘Ê3 C²©·ˆBKåä³5å±Éò°9áàBížRê|óY-Æ<•f‚ŒbÞ¤ˆÂj†'âý Õ() œ‘²¨Óp‹j«g%¥ =ìÜ4ÕU*ç¹ùøÊf˜éXã²Í‡#µˆ[%ÛÔoú“oíO/V:cc—ëöjhé†fœ³õFÙ¦t ²Ô¬Ø%Z&¹~’mœÊo4»âÀ¸gØlòôÂX(*—ðÐäó‡5œI̺dmkÿøNàÕ÷° :ÎU?Œß‡¼Ãø(f*dl ÜËñ”‰;{xqC9þ¨!P'ÃI³Q8•{Ú<ùÆ7T:§U&q‰x‰üA›ÁY0Ú EDÜ«à öÀˆF ´®PâàJÙ˜båÉÕ˜øá&+¨²@Ë»˜ TVtϪÚ¬Ôkÿ1#*=3âe¤G;œOPâ ƒ2;ªòíq±Ž f¤l./±”t²z¦J勒—PLèÍ´@Oç(<5ü¸ƃ+P%¦ã L‡±<ïÇzt,[Î&Ĺã©?ÏÿÐ4š77c½¤ ´ÜÁÒá÷c´PèûEÓGD;¡éÒðÐ~”ˆ¯KPhoLßr™h‚,¯š#³vb§ ëš¹¹o7žwžc¿Iò)h™ Ýe~Œ7`!íºç”x,Ù… ÌC´uYÊÊV²r^|â—Ò‰ë¬YŽRhÊâ‘Õ‘‚óÆ‹„mdJ‘uúW8y¡wÓ—EŠ=õ¥e@‚¸zb »Ž"ëxETºœVÒÁ×mF0aWW³Þ`9aÆRSÃzjìì§f6ýHí¥Ú+€Ú–äleí…,qíI9µÔ„ž¨ý?Ê|kþ¬9Ýñ×XÏ&)hˆÚëÌzšÒ¨aù+÷ íçf¡HÔÛœâiNäú”†K³¼ÉÎ9;C|rh %¨ÌDþ|dež£äÙ9¤4“>‘`å1{}¢©ËšÊ@7L }»ØtkFOœòÒtóüÇ:Õ jOíäyÅ^ÈÔ Í]¨g}¤É$ Nž0ßi=‰´J þœö£ Å m¥ ǵ´òa—®Úëc<»|—šeŦ´áUH†z+C:‘¤}Á.*½vÝ=H6u&Fc7ÙJ­Y¼mFÑAœ×®¢<Ƨ‡À3$äŸÆÛúõ°7Ø6|²E=ä.mÇ]KÈ~ç0ŒG‹h²]U¹È>>%uBvHœ\ aè˜à, ÑTùì|ЦAð »ÛsItŽ'Ê ‰sðÖ1ñþד91¡«âD7­Aï•×4ƒ0¾œ²‡¸²ÇXFvΰCF`dc€ô”‡ë‹5òBó³ÕûHÀ Öw·Ú$)CÄj[D]RÝQ‹Kv1äÉ=J›Ôؿτêf 4öš¶«{ŽXð´½7=¦¶û9¶Òýºs2?,zec'@ÃiÞ‹xŽ.Yå†hàŽjß=Ï‘âfÆ nÒ¬¢îà ¥Däyxe;MmBu±›è50z€YV6»ì´‰Ž®j€±ß¾@ÒzY-P•’ÖÖt!³åüݸž1FÇ•Á>BIg’‡d½T¦•Çyõ;z£¦Žæ€Kè:¬Æ<Ïf—䎗5¢ÇèÁ8ا­Ð\T1€IØ‹Õ ˜¶ÞWÀ‘½!Í" » µ‡²bœÔ¤ËäK™Ñò¡JìBMß›±þF͘Œqý”²OQÙO¡ß%ƒ”t¹›7Žyæ=ôÐX„FK6¸ÑüùÃM]OÐÉ7K5â‚W`—t“ŸÞý\ƒ%x­IŒ$´B×ŵžîœ§Úg^3vÖcÈQë#ZJte›\(ÿ‹Âù%‘?-¨EËÊ¿„²Ä¢„RIwa/§2/ J##¨Fmñ©üZºµRC§Â+G¬õvs§K¯æ°äŒ1Ú:üeÊ+#ÍHÈ 1åqŽ–ŒÇ=6Tg£¡mÏ, yÆ\{|ayD "q-R2‰‘ %ù×KEÌ…R%W#KKŸÛ¯ÅöO0ì(¢ØÌpD]Î#U¤YÁ£Ø:pÌàrf¯vK_4u¥°EÓWF¼s§­üZ©—7…’7‘ÙÝŸá"jÙv#;ÖûÖ§‚íUd‚ø!ãIl•`wPu¤EpÒAlî!ï[xö¬:鯓7Õ‰ý¨lIOŽSȱƒ¦W(Ъ=NÚ™„Ü_ug´í2Xbäd¦†4hWE£ÁxNzò` FZ"ˆÝÌÊ/*ˆÍQÔ”m=¯‡n'Ú'K¥Œû6³-ˤËÃaðw2ˆa0 PUrü>œŒBµ¾!Âa§ftj⇤8ð‘бY¼§Êa2CW¥Ùˆ4l³ö†ef+çf9Ž“¼›§ìÎø­¢#ÝÊúQÂtÂë‘{ ÓkÇWv£O,wDƒ‰½'åò¬°’)Ô !~ÒomÌVØ®cÊn‹–vgc.ñ¡aò±~©œiÉ-&3ÿOR)Ö„;±É‘ÍJš°*ΛðáÎ F+CÛÆÎÙ§ö°Ây7:O B ÙÚž¾ö:æOŽõ0,µ‹@FŽt™ñ mpÈÓ~ «+Žú­¦[rîR-Õα]<}嵆3+ÇÄ P@E# ";lѨpT…\s³hF(mPFí0¹q3³—_ëì4Âa×Ȧk‡:&@ß jñ:g4¨YZ-r2`7½ÀŽuö~0RZÇC®Rí•`F{Z~Bõ“}D[F­@¬¬ÓÉY.MqAí%úñO.(VŠ|qÍ Yne˜Ûâ"ò[åþ†kV'ãwý³þÔXÛÌÂxåß}Ÿ¤g LköëYfbå~W8Ôxމ ^Ïu³QÏ”_cãö0@›ÍuÜeVÈpŽMöT!¦È¼Š"àïÕyÕÁ´? •cé<ضà•Y]T ¤S]Hµþˆì©jÉœR„kižá 鵿VWŽßÔÎ"âNšONÍð’S~u7!ÂúCò¢EÒ³ Š””ž3J¾U´í %"•4 6¥òŽ|ëëN²W©8jÙNˆû`Ÿk`ýQôŠšŽ“–RV|¿ó¥£O^å* à%Ü¿Ïz—¼‹ ¿åbÁ þè'>¡¾èBU.ˆjµl•—8û*úZ$M[FD5ϱÚ$!D*IjتÚHyöIåj<鑿nÖô@¯7B¼æNƪŸžIëG¤zŒÇVOîÙŒ$¨âsÍìªøÞ8È„Ò(muJ¯ˆa´ˆ:Ýp6€N²÷4{ûÂðr©¼ccm|5È"oJÞ”G}ë6e\ÏT"ª§ºitDµÖ<$еk":ÐRM¼*r2þ ¦Ÿx-¤ÕÓ-50&ŠÊs{L¡!ÆÆã\93 è‘ù6}7!†ïÁ¯Èá j¨˜HØ WºxI‘7&L{ԣ˫Œ¡G^Lp3>MTÉs²ÞF9hÕòª‚?ß…´I°­—ϸ[†ìšHõŠ(Ÿºãùl€ÜíOÎgÈd8‹»³` ôÐNÞÔDŽ?ìØg_{æÞ@Î Ô†ìç¢-ù(á8¦Ý]T)ªÆGeL9ƒb ÈЃÏÂìhÅãj4͈gÒLuÒKŸvUt©ô²ŸÈZ’„nY:¬ÞÐ,í;Ó?¨uŸ}Љݨ}±ŒŽu“ÌÚQ”Šd/H®ÊÑà žõ0úMÊúç•.DØÕ;¼‰W´ÖÛÁ¸¦Ð bó*ž£mã‰[ûx©ûôI‰ ‚%Ç,røa‡ÄOp/™kݺ6 ™,bô GÛ¢8÷²ð…ªµY'?ˆÂ€od„Që‘&á‡>-à:…u Ìr˜8VP·Å~¿ëÙ˜0™IŠæWg&£?àM¢¢«>¼îŒ*·¾ÃsÐ/3Ê«Ëñ†^Mm@’›×ìÒ#LpöÙ…I$4nãs)wÀ@Ež¸œÁ»c•ë+8ªaŒßŒº«lË8ˆ$¯ÍL/XdZÞ<â:” ¸zÔx[V¼xnÇV:-¯x¹½ž ÕÚVUÿÒîî&dãD;:%¥ëY3ÉâV‘ywËóŸý8ÝÀh=É¢ˆé5H4­éëKxuFé\°þݪkíQ;@Z݃t÷Lë$çGÀ"¦A½:Ñ…ÓZõˆl4Sš:h{tPêqar¸Ð¡ëP›§ÙJSŒ#1éáÓ–zj}|qlÑÄãð2'ç²o)râxbW‹xx0¶ùÈøËptDÇ4ªÝ¡å÷â¼ mðrL,ãµBrÄJ…qT˜‘ØBÀÆi·ÃŠÔ9ÒaÔ†c3¡W1QæújT1·\²T >©Bƒ¾|åþ|p||ðòäW’gíºûÃᓃ·oÝ“ŸM”„£7:2ÂS÷ÇãÃC÷Õ´Sç³C¯;>Ä+^¾rtZ'ÁJ®zEß99|yâ¾><~qtr©ýð«{ðú5$~ðÃs¸üàçºsøË“Ã×'îÏ?¾t_aê?AvÞœàõG/ÝŸNŽ^>£ô0ÃñѳŸNÜŸ^=zxLv_;t£ûúàøäèðûúøÕŸž&ß©rðr]q>:ùéÕÛSøn/uþtôò©çQB‡¿¼>>|ƒ¯/†ÛfÂÉ£—Ož¿}J± ~€^¾:ÔáÅಓWT2ŽºV§Ž™ô_Cñ½<9øáèù<ƒGüxtòAEwÀ9òöùÁ±óúíñëWoѶƒ%‰@y½ù“ o ÊõÞ˜„ p!/ŸP=a.¬zÄ×u}õù¼÷ó§‰BÁ‚:tŸþxøääèÏP»p%<æÍÛ‡—÷›* çÏÝ—‡O ¿x×›Ãã?=¡r8>|}ptìR˜ŒãcLåÕK*÷ëXyÐàÿŒMàíËçø¶Ç‡ÿóÞ'§!`Ï ±aaÂ­Ž®÷ŸàáPC™Ê÷è8Wþ¯ÐŒ^¹/~åØ¿:Ü<à±&xG²U@‘Æóà‡WX?àiÊd ÄÁ*zzðâàÙá«УU<Ï}óúðÉþç¡éA]?‡ì9O^A'úŸ·X‹p@%â@ub عÊ\ì‚ØÖ^ê6ÏVÝÒTg5~v¶ý¹Ï_½¡ÆöôàäÀ¥Ãïájçøð%”u§ƒ'OÞC×Â+ðÈÍ›·ÐÙŽ^r¥` Î|tüÔô',gçǃ£çou3%O~EˆIR[‹+äÍ«O Ö¬OïéwRt™>1wNƒÇÃŽC»ÔæJ¤ø”ì·ÖO<þ¿zMV”xÆ¢ý?[ÍVzÿ·f³#ãÿm|œ³ð&/þtøãÑóCÇùÆ=zùã+ÕuYñ¾_¿x¸§VÑLïŠÖ@ðRÞ„ˆ¨×õ6²Ðqá üíë¬?Úð&wg½ízvG¯`vÍ«ëÑžÔ7×áïhvqÑ¿vëïœÿ˜ŸÒýôÍ&æm42Å%H”]µ6lG˦ÞÅ­ÊËrgõlÖr\‰—L¦z“/~ÒœB0Ñ”SÔý‡W»,~í5fáGÛ´%w½Ž›ŽÃ7ÚÕ‚ šq âõÃᯎOñ0þsÎ{z9Ë®³¶–ÁµáðX±(Ý9í_ á»1ÐÄòÿøðàé‹Ã›xÆ|ùï7­ý´ü÷[²ÿç­|^<ùÓÁ³C÷ht5›î¾âØÈ'”øOý©óçÃã7߯7ê{ÎÁÛ“Ÿ^¿qŸõÇ 0úî³(ê; —‰¾”ìäàɉsy†·~?õÑBYï“w¯:ˆÁmëç¸åD8}÷OøËqž¾yr|D ;z½×kK~4 F0> b'ãø¥ViЫ úd­œ——aÏáA톴d&2Û)·•sw2ÃEiêW‡”ø/{inpG“¯;'ñõ‘Ž“¨öœ¡`5ìà€nLÖ//žï úïC•½pž_ð¾ì=zYaò–ºïÄ CЪ‚>?"t7¡˜=S¯™ ÞÏ+lÃÉ._æè½عšât‘qS2ÚçÍÉñ«—ÏÜׯŽ^ž¼qîgÌìm¶÷1^âjEf¶à Jp<ªÕé^æ)P»á@­–$Gj7®xuTìGµ¶ó‘Wr[>mÄLzº©¸G»¯0òµ*¡“UäÜI¨ ­c·D}#n•Å«Ê! ËS0Þêͼ¸*[hy}r^ò–*ñª:ÇÕ7]£™þ¾{À‘Oµ‰Õnyº!™xú¼ J­óÄ–ÍM R†ºÃý4wªi¦¬hú„ÜÖïƒau0æ°Šæ¢+H¿â;(Ûífà·ˆë"è:ºä°CL?]…Xîêó:ã׆e®ÖKc¡c¾P¥Áý ‡ u•¯\ÿž}œ‡Áu8ÒŽå>ºè_Î&¼ªRR>©9&^€E†­Y7ršKùl2þ± zœ¤ó¦›9 ši€DE 7Õo{Y…£ýÉxDá[9nÖT¹åÒjü U˜œ}Þ ~GôŸÚË9$}A4­»/á9Œ•¤ ÇÍ»Cå„êªð󻏸š6_Rë†IýS±&ÁhÊ=xÆ‚Çô¨xE•-t8ÖЯ @–”^AoœY>Pð–÷ÝM¤ãu÷gÜ»‡Üž®&«“;‹shØÿ´b1ô‘´ÅUä(Ñè5M©‘ÈäÑFáå ÙWMå€ßTÇ•FD’h<ýHÆã-Ð’+ptYçCFy2å-EÎÁˆFãKNýŠéå@ØW¯ãþ¥„ NÄÈéåþ}÷Ål0íÃ;‰AG…ÛÑ‹zA^ÿ|xð§iÍ>Ö¼ÝÐìñm^ ›ò 8©0>‘^H'wâxÔ£y‚hm¥0Õá´X ¸#Û»—±o¿*GJôéÉS³<)N“—Ðõºî‰ÖZ÷8jcÚ-‘öjÑïÅ—ÖÓeðŽWísœ1È™’ãXo`EɤUCظÉC/èñ¹x‡AµªH :v»W]’ L÷ÆLnŒ©Öfpuô`°ß™˜ÑZÌeÁ Lµ lÝÐÐB&qÐ[°â˜à£ÆB%ÉN䮀S—ôû+¹¼3ðàf¢ÈÓŸ¾zòöú?‘Zv€‚e2cÞ€8a‡QÓEä1ÌÔPüñè:(¡~‰Ç7NJšjÑfÄO¦5ê +eÝAvN“ò0Ê<\OA•í¯­¿Sb“ Ýcíˆüz£Øæxfæ^|¾Ul™ÈVÀ”OAöqŠfòÛqèŽ3á`¡ñä}0¡|£ˆÀMŸô˜‚›œ¿A©]%¢ïû¸9ˆ £F\ûšÆB MÀÕrÔ‡¾øÉÕü`D~pS^F±0HRiGÓXQF-ˆ7–q뻦¾ÔæXêªÊ‰–*J¾öþÀ¨cîUwÕ µÇ¼Y£µ«wr /Ÿã <ŠËãІz´CYÖa3<ãîöúÓXËÉkÑ»xÎm\ÜÁ‡ ÏŸ Þ©ÆÁhÈ¡õ½tCÆ€: W3 ”¶â` ÕÝÚ½sdbÆ`®<Œ¥áV,k:n­õúÕ±vIwK2ÙRކé‡{Jyi@Ã#ùu4w¦B‹#/¶Ýê àåT¬«Õ°2°“WÿX÷kžsuyi^Ð>X}ˆÇÜaÿ ²Ž‡G0&ÃuåÖ­7ßâ]5T;vâf®BšR¨+ÍŠÝØ×¨®i¢ ³Mæ(lfºæœ×è¼’ãnÇ+Ç ïÁ™Ún‚–‡âµ—;¯Ÿn欂šÐqÐea¤¤½µu¦Þô9еÝ;o¬¤0ò$cútúzàwýËw:¾µñ¤wãmæxMñ9o¼®† Õ {¨`¦B0|ºÂ¼m‘­m§ÇaB?K½{•mEç\(€ÜwØ_LfkÜDt"SlÒe×5cÉåk)ØÛ¹Ò;ÔbüXðc‘®Þgá]Sµ̳kªŒ&$X$‰°õ†÷E|ùŒ‚Z(Ê\3«cñ+ïAÞ£7¤WƒÁ+r«¸‚ÏГœ›)¼9o¡‡ÒLínœéˆ§±g•5ÇWŽRÔWXyƒ¦ Y8€×ƒN`¶×î³ffj¤½ñ7=RÛMÐJ2çqÿTÛBQÜ‘ÙH -õV3| ˆÐfeÊ(ÁÁ¤õ Cæf¾(VpÙ(m7ÿº£­Q&¾5H£ó3‡“£%Ä4ŇòÖ»y‡¼ÕǸ0>eªnTÜ9 ºŒÓÉGÎNjU`Z‚ê;daÄ­ôÉŸßÀrosÃÉ„»0 T_ÇÛã³C|êeˆ/ª¤=+êOüp !ÖÚ5\y^ÒF8Ô:ãÿÌö~ ²ñ‘œŽ^¢á‘5ɬ٫žÑ`Z=2c±bŠÖ3g…Y‡Ž®§¶±þÐ'¯RvVG†5l"imaâФÓXFhÈŠœÑÑÛ²$èm÷`ÜØÛ‘®‚¸%æÜxýÎÈÝÞý_÷þwùßïÿõþã{»WÛt5ò¤–Iã+Û±KáN˜=3cQÏÅé…sðäO/_ýüüðé³CÔß߀ØAâþˆûN§}t§Âè':' áÿ9O‚É`ì>-èŸÿ ïq^c¸î™²žÃuÏA±ýsì¾f¸ÅìØcñ`µ_¶Å+ï‰ù2Ÿ˜ÿdÚ½‰gïi·‹ø?á’ÿiù{ÿÏmßDfÒŸ;άúŸœßHí—­ÿý=¿ÙnwöšXÿ{­–Ôÿm|’õ_?ÿ€&Ðë|Æ"ÿ¨øTÿïìµ|á¿·ñÑ^ßìiŠñ²HÕ§oCÆ­o´qüÆîÉýø+hÖ7Òûâ¯lÜŽ¿§ñ—4$ëÛÔº [üÈdüõz:¾N=†/RÏÍN3Ç0™ƒôÄÌQ|pæ`ª¬à[öÓlñ OÑΑ:”so ÓßÓ—Åçqf™üf_ëܯÿ¿î׃ü¸†P¹¢dÝÅOJþOdzówë~ÆùŸ£ÿíûmñÿ¼•O²þÍzë{Æ‚úoîíû–þçÓøßÙ—ú¿ÞýK×¾œd÷ø4Ž.…>Á¦T"ý‹j7ÿå”UÐ#Î{åðøøàäÕV%ûZ#wk…×'…Qá A^f[xoœ«a.h÷±v)êá¿Á'WÿkÞªþçûíý´þçï‰þw+ŸTn.ÒÿpjXźÝiw½`ê“8ˆOüQŸhà ×qðKè ·º›2ž¡ñÆkÿ}ø×„ë{»5×#×ê.þ¨b"5·–Ñ1L™rœ‚ Ö+ŒÍ:$Uñøž9ª \…·¹|r…¶5÷—Q\¶¡MÔ^ëì0K+ >%,3ÆT£–rÎ)ü¬¼O.©ãMçÍ2º¬”‡;Y½‰_­)YCš#û­+ãÚñôŸüÑ¡)£ÃÆ}råëVå{¯ÕÉÊá·òqR}´µh µ W hÆ£SšÚ»®žÜ«š.yu4¯^Œ?pê]ˆ6èø¬g‚èâÙèkVÕH~džEO¯ZGh¨áïóΑäRCƒ:‚K®ÔÕ^»æð_ÿ‰9|ºnc_â ã\¨þÇ?ꃜO8XÝm[Ã×>g»s†¡àjÑLÐŒE r[ƒ‘Ê)ߪ²ZÑÁ`º¿7w8²“¸@¯x˜Ç©Tj…EAå%NŒ>ËçœDâæ ÜüW°Í×Ï5_ßÇaÇJkͳ¿«6Vp5×ÝÜ¢ ±”8¸\ÍÎ&cܾ0Ìk@#NßÚl¢z’bZ…ûíöj:Žgõ}mT£¡R†‹ãÚÝ‹¿ò«v÷€Á qÇj¢•Vuî¸Så¿IÞfZÍÜ·ë2ï× ósT”ýÀ¼Ì$zš—<„& ó”ÌPl„£îýš—,p,o$[ k.ħ'RÌ·‡æ›°’,Î^3ˆðÑ\)ËœG‘$nB%Mrêfndæ~þºð.Õì*^·¡ÿ4M±Ø`G¯Wù5åê讫nÐOKµ´"ëž)Ä¢ÆHçµDK¢•nˆ™®± %–oŠËµÅäp¡’ºb’̲'×NY¢ËU¢ÁOb+_ÿ¢Jßv»ºÔ0`ÃU.©-ß:ÒÏMµþE——jïé›Ls·ƒy"Ï.Ø9¤É[é&oqã…-¯Í¸µdâöïúIÎÿ´ñzŸ±Èÿ³Mñ?íùß~³Ùùßm|Ìü«$GzögÁÅöwÛåŽÄ<19“ËÈëà ƒì 4èâa ®ã£Ãà¿Ôœ„4Cµü|ØÃTª”&§Ž#¥ÊÐCºô$”ƒ0¼Ð߻ݽš{9žŽ]?‘:ÆSBUÿ%"קŇýÑ,L'ßǯÎѨ&Uõ8[pRi~éº-óÉöÓà&pONýӽϕóû¿ßiø)ÿ_8ÐnIÿ¿ÏV~äG·zôêäOèñÜf¨±·×Úûé [péçí2´Ur! 5IoI³õy mÅÛ ÕýU7Ê+‚e÷ÚúÜÝ…¶Ö°·ÐV~!ÏÙX_}™}…ÕáÒ› ™Ú…TÖ¸·³µ³ÖÏyŠ[‘eÃ÷9ßèÀ 6Š©`L•õç%ý¨8æ2< Ï^ô ÷ôEÁi< à wÏý®«O½8øšèŸÝþû:Ž•Š(šdö8¢Š=»foXÚ5<ųÖ#qþìõaºí xN”VJ²êGþĹ蓞z{ì+lràV‰DÒ#ãly8wdgùð»:ª­’‚ÎL¯UØã»è¥š³Í+.¨¼LÉÆæ™S{lçÉ+ÍâaNíõfÃá'6y£ð#*ZÞÅpJjUm eЧfG¹G­e“9 e¬7Þϳ:fL÷SÅjUL×Júv¸JÈUvÖR©¸”¥Ç8!üÆãp¥òoŒOf’¤¢.u¥ªŽÌ+æÞ€)§¶õ(s™.7¬Ú¤º®uëÛ’’ÇØz”Öô‡|Ì䑊#ô‡£WS9ˆâØ7´Ê þ19?®ÆÑ|³Õtxõû­›GÖÜUøÃª*¹Z ‡‹õªÑ:U\¢á@I:®H†CnR}Sw¾£]“"ä×Nßîä÷0©™ãr»ÂLÉáŽTÈpj/™WjvÚèÍEǨÃ<ů¡< >G…£RuUé“ÐÃàÛ)yÎi×NÞlŠýØxèy‚XÁS|ÞÊUz*DÁx"äURò¦âž¢GÄé)üñüè%üaSN`]êÛŸüù{~ =·aèqß­Ì»aûçɘ£oSïÞÎ^«–úpòìšJo…“>,eh3DS¤Ô »º´Èð‹Rr»²]{ŒG 4{¾²]áóº8)«ø¨Ct!™TaöÂéÂÍErM5¨8-|f&-xdù´–̓GÅ fØôÊ180eŽ2Ù¸Tªeq}À>à¢Ð~Œ×Q ÝÔöu ½=Y®£•bF±ÿ(ÈÙ˜#knµ!]o [¬Ô†c,ÿQ~É`G¯¸•ÝÝdcÝÝ­tá Õßî.—0œå›kæ„-"t—x*Öݪ¥&æãʵT×®:9YKöHʦí.Z"’êa DøŽùPƒ”y·eL5¦zò”ªM)«RPB£Bõ×u:˜ ¦h¯Z‹FåqlåG±ql½:Ö 9WÛš§Q£Þ•œQüüêøOǯ޾|º_V#+Rßµnöj Ë©w¤ å%Fír%}O} •.^íR:£…J¡jQn™gë{¸Ó¥gGëÐ=¼ð¸ÁÅ|E0½î'Ç,l+yð÷ùâ+@Ôä)¨º×qvl“ b@Öc£òY’N€à¡óªÌ,߸kvI5Ë>•T²ø•“Š&šJ™üò]Œ”>„“þÅ'JºJ¹]ó*nÅPT¸ú;|á5¡à8EþýÀeMZ'KªJ~¢Ýl¢Fö–˜T¼ñqy‘¦Ç™È{K½TÂŒÖÖx]\tP"FæwàÔ#þ˯պݔViÕt¼ |µzý’U°JYQO‡ãñ r9™c5õV·ƒsÝUP·ÞØ·]Ôy辚ºÓ … ņY.dÝ’£«ƒ°;¿ú„S ód·ãßtÏè`)m3‹Éè—YÍÞz ϘÔ(„zßy­hJ¤.Rs"u¤æ~§®^jt¥}Í„þŽ¢‹_ >–z“ÇÙ7Á$Ô4Cßõ mǰfËab‚›º½Öù˜ª#þ£˜Ür›Íåy­œºm8Z!Ñ)t»{JDñ<.ycî)¥r$OÎé8_~,ç¸+™×A–6¤ÔÌÄ EÇN<7³æÀË µ§T+ˆõ8xȰ¯¦©ªWéd=Ý kVÛñÅ÷b«Sß’ÇÕõ44éƒß™Ô(øÄûVhÊÝDC62ƒ?0·Õ~ÙÉnþÖÑ“õ+3õ¥;hÖ“¼Ï^C”û¼¢¿ g‰ÃO¡ÿÇ«¯Ÿþ²ïEþí}Œ œòÿØ“õ?·óÿñÿÿñÿXìÿ¡„ÛóþPüb¾üü„߆ÊÒ|2÷}–Ÿ‡®‰Spˆ8.ÌçùpX¯íÃqíÏ¥*Ç KŒmº¸:tIH/­IÖ6.2¥21° »'U¹æzÅ o0NI׋|ƒz2-Kû3ØövŒ§ãõAPÑž˜jN@|™Žá$œÏ˜-Ð,œÉtqÆ0 §³É(ž·ó|®ÄôÔF°KÍLçLžÌ¼cá«w}Ïd_Í~\¶Ä¢F·[Ùª$&Šj¢ø5]Èù…˫մ*­Óô|oÇ'«kM•r—ñ¬òPKOì’”»ÔÇæßž°½ñEåM_k/õÂë·Ý¹sÌf½¢^7©j0ñ¦Ió`0Uë%èáßö¨Q6’ÊÌs¿`!¿š2Šrè¨nu6P;O÷BÜýª÷IÛT¡:Û£œc‰~[̦‹GdÀ¹€’!kÖ!ÖµXT’}xÅqVÀÆiÑÛ.Á–ŒEr ÿ|KÌÆ'q«N•"±Éy!%»ñ´cb̹P]Q8=œ7B@ ¸[*X˜•˜Mìñ_¾ò† lÅú0Ò{ßÅ«-»ß¢‹Ç™©íq7r˜™±nG­=rò¥j÷˜´Ù‚tõ*5$¾EGº]<`ÑNî(;<^ ‘Kœf2I+EŸ’¬éÛ¬®å>€·0B›H¯ÜQ‘u‘Ðï&§ôõ±.²åvÈÖ0gÇ-í>QpñíÄH3¯u¹º%uÝ“ã£ÕÜbq­pÅêz¯R}m±þ°]«¤Ç;ݾ1%Ý™—r¹dTÛ¦j ic® ¯㾟¨Š¸SÁÃ×U•Žô‡Áexµªê¶¶Û¨Õ8bQªƒ¦úœtIdRóôã ÅôÍ´%>OA¸…&wHÛ:ê“™ó¨ýW­ˆ”  ¾¨âåµõ© J6<î&†Z%uÔ0ž7Ú&FÓù.õÆ\zWêKNáÄþÆÝèÅ[^¼å¿ˆ·¼öùaŸòTØ•jušÞ.’(¹¶cg|WÛ/¹üWçöürçö¯Ø¹Ýè,s]Ûh6âØ¾È±½X3r >wöÊÕ—tbŸ—=q]?OeAY’æ–š œ ÂXosÙ>&^èå9'^è_ÚEW¼ÐÅ ýîz¡›‚Z%¹¢MÙ{NªhNÏ!/S>OF $Km¼æ÷$ˆ=¬Ð 5‹#}Ö¬íV×µé~·Û¸ïo¼ß52hÞaDØÃ`zþ®ÜÐÂU9÷BÞÞ‡(&­Å]¶EsSr,õ„WíÿmíÓþ雿”nÍQ—pIïZÊ!Ýz˜øþùþùy¾åàˆ/p¤áyžðá#Žð‘»ÂGз—<¶†Aô^ØZ²YChɧ%9Ž 9újª#´äÆh - øl`©l:3aQ°‰`Á&T^‚M›6l²:61K Ÿäà“¸t6ݪ¾I¦-ïÜ.Ï&çaW5:Ø¥Ÿ&TP¡,_ž²ø+Qlù+P_(K1ei¬NYBYJRO8‹pá,ÂY„³lXãÎrç9K£g)Pv„³Ü gñÖDZ¼¯„µxB[„¶mÚ"´Eh‹Ð–ÂbÚ"´Eh‹Ð¡-åhKc%ÚÒpV¢-ð°¼=ÆÿoÞtüÿVg¿ÑÉÄÿ÷÷$þÿm|$þ¿Äÿ—øÿ#‰ÿ¿n®N§›B§KÓiáÓ§…O Ÿ>½iCøôçÓÍR|º@Ý>}£|z}„úëaÔB©…R ¥J-”Z(µPêâbJ-”Z(µPj¡Ôå(us%JÝtV¢ÔMYXL]Z«S—–P—%¨‹pá.Â]„»wÙ´Æ!ÜåÎs—V)îR ðw¹aî²Nòò5±¡/B_„¾}ú"ôEèKq1 }ú"ôEè‹Ð—rô¥µ}i9+Ñ—–ЗbúÒ^¾´…¾,E_„¿þ"üEøË¦5á/wž¿´Kñ—•GøËó—õ˜¯‹Á… #F(ŒP¡0BaŠ‹I(ŒP¡0Ba„”£0í•(LÛY‰Â´ó#5ÞÌgaüÇý›ŽÿØlú{~*þã^§ãKüÇÛøHüG‰ÿ(ñ%þãr,|u¾/,|I.4\h¸Ðp¡áBÃ7­q ¿ó4|¿ /Pz„†ß _7ÿÚˆ¸0qaâÂÄ…‰ &.L¼¸˜„‰ &.L\˜x9&¾¿ÇYÝ L|_V&Ó˜Îê4¦#4fi#˜*‹íælvy §§¹ÕäjÒÿ}êÏš¢Qf]ÞÈS³Ö´1>k ÏZJç}ÒFpo@I¨ç»Y;e£–1¸Âïê¨Vþ>ý°þH߆=tÅQ®ò•[0E¦àh¦âgtùy>×ÓñuÎaHsMž…áT‰±YÁó EÒÁà~ŠL@\&A¤¯ÏT®¹^†ÂŒ?GÒë"ß8ŸLÅW~ÆÇ!m8÷ú ¨‚©c¦äL@Çð‹ ß8Ÿ9n0á0Óÿ.N:&át6ñ´mð|®ÄlÐ&»KMç™/Lžb"?æWïúžÉ¾š@¹l Fߌn·²UI˜¯ÔTFÍÕéBÎ/\^­¨¦Uñ°µQšžïíødö­©Rîò¯57Ê?ØLáÒ”»ÔÇæßž0þñEåmok/õÂë·Ý¹SmÌf½¢^WÛïL &Þ4iŸ ¦ª±q½½¿ƒ>0ÆÕFR™©ò,¤âWSVÙ-RBA4uÏÁè=©}á •/î“¶!Qu¶G9Çý¶yhÃÌb³å:‡€uˆu-•d_ ^cqœ°qZ5.Á–ŒE ÿ|KÌÆ'‡ÁµN x÷BJvãi|…1j›×s.TWdçPî42P¦âQ‰áÈÿå«ñ!o¨ÀV¬ß¾7Üûn,^·HKÃ=£ëŒ‡ï2DMô}ÐE£>ÌÌX·£Ö9ùÄTµ{ÌÊÿB5¯RCá[x¦ÛÅþà$ðçŽxf>qšÉ$­}J²¦o³º–ûRÜ:>ó«úÌ7ùÌ/v’O“ˆ¼$¾ W|£ŒW|™'Þ)7ø†¸Á‹¼¸Á‹¼¸Á‹üòn𾸿縿ûïæ¼Inï¦)9â×.~í_Þ¯æ¨Kûµã]+øµÓÃÄ÷¯È÷Ï_5ÚPãÔ8R ŽT%Âðá#w‹H„!¡%BK6Ÿ–ø¥hIª#´äÆhIµLT¡…À¤ú¥# •b&U‰$ØD°‰`Á&‚M›“D’èA=H(‹P–r”Å_‰²`Ë_²øBYŠ)KcuÊÒÊR’²ÈNÂY„³gβiC8Ëç,9 ns4ÖeG8Ë r–Rû7” -_|׆’¬EöjÚ"´Eh‹Ð¡-B[Š‹Ih‹Ð¡-B[„¶”£-•hKÃY‰¶4ò÷jXÿ¿yÓñÿ[ýF'ÿß—øÿ·ñ‘øÿÿ_âÿ$þÿRtº¹:n .M§…O Ÿ>-|Zøô¦5áÓwžO7KñéuGøôòéõꯇQ ¥J-”Z(µPj¡ÔB©‹‹I(µPj¡ÔB©…R—£ÔÍ•(uÓY‰R7eM`1ui­N]ZB]– .Â]„»wî"ÜeÓ‡p—;Ï]Z¥¸KÂ#Ü冹Ë:ÉË×Ä^„¾}ú"ôEè‹Ð¡/ÅÅ$ôEè‹Ð¡/B_ÊÑ—ÖJô¥å¬D_ZB_ŠéK{uúÒú²}þ"üEø‹ðá/›Ö8„¿ÜyþÒ.Å_ Tá/7Î_ÖK`¾.#F(ŒP¡0Ba„Â…).&¡0Ba„Â… SŽÂ´W¢0mg% ÓÎÔx3Ÿ…ñ÷o:þc³éïù©ø{NCâ?ÞÆGâ?JüG‰ÿ(ñ—cáû«³ð}aáK²p¡áBÃ…† ¾iChø§áû¥hxÒ#4ühøºyø×FÄ…‰ &.L\˜¸0qaâÅÅ$L\˜¸0qaâÂÄË1ñý•˜8ÎêV`âû²2±˜ÆtV§1¡1KÓá1Âc„dziCxÌç1R<¦@ís+™Š¯ü ŒCÚpîõAPSÇL+È™€Žá¾q>sÜ`Âa¦ÿ]œtLÂél2â3hÛà;ù\‰Ù Mv—šÎ3_˜<ÅD~̯Þõ=“}5rÙŒ¾Ýne«’0_©©Œš«Ó…œ_¸¼ZQM«âak£4=ßÛñÉì[S¥Üå_5jn”~°™Â¥)w©Í¿=aüã‹ÊÛÞÖ^ê…×o»s§Ú˜ÌzE½®¶ß™L¼iÒ>LUcãz z|`Œ1ª¤2Så/XHů¦¬²[¤„ ‚hêž ‚Ñ{RûÂA*_Ü'mC¢êlrŽ%úm1ò.І™;ÄfËuëëZ,*ɾ@¼Æâ8+`ã´4j\ ‚-‹þù–˜Oƒk"ð ï…”ìÆÓø cÔ6¯ç\¨®(ÈÎ! Ü-hd LÅ£Ñ=þËWãCÞP­X¿|o¸÷ÝX¼n‘–†-z8F×ßeˆšèû ‹F}˜™±nG­=rò‰©j÷˜•þ#„j^¥†·ðL·‹,üÁIàÏðÍ|â4“IZ)ú”dMßfu-÷¤¸u|xðÔM¤ƒWîøJÚ¨"¡ßLNéëc]dË "ì7,¬aÎõ óQ˜ôÛ‰‘f^ëruKêº'ÇG/ª¹Åâê±9èUÕõ^¥ú Úbýa»VIwº|cJº3/årɨ¶MÕ0÷fƒ1׆׀qßOTEÜ©àÎáëªJÇ úÃಊ ¼ZUu[ÛmÔ`¸Ïé é>']™Ô<ý¸ÂDãA1}3$m …ÏSn¡Éâwª[¨W˜äé9Ïh6<‘y1UsZ HðE/¯…¬OQ²áq71Ô*©£†ñ¼Ñ61š–q¨ožî‰CýÂI/²G<èŃ^<èï}ušÞ®øÌoXsŸù;î3:K ŸùBÍF|æWõ™o.ò™_ì$Ÿ&yI|A¯øf¯ø2O¼SnðMqƒ7xqƒ7xqƒ7øåÝà}qÏq÷7ÞÍy“ÜÞMSrį]üÚ¿¼_;ÍQ—ökÇ»Vðk§‡‰ï_‘j´¡æ©/p¤©J„!á#ÂGî‘CBK„–l>-ñKÑ’UGhÉÑ’j™¨B IõKG*ÅLª=H°‰`Á&‚M›6),&‰$у$zP¡,å(‹¿eÁ–¿eñ…²S–Æê”¥!”¥$e‘„³gÎ"œeÓ‡p–;ÏY¥8K²#œå9K©ýJ–/¾kCIÖ"{5mÚ"´Eh‹Ð¡-ÅÅ$´Eh‹Ð¡-B[ÊÑ–ÆJ´¥á¬D[ù{5,Œÿß¼éøÿ­Î~£“ÿßøÿ·ñ‘øÿÿ_âÿ$þÿRtº¹:n .M§…O Ÿ>-|Zøô¦5áÓwžOç„Ιã¨;§o”O¯P=ŒZ(µPj¡ÔB©…R ¥J]\LB©…R ¥J-”º¥n®D©›ÎJ”º)k‹©KkuêÒê²uî"ÜE¸‹pá.›Ö8„»ÜyîÒ*Å] á.7Ì]ÖI^¾&ö"ôEè‹Ð¡/B_„¾}).&¡/B_„¾}úR޾´V¢/-g%úÒúRL_Ú«Ó—¶Ð—¥è‹ðá/Â_„¿Ù´Æ!üåÎó—v)þR ò¹qþ²^óu1¡0Ba„Â… #F(Lq1 … #F(ŒP˜r¦½…i;+Q˜v~¤Æ›ù,Œÿ¸Óñ›MÏOÅÜëtšÿñ6>ÿQâ?JüG‰ÿ¸ ß_…ï _’… .4\h¸ÐðMkBÃï< ß/Eà ”¡á·@Ã×Íÿ6".L\˜¸0qaâÂÄ…‰ /.&aâÂÄ…‰ &^މï¯ÄÄqV·ß—•‰Å4¦³:éYšÆ#ƒ¶ ¾“Ï•˜ Údw©‰à<ó…ÉSLäÇüê]ß3ÙW(—MÁè›ÑíV¶* ó•šÊ¨¹:]Èù…˫մ*¶6JÓó½ŸÌ¾5UÊ]þU£æFyà›)\ú!r—úØüÛÆ?¾¨¼ímí¥^xý¶;wªÁ¬WÔëjû©ÁÄ›&í“ÁT56®— ÷wPÀÆC ÚH*3Uþ‚…TüjÊ*»EJÈ ˆ¦îÙ ½'µ/„ òÅ}Ò6$ªÎö(çX¢ß#ïâm˜¹@l¶\ç°±®Å¢’ì Äk,޳6NK£Æ"Ø’±HAáŸo‰Ùøä0¸Ö)Bò^HÉn<¯0FmózÎ…êŠÂìá¼JÀÝ‚FÊT<*1Ùã¿|5>ä ØŠõÁ÷†{ßÅëiiØ¢‡ctñð]†¨É¾ºhÔ‡™ëvÔÚ#'Ÿ˜ªvYyà?B¨æUjˆ | Ït»xÀœþÜQ /ÐÌ'N3™¤•¢OIÖômV×r@Š[LJOÝD:x厯¤*úýÀ䔾>ÖE¶œ ÂyÃÂæìPŸ0…IO°iæµ.W·¤®{r|ô¢š[,®›ƒ^U]ïUªÏ -Ö¶k•ôx§{À7f ¤;óR.—ŒjÛT Ãqo6smx ÷ýDUÄ Þèþ¸®ªt¼ ? .«ØÀ«UU·µÝF †ûœšèsÒ%!IÍÓ+L4Ó7CÒ–Pø<ášÜ!~§º…z…IžžóŒfÃ3™“ñP5§Š_TñòZÈúT%wC­’:jÏm£i‡úÖéž8Ô/œô"Kqă^<èŃþyÐWw¡éíŠÏü†5ñ™¿ã>ó ³”ð™/ÔlÄg~UŸùÖ"ŸùÅNòi‘—ÄôŠo•ñŠ/óÄ;åß7xqƒ7xqƒ7xqƒ_Þ Þ÷÷÷wãÝœ7ÉíÝ4%GüÚůýËûµÓui¿v¼k¿vz˜øþùþù«FjúGJÁ‘ªD>"|änñ‰0$´DhÉæÓ¿-)Pu„–Ü-©–‰*´˜T¿t$¡R̤*у›6l"ØD°‰`“Âb’èA=H¢ eÊR޲ø+Qlù+P_(K1ei¬NYBYJRÙÉA8‹pá,ÂY6­qg¹óœ¥Qг(;ÂYn³”Ú¿¡iùâ»6”d-²WƒÐ¡-B[„¶mÚR\LB[„¶mÚ"´¥mi¬D[ÎJ´¥‘¿WÃÂøÿÍ›Žÿßêì7:ÙøÿM‰ÿ‰ÿ/ñÿ%þÿHâÿ/E§›«Óé¦ÐéÒtZø´ðiáÓ§…OoZã>}çùt³Ÿ.Pw„Oß(Ÿ^¡þzµPj¡ÔB©…R ¥J-”º¸˜„R ¥J-”Z(u9JÝ\‰R7•(uSÖS—ÖêÔ¥%Ôe ê"ÜE¸‹pá.Â]6­qw¹óÜ%g#έµ@áîrÃÜeäåkb/B_„¾}ú"ôEè‹Ð—âbú"ôEè‹Ð¡/åèKk%úÒrV¢/-¡/Åô¥½:}i }Yоþ"üEø‹ð—MkÂ_î<i—â/*ð—ç/ë%0_ƒ #F(ŒP¡0Ba„“P¡0Ba„Â…)GaÚ+Q˜¶³…içGj¼™ÏÂøû7ÿ±Ùô÷üTüǽN§%ñoã#ñ%þ£Ä”øË±ðýÕYø¾°ð%Y¸Ðp¡áBÃ…† ß´Æ!4üÎÓðýR4¼@é~ 4|Ý<ük#âÂÄ…‰ &.L\˜¸0ñâb&.L\˜¸0qaâå˜øþJLgu+0ñ}Y™XLc:«Ó˜ŽÐ˜¥iŒðá1Âc„ÇÙ´Æ!<æÎó˜N)S ö¹³~"óõ1¡2Be„Ê•*#TF¨Lq1 •*#TF¨ŒP™rT¦³•é8+Q™Îm®T”ÏM|ŠÖ½<9|vxìŸîÝôúÏv{¯Ùɬÿ„Ó²þó>²þSÖÊúOYÿ¹Ðã@äq°—çq Z?ü? ÃV|uÿquŠgÍѨ ³.oä©YkÚŸ5g-¥ó>i#¸7 $Ôó]ËN©³TË\áwuT+Ÿ~X¤oÞ ºâ(WùÊ-˜"Sp4Sñ3ºü<Žëéø:ç0¤¹&Ï•ã…%Æfe4σIƒû)2ip™‘¾>S¹æz o0þI¯‹ÅÆy¶)€$ ¦Ž™7·Ã/.|ãŒäøÀŒÂÌï»8«˜„ÓÙdÄgÐxÁwò¹Ó=Ý.5Ó›gŸ0yŠ‘û˜_½ë{&û96­`ªòï‘ý—Ž÷§ã¯gG­V#ÄiÚ¸™d•7mÝÈ;[omµØž·EÃ× ˆ¦îÙ ½'…!„ ,Ä•m› T->Ê9–hŰ´Xv õ+Wtįu uÝ¡”LXÐ1㎜íšqZR-è¼ #Ï™dF¤ÿ|«KÇ'‡Á5?¤H†=̼‰¯œ¤¦Ã+xw Z Œ£±@b»øÿå+É‘'D¨ê  )Ýôº-±=Çè2áj2âzè Q4rÓ©­F¤LµZÌÇÿ¯RCÓ³o™å»]<`™½9 ü¹£ Àx¶õÇi&“´Rô)Éš¾ÍêîHqëøðà©›H¯Üñ•¬PÅA¿˜œÒ×Ǻ¸–#ØÖ"E ¯ß†¹Ô%ÌC@Ù ”W‹…âƒé¸oÉJ/¯ƒæ ¾“Ï•˜òÙðv©ÙÞ< …ÉS ÝÇüê]ß3ÙϱjS•,Àt¼?x=›8jµANÓÆÍD«¼qëFÞÙzk۬Ž-¾A4uÏÁè=) á e!®lÛ¥jñQαDƒ(ƥŲí_¹¢#6y­Sx¬C è¥d‚Žwäl׌ÓÒ˜jAçµpùÎ$û3B5øç[]:>9 ®ù!E2ìaæM|å&5^Á+¸[ÐJ`[Æ÷ø/_IŽø§x•Ÿ}Ë0ßíâËðÍIàÏeÆ ´µ?N3™¤•¢OIÖômVÇp@Š[LJOÝD:x厯d…*úýÀ䔾>ÖŵœÁî´)Rxý6ÌÕ .aÊn üZ,ÀßLÇ}KVzyåàQ3îÒO#@ÉƇ6íåÙŒßd®mЫðE•Üמ'¥MÛzÜMZÕj•Ï“µ YZÆ·qº'®¸ •e´Ã:â{+¾·â{{‡|o«»ÐôvÅÛvÚƒxÛÞqo[ÐYJxÛj6âm»ª·mc‘·íb÷Ú´3/‰/èOÛ(ãO[æ‰wʶ!´â@+´â@+´â@»¼­/޳ÇYã$7ÉaÖ4$GÿQâ?JüG‰ÿ¸ß_‡ï _’‡ ".D\ˆ¸ñMkBÄï<ß/EÄ ”!â·@Ä×ÍÄ¿6*.\\¸¸pqáâÂÅ…‹ /.&áâÂÅ…‹ .^†‹ï¯ÄÅqN·ß—µ‰Å,¦³:‹é‹YšÅ#4FhŒÐ˜MkBcî<锢1jИ[¡1ëç1_‘&#LF˜Œ0a2Âd„É“0a2Âd„É“)Ãd:+1™Ž³“éÜþZEù¬ÿ³`ýgótï¦×¶Û{ÍNfýç~GÖÞÆGÖÊúOYÿ)ë?Ëú4Éç`/Ïç@µ~ø†=¬øêþãxò>˜:‹íælvy §¨¹õäjÒÿ}êÏš¢Yæ]ÞÈSóÖ´9>k"ÏÚJç}Òfpo@I¨ç»YKe³–1¹Âïê¨Vþ>ý°þH߆=ôÅQ®–[0E>¦àh¶âgtùy^×ÓñuÎaHsM¾…6áT‰±aÍÁó0EÒÅà~ŠM@\&B¤¯ÏT®¹^!†ÂŒGGÒïb±yž­ ‰‚©cæä/@Çð‹ ß8#9ž0«0sü.Î,&át6ñ4_ð|®Ä”φ·KÍöæY(Lžbè>æWïúžÉ~ŽU+˜ªü{d¦ãýé8ÀëÙÄQ«Õrš6n&Zå[7òÎÖ[Ûf-¶èmÑð5¢©{6FïIa!( qeÛF(U‹rŽ%D1.-–hÿʱÉkÂcAw(%t̸#g»fœ–ÆT :¯…ÃÈw&ÙŸªÁ?ßêÒñÉapÍ)’a3oâ+7©éð ^ÁÝ‚Vãh,Ø2¾ÇùJrä j†:hL7½n‹FglÃ1:Mx š ‡8‚ƒž:HÔœÇtj«Q+S­óñÀ„8Å«ÔÐøì[†ùnX†oNî(0^ ­ýqšÉ$­}J²¦o³:†ûRÜ:>´i/Ïž`ü&smƒ^…/ªä¾ö<)mÚÖãnBЪV«„xž¬MÈÒ2®¸ÍÓ=qÅ]¨,£Öß[ñ½ßÛ;ä{[Ý…¦·+Þ¶ÖÄÛöŽ{Û‚ÎRÂÛ¶P³oÛU½m›‹¼m»×¦-˜yI|AÚfÚ2O¼S´Mq Zq Zq Úåh}qœÍ8Îúï ¹I³¦!9â+±_Þ#–f¨K{Äâ]+xÄÒÃÄc¨ÈcÈ_5JIóÔ4R T%2‰Ð¡#w‹ŽHda%ÂJ6Ÿ•ø¥XIª#¬äÆXIµL4’…¸¤ú¥#”"&U‰:"ÐD ‰@&Mš“D‘¨#uD‹0–2ŒÅ_‰±`Ë_±øÂXŠKcuÆÒÆR’±Hüw¡,BY„²eÙ´Æ!”åÎS–F)ÊR ìe¹AÊR*ê{ ÎòÅc½—$-á]X‹°a-ÂZ„µk).&a-ÂZ„µkÖR†µ4Vb- g%ÖÒïÿþŸ…ñß›7ÿ½ÕÙoø™øï†Ä¿Ä—øïÿ}$ñß—ò4h®îiÐOƒÒžâk ¾âk ¾âk°iC| AN`ï‹Mº#¾7êk°>oƒ¯Çß@<Äã@<Äã@<Äã@<Š‹I<Äã@<Äã@<Êx4Wò8h:+y4eug1si­Î\ZÂ\–`.B]„ºuê"ÔeÓ‡P—;O]Z¥¨KÂ#Ô冩Ë:¹Ë×D^„½{ö"ìEØ‹°a/ÅÅ$ìEØ‹°a/Â^ʰ—ÖJì¥å¬Ä^ZÂ^ŠÙK{uöÒö²{ú"ôEè‹Ð¡/›Ö8„¾ÜyúÒ.E_ T¡/7N_ÖË_¾.# FŒ0a0Â`„Áƒ).&a0Â`„ÁƒS†Á´Wb0mg%Ó¾ýˆ› ã?îßtüÇfs¯ÓÎÆlJüÇÛøHüG‰ÿ(ñ%þãr<|u¾/<|I.D\ˆ¸q!âBÄ7­q¿óD|¿/Pz„ˆß_7ÿÚ¨¸pqáâÂÅ…‹ ..\¼¸˜„‹ ..\\¸x.¾¿Ç9Ý \|_Ö&³˜Îê,¦#,fi#4FhŒÐ¡1Bc6­q¹ó4¦SŠÆ¨=Bcn…ƬŸÇ|}DF˜Œ0a2Âd„É“&S\LÂd„É“&#L¦ “é¬Äd:ÎJL¦sûkå³þÏ‚õŸ­Ó½›^ÿÙnï5;ÙõŸ{²þó6>²þSÖÊúOYÿYÖç E>{y>ªõÃÿ£0ìaÅGP÷Ç“÷Á„ÔYl7g³ËK8…@Íͨ'W“þèS§xÖ<Íš0ïòFžš·¦ÍñYyÖV:ï“6ƒ{JB=ßÍZ*[µŒÉ~WGµò÷é‡õGú6ìÙ /Žr°Ü‚)òñ0G³?£ËÏóâ¸žŽ¯sCškòí(´ §JŒ Ëhž‡)’.÷SlÒà21"}}¦rÍõ 1Þ`<:’~‹ÍólUIL3w :†_\øÆÉñ €Y…™ãwqf1 §³ÉˆÏ ù‚ïäs%¦|6¼]j¶7ÏBaòC÷1¿z×÷Lös¬ZÁTåß# 0ïOÇ^Ï&ŽZ­FÓ´q3Ñ*oܺ‘w¶ÞÚ6k±Eo‹†¯AMݳA0zO C8AYˆ+Û6B©Z|”s,Ñ Šqi±ì@ûW®èˆM^ëëºC)™° cÆ9Û5ã´4¦ZÐy-F¾3ÉþŒP þùV—ŽOƒk~H‘ {˜y_¹IM‡Wð î´GcÄ–ñ=þËW’#OˆP3Ô@cºéu[4:c{ŽÑiÂÕd8Äô<ÐA¢>hä<¦S[ X™jµ˜þ#Ä)^¥†Ægß2Ìw»xÀ2|søsG™€ñmíÓL&i¥èS’5}›Õ1ÜâÖñáÁS7‘^¹ã+Y¡Šƒ~?09¥¯uq-'F°;­EŠ^¿ s5¨K˜‡€²(¿ 0Ä7Óqß’•^^9xÔŒ»ôÓP²‡ñ¡M{yöã7™kô*|Q%÷µçIiÓ¶w‚VµZ%ÄódmB––qÅmî‰+îBeí°ŽøÞŠï­øÞÞ!ßÛê.4½]ñ¶Ý°æ Þ¶wÜÛt–Þ¶…šxÛ®êmÛZäm»Ø½6mÁÌKâ úÓ¶ÊøÓ–yâr m‰­8Њ­8Њ­8Ð.ï@ë‹ãlÆqÖßxÉMr˜5 ÉXñˆýò±4C]Ú#ïZÁ#–&CECþªQJZ§¾ ‘Rh¤*‘I„޹[tD"“+V²ù¬Ä/ÅJ Ta%7ÆJªe¢‘,Ä%Õ/¤1©JÔ&Mš4h"Ф°˜$êˆD‘¨#ÂX„±”a,þJŒ[þ ŒÅÆRÌX«3–†0–’ŒEâ¿ eÊ"”E(˦5¡,wž²4JQ–eG(Ë R–RQßKp–/ë½$i‘ïÂZ„µkÖ"¬EXKq1 kÖ"¬EX‹°–2¬¥±ki8+±–†Dxÿ÷ÿ,ŒÿÞ¼éøï­Î~ÃÏÆoJü÷ÛøHüw‰ÿ.ñßGÿ})OƒæêžMñ4(íi ¾âk ¾âk ¾›Ö8Ä×àÎû4Kù¨;âkp£¾ëó6øzü Äã@<Äã@<Äã@<Äã ¸˜Äã@<Äã@<Äã ŒÇAs%ƒ¦³’ÇASVw3—ÖêÌ¥%Ìe æ"ÔE¨‹P¡.B]6­qu¹óÔ%g;Õ­µ@áêrÃÔeÜåk"/Â^„½{ö"ìEØ‹°—âbö"ìEØ‹°a/eØKk%öÒrVb/-a/Å쥽:{i {Yн}ú"ôEè‹Ð—MkB_î<}i—¢/*З§/ëå/_# FŒ0a0Â`„Á“0a0Â`„Áƒ)Ã`Ú+1˜¶³ƒiß~ÄÍ…ñ÷o:þc³¹×igã?¶$þãm|$þ£Ä”øÿq9¾¿:ß¾$".D\ˆ¸q!â›Ö8„ˆßy"¾_Šˆ(=BÄoˆ¯›‰mT\¸¸pqáâÂÅ…‹ .^\LÂÅ…‹ ..\¼ ß_‰‹ãœn.¾/k‹YLguÓ³4‹#4FhŒÐ¡1›Ö8„ÆÜyÓ)Ec Ô¡1·BcÖÏc¾>"#LF˜Œ0a2Âd„É“).&a2Âd„É“&S†ÉtVb2g%&Ó¹ýµŠòYÿ§hýçóWÏŽž<÷O÷nzýg»½×ØÏ¬ÿlíÉúÏÛøÈúOYÿ)ë?eýçBŸ= ÏÁ^žÏjýðÿ( {XñÔýÇñä}0!uÛÍÙìòN!Ps3êÉÕ¤ÿúÔ)ž5D³&Ì»¼‘§æ­is|ÖDžµ•Îû¤ÍàÞ€’PÏw-K¥ÎR-cr…ßÕQ­ü}úaý‘¾ {6è‹£\,·`Š|¨ê  Ýô·-—±=Çè.áR2âØ hQtqÍ©­F”LµZÌÇÿ‚¯RC³³o™ä»]<`™¼9 ü¹£Œ¿x¶óÇi&“´Rô)Éš¾ÍêîHqëøðà©›H¯Üñ•¬PÅA¿˜œÒ×Ǻ¸–#ØÖ"E ¯ß†YÔ%Ì@@Í ”G‹…bÙ¨EC0ªy…àQîÒO#=É Æ‡6íÍÙŒßd®IЫðE/ïµç‰hÓ°wRV5Y%ÁómBÎõÀ­+wÔ·¬Æ§Ý=q¹—[q¹½C.·Õ]hz»âd»aÍAœl望m¬³Ìs²]¤Ùˆ“í'Û9š‘[ðÑ:’6h•Q®ò½joÅvnöºÑ–yâ¿£ßìÜR¿ÙÍrÚ¿Ù/^«”•øÍn~݉ßìzýf}ñ—ÍøËúï¹I~²¦!9â+ް_ÐÖž¡–w„µîZÆÖ~˜8 9 ùK'1åê )…FªDèˆÐ‘»EG$ ‰°a%›ÏJrÜ@rôÕUGXɱ’ª„du\R½¥À#ŸGLªw7؈@&ü6Mš4h2§˜$؈‘`#ÂX„±”a,þJŒ[þ ŒÅÆRÌX«3–†0–’ŒE¾ eÊ"”E(˦5¡,wž²4JQ–eG(Ë RoMœå¶B¼.i¹ÃÝ…µká·Ö"¬EX‹°–9Å$¬EX‹°a-ÂZʰ–ÆJ¬¥á¬ÄZØý}ÆoÞtü÷Vg¿ágã¿·%þûm|$þ»Ä—øï#‰ÿ¾”ËAsu—ƒ¦¸”v9§q:§q:§ƒMkâtp皥œ Ôq:¸Q§ƒõ¹|=Žâz ®âz ®âz ®âzP\Lâz ®âz ®âzPÆõ ¹’ëAÓYÉõ )Ë<‹™KkuæÒæ²sê"ÔE¨‹P¡.›Ö8„ºÜyêÒ*E] ¡.7L]ÖÉ]¾&ò"ìEØ‹°a/Â^„½{).&a/Â^„½{öR†½´Vb/-g%öÒöRÌ^Ú«³—¶°—¥Ø‹Ð¡/B_„¾}Ù´Æ!ôåÎÓ—v)úR ò}¹qú²^þòua0Â`„Áƒ# FLq1 ƒ# FŒ0˜2 ¦½ƒi;+1˜öí‡Þ\ÿqÿ¦ã?6›{v6þã¾Ä¼Ä”øÿQâ?.ÇÃ÷WçáûÂ×äáBÄ…ˆ ".D|Ó‡ñ;OÄ÷Kñ¥Gˆø-ñu3ñ¯Š ..\\¸¸pqáâÂÅ‹‹I¸¸pqáâÂÅ…‹—áâû+qqœÓ­ÀÅ÷emb1‹é¬Îb:Âb–f1Bc„Æ#4fӇИ;Oc:¥hLÚ#4æVhÌúyÌ×Gd„É“&#LF˜Œ0a2ÅÅ$LF˜Œ0a2ÂdÊ0™ÎJL¦ã¬Äd:·¿VQ>ëÿ,XÿÙ8Ý»éõŸíö^c?»þÓ—õŸ·ñ‘õŸ²þSÖÊúϲ> ò9ØËó9P­þ…a+>‚ºÿ8ž¼&¤Îb»9›]^Â)jnF=¹šô?@Ÿ:ųæhÖ„y—7òÔ¼5mŽÏšÈ³¶ÒyŸ´ÜPêùnÖRÙ¨eL®ð»:ª•¿O?¬?Ò·aÏ}q”«€åL‘‡)8š­€ø]~žÇõt|sÒ\“oG¡M8UblXFsð²þSÖÊúOYÿYÖç I>{y>ªõÃÿ£0ìaÅGP÷Ç“÷Á„ÔYl7g³ËK8…@Íͨ'W“þèS§xÖ<Íš0ïòFžš·¦ÍñYyÖV:ï“6ƒ{JB=ßÍZ*›µŒÉ~WGµò÷é‡õGú6ìÙ /Žr°Ü‚)òñ0G³?£ËÏóâ¸žŽ¯sCškòí(´ §JŒ Ëhž‡)’.÷SlÒà21"}}¦rÍõ 1Þ`<:’~‹ÍólUIL3w :†_\øÆÉñ €Y…™ãwqf1 §³ÉˆÏ ù‚ïäs%¦|6¼]j¶7ÏBaòC÷1¿z×÷Lös¬ZÁTåߣCƒé8ÀKÙºQ«Þ4­ÛL±Ê›µnäm­÷µ ZlËÛ¢kDS÷lŒÞ“ªBPâj¶ÍOªþåK4…bPZ,5Ðò•+4bc×:ÅÆ:DîJJ,è’qÎvÊ8- ¨t[ „‘×L²'#Nƒ¾Õ™ã“ÃàšR$½fÞÄWRÓἂ»­FÐX±M|ÿò•ÌÈÔ uÐŒnúÛËØ‡ct—ð@)qì ´¨º8æÔV£J¦Z-æãÿAŠW©¡ÙÙ·LòÝ.°LÞœþÜQÆ_¼@Ûùã4“IZ)ú”dMßfu ÷¤¸u|xðÔM¤ƒWîøJV¨â ßLNéëc]\ˉìNk‘"…×oÃ, êf  æÊ£ÅB ±lÔ¢!˜ŽÕ¼Bð¨ wé§‘ždãC›öæìÆo2×$èUø¢Š—÷ÚóD´iX» )«š¬’ày‚6!HËxà6O÷Äw¡ŽŒæWG\nÅåV\nïËmušÞ®8ÙnXs'Û;îd :K 'ÛBÍFœlWu²m.r²]ìU›6\æ%ñÝh›eÜhË<ñNùÍ6ÅoVüfÅoVüfÅoVüf—÷›õÅ_6ã/ëo¼_ä&ùÉš†äˆ#¬8Â~yGXš¡.í‹w­àKG¡"G!Õà$ÍS_ÐH)4R•€$BG„ŽÜ-:"I„•+Ù|Vâ—b%ªŽ°’c%Õ2AHâ’ê—·ƒ¯Çñ@\Äõ@\Äõ@\Äõ@\Š‹I\Äõ@\Äõ@\ʸ4Wr=h:+¹4e™g1si­Î\ZÂ\–`.B]„ºuê"ÔeÓ‡P—;O]Z¥¨KÂ#Ô冩Ë:¹Ë×D^„½{ö"ìEØ‹°a/ÅÅ$ìEØ‹°a/Â^ʰ—ÖJì¥å¬Ä^ZÂ^ŠÙK{uöÒö²{ú"ôEè‹Ð¡/›Ö8„¾ÜyúÒ.E_ T¡/7N_ÖË_¾.# FŒ0a0Â`„Áƒ).&a0Â`„ÁƒS†Á´Wb0mg%Ó¾ýЛ ã?îßtüÇfs¯ÓÎÆô%þãm|$þ£Ä”øÿq9¾¿:ß¾$".D\ˆ¸q!â›Ö8„ˆßy"¾_Šˆ(=BÄoˆ¯›‰mT\¸¸pqáâÂÅ…‹ .^\LÂÅ…‹ ..\¼ ß_‰‹ãœn.¾/k‹YLguÓ³4‹#4FhŒÐ¡1›Ö8„ÆÜyÓ)Ec Ô¡1·BcÖÏc¾>"#LF˜Œ0a2Âd„É“).&a2Âd„É“&S†ÉtVb2g%&Ó¹ýµŠòYÿgÁúÏÖéÞM¯ÿl·÷û™õŸp¹¬ÿ¼…¬ÿ”õŸ²þSÖ–õ9h‘ÏÁ^žÏjýðÿ( {XñÔýÇñä}0!uÛÍÙìòN!Ps3êÉÕ¤ÿúÔ)ž5D³&Ì»¼‘§æ­is|ÖDžµ•Îû¤ÍàÞ€’PÏw³–ÊV-cr…ßÕQ­ü}úaý‘¾ {6è‹£\,·`Š|%YÓ·YÃ})n"#LF˜Œ0a2Âd„É“).&a2Âd„É“&S†ÉtVb2g%&Ó¹ýµŠòYÿ§hýçñáÁsÿtïóþ¿Eë?ÛíNËO¯ÿlùû²þó6>²þSÖÊúOYÿ¹Ðç€r8ØËs8PMþ…ak=‚Šÿ8ž¼&¤Ëb£9›]^Â)¤inF7¹šô?@‡:ųü44hÂŒËyjÆš6ÄgãY+é¼OÚî ( |¸k()3µŒ™~WGµ2wèôGúìÇ ŽrÕ­lI¹sp1ѬÄÌèòó¼5®§ãëœÃæš|80»óK‰MÇhð"’N÷SôÒàÒ0˜!}}¦*Íõ "Þ`|6’žùød*¾òu0~ iã¸×QL3y ‡:†_\øÆùÌq €i…™äwqj1 §³ÉˆÏ ý‚ïäs%æ|6½]jº7ÏDaòS÷1¿z×÷LöÕ4Ées/ú_t»•­JÂD¥&,jFNr~áòjÛUÅÃvF z¾·ã“]·¦Š¸Ë¿jÔÖ(üT3KK?’íRך{ºÇ•7®­½È ¯ßvçΦ1#˜õŠz]m 3Õ—xÓ¤2˜ª–Æ•ôþúõÀØ[ˆDefÃ_°Š_M™]·HÇÑÔ=£÷¤Õ…ƒ4º¸CÚ–BÕÓåKtÚb¦] òÑB™•ø±Er2ÿó世ƒJ”/§±üÍJÔ8-ÍÈ\K¨"Ú„¾%Wã“ÃàšS,gÎà_w š(4ñ Á|bÿò•øÎ“äÔÎtiÑ·Ej6¸á]W€· ¡š Ï Ë_LÆCU ?¾¨â啨ú†MÕawÃêŠjèÉ!âA`®‹·2ßÝQÿîÅó íFäˆ+·¸r‹+÷rå®îBÓÛçí kâ¼}W·•ª2Ïs{®6#nÛ Ü¶sµ!·à£õ"=˜¯Jåûfߊ3vAƺa—yÖ¿£ßuAy‰Çõf¹ûŠÇõ¯‚UÊJ<®7¿îÄãz½×¾xZg<­ý÷¨Ý$kÓq¡ê/èBmæ åý§õ-Ë8O›ÇˆgY®g™¿t(.Q_8ÇÎQ•¨5‚:uÜ-Ô!Qk|øØpð‘ãÇ‘ÖK Ô7>ªVtšUØGõ–bѬŠ?ªw7òŒ! B@„€2§˜$æŒÄœ‘˜3L˜,&þòÀÛü²ÀÄ`RL+“†“…ÀDý 2d"ÈDɦ5A&w™4#“GÉ ﳡÉm…ð_›ÜáýNœ8p"àDÀÉœbp"àDÀ‰€' ÁIcypÒp–'Å1úçÇoÞBü÷V§ÙÙËÄoìIü÷ÛøHüw‰ÿ.ñßGÿ½ |¦òø,ðYà³ÀgÏŸ> |ø¼,|n.Ÿ›Îòð¹)«ö JkE€Ò€R  B„"EŠ ”Mk‚Pî6Bi-F(JŽ ”C(ë(_F" E@ •—€)R¤H" E@Š€”eAJkyÒr–)-) ¥½"Hi H) R¥J”"(EPʦ5A)w¥´£”5GPÊ ¢”uÁ”¯§P "@…ÊK€Š*T¨P "@E€Ê²@¥½²þOÖÿÉú?YÿW S7SïåajÕôáÿQö°Ö#¨øãÉû`BŠ6š³Ùå%œBãfƾ«Iÿt¨S<ËOC;¨óÞÈSÓ¡´57kaÍßæ}ÒVTo@IàÃÝ”é«QËXïàwuT+s‡~@¤oÀ~ ªÇ(wDÏ–D‘©¼ fF—Ÿ‡ù¯§ãëœÃæšàŽI1UJl‘DkâSÍóñÀ„ÄÄ«Ôоì[¶÷nX¶mNî(+/^  úqšÉ$­}J²¦o³Z¾ûRÜ‚†òÔM¤ƒWîøJ¨â ßLNéëc]\ËÉ ì27,KaÆ u ³A˜rÛ‰`^Óru3êº'ÇG/ª¹Åâêq3èUÕõž[©>ƒ–XØ®UæŒGߘ±ŒïÎK¾|Zª…θv Uqˆßé}áUaöAZùh6<ƒ.1U!,üø¢Š—Wbë6U‡yÜM ª+ª¡'o„ˆ…ŽÁÓ=q ž3C›±#žÀâ ,žÀwȸº MoW|7¬9ˆïï]öýUe‘ïo¡6#¾¿Ëûþ6ùþÎsöM›Âónþ"Þ½2Þ½ežuGÜyâÎ+î¼âÎ+î¼âÎ+î¼Ë»óúâÆ›qãõ7Þ]s“ÜwMCrÄ?Wüs¿°.ÍA—óÏÅ[–õϥLjgY®g™¿R”Æ©/œcç¨JÐA‚:îê '>|l8øðƒõFÀÇ €êü@' ÙGõË7)…?ªÐDˆWˆ! …õ)DšH@“Û'"ÐäË·&e‰¿<0Á6¿,0ñ˜“ÆŠÀ¤!Àd!0‘8ñ‚L™2d²iCÉÝF&9K_Óši‚#ÈäFÉ‚èð% ÉŒ _›H$x'N¨¼œ8p"àDÀ‰€'Nœ, N˃“†³<8i,Ž??þ{óâ¿·:ÍÎ^&þ{×øï·ñ‘øïÿ]â¿$þ{yèÜ\:7:—€Î‚; vì,ØyÓ‡`ç»›‹±sŠ#Øù†°ó:Àó×€ž> |øLå%ðYà³ÀgÏŸ> |ø,ðyYøÜ\>7åásSVí”ÖŠ¥%¥@„"EŠ A(›Ö8¡Üm„ÒZŒP ”A(7†PÖQ¾Œ" E@Š€*/)R¤H" E@Š€)Ë‚”Öò ¥å,RZR @J{EÒR¤J”"(EPŠ ”Mk‚Rî6Ji/F)jŽ ”D)ë‚)_ N "@E€ •—*T¨P "@E€Š•eJ{y Òv–*íÅaïÌg~üÇý[ˆÿØltlüǖļĔøÿQâ?.AÝ÷W¤îûBÝKSwáîÂÝ…» wî¾iC¸ûÝæîû‹¹{¢#ÜýF¹ûúÈû×ÃÞ…¾ }úNå%ô]è»Ðw¡ïBß…¾ }ú.ô}Yú¾¿<}ÇYÛ²ô}_–3€•Ί`¥#`e °"hEЊ A+‚V6­qZ¹Ûh¥³­¨:‚Vn­¬®|MxE‹,T^X°`À"€E‹,X–,åKÇY°t–YÞ8oý_ótïÖÿµÛ–Ÿ]ÿ·'ëÿnã#ëÿdýŸ¬ÿ“õ¥0u“0õ^¦VMþ…ak=‚Šÿ8ž¼&¤(a£9›]^Â)„1nf컚ô?@‡:ųü4´“:ï<5J[s³Ö¬ñmÞ'mEõ”>ÜM™¾šµŒõ~WGµ2wèôGúìÇ zŒrGôlI9p1‘Ê bftùy˜ÿz:¾Î9 i® þç˜S¥ÄI´&γf'ôý”!ÒàÒ0ëôõ™ª4×+«tá ù'Á|¾]7™Š¯P¹Áài›«×QL£™o¦cøÅ…oœÏ² :«™AvQo„ÓÙdÄgprÌwò¹ þ-5—˜7ÿ5yŠ¡í˜_½ë{&ûJwÙ–ˆø¾Û­lUö¥«é]Èù…Ë«lWÛ%èùÞŽOFÚ*â.ÿªQ[£ ðSÍ ýH¶K]kþí Ó_TÞr³ö"/¼~Û;UÃŒ`Ö+êuµõÇT_âM“Ö­`ªZWJÐû;è×3™'i”™j}ÁB*~5eÓÛ"cDS÷lŒÞ“VBÐèâi›¡TO{”s,Ñi‹‘hÈGóWVâÇæ®uÊüÏ“ãZ*Q¾@žÆò7+Qã´4–Z s-¡ŠÄ þù–\OƒkN±hœy8O€C~Ý-h Ðă¿÷ø/_‰ïÖŵœœÀ.sòfÌP—0„)G°æ5-W7£®{r|ô¢š[,®7ƒ^U]﹕ê3h‰õ‡íZeÎxôËøî¼ä˧¥ZøçŒk·P‡øÞ^f¤•fÃ3èò“ñP‚Á/ªxy%¶¾aSu˜ÇÝÄ𠺢zòFˆxXèÜ<ÝÇà9³1´;â ,žÀâ |‡<«»ÐôvÅ÷wÚƒøþÞeß_PUùþj3âû»¼ïos‘ïïÿ]â¿Kü÷‘Ä/›+Bç¦@çÐY°³`gÁ΂;oZãì|·±sNÄåô¼¾@Åì|CØyàùk@ÏŸ> |¦òø,ðYà³ÀgÏŸ> |ø¼,|n.Ÿ›Îòð¹)«ö JkE€Ò€R  B„"EŠ ”Mk‚Pî6Bi-F(JŽ ”C(ë(_F" E@ •—€)R¤H" E@Š€”eAJkyÒr–)-) ¥½"Hi H) R¥J”"(EPʦ5A)w¥´£”5GPÊ ¢”uÁ”¯§P "@…ÊK€Š*T¨P "@E€Ê²@¥½S•æze•.¼Á ÿ$˜Ï·ë&Sñ*7WbBaÿ¥æóæ¿&O1´ó«w}Ïd_éà.Ûßw»•­JÂþ¡tb5Ý£ 9¿pyµ‚íªâa;£=ßÛñÉhXSEÜå_5jk”~ª™¤ŸÉv©kÍ¿=a:â‹Ê[nÖ^ä…×o»s§j˜ÌzE½®¶þ˜êK¼iÒºLUKãJ zÿöþµ«md{GyŠ {ü º X¶ÝIÓÿáÐ$á4˜Ý+çM†°‹ ÕÆö–lÒôXþÔEw•dY¾¨d­±šØ–J5gͺÍ9ëyþÃÖ×3/™þåoµJTRºh®Oï­Xc LgBîæð/±ª£ÊVtA‡ »¡ÜžöNñ]¤Ó¦‡DS†|îþJŽø»k™cþbã¸7ºCùŒñ4“#jP––š1æ†U1cÿ7Bãjðã“ù·,1mžù%kgõ%o™°M0iHçwCþËp‡oÕH.ìÌ«÷—ûCß[±Lâ÷4â™u¶@|zâK)¶Úf+AÇbû"¹¸ÆèÔÔá0×,y=~6ÞñˆI}{—û—ïýä„òmË"ø÷\//¿ÁsèeF‹ •hˆ"w½ÇB–O~f%¾e†ò;‰”ÃïÜ3ÜÁÀU‡øû³_Sññ7O]ó¼Ë¬x,e;fÖ–l7ȶæ¿"A–iÏŒNH÷æüËŽR-Ä›7ÍþŽ{lï|b–¸ÿËáîvÆ|ô¿ü¹L>­*>Y®…/2¯­¡)Îøg!/•í>Ī|8}ºg]þÁ=¹J˜1ùÉ›¶ë*-oÚt;Ìo'‘éÁíŠîÔ£š!‚I`fbpû[‰Á»1î3®!™ÀÈ~E™À;Ìôû«™9 ÷÷5çþ²¥Ê¬ÜßÔÕ rçÏýmÏÊýÍJö»ÂU—’ÝÛΓݛç]¯$·t^¤ó"é¼HçE:ïüé¼Òxi¼†öéš:¥ïú†TC~.òsKÎÏ{Ðùòsù#óæçŠ× ³L™Yf@i3ç˜çØè Bu¼®P@Oø@àCóÀ‡1;𑲼Aàcl “™±òÀMr…?vh‚" D@ImOD@h@“õGDhR¾= `’7`bÌ0á6?oÀÄ@À$%`Ò,0i"`23`œx„L2AÈ!ÝŒ!“×2iΙ¤,p2YIÈd:|Ž I‰˜ð9Ã&@‚Gà¡/N8AàN8AàNæ œ4çœ4kóNš³‘à³ñß[kÀo·ŽIü÷ðß×qÿøïÀÿ=йU0èÜBÐ9GÐag„vFØagÝŒaç×vnÍ;§,qv^QØyç*„ž|FðÁg¡/Ÿ|FðÁgŸ|FðÁgŸç >·æ>·jóŸ[8µ—@i  ´@É@A!„PBAE7ã@åu‡P¤•ñÕiÊ"!”•…P–D©FRHúB RHA RHA eÞ@J{þ@J»6 ¥@JJ å°` 唜„RJA(¡„Rt3„R^w(åpv(%e™ƒPÊ C)Ë ¦T%œ‚€ *¨}! ‚€ *¨  ‚€ *¨  2o@åpþ€Êamþ€ÊálXÄWseã?­ÿ±Õµ£ä-@ôŸ¨Nÿ¼ºù£ssuwùû+Ú­f|>I+ÞëQÿ‹„rRWtHÏŽÜÇ…Q”Ó/½šÈ’!µ?ºfCêÔÌæVÓ!U}`Þ¢Œ”ˆúÑýˆG–ëJ²„èM2ÌV5wtJQFJp j¡U_B—ªoR§ªW¨[Í,S”‘+C·Z°[-§cmXתRçš;~§(#%|‡ÎµpçZV÷Ú¸V¥.6wXQQFJT]l ]lyl»Y•:ÚÜOE)Ot´¥t´evµìlUênsde¤ÄcÑÝ–ÔÝ–Ûá6´ËU©ÓeÇŒÝÛòS2$ÞÊȰ¦.©ƒK½*Ò%«Rh¬/„¢ŒrCc›Ù«dh¬E…¢ŒrCc›Ú¡«lh¬c†¢ŒrCc›Û­«th¬‰‡¢ŒrCc›Ü¹«|h¬·ˆ¢ŒrCc›ÝÅÛˆÐXÚE冯6½£!4¶1¡±¬,Š2Ê m~wChl£Bc³ˆcÜÛòÇ$Þʳ¦.©†¬L½*Ò%«Rh¬{¢ŒrCc›Ù«dh¬‘Ž¢ŒrCc›Ú¡«lh¬¯¢ŒrCc›Û­«th¬Õ¢ŒrCc›Ü¹«|h¬’¢ŒrCc›ÝÅÛˆÐXr&E冯6½£!4¶1¡±ÜQŠ2Ê m~wChl£Bc³è­ÜÛòÓ[%ÞÊnµ¦.©ÖM½*Ò%«Rh¬Ç–¢ŒrCc›Ù«dh¬Ý—¢ŒrCc›Ú¡«lh¬û˜¢ŒrCc›Û­«th¬!š¢ŒrCc›Ü¹«|h¬O›¢ŒrCc›ÝÅÛˆÐX 9E冯6½£!4¶1¡± wŠ2Ê m~wChl£Bc³HøÎ/»gŸæ¡à Þà=ZVh̯ºÞ]Ò­fÑÐXÊã• ¥ÊPùÐXÐЇÆü2J mt? ‡ÆŠu%íBcÅ{SBcAg(óË()4¶áª¾„.¥Ýºp‘NUÕ`Ð%ЇÆü2J m|·ZNÇÚ°®U¥Îµ@hÌ/£¤ÐØ+è\Ëê^×ÁªÔÅùe”{]lyl»Y•:Ú¡1¿Œ’Bc¯¤£-³«mdg«Rw[ 4æ—QRhìÕt·åv¸ írUêt¹BcE¸Æ¼GKéŽqŠÐØæ‡ÆâóË(74¶™ý¡±J†ÆâóË(74¶© ¡±Ê†ÆâóË(74¶¹Ý ¡±J‡ÆâóË(74¶É ¡±Ê‡ÆâóË(74¶Ù] ¡±-Ä5æ—QnhlÓ;Bc[ˆkÌ/£ÜÐØæw7„Æ6*46‹k̽­ט÷hÉ¡1Ý1NÛüÐØB\c~冯6³!4VÉÐØB\c~冯6µC!4VÙÐØB\c~冯6·[!4VéÐØB\c~冯6¹s!4VùÐØB\c~冯6»‹!4¶¡±…¸Æü2Ê mzGChlcBc qùe”Ûüî†ÐØF…Æfq¹·áó-94¦;Æ)Bc›[ˆkÌ/£ÜÐØfö#„Æ*[ˆkÌ/£ÜÐØ¦v(„Æ*[ˆkÌ/£ÜÐØæv+„Æ*[ˆkÌ/£ÜÐØ&w.„Æ*[ˆkÌ/£ÜÐØfw1„Æ6"4¶ט_F¹¡±MïhmLhl!®1¿ŒrCc›ßÝÛ¨ÐØ,®±›³ÎE¢1ñ\YA1Yi½{"¯cÑp˜êÙJÅÂÔT>æ}ñ(˜, ¤؆öšpð«@ÇÑ.òU°ïT ìåZñ˜—, ¤€×ÆvŸú¢H»E^á.TuÛŠG¸d%…·6¸-¡mRGªLWZ ž% ()˜µÑ]i)i³ºSe:ÔÑ+Y@I¡« ïPKêR›Ö©*Ó­ˆUÉJ Tm|·ZZÇÚ¼®U™Îµ@dJPRXêt®%v¯Mì`•éb³ãPEX½ÄseÆ¡tÇEj3ãP qxÉJŒCm`¯AªJq¨…»d%Æ¡6²û Uµ8ÔBü\²€ãPÚ‰‡ªbj!6.Y@‰q¨íJˆCU5µ÷–, Ä8Ôw(Ä¡ª‡ZˆiKPbj£»âPUC-Ä«% (1µá q¨MˆCÍbÑâ÷¡ÐÏ•‡Ò´q¨ÍŒC-D˜% (1µ½q¨*Å¡¢Ç’”‡ÚÈîƒ8TÕâP ‘aÉJŒCmh'BªŠq¨…¨¯d%Æ¡6¶+!UÕ8ÔBDW²€ãPÜ¡‡ªrj!Z+Y@‰q¨îVˆCU=µ‰•, Ä8Ô†w.Ä¡6!5‹²ŠßS„¯J]Þ‘ ê8ì·OtHm6À]OïÙÌþ°ztȦ%Ó!cþóHûäþE<÷‘WäÖ­ùÈG0“ ï µØïüÝÏÔvØ7¤¹oxosKd#™MØüÈëo»Ê.«ô ˜|bsŸÜWª ”¢ØÇј‰õÈ d‚þ°rOù„ú0ÔY ì^òçy÷óÕ]—t.¿’?;7lï~}Ïî<²‘ŠÐg*K³.+˜Ie›ÃÉ «8+àËÙ ¹.»ççݯ¼öÏ»—g··äãÕ éëÎM÷üôî¢sC®ïn®¯nÏö ¹¥ÔS1W¦JɾŠX‘O#¦É>˜ÖÀ‘¢eÍë° úäÑ|¦¬™{ÔzfÕ3IÙÐ\m8 ¿ yÅšÁSè{ÂÖ8ÃѤN~سÉ(Ùº¬” }ë̸{ûurø éR¦,J®lÀ®“Û)¾ÕjÔɇ‘3áw~éÒh†±g´Ç„ÜÝvjµ·{K½¸šXSajL!½ÑðÁú>µEmɃ5àË~CŸ’m1Ë;ö·—_—Õ‹Ç[Çœþm ,ޞ̞Íf혀ìwùÃjd OËb±]ª:ÌRW¤iºòýufÒ±Ìt‚ÆžÅÙò>›š7CV1·1CwG†>FXoš ^¼/8Øöþ 4¶eüwpåcáð»ÃG|o鯻›‡§¬ß½Õldû ÚЧC× Ù6ö›ûíÚÌå`V‘ßžÌÿ°Öp‹4-Ì…5,llNz^a¢Z»uÅc|‰)J訰†Âºj*®¡haBM\¨JòóoëiúÄ{óèë—lÚý«¦Þì YŸÌ¿ù-ßXƒñMﱫ¾ªNìÑ` ×(ÎØ¦cÂÿczlnd$G©^ËF7ü‰Â{ãq5”û»»/ä»H§Îc¾Ùb fŽÑÓ˜Ù-ÇùINšrAæˆE ½Å—ÃVklo–¡F¿}c;R×-Áÿìl›Û»Yº»Vÿ1â=¸?±§t?óY÷§ä³Fæclz¿/ôØ~#óA®ªý[ñ>þ`%ìân~û>1±øRÎß;1×ÍÅÕ§óÓÎ…‘¥ïž ûøO)mî¯Íe6e63Ëlå(³•(³•Yf;G™íD™mu™ç—ݳOÜG—Q¦wOP¦ÿTV™™úôîI”™¢O÷×L}z÷$ÊLѧûk¦>½{e¦èóæl†qŠ‚Òäý©EeêPÜ-*E{ü§LÕ‰¢E¥(ÿ”©1qC´¨]¹~ðLuy÷úOe³Í.³™(3E{þÙ«Ùe¶e¦¨ÑZÍ.³(3MŸÇ=«Tÿ®P¹¡PCfÉÙzõïR”œ¦[ï÷líúw)JNÓ°÷{¶Žý»%ûz®ÌTêϤÔä^6o#¶3œ>ݳ¿lßÞ·¾[‡;¬d”aØ“+ÊŸÝŸä7óû€ÿf_d®>ä+¼˜«»ÏgßÏn¾ýq~ùû ´máÛ.\¾Ü®vY¶µÔ|"ÖÁH¬LÙºôÞX“—ì]od÷¿ùk2(<½ºù]êföÓ¬ ¾OO_œ]~ê~^¾Ì®¥¯B™·cÚ³ÌAà ¹T Ò²ñE¿<ûóâüò,û):r¢{¦³«˜ÆŠ6ž$èŸnwt²LÄë³ÜýpxÈv…;ÍŸ~úß{FEý_ÌqXR>JÈ¿¿\6ò8ì÷@:ƒüên«‹|ß$¿¨¾oy÷D¿o“_™„ìíE¿?$¿þ¿âþÿ7ú½ÑüßÜÃo²Ý»´]V31Ü[C¾å~‡ìð¬áTnVÙ-•ÑÿßD/þÇ]wYçÎ L5äèð°åÙœq´—½·šOÞsÍã¬;ÍÉÄ»3òƽhA{Ì&ÞÊZÍlÀ³9ðJl5þwæ¶ßz÷¶¿dV”µ½w«Ñh¶«ÓäÁcÚß§Ot8 vÞ\223|SìI'â–êÜ|ªÈ0ÛŒÍ{: ¹X›Gqë`ôÃtïã~Uó¾Çß­ÿü5xŽÆÿ×v&Óç¿ü³YÌtì—‹é|8ýýìã§ÏçÿŸ?.¾\^]ÿon»wÿçÏýÿ…‹9lÆ‹ áÅ„êvp¼!\BÂgìÝôM”<¾ý-üf£NÚŠ7£n7Œf«}xtü¿YEg}a91ÇøkòãÑê=Š ¾8”Ë;Ùb)l’¾9áÑTžÝ!ƒ×<îúÒÑQ¢‘Y1ßübBÚývpàªéùç½ýЍìfÊç4> ˆXVجÚÊP»ßó`±N3®wÛ™š ?îy<E†µ¸¿W%žsÇ%OÎây[¤OÍåE»­™ÙÖ«&~âòÏA¦“2ÆÂv‘“ÞÄ6‡Ä}*Ppx‚Üõž²G#ñoL/^+¾ck•öNç/küMÜþ–æ¹ï»î?ΗF¼ñHý„²Þ3ŒžØ"ˆ•7x™]¶mþq¿\^5¾¢âåòY_4Yãü:»¨ÿK¿9/à ›ÜÒŠc›Ô¯žS|?³-‘²÷ü6» ô™Ø;ÄÖÚ¢¶i÷E½äÖбúÔñìz÷#‡²%Ï7ìUUýÑtx Ä=õZ}O<Òg£DzÿE?q)¹âißMt÷õÜJD¨u<ÞtѪ2fø–wÞ·nžÿÅÍaNø=Q‹§QŸfËú6[L¨ŠuI+™Kë •èåÞŽVÔ]ñ™¼¬¡z4ÈÎôÖXdÀÅöC=ßÏí ÙžŸÂUKpk%t“1RÛæÙEÔqÌï4<ŠÂCZ=bµ›#GDµ"©„F‚í–X{áÜp»DD%û¤Ã3ÏFCn â./…¬7d-ÌE)|CÝ÷ˆ-lÅâîÁöDˆã-ØxVá=‡}ôfË41^ñYmb=en¥ZÆlWóͱþ¡b™a4*¢–Û ŸQ ¯} “Z.¾ØUÈêÎ2;*TÄAñq`²mfo4챡ě³eWᢼãÃL0e2“`v/ÆZw#Ô`‰•ý”w¬Zb:V˜ˆÇSÔÆ gÿÁ8´"IYÝGêPob‘iió°5ìñt4‘za÷Ý™š ºrõ"¿rûÊ6-¦Yâ‹øfò(VRrΣëÉšl»4ô½ç,Ù<‡OŠßéD¬eú#ÑVµÄRKѲ©m±’.ÌEdõåÙ?B;nî‰;þˆüežkO‡bÜyKþÍ/¸™qi½ƒÏæ`*³hŸMÛ2ïÙZçß+6íï–›#vå«Ò¬ñ߯šKT›«üîò¼ûåü2Ù4$þ¬ÿýI¢È™o6ÿNysçß3ß̦PÕ›e‘³ç~³|y¸¹¹ºïÏzyðxäåÑR³Þ?¹÷Aü÷_Ýu¯ïº3+z>\X±Õ•nù$ìÑ÷Ó‡9>HØ(Á×/ì®&©»Ù–­OeH“>ÿ.{.‘›¸ç”°0ù­ÉŽ<ïÝ(¢íüTÿi—l_º^t‹¨Óâ»íw.Ëß½Œô·ágºl2aØ€öAÔœ=ò6ô —8"Rx—i=ì°ßON¶?l“ý‘½Oä§ûí]’xFd¦KQÜù€iqgb[O;ò¦]Wu'‘Gw•Ê•¥BDÑä³äS‹Ç ç6ûfϨeÊ·š5Bb…HiÝS÷áúx“1ñ‚=ÃÝñ}*?§)vÛìÁPE=ë¿Y»ŠÙÊCÜyÔ¨“™ ­s«?áÿ©sû>áÿÙ'k|dÔEq\(îN'¬Åñ±œ§Iðʱò\1NÜ¿‘;E¨À{sòWÄÝ´Îñ‘UkÀÊŒv®¯ÈSöx‡+z)æÖ7~c,¼Èœÿ›ì:nFçÿ&û¹ùÎÿãü?Îÿ§ÿßp€¬£øñLúPS¢•øt…šâI 5Å~r¡¦üTo4˜> ºCÇõ‡§I*Ú”ÿYn¶ÝmIèûþë½ÃÁ y®‘‹åß.¿MÃê øÖ™¨^)¼¬É¯Ÿ,§|½ ˜¬<‡®½+†™”H š‰“¥Ê a?‘Ü@V>ø÷H«ÙV³åHEr-`¶.SKpmu±j0C_¬f¡ÅĈÀ`EÒKø7ƒú@tR‹æ$”ªäo¶ë¶ù£.ϽDxŠ‘¹Yá¼6ðcëu+\å¾õĆ|V¹w»%cÔc[3sqÍ1VÁÏèŠ&fíÄ%R …åœ4":7\§Å Þ-÷>5?)’鮊A‚NéÍø6y»Š‰6º!_Å~f:u¥J&T…ò]x›ÙÙÿw˜ wwëI½²WIª•hE"!Íy­£6â~ÃME„Zy>>7÷ƒg%‚Õîïš<,»M¶¼Ã8ü¹‡±Mn“îC»»áçƒ~º“•·ëoý ¶ªL{½ñË¡˜ED wÅMìqñéà¤z4ü°;›8ÎTnbõíè4¶]ÿöíãùÅÙ·oìü´Ñ·oá}²|þÉùî=}únÉ }¶¸y¿#Æ~ó˜lﺯý>b«C|p} ¡ˆÞçþãÇGX€˜8E“ù¯³Îw:Ù‘ýÕ5a<ãW1Ô {…ëƒ-jgÔ³Ø*¶¿# +&üÿñÿ z_Si¨<3ZrVÁònQ"ûgXê@,kø§–M]©ÜGŽ6A“ª´”æôS!‹k’r©o¿Ý®ˆ¡îÆ*¾KöÙ6mŸì³å÷>oÃÝT½¯„ïŠ?Z½ªs H¿Å~ýí¶wK®qúÿJžœ$;¬Ê»¨“o:™îñ­%K’?÷å¼»m×å0“y#_nKï$ÿçîŒÛY Ü»¹=¨À]/°QIؘ?Ú¸j—CMð–`%¿#&ßú6Ÿ/·¥õMFžÇÞÙöçÇíݺ80p"]ÃÂ$Oªa—Y2s'îvݨŽ8²•CÓÇÂÍÎV*Ûuo¥SaEˆÚ øcꈭтy#2‡ô”¥Ññ"²,¯BŠ•ó„'F¶Àî}Ì"7_â\÷óÙ¥\(åHœã·ùòXÀÈ h(­Rt÷ƒê$¸3äÝçÚW»¾ÅS'òÙä*Lîžä¯»ÁZH~¥ WÔÿ&á›VÆ™C.Ö…–~Þü^b>jLlàˆE—TƒN=>P‰“ ád„?Uu9š¸‡€¼TW/“><ÐÞÄz¦lÄ”â së (r'•ž’JIÒ7å´L¤uHÔ¥âºS¢UóFiý?õ`Láãb†à™²—(>Éô+I3õ…<9i»5ëüÒÐÚaü3ý›-$ß(ÜRqÛaš’V½#”&ç Ù›šZË›43IŒEn÷üæïF=aÄÞÚ}2šŽÇlÒ_îº"¼#Ë£èžüDÞs‹È§vN¶o»7ç—Ÿ¶Sµãïzv\õnó©o[΀áx”»ZcŠÖÞ^m:™ÚÃ{%¶{žßÉÁ´ÈåýM!wAŸþŠ€]oäÒ?%W"õíXliò¯]bÕÜŸåkºÿŸ©3¸wîz¿g5Ápûà@ÞÎÚÕ¨»ìÖ½¥Hfãäh¢ÒJÙ\‘F{m3ñ÷')¿RäTbj÷ eäÆGaÛÇ{ð¾‰têD¯N´žÌ’ó¯¢ö í/UK¤Œa iEvßÅÔIHX:r¼gOîí·¡7 ¨` ¬B~&R2ÓÓ—}f“—"®RZe*0‰ÆùdòÛRF:w„óÞ ÿ_iË쌃 dÖi[¦pf̳3 χ•¡\ö‡Õ-¡6VHݺRu˜Zg1ÔñÊîJ÷ˆGíÊ].îbÝ"ï°y'ÄóÉÔB™,®7Fc}Îõ¨Ê…µ¼ÑÛ㸻›XÛ¸A3½¶{vx&àä¸ï…ûZ80Ð,Ô§_ÄÁ—š’fÝ*òùÓœˆ #îTðZ+ªö®~³öÝvåÆŠX¸_#ÜÙ+b`w>Žˆ"¸åÄÍHÜ^|£ZÅ5ö/f(ðá]â‹ß;Ÿ-b!»´jÆ¢QÍh°-Q¿uKÔ+y¢3Ò ~œðY;þÛ®wzëĽ7TÂÉI#r/ú ò'w6Œþè¹|tì’¿›á uœ§7ú­ÁבA¼M:Ý¢ŠÎ§&í‰{g¬9‹Æú~k¸ âé­¯çîbBeܯqoÿ ‚~¾?µé;áÎã áÐ=:Çðqò%Lf"Ô¸ß7õòfEÀ1ˆ5æ 3.%Ĉðb4¼X™è`mñð ¢n•‰ºe‡±Ü(V€Œ¹ÂE¡øT-²ž'lT‹Å¼hÉùÇðÎ.gÔj Å‹j± ^ƒü wH_Ýö†ýK´2 qW•ÉIz:W­–;èµÐvfåªn³¿:áHÉ㎠|q±žsÃätº¥¸_JÔZàƒQAvÄ…,îk›[ò%¾<¹s»Øæí+–2.ä ]›\›¤¿&îÙ4ÏȺ,x.IÔxý†yÕ.’l‰Âc!ÜŠÞfÔÛ“Æ àÏŠ½fôQ/fݨÿ´«|qÊsâm ­QÖíkG Ýy· Z€Ð„ ´¡B÷†„¶| B Ú€ÐêBë! TZ`´£mñ`´^êaPÀh«.Àh+#Àhu `´£M`´©ò-ŒÖß…± .’õé{¼¿“Hðmí’ÿþ7ýç¶+LPë±m=³}›½p<È}±¤…Að¼]Äû_ACËïÈ áñ;êO¦ó—»%Þ r€ ì\`ç;w]êvnùmìÜ• •ÀÎv.°sËÔ°s½þ]ì\~îŦ½©íXÏ4=QÔœþÞ ù§Z£YóKL#t³yîz­è!Ô\‰‚á2¨ù´æ •U róŸQUœL•Ï{»Õ9%Rä¹ø!Ì”l½b)z™yyÉ̶ ­Iãiy‘|™ ‘͕ٜ­èÍÿIèXÛìÓ¿yã|Ÿ<Ö‡ôï ‡«óuƒ‰ü¡NðLÍ^Ë‘z&Š´†Ùy§ü¸Í‰8ËJn›Þóüáå«ÒIUî`—Èe“Zv?ä̼*#'*4== ƆԕËáUÊ2KY¤ÙOq7yþfgÿaëÚH㓈,£YH`õn ç_ü­J±©÷Ï@tâõá2x›05úWÊši@šY: ¢œ§ÂŠ•N0×A鯡8ŠyiÖc¯ uÄ`…JfÙh–y¹J™ÏZó¨²ÛHÕ_«gº+ ™gÄQ{2 Ž;ÊÂ0úd{ cžÔ9ÚŽ»~ª{óú­—RÚ/Gû½yÂÅjÒ]\‰Ï᥿”ÓlÝÅ…n{ˆu¢» ­ü,Cˆ»¦f:iÈBP‰ËäÛ­oÿº‘ϽûD!bP|˜üöö ‡¤‹Ô+ФÆ#ÇâŽ~0Ûzà_Ù”C£ ˆ)¶ëS±(gÏñ­(}ò|AœAážò/íѳN÷®{³÷—36{ê`YèÆŒž²)½EÑô‰ÆO·rw#ì±b¶žiíåÚ{±a(ój,±žð|ÚÛÃQbqáZHÜQaÏ`ÃoKdÏ# é„¦c½Kþ ©¡ ÈàØdtâ]øÍ»õ{ôtm¦ù hOäÚ‰<¾K~%áÔù5㹟wîÑ»È{¤ '$H\‘t¡{ÜJœ3ˆ3iº|a/wEþ•{_‹uι°L…fYÞb3ç+°Uìü‡‚¾Ãñ üÓ±< q>ýÄK•’Gdý–QýNäâL{£Ü ëèŽËÄàˆ†Vòf ;€ÈD†‰«H$(QÉÔ˜è s”³<`Õ¬)°UÁhFC0‚ÑÐm_0–OóFC0‚ÑŒ†`4£! ÁhFC0–Äh ·h¶e‘ùQKf6 ‹Öö^C¼û2×v\Ýkca.€¾8®îþ;~\¯¨X(ìxOŠÞ½Â *FP1‚ŠTŒž1æ qFÏ›•CÅh€ŠQ“iÅ⛵M!dDÜœŒàd'#8KÖ8óÈýŠ8uRU”›Qkg8c³bµÝV “Ô×·2ÉŠ8yæ%“4Š“Iò‘§™¤2ÉL2ÉfQ2É&È$A&Y$è$A' :IÐI‚Nt’ÚJ:IÐIÎH^$è$A'¹dE®~l$è$A' :IÐIVR*ÐIVI0ÐI‚NR@'¹Š.:IÐI‚Nt’ “ÔI= “,¿­@'¹’¡t’ “d™º¤×¿+B'ÙäÉ—yÎg¤ÁƉ+œ‚¸´3¾u «¯µœF®ã<2pŒc càǘ¤ï=€c\’ø$ÓÍ$Í8ÆÀ1ÖÈ^cì_À1Vw?àÇ8ÆÀ1ޱ6Ø0ƒ†Ñ8ÆÀ1¦é˜28Æâ=åcÝèrã<‘Neü²,ã&pŒ5 “V0ÊYÛ,cDf 4c ͸d­ÍhÆ@3ÖÜe4c ÍhÆpõ„ oN4ãfq4cnúEÐŒE:ý®%\·­ßÏÄzòÀ±{žÊ)»µÿðKc¡w4ØuÔn‹¿ÇG‡‘¿fãè¸ÕÚ2Œ£†Ñ:<LǪq(ðî£åuoóÌcöÏ›RâŒ&?L›¾_î¶ißâ3ëýtÂ:ù„°qè`ÄS—ŸFlèxá_±áŒÚ2»šÚO‡ç>]Þ‘ ê8ì·OtHms@®§÷«Ç¾°ztèPb:dÌ¿siŸÜ¿ˆç>òŠÜº!ùh)Î{½'Ôb¿ów?S[€˜7÷ ïmn‰u–n;lVaõ·]ÇÙ.«ô ÷$±š¸Oî+UH*` y±£±›`Êýa±Aùž @Þé ÎJ`÷’?Ï»Ÿ¯îº¤sù•üÙ¹¹é\v¿¾g÷NÙÐHè3•% g/+˜Ie›ÃÉ «8+àËÙ ë½—Ý·ó‹óîW^ûçÝ˳Û[òñê†tÈuç¦{~zwѹ!×w7×W·gû„ÜR꩘+S¥d_Å<©üiÄ4Ù§Ó8Rô¯¬yVÁAŸ<šÏ”5sZϬz&[€_æjÃÁˆ-“¹¼ÂQå)ô=Ÿ‡ÙìV—“OÌO´.+%hß:G§ß¯“Ã_H—2eQr=0{¬Eo§üùV«Q'F΄ßù¥CH£iÆžÑjrwÛ`~:`~«(`~ €ù̯2ùá*2ù€Ìeø2ùeKÈ|@æÏÈ“d> ó™¿dEñdld> ó™È|@æWR*@æWI0@æ2_™¿Š.È|@æ2ù€Ì×I=€Ì/¿­™¿’¡ù€Ìd~™ºd¾×¿+™ßÊ ™Ÿ‘PÈ|@æ'®hâá$›Ÿr­ øÐÎp>€óœ¯Zé8¿|4aç8ÀùÎp>€óœà|ç8ÀùÎ×~ ÀùΧéðeÀùâ=åê酧àü<ñNe³,àü€ó5 –V4ÖYÛ$ð|ÄŸø|Àç>¿d­>ðù€Ï×Üqø|Àç>ðùpø„ oNøüVqøüV­|¾H­¶q*¶q»(¶qØÆÀ6®ÝèÆ@7º±ëeˆ®X€n tãhV;ÐKÅ’º1г’€n tc /Y»ß[n tc ÝèÆ•” èÆU èÆ@7Ö@  ¯¢ËÝèÆ@7º1ÐuRÐËo+ ¯d¨º1Ðn\¦®€nìõ·ó¢g¤ÝèÆ‰+ž†¸Ô3¿@8N¹Öv:ç“q Œc`ãXµÞÆqùÀÀ8Æ10Žq Œc`ãÇÀ8Æ10Žq¬F 0ŽqLÓ1f0ŽÅ{ÊÇ¾Ñ ôÇy¢žÊXfYÇm`k2­pij¶Y8Lj$éHÇ@:ÒqÉZÒ1Žt¬¹û HÇ@:Ò1Žáö ÞœHÇíâHÇíZ1¤ã6Ž3‘Ž‹"éHÇu`ëXÇÀ:Ö1°Žu¬¹À:ÖñŒ¤`ëXÇKVDàð÷ÇV`ëXÇÀ:Öq%¥Öq•Ö1°Ž5XÇ«èòÀ:Ö1°Žu ¬cÔ¬ãòÛ XÇ+*u ¬c`—©+`{ý»"XLJy±Ž3’ u ¬ãÄ•LD\òÙ_à§\k<¥ŒsÊ@<â1x¬Zõñ¸|H ñˆÇ@<â1x Äc ñˆÇ@<Ö+ˆÇ@<¦éX3ˆÇâ=åcàè~Äã<±OeD³,ÄãC k8­xܳ¶i¨Çˆ'÷¸ÇÀ=îqÉZî1p{¬¹ ¸ÇÀ=î1páü Þœ¸Ç‡ÅqkÅpEÊýVžë¶õû™X.8vïÀ+ñçPYGû¿4r••v5ØuÔn‹¿ÇG‡‘¿ £ÕlmÆûçááq£¹Õh6Ž[[d±·æ¼¦ÎÄ´ Ùún™ÃáèŸÒî›õ{C^þߊ\Éz<\M'ìéŽFò‡5!;|îâ €§£ñ‹m}d_î’f£ÑÞcÿ9"Ÿ¬Ñ3ÓˆE>LǪqLì.Û3“uoóT[öÏ›RâŒ&?L›¾.Nîó´ißâÇýtÂlxBX7;ñ\ݧë/ü+Ö[©-Ó‰©ýäpŒmþáÓå¹ ŽÃ~ûD‡Ô6äzz?°zìá «G‡%¦CÆü;ç‘öÉý‹xî#¯È­[ò‘âÈÓ{B-ö;÷3µšwsßðÞæ–X'le²ÃMVÛõ í²J¿pG «‰ûä¾R¤¹û8»•LÐsî©À¤ê¬v/ùó¼ûùê®K:—_ÉŸ››Îe÷ë{vïä‘õ|BŸ©,Ix7YÁL*ÛN^XÅY_ÎnXï½ìv>œ_œw¿òÚ<ï^žÝÞ’W7¤C®;7ÝóÓ»‹Î ¹¾»¹¾º=Û'ä–ROÅ\™*%û*æYÔO#¦É>˜ÖÀ‘¢eÍë° úäÑ|¦¬™{ÔzfÕ3Ùúbü2WFlÈå~O¡ïù4Ãïºy&z¢uY)AûÖ9Lû~þBº”)‹’ëÙc-z;åÏ·Z:ù0r&üÎ/BMÃ0öŒV㘻ÛãÓ‘ãŠ"Ç9Èñu`Ç' v<°ãìx`Ç;^7 €ìøéaÀŽv<°ã—¬ˆ hê­ÀŽv<°ãìøJJìø* ìx`Çk °ãWÑåìx`Ç;Øñ:©Øñå·°ãW2T;ØñÀŽ/SWÀŽ÷úwE°ãòbÇg¤;Øñ‰K•Џtàǧ\kÅ{âä y È«Öþ@/Vò@‚<ä y ÈAò@‚<äõCÝ‚<äi:j‚¼xOùhbzÁˆA>OT×, Aþòš„O7 úYÛ<yD#yàÈG¾d­G8òÀ‘×Ü•yàÈG8òp… oNù£â8òÜUPG^¤ß9ù¸( ò1P‚\dà 8ÈÀApƒ¬µÀAòŒ$à 8ÈKVDàô÷ÇVà 8ÈÀAr%¥r•2p58È«èòÀA2pƒ dÔäòÛ 8È+*ƒ dà —©+à {ý»"8ÈÇyq3 ƒ äÄ¥NF\ÁY``!§\k>µŒsË@C2І¬Ú ¹|ˆH ! hÈ@C2І 4d ! hÈ@CÖ;hÈ@C¦éØ3hÈâ=åcâè†4ä½úr}qöoã[cÿá—Æ‚ïh°ë¨Ý#Ív³Ù8Ú2Œ£†Ñ:<SY’ðÆ²‚™T¶9œ¼°Š³¾œÝ°Ñê²Ûùp~qÞýÊkÿñ¼{yv{K>^ݹîÜtÏOï.:7äúîæúêölŸ[J=seª”쫘g}?˜&ûtbZGŠþ•5¯Ã*8è“Gó™²fîQë™UÏdk ñË\m8±•*—WøŠ<…¾çS!›`êrÜæ™ó‰Öe¥í[ç0óûurø éR¦,J®fµèí”?ßj5êäÃÈ™ð;¿ti4 ÃØ3ZcBîn;@¾#ß»3‚X¥7æÃ½÷' ÞÏ:ñÔ>Wàdu˜÷²:qÇü,¬{€ÛÜàöK·Oë€IEúhö©H=@êRz€ÔW¤^Îs QoTGœ hzU®…S`m{s¡‡¶í­ Ù÷"ú¤ÈÉ^€2}S3C@-ßüÅ­¨˜ÿƒ_¸÷kV£ÈsxÁ¢5‡M0‘œ'=xmHñ³£Ñ£xîÑ:ODùõ›äÉ:#8Y—zªN%lR§3Ö iÅv½kƺ5PvBß!Ä8BbHCRîvlü,Pq4K×2ëÌ+ŒAä3ø«Ð=€ît {ÝC%¥ÝC•Ýè4t«èò ùÒ/‹³?øÈ×þg¶‘ì‹øè@§°:p€JaMT q8u±dâòÓþØé;a$óŒ·ýÞ3ê-Ú$©-RþT£Ä–¦°9 é«¢$p!€ ¡´éuÉ\iKHP#h»¹ª85‚ŸRšMŒ#ó´kKK]?)‚¬fñ4ªk6Iš²gBä1™˜#9› ©,âØ Àf6ƒHEÁfàf)ƒÍl+Ÿ$’¤Àf6­ílþ6u÷›Ø Àf°z6Ï‘ ._Ê%XÕj8£’ f ÏÍÐÇMC·2ˆ Ä8 ÁÒüÖÒ ï?5LEˆ5¯ ß,€ÿ_}ü7½€ß€ÿŸ'اâ­ý?;ìû¿ÜH¡¶¾š&Xþ e…j¢±”ŒðŠæq8 ÿùßEþOYŒ&÷7¹SõÁ Á Ïé§^†—mùðþ$Ý×óO§;§#žiî ÍòHç€ÈRö’<Ò³ÜÑ%7I²aH¢yH¤‘"éðí^tÐ6’£X*r{ŠÁRQ†”X*Š:)5`§¨Š³¤‰Iº-—Ìå0‡ßܺZô\.>p;åvœ}s2;ÎÃë9G¼ï¼o£Þ·¼ï׉÷½ón߀üä7 ¿ùp¶ò[§ƒ° “äwöªÈo@~kb•YK\GŸ¶:búÐ߀þNÄùý èo@ú[\O@W]*@WF(@ë$ ¿ý.: ¿SåKsÀd@û;áLäoßÏÁvç<€Ü§ìéþNâðFk—ü÷¿é?·]ÑƶõÌ^ômlö‚h©ûZdC–Ö]ÿŒñ`ÈÙŽ–?Ìï©?™Î_¾L>˜ÀÉNpr€“¯C='8¹~J89ÀÉK›^Ë'WÅ+±¾6y_Wlr~ Ѧ½©íXÏ4=óÙœþld|¨è¡%æÇºé±ühF­(2@® ØpÔ|ZkjìJð‚äÖÙÀ ¸ùœ·ÅœSaEž‹nOI?-–sš™hšLÕ ò3k‘\OžgI ‰—n:s8©1µ5[Ñÿ“P¹<ß§×™*¾OëCú÷„ã„Êi²n&ò‡Z895;3ªYqïÀI£¬¿‹"Ù_u†}³Oñ [{S™0Û “²ÔVf©-e©­™¥¶3Km+KmG Fº¤;N'²T¥Ù¸ræT–‘íšY‹žÃdóÁÊaª}[ÐÞ„UÑ¡;î¡:YeöÙO*-(GV/”ŸgR|dÜ:vþÃŒæ?l1?½ç)pÂ)džÝv™¥°ãòk˜¶ä-£RïŸÈëÃ¥ØvE' daÔFÇt!­3CîüÖ±ôáñÆðŠÌubN9–ž¢™Äé{¡Ùf›er®væ2à<å)L9Vù×nÙòCê4²šþ˜õVp;† ó/*â±E([j©ã¼ã{Jþ#?Çìùz„ÁÄØÿ‡#¿kÈ z’§÷LÖàqœ°}‚˜7ÄtÏ*1äEï)oóÞ£@¿w[/î+.³·D4ÑsxkÕ܉vxP,ù†•¦j\ÉU¢Û½¦:qcÍ>ßLè^Ä‘gUŠŒÏ õšr\Ê5–¼n}‡?Hh€-þ–JËÞĪ(¡°Y‹óØXÕÂXµøXÕZÉXÕZh¬j½²¾3ÿXÕRŒU­ÂcÕkÓwÆXÕÊ5VµfoùccUcÕâcU{%cU{¡±ªýÊúÎücU[1Vµ U¯MßcU;×XÕÞ où DÝ”ø‡%Žtò‘ l÷ÖÀš¼ÌÐk×ÊS™ôÎÕÒ’Žfù2B†Í#ËÉ”›Ü^ŒY%%ü…bÏÕ±ö´^™ïË…B«U§ÕÞÆ2ØDôÈ Eˆ1JEå÷Š˜«yrãM¹'ç2©Ù$hnÈŒŸ³å§ï… â'“o·¾ýëvD>÷î…ˆAAòaòs˜)P¤¹ÇOÅBr­—ÃЗ¸´©ŠV„ßäÜBšä'œr‘ä´¡û\½œóšúÉ'h» W´4¶ÂLÅ0^Ò 6gùX×ÆÏ¬„2 Ÿ†Ž*™ ±áTÉ$l’1*€4‰“L8^‘“ÌΙSApR6éòÙ råu&*•šá¹(%T–€3u—Z¶0GOÊÜÅ$òYÝb¼œ¾¹«"x—eÒWiÍ;æÍëQÇ1í¶î™bx`ßѾŒâHI¶Už:ù˜¨â…²Gùt-JãëÆ>uz¶uÏ]â+¥@ìÆ ¾œ›/qG„&ë› Nú.M6™õ*>eÓvÍ)Úý|v)—9 Eùm¾<…Ù»´ jè‚äV¹©­bØ‘퓇:¯k0çÜJQcb3¾#®¸ ’{;>P‰C(a0)¦„·är4ᬚlêó@€-G$ЇÚ›XÏ”­†ØPÒ+Ì­s æA‘g­´ðY’~`«œ–‰´‰î²”Ncoô‘Öÿ³QÆ>.fž){‰â“R^tO-øÉ䷥ĎPÜœÕ'‰Wèží¬åD`€3c–Q€|>œ‚›I­ Uh¶]‘éLYÜŠIjÅ0¼X¢{õK¦XÔ[QR¬—YqM°o^ “p©“°o|ò§nÜ»?„>ï:2C°ÁÚ·½¾W:ÙU±Cú#^„2 šÛˆ»ë‚¸õΆ-¡ ÒÈÀf´‘IÓUGud8KZµcH#Í(J¢~9ê–¨—:¢åwÙªZêÅd:üÖxÕ<–™Ê0øKØéþƒ™Ë¨GûS›¾Nf1*ýàãÀËh*ŽC˜>¤¿x.Jî.çc;w£§‡:ã´™!ìÌç\JŒñÍ¥‚Í×*“µÅã“û‰*d˜¢ Œ æÑÃìpœËCe8WØ+g«EVùó„¿j±ø—õ9ÿ¸£ÞÙåï¬Á¤]<îUˈÑðä_0,•›¿ZA’.Z9ð.ÇW¥É]Xn”é½Z-who¡ÜÊ+œƒ!¯ü wQnïú2|ƒKž_i²˜W=Ý¥ñ§sn–=ƒU–²—äGŸåD/¹I’ CÍC"q£‡o÷bšÞ°‘’¤U3Ý)Ê+SgIL­ !‹û·ç–| ‚/OîÜníyÇèKr ®Õ5Ì2³<¬Us±.UeKõ´ÚÒ_b¯××ZAg+Q9QãÀ¿_ªjº.â-Íð•æò”&ý¤q‡ä¦y$×ÕÝærLF{šß0¯Ú5™í›Lø …3ßGq=CñÇù“Âã~Ð[w7ê?í*_ª|J\o÷–z½­½%çÃÞ`Ê­L"Ð ¬ïS[žúåÐ3ltä7°½¡4kyÇþãöòë›$ŸÌž=røÛjj„CŒÞMòë‰÷×οo:—$šB1ÞL?áâ­¼:^2„¸çü ˆG÷Ëo“Ű:,`|­NÞÅO±(±äsAƠ™['f´™~ÜÙŽÜÙB¤úcÝÆŸ­ÈÔGàÕ`6¾X9Ïg:”~ÜðQñšêPÅR¢ž{ŠqcÑÁ/}Ÿ§<\å¾õD‡|Üy§Äáþæí×CUœš‘c IäöXŸ’ÇO éüÄ£åþ ùK 9œÃ·xD^&{¤Ñè !UÏtj/L*’Ó«$NüðúÄ|¿aør¯1]WÛ!±%é Ù&¡t…á>Ä¡çƒþºS©–vnÚ"¡˜BkÙê›ÌDWÄT€ðÌ`„Çuž19C‘ìˆõÃÎëÎè¢0É€­"„7mO±íƒ€ãJÑûJ¸}ÚùJìU]Àüx-öëoÿ³½[r3v‘·cÊzÚ ˜²Ãªìm±­!Ÿì Ê~ŸµÉäÝm».‡™i2¢…ņtÆíÂ-ìÛCÁs\*Ƨ°Öå~OñŒ¤?8w, í„#3ÊxIÑZS¾ü ùY‘ľe;Zþ°Hz2¿|™:^ÅöKÁä"÷ÎjQW–PØÙæ;\3ÿaäÏïo#[Û ýlÑ=N’Ô€¿[Uò]$u“$GØHµ¨ø ¼-ûO1Ѝ'îÑPÈvÓzC»_™ŸVÅoFD±a½r,b±¨‘âò¤Wt÷ÝDBžƒ`ϨD¨¶h“¤¶Hù“¡z[šÂ<äø GÿR@= gDÅ”=P/Ù.3Ï„ºeˆ%c»~¹ÂFX¹q¡ræ0¸j)$fv ßxVà)¾Ì=ì{ ,êXc%Ö÷¥ê@±‘Ñx÷ϵ7}œ¯·Ç"*ü»ÚBÐB ys™UYŪXžS<Ž!#OHð@‚w¯pníÂ` u Á«¯•ÂBÔu†ÐÑxðÀƒ|¤¢Àƒw}¿ÀƒüÊÄ'‰¤.àÁ^k{¼^Ýý€Ø”gô0ùaÚô½ˆkð@‡MûG_½ŸNذ0!lÔ:ñìû§j^øWlð£¶< @í'‡Ó:ðŸ.ïÈuöÛ':¤¶9 ×ÓûÕc_X=:t(12æß9´Oî_ÄsyEnÝŠ|l'ßj±ßù»Ÿ©-$šû†÷6·Ä:a‹½6±úÛ®ëx—Uú…»AYMÜ'÷•*$À³¼ØÇÑØÍ‘f‚þ°Ø~O4útPg%°{ÉŸçÝÏWw]Ò¹üJþìÜÜt.»_ß³{'l0%ô™Ê’DPƒ̤²Íáä…Uœðåìæô3{¢óáüâ¼û•×þãy÷òìö–|¼º!rݹ鞟Þ]tnÈõÝÍõÕíÙ>!·”z*æÊT)ÙW1?ñ4bšìÓ‰i )úWÖ¼«à OÍgÊš¹G­gV=“-߯/sµá`ÄÖ\^áeõúžÏÚl.¬Ëi†Ÿ-I´.+%hß:gÙ¯“Ã_H—2eQr=0{¬Eo§üùV«Q'F΄ßù¥CŒ cÏh5Ž ¹»í€¬$¬¤UŒ¬¤²’×KVºЕ„ª ºЕ€®t%Zbc(Lt%Ø«:èJ@W¢‰UfI ºomºЕ€®t%)ëiЕDTºЕ¤všÙô +©ŽT +©ŒP +ÑI(Е€®$]tЕ¤Ê—æ€] èJÜ +]IÃO +]‰N“!èJ@W¢é¸PH9 +] èJ´§+iå£+ÉÈ”] èJÜ+š]», P–¤\+F-Ò·HkÀ!–€´¤%‘Š‚´Äõƒ´¤%+Ÿ$R»@ZÒ­í¤%þÒu÷i HK@ZÒ–,)¤% -)A¤% -ÑP/T@–ä W*Âå–´@Z¢E¬³"¡ÊÚ&—hu ¨K@]’Ü‘ºÔ% .Én -š$Ù0$Ñ<$ÒH .u ¨K@]ê…‡Ô% .Ù4ï$¨K*⦜º¤U”º¤U+B]"Îr#>#¾] #¾ Œø×Œ”x Ä‡ª ”x Ä%(ñZIV˜$Pâ+ °Wu Ä%^«Ì’(ñÞÚ(ñ@‰JI$x+XñZÛ+°âý Xñêî¬x`Å+XñÀŠ_RB6°â_:d°â¯“^0LÀŠÏ´T#ËÁŠo+^‹ˆg…–µÍÀ‹×&Äx Æ1>¹/b<ãŸÝZ4I²aH¢yH¤‘€Äx Æ1ˆñ ?)ã¿i>J ÆWÄY9b|»(b|»V1¾ Äø ÄøÃbˆñ‡@Œ݈ñÀŒf|¨ÊÀŒf<0ã¯åe…I3¾{Uf<0ã5±Ê,‰ï­ Ìx`Æ3>e= ÌøˆŠ€ÌøÔN3˜ñÕ‘ ˜ñ• ˜ñ: Ìx`Ƨ‹ÌøTùÒ0ÀŒf¼û˜ñÀŒÏcáI˜ñÀŒ×i2f<0ã5 )˜ñÀŒf¼ö˜ñ‡ù0ã3²eÌx÷JfØ. „¸ñ)×à"´ŒÐéÈñ@Žr|¤¢@Žw½Á@ŽrüÊÄ'‰4/ Ç9^k{r¼9^Ýý€äx Ç9ÈñKJËr<ãK‡.r<ã5@eÒ Ž ÈñyB—Šd9Èñ‡@Ž×"îY±°emSÐãµ ?øñÀOî΀üxàÇg7†M’l’hi$àÇ?øñÀ~¼Â[ üxàÇoš§øñqY·X?þ°V?^œñØZæuÛúýL¬™»wà½÷gÿGû¿4|Gƒ]Gí¶ø{|tùÛ0ZÇÇã-Ã8bÿ<<]Þ‘ ê8ì·OtHms@®§÷«Ç¾°ztèPb:dÌ¿siŸÜ¿ˆç>òŠÜº!ùp!â½'Ôb¿ów?S[°'4÷ ïmn‰uÂÖ/;lXeõ·]oè.«ô ÷챚¸Oî+UH*ðVy±£±›Ìýa±Qéž Dðé ÎJ`÷’?Ï»Ÿ¯îº¤sù•üÙ¹¹é\v¿¾g÷NÙø@è3•% Ï=+˜IÅöò“VqVÀ—³›ÓÏì‰Î‡ó‹óîW^ûçÝ˳Û[òñê†tÈuç¦{~zwѹ!×w7×W·gû„ÜR꩘+S¥d_Å<ùÿiÄ4Ù§Ó8Rô¯¬yVÁAŸ<šÏ”5sZϬz&[‘Œ_æjÃÁˆ­¹¼Âqè)ô=ŸˆØð^—#'?@‘h]VJоuN‹±_'‡¿.eÊ¢äz`öX‹ÞNùó­V£N>Œœ ¿óK‡FÓ0Œ=£Õ8&äŽ4¦Ž£bLG`êxíLàêWG¨ÊàêW¸:ÀÕ¡%0„Â$ÁÕQ½ªƒ«\šXe–ÄàêðÖ†àêW¸:ÀÕ‘²žWGDEàêWGj§™½®ŽêH®ŽÊ®„W¸:ÒEWGª|ipu€«Ãý®puä1Œð$ ®puè4‚«\šŽ …”®pu€«C{®Ž£|\ù²àêW‡{©rl—{¾Ž”k-=Ú@ôh­Æ0v€±#RQ0v¸>a0v€±ceâ“D²;ÀØ¡µ½‚±Ã¿ÀØ¡î~`ìc;ÀØÆŽ%%gƒ±Œ¥ƒÅ±Œàà逯Ž<LE`²ÆŽ#0vhý¬`ð²¶9¬ÚÁÛÞðv$÷hàíox;²C‹&I6 I4‰4x;ÀÛÞðv€·Cá3ox;6Í_ ÞŽŠ8.çãí8*ÊÛÁ]\óóvˆó@“OA“?.†& 4y ÉOxò¡*OxòÀ“ž¼–‡—& <ù ìUxòÀ“×Ä*³$ž¼·6ž<ðä'<ù”õ4ðä#*ž<ðäS;Íl|hàÉWG*àÉWF(àÉë$ðä'Ÿ.:ðäSåKsÀOxòîGàÉO>a„'aàÉO^§ÉxòÀ“×t\(¤àÉOxòÚãÉçÓÏȘž<ðäÝKe»DP`ʧ\k‚Ð@Bkä ÊU¨ò‘ŠUÞõ U¨ò+Ÿ$R¾€*Ty­í¨òþTyu÷ª¹S¶<°å-ŸÝZ4I²aH¢yH¤‘€-ly`Ë[Øò Ï)°å-¿i^K`ËWÄ}9¶üqQlùãZlyqöc«èuÛúýL¬»wà½ãg·ôæ·ÆþÃ/¥˫Á®£v[ü=>:Œüm4ÛÍfãhË0ŽFëðð¸ÑÜj4‡Ç­-²è{s]lcÚ„l}·ÌápôÏ?i÷Íú½!/ÿoE.Î 0žN®¦ö‡tG£ùÚ>›ñ|ÕÓÑøÅ¶¾?²¯NwI³Ñhï±ÿ‘OÖè™iÄ"¦ŽcÕ8A÷ÑrÈÀº·yf8ûçƒM)qF“¦Mß §=÷âÛ´oqàÑûé„Yõ„°Nw0â©åO#ÖS^øW¬ïR[f¿SûÉáÜüçË;rA‡ýö‰©mÈõô~`õØÃVJL‡ŒùwÎ#í“ûñÜG^‘[·"ä#Äa¼÷„Zìwþîgj …æ¾á½Í-±NØZe‡ ¡¬þ¶ëùÜe•~á^ÔY ì^òçy÷óÕ]—t.¿’?;77Ëî×÷ìÞÉ# }¦²$á±g3©Ø¾}òÂ*Î ørvsú™=Ñùp~qÞýÊkÿñ¼{yv{K>^ݹîÜtÏOï.:7äúîæúêölŸ[J=seª”쫘'ý?˜&ûtbZGŠþ•5¯Ã*8è“Gó™²fîQë™UÏd«ñË\m8±u!—W8 =…¾ç“Êër”ä'­ËJ Ú·Îé1öëäðÒ¥LY”\ÌkÑÛ)¾ÕjÔɇ‘3áw~éÒh†±g´Ç„ÜÝvÀØ‘dìhŠ5q£c›LÀØQ0¼Ö ?‘ãÒŒ± èE(:@Ñ‘¶‚¢C'<…I‚¢£{UE(:4±Ê,‰%þ²Qq@ÍjPs$ò;@ÍjPs€šCÜmPsT]*PsTF(Psè$¨9@Í‘.:¨9RåKs¼dPsHñn-¶c1c܆·-÷?³d_Ä—@|â _€øbêñˆ/ôSˆ/@|QÚôZñ…\4VÑÃ拾žÌÍo<Ì™™§`¾X[ZjE˜/ĉ·…êZ!€M#™È,@f2 Y€Ìbm-i2‹„¤™‚ÌdÙ+È,ü dêî2 Y€ÌdÕ!³06‚ÄÂÐ5MC¸´2È+Ä8 aÊüÖ?„ ~ Öô‚X?Dž`Ÿ"ˆW?„;샢ÜH¡¶¾ZÕ ò´ (–‡Ëlò”Éý (@ùʇìÆÐ¢I’ CÍC"ÊP>€òaa'¥žTZ:+AñX‘¤Û, ÕñíE¡"N¾yX¸³¯‹p~÷ð¾Sð¾bxßð¾_'Þ÷λ]@~ò߀üäwÂÙÈoÂ*Lߨ«: ¿ù­‰UfI,q}ú×êˆèo@ú;çô7 ¿ý èomp=ý]u©ý]¡ý­“P€þôwºè€þN•/Í“ýíï„3‘¿}?ÛórŸ>°§û;‰Ã­]òßÿ¦ÿÜvE dÛÖ3{Ñ·±Ù ¢¥îkE9 YZ7vý3ă!g;Zþ0¿§þd:ù2ù`f'89ÀÉN¾õœàäú) àä'/mz-œ\k¬ÄúØä}]±Éù1D›ö¦¶c=ÓôÌgsúw°‘ñ¡¢‡B–˜ë¦Çò£µ¢È¹2`ÃePói­©±+Á’[g(àäsÞsN „9y.~¸=%ý´XÎif¢i2U3ÈϬEr=yži$q,(D$^ºéÌá¤ÆÔÖlEoüOBåòt|Ÿþ]gªø>y¬éߎ*§Éº9˜ÈjáæÔį̀fŽk$²þ.ŠdÕöF-žâ¶vC™0k„IYj+³Ô–²ÔÖÌRÛ™¥¶•¥¶£†?#]Ò§YªÒlÜ9s*ËÈv ͬEÏa²ù`e‡0Õ¾-‡hoªèÐ÷P¬2ûì'„”Ç#«Ê‹Ï3)>2n;ÿaF󶘟Þó8á”ãÇ@Ãn»ÌRØqù5L[ò–Ñ©÷Ï@äõáRl»"‡P²0j#ŠcºÖ™¡w~ëXúðxcø‹FEfŽ:1§KOÑLâô½ÐÎl³Í29W;spžò¦«ük·lù!u Y>ý(y+¸Ã…ù•ñØ"”-5‡ÔqÞñ=%ÿ‘ŸÇãö|=¿àbìÿÑ_Œ5d=ÉÓ{&kð‰8NØ>AÌbºg•òƒ¢÷”·yïQ ß»­÷—Ù["šŽè9¼µ2v"†ž”K¾aÅP+£Jt»gì¾.³Ï7z±@äY•"ã3h=CŽK¹Æ’×­ïð Ðc£ÅßR‰bÙ›X%6kq«Z««Z+«Z U­WÖwæ«ZбªUx¬zmúΫZ¹ÆªÖì-l¬jc¬Z|¬j¯d¬j/4Vµ_Yß™¬j+ƪvá±êµé;c¬jç«Ú»á 2”Hƒ£›ÿ°Ä‘N>"²íÞX“—zàZy*“Þ¹ZZÒÑ,_FȰyd9™r“Û‹1«¤„ÿ¢Pì¹:Öž6Ð+ó}b¹Phµê´ÚÛX›ˆ¹¡1F©¨ü¾Sóq5/Â@n¼)÷ä\¦#5›Í ™ñs¶üô½TòdòíÖ·ÝŽÈçÞ}¢1(H>L~3Š´#÷ø©XHŽGŽÅ׈SP®-m±°ˆþ„­ýÅ"{އ™é“—âÁ™iÙÊ‘}ižý¥#¿îÍÞ_ÎØì©óYc^ïÔ™}3:‡¢éøµiVîÆ9ƒjÌÖ+8€¡Ìo(¡¹g{ÇÜÝö3×¶‡£íøDäZHÜQaÏ`ÃoKdÏ# édP+ú1²W8¡þí ¸{$ˆŽ„-Æ×Šûë2mBãù+]ûgü³Gëå0ô%.mª¢á79÷Ÿ&ù‰§\$9mè>Wo'Á¼¦~ò Â.È-­0S1Œ—´‚ÍY>Öµñ3+჌§¡c†J&Hl8U2 ›dŒÊ ÍCâ$Ž—@ä$³sAæTœT…Mº|6¨\y‰J¥fx.J •%àLÝ¥–-ÌÑ“2w1‰|V·/§¯DîªÞe™ôUZóN…yózÔqLû…í†{¦Øw´/£8D’m•§N>&ªx¡ìQ>]‹Òøº±OžmÝóE—øJ)»1¨/çæKÜ¡Éúæ‚Ï’º™0ñ(©X¼î<–%ÆTY…$®›ç× ·-ÇîžØ£A=‹ ,‚f›¾ËC“Mf½ŠOÙ´]óAŠv?Ÿ]Ê%DHQ~›/Oaö®m‚º ¹Unj«¶@dûäá…ÎÄkÄÌß97‚RԘ،+.(†äÞŽTâJLŠ)á-¹M8«&›ú<`Ë$ ôáö&Ö3e«!6”ôã sëƒyPäY+-<d–¤Ø*§e"­C¢»,¥ÓØ}¤õÿlÔƒ1…‹‚gÊ^¢ø$”ÝS ~2OÈ““¶[sÎ9Ö{é hí°þYl±ß„w7ªqÛaš’V½#”&ç Ù›šZË›43IŒEn÷üæŸèó„?¼‚Óñ˜Mz’c¾æm¤~¼@ùéÌô'Û·Ý›óËOÛé¹Q¶ªfn^=í5Ûã×󴨤Ø#1–=ñÍùCÛÉß|3» –Ķ7«‰Jo(esEíM´Í"t{oˆ?€D•pVHJ÷Û>ýܹéœvÏn¶ã£°÷®=Ãû&Ò©½:Ñz¹Èü2Û¦¬&I£¤Ì’¶8«_A,¢U( 7½_–¼¥ˆ«”6cëòýE‚ê²ùm)±#wgõIAbÀ•ºg;k9˜à̘eg Ÿð§ ÃfR+†BšmWd:S·b’Z1 /–è^ý’)5äV”ëeV\ì›×ÂÂ$\ªÆ$ìŸü©„÷î¡Ï»ŽÌìD°‡öm¯ï•NvUìþˆ¡… ƒæÄ6âîº n½³aKh‚42°YmdÒt•Ä‘DA™Î’VíÒH3 ¤’¨_Žº%ꥎhù]¶ê„–z1Y†‡¿5^5ef„2 þvºÿ`æ2êÑþԦYŒJ?ø8ð2šŠãæ€é/ž‹’»ËùØÎÝèé¡Î8m¦ ÈÈ`gž8çRbœˆo.l&¸Vž¬-ŸDØOT!+Àe…4f‡ãÜh\*ùÂ^¡8[-²ÊŸ'üU‹Å¿¼¨ÏùÇõÎ.g&íâq¯ZFŒ†× ÿ‚a© ØüÕ ’tÑÊw9¾*MîÂr£LìÕj¹C{ íäV®Xá yåg¸‹r{×—á\ºðüJóżêé.õˆ?»p³üè9¬²”½$?ú,'zÉM’l’hi¤ˆ=|»Óô†ä¨$­šáèNQ^™:KbjeYÜ¿=·äK|yrçvkÏ;F¯Xʸkp­®a–™åa­š‹u©*[ª§Õ–þ{½¾Ö :[‰Ê‰þøRUÓuoi†¯4—§4é';$7Í#¹®î6—c2ÚÓü†yÕ®ÉlßdÂW(œù>ú‹ëŠ?ΟŸðƒÞº»QÿiWùRåSâz»·Ôëmí-9öSnefø`}ŸÚòÔ/‡ža£#¿í ¥YË;ö·—_—ø«Ø$ùdöì‘ÃßVS#ì4ÅèÝ$¿žx?|éüû¦sùG¢)ãÍô.ÞÊË¡ã%Cˆ{Î߀x4|»ü6Y «ÃrÆ×êä]ü‹òK>dÜ *œ¹õwbF›éÇíÈ-Dª?ÖmüÙŠL-!p.P fã‹ð|¦C9áÇ ¯©pP,%ê¹§7üÒ÷yÊÃUî[OtÈÁwJîoÞ~=T…À©9–Dnõ)y|ð¤ѹÑÎïA¼1Zî’¿¤Ã9|‹GÔèe²G݈žðRåñL§ö¤"9½JâįOÌ÷†/÷Óuqq±[’žmÚøGWîClz>è/¡;‘jiç¦-òЉ ´–­¹ÉLÔxEl@Ï Fx\ç9“3$ÉŽX?ì¼îŒ. “ Ð*"AxÓöÛ>8®4½¯„ûا¯„À^ÕÌ×b¿þö?Û»%×8cy;¦¬§ ‚‰Á!;¬ÊÞÛòÉž0¡¬á÷Y›LÞݶër˜É‘&#ZXlHgÜ.ܾ=<Ç¥b| û`]î÷Ïȃe;5ñ•ÖV™%±dP÷]—ÕË=L"Ù\gB\¶€0v½9Q®ˆ¿6äÐ\\ aÏ›œô—Þ7UpÍ !-~ó·X1þoü ~áÞ¯Y#c—Áâ5„MÑ/*+lVÒ%¶L!ñ ™œôD”_¿IÆ( F™#D™¥Ó!Ê !­xgð®ÑÉ5PvBßá˜c*TÊ h*O'$˜p²t-Ýõ~ФÂdALË_­Ä(i˛Д¥1¥E–:._euFaQ9o«upbd ì‡8É§æ‚æZZ$ÆûBx[p1D& Ä"Ø»·㔯L§ W¦O9¸¹4_0o¡µaRÉñnÓ¤’KÄM“J¾&”?Ànš`"š_5¡Bޡ鉴û[#îþðñD"KÿØD >ɣפ™\ª‘j*¶ Ç©ÓæûÙ¢+'÷ÐQúYÏ'žö½#C¾4LÜZêCúƒsÇÒÐN8²a1£Œ×‘­5%ñáËO’Ÿ @ì[¶£å‹¤¡'ÓùË—) ãUl¿L.rï¬&uõ`É…ý—m¾Ã5óOAþ\ñþ6²µÁÐÏÝã$ÙH ø»U%ßER7Ir„T‹ŠŸÀÛ²ÿ£(€zâ Ål7­7´û•ùYaUüfDÖ+Ç"‹).OzõGwßM$Tì;öŒú@„j‹6Ij‹”?ª±¥)ÌCŽÿ×pô/Ô³pFTLIÑõ’íb1óL¨[v€X2¶ë—+l„• )gƒ«–Bbf—ðgžâËÜÙù×þÇÀ¢Ž5Vb}ÑYªwñ\{ÓÇ9ñz{,¢Â¿«-”-´7—Y•U¬J€å9ųá2òd$x÷ çÖ. ¶P¼úZ),D]`­€¹*˜ÖÀ‘¢eÍë° úäÑ|¦¬™{ÔzfÕ3Ùòmü2WFlaÍå^VO¡ïù¬ÍæÂºœføÙ’Dë²R‚ö­sfý:9ü…t)S%׳ÇZôvÊŸoµuòaäLø_:„°ÁÈ0öŒV㘻ÛÈJÒÈJZÅÈJZ +y½d% +]I¨Ê +] èJ@W¢%6†Â$AWR½ªƒ®t%šXe–Ä +ñÖ† +] èJ@W’²ž]IDE +]Ij§™M?º’êHº’ʺ„] èJÒE]Iª|iЕ€®ÄýºЕä1Œð$ ºЕè4‚®t%šŽ …”ºЕ€®D{º’V>º’ŒLYЕ€®Ä½¢ÙµKÀeIʵbÔ"mp‹´i HK@Z©(HK\0HK@Z²2ñI"µ ¤% -ÑÚ^AZâ_ -Qw?–€´¤% -iÉ’R±AZÒ’Òô@ZÒ ÀõBiIžp¥" YiI ¤%ZÄ:+ª¬mq‰6!@P—€ºÔ%ɨK@]ê’ìÆÐ¢I’ CÍC"êP—€ºÔ% .QxHA]ê’MóN‚º¤"nÊù¨KZE©KZµ"Ô%â,0âS0âÛÅ0âÛÀˆÍñ@‰J|¨Ê@‰Je= ”øˆŠ€”øÔN3õ(ñÕ‘ (ñ• (ñ: ”x Ä§‹”øTùÒ0@‰J¼û(ñ@‰ÏcáI(ñ@‰×i2JRQ`Å»~``Å+~eâ“D‚°â¯µ½+Þ¿€¯î~ÀŠV<°â¬ø%%d+Xñ¥C+Xñ 1éìø#[˜ñÀŒw¯d†í’@€Ÿr­.BÀ­‘€äx ÇG* äx× äx ǯL|’Hór<ãµ¶W ÇûãÕÝÈñ@Žr<㿤´l Ç9¾tè" Ç9^T&½à˜€Ÿ't©I–ƒäx-âž [Ö6=^›p ðãüøäî øñÀ~|vchÑ$Ɇ!‰æ!‘F~<ðãüxàÇ+¼¥À~ü¦y*_—å|øñ‡EñãkEðãÅ­e^·­ßÏÄšéÀ±{Þ{ößx´ÿðKcÁw4ØuÔn‹¿ÇG‡‘¿ £u|Ü8Þ2Œ#öÏÃÃãFs«ÑlÍ-²è{s]lScÚ„l}·ÌápôÏ?i÷Íú½!/ÿoE.Î0žN®¦ö‡tG£ùÚ>Ãñ¼ÕÓÑøÅ¶¾?²¯NwI³Ñhï±ÿ‘OÖè™iÄ"¦ŽcÕ8A÷ÑrÈÀº·y†8ûçƒM)qF“¦Mß ç=÷æÛ´oqÐÑûé„Yú„°Žx0â)æO#Ö{^øW¬?S[fÁSûÉáœüçË;rA‡ýö‰©mÈõô~`õØÃVJL‡ŒùwÎ#í“ûñÜG^‘[·"ä#.ÄA¼÷„Zìwþîgj ö„æ¾á½Í-±NØúe‡ «¬þ¶ë Ýe•~áž=V÷É}¥ IÞ*/öq4v™ ?,6*ÝS>ÔY ì^òçy÷óÕ]—t.¿’?;77Ëî×÷ìÞÉ#}¦²$á¹g3©Ø^~òÂ*Î ørvsú™=Ñùp~qÞýÊkÿñ¼{yv{K>^ݹîÜtÏOï.:7äúîæúêölŸ[J=seª”쫘'ÿ?˜&ûtbZGŠþ•5¯Ã*8è“Gó™²fîQë™UÏd+’ñË\m8±µ"—W8=…¾çÞërää(­ËJ Ú·Îi1öëäðÒ¥LY”\ÌkÑÛ)¾ÕjÔɇ‘3áw~éÒh†±g´Ç„ÜÝvÀÔ‘ÆÔqTŒ©ãL¯©\àêU\àêW¸:´†P˜$¸:* °Wupu€«C«Ì’\ÞÚ\àêW¸:RÖÓàꈨ\àêHí4³±÷ÁÕQ©ÀÕQ¡ÀÕ¡“PàêWGºèàêH•/Í®pu¸ÁÕ®Ž<†ž„ÁÕ®&Cpu€«CÓq¡rÀÕ®puhÏÕq”«##_\àêp/UŽíÒ`oÀבr­ Gˆ­±uÀØÆ0vD* Æ×' Æ0v¬L|’Höc;´¶W0vø;ÔÝŒ`ìc;Àر¤äl0v€±£t°80v€±C<½ðÀØ‘'€©L–ÃØqÆ-¢Ÿ ^Ö6‡µC›  x;ÀÛÞŽä ¼àíoGvchÑ$Ɇ!‰æ!‘Fox;ÀÛÞðv(|¦àíoǦù+ÁÛQÇå|¼GEy;¸‹k~ÞqÞhò)hòÇÅÐä&4yàÉO>TeàÉOxòÀ“×òð²Â$'_½ªOxòšXe–ÄÀ“÷Ö†À“ž<ðä'Ÿ²žž|DEÀ“ž|j§™ <ùêH<ùÊRQ Ê»ža ÊU~eâ“DÊPå*¯µ½UÞ¿€*¯î~@•ªZX÷6Ï gÿ|°)%Îèaòôé{á´ç^|›ö-Ñ!µÍ¹žÞ¬{øÂêÑ¡C‰é1ÿÎy¤}rÿ"žûÈ+rëV„|äCƒ8Œ÷žP‹ýÎßýLmÁ¢ÐÜ7¼·¹%Ö [«ì°!”Õßv=Ÿ»¬Ò/Ü‹Çjâ>¹¯TA ©À\åÅ>ŽÆn0ô‡ÅF {*PÁ§ƒ:+ÝKþ<ï~¾ºë’ÎåWògçæ¦sÙýúžÝ;ydc¡ÏT–$<ö¬`&Û·O^XÅY_ÎnN?³':Î/λ_yí?žw/ÏnoÉÇ«Ò!×›îùéÝEç†\ßÝ\_ÝžírK©§b®L•’}ó¤ÿ§ÓdŸNLkàHÑ¿²æuX}òh>SÖÌ=j=³ê™lõ1~™« #¶.äò '¡§Ð÷|ÒaCy]Ž’üàD¢uY)AûÖ9=Æ~þBº”)‹’ëÙc-z;åÏ·Z:ù0r&üÎ/BMÃ0öŒV㘻Û;’Œ-±&naì`“ ; †×Zó…×tcìE(:@ÑŠPt$‚­ èÐ Ba’ è¨€À^ÕAÑŠM¬2Kb‰¿lTGPs€šÔ‰üPs€šÔ æÐwÔU— Ô• Ô: jPs¤‹jŽTùÒ/ÔÒc¼[‹íXÌ7‡ámËýÏl#Ùñ%_€øÄ ¾X‡z@|â ý”â _”6½–A|!Uô°ù¢¯'óEë[#óEfæ)˜/Ö––Zæ‹qbÀm¡ºV`“ÇAf2 Y€Ìd ³X[ËDZ‡€Ì"¡i¦ ³™…Fö 2 ÿ™…ºûÌd ³™EuÈ,Œ ±0tDMÓ.­ ò 1H˜2¿µÀaƒB¤5½ ÖÀ‘'اâ•ÁáÇûà‡(7R¨m ¯Vuˆ€ò!»1´h’dÃDóH#ò” |XØI©'Õƒ–ÎJP<$d$é¶‹Bu|{`Q¨ˆ“oîì+Ä¢ÀœŸEÁ=G¼ï¼o£Þ·¼ï׉÷½ón߀üä7 ¿ùp¶ò[§ƒ° “äwöªÈo@~kb•YK\GŸþµ:búÐ߀þNÄùý èo@ú[\O@W]*@WF(@ë$ ¿ý.: ¿SåKsÀd@û;áLäoßÏÁvç<€Ü§ìéþNâðFk—ü÷¿é?·]ÑƶõÌ^ômlö‚h©ûZdC–Ö]ÿŒñ`ÈÙŽ–?Ìï©?™Î_¾L>˜ÀÉNpr€“¯C='8¹~J89ÀÉK›^Ë'WÅ+±¾6y_Wlr~ Ѧ½©íXÏ4=óÙœþld|¨è¡%æÇºé±ühF­(2@® ØpÔ|ZkjìJð‚äÖÙÀ ¸ùœ·ÅœSaEž‹nOI?-–sš™hšLÕ ò3k‘\OžgI ‰—n:s8©1µ5[Ñÿ“P¹<ß§×™*¾OëCú÷„ã„Êi²n&ò‡Z895;3ªYqïÀI£¬¿‹"Ù_u†½Q‹§x†­ÝP&ÌacR–ÚÌ,µ©,µ9³Ôvf©me©í¨áÏH—tÇéD–ª4÷CΜÊ2²C3kÑs˜l>XÙ!Lµoˡڛ°*:tÇ=T'«Ì>ûI¡eàñÈê…òâóLŠŒ[ÇΘÑü‡-æ§÷<N8åø1аÛ.³ö@`\~ Ó–¼e´Cêý3Ðy}¸Û®Èá”,ŒÚˆâ˜.¤uf(ŸÃ:–><Þþ¢Q‘™£NÌ)ÇÒS4“8}/´3Ûl³LÎÕÎ\œ§<…)Ç*ÿÚ-[~HFcC–O?JÞ nÁpaþEåA<¶eKÍ!uœw|OÉäçñ8‚=_ð/8‚ûÿpäc YAOòôžÉ|"Ž€¶Oó†˜îY%†ü è=åmÞ{è÷nëÅ}Åeö–ˆ¦#zo­Œˆa‡§åÀ’oX1TãJƨÝËìóÍ„^àE,yV¥Èø ZÏãR®±äuë;üABôØhñ·T¢Xö&VE …ÍZœÇƪ&ƪÅǪæJƪæBcUó•õùǪ¦b¬j«^›¾3ƪf®±ª9{˫ګ«Ú+«Ú UíWÖwæ«Úбª]x¬zmúΫڹƪönxƒÌ%Ààè¦Ä?,q¤“ˆl`»·Öäe†^#¸VžÊ¤w®––t4Ë—2lYN¦ÜäöbÌ*)á¿({®Žµ§ ôÊ|ŸX.Z­:­ö6–Á&¢Gn(BŒQ**¿ïTÄ|\Í‹0oÊ=9—éHÍ&AsCfüœ-?}/‡<™|»õí_·#ò¹wŸ(D ’“ŸÃL"íÈ=~*’ã‘cñ5"Ç”kK[,,¢?akG±Èžãafúä¥xpfZ¶rd_Ú£géȯ{³÷—36{ê|Ö˜×;ufߌΡhz~mš•»qÎ „³õJ`(óJhîÙÞ1w·ý̵íáh;>¹ÖÃwTØ3ØpàÛÙsÇh:ÔŠ~ŒìN¨?F{î ¢#áD‹ñu„âþºL›ÐxþJ×þÿìãÑz9 }‰K›ªhEøMÎý'¤I~"Á)INºÏÕÛÁI0¯i Ÿ|‚†° rEKc+ÌT ã%­`s–umüÌJø £ði蘡’ N•L‚Á&£2Hó8É„ã%9Éì\9'Ua“.Ÿ *W^g¢R©ž‹RBe 8Sw©e sô¤Ì]L"ŸÕ-ÆËé+‘»*‚wY&}•Ö¼SaÞ¼uÓ~a»áž)†öíË(Ž‘d[å©“‰*^({”O×¢4¾nìS§g[÷|Ñ%¾R Än ê˹ùwDh²¾¹àij¤n&Ly8A¡3ñ±ówΠ5&6ã;âàŠ Š!¹·ã•8„“bJxK.GΪɦ>ØrI}x ½‰õLÙjˆ %ý¸ÂÜ:Ç`yÖJ O™%é¶Êi™Hëè.Ké4öFiý?õ`Láãb†à™²—(>I åE÷Ô‚ŸÌòä¤íÖœsŽõ^zZ{#¬ƒ[ì7áÇÝjÜv˜¦¤Uï¥ÉùBöߦ¦Öò&ÍLc‘Û=¿ù'ú¼Œ¦â8„9àCú‹ç¢äîr>¶s7zz¨3N›i22Ø™'ι”'â›K› ®U„'k‹Ç'öUÈ 0E#@A!Í£‡Ùá87—‡Êp®°W(ÎV‹¬òç Õbñ//êsþqF½³ËßY‚I»xÜ«–£á5È¿`X*6µ‚$]´rà]ޝJ“»°Ü(Ó{µZîÐÞB;¹•+V8C^ùî¢ÜÞõeø—.<¿Òˉ^r“$†$š‡D)âFßîÅ4½a#9*$I«f8ºS”W¦Î’˜ZB÷oÏ-ù_žÜ¹ÝÚóŽÑ+–2.ä\«k˜efyX«æb]ªÊ–êiµ¥¿Ä^¯¯µ‚ÎV¢r¢Æ#¾TÕt]Ä[šá+Íå)MúIãÉMóH®«»Í嘌ö4¿a^µk2Û7™ð g¾þâz†âó'…Ç'ü ·înÔÚU¾Tù”¸Þî-õz[{K·½Á”[™D >Xß§¶<õË¡gØèÈo`{CiÖòŽýÇíå×%þ*6I>™={äð·ÕÔ;-1z7ɯ'Þ_:ÿ¾é\þ‘h Æx3ý„‹·òrèxÉâžó7  ß.¿MÃê°\€ñµ:y?Å¢<Æ’Ïw‚ gný˜Ñfúqg;rg ‘êu¶"SK TƒÙøbä<ŸéPNøqÃGÅkªCK‰zî)ÆE¿ô}žòp•ûÖòApç‡û›·_U!pjFŽ%$‘Ûc}Jöiç+!°WuóãµØ¯¿ýÏönÉ5ÎØEÞŽ)ëiƒ`bpÈ«²·Å¶†|²'L(kø}Ö&“w·íºfr¤ÉˆÒ· ·°oÏq©ŸÂ>X—û=Å3ò`ÙÎDM|¥µUfI,Ô}×euÄr“H6×™—- Œ]oN”k⯠94WCØó&'}Á¥÷M\3CH‹ßüÅ­VŒÿƒ_¸÷kVãÈØe°x aSô‹Ê ›•´D‰-SH¡Ú¢M’Ú"åO†êAli óãÿ5ýKõ,œSRô@½d»XÌ<ê– –Œíúå a寅BÊ™Ãથ˜Ù%|ãY§ø2wvþõ°ï1°¨c•XßGt–ªÅFFãÝ_<×ÞôqN¼Þ‹¨ðïj e@ -äÍeVe«`yNñl8†Œ¹Ï}ä¹u+B>ò±UœH|O¨Å~çï~¦¶ hîÞÛÜë„-övØÄêo»®ã]Véîe5qŸÜWª TÏòbGc7Gš úÃbCø=ÐèÓA•Àî%žw?_ÝuIçò+ù³ssÓ¹ì~}Ïî<²Á”Ðg*KA V0“Ê6‡“VqVÀ—³›ÓÏì‰Î‡ó‹óîW^ûçÝ˳Û[òñê†tÈuç¦{~zwѹ!×w7×W·gû„ÜR꩘+S¥d_Åü\ÄÓˆi²O'¦5p¤è_Yó:¬‚ƒ>y4Ÿ)k浞YõL¶|¿ÌÕ†ƒ[Xsy…—ÕSè{>k³¹°.§~¶$Ѻ¬” }ëœd¿N!]Ê”EÉõÀì±½òç[­F|9~ç—!l02Œ=£Õ8&äî¶²’4²’V1²’ÈJ^/Y èJ@Wª2èJ@WºЕh‰¡0IЕT@`¯ê +]‰&V™%1èJ¼µ!èJ@WºЕ¤¬§AWQèJ@W’ÚifÓ€®¤:R®¤2B®D'¡@Wº’tÑAW’*_št% +q?‚®t%y #< ƒ®t%:M† +]‰¦ãB!倮t% +Ñž®¤•®$#St% +q¯hví°€@Y’r­µHÜ"­‡@ZÒ–D* Ò× Ò–¬L|’Híi HK´¶W–øHKÔݤ% -i HK@Z²¤Tl–€´¤t=–€´Dp@½PAZ’'\©C–CZÒi‰±ÎŠ„*k›@\¢MÔ% .uIrGêP—€º$»1´h’dÃDóH#ºÔ% .u ¨KRP—€ºdÓ¼“ .©ˆ›r>ê’VQêî+›ŸºDœåF| F|»F|ñ¯#(ñ@‰U(ñ@‰J%¾:R%¾2B%^'¡€”øtÑŸ*_š(ñ@‰w?%(ñy #< %(ñ:M†@‰J¼¦ãB!å%(ñ@‰×%¾%>#W(ñ@‰w¯x~íRÀ€Ÿr­&B ­€¬x`ÅG* ¬x× ¬x`ůL|’HðV<°âµ¶W`Åû°âÕÝXñÀŠV<°â¿¤„l`Å+¾tÈ"`Å+^4&½`˜€Ÿ'h©F–ƒßV¼Ï ,k›¯M ˆñ@Œb|r_Äx Æ1>»1´h’dÃDóH#1ˆñ@Œb<ã~R Æ1~Ó|”@Œ¯ˆ³r>ÄøvQÄøv­b|ˆñˆñ‡ÅãÿºãÌøP•Ìx`Æ3^ËÊ “f|öªÌx`Ækb•Y3Þ[3˜ñÀŒf|Êz˜ñ3˜ñ©f640ã«#0ã+#0ãu ˜ñÀŒO˜ñ©ò¥9`€Ìx÷#0ãŸÇ0“00ã¯ÓdÌx`Æk:.R0ãÌxí1ãóaÆgdË3˜ñî•̰]pãS®5ÀEh¡5ÒãäøHEïzƒäø•‰Oi^@Žr¼Öö äxÿr¼ºû9Èñ@Žr<ã—”– äx Ç—]äx Çk€Ê¤ãó„.!Érã¯EܳbaËÚ¦ Çk~<ðãŸÜ?øñÀÏn -š$Ù0$Ñ<$ÒHÀ~<ðãüx…·øñÀß4O%ðã+Ⲝ?þ°(~üa­~¼8ã±µÌë¶õû™X38vïÀ{ïÏþö~i,øŽ»ŽÚmñ÷øè0ò·a´ŽÇ[†qÄþyxxÜhn5š#£µE}o®‹mjL›­ï–9Žþù'í¾Y¿7äåÿ­ÈÅ™ÆÓÉÁÕtÂþîh4 X²Ãg8ž·z:¿ØÖ÷GöÕé.i6í=öŸ#òÉ=3XäÃÔq¬ç è>ZX÷6Ïgÿ|°)%Îèaòôé{á¼çÞ|›ö-:z?0KŸÖF<ÅüiÄzÏ ÿŠõgjË,xj?9œÓ€øtyG.¨ã°ß>Ñ!µÍ¹žÞ¬{øÂêÑ¡C‰é1ÿÎy¤}rÿ"žûÈ+rëV„|äÃ…8ˆ÷žP‹ýÎßýLmÁžÐÜ7¼·¹%Ö [¿ì°a•Õßv½¡»¬Ò/ܳÇjâ>¹¯TA ©À[åÅ>ŽÆn"0ô‡ÅF¥{*Á§ƒ:+ÝKþ<ï~¾ºë’ÎåWògçæ¦sÙýúžÝ;ydã¡ÏT–$<÷¬`&ÛËO^XÅY_ÎnN?³':Î/λ_yí?žw/ÏnoÉÇ«Ò!×›îùéÝEç†\ßÝ\_ÝžírK©§b®L•’}óäÿ§ÓdŸNLkàHÑ¿²æuX}òh>SÖÌ=j=³ê™lE2~™« #¶Väò Ç¡§Ð÷|"bÃ{]ŽœüE¢uY)AûÖ9-Æ~þBº”)‹’ëÙc-z;åÏ·Z:ù0r&üÎ/BMÃ0öŒV㘻Û˜:Ò˜:ŽŠ1u©ãµ3u€«\¡*ƒ«\àêW‡–À “WGöª®puhb•Yƒ«Ã[‚«\àêWGÊz\«\©f6ö>¸:ª#¸:*#¸:t \àêH\©ò¥9`ÀÕ®÷#¸:ÀÕ‘Ç0“0¸:ÀÕ¡Ód®puh:.R¸:ÀÕ®í¹:ŽòqudäË‚«\î¥Ê±]ì ø:R®µôhÑ£5¶;ÀØÆŽHEÁØáú„ÁØÆŽ•‰OÉ^`ìc‡Öö Æÿc‡ºû±Œ`ìc;–”œ Æ0v”Æ0vh€ƒ§;ò0Ér;ŽÀØ¡Eô³‚ÁËÚæ°vhox;ÀÛ‘Ü£·¼àíÈn -š$Ù0$Ñ<$ÒHàíox;ÀÛޅϼàíØ4%x;*⸜·ã¨(owqÍÏÛ!Î{M>Mþ¸šü1Ðä&#cxòÀ“w/u–íA€)Ÿr­ >B ­‘€*Ty ÊG* Ty×3 Ty Ê¯L|’Hùª:pìÞ÷ŽŸÝÒÛßû¿4 —.¯»ŽÚmñ÷øè0ò·Ñl7›£-Ã8j­ÃÃãFs«Ñln‘Eß›ëbÓ&dë»e‡£þI»oÖï yù+rqñtrp5°?¤; ÈÖ„ìðÙŒç«žŽÆ/¶õý‘}uºKšF{ýçˆ|²FÏL#ù0u«Æ¹º–CÖ½Í3ÃÙ?lJ‰3z˜ü0mú^8í¹ߦ}‹ÞO'̪'„uºƒO-±žò¿b}—Ú2ûÚOç6à>]Þ‘ ê8ì·OtHms@®§÷«Ç¾°ztèPb:dÌ¿siŸÜ¿ˆç>òŠÜº!ùÐ ã½'Ôb¿ów?S[°(4÷ ïmn‰uÂÖ*;leõ·]Ïç.«ô ÷ⱚ¸Oî+UH*0Wy±£±›Ìýa±èž Tðé ÎJ`÷’?Ï»Ÿ¯îº¤sù•üÙ¹¹é\v¿¾g÷NÙX@è3•% =+˜IÅöí“VqVÀ—³›ÓÏì‰Î‡ó‹óîW^ûçÝ˳Û[òñê†tÈuç¦{~zwѹ!×w7×W·gû„ÜR꩘+S¥d_Å<éÿiÄ4Ù§Ó8Rô¯¬yVÁAŸ<šÏ”5sZϬz&[}Œ_æjÃÁˆ­ ¹¼ÂIè)ô=ŸtØP^—£$?8‘h]VJоuN±_'‡¿.eÊ¢äz`öX‹ÞNùó­V£N>Œœ ¿óK‡FÓ0Œ=£Õ8&äî¶ÆŽ$cG[¬‰E;ØdÆŽ‚áµö|á5Ý;@ÑŠPt€¢‰`+(:tƒP˜$(:* °WuPt€¢C«Ì’Xâ/ÕÔ æ5G"¿Ô æ5¨9´ÁÝ5GÕ¥5Ge„5‡NBšÔ颃š#U¾4ÇK5‡ôïÖb;3ÆÍaxÛrÿ3ÛHöE| Ä ¾ñˆ/Ö¡_€øB?%øÄ¥M¯e_ÈEc=l`¾èëÉ|ÑþÖÈÃ|‘™y 拵¥¥V„ùbAœp[¨®Øä1BY€Ìd ³™È,ÖÖ2‘Ö! ³H(Aš)È,@f¡‘½‚Ì¿@f¡î~ ³™È,@fQ2 c#H, QÓ4„K+ƒ¼BŒ¦Ìo-ðCØà‡ÐiM/ˆ5ðCä ö)‚xeðCø±Ã>ø!Êjè«U"OÛ€òaq¸ìÀ(@ùÜ߀ò” |Èn -š$Ù0$Ñ<$ÒH |å(vRêIõ ¥³‰Iº-Á¢PßX*â䛇E;û ±(ðçgQpÏï;ïÛ(†÷mïûuâ}ï¼Ûä7 ¿ù Èo@~'œí€üÖé ¬Â$ù]½ªòßšXe–Ä×ѧ­ŽX€þô7 ¿q>@úÐ߀þÖ×ÐßU— Ðß• Ðß: èo@§‹èïTùÒ0ÐßþN8ùÛ÷s°Ý9 ÷é{º¿“8¼ÑÚ%ÿýoúÏmW´@†±m=³}›½ Zê¾V™Ã¥uc×?ãA<r¶£åó{êO¦ó—/“fpr€“œàäëPÀÉN®Ÿ’NpòÒ¦×2ÀÉU±ÆJ¬ïMÞ×›œC´ioj;Ö3MÏ|6§j z(d‰ù±nz,?šQ+Š +6\5ŸÖš»ü€ ¹u6p€.@>çm1ç”@˜C‘çâ‡ÛSÒO‹åœf&š&S5ƒüÌZ$דç™FÇ‚BD⥛ÎNjLmÍVôÆÿ$T.OÇ÷éßu¦Šï“Çúþ=á8¡rš¬›ƒ‰ü¡N`NÍÎŒjVÜ;°†AÒ(ëï¢HöWaoÔâ)žak7” ³Fؘ”¥63Km*KmÎ,µ•YjKYj+jø3Ò%Ýq:‘¥*ÍÆý3§²ŒlÇÐÌZô&›VvSíÛrè€ö&¬ŠÝqÕÉ*³Ï~RAhAx<²z¡¼ø<“â#ãÖ±óf4ÿa‹ùé=ON9~ 4ì¶Ë,…=—_ô%oízÿ ô@^.Ŷ+r8% £6¢8¦ iŠpçç°Ž¥7†¿hTdæ¨sʱôÍ$Nß íÌ6Û,“sµ3—ç)OaʱʿvË–R§ÑØåÓ’·‚ÛA0\˜Qy-BÙRsHçßSòùy<Ž`Ï×#ü Ž Æþ?ùÅXCVГ<½g²Ÿˆ#à„íļ!¦{V‰!?(zOy›÷ú½Ûzq_q™½%¢éˆžÃ[+c'bØái@9°äV Õ¸’1ªD·{Æîë2û|3¡x DžU)2>ƒÖ3且k,yÝúÐ=6Zü-•(–½‰UQBa³ç±±ª‰±jñ±ª¹’±ª¹ÐXÕ|e}gþ±ª©«š…Ǫצª™k¬jÎÞòÇÆªƪÅǪÖJƪÖBcUë•õùǪ–b¬j«^›¾3ƪV®±ªµÞ óA‰08º)ñKéä#"Øî­5y™¡×®•§2é«¥%Íòe„ ›G–“)7¹½³JJø/ Åž«cíi½2ß'– …V«N«½e°‰è‘Šc”ŠÊï;1Wó" 䯛rOÎe:R³IÐÜ?gËOß AÅ!O&ßn}û×íˆ|îÝ' ƒ‚äÃäç0S H;rŸŠ…äxäX|È1åÚÒ KèOØÚÑ_,²çx˜™>y)œ™–­Ù—öèÙ_:òëÞìýåŒÍž:Ÿ5æõNÙ7£s(š^_›fånœ3¡Æl½ÒÊü†š{¶wÌÝm?sm{8ÚŽOD®õ°Äö 6ø¶DöÜ1šNµ¢#{EêÑÞ€»G‚èHøÑb|¡¸¿.Ó&4ž¿ÒµÆ?ûx´^C_âÒ¦*Z~“sÿ i’ŸHpÊE’Ó†îsõvpÌkè'Ÿ !ì‚\ÑÒØ 3ÃxI+Øœåc]?³>È(|:f¨d‚ĆS%“`°Iƨ Ò<$N2áx DN2;dNÁIUؤËgƒÊ•×™¨Tj†ç¢”PYÎÔ]jÙÂ=)s“Ègu‹ñrúJ䮊à]–I_¥5ïT˜7¯GÇ´_Øn¸gŠá}Gû2Š#A$ÙVyêäc¢ŠÊåÓµ(¯ûÔéÙÖ=_t‰¯”±ƒúrn¾Äš¬o.8ñ,©› ’ŠÅëÎcYbL•UHâáºyžapÍpÛrìî‰=Ô³Ê"h¶ùè»<4ÙdÖ«ø”MÛ5¤h÷óÙ¥\Bä€å·ùòfïJÐ&¨¡ [妶Ša D¶ONPèL¼F¬Áüs#(E‰ÍøŽ8¸â‚bHîíø@%¡„Á¤˜Þ’ËÑ„³j²©Ï¶A’@hob=S¶bCI?®0·Î1˜EžµÒÂS@fIú­rZ&Ò:$ºËR:½ÑGZÿÏF=Sø¸˜!x¦ì%ŠOHyÑ=µà'ó„<9i»5çœc½—Þ€ÖÞëàŸÅûMøqw£·¦)iÕ;Bir¾ý·©©µ¼I3“ÄXävÏoþ‰>OñCÀ+8Ù¤'9ækÞF:àÇ ”ŸÎLp²}Û½9¿ü´ž‹e«jææÕÓØ^³}@1~=O‹JŠ=cÙß¼‘?d±í‘ ðÍ7³›`Il{³š¨ô†R6W¤ÑÞDÛ,B·÷†øHtP g…¤t¿íÓÏ›Îi÷ìf;> {ïÚ3¼o":Ñ«­—‹Ì/³mÊj’4JÊ,i‹³úTÁ"X…rÓûeÉ[ЏJiã0¶.ß_$¨.ûß–;BqGpVŸ$\9 {¶³–IÎŒYvFòù?p :l&µb(T¡ÙvE¦3eq+&©Ãðb‰îÕ/™bQCnEI°^fÅ5Á¾y-,LÂ¥jL¾ñÉŸJ¸qïþú¼ëÈ ÁN{hßöú^édWÅéxZÈ0hNl#î® âÖ;¶„&H#›UÐF&MWIIÔ‘Yà,iÕŽ!4£@*‰úå¨[¢^ꈖße«Nh©“exèð[ãUóXfF(Ãà/a§ûf.£íOmúN8™Å¨ôƒ/£©8aøþâ¹(¹»œíÜžêŒÓf‚Œ væ‰s.%ƉøæRÁf‚káÉÚâñI„ýD²LÑPFPHóèav8ÎÆå¡2œ+ìгÕ"«üyÂ_µXüË‹úœ\€QïìòwV€`Ò.÷ªeÄhx ò/–Ê€Í_­ I­x—ã«Òä.,7ÊtÀ^­–;´·ÐNnåŠÎÁW~†»(·w}¾Á¥ ϯ4YÌ«žîRøÓ¹ 7ËžƒÁ*KÙKò£Ïr¢—Ü$Ɇ!‰æ!‘FЏÑ÷{1MoØHŽ IÒªŽîå•©³$¦V†ÅýÛsK¾Á—'wn·ö¼côŠ¥Œ ¹×êf™YÖª¹X—ª²¥zZmé/±×ëk­ ³•¨œ¨qà߈/U5]ñ–føJsyJ“~Ò¸CrÓ<’ëêns9&£=Ío˜WíšÌöM&|…™¸ž¡øãüIáñ ?è­»õŸv•/U>%®·{K½ÞÖÞ’óao0åV&h†Ö÷©-Oýrè6:òØÞPšµ¼cÿq{ùu‰¿ŠM’OfÏ9üm55ÂN[ŒÞMòë‰÷×οo:—$šB1ÞL?áâ­¼:^2„¸çü ˆG÷Ëo“Ű:,`|­NÞÅO±(±äsAƠ™['f´™~ÜÙŽÜÙB¤úcÝÆŸ­ÈÔGàÕ`6¾X9Ïg:”~ÜðQñšêPÅR¢ž{ŠqcÑÁ/}Ÿ§<\å¾õD‡|Üy§Äáþæí×CUœš‘c IäöXŸ’ÇO éüÄ£åþ ùK 9œÃ·xD^&{¤Ñè !UÏtj/L*’Ó«$NüðúÄ|¿aør¯1]WÛ!±%é Ù&¡t…á>Ä¡çƒþºS©–vnÚ"¡˜BkÙê›ÌDWÄT€ðÌ`„Çuž19C‘ìˆõÃÎëÎè¢0É€­"„7mO±íƒ€ãJÑûJ¸}ÚùJìU]Àüx-öëoÿ³½[r3v‘·cÊzÚ ˜²Ãªìm±­!Ÿì Ê~ŸµÉäÝm».‡™i2¢…ņtÆíÂ-ìÛCÁs\*Ƨ°Öå~OñŒ¤?8w, í„#3ÊxIÑZS¾ü ùY‘ľe;Zþ°Hz2¿|™:^ÅöKÁä"÷ÎjQW–PØÙæ;\3ÿaäÏïo#[Û ýlÑ=N’Ô€¿[Uò]$u“$GØHµ¨ø ¼-ûO1Ѝ'îÑPÈvÓzC»_™ŸVÅoFD±a½r,b±¨‘âò¤Wt÷ÝDBžƒ`ϨD¨¶h“¤¶Hù“¡z[šÂ<äø GÿR@= gDÅ”=P/Ù.3Ï„ºeˆ%c»~¹ÂFX¹q¡ræ0¸j)$fv ßxVà)¾Ì=ì{ ,êXc%Ö÷¥ê@±‘Ñx÷ϵ7}œ¯·Ç"*ü»ÚBÐB ys™UYŪXžS<Ž!#OHð@‚w¯pníÂ` u Á«¯•ÂBÔu†ÐÑxðÀƒ|¤¢Àƒw}¿ÀƒüÊÄ'‰¤.àÁ^k{¼^Ýý€Y£g¦‹|˜:ŽUã4 ÝGË!ëÞæÉóìŸ6¥Ä=L~˜6}/â<ÐaÓ¾ÅÑWï§6,LµF<ûþiĆšþü¨-PûÉá´üçË;rA‡ýö‰©mÈõô~`õØÃVJL‡ŒùwÎ#í“ûñÜG^‘[·"ä#[ʼnÄ÷„Zìwþîgj ‰æ¾á½Í-±NØbo‡ÍA¬þ¶ë:Þe•~ánPV÷É}¥ Ið,/öq4vs¤™ ?,6„ßS>ÔY ì^òçy÷óÕ]—t.¿’?;77Ëî×÷ìÞÉ#L }¦²$Ô`3©ls8yag|9»9ýÌžè|8¿8ï~åµÿxÞ½<»½%¯nH‡\wnºç§wr}ws}u{¶OÈ-¥žŠ¹2UJöUÌÏE<˜&ûtbZGŠþ•5¯Ã*8è“Gó™²fîQë™UÏdË·ñË\m8±…5—WxY=…¾ç³6› ëršágK­ËJ ڷΙAöëäðÒ¥LY”\ÌkÑÛ)¾ÕjÔɇ‘3áw~éÂ#ÃØ3ZcBîn; +I#+i#+i¬äõ’•€®t%¡*ƒ®t% +]‰–Ø “]IöªºЕhb•Yƒ®Ä[‚®t% +]IÊzt%®t%©f6ýèJª#èJ*#èJt t% +It%©ò¥9`@Wº÷#èJ@W’Ç0“0èJ@W¢ÓdºЕh:.RèJ@WºíéJZùèJ22eAWº÷Šf×. ”%)׊Q‹´Á-Òp¤% -iI¤¢ -q=À -iÉÊÄ'‰Ô.–€´Dk{i‰´DÝý@ZÒ–€´¤%KJÅi HKJGÐi HK4Ô ¤%y•Š0d9¤%-–hë¬H¨²¶ Ä%Ú„A]êP—$wd .u ¨K²C‹&I6 I4‰4¨K@]êP—€ºDá!u ¨K6Í; ê’Š¸)ç£.i¥.iÕŠP—ˆ³ÀˆOÁˆoÈo#þ5cÄ%(ñ¡*%(ñ@‰J¼–G’& ”ø ìU(ñ@‰×Ä*³$J¼·6Ja„'a Ä%^§É(ñ@‰×t\(¤ Ä%(ñڣķó¡ÄgäÊ%(ñîϯ] øâS®•ÃDh¡5塉¿HEïú¬ø•‰O ^ÀŠV¼Öö ¬xÿV¼ºû+XñÀŠV<°â—” ¬x`Å—Y¬x`Åk€Æ¤ °âó-ÁÈr°âÛÀŠ×"âY¡€em3ðâµ 1ˆñ@ŒOîË€Äx Æg7†M’l’hi$ Æ1ˆñ@Œb¼ÂO Äx ÆošˆñqV·ß.ŠÏ=fó#Æ·ŸX 1þˆñ¯1˜ñÀŒU˜ñÀŒf<0ãµ< ¬0I`ÆW@`¯êÀŒf¼&V™%10ã½µ!0ãÌx`Ƨ¬§Q0ãŸÚifc@3¾:R3¾2B3^'¡€ÌøtÑŸ*_š˜ñÀŒw?3˜ñy #< 3˜ñ:M†ÀŒf¼¦ãB!å3˜ñÀŒ×3þ0f|F¶,0ãï^É Û%07>åZ\„6€Z#=9Èñ@ŽTÈñ®7Èñ@Ž_™ø$‘æäx Çkm¯@Ž÷/ Ç«»ãäx Ç9~IiÙ@Žr|éÐE@Žr¼¨LzÁ19>OèR’,9þÈñZÄ=+¶¬m z¼6á@àÇ?øñÉÝðãüøìÆÐ¢I’ CÍC"üxàÇ?øñÀWxKüøMóT?¾".Ëùðã‹âÇÖŠàÇ‹3[˼n[¿Ÿ‰5Óc÷¼÷þì¿ñhÿá—Æ‚ïh°ë¨Ý#Fëø¸q¼eG쟇‡ÇæV£Ù82Ú[dÑ÷æºØ¦Æ´ Ùún™ÃáèŸÒî›õ{C^þߊ\œ9`<\M'ìéŽFò‡5!;|†ãy«§£ñ‹m}d_î’f£ÑÞcÿ9"Ÿ¬Ñ3ÓˆE>LǪq‚î£åuoó qöÏ›RâŒ&?L›¾Î{îÍ·ißâ £÷Ó ³ô añ`ÄSÌŸF¬÷¼ð¯X¦¶Ì‚§ö“Ã9 ø‡O—wä‚:ûíRÛëéýÀ걇/¬:”˜óïœGÚ'÷/â¹¼"·nEÈG>\ˆƒxï µØïüÝÏÔì Í}Ã{›[b°õËVYým׺Ë*ýÂ={¬&î“ûJ’ ¼U^ìãhì&3AXlTº§|:¨³ؽäÏóîç«».é\~%vnn:—ݯïÙ½“G6>úLeIÂsÏ fR±½üä…Uœðåìæô3{¢óáüâ¼û•×þãy÷òìö–|¼º!rݹ鞟Þ]tnÈõÝÍõÕíÙ>!·”z*æÊT)ÙW1Oþ1MöéÄ´Žý+k^‡UpÐ'æ3eÍÜ£Ö3«žÉV$ã—¹Úp0bkE.¯pz }Ï'"6¼×åÈÉP$Z—•´oÓbì×Éá/¤K™²(¹˜=Ö¢·Sþ|«Õ¨“#gÂïüÒ!¤Ñ4 cÏh5Ž ¹»í€©#©ã¨Sǘ:^;S¸:ÀÕª2¸:ÀÕ®puh ¡0IpuT@`¯êàêW‡&V™%1¸:¼µ!¸:ÀÕ®pu¤¬§ÁÕQ¸:ÀÕ‘Úifc£:R«£2B«C'¡ÀÕ®ŽtÑÁÕ‘*_š\àêp?‚«\y #< ƒ«\:M†àêW‡¦ãB!倫\àêО«ã(WGF¾,¸:ÀÕá^ªÛ¥ÁÞ€¯#åZ @6=Zc뀱Œ`ìˆTŒ®OŒ`ìX™ø$‘ìÆ0vhm¯`ìð/0v¨»;ÀØÆ0v€±cIÉÙ`ìcGé`q`ìc‡8xzà±#OS˜,‡±ãŒZD?+¼¬mk‡6AAðv€·¼É=x;ÀÛÞŽìÆÐ¢I’ CÍC"Þðv€·¼àíPøLÁÛÞŽMóW‚·£"ŽËùx;ŽŠòvp×ü¼â¼ÐäSÐä‹¡ÉMhòÀ“ž|¨ÊÀ“ž<ðä'¯åáe…IO¾{Už<ðä5±Ê,‰'ï­ 'e= <ùˆŠ€'<ùÔN3xòÕ‘ xò• xò: Ø”gô0ùaÚô½pÚs/¾Mû½ŸN˜UOët#žZþ4b=å…Åú.µeö;µŸÎmÀ?|º¼#ÔqØoŸèÚæ€\OïV=|aõèСÄtȘç<Ò>¹Ï}ä¹u+B>ò¡AÆ{O¨Å~çï~¦¶`QhîÞÛÜë„­UvØÊêo»žÏ]VéîÅc5qŸÜWª T`®òbGc7˜ úÃb#Ð=¨àÓA•Àî%žw?_ÝuIçò+ù³ssÓ¹ì~}Ïî<²±€Ðg*K{V0“ŠíÛ'/¬â¬€/g7§ŸÙççݯ¼öÏ»—g··äãÕ éëÎM÷üôî¢sC®ïn®¯nÏö ¹¥ÔS1W¦JɾŠyÒÿÓˆi²O'¦5p¤è_Yó:¬‚ƒ>y4Ÿ)k浞YõL¶ú¿ÌÕ†ƒ[ry…“ÐSè{>é°¡¼.GI~p"Ѻ¬” }ëœc¿N!]Ê”EÉõÀì±½òç[­F|9~ç—!¦a{F«qLÈÝmŒ¡xŒ7#ˆ5qc.ÆŽ`2cǼá5_ís…×VÆØáVg^ÆPt€¢Ë èHí€IE‚¢ è(oŠŽêìUBÑáÎsMÑaTGPs€šÔ‰üPs€šÔ æÐwÔU— Ô• Ô: jPs¤‹jŽTùÒ/ÔÒc¼[‹íXÌ7‡ámËýÏl#Ùñ%_€øÄ ¾X‡zÖF|á ¾ÈI|‘[a ¾ñˆ/*B|,!#ÄrÑXE˜/úš1_)¥™Ìy2OÁ|±¶´Ôµ3_¸Õœ6Æ?w—òø œp[¨®™6©Êž `“ÇgåÃæIl& ³™È,ü9šß2 Y€Ìd ³™È,@f2 Y„Ä)-È,@f‘Jfá;’Afá«B¹ä«Z¦fl‰…¡#jš†pieWˆq@”ù­¥5?D(LEÁ~ðCèÉŽõ­‘";샢ÜH¡¶¾š U ò”¯–ò!¼¿K‡¥-`AùÊP>”Ý$Ɇ!‰æ!‘Få(@ù°°“ROª-• xH,ÈHÒm¹R…L¿#Xtµè¹\|`Q(È¢röÍÇ¢zp…è9à}§à}Åð¾ à}¿N¼ïw»€üä7 ¿ù Èß:„U˜$ ¿+ °Wu@~ò[«Ì’Xâ:úô¯Õ Ð߀þôw"Îèo@úÐßÚàzú»êRú»2Bú['¡ý èïtÑý*_š&úÛß g"û~¶;çä>}`O÷w‡7Z»ä¿ÿMÿ¹íŠÈ0¶­gö¢oc³DKÝ׊ s²´nìúg<ˆCÎv´üa~OýÉtþòeòÁÌNpr€“œ|ê89ÀÉõSÀÉN^ÚôZ8¹*ÖX‰õ=°Éûºb“ócˆ6íMmÇz¦é™Ïæôï`#ãC D…,1?ÖMåG3jE‘reÀ†Ë æÓZScW‚$·ÎPÀÈç¼-æœs(ò\üp{Júi±œÓÌDÓdªfŸY‹äzò<ÓHâXPˆH¼tÓ™ÃI©­ÙŠÞøŸ„Êåéø>ý»ÎTñ}òXÒ¿''TN“us0‘?Ô ̩ٙQÍŠ{Ö0Heý]Éþª3웵xŠgØÚ›Ê„Ùfؘ”¥¶2Km)KmÍ,µYj[Yj;jø3Ò%Ýq:‘¥*ÍÆý3§²ŒlÇÐÌZô&›VvSíÛrè€ö&¬ŠÝqÕÉ*³Ï~RAhAx<²z¡¼ø<“â#ãÖ±óf4ÿa‹ùé=ON9~ 4ì¶Ë,…=—_ô%oízÿ ô@^.Ŷ+r8% £6¢8¦ iŠpçç°Ž¥7†¿hTdæ¨sʱôÍ$Nß íÌ6Û,“sµ3—ç)OaʱʿvË–R§ÑØÕôǬ·‚ÛA0\˜Qy-BÙRsHçßSòùy<Ž`Ï×#ü Ž Æþ?ùÅXCVГ<½g²Ÿˆ#à„íļ!¦{V‰!?(zOy›÷ú½Ûzq_q™½%¢éˆžÃ[«æNİÃÓ€r`É7¬4UãJƨÝî5Õ9ˆköùfB/ð"ˆ<«Rd|­×”ãR®±äuë;üABXüÈ3W¡Xô&ÖD uÍZšÇFªFªÅGªÖJFªÖB#Uë•õœùGª–b¤j©^›¾SGªV®‘ª5{»©Ú©©Ú+©Ú TíWÖsæ©ÚŠ‘ª]x¤zmúN©Ú¹Fªönxk̇$àè¦Â?,q˜“‡lX»·Öäe†V#ˆVžÂ¤_®––n4Ë‹2kSN&Ûäö_Ì*)á¹(u®Ž­§ óÊLŸXZ­:­ö6–»&âFnBŒQ*¿ïTD{\Í‹iÊ=5—éBͦ?sƒeü„-?w/Ç;™|»õí_·#ò¹wŸ(D ’“ŸÃ"áÈ=x*–‘ã‘cñ"G”+K[,+–?a+G©Èžãfúä%wpNZ¶nd_Ú£gáȯ{³÷—36{êLÖ˜¿;u^ߌΡhzrmš•»Î x³õJ‡ `(óJhîÙÞ1w·ýœµíáh;>¹ÖÃwTØ3ØpàÛÙsÇh:Ί~ŒìB¨?F{î1È„Ð¢Åø:Bq]&Lh<¥kÿŒö‘h½ì…¾D¤MU´"ð&ç~¼BìT$%mèWg'Áœ¦nò B,È#­.S‘‹—´zÍY>Ö´ñ“*áã‹Â›¡c^J&4l8A2 ›ä‰Ê€ÍCÝ$ÓŒ—@ß$srAáT’T…Hº|¨\Ùœ‰J¥æu.J•%àLÝ¥–-ÌÑ“2w1‰,V·/“¯DƪÊe™¤UZ³M…ÙòzÔqLû…í„{¦Øw´/ã7:’m“§N>þ©x¡ìQ>]‹Òøš±OžmÝó—øJ)»1¨/gäKÜ!ÇúæBÏ’º™0ñ(•X¼î<Š%ÆTY…$ ®›Ý†Ô ·-GìžØ£A=‹–,‚a›´ËÃM溊OÙd]ó‰v?Ÿ]Ê%D Q~›/OaήY‚° ¥UnB«¢@dëä¡…NÂkÄÌß97nRԘ،ïˆã*.†dÜŽTâèIBŠ)á-¹M8—&›ú<è_ËÔôáö&Ö3e«!6”ôã sëwPdW+-<Z–¤Ó*§e"­C¢»,¥ÃØ}¤õÿlÔƒ1…‹‚gÊ^¢ø$ÝO V2OÈ““¶[sÎ4Ö{é hí°þYl±ß„w7ªqÛaš’V½#”&ç Ù›šZË›43IŒEn÷üæŸãó„?l‚Óñ˜Mz’Y¾æm¤V¼@ùé|ô'Û·Ý›óËOÛéYQŽªfn6=í5ÛÿcÕó´¨$Ö#1n=ñÍùCÇÉ€Ü|3» –ı7«‰Jo(esEíM´Í"${oˆ?€D•p>HJ÷Û>ýܹéœv9&@löÞµgxßD:u¢W'Z/…_fÛ”Õ$iD”YÒçò+¨‚E4° ä&õË’·q•ÒÆÁk]–¿H@]ö!¿-%b„âŽà„>)H¸r÷lg-§ÿ’°›³ìŒäóVàLØLBÅP¨B³íŠLeÊbTL*†AÅÝ«_2±¢†ŒŠø½|Šk{óZX˜„KИ{ã“?• ãÞý!Ìyב›öоíõ½ÒÉ®ŠÒñ"da¨œØFÜ]Ä­w6X MPE6« ‹Lš®’.’(#³ YÒªÃiFáSõËQ·D½Ô-¿ËVÆR/þÊðÐá·Æ«f¯ÌŒP†!_ÂN÷Ì\F=ÚŸÚôp2‹Qé^FSqÂð!ýÅsQrw9Û¹==Ô'Ë áÆÈ`gž8çRbœˆo.b&¸Vž¬-ŸDØOT!+Àe…4f‡ãÜh\ùÂ^¡8[-²ÊŸ'üU‹Å¿¼¨ÏùÇxôÎ.gþìâq¯ZFŒ†× ÿ‚aå¤÷ì_¢•ïr|UšÜ…寖.Ø«Õr‡öÚÉ­\±Â9òÊÏpåö®/Ã7¸táù•æ!‹yÕÓ]ê:wáfùÑsðVe){I~ôYNô’›$Ù0$Ñ<$ÒH7zøv/¦é ÉQ!IU5ÃÑ¢¼2u–DÒʲ¸{nÉ— øòäÎíÖžwŒ^±”q!×àZ]Ã,3ËÃZ5ëRU¶TO«-ý%öz}­t¶•5÷ñ¥ª¦ë"ÞÒ _i.OiÒOwHnšGr]Ým.Çd´§ù óª]“پɄ¯P8ó}Ü×3œ?)<>á½uw£þÓ®ò¥Ê§Äõvo©×ÛÚ[r>ì ¦ÜÊ$öÌðÁú>µå‰_:ÃFG~ÛJ³–wì?n/¿.ñW±IòÉìÙ#‡¿­¦ÆÖ1ÄèÝ$¿žx?|éüû¦sùG¢)ÈâÍô.ÞÊË¡ã%‡{Î߀n4|»ü6Y «ÃraÅ×êä]ü‹òK>dÜ *œ¹õwbF›éÇíÈ-Dª?ÖmüÙŠL-!p.P fã‹æ|¦C9áÇ ¯©p8,%Ö¹§7üÒ÷ÙÉÃUî[OtÈÁwJôíoÞ~=T…À©9–Äkõ)y|ð¤ѹÑÎïA¼1Zî’µ¤Ã9|‹GÏèe²G݈žðRåñL§ö¤"9©JâįOÌ÷-÷Óuqq±[’žmÚøGWîClz>è/¡;ýjiç¦-òЉ ´–­¥ÉL¬xEl@Ï Fx\ç9“3$ÉŽX?ؼî<. “ hÏ*"AxÓöÛ>(®4½¯„ûØ'›¯„À^ÕÄ×b¿þö?Û»%×8cy;¦¬§ ‚‰Á!;¬ÊÞÛòÉž0¡¬á÷Y›LÞݶër˜É‘&#ZXlHgÜ.ܾ=<Ç¥ây û`]Æ÷Ïȃe;5Ý•ÖV™%±äM÷]—ÕË=L"Ù gB\¶€0v½9Q®ˆ¿6$.:IØó&'}Á ÷M\3C(‹ßüÅ­NŒÿƒ_¸÷kVãÈØe°x aSô‹Ê ›•´D‰-SH¡Ú¢M’Ú"åO†êAli óPãÿ5ýKõ,œSRô@½dºXÌ<ê– –Œíúå a寅BÊ™Ãથ˜Ù%|ãY§ø2wvþõ°ï±¯¨c•XßGt–ªÅFFãÝ_<×ÞôqN¼Þ‹¨ðïj e@ -äÍeVe«`yNñl8†Œ¹Ï}ä¹u+B>òQVœM|O¨Å~çï~¦¶ ’hîÞÛÜë„-ûvØlÄêo»Nä]Véîe5qŸÜWª T@ÐòbGc7[š úÃbƒù= éÓA•Àî%žw?_ÝuIçò+ù³ssÓ¹ì~}Ïî<²a•Ðg*Ká V0“Ê6‡“VqVÀ—³›ÓÏì‰Î‡ó‹óîW^ûçÝ˳Û[òñê†tÈuç¦{~zwѹ!×w7×W·gû„ÜR꩘+S¥d_Åü„ÄÓˆi²O'¦5p¤è_Yó:¬‚ƒ>y4Ÿ)k浞YõL¶¿ÌÕ†ƒ[bsy…¿ÕSè{>³Y±.'~Ê$Ѻ¬” }ëœ#d¿N!]Ê”EÉõÀì±½òç[­F|9~ç—!l02Œ=£Õ8&äî¶Ú’4Ú’V1Ú’hK^/m ˆK@\ª2ˆK@\â—h‰’¡0I—T@`¯ê .q‰&V™%1ˆK¼µ!ˆK@\â—¤¬§A\QˆK@\’Úif€¸¤:R¸¤2B¸D'¡@\â’tÑA\’*_šÄ% .q?‚¸Ä%y #< ƒ¸Ä%:M† .q‰¦ãB!倸Ä% .Ñž¸¤•¸$#SÄ% .q¯hvíP@^’r­¿H#­¡‡@_úЗD* ú× úЗ¬L|’Hí} èK´¶WЗøèKÔÝô% /} èK@_²¤TlЗ€¾¤t,=З€¾D˜@½ðA_’'\©C–C_Ò}‰±ÎŠ„*k›@a¢M$& 1‰IrG˜€Ä$»1´h’dÃDóH#Ä$& 1‰ HLR˜€ÄdÓ¼“ 1©ˆ›r>“VQ“V­‰‰8ËŒøŒøv1Œø60â_3F¢" Ä%>µÓÌF}J|u¤J|e„J¼NB%(ñé¢%>U¾4 Pâï~JåZ9L„6@Z#<+XñÀŠTXñ®XñÀŠ_™ø$‘à¬x`Åkm¯ÀŠ÷/`Å«»°â¬x`Å+~I ÙÀŠV|éEÀŠV¼hLzÁ0+>OÐRŒ,+¾ ¬x-"ž XÖ6/^›@ ãÄøä¾ ˆñ@Œb|vchÑ$Ɇ!‰æ!‘Fb<ãÄx Æ+ü¤@Œbü¦ù(_gå|ˆñí¢ˆñíZÄø6ã3ã‹!Æ1þu#Æ3˜ñ¡*3˜ñÀŒf¼–”& Ìø ìU˜ñÀŒ×Ä*³$f¼·6f<0ãÌø”õ40ã#*f<0ãS;Íl h`ÆWG*`ÆWF(`Æë$0ãŸ.:0ãSåKsÀ3˜ñîG`Æ3>a„'a`Æ3^§É˜ñÀŒ×t\(¤`Æ3˜ñÚcÆæÃŒÏÈ–f<0ãÝ+™a»$àÆ§\k€‹Ð0Bk¤ Ç9Èñ‘Š9Þõ9Èñ+Ÿ$Ò¼€äx­íÈñþäxu÷r<ãäx Ç/)-Èñ@Ž/ºÈñ@Ž×•I/8& Çç ]*B’å Ç9^‹¸gÅ–µMA×&üxàÇ?>¹;~<ðãŸÝZ4I²aH¢yH¤‘€üxàÇ?øñ o)ðã¿ižJàÇWÄe9~üaQüøÃZüxqÆck™×më÷3±f:pìÞ÷ÞŸý7í?üÒXð vµÛâïñÑaäoÃh7Ž· ãˆýóðð¸ÑÜj4‡ÇÇ[dÑ÷æºØ¦Æ´ Ùún™ÃáèŸÒî›õ{C^þߊ\œ9`<\M'ìéŽFò‡5!;|†ãy«§£ñ‹m}d_î’f£ÑÞcÿ9"Ÿ¬Ñ3ÓˆE>LǪq‚î£åuoó qöÏ›RâŒ&?L›¾Î{îÍ·ißâ £÷Ó ³ô añ`ÄSÌŸF¬÷¼ð¯X¦¶Ì‚§ö“Ã9 ø‡O—wä‚:ûíRÛëéýÀ걇/¬:”˜óïœGÚ'÷/â¹¼"·nEÈG>\ˆƒxï µØïüÝÏÔì Í}Ã{›[b°õËVYým׺Ë*ýÂ={¬&î“ûJ’ ¼U^ìãhì&3AXlTº§|:¨³ؽäÏóîç«».é\~%vnn:—ݯïÙ½“G6>úLeIÂsÏ fR±½üä…Uœðåìæô3{¢óáüâ¼û•×þãy÷òìö–|¼º!rݹ鞟Þ]tnÈõÝÍõÕíÙ>!·”z*æÊT)ÙW1Oþ1MöéÄ´Žý+k^‡UpÐ'æ3eÍÜ£Ö3«žÉV$ã—¹Úp0bkE.¯pz }Ï'"6¼×åÈÉP$Z—•´oÓbì×Éá/¤K™²(¹˜=Ö¢·Sþ|«Õ¨“#gÂïüÒ!¤Ñ4 cÏh5Ž ¹»í€©#©ã¨Sǘ:^;S¸:ÀÕª2¸:ÀÕ®puh ¡0IpuT@`¯êàêW‡&V™%1¸:¼µ!¸:ÀÕ®pu¤¬§ÁÕQ¸:ÀÕ‘Úifc£:R«£2B«C'¡ÀÕ®ŽtÑÁÕ‘*_š\àêp?‚«\y #< ƒ«\:M†àêW‡¦ãB!倫\àêО«ã(WGF¾,¸:ÀÕá^ªÛ¥ÁÞ€¯#åZ @6=Zc뀱Œ`ìˆTŒ®OŒ`ìX™ø$‘ìÆ0vhm¯`ìð/0v¨»;ÀØÆ0v€±cIÉÙ`ìcGé`q`ìc‡8xzà±#OS˜,‡±ãŒZD?+¼¬mk‡6AAðv€·¼É=x;ÀÛÞŽìÆÐ¢I’ CÍC"Þðv€·¼àíPøLÁÛÞŽMóW‚·£"ŽËùx;ŽŠòvp×ü¼â¼ÐäSÐä‹¡ÉMhòÀ“ž|¨ÊÀ“ž<ðä'¯åáe…IO¾{Už<ðä5±Ê,‰'ï­ 'e= <ùˆŠ€'<ùÔN3xòÕ‘ xò• xò: ZX÷6Ï gÿ|°)%Îèaòôé{á´ç^|›ö-Ñ!µÍ¹žÞ¬{øÂêÑ¡C‰é1ÿÎy¤}rÿ"žûÈ+rëV„|äCƒ8Œ÷žP‹ýÎßýLmÁ¢ÐÜ7¼·¹%Ö [«ì°!”Õßv=Ÿ»¬Ò/Ü‹Çjâ>¹¯TA ©À\åÅ>ŽÆn0ô‡ÅF {*PÁ§ƒ:+ÝKþ<ï~¾ºë’ÎåWògçæ¦sÙýúžÝ;ydc¡ÏT–$<ö¬`&Û·O^XÅY_ÎnN?³':Î/λ_yí?žw/ÏnoÉÇ«Ò!×›îùéÝEç†\ßÝ\_ÝžírK©§b®L•’}ó¤ÿ§ÓdŸNLkàHÑ¿²æuX}òh>SÖÌ=j=³ê™lõ1~™« #¶.äò '¡§Ð÷|ÒaCy]Ž’üàD¢uY)AûÖ9=Æ~þBº”)‹’ëÙc-z;åÏ·Z:ù0r&üÎ/BMÃ0öŒV㘻Û;’ŒM±&naì`“ ; †×šá'r\š1v€¢ èE(:ÁVPtè„¡0IPtT@`¯ê èE‡&V™%±Ä_6ª#¨9@ÍjŽD~¨9@ÍjPshƒ» jŽªKjŽÊj„5¨9ÒE5Gª|iŽ— jé1Þ­Åv,fŒ›Ãð¶åþg¶‘ì‹øˆ/@|â _¬C= ¾ñ…~Jñˆ/J›^Ë ¾‹Æ*zØÀ|Ñדù¢ù­‘‡ù"3óÌkKK­óÅ‚81à¶P]+°Éc„ ³™È,@f2 Y¬­e"­C@f‘P‚4SY€ÌB#{™…ÌBÝý@f2 Y€Ì¢:dÆFX:¢¦i—Vy…$L™ßZà‡°Á¡Òš^kà‡ÈìSñÊà‡ðc‡}ðC”)Ô6ÐW«:Dž¶åÃ2âpÙ-P>€ò!¹¿å(@ùÝZ4I²aH¢yH¤‘@ùÊP>,ì¤Ô“êAKg%( 2’t[‚E¡:¾=°(TÄÉ7‹wöbQàÎÏ¢àž#Þw Þ·Q ïÛÞ÷ëÄûÞy· Èo@~ò߀üN8Ûù­ÓAX…Iò»{Uä7 ¿5±Ê,‰%®£OÿZ±ý èo@'â|€þô7 ¿ý­ ®' ¿«. ¿+# ¿u Ð߀þNÐß©ò¥9`2 ¿ýp&ò·ïç`»s@îÓöt'qx£µKþûßôŸÛ®h cÛzf/ú66{A´Ô}­2‡!KëÆ®ƃx0älGËæ÷ÔŸLç/_&Ì àä'89ÀÉס€“œ\?%œàä¥M¯e€“«b•Xß›¼¯+69?†hÓÞÔv¬gšžùlNÿ62>Ô@ôPÈócÝôX~4£V Wl¸ j>­55v%øArëlà\€|ÎÛbÎ)0‡"ÏÅ·§¤ŸË9ÍL4M¦jù™µH®'Ï3$Ž…ˆÄK79œÔ˜Úš­èÿI¨\žŽïÓ¿ëLß'õ!ý{ÂqBå4Y7ùC-œÀœšÕ¬¸w` ƒ¤QÖßE‘ì¯:ÃÞ¨ÅS<ÃÖn(f°1)Kme–ÚR–ÚšYj;³Ô¶²ÔvÔðg¤Kºãt"KUšû!gNeÙŽ¡™µè9L6¬ì¦Ú·åÐíMXºãª“UfŸý¤‚Ђ2ðxdõByñy&ÅGÆ­cç?ÌhþÃóÓ{ž'œrühØm—Y { 0.¿†iKÞ2Ú!õþè¼>\ŠmWäpJFmDqLÒ:3áÎÏaKo ѨÈÌQ'æ”cé)šIœ¾Ú™m¶Y&çjg.ÎSžÂ”c•í–-?¤N£±!˧%o·ƒ`¸0ÿ¢ò [„²¥æ:Î;¾§ä?òóxÁž¯GøAŒý8ò‹±†¬ 'yzÏd >GÀ Û'ˆyCL÷¬C~Pôžò6ï= ô{·õâ¾â2{KDÓ=‡·VÆNİÃÓ€r`É7¬ªq%cT‰n÷ŒÝ×eöùfB/ð"ˆ<«Rd|­gÈq)×Xòºõþ ¡,~䙫P,zk¢„ºf-Íc#U #Õâ#Uk%#Uk¡‘ªõÊzÎü#UK1Rµ T¯Mß©#U+×HÕš½ÝTmŒT‹T핌Tí…Fªö+ë9óTmÅHÕ.Ö´ñ“*áã‹Â›¡c^J&4l8A2 ›ä‰Ê€ÍCÝ$ÓŒ—@ß$srAáT’T…Hº|¨\Ùœ‰J¥æu.J•%àLÝ¥–-ÌÑ“2w1‰,V·/“¯DƪÊe™¤UZ³M…ÙòzÔqLû…í„{¦Øw´/ã7:’m“§N>þ©x¡ìQ>]‹Òøš±OžmÝó—øJ)»1¨/gäKÜ!ÇúæBÏ’º™0ñ(•X¼î<Š%ÆTY…$ ®›Ý†Ô ·-GìžØ£A=‹–,‚a›´ËÃM溊OÙd]ó‰v?Ÿ]Ê%D Q~›/OaήY‚° ¥UnB«¢@dëä¡…NÂkÄÌß97nRԘ،ïˆã*.†dÜŽTâèIBŠ)á-¹M8—&›ú<è_ËÔôáö&Ö3e«!6”ôã sëwPdW+-<Z–¤Ó*§e"­C¢»,¥ÃØ}¤õÿlÔƒ1…‹‚gÊ^¢ø$ÝO V2OÈ““¶[sÎ4Ö{é hí°þYl±ß„w7ªqÛaš’V½#”&ç Ù›šZË›43IŒEn÷üæŸãó„?l‚Óñ˜Mz’Y¾æm¤V¼@ùé|ô'Û·Ý›óËOÛéYQŽªfn6=í5ÛÿcÕó´¨$Ö#1n=ñÍùCÇÉ€Ü|3» –ı7«‰Jo(esEíM´Í"${oˆ?€D•p>HJ÷Û>ýܹéœv9&@löÞµgxßD:u¢W'Z/…_fÛ”Õ$iD”YÒçò+¨‚E4° ä&õË’·q•ÒÆÁk]–¿H@]ö!¿-%b„âŽà„>)H¸r÷lg-§ÿ’°›³ìŒäóVàLØLBÅP¨B³íŠLeÊbTL*†AÅÝ«_2±¢†ŒŠø½|Šk{óZX˜„KИ{ã“?• ãÞý!Ìyב›öоíõ½ÒÉ®ŠÒñ"da¨œØFÜ]Ä­w6X MPE6« ‹Lš®’.’(#³ YÒªÃiFáSõËQ·D½Ô-¿ËVÆR/þÊðÐá·Æ«f¯ÌŒP†!_ÂN÷Ì\F=ÚŸÚôp2‹Qé^FSqÂð!ýÅsQrw9Û¹==Ô'Ë4ÜìÌç\JŒñÍ¥BÌ×*“µÅã“û‰*d˜¢ Œ æÑÃìpœËC`8WØ+g«EVùó„¿j±ø—õ9ÿ¸ÞÙåï¬ÁŸ]<îUˈÑðä_0¬œôžýK´rà]ޝJ“»°ÜØÒ{µZîÐÞB;¹•+V8C^ùî¢ÜÞõeø—.<¿Òˉ^r“$†$š‡D)âFßîÅ4½a#9*$©ªf8ºS”W¦Î’HZB÷oÏ-ù_žÜ¹ÝÚóŽÑ+–2.ä\«k˜efyX«æb]ªÊ–êiµ¥¿Ä^¯¯µ‚ÎV¢r¢Æá~#¾TÕt]Ä[šá+Íå)MúIãÉMóH®«»Í嘌ö4¿a^µk2Û7™ð g¾ûâz†âó'…Ç'ü ·înÔÚU¾Tù”¸Þî-õz[{K·½Á”[™Äž>Xß§¶<ñËAgØèÈo`{CiÖòŽýÇíå×%þ*6I>™={äð·ÕÔØ:M1z7ɯ'Þ_:ÿ¾é\þ‘h ²x3ý„‹·òrèxÉÀážó7  ß.¿MÃê°\Xñµ:y?Å¢<Æ’Ïw‚ gný˜Ñfúqg;rg ‘êu¶"SK TƒÙøbä„9ŸéPNøqÃÇÄkªCK‰uî)ÆE¿ô}vòp•ûÖòApç}û›·_U!pjFŽ%$ñÚc}JöÉæ+!°WuñãµØ¯¿ýÏönÉ5ÎØEÞŽ)ëiƒ`bpÈ«²·Å¶†|²'L(kø}Ö&“w·íºfr¤ÉˆÒ· ·°oÏq©xžÂ>X—ñ=Å3ò`ÙÎDMw¥µUfI,yÓ}×euÄr“H6Ù—- Œ]oN”k⯠‰‹Nö¼ÉI_0è}S×ÌÊâ7ÿAqk€ãÿÆßàîýšÕ82v,^ƒ€@Øý¢²Âf%-QbË’¹ÁIODùõ›dŒÒb”9B”Y:¢ ÒŠwïš,QÓ e'ôŽ9ÆaB¥Ü‚¦òtB‚ÿ&K×Ò]ïM*LÄ´üÕJŒˆ6¼¸ @YêSZd©ã²TVg•ó¶Z'F¶À~ˆsŒqj.h®¥Eò`¼/„·SÐIdJ,‚½{ë1&ùÊtšpeú”ÚK3ðóZ&•ï6M*¹DÜ4©äà»aBùì¦ &¢ùU*ä ðšžH»¿5âîO$²$ðˆMꓤ?8c, í„#3ÊsIÑZS¾ü ùY‘ľe;Zþ°Hz2¿|™^ÅöKÁá"÷ÎjÚPW–PØÙæ;\3ÿaäÏïo#[ÛýlÑ=6’Ô€¿[Ur]$u“$FØHµ¨¸ ¼-ûO1z¨'îÑPÈvÓzC»_™ŸVÅoFD±a½r,b±¨‘âò¤Wt÷ÝDBžƒ`ϨD¨¶h“¤¶Hù“¡z[šÂ<Ôø GÿR@= gDÅ”=P/™.3Ï„ºeˆ%c»~¹ÂFX¹q¡ræ0¸j)$fv ßxVà)¾Ì=ì{ì+êXc%Ö÷¥ê@±‘Ñx÷ϵ7}œ¯·Ç"*ü»ÚBÐB ys™UYŪXžS<Ž!#OHð@‚w¯pníÂ` u Á«¯•ÂBÔu†ÐÑxðÀƒ|¤¢Àƒw}¿ÀƒüÊÄ'‰¤.àÁ^k{¼^Ýý€ó!wÌ»šÜ¬]|nõøÐåÌtÙH|çÞó>»ÊëNEB:~BØ©heåÞÄ#Æ-ú]<û‘;RJ¢¾kOóïXe4ìÛ¢ÞˆÒïøNämJôT8D)%þ•»Ê,˜Y*´â¶÷öÈ–&CZÔ˜ßr IŸ ªt:—};ë~¹¼î²ÖÅ ûÖj·[Ý›#:w|OÍ*ãÜ»“\Þ “UŽ9O)átƒ¯'íã/tEëÓÙùY÷F¤þô¬{qÒé°ÓË6k±«V»{v|}Þj³«ëöÕeçd—±çA‹ÌTer˜Åb‡ÄƒM9ÙçcÓ¸žé7T¼.%pÐg÷æ#§bîqë‘’gÒ@n4]¨ 6 ±…½Òßdè‘è¿©W¬zŽØe’*]ºË¬|«B#d·Êö?°.§Ìâìj`ö¨D;q}£Q«²O¶;g~m1F‘aìÚ!c×dK²dKËÉ–4 [òveK \á’H’!\á—@¸DKJ†¢JB¸¤I‡p „K4©•yC¸$B¸Â%.pIÆxÂ%±,‚p „K2_šùB.)U.)Q.ÑÉ(—@¸$Ût—dÚ—å€p „Kü.pI‘Ší„!\á:C—@¸DÓva©Ìp „K \¢½pI£˜pIN¤,„K \âñèÚP ^’q<3¿H‚‘Öè!È—@¾ò%±„B¾Ä÷C¾ò%Ïf>K…vA¾ò%Z×WÈ—„äKÔ¯äK _ùÈ—@¾dE¡Ø/|ÉÚYz/|‰˜@½ø€/)²\©X†\|Iò%Z¬u–d©²ò$L´Y„ˆ DL b’ž‘AÄ"&1É/ -Š$]0,U<,VH1ˆ DL b…‡"&1ymÞIˆ˜”ÄM¹˜ˆIcY“Fe¹—Œø F|s9F|Œø·Ìˆ%”øH’A‰%”xPâµÜ’¬¨’ Ä—Àà é Äƒ¯I­Ì³”ø`lJ<(ñ ÄƒŸ1ž%>–E ÄƒŸùÒ̧>ƒ_«@‰/Q Äëd(ñ Äg›J|¦}YPâA‰÷?‚J|‘Ší„A‰%^§Î”xPâ5m–ÊPâA‰%^{J|³%>'V”xPâý#_»øHñdzc"´EhMx+¬x°âc +Þ÷ƒVü³™ÏR^`ѝu}+><ÀŠW¿~`ŃVJãKâ¬\Œß\–߬,CŒo‚ŸCŒß_Ž¿büÛ&ƃf|$É`ƃf<˜ñZnPVTI0ãK`pt0ãÁŒ×¤VæY f|063Ìx0ãÁŒÏOƒË"0ãÁŒÏ|iæ3 ÁŒ/U`Æ—Æ(0ãu2 Ìx0ã³M3>Ó¾, ˜ñ`ÆûÁŒ3¾HňvÂ`ƃ¯Sgf<˜ñš¶ Ke˜ñ`ƃ¯=3~¿3>'ZÌx0ãý#a»"¸ñÇ à"´FhMz9äxãc 9Þ÷ƒrü³™ÏRa^ ǃ¯u}9><@ŽW¿~ ǃr<Èñ ǯ(,äxã׎.9äx ¨Lzá˜@Ž/²t©X’\9~äx-Ö=K¶lYy-ôxm–Á?üøôì üxðãÁÏ/ -Š$]0,U<,VHàǃ~<øñàÇ+¼¥àǃÿÚ<•àÇ—Äe¹?~Y~ü~e~¼Üã±±Ê£ÓøãDŽ™ö\§·<÷·ð‰»wjO|FŽƒfSþ=<Øý­ÃÃÚá†aÐ?÷÷kõZ½vP«m°§>·ÐA“Óalã‡e‡ö¯_YçÍû½æáß’B9`4ï]NÆô‡um{Àþ´ÆlKôp"nõØMëÇ=}u¼ÍêµZs‡þsÀ>[ö#åˆÅ>M\ת ‚î½å²uëˆqúçÃ9sí»ñOÓáGÒy/¼ùï[:z;SM3z÷lbþ`ÓÛ3_ÑûÌ/ ž;®Ð4>_\³sîºôÛg>äŽ9`W“ÛÕ£‹Ï­ºœ™.‰ïÜ{Þg·SyÝ©HHÇO;ͅ܈wĸE¿‹g?rGª'Ôwàiþ«ŒÆ/[Ô¬RúߺM‰ž ϥĿrW™3K%oUÜöÞùÀdèO‹Z¥[.‰à“A•î@ç²ogÝ/—×]Öº¸aßZívë¢{sDçŽï©}`ü‘{w’ž{º1YEsùñ”N7øzÒ>þBW´>ŸuoDêOϺ';½l³»jµ»gÇ×ç­6»ºn_]vNvëpd±ÈLU&‡Y,‚ÿlÊÉ>›ÖÀõL¿¡âu)ƒ>»79s[”<“F$£éBe8°i¬(앎à CDGDÍ{Õk9ÅŠTéÒ]få[²»U¶ÿu9egW³G%Ú™ˆëZ•}²Ý±8ók‹±ZÝ0Œ£Q;dìºÓ‚RG–RÇÁrJPêxëJÐê€VG$ÉÐê€V´: Õ¡%BQ%¡ÕQƒƒ¤C«ZšÔÊ<‹¡ÕŒ ¡Õ­hu@«#c< ­ŽXA«Z™/Í|ö>´:Êc´:Jc´:t2 ZÐêÈ6Z™öe9` Õ­ÿ#´: ÕQ¤bD;ahu@«C§ÎZÐêд]X*s Õ­huh¯ÕqPL«#'^ZÐêðUŒíʰ7ÐëÈ8^У ¢Gk¶; ØÅŽXB¡Øáû„¡ØÅŽg3Ÿ¥‚½ ØÅ­ë+;Šê׊Pì€b; Ø±¢àl(v@±cí°8(v@±Cž^<(vYÀT,L®G±ãŠZ¬~–pñ²òzT;´Y„nt; Û‘ž£A·ºÐíÈ/ -Š$]0,U<,VHÐí€nt; Û݅ϺÐíxmþJèv”Äq¹˜nÇÁ²ºÂŵ¸n‡Üïš|Mþp9šü!hò Éƒ'ž|$ÉàɃ'žÓ¾, xòàÉûÁ“O¾HňvÂàɃ'¯Sgž'b<@•W¿~ Êƒ*ª<¨ò Ê¯(DTyPå׎2UTy (Mzá™@•/²Œ©Xž\UþTy-Ö@Kº„YyMdym–Á–[lùôL ly°åÁ–Ï/ -Š$]0,U<,VH`˃-¶<Øò`Ë+<§`˃-ÿÚ¼–`Ë—Ä}¹[þpY¶üae¶¼Üû±±ìÑiüq"ÇG{®ÓÛ žñ›÷Æ÷Úî݇ÚÒw÷Žͦü{x°û[«7ëÆasÃ0jFcÿ°VߨÕkûì©Ï-tÐÆtÛøa™Ã¡ýëWÖyó~¯yGø·$‡PMÆ{—“1ýa]Û°?­1Û½™ˆW=¶GSÇúqO_o³z­ÖÜ¡ÿ°Ï–ýH9b±O×µ*B‹ {o¹l`Ý:"2œþyçpÎ\ûnüÓtø‘tÚ /¾Ãû–ÞNÆT«ÇŒ^º=[„–?Øô¦LÅWôîrÇ‹~ç΃+´ ćÏ×윻.ýö™¹cØÕäv`õèâs«Ç‡.g¦ËFâ;÷ž÷ÙíT^w*ÒñÂNEÓ 7ã1nÑïâÙÜ‘* õ]#xšÇ*£±Ê5¡”~Ç÷|nS¢§Â‹G)ñ¯ÜUfÁÌRÉ\·½·G~0úÓ¢è–K*ødP¥;йìÛY÷Ëåu—µ.nØ·V»ÝºèÞѹã{j äޤǞnLVѼ}<¥„Ó ¾ž´¿Ð­OgçgÝ‘úÓ³îÅI§ÃN/۬ŮZíîÙñõy«Í®®ÛW—“]Æ:œY,2S•Éa‹ ÿ›r²ÏǦ5p=Óo¨x]Jà ÏîÍGNÅÜãÖ#%ϤÑÇhºPl {¥“0ÈÐ#ÑéPS^õZI±q"Uºt—YùV…<Æn•í`]N™ÅÙÕÀìQ‰v&âúF£VeŸlw,ÎüÚb¬V7 cÇhԻؑVìhÈ1qmÅêL Ø±äòZc±å5Ý; щHt@¢©ÅVHtèăPTIHt”Àà éè€D‡&µ2Ïb¿l”ÇHs@šÒ©øHs@šÒæÐ†» i޲[iŽÒiŒ‚4¤9²M‡4G¦}YŽ—iÏc¼]IÌXÌ„6‡LËÃÏ4‘ìËõ%_@øÂ¾x‰ìð„/ôË$_@øbmÝë:„/¼Ac=lP¾èë©|Ñø^+¢|‘y å‹ K-‰òÅ91жPϰ)R !f1 ˆY@Ìb³x±’‰•ƒ˜E*¼j 1 ˆYhT_!f³P¿~³€˜Ä, fQ1 ãUˆX:RÓ4Ä¥­C¼B¶¦,,-èC8ЇЀ´¦b úEû‹xëЇ×ûЇXïJ¡¶ }•²+@)H>¬b.a ’|HÏo ùÉH>ä†E’.–*+$H>@ò’OvRê)õ ¥³©K»-¡¢PßTJâä[DEA8û–RQ.®¢àï#ï;ƒ÷m,Çû6Àû~›¼ï­ß·üòÈo ¿üN9ÛüÖi#¬¢Jù]ƒƒ¤ù ä·&µ2ÏbëÊ¿–Ç, ¿þú;µÎô7Ðß@ý­ ×èï²[ôwiŒú['£€þú;Ût ¿3íËrÀ䠿Ùp.ù;ôsÐì\, ÷ù]ÝßJmÞhl³ÿý/ûç¦oÚ̆‘c=Òƒ¾ÌÞlµÔ¬\dŽ"K«Æv¸ÇƒršÑŠ‹Å9ÕÓý;´)„™N89à䀓¿DöN8¹~™89àäkë^×'W­5–b|6y_W6¹Ø†èðÞÄq­GžùlNþ™MdBÔ@|SÈ ãcýðX±5£², PlôÜ|xÑÐØgáÌ‚[烸ïº`й ²:,s]rs{Føér1§¹¦éPÍY|f%ë)âLcc³›ÈÀK?œ9Ô˜Y𸉥²ÜÛßçÿT)+~Œï«CþÏXpB½n²jÆÞ•hsftf÷®ÍÜ»6•wmÆ+þœpI¿NE©zÕÆÿP0¦rÑŽ‘žuÙ}˜Ô<Û&LµoËåÞS]¾åoªó’LŸÃ ‚È€ræñÈ{ ½Cô3>2Q;¶þ¢Jó æ'·"N:åÄ6ШÛ.÷.tÁ¬r…)Ìò®£2ÏŸCéVlú&GPòµ±Œ£¼ðjgNFøýs4=ž(ŒpШˆÌQ欧¦gäLj÷½ÌùÕ6¯Êù¹³P.r?EUN$þ­×lïCf7šh²BùQö^j;H… óoîmÄ£A( 5‡ÜusJñ£Ø'öb<"¾1úÿÐoc éFÞî=“ |,·€3š'È~Cv÷”ˆ¡Ø(zËE™÷î%ýÞ/½¤¯xoK,§cùZ[±Ší” K±fÅPµ+9­J|ºgl¿­j_¬' ^äQDUʈÏYé^»T¨-yÛùýà¡,±åYd¡ô¦ÆD©ìš74O´Tu´TOo©êÏÒRÕŸÔRÕߨ›³xKUW´Tõ¥[ª·–ß™-U½PKUŸ?ÝO´TM´TOo©šÏÒR5ŸÔR5ߨ›³xKÕT´TÍ¥[ª·–ß™-U³PKÕÜŽNE“ÄfݲðOKnæí!5k·ÖÀOçäjŒhd˜ç—«d…ÍóbDªµXSNÛö_Ì»SÊs±ÔªsyêzV3¯ŒôIDA¡ÔÊSjï±krÝÈ_„m”JÄï—«=~ÎË ¥©p×¼Nj¾ü™¿X&vØŠ}÷ÒP¹½“ìÛ®nþg3fŸöG…‰³y³ß¢2àÈßx*‡‘#ÛµÄQн‘¥#‡•’åÏhäé:±ÀÌ‚à¡IKãFúÒ±ã8nÍÞßîÈì©#YþîÌ~ýu¼Š¢Wk³j¹¿Â9[w{Žu+\ò+¥Atâ,½B‘/uFLë»$žgu=UÅãRbÉ´‹U,Ù¦zIHSpýèÎ(R3Z¶‚Ø=vìA5O–,ư-&Ú0dÓ±®òS¾X×b Ñî—“ oQ$*N íYZ³+%– ,!iUXÐ*AˆM:Pd'¼FZÁâ™ s“╉z|WnWñQžâv²¡’[O¢)Ê„÷ì -Mêúô¯åJi~wÇ{cë‘Óhˆš’~2Ãü4'àŠèje Ï@˲ìmZë)™Xé°ø,Ké0Z¯öÿfTgmŠhs ϵ}æ³/>Ÿ–ªd‘?6ý” ¥±Þ´7à•w²vˆÏrŠý.z¹?QMÖÊ)¯VoÉLóú ïý­kZ[ÞeU“T[俞ßÃ}|1ò‡™šàd4¢NÏS–¯é™*Þ,ó³õè÷>nvºí³‹Ï›ÙQqªza5=ëk¾ÿ'¡ªä¢RX%´õä7ï¼ò4öXróÝü"X‘ÆÞ¼"Z{A)‹+VhïâeÙ{ÇÂ$Þ¨DãA2^¿Íã/­vë¸+˜‰V8xÖŽ|{©Souªô Iøå–ͺŠ$Kˆ2ÏÚåµü–Ì‚§äÀsd@aQ¿<{×b®ÒÚ$¼ÖWù‹-¨{ïPX–1BqÆl‡>[RðÙ1îùÎZ!ÿåa7szÙ97ð®©g0as#KšMW¼P¦Ñ ƒqw­úïmåC•WÉãýÎJ÷•÷ìlØLD-óØ3Ã;ëÇÄñvü è µŽâšzÕÚ;c÷~sõiI>Š:É³çØ®xZEÍÖiÈÖ»Îþó1øákëÿÚ­‹?SE¡ ‹×³w¸#/—V œ¿3¹ÑèéÞ·éÛPV‹Q'ïÓw±(·±sA& Ò™[ý]öhsý¸ó¹óÈôÇú…??#3ï0s>!TÇŸvƒ‚˜ó¹å”7ºM¼¢ÚT pXJÖy1þZôì—~¨NMrßzàCÑný®¤oæë‘$Ìœš±m i^{âò¶~¬ÅòܨyÎïA²0þžjÉRçè)Âð/¢@äúÙû9SÊ©†v~Ø¢x ì"cÙòHšÌeÅ+ÖTxª0ÒãºÈŽ˜‚K±èˆ—‡Íë®ã¢¨’3Ù³’X´=$¦Å•ebð•t‡bó¥08HºDü%öŸÿþ¿Íí5§8gÙqzÓ³ŽÁe[”ä`Šm EgÏÈ(køcÞ$S¼n›U¯™)&#KXNHçœ.ÝÂa}Xr—Jç)êƒõß3<#w–ãŽÕrWZ×Ê<‹=ÝôÐuY³üp³N$_áLšKc;è½± dž̧“D=o^§/ô¾«×Ìeñ{x¡Æ: Ô 88·šP’/ÍKMLŸ ¬¹W BÂÖ+³Êkï^›UÞñµYå5¾¯Ì¨°}m†ÉÕü²ñ„ÍÀ¤íÿÖ’î'„$:õN½:ÍôèPMª)Ù( ºNÕßÏ7]Ù¹G¶ÒÏ»>ui¼âiÿv䨗å€IÖ–êÿб<2ŽMX̸Îu,Dë…€DóyŸ@ô-ÍhÅÅ2hèÁtÿmš‰ð*¦_ o õóÁòú/M¾£) w.Cþ|æùmlj›@ÐÏ7=P#y•9ÎV•Zé¼I #¼ÊlQiSö'ä =I†bC¶Ö™ýzñYѬø¯ËØh¾ ±Ôx抠װuÝD2‹CÁŽQÈ¥Úe‹$³DÖߪ±•eX@ÿ×Ðþ—õ,%ˤø†zOéâiÕ3•ÝÞ ÆöýrKWÂÒµ Keή\’¨v)ßxÞÂSr˜;?þzØÔWÔk¥ßÇò,3gÉX{3äœo{bEE|WyR´Ì…¢±Ìª¨bU¬ˆ)žcȉ“ $xÿˆÆÖ>¶P ^}<+¢ª Bk¢xðàÁƒK(xð¾ï_\³sîºôÛg>äŽ9`W“ÛÕ£‹Ï­ºœ™.‰ïÜ{Þg·SyÝ©HHÇO;­¬Ü›xĸE¿‹g?rGJIÔwàiþ«Œ†}[ÔQú߉¼M‰ž ‡(¥Ä¿rW™3K%‚VÜöÞùÑÒdèO‹ó[.!é“A•î@ç²ogÝ/—×]Öº¸aßZívë¢{sDçŽï©Yeü‘{w’Ëtc²Ê1‡ã)%œnðõ¤}ü…®h}:;?ëÞˆÔŸžu/N:vzÙf-vÕjwÏŽ¯Ï[mvuݾºìœì2Öá<Èb‘™ªL³Xìx°)'û|lZ×3ý†Š×¥úìÞ|äTÌ=n=RòLȦ •áÀ¦!¶°Wú[ƒ =ý7õŠU¯Ã»LR¥Kw™•oUh„ìVÙþÖå”Yœ] Ì•hg"®o4jUöÉvÇâ̯-ƨ12Œ£Q;dìºÓ‚lI–lIc9Ù’dKÞ®l „K \I2„K \á—hIÉPTI—”Àà é.p‰&µ2Ïb—cC—@¸Â%.ÉOC¸$–E.pIæK3_ˆÂ%å± Â%¥1 Â%:á—d›á’Lû²0.p‰ÿÂ%.)R1¢0„K \¢Sgá—hÚ.,•9.p „K´.i.ɉ”…p „Kü#]»*ÄK2ŽgæiC0Ò=ùÈ—@¾$–PÈ—ø`È—@¾äÙÌg©Ð.È—@¾Dëú ù’ð€|‰úõƒ| äK _ùÈ—¬(ò%/Y;Kò%/Ѩò%E–+Ëë‘/i@¾D‹µÎ’,UV^ƒ„‰6K€1ˆ DLÒ32ˆ˜@Ä"&ù…¡E‘¤ †¥Š‡Å "&1ˆ DL b¢ðBÄ"&¯Í; “’¸)1i,+b"|e‹‹˜È½`Äg0â›Ë1â›`Ä¿eF<(ñ ÄG’ J<(ñ Äƒ¯å–dE•%¾I%”xMježÅ ÄcCPâA‰%”øŒñ4(ñ±,%”øÌ—f>õ”øòXJ|iŒ%^'£@‰%>ÛtPâ3íËrÀ€J¼ÿ”xPâ‹TŒh' J<(ñ:u† Äƒ¯i»°Tæ€J<(ñÚSâ›Å(ñ9±² ÄƒïÉøÚ•À@ŠÏ8ž¡ (BkÂXñ`ŃK(Xñ¾¬x°âŸÍ|– ð+¬x­ë+XñáV¼úõ+¬x°âÁŠ+~EÙ`Ń¿vdXñ`Åk@cÒ ÃV|‘EKÅbäzXñM°âµXñ,Ñ‚eåuðâµY1ÄxãÓó2ãAŒ1>¿0´(’tÁ°Tñ°X!b<ˆñ ƃ¯ð“‚bükóQ‚_gåbÄøæ²Äøfeb|ÄøbüþrÄø}ãß61Ìx0ã#I3Ìx0ãÁŒ×rƒ²¢J‚_ƒƒ¤ƒf¼&µ2Ïb0ヱ!˜ñ`ƃf|ÆxÌøXf|æK3Ÿ f|y¬3¾4F¯“Q`ƃŸm:˜ñ™öe9`ÀŒ3Þÿf<˜ñE*F´3Ìx:C0ãÁŒ×´]X*sÀŒ3Ìxí™ñûŘñ9Ѳ`ƃïéÛAÀÏ8^¡ 0BkÒÈñ ǃK(Èñ¾7äxãŸÍ|– ó9äx­ë+Èñár¼úõ9äxãAŽ9~Ea٠ǃ¿vtÈñ Çk@eÒ Çr|‘¥KÅ’äzÈñû Çk±îY²eËÊk¡Çk³~<øñàǧggàǃ~|~ahQ$é‚a©âa±B?üxðãÁ?^á-?üø×æ©?¾$.ËÅøñûËòã÷+ËðãåUÆ'rÌ´ç:½½à¹¿…O<ؽûP{â3jt4›òïáÁ~ìoÍhÖ7 ã€þ¹¿X«oÔê5ú°ÁžúÜBMjL‡±–9Ú¿~e7ï÷šw„Krå€Ñd¼w9ÓÖµíûÓ³-ÑɸÕc{4u¬÷ôÕñ6«×jÍúÏûlÙ”#û4q]«"4º÷–ËÖ­#"ÄéŸwç̵ïÆ?M‡Iç½ðæ;¼o èèídL5}ÌèEܳEˆùƒMoÏT|Eï3w¼(xî<¸BÓ@|ø|qÍιëÒoŸù;æ€]MnV.>·z|èrfºl$¾sïyŸÝNåu§"!?!ìT4r#Þãý.žýÈ©žPß5‚§ùw¬2¿lQ³Jéw|oè6%z*<{”ÿÊ]eÌ,•¼UqÛ{{ä“¡?-j•n¹$‚OUº˾u¿\^wYëâ†}kµÛ­‹îÍ;¾§öñGîÝIzîéÆdÍåÇSJ8ÝàëIûø ]Ñútv~Ö½©?=ë^œt:ìô²ÍZìªÕîž_Ÿ·Úìêº}uÙ9Ùe¬ÃyÅ"3U™f±þ°)'û|lZ×3ý†Š×¥úìÞ|äTÌ=n=RòL‘Œ¦ •áÀ¦±¢°W:ƒ =5ïU¯å(R¥Kw™•oUÈbìVÙþÖå”Yœ] Ì•hg"®o4jUöÉvÇâ̯-ÆjuÃ0vŒFí±ëN JYJË)u@©ã­+u@«Z‘$C«ZÐê€V‡–`E•„VG ’­huhR+ó,†VG06„V´: Õ­ŽŒñ4´:bY­hud¾4óÙûÐê(UÐê(QÐêÐÉ(hu@«#ÛthudÚ—å€V´:üÐê€VG‘Ší„¡Õ­:Chu@«CÓva©ÌV´: Õ¡½VÇA1­ŽœxYhu@«Ã?T1¶+ÃÞ@¯#ãx@6ˆ­Ù:Pì€b;b …b‡ï†b;žÍ|– ö‚b;´®¯Pì(v¨_?(v@±ŠPì€bÇŠ‚³¡ØÅ޵Ãâ ØÅ 8xzð ØQdS±0¹ÅŽ(vh±úYÂÅËÊëQíÐfQºÐí€nGzŽÝèv@·#¿0´(’tÁ°Tñ°X!A·ºÐí€nt;>Sèv@·ãµù+¡ÛQÇåbºËêv×âºr¿hò4ùÃåhò‡ Éƒ&žc< ž|,‹À“O>ó¥™Ï‡O¾K…|*ª¼ÖõTùðU^ýú*ª<¨ò Êƒ*¿¢mPåA•_;ÊTyPå5 4é…gU¾È2¦byr=TùCPåµX-éfå5‘åµY[ly°åÓ35°åÁ–[>¿0´(’tÁ°Tñ°X!-¶<Øò`˃-¯ðœ‚-¶ükóZ‚-_÷åblùÃeÙò‡•eØòrïÇÆ²G§ñljí¹No/xÆoþÝ›ßk»wjKßÝ;jt4›òïáÁ~ìo­Þ¬‡Í Ã8¨ýýÃZ}£V¯ín°§>·ÐAÓalã‡e‡ö¯_YçÍû½æáß’BA`4ï]NÆô‡um{Àþ´ÆlKôf"^õØMëÇ=}u¼ÍêµZs‡þsÀ>[ö#åˆÅ>M\ת-‚î½å²uëˆÈpúçÃ9sí»ñOÓáGÒi/¼øï[_\³sîºôÛg>äŽ9`W“ÛÕ£‹Ï­ºœ™.‰ïÜ{Þg·SyÝ©HHÇO;MƒÜŒwĸE¿‹g?rGª(Ôwàiþ«ŒÆ*[Ô„Rúßó¹M‰ž /¥Ä¿rW™3K%sUÜöÞùÀdèO‹Z [.©à“A•î@ç²ogÝ/—×]Öº¸aßZívë¢{sDçŽï©-`ü‘{w’{º1YEóöñ”N7øzÒ>þBW´>ŸuoDêOϺ';½l³»jµ»gÇ×ç­6»ºn_]vNvëpd±ÈLU&‡Y,‚þlÊÉ>›ÖÀõL¿¡âu)ƒ>»79s[”<“F£éBe8°i\(ì•N CD§CMyÕk%ÅÆ‰TéÒ]få[ò»U¶ÿu9egW³G%Ú™ˆëZ•}²Ý±8ók‹±ZÝ0Œ£Q;dìºÓ‚bGZ±£)Çĵe;¨3bÇ’ËkÍÅ–×tSì€D$: щHt¤[!Ñ¡BQ%!ÑQƒƒ¤C¢šÔÊ<‹=þ²Qs ÍiHs¤â; ÍiHs@šCî6¤9Ên¤9Jc¤9t2 ÒæÈ6Ò™öe9^r¤9<ñv%1c1ÚF0-?ÓD²/×— |á _@øâ%²Â¾Ð/“ |ድu¯ë¾ðeô°Aù¢¯§òEó{­ˆòEnä)”/^,,µ$ÊOäÄ@ÛBu<#À¦H%„˜Ä, f1 ˆY@ÌâÅJ&V: b©Lðª)Ä, f¡Q}…˜Ex@ÌBýúAÌb³€˜EyÄ,ŒW!baèHMÓ—¶ñ Ùx˜²°´ á@BÒš^ˆ5èCYìS,â­C"\;ìCb½+…Ú.ôUÊ®Q¤l ù°Šu¸ü…-H>@ò!=¿ä$ ù_ZIº`XªxX¬ ùÉH><ÙI©§Ôƒ–ÎJH<¤d,í¶„ŠBy|{PQ(‰“oáì[JEA\¸¸Š‚¿¼ï Þ·±ïÛïûmò¾·~ßòÈo ¿üò;ålò[§°Š* äw ’ä7ßšÔÊ<‹=®c(ÿZ³€þúèïÔ:Ðß@ý ô·6\O ¿ËnÐߥ1 èoŒúèïlÓþδ/Ë“ƒþg¹äïÐÏA³s±€Üçwtu+µy£±Íþ÷¿ìŸ›¾i3FŽõHú>2{³ÕRÿ±r‘9Š,­Ûá`ÈiF+.çTL÷ïЦf89à䀓NþÙ89àäúeà䀓¯­{]œ\µÖXŠñ=Øä}]Ùäb¢Ã{ǵyvä³9ùg6‘ QñM!+ŒõÃcÅ֌ʲd€B°Ñ{póáECcŸ…0 nPà¼ë‚)æ‚Èê°ÌuÉÍíá§ËŜ暦C5gñ™•X¬§ˆ3ŽÍn"/ýpæhPcfi6â'þ•Êrow|ŸÿS¥¬ø1¾¯ù?cÁ õºÉª9{?T¢̙љñœ•ç¬á,h”ÞwyKú«Ž°7*ÉÏhm7”³F´2)ïZϽk]y×úÜ»6rïÚPÞµ¯øsÂ%ýv:¥êUÿCÁ˜ÊuD;FzÖe÷aRðl›0Õ¾-—xoLItù–¿©ÎK2}ƒ "Ê™Ç#ï-ôÑÏdøÈDíØú‹*Í_4˜ŸÜŠ8é”Û@£n»Ü»Ð³Ê¦0kÈ»ŽrÈ<=P¤GX±é› @ÉcÔÆ2Žò«9á÷ÏÑ<ö|x¢0ÂA£"2G˜³žšž‘3©Ý÷2wæWÛ¼*ççÎB¸ÈýU9‘ø·^³½™Ýh¢É åGÙ{©í .Ì¿¹·¡4Ôr×ý]Ì)Åb?ž Ø‹ñˆøBÄèÿC;¼5¤=x»÷L*ð±ÜÎhž û ÙÝS"†b£è-eÞ»—ô{¿ô’¾âu¾-±œŽåstjelÅ*v´P6,ÅšCÕ®ä´*ñéž±ý¶ª}±ž0Xx‘DU)#>g¥gxíR¡¶ämçwôƒ‡°Ä–g‘…rЛ¥²kÞÐ<ÑRÕÑR=½¥ª?KKURKUcoÎâ-U]ÑRÕ—n©ÞZ~g¶TõB-U}þt?ÑR5ÐR=½¥j’xžÕõTK‰%Ó.V±d›ê%!MÁõ£;£HÍhÙ b÷رÕË)ö»èåþD5Yw(§¼Z½%3Íë/¼÷·®imy—UMRm‘ÿz~÷ñÆÈfj‚“ш:=OY¾L¤gªx³ÌÏÖ£ßû¸Ùé¶Ï.>ofG!Ä5ªê…Õô4®¯ùþŸ„ª^‹Ja=–ÐÖ“ß¼ó~ÈÓØc9ÈÍwó‹`E{óŠhí¥,®X¡½‹—YLdï x£Éxý6¿´Ú­ã®`$ZáàY;FðMì¥N½Õ©Ò+$á—[6ë*’,!ʦ œÁ„ÍTŒ,Uh6]ñB™òÓ‚ŠQ¨Xêõê¯YXQCEEüÿ²zŠ/{ JXV _ 1 {?÷ ãÁùæ¼ïÈŒÀ&fsè°îõƒ»³m•&dØâÅÄ £¨œÄDÜ$kï|X OIEÎê¬B,2]u•r‘L!™‡dÉJv‚/RãSRé+¶TºÔ+Zá+[vK½ô+£MGXoZ½2w…2Š|‰:ÝRu±{¼?qøïÒÉ,[¥Ÿ¢˜Ú¹Âˆ&}¸(…»\´íž½Ô™Ë4fÜo±³È:çJÖ8±¾¹RÄÌìxŽåÉÊÓ×'±ì'“·À_ÊYÒ|õ09Î_+"`¸Ð²Wd­å/²üUI¬«>g§OÐÑ;¹øƒn õ³—_÷ªä¬Ñˆ0<»è=ýK–òÌ»œ•¦ga…ÙÒK,ìU*…—öž4“{öŒ•ÎÁˆW~Ž»¨°w}¾Á•/Ž,Y«žíRùÓ… 7Ï^@·*/³WäGŸçD_s‘¤ †¥Š‡Å )æFž¬iÍFºUHKUÍqtgdÞ:ó,MÒÊ1ryÿö–¯ÀðÕÙ]Ø­½hýÌV&|×ê ô2ó<¬es±®4ËVêiu<‰ó²¾Ö:[™Ê‰šÄýÆ|©ªîzoiޝ´§4í'M:$_›Gò¥^·…“ñ7-,˜7íšÌ÷M¦|…Ò™r_|ÏPòrq¥ôøD/ ÆÝµê¿·•U^%÷;+=ÞWÞ³³ao0µÌcÏ ï¬ÇÛñ+ 3Ô:ŠhnèUkïŒÝûÍÕ§%ù(ê$Ìžc»âi5[§)[ï:ûÏÇà‡¯­ÿk·.þL…‚,^ÏÞጼ\>Z18ø±Ës£æ9¿ÉÂhø?xª%K9œ£§òŒA${¬ÐøiUÏtæ[˜ÎH!ª’Úñ#Ò“ðýF¡åAaú..‘E4C¢!éG¶É"ÿøÿˆ‘ëgïKäL)?¤Úùa‹â²#ˆŒeË#i2—¯XPaà©ÂHë";b . Ä¢#^6¯»Ž‹¢JÎdÏJbAtÒö˜>HW–‰ÁWÒ}ŠÍ—Âà éñ”Øþûÿ6·×œâœYdgÄéMÌ:—mQ’ƒ)¶5=#£¬áy“LñºmV½f¦@˜Œ,a9!sºt ‡õaÉ}\*§¨ÖW|ÏðŒÜYŽ;VË]i]+ó,ötÓC×eyÌò7ÂÍ:‘|…3i. Œí OôÆ,2ŸNõ¼y¾TÐû®Z\3#”Åïá…òÔ'&üMŽ!'N$xàý#[ûdØB4xõñ¬Xˆª.`­‰àÁƒ|,¡àÁû¾_ðàÁƒ6óY*¨ ¿0´(’tÁ°Tñ°X! *<¨ð Âƒ ¯ð‚ *ükóK‚ _åbTøú²TxQí§ÂËý8Ö~tœÈ¡æžëôö‚âú-,¨Æî݇ÚŸQ£ã Ù”öckuãàà ±a5£±¿X«oÔêµýà öÔç:h.h:Œmü°ÌáÐþõ+ë¼y¿×¼#ü[’CÈ(Œ&ã½Ëɘþ°®mØŸÖ˜m‰î=¶GSÇúqO_o³z­ÖÜ¡ÿ°Ï–ýH9b±O×µ*B¡{o¹l`Ý:"ŒžþyçpÎ\ûnüÓtø‘\áKï[‚Ãz;S1fÔ~íÙ"ÿÁ¦Fg*¾¢f;ÞVî<¸BàA|ø|qÍιëÒoŸù;æ€]MnV.>·z|èrfºl$¾sïyŸÝNåu§"!?!ìT´²roâãý.žýÈ)%Qß5‚§ùw¬2ömQoDéw|'ò6%z*¢”ÿÊ]eÌ,•ZqÛ{{äGK“¡?-jÌo¹„¤OUº˾u¿\^wYëâ†}kµÛ­‹îÍ;¾§f•ñGîÝI.oÐÉ*Çާ”pºÁדöñº¢õéìü¬{#RzÖ½8étØée›µØU«Ý=;¾>oµÙÕuûê²s²ËX‡ó ‹Efª29Ìb±CâÁ¦œìó±i \Ïô*^—8è³{ó‘S1÷¸õHÉ3i 7š.T†›†ØÂ^éo 2ôHôßÔ+V½Gì2I•.ÝeV¾U¡²[eûX—Sfqv50{T¢‰¸¾Ñ¨UÙ'Û‹3¿¶£ÆÈ0vŒFí±ëN ²%Y²%ådK-y»²%.pI$É.p „K \¢%%CQ%!\Rƒƒ¤C¸Â%šÔÊ<‹!\Œ !\á—@¸$c< á’XA¸Â%™/Í|!—”Ç*—”Æ(—èd„K \’m:„K2íËrÀ@¸Â%þG—@¸¤HňvÂ.p‰N!„K \¢i»°Tæ@¸Â%.Ñ^¸¤QL¸$'RÂ%.ñxtí ¨@/É8ž™_¤ ÁHkôäK _ù’XB!_â{€!_ù’g3Ÿ¥B» _ù­ë+äKÂò%ê×ò%/| äK _²¢PlÈ—@¾dí,=È—@¾DL ^|@È—Y®T,C®G¾¤ù-Ö:K²TYy &Ú,BÄ"&1IÏÈ bˆ˜ä†E’.–*+$ˆ˜@Ä"&1ˆ‰ÂC ˆ˜¼6ï$DLJâ¦\LĤ±¬ˆI£²Œˆ‰ÜËF|#¾¹#¾ Fü[făJ|$ɠăJ<(ñZnIVTIPâK`ptPâA‰×¤VæY J|06%”xPâA‰ÏOƒË"PâA‰Ï|iæSŸA‰/U Ä—Æ(Pâu2 ”xPâ³M%>Ó¾, (ñ ÄûA‰%¾Hňv ă¯SgJ<(ñš¶ Ke(ñ Äƒ¯=%¾YŒŸ+ J<(ñþ‘Œ¯] |¤øŒãÙ1Ú€"´&<€V=/1Äxãó C‹"I K‹ˆñ ƃb<ˆñ ?)ˆñ Æ¿6%ˆñ%qV.FŒo.KŒ³Å‰ñMãsˆñûËã÷AŒÛÄx0ãÁŒ$Ìx0ãÁŒ3^Ë ÊŠ* f| ’f<˜ñšÔÊ<‹ÁŒƆ`ƃf<˜ñãi0ãcYf<˜ñ™/Í|4˜ñå± ÌøÒf¼NFf|¶é`ÆgÚ—å€3Ìxÿ#˜ñ`Æ©ÑNÌx0ãuê ÁŒ3^Óva©Ì3Ìx0ãµgÆïcÆçDË‚f¼¤#lWa7>ãx\„6À­I ǃr|,¡ ÇûÞ`ãAŽ6óY*Ì äxãµ®¯ LJÈñê×äxãAŽ9äø…eƒrüÚÑE ǃ¯•I/ÈñE–.K’ë!ÇźgÉ–-+¯…¯Ír øñàǃŸž~<øñù…¡E‘¤ †¥Š‡Å üxðãÁ?üx…·üxðã_›§üø’¸,ãÇï/Ë߯,×{<6VytœÈ1Óžëôö‚çþ>ñ`÷îCí‰Ï¨ÑqÐlÊ¿‡û±¿5£qxX;Ü0Œúçþþa­¾Q«×è{ês 4©1Æ6~Xæphÿú•uÞ¼ßkÞþ-É!”F“ñÞådLX×¶ìOk̶D'âVíÑÔ±~ÜÓWÇÛ¬^«5wè?ì³e?RŽXìÓÄu­ŠÐ èÞ[.X·Žˆ§Þ9œ3×¾ÿ4~$÷›ïð¾% £·“1Õô1£qÏ!æ6½=Sñ½ÏÜñ¢à¹óà MñáóÅ5;ç®K¿}æCî˜v5¹X=ºøÜêñ¡Ë™é²‘øÎ½ç}v;•׊„tü„°SÑ\ÈxGŒ[ô»xö#w¤zB}מæß±Êhü²EÍ*¥ßñ½¡Û”è©ðìQJü+w•Y0³TòVÅmïí‘L†þ´¨Uºå’>Tét.ûvÖýryÝe­‹ö­Õn·.º7GtîøžÚÆ¹w'é¹§“U4—O)átƒ¯'íã/tEëÓÙùY÷F¤þô¬{qÒé°ÓË6k±«V»{v|}Þj³«ëöÕeçd—±çA‹ÌTer˜Å"øÿÁ¦œìó±i \Ïô*^—8è³{ó‘S1÷¸õHÉ3iD2š.T†›ÆŠÂ^é8 2ôHtDÔ¼W½–Sl H•.ÝeV¾U!‹±[eûX—Sfqv50{T¢‰¸¾Ñ¨UÙ'Û‹3¿¶«Õ ÃØ1µCÆ®;-(ud)u,§Ôq¥Ž·®Ô­huD’ ­hu@«ZZ‚!UZ%08H:´: Õ¡I­Ì³ZÁØZÐê€V´:2ÆÓÐêˆe´: Õ‘ùÒÌgïC«£<ùòXž|iŒO^'£À“O>Ûtðä3íËrÀ€'ž¼ÿB€„ÖäPåA•U>–PPå}Ï0¨ò Ê?›ù,òª<¨òZ×WPåÃTyõëª<¨ò Êƒ*ªüŠB´A•U~í(#PåA•×€Ò¤ž Tù"˘ŠåÉõPåA•×b ´¤K˜•×D–×fily°åÁ–OÏÔÀ–[lùüÂТHÒÃRÅÃb…¶<Øò`˃-¶¼Âs ¶<Øò¯Ík ¶|IÜ—‹±å—eËV–aË˽ËÆ'r|´ç:½½à¿_~>;nßk»wjKßÝ;jt4›òïáÁ~ìo­Þ¤ÿÕ7 ã f4ö÷kõZ½¶ßØß`O}n¡ƒ&0¦ÃØÆËí_¿²Î›÷{Í;¿%9„‚Àh2Þ»œŒéëÚö€ýiÙ–èÍD¼ê±=š:Ö{úêx›Õkµæýç€}¶ìGÊ‹}š¸®UZÝ{ËeëÖ‘áôÏ;‡sæÚw㟦äÓ^xñÞ·xôv2¦Z=fôÒíÙ"´üÁ¦7e*¾¢w—;^ô;w\¡m >|¾¸fçÜué·Ï|ÈsÀ®&·«GŸ[=>t93]6ß¹÷¼Ïn§òºS‘ŽŸv*š¹ïˆq‹~Ï~äŽTQ¨ïÁÓü;VU¶¨ ¥ô;¾çs›=^6­ë™~CÅëR}vo>r*æ·)y&>FÓ…Êp`Ó¸PØ+„A†‰N‡šòª×JŠ©Ò¥»ÌÊ·*ä1v«lÿërÊ,ήfJ´3×7µ*ûd»cqæ×cµºa;F£vÈØu§ÅŽÈzLÐ#È1qm!ÅŽYgÅŽE—×Âl_hyíÙ;üä,ªØ‰Ht@¢c™/`:#!щHt,7„DGy ’‰ŽW"Ñá÷s¯Z¢Ã(9æ€4¤9Rñæ€4¤9 Í¡ wÒe· Ò¥1 Ò:iHsd›iŽLû²/9ÒžÇx»’˜±˜ m#˜–‡Ÿi"Ù—ëK¾€ð„/ |ñÙóbÂAÛ á‹‚Â…3 ¾€ðEI„/fCȘð…7h,£‡ Ê}Í”/f!¥¹ÊE"O¡|ñba©/®|á'sAlL¸ï.ãò9œh[¨Ž¹›ÌÌž °)R çÅà lf³€˜Ä,Â>Zœ1 ˆY@Ìb³€˜Ä, f1 ˆYDÌk-Ä, f‘)f:’!ff…rÈÍj5MÍx"†ŽÔ4 qië¯í€‡) KKk}ˆÈ2‡>ô! ¡§>Dt­ïõ!’k‡}èC¬w¥PÛ…¾Š e_@ƒä$Þ¬äCt~—½–5€…ä$ ù°î"I K‹$ ùɇ';)õ”zÐÒY ‰‡Ô€Œ¥Ý–Ϫ¢ëw„Š‚®5z!T–TQˆ8ûSQˆ\¸€ŠB|xß¼oc9Þ·Þ÷Ûä}oý¾ ä7ß@~ù äwÊÙä·NaUÈï$Èo ¿5©•y{\ÇPþµ ¿þúèom¸ž@—Ý* ¿KcÐß:ô7ÐßÙ¦ýi_–&ý΄sÉß¡Ÿƒfçb¹ÏïèêþVjóFc›ýïÙ?7}Óf6Œë‘ô}döf«¥þcå"sYZ5¶Ã=,ÀÓŒV\,Ω>˜îß¡M!Ì prÀÉ'œü%²prÀÉõË$ÀÉ'_[÷º8¹j­±ã{°Éûº²ÉÅ6D‡÷&Žk=òìÈgsòÏl"¢â›BVë‡ÇŠ­•eÉ…"`£÷àæÃ‹†Æ> ?`Ü: Àx×SÌ-Õa™ë’›Û3ÂO—‹9Í 4M‡jÎâ3+±XOg ›ÝD^úáÌÑ ÆÌÒlÄOü+•åÞîø>ÿ§JYñc|_òÆ‚êu“Us0ö~¨D˜3£3ã9+ÏXÃYÐ(½ïò–ôWa_¯$C<£µ½® ˜­G+“ò®Ü»6”wm̽k3÷®Må]›ñŠ?'\Òo§SQª^µñ?Œ©\G´c¤g]v&õ϶ SíÛrù€÷Æ”D—où›ê¼$Óç0¨ 2 œy<òÞBïýL†LÔŽ­¿¨ÒüEƒùÉ­“N9± 4ê¶Ë½ ]0«\a ³†¼ë(‡ÌóçÐEz„›¾ÉÑ”G§Võ­XÅŽvʆ¥X³RWµ+9­J|ºWWÇ ¾Új_¬' ^äQDUʈÏYéÕ½v©P[ò¶ó[ÕÌÌ:‰€ä)ætžžq=ˆIôpIÑ–ß# ˆsâM{*ƒç æm[mÛÓ۶Ƴ´m'µm7ö®-Þ¶5m[cé¶í­å÷¢m[£@ÛÖÈkÛó] ‰¶­‰¶íém[óYÚ¶æ“Ú¶æ{×oÛšŠ¶­¹tÛöÖò{Ѷ­Y mkæµmÍí询c3,n™þ§%·˜Š”Â[k`§sÊ!ÆÙ ²ØóV²‚ æùV"/‚XéN‡öªÌ»SÊŸ²ÔZxyÞŽ¬ŽA”ˆÍB©•§ÔÞ'"êäj–¿4"Û(•´à.× üœ—ËRþúWáÎ|ŽÝ|Q6 Oìû4i¨ÜtJömW7ÿ³³Ï?û£ÂÄÙ¼‹ÙoQåBåo‡•Ï‘íZbL)‡ÞXÔ‘Q©0Àh¬.é:±ìÍ‚¡”K#MúÒ±á¦8nÍÞßîÈì©ãk^øÌ‘Àëx9E¯àéfÕrÝu¶¤›¨ë¥^È@EY¼¢DúžÍ-s{3Œ¤ÛڛɎȯ=Ôø­ÂŽAÍAX—ØŽßF §Ó‹lñ±¹¥ä–†mtÐàî0crˆ\ KLŒ#çW½0û¯ìÜ?ŸC>nSÑ÷8¹™­Xôú~©!×é=¡ÜÈ9~ží}œõiäM1##…B+·‰Ñe&OyE£×‚÷ǘ6¹&º©Rú?tŒ–ÉÖFÃ6Ó`Ú´zU µˆ ”ü¼Q)/RÂRK‚RUœÔÕ+SŠ1M%*3Úô©òTyÎÍ»Ì{ËêXYø6©ØZÿ6A|áu´bìÍuJii­Õðëq×5)Í„{¦lè;Þ÷V|< %M“'n1U¬äMéRÑ]Ë»‰1cŸ»=Ǻ.ù•Ò :q–^¡˜:#&ÙõÝ%ϳºžªâq³dÚź—lS½$¤Ù¼~Ìiô-[Á;ö š'–#ë“ ȶé\ù)_Bl1¼i÷ËÉ…7„(€7§…ö,­$–’pPc–Ú*,³•àĦN³(²?_#cñÌ…iNñÊD=¾+7Ñø€O<ÙPÉ 1Q°eÂ{va…Â'u}Ør¥`¿»ã½±õÈi4DMI?™a~šÈ EÌ·²†goYöæ±õ”L¬tX|–¥t­Wû3ª³6E´‹9†çÚ¾FóYŠÚŸOK­´ÀÈ›~Ê…þYoÚðÊ;Y;Äg9Å~½ÜŸ¨&ëå”W«·d¦yý…÷þÖ5­-ﲪIª-ò_ÏïáîÂÀùÃLãp2Q§çéÝW‚‰ôL«o–ùrœŸO{Wmï}ÜìtÛgŸ7³ãâÊYõÂ××|ÿOBë/ÈE¥ÜK(þÉoÞy?ä)ÿ±è»ùE°"å¿yE´ö‚RW¬ÐÞÅË,&ý÷Ž… H¼Q‰Fd¼~›Ç_ZíÖq÷¤½™l…ƒgíÁ7±—:õV§J¯°`nÙ¬«H²ä1ó¬]^apÉ,xJ¦UœAªÍ•yŒ,Uh6]ñB™òtÓ2QÔYêõê¯YîQCGOŽàeU_A”°¬¾ldA':î¡Ïƒó#$|ß‘A`ÌæÐaÝëwgÛ*¥Ê°Å‹ITF>‰‰¸?.HÖÞùž°œÕY…„eºê*E,™BÆ2“•ìõ¤‡º¤ÒW m©t©W´ÂW¶ìâšz©jF›Ž°4Þ´¦fî eDuºÿ¤êb÷xâðߥ“Y¶J?E;0µ'rë„9Mú4pQ w¹hÛ…={©3)á¡Ùx‹EÖ9W²Æ‰õÍ•‚ofÇs,OVž¾>‰e?™„¼¦ø P΢櫇ùËqþj\YÅ…–½"ël•Ø(‘å¯Jbý+Xõ9;}‚ºßÉÅt©ê½üºW%gF¤ ø€a¥jÜâÑ ÁvYÊ3ïrrTšž…&^/±°W©^Ú{ÒLîÙ3V:#^ù9î¢ÂÞõUøWn¼8²Ty•<Þï¬ôx_yÏΆ½ÁDÔ2V3¼³~LoǯÀÔPë(N ¹¡W­½3vï7WŸ–䣨“|0{ŽíЧUÔ4C¶ÞuöŸÁ_[ÿ×n]ü™* >½Ã%y¹|´bœyàü‰ FO÷¾M߆ҰZØù‹:yŸ¾‹E¹¥˜ 2é•ÎÜêï²G›ëÇïÈoD¦?Ö/üù™y‡™#ð É :þ´„¯Ïu(§ü¸ÑmâÕ¦ÐR؃Œñ×¢g¿ôCÍôh’ûÖŠFpëw%ü{0_$aæÔŒmKHSäï”·}ðc-–çFÍs~’…Ñðð´T–r8GO D#ƒHöX¡ñÒª"žéÌ·0‘Bê%µãG¤'áû¢ÔƒÂô]\"‹h†DCÒl“E&þñ† "×ÏÞ—È™RI5´óÃÅeGË–Ghe.Á^±6 ‚ÓS…‘×EvÄ\ˆEG¼<_wuE•œ‰±•Ä‚è¤í!1}(®,ƒ¯¤ûX\Zƒƒ¤KÄOPbÿùïÿÛÜ^sŠsf‘§7m0ë\¶EI¦ØÖPtöŒŒ²†?æM2Åë¶Yõš™a2²„å„tÎéÒ-Ö‡%÷q©Ô§¢>X_‡>Ã3rg9îX-Â¥u­Ì³ØSs]—å1Ëß7ëDòuפ¹4€0¶ƒ>Ñ;°plÈ|:IÔóæuúR×ï»jqÍŒP¿‡ÊSgœ˜ð7ñ„ðæÁ¯y…ã­]ί³hU o•·l¶¦!Jb˜Â’‹dþâd`¢÷õ»ô¥1[£,°D™—§s–(gi%_†à˜³:¹ÆœNev*¿£kŽIL¨g÷Œ ©ÜRåÉËkÏ].š”X¸p¶¦ŽVò¸ÑÁM¤ÊË٥ņ:¾vfyZa™¸`ªµ÷ÑÈ78\â¤×857´ÐÐ"½1>4"˜‚Ë.èc¬J ‚ƒs« }ûÒ¼4ÑÄô¹¡{Õ 4,h½2«¼öîµYå _›U^ãûÊŒ Ø×f˜\Í/›Qo@8Ð LÚþo-éþy"±!AxA¢#PïäÑ«ÓLÕ¤š’¢ëÔYýý|Ó•{d+ý¼ëS—Æ+žöoGŽ}Y˜dm©ùO¡cË#3áØ„ÅŒ«oÇB´^(H4_a÷YDßÒŒV\,ƒ†L÷ïЦ™4°bú¥P}ñæÎj1S?,¯A¡ÿÒä;š²pá2äÏgžßƦ¶ ý|Óý’W™álU©u‘Λ´0«Ì•6A0eÿwBžÙ“ôh(6dûa½‘Ù¯ŸÍŠÿ±Œæ«`ËAg®z [÷ÐM$³8tìÕ\ª]¶H2Kdý¡º[Y†Ôø í)PÏÒQ²LŠo¨÷”.žV=SÙí½‰`lß/·t%,]»°Tæ,PáÊ•!‰j—òç-<%‡¹ó㯇ý@}E½ÖXŠñ},Ï2ó@1‘Ñxö—Œµ7CÎIð¶'VTÄw•'E@Ë\(ˬŠ*VÀŠ˜âù8†œ8YàA‚÷hlí“a UÐàÕdzb!ªº€!´&:€ÔžøŒͦü{x°û[« Ã8¨ýýÃZ}£V¯íï×6ØSŸ[è Y—é0¶ñÃ2‡Cûׯ¬óæý^óŽðoI!X0šŒ÷.'cúú¶=`Zc¶%º`F{l¦Žõãž¾:ÞfõZ­¹Cÿ9`Ÿ-û‘rÄbŸ&®kU„ôA÷ÞrÙÀºuDÀ:ýóÎ᜹öÝø§éð#¹– Þ·ñôv2¦Wq̨¥Ø³EÄûƒM¯÷T|E w¼ |î<¸BJA|ø|qÍιëÒoŸù;æ€]MnV.>·z|èrfºl$¾sïyŸÝNåu§"!?!ìT´gràãý.žýÈ)ÚPß5‚§ùw¬2`mQ»Oéw|wí6%z*\”ÿÊ]eÌ,•°WqÛ{{äÇ%“¡?-j6o¹Ä‘OUº˾u¿\^wYëâ†}kµÛ­‹îÍ;¾§ŒñGîÝI.$ÐÉ*Çާ”pºÁדöñº¢õéìü¬{#RzÖ½8étØée›µØU«Ý=;¾>oµÙÕuûê²s²ËX‡ó ‹Efª29Ìb±áÁ¦œìó±i \Ïô*^—8è³{ó‘S1÷¸õHÉ3iÈ4š.T†›³Â^éÙ 2ôHô”ÔÿT½¦]ìçH•.ÝeV¾U¡Æ±[eûX—Sfqv50{T¢‰¸¾Ñ¨UÙ'Û‹3¿¶£ÆÈ0vŒFí±ëN !Y!åBy»!DH$ÉD$B ¢%BQ%!Rƒƒ¤C"!šÔÊ<‹!Œ !‰H„@"$c< ‰XA"!™/Í|ä?$BÊc$BJc$Bt2 !É6!™öe9` ‰ÿ#$B R¤bD;aH„@"D§Î!Ñ´]X*s ‰H„h/Ò(&’) ‰H„øG<ºvüÈ„dÏL Ò†¤5äB! PH,¡ ñ=À Pȳ™ÏR¡] PˆÖõB!á¡õë¡…@(B! YQ(6„B ²vj„B ¢O/„BŠ,W*–!×#Ò€Pˆk%Yª¬¼±m–!¹È…¤gd \äBò C‹"I K‹äB ¹È…@.Dá!…\äB^›wr!%qS.&ÒXV.¤QYF.Dîå#>ƒß\Žß#þ-3âA‰%>’dPâA‰%”x-·$+ª$(ñ%08H:(ñ ÄkR+ó,%>‚J<(ñ ÄgŒ§A‰e(ñ Äg¾4ó©Ï Ä—Ç*PâKc(ñ:J<(ñÙ¦ƒŸi_–”xPâý Äƒ_¤bD;aPâA‰×©3%”xMÛ…¥2”xPâA‰×žß,F‰Ï‰•%”xÿHÆ×®¾R|Æñì˜m@ZÀŠ+¬øXBÁŠ÷ýÀ`Ńÿlæ³T€Xñ`Åk]_ÁаâÕ¯Xñ`ŃV=;?üxðãó C‹"I K‹øñàǃ~<øñ o)øñàÇ¿6O%øñ%qY.Æß_–¿_Y†/÷xl¬òè4þ8‘c¦=×éíÏý-|âÁî݇ÚŸQ£ã Ù”öckFãð°v¸aôÏýýÃZ}£V¯íï77ØSŸ[è Ié0¶ñÃ2‡Cûׯ¬óæý^óŽðoI¡0šŒ÷.'cúú¶=`Zc¶%z8·zl¦Žõãž¾:ÞfõZ­¹Cÿ9`Ÿ-û‘rÄbŸ&®kU„A÷ÞrÙÀºuD„8ýóÎ᜹öÝø§éð#é¼Þ|‡÷-½Œ©¦½ˆ{¶1°é홊¯è}æŽÏWhˆŸ/®Ù9w]úí3rǰ«ÉíÀêÑÅçV]ÎL—Äwî=ï³Û©¼îT$¤ã'„ŠæBnÄ;bÜ¢ßų¹#Õê»Fð4ÿŽUFã—-jV)ýŽï ݦDO…gRâ_¹«Ì‚™¥’·*n{oü@`2ô§E­Ò-—DðÉ Jw sÙ·³î—Ëë.k]ܰo­v»uѽ9¢sÇ÷Ô>0þȽ;IÏ=ݘ¬¢¹üxJ §|=i¡+ZŸÎÎϺ7"õ§gÝ‹“N‡^¶Y‹]µÚݳãëóV›]]·¯.;'»Œu8²Xd¦*“Ã,Áÿ6ådŸMkàz¦ßPñº”ÀAŸÝ›œŠ¹Ç­GJžI#’Ñt¡2Ø4VöJÇa¡G¢#¢æ½êµœbEªté.³ò­ YŒÝ*ÛÿÀºœ2‹³«Ù£íLÄõF­Ê>ÙîXœùµÅX­nƎѨ2vÝiA©#K©ã`9¥Ž(u¼u¥hu@«#’dhu@«ZÐêÐ ¡¨’Ðê(ÁAÒ¡Õ­MježÅÐêƆÐê€V´: Õ‘1ž†VG,‹ Õ­ŽÌ—f>{Zå± Z¥1 Z:­hud›­ŽLû²0Ðê€V‡ÿZÐê(R1¢0´: Õ¡Sg­huhÚ.,•9Ðê€V´:´×ê8(¦Õ‘/ ­huø‡*ÆveØèud/èÑÑ£5[ŠPì€bG,¡Pìð}ÂPì€bdz™ÏRÁ^Pì€b‡ÖõŠáÅõëÅ(v@±ŠPìXQp6; Ø±vX; Ø¡O/;Š,`*&×£ØqÅ-V?K¸xYy=ªÚ, B·ºÐíHÏÑ ÛÝèvä†E’.–*+$èv@·ºÐí€n‡Âg Ýèv¼6%t;Jâ¸\L·ã`YÝáâZ\·Cî÷M>ƒ&¸Mþ4yÐäÁ“O>’dðäÁ“O‚'žD‘Å>Å"Þ:ô!µÃ>ô!Ö»R¨íB_¥ì EÊ’«X‡Ë_Ø‚ä$ÒóH>@ò’ù…¡E‘¤ †¥Š‡Å ’|€äÓ”zJ=h鬄ÄCj@ÆÒnK¨(”Ç·…’8ùQQξ¥TÄ…‹«(øûÀûÎà}Ëñ¾ ð¾ß&ï{ë÷m ¿üòÈo ¿SÎv ¿uÚ«¨’@~—Àà é@~ù­I­Ì³Øã:†ò¯å1 èo ¿þN­óý ô7Ðß@kÃõú»ìVý]£€þÖÉ( ¿þÎ6èïLû²09èïp&œKþý4; È}~GW÷·R›7ÛìÿËþ¹é›6³aäXô ï#³7[-õ+™£ÈÒª±îñ`†œf´âbqNõÁtÿm af€“N89àä/‘=€“N®_&N8ùÚº×uÀÉUk¥߃MÞוM.¶!:¼7q\ë‘gG>›“f™5ß²ÂøX?G§VÆV¬bG»eÃR¬Y1TíJN«ŸîÛo«Úë ƒ…9@Q•2âsVz†×.jKÞv~«š™Y'<ÅœÎÓ36‚˜D—mù=²€8'Þ´§2xÞ`>Ѷ5ж=½mk©mk¾±wmñ¶­©hÛšK·mo-¿mÛšÚ¶f^ÛÖÜŽþ*16Ãòè–éZr‹©hA©!¼µÖx:§bœ­ ‹=oa%+jžo%ò"ˆ•îtPa¯Ê¼;¥ü)K­…—çíÈê”ñG‰Ø,”ZyJí}"¢N®fùK#²RI þàr ÊÏy¹,å¯îÌ×éØÍeó—ðľ_A†ÊM§dßvuó?›1ûü³?*LœÝÈ»˜ýU.”aPþvX9ðÙ®%Æ”‚qèE9• ŒÆšáà’®ËÞü!9J¹4Ò¤/û1jŠãÖìýíŽÌž:¾6á…Ï ¼Ž—CQô žnV-÷×]gKº‰º^ê… T”Å+J¤ïÙÜ2·7ÃHºÍ¡½™ìˆüÚC ‰ß*ìÔ„u‰íømr:½Èÿ›[JniØF î›­ÖD/%&ÆŠó«^‡ÆýWvÏ!7ˆ©è{œÜÌŒV,z}¿ÔëôžPnä?Ïö>Îú4 ò¦˜‘ŽB¡•ÛÄè2“§¼¢ÑkÁûcL›Ü?ÝT)ý:FËäk£a›i0mZ½*†ZDPÊ ~^¨”) a©%A©*Nêê•© ئ•múTyª<çæ]æ½eu ¬,|›Tl­› ¾p:Z1öæ:¥´´ÖÀŠjøõ¸ëšÎ”fÂ=S6ôï{+>Ð’¦É·˜*Vò¦t©è®åÝʱÏÝžcÝŠ—üJi8K¯Ð L“ìúçY]OUñ¸ÀY2íbÝK¶©^Òl^?æ4 úŒ–­àˆ{PÍK‹‘u‹I‰dÛt®ü”/!¶Þ´ûåäÂBÀ›ŠÓB{–VKI8¨1 Km–ÙJpbS§€YÙŸ¯‘‚±xæÂ4§xe¢ß•›h|@‡§žl¨ä†˜(ØŠ2á=»°ÇBᓺ¾Hl¹R°ßÝñÞØzä4¢¦¤ŸÌ0?Í ä„"æ[YÃ3€·,{óØzJ&V:,>ËR:ŒƒÖÇ«ý¿ÕY›"ÚÅÃsm_£ù,Eí‹Ï§¥VZ`äÇM?åBÿ¬7í xå¬Ⳝb¿‹^îOT“u‡rÊ«Õ[2Ó¼þÂ{ëšÖ–wYÕ$Õù¯ç÷pwa`Œüa¦q8¨Óóôî+ÁDz¦Õ7Ë|9Nϧ½«¶÷>nvºí³‹Ï›Ùq qå¬za?ëk¾ÿ'¡õä¢Rî%ÿä7ï¼ò”ÿXôÝü"X‘òß¼"Z{A)‹+Vhïâe“þ{ÇÂ$Þ¨D#H2^¿Íã/­vë¸{ÒÞL¶ÂÁ³vŒà›ØKz«S¥WHX0·lÖU$Yò˜yÖ.¯0¸d<%ž# K æÙ»s•Ö&‘º¾ö`lAÝ{‡Â²ô8Š3fܶ¤Há³ÃåóµB”̃æô²snà]Ó*Î ÕæÊg§OP÷;¹øƒn U½—_÷ªä¬Ñˆ0¬T[—–Çà éñ”Øþûÿ6·×œâœYdgÄéMÌ:—mQ’ƒ)¶5=#£¬áy“LñºmV½f¦@˜Œ,a9!sºt ‡õaÉ}\*õ©¨ÖסÏðŒÜYŽ;V‹pi]+ó,öÔÜC×eyÌò7ÂÍ:‘|Ý5i. Œí OôÆ,2ŸNõ¼y¾Ôõû®Z\3#”Åïá…òÔ'&üMŽ!'N$xàý#[ûdØB4xõñ¬Xˆª.`­‰àÁƒ|,¡àÁû¾_ðàÁƒ6óY*¨ ¿0´(’tÁ°Tñ°X! *<¨ð Âƒ ¯ð‚ *ükóK‚ _åbTøú²TxQí§ÂËýoêè4þ8‘ƒº=×éíó[˜%Ý»µ'>£FÇA³)ÿìÇþÖêÆÁÁAcÃ0jFcÿ°VߨÕkûûÆ{ês 4ë2Æ6~Xæphÿú•uÞ¼ßkÞþ-É! F“ñÞådLX×¶ìOk̶D,ÂhíÑÔ±~ÜÓWÇÛ¬^«5wè?ì³e?RŽXìÓÄu­Š>èÞ[.X·ŽX§Þ9œ3×¾ÿ4~$×Äâ‚Ãû– žÞNÆô*޵{¶ˆx°éõžŠ¯¨Á᎔ÏWH)ˆŸ/®Ù9w]úí3rǰ«ÉíÀêÑÅçV]ÎL—Äwî=ï³Û©¼îT$¤ã'„ŠöLîþBW´>ŸuoDêOϺ';½l³»jµ»gÇ×ç­6»ºn_]vNvëpd±ÈLU&‡Y,ö"<Ø”“}>6­ë™~CÅëR}vo>r*æ·)y& ™FÓ…Êp`Ó`VØ+=›A†‰ž’úŸª×´‹ý©Ò¥»ÌÊ·*Ô8v«lÿërÊ,ήfJ´3×7µ*ûd»cqæ×cÔƎѨ2vÝiA $K ¤±œ@H!oW !‰$!D$B´äQ(ª$$BJ`ptH„@"D“Z™g1$B‚±!$B ‰H„dŒ§!Ë"H„@"$ó¥™ü‡DHy¬‚DHiŒ‚DˆNFA"!Ù¦C"$Ó¾, $B â„D$BŠTŒh' ‰H„èÔB"!š¶ Ke$B ‰í%BÅ$Br"e!‰ÿˆG×®€¿™Œã™IAÚ°‚´†ü@(B! ‰%B!¾B! y6óY*´ B! Ѻ¾B($< ¢~ý ¡…@(B!+ ņP„BÖN­ƒP„B4òéEâƒPH‘åJÅ2äz„B Ñb­³$K••× ¢Í äB ¹ôŒ r! \H~ahQ$é‚a©âa±B‚\äB ¹È…(<¤ \ÈkóNB.¤$nÊÅäBËÊ…4*ËȅȽ`Äg0â›Ë1â›`Ä¿eF<(ñ ÄG’ J<(ñ Äƒ¯å–dE•%¾I%”xMježÅ ÄcCPâA‰%”øŒñ4(ñ±,%”øÌ—f>õ”øòXJ|iŒ%^'£@‰%>ÛtPâ3íËrÀ€J¼ÿ”xPâ‹TŒh' J<(ñ:u† Äƒ¯i»°Tæ€J<(ñÚSâ›Å(ñ9±² ÄƒïÉøÚ•À@ŠÏ8ž¡ (BkÂXñ`ŃK(Xñ¾¬x°âŸÍ|– ð+¬x­ë+XñáV¼úõ+¬x°âÁŠ+~EÙ`Ń¿vdXñ`Åk@cÒ ÃV|‘EKÅbäzXñM°âµXñ,Ñ‚eåuðâµY1ÄxãÓó2ãAŒ1>¿0´(’tÁ°Tñ°X!b<ˆñ ƃ¯ð“‚bükóQ‚_gåbÄøæ²Äøfeb|ÄøbüþrÄø}ãß61Ìx0ã#I3Ìx0ãÁŒ×rƒ²¢J‚_ƒƒ¤ƒf¼&µ2Ïb0ヱ!˜ñ`ƃf|ÆxÌøXf|æK3Ÿ f|y¬3¾4F¯“Q`ƃŸm:˜ñ™öe9`ÀŒ3Þÿf<˜ñE*F´3Ìx:C0ãÁŒ×´]X*sÀŒ3Ìxí™ñûŘñ9Ѳ`ƃïéÛAÀÏ8^¡ 0BkÒÈñ ǃK(Èñ¾7äxãŸÍ|– ó9äx­ë+Èñár¼úõ9äxãAŽ9~Ea٠ǃ¿vtÈñ Çk@eÒ Çr|‘¥KÅ’äzÈñû Çk±îY²eËÊk¡Çk³~<øñàǧggàǃ~|~ahQ$é‚a©âa±B?üxðãÁ?^á-?üø×æ©?¾$.ËÅøñûËòã÷+ËðãåUÆ'rÌ´ç:½½à¹¿…O<ؽûP{â3jt4›òïáÁ~ìoÍhÖ7 ã€þ¹¿X«oÔêµýýý öÔç:hRc:Œmü°ÌáÐþõ+ë¼y¿×¼#ü[’C(Œ&ã½Ëɘþ°®mØŸÖ˜m‰NÄ­Û£©cý¸§¯Ž·Y½VkîÐØgË~¤±Ø§‰ëZ¡Aн·\6°n!Nÿ¼s8g®}7þi:üH:ï…7ßá}K@Go'cªécF/âž-BÌlz{¦â+zŸ¹ãEÁsçÁšâÃç‹kvÎ]—~û̇Ü1ìjr;°ztñ¹ÕãC—3Óe#ñ{Ïûìv*¯; éø a§¢¹ñŽ·èwñìGîHõ„ú®<Í¿c•Ñøe‹šUJ¿ã{C·)ÑSáÙ£”øWî*³`f©ä­ŠÛÞÛ#?˜ ýiQ«tË%|2¨Òè\öí¬ûåòºËZ7ì[«Ýn]toŽèÜñ=µŒ?rïNÒsO7&«h.?žRÂé_OÚÇ_èŠÖ§³ó³îHýéY÷â¤Óa§—mÖbW­v÷ìøú¼ÕfW×í«ËÎÉ.c΃,™©Êä0‹EðÿƒM9ÙçcÓ¸žé7T¼.%pÐg÷æ#§bîqë‘’gÒˆd4]¨ 6…½Òqdè‘舨y¯z-§Ø@‘*]ºË¬|«Bc·Êö?°.§Ìâìj`ö¨D;q}£Q«²O¶;g~m1V«†±c4j‡Œ]wZPêÈRê8XN©ãJo]©ZÐêˆ$ZÐê€V´:´C(ª$´:J`pthu@«C“Z™g1´:‚±!´: Õ­hudŒ§¡ÕË"hu@«#ó¥™ÏÞ‡VGy¬‚VGiŒ‚V‡NFA«ZÙ¦C«#Ó¾, ´: Õá„V´:ŠTŒh' ­huèÔB«Zš¶ Ke´: Õ­íµ:ŠiuäÄËB«Zþ¡Š±]özÇ‹z´AôhÍÖb; ØK(;|Ÿ0; Øñlæ³T°; Ø¡u}…bGx@±CýúA±ŠPì€b;Vœ Å(v¬Å(vhÀÁÓ €ÅŽ" ˜Š…Éõ(v@±C‹ÕÏ.^V^j‡6‹‚Ðí€nt;Òs4èv@·ºù…¡E‘¤ †¥Š‡Å ºÐí€nt; Û¡ð™B·º¯Í_ ÝŽ’8.Óí8XV·C¸¸×íû=@“Ï É.G“?M4yðäÁ“$4xòå± <ùÒž¼NF'ž|¶éàÉgÚ—å€Oãx!|„6 ­É Êƒ*ª|,¡ ÊûžaPåA•6óY*ä TyPåµ®¯ Ê‡¨òê×TyPåA•UTù…hƒ*ªüÚQF Êƒ*¯¥I/<¨òE–1Ë“ë¡Ê‚*¯ÅhI—0+¯‰,¯ÍÒ Øò`˃-Ÿž©-¶<Øòù…¡E‘¤ †¥Š‡Å ly°åÁ–[ly…çly°å_›×lù’¸/cË.Ë–?¬,Ö—{?6–=:?NäøhÏuz{Á3~óïÞø^Û½ûP[úîÞQ£ã Ù”öckõ&ý¯¾a5£±¿X«oÔêµýÆá{ês 41Æ6~Xæphÿú•uÞ¼ßkÞþ-É!F“ñÞådLX×¶ìOk̶Do&âUíÑÔ±~ÜÓWÇÛ¬^«5wè?ì³e?RŽXìÓÄu­ŠÐ"èÞ[.X·Žˆ §Þ9œ3×¾ÿ4~$ö‹ïð¾%À£·“1Õê1£—nÏ¡å6½)Sñ½»Üñ¢ß¹óà mñáóÅ5;ç®K¿}æCî˜v5¹X=ºøÜêñ¡Ë™é²‘øÎ½ç}v;•׊„tü„°SÑ4ÈÍxGŒ[ô»xö#w¤ŠB}מæß±Êh¬²EM(¥ßñ=ŸÛ”è©ðâQJü+w•Y0³T2WÅmïí‘L†þ´¨ºå’ >Tét.ûvÖýryÝe­‹ö­Õn·.º7GtîøžÚÆ¹w'é±§“U4oO)átƒ¯'íã/tEëÓÙùY÷F¤þô¬{qÒé°ÓË6k±«V»{v|}Þj³«ëöÕeçd—±çA‹ÌTer˜Å"èÿÁ¦œìó±i \Ïô*^—8è³{ó‘S1÷¸õHÉ3iô1š.T†›Æ…Â^é$ 2ôHt:Ô”W½VRlœH•.ÝeV¾U!±[eûX—Sfqv50{T¢‰¸¾Ñ¨UÙ'Û‹3¿¶«Õ ÃØ1µCÆ®;-(v¤;rL\[F±ƒ:(v,¹¼ÖXlyM7ÅHt@¢è€DGj±:ñ U%08H:$: Ñ¡I­Ì³Øã/å1Òæ€4G*¾Òæ€4¤9´ánCš£ìVAš£4FAšC'£ ÍiŽlÓ!Í‘i_–ã%GšÃóoW33¡ÍaÓòð3M$ûr} ¾€ð„/^"{ |á ý2 ¾X[÷ºá oÐXF”/úz*_4¾×Š(_äFžBùâÅÂRK¢|ñDN ´-TÇ3lŠTBˆY@Ìb³€˜Ä,^¬db¥Ã f‘ʯšBÌbÕWˆY„Ä,Ô¯Ä, f1 ˆY”GÌÂx"†ŽÔ4 qië¯í€‡) K úô!4 ­é…Xƒ>D‘Å>Å"Þ:ô!µÃ>ô!Ö»R¨íB_¥ì EÊ’«X‡Ë_Ø‚ä$ÒóH>@ò’ù…¡E‘¤ †¥Š‡Å ’|€äÓ”zJ=h鬄ÄCj@ÆÒnK¨(”Ç·…’8ùQQξ¥TÄ…‹«(øûÀûÎà}Ëñ¾ ð¾ß&ï{ë÷m ¿üòÈo ¿SÎv ¿uÚ«¨’@~—Àà é@~ù­I­Ì³Øã:†ò¯å1 èo ¿þN­óý ô7Ðß@kÃõú»ìVý]£€þÖÉ( ¿þÎ6èïLû²09èïp&œKþý4; È}~GW÷·R›7ÛìÿËþ¹é›6³aäXô ï#³7[-õ+™£ÈÒª±îñ`†œf´âbqNõÁtÿm af€“N89àä/‘=€“N®_&N8ùÚº×uÀÉUk¥߃MÞוM.¶!:¼7q\ë‘gG>›“f™5ß²ÂøX?G§VÆV¬bG»eÃR¬Y1TíJN«ŸîÛo«Úë ƒ…9@Q•2âsVz†×.jKÞv~«š™Y'<ÅœÎÓ36‚˜D—mù=²€8'Þ´§2xÞ`>ѶÕѶ=½m«?KÛVRÛVcïÚâm[]Ѷ՗nÛÞZ~/Ú¶Õ ´mõ¼¶­>ߥhÛšhÛžÞ¶5Ÿ¥mk>©mk¾±wmñ¶­©hÛšK·mo-¿mÛšÚ¶f^ÛÖÜŽþ*16Ãòè–éZr‹©hA©!¼µÖx:§bœ­ ‹=oa%+jžo%ò"ˆ•îtPa¯Ê¼;¥ü)K­…—çíÈê”ñG‰Ø,”ZyJí}"¢N®fùK#²RI þàr ÊÏy¹,å¯îÌ×éØÍeó—ðľ_A†ÊM§dßvuó?›1ûü³?*LœÝÈ»˜ýU.”aPþvX9ðÙ®%Æ”‚qèE9• ŒÆšáà’®ËÞü!9J¹4Ò¤/û1jŠãÖìýíŽÌž:¾6á…Ï ¼Ž—CQô žnV-÷×]gKº‰º^ê… T”Å+J¤ïÙÜ2·7ÃHºÍ¡½™ìˆüÚC ‰ß*ìÔ„u‰íømr:½Èÿ›[JniØF î›­ÖD/%&ÆŠó«^‡ÆýWvÏ!7ˆ©è{œÜÌŒV,z}¿ÔëôžPnä?Ïö>Îú4 ò¦˜‘ŽB¡•ÛÄè2“§¼¢ÑkÁûcL›Ü?ÝT)ý:FËäk£a›i0mZ½*†ZDPÊ ~^¨”) a©%A©*Nêê•© ئ•múTyª<çæ]æ½eu ¬,|›Tl­› ¾p:Z1öæ:¥´´ÖÀŠjøõ¸ëšÎ”fÂ=S6ôï{+>Ð’¦É·˜*Vò¦t©è®åÝʱÏÝžcÝŠ—üJi8K¯Ð L“ìúçY]OUñ¸ÀY2íbÝK¶©^Òl^?æ4 úŒ–­àˆ{PÍK‹‘u‹I‰dÛt®ü”/!¶Þ´ûåäÂBÀ›ŠÓB{–VKI8¨1 Km–ÙJpbS§€YÙŸ¯‘‚±xæÂ4§xe¢ß•›h|@‡§žl¨ä†˜(ØŠ2á=»°ÇBᓺ¾Hl¹R°ßÝñÞØzä4¢¦¤ŸÌ0?Í ä„"æ[YÃ3€·,{óØzJ&V:,>ËR:ŒƒÖÇ«ý¿ÕY›"ÚÅÃsm_£ù,Eí‹Ï§¥VZ`äÇM?åBÿ¬7í xå¬Ⳝb¿‹^îOT“u‡rÊ«Õ[2Ó¼þÂ{ëšÖ–wYÕ$Õù¯ç÷pwa`Œüa¦q8¨Óóôî+ÁDz¦Õ7Ë|9Nϧ½«¶÷>nvºí³‹Ï›Ùq qå¬za?ëk¾ÿ'¡õä¢Rî%ÿä7ï¼ò”ÿXôÝü"X‘òß¼"Z{A)‹+Vhïâe“þ{ÇÂ$Þ¨D#H2^¿Íã/­vë¸{ÒÞL¶ÂÁ³vŒà›ØKz«S¥WHX0·lÖU$Yò˜yÖ.¯0¸d<%ž# K æÙ»s•Ö&‘º¾ö`lAÝ{‡Â²ô8Š3fܶ¤Há³ÃåóµB”̃æô²snà]Ó*Î ÕæÊg§OP÷;¹øƒn U½—_÷ªä¬Ñˆ0¬T[—–Çà éñ”Øþûÿ6·×œâœYdgÄéMÌ:—mQ’ƒ)¶5=#£¬áy“LñºmV½f¦@˜Œ,a9!sºt ‡õaÉ}\*õ©¨ÖסÏðŒÜYŽ;V‹pi]+ó,öÔÜC×eyÌò7ÂÍ:‘|Ý5i. Œí OôÆ,2ŸNõ¼y¾Ôõû®Z\3#”Åïá…òÔ'&üMŽ!'N$xàý#[ûdØB4xõñ¬Xˆª.`­‰àÁƒ|,¡àÁû¾_ðàÁƒ6óY*¨ ¿0´(’tÁ°Tñ°X! *<¨ð Âƒ ¯ð‚ *ükóK‚ _åbTøú²TxQí§ÂËýoêè4þ8‘ƒº=×éíó[˜%Ý»µ'>£FÇA³)ÿìÇþÖêÆÁÁAcÃ0jFcÿ°VߨÕkûûõ öÔç:hÖe:Œmü°ÌáÐþõ+ë¼y¿×¼#ü[’CŒ&ã½Ëɘþ°®mØŸÖ˜m‰.X„ÑÛ£©cý¸§¯Ž·Y½VkîÐØgË~¤±Ø§‰ëZ!}н·\6°n°Nÿ¼s8g®}7þi:üH®%ˆÅ‡÷-A<½ŒéU3j)ölñþ`Óë=_QƒÃ/(Ÿ;®R>_\³sîºôÛg>äŽ9`W“ÛÕ£‹Ï­ºœ™.‰ïÜ{Þg·SyÝ©HHÇO;í™ÜxĸE¿‹g?rGŠ6Ôwàiþ«ŒX[ÔîSúß]»M‰ž ×#¥Ä¿rW™3K%ìUÜöÞùqÉdèO‹šÍ[.qä“A•î@ç²ogÝ/—×]Öº¸aßZívë¢{sDçŽï©cü‘{w’ tc²Ê1‡ã)%œnðõ¤}ü…®h}:;?ëÞˆÔŸžu/N:vzÙf-vÕjwÏŽ¯Ï[mvuݾºìœì2Öá<Èb‘™ªL³XìEx°)'û|lZ×3ý†Š×¥úìÞ|äTÌ=n=RòL2¦ •áÀ¦Á¬°Wz6ƒ ==%õ?U¯iû9R¥Kw™•oU¨qìVÙþÖå”Yœ] Ì•hg"®o4jUöÉvÇâ̯-ƨ12Œ£Q;dìºÓ‚@H–@Hc9BÞ®@$B I2$B ‰H„hÉ£PTIH„”Àà éDˆ&µ2ÏbH„cCH„@"!ÉOC"$–EDHæK3ù‰òX‰Ò‰Œ‚D$B²M‡DH¦}YH„@"Äÿ‰H„©ÑN!Ñ©3„D$B4m–ÊH„@"!ÚK„4ŠI„äDÊB"!þ®]2!Ç3“‚´ai ùP„B K(„B|0„B òlæ³Th„B ¢u}…PHx@(DýúA(B! P„BVŠ ¡…¬Z¡…häÓ‹Ä¡"Ë•ŠeÈõ…4 ¢ÅZgI–*+¯A,D›%@È…@.r!éäB ¹üÂТHÒÃRÅÃb…¹È…@.r! QxH!¹×æ„\HIÜ”‹É…4–• ¾²ÅåBä^0â3ñÍåñM0âß2#”xPâ#I%”xPâA‰×rK²¢J‚_ƒƒ¤ƒJ¼&µ2ÏbP⃱!(ñ ÄƒJ|Æx”øXJ|æK3Ÿú J|y¬%¾4F¯“Q ÄƒŸm:(ñ™öe9`@‰%ÞÿJ<(ñE*F´%”x:CPâA‰×´]X*s@‰%”xí)ñÍb”øœXYPâA‰÷d|íJà ÅgÏŽ‰Ð¡5á¬x°âÁŠ%¬xß VKxV¼Öõ¬øð+^ýúVˆño›f<˜ñ‘$ƒf<˜ñ`Æk¹AYQ%ÁŒ/ÁAÒÁŒ3^“Z™g1˜ñÁØÌx0ãÁŒ3>c< f|,‹ÀŒ3>ó¥™Ï€3¾K…yr¼Öõäøð9^ýúr<Èñ ǃ¿¢°lãAŽ_;ºäxã5 2é…c9¾ÈÒ¥bIr=äø}ãµX÷,Ù²eåµÐãµY?üxðãÓ³3ðãÁ?>¿0´(’tÁ°Tñ°X!~<øñàǃ¯ð–‚~ükóT‚_—åbüøýeùñû•eøñrÇÆ*Nã9fÚsÞ^ðÜßÂ'ìÞ}¨=ñ5:šMù÷ð`?ö·f4k‡†q@ÿÜß?¬Õ7jõÚþþÁ{ês 4©1Æ6~Xæphÿú•uÞ¼ßkÞþ-É!”F“ñÞådLX×¶ìOk̶D'âVíÑÔ±~ÜÓWÇÛ¬^«5wè?ì³e?RŽXìÓÄu­ŠÐ èÞ[.X·Žˆ§Þ9œ3×¾ÿ4~$÷›ïð¾% £·“1Õô1£qÏ!æ6½=Sñ½ÏÜñ¢à¹óà MñáóÅ5;ç®K¿}æCî˜v5¹X=ºøÜêñ¡Ë™é²‘øÎ½ç}v;•׊„tü„°SÑ\ÈxGŒ[ô»xö#w¤zB}מæß±Êhü²EÍ*¥ßñ½¡Û”è©ðìQJü+w•Y0³TòVÅmïí‘L†þ´¨Uºå’>Tét.ûvÖýryÝe­‹ö­Õn·.º7GtîøžÚÆ¹w'é¹§“U4—O)átƒ¯'íã/tEëÓÙùY÷F¤þô¬{qÒé°ÓË6k±«V»{v|}Þj³«ëöÕeçd—±çA‹ÌTer˜Å"øÿÁ¦œìó±i \Ïô*^—8è³{ó‘S1÷¸õHÉ3iD2š.T†›ÆŠÂ^é8 2ôHtDÔ¼W½–Sl H•.ÝeV¾U!‹±[eûX—Sfqv50{T¢‰¸¾Ñ¨UÙ'Û‹3¿¶«Õ ÃØ1µCÆ®;-(ud)u,§Ôq¥Ž·®Ô­huD’ ­hu@«ZZ‚!UZ%08H:´: Õ¡I­Ì³ZÁØZÐê€V´:2ÆÓÐêˆe´: Õ‘ùÒÌgïC«£<ùòXž|iŒO^'£À“O>Ûtðä3íËrÀ€'ž¼ÿB€„ÖäPåA•U>–PPå}Ï0¨ò Ê?›ù,òª<¨òZ×WPåÃTyõëª<¨ò Êƒ*ªüŠB´A•U~í(#PåA•×€Ò¤ž Tù"˘ŠåÉõPåA•×b ´¤K˜•×D–×fily°åÁ–OÏÔÀ–[lùüÂТHÒÃRÅÃb…¶<Øò`˃-¶¼Âs ¶<Øò¯Ík ¶|IÜ—‹±å—eËV–aË˽ËÆ'r|´ç:½½à¿ùwo~¯íÞ}¨-}wï¨ÑqÐlÊ¿‡û±¿µz“þWß0ŒƒšÑØß?¬Õ7jõÚ~³¶ÁžúÜBM`L‡±–9Ú¿~e7ï÷šw„KrÑd¼w9ÓÖµíûÓ³-Ñ›‰xÕc{4u¬÷ôÕñ6«×jÍúÏûlÙ”#û4q]«"´º÷–ËÖ­#"ÃéŸwç̵ïÆ?M‡I§½ðâ;¼o ðèídLµzÌè¥Û³EhùƒMoÊT|Eï.w¼èwî<¸BÛ@|ø|qÍιëÒoŸù;æ€]MnV.>·z|èrfºl$¾sïyŸÝNåu§"!?!ìT4 r3Þãý.žýÈ©¢Pß5‚§ùw¬2«lQJéw|Ïç6%z*¼x”ÿÊ]eÌ,•ÌUqÛ{{ä“¡?-jn¹¤‚OUº˾u¿\^wYëâ†}kµÛ­‹îÍ;¾§¶€ñGîÝIzìéÆdÍÛÇSJ8ÝàëIûø ]Ñútv~Ö½©?=ë^œt:ìô²ÍZìªÕîž_Ÿ·Úìêº}uÙ9Ùe¬ÃyÅ"3U™f±ú°)'û|lZ×3ý†Š×¥úìÞ|äTÌ=n=RòL}Œ¦ •áÀ¦q¡°W: ƒ =5åU¯•'R¥Kw™•oUÈcìVÙþÖå”Yœ] Ì•hg"®o4jUöÉvÇâ̯-ÆjuÃ0vŒFí±ëN ŠiÅŽ¦×–Qì ÎŠK.¯5[^ÓM±è€D$: Ñ‘Zl…D‡N<E•„DG ’‰HthR+ó,öøËFyÌ4¤9 Í‘Šï€4¤9 Íim¸Ûæ(»Uæ(QæÐÉ(Hs@š#ÛtHsdÚ—åxÉ‘æð<ÆÛ•ÄŒÅLhsÁ´<üLɾ\_‚ð„/ |á‹—È_@øB¿L‚ð„/ÖÖ½®CøÂ4–ÑÃ勾žÊÍïµ"ʹ‘§P¾x±°Ô’(_<‘m ÕñŒ›"•b³€˜Ä, f1‹+™Xé0ˆY¤2Á«¦³€˜…Fõbá1 õë1 ˆY@Ìbå³0^…ˆ…¡#5MC\Ú:Ä+d;àaÊÂÒ‚>„} Hkz!Ö Qd±O±ˆ·}ˆpí°}ˆõ®j»ÐW)»D‘²äÃ*Öáò¶ ùɇôü’|€äC~ahQ$é‚a©âa±B‚ä$ ùðd'¥žRZ:+!ñ±´Û* åñíAE¡$N¾ET„³o)qáâ* þ>ð¾3x߯r¼o¼ï·ÉûÞú}Èo ¿üòÈÈo6Â*ª$ß%08H:ß@~kR+ó,ö¸Ž¡ükyÌúèo ¿Së|@ý ô7ÐßÚp=þ.»U@—Æ( ¿u2 èo ¿³Mú;Ó¾,Lú;œ ç’¿C?ÍÎÅrŸßÑÕý­ÔæÆ6ûßÿ²nú¦Íl9Ö#=èûÈìÍVKýÇÊEæ(²´jl‡{Ö[3*Ë’ EÀFïÁ͇ }~À,¸u>8@ ð® ¦˜ Z «Ã2×%7·g„Ÿ.sšhšÕœÅgVb±ž"Î486»‰ ¼ôÙ£A™¥ÙˆŸøW*˽Ýñ}þO•²âÇø¾:äÿŒ'Ôë&«æ`ìýP‰0gFgÆsVž;°†³ Qzßå-é¯:ÂÞ¨$C<£µÝPÌÑʤ¼k=÷®uå]ësïÚȽkCy×F¼âÏ —ôÛéT”ªWmüc*×íéY—݇IýÁ³mÂTû¶\>à½1%Ñå[þ¦:/Éô9 *ˆ (g¼·Ð;D?“á#µcë/ª4Ñ`~r+Bà¤SNlºírïBÌ*W˜Â¬!ï:Ê!óü9ô@‘aŦor4%QË8Ê ¯væd„ß?GóØóá‰ÂŠÈu`ÎzjzFΤvßËÜ™_m󪜟; Uà"÷STåDâßzÍö>dv£‰&+”e略ƒT¸0ÿæÞF<„ÒPsÈ]÷w1§?Šýx‚`/Æ#â A£ÿíð6ÖnôàíÞ3©ÀÇr 8£y‚ì7dwO‰Š¢·\”yï^ÒïýÒKúŠ×ù¶Är:–ÏÑ©•±«ØÑn@Ù°kV U»’Ӫħ{ÆöÛªöÅzÂ`áEET¥Œøœ•žáµK…Ú’·ßªffÖI$O1§óôŒ &ÑÃ%E[~, Ή7í© ž7˜O´mu´mOoÛêÏÒ¶ÕŸÔ¶Õߨ»¶xÛVW´mõ¥Û¶·–ß‹¶mõm[=¯m«Ïw)$Ú¶Ú¶§·mgiÛOjÛoì][¼mk(Ú¶ÆÒmÛ[ËïEÛ¶F¶­‘×¶5¶£¿ŠFŒÍ°<ºeúŸ–Üb*ZPjo­5žÎ)‡g+ÈbÏ[XÉ ‚šç[‰¼b¥;TØ«2ïN)ÊRkáåy;²:eüQ"6 ¥VžR{Ÿˆ¨“«YþÒˆl£TÒ‚?¸\ƒòs^.Kùë_…;óu:vóEÙü%<±ïWФ¡rÓ)Ù·]ÝüÏfÌ>ÿì g7ò.f¿E• e”¿VMƒ¼)fd„£Phå61ºÌä)¯hôZðþÓ&÷ÏD7UJÿ‡ŽÑ2¹ÀÚhØfL›V¯Ê¡”ò‚ŸW *åE CXjIPªŠ“ºzeªB1¦©DeF›>Už*ÏÀ¹y—yoY+ ß&[ëß&ˆ/\£ŽVŒ½¹N)-­5°¢~=3¥™pÏ”Í}ÇûÞŠ´¤iòÄ-¦Š•¼)]*ºky71fìs·çX·bÀ%¿RD'ÎÒ+tSgÄ$»¾û äyV×SU<.p–L»X÷’mª—„4›×9‚>£e+8âcÇTóÄÒbdÝbRbÙ6+?åKˆ-†7í~9¹ð†ð¦â´Ðž¥•ÄRjŒÂB[…e¶œƒØÔ)`Eöçk¤`,ž¹0Í)^™¨Çwå&Ðáé€'*¹!& ¶¢LxÏ.ì±Pø¤®/[®làww¼7¶9†¨)é'3ÌOs9¡ˆùVÖð à-ËÞ<¶ž’‰•‹Ï²”ã õñjÿoFuÖ¦ˆv1Çð\Û×h>KQûâói©•ùñcÓO¹Ð?ëM{^y'k‡ø,§Øï¢—ûÕdÝ¡œòjõ–Ì4¯¿ðÞߺ¦µå]V5IµEþëù=Ü]#˜iNF#êô<½ûJ0‘žiõÍ2_ŽSãóiïªí½›nûìâófvÜB\9«^XãOãúšïÿIhý¹¨”ûc Å?ùÍ;ï‡<å?–}7¿V¤ü7¯ˆÖ^PÊâŠÚ»x™Å¤ÿÞ±°‰7*Ñ’Œ×oóøK«Ý:îž´7“­pð¬#ø&öR§ÞêTéÌ-›uI–ñNyÛ?ÖbynÔ<ç÷ Y ÿOKe)‡sô”@42ˆdºßá!­*â™Î| Ó)¤^R;~Dz¾ß(J=(LßÅ%²ˆfH4$ýÈ6YdâaøÑ rýì}‰œ)E‘TC;?lQÆ: Ô 88·šÐ·/ÍKMLŸ ºW BÂÖ+³Êkï^›UÞñµYå5¾¯Ì¨°}m†ÉÕü²ñ„ÍÀ¤íÿÖ’î'„$:õN½:ÍôèPMª)Ù( ºNÕßÏ7]Ù¹G¶ÒÏ»>ui¼âiÿv䨗å€IÖ–êÿ:¶<2ŽMX̸úv,Dë…€DóyŸ@ô-ÍhÅÅ2hèÁtÿmšI+¦_ Õoî¬3õóÁòú/M¾£) w.Cþ|æùmlj›@ÐÏ7=Ð/y•9ÎV•Zé¼I #¼ÊlQiSö'ä =I†bC¶Ö™ýzñYѬø¯ËØh¾ ±Ôx抠װuÝD2‹CÁŽQÈ¥Úe‹$³DÖߪ±•eX@ÿ×Ðþ—õ,%ˤø†zOéâiÕ3•ÝÞ ÆöýrKWÂÒµ Keή\’¨v)ßxÞÂSr˜;?þzØÔWÔk¥ßÇò,3gÉX{3äœo{bEE|WyR´Ì…¢±Ìª¨bU¬ˆ)žcȉ“ $xÿˆÆÖ>¶P ^}<+¢ª Bk¢xðàÁƒK(xð¾ï›ÖÀõL¿¡âu)ƒ>»79s[”<“†L£éBe8°i0+ì•žÍ CDOIýOÕkÚÅ~ŽTéÒ]få[j»U¶ÿu9egW³G%Ú™ˆëZ•}²Ý±8ók‹1jŒ cÇhÔ»î´ ’%ÒXN ¤·+‰H„D’ ‰H„@"!Zò(U!%08H:$B ¢I­Ì³!ÁØ!D$B2ÆÓ‰e$B ’ùÒÌGþC"¤KxV¼Öõ¬øð+^ýúVÓ¾, ˜ñ`ÆûÁŒ3¾HňvÂ`ƃ¯Sgf<˜ñš¶ Ke˜ñ`ƃ¯=3~¿3>'ZÌx0ãý#a»"¸ñÇ à"´FhMz9äxãc 9Þ÷ƒrü³™ÏRa^ ǃ¯u}9><@ŽW¿~ ǃr<Èñ ǯ(,äxã׎.9äx ¨Lzá˜@Ž/²t©X’\9~äx-Ö=K¶lYy-ôxm–Á?üøôì üxðãÁÏ/ -Š$]0,U<,VHàǃ~<øñàÇ+¼¥àǃÿÚ<•àÇ—Äe¹?~Y~ü~e~¼Üã±±Ê£ÓøãDŽ™ö\§·<÷·ð‰»wjO|FŽƒfSþ=<Øý­ÃÃÚá†aÐ?÷÷kõZ½FÿØ`O}n¡ƒ&5¦ÃØÆËí_¿²Î›÷{Í;¿%9„rÀh2Þ»œŒéëÚö€ýiÙ–èáDÜê±=š:Ö{úêx›Õkµæýç€}¶ìGÊ‹}š¸®UÝ{ËeëÖâôÏ;‡sæÚw㟦äó^xóÞ·tôv2¦š>fô"îÙ"ÄüÁ¦·g*¾¢÷™;^|¾¸fçÜué·Ï|ÈsÀ®&·«GŸ[=>t93]6ß¹÷¼Ïn§òºS‘ŽŸv*š ¹ïˆq‹~Ï~äŽTO¨ïÁÓü;V_¶¨Y¥ô;¾7t›=ž=J‰å®2 f–JÞª¸í½=òÉПµJ·\Á'ƒ*ÝÎeßκ_.¯»¬uqþµÚíÖE÷æˆÎßSûÀø#÷î$=÷tc²Šæòã)%œnðõ¤}ü…®h}:;?ëÞˆÔŸžu/N:vzÙf-vÕjwÏŽ¯Ï[mvuݾºìœì2Öá<Èb‘™ªL³Xÿ?Ø”“}>6­ë™~CÅëR}vo>r*æ·)y&HFÓ…Êp`ÓXQØ+‡A†‰Žˆš÷ª×rŠ ©Ò¥»ÌÊ·*d1v«lÿërÊ,ήfJ´3×7µ*ûd»cqæ×cµºa;F£vÈØu§¥Ž,¥Žƒå”: ÔñÖ•: Õ­ŽH’¡Õ­hu@«CK0„¢JB«£I‡V´:4©•yC«#B«ZÐê€VGÆxZ±,‚V´:2_šùì}hu”Ç*hu”Æ(huèd´: Õ‘m:´:2íËrÀ@«ZþGhu@«£HňvÂÐê€V‡N!´: Õ¡i»°Tæ@«ZÐêÐ^«ã ˜VGN¼,´: ÕáªÛ•ao ×‘q¼ GDÖl(v@±Š±„B±Ã÷ C±ŠÏf>K{A±ŠZ×W(v„;Ô¯; ØÅ(v@±cEÁÙPì€bÇÚaqPì€b‡<½xPì(²€©X˜\bÇ;´Xý,áâeåõ¨vh³(Ýèv@·#=Gƒnt; Û‘_ZIº`XªxX¬ ÛÝèv@·º Ÿ)t; ÛñÚü•Ðí(‰ãr1ÝŽƒeu;„‹kqݹß4ù šüár4ùCÐäA“O<ùH’Á“O–EàɃ'ŸùÒÌçCƒ'_«À“/QàÉëdxòàÉg›ž|¦}YðäÁ“÷?‚'ž|‘Ší„Á“O^§Î¥×%G…ÃóoWÓ3!Ãasòð3Í"ûrY и€Æ4.^"{^LãB6œ¸((pQ,· nu ¨[”DÝÂ9Ƥ-¼±b½jжèk¦máÇæ [Ì-…ªÅËž¾¸¤…Hã‚0˜p7êÚ9èÈU¨Ž¹LuNÏÒ©{ób]çF,3(S@™Êaw,Nƒ2”) Le (S@™ÊP¦€2”)"æÎµÊP¦ÈT¦ðÆ¥ðòA9Øf²Šf¼ - CGø™†Ô³uhPÈÀ£…¥¥µÌC°Å¡ñh<è©ñ®æ½ ÀClu°u‡5®j¸”WÑC¶¡¼KdPh€BÛUh'qÙË]ÊQ*´ Ím†uIº`XªxX¬ Ímh3<Ù ©§&ƒ–îHh1¤†b,í˜|V¹ƒlÏ"´t­Î 9ñ u°¤ÖAàÎ[Lè ¸j•ƒÈ.À¸U0nc ·÷[ƒqoý¾ 7xÜàqƒÇ wÜ—·N›VU<î$2{þò¨ÿL¹¤EŠVípà á4—WŠsª¦ûwhPˆ6Øp`à ‰ì6ØprØp`Ã×Ö±¾86\µ¸XŠ=¨á}-©áb[¡Ã{ǵyv0³9ùÇŸ¹„ˆ€ø†¿úѯbŸEeÙý…\£÷àæÃËE¾®~ßÿ,vuΆÅ6ï¢`*¹`Úe-XæºäÖôŒÐÒåâIsƒHÓa˜³ØËJ,ŽSÄÆâÂf7‘A•~œr4f1³ñÿJe¹··½Ïÿ©RVüßW‡üŸ±àxzbÕŒ½*ÑàäÌÈËxÎÊsÖpJ︼%ýUDÌ×+±ØÍ°zו1°õhJ߬‘q³†òfü›53nÖTÞ¬¯ÝsBýÖ7iêÕ ÿCÁ¸ÈuD,FúËe7LRCÿl»%ÕŽ*—xoLItù–¿ûÍK2}c"cÄ™û"ïUóчd8¼DíØú‹*Í_4>ŸÜŠ06éaû5£>¸Ü»Ð³Ê¦0k»ŽrÈ<ÅO¤GX±é›#ÉÅÆ2Žò«9á÷½Ñ<ör¢0¡ "ÀF_³žšž‘3©mò2wæWÛ¼*ççÎB¸ÈýU9‘ø·^³½ê¾2Ñ^ÕÃë½TWæßÜÛ:G£KC¹ëþ.æˆâG±ƒN0äňC|!x^ôÿ¡ÞÆÒ¼ýv&•öXnÔf4ô—†ìÐ)C±£ó–‹ïÝKþ¼_tI¯ï:_•X6Ç29:[ªoÅju´P¶*ÅÚ”ºªQÉiRâ3¸º:ŽðÕÖùbÝ`°„"Ç‚"2RFmÎJ¯î5J…’·ßÑÞ~Êõ—‡r¼›¥ò+wžh§h§žÞN5ž¥j<©j¼±÷fñvª¡h§K·So-¿³Û©F¡vª1g†Ÿh§šh§žÞN5Ÿ¥j>©j¾±÷fñvª©h§šK·So-¿³Û©f¡vª¹‹6‰Í05ºå៖܊)Dj×n­5žÎÉÖt*È1Ï#WÉŠšç¿ˆÔk±@œŽ™)치w§”Ïb©%äòTö¬v^°“fB©•§ÔÞ'BÐ䲿ü Û(•†Þ.süœ—ë;þBRá¾yÎÓ|õ1-Ll‘»æ¥¡r&Ù·]ÝüÏfÌ>ÿì g7ò.f¿E%údô¿sTŽ#G¶k‰!¢þyCKGŽ+%VŸÑÐ1+ÒubÙ˜?ÁB–Žô¥c?†#GqÜš½¿Ý‘ÙS¤&<Ý™ûëx9E¯€ËfÕrs¶6š¨ë¥^,@EY¼¢DúžÍ-s{3 @ÛڛɎȯ=Ôø­ÂŽAÍAX—ØŽßF §Ó Yñ±©¢äx†mtÐàî0cÆ<ˆ\ KLŒ#çW½xû¯ìÜ?ŸCX¬ŒXè{ÄØÌ\V¬·y¿žÓO6rŽŸa{gšSÌÈo ÐÒhbh™I^Ñеàý1 Mî6‰n>”¾ ÃQré­aÀcšÒšPjÊA„ÑOòB…W ¡ä…ÖBGi|¨Šºb!¦ù¡™©ädi>U)Ï´¹¹–yoY  ß&’êß&ˆØ[—lT G¹6å(­%Ÿ¢u=3¥oÏ”í}ÇûÞBx¤éðÄ-&•¼)]*zfy716ìs·çX·b`%¿RD'ÎÒ+DðRgξûÈàyV×S•;®ç•L»X®’¨—„4¨Öߌ‚/£e+@ÚcÇTó´Áb˜ÙbÊYæ5Í*?å+f-†ûì~9¹ðF pŸâ´Ðž¥…³Rºj²ÀêR…µ¥[ÿcS¤ãÙµ®‘0¯xæÂ€£xe¢.Þ•ÛL|f…'ll¨äÆ‘(ë‰2á=»°ÇB¾’:½Ðk¹R¨€ßÝñÞØzä4ü¡¦¤ŸÌ0?Í ƒ"~ZYÃ3°,{{ÕzJ&V:,>¡R:†ƒÖÇ«ý¿ÕY›"ÚÅÃsm_£ù,²‹O¥@X`äÇM?åBô«7í xå¬ⳜM¿‹^îÏI“u‡rÊ«Õ[2Ó¼þ¢ê«ÙëY[ÞeU“T[俞ßÃýw1ò‡™¤ßd4¢NÏÓp¯sæ™@Ý,ó³•ß÷>nvºí³‹Ï›Ùáq¹¨zaa;ëk¾«'!pä¢RãŽ%dîä7ï¼òäîXóÝü"X‘Üݼ"Z{A)‹+VhïâeÓ»{ÇÂ$Þ¨D?2^¿Íã/­vë¸{ÒÞL¶ÂÁ³vŒà›ØKz«S¥WHM/·lÖU$YšyÖ./«·d<%ž# ëëåÙ»s•Ö&)³¾à^láÜ{‡Â²ô0Š3ümõlIY¾g'­ç;e…—ÇÌébçÜÀ»~¦Ë›mÍU5Œ¬Gh6Qñ‚•òd Óª†QôWêÅê¯YÝPCYCÌÿ²¢†/d ŠWÖ_"1d“A„<8?„÷=—6ÄlêV¼~pw¶­Re º˜ck“˜ûÃdÕá)±ÆYmUÈ5¦+­R°‘)$óØ)YiN°@êqÔI*}Ò–J—zÁ*|YË.$©—‚d´ÑKãMëGæ.@†x–¨—ý'Õ»Çû‡ÿ.½Ê²=ú)Z€©=‘[ÌhɧORøÇE“.üæÙ+™1­ÊãÅ[Ë,²Œ¹’%L,_®3;V¾úXyúòã›_ÕË[?Š/ðä¬ùh¾8˜¿Úæ/¶‘\hU+²ŒV‰ åYݪ$–·‚E³Ó'ˆÙ\üA7bÕË/kUr–`D Š ž]^žþ%Kyæ<Ž>Óó¬b€ç%Vì*•ÂkvOš¨={–J¯_ÄÝ>ÇTØm¾ §ßÊG–ë+á.Ïö•ÇåÂ7›ç / •—Ù+rÏ󎯹HÒÃRÅÃb…óGO+ƒ#Ý$¤Å¢æx°32oy–†`å¹¼ãzaËW`øêì.ì¯^´~f+“F¾€çôz™yÔ²yPWše+u¤:žSÄyYWjÙ|©Lå#MÂwc®RU_½°34ÇZÈšvƒ&ý¯ÍáøR/ÚB~Çø;Ì›ö<æ»ãÞ@é¨i-¾(y­¸L:w«‚±v­úïmåãÒ—ÈãýÎJ÷•÷ìlØLDåòp1Ã;ëÇÄñöè N 5‡âš zµÙ;c÷~sõiI>ŠzÅ³çØ®xZEÁÂ1d[]gÿù|ûµõíÖÅŸ©H‚½ëÙÛR‚A–ËG+Fw.Ý™¶gôtïÛôm( «{¿œëöé[O”{O x“N饭þ.;¯¹ÚùÚùdúZýbŸŸ‹™w˜ùùž ªÝO»AAÖø\gqÊMÝÌ]Qm Ô*%p<ÈIyöK?&¹o=ð¡hø¶~WÒ±¿“òHf>ËØ¦‚44=ñ6yûü>ÖbynÔ<ßö Y ÿO(d)rô”@1ˆCºߟ!­*âxV¿‚é\"&©Í:"1 ¿n”(”¤ïÄùCs ºPŸßd‘©}|$á_D}äúÙË9SÊý¨†p~Ä¡x lÿ#cÖò¨ˆÌ¹+üþ*F;ÕéS]d3KAw,ÈáåIðºK§(ªäL`¬$D'g‰i‚¤ee™|%Ä¡ {) ’.)˜|Ë.èc¬J€ƒsÕòö%xi¢‰ésÁ÷ªAhX0ÊzeVyíÝk³Ê"¾6«¼Æ÷•6°¯Í0¹X_6£"®€p ˜´ýßZÒ÷r@bC‚ð‚DG Þ£W§™ª 3%D£³úûù¦+;÷Èøy×§.W<íߎû”Þ—dU©ùO¡ÖÊ#ÓàØlÅŒ‹Jǯ^"¸G4\ap÷YÜCßÒ\V\)‚L÷ïР™ú­bâ¥W‰ÊÎ'ñž~&X^SBÿ¥iw4eáþ¿2 ÌÏÞ–Ó¡W™á–a™ ˜¹h<ÝK†Ï›!™$xÕK(â»Ê“âše.PVE §B\E¼ð€BN,èì ³ÇBgŸFH¨‚Ю>žåPÕ‚æ 5†Œv0ÚÁh%Œvßµ F;íÏf>KlÑF»ÖõŒöð£]ýúÑF;í`´ƒÑþ¼ˆ¡’†4D ÑF{&šˆÑ.Ÿ³~d’^¬$0Ú‹¬C&—×Àh¯ƒÑ¾þEL­× +%ç´ë±¶R;Hí µg¯Ó)­ µƒÔRûº‹$]0,U<,VH µƒÔR;Hí µ+\Ÿ µƒÔþzÜŽ µ—Äÿ¸©½¾©]TøIírßÅÆ›;:?NäHnÏuz{AÎüæåIc÷îCíéϨÑqÐlÊ¿‡û±¿µºq`ìnÆAÍhìïÖêµ:}{¸ÁVðèùMµL‡±–9Ú¿~e7ï÷šw„Kr!Ñd¼w9ÓÖµíûÓ³-ÑØc{4u¬÷ôÕñ6«×jÍúÏûlÙ”#û4q]«"$ º÷–ËÖ­#ÂÏéŸwç̵ïÆ?M‡É…±ràð¾%À¤·“1½‹cFÄž-â×lz¹§â+jk¸ã…ØsçÁâÃç‹kvÎ]—~û̇Ü1ìjr;°ztñ¹ÕãC—3Óe#ñ{Ïûìv*¯; éø a§¢)“Û÷Ž·èwñìGîH1…ú®<Í¿c•Ѩj‹š|J¿ã»f·)ÑSái¤”øWî*³`f©d²ŠÛÞÛ#?ʘ ýiQ‹yË%2|2¨Òè\öí¬ûåòºËZ7ì[«Ýn]toŽèÜñ=µ`Œ?rïNr¡€nLV9æp<¥„Ó ¾ž´¿Ð­OgçgÝ‘úÓ³îÅI§ÃN/۬ŮZíîÙñõy«Í®®ÛW—“]Æ:œY,2S•Éa‹6ådŸMkàz¦ßPñº”ÀAŸÝ›œŠ¹Ç­GJžIC¥Ñt¡2Ø4‚öJGf¡G¢“¤®§êµíbwFªté.³ò­ •ŒÝ*ÛÿÀºœ2‹³«Ù£íLÄõF­Ê>ÙîXœùµÅ5;†±c4j‡Œ]wZîP w4–îh@¸ã- w@ºÒ‘$CºÒ‰9=¤; Ý¡9BQ%!ÝQƒƒ¤CºÒ:TÉœùŽŒã9?z@~´¦ó@Àðˆ%¾ƒðx6óY*l ðк¾BÀ#< à¡~ý àx@ÀÏKž+xNCâ< à‘I¬cðÏY?IO/„<ЬF&× àÑ€€Çú—2µ_‰¬”^ÄC>Èx@Æ2Ù«uÊ¡+d< ãuIº`XªxX¬ ãÈx@Æ2 (d< ãñzœñ(‰rÆR2ÊÂ2r¸í*n{s n{Üö·Ém¹äöH’An¹=1Œ¹äv 6+ª$Èí%08H:Èí ·ëP%ó̹=‚Ür;Èí ·g ¦AneÈí ·g¾4óIÌ ·—Ç*ÛKcÈí:r;ÈíÙ¦ƒÜžiŸÒûr;Èí‰*r;Èí ·ƒÜr;Èí ·?CO r;Èí ·—šÜÞ,@nÏ …¹äöTøìÓ‰  ·gÏËvЃî 5–üvðÛÁo%üvßÍ ~;øíÏf>Koß~»Öõüöð¿]ýúß~;øíà·ƒßþ¼È¡’‡4D ß~{&ªˆß.Ÿ³~„’^ì$ðÛ‹¬I&—×Àoo‚ß¾þÍR¬GV^Ã]u>PÜAqÅ={ÍN9€ÅwPÜ×]$é‚a©âa±BÅwPÜAqÅ]áÅ÷×ゎ$¾È(îÍ¥(îÍÊÂ÷&(îY÷ý%(îû ¸¿UŠ;8îà¸G’ Ž;8î‰8îà¸k°XQ%Áq/ÁAÒÁqÇ]‡*™g.8îÁ¨wpÜÁqÇ=c0 Ž{,‹ÀqÇ=ó¥™ÏeǽþBW´>ŸuoDêOϺ';½l³»jµ»gÇ×ç­6»ºn_]vNvëpd±ÈLU&‡Y,¶B<Ø”“}>6­ë™~CÅëR}vo>r*æ·)y&äFÓ…Êp`Ó[Ø+ý¬A†‰>œzƪ×õˆí$©Ò¥»ÌÊ·*ä>v«lÿërÊ,ήfJ´3×7µ*ûd»cqæ×cµºa;F£vÈØu§¥ÉÁ $P y» $Ð I$ÉÐ IÂñ hh€ÀPTIh”Àà éÐ ‰U2Ï\h£Bh@ƒ$Ð ÉLCƒ$–EÐ IæK3_S$å± $¥1 $: hd› ’Lû”Þh@ƒ$Q… A h@ƒ$Ð É3ô¤Ð  4HJ­ArP@ƒ$'$Ð Q†Ð®†÷’ŒãùÉDz°‰´† A‰J$P"‰%J$¾ËJ$P"y6óY* J$P"Ѻ¾B‰$< D¢~ý D%(‘@‰J$Ï Ì+/OCP”H D’ ÚcP"‘ÏY?P/ò”HЬO&—× Dr%’õ/n–jm²òJÔHôXóƒ ôH G’½~§ÌBz$Ð#Yw‘¤ †¥Š‡Å z$Ð# ôH G¢p‰Bz$¯Ç =’’ø%Ð#9XJD8±Ô#‘û4@xWÞ— ¼‚ðþ– ï`¼ƒñI2ï`¼'s`¼ƒñ®ÁcE•ã½IãŒwªdž¹`¼£B0ÞÁxãŒ÷ŒÁ4ï±,ãŒ÷Ì—f>³Œ÷òXÆ{iŒã]'£Àxã=Ût0Þ3íSz_Àxã=Q…ÀxãŒw0ÞÁxãŒ÷gèIÁxãŒ÷R3Þ 0ÞsbÁxã=#ˆvU$pÞ3Ž—`>èA}Ð×Ò;Hï ½Ç Ò»ïøé¤÷g3Ÿ¥Â¹@zé]ëú Ò{x€ô®~ý@zé¤wÞAz^QÉHD"ˆ@zé=aÄ@z—ÏY?ZI/¦HïEV)“ k ½‚ô¾þ%ÎÒ­PV^ í]•?ðÞÁ{ï={O9¤ï¼wðÞ×]$é‚a©âa±Bï¼wðÞÁ{ï]áï¼÷×ã”ï½$ÞÉxï‡KñÞ+ óÞåž ñ£ÓøãDôö\§·dÜo"Ëêßk»wjOFŽƒfSþ=<Øý­Õ›FÓ8Ø0ŒƒšÑØß?¬Õ7jõZÝ06Ø =ÿ ™˜é0¶ñÃ2‡Cûׯ¬óæý^óŽðoI¡V0šŒ÷.'cúú¶=`Zc¶%ºeQ{l¦Žõãž¾:ÞfõZ­¹Cÿ9`Ÿ-û‘rÄbŸ&®kU„îA÷ÞrÙÀºuDì:ýóÎ᜹öÝø§éð#¹Ê –Þ·óôv2¦Wų Ù³EðûƒMïþT|EMw¼ø|î<¸BGA|ø|qÍιëÒoŸù;æ€]MnV.>·z|èrfºl$¾sïyŸÝNåu§"!?!ìT´trgàãý.žýÈ©ØPß5‚§ùw¬2tmQ@éw|Ïí6%z*‘”ÿÊ]eÌ,•¸WqÛ{{ä‡(“¡?-jPo¹¤‘OUº˾u¿\^wYëâ†}kµÛ­‹îÍ;¾§ŽñGîÝI®2ÐÉ*Çާ”pºÁדöñº¢õéìü¬{#RzÖ½8étØée›µØU«Ý=;¾>oµÙÕuûê²s²ËX‡ó ‹Efª29Ìb±-áÁ¦œìó±i \Ïô*^—8è³{ó‘S1÷¸õHÉ3i$5š.T†›¸Â^éç 2ôHô¡Ô3U½¦_líH•.ÝeV¾U!ű[eûX—Sfqv50{T¢‰¸¾Ñ¨UÙ'Û‹3¿¶Íޱc4j‡Œ]wZPI¨ƒÔåȾ¶°:õ$PYf1°=½À¡“:ä@ 9È@$¾@ 9hŠ* 9$r Ñ¡Jæ™ë±žò˜È€@$–È€@2 Ú0¾!Rv« R£ ¢“Q H¶éÉ´OéuÉ‘ñ|ÅÛ•ÄtÅLè€Áœ<üL³È¾\V‚Ît6 ³—Èèl@gC§‚Ît6ÖÖ±¾¸Î†7V,£W B} …6êßks…6rcK!´ñ2§eÚx ·Rªã¹€:Eê´3 í hg@;#–çÐ΀vÆó™ÏR1PÐ΀v†ÖõÚáí õëí hg@;ÚeÐÎ0^…f†¡#ÅMC|Û:´2d à‘ÓÂÒ‚")ÖÓ‹úEŠ"ËyÉ•ºW¤WûP¤XãZ †Ky•RkN)ˆL@d"OšÜT 2‘ ˆL@d"™€ÈÄ“ÝzŠKh鎄¨Dj(ÆÒŽIH7”Ä{醒¸ñ K7wÞâÒ âª¥ü]€q«`ÜÆ0n0î·ãÞú}¥÷%‡ËNƒs±Ü¡“ƒ¦æb¹¸ÏïèêþVj'Fc›ýïÙ?7}»fŒë‘ô}döüåQÿ™rI9Š­ÛᆠÂi.+®çTL÷ïР?l8°áÀ†þÙl8°á:å°áÀ†¯­c}ql¸jq±zPÃûZRÃŶB‡÷&Žk=òì`fsò?s ñ+ õ£_Å>‹Ê²;ú ¸FïÁ͇—‹|]ý¾ÿYìêœ ÿŠmþÞEÁTrÁ´ËZ°Ìuɭ顥˜摦Ã0g±—•X§ˆ!Å…Ín"ƒ*ý8åhÌbf96â'þ•Êroo{ŸÿS¥¬ø1¾¯ù?cÁñô:Ū9{?T¢ÁÉ™‘—ñœ•ç¬á, ”ÞqyKú«ˆ˜7*±ØÍ°zÊX#Z‡Ò7kdܬ¡¼Y#ÿfÍŒ›5•7kÆk÷œG¿õMEšzuÃÿP0.r‹‘þrÙ “ÔÐ?ÛnIµ£ÊåÞS]¾åï~ó’LŸÃØ€Èqæ¾È{Õ¼Cô!/Q;¶þ¢JóÏ'·"ŒMzØÄ~ͨ.÷.tÁ¬r…)ÌÅ®£2ÏŸCñéVlú&GãHò@±±Œ£¼ðjgNFø}o4=‡œ(Œp(¨°QÇ׬§¦gäLj›¼ÌùÕ6¯Êù¹³P.r?EUN$þ­×l¯L´W¡Ä'{/դƄù7÷¶ÎÑè’ÆC‹9¢øQì  y1â_žýh‡·±†t£o¿I¥=–µ ýe§!;tJÄPìè¼å¢À{÷’?ï]Òë»ÎW%–ͱLŽÎ–Œ­X­ŽöÊV¥X›b¨•œ&%>ƒ3¶ßV/Ö K(r,("#eÔæ¬ô ¯Q*Ô¼íüŽ~ð6ðS®¼<”ãÝÔˆ(•_¹ÃðD;Õ@;õôvªñ,íTãIíTã½7‹·S E;ÕXºzkùÝN5 µS93üD;ÕD;õôvªù,íTóIíTó½7‹·SME;Õ\ºzkùÝN5 µSÍíè¤X´Il†©Ñ-ÿ´äVLÑ R»vk ¬ñtN¶Æ SAŽy¹JVÔÐ<ÿE¤^‹âtÌLaÏż;¥|K-!—§²gµóÊ€D0J­<¥ö>‚&—…üåÙF©4ô~p¹˜ãç¼\ßñ’ ÷Íëtžæ«ùkab‹¬Ø5/ •û3ɾíêæ6cöùgT˜8»‘w1û-*Ñ'£‡ü£r9²]K ðÏZ:r\)±úŒ†ŽáX‘®ËÆü!Ö’°4p¤/û19ŠãÖìýíŽÌž: 5áéÎìØ_ÇË¡(z\6«–û ˜³µÑD]/õb*Êâ%Ò÷ln™Û›aÚæÐÞLvD~í¡†Äov jºÄvü69^ÈŠŒM%Ç3l£ƒw‡ÍE¢ÈãÅùU/Bãþ+;÷OÄç+#ú163—ëm^Çï£'ä4Å“ƒœãgØÞÇY‡¦AÆ32Â(´4šZf’…W4t-x h“»M¢›¥/CÇp”\zk𘦴&”šr¡Eô“¼Páh(y¡µÐQZª¢‡®Xˆi~hf*9™AšOUcÊ3mn®eÞ[ÖÂÀÄ·I…¤ú· "öÖ%ÃQ®M9Jkɧ¨@]»®éLiÆÛ3e{@ßñ¾·Pãi:2xžÕõTåŽëy%Ó.–«d#ê%! ªõã7£àËhÙ öرÕ»_N.¼ÑBܧ8-´giᬔnš,°„ºTam©ÄÖÿØ)ÀøDv­k$Ì+ž¹0à(^™¨‹wå6ŸYá ['*¹q$Êz¢LxÏ.챯¤N/ôZ®*àwÿŸ½íj#YÒ€QmýŠ4³f Ûtáò¶ÝxíÆnNcð<½}fÍò[HÔ´´U6½æÇŸŒ¼UVUÖMUª‹íÝTYy‰ŒÈŒŒˆ|âÖÌG›ª?t) &ú@a0ÄO9<–D_¯ªff|³Cü*£aX®>œû_wÛÞšëbÌÀcÇ^áðIÈÎtf Âä ŽöDÏ!é×ài0²[?1Ùiú'ýuq& ò¥çêMF4¾_´E6ûzrËOQlZ‹„x~S÷ïä`Ø/¥ßb:¥›ÏáÞ’gf/AGüèÌï»GW×—§ç7¢Ã üé¢z©ÛÕ˜_ãM=w’ŠÆw$æŽ}ó—îŽÄ`cþ”<¥»Kš¢Ê'Ê8]¾IûÉ?g¾|w?µ€ø=ð#Bü6Þÿ~|yüþúär#¸ ˶¶»òŸP‡¤:4{©²éÅÎMUS•2n´Ë§Õ[’y(° ¤Î¯7ÞJ†kmeV$Üó9ι ©¹ä0†âZ=Y2-ßÊ‘Ö㲉‹ƒcÆl± ð÷½¼¼°­±Y 5DÍ*U>‹w«poI§Îé‡ÉìNΣ°dÕË»µZ1.èAzÝ`åéåéol–=ã±Oû Ÿ³ÒQ¦¯€¹<ÚVî3”ƒm6Î@ž"sT± 2'YÇ+ž’ðÄÐôß$ùìãzq鬔 FxI'‹J°`G¯Jš…A°b¹¼á:óÈ xqãNm¯ÎºF¯x”ÁA–`9-a—I2 6Í‚Z(É 5¤Î¸QdV®)µi¶Tb²‘Áw}¦RÓ^Ùc Me ›AƒöÆu38–%h™ìŽ~Só¬-ñ¦G¿5êZ‹0߅טqG½%uíNû[ÆæÂ¯°ÏËíB?/[/Ééx0Zsq¸˜ñ­s·˜ñ;º€C—C(@ƒœ›y‰ûâûlŠîŠÖ`6q¡µ– §ÇÖêùåH~ûéøŸ—Çç„f ìÝ‹¾–"•,מ Ý-Mº^nO½8ÿ6\ íC±ÀÞå™nó_=1Þ=Iaa 8™•¶ý†m^‰Úd mò"m­bÚ“©YƒgçËÑ ÊÝù*H‰5žh,™iõËÜ-Ó•@­2ŽK—²÷d¨’€ë]:ö¾Í7FtìoòP®uÁ³Yú.„AÓÒÄïùu|4ïv¸m{œŒ¾xÀ…,eOÖ‹È,ˆ2Ý7é]ÿý 6ª4†g³†©ILB—u 3»®Ž(.gR±€>ô ÔƒìóD;Úû5 ñÝèµ÷=aÑJ²t?&NDBƒlý×tÖædIr7ØýMí”[˜M5Ëe–”æ~_CùHðuOb`I/ÁXCF Îdž–5Dù3«„î°ì:Cá‘3öË»ÿØØª¸Ç1§Å«©M%mäí .Ù¤]–Gig ;=¡ƒrÆwI‡I·6_fRD»°fÏ„âÌð«øaÉ+X¦ÔJº•UdU7™?n™;7§—ª5KÆ —'&W–Éæ K\`óvøtbl¸T{ènÉ ‘+Di…Dˆè¶5¾ã³tußL¾3KCAü¦^dE=õ ZP•˧q“Ã]“žÚêÙûuVTUÅyÅ*ÒO: úÀ„ïQ‘ýSØÙõ\)=G¤„lÎ*Ì:'ÏY»GÝø+æ(ì¬ù@Sé1¹ìåá›mAG¾ (¤˲æôö ½3CpÇ9¨I-kÍFÅ×»uW×mT|ñ]³A©vÝÆœõM”f PЦÒÖ»NÐö¡p@|*z!°˜oãÔkÓ k‡f„™†iº3:j¿Oºqs×®À'½zÕÏxµ—Ž˜ñ­/AViíï­ÕÖŽÁ¾ÓŠåO*í ¿*#¸.ÜÃÿ6÷ÐoéYÞdA–û——ýÖpð2¤WÑÓÎá=¾”Ðé±[ÿפóž´Ä ]& YK ¨sª1 E˜6á”kISÖyXÿG q’'hË0Ü¥ñºÚ¹—‡_é¤x×õV§+3u†¢Yùº®¬CŒ¾Ê.°Ým˜{vÙùˆœŽê÷@ó V µ$’û«ñä•™ F!ÿExž}"c†hÍY?_-lqKs`ãV„¥ˆ“ášEÛ…ìáqΦ j›U=Êt(fçb#zÁ" `8¹Ôø¸ Ÿ·2‰õ€ ¾kåŠkfTH¡lŠ…¸B¼p€BL,¢³#:»/t6BBÚÍŸÕa9´kæPkÄhGŒvÄh÷u1Ú…i1Ú£}eÃ'¡€-ÄhGŒöZó+b´«b´›Å1Ú£1Ú£1ÚW 1Ô0„¡B !F;b´GBÄhgíT™T/¬$ÄhO㇠º+Àhï!F{õNÌZû [ Çi¯‡o‘Ú©‘Ú£ýtF¥‘Ú©‘Ú«ž’ðÄÐôß$!R;"µ#R;"µ#R»Áô‰HíˆÔ¾>fGDjoˆý1R{o)¤v`øŒHíìÞÅ‹g÷¹êÿvÂ4¹]w6Ø•”yÍiÒß¹ý¹“¿ýìí±Ÿ‡û¾Ÿ^÷ »ø¢Û=ètûûû‡Þ‹N¯Óëu^šNþУ–5#äÅcÇ“¿ÿŽ*—ô¼Ã?êgC>H`º˜ï^,æô¹žLFägN6aß… Ø÷“éÓ̹»§_½ß"½Ngo›þs@>:“GJ‡üºp]§) ®ï—Œœ›„ŸÓ_og¶MÜÉíü»5³ß2GxföÐ`қŜÊâœÐEbwñë*ÜOð]kì±·g.¤8€?>ž!g¶ëÒgí±=³Fäóâfä èËgÎÀ»6±\2…ïÜ{{HnžØ{ #W¢#ä,eìúÞ[b;ô9´ýhÏX2…ÞNW¶&jlªUmÒ%Ÿö&L³[´ÓO`i¤=oîIà”a²Bµ÷“©ˆ2¦ýîÐóÆfá‹Q›Ö@Ë’?O¯¿ørMŽÏ¿’?//ϯ¿¾¥eç÷t#ö£ÍkbŽZ1ÕÌÏŸhÇiŸN.ßÿNß8þõôìôú+ôþÃéõùÉÕùpqIŽÉçãËëÓ÷_ÎŽ/Éç/—Ÿ/®Nv¹²mIb ¦‰ÈŠÄp³àaB)9´ç–3rùпÒéuiGCro=Útš¶óH»gQUiú”iGªÁÂx™!Sô-l’tëióµng„f—ÖâÍo²dì´ÉþÏäڦIJÉç‘5 3zµ€÷ûýN›ü:qçPòÓ1!t1êv·»ýÎ!!_®Ž1q‡1qG‰Ä}LÜñw`êLÝ¡uSw`êŽÀ™Sw`êŽ GXSw4`À²ë˜ºSwÔ%ㆋ©;¤Vˆ©;0u¦îÀÔÊ4¦îð‘Sw`êŽH¡I†âÇÔͦîhÌ 0uG…©;0uGôÐ1uGäøŒÖLÝ©;,„©;0u¦îÀÔ˜ºSw`êŽ줘ºSw`êŽF§îè§HÝ‹©;0uG x6/p¦ïˆø¬â§ ?µFçÁ˜Àxø:Š <„x`• Ÿ„¶0&ð¨5¿bõÁfñØÀx`Là±Z乆ÏÕqx`HÄ:‚ Lãi<0G´·Î¨ºbLãi<ªž’ðÄÐôß$aLãi<0¦ñ0@1¦ñXã#¦ñhˆ2CþRi<ú­Ìi<Ø Äm7á¶ï-Û¾‡¸íÏ·‘Û¹]ë2"·#r{@CävDn¯ÁÅaK"r{,»ŽÈíˆÜ^–Œ."·K­‘Û¹‘Û¹=B™Fäv‰¹‘Û#…&‰‘Û›3*DnoÌ ¹½NƒBävDn:"·GŽÏh}AävDn°"·#r;"·#r;"·#r;"·¯`'EävDnGäöF#·ï¥@n …EävDn…ÏæGL@ôöˆÏj±êîPkXÄoGüvÄo÷uñÛ…™ñÛ¿}eÃ'¡à-ÄoGüöZó+â·«â·›ÅñÛ¿ñÛ¿ñÛW 9Ô0Ä¡B !~;â·GBÄogíT¡T/ì$ÄoOã“ º+ÀoßCüöêšðG¶Öý~>DqGwDqöÙXDqGwDq¯zJÂCBÓC|“„(îˆâŽ(îˆâŽ(î3(¢¸#Šûú˜ Ž!¶È (î{K¡¸ïµ2£¸ï!Š{Šûþ(îûˆâþ\QÜÇqܵ.#Ž;â¸9ÄqG÷\#6°$â¸7`À²ëˆãŽ8îu`ɸá"Ž»Ô ÇqÜÇqÜ#”iÄq÷‘qÜÇ=Rh’q™ǽ9£B÷Æ qÜë4(ÄqG÷è¡#Ž{äøŒÖÄqG÷ !Ž;â¸#Ž;â¸#Ž;â¸#Žû vRÄqGwÄqo4Žû~ ÷˜`XÄqGwCmÈ ˆåñY5ÆC=Pj Ï€hîˆæŽh"š»0ö"š;¢¹¯lø$Â…hîˆæ^k~E4wõA4w³ø!š;¢¹#š;¢¹#šûj¡‡†ûhí™5"Ÿ7#g@_>söص‰å’)|çÞÛCróÄÞû¹!`¥e7ßÛ¡Ï¡íG{ƲBôvº²5Qc›P¥o“îH´ÿ3a9Þ¢~C(í‰xsÇHo¤ Vª½ŸLEX4èw‡.è76C=_ŒÚ´Z–üyzýûÅ—kr|þ•üy|yy|~ýõ--;¿§ ,±m^ólЊé¨fÖxþD;N+øtrùþwúÆñ¯§g§×_¡÷N¯ÏO®®È‡‹KrL>_^Ÿ¾ÿrv|I>¹ü|qu²CÈ•mK1MDV$†«JÉ¡=·œ‘ˇþ•N¯K;8’{ëѦÓ<°GÚ=‹jrÓ§Ls8šPÆË쬒 oa§;c›o=p$4»´o~Ûîc§Mö&×6%–M>¬Ñ«¼ßïwÚä׉;‡’ŸŽ éôºÝîv·ß9$äËÕ1f 1f 9X"Éf y¾H0 æ ѺŒ9H0IÀð€9H0I 0 ,‰9H0`ÙuÌA‚9HêÀ’qÃÅ$R+Ä$˜ƒs`’esøH„9H0I¤Ð$çÀ$Íæ iÌ 0I…9H0IôÐ1IäøŒÖÌA‚9H,„9H0 æ Á$˜ƒs`’줘ƒs`’Fç 9H‘ƒ$&s`cm1x?˜‡$â³zd¢z`ÕT3‘`&ÌDâë(f"&_ÌD‚™HV6| äÂL$˜‰¤ÖüŠ™HÔ3‘˜Å3‘`&ÌD‚™H0Éjó†—WC <ÌD‚™H"öf"aíTX/ä?ÌD’Æ?t=V‰ä3‘TïÜl”o²µ&ÙHêáóÃ|$˜ó‘DûïŒÊ,æ#Á|$˜¤ê) O MñMæ#Á|$˜ó‘`>ƒIó‘`>’õ1Gb>’†Ø%3ä#9X* ±2æ#a÷4áÝ„ð~¸Âû!"¼?g„wÄxGŒw­ËˆñŽïe1Þã½WŒ ,‰ï °ì:b¼#Æ{X2n¸ˆñ.µBÄxGŒwÄxGŒ÷e1Þ}$BŒwÄxšdÌfÄxoΨã½1ƒBŒ÷: 1Þã=zèˆñ9>£õ1Þã=ÀBˆñŽïˆñŽïˆñŽïˆñ¾‚1Þã1Þñ~˜ã=& 1Þã="ˆ¶($Äyø”ùPÔ‡ZÃ5 Ò;"½#Ò»¯£ˆô. ¿ˆôŽHï+> …s!Ò;"½×š_é]}éÝ,~ˆôŽHïˆôŽHïˆô¾Z(¢†!Õ‚‘Þé=ˆ Ò;k§zh¥za*!Ò{/eÐYÒû!"½Wïâlœ‡²µ6hïõðü!Þ;â½#Þ{´ϨÒ"Þ;â½#Þ{ÕSžšâ›$Ä{G¼wÄ{G¼wÄ{7FïñÞ×Ç(‰xï ±NfÀ{?\ ïý°•ïÝÙxÿçªÿÛ SôvÝÙ`Wî5¬ÿ­³sûs'ú9ØÛc?ö}?;½½î^÷àE·{Ðéö÷÷;½^§×í½ 4ü¡'1kFÈ‹;Ç'ÿU.éy‡Ôφ| [Át1ß½XÌér=™ŒÈΜl¶ µï'Ó§™swO¿z¿EzÎÞ6ýç€|t&”"ùuáºN ò\ß;.973ˆ]§¿ÞÎl›¸“Ûùwkf¿e^p;Ì졘§7‹9Õ9¡kÈî‚ß&TöŸà+ºÙ3ŸoÏ\È£|<ÿBÎl×¥Ï>Úc{fÈçÅÍÈЗϜ=vmb¹d ß¹÷öÜ<±÷>@G®DGÈXéØÍÀ·ÄvèshûÑž±Œ ½®lMÔØ&TéÚ¤;íÿLXn·h§ŸÀI{"ÞÜ1’À)ƒ{…jï'S¢LúÝ¡ êÍÐÈ£6­–%ž^ÿ~ñ嚟%_^Ÿ_}KËÎïéGìG›×ļ ´b:ª™5ž?ÑŽÓ >\¾ÿ¾qüëéÙéõWèý‡Óëó“«+òáâ’“ÏǗקᅵ_’Ï_.?_\ìreÛ’Ä@L‘‰áZÂÄRrhÏ-gäò¡¥ÓëÒކäÞz´é4lç‘vÏ¢šÔô)ÓŽ&TÁ…ñ2;§$è[ØCéÎÔæK?\íÍ.­Å›ß6¤âØi“ýŸÉµM‰e“Ï#k@gôjï÷û6ùuâΡä§cBè²ÓínwûCB¾\cv@v>Óì;™³ƒÐ³ƒ,ã ìgsÖ*;¦Át ˜Ó`:¿ƒÓÔ ÂÀ’˜¤–]Çt ˜¤,7\ŽõÜmÎp0 ¦Á4 ¡°L‚i@0 ¦© Æ7¦iú¨0 Hc…i@ê4(L‚i@¢‡Ži@"Çg´ºÄ¤á¶â­Và¸bò€tå™\ýMO‘CæVÂ<˜gól`ž2ȃy60ÏF(„y60ÏFekéy6¸®ØD«&ÚÖ0ÑFÿ['1ÑFll)&Ú('ð´ ‰6òàÖ`* ÓgU€:ixsg`î ̹30w†æ˜;sg¬nø$…¹30wF­ùsg¨æÎ0‹æÎÀܘ;sg4!wFw-rftëˆâVCø¶*re°€#§©ÙÂŒ˜‘¢rð·z¡¾aFŠ4î¼ §®ôŒÊ;8ÄŒúkèÊk5:çDš)Á$˜d“Lä:Ü´0É&™À$˜d“L`’ L2‘Û YÏäµ4GbR‰*F†ILÝÐë¦nhˆ/uê0çeOÝoeLÝ n · Œ»»wÁ¸Ÿ÷æ›-ÄãF´´))îæ÷í±ýc8ž|Sl[£9ÐÒƒ“##/ý”eeGÎØ ¥2Ϊ¤? óÝ–/vS±w×ÛÕy(\Y/¢²ž±²^|e{•í+ÛóswBÈ£X}C‘¦œ7Ä)ã"«ˆXÔöËe/LÒ…~e·%͆*×Ùƒ9í¢koŠÛo¼Ëôo éˆžù"NÔøöƒpÇæÿR¦ù_ªŸ/n ŒYØà¾¦nƒ‹­…¾à1—êa”[Å+:ÿÜ9›ÿaÞ+ë•JñI^²ì ,Ç„õ—ͯÎQí’êcÛußÀ :À¾Ý6(](L„ÈHµéÍ^—/J©’çMoý~ŸR}ÄiÈôÝF¢W¬X§z¸Nå_§z+Y§z¹Ö©Þ3“›ìëTϰNõ–^§ž½£×©^ªuª—p¬S{¸Nå_§öV²NíåZ§öž™Üd_§ö ëÔÞÒëÔs£wô:µ—jÚÛÒŰ&¦¦n4üÃaW1aA¤ëÚ3ræO dõNIŠq‹\+*j(É~¡ñ58ˆÃ13©-I5…lK¹›ÃìQë¼1`'Ì„³ÖœY{Acn!á~`k”)‡ÞÍœ9‚òÌ¿#I©÷æ*§ñÙÇ„/ ®È­y6Pv?“Žo«½ñˆo|¢ô‘aˆ^EüeòZOÑÇ¢‡ÄÍQ¦GN'®*"þqÕrÆôJ«O¨ê¨tEú¸í¬)a©âH¿œM•æŸkð—;µæ€Ô€¥;rc_á0L½\6ŠË…Óóx½ÑÎd”쌢í=›ÖÖ† @ÛO6‚‘ຈUa»K—ÅKd[¬Hé°#Ëÿ§ï¨Èp<Õ-Ümâ9EôØŒa(ßæñ5Þ¿¢©+°X±0䈱‘T6øÛøÆ/ 'Ø1…§ƒÕÊ‚íyZ “nÞ@*×h@µŒD.HuMY?*´ÁÛ&úåCf˨c8J,z« x £´25Å@„¦ÉŸÄC… È¡ÄCk1Ò2ð¡&ôЂ1%‡f†º¤™7SÜЩY7ãB9ÄÔÕ„BRE52b¯ª´Q>8ÊÊ2GÕ:哞 n`»®5{¢'ÞÅÖú=äŽðHà 7]¨`¥ôUØ™Ym mw0sn@±b_D zý…$x¡¾ UßdpÒ¨{!æöçó öÜUlå]ÕŠøMøRŸ[ÒžÏ&£v\n0ÌlºÌYæ5ÍÊþŠÏ˜• îóú÷“s®-¤€û„bjP ñÓF€%Ñ׫ª™ßìÿÊh–«çþ×ݶ·¦Àº3ðرW8|²óY‚09È££=ÑsHú5xŒìÖOŒ;àovšþI]œIƒ¼C)Źz“ïm‘;žÜòS›„Ö"!žßÔý;9öÀKé·˜Né¦Çs¸·ä™ÙKPç?:óûîÑÆÕõåéùÇèpº¨^êÄv5æ×xSO Á¤¢1Ç ¤¹cßüÄÄ¥»#1ؘ?%OAAéî’¦¨ò‰2N—oÒ~òÏ™/ßÝOD- þEEüˆ¿÷¿_¿¿>¹Ü®Â²­í®üÆ'Ô!©Í^ªlz±sSÕ”D儌íòiõ–$A ¬‚©óëÅ·’áGD™ ÷|Žs.Cj.9̃¡„¸VO–LË·r¤õx£,dââà˜1[lBü}//olklVCÍQ³ƒ VŠKkÎj¨C…kXqvæ5äÀüå&5,’MN/ã‘"1 ÉÆ‚9¸,¯a ˥† áã eídË”•Q-t¾tŒ:¬Màü-Ô ë&‹Ø¡d·Ò5†™Ö˜°‘R6Æa§Dõ9€ÒóC„ú—¢o¡~™VJX›žH²^$õECÍÆ³Îë€Tð,º•ý;å•ÉÀ.föfUfëÑwXž& vÅÁÁJþ$m’`‡%ìæÑžL_®Ê®‡ñÂ}™iܘ…¸0Ñ}YŒ÷)ÜûØÊï~|ö^½8ÿ‘ßÁãó©¹s0ÞÛ&œmiRfòjin´–O•ÏâÝjÜ[Ò©sú!G2»“óßh,Yõòn­VŒ z^7Xyzyú›eÏxìÓ>Ãç¬tÏKxìZ­Ô>»\µ•“”Yý4s{‚(µÙ¼£_ჇO”é+`.¶•û å`›3§ÈGì‚ äIÖñЧ$<1$4=Ä7I>û¸^\:+å‚^ÂÉ¢,ØÄ«’fa¬˜A.o¸Î<ò^ܸSÛ«³®Ñ+ep%XNKØe’ ¨M³ J²B ©3n™•kJmš-•˜l¤Að]Ÿ©Ô´Wg6†Æ˜BSBÃfР½qÝ Že Z&»£_ÆÔÄ|ÝS§XÒK0Ö至‡À1¡eE Q~Å Ä*¡{#,»ÎPxäŒýòî?6¶*îqÌiñjjSIy»‚K6i—åQÚÃNOè œñ]ÒaÄm£Í—™Ñ.l†ÙÁ3¡83ü*~Xò –)µ’neYÕMæ[gæÎÍé¥jÍ’qÃå‰É•e²9Ãؼ$>.Õº[rCäŠQZ!"ºmïø,]Ý7“ïÌÒP¿©YQÇE=ƒTåòiÜäpפ§¶zö~UUq^±Šô“€ŽB‚>0á{”Cä_ÿvAv=d dM<ÞD:AaŸçc…”;DoÝ¥„ñäãö.· B™iâhÍ­ñÊ'Òà”|žËJ©*|¯ºf£-@qäaû™OÏ)!›³ ³ÎÉsÖîQ7~Àʃ9 »0k>ÐTzEL.{yøf[Бo iÀ²¬9½}„FïÌÐÜqÎj`RËZ³QñõnÝFÅUÄu_|×lPj]·1g}Ó¥™”¢)‡´õ®´}(ŸJ ^læÛ8õÚ4ÃÚ¡a¦aZ€îŒŽÚnÜܵ+ðIï‡^õ3^í¥#f|FëKUÚcû;dkµµc°ï´bù“Jû¯Êî…K÷ð¿ Á=ô[z–…7Y@Ѓåþ¥äe¿5¼ éUô´óAxOA‡/%ô_zìÖ{¦îÿ5)Á¼'-1C—‰BÖ’êœjÌB¦M8eÁZ’Å”5@ÖÿH€ä Ú2 w©E¼®vîåáW:)Þu}„Õé @ÁLáÃ…hV¾®+룯² lwÛ#æž]v>"§£ú=м‚C-‰äþjîÃç-…L"E=àBïZ¹âšÒF(›"†C!®/œ ‹èìˆÎî ͇ÐF„vóguXíZ 9Ô†1Ú£1Ú}EŒvaÚEŒvÄh_ÙðI(` 1Ú£½ÖüŠíêƒífñCŒvÄhGŒvÄhGŒöÕB 5 a¨†ÐBˆÑŽí‘ÐD1ÚY;ÕC&Õ + 1ÚÓø!ƒ.Æ 0Ú{ˆÑ^½³Ö>ÈVÃqÚëáÛC¤vDjG¤öh?QiE¤vDjG¤öª§$<1$4=Ä7IˆÔŽHíˆÔŽHíˆÔn0}"R;"µ¯Ù‘ÚbÌ€ÔÞ[ ©>#R;»wñâÙ}®ú¿0Mn× v%e^sšôwnîäo£C?{{ìçáÁ¾ïg§×=èî¾èv:Ýþþþa§÷¢Óëôzݤ€¦“?ô¨eÍyqçXãñäï¿£Ê%=ïðúÙ$˜.滋9ýA®'“ùÙ“MØw!(öýdú4sîîéWï·H¯ÓÙÛ¦ÿÎä‘RÄ!¿.\×iAJ‚ë{Ç%#çfáçô×Û™mwr;ÿnÍì·ÌQžƒ™=t˜ôf1§²8't‘Ø@üúÄ ÷|E×{ÆCìíÙƒ )àç_È™íºôÙG{lϬù¼¸9úò™3°Ç®M,—Lá;÷Þ’›'öÞèÈ•èùK»¾÷–Ø}m?Ú3–L¡·Ó•­‰Û„jU›tɧýŸ ÓìíôXiOÄ›;Fx#e˜¬Píýd*¢Œé@¿;tż±døbÔ¦5вäÏÓëß/¾\“ãó¯äÏãËËãóë¯oiÙù=]Áˆýh󚘣€VLG5³Æó'ÚqZÁ§“Ë÷¿Ó7Ž==;½þ ½ÿpz}~ruE>\\’còùøòúôý—³ãKòùËåç‹«“B®l[’ˆi"²"1Ü,x˜PJí¹åŒ\>ô¯tz]ÚÁÑÜ[6æí<ÒîYTUš>ešÃÑ„j°0^fÈ”} ›$ÝzÚ|m‡Û¡Ù¥µxóÛ†,;m²ÿ3¹¶)±lòyd èŒ^-àý~¿Ó&¿NÜ9”ütL]ŒºÝín¿sHÈ—«cLÜaLÜÑ_"qGw<ÇĘºSwh]ÆÔ˜º#p¦ÇÔ˜º£È–ÄÔ °ì:¦îÀÔu`ɸábê©bêLÝ©;0uG„2©;|$ÂÔ˜º#Rh’¡ø1uGsF…©;3(LÝQ§AaêLÝ=tLÝ9>£õSw`êŽ aêLÝ©;0u¦îÀÔ˜ºc;)¦îÀÔ˜º£Ñ©;ú)RwÄÂbêLÝžÍ œƒé;">«„ø©ÈO­Ñy0&ðÀ¾ŽbaàŘÀceÃ'¡°-Là o!~;â·×š_¿]}¿Ý,~ˆßŽøíˆßŽøíˆß¾ZÈ¡†!ÕjñÛ¿=ªˆ ~;k§z¥za'!~{ŸdÐÝX~ûâ·WïÐl„?²µîõðó!Š;¢¸#Š{´ÏΨÀ"Š;¢¸#Š{ÕSžšâ›$DqGwDqGwDq7˜AÅQÜ×lj(î ±Ef@qß[ Å}¯•Å}QÜ£PÜ÷—@qßG÷çŠâŽ8îˆã®uqÜÇ= È!Ž;â¸×à±%ǽ–]GwÄq¯KÆ qÜ¥Vˆ8îˆãŽ8îˆã¡L#Ž»DˆãŽ8î‘B“ŒËŒ8îÍâ¸7fPˆã^§A!Ž;â¸GqÜ#Çg´¾ Ž;â¸XqÜÇqÜÇqÜÇqÜW°“"Ž;â¸#Ž{£qÜ÷Sà¸ÇÃ"Ž;â¸h‹@N@,÷ˆÏª1êòPkxDsG4wDs÷uÑÜ…±ÑÜÍ}eÃ'¡.DsG4÷Zó+¢¹«¢¹›ÅÑÜÍÑÜÍÑÜW =Ô0ä¡B!š;¢¹GBDsgíT¥T/ %DsOã™ :+@sßG4÷êÝšñJ¶ÖѽÞ>ÄtGLwÄtöÜÕXÄtGLwÄt¯zJÂCBÓC|“„˜îˆéŽ˜îˆéŽ˜îc(bº#¦ûú"Ó½!É ˜îûKaºï·2cº³»/ðS¯ÏUÿ·¦hÁ®œ¸×|Êvnîäo£C?{{ìçáÁ¾ïg§Û?ìï¾èvè¯ûû‡Þ‹N¯Óëw^šNþГ 5#äÅcÇ“¿ÿŽ*—ô¼Ã?êgC>aº˜ï^,æô¹žLFägN6A-€(Þ÷“éÓ̹»§_½ß"½Ngo›þs@>:“GJ‡üºp]§¹®ï—Œœ›ÄËÓ_og¶MÜÉíü»5³ß2ϸ:föÐl՛Ŝ.sB×°Ý Ü?LèÚó_ѥОñ;öìÁ…\ ðÇÇó/äÌv]úì£=¶gÖˆ|^ÜŒœ}ùÌØc×&–K¦ð{oÉÍ{ïtäJt„|€•–Ý@|Kl‡>‡¶íË ÑÛéÊÖDmB•¾Mº#ÑþÏ„åx‹vú ¡´'âÍ# ¼‘2XY¨ö~2aÑt ßº ßØ õ|1jÓhYòçéõï_®ÉñùWòçñååñùõ×·´ìüž.°Ä~´yM̳A+¦£šYãùí8­àÓÉåûßéÇ¿žž^…Þ8½>?¹º"..É1ù||y}úþËÙñ%ùüåòóÅÕÉ!W¶-I Ä4Y‘®BÌGí¿3*³˜ó‘`>’ª§$<1$4=Ä7I˜ó‘`>ÌG‚ùH &QÌG‚ùHÖljùHb—Ìä`©|$`Äʘ„ÝÓ@„wÂûáðþœÞã1Þµ.#Æ;b¼”9ÄxGŒ÷\16°$b¼7`À²ëˆñŽïu`ɸá"Æ»Ô ã1Þã1Þ#”iÄx÷‘1Þã=Rh’1›ã½9£BŒ÷Æ 1Þë4(ÄxGŒ÷è¡#Æ{äøŒÖÄxGŒ÷ !Æ;b¼#Æ;b¼#Æ;b¼#Æû vRÄxGŒwÄxo4Æûa Œ÷˜€XÄxGŒ÷ˆ Ú¢ç=âSæC=Pj ×€HïˆôŽHホ"Ò»0ü"Ò;"½¯lø$Î…Hïˆô^k~E¤wõA¤w³ø!Ò;"½#Ò;"½#Òûj¡ˆ†DTC"DzG¤÷H#‚Hï¬ê¡•ê…©„Hïi¼”AdHô^½‹³qÊÖÚ ½×Ãó‡xïˆ÷ŽxïÑ^<£J‹xïˆ÷ŽxïUOIxbHhzˆo’ïñÞïñÞïÝ`E¼wÄ{_£$â½7Ä:™ïýp)¼÷ÃVf¼wvgã~üŸ«þo'LÑÛugƒ]I¸×@²½oÛŸ;ùÛèÐÏÁÞûyx°ïûÙéíu÷º/ºÝƒN·¿¿Øé½èô:½nÿ) éä=‰Y3B^Ü9Öx<ùûï¨rIÏ;ü£~6äÙ ¦‹ùîÅbNëÉdDþpæd¶eˆ¨}?™>Íœ»{úÕû-Òëtö¶é?ä£3y¤qȯ ×uZ÷àúÞqÉȹ™Aì:ýõvfÛÄÜο[3û-ó2€ÛafÀ<½YÌ©¨Î ]Cv'üþ0¡²ÿ_ѥȞñø|{öàBøããùrf».}öÑÛ3kD>/nF΀¾|æ ì±kË%SøÎ½·‡ä扽÷:r%:B>ÀJÇn¾%¶CŸCÛöŒelèítek¢Æ6¡J×&ÝhÿgÂr»E;ý†HÚñ掑ÞHÜ+T{?™Še:Ðï]Pol†F¾µi ´,ùóôú÷‹/×äøü+ùóøòòøüúë[Zv~O8b?Ú¼&æe ÓQͬñü‰vœVðéäòýïôã_OÏN¯¿Bï?œ^ŸŸ\]‘—ä˜|>¾¼>}ÿåìø’|þrùùâêd‡+Û–$bšˆ¬H ×&”’C{n9#—ý+^—vp4$÷Ö£M§y`;´{Õ¤¦O™æp4¡ .Œ—Ù9%AßÂJw¦6_úájGhvi-Þü¶!ÇN›ìÿL®mJ,›|Y:£W x¿ßï´É¯w%?B—nw»Ûïòå곃²ƒì1;“9;ÝI0;È2ÎÀ½lÎÀZeÁt ˜Ó`:Lâwc::¡QXÓ4`À²ë˜ÓÔ%ã†Ë±ž»Í¦Á4 ˜$–‚i@0 ¦Á4 µÁøÆ4 M¦iÌ 0 H…i@0 HôÐ1 HäøŒV—˜4 ÜV¼Õ W¬@®<“«¿é)rÈÜJ˜gól`ž ̳Qy0ÏæÙ¨…0ÏæÙ¨lc-=Ï×›hUÃDÃ&ÚØûÖIL´[Љ6Ê Å@aî ÌQk~ÅÜꃹ3Ì⇹30wæÎÀÜMÈÑ]‹œÝ:¢¸Õ¾­Š\làÈij¶0#f¤¨ü­^¨o˜‘";/è©+=#…ò1#E…¾ÀºòZÎ9‘fJ0É&™À$¹7-L2I&0É&™À$˜d“Lä6CÖ3¹D-Í‘˜T"¤Š‘°aS74Äz‡©bÆKºÌyÙS7À[S7ˆ[Æmãî.ÆÝE0îçƽùf ñ¸ñ¸ñ¸ý¶tÄã®Ó¥UK"w,»Žx܈Ç]–Œ.]T)e›3,ÄåF\nÄåyò—q¹—q¹kº‰¸ÜMâr7fPˆË]§A!.7ârGq¹#Çg´¾Äàr«cp,,·2rУ9¸‹‡ö-}{¸º‰Ñß"ÿ÷Ñ÷ĸ¼LgÎ#mèÛÔ÷¨h“¹”uHÑvwK]Ø  œžeáM(Ó~°Ü¿Ô€ü†#l8†#lxäAØp„ ¯…6aÃ+ÛXK‡ 79¡Ð#jø°–¨áp­pf3×y´£ƒ™­ÅqrQþ†¿ŠèW¸gÑZöFªW½Ûz(/òµø{ÿ^ìjÂ…Ã5þ’¸gøóbê‚Vß*EÅGf‘õÓRwÓÇÕú`\UÒ­)]Ó¢³¤øOpÝ­çÅóé¶AéBaº DF²¨Moöº|QJµ&|apEnͳ²û™t|[í_6|㥠Cô*â/“×zŠ>=$nŽ2=r:qPð«–3¦W2X}BUG¥+Ò÷Àml?È` H KGúålò¨4GøÜXƒ¿Ü©50¤,Ý‘ûz‡aê à²Q\.˜žo4Àëv £dgmïÙØ´¶6TÚÆx²܈÷Ð…D¬ Û]º(^"Ûb@J‡Yþ?}GE†ã©Öh¹ànÏ)¢¿Àf ôCù6‡¨ñþMýø[Ųˆ…!GŒ¤²Á߯7~=ÁŽ)<¬VFl÷ÈÛÐj@˜tƒÔðR¹Fªe$²pAªkÊúQ¡ Þ6Ñ/2[FÃQbÑ[UÀc¥5©)"4Mþ$*\@%Z‹y”–5¡‡œˆ)943ÔÈ Í¼Ù˜â†–HµÈºÊ!¦®&’*ª‘{U¥òÁQV–9ªÖ)ŸôuÛu­Ù=ñ,¶Ðïì!wÔp€Gz^¸é’@+¥¯ÂÎÌjÝph»ƒ™sŠûÊ8 ZÐë/$Á •ðe¨ú& ƒ“FÝ 1·?ŸW°ïà®b‹(ïB¨VÄoêÀ—úÜö|6µãrƒù`fÓeÎ’0¯áhVöW|ƬlpŸ×¿Ÿœsm!Ü'SãY:qV(oY`‰ìR©sK®þûŽHÆG»µ^£Ä¼Ðff€#?3Ñ-Þe×LfOl\¨ØÅë‰á%9ŸÌ!}%Ýô$@¯ã²Döí­=˜;6UèR2 Lô9€Â`ˆŸ6rx,‰¾^UÍÌøf‡øTFð\}8÷¿î¶½5ÖŘǎ½Âá“ÿèÌ„ÉA퉞CÒ¯ÁÓ`d·~bܳÓôOúëâLäJ)ÎÕ›Œh|¿h‹löõä–Ÿ¢Ø$´ ñü¦îßÉÁ°^J¿ÅtJ7=žÃ½%ÏÌ^‚:øÑ™ßw6®®/OÏ?nD‡øÓEõR'¶«1¿Æ›z î$9îH Íûæ'þ .݉ÁÆü)y Jw—4E•O”qº|“ö“Î|ùî~"jñ/*zàG„øm¼ÿýøòøýõÉåFp–mmwå7>¡IuhöReÓ‹›ª¦$*'dÜh—O«·$ òP`H_/n¼• ×8Ú Ê¬H¸çsœsRsÉa %ĵz²dZ¾•#­Çe!ÇŒÙb*àï{yy#`[c³jþˆšTx°R\ZÃpVCú+$XʳÖ0­!æ/7©alrz?ˆ‰aH6DÈAÀey ^X.5lïè¬o(k'[¦¬Œj¡ó¥cÔamço¡Y7XÄ%kô¸Õ®1̴ƄIJ1;%ªÏ,žê$Ô¿} õËì°RÂÚôD’õÊ ©/j6žuþÈX¤‚gÑ­ìß)¯Löp1³ß0«2[¾Ã ð4Y°+ÖVò'i“û8,é`7ödúrUv=ŒîËLãÆ,Ä…‰îË‚à`¼OáÞÇV~÷ã³÷êÅùüžŸO̓ñÞ6álK“B0“WKs£µ|ª|ïV+àÞ’NÓ9’ÙœÿF+`ɪ—wkµb\0ЃôºÁÊÓËÓߨ,{ÆcŸö>g¥x^Âc×j¥öÙå:¨­œ¤Ìê§™Ûì@©ÍæEý <|¢L_sy´­Üg(ÛlœVHé±CôÖ]ŠAO>náÒx« ”™&ŽÖܯ|" NÉ繬”ªÈ÷ªk6ÚG¶Ÿùô‘²9«0ëœyèÆÍ]»Ÿô~èU?ãÕ^:bÆg´¾Y¥=¶¿C¶V[;ûN+–?©´/üªŒàX¸TpÿÛÜC¿¥gYx“=Xî_j@^ö[ÃÁË^EO;„÷DpøRBÿ¥Çn½gêþ_“Ì{Ò3t™(d-) Î©Æ,aÚ„S¬%YLYäaýÄHž -Ãp—ZÄëjç^~¥“â]×GX®ÌÔ>\ˆfå뺲1ú*»Àv·=bîÙeç#r:ªßÍ+X1Ô’Hî¯Æ“Wff€h…üáyö‰|Œ¢5gý@|µ°Å-Í[–"N†kAl²‡Ç9›‚ªmBTõx(Ó¡˜‹Pè}‹$€áäRãã^0|ÞRÈ$RÔ.ø®•+®™Q!m„²)b8â ñ 1a°ˆÎŽèì¾ÐÙ| mDh7V‡åЮšC­a£1Ú£Ý×QÄh¦]ÄhGŒö• Ÿ„¶£1ÚkͯˆÑ®>ˆÑn?ÄhGŒvÄhGŒvÄh_-ÄPÆj-„íˆÑ MD£µS=dR½°’£=2èb¬£½‡íÕ;1kíƒl5§½¾=DjG¤vDjöÓ•VDjG¤vDj¯zJÂCBÓC|“„HíˆÔŽHíˆÔŽHíÓ'"µ#Rûú˜©½!öÇ Hí½¥Úá3"µ³{/žÝçªÿÛ ÓävÝÙ`WRæ5§IçöçNþ6:ôs°·Ç~ìû~vz݃îþá‹n÷ Óíïïvz/:½N¯×{A h:ùCZÖŒwŽ5Oþþ;ª\Òóÿ¨Ÿ ù@"éb¾{±˜Óäz2‘?œ9Ù„}‚bßO¦O3çîž~õ~‹ô:½múÏùèL)EòëÂu¤$¸¾w\2rnf~N½Ù6q'·óïÖÌ~Ëà9˜ÙC€Ios*‹sB‰Ý į?L¨p?ÁWt­±g<ÄÞž=¸âþøxþ…œÙ®KŸ}´Çö̑ϋ›‘3 /Ÿ9{ìÚÄrɾsïí!¹ybï}€Ž\‰Ž°”±ë{o‰íÐçÐö£=cÉz;]Ùš¨±M¨VµI—|Úÿ™0ÍnÑN?¥‘öD¼¹c$7R†É ÕÞO¦"ʘô»CWÌ›A†/FmZ-Kþ<½þýâË59>ÿJþ<¾¼<>¿þú––ßÓŒØ6¯‰9 hÅtT3k<¢§|:¹|ÿ;}ãø×Ó³Óë¯Ðû§×ç'WWäÃÅ%9&Ÿ/¯Oß9;¾$Ÿ¿\~¾¸:Ù!äʶ%‰˜&"+ÃÍ‚‡ ¥äО[ÎÈåCÿJ§×¥ ɽõhÓiØÎ#ížEU¥éS¦9M¨ ãe†LIз°IÒ­§Í×v¸š]Z‹7¿mÈ’±Ó&û?“k›Ë&ŸGÖ€ÎèÕÞï÷;mòëÄCÉOÇ„ÐŨÛÝîö;‡„|¹:ÆÄÆÄý%wô1qÇsLÜ©;0u‡ÖeLÝ©;gzLÝ©;j€a`ILÝрˮcêLÝQ–Œ.¦îZ!¦îÀÔ˜ºSwD(Ó˜ºÃG"LÝ©;"…&ŠSw4gT˜º£1ƒÂÔu¦îÀÔÑCÇÔ‘ã3Z_0u¦î°¦îÀÔ˜ºSw`êLÝ©;V°“bêLÝ©;º£Ÿ"uGL ,¦îÀÔàÙ¼À9˜¾#â³JˆŸz€üÔx`Làáë(&ð^Là £õ‘Û¹=ÀBˆÜŽÈíˆÜŽÈíˆÜŽÈíˆÜ¾‚‘Û¹‘Ûܾ—¹=&‘Û¹=>›1ÑÛ#>«Åv¨ºC­a¿ñÛ¿Ý×QÄof^ÄoGüö• Ÿ„‚·¿ñÛkͯˆß®>ˆßn?ÄoGüvÄoGüvÄo_-äPÇj5„øíˆß UD¿µS=„R½°“¿=O2èn¬¿}ñÛ«wh6ÂÙZ ÷zøùÅQÜÅ=ÚggT`ÅQÜŽê) O MñM¢¸#Š;¢¸#Š;¢¸Ì ˆâŽ(îëc‚D÷†Ø"3 ¸ï-…â6±Œ(î{ˆâ…⾿Šû>¢¸?WwÄqGw­ËˆãŽ8îEqÜǽ׈ ,‰8î °ì:â¸#Ž{X2n¸ˆã.µBÄqGwÄqG÷eqÜ}$BwÄqšd\fÄqoΨǽ1ƒB÷: qÜÇ=zèˆã9>£õqÜÇ=ÀBˆãŽ8îˆãŽ8îˆãŽ8îˆã¾‚qÜÇqÜ㾟Ç=&qÜÇÝ@[rb¹G|VñP”‡ZÃ3 š;¢¹#𻝣ˆæ.Œ½ˆæŽhî+> …p!š;¢¹×š_Í]}ÍÝ,~ˆæŽhîˆæŽhîˆæ¾Z衆!ÕrÑÜÍ=²ˆ š;k§z(¥za(!š{ÏdÐéXšû>¢¹WïÖlŒW²µˆîõðö!¦;bº#¦{´çΨÆ"¦;bº#¦{ÕSžšâ›$ÄtGLwÄtGLwÄt7CÓ1Ý×lj˜î ±HfÀtß_ Ó}¿•ÓÝÍxŸz}®ú¿0Es× våĽæSv°sûs'ú9ØÛc?ö}?;ÝþaÿðE·{@Ýß?ìô^tz^¿û‚Ðtò‡ž­!/îk<žüýwT¹¤çþQ?òŒÓÅ|÷b1§?Èõd2"8s² jDñ¾ŸLŸfÎÝ=ýêýéu:{ÛôŸòÑ™ž!g¶ëÒgí±=³Fäóâfä èËgÎÀ»6±\2…ïÜ{{HnžØ{ #W¢#䬴ìâ[b;ô9´ýhÏXVˆÞNW¶&jlªômÒ‰ö&,Ç[´ÓO`¥=oîIà”ÁÊBµ÷“©‹¦ýîÐýÆf¨ç‹Q›Ö@Ë’?O¯¿ørMŽÏ¿’?//ϯ¿¾¥eç÷t%ö£Íkbž Z1ÕÌÏŸhÇiŸN.ßÿNß8þõôìôú+ôþÃéõùÉÕùpqIŽÉçãËëÓ÷_ÎŽ/Éç/—Ÿ/®Nv¹²mIb ¦‰ÈŠÄpâaB)9´ç–3rùпÒéuiGCro=Útš¶óH»gQMnú”iGª`Ãx™Uô-ìátgló­®“„f—ÖâÍoÒ}ì´ÉþÏäڦIJÉç‘5 3zµ€÷ûýN›ü:qçPòÓ1!^·ÛÝîö;‡„|¹:Æ $Æ $Kd 9À $Ï7 æ Á$Z—1 æ 0 æ ©†%1I,»Ž9H0IX2n¸˜ƒDj…˜ƒs`ÌA¡Lc‰0 æ ‰šäœ˜ƒ¤9£Â$æ ©Ó 0 æ ‰:æ ‰ŸÑú‚9H0I€…0 æ Á$˜ƒs`ÌA²‚s`ÌAÒè$)rÄ„ÃbÌAb ¡-ïóD|VLTl¢Zƒ a&ÌD‚™H|ÅL$Âä‹™H0ÉʆOB\˜‰3‘Ôš_1‰ú`&³øa&ÌD‚™H0 f"Y-`^Ãðòj”‡™H0I$ÐÁL$¬êë…ü‡™HÒø'ƒ®Ç 2‘`&’ê›òM¶Ö$I=|~˜ó‘`>’hÿQ™Å|$˜ó‘T=%á‰!¡é!¾IÂ|$˜ó‘`>ÌGb0‰b>ÌG²>æHÌGÒ»d†|$Kå##VÆ|$ìž"¼›Þ—@x?D„÷çŒðŽïˆñ®u1Þã= Ì!Æ;b¼×àŠ±%ã½–]GŒwÄx¯KÆ 1Þ¥VˆïˆñŽïˆñ¡L#Æ»DˆñŽï‘B“ŒÙŒïÍb¼7fPˆñ^§A!Æ;b¼G1Þ#Çg´¾ Æ;b¼X1Þã1Þã1Þã1ÞW°“"Æ;b¼#Æ{£1ÞS`¼ÇÄ"Æ;b¼GÑ…¤€8ïŸ20êúPk¸DzG¤wDz÷u‘Þ…á‘Þé}eÃ'¡p.DzG¤÷Zó+"½«"½›Å‘Þé‘Þé‘ÞW EÔ0$¢B!Ò;"½GBDzgíT­T/L%DzO㥠: +@z?D¤÷ê]œóP¶Öí½ž?Ä{G¼wÄ{öâUZÄ{G¼wÄ{¯zJÂCBÓC|“„xïˆ÷Žxïˆ÷ŽxïÃ(â½#Þûú%ï½!ÖÉ xï‡Ká½¶2ã½³;/ðãÿ\õ;aŠÞ®;ìJÂíÜþÜ)®ýìí±Ÿ‡û¾ŸôÓëÒgÝîA§Ûßß?ìô^tº‡ÝƒÞ R`¢?ô$fÍyqçXãñäï¿£Ê%=ƒQ?òlÓÅ|÷b1§?Èõd2"8s² Û2DÔ¾ŸLŸfÎÝ=ýêýéu:{ÛôŸòÑ™ûhí™5"Ÿ7#g@_>söص‰å’)|çÞÛCróÄÞû¹!`¥c7ßÛ¡Ï¡íG{Æ26ôvº²5Qc›P¥k“î´ÿ3a¹Ý¢~C$í‰xsÇHo¤ ŸLEˆ2èw‡.¨76C#_ŒÚ´Z–üyzýûÅ—kr|þ•üy|yy|~ýõ--;¿§ ±m^ó2Њé¨fÖxþD;N+øtrùþwúÆñ¯§g§×_¡÷N¯ÏO®®È‡‹KrL>_^Ÿ¾ÿrv|I>¹ü|qu²CÈ•mK1MDV$†k JÉ¡=·œ‘ˇþ•N¯K;8’{ëѦÓ<°GÚ=‹jRÓ§Ls8šPÆË윒 oa¥;S›/ýpµ#4»´o~ÛŠc§Mö&×6%–M>¬Ñ«¼ßïwÚä׉;‡’ŸŽ ¡KQ·»Ýíw ùruü¼“ƒDïÁ›[v_Ütký1ïÿ“Y·ÿw{‡Ã½®ÿïuöiqÜÿKøàþû?îÿ¸ÿ‡ö*Œ‹Q(p¦ål¦¹VkÊ9ä/}-ø@ÚXdRÄ3a`v¨"ªÓjñ>Ñ ¶ê€9»øxúþø¬Ëì’L¹Íä«ß:ùÓ›-¤z_=ô!¢3…ß“! c>®„t\Ë¿Ÿ6-YЬd9#‹â±M™5ôÌ4Nfr8gTÕùgÖBfPkkœÔäpÔ¨:ªóÕ¬‰Ô Ü4Nnr8mTÕùmÖFnPr'998ªŽê|8k$9(;“ÎUGuþœµ’”žÆIOÇŽª£:ßΚIÊOãä'•“g™l3òÕê<õD'Ïú‹S®Ì3ªŽÊë$>èj åqyµTèZ/ B¯2”Ç!äÕR¡KhÝd¥¨R”Ç=äÕR¡ƒhý¤å¨r”ÇYäÕR¡»hå%©’”ÇuäÕR¡óh=% e©²”Ç‘äÕR¡+i]e ¥©Òt+Á‹PáìÖØ­–ú•Wá¬1Ôð>]|<}|–Þ÷$ëQoÆ9žn' ÊŽ´9k1*\U׫—E?Mÿ¼¸üãøòâËùo´jÑÍ Ë7ªzé†ú7{ĈñºA¸%‰×Oä긡¥·PÝLÜä³K­ª¨F u4¹sP*êYãÓ8bGнàm²¹7[VgW¸ŠOÊë²ò ~¯|"Ëk@© }V(µÜ[YŠàfö±…«ˆq°¡à./¸íD·Âkþ¬TxÛå‰of÷^¸ŠßŠoñ-F€Q„#>+á…8³w1\EŒk…8Ÿ%Æ(ÈŸ• r‰¢œÙÁ®"Æ»‰¢œW”‹fçˆO â\¢@gö³†«ˆq²¢@çè"E…:âSŠP—(Ö™]¾á*bü½(ÖEˆu±‚¢ñ)I´Kîø‹¢Xoi×r¯j×r²ÿ¡kù¹ w9ÒÜËïZîUíZ^OyE×r¥¶4×r/¿k¹Wµky]]ËMÞÒ´è^~×r¯j×òúŠ/º–›,Â% qn×r¯j×ò: 1º–›.È%Šrn×r¯j×òz‹2º–×AœKèÜ®å^Õ®åuht-¯‹P—(Ö¹]˽ª]Ëë/ÖèZ^'Ñ.Q¸S¹–ûK»–ûU»–ës]ËÏ]¸Ë‘æ~~×r¿j×òzÊ+º–›(µ¥¹–ûù]Ëýª]Ëë*¸èZnªð–¦E÷ó»–ûU»–×W|ѵÜd.Qˆs»–ûU»–×YˆÑµÜtA.Q”s»–ûU»–×[”ѵ¼â\¢@çv-÷«v-¯»@£ky]„ºD±ÎíZîWíZ^±F×ò:‰v‰Âʵ¼·´ky¯j×r2£kù¹ w9Ò¼—ßµ¼Wµky=å]ËM”ÚÒ\Ë{ù]Ë{U»–×UpѵÜTá-M‹ÞËïZÞ«Úµ¼¾â‹®å&‹p‰BœÛµ¼Wµky…]ËMäE9·ky¯j×òz‹2º–×AœKèܮ彪]Ëë.ÐèZ^¡.Q¬s»–÷ªv-¯¿X£kyD»DáŽw-Ÿž_Ÿ|„äá™]ËòÍÊ\˪ëõ}ÑÍe]˯£kyÂIìª]Ëž°-íZVUTåZ^kyÕ]Ëˉ,º–#>+”ÚÕ»–=©[Úµ¬ª¨Êµ¼æ‚Û.@tQŸŽø¬TxW¯E{²·´kYUQ•kyíÅ·FŽø¬X„Kâå]ËªŠª\ËÏ@ˆ‹cäˆÏʹDQ^Þµ¬ª¨Êµü,D¹8aFqŽø” Î% ôò®eUEU®åg"ÐEŠ4 uħ¡.Q¬—w-«*ªr-?±.V°Q´#>%‰v‰Âʵ¼D®eùfÕ®åºcá£kù9w9Òœ'ײª¢b×òzÊ+º–›(µ¥¹–óäZVUTìZ^WÁE×rS…·4-:O®eUEÅ®åõ_t-7Y„KâÜ®åêr-?!F×rÓ¹DQÎíZ®.×ò³et-¯ƒ8—(й]ËÕåZ~&®åuêÅ:·k¹º\ËÏF¬Ñµ¼N¢]¢p§r-/‘kY¾Yµk¹îXøèZ~Â]Ž4çɵ¬ª¨Øµ¼žòŠ®å&Jmi®å<¹–U»–×UpѵÜTá-M‹Î“kYUQ±ky}Å]ËMá…8·k¹º\ËÏ@ˆÑµÜtA.Q”s»–«Ëµü,D]Ëë Î% tn×ru¹–Ÿ‰@£ky]„ºD±ÎíZ®.×ò³kt-¯“h—(Ü©\ËKäZ–oVíZ®;>º–Ÿƒp—#Íyr-«**v-¯§¼¢k¹‰R[šk9O®eUEÅ®åu\t-7UxKÓ¢óäZVUTìZ^_ñE×r“E¸D!ÎíZ®.×ò3bt-7]KåÜ®åêr-? QF×ò:ˆs‰Ûµ\]®åg"ÐèZ^¡.Q¬s»–«ËµülÄ]Ëë$Ú% w¼kùòäøl‰DËìµÊœÊ¼Óõ–xèã²îdÓ»èK^…4›)]µ#YH×Ò^dþ~U.ä5•NÝy¼„€¢ç8â³*]½ÛXˆÙÒ>cþ~UãµÓv^AEå8â³:Q]½>,„mi1¿*÷ð kâŠñY¥À–%²ËûƒùûU9ƒ×Zd ZÛˆÏjŶ,Á]ÞûË߯Êõ»æ‚[è¢ðF|V-¼e‰ïò¾^þ~UŽÞµßÂE8â³z.Kˆ—÷ìò÷«rë>!.PŒQ#>erY¢œìÇ]"«1{­R?nÝñæÑë«{½ä¸Á͓Ø¿_¥w ¥ý¸æjê*£åøqód,æïWéÇ]K1E?nT5õÕr”á<ù‰ùûUúq×TXÑÛL-Kdóùq«KE¼Ö"‹~ÜæŠmY‚›Ï[]âá5\ôã6[xËß|~ÜêÒ ¯½ø¢·ù"\–çóãV—Tø1úq×CËåd?î)„Ùk•úqëîŽ~\_Ýë%Ç%nž„Áüý*ý¸k(èÇ5WSW-Ç›'=0¿J?îZŠ)úq£ª©¯¨–£ çIÌ߯һ¦ÂŠ~Üf lY"›Ï[]ÞßµYôã6WlËÜ|~Üê²ü®¹à¢·ÙÂ[–øæóãV—ÓwíÅý¸Íᲄ8Ÿ·º ¾Ï@ˆÑ»‚\–('ûq—È×Ë^«Ô[w$uôãúê^/9.ApódçåïWéÇ]CéD?®¹šºÊh9~Ü<¹xùûUúq×RLÑUM}Eµe8Oæ]þ~•~Ü5Vôã6S`ËÙ|~Üê’쮵Ȣ·¹b[–àæóãV—RwÍý¸ÍÞ²Ä7Ÿ·ººk/¾èÇm¾—%Äùü¸Õ¥Ë}BŒ~Üõä²D9ÞûþâÓ糓.‘"W¾Y™7Wu½Þâ.º¹¬O7âutë®B¬#‰]µg×¶¥»ªŠªü»k-¯º—w9‘EGoÄg…R»z_¯'uK»{UUy|×\pÛˆ.jÒŸ• ïêUhOö–v«*ªò¯½ø#À(Ÿ‹p‰B¼¼KXUQ•WøqQbŒ‚ñY¹ —(ÊË;‰UUù‰Ÿ…('Ì(ΟĹD^Þm¬ª¨ÊsüLºH‘F¡Žø”"Ô%ŠõòŽdUEU¾äg#ÖÅ 6Švħ$Ñ.Q¸S¹–—ÈÚ+߬ڵ\wdwt-?á.GšóäñUUTìZ^OyE×r¥¶4×ržÌ¾ªŠŠ]Ëë*¸èZnªð–¦EçÉõ«ª¨Øµ¼¾â‹®å&‹p‰BœÛµ\]àg ÄèZnº —(ʹ]ËÕ¥~¢Œ®åuç:·k¹º$ÁÏD Ñµ¼.B]¢Xçv-W—6øÙˆ5º–×I´KîT®å% Ë7«v-×l]ËÏA¸Ë‘æ<©…U»–×S^ѵÜD©-͵œ'Ù°ª¢b×òº .º–›*¼¥iÑyÒ«**v-¯¯ø¢k¹É"\¢çv-W—“ø1º–›.È%Šrn×ruYŠŸ…(£kyĹDÎíZ®.oñ3ht-¯‹P—(Ö¹]ËÕe2~6b®åuí…;•ky‰ÜÆòͪ]ËuÇ¿G×òsîr¤9O¶cUEÅ®åõ”Wt-7QjKs-çɬª¨Øµ¼®‚‹®å¦ oiZtžŒÈªŠŠ]Ëë+¾èZn²—(Ĺ]ËÕ¥I~BŒ®å¦ r‰¢œÛµ\]âäg!ÊèZ^q.Q s»–«K¥üL]Ëë"Ô%Šun×ruÉ•ŸX£kyD»DáNp-ÿ~|yüþúär™lËêÝêÜË^÷k¾ÈާÍ[Šj&ähޝÎ+ù$¢WîxÖqy׳WIeÎçç!Í>7t.Fwtħ™.Á-­IäòŽi¯’Ê\ÓÏE¬Û 6jèŸRD»ý\“ËåÝÖ^%•9®Ÿp+Þ(àŸ’¼TÏáÔö*©Ì­ýœD¼h!G1ø”&æ¥ z—·WIeNïç%èÅ‹: {ħDa/UÜs8ĽJ*s‰?7q_…À£ÈG|JùR…>‡»Ü«¤2‡ùóúÕˆ= ~ħdÁ/UôƒÎtxê›ÝZ»Õz¹ýKKý¨Å»Î0ÈògOߟ-á|çÕ© ¤Þ[JVºŠ¨~ç^Câ8_´²ì­ìˆ×Ks’!+‘c¨Úçâ¿¥ÏÁšºÈÉGñrÌ\¨ƒ¸Z~^½¿5ĈK;]ƒ5õ¥NÒe™ºPÝ«j¶^½bÇ¥ŽÁšúÈØÂåY{͘»|ö^ÞÙ¬iÙ;Ò9–‡Á׎ÅËgòåMÁšö‘ÉcCùØ| ½|V_ÞɬéY=Ö)’—Ù×’ÝËgøå Áš‘áùY~M™¾|¶¿©&ŠõòšÊ{Õ˜Ê È«‹¦òu0•÷ 3•÷ª1•×’“ÑT^¡©¼W˜©¼W©¼¦,¦òŠMå½ÂLå½jLåµel4•×ÀTÞ+ÌTÞ«ÆT^cöFSyMLå½ÂLå½jLåµfr4•×ÈTÞ+ÌTÞ«ÆT^sVGSyÍLå½ÂLå½jLåµgx4•×ÐTÞKg*ïç5•÷«1•'Måë`*ïf*ïWc*¯%'£©¼BSy¿0Sy¿SyMYMå›Êû…™ÊûÕ˜ÊkËØh*¯©¼_˜©¼_©¼Æì¦òš˜Êû…™ÊûÕ˜ÊkÍäh*¯‘©¼_˜©¼_©¼æ¬Ž¦òš™Êû…™ÊûÕ˜ÊkÏðh*¯¡©¼ŸÎT¾—×T¾W©¼€¼Gh*_Sù^a¦ò½jLåµäd4•Wh*ß+ÌT¾W©¼¦,¦òŠMå{…™Ê÷ª1•×–±ÑT^Sù^a¦ò½jLå5fo4•×ÄTž'¹}°¦JLåµfr4•×ÈTž'í{°¦JLå5gu4•×ÌTž'!z°¦JLåµgx4•×ÐTž”*üôüúäãR‰ÂE;²‚’Måªß+ Ñʲ¦òˆ×e*CMLåÿå5•«šÊ5•×™“uSùrÌ\;Sùòü\š©Ücļ¦rUS¹¦òz³t»¦®v’‡­KÓIÛ§2•/U.+¨ÆT¾bT"4•7ÅT^V¹ª©Sy-9MåšÊ À*W5Ub*¯)K£©¼bSyX媦JLåµel4•×ÀT^V¹ª©SyÙMå51•€U®jªÄT^k&GSyLå`•«š*1•לÕÑT^3SyX媦JLåµgx4•×ÐTž„U.Š-U.+¨ÆT¾bT"4•7ÅT^V¹ª©Sy-9MåšÊ À*W5Ub*¯)K£©¼bSyX媦JLåµel4•×ÀT^V¹ª©SyÙMå51•€U®jªÄT^k&GSyLå`•«š*1•לÕÑT^3SyX媦JLåµgx4•×ÐTž„U.Š-U.+¨ÆT¾bT"4•7ÅT^V¹ª©Sy-9MåšÊ À*W5Ub*¯)K£©¼bSyX媦JLåµel4•×ÀT^V¹ª©SyÙMå51•€U®jªÄT^k&GSyLå`•«š*1•לÕÑT^3SyX媦JLåµgx4•×ÐTž„U~yr|¶}>;ùçòÓ²‚’­Óªß+Ñʲ6êˆ×e¦ŽCM,Õÿå5V«šÊµW×™“u«õrÌ\;Ãõòü\šíÚcļækUS¹ìz³t»¦®^’‡­KSHÛ§2•/z-+¨ÆT¾bŒ4•7ÅT^¶ª©Sy-9MåšÊ @ÆV5Ub*¯)K£©¼bSyXÙª¦JLåµel4•×ÀT^z¶ª©SyÙMå51•€§­jªÄT^k&GSyLå l«š*1•לÕÑT^3Sy˜Ûª¦JLåµgx4•×ÐTž„Â-Š-Ä-+¨ÆT¾bØ4•7ÅT^4·ª©Sy-9MåšÊ ëV5Ub*¯)K£©¼bSyðݪ¦JLåµel4•×ÀT^ ·ª©SyÙMå51•ñ­jªÄT^k&GSyLå€~«š*1•לÕÑT^3Sy0દJLåµgx4•×ÐTž .Š- .+¨ÆT¾b$"4•7ÅT^Z¸ª©Sy-9MåšÊ ÀW5Ub*¯)K£©¼bSyˆâª¦JLåµel4•×ÀT^Ƹª©SyÙMå51•€:®jªÄT^k&GSyLå૚*1•לÕÑT^3SyÈ䪦JLåµgx4•×ÐTžˆUþûñåñûë“Ëh媊²Íå^ßW+²ÀÜ·Göøèé çñÕ4Ë€ž4–ºÒ5ÞÌmJ÷ê*Ù˜Þ>÷™Õs±zýÌë¹¹½<3»Æ¤¹ í^]%›ÚÂðíY¾~úNL_ž¶£±jn3¼WWɆøÆ°}±Œ¿¦¬_óç7Ò{u•l¦oóÍþk+Uˆ@~¾WWÉFüF‰@ñB°ÆbP… ä7ð{u•lâo˜ ¬BÖZª‡ü毮’‡ÕÄš‹DBtÀëPíìÖØ­—ÛïZ-õg 2kñ#ÀMgOߟu£%‰¾£Jy"4c4›Q¢µo —Õ«´Í*1¢îx§™Á>ñ^hJCÖЬ#`¤]æ=:ôµÁ=%í€Rv3,¬¦×èôeh,=ãê|cöc‰§½T¼×+™÷R‚!ïÕž÷z±¼×OÅ{ý’y/Õ ;ä½Úó^?–÷öRñÞ^ɼ—*dy¯ö¼·gæ½Óóë“p*‰­C–*‹÷T¯VÀ{¢î̼ñò^ ¾‰å½}O–*™÷V¢ï!ï•Î{úžxš ïÉR%óÞJô=ä½Òy/BßOô=YªdÞ[‰¾‡¼W:ïEè{—'‰Æ=V¤,®ãýYËAÅ™ùÍô2[¯DsZ‚jÇŠ”Éi+QêÓÊâ´]%(r¬H™œ¶9­,N‹ÐÜàQ‚ÚÆŠ”Éi+QØÓÊâ´=M\ýJPÕd©²øMõj,—êò¢ë"ïô!ã%òM,ï%(o²Tɼ·y¯tÞ‹Ðå¦hš:JÓè² "ïÕž÷"´;uI?M¥éxY ÷jÏ{Qúž_‹*WÿeŠ\ÍÌYâUMœ˜¾‰™‚—Ì¡£ìχÉp1oóøSxÜzÿ¹êÿv² ï캳ûåíÒd¶sûs'áÕÔŸýìí±Ÿ‡û¾ŸNÿð°ó¢Û=ètûûû‡Þ‹N÷pÿà)¬qŸ…;·f„¼¸s¬ñxò÷ßQå’žóÁtÔφ|^’Óñt1ß½XÌér=™ŒÈtéÙ„%`«õ’¼ŸLŸfÎÝ=ýêýéu:{ÛôŸòÑ™ž!g¶ëÒgí±=³Fäó↮•ôå3g`éBj¹d ß¹÷öÜ<±÷>@G®DGÈ(· ®û-±úÚ~´g.ý†ôvº²5Qc›Lfd“®F´ÿ3¾E;ýDF,ÅâÍ# ¼‘‚¼²jï'S:¬{Z!èwg4"76l·‹Q›Ö@Ë’?O¯¿ørMŽÏ¿’?//ϯ¿¾¥eç÷t‰ ö£Íkbû­˜ŽjfçO´ã´‚O'—t½8¿>þõôìôú+ôþÃéõùÉÕùpqIŽÉçãËëÓ÷_ÎŽ/Éç/—Ÿ/®Nv¹²mIb ¦‰ÈŠÄ·´Ê‡ ¥äО[ÎÈåCÿJ§×¥ ɽõhÓiØÎ#ížE”‡2Íáh2¾cãe»œ$è[âÜÒ=qÞ&ßgåù$<»´o~Û”¹;m²ÿ3¹¶)±lòyD×Ë6¹ZÀûý~§M~¸s(ùé˜N¯ÛínwûCB¾\·Z/· ý™hF Æj” ƒÉøÖ¹[ÌXoÉ­3²é †6Ù`‹1/±s¿Q|_‚MÑæÁÌ&.´FÇNN./)ÃP àú”²OHÝaûÝfœù7{“ý‘F™ñ®’ðWB?ûš/F#ºðšÿŠÑ–q£Ô{ъ룳)õ­HýÊ´9öƒêX¤æ¨æ#ÛšB#g¤’s»i¹îdàеh¨Ñj‹ §5Môût$½Œ„GÄàÔß’"LûоpÜ÷uÒx#•³@zãòæßuÈÝ5vˆúæ—#­í)Ýľ¹Îßö¬ Ì±×ƒ%hφ^[ZaªýQÚ…F¬AY¼—Ðe£[‹*Ä;å'3ºñù_è°¢Lá©_R°¥˜³Vëv1°%F{h ‡ß~l®n*Ùܵg³»Õfà < ô„>NˆCGÔ%í]`6å<îÐ-`ÇLi‡RÌþá̆Î8λî`ý;┦½àvÛ‘½ µBOœ1•°c±×C/³oß±Qì§ŸÑ ¦^’MM“éž7þ6¡:ÈíhòÝÇÂlÔ‹²c(=©müIßqÆwoÄñ_'—Î.þ܈àýéÌ 𾑢í@s[~ÞMA6þ”bTh¥F‡ ¡'fÒY¬Vx¼ý×]ÃË‚¹@|糓Þ`§` ˆèSÕ&³‘BÙŠZƒ­é”¾(w’6[Ð ß ›OøŒ¬ŠÙ±˜öQ/Ø&Ó k™Y0¦>¨.¾bÐ7ø œÿÂùØ„ñê6¢ä¡ßßÍï·ZÞʱ*É¼¥×]±Œkëê ãcõcöËg+( †z¥‰Æž¸À£Ü"B€äè÷Bdÿ¨lmÒÂ[¯=UEÈf÷*ÍÑŸéÆB´ÚÓ+Üÿ‰®|@AO0£7+ÉÜ ÌÏ5ñ~¢’šãa•¦¯u¶äNíóÍ­ RcÞ£fö|1·’v>]Q¯×(NÂ5¦ #Ê9ˆš#¶U¨õIîå-P~Õ8d‹ó—c&Oÿ⓼Œ(Ú‚`QÉ‚¦_‹Z_*ŽŽ¤hög¶)olZ[BàäÚ.ж†Öx`½O^mùV£°ŠH…6zÅ4ÅÏ¢´MbXÒ|ʾù©œ1M¶tñ(S”ÌJ‘&IœnIs)IŽë.lo§_Ü´Á:І-o©Ùø1Ÿü¨ZXܤ+Èì òËK9¢×9N»zîéù²±»;Ÿ9›´/[»»dS~mÂ7oä¬:g>±6ÍáÈhŒ €ÏXü„ÊÝ+÷|¦”®0é–ØÐV6oµÜ$ÙDÅî‘þÉKâˆHpÓßk¯ÊÓ>¦5*?l0ÑdaãŽ#Š’ÕФPÑà$©%Ó®Å1qŠ9а îíÁ_qÖÌ’Ô;(°%‰ÞùOÝâKŸõ-Úpj~‘Ÿû£Îí²ÙŠ•h:Õ¹8ŽLމLNL¥ëZæ.¥™€Èµ–éÒß”D«uwl=ØíGkTûÅ:š®$ÿT¯BÈ }ÀÏÿâ‹£G{Fk4½·nìù·ÝÝñâáÆž¹TáÙÙÜú÷­í.ŸFñÚ/”d `•ß|¼zr‘ „lÒ?ÛêÜ#«àe þ«@?vcF6»oD» ŒÑ¬xÝ7¼ª­¸å,4ýiùDlE+d“"L™™£ŽVÈ^ܲ¼IH?Ñ ‚X»„QõR/z;¢Ü`•kÃàhãÆZ¶ÄW×KKþ ™Ôô¦ã‚F {ú©_saW³GâgYоY¯9EðAŠÓv̰q_B 6˜—;ºšÓtSß(O?±k.àjö¢&™ÅÊÖE·O/Ærªã¢®ƒý#8@FXG6,¨Êú£©gvÛN¯íôý‡Eª¶·%ô®Óq(´Š£ زٓàA1µß¤ nF¿ã„´I‡þÇBe€É»ŒÅÅ3é‡÷Z:Xün˜®ÏªDQ ïª‚N÷Žºm}‘S8Ý×”@ï‚#Ú"w“ù„tõ¢zèK[»Gl5tzoè4×k†fŒÐV#¢›À#DÎ(Zt!<‘ÊÚ˜KõF±m‰U¢ ÈÔd‚§wþµÓê½jÕÔwú†Ú¼Â,‚£ÿ ^Rã`}Nô=W”+MûIêͤÒå…þAåKòIåÞ:˜·¼›Qpîcy¤Ëì{Q̹B›fóёϹ·h'ÁOŽÁ–:Žà4Hv&³"þœo°câ‘fúKCòTÓÑM;Aʯ•È©‹×ZŸî–‘ÃHõß,‡›3k|g³]÷uoK“Ê´R蕳懙o“Œ,~Â§šž†ˆ]:âs±ë¬›Àiç-“§…u ÎóÎønõäQí¶ÂAºê”ÕLçÄò¿éC ´ÁÏ÷Öx8¢äù±¼?o©õ%UÄ|#FÐvªß§Ï§ß޽¸¼fÅùÍŸWSçvçþU€ê´ÎÚYÑÄÝæ`}/$—iàætS4ÛÆ¿mè§Œ¨àuúH ÏoåЧNš;ÄŸïºÚ %¦Cиmw~zþnWÛ3›ÀuAÙ+ïn¨ƒNÒMyçÄÙ×WœÝ#íª‡vÞLîèç“óßhGEhŸŸ°ÍqKªÚˆ06sܾïT}‚ÜÙoí.øá]¯wç“©~9xÿïãýo¼ÿ=ÞÿÖáD|z¬_/¥ûè#ƒVkÊyį³Ã¥8óv‡Ïüˆ{ #ž #°ý<¢†Ñ ˆ3?‚ÐNãÆ{æGp|2?oDß5å5”P#d©ðïÚ§ºjŸÚ(ЇH\½• Ž‘rœÑʾ˜Ÿ|Í~¹[öýÍÉWÃÓ„.Û òt'z~Ù5þ*lªþñ#ÏÙÕ_‚Mqñ1ǽÇU]dLq0Í ñÕ9ÏÁ•^L¾)—ã¢\q7ß’/“¥™ ¾r묙÷Å’¯pqƒ«‘W²’ï2¥á0P–¾ò´ú;LI7“–½˜´ò›FI×uR©CLã]ê^Ïj.ê$ݨYæBM‘7d’.œ¤!:?2w3¥NWM²\º(ìÎEõ—(²\A(êB®¤½/(ò¾úPú èEÅ¡×)‚<},vA¡ØÕÇV§LN³ 0ëPaÌë’œ!8³¨ØÌõ¶Ì±XPÀb "SÇ XYl_êØ¸‚BãjÔ–:Þ¬˜p³ÊâÇRGa¥2°é.„%£¶– ÃJK•f ÒG²lØU–™L"è³ÀØ·u§XÕnü¥?†ø°¹åáÿìu÷µø>Ãÿïw1þ£ŒÆ`üÆ`üÇ<„ÿÜa¡‡t.žÚ.•JÌ¡íÎÅï<¬¾à¿- ­4 À×sSá }ö¶ üI•9.Ý”%µc{nTýdé †Á‰‘é ™QoŒoã›Ã4Å{jrÒ½%ôÕp9|3b>Ï.û·Té¶:o«ØY?%ÝGΘþþcK9ŸˆxKÞ©€ˆwÁb:³]èùÙ±ÿõ¸Cüßòàe-”:Üu~#ÀÖíoß>œž|ûF9;=§¿lµŒ°jüõ÷ÿuE.íG„ù éîô:d#î…W_(kÚ?(Ft5¤bucÏ¿Ût-ç}‡}PŸÖW<[ÝîõÍ=ZÀl‚ÁO 5Ç£ôœÑA ! G :«h“ó* g½PX½ì¯]¸Ü“¢RrÀĵ­Ùà®"ÀlqõJ£Ño‚k‘ûTß‹ÑC¼8yºžN­¡¢_›ËßÿáчýYk=P…º»s&¯ÂÅDì=¯™zµÑޤCª:€ |L(Ïé·ÑÖÉjž+þ̪=ò¯ñ‘òŸ‚ï{5æûT¬Û‹`]N€æ2.—l&È5ŒÆ{Ê`7Cù^æ„Iñ¾ÇǽÕðqïH×9TmáµxgÏA +ü*Ô‡ölË/CÆõ[ñÇ/ÀÕ«ˆt#^'ØX=$ _kÉ]3ÛbØ„š‘†± K\œ˜zHõ=qÊ/L¿Ûì¾ñ’uÄÈgI\V@ó X˜æ¤¥§7â”6+ÉúÖ0š¸R¸²,—uœËR]‡?z>ww5…½µ™Â&nyæ=Ïš¤ÍeðޝjƒvôÓ·Áû&|Þ^läÍhØ”C—㿾ýà©E˜oŒE²r«Î ÙS{f}oèÎ1·—·âXs£½†ùR[w¼H‹8óN„1(9$S(ZôÇ•gÄ3ZøÓ?J‡ÇbK‹ˆÜ4ö'Íøä÷;PœO^úòt–Óæì¢¢Ñfd¯ æw‚õyf%.nþ'#Æ­ŒsÅôx$d¶j1H/šFÉ•Êî.A§H•˜Œ†2†ÚgÒ-UbXG ’Fÿ†öÈÒ#þ>]DM´^5“Z1Zé‹aÕ‰ÙÓ ð6 þaH"3úIЄéý“ëýð/L‚¨2¾É).ˆz¤(‘kÍ{žÉèºò-çŒ6âÂÚgbM§£'ð@g]òýÞÜ3 xhÿà -A×ñ±M™bi‚òZä‹pÓ&üã›\Û¼43Úaœ®¼3w.®e œ2éh+íp?£ª`׈“˜™(ü•¶\ ‚†‰è3^ùdìõ!< ñkÒ)Ý6øšWœ¦èƨ4áÞØwÎXSØXýc«+‡2˜<<ÀÒÉ‘<˜û–þß‚ë_ÒÁBK·¢¡ù •Wu—í"ÌÇ»ÑP"À¢Íg3F Øñâ- JiXÆ’Tèêó¯…3ãǽ£‘š›#¡lò,eæ'?>0zöK:êñcÚˆë±%µ¡ OÒ10½-S§ØiE=O1ô8rAŒ•'øjjÍïÙvèW›üGëåö/­—dgg‡Ãu†6_m¾³0¶¶¸t¦‰û4ž[?Èæ¿lˆá Ú‰·)E~„&:òNqGlãù—ýWçéqÿ®¾k»9Óo³ÉD*"¾àåö»FL@ƒR•Ž®ëü‡ w2>ò/ÛŒkc_à6„ãåà3ON¤•A300eAðçØþÎ, À{m?òßîmk(¬œ‹²Dd³8,g’Çây_Ά²rq&^‘ÅÎxVóDÊ~¿0nL]½b8ÁV)_SÜ™ñ`ãŒÖ“—䂊è£LΨdÍFO›‰´–x„Úïð !úý`üga+Õ&¼ø1œSÉHðEÐXgáñyÂ<ò¤yDE϶üóÅ*N p5‰3ó(ÓŒÉ2íù%ý¹ÑR–Í.Cû¨}!ú£:á{ôγõøëPC4| à ‚3+ƒ}¬5âU1 !‹tú(dìIi4¢ãƒ2|˜ }|ˆZ 5X(§<8ºIŽÞч¯ (è^A>L•;ÀWIÕ$(擯<×¢¼˜f~Rµ‡!ë„,² qùàþO¾½wlÚsú'¦"Ž<åmn¼ì‘&rGðO{:qñ£™ý"¾Ñ¶5àOÙ®³‘[‘÷¶Þ’cÒ8o<ÇK*…žMu|Á€5)¡4Ì"[•ŠtðêÓnÊÊ%Ö»b EÏq¢Òé|Ã6@þµ'Å ,ÕÚd(4$¸D ¼úå?<Œd€ýÑFw§³ñŸï^©÷£žõEðÏOgdn¥<ÿ¦–/%!Á 4¾H•ˆ°Í„9â6LAÝã*!{}æë‚M¹•M¼ ¢Ìz¯’­Áa NÁÙð]u 6ÒÆSˆ3qvÚèÜÅ|ÔÓ¿_O>ÓGˆÌV ³OëÈVâ4€ •@ d~â'¥$žR§$J&Ï„µŽœå ‘¹’i”†¿ÞØ~…šŸ›µ¡3Rmvßt·Tú‹‰ë‘Kž‘¡T0¡„7zLŸûFÐ>Žúµ¦¿âL¸~jÈG ñ{Rr1Sf%Þ…U“BΚ:ræ ô‘‰¦rX}•9ÐSW0Ðäcq„KrÅÞ´Ú`2;Ój³+éOx[bGº#1›£grŒÜŒÌ.£Œ[T*àµTRú$áíIÊŒåÝs !Î3fVft1/ÚFÀtü6löö0Ô¡DÛ¿*¤o?ÆÄ¡!Oƒ¼> ]bh!Ð0OüàÍ0¥ÅØh}öeÍüšÉl+—yoiP‚Âôµ³‰àhý8fZ^51…•ŒWptÔõ-Iʬ"è+·±tùM~#ŸµO?³bæ¸é8ê¿t ïxgÍäÀÛÀ1>ã‡Ôta)t>‚+Yô²€9öáϰéãBsÄ.Äì$¦UM¬[ÍÍšµ>Ÿ¨ü_bÍ.$ X|þ¯n·¿ßõçÿêuiyÌÿUÆóaþ/Ìÿ5Æü_Áü_zªK_à—ÿtá·EMgÎ#ÀͶ¦œcdêP Fü@¤‚ßy·BµxAyÆ—@=5¿cz”P*RÕÓ¦?Ã\d¹s‘% žÇ§›e\·Lô´¦YíL)ç)ò ãÁ³(ðñÇ…äY!Ábß1‘ǾFÉ8±™–]<×hëR0ïòsÚ\rÑX-ÃFà¹Â9Í@—‚53Œ£h ºØW£Áè’_3Ò-'A¾«{ñr¤ïâ¹oöÕÖ–|© ÅjÃÔ–ò¯¬b+"À?0™ ’QFÌ!û‰‹EzÑò‹ÿ3úϱþ7Išå‡IV&/ÿz,>©HÄOF)MA"ĺxÒúx´Í=Î~üyl­ÚÐVÓÉþû0/Äì«> ößý½~ßoÿíö:hÿ-ãƒö_´ÿ¢ýí¿!ûoëv1fnOå¡ÝÿAQi;9ྦ[|lÀÉùäGæpƤ è€QÛòc]LSnļø^«ÝŽï:©ÐÃüTðÇžŒíÓ6üG5Ú»6âu*Ç`ºÏÌcž÷#ÂãúþéùõÉǓˮÖÀ& „”ˆ¯º¬ãö xZ})CÕ@ö¶¼¦á§ê¿öʆº èïÈåÉñô‚jŒ#½ ð·¿}ö 4¾“¶yùFTÛ‚½X"ôLDèe'B/½"ôBDèe&B\Û‚ýX"ôMDèg'B?ý"ôCDèg&B\Û‚{±DØ3a/;öˆ°A„½ö2Áß6ôQ‹…5Š\)kK 9¾³7ƒkÃy-¢…"×Mgcw×ÃßuækST»µµ»»±•°P«­iJw~¿¹é[!¶^‹XËÓP7}ƼÿC]Þ¤ï!]º:ëÙ×Yaøw—>_Š*Ø×ZŒ§¨Í£”x ýÞî¾ÞÓG-T›'WñÔÙÙÐo3‹Oè Þ{á$\tF’:qaLœó^üœ÷òÎy/yÎ{IsÞ«éœ÷ê7çý4sÞŸó~Þ9ï'Ïy?iÎû5ó~ýæ|/ÍœïÅÏù^Þ9ßKžó½¤9ß«éœïU:çPÿD bÁU¯~…Ÿ™ˆ[â>ôÆÙÅÇÓ÷Çg2eŒïx†EwÔ UZp”(­×ÊÎI[qÊ/æ;ȉ ¶jÔ.Rìe¡&z™šè¥X:CMô35ÑO!©¡&ö25±§3†ï¾.ŸCÆ´èie^§¸–•ªG¬hÒÞï¯9匱¢I;Œ¿æ”ÅŠ&­cþšSÎ+š09ï/>}>;ùçêægcS®*ᙂ…¥ýŠþ/¾H²:—vJc:ÓKîL/ž‘– b:ÓOîL?ݘ–qb:³—Ü™=g¢xí÷ãËã÷×j9‡{t³z¸§gè›Þ™M `íÉKlæ d)ýž‰èüa5 š¿‡m‰®ó·Í,Šmמ.cU”+iªëj¾«p™}˜iL©m¬ Œ>UÁ µ2¢‡”†~£æ~Ȩ©¬šß•I“òtÄ»J+ãão}†CVaÅPÞȸj8'BÛìÍ”mÕ²ö›ö+ú>¥@àbðÔþj‹÷Ì»vibÎçá16û‹¼ý“äÿíô÷zû?ý}¼ÿSÊý¿èÿEÿ/úãïÿxšÕ2·Äþü¶ÙPì™,›ÁûÜHÿqœ®÷=Lž4Ú4ê¸f²7Ò<JèI@Õ;v±ƒþ'¦Bcõ¿.hÁø¿þ~õ¿2>¨ÿ¡þ‡úêáø?¸Æò’ìììáÄvǯ(³NfñYñßX1]Äeø:?6õKÒü2Ńõƒë&—*a©²e8‰Êìf†Â* ~1¨¨ÈKØÉEÅåkãåïnˆé^Hä$AñزG 0K\îÊØ•my¹Œ?wÌØ“è$røItfäSÜØ@3åÜ]}–¬ÄÛ ”x´F^#\ÁM=©à"Õ¬Ñ/åHXEù¥†'žomé%ů¤eÂâÂ⧸ŸÊù…læÅåëÿ ³—w4n©Ù˜ôÃCâøH¨˜ºÕÀ„:e‰PŠ‘ÃŽFw£໥âã\Xš…ó²RžÛ=ÚС/ÉÕ§Ÿ™NõþâÓ§“óë«PÏSƒÌ™QÆ«!AªD|Fd<…1»1“AŽÙ^ŠcšD2ˆž/fã ý"SsøsD£ ¶µÑæ&ÈÞž¸2鼄»ßðºÙ$²Ñ¾ú9Œ  (Gt‘Þ™Ìvˆá±Ð;bJÕfÃä<4}¢êQŠEL[ðëÈþX‘<Sz¥/yЙ_6 øB%Ì[S„jq$µdu_ $¥Á(zÃñ…8„SÕòüîŒìþÛOK=))K$Y/õ­W[°"ön?ò]Èþ’ÔVÅ^T”@e••Œ¯ïG½>u’š$–¨ÿvŒZƳ:.‡ž™òË=K3ê›mü·z%›o’5­èÚ{±µ÷kïÇÖÞ­½ŸXû^lí{±µïE×®éCâW½v¥ôk—OkïÅÖAwù4±ö~lít—Okß‹­=‚îòitíR/Ÿz½\ù0VÊÅר‹¨1‚ÄìQ|ýˆ#ÈÊÅ׸Qc)Ù£è(%Rüª×+Ÿš«–OkïÅÖA\ù4±ö~lí„–Okß‹­=‚èòiLíJÏ‚úå¾T‰6Äê2,scª ÞU¹~·g6@ ÀøÙbd¿ËåÈÕÅ—Ë÷'äôŠüzz~|ùõ Ó8 4—Î…ö(}}òÏë/Çg^qäÆ_sn‰õh9#è}Óü™–ÂwǵU ݘ×p ·òé«Öøé»õÔÕºîÈ0x„ÙbAå* 3ÞnEâ*ßnút$Ÿ?BlÖGRKñÝ,‘;Ñ{¹h@–d„²J}c÷Šú¾&GÂÀ%¾øF[aX³þ›=¦*eQQH˜ò“´ƒ”ýí™ûÛ+µ¿ýôýí›ûÛ/µ¿{éû»gîïÞªú«}¿úä‰×D7ö1®‡œ«UÑŒXîìM]O•0 ¢L @WœÕiQ{Qƒc'=y¸“¤‚õÀïØâWœà²wÇÉW#¨ñGþ[OPõ‘v<?eKCÛ8ªdÕÛ@¨^¡z˪W8¡zŪ—|Š0ªG¨þ²„êN¨~q„ê'ˆ „Ú‹#ÔÞ²„Ú+œP{ÅjoK_Ç€"Rµ 3U _L£/$\?²ü+f2{ðÊpÃҔΡx%Å—ÿ!~S õ}­6%ñEšM)P4Å&êK&‘ª¿A%E¨Ëìo%%\Ô÷u©ýM£¤„‹ú¾^Uµoà×JJDŽeÕ1­”òaæ•R¾XÜJ©jÌ¿RzCÎ’©E¨b•]I‘/N¨"”oÈYòÍ([[ ¡²+)òÅ U„’â 9KÖe6Œ!Tv%E¾X8¡ŠPR¼!¯Ÿ’¢å+*^CñèÄoGrÞwj#‚¿ÒìBz¹[¦—T'¹ƒAe„›žKè`$PÎû®Œ¦Ñ8å¼ïŠï ö üšBË0%zân Ó"Çžd^áØ[Å-o¼ºük›fê”SÜE–ìª{«X²¡Dˆa¦N~ÅJQdÉ®8°·Š%K*ƒfê4\Ü+E–ìj{«X²¡ ˆa®ŸvàO˜W¼‚ ù>“6pQß×j_¤ÙIESìvš75eƒZƒò©–Ùß4D¸¨ïëRû›F¡õ}½ªþjßÀ¯)” ãzK£rì›VGù0ó)_,nT5æ_&½!' WˆPf¥C>\–PªªÆÂ¥€øD5D(³".K¨•Uca„ŠRI|kDˆPfÅD>\–Pª'ªÆÂµžJJ ÓªM—}«zše[òqŸmäõ8;yñFÅñWg\¤ }ÝøÈ7€šwß×ùh¼R·ß _œS2õë Æ…ƒ˜fKòìCóãÂ×cÒŠèÅ"‘A6$áS¡þ:¨­)ÔžM+ÊCöò€À2+î¼ûAG^VpÝå@ÿ¤`¬Ï0ˆËχÄj¤Ì;Qngy¾éín »¹´g»=LV];¨a÷²¿H8x…8#éÍ¿ÐÖ ãôµ~…7´âogEˆ[”6¤s`7xÀ_Èì2}b‹K7€ž^ÿÆÂ·PÚ˜ÏãÁF[ ¿6}h&°ý#>Òf -˜ÅSÍ jÛ½=øë›§Eý`è9/J*ïR(ù&‹MÐëîÑl{¼x¸¡OôùëñB8eÅLYB¹+׋ŸZßÔlñ™>2üºXn¬ùÄÙÔ–Ctß@ôˆÂWX5ó,µÿêÎ{:ÕJ#,l.m“dÁÔ uÓS¶NŪä¯^]qkL”Ésµ+ŸlÆ{7DÈ*|œþÅ•¾ ¥ý­“¦åU,3Ȳ£ˆÌìæ¥tËy[ÑcWÌÙÛÿzÜ!†`—šõ:'zÇ“ í¨bfHílÐPÞÔ,¬ ÿ{Þ¢«e 0zU¨k'zSúÃwDkðÌßÙ¢¯û¼ ¿ƒP·ÿ›#zØÙ8"j”´#íAaHk‰!àQ)´ Ñ?Àú+þ Ò‹Ço  ÜÍïÛX9د2G‹ï€;#€\6œ‡þÑmkmpõ“Œ×EMùËë`/· NÃ4m:ÂÅ®ºCù¦!«É6¤çt8‰œXmØè¦2DûaȽ”É-ŽÔg[‹F#•½2Û¹èƒpiÚgiiæ ¹ÍF4Y|9#šßÀh*´øÁûªÙ²øwGúêMÿÛ8ùCvÙîz‘#ƒÎ3“­Œ›”šÙ¯êŽœãì±Uܺqq 8˳ÊËɲµR¢Rú1–¯|[$–æçl2?ùSvÀæOÞYŽÃ×™œ|eÑïÚºcŒJæ“ QZ¾ PÂ#+vD8èÐT&?úû/Gjœ[¬ | …¶~ñÄåLHùS_I :(«Í¤*aåÞù$¦†Ô;¦2ëÜ,æ¶Ä¢Œ¢¢®R‰±uü¶Õç-úÛ– ² àkþívWiûü‹×]Ntx—U!Ÿ¼‘¿liÄWa㢹ÀÓhE[¦ƒÊ Oò=·ÙÙnjÍïéJNÏ›ðW{2ÂÏØe‚­øÎ-}MÆâ­·­—ä=üIOÄ¥ËÁÈ–UùÕ¼oòÛ`”®|ÖøRùM,¹ÚžÍMI¾°bï|ʈ¹ê[‹òÍŽoÇgkuÜ–ŸX‘ê@×LÔ轑¥üí¤i"š•tʇTË¡ÍØLør™N©R)Ç2”Ù P73pT@¿‹Ï®Ç¨…5A]$f%Pø6A´ÿµ°FíûŽ¥mЧìL?ÒûƒèF΃_eä•ùTF¶ÛÐG¼ÿDA{âMÖªøž ¼¥JpÛØ šoiƒøü‚¿oØ?8*kç?_‹ÅÔ·š+= WšÅH¡ñÑŠ•‰£ï§¬q°Ág?Ñ ÇVno8õ¸rG·&o±ÙÒf\®PÞ4³×§‰,1ÿUNUí¢ÆÉ¤ˆ{Ú|4Ucv6^mƒøâÕÆ«º2&ëá«DWr¬²:?»Ò :R “0{øù¥A ¿B2,‡¾S¦ï’{ELˆ/µ»¡ò¹&Ô²6TßzÙ]ÖC&îoØ¿¯y™mÎÜ>†÷†à¥Aoº¬ÎwIg7õmðáý<’ƒ‡!K%D÷ÿÙK÷ø—¶±¼u)£Z²ñÐp»a´ Ö3ÑÂ-’& 6?W$gŸ i mƒ*dîÜš3•JŒüÊÂjjÊM_SV%ðh(€uÚ[¢¯YQÞW¡ˆzØ×"ó8èßï˜UjÛJ¹LŒr®‘ÉðxÃæätÀe2{„ äÿ±Å'Æâ¹éØ“_tµF}û.írXÉ8õå] «½ñ†£¦w²Ô†C¿ôÞc– 8øþßF`= ” Û‚‹—·¢ðª’WÓ–b-¿±JðVŠ&ýK$‹Ì`|oXÏ}ª²×ó‡Á>ÐõsK;©ûÖB¾ÕhbÖt)uð–Ñ/ƒlÍ+3 ¢o/аç;ƒoÖÌ¥«´iI.²j9t­G›ÇŠÒ³ê‘RJaf§Wcêúéd2úF›²ùÐO/áb“Ù®’¬XÇ+ óâéŽ<¸(oýˆ,oýð—·½ÌoÁòÞ#ÿ+zÒ·À+Ú#ÿ;Ü{ú;þGþ×D–<Óhø#q‡'¾3çüŽTy¡âꑉZiSÿ‰w•D Ö<`âá0“¶Z­øY“ÏUÿ·¦£îº³ÁnО¸sûs'ú9ØÛc?ö}?;îÁ!}ÖítºýýýÃNÿE§×9ìw^šNþ,(oSéqçXãñäï¿£Ê%=çƒé¨Ÿ ù¼$§cº>î^°e’\ÓeŸüAWÑM¸¨¾æÜÉôiÆÒ-l¾ß"½Ngo›þs@>:“GJ‡üºp]§õ’½†ø‘‘s3ƒ'úëí̶‰;¹Ó%È~Kž& º›Ž©Æ8t\é5¢MÑ uw2£ï?L†ô(_ÑS$‹×³ å²VÀÏ¿3Ûué³öØžQýüóâ†nŽôå3g`éÎi¹d ß¹÷t‹»ybï}€Ž\‰ŽpHeÉ$ÞÛœôu,ØÛéÊÖDô8ÁnÿJþ<¾¼<>¿þú–¥T£+3±m^S hÅtT3k<¢§|:¹|ÿ;}ãø×Ó³Óë¯Ðû§×ç'WWäÃÅ%9&Ÿ/¯Oß9;¾$Ÿ¿\~¾¸:Ù!äʶ%‰˜&"+³ð“\kŸ[ÎÈåCÿJ§Wdƒ¿Ådflç‘vÏ"pë(Ó‚‘§›k} ·í¨îÙæ9ëdÆßìÒZ¼ùmSæì´ÉþÏäÚ¯ ù<²tF¯ð~¿ßi“_éÙJ~:&¤Óëv»ÛÝ~ç/WÇܮЉöh´`¬F BõÔ[çn1c½e¡Ã­s ÀÐ&òÊ”عß(¾/Á¦¬Åk0›¸ÐZ‹ ãbdð0ùµÑéÌy¤RÐjM9‹xÃé8Mƒß« ×Á®úê.ü•~5êY¨I/_aèàYð13¾Ã'ÊGîYÀã, dƒ´#D¸{~ͬ%×1up²œ1ÏÄg2¿ b#Ï4D¨zô]U 0Æ„0Tÿ}`žÔ= ¾!EÔY:<SQª`ÌÍ®LBér³Ç`ÄÛ–"ï\2Š±ÇŠÐ!š{Âʹ)ŸHG»_­]¯ŽÄ)Èâ÷U>:?ZÍŸ—_^|9ÿíÀPƒÿh#‘þM¦#Û“T¥ÞK¼Ã(;‰åÌ)! Álœk¸@‘z´¼pÚÁzÉãb>s¸VààÛ.dFßä²-ÎömqfoûÉmÃa39-+?1·ù¹¶­N¸mïœßÖÎï©—ã V€lK€vú²ÖTeýäKgå“8USœÊ©Šrú§]3”öf4UqmÖó-¾Œƒ8ÿÎÀùwµâü²˜^’3 ÓûÊ&0½,›éå+Y™^-ìÉL¯˜'™eÑtLïï{j&Ö™ÞÄËw)xÙ§!Wšq;Òåbj•›îºžÙ®SÀÉ¥cïUbÎ=CÞ,ï-z&á¤ØCê¬÷LÔ“\"†›çÿ"qj 8“îî]€dAšq£Hòý¼lGý<7îboÒ%^£«ËE¸¸kcñ\ìÙò_.[›{aI—8’¶™ Ån©;¹Ì‘î–BšÅ”MmŠÛ ¥]HHˆš“n˜Í^_§ùäèÁx:èVè¥Â (˜ÒOµ>UPÊ Œ@Óðg”Ë&Îÿkòÿ³jŠqý³O¼ÿ¿³¿wÐõûÿ»‡‡}ôÿ—ñAÿ?úÿÑÿåÿ÷­¨ìw6Ç6  [ÀĈAž{¾×Î\ƒü>³¦SZ¨6g¯Î¹c»€.ðCZ#óºs?­êŽA7Oºð±Á Gñð· î¹YôÍ@®جÐ$·¦ÂsAU_û5J´c*9 q0ˆ@vv€t*,á%|Aì{:gôåoÐå$òÆæÖä€c è˜8â(áGƒÑ„-"ÞãÍ/rÚÊkŠÆ‡ö8ò½©õ„êðÜTm®ðŽ£‚-â‘ÐRƒÀc`ÏŒC`OL#௘{(sœ´^nÿý”²Žë ©Àn¿‹(dˆ8ㆈóiøÀí ?àð*eæÒlï1á÷”¡ìÙ7a6Ž Â =aâÉ,eÏÀ%î5]h¥7#ð–(nO…ËE_Ë‘("´öèB].@Å*æu~”ý]àÁúA÷Ï¿"|£c0¼¦Û)à f" ‘ªÂ'f¨ÿþÉ 7}ÁÐ݈e‰r°ÙÓþnn™Ÿ’‚_²íe0²-ƒÐˆKfŽÒnL!øalàHXìÍ#’çN[ŽW¡ÊJ¨ûûÉû?Èérò_'—_ $­:=;¡úÐÙÙÅŸäú‚\|:½&׿Ÿ^‘믟OÂ*¾ý¯[è»áü§ñuñßN·ÛÃøïŠ>ÓÙänf=‹mÜžŽÉÙÝ—,Çã a¦ð½\õHð³ÌÇ ÿ hýI’ÿÃCºí?}Zå¿„ÚÐþƒö¼ÿ1Þÿ`}š ÷vøòøOrº{!'ú†1álòf¬V‹Èé¼/¨DPÅb*Œ¤ðÒ<Ò’CDZ›?î>â'ø§Š2|™Á°ŠÍ=”2"D¹ÊâÞbžÁ,í¼>/P4àQå"ÜõwÍŽ{ïžp1#ذŒVõÇAÉOd›Œ…„eÈLðÈWß ŽËøº9©“£s3  ¦«4ÑSC‰Ã¿ŽPB¿‘qmì÷™¥ɪ‚¡Â ¤LÉ¢8PGæ0´Æ%Uá¨ysË•Ûd:abÀbCè‚eÕ°¯|囄‘˜…%„é,áÃfñtdÐ Ú§¿-”¸MX[~ãaµúƒ+"<«Ä.ñÖ¼Ð%½¾„.QÀ%Ö*›> TÃàŽÆ¥M_î5)-€›ì¶˜Ê#5bÜ–ëNÕ†›Þ#?ö“úþß)GúÀBLXjfèC™b‘¢ö3ùÞcu@1—ìîK³ †Hºín›3#[ cæÄlÆÐ‰B‘`a¼‡œ$¢lKªDÐe;]¢(Sm¢_ˆ‡A¤²oðqǃIžŒ¨¬rذØo°MEdñÐV•à£L§m‘G~ðV5c¯ÍT¡«Ù†ÚiÛ"»»¬7@—:1]¯ÈEôÒL ™‡HWB’(M“ê¨â£K@ W·r†m*ݪž MìœkÙ•ŽFêHv$‘´ýxnj`ìÏzÌ«Ly쵉‚ÁiÎA-Ε•RA¼^à‘wåI,#:ÃS¡9RëA3å? ÿM­hÐü‡à w2>òs{Ó†©+!CBHùgv >õØä‚°w¦ÉàŠ€Ú¥Ò¥i]G¡r™HÅ÷I„Lõ3qþ‡¸[¢ ªúhaõ;}!tº“ý<:ê4`Ž.èoÑ÷(2[+奙Ìy/³krò »íÁjó •8Dñ?’ŽcÞYld?ÚÐFð@‰|Éû×iÿc‹lœü×ÉÙÑF;P²fÌ0h7"X%+Øâ»ÏWÉæ8Èoy@u«c+É:I+ðÙ&¹Yri°ÜH£¢Ù™&“C„ 2­­1ÉÆè·/š¯¦1ä½1\7gŸÌga–8èÁæ«lY)ŒlAs—É@•Á¶¥Ù hO*µ,Q>^éiª|S’©È¿síDn¡î(Q GïH°–¶â…lŠÞ'œb|LJ ®*mS½5VºíÞrö&m_z£.Œyc¶iÞ·W16*)›2çÇ(u¸ÒsÉ(ÝáÙû%«u*&i2qºU´pdÐRúàÊV‹¦Nݵ"³Bdp«ExÔŽÊñ§%iûey«V;£fW•¿{~wT–ç6™5øšø¢ª°ÉÇ?‰V¸€í-a­TûX Ü´RãX=-O F¨Œìz[-´Æ"-LúF³­‹ÖøÜ”F&¦¨7V‡µrÚGè¯ý²ôו0» ›eì¹UØÇŸ_‹å+ ]ptÛ×?¶¶š¨ÝÊ]WpËáµg¨ã E6BÍåÉ"ØêâÝìšMFm€% o•©¼¼K(½fm7mqïæAò;^vFÁ°iT¹„Y ÷)ˆ6ú… ²—¨1ºÿ¢Ëó‡éfWÃã…4à Vÿí×4yE,­+ý¯Û¦l‰2îæ÷Þ½†@Û5\ݳðŸöØ×Tzd¢xïG&¥­Ìå³`¶ù–R¦êêùà·Qé.©ÄrÊkÒ-M=W£H Ë^PìóK0˜r“ºSkÀCüLñ|r•0ÆôÅ/®úÚJÇ3'uüÂÚ~E²ÃóÈ´[Ú´ ×ðÑvíÀ”œ‰#CRÅúÀœÂŒ¢œï<×°Ÿ¨ô‹:“ôUj*é)µ½ÁÒý*D®Òÿ 5•_ª0Ù”<k';—‹¯»,¥Ïü# mé™sE±]¥)©/º½ÿ'@aµdèÇ:B^FSU¾lñ컸(G¼q‰õVK,ä¾añï`XÿæcªPeQÍ›ª7&#’2\ï…°çHúhÜk\ Ò¬b×z³EbÀ¦‚Ú+.p¹Ýyßj¥cV”úÔÆ†oU ÉI@8kKâêÒö‘,@œÈÕ¦>äY~½IAIq¹Œ}Z/ÙåøÛÉh4ùîŒï˜:ñò¬áÐÂíyÌq¨ÂTÚ•™Ë^v\Z£u3²92!Un\çÆ9ó'x—#ÚÊ9z’\a×ÙiMª{.mm0§3áÚr)óÆÇ¾íêã•zÖÑÆ/ä­§[m¼Ûð¿Ö‹xm7á½~ºævƒïíE¼÷r{;ðêövðÝýˆwÿ3ðæj/²s#žúJäZgàó>‰àÑ;²â-Ÿ:B_bÂAA–u°nÄ?’Å»zËݸ–å¶Ú { ³b°Þ®ìG:ÒÝç¼v}ŸƒðköšHU߉Ìõ¡íéÈ+*CkŠ—aéèé¯p ¦Uñ/_˽ö[Ÿå„èJc´þ­´y¶a§ÝP‚Z{`×hÄ>oHwnÁU?øg3…õÌþáÌ•ÅRœcø6×fãÙµ= áù:‰Z†k”Œ‚  ¿Iq"¶à8Ír¨î!Á\}ýnóÝj2¦ᛑ5þËõ‚vûšæ3ª ^;R™ ‘DJäa¯¡h¤¥pcÓÚÚð¯m ­ñÀ>z5ž¼Ú"b¡ ¯7Œª|Ü ¤¥ÃÚh³±­LŠßÝí™sûÄR n@÷½‡]}uö™‡‚¥üv^oOûÓgùÑÎ\ׄÈ¡šõ zOÕÙÜ ÿÝ»wlvÃG˜Æ­éXnþàÌþû†¾´qqºË6 ?ÒÏt QÁáÈlp][1H¥ u4S#LÂRW§M¤BçVF_ªžÂiØLaÞ`ÀN-N¦ïdï^²ü¾“}o›mIÛÆƒ<«6üì)•Yv'p(‹å¶~8^Û™_ßÕaí§N_Ø^wý2ê‘XÑă2_½ ×E¤äƒ onó¢ô¬ªSÚýkö¿ÓÏÆîn|}»»¼œÚÛÓhªãÉÆ–&åÚ¡8f¦ë£ÇÄjQ”’Uzo™Š¨Î@AT ÍîAÁ]n©P=V¯>ÁÿøÇ†§º“-Æ M“Š3ØÜ»i¸ˆRA¬8‡º‹ˆvõ‹—ïDƌ˫mãÌÈk‚æ;’eĘ'½îe¸|º˜ôhBÙ7zvL΀ófßä „pïED:g!mŸîÐík>¸‡nq fí†í…”«Ñ££žXÛÌþT*Caê‚R¼ûŽð§ã€8…Á€ôH÷€ƒW U„ø ^œ«?°ʇBg3VÐõWpdªÀ³˜'¸¼)Fˆ¹yn)wþ|ÊžÿÆ›ÅÑÑÞ< FêÖ„_9Ò íG v†©5sm¦Ñqñá‹~q¦¼ÛiÕÔ&˜j-ÔÞšlÔ~eËhÉŒ¸Œ 5êÊÝŸ?Ûo ’Êït„¯ðTîcøÛTm÷7"‰?¸·}“ûÃŒ³|hóŸÆK<°š§Adõ€n…äÓï:odýzIEaÿÏò Rã_¤Ø|Ì[rñô [µÚzYkÓJmyyxÖlæÙœOˆ;A¹YܺeÛ·ú âˆÇ¶Í‰¿Odp1ϱ ¤WÌê£UÝÙs“ÉÁDŽy&X¯/„ß¡•÷Ÿ®?9מ“ôa$120†Ûø©|~ofX;øq¾3Õ›èAëÜû“Œ¸™4‚ƒ÷ïQÛÝ”›“Gæa®Fœ£&صÿËw)ׂ èmûE¯ŸMô‚ÁàiÞ Ä³*ÞxF¢äÅF[b—ã¢ÔÍ´Œ$3Úëµe´†ò“ïOå7‰ Î=¯µÐnÃð&âˆÅµùHc†Á!œÒ–arGd¶SdN(h²)dÁO"þ¼™8@‹ââVêa$T‘ðx§)ÊÎæ¦C3 ¡#¤-ã솺Í(«ßô¾YÜÞÚQ¸P¾¹å%ý/ù‡*î·écvÒœföëí Å –dåŽ:‘sÆåÎ̃:¶˜3>掸ۆV‚ŸaKö8R7J†Ñd¨¯Å¤ 1Ä•ž.É| t_„˜¾‘n^ü‘÷•,Ãÿ|-¿x¸£WàiÈ0Dé¸?=PŒ%,tîý7sãýC´øQ·í:ÛG‚©ü#1­}BtdՌߒ²lîžBgÞÜhâ ks¬¡ÑF wW•Ž|‘¿ôàŒ™)]ŒØ0,q¥úØB¯ÊêèC!Ö¬Q 6³w@Àï‘W±ì‚¾¡Ò"¿h%üÍfã°©*h¶†R}Æ”¾@cõÿQp¶©²FÅû÷*šEÕ/b«èUiNˆQ—Q:K«êDôø©äsÕÿí„9wÝÙ`7èÛ¹ý¹“¿ýìí±Ÿ‡û¾ŸN·»¿ßÑítºýýýÃNÿE§×9ìö^šNþ,¨ôÎyqçXãñäï¿£Ê%=çƒé¨Ÿ ù@Búéb¾{±˜Óäz2‘?è côOˆÙ}?™>q“Ýæû-Òëtö¶é?ä£3yùuẻÎw $FÎÍ nÿÓ_!E"UWoçß­™ý–éítek¢Fz ™‘MkýŸ‰ÃÉíôYƒ*ÞÜ1’ÀéP^]¼ŸLáj ­ô»C—ïv]åv1jÓhYòçéõï_®ÉñùWòçñååñùõ×·´ìüž®Ý„ëyMì8H+¦£šYãùí8­àÓÉåûßéÇ¿žž^…Þ8½>?¹º"..É1ù||y}úþËÙñ%ùüåòóÅÕÉ!W¶-I Ä4Y‘ø–VùFà¡=·œ‘ˇþ•N¯È>Â.ÂÌìí<ÒîYt¿›>ešCPØxù¥Aз`"Oæm¨åÐìÂ1IÍo›2÷`§Mö&×6äy$ŸGÖ€ÎèÕÞï÷;mò+ݾ¡ä§cB:½n·»Ýíw ùruÜj½Ü.ôd¢=-«Q‚PEàÖ¹[ÌXo™±œ¡ÀÐ&\‹á%vî7ŠïK°)kñãÁÌ&.´Öb0<†h ¿ b:s©´ZSÎ"ìL.ß`I׌O¨*bü~ꘋ¾ ñ øâ ß¿jN«ÅAy ÔM°Ç¥Ž‹CéöüºÜÐÃÊAchW í‹¶Hûª`#âz–ÀàNLHÈÔsÉ”fþa) YášdLHΔ‚žt‘)4ƒ¦Sj0~|®†4Éö£¢s:àþ°.|$ñS°(0«DM®a0êš'Ä;'ó@)Ñ5ä J.†Ï’xL~–ðW£ÃÙLwÏl =üur®ÚÔgü˜ì¿óY1v_ù‰·ÿöèï=¿ý·{ØëwÑþ[Æí¿hÿEû/ÚCößÖíbÌ49qEc²˜NíU(Cdž²Å‡¬…÷sMàºT¨D5¸,c’Tü] Ä„µyLÄpB¸ Ù–¯Kç9ý}Óyãl)X_œÈ˜|·FÓ{ëÆž·åª ¬ß“ðS ŠŽ„x“Çx75Í¥SÙ¤º%$A$Î/Œ0þš(ÌU«x¨"bjÃsN‰P·9]ZÉœ{ôÏ2å’H馾 °h`ÑU9è¶§[ð¹òn~ö÷Õ©náx745k„’e¦ƒ>Sk˜ÙS€zœyfýôS˜Š~Ç œÅüãì¾áO½YüÝ’–œ‘HÙå{O[޽øÅ=‰i¤9ïsØÏ²kG”•Üà­äÜ‘îHdòõ&_Çm? qŽºm¸s§Îm©Æø4ûHÓÕuØ3U* 9òD!Qo¸žÄšÒåUkgWk'ÓµsÆ9/žw÷H,¬’žëÝñë|&£^ÛšÚšÁÐ+ÀMœC“—£4œidÌùn{z6Ö‘¸ ŠÇ(ñîvßøº­,žÙÐ0¸×óGàá›Àß §É‹†­ЪøÚÝ|/F é@þjÒmp¼!ÃBæ«Ë§P6¨dKºzÞÒß‹%p‚.özÃò^èXKþuM¬¼åp—jU_óŒËŽ*U­ô"[éšZé¦kEqhˆ´ÚFKW´oƒ‘m)Ýñ%™Ï¬±{;ˆ5ù.ù~ï îh•0-Mè—ÎØKÔ“Cí”ûaXóly)ÒÖµÀdŸ<t<™S]ö¼RÌ¥*àÈØ‚]"$NÒ*†dŽÿ)ôúgÒýÏÎ~ÿ0xÿsÿðãÊø`üÆÿ`üÆÿ„â|Q¬žÊïß'Ó]å6èà·Ò6º¿ÉÎ0¦o­¹á[PèÃßÒc½á[ÓÕP¡a¾föecƒßLDMøkia¨ˆïÈ¡pmYOBüU)UqÁBñAçrØ E¥„ é£Hè¶`É411q5ûÂ(©Ìê¶o 92yÞœj —{ÄŠ“ÁoÑXWDœÅ?@%™Øzšà ,ÅÇã¢#ɳ­¶†μÒüqInµ4£JðÙ죉qŽ$v6þxJ>WCâ@ùIíŽX;B¬U;™vTELmù®‘:Ö:šMé‘è'iú¦4oWÃûÙîêúòäøÓUpªèæ4™ ùTÁ›ôï6ý¯4K0þŒ/h=dAè^Ë>ÀWüYT.{·jd)U¼ÎB“"ÇáÕÂ'PÈ€®©yõRÇÿZ83‘5 ŠŒØJ](Þº&Çy1×ÿ¹¾±±L‚ÍÈ­‡MIºÞIºò_ ‚—Ô[&#ˆŒÔŠ$ãQ‘PÑÍ£I€ÞVúŒ¨AÇÊrØqÁÖFI&.÷ÏZôÂbõZ_¥G ±é5¬Ñaië>?ƒQïÑk=VS÷¥™/ "W-²VÍÆqÅšry²ËÉœiöÝ!ì! ÐºU¤óHRÀ•¶-:iVÆ{i”ñ*エŒgé *㨌£2ŽÊ8*ã5£*㨌£2^¾2Þ‹WÆûi”ñ>*エŒgé *㨌£2ŽÊ8*ã5£*㨌£2^¾2ÞWÆ÷Ò(ã{¨Œ B 2ž¥+¨Œ£2ŽÊ8*㨌׌N¨Œ£2ŽÊxùÊø^„2~z~}òñä2>f\zfʸ¶¦ŒKB 2ž¥+¨Œ£2ŽÊ8*㨌׌N¨Œ£2ŽÊx‰Ê¸Ò¶c•ñø˜qY•qATƳt•qTÆQGe•ñšÑ •qTÆQ/_ŠãcÆe!TÆ!PÏÒTÆQGe•qTÆkF'TÆQGe¼|e<*f\<Ž—…P„@eŸü3>ô[zf:¸¶¦†KB &ž¥+¨‰£&Žš8j⨉׌N¨‰£&Žšx‰š¸Ò¶c•ñøHpY•qATƳt•qTÆQGe•ñšÑ •qTÆQ/_Š ãÃe!TÆ!PÏÒTÆQGe•qTÆkF'TÆQGe¼|e<*H\<Ž—…P„@e\\’còùøòúôý—³ãKòùËåç‹«“B®l[’ˆi"²"ñ-­òaB)9´ç–3rùпÒéuiGCro=Ú fØÎ#ížE—ãéS¦9MÆwl¼ô oé: «~›°ÐM+4»´o~Û”¹;m²ÿ3¹¶a§ ŸGtn“«¼ßïwÚäWºBÉODŽЅ§ÛÝîö;‡„|¹:nµ^nú2ÑŒÕ(Aè>uëÜ-f¬·äÖÙT†C›ð –—عß(¾/Á¦¬Åk0›¸ÐýPq\Œü;™8{øOÓ™óH%¡Õšr6aö[ÿ±(â‘Ú[-^3ý5ü.‰=pýð9/üŽ y¢ Ÿ©Â§§l óÁ*›ƒ"Ê=‘¦'É®…¥j ¹rÕÂN‘\AŠÁÀ¡ïìâãéûã³nÂÄËb™œWÅsB1¼Ç b š³J=ÉIU”›ª(GUA®ª"œUÉl©ØPœ*ŒLÚKǤÙî&­“&fµ@&ÍϤ½X&í§cÒl1ºkŤ‰hÏȤù™´ˤ{é˜4[¬ÊZ1i" "2i~&Ý33ééùõÉG¸«Ϥ²ØÚ3©¨Æ¤rèȤËt'%“*6ŒcÒ$T{¾LŠ:éRÝÉÆ¤:©xš¤“ÊbÏ—IQ']ª;Ù˜4B'O“tRYìù2)ê¤Ku'“F褗'ÉFRVfíÙF©ñ&42æ2ÝIɘœõ"¹2Ieež#W¢â¹Tw2pe„Ö ’TNVæ9r%jšKu'WF¨™ð(IÇdež#W¢j¹Tw2pe„^)@Ó“TKYlíy32-ê˜Ku'%‡*6ŒcÒ$MS{¾LŠ*çRÝÉÆ¤Z§Ê—ŠI×_÷\>Û22i~&PBUŽ”TLºþªèòY‘Ió3i”Nê¡…'°ér¹zɨdçA–Íò!ûHû”Lû ôÔPë‘i‹`Ú(ÕC—JÉ´Ï@o-Í™¶¦Òa=Ô…”Lû ôØPÎi‹`Z¥Ó²«âcqÑ-êΛw).’•#¡CRreë%ƒÄ]¿ì/ü}©°ê›ÐÏóc¸ÿ?ŸLFE\ûWŸØûÿ݃ÃnçÐÿ¿{¸Gàýÿ>ÙïÿãÕ¼úWÿ³_·oÐÕÿàÖ;U5¬Ù› L}OÁð-«5üõùä‡áëÇDcŸ î­™5 7¥^«é8To®û€{™2C¿mKô¯ÖÜÈÓš~È—[>øÙéŒÖBuóÑô_ܶöÕ`òð@6ßw”RÎ@|1+ªø[¬"þ&÷öà/wy—ÚT™§k?X?øoPȖص„ ŠþÚmÑß}õûqÃ# QÏåp¢ž³¡ªajÏ ·›®ó·Í™éȧeªt>[°:Êým8Qc$mâÕŪàØlC! [—³!ÌŠovßt·ÚÛê%‘t ›Wœ/Òw¶¡‡g2Û!†ç¿olù`DãÆ?ö¡‚sª¨–ÅTF4 MôRµ'Ût‰½wÆw¡RÖ æ<¢‡>žXª@Äm1Uqt–³™«Éúq éâ‘Ø’à¼>e|Ú=os¡>Ú4ࡎYó‰³)DŸ½¾÷Fö—~5nmµÙjqÄþÝRuHD\þµ¿þ4Øn°>çÅsë&º½ÚÒú¤aÕ2ªIè¾`)áIŽä¢Hk;RljüŒ[ÃGÍ@|Hb ±i y $'(óÌèÀc ¥H$ñ*ÈÙèÙØÈ#ŸGŸçÀLê‰@õjdÉMk‹òÓÆb ðªwcª¦ …ŠEþßÝ]·!ÚÝÝxµ±¤Þäõõï%Q[s’JGOZTw +-­ØYEÛTêåëî›­vóæù¾ b4TÛc§ÏÌ+I˜ŒÃÅÃ4‰†PfMC)zÎøv’D=(³Ô+€`T¶“èE‹‡†è 0 êtï²éNíXÂý']fwµÈÈqç`;ßne镨ãÊ•¿ÍV°6±çƒ¥û§¦ÕßAùõ2=4ÏÚS`† ·ónP@¼”¹ÿ–"Èíd4š|ç>*6ÙÕ³–Ÿ¿Ó²8¸k<…‡rÝ›t]¼Ei7å_ÛÔÒÕL$äÖÀþÊò:liÞë“›¹åŒÙ—³KˆÐ ¸>î'ß¹·€ƒéÖ;²SN;¥ ñš`T†ïÖˆLé<¸q!E-Ó Õ=^<ÜØ3¨›sˆ&ÊÓ¦íQ–v¼cò¹¯øþañnî ²50H›ET°VH:ÿáÉcŒw[ræBŸùÌyࣕš›T"’~IˆéB¦CàOSSš2¹<ùiXÞÕŸ¦ö<±iêÏ,°ª‰Êo¦‰| iZȱŠ'²…45Ay£"2±ûòaiš),®B_ǃizRçÜ1æÚá1 ± B¯1 ™3­%2øCÔ× »YB¼O @3½ •M Õ4Æ;´i!è$½ uEv^Å?PÅ–•ï´|q 7Θò™¹k>÷b(æó™¹ÔܺS¥f“ÉÜßgª€‹ßߨµ˜OnxIèÒ“GÑ?þïב²5ˆz޶YÚJÛ‹—uév‰Øƒ)JÄ„b Ä\F¾àÅlOé­òÀöߟ¯O/ίþGPD#­Íæ‚«¼oÒ–µŽnäöÑ?½ƒŠÐ@Yót¡¡[Í?ÛâhÿO¦3ܤñ¿šÛ?æô¬öªM^ñY}ÛÄ+˜¸W;:|#KÚÿZ8ÖôXÚO1^u†êæ±Õ‰N§­mæÒ"!&•žù$Ó•—Ÿ¨A0&T¥˜€¶x–š×°[s&á“BD_ªœ mÂ,Es¦õ?€úà29ìÍO°WÚTŒ‡™Z<Ù¬°ñ€M]˜y81Å—º­S¾±²WiÏ9§´ÙwC{àðÃ(U˜fh/T9”£¢»)ìri›rvìaî KÌ|Á3ä;óì°÷#¥xÑiuªñR @ ªŒ0“ߺeùÏgä2‚{ ÉMT@’¶Öè|\rÄ „lÚò¨â»Òõhž¶GRT¢»äk9OŸxƒðþ2ðÙ­u;{:OÔBVî1†}.6šëÀÏS)ÿÈÇ÷TºF:W€¸Ó'Q²­‘¸p÷JiDû"<¶`ïšP§3»¨¤’‚r¢(’®Æbt}Ç$¦Åï?áMC°<ØÖø?ÓˆUÀ‹E¢™¤fCÏÛ¡ê½5¤ªoFä÷Ôn8J@2UÍs(žlùåÞõµ¡»öˆª”®-Ëèe·ûo´¿¶¶¹há Ø]7ä4w QŽnÇÉå¨npk-FóP9oÙgçNÖ]ŸW–FׄºŸž'<à›.4ÄêË8¸ëgôÈcxƒÎÜÌÅ™åpí;ÜÁÛ†“=’¸súÜš aEÍt®*þ,:|dÝ£Y(ê¹u£XÉšZ)cºþ>)RI‹ÞÏ w2^ØÊ´­ó¿™yŒKo¦í<ôvšÍ=øR“¶z¾“GlóEz›Ø¸#®”‚ìç‚ÎúFrpCÀɦÑÇœÂÁ¬íÌy [3嫟Yã¿È&ø„ÉÊoêwæ‹ÿF߀Â[¦¦‚õÝÃÖ—®¾oPÖX)‹¼¢Û@žD ƒc¤¸à$J>[>X¨ž_a)Ð1Y 0rËÜŒ8NÈ*Ó×/Ê|£¤mCøFxâØ6D™,m(öç­xÒ׎*•ÜÒ0eêZ´=dŽYgwBÆæ·¤aB#SE‡;ž]Ù­¤\¿¹Zé¥i¥Ÿ·•~šVöò¶²ÛŠ–.1ÜJˆŸ-ß]®VâçEKX–«•øyÑ2Nåj%~^dÊ pTˆŸw(?2óË’•ÇÏ‚Là±dåñÄ—y–¬|YšÃÑtdÿXÙÓÖ¿,åÓÖ¿,ñÓÖ¤¿±®lÛ•"yÍTc®ýF¨ÆÖ¸ÍØl.«H_6X¦tðŽ¿ì§ï“ÙРX·3°ÇƒÍ9 d·оE0Ü‹ïÕ¿í2•´‹Û7Á¢^¶.ÿo1”ÿYÊÞŨãrûÖBÁ a÷2þífጠY†ä[®;¡:<„1Šx6[3k€x L^ãÉœÜ1¿‹ ÂŬG˱`zñ‚«|ö¬÷ÏÐ4¦3” J{#æ¶0”É¢ ±”yM7Öò%9¶0ãWºÙ°kyf!aJ²ØE^æ[0Ã?2Ôž]¼Hhé?Z°®Ï&-±4É%8r ” 0Už÷ ªø+Vý+ã â›ÜÈV£7uõòâ·/ï!²/c‹ó˜00!‰ >`bò—wSœ‘}}y|þsÇ ;‡y÷°25ÇnaM¡ WJlË}"Ö``». P¶îîàôÏl2Üg{ÁÂ…Ð*wò ]þ›-XÜ[6ÒŽy„4huöy›ŽKk‘”;ThËC«´€ËÜ(à¯ÉÚàµ>¿—TòýÞÜs´Eþùél{äüekΪlQ¦ÍÖ¦æý ¶à ™¿¬ƒ:ŸÌÅÍf,•õ™ *\pærÌÐ \˰xí³]^,cÃòžéƒLAÕ`ˆ>š´=²Æw ºÖdPÖI0%Zeq;›<ø$Å,f%ãÏodlN¶%Ðs_qžýñ*3?NÈeëªvr]lâºÎ3rØ¥ îŒ,÷ÞvÛLEšòûðÀ%öéd6Ï,ñŒ.üò+Â=åhÄ^m¼ÚÝ¥eØëÚßt°oYÇ÷ž*žô«V¼±çßmªõ1Úƒk7fàL7Š36 ºmŸIª–VXÁÒr 'N²IÄp¡Éº\Ò©°¹I[ my|§VEº˜N홼+/Ѻ“%Û£ë1s#óF½»×p —]=TÔ/ãÂsv÷éÁ‚8X{+ëÌý>ùn?¡·æÇdm3ðíU·“¬‹S©è¶îŒTõùÓØæÜ .Üžá´=i–éÌ|OÿÏ/7Û&¶˜»=¤Õºb¦”gÇ%è$ëOÖÅŸ… ‚ž¯i5ªiAm°¸[|h;äú~N€ƒ(qÅMÚŒm±Õ‚É2 øŸÙ6ÜãÖ{›2‚fÇà¡0¹ŠS᜕±Iz¸ÿKT2›AäØdl µÇ2vœ’€Ï¦šL)” Q ë,þj þú>ªãϧlt˦<-Ò¬˜áMJv%‹þtØ.Ë—Ù‘½•yµ!·‹9åéÌ[¾ãB­Yºç”o³.ûùz~­¯4P˜ פ 0½ò~¦˜mñvf%†.ž¢Ñtm1ò µj“,JGëRãf—F=ÑšŒà²,Õ¿`a7ùDsîbÊ·eyóS,ßKß+žö ¦™3ÙmíUÆüíTr*;¹¼¼¸$¿ŸÿFÏô—˜ÙïÖ7®ñmÍåÄIs'SºU@\L%¬\`“Ht•ù rE@‚…¬ÇΠ¶Äý:sÈ÷QòÈÉ åp1±ÆË]L,Odd[CÆÃpÒ t¸Û+ ïz˜4KÛ®\Ý™Ñö8Ø“è+Û£5ZØ ÿfÌÛ=elµÃ‘ €hÒÏ[på†41wCçö–n…´3Lû ¿èflzfÁE!IG>:5(›66˜;öÀm„cA0»Þ,¼)YYçæYt¶vVœ$plÀôvÕ±ÇȬ§l1¢gµÉ÷m‘mz5®=E´Õûtîå-1Þ,ïé9s»ÄìÁ‚YÖ‘±yÐ;­áßÐ’»rÝÕ›¤@ Ë "gpÁMÖ}“A±“#¿ÛG¤Õ‚®íð Èéq9¬f8³Õ®ágnšW>-\np¡tp¸¸è[aÖÅâxÎЦ@Dû=Ljß…Å Çþ1˜³ÃÕˆÃc`¢³·ÎÆѼǺ6 Šå4lÓÖ‚}qÃU!—ó$֚©bƸJò¥þf2›+c?K9cñ« ˆÐFÕò-6^úý·lqàm‰VÎ2µÐjö[@ ÐþÎØ¾qÈŶsPw¸Á—Wö–58¶µ¹šfé½§nÝ ;»Ä WToÙAƒ‹5˜c¾O´ÝÆ%Â/Ì¥Óµ­Ùà>³•D,¶|‹’wEý{¤Zæ.äÍѶPÓ¯±máP¾”´dÕŒøbÇ|ધ:u¬8\Ô¤Oéâ ¸bme ÿ²Š»´îZŒ0·A:HK¥o¶äCêc^'™ÒÊn¢€mr>™VMv5LÊ"R°4=l˜ÙL*¢:ÌÃär ðx¢¦”žÏƒÕ‚²r>«÷¿^ÕQ½^°—ÜX XÎìS“çy°ÍŒË´ý‹¿mFÖ¹ýÀÿ+—i¶ö@€nÀ´È—½lmnúÖti¡#‚šÝЂl1Ë}ìÜ.±ó°Î)»‹²HJ?7DrÞP‡<8.‚(§ÀvÕñdÛ·òÌnVÆé8<¨¶LªmDcdù/ë\ßzS “èM`[Ænxwò3/>·Ì5Á“àá°Ó€ÑvAzøì_]_^œ<ûJ.OÞ_|útrþÛÉo”³îRtõœq>Õ-~A2{Ç/éT¾±oá˜Àì‘6€0d·Z€A‘[B€_èYÈ™‚¾þ&cEÿî7öw‹cjû/ë>sJP5ØU˜W0”Wá0kÿG“É_À¤Bü]çnÜæÝ#ÙÐqöÌs(Œè1J³+\ GÔ¿emÍš6K8P­ \L‹J°;˜9G]?Ögm.Dc¶›ög±+ ¾n“ádüjÄ_â`QÔTmËõCìê0XÊø"-´ /p 8å“r#–ACG2›(Sõd<o{½QT}Ü©ìö;î-þFçü›ðMóÛ­«³äEµX‰Mï×Óóã˯äøü7r}òÏë/Çg"w®2Vöe ÷,űîq§Xè†ßW[Ævál I8ïÁ7·­¡2DÓƒäŒvâÕb¬\f¯ÀÏ3È*³Ü½è!Ê=ñó–ïÚ ?"Ò…éàhD›ËÙnÁêmñS±Ú 9)ýʺékVƒšv+v~O7ì»{ئOÏÿ¿_N/Oø¡œqp²²ÿµ ’8Ê| ñ%ÔÑFiv,! W³lˆ~aqwãܱ]‰ëÊÙªÍêåd!5GÚ/FáX£åOé7#p¦éµŽ#½>²É´GÉôÎî$«Æ8¥¬L|M<Ñ•Hk!Ÿ¨ª3a¾fË žŒû„Ó —*üP=³¾/u µæâ@:žˆX"P´7Qš3í8<àO< [¶–t/¬ÅU~i'6.œµt±3k ̃}k[Ì›ÇÔq½5”HéšG‘6î‚›LÿÌ›ì+'ù­ýa¹ŠƒÒêwB¹û~S»ïêöÀp[•ì~;îyÇ—¿ÐcÈuÖ}/³ð¹óÀRkÕt^€ê›$l Úi“ëïp\aReãM“eŽÕ^^e¨Û¹ßn‡`Jž„~eW•µ¸j°ÃÒ#Æf·ÓÖVÀ©3N´¿Û–µ)’›9NÖÅ–Šó‹ë¬Ç´¥{™¹ƒ <V|û‡Í>·ÒÁÅyÅ+m¶q+²œ^…;™Íûàð0£[Á×j³&÷…ÞŸ›eOÇÌ/"L–¬=zÈ=¼¦ü¬kÿàwkÀ¡jÝØ£j tå›ð‚|S²Ë^ao»±ï {ƒ÷‹êÖþ|˜ÎŸô/¦ŽþÜafú•:Œ#0/ºæ‚ƒ]ò]J—eß.ùîÔYòE11՜͎¯Nß“?/O¯OÏ?’Ë‹/ôgæ“YˆGÉ&+kÄ3Žÿùo¶|þOæø,?³͹«d³ŠÎRÉ v¶ š³ðšA¹^¶ÊÐU@Ç—Ó{‰#QRšp CÁU ®æ©(ZBôŒ¸I^×¶¡\ìâNöíÚµµ€ (ϯY0É+øñŠÅò S;q½‚³Ç³Cþˆ§©ºOͺ¯ ! ,¤QÅ0@Ý˪ô„rôŽüÂj†yy—{ù`õíB…yêâ놿o»9*Ë«ð?Uÿ™£F±L°_noƒœlog­ïXóŒC‡x>H„AYWœà!8’妠³õ ½Ê® ÁÜÀÉ὆À³Í³‡-q .¾•«÷¼íݰ洂Y[øíâüÕ5¹¾üJ®/ȧãóÓÏ_ÎŽ¯OÈõï'äøúúòô×/ô¯+ú ÝV;½?Ï«îyT7(9Ìó’KÙQ¼éÓ¡Šª&nuÝf«yáÕW£¯ª·öðîªøxV)} 8E5*t%ftÊËsOz³>5³û™EÖEªh<’£(-•B¸*xPÆ´¯R¨í]ù5BoqÉ©j{fº ·xäU±iÿ``†ù¦`‹{¹Ø]ÆN ²*•*yZh…7Ê©iA&C 8⵿Fj—´y)UÓ ê—«S£Âm/i†bÊ{Z‰´>© Ìab,¹ ÿ²½·ýhèÆ &åe7Þ,ÖêwÉt[ór{äõ×Ï'›œžÿ¦À¤üRZhìéü(ü÷@ùoì"èƒk’¹¨¬¿^¥Æó?EíÛ¢OljW°;/ã•1k8tY8»wòa^ü€,–Ì%µ\(¼Íü¾ Äõ¼&ªÁ-vÆe_-Êyò›.Ë{­ó:Ì`2Z<Œ—Öc*ó€”§¡È½Ùš§ÐP +£‚'DÌwƒ¶{/œ†-„Ý1àgO{t»Ío Þ, @ ®wʳ îé±D–Ó:J$죷Á9=cÍÜ‹L§Ÿíeõu\âüË/€›õç,…–öÅÕéÿÏ÷¾à ½Èû‹³/ŸÎ¯ôRÀ©Úßg'çúSʱúÓŸ®µ¿²ºLvvØÂGvv²NÅrþ#fìXbÝ`Á§ÙQ ‹Ì·)Uo)A¶ÒÀDD?»leUr`vµ†ÏqÜM—jXÜ,ä»¶禬ë;°ˆÖˆ5ƒqÀG´•{ î:û€âÄÍÞ¬m ^“my¨Blh÷9ÊjDÙ“hš(åá»ù}ƪ(/˪,µNH8:^/»Ã3(z¬ßË7T„×+*O¯„‡å2²:Hä½WBp_{d³3I¬ÌÛ¹¸^©臹ÿìÝ€Zèâïdñh›±EhAµªAn+Âräk{&ꜴîÜš³¡* ¨Ìfcˆ7ã;ˆÄ=Ô¶Øå´M ë4ç VÄ8`é2ÖÇøÖ_6š6ÍÐÕÜéd¬€b´Ò¼%Vû?|¨iòòžb«ÿ ²¹îâ³;ítz¼ÄqI´Ãeú}R'PPBeÆ´õí|á£NLnV’©ÞÈŠï’”3–³­?ˆk†°MpÜ'°uHùv8îÙb:bvm–y„êASº—Àa6±~f¿›£[Ëu 9í…œúòmâÞyQÞ¼*Á¾ÔyQö¯Z+ø²çEÙ{Ãq1dþÆc¬I{%ÆfZ¬‡™ÙË>pûÎlRð‚£<;аù–oá¥/Ϥ¥„â˜tÊ_ ¾¥w•Cªíáb … flè£ð­`x㉀|€ñ1îA™\ЯԖ365³¦ÎƒTÞË<%búÜßuä¬'GZÓâáéîtÈ/»ü̺åX ešÍS³e÷óî'óV$ H ­dÆ7»%Bm×€%NyÛ»–/çʵÂõ‡#§ÌÂKù){U¿)hbžñ€éˆã1 i°ºýžš<›goëŒ.y^ÂŒ-u<–C„M~hòPÞ³z:Xöã1AÏïÙî6Þ¤S¼Õæ^R/ )Ëxó-Üöígµšµ Òî=±ÓµZ,S•ÂO†RÂEmÀŒ•M å³’*} ³ý*Ñ-´^dÖ½/÷*Œ­"4¦t. µŒ’êŠ-oK:²ÿG]éàRM™Yßé¿cþM&«ÑYW¡´ò ÊQ¡s—¼F:urj]+´¢«¤ÜP4=©Š?XÄê¾ÄS~‹Ò}a;‰à4`ÝçòB¯àßWÙSHÁŸâf‹—äTdqÉ›–ÐnånVðÌx€.ÂÊ-ÑåÄÚîœíêö‡e‚ex™¦(&$y /1Õw‰åb‘'·þ:Ü@Bf§ÆM>ØiÆ!³¡ Œkl–е€p …ègͤ¾ñÄ@îœñ®¸ã¼ôYNÇø–¯¦[_Ò–‘²ËhÁËÝøæ9dœ ´›Uµd¾^ƒ,}©´Âó[_Œ”Kð,î†CðŠÊ1Ý—þ+~ŠeSÍ­¬*+àîh-®§Ü¯•¥QSžµ‚"w¶æ((jrð>mBeBubÔ Üã‹Úãõ]?«>1ó™2·aŽ{#, ?جv?CW)àµ4­ZÏ~ñæù^ÝŒ&nÀš_Ùº9‡±Z{ޝ™2Z——|·2‹Îû³‹«2-:©„®´<܇Gº\UùvÍüê”±>ß¼šØIF ™à] k{ ÓPÿ‘±/ C ÊÂs—|‡‹‚¡µ^^ƒÔšc«hV…ŒºíÛ¹V3ë­Þ²ü@uÎtdë‹$ä]ݪão1óÒ«dÑøôåìúôóÙI«ÆŸZÐŽÈzŤ° óVúÙUÆ›J»y~üé$pDç×{²†uxÉ Kú¾‹ì´  N7»þ¡jdƒsÅÈtîîËãZ°ÒÍŒ“|ÛKï£î,,È›™5\‹Ç MfÎËvÃò4.½v° ˆ@$‘1Ä å‚<ŽcwjñD¢“»Rãê`&ç‰h30籩’iX–a¶€í•Œ].kp“’Åðd®Ë´©®þè·9;NïŸ\8c²w<Ôø¥LDËH”bÒ£Æ ¤u)‹AJv•öõƯgwU$\b¼@øåÒ”.£€èkMl†‹‡‡§f@•¹Ý(CLÑ®KwcˆI¬’óÀ*Ì,ëd\'lÂf›œÈ*ަ®Ì½ûWæˆdqj6"—«¬tH6£¨UXZ§—â 'Áœj%;§Ð&8/¤hv\–‚"GØK™ î"è~lÿà!hZ˜;m€¨ƒáE6ì ZÉ:ùZ¿ qŸn&#gÀ¸‰mÍ|8«×µév0r Ðê”kÕD5‘׿Ÿ\’/×§g§×§«Ö‘g2í–ÔZžw!düÁæqA–3SUÖDÞ´ge&ØõÌBs#c -wÆCûÙd?–Þŵ}êeU¾Ðàêgñ­ÝŒµ_Êô˜Ò…§Öp©’ò†–`žÝ¸Z(JÔtD6w»í^»¿» †}Žô£ÄNw§·Ó_>OKDWV ‚ÖâÙT…’©F®sÙ3‡%?fÑ}™oîÌuižÐ²&1­2k]/ÉÅùÉöo§ŸNίdB Ëã¯Yµü q()»¤M²ú1‚èUx¯´ ªª~èÛõæpÓÙÊÊß/Ùµrnå½øõÿsòÿgïÝÚº‘Æáý·çS¨]cê ¶IÒ’ºO)!)[y´Ý )1öÜ×ÇN`Ûþ>û;]Ïѹ˜\Ú>OØm¬#FÒh4I£Ñö±±´ó–U·¿¿ªc!Ãeß‹}‹þ¬¿È¬ËÞÙý_’D>|bÿà‘ØÝ¸óÓÎQbmCôî}íÁׇgžÕÖ¨þK«ö÷e¡Û6àVŒt«L·Y¯žÏÂÞÉvb!ò6»×o¿¦q<ù¨§¢Ýû¾}í×7AiwæOR#¤1Ê’è” ‹œà¡Iüš ë+„[\˜–¹Ÿ7.½iùÖµ^Þ•ëdHc|ÏÔG„®6,Éoa›qÕ¿–wÑ™ïˇ­öíLJ<ÕFuØõÄõar;oxnC|“|ØV¼† ñ]´‚/tñsººE¶) DÞg‘(™¥osGæ-‚ŽØß¾!´Uóá‡Åe؇åÖ)Þyº%&ºÌ M`LqÒ«ÈûmN%(ßèg4Y„ðAÙiµ¼ŠÊG­F÷žÚoÅSôýŒ!"Ç!ÇŸè¸Õ[¯ £rZ'í0ïD ³áÛ;çþÄ‹3¥¨°Œ¢ñéUrzÁ?>þý=ÿŽºwhÑŠgƒ–éXdøÙyóüËõ·/cþîmlÐïý{w_øÛèÞ¿÷vûÞz»{÷îýõî?Ö;ë÷ï®ÿC¼ƒ¢‹ÿñ¼?â£þdý÷¿YpEé²1ú÷oò÷©Ø€¨iÄÇÐ÷âûÑ\¬âm-øTlGÓ›Ùè⢶k¢=)¢×èB|»ˆãQð)@Ñ:f<:›É£Z²ÄÑùüM>7Ñ‚ÎSgápk3:=hE3È Gç7µ€…,[Õ£ƒLmTøxÿ™Ø c<˜}NÂÌ~OgãÑ2ïáízb1Ÿ]hžñöý#¬È‘¬ˆx„Ö dòþ@„#Üí‡ìj}Òi¶Uicõ¸Õþë¯,ikä¬`ÜG-]ælzI`Zª}’_FSe+4·/#œ/ÆuÀ€¾6Ü=þîàÙ±ØÚÿ·ø·ßöÿý€,@öâãðŒitÅÞà>âdŽ;‰€àÉÎáöwcë[ÜRÿ7ÖþÑîñþÎÑ.Å–xºux¼»ýloëP<}vøôàh§)ÄQ*#1}DÖ$Æ]LòÚ> çýÑ8æ¦ÿºWÙ_ö_ãBvÒ¦&ºe™Þ,Õ‡xW1‚ÒíÜI4¯Ë£ i}áô.`1ý[¾4ëâî—â8Äí_ñNêâhù»Ýõºø6ŠçùdKˆõN»Ýn´»ë÷…xv´Ÿ6Þé’ j4^«‘—šÉùèb1£Ú’öÜ!À0Òt š—•w_—dQýÅõU0‹b,-P‡‰ÉO¡^ßSæ ½Ø_Ü©¼2îM.®¦Þ¼–âMU#¸&БVÑ^Åäzµ?»ˆQ…¡¡2áµ´ ª@…ÎÆ!ßêf-[繦$]o¥tÛ½d¢¬$íg•«iæ!½ª4'¸'ï꺔w¿*»™º’ešKÝéEƒ)í†r Ë´’xÓ‹SþÚ­ä–i%´leÿ¯ÜF^$šˆŸYíÏÖ¾þü?þO;ÌïDñ—ùúg£{oÃÕÿÛ÷7Ö;õÿñ·¼þ¿Ñø¸ø¸ø¸¸•âý÷Y¤T} :mL*@¿U~Ö§=FýÍ{ŠrªMê r¬X¥Äá~ÿ,–7"m“4s±ÄØ+ýl“+:S‰ÓsYŸ å;ç¶óU, 0ÆÁ ñÑù9ôè‰uHUöðü‡©Dñ:¹ý0¹MúˆiR—d¬K2{Aå–u:!B PL¡€¬ŠÄ„{ÝJ{aIJ('¡-œø\´Þ-#Bh!Ãy{ëªÂ6ížS7÷XŸŒV%ÔçLZœ¦Øz>…MF«gÓ¬GÿÖ¹e=þ©é {ú¤{½¿/R›÷£8^„¼u_ONTê§§x{æô{»û¨ÉüWñ…ʽýÑ8 _PNmŠv³}OTò2Tw0B¶X´š–§ŒŸë„ÿrË+u› B\D ¸Cä…$Ôj¤@S^ìk‚bÑdG45ÑŒfMaÑ¢çò|cñIŠìͯ{º5±ÿJ¤>¦7Ù{ž¼lˆW‹Hn3=ÒÓ|•ÎØ¿¶3ö¯ 2ò¨¨Ôù—ûN÷÷Ž6-Wä ¢!ÖÖøÔ+(qø%>Ìé—5Áùb2 œ’ð*“=QÖ@Šãù*ÿäN™”MϘn4ZKƒbÏÊ;ÃL×ûtE„jqhqºªÑÃR}QÉ„j€0,R¡9çfjCm±‰æÜÑM¼ÒžÜG¦Eeª[tOÁ_„Ò…§¬i«Y³êÕãh0BóüUJªI›*ꊸ ÐÏbÐêµX¬wö¾*Í–š*”H¤Á´L.HëRO¿ŠGò˜–Z”(èøO…|x#¯›Tà© hÙlÓk®¢«Óh²àgéSA Ë§yäU¤% ]}ôa|†Ü²Y©¢ú€ñ2:”ÒÐéÄj{SÑkNNaáuµªkµze–Nc•cŒÞ2Æÿ0øûot ý¬C#àSž ü-<ÞPø ÕHÉðYðíÏRe<å‹¢ªÎé)éÓ“ãE„‘lîïvL´»Þ'mæö¬#(¹?ªe¾ôZâV’Ñ· )[ñ(ÉÀ“ÔšyÞYÿóe%Áó¼iå`jkMTÊÎô`-¡ùXšvçRzϲjO—…¬Ch‘žÛt¨R²Ý˜]K½NÒ“›VR¥¢âW£é©J…Ž’7±T6”&›Jý´ñ•‚ø5É{ ’·•fƒ"»0ŠA¶Aþ½sô—¬ÎbXOÚÞ0ßvÓ8c¢xÛ•±oGÔ?”Ò ÿêZŸ™V¦ó2«æ%Õ?èßwÆ|^ÁŸ¹ òè;JòQ*j“Å#SE"ÖÍZÀSyÀÙ¨CÁ—Ò€-M}Êñw{ËV’}*1v÷lÐHx{‹æTi¢™‹ÆAòÀ:3ƒÜä0;f€µu¾ØJUpSë$»ð¤%°N ÿ¤ã=÷0pö‚gÇf¬öôá×g›Ìfïæ`KLo«Š~ÀzrÖÁO O–ÏÍwpg|Þ®K6¬Cœb­TçduÏŸÑð¬öÝGbU¶¥×k×ÄÎO»Çu0fíc#ÿ)w½’YIJÚpý³m.ÿJö¿òþß½n'uÿoãîGûßñ÷Ñþ÷£ýïGûßö¿ó¼K€öBÀ]\¸Ú¿º ˜¼¿§¥’ ÚH&™`l¼)ýá0/`/ø0L]P´ÓÞ$P¹i—Hc=‚´5Ú%¡PÓé¤÷&}ýˆeKÅEû™LÝ»2*mu]bÝõ6ÀBš½å_%3][`W~[3mË–ÄX`‡•_c‹çJÙk-SëB;™UC¦+cšò,S´}#ô V®t½&2™ë÷ƒ„|Z¨~+«…¿–AþYZ –@ÁVöÄí]‹—”g,z—>Wyç' Å;­%Zƒ³Å[ìÇæÌÛï¨lQ&Ú…³]¢mr¶ËÝvo#nrX¸3X¶3õÒßm/MáÉ»Á¶¢óg¯Ì>Ì_Öú7ÃßÕ%à¢õÿý´ÿŸ ÿ¸þÿ×ÿ×ÿ×ÿ×ÿÅëû<8o ‹)7_ÚŽŠ¢]µ…. ø ®¬?[Ë™ó|ï+.H¿jƒê*«çYxºj•ªd:_¨õ~Ö súLH²)Ðc$¹”a~~M­%ãZ9§Ðºø¼ê CNÑMÉŽ&‰:t©>¥E©ì]ÏAŸiŽu] óô¾ÖI}+e ä© C45@¬‰¤ ˜½÷µ¹â‚q `}þ–¬š¬•s+¬÷µD#½ò»@’8¯ð¦ê²Êo× þñ¢ûGÍr=à)bij¢ÝŠÝI:¬ Z’¹U¿À¾y¤Fr.‰òùxüW¦ ñþ) ‘%€Ëç‰EÍ´ŽO-nvà ÿSáN_yÇ‚%X0ÅéL» FéRüöOIöH\ÂLä$ ¼£=AÿMwˆ¦¼C"‡@&UUÙ“35lâ8¤)c˜>r¤5’âíºÚz,äp›½Kó·bnïêÛ³©™S«)®ñ±H™»¼Š2‰Yƒ`1\™ !3 LU™ù†X‹¯†ÙˆPðWR’1r%æ°- Š9_3³—›5;çs3 t£{ÃÖã¼ëR®ß¥°üõ÷þFûnÒÿ×Ý»÷>®ÿ?ÄßÇõÿÇõÿÇõÿÇõjýOçÉIÆzYKkÐÂøª?! ºî|í"”Ç|Áù]݆áòËÞ-.yw&ñç?Ž0vÀ¹NM‘)èÔA»v:Ÿ»Wpˆ„øiåÒK J”WÊõþ†O?3«Õ²Ü&y+0}NÈGgjªee,ŸO=gú û'Öá«9o­'OUµu}ÌGúšµ6¦N\¹&8åL›˜#}Ì×ã ÙX‹^ƧqÊûT£H_SIêšRѤxôPKYE‘…Àe8 ×‰ÂUüg9«hk̾­…p§›wx\¯þ8CÁ a=‹\RÑ0$@üöÖ‚Ùhµ½Ù®õIŽ~rà[·Ó³|z'¦Ö\°ÏÞÚsOE6 íÈÕ7y¹!R{omíÿ^Z˜îZ·Qý95Š{ëoÚucü>î`| ÖdK/ˆJtòך%ÇÈìÿóvMNP ©­ªGÂWÕ4TŽV‚wr£ñ&Ó´M7($e¹ ö¨Ö÷n…Ck.ê•íZb8*ì·¬Ÿò¼Ä3ñ_… }:ª7‹¡eo+Ï“×Ax¶í­KwEÓf‚פÿ5;æó3ÿi¯c9š2¡ÎP¦CsTiÖ¢™yxsë+åä‰c -:Céþ«)×ïD]ö`QýýhÌ·Pi•6\Z“¶Tߢí¾S55|ûklïEIMk[åô𣬽3ª-«-i:š¦ô§‘ħ'‰µäT%5$==ÁSK¨H‚Ç—Vë~ú&õ’Nž^ò¦sç}+ r½*ËÃp«7æ(›õ}™”c ™7U—žh´SiÚÉ`†B̾Y>µu·#ykÛ?©O«[ç>qá åֺ̄$)àõÃâ9óûëÑ$¹üÿ˼÷j©«yúìt”µ3|k=öo®¯¾ÇÍà?cK÷£ûWܱŽþæšð_uóö]6%Çÿ;·ï²yÚ¶í»o„øÓ–"ï·CÞÁŽmÞÒáîû[:¼OºüÅ´&TŠÒ¬œ6ˆ®®B}±¸>¯çÿW¦¹¹ðÞT ¿Ž’H(q]¨J•x^å-ôœlÿ›iM§ØË¿2}ÌPmL)Ã0Œ}hJ…¹4…ý ÒT—+Rs¥i9Aºñþé{'É_Lšj‰™%Rëéüæã2ôõ2´ìZò-–«Ž¤]BVÿ¯X~ÒúK®@ÿ¾+ÏwHÓ¿èâó·ðO[~Àv|ˆÃ°÷Ýš÷¼í¾Çó«÷Kš¿˜æ$£,½ ¨¬´&ÛemšðÚVê]>uýÌaŽf”©•Ï`œDgè%uÏJÕ6ç(Q†vU¾Z–R”%¡^y¬]ÒÖá®}¸.…[~ö‡áìôÔów:®êÄTªóÏ4¡Vñ›UÓ(nã?‰œãd1òª?™@…Ç)­•*Yd—L!þ*œÛ v` =Øf2m°».4êð@âh‰t5š¬²U¹¦Yœ¸´ÍŸ$d2ÞíâV+ñÆO┄yìg¡$±˜ƒï6‹ ª>3÷UEOâôìÜ×ÙIB¶2A»H[t£&°Ÿ6 ðFÃÀßM¢þŸðÿ¬ó¤È®ÔN’Kð(ž)÷¹ÐOuòš"û}.:§yEHnÄb%Y!]"^c6™È„Ï%%ãBŽvç bþ¼ŸêjŽØãñÁñÖVëb~)VùÖŒ´‰Ãp<ºá9‹ñ"Ž(PÒ¥€õ‚¦û²·¬‘–ñK>ðíLaP‹·|Æ"_M¯WC×/±qÌÂA4æªíþ7¼­ï"ux8J¶Zz¸‚‚/¹¢Öj‰ùÈwµZ¨U´7¹ƒñSñY«ecÏÁ(½z|õ—¤’\öçíÏÑß;é¡ cÝ))> —T“oú _÷'ƒ°W™D•šð7Ðj¡TW I«€~nÉGñµ_ sÂzð}®ÍŒá´Aœ0JTÛ¸Œöf²¨6º~Ö¼êñKÆÂ+Öùª‡yõpŠqªž,ÒJû\÷QÚBæåTÊé%Ú›0Bq>>{QôŠî8öq2ZôÇjPƒø›¿ ¡ŽDírNÃ?š· A‚uíšÃÄÆPE¬ÊŒ_‹õd_9$"(«˱”;8ÒµKŒ*cÂàåJM—c®éM£Ë¢£dç¯eO[Wâ1‰Èðõ:k1ƒ›ÁXÕͪØZBŽhƒ¯“9°k|§uY‡þ™×ŠˆPZ¦øH¸“˜,;!ƒt¹ú8÷ìÜ­ÞýS¦ ¥'œÂ…­|þ¸|tþ²ü?¼Ë ü?Þ¿ÛÞHøl·;þ>ÄßGÿý?|ôÿðÑÿÃ<Ïÿ£sòYîÉëþ›? wc¼ Ó‘?^žúf`ÃM=Ó–plm×î}ú¹Xb³ðŒ´áÞrç¼*Ç»8ëÅ¿[ž÷f^ÁómJ¦¼V_®Ì÷Ïn¸-»£ËÞÁüëtòÒ]–ÒSPÑ]Èâ~/ºDP¦ß@¼«kÿGÆâÛô ™)–é%‹ß•EãÿëÂ2&K¥¤Ífïжéÿ¤Qñ1h™¾@õ!{æ¸Í‰é[Ï" ÏÅé)ÎK§»ûÇ;wÛ)­ÀGíÕQýíùT+¡Ž¡®¢Yœ±h%°¶É±ŠÉ= ècp­¾Œ‡e†Å-FÇÕh²ˆÝq1âúh”Ý„ù%1”`®¾Nôχßo<Ûx7ÙN­®o~Yˇ»\àòþºÃ¿áê/˜Áä†èÕ–X]…´Æ/µV{½þKo½ñ­ZpG²bfÿ8=ìʼnå1ÞSÑ”  iÑ@$u…2|K©’)V`PJÁâ#~9¢2ÂpnØÃY7@‰ÁEÃ?Ò»ž ÁçŽéÝ?—Ûóùó‡cN}?Ç5»~8vk¹U(1‹vÒ96>üp\n[àÏŽ9õý8?ÔpÜøðÃq£–[…Ã1kñ¸wðxw{k/¹x“F<þ «F¹ó•ˆÖðÃqdó²È8ãf¬yçО„m¥!‰€Ú¬ÊI{T œµ¹‡R~Y'i›\ ŒI½ùp´í¼_ÚvrhÛÉ¡m§m3Ô:IÛ¤Z7¦¹êÃѶû~iÛÍ¡m7‡¶Ýr´Í˜£%m“sô˜χ£íÆû¥íFm7rh»Q޶ZàþÙ·>þýY÷Þ¥û—‚û?íN·}7áÿ…’?Þÿùïÿ|¼ÿóñþÏÇû?©û?ö-WkF\µªœ3¼Ä‘ŒCý×rþ‚ ÃÔÕlBXtAéÃÝ4*úKÜDʼå’¨óîîÁü߸ðòÝÿoXµ@‹Öÿ¦«Ðlíÿ†}Z¡mJ¾˜¥ çY¯|»ÜÞÿ{ØýO«|S„"nÿb´í| så"yÿb´í~ CÂ"„ÿb´Ý(:ñÉÉã´H^þLè–t—³Ð{?üyϧ6o×ú÷~<óžÏUÞ®õïýå=Ÿ|¼]ëßûGÁÙD.{oâÏÞLýþ¹ûÿOú¯BÜ…z·eäîÿ·ïotÖïÿ£ÝîÜït7Úë÷Ðÿ×½»íûÿäïNpG<<ûÇbçáî±8þn÷Hà;âÉÖþ³­½½íj_IÞoú±è/æÑUŽBa|#.h#wÙhæÑìF𠇨§ýÁ«þEˆßÚ0?Èýw„i7ÛÍõ!> MÉÍè±µ˜_F³˜’'Ø‚ãhاýöãË…xýÙYë_nn|±¹þ¥ØÞ9Æs‹/òñ8:ëÅÁÓã݃ý#Úr—Ð $À¾írŽ»Ç¸ |p–¶óe»ÑE.â>гA Ö°ðÄÓ‡M±†GhðïCµ7Šç¸÷ûdkw_Ä”…ÐǶú(šÍA·ârÔØMðÑ¥¾˜Î¢ ×ß´‘,µMÈ^÷qc»MÅÈŽýѵ?6èCn,Ooô%Lg MI¾Ç”>ãyG‡º:´¡CwuèžD„áû:ö úR‡(àÐco÷Ûr`å“„å08‘G­þç³Ï·¿Û:ÜÚ>†eüéº!'=³,i‡Œ>S|w~5w>=4R¾ÄÍ—œôÿg¸˜b ŸjýrQ0yå‰>¾D»"X—© TýgóX\†³ vîˆïžìˆ×¯†á-…î<Úz¶w¦÷šÍV³‰ëÕð¼¿Ï]S^‚ÛûvÓ³† ÿÇup3¾¡*‰ƒ³_`µcg!>RüÊzI«¥ààÛÂâ¦gkÕö”ùVÑÝftøîùà;~4,4?š®M7 M×fÃf# ͆‹ÆÉkM§n^k>õÂßóEw²Ðtüh’t²&R/š®M’NÖ,êE³áG“ “`. k|Ñ]ô=?š$cY³§7:M’±¬©Ó&ÉXÖ¼éN¢Qóf”Šëzâî¥âÒì£fÌ4d:w’j²LcLò‹š,Óqé’VÓ*!òjûëñV}Rë;GJ~%V.–”ôJ¬ |±~/Ž®G7G׋cËc#džƒÃÎh‹,Ol]Z`%t_¬GÇ‹£ëÅ‘"MZT%ô}_¬‡K-¦¸ÄÒ )÷ýÁ|ËAt5åILA=+á54}ÒWL¥N~Ü=Þþ®GT$:´‚¦àMUüÖ³ã]Ó•Õdåk"°3fQs#3(?ä:²2£Û7÷FTr^‰a8 é9,™YY꯬Zk’šê8±: ktê4BàÍ›èÊ=»Z}Þ¼‰fC\íîïb fßæ—x–§^„W/ýÙEˆÇn»û‰>^î˜Ía¥5žBuΣÍà“o®œ~ŠQ*EéMÑfðÉöð:,æØwq߀D¤üÐgZ×nD'ÑMFlèât:ã²cÜdû¤K%ði—ýÕu¾6œ¯»Î×=çë¾óõ…óõ¥óÕÄ÷-²(0iЩàY,étMÆ7A`}lŠÑ0<µ¸’º¯ØšÈÁG j(lŠs(Xbr":j-`ì­¬ÊõlMÅœ2"‰ ÖíÄP1'›ìV«Ã<«÷MpÓDGvó0Q><¬ ü÷ÑÞÖ㣚hDJÍʪ’˜áÉÓ]Þ{ÈÁ¼ vL;V;oQÁŽ©`çí+Ø5ìZì¾E»¦‚Ý·¯à†©à†UÁ·¨à†©àÆ[TЖVxÓJ¸E-L¢·©¥¬ ªÛm«%kô¶$s%j:j3 v[::x}hoÛ5ÈßMq‹zJ ÁÛÔ¨+kÔU5ºÕ0–4‚·©Ñ†¬Ñ†ªÑ­Æ­Ä ¼MîÊÝU5º{ÛÝ•5ºû–5º'ktOÕèÞmktOÖèÞ[Ö辬Ñ}U£û·­Ñ}Y£ûoY£/d¾P5úâ¶5úBÖè‹·¬Ñ—²F_ª}yÛ})kôå[ÖHVHÕç¶Õ‘µ)Y™ ¡¸Y‡1™jþªº¤Ž«Á…s²S t7-êrˆoÊÚj¸ØáÖ>m%Ö® ./ìbc,0Þ¤vðІo®÷_áŠG y£“0nSŸ †Â,JÅšmZðMgA¼¶¼¤H‘(k0ûh«Pàt“#T‘ô±˜r"–Ó³+Ñ8kÐô5襵æU4„ñ¿é€þÿ×ðߣ/×üì\$—Ìè¨lÍàK&Ÿ&-Dh{Í1¬Ð†C¢Û$Ì]?>Ùú~G->}yuŸ,¦Ã>pu [A²]ëŸÎBàïAÇÑ,`ÈM¢s³©Öû@gø@*cucÌ! 4<…űÜÝÖ7Öã)&ªœMÇ‹óóѵh^Ÿä YKælÚÛ ÔŽxt5÷g¸uÀ­s ÜuèÏÂÆùh«þÕxŽÎ¸õ‹›šl–‚*×<å{kn²˜œæf!w£jË^d¯ðzŠÛ–=æyøÆ5àdÕph0îuÅ2§.àl1c>1MmÄÑ h ìhŽ‚’>ǯM)ï²TA\^7Ī`ŠÃÿPþx"ñ9µ2²=Þ¸š¢¶Lîò9¸ù$'0îgMÃÁš<[àÈ@‰‡c 2 &,žm›&¦à ŽgÿÆlÅàîL8¸ŒDE›_g_W ¤2ÂN›`[@Ê;iˆ­@ äüf â“%ëW,¿¶= nâ©´*p  D`Sr.’¤·¦ìÌ(yrþÊíRÙ%Ó•Ghg¶6!23§÷@<:K`èx1t—ÀÐõbØXÆ‹Á^a°`“(2*àEá©€;äó+àÀÚ˜Ô¯L=$l2{VWø²wÓÙ³úÁ—}#ýîÙ靈ß["û½töûKd¿ŸÎþÅÙ¿Hgÿr‰ì_¦³—å?†u¤ˆVo³s—ת˜ãÌZ‰ -ÙF@\ÙÎMzlvn©îÚ9XEÊÌQZ…LãT*N çmÕ9W’î“ÙÐ[«L‰Î$]'£%Ô&­Ýø\i0"ýLï…oº'¡µ ‘ÔÍNÚð$±ë±}Û´”ÎVBͽ\&›ò”•—G'™óÏ"h¶•)s­ ÁSèBè8£Â¶±Mi:ægòQÑÍ‘OClš‚ lúy€íþÐLB{`Ë‘Ùs†îíÞ¦Kü™òº¤»D—tËtIw™.é.Açny:ß» íü™òhwo ÚÝ+C»{ËÐîÞ´»W–vÛˆ‚¬LÙ´ë,! :eDAgQÐ)/ :Kˆ‚NyQÐYBtn# ²2åuIyQÐ)# :ˈ‚΢ S^tn# ²2åÑ®¼(è”eDAg QÐ)/ º·Y™²i×]Btˈ‚î2¢ [^t—Ýò¢ »„(èÞFdeÊë’ò¢ [Ft—Ý%DA·¼(èÞFdeÊ£]yQÐ-# ºËˆ‚[^lÜFdeÊ¦ÝÆ¢`£Œ(ØXFl”Kˆ‚ò¢`c Q°qQ•)¯KÊ‹‚2¢`cQ°±„(Ø(/ 6n# ²2åÑ®¼(Ø(# 6–Kˆ‚¢À¹}R–v™<´KäÈ¥6E;P&í|À¢ÀšEfl92çŠçªâÒ]RZ$r”ë’ØlÚ•>àBÚ•Ëídʦ]©½líÊíø€óEA©½l92—ËídÊë’ò¢ ¯ÀTÜ%åEA™½ç–ãÒ´[V”Ú+ðÁfÓn QPj¯À›O»åö 2eÓ®Ô^6‹våö |Àù¢ Ô^¶™Ëˆ‚åö 2åuIyQ¿Wà*î’ò¢ Ì^sYyiÚ-+ Jíø`³i·„((µWàƒÍ§Ýr{™²iWj¯À›E»r{>à|QPj¯À[ŽÌeDÁr{™òº¤¼(Èß+ðwIyQPf¯Àñ9°4í–¥ö |°Ù´[B”Ú+ðÁúig®Ž—¤[^†4Ílh? _5eû® “§ï9rûÎ[Tïü¾ógˆ"hV7û`3†ˆ4K9.8–î’Ò¢(‘£\—ä‰"Pq—”E>Ø":/#Š 2åÑ®„(òÁfÓ®Œ(òÒ®X+qüM-I»%ö*9ÊÐ.¯ÂTD»2{>Ð2—Ù«ðˆ‚åö* 2åuIyQ¿Wá*î’ò¢ Ì^…ãohiÚ-+ JíUø`³i·„((µWáƒÍ§Ýr{™²iWj¯Â›E»r{>à|QPj¯Â[ŽÌeDÁr{™òº¤¼(Èß«ðwIyQPf¯Âq¶4í–¥ö*|°Ù´[B”Ú«ðÁæÓn¹½Š‚LÙ´+µWáƒÍ¢]¹½ p¾((µWáƒ-Gæ2¢`¹½Š‚Ly]R^äïUø€Š»¤¼((³Wáxÿ[švËŠ‚R{>ØlÚ-! JíUø`ý´+O°²T2Î`ËöD^Ž‚rû ˜ê€D&õS’$—ÕE)À ÞNÁe ã×r9º—6x ºç DÝKˆ‹`.=—y92ÉTBD¤3ÈTF8¤ óÉT¬!ÿ§Ëi‰¼Lù{)ˆ\2•Ù%HÁ味Ìþ@ .o/·3—#“î%Gqþ†@ ¢€î%Gq™}ãvw92-5ŠK-ÿS€d*;ŠK­úS€9dZn½Ÿ—#ƒL¥Vú)@/™Ê­ñS9£¸Ôê>X‚œ…£x¹E}^ŽLº—ÅùkùDÝKŽâ2Kxã“92-5ŠK­ÜS€d*;ŠK-ØS€9dZn©ž—#ƒL¥é)@/™Ê-ÏS9£¸ÔÂ<X‚œ…£x¹õx^ŽLº—ÅùËðDÝKŽâ2«oãŽ~92-5ŠK-ºS€d*;ŠK­µS€i2ÉçBJ'Ò%‹ô{«ŽãÐßáz‘ð¼XR¢j¥r¹ÕôfÉêÁl`»³¡ì'1Š`}½ž LÙ°.ÉvÞF(vßI(^Öy#¡Ø}Á ]Rd–Ê•ËQù¢38‡£ºKpT¸Í†.ä¨|ñœ \ÌQ¹ò<¶˜EºK±HÉé¢T®\ÉŸ6²sXäÞ,R0ÕdC²HþÔ” \Ì"¹sY6l1‹Ü+Á"Kºä)‘ÇÃåòd¦XÓÁ%÷dÁf0E9·=Y Y áwð“1•ò”™Å9ÐB¾YfîYÆm'C)¾É›u<0|SfÆñÀðM‰ÙÆç…¨€oŠgd+”™e–tƒT"O+”˜_ | eÁ°B™™Å[À %fŸS¥V(žQP+‘'“ŠÕ²@3X¡[z6)<‚Ë‚Íe…¢c¸,Ð|VHžÙåÎ&|Yù|Ó]b6)} X"Oß”žM2³` ø¦ülÒ-=›7fñMÙÙ¤[~6é.1›”>ô,‘'‡JÏ&™GŸY0¬P~6é–žMŠŽT³@‹X¡ìlÒ-?›t—˜MJì–È“É E‡»Y ¬°Qz6)< ΂Íe…¢ãà,Ð|VHžçÎ&ÍYù|³±ÄlRú`ºDž¾)=›dOgÁðMùÙd£ôlRtìZÄ7eg“ò³ÉƳIéÃ÷yrX¡ôl’yŸSÀ åg“Ò³IÑÑ~h+”M6ÊÏ&ef“eÝ–È“f…’Î ³@“¬àƒñ³BY'†Y°~V(éÂ0 4ƒ2œúg“rž³ 3øÆZÈ7KÌ&K¹Pôd(Å79³‰¦€oJÌ&>ؾ)žM¼ ø¦p6ñA±B‰ÙdY—%òä°BñlRä2 ¦€JÌ&>ØV(žM¼& X¡p6ñA±BùÙd©s“¥\z2”`…ÜsL.+”:7)ç3 2ŸÊœ›døËÌMJœ›ø óù¦Ô¹É²n8KäÉá›Ò³I¦€oÊÏ&%ÎMJzõÌ-⛲³I™sh!+,?›”?7)éS4 4“ÊÎ&¥ÎM|°¬Pz6)snRÎid+”ŸM–:7YÊGª'C VÈ=7ñÁä²B©s“ržT³ óY¡Ì¹I†ËÕÜ٤ʼn2ŸoJ›,ëɵDž¾)=›äž›ø` ø¦ülRâܤ¤cØ,Ð"¾);›”97ñ²Âò³IùsŸ³×"V(žMJœ›ø Y¡ìlRæÜÄZÄ eg“2ç&>ÐVXêܤ O&+”97ñf°B‰sd+”87ñAæ³B™s/hÁlRâÜÄ™Ï7¥ÎM4ìò³Iùs“D†R|S<›”87ñAòMÙ٤̹‰´ˆoÊÎ&eÎM| …¬°ülRþÜ$‘¡+Ï&%ÎM|…¬Pv6)snâ-b…²³I™sh+蘒lŸbØÛ§Ëúi.‘'͇%½4gÔ9‡Ëzs΂õóaI_ÎY |˜áõÙ?••s™Á´>Ð,ùµ¬3éyrø¦x*+ò$SÀ7%¦2lßOe^×Ô|S8•ù ‹X¡ÄT¶¬oìyrX¡x*+rŒSÀ %¦2l+Oe^OÛ¬P8•ù ‹X¡ÄÂhYWß%òd²B™C›"?ßY0¹¬PêЦœ?ð,È|V(sh“á8˜¾)?›”8´)éÞ< ´ˆoÊÎ&em| …¬°ülRþЦ¤sõ,ÐLV(;›”:´ñÁ°Bé٤̡M9¿îYE¬P~6YêÐf)gñž %X!÷ÐÆ“Ë ¥mʹ”Ï‚Ìg…2‡6¾çsg“‡6>È|¾)uh³¬Kûyrø¦ôl’{hãƒ)à›ò³I‰C›’ò³@‹ø¦ìlRæÐÆZÈ ËÏ&åm|^ï‹X¡x6)qhãƒ,d…²³I™Ch+”MÊÚø@ Xa©C›‚<™¬PæÐÆšÁ %m|¬PâÐÆ™Ï em¼ ³I‰Cd>ß”:´Ñ°ËÏ&åmJñMñlRâÐÆYÈ7eg“2‡6>Ð"¾);›”9´ñ²Âò³IùC›D†R¬P<›”8´ñA²BÙ٤̡´ˆÊÎ&em| ¬PºÿKvúR/VeÈGŸÇP¹ÏUxü¬TêQ / Ÿ‰Ê^¸\†(%ÞË0¤àò»yIñ^þ\!õ8On7ˆ÷Ç )°ün.%ÞËœ"¤àr»¹”x/sx‚Ëëæ¥Ž ò2ø»¹ÌA Î×Í%Ž R`yÝ\â –ÓÍeŽÒpyâ½ÄÁ@ ,‡!J 0à’â½üa€ ]Ìâ½Ä@ ,Ÿ!J‰÷2[ÿ)¸\†(%ÞËìø§àò»yIñ^~£ß†.îæñ^b?–ßÍ¥Ä{™mý\n7—ïevóSp¾nvIP¦Ÿ s¸Oõ A,QvÙB‹JËdˆ§WžÇëÜ÷ÀÊ´­0‡ÛÄxª¥±DÙe ͯ }2)Ÿñ=ª–ñtNÂ3Ø’E­ð °„ohÙB£T'äÃ'zÂNûªä]`ª¸ür2Ĥ“ìë+;ÝÓv²g”9Ë´¶(ƒÛê$tªõP¾à’%æŽ/À[—ŒÐM÷>ÂÓ[.€g`% jïV.€oT¹>žï,æ1â1‘æ!dÂKÊŒO’¥`R£' áë’ˆ¯S ó(€øz&âí›Lºw¼4Ï%¥ÕzçÍé ÀN_&Ã8 Ä¡E™AZ”Á«Iè+!@ù‚K–˜ËØ.€·.™,ëBøÖ…ð0£ àaÅ€oY›ÉM÷0jk)òfIôC >MoY¦øÒå˜ÝÅ Ì—[À§ZPD¶Ò¥–+.¿œãyÇ£öb|7#~#UL"6Á˜z7—ïÊZL¼—‘é~^kîgrX Ó¾ÈÈó…“ÇÑp0ùËŒl_&˜SŠ Lòä¸#v&C1 §ádN£0þññïÏù;ê>Ü¡ÁÕŠgƒuØù—ëï¶Œuø»·±A¿÷ïÝu~××Û÷ïoÜÿG»}o½Ý½{÷þz÷ëí{Ý{݈w\ ÿß"ž÷gBüãbÔŸL¢ÿþ7 ®(³®ÿ&ÓYt1ë_ ìù`‡öP FWÓñh0š‹I4 ƒEÁE8›0 ƒA<–‚"œ¯²|ÓŸMN£× /ÆÑ›^s>[„ÍZ #1=ÑuÑš›V×ëk5Q9†RÅy4»Çß‹ñèlÖŸÝTFŽUj¯6Ïûc¹õ }6¯¯Æ•ZÇõ|Ñ‹ƒï+N>*½.d¾ažÈ÷íh…Q¶ìòÆT`}<š¼Òíñþf4¿ç×cLÉÆ'+•@—SÁaº†õaxý‹k¬ ËT}˜®{~Iv[<å}–nÓ¬ÿ¦¸9Tªfé–dá·á¢Ïë“Ü,Ñ?Xâr}”Û´òý•Qp„8sGÈ‘ÑdÞMâ ˆg³h1MBY§3BTGe˜*¢‹ÅªÔ!ÆÑÅÚP(Q&óÕѤ†B…óAúà²?ë@ïX]«%«"šÎGÑ$ .§êVªoÀ¨ˆ©uóÆTè§BHIYShÈU8g¡9œöâpBƧ [i vµ½^«¾0)jo‚åPÝÍÀt·æµ»N­ÁˆÓþlÖ¿Yíº» ,cÈPªõü‡4à… ZãÄȬv[L^aò ÕÑ5¾:œÖ4:¢„ #„þs lDƒ&ºðڀɉ«½^ïX`²È$#Ô°š˜¼Æ™ÏÇáäšÈŠ›ÏD{}½ña<èOø. _\[¶‹ ; ²“ ùº?^À ï2·êÆùº¾n}Zì`몟Þú´àUè¾à¬®¾¶ãPÜ¡5c·>5v·ú¼~¡H–†,£ñÛˆAGRRŽÎW§³0Ʊ2«Æé<þ­4…4RK¢X X£ºHá${B±Y ”¤Ê£Ñ t¢þS|õÕ×V\ … ~I0‡Õjµ"Z-Q­Tñ§"â8‘¥KYŽ/G3ÎQ1tbHæùÀô§N¸/ûLFÀ_Çè6Û Ñ¡€é‘”1`5aužFµÚi®×ÛMq’!±bóÙÍ?`࿯á¿j¥Õ‚¶˜6UÃÙ¼Z1‘ˆ¬V ’ -Öì­¶ä\§ædþlÕìÆ\»Þ©766º­šn#ÄCw]B «ÕÅ*ß…ÿî7×[µúj ø²Us‡¨ÚèpÓãŒrÁ"—·cVqeÜù€3X&GžðzüSsòñÎYx1š L©,`´VjÌSš×jb~Nì“™ óL`ºèUv'“pÖ®p©ò‹µYº¤õ ȸ(²VñŸzEv@¥>Ÿ®VåW ÐÛjµ¢޶‹¤]+›±ãfìÈŒHfb”¦C}¬0s›bºEaÅꕨÄÃþ\WÃ\§DRׯRQJ Ú.3ÎËß±Šï¼eñ€Ë‘# ”Ç‹«IÜÛ¨Çá´WùùçJ¹Ju­Juß²R€Ë‘aåj°aÕ`ã-k¸,QXªø»Vñwß²xÀåH^Ý+]fÔè…ÍÌ$ rtdì^ET<ÂÉ—À[AðÉ2 :¨bëà@‰ŠÖ `¡é[9È—ªÔ⎾Ëõ­´”ôà~J ®rÆïrlúÖåo$ðùÕ¼WÔq»v›¹&5”=5´9YÏ7Ë ˆ¢v¿¸$èÂêÃË Ö·îšŽ-Dd¥Î;wAç2=S~š¹MupL9ªðßѨ •z…– •Ô„_8Q92Ém¿ž„ªSÉ2š’Œ£8”j.«QGãõÖùïŒÎÓÅé)nEžîl=± X?¾Å7¤5åóT?Gê—ÈâHþðI鯳ÀpéOnV“nNÂ__7퉫=MEÅŠ«˜üÉÚ·zö,¦òZqVÞþY¼ê4¥¡§´¯Úx¢1¨+{²U­ž=Ë©ŒVœ» TýÊSyz‡ÆÏ£sÎõƒlûš´ýGç€äÛ¬¯ß]_OÚltÖ?Ú|ˆ?Å'WýѤÀþ£èH‹Žvàc>»áó› Àµ‘»,ª0‹Í¯9òúj–µ¢úÕ¼ù{µùÞ…ÿ6šë•Ö×Õ€˜Ÿ×oˆ“cêj:§c¼ àW“nöTÀ æçx¾whÉþìþ{Û¿ôøï~ðñßízÆçãøÿö<Ñ-2ûTÎmkí{u1È4”ŽrAsXݬÓÿj*$ø_4èÃàÂx@‡ÿïÔïmÔ ð)DöPç‚ g_iõþýz~£JþŠɯû·—ê/=þ7>ôøï¶;Ýôø¿÷qüˆ?{Ôl˜ñfîæË6o\;PHªã?mú·Cÿvéßÿ¥}GPŽ t­ÀFà†Þ)ûW±æqYÍ8^„«T± NÑ•úéé£Ý½ÓSìíîC –Êt_€ÖÍ™v0VŽd”ZIÚÚ·*ríŠõ`g*H¸QÜ9¯ÔÑL)»[UrÌ/¡‹kÒ±jÒÉ«I÷V5\ÏÆóÑU”[‰®U‰¼Jlܪ²€‡kâðc¯×«Ô™ÙMæ)^¦‹fCÔˆ!&.Z3W­×üøÚ9ÛyÛ™(;9(=½gPv2QvsPvóPv3Qnä ôt¯A¹(mœIøþÏ}˜ìSóÿÝóÿ‡ø³‡ö½Ò@Ý4Q]³ SBc'L}‚‹ûrÑ#ìÛ@3Œ°/ü (Âè\àX&Æxˆ „Z_ýv OªlÙMoPâ¯ÆÑb6Á¿˜à¶2P£W¢ÅPà±.ˆX*—ïè<ጲoäèH¾s³ ò=šÂ@VMÝüý¸s(ü¿’£aP—œ¥N´R&Ï<·k*¸†™);I}F¡ôa˜5áÐU8YT˜Ô·ÒlX x嫸;y‰]båÌ´²:pÇŸ»“[p'·äN™¢;\¶dæI¯s÷n@#“6h ‘ˆ<“z…´!ÚuÐH€Më<Šy»ÄÒ#&΂† Àgìp2 ëaÿ1Û Ê—]êxœU,o87׳‹Ä^,©ªÔF·¹Þ†ßfþvº „5;™¥C9þÒó·ÿ‚Á ¨nƒA¾Eþƒ*A}ÖÅ]ø/³*ƒÁíªÂ\஽x¨Ž&0R9¡í$D Ãh& õÔ¶J¹ç8 .ü­ƒ´½˜_öÆh»¢•ÕÑÝ:ñå¸ÎЛc­ÐÞ¡«Á¸×Ê µ2Fïm³Ÿõ¯âiÀrÍýús«¦lÏÍU†Úž]¸{eµô´þwÿCëí»ëiýïãùÿù{zxðøpë Û‰=;ÚqÔ?ómœN™HãT*Ø}òtow{÷Xììïª_ u1ÈSn£Á`Y»@¯±U¹I‡£|Å©ŠBe½óÁ~„?Ypu0èÁ´ãT†¤Öý ðÙŸ]Ü Â”ª\c‡Q,öšž›?ƒ¹™ io*j•¨ÈšœÎ­J Ãq˜ Ì "çƒÑ9 öVd*E@1´Æ?|\¹U¹ŸŸ :“ð J òÑ£-ìcx]V—e–Égzp™\n‡Þ†@;û…9yÆ•ƒ¿´üÿâƒïÿß÷Øtï”ÿâÏV¾ÈÞÿwœúOêBÚtõÏÆ¡`Ÿ"«dí•Ðv øaÖŸ‡õù|ÞÆ:õ_S+Ã,ý×Ù‚˜MAÑ —;wy;cQNwÖA„+ã3¬"Ö1¹VsRÚnK”ø&ž‡W¸–¼ZD‹ÉüëÛòazØé ­×&Œ 3FµÞjK¬Žê¿ÔÁ4,³&ZZ5¨Þýû´„ci•_’{*\ùñp÷xg³R_ŤÕ¤E.<¸ÎA¹T¸i/WÄáÎÖÃv©"t åKè”+Áç˜Ê%›g·…—:ý~ßsW¶–跬͒ׯÝMõQ­®º8óTÀÚCIóSŠÓÝ1Èœd™±ír»Æ8»2þ¶´ó£÷Vä¥ ÌÑêÁ¿úrÄÎN%ÕPjVª¡§¡%.ëþ»º· QÝÁ$)†ô†.}X¢mmù‰Ìž^ù}±œ:’žÿ¿üàë¿ö†gþÿèÿóƒüÙ¬ó¥™ïµß”&à· ŸßLÃU7'­÷ôW¢fŒÃjêîÉ›ÂGZ5ý@qØŸ . XÐÕåÝw‰/£Åx(ÎBÞ`¬Ôûq F0ƒ W§¸¯ìÅß]äµþùL–@a6€ÕÈ-0´“&‹ñxt~“S£üÛMVÅ$ã°8?nXi&ëšB2ºqzÇ'¾ü[/þ×ÿù?¿š¶ÞO$ïïÞÍ’ÿ$.•ü¿×íüwïÞû‡¸û~ªãþý—ÿnÿ7¯ãÑÅ$š…ﲌ‚ù· ÿq&þûmèÿûëw?Þÿü kÅóÿé¿ÄøŸG‹Áå».£xü¯'Æÿ½öýö¿äÏôÿñÁÃ÷SFAÿ߿߹kõ?°½qÿÞÇó¿ò÷èàPü°sx´{°/ÚÍõ`Mà› £É…ˆ&"¢ûaWýÁåhÆ-4ÎÃYŒ>—Ä8ìÇs±×¿ ojMÈ÷´1 ÏÍ pѶ!y7hg}t¬Î.æ·è/æÑÄ ?í³€h†ØžÎ¢×£!¬9'°ÌX 0[,ú¸]™|ÿe|óHÌZnÄtT•ˆ!¢Å£XL¢¹˜„á0¿H,Øk‹9¦CWÅ/ ù:É Š¯BäR€‹¡`ð£ïÅñÎáÑÖŽÎGƒ>s)âM^Gã×X1êa@슔ŠaèL mÊû\\„“p†#c‹i“béKšÖÝ":û%ÌH Žo°–²Ã w‡á9n öÉ#7P–|_r!÷ÄØÄŠ¾"ÃaƒjÇ÷ÿy¬Ñ¸P;%H B…9ɘ†Á´ƒÇÁLp,ü*¼Šf7(^õ/€ä b¸!`GK1¹‰T-cŠAǸû"ä¶fLCßeܵEBöi3 ïå÷Ïa,-›âQ` ¤éd½ÝƒG ¾J#t€‚|.úäo¨ã (ÄœGÌž—716Qi“ÅÕYHºHö0B¨ûÙHJ"ÜW¡nûH·¸ŽxÂIÌ4ÄÑ0ǪL£ =nb²Lb¢Œ<ŸEWò ª‰|a_!ŽØ>rÆ£HyWsU'lJœñ8z²(¡†‘d“M±;'AËìt¾’®aTN ÄI4i¨Œró(挃”ä;:âRTáäY.±¸š-P²ñez–E„dXl‘ 9`9 Cr ǾTõºašK¥jvŽâ§/Þô‰‘IDQþ?ñq¨’˜~>xFÓŸK^È`b¬È 9ö5Ll‰ *éª Â92>ã›P[”šÃß—ys 47rÙ©)¾ƒó;ºüÍhµ‚¬¾´©õR;B2J!†ÐtŽÙBñjÙÍxfø¾˜Cåf@ø&ŠU蕾¸@å¢ÿi- }…ã,k9@è(I8"lù‰-±5ÎÎ É'e H@Èd_T`æè/ÆóŠxÞ E1‹`%Ü4v±ËžâV¥IP æKô~ø+ÖCr¦ÄX'—ÑâáØ?8–¶I£9бcèATP«ˆ™ÉFW0ȈÔtÜ’åcUhË ¡.—ܾŸžn‡šŽð™¢þÐAo þ‘ösÚ|uGt½‚ƒG½*‹ê t Ê’4V%,£·8Ð'fÒ¿È>(Y 'tÇ ÄçRRKTam™òKÊZ6É?†ß»­Oüyg}½«Æ¥gÎÅÚÒà è+èÊÑUÙþLp£&Œ£“¨s “ã:·IÊ Aê樒oéñ¡àIBÐŒHªJŸ‰€DÝBÎÌÕ QDZ,‚~Y:”>þµÎQA“{²óp÷Ù¿*—¥ÆíNô\„$hÿCœ`8gT)¨B©BPEGBŽóÕèļÔ+ìª=ºZ\©\fkŠm=oÒ<È;QÒóH”]D¬¼2ÉdÅPdÑL/ý›˜ôqeœ)ú ¢L`^ÀQª÷u4Á! ²b d›¬mãgÂ9j0€YO‘Âþ ×~ç /Œp6Q® u - wAŽ ‘º´:Ó³ùÑâ f‘9ò6uê¨\«kù ¬XýûOú7¨ê¨åàè£ÎÕy‚.|ËVè×½ƒýǪWÿ…š<ÂÅF1’ó’ ÕCSc\#q…ã+à'(FNhäú‘E+×±g|ñ™ß3_¯~÷ðQ½ÙlzDz_«‰Ä ³ÑE¼³:?r4+Â0 ±•¨ XŠ¢êîe¶t­ý?œ-ÞË P¹ó{ÿï.ùüxþóþÿ’ýOªÒÆÿë¬wÐÿßÇþÿý“Øt1o¾]sr÷;÷ï®ß½ïŽÿNûÞ½÷?Èß7Ÿm~ó©À=V|à—x¼Ày‘\äÛ«‡†z°{i°`9S»Žü’ÌʯB9‡2Üעͳñxÿ™ØÖÂÝOÑiÞýÒ¼ú»ÞlËüïv4½YðVÛ5AŠê£YÂd|>ƒ:Ë#XZ iö¬Ã¼;™iEaöuãÁl4¥­¼sÌËÌh&ÍÂǘ.F¸&YLx×pˆšyã.¼0\ç-VÑW¨5ÞÐÚæÎÑðý‰;w0íÉF| µáR[n_7…LËÌÜ߆âÛh1›˜P4Â:ç½ÞÆDTV~ûÏÑw§rÏýsXüQÁWWCÐÞ±{âËšøº5 _·Ð¾Ht¾þgûzÑÇÀÀÇþ³½½í'{¸;yGüªÛm^S+7àˆ*HLWOAõÆu¼<-Xù­ýyeå›ÊuÐJGƒKÊÏ2ŸÉ}-h¨²°‚…F?żAŽ='÷ÏPµÂôcѸU±Ú«âo5Çn›¿Ýò6WE Z(Œ®³›mCç£àá³­½í­£nË\ã6„PQÐdØ'ß!‘ ?ŽSXL iársﻞ‹U±údkw¯woý„ÁÏšøýw@=šgWªŸ|þ äI:– ×°²X‰£Ù+Pã‘éÈ—;ÓYˆ×Yųw÷Å«4á•Yììÿ@Õ pñ<=j÷ª+¢ N¯ú56zÕÏ!ø÷÷Ž`Ý4à°¦K@ñ)Œ~,誵·:6þólëñŽØÛ>Ýzøðpç舂{{ø³}°··uL‰ÛÇÿ~J݇;ûÇ»v··Žñ€ˆ0mŸ>ÙÙ:zv¸óÒøóè°®'û;Ç[‡ÿÆðþÖB²ÿìÉÎáî6Ÿn=Ý9ThŽwövž~èc÷ÉßVÅ>A|~ý@2ÐEååjrN¬p«zÛºßeLúæe¥¦»KnŽÀzÕÊÞ$BÏ ÉbòŽ8 ]ÐÆ…Ü&CŸ›¸Ã@üXØbSTOVû'µj¿ lÿ±¸…â ³`ë~ÑJq"Jå§—L6/·ýÔªØ%*˜ž X%ë4‡U÷ûfŸ5¼ :‰j@_®Xa\¯W` ã tŒb4×Z'«Ïn½ÀÿÖNj­µ•ª8ùúþñ“úédµÕ:©e¤Ø M~ð‰ÜD"w,º@ÂÁe¤ ÿºWáÕÖÏ͵·'P‘Öo"†rÛ­â×â€ÿDˆÖÏ?!(ü‡€Ô y>ˆ¸ MŒª¾$jÒÆnÇbû°NÂ=\îèHŠC0˜‘ÄÖëh4<£°^LA\oë€ÃþäÇ7{0;Óª:îUûgX„^\Ž~y5¾šDÓ_gñ|ñúÍõÍ«toçØG½êÖ·Ûw=þn÷_ßï=Ù?xúÿ?ûáÇŸþý *±®8…¬8x$(oôªëíNwãî½û_|©ôǓŕB±ç û)ÐX<Ì¢sžžk¼ÁmR'šzº„y)sz´ótëpëøàPΟöpJ0³"ö~åŽÖŽ*âkÔ/VVš4OR²¨ 4ëxÛók'yp JHaGâ0Ä¢{•ÚM_ƒúÔƒ& . –=5áV»W}PµåM"u“ų+Ñ8·êAC’Æ*îëL¢Óvo…Ùljíxc»=š8(W¬üâsѮ٣ç%mM ­¯m8¢±ÕÁ Û Ü­ÐµÚ0N ¿‘fñˆ·¿"ñ&Ä­,Ê{QôJíøŠt‰ä~ªÃO1‰8¶?ÇM6ÂAÇx:3Û$¢éH!±²xˆ¦kÏON`„‹’àêÏ{úà§RtÜžî>:ê­À?…ܾPSçpDS'¥ò´DÀE œV8©4ì5uúL§·P<1ˆª NÀø3ÐÏ_ÉYG:¼ ê‡q@Tø1}–i?”4@ó3¯"( aútêÂÿgt𥉗 n>«‚ÎVų†p6‡¢ Â6äÁ å; Ïñ "ìƒðÂÞ'ˆÉ©—Ä0ŒäI%žµX¿’EIH¹ëêG,ªûU²ýêÃXÑxíB‡2dâhº úÖŸ¢Â£±Y™‰jª±˜ñaÏ<ÆâóÜšPO’XÊÈ©ÏÇc°d¡Á‹v{ØÞpB§8wÄêaÿ—¾8ßõ-ÎŽñâ”AÜ÷ ]·Wåº<í/Æb’€[ÞÌ¢y(­µî¸DbQ¾£&¿†b§)ž žô/£ o&X,☓¯n³Aç„\”øÊô¿­pKÆÚ—¿q}¥Þ¨ËM1Ž¢©NùÔòª£VI?_•½ö|åSuwEJeõôÅI­~Ò>éÀ]…{îân¬Ôë¦ O1™«5—ÇIðhÐMûý÷sÕÀ3rÜIK<=8Úý „u8ÏXÔs£IuŽ‘ÍŽw‹„V,hc°ò|ýEj°ˆÉN¯j£°€aªÌ2˜…èÄ4›È%fSìG3ý˜ÎÅÐPu‚+ÚÛ£ÉW±P úh"O±€‘iOLoªP21 {X#Ò. ›‹€u\³åІÐî`‹ñÅ€ELçƒ8<ä”ΔåA$"@â@–€FÉKîŠ9µœ @§ ˜v½Sᆲsrƒ NÀIå)m°VoL@=ÜÙþîàt¿Ç¿Û½jPåàq¯úI•õ0„]BÃb ­@%\MÊ×$ΓAÕ†dyûî÷ìe„ZMר îýòŠùk;ê1žˆFlƒ)$éùUª£l`Dö—Æ,êá¿?}ú€¦Ú2¤y±ONð^Åâ íPø ZZT2Ú ®±AÏ,Äw!pg´ÝÍi %ˆ<ÚËC©t…gαXå„Ns}£f+©f ·M5–pg<‘+ŒÈíCŠ' ãþä†Ì.c¥ Ž'§°ÌLEcê¬ãt®Êê%í|BDI2*ã‰Õ¡N€³Lb^½B…¯1…q–QAœNaÍ)Kcr a\B6P5gWˆ¿Ü †½ˆáÔÆ¤T$Å+´Ý Ó²c¨÷á¯úS2hžñî3™7sÏnCÏñ> œÏNS@F»v4™Ü|¶ænB|öÔ݆øìAüÙóŸOíéáÅg§Ÿ]T—®‰:'qª_&jóùgÓi^™P(êð40È,<ÒÕŠØ{¾‘JoÿF0ÞHq‡ojPÉ“1 Ÿ—ñÉ ÅPƒ¶ò6‘Ñ;9&µmw kAÜMÂ_–õ¶ÃÒÖñG?v›ºØM×5oóÅ maÄYt284ò¸x@Ð/ÏEc ø£ê:8U%À@Ê.C7&5wŸŽÙþõeÐv$T©æ³ÄPwD.mÓNRç£ë­¦ÐéËù VgÑÙ/rqD¶þ§ÚÖ¿³ h^÷‚'ö¶ÁïÖ÷;2(õíßl͹!·þ@š>‘–>Æ0h¬¬§ eàŒÓ8Ù–‚a{‘&ímbÃUqˆTp­ÎqdW›ë%ûê«WÑëpHzàˆ& M½ê_ŸåN¹pc+M»Á&¨ùkÁP½îÔ‚]<”ÖW$Š!Ñî»<ÝÚþ~ëñmÒ÷ªx¾WÕqÇ[‡ÇÍ&ZžÞôªëͶ‰=:>ÜÝÌ(„“òí³Ç‡;Oa­Øg¤ãö:È6^u» caWJ$j#ÕnDªTR”$óýC&˧ڪû”8õ 4Aã•¿ÀT˜ƒh4FI71r/û ýãè 9Ò|ÎxÉMVPŒÆCë MÏðÕ™^‡§|ކHçý 5ùñpçÑ‘Ô ¤B!u±·ûí‘x´ ÿ'Ž{ù‡Çüv~ÚÙùéX|û/ü‘`§ç_®ÓîéîþñÎãCþØ;x¼»½µÇ‡;*äµsì+l‚:¤ŠŒÖ˜¦bƒ¹Ú´|;•‰!ØhSeSJ&”› ©€üu©¨00 •œ]³±;_ö‡6A‹–þ¢ƒÂ”&­Å2¿úÒ•”d™’¤±¦òhiÂ;7‡!]‘eýEÏš¸yÉ‹x^Š9Kù¸ÈÃU’,‹ª4מÿÜp—ò{ë6ƒs¶|G.Xâ¤7…SJñd‚&XŽ…A.š«q«Ñ:m]HZ°0'´cAÊ·¢ºSe/¨%:AfÁ øÞ‹ÝàëÏœÄ]롽5gÊj«˜ŠÄW‰[ÕVõDþU«­‹ÊKi°À& ÅM+S}€—ÉUSRÕð(= ¹ &–°VÇê;™Îßzôë(çËþ°Â&èäWùëŠ.»N,¾¬ZId+ÖkÉš§b,Ù¥#@î§óe$0™$R¢Ñ®aZ<^ÀDŽðæ—jrxÈ]¢´GÝhà yá×)|)†@Œ¸$v@þâÏ¥&²Y9ޣɅ$1}ÏÖ4+l‚2t9[ó “K¼×¡1¶0š° ÊÐeìÃ_âù•jš¶P&+ ]þ±¶PdM BöÔ!Õi&«§Ï¬ Ì•õé|ÙšsøÛuHÜöXq{¬UÈZ¢*Ɉķûi13ÇØÉVج}tâÝ-Γ › ©@²ÙœUµ™×Wk6ZçËþ°Â&h*Ï™Ó5—ûvŸ ê[I Æu”kË5 ýa…UU$·&jóQæñ~:_ö‡îXþ6AJµC Û¢Vïk‰*$#ßî§Åcc'[a‹"ªUœ]VÊš“Œ0UÑqî§óe$rš ©€üMש¦¤°³O±–nŽ'.eÓWÇ&Áßîg ƒl…MP‡t§9ÕN÷›ÜçÆLÉ ©€üå—Š2/“OYXí+l‚:¤ª2ºæ“sžKÍoÞ -æó©5GŸOA׸¢†´ !LÞ/ûà ë¢OÂÀ„+d¶[-`ôƫʔ‘ø¶‹ä(çËþ°Â&¨Cº~fت¢{0‚yòc’ºš&Îýt¾ì+ì"Ñ!¿ü㲤[YæLwŸp-Ý(O\:Ê–&6 –øv?¯$:+ÑuHÔøp«Ÿ&ÖŠ!Ô!¿üãRÓQú]>ýa…MP‡T@5 S—' nµó£R1š²VdâÛýL¶Ú>Ñ­·+¡ÛUiu³ŸMÅ$# åœ#šl òyƒ$+*“ª4D&¾ÝO?ey.å9Òš§f¾H1> šŠIF$)(Ë̦ >Ýj° ……,‘”¬¡“œ™’—-#>;‹76 ÜçMŸ`•q?ý|‘8èwùÃ%m¢S‰¹”ÏÉœŸ53c^¶ŒLÙY¼²À=ÀIPŒL%#’£ q„› ¿bþ_£•!7¤ò—T­ø˜â’AR®”<9¶ô‘Ø:@J‡MP‡T@þº ;K±s˜äû²?¬°EøøÌ)ÒÆ™‡M +ÊVeJ²b“‰o÷3…Áþ°Â&¨CvVù› ¨[{IW÷@xÍÓN_¤MU+> šŠIFx0¹ Ηýa…]$:Aw²ÛO_T¿Xõ0EÒldÚåuyë)e¦w!’ARù›¨ÃÌÚe¶k>ûà › éšÎ2¶ ,s-Ê‘ñé|Ù¦?èÛuHäo¢¥¦<ÙZcÓ°–¨Q2"ñí~ÚœB1v²6AÒ43%§éƆg”#Ô!¿üã¶ß±_c p”¬Múà › ©€jƒßÓŠ×-€(c:l‚:Ĩ•í51('Ì06AÂÀî®¶2ÐÚTHi[Ÿ›ÅACA6ÑÌ9š£ ïé`N–þNæ$Në`N—Rò`ÎÐDÌɘ¿î¹íY5õŸÊ©½#à ôµ$3`ž÷qXþ7c‘sXžê먼q{øvmmë]Û‚áZ§°8Éút¾ì-˯ÍuH\ñjÌ¥p5%KI™‘øv?­éåÚ>ÿ¹æ 6A%‘-KË´<¾n‹œ/ëÛý´*Ã1ö‡6AR$áLÁŠrÆ"t-Y¹TL2¡ǹ Ηýa…MÐÓT!MM?Cl1™…ƒèb2ú/ŽNÙm¥‘º=y¹².øX¶J—µè"–åµYnreÖzFT…“×èh'KRéùª÷ne«EÔ;PNL@UHI u›ùÅ’U¦DwÒPMg/F Fu…’avz²³iÝ‘×J辊ºªÙm®KJ:”øqëpwÿñ¦¸‰ KB2¬ >G¯kN“Dx»gf™Nɨˆê:ûGGÊ6G›ÒñŒÇÂ`þ€”ôá¾Lð)’˜d±8Mëì“#߯Vçî5ÖÔ0f^:…™‰ç¥ $ÿux‡WZù¢-¸§½™ ˆæºäƒŽÞ5€Ì|¡Ñö’¡üƒ ”°ô=¶E&f$°qoÅ´ra´’…PRÃB,+/PžýϦtÇò»@C{ø©VEÍòÆ’E`# è$ÜrîaÌòi«ßhȺlªJÇø8P޽–£ÓÛÜ:‘ÎÞêºÐ;ì–¿\WÓ:¾rŽï(„ú1G¯Aì /BÐ…”i³èUˆÎ¶¡ÓFXÓ—+8«€Fyß¾D8z¸H ¤è\ /ºïh9yIÉ7o†ý›fÀfÕ+–@ È|hÅ’@®aWl䣵<èDä$ÄøÐ±`¬â“~v’7¯ÐÑvž<ß='‘þ¦?™+÷äl˜¯ŒÑQ´Öå%h–ø|‹qBæ>)ÔËRx…›Ÿo‡ì!ÞI§‡]ø~Šº¨¨xÂ8†L6‘ýÀX”Éi0há]N  ɃSô‰«ª#¤m2£ÐJnôÞÂÃHpÔô!“¼«j.¾‚w5õ‚î}xóÊ™?8J]| ‡²™w؉û¥=ú¤¯,ö¥Áþ<ä;ø. ]÷¡ìómYÜñy¹:”îÐAL-éFÏøñ³üðáÞzqRkµÖ´½mƒ}EÉh;Kþ°@]¶ »‰Lª&ê%@å”KmÇ»(Ì…§\¼4ޏ©p ƒºË®-2%2ÔY?Ô­ã²t+Tеóh·§ñ+f' ºÐFè±fÀ)p#Mès ¹¸Ù¬*þu[¬Û¢v÷v„¼ˆÉ x’ú zƒŸË[‡ÃXü6–êÜæ¤?>Ñ$s§—~ûZ'újL±ôÕÍçúËX~´ƒºÖrÞ~¸{¨2»‹ ª3&?7—¨¥útòñ"äXLŽM¯¯ƒQÛ)Û§‡;°†Õ5V ða°.ø ¸TH¿1AµÇ*qÆà“O@ë}ŽâËuàCtu.kí袼…xŠØqÊàhî·7æ!»“—¶†*/B5~ɱ !H«tEÉÅ"ò$¡·v˜ þ ëi¼¬.ÅIП8Ïö)—3üÂÔü Ú<«‚ö!?ɘzÀo.t}fRz'+ß<Ù©â³Íøv2¿ª%߈¬Ó²Ý–:$ÇýHÎù¶(ØæQ-7‚h<7kXçýȘGò< šÂܵ„A®¢ÈÕnSQSmèÑ·³Iœ(ÜÞºÅNv½7–J7gE6J‹+’ô¨qòù>ijްgìs²d+$U\²?ÒõY± B×jd _yðâMTÜ[ޝ>ã€}Â’VŽ î¸GèZà°â‡Ä®¦ô~˜s:XWž´ ¿½5?"sCéݦtULè€Ušd?È KéÑu¢s|Êaƈb°d>™ÙQy¥(3¶4º– †$R”ÒS™Ëm’3RÈ1¥óGÓi '=ÙT_¢è¢–—¨ŒM‡Ü²ZYù—$Å”t)¢£“„°ò-C_qv›3жnÁ‰Ñ—ÑX“äëù[6:¯ød‡ç ‘Ñ&Jê)’>ïˆmíûbÁ®ùµÆñ€‚oF1¹ÑUnÐâùtMP‰àÜbˆ–‚œÎ<€r]WدjV¶ôœ3 мEq·-ª‰.Â~'s‰\°Ñ$³R}å«ÁµHNÇä“H÷EžÜžÅ–ÞaLèEÍ ¬“òm T2|´ŒOR¡¥Ó侘µ|°5|Z˜¶Á‚ ¸È}½÷—}¥ó<ÐùvosÊæ E!<åÄcø»_˶qt i¾þç]³½EWþÖñt<&Wîj_õùáB>D¢V11>„4ƒÙbB$ºÝuÚ¨¦×ØÎ¤·[dÁ]&ô˜ ­šCôàÝ9ùóÞBÝÅL†}%ŸÛD¨‚nCÑ“×Ê’@®ÇøAÌ „YÁÍñ•oôÂã·@íô=CwÉôB*½’j(UQ&í)è[ÈàMOš'_ |÷Är¿eúeTÉCR•‹É«Iôf¢óÌì<³ryb;O\.Ïk;Ïë‚É`.X¥=æ & PñÎú°^›ã%ÜT‹dÂO’œõ ]w¡^K¹ùÅ2üÞ²é÷ïYñC{‚d&Õþ¦LÖ$+®¥yŒ¢ôÅW“5uÏTEznò=$~'ÒÚ‚JvkERÿ|VÎÕý<,ÜÁõ‰æ1 qLC.ß]†JÖ«…r½åá! ­°°Iñ°Ps6ê‡ÆÂ>mÎÒ›=MSJ*‰2Â"æýDó&‡`ÖÓéTÏK‘žñ¥ŽL§¡­_NñíÜâÛeŠoçߦGêîˆÉîíf‹).kpÓoÕa] €¶“Åj^àû³e.Mo~ÁB 핇YÛñ¦¹4 Ç8Ý<]sÝiB“_,í’fˆä ]Zb@õúVfŒo/.Æ78꿺"ß¾¥‡è5‰ÝíËG”pVåw‘ Ct´˜‰‡ÏÄÝæ:,‘GádXg«²Å~9GqX¥Ú‚b þ+ªHœS~c©·ò?tàq„Çb£É<²(¡ ¼Ì6]”ã‹ò4Ñ,Q‘ocÅý)ÅåÂÑ·?y•¡LmŠä›±pÊW©Xdyº.<èèµÏu kØ‹0üÞÌFs6d¥…,ª/9ðPo¾á‡øA¸ðM€M\~­ÑëxÒœwÙWqÈâîU+ð?Aÿ>`æ3Ôï$g~©ßÖO„žCqªl '¢OpÂDTü/Mšภ’aqëç““Õçîe·5´LÆœÔz'taû¤Ö:9i÷$Ò£›&¤¿:·. ÊIA{›Á·cï°iÓRÌSÀ=îm,yº)”"€¡ÚÌ¿"¥òäE·,‘ìòî…+߄àK&yîo½èãÑ•¡`6õa!å¼TsvD³(gžá»Ñytû¤ÉÒD³;p” o3Ãó¸y¹$Ù¼«÷—ÑœŸ¨í«‰ªi=­*ñCOg!|@2Z•„ — ` Դ͇iÛÃÊgö?W9»ûD^eÅþ¬˜­Œ¥P©ö 6s[„ê…>ƒPÆÜ¡|âÏàãˆÛ¢3OŒ:®boíÉ[’ä>‹NâpŒfrx%vLF÷s¥³P2ˆ¶oÞà®J“{þœ,'q;e4§‡‘Ç|o’ràÞËb¡r7ï&ËäˆÞ\sÌAÔS•»Ç;ß•Q¶å+¥xïÚªVVX'IsV²N”‡jMj¤J ç;%Ž>>sQõSF²¬i O|ÅJ ™¹| §,«H)j4]fJèJøJöí4ùä:¾D.{X9yÀå"!éêŠáR™î=`%J^øÿ¹õ»hU“5”¢ŸÃN¤0î°…æ !ÛtŒ þä‘!ÝP8ëÇ—¼ø8ïÆtÑ—/¨šmáUùD7!`ɯޫ©G¸HÐY+ï»/ŒgT§˜ÜƒîFâcç:fÑÀ œöÙ„ ¯u“úOW©ñ¥i ‰­½=ÁUÇìiŠw–ñ*¬­ßåsÒxzs’žöU¢ \ŽÒ½…þpÈfjr¤«Þ« ¶Õvms%X ÒÍ’šxÀ×T¹ˆ VíH½\®ž¼Føïô[X¶?{ >*²tÍ`åFŒÐ6ÁþÎ8´z• ‹ÀñMZ±.º8=:ÜÞùé¸qþ‡Ë¯˜_Õý(à…lû(“m5FÅ­…¨‹¹÷<Á¾ÉÝkË'’YÍ)#ŒYDVFçxüwñå]qÿM/ο\×cø×˜bÜ;×h:3—Wlg1¹*¡Öd9+u…Vœ#—äi@]÷$ó7ºx…ÓB3@•o¸¸ºº¨`u±¼ÞJ'ÈXšÉëâÔ¸ n Ê•íïN÷EÅ ˆ.b›ÖfÖŧߘÐXSé#©;¸¬’€Ö\„reéôÏ£mÇE”)¥GiÂlRÑ ]çñ cýðv^’È» ò) ¬òf¯¹É‹  1àî…ÙÖa/TdªKh©žX±ðÚûIúdð\z‹]sÈ9Z0‹ÜòôæÍ,Ý_‰Ž¥šð¾ ocAVœú™Ýê¯ ;(ØÔËÖ\þqÌñ2^sM>twìAÂÑ÷u4ãT;”©L,_RÔñIÞœ#ÙÑçËâC>{_ :ÞFVü•„ƒ¢Ò; ©WPè~±à> ¿Ðpiõád…;žÊ¤¦ëD_HÓé>b§¾KIâ©°‘&Üt¼]ÞÓÉ”ŽK¢×ȉ)³—þÌJ‹\Òešî@>=Pí;=ݬHCÌÄPM]`—çÜKwê½Dò“\SÜ98;/\õàzÚO¥“Š•kf¹ÀùÊìÀCq'•JM2c+•‹6^ïòø¶M‡2ª²ò? `V4lEH'¼:¾†K¶åZõz¹æ$Áÿ2íøa¹v$Áßc;øX¿ß¦—§›)Å_qò‹š ¯ú£I l&CuœÙwûI&÷ 9cXTøß>Ãp%¾I#¡ á-G-Bš–âb‡&uºó5 /Ї!ÃR¼7…'VdͶˆ¤1ÁçZ¤Ÿ_}U‹ ÑQ¹²YÐ1,¬Z#ºrvµ^G5ËÌñ)y ™–[&R- •€Ò˜RZ‚\ªÃQ{ãã·‚ÒpMñÀóŸÅ‹µV«ú'‡2,oâeràý±µut©=è2ê¼ÅDEW”r…ޚǣWáø¦)ØG] tlj79ð `-b:áøe1yE'TÍjX wÇ/"LÞ€áb±Úo®Õû«{°îŸ˜Ø ÿšÒ!8€’c7ȉ2Gýñè¿!ûJSÈu¹û>škÓgòŒmˆ } oúODdʆ”ãm•¾œDU1æŒ/w~ÚÁe}O`$zB¡ÛÈ1MåOXºˆiÌáMLëŽáèË{ëfˆhŸåê伊£ ,[-E8 ñ©(ø\3ék\kræàW¢®$œ‚è}qû0vM‹ªß!|=ˆÎÏ)4§ÇàÖšCúw:<ãô£?¡ÀÙ™ü¹ ßˆÿ=ûEÔ‚Oä–pJB’ôbˆÞ ]¿ÌMíyÿì5™À ¥ go0áÅ.X%ñA E‰À˜sÎÐüøˆnÖB¤Ø¨mx ]Ï)tçÉW1 ù6EõùÏÍx4Д÷|¢‡ï¢ï®QøšîY–×  ½Ñ.në˜kŠv'êɇ$h§6Ä3h—R醌¥‡¹¸¹9‹†7˜ç l‘Bú? ‚ô_® ežâÍÅÆšãÕݧM’YB¨]ëàž<ür &|hAP¸cžveÄž€åäd¹ ÐÓ£òU‰†ÖÖk(Ãh1Ž›9[èï¾ ÄžúýûjSýþýä®:qÔŠÓ#Å‹€”‚½Ðö¶mÑ´ÕÍéØqÂö&¤•øl>nvÏQ×E8Bá'}¢ØÞây2¯£)>f´½ÅÎÖo.CéE/LS½!ǹStqöÔ¼lüø“©„óûKÜ5ö¼°‚»e=±Ü‘tq@•êÜ66à0tDG«#¼¡Æ‡õfÀJÂ>MÛ¾¸IÀ¯ÙM¯Ê©éü&¥4ÈæU þ}ê؇« 'ÿ“ȶ:Ë¡DOÐêhÞÿX€º×U(DäPÆþHp‹q Ö ä‹ W¡¼¨é°;cDÏô0Eó-¥ÍŸX£¢£>>vׯ{ùr:Â+‚dz¶‘—F1ïÜN­ÙH“Aê¢÷4³Z£ûƒxâ¬vI´ ž÷-©™³o~¬9’Ü;XFQÏÇT,Å6\^œßO†á¹8=…lŸž*e¾ ^%I?:/û+šÞ±È7 è¬þt÷¿ñZTkŸ[’€…}7&jÌød6œ¬ÊÛO*xñökïÆñþ ýþ†$Ò)úT¯ÐËʡǧ굪Ò_}¯ÇßÒØÇõ¦8¦6¶Í%n6½û)2Y ?ì—âÓ™”éÉÂ+Rz+‰B‚Ò“JSÞìâ½§ n-ÉMzBO‘õ«ç½/‚T©ê™/ùÛ++çÑ·?„Óy,åv^Ü,%í¾ Ùo+³UÛïÄ à£Xþ(–ÿw‹ekì½G±l—òvb¹´¼ÕæIZèžûJ‡%Y“II™WÄÆqw¿HCY)}"¿'®ÝGdU™•Æ…htgVš¼Ÿ0½U9…ö›Òÿ‹¯/ÝGäeB­IÆýÉÅŸT3ñÿÖ«/é¦KC½P-u²¡Öo(üÕ!¸sÓD»örÛyÅ(J- c¨üõü2½­z!»mòy‚“¨ÝN†ƒndà~ö*•ÀSÁžô?¬°å£ >¬ŠÆ¯ò½s¬hŸÛç<Æiª%ß&”åŸÿÉr5ÔûÙ±ü¨#}Ô‘þ×éHîU#è´Õ÷:Ó[(H´ÿœ9&Mʰ„hX)’iK­v Á Öº. %¯ý0 Û¤”´.´—6zCs$û8Î;e›²åg/Ú³Ö«TEr¾Z¢Å(ÍÓZš5™Ø±È¤Ÿòf÷t²˜† ²dÁÿÓm”L?jMðYìx4·öùRµ×ÏO‰<èíïGÑ”®d‰ùÍ–-8]ÿûéΕòbµW¥^ Œ/¼zÞ;©œð}ê•ß0Û|Ÿú„®>ïàmðX>*‰êOuko¯*^…7xw Ðì "0^ߪlVäi"¡û]ÇÿzeSµÛ@YSˆVèw³½ÙÙìnnlÞݼ·yó‹Íöúf»³Ù¾·ÙÙØìv*Ö9•H䔨=Ž—e WÌ}p¬«¹Â½¹\›|HƒÄ;ª*'ŠgK3 v©XÁ~YÅ~ïªZ®¶X”9¥'ZËÙ«¢eÌᣖúd’0@zw†nﮬ’‚«@_ luq:šN•¯P4ØDÏ~¤ÇÊ8ê#aw’ØÜ0±ËôhNVÛëuz;¼Bίç㋈²®¢&ÐSÐKrˆ™*«ýúè‹hLéUêXæ'—ÓÊß¡yÊÔª¸_Å5뱿¸…jÿ¶¹kº5ìáÁþNöþ”yþšÞÑ" /Æ“*ê*i«"QiQ ¨žr6¶µ8ãyöâ*šéæÙ™s³ÄZå—ÒóRŽ‚Qæbñ\¸å( xuô+ óžøJ¨Ñ$!ì÷R n¶š§*4î Uyiüßq%ÖZ­iÕªŠö:m½Íúv·l…ô<œõ®ÝmJ”–³GÕÁ ‹+L+JÙþ.3)Ù^švЉï„="êh¼ì IjÔòšŒw‚wøçÇ­£ÓGÏPä*o× _›îKŒø§‘{0·+:ÍaOíDšD#üUëV ïLù7Úm·õÆÐÌ?¦8‡Ì,}ª•éöe:Ðt°÷Öß–¸Œ† “VèC|.Úzä T®°V‹s+Côªw¤kßÓÓdš bªešÇ÷Ñï8øÔþÁûâÛgÄd*»4Â4ä…Â…R†Vuâlq‘¿>HƒÊe&ÚE›“Gn©5úÃ×ýÉ#a!ŸïÈ"3WÎäGµòݨ•ª.ÐíÀÕ%µK*TåPDÿ鎬8bRë‹ÉhÞC…ÏJe©o§·k­E’ ¹UIÇ}ë‰Û®F­Ì¯rf]3AÂRgæ‚L0ãÔÃhÖk׸M²´6d•G[»{; ¯>å äËKÞµÂ^¤ûV´Äóh´ñ8èÍÝêajŠo‰]Âêóè< Oaø>ȪÝÄŒvuÞA»:¦]¦StO·ŽŽJα—ĬWW·[A¼÷Ńgá`N§Õ‚YÔt#(‹·tJ«ÒZ)kR6~<8ü~ëU¹vJï±ÒªjsÆÃ”ôt«…¥|ü”¨Õrub¯å¨Âºß’ÊÈß„e‡gáüM+é”r¤«å£rõ‹šXóc›Àsñ<;íàO©EEYsÎèÎòV©8Åw«\Œø"R]eã„!Ž…õÊjÈbÉæ ±üñìòãÙåÿ¦³KžJP½‡#JÏ<µ´-WöôVË{ßñݱÅw¯BG¸¬/)ÇAe~UF#ÜÇ忇\nv‘ôÿ\èVú*„u'Î?ñè¿a¨Ý^‡¿˜Ž„Q j\{•¬H-‘ØÉLM8©®“zíßGW7È)«ˆº>šPúêhRƒ5)àëQD_õãW=é]:ȯE§Üò­D;>2 Çm\`Lçä:QÆu DhâªPú”ði48²A”H`‹˜Þ\ÀkI´Äõ‰Ùïˆx”¶et‹ÐÑ1yC—¦Òßñ«0œÖÙrÿFúäF÷¼áp„Þñ¡Dz:Óz÷—=ŠMû7Ð9ÎlXÏyd=™Î„fÇÊ£×è Uún4f!;ñ–íƒ|³‰ªÛÎ%¾ìë×ÇÏ£¨j=CŒo©cjø¨:=‚d—¯q äopÜÝã¨?äûê²ïë’Nk”uM•Aøš~.&áPzV;`>~ƒXèЏ©g[bªÐxä–Á“º%ÏÔ¸KL†XwùÈ&=}Ëë¿Cð&$ûUÄ0a/mý™|f¡OÎ.Îa¥ÍäC ÈEáù9h¨Êàý¨.É¡;8»,õ”†¤aU·æŽx6žÏF×Àµô<8-÷ÈQ\<¢ì#Ví#N²…Ž ÿp“ã¬?=uÎyô\Ž..ÅÙH¿4nqÄbe“Çh¦²b¨Tå7œ¨Ka:i‹ßIÐE¹—«8+ a¯*ª¨¢¿³¢¡8ÓKíRg81o•SAΪYRÓã˸E/›‚#¹?ªG™W‡Ñ¨Õ OÔ¯x>š/˜{3^ø¦4*y„ê’C&SjêMgyíá$øÄ¼J/R?@?¸0Oœ¬>?EI?˜öÇ“ÅÕ‹5äÒdÜÉI­wBž'Oj­““vuª­©2’O¾Ô®Z/§[ ³ð×ÅhÆ/£<=8Úý‰H1ŒˆJ†"Þܺ¾PÝTmñ¢âƒàê|š8DÙ8ìÏøcÓþÀòWŸÿÜü€°?ÿíès¥%À;iÛ>P©ûgK¡E§lý¬åMëÓRD5F\½“Î-UÈ^_›)•€áèüÜ~ Z˜ Éx0%n•›DÂ7KãÀºã«®›DrìP¹ÖˆéÆk‹éïypáv&9´ævݬôôÍ6 ßb‚R‚V(^Ôì ÆèQLš@U^>™‹W˜÷AM s]/–/ÊÈÇG~r‘Ýæ'™É‘²LmjœV¤ƒØŠïUW~ãÐUÞ?à‹‹4ç úè{s>£Ñ.Oñ=,5¦‘ðF=V!VVãÙd_ åÞÊoüñùoøã~‰‰ÑCr,JðJßâi;ÀÀ45A>œg}2jôB5«|¦Ä…¢Œ|sAåÈ>2ö³VeèŽÿj:¿< &ç‹>¾T †"^óÃb˜Ê9A‘·ôÙk‰ FæY8‹kMûŠ=×˜èØ´½¼ž‚ìëU[??ÿD¼X£*P¨×ú-ˆ[›k'š8›k­ÍÖ©ˆdE*Ré(5Þz„ðœ´%0(†bPÔj‡àxÖŸÄøä!q0Pܼd¡ûpçÑQ“ŸGœ£÷ÙþªCs©þ…úV7›˜°‹nìõ–¨fcž%“4ÄU0‹ *V^vÏ­YQŽ9“ÆH=  «PôàT•èUÌ,ˆ/¦Y9Vÿ‹+˜âãZÙâ >òÖŸ@>9òD£žŸaÐOiÕI ŠØãk_V–4 œqVwKhèØ­‰Õ7š´’ÄJÇuæ†;ô/¯(0Èýú‰X}Áÿ®ÁWíÅZí¤&Q®ÖI¦Ö/9—AI‘Oò1 ¡š '@¾üwV~þçÚjí·?NN~P­|õõÿ¼¨Ÿœü²Äõ“ç&hÅ®ÔWV 4 ôRâGzþ•#пÿ: Q¡Y\шƭôùh°÷g4Æä„F·ÚóiJÝ1Ä×{¡'H¿ã±ù:œðsÌ¢$J 7$r%(°W5êØ<ýlË…««>¿_Z 0ÖKÒ ÝÒâ[lJ·‰57w`+(ë4ñóq´N²^PÃ'ÒÉtÜŸÓÀ#–‚<ÐŒ7‘i(³´]ÕÕ°yѬÃbþ™yFO+Ðs@˜LO·í=:…êŸ><8æÕ¢|C´ù2ÀÑÜS·FåÜbs©5úܼ¯cÐUDU4a‰i&&+s°³­3XÞÇ= Ïõ—ô¼4Âfo’û¬oþ9ÿæàÛ¡·%ÛQLj¤æ&N=ó6ÃÑnŠC#Ë-÷ÎØS+ÏÒý1ÞŽ¹áW)Æc|¤îÈ~Ýðÿj¢\5Ÿ¬<;i¶š­lF()pö‹ZKߦØÒlr%ñ©VIÛ$ú m— ³v8*|îf˜;Y*UÈ3Žª¼·Ó³°ÁÞ1$™è¹N`„®ü¶}°ÿh÷ñéÑñÖñ³£›*éÕæïä ΧŒœ»‡Èà8Ô|w³Añî! R7Él$ßùT¬}·³·àq8 gê]BFŽâp11+W^&ËgÒhUµõ}2׫fzí³m«Çvä#šòÍB®—Øuµu€œ= Ï,U,ˆQ¬ž'aK~ MùqLÙzç}zñˆŸÊ•½C]&sE-î˜Çïâ½®&Â¥)§÷rïOàíÓ;âɬdwÕ”}9!rZf>~ÃòÛVlü\ä]ÐÝÓûí?Gßþ°sx´{°/W0ÌWÃ+õ8û^Öü >jÓ>öŸíím?yØÛ¤ú¨n·yM‚`~§á %j̹ÇÓñhNLzÃÊoíÏ++ßTþ f—”D»º01ð{²ÐèÛþ=W8ŠIIg.Ö¡ÍÕãQðŠªÆXíUñ·jù«ä6»åm4.¤0aEñè:»Ù6êjŸmímoíôÚÔ;0*JÜ!^|òý ÷2S ­ÚÑA<1v )««bõÉÖî^ïÞú ƒŸ5\ÞáFrv¥`€|þÕnüT,sª<ñÿ§C¹ƒ÷ŠÉÒj6ºÍuñìÇÝ}ñ*¾l+*³ØÙÿªAÿЋîO`a¾ëاG^õk lôªŸ Zƒìï Ý4„êÒøôuŸž„Ç׸÷¶öÓ?϶íÓ­‡wŽŽ(¸·‡?Û{{[Ç”¸MþS °ûpgÿx÷ÑîöÖ1ôcÚ>}²³uôìpç ¤ñçÑ`%\O`½t¼uøo ïo=!$ûÏžìîncðéÖÓC…æxgoçéw¸ÀÂÝ';zMžØâóëæ½ú—ê €ZÕÛÖý.cä¶M¥f-rósØkSCx“¨ŠG ªv5`\ ÆvÖCzNù‡nÌ÷ñ“ÕþI­šÇ/ÛÃ,n¡8Ã,Øz…_´R܇ƒ†Õ„Ÿ^0ÙxP*?µ*v‰ ¦§VÉ:ÍaÕ}Ä(½S™·†@£Âù¤÷rÅÊãzýã tŒ¢çLZ¨b·^à U·ÖVªâäwÜë?) ŸNV[­“ZFŠÐ”%@ä&ÙzÄ+@ª,œ÷ûH³iý ½[¨Hë7·h](~åGô>Á›Ÿþ @jÐ<DÜ‚„&FÚ„Ô¤å5¿™±}ÈZk:’â 'Ý-Z ÃiÈl/¦ ®·•,û“ ß¼6ç¨÷ªý³h —£_^¯&ÑôWX-.^¿¹¾ùoU‚îíƒìíU·¾Ýí÷ñw»ÿú~ïÉþÁÓÿïðèøÙ?þôïÿhP‰uÅ)dÅÁ#A‡£‹ÑÊ_owºwïÝÿâK…„¶êŠ=gR»Þ0œhK£?~ƒÇò=_ËÓ*RæôhçéÖáÖñÁ¡œ9>õxY­€*Ô:MZñe…ž++Mš')YTèXøCÈ6•<¸¼Š† m„‰Ã‹îUZxº ¨š0¸4XöÔ „[í^õAÕ–7‰ÔÍÀÜ•+ ® I«¸ô™D§ížT0ØŽ7¶Û¡Iî<¬üèÔÃ})°|¼8¹hEupÂöw¦i`œ@ ôSão.#ù å=ÜIÛú "]"¹ß„ê˜ Ï-(ô7XÀŽYzψ”&Ѽ¨G›ÖõNýó“áøšHª›8Ÿ÷ Õz‰5þSt@‚þG+’·/ÔÔI;m )ÑÜ«ýÒ­X8)øÜŸrJÃÁ^S§Ïtz Ѩ êŒg—Ÿ<ëk;[zÝ£ƒáˆ ȧ¥g€æ5n.Òcí £Ÿ´¦m»7!Ÿâ¶üKÐ ·ž<ÙÚXeeošQ¾‘ƒhù-u~—Ûê fàz’T  UªÅö6éS«|ŸÊgu^+_ÙûcÔjÎþ@÷Ñ6kšyGc|* ë[|;lLŰRC™!í% ófµZSÄYšQ¢% Z‹xæ‰~;V•¥âÌŽÅ¿@ðÕRß%_П¨gÒTå ¦µVÃÃ&—†Ë%¢ :*¯þ]åWÕ)F½m,\u‘V5¨¬+ µÒ8g®"i¨Á{ZU1ÈFIä ¼~”6‘͈½dßH™ÏÕ)áJµS*¬ïéµAžày£QôGŒþ1Ò‹¤Î6o;È­ &5›!¢)yéPçÃl’†9îÀ m„«Ú1LÇ}¹A>ôÍ1Ì0Çz×¼ š`7ÃÂLÚHdXÎwžãÅ*ôÐBx4„i(1Ða/[uôyNÂ=NY”„”û›´YݯÒVlÆŠÆkÊ8°ˆ•Bz¿SÉ÷§¨ÆæT§Ú€j,f¸Ã’:@Žåv¼$–²ìèÃÊ?Œ`!Dƒ¨½€·I8Vû¿ôÅ¡ø®?Con0Ú bâ&iн*×åi1;4ã}~Ž[à‰ DùvŒëƒ½0;Mñdð¤ u¤g4 ^`¦¿¸ÍFMÐöªâ+Óÿ¶/k_×WêºüØÄc‰©NÁ󟪣iVIë§ýç+/˜:¸"PP¤ªVO_œÔê'í“ü×U¸ç.îÆJ½n ò3‘é°tyœÖ3Ý´ß_jxÆ;ñÁ;ïû—x`qi|E³!qÅC²™ó^ÉçhItIK±ò|ýELé¬m¨P@f^ÅÌž84@nM䢳)Ö&ÝEnêÌH‹¹ÂåOíŠ=#XRgÙš"´‹·µ˜G¨eÓ š RbÜL?ãMRÜë"K‹¦h¶êÚl±´bñ)›Z4ûôî2ž $NðY•¡ w uhùÉ "%ÚõN½û²ÎÉ ¾¹N*«kƒµzc -›$÷øw»W ª<îU?©²æˆ°kBhX@,¡¨„«IÙÄy2¨Ú,Ëßý®‡½ðQëõŽ5É–€ñµõO”9ªŒTHÒs·T ÙÏú/ ì$²C©ôð_Ÿ>}@SmrҜۯ‘ˆÅY û˜\\àûˆµq²h’vc³]Ë 5èç¾N(AœÒî#J¼+¼¦‹UNè4×7j¶Zm~ÐpK5Vc 7ž µ¼&z`žû¼äÓy:˜+Es<9……ù`*Sgå©“ˆpú,S²$ŽñÄêP§@Çj#»G±¯^¡2Ù˜Â8Ë(‹ N§°J–¥1¹†0.!¨±³+D_nÃ^Äpj+ R*’â~fHìƱ´#¼êOqâD·ß¸_Žg³²gñ"Þù”ó=MT¡}Fš¨n>[s·M>{ênœ|ö þìùÏ®AÓg§Ÿ]T—®‰2Ásª_&jóùgÓi^™hbë¸!%ÈÖ­.€PÄÞ“ðTHxÃz0‚¹ùFŠ»ÙO ídŒÂ' ϞⓊ¡m?ä-£ÓrLДp‚€žÃ¢3"¿—8ГµlT*NHìk.®Âþr¾³r2Ü!ïÁ£åŠ|È–Q0K=öÑîÞΑçƒ&†ý¡”Ú#WÄçsõôÙiÞý„'¯ñª D –‰™áÒ^àZkÅŽ2ßíl=„AbCÈ(ZÑ÷ ,e äFÇ‘¡¢h·ŒV¾ IžŽ#|Cü2Šç¤hÀÂjAƤæî4S7¶}iéU0–¼è˜ ÁSg¤÷Uˆ{+³¦{˜0F¯$ö5Óõ“øI¥’:åL{v0™.é{3J‘©n92rÙ’hBÊ(‡ÒÜR(jÙ2$¿e£’Ý’Tlfa'ÇòHšŽG{•“àä%œ*Û\Læ#ô…ÍO·H›šð M\P¸  8ɇL®‚ŒøàbßDn}~ðOߎ^ˆç8`^€œÀaÕ¸¬ƒ$­|*u·)ÌRÁXiãEê'@ÿP·ä–†V¼üLdù³üºÜ– {R¼9'ÝA+ì+øªŠªGcˆ9è@_oTçÚúˆÑù2›Z0ˆ1ä‡?2 U«7³PÑ…Ÿâàu9ŽM\uŽHDcÁ º‚äy¾y¼óä)žd¾>¡½)Ó'lñ`š…!æ ‚íTB¼¬Øc-y–¡3\èÀ¯ ÐèKqøÍÅdÑŒf_7+E62™ùHöpÒ ùµNHÆ6§`ÛŽõºÈʸ¥Õ›šÅNN*–õFwÚŸ¡“k}}æ9ÀUN^ž¬¼h¡5ù?[Õ—'øtÍv4½¡Ã±º 2q}½+Í`uÏßàæñ#Ü2&ÊÕa>4yªq[bÌ¿Î1o,óòfKºï}Ähò?º"¯<Ópv5ÒîÕa‰ˆ:ÒnÚâì íÑù ^:©l!ړƨ¥CÐôVçÄX!Z%žÌ~ž\3JRžÈò.z=¢ë0²>VJîˆÜØptEdËÚ«÷–@–l˜IÙ3Ç ³•)‰Ã•;¸¸Îû¾¼?Ûæeb£±Ö“6ûhŠE| ý»W®WÚtÊzm¬Óå•)Åk¢IP¶šå_ŽÎçt€%Ï*©2WÚ Ì+77ýk0ÀZT^³R{XÉÆuyCŠO /aFÕÈ$(¸øþ,‹–;¶9ªðVJ¤¨K‹gßRîz«¬LÝ;â;©ªe¿iMÅa ”RrïwKš° ê È_þÑä¶ §6e_hyÿ» ¯aè!¦1ò@ ¡ŠÜÌYWdñ—5¹E! 4žëkir Âa‡AÔÊmhõ¯Î@E uC æºvp ³L§ë­åŒo4Á_žs¶µÞkÁæ–& ´øwà異¤¤èÉ“#æRg eV¶‚Ó'o5R@þò_Q£'°¶úIîUíZq. …JPÀñªÿdÓP[U!È+^êê¦JŸ_¦ ¿bI¬sü®µRùË?dN!¶¤¸dP‡T@þò=‚¤™!õ s%ˆðþrX“e\1{/&¨»\LFÿ‰þ.9üí0¹l;™k•;/œ»WgeœÀ‚³ÈS æ >Çv´ ²S'£GýŠMt£ÁóÞ€^vÖ Þ–„6cR4ÐUì™,S¡B'+Ž M,*fjÕ͇»@êŠH«S‰¯R¨Ö$jÈ=w CI –¼Ê#¶Þ”°þlì6è¯`z’–êNO“ADªû-Õ#ÍßléÌʾz-jùBŒ”~P8øFÞ%SEm¦+ž3ÂJæ.3WЈPv„ò6i/ÊŽƒnŒ]Z7gèÊ,©‚¬Žð&6FZë˜:_‚æÕP8y͆žópvŽÇ! ­ëtÎ#¼à<¡ »ˆÊÁÝc¶ôhš (¼óÆoß\‘Ô SÎò†-VMÝç >œÐ¥“ð*ã…±³Ñû°Œ%§( n-&Gb£Ùnv›jœ;_,u¸m÷vò–¥ÃîzŒïm}G[àÖú’ïG¸ÒŒfìj~2 'ÔÃñ•0·ŠÏ£1hä°ø »,°L¿ÑíœÓ¹i¡¸-óŠ7!?¦ñö#ÞaòZ;F›óóJä5½*d¶Zó«)ÝðÇ«ó^»ãÒÔÁßóö¶‰ ½T—±FèKØý±º­ ñ›ÁŠÔ7~§½HSQE&5þ5ÕÙ : +FWÑ}†Të:¯—Ù«¢-:¢Ýí»½•¤«¿£ kq»½‚1üÎzÀu»šö^®.ÐQ£X¿krõ ›:Ìò¾ÎUú‰þ*®ˆeÝA{D€¯¢­eÇM (Ðà\Yi¬ní?{|¸óôàðØÕqÚº. pÖ—†Ð‰©xr»s:WwqOq'žà| :ßÙh‚ë+Ðñ±Nˆ)ãÑVŒ͇Nöç}N”!ƒó&¦[ŒV˜trÜ‚lJ'ÂÔ ÀÂÇ€9ßv=uíøÑd0^ eVó¡Ó£ñÐq¾-,ç‘BA!‚[ä”ÀCiœ1Oéî’Û|i¤df÷6¾àXŒ9Ÿõ/zm(eŸñ¢Ï4y2Š«™ÿ,d GdÚKF´ÂKC†øô{²Dȹ‡yØÂƒ õòpàæ™¬ê¦©éàj÷ð|NaV¸ÉwW¸Ò¢qAJ¾õà.ª•v}å7†øcø@P*þǯáê™_›O$o6›g§ ×r¹M“gJÌ©­K ¶¬JT‚/tM³i‡Æò,dÛKÁþFØG<Àe§K<ŵËb*M°ÉãM¢ Ïjréòò›ª4‰«s‚FÃËvµ:›Eob¶““qö©Eˆ=B¡ ö®ÁŽ!Øp@\±³:ˆêŸE¯C•{•…ÕMÜo}ó¼ßøïVã?§/T`½ñ勵oZŸžUɯZk;¯Y=ÕX±9–à"ôKºU©VXŸØ\Z!ç"«r›Eýèæµ±ËâR¨ôƒØöÈ–K[QöóÒrd¯0›HÄ&'ú¬ý\¤õKÃÏò‰é"Y•£¦BOÒÛ”¸cm!8+Ø¢MäÄΩri¹é;%ý|ð¾¦×Õ‡º¸^‘N.Ÿo‚†ný6›Í/*uµQÇöüÆ’ÌÑM*榜©a@®mÊ7ñÖÜi3G›Tñ|ˆ÷{Øõõ8GH§£‰íL„¡ŒêÏÞ|±¶Y¯W_ê 9ЛÍ5•{»T•÷^Ѝ1¨RT ˜HÞY‰®¦hV °,þyÒ\œ©mŸ»ºCod£Yï媲d75¬%o2›«ÔV3øBts ï0ŸÔZ­5}¡9q­:‘/W#XH. 4î^æ¶Mý@MNU¼:­€w¬MrodËûؘqåÚ‚ÊGSêÎ6îÍä=$6#¶d†¶U¦6â-ºÀ5­Æ^¶ÓT$é JcPóíÐ\ÆÓjƒÉ ÒÔ}»¸â¸ÌÄXòyI^û+ÏJN/'¥ òÜ‚$‚¿%éÉHèŸè®B“«ßÕ¾²Œ¢ˆïô-uÈl1Ÿ(Ö#»Ær÷~2snñEœ¸qˆ¯‘Z÷öå@ã$Çõ©xqŽn[–´æ~VÂúç“&]æ&áŽBxKTšÍV…Ä+Ý¥söÕW¼Rà¢ÖUsK’€V­ç?Óåñ:”R¿€BÕ½§Â)´ÒV'W圛٬a÷#<ƒæh>¥¶ÿ‘5K é SSë$l­Öt”s¥ÇØ…Wõ\UÍÉn鿉té=;ҢNJ$=ñ$͈òvýïâ6õE{ìû®t²’*.Ùéú(òû¯Cußß‹7Qqo9¾büùÌÅ&¼k£Oe_†Àp¹}3|ÉÆ†¬ 87Äañ+ ¥kjkö'· ˆÂ™ÙQy¥(C4º– F.u%¥´Fiçr›äŒZ›Ú14zÒ“Muñ%Š.jy‰ÊØtÈ-«••IYLÉA—"::I+ß2$ðg·9m+‘á\}5I¾ž¿e£óŠOvxm"‡%©¯-í¦¾ë†ãã¢ÈS Îšç#кÇs´tcŠär˜|ãmë9^QœÎB¼îC¶±xižW}œ» «£fØ”Nà Ó"Vfùµº˜†Ñï±ÇMÜK™Mg£˜·ZÐû$»¤ƒ¿Öš>†éÏñPèžæBo´2™ £±|¢kÏÖÁ“i à×dI­$"*¦š´6³¥\/¢ëÌO>a? rÆÝÖ—¶sÄf…—r³RlQ/µÉ*$eˆ"_@·»2‘·_gJ– ެ à‰{/ñêac çJ+’0Öò‚‡Û¹rš#D£ÆliVùÊe¬•äâÚéWµÿ‡Gx~COÄäudaÕuÖÊÊye…–îmÊl Ì_ÊK:SÑ%õOTÎ+º¹ŽâÖÍ\‚3.@îˆoÙFhdˆxìdd±ÑJ"8гA˜Â`  “tÔqG˜’Îñ×$+ù‘{ŠÊ'®„^2'øì^JgªMî¾t¬Ð¶,†ÊíËm΃¼-Y¶ClÐZ0z3Ѱ°ïè©ò7è@º éø|1Ùß5Á¾ƒ#é¶?Ç$ùmß¾JÛxNç°î¥÷s\Áq”¼Éù¤/}oÐÛ1dò:€5Ò ±z¾-ëâA6d3Wr-G†Ót“ì!æÕm2Ãóslìk¼¼>G±<Ò”Œ#rNÂï.MgPï@®ÎÂ6yè}&”ŽYa%Ò›ñ…|¬=ÔbãÃâÙBV }Y«›=‘ÓÆ|üûßõwÔ}¸ÓÂéZó(Ç-¼ô{µ1›ô(M >ÂgÝÞªŒuø»·±A¿÷ïÝu~××Ûíû÷:ÿh·;÷;Ýö½ûí¬w:ëÝö?Äú;jcîßïLˆ\ŒPCüï³àŠÒ¹1ëú÷oòg¿ü‡¾ôýkù’ž~"}ÑÅüìŸ|„…Øä©ç ïL‚â:09åkýóp¬Þ̓´àÉS ÄVÕ6.ÿáËkñªxîÆê¿êzµž‘ÔÎJÈÂØÈß$Y°¶ÔM÷jô‹wƒ>h^mœg6 ˜5w°tå~ËÆ{µq:ŧ g ŸE³³Ñ°*z_gSrl¡#ué–íµNî–É„×O=:=.UÄé{[Ç»{;e =Û‡,{G;Pȹû°L®Ã§{ Ëž>Ú²u¼ý]™,O¨ÝÇ{¥+†jB`¾MJŽâKãþqk÷¸[ ýätëÙñÁ“­ïµ}|™ŽŽŸmŸ?)]½²m%nxrðp§;òÇ;ÇOöwöË瀔â…íïv¶¿W÷y—Á¿¿·SLKe±4M/ÍeÛ?ýT o[”‚4túè`oïàÇ£Ó£½-Ðhžýû ú*]·­‹aO¡Ñoú³Éœtüp{ ð'[ÿ:(%z¨å;‡‡‡§ÐxÜD*ÝÒÇÛÀ«‡[wÑAÍV©1V÷Ï·Ëâ'ß›þXªérHŸ~»w°ý})V¥±v´û¸dý üÙîÃ’‚šç‚­g?•ˆ®$ŠŽvŠ‹(=n¬™ _†S¦*w3`Ã4°·{¼sXŽDjð3O•oõv©>&ìKLJ;Û{0~°ƒ÷vÊËÆžîî?Z¦¹ø€Jé¶þ{«\kw÷wKUZMF0;þç Üfµà»ƒËÍvϾ]‚|[ A··J­ýƒ}¼%qúÝÁÀl÷ôñáÓÒô>ÜÚÉSF@Šk} |ÿ—¯Úyö-ˆ„ò³é“'[¥Ð0^û€XBþý§¤®a;Ý+¯:`!K€?Ùyòm)Mã ˆJ§ðÎx 0•¦Ð3*§ø†Ö}¼·clëðqéæ(Ùð¨¬ÚªçúrŠ" ˆ¥fìí§¥˜ˆ˜âiéY¹¢Üàå%ÂN)•Ì6œ.„_BTö‡oŸ=‚‘‚*ÿN)5˜*/}Ëðæãýg(¨Žw~*/Ø@Ìnm—šÜx¬”kJ†”– JÈ>>§ 2'‘þžW ЛK—&]’dhÒʄ۔)7o3Ë4é‰2Õ®ï-Êd?)™Eêäd‘œp›µ»•ÌBˆª/a™r-÷-ˆtŸÒyoÍçìÑÄõkø_iDìó…Ȱò›Õ?pð )ƒ&ÎÆ/…Èø™ñá’©åÑIÏ4—®ž¦-Ñ8íÁ&'œ/Q×ÇMÓ ºZ‚F¶œ¢×ýÙRÄÎ&ty4ÆkN¢2JÇ-ÉqÁCÈèôsi<ÒUOª:çQyìÕ'"K`ðí '¦™jé—žœZkâ!Ôe"a Å9½Nô£Ä£XLûƒWô0ùZ+¸³˜€ðË”]T51-ÝkÆKµ"‚`|suE|‰·ºË¶¨dmŠ¥f¾¥eM©©F)ïÒ%šQ²ü¢fÈÙtéV˜I:‡¿Ðœr‰&•«KQ‹ÌT½t£œY>Õ®þpHÏ3ðãhè’_ȉå%Ó8äHu‘#œÌ}m-]K3ñ¿`¥óWa¥³Ø¾ÃJgB§b¥Ùרrà%øÜ/OU<<Íît“Ð2«íƒ¥ÅWù ÒùÙû©M_ºO+ŸƒÝªÑ* 3¿Æ¿ÂëyyìÍBý’‡àË ¢¶¬L÷;œIþ¯>Gó° <‡ÏöOwíìíAw8$3V4hW¾xÑæWË‚²ÑuTzh›)¶L7¯66;/€…\Ôøäáõ´OfÌh2‹¯É¤*I®o¢©‡¯Ãq&wÞoÿ šCµ,ÕžN÷Ë¿A{¨–¥ÚÓíl$yÔö–—í®7›tf—íž7žDfç¹ï̓>³ó¤Fžãu03_w=/_';_J ;ž ³óuòòmdçK‰&Ç{av>o+†Ùùr»;§}þþV>³óùûœ!fgú"3SNËüœB.33møÙ„ü(fgòóˆåV1;«ŸM,/‹ÙYýœb9]ÌÎêgËcvV?¿X.³³úYÆòИÕÏ5–ÃÆì¬~Þ±ü7fgõsåÎ13ë]Caû{õ9½e-UYË3¤ÒNÆ£3ÐN2^å>R£˜$öÙÊßá/yþ§ þË ó¾»wýçûÝ{m÷ü¯}òÇó¿ñwçS!Ïk‚;âñWÖò¹XòùvÏëÆ0¤ûø®¢|ž7æW¢ÙÙ>=!Ÿ<¸ãúBH=àGXé1Àõf»Éÿ—~‚OÞY1WÝn÷ßñVOðwïOܹƒiO6âK¨ïh>‚UüûÒS§eæƒJ}Šo£Ål’¢ ùÎøIpã¿ñ·ÿ}§vžä£"ÿü§X ¯ø§ˆ/k™Ï–ø@#±í'{ìÕâ?PÝnóšZ¹¿@ <¡À{¬3|@y<šÏå‹+¿µ?¯¬|Sùþ„È=2§÷!€zÐAO…A£Žb¾KW€gP ãÍNÜÞ QÕ«½*þVËݵùÛ-o£ñ-•F$¦Q<ºÎn¶ …>ÛÚÛÞ:Úéµñ†#¹£TQÐäÑ'ß!‘㯒z¦—"OŒÝB7ZWÅꓭݽ޽õ?kx‘/OfWJ=Ý£­7Ç9Ö<óOÚD³W¢?CæåG:ùÝêF·¹.žý¸»/^Å—ö{Ô;û?P5èzšúéQ»W]UtzÕ¯)°Ñ«~|ZcïHLÐM4÷`gŸñ)¿¿C‘ímí?¦žm=Þ{Û§[îQpoÐNx똷ÑλwöwæŒfHŒ ms¶Žžî<4þ<:¬„ëÉÁþÎñÖá¿1ŒÄôûìÉÎáî6Ÿn=Ý9ThŽwövž~èc÷ɿل}‚4øüúñ3ö’oè¯p«zÛºßeLúæe¥fݽÏÏX·ð áM"ôœz qF3¾ gý8ä÷Í¡®äɰÏnûè60‡_¶‡ÿXÜBq†Y°õ ¿h¥¸O?Sù饓=ˆnUìLO¬’ušÃªûú€ï®óëôô :€Ò“ºàÊÊzÅõèØ¢( Fs­…¯x*/ˆµ„ÇõLÿŒë–kÆ•å|3ráŽ_ÆæÚ‰[\Œ­b_‹­òÞ‘š8vér},¶Ù5»CÑ‘ÇïÑß[tuœçkÖ‹)ˆëíË>(Óèü°?¹Àñ äÌNÇ!ÚĽjÿl0 Ï/.G¿¼_M¢é¯³x¾xýæúæ¿U º‡Öž‡G½êÖ·Ûw=þn÷_ßï=Ù?xúÿ?ûáÇŸþý *±®8…¬8x$èªCùëí,¿îÝÿâK…¤?ž,®Š=g öËMŽá;†ã7ý›˜ßÙ± üæ—È™ãSz„+ñ žQ…*‚n鯬4iž¤dQa_à¯díÃŽÄaˆE÷*­ Ht“‡o6api°ì©A·Ú½êƒª-o©›tÅÎ?L=hHÒXE—Ò“è´Ý“ÞtœØŽ7¶Û¡ÉNªM~toí>PãøÙÀ¨NÅzÊÊIéVðÙû$0y"ØÑpø›Kò†: å=t:%L¡¯BòªËÊè bÙƒ:á˜)Ç‹0³Ñ3qÊgÔºòµfœ¬¤º‰Ãñyoe]yZ£htcrŠ¡VàŸä*ñð‘š:Ùß› Tž–ØÂ¡HÁ^0¥OXÎÒnS§Ïtz Ѩ êŒ?}ü•œu¤Å§qûŒTø1Ôô‘'$PÒ (ÁuPlã¹ywˆI7Ïô„òtÃíƒ'O¶öVYÙ›ÈËßDÄ7Êo=íŸáà ~@NuP30în¸£¹äÍv_n‘^1µåËÿ\úuâ¼ÙNè|^Ÿ8ÓàlyÒèO\——ù™±fWkÄ:¶ÕsQµZSÍXšUPö$ ÈŠ"ývL%KÅ9‹…ž…à%*¾K>Õ>Qî Uå ¦EþÒX°~”ˆ*¢1Õ¿«¤©:ÅXîÌlÅŽÖ¨VƒXRs‹Šsfö ¢’zZmT1ìOÌEžÀëGé`sÙŒØKö„‘ùlPÌ«”RaÍL¯Ê’\ }bÜŸ é šþIº—çŽM&5 ’>­ªQ=4ã¸+š¹tm£™ã¬¥F¸þ$ßäLX? Oo›ð;-0 pN®« ³UѽMˆæ}‚° ý¦ËUœãÛÁän#È÷8`îJ äQŠ^í û<{Àø•,JBÊ-P?bQݯÒšýÑÌൠeØ@ÄÊ ÐLb•Ž0Åè@ƒNÖDµÕXÌ HyíG=ø±xtû%AõœéÀ]…{îân¬Ôë¦ O1™«5—ÇIð'iNÚï¿—˜«ž‘ãNZâéÁÑîO ¬Ãñ¸xÆ¢ž{H®Èæ¼3C㽓g°KZˆ•çë/êô^+=ð êhŒÂ†©z½•YHºVF^˜M±Íô8L¥eèW´«G“¯b¡tà>~:™öÄô!K&†akDÚeaËŸ?fÓÍ–CB»ƒ-–n×ÈÕUn^ê‰çêD€ÄÁ'I¥Ïjî ¼Ðò“¾k1íz§Þ}YçäÆDH'•§üµÁZ½1õ-dzü»Ý«U÷ªŸT¥ p€]BÃb ­@µ«pþKâ<TmH–·ï~Á^F¨Õp ’B"Ä×v Ôc<Á÷–¬H…$=¿Jut@&Z¿,°“ðir’ÿõøéÓ4-Ж!Í‹ý‰áXœÕ°éx2:±nKÒƒ^úfá®ø¹ë_x%” ò¦l+ß\û²UNè4×7j¶’j–QÐpKÑTc ·q µ¼Âx€ÜN>…Ù>ÇDè•28žœÂ2w0©³ŽÓID¸*«—´ó9ž”%£Â1žXê8Ëô(v ~ ¤™U–|>Öœ²4õq³Õ w–gWˆ¿Ü †½ˆáÔÆ¤T$Å+´Ý‰C½ÕŸâä6Ÿñî3Z£ÈžÝ†žã}4@9Ÿ¦€Œvíh2¹ùlÍÝ„øì©» ñÙƒø³ç?ŸÚÓËÏN?»¨.]u.âT'¾LÔæóϦӼ2Ñqèð40È¡b<Z@(bïIøF* ¼ý;Å!½‚Žân6uKžŒQø¸4¨ˆOV(†´ý·‰ŒÞÉ1©m;4XÄÝ$üeYÏÏzËó 5G?v›:>;·¸®Áx›/fTï΢‹EÌ3ËctS ‚~Ax.B|Õ{ÄŒšè3T• ](» ݘ$ž~!B¶}4‡ÝÉÆF»Ç,x…È¥ý’´ŽïÑjŠŒð㺑O‹åâˆì›Nµ}Sf~õ(îOÈ ~·¾ß‘A©oûo?!MŸô¯GW‹+õ¦ P—ŸëS¯­O›p§W×A‚ ø›>áÒ\‡Hõתá7@vçʺU/ÙÏBåd­.ÝzFˆî'ß 4V± Ã`JÜäW k!ŸÂë~A-ØÅS¿Ñü&e8ئé½*éUƒ„qw¯ŠË&ZžÞôªëͶ‰e{cF!œmÛ«Vì3Rƒq{d¯ºÝ…±c/Ÿ45OÚl' žÓ6ÁºZ!ôïàk4B^§æ6Œ7Y„¹Œ"Ü%¹"øn‡0×)„s¹BÈ+‚¯9ËY3ca› 4 –„T(¤—Ä£m!M<…´}ÊLU°õ©`RaY‚ ÛæKØRB› móæ@·¯ŽóÕu¾6Ämç«ã|u¯ S‡¶ vL°k‚Ö²hJFt’ÝdD ÇÝdĽdÄýdÄɈ/õmUmãR5c€½,WéìN ¿…´9£Gkf~¦'&;`çãiOÉ»r‚æmuƒƒZ"#£#·Ç¸x ËŒ·ÎO©Þ^aËEvM`R"‚oÄ€‚ÇïÙçºÖëáMº@;îa¦¸W.°Ô(ôÅÉGœ8w´öø®]À~ƒ{ð‹¥Ég2 ÆYCĵºë3²kœ+f}|þ†#ˆô0pÇcšu¬Ç›4Áíg7Çá9"k+ؘÎg19ʬóÞ£³O¯uE•€Õ[L›;½CS?b'ÍV¾TqÆ'Œ¨ùÚ¨Øcµ2ê%=¹?˜/h­Å}Fž±czÌt@/8Àlß§'N§PÌïòA aøXÆl\á|ЄzAcúƒúƆú]5„=ßåÄ ÎH¤‡‘)u0Bµ—º1ÛK\ø \±ÛKÜâ 1ÜK\Í X,ûjT Œtîy.ÑŽüî¹7ã)Î{ÉënË÷^âÍ‚ñº§ÞãdVãÍ`àGÖßbÆ©ò¨w»g¤a {óxt1!;kÑ3aö˜¿’<×)½“]°| PU ?æ±OTö…¬%-ß<åBe~\³^?ÿ¹÷b­Ç;7xîI/piv£+\´õ' ¯Þ\L¶åA1áPŽú|ªw~#¢Öc<’°p‡Ø†œ­TP‡T@þÖœöÊ\´f—(zk>ûà › õ̷ֳ¢i†È ;=ÌAÀNHäo¢~–v +‰1ªÔDØuHWË òÔ${ƒÖ©˜-ëÓù"+ › ©€üå·­fz‘M5ÕÍÉŽH|Ãg¢v€ýa…MP‡T@‘ÑšÓTl0W›–o§21»fQÙ”‚‰¥Ã&¨C* ]** LB%g×lìΗýa…MТ尯è 0¥‰0dK±†Ì¯¾t%¥ñX¦$i¬©–Ï š’déXT_ël¸ËøŠ½í&ß!ÈÜîM¸`‰“JÜN)Ň‘ šè÷œ$Nõða«Ñ:m]HZ°0'´ùbAÃj·¢ºSe/¨%:AfÁÍ÷Þ‹ÝàëÏœÄ]ëñûmzÎÔo|rŒzß³·ª­ê‰ü«V[•—ö›O>‹!Sôá]&TMIUàô4ä˜XÂZ«ïd:ëѯ£œ/ûà › “_ä¯+ºì:±ø²j%’­X¯%kžŠ±d—ŽL¹ŸÎ—ý‘Àd’tH‰F»†iñxÑ ÞüòOM¯¹Cô€ö§ \˜!0!ü:…/ň—‚„ÃÈ_ü¹ÔD6+Çq4¹$¦ïÙšÆ`…MP†.gkdr‰÷:´1ÆF6AºŒ}ÙjšµP&+ ]þ±¶OdM BöÔ!Õi&«§Ï¬ÍÌ•õé|ÙšsøÛuHÜöXq{¬UÈZ¢*Ɉķûi13ÇØÉVج}tâ-Γ › ©@²ÙœUµ™×Wk6ZçËþ°Â&h*Ï™Ó5—{vŸ ê[I Æu”kË5 ýa…UU$·&jãQæñ~:_ö‡îXþ6AJµC Û¢Vïk‰*$#ßî§Åcc'[a‹"ªUœVÊš“Œ0UÑqî§óe$rš ©€üMש¦¤°³O±–nŽ'.eÓWÇ&Áßîg ƒl…MP‡t§9ÕN÷›ÜãÆLÉ ©€üå—Š2/“OYXí+l‚:¤ª2ºæ“sžKÍoÞ -æó©5GŸOA׸¢†´ !LÞ/ûà ë¢OÂÀ„+d¶[-`ôƫʔ‘ø¶‹ä(çËþ°Â&¨Cº~fت¢{(‚yòc’ºš&Îýt¾ì+ì"Ñ!¿ü㲤[YæLwŸp-Ý(O\:Ê–&6 –øv?¯$:+ÑuHÔøp«Ÿ&ÖŠ!Ô!¿üãRÓQú]>ýa…MP‡T@5 S—' nµó£R1š²VdâÛýL¶Ú>Ñ­·+¡ÛUiu³ŸMÅ$# åœ#šl òyƒ$+*“ª4D&¾ÝO?ey.å9Òš§f¾H1> šŠIF$)(Ë̦ >Ýj°ù„…,‘”¬¡“œ™’—-#>;‹76 ÜçMŸ`•q?ý|‘8äwùÃ%m¢S‰¹”ÏÉœŸ53c^¶ŒLÙY¼²À=ÀIPŒL%#’£ q„› ¿b~zÅ•¹!¿ü£jÅçÀ— ê p¥äɱ¥ÄÖR:l‚:¤ò×eÀØ9XŠÃ$ß—ýa…-ÂÇgH‘6ÎX|Ž^×:œ&‰ðv;ÏÍ2’QÕ)tö?¿™†6G›ÒñŒÇÂ`þ€”ôá¾Lð)’˜d±8Mëì#߯Vçî5ÖÔ0f^:…™‰ç¥ $ßuxWZù¢-¸§½™ ˆæºä.F«%ÈÌ—mÊ7Ø@ùKß‘a[dbF÷VL‹ 6@+Y%5,t¿²òåÙÿlJW,¿ 4´‡ŸjUÔ,O,Y6™Ô²{³|ÚÅÃê7².›ª…Ä1þ ”S¯åèô67„N¤£†·º*ô»å/×Çt}ޝ›ƒÌš†Ñt’Ç ö„…!è ʴYô*„þ¡ÓFXÓ—+8«€f!ïO\"½5¡Rt.…Ýw´œ<ޤ€ä›7ÃþM3`³êK d>´bI ×°+¶ òÑZÞs "rbüçX0VñI;É[ŽWý›³0Ožïž“HÓŸÌ™@x¯飌ÑQ´Öåh–ø|ƒqBæ¾ã8žýu AQ&þÀj¹éèc3äû)ê’¢â ã2ÙDöcQ&§Á …t9.#NÑó­:¨ Œ¶ÉŒ.t\@+¹Òs o #ÁQÓ‡Lòžª¹ðD½,="@ï.fô^2FLxë8­:ßôÙ«yC8á=M= kÞ¼ræŽR—^ál&ŒŽ»M1£Oúɹ‚.u²/:÷ÅhóuêÀ>ߔş—«CéúÃÔ’.ôŒ?ËNá­'µVkMûÐËóä‡Ë»ù[ÎË_ÚÉŸUQtßgªšëìOºúCÀ o~T>šRî-KÙ)ãk&$c´d1ýºà›Ö`8šÍ@:`—þ™D8@–BoüîyÊa±œ×."±XMY#ïj†è×­Yjù¡/¼uér–sÿ_ U&톳1#‡& ì ¾Í¬«ª_Ÿ–a 9;T:yiŠ“>°]èC£¸Ê’KÔ"DµT颟Ⴀ•`Ò V>;i<Ê ‹SK4Ÿ¢/[G¿&×V>Hr<íΜ}~ó¦4J°+B .1š§ŽœDfMå¦Ð2èÒ ^Œcë¡åÔЕÝÂ]­<3Â=Ú–Èm;5ƒx™ëѶ…Ön’œÇ7ÏUúJ”Ã:+}:hóP$€ÒX0U^—(ä—S !óËO«€|  òtqHIí‹lö¯Â˜ÜlC²#~µA<¹õE›ýŠåzçà =t v9šà#À ðƒU&Ô½Jvzò*”n×õ=Äã…L\i²c1rU!kAÞ—¢HÐ¾Š¬¦Hw[­g?‰n³-âKöÂ9_}uºµ½sð(™¥®vVÍ-ÏX{Œ§§ˆ†ýéœ+6¹¯Fè7 ôs隤ϰ"›èÙóùÁSt;ý¢ÙlŠç?lö~ØÚ{¶ƒŸAp©;°@òÑ,š\¹þíWÃæE³.¶·á?¢?äªÕ¥BF Õ 4VP=ŽBt/‡%áÊf²ZEtÄ FÆÁ (µç ³;…µ~ÈÓ¤zÆÎtÝîVj -%gýÁ«pŽ™¶%‰HiD/°Ëºâ ço8Чãþ «{”Œ¶³ä ‹Ôe º;‘Ȥj"k1P¹Ôv¼‹Â\èpÊ å‘T8AÝe×™ê¬êÖqYº*ÅÚy´ÛÓø³“H]h£ôVH3ฑ¦Gô7…\ÜlVÿƺ-ÖmQ|àDÈ‹˜<À€'©¯ 7(ñ¹¼u8|Åoc©ÎmNúãM2wzéà·¯u¢¨ÆK_Ý|®¿Œst"C‹]k9o?Ü=T™ÎÝÅÕ“Ÿ›KÔR}:y „xr,&Ǧ××Á(Œ‰í”máÓÃXÃê+‡ýÙàr„ >(®ÒïIPí±Jœ1øäÐzé!×yÑÕ¹¬µ£‹òâ)bÇ)ƒ? ¹ßjŸu 퇡ʋP_r¬BÒ*]Qrq€ˆü"­O4k66’‚&b:ÓEœàñE÷ eÔ冎WË øê3 nòuà#œªËhLä-%÷ÇCõø¹º_Y!Ö6 z’h °õi»Û‚<÷– "ðWå19'©‘û_Tá:+ìúÎLŬX|Ànbà ocÖûö½ìPÈ14לÿÑ£ƒ)(A)16‹õ&É%[ZòíÈ ÅÑ7û #ða…èÕº†#Q.´Ö 1º—´ð¸hë׈H´iOxè~öbQbÔˆO¢Ó^G¼ž¼OÿÿÝ”«.† Ýt©|jã9ÛŠMeÏGƒexº‡Ã ä/ˆx´ ÆOQõu³Yx™4@[†–^:­Ù,6šlDÝ,V›ÍZC]pƒ&ÉîÎ'7FíL4ÁòFïãm·…Ù¢\4wcLÝIë'}›¨ƒ7qŽ‘¸Í6I2@åÐa«FL©¶âg_Ãë± 7!¬Ô Ó÷ìN䕨ìÙIÎ WÏœ•ÔŒ$¤‹ÓfÅUâBüåYsro¡é˜œwqÂÔ̈ȮœG•Ë…§D>®9…Ùš6L’V_çªß2½Ëør¬ ‹ŒÅè[™fJ0¦UN-o², s‚F!á;•2áéÐX®ð·ˆä¡Èõбe;ŒeXqYäÉ8 eMO'Z“þç!®”=¢;-¬ª­©šÄæVJŽ[DÌ|å™c¦JÞ¼Ð.qõÏsQµÞöÃN¤Ž’¢C¢;/Fm|!>8°´Ø‚wí&JS磂ðP[»/T{0P8#Å*›Šˆƒ‘PÂ…µïølFpZ+‡…Ú1¸¶ÌáQqÂjøÔÀ³a@?(ÚÑmâ[i6]5[!8õbYÂ’ÔMÆósîO?–,Ç„Ÿ‹Aé”O‚f‚×ÅÐtÊ'AÓ¡ïb`’ðI°â¸y18›æ»—=m>È~¥Xä]èÁV´ËÚè#C8p6á©P¤#[Td©ÏY¥òŠpÄÑ‚»bPÈ5 Üú žÚ:˜°Îîs0²„ž„‰ß¸{¼ãgÙRŠ¥ØZ ÙÁNUbD´ž'«íéÛ¦ Ò䣶›cï•’ ZÚ£P' e4 ¶G«Œtœ?N“·Øy,«ËûÓͶtr„çÖÜ:§o~’@&ñîB•66…’Ñ–ð¯«T5Ÿî¡ÆÕˆÊ‘YHÙác„qlW§Š5áô]«îŸµ¢K¡îÏ[a—-`År3–©tÜj ¨ÞW+šèTŒYiž…4n%CoOéÎüé–Å­¶ç‰úŒÍ²àŠi×9Eã™2Öúñö0èîÞâ#¿lÅ‘F£¶é~×ý‚€0S»ÇœÝU0”÷¾®Tb´“½˜W~Ncíñp(ZÙ\ÛÈÌÆf—çÆ²–ÕÊ^c8Ýžáb 7Æ",aiÜãÍwÞh(Ó—ë Á¼ÿºWV„óenC «ìÜŠØáÏ¿Ñ*_·§™×'~Rˆe¦Êw\ &eåð§ÅX!ƃ¨¢8 +QZ ô"¶ƒlµi)[í›J|Ø.$ϸ•‰O^¦‹´QjØ5šó^Êûc§ ˶Öúö¯BmcÄzr3^ÎO„&8êý¼¾"ü¼¶ó‚3çyH¥«lG<¬Cp"ÙGl0£×Ÿ WãØ™î™p†¾5ÚLY Äûo?{¦ð‡Í(òrõÊÚIÈÛVå6劉…-eôJNàaP\º^ß–’BÊM‚2ÖÉ“0s]Ü@6*S'½qC“ÉToÖ‡˜ÆÝ£cuðD=?Úy¬vöÙ=<غ³¬~Ù:ÜÝz´·sTG@f'|øÉÏ»ûL¢Ž žLDp›Òîwqƒ Z¢[{g&ÿÙÆ!˜ùImíí)‰â‰· Œya#F|€”…Z¸Ž³Œë‘ Âô,Hé_€e…þV§#ú[šƒó&»Þð­P+Ös“™¾79,]¡‚´Š©•(á£kG&¤·‰ ý úòˆØöçÏÐ_‚íÿ¨¬–¼(«TàíïüŠW«á{鲸aº`šâÒfëÂöþäèp{çÅqùücr¿>‘ýj ‡Ìƒ.>wÛ>™ºm-D³[炞¿{ÏSÛ7-fvœÅÜœÑröÙ’#<ÇýÚÅw÷Õ9ý\œ·¢Þuéo¬ë°¤vÞA7e¤mO‡ûðà+Ìt;9 ÚgŽ3tÉ&øÆ’uÇØ" ÇBÅÉ×_]ݨ) 6Ñ]´×È­zSX3mG̓Ëéâ¢Ìílÿtp²¯üÌ‚°Í—ÛÌ›9Aïe¢Ñí'"M;$(0‚í“5g™XŸ'Û ßIq+ ÎS±ŠMW–a¼Oê¯$¥7»ÝÃ>%€y‘îÆ&®È ŠÒ‹X¬#î™l‘m¡jV"çÀuåéù™²ç&eêv‡œCµWÍlÏ oΈu£VÒDä6"Æ¢äýñ¦.kvWÄr¿®x•³ü=ï˜ã:ÝîšÙPà8ˆ$oxæž%ÑA,(Òè8N–xáÓ{s„i‡3”[ ~êø\ñï„Ì,}Qa€f" ».N¹;¤‘4’sõÇáŠøÝÉèÌÄqZë9Ø#^ô,âæ~IL’Ñá›ÈÐavݰÙ\¯Kúo±'ôJZgÐHÕ*¯LËT’/rmmc­îk%ÇÔ[:aÔ­eæ2‡ljœw¼Ð\1§mê÷rõÔÃV:{‚š¾Sk踅ù>¾SsMß/ê}!ЪÅ2×ûòj»j9Sº’ûá–œ-ëÛù6צÁ­ÝnToo7œtñ›qür»q¤‹ÅqÈ~«Bû]ßjNÐüöjS„+æ¼j…=Ïèô:æ&³•¸ØgtÜHÝö§ÊèÃÂÑàîÐ_ÄÚ=óïi}e•Ìç%J«m‚Ïáóœí †Áü 00\ŽÂ–—U¬)6ލH뢇&Ú÷­5_e<8/`÷.c¾%†u²Öa¡*‹ïøÀð—Ž«"¦*æžÿ Cš 47hîE]™Òc þ*æpÙì—¯Õ«åj5Šsa‘-ï6’¹ÉÝ_o[;·–Ö«¬ÌQI¤K<£Ãþç\Áƒq7|to*Jü¶E4ï8 ßÀÀ°6Žørã_ãÞ¾œªäK´• ¿è#ƒöV§M.R…Ve¹¨Ä?ÌÙˆå:Óhý*ÚI6eggTFŠa«þˆÿ0#;.iÁ{8²>˜ÏôõZúÀZ¿Òžè³¦§¨-vÇ,%=íõóª+Ow^쀣o($Â;[>`ÇTŒ=ÞÒ Ìכּ»ð»•ø±~¼Í¥yëo^Xym-‘$À3Iôs9Î_–Ö„ˆ‹ï|5h?å(ÊÄÝ{Øe‹ª>Ðó»vÿüœŸF m¹ÒῃΙäýã)?œé¯ þîËß³©¢wOKƒ'p!eiÏ~ðè—ôU\±Õ^¶Î^ñ¹ø¯¦Þ\ÙRŒ¼Ä-©ž|¢?á56$j¶ƒ!T}h±µ)5À4‘ÀÓÜåŠÂ.žŽO_]å_¾®¼Â­@E³¹gjïŸU¼e[G«Ù€c¤³ž¯-¡z •¡MÖÑ ï¨¤ä#¶> wéqŸÝ¾Üœõ;7¨3#2@ÿF$HëMxE#Ëh>5\ 6Nˆ=g’¬‘Xw3¸ËÓ÷^I]‰,Ù™çÍ–Oº÷ï¸úprÜjyð~hü7B‰Ù‰Ò h.ºQe†ôüË7”§?x`äé¤ê¼£r‰™OÿOè¸ä¿U5pÕ b"ÛXG Çd×3áÃ1ü¾ìž—Tùi?!®u9ÌKPsGE׃úÜÓúú2Оå‚É™‡‡àhæ=¿úĹû¶g¿K)‡ð—gDÁÂn9aG¼%=/ Ô¥’ŒMt7ây„óѦæýpüèçRnáùVÚõOÍ”„]ÛF^œ4óÕ§¢¨Z&a@é_“øèÞ«¦ß÷ú®ÂÙŒ™h( `nå³è›©¹HD¿ÊXÔn‰ÝdU<eà*ÐF‰-" á̓5T>Ûü/öhÞ-ŸÜ¸[½½Ùxˆ"étÂ>Û“"XøNÓ&)~%Å®0óoÏ®ÅYV 9,„˲«Nà±9çÂÄ›”u>d¢•Z€ÁÒÊ…+3Ó<—™Ê¬•%Y]”ï™Êïü!|m¤³þèRòÊ[îÓmRž×ò†ËA~®ƒn·÷ÖÁð-Æ_Ä}okÔNƒ©°«ÂØ*‹¿·o.®CÚ™§ÝHÅ-€ÅfÓ³ám>Mäk!¬øßƒv2¸‘ôbI†iÉߟ€œ¯òœF‚³°<Ÿösvÿ|a” ÃÚ$ògÛûò[•­–ÿê`"*¬Üªðg˜ê±ÀÔ¹åtW>ÿP‘í=Gv“ðˆLë~Íé~Æ}ŽaœeüÙXB›.ý»Ëz²Geí÷¡$´l\uK›¾ü™nE‚ÝMìÓaÖTN™(¥‘K5â-|¨¤ Í:]2ŠnX][ss KêóÉV|͈Å%M® }¥¿‹ây(á¶Úí`0ŠTy1ÉK²Ê‚*_4ì‹ÏÅÙflå‹/¢p‡–ïÐò7ZvÞ½¯ˆ–ÝV>-/Œomƒ³0m¢ÐF2r…ƒYÓÉ`™\Åz±3ë4|5qåØPf¡ü†z— ¬jÚô˪|°šð3àäiÃø”öë'µ3¥ϳü_l¹´¤ŽØÁ„áIº­ÞÅ¡ñÌIüßjõ29t­(bÕ…n6 ÿäoÂf@rSJûbâ¼ù b #êü»Ñ Uú\òB/=Ôñå€Ó “‹ “‰^ògÃ÷½Œ6´ß^{q€‘‡= Tù7ƒæ=Påãs÷¾@Þq>jÙ­ Wùæ•n×–ú:Ë;éŽFú¯£‘’ï¨yƒ6µšþ—§™>ƒ@bùóÔw2NK¡†Ü<œv+n7ž°9¼n² ƒÂße—!ܦ±¤c˾°ÒÔ‘Üë¸Ìãhº*ÛìêódÖ–K5S.v¡ ŒØ|’Js7›ÔÏ"ÞÜ•N73aJ!¶?á?Sû˜3<ì!Lt¶Õ“ƒÃãí}±¥Îtï³@8ùÙx¿?`K,5ºË‚£òøÏvpNj{j¥-¤¬Á½Ø…,ÎM¿)fÔ¹÷¨öQ̨›lñ¼#ðHYé“ßÚÛË«7Á L–Ì>ƒàÉ…Õ–_÷õM€°Y x*á×ÜÏ!×z‹ E(ÇßõZ}µ¾V_¯ß¯oÔÔ¿­×VêµÕzm£¾º^_[õ;*•ª©Ag84Ö=ÌÅfàè«[Ù÷n=¢I^ÊÈŽû¢ÄìÕ…7 –Så°&¬yƒAgR‰ó*OЇsµä\nè6jp Ñb{V I)}9·/×Ö‚kè¹dâ  Œ?P(j™Ó¯:×H¹‹¤êuEºÎï‚^¡¶Râ8Ú>78z7òc÷C\µ  aÀ;q€J~¡U ¿-Åà#§á—la]ŸÝ8SQùÄa=udzÉÚ˜û7תÅ視Nà?†ôz|°¿3]&‡æxR¬Õ%p&šú‚„YA¥:­Š÷“ð§KµÅ^e/®ú=VÕ<;KX’8\ýBtÝ„ƒ_àZ4-G¿ãà—J7ô£ð†ú^™·H—pc†Î1b«ŽjÀ$O%ÿ4vu'X®Vy§+Ö´Ÿôó j„ö*<-¶Û§Õ ¿ŽfJ6+8J'ÉèúÞò žvÖìÀAoOœÚh.™[{zI&nO½dì‰ýóëÖÑÉ“ƒç@µÆKµWc€û">ÖAxäšoóÛÓ:ˆ–Bªüfé)Âuqû7Öݶ[¢Ÿ;qs¶«Uf‘Sñ²ßfã)Ý&èÇ•Ï\#ŠH9þ¡þªjöÍFö…’Å™*%yãÅ÷ä$§¸™ü"ÃÓó¥Ä‘•ö~ÝWžÿx¤–Ò¹â½yØ s™Ì sqêl|1›'˜,ªYjLÕæ #©Ž¡•[·­^‰Ä¸ÏöY1µÖ ‘ã9ùeÈIÓZƒš—¤!­÷)p áÁÊcšQFÔa‚±4î…£='W°¾›_+z.õȤã–?™ö(#mÛ÷brrv°sPu9~d(%Ù\T‰NœRÐ6jE“n­FU”ÿdkwo‡ðÕŸÅ€“ÝviÛ*¬"ÛW±ÜÚ‹FýW‹•ʼn^æÒÕÆP4{ñ¡+ÅðA6‡ç;C<Ž‚;Ä)ãZýãZýcÆ/jܳ­£#g²iç¸ìoÖ;îáŽ{ø4îá«3ŒC|mÙâD¦Çˆr¾(gaRÚå_€ç`bã׃ß·AÊÕ&è'/ïirg(¯)ÓéÎrç³@¯n×'qPf®§-MŒ´;U@œ£ë€8í²@ØÕqGYø¶¨ á¹®¤=f‹Ñ¾ü ²hž–—¸WLžòN«8âW=§]$|ëu¿%¬ ^1½î*=Sš ëeàjªâàæ)hùî®òî®ò¿é®RŽ࣯p%™qNÝZwkúôYËWBß«3Ð÷ª‹¾×`úÜ[¿ '’ùÍ"øåîØÍ?’Ý\KDÚÕsIÁƒôU@|'Ο(ü=¨Ñl×Vè3£Ìª.cŠ È¸Z,s‘b*sujfØ“¬’ÍjÔ<„BRW7Ø)€.…=Î/„½"ñ¤¯Áy”|ÕŠÞ4´#ioê- ñU’a5¨_t®W2¸ • .hÍó¢ñÙêâÕ‰û†®õŠÓ&½º­0ØÞÔš†^q"—àõ "[±GŸn\Ñ»‰þÜ1jÿ1§Ö«6“Us®vþØ´µgêšfÓ¾Òq>§i×eó<æì__øìï³eÌ¢ÀDé :à§ÚzZˆŠCƒpb¡Põ[~É?£ÿm¿Z,º,TŒèuÐÆZGíh4,:ÙnÐk,øçàhX¨'óy@ÉÉ)…¦éÑK,ëw|ÜwÇÇÝñq·Cüë3ÿzÞsùýy8ür|A$ïI­H?ˆŠ ì-Õr3qûÂP>]¦FØòþÆ$lØö³Ð})L£Ýûwh÷íÞ¡Ý;´{;´{Ú½ïŠÏ¦yàKKÄ®\Dn&%oM1;ä'ë‚ZË´¼b*¹kT'Uˆþ3$*KtwŸzÁ~ß©l» Òqý».IÏÒG½Ã½w¸÷÷þq¸÷? õnÌ@½šâþ¨PõÛÆÒ+4t û£7:iå²öNź†ÅȘ!gêÚ° T,Ç”ói™€¦‰@NŠÊI w­Šco‰ðý÷MµS{é/èçè2€|Cϳk,®"NïeV9¤´6©V7Šýl!ŒÂM4 ®I‹o¹u,­ˆP;‚ èëq„4ñ=¹MȨD3Äiyj}À±zÊeI,su íókqŒ˜"±,Hú‰ßÝ÷(‹eìˆàؘ½‹Á…©öoü&%qyܺÑ>¸áŽ7è„ð†O-r”L'įx´nh #œlèç¨ïDG—‰GÊá[¸>Õ¾Ëåa N»õø¨Þ0À¤Ú±K‹§-hü¼ßÏ;‡6¤YCützBÓ®ouhʯñÞ-©n¿Õût½ö%=OË\uÙ´Áð ˜V…½ £=©÷é<¾Ž;UìiË›*p \ÓôÑ–Ãd¬âe6®BÚ½ú®ãir”[Xò$îÀuÀú«€Ð¯l­¡«Ðâ—æÄ©õ‡:°vQp~N”H˜ä÷KÚyÜ¿¹m™Ðzóv4Kêyw4 ßÑ®åHàÌî±c¸hÔîã­ÚLÖ…ë„´~²ËC÷ý稶ÁHÞžËðâR…6¨¸³#Æ=j›=DË,›MCý¢®¼Ç!ÀKJÇIM}`\ÀÆq§œ Ð"läU~“;úA “!•N­ÓG[¡‡%§ME5ó1KÍq–!¢×CÁ›ÜêtLüåB§?¦Ù*óO ƒÈ¯hŽÆ²{ÇCz½>D^ŸžJz6:6OçMøfmöÐôîŨ|z~oéœj6 /O€éÛÓV·7¾zµŒ]šNk6‹&{šl«Íf­A€VóÕQ’Oe7£×ƒ³£†@aü6‡ åÙÁÑî žŠNŸg)ž‘Ì|r©»½…qâ¦÷‘ŸÉ&TÖ ZCùQw ýÂË× ‚Oà úË÷_Áûf®ª¯Àß7k®OußT X8)àÇêk‹oªž pÔcÀj4W?VMG¨z^ý9 :áù¹ôYÅRì±”w«¾8¨oª”/–òµ À±é5&Àq&;rðßYÀlñ TÀxÐ;iÜ­¤_­‘Û7'ò‚‡OoÜ–`%´ø~‰é(™Ït^GÇ…Éò>‘Iè°$±9±Ž £ãŒz]‘ãkKôevœ¬s+¦“˜ì¤7ò¹÷òô1äý ‚+ò™×nÁ׿hÈo»¾=DÈ<´ñ›pm‚S¨\!¶ ÷÷rïåÇG~çʇyIÀÓŠJ*0¸_AØM¶E˜&ª‡ƒqØb¥ÅÁ¨…<;%i8òú²Ocýd*ÐÏâÊà~ÿj0º!8„&Gã‚RS‡©‰·H ¹R“ð{G¾Õ èÍ< †Q±âšÔKy+®—ƒ·Â}|õõË{êÕ2wŸÕ÷^T­/7íäÔ—«õê¦N4“ä$š©²Iæ}k0À&4kº0†\Ä)ÀI„àxØêEˆnÈ»6PT¹¤ûxçÉQE"!Žàm¶urh¤É¿ÀZr‹Š‰¸äÆ:˜ØQDšuå”LC°%®Zía?%ÄËî¹|x,qh„&`e¨éö%‘*ý7‘h°^ħ>v6>qÿã+:â£bI¶Å5‚ºµzTO rEðÇÓGØ:«ÄdP_<¼¶tg™¢À!ˆS=ÙB%¦¡iW‰F« û1%m0±AÂQIvÃÿ޲޴¨÷Tá•ü]¦_ÅWËÅfQg¯–ʧ–.<}/’!bŸÌ†Ô¡n˜Tòô–r¯¿Y.ßl6?læýïøÛ«R³ù U‰JÍ—ñ£“š+årô4ð,+ñ+GzÄHóßzÛ; hÆWüFC”> ÛãnkÈïX™=€ðÛmd>M;ÔK+Áô¼›oƒžDæ”-ʨ„VC7ˆ«jAGq¨7ÚfÄ.\]µ$^Q´¶œ²ŒÝà†±×. mÙÝÀÞ€ ­#–ø<’pqÌ'9Ó€ º­¿x¼¥¨ ãºT¶´ÛÕBP¹¨”ˆ™?Âfr(ÿƒlÕ¶÷䄺òøàX¸E3´rêámn«Q}¶¸»Ôyû?l‘ëÄà|•Wb1ãƒÉ©ìyâ\ëŒØû¨ÁÏ#ûK{Z 1ì:»Ë:xô÷#xVrr„Œ1ë8vÚq†%U«¨Ã;®œ±J¹ç˜åV–17¢ÛEü;Ƹ¡Éà QsÌÍÜóf¥Z©nÒc¥„Ègÿ2|ô’Z­¨­Ÿ$Wž‘ÖKâ,r œ#ÝðuñQ²Â(QÅÏSn?/Ü·ž”†ÙóöŽÉ#›áÑ›™{¿}°ÿd÷Ç“£ã­ãçG QQ²\æÇ/k3—hc†Í!66^±T…,›ÃéEasÈ4™ —þ¬rG?íìíÑÆÿ1èCP€1Ž{1Ç*챇ÆÜÔ˜ÈöÞÈrËÐÕ¶MP,SÇæaà–µ.‘vt'8_\6qJ„‘ C"Š•ôNTøÁþrµÆy‹ƒZÓdG'š£O¤EÔ—ÞH'ñˆÍxÁñ»,ñÑòÓqj–ˆê ˜”å½ÿçÑO'¿ìíìkN‚^ñBpE(§îe1›°mËÐýç{{ÛO7êürþ“º»VyÇH`¾Á˜4’XíÑ Žx“½{_û«Ÿ{èä@2íK®²4—‰KC µm]pXÂ0bâ\vmªÐÝ [p¶«òb¾‘ÇwÞñK)c~´•9h0Pe:¨úQønú°ÝR Ñ?ßÚÛÞ:ÚiÔ6M¼“¤–x/>ýù“ÆxÀXDÃ’À‰°,L¤TáéÖî^cceS—ÁÏ"Ø:§wŠ^0.ßà¿Ö]ŸI•ªoúÅ1¨å/°'f «aP^«¬¨ç¿îî«7ÑeÅË™Êjgÿîÿá íÏŽˆ!Ïÿúìhµ‘ÿÖù¿*æ=ö÷Žˆô¦eêµl4:yÛâ¨ïˆº½·µÿ#ÿy¾õãŽÚÛ>Ùzüøpçèˆ÷öðµ}°··uÌ™Ûì/…vïìï>ÙÝÞ:¦uHÛ'Ow¶Žžî<¥<ùytDPÖSⓎ·ÿçý­§ dÿùÓÃÝm<>Ûz¶shÀïìí<û Œ~ì>ÝñLÀxÞ}·‡¤?5<ªÆ¶]w¢Å5~Ñang×pyÒxâãL ÔH3è½¥vÖŠŒýÖò-DêhZÍb~Ö~AÙþ8»…ÓâÍ‚Ñøª:±ûðÒ‰ðâ4.¦Oä‚ÿ¢ê»-š2 óà´ló[uµ'ª8¦QR8O§9§"½×+ðgÀ—çZG‡-©‚´®¾Â¢¦«Ë¹¼j~€ŒG½0…^4 Õj³8%Çͨh Mr“ìkAø@Õ‹œ©šêk"ä“ýhRGªïUTe~Pý&ÁòîA`óEé?žS¤HÃË*U)£‚$"™0›ÌVKlŒíC¡Ð„B°‰œ†b8t·˜öïƒ@‚i„®· õ«[½ ¼ß"ë#Ä|ë¬M”çÅeø¯7Ý«^ðq‰ã·×ïn~Ïë¢{;ÇÇ„{ù­GÛDõþøÓîßÞ{ºðìÿ?ÿå×ÿø§-ª¡æäptÑNxލý•ÚêÚúýß~g€°ˆÎ€ØK€JFÚM¯‹2ZÝkˆÿuÜ^Ç£*fæähçÙÖáÖñÁ¡>9þœáMÕ'R¨zöªÑ¥/ g.Wás’³•Ï×´?”°™ìöåU¿CØF¹‰x Ñtïâ´ ‘›z¹l±éGƒRÉn7ò›yߤrë^l+ª9 é¿’ü®‚åéõOj M`&RW3Sׄ4Ù‡SÎ<’¡Ž<Ç—k\N‹¤UØ™…×hN' ã}ïÙâ×—}s…^å=H´8ŸH¤KL÷u`®—p_Á©D¿óÂ0†Ñ=¡\$õú£Šg‚3­X ýËf“ÞpD#LuÝóå:‘–„â?ãøÙd$¹äZ˜£“%lD)ñÙk½Ðåf*侟k0I#ŠÍÚü*Г1´Hמrê(GŒ­=챤 Š#BzH`ÞB¨ÈAÙ‰F?#lÍâºë@n!Ž?%ÚpûàéÓ­ýÇy!özBùÉ$êX8+1Ó%þ¶³@/é1Ò €9TgÛ»So6µ©÷g^ÐÖuê-j7Æ£–ê›úšÅ«-æYÔï"$ú;ß*ì6æ[åʆtYÙ›ù|ÑLέ7 0ZªDu 3’?o«êVq²£YÚ/ôx ²”žï³Ïç{&šé¥T—‹¸dbtïr ȇCòü*þÊ'š11ŒU’\d®ĺÑì1œ¥%Î*Ɔ¶xã&Û( <7dZ»éµÑet=·¨Í ÚÔª›ã ½gy=.ynâžQ£(þ0ã?1öb¬³-b-š©õãvÀwÝ1v(É%6^Éxs,‡‚«íB±`Ðmiyûʯè„9¶Òòr¸L*E:éßQ¹z¹hnfyõ}¼þ.¯7Ö¾¹-.åJå’þQÇuÄÀæàÞ'Ÿ 4óLõ³Dÿeî•Ì8SŠIÕüÉ«f±Ô¬5Wéÿš=JÂ.çJ¥¸¡Œfz:ŸxÀägÄcéÌdÞ‡·:ÛïPò“ w‘÷/HñÖðæ†¼+³ÖÈHdIŒKè=‡Ñ%³0*÷råU‰/JùŽºS@D„@Ãtƒ«H¶'^ Â[=Í”¢šÙÚL›@¨3d*æ ìƒíf{ö‰¥ Ý-оb)ÞÖxÔ•Í7gú!”A~&BRȺXâ¢*ÕÄì0ØŒXk/…r»f˜æn‹ã+ó¥ `r¼¬MÕY uy³íëëˆZiµ´vZ’ì²X¬SD®ËíåR¹G­¨"7ä{»‘÷òòxÜÈßË åˆ²ËJÙ²X—6Eu¹¢ÆÝi˜ÍvÞ-)¸üËK=\ÆÇð?&^5=²OÄn õ£Û3j¨:Ñ™<»5-þÔÿ5Æ"±Þ°Òã¿ÿøìÙ&9,ää3·Ud©³"Ö˜]\@Æ 5ΚLZ_lÀ¥ ´ ˆ>ï#æ7ƒ$tÊÒG`¼+˜gGª «••õ¢KVÇŒ Ü!Í»ÁVx¢Í8¬ç¥ÜÊó…ü›ÈšÝÞ 1æí*œ§Í≳֯2“ N£Ñí9 šh0¡­1}E±€Wo@L–ôžMi‹Kœ ˆKÖ­Étu轤jDƯ¿’âíÅΈ²(Ç×3îKÜ™oç Š´þàUk€ƒn¾!/Ǭ^YÉ 9‘ÏrF>¨nþ²œ›üåYRpò—Íè//_'™þrò—‹ü­{bTï݉.S½ùë_ƒYmBµ€ø~1 R¬ãVR4Q¼½{Áµ&HD`Ýél¾ÑènØÁÍ3íu|<öè©îå8…´ýX[1M+)žÇGÂ! ; :GPgŸý]â0àд¢LªšŒö-WWA«Gr>î q2ê{è¸ïÐXÑkE)ˆYÓ±Ov÷vŽT0jWøj4hu4Öqs¬‹·Î!kuÒH±¦%µÆb ¾ÞRåò[Z[,‘@ŠÔÁÏÒ}‘-ÉMk mçr3ªÒ>­^Ð÷ëJ¥R]ZR¸g¥Ç\U--U7›ïð?Ï7|G^àºépÜëñý C¸hÒ™ù|ç‹®oî£Îö_}ÅÚÉ×&ÚoGHe¨fk@j¥RÓ7@(æ]¸÷‡‡kÉÕÊýï Ü{ S Ü(05‰ÊžJαO•s“â?íl=¦—Á-¡“â2Dýüœ‚ÂIq -Ð8rJ˜$*”ƒh(÷Ðóô”ȱÛGLðË~4b‚‚¨1?”{ŤD™—«öÛ©C?á!ÖÔ}—Á¢èPeÆ|_µ:¡ +É{¿”²¹Ÿ’_&Tӛś¾?q›9é¹!®tI››vé”Vtn²xÛ–øà™Òç%[á¤Û¶¡÷Û´fLv²%“:µ±97Äú꙯A~ÓkžÊ‹“½ŠÞ(„¯k Å¢uf‚+¨°‰´Û„ YdžUª¼)íÞs@¯c·¾Òk@;©É~«S˜ƒ°±gÕ&D‡c¥¤f#eð›Ì¥™ÓªÙô  î¤5„kkó’ÊùÍÓfîUÚâßT/ò§M„£ÙînøF¶ '®¬¬©'Cââúç£k‰Ÿ@4Ì3W¢ó ]‘£&9’X½ëu#]W„*ÓÀy°ëˆ Ò^±×A0¼ -% Q‰XAÐBgÎâô!†:<¿Q‰ï‰hC+›.¬ÕJâÂy{ CÌ ž‡±\ 7T±š$I¬Y×vàŒµ‹ ñÉÇ[ŽM0§ Ž`™|f ¬©†JF_9"zW´Hæ– õ[ù®Èak–ËË ­“u+ÞÚ»ÿ.WãÛÔw±ö¹6‰’¢0M­X˜Ä…£Ëð|ÄUúN¢<Ñf®–‚œ[MÖæ¿1â9µ•‘Uõô6.i (¹¼¤Õ^l`“q‰}¬ –%WÝTevJMÌ.3 ù¤–n›ª2»Kê'Mÿö^¿i³Ãæl0š)ƒ÷>880~Ží“yÐßòe§ÛQªëµ°øþƒ~^ÆÓ/Jœ‰ñEB¾Ú¬ºùË¢f:$iŽGÖìLAxíðJa1ÁUëêŒpPl,Ð謫yÇt:Ðqº¢Á:Îö¼r:Î_}&Ô9B,;)4âò€ïˬeò`b>åpDÝ/FGWm7»pÚj‘ô·|éâ9óöxŽHŸÉ醟 ®ÍÎ¥WÁ÷æìx³~zh VÍ“y˜Õ¼¦Õãzþ6]ø - ÍñÁRæÉ<èoùbµ!zM@NK?Ú'ó ¿åË}ƒ´:!¯¿æÁ¾;¬"8nþö÷@»\ôÂß £Éþù€çlr=v\[’‹Œ’¦±:Má„*ú¶Gv†ÜW'¨ ÖCgš£Á}Îô˜‚€e»<ÇB7%EÍÄ9v°©õœ¬s©CÍ\‘¦˜Š¡á·å—¦ÚW“ä”’Õ)ŸºÕë—µlŸ©¥±`^ãñ£[¸üéÐÝYàÏœãIk¢'Vš&–ß!=&7‡ŸuZ&Ne_L«Uq6“B†>˜ûò…=‘†™¦ê“Ÿñ†-X{‘³‚ߣ/¨­u˜z1úlvéXưI,“‚B†°´F¢ÃÇ”ÄÈY¸¡ ÷V:GÁðׄ­j‡hÎ#0÷X0×çv %ŽJl`"6‰msÅXƒoW9k ZtÍØkðöب$¸ º0; oËNOˆÜ8÷ŽÔz¥VY«˜÷<ñí‹e.±ÝÕN[Q&6F’»¬ŸXÔíð—b3ܧي+ù^ôÚ ÃaP¥b«á³qØ%Šœ˜¶U!6ýÆŽsÄ÷GL…Bü Ç"ÕGžˆa£Ò^ cÕö…yËQƒbQ@ut5` ~˜þB˜ÕIkæ‚‹•ìåΓ4ziŒ­Bø ƒÝê»g«p_ñršÞøÀ2GB•Ç&ýgl²vÙ cSF¸Çp åÕŠ­›¹Ùóª¦VUmMÕî{ Év¿EØÉUAŠÄM÷¤oWƒÆia GŒjåÁôäê †‰Ny_Ì6Ð¥üñ“úŽˈžoµb „¤x• j0†™Ë•s‡[ûžRVº¸G@õ",†¥¶Á?l¨‘¸2ÍÞˆ´IäìŠ20u‹‰ Øô/EžÇ¦û}Ëg1ÈM´W‰–04Ú] PãÃâ’Õ Ä°JPܨÒ8’ö3†É¿LÈèš î;wmi dz@›°Ë"°ÐÀ2±M£c+"ÍVŒð<ª–V>¬nª¨ú°džJ›#5jæªñM)ò@ ,ä€Õq°&`„Š% å!ñ“®ÄЪyõCÛ Š{Å&/ITzÈGöÃ’Ý\©Ie,ÊN&8å¶Þúq‡•ã¹Tüs¢ÌñÖaª˜N™(© +œ’:e¢äÑñáîþNAI˜(÷èù‡;Ï¢6Í–vÌ¡©œóË–°™éìVçddlmO ‰çrY¶ÞY؃¡o)'6=²Q*§ž¡c’ÿ°ùÖ¨%™ú)†y±UŸ€µ?â|vÌ‚mè2‰„¸ý61>q±Äo·Ÿ¶nzØkwÇ]5þaóûÝN¢Hâ·å¼o@ð“͈œ3ä!žiœ˜'lãƒéŽÙ¸H±â6_H([ÂýiËÀ“òðeÓDù€Rå!™¾oÒ÷“éÇ&=Þ{»_6í à>Ùv~sôqN䧸öc“£ŸlˆD«§,ó÷åÅÎÎ î ?ØôƒG—tyH·@çqðË–`gJ:È8q&Ëè䦌þ™,ƒà䦞“¹¤hrñœÙ‡ZªµÌR«©R«™¥ÖR¥Ö2K­§J­gŽ»–x-³ÔjªÔjf©µT©µÌRë©Rë“s]s'»6™¿êæ¯N毹ùk“ùën~ª}'ò“)å$M+»:YvuZٵɲkÓÊ®O–Úßû“eïO+»1YvcZÙ“eL+ûídÙo§•ýn²ìw.‚Ų "<Å9ÇNÞq"Wè¿8Öù\)ó’:‚‰§±Ú·Š¡‘8®8#ö²±(ií 2ʘ߉&çôðÌ;ÕT½"ΣDßÄNñöÚŽÄ‚=©Ö˜CùéYùù m~ÕzwB@Y:j¬+©H9¶.5je_àš¾w ëŸRè «î²rsv“%„rO·H5÷PG48Xo ÍtWëqOÛW¨{5¾}É%Êm¦éæ¤Óª|ÁĽHd£_+åÞK‰MÅÏÔñ¿ù*I_þÿÄD‰9'ͰnW;@š=N&‹%z›œ ÑœJuB ¶ãá ±²ãY º•:Aüˆˆï}q+Î(,”hže<Ð*Öìa± •'ªSH³,§óZå­$Œ°ë†ÿ9ö¯#уÓI¼ÖW"ð(ïâ5C>ˆÂ€º't”Ô:ë¿ Lí3ƒù:ÄáÕ‡/[åß·Êÿû®8WÓ¡wX¼ŽÉº.t}3¼(èÚ}³uÀh'É ­ßìœlà8/q\¾hÿª&^êÓx?ëÐÑóæÈé•VÂÓ^¤Ô’#:Hp®ó„Ç)‰©qUYO*9¥}xˆ<3Ó‡1L÷µóÊ—u¢ÌïJ¥òê•_2:Ñ‹ØIºF%ìù±%\Ü)\]Њ.×õß:¬â–´N §¢Qö;âZ‚W\4Œ“°ç: ‘AåÒË×õWËõR)j+Ì(]¯,£¨–érW¾z+ª(;À´b*Є©´MJÿjuãAª¤Žúƒû‹qíîÓ6 ¦_Íñ™÷„âÂ^ÆÂaã´`4ÕãӖʱ©´3 1x®,ÃF¹Y¬V—­ÁrÊl:UÆÓ(6§ÈLPÞ¾‘µ;ûž9œò0¶€ u<„™×ÚÞ§˜T;¥fƒYÈ&2¹PÛ‰š°ƒ3¬.2Vr^Ru«ìæ™D¦ Å`ÎÛNllgɆ¸‚É3öt‘Ÿ(ÜLeö^Òf}‹o¥D…Ì4Qb€OØGÀä6²‡‘² Þ³KU«Fž¬“ø›½[YúÄ¢å¦Ùz¬Ï¸˜]ÏÔÚó.µÄ7?b&êØåëwJI —~x¥¢ñ9Ü#Vl-ëlõëf…µ¹ o)¿R©úŒ^ÙV.!OÏ%àj„ $m»–lIt¬¾|ÍÆá%j¥tA»…D‡'ÀjQ®Æé"†Y)¢Ïû}Ü=K²ÜÎÓ¶ÿU(K† ÙD©biÑR«$ˆsCǸû òÜt-QÝ¡ÍSùÚ+v ¤39=õ¼'ùDÔÖóÔßêÖ+ãÚB§G¡g%9í›ÞdÌôÅz_‡Æž?nªã™íd5“]/6\‚-½=mwhÃõÙ]èuçT” …HX€ó«/ µËiçôgwŸÈ"*ÚÄ‹ÁÑV©0©CÀâ-eßêkÐÅêüŽ˜ –®Ç0§.Ô¬VŒ‚Ç$¸j²»ÊÕ3e)J·VrH‰7…yS7åc%1ÀŒüôP“ðRMÏùqçaf[Õiõo9AΦ”ÇäŒØäôD8õn3Y͹cž¶šªð » õöMlœ•µòŸ8èYͧ|Ö¤*º“ÀX ¦~çP¿tô½+'|XÌóh«ÎòèÚ3Z»…‰›ö4;̾ŒaM=‚ â`À̇u"u»þ×&> ›…BX *Ú¹;CGF¿XRƒ ?€íxÒ„,e8†‘ˆZàYR\Îѧºl¯…éøKx LÞâÒjT§Ldjc'fX. žÎ³P¾–t¡\*Á»ÉÌp|Zj~n1ïÝ?úÄ$ÚùK×ùaÅR +¢+ó«ÍÚ  (:jÜéêL¿Ûœ­ Ý‚5NaZ'Ê×háÜPEºŒÃ^Èëvnœâ(U.ʶŒ¹|ãG^¬Ü+vááœôëÿñÁQ9Ýph€ˆ½ŠÔQÖ˜«ú¹sÿ6-ÛeÇ3SW¨¿Ÿ–ÉJóŒÐï™ûv¸ ƒJ8–·\.vñ±¤ÅêBH°À¸›¨(h£špÔÛÁ„¸4CÒŽ8–TÌ ÙÿžÓÊþ>´LÑøü't*;!Kße!¥L#äni·à^ŽÅ²xZL.Wy³D²¸oIᇥ4fˆoöµø'>ãË_{–Jvü;¾÷vHÉÓ%%],™–¼‡·…̯¤d7%ѧd17e¢_“'‹û.ž¢#ZÜ4&¥²FìÝ㨑ÃÌ:.vº^½Uˆm6q2i»´’hG’ÀÌ1Ͼ igvóŠÙÍ+în¶Þ<’f…­¤ÿà”û`vÉÄf×q´:¬mˆ—¾ã'·»íGðä(­•¢Ãj %Ø¿îÙÀ*âz`ü &à`-P{t"^ .øŽ´£×VØó»¾{ µñ&Œˆïå¸8IÀQ?mÛ×çIKûÖà˜0¬ê:ÚD „v2lÂÒ@£.j·†Qoe×q¬0ÍdQ×bLèbççì[§·»ýHß?Ù™Œúì|Dâ) †Ôï!•, ƒ"†€kŽ› ¥o”&)˜_y-úì9ý¬Õ~O'ü ¢¹âº·­·4•Æ¥=ZÖg‡?ž<Ù.ÀíÞH]|w_ÓÿÁÅùw+ê]—þÅsM篎R×mõ.Æ­‹õás¼ð„ê[½Œ¢‘°I6ˆª<Ù>9:ÜÞyq\ð”ôôèÇ“ýƒãÝíÂKy—–iH8ª èåjuw0*AîåUº…^ß6 •œÒÓʦÞÊç¶I¥ãâ!¬PœÄåAËÝâEðlóí@?²'¢ÛÎ âÕW¼·Å™/Gb-~Ý::yíR³ä1¼Ü×E*cçwrÍ·y‰¥¶¼„Råà7‹—¾ùÆiÿÆúuqÂ:ñ 7gë°¬0 -ÅËw›…ˆ§t› 7V>wrŒVGã® ›È5äD²A<ÅÍäž6M|èœùyÿà×}Ä«?RKé\Ï*éc/L;"1!pAÒcO6r2RUó&p­ŽcOH±Üê¼mõÚ¨Y?ÕJ!XB®?Q­ÚÔpõ„ЀFÙÙ-cPAŸ¨Ãè³4î…£О“+¡…Ý|"&]\ʈtËŸL{”‘¶í{1rÝŒU—ãG†R’é J½¾_ úÃF­(cÒ­Õ¨ŠòŸlíîíÐ&ÿ³˜Õ1á]2C ––ƒÝ"neÇ‹FýW‹•éôàÒÕÆP4{ò¡+Åðù&èÜc²>ý î§Œkõ ŒkõW¼¨ pÏ¶Žˆ×°kN;Ç=Ly³Ò9jP}z½ÁÖÃR ÓaïÑ ò%u2Ù£kê1š¶Ì˜I½–÷âPf»ÝÑ­Miëv-‰Ñ5ÐÅêTtÁ6×C>þŒ£Í1h79 TáÛ¢Ñî¾m Po€»}ðôm‚,쟪)ìâ@jYõøHøÖë~«Jø)¯»JÏ”&›d{„ª8{Ân¡íÚYË|«i_1í«î´¯Aáa“½©óO¯ö›yz-5…š½-!°dë*€©ÍŒCj¨Aî0£Ìª.cŠ ½?Õ `™‹S™«S3Þd•lV£æAÜ­®n0¶@—ÂçÂ^‘°8Ákp%Ã~»¡™go*•N˜ˆ@2¬Fõ‹yž7V&ðÆšçEã³aá\§oèñµS&½º­0ØÞÔš†^q"—àõ "[áfŸÞ ôn¢?Ÿ°—'‘›Ã|iĶ6c߯YWÄ·x‘æ$p·áÌ[·>ã­ã‹{5ñîÍ@aTv=M ±»óñY¡Põ[~É?£ÿm¿Z,ºh*Þ’'Jl@ÔŽFâCluƒ^c¹˜ØYxcGÃB=˜w.%'_ԆµkúXÿßÀ•ë3–x=ï9Ëvrµ.Çô2Ÿ¹Æwc¬+Q-%ê„ÅmóO"ÿý)H1lØv²°¦'òþÿÆDÞŸ1‘÷ÝCgcêY#;kêŽw¶K- ­áE3NÝ®ÕQT!úϨ,½7ð?Ì7iT¶ÝÆÖ†§A?ŠüôÉÉ”™þн1c¢7d¢ ÐÑóGG".7"âb*Y 'ÓÉU¦ÓÀ§€­¥ {ì)ékSÒ×§ôo¾±«ž’>ߨNg t8[Ig%N€e{èt¢CÞNÏš€ï*Ó³f´uzÖÆô¬Ó³¾žõí0ýÚB ¯í)ëúTh¯Ãš—t'Ve/ìŠàÛ1¯Ê™ºÖ[,3A ùÕÍÝ ì°«¨èÕÁóãgÏï.Hÿo}Ò÷¿Wê˶Á÷½÷ïO¹ÿ]©m<ØHÝÿnPûÇjçñî±Ðcà0ÕÓ­ýç[{{ÿ0|Á•Þ$(Õ¯¤Íá—­slÏÝÇ;ê²å‚Ì+üØíŸÁû¤DÊN¢Î y‚hàÛ5 œ°Tå)óŠïa¾ëÞ½‡¼Ý•}ð•:Zã& »¸ãc‚ÇÁÛ Ûð9·ŸyEßÖSIPR®+±?ú^ZüÁw <ëG`Úäæ™õ¨«D) !ýáDôñBæÀ¼n¾JV¦¹œ¬o+›Z,3¾vÒí³Åbº}Ôõáû“³Ç•®Fxp¢×tŒ{m„×!캨\‹cËZÌ¥á|O]úáÜZzHs—U¨˜ƒx¢Â“0 ïÐ ôy`RóiÁ˜Éä;DjUìh\0‘‡NŒ wML´€L­’Y•x4™µOÅüüra7L]·®­ˆ|:Ùîº/Hööçþ™p»ü¨ta%Ü…;Š/ûM8"Ì7g"ôzž÷ºÝ:ÕiwÀf<×’/{"£ˆÞ,R )(C»¾Šgü¯D—RÁ6$¥l…Ìfñ-x…2–…”24ºŒ˜lÛhv½<wžÀþ“–_=;ÜÙÞEèÄå.<Ùz~|ðøÑ^ñÎfú¿ùÃïÿáÎÖã§;_­9÷?üºÔj+µµû÷7ÖVéý¿¿¾¾ú'µºûõûöýý¿ûÜ}î>wŸ»ÏÝçîs÷¹ûÜ}î>wŸ»ÏÝçîs÷¹ûÜ}î>wŸ»ÏÝçîs÷¹ûÜ}î>wŸ»ÏÝçîs÷¹ûügþ?WNÁp despresso-5.0.2/archive/blas-1.tar.gz0000644000700200004540000030123012053145624016210 0ustar marsamoscm‹ ×Jblas-1.tarì]éSãH²ï¯Ã_Q;Ø <–MÓG¼ŽXɘnÀËñï‹, Ð`KIîÿõ›™U¥[¶ÌÑl¿E1ƒìReÖ¯²ò¨#åÖ{ÚÙï^öj6w›Þ¿‡{³ùaoïj»Mwy½S›{Í÷­=u·©¾kªÍ»Þ±÷/Œ‹®y>cïþšO{I=×'Îøg ú©—Žãß7îìkg²¬ûO¹`<›{»»%㯶[‰ñ¯‚ž¨­ÝæÞ;Ö|!<©ë¿|üלÌ-›MAðecãÏsmüƒ±ó['`ð_xË@c¡ÇLß6B› $êþ»ö|ª„ÚØà”6ÃÚ3|›ÝøÞ|f[Ì ædâý>oPt!•ÊvvØ™ãÞ@ 3ß6Àñ\íLˆ)¡ãÚADÕ)§2½élbß—îG„ûÞ|\µ¹«rª’æHUíâIOsü™iL& ™ñCĦ iI¿ß8i€L0±³†ä1ˆ¯<:­×#^À]›ß;‡3bŒãÚ³¿ÛÖb†k±65œ»Öò±k• ^1YRš”ûeùè]•“•5˜îc{yÛ%},&K6Y@¹Q–÷±€ìªœ¬¬AiªÒŽMÃec›vÈæ3´té^Ra¸¤­cÇ5BàŽL¼k²ÿkoîÇÍ ày $´,dÆ-*ÌvCÛ'ï‚|¸{àºì¹D4õÀƒþ1kfÙãÛ4qæMmfߨEt,BÈ’$ú¢²œ•$ŸY\€Rlâ®îaå oTi ¶Á=ë…,0®m’ÓÌðÑ0'l²ˆBW#”sê}·‰7þË6C®qˆ3­p´–P€tÏ͉m¸‚)Òä<è†)à ¨(*ô † $…/”A)ÛƒÓÎøQï<ÇŻߵ~¾Å4ײýÀsváÂûÒ0œÛ.XO`“àú†òlí)Lýô©‰%gó,o„`gæ­÷]"{ÚÓ1®Ý¤Š»Xñg9¬g¸7Þ\‘Œ`V† ž)îo€Ê|f¿×Äð×7Ø…˜; Ý08 5ÇѵïC¶|í¸NHÆì\³oÊ Ja=°[ã; kóð£Ê©Å㑈iÆP>cjÜ7<0Ô`>¥ûýìï¦Çï–âÍõ§-¸ÿ߯oÏKàvƒ÷".Ý3"$Paz#?4¼ßk¼Ù:J´®¾±Ñ‘8€É8P©] ÄM:¦€h h¦€XLhÊÄ"¸Ïñ.ј)¿ t&GX:Y,û‘L,Ñ % X¢aK4lñZ±L,.K´j‰V¥(,Ѻ%EbE"Ùϸ’0,)k!q,¤HáB [Ä"Y‘,„HÌB€[ÈïÔÂ’"¹ÊͶª¨‰@&äOòEÚTÇ$³•ò̬ˆÙU–Ùs¹+1;§H .œ2Z²FôÕùI kÛÈc/¼•Þ?9-äŸùä°¼ÃmÞs'e.9Ì2Ÿbì©Ë). ÃÆÔ)ßÛþxb˜ÅÓ:{A—º»ÝõÜ]ë™Ü] ÝÌ=ýŽjz3æ÷àAÜå÷ÝÑÍ…>/ Å£p&î~ ÊÅ}H’ÛçLùm&¿µÄ×Vì[Y/ˆðLÏðÌ[ñýV~à™ž)à™ž)à™žÃî>9K¸Ï9wŸ3õÅ·–øÚŠ=d+ë!§%pZ§%Ähò{„Ó8-Ó8-Ó8­§ÅÅhq1Z\Œ–£‰q? ïJÂ[x o!ĸ¸•ß#x o!à-¼…€·ð1¼…ãBˆqÁŸàb\1."1^eq¾¾I=Ý©lˆ… 7©©0%q÷ï¤Þßqƒá@¤x—ÐÎZ@[XÀ”âôƒ¼7Sr37SpC½¾4 ú;©Éw± ·³*Ü*<ª+îDlɆ,ÑÅ’ ×Î*\[(Ü”Bꃼ³…d¶Ì1ê…@½¨1ê«lCà—‡úÑ—hÅ"'Â"a²h.Á"Û`èß ÅhÎÃ"Ûf‘ˆXþ¯{Õ¸ŠjÈø°±O‰?órÀWG2í´óªÂý §}…`òû?ÓUNµBùÆ_‡|fÉ®EQ¨ —eMDpŠ9Q ™E`â9þ_ñ~NI4*'Ü*  8¨BfE Äºû3K#Í‹Òørc[_ž'Á[Åv RuïsB©¢9\kN˪`ÍóÌb-d[„ìëóÆoÿÄu°46ZpC¡?e;×l ,r£qÝð>3äq0<=>Èdxrmí˜ì÷ÿa;jókïÿ·_tþÃW‰×/ÕÆòóŸfKÝSéü§ÙV÷>4ÛxþÓÚm¾ÿüŒKlQ_è§Ã‹óÃA—u´Ë“Qm t4¥s©àOg„÷Q}c‹*7ì ™ 5-Ú;l46Ä®õ°Òë^Qp88ï~íž2â„l”AÄ'f¨ù¾ñ°”ßem«Hào‚?žÌý™Øøñ ¿x9c_˜ ó»Ð€é_èLi{ó»m†¸½:™Çß³ƒ¹S>ŸíÛ¡áL‚Ó/Yææ³<÷Æì ®‚gP¢°öªúLJ²sSÏr®Xÿª­?Ú|j+ ë?ÔÀ[¶ R4øÔ¼5Ü›ö·yìh, ž"rOˆ'’®rÒH¶{OÛÅèškò¦"êÓ®ÖcgM?SEI÷ò¼{:ˆK#~¢¹V4zÝF³Ä秃ÄNRëhõF÷_f£ÙÝ.ª†Š€TÖÐû TŒ}¯³¯Cv>d­fÔq¸LÏâ»ás×þ{ýp\Ó·¹–àVm¦,&d´™ÎŸƒP¡/n¨ÈŽ’_$¼Þ9ö*ÖvÛj} ‹Ùv¶æHÖ¥jŽ5÷‡Lm²ClE‘b ÝÕGu(¶A[·@Ë/ë‰Zá[FÉØâáˆ?áh¥3€ _t£á%Ñ “öM’ÌŠ©ÕDàí2àw6¡n—aÚ5Ø øÿYÿ´‰øZñ_ý æã[}‹ÿ?ã↙Œÿ!ÿþ¯ë78¸™“Œñ÷Oå·‡ÿoQ>F¥Qù-ÜFQ‹‡Û_)ľ|\åþŸÎ¿^mý×V›9ÿßÜ}óÿ?ãJ{Þƒ‹Açüp8`ýáyçŒ`xSžo*Íf¾gÍÍrT~x"  ®ÿšß€KvoxÚ‘ã¡àðÜËÁŸ)"áwû'•׈‡nè;nà˜E‹D ?=œvÐ}Íj Ý1,øø_ºVÒ ‚ò·`U!X ™òû6|G®úeÏÁä8%5æ…¢Zi¯D§JBÝ„üËÛ²òñWÿ篸ÿ Ÿsë¿Ö[üÿ—0±¢øñ ÆÂ]ið‹.× ði¿[¡/Þ"ôóDhŠÍ/š/^'4cP^“K ñ/o1ù׸xü§¤¯WŠÿ­¶|ÿ3µþÿÿÆÅ­5¹ÿûUïÿo 6Δ¾2PŽ{Êñ…¢õN¾iЦôö5EL ô<âd˜³BêÒùoÛêGnªóM;ÕÀÝœ2Âö˜…VC–0© ™Å ’ c3Ûç3 z³èZ¼ÖKçû±ÁìAÞ#ýÀ>aÆdvkli[÷à[Ç0ÓØzP¾™“y¾™«PÄw/njLÛdõd}^õLfl^‘r¡ñ!½Yð™„Âî©ü Å\ˆJ4|«Æp‘É“µ]6ÆbÞA…ÞbwÌÇ;–cÜx®1á„ws(„ŽÇÅBœÑP¤gUü!"c;ñÀn©dügCßÉÁw¼xÝ`f›8³â3»HÔâU18ô–hŠMôÆèVª˜I_Øæ`ÇbÓÝ,¯ÆòsNfÉ7+Òw8½™¡/ç,£ WN$Aö½Š }þxGšW™lû¹ºsziÔÛ©¥Õœii.}6÷‰Ò7B6± ø¼°}¯Q à "ÀA)@Ó›Ì§î Œƒ§`<îUÃõÊ@¦í…CMq‰`#€^׌5YcbcyE´Ñ^,A›2äx/Jð^TÃK‘€\€pÐò*Î ÒØ¹_ã&S±Y©xÙfù: û¼ØïÎp!\c3ÀÖÓÌuûß+ÀèÝDÛ°pC¹†^r½",#X»Ò™á‡EÂä-j\Ž`ð°u“ÊLZn__;¦ƒŽTÁšÁDÅJqá†À_ÇOÂ['QÉ!Í‹ã¦É#~ ]Ô%J¼SžÑ’œMѾ:XÄRÊ®g-|ëyßÍÓlÆk0Q%°Åê ÅŸÀƒNNw"Ö@BšRÌôÚ­åÑÚÒô|ßfžKKp{’_JêDdµ`nÞâàƒÐ›€¯C‡¿PÇÀììzf”ù›½¾} ÑÙ5m+ 7ý>ÕÌ÷n|cÊû†ÞZøáL`çnÔÌHÂI:ß›¢}"‡Æúz”xÞ¸¡Ÿ_ â{AXd´ìm5vD E6(¨×1<€ª²ÃŽŠëÐúY¡g_»¬!·#¨ d0xýÃAõ±d}_½˜\Z ƒ•2VÅsQÞ¥š(È’ÁBš±xÁšyÚJ¬e«ERpøx¥[ÅzißÄÕÜr`é5z°' u‡ïeŒX(þ¹°ŽºÔ…1ϲyÆíTs…Â÷Us…%ͪÐ` \Ü6»eŒƒÍäa ê8u ¦Yiãe\ÊzZÈÚÃm»N`¯òËÑŽN ©W—9w›b!SGª‰UЪ—VYôû'Ò àSl.œžp£'-¨>‹ÁµVá(—a%‚Â0‹sÐû‡•*9i‡)£*9âCR—èP‰ð9îlVÃ?âŸAK³ª4z>-ÍÀè©Z:ª¤¥ 7–°‚ó¾Cƒ¾†6M÷|fáO%¤³ „îŽ*êîèѺ;â›ÄÒ]r¿òÖ (•x©X(ÆÎûStg­!tf²;ê§{’ÿnÛïGÛö°(õ\X¿ ${Æ8ª ÑyúÀöç¬ã{ |Æ ë   Ú'aÑ0žAeߌéÔðÑ[/«zê@Ï| j»ôÃg JŽ‘j?ˆ:Ëh'ãÄŸo‡vÑÆÿp ÷`O`ÝÜïâŽH ¿°šJ)׊ȼ®g¯º§Ã<%–ò#€i~weÅyDñqÄà`ÈÏ$”#åèR9)ÇÊñʼnª_*Ç#¥×\⟑ ì ¿v´ ñl¸Ä²dvIÜ;ƒ¾É]h™ÎÎ —0<›£Ö#–ùe÷TïiOÌœP`¤Àœ'³é×¹„ªÀ)Òï¾ðáoÄÇ JðNMùõ€Õƒáyƒ:&¶ëÀuÕűLþÙ¹|Æ9l„\­Îf½Îοu“‡¢éèÞY—Úï‹ã“âê­lõÁÒêíluXô.«¿›«±´þûl}˜P!6´}|±­–öûc–R•¶¥6 HFËI¢þö"1ÊX¡1育Kͬmò-ÊM2¹äTöP™Kµû×Ü×èÛáÜwñhXjÎxb'´À8säái‡1þ–P¥Zçø]J«a ' Xª^¯Ç§Wœ=·sè~VS#ˆg0Y`è&xÆ#¹ÜvoÂÛhóGîdŠÝM±2´e¬Æ_£ÂY .,¡ŸŽX2Éw”îsÖªr²'H_X¦Ïôú‰±Ïôóƒò‘=ûZ¤ÓÇ—{Ì=ƒ˜^Ã&wÄáç’6F%mŒ–´1J´1mŒŠ•ìŒDžÚ± ÐoBÌVè'Ž<7;Àe’/ç;†iâOápþ=ǵ-¬ønÄÏŒ§$à½onãåºÜpÑb/{@«1Ü$Û¬ñ†j,RX07TØœ­&,YÍ=MqfPT ¯ä¹r"f/‘,C7_ÙFWæLV^™ÁJ4ÙªÞ$öbKžÿ¶ªµ›T® tì}œm{±µ«õa””[Á•?o?Q¸»k“ÒMå ,‡·ûÈ1HäÌ?í³ÓÁçiÑÏjߘØK9ˆM,y’°4¼ŽÐQ_®e_ 潦ؖ*ÒäpY;º¬£ /Õ$¼DÒ a‹ÈJ*ò®¾ÏU\½oFû\ªr´s|QÇÙ^­¯m÷ÊXã%LN¼O‡¨¶´Úñö¡rDTï›9Š’ÑÇ+§ò"y%SQöbÆ 4:ùñÄ_ì4äUmp>.õ”¿@XjØüˆóŸe/9»ÌÚ~nDS¹ee¶¯ªË´OèS‰Ó_¡&´B¡éèRŸ«IŸH±’*´%ßñù´žzÇ!Qm>Hž¢-¡FX‘ý:XËTyT;¶uD¶Å]Ab+!y‘Î%4YUá¿ÔÝÇ«Ða.bÉëÙ”Km=¿v•úÕ¨OÉEµõœzØ~1=\³WíÿÍÁLyj®] Ì»kxj¹èâ_3Y¢]XÁZˆïÄžs4Eþþ®Ö+åÿµ¡Ÿí·ü¿Wº¸&¤òÿºý>ŸÞk Ýtž˜ÊÔá¯ÎS;ð±ó<€ÇÄ9ËòÜ?‰ëI9€z ÛÁ7 jØØ¹€ Ÿ¥¹€2u#Ÿ ؉'HÞ fG09»Îê2½«“Jãcø;ÙNÄJ>ùBg¸”I˜(ÚÌ—‰<ª‹6–% RB ÈðC‡žQ·L;É%¢ÄÈåƒwQ² “ÝbƒbJb¡í¶ND#Ë+§ jk¤ æÎãqþ ƒ%°‹ÌÁ9î-ea)2Óù$tfÇäنɃ¢8¥OK" ah4‰Ý¨š(0M³¹”(JL%æßU¹M­!]}‰tõ“®^$]:­— J/’® )•®^$]=)]} éVMÇÄŠ±X“ÙyQJ¦t7E9@RÈÌÒõÀêÄžbS ‘/µ‰ “ K7sý@Yc7ª$}B×¢DÏô¹ý#’>«vñ¸l¨*wQ+ìbAâ­GÚÄ^¦=r$¡ìË;ÓÅxL„Ï™¤“;Æ38J¼/Êâ'„›*Ù<¸•°J&TŠ—b”Èò½Áî–åvb€!ådÔÅÏi%îåɺ¿N¦ÛŸecIÉD)FEIqØç{J4œ¢ÒDòÍÖN1ÊPÞUÍŸÓ×Uf˜Ê<Î*³›Ræ\°“Ê|·¶2çXåuÌ]¥ÌúeÖ«)³Ë'ŠU¸—)³^U™õŠÊœ›Èä•Yº2ë+•Y_¢Ìw9eÖ+*s.uýÙÒEaD™‚B¼b¥dÁΓ;üqu“쬕Ý/W-E ÜÉÇæ"K°iÏBaê´üB³F)(¨Qô/&¥0ê…²!ù!¢ŒÀ¸’ìÀ¨Gs”ÚŠÕj4ÿ1r©¯4¶Îjcë,36ŽYš›°·Øà”hŽ‹¦Tµ™ˆëå!¶Wç!~Ü9°ÇþÜð0ñÓyˆžo„^<˜‡¨9ûóëk¨Ý=í²o†ÿÞLJ³aå +t`¥Mn<Às; ØWü§Y/ŒÞ8Èg.®"Kf&þò xÏ™Ùx¤ô”AgØÓ”ÁéðOþWÏÖü«+ƒá¹†Š6®þ“R>“¹WˆYäH!r†¦ÉBnc“ ߥ±Mþ¯ÒÉ^#ùs[hT>“·Ö,…\ßhB1Q™£¢fø.C‚+ÏC&Þð‰Úͤƒññb4x¢s8vL¾Ø“Y‹Q ¹¢ÃR&U±|ñ–o»“HS9o%RÄõôc=ù˜K+KÞI=ÏÓÇÏùYÔ¹–;‰"™dRÔ¸€¾°ciéÓIr\@åÁesN°…ëËÒó¹rOËŸå ´\"]‘JHÂùdÙ\¾­F©ŠÕóe£öô|{z¾=Vب¾¼Ñ\Öíò$Ý\Öíò$Ý|Òí£rnùi )Oõ¬[˜ð¦iõrÉçòoaN÷Ë Ÿž…‹‡¯™…›MÃ¥ÚǼöª¤\ŽG—Æç¥|WÇþ»!6•p2‰c‰’+óùx>bùY|2E²_ðœ„_Ãóàj’­Gd ,MH&#®HüV]’l¸Æ©/^ËT«0÷65Ž…Î8"ÒÜ<¨“LîÓ£õ@:ËGéÓª”±J©Ÿ‚ÙûU'¹eÕbÍ:é6–%gpí­…ëßì½kS;³6üýþSõ”µ.GŠ­ËÑuÅÛÅ¥ëzó]òÚ%fc§˜Í:âÔ57J™ q4÷ÙÇfCœì˜ ñμgùÖ= âÔCofÊ4ˆ +þÎsÄöµ$γ–ˆ{Õ$oÆÅDÜÅú/+N³ È*½ö+ñ^Ñý¬*/ãl‹¤W¼{‰÷í—bä!x¥Ð;§ä­;-yðÍJ9 “º EY@T¤ÄÙ t ½bN©o[9¥žbw£YÉ’ecûÎ(‚Œ •zU—*ö½ªç>1©¢§žme…ôšÊ~åYO¹òôÓm‰^)…ÌíÚeH’†ÙPB’FìLQ3éu¹ÿšÏØØï/}\GízÍeÙ¥ÝèùjýÆvÇ<¶žwpHLý!wpËLüþïy‰÷ÑžvÿGÕýß"™^Êýß—7ÿ÷%×ýßË»êÚ¯ºö«®ýªk¿êÚ¯ºö«®ýRDZºö«®ý„k¿êÂo9~_ª ¿·{á‡?1ßU7}Ëºé³ JuÅ']ñ}©®ø–œÈýß›åùŠãýýmýþ¯^Ýÿ-"‘¹'Þÿ}nžýSûrqzvÂö‚Ý?µq=ºû' g±w„Ð Ê¡ì÷ÉpWhóû”ÇMÓH9ÚOY´¿CÄ'XTèãm~ÐOø˜Ð’}Ð=¸£@§)t\ùG•©ÏU"tuàé× çM£¨…àížqŸàÞn<Œ &Ò÷ˆBtR|nÏßý¤‘78¡ 5¤Rìn¡0Uƒw_ˆ‹gpËtÅI2Ô®Ù-I&hË^ó)©ùÕŒû`~5—}é:žÜ‘;×9]´úXo[/ƒ¾¦´*7”n2=˜¢É:ýöÛÁ:Ê핾.ýþ‹ˆmnÈ×b5$36àâR*ÆyU&]©SL.&¸XL"»˜Øâ“Üö£š•›8xJ¥›H7ã…iU“ñ/å‚–¶PjK(\¤É¼ELð¡%Ê2Z6†Ø}]L« î©ÿ åž÷³ñ"ñÛŒ„×¾§ó 3ªÒ§HðÁeédð -£ÛÁ<¤P,}@½¸Cgàïx­ø5|x ¡0¿‰r8MüöÍËHðm2~„ñý çkè Y?£ÊhÎ)Z¢úßI4NÜ ä·A:ôÒWÐ1 À38(á¡Ú NÌYð 7Äg&¸EÂNPî6„ʶ|À! •N0ÎR¤5ú@ýŒùùFy‹Î´É+ϩLJr§žºÆ¬ÄÔ•ª¬°L¹ã„K&Y„ ”ÊÂcmÂÝŒg3IJ“á÷Ú¤3-sšt^{žUt~î$ ÎŽ;µ EnÀœ[ò„ëŒg¨'~ôé]òcÿûpÔGsº›k9“ñ[EpÌ&•#8iÃ.Ï`Ï>>ƒcRâ¨ÔŸó:T:\𔦮.â1± uµTÄ›SR—ḭ́,ÍxÎQ/M3nuO€•÷¿·£[]aïQÿeŠF·À‹Ó/݈ùtik_«»¿mÂË£†Ø¸BÚ`Ák¾¹Dç[ƒÛ?òê4ƒ?¿Œjcw8t›??ôÝFôʽùáëÒ¹(™eµr6¯}T¡­\FzE]ÙuæíÇ΢‚.¦^ΗLɻ߷åÎÎæûe^¾ìRê[}GvŽ,Ñ‹]U¯Ë…_´ì숓nñ‚•\iàË 8ù½@BÙF°[4eb‰*D“¹–ËßÞäˆÎ×L÷@vž¸Y”l¸ƒÐ3$Þïlêd³½Â_äže‚¼h½Q;Ýpøhc4’…p€’-Õ‰žÃñQ¯vBÝ%DÀîJ÷z¨\ÉïÞYdv¦§»1ÄO¢ Íñž6œF×P)ãépÈeuÀçÃûYy@sÓWؽ j˜S¦47€n†’fy³”’tj ð£¶É’ØÈ´ŽÕÚ„Ü=Ò&< ñ©DÙDÿm ` ýÙ*%C¹¨@cüGNO!`³u ?Z5¨(¢Æº‚A2»0=¤¤x½ÉCSP îQÈØ\o¨Óу ¨ªöÉW“á[ø+ÑÂøvà „!<4³ Ä}¦“È/œHê£S.ܤÓ;*‚¡O¨^Ÿ)<…’ý©ˆiQPyîQ1}}I¾ž(_†Š'›2Í bÉ»’fOúRéLr%€½r;qx|«@!&E7j’Œ·àÐwg›À—磦j³ 0Uõ%i|ƒˆ%Jy ¹áËä4Y±™s¤©hÌOȘÁ?h©–ü«hʯÙ)Dä+BmÞ÷¯Fäû}_?ÒƒªIŠ`äRàe\Ùëå„Tà%á1`üoFmá&jØ3œ,˜>ßþÀx© Ò–*¥Ä &Õ1qFʌǿ4/›øÍÖÈnŒ£ˆ QO’Ñ’›Ÿ ÖÙ¬+ø¨˜Å§žuÌ;м;èRê.‡÷‚\­G¬=éË*âϨ|áeŒJ-V€Q)%£~OFåm3ªe˜ fˆYêå mHï¶u }$“ “(ù–“MÍ-D¾djöVyí¿L739±{š}ü‹4}ǽé9îÍôqoºÆ]x:òÉÐSRÈ<¾i> ÊÏëH¿0îãhìfʧ$£WøæVÁðÍ­¬ìÖÊÅn&~ky±[€*DßžfTòãëŒ$3ÊþëÇðö‡\PÍNcß`"õ!Â0L‰8 $“µˆB3 "žO€éÙÔ ÐJŸ­‚ UúH žõtˆç‡Í¿7“g´Äó Äs<éÏÆÉ€w>û†r]Ÿû“_ƒ‡+-Yh•EE5¾=?§Á'DéSp:ã˧ MûL}¾~Ä£‚vdåEŽž„í°syþµ¡tÆ—‹‹£KC}«„žày¸ 0ýÌwŠÿ‚™ÁWÂF4')ÍÚ–½6²Å°¿—SŸ*Tº© Y{yùnÍ£J>Çt›JL@¯Þ0V·o% ÆêÉî¨Ù%¿Gx,¬”|&53ùLJ¾kù|Å&–È„ƒEÁ«‰jMhðó¹éüw‹=„ú›«™ ,tù>¢ïSµ˜œfŠÕ~Ð}ÐÇE'[<¨ø˜!~$/q¿²SÃÇXô#:"†Êópï§ôæ^ZoÊÀ‰¦+´j z‚Ö¸»´qÇÀ¤V­MÆ‘þ‘À Úá±+J¢ 8hâï×î¾Îƒ’7z7iåE *r ¤Â 9NJÅ ¬®âRhe‚ˆ²&zøTسϦý³ÞÐJàPganÚ¸¦t^ý@xõ˜àl–É«*^•S^µ#ØÒPié0F‹"ZÓÀàVI,s-퉚,“±…ÿ:NF€ÏO–Ý@ =~¯“BrÚb02vØBcC&»O–äáiàùiÈêà~¹6µÑ¹Ñˆ´ÆèõŠ0Ì»ÖЫ ¨F 'ƒ{ÄhØ#ýJÀ‡¶ˆñYû5µW|»×>@®~Ý-Þ¯vc„ÈlFíð܈O9fˆH”M:ñqF© cÌàf6¼þFAIËìÆ·çPF1«%j­ÄMùæ¬C‡ãjýÀ’´4:Ém÷V.+Ü£û3^=廚]UqŽéc™^VžÉ«¯·&Ó.(E›O9®·ætRÏ©õÑÅ¥úG€4_&¾¸¸·(6VR+èyA Ô æÅ8Uxb{!²’öUà}}xMPPÃ+Û ’M¸GœH »i8¤¹à,¼¬Ä!e\sVŸ¡f(ä¼ÂÀ¯šÁx‚ÿ¸ŸÄÿ¨G;õXóÿ¿¿[á?‘+ªø69J^]6:ݰ¶¥@Íbã8-ôg+7›"´q5P „BÖ±!„¬Â‘&„“„?Z2̆i P8¹k ‚¹n ¸<‚ëQPHÓˆi²× òš„w¢À‘ñÄT¢ðܧ”(T'Œ’ (jœ1PUð‘ç`ÜBå…"èŒz¸Aÿ4I$÷=Ép;˜² -Ñ@li(wOã[«Y§Ôš;œ·4œ $N³'Ê vÁuÓûУ¹Õ]D-ÄøC}M”4"ì¥$Ü‹]U´„|±ëÇJ#Á¦ÖÆòÁÐÄ2+(6i) tªgÁ%‘rQïtHwìSŸ§ ŸÎ¡É--2”„³µ¢EZq«¶B7e´B‘P…[Q!å‘jm ¸(Y¿š#Õö¢ŒŠbÏB\‚ ¸f<¨¶TLÅÛñÃóãhšÈ'.c™´¦?¦Õâz¥‚t&q ÆõVUêZå[PÎëC›åÁÕÜ#Þé |ßWýâßÓ ópC_!y kä–¨_Ãé@¦ÔÒ1–D$7ŃÐ%Z*HÇJ@k5jXB’¼D À¾Â{”nf ¤¸ü`¤/´bpC@‚ †Aí¦Q`DBHð‡0éå$·TñË{ß`ͬäÆýÀÑ7¯‰£›ŽnæhµtG7}9ºéÉÑÍtŽn.Ž£›™8ºY:G³˜&¾Î‹RbšxUÚ"¯ý§Q+ piG\Êü˜sÙʃ¹ä{ í˜vÙ2Áû á.I‘ ^*$@/SȨh tðeÞ²vHÆòh—×­Ó Á̇ÁÄâÂC°·Ò{«`Ǥ`NèãÊDcÖÓј6ÿÜLžÑ ó sŒòã ÇìÃ49|þö å>º< >÷'¿VÌ&I4PQ‡ïcDÏÇið QúœÎxh8¿™ömáÙøFíµ¯3þ¹yPNh}ú…ì÷Ù3á¥ècÀ/5Žî‚ÆJ1"´óçr0ô'·?‚ãÑ­}shJVNQ0êIxv.Ï¿6”ÎÀÑÄ õ™pµx3a ÙD6•¨‰þé"å1rsŽ6fº²·1Ç;ÊÊ8öºÍ^‹ê/ÜC襂Bs¡X Œ•j§À#|Õ¿*~.¶N2'Z\Cæ–£2 ýêËÖÕìmgö5»Œ{…žOw~”|Ûôýö@ÿ¶åƒ·bdܶ”IÊ„ž ¬€Æçö‹Ö„D,=²’« Á·Øj „P1 k)ϧ„\D9âÞ8ñ•4O`´äÁÃÃôú–B8 ÷ þã “J¸7Žãè´¸Ûúìø´ƒà’ð´¬AÞ˜;†ˆG™GÚ É¢yɉ ÑF:j´Wp¤Ð B«ÏÍ-õFÀØX#˜ò¡„èJ\Í&÷Y³5x`n}²Q·ÒÒA„v‘ò¥žþÊÀé´Ìƒ\2ë 3Ú(5®›ÚÖí‚2IŒ„âA#))Ãüp@¨Z„ÊQ„ BE㬜âö·-µàEðY§Ú¯)?uö5$ä”a“ ì+÷×HýJº’>¶øø¶q§ §n8m©™|…#åÖ]\›GE†ñõ#„ƒêýÍä‡ÅÈ%²ï¢z4i” 'Í.Q¢<‹c´3‘â ¶‰”lXaRÒ ‰”ý7,Rö|ÇÒ¼DÊÞk)öÈvQá r¹Ñr¥ì—âÈ%Ýð¡.m÷ÃØØÍ4%š­*:H›|bu äÍb}†Çk¨ÛпÖ0a")r¨°&ý¼Á>²mß á+XNRg~ŽUƒ!cÏy\²È{F ‚#e@r\$M€û‹‰EµÆ&ûñKwS 3THZ˜°®@{ÑÐ×d)x]¹6g·²—ñ¶UŒÆQŽYì¼· õ´mVi²+N=‹ˆÕÍWvÅq%»pªdK•ì²Óæ'»ìá×ã,µÞ¦Yí3ÍZHâö_ó3ÿJ±ÿŠwö#-þ'J•ý×"áwÅþËmþ•Íð+ :L½æhæ•úËϸËÛ¶+ŸñVë,1ÎèT7É^Pl“%e½ço)šL°ÇÂô´U(¨2Ǫ̱‚×hŽ•:Y}-¢R§pe””Ç( ÿÂÜ˪آ„ˆ.0Ib Ûy%}IY¶H‹–[Ù"U¶HoÌ©²Ü¨,7*ËÊr£²Ü¨,7*Ë 2R+m¹VÌë° û ñNéÒºLKŽÐlž‘˜sà ©FeŸQÙgHßì3ül,¶M™ÑÆ¢½§æ¯×ÆÂ`³²®P‰•Öic\ÙUˆ…Vv$Ùí*´ëᄨ-%RCÿV6JI+hö²‘HðÌxwì‰1D|^ˆmMÐÈÿ™‡‘‚‚šÔ²Â6>ss5­ ò¬‹6OX kƒNNŸ ±Ke‚ç3X*z¿‘wUŽÛ|ïžtôËÂÛSÌ©†X- —÷–b¸<ˆhz7ÜÐPj™²w4ëdVÓ¥{$¨†{X—ÚœH°ßÈ›ªL}Ï…é®KKÇûÈJ¡Öã¾â3ÎÀ'v¨<Ʀ^ÖØØá£jz…c£&è9¯•ÚKL¾¶$1gÛÓ@zÍbj׎YN‰«’ ³Ü.N‚âŸ. ÿíïïêñvªø I„w$üïÅÙ?ä~¿Ãp¿áuaSö·÷²G}0áq©Pœÿ›ù{Q[_ ¯á?½ZÜ/j·€ûMC›4î;¿Nâ3ñE¼ úÍ6 /^Wë ±€`p‰îy¤„™Pîp€.…òªšÿ0˜>?== IH°§þí=ú šP—*«qÞD[Íà·IìHÔEÞ¿P 4è‡w¤ Ššù¨Â³ap¯”ЖZÜpð«HaãÂz{¥Dg›CÍEQ¤> RËÖyîØ/hwø`·ŒÆkèÿFëèÿao¬kïc'¶ #‡ È®&ƒhÒ`qXË6{T  "±̆R „ü…¤Æ˜àh´„&™AbÃB"ÀôA>Ôh,±àï:ú›L²ÅJ)Ø\}„ß“ ãløsôÀ;DÁxäÛ‰úÊ¿0£ìÄ8ÔJ¡XÇoü:±|Œ¡Âò›tʹf`‚y²Ì@0„¸ =±Þ¿™Öðîf£‰B ½ á²ÁbWx­£ïdŸ¼¿ýÚ‰ ò¼8Ÿ,Ö8°xã'B i©˜ë-ò=n$ÿ¡àèY_œ‚ž%ÐaœIYÒøÚ…m à‡{˜ÑDæBôalŒý½¹±R/+õ2²ÒËV‚¯ì™±’ )Ã?ç¬Öódµ^nVëm‘ïó°Z‚ŒÓQ‚q¼yŽšw3˜Jp/JЊÿëZÐ(Ûù·oÃ[n… cþ¬Y/‡¨e“;”{„z]$‡}©þ©Ò3aÉ«ZµHñó+˜ÓE0£©¨gäctFë…'áÉuxÒ Ûaýï:l÷\Â׆QÄèD™˜§#è4´Ü—w IgÒùâèÜÐ6 Çâ?[¿Ø3|Ñs~Áý熦ÁQ{Ð4™æƒ@ë¢éù‰Béa»ø4‚d°õ5µ<ëɵâ.þd”öµ2‚Ú;$ÀkÍhm]KkèW4"æ zŽ zj=sß3hâ GhyB«^K•uBÚ†Ó‚ðñöv0*{g²—Sê'´…DŸ¢™üý‡t¢ý #ß¿a¾W!w)rO»4Ý"ëF…±0a»x†xÝvD_f8WìY¾Œ†¿!›'NÐ2¼ÒV#?gé°ºGzknÕƒ†ÚO‰ãDBúQÅúµgÙ­Ñ–°h¸é§UèØVI$¶ÛÂdO€l|u±áØ^¨Á&:.óC©zÇ JRV<_;"O&˜MîÔÿÉþ¯kFJŠû'è„¶I/• 5Ýšz:“ð?ù­£Ãx;-’¼ì ±†Úplû FðÞ®ÒÉ;!ä$äG¨ÆöÆÉf´&»é1¹Úi“^Bù0:0E÷¤O.½­ÆI?1J‰40ª6è×9FýØH~c$ж¿Mù%$ØÂ晈IòoŒal'o̱#=o—$p쨽-'´-'½\„¹àÄA'fˆ‘F%)|XüceâM_i¢ €¨ó•eî¹n„ð5‰·ìF,Eä¾’msO6"A<y91c¥¼´)ldŽc2amRòÄ"%Лð•$*mÈòœòËæ$tU„rQ¹8‰(ðk Ò*6NØ>؆ÿ˜Ìþ‘†ÿØb ÿ±½UøE$Â2þãR†PìGã"£¿7vP¡ó@yø<.!Ÿ„ðP\ºEG#yüfˆãßÄ ¨a@zXCtÇ(àP4X H^B)À£x¼€Çb}\Uêe¹W—¨^^Ö¦Ûxm$Ï>¤s¤RPGÙÒö’Jðö®T¡{_tOîQsõ÷¨ÍÃå’ÓãRf‡KÒ@ÛÏ0 îî9RÃ(F ¼€À®|ó4À_Ý^ P÷sÝ™oÁ¨ßW”û°÷¾†ZäõŒ÷<Î54î²SSÃJ}©¿Q¯é:j-°R:zJ`NdƒÞÚË G|4D»_ñð#0ŸÀšfu~š‡(®å“ q;2ƒñ6|ë¼Ø6)!)aÞþðÅ%TŒÿÝà2ÝeÁÆ+g·ê)®„,U 3;—uBø4ӑу†³pSQ6‹FEs”ÙÕ|£Ÿæ‰òÌu¦¹¶r]‰Ii«û«+!˜ç:•{ôËûìžœ|Yèz¹<”z[¯0Y–°2Fõ$t²:²AçDUÌSÐ]“4ŠŠt1iQVÒ¦y;),*KóDbì”| «Ù%Á4Òór^“"#*LÚ´ýlºJ^fš¾’Ñn¨)ÎÍ”4OþÉ Ø$Ë‚¿ðÔ3^…mЫ´¼Äõ¿ñÒâ¡ÿiúß(Þ«ô¿‹HdÞ*úߨ¨&vÿ¾z`Éô_½,Z%«ÿËØ­Ž=uÂ/D'¬D~ñU'Ú⟕ʘ¤Jeü¶TÆ‹õ P©Œå^]¢Êø XôúÅj[ìVÚûJ{_iï+í}¥½Ç9ß²ö¾2÷ÿãµùÞæþ<„Mý¼Pý?õ×íoÙÅVOÃLÉ1dߘǗ5D¥>¡÷*~`3T·¸ €$Ø`ó˜ÚX •ZÜà{•Z] +ÕÕ²EU…qÈi™˜Š{Pô„'{â³TO¤(}z=3Ê¢ÆXÜ"ryð 8öØ—}¾` òÕ†ù[šd¼E´ÑcƯ{ჲP5œE{Åx´—•IóÂ5ìvç´ JsP^î¥3³·¢3ÕӤűþµÀû½%3éFïKC•”ï¿ã,-øA7fƒmɷ޽=¤‹¦å,)¹ÓWNâqiìþ ÍfãåR¦5ñÁs2,!sÇïÄ~çNÿ3Ͼ/ ÿ³Å»u-þG½^á‘ȼñ?—çWŸj­FØj†­°› ëC¾êr‘Ó8 Z¾@¨6¸ƒ{ÖG|çÛnÇOƒßÁ§áÏÁÔ3|%´%Þ¢§\u‹à#LNçüò,ì¶§¦»gß»ãF³K£Ùwÿ¾¼J ¢ÑN² ÿàmÇöÖZðé<¸:Obz·àî˜åïØýoˆò±×Ƚդ¿È·ñ6½ŸPä>n d§5‚Güg“•MFpÆu ¸ÆÈ{Ÿ­­­¯ÇŒæ¦ð•@PÇ{VÐöè=T$´IÜD!jÄ׸ä={k-S¯‡«…i‰ÈÀÏ,Oþï ¿Uù¿]Éÿ…$]þÃü¯uBåø™q Hä¥èöG—¶©ˆÎVç>(ãuƒ¢rn^ð2Bã;â±þÅw\Qü0š ‚úû(z¿ÿå{ßúæ=?¨ƒº:QE G·¿ƒ­‡Áˆp%w¿‡B¢¨EkhE»E=FtÝ òHhŸÇr–èg;ø@aXq:Ø•yóTIˆ*–F|a.œnÇwŒ1JG ýü÷Ñ…ÈŽøQS‚ÄxGT=IŽ“ÊW<µ®‰çÁZ˜ß@}QS+fºTšÐ bsClªµ^-8¨üG›«¥ÉÿÝ(Ö÷ÿ;û•ü_D2È´¯Í Eõ*ý¢½Ýš(²ìK“ZI"¥‘’:|ÖÉž¢\GžõBšïÁ:`ºZ=ü‡ç"ÒÀ¸jXBžú£?q„­šæÛ1áO‡£ vKþ\à gðù¥À#ÈÉ û·ÑK SôPƒÛe[Œ’µ(¬ßaM®a°Êëô<ànàQÞ­k…N6hx }¾r°Ö­¬`ëÛߌ}9jÏíoí;`…`Ù­b¸ìVo.c–”Ýʊʾ-µrDZºUB-e³üøíV1w‹÷>%U€¸©t¶"‘hŽ¥úUÖÍPYWµØÀU¡ÿúUõ±Œ”a§¤c4 °h±[zÃjƒíƒõëè÷àöyÖ¿y²i6àËV‚C³ƒìÛé…Êÿ uËNäÞ²S%.×áŠ_97óÏ#²Ypmè©öŒïôÅ!‘6ýÇ"0íXŒqB­(†?©› Xm¨_õô¯zÊW=á+ñ”ûü5UoÁ.*†Û°î:lPy‚‡=!yÙMÈK?ò²¢>ÒN8âîÒµ[™N8€4G%åœãè±ýZóÅÖ‹×Ú.7½:6½­DÏs½L»ÿÛ“â¿ïÀù¯¾_ùÿ^H"ÓV:ÿÑ Àn¶ @|Žë.ÿöiÄ[@ìŽÛ÷*ðuÞò=•Xã³Æ§°…úúZ1ƒ 9_á"4¦Öm øéââuÜTú{Ñ޾$-mY¥òÿWÿii÷ñöö®*ÿ㸺ÿ[H2Èÿ¯ ÐÿP¯-âöÃk 0ù÷È+úQÅ™€áh6˜±ŠN˜¿Æì:+¯¸Ÿ“çm4ûÐË;»(vÉ^õph”Åeœ½„ÌO*68"Ç@8Ï—Lsö¤œ¶ƒŸ$nÙ¹G ºFÀ5´c‹ERuvc®cÏ©.p/%BÛÔ¦±–© «NlUòLtýy|\šÿ¯xϰþ£#aµþ/ ! ­ÿ½³³Z÷øð(Ä6gÜ X#<=l„MôßfárÃú³•ÝþXYú d(5²Ï¸W0NOžýD£Å£-E³uÀÞ¢ù{ ƒ>¼„©äi“:FJìVùÐJ\…5Ö›hõÀq­[Ô ØxbÊØ\o¨‰’: õ¼%þÈ#¤~Á˜ËDÍ-óÖ„C–7á¢!€‰ã0œãv0õQ5ž~ÁhfÝ3î3Ä !ÔzÀ®‰Zûƒo3ØŸL†ßÌæ,ém· 0L‹âˆË=*¦¯/É×åkÃPñdSfxyXã]I³'}©t&18âܮֈûà[uø(€¥â!Ø– &IMߎnA—ÕßÚùè!£KÒøK|$äyzbã4y{Y)‘&cœ‘ש¢ £¬N=?ÞMþ‹â®-hÉ¡¯ ¨òó:’KH$zT*";…ˆ\’W¹ëÿY5¼ê÷}@ªù~ßW}>RÛO“ÁA*Фyðk8ÈdJ.›¨«-­œÊ¼$<Œÿe1Â},@5=¼6 BðRxû;’ "m±¸ûBƒ|7}g”¨ÒB*Hôå Ì(q¤‚hæe“¼§3$.4Ya¤ˆ Q8:' $£%7?­³YWðQ1‹)N=ë™w 7xwÐ¥Ô]ï¹ [XzÒ –UÄŸQùÂË•:=]F¥”TŒú=•·Í¨6Á$9¼N]!Ÿ¼È|NPã,v‹¶Xä¶QA&16F ¸$ jÓ盵ài2þ>é?n_m+úHÆJÚòŠºï7ö‡÷+_SÔÜRAäKöáHEvÙú«I^û/”MCá:lL›#Óäkn¿„”…š¾ãÞô÷fú¸7]ã.<ùdè))d&ÝÀD›Pž0ž…ÎêÆ²îMÉÆ>'!Z Ÿ’ŒÊ~‡;7F]Û=̺èÀ '„@%e‚Åù³[+»™ø­åÅnzFßžfTöâó=ˆ&âVeÿõcxûC.¨f§±o0‘úÉn(q¿˜a‘¬E&x$w3I&@‹ôlêPᆆ Ð*8Z¥OÜD윲žîœòÃæ_ƒ›ÉsòÎ)28§Oú³q2`ÇÀ‡Ïß¾¡ÜG—GÁçþä×àáÁêÂòùq€Ö9TTãáûÑóãq|B”>§3¾€éî,Ó>ÕY¯ÕÑãYÃ’(ê!ó$l‡Ëó¯ ¥¾\\pX°XŸËÙçy‡õ™àë=ÄVÁ²«OùÜ^B; A›sÎ|…ÐGxø&ÖèÁ’”ö1`V¾Š‡ öZñøHgtz©8Û+è“StÊ)ÐM}!i//ß­ùûå$ŸcºM%&Ž>½]wž9=}ÖÕìnÇ ;jv´‡ƒÐ|¨E„w­”íëß6“oϬßèßµ|¾‹bKdñ0ŠïççâaôLò0*ú%¹°Ïžšâz”²lpàšÌ†@¤ ~Ì"Lƒÿn1ŸÈIýr¹&O¢¬k¯4w‘¢RýÌð÷ví8<­2“9Š£DQÁ\º·@Q3žJ tÇ:ùYëv:3¸eƒäâ%£ãRÙ©yz³¨%t×nT{?¥7÷ÒzSöƒÕä½iÉ ŒaHÄv«§øólÕÚdé„–õúyl£A¤ƒü»4ñ÷ÂwÙ\¢Aòš]2ñ” Íh·€cþànt9ps8£’ ¸[èR ¬ÉƒÎ÷{ö©³ŸcŠGÛ)\y@¸ò,ŒÂM‹”Θcc'g¶é€Û97ÆüP1f6Æ<°2&ð˜á±^k™K‹š]Y7[e¬Ì¢Ú‰Î¢Þãù¯Í¤×ù¤ˆk´Ø¯æ†ªã<«.þ„Ø“7= c‡-6gÐî‘%u`ÚfÙáàx}hÛ™ÜBcüw2†îÄÕEö=MäÞÓ0öH‡Ú½’æëP[wøw¨mH\º[¼CwíjöSÑPéc?—‹ø¬²2.þoß/Éþ+ÞÙuû¯Êþk!‰0¡Œÿ»ŒÛäþâê²Ñ醰½`;1€:вL ê30ÑÈ’€¡÷é8ÀwH ñmÆ;?T`ã>ÒÏÞùbe *Gå [U aÄ`ÿÓ$ß“Ü÷G &ºHrOtäË{\2ÄsÓÌÓÁí\‹ô§ì½x(Ò9åD5Q•d—ˆ† ú²+'4Ρ¡n©™R H8;®4lú9<¹}±¥4³âɆcA tžbE¢çørQïtHwRæ­O¿Ð”œ$lõ^‘zgZ½úÄ/\oQtŸWœØÖ–à6H*(¤¯íEécâáè|)U‹ÿÕ2 j7Ò@L# ˆI*ÈøåýO´q…áƒTaø4 ßékÇðù â8ø„\ ¢í‡¹Çá-fä^›½öCî±^·Àò @ç,`<½¸p’9Ñ?2_eÁé¹wN¯½$œžû[7V¯3W¬ÞeÜ^@4p ”§`öÚ$÷BÁzv¥jL€ÎGó$”-yðÀ¤Àúp3´O}%$;¢À ó£yê™wÃýT"wò Ê2\Έª4 ê ª W ¦Íà›k.gÀMšg?áÊp¥Dlüs¸æÝÔVÏ즦àË â˜‡;Ü©7,×e™#j&„¡•Di ]€ØÊ=ÝE¸—}. m§˜Ž¶…¼ÂÈåT‹0Û”Ÿ¦ÂñT#|’=–p6ÎìhÌÕ«tp  öNyŒUuïdKÍä+Ø ¨Ø3^ØÈGÈáOþàÓÔØÁY&À¬²Këhgþ³)Û2¢Ì¦ŒA£]³iÿMͦ=Ÿ^…4¯Ù´Wp6íÛgS–ˆÂiˆY@%ë²G)0ñ8uÅ` á@~ûãƒ46«cQ©µÓðx 1⩜.ÒÃñw ö]”mõ…”žà¯£9âÂ¥Z|&CXx¼meò8ʱdÄi6Iq=M,”ƈqêîD¬®lFŒãг0¢Ÿg°9ó_Æí"`bŽÿü7 ÿííïkþ?÷v+üï"áÿë†ÿÎ ø;GÐo¬¯Ô7é›Ü;w<¯”óž#*¨†”èò0Œò÷´FRPã­`¼Ák„ñÚæ¤/×6S+XmXmâ„Vp= S *Õ2˜È¼aµ€¬Ð´$­2ö°BÓþhÚ {Xa+ìa…=LR…= *ìáëÄ*·è°¾UСppÛ4ƒíù8ù«€ƒIž 8h ²VÀÁÅ•»É„– 0ø ƒ*ÂÉÊ´0 T¶NðIÿ©{˜¸ ±·dv.€´SØùõ@æl^&•+GAD öhÙ`6Û0{‚†’‚%oALÅ®8­Dœ™}¤—„[ÖH/ìÕ.Ûs$ÁÍn. ÿUß®ïFþ«^Å^H"¬$â¿®šgÿˆø¯ÃãÆ'Ã@­ëð¸Óºö‚~ñ»OôAH`^:Ä _Îëºæñ‚f:C:ÿÜÎÆÀë7¬ßuˆaHôÁ;õÉíxô¿ßkèE°†^‰˜®ßŠ5 hU@k£H-ö–Ä`ʽG›øDT?試s¹BXxC¬ëª÷àë7X î†ýï 4ðŠøì…Û¢úœW÷,èéI›Ùnµ‹ã—5ÒpCªE+ÐJEi[¨šŠä] Šq¯/ô‰3·ëƒùà– ñ¾o—,ðe8œWg8£y³ÉÅž»9æ:€€o7¾5RäÙMôé·— ض[A{~07xÅÖÙ"0‚¯&2öÇo³‘êV./±Úo8løàÛ·áí–«0 IP…¨~©ò”®"õl`”òm“ñ/©ˆdÕ[ à™¹ØIΠ%F*Ú€ ± i5Á}ˆWúé èVp… œŸ‰ßf¦vO»çA†W(=«CA©QCeoÇ„¤55ú@ýŒâù©Ny‹NÀÉ+Ϲ&™2çš3ôrçj•-x·<ÇnŒ3,™U*P* µv3žÍãN†ßh³Ì„žÇ,sCÁVi’ùM°“08;îÔ‚Nˆ£‰´õ™ÂÓb&Xg6w¾¬…„ z„‹Vk¼·P÷† جÑú··ƒé­…ÓÁŸaOŽÚJp :xB[:ô=yߘ㦻p` ÞÌ <Ë‹àRɨ %«;+/Åi¡wK>Q(éºv’ß8rÚ™¶öŒ D• ŽO6ÛkÖÈbº®¯a:ޏÈéÓòæÃ?AÂóOÀ5ÜJÚXˆgHæt5r1€ì p~ûÚ< ©ÐY: ×yFôÚ5¤ÇV²XÊ2èõ¼ƒ~MGýÚ8쎄éGÿÙ˜ 2 „!eçJú7—û‘HKí'[Ÿ®¶ÚkDL¶ÅÊ7{IŠlî¸b=ÏQÐx°ÅåÁíF'<ÙÀìáR­ä²”"f =H…ÄŒïÂt'L£­Ìbr ¢þc¾,YäÁûø¢°$ÚäsÖ€‡TPB›iBqšÐŸŽDA”|Tlߌ¸ä:lÏ0k¨eR·åŠ"™‘.ܼS2úp˜HY"£?‹¶‹šàe:ÖíÔ©¢ ñY‘ _ ¤Ò ½n$ ­µø¦¡&´9 ¼]N«Y½¤í¼ñ& ŸÆ»f/]Lè=S±°ñe,ÑN¦ù`•ûº€1$÷°rs Ì,ÊžTÎ…S­.?ª±K+2ës›‚9º*ß™!mÂ^ 3Ö”´YµeYÄ.Œ(ÜgO¿Umî“ÏcÞ1;¼ÙKv…V2“ý¤ùN#Ÿ´WBkm+XAËSRV0»íŽTbŽË0ìðåèÔuÉ}dO]—VaV|(yVxËWÞwчUCó™C9º(熹¤%ˆÓá°ŠrÖ›ÃRëgJ¶”y›‰ÙÿL—hÿ³éþŸw*ÿÏ Id‚Èö?Ý?Ãþ§ûOLÇ?Їçélðˆõƒÿ>+–?õßH¨Ýp3|¥$>.•ðÑìçc)NLAMñ;‹éÁ­ò™þ@ªõOgÌ*:Ûé”1œ½`#ŠA²)>Ct G·Ïwƒ;‚#Za†þ ºÏ·?piSK,VnêŠʰÖUÆ U†H+kˆÄ§Å+â9SÔ ‰Î$_#$6Ñ|m´yX™ U&H• Re‚T™ U&H• Re‚T™ ^ÍIV™ U&H• RŠ –%›?ð¬Þ ˜9ÑÃ$I*‡ Ltª{Ʋ¬2Hª ’*ƒ$ö}eT$½ ƒ¤ne$$ý9öHè1“$7;ý¬¡º—Œ’ça2àm€bß¿÷îùY&$–MÙ‘k¢ÕÁfYÆM%™'• õ„úá=3[”hÆdÅÞgæ#' $±–ÊÅH‚™‚•I7S˜øQ·5XžýR‰V’>æ'v!T–üɇrL>9QŽåX.ù˜$هѪ7'‘RDš”&HöórDa)’ôy>c§Œf“s6>"›(¢ŽNlðS®«^[ö+rz”‡´x3¤Ä(£é¯ˆ¤Ü,ËŠ(!^‡z¬á)¨SÁ|¨P[˵r5ÙÛ4caH^–E…àÛ‹µl~Jãÿâ|?I[ç4[ò9H-9:¨×s™[™Ú6*­.–i\T‚Õl‰S5·Û÷j•ÓR(i€iþ›z{å´´\+!Wƒ}l7feTÆ3F*j'»0S#Áb¨Ì ’Ã(3ŸÑPÒÜò§ÓÁܦSŽî)o\ÆäËlój#Ðé…b¡VJÝ¥[)QûŸ§åÅÿ‰w·÷tûŸ½íÊþg‰°ždÿsaŒÿÓ¸Èmú3£Ÿ‹ZV‹Ÿ‹·ñ‡Yüpä°™·÷è/hkeb#—²z&6U¬ŸÊÐÆÞŽ¡Mã‚Òåc&bXÖ‚Ñ:,‰AÄÚû8ÝŒÄfGBᶸI èÖn%Â:†ŠVvÐè Ë.}:&`´jaêi5ˆË°uz$—ùPûˆM(ú»ž|C?aoѯÿR ¿0¾³áÏ¢M€¡ç3ðë.›d_~wÅøÖ]õP³fðê.Ø­KŽÐŠÐ–‰e írÙ¯Ã\…Q¨PË«€ZÛèìâà@,WHeˆUE*§‚ˆ9ì87ˆø¢ŠjðöAÄy£\äÄ jÐÚ/~¼ÒÁ €èvÛ‘!úF¹c\ÔRaXm4‡ˆ„öÆ âjËÇÎý6é%DV-ý™T—ôDH:±CœÎ_â ± …øÂ Ž 0Oyø\p­³Žþ,|Þ«CñBøˆ Tè kà-¨€›Cìà´ÍÎF>·õŒ‰ðÒ|²AØµŠ“*±öE‰…;/¨A÷e6/È!¹æ¡?y) L÷ú"”%&K ~À;Õ5cŠzÄæÈó #zc#À#”I«Ëˆ‡€»"S(„̑Դ–¹Oæ&ÁHçBØ””‚cN[IJ —pL¤×r瓹LÖÏоB8’eÞáÎYJt¯ U_Fç¨óôÑŠ„50%e–|6Èo\SB4~êYò2'‡CpÕ"´+ß"GÚº”P ^sr/Oä[áh‡Ì=Œ‚‘Î€ÉæuÕÃ-¬Æºöa[˜¼ä¦§“bßɉ?N¹ aɹ¨-#N‚×:XxϘW´‰’`J¦i·HœòEMá­&†ÿ^^ü‡x·¾»­ã¿£ ÿ½ˆD¦´Œÿ6Æx øï7ñÁú]z¨PèrïU*üyjªðçIªðçþ¼ÂŸo^ùЮÐè½B£³T¡ÑµìKA£W.­+4zéhôR. ÿ]¢½XÃïÄþ{‰Ì ÿ}yvVë… ¼APàg€?½øÜáéa#l¢ÿ6½ðൠ_Óg ø%¡r t–[Šcb(¹áâº9\_ ›5¨+ju‡Ók8E™¼†7ẫÿðô£¿>~" Ç&Ç /›ìµˆ'ï žâŽ á+Š7~$pqÿF_“œfüx*€< ~È)¸,h)ÆÑÖ°w¡.ÒáÑ;ý™pÇçƒý†Q<¹$³ŽÈåµ?>?̆ˆŸ¢.û6?ÊØ\@ ¾Í€b þrCtqe bÛ4¶P.ûô’|:Q>å#- ßø3!ò ù†‚Ç)€1…IN±±„Æd´Ë7ÞïΤµ*@na¦Ùñ J/ÎNçG"žÞ5}S{w˜za¨¥‚þ LýyŠ=SXuôüxC@õÔMðos eJPôòtψ¨Ï‹ôO¨"`kFX‚ï—Ç9Öö& ²u5!_Èt’%—.Ã[ÁW ¹&kòP6ˆÊà“‘À ²š,¬Í`4@SXît0£–R2Èñl#ë}{†Þb÷ÁZH7÷@§¼&L¹a©úQn´ÙPòð5Íê·›AàN†±Å6DÚÏÜKiëÅ Ìèæ‹4õƒ†ñÆŸÙLqÄÝêM†·³‡}]¡•)ÈymxýÛ.Ø4¤·ÝFNJÛñg™Ûnëèlm÷0OðµO0(ƒ!¬¨ ³¡BK4ÈäI]OYý‡Ô㉠a)ºÜ¢~ÜIÑ1a¶µéóÍZð4Ÿô‘¼ûj›p J¤‚0½šñÏߨåæµmnª[’.M+Œ•5R -l}Ø$¯ýPÓP¸lÅA·åtRÐŽï›n3 ÆæpÔ"‡Bx †€ L¦Ô–UÚY¢xòL3gš.ž!Âq eo)x1ã£14ØÒ̑ͤžnòaó¯ÁÍä¹?yƒ  ctD'kÜ1ŒÙáó·o(÷ÑåQð¹?ù5xx°š‰ ùŽD*ªñð}Œèù䟥OÁéŒK#Ýd$í3Ñ$äUP„gë2mQNÂvع<ÿÚÐ:nd$[”ðËÅÅÑ¥¡r—Íy‡u£`bƒ~ j‘ba#˜Ó8Çßªä” RCÂÍSÖM „j*Ü[è»36¾²Z‚½VìèKƒBÃ˼Æ#Àßrè”ËR†Y“à¦#ÑÀ„´ûòÝš¿ ù“b*11ºñ6xÑÌnào4®1å¾Ê”»å N³š1šã˜žäx›Øœ9-rvÕìnž=5;ÚÀ$t:æK+eú·ÍäÛ3;sD&6Ïd—¯ó°:Ã6@ÁÖùåV Ù‘‚hïð+9õm þ»EÏ B9øäßQ°®b€3å¤f "ø¢×LÖ È.QuFqHmš«—ŒÖ:ŠAI¾)¦6 ‹­MÀp Â]gƒ\Ê­„ò¨°°ãYvÓ€gÄ`¢míK±¶f­f@±C¢jV<Öëäû”/ˆ‘Ü4S–ø€Ó?˜slôËi±ÉCo ÉêÁµ)äNîVCJ&ûŽN°Hèn‡L=|Ÿ¥ -Œ3|{‘ņ‹Gþð2b×qÌp®Î¹‘˜Â†$6L¸Ã€„¿Ï‹MWàèI½[‡Ãœª†]ÉäUQjÈŠåFþ@JqS‰›íÑn‰i8«š/´ß†=‡”iFYŸÑDLQÁ£"Å•ÚT|sfé¥Z” ¸P·hZÑiÀÀÖÇÞ²Õ=lÀiH«5vŠ5Ü6 û–æ8 0aqxšÙ¥ÛH%ï l¢›ëœ+S´ªˆÒQ“}ÖœØg'¥§Ou>F¸L>ãU°/¤–ŸéÆDø(Wpû×ð<:6½#X²lÇšl;fÃÚBÊ2iLˆTá{_ð¦u9ˆ}­‡æÁ{±ó¤Í’…÷b÷Bi«’.évÇ‹ä½8.“÷b‹ ¤,¼>‘÷Š˜Ø¤ËSŽ\“+è¹*?ûIÇ(滤´kÂ&'¨ç3±IÆ=$…³NÒÏ™[­`¶ €âSËO[Ú!Aozm'YJeo‹¤Lìm81§|ŸUúß{ó@¦›!¡7í4Û)£îqçKh,T³ä¼£ß`ª ØÆkk‰ð†¸DN)hÕ{^vXW×:5…unîð¥$7mÏU©7Ö|sPª¸)x ˆ®®*q³Bâ¦îµ…d7õ‚n®êžw;eXb¯²ÄZÝÄí¿–ÿ£¾»³[ÅÿXR"óR±ÿ2ÆÿÀ_yC€À·ó Âìº2EAMtÚtQÿÍ›.Owý7·ãâvå'R\)$ÈoðCBÀŠ–p ‰-”fÍU…ÚKY½Pœ³(|9‰ R,ÚcOßpœ{}ãm˜HûtYp#HMo(à£+ƒŠî¨Á`ãDlf5#ÉiE²#WX G£=ìGrš,Ïz$wp n;R8ÆÅJXŽ˜ 8ŒØocŽ×ºƒÚ°‡êàá94CºâVÁ:ª`EƒuüQq:3«Š*VÇRbuÈPk5š‰@jŒò]`2ªðýUŒ7ã#oˆ>y}Jg ÝQ¢Ã|?¿÷¢ÝˆdÑ¥½€å&uäS$°Ö¼û»¡8‰œ(#Œ†y\RqFÙ×gñ@oõãHÉ«g;Á•¼6zޤ{¬/Ç+¯ä»ßw° I÷´[žݬ1/ʾã=‹³ºÄuNär|Ýæ˜È…¢P”á…õÃ\"å”9å÷³tÁYŸøæÌLÁeÍqÖ'ôÍ9Ž&„žÐî­åæ–º?`á% :áÎ¦È…Ž¥Ôd Ö¥Z2srÔùœÛ¦@;Òl ©û¦B­L¬$NçÛ9Gdpˆ]JHc‘OÌ1_wÖÖ@< âç(Î8Ô™"‹Ù¸÷IÎÈ `ÿúâúD›+×. §‚“%³Ëêƒ6dÊP$ÜТ&O¦˜i®¥ g †Ì…½üM4¯ù‚+dY <ðŠdP<´ÏÒåþ‡,ãš)®›[èç y°F?XP‡X$~ν`Ù||î´_ ä•á?§ËóÿïÇû:þs»Â."&•ñŸÝÊÿ¿ˆížÁtüðs`@Šƒÿ>+QæDµ&äÐÐëõÄ¿6{'bC™aÁåÿ5FÜ41nEtú;˜† ̸ÒNÿ¯’ÎÒ ãQÀ¼æ—À€‘ØGZ~ª¨‚0RA<$çëìq £ïÀÀUTS)UT€**@ Š PE¨¢TQª¨UT€**€3*™XxW¿ù Þéðn8#ÈgáÈB‚ÀðoÛX!×U €õ*Pš¯ ÁÍŠ¨U €*P@(@ÌþJt«@o$PÀpôS¨*7ÖËó^ªçád@2xíÉâ´Gp3›x-žø…ÀˆçéáÞáƒþ½¯ú¢¡6¯÷Ì }Y¾‚ÝÞ‹Á›)ä°|^Ìä¯ÎÈ‹ÖYè:˜cŽ2ñCÑ`F,Éÿ® 4+º¡Î‹_ððJä-Žz jÂ=£ ('!ÕLG,zy‡W9Ü’2:§£@îü^ÿ7u7ï£+HÅ⸼Oõ\ïá>‚g‹´Øæß½˜»`H¶†û:°÷÷Ï@wn׾@RûúàùN÷2¿©°[Äñ¿a*ó°›4b~Sa¯X‹mS¡XH‹Ÿ nü*réØ1"¯ûîúNÖ¹%ÎÉáá?ƒ;\:9ƒ¼÷A0û»è·Å+ÈibóÆŸ=Ôƒ¯IfÖÉïÏÐq0𸑜IŽáìÒ ú“Mñªu8º}x¾ÃÖJØ—#Á€A÷ùö.mÊÂI¸b°ÀQ¨Ø¤ ­¢P¬l Îä.gDÑtžøF `ÓÈ7…6˪øUü‰*þD¢Š?QÅŸXxü Á¨ÛÑX7Žx²}%M‘ØUÑ(ªhU4Š*EBùnÑ(ºU4Š*EùÑ(¸EË‚‚R”ëÑÞâ!>‘5 …·cZÑþf91-Ê MáánÙÇÛrv¿õV¯íYF+Ýå½ÕÍ'mÜ\= ËþñµñŸƒ™•î·~yÑ*J 83ÿ‰É‘°sVçt$\Nœ ŸeœY‘Y¼?7×±)SxÖizÀ™9‡žH¬ªÄªE¢Xãñ$˜„_Œ#ÕB¤„H Å&»Wð7hC!‘§meÆp5ÑÇ;ô¢ãOXX3=X—3ÀŽWòLœÅe°®SòòV‰²2g̈¤å3z¦@e)Œž£CÊ WVö´Èìw|™‘&yHˆáåÊ%÷s†H¨.:ìj^™!#\­,[ô 9QFt7™Â}L^ð"ñ¡$V÷‹Iàš|a&’6–?1Ê9ú¤üMâ"— ÞŽ…†¨è¾¢UšcÂøß»þôyiñ?¶ãxOÃÿÖëþw‰H€Ãó/ÍÓ£àâò¨uŒQ}é´®àÃF÷ËY­æEþv² z5:3ÀzQšõîçG7ºÁàŠAð³ÿð<˜2:þ@wtð0=¡'aPEï÷?°lã;€TÜ¡çu@ì$ʾáèöw°õ0Ø ¶µÜQü>  ¤†6ìiCñ– IÊ#Ö×d| wpž] C5^Yôî÷Ô®6šÝðìü0)Ò,Šó­í;¦ òn,æ´UÀ¨¿{dO7`Ø$ ¼aE?ÄÞnñ~ÀµÞSðƒÏúÿ<"=. zª>a«–}±,:î‰?8š £ÚpÆÚfgƒÞ` +ÍÙc9{RΞ¼F&q}ìÕŽ{pQ@ÿ€lýP½±ªVqÇ=ò¢gÞ©8v%7ãÙ#3gÜ›ìÙ›ôˆÖŸüËÛŸ¶1ÙyÊk[²ãY© $Íñl臚1æc1c¬e¬óŒu1cÝ´Y ±1!ëÿ-:#EsÛ¤¬ÿۻю¾þWçÿ…$6Y¬çÿÚRGµ³,þ¯¯6®å™T…ÄÓã:­O•s;œæûhY}¾yà<ƒß,l˜¸z.gp¶=DƇÇgO|Y 4| ðA½G-‡‰ŠBNøý–N tþ—¹ÿßÝ×çÿNeÿ¿D¸WÜÿ·ÎÉþ?ÇæE¶øOCak¿C¼wæ¿_ªý} ûûjOžóük۵k÷تïgÞªï»jžÓý¹kKîÚ…'oñÝ·£½Ûåïvµw{üÝÞÒ6ó9YÿïÆ³ù-ÿ©ëÿ~¬­ÿÛÕýßb›ÖýÿáùÕkÞ €›¢D<6ìwÏ·ÄÁ¯1ó¾ó6öžªÁym€Q2)«=…uO¡jÍðÖbl5ÊÚaÐñòT`–µéØ-S [Ü+i[ÝjÌ]¿šé/]~QH¾”—d#².Ü’íǺpH6ëtbØD€úÒ:läGÖ}Yÿ¿ß<.Ïÿ_´³¯ãâýjý_D"\#žÿ?5Ïþ¡†Ígh´OÃö—;Ç”|†Í£«FXD3HÊ„b¬R9Tzfpˆ‰,´¥¼†v¸—æOr"HümRÅbbšÎÅäKâ©|¥m7ƒYý…ûß¿3ˆîñ{ì ^b¯BS²#â$é?48„BhíxL‰ÝûýC0}¾Ùd~ŽÈ‡÷Ïè!jHòØÇ·_Qït¼ë¨Ÿ¤Äé`1u–þ÷uXg_v¾ßÛœ%‘שΔî¤wåˆK'¨³Ü®×Ί¸^Ëë.!ðvüðü8J¡±{¸ö©(ŸHyšR¥R8ÙP ¦uŠØyúí%¶ l°}êIíOj¿8¨•æo ½_,ô~ñt¾’èU®pòL;g4¦®_µŒñ49ŸÓçŸìæ®Âq„á8I!Tðk'cõqG{sù¼P A~†0@Oh";b#j"…‰Ã0F÷H'O–¡ìg My Ÿ‘.:â ÿp2—H%`3PaÜÌL‡X0Çàkʾ–‹¹ÉPHÄ ¡ÆÁZˆ—)³åÑ9bž\ho²nÆžûîÆø\w;žLÓ§ñŸ¡™ï©úµ°ü“»Ûà^ÌÆè3ø6‚Pç£ÿÿ‚ƒ5e”U_2¹WÐ%xu‚FSzÁtðcA±ãÙ¤?š¢¯ƒ¾H޼¾MÆÀC?ÁE ëoÏèKJø­ïýï¼Hâ^#¿ «a@MªBjtt 9P‚ˆ Hl`¯='æ<øì’óRã»ûCQô¼³ãN-8 ±ç$ûÖÌE Ô¨aÿÇîOI“jôú1Dæ"åm,œ•üVÒ×áMQ;=*úˆÂ쉓L}w%OČ΢EÁWæ¯át&—}Ü6JE®=ºpå=/¢>Ag'ã(ÛhÅ—Y؃n_aXq¦¡,0ÙêLôÁ§£ Œè¥{:˜}Øážý½Ò¸Te¥^y\ªN€^Q.íyqé‹àB´§¸…5‰8 ¾ëC¹üι=OÎíåæÜ¹ž­|†¦ù Ź-C5¾?ï…f÷¡èÍÇhkûpcgø¸ÿÎà?T«ËéHô¸G|‰žôÂvØþr…íë°Ý O:×🞡â×êFm`B´eQ®~‚œˆætö™ÉϧælôÌéSs êvß©yûDgÖLî>љѕWÍO݃BEí/Ø2(Åݧ·ƒÐhÛðIÏý oN§¢ä¢pNE¹ú×q£ðK`¥ „^b×c„ k°ÆÃ3§´¶¦j~À¯h3,ðg…Gßg?øÍ »]¤7ŽôØ6` ©î›ÜVnÏ˧fÒi˜¤ò”]gÂÈêœétì㊸蓉ce_¤rE‰“S¨Rõsj¨£g©£ç¨£'ÔÑ£uôÌ,´Xߨü,ÍnC‰ ý •¾aÇhøê3¹íL:³£%º—8OÍ~ox ŒÉ]Îq˜f¯azHrÄÖáBþ¯ˆSVß*¡ëL¡ééˆÔÇupN[­;K·ÕýÚÐûÍtÅtÑ;c½Û³ùôÐÉËë¾Éà“ƒVÁƒÙñ^—–Øjñë—tÙ¨ùÔ”ÂLƒ¤{ÛIŸ_iÎG³9¸dQq¸=—Wr uA.¡ÌY¥=v'~²Ùþ²{¹ÚYx²Ñ>u9“¡SŽ*ñ©Êö†Ãá¨Ã£ŒÕŒîwRðúd(ÐÀéi>FçÔýf¡Á’ßà윞qx,IŸÁ_¢åŒ£Z3…XÔQ#ÉRÝÉøàõt§¢ºÚPÙÚx¥{Œ£-í¼E¹Å"ÒS˜ qšDQu›SPÇhöj'”‹N0¦·8eÂýw"Œ™èšÓ{¦Fqþî´û1Kïè(*·§íbAsÕè·?‚Tl<4J¤ÇÍ\j¦Î8¯Yä$÷Ö¼fQü×àqiþŸâxÏ„ÿªì¿’/Kø¯£³3²ÑlجM‚“0`Môß&€µÐŸ­’`m\ Tʶc¿å`Àš5¨ýѪA­°`¨ÇœX0¦ó×±`­dU?‘!ðo3Xc¸ –û à-èɆ¬^{ó+ÿ0’LxôŽãÂaŒXˆ*‡?Zø¦üv0¥ÀJ#.hD@d÷?0ʃ~€cx„´J1à™ç4EÖÈ€"Ótµ°}BãAigA÷¦8Ú­TŸx|~˜ Ÿ†·€æ èIk5L´3¸ï…ËÃ7Z&óÎùÇ“¥|ä ÛÌЩMG§6çÖ©MS§6q[›¶þiš:•~cíÔ¦©SmæAƤ7Eœç1ùaBƒ°ñÆ“J·æØ.+å$hÜð{Ñ7³Bø´v@³€žið?Ô4ù“5¸9à¾Mlۆʻ‰ c LÚ[¨Nh¥TPΑ|E8¼û>‡È"‡þVà÷ Ëj–µÐ¿hAD‹‹^žFò5%Bëè'¤Ç±…æÚP~°œ&$ir‘W„WËG¯Òí°Í׃yújK +‘ 2Á£’³À4¼ÕÜRAÊ—÷¾HªfVfn¢Âof¾Q™y$1³¶Æ1f¾ÏÌÌZQ:Ò˜¹é`æ¦3ȶЧt37}™¹éÉÌÚþEgæfqfn¦2sÓÁÌ÷37=™Ù;ÐrfÀý¸"PÌí’Ñ 6Ö*k‘×þS²• çÍÎ(&nék³i¦  Á·ƒ'N¶`ZC/„ÀQ¿~ oÈõѨû©ƆIÄYpb¼E†=J-åø‰ûL¶–çdk¥O¶–k²šÙt£ó-™p”¾Ç…©äˆBþè79LZ=“öaó¯ÁÍä¹?yLÚALÚxÒŸ“Á<Î9|þö å>º< >÷'¿Vä:'£ó8*ªñð}Œèùñ8 >!JŸ‚ÓÇžë(¶´ÏDœÚ+FqÍ wž†Öùi#ì\ž%ÿm*ýÑ9¿B/ίL7QsÇý‰  „‚k€œ¦Y0›<G°Wè9XH Pg"†af ´ l‘7]w ΃ ÃMp?Ðâ¡f0!Ÿl„ò §$V?žÞÉÉ‘W%,¹lÇí’%7H(dþº)¿nНIœ«†¦ÃÍRB¤ƒ6cPYÏÃ>i>á($Uãô+oº+jêH¥bØDN$}A¡`*ذAц*(Ñ”ñêÝš?.‘×Ý´ÖÝ´Ô hº ÐŽn`dѸæí\8G˜Êéˆv†ò·Mû(h˜G´x&ŸÙ?,Ž|„kñe"Uè#ÎÝ&¹ý€ 8‹}£·æ[ƒÿnÑ»Ìc¯¥b¬’ÀÝf­±[;3¼Ç]C(ù¡ÖR4£F½¶3R£Íc‡‘@ŒÂjÙÂ5‹íøkp!¹ˈ‡”ÆÑ(¢•…C¾&¸Œ–¸jòm³ŒÍ tãñ‚ãÑÂvÓz÷›ÊaMLh¸š ]{™èR¸Á/Z‡@¦N1m ¸YµÓ0CÀl ;E¾uäNðOî¾ÀdýAÿàˆ§ãð´”ÈŽhÇéâ ñß œob|7*F€¯Ø{Ê aÅl§ºPG½œ†ÇkÉpš"ò¦ts¦©‹ËcÃíDÀ@J‰Àg(5I™T¦bc8Ð;™42™™åæ;7ûì—)8£Ôµ ·X‘œ¦ˆ´%KÎh§€èT#ͦÑç˜ÔGv¢“qnÙy:ñŸBDÙâÂ3g8ÙdŽìÙçÈ~)ÂÓÍþ±¢)á,*=S×L¡(UzÒ5E(}ÃÒÓŽESУ9ð‡pž*ÈñKóÿíņø•ÿ·Å$ÂK þOôÿ¶$Ïo+éóíè-ø|˽«¸•73ËtàöŠ MTÏšS1É‘XšÞYq*öŠA©^2js+H•$#­•¤z@"à4Ü›£ñh“`_,N‘äÙ®BÐü"IåT’^ƒ¤B%XE¥»Hz˾‘t¨IåIG Hú|»Z}Oý.Õk‘ÉÏQŠÓ"ÞôªûÊiQå´èM;-ª| UV>ŠdB*EE¨?"_ÌѱPåVˆët+ä‹™±øZï@oÒßOâÐ'UÓÌÕúëž,à&­ÓVÐ Ïüê½A¿:¯%1ýÿdiñ_£íxg_‹ÿºS¯ôÿ‹HdÎÉúÿËZ¢ø§*¢í'0€:~9dS÷³’­Ø¿ Å>œ0'ýÑ=:·òƒhb¬Ë¿×_¸Õ0(éAéN  ›Ç:øà‘[“Pôô͈½rèeµ ½Ï®º¯tÌ$½F³‡æ2ѹfW/–¡T ¥Bd¶~CêEõœçPuhÙ‡B¢¸tP†âÅ{(V[!öÚ‰šRS$;â¸HòýMâ2*Ŧ}ÿbVj.B“yBt˜oBËèÖòiJA·–OS ¦jë4;ßTmݾú…§&ñ@>d'=à¯äC»Þ+ùÔ‹e]‹·xØs6׉CÅuÂU\³~KªÀr;粆/ñeMêM¬t ‹?±ÜH¥]H5¸e3©Á!ï™ñT7™®Ku·ÎôBI)Ä`Qf×rB’4†’<0TgŠºÓH¯Ëî¹äAq^ ¦¬‡ëzÍe£Ý úª¹üuÇ<¨ž‚H0U‚ Iäþo4yŒ—eÿ³]ߎvÕû¿¨^Ùÿ,$1£lÿúÒi]Á‡Ë³¸Ö¡÷€^WÒí^±+½ë —x@(ÝšcÐàùöax7€ë5ꭸώÅ?Ñ~Ÿ”è¦ ¡Ýe1§!–4—I¤ØÿùLÿ;™Õ‚ß Š[c›{t\¹·%¿„³Ë®xv‰YëÏÆwpNÇ¢hGÈrP#™á>ü@Ñíþí<¦è>¼VHÙhv¯ÃÎùåYØE»Ð£µIeÓùÃóü€Š»_^%%Ðl‡‘Ý'ÞAÀOÝ"MVï GãŽ~ª®¡úÚšð™ ·Vע棇¨Ÿ“3ó•+üa<~‚Ë_´‡þì?ÀýÊlL6ÁŒ3€KNV;)¤ÿü{ø0ìO^ØÁú’wx÷OØ©tÂàš\­…„ÆÓ´&©˜éNošB|Åv¸D¶Dxß‘º%ÂìÀ;}aÜ¡â0i0bø 'w)¢ý½N?~O¾\_mßÑÂù y6ĤJø/êüý{\š¥6ãÖ)y·L(«á²×Ïk¨NÎpòžŠ¬ø÷6 2V»¬?<‘ýßd<[šþw;Žv#Mÿ»·[íÿ‘¨ ô¿—çWh¿wH¿‡TóÛ »ùô¾èCÓ¾Zlsxˆõ¼‡½(õ±hgŸúh«…8_21 þ.—ïøå2Úd=¡'aPEï÷?°llÅïëïê!Ñ }½e'7W»GË5ɰ¾&ïÔ|7P‡æ \°B±lzð †Ûä7PÔðB@Z~:®àJÀ¢ÝŽïp¬ày„6"ˆP®í™‚%™ö ´:ø¡  @M’[6ñ’æX¼TãÄ‘ûXœ±¶ÙÙ û %&&›æìI9{BNñ¦Kºl£W2­õC¼û€Ãú¡Šº=d Ã}lB6–E‹ø( oë±!d CDT*˾²f Cq3žýûœ BÒËñ¶tedowÒlµÕI£“6«M–Z\·ÑO~T{‹•M|ýÿ¾´ûŸhw[÷ÿRÝÿ,&‘ ª¬ÿŸj‡ð°YdÑ'týæ[´\Î&Ï·³àûðç-y×ç<«ëexy~Do&þÍ q÷‡ÝãOhÿdºŽ@•€Ôl |‚þ³z ò7øò¥^ŽQYf$¸Y^¡(rVÅßÖöÝ6[Ϲà,ð† ŠSá÷¥òû_å7ßõê’HqSkˆ®äð‹ŽÃ‡ÍäçšPîž&:}mýR •q)‡Ê¸¨©·÷äìj¹š(×Ñï@²ùi ½Å+xßb«(¸ôfõ‚+îßÞâÆåÿÒânïÇû;šüß­Î IFùf8âûáì €2z¸êÚ.:ìÁM+ù¢ G¾ÆÅÅinƒ³óÃ㿎ƒOÇÿuºÄ1Æ_ç—g Ðu„ÁçD䌃f/èèÅ%ÜKÓ’j‡×ëëWkA|ý Ñ:ÐÔÈÃãVãꈖvqÞ=ÚÂEu®ºÁù_hÃ4Pþã/¨%Z†ëÚéõÆ1>鬅xç¾ ¤t6#V×)Q]#‰†C Í‚íáBNÉ‘ —±ŽZƒD\Ð=>;>m\¢ö£fÝ^ð¥{Üù ßðŸ¢è×_¯>³žŽÖ>þuÚø„z$øÜèâKUÔ hÕ_ç§§ç_¡ è·®×Á_|ÜŒ¶·…ßÛì'¢dØŒÑoáœS;üEèåç(^ÿIþä7yOÅ÷Pã‰ÏkO$S†ß"%1¦$Ž×Âä7®ÿ&mMÞ“¶â÷\_sDgu[—ÇX·ŒÑ¸jÝ«óËÆ'`:N„·„Ÿ®alÔ›r±;Js Ìº¦¡Z°Ú”2àáµPÖûñó iÆY†®°#Tw7~¾yO“Áí¿¤š6Œ»Ùå4HÈ_;ñSôiÿû ˜¢ÍhCn³_ƒÁHÂüÒyyØ›3õú^qê{”z<à*õäïlÞÉsV~£§h¾Èëð0Vîàœ±üpçŒ ©ËH¹î¾°,‚vÀ∇ÿÄáÕ×óðkø¯¨ÆL.LjS–N÷êèÂä1ò°?냗‡Ù@]`NB‰Pü{˜Ô!Ȩ÷âŠCsa°OeC ÝÀQÐθŠ€ot{¾£¹HI.é°|†j‚|bßío'±qp Aå#šðÖª] v·Ãh;¬³»rS]š´ag?FÂîcÂ2É•÷@*V5_á+åÂ6×ÚE½DúŠN3ÿ®cÞ^Ò[¨¯ë˜Ž ²õŽ5â¥NÔo¡ðZñ1™ IÛ„&ï mÛ)¹m똂 ~rÛ¶ -RÖñÛwãvý—i<­]±7¯®Hëu,tlÔîê“}íµl;î—)T£ÍΚ:q„ëeêÀDÈØ“0£tŽEñvøæ&ìCñYv`ºÀ¥Þ¾6ôz»§t{ûÚ5½Ú=}~B'¶ ×mbr.\\8̰‹ÎÈÈxƒŸ§#,s‘t„23÷D¤ V©'tÑ5çé5…ú̓‹øÌÍÞ²ôŽtqø†n]V'%÷?óS¤ØG;uMÿ¿ÅÕýÏ"™MêýϧÚá!Úb¢½ö5ú·e¹þÑ÷ïrYåÜùßÿ 1Ò½ºüÒºò¸¢7>ÁçàëçãÖg| `‡øº{„J;DEž]œwŽ:WìZ$Þü稅ŽñpK€¯ÃQ›×ÖqƒéÏx_”ôÐßëWÕÅK0Ç‹—ÓóÐ.š|ÓBÚ°¦4à¢N“xU qÉu9ìÒÕ¦{†1ÉiÉþiœ~9ÂwyPMl’ЈãÊÏ.N©šø¢‘¿IêpÜ¢3¾ò9:n|’»@줶O³îߘ¶Kòg÷îq.zyԸˆu{A“Õ¦òu£…“(çq7@ÿ;oˆ£Ðw=LÅyçnp1uuÔ½ÞÂ<~ü/+h?ŒHׯ[` b¿4N±ò>a·X¨ŠCàWrÃø‰Þb¥ÝcAñAêí Ë{ä Ø¥–OÁ,sOÈl­>÷UMuSƒÖXCп£ÿFÿt$$å$!^Y:ü" 1LJ€S'Ìï{Lw=ŸÎ‹)mý®‡øµ¿ Òø%Q”Ü ù’v6¼ßÙ>ØÃÙ÷ö÷÷ãÿ½»u°·½³·³{¸ùA¸gRo†ÐdS)Vsõ.›è¼Ùü¼y¸‰fì&š¼¹$óžvDWÈF÷h¾Ù9ïtŽ>5@ê±6\àóÅa¼+·JÏEœ¸õÃAr7¶‰úG""ÞÛæ"öÓ—ÓÆå&TO(5œ’.ð±ç0‚Å”=û›œyDš_ág$ߺF)Vüþ ºâ¿c~™Æïàè)k•û^¨Éâ÷¨‚„ ¾P¼ù&αNfªV󸻨ž ™ÿ î¶h ó„)î¬÷‡_ø#:~£kœëuÕ™¬°ßl}>jµ"轆~(KÚùw¬òænž†î¹hCÁZ‚m4 q2v1i×{-ØmàÄã)ÃÉ}C»KêÁH÷Ñì9;Pë>’ñâò¼utøå1¼¹;ô+/>“´‡žð¨ô$ÖòÄ<ϺÔ:‰‡Ôr®yޤ­ä,® `Zù×ñõæg’Q¿®K¸Ú:M‘¶ Ó gT„·m¹_ÄŽÂMèÉ+ ÌwD$Hï.Óv)†–©ÜFp!ÿ­ß9 &ór…f¸f’W‡£-²Ìðõ¡.!fP¥ï¢=–¡Ñh¾ª"Ä ã“0”¼Mû¶Û-&ŠÖ9‰9 —=ïÑce6£ä§1y O)ÍÔ”~c$u b.¹g´†ïfo¸AZqlnøº±áëÆ†¯k '—‰²Œˆ\ó /uèðiàŒ™3ô¥Ù‰»_T³TyJ¥›H7ã…iU“ñ/©ÞB©-¡àISæ- êèË®0Ѳ1ÄÑŽcZMpOcKÑPnáy??!¿ÍP¨ïiÇ<ÈŒªôéØÕNßÐr1ºÅ³]È-û ¡ž;ƒéà;^+~ ÁYȤ?š~åpšøí›—‘àÛdüãûëAoÈøUFs2,„~Æ@~¤s@Q…!õ´&!s….0Úx¨6ƒslðKðóà> ;A¹ÛÁZhû$ïi¨ìà2ù€´ F¨Ÿ7Ê :OâmÝsêñšܩ§®1+1õÀ§ºìØ2ånŒ.™d*P* µ w3žÍËN†ßh“δHÌiÒyíyVuÒùM¸“08;î`ÏB'ˆoÛúÌái1îu¼æ³¿4§ñEÂ]—á4^*â͹Š/;µW¥å…ž›zÓ¨{„q®B7¿Aç‹Ý…ð_vAìŽà|qú¥±@Άz_qçðŒž–Äߢs£!†3yuš!8sF?ìí\Á™ÑwÑ+ÍŒ¯!çâµ]öÓž7sÆðÉE#wæ¶ØâÓ½˜¿záÜFËÞ7½Øæ¨s^¡‹Sê[ý¸ÅŽ,1hqU¯+b1_´ì‹Ak1’..ÉU¾€5¹oOè"{v;¥L,1æ¢É\ËÞïl!Ö®©ãñÆÇÎ3§@-!Îöz†$Ø1‰Cr²Ù^ á.-rÏ2!êq´Þ¨n8Bò2É¿÷”dçábw³Ä4¥!MÅÚé¦îDŽrÊ,KŦ…¨?5Îþ´ÐÊÚ㼦 ¡=b„=IJϰïgv-s¡÷ykÌ”á9C\\.R’ZÍ ÅÉPéGã¶+m§¯k«Y¥”I³ÖUR"BKˆVM¤¦xçœ"5s ÇôÖE¥£YšDf†>å7¤ú»ÄŽ®D#8ˆÕ:áÉFÛÆä󢙂n í–y={HíŒ3=üva‘i›á9Fö˜Lu›ô=1Í7ÁšÝ“rÊ?L>¦/ÏWÄãNŠ+z£ëùÄáy2ܽ¼ìT7#Pü_I7Q¦ˆ5܉y#ñoîá‡ÝD—D“˜õaÐm>?a®âÞÙA¥ŽºÍ1.%ׯªI¢%üŸ‰|óϯÖwÅØADàÝÔ™ì,Ÿø5ÂݔʄW‘ðr#Ò^ÇâëX{]_×µ×;âëv1P9‡)%Ñõÿnž`RÖÿÝhÇ€ÿªõ‰Í}kü¿î!ŽÓ¥àÿnàA?À—Gàeãô» ~ãËÕçóË®´ð£3[ÿVY·Ð"¸µ“‹Óµ+²ÑŠtO»ÓzŒ¡ÇHŒ÷‡wap¸…^£w_¶`÷5øÝŸ¢,íÉøû0øk+¸bÅÙ÷èä1~|zž ¨^u4˜âç¼ÚƒÖçטc÷±Vgð{6ÝÜPâ{´{ûüøü€×z¬3› ¦Ï òqI#n]l¡ ÈŒWÀ?Cƒá¿ñ:Õ…œÝk\TG‹ÁƒŠ„êôùç þ†ÑúÕÙx^½žø#ÖÑgµÓùÝ[ ¡b»@£ÝŒä”xð0eï6ÿz›wÚ£÷»Á·áˆÐÚ¦ÃÇ!pÑ/Ä ÏSÀKQßÄx¤ä·{-•…ùOuæQëˆø4 4‹ßX·×[/DZ]êö¶Û›7±ÅÜv™“[ÌoAÍîÞ%YñIVÍ!¯Èé5ÀâÓÑ(GtbýutyÔiu%6ùÈ ÇÓ¤—XpÙ€ç?˜Uñ¤Ç2‚f¶Ä¡#÷¿n&}@ªRP96ü5žò>{ž¢ ƒÆÃ÷ñõñcÐo»õƒ0¸lhŸî¬QëÎúH`<¢KÀÝñ·Ù/P ï¢Wƒ§Ù³qt°€¤ÒÓÓÚì}جÇu&Žþ!’ûó1øBcWëõÎÎ×äÞ0{yÙ?@Kt„=–_/¯®Žð |8ØþP„°¥Di-F¶PM_/›kbvN .ÃWÿ¡šðúVLrFq´ƒ¤(:v¿?¼u2#‡–y#@¯ÝŸA-Í©å F…mµÄð %Œ¸ ‰£m‘Dôñ.´ôr@ Æ5"apO0à¿ÚÞߎ¢ÉW@$ ½‰æÁ bÔÚ [ zÝG%ð;Ë1?Çùr‡h6ª'9¶FK¥FÃ’ƒcàí„×RC‹¡?GãÁwÿÐzi1Þ]iûm±Ãh¿7pßÕºØYæÚ:ùÝbŠÇ˜ USO ¼ßp¯…ë°zoóM½ëС³£9ˆ–š{_[3…V¯YNÕaìÕ$zþ{Zžýw´_ßÙ×Î{ÕýïB™£ÒýïEbÿM­¿/iú=£ï‹Z.‹ï‹‹ïU3øÖ,·†`*v{þ‚&¬´±·hç-ÒïH¤R(zòÌo–`ø-RظX¤á·»æ×fø½,[ê ÚìfjÁhìfˆíðÚû8·­5çeèH©—%µÓzS*…ŠU&FÜs:FE¡Æ"i©YRBØÁFµÔB>Ôh,±àï:ú›L²ÅJ)½‰ñ¸Öz‚£ÖÏГØmzv¢b5ë׉Öé·¢‡Z)´ëø_'0LŒ—c4ÈF¾òŠX™Z̓¯ÇÙ”uEpŸ‚éƒOGA/ Ð3J÷t0úðå_i–ˆ9Y©4KD7+e°I”Š©ì+ûÄEØ'†í6¹é3Ô¹2¶‰ôÏWmZ˜jõg²t[ý$Wa9þ.*£¿·dôwA Êlõ'ø*³¿Êì¯2ûsšýµÛŠŠ(£ :Mò3›z%)+~5mý Úmópï²áÎlÚwQ³Z-hfw]Á j2(bA£?TW{ãÉïTƒ6é”xü™ÄàôDH:q‚©» Y¬HòðÂÊÙùù3Nq3?…õJ3¿S–lŽ÷ºíï`|Leñ®4‰/Õ/e³° WŽEžVï ´=!0ì7lµg㇖y +Qرÿñjæiš—[¨®QžšŒ,Z¾áÞÅ`¸WRbøÉüàiøúN]à|þc‰Lÿq)Ã?(ö£qQòÁÎ`²- ôózøc<.!ŸòHô€“þè<Öj8F‚óø½þûˆNÆ`Ád.lq¾ƒA7õÖÿ‘—PJí¨ ´#´£Òi˽ºDö’P6ÌÆ f“¨»yçH¥ Ž²iÁí=$•À\ø’¾ªp=eàzrš«‡Ü£Va\[N3^ D€ºuæè  ¸€ °dPó–P@Å" PñËú2£6_QåÃvôÊ—÷4BX)JgÁé‡Q½oTáK=úK×HËØ€•ÒÈSsªf—£Üo^rØNv b¾©wÞÍB p=íÔUC¢±²—ú¸ lºFJG Ø®U!áëL¨ ÿ»Àµúº ­³ûuå’ãTS8ó2e-MÊ=¥ïU:Q²§ŽËu¾q«ÕŒÊAJT]WÚ ƒt:Jú¥y½œ¡J½šVÆr§¨Æ­avxY|Î:áK™³#pbUžA* ½¼#jµcÖ†4§ŠÕnƒI]š–Ž~/}ø½Œ˜8ñ.CsHsQþdµ¥\šf·|ãïW)¸Ši‹ó ®Óûh‰WW€YõÌvóIÚèÒ´Ð `‹Ò^g`sWoÇšz›êõŸ–ÿ§¾Çšÿçzÿg!‰ð‚¤ÿýŠ&d‡ÿ ðÇïQ௽E arÏ=Cî0 RãýMi<·Ñþæ¿Oï 3@ß5á†î/#¸Ÿ+š_û¡gîw«FzŸÅ6ŸñÈ ¨ðX¼"8v„†Àk› zI 8ŽPbCàR’œ=9Vž98…tªNÈx£ºL:dæÿ‡ þʺ´éK™GØBÞápq£óº»0-t!Ó—'t¡ÐKj'±>R»Hê!GœÃzæ8‡õ2)3”cˆ‡±²”w=þÎUž@1æåÅZy±T^8±JR¢û¿—ÇÇeíÿâxw¯Šÿ±¬Dæ½´ÿëպLJG!¾ã=K€„§‡°‰þÛ$@ZèÏVÉq@  ¨• UÓ· *V XƒzÐÞ²YƒÊЭԘ%ˆzI@ º–Ú¤˜©äæ>‰à$Æi²!-ŠOL›ë 5cz0 ÔÔêÄ'k“…iᯂG*ÄYnSÌ Fà‰¤™uÔ î4Æ !ÔzÀ^˜*<‚‡Á·ì'Ãï?fà &Ýí†bZž{XL__’¯'Ê׆±âɆÀñB_ò®¤Ù“¾T:“è\€87 “@ pÄOeø(Àu(b"Ø ¢&IMߎn‰+ùlXÌóÑCFŒŠ%i|ƒˆE´Þ ò qQ œAK.}]Ì™dšHÐ;*• ‘BD.+Ô ël] ¯Á}IDÀß÷U|ð#UP˜¤Hv˜®£` òà×p:É”à\†§•Ry€—„Ç€ñ¿,F¸šš¨!' àô`ú|ûƒ³¤‚H[,P@4Èw]–R¢J  – É”%ŽT-ün’7ðt†Ä…&+ŒQ! —‰ÉhÉÍO†@ëlÖ|TÌbŠSϺ@æè Þt)u—Ã{A.ÈÖ#Vžt‚eñgT¾ð2F¥+À¨”’ŠQ¿'£ò¶Õ&ø‘$‡×©‹"ä“™oس~ÇF"h‹Eî{Ê,h]`eP›>߬4"õV@™V ˆú#thË+ê¾ß+û+_SÔÜRAÊ—#n D^û¯”MCá:Ð_–›#ÓìknÐ2塦ïÀ7=¾™>ðM×ÀŽfCOÇ^|B ™J70Óf»/ ±ç@eUE¿0n¥h¸*ʨ$£WĪVÁˆU­¬ìÖÊÅn&~ky±[€*DßžfTøâ#>È&è…8à×áí¹ >šžÆ¾ÁDêC$cÔq¿˜é¬E¦(X¸®å9Zé Up´JŸ¸‰d_OÙØükp3yîO^dd?žôgãdÀŽ;Ÿ¿}C¹.‚ÏýɯÁÊÿü8@ *ªñð}Œèùñ8 >!JŸ‚Ó_ÁtX~Úg¢–re€êì{_ÕfÃä/«4¨ÿIØ;—ç_JW|¹¸8º4T<÷Ðdl°‘ÀtÁŒ2ß4d7úâ+W#FŸ”ö1`Ê= Å^+˜v:· 7ÐKN\Ðê@4;è¦x<íåå»5Ëò9¦ÛTbbÊàmœpæ´e¨«Ùݦ;jv´Eƒ·×"ÂVÊöõo›É·gÖïôïZ>ßE±‰%2ÙPÀýû\l(Î$ Ñ¢‚äÚ€ÿ䊔Öà§(r4øï½¾êWâl%RL¥âEô™á=îíÚqx⯫t„· 8`$¢"¿ «#Vh0$/M3!5K:ï¢cRÚ%E;1ÎØ4sÚp]¾¥Œ‡Ý¥Ý•%Á"yab¯ð(ºýÙ¥y‡Kõ çfÚŒ“^:K()‡ç¸,>áŒh‹À}]–$0ÜøŸ2$†}>šY“ŽìjpRh¹âÅ^q7Gfž4 Kay9!£¥×l±É£7J»'J?ã圢ÁÊež8R¹Ü¥eKœ(ۛà %œW ñ&†ÿ˜Ìþ‘†ÿ@jøh»Â,$‘Y(ã?.á1 ¤äЋzøc<.wÜÇ(-î£;ÔãdÐâ=2à†¢Sð õX;*`G쨴Ñj¯.Q]alŠcl$ƒüìm2j ý‹)% à›üØÇÅ«Méãâ,Æèï‹* Áãªt)Àx‚¶ÉgB…$X$Aö8‡žØƒâÑá\µÑõ?‰t¨Æ8dâßÖ„05Ù¡ö—Fˆ„Dtâ V[‹ŸtFÆ8€U”‚Â!gÈ?9pVŠU[š"‚Vê•™Ÿ5˜ùo_å²—ÙË‚Yà]O‰M•¡ïrÆÆ™»ö:é[KÒ/ûç½®´ðs5t©ó%5ÒÜ<æ‹_08÷|ÉÜ­$¼O0·yÍk(¶DÍž£kóÌ—¹K+?Êl7*ý’oâúŸxiö¿»û‘®ÿÙ¯â¿-$‘Y¢èb£ˆýÎE´ªV¿—±[#§i„^@#D~¼¤¨‡ÍPŠÝobô åTê¡J=T©‡*õЪ«‡Þ€±ŸïP¬¶1_¥©«4u•¦®ÒÔUšºW«©«l€ƒ?Ys—jËkpçí¥ëãî¼ èúâÑõY¬}¯ñZÓÓ´~SrÞ†­ÔxÆ"jT€¢ЂG?°ÙªZ̈!Iª?6dÆ<&Ý¢6VB¥Ób\`Ï£R«™±±Rýî\64ùC´šêåCi¶T©ÚNE}CX³'>ËàÙ³gWê0Ó•EhKá¸×c?°Ü\˜îÔGKªª}xŸ÷òvºÕ*YëõœzV»á&mta-,³ÞšÓµ3§4Í‹í2‡TŽ6JÍ `ÎK½«^.Æj{UGQµ±.8¦DöQ¯®à°*œí—´Ñ…ÕÑ sSc« Ynûê¹ãô܉þ÷~n `·þ7Þöêªþ·¾S¯ô¿‹H„{Týo›ì€¯.nØ Û’#èf¡7±èú³U²è6®ª€‹ºB˜UžZ¸ Á®àD¯ ³©‡Û‚~ÎÚ'Qß ç>“åÐ?‰¢¸¹ÞxÇãPPmñxbüìD?{'„¯”̪›iÙÏt‹j“y¸^õv ²øŸ&ùžd¿§¡ÑaŒß@ÒkK‰’|yϯ˜ynšy:¸£·4¥5;J³'—ª\sM%G5¸wß]›·M­¨Ã.I‰íPÜZÛ~Ù] 6žåžè–YQi³Gi ó4 È€”‹z§Czg½ãž¶>ÝBRgÆVë©u¦ÖªÏú2km‘Zoç_kQƒŠ¡µ%@¤‚rÀÚ^”Qu¨Î=!.AG3…S*&Øíøáùq4M¤N"g©¦qÙÇLà¸^© +Á?|ˆY(b1Byߊ´lAAzôð•ˆäQ…ß÷!:YZïûª«ä{zÀ7?t’аÌò`ê©zucID>³`Ód1– 2ÄnºÒ–›F KH’BAWLWr¯Ò5Õ©W´|ÿé¤/Q¤¿ZTí¦Q`Ô³JÊÕ0éå$·TñË{ïàìY9É‘û£o^G7Ý,ÌÑjé6ŽnúrtÓ“£›éÝ\G73qt³tŽ.ÙͽW¥­¬Ó¨•†‘²ƒ¤d~Ì“jåIñ½…Èɉ”j™9… R¤È…`¥”ÐR©ä-2 P:^*ïY;$ãy´Ëk€ò€¦Zdþ¥ÊÊVº¬l’•˜½ i^³i¯àl²G\‰ ‡ÒKBþ-k¤ ÜkWq4ß|"ø¿ÙÍãÏ¥áÿvëû‘†ÿÛ‰+üß"™Ý"þïªyöˆÿ;CÇ“€ò…2 Ý »‡¦Ó óA\Úë{m_³€ €–¶B.AÝ©á0§Ïhºlriçn޹N£á[çoü7Eó{úí%¶ƒ­‡ÁVО Ï#ZgJ°N¾ˆÈð+X¡üct |,k–X í7ôëv<€}CX¥BØ'´-»£@OT¿TyJ—=‘z60Jùˆ¶Éø—TD²XŠ- ü‡Ì\$ ÔÑ—g2Ú\ ±üŽi5Á}ˆøé èVpA¨ÆOˆÄo3‚¼ç±^T©Ø³:ÊF¯XÆMkLßñ>ã×ðáÕÒMÑ×|©´‰Ka+|›Œa@Bl-ÜðoϨ,ú×ô¿+PÈ1)€¾3HÜ€^…ô~!è˜eá¨íñ¨l'æ,ør>Ä×  †ÂNPî6`-Ÿ•½Cf8ˆ“ÖÔèõ3ryÂOÓÊÛx[xå9×,X‹Î5uë²Bs µJ‘›–9vcœaɬŠPR9Px¬Í°›ñl†w2üþC›e”@©”yÌ27o•&™ß; ƒ³ãN-è@‘0Ç–<Á:ã’¥?{`°ƒ¾‘›)…Ù£ðôd2˜>G˜‘QßBF·j ì˜BâDÊÌÈù& nžg8¾óóŒ þ:âs¡åרkòzá߯ó…¿Îþý·ZúZª2¡¨Lúþˆžáxÿa1â¯}FçË#þz‹|Ÿ'F|*­¢;/<º³z{ÆÃ:ã˜Îí‹Ó/Ýâ:ŸÒŒ ØÙ9ÿÒ9¾rY_26D+O>éââ=aœzÁ jÓ Ú4c6}!›Â×øFÕÜ8òÊ„¦µa;ÝPP Û醂j‘¬)}·a Ÿl¦FÌ.Çß ÏýÉÀŸ\éF^‘©ËÉ|˜˜1¢5 h­†²f›Y²å@{Wn…‡7ª`y€6st¥KÑl<¦h+€—•»Áôv@6Eãñ“5ÃÝjêD{¤jyìHølãÇæÎ]l¼hcHh´ŽB-Ä»V'­Q¥)ÁÎŽ¾ÊK‘íõ®cÉu %É!_ý€5Žˆ­@“O[g {ÆõK@Ü'›íµÎîj“ÕÑ]1Ççtƒ)ÎóAÊ áy‰'àn%m,*®µéšùb˜c=x:K>hd: ×yFÔ ì % )Ë ×óú5õkã°;’'Ö¼†”G(MèßL\bH©¡dYí'[Ÿ®¶ÚkDL¶ÅÊÅ‹{I ï„Q¸iÂ9 v£PG¸¸è„'˜ÝXµ“ËRŠ˜1  !3^¼S&Ÿ0¶2‹É)ˆ>øù²d‘_ìà‹Â’h“ÏYƒM¤‚’¨¨ÚLBˆ{Єþt$ ¢ä£2,!Ì VIÉ,“´¸­úSg@ºóZ4ÅQ «MbN××PXp<®-1c¯ƒ„¯²Cj©Œ£7ª5ÄâåWg>«8ÒùÞÜòjþ,Àl5Êâtá,Š7“}G:·\ ìbJš”r˜ˆ©ÔO”º÷“ùF>eÐ0¯hÉ—{ÖG)–І¤ÌzϽiŽsQ”j°˜a.»wß©sy.ƒ¹[â`zM_Þ M} e˜¾I5ž[Z÷~Á ÌŽïó*0»!1ü÷t‰øï½ºÿ½_á¿‘È„ñßÝ? ÿÝý'¦ã‡Ÿűët6xÄɃÿ>+ÈïÆúo$Ín8ðÎ&øˆû¾ÁèŠPôÉSü΂ý†"8ü;öŠPáßq0Í\ñO‡¤ŒáìÃiýɦø Ñ5Ý><ß îR€(˜8è>ßþÀ¥M9L ,ßý;ƒàKzYƒ\!ÑW‰Î™"WðÌ( C§óÅ…Φ“/Ý–¿Â Wô ƒ©Â ¯.¶Â [Äå*Ác+ z…A¯0è½Â WtVár0èX–lþÀ³nx7`xò&]*‡ Lt˜{Ʋ¬B¤Wˆô ‘ο¯é"}ÅéÝ? ‘þçÒÑù`˜t85ý¬¡º×V™^.fÔlA_¾OGÓ@òƒ¦&Ðöl°H"ìt³,t{Iøô2ÐW;£ï‡¬Ê 1-Çn_fæ#'"#Ëçb$§j`%GÒqªùóÁ¦Ë°—h&ãƒ?¶ ¡²äOvФá“ó^tÝ“nF?€×œDJiRš ÙÏË…¥HÒçùÐîífæŒ>'›¨wKÞD1 zQøiêj—ÀÈ3Xl‰ÄÍ20äð¤Çj[&úÜ V^‡Z\\}—2b!£Ùß…Æ63ØÔFÕ¬n™àò,LÒX¥žÇÊ=¿s Åí<à?µ AÌK1,ñ±†,E¤ j.£Ç‚"`³j<ïðg¶±Uî´g[(>½»$|:Å?-Ñÿw´þVñß»þ{!‰0œ„ÿ¾0úÿn\ä†~Ïô}QËŠø¾xÕ¿à›ƒe†€Ñ¹½GAƒ*„µ\Êê!¬+_ߦžªpÖ¯gݸ tù „-øšZ0Z| Áî½ÓQÄ61E[]à&)˜+;H˜u •¨¢j.4€A„3XâtLahEÂÔÓj—ap(z$—ùPûˆ%ú»ž|C?aoѯÿR_0¾³áÏ¢M@!æC‚úu—M /¿»bü ë®z¨Y½ºKÁõé’#´ôdbF¯\\Þë…°UnT+ÐÚ*ÖÂ6ú»x=€µ o¶âx³T(冂]üYÎIß&ì"¯sÒ‹œH°B¾IÛBûÅWÚ')Ýn;2$€­(· Ò‹Zª2½-j}çà§‘ÐÞ8A\mùØ©Ho“^BäaÍŸéÈ”®HO„¤3;Äéì`p èÁ òLZˆ/¼4¨ ó”äÂ×:ëèÿ‡ý^Š×à©ÔGüP]§ˆwRo DÜ\˜§mv6òyŸdL„—æ“ Â®•»ÓT‰µ/J,ÜyA º/3H4‡äš³'ÓBüä¥ý52Ýê:0-K–äÃÔêÔÎêlõ¸­^ÕuiàÂF€¹—CÍ,I’ƒE]š+à„±ØYš+ѵé1™9e:…¥%cO„•Çr§‹K²ðnå‚<‘š’ åÁÉŠÆÊp`ZdúëàW‘8Ƀ©ÇBš}ò“ú {65VÀ›˜¬)«îuNS~w[or¢ê¤¡áµC‘%9çûb\—š’qô!»Èåâ”á¿–èÿ3Žöc ÿµWø¯E$Â-2þËèÿóMá¿^­ÇO?ìWå賂¡É½W9ú¬h¶TÐ’TÐ*Z@ Þ"­ò¡VÁÑ*8ZG«àhÒ%ÀÑ*Ïdµx±ŽÉÊR‹ÎÅ7™ÕÛëòRxI jMuI–b²™bRÔ]™©|IV NÍC³êã!‡û »ãÞHXÕ:´qõ\zY^¼n’Ù—c©…x3$…ŸJ†®åVÏ–ï˜l1bȮ֥ ÛõÕìB*$ƒ6ŠÀÜ<±²e!ÕŠy7{µ’g?»z˜—í£"†ä; qIfHFZŒë²‚û¬¥ú,sbiÜX:Œ_ñv“7R¦³4xvÀIih3ËÎßÉ™óÃà[ÆryžË< `ƒ Ïxzñ¹Ac7Ñ›^x@µÅЗL'E¢¡úFA bª(Aå oÖ Ò ðAÔAN÷q,º¡î>® DZþÃÓþúø‰\}79¢PxÙd¯%t!yðØ÷uŸQLÚ#2ˆ mÅ9ÍÃTa@œÕQBpYÐT¬¦Íaï>ⱸ£w>@ÒÀ E2ë-^éãóÃl¸È)êl(cµpÀÈo3 ”gtB¶pe pÏ4~ûô’|:Q>å£ë‹·*'Ùø3‘’ HI-¨!\¦ IÎÂf¦3«1í2Æ·Äן³i­ °O˜L6€dCET& ù#VéúhÐJ[üØ?ZyF^§‚ˆÎlÂ!(-Vé6·P¦L)ÏòŒÀʼ€Ï„*‚¹c„%0Oyœs@>aa£Yò…L'YLé»|ÅÈ;²Úe84PŸŒÞHvdÉl£ú›¢³¦ƒÅÉ˰4 dz¬÷3D_¿‡(ÔdÛptÊK!V8 åFÛ%_ÊàN;w2ÖLƒ"KiË„uÚâ݆È÷1 2ÞÎ^ôå„V¦(S2»Ú.@[ÓÛn#'¥íÎÏÖ¶Û::[Û=Pª¾0UN5 a}@e˜ñª¯.’1•(† ¢D*Ó«aàÑxþÆ äG˜×¶¹©îDFÆʼ¬‘oàä&yí/€š†Âe0¯¾] |ßt£Á›Ã)ŠWáêZ*0y–œRK&iC‰àÉ3Ítžiºx†Æ5”m¾!¤àÄŒÆÐ©˜#¸žŽþ°ù×àfòÜŸ¼ø xŒN¿ãd;†1;|þö å>º< >÷'¿V´0šïHd¡¢ßLjžè¬ý QúœÎ¸4Ò‘ÃiŸ‰Èà•ѲïýÃÏ|¶ÃÎåù׆ÖpñBî¯Ã/G—†ê½`Öç£Ð µFo>FiZP×þXãS*‰nbÖh¬õF5n;úîŒ ˜¬)a¯T+}iƒ¥Ò™½Æßru» Í Ä˜R‚QŤY—ïÖüÑäsLŠ©ÄiírÖ°Ö Šú4"ªM¹¯2ån9ˆÓ ÒF ¶©á ÛW}–-¬´µ½§f§Q¨I /ÌvVÊôo›É·gvæˆL\œ ø ÷ ó~Ÿaàw°u~¹h pRP­õ¿’SÚÖà¿[ôÌ(”ƒOzð½årL):†ØÅx–†J_gøö"#Š ÿŽüá7dì{ÌÀeι‘˜Â†{…Ø0á/`QÁ(&Iô.·((W*ÓJîØ‡ë(ûžNáNó¼E»ê”à¼L0{È!Åïâ±ã5¯ ÈDHÃιŠLKÌT¥07—YB¤;"^î鱈¡”ŒÕ±×du•ŠØc)ÿX¹±i¾À°t€qò®Àf£¹ÞÈ;Ã}¼²Šrß’ÅÎ'v"lº€.“seØT¹ÏdD´oy .“ Ï T´çÓ,Y–­&[¶T š˜²,[‘{ÙŠ<—-«ÈŠ}aÐsὃ"¼—·í¥€ìt£Eò^¼]&ïņeŽ¥,¼»qäqvº<}—S Æ{Lº8ᘯÔiÇ%Â'¨g‹°Á‰×æ9öÚ°”ÊÅp ¤œ« ©Ìp4à#ÈCqÞѯ Ô}êµ¾A"'ÊÒ­îâBÖtødOÚ¹C€–ÒDÛS´-ˆ§÷Kåi‹‘¤L<ýáUó´×º ÉÆÓùNV¼ûêžvYeÀìáJ6Ìžã¿—çÿu{o·®ûÝ®ðß‹H„Qü·Ñÿ+F|çu ßÎÙ ,ƒsgò{ù"WžVåRVÏÓjðÛÔS•¿ÕWïo•Ñ•˜êÄ…¹ý©2¸‘–Yá£9Ñ£‹º¼¢:íÍ ]j4·oSŽ-ìât%£&à¦óç â|½ž[«ÐᕯÖUòÕúúÜ´²ïsáKýq—•×¥øx•Ñ‚Öj4”aªoØòåS2ª ‚•oØWï6¯kØžasG*_ù äeÄç8—9wi¡9ð'‡ Ï4v†0»i(%NËü#„û ¶!énÊÊs úb{—º›³ÂbrûmgÛ'ÎvÖ.8ëç]»ð¬Oè[ÙˆÙ+;ÕU à5æ(îÁ°h4ë?$VuÈ.‹·ü¼ªùÀ-2Du‰^BW#ÖtÚHæ %-M«Âq¢ßhügOœ´p4gÔge-&ìó"f^æ çœ91üÏtyþ÷÷vuÿUüçÅ$Â^2þ§[ù\w‚†ºg¦ðÑTwª‡Žf®AœPÄ6G ]¯'¾×Ø;?ÄœP ¯±z¶‰•œ¢ÏÇÛÁ4d€—eû|¼JúCSÕGsšXškH‹gHFYµÔ>ôv¼@Jqh(¯³»…4 °§WHÃðWN!M¥TN!+§•SÈÊ)¤.­r Y9…”på²r ¹j¿Ê)äœB’‰%Äz'ÁÞŽ"壀pR!>#“€ï¬ëÊOdå)ò"ùØÇ•§ÈÊS¤TXå)²ò9WO‘ÝÊSäñI‚ɲÀ7rc½\ŽxE¸&âoäïí DñŸ•¸ ›Cr›§‹C‡Â÷¾NwŠúÂÜLÜ27„'(,erC˜¢Ö-ê,$=2q^ôöáaåÅ9§ ÎÁ kŒø¡¨7L#<—°”‰Ýè*_ìTçNIðîÜn1ë>Žã ŽU~µ$!¤sv—›º×ÄrÐîRøÕ4Ç’;µÿ˜=7ŠŒP/*‘RWG]ãëÂ4Ãpíäuri.Ë"°Ðár/ åàyJô‹É6Wy½¹¥:ÀͳžE…4“_FH´è`ή1©ÇÑü¹È¬8Y\]–´"åpè(Í*/øpJ¸Ÿ¬¾ž+ ®“J§•´Jš\7zLôì·O™™$ò¸ÁªHOb“EÀzª#àùͱz¦5Ò0ÇêóY"ë; òë9Çê—S¥ÓJZLëùÓÌs,»kbuŽ\'ë‹´þèfôãš7qûåù¢h[³ÿØ­Wö‹H„Áû?Èÿk÷“)Çôe:ßþÀ¥M9H,ñWJ0«ˆ„ýÆÈžÉ*7´+놖³2ELb¾/ꃖÎ_´l²øz µå¯ÐVh+´•ÚÒê•ÚÊ-KlÛ&ÀÉ1šœ:“½q8¤•-k¨sÚI^¹£­ÜÑVîh+w´¸”ÊíÂÜÑv+w´•;Úìîh9èyA^iËuiiq™®ÎêÑÖËk$Ñæf9NmËõMëáÈng.Ž+­n³ŒVºÏK«Ç/Ú¸zÆõv…Iv©ÿøºãÊ幫-Ñãôü'¶·7HÎY]PùV ëïã¶LÓ+2‹÷³Œž·'>H)Sx˜Ýãôœ}Ï&ÀûE¹ -â&3q%›Ž†UqÛýÈÚÑÚVŸƒóYKçúÆlOõ’iõ-øÍßùé³]œ›9œÆæ¦ì^2—èi¶ gÁo¬—»o×LÊá:¶Œ™TÈßlÝ#(u)s.‹þBÓ.q¢œÝÏì¼§]BÛBáI qN[¥¹'‚ÿúýéóü»ñ_Ûñ¶ŽÿÚ‰*ÿ¿ Idkj‡¿¾tZWðÇá¿î—³Z'ü7/ô«“ÖÕ:?»8=ºþÍæBiÖ¿g¾ûž¹úkÝÁÏþÃó`ʨø_ÐFÝqmTý}½ßÿÀÞ>Žï@Åv‡žÔAƒ›ÜG·¿ƒ­‡ÁV°­åŽâ÷ðAHŒ5´e!šW »aš5Tɰ¾&ë›|µB]³ZÈäëÇ¥ôÑÊ=l5š]~[Ëô7ô)/›~Œ9ô+[ÛwLÇÒ¥KœøŒªŽ˜£á¦YºyW6{ŸÎƒ+¸g·ã;ìwU¸‡+q6=@¯Fɯxï,:é7ŒÚ.õ*OZûï ĵY?£ò”–÷‡88Êjn‚J>Ú?‹.-<)^c—gè¢]­ßl¢ëÿhò/ký¯ïnï©ë½¾W­ÿ‹H–…@Xÿ;—g1Zÿ—±ügrc:é2Má®Ï·û@¬©§î>ÃÝüö ^Š®‰tÝ„ÁtŒña\bÓrÿçc0ýïdV°Ðÿ~¯¿ñ½`À—ïÍM¬åJKÁ×}¼+¢abÖ glÏ€²D;B²ßކ£hÁ£ÑTíþí¾èŽ çîkUä»uéœ_ž…ÝVãô(D­ MÓ6Æ*‚VÃðUŸAÀˆ¿/¯Ô} G4DâväÊp¿¤E|rm‚›!çÀ»ë·dÕ¿Âþâ,ÌÔï ÎG ÿíJa0­7løÓÆE£ÕN é?ÿ> û“†¾úŸä:©0¸&`±ÐbšÖ¤klº)Âû¤0’®|BýtôllŽRU!̶­Ù?3]x@ɘJøÌ©^á‹(F¯Óoßã××cÛgt¨,7*–û°¤Bø/ê"|uƒË²ÔeÔaâ.ÍÓ£Âwz—FVÏytþâ²×AÔP•¬»”›.*ç?âÜ·_8ç[¹ýÂû¿ámÿ±ÿ{i÷?ñŽvÿSß­ö I„‡ÙÒË·}Ç­à÷:ak!û>¶áke»ïù6Ý1ôÝà76×£íýŸ°Ò[+7@– ´‰zBOVü&èò¨qt«työËR”ñ§k¼ð!<¡jõ”áb‡}I’kž]u ¤e5Äg_8À‡äÊ(–.`èÊJ Áë6j1”ÎÈÝs³–‹ÛC•~Ù´k¡G¿lÊ{¯äè†äÊÉÙb½Áõíì-¶]VU÷R Ndý¿[îúïkë?ÊV­ÿ HtÖjëÿ!]ÿyï#("ªí3ß{•CïMçUÊ!ÖÚà0ïàpù[€CBÁ!>@Ú°"Øòh[þ ‹¡BÆk¸–~N§ÞTyá÷ikµì¯Z"ëÿt©ë´¯ã?¶·«õ‰K}eýïÒõ¿»õŸœE«5ŸöS9‡•‰¶Ìwó.óÝå/óô° KN·Ð*OKH=ãwí'^¡ˆÅðµÖ»–xFeÚÑÞ£¡ÕÿÊYÿÿßrÏÿ{þc'Ú­ÖÿE$¾(ëÿ¿tý °Ï2wÑûh÷ý‡ÝÕÜè8ÐR4…` „Sòìþ]™½B‚¢,r) G;†í ©‚º°Mƒ©œW"øÔ½uðkqµ{XxÂëÿ:ÿ–åÿw{g'ÞÑüÿÆ•ÿß…$2§˜÷'¾þûæV#l5×8‘àÑtZPc°Ç:ÈçÍM*¾Œ†?·`5¾ŒFà§e&ÏZý‡!L£a?h&÷hÁ~Á^ÿ:OÆÈÖ®Îøçàñf01{âi߇$†q<7¸É@ºuuùåh Öùö*ˆJÐ, 3´’‚S½VåFÛ†»Ô6êlí¶?u;Â%ïZÔqe ;¯Z•Ò MG†D„¢r ÏZ,¼8W޶<ØeLú·úI\ÞŽŸÀ !ðcIÏû†ch‹?€4ÙT^5ÐVôªþÛ:?2_HýÛà€-„¿~ oª8K÷ÉÆ—¸Gº΂Át0c#@Éj¼[ãó"yÚ“¢Å)ÁËe rš­C4ä´Ñ3ÛUƒwE«±–õ´† ½&еþÙ ê±þqSý¸)~Ü$7ÉÇqÈÜnñˆëuµOöô>¡Ãaïš¡´^‰âµ[êû˜Rò÷|Ç?ØÙU?Ø­;?؋ՠåbÇo{;–Ž—èkºékjô5Ýô55úš"}|l1}ޱ>(cïn§ó{h˜ÆÖ)óôðŒ¦yüÁ0üÞ£Çê bŠ='ƒôuSüZž ´¿Dp0“ì¸ ,Û!;ï%3ž—:·üCOxÿÿØ¿l¡âœêH·ÿfûÿ8ªoÇÿ³UûÿE¤ÿSBúÏÿ à£øˆ—¾ ánÌ7áBÎú´µ@ý}ïïÔBJiκŸNO‘ y3½Ÿþø¦îê¥Aíé¡?ƒ˜kÁðO~ÂÆmô‘ŒÝ1 Ä18(mÙ•rqÚw ÿßéqçË5”‰[ ·†dçþ×ù%x¤Ä›úó‹«.Úì}ކô¿×¦k@÷3ZøpGÜ<°Uš;¨Ñ^ƒbŽ¿Õ4†Lð£n[ÑÖ~„ò„°ãý§Ç°˜ nŒ¡QËÖgÚˆþÿúë´ñ©û1¸ü‡f†w¤Œ„ÖtbÂÞÄV`1æòà’9¥'Ó’5ÁoR.ñæ¡?ý¿5àʵ­þµîU‰$¼þOçêþ%uýßÑíâÊþg!) ;cñò¯K]¾¬.ö'‹£$µ!ŽÏdüð€˜ñÓÔ¦V ä‰2:‡9 Ï.¢°ƒ•Gúèd0¯>;?Tu€ÝÄÌÀà f°TO0¸É`عnTäÑ>QMžUG+2ÀEW½uKqþ"f}ôG›ÏO˜c¹¦ª@€&çÞšÐYgÔÿ<é©í¤•Æ¡îÆéú7®ÒÝcUìá*vAø’J©c>ÌpážWÅÂHþÃOåzÏP—óïÈ?wטÿa±U{Û®!#?þ„»ºþÿ~zYÞú¿Wµõ¯Âÿ,$Ñy™Äÿì6®/z°ø7Øúv{ðoÏk@V †iWeäÝ 2mp+ÀY ]ð®1DçïÄý ¾äd¿ìûYROKÙ'Ì $¢ÂãYíó¯ó†5>Y» ‹u· ÷BÎou[=Ÿ…ýyDú[¢|“ž‰ÚPÄÏqOA1÷/pÅ k› êEXÔhÎËÙ“röäåÏìk®W;îOWúÇâÑõ®êÖê„×xÜ#/zæ=ˆc¿•”&VθëØ)²ëè‘øä_Þþ´=ÇŽÈS^;ŽÏJ…,h i&ø‹gC?ÔŒ1Ï‹c-cg¬‹ë¦ÝH°´YÿoÑÙ)Zþw{g/ÒÖÿý ÿ³Ä˜O:ÿSDž×‚Ï1»ž‹3)ß4£³úT9µ/mðòað;=ò'ÆΩ ì Z¦W Äj2 ¦²#þ ~ÿ!6ÿ—éÿ9Òý?îD•ýßB’eþ“ À•vþãs(‹ºûïXÜE!sO“Áí#'ƒéóÃl¥o \–p è¯Äu ^9ˆ3yõ Ï,…­%¸‰ö%W߆»È%?Þà¢ø%ºþ/ÕÿóN}WóÿïWëÿ"’°Tëÿ"}>çpöL,ßÙ3-×íì™CÌÝÝs«,wÏxpS]< .ž2¹xÆåÏß­s²áøÓÜ:·æìÖï ²;!>ûÓ}+ÍnätëܨÜ:—ìÖ™Jt·Î$ç[qëìèþo¼Lýïî®vÿïU÷¿ ItšúßÖ9ÑÿæPþ.MÝ‹øw((xÃàwˆ¯Køïo4˜¨«”¼•"סÈ}mÊÛý2”·ÛýÌÛ}WMÂsª¦uif]ÊØDÿ*¾Ûáïv´w»üÝ®ön¿Û[-n–DÖÿ»ñl~Ë:þK×ÿnïWþŸ’£J÷?‡çW¯m¶Xä&ñrð4ß=ßΰVèטîüáK…zÑëÌk_`ÒÞ—X:ÕöÁ7æ(ÙE¬“]EY› :6ž*¦²ö»%BÒñê{%m·±›“¾ëW3ý£Ë¡aäK ˆN÷ë*Œì4ÖøÙ_¬Ó‡a¿ˆtë°‘sØBÐõ®;€”õwgG[ÿwâ*þ÷Bã2yýg;€f 8÷ª3ß-Á—Ë‹óî‘¶%h|õ 9L,{â gð{6Ý 0.$Á€ôooŸŸðzM«»¤*§îÖÅňÄ]ÿ­îÃQpˆòb­Õ!›ßàó@+ |A(mƒ°ílFøòºvz½qŒ,.N{äWo-„R~ýLÁ)^ËX‚(ð›l‡ÁàaÊÞmԢͽ÷'¦Ø=0Ø^ˆM9! €/CÆ_¨÷ŸCÖeêÂêËÕçóˤoá¯Óþ¯éx-´?Ù ƒÚÉÅéZ|îðÓË­àžv;§ Bo-,ýá]ˆº½E¯¾P—`¿ûSôa{2þþ# þÚ ®Xi´îËO_ÎŽ:WÝ@[6ºÂÌ;e1a@ƒ‚'Ð)4g§#_›ÒŠºM©,ÑIM ÛZý»;²ƒ“XŒ–{­•K6zap7D$áÒj5WeTƒ‰9¬Ã›BÊÇïêƒ)ú´ÿ}LÑ6öf0û5Œ’ÁÜF‰íÍØ^qb{”X2‘jãç™×‰s³††ÍšNÛÔ`›òÀåÑ_G—GÖQWb6&K€Õ9ãcç ¹š19žg˜•1çÖnöaÇ ê]Ä6ý‡ïƒ› švÏ7ˆ¢ï“þ#9zü5žÌ&}¬š~ž¢~ƒÆÃ÷ñuåcÐo»õƒ0¸B9¦}ºqGí:waH<Ý‚w3Ô/ão³_à~lJPKO3â:/:Ø?@síéi m¤>lÖã:gGÿ¯Ÿ»Wç—hˆj½ÞÙÙáášÜºÛ7ÒÕðïþZÞ#´Çj\_/¯®Ž°€ÿp°½[GÏ[ôœPâ¥uÇE°ë‰ï4{†·[¨ú¯—Í5úõøšëÍ17J'(SvÞ LÍ·Éø1ø‡û&ŒIÎ(ŽvÐÂŽãïÏàóbôs0™‘yÌ2ïlmã#eµ4¤–ƒmQ¶aq™Lˆ¶Ä?v%tåýQ·uy|K©H"úxúér@ Æ5‚³Î{Át€Wüj{;Š>$_‘Ô#Ú¿ÃL™Î^d83:ï³mê Tw R;¶¯Ã6Zí…ðY¢9X=‹&«¨áÔ©øžÏXñ£çõÖ§+éxÂZÝRÏèÏÑxô4ž¢aþ9ÎI‰®°-ž,ÛŽ“%ÉêQ¾8›–¤1c/å\ɺ…ü»» `Û×kkëäG¯ÖîIzeLNÛpÆÄÕ·gÌúv²_9eòÎ$] âÑÞ‘èäÖé™»¼¹]Á`kô±Ðæc£ýo8@~¬æ•m©‰œÿ¾ß<þ\–þIãHÔÿîÿ•ÿ¯…$:ýï§æÙ?5ð±Ô ÏÂNØ> Û_ÂÆéÅçFØO6®aÖS!)>µžI…PÑp‰G_LXæóc£å¡#$>Gf¸Yƽ΄ƒ ¹`¸“%´O†¿7é®wŒ²m ~/$Äž`×ë¿‘tB{Úþ:ÚQ°¦Èï߉H ä ‡ßcÁ /±sYr™†Áoüü?dÇYx‚“ÍäcpóŒ‚xLÉýþö ›wÃþ÷ñ¨ÿ@>¼FQC’ÇN_Æ´ðÁ¦è¤˜ Içh|Ôt’—n©ùï:z¨¢ {>éZ—"í¦ÿ#ÞI’DŠý¼ë¼ƒ¾}7zgïÿ-ÇçWäó™úù;Ïï[äûÛ,ß1MêÁïáŒf8#¯7Ù±ué™ÒÉÑw‚:KæÖ !—r<"ù‡O²³àaÐGÿ¿Ád¼åE`Ç“ÀŽ•ÀÛñÃóã(…ÆNÛ§~4¢|6"åiBH•JádC)˜Ö)bçé·´{'&?íSOj¿xRûÅA­4Sèýb¡÷‹½Xš½XÈ ÉF8ù@¦^¨à™âY-c<µZzHDm><>;êà£I-Ñdàš\xTFvI8èãU „ãà ´_#ô©?™™:“ÔØ ýˆŽ’³>: ÌŒ¹|ð y‡ ?C '´Ó¸“J!j"Q!-RņT™,ÑTšò@?#YÅ‘› ‚N`À%.‘J€íÐ û6œÑ½:€Úá\ eß?ËÅÜd($b…Pã`ÜLNAÍ*ΑpkÇ[€º»C¿cß-œÂ§Ocân3¹oŠ¡_ Ë_P›>ßþ÷ýðb6~Büm¡ÎGÿEyúp}´¦ŒòW9aŽïdre8½ÙAÇùïØpë×Àßpy0û"9òú×ø:b†ÆúÛ3ú’ÎnÈ`‘ĽF~VÛâí08Á禠cÈRy_0«l'æ<ø¸ÕY㺥 Üè34xgÇZpO6@ö­™‹@©QC•¡Ã$dÔ iR>P?#Ð_~ZSÞÆÂAÎo%E^§ŠUÈ'Ë&徃 (šO àr ¥LbÊlõÇbÍŽ5Æ [¸pu!“>WÄŽŸ($wÌž¢ÐR-¾f@"nª]ïßLkäny ývwªï®äɘÑYô£±è18ÿ5œÒä2¿(වך¸•Š [òß~]HïÑS¹ç“Ù#±Í„;l†”\WKÅ\“K'B7HÄþ»8/GÙF+þÀ¸ÌÂt+ø Ê3 eÉV'`r >½`4@Ï(ÝàÂvL•)~ôåB\ª²R¯<.U'@¯(—ö¼¸ôe ê¬0 ]0þ‰*¤öd7Ä-ôóÓV&òO$¥Šçörsn urq.¾ƒŸƒ´Ö7KQ§-nE÷U0œ‹Eù=Vþ  ®9ê DÇ#tïôéyÚ¿áYÑÚüø>­Éøÿ¹ôÊv[0>ˆFk:sÖË!Äv¹ã Ÿ.b¤a_ªŸ’ƒåšà™a¿Î),ì$<¹Oza;l¹ˆèíüéQçþÓ3TæŠÈ"F‘è äHC*Ø ì>ßPVŠäŸ_]6Oùµh£¢­‰rÅÐA„ýAüÄG*¹Ê‡þ ä`†[ó«-‹\‹! ³F5 ú»+öŽ”€Bz®Ö»5Ív‹VÍã.²H gT'`ΫÙ;Îìu5;:›ºòïhù¿8óïªùѾ>€Š6Ú_°oOó—Ô/™âÆZW´mø¤çþ„·_´>#Ÿþu¶zú§Ø“ðdí¹|‡ç•¨JQõİÝßÏC$Ã_ èD4Þ<ˆñ1‡ÍWI$LúK`¥Z Ÿ¡á%¶*$lXƒµž!Iî5L­ØÌt² Ÿ=væ}Ÿýà70ì‘Þ,ÒãÙ€-˜ÏOd+§;ÔŠ!= ¬ÜžÜ"uÎh=‹Iú(@÷t&Œ¬þÁ™þAÇ>®\×§Ô.i픊¨¢n5UÉ huô,uôuô„:z´Žž™…º¸Ë¥ÛÒ)ÈCb]ÌÌЕuÎ*¶éèßÞB>Îÿ>ÃS^È5\j?õ§°3@RùûäÌÌn=‰ ý ‰à‚–^q&·šI‡`vD“ ØQ›‰Â<Õ³¥“Û¬\E](^Ãô,¨A [{©e)K SÃ` UÆþUB+Ö†5ö«W5‹5rLÔ³º­î׆žØo†¤c‘ë;w'a¬w{&[i3y;9Ç@| MY"ËKlµø5Kºl.4þJ¦˜¨Äf¤¢ÂÏ4¿+Mï†Lü%\×N®Óm×!1ûuè„uü™%#¹nº —Mæ,N»q]‹Â“Íö—5ØËÕΓö©­hHtÊQÜ6PµÞ¨µ7ŽÃ¦ÿW“eô!Ó!áþ>!{IÁ† œŽùa Ýo,ù Î~ÁéÑÑé‡Ç’ô¼?¯qTkF£p‹:j¤óÁ=ê’¼pNìwÆ™­—âÍ<³£moQn±ˆô&@¥äaZ)óEFG}ÙwxÉdH½Ú å¢ÌE„é-Ž*pÿc=ã¨Ä‡È"‡þVà÷Ñå[d-ô/ZÑâ⣗'K™¥(ZG8© ïG[͵¡ü`9MHÒä"¯¯–^¥Ûa›¯óôÕ6–V"d‚GA›cÈÙ#0 ï_5·Tòå½/’ª™•™›¨ð™oTfI̬­qŒ™ï33³V”Îc£4fn:˜¹éÇÌ#²-ô)ÝÆÌM_fnz2³¶Ñ™¹Yœ™›©ÌÜt0ó½ÆÌMOfÖ@Ì¥ÆèÆbÆhŒ^°±VAØX‹¼öŸ’­L8ovF11pK_›M3Uˆ¾<ÍèTLJ-˜ÖÐ !pÔ¯ÃÛrA}4êÆ¾ÁDêC„±aqœo‘aRK9~â~#“­Ez=u²µÒ'[Ë5ÙÍlºÑù–L8J ßãÂT2à÷„5"&­žŽIû°ù×àfòÜŸ¼&í &m<éÏÆÉ`ç>û†r]Ÿû“_ƒ‡+r “'`ÖŸ¸˜Ÿ¥OÔç;þJG±¥}&âÔ^1º«4`ÜIxvZç§°syþ•ü·©ôAçü ½8¿2Ý8Íë'‚v r ®˜NÁlò<QÀ^5!”ÌE0¬~xaæ ´ ly7Zw ΃ ÃÍ pÛiñÐô€FÈ'!|ÂiˆÕ§qòEr´U K.Ûq»>‚¼ÕàÉë¦üº)¾Æ07T‚îÚš¥„H?mƈ²ž‡}Ò6|ÂQHªÆè3VÞtWÔÔ‘JۉœHú‚BÁT°aƒ¢ UP¢)ãÕ»5\"¯»i­»i©;0Ðt !ÝÀH éèFê@Ç\8G¢¯ÃLåtD;@ùÛ¦}4Ì#Z$“ÏìG>Âõ÷2‘*ôçn“Ü~@Èœ¹¾ÑÛñ­Á·è‹@Œæ1€×R1V#f׋°µ3Ã{Üõ5ÐÜú¡ÖR4£F½öN F'F1 ‹ü‚¬ØŽ¿’‹±ŒxHi"ZY8äû^‚Ëh‰€«&ßËØ ÚIi0/8-l7­Çq¿©l‘ÖÄ„†  ©Ðµ—‰.…öÊAëÈÔ)&£m!7«vŠ*öÂMA’°Sä[Gîÿäî ÜHÖôŽx: xÃcÂßÙ;RÒAìÓì ]¤1þ;óMŒïFÅð{O¹¡3¬˜í´QŠâ¨—Óðx-Nöãè1ešº¸<6ÜN $GøKA¨Iʤ2ËÃÞÉ„ ‘ÉÌ,7ß¹Ùg¿LÁ¥®U¸ÅŠäŒês—œÑNÑí”&:£=?Ù‰NùeçIèÄ^ nfŠðŒ ‹þÎSxF{ö9²_Šðt³ì„hBW”#=S×L¡(UzÒ>üQÒÓŽESУ9ð‡pžZ6þãÿ–æÿ-Ú‹vtüßnÿ}!‰ðž‚ÿý¿-ÐóÛÊø|;z >ß2Bï*nAåÀÍLà2¸½"hSÕó£æTLr$–¦wVœŠ½"DPª¤ŒÚÜÊRåÉHkåi8 ÷æh<Ú$Ø‹S$y¶«4§HR9•ƒ¤Wà iΰ Vx).’Þ²o$jRùEÒÑ’>ß®VßS¿KõZdòs”â´ˆ7½€ê¾rZT9-zÓN‹*EB••"™ÊG‘ÃGÑêÈsct,T¹bÅ:Ý ùbf,þVÇ;Лô÷“8ôIÕ4sõðŸîº' ¸Ië´ôÂ3¿:G•_W“˜þ2?õšþ;ÚÛWõÿ(¥ÿ_D"sTÖÿ_ÖÅ?Uùm?dÔùó $›ºŸ•¶Åþe (öáä9éîÑy–PSd½þ½þ€®†AIJwªXÝ<ÖÁìzìÅ¥ƒ2/ÞC±Ú ±×†¼HÔ”š"ÙÇE’ïo—Q)6å=‹Y©9/Mæ Ña¾ -£[˧)ÝZ>M)˜ª­Óì|SµuûêžšÄùô€¿’ín¬äS/–u-Þâu@bÏÙT\'× WquÌú-©ËíœË¾Ä—5©7±Ò-,þÄr#•v!Õà–̤®ðø%‘§ºÉt]ª»u¦JJ!‹2»–’¤é4”ä¡:SÔFz]vÏ%Šó1Õ`Í8\×k.ÓíÑWÍå7¨;æAõ¼¼ ª ÁÕLäþo4yŒ—eÿ³]ßÞÞQïÿ¢ÝÝêþo‰M\´éûëK§u§ªnçò,®uèÝŸ×uŸt»—ýJï:Ã%G·,ä4x¾}Þ àzz+î³cñO´_Ç'%ºY…Fh×BÌiˆ%ìSp±ÿó1˜þw2«¿AEÇ<¢ýõ< lp8@ÇÁåN j®Ä]Í/ሳ+qbÖ1gã;8Îá³S´#d9¨ƒ-Íp„Î(~nƒG]4_»;O3º«¯¥á-ÍîõqØ9¿< »h³z"ÚUŽ1S<¨ø°û÷åURÍÁÙ¤âüÔ}6!Òd- p’0nìè¨êÚϯ­ Ÿ ¹pkuõ"j>zˆú69B_I¡ÃÆã'¸ F[ÝáÏþ\·ÌÆd¯Ì8¸á´qÑhµ“BúÏ¿‡Ãþä…³ÿ'y‡ „mjA' ®ÉM[Hh 1Mk’&šn(ñÞ*Ä×Zl#L$‚aç„·'©;'̼óÐÆ*“#†¿px—":Ñßëôã÷äËõõØö!œÏÇajLª„ÿ¢®Á߿ǥYj3î°’‡‘qg‰².{ø¼†êä 'o½ˆüúˆ¿qïÆ cµ«Idÿ7Ï–¦ÿÝŽ£½mmÿ·]íÿ’¨ôô¿—çWhï×¥Šß.Õü¶Â®¿Þe6í qAÙ7‡]¬çífPô¢ÔÇV\ }zè£=âp|ù”qK‡ÒÿÂ5ô¿†Fû¬'ô$ êï£èýþÖŒG¶•‹â÷õ÷õèÐÞÇ“»¯€Ý–£•œd€V¡ÿóÛPuÍ÷¾`¼bÙá{C îÉ/®¨½†Ðüt\Áå•a»ßáP ÁómLq\4C3í(}ðCAS€Ú%—sâÝαxlj#׸8cm³³A÷JML6ÍÙ“rö„œâ™¸èÒ›œÖzïF`±ÞUÁº]†MlÑwÁ&dSÑ\´ˆÒñ¶" êèED¥² PÖpa(nƳbŸ“AHz9Þ–nšìíNš­¶:itÒfµÉR‹ë6úÉj¯±z‰¯ÿß—vÿíDþ+Þ«ü¿,$Ñ™,¯ÿŸjÝFØmf^ôCü™ÿ"}‹ÄÙäùv|þ ÅQ[«q¶ôX¼ìp-Ÿ—áåù½Šø·à½Ãñ§ŽñòÕ2±),SpÞí6Ö@×ÿ÷¾4ƒÇ ÇQÈ p3’S(†œŠA Y§¹?àˆù-ö ÌÀ·ù¯Ké׿Ò/¾Ü“õçR>p"Z’³-:ív›ÉÏ5¡tèªúwmýR  p)… ¸èH(¶õäêªyš(ÏÑë+²…iñž¡¿oÑuŸáD€î«å‰&.ÿ—ÿs{ötù_¯äÿ"’QþŸ€]|9œ]÷Ї««í¢ƒ\³Âñ/Êpük\\œöàÚ08;?<þëøè0øtüÏQ§Kœdüu~yÖ]G|AþAÎ8hö‚N€^\Â¥4-©Ö½^_¿Z ÂàëgˆÜ~ †·WG´´‹óîÑ.âèôèì¨sÕ ÎÿB»ã ò³¶×qA‰Æáºvz½qŒ5k!Þ¦o)͈ÕuJÔÛHìá³ȼ`;¤F¸Sr>Âe¬£Ö IˆdñÙñiãµ5mäƒ/ÝãÎ'ú_ôòàƒ-ãëñÕgÖßÑÚÇî_§O¨_‚Ï.¾WEm¶ýu~zzþÊ€Þ늑*à‹›ÑÖѶð{›ýäO” ›1ú-mjÝÏQ„^~Žâ5ü›äO~“÷ðT|õ0Îøü±ðD2eø-RcJâx-L~ãšñoÒÖä=i+~ÏU3GG™L¸Ã‚FpxÔm]_`êÓÃÆUÎ/Ÿ€KèðÍŒö-ªkHµÆæ›pØNÐÓU3¤þj¨j¬6¥œØ½Êz?~žá"ñÄ÷¡0ìUÜŸoÁÓdp;Ä/©Ê svy½ØNð}Úÿ>¦hgz›Áì×`0’@A]:)»½9PÜÑ)G)ÆC«Rl!y—1<#å§1zŠfƒü°cåáÎËwqΘP÷±Œä»'Òh‡ÿÄ! ÿ‰Ã«¯çá×ð_Q™Üp‡,îÕÑ…ÉäaÖ³²–àI%Bñïaš† uÞ‹+ ɉ ƒ½&ëvíÞpÆ Tœz£{ñÍ=JrÓ†%.lTÔûn›SAZzÌ„7ÿPíZ°»FÛamוëèÒ¤ ;kü1_6IR±ªÞû _)·>xC®ÞÑ› ¯èÜòï:æ7á%½JúºŽéØ »ïX#^êDý* KÿÉHÚ&4yWhÛNÉm[ÇlðÃضMh9²Žßë߸,ãiyuEúX¯cA`ƒvWŸìk¯%`ÛqILQ€èxmvÖÔ‰#ÜSç%BÆž„¥s,Š·Ã0Ï0aŠÏ²Ó-,íôöµ¡×Û=¥ÛÛ×®éÕîéó+:±m¸}nssáöùÀ9@`‚]tFFÆkø<a™‹¤#”ɘ¹'"]°J=¡‹®9OßÈx_¨ß<¸ˆÏÜì(KïH‡ÕÅËŠ¤äþg~ €ûï(Þ‰ÕûŸz\Ýÿ,"ÑÙ¯Üÿ|ªuѶüíϯѿ½(ËõÙçËßç¿ÿñ¿óA"¦{uù¥uåqïCoy‚ÏÁ×ÏÇ­ÏøˆÀðu÷•vˆŠ<»8ïu®Ø%H¼ùÏQ ÙáN²£µuÜFò+^ã—"=ô÷úUuÉÌñ’åô¼…‡³‹f_º‘“6¬6 ¸S!ç̘6Éõ>øRNë^ áD rÚCGµ§_ŽðÝT›ä4Ú¸ê㳋S`¨&¾X¤Eào’šî·~èì‡ïvŽ…«äî†:©íSã¬û7¦í’üÙ=‚;Fœ‹Þ5®ðÅ"bÛ^Ðdu£ézÝh¡C&ÊyÜ ÐÿÎÛâ'ô]SqÞ9…Û?DÜ@]u¯€³0ÿËJÚ#Ò5‡ñ˜ÃŸ¨Ø/0 [Sø„]W¡*[É]â'¯ë*|‚*ŒW6ì}ì~ò}OxŸ¼¨î^$™ŠÆ+Ä î›ðZh¿é^€ØGÿþ…¤»µû7z°ûßÚ˜nl>R¯úÝñ°³[rË ã7=QrÝ#äKzôÀûíƒ=’}o?>Úw·ö¶wöŽ6?EêÕâi8VÀ3WÆ2é†À›ÍÏ›‡›hjm"æ-%™÷´;ºŒ5ºG›¨ðÍÎy§sô©â‰.ðá0^‡%U¥ç"Nüû‰ZÝ ¹ÜÚD}#ïmsYøéËiãrª'”Ž9øÜrÁ’ÇžýM-"Mˆcð3’o]¥ëmÿŽ=ïß1¿ ãWhô´‰J}/ÔÆNTñ{T|ry÷…bÀ7qŽu2µú÷xbÕ“ó2ÃÕí^a"€ÄÃ]õ¾û…?¢£'<ºÆ¹®QG}‘)ÁZöÍÖç£V[!‚^Kègª¤Ç*gîæi¨ášŠ6,ø€Ð±F'c“v½˜‚ÑþH<]2@šÜ7´»¤Œ€íÀž³µî#/.Ï[G‡_.»›»C¿±âóHëqè JOb-OÌó¬K­“xH-çšçHÚJŽÒÊÆ±¡•_o~&õÛ¶„{  jùç`Û0pFEä|Ø–ûEì(ÜdáÞ™¼²À|ïFD‚Ôùî2mwZh}ªÁ5_÷éÐ*ñí­Ða2)7`†["ym8Ú" _ê¢z²(}í± .jðM!Voœ„¡ämÚ·]N1Q´ŽÈILT¸ìy+³ý#?ÉÓXxJiƤô ©ksÉ=£5|7{à ҊË`sÃ× _76|]k8¹ ”eDä˜Wx¥CDcÈŒ¡¯ã±Ú?²÷a>±Ia z=‰þ‘˜€ÈtôΤy²Åú…±Þ*'h-E3kKcƒ^Œ/½¶–®[ªzŒßXŸd‚ú F2%®£ÿǶ ìÈ@ë–ï¬Q–Ó6j¨0}bñC e_ùñ.­ÃX˜aÆ8 ó$ØPulXJùyù#‘Úôyu3¼ÐDî§7Ë‹ÿÇõ}=þg…ÿ[L¢“Q¸ÿí6Ïþ©}¹8=;a{‘á?Û¸=ü'Ð’ùþ8¿“Ph¿â$Tûipj û©; Mê9R|ûáøžøŠ;Å.ì¦/D×mpC‚fº‡0fƒÉæÝ°ÿ|•M}|‰B?ža@qÞÄj!6§#Nîžz6 Æ¿é{DaôýøDtÀ'ÐOy3D•‰M*ÅESõ1x÷…Ä?{†(žWœ$CíšÓ>K’ Ú²×|Jj~`5ã>˜_Íe{]OîlpNžVÛžtµ­Þ`¾¦´JÅpºQ1˜Ö)š¬Óo/A°l= Ðã•v [ºL"´¹!ûŬ!™±žK¥bœ¾2%ÿ˜ê“‹ .“È.&¶ød'î~QÍR ä)•n"ÝŒ¦ETMÆ¿¤"x ¥¶„‚'M™·HÄ(¨£/»ÂDËÆG;Ži5Á=95FC¹…çýlü„Hü6Cu¢>¼§ó 3ªÒ§Cb8;|CËÅèÏv!·ì(„zî ¦ƒïx­ø5ï “þhúM”Ãiâ·o^F‚o“ñ#ŒïOp¸½!KàgTÍÉp°úwùmÎE†Ô›Îø¼hã¡Ú NÌY°E/Á̃[E(ìånk¡í“¼ª¡²7‚cÈ ÇÒ‚} ~Für(—ó<‰'ÀuϩLJr§žºÆ¬ÄÔŸê²[`Ë”»1N¸d’E¨@©(<Ö&ÜÍx6C,;~ÿ¡M:Ó"1§IçµçYÕIç7áNÂà츃] ¾më3‡§ÅL¸×ðšÏþÒœÆ w]†Óx©ˆ7ç*¾ìHÔ^•–>znþéM£îƹ ÝüF<œ/"tsÂÙ=³;‚óÅé—nÄ9êzÅœÃ3nTZfg|ç‡Î‡†ÎäÕi†àÌý°·sgFßmD¯<43¾nœ‹×vÙO{ÞÌÃ'\Ü™wØb‹O÷bþê…ó-nrßXôb›Îy….N©oõã;°Ä ÅiT½®ˆÅ|Ѳ,íÄHº $Wøð'gr¯žÐEöìJ™XbÌ*D“¹–+¼1ÞÙB¬]SÇãgNZB6œáõ I°c‡äd³½ÂYäžeBÔãh½Q;Ýp„äe4’!î)ÉÎÃÅîf‰iJCšŠµÓM݉å”Y—:Š5L =P5~jœýi¡•µ4ÆyMB{Ä{ˆeŸaßÏ:ìZ æBïòÖ˜)-Âs†¸¸\¤$= ´šA‹“¡Ò$Æ lWÚN'ÖVÓJ)“f±«¤D„–­šHMñn9EjæŽé¬‹JG³4‰Ì }ÊoBõw‰-7\}Fp«u“¶Éç!E3ÝÚ-ózöÚ%fzøíÂ"Ó6ÃsŒì1™ê6é{bšo‚E»';ä”y†49]JÔñr$iùqÉñI»ò|/'Šÿ»í?,Íÿ_ðõ ÿ·Dæ‚„ÿk5NÁÿ_ƒ¹Ì`ôm÷åôøî‰×C ¸»z§:„›ô7ö-ÛÍX¥ÏS”åy4?< îpœ•)Ö$ڂă¶¿ãYœ»~¿ïP@r5‡JÿM@GÛe9Šç}h¹-O®ÅÏB¸2ï`‰«ï}óùaò1}©¸Ä"®xRÍË'îÌ“aàÎãe—ñ¸âKºž2ŧá.ʉ÷r/ë&º$šÄ¬ƒþhóù ó÷½útÔuh"qG.$š)¹“UŒm1Mäëöü¾}W€DÞbÉ®ðÙ5°F¸›R™ðj#^nDÚëX|k¯ëâëºözG|½Ãn *¯1óNtýZþ?Ú÷4ÿïõíjý_D¢SP\ÿ/ü?Eÿ_Ìú_èÿ¢– ñ‘‚ø_5À¿†ÜTðöýMXi°¿ˆóé‡w¤ &œÞÀ¯–ü)l\,øï®ùµÿ—…¥¿ ÝQ7U F뀛"Øñµ÷qn¬=çeèHckGÒ;Ñ»20ˆQÛ& ^䥡OAZj¨cJ;T ò¡Fc‰×Ñߌ`’-VJœèMŒß Ó ãløsô$¸Ý|¨i¿N´N¿íÄ8ÔJ¡XÇoü:±h4».4È oyE¬à£VøhðÔ48“²®æs˜>øtô‚Ñ=£tO3 #ÆJC¢æd¥Ò¨nVÊ€I5CZ+|j…O-Ÿ¶ÛºÊØÔ·-ME}šp¢nÔçAr•ôyQ>ßèó"/êS8ØU°Ï öYÁ>°Ïv[˜ì90 èÔÈÏfêQ[”¤¬øÕÄzB'´ÛæáÞeÃÚyQ³¢V4Øä]WTD…LëTô‰êjoœ ùŠ1i“ŽAù0ÀçÏD„À'é‰tâSwA² ˆòðÂÊá<ý§8ÌSa½Òà—ªÀ’ᘯ ãc*‹w¥I|©Ì”Í‚D\9ˆL­ ÞhÿzB4îoµiã‡ÈÌ„•ˆ(ìXÀŸ¼šyB3s ÕeªÉÈ¢å7/*àæ¼ÃLæÿHÃÔë»þ#Šö+üÇ"™R2þãR†PìGã"#äƒÓd,( e=ü1—Oy$zÀIt‹4œG#Áyü^ÿýDªã0`2F¸_ßÁ ŠúëÿÈK(¥‚vTÐŽ Ú‘ÚQé´å^]¢N{I(› fã³IÔݼs¤RPGÙ´àö’J`.œH_U¸ž2p=¹GÍÕCîQ«0ê6ÓŒ(P·Å€¡P– `†1TüèÀ±¿¬/3jóU>l;¯¡|y@=¡>†3Eé,ØwÕûF¾ÔÓ¨¿t´Œ X)<%0§º±av9Ãý&$û~íd[9óM½ónJ€ëyèl§® ¸æ¼ÔÇ]`Ó5RŠ8JÀv­ _gBmøß®Õ×Qh­˜Ý¯+ — šÂ™—)kiRî)}¯Ò‰’=u\®ó Œ[­fTR¢êºЦ†d¤ëÔQÒ/Íëå UêÕ´2–;E5n ³Ã“âsÖ XÊœ¥«ò Rá9»[öœÅÊVzIÊý45þ<ç®Q¥E‰RTø.½¤’æîþÂç®4¦Y´æžz£Ë Ò¹×ÿÄK³ÿÝÝtÿÛq¥ÿYD"SCÑÿÄF±û-G´V¿—±[!§)„^@!D~¼¤h‡ÅPŠáo¥"©ÒUÚ¡J;”ÖÎW zƒ¾C±Ú•¢®RÔUŠºJQW)ê‚Êš÷í+î¼­y÷åK¥¤ÉT}ñЍú,†»×X`õ4¥ß”œCa1žý å4€¢Ђ{?°Ù¡Z,‚!Iš?6XÆ<&Õ¢6VB¥+a\`Ï£R«Å°±RýRY¶«¨”š9M’RŠÖ„ðdO|–zSŸØ±ôìºf™±dE)œzì‡Í˜“±bjS©ªeáÚË;¢V;fmHsªXí6˜´Ñ¥)`éè÷Ò‡ßˈ‰ï24‡4åOV[Ê¥ivË7þ~•‚«˜¶8ŸàZ1ݱ–xu˜UÏl7Ÿ¤.M ½¶(íu6wõv\X½Mõ¿¿úOË‹ÿ°¿_×ô¿{»•þw‰ðޤÿýŠ&p‡»Ü=›T¼úõ…GìTk¦èœ;˜;otêù5f UVkjð‡i ÑæÏôŠ9Ž/¡p˜C?—àÁÑS†<Âóˆô°Ðåè©öŒG®@¥8ÇâÝÁ±x¦O Êø g¬mv6èíàQ‚_М=)gOŽ—`t„Õ¥X¯®êù„<€7ª/¥.ó ÐU€YÖ5O_ãðM×ÀŽfCOÇ^|B ™J70Óf»- ±ç@eUD¿0n¥h¸"ʨ$£WÄ¢VÁˆE­¬ìÖÊÅn&~ky±[€*DßžfTøâ#>È&è…8à×áí¹ >šžÆ¾ÁDêC$c”q¿˜É¬E¦(H¸®Ez6u´Ò'@«àh•>p1Ⱥž²þ°ù×àfòÜŸ¼Èú Èz<éÏÆÉ€w>û†r]Ÿû“_ƒ‡+ûùq€:TTãáûÑóãq|B”>§3¾‚é°ì´ÏDÅÔʘÙ÷¾š­†ÉR!Ø÷IØ;—ç_Jó¿\\]*›K8*6¨hºcZ`æ˜o2Œ—@=ñuª£MJû0Ž‚…a¯L3CÐè¥'-ˆ:açÝ¥½¼|·æ<'ŸcºM%&Pvopú™Ë^W³»¡ï;jv´ƒW×"„VÊöõo›É·gÖïôïZ>ßE±‰%2aèáž}.ú3 C/"êI® øO®HY ~Z"÷DƒÿnÑk*¡~%ž+Ÿ`( -*©Ï ïqo׎ÃÏxM¥#|múa#8ùY2@C!¹xÉÍ÷ÚÔ¢]Ðá¥T{?¥7÷ÒzSF6yoZ²:¢5Ðw 0 S`Ì­Z›Œ#ýƒÇ?@?­Ñ4D:X„&þ^ø.*’wø®„xÊ„Œf´ì§ÇQ€d‰À¥,p·Ð5¤AY“%œï÷ìSg?ÇwljI"³œ…Q¸ic‘ÒóaÌcåÃ6p;çÆ˜*ÆÌƘöx9iñmÒáþ­,€›­2VfÑFíDgÑLý×fÒë|Rx~±ÿ‹â<«.þ„œq;lñ°ÙÀ¸D–Ôi›e‡ƒãõ¡5Æä±‚á1þ;Cwâê"ûž&rïi {¤Cí1°òu¨­;ü;Ô6$®Ý-Þ¡öƒ‘ÙÚ#¢  ÒÇžÀ{8«¼¿rÿ÷siþßö£xGÅÿÕ·+üßBaaÿ÷ìÿÿ¨=Fþe° pCÿK¨¢,‡p õ—Ý'j»âŽÂü¨/ ƒG¸ñÄ÷›m8^¼Ñ{©áº„Å2z„[iÇoÔxÝ„Ž ú²¨lpYC-Æ”æ‰$+‹€ÊíÛÜ@XN]ŸÛ• ‘ qz­b3 ñ™SV$ƒ=Èšz—OB’Ó+”£+œ® ¬]á-^²u…Ó1¤³+VÿauuŸÞ(ʃ¢<|Kô ˜‡?0ÊRÂÀ œÉ Ñ+ˆÀx EÏê„OGK$)«­¶‡ÈñP¹•+ª¤g…—éenÕ̱ïsá3 áVÄ;¬¢·VcòQçöj§)ôS½ÚE¬{ЍäÿY„[»<ªw‡¯;ع`÷ž\«Ý%ˆJ¾ìtD¸ÒûÕæ~Nr=§V`u9WŠ÷¸Ü+в¸ŒƒrÌt+"¿þÂ{ØoXõ‚oBÈí‡Üõx,ÇÁXZ¼öìAt2)[LÆúb¢vÜ(!Ù5,±g}X½ÂlÊsjS T˜}eé°ºGzbRª3±ÌݺãKëW«³$¶œ½opÐC«ÐQ>šÓ O'‹/Ôú¤!»'“}.êX’ò]•Éz‹û°}âÁ®øƒD§þGÔ<§˜Bžd^g®ìÊ ½æR³¤ó>!:&E¡]RÄ©ãŒMó0¦ ‡ÑåWÊxØÝÚ],’×öè ö ¢ÛŸYšw°TÏ`n† Í8饳„’rxËâ̈v° Ù×aIÃÿ)CbØç£™5)àÈ®'…–+^ìàwsdæIº–'‘2ZŠ@qÍ›ü1z#´{"ð3îQÎ) ©|Qæ‰ã!•Ë]Z¶Ä‰R°½9¼Â)ñ€!þÀÄð“ùÁ?ÒðõxOÃDq…ÿXH"³VÆ\ÃÿaH ¡ÿæôðÇx\î¸QZÜ?w¨¿É ÿ ÄûcÀ E§àê¯vTÀŽ ØQi£Õ^]¢6ºÂØÇØHùÙÛdÔ@ûSJ¸7 ø±‹W›ÒÇÅYŒ!ÐÛ…U@ƒįS7ßR€ñm“o„ I°*H‚ìqî<±Å£ÝÁùi5¢Ý)êéNqÇļ!¬ñoj²Cí/ ‰çĬ¶?錌qà2ª(…CÎorफ¶4E­Ô/*3?k0ó3Þ¾Êe-³—³À'ºš›(CßåŒ& 2wíuÒ·–¤_öÏ-zYiáÇ2jèRçKj¤±yÌ¿``îù’7¸WI xŸ`^óš/ÖP\‰š=G׿™/s –U~”+ØnTú¥y%®ÿ‰—fÿ»»W×ô?qWúŸE$2«ýOlT£ßÒô@«dõ{»5BqšFè4BäÇKŠz(Ñ ¥Øý&F¿PN¥ªÔC•z¨R­ºzè ûùÅjóUšºJSWiê*M]¥©[yM]eüÉš»T[^ƒ;o/]wç]@ׯˆ®Ïbí{×”ž¦õ›’s5l™Æ39àÕx„<øÍVÕbF IRý±!3æ1éµ±*µ˜ã{•ZÍŒ•êw粡É¢ÕT/J³¥JÕv*êš=ñYÏž=»R‡™®,B[ ǺûåæÂt§>ZRUíÃû¼—·Ó­VÉZ¯çÔ³Ú 7i£ kaé˜õÖœ®9¥iXœh—¹8¤r´QjÍs^ê]õrp1VÛ«*8ŠªuÁ±0%²ºxu‡Uál·¸¤.¬Ž^ˆà˜›[ÍPÈrÛWÏ/AÏèïç¦vëãÝh»®ùÞ­ìÿ’·©úß6Ù1_]6:ݰ¶%GÐÍBrb?Ð-ôg«7Ðm\0 áu…0!¤˜Z¸ A°àDµ ³©‡Û‚~Î#Ú'Qß ç>Ãå@‰¢¸¹ÞxÇãSPmñxbüì%D?{'„µ”̪›iÙÏt‹j“y¸^õv ÂŽ³øŸ&ùžd¿§¡Ñ!ß@ÒkK‰’|yϯ˜ynšy:¸£·4¥5;J³'—ª\sM%G8¸wß]›·M­¨Ã.I‰íPÜZÛ~Ù] 6žÙžè–YQi³Gi ó4 È€”‹z§Czg½ãž¶>ÝBRÆVë©u¦ÖªÏú2km‘Zoç_kQƒŠ¡µ%@¤‚rÀÚ^”Qu¨Î=!.AG3S*&Øíøáùq4M¤N"g©¦qÙÇLà¸^© +Á?|ˆY(b±Cyߊ´lAAzôð•ˆäQ…ß÷!:YZïûª«ä{zð7?t’аÌò`ê©zucID>³`Ód1– 2ÄnºÒ–›F KH’BAWLWr¯Ò5Õ©W´|ÿé¤/Q¤¿ZTí¦Q`Ô³JÊÕ0éå$·TñË{ïàìY9É‘û£o^G7Ý,ÌÑjé6ŽnúrtÓ“£›éÝ\G73qt³tŽ.ÙͽW¥-òÚµÒ0Rv”Ìù`R­<0)¾·Ð99‘R-"§T鬔2@Z*u€<°E†JÇKå k‡d vy PÐT‹Ì¿TYÙJ—•­B²“‚Ÿô‘$+>U×áS:€êÃæ_ƒ›Ésòªƒ ª1:'»z ¼wøüíÊ}ty|îO~ ¬0«çÇb/TTãáûÑóãq|B´>§3G‡\¥}&BªÞB‰}\Òuž†Ëó¯ ¥ù8b§¡²¹¨È€µâ8 r‹¶º> ·ÉS ’uiìu›½5$¸Ýè¥Öp½Ú‹†8¥ÚS#ÊËæ%~.¶N2' ™¯²dn9(ÓenZ]ÍÞvfßQ³ËX2¦tßÉ·Mßoôo[>¶(6qLV[{q,Ô@è©À h\pn¿ ´ì“Ó¹åüw‹^²(^ç h5{ à,Aœh%šÇ Ä#ùZâ/à<‚:Õ3R‚+Ž@*á^SœlÈž‚\ÉkÀé!Ãp91"4$C®ØÅ^Áár"-h/`‚m¸RðJ É%ZŒPIŸ¥ÖéÞ¤WTBÞ»¥ lîÆ¹xñ-í —88Ȇç`K‰+¾ŒÚÊíÓ]tÚîCŸ+ê9m§˜Ž¶…¼Â€3õS ZÔ”Ÿ:Û IÆ‘¯S²' £FZvÁG»»W!é±Ü;tÊ1CêÞÉ–šÉWؾa!ÁÕÙG¡È¾ÒDõ˜±(4–e2E;y¤u´3ÿÙ”mQfS^ŸŽý75›ö|zÒ¼fÓ^ÁÙd¸y’‚‹ÉºìÅ‘k¦âÍošlc á‘•IƒV¤±±XCY6j§áñbÄS{„ ‘¥¢I¾k°ï¢l«/¤L‚ —Ç£<°E”æ’eÓ¨•+ˆ©\ÏÉàAãÐxÛÊäq”cɈ‡ÈPO ¥1bœº;«+›ã¸bÄ,Œh¶g±oð†)·S®ÒœÇÏþ†ÿŽö÷5ÿ_õí ÿ½D¦±‚ÿvÿçüžè;ÖÛêŽôÎîž;ž[ÊzÏñ,T?M4©Æ ùû V&)¨‚qW0îàÕø…9™ÝðúÞ­¶_¤}@ÒøæuÁˆV"è"Í@> I²Ö Ž®°Ñ+…$­°Ñ6ºB’VHÒ IZ!I“ô¶‘¤Ž”tÝÛÑ*÷%€´¾-©tÛ4êA íEx2¬@ T!²V ÐÅ€@•ëÍ„– üù ÁŸ*ZÍ–¶0Ð&T¶N°fÿ©Ð—˜¸ }¹dv.€šTØùõÀy~I°Ç!–àÈ– L´ ³',) nòÄTìŠã KÄ ÚGzIÈ¿eô‚{mƒQ‚ÿšÝ<þ\þk·ïjñ÷¢ ÿµˆD¸AÄ]5Ïþñ_‡ÇO†±Z$¤ôK ÷ضÄzÄÅ—õºÎñÚh†y•Â&fÀxý†õ·±þ@€D¢Þ¡'"vë7‹Ý¨†£ˆ,ök’!.E¥Æ£Mü ’#.Šº(„PT-¸G²' Ö‚»aÿ;\æOKÃg¥Ç†dp2Ü&F¶[ÃBM3â­R-Zž)RŠªy€žHÞÅ@ž‹úBœ8ûbš¬Øz &¹/Ÿá¼:ŸáÙ1##SĦur.ÛÈQÓé3t<(_(ÓÐ-¬ ±Ûy˜2½0ô½¾×4 0Ình+ä–qúŒ¦Ë&—vîæ˜ëôõ¾uÞøÖH`S4¿§ß^‚`;ØzlíùA²<"7¦n䋈 ÅÊ?^£ÀÇr1°f‰ÅÐ~C¿nLj×6„U*„}B[±; úCõKå§tÙ©g£”h›ŒIE$‹¥Ø¢PÀÈÌE‚NA}y&£ÍÅËï˜V܇xŸŽÑ€nW¨hü„Hü6#¨±{DEŠ=«#.d #ЉeÐDqÁtðï3~ P-ýÑ}Í—J›¸¶Á·Éøô'Ä_ ÿöŒÊ¢o!¸Iÿ»‹“è;ƒÄ èeBHÏ AÇ, Ï@µ‹Ge381gÁ¸!>ª‚¾ ;A¹Û€'³|@Œ TöFp ™á°FZS£ÔÏÈ›Ÿ¸”·ètš¼òœk–`œE皺uY¡¹†Z¥ÈMË»1ΰdVE¨@©(<ÖfØÍx6CŒ;~ÿ¡Í2J TÊt{0¬"ýÎ-Ò¯z3ÆCüâø¾í‹Ó/ÝbüžÒŒ Ø×9ÿÒ9¾r_2D+L>8áâbÿ!}zÁ ‚Ï à3ã÷|á{Â×ø¶ÔÜ8òÊ„¬´áüܰ@ çç†jQ),}·a ¥k¦FO.ÓßýΠȀ€\C^‘©ËÁ©|˜01º1 n¬†5f›V²µ@{Tny…7¤€6G›6ºZÒ%g6ÓG´äãåãn0½ÍÏÃxü¤ÀŽp÷Ÿš:ѵX;JÙø±¹s;ØØ³¢jwñNUàIk„á@JD°³#®òRd{½ëXòA`BIrøO?…#z'$ÐêÒÀÙÁž1A€@ïÉf{-„3ºÚd5A¤OLDZ€Æ8Ý`JÔ|ð"Hx^â ¸†[I‹J§kmº–¶þT¤Í’2•èužµFÅ;à CÊ2èõ¼ƒ~MGýÚ8ìŽ¤Ç 5€p!eçJú7—RjXQVû Ävo¯1Ù?(;ì%e(p¸Fá¦mç(h<ØÂÞà‚¢žl`vCbÕN.K)bÆ€ˆƒTHÌxñN!ÈtÂ4ÚÊ,&§ úà?æË’E|±_€/ K¢M>g ørH%QQ!´™&„÷  ýéHDÉGe âÍ€FI™,“´¸­€»Sg@ºóZ4ÅQàp«M­Çëk(,¸N×@w˜±×AÂWÙá•TÆÑ ¿xùÅ™†Ï*Žt¾7$·¼š? 0Ü~Y<.œEñfÂú§s˵À.¦¤I)‡I€˜JÝùD©ûq? oäStñŠ–,q¹g}”bµfHʬ÷Ü›æ8E©Ækæ²{÷:—ç2˜»%¦×ôåÑìR†é›Tã¹¥uï¼€Íø>¯òHš31ü÷t‰øïÝ=ÿ½_ùÿ\H"“FÆwÿüw÷Ÿ ˜Ž~'ŸÓÙà_0þû¬ ¿ë¿‘”»áÀo8³à"îû£S(b@Ñ'Oñ; öŠàðï|Øo(B…wÆÁ 4jpõ?’2†³ §ô'›â3D×ptûð|7¸#H¢\`zà û|û—6å0²|Côï Z€/ïe r…D_Y$:gvŠ\Á3£( Î_:›N¾ t[þ ƒ^aÐ+ :¤ ƒ¾R¸Ø ƒn—«­0è½Â Wô ƒ^aÐY…ËÁ cY²ùϺáÝ€áÉo˜t©.0Ñaî˲ ‘^!Ò+Dz…HÇí«é+„HïþQˆô?ŽÎÿ{oÖÖF®5þÞ¿Ÿ¢.ÎóÄ@Ac›!¹è ÛI÷á@²÷!Nâ Ø´m:á|ú£¥¡JóPƒ"ýßoâªRiXZRI¿µVL:N'ÿ6л·Ö‚L¯–õ& ôåonš’šš£íaØ $;Ý­Šn¯ˆO¯‚¾:ðè}?²*1­c7—Árd%2r\¾ qœªF”,IåT‹ó°éêö Íd|øc³ªJÿ„CCʧó^ºîä›»ÑðªI¥”Ñ&•)’ã¢QZ‹äm^Œv´›©™>'‹¨7+^D1½,~êœírŒ<Àb‹w«`È ð¤Çl[%}î…•—âP+ÀÅ9è»’ DFÉïR} ›šJ`4«[%\^…‰KTÚEì ìã»-n–ÿ¡] 1¯Ä°ÄDz%àêÔBF%UÀn j¼h÷[Š˜^nµg[*Ÿ~½Æ|:忟Vèÿ o•ÿ>Šü÷2Jÿ¾Ôúÿî\F¿k€¾/¡Ä÷åF{üfÀwˌѹ»GA…"a-æ²~„uôõ­k©ÈYo:gݹ¤åò¡„ |M#™l_CxØ­ßZnŠØ„SÚêR(oƒ„YÃPÊÙ¥T8ÃçSB„¡ —ž¾I†CÑObpª±B·ógè#ì*úW ÿK"¾ ãG¨l…XŒõk.“B_}sµð#¬¹Ú©³z5—Äõ©š#5zba£W-—·¹[t£¡µU@kiýÛØ`-òfkΛ9Q° +Œ‚]þZÎI_' vYÔ9éeA¬”oÒ>WþáµöI …î÷-7Ñè º ½l8Óûü©o ~JQú;§Hª [Òû¤•PñðɯéÈ”W¤%RÒHZnqиôˆ%y&-%^'¨’ðTráŒÛèÿ‡ý›Ü›à©ÔGýл‹2ÞI½5Up5¸0IÛ½Ø)æ}’ žšOwˆ¸Fw§NuÌk,ÜxIš/- ¹jödZJž¼NµB·¾L«R‡ù05:µƒŽ3:Ûc-nz¯ìº4\ØI°ôf¨™! z°¬KSí ²J„X væÒbº6=!#§ÊN§XZÞ÷DYyLwªª1$ƒàZ.É©.I¢PNVîc¬ ¦e†¿ ¿ò…<˜zL¤áƒŸ¼¿´gSí ²*æsʺ{@­iÈîsýM¾¨.\4¼òQdHÖñ¾×¥º¤íý%"d—µ¹8eü× ý¶š­#™ÿjï7#ÿµŒD$Jä¿´þ?7žÿÚXŸ~ìWtô14±õ¢£Ï ™RÐò´ E-yZô¡q´ˆ£E-âhEq´è™,âh¬ÆËuLVÕ±h-¾ÉŒÞ~l›çBðµ&»$ DLv "&eÝ•éòŽÓ*áÔÖ¥;ô=Ù…TJí”ÁÜ ‰üº€‚’€ŒVL ¿L‚õtý§³Ø£WäÑ™ôhÖ»¾ŒUµldçפ#;t¤È6VÐ g‚FQ™9æd!£MƤñŽø÷³¶ }«óqƒÉEvdŠR3õñ(¥í¡%┦˜±¿NyN.;Á¡sSPpD‹w»{覠Gy LYòÌKE8;V°íû¹æ kƒfœDÈb9ÉdJ'ؽä/LÛ‘Ùv,"ÐP2xdÂÉFÕ‘)³›LFèoJdÍG ÊÆ‹(Ç³Ž¬õ"®ßCäi²l¸‡rŠS!Á 53”Ý–Ò=ÙTf:Í,nä,B3 „,d¤Lj¤icXw…ͯc2ß-^Ô鄾L‚&A˜muçpVwÝMÅqÔÝÖÙXwSC‡Õ݃LõES5lj2Ãü€òÐ3ª½˜jÍ€U"d„Ë«pï¨?bùƵilÊ+‘‰6lr–×Ä7Xr—\öW@]Mæ"À+„lgŸ.¹ïÚ p&æðE>WHÁÙ$¼@çMrN­—„%ª€§ÌtÝ2 QLj¨ØprCŠ‚{ >êC FÍ GûÛv³¿owÿÝΞ‡³`ß°¿Sôõ;Íç¸è³÷Ï_¿¢»?\}Hþ3œý=< a4Þ‘ÊBYu¾MQy¾£oí?QIŸ’³E¦TZØõO¯ RËž÷I\|šöÓ‹«u”zà ٿN?_^~¸Ò¼ÒˆS¼øê‘jtå÷&&ªS]íÏŸQ HγqfÅ'ÝèGåÐ ×=wÎ:F<a—%’•^4¡¨tÄAKeW³#vͰa\RB ó$1©ÖÕ›-š<Ž‹¢Ë1§«½Éf…¯îPÒSKQëîþtwÏR8Ör׺Šçäµ7K}JÚNjÉ·ÓÈÓ$x;cÉÞ©ÏvógÏÍÂÑÔIqì ûuÀÞçöNö>^í% øM2ê 9ýGþ5¶7úg~rùà/:x^‹CÙœQòΠϥkº ˆ‹„.3]ÆüÉ=צÙZI‹mKdµN}IÌuÇ]' â¶;d¿R¬%äG•…ùtÿÐEƒr¶olKþmÝF? À!ÑTÜ×ÛäyÇyDÝfêb¦YÊ:œþÁܤ¡YÑUHîÏ ý« :9iGRqûÙ0¤|°ØÏ­Ëà>¼bNþ»Hô¥I†o+²B±îÊž#øu|OPfybxTJ séÐ ‘üóE!E‰KLtšèMaUø–S而;ñ‘:*>¤¥Ò©·h%íÈûŽ)Æ=$ù:B2v²Åɵ†F„äÑí™T‘¡bˆ“*e&³rÁÂí|ŒƒºìÃc]dôÕ‰×`µ÷•Lé±T¼¯ì<š/ 憊ók%ÝíNÑî㉕×û†[Ì‚pj– .ª¦]²>ÂyfRYƒW3á™ñ’·ä4Ùñ\@5|‚%ôÕeÓ– Ÿñ)dÚjÚ§­¦ç´eTY-_ô¹Ù{WFöÂYu¨/…°Ý†:Ë”½Ö~•²×ÒLs,…È^ËÎŽ·Ê€Ùn}ú¦ Bm1íb™„[ÙLíú\"bpŠZ¶Œœz-ž[^K–œbPî.Çw•&•Ò– xî‚®øx¡nÈ ÚÔk~ƒDŽ×3¤KZÚµJYÐá/{"ÐÖÔ”®$úžªmI2}\©L Û ÉôÛ–i¯y’I¦‹}YeÍ×ö´Åª­‡-ÙZÑúŒÿ^ÿ×ý£ýc•ÿ>Žü÷2,‰ÿÖúÅÄwQ°ðl n`Úä öêDžVÅ\ÖÏÓj ø­k©èouãý­²r@ªVFÌîO•¡cD[†¢¤IÒe€¤6¯¨–J{0¤ÒÕ¤…}›fühi§kAê N-ÿç tn®çÖ:<új]…¯ÖÍsÓÊž/Ä”ú3˜ÑÇëJ|¼Šä ñ5 qèô ûV܈Ê{5Œ¾a7Þ7lQ×°%<ÃŽT¾öAÉ«ˆ9ž1/5·HçzàWÔwš0».b)+KýÂý:[“T7eÕ9PÝ„ØÞ…îÎD¡†˜Ü~}ãlûÄÙíè’£¾æèÚ¥G}^¾µ˜½6±„W‰€×X¢2†e£Yÿ"±ª]À]ˆ·ü¢ª³Ž[fˆê ½„®G¬iWO %- «Òq¢_iügOfÚ"-õYCË û¼L‡™Wµ…sNŒÿ™¯Îÿãñá±âÿ±½ý?.%ùŸëèÿq;! ¡ MÏKÕpÑÌU ¨Jrg¤ÐÍvî{]ã™!愊óøxƒd»ø`“÷ùx7š§ rYµÏÇOy{(ÇsÓIœ&VæÒà’•lˆê Ç>t§¼@ e!QWÞ„»…Ôt°§WHM÷G§º\¢SÈè2:…ŒN!ýX´è2:…pt B®ÖBÖà’ ,.¾; ðnu)~ p_*ÄgdäerýDFO‘Hõ±‡£§Èè)2zŠŒž"%á¨ÀSäuôùJuƒgI>‹¹&ÍÖ¯ç´vÓácÑÞq|˜yd4y¬gî§„KñÉêë¹²ä<)5ZE³¤Îu£Ç@ß} ’\Éã Ë>"= ›û˜,;¶Ž€ëcí 9R3ÆÚõL‘íƒ%ùˆõcí’Ó©ÔhM¦íb“ið wM,±’ód{™×5ûq-š2ûÕùmî£kŠýG3Ú,#”ì?^¹ÿ×ëÿêÌ:æ/óÅèCªªiGgû'R@·™9/ãxŽ[Lý$L›äÉlޝ|¿ŠÖž¾_/¦É€ðF3“;Æ‹ÌU†³]þ7ôÖñäîáù fÖ±KÈ‚q>ÉõóÝwœÛ<Ær¥„_Í $ìOFôLÝЮ­ÚL”)=‰å¾¬Z:|]вÁâëÖtt@ÐF´Ñmå´zt@вĖmZŽÉrêLöÖâV´²¡Îisª<º£îh£;ZVÝèŽ6º£åž¨ÀíutGÝц»£Íè%y¥­Ö¥¥ÁE¤û¤:Ô£­—×4H¼/ÌÝjœÚVë›ÖÑÝA-Ž+nCzËíóÒèñ‹V®ءޮð ‰2•þ¯ÊWW®Î]m…§ëØÞ~Ü YGuɃ¸rÜ¿Ú*=N¯É(>é=oO|C¸þEõ8]³ïÙÂ_– Ú2n2sW²n2Vf¸Kú‘5“ÛQ¯Áù¬¡q}ã·;½dýDs~c‹7¾{´óc³€ÓØ¢Ýî%s…žfKzqæüÆz¹û¶¤®c«I¥üÍVáнéƒUW2æB<ð—v¹åp?³u»¼lKE•ÖÆ9mLµ'ÌýÍn†µ`vþk¿µß:Rø¯ãƒÈ-#‘QÎñ_tCõúê­‚év*;ï9ë\vzýdøüsü0Î^؉PÒxšÆã üH7÷ЧÃ.Õ-Ÿ'ã÷@»|M&°©7JóßzÇñ×él2&ÝÑì~ô0zÁGÁ?±ƒv¦p1ýw„ ¶4ñ6>Úìä&GDŽRGOnŒ´KBÑ Ñl6%p:ø€JÄNáhû°ã\ò¼¹ ®€RAÕ¤Û`3ý(u ¼áEúXAMô%Aÿ}íaop¨ ‡ßFñÓlLN7Q‹~ŽîÈQã|A÷€¡$áèí³yò8|“O8Ïœ%Ó/ã¯/„è!½ÿñö©t?zB9ŽÅò€âS@n—EÞ¡×Ýžàuø”Ÿ'Þ!ÉXŒGìåz2Œ’x¸ù“¤«¾Åw : .†'¨QcÀšíÇ÷ñÝwÖ°¤w²“Õ?€8Ë2¦b gŠºy¼ 'æd7ž´sÞô€8ÿáa,žNÓ'Ùqºà7‹Üñ×ÕɧIc;ýãüÓïïPÚJ¸¡•ÝÍÿ€;’?>^w>%7Éövv HÁ›´s”¾áÊC]l¾IOZè÷ïÃ/èO’#;wz¢…šèÛðwBA§|v„gü_0áùÿÿþ|zYÿ½ßj¶Zòüß::Žóÿ2’2ÿÿݹ¹4.Ò¿;éß„öNÿÀÿ¼¨ï÷?wÏ> ”ó˳7(7e*îá\éEî-g À7*—?ö`ב¨¯Ñä¶£ 42 çéá9ÿ+Ìÿ\ù’+íßšÍߎ߲«xî£y§Ùú­ýÛ»vJè¢Fs‹bW”¹eX ÒÝä(ïÿ9éŽA5Ä=h[]^}è`ò}¯Ó½ÎÎi¹AÍò¦¯&LÀîÄ;¿@iüÝÙÂgâ{û_twe›:”O€Þ¦›<~L>ÁA(¿-{7ý‚}¬'Ï€•òSñ9zòoüô Gæä:jàf~ÌŸKŸ ød‡ázÀ76v/vèvl5ˆwØáÎw'ï1ŒßÁBÒy2ÀžÂÈ;h0lÿ-oKwæñOäÂ. ·HßýÒ'<ߘ·ÓÅw¾%åfjí n¶ä‚³rsÅfçwú2PáŠk‡ Kdþ¿›®pþo*óÿq´ÿZJ"ã–Ÿÿ{Éü_`ò_‹IþiÌMîiò3ųoöïà >àžÐ/irPåT¿]|®Ïç!ã|gÚlÂ"3í&Í®ë1¥ýÿeº¸[Ý÷_ëXýþCSBÔÿKHZÍûÇç‹Þ'ørøûýÇO½ pÙqð&b4d,]¾<ßas%îƒîþãy† ßÃñƒdÈ*N1u~ºf ¹Uô&†FO$ÿ=RG§ÊÑßô€³?ûRòñÇ®á¦Ö_‹˜ÇFÛöo•ô@ƒLg[Ûd~«jZcÅËNMS¹Z´V† ÐRDòøYUÊæÿçîÿí«û¿1þëRSLæùÿó†ÎÿT|6/?¦Ì;Çë_ˆ*Ù4‹޳xe³8™¾k˜½?¯döÆÓ¶kÖ6ü#ÎÚë—èü?›.V6ÿ¶öÿ_­£Vœÿ—‘ÈÈä÷ß_}üÔH.ÒMÛdòNÐÜUú+M®aŠr/¸D²#Y]ˆ“Y~\™à·„¬èD¸Ý<ÊÞÔ»i$Û.±7Àx.:OOdÿøéa8ØhgjNÓ>SâÌk>ž$;òçöþ1  æÉ„¹þº#ÎMî^ð]wÓǧ‡ÑO\1Ó&t¾œ0ST¿ ~z¬¸“¯»¥ÀúíéÝHåäz ¯}R_W Õ¸éyû¡ ÀÝOÎùGO‰wO£H>?}.$·+y‚ïß>+å¤WÆz|PW· vÛ ´Û^ønè¶—¼ÛaÝ6(Þm².ÚmYëÓ¢ÊjÖPæžT`¤ìÆ“Q ÿë÷âë‚/–בעÿz½ö÷*RÀi—NPGä6°LFxE¬Nh0°;¼}¿„Å(›ÖrghØàÏ®„~Aü?I"€¨ý㟪àS,ÿþâûÄûSŒ>°ø‚‘²¾µÍgÑêSé)Ó'ZÂ}Ôôè7MoÖ'0qì$×Û°F@ùqiìr/ûÇ.ÜKäîeYýN;: ×^ý§Rfü7ž¥=øæPZƒo ¾-”¦["Ckè÷ß)ºUÙÿ4öûŸƒýøý·”DF¡ðýwÝëœ5.Ò÷þrÔ©ý-½ì¿û 2Ís¾`|“AÀœ/ìႆÍE!ýû3Ù{í%û«@…Êï¢Ö䞧׳ ^}—seÞïuìïæ‹]Ÿ}[ã¶*óGA Þ@rI¶¦}`Ú y5/oÈ6)õŒ¢-Ý>ŽDôÿ·ÛÇÕùÿoï(ú¿uùÏ¥$UÿÿÙ=ÿ/õvž^¤ý³´ÿ9Å¡7„i÷çNZÜ2„ä™è¦ ¼EH^ ¯<×ÀE,1›ÁÒ°Z(aò…Ä“ñ.prÏw™ºyÉCiõôQ¿n¿dqøëo”tÙ  íߘ3›ü~>.¾oèÁE¼9'sKš>²1©‰T™<’`·ð3©`JÜðÝ?$óçÛ]æ9™kjêy9^PÎÓ½¡¿|=ß›ºÓ×¾³Ÿ}¹Ÿ“ËNgÃçR»RS$Þ3Ôjv¯îçev‡‹z›Ï x7}x~œ8ÊXj»æWFtŸ©âx!ErÉŠ ¹à²Î‘\Ï¿¾$É>YnöÏþSÎõ¼(%BØñ-¼p¸ÈÍí[`Wyß?‹ÙÜdÒd™Ð¶à¬ÅMQ‹½óm±ÓÖdÍŒƒ|™â¯“»él6š?M'ø³ŒmÊ ÙЧ¹yüçß}gûpa1}B üuBþKB<Œ¶¤^–ÈÅßdš‚JSçüÉ|ô š`‡À‹Ùp2GO£Z®8âD7›>‚ ý ®sq_}FOÒ‚ÏÑD$`¶Ä­Fþ­™ê»6¥žÖ’ Í(A°A¤v°7áSý=ø/%±Î;78’¸TC¡Î;?¹h$ç)öhˆtß–> ”: Áïn…//R¥ýA~Œ8SË>À¤«üV©ßLº$µã§ ³` >ª0”ÁNÂD¨`ÃÃÇ$)÷Óõ7ºöF—¶è;l(BST2ø£‡¯ájÝæ.¢ÀM1zŸÁ¢ «V2LÐϢ͂7V{Ù3ìwod´€Œ*<|© Î¢e§äè3ì"J ‡H=>?,ÆOã;B›ç.¢´#œ"ÓÆèàNàö5Ïd©øÌëC<*<Ä}iù£dh´n×ÒºÝÚZ·«kÝ.®t×ÔP]]ëÒgŒ­ÛÕµn—oÝn@ëúâ¸pcÞ¬<™!¹LÝè0&x˜‰÷¡Q·‡³Çñ[µ 7j!S#¸«ÔÚšùÕpA¿¨jè+r _ß*öM]å]ÅŽ¶Šðš¶Çz'ÔRȨ`On}{?\̉èo :ºOÁcооhþDÓC&7CV‚Ðdí+ß-d$=yïËOvC…¹‹2¿å„ùVæ‰ ÌÊdÇ„ù>X˜•¬T›¸„¹k殟0OÈBÑ'w“0w}…¹ë)ÌÊBFænyaî:…¹kæ{E˜»žÂ¬˜.T†‰Ò'´3%Ei½`Ñ^IX”ºÁñ’½ ëöÕ¢àž:7ëF z!¤H‡:þü‚a ­‚DáH‡bFCÔëÚ¶Á…T»¡Bá thV#Í¥áøZÍÖ¿¨I«;›ìnH3Øz¶ÁFÊ̆où€£EÉÖ¸0”4Ô.7G„q¨m7‡úv÷Ñíìy8{õ]‡: Ó¼3O@rÞ?ýŠîþpõ!ùÏpöcôð`¤UÑ—3úBGYu¾MQy¾?Γ?QIŸpTU#¹êzŒ'S7Ÿµ¬f=MÏÒ‹ÞdzNzqõñ/òß®Ô(ðþN ÿí¦?uà?º}¬õEyöj@9¨G6YÌžqhÛ„]B¿ƒ…Õu :/Ì ŠfÑÏß0˜9Ø7Á†Û—+6Ò`dû  ¿BzÍH÷²÷ÀåšÜ>/j÷•½WÂIï%¸+iå 'fî%}¡á;Øwüš05ÒÉ…Í]p“ Ìcƒ4ùå®x¹Ë_&­%?Þ®«Ïç×ÉQä§Žr‰ÛDBIýžôÙ(ûØ#}Í#)3GP?íË»öuUV²?MjÒWÅ¿àVai…·î`TÕŸ—ÎÞ×Uß×Uß—h_Úµ¿T¡®í¶B]Û!mº.Ä\“Ã`,<þÔ5Z‹ÏvÍ-¯ð×h¥?|n~°<… G«¤°e ßÝ'w» lRžRidµJözFÿìÑ­&®88¨e<'áQÍ(Èžk®ãÆo àGȶ À"VV„‡QÄÄ'ùÜjMÎü!ÙDKË^ ý¨UÆÒ!n{¬ÇÃÝì+A¤¼h#½s!ƒ^è/ÍìÐÕâ¸Ýd±D(™Ú°ÁàR¹Ž‚Ê%IÃQ5h Á3Ïp1ú†bàj5ÎЋ½MH§IžµÜ³–ö¶À•díAÿÈèÊ“”°Ad?gnHy½5³wNu€ÛŠ.|Ï<:†DÓ©ùœªÏNª±lö]òÀe%£Vg)„rÊ:<ùƒ4¸q~L ¬T$ vfÈUMvºl™è4Í3IÓc&qéÌ7œ„häÐ% ÕH;\@ˆdp‚FÖAÚdÁ0b4ÃÐjó·Ó<]ß)˜;§¶kžÖ~•³q3lÚ£²Ø œï LÇM¯9È07+"õ¡ïü&äS4ᛩº&Y8&ææÛªfææÛr3sóqµöË«×íî›ü²M϶¬z6t8´œ³6®”4ZÍÚ‡C«Ub8´pËphÔ=ȳöaÐr~¶eÕt ƒ–fêÃÏyƒ–y2i™LøÕj~oàl¯cýç«aÜàÔÈ^ –ÖQé­¢1[aó¤ ^À´ŽÍ2ç° óP½ÂGЫîm[­¹ðîJ5"㜃¹¬LAT«´Â¬´ m°¨´÷¢ÒvØ^)f„bƒ„,nßhµV¢œûuNÍï%QíVá¯&Eù´ÃfWH›,QæÏ¶cãÓó³Ú¡sŽ]âü¢ñ“ÃßÕT×´Ãv-!m²d™%ã8@×ø™ÁÁ1Í«7ƒËì¿Væÿ¿y|ØTýÿEÿÿKID¸%û/ÞÿÿJ<ÿ¯¡Ïÿ¿¢Ïÿ@k¬èÀ?‰üרÿ¹@ÈŠSyÁ‘¼‹@–œÊomˆÓ v ×=`GØÚ²FØKô€MÌ”pkN¦“]bapŠ-ŽvÙÉß)¶ÖAvtÝcK¬Ê=ö¯ê[µ>ˆ>±U:[à§Íó‘üœÓcµÎǵÃauVõ¨ttXVÿâ«£jî•Ñ?µXèŸÚâŸúõEík¡u*]J³l­.¥}m ¾¡×Ç3ô/êë9Ø™³½›åcúÚÝ6‡'#•¢ƒf›ƒæpÌÅdb |-—“žMôª\ƒŸä¯ÀO2ã?fw+ã?öÛ͖´¢ÿߥ$"»"ÿqÕkääe>îA8ÂÐ[•y–ïrÉŽ«GvÀGûl8¹Ošù·}n÷ž¯h~²5Í !N;üp zRÔ¦+’G¶'@·wR´N"W&ì äCO8.#ʈÐI› xEç‡èáçÅUœ'B&¢X¿¢óbóVÏ®ÐІw… XòÖ(uÅ‹wW¬÷ 禡4ù¹³BX3 úýU‚6ñ¤Ú´ŒYýIó)9c~M¾öWå|Ö~જÏ:NW΃Ócù ÏCÝwâ÷kÞþç­h-¼äóVy_q6µ‚Ã6¾åLg‰§–³ÄÓì,ñB(¼À°Éis~Oâ}ç–·Î~R·‡ããO«“Yñ0{gØOÌöa<Ï÷t›Çý¾×»ß‡ÑoÅ}¾Uíó™:%îï û{ŸãþÞÙÿû~»:ÿO­öþÁ¾²ÿ‡nûKHd|ñûÿéžÿ·ñùòìcz‘öWãþ©_§º‚R­dÚDÚ#Ý>iö MnŸŠxišHŸösð¬“í!â/X”éã-wÐ?áaRÆ”¬|îÁúšBŸ+ßàSe-žxºuÂ÷棨†àì~ã>Á¾Ý,y˜þÍ„çQ Ñ—â3ÈÿýÍ•ŸTòv_¨œC !³W(\ªß“7Ÿ‰‹gðÊô)+’æíÊ7»!‰Ú3¿ùŒ¼ù½·A}o®zÓu:ûBö\kÚhõ °Þ7nKrMË*íTÐrÓéÉ Öù×—$ÙOöÐÇKÒ_ë]áÊ÷¿ˆJPƆ¸-Ö@:c6.…l¬[eÂö˜<ÄÄl`€óÙ事©­l°“Ý~ôfi'~¥Ú/7“IhQ©fÓÒ-­¡P—”ÛHe‹ØÚÃ;¤(ËhÚcïu-úšäžZëOQWîáq¿˜>¡"~]ðÚ÷´aDA•Ú)>Ø,¾¢ébr7ú"v)dKT”‰nÜ¡¯Þox®ø1~x A/¿òzØ¥~‡úi$ù:›>Bÿþ _ÔТ~F/£wÎÑ5üFânâF ÿÖhç„~ö¦ô+¹Ð+Àsø4Â]µ›œêoÁß´)þJ‚}ÈìÝ݇PÙ†GølBy£o¸¾žH ôù1òÑ›}ÑHWÑWl~Ésèe“CµCOžcÖbèÁ‘ªx*`r·Ú—²&ÊPÈ2o)îvºX ‘¿}Wn’¨iÐy­yÖuÐù ¸Ó49?¹h$匹¸‹éµÄ÷!Ý=~~O†hìAsg§Æ™eûˆà—Mȇóц=žÁš}>¿¤ÄO©ÿ:g3Žt2ÅSÙqu‡‰UW Y¼ºCêª}Vu2^°×+;×õº‡#ÀèüïÕ­nŒó¿f ÿeçv€—gŸ¯›Ì íÐvÓ¼ý¡FIs ­*ª:æœöáÝMôÕ«ñúG.¸ó <>¶‡C7¹óCÏí47Ü™ÞD­å°Y<^sÚGµZàºÓ+ëÉî¢n7v†£èrÇìÜW';l‡5ñëòfgòüR—+;ÇûÖߥ+tbç*Õfy°Ë&-³;â¹›ßv%xKöÈiA^.²Ž`{kÒÀâQªDó±VÈÝ^åð¾×t Af™ˆY´Ø°3¡Þ;¿#øÔén+…À¦}”q^ðšÛÆÙŽÅE+#ù_>àŽàbKv¢gq{4hœRçFy)`5„2¥«=”¯àõ/-‚é©n ñ¯Z]àr¼§ô§Ö1”£C-þ¸Œø|„à8T7}•ˆÙ½ Bßènrù´K”à/Ë[¦¤¤º ”oPйH›œÂR¦ou¬Ö'’`o‘> óËrõZgC¢QùÝt‡F-¬8›Ö ëUhN‹†Á‚`g–!F=#–o>ÕééNß$ðuêYs¨p{+ˆ’ßô+.æ¨M›FÀ“Õ¶´:µŽú"ý|B†¿I?ŸêÆ õÍ µ¡&Õ«É›~‹~R“¿Âj´,ﲆø =R—¿R¢üçèñquügóHÃÆøŸKId¤ üç‡óóÆõÉû)þâ”c€vÑ»„í¡?{•" ðÈå«ÿ™« ´Û€W¡?z x_ ‘m±@™]  ”D½ÝÍÂPS(”‹öÉÝØÝîÈ7ºéQ†ÊhÙÊì2~´‡Ÿâ-ÌïF^`(ôDâ †Ò›U4·™ZÄlk‘¤áÓÓÎNèn$a¨¦3Êu°o.‚èpnáAqY$*ÓÞ+º§¯ÈÓ3éiMWeÉt˜ê…ØfMIoÏÛRjL²ùƒÝ¯[¹ž€ÜÊõP‡Hˆt@Uy› ±7¶¾ý8y`G­W>¾5$EnPa ”!;>XnV&#›[c™Ê†|…9$=Ù“Ã:ºr yQªDíÞW$úý~(átCB§Å@±¹–xY$‡3j>)ÕxJxL˜üë©=\E…=Ôà„Éüùî;汄ŒH]2-‰&V™HmÉ´G‡ßê§M|esä© ;cÉJD•¨È¦¤·Äêç] 46kЬWôj*+=kQv 5²æ S©=Ÿ¬ÄŒL-bTèy#fAÍ&^&¨Ôòe •–$ ê·¼W^· Ú)ÓB˜)©— MM¤é_¦y =$v“ŽI|‹¤ùŒ&ß-dDžd*ö/F„’\öŸ¦»AÎeÌÞeàÍ>þeº¾ýÞõì÷®»ß»¶~;žö|Þõ´(dßÂ0_$UDgf]éÚu ÝMå”Üè½»W2zw/TÜz…ÄM'o=/qKÐ QïFO ªùñö(FŒÝþãûøî»˜ÑNmÛàBª]„1\¡p$—Õˆ¢¹Ÿ €žçè¹@¯äèU>rÄ·íF|ßîþ1º=£Ùßwˆït6\Ló;éxÿüõ+ºûÃÕ‡ä?ÃÙÑÃFSšeQV‡oSTžïóäOTÒ§äl‘MŸ*ìzŒ‡~_ ÜZ,|šöÓ‹«u¤Fù|yùáJóÚõ¥¨9<W¥~‡CòãC˜)¼_¬¥yInÆÈÆì²6Ž1nÆ„xθ¬’|2(så¦rñêÍ–?£LÇåÖå˜CÏÞ³ÝÇ–‚1Û!éùvÁÿî cÉ4¾³ºA¾³òçz>Ï5[:‘â áø`c‚š“t²¯@²ÿ5úg~pï—8F «ëKm>°èu§ãªó„äÁé:ŽÐµÁ'­±'}\5eÄj/‹k_‚B²É’–ûöÐ e85Qy(ªwôÝ}ìhÍ#WkŠÔL×Y×ÎÐ7î'}üÆ /©×è“~¤ä¬I?=±…È”i“.~~;ƒNàñ1˜!yãÛy%¨0  Ð ”Àɬ@²Ä²çd]¦’èË8eLåÉÆÂ‘y8öv@/§áÎÓfºk›Ê…õ-ÖBY­TXßFaSˆ°šF”èÆX Ô¢¢ 7êbQliKœj` sÿ™œô@6\í¢O»5öiÎìlpΫ¡}Ja"kâÆN$4Œ¯ÑÅB³{¦Sx·g:Öér—sæ“\HzHEÜÒÔàeî4:˜ vìÙ£ZgC¥útM]ÆDJ¼ÅUæ§MR&¢Û¶Š”ÉJý´éZ.Á›cŽ®\E÷k\ý#Ȥ¡ÊºX3õyýžÕÊ+»×íUíÃ{UcüǬ>üÃÅ£kÿÑÜþ¿–’ˆLŠüÇ•ˆPðS !ÈÇåÕ‡Þ >UÅù°ož÷¨õð§<®‰òÈgÃÉ=/S8NÎyüܾ›Nþ÷­‘ü|“`½¤=€×Hf#k†@ÆpH{ü°¯CÈ%2‘ñØ(ÆCÖõ2ñtXlÕžGܦÓUÜ‚ý„ZM=Äù‚õ>ÕÏÃóȲSìÈ’;d(àðr€cho§‰4hCÙZ6íÎòí” R‡Ùv˜m!lþo3Ü 6þ&Ûá(Céx ÿJó4³ÔfªË"ÓÁ@ôg.¿ ´oJuä±'Ígœ´píRý|“w´!©§ íÊ%âfI"!%õ !À‹þÀÒ J\–NUb%jU%Ö¾ƒÌ¶ŠèÐç,‹¼ÉªˆÂ\¦T*7¡.(¢fUâÕ“M¤=ˤu;öíh¯ƒKRb»Ê:^HHIU%!ìƒçiãUpÚ˜ÿµVgÿ}¤9ÿ;:ŒçËHDJ¤ó¿–ö}‡Ÿ ¦ßòÇúúZ}_µìç-ÏóÀrHÿE·¶_| ó“B‡IxnùÄãÂx\¸AÇ…Ë5 Ç…b«®ð¸ðcúvÅz[Æ“ÛxrOnãÉm<¹'·Ñ:<žä’ê.í$×iå­ñóïuö›ùù/qöÛZêÙ/9ö °¿Á:} œÿÎÉfL Ó‹Ö£9 ætIYpoàLVÌsHÂ!0ë2í=ºSf¥¯¸—ŒÎq†— е/UwçEâ_ä|[Þ9©Ì’Îyî-VÑð¿…;ïXN¡˜±3RÊløj>?‡ï×ûÖ¥•¦“»ÍnÊÅÃöæÎ€ýÙZ¿ƒwŸ#vù`,“™AI¡KMÑÃz³Q2m„JŽò©Ì ¶¬þé³ÒúÃ9#@ªWŒo89,K¥TÀº.ž@Þs^ŽG…PÝKÑ—´µª@Ô9b“@¤a#T÷’ôn+Ha6 Ç﫳ð²‡8ï¬3ž!ßPÊw…/¿ÑZ¢µxÎÜ×€Øùvóð¨)óív+òËHDÊdþ£O¾?]u.®Ó‹´/è¦Çè¡?{eYÅ\\ ß ï…xÈ*'BJZ-Ò… ’ðG¢B¦aÔHŸÃFà³]9Ü ôÈ=·M)!¤DºZ~¤Ë.wÈeÒ‰B$Ó™.Gî®OÊ‘{$JÀRä˜|ÐzØG~÷^Nˆî,I{Æ» èº$Cr÷=¹án4g+Yr–q¦!#üÜ=u-ß:¡Ú|Á÷VƼdAÅéíùAG¾àwÓÍ8S³}‘#"&blr`Ã#010æc³¤·$ Æ|VVYLGÜXMxÂMìf‰ˆaƒ––õF‰ä‹Zç‚´ÎZÇ<ô³´ãÓ84ÙµE@Fy¨8S-z¤wr-DuSE-$ Uºei)/\ª·Ç1RâYk8/Õ÷*UŪœ¥8Nq-²PÚBF0ï¦Ï“y®Ÿ2Ë´uš°³dúZü^!#UH,Eà£yËÇëÊË÷ Ÿ:ȳdã‘Ü#ñOé$|?”ÝäßÓÝ}Cs!• Óäf©ãùH,©†ÙÑæD”7ÅCè,-d¤¢P[¡##AË‹$Î’‡’Mò¹ëåFaW;ƒ´%#(ê³ ‰‰ é¹™&‰Œhˆ4oåün!#í“÷¾±9º¡TÇý-'Ñ·›$Ñ]‹DwKK´œ»I¢»¾Ýõ”è®[¢»Ë“ènDw+—hâDù6å’©-áN¼ Ð#—µÓ“iTõ\8¦™Çų‘Ù+Bdf« å»° ”ÙÓÁ¥¨L’åR°L©ƒ80ÓÙA£¦ƒÜhfÑ26H`yÔË«ƒÖŠÏ´šÅM¬1<ô|Ï­ç{¥ô<. –4¼…®JV³íf5ßîþ1º=£NVó]«9EŸöÓYFôŸÀ0yÿüõ+ºûÃÕ‡ä?ÃÙÑÑèD=‰FʪóðmŠÊóýqžü‰Jú”œ-²Àq*ÝézŒÖð|úzí ªßÅôßÝwm„9ö@ÿÂçìß[d …g£ß“l›ãפ3AŸ©˜íÁø¹ÍGÃÙÝ÷ädr'Á¢¯®dU©ž¦géÅÕÇ¿:R£àÐâš×ZèÛ|aŒîDb;UÓ‰þ郛f(ÙmGK8õ@7’·ŒŒëØå>»ÌáFC%^ÍÆ»à•r§ø‚tõ&]ùÇùzâÌÉÍù9¯ææžåe 'kÇjÛòí}ëíòí"! -ïö”?Ûõ}öúlχÌm¶tBŠæö—·IÜ„~åDõ ¾Û/ Ò¾ôã–lþÙcy^)ÊŠ†Á¥2ïˆ"Äù‘²„Ʊ’˜ôžt4܃»‡ü¢á{¸crÏø@¶è9΂{ãrYáq¨^æÖ>œbë1ç„û —ÓEÃòh‚"÷´Ü¢÷0\ÉJ(=íÀ‘ŽJö´"²µ¹¾¦ÞŒŒI4èÊÛ‚=-ÿ`ShZìÜgÎV ‡ÏÚƒ˜žŠšUè—¶  tšç»B:ë]0ä ý&×u¿¤Nâ#¥x”‘ä0>,UO€¬,Y˜ +‡å ׿ox ž„à:SˆÀ®ø«µ­!i±@’‰I5°Ç6°ã|Œ Ëâî]HY÷,ÔÜYFËÉKNSêæOáX:š™¿Î.%¤Dšö+HÞ±òïtóIÇLTšæõ@³]€9m:¡ÓpÒ<(2=6êW*Þ˜±I©„Å$§5R*ǯZ©ùö.¤º”ÊÑ&*sø»féÈs…ñºJÖL­¦M¿á;× ˆ ²%è©#â}Uókøñ¯c(xì,=ÙBí†þ×KŒ/‹O¬KŸï°ç›a‹8Hxãæ‚Sçè/0sd…õ,xYÓ{LòºÃ1 Y´®R&E‹ûkŠ¥UÇ4à‹öº–ê6fÒW‘_®ðe»Bš… wÊ;°pÖ†e[ûFeÚjX¡µ¬;8pC۵ܪLƒµœ_%üëêÖ`­VÔ`$E –¥¨ÁÊk0sÄöVˆ®·1WyÆ\RfÿUŸù—Ãþ«u¸ßVì¿ZíhÿµŒDS²ÿ²›2ü’‚¦¯úí» ˜uùYuyu³Ú 1ËâãŒÎU[,肌Dc,áÖûì*…Æ8C,üÀ­\FÑ+Úa%›h‡å¬¾¦PÎ!­‘ŠX#áaéÍ8TlGBTØ"1–¶nk$°*©Ê©f­‘¢5R´F °ÝˆöÑ^Ã+Ÿh¯í5¢½F´×ÀOE{åÙk ©ó¦*³ ÓöÓ•9dt]Æ©Þ4#·èÀ7üN3¢mF´ÍžÕØføÙWìë:2о¢¿ ×ç›k_a ¿-+äÂo¤e…«£MŸi´© ÉlS¡l'ç…ªÐJÂ8ÚGH9­Êìe‘“Ìdåì ƒèB/Ůǎ&òÿÕa ÀE¨&oYc{ŸÑ¹ž–Eæ„e›&¬…¥ÁR‡§ÏX‚•4Ä‹™ ¬”Üï™[Ö¥¾Èâ[Ô'íþªX{ šªœjYRÞ[‘áüTöÐÔ÷vÀP“ªš´€ÔeëÁ/ËéÊÞÔüÂÞ ,+µNØ·é]¬ ÆÏÔi¯+CËûèK.Öä¾*´U$ÔOËúYåÑ9íÊ:ÇLŒÊi;GNÐt^Óµ—¦¤¶*MÕ [Ù@ÚdMuhæ”ñW qÊý%ˆim忟ÿ]ÿþ¯¥ð߇Ǒÿ^F"^à¿/ÏÿKg.÷}™Þ¤‡°ßø{P8ê‡ýÆ™C®ô»,ô}ÙØÞJoà?ƒFòZC¾sPl÷ßÑÝb:Ëw3eúÂïõýdß/ª-‘Ú\üŒ4!ø5á &ŒLHÈë€ÇþBx=ÂfSŠ[¦<Òdþüôô0&ñßž†w÷è/¨Beø5ð½9™ÀÈë¢pJijÐ ä/¤5¦„™BÚª¤+R;j ÷¡Jc·Ñ߬Àä¶–” ¶Aá+Élݸÿ;‚òÀ5T‚éÄ·9Òο­HÙ6b+Ur¡ØÆWü±zŽ”B ÃùÀrÙ6s¾Í0ÁvFà.´ÄöðvÞÀ‹f!J)EC㣃±~áJZŠ´¦8'?ýê‰ ä¡xñ}¢ZËÊ“7þ… .ds³GžÇ5 äß,í«ƒ°4!ÅñMÒ”–Í]hÒ†ò\|€.T>Œ9ù•P›( Š‰Ò P”^ör–v çbî*d“=ž‰ÚÀSÔ…Em°Gž/"j9Úr¡­ÖîGT½ÛÑ ˆÐ£"ÔÈz¿%=htÛǯ_Çw™Ñ‰Êwo½£šÍ¾ »'˜Æ¼FŠp<Þ?—€L "È>PŒÞž“FSòÚ¬}¾ ßgVŠaŸ ï·AzšžÞ¤§ƒ´ŸöÑÿݤý)ÝLH6'‹1š*"©àŸß0TRKJú‚’vvQAYpãGš'Ö'2§Ð…ÙCø_{(¡‡>ˆá5š§žŸ¨1,"Ÿ¦cЗ€ÛßPSÄøVÜÄê:¥#õ r ©õÆÅnsk›‹J¬iWÔ#ú ,/È/èÛV‹D¡‘ƒ~B“š³ð +ÍÂâœf„Žww£ù\ZQ“>ØÖ?¡…%z åoß…ïÜ?°íÃW|~‹w[È‹ØÒ6Ýfi¸3ãaL' °ÝŒlóz-Ï÷áSønóA}˜H•¾ø;¤ÁÚlÙ•Ô(ä~ÇsVÔÕ¯T¬]ÆíJÙŠ©š#ú ^Tb¿Ï öœTÌf¨øB­vÑGtö©*ï<ðš”eŸÍÍŒñϘ‰•°튮5oÚ£2‡G/h„¾îÄ1GqíIøÖÒÜFŸè}SϼzáG¶P%NLâ’Â>\7ù©å;%å;ÍËGX¡7öwNw›[¢×%ã¤>i&tæ?§Šêø9…Ù©#ÿªU.ÜXéõ›Ý~¢-¾¢--Øñ>˜”4’ “Ÿ)¦ ÈÿV"ÚŠfµAÿÁÚDW©¬b‚Ê1CSjeNieN%Ä‹Á©¥œX"Nù2JIÄÒl—I™ñ;€•)3`ëÕföÁ®Å;²Õ)¸œü¶«Q‚ï *A_]‡Vº§;M™¯Eã5­L`%*Ï5†µÒqBF¬IOžô$ Û¹`ey”¥Éz  Ó¤ºÔ® ¡(ËåéDN` ]ð¾²#øóë&ÆÿÌêÃüOó°y¼/ó?蟑ÿYF"ã^ä®Dü‡²?ËþÙ)ÏûÔˆúøS>WpŸ€ùH.›Ò§““>?™õÀObÕ×Ñà>@ìðîõat„‚ÉEÈ%R>‘òy-”¯;®j(ŸÈˆ­ºBÆ`EÀU$®¼ˆ+Á•i!ÔP&*ÁÜBBÞîÔ"â•ø"^…{ÍÖBÞ½V‡5«‹µ`k71-’—†‹ÈKþŒÁ%D"òðCqÏ)¯€?ì¾Ã–{d'§\ð-Ý!¡°¿·ˆë&êóy2^Hn²3]Å-H‡ÐÞ¨ÕTBAdE֊Р,xüÜ¡'6âq3þRD‹aþ[ˆ>N4õ0‡ËäG2y4H‹y¨Î1!âi±Øª+<-~ݾ]±ÞÛñà>Üǃûxpîñ¿ÎÁ}ôóò½ýf‹Çlð2SØÕ¡ð…8`ÿ°Ÿ× R§vôϲú ¬EsgÀþlm*wáCXÈg™JJé XL‹²fŸ´*#9¨4Üâì}Æét³iyÂÃIÿ`Åâ_¹¿ƒ•!%Õ;oÙˆéÅÀ¸ä1LCZÙRl.{}œ‹ѲÓJIùôÕ•¸M¬Ù~_½”—cHAóâÑ9ÓHíøN+â;¯3þg6]|[ÿ³ß>=Œ~&ŽÿMà|`7ƒöøít¿ÍnžIRJyññê<½îuÎt;Ñž;ɽ÷îuJÂÒåôýõÿ{õ)Ï’>‚–&øfÔðx!²¿·ÿe+ùócò ¶;èm=ØV†+ôß× qýïü£Ø}t¡×¥ÿ"™´öé†4'à*Âíìõh¡wY~Ðè|ë6®@#+îo4º)¾H‹±µµ½Ý’Ö+ì®ñö6‚t u~Ë Å5@öÛoP,®%„%*<·¹ýÚRšBÞsþf9¢ÿ˜Y¡þ?PøÏÖAä?—’Týã²q‘þÝIÿ&àg‘)àoƒÇU•úøõA $Ï”ʹ}Aß!=½N²Øÿƒƒâ/ÙAqû·fó·ã·ìêãô 07_ÐïïÚpHŸ8'w?“½‡ÑRÇòÝÍÖoð@JÎÍ-4‹Ý¡V#G CmP~䨕ÇÜÅÃÞè¦ lnJ>h9ëSA§IfDÙÄÀm(ÝM¿Œ0V”CFpÂ5úç •¹™mñçP&oØã1ôóßí¿eg§ê§ :=IŸ$úÊ¥CªÝäm Á•g‹îlþ²3Õÿ?†O+Óÿ-¤ïÕøÑÿÛR’FÿÿÕ¹ýO©ÿ¿Â=êÀþ’½?Hï'è‹èØy²ø1e¬| Ê¯I‰Ë5ÔûÉÄÆ¬âm:îâs!4:>S Ï¢89¢ýªü–éÞ2Ï'<)»BÀ`¾±±{±C™ngø1žÄb &[ÔÔNÉ'¥úO “QdP5TQ±ŽTA VÊw߱ᑩ‹ÁÜuò—ñä+‰¬-$#°ÜZÌR2­Æ2¢yè§Mr~] u¡è m‰¨…oè\¤¤·Äêç] 46kЬWôj*+=kQv 5²æ S©=Ÿ¬ÄŒL-bTèy#fAÍ&^&¨ÔéÁ*-IÔoy¯¼nA5)~¤Éá²sR„ûÄIæ+Žpš¸cGh‰Ev%+L&Æhb“Ĥ1¾ÝJžfÓo³á# Å®›)ÐC¢;”C™^QóýÄö°0#esŠ|·y’=8‘m½QèÉeÿ‰²«É\µåÕæD7øº‰Ý.™ŠP×·ß»žýÞu÷{×ÖïbÇӞϻž…Œ¤[h‹DcžÏõ°gG¡OvmGצä íJ '¡²9%7Jë̹ j XîaÑE\`Ì!C)±=¦_-z¡âÖ+$n:yëy‰[‚^ˆ |7zZPÝ‹¿ïA5³jtûïã»ïbFC4:µmƒ ©v‘h†ŽÛEo{ÎjDMË5J6=ÏÐs€^ÉЫ|à*bãô¶Û8ýíî£ÛÙópöÆéïŒÓ§³ábšwØ HÇûç¯_ÑÝ®>$ÿÎ~ŒŒ&ìÏ#4Ï¡¬:ߦ¨<ßçÉŸ¨¤OÉÙ"›ÀTsv×cüñÖ¦švŸwtç+2?MûéÅÕÇ¿:RC|¾¼üp¥y­‡ÍÿÇ Ö‚œÉ?ú‘`‚Å¿öù‚>˜Œ í+Q¿¯ÐM‰9,Þ¥ÕÚ±“Ü~O–'ñõì²d÷M‡$4#º(™Ü–´ÌçMó¹rSk(åâÕ›-ë|ò8.·.ÇÜÜßÛ€ÿÜjïß–o·»8oG ;x ’F“H²±dÇê³ÝüÙsãsïÔçz>Ï5[:‘ñ3€7íkñ3p.øà½»0ÛPq€Uü†Æ´&A'ûö"»N£ö˜£”üýR4x?ö£_—Ñ8ä~®¹Ž[»q’âp¼LçXB«Vn1ÌŸ›; ͱMþ·¶Íå 0Ì„d“%­ûÝ©ØzÎ*TãNªwôÝ}ìhÍ#WkŠvpݬ5 ·Z"Ó7S²fzâ°éï5ú¤éY4`ôOc„i¾,$p?Ï=f Ékt‰…§BÈÊŒÖîhÂ,¦hBÆœtsMC^Ãé#cò(I&÷Gæ¡s\`ˆÛ#©çQËÏÓfºk‘Êó-Ìlâh¸žµ æÛ(˜a‚iŽ!ïŠùî6¶7÷Š ¤Ù¨cEí4NUõî?–Ýsê#­ž Ïð熦îÃgݬûó‚´ü ¢³¥…b°ÉÃäÆ>!²$wL_¯;,¯v­6B½Ñ(*ã¿’Ñ4'~]Ó¼¦iÚ×4¬ G¤AÍ^ Š5¨©9üÔÔ%¶=,ß ‡æÕû)hÒ Pjc?ƒkü­²ƒkÆÿÍZ÷µ€þïàøH±ÿ=Øö_KIDÂDþïªÕ'›Ÿ®:×éEÚ_ØOyP%I‘ÖD¤góY0àÞ;A'[Q¼ñ£;oð×}ì/#(B‚(CˆžØÊÇÉ&;øºäyr÷}’ƒùY$ÙÇ'gäÉ{œ3d”ÝMožî¦è¸×9\5(ÇŸX“£Bvñ4\2° ¢q–êžœ‘.U@™Q¸ÊŠ`:ŸÃcÜ—-¥7Ka 2””ŽS|èÙ?$_Ô:¤u&Ð:ŽqëÓ.4å ¦÷~"ï](ïU~é÷–¥û¼âDôö¸àBF¾¾WÉ(<¤öeŠsà”C~¼!c6 ˜é€\ëQ­H1™)S?Z2R»ÕR‰ÜTÏ[ù—ïA>Ž„‰†n–k»›â‘¾|¤Ep(„ΓN÷E ¯ŒvO¹"™‘ª{3U ç®%RËêñ%ç)þ_†•›iₘ&ˆIÈHûä}Óý-'Ñ·›$Ñ]‹DwKK´œ»I¢7Ì ’ènDw+—èPÜ ? 0ëµ:+1‡•ÑA«B>Öh2¤<=¾kú 0«Ùàa¸*£U…|Œ‹òž ïWh½H–* æŸwü©ƒdc[YÇ;È…®h$°ƒ<êåÕAÖ|”Úd†Ï“6Ž ¤ÈðIûŽÃwöº>*.ƒOÈæ*Z“˜É½ oÑ“{}vÙÜc}`ÀòJ sO­'ΜܜŸ?knþÂéÙÁ;…Ó믈ӳ?kgõ.jeõ®Zý%ÄR <‰Ùë“»— ë™UC˜+ÎGïÉ£¨îÁãÀúð=z´O¾Ä%3Q`Åüè=í ‚Ûq?¹Å@M…BºËSÞÃXƒ(Ýå`Ú,_]cwYîÓ{Žƒ .u—Ã_ûÛ‚ÝUº©ÌžvS9õ …8ó°‡;ðFÀr¸.P¼ ö§Ÿ Í Jåb«ðpçq/ŸòÙ0¤ÚÎp9ú†rà —3%ÂDWüÕ‰ãÉ#<í¸½%p6ÖÛhÌÖªT8¨½³,‚¼v2¥nþ,dö,{lÌzÈ‚Œñø“?|êŒ2˜³ ×Ö̓úGSØ4"¦À 1¶ÑtüªFÓ‘O«Bªk4•MÇæÑOÄEÌꨕÐi¯Õt`â-çŒÁÂB~ûÁáÍw.1æ_ÇbÒtgéÉÄ33œÎ—!Ãñsö\3lö…T Ïùëf\¸ðŸÁ€…·öBÞj˜2Z.›¤VÛ¥*Ä–su¿®jAlµ¢ †¢™Ïn…ô„‰¯Z}#Lœñ¿õá¿.þ·y| øÿnïÇø?KID($þ׎ÿÖ þÖý`}ýP_7é÷ÖÎó wÞgD=!%gyã…û‡9­‘g1Þˆñ&›ˆñšÆ¤/Žk©«-‚ÕæNh9׳0ô±¢¨–a"ucµ@HFš–¤uf#Mû д‘=Œìad#{˜§È&‘=ÜhöPÚóˆÐa„ èÐÜ×ud 8دÇÉ_ó{"8¨)d#8¸pPÚ°ÌËÁ eÂÉeZè/Û&|ÒÿEb.{+ç¤$ΛƒÌ™¼L. •«ƒ£Qέf3u³'4”gX”¸Ñe»æ,Z…œ™¹§WD‹­ª§— {õƒuÏÿËó_ïO: Z7éÉEïÆ ýʶ9Ñ)á»T¶ g_-àuÓð‡» ¶ÖXÎÿŽîÓ™Žìú stg¢bþˆþðFþån:ùß·ºl¡K<Ìõ“2X“dô0‚Ê%ômÑbWI𥠜ՠ‹“édÿ2"g>èWå°å2aq ñ!W#¹¾ÉVòe<ü§^¡ž½€-z0ƒïU=sô¤N¬Øöó"À/4ÄpGx‹’¡'CE#hJUEî]ŤחyÊ„Ûö@øËN­˜›'"²ÙD„~ô6;î·b60yñÙÐvÃñÂG_¿ŽïÆ0]¥y„H‚¢÷ ù_éüÇ—žuŒ”?*ÛlúCÈ"Ÿ5ù¥u W ʼC ŽŠ c¬È[ô5É}Šgúùuè^ò e¸˜>¡"~]>íž6σÈUH-«²"" åÄ:ÊD ‡d>ú†?Æè-ÃÉ=Í™&uÉ­)’¯³é#tè¿(‚|}FyÑ«s´Œ~“¼)É€^ÓhÜ„nJ¤ô[6¹ÐëÂs8õ޲›œêoÁÁ)‰Ó¹Á”‡è¹fx¥N当œÀÍðÑGjÓ ?È‘õìËMºŠ¾róKžcS2UŽ5kèÕŽ5T+SÔnqŒÝjGX>ªš(C!ȼ¥Œ°Ûébw6þö]e:0¸ŽQfgÀÖiù °Ó49?¹h$)ŽÒWGJ––3À.¦ ¤K¿iø\u!‚E¿¹æÒè‘dz6ÍŸ¦,È €8—g9ö½‚ƶ9„xšÜ>/ð=êÊïÅoÂ_n|qCxq!¬Ÿ8ý*uC.ÛV1y¹ /ƒÐRŠ»ðÚíáí¼7¤9£7'w3Ü›ðe…_x£êQQÁHí?÷r¤òFÆ#™R”ýpB?æ²Ä{ÉuЇ >Ì}È%23Æ5•ì:ŒðìzÖ9 4Z ï=jPOÓ1š7Ðdw…gº&Ë´ÞÍìÅðây´¤3/¾Ói2DË<}ÍïFd!õ0>I(îž3]#÷oèB´q±Û$ykûõPÓð°¾ñµ|Ò6è'TY4y㥆¼TìÀÚæ0¼»Íçhjœþy†%:ª+ý¢ƒ“„'´ÂCÏ#÷í»>Tº ý¢(¿QËÉl–E¦•´g¢d`ŸËÒE~X¨MÇ’ 9Ý4NƒÁxÆrœ4ÓÀwˆùÆœJ%ñénË ’O7“-\ŽŽ9Ûa»Å'HxÜ⸅kI+ ! ÉÌì>9.ÇÄž‚ä÷oôê¤ei‡ÞéÑ[—ž‹ÅRH§·‹vú íõm·[.?úÏN‘ †.#´L胤D“pߟò…4¼ýtïÏO{ý-¢&ûüÕòÌ^Z†Â̶ðÎ5*q£(lv\¤§;XÜ Bª±¸,9ÔŒ†ÒƒTJÍxÉN)Œ;efæ“U½õïóUé"¹8.!¥5Ñn6f5Ì;¤’š¨¬Úu)!$=h@ÿùWDùCUúzÈ2;Ò&´†þÀZ,êò–\ͦÇÈp+7¯É”ô>|L8G/(åç1aÑzQ«Œ3ú'¹~¾ûŽs›gpXn±rK¨+”ácV‘ІHkkˆ” Ê+â1SÖ ‰Ž$_#$6Ð|m”qM¢ R4AŠ&HÑ)š E¤h‚M¸J¯ç ‹&HÑ)š 9L°.ÙýŽGÝøËˆ™ÝZL’„|2…‰¾êž±.‹IÑ )$Eƒ¤h¤Ü¾AI×Ñ ‰3Húuì‘Ð7E&I7;žüÛ@ï^1%ÛªÃdÀÛÅßÿæ‡íùY&ä–MáØou°[•qSEæIU¡>@¨ílaP¡“‘½–#+ý‘[K$ÎLA#J–¤š)Ô>ª¶«³_ªÐJÒÇüĬ„ªÒ?ÅG‡ò)H8Vc¹äc’dîF?H¯&•RF›T¦HŽ‹JDi-’·y1c§@³ÉšÈ"ŠœNç6Hø×ìèzkÕk¬¦Õ‰<¤å›!å†D¦¿Ÿ$ÍZ¸ôô5HʰuúIÌîCõ#6¡èïvþ }„]EÿjáIÈ/ôïbüï•ÃЋ™ø5—I³¯¾¹ZøÖ\íT±fðj. ìV5Gj$´ÅÂ2H»Z0{sæF!RËëG-§}ôl¿à× –#©¬b]Ie'DœaÇ…!âËÕàõCÄ—E£\dˆK5èsõç^ë`Pè~ßrCŽú6 Ç.¸l81¬>Õà¡¿sФÚð°u'¿OZ *ýšªKZ"%Ä¡å/qXRHƒRrá…"HÂS{€3n\l£ÿ>¿É]± !|Ô….Ê„5ðÖ@TÁÕû$m÷b§˜Ûz&Dxj>Ý!âã$85Ö1¯±pã% h¾`ó‚š«æ¥äÉëàY+t›ù *5YQðƒ¬Qm#¦¬/\Ž˜ÜÆN‚BF([’ VW·EP(„àÖà^µÜ*õ‡IЖ “CX–TÂ1»æ’ Ã%œýµÚ q>šÉ ã¹FQçK2Œ<Ü8«‰nà5¤Ú«he$’VZ“°º$ ÄŠ¿ŠØT !ûòYñT'†C°½…«W±‰ŽÔu5¡¼FåQñ¦(8ËÑ&©=Œ‚¶™æKØu·°sÛÛ}nø’ýž ‡•gVøÇ–KÖ‰m%q¼†Ð»¥7aV[“( º¤xËä”/c4…ÍMŒÿ^]ü‡ÖáÁþ‘Â7#ÿ½”D­Èkã?¼"þûF|ðC¿c ‡H¡‹­=DþÜ™"ž§ÈŸGþ<òçÉkäÏ£íH£G=‰4z¤Ñ×™F.­#^9^‰Gëªè§ZœZÝĺN¨BèR´.û²$Lwó3µ ª¬Ÿk]þIP ¦îôø=üΚ=Æúˆ›5³ÒÊ-‰aÑ;¡e"µ×Ôš$ÉÓº)Õ{´^Ž2c0´bA”J)´S†r÷4•© T/ç{c5Ïñ »ÚYŠ/kMÒŠÐø¼NÊ8½.ÇâUàìÚjiSÈɵŸ= ä±MW‡l§Ý—·ÿë"ÍPޤ«Ï7vÖ*øÕVC°…ÛlçÙá~±Cm' Cg=µ³†©yžÛ­ ;ßÿÛáþµ‹Zè–ku¯]ÁØ{WUÓŸ'—áa»ô`¬Ø kEÀú2koH¢ü÷ìñqUüw»Ùj+üwëø0òßËHd ü÷Õùyãúäý‡4‡À;„?üìò?´“ž½ï¤]ôß®.SÛ ½ÄPÈe/¡W$^—‰§,5!›Óí­´Û€WÀã¨q¬ÎÃ)l¦qÞ…m®áÃÓ÷áöô‰4v3|œ»Øe—y€œ\K<ÇÍœÂS;~$Ô8£ÀÑÓäN=FîäÈ⎜–ç5Ũ­ »ö;¼‹Ôûéú··çƒ€Cg'ž\.¹Ys³·?>?,ÆÀÅÏQ“}MED ÁÑ×”3`vR¿L·u}«asÙ£WäÑ™ôhÖó¾˜mµœ|ç×$å;¤|GÂò@ €`‚FiÉ9¶™P„Œ6“Æ;âêÝÚ‚ô­ÏÍ4 ß‘‰z~tZâ±zÛðu¶n h=×ÕBF¿ZN.;!ÒsIT'Ï·„­Ÿ¡f‚ÿíî¡›r˜^î`}Qà?/a®YÁrÌ_ìçÈ?,5t<²q6!Oˆå$S.†÷’¿0yMæä±h%ƒG&œlä€5™X»Éd„þ¦tî|´ S"– Åñ¬#k}³†^i%÷ÉVJ÷PNqN$h¹fªƒò£»ÑbCº'›Ó,p¿Ù72ô-f×P‰Ðzæ^ÈH™/ž€,£‹/RMÔ ê3Yäð«èÍÆw‹‡u^¡/“z¥{ýëΙ6¸ën*Ž£îø±àº›:¬îV ¾f ;…d4†ùå¡·W1X@£ ‡ê‚û¤ÙjHÁ9²¼@X`NMZ…•%ª€§ÌtÝ2 QLj¨ØprCŠ‚{ >êCI 'av m·ÈÛÝ?F·³çáìì@ÞØLÑ'ò4ŸãN ÏÞ?ýŠîþpõ!ùÏpöcôð`´Aã©,”UçáÛ•ç;ú ÿ•ô)9[dÚHµq=Æ[†l¶åDzÞ¹©Áå4í§Wÿê( 4‚1JúùòòÕ¦ &7/X«r7èÇß“FS2¸Ñ>_ÐdÇßÆäŒªW%áʃák4Œ+¡•£Üvè¹sÖëâñ»,Y3Ћs„Ž—=¹Œû#»šT6»f[‚«BLJxsRï«7[þ3äq\]޹ Ž·ù‹b„Ó¡¸¿ÖÔFw÷§ »{–Â)64Zã]Åsóoƒ›s«}Ρ|»ÝœçH¾-àFË¥±dïÔg»ù³çfáhêÄ<È"¶dë°:ÇAÉÞÇ«½D±"uЊâGþ-¸7úg~™rùàïIx^ËÄÚðÎ¥kº ä‹.3]ÇQ^üe’4gj¶VÒÚîHæ5:ý&Þt –7 £B¹ÐÙ6k ùQea&[]1ŸèÛ’[·ÑO˜vHô´÷õ6yÞñ1y ë2œa)ëpús•þeµ_€äq| ÉèÉÕɉ¼“ŠÛˆ!åƒý@-0_ÐÃ2 ‡´žãßç.s¤¥I†o+²B±îÊž#øu±ò8aЫulätˆ¡'‚ä!†¹th¸xþù¢¤º§':Môf>ñäÃ9ÞÏLQUÕt ¡ú‰TRñ"=á^OV(¿]§ÐW€‡L½cºöÄSµI*‘èžlqÃÅÀÄ@ò‘(;Éå®×ۣ‌—©yö>h®L(:¤ 1eHÙ˜&ŠŠª™—Þ&ÓÎÁú¹é´0ãQ»rZÓÀÐëoíj &ŠÒš„ƒr57ŽÍš¥G‚æG‚§áÛj*¿Vb!ÝÝîœBÈUã‘“yÜœšÇ'EÔ݃=ë#œg6æeð’C$8úÓm^„?çJ.;ž@ʺ‚%Ã’¬Ë–d&îRÈ ÑÁ©Üó¾§qBhùZÕ!{-ë×6KÙkÙ§JÓ+éôà¶D^¦ìµZUÊ^Ë`)DöZš©—½27n}š1mÂÏ#¾ÊOá¾eÚDzjeë$×V“SÔòAb¸*‚$IÖ©û[Ócñ¡dœ­ ç \s;$hN¯%KNù6ØA ’oÍg³ãùPeècï-AÛC}¯]löÝnírëE¨-¼ ÆÉÇ uSN 7^‹HD8øI‚ˆJIKÿ–ç–‡q~mSãXëòoM…Ó÷œ—¢Â1'œw•*œ’»!¬ÐmÍžBT8ë¤pÚ^+RH…Ó.éüªí¹ÃS…]äE»¬å¦Ìþkuñ?ÚGûm%þÇ~´ÿZJ"cM²ÿÒÆÿÀ_EC€À³µ†a]A‘@PM­Æ\ԳƘ‹ÐÝþ™peuÅ_„¸BHŸYÀ1¡ á@r#.ÈÈeÆCmˆ¹¬_¨L²(·œGP)mƒ‰§o¸Lz}ãmè#Fû4Y ¸‘8Ó+ ¸ÁÊ`™bÃí5/NÔf¨ýHAó‘eXØÂbX*ía8RÐnduf#…ƒ[dF#¥c\¬…ɈÎrC ý{[qlnèŽ,І9TGžC±ð 3n ÖƒuT¬ã׊Ó!Y›øÛQÄX+‰Õ!ÂýÆ×(FÎoÅ]¿¼WˆþããÕÇø(â£D„NQŸÒ¡¡;*t˜ïç÷ž·ññ‘Ì»´çèmòŽbG¬vïþvð&×U„ÑÐ÷‹“* w^âÞèÁ‘¯Øwœ+y¥÷,IõX_K^Áw¿ogk’êe·:º¡1/ª¾ã=ŠCÝáZr5~n äRQ(ªð¿ú¶–H9UùãðŽ.9êsŸœÅ œW£>/_Í(ppé<ô„²-V·Òõ /QÒw7Qˆ…¥¥}¬K¶\áÌ\Qójë 8œ¶ PIç©T59³ˆÓÜóvÁÈΰ+ éàt¬éuÌוµ1Ï’$ºÙ ìë Øb&ùÇmR02Ä2@{y¢Ž–›USÉá쮺  ÁAÊ„ZÖð Š›f› Æ`XÆh8*^GÃ\P,ºBÈ\P*àW$ƒòá}V®û߆tlPt7»â/ò`¢þnI-bÒúׄUóYfðØÛ^#È•ñŸóÕùÿoï«ügôÿ¿¤DÄPä?¯£ÿ32z}ž$óéÿ# 0šŒþy–@QæTµÌÑ›íÜ¿6»Æ#¢Ì¿0çòÿƒ7]Œ¯ðNÿïFó”1kíôÿSÞX ¡1$Ìk~e± ¡X‡¨Qà”ŸPA!£,$êç›ð¸šÞ÷  ‘@—KŒ £Ĩ1*@Œ £Ĩ1*@Œ £X£…Wõ»ß±â¿Œk¤ñ›€ûd!Aàƒð/ÛX&71PÀv @‡æ¦¡Û,(  ˆb åöM p¼’@ãÉ¿\˜U±²^^÷œ~‡ó ðÖ⬇s1›û,®ƒ!Pqî->èóõAP6Ânîõžy¡¯ÊO°Ýóo9Ø™ò‡ÕËb§:­,–tUg(×»ƒpT!ˆoËCÐbE¾wu-(Åàáÿ”è[õ@>KÔ¹c2qœF;»èå^–pC ôJG±îâNÿwU'ï,Håâ¸üæô[ïá7‚´ejltî^ÎW0$Sͽý×û{ˆgøÝ1±/Tjž!|ÂØ0Çé¾Cê ‡eüþkC9÷ºy%ê Gåjl åâè@ZÁ`°ûà—iÈ•J`ŸEÝw·ëX½5½ýÅš–ou°•ÔE~­±(r\ÜY.Q §[œ»ÜŠBçððà —ŽN$ ¿ùÐÌþ.úMñ Ú£˜¼ñ‡‡zð5Ò <­ƒ²ƒG%à¨cVW×à9ª9ØCi×öšÁ³:çö5žð¯cið,É{±XÙךý[­«ùZ+8 ¶Ûnåkw Nº¿2¿à]5nÁ!y7…¨gRo7×7ºHõnþkqðß.¹f‘¼¶W´bÑy÷PºÁûÞAk‘¾8á’ —\Œ´Ë.FÚÎ(<¿¼öj-«t±êYUµÖ7Tɦh¯’‹F©Ÿ+Z2¶‹-ƒµWxPY{•\ ¶+Ùñ´?¼ŽA6bÊRfÿ¹ºøûGJüf´ÿ\J"j@²ÿüeâ\ÿWgÌ9™/FØèD5èìlÿDÀmfĉIñ?î¤ðÞ¦ó³Å? ½.ù¯žãk†Ð¢5§gè‹i²>ü†ÎÇäŽñâ[P†³]þ7ôÖñäîáù 6SÃÎ;! Fô&×Ïwßqnó ÏÃUK• ?Æž?E8F!YÛ($™S; <"ʆ ¡ãÄ7 F¾H”QãÄø#1þHŒ?ãÄø#K?ÂY“ac2KäÖD4¬¥±IrC²$F#‰ÑHb4’Dxn%ÑH®c4’¤úh$™ Ó’‚’TÑÀ!Àß„4ñöJ̇BØ­&¦Iµ¡I<œmûøÚ[`ôÚÒ[îF¯´rµº™ã#(ý_ƒa·`uÑJ* 8TÿÀr"mÕHW§Ä'I•‡Öd׿3Ø1„k°GTÕz$·£ã#hŒæ–ˆdINçó`"~1®d‹  "‰ä%ÖÙÙ‚×Øù.‚H‘ºU>ÄVG/ÇàËŽ?bNw¸6kˆ%ôA²ÛlU!¼VݛՊזc†ä¬^ÔƒBÕ¹D½@‹T±®òìs~•‘F–}Š‹âé̦û † ÉK]ý€8*U½J#†ØªY¹ú/r¤Š,2‰ýcyÉÅÛŠ„Ý[3æ¡‹Š…ÉëXýÐxWñÐ(Ð(Õ¯—:]dYjˆ’ëµ QSL1ÅSL1ÅSL1ÅSL1ÅSL1ÅSL1ÅSL1ÅSL1ÅSL1ÅSL1IéÿTˆW€àespresso-5.0.2/archive/README0000644000700200004540000000004312053145624014660 0ustar marsamoscmArchive contains the .tar.gz files espresso-5.0.2/archive/ELPA-0.2.tar.gz0000644000700200004540000037375512053145624016174 0ustar marsamoscm‹¥”†Pì\msÛF’Î×àWL1WeÑEB"eK‰6É–,ˉÙÒZöz·j«|C`H".¥Ôþøë§{R/ÞlÅÎ]±µ‘ÌKO¿>=ÓããÓóÃí/>î³CÏþÓ§ôso4ÚËϽ~ïž/Fã'£'{ô?j7=}2þB=ýÈtñÓØZWJ}¡“«‡ÚeEm*ÔÙ•ùd}ªçò©/Í4Ë?Ö à½'Oî“ÿho4ù?Çã=’ÿîhoÿ õ <~¯çÿ¹ü¿RGåò¦ÊfóZmõÕ˜ŒoHÿ«¿4º¨›…:¾8}|qq¦^”M‘ê:+‹è«è+õfžY­Qô3Íl]e“¦6©¢V¦RõÜ(âØÂªrŠ?¨Ç¯ÞªLAlÌÕy3ɳDf‰)¬‰Õ…1Ü…üo÷úuÊ ~_•eM³T&©ËêÆ©–•±¦¨»é‰¸u*+5¯ëåÁööjµŠgE—Õl;¡•æfZoÏ–y\_×*¦…D©™ê&¯Õš4Yž¾7ùR«(Òy¾‰¢î÷ƒèËŒæ7¶VÃTÙ*Q5…úGôå–Jü+ߦ÷_[/>î÷Ôwª×ómdsо¼8=üá¢Oo©³É-¿CëµoÓLÉŒ÷©¹Z'…^˜üóe”äFƒ<ðƒ„ø9b…ùñ)©j8Uy6 bÒž+Sݳ¤ùí&Œý³ÿ}|øüåqü—ã3Çü?E€}ÿ÷wvŸî’ÿïž~öÿŸâyüø±ªK¸Ý\Ñï49ŸŸOüöÿÑæxØþGû£Ýÿïî€ÿÆOÆ£Ïöÿ)žw&OÊ… šeõp¢-¡¸Ry¸eQ&›6+sŠhˆ^•®nâ(:™ª›²Qº"¨ftš3êáâ€?Íõ•Qå¤ÖYA÷ù!¢z^•Ílî© Q–¥ÍìÕs]«yikË_mÙT‰QI™¥‹TéÜ–ôŸ¼\ÙÑR’²ppTe‹eU^™ÁDëWIo~! P˜ÄXëÖP€ÐJ5åiÅ o –­-e—è‚îI‹˜é-Í“€G6š+ çåŠérȵwtvþ÷“W?ôøÊŸˆ;Ý"cE³ë¨hj;7y>mX ƒ‘Í5eS»¶IæÑZÃÊ,ˆ×V­²zޱgkµÂZþÙþ0_1IerÜD÷M„‘Ö§ì½Õ¤+æZƒ¸W[‹2ͦ™Iûêô‡óSuµñè4T¢±Pˆ¹©éŸ CÓRé-M”ß(=±e5 K+E媈¼¬ÀQ†g•é’ 5É ’ݰ,h ¬³¤Ë0À¤|ÙM5µh«)<ýH^ž=?yqrü¼¯ô•Îr=¡”DÛhEr‰)3ˆ3²š&9ˆ"¥ WڤʖÞT, Jç³²"ŠˆG>K!©óÔ ¡Å ¥:¬/YÁƒ¼‰Õa“\R³¹ÎM5PÕ³¼Y Ôñð'ú½)fºª åÔfõ:V?•s]Ù€†8ÕÏÕ?z$!êþ,V§º˜¡»:5$>¼Ïct{GñÞ,ì@Q¿Þ¹¦Œ,'dLVÝÚû’fË(Q³7‹…’‹á_é¼aš ¿šV傆09‰¨* jE¢i’º!¡':OšœFÛã™Ú‰ŽÊŲÕîþ@í½;Üÿæ‰ÚBòÙ©aZf£x´3ÚÛþ%&R’2ÆÇxçi¼³3†”W¤$«XÓR/IMWPQ8p›ÖjÄEÀƒC‰JµDòiçĆ´¼ºÊÌjSŠ›ŠT€Lبí¥gCC°‘ê%qeYeº†…M‰ãEâü*u^±]—xKþš]ÙØë“7æZ[—’;:H“f¤é¹¨+¼Ž3k|Ô é}ei}6KMKwDNŒªÎšELɺSõ+WçLý”ü"}ó {´ž±+oS»j ß8‚V%|Í«IãRΙ±4õ‚„hÒÈ9àv=n,z¸,IJj“wË5ü𤯆¤Sº–ˆ¢¯µÐ7k΀qÏr–99BÙ~ ßDã‘åì~H ¹øÞ’V4άRÛºßp| c  êÒ˜¥ð>M3( -…to‘YË¡@ù™3„鉉y޽æßîÙKQ~àX½eM'3£vä»H§òŒ~uŒµ^×IÖ“¸÷²€O̲¦QÖdµž6lº¬÷­^Ya"¬IiÎðب苨œ¹†›³ª÷êL½;|ýúðÕ›¿#äYdF.ÉúxH„wcØpÛ§‹”h©!¨“(VóŒÂ/<4ck¢0ô¶^ùmköÐ(‰&†Ít”ð»PFš.U[/HM+]ôÉ(É$-âÍÀ5b†FyV\J?Xc²„½šèMÅ*5H`nEikr³MKes¶†,>BÜŠ,ˆ4á–ÌŽm¨ži˦V8Õa>3ÔT]4‚HdÔeëÙéáEŸÛžê¥N.•ÿtrº‹¦p´ßíÈ wAnûŽ5 ƒãêËó“´E‡Óëä\ ö Y-×=(b—Øl!ÄAþ}N^œÃ†…«œV8oZ¯4 ÃaNÂ(4°w~3@<‚B=£áÚY# ééM¸¡ ÷êÇó#%Ä’b‘;wÁTŠ´dOü¢dÄ@ˆ„ ò„ÂEþˆÔ–”±îZZ2¬bl·Ðäó.‰8 jŽ)½hëåÏð‡"Q° ÂÚ9m3«·;.O›"’Õ䉶Ä6‰5ÑK¨³ õ7XEž{3?»©} 9ÝÃù>,æNâ†XÆ|š‰Ÿ.›Š0© Å :[𝶨¨V$#ì Ñ ìõý×Qü$ÞeëulìÇÂGŽŒ}a}i™11"ÏI]àTéÂoẑӬñ Ò9–!Ù Î c6Ç 3+’¼IM ¼uÂa§¸¡#Pûþq<ýf‡‚x§ù£ãsÐIå”?A¸º¨Ÿ¯‘›-Èkº…Dñ-ËîCè£×Pt2j™Q҈ȭïºh;ùµì€ âc%Yº¸Êa—]µˆšý1‚>v³[ôò.»Ì²ãcw…°E܆Y §MN‹›Å5¬EXx¯Ó;çd1ÃlH– x€Áá Æ0vƒÃAZ‹BPöÁÀyEȵ0\ÇûÒ“•;ß 3VAªëÚ,–‚=É$ÅC€^÷å +Ü·£ABÆ1£l׎X‘ZÂ[ur4’þš!–œeÀs@°‘ ß’±û±úÞg6Ƚ©Q‘ê¡Ú'5h9Žýücž¨Ÿ??ysröêð´£a]dk¤0Z÷# Ìàs»E1¸UAÆÄ­ß‹³h2 ‘ …|¥o¬÷.˜kA¬ž¨xGhØ‘†}/²_ÙospÒ.8¹f¦¨õ&-ŠÂZ@Û‡†£A0 ÄßÂåÓ 0vWéW ¹BöWÞq*M(žëhð,×uqq HÎV33@‰2oöxúYE?>íh”6"$ÃF, ŸæzfÕðlW ¯i®'ñØ!Œ)jÊùUž†VÀ 8/Œ¶ƒÖÐWȈ8ÉŠ+"2›!¨SèaŸE@>Ö ¢y -½ŸbͲ«Ó03Ø¥->ѯ̂®;8ÍqšQ–,P;¦aÕäž;þ* ]æ%ùš«&˜Ò䨅Q³ÊhlñÐXbÂïƒ!Þæ¸kYUIT¨o¸EÙŽ7l°ÈÀšæežr`wMÈ1÷oÃûÉ k¦Ñ»èÑékhhù)ïF.¶}¦"D `XÓŒN}Þq¿JÃ$8jÜEQà‹)ù[L vÛÀ wôè`­¬œ¿U`è‰þÏs‰)| ׯðé(„WmæX’ê€RKëc­7†6Ú²·fÞBXù¢‹xuìørd}2ˆã˜]¿$~É9Ù)w)Ÿ{d´?€ì(ðº²÷ÕýØOËË$.Í*Mˆý0ù³Ûû)”çúÇ‘µg‚»ÙÉdÞ)—3è*4þë_êðñ5¹×ëǹ^L4^´C¹E`ˆŠbÉÌAÍv9L ÀÂ0;ÈtråŸ×øã6±ƒhö}O»¾Z²nÿûã@´¹¹ŽÜ¿¹»Pâ»ÿg”`Eãrcüã®b£;iÎFý HVe§>bcØd'·ØX—ä¸ÍvÑ/ù]3QTÔìñÕÞ«z·uo 8M”œaƒÂîk?b_©ÓuÝñÞ«º›kaŸVgÖú<,±HÝñˆ)<{,ÆjõÚY§n®}’`?ÒÞ¼ÉÂy0~Ö°ßòxP4Ü“w ,€ë¾ÀöTœ‡M8i8¼8:¡„IPp­qüG·}79»w“cy2öâ•­;*)›ŒCõ#m“GØ z4ÉŠGjËCÈ6%©dßå©ÁŽ#F^Sé%=-±ÙƒU²ÇŒÝ˜¼­É´òÚh”pu U¦Äbxc;ë]‹˜· üŠ8Œ¹5‘öãõn ¿ ½0íö]ˆÅZÕçýwô}ÆŒ8·–Hy)¹a$b{Mtƒ9CÙ,…𲸋3„wì;»ï[Jî¹Ï½T«*VtÅ/hí`u°ý2¢–¬w* «_MÛ–OIº¡8€-—Œá($¯ó$ClΛE1\è_ʪµ§­,&ˆÐía“ {×$™f1A˧…9h»è­Ñ`Ô_ûsþ9ÿ¤x»Ö2»ïSvÿ§Ñ ¸ïSO"¤g¢ˆ^Jë–Çžë·È…œ"ö‡7$#oT(âa}³4|ê03U¿í0fÅpÖ˜6T»ÕÆ·qƒuÃ`¥ü{ç÷„‹MÞ} [Ño¹¼.zÞðjÖµÇäî€sýÒW¼g¡óÇ_ÇP5Óçç·>\ÿ»CÖ4LJê¿vG£¶þcwëÇ;»Ÿë?>Åóퟯí1Üw½Q¼ÓS¦HJì~×{ûæÅðëÞŸ¿¾uò¼;#ý>úò[„éïÏOÿöjôí6ÿI¯\È/|ÿí¶ÿ^º,~ßÿàýÒ‹¥IøËÚ_…æM þÐþÞö^#æfäÿчíßmí~¬{ ¿áþÇ.}Aý×ÞçûŸæY“¿ûù{Ïñÿ?ÞÛmÈwgüÙÿŠç´=¯‘£B–#å>÷Ìä\ý¨­.qu;|Šõøã¯£bg5¨¼Ú-9DZ®¸ÓD~–¬ ªdB)†“¶:•óU©MéN°˜Îí±?—Ҿدóá’šÃÓ—goøH˱á®"›h£Èæ56nŸ¡á-Åë:Ú($ *)rwÅ¥wg©a÷9Bé’ݬWâ" uµëk/0Ÿ.®O–Ù(¨ÒÜêùA±ñùn:\ù_P>Â'¡8Îxmx5|𿪲º¦ÄŒÇÇ1tÄ)Ù@¼j»”/Åð½QxB@`‚­Œ°ü(ZWŒmÔUÁ‹Íb$Ï•ƒ? éÕÙ›ÿ éå[Ò±ÿ-ÅHNY}¡Nêê=?P DÝï/QêœOgÿ8_ár"t “”·ÌwsÑ ´l&õ@Õ:¿”CàX½sE©rJ”g—¬ñ¤EØ.ʬjë„R³v0«ýñ*[Fn‚}§’ϽI+&à5äÄßnÔ$‹KZ×ÎàÔ©ÓH¾°T.¡½ßùýÿZüwúÿ;Oñpüí;=9RôÿãWÇwî·ÓóW¨jüú©!æ¢[·KwöÕ w]¸â®àV)J®’X}ënnNí”om~©cœ½Ã+ Èž ÛÉbSË.—¢¶o( k©}¸HË„wp‰ªØÝ®t¼g¹üœWFã„Ôo;ß»UÊPÓ&Eû¸ƒÚR'á+Ýx)R#t™ñô”Ëîl»·íz 2[”¨ùºÝwÉzšÜ™C°¯ä \.W^QÄâÃs––(Þ@,r#Iå.{#¡@©g7âô­QýÁK¹µÈiÖèŠ2É}cÆèÖŒ†a…ö'_Ã! Ä•Öâ¬ëö‚†ëxÎ`t’Ó®@ú;Ãõ=¨Â;‚ÙkjYŽÃzZ…ŸñO®œ;Gé#Ã$Z ªHìà Ã×jXÁz u ÐÁQ¢ñï(RÐR”„o…¹åOþPšZ²&p€£(F¡V_‚œµzɇ]Œê*Wåx>€†GËŠË%ÔYsö\×µÆzz¤²•Ag§B%ŠÞ¢Om9qW3Q.rU(ýAx5%1ˆ¥áuRêfFJp¸c´B½yV]Ñ&PãvzWÄUxL]ÆW3 ³Š˜ÎŽßrçÄ wY”«vÜ´tõb$Ïbæì“iQ•!ZÎnϲ4øâAEèt¨€mSÃмS:‚NmýU¶Î¦ªL‹Á¤U¬äœ˜øܳŠSñé®-¡èo’å Qð(l¾SJ!—˜>›ò…**PɃÛãYáÕ(¯0^cì‹’ÚºÚ‡(àšœÖâ¾ú(š¡ƒ9ÂÖ­¦&©Kmå´®tçÆIFþº˜^˜ÈÑeo)Vê,ÚPqê}ÃF7ð­£@õêõ«h4Î!©KWûÍ*\'ŠÂÙ2‰7+“À@'Gðé¹À=Œ À9¥6Y¸C½º[¶6K{mú\¼Ã•cmÎ\lš½5îÏÉEˆ~Á19ãfÙ•×»ÜÌÖò v¡i¸í²ê¥•:fMÛU=’êBqyür|õ%/—ã+òæšó$yI>/JržbÉÛœÈnU‹óÄ|ËîŸ'ÚI-ɸ›®-€äiÚK`]-κªK†þ‘8“t R²²ª» µÊÜ­’ ןú òÁ„]ÊÆÒ²ÜŽîX‘;ÈèC;óí×Lji\Ù±é…á-d]¨oÆ…‹ºä-Þi¨P°Ý^Ɔq»-dd”ŽÏÛ«— ]4SÍÇçUä<-cWŒ f#f>q=%;¨±®3”w›:<@äåKšä$ĉ; uÔÂÌ2m’Z ¡'Rá´¡p žS/¿—‘ñ}¼$³¸€ …õ‚ü8´7¸º¬Q¿îZWFÂ]' 0dãf!TŠÝ|9')>¡1ãôµ$óò¤Ò 'ne­é*ý˜f‚>ÜÀc.;,A¼ƒQ05\âÇ%7œÃ^Ëí6¾‡¬Ô«ì£¸žÊÝñiðŽöA—àºeÔw8vUláHRq#ÃÇŠÛ–<Õ—|ÂN–’3æiUp‰Ïð{5ô‘¿DJÞâoßÀE¾ëæÃìJä¦n‡ýÊâÖ=†„¯¿ã×n,IIaÉáÙ—¾ê«2“«É¾V6…’VÒØ$POv²Tˆ¤Æ4’+»µ2ä[¹³^<‰R$yuîˆwã½Qäç#+tN…÷ ˜- ðSe1-m¦à”ÜÅÙÜ-dHLN<à ѵêUøÊpcÂÕ>ÜŸ ½9~ýòB¾z®ŽÎ^ÉÝïÄΦY!3rÿÞ› Æô‚j¢nŸ3¸xϿĵYeO÷ÂèÂvñnÈ;¹^ù[ ©i¢õÜ*âÌfà\ © Yd`RƒbHò„ö²¥ÛPºÇŒÉæ_?'_¢a¬ïr´îref£öß9RÇš&sM$3LS\œ“Ý¥…Üµê¹ÆöX$½Ôôx¯‘KÌ:‡ªïj¦‹ìWÝñ›Ô¬'!¹çîo9FùÌ™ñ'Uª—µr„¯99 O„Rf5ÕvIÀ„KïÐEŽÃÄõÂ…°¼gɽqôsž^ ¹ÄeÖÀiGxÄz~»Ño rFƒü[OþÙ4äÒÆ U,·´{ ®ú¢¼ŽÞõ+\ÍIu—À°ƒáyôÈá(÷¹e2¬[£\þ6ŸSVÎ$>f²i<ð7;¢ÿaï_ÛÚ8²…ax>ëW4Þϵ-Aƒ‘ìd²ã}›$ÜÛ§`œì™/<-©v¤¨%0~î÷¿¿ëTU«ª«%aƒÇ™AWb¤î:תUë¼ôê±X’ÓÈh„‰ŽrÀmæšp;ÀÏQÁ®mÀ;å î[£3À‰W –p{‡!5BÕüc>`ïë‚Hìedb‰8iκ̘BÇ={+óD@o¨Êâ‘–‡GÈ꛳^ù ©ƒ'€áüôÄàždÁƒÔP Wz@«(:E6‹¤pÌ~ˆ[µÝ X£Ë<w<§xæ…J°S ܗؽ4Ý"¯wfkhÈX9PæR`^Í`ÄÐM5£{1‘0­Ì^Œ zìitXËú³ ‘¦M™Jž–dn Ë6^£ô"5K‰>8xÛÛŽ*¥£âE¢cÁ*¬´mÌJ«òtžælùJDJïÐF×¢£ÊÇq¸ÖKºôbšp{ôŽØ(ñ[~À·£`eGFȵׇܭ-{·R)òE½:›ŒrüvÖaé«ï [¢ýëÈlz‹Ý§É¿BË_òM˜”V,n™%ÄJŽ$€¨xK§3ÞïÀ 5½DDZ2­ÅˆÕÓ±&–²Öï„üèÑOŒ¯³,©m( [Vv¡°rqÀw‰!’%>ÀfëA0Š©Õ˜£°PNj@5!éi5bÌÃS¥V›Ý¨Å—C@"ÌÂòÒy:AêÇXP'.¬HæÂ­vA† Œ€'Ȉۇ tHL™.±NUÂ[é„ö\N‘;¶|Ú Ì\=lÓÈlBŸ£óÊùH±ÉˆÆC'…ß&•,ÒhÔ cŠ¡dÞ Ì"±à9áqº¹šîÐÀHª:Ë8„‹ˆšÜTài=É(ø~ÒWLFÂò9º¶þ—Ér­)^‡ÃI΀nΜiöaÕ +-jÈdÎ&&ÂåE '–_»ïp¬â,щjyç OeËUö%v+´Æö±e¯~EHX>M à ðFWÙMë@ÑrË.a™ÂÃÅš$µt×e6FÅÔèÚ„Ö¨æ}»4Vùn¸sXhAµLÄviË\§¨MC9F*d˜Íèp¨`ŽÛ€ p‚²…>dy.¢€–ƒÒ¢ÁêVÞòš[Wñk²d¿åN+¨Mss P:!AM¹±zß^w-înñXü£â=cçТ`^vf½- òÖÙŽðŽæT,l>%-Þ0B@Pš×Ö÷<çÛ¦&ˆ~kü$F*fq9a¦ÅÐr W(¶”ì‹Ñ“:Ñâ­€tkT =8˜[9*ƶá˰ n©s}œÓô;ï &—ä”I «üî_ûËA·`!pÔRJ.Òh†ð]y$+fó™Ðâ®ñp~pa—“+`Ž1žÅ00j¢`Î ‰Z7Âóq™ø~®Ü’ö¯}ž6øïb¿4&Ñ8.ŒpÌÔzÃRŽàÖbâÚò³ZÌWßé£LöÂè¼iŒW…Õ#±$ÊhH'iF#D{ÐùÄêÎƪ ‚ ãaeže—âõ4fΧe£Í+Êao25+ĪDÄy€Žë„åê¥CË"8RjtŽòrÇZ¡”ÚKòºFÄ.ˆ·¦Óg*èÄpÒ¦P—Ý9‚ bÎ++cу 6­%SeÕ‰ô½•˜HäÃ~Ž>b©œozÄ2ôÅ"%¥ƒLs3Á‹¬À{ÌGÆ0ø,#cý^KüûeùÐM Ǩ$P'–Kܸ³âÜÆ/$X}n×M„VÏ>(¦ƒùù¤ð=K„¤Ø±F‹ÇÁ(!±íL0,’ aâÙƒü e0tt·Ån²@™‹!™$·½Ç{Ö{0S~Èö'\ž=¸­6ŸÓQŒ­¾”ãøzâmžöñžZwh¯}¤˜Œˆ6cpVNF“S¼L€·ÌHéÖH …àØ£ )†ü%¸ ŸÊéòÈ Öíš+è÷ƒ·o´q0 ÷ÑØZ’¹%½íä,¹vÿ뿾Ç3Õªñ"KE‚X"TMø.”$zË º3‡ÊY<ð#¬àãJÖ_e‚&+:KØ4â(øûÜ!a7Þš%¦¿Ä™…áUEž*­ÓAA#(9r=[Mù¤Q¾ E1N!Óh&dD3“+‹.2Ã8Uã‹ê5›Å1Šˆ&Ç.è…; &2£°ŽÎ—h“TBœÑ¸§ epjÊbÊÌìjÖ6­_MÚ½'[êÜþf쳞³@Mß@²» —™˜ÜÏ+?,].-#¦C ¾‡¥˜ãhº¬Îág¥,é‡ Õ5 ã¾däuLvf …]k‘!.ìJ¹%À ép‹a}©#ùS^·P‚bÈ“K«³ ÿެ¦†ôW§Ô˜‰!zódý²~E6ÞbAodn£apü`ß”ùD\–dt©[m¯–†Ûdëì†l®Ê‰|§ø`vYõ¦ !Ñ2Ûaû„j~Ž&Ý$N6‚Bg<àlBhßi`{eh;¡ŒÓŠöê´¤¿F¨ µ Æ,Ï]¥èU*œ9Ç…uPkm©[–D0[û$±¢æÊgÊ¥ Ò™¸$g"^YêG~̰`×JÈJkåKEÍ"×CŒ Ø.ÑÄ ¸«\´ýÏê‹´íTßÅÅØ >ú¦æóÀee­¨™¿RYæ‘Ù°ÐS¿@†È,4G‹I’ çLtÐq6BÖe¯@~SË +IœÒüa}3)ÖRX¯3Š]Ãl8œ‹IU啱$ÈœŽ,h€,LfÆ(Q@ªÏcpÕ[lÁ°áüèRƒ=hÔúúÆL¬(‰MeËN³ép„v'&àÝRèsDÆqAÄ‚tÕ÷y0½–†[U†“Ùujâl ')ÅvÂ5*Æed©¡Mc/#æJ’aM/lÇ‚£YÕ+EøŠ©gV~P+Š—¿áÚˆ|É»¼ÂždBV2-f DwJOͽ¤&˜]³°2b|ˆgó–ëÀZÌ™É ;Zy£”µpåœÂ÷øb(b}‘jg]&œ<»#Ð!üî·ë“TßhHX‡É m3ÂûÄJçSd‘ÙEÕô%°à[ 0ÍdŠQt0Œ“VGR@©˜ËÖƒìôõ¶…©["š<ÅQ7ZjêGÞ2"T&Íè’e«,€G8Mjí?óäV?”€K"Ò/§×¦—T=•IJŶ´ô🙑“i26#TGñ¦œîÓÑ ¦!‚ïõúˆ¹N’М‘»Ô”DÆ7QËÝ€`f\üï/B¥Ðcô¼2ßDC(ÂyQ‰XÔuI©ÿžÊÜ]¬ÛÐ]©Ïm0`{à¶!Zzg×ÑÀbæE´|Z•ˆÀh'µK #Wb,õ™ZÉ’á|Êò3Ó:7È7`®É˜­fIFëÌaUØ Ï]íÿÔ9gŒÔĨÀ4!¬ÏÔÜÃ@:àyAû«kŒ¤N £ŠðÍ©äO†˜<çÛjÊ&Ö¼2ŠÈdÁ 5ìT€œ@õê0„É4·¸\ÝBiè•M&äò&Xbz‘ÜV‚ ªÍ± #:ªQø˜Æá'B ¾:<¤FCJ”»Üâã [ˆÔŽ^5)Åà„à¦O䥴NCè'ý²d1Aš$;³VaA?Ç= Ö@t”aA'𬰫Ï]ê­‹µaux ÉKã¶ ¦á2Äš•âK‚âÉ`UD™1;Š*u 1laÉA»+WÖ&ìñáójå#y&\¢oÄïûŽ.j8ø}áÆè8óÉò³f†äô¥«³Úìó~t˜´ätRjµë 7\8*Ö\d8H—5†rçÔÊÉ|ÊÒA†¾¨,$Œç2° ܰZ&6é%Å3D8 Ó¤J«즠Ä-ÿøx'ä´=3`ßfÉãÂw¸ìNšsÍÁ y²«ôˆ!—’|«û—ò‚bbñŒÐPßI‡ÑnøãÌj–UF­^û“‚U†«»…A5›A”‘LÒ¦j¬žÊÙÀÑá&iâæp¡JQK׆½2œÞºBHfmsåq“•œš¼ñÔpœÄó<ŸnÎ&›ø—Í¿¬ÉŸYajGÎq³"0'£ÿ=Ô„ûºAlB Ô“Bå~ÎØö„. “íILlÅFÂ߯­ÐÄPX æèvÁ( Nø¨ˆ|*)´Ø£ NØÊKâG ‡§|,hn?oi wŸÔP¡2CBa<òax‡>Pé†&ÛÁj>f&ƒŠFÇZ:µfè+J³†maGû)žºÙµ6˜AK}¯šÂp—fc¸qSt#:›À{ôe7Ê«ÊÝ€FslUÞt9†âÚXV$“øZA¢Ù 2 6¶£œ;šdf©‡BÌþ¼É¦-ò–ÇPðh/U9­l ¥u>É.'SŽ\‡1;5Þ6Ú‚Êx7¸ë‰lµ”‰²=iòÀ[(Ï®º5»>'ZqÂVt“Ò™FYU)—4K½ñÜú6'< : ¹W8ƒ› h‹ƒÍó(y‹ò(ħ›Àùœ5fž¸ -Œ,]ö`äf³T$0Pî -Gà¥>œ#5ÍK…RdÛw^RÓD à ÂæŠ¤ jaŒ„š,6ËÅ€ÑÆ«¹%üÛí0ƒ|à"üó }Ä”…à¦5Vi‹BE9ð8;B‰ÅzòG~ÍËˈOg„;T®N$D`{¡<â¶U—n{RXG'Ô,¢Z5e‡G([¯f¥ÎÏ$ù½7Ò^ha [ºwb1ºîtrDS6Q&tì½åÆŽ£)¶Òµž1F›ÀŽff ¯-ÏX˜K›ìÉûO©ô›”>èR:GQ ªÏN ßR„ºv{è´ )ßJ€VØj&u–Ž=IücÊ$b¤^:(öã ŸÄ«¤ÛÝJÞš°–&äœ$}˜LÛ€dÄ3e%ºäaãƒKZ¦ó¢Å¼u8É/ž–œ·yåb:Gc¢ ÄӨGmÃïY¯¤ †£—]´Tˆß¼Ç-¸xò¡ŠÆ¡ô©ªáÔ-8¾i6"v/R&õÍÓÔÜ’ùÝÛq"¸˜+‘ܵ.á­ºÉôI$.diQ‹…‹’¶P*#¡ÑLóT‡DŠ' JæìÇ\z#}ó‰niÁ+MÈsIe#'£.à›3¬0âU‰3Š÷ŽÅÓtÆxÑXdWQkðê‰ HÕÜžû™äê5£VDXFr ~£NGCŒªe±Î&ÇÌñXn…ú} l€A$.ZÒ‚ì²p/å ³µ;r>â.ì G¥X@’pï2ñ&À`AV˜<–ìuEÒ§þ$I”×F<Ò‚¢¹H§Xý^ÌXþ&þeh0ö%eVj"tONÜ-)NÛ6ì\iZ®ÑÂ¥ØÔáþ.ó2cGNJÖ0¹?—б';ÖöíóÈÝßA2n`êÂÈ”˜ël«Þ0ÛÚ¼ hhgvj7få¯FFM^#¦ÁËÚPÙK­Ñ8U &H„oFL*€–•Na‚ÑnÒøE—º$%ƶ=k›ÕIàò`/i²2À’dNR8Ckfª(U¦¯ÆA¬a®3JûUatdéܪ¢2ð”c…2B)²Dý¼„de«@ØîJ c#—µÛR‘Z+`¤ºmBO·Fšm²‘sÀˆ‡ÿ‹ \h%3¢I±ÁyŽîŠƒ •He²Üª‰·™æ™2ýed.<0vŒùV¶üš|ûX†U›zèÎ × ›pK iQж¤Äú܉Ü)Y‡Q‘_æÎCN]ŠjÀjž±A“Í0Í2÷¤âå:òêà“fܦ¢h™x7´ ^ J'œÖXgr_'ýa Y ­ƒóJ˜×XK ÙÐBÆÚ׎Í\-«ÐÀ¹šhšSªqÓeJ(ñ¿¨6ƒ²ˆ|(סõ^ñ»`Âᤩ¶¡ „`Ý ºz€ñG¦])“é5yÆÆBä±žŽƒýÁì”õ[†§6âK²/L[W.¨—‹·À”ctó$K½8$ßµ™ Ùò™®ðrà¥I¯Ž ƋɧU*ƒJѶD×ÔG RŒH»#ÉÉL 39¡kð<»“ÓÄ)¤/*…„¦1òU x͆ù‚V‚}º¿°m¦ÍRÒÜ¢j'xeLbätµÓa¯)¹%ið >E'­cßÏCiÖˆVŒwÚl?WPhß¡/q¨|ÜáË•0rqdÏrëÚQ›?‚Iã¦]œHÚÙÈE Ž-'Ác:€:´Ö²Ž¥þš\e–{NÔ½÷Cò*›ÂnaÎ4c_tV˜Ð²Jìg=5(˜Ütnu|ÂN+SbÑ-l46C;ë`Å4^\q1L¹n9M—µå¤»kM§™¨¶êö¶0¸Õ;›Æöû ¶X=¤Ì\ÃÉØÐoA¼?Q %NYÒ6ü!…³›SdVg(úÑ ¶“ˆ> ‹5Ë7]ÄTn×&¾,$^·Ø¯• 5×Ýrä'§m0ˆÆ¿â«‰„70®eU1žf™ÉÖzµÈ\žHÀ„H1žb(© ©»jr½ÔäòZü#Äfü$œˆKK<§7Þuœ» i]àè1„Šá㈲.˜–âQgj‚«+¿˜bЗФ«cY ]6Jó#-ÙDÞ*Yœ 'S<ÄlilÔ|ç1ͨûÓ—ªÄ6˜—b9ÈÉ¢ôŸeh Ê0DJù‡`$ ‘QÓO˜ÛÈË^s†ExƒláNYÕºÌý|f @_em6öüØôÃJ„)¾Ù—¯TuˤM>”ŒÞ\w¼$Ôº©ax~}¼¤ 5ä–®ê©ÈL´µädê¬s[Úî_Ù•¯†"r ½–Åz±p!Ê€±¸e'hZb€Ë€ Ô‹”Œì¾Û²¦á J¿‹q8£¸_ö÷“ƒwÉë7Éï{‡‡{¯þžüôæ_$oßü|¸÷*MŽÞÐïýÿ=Ú}”¼Ý?|upt´ÿ"ùñï­½·o_<ßûñå~òrïwÌœô¿Ï÷ß%¿ÿ²ÿ:yƒÍÿ~ðn?yw´‡^'¿¼þ™Čև?ÿrÔúåÍËû‡”¡êôN“·{‡Gûïp¿¼Ø×cJ콃a?H~?8úåÍû#;øÖ›Ÿ ‘¿'ÿsðúEšìPCûÿûöpÿÝ;´}ð F¼ÿ“Õ?ùþŒ%M~„0·û˘;z“¶°7)kZÇÁ@û¯öŸÿ?÷~Û{ñÛGéy k³£dúþºÅ¹E0%†…Àw5'}y =¤g=b°àÈdg~oƒ|°¥­ËèÇ„Ïh‚ÁØy…# ‹}³`á¹K±‰p IÂüŠ s áÂü?¨ÒRv%<;†cŒ&ì ŠŽ-)GBÕB™V¿šŒÐž'3ù4zqYŒÔØ#2Eƒ9CRÏ7È9ø áÜYZ3?K(i1ÜöaX×Èà’ö¹!¡ûüÂyöh‰ØœëȘ–ÿ¯¼×@¬Ê*¥A’¼>Ä \¹¬ÄÆœARN‹†DæqJ~ŽÜÜѿ̫À·4ÍH5ãFh¸wFuk*z±bÖòSg39Dé6Q4Êù$üD¼&³ªÕ/ÞØ$I#±ª3:òÕ¸NYÊߨºÊNpj8b[{l EÅÞdD¤Ìì9_KåeÄlý%ÒLÕÐJL-Q’”hoýØŸ–¦y€Ì²ˆE’ó 1u,_0ÑsNæ6¶+¥²EÚT€ë).'Õ71ÞÔüVäN$M÷§E~‚”Ì'ùÖ3‰Jd¨¬öóNò£Ó=ƒ¨‰‰qß{ÆýI¾Vc¶ám÷ŽÍ7îmr13ü ¨Øo(®Q\H%g•Ç_ˆÃO3 Ÿ6¦&Zpvì~ÔöÝM;uÎf+¾nž6wÕªŒ“qãLÙÃvrTZäG ¹†7ˆ!Ùþfýj1‚µe„ŸY±ÛUHyÁâ6^‰#¼ÞåÌ b ‹øp£Â`6ÙDB}„†kkÙì[Ö57,qåT,2·–̰£åCž<=›ÍÎw=ºººÚ:-ç[“éé#cîñè hM÷ÐéF‡6Á "Œ;IþÍ©Ç)æ=Êù¦“£Fa®ì-W`nú¢<×|¨XY´°%5XÎ$[Ép=¦³–œQJãJ“"o` ;£¸ìTìÅÀ5â²úTú}¶òI¬Á!‡f¦5ÝûñÝ›—ïö_þ]s2£=•íLf× ÿ/e|¿z¸åš ϳ»:—ç#쇓Þñ¦ø4[§h+Iø›înðP%Kg×ç(n$uab³šñÑlm?“­^{:ûaäIòæ„«Øv8ÓtÝÓ`$ Ã×þMn÷Ÿß¸èÇ’Æ4'YCò&€‹þäãk7)C&[S4µ¤^s8דk´hyµË‚`2úåÓÙt! ˆƒÓ­‘Ö # q0.ŽÆ{àÔø6¬;FX±9?~²:uÿàpfg•V’)4| \µ=ܘyiké!eÉáLcE>l馃…’ÐûÑÃÎ]^jó¢R¾ /gh 6 3—´^×âlÇaɯÏ(-£g²,â‘  ›ý¸]¢*š‰RræHãFžÅçèÊØ"\‰y¦î6v+¸ /Ñ lÚ$ÝC+¡<F´5R‡p=ÛÀ˜™ÄÈTÙ’U5b³8—?¤¼yì§fPÝø6x‹$Þ 4{ɉ#Ù±5C)%)\K/¹U¯¿´7ÿÑ™‰38yRŽõ9›&×Ь†,„(Ø6& pþ^RöÑÖoÚ¹û|𠋉’åÀõû±¹µã¾E†zô*¥Ê<FE#[%ñ-Q)@ulaªBi {R%~»)ÅyТÖ:µ.®’( ëoŠ'§uðç¢wë¹J.Þ´A˜bU„ bkóÝí1‰+Ù`ÁiD¨œ¡UÂ2SRÆœAÍ(^ýáØD^7xÄÜâc­0ÃotÑMÚõ}:Ñȉ´ýöå 1 éÓ–‘_pøæ>Þ’äÔ²¨ã^4–—ùJä›*Fƒ7Xd#"»kâ¼ÄWhl+Q¯=ìkœ’ÓðŠñøüœ¥.Go{Ë$Ç×wÓh[#èŠ-0O9N †ÙSÑÝ@È×ërò‡ ÊY:Ýu# û²ù®¹°ô ëD=ØêyHHr‘Á3b @Dìß'ßUX‚„¸†÷SÒÏÙÄ„ÅIáJ¦þúT3ƒIÀwa3%ÑE57®—*Ne‚4Ùht_Åh&R¿£¤ˆ–7%<[ºü(MäËÒü¸9A€@‰&gRe¾aD8é>Å«¾²)Qñ››ëàÍ`t?aô‹¬j©eø¾Õ«<¦0Ï–S W9ð·ËÒjIR…t7Sp¬ÉsEÇî•å3X£Q§ð£Ù¸j\C)@I^LQ20®3'YÉbŒoØy:fhö9 ‰Qv©TYT=`÷T }5æL³è[‰ IÂnfb8‡R"VÛ”æ$¿"Ó…’ÂFyy:;ëØ@d~'Kd•ö ýŒ‚¹0“Kÿg¢ ©=4…°E²iZ”"þ¶¥l“¯iÎÙ¨±vC‚”-ë{¢ŽªÇí¯g1ÇÁšZS}Œ&Ü„Kw©îކ IþmÕ 7 -­ ¼uNÉô5ÕÊã‚h܆c>„­¦0Ë&–ÍNÜ¿%~S4ÙVŽ\À©JØâÛð7M>˜ù°“¼˜¨Ì[!dàgÛK®±ˆ@oò©3-ÕxÑÅT®‹/l@Ÿsãã§ý*t*l’L¤z…LmX<±â%Ú•L{2ØÀQ$$½i¥NµK,ÊCªª‡Ê#•$ƹ×EÑTTå÷á&žè m¦…ht|»iÝYNgnɪ³lJ^ zãe.E5¦Ö ghÍ ìŽ™{wϵäªb~¡R. t-!B¾ct´w5ÍD)\ë]nì[…%Â]cíÅù#™½'6Á…¸ºR˜¤‘Ìï‘ý3#0¤†å¹7 ÃÌÈn@±ÅĬúR6^꜂Œ.ŒÎ,ÎÅ+Z ìf=(‡~uE(½†¿ÈJK¤†D,’+uéL»ÅYI‚UíñÙ´Ú…>Ñâ9¤gijáƒ9p…É9nÀLj®vðb|rÒ> In/(áažðÉp›O~c€sr¾5V0׿ÞZˆÔjy~<ŠóN O禛:_«L[Ð#4Á7o€ ˆañQF‘CǦg– ³,·G qâ,ƒ'\6ªÄE¯gjn™#…2ka¸8œš ¥žÊ»V¬3$¬ö´¢ŠHk›¹Ô#ZÞ £Y„Ìxp8 ¡øZ†S°!¥–Ø>IRë"B•pê4»|ØŽ/TD‹.?!«ó_©oJÊWè¢Á§ÝRR ¨½è<\@vbe±'nŒIFSAK6 R=ý˜=‡;Õvk˜Ho½L"Ô¸ƒÇ ê€[óüh­ÚcÌÄø8czcQscÿVÄÿ#¹Kÿqÿ°÷wå§A,f«{„¬¾†qÇÖÇd©cH«Ù1ÄÙc-ñ i-ö ÑžÆ Ç_81ye_‘U4= \FVm$ð-Y:CeutèÝMZƱ”N¼ë«A ç»ÄìÚï$YÁïD-Ü%Öù$È”uÂ!’Å(-«­Y¨ÿ%ý5<ºC3jùÿúÝw úú°þÿ»ííǽ'Ùîöw{I¾»Ã1ÙÏ¿¹þßî>:Ϻ['ÿuF í?ÿý_¿{"öÝÞ~ï»ððÞþã«|þ(MÑ·Ÿ¿±×Iþó?Õ£·¿ü¼ÿêUðÁƾjý¿H†§ùxœ¼OíÃOüðÞC*–ü?”’ÞÀ¤«ã·‡o~:x¹ïº<~wtxðúçã—¯÷ÛU'ù*ú®G/ÃÒ®(=‚·ÇÇa5~u|ì ó°ÛG‡{¯ßí¥ôçÇôUú:ýŸtïåÛ_öÒ½ô勽ôGø÷ÇôÇý£½ô9|}ÞIÎÏ Z¢WMqÚÇÇ©¨Ð?>@Ÿnu@ù¨Êƒu²³†k;‡Z@ ˜?­µ¡«›ln&?eÕŒ‚ZOÈÞÞx¿½d/÷Þî=ÿŸ¤ºszuš——Ùhž'b¦XASðŸ3>2ºˆ–$ý(4¯ïa’{¤]§G8hî(CŸ·ˆŒèvƒx{xðzm­%?^ã9Íæ#ÌøˆÓ”ÅWŠ$Ö0<CÝ5Z>GÛTŽÈ$bp…bÚÙA3ßc¼ Ž§“«ãÁdtŒ¦Å‰ÃÖ’w@÷ÕÛhçê¼L\–:XS¿!Je{œ_žOsX ýYK^LÉʹ²…ºd9Èަ¡MŠ2œ\Ò¦)iÖk¶wXd§õ‘Ò RÔaäSéµ;ã þ|$¸áú"ÄÖC}t¤uÝ81Ì$ßMæµ*}õ³Á^ãÊä8›÷c«ü #FœSD5Ó*3öÖ×’õäÇøÔVÖ¦y}FÂ÷"+o¼ õnkÎ`"€a—Á¼Ó+ñK}%ʨÛðàKoL4bY3b ˜Ò¹‘K]ÌÑ_ƒ²òúÝG1Ê«?®£pñ\^¢ügæZ·›½ X·é >®5¹–ÐK®‹iŒõG „4Xl§ Ì[߯±…­Ú±™K†GŽ—Ç˜:ÊRnêç|&ž™\€ÆÕ‡'$ƒë¶ ±yd äîvÌ©°Ç 9¹×:H$W¶)àðììxfš¶¢ù­Ìn…ÍÛýöç\r]fäS„ö½d¥Çú Výø‘Ö‡¼þCªo1æ'WC^ ýåO4S‘ ¸ÁÅmRÿØ&‰Ï(`,<±’ÕŸ²Å­!nH¼ÖèI8NtžT¨†— î·„.?¸BK€ÖbÌb§-Œõµ%ñ¸åzžñÒ²;ÕMNÑfDªÖØn²u’HBy;nTÒÇçÅÉÖÙÖ‰¦VÝEÊM%N6´aôíøt4éãÒŒ¯a9&WüÊÁSWê'fÂíÜÁ¨×ƺo0ÃRiŽNBH¢x^(ÞEd’Ša0°Uç‘ÇoQÞPÁúÔ6•µq¹×;ØÔ‹ñœ¸|Îz(ÙÔ„3ãžú°l[¢™$tÀ‘ï`ærN„KH×&9=^¥mö´ |ã9 ‚щm°2 vêc@3ÎÉ5+µó€&Ûóst°§3´ÈŦ:²°¶êKI2?º®47ÙªüÀµ#»Y ¸ã-N…,†¹ò™‰Éˆ|ÁŒæÆm^´ÒyT›û!¿üåËüJ–5Q c;ÁÜfK§M¨ŠOyÒxæ'ð*L¾¶Jq!ŠÉÊá™|ëu)ó’_,^ò 9€L9â÷hx¦9`û8‚LÑÞ° dþ!v—@ñ¬EȇÚÕ_[º·›Ïk”"Qurõÿsïy¸}-%$º"öÄö˜çÂ& FHÐS œÞU¥õñæO‡®Ÿ°RdlˆüR{=J²9üU}Îf3´öšÍº‘[»?ÚÁ¥è®Êøåè×á»Ï݈|&‰]ÞÎyš80‚m²&ƒA?‡ÄøïÈܵ]?ZžH—¹³–¯4ßk9õÕ‘nºõnŠ“¶Lrww;Ùtµe–Ù=¹OŠÓ]Î’õôáYªh±çÎûÚÄiQ¿šåßMÜ»%sWÒ3wgËœnr]ßíÔ=_ãÔY2qƒÉ{²Þ:É{ú--‚7ÚÆE ñI¸ÃÜ ÕhôI£» ãÔ¢ˆÔ¾y‚QÆéÑŒ wM6ÞS÷Tã—,ó=ÕxO5F¨FÁhëÝï}ÊÑRŒ‰¦,ù,¡"Ësé¬<’ÉÑ•¦ÖHŠŒ¤ÿ=†), >/øÚÞI‘Í…u¨•¿{:Á1¨cfÿ%´í’~¨ŽY\Móª1 tptÏÚMr{CбÙí$kÉKRÈjFhò‚Û#ùi¼=³×¼õö”,õ¢åZÃ=[DÀ½I“5ô„p³!ÐïŒyT«ó š|ù¶ÙC¬|ÎÖ4µçúŸO<‡V·ÂD\´»;2Eübà¹%ªâï[ Œ|3‹?bèáÏåCx:7æNîP¯úû"‘ÀÐí;aJôàv’ÃÝú*q1„ûJvOa“$m"-Õ˜Êr¼}ñîïG‡/:7fkVâ.˜³è•äpIŽŠ·ÀL¼9ç|0y™ì$Q _aq Zã¬AØ®´^¶@Ü_M1âZiÙ koøËd^å’PÂX.ÜˆÇø3¼pŽC{eì­FbžÚæè儆³l⎙8œfÐ.P®šzsr²ù…ÍÉÅOÍý” ì6Ék\…UŠ˜¦|uRŸhûQ‘¢u)?dZÈ'‰|f†Q!ýoöñ¸‚Uɇ†œ|Ü»’6™e#†é”úàïÇÜ’ûÍ’høÍ$¢ÌÒþ6Ótœ„á d8t]ÿȤÉ(5À¢èW:B#ㇻ°C,F9ÑÚ¦¹c|b¹üÑRK|™Áµ}YdôÒä# šùÇvo=X¾=ï¶{ü¥G_.§0Ç'ª1yAÞe|N²öË)ÿП9ÿšó¯KüIÌÐßÃ7o›xkp§ð)þjH©¼zó¢Ý.€®~D%[Tö[+±@%:Âÿ©1?‰ïµ-6µD3Ö-¡Ú]µ„?¥¥Ml Ã5á‡9PÅ/)01LÓßlšì!Åù@™ !%|iÜví…Ζ˜#ƒÉQ™°ê¸ÖëQ;ȶ™¹ÛÓdŒõó±Ù€¥€†ÂVÛínïÞZ#¸¿¶äF·³îª­qð/¶èäi˜” 4—`*{Å™Ò BÑ4ðHú‚†FJ‡-IôÙ ksjjÒW“WÍ¡œa™PM6’.ðÑ–QU¨°Œ¯^ÏD´< Ë› A¿ÇuŒ_N8n¿'.çq±ˆ ^íýo;À”~C€õlâ—‡íôKÌÃa ƒvØ…_?òž¶b|³"Žárj¾Íí·Ë}ÆßüNk£Jëx6Gm Ñ*Ä25½çê;‹ìhèb±¿nGÔrB×’æ÷I#°}t  HDˆ·]$¨IÒÊÍòªäDEdñF0=ȶ¹í¡·ÌÕ›—*}Û·ËX c{·Ó1ŸGˆ€…r–8§ÇA7æ6Ä’Ø’EFNÙŽ(?ñLF­†xÄ:„¬Øƒ×{î?ÏÎÎ3#rà¢Ï¶e†šó ;å~k?|ý0µ‡H»[ÃíA:§øŸˆÒ.?ÿ鵡>ˆ̈°¤ÔƒÇø‹›Ã&\}ñ¼Óƒ÷Ï”ÀN'2x¢óº¸ ÃÉìX²h·ÕZAµÔÿÙ©7Ðà”,¯Ú¨ÊoÖŸ×[c_Û[ÍÓ·4üe.½S¤dÓ^ЧÃý½—?зwï_5X?*È!raia½ò@ãŸ]C%{ß|ÜÂÁÖœ;ÚDl[2ý„Y 9c^'(VÈñzÂC÷D„Wlä O‡÷sÉþÏ‚.ÐfwË{—ÛŠÔß(ÜP·ë‘“qí³çîAÏZòãt’ ˆŠâlwÒ&CÝlÞ¿M#\X†íRðèÝ~¶ Dþˆ½¤¦¸‚XÕbƒ™-7æZ‡®¼®ÝLÉ?Ž"ÊFf µù (œ–‰]g¦Ú±‘C$8ØÄ 7ÆnÃ߈ì¼`8ÛÌÀo†/ºÕš;Ò^–]¾;­ØÕ8GbxèÞßÞ£ûâFòþ7øÛY¿t…1°ã  jøä¤y9¸N“+N ÇqÒ0æ‰ãHÕo‹<“Ø âm‰šÍA/%o•xµ#Ê×Gœ²$f²Ï‰6ÂFRo ?|ìám‘æò²wVµw™[T¤ v·S9˜=ÅBy ? qR¬+6g£”@ÆØ8¹É IdÂT±ãùSh¸CRC¿?ÖVîþhŠãø°®µ`TÈ …€±ý‡bëtÂ*8š)ŒfMâßøGpãOóM( '&± “À‹ïi S§€´`V) ¶ðB›©¼…m¤WÝØŠG»:5ÒbÕŽLËÒ‘é×ï0ßpÒ ~ÆH %4ÏѪ4â†t›Æ;ÿަFE ÿ£ZDȧ†¨³šÍ4Q€ãßÍÇpd‰l¤s•pª,Æç–#Àlj3• ‘% ù'É5nóÆeÄHFÖ•ŒH„;\äÄâ˳¬ 9/•é“8¦6^"µ FHrC†Uuû6⫉qxÁ Ež&ö2ö÷Ú!~&¥ŽaYæŸ;Ì?ÿÌŸ¹Ãþó/Àþ4µú_Á§‰½æ¹‡«p>mi|ê!PÛ/Ê74fÖˆz!} €èW¥P#“Z|OßÒßÒ¦Çïi³9wMslˤMú"8#—ü$rwS9ÛÊÇð4Ûö1ä?ÔF¥z×<êÌß³)ÊÒ»‹v«&i¥™1¥:'$sévJü€÷ôü7E* w§}Mnž$rq‹’M óinz¡+³+xYQù€ï>¤¢ëp?}è4¶ë»u]!»äJÉ&bÒ $íÍbGb” C°äÁHb¤ñ72¿r/œÆ ‰ü0Ò0éÓíˆÄž£hý¬öµI€]§ÇѱƒËô) A]ìî† mM¦["¤Ú}üí_LHmÔè¦b!ÝäH8žå ЇR«¾‰„òîþfœrÉ䕹1g2¨.Cin+BLù4…G!ùÒÕ$@Å|rT¼ÙÄDk*,”zF¡ Pï†ñæ†)L»;²Ò²d 2î©Z¡æÙkBØpÜzÁ]KH/GÑåzk +Z[¥†õéÁÊämé·k§»FŒ‰EjÊî$àÅÜߤºA?]’2Û~d”Êø¯ê„ÞiÊ뀴š¤Ð4ú4%Ö¤¨TÓ)Ù/sX[-²ý?Öò´$ÆUç·l¦evŠáË[ å Üb¾ Åü³Æø%-†cô7°nº¥­•îÜj«æÏs1øSº;²ÞÒn<.–R¥ÌäW ¨T3Þ²qåƒ&¼ÈgÆ,«V¹ÙôëÍ᫣Û›~á²;ÑqÉ;cÐ1°Õ·‹Rùŵ™èÕ¦0jÌClžT’ÌHjì ²fÞµŠ¡ÙM̸bæG²1&bj…>x |–•Ï*[K.’ñ!‘lmÄq>îØ(Žxuðš_l`¥M¬n œ´¡ÌÓ©ŒèNÐ+TWêS+ê+!Žk°‹ØšRŒ>c÷Ð ¨Âe«Á' —¡NBéæcöBƒ%ÆBÐüXŠ5Ò|Ý „¸\³¥‚`ÙßèîÀ?͆2g5¹O æÄm\Í&¾â?4ì ½²õc>”–ôQT¢Ä bƧxG³ ‹Å¶ àäŽ÷Q­ÞØm…’›F¶­.£22Ï,æZò­b)UR¾Ã‘ËDÇ„&IóTá½eî¡§»½ï¾G›q'…yÜ£Š< Óór2?=[ $¥tœŸ5KKù=ðqô(ìQ9,'Û}Ü‹™¡9­?9áO%ÓØŒV]êÂiléz¤¯“x‰dér(q™¡[º5V×Ó?T§x•) I}Põù>7óuï¢ó|=Ãà,Ã$mùt½›ø—k]!1è[…ÄŠ7,Ì4ª•è·± ü6€oƒå!GW *Èn¦<÷&rÎj™ùÄ:/oçù­ëœB»ÇãªÒ`N'''^›D%åôÙUøïi¤}¤P޳ùGþºÖhÔQÁ(Ž«ì’£§ÂhÌ–rZŠ$;¦û *z„%4OüdR‡ât<0£äèÊSÖw—ø¿ž Yà’ùá¯úÍr[<,7qÍì‹Ë”å†Óòp¸yMŠ4‡ß2›¾›±’]”R"ÍYàGõÀ㮯H<.Ï+jÍbX¶ÂÀ™‘œ™Ѻ`³ìÝžˆè»Ü{G/ù($.? =d:Â{8ˆ•ÔJÊJ2fÜÝ}8Èò0ûàýÃŽî€2Ì„•Fa¥—TÉ Viö4ž z„= ¤§Aؓڼ Ñ[9Å;–Òj…QHCÞÙö€h‡ßƒ’3—c|”T|C™öÀZYUåcDs®3ßu÷˜š$aëØaÔaJIY¬’‰/„^ÆÊ¤uY (&/J9YÅ:[VšæW§‘D„‰Ä1×u‹ñ á0ÍWô“RVCY —}´>µK`ô†J„—MBrãu§z„ÅZ3I_à½pÒO=ì]¿æì¹Pwcf.'WÈÕàVr­6ñ!–3¦I5Aù+åÔa*kwt&³Fml’@…šçzè7†/I¿Äºd¦ñXÒwnƒlÜGÈÒÃ’qéG-žÄKYt㸲V¿®Šà‚ïÒºí­z)·¹6AåE͈ãd#¸zÃ'žNH{Xå|ªZ@X@íLªì pÛI{H΃,†ìâmWCµ‰ÐÃZ8œÌº¨¹KçÌ20‰UB€ ÕMb[m¼ÙÊÝ]8…†,Âö-…ýˆ}³]Ÿn5s‡Öð&ä'jîWÇ+W5ž÷ìfõaÌ‚`;2Z˜ŒkºîCq.µEx·cƵr[*B€m ÆótŠ+ìˆJÄ>ŒyvXÀi“Ý]èŽ!å x¢`Û|¥ÅxxZí •[pØ(;µþ„Û¯ŽvµŸPSÈ{.7r‡&P…[ê½ÕÚÞºxÜ9ë#zq;£Ù–Úv’c¦Ãj¾À*L_x…©á½NfÔž(À>]éüúZ‚&5abNZÏØápëyËf©7.F¤¿ʾ ˜ôÏNÌž8jÔ @·K‰xýÊÁXƒàG·5œhaÿƈ8cîîº.‰¸’-%iòl×05hr<(ã¸þL4­¾ 2[ûOÁ„ìS[gж`e¼2Ä>ù+³Ju˜ÉÀÎd°xeb\dev¥­ÝL|u8B/°ŽnƧyÐpš}‹)Qc ààBÒVÏâ®×‹ðE²H×h]‡œ;QWÜ QÞ@òt±Æ‹?}íÔ_ äOM+ɬá#j)^¿½åŸê¸vL®P„‘Ç%,Yª­^5 jͶ]¯ND· ÜÎ2E¼çÛùÌ f€Áãž7P d'„Ø 073Cˆ¸å›d~ ï½çµøÎ<Çš«{¸ÂŽóz¯ßŠ»þ~i©ÕnƒZÙú?FÕœî#‹3W«“³ÕT| ÞW ,ü¹qÿVla›î$^x¥|âu'“n&ÿøeÿÏa˜§paø>Âð¿U„a•3Äi~ŒJbµB:î°înÕpÃ:³‡Wãù?öß Ìšhüºyþæõ>>ëÚg—¯³˜â »HŒ?š#/ a܃åóÃ' œw¦÷7߀²í>Îñ}œãû8Ç÷qŽïãßÇ9¾slæ·rœc$´\Thz0)?œ¶ýxű¨1æ¾þGSŒd¤ƒo#™ãþqµûXÈ_ ùÅ›÷?¾Ü?~þæÕÛ—ûÿûE6’¨û¸Èîç}\ä:ô~Ã’{ë·"Ù5ôeA’{ëÒRþ„`¼”|)ù6"%˽ÿ<ænñÆHÉôvÕHÉÿX)9Ú‘”ÌÝQ¤dµ+Q>)™D†¡’ÿÑ*™'Ò*Y–ó>Tò?'T²EÝ·,Ù5ö…á’›.‚eñÍM¾)™ÝòèÉ·²æ· «\â·GyÞ’f+éÍGR¨PÊËö0f2÷­ÅTfÆX±&+†VŽÔ»õË }¬h9Rÿ>ÞòŸ Þ2Ò ¯8@!æ_'Þr„$»·ü5â-¼ÀÊj "q’Ã%ZK~ÏW », 3%^Üæ•E=¤-·‚žž^‰íIHthh¬ÀXÉ]}RV¸À’r„3½rjxÉôIÌÀ½Å¯$Y–f²Â¶{“Fy/Üs®ÖSÂ킈ÓÓÏ býÅm†R!isAÔééç²þâ6Ãqú;9mŽe-ék…³ÖÆ‚ßrDkk4x‹A­“/Œk,²9|ÿú_8´µìÆ}tëÏþ}tëe‡Ÿ.ÏÛnµ(ü¬×ÿ>Fƒ·&{¡õÞ ¡²Õ¿—ýíYï1u.û>\ö¿c¸l‰ga<ùèÂÐ`ÌM&D2ëØCôÄŽ±îÈ *A»÷{½­.”MÅl;ñÂ}Ôîû¨Ýß@Ôî@pr¾»aUïÃwß,|÷§³ü ÃwS ¾ûy¾›ÝõH»¬âÿÓÇïþLÂv ïO.÷óÛ äÍÊ1/œ÷Ÿ8ž÷'ö±ÞÏ»¬—Åó6`ÿ ôþ “oydoZ½›öþ´<°÷÷Eö¦ºßR`ï¯#Çfû³ã¾dÿÙÂ{«±Ç"|ÿráû>Â÷}„ïú.ÞGø¾ð}áû¶¯¥¸Öå«DøŽjfî£|ßu”ïfÊ}¤ïûHߌî#}ßGú¾ô}éû>Òwh{éû>Òw½­ûHß¾HßHù>äw¸Õ÷!¿ïC~߇ü¾ùízX)äwT ù­ ™n=ò·¶Äý— Þ  ½þ FWʾ;VŒV“Ñe~L^mÌæ—&Ä÷ê^=âLÞl‡ïš¾ ~$j¯³Á÷šç°´¥ðöꪛÜÏ/°¢sÅâU¬EßÎí7zf¤¡çîÇ¿›ôæ2Ћfèêñ}«[@¸ù,ù•Œ~éÁ…3ØK¼8BF˜ed¼Ë6¨â¼?,.‹Šä¥èÇ®žPàøoœ•׉ã5|r‚¾ð¥AŸç¨3º¬KK|§@×öŽ‘'È2Ëck(C2´Ým³'ÖŠŒ‰¤_õe+ëb% ÐpôNÆ´–xA8d}žw'Úˈj?ñ5\)p¼Ð”Ï»ï®nVºÌeÄW^RC±;Ä«¿,¸qåÒ0á5¦¹ žÔ­Á#Y½â†ö¶ë@R6µŠ`áu6ÊÙܼ%dbœÆñøýêíÙZò"/«ÜÓ 'Õà,ç;‚£…1®äöñ¹{ÜH¼-<ç„äó%xA QK+dpÒ*âÚ¹{jIòhTncYŠÔD¾º´ø–"Õ䳨"‘`$ºNú"1Ð^µk/QýÌœyQºdhOÍ}¹4Ʊzo¹-2ú:ûAŸ"ÃHžºƒB¡c µ«‡Cý–ÅËÊ“Ëo;*÷Y°e‡ù`>­à‚}çÓSK)š ßÛ%¥ÛnjÑøH1’H©Lj¦‘šyC%s³´l£Oô‰A*ÄšHï5V: 5ÚMá#:ÝãüRJŽòr3(þÌÑ„³ß·ÿÁÍ>Å\Ú„ÇÅ(sDf€˜góªí¾eÙq Û| (ëŽ5 šCEø0÷ôƒƒ×Gû‡¯÷^&p•¢LÆ_¯ìîƒÔ:ѦÄK¯fRns×ÜÃÝr·Ù ‡¢ƒIáŠ0#áàQŸôì“Mxí–¡ ‹ßíÄÍmc3ªÐ[ZaÃlÜ#¢²D–¡öpÃÂXãG•b§‚[)CÐhŠÉج“tá]=hÁ¯†ç5¤ÑÝ)”´áÚÄbp_p©ô›¼iI|ýÐ3bp|¦â^yÌOM@‰`— ÆÅ[œƒ8¨ÕW÷!¾‚nõºK—ÇGã¤cû‹Ø´€Ýå«·phT>c-yÿD½Å¼ž¨߈B^:=©qy÷¶±é«›‘ðŽé0hBQµTM˜5²×=“™èƒÅW¾‹qÙòV†Îqu]Í©´56u€†”£Y5M>†X û\ÉÜŽn+žÎÂÆì…f§žׄˆ‡ˆˆ¶ëô˜¿‘ZòQŽìâHG¡ïõò{kãz:÷.[«ÆŠµUs0Š }$_{¯˜¯'@¤É8I_yA“Y*KL:š3dÝZu=çÀ1õ"°¸£c/à ‡r¬IR¨E›¤NXcΑQ^ÌQ˜ÏÎ&Ã-.øûdú†œp;o'ñ­–ؼÿœŒŸàeomeɧ¬GÓ2`¥•%ž*”†)ÊcØfüMZ¡î÷èí.9ˆŒq³°lpL¶ó@ûý–ë¿&æ¼€òÆ’¿SÎÄ“À’øÕ£aÕ-5Èt Tò‡’8Œ5¬~‘øõ¸Pß'_WäÊ¥œ=h2ÂB”¿ˆ€a˲¹%e“ÁuK$‚$ÜðWgÅ(o÷ÖññÓ]c¯%F3ÏzëõÝ7wuÉQ/6w=é¬÷86jÒ/NqÅ)CÄìj‚QÛáð‘äà*²zÿ·ý× )Ô²i‘šY††Ö{!ÿ´P2J,·2[&lq¦^"Ê2‘aä⣜²¹zöö¼%åúæÎõœ…G£|£02°Þ!º÷ÚÐÜ mEž'äŸ#HhËÑ´9»»††„ƒÿ=£ùGß-³ª½&ñ/¼n’ý‹0YX‚G•Ϻ0ÊG¥Ç :´¦%Û)¶µI1DÝÕF" Tfõæèæâ@&iŸØ¬#¼*²QqZR¾¥µ32Ffæ­Ä˜ùvÛ¾ƒŽ;›öçE¼¼üãxh0S U0(I‰šH@$kè—0É¿(Ç¡•ŸIs«ÒYÚµ{w šõà—b©ùô1æ€O4ŸwñÆë¢…Lp5£²íO#©q¡&*E8ÿ,µQ®šÏ✨%¨&l/jbÙª@_+¦á˜Ûomº³7øwj‹ÁEê2¹Uô‰Üˆ°»(éî<4bú¤>"[ýÈ SÄeÃ]59ô¬gïm ªæ‹µW°-(%©%1w~…‰«ùÔ¨|F*a- ó ²mªªÐ5OÆS!“Røó`A*ßDà:X ]·JA0ýŸŠðžƒ½ç•$±‘ÌÚ(Œê¬“x>/æ¼Óx(ÎÍ4›7*ÎW3ÚË\ä ` 7šMcTÊBÓº…¯zrm 8Šùá»@¶Ç¼šÇLþ DwÓ‚h9»øÃhKŽFµÓM‘ª½JÒËÀÀ #ì®îI1±ð t(4jÎtslŒžëJGÚÒKÜZE‰Y©LFÇ5 ­Á0-:Ê‚iÈ=ÔW×+# ÷áe@-Ÿòá^C ¿Â-’ŸBVWèËŒ‡mH×5ÞF8 ,ØHƒ4‡BOŽIä…`ÆN SZ|I¼©Wu†/6•ÕÜÝì±8/%·v›£„vüÈ ª)»Ÿù%ÚJeN‡c/’üí !ú ;ºØX®I"R壓¸D!u™H‹àJ˜€ »è Ä 4 µÂ Œ'Î:.lu ¬@ ñÅ'úòñÄ&_* ÉÌa³¤‚ˆ=Žà*Gs†|‘­Â³ûâÝÑþ‹çÉIV áÔDB±%2r JL‰5¦è=ºÞZ" á¹Á”|i­ µ+À+Äu:NˆÂcm?xýóNòŠWãZTè8ôõõØ@à{±ý”{SDqhßÔË€@´ýÿðÖÅôÿ·¨Ý,´•<< .¢“éd ×›˜ D™»©"«Bܽq68+HGH,±õpAÆçØ„U1˜Õ¸_°œeÓñîÑ…í¼ÃäÛtÿÈósiÙSÝIýõ‰˜ë@I·$ðm;¯9¹ZìÛ!çwWQé„¢ÁÒ÷Ô/Eɥд›ô*¡€É F;CJi~aÿ:aÛé?¹ßÕ~ÄŸ"ÿ·{¦úe›mzb£Â‹¿yþ±].¢ ûr·Í<ÊŸµLãš¶íB‘÷‹Uš‹t_Ìú^†%¢ñky>8Þæ?åjÞã›Rwâ52ÉüÕŽT³ÏòÓ'@IݶTÕæBüO‹óÝnïEÂ1ƒYUÅ)üCáf’ez×q~Žqù†£l<8£¿ç×=$^Ñ ¾ÝK{HÀBóiò‰þvËü þôàêçvØ•¿=þûÉüÎG³L¾ö³ÈW ‹*Ó¼<Æ(«ò‚PŠ¿ݹ´87=Ér~ùEëzBñå†|Á.£ CtÙÈÐ*)ëIØgãBþäüàMî‡ê†à‚RY~šÓ¿è0Ì ˆ¾ý¸ã¦ýã‹i>™ž²™(ðƒÃ‡ø¦k¾ôt',#¢è;¤›OoàA²ØöMuõJ¸u¨¸«.¹IvÚe~äÍ€/]û­g6ƃþg×çöý…+zÁeÿ5=Pˆ_× ô‹ IáÂ8`\í€ÄA•Ãj£¼uBÞ³«§„nØ-WY8Á³ FsÆFš»~(bŒ¸Ùi{à†> Þïné3 ó…lÚeUAÇl¤dû ’Ñ ˜$R¦åß î­iLò!Ä ËlGa8Ö$D½#)eÛ ;¢=$³Íc¡¶¯ÛpV‡HžÏg݇ÆRÙ&„Ò(ÿá⽇f“Ñ1G„ç3 v£ô €K‰ÐC…æ-1n„œ}R8 ޳Á†$„Wk/åö Ê[NÔœ °8šdÃÆ—•Údàº)w^%ºþc1F3HcÝ^if0»Ãð+Ô‡Ê:oÊŽ­%‡ÀÙ³&°¼q}òý•ŒcÕ¯ÆG뢞ɀälÉBWm+u@E5'­£­!J^âö•IcOaƦµÐí[Z[îD–é¡Ikå8a÷‹ñ&M&©ƒî¨€?zâĆ£QÕŽ0Ûˆ‚7WÙ¬þ«ëÚkíaÝÙž¿yÿúH¼Hл»k|[€Ãŵ°¹ZÚç#aNnZ?À±ŠFŸ­®ÉÈËsOaèÙIxHŽ7.«.RD×ÕÍTˆ#ÜøS²w^·–ÁÛaÓhÂaÄ'–”lüEt ¤Õéðz’Ñ3$x ®¸”hÐyÛgÄ3ìAäˆfÀe µI0š‚ù&KŒž¥ÁD66ä•  w›CþĦ°ë2úî*ã'-¶Sr¦kÂnÍþ½&±#ªZ?YãE¶?IªÎä]67ŸLðŒÁ¤D«4Ân ‘JÓ”ùŸÒ³·U]Lgí^‡ñè'œÒ#~´µÉ²8=› R`ká¯_¬x;7Š…qÍrwp_g6Û$Šyi†sÊ+Ëõ‰„iBålK•æ…‚µñ·=”éËÛ_3?”¼œ_ºw2'©žX"t†ŠÝgÛ±„$MBãÁãi‹CÄÍa´ž žÍÔü#;æE¬Aâ JˆÉ²õõÞFþé}Ðd>£Øl'Ø“\±ýV³éœ]Éç€×¨ŒÃÑÞ{ÆoÿÞk'ÏS”ʾã¡íþ">ÖçÉ#lÆŸ×æ»ð)žò½ßµ“£õçëÐKü¤ûP!Ù/Ï'UUfÜòKihð^ÈêÁK÷Šd%8+3Ìz.<™æú»uk6(5ºaw~ l 6| SÏÜ R|k®KMìâ½·Ô$µÂ8Ï("OqºT¼ 0©vbeËêÌŒ×IÐ|L¿°Ð<‰§»±=Œï-.ÎVj¢ñS±Í"^(é¶é‡`^¥˜Ô*]ltkc"2AÌÛʉ3a“8Ò)¹Ô«Þx€»eÅu+NÏ8Ñ›× B›Ýp0Ò©Ã3ñ4l“A'Pr7t`^ÈfÓë­…Ëvd7uš—LL"7g†*sƒÖϧä+Ì Œy]±k6¶å{8/X0””ñÔ<Ú–aìŠédkZykºÕò¡Eý>OÍ6ѵ‡BðT¬ü³û×Q½‹^ØEoq½°‹ðdû]¼°8Æ`Ôrж×5zxpÕ4©;ºˆD¹°KßkêŽDn#Ñ.ð÷UƒG5é;’šÊ#©G°«N$ÆMãÂ[Ò{/2hɹôüoî^¬›ïb…{\øÝß´kûM³}—AkbžWÉ.Z1f73þõílêÝs©ùÍ•kOÉ ~I“››|ÜÔ¤?»F#¶ÕL¿ATÄ¡ƒÞ(Fþdßо·#ŒA^¼*o@ÑÑ,ÊÂq4"L”4‰üºé°›>|GzÛ…²Á^:왂F*ÈÔA …QÄï½€¶¦ÈõÅÆyÙÜÜæ`œMÿÐz¼näaŠ#{˜pµ‡éøºÐ¶ÍÜiˆ5†mAFmÒÐ#Åü ¿¯“NÅVáù€2¢åsŽé6 Yš€"f…÷ÜñKhU>©>¹¢i®;ñz½H½ž«×óaóÁʼnÈÉíuê»LK½7dÃyxŒY#‚=a7†.ë)ÃÇA ߆Öä¾1y”9Ý~d]é1s–Sg%Ó&ýðêɷ‚FFÛjðé.­ÚåÄÚBN]·~.kXȯѓ›þ5\s×È&_t{¯aªz¡Ö»8ÈËûO´÷]ËâZòÒ>¶Ù=I‘©›“ˆ–ê÷‹7$“ã¾Ñ5ªF¼¯‘U˜2rükœ\=Ü{¢ÑÂT¨¿4g‰T®rŠDA‰"éJ§GZkù{ eÕ#O%Æž‹:{®6RgÙùy^&:¬`¿É4Ænïùÿ$‹èË~~‚’šÇ[½ÀWâ …ï+ÖØö‹Šs×À´O'S 1ž… @Ùªã;™öüYfÀ¥Á–|)i¾G[ˆäGÓ‘o/£¼/ÂÞ¯q N=Þs‚%óó!!žO¾/Á:`5s—âÑî‡â¾Þ>tÖÛ¢Kÿ€W@ô—Ía—îùšs€ý©ä¬ë\½ðù| ðÏÐýˆ€9Œ§ Çü„%Ü$²SÉÓD=é4ÙéÐ1*ä2ªYW%æDq ÛºOnFHÖ ÝZEêlîbaû _Œ¹D†- fYˆm§«ÐлƒŸ_·“w¿µ“Mûœí,ÌXÃ"§á{mÇ á4¼BC7ÿmzx/vC’I‡dxá \± ÆÚ~ìtîY®%bYeˆEùúH¶‹~¦°PÒæºL†ù*MàIä›dø¸–ô³¡‰è bÆwå|TNPɮۀëlèÒMQš5f×Éxí”d ªÔ‡#‰‚ÒÍe˜áp\| ƒ{S«!¸u.³áð¸Â˜·„\Íø: ªµrÏÕù00P°jf›õ'ÃÉÌž W-u_ëê¡8T›ö°ï)Â(E¨UcoÐ@â þ¡ξ;Ï~þÆØòø1.–= æ®D£(®‡¿ÚX†’ns}’…-j̾= 6ÐÏ˽Æäå£_t¬ìó3ƒHÎG+„½Kݨu§1§)1ÓªÕ[TG0]ƒÊ”l=µiì^L{’o‘|l“ůƒƒIüÆuÓ•oñV{Òj/ÒjÍv6~QZûW ï» æg- ST+ÔË,†ð h»m.ƆÔo1^§ÔYÖ­>ɘ CŠ1Ò¥=b½˜U9‘5 `@¿øì5eÿÁ»_/L xr“v Oóñùì:iÏË*Ÿu(õh¥jƈHhhDq¢(…ôòÓ\ñ@hä¨Y"eàůD|¶k¼@‰7ôä5ÖN@^-{- 3ò8”´Ôž÷NOÿÔ!÷Â&GcN,ã ,ªcfA:ÙÝ0ÐÇ7èˆ:j( sÃ†Æ¢Ê „_\ä+Œ¸ñ ZPŽ]—ÀçK…Áܶ…¨Æ6m2Œ¥Fॷ^zÍðÒ[/Ò?þ ÖPí4-”·º¾pËäYóJ‡I,¯ZQ*ûsô•x"Ÿ9]Žž¢éŠ4[œ¨ý¯ɼòEÎÏÒÒ c[%‹HÖ¿ÎÀR‰‰ÈÆ«k,á5¥úS[ËR Ž+îs™å¹ ‡žîtw·nê6׌+f]&‰]`®~ kÔS7Øhïà% „jç£l ÷б_M¼]xeù?ôØØôº e€Í?Wm%ðVPA “Z…ºàB".Þ•Ïéqÿæú@’î%`š,ºÂüV븾],¾b÷âï(Þdl½[0Ú·¥¤I9-`;qCÑ>=0Á”èHàSߦ¡²Šg0™8©th9ƒ†ÍˆÜŠldb¬¹»·¦º7€c‰c=·fEŒ°«ÌZ v§F’…Út'EöÀ$f1iˆ‰ÐNå-áp# ™Ømâw’üºs“9Û æ– %6¡S53{ÌÅp±ÖÌ»ÜØ°\]»¤8‘bÆÛ|•]¯…EhdðÜüWÝ*¢.èB´Á’®õ cÊ-òž²8™ýZwÒ®Ðç4¶é¯d£ˆ;ü•÷Ê€¶Û¹H&5d žÙt¦°wîŒ k˜Ýý9õÙkN}&,:¯Ñ ÉPž wŠ~`\ªKó¾-‹²bÛé±¶X5ÖKköw|´©ê¿ô +|d~Ý茖Ÿ€‘œÛ>£;8nç¢'x/>£Ûš=#u @óx“Ñ‚éð‚»ŒÂº}æ]¶Ê½%t‚wç-ÜÔzÎ ÃCæJÊÇÞº]qÚõ¢—ݾ»Íu¡œÙ={ø³ÌœKµ×=Ÿ×‚³êœºøºã·}c1ÁDÔ Ü—•£²g²bvòªy—b²«rÂZ2 ²"¶þ‡4­Ê?AÆ=æ8Î+莩–c8pøƒ'fìݸÏmŒ #tKÂP"®‘ŽIþàR×ìûaù॥—Íhøåh`“&Õ_š›šB×*3)xù–£æç†Oµ¾¹ÖéR Y=Å WVä5&Ñ%Åœ^2\Íó‘3Õ»²ªZëƒ ¤ ŽñCòKž¯’;Ô\ŠŽDˆÒÁÂ@*~Ê©J•%ªø‰çp ·‹ôÉö}ßY˜¹! ähb®³hú~ŠžN)6îâDÒ3èyq¤9W6v`Ô‹À·„t{t£ÐÙ¸ÜÜ£p;{*šˆÛ÷æ)ÖBŒ„ÑD,>ôB~Ôñà/ 8ø·· cº’úiWÞêÓH{¦µÐÈÃ>TûÕæyø{ÕV“[p’—ìá;ù T¢­ààêÍ“2±c»®-¥7"€°®¬£—Ì‚Ö{ËZï-h½kÏvBêÈGw%âÕpÍ2a(®ŸUqE|Ñ4Û¥;å-Gd“Ü)]†-[¯3.œ}Ú-©µâ‚E!/º+]<#I 9y¨«î:l¼P‰°Q”æã U-ŸbF¾á`–Tg“ùH‚÷Kú ¢¸yäÍ´­’˜™h [ù[éI+ÛõhgåIªÈõ'Ø… g’Jtñá!®ñ㡼¯î‡&OÄÉtd*üÑa09dJš68.UÂÁÝ"n oâѦ¨'*9üÞhÄ)ÄyÑýt'TÚEê3Eq n1é‡R·˜¤â‘0N~Œ–•Wúô¡Äฟò,ž°òàÄ#ï(ÊKŠGLý2N(áMÔ„Ÿ9*Ànqhe>-_«&R6>‹P«ço”©DJH"zBoíèφ¿„Í·Úl¾Tc¶š®,lÍÃ&1<£Í;£ˆÆÚzJR …CŸ–F²ýóžÐ·‡o^ÜѦ#¬Îêgô÷\8Eä ³?›H¶ŒœÃĆ`|`¹f1ÝÕ¥n›afaà&²üt¼jè…ÙèÆÃÂ$!»GBH?V?îÕI5;þ² K §n]o¯èÃ}¹ 'X1È® \«B×þC×AkŽ{HËšñpµŸѸñ’ó·´! „­¹ãX£F-q 0Í̤¿k ›v ›–òýtÉ—Á%ÓU8éàŽ§Ñ˜,äT6õÓ7å‰C®Ìû”#r4x–bø’êå=ø¡OOó4ùÐO¡uN#È>À«Ü;C µMBoËýCuôwàD€º–’£ó¡­H—FFFÂóýu] ƒÄãO™„µù…ML¬1Në°É±ççC.¦nŒ\­8åùÓ•ˆ’=;À6u¼ñ™Wú’#ÌñnœÊ+J‰³#¿rúEmÇÏ`Ä|•¤uŸ8öˆ#ºEûÃaDÙÎ )dÎUö‰ÀSrª™œ~:³|-Ù ¬*Þi­µ(,IwKÜ£3j#ɸ¾Þ{ÔÆXù›Å4r/ŠÎHgc @ù»8@Ú(ôì†(¡IæEópn޳|pVó¼el½1 úãM'}Œ³Ò.l÷ë" ±:L›rct¨Y²­«H ÚZs±Nœ% #ŠR†²E£?2£bnV 8Õµ)$š;óѵYŒdö,Ù†oH&äáíCepH3½Id°J1@()ê¿Y‰K7_óUÃöU²EmcïjsH &å%¹ÂHGÉùd”[ë ZÞq³Ý NgÿåÑúLº¼‚íø{30í³ãŠœ—^.Œ z½ËÖŽ¯w{n{p”hß E5MÆ®-ô=¯ü`r£½jÉÏš:BÐÁ„(Í=ö݈ µÉImÛ²ééÜ¥6Óàç¶®mÓÌr049”àõOolÚWÜÙ׌µÚdýÖI0ýÏû‡|"èƒ]<…vÅ»‰SEñÀ’ƒUês¤»IHÙI䘛wC õé.4 ÿ¼–ö_øí¿xóþÇ—ûÉÛÃýçïÞ¼æÁâ)`Zèyœ´_w‚Þ­_Ÿ¢)¡/¦³ª‚²"”bÚ0«§Ú»íôt}Ñþ?„vÆ™üæ?¾|˜¾WÇ_fd`Ë<œYëÄi¢nÚ×7ºïú‘ [H[ª¨ðh® 4E™r” ¶HáÌ š3RŒŠÙµ€Ùá/o­O°h%’M“˜CævAPº h߬È˽WÉ‚‰,4‰cÍ”97ØÁ&Ùà ‡­;¸`—p){K)†#%ÁŽ ©ÞQ×­Ïu®UUáZ2ícš 8TgÅÉÌê5%FœÀIŸƒªùÉ ŒÃVvœdƒÁ¸272±ž¨M›Ì ²ï_³¿!2ctG¤Œ@‰çBlaë¦Fan4Ö{²iCÄ˶=döb“Ec¿h%uhÒÓËŒóldT­ß2Ò‰bw·¬E~àˆ„|w8N¯Ûg[êwéÊÜ4#¢ŸÕ˜`&ôÐÖbs<÷ÒDà¦sYr 8§²¶e¼É®e&ñm­M·„ŽÖnÇðÞE d‹Bí1 Ès¤‘ª›.­=—§z&æê£¶¬<ÂNì m«B;õ…ÀðIáh†”•C™ÑN§öZ:™—ÙMŽ Q Ï'»ÒÎèêàM¶- tí*û--Å1± ’friI¿[G–¼³1ôbÃ]“Gò"ŠPñ×Ïjþ)k N+@'ãpeqÅhc+~îÕÎF G\]¸‚ø}? C(b´4v¬ öb·›ö¶·ð˜#ª2ñÖV?ÛèëÅü¸»›±|ëw8Göµ£ŠH».|£k ÃR|Ä[»»5Ü„‘uLt³v1‘–t΀Te@šÀºf-€YÜ*vëaUÖà¼á !åžCö=OAB¶pk>Fá%Óo‚`W¼oï¤KÙ6¸@° ¦n²ð aÅ|ÝÄuˆ&š©Eg¹ƒûÒ\oYè¸ì”1ÃeŘM^ Ê^œŒ²Ó»áIõ0vDo,Þž.À3\ò¢Ý¡Š*áDAÖeŒQ‹noBˆ²VÛé,LÜþ~Wv1™OùB:1·­SNoM>™Š£ß¥ùüìßš†ñóVk~ \* f—¼ ÁŠpcv£ ±0 ½N 0š`RrÛ‡T†­5ãüšþ³rÈpvòê9¹SŒ,#PËqB–΀“Ê^¬-5ù¸ßäÕd#¤ô¦H¸#â"d°ÑV%¸V¶£EžéŽKéŽL˜VÝÏmCöbòt•óæW°RDܵÝO¬ ”(I¾ûhòYÀ uúÐ*›Ð âÔ›þ:¨x’a„„7e¢Õ§†’§M—€«'Zé;Ñ4Rèò‘ë’„ˆ€+i48 –R^“:åTZÈ¢ñ¨›at·–@²6{•ê–W¦ïf[¿gnùüöô¯¤Þƒéöâj]ïJs P3£LÀDغxþU>‹T“³›ª¸ô¶+ÊÀwÁ*†-!“è8 =L˜Îö"S€5²•^æÙM¹ŒD7¥~õÍMDNˆ×ƒÅPvk”šÚNz«Eö ÃbÊät%½‘á´^½=Ø|/ç¨ µq·°ê#c‘³öµï‰rõ¦E^S«g8ÓµTþ6—ÏÍøêwå÷Gùý1À ÿFIñ†Ýh€yà0Èhê©gÅ(§a¦Óc|b>ðG“×ÇÎNÂ)ë8žÉW7ÃS©¾êéëxAŒÒëœ"v§,/…ÎHÃÖ(koµu [+Ú¨Hæ:Lˆ ¼jj‰m“×<"P·„?ÍÅJÊò½ôn¯]"æ€ W¸ÃÕߨ‰n8l½DR|)ä»ÓB!w€2TjÖ)>G¬c‚°eR‹ïbÞ63w{š çôx>6€ %D­¶ÛÝÞë%h÷×––ÝU[£xôBÌð4€þ¤±%Ð\rU sñ²P¶?¦GFI»¦]ÑÍFg"Iô kâ [“~¸šª×$H×µ85 fŸ-(‘HIá´Ås»HMdP½õµô'zv“h“qáF·îWÏà5›Vãö×S„°‡Gì\O4À®õäî.¾ïâú€äGÉNp4ës_ˆé:‰º/?îȵéA‚ó¾óó×Ûí:„žjÓW;ÏcLrÙßùzpé|tž“#ZÂ#ð„{N»ªø •´7ÈÁ®Ánw¯±©ß_™«5V:ÒCÛ6šÜN1¯¦Q•8ŒØ"Qk–t]Ñ“ž® x7,Z”†<"õ–.® O%ýªð‡æ©k‚&hš°´oƒü)ŽtZPù)4kŒ}yñóþ«WuÝ„¢˜sßøVg“NGò mÜ© awFàn¾,LAeÔ"T”ǯÜE=Š9’\*Ô™a¡LŒ¯@cCZÁÎi6íg§yÒF»¶r#³YùqQý¨¹v ×ͯ×l¤·"z1r³H’…Ÿæa\ôaÝh„ú-Ðaq2ä› ¹ŸS@a-•ZлÐ*sûá[€+QåKj ´ô›òC²Ú`P;É=@û=-$SÔ¯)åqý3e³GQijI„%{Üð^¦º2¬ý›ÈTáa±Ï‡vÕ÷Þ½8ô›‡þ[JàºK$pÒ¬Ž.OÕ´®ç$p³-D.5iÔÍ]-¡ƒsÓM75WóO‘š•}Q+1‰}’§L¼K z¶TÔöE‚¶%ã½}A ÓêG‡G‡$+a.öî¤%ÜÕ?CZò-ËJPRrër’o@J»L ‘’¼¶ðu;25”Ow9%‚Ð'º:"›\ö‹C"‡(h½»#@‚MÉêÊ{ü§ÃY—zdÿæXDZ2s;*ö1£ºÏj1˜›·¿ëˆÚÍ\1S/ WA=ŒÌÂkeYaþBˆÃcDˆeù‘ô´êQÀ´iÀukðM¯í_X›o³›J¶ÔnŠBb…AE‚wÚ]p5ñH%KE)]-&銞¨zß[&FA°Ð×CguáIW(Þzˆ¶€7ýZ†TèF3âìŸÎŸ‡£ZlN%…0©û¸˜ÛäÞ¢êÞ¢Jþ¸òõî÷ߢÀkóV¬ªÜ|ï-«þ¼¢„{˪{˪{˪{˪{Ë*ƒA?}=˪O÷–UwcYõékYVÝá&ÿZ–U%—áíËýÿý1±úä›X=_`bÕ&‰Ä6üÓù,­€åüpÚ^`ou÷W!@ÜåUoýVm¯¼æ¾Àúª·^bB6øcùËÞºXaémþw0Ãú‡3Ãz¾À «½©NÐײÆÒ§öÞ(ëÞ(KÉ<¿ž]Ö7%ú­ëÞ:Ë~î­³nÜþ䳞…ÖÍE«÷VZßžhõßRšwo¥õïl¥õ¯g¥õ{+­¥VZ·-sù$.ÿXÕ\ë‹ä-jD÷V[ÿ’V[7:Ø6-¨ÀÛ4ßú9ÙgÙq)9Ì2;®Ue1·fÎ¥Oó][u9þ>¹e†&ÊãÔ£-FUå\ØuìCR^si#ÊY±Ì!zQÈ`VNVGÁZs˜sÚM8?QQQ¾%̵Dña'¨§ãéÙ9À^68‹°e‰e5RúRÎà:ï`je¶¡Ô¢Cœ[ºÞÆŸ&ZT5¶£UÒ~‡b}šèöT®™t6£Éäœ}V5‘(sÓ4Ž`½ï‡JûZ›¯ ðììØ¥R$W¼lt~kóÃòWðíà7›[Ùa1.PÆ{WO‡pøÓÛ”²P2„ÿû?þßÿ»¾ÞƒÝ©fyFQž?Jz.“ÊÁ›žAw¿’¥,S$€.PŽ‘HVFJ¯1ö> $ðó´;’øáÂêUöñö6Œ<ÃÝï¶¹©ª(9+ö®ŒL'ÿxŽ"‘ËÜFN>Ϧp¾ó ð'‘g,m[âœ,Tb6lL\Üh 7A ³î‘BÔâ-QŽUÉûG{<˜“vò¿¯ß¾:~÷+ìVâÓÍøzïåÛ_öž©wãí½§ˆ½æ¶ñÏòËÞ–{B Á³MúJ4áó¿?qs-Ó˜<ÇÑ›w?¿n'ï~=<’A!°lØá'p4¹ sšùïÏš_üÔ¦ŸO·aVG¿ì¿vÔÞ6Ui;zòH7µÿòÝ~}’vT=]ÛR¤¡¦%Úýƫר»õH0µì®FStµþÙÃȈ?güãgÎÐâ·›âîˆ4· Äòq;HÜÑcÄ@ ¶õa¤‚øâàÕÞÏîMmí½~±Å5`¤Ão#2F¢±Ç‘Óá?9JŸÉzÒ¦/¼íêÄ‹ªÉ<ªí¯Æ‹çÀü¯,È#KÊC; I§¾þ¦Ê¦†+[ðÖðß×AØ+Ð…s Úö_¾Ýë~¥~×’·H:Rê¤Ü&¯ôŒÆUA³i8Y|¯Šan¬Õ¼ñbŠ•ýóšštE”LˆBÏ’Ø}&†Ù,ûúWKܪ¢} ¼Óq<üÃ’ð”ÍðÑŒÍÒò²‚ÿ§ðÿÀ¤p»ë ev¨¦Ÿ¤Œ<¸úÆ„¯#Ê]«´ˆ”uh ”Z ω- 1'm–òvŒƒÚ‘º3NME¼–hâ0××p~Á²øs-$¶‰Z®c£À–ö$ú¸›)ùLI«ØÜðlQÃ3Ö?Ê’Äåk — JáN3ÅT”܈¬"—ô:¤¤Å¼øfÆ•^D3L8Qß5LQâoh¶lD33¢ÙÒÍê#ð ꥸ¢uÇ„<³lJ+ÌSzd»t…,vxûà¿? N®“%g`)à±ä½¨L<{ìš±õý„ÙUh tÒ+']ƒáØîáÈùãviÄ‘ÂÉ”¢. €¨qcs*h¶Õ4hþÑCß•.¥„F)±Ç4ÎÎ7j£9 å‡ãóâdëì¡ÖDe„â¬S:ù¿ájã?ƒÔê{ùH^Î65 5: ÙR^ô6õH…ui¥ &RtnÈq§Ã>G-õõ9óœ4×3ý¾D¿Ÿ4ùƒÕÎX  ¢XrUo`hÒ0Kø2±_q5Ì÷êâ¼I‡+kH#[¬Q•’0îd‰¾Vv‚æ¹B›°’ç³$p{AS~VäͬE±•V|K#˜1*ehoKâ$ ûÜ >ÔdìÝ7ÞírcÎa4¹ÖI+­%p gCWt †p—¦dÔIÓ+¿qa±Þà‰žO+á8±ÉL˜1rç gVåÈ%Ír”“WÅ Í8…¡P暀›šÁ½„.çy6«L.)A;bœC™3\bÊ6Â)ìOG¬[XuÎ`ßvÄ¡¶ÖZsÓö`“€Q¡ §—\l^Œ5… yÐàtšÃåSÒ- •v~£½Záuá8œ¶*±ŸÃýºe “eÒÀ­™sy!4ýƒ’§ùŒð5ˆWX>ä$h¸¨óŠïœ9ÚØ-boŽGd­äևȚõËÊe–!t:曯ßG|ƒUÌJnº¶6¤¶eZˆÖv5ID…ývšØ–û<'{Öɰ]"èØÇ3õx¦uˆ0¯G€¨¤–¢ Œy³ŒŒÚS„¹6HÞì%¶#¨xUDKöGL‰< Òêrê9P%沦¥B»h-\¢›,™IpÙÖ ÙÎ’©{Y±Ê#1ìß,ÖÙ-¤!"•þØèîü±QŽ(Á7_re…à ¦£AMÑ-KòÇFÌ}!Ðwן,рÈR·a’­.h/¯†~CPʰöÒ·Í Èg“´7¥coÊjÜœŽ¥…¼1—ñ„,¯åhg._ßG)naª£©á·wï_¥ˆš ¨±Q5éùÃÏ` oÊq|Öf%Í|GüùŸŒF†¤y+“›r‹Ë¶LõŸÕÍï€'øKäƒDÄ£j:x„Boëä¿¶c¥¾ì³ ŸïŸ<¿ßw»íñßï·éùöãïºí~ÿ—noûI÷É_··¿ƒrÝÇßÃëä†RÿÌB“ä/Ùàra”˜<ÌŠËük ëk}þ£81¤ÛÇÇÏß¿Øë$ÿùŸêÑÛ_ÐX7xŠ`c_µþƒ_pxÆä=%»°?ñÃx©HXòüPJz“®Žß¾ùéàå¾ëòøÝÑáÁëŸ_¼Þ?nÃÅôUô]^†¥]QzoÃjüêøØæa·÷^¿ÛKéÏé«ôuú?)™0¤{éË{éðï)N<‡¯Ï;ÉùYÁ,oZ5=>Æi§j j@ÿøü}ºÕ‘q¿NvÖÁpmçP‹p¦ü6 ¡«—ln&½M8§’~JÔ)¾ƒ"ðßsàÚ§Å陕EXõò`2$9ÅŒv.Ìgg,ì ƒ |$M &e5™ÎŠùxK¨\ÕnV^#çZ Á‹Dí†h<ß“ê,£ÀMò†¦§bªôÜÜ)[ºqélh´»Dd}‘°Ì§cdǵˆƒS¤Û)øójû£=xþæíßflµZʤ‡‹ù[>%Þº»ÕÝê¥Io»ÛÝÜîmöˆ|ÿnßX·DXÅ·‡¿ííÃ=üã5Æ ˆjbÀœŠ ÀÁNQæS\†u™ch0[9Ÿ÷¡§,Ç_‘“£M>Î/ÏÉ$ù¸G[ßPBlVL!¯T?+‡@QqÈTýÖÅOÇX ö˜!hü˜Šͳ¬½†b'óÑHâ³Æ†alüG/Ì¢Þxî0r@}oYüãÅýe2¯ò³É]í sÉÇ”ê[kRæ$qèÉæ3³.xÔ¶Zb¾‰¢#¡”XÀ…ÑGÉ`#ØMz9gÛ×I|GmëFAæÈ±!Z•R© Æž±ä®¹%âdÆl–mìÉUºÑãÚ+oLlÙ»ú.¶°.j­­Ó§eöÑ“vG'9—ù¥‹ß/ðûÅ*¾òê'¬ÄE‘ˆŽ|'y‡+‘aðäÅi^’%×°!cF¼YÒKø²N)70aã+ä—¶Èk+fpsÐa®‘ïBƒê2¾Zú$«9ŸßN„ :ìóÑÈ€á3ƒ±ª~ ׉Š~¸áNlƒ•i°S\™ÓÉ5+ (^\›#`àfßBlªsÃùeÃò”h K°ã-NÅÁÙLœæ³Êè=ààÍhnÜæE™·Aµ¹Om:Ä–}ù2¿2ºú¹IÙ : mÉœÛ5©žE˜|'l¦Z¢¯íQ†æé–^ÒëRà³K~±xÉ/þl1CÙ,kÁJBg“™Jdã¶U“¨>êéfÑ.áÜÏB¶ åïõ¤r¢R{ jaLrèþ­ÒÏ jRö1æÀ||,Rߤñ2EoJ¼)øH.’~ñc˜ÍfÛ)þÛ¥«¥Q>àUÊÃ_1ôVà‰jáÛ¿\  ƒ9©r¢È®Šáì,m°!b€“HðÛŽ%Ïv“Ç=³_¡Hðq÷‘Äf\·!3Ün“^âm\Ù@^6ýokuœoêpÎ~¬„~ÄQÓK óöàø÷ ­vGžbŸøÒ®æ"a¯>+¦i¾[ïT¾Ø#Äš¤Ž¡ÈÇX³r.ÓŽ¢›><‚çÞh}–ì¬X %xQ)ðnju“„…-í,=éno=®G¥ˆKßî€Ð½S£¼& áŸLRáÞVo½{y޼â^^q/¯ø7’W K°2 +«Hˆ8øèÝUTÖêXÈŽšpcô_ 8ˆA.œ2áËÅ ÷2Š?•ŒbÐûSbÅÿ|uI…^·?­°¢¶–NyÅí„*&Âë‚Ûû²€ÅdêOôm ‘wØ ÂÈMZ¬[ ç—> "×9Ú¸™u˜&Q~b$¼†”çæbžä“›Jz.Ú6%ƒÿ¤­F³QÙŒøûš˜È¬å]ˆ‹<\õç“ÉðïXh$½ÜÜhÑòÿÙDGæÆøªÒ£Ð2ëNÅ=·¥¼¹qŽÜS8ä„©-üªëñ8‡_#«@aÞmƒæk¤2ßÁÛÈdâü/m! ¡‹¼Š'„1R àðãr”Z*jn£`Õ«i1vÎÊb¬$­œI[±@ ›Jvü$LANÃ|ª|\§Ã.Œ,Ññvüö…X§‰µÁ68DÑ".)蔓*:³˜}`›ƒ¾Ïüý­HlÞ³H QD\`㨕ÄHtn…Ñ0oÇb:*ô„3É=î¾9ÜÁ¡ì>¤ãøöîà ᧫AN ˜¦¼rùɱþnIr£‡®Ž]¤Œ2ƒØ‚Ê£!óÓ*Ø¿N'®c÷©Ò¿‘Té ;C"2ô®¸³~;gÚÒ!^¼F:´M5X¢xÕI6¹ü=½ŽEŒL&°œiUÕ© «Gf‚ 9ã2;„…‚ ÛBDJ´Ð ¬q£ß3Làd6ÎD5TLt’€€¨jTŠ$(ã ÐDC›,Ÿ‚8Ÿ““2óÞI{륨eñV°‰Lòµ†MÆxØJû{S‚©¬ãÓU¤n­dŸVйg'Vô™[`?YX%ÜòK ÕÈyO±ìŸx;í*°ÛÀòk€ €SnÀOЉ Tç¾UkxCír£› CñžiÉ5q^\N(3¦Èhš„¢4Kå4KûÌb`¿¡ 0#a‹Ë‹¥s¿üÍꚢCï ß,<ñݤÛ1YÍ_O0Ì)'±Ð¢„¢‚68Á üƒýzäv,±p¼í¹åö2mÆŸcd8Þ(Ñ [9þM1™Éñ¨Dn£c„TìWОÃ%6Ê›Šÿç!)žŠ? K:S›˜gšÂFá 4ѯ^OÿÄÒ%â«O){†“ÖAÝA[€©=Üך§7Õí‘§8fï ²syqÆWèÌvµ¨£í-¿“z 0G/˜€@*@/ káp?ˆÖæH\½v Èlü#/{¶4wp^õ׳‰¯‰}›@õ"¸øf `„)ld›`Ï~]‡Ž?Â~†m«‘„j˜©Ù•…¯È(ÔùrHSÇÆMd!ì„¿×’MHÏØb’hðû•fßU§Ñnpþ¯lг.üÝ% r*©Õ.-?ðaR+¹:§&XCmŽŒ…Í8Ôs¼A{…ÿìŠeŒrð; (GöžPoiެ„Ø¡ºÆ01*õ%ôd …DЂz‹ç7¸OJº±·½3YçŠÂõþa¡.u½ÿÀƒ7Ñdš¯ÀíZDhèYCþC&ü»Ñ _aÅ)Öcæ71Š-,ìÄ Xÿô®Q¾Ö„ËP+«Ö¯åÑÀ‹ŸC›Pæ3§‚’úÎ}óû£V]_Ѳ΂ضõØ%¾7Þµäy6Q:ãl+@œš}B }NDÄ·e è„BéK§×„ÛCƒ2›lX]O-‰t™]ª­0ÉçªX’9ªÇ B€«ç7d;æxld’ÂáW ¶éqviÃWGD°†õ ‡¹-wÒz­ªpØÖ2˜'G|ëÒ‹x½9Ž  ›jˆdlZÃÞY ž¦m¼Œ³éøÒ.#¥À<æ4}ƒTšÞÀ£ÿpó:Ñ.Jò¤L' nP7¶ ÃI9¿‰ã_OL}óދäa6€Ñ#ÝŒøÏÍgðg´8Ü€Dã ÁnEÖ:è}n–¨$>Ø„’àxbÁðƒœhWs[‘Fq\^£Œ*VkAŦ— ÍD9òÝdo}ýz<µE^{ÙG´ÊjO…¨tIlE¥b½†¶b(>±¿¿ ÃYNHÒ¥MÀA68aP1»¶íŠ (‰‡0£bÄX wnâ QHK­òŽáö=n}hЈÇÑ› Ù±ráàÃgÛ6Û¥Á?þñ¡”¡Û©»<˜O¿Ž(j)Ö•”j#¼Xr ’%3i(]R"WHþ®Ç’Ææ¦®9š´iÎÊ×:uDÀQo €æT]‹Y§9£UÊ™ <-H¶É‹`aj÷ µ.q'Ÿ‹No,TÄì…“,V› ÉJ ó±ÇÌÕŸ )„'ffàN¸ÀÍä!o%VI ð|œÌωSŸ“à m¦+!òIŒ'aaBÇÆ6{>°EÝ«Eî•Xµè½¦Æ‘d!)´y‹öÛó)á‰~ž—¸ºŒo†€¶ò-Éi[ ¥Ê$öc5Tf^XÉšÈÓL'Q~ê`x.r¯ÇnfìÞ¼égáy…ÛÁï4Õ&…°Â•Щk Z ¤¦IT6€:b³&Xreb[¯I3ãxê/jõ²îF§½–` ³÷p©˜ÀõæÝíHÒŒÛ1Èf÷Fý?’7x›á។ó²˜=L½EáóJ àZ—&ޮ֒ßö~ƒ1áx`X¿ñ•»‡_Ý(QÇð~]~t¸ÈoM“ À]>Mæ¨\7âÚÒððß®@¯º~å×/Òïmß @ll ð,0ìMdmm~j= ù³ •åšj^Ëúâ[Ò‰Q­H›Õ:âUQ­D~ƨÖ%dëía EÞ 1¼áJ‰aã~[‡c3y¿þ›:Kh.Û×zëFÄÖH)G–%[“éV~Ú­Ñ.!11â¨C™¦œ½a‰ë„UMÕÔBÚQ¸ÖqZ 3o„v9õr¥æ‚^ˆ¶;ö£Œ4#ê áô®¼9cï$/&œ9лR‰áÏêÖ€{dc÷¦„eœM¯S&³|“5äzöˆ‰²9ò™©õ±˜¥¾ŸàØÙ`±Ûž7nyS¾v ·Ž3.:>ì£<;m´Å“>ë¶ËuLzuÖ£/ì­cÅs„9 hbi’ 6 #+Ò€1ÕÃw-¦#$ÏY7=ë¥eL¤ˆ³ñ$‰£1½Ãk½˜}]µƒ–Cf¤›ÝÅc pcwÇÇk™÷ýÅà‹M¨ïät6{_[Q[¥Ùî*W ¶“µµ5.Ó·eÞe'ùìšz1m˜lÚº±«¡<ñXõéŒVïÚZÕÙž œÆnrFƒ]QW³„ÌûqØ„R"FûI͉FD§²¿YjÙ³÷2[$We%mòþÇs$ÔÀÆœÌô…R”…æEð+šx“ä†Á1¸»3°s-#òsûM†?°¨ÁRÍÚÛ1&ÕÒNw«p"[c“­h¦þ+´õ+ QÐ.2wþó«§E‰ëy›eñ£ºÅ ÌÞHÞðk³äí"E*s›%æçFÚjÅožõ ]„F_ÑYk Žˆ6¨}¼&¥‘sÞPŸ³t…XeðÕ¡%‰SWl/ר‘†ZªPjïp““ÚßlTg¼´/uS4Õ-,7g…Èb$ɩ͢|kÉ-óJQöÉL<Àk2exƒˆ)w#Á©å6ÎÉšÂ&:yª× ¤FÖpžÖ«„Äë»"ïêò»«4¹tsP3F“V|ÈÙ}vì{9»ü»7‘ ]œ:è_ÙØªuäAp¸% °—¼Ýr·Í2ŒŽÄ¼SM½›÷‡_ÖÚ]†]û²k· ñ …aÀµÄ?µtdW;¬šÝ×I\U„µHUmÈÑây×j›×Š9Ÿ¡ŸoG¼~aÇÏøgÖ?®ÚÝ ú~v‰™å[™_Ù øžhÁPJRP§ð!¥¬†(ê˜J¢×<5BÄBÌuÒ®ÚŸðÅKľ¯ rj”GHœ{#›æÇì}9»ôåW˜x·üÈ‘äÎÎP§[ñÁټġ1%Ä~ØÌ7ÿ!¿ÊãÉɉ(A89îðŒ}§åGE?X>r\ ÅzÀVË×a5ó“íÖZãbÆMU€¢ÍÏtq-Zm[xQ ¼¬ï†¹Çmnø]Á«Bé­%Ãùx\ä€BC”‘*GtL Wld>l}pŒzO¤ à[Ÿ¾.•Ý(£À¿G6gÍ€°y~Ž+ß{Á>e,Ø›LáÞ‚‰ô—"•+†¾°ÇãöŽÌXúN¶Èb âì¡ÝÓP(‹EhÓšô~ø«€eCÁ6dõº–å[ ÆÕ|ìЪADkÉݵdÃrW#Lî°2Qc#í‚lC¢sýŒ}½ÌãÞúyÇ – a¯ã6vX\ÜŽB;ÄŒátfs¥ä ¹6BG£2Yo)â$}t5Ç›ÅÇæYÀÇ‘(iqpeù´úÏLµ5¶3ž,”°:ƒãs ò¸c2Ëw8žÆÇÝÝ.+ÍÅm%úÑnÞmzN½@Ge^Œ®Í ^þpàÈ­9á áʰº¥Ý]s C~;ckÛ_~|Ö ¥þöè_ª ¿¼Û;÷Ëœiñ ïêG’6ûrMW« žý¼ƒ°Ëj˜6ĤmpÀàÐÙÁÄ©~ƒ–Jtãït“ .]•HÊ ÈN'‘»Šâ8¨Nn ïåLÙ×|3Û0¶f4±‚²‚Ë`Ë»zÇ78ÄçºÇ%œTòäkÙhv·7ÊMï6)gÐc á¨Ï;6‹Ž/u‰k ct„ ‰ ÿ ­4펖âzÓx¸ÿëûýwGǯ߿|)§åÇ9ú&2UƒÜF>Bö¢k¹Ò|‰=óx3w0Ö¤ÅJ·4AÍ¢&ëÑ(CÜMù<’9?>§dul~vŒº²yIöIáX ´]‡/‘1t/¥fñ¨šÜ±Å´š™«\’À: /¶%ZÅLcøŒ´‹Ò.s¡Bn½Ý7·IuòA^HÜ#a¯c»k÷ÿ²yï_„1=Æî/‰boíužúk€úXŒ.Õ5Ï—á¨l³6"„ë…æ±ØX“wF_ ·)b(™ )n¶%–ŒÓ³ã8¥#·œ‹èˆ.„jOwQv¤Ž±€6CŒ¨.À8Ÿæ—BßSÁ7Æ<@Aâ¬xÁ°†J¢ Ô6'·k#£KQ)™$ÓçH˜[M’J¡Æ‹­4ûò#Å¡oõíyJ‚¦3†5S*êp/Í~uŸIB NÍ ´úÈ*íµQ–VË¿Ir$àQ¼ø¤Jc³a‘»ºg—~£Äɱø4S„Òç³n—˜Tåfù 0©–CS[ºÕßÉ+ü!z‚—ì‚Z§¥Ù#/¢Íɨ8?‡æÛlÙäABl1'D¨&9 ×Ó„ÇYÓ6ëXÜ5‡Üâ ºÌ?òˆwJ6Ö×{ÇÃzä/u½T¤¥g')ÅRÑMÀ>0vç½R€´>Ž3ßÑ_ûýÛÖ›$_uÐÆ:^¡^¼]éÝݦ¥fÍ‚êi£[k&1Zô<]½§Eú {†E÷öo†h´™édì0 Š.R~æŠÂõä£äØeZö#'½çN:iUöŽÞ¿;>øùõ›Ãý¨‰Ÿ8Úâø¦o5¬ˆö†tÌË«ˆ(»gɳ1CàˆVDota¡xƒ÷i‡ÐØN úê¹Zõ¢þ>‘ÿÝpdž7…úªZ0“ƒÚtkò ‰$#µ¹æb—PÔ-×D¬6Êþf7‰|Öã„õ}ˆƒêØÛ3Tt¼ð¢Š¼ûüøFB>ÑŽ  š›Ô–$"çêr©©ìEõ1ÅMôãŇô;þLýíjÒCH2z…ñ ðïfÃ{¡Rb'ô÷ ¸Q›e–JÌ)„Ø  Þê,~ð® –ã;¹¤~Êê¼I¦‹ç×¾¢¨ý£g©æîN|Ù,±+ôK 1K†Åà"ÓªOÉÓ9HðµózÑÌÝBç;'÷öÙØfÚÓr·‹|úñœcáå•Pú%7ÐÈNæ#œ¸‘N ¦$(R‹ä>%µs²¾´äRpbм9™¥Åᢆìœ>›Î³¹¸df¯÷ð”U"‰ƒûŠusL’¼Ý§§™ «š&yuž Øêkñçð6Qm…G!ýDÊç}² ­ àȹŠ#’eeUB2Vø{>©*˜w®Û¢l0÷ªÁÃÊW=< åÙttíµä:𬺊•; ’€U¦> ®Zšª–úõƈ Åd~52¾=†Mêcl€íµµµZ ·¦…RNŸín³Þ0A'°”ç©]¢‘c¿³æÓ+ް{ÖÊØ"(xº<ÒWx)î劰QÜw4j$Öp%€¢rH“œ€nõ~¢NT„¹­!ó£Oæ3¯Ý­­­p/¼iÿÄÒ¹­Ä¨|” I­£»üaÚ1¯ŸzŽêñîï¯~#˳r€ÄsÊÅ+ ü ~ ´Z—MíΆi·÷]¸1Þ{ jƒ‘a‘ßÈ­œ¦Ô¸tÈDŠ?æk¤žFt^ßD¬¼á7ßîúã4b!ëMà¦Øòe~¥jâ)–K-Œä*6V¨öšx÷”«±Zc%àã§ž µXå$»õXºÖ44Ø7 VmlgÙ¸õª´B<`ì‘q7*áW‚g›6·ïfj×£¦yhzq,<”<áÇ›ÔÅ0¸žaMF,XPó$¸µFdok|£÷¶'¸>¬³“°Š)#kí#ßHœ[‡Iˆ¶Š%CÊ©sì™!~8¤½Bf+©_|ñeŽq—+òݼ UÛC=ö—*ÐÛaNI/¾sŠ~¿$)\1÷! 56°†°Íj…WMêTtÜN<;å øŽ¿0ºu3•ÇŒŸù+…OYÿ¸nêÖIœ`—7«?þG!a)÷€ë\Ô¹JX&ŽUŠM³MxIêU‚ÜCöצñ:£‰ÍÄÌxßD/K¼kEà2믗Íè*"Xübñs!`×¶J—ÈV4*Ûì%óó!ª!Æ"Fsöä*Þìóüa»×IñÖä¿r=otÍ}ªåa eÄé6¦ mDš|À++[0¨ÚXìHR¹¼¡RŸ¿!ÌÒ 's4Z\p}Häµú OnR=Zø²ßx¡† Üxóh¢åÈ£RÉ”–º·Ô)c6K¾ÐŽÔ\ ŸÈ ›š+N‰âQ–2!r‘o› á>¥×’÷%,ÜlŽ6ƒ¢ïáH’?¾Ü{—Or|‡™ö$¸J ,Šõ@PH¢ HØŽ^ª©ûAbå„ÅÚ&ÃÕ¸Y¤ÅFYmšãØøv3Ñ‹±~†ËŽÁéµ¹ê¨ò$8œ@~9Œ1¹¶Û•óàó“Ú®¬´ ±¹ëãºòÔjᇃsõ¾2ì-=µLkpÇõ•¥h=UÝêNÜ,ªR­4ý‰ŽŽèªf+±´áËgàô›’'µ:ð½mÍÓlM‹<÷£BÏzʔܘs,iÆk§ŸM§ðXÙA«RÊ!*ã잸ÞÌðÃ,Õ3&ç‘·(iµ6ßá{–]jíxX·kõßYù(Τæµ¸ýSœµ¢)XÛÖg¥½Ûp;õ¡®o§î´4ìŽXå.Bîä—¶ºxÉ{À¡!ŽE#Ûön,Oç®cñ¸éEbñ¬¦¾îÿAjá‚ÞU¤šˆW“Wì/=ÁÔ 8C™`5^/¾K’qRCm6Wô˳ßTqž²-d~‚ehlÙ1lIÏ« !ŽËÔ~e?õ <®Ð|H?ÈÙ†Ýnu¬BmüÔÔ–_aUØÀÙd|<®NÙ©=…ãxîý¦šþC¯ *ž_C,—ÿ±ÿH~‘¢Ê÷Å3(=¶Îcê[ò3øQ‘ÜÖ~†: ·4³Kþ­ÿ¼ò|á¦ú‹W9,Ü™ib~”'Ù`&ýJŠÃÑä´À'£ŒÚ½­¬{:ó 1ÕPµ?A„J—²ÌØ6 ^ãÌý׋ڕM]д_âf­{Û³Êh0B‚*2ãy×èê&Ò<„”$o9yN£×Ï=§¸ÆVqukMʺÏ—¶S‚´<牯‘ý8vñßy} @žMû\þÓëÑ›»Xm,5 ÕP<Ùí.(odž…´‘îõz Êëåö?~lFýðB%g¥<«æScöG>-óQržO‰ƒ*¹F¬ü–’²ë~Ý›“Ñä¼±œ*L’×áfw{[¿¡Â,1§Ç6ÚÉóG@]LɈüj_@…ù«EÜëꪽIð?Ι9 ßJBW¢‘ˆ´|òfwÕ -ab tr•<’\·Ž¢ÇÑžE(¯Ý0Ä ^Ä‹²zš•§ÊõeÔ›'È×wœ÷¢vÚ·ž„Õ§§§€&0X•N¸4P}O~HªÎ|Yÿþ‰9Y<óÊxÅHî[Õb~™O¯qǘj€Ò…4Mºpá¸üTÃOšæÈk„N–^cʾr-Ùfç3F&‡)‹ Êœ¬Ñ„õ”ú&œÑ i¤µ^y8º×°F[?ØxÜyô¤³þ¤y¾& Yãö1`m&m=4¥ÓåBH^K^ëum y–D’ÈôóÓ¢,õüBï;‡`ýï®"˜ŠlJÆQÅÌ&¬&ú5Ï ûNèÐf2ºfƒú¹4 (bx-êFÜ®3MÂÐt<¨' 31ƒ³óO¶)e®9îÖA=pq¾Ðrx|Í"v9>Ë.É…1¹ÎgœïD|O†^uG–È[Àú\°J7FÂYWci™uñ<öÀ ×® Žiú¨‡ÅÀOÍp⺄ÄRò›Aãºð….~³%Û5¶uEÛL¯«y‰òl€:+6Ý"ÔkáUÄsÙÝ]>oƒÜzš=úØCzÑÖ Æá“|[3ðeâILn.6¤ä´½*+Ã$G'¼Â°ŽøÿÍp 4ø¡XÖÁüŠ }1è3^’ßÄæH¢¾´’‰Ÿ®CrØÖ·¯Añ¡ž Ðjtô´ ù»~:‘´Ôo÷¡ÂŸóü™@åb_±m.»»Æ %ØY½fÁÜŽ8¯åÛÛ–(,ÖÖëŸ|˜¥¸ùò{Ü*…òÀ+ós$7Û‹y>nMä—p˜e³¶H;J˜åMÚÌÃz#ân ,Ì:1‹Åèɪx9àu­ KÒu=YP´Z¬–'ùi¬—l5¸ß6È»šÜq1`'®;n‡ôêä ‚2Ÿ%.;#,1“@[s²÷Ã2ÛÆË˜ ß-`f_)€)}šÄ¶ÞVGìnpädŽëïÚÚ|èÈ©XçC§ŽÆvŠª–øXg(¶’"~æµLÂGóωYdKÔ"Aavâ ,f¦õDªûüËñüð*w(™ŒqIº°7E…câÍÊ/jŸ*Dd©M@—6 c—”^õtx ‘”û* b£—mCDš~ÃVš÷_ÔÐÍFd·©Q`©à… [j™:¢¡`C‹õÕ·áÔÅ -X ­à\JX!+§ ¹n|½’uVЬiG²¹¥‡½ #ªMa¹¡6E"M&ç±bF¼âº ®(“½¤mƒoÍK—L”Ão© t »p‰ƒ7†õç RÄÌÔ£á»å(É.h*!¤]‘Y”ÒtÆERµ>XqY -+‰ô} BS++ÊQ(ë×Þ ûu“fÅ)‹¸Ü48ν—‘¾Q g´³ ç­µµ &íÔ¸Kf¬uÁ¸]®Þ¦×—›(ÚCºRO¥T„ŠÁP¸œº?5‹¼8,Úâ¾Y›™.‘¡EtÕÞàxyƒh`¼µEC¤áÔ1þªKb6».'1ÅÀ°± †õÂscrº»ô&N°*dÔNêß ®Ž<›¨ïYx­6B|®WÀš9CJú çÄû]3.Ñ[^[ªXTBŸ,®Û’«„%ë`£UBÔ¡ôÍ%nõ–ÛGÁfu–œFÑî&ÛµäîQ¸Š¸]5œBöhzÜÁ±ñð7€¢=ÉèÕ%½‹ÕýôñSÐ%ÝȬŅþ ÞE\„wø/^X”,j]†^WiÝlyõë¤6ÿ.&3Ÿ/Àhø‰ PB?¯>ÝÜ‹9óÂCbý’Àœï^Q‡ˆÚF Ö¶B!~¶2-þ™˜5rÝZñ†õ®¯ˆX–ÆO›¼)×Y ñSÉÅ\TI+®ü¸yd,gÿ¯ÌçÄ…b0À¬a£TP!-ÏPfy ñc`pã LX2pI(3´­6ámuÜ8)•W~3¨øÝÝNIپ٭_8â5ƒ¦&¬À‚0x7§¬q&Ûº7‰qµô³*0”ùIä Nž¡¢?Ò pŒXmH¥˜cE…„a‰ÒG†…©uЃ«DªÔwPÅ‚Éìæªm3 “4»#5ScGSRá§nëCO›°“›©ï°xFS‘ò¶­2Éøølîö«›5l4X6ÝÜJ4}Í"nãƒË›Ú\ù¨TX3Ö¬ˆ‚·žè"(üˆÍˆo@1‰¢w¦?Üêi^KT I@H°¤šEt8‘³\|Ÿl±pª_¦U\QŽÆ¥dªzÞâDì°‘r í”]^Uî.%íýàÚ‹Th”º.V“™Ö#„ލéC º=Þ˜é±lÁL·°² ê°ÈŠôÆ‚‘ݘԈ,íOÅh˜¬‘ƒÀÅ‚Ëíú±SÛ0djìŠ3IÜ—\o_€ª/Úa9#MD®>âÙû‚’£‹ãYfq؈Ì_ì4+J€I žbÙ7ÊO¢œø‡ˆßÓˆ½X"\j9¶ÅÞØxÌ|V0" l—ê'5K² Õ†à;´îâ%²ü:¦Nΰ—´ ´M³5 kŒ$ßf@FkR’ >¡ëˆžœSÄô0ÓÉÔ8Osò*Žo7y˜òó8ɼGŽäùæÕ«ãßß¾|‘Ò)¨⩛ɘÅd¢- º€ ˜7.$·$Àˆì{ôù*w¹ÆüåCY\ðDwƒ¯= :>0sM_™àhí,4…׋UˆªÓ­y9iÞNKmïõßkü ¾zT·¡ët ¬¯¯'äTZc¤xõÐ%ã” ª·ˆèqõÞb•—u2®7žžWyÅéyun:½åš#ü_íÀý®"…öº‚qyŒ$ d2ëH;«Ï:VyÙ2Gñ;¼ñ2Ç|®åA>:ÏŽ©+re÷î1ÁÃöƒäØoKì±gµQõ¢õýj*£—¸V&.%\TL €kÅ•-KJ.jÓ;.õv”iJtÔ W(Ä,MÃ\ØHaÀÝ­@-« ‚bùœ½²Rÿò€;·á:˜†¤0+åÈÑäaÓM/ΓòŽóéi˜ GÆO=y¢ßßr$Ú¬;\Û9ÀàKQÛ‘¨zÄ"lø9JK}Ū›Ñ\V[°À‰æ_mÉÔâˆl&XÀÏX²šz‰×€­Ê Š¢OÍ‚EJqFúüù®úu÷0`ÎL à.†ïCÙV¦±7YWþÙ°ºF ÁCí¥ÉfÏ[Ó+c¥æY®±RåÃFMº„Å{‹Š‡>†lrL-Ýc>v*Íôäf75+&WÆ y”&5O€˜ß m °l”˜ºC‡÷°»®ëÎuæO"%`ê4ôïº"½x?7’'ëæT¥?tø­¼ù-ÿPkI¢Éè_,6-Ô„Àþ¾ý(gꨄËz±%w!Ç#´áƒÞr¨©BÇ`A8Ó-©uD9P¤7‘A© =É`ZÌ(Äç0™W"«ÂT.Äåc%fSÁæcÚô VÃn©£ÊaÖ’õN®†[+tÑËvéfŒa\.’u¨D.ƒ* e·†UŠÑŸ S°¶c­zŒvs ¯MHoÝUêÚ]Ј6©øÙÙúú=·#Ò£ÃRæZ¨Ò kW}ßTú#ýª@¹0©÷t2CŠ, ÏgëDKB‡TT…Á²51Tx™¡¥dÈçØÈ_<ÍgóiáVÊþ:wƒiݲ ­5'Æ£’—“ùéK†C!­È ¶½c¢ fáLÚK§¼ µ8tåVÛÐ\Öy”ªù.~UÈÁ˜QÓ|xÌÁ“?Ò¬3Ä™¤qQ|F¸ÏƒÝQœÕ`|;É!eõ¬tPF{cô3+M¼ôôB‰hóÆÁR¹@ÖÆUX§<ß/T_ÒG¥°]LºÑ­Ï‰ ê×xsŽÑk(Þ»-”r¼Ž —Ê)Å8âõè:iÏÏÏ%¹ØhrßβP-AËÒ&âºÌ§Wp“À¡ÆXí(ôçÀ:6ЬI‘UOØT @Zp°wvlú5ކ;Íî:`ì•íß ‹msŒWoÇo;ì*·Š§C¢Ã]¥¬-`©9|®u¹‡ˆ%¬CË :ý)Ø®v'i3"͇djeSÕÆ²2ÞQHØzDXKpܹ`]9ûëÝïí™LýU Å â%>ÿÇþá\[Šùÿ@ Ïß¼ÞÇg]ûÌ©‹H¨ÂÐÙ¨ƒÚáF×É›ÃzÃAgGt€OMñŸ~!«JÓ‰ u'ìmuÌ;ËÜVC.hð ô.5+€6¥Tê2‚c|’ʰèMÒo”b'XãÀÔeó]\Ý}íÉ×Ë)ô¡’ËìÒ,~}éUàMŒm9>os0ÓË)ÅܼOåÁ|{ÖîáOÖðQKÈ*7´Äq{TK(ŸU-áOi‰gk¹ ñ,­P2¥~ÐÌÒ€WcH$K›+öCu ôjå="òG£î9ôÌA“o(þåþË·{½; yéÈÒµä“h‹ÈŽƒ:Òù«þÆÔ§‰g‡B/Mf„iÔ>\ÇÔ¬=¿¤üý±>Ê‘9DZMÊc³m*î˜Ì›b±¡Ä„UÖ­¶ÛÝÞëè#6‚–ÄÌÆ®4Ÿý‘K(Ož†Ä±%ÐŒäñ+¤ƒš7Ó€±.²á@§€>£2\Ób¨°&¥Œ15釫‰UMyïò$õ¤3Pa´š˜T›)çñæüÍWÈÇÑoüABb <…–3­ê¢vxpÝL°!»úÈ GG¯²CXúÔ´@],l¡)ü•ýžÑ>N&‚0²è©‹)…Åw¡²Á@á †(-3Ì+v%REõ™¶ö.Væ8aŽGr6qø Ëâ­Àeiæ~ÙZÃSis£ëÞbohIÁ}íHeäÑL’8ºŠóIÔ¯°Ià·Ý*1Ëᛈà*1¡ »š•§óQ6efCªPŽ0$•¹Ï=hD€$hvX~ pA 4ËMz/g¢rVÏœêZ#…"7JpsMK®‰óârB‘0Ô@FÓ$€¢Ò’= „ye1°ßÀ.©“°E¶Ü Ô˜Ýñ7ïÙûÖ6ËInjIY“ÚeÃ%΀x&‘ãȼ}¹ÿ¿œöèý«4  cG6{&‘Úêhnü#/{µ vÍåÈ ¼„›FäCT½$Û$âZ=i0Ô‡kbªìG#iµ›ØÌ&8´_סãχ6%†gÛj¨„¡’ê±TÍz“.©%B:Bn" á(ü½–üh#"5å(œ—&.¡ªN£Ý0ù<ÚÁïGŠ2q ƒÄ\ŵ\gÀT„v™rŸâlã“eÔl¤žãµ <.üg/ÖÁ¤üpÚFC°"HÂê:E:¦éšÞR¹ õ ñ­ši|-yI—ÍpBnˆ2Ô[<ÛÁ]SÒm¾í¥w÷H>W”àub+¨¸ÑñmHøH¯âQôj$vaW€ycCäZC¥Þá ž.§u¼Ž³éøÒ®#åw§ò›Ðž4qvñnÞ¬¾Ä%@‰Ÿ”©%LucÛ0Ü–Ã÷›8þu`ÓŠ)u<`µ°Àê‘ ê¬êæ3ø3ÀÄ&0iRåÐËPTz»ÉÒÏæ86‚ò„@&é­û ¤W2:'afWV• (l³86¯YÆ«5Ûņ_oøÉÞ:»D`™øÝdo}ýÖæä„“™sŽõôg{*µ]§¡­¨4R¬dÑiôŠOì¨Ô°6_ñ\²0pZB­ÅìÚ¶+‰ I¢”¢Œá*'|‚ÕÈìÄæ>éIK­õŽx þРO`¶eÇŠB„Ÿ¹(»ù§‰Ì¶Sw/x23ŸÌ P:S¬+ÁÖFxßä¢k–™´ H© ‘›% ×ÂdQsS×MÚ4gEr£¤ü¼ÿêUÛàhBµÑµ˜vš3šEë!ìØ …Œ º„#X[Á}C H×¶Ãg£Sc5  ó,N²Xm‚¯e‚0‹zÌ\ý ’vªqbfîœû‡ÜÜI*ðVÂÇwÖ|Ëc0ËÐBSPp’UgS”±/@’?ÒÑIG;6¾%ó-êÎX)yåEÌQ%bjjƒ™sì_ë…ÈÐ]ØÒâ†Bx‚²/Ø”éÃ4)¶ò-q3²­„‚h’”cÆ dTÏ2•ѯ„RRw2ú©–…çÒ!y¾Éaa|,ïíGˆð? ß 4ÜžÇÏBD…¸Âq&Ëãsƒ^kkà$ NÊu[Þœ(×KGÕ8°ú …ks=‡èü×’÷ÐÐ{¸åŽnиK_úHòŒÛ‹Ó³œþ÷h`ÈŸI9/ xê­ ^"f(êE”Âõ‰ã®µä·½ß`<8Òo|ÿîáW7BÔQ¼_—.ò[ÓNsœ€G¯9ظ6¤4¤Eµ¼Êâ•7^¼HŸ·A•3ä@± ÄÀw²º°1‘…5w‚7 ùÓÞ„ÚÖV`ñzÖGß–NŒœEb ÈÙ9PµŠœ%º4FÎ.¡go!…Xó–èäÕ)Ú=¤ba[e3y¿þ›:#Kˆ1ÛßBìFTØh,G¯%[“éV~Ú­5!D>g*Å‘'†dM7 ¬–¹Nq5[M-ÔÈ …s+¦Ð2)AÜ¥ˆa¢¶¯¡ ß[46 ‘4#ÊÁõŽL£ï$/&¨-/ýk–MSëf‹{d ø¦„•œM1ê’`¾m»#ƒe6ô©•Z‹YÊ —˜š†‘øÂb·=oÜõšy¹r¨!jŸG ¹<Óô¾h«*Uá¬Û.×K4HïѪXZÉžøè K“˜a°QiZá܉¨¾kyà!‡ÎºéY/-Š%qzž4²qXfð§aGh_cÜ´L²rrª®!Ec\ïøØq(èüòOûñlr|2<³âòbà™ýK@"’‹2ÁßÑÁ]8ô,aevœšQ§°e[²˜•£Æ °I´$EÙž§zE›žÞÀ:Îé Œ¡‰¼»ê[½nÍR/þµ pëÖbNð¦QóVâ6ÍZ$Ù ywLÍòy+웘,{æ§[k—kLo“þuíÞ£ŠjPo0Áéù|¶“ìp¢à©f^ŠéòŽKèÏK«üÙ“w£‹Nþâîì¤oû\×/&ïf2øˆ0!ž/5HfŸ)Ï4™[ûvŒ“9Ÿïc®ì~³üfõ—LÜþ63›9‹}ñ™¡å½;í–ÑЙ­€ØºˆÜŒªå¦Ã]2†/=úrvÙ—¿ãE–Ã)û¨Ýß½ñ0Öòá*áL‰Y£Î#©KötreíuÙ8 ê^ ¼ºd*)uŸ»+ìbÍvî€6Ù F³nŒ…}`öËÁ“ukϬÅNݶ_„°Toy)\¤ÑBã PÊ…°¼$„DeD¯(;Z%p*tèÅ–yGAcˆƒÓ܈É)áÀÅvy/µ‘_†²Å£ Ôm=Õ]YÛ:{„Óq ò›P]Â.S É9K.ûvŒ}¥*+mîal7»¡IÁ;7ÛÌV4ÛŒÙÿ–„w±í¦³Ùd5¥BS #*p&É›pjÛIg„Ù!´^ö‘êoŒLe6àñó ´šˆ¶Ï÷û vE•΂rOÀaJ‰8$5«)‰½Êþf€» ,³Ÿ2¦Ü‰éº÷?ž#ù§ 7éäo T0à†(X/dÁÔÉ›|27|PŽàÁŸk± Ûx2WŠÀG ¨j¦‚ØŽ± —vº[ÍÙŠè£(mE{û_¡­_Q¢‰þóŸ_=N\ûܬÕíb`öFì‡_›Å~)Ò­¬À/õ51¾í#]‰FkQ¥k¨ŽHS¨}¼0¥‘²~®ziéZ±ã%*0BÃOƒ²Dm¡F*ÏBU‚ÃVV•°y³ýPñàhƒêú/©¾¦¬Ëä2ÑÊD(#‘ˆJªë1°xÓbà ‡P.äLg”{úB‘¦¸"ïêÒ”»â4ùÁW×pXÆfŒâþnïÙçx컆[Kƒ‰Z0–EGʽÐ&Âjy)Ä$3‡Þî%ÜfYI‡›ÊUSïæýá—µvûb×IJÚÖ|6™e#gÝñµ¤üŠï£ˆ$þÁ¥S»Úy ¥~»VeÿåZT•T¶y­¶­¥¾ÏgèÖÜ'g€€3þ™õ«vwƒ¾Ÿ]Âwó­Ì¯lüOÂ&‡Ršj…úŒ–ÅZs@"Ù§FhR˜ÂĤÒNÛŸðeJ„r$óÎó¸ì§FŸ„´¼7²i~qœÁÒ—³K_vvŒ½äèÞgg¨~–4òƒ³y‰Ccz‰ýÐu申DyÀ£D>¸…ÜỊˊ~°8帊÷8ô<(gmù:¤4â‹Z¶Agà`æ6?ÓŵhµmáÎÁhß î4›IBlúMqæù7¶²– çãq‘ Ï qÄpDÓt·(X…–§ÇÀ š‚o}úºTœ”2P¬&ßIt´ë_KR•øž H›çç¸ê½ìBÇrÀÉtˆÙ.rÒ¯Š¯ú²!Œ‰fŒ}'³j1§ñaÖÊîi(Ç¥àC¸iMúHüUÀN2Œ!a²Çz]‹-Pãj>v¨Vžæ…9¢{ı|Dîo„ÇÖmjl¤=®)Z ·õ™\à5Éᯟw¬`Ùö:nc‡Åe1Ìé´CüÇN7`6WJîpôÿp*xÌÆ×€©«?ÔD0ŠŸ ­þE«?7Ù¨­dY)yâmä/@ÚCs –þ5ç7x»/+~æ #»â(0ʦ§Æ>RªÙòùÇÒF—¹$÷ÖPÚϤfµ˜1ùbßx.¹`0.HÛ @ãÓL!1²Q5ñ„Œ.µYoDæ;ÉŽ(Ž[Ÿ\¯”f²FÖÆ'íæÊ––ZÈhæ}  3¶·N`pùáB¯J…•Y•ä`tŠ7¼Ù[åÓëbâ©Ñäó #>a¶w.êÎŽ‰É*A¤5†ò¥<p—YŸ]å°~óSÉÛN^Åêh,ŠõVOZ¯¯_z_f#Ó~×¶àö¹i,ÖÔ5o0˜»ìû§ÊLdÃebÒ¼¸³«å±Y|lž|MHS̯¨Æ/ÏLµ56’ž,”È:kés jA)ÃòŽòqwwµìØtÒ ô‚P¶ÑèÊMù›à$Á™[s’ JÂauQ»»æ0^vÆÖ1¡üXO3æoþµ¡šðË»½s¿¬Qœâð®~$é´/uPÑ#ÈqµšàÙæ ·Ì}?U#ítÂ& ·ŒŸFŶi)E7…N‡°ÉàÒU‰Ô¨ ’ìt¹¯(t…êäÆ _ΔÉÏ7ü· f ÁF,eü¨ízWoºD™]×Ì‚¤˜@ R×åÂ$KÝírÓ»X(©Cí1‰¤¹ÑZt8xÅK\â`X$\OJð1#²)hÚ2Å%õHùrh~”Ô,¤sÎMû‘Ž5£i>–Ä¥äylš;kÒb¥Ûš ÆfQŒÿ8%M€% )ŸU2ÇÈg˜¬vëdŒZ¶yIÆRáX_Xº_+ýRzaO¬Ðd'Å3Iñ¥ÎwºÂõÙýZåcÀQ…ë³™ 7jR¡¼Þî›û‡„>œ‹Ëí0QhµÝµûÙ¼÷/ ˜4ã ÷—DqºöbOý5@M.ÆÕêšçËPU¶ÙÆ šŽI*ó¸m¬É;£¯’ÛV1”Ì„*7ÛƒMFíÙqœèÇ‘[&F”J %Bµ§»AôYm†Qz©q>Í/ 2„Ô§‚oŒ%/€‚D˜ñ€ ÑL˜|3ÛæävmLá.*%²dRitk=JB*T‘‘ý( èGŠCß,u’<‡§éŒaÍ”Šúø—V`õ"§ÁB¢N%¡l+T*-j)¢x-­À&‰•€eñ",L%q’‹¯êêž]†„mˆ û@Çðv©94W8¼r&'TjaÈÌÅë!ëÖî¬X=ò„%~3ĺeW_m¦ýÃ=9»#þØ1À·‡ý±{wJo;ëë½a1ÎN_ûZÓòi¯ãÚÞÞ ŒFlÑæÐ1Èuê>R #sv’Ad`³*»Þ£ÞN) Zîú™•2l[r~ÕAÑ+Ô‹BßR‡¤Ûf,i/+TOÝZ3‰Q&xàæ)õ=Å)…Â~†E:$š•²3ÆbêL'c‡QPz‘ò3‡H(yíÚcÎÔØ%¯†Þs'¼ž¨/fÏÀ'vÕ{n÷y«aU´ÿž b^bE@Ù}Ãxßýškc_^Óe…RÞ«Ba;$¨çjÕ‹ú{i$¥IQÖM¡~yªÌä 6ݘ|;"¹Hm®ù(©äºª Ym”ýÍnù¬1& ëûPÕ±·g‘4¼&þÎgErÒ‰îsýÓÜ¢¶$x8‡T—KMe/~‘)È¡/Θ£ßñgêhW“BŽÑ+Œp7Þ …;¥¿ûé¨ie8yé \$ÕYüða¾PÇzr«¦ÃDƒÇókßæGQÓþѳsw'¾l–ÐŽú%žØÏ4Ÿ“¦s2¢à)kçõ2w ݈ÜÛäf›iOËä. M€àY·VãíÅwã0ç¸ëÄ}ˆb0%‘‘N’íYJ%µ³²¾´ä]R°bQ´Afe”þÃJfÜé|0›‹#i†axpÿ@©%‚"Qž˜î !Y7GnáV¡Ø®™ (›&yuž Øîk—IÔD@™mÅ–né'ÒMcX46(lÞÊ@‚¶²*!i+üš«‚yçº-Š7GùÏãþ VÒêáRh,ϦšˆYÓxf`EƒÊ½ƒ¤H@‰*ÛTŸW-MUKýzcDÌBý:ßÃ&õ1ÄÁöÚÚZ<lä£#º”Óg»Û¬¤7ŒDÐ ìšù$íÍ#û5˜^qláë°VÆ–CÁÓåÖ΋q×èY„â¾£ñ2Ï%nL!DíØ„Îo÷·‚z?ÑÎ'*PŒ‰YÆÈùÑ€'ó™×îÖÖV8„Þ4+eé¼g„ó"v¢T`H-âåÓyýÔsp’_ö_ýFjå)攋Wò.ýh¶nªCΆi·Žú]¸?Þ{Š’jC¯a<”ßÈ`­œ¦Ô‡ôˬ⢮«H×°†´—æ|׸6gKš¥iä<7<γ™. ÉØÏ’ ,sp”æ\—<#n™â=Ú¯Ä9À× Ú:¬Í:Û„øUɦ+ò— »ÏR+ªqÕò±ÓÑšjÀëõíÁÈÊ ðÙP¿‘œî,d¶#¢ Ü"[¾Ì¯tCÍQMÅð‰^1nÅÇ Ý^3Îéâù£7Öe¾~êÙd‹O²[2l-Lƒ]´@Ö†Áv–[¯J+ÄÆÀ7¥ž&x¶é •qÿŽa¸v=Š›‡¦wÑÈÂcÊŽqÆIƒ,FØsÃôõwµûm¡€Á‚¥'[À}ªµ#Pc@½·=9󵡭Ÿ„ULÙƒGÂ;äCD:=’_ÅxœôÏ Åá•ì=rmIýöŒïEŒÅ¸\‘ç©Ú&~ì±wUÞ³\²xñÍSŒÀ%‰ñðy/$Âpcƒkˆœ—ë5]}¨œÑqNñ¤ì”Äü¥³îÂj*,"o»óWŠ%³þqÝ4Qwiq‚bÞ·n]…„ªÐntÁø*aÃ8„W(V6Í6á]$ÑkT †ÉØ_›vƲ2„\èù¥ÿ|Ø®mcØ÷à¾Öu`³þŠÛ,Þ®:ñN¾X¸ÝDXØÕ®‡"&Â-Ø6{Éü|…j¨uð̤脫ý°'W;Œ¤½ÙÕ—x»×Iñæ¿rësø2¼Ÿµà3ŒO—ƒÁH{’&ðîËŒ­6¤p@©ÐR à©é #@7 ÅYP]G°®N1CW¶¡ì7^Ðár7Þdšzî‘ÃdÉK¸ß[ñ”‘`HÑþÔÐb ûÈÅšK ż,àB$ß6B?,÷ J¯%ïKX¿Ù­EÍÄq8|¹÷Î&%·ÿ?ÃKø™8#륀€‘D#‰åÃt¤˜QDYì …4\¦›EZl”Õ¦9§o7½·´‹Ž¦t**ê1üý¸ô$«ŽÃrÀcšp·+gÅç&µ=ZiMb+¡çðMgX‹ðœ¹÷•|¿hi®e ƒkÒ¨Ñ,õìÑÊ8pâoQÛjîO$u4 €\5ËX©mq>ã¸)•S«ßÛÖjÞÈù´v?*„­·¡,ÜiÉ’f¼vúÙt •y¶*¥œ¸2>áê‰ëÍ ?,ÁFc y‹’_k†¾g9ªÖÔ‡%|s[ÿ•Õvî>yiTãCD=èÛVw*Ë/½pßBè¡èhW‹=T÷\Z‚È /sá‡òK[]Üû½aÀМr>iïÆÂuî:.‘›^$.Ñj1zêëþoªç.è]Åë‰ø˜-LUœã¥‡˜T®Y&dדï e\¦Äjœ 'ýòìÅUœ§lŽƒ™Ÿ`H_v ÛÒó*H|Šã2µ_ÙÌP=(+´`Òr¶¨wã„Ë«Ð_Û?5µåWX6q6«ÓcvÄOáHž{¿©¦ÿÐk‚³çÇWÅKãì?’_¤+óÇ ×(‹c­+›zÄÆŒü ~T$,ö‡Ÿ¡ZÅ-Íì’kûC¯<ß³0¤é€þÁâUËWeš˜åI6˜I¿’_r49-0žÅÉ(c»º…¾_ÖÙ ƒµ <.n‚È•îd™¹mD½Æð_/k[6xAó~‰›÷àmת£ÂHªJxðŒo`£3žtJóª’üùä9ÍB?÷Üö[Å•®5)ë<_ÚNmÒNðœ'¾FÖíØÅ#|”ö)~6í@L¯è ÓÍB5xv» ÊÛ±aá-¸{½Þ‚òzE¹ýÇ›Qÿ¼hɼ-ϪùÔØ2þ‘OË|”œçSâ©ÊŸBñaä·Ç¨zÖýº7'£Éy%B>U˜d¹ÃÍîö¶~C…YPÏPg·œ%§ä[8áÄM#­õÊÃѽ†5ÚúÁÆãΣ'õ'Íó5ñÓ÷‰!h3ië 9Ÿ.‚ìZòÂXÏkÓÍ´$’‹§ŸŸei¬÷ú:LÒè xñ#¢j·à (­Ÿ'¡}äU0øÌÛ…”+¦zEÜ•…^® $¥hñ¥(“V® È]°‘ˆñ`°‡l;—ùÏHZöÅé+´dÒ.ÙÙ0ýjÿæÙÜÒ4ˆ<-.óÒAvéÇœG4 ¨°eÆ‹* ó|0Ù”Œ³Š™MN$ôkžþðžMÚdtÙ ôsinÙᵨ`€ƒ\Úu¦QØš’gõÄCB9&æÎvnìÉ6%+6Â]/¨g.ÎZ0¯Y&ÀÞÏgÙ%9S&×ùŒÓƈïËЫîhòK BŸ‹#léÆH.ë*bð/óc£.§Ç¾˜á~Ua=Mõâ°Xã©N\·ØCJ~;hîBC¦0°„$¾d»Æ»®h#êu7/QH€ P‡Å¦[ˆz-¼wx>»»Ë§ãm’ûQOdH{P/ÚšãÂØaxšok¾,<‰ÉËÅ–•|ÈAfe¸äè„·CÞ#ç¿.AÇ:„_1  /Æaó›ØIÔª.€fbªëÐܺõ-lPz¨'¸-=mÂJþΟN$1øÛ}¨ð'Ç@6°@Ù—@Eì`›KÇî°qŒ vWoˆY4·+Αúö¶& µ5û.³7ßMCE P"ýe~.ãö{1Ïç"Ñ­ÉÿmÖiI ½é@ü‘yXoDÜŸ¥Y'.1  =A¯3‡î®5aIÜ ®'ŠV‹ÕòD>µâ"­wàAW“{0FÅuÇí^@APç³Ä%½„¥1fhûNö…XfÛx=“!¾̣̑0!R“ ×ÛꈥŽü€ ‚ýBËœ9ë|ð‚㱆rª%~Á9Š­æ‡ˆï‡ƒ{-ðäÓÆätbÚºH`˜Ý8(1ÛϦÙäü ñüÈ*°x(–ŒqNº°7E…c²ÍÊ/jŸ*D©M€‘•6Kb—”^õ„x —û: b­—mCD¤~ÃVš¥÷_ÔÐÍFd·©Q‰`©â…ª [j™N¢¡`C‹õÕ·ÁáÅ9.X ­|à4J€!+§ ¹n|E“uõЬjO²É¦‡½#úNaá6JM&ç±bFäâºj®(“½¤mcƒÍK—§•£ƒ© t¼p‰ƒ7FÀ!®ˆ¹©ÇöwËQ’{+J$±<ÆÁvEäSJõSÕú`Mf-êM¬$ÒúI,>N­¬hK¡¬_{3ì×Mš5©,örÓà¨ýpu–NݪkÎ[«oLÚéu—ÌX+‡q»\½M¯/7Q´™t¥žJ©5ƒ¡p9ý3~jzqX´Å}ó63:3% _"C‹(¯½Áñò+Ð8Àxk‹†HÂébüUyª¢¼¦‚¬ Y5…ºþ¤T3 %]òνZ÷/€¸²À”†ÊÆ›Y± ¹hp°1z]Ãóû,‰Ùöº,Ä$óƆÖ;8ΙÚéîNЛ8çú­vRÿrØpÕäAØJ}ëÂÛ%x°¢­pÉ.ÍÙR& =-ÞöšÑI¸óµ‹…Oô)人ÊÄâFYZ%– æ\6ÜpÕ}ôl[gÉÙeànbóË/†°ˆãWÙô­Fû!`6¢‚ ´çcD ñbõhø) “‰ndÖøBP3#NÌ;ü¯/J„µˆJCÏŒ+—nÓ[Õ.—ÚüÿùxÍ|¾¿á'*V É"øt7rSn^Ìë? õkúñˆºQÔ6ƒ€±ÆÂÝñƒð• |ñßÀ@­‘¿èîÔŠ7¬w}EÄ5~âäå1cž“I{;b«Wt"Í2_³Ú9öXÚ®ì\ n^ÓÁÇÄÙµ–Ð~±qݺe¡äß ñH¬à @î\ÍÝ Pkye|°Òñ×–T5ÉlÓÆ.F>6¨ùŠãç†à"͘ÉgäÑ7Ò T±ùÜõŸ¨ñsC ’ƒ-Þôß×w»˜ï/Â/Û–íº©xQcâ"äLŒ‰n>Ûk&œˆ›q2ÌfÙ2¾·a,qXÄJçhs•s´ð Ead×÷Ä àY¸¢Jƒ³óP“ÎßLeÁ†Ú”èƒq# À†¶oJÔo~QÙª•p]4Äólš[s-øŠ?‘›E+ÇqV^{ž‘!T<¬ÂMö,ãâ)Y4ù97€‚›Ý›CÌÍv•Ž<%ÃÍz\Î7å:y#~jB»˜WË"!Æ•ñ/€Œå"Å+óy§q¡L0ëc°+øHË8”1_CTÜx–´b€ M¯M@^íNJå•ß ª‡w·SRÉovë8Ú a ë°àÆ 9Î9wœE·îM"sm'ý¬ Ìe~Ò0錓g¨£¨E¾4C<#öR)æ‹Dñ,aX¢’aan ´^&3ìz—úŽG  ÍÅû^k”íÎü!{”ØjPùÝ…T´^Rä£JG¯!›95G¥£izÖ%ɪ¸Q0ÉÝ\õ¢mfa’„w¤fj¬Ž``ÊŸ*üÔ­‚èivr3õ=Ï(pu*RÞ¶U&ŸíÃÝ€uãödi·}_3“ˆ[BÄ`ó¦Z>:ÕÖŒMGH¢Ð³'ºÏ†H ?b]â›YDLJ¢¨Åë·z¢×’ì!)p%N$pÄ,÷(rAl¡ê׆id”£I*y£6¸8 n¤Ⱥ;åWE•»‹IûM¸ö¢á¥±‹•iæcö¡#jäăޒ7f€`,[0Ó-¬,è:,²"ͱ`d7&7"KûS1ÆmäZp±à‚û°n,Ú6 ©»æLâú%WÜ ë‹¶AZά¬|vı`_æèâø„–Y67óW';ÍŠÒ…ŽEòDƒ§ØŽò“(Wþa#bê÷4bYÖ€—Ú˜-G³7633ŸÌÍ$Á§úIÍæìƒB·!!øí@‚èK†|#¯é„SKì%í­XÄ€Dš#é·Óš¤ä‚OcèÃ:¢Ã甲L§“©ñ»æÔ%8Tßnò0åçqÒyüe^ÿþæðå‹”NBÝdOÝNÆ€&…jÐLÀ¼ñð!95VdÏ¥ÏWÎËUæ/Êæ‚'ºó|íññmúÊ„Gƒ¬g¡½^”¨²TpåïËÙÿvZ²h{¯ÿ^ãcðÕ£ºµ]§ãa}}=!ßÓC•À«‡.«¨D[P½ED‘«÷«¼¬Ã½ñô¼Ê+NÏ«sÓé-ïÐôákîwû(´îË£*i “YGÚY}Ö±ÊË–9‚ˆoÜá—9æš-òÑyvL]‘Ç»w—ñ¶$ÿÃîõXbçAzÒÝÞzœ>H^ý„žð;‰<é=̓åH¼™â©'[ôÛᛎĜu—móÁÁ—¢Î#ÑõˆEÚðs”–úšU·cð,X´Àíæ_qÙÔ‰¬&XÄÏX¶šÚ‰×€Ï Š¢SÍ‚EJQp&^òáƒ-.If3%r€¸hîÑc[™ÐÞd5ùgÚ‘°ë9Y'ré¢sùÈMÜEÂfåî¨}²©gÿ&e:Îf­GógÁOQÅû¹‘¢îîúY³Ï)kvɱit‚HÖë¬ ƒeQA{4«4Rl|ˆ%F+Ad1JJ0ª~è8TBÒñ¹-±e_å*töžá¼ub¿V"Î x¡xãqü%_ìËŽÿ`FWǺó{î¥EQšÛÜ`•æñæ¬HG‡¼2Ž(jå¼gÁüÜ[øÎFÀX:µåˆÁp¿0„ú†Ù‰B‚pä^Pr$¨ƒ^ùB £Áe £{`¢m 2g 8ã–(#A¼¥†°r¶%ô8k¹£õ¯ŠÌöÉ9Ò?ÓŸâƒo*8„Œ£óÈ $Zð^”¡÷ƒ!aóC=G”£›±ˆ”‹žPý‘ó×ÝZ¨»D‘ž0ñË@T¨€[† L_áŸbTë¬Aý9XÖÃ`õL¬ôÏŸ,~³\å¤X'&ª~¿LÕýB MÍNÄ(ê;ëo)}/[éCc¦Ä«µ"·Ä!]© ![¿‡×ŽBâªè<-uSLø¶ ½Œ™ÄMî‚iòž òŽ£ü¥µfGB‹)I5ªGô]Ð{jÇ,/ÍOyÏ-”°ÒóŒr‰–Ée6-µA9™ÙÆUö°ßéT¯[RæŽo žö{|Ó‡0õ†0õ†0^bûgYyÊ‚y´æ¨…¤ fx|¹DœêÔÂ!åi[t‘²úcïå)C˜šSU –Á°HŸƒæ>¦}ÐܯÊÛë[)ê”Ì&r”¢»ú¨m·µó5öuéyƃÙf“È.ÃÇþ]p˜WQKD<øŽŠ`‘õ ¨ðfìªok¢¸X‚Aü‹ k³eA"ìÆ-ãïWÁ¶5p½òÚ‚3H´­D?º+«vÑ–´.iìlƒ¦>t'êf×׺¹%~`‹>¬E‹WB2³¡ól ÕåDÈLîÐTvŠšc@dÖ [4·›š;zJ&èÈÞØû©“†ïUæÿE-]N|É´¶¤ˆE&vU^ªÈEø§OzM’~÷‚t”¤+IÉNBœÚÕ4‰Á5kÉÛéd”6¸!}.¦³ÑM¶¶‚‡èD Ýo,¥Išó‹x²#´ˆŸy¦z2H…1›ÂŽ-hêŒâ˜ijpÔ˜µ%Öˆ‘gGÅSž”»JͰí—c2«Ãr~ öN+Nü•BÓ:j\ƒ)嚸šÌOÏx+ÅòtG%´œe ‘àBÉ?† ¯ë¥ÄRšÛÓÕ`—•£M£·yVgê³;@ Õǵå™é–R‚qxà¼bf‚ÔVGð|¹÷îHM`Œ–ÉÔGR†"×d·xBYÎPðŠÙåü0QÃM’ó]péÙê- ¢ ']/=®>¾f¸gOw™ ÑÆbôÔ–×"TŠ×i ߨÿÚlÂÆ1…¿á*ŸòdÿåÛ½^ë/7þ`½GÕtðjzǬ‚¬¶Nþkûæm5}¶áóý“'ð÷ûn÷¯=þûý6=ßÞ~ ïÿ¥ÛÛ~Ò}ßzÿ²Ýýîñ_¿ÿKr‹ChþÌñ®J’¿dƒË…ý‘9&œ  Ž¿Æ°¾Öçë(Œ[ÇPËI1Êc1cÓ/`^3BಂÖ# 9eµíÌ\lwj º2χµÏŠÓ349B¯*P-89ŸÁ!üÄÎQ£ü2qа7erc%Ð[²ùæq²ùñÝ»ý'[½¤-Ÿ\¦1›IhäëÉ|š<û¾M´8ºþºœ™ÔqøE>ƒÉ,½g•\6ŸaÖ0X ¸ˆéžÇæI/«ÉtVÌÇ[tg t»(*ʆç€ÉÔ&€0. ,FÆ÷3hÆôTLÝ@¤S¸Üç3) ÷‹¡ó¨àVàüòé¸""Åè÷1:ôÞØ)øó+J   ýàù›·?xýó^߯fmCéKAÌ&sÄ{þ7 GÃ3! jyÔÉ¿:­Ù "ĦK‹¢ggPäÌdT3OK\aYSü§Ã#‡=<é 5&Ð(ïŽÞ¼M3ß¡Üw(/b Ï@ÿ:y²öÐÈ mzæá„\1ÿ®ßÙÕÄ;€&M V­(ÀW»—ö:ë]Ëð?v^±@µE ,‚1tMb#9œs+𣨺a2’_7IÄÉ\ÖÀ4É1Ëê_ïfL‰†L\lþv{Zc͈ħÛk_Àè»ÔÙù4©j)’g 6Š‚;Øê­| ó•g謆`ϳP¶:ýYò¤.‚ GòÃÒHŒwÛèöòFŸ¬0;¡;¾šiQÈ`Û®™Ë@’d-d‡~¥‹£Û{ôã'´èxI¼å˜ÞC4³³ù¯”5$Œ2Œ™¦L n™ëª@`;CƒbŠÎÆ— æãÄ&ÐPñáPá8ŸXã/!§úÚiOs¸32i‚o¼HPâöãhžÿœ[d•œÍÇãœn“ª³õõQf øÖô@ãÆHS#̨ɔ‡4õVC›0––ßbò±›&{ðÿcøÿ üÿü]Ãókx~ ϯáù5<¿þ^¡Ý3(pfÙ¼Kÿö<Œ??vŒöß|F?{ô³g~>¦ŸÍÏ'ôó‰ùùýüÎüüž~~?ñ÷µišXîc]Ð+½7}Éû^øÞt.ï‡ïÍhäý“𽞼ÿ.|oÆ+ï¿×ï[k/öŸÿ?ÉoûÏÞ&{/~~½ÿ"v%œuùÒp7>ìÉCéÊ,4üÃ+Q@O†E¢uºÖo §Ý€xu¼:øæZ¿±upÕà^1¯¾¹Öol\Iø‡WÑ«ƒo®õ[Wþá•õêà›kýÆÖÁ‡xµ½:øæZ¿éùw‘¿|e¥È°Àp»píREÞ{Ëyï-Aä½7ÝÈ{ojÿöþ´¹#Y…Ï×á¯húœ¸ÀI@’ÇÃu.-É=6K²}fâ`4€&Ù2ÐÑÝçÞßþæV{u”HYöa‹@w­YYY™Y¹xï±îBF …'¸#ÕÙ2„L],jÍY $3T¿x>ê^ýⱪ_<2ù¥{ øžÒ¯N¥·ì5öÁžûz£^÷åi_=et’§÷ÕSFyú@=e”§ÕS^tyú->ÅÇB2,ÚqÝãç}õ\hÆuŸŸßWÏ…V\ßççÔs¡×øùCõ\hÃõC~þ­z.4É)S.M& 24(›˜0ùÒÄ“E#t ÝW…îK¡û4\·ÐUèz@cw =T…J¡‡4·Ð·ªÐ·Rè[šÕÝQ9¦`«¢-X¤ÀÕ×¥úªT_J v]÷íR÷U©ûRJ°íú¾]ê*õ@J ö]?°K=T¥J)ÁÆë‡v©oU©o¥”`çõ·EÒtHfËßyÂaÐäH¦«‹õ½b÷­b÷M±û^±V±¦Ø¯ØC«ØCSì¡Wì[«Ø·¦Ø·íúr¬rëöÝŸ€ss9¶/Æ©ýî¼Ø†—â:q^ê+áq¾0ò;ð!_†·øÊx…þp*%çèƒ?ð9Êçç-ž›Ÿ}2þ1O¶[:qîàĸ¥SáÓ(ý­PÞÞ ü¨Ztx'öé×a둵´Ñi– [ÇsǼû°¯ñJ@Ôxõe. ¼‘Ä.¢n~å5»ˆú}. ¢Ü@d1¶àÓØ[ß2k\ƒ\ýþvâêoðÿÃP®†^å3fzMìAÏe,‘ŠyG¬¶”¬E¤ŸæB~þ•~þUýüŽ~~§~þ~þMýÌxûê÷€ëq ù7 ¬ùé{‡ ã©Ò^ÍfÔ3õÂp½È[IP@`ƒvv΄ ü³C`tÞ 0ែ¨óá ÿì0pWbøg‡áì¼BhÃ?; rýÊ&‹ñùRª{ŒúÅÀP¿êOZýâyª_<5üg“®jؤ«øªF ¾ªQ¶_Õ(Û¯DÙþWõü¯òü¯üü;õü;yþ?ÿ›zþ7yþ7™×¾žØ¾¼É䙲šó@ÞèI÷Ô¬‡7Üm´Ïšy·fžM¿ÊÆúmT&Öo£Úný6ªåÖoÿªÞþUÞþÕ~ûzû¼ýÎ~û7õöoòöoö[Ú€jIø}æ¼7àRð8ï5Àz bCwg~]Ǫ¯´þ£ª_ù)º9ícðë<›þðğú¯Eý¿Júë+;¿vúûèíƒfÞ--»sšô£_|ïÞ©ÿ‡öÿy™ý–£ÝþôÑìÿ³¿ÿðþ>ûÿ<„ÿú×ÿØïÝÿ+¼Þøÿ|Ï&jáÉ@ù%y“U[[E9/Gy²»»ÿM Ìnu Ïÿ“¢÷°±5ÁÏG¹òA«¶^¾~úË£ß&ÿÕ‚ïÇø£½»µ…H¿ßÁ~úÿm¡£Yow*ßúæ›v>Ã'ä—~z» { U‡ɸ`¹ÝlkK=€žTëí­¿üWëèm;ÁiðõÿNþë¿yK'øúíѫϿÇç[™\àk˜½ÜŽó¬L¶þÒMöE¹7Ÿ$Ý“¤£éìfðÿþ/’Îÿ~øÛ>ü ³†_X”Fù IÃï½®ë~ôþ·Û}¬Úÿû÷µÿß·½oaÿ?xÐßìÿ/òQ{P|¦eÇ™§²[ÿ0ø¼ùÜì£÷¿Yþ[õýÅOóþÿ¶÷WñÿÝØÿ¶×ÇóÿÁÃþýÍþÿŸí-q ×뿵½åÉ|oÞ>ÿåèý3¥Ä’dTÎ'ýØàÅÖ³ÿyÿìí«£êÙi>¹HGFX¡8Ê®f×\ô?‹“Q~’“ël9À Ð(Î)lŸ£/›xú–Èêi©ˆÐ“9~»¹o’-$nrQ-òYšØq›C)cà‚4ÉgÝ¡‡Û…_-ZÒ¨sêvžt õ|FM 4(Íy`N-l¿ã¬(b8þp¨-–œUe7kØÅ¼¸J¦óÓ¬ggÄ¥Në!(…ÿ°„¡»¥ht{y.q]Ø,¦³^ïØoˆŸRþó~?VžFKs+Э‰#ï¾þ=7ÝØ©æ½?Ú’–˜Ù«C#ñô½}¿Dß-!»õÛy?ÈYÏà”ÈÆ³³Ì~ð±<*03—ÛòG§lÙã*‡í8’?þKBþ7þJUü|ùæyR-–''î‚6®ƒ¼4)S½E¨_žš:Mm™ï_½ã19…ã¬"ŒŸ:ø^ªˆ¦´øÒfQʨQ95Y–è™?¥p¿«ãlû°°ƒ¶­Ž¸íË ‰Í#ÃüEö°’•ã"¢å@zíAéªáˆ¸_E€‚D;v¬iLó8›¯“~WΦ䧷IgÞ(ò2[-YƒÇ‡‰6KˆÔyZ;”JP&'.ØMTˆ6ú'Ъ$zêµ­ËyIáˆÒPKSgærºäT}&Á/‡Iø¶ô7ÀH瓼\˜0ä²Ù³r1¿^Lßp¥V°ˆ˜O¯”dÝûê Ñ$.­!ˆíUý¸ëB-C‘N(2o„¤ZùDn<•¾Û “Ú´†0êTÂNÔT|Ò®ð1XIÄgÔs+¢ŽW0øðÇy1z^žL[æ¬ä‰ªîCH¬œd¤]¡=<=Õ´7y^ Úô,Õ{±Û[³eݶ3¸äÐûÝÐMµËZ‘µHvË|7ŠoÉît¾k¶f¿ à´­TR¨‚ÂPU3Ì›dÃù´ª(¤Å¨Àð–˜;T&8UG LÔk^Mò ÓAž,%¢hQ‘b’]dŘ’M î XDéÖkáðqrð§ìÙ’ß²Ifr„ÖHNóä ͼÙàŠáA)Yy1@Â|üãŠ>§”S8®óøí‹|^å#ʧ£éA[a·Çï2Þ —*˜ç1ÆÎ)Äù '‹YNçÙuPšø]º/ЬJðº`6[ßb‚%k#šQoE†³œT7uB!«_|¦»C$ÛÅdËCi²æ ²×0‚rë ò±裖RµXn±'ÏëlØwQŠí $æwú໯H"‘¼ü‡ÎØöa°@(È8ëPªˆçÑuóaðݧ”ˆòõŒc=ŽÁœ”2€ÃÞî~¸Nþ2ëKKƒpçåaBÜŽ.ŽØEmì6†ÅMö˜ ³Ëhj J¼ä£‘œ6pÚä'²°wB¬Ú˜MSçÄ”ˆ›ÛsÞkžW¾øXï¢ìõpl"ãy½ÕžIæü4‡Ñ'¨‘íÂã›Ö~d.Í%ÖÉõDuó‡ž9ÇŒ9 PÜÔî†öšhä4Œ0iWÀБÐÖúUGI·¿wКütÊ ‘¡1?‰ ¥&(²Žðåö‡áŽôØìA͇µ£Å{uÅwz~²çXtäÑá´Ï‡E6Vçi{hû)°Çá¿‹ìt„g½ ©5oá„›ÁÔïÕßñèõgC©ß¥þ  ¤÷µE·™‰2ŒIa!å¸÷4®4d#bŸmh·À$&‹ì7LÀ9§ ùG*©R‚½ ŸÃÖ@Ý“Ãg  CÌQ޾ ×ÎÓš¬×ÑøúwM½ÜÎD‚N¢Xƒ_ qB4—ªmL¥ú§ðú3¢ÆzÕ9–½‹Dg©Utλ¾¼ëGÞÝWõúỪ^äÝö,…¯9sJ}«J…Ê7§Ü_ÝÖêŠ}×fØ¡:e\œ–HÄ}˜! —ôvXPÃwà6 –cÞ“ÿôYàî‰Ü&Êåxü8iéÁ´=–!Ì…&‹%úï¿Á—ïV—rhÿü2¦~w’ÜãÇçuòE½€È˜—¹ËÓ©³@:ößõ Ÿ¼¼¤†_ú\´ÐU~Ùw_†ûƒ‹Ý‹ùÛ >¨kÏ+÷°Eƒþl˜b<ŠÈ¦UÒb{»EN IØZ ÷Óઆv{ª)£¢Vzî†d‡AÞ w¥fj’GˆÎ5Œµn¸[Ï-ú¯újµµâÇZ6¨Z-Â;f ýv§ùõž]þµ^÷¤¶³Îô¾/ÕÛm8O[ù¬ÚkT3ÚßÁk¬˜^?"×1wÔ¢ÔËÄJŒÉ(!X%Âê·Â|â§Ž<ì†èd–ˆ¾FæD÷I>AN£˜–iRåù„?r`žŸœÃYÚÅYVêÅÕ)ãà1]´ˆa-ö¢‹úVô5/;r‡S»¦ðg/¥E§µ#Õõt& ¦&1«ò²_߃<òÁeÇX¨[[úÍZSˆ¨IúµCAõÃ}εQ <á[ß ­î#|¶Sq'«Ûjdãedö…ƒúF¦‘ÀOð`åQ{¿Mi·Wµ±“6ÚeÝitm6ÖyÔaÅà*f‘°ðÜœJÌjØ#w‰Óq®Å줻zAÃüsµ0_3_É ¸U.LL$4ŸÌtj²x #âz“„Y†¨«ºrêµ ŸíH÷[®?ÁÈbL<~$%Cãr•xL SF­½>Oƒ€CÖÔ#ÔRJÓÒ ¤‘™"sþ4ÂÓ¿_«¼h"/QúA;º¼L>¤è !„ŰF!Nšg _»¸RD5µvK"DÐã¸4ÜÜNÍ^¸5ä£,BÄØ²3Õ¥C뻯nš£Ç­…ݬI#´#vÄk#ol:•˜ùôñÏ^¥ž]Z~CºÃÅU;e5V%ùo7iY£ ­¿»ß “ ”'åµ#‹¶Î÷fô‚~}2¨«'ó¸¢Xf!W¤M «·pUêûxxpI4Ü›w/‰&Q4²nßÅÞµ;*¸þ 8ëêºÊüÑþÔnX–¦2¬däõ1ŸOÍ™6!ˆ„X³úc‘ù«|™¾Hú†ÐóIX½Dë·~‚vàÙœ7n¿v£ÞáAÜ žÅ$ŽÎÇþÚGtÞ÷}¼§žF|]Œ¶¬f–dKE=ÿ¸‚ ã’m2,"£¢áY.¹r &4Ö=‡ tÕò³WOñ®·ÑD %f]Q⯖•‹]oäªcÝ”±¥pï ==3Í _ætÏ ÅHâ7 À“"õš¡Ñ\7`¬71é–,Û-XVdù9žb¨³E’à}¢™«§?øl›-}Š8C–‘Õ ‹4<<Ô0âÂÙ}ÛÞ¦·“R{dû&rµnµ}ÿ ßY·+„<Í­N¼w4ºÔÉßVY ÈN5ß¾ ?u2Ðíêhü|­HíõËg¢ÆoýÕnjþêj,ß„ ½´yÖµèT%\·§má¼½¹NmS×ÂçùPuiµ²Ã” x–“åí‘޶ΖÝ_·§ÇoÙþõcEc&‚Ö˜n³YB>ª%ÖÀ_äúª¢¯…g>‘Ì:Vs‡Î¯n¿ z‹bÂF¿$¡P®Ä³\¢kZ¤©±i!›„ò:†;½ w>PF±l Ê†gÎKϰóáÇŽ¿5V¢Ç¶ooz¥‚¥ñ“ÿ}ËêEŠ%W©Òúo_i@c œªÿD)D¼i:“Ñ!N–å4úõhœÍ®û0Ûä:6?{Wéµû;Töïkï÷¥ãdý‘ëb%ÜMƒªuÅ^›'×<&ÙU §T€‹~ÄçEé<×§àGÄ!RÉÓäNõä-uõÉžüò@€¥˜¤ntÚùØùØ& ÖÁl‹f?Í1ý6@¼ ¢Óÿ¢8«Úª|Á% Îÿ=ËæÙ„öÊØ½¦ä& ÔËý+E×%åy&”Òu¡À”b]` 2¡†"¬Õ©\-õy¼˜.€Ë‹—¥àUr2ŸNdȈ£pºÍ ;pð¢]0©ÜQtÏG¦Çk]É "(xX­aØ}òý€†ÀÖ' è uÚƒî9ÐÂÂÄ i«a“¦víXžboŽ·¸]•öoÞ£ÈY;Ûà*xbô™ª'zrLëyNnôv@›b“ëãSàB{§œò‰ë¢ÊN¥í's|äªøMÚÐð9Fd¹vžM´ÑsöWœï%¦m¦3ð© s“‘u“r8ä‹ü¿ 5uã]4±!â»ÛŸw;A‘ÏhQ$ESQ­tÃ'_z·7Ìž/=:?]é]…¢)õ"U¬öc¬,A{·gަ7É!ÞÑC 19ŒÓ¼:|¨¬Òù“ŽKš)Š'oI1‘´EAÈ?^œŽ§㺂 gÇ"˜Wo:À±„s¥ÙZ{"µ6B[“{þxXeô4®ZV3H¸Û…È,æù0/.òc|Jä™ì˜+8޹ U• !á¾¢CŒX¡NÁ$õ q—šX„(g]‹%„5CkY)ŸGƒ·.zÂßÅþQZ8‡m”¾‘“Hì󶑇ʎDÄ0&èÃó‹b„É ˆƒNñÞwú³hd\©5üöÌrL“yqzRÙ´*´öêõ(ÚuÝóJÅ—Àì"Aj½ŽWÎ>òp˜ßÓ¤' £9ò0Åd9A»¼}ÖÐ1•ÑÚkÌ¢^¶Ñ–»É>h‡ðN)K3æ'6·Uz†90lñ 꺻ŽH€gJ*GŠçW…)Ö’À Ec× f°dúbÖ¬¤o`èÔ‰êCìáŸéÉI•/YEã…X`Vרv­sÇXu Ô„¨[VyÞooE΂ú#'÷Â9¬2•§íj[¿âG‡ F#· „´itÉxÚo§öÕ²¹Ð§úž’UÛi`u/€±–]°‰‰•1orø‘Ï1ÜoÛÚt»_1Ý…Ž²]ÊKBĨ>û)`nœšÌ|×t?6è›sGLºzâÃD1xB(h|~NŠ’ñ²¿#ˆB¾¤‚3ŸÀÎ(¤q›t^ñßNÒÂD[e#ŸˆÃIH¸ÝÎC‹e¸o=R{s•MSýÖ^ƒ, ±‰×¶ä~à„Õb»M¼$Ó¶ç\¤mèE£QìhªŽ$àæÇdŒ{5ÞAhífk¨o;.§<½%{°#]¶ý’ÆI8,é”]à EÎaíí“Q‡Œ”.¨TÄWŽpóÞ}çõ$ߺ<íµñvWèS…ÐåÆ¿©å+gx\}¥Š\Q•ˆ‡9õ"@±}ì‘Å34:Øp×Ð kà9¼7pÿÜv*ó‡ä?æ!5kiXêX!#„,öÖš*n>óysêÊÿ2‚fÆ{w–c³¼üõáÃúüOû:ÿÓ·)ÿKÿÛýÿHÞÙˆ¬Ï¿yþkýï,ÐÍóÿ<Ü¿¿ÉÿóE>›ü?›ü?n©ù&ÿÏ&ÿÏ&ÿÏ&ÿEº\/€MþŸMþŸMþŸ?„ÃYS£›ü?›ü?~¹MþŸMþŸMþŸMþŸMþŸMþŸMþŸU{e“ÿg“ÿg“ÿ§~›ü?λMþŸMþUs“ÿg“ÿg“ÿg“ÿg“ÿ'òÙäÿÙäÿÙäÿÙäÿÙäÿÙäÿÙäÿÙäÿ‰Ît“ÿÇþlòÿø€ØäÿÙäÿÙäÿÙäÿ1®aÀ›ü?›ü?›ü?~Ë›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?›ü?ÃMþŸMþŸMþŸMþŸMþŸMþŸMþŸMþŸMþŸMþæÔÛäÿùÒùòñ,ëÝvîü4æ¹ÿ×þÃÞ¾Îÿ²y‚zzß>ØäùŸí16I7ù!«t{3gC¡·È˽f/ŽÞ=ùßIu=™äp  “¼8ÍK&#‚Ÿˆðß“éìšïO%Nè~ÑÁ=œŽÐB¾ZXÎ5Ùrq†N;EY#v¿¢ä0(ˆ–Õ8Ñåd7yOZ$«]Ôke£]ÏBË€ñÅ ßð$™3<ø°#Y¥§bn"2ƒÊ¥³IÚì“—€\™—õƒ˜€³eål<…7z îüDçu‚© ¾yòúÍ?Ÿ¿úñ›Ý-•d‡`¢ý/Ê·· çp¿×ëî÷»ìЈ¶’€V\ƒðr’-Ç‹”®èðI›ƒã›ãmdqò–—sÏV¦‰t­ëS-JÉs€=šì<§ùâ)ƒX‚ŽI⪈^m'ïÐö ±àåšyÛ¬Tå6TMÇùq~1#þË¡¢ÛÉS0IîLëí¨”…g@AN›Ô´Éé®V´©JEšuÚ…ÅÙi8R‚ ߊ¼_éµÙâ5ƒXÄõ ;OøúÜnêà#­ÛóÅ« ‘ÞiUúB×O§ñ  Æq¶8Ä ü^ ŒÞQpÀ%GÎ{`¾Ã €¬;Lõú %jõʃ!ìà¶Àp`ˆ †ƒzgCâ!$˨[ÿü‡-€/1ш«k ¦&£VH’mz¾D¥I4häv3 ,¯~»ŽâÅy™œd ÉïÄ1«yå4XÜæ ø$hr;yN/ÅSyëvºÃA(ÍÄ[©¦9ð­›ßª›z±bx,k°‘i°sP:|‚ð!ʶåt‘°)0Ϩ¬Ý%/ƒä Z×£>¼âßÞrÀžù‘¿8öÊl_œkûEÞäEÙ–Fx -Jü–Mç#à•¹N" iqÔ%Sá:á£5Ÿ×*2™æóD%Zû̆mØJÃÞdc+©¯ÒÌ{ Âo”–hýFcHaÚ½mTGuCx•&w;)})©„تU{5V‡îTŽìb»W)«.•<ÔÇëPÂ〿>ÿç¯äú¯ØÒìX1scg™>C*@|“«O£ˆ„d¦Ÿ»ïn ¿Gu¿zÓù7|.ø4›BRòÊ¿å×ßð ɾ§:’à›žN—L1B¨xWdØW@3¥TËQuÝÆ¨Õh4i¯žŠSÌ;>R\™²U¢™Q~a®˜ñû9~?_'CëÝ%Þ Xb¨$`@\ÆRæ23„ïõ|Ä·ù"eR$¿ÐE^éÓA%9cð@q>¨¨&€yµ V¬:{ކ{C[­äQwçØÔÓ€Ÿ&Äfç,{(k\d"4[."ÃÒm¡H{h\üF:–wWj \t"'K}ó 9LhÀGi Ï@ ö‚ãÝ`¥l‡ç×9E ί€L¶–3´ŒÀ>ž^¢…4ÕP tÕy6B²0&¯¬”XÄåò @×¶¬f) ã ,œ WnòÔ*?‹çÆmž·Óy¬6Ÿù"ôçƒù¥€5_fו™ Æñ`I‹@–<­át¢ÆlZ0à=nÔMû½Vaª%ò*œ\O{bs6\ äçÍ ?—Ý@•cÃI1ó%AŠÊ§0GŸ…XÛŒŠyNÕv„}ŽþtožwŸœ"quÊaûw=çáôÕtTLgÖ¢žØ^,£5#zª‘Ó9꣼>ùìi¨ð ²Ò@á©uÀ†9ð×ês±Xì§øo/rjFRíZGeüpŒ¤ÁµNDmV"£Ë[9OF¸/qP Ü!3þ+Jz-Ó­b¤ƒ+Óv²«3‰ãÚäÔW[ºé…Ý'-™äáᾸ\È Ì_m'Ú|ï=JÊŽ&ôà^Š]uqZÔ¯-ÿ&æÝй[ 5sfËœnr\ßíÔµ_íÔYMqƒÉ;êße!“ѯÎhk@º£Üì ÁUŸitY£»`ãÜ¢hÙ¾z†QÆéðŒ wwÍ6n¸Æ ×ø9`Þp®1Â5 Eëô¾u9GÍ1&6gÉ[`YÎT@§™ªÈ®¥¬èÆR‚ÿøÏs>¶RdBsaAÍ‚òwϧ’Ñ´[GÍþsxÛýp(§™§‚JcYÚº–£sV/’YÂŽ.Å€}AwtJ¡š™<çö$ª]¬=µÖ¼€a{–.õ|Ë´†kì·ˆˆ{“&ò„xÓ(ØïyTëË 6ûòu‹ ŠYù"’Á4Õûú÷gž}Ã["Î1LÏ¿(|F³CÁªøû- \Ë‹?Ž¢øáO•C@íK'êVþnµÙŸ¥™­}'B‰=¸ƒä-Ü£cšm>±–)”ÇØ$I‹GÍ5&oož¾ûçû·OÛ7kÖ’.$xšŽ7&Y`oA˜x=›M+fie èƒ#W M*Õ¸hà·+mÀ0ÚÙå¼X÷¥Å møHj”É$†ö±ˆ`­” –òhq`Ù|q©jÑafÝ jåVS¯ONºŸÙœüÔÜÙPÏ¡f‘œÆYR©³Sùâ¬>ñök’"‹×5¬üˆy!—%r…‰™Úàtÿ›]SÄÕ‘b'ï÷oå§ ŒÓ)õ!ñ¸%ó›5ÑðÛ‰.¯«iIBI2‚J|ݵ?úÒʤÉ(5Ä¢C Öc´BÏsgˆÅ8cnîŸhéø€XœaŒCèV¾ÉXõò¶¶ÿKWÒsŒ¶\ä¸\NRý ~˜ªê¡ÕÞ–µÀ0  ªOñݲåU«ßñ¯MÏ{­>éÓ—‹9@øêÄjÌPršÌHÓ1ç?Cú³ä_Kþu?I[âûÔ–´üö–óã™*<”¯$fây‹¿8¨×Ë×O[- áµGÈ/èÁ­]Á Ü«§ÊTf,×Ô´X×ÁÇn M¬–ð§´ôç·“—|S¬Îq±àlˆæÕß9~^aËœõ;D@ñ¥JØ¡™ x‘ àddÖYí"Œ?°îDÍ8[jæfMu5Yl(Qá?ìV[­^ÿ;Dõ \_]³ ™jÛì‹É©D%^l–€PÝÇÀálÙ£# öBU;V*›(òÆÔÍÓÔ;çN73t›áƒn½fàŒÔ‡eOGÎ=)Šó°å¿üŒÎ¡;ÉÏ¿ÀßvçÂþåÞlxfÒ¯SŒÎA‘fPVC4aÍ&YMÿ TÃ$ý¨8õ©nvq¶T¶Ñè†ÒÞè)^ ‰ý´Ÿ­g¨PÂêÒÃÄBÎÔÙÂû#Õá¥Ï2¬ªÏ2`»_¿|“¼9z{ôâųÊ»e”.FçÂZ–´HQ¿ƒê)êw€ÎZTQWt©ÍâõÃÒ¡ÊØ}]²ŒH–"§Õ¶ûÂqjÎWÁ 8¹T÷ëŸ'$Rh’ã3å(Rß~*d¬oÉÚ¤ fѱdÖžW¥XÌÌ"Ck(Q[ÜcWt˜?‚†Û¤®vûƒa}€aþ^u‚^>t,©{'H† ©‡BÓo}à¡è:AÄÍF3ކ L¦À¹3êèElK4sÝxÖM›¹z­ =QtÈ#!Kâ!€$Eu,’<P*oiåeMe µØ;üÐxºu»¶è»ê1 4vf M,æ/;AH;]3ÿämŒÕV‘Õs&=¢âüÜñ¶NáÎÁ#<ÎÏo;mØ1¦{—ý~].O£tŸjyåƒ>àÛEâ¶ZD¦Ûå¿©…Tõ\¸ÇU¼[Nà A…(¹D®dBË ˜Aæ=Qvb|PQ_ò4×0*(†ò÷RªBsÎc†¼OÃӪ̱Z†ÑNP•q–U “å¥e·(^eœÓS·âk I•IV‘x¶e<*¥ÏõÅfs-á£D³îZVƒ™÷c‹Åk, ¯±ü ^ƒQÞ4õüM-`8Vá·Ài¢+T'óµœ[póŽlÝ/*üê¶m£Déו‰"“jæ o Ä·´èqÎP-ŽIS²äX!I‹.{a\ð“·Håt+W>㥖íÊ—x­…JíUsäwÍ®R¼Šê5­Vpõ˜´ŽK"2ÊMXÇù™žÿb1§èš­_“6) ñ6@áwŠ’í„óy®z!¶£'tÙ’+Þ}PDÕ}:pLh×AÿaÇ®]p¥¤‹”ôƒ…’ú@Ô#Q7˜‚Cro$±Æ‡ÒøÐ™[¹ïOcèD~(ý«ôiVäù‰aš ¶ép¯‚ºÂ! rcƒ—öY‚º8<ôÚÎwE-zx?PÏýn,,3£^ïY4òž† æY6p¡:¾ç„Žú:NÒ9ûëi ¢)ruF9'ìÆ’ù¿PkWßV„‹là\}~â‘âZÍLT¡^§¶±¹0_ÏQ½7Þ—â-•"¥ è؇€ŒQÆ<µ 0²µDÚß‚œµDôrT6"}µDù@©>}€LÞRÉkõt9)«EOÏî)t¥0Éõì úéѽ†îGFiYîáQŠež²ŽdHFd .˜-E:ÅœÃäMU2¢©ç^®3‰ùâ^*ë]¾ô¢dA5lÃ(-³›p Ÿß¢¯áâó†óOãç´èÑ]ÀÐîÒ65¼s“ËÀï|øv°wdziûà™Øh•åã²N€´ÀòRIS~N\CÀÿÔÛm¾~ûòýÛ›Ûm"ØÃ<òNyãœuuãªf]QºÅm#P14ñ„¨%‰yjPIvBép-¬ l3×±½‰ fÌvP¦Ö¾óÜÏkEuã ‘#°_5>`ïÍ…¤ë“§¿ñ¹Zµáé€l4Ä$õ‰®ù¡wUÔ3bƒùÇ1¿¤ßgf˜€5%± ÿ1ZÐPº Q'Õ› {ƒ`2ëÓ—³‹ü¬0B\À–#Ä3nä¬ßÚØ!þÎvˆÄæÜ½í[ 6®jÕ1}£»7ËUmûláTIתºõí}J“1›9ÀV¯RÚl¨XíXaÙø³ ´ýÜ9¯®Ñ¿Y ÜÐ.ø :A©IÌœ04Iƒ‚(™&|Ö¸€ûµŸloos™.ó.;Éפ–¶¼}›2<>É Ò•µmXÙxHH·F“L8ï·õ TG¼|þŠ_ì`¥.V×NZPæQa®á”êNÈ+T·.ìµNh`éq\ÃC¤ÎД%è3u÷MÀ€+\ Þa†…²›Y¨ W˜§Aóÿ©9ÖHó¡ I¹ ‘KDAJ’ÿÔ›fzOÍ1Œ[Ÿ˜êPÜ»7ß”ˆÖJ×iø(C)ªJ,5ˆgÊcÀŽFvTiVÛ6àɯ£½‰Y KoY¶PG¥tž7ævòÍÄsŒã™pØA¹cB£+ºyªðÜRçУÃþÃoÑåÂhaî÷©"Øô¼œ.O϶=M)mçÇõÚR~r=ò{EëÉï÷c†ÆÎ„"hP’9T„ÔE¡.’Æ®]îë$Ø)¹£Xy’“Y#Æ”Ð(£êzþ›Õ)e®Í…eüákêX'Š-´îýÌ:QÖ~*%j&”*¿öÚ|›ŠÇ€½o†î0}K$½XÜ»w†³´"* wJR«ãq ?ÓrÇ»¯¥F±X½~WwˆS(qÎzéY?†øæ€öbqº“÷ çÙ¤æÞc˜wÕFZ <¼J‹ùä¢uï¯j°ËèÀ ˜• £D£…rW 2Ô;îÈÀëÚåNd"Ÿ²NÛÉOP槤›ü’t¼Yû…/Ø~ÚªÁݸ=€¨ôP}‰š6cq½Öúw×ù¤kÙ5A¸4a\zÁ` @Çé>£fƱ¥°.XŒ´´Éto¼¦C^JZžÀêBÿ4\ŸýÚ½p4³0G A(¡’¨Ûc—¤]uQp 4·–¦òŽU·n¦‹Ör6žgiB3&EÉÐJ7J™@ë9Ó“~exGê\wàIò&Ÿ³:÷Irph²ql+}Ô%^&C¹#I{¾Ä‹g!±IüÙјeÆiqÆ×b|9‹W¹¡Ï¾¦ë{n™ÚÚ5ŠÁ'ÑR<<»[ÏøSõï7ÇÃãL®íx^q½1¯/ׄCpÜGýÔ`+벫À•ׂû”(™®•Ù¡Áü*WFü ‡¢é+åºV¤%-L´š/tfl¤ü&(• °Y%ù” ÌTM\Á¶b°ûMÂy8Œ•%’Lï-ï±>L?øù^Ûî€rEù•Æ~¥TI ¨4ô{JOÆž†~OCéiè÷$ˆFé¶—3Û KÙ‘Ø1eõ­0*i(€Þ ¶‹ùó’\¼ n”Š72óX+«ª|‚dÎtæ:‹SÓþ–$jÛŒv\ŒæÅ…• Hx!ö2U¦[—mc"õ¢””µDg-JÓüBIT˜Ès]Œh‡ñ»h¾rß8-–Åp9@ëS uoh)ð°IHoÜ1W¬m•± Þ‹´!ý„1+CºãB¡ÜY¸œ^¢TƒKÉ ôZ$‡hÉd”&Õõ¯”‹¹T¬Ý¶»Piq‚±Iö#jžëyªßܾ$ñü’…"¤cÉÀ8ª²qK‡Jr¸´ïmõ$Êr7ŽÕ÷ëVø!Á]ÝÞZ/å4÷ë¨ ²tøegø$Ó kPÎçV ˆ x;“Zö¿ˆ¸ìt{DÎÁ,…†T@CÃj±‡oáp2¹æ.3ËPeEòÆ¿nÛjå?YÂ.Tl¶¯l)ôGì›5|zÕÂlZ%›g²¸[w¬ո߳›Õ‡1 mËPlÒÂl\Ýqï«s©-¢»m5®µÛêúYÝÉYÎct^Ø—ˆ}(ól¿€¹YDÿABè¶båz¢b[}¥Åxx^ —[*tØ)ÛAÿÃõ×ûêSÈk.'r›&PùKê¼µo{Cõ¸qC··7ÀÜ1 “­¹m£9f>¼ñ¦1á¬Ât¤—gpy;."¤=ñH€~ºÖþuo ê® µ{,xÆ6‡ç-c˜æÞº(•þJ,û£)>©áÈN©Pn†pË79ÈüPÞ;σ¸Î<Çv„¤»'žÅœÞÃSñÐ]/[kuXs­¬ý£×œ 屢SG«Ñ³…*î ÞŠ þ©Aÿ¿T`p«(d I±(²òF±Á“7“ýãÙ=<8Oa|üß*<¸•ðÇÜü(/”Dß ÙAÃíîÖn§åqj<ù׳·¯QgM¼þÝëég—Ÿ€ã÷ÏÃ!ŠB~5¬?¾"þxMú¦ÏŠA^ßf4yÒàl4ß8}—ƒ›@å›@å›@å›@å›@å›@å›@å¶@åÈ9š ;ÐôpZ~8m¹ÇcAx;ñ¯º ç(VÜ(È9‡Qäj›`æŸÌüé럿ñìøÉë—o^<ûŸ¯4ª¹Rìm››Ÿ›Àæ!ö~ÅÎû[Šqnú¼(çýŽÆ´”{-7¡Î7¡Î7¡Îÿ(¡ÎëIô93µ”ô泃¡­hè«Ö0fõúµ…EgeŒ%¯=RïÖƒ¤×ô±v¬ôHýMÈô?@Ètä^rD†Ôa ¾LÈô/º ™þ%B¦Øè"¡Î}m'¿æëFN”™'ôúÚêE2xÑÊž  èîhåìèî¨Ìƒ±RĉiY! Ë¡)´!g™©¶¸·ø‘$`©g+t»7i”×¢áœûc¡ŸÛQèqÓ6ŸJúÏnÓ×DJ› ã矋þ³ÛôÇé®ä¼>½l¤/‘Þ¶÷ýšƒÒk»ß[ŒKŸ|fhú¤ÉløçWâèô²›õŸ:ýM€úU›ŸÏÛP5 þ¤ õÿ>v¿·é¾Ñvh÷Mõ7ï¿>ƒVb¦6ï7ïÿ#ÞKHŒ˜.ŒîÇÒd²'šY#â eLt?GiÐR´;¿;-ë@éZ¶Q/lïoï÷=ÅÉ& T7øoÿãYþ™ø©ŽÀÿÄ‹ÀOŠî0X6_ñÿáCð¢Ùêï‹ÿ£‰Åÿävbñó嘑ÿ’ÿ#‡ÉxR’¿­W…äWhÿÄäÿ“5·:8?Aïæ±ù?®ŽÍãu±bóSݯ)6ÿ—ÑcsŒŒ³ãVdÿÑ"ô[céÿÇ&Hÿ&Hÿ&H¸Š› ý› ý› ý·},Åo]¾HþèÍÌ&Pÿ]꯿SÙëßëgú³ Ö¿ Ö¿ Ö¿ Ö¿ ÖïÂn‚õo‚õ‡mm‚õÿñ‚õ{*åMÔ~©7Qû7Qû7Qû7QûMkEí^GF¢ö[†L·¼ß¶ÄýÓÅ𯹠Ýóÿ ƒù[—}w|1ZMÇù1y9´X1›_¨(ýë{õˆ3y½¾iú6ø‘ÀÛÆßiž#K—"Û©«^ê)p?Q!ܨ`EçŠÕ«X‹¾Íô7z¦´¡3óãßM zsèy½tý˜ ®Õ-Ü|‘üDF¿ôàÜì%Nì*¥ÌR: ^eÈs9EEúRôc·žPàøo’•׉Bãm|r‚¾ð¥"Ÿ3¼3ºµ%®ÂS°kÿ@éÌòXÊíp_­‰6†"c¢íW¶2ô+i€J¢7:¦íäÉYŽ eIÀË(Údª0â (\ò1ŸO1@óâlW×V±_ðî¸>i:_ä£mýÚ¸ÉÉË /púŒò1€mŽ5õ™)ƒ¨”ÎÈ i¦ æ¬HÉÊrz]”§[ú¨*‡‡‡‘Ïlû=é¤÷ž½}ûúíAòf>…ý>Q××UDÉ…*!3Ó{‰òhiá78_ÿúúí‹§i¯)^‰¬s9cË1ýÕC÷ØAn‚p”[úV@Ì^È¡÷=ðÓ)ô ôýÚðíè|ä1]êèH#³ñO7T-”­w Kö6.ç0°.“|~êR)‹gÃw vIé–Q·‰”ʤj©š7TR'Ë–nÔ‘ ¼þ 31À ±:Ö{›/ÐmŒ¦ð‘;ÝãüBJŽó²ë¬‹ØŒ³Û·ûÑÍ>Å\Ú„'ň8s$f@˜˪e¾gÙ6 Û|ä(íŽ5$žÃŠð¡Îéož¿zÿìí«£ ¥¨“qáu ƒ=ü&5£NlSâ•G³C)݆:kHîãj™Óì„CÑ@’=„S1Rðöúü¤¯ŸtáµC€ßkÇ‘Í,S3ªÐ_YaG-œ#r!¥™ ,Cíá‚ù/°2Æ*ÅN—6R†°Q“±i'éÂ9zЂßžÓMnôJ¡n¤Ç&ƒó’ËÊ Ë‹Ñ曞 ƒàck nà•GÞü¬ X*˜áEøxÉ"ƒ“mGµz¼qèõV‚ÇGã¤mû@¬`o5ô‡fPå`Éë'×[,ëÙ uQÉK»'U*.çÜV¶1ëdgb2„:Y§P”À-USôqÏl&ú`ñ‘ob\n9¡}\]W *-›šDCÎQAÍf‰B4è>×2·£ÓЧӨ˜>ÐôÔSï˜õ1ÑN¯@ø[ ç(.ŽˆuþÞÿ×ÓÓÌý¹ Vµ¨öÕ„.‘Þ[ÂÇ—S ÒdŒ¦¯<§É¬Ô%&m[2仵êz2É1€cêD`1[GÀSåhR¨EgRDcÎËRž/Q˜/Φ£].øëtþ†œt;o£q­–ؼFÆO𲿽¶æSàQ¬´¶ÆÓ %‚aGŠò–„•i«÷-z»KZ.eÜ, ,“í<Ð~Ëô¨9Ï¡¼²äÄïÊ”3q4°¤~u8B€ºæ™¤JþP‡1PÈjág©_ ëûô˪\£,çG›”²õ/¢`ØÕbnIŒn‰D„þò¬ç­~?:TöZb4ó¸ß W_Õ%G½Ø¹ßÞ{Ðîô96j2(N) b©1bq9ÅL°ùHsp™[ýì—g¯ºPËæE®xfþéô}ù©Q3—Xœƒg±JÙbL½D•¥";ÃÈÅG9es-ôìí; åúêÌuΉ„œ…Çã|£21ÐÞ!vïÁÐÌ ­Už'äŸ#Dh×ð´8‡‡Š‡„ÿ=£ùG_-Õ~ú^×é~ŽE4.Á#ƒÊÇ=1Ê=DˆÒ Y³%û)¶Õ¥¢æh£@‘„*‹)«zsts1(“´Nt¦Š1Ù¸8-)Ç’uk§tŒ,Ìk#ó­–~·»úÂç&YÞÝ~@q2˜YUP$ÉR5‘‚H`è–Pùð(M©•ŸJVt«ÚYZkõî@5ëà/ÅRsùcÌ;âïhÞïâ×C o;ڂʾ;$BU>cŠp*þYÖB™j®ü‰s¢– š,°·¼ü Ô²U¾VÌ?Æ1×ßÎ[tfïðïT=;ƒóÔd¥2Pt™Üˆ²»(éì:4fþ$‘®þ^‘S¤e‚Ã=krè9f‹Ó„Ïmªê‹µS°-(%©%1w~‰¹8«å\]ùŒ­œÓ¤tÎO0ȶªj…®y”0ò ™\,Ÿ† Rùî0á €~ô ”¼`ú?þ9kÏ$µ‘Ìê(ŒÖ^Q&ñ¼_j7̬]»)f õæ–Âçk Ú«\ä a 7šMmTJcSGã×=™6ÇüðM Ûc†æ1³ÿ‚ѽ´ Zö.þ0;Z³£ÑÛéºHÕÎKÓËÈÀ€q×RI1±ðñîPhÔœ]éX=‡—$†µ¥š¹Õ% R™ŒŽkö †j¡°£,¨†ÌCûèz©4áŽ"¼ Ôòoîm” ð+œ"©ò bu‰¾Ì¸ÙFtüÑVãe„Í¡‚µ¯”J"jîK¶l6®¦¤ÇM1Äo%pÞäw§,œ¥'Ë9Cíî*ƒ¬l5e¡"FQ˜Èb0!ë'€Ê¶oeî_õsÒýZÓ(¤×*heî   ϨJóJëáèÖh˜O¿&S `SŒ»0¦|–C œ"Æab¢Vå(°±Ž”õV¤'Ñû7iIX–çß¿$¢GRä¿>Q;[o2‹“Õç:À~D¹`ÁŸH¾’¤…Ò:Þ„ í%ÖÃyø8麽 g û§ý‡»½oq%;ίGo_=õãAò’¡q-Wè8ôNçä^l?åÞ,¦Ø7‚¯ëå9 @´ýÿèÖùüÿmêÄnÚJî½÷¢“ùtÇ›˜ F©³©"«B\½I6<+èŽ ’Zb÷^CÊçX…UQ”U¹_²œeóÉÎÑÆvÞaÂwÚ‡¿åùLšÁm6ÁTwÀRÀûDÌ/¨d·$ø­99Zô[<Ûè°p!wΉרtBÑ`é{ê–¢äREÚK½zˆ•Ðà䇣%áT¿°ÿm¿Œîô«ŸÌoÏj?âO‘_Á©Åž©nÙz›žØ¨ðà¯#«Ü¸Kt—M\£_î6¢™Ãùó-Ó$¸m;·Øûæ+Í&ݽ æû^†f¢ñk9ïóŸr=o€ÉÍiwâ4è ÉüUÔŸå§Ë€ÒuÛÊ«6â^Ì{ýï,îΈ̪*N኷ä(ó38ŽófPDðÆÙdxFg×}d^Ñ ¾ÕOûÈÀBóiò‘þõÊüþôáÕÏGí¨'ûü÷£ú™|e‘¯U¦yqŒQV命¥´¸T= 8?ŽÝ¢á=¡ñå\‡|Á.uhþššgÑ;EôêÈÐp)ë{yØ­ã\þäüP ­ò‘ÌÚ Á+Ͳü¸¤Ñs`”#Î ‘»¡ÉUûÇçó|:?eKRGWˆªø¦§¾ôíNXDzèú>½“I³yœÕ Ô+á`¢à8»à&YªÁ6ºâõ‚/=ý­¯ÖNƒþ×3ýþÜ=ï¹-¬ ½©IŒi°U •üÚ)æÎÖ·-^Þm÷Q¤±–kûŠTdÿÀÉ,2ןγ†˜üÉuèxPTÈâʱäx"dzªPõÈS `癓="2ÊîÆ–å<Ûaò­l¿¹ë§Hú&xæ˜[ìo ¿!™öÄÃoÔ€(|Š?hoVy³ñ•îÇK²+¸H™-—30oUc’ç!f0§;ò;À±&Þ ÂŽ¤”j¬ëwDkHæ¨Ç"E\·€ÀŒÙ-½{íÚRY BiÔkqñþ=µÈèp$—óvu°€K‰2Ç 9(·ßL‘röµáè*È/†gÞÈqÐ^ÊíÁÉ ,+q©:päxš_Vi‘§“œrVbÃp,FvŠÒuôQ­s¨È"¿Â{^sWVl;y ë$û æ+—.×K9ŒqØc: |7Òpö’Ft­MÁ *jNZ›D[Ãsd…;[&=(LTk¾;»´¶Ú9.³‡&­•“„÷Ï']š8LÒ&d2²!Îy8«Ú{Ì¢bᛩ¬ ÿò:xmû{h7½'¯~õ^¼7H}x¨|v,‚ÝØ\NÅø~¨›†8VQÝÓ[g{dˆå̹÷ìH)JE&[0rz¯¯Ñ©*0}¸ ð§d÷ô<´ÂÓ¡«nøaî©ÄGÖí+úE™¦ ‚žt9êÈ>P¨Z%ª^ãò)µ»ze+…µH0š‚å4æ¥ÔýQéolÈkPï6‡ü‘MF`:2úÞ:ã'-7‡§ä$ØúˆÝªõ{EêT¼Bþ¨ŠPÅÚú()H“wÚ}TAA†Óù“R)¸4°*US:—AJÏúÜVu>_´úm¦£qJ{ühw“€!ë|6ÅËŽÝâ_€_|¡x"îå ã“*Û§Áu’UÜ£1Y…§/Ž^¾ý±ErS(Löè?` “¸a2d—ÄÅCÍûÅœÐ]Òµ 0“PR$è‘´YyEFÁ‹¿xöæ<Çñ<ùG+¹÷lVãiyíaß¿~/¿Ûí@©îp™°‹U¢óÁÛp¨Ï›±‚X•pNÅðLiùTì¶í$¿æ3Ò™’•ˆOéf:üü‡Vòö¯;4? ³8°vòþÏ^ÕìÛoxËÓ<yBñ"Érš„—· å–à-äé}D®íE®å=-îÿÁ¹ð¥¼Â´¤¹ Ÿð™Žq2Yb’=yýâý?ßð^r€R—\b…;å ƒgÙ˜c2ÿKö¡$Ù|Ëïû‘šiЯù€jÒÅ‚R$ ë“¶ºžVRÎD_©Þ÷îÊ·4y Ö!üTànãº.t^³2È3hFKʗ˘õ‘”„€Båb×*Í€‚m÷B’Ûû¨«"å³¾8–Ø();¿4ïdNR <ÐW£¨*öïÇ­Ô)ÇcŒ.—#úx½¥íÙàÞüW8à'øeH'2W¨(CJ–u:ýüÓ&»§érA1çN°'; Ç6ô[-æKv‘_]£2öÞýÌâÍ?û­äI ƒ²†òßñP€wë“d›qçÕ}ç?Å]~ôý»Vò¾ó¤½Äwº‹’Õs6­ª(ã®[ÊÆç…@^âœW¤ÂY©¹À`:}8ðdšwm)5z~wn l ¾Æ©Ç‚·›ëR‡xîí{5éºd’gåÂ8 ,˜,<Ñ À: åMãµÕ/š'ñè0¶†±âýæâþl¥&Þžc*vÑrcŠÇjðuZ%˜W)¦Â †J;½`LÄ&ˆÙ^95Æ/lêG·`ÄJîzõÂÑ+ÏvV„[qzÆ ììq=%bÑíùƒ‘èš?Ê1rW gCæ…R`6¿ÞmÛ{½¨ó\1ÈB019œœš(Ò¼~>'hNÌ4Ì«(Įو˜Ïá¼dr T22 æÑfcŗK€iåÀtwËÅf¼Â@ôy¤–¶¬ÞB§bå?5Ô?ØDa}¿‹~s}¿ g»]<Õ4ÆâQ¼½¡eopìáÁQSw“ÐA$—&‡ô=¸ÆIä4’[þ¾nP¬º{œ$¸ÊIÂÈ|ÁèD^7.<%÷¢[—\ROþnàÁÚ}+ÜçÂïþnkæ±¶Û4Û­)²&f‡•¬¢Ö½ö"8ã߯WÀ<—š{h†<%GMÞ¯oò~]“îìjYŒØR3SÿzÑG{£ù£~ÿ1ú^0Â9q¸œEGÓ8”ÆqÔÂO‹”Ô©üz騗Þ{G÷ѺÁ~:ê«‚J+ÈÜa …‡Äï}OœÖ&ÖÍFǯév» L²ùoöýä7r/Å‘ÝK¸Ú½tr]Ø6ÛÜ©O5F-!F-²<@Žù#~ïwQÅÖîù2½åçKŽzi Eš€ÅÌŠìùìéCØ–Ð2^e¥öΕ4캯×Ôë›z}gÖo\œˆìÜ~;\eõш=“”äáv F„{"nŒ(°]Ö· vŒ-rZ[Êxìpætú‘Õ¨#ÌiIoƺô7"«'_‹imލÁG‡´·‚ɯ¤ Ùu½p_TÈ­Ñ—]÷Ã÷ÕŠÉç=㶬„ª¾o{ö.Žòòþ#­}OK£øèxÆÓû1ßÕêÒ:™)ÝÛZÕECú½ý_¯_¾IÞ½=zñâÙ‹äÍÛ翽Ö*R}K—Ò•pZ±1–>¹õ{jgû¿ügáÝ]«-½=}-m<}Mš:!>;=u[+×Ûd{gé8Ê8‚: ªŸØ›úÑM¼V;›gÁ{ZîxQA^ÙI¨¶·\ ƒ2{a|¯DYÍQGb5×Bö,›Íò2¡m›QNç ˆ™GOþw‚LjÛä'¨7º¿Û÷Ùíe%þfø¾âÛíAQq† ˜öét,+F ‚,ˆsìÑJÕž‰L ¸T´»€/ðŸÑâ$ù^uäZ%Y>.~oÍ0v£IàÌkÉr6"2øÑõØø@Û=0**ö?´y|0J¯÷¨ÓK†hî¬9|éŽzÄ®ú'¶R„ Û:Üláj)(íoÂ=Ús"=ª!R'¬·ä&QL%Ö“võíöBŽÒÀæ-QŸKèÖ]f9Âp{í®Ñj,~j}í76Ò]&%Ï^=ÕÄË:-Øýɹ۷VÙDõµcÈj=¢lE¿dfM¿†ªÕê»ç?¾j%ï~zû¾•tõs6²Q?b Ë AÉi;V¡å™8§A×9blÙóHzŽÈ;…µáºròŽ ææô°,ßn›Èo'bwç.!lsFµŒXRgBNGù:M ¥à]2‹ÝNpšI¬HgG0¾KãÁ<47)•ðEv[‚øí…åvS”„•dæI‹”4IVhU€Œêˆ ÔÜ`þËIñÑ ïL-‚wZ^g£Ñq…‘éPPãk×4hÁÊ<·ö©B’‚/¸öùj4]èmcª¥æ«Ç†›Û0 ‘Í z•ý°á¶£Ü¶5¨@tDã“×4ø{Öpž2àæüŒÇS14ùXéy)·µâ®ú“nuŒx‹ ˜²ÊÆ[µn{Þº¹Ü·™ußëó1Ì©n6ɪUébˆ—°G²µÝiÌÑNìö‚zMu„þÕ\G“=©s%ãšegBò-’£…ôøµ–2‰ófºò-Þj_ZíGZ ì­ãâ“6ÌÙɳ¹ÀÚj6Å+[Àz™…¡ŽÑu¯ÅÅØh¥º-Æëô½:«ºÕÈ'Y–uèÒ‘î)÷øÎQ_ç‘¥*·°_ü<ë2FáŠËç*o¹Ö›$¹ùd¶¸NZ˲ÊmJW[Y5 c-4â¢ØbÂDazùqi ’hõjË•–‰…óéÙ¡ò&¹ÛÑ…i yµímM£Òu¢+xÞ¯Ù< übî¹NÖ½XƯTÊ„…î»0ºf ÷o<Ð1t\7PæŽ9ŽE-c~qž¯1âÚ=¨Q9v\‚ÔzVPüFsƒÚc Ûc´ÈRšFÁ—~¾ôëñ¥¿ _¤üãÁÐZi”ð—:\-˜óné0‰åâ+JËöCm}Kõ“/ŒS7Ç•Oñ†î’n 9¹núŸT•›$þüL![E¤ìÖˆdžhãUKGös=å=aó¯O1´¶Ú¥ùqW.g:„¶¿{¸ÓÃÃÐäÖ,®WÌrO&;ÀL5üâ×Ó}èïà%–„j³q6”sE9t|›’bUÎ{ll‹ßƒe‘Ï?×mÅóp±Y&AÔP #ž¢,d(¿‘îì?ZGÓI±XH>ƒ—±`§Q+¼>ìÿ=¢ixš‘Ý®ø˜ŠÞ“gLbñ¸&È?F¸ù8îÜÂA’¬8Kp¬è÷"‡HTyhA—ù˜DÊ„‡KÍøox¾$+Žÿ¸¥•Úñ]fÍñ¯LžöN²dDYhÄÇŸ’"8â :ÙJ8!ÿȨ™ã‡Dª Z´§ËmJ ÌØ $W‘c3ÿ¨Õ(|>DnyU><®åÇÝ“ëÝ"¬@Ó¤és[ i} ¹h>bçâg¯(žëß„]Æñš“&eé¼€åÄEÛϼiX¢“†Ë}«†Ê*žiDeo¥Ò¾U#q+²±ŠËKxdÎÞÀ,B!Œ%ÆŒõ ÌŠ#¡¡Ì7J;0ìvÀ’ù– F'îl€iÌU1¾ Тáv^92‰¶ùäIòÓÁMæ¬w€5¿Œ¯ øÐ…N­™¨‰èm.F¡A3ïretyvmQàDŠ/óev½íWU’&ÀKõK_¡ÅI¨þB²Áú¯áA0åyÍ?êŒ&Œ~uŒÌ÷SŽ-úKY(’âµr eV.’}…‚Ç:.¬ù£A#΀2pˆN—÷ŠÓ剄ތ4CrB`†GÅ*£ËìB=‚o«"óèvú|o5ÖOÛ–;Þ¶ðŸzÈ>V¿n´Æ«wÀXv€îÀÞã;Øfå¢;“¾7o„ñ 6‚nMµ”îaógmx“Ñ ‚)½³ŒB~âY¶Î¹%|‚sæ5.j˜'Eɹ¥åcïž8z;ïn?îÎb@pl5àϪ \ªÕqœ  ÎÄ4öðô1ÇocúÆj‚©\4¸¼[žë ŸÉ‹Ý+Ø.ðÜÅiå”ïÎ(0øQ¼¥iUîR®Gç q^Bw̵ÆÃ<1e;jÆ8.y„¾[^â‡1´U“ž>ððÁKÍ/«ÑðËñP'Ú _ÌUMák-4xùÀˆ™r%§j¿gíÐ*FÂÎÅ W¶Øk=&Ù¢CŠ% ÷Æl½»²x€>‡šÄèŒm%4ÚBÐ1P’j¨ú¸2úñw‡¾yûúéf‹ÖmQ:ëïÑ_s‘Q‘'Âþb*†0*‡”MU }Â5ò/æXÄ4G—uÂè¬DA±ÈÔð:¦pg§¹“øâ)!Ýü´¹×gÕôxøKÇ–­œºñI8þ¸Þ£)/ /ì¶N£­lØ…ÝÇ$Y»‘úd—q²'˜ãÐ=߆4¥  Î°…ðQ¦»EN¨¸ %tÂj¤ËŽÇ…¯‹«¼»E|XÁÚýQ>Xž&³å|6­rN–"éâðÀÂf•9’®2Šä›¯|Ö£°˜ ‰èÜY†i–òy§ÕÔ‡)ºzAG)°f`fìØ wüW wì:>î5-â!Ž?% ví!ç.iMÖH tÇñiÕµÄà4 “îªÕ,Ú,ZÊçÓÌsTþd¤ƒ;žFm‚™S+®›òº.ŸLseÞ§µ–3°ÃÕT¯îÁÝzš§É‡A ­sêIþó^}àÞ¡Px¼×RIàµôÕÑ ‚“‡PÐò¶_J¶Î‡¶"]*u Ï? :v%L,€?eJÕæVm|PqÜ8H—'¢÷χ\L ̹„8oåù£•¨’;Àu¼ó…Wú’#ÎñjœÊ+J£t ¿rúEmÇ÷`Æ|‘D"¡‡û÷ßb{÷aâö ÉέŒ%ž¬äáSyLÜxùZÒYMøªø`k{‹B¾ôvÅõ$£²ŒN¯…ùºWb¹Í‡ E¾¤Î³ p ü]Ü9uævª”°/ËŠ"¥§ÍE><+‹óe¾¥l½1Ò z ΧŒaÓ*tb€ë"°:L›ò©´©Y²­«ètkÛÄ‘1î ¤Œ(JÊ.þ½50s‹bÈqV¨®.HáVÐÜi’¯t0JÜãd¾!k˜H`xx„§•Á!-ìE"ƒUНBq^ñþ›/qéãc¾ÊM`}X¾J–¨¥ì]uÞ‘á´¼ bE*™Mǹ¶îÁ@÷m3;¹{Áé<{ñþ==M.ÊÖSüÝMM£ìø9E‘ÎK'J ½:dkÇW‡}³<8J´o†â5MFÃú^V.˜ÝÀHº¶fˆgM!ê`̈x‹nDÐÚô$X¶l~º4éðlô3K×Ò©‰9МlJ&ñê‡×º6­+®ì+¦Z-²~kC©÷Ï~|ö–w}°k €§Ð®x7qz1Xò|úEpêsv•gÈæ ÂF}tMÂ?¯¤ý§nûO_ÿüý‹gÉ›·Ïž<÷üõ+ ž¦…~ÔIëUÛë]{ûY<%ôÅ\cVU‘_„R¼ õ¬6Äïîië9úá>mý¯vB+ ãLþ— ó_Ÿ?L×+„cÛ22°eNAÑ:17Q7í‹ë«»ïpK-$ ‚-U¬Ðs¦ 4E™s¶HaÏ ª=RŒ‹Åµ ÙÛ¼n‚ ´ÉæÊIÌs ÔîÙWyqô2i€HФŽUSæ|rÏ»d7ò\vïà€]!m¤ì-e ))vtþ¶uܺRÐZ«*ËÀ¦]¥ ¢CuVœ,ô½¦Ä¿‚8cPµ<9ñ bX뎓l8\‚”CæF*޵cgàã&ó‚lÆ×ìoˆÂ)P’¹ZcHÀ¹ÒF¨M†õ3Ù´!áeÛ2{Ñ Æ±_´’:4éùEƹY2ª6ØRÚ‰âð° ¢jpü"¾Ù¬³.õ«t¥Î šñÏÖ˜`&ôP×bs<óRE7§¤„Yr 4§Ò¶e¼É¡&ñ-­NÑ…þÙfÅðÜEd—Â2Èsä‘=®› žK8Y{&êè£ni}„žØkZV‹t„€ÀÐT>l”€Êaâh%‹S},,Ë¡¬&Ǹ(F³iÁ®´ ::x‘uK……ºÊnðIÍKqüI,è ¤šÜôaEòöÎȉ»wM~ÊM¡%\?üS¶-<­8¸ŸŒÃ”±Ð ˆ_ŒÖ¶âæÛ±ÚÙñîWa—A./ºÂÀá«uX­è€µ8ì¥ýý}ƒ<ÏÕµ²7ÐÏv60¯3vc€oƒ6Çzã¨É:ËXiׄÆ4maÐŒ+<µ{»£.Œ¬­"Ç]i`"/iœ#!«ÊˆJí–צëfƒßc>·=û×N6Æhºß\­çC‰s“£ãw¬ÈžÁ9_ýv}Œ¢F6Aáh<ÊÖÉwG§‡3¤ƒä‰ü”ˆKÁ‡õ™”PÇÈÁâ¤%áefèÉkb”¡»BÖÂiwÈ´ð©eœ$1(˜~‹$5 ‡ï‘+][øÓqñ©åÞ¡øŽ©3ƒ¯ñ&Ÿ%¨™QöhblM®„*_DªÉÞM­˜ÿº­ÊÀwý–PH4=L²ŽÎö¢SéJ/òlĦ\J£‚‹žDu‘âõpLñ© ŒRžÜhïZd:*æÌNW¢0qðÑy€éOëå›çÝ'ðr‰¤:\VÝS9Û_úœ(×ß`¶ÊB°Óijý”wv-+¡ŸIð§|õ{òûJ~_yôß("9ÿð 11 fZÏ+ÇE1Î)ùšêôŸh§üQçõqppšCΞ¨r.pWZ߇a>Cˆºôš‘Còî”A§°³ý°5ÊöÛº…­uT$u&ÄP^ֵĶÉÛh·„?ÕÁJ—å¾Ôy/™\"å€ W¸ÂÕßÙ™nØl½DZ|)컹…Béu¨Ô¬F ºøÿÖÁäk Ë´<ßż¥fnÖ4AÏéÉr¢Jˆ)öZmµzýï:Åk×W—‘¿cªmS¬afxÀÒØh.¹,F¹x i¬GÛÕÀžº¤Ý¶“ˆÑÉF{"Iì-â×ĺ&ý05­^/Úê$hîPÌ(jZR„‡©JØ’ JûUжæ«jdÛþË~‹w•~©"7Éw“Ǫ…TAùwÄZEJ!ôÏnª™–¡ 7- œRÅ9HžÏv`eë1½†tœŠì§´´”Ý/ؕ߉§°­°ß¸ôÝ9Rfü‰öì[÷šš±u³´€Lþýª;rj­×sSõÝ£½ •~£ Ùu”ÑÁ w\µÈg)gPám¨byº?ØŒ£Ý„ò•Ö«â$‰6çƒÝ/Ûb#*3€ÇdIÒŽÅêaÙÙt1?iÝû£wË^šµä¤åÅi§x²S€e§vcDå$ÑÑŠ¿yÆÇ¥tõ_P› ‘Í~{òúåËã__¿}ñ4í…FIû&øm%špõjfù|È 2Æ’`äk^ÙÉô’VÊð»ãüdá/¡6EðŠ£ã ’¿ü±5D<ý#®`¢½òìGÊéš×)Óç!ûî¿£¦Í~)½`}ø5p€WnyAˆC;†´?L=Õ§é Ñuè4ú°×w|pkjÌ>·Ü¡D"%ùÓÏí"U‘Am„°t'ç{v“¨Ë´p§úÕ3z-æÕ¤uïŽ1ìÞ{v®'Ló`×zrwßwq}÷PòŠP²ímÍpî”®XçåÕ›&PïÛŸ0{¹M‡ÐS0}kåyŒ©Ç.»+ƤÎdz옡ÐöX'Üsšh¨â/¼¤õ¬Ì׋3F …ÓØÜmŒÌõ+ ëaÛ6ª•ÜO1ͱͣZê0JŒL­iÇâ'»2ݰhQ*öˆ®·ìâvṤ¶ùP=5MÐUš÷õc˜?ÂÒT~Í*£AAžþøìåKŽ:›Šv¡(¦·!~#ètiwÔ€UxCNMà½2‚wCÿå°!0u–Q‹PQ6¿2xõ(æH´sªPgJ„R1¾ØÊÌNDeåÆE5ö£N äàͯ·uä·"÷bìf‘$Ÿ-ØèÃv£î·@„æDÓ':Ñô §üŠ"ZZׂÎV©ãÜ ÷Øln©*ïXS[ ¥ßˆ×ä+ÒÕzƒ:HžÓ´ß³µ‘dŠú%µ³<®ßS7û>ªM-)€°dæmtªkãÚ¿‰N~ûuhÏúÞߨC¿ uè¿¥®·B'ÍÚÑ婚­ë …Çl “KMªëæž­¡ƒ}ÓK»¶Tó»hÍʨ¨-5©}’G̼K z¶RÕöYжã½}E óêïß¾ûœt%,ÅÞ¶„»ú=´%_³®5%·®'ù ´$°Ú(*-É+_·£#±†rõèPˆS"Ô}¢ž¢#²Èå YÙD^ë½AlJ +ïñŸ6çbê“ý›IªÙÌý¨ÚGEŒê=b0×oowÕ‘´«¹bdBÁz™…ÓʪÂ.þùÇLj Êú#éiÝ­à¡i Âõ|Œ¦ß2ÄϯͧÙM5[ÖjʅăŠïÔ«`jâ–JVªRz¶š¤§t(öD­÷ýUjD ûxh¯¯<é džhódÓ/eH…n4caÎ~wùÜU³9•JÎÐ{`Q`l“EÕÆ¢Êþü ¤ÁòNïÛ¯Qà´y+VUf¾˪?®*acYµ±¬ÚXVm,«6–UŠ‚~ür–U7–UwcYõñKYVÝá &.Ë*Ž`xóâÙÿüIL¬>º&VOL¬Z¤‘؇Ú_¥ˆœN[ öVwopå#ÄÝX^õ;·j{å4÷ÖWýN‰ Ùà–/û±Â²—ùßÁ ë_Æ ëIƒV«kí /eeïÚQÖÆ(ËÒy~9»¬¯JõŽkc¥?ë¬[E·#ý¬c¡usÕêÆJëëS­þ[jó6VZÿÎVZÿúrVZÿÚXi­´ÒºmËW qù׺æZŸ¥o±F´±ÚúSZmÝhkxh[Pƒ€·i¾õ)z²O²ã²ô0«ì¸ÖÕÅÜš9—½›ïÚªËÈ÷É- 4Q'Œ¶½*ÇàÂJiôÖŽ}H—×\Zir¾X潉\È`VNVGÁZs˜sÚM9?QQQ¾%̵Dña§xOÇ!Ó³à^6<‹ˆe‰5RúR.à8ocje¶âÔ¢CšKÚiá†O[U5µ¢UÒA›b}ªèzWn«t6ãétF‚>_5‘*sÓÔŽ 3pC¥}©Å·0ðììØ¤R$W¼l<;Ø\aXþãê¾þfK­;,&êX`íÂtox“R–J†ðþÏÕÿù?NV§ZäEy¾’ô\*ÿ”Á)6=ƒî0~%kY86¦h>€\ #‘¬Œ”^cì}RŸ'¤E_öœåjÇ‹¿µ&³¬¯=Œ§O@ øÈŽ%å¡=§I;„¿ªÒµñJ¼5ú÷EÈßrçØ7p‡KàÝž½xsÔÛúÏâd”Ÿ$ÇÇøóË e;yƒÜ$eSÊu> 8 {\D› Ãùƒà{UŒreÀæ ³X q0Õ©Ê`Dù…(-iâÙb”-²/ÚÄ -Z NW †Á?¬OéÑ-øÑ"-/*øÿUV·»NZ¦‡ZaFJJÒƒÐW"|BQ:[ëb‘ ­{®„çÄFј¦G7K©<&^íHÝg«"ñK.ç0ý׎‚Õó3ÛÀÜ-×±Q`KGÜÌ”\JætÑXßð¢©á_IÊ’ĤpòÁ¥p¥™2Œc·–܈@‘K:Rc¾šqeQsP„«†YKÜà-Vh¡F´X9¢E8"@_!ªN¶€K‚;æèYds‚0OiOwi>±8àåƒÿ~+8ßN–œ‚¥@&’ £R!î±kÊÍ6psdC¼Uc¤“^9 Gw[ηÉ,æv¦5yäf761s+Íæ›êRšE®¦ïêzDF)×Ç<.á×^$ÇK Ê÷&³âd÷ìž}eêñuÀ©‰´N éäüEú†ÐƆ©¾ª-œ-jj´%Uz‹z¤Âviëz˜¸Ó¥âÐ͵ö /®¯g8Ì]f/ì÷%º¥Éo| *Š%ÇÑï!€& ³„/Sý¡¡¾W¿³ºk]!¬ù’UJ¸“W¸²4Ï5ÚHÎ‰ç ƒÖƒ¬Ì*ši#c­"¬ø”F4cRÊØÞ’\J6îsƒöh§*‰—\‡ãÙ.'Ð&@ÓK‘¦lû¥íál„zãŠÎ ¡æÐÀ,võÊm\¤®×¸£—óJÄ%Îu²ùŒ<|ü™U9 N‹Ug$hqC ÎêF$”)°p.¡—ã,Ï•J/%dGìu(™†i¢VsÙB<…õi‹Á ߦ3ÚÁ·Ã ©®µ]ß´ÞؤF`¼c†ÝKÞ :UƶE yÐà|žÃáSÒ)€ƒJ‚;?Š_PGÄ_Ø3 ÖÂ%r8_wÖaþ,Å8£Usn¡x„Ö€Pò4_PN>âñËGœ º¬ø ÉYÈ"úäØ#&"_¶_T&I° ¡ÝVßÜ+¤7XEA²kÚÚ‘ Ø–jÄ"‚m‡Î›¶¶RÄ;üý4Ñ5´@:#×é¨U"hëÇ ëñ¾ö@€©> Dï–ÚP)ZðȘ»edÔÎݘiƒTÐN.b=‚ŠGPE.Î~‹Ý+‡xu1ô¯>ð†K, ¦¥EvÑ€8¢™,YN{¶Ž 4›^2·¢ë"Vy,¶¾€àÝ¢c,Aho!©„¸ðÛNïà·rL9¿ù++¼®àa:wß’ßvb ÞxødÅ¥8Œ(5 & ¬á€6QðÀSÇQpî­UÝB}ò*™%ZÜp‰n¾>ÂD¸‹7ö¢ù•jV&\s—Kƒf]ÈAwÁÝÛÒ’à:ÏGËaNÉæo*¹~Q©•Ü 0 We¶¤9ðIf±áPÞÄ”Óp”—9jŒäÅ‘ra´¸ËUK3 ¬éÀaÖ^N#ˆe"7µtîf[*¦±òÐ$oôëËoÐ\\«`‰´¯^×ÊÊ[ÛŠÍ”#ëÚE2ÉYc,üŸ¬—V¢è2ÇÉgóëvtÚƒñجˆ´iTÛÈ:ùt".Ê­Œ Ho†å×µÆuçbõF<ýBâéW!™²å2|éyõ&‹¾˜N«'úbˈ«Û–»ÎláÌf>zŽ´²–ˆâµÐÿ´ûC){@›Pß¶ä ŸÌÒÞ”½©¨qs>–yc)ãY†åoh(§7.ß„G).ajXÃoï~~™"iR )¢ª?ÒˇŸ ÞTâø¤ÅJêåŽøóÞµIýR&7•W *l¬ê> -ï@&[Îÿøƒ~ßÙåùxO¯þîÉßöo»}ø|ûàüý¶×ûkŸÿ~»OÏ÷ôï÷ûûÿÑëï?ØØÿvÿáÃÿØï=À×É­$öYâfJ’ÿȆýQZõl¸(.ò/1¬/õÙ&Ž·Ÿt»I¿  8•ÜåsâZä†þ{Òܼ8=Ó2ª¾vNG$¿.Xc¡s¹8c!˜.Òñ‘45œ– ½.ŠådW¸«Ý¬¼F‰¦@F™)ì,å$TgÅø©PfP=sëþ“;e£(.Ô­±IÅE"d8òùÅ4[ôålÚz îü„ ;Á@Qßÿåèý3 ×ß_cŠò ˜/bÔ±‚ø›ãàç¨(.€òa]æ,kÌfËôtàÙa@-~ü?§¯Ï/fdÛzÜ'Ĩ)!–ªSj²3œÃ{Ó~PG¥Å1ˆ½?¦bpR®*G¯¡ØÉr<–@Ÿ±a(cñÚ‘Ä DÓXÔ) ªf^£â¶ ½Tç T¾í£ šÜ²dTÓ=)ŽÏçÇ£Ç>­hC¢µÆÛˆˆM©¨ ~zÛuKfãSØ>‹³‰¾Ç@™°ú³ì%Z–²[>±•û@ƒÄ×íß…3Üs¬¾qÂ…þc p8›ŽÑ{^ ‡LN©¾6eI—?é>VŠ$qwK,2Qõ#œ+¨0 (\xûŠ^.ÙöÀtß[ºuuÁeØ©ŠRT¨ Æž±æ­¾%’okt Ê–ÍæÉû¹Ö‰Ú)¯¬fÙaúö9‡Æ4:[Ûúl©EuT×QšIŽ¿e~abAà÷sü~¾Ž/¼õÀrGQ"¢#?HÞáãJÒ€Iyqš—tjhX Ÿ–YÒO˜sÐN'7 ¡ã'äºÈ+­30sPÔG®q7<(»Œù)^fËÛ‰@A;9›/¼pW¶ðÞžÂqâ­=°%'ºÁJ5ØÇ|Î|zÍšŠ×⸟Ùw›jß0@E~ÑÂp¼%Z:aáT, ŒÄi¾¨Ô%ìÂÍÛ£6 •Ë>Ì/ÕÅû˜Ü ôÍm-)[Š ÷"L¾í· S-щÖ(CósÍäÚp)òiŸ7ƒüü$qˆÍª´Zs1]ØA‡bÜ6¡ªÓ»G=Ù4Ù%šûIĶQ™®HO*;*Õ» S’C×ðo•~bÐ’r€1–“cQá&µ'+zKâéHÁErQÛ‹ŸÂb±ØOñßý[­Œâ¯Rþš¡5°OÔÖ¤ýé…P˜Ëi•{vYŒgiA#œDzÏØ,y|˜Üï‹Îüõ{÷{{{±£Cb˜Õ&}ºÄÓ¸Ô4œ -Dú_×jßÓÑ’ýT‰03I2¾D„ÀP0ožÿº²ÕjËSì_jÙB\$¬ágó¶Âaªæ{a§v`‹}?¬z@w+YâkVÆ%šÃMôÒ{ïá¹3Z—€%÷R@—fç(Âm»°F^N‡+`À™¤=Là²ùÀüfÌß—`(BÔPï ™ðÀœ`¶F˾Ÿºä$²õ¤âZõê€ßˆ=¹1úÒ +åG‡œ¬½²Iu]-òɪÅdƘêF^n}þK-œ5ZñÝ…³áEu,ˆí»D çkÚsEY¾þLË«Âþ÷VoŽZ‰ÑÀ×¢* Æ_tÆ¡+¿æäTbtC = U>E{ž³PàÚ‘“›ÀÞ_ìš, uE¡j¥kL¤Ã±€$8Q'ðlÚê% k^ZYzÒÛß½Fˆ+Eï€Ñ½S »:ÅíLSáÞQVÈ«¾b£¯Øè+6úŠ'}Ű1‚ÖYh]EÒ âà­wWQW«ca;åFÃU€¥àhPƒœ››…ÏWƒlt(Ű6úöWª¦PÌŠûùâš nXeEË?¦¾âvBãuÎí}^@b²Û'þ@7†ÄÛoqä&-†&Àù…‹ÇBÈí†l܉N‡:L‰s(?1ÒÝï¡å¹¹šÇGù䦚žó–N¹ Á=i©ÑT#þ>P)XÞ…ºÈ¡U<‘ ÿŽ•FÒËèšÀÿGS©ã‹j|ƒ¹;U÷ÜÖåͨsìÁ0‡C•¶Yfu=™äðk¨t¨ Á³Ê|‰T%âx™JŒ3¥.„!rQVq”0Jk~\¤šæ6 v7½œ ç´.F[µäTZêˆ9šß¬Ø½ò°ã¯$! JêSå“B$öGdŽ³â·¯|À:u¢ ¶Áñ†š¤$¯SNšh¼ÅbÆ‚-âˆQ$D¹CʼnJ¹Öƒ¿{†—•”Å’ÊfÂèä|±ßiò!uòkçìº8ž§Ép9W(NV²èꜵ¤Bãáþs…>ŽC»Ô: º­â˜ÃYg޳ ”Ï*;êäF¬ìs¼Pr²p)oMþz1S¬Jø–](ˆÖú|r²Q™\ÌÉõób¢R€/'ÃVƒÎ-†aØè"·í`%ì&hßnÏq“ßæwQ ½2©©$Ò ¸FÈPi­ê‘ðÞŒDãßÚ~âfFÍ÷›SÙAî={ûöõÛÊá=Úï÷˜vÞó2†š䪂ÈV™çXÿ°$ÅÔ=SG)£Ô"@Py¹ì¯1Êa1CÚéU}ìYd”9æ‡ú&IJõ Wtƒ¤¨Ø|Vj5¯,ú:]­_6hxnÐS¿ÅÞ,u‘T¶£R§aá—¾ß!ûD+Àsìú P²S8RK ¹ÖMéPâ¾äu®f“&.ðDÍA ­¸AOškÜ\)î'} YqµÉ‘Ï)ìl#ÜIÈûZûeËoÃISî/r7g+îPydµ†üÏ!7ÚMxû©–L³âbJ‰[­Œç‰Og5“^¯¬V«ˆýúîèÀKû-Ò&lV.ÿã—h²ZÓ,0Ã6B%!Ž&N¨@‚2’)#:å+v´2  Î?ÿ`¿sŠK\&Oý Â©6c)Ú8J!/”€h /ýÝÒ‘$c<¥%Š í”`½¼ö Ô­X”u婸º Ý<×y£æ),B nŒnõ0{üËV•HÜÊ(5š.°^}µd˜yÆ| ¢PÝ>E-ÀäÒ^ò8' þ鮚:Úßu; 3ÔnT§²âRô#q)ÒHƒÑiÔê/êpOí@ÇŸŽa‚?ŒÃºÕH¾?L$nJý׌dÄ­Æ4kÛ˜‰4âŽÿ{;ù^…—“4{@çØ—]éªLuí§§Ë–ž´dB1^À ¡˜…—ZâI§~Î59óç*pH0G¦ÂjÖs<úÇC¨g, hD˜ƒß@¡ê„ª8 y¯/8 ©‹°ŽÌ9‚Ði/,,$B¬·¸½ó¤¤{߉wäð£¦(ïûº=gýÇC??¨>áw>ÔûA‚NhèqMzN&ü»Óó_aÅ9Öc¥/b”,j\¾jÇ0Øþé£|¬‰ kAÖ‚ Ëã¡Ë'F6¡Ì'N K•ûê×Ç‚º} _¡è;¤Ã @X¶Nu‰¯MM`PÙ“l<ÖzÁ™€ÅV‹†.w“uõ®n€ÂfмB*ÚÊ*$GêDv£êz®ù¥‹ìÂZ•(±Š%D¤zœÌöý½TØfÅ«c>Bdàåb¿±O³ ý¾Ž‚­®•Xf´PZªºØ×ŽÐ’Sä¶é½Q–:@|=9À”  —Úèɤ5 ¤ÎÆ)9,@=ãb>¹Ð`¤t­ÇœRr˜JÓ;¸/ànÞN ‰ @u³”i§Þqjƶ£äACí»8þN¢ê«÷N€0„•m·k$EwßaÒäty ݆S8"ùÍ^çšÈ} ¡Jâ¢/ÖÅ“`ú”§{LÔɨFq\N£L7Ök´—&–²Á>£È‡z…Ãä¨Óy€žÌu‘WNZûúõÈŠj²yèŠÖ…&ßÑÙ9ÅGd¡ãÖSºÀÒ*gå0ž‰Þ±X\ëvÅž™4‘˜j©Ò¬†ƒ›©ÀJ¡³eAù@é,ÃH‘G/¡ä@k7|‚ƒïë̬Šþ¸Û‡ÒÛî§æ4pt­.3;¢Â¨èX Ñÿ”É%z›Ì¤U ŽÌª9OòGÐpä›››æhÒª9­Êm‡„à)'˜"Í@½¦Ú–óœÉ*åw…ŽÈÃ2ð=*L­àºáMœI2Ëû¢‘…ʽq’ÅzTta>šâ¨¹º$5PíÄÔ Ìw7¸:ƒ"à@bÔÅÀ/'ÉrFbû’Ôghÿ_ ÇOÊH‰WŒ:Q~Ë¡.jöXRZâša¥U÷’ ‡.ülï‚;Ùõã>À×ZsWYNÙ–c9[aËf⻯i´¤‡Ø6g¾Q¨‚ÔºŽP1òN¹|ŸuõÐê&,þ¥ºC«}±ÍóÖ¨É4‰  ºÔ>BSúuÌúobïØ4ï¶µ¡·²åÆÐªÎ™ÆQ ¬5.Êh “_Úཹ”wpìÓg¾^(»°º¿íí:Ω£Èï—ÿiæíÊñÞ2tç–nÅÔ}’]‰³Á1W6¿Ù€~óÕ•ŒWÿVntÙ?SŒºsԲݚͳ•[ÿ”ÌøÓlnΆàKŸ¾œ] äïDBü&1›ñ”Ó]lÌÆïÞlk¹8EæÅpØ(µµÝïßNÞÊùräÕeÃ)¨{>tê’ý¥Ô}b¹oëΠ²a«5šŽ2wÙ-OLÐ[“Ôk¹ÕH}ØöKõW—BÄuG-4ñ ¥\KÁK2 «sË Ø‚ýd{{›Ë t™wÙI¾¸&†^Œ²#v¬D¶nìâ­8OÜÖÀ}KÞ»6á5v-ˆ§±“÷]—ä’¹N¬ÒcX—8”FgßRÐõzÏ&fRðÎM*³5M*£Öëð ó5ÛU{J¾UF€Ú #W&Ég›WÚvÆ@²Md½ ´2Ø AÓ˯ÿ̾è¡åÓÅÝ>ÆÃC¹ýf 9¦à°‰¤DÜM’Àº‰FDº¬rÐ-mU¶÷*;'…Wå`­ËégW3dÔ,„!89˜§ $!ŠÍMø+š¸ËrÇÅàÞÝÚ™–‘ø™õ&£¢Z¸Xòa;ÚÁ‚ÛéíÖ#Nd)¢sŒR²5m÷‚¶~B%êíE…Ï~r.eâׯõªýqhÀ³WŠ<üZ¯È;O‘ËÜgüL)o+s]–Buý¹·‘:¢Ú öñ˜”NDmzÃë¡•âˆxûঘÛýÕÖHýK/ÿÀÐ&s p³e°:ã¤u /°¢)ͰÜîb‹‘%ó´6Mp¶“[–•¢â“3˜xìc?šÐèÁ„îFƒŒõ6&þE5úT[]ƒš+æŒ B°N´È)ò.ÔoÜ•Z¥.ÚÇËQcTÙŽ%¼ûðNÜ&ÏôMô#Âú·ìw-8ò 8™ÄžLÞ<v·Å:Œ¶„ƒ´šz·Œ>¯µ»ŒHøyÑoã•~,ÂÄݵ´e×Û¬¶¸o'+¶‚FЍ€ƒ#N¤Àk¼,ÞVÌþ }ÛÛâé+~Æ?³ÁqÕêíÐ÷³ Ì8*ßÊüRWÀððľ IIªáß)|H){'ª:æ’Ð8מ_…¨…Xê¤UÕ?á‹“"ÙK *rÎÃgΑÍóóã Ö‹¾œ]¸ú+L0]^qų3¼"®øÇðlYâИâ,7ÿ&¿Êãéɉƒ(^¤EîðŒãÈŠ~°~ä¸IèyK-_GÕÂM*´<.&Å‚›ª€D«Ÿis-‚¶.Ü#2˜f‹36~WpÆZQ&·“Ñr2)r@¡!ʨ—#9æm‰´[ã5*rðm@_Wê‡n”lãß#цñDÜœÍòý§ì¯ÆŠ½éÎ`˜èþR´rÅÈUödÜ?HCßÉ´Yì]\œU<°yê+e±-Zݽþ*`¥Æ†Ñ émݱu¹Ç©ñGµœ²ªH„ ÑvòžÎŒ ©¶œÕˆ“|™hS#Û/[Géİ vó¶Ù ~ζ°!îµÍÂZÙ [>ýc g7 WJЃ©àV›\•®~³&SpÆBÐGw¦nä¹êÈ ¤fK¶Ù:ù¤C&s¶;øùæ™@üÌØ*öÄXœÍO•É¢TCÊ‹) k~µ@>èj'lt©á $㤠Z,rŠÂp \ˆL ö‰ïã¡ñy&ƒ(UÙ¸š:ZC¬W‘šPÁ‰ùAòúä„Öì yÏ‚Š”±HÆ8>içmnyž¡…Œf>Ð(aQÇÖîb¾Ìw‰ûj¨bYq‚Öå.ðXgŠª£Ü· bñxš1Ìò Cx]æùÌl‹ÐÉDÂaU3ا0ôó%eÚ?u4|¹ø$ËYM³/ä¾ÀÚxE;ÑèXÍHDêdW»"IœÓ—•Øþ’ÛïéöÛý>»Ê¨Ì:å3g}¢¡S™‰®·u’½um‰?6‹«úYÀǰ¨i1xey·ºÏTµm6[ž6jXýò Óí˜.òŽsuxØãKsFqY‰Ô ‡›wŸžÓF/Ð/Á²VF·éØH°å¶r‚”Œpd軥ÃCu(¿=cí*P^=¬œÜå±íXM¸åÍÚ™_Ú~ÍVÏðª^‘¶ÙÕ+X!&ÉZuøìæç„U¶†©£¯êö˜€TíLí6¨¹D3þv›(ÉðÂT‰Ô¨l·9«(¸…ÕÉñ½\Xö5_ æß6Ž5âŒÍ¬ ®àÂ[òž½â;ý¶ãH PK~‡rM“Égo§ì:§I¹hÛ=††Ûù´mÓ´%Ôdè —ø€DTWòš6[Ë’zŽ`úöÙO??{÷þøÕÏ/^Ènù~‰®ŽÌÕ ´‘Ï‘ÝCR£-Wê7#‰'€rŽlf6ƶ´XÙmxMDÓÔS=¥O )WFRûÇ•”ôFfžà]Ù²$û$,(ê®ý—(š—Ò Ž¸UUŽåb^-ÔQ.É’ …—dû caSøŒn¥]–B…ÝzóL:¤Õɇy!»D¼Ž­®^ÿ‹úµAÆü/¸ K¼ÕÇyêÂïc1.ZO=_E£²n +ìD9¾òh˜#bcÍvÛÅò[U% –,„W˃K¦éÙqœÓÇ‘kÉEîˆ,ZÕ¢îÈÚÆ‚ÚŒ1ru Ælž_ÀZO_+óX@‰áâ„qM)¿ PKíÜžŽº""Eeé$™?GÆ\Ûh’V o¼ØJs ?Rz—¸oÇñ‚4í1¬™RQC{iö]¼ëÐôTi‚,ÆçB4ÊL,!ÇÈÕi©où»¤Gʼnm@Wil6,ÚcS÷ì 픘<úïfŠ^C÷ù|wHBªåf¦å ›`R-C¦víV%'ó{èX^²GkUœ–jœh9'ãb6ƒæ[,ÙôQBl1§Ä’á]Mr”³G 3¸m¶ãP8xW‡Œ?:  ÿ(#Þ?(]Üètú?Æ0: Ê—v½T´¥g')Åi±›€u"dìùOû¥ i8Ž37ˆ€S`ÔÒݤù Që8…úñBÒ‡‡u æ›«§^ÐL¢n Ôsîê Qä²ÇØXtmßòÉd3ŸN eAÕEÊÏ A±èC¸¼µ‘»HËAd§÷ÍN§[Õ÷Gï~wüüÇW¯ß>‹š(ðŽ£%Ž/ún Dlç:!Ç ^‹‰Òk–£wÖÅØzÞSK·M!ð’cá„P´î—Ì@#+ñ6çðù$}ˆvb8'E‘$×ð) öɾÿROWÈÂSŸ‚úìÍÉ8ýKE5b_÷Å|9\,ÅÃ3Ãð7¸†¿¡®ÑXÌeXl7Ç,É›g›7SÓ$¯fù°€¥¾W{޶¡s8ÒR8Òtù\ BV¡5l¥W1L’¬¬JHÇ gÓª‚yçv[Ý æ^Õ¸`hýªCG¡±<›¯–LŽU×ÐâCåÌA†ÄãF- S—·Zš[- ÂÆˆ¡Å<—ßšÀ" 0ÔÀþööv$®îcGV)ç÷ù^ ^'°”­U¢‘ã ½í ÓKŽ }í×ÊØ"È{º:¼òWx(ªË£¸ïhDJ`¬9~‹‡!ÄåÐ=N~µÝõêý@+?šZ[TÌq´†@É<].œvwwwý!j´zjG f©9OŒ¨¬¹ãÈšõhd8Êø•¼HqyæyëïRY’)–¢þºCò|Ý¡au0Æ›|¸UÉl+ò—½ªR+Zã²íªa¾Bîiìaçõ-`ÄÚ ~óåOs#拞Õ.Š._æ—vCõBÅr ºùQbÅÀF+Õ^‘ìž2qUVk|A ôø‘cB-V9Éa§W›†zë¦Ñªƒm¯· •-Ÿ({d\JäïY×à&Óö%L:Ü4ÍnÓÈüMÉŽI¼I¨&€ÁõÍAÒ¤&Шæhp ‚Fdm¹ÑyÛ— ëìį¢Ê¬]≡k( ñÖÀ±dÈ9“Iˆ½PÌG(ÒG€/l%áÁsL2¸XSîf€T-hõØÙ\VþKJ¼øÊYüûiá"„¹ï)a¨±Õ„—uxV­¼ª;¸ðNÅŽ Šà ¶Þñ&·f¦ò˜é3¥h,«Žª:’Å./V/¾ýßûŒ¥œÿ­3Aì*™8ô•¯VÍÖÑQd©®„¹CC4ô¯®žq‡ÉD7Q3îà›èaé wÐY/³ÁšxY¯€®"ŠÅÏV?×1¶a˜^b[Ѩ¬ÛO–³ ã £:Šßöå(îö”yþ¨Õo§xjò_9žwzê<µõ~f¤é:D!-Dš|À#+kT0=’ToEZÚûïéT$šÑt‰F‹ LJr Oxr“êàËAíê¸öä±™–÷—J¦´DÐP§LÙ4ûB+¹€žÈ ›ª#M‰ÒQÖ2!q‘oÝ„è +Ÿ¼ÒÛÉÏ%n±D›A¾ïÑ¡)¿qô.Q¾ äúN‹*áUJR´G"C¢!i}@yÛÿ&èBxôS›ÃÑdlQgX 2“Ý"-vʪ«¶fíÛnb¦s†Îˆ/Á©ÁH쀂ò$ œÐ5¾1ëvØ“½á2öÓ`…Ö‚BlîöŒñ0]{jA˜coý\ Kö[“ªXï¼SWYš»uøUë„7ªg¹6µ/P å£aLϪEÆZ¶Ì'Ð÷›²*AøÞÒ¦êJÏf«?ŸE a–Y¹2íXÑŒÓÎ ›Ïá±em•²œ£2ÞØÖÓ›¾_‚5|Êü<òµ®ÚþÛÏzLû¦Ü/áÚ¸ºï´®gxpy®H¿‹ãV4S±qáú¤,Ëwz'êz±wB?¡•!xœ +w~'¿ÐÕÅcÞ i,ܶcayÚw—ÇL/—g½H5!Üÿ Öì!@ï*jMÄ£«Î¥+¶‰Wî`jP£Tà§×=I9,‰Ñ6›.ºåÙ‡ª˜¥lWYž`t[v KÒw*H¸‡ã2Õ_ÙÞÏzPWhJd?Èٞ݌Nu¬BuüTÕ–_~UXÀÅtr<©NÙÁ=…í8s~SM÷¡ÓÄâ €8:¾,FXš¢—çÞ/º¯‚T—¨ªAMé±v$³±U!?ƒépÝágx¿a@³¸àß®Ÿ×€pðNm>~a”ó!ýƒåª 'hš¨åI6\È($mçxzZ`°ˆ“qÆænµ~Xl>H®Wèè/ÌUMiò`Š–i€xrY/ö˦6ek›ußߤeg™,‡²Ú‘`Ô§q”7^­û›tHs–’<èä9Ý~î8ÊÕ¶Šp š¨xÏW¶ AÚñžóķɦ»ØÃ÷ÀfŸ²góALÀüÚ#x3u&[‹JÍB5TYöz åõذp‚vÓý~¿¡¼ QnÿþýûîrA)Üe¼ù™ ò÷­íÿrJÁÉ~|š/Ž­Òjþÿ hr…ʳj9W¶o¿åó2'³|N2Y9ÌmRÍoñÙys2žb6izi&½î¨ÛÛß·ßPa£·IFc8÷Yd:-YP‡åI‹¢÷ÌÒ^¹Õ"^ŠÖ9T[-â¨hœj×íMÂâ¸ØÔ6ýZ’$·Š,­–Úï4c²-^ÓI@!X.“=É-¨ÌÁƒ 'ìputd àŸA¶ ) «‚%{Vέ ŠY£]úäš•LìÐ~–]Ðâ%×ù‚“óˆgÓÈ©nD;ïR}6‡C³#u¿©ˆ‘ÚÔðòûF‚¬“zUõ``Gj8ñ›ªDRòÊBÓ&ºhLt2m÷EHƒåïçá˜ÿYç¢S[–¨áÂÓ䊮µZf(Ñ6Â;z |Ã÷ðp5x¤1?¤•ôÑÔù¼e+0ò’ð?3TÝÛ¨h9±ä¦Ð M»·Rê©è"ìûûpTÑcT¹uýe±·)^ˆ˜} ¿bUœØ.U¾Ê_abuôŽGhÖíxÒ]…;¾ÆŽ'²|5WŽÖÜH6Ù~TGµÝU?Jâù7ϠœBÿ‘P5ÒŸƒ± ­d½ºÊÌ[Y{1ÀÌŠ˜Ø··,Q\ àõovh*Ðß w´%Èø ‡‹Á—–3Q'*üóe¾”ëœà áìj½Q6“ì]³ÝöÔð Dâ~‡”5žHåh¬yÝ9~Є½ºŽF8Z-VËÑÿÖÖŠë·kók´ÞuŽúÊáŽË!½½žñljI  QT¨y!K`,³¯âKŒFÌ'.˜Z”‘¦áRG,òpäÏÉPß])´ÂûЖÚaB`m×ýÔWX¯ð¾òöu ’"Xçm s9¥ ç ÈZ A&G­Äó²X˜?ÅÒÙkóÝÀ/V~ÿ~ÂÖBøø\B4Ž]r¬Q¾©}ª¹Q©CâÈ¥I]Ñø•ÌŠÒë»2[Åá³;ÎÝǪ‰\®}zƒõz·Õæ'S/iÍm£æáî2u™æ‹ËšbÑÖÂ]7ÐÉÄ…Õ‡}SÉ™p,…¡Ï.dºqo¢…˜ td‡t”µõ8ô‰1†½Ô¦8†ãét+¦Tœ¦[á<‹29JZ:tß²4™9xŸµpæŠß°÷F©v8 aa. Ž’œÐá§òˆH¦H>زˆ«…ƒ>ØÔ!L+‰rI a”s (ëÖîúýšI³©«™Í48KœVí•S×öó¶í;&m ?VÌØ¶Áå2õºN_f¢hMmJ=’Rî;†C>8=ü6¼q\ÔÅ]CX5:5%`o"C‹X·8ƒcðz¨`¼µ¦!Ò†0W¦.TYÈâÌj¦‚¢3a6]¡a…hȧ¹¶:Î}É\»z„}£†c¿ø&è,mŠÕ¥f„£q¿zrŽéňÇáþ4&§¾YÄ͸ÀÇPÔøáǤ{Q}âñ8’ÖN)CÚtÙlLˆ‹±žMïÀëM|ø­ˆw©{,í˜:òÀo"\&ÿ\óìøÓ‡—'?›hÊYcωè^'°‡³—<U,¨ªË»‡®0V¾%Cö0 Û:6QmiÒX;àv)–·Xíä@Ìqƒs"åf¼ŠxÖoö|šó@ØWÖt­…’âï^Ëêõ,/ñº=«@^Ǹ¤ÇÍJ¼æ/ùN;Ÿ›f´x-á…Ù¥Ša5Ìææê­@ÃzÌgy™[†QY2(øÂ|‚wMtm†î¹Y•ûžø@q’‘òœÌ>‘z@D¿€ã¿§kIxÍ~Ö#»D…¬¢9VËÊ' v¯éç€g­¥‘º¹6ªôh„ ëN¦MüüwbÔ”áVͬp}ŒU§ÿÁ\Ð^*10ø/òT…{¹YwJÌóê,›5IGišÿ2lq±Z{8“” …ÚQkD˶6;¥>7<;#Çñš íoã¸UŸÏ8vt¡*Ò÷¥ŽÊG‡îqÇzb>¸øá²RÐÛ@ÔéP}ܨ>Vìò8 ¡Š+Å×Gn,üØT!b€¯r3"E(2ÙÍü×3ƒ_“fàGÑ-Ç*¢á‰1úŸØÅÏ Ž™59™¶ö#>…e·[G¥B c]Ìz瘣®»!†Â[¶gêÎ zÝ ¥5O£ ^£4CµkW¸æ¼Ú¤ð'~€…òúð¸ëÆœäôÞ0ÌÕ’ÖZ”Þ¶:.Óêðãä. sƒŸ›À/BùâÒ?¡º1gœÈ£?Þ¦­ÑW¨ÏŸbÛn6íÝð(_xSúÎoNvÝ÷!z~êöü³2˜Îòß‚³ô·Í:› ìÒ—ábÚôú£d[Å4ÐIFÙ"kVO‡]ÜD]]³+ˆqwbÜHˆ£{{ˆX‰b>°-+µUÁ-ÿ ÉËM. jÙ?€Ý=ÇjŸ•G®wÜÖõ[³¼+×ÔZÿ›+O"(°ÖA5÷ծʷ5°s6Å%-kV^;ñ[|l»WùÈãø&Åo;¤dQ}É…Í ÖíÝð ‹DZ§#ǰáNÍFø<@pas¹oºÊ¸tc‚{˜±ún 2Ÿ¶ËïÈËLµ/;,§šØ˜0¸É&,Ù…%L3*]Uê;&¶”Ê+·4];ÜOÉ\°Û ùñûG^¶]À‚;01§ã4n‰vo¿w?d•çŽ"ó“†Éž-yŒöAl|5 ;b +•bÚâ&)&)2,LšóÝJ,Xd¸âQCGh³yÝC.ŽlóÝ!+ÛÝ4¨üa£œh—Œ ќĆ!›ƒ×Ç®¦i:ֱɪ¸S°PY_õ¼¥f±§&!5Se'ÐÔže}êRVÌÔu‚nž‘¡HyÙÖ™d||ºs"††™‚5¶™ä°–à˜pÆ­4cxySKv—”Ú¶•½&b¥Ä'Æôñ ~ÄêÕ5˜ºFÉŠÙÓnu7o'Ï­ ù@`ýÈp ÉáTbÚ-r‰¼ ƒÂ‰vxd¨V ã¯zɭЊqµDÎÜ0SâY /¤:”l'gÓ^4@\íX³úhd}Ø5¾fŒÁÀ-7:Öe,»0Ó]¬,¤Ú/²&¿Ñ0²[ГŠñØ3º'àó†ÃíCGYÚï(65vĉ>dÕñö¤ú¼¥–q}aöÞ&<âµQp¥õ-bïB';ÍŠÒ$—@ÖÄFOñMç'Q ͇ˆ £ˆÅ{ !\iûÞLbolþ®>k˜Á{6BKí'-ü‹Ôú à;´=õbÁ*¶\·çSN;‚‹P†%; <³¯ašG Ç¡5¶µ©KrŠìcPÚ…EŠà®*ÌÇã±e!å:Æ97+¾8ˆq˜DÑÆS¬¬‡„ÜR*Rˆ†Ÿ€xíæùb9/m²d;¥#d¸÷Ó¤ÛwPôRy…8ž"˜·æ$˜Ù±x¿©¸ …} )ç…ATØ\šE¤n/UaÛÝ\*ıÖÇÜâ,(›uŒãüŽ{¦ãX·îÄRڥ횑8¦Û0É”l@x_Ÿ;Ƀà=,hú]›¿Ñz©Ð÷wíXkXÖ´F?wì-ÐÅâbF”´ø¿o?¢ºE¸üU9ǼbøŸsèÅo8¯Ta¡úÔ)»R‹"å©ÞD?l…óM†óbA´9wê²=2¦%¬».1‹+6 OOwd†MÏîI§“kù¡Ý »èE«43Æ ­çI*у ’öØyj"éy)_¤ýÙQ¥‹6µ£’º8 ìæ^«TbvT©§GtN#êRñ³³Nç==×#²G‡¥ÔIÒ ëÐúÞµ:uGúE‘²6$(^ΧC? hS*]'Z:¤¢V P,`ˆ’>Ë ½G|ù^Gwô?ÖYàJéå ÃÝ`:ùÌkkÛNÔ´€šÓåéßÚø(ÂÌï;3ôÆD ÌŠw˜´“€ÞŠabŸ¨k·Ú‚æ²öžW*ˆŒòE1#BÏóÑ1'jº¢YgH2'!DS.àd€‚ÝQNo|ÉÛ|´ËgÅde²7Á¥ŠŠ1"@"Ù¼qb.µ 6xjõ%=p>ªvNí~J·Æë¥`;a¡uc |Êô1N¼‚¾&α¤]³“wËÐÅ| .0©.©éqoûþ8ÑÆÎtWMí»¡"¶¡†_™Æµ°zŠÌqÚ§|ÊO_ÿüý‹gh¼öæÅ³ÿáË?¿L=¾0f È\8. ²ÚÞðÜøG^öý0J åÈ T¬-,£U>ÄÕóRbþa£Ý "މ¹eÛŠžµbfê¯èøÓ±Mp‰ñY·êßæPI…õX*°¬f„ÃëþÝÕXgm!3‘F<òo'ßëXª`’h^6ž"9•‚©N£Ý!ÄWŠpúhã©ï)<Ü ŠÅpTKžPáÛLËyгO–I³õUqá?}°§å‡Óâ¢aVâeXâªé€J§ýµÈ`„;ãÙ„˜¤Nƒ/è°MÉ I†õ÷¶wÖ”tšï;©Ô–Ï%¯(ÄF/±ìuüÚ·úãq?¸²‡†ê¼´y˜ðo˜'ez^Â(¥Ô(}ÕŽ!²ýÓ9Yù¤Áèºðâ ))”ùZjaI¸r_ÿúðÛGôJ'fÓtXËØi :ñµr~ áx|+0 ª™çzÝ·%@cD¿¸«xÏ¡I Q—61^>ãVÄP÷)F#Ää^Ïò¹æ¢.² kE(r#®(ÂìÿòèÕkÝûù^zï þ xáìQ—mJ—ƒé²¡Ò)ûRèC?‡¯†Ñàƒ0‡%2 ¥ù ª‹xí-)@îÞóiHôȆâûèÑHâ¡  —Ú˜ÉÄ5 ¥Îæ))'À:†ãb>¹Ðp¼÷JÁ² íIÓ˜Yÿáæð%‚5~R¦z'«ÛŽ’¶ ½ïâø;‚ÁªU k;Ȫq×ÃÕ÷:§ŠªÝÇðg˜´LQӤʡ—‘\}ØËM®:-ß±R”'„2I¿ã"¯^Ë!„”™=*Y]èfqlN³L=Ök¶‡ Yr½’'ûvŠà" ñ‡ÉQ§óàs2Ê LÕ§“Ú÷gG´Ê–èJW´n¤ø’ñ]×ÅGöÚµ®aéÚK/% "çé#ÒZ,®u»’¸4J)ê.s¢'XlU*UD´'[¬”‚ÀðGЬ8Jµ,Z•à |øØäðPôÈÝMd°ŸšsÁÑ™¹lîxˆÚ™¢c)¶vüó&—»f™I«@…”U!r²ä á ¾-577ÍѤUsZ%±nú×Ï^¾l)šÍA8iJ;ϙ̢ñv¬ÈBF]‹ÂªŒ­àºá HO·Ã{£ˆš©†y–“,Ö›à+™ ÌG“5Ww‚t;U;15³ÏÝM®Î$‡8pé¶þr„L$<Át3”–ˆtU³lŽ:6’HóGw´#º£(¿¯åP5{ŒõÍ3¥æ¨1±V)ÃÕ>võBtè&áAqC!:Aù憊ތ$î0»êV|E4iÊ%À1Ð •º_ñµ¤fg%ô#£,ó÷¥!ò|’`\*﬇Oð?‰Þ 6ÜÇO#¡ ‰E¸|ˆSýÉL‘OášDÕ8 ¨“r¡–7gÊmÅI5,|aÑÚÜžCtþÛÉÏÐÐÏpʽ¼Aã.ûÐG–gÒº÷¶8=[Àîÿ­û3-—eOÈðæ%f=Gã|Â'N»¶“_Ž~ñàX`H¿ðù{„_ÍñŽâçŽühs‘_ê&pšã~ͰÀfÄÁRŸñhÔ ò:À+o ¼HŸ·Á•3æxHÑfà¡@&Xu&8Ó?­.ÔÖ¶Íð G_–vŒEf ØÙ%pµ;K|iŒ]ÁÏÞ&Aò©æ-ñÉës´GÈÅÂ:þÒù7J7ù¹ó‹µGV0cº¿ŒØ¸°ñX†_Kv§ó]¬ü¨05>F>a.Ű'ŠeM»„V5`9®:f«®…€ ²h®Å,²LHJw!j˜¨í«oÃwÇ5D$͈³Ct½#SÅhÇÉÓ)Þ–—î1˦©¡Ùâ¾.’‹9FA̵­c·~°”À†þîRëªX¤’ MUÃÈ|a±Ûž7®z`^nùÞ7@ÇçC.Çô}ª†¶U•Uá¬×*;%¤÷é U,µfO<¯„¥IÍ0Ü)”6­H …ÑTßm9èa‡ÎzéY?-Õ’8=GY;,5 xÓÐ#Ô¯1&Z&i=9Õ@“vÓØ½ ÅÄ;ÞvœÃ%¿8ÆÝ~¼˜Ÿ,ÇcǬ¸<:fʘƒ„šïhã6ýKh]E›+/NóRºd‹B³²Õøl-IéqæÅ)…E²MOo`Œ€3wÊÐDÞKõó¡®Z³„Å¿´nha-æTžl5o%iSÁ"ÉNȱÏ=cËçu¬°ob²ì˜Ÿî¶µ]®2½M×Á¹GÏ­AÅ.ÊÙrq<óðħÀ:¼Ó僖ПiŸ>y3ºèäÏïÎNú¶÷ux09'“¢GDˆð|®A2ûL9¦ÉÜÚ×cœÌ™8q{seó› tà7_ÉÄõo5󸙳ØŸ)^Þ9ÓÙn Ù ˆ­‹ÈͨZm:Ü#“aøÒ§/gù;i²NÙGmc<|÷ÆÃXËÅ«„ó' Fí=­GötrdyuÙ8 Ꞻd*)uŸ˜#ì|[wn69ôFÓQÆÂ.2»åàIGÛ3Ûj§^Ë­FÊǶ_ª¿º"®;Òh¡‰W(åBX ^’Ù[N@Àiì'ÛÛÛ\f Ë¼£`I$AˆinÄä”h`³]Þ ÛÈÅÙâÖî6L^{WÖ¶Æ^ñ4ÆX‰ ©.Q—9†®ådƒ=ÆuTV¶¹‡²ÝìÙM Þ¹Ùf¶¦ÙfÌþ·”ÙͶ›Æf“¯¨)‰²Õ0’òˆg’|¶ §m;iŒ0ÛDÖËJCƒ±T1àñó ìk"Z>]Üíc<<”«tV¼{›HJÄé ¬¦hD¤ö*Ý2ª7Xe?¥Ìr'nºë~v5CöÏÂܦ“¿pÁ@¢hÝ„ÈB© “»¼3w\TŽ!àáŸi© Yx2WŠàG€T© ¶£lÃ¥Þn=E–":Ç(I[ÓÞþ'hë'Ôh¢Æ_”ÿüç'çN'~û\)0íb`öJí‡_ëÕ~ç)ò­|'€'^êÞĸ¶t$ª[›ÈUºÕm µ¦t"ZÖO½^Z +¾Äx¾á‹sƒ²âÚ±yæ_%j¥¯º7[«3-Pxÿe0Õ½)ë1»L¼21ÊȤy ¢FÇí+Yâš3²&áá8:£ÚGJ[4J“|•?ºúy7ú¢Ø`QKd<Ó97ðõD¼y1t”C¨2¦3–{z£ÂGiSL‘w¡6å®”8u~ðÕ5l–‰£¸¿+Ç{ö9ž¸®áÚÒàFªŒeÑ–rOma Ž<ˆ”bÒ™C ož'Üb]I››Ê­¦Þ-£ÏkíöÕ ¦‰UµµøbºÈÆÆºãKiù-¹Û"’¸—vízûÕ׸íê+ƒ$ˆÕ¦¢’ª¤²ÌÛÁúm­ô}>C·æ¶89œñÏlp\µz;ôý쾫oe~©+àxxâ79’ÒTË¿ïø@ñðÖ£ÄäíÈ6ä©Rš*Ü7 ©´Òú'E2L\PŽlÞ,ë~þÄçå‘Íóóã Ö¾œ]¸º³cìýŠ#ïŸáõsÅ?†gˇÆüû¡³˜ý›ü*UB<–Ê—;…ò›r@ðole;-'“"™âhþH¦él±pÃSü/h ¾ èëJuRÊH±ž~'eÔ±ï±þ\šªÄõTDÜœÍêý§ìBÇzÀé|„™hrº_%^1ruC1ÍúNfÕbNãâ¬b”ÍS_KÁ‡pÑêî#ñW+5Î0†„nHo뎭þ=ÖH?ªåÄZ+.=æ=#Fä“x$r~#>ðݦMlkŠVÂm½ “ ¼Ír¸ðs¶€ q¯mvT\£œ¶A˧LáìÔâJÉÎÌáO·Ùä(uõ›5 h… ¿CÑÀÂçª#­˜,+³ùBÝíÙ¬B{hŽÁ2¸æÜ#ož ÄÏŒadOÆÙüTÙGJ5tñ¼˜²æW ä.rŽ©_9ð’€ö3©‚ ¦¢_(Ï% Æ b{h|žÉ $¦Q6®¦Ž’Ñ„`WðFb~¼æhÿȱ Èõ YI!`*?m–0>içmn9á…Œf>Ð(aQÆÖî .ß%ZhÅ«²ÂʬËr09Å^­­åÓpQñÔhòy†Ÿ0“•Ù¡³c¢2¾k!¬)G œeÚgU9|¿ùSÉYN+¼«;¬­ÑëM]ǘà×öñËJï‹l¬ÚïéöÝý>»ÊbÍ:æ3‡}¢¡óT™‰n¸LT &³wm½@lWõ³€á)P!ciŽ z­ñË3Um›¤§Yc-=à”Î/?àø!W‡‡=¾·/9³q”záp÷îÓsÚézAX¶ÑèÊM¹Õ`'ÁžSfUÌ83ô]Ôá¡:”‚ž±vL(¯Â€îòØ¿v¬&ÜòfíÌ/mg+qxU¯H;íj¬èŒä­:|VŽÇF¸¤ÖHÛm¿I& m€àã¦8ÒmjNÑL¡Ý&j2¼0U"5*E$ÛíDÎ+ ]aurc”§8âû_òß6š5¢Í°”'Xõž½èš¶c ’þ5€È]— Ðzû;e×9X(á¤!í1 ‰¤„ºÑjÚ ñAì £“øð¤ä; b›¼¦Í&³ $Ì!›æ{I›DwÎ ài÷èh3šúmIR `ž#¦™ý±--Vv^$Ø45ÁôÓEyTšrE%µ\IßÎÁfNð–mY’±”?–!…–®ý—£Ê~)½° ‰;Vx²“bŽYÞøPç3Ý¢õÙýZ…äcÀQ‹Ög nT ¤Ây½y¦ÎRúpž<³ÂÄ¡««×ÿ¢~í_†1kÆ î‚Ä’tõÁžº0À›\Œ«ÕSÏW‘ª¬Û ;žŽ/’JnSYÅX²®\-*4™´gÇq¦G®…¹T²H"T{tèEŸÔfŒ‘KÏfÊ/ `2„Õ§‚¯•%/ ‚D˜q€ÐL˜|3[jçötL‘.*Keɬ:òèÚz””TxEFö£¨$ )½[Ú , ¦=†5S*êÒ_‚@ïE4MUŠ!‹ˆš+ Ë&¥BëJ‹ZŠ\¼–ÚF Kj%Yœ sIjf⫚ºg~a"H?°ãF8«Tš+ñ^9Ë^jcÈÂÅë!ë¾<$ØõÈ–äÍ ÙØ-›úÖbêØ?Ü“±;â"|k4“¸wÿ t×¶ÝéôwFÅ$;­}íÞš–úmÓöþ®g4¢‹Ö‡ŽA©Óî#•02g'©D‹°²ç<ꔂªÁp;gv¨”QKû““ò+DiDD§P?^ˆÓ)`°8dݺ±h÷|á`õ´Ó šIÔe‚ƒnÎ¥¾sqJ¡°cc‘‰g¥Ì©±˜:óéÄPÔ^¤üÌ •œvõ6gnì¶WÍï›&ÑŒÙ3ðN£UužëuÞ­Ší¿'¤˜Al1PzÝ0Þ÷ pmD+’6:¬PËÁku@$ìÀÓ€xõL­°¨»–JsQªôƒØÂÃÓjAMŽj@)>‘]¤6·]’THâk« Y픃n/‰|¶™’øõ]¬ƒêØÛãHŠlç“"9 ëDç9¢‚ýS¢º$1x8‡Ô.—ªÊNü"UˆÃ ^œ)Ç íÎÔСÍv;F¯0ÂþíÖ¼%¶KuSÅd8±ð $ÕY|óa._#zr릪EƒÇÙµkócqÓîÖÓsï 6ÍhÇ xý’LìfOYÕ9QðA´szñ…»FwA£"wÖ¥ÙzÞS ¹M¡ ð’#ß­²¢^ øj¼Í9î:I¢¤ÎIed'°w,¥’`¯ìû/õy•,\õ©¨ÃÚ °2Nÿ’ƒa$kõ|9\,Å‘4Ã0<¸Ž¿¡ÖQ‘8OLó‡˜l7GÙ§áT¡Ø®™ (›&y5ˇ,÷µÉò«¢ NŒ–b×n麛Æ4&46(trìÊ0@B¶²*!m+üž«‚yçv[oæ^ÕøƒhM«CK¡±<›ÛL̶Ýc6´xP9wñ8QË6ÕåÁ­–æVKƒ°1bf¡~ÈÆ·&°H q°¿½½Ï´ùØ]ÊùãÃ}¾¤W‚„× ¬šù$­Í#ím™^rlák¿VÆ–CÞÓÕÖσñPݳˆÅ}GãeþšKÜCˆÛÑÉÖß<Ûõêý@+?šZbTÌj4– ”`8àérá´»»»ëá©3MåJYï‘Äœˆ¨Ñ ­âåóy¸ë98É?ž½ü… ÔÊ!rÌ)¯(ä-ú)ðl½Ôv 9¥½¶?êwþú8ï)Jª½†ñP~!ƒµržRÒ/‹ŠM]W‘®†´–jæ¬ùQšZÉsÇ‘<ëùÒÈ”ý,¹À²‡Ù0]ºKÒ2Å{Ô_wHr€¯;4´À¦Ã6!nU²éÀŠüeG¯³”ÆŠÖ¸Hð†ù yª±‡¯×·‡#k£À'#@x"™»3_ØŽ¨.p‰tù2¿´ªj*†O”ðÊ‹q+ö8ZéöŠ„ñ”Q’ˆ¯2zã»L ×›l1âIÃ(ÃÚÂÔ[Ed-l{Õ¸m¨lùtB8ã¢T"ÓxϺS™ö(ëÐá¸yh6p›FæoSžpL2Njt0¾¦«ˆßç[£‚A£¥£[Àu ÚPçm_ö|0´ÎÙ‰_E•‘q)x$L°!>ĤÛ“!ûUL&9`ÿBqP^IŸ#¾Ô–„§g|-b"ÆÅš<¤j©ø±Çδ ôXäàÅÏ.HWCÏûž&†\Mäܸ^¯îèÃË;Î)rˆô‘¿´;&¬¦EEä-SwþJ±d:WÕDèÒbżn½8¹xï3ªÂOx´Ñã«D ã^¾ZY5[Gw‘E¸V  ‘Ñ¿ºzÆ".ôüÂ}>jAÛ÷¼ºŽ l6XaëÕÛU;ÞÉg+·ë í011ÆhÁÖí'ËÙ ¤uøXeø„£ým_ŽvI«Û³ñV¿â)ÌåÔçðex>ÛŠO?>5:#­Iš|À³/k[0$@©ðð´·éS¥@W€âtªMÇ‘¬ 9rèêÓ2”ƒÚÚwíIfóBOv˜,y‰ö;O™ú\­O@ê#wª)üA|b”ò²‚ i|ë&D~Xïå•ÞN~.~‹%Z-Ê5ÇáüþÅÑ;L”ÜþŸþ ,ágJŒ´—"FEŒ$–Ó|cFeq€Òp˜v‹´Ø)«®Ú§µo»‰ E[ZEÛæt )*Âþnþ\z‰ÕNÛa5â1OxØ“½âÊÓ`Ö‚I öüñ¾é ƒÏÞžû¹–ï¶6W ÐÞ1©®Ñ4÷ìðÃs`Ôßrmk_àþ@ PÃÓÊU‹Œï1m[œO8nÊåuà{K[Í+=Ÿ­‚}U†mXîÊ´dE3N;ƒl>‡Ç–y¶UÊrâÊx‡[OLojø~ Ö0*KøÈ[Ôüj3tÿ=ëQí›z¿„knë¾ÓºÚöÝ'/ÞøGã‘Cú¶…Neù…îãk=íz±‡BÏ¥•!ˆœð2w~(¿ÐÕŽß §ˆæ¾­ÃXX¢ö]Ç%2Ó‹Ä%Z/FO÷ƒP={лŠ×ñ1kLUííã•›˜´\³Tȧ'×AJ¹L‰Õ8NºåÙ‹«˜¥lŽƒYž`H_v ËÒw*H|Šã2Õ_ÙÌÐzPWhÁd?ÈÙ¢ÞŒs¬BuüTÕ–_~UXÄÅtr<©NÙ?…-9s~SM÷¡ÓÄâlhw|YŒ°4kϽ_tM3¨.ÝqÃ1ÊêØcíÊf=bcF~?*R»ÃÏðZÅ€fqÁ¿]O³?ààÚ|êÂ(çCúËU9 Î4Q?Ê“l¸QH¶Éñô´Àè'㌭ì=ÁØr‘œ¿0(ðU 5؃)[:£âOf½DxØ/Wµ+‹]Û´ûþ¦­;Ëf¹·5Ž#>8¸¢|kò¤Sš‹p—ä×'ÏiösÇ}¯¶U„qФ@Ç{¾²`ÒŽ÷œ'¾MVîØÅ¾Žû6@6À̯=Bè³›…j¨øìõÊë±aá-¹ûý~Cy¢Üþýû÷Ýå‚R¸ó˜ 0‘äï[Ûÿ唄8>ÍÇVi5ÿÿ…G7ÌåYµœ+ëÈßòy™“Y>')­²h'^‘üö/³í™7'ã鬵¡U˜´Ã£noß~C…êß$™­á\Üg‘é´dAu0™'5Ž“V7KÕåV‹øNZgSmµˆû¤qõ]·7‰í㆒SÛôkÉ÷K\,²ºZŽ¿Óä¿¶¤M§…¹Lö$² 2G@2²ÃíÑ1‚Œ8Y…¦¤¯ òT9£};öÁ{Ag´~á(Oð^ùôèÆz Ò 7léƒï’®ò¤û c «• rÝlòßÿýßuƒå9¡©½¿vÈ?F$Éë—o¤¥ºÉ M¨47õƒ:8´ìÁᘜ6w,ûÕíäh”Í.hTš\Ö”9™u—÷É)9QN9FÝ€ë:çÁÙû[öƒûí½í΃úÙ«xq6Jo'O•­¿mHa‹X‰dä§EY*_ƒF¯ECijý/#^Oš¦ë¢°ß:ÚŸ4†Öœ—Þà3†)WLVÖÂOQÔm[|žÚ¶Ë,Y`á:çèÂzJ‚*º Õ¶7äi3HëÌ7š3I¬ÏÙ"F¹ëFda6ÌÜgt5Æ,Åéo‘âjxˤsXË¿¬ÈÀ˜ @Rïiq‘—.þqüLðD‚ »j¼xß5ˇËq‘ÍÉ­Xè¼èd-C¿–¹RVYÕªÔެ4‹Kp-w]0Àa.í;0ìm%É „zRCzc<<1ñú’»Bj²¬²SÖ?ßÕ⊑Í,G‹€(”f˜§êþËÊ… ´L¹OòÉt~ˆ/4´'ÏZ¢ŒNçœR‹0+i'ÚN µNÿdԠнKŠ ÄÍga@ ho´ç€ÃÙ¢¹F.$ ¸.ÆN‰6󥨉ÂaÓ¢XPXCI±-qš.‡g k³4)Q‘ÓP3ŽÙØM`„dŸÒ_« ‹€– ŬÑ&~rÍZ&ö§?Ë.hñ’ë|Á‰ˆÄ›jäT7rwÒ ©€>›c¶Ù‘¦ßTÄprêÇNxóƒ}#ÁÉ «ú‹0°Æ#5œømU¢ )y‚¡ ]Ô žm-ɶû6¤ÁêøóðÌÿ¬‡wÑé-KTsá€i‚E×Z13”há] =¦†a|x¸Äâ˜aºNúh }Þ²5 !ÉøŸªî-T´œX‘Sô†¦\)ýTtöý½8ªè1êܺþ²Ø[/BÌ^…_±Í*ÒLl§*Wé/‰0±:z×#4›v=)°Â]_cþYšëFë n&›|?ª£ÞîÊŸNI¤Ÿ¢ÓR1ûƒSê?Z jús°"¶±Õá¬WX¹¤y«k/ˆšYÂàö–&ŠÌþ Pþ»¡÷ŽšAáx1Ôr&zDà|™/å~'¸ H8|¼Zs”Õ$||×l»=õ0lD‚!€øß!-'b9êj^{ä4¡EH¯®£ ŽV‹Õr¿µµâŠíšà5êîº`áŽË!½…žóljI  QFU¨‰!kc,³¯b [ŽF̪.˜Z”‘¦áRGìöpäÏÉ=À])´ÓûЖÝÚabàmÙýÔ×V¯ðóöv š"ž`ïm… s[¥ Ч ÐZHA¦G­ÆósQ!±˜ÎöX•ïÆ¡±Ò ø—¶fÂǹࢩpì†còMíS…ÈuJ"GnLêŠÆïcV”^w‡8Œ\˜ÙjŒûÝq.>V­Hä†íÓ¬¿Õ»­6?yœzIk®5Oßp©©Ë4ß^Ö‹¶îºN'!î´8ìkJN d)xv!Ó{5-äÀÄÉ#;<¤¥lä­Ç¡O͈…„è² 6…VO§³X1¥ö4Ý Z”ÉQÒÒÑ—¥ÉìÌñ­…3wþ>€½7JÝÃAñH( ³p”äWXÉ©Ñ[ÆqUqÐÛ>q²b%QFIbµ‚²b_eÝÚ]¿_3i¶½`Õ³™çù€Óª½rêÚÀ£qÞ¶ÁGä%ÈŠÛæ$¸\¦^×éËL­¬M©GR*Â…Çpȧg±‚ŸÀ¤7Ž‹º¸k«F§¦,Ndhsgp ^µŒ·Ö4DÚæ¾Ô…Ê#kYÜYÍTPäbF̦Ë#4¬ÐÑ y5×xǹƒ"Ù«c@ϳoÔpìß=é B±ºôÏŒp4.óWOÎ1¦Xõ ÆæÔ·‹¸'㊚˜1)È^XŸ€Ètš±’G ˆáÖ ÿ‰M“ÀÛ‡ºK¿¼ek¯ b1pˆÛ³G7cXÄWµ†(xÀèØœ¼Â¾Ô¦‹/|÷*¼W·t¯gy‰òY7Í¡ñZÂ+µK¼/ÇÛòa67—sšÛcÊÏËܲ‘Ê’AÁWê¼¢‹5t ΪÜôç ‰‘,Ï9í ¢Dô8ø»»– ×ìlM1æLTä*š£È¬¡Ž’hüšš8†×Z:ª›ë§JTºîdÚÚÏÿxçGMnÕÌ ×Ç}úÌ)í¥™ã€ÿ"‡U¸×ŸuçÅ<¯Î²Y“¬4¦ù/뵇3IÙf(tô©Ñ»­Í\©Ï OÒÈá¼â°TŸÛ:|Õç3a_¨ ô´#äòÑa„ŸÜñÄ ˜7/~x·‡Ìôã6uOTw³Ê;=ˆp¨âqñõQ†› ?6eˆØ¨Ç«ÜŒPàG‹Lv4ÿõ,åפøQ´£FﱊpxEŒ†à'v­ÇÂ3AƒcæPN¦­ýˆBa™ñÖQªÃX;³ÞYæ(ðnˆá€0Á–mÄ™º³_7hiÍ)¨×(ßPíZU®9¯v#)ü‰b¡SGAöý€><î:„1'9Ì7 s=Ùk-jo¢×lu8r’†ÜÁÏ͈à¡~ñMéŸRݘÏNäÑoãÖh1ÔçO±u7÷îx•/¼1}?9/»îûE?u‹þYÍ ‡ùoÁaúÛfMvéËr1={ýq²­bè$£l‘5+®Ã.n¢È®Yˆ5rw‚ÜHŒ£û{p[‰b >À-;‘µW À IÌM®jnœÚ?ˆÝ}Çj •G¯wìÖõÛ°Ä+×Õ›+S"h°Ö h÷U±Ê#µ²s6Þ%ÍkV^;‘^|Œ»Wùäx4ÅïB¤dQ·É]ƒš“¬Û»áY ´NGŽéÃ'œžðxàJ1æ¥ßtÃqéF0÷0cõ}A3d>m§7Þ  G äj_€X®$5Q:ap“)LXÒ$K@iTĪ#vôn)•Wn3hàv¸Ÿ’Qa·ò=*Í}Ùº î|ÀJœCÔ83Ú½I¤áýdUž‹ÌO&«·ä1ZP‘üÕ€öˆÕ¬TŠÅVh‹s¥­È°0×i¾oÎ0"e¸âQsHh³yÝCnެùÝ!++ß4¨üa£Ìh—LÑàĆ!×GÙ¦i:6´Éª¸S°€Y_õ¼¥f±§&!5Se˧ÐÔ³e}ê]XVÌÔõ‘nž‘²¡HyÙÖ™d||ºs*†æ›‚ œä¿°–zÆm9c¸yS»w—œÚ¶•U'G|¥T'†ò‰~Ä>Ö5ÅFI‹Ù×nuGo'Ï­þ@”` ɼ IâTá-r ΠCȉ5wxl¨V 㯀ÉmÕŠqÒDî8SN9pY ¥:˜l÷hÓ^4œ\í]Y³©úh„}Ø5ÓfŒÁx/7:Úe,»0Ó]¬,äÚ/²&ÏÑ0²[Ö“ŠñØ3Ï'ïáó†îCGÙäï(V5v̉ndÕ÷äú¼¥ˆ–q–a6ß&>âãQpl¦õ•.b0ïB';ÍŠÒ¤Â@öÄFOñbç'Qm͇ˆ³Â£ˆm| !\i%¿šÌÞØP^}Ö0˜÷ˆl„žÚO«ù¹õÁwh¥êE“Uì9~ϧœ*ïˆ|¨µy«5 í…¬_7©QìÀ*qÁG1ò¡Ã`¸™9eo›Ï§s9Š­ep¨8¾Ãä^ÊÏã¬óE ‘õyyüëë·/ž¦´B§ëtRæ½™X[y]ÀÔ‡RØ ŠÛ@æ¶––cœ­¡»™fnMCE)Ї§»`¨²öžØÓ­Ãè#`y>øJ5zÈŒóê&LÚ ×I{á¢Ö^²""qÆuH {ô꟬…¯öBŸ†vÛ k§ÓI(ÂN ô%ðê^ª,U„;«·ˆNýÞb•Wuè Ù7žžSyÍé9un:½Õª#²ªÂçÔWñf}ªc»:’­d2ëH;ëÏ:Vy˜#‡Å;¼1˜c¨äA>žeÇÔÅsÎ[Á½Ö7ÉÿædXâà›ô¤·¿{?ý&yùÆ ;HäIû^j‡Kˆb{Ö›†ûVípA—¼h‘í¦X+˜L]+¬˜Àmÿ‰¶îâø†EÃõª+cƒ8(×t6³tÞA±ÚëÊ%›Út¶KØŽewu#„|ÊR7ÌÆF"øŒÊˆ4V4cW aYb[QL=m‚Ž¢Èü.™q•TÌ’G1Gý¢ù€^óp.åΫ\àe—Ù “^úƲaýq’D­nË…ÓZ—'¡Âʨz¥¿ñ# •¶L¥\»“²LAÙ1Ô8-Q ²XaÙ¯çÜ‹qí­™ç añCû†ù¬ä"›;’’Ãa "ŽUY7‰Vp©Ffä*”P6?]R²qQ-¶},ÂæÚáC\rŠSøÇ8nYˆå UqØKkÑ¥Œ]Þ cj±E·y¤i@ -61‚DŸ€!Á)Ã’ý žÙW„4Í£ ãƒÐÛG"v.‚¸–`Ç–…f”£ûyäܯøÂ ÃaEOµ²êqK Hý!ò}ºd›ç‹å¼´ÑÆ’ì”–¡Ýs¢f ‹ˆÙÆyL®,ÿ?ì VŠ#KeYÊ8Ž'RºMÁ6aÅ\§«­YèæL’#3@/–ªós'yÐyÐ,@¤ßµùÍSý€q|×[£˜­¦5ú¹c#NñÊ…gtú¿£~¶·üÙB-1Æá£Èþòƒ‚òÁÞ¥¦:¥ÿÔ çGáLÓ¤÷” 99¬[ãcÜ[ gi2ÄÆ# «˜9¡Ñ›¢¢ÛYp瘛‘äÊòÚ=:¸ã-½¹ƒ2t~g-O‡SjÔŸ4C·dŒ©Ž?y~‘ÁDÛÖ`:æud¨T–‡:0a«ë¢@—Cô6¢ØÏ%¹‹ªø|n?ç&㱄å¶3ó˜ÔØýhØÇlé–Ž6~ 84þƒé^y\mmç<¸väykñÞº¹á:Í ãÍi~ÎŽP­‚¡à½'U÷ægð^ã—¨‚ÆÒ©.GöæægÛQ+QHœA²toê÷Ê’Èy•††ÐÖ Š¯08ã–(Ýa¼¥š(ñº%+£R¶e¶ÖŸ©å“}dÿôw|>P°¹®©Ž_¨àˆt0ŽöžH´à<^>ÅXΘÐýÆ*,¼rt2‘rÑjdÿõ€êSdO˜ÔÀT¨v @µe ü ÿã ³[„᪆ë÷Pcïhÿl¦eñ“å2'+¢Âóen/„úþSÑfK½ûð- xGLþìM£¦Ì«6Ìñ‚SÆ1]©`c¶ý^V™c¨bàiY'ÅÜÃo ÈèA l–nrÌkˆ÷\ˆwœä¯¬eQvd´ˆ˜’¦§Ú£ïBÞS=fy©~Ê{n¡¼H/a×x hÇÛ/JEÓ|ÞC§]ÝѬÌŸ 6zêïñ!Ì×ÂÜÂÜÂ,ÁA?\Ñ:''6} ëú°;±NvûX$×Ì,чŽgÝ× IûŽîª°$T·KèÄìMå `OžæY7¶4¬o)65³õ¬«^!GúDhÇÞÏÐo¥Õu_¹xã ³¯Å™@ŠjPt‚þf·Ê A (ÿìhÒï^‘ŽštKSr䇷Y‚&Q´¯Ë¦Ã¤ÔyÁÓèJ1í^²»ë=Ęˆ¶ÒýÆZš¤þÖÑ¡{ʱ›•AZ³®!ìX£¦.ëÍ3ÎÝŠ£Æ”°±F”>;ªžr´¼|s¬sh«ñ“+–s[ÐgZqâB í\©qM1Lòðjº<=ã¥3ðŠ.&)g(®òùùPhàðzNs4hP§§Ù«Þ*Ëå»xÚ¦Âlf³%€A ǵëØÌ—SR‚!;a¿b’ÂTWGô|qôî½5 º P{œ¹Š\“ñ ¥PGÅkžÍÇÀ~¨‹ÙRFw†¾gÏÖ^¿ ÚScÑNéHõq˜áš=:d6Än4Î3¯ûD¸§Ó-¾Q;î±YG¿r¨¥í¦Kf3ü¿Ÿ&x¥–á—QšäFÙ|7)ÅÝ`ñ·¤#¯’LBû]O&9Ê!ÍUð„†y%äÉ*†§Ê-Îv“L—U~6£#µÎÁH^m•ö刻0Ž—Ü%`+3Ž¥8/NÉaF7Š©¹)t GFvóÖán‚³òT˜pU¡¿›´þ¤êvâ ›½ž.çÎØ?æsئ%<@:M¦û°uéjö|YÌs²…P©úpBí•iÐÃDâïL"q”ÔÓs«ôªÈôì ™ÕÇsLEîLÍÄ.ÇcŒ¥WYßÍzŸe•¹ßQU8Š‚ãì½.ý$á¦b6Nç#J~6uÎǶDl´r¢)•¤·Ù¡k8|¡:»~¤á! %ÚÁ»˜WÁ€œ ^Ž%宂—ðkJ¿^ °þ (ƒ ê7ÀªRªßŒú«ÔoÛPñ‡á “/Ê5}òTe±&µOI襨§ÐÈ›gè>¢Ÿ'nŒ‘ÚâT÷²sr«ýwËÁèºÐ·ú+’Øk×5> Å»-ëóÅÝä±ÓØ×ðo‰sN4˜)%*`bñA ±0í´W•ëSÁ~¼¤bþRY¯í`!"gÔ–i-9»v*EäK“Këëq™[?Ù²ÅßÎ.‚7òeƒãªÕÛÑoá÷Üû]©Iéö*Õ˲Xðª##‚_}즣Š*ÞvŒ¯,'SÕ‚6n¨ùŒÍhSòÙ¶_J„Ä2;v,_HInEeŠ%ˆŽ‘臃c•'JܲÀT%oy”·yJòÖR MàÃå˜ÖQ­¬¶¯?Ÿü±òéÁj »fž~î’X€Û[qY ôtÌ/ Ì…üæ™.ýO?ÜpüM/ÉËi–ňӆñ}dZ–!„o¬,އ­:³q5utÍè¨Û—áƒïyaŽS$ÊIø‰sb½äŽRô'®RÕ +^À¶ÒÖm{XJÀꢰ«áu‡¬:An¶'#–~øýlô–ö[]tg]žî ùy[U¥|xM yÓðNšú ;á?3߬ ô8r²ë† yGž¸›2ÏG’ª^-¢N8­cûW»v«¿ªàô:ÛsUœjIj*,8³4ßʦ§ˆ`â£L8>Låê¼i”¨ #0G´-Θ¤’·³Åx˜p› ª}¤E–´«óÁqšŸÏ:j-±Z} ã€3@J‡Q¨æÌD¥6ÃÔvóÔ7Àxþü–·`„ïíÐËÂì‡BŸþ[v‹š­!õ­Ä.{…]ìIb¾ºq-“ó‚—˜!V}JujT9M¬Ã!>Qâ:Î0/e ï›Y†@b@¬ý÷µHEioÉ&4oì]Ù´G<å«þ®TÒ|ˆ+`šSÃ`Sò8ÁÓÀ…1×k.Ô?‡üµÅäŠjÈ«gj…E]ÌWU©"% ê§‚ð ‡@èi³K5Gr!ÂKDêŒtîØð¶Ðg¡ÌÊ Åj §‹aQ×V :G§‹ß‚‹µÐö÷XÓo­®†Ö¬6tx + zr¹«¥¹ÕÒ lŒÎt´Ê ¡&‡£þQ²¿½½]I+€Á«éB–óLJû¬dQ¬˜× ó'KØM­rxx#Ú^·SŽvãåõñi^B+¸uÒË6%„t–ƒ¶»„!‡JRŽ”ûðé`¤´¶_ês‰*Dx»‡·[4ÄhCbóŸ¹:/Isà\†ã§(8ÕbçpE‰ K„1 zȱOœ Ù#³-“Dk‹ê™?Ü óxp_µ óâôl¥RV¥0UžhŲÐWZh½ÈN+‘65¯kN†Í-2÷´‚yòû Öè/ œû俨™'RŸø nAcc†IÕPÔ ‚î_¬Õåïò‡BÃ&gg]>óä©¿lvÅÀŠœö0¨•œ Hjj¢’Î)œ—õ܆Ê_tI…,>¾ú³rÆÆ"6Ssúî8§¯šEtcE¢$×o“¿hüÄÛ7Eq˜qŒ!&é3]ôtv+óÊôœ5Ù^O,þKÝâÔ¸jñjHK½¬ëॽH·,ãÆ×À†ß**BÇïxRv§Œî^Çåù‹S oÒ[|Ò§.ÁàGÄ)™å¶[éQíø·“Ÿ+ŒÔwiå©sâ÷ñiþK¼¶¨³CoÍFò;26O®W1‘8¸ï*^¥‘€øU(¤Ž(ü´’.ÅΉzû ²ù·ƒUmõÖY5ïúþK5¤öïä¨l›3( çÛ©_Ó䟢˜äò0f,¡êl“þò—m‰S <噑•äܨ+ ¶áHoXÆGGnuÿIv¿Ríˆß2Tþ'¹!ÃFû˶¾–¥è,ØZ'„cÁ†eªƒ†–ù ÚÅ}u‘—bwSs3÷«ÈÔ¹Æn=¬÷_¦ók¶YJùd6cªgiÌvƒ`“Â<ú)3ç§ÄÁµý§<ÙÒôO!M¸‚:áì• Ö!LêéÏ^þÒº÷þ†Ø@r½;ÚOÿ™â„åÈé½tŸ!¾á‰`×z¥ju©Ú¯T r;ªûJøÓ¯b[ñ ‰·Ö‘øëóS»K.iš¶–±1öGM•&Î~T¨DÛáŸ+·¢îmýz ›°qœ8ýºŠv·ñ›ohàˆöMÇì_Ö-k%Ñ/Ç÷ϯ­ o9"ÕùȳkZg þs½&VÌ‚6rz“­œ\9ÛY´ÏÜ6lk@ÈG;Ñámð6ã¡â5ì†^©†&i"‡oBÄ^nIêªŽä¸ø*6ŸÈ~Ÿ¿ûÎrli³ý6Ûoí§wl™‰»9¬mho¿šÝ÷þžÚÂÖîãÖ.ü 7 ¶µþéßèðÛÃMžO6Ûlõ6+?›­Õ„= w_ýåv–ÓNŸ ¿Úë74ˆîÑwÿĽõ÷Ö ³G?iƒºç,Ÿµî ê¯8iKÓZw÷¡Ööíá†ãz÷Ï·ýÿ-³³Z‹Ú_ ÙøOVl`ç“)†›Nž½xsÔßúÍç‹~ê{£ü"ïa´Üþ1`«vOþ¶[}ìÃçÛàï·½Þ_ûü÷Û}z¾¿ÞÝÿ^ÿÁþÃþ·ûþÇ~ïá_÷¿ýäÖÐôY¢g^’üG6¼hì"ÁgÃEq‘‰a}©Ï— ·…;xaWŒs¥ja¿> “ÉO…7î‚€Z™Ùà€‚'Ï&&µ]ŒØ kŸ7p³iUh,;-ŠIñ‘°1">[Ë¿.“ç0†q½%Ý×÷“îÕ»wÏìö“– ~r˜ÆbÁ©ÐØ åÉ›ŸÛÐݘ]Ïm±A»‡ §#J2±¨Ìà²åâ UKŒbÄiTp?B;£j:_Ë ;" ív10F68´¯Ÿ%E3xòÉ©Î2Îõ±€fTOÅÜ D:M“Ár!¥³yº‰ýÒ¸âRàüòù¤"—LÍp”dã)¼ÑSpç'&º´Ìßúç¬}3[~¿úV÷vÞÂb5&üTâì ŠœaS&qìÄ :ƒ]Û¶‹œŽ¨‡m ²¾ßNÞ½ý&¹çÍÙÐsòÒb7Q܃ëäÁö=qE 3f”=m´jô]\Nc&0T•îëÎZý´ßî© ïU!¨v HEð/jƒøO§«ö¹or™]Wž¿Øƒä§.["T6cœ&°S)ƒKyNiسmK³—–çÝïÒž²Y!VJÇ[•0¤½~ëFßk§ yÔʧIL¤@ShÔˆãO†¾ @~¾ã»o6ØS e‹TzÜðGòÝÊŒnÙî¯nôÁ³/Ë/H•ü§ãñô): fùœƒ¥6" :´üDG¯¿÷ÝÞ:o@«ÈWQÌK~BœåÃq6ÏGv u$„»ê¸*ÙÎ0OÀ …G¤Ãe.æ(éáHá$_C€q‰‡ŒŽ­N‚vZóÎŒLšà”þ¾/ósM¬’³åd’ÓiRµw¿<ÉŒ!¿¡šjܘhÚ3 Ö!š{5þL>Ù„±l¹-&W½4¹açê>üÿþÿCG×ðüž_Ãókx~ ϯ¿µÈî8ëÓ ›Âö=:Œ?¯z@ÒÎ[½”/ö®úô³¯~Þ§Ÿ÷ÕÏôóúù~>T?¿¥Ÿß¦¢ ¹VM“#4÷ÑòJïU_ò¾ï¿WËûûþ{5yÿÀ¯†'ïúïÕxåý·öû­í§ÏžüWò˳'ï_¿MŽ^<ÿñÕ³§±#á¬Ç‡†9 ða_JW ÐðC¢€ž” )ÁéÚ~£(8­ÆU_ ãÔÁ7×ö]¡ÿ0Äœ:øæÚ~£ë $ᆢSß\Ûot„.üÃuêà›kû®ƒ‡ÚN|sm¿é»g‘ >¶¡ÃNìÄՠмwÀyï€ òÞ™nä½35ï=À]ÈH¡ðw¤z"[†©‹E­9 ”d†êÏGýâÑ«_uü°6.@ 9¢N³eôĶõý PÆMm QçY€²FahaA³pààCf‡ebN3ø›Ãt¥Xoxx¸Âƒ@ДŠÇþÚ´%…y‘«Vœ°âD§¬8•Å+Îdqλ1–å/«~-y™uÌídBÃÉð£Ð©Wéo3ꃉúÉpý”·~‘ ~)€± >ŒwZ å | µÊLø0Žj5”¯ð1àÌÕª(‹‹¯2¸@¹ ÎrUU™&øœ*u/#Kœ²Ä KœhYâtÊ'–ìaRQ&5â¢fB\Ô$Û‹šd{!’í Ÿø„ç>ð)‡Ï$|&à3A×X65sQS‘,i^ˆEt ©^~çhcãÌ»¹c6Uk«ZëœXÕZ³ÝªÖšåVµY;µ\;•µSQ;ŵ3Y;µ3\Ë  ¯Ÿkõ»$¿Z½bX 9¶ÔGf»Üª™´îšWm¹õn»Ávú¦Îûoýw²þ­´¿f²³íö÷ö¶6ó¸¶ìè6©c6ãäc÷¨û?ÐþŸwóÿ­è“ûÿ ÷þŸñ8‰ÇlÿO§iC=|šßÿs‚ë‘bg(¿c{ñ{½õýòöÛ§^¿;À=–Æ_>!v±Š#vïD«w¿ÿòæíëøy~ß?ÒBÔëQ%ƒòOÿíÑmfÁè‹øVßÔÖ3 ;Nÿx?‚±Ö£¹ÃWäv½ ˆ£y¯§¾¾‚Ÿ’·ï÷~x~õú}ŸÐOÖøú/òüŸ|LZýþõooý¹Oé‚*¼û‹b€•zËÛÕüž¼êýð‚¼\¬ï_>Ü‘ŸÉ5ôêz4‡¿Oð·&×ÃofcøêáómÅ3Æ­O«ŒšˆsËwÛ…Æ?êöacÛø'jüÇiÄÆÿ$ôûÿNrÉ1(^!!F\£µõzì¯fWÝþß‹?¶Ø=þ“0‡Êÿ'áÆ¥ÿ§¸º¾ÿî|}}M>d«åz~K~ýùÚVõò?ä¯Õ;pƒmWUÛ­æ«»}Ïôâë÷%ß9»¾'o¾<П ·ôûyý~ÞŽíçE·ù²¼Êûà Õoõù¢]ÿy¿úÔ–í¿Õ£A: åyÏö͸cpJôA@ Ï ØÌÛå¶ÆUË3Ajy¨€®§*‚p‡}½Š¦F$Éæƒ©› óÙŒ)îÙ~³ï,nدøPýr?âìó¶;wvOôxÏ=Ñ' Õ¹™ߺrë ?Ÿ“ÿt—­?n~jÝcºx-ѶI9X°`9Àr€eË–,X– Ãó5œÎúÓ÷XΆäs±Ìî ô ß²»o·ðÆŠôý£¬‘¸iÁ ¼Ù{+ÍœAä ®æÃŰ`p2 ‹ëBÔÒ›B¯‘ÐL4`ÀüNOI朊+`xÞG©{ñ»üYÓ*…¯À¡G)pŒÁ±'œ00Kš‡•k£åÒèCЯžuF}`£lôA‚>H0ýIÅ\Ð P—ñT­Ñ›õ¦jA¹d ££êhÕ"‚*Ê ¢¡jAqe ƒ¼‘WµH† æ²…AyÔGKÀýˆG Zd1 åë8´gñb‹ú1àŒõ´p¡1¸£ ÕjÌNÀxCµá@5ŒDT« ½ T·Ô²s,º!á\IØ"dúšAY·!é<Ä- ak-M‰çni]kiJ>qKCøZKSò·4”€·•ôuüÕ*ìe7¦äA‡d?ö}ØXöacÙ‡e6–½4ÀÆ– »X2uÔ!M—(ù:ªØ¸Aß÷ñÔb™ò/䎪×Ìùf‡9Ôì+‡šÝäP³‡šH(ê̳ª½±TºU¢”JoJÔRéD‰:P*y—¨¥’¥ÕYVg8œU`uVÃYVg8œU`uVÃYVg%­£4 ™%GÎì1 £Là†Ã’ó.³2Œ& ˈãÚ£FÀ‡eÌqí!£Cà&Ã2ḻÄA*F{üúåa¥Ä ²¢™ß8£ Ð·à‡ Ñ-ð©ømøÃG´ |*|~ÌðýŸŠÞ†Ÿ0|ÄOÏ Î4ÍΨ„·„a™¦Ù•ó–0,Ó4;£ÒÞ†ešfgTæ[°LÓìŒJþxa؆–Ð÷ý 3å2s©966á­uWµÆ¦Ã¦A¼u¤ù¹ª56#6}â­cÍ×U­±I±iohþ®j­Ì‹* @aƒU%L;ƒÃ® 6•8P0­ŽÖÒdQ‰Ói-Mö”8P0-’ÖÒdM‰Ó>575SÙ/Û`ߢ—Ê–Ù†ý­TvÍf¶è¤²qÄb ¶h¤²wÄbjôQ ]‘¸CW‡e$îÐÕa!‰;tuXJâ]“ìºö4Í4“ÀX¡¾¹²ÆM•5nª…¬qS5dwÕC Çš?±pe ¹ åÍ+X¨h†ßBÁ ²íèõÂVñ6v}¬qSÏÇ7u|¬qS¿ÇïêöjÄ›oo¾M¼ù6ñæÛÄ+TT$ü{?Ê…k¶þIÞa-ÚÒ¤&«#Zº•gSeÝnÆ“«ÆÑûÆME2ô~H uS™Ò½·üJQe¤-7?ÿëAì+9O4o¦òÍ4¾žÂ¯~³ƒé{5³:aö~czJŽœ¦ ùøý¦u§Ï°šè…åÏLpÎ/£ Ës£ßÍþÃf«ÕH>{Jú”Éç§fV½íJÒxÃÓ*wßÕDpÕËŽ'v÷óç——¦5}ÕE%ZD—“.uF1O?剢˜ñ‰Ëå/6µèÀ鲃>ùwœä_ü“2é'“}<ÉWÝób“{“òÝéºc'àö ¦›%^̰㌠®ááah>cÂ…=nr\´/ ³ojåØéu§C§26¬…2BÇJ9Tw9bJ`? sžézk¦Ì˜¾¶hÙÖ)Ýa&Vgžfr⧇™Zøãíýñöþxûï7þxûvÌKüñöþx{¼½?Þþ p,„á·÷ÇÛûãíýñöþxû‹²þ­´¿þxû {Û ›é·÷ÇÛûË_þò—¿üå/ùë@×ÿî¿x espresso-5.0.2/PlotPhon/0000755000700200004540000000000012053440273014123 5ustar marsamoscmespresso-5.0.2/PlotPhon/Readme0000644000700200004540000000046112053145633015246 0ustar marsamoscm1. Copy the distribution package to QE home directory and unpack it 2. To compile just hit "Compile". To change the compiler see ./SRC/make.inc file 3. User can edit Plot_Input file only (See Examples directory). 4. To start a job hit Run_Plot_Phonons 5. Other scripts should be remained untouched. espresso-5.0.2/PlotPhon/Examples/0000755000700200004540000000000012053440276015704 5ustar marsamoscmespresso-5.0.2/PlotPhon/Examples/environment_variables0000755000700200004540000000055212053145633022227 0ustar marsamoscm # BIN_DIR = path of compiled Quantum ESPRESSO executable matdyn.x # Usually this is $QEDIR/bin, where $QEDIR is the root # of the Quantum ESPRESSO source tree # PLOT_DIR= root of the PlotPhonon package # The following is the typical setting if PlotPhonon is unpacked into $QEDIR PLOT_DIR=`cd ../.. ; pwd` BIN_DIR=`cd ../../../bin ; pwd ` espresso-5.0.2/PlotPhon/Examples/Al_FCC/0000755000700200004540000000000012053440301016700 5ustar marsamoscmespresso-5.0.2/PlotPhon/Examples/Al_FCC/Run_Plot_phonons0000755000700200004540000000070512053145633022150 0ustar marsamoscm#!/bin/bash echo 'Plot Phonon Dispersion Relations' echo 'Copyright Eyvaz Isaev, 2009-2010, GNU License' echo 'IFM, Linkoping University, Sweden' echo 'Moscow State Institute of Steel and Alloys, Russia' echo 'eyvaz_isaev@yahoo.com, isaev@ifm.liu.se' . ../environment_variables cat Plot_input $PLOT_DIR/Scripts/Lines $PLOT_DIR/Scripts/Plot_run > run_Plot_Phonons.sh chmod +x run_Plot_Phonons.sh ./run_Plot_Phonons.sh #rm -f run_Plot_Phonons.sh espresso-5.0.2/PlotPhon/Examples/Al_FCC/Al444.fc0000644000700200004540000004563412053145633020030 0ustar marsamoscm 1 1 2 7.6530000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Al ' 24588.6885119930 1 1 0.0000000 0.0000000 0.0000000 F 4 4 4 1 1 1 1 1 1 1 9.54367985968E-02 2 1 1 -1.25243229231E-02 3 1 1 -7.86437867876E-04 4 1 1 -1.25243229231E-02 1 2 1 2.59643462106E-03 2 2 1 9.09359831176E-05 3 2 1 9.54293859676E-05 4 2 1 -1.25243229231E-02 1 3 1 2.28698081118E-04 2 3 1 9.09359831176E-05 3 3 1 -7.86437867876E-04 4 3 1 9.09359831176E-05 1 4 1 2.59643462106E-03 2 4 1 -1.25243229231E-02 3 4 1 9.54293859676E-05 4 4 1 9.09359831176E-05 1 1 2 -1.25243229231E-02 2 1 2 9.54293859676E-05 3 1 2 9.09359831176E-05 4 1 2 2.59643462106E-03 1 2 2 9.09359831176E-05 2 2 2 -2.51650147370E-04 3 2 2 9.09359831176E-05 4 2 2 5.42194135386E-04 1 3 2 9.09359831176E-05 2 3 2 9.54293859676E-05 3 3 2 -7.38204975451E-04 4 3 2 5.45304569630E-04 1 4 2 -1.25243229231E-02 2 4 2 -1.88240451243E-03 3 4 2 -7.38204975451E-04 4 4 2 5.42194135386E-04 1 1 3 -7.86437867876E-04 2 1 3 9.09359831176E-05 3 1 3 2.28698081118E-04 4 1 3 9.09359831176E-05 1 2 3 9.54293859676E-05 2 2 3 9.09359831176E-05 3 2 3 5.45304569630E-04 4 2 3 -7.38204975451E-04 1 3 3 -7.86437867876E-04 2 3 3 -7.38204975451E-04 3 3 3 6.79845083330E-04 4 3 3 -7.38204975451E-04 1 4 3 9.54293859676E-05 2 4 3 -7.38204975451E-04 3 4 3 5.45304569630E-04 4 4 3 9.09359831176E-05 1 1 4 -1.25243229231E-02 2 1 4 2.59643462106E-03 3 1 4 9.09359831176E-05 4 1 4 9.54293859676E-05 1 2 4 -1.25243229231E-02 2 2 4 5.42194135386E-04 3 2 4 -7.38204975451E-04 4 2 4 -1.88240451243E-03 1 3 4 9.09359831176E-05 2 3 4 5.45304569630E-04 3 3 4 -7.38204975451E-04 4 3 4 9.54293859676E-05 1 4 4 9.09359831176E-05 2 4 4 5.42194135386E-04 3 4 4 9.09359831176E-05 4 4 4 -2.51650147370E-04 1 2 1 1 1 1 1 1.08420217249E-18 2 1 1 4.33680868994E-19 3 1 1 -1.08420217249E-19 4 1 1 4.33680868994E-19 1 2 1 -7.04731412116E-19 2 2 1 -3.40681904812E-04 3 2 1 2.56859214800E-04 4 2 1 -1.35449381128E-02 1 3 1 -2.71050543121E-19 2 3 1 2.56859214800E-04 3 3 1 -1.17186824975E-03 4 3 1 2.56859214800E-04 1 4 1 -7.04731412116E-19 2 4 1 -1.35449381128E-02 3 4 1 2.56859214800E-04 4 4 1 -3.40681904812E-04 1 1 2 1.35449381128E-02 2 1 2 -2.56859214800E-04 3 1 2 3.40681904812E-04 4 1 2 -4.87890977618E-19 1 2 2 -2.56859214800E-04 2 2 2 -3.79470760370E-19 3 2 2 2.56859214800E-04 4 2 2 5.96311194867E-19 1 3 2 3.40681904812E-04 2 3 2 2.56859214800E-04 3 3 2 2.84528177875E-05 4 3 2 -4.87890977618E-19 1 4 2 4.33680868994E-19 2 4 2 1.13841228111E-18 3 4 2 4.87890977618E-19 4 4 2 -5.42101086241E-20 1 1 3 1.17186824975E-03 2 1 3 -2.56859214800E-04 3 1 3 -6.50521303491E-19 4 1 3 -2.56859214800E-04 1 2 3 -2.56859214800E-04 2 2 3 -3.40681904812E-04 3 2 3 -5.42101086243E-19 4 2 3 -2.84528177875E-05 1 3 3 2.71050543121E-19 2 3 3 4.33680868994E-19 3 3 3 9.21571846613E-19 4 3 3 4.33680868994E-19 1 4 3 -2.56859214800E-04 2 4 3 -2.84528177875E-05 3 4 3 -5.42101086243E-19 4 4 3 -3.40681904812E-04 1 1 4 1.35449381128E-02 2 1 4 -4.87890977618E-19 3 1 4 3.40681904812E-04 4 1 4 -2.56859214800E-04 1 2 4 4.33680868994E-19 2 2 4 -5.42101086241E-20 3 2 4 4.87890977618E-19 4 2 4 1.13841228111E-18 1 3 4 3.40681904812E-04 2 3 4 -4.87890977618E-19 3 3 4 2.84528177875E-05 4 3 4 2.56859214800E-04 1 4 4 -2.56859214800E-04 2 4 4 5.96311194867E-19 3 4 4 2.56859214800E-04 4 4 4 -3.79470760370E-19 1 3 1 1 1 1 1 7.04731412116E-19 2 1 1 1.35449381128E-02 3 1 1 1.17186824975E-03 4 1 1 1.35449381128E-02 1 2 1 8.94466792301E-19 2 2 1 -2.56859214800E-04 3 2 1 -2.56859214800E-04 4 2 1 -1.89735380185E-19 1 3 1 -1.05709711817E-18 2 3 1 3.40681904812E-04 3 3 1 -5.42101086243E-19 4 3 1 3.40681904812E-04 1 4 1 8.94466792301E-19 2 4 1 -1.89735380185E-19 3 4 1 -2.56859214800E-04 4 4 1 -2.56859214800E-04 1 1 2 -1.89735380185E-19 2 1 2 -2.56859214800E-04 3 1 2 -2.56859214800E-04 4 1 2 4.60785923306E-19 1 2 2 -3.40681904813E-04 2 2 2 -7.04731412116E-19 3 2 2 -3.40681904813E-04 4 2 2 -1.02999206386E-18 1 3 2 2.56859214800E-04 2 3 2 2.56859214800E-04 3 3 2 -1.35525271561E-19 4 3 2 6.77626357803E-19 1 4 2 -1.35449381128E-02 2 4 2 1.08420217249E-18 3 4 2 -2.84528177875E-05 4 4 2 6.50521303491E-19 1 1 3 -6.50521303491E-19 2 1 3 3.40681904812E-04 3 1 3 -1.00288700955E-18 4 1 3 3.40681904812E-04 1 2 3 2.56859214800E-04 2 2 3 2.56859214800E-04 3 2 3 6.23416249179E-19 4 2 3 -1.89735380185E-19 1 3 3 -1.17186824975E-03 2 3 3 2.84528177875E-05 3 3 3 7.04731412116E-19 4 3 3 2.84528177875E-05 1 4 3 2.56859214800E-04 2 4 3 -1.89735380185E-19 3 4 3 6.23416249179E-19 4 4 3 2.56859214800E-04 1 1 4 -1.89735380185E-19 2 1 4 4.60785923306E-19 3 1 4 -2.56859214800E-04 4 1 4 -2.56859214800E-04 1 2 4 -1.35449381128E-02 2 2 4 6.50521303491E-19 3 2 4 -2.84528177875E-05 4 2 4 1.08420217249E-18 1 3 4 2.56859214800E-04 2 3 4 6.77626357803E-19 3 3 4 -1.35525271561E-19 4 3 4 2.56859214800E-04 1 4 4 -3.40681904813E-04 2 4 4 -1.02999206386E-18 3 4 4 -3.40681904813E-04 4 4 4 -7.04731412116E-19 2 1 1 1 1 1 1 1.08420217249E-18 2 1 1 4.33680868994E-19 3 1 1 -1.08420217249E-19 4 1 1 4.33680868994E-19 1 2 1 -7.04731412116E-19 2 2 1 -3.40681904812E-04 3 2 1 2.56859214800E-04 4 2 1 -1.35449381128E-02 1 3 1 -2.71050543121E-19 2 3 1 2.56859214800E-04 3 3 1 -1.17186824975E-03 4 3 1 2.56859214800E-04 1 4 1 -7.04731412116E-19 2 4 1 -1.35449381128E-02 3 4 1 2.56859214800E-04 4 4 1 -3.40681904812E-04 1 1 2 1.35449381128E-02 2 1 2 -2.56859214800E-04 3 1 2 3.40681904812E-04 4 1 2 -4.87890977618E-19 1 2 2 -2.56859214800E-04 2 2 2 -3.79470760370E-19 3 2 2 2.56859214800E-04 4 2 2 5.96311194867E-19 1 3 2 3.40681904812E-04 2 3 2 2.56859214800E-04 3 3 2 2.84528177875E-05 4 3 2 -4.87890977618E-19 1 4 2 4.33680868994E-19 2 4 2 1.13841228111E-18 3 4 2 4.87890977618E-19 4 4 2 -5.42101086241E-20 1 1 3 1.17186824975E-03 2 1 3 -2.56859214800E-04 3 1 3 -6.50521303491E-19 4 1 3 -2.56859214800E-04 1 2 3 -2.56859214800E-04 2 2 3 -3.40681904812E-04 3 2 3 -5.42101086243E-19 4 2 3 -2.84528177875E-05 1 3 3 2.71050543121E-19 2 3 3 4.33680868994E-19 3 3 3 9.21571846613E-19 4 3 3 4.33680868994E-19 1 4 3 -2.56859214800E-04 2 4 3 -2.84528177875E-05 3 4 3 -5.42101086243E-19 4 4 3 -3.40681904812E-04 1 1 4 1.35449381128E-02 2 1 4 -4.87890977618E-19 3 1 4 3.40681904812E-04 4 1 4 -2.56859214800E-04 1 2 4 4.33680868994E-19 2 2 4 -5.42101086241E-20 3 2 4 4.87890977618E-19 4 2 4 1.13841228111E-18 1 3 4 3.40681904812E-04 2 3 4 -4.87890977618E-19 3 3 4 2.84528177875E-05 4 3 4 2.56859214800E-04 1 4 4 -2.56859214800E-04 2 4 4 5.96311194867E-19 3 4 4 2.56859214800E-04 4 4 4 -3.79470760370E-19 2 2 1 1 1 1 1 9.54367985968E-02 2 1 1 2.59643462106E-03 3 1 1 2.28698081118E-04 4 1 1 2.59643462106E-03 1 2 1 -1.25243229231E-02 2 2 1 9.09359831176E-05 3 2 1 9.09359831176E-05 4 2 1 -1.25243229231E-02 1 3 1 -7.86437867876E-04 2 3 1 9.54293859676E-05 3 3 1 -7.86437867876E-04 4 3 1 9.54293859676E-05 1 4 1 -1.25243229231E-02 2 4 1 -1.25243229231E-02 3 4 1 9.09359831176E-05 4 4 1 9.09359831176E-05 1 1 2 -1.25243229231E-02 2 1 2 9.09359831176E-05 3 1 2 9.09359831176E-05 4 1 2 -1.25243229231E-02 1 2 2 9.54293859676E-05 2 2 2 -2.51650147370E-04 3 2 2 9.54293859676E-05 4 2 2 -1.88240451243E-03 1 3 2 9.09359831176E-05 2 3 2 9.09359831176E-05 3 3 2 -7.38204975451E-04 4 3 2 -7.38204975451E-04 1 4 2 2.59643462106E-03 2 4 2 5.42194135386E-04 3 4 2 5.45304569630E-04 4 4 2 5.42194135386E-04 1 1 3 -7.86437867876E-04 2 1 3 9.54293859676E-05 3 1 3 -7.86437867876E-04 4 1 3 9.54293859676E-05 1 2 3 9.09359831176E-05 2 2 3 9.09359831176E-05 3 2 3 -7.38204975451E-04 4 2 3 -7.38204975451E-04 1 3 3 2.28698081118E-04 2 3 3 5.45304569630E-04 3 3 3 6.79845083330E-04 4 3 3 5.45304569630E-04 1 4 3 9.09359831176E-05 2 4 3 -7.38204975451E-04 3 4 3 -7.38204975451E-04 4 4 3 9.09359831176E-05 1 1 4 -1.25243229231E-02 2 1 4 -1.25243229231E-02 3 1 4 9.09359831176E-05 4 1 4 9.09359831176E-05 1 2 4 2.59643462106E-03 2 2 4 5.42194135386E-04 3 2 4 5.45304569630E-04 4 2 4 5.42194135386E-04 1 3 4 9.09359831176E-05 2 3 4 -7.38204975451E-04 3 3 4 -7.38204975451E-04 4 3 4 9.09359831176E-05 1 4 4 9.54293859676E-05 2 4 4 -1.88240451243E-03 3 4 4 9.54293859676E-05 4 4 4 -2.51650147370E-04 2 3 1 1 1 1 1 6.77626357803E-19 2 1 1 -2.43945488809E-19 3 1 1 1.08420217249E-18 4 1 1 -2.43945488809E-19 1 2 1 -1.35449381128E-02 2 2 1 2.56859214800E-04 3 2 1 -3.40681904812E-04 4 2 1 -3.79470760370E-19 1 3 1 -1.17186824975E-03 2 3 1 2.56859214800E-04 3 3 1 7.86046575052E-19 4 3 1 2.56859214800E-04 1 4 1 -1.35449381128E-02 2 4 1 -3.79470760370E-19 3 4 1 -3.40681904812E-04 4 4 1 2.56859214800E-04 1 1 2 -3.79470760370E-19 2 1 2 3.40681904812E-04 3 1 2 -2.56859214800E-04 4 1 2 1.35449381128E-02 1 2 2 2.56859214800E-04 2 2 2 1.89735380185E-19 3 2 2 -2.56859214800E-04 4 2 2 -1.35525271561E-19 1 3 2 2.56859214800E-04 2 3 2 3.40681904812E-04 3 3 2 -4.33680868994E-19 4 3 2 2.84528177875E-05 1 4 2 -2.43945488809E-19 2 4 2 1.54498809579E-18 3 4 2 2.71050543121E-20 4 4 2 1.35525271561E-19 1 1 3 7.31836466428E-19 2 1 3 -2.56859214800E-04 3 1 3 1.17186824975E-03 4 1 3 -2.56859214800E-04 1 2 3 -3.40681904812E-04 2 2 3 -2.56859214800E-04 3 2 3 -2.84528177875E-05 4 2 3 -3.79470760370E-19 1 3 3 9.75781955237E-19 2 3 3 -2.71050543121E-20 3 3 3 5.14996031931E-19 4 3 3 -2.71050543121E-20 1 4 3 -3.40681904812E-04 2 4 3 -3.79470760370E-19 3 4 3 -2.84528177875E-05 4 4 3 -2.56859214800E-04 1 1 4 -3.79470760370E-19 2 1 4 1.35449381128E-02 3 1 4 -2.56859214800E-04 4 1 4 3.40681904812E-04 1 2 4 -2.43945488809E-19 2 2 4 1.35525271561E-19 3 2 4 2.71050543121E-20 4 2 4 1.54498809579E-18 1 3 4 2.56859214800E-04 2 3 4 2.84528177875E-05 3 3 4 -4.33680868994E-19 4 3 4 3.40681904812E-04 1 4 4 2.56859214800E-04 2 4 4 -1.35525271561E-19 3 4 4 -2.56859214800E-04 4 4 4 1.89735380185E-19 3 1 1 1 1 1 1 7.04731412116E-19 2 1 1 1.35449381128E-02 3 1 1 1.17186824975E-03 4 1 1 1.35449381128E-02 1 2 1 8.94466792301E-19 2 2 1 -2.56859214800E-04 3 2 1 -2.56859214800E-04 4 2 1 -1.89735380185E-19 1 3 1 -1.05709711817E-18 2 3 1 3.40681904812E-04 3 3 1 -5.42101086243E-19 4 3 1 3.40681904812E-04 1 4 1 8.94466792301E-19 2 4 1 -1.89735380185E-19 3 4 1 -2.56859214800E-04 4 4 1 -2.56859214800E-04 1 1 2 -1.89735380185E-19 2 1 2 -2.56859214800E-04 3 1 2 -2.56859214800E-04 4 1 2 4.60785923306E-19 1 2 2 -3.40681904813E-04 2 2 2 -7.04731412116E-19 3 2 2 -3.40681904813E-04 4 2 2 -1.02999206386E-18 1 3 2 2.56859214800E-04 2 3 2 2.56859214800E-04 3 3 2 -1.35525271561E-19 4 3 2 6.77626357803E-19 1 4 2 -1.35449381128E-02 2 4 2 1.08420217249E-18 3 4 2 -2.84528177875E-05 4 4 2 6.50521303491E-19 1 1 3 -6.50521303491E-19 2 1 3 3.40681904812E-04 3 1 3 -1.00288700955E-18 4 1 3 3.40681904812E-04 1 2 3 2.56859214800E-04 2 2 3 2.56859214800E-04 3 2 3 6.23416249179E-19 4 2 3 -1.89735380185E-19 1 3 3 -1.17186824975E-03 2 3 3 2.84528177875E-05 3 3 3 7.04731412116E-19 4 3 3 2.84528177875E-05 1 4 3 2.56859214800E-04 2 4 3 -1.89735380185E-19 3 4 3 6.23416249179E-19 4 4 3 2.56859214800E-04 1 1 4 -1.89735380185E-19 2 1 4 4.60785923306E-19 3 1 4 -2.56859214800E-04 4 1 4 -2.56859214800E-04 1 2 4 -1.35449381128E-02 2 2 4 6.50521303491E-19 3 2 4 -2.84528177875E-05 4 2 4 1.08420217249E-18 1 3 4 2.56859214800E-04 2 3 4 6.77626357803E-19 3 3 4 -1.35525271561E-19 4 3 4 2.56859214800E-04 1 4 4 -3.40681904813E-04 2 4 4 -1.02999206386E-18 3 4 4 -3.40681904813E-04 4 4 4 -7.04731412116E-19 3 2 1 1 1 1 1 6.77626357803E-19 2 1 1 -2.43945488809E-19 3 1 1 1.08420217249E-18 4 1 1 -2.43945488809E-19 1 2 1 -1.35449381128E-02 2 2 1 2.56859214800E-04 3 2 1 -3.40681904812E-04 4 2 1 -3.79470760370E-19 1 3 1 -1.17186824975E-03 2 3 1 2.56859214800E-04 3 3 1 7.86046575052E-19 4 3 1 2.56859214800E-04 1 4 1 -1.35449381128E-02 2 4 1 -3.79470760370E-19 3 4 1 -3.40681904812E-04 4 4 1 2.56859214800E-04 1 1 2 -3.79470760370E-19 2 1 2 3.40681904812E-04 3 1 2 -2.56859214800E-04 4 1 2 1.35449381128E-02 1 2 2 2.56859214800E-04 2 2 2 1.89735380185E-19 3 2 2 -2.56859214800E-04 4 2 2 -1.35525271561E-19 1 3 2 2.56859214800E-04 2 3 2 3.40681904812E-04 3 3 2 -4.33680868994E-19 4 3 2 2.84528177875E-05 1 4 2 -2.43945488809E-19 2 4 2 1.54498809579E-18 3 4 2 2.71050543121E-20 4 4 2 1.35525271561E-19 1 1 3 7.31836466428E-19 2 1 3 -2.56859214800E-04 3 1 3 1.17186824975E-03 4 1 3 -2.56859214800E-04 1 2 3 -3.40681904812E-04 2 2 3 -2.56859214800E-04 3 2 3 -2.84528177875E-05 4 2 3 -3.79470760370E-19 1 3 3 9.75781955237E-19 2 3 3 -2.71050543121E-20 3 3 3 5.14996031931E-19 4 3 3 -2.71050543121E-20 1 4 3 -3.40681904812E-04 2 4 3 -3.79470760370E-19 3 4 3 -2.84528177875E-05 4 4 3 -2.56859214800E-04 1 1 4 -3.79470760370E-19 2 1 4 1.35449381128E-02 3 1 4 -2.56859214800E-04 4 1 4 3.40681904812E-04 1 2 4 -2.43945488809E-19 2 2 4 1.35525271561E-19 3 2 4 2.71050543121E-20 4 2 4 1.54498809579E-18 1 3 4 2.56859214800E-04 2 3 4 2.84528177875E-05 3 3 4 -4.33680868994E-19 4 3 4 3.40681904812E-04 1 4 4 2.56859214800E-04 2 4 4 -1.35525271561E-19 3 4 4 -2.56859214800E-04 4 4 4 1.89735380185E-19 3 3 1 1 1 1 1 9.54367985968E-02 2 1 1 -1.25243229231E-02 3 1 1 -7.86437867876E-04 4 1 1 -1.25243229231E-02 1 2 1 -1.25243229231E-02 2 2 1 9.54293859676E-05 3 2 1 9.09359831176E-05 4 2 1 2.59643462106E-03 1 3 1 -7.86437867876E-04 2 3 1 9.09359831176E-05 3 3 1 2.28698081118E-04 4 3 1 9.09359831176E-05 1 4 1 -1.25243229231E-02 2 4 1 2.59643462106E-03 3 4 1 9.09359831176E-05 4 4 1 9.54293859676E-05 1 1 2 2.59643462106E-03 2 1 2 9.09359831176E-05 3 1 2 9.54293859676E-05 4 1 2 -1.25243229231E-02 1 2 2 9.09359831176E-05 2 2 2 -2.51650147370E-04 3 2 2 9.09359831176E-05 4 2 2 5.42194135386E-04 1 3 2 9.54293859676E-05 2 3 2 9.09359831176E-05 3 3 2 5.45304569630E-04 4 3 2 -7.38204975451E-04 1 4 2 -1.25243229231E-02 2 4 2 5.42194135386E-04 3 4 2 -7.38204975451E-04 4 4 2 -1.88240451243E-03 1 1 3 2.28698081118E-04 2 1 3 9.09359831176E-05 3 1 3 -7.86437867876E-04 4 1 3 9.09359831176E-05 1 2 3 9.09359831176E-05 2 2 3 9.54293859676E-05 3 2 3 -7.38204975451E-04 4 2 3 5.45304569630E-04 1 3 3 -7.86437867876E-04 2 3 3 -7.38204975451E-04 3 3 3 6.79845083330E-04 4 3 3 -7.38204975451E-04 1 4 3 9.09359831176E-05 2 4 3 5.45304569630E-04 3 4 3 -7.38204975451E-04 4 4 3 9.54293859676E-05 1 1 4 2.59643462106E-03 2 1 4 -1.25243229231E-02 3 1 4 9.54293859676E-05 4 1 4 9.09359831176E-05 1 2 4 -1.25243229231E-02 2 2 4 -1.88240451243E-03 3 2 4 -7.38204975451E-04 4 2 4 5.42194135386E-04 1 3 4 9.54293859676E-05 2 3 4 -7.38204975451E-04 3 3 4 5.45304569630E-04 4 3 4 9.09359831176E-05 1 4 4 9.09359831176E-05 2 4 4 5.42194135386E-04 3 4 4 9.09359831176E-05 4 4 4 -2.51650147370E-04 espresso-5.0.2/PlotPhon/Examples/Al_FCC/Plot_input0000755000700200004540000000105012053145633020771 0ustar marsamoscm#!/bin/bash #################################################################### # # set the needed environment variables # . ../environment_variables # # IFC name w/o extension FC_name='Al444' # Specify atomic masses in the same order as in ph.in file cat > Atomic_mass < run_Plot_Phonons.sh chmod +x run_Plot_Phonons.sh ./run_Plot_Phonons.sh espresso-5.0.2/PlotPhon/Examples/Fe_AFM/Plot_input0000755000700200004540000000107712053145633021010 0ustar marsamoscm#!/bin/bash #################################################################### # # set the needed environment variables # . ../environment_variables # # IFC name w/o extenstion FC_name='Fe_AFM' # Specify atomic masses in the same order as in ph.in file cat > Atomic_mass < run_Plot_Phonons.sh chmod +x run_Plot_Phonons.sh ./run_Plot_Phonons.sh espresso-5.0.2/PlotPhon/Examples/Al_SC/Plot_input0000755000700200004540000000104712053145633020711 0ustar marsamoscm#!/bin/bash #################################################################### # # set the needed environment variables # . ../environment_variables # # IFC name w/o extenstion FC_name='Al4' # Specify atomic masses in the same order as in ph.in file cat > Atomic_mass < Freq_plot_unit < matdyn.in.tmp1 < matdyn.in.tmp2 <matdyn.in rm -f matdyn.in.tmp1 matdyn.in.tmp2 Atomic_mass echo ' Recalculating omega(q) from C(R) ... ' $BIN_DIR/matdyn.x < matdyn.in > matdyn.out echo ' Well done' $PLOT_DIR/bin/bands_to_gnuplot.x <$FC_name.freq cat > plot.GNU.begin << EOF set term postscript enhanced color "TimesNewRoman" 18 set output '$FC_name.$freq.ps' set nokey set noxtics set ylabel "Frequency, $freq" set title "Phonon calculations for $FC_name" set xzeroaxis lw 3 set border 15 lw 3 set encoding iso_8859_1 EOF $PLOT_DIR/bin/E_min_max.x <$FC_name.freq cat plot.GNU.begin plot.GNU.tmp > plot.$freq.GNU rm -f plot.GNU.begin plot.GNU.tmp gnuplot plot.$freq.GNU ps2pdf $FC_name.$freq.ps echo '###############################################################################################' echo '###############################################################################################' echo ' ' echo 'You have got phonon dispersion relations plotted using gnuplot (www.gnuplot.info) ' echo 'Now you can edit' plot.$freq.GNU 'in order to define E_min, E_max and Label_position ' echo 'more accurately to get publication-quality Postscript and PDF files. ' echo 'You can also redefine default parameters and add experimental data, too.' echo ' ' echo '###############################################################################################' echo '###############################################################################################' espresso-5.0.2/PlotPhon/Scripts/Lines0000755000700200004540000000601512053145633016556 0ustar marsamoscm# 1. q-points are in units of 2*\pi/a # 2. If you use cartesian for q-points then leave basis vectors unchanged # 3. q-points for FCC and BCC lattices are well-known in Cartesian and # there is no need to use basis vectors (so leave basis vectors unchanged) # 4. Otherwise you should provide correct basis vectors and # q-vectors wrt basis vectors (as "crystal" in scf-file) # # Basis vectors and vortex coordianates are due to Bradley, Cracknell Textbook # Except Simple cubic, Face Centered Cubic, Body Centered Cubic which are Cartesian cell=`head -1 $FC_name.fc | cut -c 9-11 ` echo $cell if [ $cell == 0 ]; then if [ ! -f Generic]; then echo 'You should define basis vectors and high symmetry points manually' echo 'If you choose coordinates of these points in Cartesian ' echo 'then you can choose a diagonal unitary matrix' exit fi cp $PLOT_DIR/Include/Generic K_points echo 'Manually given basis vectors and high symmetry k-points coordinates' elif [ $cell == 1 ]; then cp $PLOT_DIR/Include/Cubic_SC K_points echo 'Simple cubic' elif [ $cell == 2 ]; then cp $PLOT_DIR/Include/Cubic_FCC K_points echo 'Face Centered Cubic' elif [ $cell == 3 ]; then cp $PLOT_DIR/Include/Cubic_BCC K_points echo 'Body Centered Cubic' elif [ $cell == 4 ]; then c2a=`head -1 $FC_name.fc | cut -c 34-44 ` c2a1=`echo "scale=8; 1./$c2a" | bc -l ` cp $PLOT_DIR/Include/Hexagonal Kpts_tmp sed 's/XX/'$c2a1'/g' Kpts_tmp > ./K_points mv Kpts_tmp echo 'Hexagonal or Trigonal P' elif [ $cell == 5 ]; then echo 'Rhombohedrical, Trigonal R is not implemented yet' exit elif [ $cell == 6 ]; then c2a=`head -1 $FC_name.fc | cut -c 34-44 ` c2a1=`echo "scale=8; 1./$c2a" | bc -l ` cp $PLOT_DIR/Include/Tetragonal_Simple Kpts_tmp echo $c2a sed 's/XX/'$c2a1'/g' Kpts_tmp > ./K_points mv Kpts_tmp echo 'Simple Tetragonal' elif [ $cell == 7 ]; then echo 'Body Centered Tetragonal is not implemented yet' exit elif [ $cell == 8 ]; then b2a=`head -1 $FC_name.fc | cut -c 23-33 ` c2a=`head -1 $FC_name.fc | cut -c 34-44 ` b2a1=`echo "scale=8; 1./$b2a" | bc -l ` c2a1=`echo "scale=8; 1./$c2a" | bc -l ` cp $PLOT_DIR/Include/Orthorhombic_Simple Kpts_tmp echo $b2a echo $c2a sed 's/XX/'$b2a1'/g' Kpts_tmp > ./Kpts_tmp1 sed 's/YY/'$c2a1'/g' Kpts_tmp1 > ./K_points rm -f Kpts_tmp Kpts_tmp1 echo 'Simple Orthorhombic' elif [ $cell == 9 ]; then echo 'Base Centered Orthorhombic is not implemented yet' exit elif [ $cell == 10 ]; then echo 'Face Centered Orthorhombic is not implemented yet' exit elif [ $cell == 11 ]; then echo 'Orthorhomic Body Centered is not implemented yet' exit elif [ $cell == 12 ]; then echo 'Monoclinic system is not implemented yet' exit elif [ $cell == 13 ]; then echo 'Monoclilic Base Centered is not implemented yet' exit elif [ $cell == 14 ]; then echo 'Triclinic system is not implemented yet' exit fi espresso-5.0.2/PlotPhon/Clean0000755000700200004540000000016212053145633015074 0ustar marsamoscm#!/bin/bash cd SRC make clean_all cd ../Examples/Al_FCC . clean cd ../Al_SC . clean cd ../Fe_AFM . clean espresso-5.0.2/PlotPhon/Include/0000755000700200004540000000000012053440276015511 5ustar marsamoscmespresso-5.0.2/PlotPhon/Include/Hexagonal0000755000700200004540000000061512053145633017346 0ustar marsamoscm# Hexagonal (X=a/c) 1.000000 0.577350 0 0.000000 1.154700 0 0.000000 0.000000 XX # With respect to basis vectors 1 0.000000000 0.000000000 0.000000000 G 50 -0.333333333 0.666666667 0.000000000 K 50 0.000000000 0.500000000 0.000000000 M 50 0.000000000 0.000000000 0.000000000 G 50 0.000000000 0.000000000 0.500000000 A 50 0.000000000 0.500000000 0.500000000 L espresso-5.0.2/PlotPhon/Include/Cubic_FCC0000644000700200004540000000047712053145633017143 0ustar marsamoscmFace Centered Cubic 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 # Cartesian 1 0.000 0.000 0.000 G 50 1.000 0.000 0.000 X 50 1.000 1.000 1.000 G 50 0.500 0.500 0.500 L 50 1.000 0.000 0.000 X 50 1.000 0.500 0.000 W 50 0.500 0.500 0.500 L espresso-5.0.2/PlotPhon/Include/Generic0000644000700200004540000000047012053145633017010 0ustar marsamoscmBase centered orthorhombic (like alpha-U), Generic with ibrav=0 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 # Cartesian 1 0.00000 0.00000 0.00000 G 125 1.00000 0.00000 0.00000 S 80 1.00000 0.513817 0.00000 G 80 1.00000 0.513817 0.294242 Z espresso-5.0.2/PlotPhon/Include/Orthorhombic_Simple0000644000700200004540000000060312053145633021402 0ustar marsamoscm# Simple Orthorhombic lattice (X=b/a, Y=c/a) 1.0 0.0 0 0.0 XX 0 0.0 0.0 YY # With respect to basis vectors 1 0.00000 0.00000 0.50000 Z 50 0.00000 0.00000 0.00000 G 50 0.500000 0.00000 0.00000 X 50 0.500000 0.50000 0.00000 S 50 0.000000 0.50000 0.00000 Y 50 0.000000 0.00000 0.00000 G 50 0.500000 0.50000 0.50000 R espresso-5.0.2/PlotPhon/Include/Orthorhombic_Base_Centered0000644000700200004540000000044412053145633022637 0ustar marsamoscmBase centered orthorhombic (like alpha-U) 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 # Cartesian 1 0.00000 0.00000 0.00000 G 125 1.00000 0.00000 0.00000 S 80 1.00000 XX 0.00000 G 80 1.00000 XX YY Z espresso-5.0.2/PlotPhon/Include/Tetragonal_Simple0000755000700200004540000000047312053145633021053 0ustar marsamoscm# Simple tetragonal (X=a/c) 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 XX # With respect to basis vectors 1 0.00000 0.00000 0.50000 Z 40 0.00000 0.00000 0.00000 G 40 0.50000 0.00000 0.00000 X 40 0.50000 0.50000 0.00000 M 40 0.00000 0.00000 0.00000 G 40 0.50000 0.50000 0.50000 A espresso-5.0.2/PlotPhon/Include/Cubic_BCC0000644000700200004540000000046412053145633017133 0ustar marsamoscmBody Centered Cubic 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 # Cartesian 1 0.00000 0.00000 0.00000 G 50 0.00000 0.00000 1.00000 H 50 0.50000 0.50000 0.50000 P 50 0.00000 0.00000 0.00000 G 50 0.00000 0.50000 0.50000 N espresso-5.0.2/PlotPhon/Include/Cubic_SC0000644000700200004540000000043312053145633017045 0ustar marsamoscmSimple Cubic 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 # Cartesian 1 0.000 0.000 0.000 G 50 0.500 0.000 0.000 X 50 0.500 0.500 0.000 M 50 0.500 0.500 0.500 R 50 0.000 0.000 0.000 G 50 0.500 0.500 0.000 M espresso-5.0.2/PlotPhon/Compile0000755000700200004540000000034412053145633015444 0ustar marsamoscm#!/bin/bash if [ ! -d bin ]; then mkdir bin fi cd ./SRC make rm -f *.o cd ../bin ln -s ../SRC/bands_to_gnuplot.x bands_to_gnuplot.x ln -s ../SRC/E_min_max.x E_min_max.x ln -s ../SRC/k_for_bands.x k_for_bands.x cd .. espresso-5.0.2/PlotPhon/SRC/0000755000700200004540000000000012053440276014555 5ustar marsamoscmespresso-5.0.2/PlotPhon/SRC/Bands_to_gnuplot.f900000644000700200004540000000343712053145633020404 0ustar marsamoscm! For Quantum Espresso 3.0 and higher ! ! Copyright Eyvaz Isaev (2006-2007) ! Condensed Matter Theory Group, Uppsala University, Sweden, ! ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys, Russia ! ! Copyright Eyvaz Isaev (2007-2010): ! Department of Physics, Chemistry and Biology (IFM), ! Linkoping University, Linkoping, Sweden ! ! isaev@ifm.liu.se, eyvaz_isaev@yahoo.com ! ! Program makes it possible plotting phonon dispersion curves along high symmetry directions ! using Gnuplot (www.gnuplot.info). ! Phonon frequences are calculated by means of matdyn.x for a given number of k-vectors. ! Then the program yields a Frequency file to be used in a gnuplot script. implicit none integer nbnd, nks, i, j real*8, allocatable :: e(:,:), qx(:), qy(:), qz(:), ql(:) ! dimension e(1000,500),qx(1000),qy(1000),qz(1000) ! dimension ql(1000) open(10,file='Frequency') read(5,'(12X, I4, 6X,I4,2x)') nbnd, nks print*, 'nbands ===', nbnd allocate (e(nks,nbnd)) allocate (qx(nks),qy(nks),qz(nks),ql(nks)) if(nbnd.gt.500) print*, 'nbnd > 500, You have too many bands!' if(nks.gt.1000) stop 'nks > 1000, Too many k-points, usually 300-500 is enough.' do i=1,nks read(5,'(10X, 3f10.6)') qx(i),qy(i),qz(i) if(i.eq.1) then ql(i)=0. else ql(i)=ql(i-1)+ sqrt((qx(i)-qx(i-1))**2+(qy(i)-qy(i-1))**2+(qz(i-1)-qz(i))**2) endif read(5,'(6f10.4)') (e(i,j),j=1,nbnd) ! write(6,'(f8.4,6f14.6)') ql(i),(e(i,j),j=1,6) enddo do i=1, nbnd do j=1,nks write(10, '(2f10.4)') ql(j), e(j,i) enddo write(10,*) enddo ! deallocate (e(nks,nbnd)) ! deallocate (qx(nks),qy(nks),qz(nks),ql(nks)) stop end espresso-5.0.2/PlotPhon/SRC/make.inc0000644000700200004540000000025212053145633016163 0ustar marsamoscm# Intel Fortran #FC = ifort #LD = $(FC) -static #FFLAGS = -FR # g95 compiler #FC = g95 #LD = $(FC) #FFLAGS = # gfortran compiler FC = gfortran LD = $(FC) FFLAGS = espresso-5.0.2/PlotPhon/SRC/E_min_max.f900000644000700200004540000000545612053145633017002 0ustar marsamoscm! Copyright Eyvaz Isaev, PWSCF group, 2009-2010 ! ! Department of Physics, Chemistry and Biology (IFM) ! Linkoping Univrsity, Sweden ! ! Theoretical Physics Department ! Moscow State Institute of Steel and Alloys, Russia ! ! Program prepares a part of gnuplot file ! 1-defines axis labels ! 2-defines axis ! ! implicit real*8(a-h,o-z) implicit none ! real*8 kpoint(3,1000) integer maxlin, idiv, integs(100) integer i, j, k, nbnd, kpnt real*8 ax(3),by(3),cz(3) real*8 dl,kx,ky,kz real*8 E_min, E_max, THz, e_min_low character*10 dummy character*1 dummy1 character*11 dummy3 character*3 dummy2 character*65 plotchar real*8, allocatable :: e(:) real*8, allocatable :: kpoint(:,:) ! read(5,'(12x,i4,6X,i5,1X)') nbnd, kpnt allocate (e(nbnd)) allocate (kpoint(3,kpnt)) do i=1,kpnt read(5,*) read(5,*) (e(j),j=1,nbnd) if(i.eq.1) then E_min=e(1) E_max=e(1) endif do k=1,nbnd if(e(k).le.E_min) E_min=e(k) if(e(k).ge.E_max) E_max=e(k) enddo enddo e_min=dint(e_min*1.2) e_max=dint(e_max*1.2) e_min_low=e_min-33.0/2 open(12,file='Freq_plot_unit') open(15,file='plot.GNU.tmp') read(12,*) THz write(15,*) write(15,'("THz=", f8.4)') THz write(15,*) write(15,'("E_min=",f8.1)') E_min/Thz write(15,'("E_max=",f8.1)') E_max/Thz write(15,'("Label_position=",f8.1)') E_min_low/Thz write(15,*) close(12) ! Writing labels ! idiv=1 maxlin=0 open(9,file='kpts') open(10,file='K_points') read(10,*) dummy print*, dummy read(9,*) read(9,*) read(10,*) ax(1),by(1),cz(1) read(10,*) ax(2),by(2),cz(2) read(10,*) ax(3),by(3),cz(3) read(10,*) 11 read(10,*,end=99) integs(idiv), (kpoint(j,idiv),j=1,3), dummy1 print*, dummy1 if(dummy1.eq.'G') dummy3="{/Symbol G}" dummy2="//dummy1//" ! write(6,'(i6,2x,3f10.6)') integs(idiv), (kpoint(j,idiv),j=1,3) read(9,*) dl, kx,ky,kz dl=dl-0.03 if(dummy1.eq.'G') then write(15,'("set label ", 1h", a, 1h", " at ", f6.2, " , ", "Label_position")') dummy3, dl else write(15,'("set label ", 1h", a, 1h", " at ", f6.2, " , ", "Label_position")') dummy1, dl endif idiv=idiv+1 maxlin=maxlin+1 goto 11 99 continue write(15,*) close(9) open(9,file='kpts') open(15,file='plot.GNU.tmp') read(9,'(1x,I5)') maxlin read(9,*) do i=1,maxlin read(9,*) dl,kx,ky,kz ! if(i.ne.1.and.i.ne.maxlin) then write(15,'("set arrow nohead from ",f8.5, ", E_min", " to ", f8.5,", E_max", " lw 3")') dl, dl endif ! enddo close(9) close(10) close(14) write(15,*) plotchar="plot [:] [E_min:E_max] 'Frequency' u 1:($2/THz) w lines lt 1 lw 3" write(15,'(a)') plotchar write(15,*) ! deallocate (e(nbnd)) ! deallocate (kpoint(3,kpnt)) stop end espresso-5.0.2/PlotPhon/SRC/Makefile0000644000700200004540000000071012053145633016212 0ustar marsamoscm.SUFFIXES: .f90 .o include ./make.inc kpoints_x = k_for_bands.x bands_x = bands_to_gnuplot.x Eminmax_x = E_min_max.x OBJ1 = K_for_bands.o OBJ2 = Bands_to_gnuplot.o OBJ3 = E_min_max.o all: Kpts E_bands Plot Kpts: $(OBJ1) $(LD) -o $(kpoints_x) $(OBJ1) E_bands:$(OBJ2) $(LD) -o $(bands_x) $(OBJ2) Plot: $(OBJ3) $(LD) -o $(Eminmax_x) $(OBJ3) .f90.o : $(FC) $(FFLAGS) -c $< clean: rm -f *.o clean_all: clean \rm -f *.x espresso-5.0.2/PlotPhon/SRC/K_for_bands.f900000644000700200004540000000676112053145633017315 0ustar marsamoscm!C ********************************************************************* !C k-points generation for band structure and phonon dispersion relations calculation. !C Written by E.I. Isaev, 2003-2010 !C GNU General Public License ! ! Department of Physics, Chemistry and Biology (IFM), ! Linkoping University, Sweden ! ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys, Russia ! !C ********************************************************************* !C ********************************************************************* !C !C Input paremeters: !C maxlin - maximal number of symmetric directions !C ax(3), by(3), cz(3) - basis vectors for the reciprocal lattice !C (taken from scf.out) !C idiv - number of dividing for a given direction !C kpoint(3,i) - Irreducible Brillouin zone vertexes??? for a given crystal symmetry !C and a successive pair forms a symmetric direction !C !C Output parameters !C kpts(3,i) - k-vectors to be used for band structure calculations !C !C Output files !C q.grid - to be used for band sturcture and phonon dispersion !C relation calculations (band.in, matdyn.in) !C q.points - to be used in conjunction with Bands.f file !C which generates an output file for Gnuplot !C ! implicit real*8(a-h,o-z) real*8 kpoint(3,2000), kpts(3,2000) integer maxlin, integs(100) real*8 ax(3),by(3),cz(3) character*10 dummy character*1 dummy1 idiv=1 maxlin=0 read(5,*) dummy read(5,*) ax(1),by(1),cz(1) read(5,*) ax(2),by(2),cz(2) read(5,*) ax(3),by(3),cz(3) read(5,*) 11 read(5,*,end=99) integs(idiv), (kpoint(j,idiv),j=1,3), dummy1 print*, dummy1 idiv=idiv+1 maxlin=maxlin+1 goto 11 99 continue do i=1, maxlin x=kpoint(1,i) y=kpoint(2,i) z=kpoint(3,i) x1=ax(1)*x +ax(2)*y + ax(3)*z x2=by(1)*x +by(2)*y + by(3)*z x3=cz(1)*x +cz(2)*y + cz(3)*z kpoint(1,i)=x1 kpoint(2,i)=x2 kpoint(3,i)=x3 write(6,'(3f10.6)') (kpoint(j,i), j=1,3) enddo open(9,file='kpts') do i=1,maxlin if(i.eq.1) then write(9,'("#", i5)') maxlin write(9,'("#")') dl=0.0 write(9,'(4f10.5)') dl, kpoint(1,i),kpoint(2,i),kpoint(3,i) else dl=dl+sqrt((kpoint(1,i)-kpoint(1,i-1))**2 + & & (kpoint(2,i)-kpoint(2,i-1))**2 + & & (kpoint(3,i)-kpoint(3,i-1))**2) write(9,'(4f10.5)') dl, kpoint(1,i),kpoint(2,i),kpoint(3,i) endif enddo close(9) nk = 0 do i=1,3 kpts(i,1)=kpoint(i,1) enddo nk1=2 do il = 2,maxlin nkl = integs(il) nk = nk + nkl do ik = 1,nkl do ix = 1,3 kpts(ix,nk1) = & & kpoint(ix,il-1)+ & & (kpoint(ix,il) - kpoint(ix,il-1))*dfloat(ik)/integs(il) enddo write(6,'(3f10.6)') (kpts(i2,nk1),i2=1,3) nk1=nk1+1 if(nk1.gt.500) print*, 'You have more than 500 k-points. Be sure it is OK.' if(nk1.gt.1000) stop 'You have lots of k-points nk1>1000, this is unreasanoble.' enddo enddo open(11, file='ph.grid', status='unknown') nk1=nk1-1 wgt=1. path=0.d0 write(11,'(I6)') nk1 do i1=1,nk1 if(i1.eq.1) then path=0.d0 write(11,'(3f10.5,f6.2)') (kpts(i2,i1),i2=1,3),wgt else path=path + dsqrt((kpts(1,i1)-kpts(1,i1-1))**2+ & & (kpts(2,i1)-kpts(2,i1-1))**2+ & & (kpts(3,i1)-kpts(3,i1-1))**2) write(11,'(3f10.5,f6.2)') (kpts(i2,i1),i2=1,3),wgt endif enddo stop end espresso-5.0.2/flib/0000755000700200004540000000000012053440273013274 5ustar marsamoscmespresso-5.0.2/flib/radial_gradients.f900000644000700200004540000001107012053145634017112 0ustar marsamoscm! ! Copyright (C) 2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine radial_gradient(f,gf,r,mesh,iflag) ! ! This subroutine calculates the derivative with respect to r of a ! radial function defined on the mesh r. If iflag=0 it uses all mesh ! points. If iflag=1 it uses only a coarse grained mesh close to the ! origin, to avoid large errors in the derivative when the function ! is too smooth. ! use kinds, only : DP implicit none integer, intent(in) :: mesh, iflag real(DP), intent(in) :: f(mesh), r(mesh) real(DP), intent(out) :: gf(mesh) integer :: i,j,k,imin,npoint real(DP) :: delta, b(5), faux(6), raux(6) ! ! This formula is used in the all-electron case. ! if (iflag==0) then do i=2, mesh-1 gf(i)=( (r(i+1)-r(i))**2*(f(i-1)-f(i)) & -(r(i-1)-r(i))**2*(f(i+1)-f(i)) ) & /((r(i+1)-r(i))*(r(i-1)-r(i))*(r(i+1)-r(i-1))) enddo gf(mesh)=0.0_dp ! ! The gradient in the first point is a linear interpolation of the ! gradient at point 2 and 3. ! gf(1) = gf(2) + (gf(3)-gf(2)) * (r(1)-r(2)) / (r(3)-r(2)) return endif ! ! If the input function is slowly changing (as the pseudocharge), ! the previous formula is affected by numerical errors close to the ! origin where the r points are too close one to the other. Therefore ! we calculate the gradient on a coarser mesh. This gradient is often ! more accurate but still does not remove all instabilities observed ! with the GGA. ! At larger r the distances between points become larger than delta ! and this formula coincides with the previous one. ! (ADC 08/2007) ! delta=0.00001_dp imin=1 points: do i=2, mesh do j=i+1,mesh if (r(j)>r(i)+delta) then do k=i-1,1,-1 if (r(k)r(imin+1)+(k-1)*delta) then faux(k)=gf(i) raux(k)=r(i) j=i+1 cycle points_fit endif enddo enddo points_fit call fit_pol(raux,faux,npoint,3,b) do i=1,imin gf(i)=b(1)+r(i)*(b(2)+r(i)*(b(3)+r(i)*b(4))) enddo return end subroutine radial_gradient subroutine fit_pol(xdata,ydata,n,degree,b) ! ! This routine finds the coefficients of the least-square polynomial which ! interpolates the n input data points. ! use kinds, ONLY : DP implicit none integer, intent(in) :: n, degree real(DP), intent(in) :: xdata(n), ydata(n) real(DP), intent(out) :: b(degree+1) integer :: ipiv(degree+1), info, i, j, k real(DP) :: bmat(degree+1,degree+1), amat(degree+1,n) amat(1,:)=1.0_DP do i=2,degree+1 do j=1,n amat(i,j)=amat(i-1,j)*xdata(j) enddo enddo do i=1,degree+1 b(i)=0.0_DP do k=1,n b(i)=b(i)+ydata(k)*xdata(k)**(i-1) enddo enddo do i=1,degree+1 do j=1,degree+1 bmat(i,j)=0.0_DP do k=1,n bmat(i,j)=bmat(i,j)+amat(i,k)*amat(j,k) enddo enddo enddo ! ! This lapack routine solves the linear system that gives the ! coefficients of the interpolating polynomial. ! call DGESV(degree+1, 1, bmat, degree+1, ipiv, b, degree+1, info) if (info.ne.0) call errore('pol_fit','problems with the linear system', & abs(info)) return end subroutine fit_pol espresso-5.0.2/flib/dylmr2.f900000644000700200004540000000517512053145634015040 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine dylmr2 (nylm, ngy, g, gg, dylm, ipol) !----------------------------------------------------------------------- ! ! compute \partial Y_lm(G) \over \partial (G)_ipol ! using simple numerical derivation (SdG) ! The spherical harmonics are calculated in ylmr2 ! USE kinds, ONLY : DP implicit none ! ! here the I/O variables ! integer :: nylm, ngy, ipol ! input: number of spherical harmonics ! input: the number of g vectors to compute ! input: desired polarization real(DP) :: g (3, ngy), gg (ngy), dylm (ngy, nylm) ! input: the coordinates of g vectors ! input: the moduli of g vectors ! output: the spherical harmonics derivatives ! ! and here the local variables ! integer :: ig, lm ! counter on g vectors ! counter on l,m component real(DP), parameter :: delta = 1.d-6 real(DP), allocatable :: dg (:), dgi (:), gx (:,:), ggx (:), ylmaux (:,:) ! dg is the finite increment for numerical derivation: ! dg = delta |G| = delta * sqrt(gg) ! dgi= 1 /(delta * sqrt(gg)) ! gx = g +/- dg ! ggx = gx^2 ! allocate ( gx(3,ngy), ggx(ngy), dg(ngy), dgi(ngy), ylmaux(ngy,nylm) ) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy dg (ig) = delta * sqrt (gg (ig) ) if (gg (ig) .gt. 1.d-9) then dgi (ig) = 1.d0 / dg (ig) else dgi (ig) = 0.d0 endif enddo !$OMP END PARALLEL DO call dcopy (3 * ngy, g, 1, gx, 1) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy gx (ipol, ig) = g (ipol, ig) + dg (ig) ggx (ig) = gx (1, ig) * gx (1, ig) + & gx (2, ig) * gx (2, ig) + & gx (3, ig) * gx (3, ig) enddo !$OMP END PARALLEL DO call ylmr2 (nylm, ngy, gx, ggx, dylm) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy gx (ipol, ig) = g (ipol, ig) - dg (ig) ggx (ig) = gx (1, ig) * gx (1, ig) + & gx (2, ig) * gx (2, ig) + & gx (3, ig) * gx (3, ig) enddo !$OMP END PARALLEL DO call ylmr2 (nylm, ngy, gx, ggx, ylmaux) call daxpy (ngy * nylm, - 1.d0, ylmaux, 1, dylm, 1) do lm = 1, nylm !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy dylm (ig, lm) = dylm (ig, lm) * 0.5d0 * dgi (ig) enddo !$OMP END PARALLEL DO enddo deallocate ( gx, ggx, dg, dgi, ylmaux ) return end subroutine dylmr2 espresso-5.0.2/flib/distools.f900000644000700200004540000004417612053145634015473 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !----------------------------------------------------------------------- ! SUBROUTINE block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) INTEGER, INTENT(IN) :: nat, me_image, nproc_image INTEGER, INTENT(OUT) :: ia_s, ia_e, mykey INTEGER :: na_loc, r, nproc_ia INTEGER, EXTERNAL :: ldim_block, gind_block ! Parallel: divide among processors for the same image ! ! compute how many processors we have for a given atom ! nproc_ia = nproc_image / nat ! IF( nproc_ia == 0 ) THEN ! ! here we have less than one processor per atom ! mykey = 0 na_loc = ldim_block( nat, nproc_image, me_image) ia_s = gind_block( 1, nat, nproc_image, me_image ) ia_e = ia_s + na_loc - 1 ! ELSE ! ! here we have more than one proc per atom ! r = MOD( nproc_image, nat ) ! IF( me_image < (nproc_ia + 1)*r ) THEN ! processors that do the work, more procs work on a single atom ia_s = me_image/(nproc_ia + 1) + 1 mykey = MOD( me_image, nproc_ia + 1 ) ELSE ia_s = ( me_image - (nproc_ia + 1)*r ) / nproc_ia + 1 + r mykey = MOD( me_image - (nproc_ia + 1)*r , nproc_ia ) END IF ! ia_e = ia_s ! END IF RETURN END SUBROUTINE ! ! SUBROUTINE GRID2D_DIMS( grid_shape, nproc, nprow, npcol ) ! ! This subroutine factorizes the number of processors (NPROC) ! into NPROW and NPCOL according to the shape ! ! Written by Carlo Cavazzoni ! IMPLICIT NONE CHARACTER, INTENT(IN) :: grid_shape INTEGER, INTENT(IN) :: nproc INTEGER, INTENT(OUT) :: nprow, npcol INTEGER :: sqrtnp, i ! sqrtnp = INT( SQRT( REAL( nproc ) + 0.1 ) ) ! IF( grid_shape == 'S' ) THEN ! Square grid nprow = sqrtnp npcol = sqrtnp ELSE ! Rectangular grid DO i = 1, sqrtnp + 1 IF( MOD( nproc, i ) == 0 ) nprow = i end do npcol = nproc / nprow END IF RETURN END SUBROUTINE SUBROUTINE GRID2D_COORDS( order, rank, nprow, npcol, row, col ) ! ! this subroutine compute the cartesian coordinetes "row" and "col" ! of the processor whose MPI task id is "rank". ! Note that if the rank is larger that the grid size ! all processors whose MPI task id is greather or equal ! than nprow * npcol are placed on the diagonal extension of the grid itself ! IMPLICIT NONE CHARACTER, INTENT(IN) :: order INTEGER, INTENT(IN) :: rank ! process index starting from 0 INTEGER, INTENT(IN) :: nprow, npcol ! dimensions of the processor grid INTEGER, INTENT(OUT) :: row, col IF( rank >= 0 .AND. rank < nprow * npcol ) THEN IF( order == 'C' .OR. order == 'c' ) THEN ! grid in COLUMN MAJOR ORDER row = MOD( rank, nprow ) col = rank / nprow ELSE ! grid in ROW MAJOR ORDER row = rank / npcol col = MOD( rank, npcol ) END IF ELSE row = rank col = rank END IF RETURN END SUBROUTINE SUBROUTINE GRID2D_RANK( order, nprow, npcol, row, col, rank ) ! ! this subroutine compute the processor MPI task id "rank" of the processor ! whose cartesian coordinate are "row" and "col". ! Note that the subroutine assume cyclic indexing ( row = nprow = 0 ) ! IMPLICIT NONE CHARACTER, INTENT(IN) :: order INTEGER, INTENT(OUT) :: rank ! process index starting from 0 INTEGER, INTENT(IN) :: nprow, npcol ! dimensions of the processor grid INTEGER, INTENT(IN) :: row, col IF( order == 'C' .OR. order == 'c' ) THEN ! grid in COLUMN MAJOR ORDER rank = MOD( row + nprow, nprow ) + MOD( col + npcol, npcol ) * nprow ELSE ! grid in ROW MAJOR ORDER rank = MOD( col + npcol, npcol ) + MOD( row + nprow, nprow ) * npcol END IF ! RETURN END SUBROUTINE ! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! INTEGER FUNCTION ldim_cyclic(gdim, np, me) ! gdim = global dimension of distributed array ! np = number of processors ! me = index of the calling processor (starting from 0) ! ! this function return the number of elements of the distributed array ! stored in the local memory of the processor "me" for a cyclic ! data distribution. ! Example of the cyclic distribution of a 10 elements array on 4 processors ! array elements | PEs ! a(1) | 0 ! a(2) | 1 ! a(3) | 2 ! a(4) | 3 ! a(5) | 0 ! a(6) | 1 ! a(7) | 2 ! a(8) | 3 ! a(9) | 0 ! a(10) | 1 IMPLICIT NONE INTEGER :: gdim, np, me, r, q IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_cyclic: arg no. 3 out of range ' STOP END IF q = INT(gdim / np) r = MOD(gdim, np) IF( me .LT. r ) THEN ldim_cyclic = q+1 ELSE ldim_cyclic = q END IF RETURN END FUNCTION ldim_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION ldim_block(gdim, np, me) ! gdim = global dimension of distributed array ! np = number of processors ! me = index of the calling processor (starting from 0) ! ! this function return the number of elements of the distributed array ! stored in the local memory of the processor "me" for a balanced block ! data distribution, with the larger block on the lower index processors. ! Example of the block distribution of 10 elements array a on 4 processors ! array elements | PEs ! a(1) | 0 ! a(2) | 0 ! a(3) | 0 ! a(4) | 1 ! a(5) | 1 ! a(6) | 1 ! a(7) | 2 ! a(8) | 2 ! a(9) | 3 ! a(10) | 3 IMPLICIT NONE INTEGER :: gdim, np, me, r, q IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_block: arg no. 3 out of range ' STOP END IF q = INT(gdim / np) r = MOD(gdim, np) IF( me .LT. r ) THEN ! ... if my index is less than the reminder I got an extra element ldim_block = q+1 ELSE ldim_block = q END IF RETURN END FUNCTION ldim_block !=----------------------------------------------------------------------------=! INTEGER FUNCTION ldim_block_sca( gdim, np, me ) ! gdim = global dimension of distributed array ! np = number of processors ! me = index of the calling processor (starting from 0) ! ! this function return the number of elements of the distributed array ! stored in the local memory of the processor "me" for equal block ! data distribution, all block have the same size but the last one. ! Example of the block distribution of 10 elements array a on 4 processors ! array elements | PEs ! a(1) | 0 ! a(2) | 0 ! a(3) | 0 ! a(4) | 1 ! a(5) | 1 ! a(6) | 1 ! a(7) | 2 ! a(8) | 2 ! a(9) | 2 ! a(10) | 3 IMPLICIT NONE INTEGER :: gdim, np, me, nb IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_block: arg no. 3 out of range ' STOP END IF nb = INT( gdim / np ) IF( MOD( gdim, np ) /= 0 ) THEN nb = nb+1 ! ... last processor take the rest IF( me == ( np - 1 ) ) nb = gdim - (np-1)*nb END IF ldim_block_sca = nb RETURN END FUNCTION ldim_block_sca !=----------------------------------------------------------------------------=! INTEGER FUNCTION ldim_block_cyclic( N, NB, NPROCS, IPROC ) ! -- Derived from: NUMROC( N, NB, IPROC, ISRCPROC, NPROCS ) ! -- ScaLAPACK tools routine (version 1.5) -- ! University of Tennessee, Knoxville, Oak Ridge National Laboratory, ! and University of California, Berkeley. ! May 1, 1997 ! ! .. Scalar Arguments .. IMPLICIT NONE INTEGER IPROC, ISRCPROC, N, NB, NPROCS, NUMROC ! .. ! ! Purpose ! ======= ! ! NUMROC computes the NUMber of Rows Or Columns of a distributed ! matrix owned by the process indicated by IPROC. ! ! Arguments ! ========= ! ! N (global input) INTEGER ! The number of rows/columns in distributed matrix. ! ! NB (global input) INTEGER ! Block size, size of the blocks the distributed matrix is ! split into. ! ! IPROC (local input) INTEGER ! The coordinate of the process whose local array row or ! column is to be determined. ! ! ISRCPROC (global input) INTEGER ! The coordinate of the process that possesses the first ! row or column of the distributed matrix. ! ! NPROCS (global input) INTEGER ! The total number processes over which the matrix is ! distributed. ! ! ===================================================================== ! ! .. Local Scalars .. INTEGER EXTRABLKS, MYDIST, NBLOCKS ! .. ! .. Intrinsic Functions .. INTRINSIC MOD ! .. ! .. Executable Statements .. ! ! Figure PROC's distance from source process ! ISRCPROC = 0 MYDIST = MOD( NPROCS+IPROC-ISRCPROC, NPROCS ) ! ! Figure the total number of whole NB blocks N is split up into ! NBLOCKS = N / NB ! ! Figure the minimum number of rows/cols a process can have ! NUMROC = (NBLOCKS/NPROCS) * NB ! ! See if there are any extra blocks ! EXTRABLKS = MOD( NBLOCKS, NPROCS ) ! ! If I have an extra block ! IF( MYDIST.LT.EXTRABLKS ) THEN NUMROC = NUMROC + NB ! ! If I have last block, it may be a partial block ! ELSE IF( MYDIST.EQ.EXTRABLKS ) THEN NUMROC = NUMROC + MOD( N, NB ) END IF ! ldim_block_cyclic = numroc RETURN ! ! End of NUMROC ! END FUNCTION ldim_block_cyclic ! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! INTEGER FUNCTION lind_block(ig, nx, np, me) ! ! INPUT : ! ig global index of the x dimension of array element ! nx dimension of the global array ! np number of processor in the x dimension of the processors grid ! me index of the local processor in the processor grid ! (starting from zero) ! ! OUTPUT : ! ! lind_block return the local index corresponding to the ! global index "ig" for a balanced block distribution ! IMPLICIT NONE INTEGER :: ig, nx, np, me, r, q q = INT(nx/np) r = MOD(nx,np) IF( me < r ) THEN lind_block = ig - (q+1) * me ELSE lind_block = ig - (q+1) * r - q * (me - r) END IF RETURN END FUNCTION lind_block !=----------------------------------------------------------------------------=! INTEGER FUNCTION lind_block_sca(ig, nx, np, me) ! ! INPUT : ! ig global index of the x dimension of array element ! nx dimension of the global array ! np number of processor in the x dimension of the processors grid ! me index of the local processor in the processor grid ! (starting from zero) ! ! OUTPUT : ! ! lind_block_sca return the local index corresponding to the ! global index "ig" for an equal block distribution ! IMPLICIT NONE INTEGER :: ig, nx, np, me, nb nb = INT( nx / np ) IF( MOD( nx, np ) /= 0 ) nb = nb+1 lind_block_sca = ig - me * nb RETURN END FUNCTION lind_block_sca !=----------------------------------------------------------------------------=! INTEGER FUNCTION lind_cyclic(ig, nx, np, me) ! ! INPUT : ! ig global index of the x dimension of array element ! nx dimension of the global array ! np number of processor in the x dimension of the processors grid ! me index of the local processor in the processor grid ! (starting from zero) ! ! OUTPUT : ! ! lind_cyclic return the local index corresponding to the ! global index "ig" for a cyclic distribution ! IMPLICIT NONE INTEGER :: ig, nx, np, me lind_cyclic = (ig-1)/np + 1 RETURN END FUNCTION lind_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION lind_block_cyclic( INDXGLOB, NB, NPROCS, IPROC ) ! Derived from: INDXG2L( INDXGLOB, NB, IPROC, ISRCPROC, NPROCS ) ! -- ScaLAPACK tools routine (version 1.5) -- ! University of Tennessee, Knoxville, Oak Ridge National Laboratory, ! and University of California, Berkeley. ! May 1, 1997 ! ! .. Scalar Arguments .. IMPLICIT NONE INTEGER INDXGLOB, IPROC, ISRCPROC, NB, NPROCS, INDXG2L ! .. ! ! Purpose ! ======= ! ! INDXG2L computes the local index of a distributed matrix entry ! pointed to by the global index INDXGLOB. ! ! Arguments ! ========= ! ! INDXGLOB (global input) INTEGER ! The global index of the distributed matrix entry. ! ! NB (global input) INTEGER ! Block size, size of the blocks the distributed matrix is ! split into. ! ! IPROC (local dummy) INTEGER ! Dummy argument in this case in order to unify the calling ! sequence of the tool-routines. ! ! ISRCPROC (local dummy) INTEGER ! Dummy argument in this case in order to unify the calling ! sequence of the tool-routines. ! ! NPROCS (global input) INTEGER ! The total number processes over which the distributed ! matrix is distributed. ! ! ===================================================================== ! ! .. Intrinsic Functions .. INTRINSIC MOD ! .. ! .. Executable Statements .. ! ISRCPROC = 0 INDXG2L = NB*((INDXGLOB-1)/(NB*NPROCS))+MOD(INDXGLOB-1,NB)+1 lind_block_cyclic = INDXG2L ! RETURN ! ! End of INDXG2L ! END FUNCTION lind_block_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_cyclic( lind, n, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. ! INTEGER, INTENT(IN) :: lind, n, me, np INTEGER r, q gind_cyclic = (lind-1) * np + me + 1 RETURN END FUNCTION gind_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_block( lind, n, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. INTEGER, INTENT(IN) :: lind, n, me, np INTEGER r, q q = INT(n/np) r = MOD(n,np) IF( me < r ) THEN gind_block = (Q+1)*me + lind ELSE gind_block = Q*me + R + lind END IF RETURN END FUNCTION gind_block !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_block_sca( lind, n, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. INTEGER, INTENT(IN) :: lind, n, me, np INTEGER nb IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_block: arg no. 3 out of range ' STOP END IF nb = INT( n / np ) IF( MOD( n, np ) /= 0 ) nb = nb+1 gind_block_sca = lind + me * nb RETURN END FUNCTION gind_block_sca !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_block_cyclic( lind, n, nb, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! NB size of the blocks the distributed matrix is split into. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. INTEGER, INTENT(IN) :: lind, n, nb, me, np INTEGER r, q, isrc isrc = 0 gind_block_cyclic = np*NB*((lind-1)/NB) + & MOD(lind-1,NB) + MOD(np+me-isrc, np)*NB + 1 RETURN END FUNCTION gind_block_cyclic espresso-5.0.2/flib/more_functionals.f900000644000700200004540000017476112053145634017206 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ================================================================== SUBROUTINE LSD_LYP(RHO,ETA,ELYP,VALYP,VBLYP) ! ==--------------------------------------------------------------== ! == C. LEE, W. YANG, AND R.G. PARR, PRB 37, 785 (1988) == ! == THIS IS ONLY THE LDA PART == ! ==--------------------------------------------------------------== USE kinds, ONLY: DP ! IMPLICIT NONE ! arguments REAL(DP) :: RHO,ETA,ELYP,VALYP,VBLYP ! locals REAL(DP) :: RA,RB,RM3,DR,E1,OR,DOR,E2,DE1A,DE1B,DE2A,DE2B REAL(DP), PARAMETER :: SMALL=1.D-24, A=0.04918D0, B=0.132D0, & C=0.2533D0, D=0.349D0, CF=2.87123400018819108D0 ! ==--------------------------------------------------------------== RA=RHO*0.5D0*(1.D0+ETA) RA=MAX(RA,SMALL) RB=RHO*0.5D0*(1.D0-ETA) RB=MAX(RB,SMALL) RM3=RHO**(-1.D0/3.D0) DR=(1.D0+D*RM3) E1=4.D0*A*RA*RB/RHO/DR OR=EXP(-C*RM3)/DR*RM3**11.D0 DOR=-1.D0/3.D0*RM3**4*OR*(11.D0/RM3-C-D/DR) E2=2.D0**(11.D0/3.D0)*CF*A*B*OR*RA*RB*(RA**(8.d0/3.d0)+ RB**(8.d0/3.d0)) ELYP=(-E1-E2)/RHO DE1A=-E1*(1.D0/3.D0*D*RM3**4/DR+1./RA-1./RHO) DE1B=-E1*(1.D0/3.D0*D*RM3**4/DR+1./RB-1./RHO) DE2A=-2.D0**(11.D0/3.D0)*CF*A*B*(DOR*RA*RB*(RA**(8.d0/3.d0)+ & RB**(8.d0/3.d0))+OR*RB*(11.d0/3.d0*RA**(8.d0/3.d0)+ & RB**(8.d0/3.d0))) DE2B=-2.D0**(11.D0/3.D0)*CF*A*B*(DOR*RA*RB*(RA**(8.d0/3.d0)+ & RB**(8.d0/3.d0))+OR*RA*(11.d0/3.d0*RB**(8.d0/3.d0)+ & RA**(8.d0/3.d0))) VALYP=DE1A+DE2A VBLYP=DE1B+DE2B ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_LYP ! ================================================================== SUBROUTINE LSD_PADE(RHO,ETA,EC,VCA,VCB) ! ==--------------------------------------------------------------== ! == PADE APPROXIMATION == ! ==--------------------------------------------------------------== USE kinds, ONLY: DP IMPLICIT NONE ! arguments REAL(DP) :: RHO,ETA,EC,VCA,VCB ! locals REAL(DP) :: RS,FS,DFS,DFSA,DFSB,A0P,A1P,A2P,A3P,B1P,B2P,B3P,B4P REAL(DP) :: TOP,DTOP,TOPX,BOT,DBOT,BOTX,VC,DX REAL(DP), PARAMETER :: A0=.4581652932831429d0, A1=2.217058676663745d0, & A2=0.7405551735357053d0, A3=0.01968227878617998d0 REAL(DP), PARAMETER :: B1=1.0D0, B2=4.504130959426697d0, & B3=1.110667363742916d0, B4=0.02359291751427506d0 REAL(DP), PARAMETER :: DA0=.119086804055547D0, DA1=.6157402568883345d0, & DA2=.1574201515892867d0, DA3=.003532336663397157d0 REAL(DP), PARAMETER :: DB1=0.0d0, DB2=.2673612973836267d0, & DB3=.2052004607777787d0, DB4=.004200005045691381d0 REAL(DP), PARAMETER :: RSFAC=.6203504908994000d0, FSFAC=1.92366105093153617d0 ! ==--------------------------------------------------------------== RS=RSFAC*RHO**(-1.d0/3.d0) FS=FSFAC*((1.d0+ETA)**(4.d0/3.d0)+(1.d0-ETA)**(4.d0/3.d0)-2.d0) DFS=FSFAC*4.d0/3.d0* ((1.d0+ETA)**(1.d0/3.d0)-(1.d0-ETA)**(1.d0/3.d0)) DFSA=DFS*(1.d0-ETA) DFSB=DFS*(-1.d0-ETA) A0P=A0+FS*DA0 A1P=A1+FS*DA1 A2P=A2+FS*DA2 A3P=A3+FS*DA3 B1P=B1+FS*DB1 B2P=B2+FS*DB2 B3P=B3+FS*DB3 B4P=B4+FS*DB4 TOP=A0P+RS*(A1P+RS*(A2P+RS*A3P)) DTOP=A1P+RS*(2.d0*A2P+RS*3.d0*A3P) TOPX=DA0+RS*(DA1+RS*(DA2+RS*DA3)) BOT=RS*(B1P+RS*(B2P+RS*(B3P+RS*B4P))) DBOT=B1P+RS*(2.d0*B2P+RS*(3.d0*B3P+RS*4.d0*B4P)) BOTX=RS*(DB1+RS*(DB2+RS*(DB3+RS*DB4))) EC=-TOP/BOT VC=EC+RS*(DTOP/BOT-TOP*DBOT/(BOT*BOT))/3.d0 DX=-(TOPX/BOT-TOP*BOTX/(BOT*BOT)) VCA=VC+DX*DFSA VCB=VC+DX*DFSB ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_PADE ! ================================================================== SUBROUTINE LSD_GLYP(RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, & V1CA,V2CA,V1CB,V2CB,V2CAB) ! ==--------------------------------------------------------------== USE kinds, ONLY: DP ! LEE, YANG PARR: GRADIENT CORRECTION PART IMPLICIT NONE ! REAL(DP) (A-H,O-Z), INTEGER (I-N) ! arguments REAL(DP) :: RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, & V1CA,V2CA,V1CB,V2CB,V2CAB ! locals REAL(DP) :: RHO,RM3,DR,OR,DOR,DER,DDER REAL(DP) :: DLAA,DLAB,DLBB,DLAAA,DLAAB,DLABA,DLABB,DLBBA,DLBBB REAL(DP), PARAMETER :: A=0.04918D0,B=0.132D0,C=0.2533D0,D=0.349D0 ! ==--------------------------------------------------------------== RHO=RA+RB RM3=RHO**(-1.D0/3.D0) DR=(1.D0+D*RM3) OR=EXP(-C*RM3)/DR*RM3**11.D0 DOR=-1.D0/3.D0*RM3**4*OR*(11.D0/RM3-C-D/DR) DER=C*RM3+D*RM3/DR DDER=1.d0/3.d0*(D*D*RM3**5/DR/DR-DER/RHO) DLAA=-A*B*OR*(RA*RB/9.d0*(1.d0-3*DER-(DER-11.d0)*RA/RHO)-RB*RB) DLAB=-A*B*OR*(RA*RB/9.d0*(47.d0-7.d0*DER)-4.d0/3.d0*RHO*RHO) DLBB=-A*B*OR*(RA*RB/9.d0*(1.d0-3*DER-(DER-11.d0)*RB/RHO)-RA*RA) DLAAA=DOR/OR*DLAA-A*B*OR*(RB/9.d0*(1.d0-3*DER-(DER-11.d0)*RA/RHO)- & RA*RB/9.d0*((3.d0+RA/RHO)*DDER+(DER-11.d0)*RB/RHO/RHO)) DLAAB=DOR/OR*DLAA-A*B*OR*(RA/9.d0*(1.d0-3.d0*DER-(DER-11.d0)*RA/RHO)- & RA*RB/9.d0*((3.d0+RA/RHO)*DDER-(DER-11.d0)*RA/RHO/RHO)-2.d0*RB) DLABA=DOR/OR*DLAB-A*B*OR*(RB/9.d0*(47.d0-7.d0*DER)-7.d0/9.d0*RA*RB*DDER- & 8.d0/3.d0*RHO) DLABB=DOR/OR*DLAB-A*B*OR*(RA/9.d0*(47.d0-7.d0*DER)-7.d0/9.d0*RA*RB*DDER- & 8.d0/3.d0*RHO) DLBBA=DOR/OR*DLBB-A*B*OR*(RB/9.d0*(1.d0-3.d0*DER-(DER-11.d0)*RB/RHO)- & RA*RB/9.d0*((3.d0+RB/RHO)*DDER-(DER-11.d0)*RB/RHO/RHO)-2.d0*RA) DLBBB=DOR/OR*DLBB-A*B*OR*(RA/9.d0*(1.d0-3*DER-(DER-11.d0)*RB/RHO)- & RA*RB/9.d0*((3.d0+RB/RHO)*DDER+(DER-11.d0)*RA/RHO/RHO)) SC=DLAA*GRHOAA+DLAB*GRHOAB+DLBB*GRHOBB V1CA=DLAAA*GRHOAA+DLABA*GRHOAB+DLBBA*GRHOBB V1CB=DLAAB*GRHOAA+DLABB*GRHOAB+DLBBB*GRHOBB V2CA=2.d0*DLAA V2CB=2.d0*DLBB V2CAB=DLAB ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_GLYP !______________________________________________________________________ subroutine ggablyp4(nnr,nspin,gradr,rhor,exc) ! _________________________________________________________________ ! becke-lee-yang-parr gga ! ! exchange: becke, pra 38, 3098 (1988) but derived from ! pw91 exchange formula given in prb 48, 14944 (1993) ! by setting "b3" and "b4" to 0.0 ! correlation: miehlich et al., cpl 157, 200 (1989) ! method by ja white & dm bird, prb 50, 4954 (1994) ! ! spin-polarized version by andras stirling 10/1998, ! using original gga program of alfredo pasquarello 22/09/1994 ! and spin-unpolarized blyp routine of olivier parisel and ! alfredo pasquarello (02/1997) ! USE kinds, ONLY : DP USE constants, ONLY: pi, fpi ! implicit none ! input integer nspin, nnr real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin) ! output ! on output: rhor contains the exchange-correlation potential real(DP) exc ! local integer isdw, isup, isign, ir ! real(DP) abo, agdr, agdr2, agr, agr2, agur, agur2, arodw, & arodw2, aroe, aroe2, aroup, aroup2, ax real(DP) byagdr, byagr, byagur, cden, cf, cl1, cl11, cl2, & cl21, cl22, cl23, cl24, cl25, cl26, cl27, clyp, csum real(DP) dddn, dexcdg, dexcdgd, dexcdgu, df1d, df1u, df2d, & df2u, dfd, dfnum1d, dfnum1u, dfnum2d, dfnum2u, dfs, dfu, & dfxdd, dfxdg, dfxdgd, dfxdgu, dfxdu, dilta, dilta119, dl1dn, & dl1dnd, dl1dnu, dl2dd, dl2dg, dl2dgd, dl2dgu, dl2dn, & dl2dnd, dl2dnd1, dl2dnu, dl2dnu1, dl2do, dlt, dodn, & disign, dwsign, dys, dysd, dysu real(DP) ex, excupdt, exd, exu, fac1, fac2, factor1, factor2, & fx, fxd, fxden, fxdend, fxdenu, fxnum, fxnumd, fxnumu, fxu real(DP) gkf, gkfd, gkfu, grdx, grdy, grdz, grux, gruy, gruz, & grx, gry, grz real(DP) omiga, pd, pi2, pider2, piexch, pu real(DP) rhodw, rhoup, roe, roedth, roeth, roeuth, rometh real(DP) s, s2, sd, sd2, sddw, sdup, su, su2, sysl, sysld, syslu real(DP) t113, upsign, usign real(DP) x1124, x113, x118, x13, x143, x19, x23, x43, & x4718, x53, x672, x718, x772, x83 real(DP) ys, ysd, ysl, ysld, yslu, ysr, ysrd, ysru, ysu !=========================================================================== real(DP) bb1, bb2, bb5, aa, bb, cc, dd, delt, eps parameter(bb1=0.19644797d0,bb2=0.2742931d0,bb5=7.79555418d0, & aa=0.04918d0, & bb=0.132d0,cc=0.2533d0,dd=0.349d0,delt=1.0d-12,eps=1.0d-14) ! ! x13=1.0d0/3.0d0 x19=1.0d0/9.0d0 x23=2.0d0/3.0d0 x43=4.0d0/3.0d0 x53=5.0d0/3.0d0 x83=8.0d0/3.0d0 x113=11.0d0/3.0d0 x4718=47.0d0/18.0d0 x718=7.0d0/18.0d0 x118=1.0d0/18.0d0 x1124=11.0d0/24.0d0 x143=14.0d0/3.0d0 x772=7.0d0/72.0d0 x672=6.0d0/72.0d0 ! ! _________________________________________________________________ ! derived parameters from pi ! pi2=pi*pi ax=-0.75d0*(3.0d0/pi)**x13 piexch=-0.75d0/pi pider2=(3.0d0*pi2)**x13 cf=0.3d0*pider2*pider2 ! _________________________________________________________________ ! other parameters ! t113=2.0d0**x113 ! rhodw=0.0d0 grdx=0.0d0 grdy=0.0d0 grdz=0.0d0 ! fac1=1.0d0 ! _________________________________________________________________ ! main loop ! isup=1 isdw=2 do ir=1,nnr rhoup=rhor(ir,isup) grux=gradr(ir,1,isup) gruy=gradr(ir,2,isup) gruz=gradr(ir,3,isup) if(nspin.eq.2) then rhodw=rhor(ir,isdw) grdx=gradr(ir,1,isdw) grdy=gradr(ir,2,isdw) grdz=gradr(ir,3,isdw) else rhodw=0.0d0 grdx =0.0d0 grdy =0.0d0 grdz =0.0d0 endif roe=rhoup+rhodw if(roe.eq.0.0) goto 100 aroup=abs(rhoup) arodw=abs(rhodw) aroe=abs(roe) grx=grux + grdx gry=gruy + grdy grz=gruz + grdz agur2=grux*grux+gruy*gruy+gruz*gruz agur=sqrt(agur2) agdr2=grdx*grdx+grdy*grdy+grdz*grdz agdr=sqrt(agdr2) agr2=grx*grx+gry*gry+grz*grz agr=sqrt(agr2) roeth=aroe**x13 rometh=1.0d0/roeth gkf=pider2*roeth sd=1.0d0/(2.0d0*gkf*aroe) s=agr*sd s2=s*s ! _________________________________________________________________ ! exchange ! if(nspin.eq.1) then ! ! ysr=sqrt(1.0d0+bb5*bb5*s2) ys=bb5*s+ysr ysl=log(ys)*bb1 sysl=s*ysl fxnum=1.0d0+sysl+bb2*s2 fxden=1.0d0/(1.0d0+sysl) fx=fxnum*fxden ! ex=ax*fx*roeth*aroe ! ! ### potential contribution ### ! dys=bb5*(1.0d0+bb5*s/ysr)/ys dfs=-fxnum*(ysl+bb1*s*dys)*fxden*fxden & & +(ysl+bb1*s*dys+2.0d0*s*bb2)*fxden dfxdu=(ax*roeth*x43)*(fx-dfs*s) dfxdg=ax*roeth*dfs*sd ! ! ### end of potential contribution ### ! else ! roeuth=(2.0d0*aroup)**x13 roedth=(2.0d0*arodw)**x13 gkfu=pider2*roeuth*aroup gkfd=pider2*roedth*arodw upsign=sign(1.d0,gkfu-eps) dwsign=sign(1.d0,gkfd-eps) factor1=0.5d0*(1+upsign)/(gkfu+(1-upsign)*eps) fac1=gkfu*factor1 factor2=0.5d0*(1+dwsign)/(gkfd+(1-dwsign)*eps) fac2=gkfd*factor2 sdup=1.0d0/2.0d0*factor1 sddw=1.0d0/2.0d0*factor2 su=agur*sdup su2=su*su sd=agdr*sddw sd2=sd*sd ! ysru=sqrt(1.0d0+bb5*bb5*su2) ysu=bb5*su+ysru yslu=log(ysu)*bb1 syslu=su*yslu fxnumu=1.0d0+syslu+bb2*su2 fxdenu=1.0d0/(1.0d0+syslu) fxu=fxnumu*fxdenu exu=piexch*2.0d0*gkfu*fxu*fac1 ! ysrd=sqrt(1.0d0+bb5*bb5*sd2) ysd=bb5*sd+ysrd ysld=log(ysd)*bb1 sysld=sd*ysld fxnumd=1.0d0+sysld+bb2*sd2 fxdend=1.0d0/(1.0d0+sysld) fxd=fxnumd*fxdend exd=piexch*2.0d0*gkfd*fxd*fac2 ! ex=0.5d0*(exu+exd) ! ! ### potential contribution ### ! dysu=bb5*(1.0d0+bb5*su/ysru)/ysu pu=2.0d0*su*bb2 dfnum1u=yslu+bb1*su*dysu+pu df1u=dfnum1u*fxdenu dfnum2u=fxnumu*(yslu+bb1*su*dysu) df2u=dfnum2u*fxdenu*fxdenu dfu=df1u-df2u dfxdu=ax*roeuth*x43*1.0d0*(fxu-dfu*su)*fac1 dfxdgu=ax*aroup*roeuth*dfu*sdup*fac1 ! dysd=bb5*(1.0d0+bb5*sd/ysrd)/ysd pd=2.0d0*sd*bb2 dfnum1d=ysld+bb1*sd*dysd+pd df1d=dfnum1d*fxdend dfnum2d=fxnumd*(ysld+bb1*sd*dysd) df2d=dfnum2d*fxdend*fxdend dfd=df1d-df2d dfxdd=ax*roedth*x43*1.0d0*(fxd-dfd*sd)*fac2 dfxdgd=ax*arodw*roedth*dfd*sddw*fac2 ! ! ### end of potential contribution ### ! endif ! _________________________________________________________________ ! correlation lyp(aroe,aroup,arodw,agr,agur,agdr) ! cden=1.0d0+dd*rometh cl1=-aa/cden ! omiga=exp(-cc*rometh)/cden/aroe**x113 dilta=rometh*(cc+dd/cden) aroe2=aroe*aroe abo=aa*bb*omiga ! dodn=x13*omiga/aroe*(dilta-11.0d0) dddn=x13*(dd*dd*aroe**(-x53)/cden/cden-dilta/aroe) ! if(nspin.eq.1) then ! cl1=cl1*aroe ! cl21=4.0d0*cf*aroe**x83 cl22=(x4718-x718*dilta)*agr2 cl23=(2.5d0-x118*dilta)*agr2/2.0d0 cl24=(dilta-11.0d0)/9.0d0*agr2/4.0d0 cl25=x1124*agr2 ! cl2=-abo*aroe2*(0.25d0*(cl21+cl22-cl23-cl24)-cl25) ! ! ### potential contribution ### ! dl1dnu=-aa*(1/cden+x13*dd*rometh/cden/cden) ! dlt=x672+2.0d0*x772*dilta dl2dn=-abo*aroe*(cf*x143*aroe**x83-dlt*agr2) dl2do=cl2/omiga dl2dd=abo*aroe2*x772*agr2 dl2dnu=dl2dn+dl2do*dodn+dl2dd*dddn ! dl2dg=abo*aroe2*agr*dlt ! ! ### end of potential contribution ### ! else ! cl11=cl1*4.0d0/aroe cl1=cl11*aroup*arodw ! aroup2=aroup*aroup arodw2=arodw*arodw ! cl21=t113*cf*(aroup**x83+arodw**x83) cl22=(x4718-x718*dilta)*agr2 cl23=(2.5d0-x118*dilta)*(agur2+agdr2) dilta119=(dilta-11.0d0)/9.0d0 cl24=dilta119/aroe*(aroup*agur2+arodw*agdr2) cl25=x23*aroe2*agr2 cl26=(x23*aroe2-aroup2)*agdr2 cl27=(x23*aroe2-arodw2)*agur2 ! csum=cl21+cl22-cl23-cl24 cl2=-abo*(aroup*arodw*csum-cl25+cl26+cl27) ! ! ### potential contribution ### ! ! *** cl1 has changed its form! *** ! dl1dn=cl1/aroe*(x13*dd/cden*rometh-1.0d0) dl1dnu=dl1dn+cl11*arodw dl1dnd=dl1dn+cl11*aroup ! dl2dnu1=arodw*csum+ & & arodw*aroup*(t113*cf*x83*aroup**x53- & & dilta119*arodw/aroe2*(agur2-agdr2))-x43*aroe*agr2+ & & x23*agdr2*(2.0d0*arodw-aroup)+x43*aroe*agur2 dl2dnd1=aroup*csum+ & & aroup*arodw*(t113*cf*x83*arodw**x53+ & & dilta119*aroup/aroe2*(agur2-agdr2))-x43*aroe*agr2+ & & x23*agur2*(2.0d0*aroup-arodw)+x43*aroe*agdr2 ! dl2do=cl2/omiga dl2dd=-abo*aroup*arodw* & & (-x718*agr2+x118*(agur2+agdr2)- & & x19*(aroup*agur2+arodw*agdr2)/aroe) ! dl2dnu=-abo*dl2dnu1+dl2do*dodn+dl2dd*dddn dl2dnd=-abo*dl2dnd1+dl2do*dodn+dl2dd*dddn ! dl2dg=-abo* & & (aroup*arodw*2.0d0*(x4718-x718*dilta)*agr- & & x43*aroe2*agr) dl2dgu=-2.0d0*abo*agur*((x118*dilta-2.5d0- & & dilta119*aroup/aroe)*aroup*arodw & & +x23*aroe2-arodw2) dl2dgd=-2.0d0*abo*agdr*((x118*dilta-2.5d0- & & dilta119*arodw/aroe)*aroup*arodw & & +x23*aroe2-aroup2) ! endif ! clyp=cl1+cl2 ! _________________________________________________________________ ! updating of xc-energy ! excupdt=ex+clyp ! exc=exc+excupdt ! ! _________________________________________________________________ ! first part xc-potential construction ! ! rhor(ir,isup)=dfxdu+(dl1dnu+dl2dnu)*fac1 isign=sign(1.d0,agr-delt) byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt) ! if(nspin.eq.1) then ! dexcdg=(dfxdg*aroe+dl2dg)*byagr gradr(ir,1,isup)=grx*dexcdg gradr(ir,2,isup)=gry*dexcdg gradr(ir,3,isup)=grz*dexcdg ! else ! rhor(ir,isdw)=dfxdd+(dl1dnd+dl2dnd)*fac2 ! usign =sign(1.d0,agur-delt) disign=sign(1.d0,agdr-delt) byagur=0.5d0*(1+ usign)/(agur+(1- usign)*delt) byagdr=0.5d0*(1+disign)/(agdr+(1-disign)*delt) ! dexcdgu=(dfxdgu+dl2dgu)*byagur dexcdgd=(dfxdgd+dl2dgd)*byagdr dexcdg=dl2dg*byagr ! gradr(ir,1,isup)=(dexcdgu*grux+dexcdg*grx)*fac1 gradr(ir,2,isup)=(dexcdgu*gruy+dexcdg*gry)*fac1 gradr(ir,3,isup)=(dexcdgu*gruz+dexcdg*grz)*fac1 gradr(ir,1,isdw)=(dexcdgd*grdx+dexcdg*grx)*fac2 gradr(ir,2,isdw)=(dexcdgd*grdy+dexcdg*gry)*fac2 gradr(ir,3,isdw)=(dexcdgd*grdz+dexcdg*grz)*fac2 ! endif ! 100 continue end do ! return end subroutine ggablyp4 ! !______________________________________________________________________ subroutine ggapbe(nnr,nspin,gradr,rhor,excrho) ! _________________________________________________________________ ! Perdew-Burke-Ernzerhof gga ! Perdew, et al. PRL 77, 3865, 1996 ! USE kinds, ONLY: DP use constants, only: pi, fpi ! implicit none ! input integer nspin, nnr real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin) ! output: excrho: exc * rho ; E_xc = \int excrho(r) d_r ! output: rhor: contains the exchange-correlation potential real(DP) excrho ! local integer ir, icar, iss, isup, isdw, nspinx real(DP) lim1, lim2 parameter ( lim1=1.d-8, lim2=1.d-8, nspinx=2 ) real(DP) zet, arho(nspinx), grad(3,nspinx), agrad(nspinx), & arhotot, gradtot(3), agradtot, & scl, scl1, wrkup, wrkdw, & exrho(nspinx), dexdrho(nspinx), dexdg(nspinx), & ecrho, decdrho(nspinx), decdg ! ! main loop ! isup=1 isdw=2 do ir=1,nnr ! arho(isup) = abs(rhor(ir,isup)) arhotot = arho(isup) zet = 0.d0 do icar = 1, 3 grad(icar,isup) = gradr(ir,icar,isup) gradtot(icar) = gradr(ir,icar,isup) enddo ! if (nspin.eq.2) then arho(isdw) = abs(rhor(ir,isdw)) arhotot = abs(rhor(ir,isup)+rhor(ir,isdw)) do icar = 1, 3 grad(icar,isdw) = gradr(ir,icar,isdw) gradtot(icar) = gradr(ir,icar,isup)+gradr(ir,icar,isdw) enddo zet = (rhor(ir,isup) - rhor(ir,isdw)) / arhotot if (zet.ge. 1.d0) zet = 1.d0 if (zet.le.-1.d0) zet = -1.d0 endif ! do iss = 1, nspin agrad(iss) = sqrt( grad(1,iss)*grad(1,iss) + & & grad(2,iss)*grad(2,iss) + & & grad(3,iss)*grad(3,iss) ) agradtot = sqrt( gradtot(1)*gradtot(1) + & & gradtot(2)*gradtot(2) + & & gradtot(3)*gradtot(3) ) enddo ! ! _________________________________________________________________ ! First it calculates the energy density excrho ! exrho: exchange term ! ecrho: correlation term ! if ( nspin.eq.2 ) then scl = 2.d0 scl1 = 0.5d0 else scl = 1.d0 scl1 = 1.d0 endif do iss = 1, nspin if ( arho(iss).gt.lim1) then call exchpbe( scl*arho(iss), scl*agrad(iss), & & exrho(iss),dexdrho(iss),dexdg(iss)) excrho = excrho + scl1*exrho(iss) else dexdrho(iss) = 0.d0 dexdg(iss) = 0.d0 endif enddo if ( arhotot.gt.lim1) then call ecorpbe( arhotot, agradtot, zet, ecrho, & & decdrho(1), decdrho(2), decdg, nspin ) excrho = excrho + ecrho else decdrho(isup) = 0.d0 decdrho(isdw) = 0.d0 decdg = 0.d0 endif ! _________________________________________________________________ ! Now it calculates the potential and writes it in rhor ! it uses the following variables: ! dexdrho = d ( ex*rho ) / d (rho) ! decdrho = d ( ec*rho ) / d (rho) ! dexdg = (d ( ex*rho ) / d (grad(rho)_i)) * agrad / grad_i ! decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i ! gradr here is used as a working array ! ! _________________________________________________________________ ! first part of the xc-potential : D(rho*exc)/D(rho) ! do iss = 1, nspin rhor(ir,iss) = dexdrho(iss) + decdrho(iss) enddo ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! do iss = 1, nspin do icar = 1,3 wrkup =0.d0 wrkdw =0.d0 if (agrad(iss).gt.lim2) & & wrkup = dexdg(iss)*grad(icar,iss)/agrad(iss) if (agradtot.gt.lim2) & & wrkdw = decdg*gradtot(icar)/agradtot gradr(ir,icar,iss) = wrkup + wrkdw enddo enddo ! end do ! return end subroutine ggapbe ! !______________________________________________________________________ subroutine exchpbe(rho,agrad,ex,dexdrho,dexdg) ! _________________________________________________________________ ! ! Perdew-Burke-Ernzerhof gga, Exchange term: ! Calculates the exchange energy density and the two functional derivative ! that will be used to calculate the potential ! USE kinds, ONLY: DP implicit none ! input ! input rho: charge density ! input agrad: abs(grad rho) real(DP) rho, agrad ! ouput ! output ex: Ex[rho,grad_rho] = \int ex dr ! output dexdrho: d ex / d rho ! output dexdg: d ex / d grad_rho(i) = dexdg*grad_rho(i)/abs(grad_rho) real(DP) ex, dexdrho, dexdg ! local real(DP) thrd, thrd4, pi32td, ax, al, um, uk, ul parameter(thrd=.33333333333333333333d0,thrd4=4.d0/3.d0) parameter(pi32td=3.09366772628014d0) ! pi32td=(3.d0*pi*pi)**0.333d0 parameter(al=0.161620459673995d0) ! al=1.0/(2.0*(pi32)**0.333d0) parameter(ax=-0.738558766382022405884230032680836d0) parameter(um=0.2195149727645171d0,uk=0.8040d0,ul=um/uk) ! real(DP) rhothrd, exunif, dexunif, kf, s, s2, p0, fxpbe, fs !---------------------------------------------------------------------- ! construct LDA exchange energy density ! rhothrd = rho**thrd dexunif = ax*rhothrd exunif = rho*dexunif !---------------------------------------------------------------------- ! construct PBE enhancement factor ! kf = pi32td*rhothrd s = agrad/(2.d0*kf*rho) s2 = s*s p0 = 1.d0 + ul*s2 fxpbe = 1.d0 + uk - uk/p0 ex = exunif*fxpbe !---------------------------------------------------------------------- ! now calculates the potential terms ! ! fs=(1/s)*d fxPBE/ ds ! fs=2.d0*uk*ul/(p0*p0) dexdrho = dexunif*thrd4*(fxpbe-s2*fs) dexdg = ax*al*s*fs ! return end subroutine exchpbe !---------------------------------------------------------------------- subroutine ecorpbe(rho,agrad,zet,ectot,decup,decdn,decdg,nspin) ! ----------------------------------------------------------------- ! ! Adapted from the Official PBE correlation code. K. Burke, May 14, 1996. ! ! input: rho = rho_up + rho_down; total charge density ! input: agrad = abs( grad(rho) ) ! input: zet = (rho_up-rho_down)/rho ! input: nspin ! output: ectot = ec*rho ---correlation energy density--- ! output: decup = d ( ec*rho ) / d (rho_up) ! output: decdn = d ( ec*rho ) / d (rho_down) ! output: decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! References: ! [a] J.P.~Perdew, K.~Burke, and M.~Ernzerhof, ! {\sl Generalized gradient approximation made simple}, sub. ! to Phys. Rev.Lett. May 1996. ! [b] J. P. Perdew, K. Burke, and Y. Wang, {\sl Real-space cutoff ! construction of a generalized gradient approximation: The PW91 ! density functional}, submitted to Phys. Rev. B, Feb. 1996. ! [c] J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992). !---------------------------------------------------------------------- !---------------------------------------------------------------------- USE kinds, ONLY: DP USE constants, ONLY: pi implicit none real(DP) rho, agrad, zet, ectot, decup, decdn, decdg integer nspin real(DP) pi32, alpha, thrd, thrdm, thrd2, sixthm, thrd4, & gam, fzz, gamma, bet, delt, eta ! thrd*=various multiples of 1/3 ! numbers for use in LSD energy spin-interpolation formula, [c](9). ! gam= 2^(4/3)-2 ! fzz=f''(0)= 8/(9*gam) ! numbers for construction of PBE ! gamma=(1-log(2))/pi^2 ! bet=coefficient in gradient expansion for correlation, [a](4). ! eta=small number to stop d phi/ dzeta from blowing up at ! |zeta|=1. parameter(pi32=29.608813203268075856503472999628d0) parameter(alpha=1.91915829267751300662482032624669d0) parameter(thrd=1.d0/3.d0,thrdm=-thrd,thrd2=2.d0*thrd) parameter(sixthm=thrdm/2.d0) parameter(thrd4=4.d0*thrd) parameter(gam=0.5198420997897463295344212145565d0) parameter(fzz=8.d0/(9.d0*gam)) parameter(gamma=0.03109069086965489503494086371273d0) parameter(bet=0.06672455060314922d0,delt=bet/gamma) parameter(eta=1.d-12) real(DP) g, fk, rs, sk, twoksg, t real(DP) rtrs, eu, eurs, ep, eprs, alfm, alfrsm, z4, f, ec real(DP) ecrs, fz, eczet, comm, vcup, vcdn, g3, pon, b, b2, t2, t4 real(DP) q4, q5, h, g4, t6, rsthrd, gz, fac real(DP) bg, bec, q8, q9, hb, hrs, hz, ht, pref !---------------------------------------------------------------------- if (nspin.eq.1) then g=1.d0 else g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)*0.5d0 endif fk=(pi32*rho)**thrd rs=alpha/fk sk=sqrt(4.d0*fk/pi) twoksg=2.d0*sk*g t=agrad/(twoksg*rho) !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! find LSD energy contributions, using [c](10) and Table I[c]. ! eu=unpolarized LSD correlation energy ! eurs=deu/drs ! ep=fully polarized LSD correlation energy ! eprs=dep/drs ! alfm=-spin stiffness, [c](3). ! alfrsm=-dalpha/drs ! f=spin-scaling factor from [c](9). ! construct ec, using [c](8) rtrs=dsqrt(rs) call gcor2(0.0310907d0,0.21370d0,7.5957d0,3.5876d0,1.6382d0, & & 0.49294d0,rtrs,eu,eurs) if (nspin.eq.2) then call gcor2(0.01554535d0,0.20548d0,14.1189d0,6.1977d0,3.3662d0, & & 0.62517d0,rtrs,ep,eprs) call gcor2(0.0168869d0,0.11125d0,10.357d0,3.6231d0,0.88026d0, & & 0.49671d0,rtrs,alfm,alfrsm) z4 = zet**4 f=((1.d0+zet)**thrd4+(1.d0-zet)**thrd4-2.d0)/gam ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! LSD potential from [c](A1) ! ecrs = dec/drs [c](A2) ! eczet=dec/dzeta [c](A3) ! fz = df/dzeta [c](A4) ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz fz = thrd4*((1.d0+zet)**thrd-(1.d0-zet)**thrd)/gam eczet = 4.d0*(zet**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu & & -(1.d0-z4)*alfm/fzz) comm = ec -rs*ecrs/3.d0-zet*eczet vcup = comm + eczet vcdn = comm - eczet else ecrs = eurs ec = eu vcup = ec -rs*ecrs/3.d0 endif !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! PBE correlation energy ! g=phi(zeta), given after [a](3) ! delt=bet/gamma ! b=a of [a](8) ! g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)/2.d0 g3 = g**3 pon=-ec/(g3*gamma) b = delt/(dexp(pon)-1.d0) b2 = b*b t2 = t*t t4 = t2*t2 q4 = 1.d0+b*t2 q5 = 1.d0+b*t2+b2*t4 h = g3*(bet/delt)*dlog(1.d0+delt*Q4*t2/Q5) ectot = rho*(ec + h) !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! energy done. Now the potential, using appendix e of [b]. t6 = t4*t2 rsthrd = rs/3.d0 fac = delt/b+1.d0 bec = b2*fac/(bet*g3) q8 = q5*q5+delt*q4*q5*t2 q9 = 1.d0+2.d0*b*t2 hb = -bet*g3*b*t6*(2.d0+b*t2)/q8 hrs = -rsthrd*hb*bec*ecrs ht = 2.d0*bet*g3*q9/q8 comm = h+hrs-7.d0*t2*ht/6.d0 if (nspin.eq.2) then g4 = g3*g bg = -3.d0*b2*ec*fac/(bet*g4) gz=(((1.d0+zet)**2+eta)**sixthm- & & ((1.d0-zet)**2+eta)**sixthm)/3.d0 hz = 3.d0*gz*h/g + hb*(bg*gz+bec*eczet) pref = hz-gz*t2*ht/g decup = vcup + comm + pref*( 1.d0 - zet) decdn = vcdn + comm + pref*( -1.d0 - zet) else decup = vcup + comm endif decdg = t*ht/twoksg ! return end subroutine ecorpbe !______________________________________________________________________ subroutine gcor2(a,a1,b1,b2,b3,b4,rtrs,gg,ggrs) ! _________________________________________________________________ ! slimmed down version of GCOR used in PW91 routines, to interpolate ! LSD correlation energy, as given by (10) of ! J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992). ! K. Burke, May 11, 1996. ! USE kinds, ONLY : DP implicit none real(DP) a, a1, b1, b2, b3, b4, rtrs, gg, ggrs real(DP) q0, q1, q2, q3 ! q0 = -2.d0*a*(1.d0+a1*rtrs*rtrs) q1 = 2.d0*a*rtrs*(b1+rtrs*(b2+rtrs*(b3+b4*rtrs))) q2 = dlog(1.d0+1.d0/q1) gg = q0*q2 q3 = a*(b1/rtrs+2.d0*b2+rtrs*(3.d0*b3+4.d0*b4*rtrs)) ggrs = -2.d0*a*a1*q2-q0*q3/(q1*(1.d0+q1)) ! return end subroutine gcor2 ! !______________________________________________________________________ subroutine ggapw(nnr,nspin,gradr,rhor,exc) ! _________________________________________________________________ ! perdew-wang gga (PW91) ! USE kinds, ONLY: DP use constants, only: pi, fpi ! implicit none ! input integer nspin, nnr real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin) ! output real(DP) exc ! local integer isup, isdw, ir real(DP) rhoup, rhodw, roe, aroe, rs, zeta real(DP) grxu, gryu, grzu, grhou, grxd, gryd, grzd, grhod, grho real(DP) ex, ec,vc, sc, v1x, v2x, v1c, v2c real(DP) ecrs, eczeta real(DP) exup, vcup, v1xup, v2xup, v1cup real(DP) exdw, vcdw, v1xdw, v2xdw, v1cdw real(DP), parameter:: pi34 = 0.75d0/pi, third = 1.d0/3.d0, & small = 1.d-10 ! ! _________________________________________________________________ ! main loop ! isup=1 isdw=2 exc=0.0d0 do ir=1,nnr rhoup=rhor(ir,isup) if(nspin.eq.2) then rhodw=rhor(ir,isdw) else rhodw=0.0d0 end if roe=rhoup+rhodw aroe=abs(roe) if (aroe.lt.small) then rhor(ir,isup) =0.0d0 gradr(ir,1,isup)=0.0d0 gradr(ir,2,isup)=0.0d0 gradr(ir,3,isup)=0.0d0 if(nspin.eq.2) then rhor(ir,isdw) =0.0d0 gradr(ir,1,isdw)=0.0d0 gradr(ir,2,isdw)=0.0d0 gradr(ir,3,isdw)=0.0d0 end if go to 100 end if grxu =gradr(ir,1,isup) gryu =gradr(ir,2,isup) grzu =gradr(ir,3,isup) grhou=sqrt(grxu**2+gryu**2+grzu**2) if(nspin.eq.2) then grxd =gradr(ir,1,isdw) gryd =gradr(ir,2,isdw) grzd =gradr(ir,3,isdw) grhod=sqrt(grxd**2+gryd**2+grzd**2) else grxd =0.0d0 gryd =0.0d0 grzd =0.0d0 grhod=0.0d0 endif grho=sqrt((grxu+grxd)**2+(gryu+gryd)**2+(grzu+grzd)**2) ! rs=(pi34/aroe)**third if (nspin.eq.1) then call exchpw91(aroe,grho,ex,v1x,v2x) call pwlda(rs,ec,vc,ecrs) call corpw91ns(rs,grho,ec,ecrs,sc,v1c,v2c) exc = exc + roe*(ex+ec) + sc rhor(ir,isup) = vc + v1x + v1c ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! gradr(ir,1,isup)=grxu*(v2x+v2c) gradr(ir,2,isup)=gryu*(v2x+v2c) gradr(ir,3,isup)=grzu*(v2x+v2c) else zeta=(rhoup-rhodw)/aroe zeta=min(zeta, 1.d0) zeta=max(zeta,-1.d0) call exchpw91(2.d0*abs(rhoup),2.0d0*grhou,exup,v1xup,v2xup) call exchpw91(2.d0*abs(rhodw),2.0d0*grhod,exdw,v1xdw,v2xdw) call pwlsd(rs,zeta,ec,vcup,vcdw,ecrs,eczeta) call corpw91(rs,zeta,grho,ec,ecrs,eczeta,sc,v1cup,v1cdw,v2c) rhor(ir,isup) = vcup + v1xup + v1cup rhor(ir,isdw) = vcdw + v1xdw + v1cdw exc = exc+roe*(0.5d0*((1.d0+zeta)*exup+(1.d0-zeta)*exdw)+ec) & + sc ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! gradr(ir,1,isup)=grxu*(2.0d0*v2xup+v2c)+grxd*v2c gradr(ir,2,isup)=gryu*(2.0d0*v2xup+v2c)+gryd*v2c gradr(ir,3,isup)=grzu*(2.0d0*v2xup+v2c)+grzd*v2c gradr(ir,1,isdw)=grxd*(2.0d0*v2xdw+v2c)+grxu*v2c gradr(ir,2,isdw)=gryd*(2.0d0*v2xdw+v2c)+gryu*v2c gradr(ir,3,isdw)=grzd*(2.0d0*v2xdw+v2c)+grzu*v2c end if 100 continue end do ! return end subroutine ggapw ! !---------------------------------------------------------------------- subroutine exchpw91(rho,grho,ex,v1x,v2x) !---------------------------------------------------------------------- ! ! PW91 exchange for a spin-unpolarized electronic system ! Modified from the "official" PBE code of Perdew, Burke et al. ! input rho : density ! input grho: abs(grad rho) ! output: exchange energy per electron (ex) and potentials ! v1x = d(rho*exc)/drho ! v2x = d(rho*exc)/d|grho| * (1/|grho|) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none ! input real(DP) rho, grho ! output real(DP) ex, v1x, v2x ! local real(DP) ex0, kf, s, s2, s4, f, fs, p0,p1,p2,p3,p4,p5,p6,p7 ! parameters real(DP) a1, a2, a3, a4, a, b1, bx, pi34, thrd, thrd4 parameter(a1=0.19645d0,a2=0.27430d0,a=7.7956d0,a4=100.d0) ! for becke exchange, set a3=b1=0 parameter(a3=0.15084d0,b1=0.004d0) ! pi34=3/(4pi) , bx=(3pi^2)^(1/3) parameter(pi34=0.75d0/pi, bx=3.093667726d0, thrd=0.333333333333d0, & thrd4=4.d0*thrd) ! if (rho.lt.1.d-10) then ex =0.0d0 v1x=0.0d0 v2x=0.0d0 end if ! ! kf=k_Fermi, ex0=Slater exchange energy ! kf = bx*(rho**thrd) ex0=-pi34*kf if (grho.lt.1.d-10) then ex =ex0 v1x=ex0*thrd4 v2x=0.0d0 end if s = grho/(2.d0*kf*rho) s2 = s*s s4 = s2*s2 p0 = 1.d0/sqrt(1.d0+a*a*s2) p1 = log(a*s+1.d0/p0) p2 = exp(-a4*s2) p3 = 1.d0/(1.d0+a1*s*p1+b1*s4) p4 = 1.d0+a1*s*p1+(a2-a3*p2)*s2 ! f is the enhancement factor f = p3*p4 ex = ex0*f ! energy done. now the potential: p5 = b1*s2-(a2-a3*p2) p6 = a1*s*(p1+a*s*p0) p7 = 2.d0*(a2-a3*p2)+2.d0*a3*a4*s2*p2-4.d0*b1*s2*f ! fs = (1/s) dF(s)/ds fs = p3*(p3*p5*p6+p7) v1x = ex0*thrd4*(f-s2*fs) v2x = 0.5d0*ex0/kf*s*fs/grho ! return end subroutine exchpw91 ! !---------------------------------------------------------------------- subroutine corpw91ns(rs,grho,ec,ecrs,h,v1c,v2c) !---------------------------------------------------------------------- ! ! PW91 correlation (gradient correction term) - no spin case ! Modified from the "official" PBE code of Perdew, Burke et al. ! ! input rs: seitz radius ! input zeta: relative spin polarization ! input grho: abs(grad rho) ! input ec: Perdew-Wang correlation energy ! input ecrs: d(rho*ec)/d r_s ! output h : nonlocal part of correlation energy per electron ! output v1c: nonlocal parts of correlation potential ! v1c = d(rho*exc)/drho ! v2c = d(rho*exc)/d|grho|*(1/|grho|) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none ! input real(DP) rs, grho, ec, ecrs ! output real(DP) h, v1c, v2c ! local real(DP) rho, t, ks, bet, delt, pon, b, b2, t2, t4, t6 real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3 real(DP) ccrs, rsthrd, fac, bec, coeff, cc real(DP) h0, h0b, h0rs, h0t, h1, h1t, h1rs, hrs, ht ! parameters real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4, ax, pi34 parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0) parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0) parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0) ! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2) parameter(ax=1.5631853d0, pi34 = 0.75d0/pi) ! ! rs2 = rs*rs rs3 = rs2*rs rho=pi34/rs3 ! k_s=(4k_F/pi)^(1/2) ks=ax/sqrt(rs) ! t=abs(grad rho)/(rho*2.*ks) t=grho/(2.d0*rho*ks) bet = nu*cc0 delt = 2.d0*alf/bet pon = -delt*ec/bet b = delt/(exp(pon)-1.d0) b2 = b*b t2 = t*t t4 = t2*t2 t6 = t4*t2 q4 = 1.d0+b*t2 q5 = 1.d0+b*t2+b2*t4 q6 = c1+c2*rs+c3*rs2 q7 = 1.d0+c4*rs+c5*rs2+c6*rs3 cc = -cx + q6/q7 r0 = 0.663436444d0*rs r1 = a4*r0 coeff = cc-cc0-3.d0*cx/7.d0 r2 = nu*coeff r3 = exp(-r1*t2) h0 = (bet/delt)*log(1.d0+delt*q4*t2/q5) h1 = r3*r2*t2 h = (h0+h1)*rho ! energy done. now the potential: ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2 rsthrd = rs/3.d0 r4 = rsthrd*ccrs/coeff fac = delt/b+1.d0 bec = b2*fac/bet q8 = q5*q5+delt*q4*q5*t2 q9 = 1.d0+2.d0*b*t2 h0b = -bet*b*t6*(2.d0+b*t2)/q8 h0rs = -rsthrd*h0b*bec*ecrs h0t = 2.d0*bet*q9/q8 h1rs = r3*r2*t2*(-r4+r1*t2/3.d0) h1t = 2.d0*r3*r2*(1.d0-r1*t2) hrs = h0rs+h1rs ht = h0t+h1t v1c = h0+h1+hrs-7.d0*t2*ht/6.d0 v2c = t*ht/(2.d0*ks*grho) ! return end subroutine corpw91ns ! !---------------------------------------------------------------------- subroutine corpw91(rs,zeta,grho,ec,ecrs,eczeta,h,v1cup,v1cdn,v2c) !---------------------------------------------------------------------- ! ! PW91 correlation (gradient correction term) ! Modified from the "official" PBE code of Perdew, Burke et al. ! ! input rs: seitz radius ! input zeta: relative spin polarization ! input grho: abs(grad rho) ! input ec: Perdew-Wang correlation energy ! input ecrs: d(rho*ec)/d r_s ? ! input eczeta: d(rho*ec)/d zeta ? ! output h: nonlocal part of correlation energy per electron ! output v1cup,v1cdn: nonlocal parts of correlation potentials ! v1c** = d(rho*exc)/drho (up and down components) ! v2c = d(rho*exc)/d|grho|*(1/|grho|) (same for up and down) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none ! input real(DP) rs, zeta, grho, ec, ecrs, eczeta ! output real(DP) h, v1cup, v1cdn, v2c ! local real(DP) rho, g, t, ks, gz, bet, delt, g3, g4, pon, b, b2, t2, t4, t6 real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3 real(DP) ccrs, rsthrd, fac, bg, bec, coeff, cc real(DP) h0, h0b, h0rs, h0z, h0t, h1, h1t, h1rs, h1z real(DP) hz, hrs, ht, comm, pref ! parameters real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4 real(DP) thrdm, thrd2, ax, eta, pi34 parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0) parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0) parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0) parameter(thrdm=-0.333333333333d0,thrd2=0.666666666667d0) ! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2) parameter(ax=1.5631853d0, eta=1.d-12, pi34 = 0.75d0/pi ) ! ! if (grho.lt.1.d-10) then h=0.0d0 v1cup=0.0d0 v1cdn=0.0d0 v2c=0.0d0 end if rs2 = rs*rs rs3 = rs2*rs rho=pi34/rs3 g=((1.d0+zeta)**thrd2+(1.d0-zeta)**thrd2)/2.d0 ! k_s=(4k_F/pi)^(1/2) ks=ax/sqrt(rs) ! t=abs(grad rho)/(rho*2.*ks*g) t=grho/(2.d0*rho*g*ks) bet = nu*cc0 delt = 2.d0*alf/bet g3 = g**3 g4 = g3*g pon = -delt*ec/(g3*bet) b = delt/(exp(pon)-1.d0) b2 = b*b t2 = t*t t4 = t2*t2 t6 = t4*t2 q4 = 1.d0+b*t2 q5 = 1.d0+b*t2+b2*t4 q6 = c1+c2*rs+c3*rs2 q7 = 1.d0+c4*rs+c5*rs2+c6*rs3 cc = -cx + q6/q7 r0 = 0.663436444d0*rs r1 = a4*r0*g4 coeff = cc-cc0-3.d0*cx/7.d0 r2 = nu*coeff*g3 r3 = dexp(-r1*t2) h0 = g3*(bet/delt)*log(1.d0+delt*q4*t2/q5) h1 = r3*r2*t2 h = (h0+h1)*rho ! energy done. now the potential: ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2 rsthrd = rs/3.d0 r4 = rsthrd*ccrs/coeff ! eta is a small quantity that avoids trouble if zeta=+1 or -1 gz = ((1.d0+zeta+eta)**thrdm - (1.d0-zeta+eta)**thrdm)/3.d0 fac = delt/b+1.d0 bg = -3.d0*b2*ec*fac/(bet*g4) bec = b2*fac/(bet*g3) q8 = q5*q5+delt*q4*q5*t2 q9 = 1.d0+2.d0*b*t2 h0b = -bet*g3*b*t6*(2.d0+b*t2)/q8 h0rs = -rsthrd*h0b*bec*ecrs h0z = 3.d0*gz*h0/g + h0b*(bg*gz+bec*eczeta) h0t = 2.d0*bet*g3*q9/q8 h1rs = r3*r2*t2*(-r4+r1*t2/3.d0) h1z = gz*r3*r2*t2*(3.d0-4.d0*r1*t2)/g h1t = 2.d0*r3*r2*(1.d0-r1*t2) hrs = h0rs+h1rs ht = h0t+h1t hz = h0z+h1z comm = h0+h1+hrs-7.d0*t2*ht/6.d0 pref = hz-gz*t2*ht/g comm = comm-pref*zeta v1cup = comm + pref v1cdn = comm - pref v2c = t*ht/(2.d0*ks*g*grho) ! return end subroutine corpw91 !---------------------------------------------------------------------- subroutine pwlda(rs,ec,vc,ecrs) !---------------------------------------------------------------------- ! ! uniform-gas, spin-unpolarised correlation of perdew and wang 1991 ! input: rs seitz radius ! output: ec correlation energy per electron ! vc potential ! ecrs derivatives of ec wrt rs ! USE kinds, ONLY : DP implicit none ! input real(DP) rs ! output real(DP) ec, vc, ecrs ! local real(DP) q0, rs12, q1, q2, q3 ! parameters real(DP) a, a1, b1, b2, b3, b4 parameter(a =0.0310907d0, a1=0.21370d0, b1=7.5957d0, & b2=3.5876d0, b3=1.6382d0, b4=0.49294d0) ! q0 = -2.d0*a*(1.d0+a1*rs) rs12 = sqrt(rs) q1 = 2.d0*a*rs12*(b1+rs12*(b2+rs12*(b3+b4*rs12))) q2 = log(1.d0+1.d0/q1) ec = q0*q2 q3 = a*(b1/rs12+2.d0*b2+3.d0*b3*rs12+2.d0*b4*2.d0*rs) ecrs = -2.d0*a*a1*q2-q0*q3/(q1**2+q1) vc = ec - rs*ecrs/3.d0 ! return end subroutine pwlda !---------------------------------------------------------------------- subroutine pwlsd(rs,zeta,ec,vcup,vcdn,ecrs,eczeta) !---------------------------------------------------------------------- ! ! uniform-gas correlation of perdew and wang 1991 ! Modified from the "official" PBE code of Perdew, Burke et al. ! input: seitz radius (rs), relative spin polarization (zeta) ! output: correlation energy per electron (ec) ! up- and down-spin potentials (vcup,vcdn) ! derivatives of ec wrt rs (ecrs) & zeta (eczeta) ! USE kinds, ONLY : DP implicit none ! input real(DP) rs, zeta ! output real(DP) ec, vcup, vcdn, ecrs, eczeta ! local real(DP) f, eu, ep, eurs, eprs, alfm, alfrsm, z4, fz, comm real(DP) rs12, q0, q1, q2, q3 ! parameters real(DP) gam, fzz, thrd, thrd4 parameter(gam=0.5198421d0,fzz=1.709921d0) parameter(thrd=0.333333333333d0,thrd4=1.333333333333d0) ! real(DP) au, au1, bu1, bu2, bu3, bu4 parameter(au =0.0310907d0, au1=0.21370d0, bu1=7.5957d0, & bu2=3.5876d0, bu3=1.6382d0, bu4=0.49294d0) real(DP) ap, ap1, bp1, bp2, bp3, bp4 parameter(ap =0.01554535d0,ap1=0.20548d0, bp1=14.1189d0, & bp2=6.1977d0, bp3=3.3662d0, bp4=0.62517d0 ) real(DP) am, am1, bm1, bm2, bm3, bm4 parameter(am =0.0168869d0, am1=0.11125d0, bm1=10.357d0, & bm2=3.6231d0, bm3=0.88026d0, bm4=0.49671d0 ) ! rs12 = sqrt(rs) ! q0 = -2.d0*au*(1.d0+au1*rs) q1 = 2.d0*au*rs12*(bu1+rs12*(bu2+rs12*(bu3+bu4*rs12))) q2 = log(1.d0+1.d0/q1) eu = q0*q2 q3 = au*(bu1/rs12+2.d0*bu2+3.d0*bu3*rs12+2.d0*bu4*2.d0*rs) eurs = -2.d0*au*au1*q2-q0*q3/(q1**2+q1) ! q0 = -2.d0*ap*(1.d0+ap1*rs) q1 = 2.d0*ap*rs12*(bp1+rs12*(bp2+rs12*(bp3+bp4*rs12))) q2 = log(1.d0+1.d0/q1) ep = q0*q2 q3 = ap*(bp1/rs12+2.d0*bp2+3.d0*bp3*rs12+2.d0*bp4*2.d0*rs) eprs = -2.d0*ap*ap1*q2-q0*q3/(q1**2+q1) ! q0 = -2.d0*am*(1.d0+am1*rs) q1 = 2.d0*am*rs12*(bm1+rs12*(bm2+rs12*(bm3+bm4*rs12))) q2 = log(1.d0+1.d0/q1) ! alfm is minus the spin stiffness alfc alfm=q0*q2 q3 = am*(bm1/rs12+2.d0*bm2+3.d0*bm3*rs12+2.d0*bm4*2.d0*rs) alfrsm=-2.d0*am*am1*q2-q0*q3/(q1**2+q1) ! f = ((1.d0+zeta)**thrd4+(1.d0-zeta)**thrd4-2.d0)/gam z4 = zeta**4 ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz ! energy done. now the potential: ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz fz = thrd4*((1.d0+zeta)**thrd-(1.d0-zeta)**thrd)/gam eczeta = 4.d0*(zeta**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu & & -(1.d0-z4)*alfm/fzz) comm = ec -rs*ecrs/3.d0-zeta*eczeta vcup = comm + eczeta vcdn = comm - eczeta ! return end subroutine pwlsd ! !______________________________________________________________________ subroutine ggapwold(nnr,nspin,gradr,rhor,exc) ! _________________________________________________________________ ! perdew-wang gga ! as given in y-m juan & e kaxiras, prb 48, 14944 (1993) ! method by ja white & dm bird, prb 50, 4954 (1994) ! non-spin polarized case only ! _________________________________________________________________ ! by alfredo pasquarello 22/09/1994 ! USE kinds, ONLY: DP use constants, only: pi, fpi ! implicit none ! integer nspin, nnr real(DP) gradr(nnr,3), rhor(nnr), exc ! real(DP) bb1, bb2, bb3, bb4, bb5, alfa, beta, cc0, cc1, delt, & c1, c2, c3, c4, c5, c6, c7, a, alfa1, bt1, bt2, bt3, bt4 parameter(bb1=0.19645d0,bb2=0.27430d0,bb3=-0.15084d0,bb4=0.004d0, & bb5=7.7956d0,alfa=0.09d0,beta=0.0667263212d0,cc0=15.75592d0, & cc1=0.003521d0,c1=0.001667d0,c2=0.002568d0,c3=0.023266d0,c4=7.389d-6, & c5=8.723d0,c6=0.472d0,c7=7.389d-2,a=0.0621814d0,alfa1=0.2137d0, & bt1=7.5957d0,bt2=3.5876d0,bt3=1.6382d0,bt4=0.49294d0,delt=1.0d-12) real(DP) x13, x43, x76, pi2, ax, pider1, pider2, pider3, & abder1, abder2, abder3 integer isign, ir real(DP) & aexp, abig, abig2, agr, aroe, byagr, ccr, ccrnum, ccrden, & dfxd, dfxdg, dys, dfs, dh1ds, dh1dg, dh1d, dh1dt, dexcdg, & dexcd, dh1drs, dh0da, dadec, decdrs, decd, dh0dg, dcdrs, & dh0d, dh0dt, eclog, ecr, ecden, fx, fxnum, fxden, fxexp, & gkf, grx, gry, grz, h0, h1, h0den, h0arg, h0num, & roeth, roe, rs, rs12, rs2, rs3, rs32, s, sd, s2, s3, s4, & sysl, t, td, t2, t3, t4, xchge, ys, ysl, ysr ! ! if (nspin.ne.1) call errore('ggapw','spin not implemented',nspin) ! x13=1.0d0/3.0d0 x43=4.0d0/3.0d0 x76=7.0d0/6.0d0 ! _________________________________________________________________ ! derived parameters from pi ! pi2=pi*pi ax=-0.75d0*(3.0d0/pi)**x13 pider1=(0.75d0/pi)**x13 pider2=(3.0d0*pi2)**x13 pider3=(3.0d0*pi2/16.0d0)**x13 ! _________________________________________________________________ ! derived parameters from alfa and beta ! abder1=beta*beta/(2.0d0*alfa) abder2=1.0d0/abder1 abder3=2.0d0*alfa/beta ! _________________________________________________________________ ! main loop ! do ir=1,nnr roe=rhor(ir) if(roe.eq.0.0) goto 100 aroe=abs(roe) grx=gradr(ir,1) gry=gradr(ir,2) grz=gradr(ir,3) agr=sqrt(grx*grx+gry*gry+grz*grz) roeth=aroe**x13 rs= pider1/roeth gkf=pider2*roeth sd=1.0d0/(2.0d0*gkf*aroe) s=agr*sd s2=s*s s3=s*s2 s4=s2*s2 ! _________________________________________________________________ ! exchange ! ysr=sqrt(1.0d0+bb5*bb5*s2) ys=bb5*s+ysr ysl=log(ys)*bb1 sysl=s*ysl fxexp=exp(-100.0d0*s2) fxnum=1.0d0+sysl+(bb2+bb3*fxexp)*s2 fxden=1.0d0/(1.0d0+sysl+bb4*s4) fx=fxnum*fxden xchge=ax*fx*roeth ! _________________________________________________________________ ! correlation ecr=ec(rho) ! rs12=sqrt(rs) rs32=rs12*rs rs2=rs*rs rs3=rs*rs2 ecden=a*(bt1*rs12+bt2*rs+bt3*rs32+bt4*rs2) eclog=log(1.0d0+(1.0d0/ecden)) ecr=-a*(1.0d0+alfa1*rs)*eclog ! _________________________________________________________________ ! correlation h0(t,ecr) ! td=pider3*sd/rs12 t=agr*td t2=t*t t3=t*t2 t4=t2*t2 aexp=exp(-abder2*ecr)-1.0d0 abig=abder3/aexp abig2=abig*abig h0num=t2+abig*t4 h0den=1.0d0/(1.0d0+abig*t2+abig2*t4) h0arg=1.0d0+abder3*h0num*h0den h0=abder1*log(h0arg) ! _________________________________________________________________ ! correlation h1(t,s,aroe) ! ccrnum=c2+c3*rs+c4*rs2 ccrden=1.0d0/(1.0d0+c5*rs+c6*rs2+c7*rs3) ccr=c1+ccrnum*ccrden h1=cc0*(ccr-cc1)*t2*fxexp ! _________________________________________________________________ ! updating of xc-energy ! exc=exc+(xchge+ecr+h0+h1)*aroe ! _________________________________________________________________ ! first part xc-potential from exchange ! dys=bb5*(1.0d0+bb5*s/ysr)/ys dfs=-fxnum*(ysl+bb1*s*dys+4.0d0*bb4*s3)*fxden*fxden & & +(ysl+bb1*s*dys+2.0d0*s*(bb2+bb3*fxexp) & & -200.0d0*s3*bb3*fxexp)*fxden dfxd=(ax*roeth*x43)*(fx-dfs*s) dfxdg=ax*roeth*dfs*sd ! _________________________________________________________________ ! first part xc-potential from ecr ! decdrs=-a*alfa1*eclog*rs + a*(1+alfa1*rs) & & *a*(0.5d0*bt1*rs12+bt2*rs+1.5d0*bt3*rs32+2.0d0*bt4*rs2) & & /(ecden*ecden+ecden) decd=-x13*decdrs ! _________________________________________________________________ ! first part xc-potential from h0 ! dh0da=abder1/h0arg*abder3*h0den* & & (t4-h0num*h0den*(t2+2.0d0*abig*t4)) dadec=abder3*abder2*(aexp+1.0d0)/(aexp*aexp) dh0d=dh0da*dadec*decd dh0dt=abder1/h0arg*abder3*h0den & & *(2.0d0*t+4.0d0*abig*t3-h0num*h0den*(2.0d0*abig*t+4.0d0*abig2*t3)) dh0d=dh0d-x76*t*dh0dt dh0dg=dh0dt*td ! _________________________________________________________________ ! first part xc-potential from h1 ! dcdrs=(c3+2.0d0*c4*rs-ccrnum*ccrden*(c5+2.0d0*c6*rs+3.0d0*c7*rs2)) & & *ccrden dh1drs=cc0*t2*fxexp*dcdrs dh1d=-x13*rs*dh1drs dh1dt=2.0d0*t*cc0*(ccr-cc1)*fxexp dh1d=dh1d-x76*t*dh1dt dh1ds=-200.0d0*s*cc0*(ccr-cc1)*t2*fxexp dh1d=dh1d-x43*s*dh1ds dh1dg=dh1dt*td+dh1ds*sd ! _________________________________________________________________ ! first part of xc-potential: D(rho*exc)/D(rho) ! dexcd=dfxd+decd+dh0d+dh1d+ecr+h0+h1 isign=sign(1.d0,agr-delt) byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt) rhor(ir)=dexcd ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! dexcdg=(dfxdg+dh0dg+dh1dg)*aroe*byagr gradr(ir,1)=gradr(ir,1)*dexcdg gradr(ir,2)=gradr(ir,2)*dexcdg gradr(ir,3)=gradr(ir,3)*dexcdg 100 continue end do ! return end subroutine ggapwold !----------------------------------------------------------------------- subroutine dftname_cp (exfact, dft) !----------------------------------------------------------------------- ! implicit none integer :: exfact character(len=25) dft ! if (exfact == 0) then dft = 'PZ' elseif (exfact == 1) then dft = 'BLYP' elseif (exfact == 2) then dft = 'B88' elseif (exfact == - 5 .or. exfact == 3) then dft = 'BP' elseif (exfact == - 6 .or. exfact == 4) then dft = 'PW91' elseif (exfact == 5) then dft = 'PBE' elseif (exfact ==-1) then dft = 'WIG' elseif (exfact ==-2) then dft = 'HL' elseif (exfact ==-3) then dft = 'GL' elseif (exfact == 6) then dft = 'TPSS' else call errore ('dftname','unknown exch-corr functional',exfact) end if return end subroutine dftname_cp !------------------------------------------------------------------------- subroutine expxc(nnr,nspin,rhor,exc) !---------------------------------------------------------------------- ! ! ceperley & alder's correlation energy ! after j.p. perdew & a. zunger prb 23, 5048 (1981) ! ! rhor contains rho(r) on input, vxc(r) on output ! USE kinds, ONLY : DP use constants, only: pi, fpi ! implicit none ! integer nnr, nspin real(DP) rhor(nnr,nspin), exc ! local variables integer ir, iflg, isup, isdw real(DP) roe, aroe, rs, rsl, rsq, ecca, vcca, eccp, vccp, & zeta, onemz, zp, zm, fz, dfzdz, exc1, vxc1, vxc2 ! constants real(DP) x76, x43, x13 parameter(x76=7.d0/6.d0, x43=4.d0/3.d0, x13=1.d0/3.d0) real(DP) ax parameter (ax = -0.916330586d0) ! Perdew and Zunger parameters real(DP) ap, bp, cp, dp0, af, bf, cf, df, & bp1, cp1, dp1, bf1, cf1, df1 parameter & ( ap=0.03110d0*2.0d0, bp=-0.0480d0*2.0d0, cp=0.0020d0*2.0d0, dp0=-0.0116d0*2.0d0 & , af=0.01555d0*2.0d0, bf=-0.0269d0*2.0d0, cf=0.0007d0*2.0d0, df=-0.0048d0*2.0d0 & , bp1=bp-ap/3.0d0, cp1=2.0d0*cp/3.0d0, dp1=(2.0d0*dp0-cp)/3.0d0 & , bf1=bf-af/3.0d0, cf1=2.0d0*cf/3.0d0, df1=(2.0d0*df-cf)/3.0d0 ) real(DP) va(2), vb(2), vc(2), vd(2), vbt1(2), vbt2(2) real(DP) a(2), b(2), c(2), d(2), g(2), b1(2), b2(2) data va/ap ,af /, vb/bp1,bf1/, vc/cp1,cf1/, vd/dp1,df1/, & vbt1/1.0529d0,1.3981d0/, vbt2/0.3334d0,0.2611d0/ data a/0.0622d0,0.0311d0/, b/-0.096d0,-0.0538d0/, c/0.0040d0,0.0014d0/, & d/-0.0232d0,-0.0096d0/, b1/1.0529d0,1.3981d0/, b2/0.3334d0,0.2611d0/, & g/-0.2846d0,-0.1686d0/ ! if (nspin.eq.1) then ! ! iflg=1: paramagnetic (unpolarised) results ! iflg=1 do ir=1,nnr roe=rhor(ir,1) if(roe.lt.1.0d-30) goto 10 aroe=abs(roe) rs= (3.d0/aroe/fpi)**x13 if(rs.le.1.d0) then rsl=log(rs) ecca= a(iflg)*rsl+ b(iflg)+ c(iflg)*rs*rsl+ d(iflg)*rs vcca=va(iflg)*rsl+vb(iflg)+vc(iflg)*rs*rsl+vd(iflg)*rs else rsq=sqrt(rs) ecca=g(iflg)/(1.d0+b1(iflg)*rsq+b2(iflg)*rs) vcca=ecca*(1.d0+x76*vbt1(iflg)*rsq+x43*vbt2(iflg)*rs)/ & & (1.d0+ vbt1(iflg)*rsq+ vbt2(iflg)*rs) end if exc1 = ( ax/rs + ecca )/2.d0 exc = exc + exc1*roe rhor(ir,1)= ( x43*ax/rs + vcca )/2.d0 10 continue end do else isup=1 isdw=2 do ir=1,nnr roe=rhor(ir,isup)+rhor(ir,isdw) if(roe.lt.1.0d-30) goto 20 aroe=abs(roe) rs= (3.d0/aroe/fpi)**x13 zeta=abs(rhor(ir,isup)-rhor(ir,isdw))/aroe zp = (1.d0+zeta)**x13 onemz=max(0.d0,1.d0-zeta) zm = onemz**x13 fz= ((1.d0+zeta)*zp + onemz*zm - 2.d0)/ & & (2.d0**x43 -2.d0) dfzdz= x43*(zp - zm)/(2.d0**x43-2.d0) ! ! iflg=1: paramagnetic (unpolarised) results ! iflg=2: ferromagnetic ( polarised) results ! if(rs.le.1.d0) then rsl=log(rs) ecca= a(1)*rsl+ b(1)+ c(1)*rs*rsl+ d(1)*rs vcca=va(1)*rsl+vb(1)+vc(1)*rs*rsl+vd(1)*rs eccp= a(2)*rsl+ b(2)+ c(2)*rs*rsl+ d(2)*rs vccp=va(2)*rsl+vb(2)+vc(2)*rs*rsl+vd(2)*rs else rsq=sqrt(rs) ecca=g(1)/(1.d0+b1(1)*rsq+b2(1)*rs) vcca=ecca*(1.d0+x76*vbt1(1)*rsq+x43*vbt2(1)*rs)/ & & (1.d0+ vbt1(1)*rsq+ vbt2(1)*rs) eccp=g(2)/(1.d0+b1(2)*rsq+b2(2)*rs) vccp=eccp*(1.d0+x76*vbt1(2)*rsq+x43*vbt2(2)*rs)/ & & (1.d0+ vbt1(2)*rsq+ vbt2(2)*rs) end if ! exchange part exc1 = ax/rs*((1.d0+zeta)*zp+(1.d0-zeta)*zm)/2.d0 vxc1 = x43*ax/rs*zp vxc2 = x43*ax/rs*zm ! correlation part vxc1 = vxc1 + vcca + fz*(vccp-vcca) & & + dfzdz*(eccp-ecca)*( 1.d0-zeta) vxc2 = vxc2 + vcca + fz*(vccp-vcca) & & + dfzdz*(eccp-ecca)*(-1.d0-zeta) exc = exc + (exc1 + ecca+fz*(eccp-ecca))*roe/2.d0 rhor(ir,isup)=vxc1/2.d0 rhor(ir,isdw)=vxc2/2.d0 20 continue end do end if return end subroutine expxc SUBROUTINE wrap_b88( rho, grho, sx, v1x, v2x ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: rho, grho, sx, v1x, v2x REAL(DP) :: b1 = 0.0042d0 REAL(DP) :: RHOA,RHOB,GRHOA,GRHOB, V1XA,V2XA,V1XB,V2XB rhoa = 0.5d0 * rho rhob = 0.5d0 * rho grhoa = 0.25d0 * grho grhob = 0.25d0 * grho CALL LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB) v1x = V1XA v2x = V2XA END SUBROUTINE wrap_b88 SUBROUTINE wrap_glyp( rho, grho, sc, v1c, v2c ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: rho, grho, sc, v1c, v2c REAL(DP) :: RA,RB,GRHOAA,GRHOAB,GRHOBB REAL(DP) :: V1CA,V2CA,V1CB,V2CB,V2CAB ra = rho * 0.5d0 rb = rho * 0.5d0 grhoaa = 0.25d0 * grho grhobb = 0.25d0 * grho grhoab = 0.25d0 * grho CALL LSD_GLYP(RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, & V1CA,V2CA,V1CB,V2CB,V2CAB) v1c = V1CA v2c = 2.0d0*(v2ca+v2cb+v2cab*2.d0)*0.25d0 END SUBROUTINE wrap_glyp ! ================================================================== SUBROUTINE LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB) ! ==--------------------------------------------------------------== ! BECKE EXCHANGE: PRA 38, 3098 (1988) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP),PARAMETER :: OB3=1.D0/3.D0, SMALL=1.D-20 REAL(DP) :: xs, xs2, sa2b8, br1, br2, br4, ddd, gf, dgf, shm1, dd REAL(DP) :: dd2, grhoa, grhob, sx, b1, rhoa, rhob, v2xb, aa, a REAL(DP) :: v1xa, v2xa, v1xb ! ==--------------------------------------------------------------== sx=0.0D0 V1XA=0.0D0 V2XA=0.0D0 V1XB=0.0D0 V2XB=0.0D0 IF(ABS(RHOA).GT.SMALL) THEN AA = GRHOA A = SQRT(AA) BR1 = RHOA**OB3 BR2 = BR1*BR1 BR4 = BR2*BR2 XS = A/BR4 XS2 = XS*XS SA2B8 = SQRT(1.0D0+XS2) SHM1 = LOG(XS+SA2B8) DD = 1.0D0 + 6.0D0*B1*XS*SHM1 DD2 = DD*DD DDD = 6.0D0*B1*(SHM1+XS/SA2B8) GF = -B1*XS2/DD DGF = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2 sx = GF*BR4 V1XA = 4.d0/3.d0*BR1*(GF-XS*DGF) V2XA = DGF/A ENDIF IF(ABS(RHOB).GT.SMALL) THEN AA = GRHOB A = SQRT(AA) BR1 = RHOB**OB3 BR2 = BR1*BR1 BR4 = BR2*BR2 XS = A/BR4 XS2 = XS*XS SA2B8 = SQRT(1.0D0+XS2) SHM1 = LOG(XS+SA2B8) DD = 1.0D0 + 6.0D0*B1*XS*SHM1 DD2 = DD*DD DDD = 6.0D0*B1*(SHM1+XS/SA2B8) GF = -B1*XS2/DD DGF = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2 sx = sx+GF*BR4 V1XB = 4.d0/3.d0*BR1*(GF-XS*DGF) V2XB = DGF/A ENDIF ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_B88 espresso-5.0.2/flib/date_and_tim.f900000644000700200004540000000155512053145634016235 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine date_and_tim (cdate, ctime) ! ! Returns two strings containing the date and the time ! in human-readable format. Uses a standard f90 call. ! implicit none character (len=9) :: cdate, ctime ! character(len=3), dimension(12) :: months data months /'Jan','Feb','Mar','Apr','May','Jun', & 'Jul','Aug','Sep','Oct','Nov','Dec'/ INTEGER date_time(8) ! call date_and_time(values=date_time) ! write (cdate,'(i2,a3,i4)') date_time(3), months(date_time(2)), date_time(1) write (ctime,'(i2,":",i2,":",i2)') date_time(5), date_time(6), date_time(7) end subroutine date_and_tim espresso-5.0.2/flib/capital.f900000644000700200004540000000460012053145634015234 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION capital( in_char ) !----------------------------------------------------------------------- ! ! ... converts character to capital if lowercase ! ... copy character to output in all other cases ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: in_char CHARACTER(LEN=1) :: capital CHARACTER(LEN=26), PARAMETER :: lower = 'abcdefghijklmnopqrstuvwxyz', & upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' INTEGER :: i ! ! DO i=1, 26 ! IF ( in_char == lower(i:i) ) THEN ! capital = upper(i:i) ! RETURN ! END IF ! END DO ! capital = in_char ! RETURN ! END FUNCTION capital ! !----------------------------------------------------------------------- FUNCTION lowercase( in_char ) !----------------------------------------------------------------------- ! ! ... converts character to lowercase if capital ! ... copy character to output in all other cases ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: in_char CHARACTER(LEN=1) :: lowercase CHARACTER(LEN=26), PARAMETER :: lower = 'abcdefghijklmnopqrstuvwxyz', & upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' INTEGER :: i ! ! DO i=1, 26 ! IF ( in_char == upper(i:i) ) THEN ! lowercase = lower(i:i) ! RETURN ! END IF ! END DO ! lowercase = in_char ! RETURN ! END FUNCTION lowercase ! !----------------------------------------------------------------------- LOGICAL FUNCTION isnumeric ( in_char ) !----------------------------------------------------------------------- ! ! ... check if a character is a number ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: in_char CHARACTER(LEN=10), PARAMETER :: numbers = '0123456789' INTEGER :: i ! ! DO i=1, 10 ! isnumeric = ( in_char == numbers(i:i) ) IF ( isnumeric ) RETURN ! END DO RETURN ! END FUNCTION isnumeric espresso-5.0.2/flib/w0gauss.f900000644000700200004540000000432312053145634015212 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function w0gauss (x, n) !----------------------------------------------------------------------- ! ! the derivative of wgauss: an approximation to the delta function ! ! --> (n>=0) : derivative of the corresponding Methfessel-Paxton wgauss ! ! --> (n=-1 ): derivative of cold smearing: ! 1/sqrt(pi)*exp(-(x-1/sqrt(2))**2)*(2-sqrt(2)*x) ! ! --> (n=-99): derivative of Fermi-Dirac function: 0.5/(1.0+cosh(x)) ! USE kinds, ONLY : DP USE constants, ONLY : sqrtpm1 implicit none real(DP) :: w0gauss, x ! output: the value of the function ! input: the point where to compute the function integer :: n ! input: the order of the smearing function ! ! here the local variables ! real(DP) :: a, arg, hp, hd ! the coefficients a_n ! the argument of the exponential ! the hermite function ! the hermite function integer :: i, ni ! counter on n values ! counter on 2n values ! Fermi-Dirac smearing if (n.eq. - 99) then if (abs (x) .le.36.0) then w0gauss = 1.0d0 / (2.0d0 + exp ( - x) + exp ( + x) ) ! in order to avoid problems for large values of x in the e else w0gauss = 0.d0 endif return endif ! cold smearing (Marzari-Vanderbilt) if (n.eq. - 1) then arg = min (200.d0, (x - 1.0d0 / sqrt (2.0d0) ) **2) w0gauss = sqrtpm1 * exp ( - arg) * (2.0d0 - sqrt ( 2.0d0) * x) return endif if (n.gt.10 .or. n.lt.0) call errore('w0gauss','higher order smearing is untested and unstable',abs(n)) ! Methfessel-Paxton arg = min (200.d0, x**2) w0gauss = exp ( - arg) * sqrtpm1 if (n.eq.0) return hd = 0.0d0 hp = exp ( - arg) ni = 0 a = sqrtpm1 do i = 1, n hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd ni = ni + 1 a = - a / (DBLE (i) * 4.0d0) hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp ni = ni + 1 w0gauss = w0gauss + a * hp enddo return end function w0gauss espresso-5.0.2/flib/linpack.f900000644000700200004540000001571512053145634015251 0ustar marsamoscm! Slightly modified version of LINPACK routines zgefa and zgedi SUBROUTINE ZGEFA(A,LDA,N,IPVT,INFO) USE kinds, ONLY : DP INTEGER LDA,N,IPVT(*),INFO COMPLEX(DP) A(LDA,*) ! ! ZGEFA FACTORS A COMPLEX(DP) MATRIX BY GAUSSIAN ELIMINATION. ! ! ZGEFA IS USUALLY CALLED BY ZGECO, BUT IT CAN BE CALLED ! DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED. ! (TIME FOR ZGECO) = (1 + 9/N)*(TIME FOR ZGEFA) . ! ! ON ENTRY ! ! A COMPLEX(DP)(LDA, N) ! THE MATRIX TO BE FACTORED. ! ! LDA INTEGER ! THE LEADING DIMENSION OF THE ARRAY A . ! ! N INTEGER ! THE ORDER OF THE MATRIX A . ! ! ON RETURN ! ! A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS ! WHICH WERE USED TO OBTAIN IT. ! THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE ! L IS A PRODUCT OF PERMUTATION AND UNIT LOWER ! TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR. ! ! IPVT INTEGER(N) ! AN INTEGER VECTOR OF PIVOT INDICES. ! ! INFO INTEGER ! = 0 NORMAL VALUE. ! = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR ! CONDITION FOR THIS SUBROUTINE, BUT IT DOES ! INDICATE THAT ZGESL OR ZGEDI WILL DIVIDE BY ZERO ! IF CALLED. USE RCOND IN ZGECO FOR A RELIABLE ! INDICATION OF SINGULARITY. ! ! LINPACK. THIS VERSION DATED 08/14/78 . ! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. ! ! SUBROUTINES AND FUNCTIONS ! ! BLAS ZAXPY,ZSCAL,IZAMAX ! FORTRAN DABS ! ! INTERNAL VARIABLES ! COMPLEX(DP) T INTEGER IZAMAX,J,K,KP1,L,NM1 ! COMPLEX(DP) ZDUM REAL(DP) CABS1 REAL(DP) REAL,AIMAG COMPLEX(DP) ZDUMR,ZDUMI REAL(ZDUMR) = ZDUMR AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM)) ! ! GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING ! INFO = 0 NM1 = N - 1 IF (NM1 .LT. 1) GO TO 70 DO 60 K = 1, NM1 KP1 = K + 1 ! ! FIND L = PIVOT INDEX ! L = IZAMAX(N-K+1,A(K,K),1) + K - 1 IPVT(K) = L ! ! ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED ! IF (CABS1(A(L,K)) .EQ. 0.0D0) GO TO 40 ! ! INTERCHANGE IF NECESSARY ! IF (L .EQ. K) GO TO 10 T = A(L,K) A(L,K) = A(K,K) A(K,K) = T 10 CONTINUE ! ! COMPUTE MULTIPLIERS ! T = -(1.0D0,0.0D0)/A(K,K) CALL ZSCAL(N-K,T,A(K+1,K),1) ! ! ROW ELIMINATION WITH COLUMN INDEXING ! DO 30 J = KP1, N T = A(L,J) IF (L .EQ. K) GO TO 20 A(L,J) = A(K,J) A(K,J) = T 20 CONTINUE CALL ZAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1) 30 CONTINUE GO TO 50 40 CONTINUE INFO = K 50 CONTINUE 60 CONTINUE 70 CONTINUE IPVT(N) = N IF (CABS1(A(N,N)) .EQ. 0.0D0) INFO = N RETURN END SUBROUTINE ZGEFA SUBROUTINE ZGEDI(A,LDA,N,IPVT,DET,WORK,JOB) USE kinds, ONLY : DP INTEGER LDA,N,IPVT(*),JOB COMPLEX(DP) A(LDA,*),DET(2),WORK(*) ! ! ZGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX ! USING THE FACTORS COMPUTED BY ZGECO OR ZGEFA. ! ! ON ENTRY ! ! A COMPLEX(DP)(LDA, N) ! THE OUTPUT FROM ZGECO OR ZGEFA. ! ! LDA INTEGER ! THE LEADING DIMENSION OF THE ARRAY A . ! ! N INTEGER ! THE ORDER OF THE MATRIX A . ! ! IPVT INTEGER(N) ! THE PIVOT VECTOR FROM ZGECO OR ZGEFA. ! ! WORK COMPLEX(DP)(N) ! WORK VECTOR. CONTENTS DESTROYED. ! ! JOB INTEGER ! = 11 BOTH DETERMINANT AND INVERSE. ! = 01 INVERSE ONLY. ! = 10 DETERMINANT ONLY. ! ! ON RETURN ! ! A INVERSE OF ORIGINAL MATRIX IF REQUESTED. ! OTHERWISE UNCHANGED. ! ! DET COMPLEX(DP)(2) ! DETERMINANT OF ORIGINAL MATRIX IF REQUESTED. ! OTHERWISE NOT REFERENCED. ! DETERMINANT = DET(1) * 10.0**DET(2) ! WITH 1.0 .LE. CABS1(DET(1)) .LT. 10.0 ! OR DET(1) .EQ. 0.0 . ! ! ERROR CONDITION ! ! A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS ! A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED. ! IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY ! AND IF ZGECO HAS SET RCOND .GT. 0.0 OR ZGEFA HAS SET ! INFO .EQ. 0 . ! ! LINPACK. THIS VERSION DATED 08/14/78 . ! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. ! ! SUBROUTINES AND FUNCTIONS ! ! BLAS ZAXPY,ZSCAL,ZSWAP ! FORTRAN DABS,CMPLX,MOD ! ! INTERNAL VARIABLES ! COMPLEX(DP) T REAL(DP) TEN INTEGER I,J,K,KB,KP1,L,NM1 ! COMPLEX(DP) ZDUM REAL(DP) CABS1 REAL(DP) REAL,AIMAG COMPLEX(DP) ZDUMR,ZDUMI REAL(ZDUMR) = ZDUMR AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM)) ! ! COMPUTE DETERMINANT ! IF (JOB/10 .EQ. 0) GO TO 70 DET(1) = (1.0D0,0.0D0) DET(2) = (0.0D0,0.0D0) TEN = 10.0D0 DO 50 I = 1, N IF (IPVT(I) .NE. I) DET(1) = -DET(1) DET(1) = A(I,I)*DET(1) ! ...EXIT IF (CABS1(DET(1)) .EQ. 0.0D0) GO TO 60 10 IF (CABS1(DET(1)) .GE. 1.0D0) GO TO 20 DET(1) = CMPLX(TEN,0.0D0,KIND=dp)*DET(1) DET(2) = DET(2) - (1.0D0,0.0D0) GO TO 10 20 CONTINUE 30 IF (CABS1(DET(1)) .LT. TEN) GO TO 40 DET(1) = DET(1)/CMPLX(TEN,0.0D0,KIND=dp) DET(2) = DET(2) + (1.0D0,0.0D0) GO TO 30 40 CONTINUE 50 CONTINUE 60 CONTINUE 70 CONTINUE ! ! COMPUTE INVERSE(U) ! IF (MOD(JOB,10) .EQ. 0) GO TO 150 DO 100 K = 1, N A(K,K) = (1.0D0,0.0D0)/A(K,K) T = -A(K,K) CALL ZSCAL(K-1,T,A(1,K),1) KP1 = K + 1 IF (N .LT. KP1) GO TO 90 DO 80 J = KP1, N T = A(K,J) A(K,J) = (0.0D0,0.0D0) CALL ZAXPY(K,T,A(1,K),1,A(1,J),1) 80 CONTINUE 90 CONTINUE 100 CONTINUE ! ! FORM INVERSE(U)*INVERSE(L) ! NM1 = N - 1 IF (NM1 .LT. 1) GO TO 140 DO 130 KB = 1, NM1 K = N - KB KP1 = K + 1 DO 110 I = KP1, N WORK(I) = A(I,K) A(I,K) = (0.0D0,0.0D0) 110 CONTINUE DO 120 J = KP1, N T = WORK(J) CALL ZAXPY(N,T,A(1,J),1,A(1,K),1) 120 CONTINUE L = IPVT(K) IF (L .NE. K) CALL ZSWAP(N,A(1,K),1,A(1,L),1) 130 CONTINUE 140 CONTINUE 150 CONTINUE RETURN END SUBROUTINE ZGEDI espresso-5.0.2/flib/plot_io.f900000644000700200004540000001136212053145634015267 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine plot_io (filplot, title, nr1x, nr2x, nr3x, nr1, nr2, & nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecut, plot_num, atm, & ityp, zv, tau, plot, iflag) !----------------------------------------------------------------------- ! ! iflag >0 : write header and the quantity to be plotted ("plot") ! to file "filplot" ! iflag< 0 : read everything (requires that all variables that are ! read are allocated with the correct dimensions!) ! USE io_global, ONLY : stdout USE kinds, only : DP implicit none character (len=*) :: filplot character (len=75) :: title ! integer :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav, & ! plot_num, ityp (nat), iflag, i integer :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav, & plot_num, ityp (*), iflag, i character (len=3) :: atm(*) ! real(DP) :: celldm (6), gcutm, dual, ecut, zv (ntyp), tau (3, nat) & ! , plot (nr1x * nr2x * nr3x), at(3,3) real(DP) :: celldm (6), gcutm, dual, ecut, zv (*), tau (3, *) & , plot (*), at(3,3) ! integer :: iunplot, ios, ipol, na, nt, ir, ndum ! if (filplot == ' ') call errore ('plot_io', 'filename missing', 1) ! iunplot = 4 if (iflag == 0 ) call errore('plot_io',& ' iflag==0 not allowed, use read_io_header ',1) if (iflag > 0) then WRITE( stdout, '(5x,"Writing data to file ",a)') TRIM(filplot) open (unit = iunplot, file = filplot, form = 'formatted', & status = 'unknown', err = 100, iostat = ios) else WRITE( stdout, '(5x,"Reading data from file ",a)') TRIM(filplot) open (unit = iunplot, file = filplot, form = 'formatted', & status = 'old', err = 100, iostat = ios) endif 100 call errore ('plot_io', 'opening file '//TRIM(filplot), abs (ios) ) rewind (iunplot) if (iflag > 0) then write (iunplot, '(a)') title write (iunplot, '(8i8)') nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp write (iunplot, '(i6,2x,6f16.8)') ibrav, celldm if (ibrav == 0) then do i = 1,3 write ( iunplot, * ) ( at(ipol,i),ipol=1,3 ) enddo endif write (iunplot, '(3f20.10,i6)') gcutm, dual, ecut, plot_num write (iunplot, '(i4,3x,a2,3x,f5.2)') & (nt, atm (nt), zv (nt), nt=1, ntyp) write (iunplot, '(i4,3x,3f15.9,3x,i2)') (na, & (tau (ipol, na), ipol = 1, 3), ityp (na), na = 1, nat) write (iunplot, '(5(1pe17.9))') (plot (ir) , ir = 1, nr1x * nr2x * nr3) else read (iunplot, '(a)') title read (iunplot, * ) nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp read (iunplot, * ) ibrav, celldm if (ibrav == 0) then do i = 1,3 read ( iunplot, * ) ( at(ipol,i),ipol=1,3 ) enddo endif read (iunplot, * ) gcutm, dual, ecut, plot_num read (iunplot, '(i4,3x,a2,3x,f5.2)') & (ndum, atm(nt), zv(nt), nt=1, ntyp) read (iunplot, *) (ndum, (tau (ipol, na), ipol = 1, 3), & ityp(na), na = 1, nat) read (iunplot, * ) (plot (ir), ir = 1, nr1x * nr2x * nr3) endif close (unit = iunplot) return end subroutine plot_io !----------------------------------------------------------------------- subroutine read_io_header(filplot, title, nr1x, nr2x, nr3x, nr1, nr2, nr3, & nat, ntyp, ibrav, celldm, at, gcutm, dual, ecut, plot_num) !----------------------------------------------------------------------- ! ! read header of file "filplot" ! USE io_global, ONLY : stdout USE kinds, only : DP implicit none character (len=*) :: filplot character (len=75) :: title integer :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav, plot_num, i real(DP) :: celldm (6), gcutm, dual, ecut, at(3,3) ! integer :: iunplot, ios, ipol ! if (filplot == ' ') call errore ('read_io_h', 'filename missing', 1) ! iunplot = 4 WRITE( stdout, '(5x,"Reading header from file ",a)') TRIM(filplot) open (unit = iunplot, file = filplot, form = 'formatted', & status = 'old', err = 100, iostat = ios) 100 call errore ('plot_io', 'opening file '//TRIM(filplot), abs (ios) ) rewind (iunplot) read (iunplot, '(a)') title read (iunplot, * ) nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp read (iunplot, * ) ibrav, celldm if (ibrav == 0) then do i = 1,3 read ( iunplot, * ) ( at(ipol,i),ipol=1,3 ) enddo endif read (iunplot, * ) gcutm, dual, ecut, plot_num close (unit = iunplot) return end subroutine read_io_header espresso-5.0.2/flib/invmat_complex.f900000644000700200004540000000277312053145634016655 0ustar marsamoscm! ! Copyright (C) 2004 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE invmat_complex (n, a, a_inv, da) !----------------------------------------------------------------------- ! computes the inverse "a_inv" of a complex matrix "a", both ! dimensioned (n,n). If the matrix is dimensioned 3x3, it also computes ! determinant "da". Matrix "a" is unchanged on output - LAPACK ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: n COMPLEX (DP), DIMENSION (n,n) :: a, a_inv COMPLEX (DP) :: da ! INTEGER :: info, lda, lwork, ipiv (n) ! info=0: inversion was successful ! lda : leading dimension (the same as n) ! ipiv : work space for pivoting (assumed of length lwork=n) COMPLEX (DP) :: work (n) ! more work space ! lda = n lwork=n ! a_inv(:,:) = a(:,:) ! CALL zgetrf (n, n, a_inv, lda, ipiv, info) CALL errore ('invmat', 'error in ZGETRF', abs (info) ) CALL zgetri (n, a_inv, lda, ipiv, work, lwork, info) CALL errore ('invmat', 'error in ZGETRI', abs (info) ) ! IF (n == 3) THEN da = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) + & a(1,2)*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) + & a(1,3)*(a(2,1)*a(3,2)-a(3,1)*a(2,2)) IF (ABS(da) < 1.d-10) CALL errore(' invmat ',' singular matrix ', 1) ELSE da = (0.d0,0.d0) END IF ! RETURN ! END SUBROUTINE invmat_complex espresso-5.0.2/flib/latgen.f900000644000700200004540000002373612053145634015104 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !------------------------------------------------------------------------- subroutine latgen(ibrav,celldm,a1,a2,a3,omega) !----------------------------------------------------------------------- ! sets up the crystallographic vectors a1, a2, and a3. ! ! ibrav is the structure index: ! 1 cubic P (sc) 8 orthorhombic P ! 2 cubic F (fcc) 9 1-face (base) centered orthorhombic ! 3 cubic I (bcc) 10 all face centered orthorhombic ! 4 hexagonal and trigonal P 11 body centered orthorhombic ! 5 trigonal R, 3-fold axis c 12 monoclinic P (unique axis: c) ! 6 tetragonal P (st) 13 one face (base) centered monoclinic ! 7 tetragonal I (bct) 14 triclinic P ! Also accepted: ! 0 "free" structure -12 monoclinic P (unique axis: b) ! -5 trigonal R, threefold axis along (111) ! -9 alternate description for base centered orthorhombic ! ! celldm are parameters which fix the shape of the unit cell ! omega is the unit-cell volume ! ! NOTA BENE: all axis sets are right-handed ! Boxes for US PPs do not work properly with left-handed axis ! use kinds, only: DP implicit none integer, intent(in) :: ibrav real(DP), intent(inout) :: celldm(6) real(DP), intent(inout) :: a1(3), a2(3), a3(3) real(DP), intent(out) :: omega ! real(DP), parameter:: sr2 = 1.414213562373d0, & sr3 = 1.732050807569d0 integer :: i,j,k,l,iperm,ir real(DP) :: term, cbya, s, term1, term2, singam, sen ! ! user-supplied lattice vectors ! if (ibrav == 0) then if (SQRT( a1(1)**2 + a1(2)**2 + a1(3)**2 ) == 0 ) & call errore ('latgen', 'wrong at for ibrav=0', 1) if (SQRT( a2(1)**2 + a2(2)**2 + a2(3)**2 ) == 0 ) & call errore ('latgen', 'wrong at for ibrav=0', 2) if (SQRT( a3(1)**2 + a3(2)**2 + a3(3)**2 ) == 0 ) & call errore ('latgen', 'wrong at for ibrav=0', 3) if ( celldm(1) /= 0.D0 ) then ! ! ... input at are in units of alat => convert them to a.u. ! a1(:) = a1(:) * celldm(1) a2(:) = a2(:) * celldm(1) a3(:) = a3(:) * celldm(1) else ! ! ... input at are in atomic units: define celldm(1) from a1 ! celldm(1) = SQRT( a1(1)**2 + a1(2)**2 + a1(3)**2 ) end if ! else a1(:) = 0.d0 a2(:) = 0.d0 a3(:) = 0.d0 end if ! if (celldm (1) <= 0.d0) call errore ('latgen', 'wrong celldm(1)', ibrav) ! ! index of bravais lattice supplied ! if (ibrav == 1) then ! ! simple cubic lattice ! a1(1)=celldm(1) a2(2)=celldm(1) a3(3)=celldm(1) ! else if (ibrav == 2) then ! ! fcc lattice ! term=celldm(1)/2.d0 a1(1)=-term a1(3)=term a2(2)=term a2(3)=term a3(1)=-term a3(2)=term ! else if (ibrav == 3) then ! ! bcc lattice ! term=celldm(1)/2.d0 do ir=1,3 a1(ir)=term a2(ir)=term a3(ir)=term end do a2(1)=-term a3(1)=-term a3(2)=-term ! else if (ibrav == 4) then ! ! hexagonal lattice ! if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! cbya=celldm(3) a1(1)=celldm(1) a2(1)=-celldm(1)/2.d0 a2(2)=celldm(1)*sr3/2.d0 a3(3)=celldm(1)*cbya ! else if (ABS(ibrav) == 5) then ! ! trigonal lattice ! if (celldm (4) <= -0.5_dp .or. celldm (4) >= 1.0_dp) & call errore ('latgen', 'wrong celldm(4)', ibrav) ! term1=sqrt(1.0_dp + 2.0_dp*celldm(4)) term2=sqrt(1.0_dp - celldm(4)) ! IF ( ibrav == 5) THEN ! threefold axis along c (001) a2(2)=sr2*celldm(1)*term2/sr3 a2(3)=celldm(1)*term1/sr3 a1(1)=celldm(1)*term2/sr2 a1(2)=-a1(1)/sr3 a1(3)= a2(3) a3(1)=-a1(1) a3(2)= a1(2) a3(3)= a2(3) ELSE IF ( ibrav == -5) THEN ! threefold axis along (111) a1(1) = celldm(1)*(term1-2.0_dp*term2)/3.0_dp a1(2) = celldm(1)*(term1+term2)/3.0_dp a1(3) = a1(2) a2(1) = a1(3) a2(2) = a1(1) a2(3) = a1(2) a3(1) = a1(2) a3(2) = a1(3) a3(3) = a1(1) END IF else if (ibrav == 6) then ! ! tetragonal lattice ! if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! cbya=celldm(3) a1(1)=celldm(1) a2(2)=celldm(1) a3(3)=celldm(1)*cbya ! else if (ibrav == 7) then ! ! body centered tetragonal lattice ! if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! cbya=celldm(3) a2(1)=celldm(1)/2.d0 a2(2)=a2(1) a2(3)=cbya*celldm(1)/2.d0 a1(1)= a2(1) a1(2)=-a2(1) a1(3)= a2(3) a3(1)=-a2(1) a3(2)=-a2(1) a3(3)= a2(3) ! else if (ibrav == 8) then ! ! Simple orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! a1(1)=celldm(1) a2(2)=celldm(1)*celldm(2) a3(3)=celldm(1)*celldm(3) ! else if ( ABS(ibrav) == 9) then ! ! One face (base) centered orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! IF ( ibrav == 9 ) THEN ! old PWscf description a1(1) = 0.5d0 * celldm(1) a1(2) = a1(1) * celldm(2) a2(1) = - a1(1) a2(2) = a1(2) ELSE ! alternate description a1(1) = 0.5d0 * celldm(1) a1(2) =-a1(1) * celldm(2) a2(1) = a1(1) a2(2) =-a1(2) END IF a3(3) = celldm(1) * celldm(3) ! else if (ibrav == 10) then ! ! All face centered orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! a2(1) = 0.5d0 * celldm(1) a2(2) = a2(1) * celldm(2) a1(1) = a2(1) a1(3) = a2(1) * celldm(3) a3(2) = a2(1) * celldm(2) a3(3) = a1(3) ! else if (ibrav == 11) then ! ! Body centered orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! a1(1) = 0.5d0 * celldm(1) a1(2) = a1(1) * celldm(2) a1(3) = a1(1) * celldm(3) a2(1) = - a1(1) a2(2) = a1(2) a2(3) = a1(3) a3(1) = - a1(1) a3(2) = - a1(2) a3(3) = a1(3) ! else if (ibrav == 12) then ! ! Simple monoclinic lattice, unique (i.e. orthogonal to a) axis: c ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(4))>=1.d0) call errore ('latgen', 'wrong celldm(4)', ibrav) ! sen=sqrt(1.d0-celldm(4)**2) a1(1)=celldm(1) a2(1)=celldm(1)*celldm(2)*celldm(4) a2(2)=celldm(1)*celldm(2)*sen a3(3)=celldm(1)*celldm(3) ! else if (ibrav ==-12) then ! ! Simple monoclinic lattice, unique axis: b (more common) ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(5))>=1.d0) call errore ('latgen', 'wrong celldm(5)', ibrav) ! sen=sqrt(1.d0-celldm(5)**2) a1(1)=celldm(1) a2(2)=celldm(1)*celldm(2) a3(1)=celldm(1)*celldm(3)*celldm(5) a3(3)=celldm(1)*celldm(3)*sen ! else if (ibrav == 13) then ! ! One face centered monoclinic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(4))>=1.d0) call errore ('latgen', 'wrong celldm(4)', ibrav) ! sen = sqrt( 1.d0 - celldm(4) ** 2 ) a1(1) = 0.5d0 * celldm(1) a1(3) =-a1(1) * celldm(3) a2(1) = celldm(1) * celldm(2) * celldm(4) a2(2) = celldm(1) * celldm(2) * sen a3(1) = a1(1) a3(3) =-a1(3) ! else if (ibrav == 14) then ! ! Triclinic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(4))>=1.d0) call errore ('latgen', 'wrong celldm(4)', ibrav) if (abs(celldm(5))>=1.d0) call errore ('latgen', 'wrong celldm(5)', ibrav) if (abs(celldm(6))>=1.d0) call errore ('latgen', 'wrong celldm(6)', ibrav) ! singam=sqrt(1.d0-celldm(6)**2) term= (1.d0+2.d0*celldm(4)*celldm(5)*celldm(6) & -celldm(4)**2-celldm(5)**2-celldm(6)**2) if (term < 0.d0) call errore & ('latgen', 'celldm do not make sense, check your data', ibrav) term= sqrt(term/(1.d0-celldm(6)**2)) a1(1)=celldm(1) a2(1)=celldm(1)*celldm(2)*celldm(6) a2(2)=celldm(1)*celldm(2)*singam a3(1)=celldm(1)*celldm(3)*celldm(5) a3(2)=celldm(1)*celldm(3)*(celldm(4)-celldm(5)*celldm(6))/singam a3(3)=celldm(1)*celldm(3)*term ! else ! call errore('latgen',' nonexistent bravais lattice',ibrav) ! end if ! ! calculate unit-cell volume omega ! 100 omega=0.d0 s=1.d0 i=1 j=2 k=3 ! 101 do iperm=1,3 omega=omega+s*a1(i)*a2(j)*a3(k) l=i i=j j=k k=l end do ! i=2 j=1 k=3 s=-s if(s < 0.d0) go to 101 omega=abs(omega) return ! end subroutine latgen espresso-5.0.2/flib/metagga.f900000644000700200004540000012007112053145634015225 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !------------------------------------------------------------------------- ! ! META-GGA FUNCTIONALS ! ! Available functionals : ! - TPSS ! - M06L ! !========================================================================= ! !------------------------------------------------------------------------- ! ! TPSS ! !------------------------------------------------------------------------- !------------------------------------------------------------------------- subroutine tpsscxc( rho, grho, tau, sx, sc, v1x, v2x, v3x, v1c, v2c, v3c ) !----------------------------------------------------------------------- ! tpss metaGGA corrections for exchange and correlation - Hartree a.u. ! ! ! input: rho, grho=|\nabla rho|^2, tau = kinetic energy density ! definition: E_x = \int E_x(rho,grho) dr ! output: sx = E_x(rho,grho) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! sc, v1c, v2c as above for correlation ! v3x= D(E_x)/D(tau) ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, tau,sx, sc, v1x, v2x,v3x,v1c,v2c,v3c real(DP) :: small parameter (small = 1.E-10_DP) ! exchange if (rho.le.small) then sx = 0.0_DP v1x = 0.0_DP v2x = 0.0_DP sc = 0.0_DP v1c = 0.0_DP v2c = 0.0_DP v3x = 0.0_DP v3c=0.0_DP return end if call metax(rho,grho,tau,sx,v1x,v2x,v3x) ! call metac(rho,grho,tau,sc,v1c,v2c,v3c) ! return end subroutine tpsscxc !------------------------------------------------------------------------- subroutine metax(rho,grho2,tau,ex,v1x,v2x,v3x) ! --------------------------------------------------------------== ! == TPSS meta-GGA exchange potential and energy ! == == ! ==--------------------------------------------------------------== USE kinds, ONLY : DP ! NOTA BENE: E_x(rho,grho)=rho\epsilon_x(rho,grho) ! ex = E_x(rho,grho) NOT \epsilon_x(rho,grho) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! v3x= D(E_x)/D( tau ) ! tau is the kinetic energy density ! the same applies to correlation terms ! input grho2 is |\nabla rho|^2 implicit none ! INPUT real(DP) :: rho,grho2,tau,rs ! OUTPUT real(DP) :: ex,v1x,v2x,v3x ! LOCAL real(DP) :: vx_unif,ex_unif ! ex_unif: lda \epsilon_x(rho) ! ec_unif: lda \epsilon_c(rho) real(DP) :: small, pi34, third parameter (small=1.E-10_DP) parameter (pi34 = 0.6203504908994_DP, third = 1.0_DP / 3.0_DP) ! fx=Fx(p,z) ! fxp=d Fx / d p ! fxz=d Fx / d z real(DP) fx,f1x,f2x,f3x ! ==--------------------------------------------------------------== if(abs(tau).lt.small) then ex=0.0_DP v1x=0.0_DP v2x=0.0_DP v3x=0.0_DP return endif rs = pi34/rho**third call slater(rs,ex_unif,vx_unif) call metaFX(rho,grho2,tau,fx,f1x,f2x,f3x) ex =rho*ex_unif v1x=vx_unif*fx + ex*f1x v2x=ex*f2x v3x=ex*f3x ex =ex*fx ! ==--------------------------------------------------------------== return end subroutine metax !== ------------------------------------------------------------------ subroutine metac(rho,grho2,tau,ec,v1c,v2c,v3c) !== ------------------------------------------------------------------ ! TPSS meta-GGA correlation energy and potentials !== ------------------------------------------------------------------ USE kinds, ONLY : DP implicit none ! INPUT real(DP) :: rho, grho2, tau ! OUTPUT real(DP) :: ec, v1c,v2c,v3c ! LOCAL real(DP) :: z,z2,tauw,ec_rev,rs real(DP) :: d1rev, d2rev, d3rev ! d1ec= D ec_rev / D rho ! d2ec= D ec_rev / D |D rho/ D r| / |\nabla rho| ! d3ec= D ec_rev / D tau real(DP) :: cf1,cf2,cf3 real(DP) :: v1c_pbe, v2c_pbe, ec_pbe real(DP) :: v1c_sum, v2c_sum, ec_sum real(DP) :: vc_unif,ec_unif real(DP) :: dd,cab,cabone real(DP) :: rhoup,grhoup,dummy real(DP) :: small, pi34,third parameter(small=1.0E-10_DP) parameter (pi34= 0.75_DP/3.141592653589793_DP, & third=1.0_DP/3.0_DP) parameter (dd=2.80_DP) !in unit of Hartree^-1 parameter (cab=0.53_DP, cabone=1.0_DP+cab) ! if(abs(tau).lt.small) then ec=0.0_DP v1c=0.0_DP v2c=0.0_DP v3c=0.0_DP return endif rhoup=0.5_DP*rho grhoup=0.5_DP*SQRT(grho2) if(rhoup.gt.small) then call pw_spin((pi34/rhoup)**third,1.0_DP,ec_unif,vc_unif,dummy) if(abs(grhoup).gt.small) then !1.0_DP-small to avoid pow_e of 0 in pbec_spin call pbec_spin(rhoup,1.0_DP-small,grhoup**2,1,& ec_sum,v1c_sum,dummy,v2c_sum) else ec_sum=0.0_DP v1c_sum=0.0_DP v2c_sum=0.0_DP endif ec_sum = ec_sum/rhoup + ec_unif v1c_sum = (v1c_sum + vc_unif-ec_sum)/rho !rho, not rhoup v2c_sum = v2c_sum/(2.0_DP*rho) else ec_sum=0.0_DP v1c_sum=0.0_DP v2c_sum=0.0_DP endif ! rs = (pi34/rho)**third call pw (rs, 1, ec_unif, vc_unif) ! PBE correlation energy and potential ! ec_pbe=rho*H, not rho*(epsion_c_uinf + H) ! v1c_pbe=D (rho*H) /D rho ! v2c_pbe= for rho, 2 for call pbec(rho,grho2,1,ec_pbe,v1c_pbe,v2c_pbe) ec_pbe=ec_pbe/rho+ec_unif v1c_pbe=(v1c_pbe+vc_unif-ec_pbe)/rho v2c_pbe=v2c_pbe/rho ! if(ec_sum .lt. ec_pbe) then ec_sum = ec_pbe v1c_sum= v1c_pbe v2c_sum= v2c_pbe endif ! tauw=0.1250_DP*grho2/rho z=tauw/tau z2=z*z ! ec_rev=ec_pbe*(1+cab*z2)-cabone*z2*ec_sum d1rev = v1c_pbe + (cab*v1c_pbe-cabone*v1c_sum)*z2 & -(ec_pbe*cab - ec_sum*cabone)*2.0_DP*z2/rho d2rev = v2c_pbe + (cab*v2c_pbe-cabone*v2c_sum)*z2 & +(ec_pbe*cab - ec_sum*cabone)*4.0_DP*z2/grho2 d3rev = -(ec_pbe*cab - ec_sum*cabone)*2.0_DP*z2/tau ! cf1=1.0_DP+dd*ec_rev*z2*z cf2=rho*(1.0_DP+2.0_DP*z2*z*dd*ec_rev) cf3=ec_rev*ec_rev*3.0_DP*dd*z2*z v1c=ec_rev*cf1 + cf2*d1rev-cf3 ! cf3=cf3*rho v2c=cf2*d2rev + cf3*2.0_DP/grho2 v3c=cf2*d3rev - cf3/tau ec=rho*ec_rev*(1.0_DP+dd*ec_rev*z2*z) !-rho*ec_unif v1c=v1c !-vc_unif ! ==--------------------------------------------------------------== return end subroutine metac !------------------------------------------------------------------------- subroutine metaFX(rho,grho2,tau,fx,f1x,f2x,f3x) !------------------------------------------------------------------------- USE kinds, ONLY : DP implicit none ! INPUT ! charge density, square of gradient of rho, and kinetic energy density real(DP) rho, grho2, tau ! OUTPUT ! fx = Fx(p,z) ! f1x=D (Fx) / D rho ! f2x=D (Fx) / D ( D rho/D r_alpha) /|nabla rho| ! f3x=D (Fx) / D tau real(DP) fx, f1x, f2x, f3x ! LOCAL real(DP) x, p, z, qb, al, localdp, dz real(DP) dfdx, dxdp, dxdz, dqbdp, daldp, dqbdz, daldz real(DP) fxp, fxz ! fxp =D fx /D p real(DP) tauw, tau_unif ! work variables real(DP) xf1,xf2 real(DP) xfac1, xfac2, xfac3,xfac4,xfac5,xfac6,xfac7,z2 ! real(DP) pi, THRD, ee, cc, kk, bb,miu,fac1,small parameter(pi=3.141592653589793_DP) parameter(THRD=0.3333333333333333_DP) parameter(ee=1.537_DP) parameter(cc=1.59096_DP) parameter(kk=0.804_DP) parameter(bb=0.40_DP) parameter(miu=0.21951_DP) parameter(fac1=9.57078000062731_DP) !fac1=(3*pi^2)^(2/3) parameter(small=1.0E-6_DP) !==------------------------------------------------------------- tauw=0.125_DP*grho2/rho z=tauw/tau p=sqrt(grho2)/rho**THRD/rho p=p*p/(fac1*4.0_DP) tau_unif=0.3_DP*fac1*rho**(5.0_DP/3.0_DP) al=(tau-tauw)/tau_unif al=abs(al) !make sure al is always .gt. 0.0_DP qb=0.45_DP*(al-1.0_DP)/sqrt(1.0_DP+bb*al*(al-1.0_DP)) qb=qb+2.0_DP*THRD*p ! calculate x(p,z) and fx z2=z*z xf1=10.0_DP/81.0_DP xfac1=xf1+cc*z2/(1+z2)**2.0_DP xfac2=146.0_DP/2025.0_DP xfac3=sqrt(0.5_DP*(0.36_DP*z2+p*p)) xfac4=xf1*xf1/kk xfac5=2.0_DP*sqrt(ee)*xf1*0.36_DP xfac6=xfac1*p+xfac2*qb**2.0_DP-73.0_DP/405.0_DP*qb*xfac3 xfac6=xfac6+xfac4*p**2.0_DP+xfac5*z2+ee*miu*p**3.0_DP xfac7=(1+sqrt(ee)*p) x=xfac6/(xfac7*xfac7) ! fx=kk-kk/(1.0_DP+x/kk) fx=1.0_DP + kk-kk/(1.0_DP+x/kk) ! calculate the derivatives of fx w.r.t p and z dfdx=(kk/(kk+x))**2.0_DP daldp=5.0_DP*THRD*(tau/tauw-1.0_DP) ! daldz=-0.50_DP*THRD* ! * (tau/(2.0_DP*fac1*rho**THRD*0.1250_DP*sqrt(grho2)))**2.0_DP daldz=-5.0_DP*THRD*p/z2 dqbdz=0.45_DP*(0.50_DP*bb*(al-1.0_DP)+1.0_DP) dqbdz=dqbdz/(1.0_DP+bb*al*(al-1.0_DP))**1.5_DP dqbdp=dqbdz*daldp+2.0_DP*THRD dqbdz=dqbdz*daldz ! calculate d x /d p xf1=73.0_DP/405.0_DP/xfac3*0.50_DP*qb xf2=2.0_DP*xfac2*qb-73.0_DP/405.0_DP*xfac3 dxdp=-xf1*p dxdp=dxdp+xfac1+xf2*dqbdp dxdp=dxdp+2.0_DP*xfac4*p dxdp=dxdp+3.0_DP*ee*miu*p*p dxdp=dxdp/(xfac7*xfac7)-2.0_DP*x*sqrt(ee)/xfac7 ! d x/ dz dxdz=-xf1*0.36_DP*z xfac1=cc*2.0_DP*z*(1-z2)/(1+z2)**3.0_DP dxdz=dxdz+xfac1*p+xf2*dqbdz dxdz=dxdz+xfac5*2.0_DP*z dxdz=dxdz/(xfac7*xfac7) fxp=dfdx*dxdp fxz=dfdx*dxdz ! calculate f1x localdp=-8.0_DP*THRD*p/rho ! D p /D rho dz=-z/rho ! D z /D rho f1x=fxp*localdp+fxz*dz ! f2x localdp=2.0_DP/(fac1*4.0_DP*rho**(8.0_DP/3.0_DP)) dz=2.0_DP*0.125_DP/(rho*tau) f2x=fxp*localdp + fxz*dz ! f3x localdp=0.0_DP dz=-z/tau f3x=fxz*dz return end subroutine metaFX !------------------------------------------------------------------- subroutine tpsscx_spin(rhoup,rhodw,grhoup2,grhodw2,tauup,taudw,sx,& v1xup,v1xdw,v2xup,v2xdw,v3xup,v3xdw) !----------------------------------------------------------------- ! TPSS metaGGA for exchange - Hartree a.u. ! USE kinds, ONLY : DP implicit none ! ! dummy arguments ! real(DP) :: rhoup, rhodw, grhoup2, grhodw2, sx, v1xup, v1xdw, & v2xup, v2xdw ! up and down charge ! up and down gradient of the charge ! exchange and correlation energies ! derivatives of exchange wr. rho ! derivatives of exchange wr. grho ! real(DP):: tauup,taudw, &! up and down kinetic energy density v3xup,v3xdw ! derivatives of exchange wr. tau real(DP) :: small parameter (small = 1.E-10_DP) real(DP) :: rho, sxup, sxdw ! ! exchange rho = rhoup + rhodw if (rhoup.gt.small.and.sqrt(abs(grhoup2)).gt.small & .and. abs(tauup).gt.small) then call metax(2.0_DP*rhoup,4.0_DP*grhoup2, & 2.0_DP*tauup,sxup,v1xup,v2xup,v3xup) else sxup=0.0_DP v1xup=0.0_DP v2xup=0.0_DP v3xup=0.0_DP endif if (rhodw.gt.small.and.sqrt(abs(grhodw2)).gt.small & .and. abs(taudw).gt.small) then call metax(2.0_DP*rhodw,4.0_DP*grhodw2, & 2.0_DP*taudw,sxdw,v1xdw,v2xdw,v3xdw) else sxdw=0.0_DP v1xdw=0.0_DP v2xdw=0.0_DP v3xdw=0.0_DP endif sx=0.5_DP*(sxup+sxdw) v2xup=2.0_DP*v2xup v2xdw=2.0_DP*v2xdw ! return end subroutine tpsscx_spin ! !----------------------------------------------------------------------- subroutine tpsscc_spin(rho,zeta,grhoup,grhodw, & atau,sc,v1cup,v1cdw,v2cup,v2cdw,v3cup, v3cdw) !----------------------------------------------------------------------- ! tpss metaGGA for correlations - Hartree a.u. ! USE kinds, ONLY : DP implicit none ! ! dummy arguments ! real(DP) :: rho, zeta, grhoup(3),grhodw(3), sc, v1cup, v1cdw, v3c ! the total charge ! the magnetization ! the gradient of the charge ! exchange and correlation energies ! derivatives of correlation wr. rho ! derivatives of correlation wr. grho real(DP), dimension(3) :: v2cup, v2cdw, grho_vec real(DP) :: atau,v3cup, v3cdw, grho !grho=grho2 real(DP) :: small integer :: ipol parameter (small = 1.E-10_DP) ! ! ! vector grho_vec=grhoup+grhodw grho=0.0_DP do ipol=1,3 grho = grho + grho_vec(ipol)**2 end do ! ! if (rho.le.small.or.abs (zeta) .gt.1.0_DP.or.sqrt (abs (grho) ) & .le.small.or.abs(atau).lt.small) then sc = 0.0_DP v1cup = 0.0_DP v1cdw = 0.0_DP v2cup(:) = 0.0_DP v2cdw(:) = 0.0_DP v3cup = 0.0_DP v3cdw = 0.0_DP v3c = 0.0_DP else call metac_spin(rho,zeta,grhoup,grhodw, & atau,sc,v1cup,v1cdw,v2cup,v2cdw,v3c) end if ! ! v3cup = v3c v3cdw = v3c ! return end subroutine tpsscc_spin ! !--------------------------------------------------------------- subroutine metac_spin(rho,zeta,grhoup,grhodw, & tau,sc,v1up,v1dw,v2up,v2dw,v3) !--------------------------------------------------------------- USE kinds, ONLY : DP implicit none ! input real(DP) :: rho, zeta,grhoup(3),grhodw(3), tau ! output real(DP) :: sc, v1up, v1dw, v2up(3), v2dw(3), v3 ! local real(DP) :: rhoup, rhodw,tauw,grhovec(3),grho2,grho,& grhoup2,grhodw2 !grhovec vector gradient of rho !grho mod of gradient of rho real(DP) :: ec_u, vcup_u, vcdw_u real(DP) :: ec_pbe, v1up_pbe, v1dw_pbe,v2up_pbe(3),v2dw_pbe(3) real(DP) :: ecup_0, v1up_0, v2up_0(3),v2_tmp real(DP) :: ecdw_0, v1dw_0, v2dw_0(3) real(DP) :: ec_rev, cab, aa, bb, aa2 real(DP) :: z2,z,ca0,dca0da,dcabda,dcabdb real(DP) :: term(3),term1,term2,term3 real(DP) :: drev1up, drev1dw,drev2up(3),drev2dw(3),drev3 real(DP) :: sum, dsum1up, dsum1dw,dsum2up(3),dsum2dw(3) real(DP) :: dcab1up, dcab1dw,dcab2up(3),dcab2dw(3) real(DP) :: db1up, db1dw, db2up(3), db2dw(3) real(DP) :: da1up, da1dw real(DP) :: ecup_til,ecdw_til real(DP) :: v1up_uptil, v1up_dwtil, v2up_uptil(3),v2up_dwtil(3) real(DP) :: v1dw_uptil, v1dw_dwtil, v2dw_uptil(3),v2dw_dwtil(3) real(DP) :: small, pi34, p43, third, fac parameter(small=1.0E-10_DP, & fac=3.09366772628013593097_DP**2) ! fac = (3*PI**2)**(2/3) parameter (pi34= 0.75_DP / 3.141592653589793_DP, & p43=4.0_DP/3.0_DP,third=1.0_DP/3.0_DP) integer:: ipol !----------- rhoup=(1+zeta)*0.5_DP*rho rhodw=(1-zeta)*0.5_DP*rho grho2=0.0_DP grhoup2=0.0_DP grhodw2=0.0_DP do ipol=1,3 grhovec(ipol)=grhoup(ipol)+grhodw(ipol) grho2=grho2+grhovec(ipol)**2 grhoup2=grhoup2+grhoup(ipol)**2 grhodw2=grhodw2+grhodw(ipol)**2 end do grho=sqrt(grho2) ! if(rho.gt.small) then v2_tmp=0.0_DP call pw_spin((pi34/rho)**third,zeta,ec_u,vcup_u,vcdw_u) if((abs(grho).gt.small) .and. (zeta .le. 1.0_DP)) then call pbec_spin(rho,zeta,grho2,1,& ec_pbe,v1up_pbe,v1dw_pbe,v2_tmp) else ec_pbe=0.0_DP v1up_pbe=0.0_DP v1dw_pbe=0.0_DP v2up_pbe=0.0_DP endif ec_pbe = ec_pbe/rho+ec_u ! v1xx_pbe = D_epsilon_c/ D_rho_xx :xx= up, dw v1up_pbe = (v1up_pbe+vcup_u-ec_pbe)/rho v1dw_pbe = (v1dw_pbe+vcdw_u-ec_pbe)/rho ! v2xx_pbe = (D_Ec / D grho)/rho = (D_Ec/ D |grho| /|grho|)*grho/rho v2up_pbe = v2_tmp/rho*grhovec ! v2dw === v2up for PBE v2dw_pbe = v2up_pbe else ec_pbe=0.0_DP v1up_pbe=0.0_DP v1dw_pbe=0.0_DP v2up_pbe=0.0_DP v2dw_pbe=0.0_DP endif ! ec_pbe(rhoup,0,grhoup,0) if(rhoup.gt.small) then v2_tmp=0.0_DP call pw_spin((pi34/rhoup)**third,1.0_DP,ec_u,vcup_u,vcdw_u) if(sqrt(grhoup2).gt.small) then call pbec_spin(rhoup,1.0_DP-small,grhoup2,1,& ecup_0,v1up_0,v1dw_0,v2_tmp) else ecup_0=0.0_DP v1up_0=0.0_DP v2up_0=0.0_DP endif ecup_0 = ecup_0/rhoup + ec_u v1up_0 = (v1up_0 + vcup_u-ecup_0)/rhoup v2up_0 = v2_tmp/rhoup*grhoup else ecup_0 = 0.0_DP v1up_0 = 0.0_DP v2up_0 = 0.0_DP endif ! if(ecup_0.gt.ec_pbe) then ecup_til = ecup_0 v1up_uptil=v1up_0 v2up_uptil=v2up_0 v1up_dwtil=0.0_DP v2up_dwtil=0.0_DP else ecup_til = ec_pbe v1up_uptil= v1up_pbe v1up_dwtil= v1dw_pbe v2up_uptil= v2up_pbe v2up_dwtil= v2up_pbe endif ! ec_pbe(rhodw,0,grhodw,0) ! zeta = 1.0_DP if(rhodw.gt.small) then v2_tmp=0.0_DP call pw_spin((pi34/rhodw)**third,-1.0_DP,ec_u,vcup_u,vcdw_u) if(sqrt(grhodw2).gt.small) then call pbec_spin(rhodw,-1.0_DP+small,grhodw2,1,& ecdw_0,v1up_0,v1dw_0,v2_tmp) else ecdw_0=0.0_DP v1dw_0=0.0_DP v2dw_0=0.0_DP endif ecdw_0 = ecdw_0/rhodw + ec_u v1dw_0 = (v1dw_0 + vcdw_u-ecdw_0)/rhodw v2dw_0 = v2_tmp/rhodw*grhodw else ecdw_0 = 0.0_DP v1dw_0 = 0.0_DP v2dw_0 = 0.0_DP endif ! if(ecdw_0.gt.ec_pbe) then ecdw_til = ecdw_0 v1dw_dwtil=v1dw_0 v2dw_dwtil=v2dw_0 v1dw_uptil=0.0_DP v2dw_uptil=0.0_DP else ecdw_til = ec_pbe v1dw_dwtil= v1dw_pbe v2dw_dwtil= v2dw_pbe v1dw_uptil= v1up_pbe v2dw_uptil= v2dw_pbe endif !cccccccccccccccccccccccccccccccccccccccccc-------checked sum=(rhoup*ecup_til+rhodw*ecdw_til)/rho dsum1up=(ecup_til-ecdw_til)*rhodw/rho**2 & + (rhoup*v1up_uptil + rhodw*v1dw_uptil)/rho dsum1dw=(ecdw_til-ecup_til)*rhoup/rho**2 & + (rhodw*v1dw_dwtil + rhoup*v1up_dwtil)/rho ! vector dsum2up=(rhoup*v2up_uptil + rhodw*v2dw_uptil)/rho dsum2dw=(rhodw*v2dw_dwtil + rhoup*v2up_dwtil)/rho !ccccccccccccccccccccccccccccccccccccccccc---------checked aa=zeta ! bb=(rho*(grhoup-grhodw) - (rhoup-rhodw)*grho)**2 & ! /(4.0_DP*fac*rho**(14.0_DP/3.0_DP)) bb=0.0_DP do ipol=1,3 term(ipol)= rhodw*grhoup(ipol)-rhoup*grhodw(ipol) bb=bb+ term(ipol)**2 end do !vector term=term/(fac*rho**(14.0_DP/3.0_DP)) bb=bb/(fac*rho**(14.0_DP/3.0_DP)) ! bb=(rhodw*grhoup-rhoup*grhodw)**2/fac*rho**(-14.0_DP/3.0_DP) aa2=aa*aa ca0=0.53_DP+aa2*(0.87_DP+aa2*(0.50_DP+aa2*2.26_DP)) dca0da = aa*(1.74_DP+aa2*(2.0_DP+aa2*13.56_DP)) if(abs(aa).le.1.0_DP-small) then term3 =(1.0_DP+aa)**(-p43) + (1.0_DP-aa)**(-p43) term1=(1.0_DP+bb*0.50_DP*term3) term2=(1.0_DP+aa)**(-7.0_DP/3.0_DP) + (1.0_DP-aa)**(-7.0_DP/3.0_DP) cab =ca0/term1**4 dcabda = (dca0da/ca0 + 8.0_DP/3.0_DP*bb*term2/term1)*cab dcabdb = -2.0_DP*cab*term3/term1 else cab=0.0_DP dcabda=0.0_DP dcabdb=0.0_DP endif da1up=2.0_DP*rhodw/rho**2 da1dw=-2.0_DP*rhoup/rho**2 db1up=-2.0_DP*(grhodw(1)*term(1)+grhodw(2)*term(2)+grhodw(3)*term(3)) & -14.0_DP/3.0_DP*bb/rho db1dw= 2.0_DP*(grhoup(1)*term(1)+grhoup(2)*term(2)+grhoup(3)*term(3)) & -14.0_DP/3.0_DP*bb/rho !vector, not scalar db2up= term*rhodw*2.0_DP db2dw=-term*rhoup*2.0_DP ! dcab1up = dcabda*da1up + dcabdb*db1up dcab1dw = dcabda*da1dw + dcabdb*db1dw !vector, not scalar dcab2up = dcabdb*db2up dcab2dw = dcabdb*db2dw !cccccccccccccccccccccccccccccccccccccccccccccccccccccc------checked tauw=0.1250_DP*grho2/rho z=tauw/tau z2=z*z ! term1=1.0_DP+cab*z2 term2=(1.0_DP+cab)*z2 ec_rev = ec_pbe*term1-term2*sum ! drev1up=v1up_pbe*term1 + & ec_pbe*(z2*dcab1up - 2.0_DP*cab*z2/rho) & + (2.0_DP*term2/rho - z2*dcab1up)*sum & - term2*dsum1up ! drev1dw=v1dw_pbe*term1 + & ec_pbe*(z2*dcab1dw - 2.0_DP*cab*z2/rho) & + (2.0_DP*term2/rho - z2*dcab1dw)*sum & - term2*dsum1dw ! ! vector, not scalar drev2up=v2up_pbe*term1 + & ec_pbe*(z2*dcab2up+0.5_DP*cab*z/(rho*tau)*grhovec)& - (term2*4.0_DP/grho2*grhovec + z2*dcab2up)*sum & - term2*dsum2up drev2dw=v2dw_pbe*term1 + & ec_pbe*(z2*dcab2dw+0.5_DP*cab*z/(rho*tau)*grhovec) & - (term2*4.0_DP/grho2*grhovec + z2*dcab2dw)*sum & - term2*dsum2dw ! drev3 = ((1.0_DP+cab)*sum-ec_pbe*cab)*2.0_DP*z2/tau !ccccccccccccccccccccccccccccccccccccccccccccccccccc----checked term1=ec_rev*(1.0_DP+2.8_DP*ec_rev*z2*z) term2=(1.0_DP+5.6_DP*ec_rev*z2*z)*rho term3=-8.4_DP*ec_rev*ec_rev*z2*z ! v1up = term1 + term2*drev1up + term3 v1dw = term1 + term2*drev1dw + term3 ! term3=term3*rho v3 = term2*drev3 + term3/tau ! term3=-2.0_DP*term3/grho2 !grho/|grho|^2 = 1/grho v2up = term2*drev2up + term3*grhovec v2dw = term2*drev2dw + term3*grhovec ! ! ! call pw_spin((pi34/rho)**third,zeta,ec_u,vcup_u,vcdw_u) sc=rho*ec_rev*(1.0_DP+2.8_DP*ec_rev*z2*z) !-rho*ec_u ! v1up=v1up-vcup_u ! v1dw=v1dw-vcdw_u return end subroutine metac_spin ! !------------------------------------------------------------------------- ! ! END TPSSS !------------------------------------------------------------------------- ! !========================================================================= ! !------------------------------------------------------------------------- ! ! M06L ! ! ! input: - rho ! - grho2=|\nabla rho|^2 ! - tau = the kinetic energy density ! It is defined as summ_i( |nabla phi_i|**2 ) ! ! definition: E_x = \int ex dr ! ! output: ex (rho, grho, tau) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! ( v2x = 1/|grho| * dsx / d|grho| = 2 * dsx / dgrho2 ) ! v3x= D(E_x)/D(tau) ! ! ec, v1c, v2c, v3c as above for correlation ! !------------------------------------------------------------------------- ! subroutine m06lxc (rho, grho2, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) !----------------------------------------------------------------------- ! ! USE kinds, ONLY : dp implicit none real(dp), intent(in) :: rho, grho2, tau real(dp), intent(out) :: ex, ec, v1x, v2x,v3x,v1c,v2c,v3c ! real(dp) :: rhoa, rhob, grho2a, grho2b, taua, taub, v1cb, v2cb, v3cb real(dp), parameter :: zero = 0.0_dp, two = 2.0_dp, four = 4.0_dp ! ! rhoa = rho / two ! one component only rhob = rhoa ! grho2a = grho2 / four grho2b = grho2a ! taua = tau * two * 0.5_dp ! Taua, which is Tau_sigma is half Tau taub = taua ! Tau is defined as summ_i( |nabla phi_i|**2 ) ! in the M06L routine ! call m06lx (rhoa, grho2a, taua, ex, v1x, v2x, v3x) ! ex = two * ex ! Add the two components up + dw ! v2x = 0.5_dp * v2x ! call m06lc (rhoa, rhob, grho2a, grho2b, taua, taub, ec, v1c, v2c, v3c, & & v1cb, v2cb, v3cb) ! ! v2c = 0.5_dp * v2c ! end subroutine m06lxc !------------------------------------------------------------------------- ! subroutine m06lxc_spin (rhoup, rhodw, grhoup2, grhodw2, tauup, taudw, & & ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw) !----------------------------------------------------------------------- ! ! USE kinds, ONLY : dp implicit none real(dp), intent(in) :: rhoup, rhodw, grhoup2, grhodw2, tauup, taudw real(dp), intent(out) :: ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw ! real(dp) :: exup, exdw, taua, taub real(dp), parameter :: zero = 0.0_dp, two = 2.0_dp ! ! ! taua = tauup * two ! Tau is defined as summ_i( |nabla phi_i|**2 ) taub = taudw * two ! in the rest of the routine ! call m06lx (rhoup, grhoup2, taua, exup, v1xup, v2xup, v3xup) call m06lx (rhodw, grhodw2, taub, exdw, v1xdw, v2xdw, v3xdw) ! ex = exup + exdw ! ! call m06lc (rhoup, rhodw, grhoup2, grhodw2, taua, taub, & & ec, v1cup, v2cup, v3cup, v1cdw, v2cdw, v3cdw) ! ! ! end subroutine m06lxc_spin !=============================== M06L exchange ========================== subroutine m06lx (rho, grho2, tau, ex, v1x, v2x, v3x) !_________________________________________________________________________ use kinds, ONLY : dp use constants, ONLY : pi implicit none real(dp), intent(in) :: rho, grho2, tau real(dp), intent(out) :: ex, v1x, v2x, v3x real(dp) :: v1x_unif,ex_unif, ex_pbe, & & sx_pbe, v1x_pbe, v2x_pbe ! ! ex_unif: lda \epsilon_x(rho) ! v2x = 1/|grho| * dsx / d|grho| = 2 * dsx / dgrho2 ! real(dp), parameter :: zero = 0._dp, one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, five = 5.0_dp, six = 6.0_dp, & & eight = 8.0_dp, & & f12 = one/two, f13 = one/three, f23 = two/three, & & f53 = five/three, f83 = eight/three, f43 = four/three, & & pi34 = pi*three/four, pi2 = pi*pi, & & small=1.d-10 real(dp) :: d0, d1, d2, d3, d4, d5, CF, CT, CX, alpha real(dp), dimension(0:11) & & :: at integer :: i ! ! ! VSXC98 variables (LDA part) ! real(dp) :: xs, xs2, grho, rhom83, rho13, rho43, zs, gh real(dp) :: hg, dhg_dxs2, dhg_dzs real(dp) :: dxs2_drho, dxs2_dgrho2, dzs_drho, dzs_dtau real(dp) :: ex_vs98, v1x_vs98, v2x_vs98, v3x_vs98, v2x_vs98_g ! ! GGA and MGGA variables ! real(dp) :: tau_unif, ts, ws, fws, dfws, dfws_drho, dfws_dtau, & & dws_dts, dts_dtau, dts_drho ! ! _________________________________________________________________________________________ ! set parameters at(0) = 3.987756d-01 at(1) = 2.548219d-01 at(2) = 3.923994d-01 at(3) = -2.103655d+00 at(4) = -6.302147d+00 at(5) = 1.097615d+01 at(6) = 3.097273d+01 at(7) = -2.318489d+01 at(8) = -5.673480d+01 at(9) = 2.160364d+01 at(10) = 3.421814d+01 at(11) = -9.049762d+00 d0 = 6.012244d-01 d1 = 4.748822d-03 d2 = -8.635108d-03 d3 = -9.308062d-06 d4 = 4.482811d-05 d5 = zero alpha = 1.86726d-03 !___________________________________________________ if (rho < small .and. tau < small) then ex = zero v1x = zero v2x = zero v3x = zero return end if ! _________VSXC98 functional (LDA part)_____________ ! ! set variables CF = (three/five) * (six*pi2)**f23 CT = CF / two CX = -(three/two) * (three/(four*pi))**f13 ! Cx LSDA ! if (rho >= small .and. grho>=small) then grho = sqrt(grho2) rho43 = rho**f43 rho13 = rho**f13 rhom83 = one/rho**f83 xs = grho / rho43 xs2 = xs * xs zs = tau/rho**f53 - CF gh = one + alpha * (xs2 + zs) if (gh >= small) then call gvt4 (xs2, zs, d0, d1, d2, d3, d4, d5, alpha, hg, dhg_dxs2, dhg_dzs) else hg = zero dhg_dxs2 = zero dhg_dzs = zero end if dxs2_drho = -f83*xs2/rho dxs2_dgrho2 = rhom83 dzs_drho = -f53*tau*rhom83 dzs_dtau = one/rho**f53 ex_unif = CX * rho43 ex_vs98 = ex_unif * hg v1x_vs98 = CX * ( f43 * hg * rho**f13 ) + & & ex_unif * ( dhg_dxs2*dxs2_drho + dhg_dzs*dzs_drho ) v2x_vs98 = two * ex_unif * dhg_dxs2 * dxs2_dgrho2 v3x_vs98 = ex_unif * dhg_dzs * dzs_dtau !____________________mo6lx functional____________________________ tau_unif = CF * rho**f53 ! Tau is define as summ_i( |nabla phi_i|**2 ) ts = tau_unif / tau ws = (ts - one)/(ts + one) fws = zero dfws = zero do i = 0, 11 fws = fws + at(i)*ws**i dfws = dfws + i*at(i)*ws**(i-1) end do dws_dts = two/((ts+1)**2) dts_drho = ( (six*pi*pi*rho)**f23 )/tau dts_dtau = -ts/tau dfws_drho = dfws*dws_dts*dts_drho dfws_dtau = dfws*dws_dts*dts_dtau call pbex_m06l (two*rho, four*grho2, sx_pbe, v1x_pbe, v2x_pbe) v1x_unif = f43 * CX * rho13 sx_pbe = f12 * sx_pbe v1x_pbe = v1x_pbe + v1x_unif v2x_pbe = two * v2x_pbe ex_pbe = sx_pbe + ex_unif !________energy and potential_____________________________ ex = ex_vs98 + ex_pbe*fws v1x = v1x_vs98 + v1x_pbe*fws + ex_pbe*dfws_drho v2x = v2x_vs98 + v2x_pbe*fws v3X = v3x_vs98 + ex_pbe*dfws_dtau !__________________________________________________________ end subroutine m06lx !__________________________________________________________ subroutine pbex_m06l (rho, grho2, sx, v1x, v2x) !--------------------------------------------------------------- ! ! PBE exchange (without Slater exchange): ! J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! ! v2x = 1/|grho| * dsx / d|grho| = 2 * dsx / dgrho2 ! USE kinds USE constants, ONLY : pi implicit none real(dp) :: rho, grho2, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential integer :: iflag ! local variables real(dp) :: grho, rho43, xs, xs2, dxs2_drho, dxs2_dgrho2 real(dp) :: CX, denom, C1, C2, ex, Fx, dFx_dxs2, dex_drho real(dp), parameter :: mu=0.21951_dp, ka=0.804_dp, one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, six = 6.0_dp, eight = 8.0_dp, & & f13 = one/three, f23 = two/three, f43 = four/three, & & f34=three/four, f83 = eight/three !_____________________________________________________________________ CX = f34 * (three/pi)**f13 ! Cx LDA denom = four * (three*pi**two)**f23 C1 = mu / denom C2 = mu / (ka * denom) grho = sqrt(grho2) rho43 = rho**f43 xs = grho / rho43 xs2 = xs * xs dxs2_drho = -f83 * xs2 / rho dxs2_dgrho2 = one /rho**f83 ex = - CX * rho43 dex_drho = - f43 * CX * rho**f13 Fx = C1*xs2 / (one + C2*xs2) dFx_dxs2 = C1 / (one + C2*xs2)**2 ! ! Energy ! sx = Fx * ex ! ! Potential ! v1x = dex_drho * Fx + ex * dFx_dxs2 * dxs2_drho v2x = two * ex * dFx_dxs2* dxs2_dgrho2 ! ! end subroutine pbex_m06l !=============================== M06L correlation ========================== ! !------------------------------------------------------------------------- ! subroutine m06lc (rhoa, rhob, grho2a, grho2b, taua, taub, ec, v1c_up, v2c_up, v3c_up, & & v1c_dw, v2c_dw, v3c_dw) !------------------------------------------------------------------------- ! use kinds, only : dp use constants, only : pi implicit none !------------------------------------------------------------------------- real(dp), intent(in) :: rhoa, rhob, grho2a, grho2b, taua, taub real(dp), intent(out) :: ec, v1c_up, v2c_up, v3c_up, v1c_dw, v2c_dw, v3c_dw ! real(dp), parameter :: zero = 0._dp, one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, five = 5.0_dp, six = 6.0_dp, & & eight = 8.0_dp, & & f12 = one/two, f13 = one/three, f23 = two/three, & & f53 = five/three, f83 = eight/three, f43 = four/three, & & pi34 = three/(four*pi), pi2 = pi*pi, f35 = three/five, & & small=1.d-10 ! ! parameters of the MO6Lc functional ! real(dp), dimension(0:4):: cs, cab ! real(dp) :: ds0, ds1, ds2, ds3, ds4, ds5, CF, alpha, Ds, & & dab0, dab1, dab2, dab3, dab4, dab5, gama_ab, gama_s, & & alpha_s, alpha_ab ! ! functions and variables ! real(dp) :: ec_pw_a, ec_pw_b, ec_pw_ab, vc_pw_a, vc_pw_b, vv, & & vc_pw_ab, vc_pw_up, vc_pw_dw, Ecaa, Ecbb, Ecab, & & Ec_UEG_ab, Ec_UEG_aa, Ec_UEG_bb, decab_drhoa, decab_drhob, & & v1_ab_up, v1_ab_dw, v2_ab_up, v2_ab_dw, v3_ab_up, v3_ab_dw, & & v1_aa_up, v2_aa_up, v3_aa_up, v1_bb_dw, v2_bb_dw, v3_bb_dw ! real(dp) :: xsa, xs2a, rsa, grhoa, xsb, xs2b, grhob, rsb, zsa, zsb, & & xs2ab, zsab, zeta, rho, rs, & & dxs2a_drhoa, dxs2b_drhob, dxs2a_dgrhoa2, dxs2b_dgrhob2, & & dzsa_drhoa, dzsb_drhob, dzsa_dtaua, dzsb_dtaub ! real(dp) :: hga, dhga_dxs2a, dhga_dzsa, hgb, dhgb_dxs2b, dhgb_dzsb, & & hgab, dhgab_dxs2ab, dhgab_dzsab, & & Dsa, Dsb, dDsa_dxs2a, dDsa_dzsa, dDsb_dxs2b, dDsb_dzsb, & & gsa, gsb, gsab, dgsa_dxs2a, dgsb_dxs2b, dgsab_dxs2ab, num integer :: ifunc !_____________________________________________________________________________________ dab0 = 3.957626d-01 dab1 = -5.614546d-01 dab2 = 1.403963d-02 dab3 = 9.831442d-04 dab4 = -3.577176d-03 dab5 = zero cab(0) = 6.042374d-01 cab(1) = 1.776783d+02 cab(2) = -2.513252d+02 cab(3) = 7.635173d+01 cab(4) = -1.255699d+01 gama_ab = 0.0031_dp alpha_ab = 0.00304966_dp ds0 = 4.650534d-01 ds1 = 1.617589d-01 ds2 = 1.833657d-01 ds3 = 4.692100d-04 ds4 = -4.990573d-03 ds5 = zero cs(0) = 5.349466d-01 cs(1) = 5.396620d-01 cs(2) = -3.161217d+01 cs(3) = 5.149592d+01 cs(4) = -2.919613d+01 gama_s = 0.06_dp alpha_s = 0.00515088_dp CF = f35 * (six*pi2)**f23 ifunc = 1 ! iflag=1 J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) !______________Ecaa_____________________________________________________ if (rhoa < small .and. taua < small ) then Ecaa = zero v1_aa_up = zero v2_aa_up = zero v3_aa_up = zero else rsa = (pi34/rhoa)**f13 grhoa = sqrt(grho2a) xsa = grhoa / rhoa**f43 xs2a = xsa * xsa zsa = taua/rhoa**f53 - CF dxs2a_drhoa = -f83*xs2a/rhoa dxs2a_dgrhoa2 = one/(rhoa**f83) dzsa_drhoa = -f53*taua/(rhoa**f83) dzsa_dtaua = one/rhoa**f53 Dsa = one - xs2a/(four * (zsa + CF)) dDsa_dxs2a = - one/(four * (zsa + CF)) dDsa_dzsa = xs2a/(four * (zsa + CF)**2) ec_pw_a = zero vc_pw_a = zero call pw_spin (rsa, one, ec_pw_a, vc_pw_a, vv) call gvt4 (xs2a, zsa, ds0, ds1, ds2, ds3, ds4, ds5, alpha_s, hga, dhga_dxs2a, dhga_dzsa) call gfunc (cs, gama_s, xs2a, gsa, dgsa_dxs2a) Ec_UEG_aa = rhoa*ec_pw_a num = (dgsa_dxs2a + dhga_dxs2a)*Dsa + (gsa + hga)*dDsa_dxs2a ! ! Ecaa = Ec_UEG_aa * (gsa + hga) * Dsa v1_aa_up = vc_pw_a * (gsa + hga) * Dsa & & + Ec_UEG_aa * num * dxs2a_drhoa & & + Ec_UEG_aa * (dhga_dzsa*Dsa + (gsa + hga)*dDsa_dzsa) * dzsa_drhoa v2_aa_up = two * Ec_UEG_aa * num * dxs2a_dgrhoa2 v3_aa_up = Ec_UEG_aa * (dhga_dzsa*Dsa + (gsa + hga)*dDsa_dzsa) * dzsa_dtaua ! end if ! !______________Ecbb_____________________________________________________ if (rhob < small .and. taub < small) then Ecbb = zero v1_bb_dw = zero v2_bb_dw = zero v3_bb_dw = zero else rsb = (pi34/rhob)**f13 grhob = sqrt(grho2b) xsb = grhob / rhob**f43 xs2b = xsb * xsb zsb = taub/rhob**f53 - CF dxs2b_drhob = -f83*xs2b/rhob dxs2b_dgrhob2 = one /rhob**f83 dzsb_drhob = -f53*taub/(rhob**f83) dzsb_dtaub = one/rhob**f53 Dsb = one - xs2b/(four * (zsb + CF)) dDsb_dxs2b = - one/(four * (zsb + CF)) dDsb_dzsb = xs2b/(four * (zsb + CF)**2) call pw_spin (rsb, one, ec_pw_b, vc_pw_b, vv) call gvt4 (xs2b, zsb, ds0, ds1, ds2, ds3, ds4, ds5, alpha_s, hgb, dhgb_dxs2b, dhgb_dzsb) call gfunc (cs, gama_s, xs2b, gsb, dgsb_dxs2b) Ec_UEG_bb = rhob*ec_pw_b num = (dgsb_dxs2b + dhgb_dxs2b)*Dsb + (gsb + hgb)*dDsb_dxs2b ! ! Ecbb = Ec_UEG_bb * (gsb + hgb) * Dsb v1_bb_dw = vc_pw_b * (gsb + hgb) * Dsb & & + Ec_UEG_bb * num * dxs2b_drhob & & + Ec_UEG_bb * (dhgb_dzsb*Dsb + (gsb + hgb)*dDsb_dzsb)*dzsb_drhob v2_bb_dw = two * Ec_UEG_bb * num * dxs2b_dgrhob2 v3_bb_dw = Ec_UEG_bb * (dhgb_dzsb*Dsb + (gsb + hgb)*dDsb_dzsb)*dzsb_dtaub ! end if ! !________________Ecab____________________________________________ if (rhoa < small .and. rhob < small) then Ecab = zero v1_ab_up = zero v1_ab_dw = zero v2_ab_up = zero v2_ab_dw = zero v3_ab_up = zero v3_ab_dw = zero else xs2ab = xs2a + xs2b zsab = zsa + zsb rho = rhoa + rhob zeta = (rhoa - rhob)/rho rs = (pi34/rho)**f13 call gvt4 (xs2ab, zsab, dab0, dab1, dab2, dab3, dab4, dab5, alpha_ab, hgab, dhgab_dxs2ab, dhgab_dzsab) call pw_spin (rs, zeta, ec_pw_ab, vc_pw_up, vc_pw_dw) call gfunc (cab, gama_ab, xs2ab, gsab, dgsab_dxs2ab) decab_drhoa = vc_pw_up - vc_pw_a decab_drhob = vc_pw_dw - vc_pw_b Ec_UEG_ab = ec_pw_ab*rho - ec_pw_a*rhoa - ec_pw_b*rhob ! ! Ecab = Ec_UEG_ab * (gsab + hgab) v1_ab_up = decab_drhoa * (gsab + hgab) & & + Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2a_drhoa & & + Ec_UEG_ab * dhgab_dzsab * dzsa_drhoa v1_ab_dw = decab_drhob * (gsab + hgab) & & + Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2b_drhob & & + Ec_UEG_ab * dhgab_dzsab * dzsb_drhob v2_ab_up = two * Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2a_dgrhoa2 v2_ab_dw = two * Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2b_dgrhob2 v3_ab_up = Ec_UEG_ab * dhgab_dzsab * dzsa_dtaua v3_ab_dw = Ec_UEG_ab * dhgab_dzsab * dzsb_dtaub ! end if ! !___________________ec and vc_____________________________________________ ec = Ecaa + Ecbb + Ecab v1c_up = v1_aa_up + v1_ab_up v2c_up = v2_aa_up + v2_ab_up v3c_up = v3_aa_up + v3_ab_up v1c_dw = v1_bb_dw + v1_ab_dw v2c_dw = v2_bb_dw + v2_ab_dw v3c_dw = v3_bb_dw + v3_ab_dw !__________________________________________________________________________ contains !__________________________________________________________________________ subroutine gfunc (cspin, gama, xspin, gs, dgs_dx) implicit none real(dp), dimension (0:4), intent(in) :: cspin real(dp), intent(in) :: xspin, gama real(dp), intent(out) :: gs, dgs_dx ! real(dp) :: de, d2, x1, x2, x3, x4 real(dp), parameter :: one=1.0d0, two=2.0d0, three=3.0d0, four=4.0d0 !__________________ de = one/(one + gama*xspin) d2 = de**2 x1 = gama * xspin * de x2 = x1**2 x3 = x1**3 x4 = x1**4 gs = cspin(0) + cspin(1)*x1 + cspin(2)*x2 + cspin(3)*x3 + cspin(4)*x4 dgs_dx = gama*d2* (cspin(1) + two*cspin(2)*x1 + three*cspin(3)*x2 + four*cspin(4)*x3) end subroutine gfunc !___________________________________________________________________ end subroutine m06lc !___________________________________________________________________ subroutine gvt4 (x, z, a, b, c, d, e, f, alpha, hg, dh_dx, dh_dz) use kinds, only : dp implicit none real(dp), intent(in) :: X, z, a, b, c, d, e, f, alpha real(dp), intent(out) :: hg, dh_dx, dh_dz real(dp) :: gamma, gamma2, gamma3 real(dp), parameter :: one=1.0_dp, two=2.0_dp, three=3.0_dp gamma = one + alpha*(x+z) gamma2 = gamma*gamma gamma3 = gamma2*gamma hg = a/gamma + (b*x + c*z)/gamma2 + (d*x*x + e*x*z + f*z*z)/gamma3 dh_dx = ( -alpha*a + b + (two*x*(d - alpha*b) + z*(e - two*alpha*c))/ gamma & & - three*alpha*(d*x*x + e*x*z + f*z*z)/gamma2 )/gamma2 dh_dz = ( -alpha*a + c + (two*z*(f - alpha*c) + x*(e -two*alpha*b))/ gamma & & - three*alpha*(d*x*x + e*x*z + f*z*z)/gamma2 )/gamma2 return end subroutine gvt4 !------------------------------------------------------------------------- ! ! END M06L ! !========================================================================= espresso-5.0.2/flib/find_free_unit.f900000644000700200004540000000165612053145634016607 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- FUNCTION find_free_unit() !-------------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER :: find_free_unit INTEGER :: iunit LOGICAL :: opnd ! ! unit_loop: DO iunit = 99, 1, -1 ! INQUIRE( UNIT = iunit, OPENED = opnd ) ! IF ( .NOT. opnd ) THEN ! find_free_unit = iunit ! RETURN ! END IF ! END DO unit_loop ! CALL errore( 'find_free_unit()', 'free unit not found ?!?', 1 ) ! RETURN ! END FUNCTION find_free_unit ! espresso-5.0.2/flib/flush_unit.f900000644000700200004540000000143612053145634016003 0ustar marsamoscm! ! Copyright (C) 2005 PWSCF-FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined(__XLF) || defined(__ABSOFT) #define flush flush_ #endif ! !---------------------------------------------------------------------------- SUBROUTINE flush_unit( unit_tobeflushed ) !---------------------------------------------------------------------------- ! ! ... this is a wrapper to the standard flush routine ! INTEGER, INTENT(IN) :: unit_tobeflushed LOGICAL :: opnd ! ! INQUIRE( UNIT = unit_tobeflushed, OPENED = opnd ) ! IF ( opnd ) CALL flush( unit_tobeflushed ) ! RETURN ! END SUBROUTINE espresso-5.0.2/flib/test_input_file.f900000644000700200004540000000100712053145634017012 0ustar marsamoscmsubroutine test_input_xml(myunit,lxml) ! implicit none ! integer, intent(in) :: myunit logical, intent(out) :: lxml ! character(len=256) :: dummy character :: dummy2(1:256) integer :: i, j ! lxml = .false. dummy = "" dummy2(:) = "" ! do while (LEN_TRIM(dummy)<1) read(myunit,'(A256)',END=10) dummy do i=1,LEN_TRIM(dummy) dummy2(i) = dummy(i:i) enddo if(ANY(dummy2(:)=="<")) lxml=.true. end do ! RETURN ! 10 write(0,*) "from test_input_xml: Empty input file .. stopping" STOP ! end subroutine test_input_xml espresso-5.0.2/flib/avrec.f900000644000700200004540000000173212053145634014722 0ustar marsamoscm! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE avrec( n, alpha, v, av ) ! ... This subroutine try to use fast library to ! ... calculate ! ... av(i) = alpha / v(i) ! ... USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n INTEGER :: i REAL(DP), INTENT(IN) :: alpha REAL(DP), INTENT(IN) :: v(*) REAL(DP), INTENT(OUT) :: av(*) #if defined __BENCHLIB CALL oneover_v( n, v, av ) IF( alpha /= 1.0d0 ) THEN CALL dscal( n, alpha, av, 1 ) END IF #elif defined __MASS CALL vrec( av, v, n ) IF( alpha /= 1.0d0 ) THEN CALL dscal( n, alpha, av, 1 ) END IF #else DO i = 1, n av(i) = alpha / v(i) END DO #endif RETURN END SUBROUTINE avrec espresso-5.0.2/flib/expint.f900000644000700200004540000000517212053145634015133 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION EXPINT(n, x) !----------------------------------------------------------------------- ! ! Evaluates the exponential integral E_n(x) ! Parameters: maxit is the maximum allowed number of iterations, ! eps is the desired relative error, not smaller than the machine precision, ! big is a number near the largest representable floating-point number, ! Inspired from Numerical Recipes ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL(DP), INTENT(IN) :: x REAL(DP) :: expint INTEGER, parameter :: maxit=200 REAL(DP), parameter :: eps=1E-12_DP, big=huge(x)*eps REAL(DP), parameter :: euler = 0.577215664901532860606512_DP ! EPS=1E-9, FPMIN=1E-30 INTEGER :: i, nm1, k REAL(DP) :: a,b,c,d,del,fact,h,iarsum IF (.NOT. ((n >= 0).AND.(x >= 0.0).AND.((x > 0.0).OR.(n > 1)))) THEN CALL errore('expint','bad arguments', 1) END IF IF (n == 0) THEN expint = exp(-x)/x RETURN END IF nm1 = n-1 IF (x == 0.0_DP) THEN expint = 1.0_DP/nm1 ELSE IF (x > 1.0_DP) THEN b = x+n c = big d = 1.0_DP/b h = d DO i=1,maxit a = -i*(nm1+i) b = b+2.0_DP d = 1.0_DP/(a*d+b) c = b+a/c del = c*d h = h*del IF (ABS(del-1.0_DP) <= EPS) EXIT END DO IF (i > maxit) CALL errore('expint','continued fraction failed',1) expint = h*EXP(-x) ELSE IF (nm1 /= 0) THEN expint = 1.0_DP/nm1 ELSE expint = -LOG(x)-euler END IF fact = 1.0_DP do i=1,maxit fact = -fact*x/i IF (i /= nm1) THEN del = -fact/(i-nm1) ELSE iarsum = 0.0_DP do k=1,nm1 iarsum = iarsum + 1.0_DP/k end do del = fact*(-LOG(x)-euler+iarsum) ! del = fact*(-LOG(x)-euler+sum(1.0_DP/arth(1,1,nm1))) END IF expint = expint+del IF (ABS(del) < ABS(expint)*eps) EXIT END DO IF (i > maxit) CALL errore('expint','series failed',1) END IF END FUNCTION EXPINT ! ------------------------------------------------------------------- espresso-5.0.2/flib/remove_tot_torque.f900000644000700200004540000000563412053145634017411 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE remove_tot_torque( nat, tau, mass, force ) !---------------------------------------------------------------------------- ! ! ... This routine sets to zero the total torque associated to the internal ! ... forces acting on the atoms by correcting the force vector. ! ! ... The algorithm is based on the following expressions ( F' is the ! ... torqueless force ) : ! _ ! _ 1 \ __ _ __ _ _ ! ... m = --- /_ dR_i /\ F_i , dR_i = ( R_i - R_cm ) , ! N i ! ! __ _ 1 _ __ ! ... F'_i = F_i - -------- m /\ dR_i ! |dR_i|^2 ! ! ! ... written by carlo sbraccia (2006) ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), INTENT(IN) :: tau(3,nat) REAL(DP), INTENT(IN) :: mass(nat) REAL(DP), INTENT(INOUT) :: force(3,nat) ! INTEGER :: ia REAL(DP) :: m(3), mo(3), tauref(3), delta(3), sumf(3) REAL(DP) :: nrmsq ! ! tauref(:) = 0.D0 ! DO ia = 1, nat ! tauref(:) = tauref(:) + tau(:,ia)*mass(ia) ! END DO ! tauref(:) = tauref(:) / SUM( mass(:) ) ! m(:) = 0.D0 ! DO ia = 1, nat ! delta(:) = tau(:,ia) - tauref(:) ! m(:) = m(:) + ext_prod( delta(:), force(:,ia) ) ! END DO ! mo(:) = m(:) ! m(:) = m(:) / DBLE( nat ) ! sumf(:) = 0.D0 ! DO ia = 1, nat ! delta(:) = tau(:,ia) - tauref(:) ! nrmsq = delta(1)**2 + delta(2)**2 + delta(3)**2 ! force(:,ia) = force(:,ia) - ext_prod( m(:), delta(:) ) / nrmsq ! sumf(:) = sumf(:) + force(:,ia) ! END DO ! DO ia = 1, nat ! force(:,ia) = force(:,ia) - sumf(:) / DBLE( nat ) ! END DO ! m(:) = 0.D0 ! DO ia = 1, nat ! delta(:) = tau(:,ia) - tauref(:) ! m(:) = m(:) + ext_prod( delta(:), force(:,ia) ) ! END DO ! IF ( m(1)**2+m(2)**2+m(3)**2 > mo(1)**2+mo(2)**2+mo(3)**2 ) & CALL errore( 'remove_tot_torque', & 'total torque has not been properly removed', 1 ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------------ FUNCTION ext_prod( a, b ) !------------------------------------------------------------------------ ! REAL(DP), INTENT(IN) :: a(3), b(3) REAL(DP) :: ext_prod(3) ! ext_prod(1) = a(2)*b(3) - a(3)*b(2) ext_prod(2) = a(3)*b(1) - a(1)*b(3) ext_prod(3) = a(1)*b(2) - a(2)*b(1) ! END FUNCTION ext_prod ! END SUBROUTINE remove_tot_torque espresso-5.0.2/flib/bachel.f900000644000700200004540000000454112053145634015041 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine bachel (alps, aps, npseu, lmax) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants , ONLY : pi implicit none ! ! First I/O variables ! integer :: npseu, lmax (npseu) ! input: number of pseudopotential ! input: max. angul. momentum of the ps real(DP) :: alps (3, 0:3, npseu), aps (6, 0:3, npseu) ! input: the b_l coefficient ! in/out: the a_l coefficient ! ! Here local variables ! integer :: np, lmx, l, i, j, k, ia, ka, nik ! counter on number of pseudopot. ! aux. var. (max. ang. mom. of a fix. ps ! counter on angular momentum real(DP) :: s (6, 6), alpl, alpi, ail ! auxiliary array ! first real aux. var. (fix. value of al ! second real aux. var. (fix. value of a ! third real aux. var. ! do np = 1, npseu lmx = lmax (np) do l = 0, lmx do k = 1, 6 ka = mod (k - 1, 3) + 1 alpl = alps (ka, l, np) do i = 1, k ia = mod (i - 1, 3) + 1 alpi = alps (ia, l, np) ail = alpi + alpl s (i, k) = sqrt (pi / ail) / 4.d0 / ail nik = int ( (k - 1) / 3) + int ( (i - 1) / 3) + 1 do j = 2, nik s (i, k) = s (i, k) / 2.d0 / ail * (2 * j - 1) enddo enddo enddo ! do i = 1, 6 do j = i, 6 do k = 1, i - 1 s (i, j) = s (i, j) - s (k, i) * s (k, j) enddo if (i.eq.j) then s (i, i) = sqrt (s (i, i) ) else s (i, j) = s (i, j) / s (i, i) endif enddo enddo ! aps (6, l, np) = - aps (6, l, np) / s (6, 6) do i = 5, 1, - 1 aps (i, l, np) = - aps (i, l, np) do k = i + 1, 6 aps (i, l, np) = aps (i, l, np) - aps (k, l, np) * s (i, k) enddo aps (i, l, np) = aps (i, l, np) / s (i, i) enddo enddo enddo return end subroutine bachel espresso-5.0.2/flib/ylmr2.f900000644000700200004540000000745112053145634014673 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine ylmr2 (lmax2, ng, g, gg, ylm) !----------------------------------------------------------------------- ! ! Real spherical harmonics ylm(G) up to l=lmax ! lmax2 = (lmax+1)^2 is the total number of spherical harmonics ! Numerical recursive algorithm based on the one given in Numerical ! Recipes but avoiding the calculation of factorials that generate ! overflow for lmax > 11 ! USE kinds, ONLY : DP USE constants, ONLY : pi, fpi implicit none ! integer, intent(in) :: lmax2, ng real(DP), intent(in) :: g (3, ng), gg (ng) ! ! BEWARE: gg = g(1)^2 + g(2)^2 +g(3)^2 is not checked on input ! incorrect results will ensue if the above does not hold ! real(DP), intent(out) :: ylm (ng,lmax2) ! ! local variables ! real(DP), parameter :: eps = 1.0d-9 real(DP), allocatable :: cost (:), sent(:), phi (:), Q(:,:,:) real(DP) :: c, gmod integer :: lmax, ig, l, m, lm ! if (ng < 1 .or. lmax2 < 1) return do lmax = 0, 25 if ((lmax+1)**2 == lmax2) go to 10 end do call errore (' ylmr', 'l > 25 or wrong number of Ylm required',lmax2) 10 continue ! if (lmax == 0) then ylm(:,1) = sqrt (1.d0 / fpi) return end if ! ! theta and phi are polar angles, cost = cos(theta) ! allocate(cost(ng), sent(ng), phi(ng), Q(ng,0:lmax,0:lmax) ) ! !$omp parallel default(shared), private(ig,gmod,lm,l,c,m) !$omp do do ig = 1, ng gmod = sqrt (gg (ig) ) if (gmod < eps) then cost(ig) = 0.d0 else cost(ig) = g(3,ig)/gmod endif ! ! beware the arc tan, it is defined modulo pi ! if (g(1,ig) > eps) then phi (ig) = atan( g(2,ig)/g(1,ig) ) else if (g(1,ig) < -eps) then phi (ig) = atan( g(2,ig)/g(1,ig) ) + pi else phi (ig) = sign( pi/2.d0,g(2,ig) ) end if sent(ig) = sqrt(max(0d0,1.d0-cost(ig)**2)) enddo ! ! Q(:,l,m) are defined as sqrt ((l-m)!/(l+m)!) * P(:,l,m) where ! P(:,l,m) are the Legendre Polynomials (0 <= m <= l) ! lm = 0 do l = 0, lmax c = sqrt (DBLE(2*l+1) / fpi) if ( l == 0 ) then !$omp do do ig = 1, ng Q (ig,0,0) = 1.d0 end do else if ( l == 1 ) then !$omp do do ig = 1, ng Q (ig,1,0) = cost(ig) Q (ig,1,1) =-sent(ig)/sqrt(2.d0) end do else ! ! recursion on l for Q(:,l,m) ! do m = 0, l - 2 !$omp do do ig = 1, ng Q(ig,l,m) = cost(ig)*(2*l-1)/sqrt(DBLE(l*l-m*m))*Q(ig,l-1,m) & - sqrt(DBLE((l-1)*(l-1)-m*m))/sqrt(DBLE(l*l-m*m))*Q(ig,l-2,m) end do end do !$omp do do ig = 1, ng Q(ig,l,l-1) = cost(ig) * sqrt(DBLE(2*l-1)) * Q(ig,l-1,l-1) end do !$omp do do ig = 1, ng Q(ig,l,l) = - sqrt(DBLE(2*l-1))/sqrt(DBLE(2*l))*sent(ig)*Q(ig,l-1,l-1) end do end if ! ! Y_lm, m = 0 ! lm = lm + 1 !$omp do do ig = 1, ng ylm(ig, lm) = c * Q(ig,l,0) end do ! do m = 1, l ! ! Y_lm, m > 0 ! lm = lm + 1 !$omp do do ig = 1, ng ylm(ig, lm) = c * sqrt(2.d0) * Q(ig,l,m) * cos (m*phi(ig)) end do ! ! Y_lm, m < 0 ! lm = lm + 1 !$omp do do ig = 1, ng ylm(ig, lm) = c * sqrt(2.d0) * Q(ig,l,m) * sin (m*phi(ig)) end do end do end do ! !$omp end parallel ! deallocate(cost, sent, phi, Q) ! return end subroutine ylmr2 espresso-5.0.2/flib/Makefile0000644000700200004540000000205112053145634014735 0ustar marsamoscm# Makefile for flib include ../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../iotk/src $(MOD_FLAG)../Modules $(MOD_FLAG). OBJS = \ avrec.o \ atomic_number.o \ bachel.o \ capital.o \ cryst_to_car.o \ dost.o \ erf.o \ expint.o \ find_free_unit.o \ flush_unit.o \ functionals.o \ lsda_functionals.o \ more_functionals.o \ has_xml.o \ iglocal.o \ inpfile.o \ int_to_char.o \ invmat.o \ invmat_complex.o \ latgen.o \ linpack.o \ metagga.o \ matches.o \ plot_io.o \ radial_gradients.o \ rgen.o \ recips.o \ remove_tot_torque.o \ set_hubbard_l.o \ simpsn.o \ sort.o \ sph_bes.o \ sph_dbes.o \ transto.o \ trimcheck.o \ test_input_file.o \ date_and_tim.o \ volume.o \ dylmr2.o \ ylmr2.o \ wgauss.o \ w0gauss.o \ w1gauss.o \ deviatoric.o POBJS = \ distools.o all: flib.a ptools.a flib_only: flib.a ptools.a flib.a : $(OBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ dlamch.o : dlamch.f $(F77) $(FFLAGS_NOOPT) -c $< ptools.a : $(POBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ clean : - /bin/rm -f *.a *.o *.mod *.i *.F90 core* *.L include make.depend espresso-5.0.2/flib/w1gauss.f900000644000700200004540000000475612053145634015225 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- function w1gauss (x, n) !----------------------------------------------------------------------- ! ! w1gauss(x,n) = \int_{-\infty}^x y delta(y) dy ! where delta(x) is the current approximation for the delta function, ! as obtained from w0gauss(x,n) ! ! --> (n>=0) : Methfessel-Paxton case ! ! --> (n=-1): Cold smearing (Marzari-Vanderbilt) ! w1gauss = 1/sqrt(2*pi)*(x-1/sqrt(2))*exp(-(x-1/sqrt(2))**2) ! ! --> (n=-99): Fermi-Dirac case. In this case w1gauss corresponds ! to the negative of the electronic entropy. ! ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: w1gauss, x ! output: the value of the function ! input: the point where to compute the function integer :: n ! input: the order of the smearing function ! ! here the local variables ! real(DP) :: a, hp, arg, hpm1, hd, f, onemf, xp ! the coefficients a_n ! the hermite function ! the argument of the exponential ! the hermite function ! the hermite function ! Fermi-Dirac occupation number ! 1 - f ! auxiliary variable (cold smearing) integer :: i, ni ! counter on n values ! counter on 2n values ! Fermi-Dirac smearing if (n.eq. - 99) then if (abs (x) .le.36.0) then f = 1.0d0 / (1.0d0 + exp ( - x) ) onemf = 1.0d0 - f w1gauss = f * log (f) + onemf * log (onemf) ! in order to avoid problems for large values of x else ! neglect w1gauss when abs(w1gauss) < 1.0d-14 w1gauss = 0.0d0 endif return endif ! Cold smearing if (n.eq. - 1) then xp = x - 1.0d0 / sqrt (2.0d0) arg = min (200.d0, xp**2) w1gauss = 1.0d0 / sqrt (2.0d0 * pi) * xp * exp ( - arg) return endif ! Methfessel-Paxton arg = min (200.d0, x**2) w1gauss = - 0.5d0 * exp ( - arg) / sqrt (pi) if (n.eq.0) return hd = 0.d0 hp = exp ( - arg) ni = 0 a = 1.d0 / sqrt (pi) do i = 1, n hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd ni = ni + 1 hpm1 = hp hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp ni = ni + 1 a = - a / (DBLE (i) * 4.0d0) w1gauss = w1gauss - a * (0.5d0 * hp + DBLE (ni) * hpm1) enddo return end function w1gauss espresso-5.0.2/flib/cryst_to_car.f900000644000700200004540000000420112053145634016307 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine cryst_to_cart (nvec, vec, trmat, iflag) !----------------------------------------------------------------------- ! ! This routine transforms the atomic positions or the k-point ! components from crystallographic to cartesian coordinates ! ( iflag=1 ) and viceversa ( iflag=-1 ). ! Output cartesian coordinates are stored in the input ('vec') array ! ! USE kinds, ONLY : DP implicit none ! integer, intent(in) :: nvec, iflag ! nvec: number of vectors (atomic positions or k-points) ! to be transformed from crystal to cartesian and vice versa ! iflag: gives the direction of the transformation real(DP), intent(in) :: trmat (3, 3) ! trmat: transformation matrix ! if iflag=1: ! trmat = at , basis of the real-space lattice, for atoms or ! = bg , basis of the reciprocal-space lattice, for k-points ! if iflag=-1: the opposite real(DP), intent(inout) :: vec (3, nvec) ! coordinates of the vector (atomic positions or k-points) to be ! transformed - overwritten on output ! ! local variables ! integer :: nv, kpol ! counter on vectors ! counter on polarizations real(DP) :: vau (3) ! workspace ! ! Compute the cartesian coordinates of each vectors ! (atomic positions or k-points components) ! do nv = 1, nvec if (iflag.eq.1) then do kpol = 1, 3 vau (kpol) = trmat (kpol, 1) * vec (1, nv) + trmat (kpol, 2) & * vec (2, nv) + trmat (kpol, 3) * vec (3, nv) enddo else do kpol = 1, 3 vau (kpol) = trmat (1, kpol) * vec (1, nv) + trmat (2, kpol) & * vec (2, nv) + trmat (3, kpol) * vec (3, nv) enddo endif do kpol = 1, 3 vec (kpol, nv) = vau (kpol) enddo enddo ! return end subroutine cryst_to_cart espresso-5.0.2/flib/wgauss.f900000644000700200004540000000445212053145634015135 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function wgauss (x, n) !----------------------------------------------------------------------- ! ! this function computes the approximate theta function for the ! given order n, at the point x. ! ! --> (n>=0) : Methfessel-Paxton case. See PRB 40, 3616 (1989). ! ! --> (n=-1 ): Cold smearing (Marzari-Vanderbilt). See PRL 82, 3296 (1999) ! 1/2*erf(x-1/sqrt(2)) + 1/sqrt(2*pi)*exp(-(x-1/sqrt(2))**2) + 1/2 ! ! --> (n=-99): Fermi-Dirac case: 1.0/(1.0+exp(-x)). ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: wgauss, x ! output: the value of the function ! input: the argument of the function integer :: n ! input: the order of the function ! ! the local variables ! real(DP) :: a, hp, arg, hd, xp ! the coefficient a_n ! the hermitean function ! the argument of the exponential ! the hermitean function ! auxiliary variable (cold smearing) integer :: i, ni ! counter on the n indices ! counter on 2n real(DP), external :: gauss_freq, qe_erf real(DP), parameter :: maxarg = 200.d0 ! maximum value for the argument of the exponential ! Fermi-Dirac smearing if (n.eq. - 99) then if (x.lt. - maxarg) then wgauss = 0.d0 elseif (x.gt.maxarg) then wgauss = 1.d0 else wgauss = 1.0d0 / (1.0d0 + exp ( - x) ) endif return endif ! Cold smearing if (n.eq. - 1) then xp = x - 1.0d0 / sqrt (2.0d0) arg = min (maxarg, xp**2) wgauss = 0.5d0 * qe_erf (xp) + 1.0d0 / sqrt (2.0d0 * pi) * exp ( - & arg) + 0.5d0 return endif ! Methfessel-Paxton wgauss = gauss_freq (x * sqrt (2.0d0) ) if (n.eq.0) return hd = 0.d0 arg = min (maxarg, x**2) hp = exp ( - arg) ni = 0 a = 1.d0 / sqrt (pi) do i = 1, n hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd ni = ni + 1 a = - a / (DBLE (i) * 4.0d0) wgauss = wgauss - a * hd hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp ni = ni + 1 enddo return end function wgauss espresso-5.0.2/flib/transto.f900000644000700200004540000001630212053145634015313 0ustar marsamoscm! ! Copyright (C) 2001 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #include "opt_param.h" ! OPTIMIZED DRIVER FOR MATRIX TRASPOSITION ! ! written by Carlo Cavazzoni ! SUBROUTINE mytranspose(x, ldx, y, ldy, n, m) ! ! x input matrix (n by m) to be trasposed ! y output matrix (m by n), the transpose of x ! IMPLICIT NONE INTEGER :: ldx, ldy, n, m, what REAL(8) :: x(ldx, m), y(ldy, n) INTEGER :: i, j, k, d, nb, mb, ib, jb, ioff, joff INTEGER :: iind, jind INTEGER, PARAMETER :: bsiz = __BSIZ_VALUE REAL(8) :: buf(bsiz, bsiz), bswp if( n>ldx ) then write(6,fmt='("trasponi: inconsistent ldx and n: ",2I6)') ldx, n end if if( m>ldy ) then write(6,fmt='("trasponi: inconsistent ldy and m: ",2I6)') ldy, m end if nb = n / bsiz mb = m / bsiz IF( nb < 2 .AND. mb < 2 ) THEN what = 1 ELSE what = 2 END IF select case (what) case (1) do i=1,n do j=1,m y(j,i) = x(i,j) enddo enddo case (2) do ib = 1, nb ioff = (ib-1) * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do j = 1, bsiz do i = 1, j-1 bswp = buf(i,j) buf(i,j) = buf(j,i) buf(j,i) = bswp enddo enddo do i=1,bsiz do j=1,bsiz y(j+joff, i+ioff) = buf(j,i) enddo enddo enddo enddo IF( MIN(1, MOD(n, bsiz)) > 0 ) THEN ioff = nb * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, bsiz y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1, MOD(m, bsiz)) > 0 ) THEN joff = mb * bsiz do ib = 1, nb ioff = (ib-1) * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, bsiz do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1,MOD(n,bsiz))>0 .AND. MIN(1,MOD(m,bsiz))>0 ) THEN joff = mb * bsiz ioff = nb * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo END IF #if defined __ESSL case (3) CALL DGETMO (x, ldx, n, m, y, ldy) #endif case default write(6,fmt='("trasponi: undefined method")') end select RETURN END SUBROUTINE mytranspose SUBROUTINE mytransposez(x, ldx, y, ldy, n, m) ! ! x input matrix (n by m) to be trasposed ! y output matrix (m by n), the transpose of x ! IMPLICIT NONE INTEGER :: ldx, ldy, n, m, what COMPLEX(8) :: x(ldx, m), y(ldy, n) INTEGER :: i, j, k, d, nb, mb, ib, jb, ioff, joff INTEGER :: iind, jind INTEGER, PARAMETER :: bsiz = __BSIZ_VALUE / 2 COMPLEX(8) :: buf(bsiz, bsiz), bswp if( n>ldx ) then write(6,fmt='("trasponi: inconsistent ldx and n")') end if if( m>ldy ) then write(6,fmt='("trasponi: inconsistent ldy and m")') end if nb = n / bsiz mb = m / bsiz IF( nb < 2 .AND. mb < 2 ) THEN what = 1 ELSE what = 2 END IF select case (what) case (1) do i=1,n do j=1,m y(j,i) = x(i,j) enddo enddo case (2) do ib = 1, nb ioff = (ib-1) * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do j = 1, bsiz do i = 1, j-1 bswp = buf(i,j) buf(i,j) = buf(j,i) buf(j,i) = bswp enddo enddo do i=1,bsiz do j=1,bsiz y(j+joff, i+ioff) = buf(j,i) enddo enddo enddo enddo IF( MIN(1, MOD(n, bsiz)) > 0 ) THEN ioff = nb * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, bsiz y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1, MOD(m, bsiz)) > 0 ) THEN joff = mb * bsiz do ib = 1, nb ioff = (ib-1) * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, bsiz do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1,MOD(n,bsiz))>0 .AND. MIN(1,MOD(m,bsiz))>0 ) THEN joff = mb * bsiz ioff = nb * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo END IF #if defined __ESSL case (3) CALL ZGETMO (x, ldx, n, m, y, ldy) #endif case default write(6,fmt='("trasponi: undefined method")') end select RETURN END SUBROUTINE mytransposez espresso-5.0.2/flib/iglocal.f900000644000700200004540000000343012053145634015231 0ustar marsamoscm! ! Copyright (C) 2001-2004 Carlo Cavazzoni ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- INTEGER FUNCTION ig_local( ig, ig_l2g, sortedig_l2g, ng ) ! ! This function computes the local index of the G vector whose ! global index is ig. If the G vector is not local to the current ! processor, then the function returns -1 ! IMPLICIT NONE INTEGER, INTENT(IN) :: ig INTEGER, INTENT(IN) :: ng INTEGER, INTENT(IN) :: ig_l2g( ng ), sortedig_l2g( ng ) INTEGER :: lb, ub, i lb = 1 ! initialize search interval lower bound ub = ng ! initialize search interval upper bound IF( ig < ig_l2g( sortedig_l2g(lb) ) .OR. ig > ig_l2g( sortedig_l2g(ub) ) )THEN ig_local = -1 RETURN END IF BINARY_SEARCH: DO i = lb + (ub - lb)/2 IF( ig >= ig_l2g( sortedig_l2g(i) ) )THEN lb = i ELSE IF( ig < ig_l2g( sortedig_l2g(i) ) )THEN ub = i ELSE lb = ub END IF IF( lb >= (ub-1) ) EXIT BINARY_SEARCH END DO BINARY_SEARCH IF( .NOT. ( (lb==ub) .OR. (lb==(ub-1)) ) )THEN CALL errore(' ig_local ',' algorithmic error ', 5) END IF IF( ig == ig_l2g( sortedig_l2g(lb) ) )THEN ig_local = sortedig_l2g(lb) ELSE IF( ig == ig_l2g( sortedig_l2g(ub) ) )THEN ig_local = sortedig_l2g(ub) ELSE ig_local = -1 END IF RETURN END FUNCTION ig_local espresso-5.0.2/flib/int_to_char.f900000644000700200004540000000300612053145634016107 0ustar marsamoscm! ! Copyright (C) 2009 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION int_to_char( i ) !----------------------------------------------------------------------- ! ! ... converts an integer number of up to 6 figures ! ... into a left-justifed character variable ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: i CHARACTER (LEN=6) :: int_to_char CHARACTER :: c INTEGER :: n, j, nc LOGICAL :: neg ! nc = 6 ! IF( i < 0 ) then nc = nc - 1 n = -i neg = .true. ELSE n = i neg = .false. END IF ! j = 1 DO WHILE( j <= nc ) int_to_char(j:j) = CHAR( MOD( n, 10 ) + ICHAR( '0' ) ) n = n / 10 IF( n == 0 ) EXIT j = j + 1 END DO ! IF( j <= nc ) THEN DO n = 1, j/2 c = int_to_char( n : n ) int_to_char( n : n ) = int_to_char( j-n+1 : j-n+1 ) int_to_char( j-n+1 : j-n+1 ) = c END DO IF( j < nc ) int_to_char(j+1:nc) = ' ' ELSE int_to_char(:) = '*' END IF ! IF( neg ) THEN DO n = nc+1, 2, -1 int_to_char(n:n) = int_to_char(n-1:n-1) END DO int_to_char(1:1) = '-' END IF ! RETURN ! END FUNCTION int_to_char espresso-5.0.2/flib/functionals.f900000644000700200004540000021362412053145634016154 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine slater (rs, ex, vx) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3 ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ex, vx real(DP), parameter :: f= -0.687247939924714d0, alpha = 2.0d0/3.0d0 ! f = -9/8*(3/2pi)^(2/3) ! ex = f * alpha / rs vx = 4.d0 / 3.d0 * f * alpha / rs ! return end subroutine slater ! !----------------------------------------------------------------------- subroutine slater1(rs, ex, vx) !----------------------------------------------------------------------- ! Slater exchange with alpha=1, corresponding to -1.374/r_s Ry ! used to recover old results ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ex, vx real(DP), parameter :: f= -0.687247939924714d0, alpha = 1.0d0 ! ex = f * alpha / rs vx = 4.d0 / 3.d0 * f * alpha / rs ! return end subroutine slater1 ! !----------------------------------------------------------------------- subroutine slater_rxc (rs, ex, vx) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3 and Relativistic exchange ! USE kinds, ONLY : DP USE constants, ONLY : pi, c_au IMPLICIT none real (DP):: rs, ex, vx ! real(DP), PARAMETER :: ZERO=0.D0, ONE=1.D0, PFIVE=.5D0, & OPF=1.5D0 !, C014=0.014D0 real (DP):: trd, ftrd, tftm, a0, alp, z, fz, fzp, vxp, xp, & beta, sb, alb, c014 ! TRD = ONE/3.d0 FTRD = 4.d0*TRD TFTM = 2**FTRD-2.d0 A0 = (4.d0/(9.d0*PI))**TRD C014= 1.0_DP/a0/c_au ! X-alpha parameter: ALP = 2.d0 * TRD Z = ZERO FZ = ZERO FZP = ZERO VXP = -3.d0*ALP/(2.d0*PI*A0*RS) XP = 3.d0*VXP/4.d0 BETA = C014/RS SB = SQRT(1.d0+BETA*BETA) ALB = LOG(BETA+SB) VXP = VXP * (-PFIVE + OPF * ALB / (BETA*SB)) XP = XP * (ONE-OPF*((BETA*SB-ALB)/BETA**2)**2) ! VXF = 2**TRD*VXP ! EXF = 2**TRD*XP VX = VXP EX = XP END SUBROUTINE slater_rxc ! !----------------------------------------------------------------------- subroutine slaterKZK (rs, ex, vx, vol) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, Kwee, Zhang and Krakauer KE ! correction ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ex, vx, dL, vol, ga, pi, a0 real(DP), parameter :: a1 = -2.2037d0, & a2 = 0.4710d0, a3 = -0.015d0, ry2h = 0.5d0 real(DP), parameter :: f= -0.687247939924714d0, alpha = 2.0d0/3.0d0 ! f = -9/8*(3/2pi)^(2/3) ! pi = 4.d0 * atan(1.d0) a0 = f * alpha * 2.d0 dL = vol**(1.d0/3.d0) ga = 0.5d0 * dL *(3.d0 /pi)**(1.d0/3.d0) ! if ( rs .le. ga) then ex = a0 / rs + a1 * rs / dL**2.d0 + a2 * rs**2.d0 / dL**3.d0 vx = (4.d0 * a0 / rs + 2.d0 * a1 * rs / dL**2.d0 + & a2 * rs**2.d0 / dL**3.d0 ) / 3.d0 else ex = a0 / ga + a1 * ga / dL**2.d0 + a2 * ga**2.d0 / dL**3.d0 ! solids vx = ex ! ex = a3 * dL**5.d0 / rs**6.d0 ! molecules ! vx = 3.d0 * ex endif ex = ry2h * ex ! Ry to Hartree vx = ry2h * vx ! return end subroutine slaterKZK ! !----------------------------------------------------------------------- subroutine pz (rs, iflag, ec, vc) !----------------------------------------------------------------------- ! LDA parameterization from Monte Carlo data ! iflag=1: J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc integer :: iflag ! real(DP) :: a (2), b (2), c (2), d (2), gc (2), b1 (2), b2 (2) real(DP) :: lnrs, rs12, ox, dox ! data a / 0.0311d0, 0.031091d0 /, b / -0.048d0, -0.046644d0 /, & c / 0.0020d0, 0.00419d0 /, d / -0.0116d0, -0.00983d0 / data gc / -0.1423d0, -0.103756d0 /, b1 / 1.0529d0, 0.56371d0 /, & b2 / 0.3334d0, 0.27358d0 / ! if (rs.lt.1.0d0) then ! high density formula lnrs = log (rs) ec = a (iflag) * lnrs + b (iflag) + c (iflag) * rs * lnrs + d ( & iflag) * rs vc = a (iflag) * lnrs + (b (iflag) - a (iflag) / 3.d0) + 2.d0 / & 3.d0 * c (iflag) * rs * lnrs + (2.d0 * d (iflag) - c (iflag) ) & / 3.d0 * rs else ! interpolation formula rs12 = sqrt (rs) ox = 1.d0 + b1 (iflag) * rs12 + b2 (iflag) * rs dox = 1.d0 + 7.d0 / 6.d0 * b1 (iflag) * rs12 + 4.d0 / 3.d0 * & b2 (iflag) * rs ec = gc (iflag) / ox vc = ec * dox / ox endif ! return end subroutine pz ! !----------------------------------------------------------------------- subroutine pzKZK (rs, ec, vc, vol) !----------------------------------------------------------------------- ! LDA parameterization from Monte Carlo data ! iflag=1: J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc, ec0 (2), vc0(2), ec0p integer :: iflag, kr ! real(DP) :: a (2), b (2), c (2), d (2), gc (2), b1 (2), b2 (2) real(DP) :: lnrs, rs12, ox, dox, lnrsk, rsk real(DP) :: a1, grs, g1, g2, g3, g4, dL, vol, gh, gl, grsp real(DP) :: f3, f2, f1, f0, pi real(DP) :: D1, D2, D3, P1, P2, ry2h ! data a / 0.0311d0, 0.031091d0 /, b / -0.048d0, -0.046644d0 /, & c / 0.0020d0, 0.00419d0 /, d / -0.0116d0, -0.00983d0 / data gc / -0.1423d0, -0.103756d0 /, b1 / 1.0529d0, 0.56371d0 /, & b2 / 0.3334d0, 0.27358d0 / data a1 / -2.2037 /, g1 / 0.1182 /, g2 / 1.1656 /, g3 / -5.2884 /, & g4 / -1.1233 / data ry2h / 0.5d0 / ! iflag = 1 pi = 4.d0 * atan(1.d0) dL = vol**(1.d0/3.d0) gh = 0.5d0 * dL / (2.d0 * pi)**(1.d0/3.d0) gl = dL * (3.d0 / 2.d0 / pi)**(1.d0/3.d0) rsk = gh do kr = 1, 2 lnrsk = log (rsk) if (rsk.lt.1.0d0) then ! high density formula ec0(kr) = a(iflag) *lnrsk + b(iflag) + c(iflag) * rsk * lnrsk + d( & iflag) * rsk vc0(kr) = a(iflag) * lnrsk + (b(iflag) - a(iflag) / 3.d0) + 2.d0 / & 3.d0 * c (iflag) * rsk * lnrsk + (2.d0 * d (iflag) - c (iflag) ) & / 3.d0 * rsk else ! interpolation formula rs12 = sqrt (rsk) ox = 1.d0 + b1 (iflag) * rs12 + b2 (iflag) * rsk dox = 1.d0 + 7.d0 / 6.d0 * b1 (iflag) * rs12 + 4.d0 / 3.d0 * & b2 (iflag) * rsk ec0(kr) = gc (iflag) / ox vc0(kr) = ec0(kr) * dox / ox endif ! grs = g1 * rsk * lnrsk + g2 * rsk + g3 * rsk**1.5d0 + g4 * rsk**2.d0 grsp = g1 * lnrsk + g1 + g2 + 1.5d0 * g3 * rsk**0.5d0 + & 2.d0 * g4 * rsk ec0(kr) = ec0(kr) + (-a1 * rsk / dL**2.d0 + grs / dL**3.d0) * ry2h vc0(kr) = vc0(kr) + (-2.d0 * a1 * rsk / dL**2.d0 / 3.d0 + & grs / dL**3.d0 - grsp * rsk / 3.d0 / dL**3.d0) * ry2h ! rsk = rs enddo lnrs = log (rs) if (rs .le. gh) then ec = ec0(2) vc = vc0(2) else if ( rs .le. gl) then ec0p = 3.d0 * (ec0(1) - vc0(1)) / gh P1 = 3.d0 * ec0(1) - gh * ec0p P2 = ec0p D1 = gl - gh D2 = gl**2.d0 - gh**2.d0 D3 = gl**3.d0 - gh**3.d0 f2 = 2.d0 * gl**2.d0 * P2 * D1 + D2 * P1 f2 = f2 / (-(2.d0*gl*D1)**2.d0 + 4.d0*gl*D1*D2 - D2**2.d0 ) f3 = - (P2 + 2.d0*D1*f2) / (3.d0 * D2) f1 = - (P1 + D2 * f2) / (2.d0 * D1) f0 = - gl * (gl * f2 + 2.d0 * f1) / 3.d0 ! ec = f3 * rs**3.d0 + f2 * rs**2.d0 + f1 * rs + f0 vc = f2 * rs**2.d0 / 3.d0 + f1 * 2.d0 * rs / 3.d0 + f0 else ec = 0.d0 vc = 0.d0 endif endif ! return end subroutine pzKZK ! !----------------------------------------------------------------------- subroutine vwn (rs, ec, vc) !----------------------------------------------------------------------- ! S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, b, c, x0 parameter (a = 0.0310907d0, b = 3.72744d0, c = 12.9352d0, x0 = -0.10498d0) real(DP) :: q, f1, f2, f3, rs12, fx, qx, tx, tt ! q = sqrt (4.d0 * c - b * b) f1 = 2.d0 * b / q f2 = b * x0 / (x0 * x0 + b * x0 + c) f3 = 2.d0 * (2.d0 * x0 + b) / q rs12 = sqrt (rs) fx = rs + b * rs12 + c qx = atan (q / (2.d0 * rs12 + b) ) ec = a * (log (rs / fx) + f1 * qx - f2 * (log ( (rs12 - x0) **2 / & fx) + f3 * qx) ) tx = 2.d0 * rs12 + b tt = tx * tx + q * q vc = ec - rs12 * a / 6.d0 * (2.d0 / rs12 - tx / fx - 4.d0 * b / & tt - f2 * (2.d0 / (rs12 - x0) - tx / fx - 4.d0 * (2.d0 * x0 + b) & / tt) ) ! return end subroutine vwn !----------------------------------------------------------------------- subroutine lyp (rs, ec, vc) !----------------------------------------------------------------------- ! C. Lee, W. Yang, and R.G. Parr, PRB 37, 785 (1988) ! LDA part only ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, b, c, d, pi43 parameter (a = 0.04918d0, b = 0.132d0 * 2.87123400018819108d0) ! pi43 = (4pi/3)^(1/3) parameter (pi43 = 1.61199195401647d0, c = 0.2533d0 * pi43, d = & 0.349d0 * pi43) real(DP) :: ecrs, ox ! ecrs = b * exp ( - c * rs) ox = 1.d0 / (1.d0 + d * rs) ec = - a * ox * (1.d0 + ecrs) vc = ec - rs / 3.d0 * a * ox * (d * ox + ecrs * (d * ox + c) ) ! return end subroutine lyp ! !----------------------------------------------------------------------- subroutine pw (rs, iflag, ec, vc) !----------------------------------------------------------------------- ! iflag=1: J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc integer :: iflag ! real(DP) :: a, b1, b2, c0, c1, c2, c3, d0, d1 parameter (a = 0.031091d0, b1 = 7.5957d0, b2 = 3.5876d0, c0 = a, & c1 = 0.046644d0, c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, & d1 = 1.4408d0) real(DP) :: lnrs, rs12, rs32, rs2, om, dom, olog real(DP) :: a1 (2), b3 (2), b4 (2) data a1 / 0.21370d0, 0.026481d0 /, b3 / 1.6382d0, -0.46647d0 /, & b4 / 0.49294d0, 0.13354d0 / ! ! high- and low-density formulae implemented but not used in PW case ! (reason: inconsistencies in PBE/PW91 functionals) ! if (rs.lt.1d0.and.iflag.eq.2) then ! high density formula lnrs = log (rs) ec = c0 * lnrs - c1 + c2 * rs * lnrs - c3 * rs vc = c0 * lnrs - (c1 + c0 / 3.d0) + 2.d0 / 3.d0 * c2 * rs * & lnrs - (2.d0 * c3 + c2) / 3.d0 * rs elseif (rs.gt.100.d0.and.iflag.eq.2) then ! low density formula ec = - d0 / rs + d1 / rs**1.5d0 vc = - 4.d0 / 3.d0 * d0 / rs + 1.5d0 * d1 / rs**1.5d0 else ! interpolation formula rs12 = sqrt (rs) rs32 = rs * rs12 rs2 = rs**2 om = 2.d0 * a * (b1 * rs12 + b2 * rs + b3 (iflag) * rs32 + b4 ( & iflag) * rs2) dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs + 1.5d0 * b3 ( & iflag) * rs32 + 2.d0 * b4 (iflag) * rs2) olog = log (1.d0 + 1.0d0 / om) ec = - 2.d0 * a * (1.d0 + a1 (iflag) * rs) * olog vc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 (iflag) * rs) & * olog - 2.d0 / 3.d0 * a * (1.d0 + a1 (iflag) * rs) * dom / & (om * (om + 1.d0) ) endif ! return end subroutine pw ! !----------------------------------------------------------------------- subroutine wigner (rs, ec, vc) !----------------------------------------------------------------------- ! Wigner correlation ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: pi34, rho13 parameter (pi34 = 0.6203504908994d0) ! pi34=(3/4pi)^(1/3), rho13=rho^(1/3) ! rho13 = pi34 / rs vc = - rho13 * ( (0.943656d0 + 8.8963d0 * rho13) / (1.d0 + & 12.57d0 * rho13) **2) ec = - 0.738d0 * rho13 * (0.959d0 / (1.d0 + 12.57d0 * rho13) ) ! return end subroutine wigner ! !----------------------------------------------------------------------- subroutine hl (rs, ec, vc) !----------------------------------------------------------------------- ! L. Hedin and B.I. Lundqvist, J. Phys. C 4, 2064 (1971) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, x ! a = log (1.0d0 + 21.d0 / rs) x = rs / 21.0d0 ec = a + (x**3 * a - x * x) + x / 2.d0 - 1.0d0 / 3.0d0 ec = - 0.0225d0 * ec vc = - 0.0225d0 * a ! return end subroutine hl ! !----------------------------------------------------------------------- subroutine gl (rs, ec, vc) !----------------------------------------------------------------------- ! O. Gunnarsson and B. I. Lundqvist, PRB 13, 4274 (1976) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, vc, ec real(DP) :: c, r, x parameter (c = 0.0333d0, r = 11.4d0) ! c=0.0203, r=15.9 for the paramagnetic case ! x = rs / r vc = - c * log (1.d0 + 1.d0 / x) ec = - c * ( (1.d0 + x**3) * log (1.d0 + 1.d0 / x) - 1.0d0 / & 3.0d0 + x * (0.5d0 - x) ) ! return end subroutine gl ! !----------------------------------------------------------------------- subroutine becke88 (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Becke exchange: A.D. Becke, PRA 38, 3098 (1988) ! only gradient-corrected part, no Slater term included ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP) :: beta, third, two13 parameter (beta = 0.0042d0) parameter (third = 1.d0 / 3.d0, two13 = 1.259921049894873d0) ! two13 = 2^(1/3) real(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee ! rho13 = rho**third rho43 = rho13**4 xs = two13 * sqrt (grho) / rho43 xs2 = xs * xs sa2b8 = sqrt (1.0d0 + xs2) shm1 = log (xs + sa2b8) dd = 1.0d0 + 6.0d0 * beta * xs * shm1 dd2 = dd * dd ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0 sx = two13 * grho / rho43 * ( - beta / dd) v1x = - (4.d0 / 3.d0) / two13 * xs2 * beta * rho13 * ee / dd2 v2x = two13 * beta * (ee-dd) / (rho43 * dd2) ! return end subroutine becke88 ! !----------------------------------------------------------------------- subroutine ggax (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Perdew-Wang GGA (PW91), exchange part: ! J.P. Perdew et al.,PRB 46, 6671 (1992) ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP) :: f1, f2, f3, f4, f5 parameter (f1 = 0.19645d0, f2 = 7.7956d0, f3 = 0.2743d0, f4 = & 0.1508d0, f5 = 0.004d0) real(DP) :: fp1, fp2 parameter (fp1 = -0.019292021296426d0, fp2 = 0.161620459673995d0) ! fp1 = -3/(16 pi)*(3 pi^2)^(-1/3) ! fp2 = (1/2)(3 pi^2)**(-1/3) real(DP) :: rhom43, s, s2, s3, s4, exps, as, sa2b8, shm1, bs, das, & dbs, dls ! rhom43 = rho** ( - 4.d0 / 3.d0) s = fp2 * sqrt (grho) * rhom43 s2 = s * s s3 = s2 * s s4 = s2 * s2 exps = f4 * exp ( - 100.d0 * s2) as = f3 - exps - f5 * s2 sa2b8 = sqrt (1.0d0 + f2 * f2 * s2) shm1 = log (f2 * s + sa2b8) bs = 1.d0 + f1 * s * shm1 + f5 * s4 das = (200.d0 * exps - 2.d0 * f5) * s dbs = f1 * (shm1 + f2 * s / sa2b8) + 4.d0 * f5 * s3 dls = (das / as - dbs / bs) sx = fp1 * grho * rhom43 * as / bs v1x = - 4.d0 / 3.d0 * sx / rho * (1.d0 + s * dls) v2x = fp1 * rhom43 * as / bs * (2.d0 + s * dls) ! return end subroutine ggax ! !----------------------------------------------------------------------- subroutine rPW86 (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! PRB 33, 8800 (1986) and J. Chem. Theory comp. 5, 2754 (2009) ! USE kinds implicit none real(DP), intent(in) :: rho, grho real(DP), intent(out) :: sx, v1x, v2x real(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds real(DP) :: a, b, c, s_prefactor, Ax, four_thirds parameter( a = 1.851d0, b = 17.33d0, c = 0.163d0, s_prefactor = 6.18733545256027d0, & Ax = -0.738558766382022d0, four_thirds = 4.d0/3.d0) grad_rho = sqrt(grho) s = grad_rho/(s_prefactor*rho**(four_thirds)) s_2 = s**2 s_3 = s_2 * s s_4 = s_2**2 s_5 = s_3 * s_2 s_6 = s_2 * s_4 !! Calculation of energy fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1.d0/15.d0) sx = Ax * rho**(four_thirds) * (fs -1.0D0) !! Calculation of the potential df_ds = (1.d0/(15.d0*fs**(14.0D0)))*(2*a*s + 4*b*s_3 + 6*c*s_5) v1x = Ax*(four_thirds)*(rho**(1.d0/3.d0)*(fs -1.0D0) & -grad_rho/(s_prefactor * rho)*df_ds) v2x = Ax * df_ds/(s_prefactor*grad_rho) end subroutine rPW86 ! !--------------------------------------------------------------- subroutine c09x (rho, grho, sx, v1x, v2x) !--------------------------------------------------------------- ! Cooper '09 exchange for vdW-DF (without Slater exchange): ! V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010) ! ! Developed thanks to the contribution of ! Ikutaro Hamada - ikutaro@wpi-aimr.tohoku.ac.jp ! WPI-Advanced Institute of Materials Research, Tohoku University ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential ! local variables real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1, dfx2 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5 parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , & c2 = 3.093667726280136d0, c5 = 4.d0 * third) ! parameters of the functional real(DP) :: kappa, mu, alpha data kappa / 1.245d0 /, & mu / 0.0617d0 /, & alpha / 0.0483d0 / ! agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5d0 / kf s1 = agrho * dsg / rho s2 = s1 * s1 ds = - c5 * s1 ! ! Energy ! f1 = exp( - alpha * s2 ) f2 = exp( - alpha * s2 / 2.0d0 ) f3 = mu * s2 * f1 fx = f3 + kappa * ( 1.0d0 - f2 ) exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third dfx1 = 2.0d0 * mu * s1 * ( 1.0d0 - alpha * s2 ) * f1 dfx2 = kappa * alpha * s1 * f2 dfx = dfx1 + dfx2 v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine c09x ! !----------------------------------------------------------------------- subroutine perdew86 (rho, grho, sc, v1c, v2c) !----------------------------------------------------------------------- ! Perdew gradient correction on correlation: PRB 33, 8822 (1986) ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sc, v1c, v2c real(DP) :: p1, p2, p3, p4, pc1, pc2, pci parameter (p1 = 0.023266d0, p2 = 7.389d-6, p3 = 8.723d0, p4 = & 0.472d0) parameter (pc1 = 0.001667d0, pc2 = 0.002568d0, pci = pc1 + pc2) real(DP) :: third, pi34 parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) ! pi34=(3/4pi)^(1/3) real(DP) :: rho13, rho43, rs, rs2, rs3, cna, cnb, cn, drs real(DP) :: dcna, dcnb, dcn, phi, ephi ! rho13 = rho**third rho43 = rho13**4 rs = pi34 / rho13 rs2 = rs * rs rs3 = rs * rs2 cna = pc2 + p1 * rs + p2 * rs2 cnb = 1.d0 + p3 * rs + p4 * rs2 + 1.d4 * p2 * rs3 cn = pc1 + cna / cnb drs = - third * pi34 / rho43 dcna = (p1 + 2.d0 * p2 * rs) * drs dcnb = (p3 + 2.d0 * p4 * rs + 3.d4 * p2 * rs2) * drs dcn = dcna / cnb - cna / (cnb * cnb) * dcnb phi = 0.192d0 * pci / cn * sqrt (grho) * rho** ( - 7.d0 / 6.d0) ! SdG: in the original paper 1.745*0.11=0.19195 is used ephi = exp ( - phi) sc = grho / rho43 * cn * ephi v1c = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - (7.d0 / & 6.d0) * phi) / rho) v2c = cn * ephi / rho43 * (2.d0 - phi) ! return end subroutine perdew86 ! !----------------------------------------------------------------------- subroutine glyp (rho, grho, sc, v1c, v2c) !----------------------------------------------------------------------- ! Lee Yang Parr: gradient correction part ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sc, v1c, v2c real(DP) :: a, b, c, d parameter (a = 0.04918d0, b = 0.132d0, c = 0.2533d0, d = 0.349d0) real(DP) :: rhom13, rhom43, rhom53, om, xl, ff, dom, dxl ! rhom13 = rho** ( - 1.d0 / 3.d0) om = exp ( - c * rhom13) / (1.d0 + d * rhom13) xl = 1.d0 + (7.d0 / 3.d0) * (c * rhom13 + d * rhom13 / (1.d0 + d * & rhom13) ) ff = a * b * grho / 24.d0 rhom53 = rhom13**5 sc = ff * rhom53 * om * xl dom = - om * (c + d+c * d * rhom13) / (1.d0 + d * rhom13) dxl = (7.d0 / 3.d0) * (c + d+2.d0 * c * d * rhom13 + c * d * d * & rhom13**2) / (1.d0 + d * rhom13) **2 rhom43 = rhom13**4 v1c = - ff * rhom43 / 3.d0 * (5.d0 * rhom43 * om * xl + rhom53 * & dom * xl + rhom53 * om * dxl) v2c = 2.d0 * sc / grho ! return end subroutine glyp ! !----------------------------------------------------------------------- subroutine ggac (rho, grho, sc, v1c, v2c) !----------------------------------------------------------------------- ! Perdew-Wang GGA (PW91) correlation part ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sc, v1c, v2c real(DP) :: al, pa, pb, pc, pd, cx, cxc0, cc0 parameter (al = 0.09d0, pa = 0.023266d0, pb = 7.389d-6, pc = & 8.723d0, pd = 0.472d0) parameter (cx = -0.001667d0, cxc0 = 0.002568d0, cc0 = - cx + cxc0) real(DP) :: third, pi34, nu, be, xkf, xks parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) parameter (nu = 15.755920349483144d0, be = nu * cc0) parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0) ! pi34=(3/4pi)^(1/3), nu=(16/pi)*(3 pi^2)^(1/3) ! xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, rs2, rs3, ec, vc, t, expe, af, bf, y, xy, & qy, s1 real(DP) :: h0, dh0, ddh0, ee, cn, dcn, cna, dcna, cnb, dcnb, h1, & dh1, ddh1 ! rs = pi34 / rho**third rs2 = rs * rs rs3 = rs * rs2 call pw (rs, 1, ec, vc) kf = xkf / rs ks = xks * sqrt (kf) t = sqrt (grho) / (2.d0 * ks * rho) expe = exp ( - 2.d0 * al * ec / (be * be) ) af = 2.d0 * al / be * (1.d0 / (expe-1.d0) ) bf = expe * (vc - ec) y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + 2.d0 * al / be * t * t * xy h0 = be * be / (2.d0 * al) * log (s1) dh0 = be * t * t / s1 * ( - 7.d0 / 3.d0 * xy - qy * (af * bf / & be-7.d0 / 3.d0) ) ddh0 = be / (2.d0 * ks * ks * rho) * (xy - qy) / s1 ee = - 100.d0 * (ks / kf * t) **2 cna = cxc0 + pa * rs + pb * rs2 dcna = pa * rs + 2.d0 * pb * rs2 cnb = 1.d0 + pc * rs + pd * rs2 + 1.d4 * pb * rs3 dcnb = pc * rs + 2.d0 * pd * rs2 + 3.d4 * pb * rs3 cn = cna / cnb - cx dcn = dcna / cnb - cna * dcnb / (cnb * cnb) h1 = nu * (cn - cc0 - 3.d0 / 7.d0 * cx) * t * t * exp (ee) dh1 = - third * (h1 * (7.d0 + 8.d0 * ee) + nu * t * t * exp (ee) & * dcn) ddh1 = 2.d0 * h1 * (1.d0 + ee) * rho / grho sc = rho * (h0 + h1) v1c = h0 + h1 + dh0 + dh1 v2c = ddh0 + ddh1 ! return end subroutine ggac ! !--------------------------------------------------------------- subroutine pbex (rho, grho, iflag, sx, v1x, v2x) !--------------------------------------------------------------- ! ! PBE exchange (without Slater exchange): ! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998) ! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008) ! iflag=4 PBEQ2D: L. Chiodo et al., PRL 108, 126402 (2012) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential integer :: iflag ! local variables real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1 real(DP) :: p, amu, ab, c, dfxdp, dfxds, upbe, uge, s, ak, aa ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP), parameter :: third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , & c2 = 3.093667726280136d0, c5 = 4.d0 * third ! parameters of the functional real(DP) :: k (4), mu(4) ! pbe rpbe pbesol pbeq2d data k / 0.804d0, 1.2450D0, 0.804d0 , 0.804d0 /, & mu/ 0.21951d0, 0.21951d0, 0.12345679012345679012d0, 0.12345679012345679/ ! agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5d0 / kf s1 = agrho * dsg / rho s2 = s1 * s1 ds = - c5 * s1 ! ! Energy ! if ( iflag == 4) then p=s1*s1 s=s1 ak=0.804d0 amu=10.d0/81.d0 ab=0.5217d0 c=2.d0 fx = ak - ak / (1.0_dp + amu * p / ak) + p**2 * (1 + p) & /(10**c + p**3) * (-1.0_dp - ak + ak / (1.0_dp + amu * p / ak) & + ab * p ** (-0.1d1/ 0.4D1)) else f1 = s2 * mu(iflag) / k (iflag) f2 = 1.d0 + f1 f3 = k (iflag) / f2 fx = k (iflag) - f3 end if exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third if ( iflag == 4) then dfxdp = dble(1 / (1 + amu * p / ak) ** 2 * amu) + dble(2 * p * (1 & + p) / (10 ** c + p ** 3) * (-1 - ak + ak / (1 + amu * p / ak) + ab & * p ** (-0.1d1 / 0.4D1))) + dble(p ** 2 / (10 ** c + p ** 3) * ( & -1 - ak + ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) - & dble(3 * p ** 4 * (1 + p) / (10 ** c + p ** 3) ** 2 * (-1 - ak + & ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) + dble(p ** & 2) * dble(1 + p) / dble(10 ** c + p ** 3) * (-dble(1 / (1 + amu * & p / ak) ** 2 * amu) - dble(ab * p ** (-0.5d1 / 0.4D1)) / 0.4D1) dfxds=dfxdp*2.d0*s dfx=dfxds else dfx1 = f2 * f2 dfx = 2.d0 * mu(iflag) * s1 / dfx1 end if v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine pbex ! !--------------------------------------------------------------- subroutine pbex_vec (rho, grho, iflag, sx, v1x, v2x, length, small) !--------------------------------------------------------------- ! ! PBE exchange (without Slater exchange): ! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998) ! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none integer, intent(in) :: length integer, intent(in) :: iflag real(DP), intent(in) :: small real(DP), intent(in) :: rho(length), grho(length) real(DP), intent(out) :: sx(length), v1x(length), v2x(length) ! local variables integer :: i real(DP) :: kf, agrho, s1, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dfx, f1, f2 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5 parameter (third = 1.0_dp / 3.0_dp, c1 = 0.75_dp / pi , & c2 = 3.093667726280136_dp, c5 = 4.0_dp * third) ! parameters of the functional real(DP) :: k (3), mu(3) data k / 0.804_dp, 1.245_dp, 0.804_dp /, & mu/ 0.21951_dp, 0.21951_dp, 0.12345679012345679012_dp / ! do i=1,length if ((rho(i).gt.small).and.(grho(i).gt.small**2)) then agrho = sqrt(grho(i)) kf = c2 * rho(i)**third dsg = 0.5_dp / kf s1 = agrho * dsg / rho(i) ! ! Energy f1 = s1*s1 * mu(iflag) / k(iflag) f2 = 1.0_dp / (1.0_dp + f1) fx = k(iflag) * (1.0_dp - f2) exunif = - c1 * kf sx(i) = exunif * fx ! ! Potential dfx = 2.0_dp * mu(iflag) * s1 *f2*f2 v1x(i) = sx(i) + exunif * (third * fx - c5 * dfx * s1) v2x(i) = exunif * dfx * dsg / agrho sx(i) = sx(i) * rho(i) else v1x(i) = 0.0_dp v2x(i) = 0.0_dp sx(i) = 0.0_dp end if end do end subroutine pbex_vec ! !--------------------------------------------------------------- subroutine pbec (rho, grho, iflag, sc, v1c, v2c) !--------------------------------------------------------------- ! ! PBE correlation (without LDA part) ! iflag=1: J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996). ! iflag=2: J.P.Perdew et al., PRL 100, 136406 (2008). ! iflag=3: L. Chiodo et al, PRL 108, 126402 (2012) (PBEQ2D) ! USE kinds, ONLY : DP implicit none integer, intent(in) :: iflag real(DP) :: rho, grho, sc, v1c, v2c real(DP), parameter :: ga = 0.031091d0 real(DP) :: be (3) ! pbe pbesol pbeq2d data be / 0.066725d0, 0.046d0, 0.066725d0/ real(DP), parameter :: third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0 real(DP), parameter :: xkf = 1.919158292677513d0, xks = 1.128379167095513d0 ! pi34=(3/4pi)^(1/3), xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, ec, vc, t, expe, af, bf, y, xy, qy real(DP) :: s1, h0, dh0, ddh0, sc2D, v1c2D, v2c2D ! rs = pi34 / rho**third call pw (rs, 1, ec, vc) kf = xkf / rs ks = xks * sqrt (kf) t = sqrt (grho) / (2.d0 * ks * rho) expe = exp ( - ec / ga) af = be(iflag) / ga * (1.d0 / (expe-1.d0) ) bf = expe * (vc - ec) y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + be(iflag) / ga * t * t * xy h0 = ga * log (s1) dh0 = be(iflag) * t * t / s1 * ( - 7.d0 / 3.d0 * xy - qy * (af * bf / & be(iflag)-7.d0 / 3.d0) ) ddh0 = be(iflag) / (2.d0 * ks * ks * rho) * (xy - qy) / s1 sc = rho * h0 v1c = h0 + dh0 v2c = ddh0 ! q2D if (iflag == 3)then call cpbe2d(rho,grho,sc2D,v1c2D,v2c2D) sc=sc+sc2D v1c=v1c+v1c2D v2c=v2c+v2c2D endif ! return end subroutine pbec !--------------------------------------------------------------- subroutine cpbe2d(rho,grho,sc,v1c,v2c) !--------------------------------------------------------------- ! 2D correction (last term of Eq. 5, PRL 108, 126402 (2012)) USE kinds, ONLY : dp USE constants, ONLY : pi IMPLICIT NONE ! REAL(dp), INTENT(in) :: rho, grho REAL(dp), INTENT(OUT) :: sc, v1c, v2c ! REAL(dp), PARAMETER:: ex1=0.333333333333333333_dp, ex2=1.166666666666667_dp REAL(dp), PARAMETER:: ex3=ex2+1.0_dp REAL(dp) :: fac1, fac2, zeta, phi, gr, rs, drsdn, akf, aks, t, dtdn, dtdgr REAL(dp) :: p, a, g, alpha1, beta1,beta2,beta3,beta4, dgdrs, epsc, depscdrs REAL(dp) :: c, gamma1, beta, aa, cg, adddepsc, h, dhdaa, dhdt, dhdrs REAL(dp) :: epscpbe, depscpbedrs, depscpbedt, a0,a1,a2, b0,b1,b2, c0,c1,c2 REAL(dp) :: e0,e1,e2, f0,f1,f2, g0,g1,g2, h0,h1,h2, d0,d1,d2, ff, dffdt REAL(dp) :: rs3d, rs2d, drs2ddrs3d, eps2d, deps2ddrs2, depsGGAdrs, depsGGAdt REAL(dp) :: drs2ddt, rs2, ec, decdn, decdgr, daadepsc ! fac1=(3.d0*pi*pi)**ex1 fac2=sqrt(4.d0*fac1/pi) zeta=0.d0 phi=1.d0 ! gr=sqrt (grho) ! rs=(3.d0/4.d0/pi/rho)**ex1 drsdn = -dble(3 ** (0.1D1 / 0.3D1)) * dble(2 ** (0.1D1 / 0.3D1)) * & 0.3141592654D1 ** (-0.1D1 / 0.3D1) * (0.1D1 / rho) ** (-0.2D1 / & 0.3D1) / rho ** 2 / 0.6D1 ! akf=(3.d0*pi*pi*rho)**(1.d0/3.d0) aks=dsqrt(4.d0*akf/pi) t=gr/2.d0/phi/aks/rho dtdn=-7.d0/6.d0*gr/2.d0/phi/dsqrt(4.d0/pi)/ & ((3.d0*pi*pi)**(1.d0/6.d0))/(rho**(13.d0/6.d0)) dtdgr=1.d0/2.d0/phi/aks/rho ! ! for the LDA correlation p=1.d0 A=0.031091d0 alpha1=0.21370d0 beta1=7.5957d0 beta2=3.5876d0 beta3=1.6382d0 beta4=0.49294d0 G = -0.2D1 * A * dble(1 + alpha1 * rs) * log(0.1D1 + 0.1D1 / A / ( & beta1 * sqrt(dble(rs)) + dble(beta2 * rs) + dble(beta3 * rs ** ( & 0.3D1 / 0.2D1)) + dble(beta4 * rs ** (p + 1))) / 0.2D1) dGdrs = -0.2D1 * A * alpha1 * log(0.1D1 + 0.1D1 / A / (beta1 * sqrt(rs) & + beta2 * rs + beta3 * rs ** (0.3D1 / 0.2D1) + beta4 * rs ** & (p + 1)) / 0.2D1) + (0.1D1 + alpha1 * rs) / (beta1 * sqrt(rs) + & beta2 * rs + beta3 * rs ** (0.3D1 / 0.2D1) + beta4 * rs ** (p + 1)) & ** 2 * (beta1 * rs ** (-0.1D1 / 0.2D1) / 0.2D1 + beta2 + 0.3D1 / & 0.2D1 * beta3 * sqrt(rs) + beta4 * rs ** (p + 1) * dble(p + 1) / & rs) / (0.1D1 + 0.1D1 / A / (beta1 * sqrt(rs) + beta2 * rs + beta3 * & rs ** (0.3D1 / 0.2D1) + beta4 * rs ** (p + 1)) / 0.2D1) ! epsc=G depscdrs=dGdrs ! ! PBE c=1.d0 gamma1=0.031091d0 beta=0.066725d0 ! AA = beta / gamma1 / (exp(-epsc / gamma1 / phi ** 3) - 0.1D1) cg = beta / gamma1 ** 2 / (exp(-epsc/ gamma1 / phi ** 3) - 0.1D1) & ** 2 / phi ** 3 * exp(-epsc / gamma1 / phi ** 3) dAAdepsc=cg ! if(t.le.10.d0)then H = dble(gamma1) * phi ** 3 * log(dble(1 + beta / gamma1 * t ** 2 & * (1 + AA * t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4))) ! dHdAA = gamma1 * phi ** 3 * (beta / gamma1 * t ** 4 / (1 + c * AA & * t ** 2 + AA ** 2 * t ** 4) - beta / gamma1 * t ** 2 * (1 + AA * & t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) ** 2 * (c * t **& 2 + 2 * AA * t ** 4)) / (1 + beta / gamma1 * t ** 2 * (1 + AA * & t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4)) ! dHdt = gamma1 * phi ** 3 * (2 * beta / gamma1 * t * (1 + AA * t ** & 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) + 2 * beta / gamma1 & * t ** 3 * AA / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) - beta / & gamma1 * t ** 2 * (1 + AA * t ** 2) / (1 + c * AA * t ** 2 + AA ** & 2 * t ** 4) ** 2 * (2 * c * AA * t + 4 * AA ** 2 * t ** 3)) / (1 & + beta / gamma1 * t ** 2 * (1 + AA * t ** 2) / (1 + c * AA * t ** & 2 + AA ** 2 * t ** 4)) else H=gamma1*(phi**3)*dlog(1.d0+(beta/gamma1)*(1.d0/AA)) ! dHdAA =gamma1*(phi**3)*1.d0/(1.d0+(beta/gamma1)*(1.d0/AA))* & (beta/gamma1)*(-1.d0/AA/AA) ! dHdt=0.d0 endif ! dHdrs=dHdAA*dAAdepsc*depscdrs ! epscPBE=epsc+H depscPBEdrs=depscdrs+dHdrs depscPBEdt=dHdt ! ! START THE 2D CORRECTION ! beta=1.3386d0 a0=-0.1925d0 a1=0.117331d0 a2=0.0234188d0 b0=0.0863136d0 b1=-0.03394d0 b2=-0.037093d0 c0=0.057234d0 c1=-0.00766765d0 c2=0.0163618d0 e0=1.0022d0 e1=0.4133d0 e2=1.424301d0 f0=-0.02069d0 f1=0.d0 f2=0.d0 g0=0.340d0 g1=0.0668467d0 g2=0.d0 h0=0.01747d0 h1=0.0007799d0 h2=1.163099d0 d0=-a0*h0 d1=-a1*h1 d2=-a2*h2 ! ff = t ** 4 * (1 + t ** 2) / (1000000 + t ** 6) dffdt = 4 * t ** 3 * (1 + t ** 2) / (1000000 + t ** 6) + 2 * t ** & 5 / (1000000 + t ** 6) - 6 * t ** 9 * (1 + t ** 2) / (1000000 + t & ** 6) ** 2 ! rs3d=rs rs2d = 0.4552100000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( & 0.5D1 / 0.12D2)) * (0.1D1 / pi) ** (-0.5D1 / 0.12D2) * rs3d ** ( & 0.5D1 / 0.4D1) * sqrt(t) cg = 0.5690125000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( & 0.5D1 / 0.12D2)) * (0.1D1 / pi) ** (-0.5D1 / 0.12D2) * rs3d ** (0.1D1 & / 0.4D1) * sqrt(t) drs2ddrs3d=cg cg = 0.2276050000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( & 0.5D1 / 0.12D2)) * dble((1 / pi) ** (-0.5D1 / 0.12D2)) * dble(rs3d ** & (0.5D1 / 0.4D1)) * dble(t ** (-0.1D1 / 0.2D1)) drs2ddt=cg rs2=rs2d ! eps2d = (exp(-beta * rs2) - 0.1D1) * (-0.2D1 / 0.3D1 * sqrt(0.2D1) & * dble((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / & 0.2D1)) / pi / rs2 + 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble( & zeta ** 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / & rs2) + a0 + (b0 * rs2 + c0 * rs2 ** 2 + d0 * rs2 ** 3) * log(0.1D1 & + 0.1D1 / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** & 2 + h0 * rs2 ** 3)) + (a1 + (b1 * rs2 + c1 * rs2 ** 2 + d1 * rs2 ** & 3) * log(0.1D1 + 0.1D1 / (e1 * rs2 + f1 * rs2 ** (0.3D1 / 0.2D1) & + g1 * rs2 ** 2 + h1 * rs2 ** 3))) * dble(zeta ** 2) + (a2 + (b2 & * rs2 + c2 * rs2 ** 2 + d2 * rs2 ** 3) * log(0.1D1 + 0.1D1 / (e2 * & rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** 3 & ))) * dble(zeta ** 4) ! cg = -beta * exp(-beta * rs2) * (-0.2D1 / 0.3D1 * sqrt(0.2D1) * & dble((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / 0.2D1)) & / pi / rs2 + 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble(zeta ** & 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / rs2) & + (exp(-beta * rs2) - 0.1D1) * (0.2D1 / 0.3D1 * sqrt(0.2D1) * dble & ((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / 0.2D1)) / & pi / rs2 ** 2 - 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble(zeta & ** 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / & rs2 ** 2) + (b0 + 0.2D1 * c0 * rs2 + 0.3D1 * d0 * rs2 ** 2) * log( & 0.1D1 + 0.1D1 / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 & ** 2 + h0 * rs2 ** 3)) - (b0 * rs2 + c0 * rs2 ** 2 + d0 * rs2 ** & 3) / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** 2 + h0 & * rs2 ** 3) ** 2 * (e0 + 0.3D1 / 0.2D1 * f0 * sqrt(rs2) + 0.2D1 * & g0 * rs2 + 0.3D1 * h0 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e0 * rs2 + f0 & * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** 2 + h0 * rs2 ** 3)) + (( & b1 + 0.2D1 * c1 * rs2 + 0.3D1 * d1 * rs2 ** 2) * log(0.1D1 + 0.1D1 & / (e1 * rs2 + f1 * rs2 ** (0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * & rs2 ** 3)) - (b1 * rs2 + c1 * rs2 ** 2 + d1 * rs2 ** 3) / (e1 * rs2 & + f1 * rs2 ** (0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * rs2 ** 3) ** & 2 * (e1 + 0.3D1 / 0.2D1 * f1 * sqrt(rs2) + 0.2D1 * g1 * rs2 + & 0.3D1 * h1 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e1 * rs2 + f1 * rs2 ** ( & 0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * rs2 ** 3))) * dble(zeta ** 2) & + ((b2 + 0.2D1 * c2 * rs2 + 0.3D1 * d2 * rs2 ** 2) * log(0.1D1 + & 0.1D1 / (e2 * rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 & * rs2 ** 3)) - (b2 * rs2 + c2 * rs2 ** 2 + d2 * rs2 ** 3) / (e2 & * rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** & 3) ** 2 * (e2 + 0.3D1 / 0.2D1 * f2 * sqrt(rs2) + 0.2D1 * g2 * rs2 & + 0.3D1 * h2 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e2 * rs2 + f2 * rs2 ** & (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** 3))) * dble(zeta ** & 4) deps2ddrs2=cg ! ! GGA-2D ! depsGGAdrs=ff*(-depscPBEdrs+deps2ddrs2*drs2ddrs3d) depsGGAdt=dffdt*(-epscPBE+eps2d)+ff* & (-depscPBEdt+deps2ddrs2*drs2ddt) ! ec=rho*(ff*(-epscPBE+eps2d)) ! decdn=ff*(-epscPBE+eps2d)+rho*depsGGAdrs*drsdn+ & rho*depsGGAdt*dtdn ! decdgr=rho*depsGGAdt*dtdgr ! sc=ec v1c=decdn v2c=decdgr/gr ! RETURN END subroutine cpbe2d ! !--------------------------------------------------------------- subroutine sogga (rho, grho2, sx, v1x, v2x) !------------------------------------------------------------- ! ! SOGGA exchange ! ! USE kinds USE constants, ONLY : pi implicit none real(dp), intent(in) :: rho, grho2 real(dp), intent(out) :: sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential ! local variables real(dp) :: grho, rho43, xs, xs2, dxs2_drho, dxs2_dgrho2 real(dp) :: CX, denom, C1, C2, Fso, Fpbe, ex, Fx, dFx_dxs2, dex_drho real(dp), parameter :: one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, eight = 8.0_dp, & & f13 = one/three, f23 = two/three, f43 = four/three, & & f34=three/four, f83 = eight/three, f12 = one/two real(dp), parameter :: mu=0.12346d0, kapa=0.552d0 ! !_____________________________________________________________________ CX = f34 * (three/pi)**f13 ! Cx LDA denom = four * (three*pi**two)**f23 C1 = mu / denom C2 = mu / (kapa * denom) grho = sqrt(grho2) rho43 = rho**f43 xs = grho / rho43 xs2 = xs * xs dxs2_drho = -f83 * xs2 / rho dxs2_dgrho2 = one /rho**f83 ex = - CX * rho43 dex_drho = - f43 * CX * rho**f13 Fso = kapa * (one - exp(-C2*xs2)) Fpbe = C1 * xs2 / (one + C2*xs2) Fx = f12 * (Fpbe + Fso) dFx_dxs2 = f12 * (C1 / ((one + C2*xs2)**2) + C1*exp(-C2*xs2)) ! ! Energy ! sx = Fx * ex ! ! Potential ! v1x = dex_drho * Fx + ex * dFx_dxs2 * dxs2_drho v2x = two * ex * dFx_dxs2 * dxs2_dgrho2 end subroutine sogga ! ! ! ================================================================== subroutine hcth(rho,grho,sx,v1x,v2x) ! ================================================================== ! HCTH/120, JCP 109, p. 6264 (1998) ! Parameters set-up after N.L. Doltsisnis & M. Sprik (1999) ! Present release: Mauro Boero, Tsukuba, 11/05/2004 !-------------------------------------------------------------------------- ! rhoa = rhob = 0.5 * rho ! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho) ! sx : total exchange correlation energy at point r ! v1x : d(sx)/drho (eq. dfdra = dfdrb in original) ! v2x : 1/gr*d(sx)/d(gr) (eq. 0.5 * dfdza = 0.5 * dfdzb in original) !-------------------------------------------------------------------------- USE kinds, ONLY : DP USE constants, ONLY: pi implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP), parameter :: o3=1.0d0/3.0d0, o34=4.0d0/3.0d0, fr83=8.d0/3.d0 real(DP) :: cg0(6), cg1(6), caa(6), cab(6), cx(6) real(DP) :: r3q2, r3pi, gr, rho_o3, rho_o34, xa, xa2, ra, rab, & dra_drho, drab_drho, g, dg, era1, dera1_dra, erab0, derab0_drab, & ex, dex_drho, uaa, uab, ux, ffaa, ffab, dffaa_drho, dffab_drho,& denaa, denab, denx, f83rho, bygr, gaa, gab, gx, taa, tab, txx, & dgaa_drho, dgab_drho, dgx_drho, dgaa_dgr, dgab_dgr, dgx_dgr ! r3q2=2.d0**(-o3) r3pi=(3.d0/pi)**o3 !.....coefficients for pw correlation...................................... cg0(1)= 0.031091d0 cg0(2)= 0.213700d0 cg0(3)= 7.595700d0 cg0(4)= 3.587600d0 cg0(5)= 1.638200d0 cg0(6)= 0.492940d0 cg1(1)= 0.015545d0 cg1(2)= 0.205480d0 cg1(3)=14.118900d0 cg1(4)= 6.197700d0 cg1(5)= 3.366200d0 cg1(6)= 0.625170d0 !......hcth-19-4..................................... caa(1)= 0.489508d+00 caa(2)= -0.260699d+00 caa(3)= 0.432917d+00 caa(4)= -0.199247d+01 caa(5)= 0.248531d+01 caa(6)= 0.200000d+00 cab(1)= 0.514730d+00 cab(2)= 0.692982d+01 cab(3)= -0.247073d+02 cab(4)= 0.231098d+02 cab(5)= -0.113234d+02 cab(6)= 0.006000d+00 cx(1) = 0.109163d+01 cx(2) = -0.747215d+00 cx(3) = 0.507833d+01 cx(4) = -0.410746d+01 cx(5) = 0.117173d+01 cx(6)= 0.004000d+00 !........................................................................... gr=DSQRT(grho) rho_o3=rho**(o3) rho_o34=rho**(o34) xa=1.25992105d0*gr/rho_o34 xa2=xa*xa ra=0.781592642d0/rho_o3 rab=r3q2*ra dra_drho=-0.260530881d0/rho_o34 drab_drho=r3q2*dra_drho call pwcorr(ra,cg1,g,dg) era1=g dera1_dra=dg call pwcorr(rab,cg0,g,dg) erab0=g derab0_drab=dg ex=-0.75d0*r3pi*rho_o34 dex_drho=-r3pi*rho_o3 uaa=caa(6)*xa2 uaa=uaa/(1.0d0+uaa) uab=cab(6)*xa2 uab=uab/(1.0d0+uab) ux=cx(6)*xa2 ux=ux/(1.0d0+ux) ffaa=rho*era1 ffab=rho*erab0-ffaa dffaa_drho=era1+rho*dera1_dra*dra_drho dffab_drho=erab0+rho*derab0_drab*drab_drho-dffaa_drho ! mb-> i-loop removed denaa=1.d0/(1.0d0+caa(6)*xa2) denab=1.d0/(1.0d0+cab(6)*xa2) denx =1.d0/(1.0d0+cx(6)*xa2) f83rho=fr83/rho bygr=2.0d0/gr gaa=caa(1)+uaa*(caa(2)+uaa*(caa(3)+uaa*(caa(4)+uaa*caa(5)))) gab=cab(1)+uab*(cab(2)+uab*(cab(3)+uab*(cab(4)+uab*cab(5)))) gx=cx(1)+ux*(cx(2)+ux*(cx(3)+ux*(cx(4)+ux*cx(5)))) taa=denaa*uaa*(caa(2)+uaa*(2.d0*caa(3)+uaa & *(3.d0*caa(4)+uaa*4.d0*caa(5)))) tab=denab*uab*(cab(2)+uab*(2.d0*cab(3)+uab & *(3.d0*cab(4)+uab*4.d0*cab(5)))) txx=denx*ux*(cx(2)+ux*(2.d0*cx(3)+ux & *(3.d0*cx(4)+ux*4.d0*cx(5)))) dgaa_drho=-f83rho*taa dgab_drho=-f83rho*tab dgx_drho=-f83rho*txx dgaa_dgr=bygr*taa dgab_dgr=bygr*tab dgx_dgr=bygr*txx ! mb sx=ex*gx+ffaa*gaa+ffab*gab v1x=dex_drho*gx+ex*dgx_drho & +dffaa_drho*gaa+ffaa*dgaa_drho & +dffab_drho*gab+ffab*dgab_drho v2x=(ex*dgx_dgr+ffaa*dgaa_dgr+ffab*dgab_dgr)/gr return end subroutine hcth !-------------------------------------------------------------------= subroutine pwcorr(r,c,g,dg) USE kinds, ONLY : DP implicit none real(DP) :: r, g, dg, c(6) real(DP) :: r12, r32, r2, rb, drb, sb r12=dsqrt(r) r32=r*r12 r2=r*r rb=c(3)*r12+c(4)*r+c(5)*r32+c(6)*r2 sb=1.0d0+1.0d0/(2.0d0*c(1)*rb) g=-2.0d0*c(1)*(1.0d0+c(2)*r)*dlog(sb) drb=c(3)/(2.0d0*r12)+c(4)+1.5d0*c(5)*r12+2.0d0*c(6)*r dg=(1.0d0+c(2)*r)*drb/(rb*rb*sb)-2.0d0*c(1)*c(2)*dlog(sb) return end subroutine pwcorr !----------------------------------------------------------------------------- ! ================================================================== subroutine optx(rho,grho,sx,v1x,v2x) ! OPTX, Handy et al. JCP 116, p. 5411 (2002) and refs. therein ! Present release: Mauro Boero, Tsukuba, 10/9/2002 !-------------------------------------------------------------------------- ! rhoa = rhob = 0.5 * rho in LDA implementation ! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho) ! sx : total exchange correlation energy at point r ! v1x : d(sx)/drho ! v2x : 1/gr*d(sx)/d(gr) !-------------------------------------------------------------------------- use kinds, only: DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP), parameter :: small=1.D-30, smal2=1.D-10 !.......coefficients and exponents.................... real(DP), parameter :: o43=4.0d0/3.0d0, two13=1.259921049894873D0, & two53=3.174802103936399D0, gam=0.006D0, a1cx=0.9784571170284421D0,& a2=1.43169D0 real(DP) :: gr, rho43, xa, gamx2, uden, uu !.......OPTX in compact form.......................... if(rho <= small) then sx=0.0D0 v1x=0.0D0 v2x=0.0D0 else gr = max(grho,SMAL2) rho43=rho**o43 xa=two13*DSQRT(gr)/rho43 gamx2=gam*xa*xa uden=1.d+00/(1.d+00+gamx2) uu=a2*gamx2*gamx2*uden*uden uden=rho43*uu*uden sx=-rho43*(a1cx+uu)/two13 v1x=o43*(sx+two53*uden)/rho v2x=-two53*uden/gr endif return end subroutine optx ! !--------------------------------------------------------------- subroutine wcx (rho, grho, sx, v1x, v2x) !--------------------------------------------------------------- ! ! Wu-Cohen exchange (without Slater exchange): ! Z. Wu and R. E. Cohen, PRB 73, 235116 (2006) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential ! local variables real(DP) :: kf, agrho, s1, s2, es2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1, x1, x2, x3, & dxds1, dxds2, dxds3 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5, c6, teneightyone parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , & c2 = 3.093667726280136d0, c5 = 4.d0 * third, & teneightyone = 0.123456790123d0) ! parameters of the functional real(DP) :: k, mu, cwc parameter (k = 0.804d0, mu = 0.2195149727645171d0, cwc = 0.00793746933516d0) ! agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5d0 / kf s1 = agrho * dsg / rho s2 = s1 * s1 es2 = exp(-s2) ds = - c5 * s1 ! ! Energy ! ! x = 10/81 s^2 + (mu - 10/81) s^2 e^-s^2 + ln (1 + c s^4) x1 = teneightyone * s2 x2 = (mu - teneightyone) * s2 * es2 x3 = log(1.d0 + cwc * s2 * s2) f1 = (x1 + x2 + x3) / k f2 = 1.d0 + f1 f3 = k / f2 fx = k - f3 exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third dfx1 = f2 * f2 dxds1 = teneightyone dxds2 = (mu - teneightyone) * es2 * (1.d0 - s2) dxds3 = 2.d0 * cwc * s2 / (1.d0 + cwc * s2 *s2) dfx = 2.d0 * s1 * (dxds1 + dxds2 + dxds3) / dfx1 v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine wcx ! !----------------------------------------------------------------------- function dpz (rs, iflg) !----------------------------------------------------------------------- ! derivative of the correlation potential with respect to local density ! Perdew and Zunger parameterization of the Ceperley-Alder functional ! use kinds, only: DP USE constants, ONLY: pi, fpi ! implicit none ! real(DP), intent (in) :: rs integer, intent(in) :: iflg real(DP) :: dpz ! ! local variables ! a,b,c,d,gc,b1,b2 are the parameters defining the functional ! real(DP), parameter :: a = 0.0311d0, b = -0.048d0, c = 0.0020d0, & d = -0.0116d0, gc = -0.1423d0, b1 = 1.0529d0, b2 = 0.3334d0,& a1 = 7.0d0 * b1 / 6.d0, a2 = 4.d0 * b2 / 3.d0 real(DP) :: x, den, dmx, dmrs ! ! if (iflg == 1) then dmrs = a / rs + 2.d0 / 3.d0 * c * (log (rs) + 1.d0) + & (2.d0 * d-c) / 3.d0 else x = sqrt (rs) den = 1.d0 + x * (b1 + x * b2) dmx = gc * ( (a1 + 2.d0 * a2 * x) * den - 2.d0 * (b1 + 2.d0 * & b2 * x) * (1.d0 + x * (a1 + x * a2) ) ) / den**3 dmrs = 0.5d0 * dmx / x endif ! dpz = - fpi * rs**4.d0 / 9.d0 * dmrs return ! end function dpz !---------------------------------------------------------------------- ! ! HSE (wPBE) stabbing starts HERE ! ! Note, that you can get PBEhole functional, ! M. Ernzerhof, J. Chem. Phys. 109, 3313 (1998), ! from this by just setting OMEGA=0 ! ! These are wrappers to the reference implementation !----------------------------------------------------------------------- SUBROUTINE pbexsr_lsd(RHOA,RHOB,GRHOAA,GRHOBB,sx, & V1XA,V2XA,V1XB,V2XB,OMEGA) ! ==--------------------------------------------------------------== IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(SMALL=1.D-20) ! ==--------------------------------------------------------------== SXA=0.0D0 SXB=0.0D0 V1XA=0.0D0 V2XA=0.0D0 V1XB=0.0D0 V2XB=0.0D0 IF(RHOA.GT.SMALL.AND.GRHOAA.GT.SMALL) THEN CALL pbexsr(2.D0*RHOA, 4.D0*GRHOAA, SXA, V1XA, V2XA, OMEGA) ENDIF IF(RHOB.GT.SMALL.AND.GRHOBB.GT.SMALL) THEN CALL pbexsr(2.D0*RHOB, 4.D0*GRHOBB, SXB, V1XB, V2XB, OMEGA) ENDIF sx = 0.5D0*(SXA+SXB) V2XA = 2.D0*V2XA V2XB = 2.D0*V2XB ! I HOPE THIS WORKS JUST LIKE THIS ! ==--------------------------------------------------------------== RETURN END SUBROUTINE pbexsr_lsd ! !----------------------------------------------------------------------- SUBROUTINE pbexsr(RHO,GRHO,sx,V1X,V2X,OMEGA) !----------------------------------------------------------------------- ! ! INCLUDE 'cnst.inc' use kinds, ONLY : DP IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(SMALL=1.D-20,SMAL2=1.D-08) PARAMETER(US=0.161620459673995492D0,AX=-0.738558766382022406D0, & UM=0.2195149727645171D0,UK=0.8040D0,UL=UM/UK) REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP ! ==--------------------------------------------------------------== ! CALL XC(RHO,EX,EC,VX,VC) RS = RHO**(1.0_DP/3.0_DP) VX = (4.0_DP/3.0_DP)*f1*alpha*RS ! AA = DMAX1(GRHO,SMAL2) AA = GRHO ! RR = RHO**(-4.0_DP/3.0_DP) RR = 1.0_DP/(RHO*RS) EX = AX/RR S2 = AA*RR*RR*US*US S = SQRT(S2) IF(S.GT.8.3D0) THEN S = 8.572844D0 - 18.796223D0/S2 ENDIF CALL wpbe_analy_erfc_approx_grad(RHO,S,OMEGA,FX,D1X,D2X) sx = EX*FX ! - EX DSDN = -4.D0/3.D0*S/RHO V1X = VX*FX + (DSDN*D2X+D1X)*EX ! - VX DSDG = US*RR V2X = EX*1.D0/SQRT(AA)*DSDG*D2X ! NOTE, here sx is the total energy density, ! not just the gradient correction energy density as e.g. in pbex() ! And the same goes for the potentials V1X, V2X ! ==--------------------------------------------------------------== RETURN END SUBROUTINE pbexsr ! !----------------------------------------------------------------------- SUBROUTINE wpbe_analy_erfc_approx_grad(rho,s,omega,Fx_wpbe, & d1rfx,d1sfx) !-------------------------------------------------------------------- ! ! wPBE Enhancement Factor (erfc approx.,analytical, gradients) ! !-------------------------------------------------------------------- Implicit None Real*8 rho,s,omega,Fx_wpbe,d1sfx,d1rfx Real*8 f12,f13,f14,f18,f23,f43,f32,f72,f34,f94,f1516,f98 Real*8 pi,pi2,pi_23,srpi Real*8 Three_13 Real*8 ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8 Real*8 eb1 Real*8 A,B,C,D,E Real*8 Ha1,Ha2,Ha3,Ha4,Ha5 Real*8 Fc1,Fc2 Real*8 EGa1,EGa2,EGa3 Real*8 EGscut,wcutoff,expfcutoff Real*8 xkf, xkfrho Real*8 w,w2,w3,w4,w5,w6,w7,w8 Real*8 d1rw Real*8 A2,A3,A4,A12,A32,A52,A72 Real*8 X Real*8 s2,s3,s4,s5,s6 Real*8 H,F Real*8 Hnum,Hden,d1sHnum,d1sHden Real*8 d1sH,d1sF Real*8 G_a,G_b,EG Real*8 d1sG_a,d1sG_b,d1sEG Real*8 Hsbw,Hsbw2,Hsbw3,Hsbw4,Hsbw12,Hsbw32,Hsbw52,Hsbw72 Real*8 DHsbw,DHsbw2,DHsbw3,DHsbw4,DHsbw5 Real*8 DHsbw12,DHsbw32,DHsbw52,DHsbw72,DHsbw92 Real*8 d1sHsbw,d1rHsbw Real*8 d1sDHsbw,d1rDHsbw Real*8 HsbwA94,HsbwA9412 Real*8 HsbwA942,HsbwA943,HsbwA945 Real*8 piexperf,expei Real*8 piexperfd1,expeid1 Real*8 d1spiexperf,d1sexpei Real*8 d1rpiexperf,d1rexpei Real*8 expei1,expei2,expei3,expei4 Real*8 DHs,DHs2,DHs3,DHs4,DHs72,DHs92,DHsw,DHsw2,DHsw52,DHsw72 Real*8 d1sDHs,d1rDHsw Real*8 np1,np2 Real*8 d1rnp1,d1rnp2 Real*8 t1,t2t9,t10,t10d1 Real*8 f2,f3,f4,f5,f6,f7,f8,f9 Real*8 f2d1,f3d1,f4d1,f5d1,f6d1,f8d1,f9d1 Real*8 d1sf2,d1sf3,d1sf4,d1sf5,d1sf6,d1sf7,d1sf8,d1sf9 Real*8 d1rf2,d1rf3,d1rf4,d1rf5,d1rf6,d1rf7,d1rf8,d1rf9 Real*8 d1st1,d1rt1 Real*8 d1st2t9,d1rt2t9 Real*8 d1st10,d1rt10 Real*8 d1sterm1,d1rterm1,term1d1 Real*8 d1sterm2 Real*8 d1sterm3,d1rterm3 Real*8 d1sterm4,d1rterm4 Real*8 d1sterm5,d1rterm5 Real*8 term1,term2,term3,term4,term5 Real*8 ax,um,uk,ul Real*8 gc1,gc2 Real*8, external :: qe_erf, qe_erfc ! Real*8 ei Real*8, external :: expint Real*8 Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten Real*8 Fifteen,Sixteen Real*8 r12,r64,r36,r81,r256,r384,r864,r1944,r4374 Real*8 r20,r25,r27,r48,r120,r128,r144,r288,r324,r512,r729 Real*8 r30,r32,r75,r243,r2187,r6561,r40,r105,r54,r135 Real*8 r1215,r15309 Save Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten Data Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten & / 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 / Save Fifteen,Sixteen Data Fifteen,Sixteen / 1.5D1, 1.6D1 / Save r36,r64,r81,r256,r384,r864,r1944,r4374 Data r36,r64,r81,r256,r384,r864,r1944,r4374 & / 3.6D1,6.4D1,8.1D1,2.56D2,3.84D2,8.64D2,1.944D3,4.374D3 / Save r27,r48,r120,r128,r144,r288,r324,r512,r729 Data r27,r48,r120,r128,r144,r288,r324,r512,r729 & / 2.7D1,4.8D1,1.2D2,1.28D2,1.44D2,2.88D2,3.24D2,5.12D2,7.29D2 / Save r20,r32,r243,r2187,r6561,r40 Data r20,r32,r243,r2187,r6561,r40 & / 2.0d1,3.2D1,2.43D2,2.187D3,6.561D3,4.0d1 / Save r12,r25,r30,r54,r75,r105,r135,r1215,r15309 Data r12,r25,r30,r54,r75,r105,r135,r1215,r15309 & / 1.2D1,2.5d1,3.0d1,5.4D1,7.5d1,1.05D2,1.35D2,1.215D3,1.5309D4 / ! General constants f12 = 0.5d0 f13 = One/Three f14 = 0.25d0 f18 = 0.125d0 f23 = Two * f13 f43 = Two * f23 f32 = 1.5d0 f72 = 3.5d0 f34 = 0.75d0 f94 = 2.25d0 f98 = 1.125d0 f1516 = Fifteen / Sixteen pi = ACos(-One) pi2 = pi*pi pi_23 = pi2**f13 srpi = sqrt(pi) Three_13 = Three**f13 ! Constants from fit ea1 = -1.128223946706117d0 ea2 = 1.452736265762971d0 ea3 = -1.243162299390327d0 ea4 = 0.971824836115601d0 ea5 = -0.568861079687373d0 ea6 = 0.246880514820192d0 ea7 = -0.065032363850763d0 ea8 = 0.008401793031216d0 eb1 = 1.455915450052607d0 ! Constants for PBE hole A = 1.0161144d0 B = -3.7170836d-1 C = -7.7215461d-2 D = 5.7786348d-1 E = -5.1955731d-2 X = - Eight/Nine ! Constants for fit of H(s) (PBE) Ha1 = 9.79681d-3 Ha2 = 4.10834d-2 Ha3 = 1.87440d-1 Ha4 = 1.20824d-3 Ha5 = 3.47188d-2 ! Constants for F(H) (PBE) Fc1 = 6.4753871d0 Fc2 = 4.7965830d-1 ! Constants for polynomial expansion for EG for small s EGa1 = -2.628417880d-2 EGa2 = -7.117647788d-2 EGa3 = 8.534541323d-2 ! Constants for large x expansion of exp(x)*ei(-x) expei1 = 4.03640D0 expei2 = 1.15198D0 expei3 = 5.03627D0 expei4 = 4.19160D0 ! Cutoff criterion below which to use polynomial expansion EGscut = 8.0d-2 wcutoff = 1.4D1 expfcutoff = 7.0D2 ! Calculate prelim variables xkf = (Three*pi2*rho) ** f13 xkfrho = xkf * rho A2 = A*A A3 = A2*A A4 = A3*A A12 = Sqrt(A) A32 = A12*A A52 = A32*A A72 = A52*A w = omega / xkf w2 = w * w w3 = w2 * w w4 = w2 * w2 w5 = w3 * w2 w6 = w5 * w w7 = w6 * w w8 = w7 * w d1rw = -(One/(Three*rho))*w X = - Eight/Nine s2 = s*s s3 = s2*s s4 = s2*s2 s5 = s4*s s6 = s5*s ! Calculate wPBE enhancement factor Hnum = Ha1*s2 + Ha2*s4 Hden = One + Ha3*s4 + Ha4*s5 + Ha5*s6 H = Hnum/Hden d1sHnum = Two*Ha1*s + Four*Ha2*s3 d1sHden = Four*Ha3*s3 + Five*Ha4*s4 + Six*Ha5*s5 d1sH = (Hden*d1sHnum - Hnum*d1sHden) / (Hden*Hden) F = Fc1*H + Fc2 d1sF = Fc1*d1sH ! Change exponent of Gaussian if we're using the simple approx. if(w .gt. wcutoff) then eb1 = 2.0d0 endif ! Calculate helper variables (should be moved later on...) Hsbw = s2*H + eb1*w2 Hsbw2 = Hsbw*Hsbw Hsbw3 = Hsbw2*Hsbw Hsbw4 = Hsbw3*Hsbw Hsbw12 = Sqrt(Hsbw) Hsbw32 = Hsbw12*Hsbw Hsbw52 = Hsbw32*Hsbw Hsbw72 = Hsbw52*Hsbw d1sHsbw = d1sH*s2 + Two*s*H d1rHsbw = Two*eb1*d1rw*w DHsbw = D + s2*H + eb1*w2 DHsbw2 = DHsbw*DHsbw DHsbw3 = DHsbw2*DHsbw DHsbw4 = DHsbw3*DHsbw DHsbw5 = DHsbw4*DHsbw DHsbw12 = Sqrt(DHsbw) DHsbw32 = DHsbw12*DHsbw DHsbw52 = DHsbw32*DHsbw DHsbw72 = DHsbw52*DHsbw DHsbw92 = DHsbw72*DHsbw HsbwA94 = f94 * Hsbw / A HsbwA942 = HsbwA94*HsbwA94 HsbwA943 = HsbwA942*HsbwA94 HsbwA945 = HsbwA943*HsbwA942 HsbwA9412 = Sqrt(HsbwA94) DHs = D + s2*H DHs2 = DHs*DHs DHs3 = DHs2*DHs DHs4 = DHs3*DHs DHs72 = DHs3*sqrt(DHs) DHs92 = DHs72*DHs d1sDHs = Two*s*H + s2*d1sH DHsw = DHs + w2 DHsw2 = DHsw*DHsw DHsw52 = sqrt(DHsw)*DHsw2 DHsw72 = DHsw52*DHsw d1rDHsw = Two*d1rw*w if(s .gt. EGscut) then G_a = srpi * (Fifteen*E + Six*C*(One+F*s2)*DHs + & Four*B*(DHs2) + Eight*A*(DHs3)) & * (One / (Sixteen * DHs72)) & - f34*pi*sqrt(A) * exp(f94*H*s2/A) * & (One - qe_erf(f32*s*sqrt(H/A))) d1sG_a = (One/r32)*srpi * & ((r36*(Two*H + d1sH*s) / (A12*sqrt(H/A))) & + (One/DHs92) * & (-Eight*A*d1sDHs*DHs3 - r105*d1sDHs*E & -r30*C*d1sDHs*DHs*(One+s2*F) & +r12*DHs2*(-B*d1sDHs + C*s*(d1sF*s + Two*F))) & - ((r54*exp(f94*H*s2/A)*srpi*s*(Two*H+d1sH*s)* & qe_erfc(f32*sqrt(H/A)*s)) & / A12)) G_b = (f1516 * srpi * s2) / DHs72 d1sG_b = (Fifteen*srpi*s*(Four*DHs - Seven*d1sDHs*s)) & / (r32*DHs92) EG = - (f34*pi + G_a) / G_b d1sEG = (-Four*d1sG_a*G_b + d1sG_b*(Four*G_a + Three*pi)) & / (Four*G_b*G_b) else EG = EGa1 + EGa2*s2 + EGa3*s4 d1sEG = Two*EGa2*s + Four*EGa3*s3 endif ! Calculate the terms needed in any case term2 = (DHs2*B + DHs*C + Two*E + DHs*s2*C*F + Two*s2*EG) / & (Two*DHs3) d1sterm2 = (-Six*d1sDHs*(EG*s2 + E) & + DHs2 * (-d1sDHs*B + s*C*(d1sF*s + Two*F)) & + Two*DHs * (Two*EG*s - d1sDHs*C & + s2 * (d1sEG - d1sDHs*C*F))) & / (Two*DHs4) term3 = - w * (Four*DHsw2*B + Six*DHsw*C + Fifteen*E & + Six*DHsw*s2*C*F + Fifteen*s2*EG) / & (Eight*DHs*DHsw52) d1sterm3 = w * (Two*d1sDHs*DHsw * (Four*DHsw2*B & + Six*DHsw*C + Fifteen*E & + Three*s2*(Five*EG + Two*DHsw*C*F)) & + DHs * (r75*d1sDHs*(EG*s2 + E) & + Four*DHsw2*(d1sDHs*B & - Three*s*C*(d1sF*s + Two*F)) & - Six*DHsw*(-Three*d1sDHs*C & + s*(Ten*EG + Five*d1sEG*s & - Three*d1sDHs*s*C*F)))) & / (Sixteen*DHs2*DHsw72) d1rterm3 = (-Two*d1rw*DHsw * (Four*DHsw2*B & + Six*DHsw*C + Fifteen*E & + Three*s2*(Five*EG + Two*DHsw*C*F)) & + w * d1rDHsw * (r75*(EG*s2 + E) & + Two*DHsw*(Two*DHsw*B + Nine*C & + Nine*s2*C*F))) & / (Sixteen*DHs*DHsw72) term4 = - w3 * (DHsw*C + Five*E + DHsw*s2*C*F + Five*s2*EG) / & (Two*DHs2*DHsw52) d1sterm4 = (w3 * (Four*d1sDHs*DHsw * (DHsw*C + Five*E & + s2 * (Five*EG + DHsw*C*F)) & + DHs * (r25*d1sDHs*(EG*s2 + E) & - Two*DHsw2*s*C*(d1sF*s + Two*F) & + DHsw * (Three*d1sDHs*C + s*(-r20*EG & - Ten*d1sEG*s & + Three*d1sDHs*s*C*F))))) & / (Four*DHs3*DHsw72) d1rterm4 = (w2 * (-Six*d1rw*DHsw * (DHsw*C + Five*E & + s2 * (Five*EG + DHsw*C*F)) & + w * d1rDHsw * (r25*(EG*s2 + E) + & Three*DHsw*C*(One + s2*F)))) & / (Four*DHs2*DHsw72) term5 = - w5 * (E + s2*EG) / & (DHs3*DHsw52) d1sterm5 = (w5 * (Six*d1sDHs*DHsw*(EG*s2 + E) & + DHs * (-Two*DHsw*s * (Two*EG + d1sEG*s) & + Five*d1sDHs * (EG*s2 + E)))) & / (Two*DHs4*DHsw72) d1rterm5 = (w4 * Five*(EG*s2 + E) * (-Two*d1rw*DHsw & + d1rDHsw * w)) & / (Two*DHs3*DHsw72) if((s.gt.0.0d0).or.(w.gt.0.0d0)) then t10 = (f12)*A*Log(Hsbw / DHsbw) t10d1 = f12*A*(One/Hsbw - One/DHsbw) d1st10 = d1sHsbw*t10d1 d1rt10 = d1rHsbw*t10d1 endif ! Calculate exp(x)*f(x) depending on size of x if(HsbwA94 .lt. expfcutoff) then piexperf = pi*Exp(HsbwA94)*qe_erfc(HsbwA9412) ! expei = Exp(HsbwA94)*Ei(-HsbwA94) expei = Exp(HsbwA94)*(-expint(1,HsbwA94)) else ! print *,rho,s," LARGE HsbwA94" piexperf = pi*(One/(srpi*HsbwA9412) & - One/(Two*Sqrt(pi*HsbwA943)) & + Three/(Four*Sqrt(pi*HsbwA945))) expei = - (One/HsbwA94) * & (HsbwA942 + expei1*HsbwA94 + expei2) / & (HsbwA942 + expei3*HsbwA94 + expei4) endif ! Calculate the derivatives (based on the orig. expression) ! --> Is this ok? ==> seems to be ok... piexperfd1 = - (Three*srpi*sqrt(Hsbw/A))/(Two*Hsbw) & + (Nine*piexperf)/(Four*A) d1spiexperf = d1sHsbw*piexperfd1 d1rpiexperf = d1rHsbw*piexperfd1 expeid1 = f14*(Four/Hsbw + (Nine*expei)/A) d1sexpei = d1sHsbw*expeid1 d1rexpei = d1rHsbw*expeid1 if (w .eq. Zero) then ! Fall back to original expression for the PBE hole t1 = -f12*A*expei d1st1 = -f12*A*d1sexpei d1rt1 = -f12*A*d1rexpei ! write(*,*) s, t1, t10, d1st1,d1rt1,d1rt10 if(s .gt. 0.0D0) then term1 = t1 + t10 d1sterm1 = d1st1 + d1st10 d1rterm1 = d1rt1 + d1rt10 Fx_wpbe = X * (term1 + term2) d1sfx = X * (d1sterm1 + d1sterm2) d1rfx = X * d1rterm1 else Fx_wpbe = 1.0d0 ! TODO This is checked to be true for term1 ! How about the other terms??? d1sfx = 0.0d0 d1rfx = 0.0d0 endif elseif(w .gt. wcutoff) then ! Use simple Gaussian approximation for large w ! print *,rho,s," LARGE w" term1 = -f12*A*(expei+log(DHsbw)-log(Hsbw)) term1d1 = - A/(Two*DHsbw) - f98*expei d1sterm1 = d1sHsbw*term1d1 d1rterm1 = d1rHsbw*term1d1 Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5) d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 & + d1sterm4 + d1sterm5) d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5) else ! For everything else, use the full blown expression ! First, we calculate the polynomials for the first term np1 = -f32*ea1*A12*w + r27*ea3*w3/(Eight*A12) & - r243*ea5*w5/(r32*A32) + r2187*ea7*w7/(r128*A52) d1rnp1 = - f32*ea1*d1rw*A12 + (r81*ea3*d1rw*w2)/(Eight*A12) & - (r1215*ea5*d1rw*w4)/(r32*A32) & + (r15309*ea7*d1rw*w6)/(r128*A52) np2 = -A + f94*ea2*w2 - r81*ea4*w4/(Sixteen*A) & + r729*ea6*w6/(r64*A2) - r6561*ea8*w8/(r256*A3) d1rnp2 = f12*(Nine*ea2*d1rw*w) & - (r81*ea4*d1rw*w3)/(Four*A) & + (r2187*ea6*d1rw*w5)/(r32*A2) & - (r6561*ea8*d1rw*w7)/(r32*A3) ! The first term is t1 = f12*(np1*piexperf + np2*expei) d1st1 = f12*(d1spiexperf*np1 + d1sexpei*np2) d1rt1 = f12*(d1rnp2*expei + d1rpiexperf*np1 + & d1rexpei*np2 + d1rnp1*piexperf) ! The factors for the main polynomoal in w and their derivatives f2 = (f12)*ea1*srpi*A / DHsbw12 f2d1 = - ea1*srpi*A / (Four*DHsbw32) d1sf2 = d1sHsbw*f2d1 d1rf2 = d1rHsbw*f2d1 f3 = (f12)*ea2*A / DHsbw f3d1 = - ea2*A / (Two*DHsbw2) d1sf3 = d1sHsbw*f3d1 d1rf3 = d1rHsbw*f3d1 f4 = ea3*srpi*(-f98 / Hsbw12 & + f14*A / DHsbw32) f4d1 = ea3*srpi*((Nine/(Sixteen*Hsbw32))- & (Three*A/(Eight*DHsbw52))) d1sf4 = d1sHsbw*f4d1 d1rf4 = d1rHsbw*f4d1 f5 = ea4*(One/r128) * (-r144*(One/Hsbw) & + r64*(One/DHsbw2)*A) f5d1 = ea4*((f98/Hsbw2)-(A/DHsbw3)) d1sf5 = d1sHsbw*f5d1 d1rf5 = d1rHsbw*f5d1 f6 = ea5*(Three*srpi*(Three*DHsbw52*(Nine*Hsbw-Two*A) & + Four*Hsbw32*A2)) & / (r32*DHsbw52*Hsbw32*A) f6d1 = ea5*srpi*((r27/(r32*Hsbw52))- & (r81/(r64*Hsbw32*A))- & ((Fifteen*A)/(Sixteen*DHsbw72))) d1sf6 = d1sHsbw*f6d1 d1rf6 = d1rHsbw*f6d1 f7 = ea6*(((r32*A)/DHsbw3 & + (-r36 + (r81*s2*H)/A)/Hsbw2)) / r32 d1sf7 = ea6*(Three*(r27*d1sH*DHsbw4*Hsbw*s2 + & Eight*d1sHsbw*A*(Three*DHsbw4 - Four*Hsbw3*A) + & r54*DHsbw4*s*(Hsbw - d1sHsbw*s)*H))/ & (r32*DHsbw4*Hsbw3*A) d1rf7 = ea6*d1rHsbw*((f94/Hsbw3)-((Three*A)/DHsbw4) & -((r81*s2*H)/(Sixteen*Hsbw3*A))) f8 = ea7*(-Three*srpi*(-r40*Hsbw52*A3 & +Nine*DHsbw72*(r27*Hsbw2-Six*Hsbw*A+Four*A2))) & / (r128 * DHsbw72*Hsbw52*A2) f8d1 = ea7*srpi*((r135/(r64*Hsbw72)) + (r729/(r256*Hsbw32*A2)) & -(r243/(r128*Hsbw52*A)) & -((r105*A)/(r32*DHsbw92))) d1sf8 = d1sHsbw*f8d1 d1rf8 = d1rHsbw*f8d1 f9 = (r324*ea6*eb1*DHsbw4*Hsbw*A & + ea8*(r384*Hsbw3*A3 + DHsbw4*(-r729*Hsbw2 & + r324*Hsbw*A - r288*A2))) / (r128*DHsbw4*Hsbw3*A2) f9d1 = -((r81*ea6*eb1)/(Sixteen*Hsbw3*A)) & + ea8*((r27/(Four*Hsbw4))+(r729/(r128*Hsbw2*A2)) & -(r81/(Sixteen*Hsbw3*A)) & -((r12*A/DHsbw5))) d1sf9 = d1sHsbw*f9d1 d1rf9 = d1rHsbw*f9d1 t2t9 = f2*w + f3*w2 + f4*w3 + f5*w4 + f6*w5 & + f7*w6 + f8*w7 + f9*w8 d1st2t9 = d1sf2*w + d1sf3*w2 + d1sf4*w3 + d1sf5*w4 & + d1sf6*w5 + d1sf7*w6 + d1sf8*w7 & + d1sf9*w8 d1rt2t9 = d1rw*f2 + d1rf2*w + Two*d1rw*f3*w & + d1rf3*w2 + Three*d1rw*f4*w2 & + d1rf4*w3 + Four*d1rw*f5*w3 & + d1rf5*w4 + Five*d1rw*f6*w4 & + d1rf6*w5 + Six*d1rw*f7*w5 & + d1rf7*w6 + Seven*d1rw*f8*w6 & + d1rf8*w7 + Eight*d1rw*f9*w7 + d1rf9*w8 ! The final value of term1 for 0 < omega < wcutoff is: term1 = t1 + t2t9 + t10 d1sterm1 = d1st1 + d1st2t9 + d1st10 d1rterm1 = d1rt1 + d1rt2t9 + d1rt10 ! The final value for the enhancement factor and its ! derivatives is: Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5) d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 & + d1sterm4 + d1sterm5) d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5) endif END SUBROUTINE wpbe_analy_erfc_approx_grad espresso-5.0.2/flib/dost.f900000644000700200004540000000426612053145634014600 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine dos_t (et, nspin, nbnd, nks, ntetra, tetra, e, dost) !------------------------------------------------------------------ ! USE kinds, only : DP implicit none integer :: nspin, nbnd, nks, ntetra, tetra (4, ntetra) real(DP) :: et (nbnd, nks), e, dost (2) integer :: itetra (4), nk, ns, nt, ibnd, i real(DP) :: etetra (4), e1, e2, e3, e4 integer :: nspin0 if (nspin==4) then nspin0=1 else nspin0=nspin endif do ns = 1, nspin0 dost (ns) = 0.d0 ! ! nk is used to select k-points with up (ns=1) or down (ns=2) spin ! if (ns.eq.1) then nk = 0 else nk = nks / 2 endif do nt = 1, ntetra do ibnd = 1, nbnd ! these are the energies at the vertexes of the nt-th tetrahedron do i = 1, 4 etetra (i) = et (ibnd, tetra (i, nt) + nk) enddo itetra (1) = 0 call hpsort (4, etetra, itetra) e1 = etetra (1) e2 = etetra (2) e3 = etetra (3) e4 = etetra (4) if (e.lt.e4.and.e.ge.e3) then dost (ns) = dost (ns) + 1.d0 / ntetra * (3.0d0 * (e4 - e) **2 / & (e4 - e1) / (e4 - e2) / (e4 - e3) ) elseif (e.lt.e3.and.e.ge.e2) then dost (ns) = dost (ns) + 1.d0 / ntetra / (e3 - e1) / (e4 - e1) & * (3.0d0 * (e2 - e1) + 6.0d0 * (e-e2) - 3.0d0 * (e3 - e1 + e4 - e2) & / (e3 - e2) / (e4 - e2) * (e-e2) **2) elseif (e.lt.e2.and.e.gt.e1) then dost (ns) = dost (ns) + 1.d0 / ntetra * 3.0d0 * (e-e1) **2 / & (e2 - e1) / (e3 - e1) / (e4 - e1) endif enddo enddo ! add correct spin normalization : 2 for LDA, 1 for LSDA or ! noncollinear calculations if ( nspin == 1 ) dost (ns) = dost (ns) * 2.d0 enddo return end subroutine dos_t espresso-5.0.2/flib/trimcheck.f900000644000700200004540000000216012053145634015567 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- FUNCTION trimcheck ( directory ) !----------------------------------------------------------------------- ! ! ... verify if directory ends with /, add one if needed; ! ... trim white spaces and put the result in trimcheck ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(IN) :: directory CHARACTER (LEN=256) :: trimcheck INTEGER :: l ! l = LEN_TRIM( directory ) IF ( l == 0 ) CALL errore( 'trimcheck', ' input name empty', 1) ! IF ( directory(l:l) == '/' ) THEN trimcheck = TRIM ( directory) ELSE IF ( l < LEN( trimcheck ) ) THEN trimcheck = TRIM ( directory ) // '/' ELSE CALL errore( 'trimcheck', ' input name too long', l ) END IF END IF ! RETURN ! END FUNCTION trimcheck ! espresso-5.0.2/flib/matches.f900000644000700200004540000000472512053145634015253 0ustar marsamoscm! ! Copyright (C) 2001-2004 Carlo Cavazzoni and PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION matches( string1, string2 ) !----------------------------------------------------------------------- ! ! ... .TRUE. if string1 is contained in string2, .FALSE. otherwise ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(IN) :: string1, string2 LOGICAL :: matches INTEGER :: len1, len2, l ! ! len1 = LEN_TRIM( string1 ) len2 = LEN_TRIM( string2 ) ! DO l = 1, ( len2 - len1 + 1 ) ! IF ( string1(1:len1) == string2(l:(l+len1-1)) ) THEN ! matches = .TRUE. ! RETURN ! END IF ! END DO ! matches = .FALSE. ! RETURN ! END FUNCTION matches ! !----------------------------------------------------------------------- FUNCTION imatches( string1, string2 ) !----------------------------------------------------------------------- ! ! ... .TRUE. if string1 is contained in string2, .FALSE. otherwise ! *** case insensitive *** ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(IN) :: string1, string2 CHARACTER(LEN=len(string1)) :: aux1 CHARACTER(LEN=len(string2)) :: aux2 CHARACTER(LEN=1) :: lowercase LOGICAL :: imatches LOGICAL, EXTERNAL :: matches INTEGER :: i ! aux1 = string1 aux2 = string2 ! do i=1,len(aux1) aux1(i:i)=lowercase(aux1(i:i)) enddo do i=1,len(aux2) aux2(i:i)=lowercase(aux2(i:i)) enddo ! imatches = matches(aux1, aux2) ! RETURN ! END FUNCTION imatches ! !----------------------------------------------------------------------- SUBROUTINE remove_comments_from_string( string ) !----------------------------------------------------------------------- ! ! chop string removing everything after an esclamation mark (!) ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(INOUT) :: string INTEGER :: len, l ! ! len = LEN_TRIM( string ) ! l=1 DO WHILE ( string(l:l) /= "!" ) l = l + 1 if (l == len+1) EXIT END DO len = l-1 ! string = string(1:len) ! RETURN ! END SUBROUTINE remove_comments_from_string ! espresso-5.0.2/flib/simpsn.f900000644000700200004540000001047012053145634015132 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE simpson(mesh, func, rab, asum) !----------------------------------------------------------------------- ! ! simpson's rule integration. On input: ! mesh = the number of grid points (should be odd) ! func(i)= function to be integrated ! rab(i) = r(i) * dr(i)/di * di ! For the logarithmic grid not including r=0 : ! r(i) = r_0*exp((i-1)*dx) ==> rab(i)=r(i)*dx ! For the logarithmic grid including r=0 : ! r(i) = a(exp((i-1)*dx)-1) ==> rab(i)=(r(i)+a)*dx ! Output in asum = \sum_i c_i f(i)*rab(i) = \int_0^\infty f(r) dr ! where c_i are alternativaly 2/3, 4/3 except c_1 = c_mesh = 1/3 ! USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: mesh real(DP), INTENT(in) :: rab (mesh), func (mesh) real(DP), INTENT(out):: asum ! real(DP) :: f1, f2, f3, r12 INTEGER :: i ! asum = 0.0d0 r12 = 1.0d0 / 3.0d0 f3 = func (1) * rab (1) * r12 DO i = 2, mesh - 1, 2 f1 = f3 f2 = func (i) * rab (i) * r12 f3 = func (i + 1) * rab (i + 1) * r12 asum = asum + f1 + 4.0d0 * f2 + f3 ENDDO ! ! if mesh is not odd, use open formula instead: ! ... 2/3*f(n-5) + 4/3*f(n-4) + 13/12*f(n-3) + 0*f(n-2) + 27/12*f(n-1) !!! Under testing ! !IF ( MOD(mesh,2) == 0 ) THEN ! print *, 'mesh even: correction:', f1*5.d0/4.d0-4.d0*f2+23.d0*f3/4.d0, & ! func(mesh)*rab(mesh), asum ! asum = asum + f1*5.d0/4.d0 - 4.d0*f2 + 23.d0*f3/4.d0 !END IF RETURN END SUBROUTINE simpson !=----------------------------------------------------------------------- SUBROUTINE simpson_cp90( mesh, func, rab, asum ) !----------------------------------------------------------------------- ! ! This routine computes the integral of a function defined on a ! logaritmic mesh, by using the open simpson formula given on ! pag. 109 of Numerical Recipes. In principle it is used to ! perform integrals from zero to infinity. The first point of ! the function should be the closest to zero but not the value ! in zero. The formula used here automatically includes the ! contribution from the zero point and no correction is required. ! ! Input as "simpson". At least 8 integrating points are required. ! ! last revised 12 May 1995 by Andrea Dal Corso ! USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: mesh real(DP), INTENT(in) :: rab (mesh), func (mesh) real(DP), INTENT(out):: asum ! real(DP) :: c(4) INTEGER ::i ! IF ( mesh < 8 ) CALL errore ('simpson_cp90','few mesh points',8) c(1) = 109.0d0 / 48.d0 c(2) = -5.d0 / 48.d0 c(3) = 63.d0 / 48.d0 c(4) = 49.d0 / 48.d0 asum = ( func(1)*rab(1) + func(mesh )*rab(mesh ) )*c(1) & + ( func(2)*rab(2) + func(mesh-1)*rab(mesh-1) )*c(2) & + ( func(3)*rab(3) + func(mesh-2)*rab(mesh-2) )*c(3) & + ( func(4)*rab(4) + func(mesh-3)*rab(mesh-3) )*c(4) DO i=5,mesh-4 asum = asum + func(i)*rab(i) ENDDO RETURN END SUBROUTINE simpson_cp90 ! !----------------------------------------------------------------------- SUBROUTINE herman_skillman_int(mesh,func,rab,asum) !----------------------------------------------------------------------- ! simpson rule integration for herman skillman mesh (obsolescent) ! Input as in "simpson". BEWARE: "func" is overwritten!!! ! USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: mesh real(DP), INTENT(in) :: rab (mesh) real(DP), INTENT(inout) :: func (mesh) real(DP), INTENT(out):: asum ! INTEGER :: i, j, k, i1, nblock REAL(DP) :: a1, a2e, a2o, a2es ! a1=0.0d0 a2e=0.0d0 asum=0.0d0 nblock=mesh/40 i=1 func(1)=0.0d0 DO j=1,nblock DO k=1,20 i=i+2 i1=i-1 a2es=a2e a2o=func(i1)/12.0d0 a2e=func(i)/12.0d0 a1=a1+5.0d0*a2es+8.0d0*a2o-a2e func(i1)=asum+a1*rab(i1) a1=a1-a2es+8.0d0*a2o+5.0d0*a2e func(i)=asum+a1*rab(i) ENDDO asum=func(i) a1=0.0d0 ENDDO ! RETURN END SUBROUTINE herman_skillman_int espresso-5.0.2/flib/inpfile.f900000644000700200004540000001541112053145634015247 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined(__ABSOFT) # define getenv getenv_ # define getarg getarg_ # define iargc iargc_ #endif ! !---------------------------------------------------------------------------- SUBROUTINE input_from_file( ) ! ! This subroutine checks program arguments and, if input file is present, ! attach input unit ( 5 ) to the specified file ! ! IMPLICIT NONE ! INTEGER :: stdin = 5, stderr = 6, & ilen, iiarg, nargs, ierr ! do not define iargc as external: g95 does not like it INTEGER :: iargc CHARACTER (LEN=256) :: input_file ! ! ... Input from file ? ! nargs = iargc() ! ierr = -1 ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, input_file ) ! IF ( TRIM( input_file ) == '-input' .OR. & TRIM( input_file ) == '-inp' .OR. & TRIM( input_file ) == '-in' ) THEN ! CALL getarg( ( iiarg + 1 ) , input_file ) ! OPEN ( UNIT = stdin, FILE = input_file, FORM = 'FORMATTED', & STATUS = 'OLD', IOSTAT = ierr ) ! ! TODO: return error code ierr (-1 no file, 0 file opened, > 1 error) ! do not call "errore" here: it may hang in parallel execution ! if this routine is called by ionode only ! IF ( ierr > 0 ) WRITE (stderr, & '(" *** input file ",A," not found ***")' ) TRIM( input_file ) ! END IF ! END DO END SUBROUTINE input_from_file ! !---------------------------------------------------------------------------- ! SUBROUTINE get_file( input_file ) ! ! This subroutine reads, either from command line or from terminal, ! the name of a file to be opened ! TODO: return error code if an error occurs ! IMPLICIT NONE ! CHARACTER (LEN=*) :: input_file ! CHARACTER (LEN=256) :: prgname ! do not define iargc as external: g95 does not like it INTEGER :: nargs, iargc LOGICAL :: exst ! nargs = iargc() CALL getarg (0,prgname) ! IF ( nargs == 0 ) THEN 10 PRINT '("Input file > ",$)' READ (5,'(a)', end = 20, err=20) input_file IF ( input_file == ' ') GO TO 10 INQUIRE ( FILE = input_file, EXIST = exst ) IF ( .NOT. exst) THEN PRINT '(A,": file not found")', TRIM(input_file) GO TO 10 END IF ELSE IF ( nargs == 1 ) then CALL getarg (1,input_file) ELSE PRINT '(A,": too many arguments ",i4)', TRIM(prgname), nargs END IF RETURN 20 PRINT '(A,": reading file name ",A)', TRIM(prgname), TRIM(input_file) ! END SUBROUTINE get_file ! !---------------------------------------------------------------------------- ! SUBROUTINE get_arg_npool( npool ) ! IMPLICIT NONE ! INTEGER :: npool ! INTEGER :: nargs, iiarg CHARACTER(LEN=10) :: np INTEGER :: iargc ! npool = 1 nargs = iargc() ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, np ) ! IF ( TRIM( np ) == '-npool' .OR. TRIM( np ) == '-npools' ) THEN ! CALL getarg( ( iiarg + 1 ), np ) READ( np, * ) npool ! END IF ! END DO ! RETURN END SUBROUTINE get_arg_npool ! !---------------------------------------------------------------------------- ! SUBROUTINE get_arg_npot( npot ) ! IMPLICIT NONE ! INTEGER :: npot ! INTEGER :: nargs, iiarg CHARACTER(LEN=10) :: np INTEGER :: iargc ! npot = 1 nargs = iargc() ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, np ) ! IF ( TRIM( np ) == '-npot' .OR. TRIM( np ) == '-npots' ) THEN ! CALL getarg( ( iiarg + 1 ), np ) READ( np, * ) npot ! END IF ! END DO ! RETURN END SUBROUTINE get_arg_npot ! !---------------------------------------------------------------------------- ! SUBROUTINE get_arg_nimage( nimage ) ! IMPLICIT NONE ! INTEGER :: nimage ! INTEGER :: nargs, iiarg CHARACTER(LEN=10) :: np INTEGER :: iargc ! nimage = 1 nargs = iargc() ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, np ) ! IF ( TRIM( np ) == '-nimage' .OR. TRIM( np ) == '-nimages' ) THEN ! CALL getarg( ( iiarg + 1 ), np ) READ( np, * ) nimage ! END IF ! END DO ! RETURN END SUBROUTINE get_arg_nimage ! !---------------------------------------------------------------------------- ! SUBROUTINE get_arg_ntg( ntask_groups ) ! IMPLICIT NONE ! INTEGER :: ntask_groups ! INTEGER :: nargs, iiarg CHARACTER(LEN=20) :: np INTEGER :: iargc ! ntask_groups = 0 nargs = iargc() ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, np ) ! IF ( TRIM( np ) == '-ntg' .OR. TRIM( np ) == '-ntask_groups' ) THEN ! CALL getarg( ( iiarg + 1 ), np ) READ( np, * ) ntask_groups ! END IF ! END DO ! RETURN END SUBROUTINE get_arg_ntg ! !---------------------------------------------------------------------------- ! SUBROUTINE get_arg_nbgrp( nbgrp ) ! IMPLICIT NONE ! INTEGER :: nbgrp ! INTEGER :: nargs, iiarg CHARACTER(LEN=20) :: np INTEGER :: iargc ! nbgrp = 0 nargs = iargc() ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, np ) ! IF ( TRIM( np ) == '-nbgrp' .OR. TRIM( np ) == '-nband_group' .OR. & TRIM( np ) == '-nb' .OR. TRIM( np ) == '-nband' ) THEN ! CALL getarg( ( iiarg + 1 ), np ) READ( np, * ) nbgrp ! END IF ! END DO ! RETURN END SUBROUTINE get_arg_nbgrp ! !---------------------------------------------------------------------------- ! SUBROUTINE get_arg_northo( nproc_ortho ) ! IMPLICIT NONE ! INTEGER :: nproc_ortho ! INTEGER :: nargs, iiarg CHARACTER(LEN=20) :: np INTEGER :: iargc ! nproc_ortho = 0 nargs = iargc() ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, np ) ! IF ( TRIM( np ) == '-nproc_ortho' .OR. TRIM( np ) == '-nproc_diag' .OR. & TRIM( np ) == '-northo' .OR. TRIM( np ) == '-ndiag' ) THEN ! CALL getarg( ( iiarg + 1 ), np ) READ( np, * ) nproc_ortho ! END IF ! END DO ! RETURN END SUBROUTINE get_arg_northo SUBROUTINE get_env ( variable_name, variable_value ) ! ! Wrapper for intrinsic getenv - all machine-dependent stuff here ! CHARACTER (LEN=*) :: variable_name, variable_value ! CALL getenv ( variable_name, variable_value) ! END SUBROUTINE get_env espresso-5.0.2/flib/volume.f900000644000700200004540000000247412053145634015135 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- subroutine volume (alat, a1, a2, a3, omega) !--------------------------------------------------------------------- ! ! Compute the volume of the unit cell ! use kinds, ONLY: DP implicit none ! ! First the I/O variables ! real(DP) :: alat, a1 (3), a2 (3), a3 (3), omega ! input: lattice parameter (unit length) ! input: the first lattice vector ! input: the second lattice vector ! input: the third lattice vector ! input: the volume of the unit cell ! ! Here the local variables required by the routine ! real(DP) :: s ! the sign of a permutation integer :: i, j, k, l, iperm !\ ! \ ! / auxiliary indices !/ ! counter on permutations ! ! Compute the volume ! omega = 0.d0 s = 1.d0 i = 1 j = 2 k = 3 101 do iperm = 1, 3 omega = omega + s * a1 (i) * a2 (j) * a3 (k) l = i i = j j = k k = l enddo i = 2 j = 1 k = 3 s = - s if (s.lt.0.d0) goto 101 omega = abs (omega) * alat**3 return end subroutine volume espresso-5.0.2/flib/set_hubbard_l.f900000644000700200004540000000321712053145634016417 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- FUNCTION set_hubbard_l( psd ) RESULT( hubbard_l ) !--------------------------------------------------------------------------- ! USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER :: hubbard_l CHARACTER(LEN=2), INTENT(IN) :: psd ! ! SELECT CASE( TRIM(ADJUSTL(psd)) ) ! ! ... transition metals ! CASE( 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', & 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', & 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg' ) ! hubbard_l = 2 ! ! ! ... rare earths ! CASE('Ce','Pr','Nd','Pm','Sm','Eu','Gd','Tb','Dy','Ho','Er','Tm','Yb','Lu', & 'Th','Pa','U', 'Np','Pu','Am','Cm','Bk','Cf','Es','Fm','Md','No','Lr' ) ! hubbard_l = 3 ! ! ! ... other elements ! CASE( 'H' ) ! hubbard_l = 0 ! CASE( 'C', 'N', 'O' ) ! hubbard_l = 1 ! CASE( 'Ga', 'In' ) ! hubbard_l = 2 ! CASE DEFAULT ! hubbard_l = -1 ! WRITE( stdout, '(/,"psd = ",A,/)' ) psd ! CALL errore( 'set_hubbard_l', 'pseudopotential not yet inserted', 1 ) ! END SELECT ! RETURN ! END FUNCTION set_Hubbard_l espresso-5.0.2/flib/erf.f900000644000700200004540000001061712053145634014400 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- function qe_erf (x) !--------------------------------------------------------------------- ! ! Error function - computed from the rational approximations of ! W. J. Cody, Math. Comp. 22 (1969), pages 631-637. ! ! for abs(x) le 0.47 erf is calculated directly ! for abs(x) gt 0.47 erf is calculated via erf(x)=1-erfc(x) ! use kinds, only : DP implicit none real(DP), intent(in) :: x real(DP) :: x2, p1 (4), q1 (4) real(DP), external :: qe_erfc real(DP) :: qe_erf data p1 / 2.426679552305318E2_DP, 2.197926161829415E1_DP, & 6.996383488619136_DP, -3.560984370181538E-2_DP / data q1 / 2.150588758698612E2_DP, 9.116490540451490E1_DP, & 1.508279763040779E1_DP, 1.000000000000000_DP / ! if (abs (x) > 6.0_DP) then ! ! erf(6)=1-10^(-17) cannot be distinguished from 1 ! qe_erf = sign (1.0_DP, x) else if (abs (x) <= 0.47_DP) then x2 = x**2 qe_erf=x *(p1 (1) + x2 * (p1 (2) + x2 * (p1 (3) + x2 * p1 (4) ) ) ) & / (q1 (1) + x2 * (q1 (2) + x2 * (q1 (3) + x2 * q1 (4) ) ) ) else qe_erf = 1.0_DP - qe_erfc (x) endif endif ! return end function qe_erf ! !--------------------------------------------------------------------- function qe_erfc (x) !--------------------------------------------------------------------- ! ! erfc(x) = 1-erf(x) - See comments in erf ! use kinds, only : DP implicit none real(DP),intent(in) :: x real(DP) :: qe_erfc real(DP) :: ax, x2, xm2, p2 (8), q2 (8), p3 (5), q3 (5), pim1 real(DP), external :: qe_erf data p2 / 3.004592610201616E2_DP, 4.519189537118719E2_DP, & 3.393208167343437E2_DP, 1.529892850469404E2_DP, & 4.316222722205674E1_DP, 7.211758250883094_DP, & 5.641955174789740E-1_DP,-1.368648573827167E-7_DP / data q2 / 3.004592609569833E2_DP, 7.909509253278980E2_DP, & 9.313540948506096E2_DP, 6.389802644656312E2_DP, & 2.775854447439876E2_DP, 7.700015293522947E1_DP, & 1.278272731962942E1_DP, 1.000000000000000_DP / data p3 /-2.996107077035422E-3_DP,-4.947309106232507E-2_DP, & -2.269565935396869E-1_DP,-2.786613086096478E-1_DP, & -2.231924597341847E-2_DP / data q3 / 1.062092305284679E-2_DP, 1.913089261078298E-1_DP, & 1.051675107067932_DP, 1.987332018171353_DP, & 1.000000000000000_DP / data pim1 / 0.56418958354775629_DP / ! ( pim1= sqrt(1/pi) ) ax = abs (x) if (ax > 26.0_DP) then ! ! erfc(26.0)=10^(-296); erfc( 9.0)=10^(-37); ! qe_erfc = 0.0_DP elseif (ax > 4.0_DP) then x2 = x**2 xm2 = (1.0_DP / ax) **2 qe_erfc = (1.0_DP / ax) * exp ( - x2) * (pim1 + xm2 * (p3 (1) & + xm2 * (p3 (2) + xm2 * (p3 (3) + xm2 * (p3 (4) + xm2 * p3 (5) & ) ) ) ) / (q3 (1) + xm2 * (q3 (2) + xm2 * (q3 (3) + xm2 * & (q3 (4) + xm2 * q3 (5) ) ) ) ) ) elseif (ax > 0.47_DP) then x2 = x**2 qe_erfc = exp ( - x2) * (p2 (1) + ax * (p2 (2) + ax * (p2 (3) & + ax * (p2 (4) + ax * (p2 (5) + ax * (p2 (6) + ax * (p2 (7) & + ax * p2 (8) ) ) ) ) ) ) ) / (q2 (1) + ax * (q2 (2) + ax * & (q2 (3) + ax * (q2 (4) + ax * (q2 (5) + ax * (q2 (6) + ax * & (q2 (7) + ax * q2 (8) ) ) ) ) ) ) ) else qe_erfc = 1.0_DP - qe_erf (ax) endif ! ! erf(-x)=-erf(x) => erfc(-x) = 2-erfc(x) ! if (x < 0.0_DP) qe_erfc = 2.0_DP - qe_erfc ! return end function qe_erfc ! !--------------------------------------------------------------------- function gauss_freq (x) !--------------------------------------------------------------------- ! ! gauss_freq(x) = (1+erf(x/sqrt(2)))/2 = erfc(-x/sqrt(2))/2 ! - See comments in erf ! use kinds, only : DP implicit none real(DP),intent(in) :: x real(DP) :: gauss_freq real(DP), parameter :: c = 0.7071067811865475_DP ! ( c= sqrt(1/2) ) real(DP), external :: qe_erfc ! gauss_freq = 0.5_DP * qe_erfc ( - x * c) ! return end function gauss_freq espresso-5.0.2/flib/rgen.f900000644000700200004540000000632112053145634014554 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE rgen ( dtau, rmax, mxr, at, bg, r, r2, nrm) !----------------------------------------------------------------------- ! ! generates neighbours shells (cartesian, in units of lattice parameter) ! with length < rmax,and returns them in order of increasing length: ! r(:) = i*a1(:) + j*a2(:) + k*a3(:) - dtau(:), r2 = r^2 ! where a1, a2, a3 are primitive lattice vectors. Other input variables: ! mxr = maximum number of vectors ! at = lattice vectors ( a1=at(:,1), a2=at(:,2), a3=at(:,3) ) ! bg = reciprocal lattice vectors ( b1=bg(:,1), b2=bg(:,2), b3=bg(:,3) ) ! Other output variables: ! nrm = the number of vectors with r^2 < rmax^2 ! USE kinds, ONLY : DP ! IMPLICIT NONE INTEGER, INTENT(in) :: mxr INTEGER, INTENT(out):: nrm REAL(DP), INTENT(in) :: at(3,3), bg(3,3), dtau(3), rmax REAL(DP), INTENT(out):: r(3,mxr), r2(mxr) ! ! and here the local variables ! INTEGER, ALLOCATABLE :: irr (:) INTEGER :: nm1, nm2, nm3, i, j, k, ipol, ir, indsw, iswap real(DP) :: ds(3), dtau0(3) real(DP) :: t (3), tt, swap real(DP), EXTERNAL :: dnrm2 ! ! nrm = 0 IF (rmax==0.d0) RETURN ! bring dtau into the unit cell centered on the origin - prevents trouble ! if atomic positions are not centered around the origin but displaced ! far away (remember that translational invariance allows this!) ! ds(:) = matmul( dtau(:), bg(:,:) ) ds(:) = ds(:) - anint(ds(:)) dtau0(:) = matmul( at(:,:), ds(:) ) ! ALLOCATE (irr( mxr)) ! ! these are estimates of the maximum values of needed integer indices ! nm1 = int (dnrm2 (3, bg (1, 1), 1) * rmax) + 2 nm2 = int (dnrm2 (3, bg (1, 2), 1) * rmax) + 2 nm3 = int (dnrm2 (3, bg (1, 3), 1) * rmax) + 2 ! DO i = -nm1, nm1 DO j = -nm2, nm2 DO k = -nm3, nm3 tt = 0.d0 DO ipol = 1, 3 t (ipol) = i*at (ipol, 1) + j*at (ipol, 2) + k*at (ipol, 3) & - dtau0(ipol) tt = tt + t (ipol) * t (ipol) ENDDO IF (tt<=rmax**2.and.abs (tt) >1.d-10) THEN nrm = nrm + 1 IF (nrm>mxr) CALL errore ('rgen', 'too many r-vectors', nrm) DO ipol = 1, 3 r (ipol, nrm) = t (ipol) ENDDO r2 (nrm) = tt ENDIF ENDDO ENDDO ENDDO ! ! reorder the vectors in order of increasing magnitude ! ! initialize the index inside sorting routine ! irr (1) = 0 IF (nrm>1) CALL hpsort (nrm, r2, irr) DO ir = 1, nrm - 1 20 indsw = irr (ir) IF (indsw/=ir) THEN DO ipol = 1, 3 swap = r (ipol, indsw) r (ipol, indsw) = r (ipol, irr (indsw) ) r (ipol, irr (indsw) ) = swap ENDDO iswap = irr (ir) irr (ir) = irr (indsw) irr (indsw) = iswap GOTO 20 ENDIF ENDDO DEALLOCATE(irr) ! RETURN END SUBROUTINE rgen espresso-5.0.2/flib/deviatoric.f900000644000700200004540000000712512053145634015755 0ustar marsamoscm! ! Copyright (C) 2010 Davide Ceresoli ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_strain ( at_old, at ) !--------------------------------------------------------------------- ! ! Impose a pure deviatoric (volume-conserving) deformation ! Needed to enforce volume conservation in variable-cell MD/optimization ! USE kinds, ONLY: dp IMPLICIT NONE REAL(dp), INTENT(in) :: at_old(3,3) REAL(dp), INTENT(inout) :: at(3,3) REAL(dp) :: tr, omega, omega_old tr = (at(1,1)+at(2,2)+at(3,3))/3.d0 tr = tr - (at_old(1,1)+at_old(2,2)+at_old(3,3))/3.d0 ! Commented out, while waiting for better idea: ! it breaks the symmetry of hexagonal lattices - PG ! at(1,1) = at(1,1) - tr ! at(2,2) = at(2,2) - tr ! at(3,3) = at(3,3) - tr ! print '("difference in trace: ",e12.4)', tr CALL volume (1.d0, at_old(1,1), at_old(1,2), at_old(1,3), omega_old) CALL volume (1.d0, at(1,1), at(1,2), at(1,3), omega) at = at * (omega_old / omega)**(1.d0/3.d0) END SUBROUTINE impose_deviatoric_strain ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_strain_2d ( at_old, at ) !--------------------------------------------------------------------- ! Modif. of impose_deviatoric_strain but for ! Area conserving deformation (2DSHAPE) added by Richard Charles Andrew ! Physics Department, University if Pretoria, ! South Africa, august 2012 ! USE kinds, ONLY: dp IMPLICIT NONE REAL(dp), INTENT(in) :: at_old(3,3) REAL(dp), INTENT(inout) :: at(3,3) REAL(dp) :: omega, omega_old INTEGER :: i, j CALL volume (1.d0, at_old(1,1), at_old(1,2), at_old(1,3), omega_old) CALL volume (1.d0, at(1,1), at(1,2), at(1,3), omega) DO i = 1,3 DO j = 1,3 IF (j==3) THEN at(i,j) = at(i,j) ! DON'T CHANGE IN z- DIRECTION IF 2DSHAPE ELSE at(i,j) = at(i,j) * (omega_old / omega)**(1.d0/3.d0) ENDIF ENDDO ENDDO END SUBROUTINE impose_deviatoric_strain_2d ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_stress ( sigma ) !--------------------------------------------------------------------- ! ! Impose a pure deviatoric stress ! USE kinds, ONLY: dp USE io_global, ONLY: stdout IMPLICIT NONE REAL(dp), INTENT(inout) :: sigma(3,3) REAL(dp) :: tr tr = (sigma(1,1)+sigma(2,2)+sigma(3,3))/3.d0 sigma(1,1) = sigma(1,1) - tr sigma(2,2) = sigma(2,2) - tr sigma(3,3) = sigma(3,3) - tr WRITE (stdout,'(5x,"Volume is kept fixed: isostatic pressure set to zero")') END SUBROUTINE impose_deviatoric_stress ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_stress_2d ( sigma ) !--------------------------------------------------------------------- ! ! Modif. of impose_deviatoric_stress but for ! Area conserving deformation (2DSHAPE) added by Richard Charles Andrew ! Physics Department, University if Pretoria, ! South Africa, august 2012 ! USE kinds, ONLY: dp USE io_global, ONLY: stdout IMPLICIT NONE REAL(dp), INTENT(inout) :: sigma(3,3) REAL(dp) :: tr tr = (sigma(1,1)+sigma(2,2))/2.d0 sigma(1,1) = sigma(1,1) - tr sigma(2,2) = sigma(2,2) - tr WRITE (stdout,'(5x,"Area is kept fixed: isostatic in-plane pressure in xy set to zero")') END SUBROUTINE impose_deviatoric_stress_2d espresso-5.0.2/flib/sort.f900000644000700200004540000002445212053145634014615 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- subroutine hpsort_eps (n, ra, ind, eps) !--------------------------------------------------------------------- ! sort an array ra(1:n) into ascending order using heapsort algorithm, ! and considering two elements being equal if their values differ ! for less than "eps". ! n is input, ra is replaced on output by its sorted rearrangement. ! create an index table (ind) by making an exchange in the index array ! whenever an exchange is made on the sorted data array (ra). ! in case of equal values in the data array (ra) the values in the ! index array (ind) are used to order the entries. ! if on input ind(1) = 0 then indices are initialized in the routine, ! if on input ind(1) != 0 then indices are assumed to have been ! initialized before entering the routine and these ! indices are carried around during the sorting process ! ! no work space needed ! ! free us from machine-dependent sorting-routines ! ! ! adapted from Numerical Recipes pg. 329 (new edition) ! use kinds, only : DP implicit none !-input/output variables integer, intent(in) :: n integer, intent(inout) :: ind (*) real(DP), intent(inout) :: ra (*) real(DP), intent(in) :: eps !-local variables integer :: i, ir, j, l, iind real(DP) :: rra ! initialize index array if (ind (1) .eq.0) then do i = 1, n ind (i) = i enddo endif ! nothing to order if (n.lt.2) return ! initialize indices for hiring and retirement-promotion phase l = n / 2 + 1 ir = n sorting: do ! still in hiring phase if ( l .gt. 1 ) then l = l - 1 rra = ra (l) iind = ind (l) ! in retirement-promotion phase. else ! clear a space at the end of the array rra = ra (ir) ! iind = ind (ir) ! retire the top of the heap into it ra (ir) = ra (1) ! ind (ir) = ind (1) ! decrease the size of the corporation ir = ir - 1 ! done with the last promotion if ( ir .eq. 1 ) then ! the least competent worker at all ! ra (1) = rra ! ind (1) = iind exit sorting endif endif ! wheter in hiring or promotion phase, we i = l ! set up to place rra in its proper level j = l + l ! do while ( j .le. ir ) if ( j .lt. ir ) then ! compare to better underling if ( abs(ra(j)-ra(j+1)).ge.eps ) then if (ra(j).lt.ra(j+1)) j = j + 1 else ! this means ra(j) == ra(j+1) within tolerance if (ind (j) .lt.ind (j + 1) ) j = j + 1 endif endif ! demote rra if ( abs(rra - ra(j)).ge.eps ) then if (rra.lt.ra(j)) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 end if else !this means rra == ra(j) within tolerance ! demote rra if (iind.lt.ind (j) ) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 endif end if enddo ra (i) = rra ind (i) = iind end do sorting ! end subroutine hpsort_eps ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- subroutine hpsort (n, ra, ind) !--------------------------------------------------------------------- ! sort an array ra(1:n) into ascending order using heapsort algorithm. ! n is input, ra is replaced on output by its sorted rearrangement. ! create an index table (ind) by making an exchange in the index array ! whenever an exchange is made on the sorted data array (ra). ! in case of equal values in the data array (ra) the values in the ! index array (ind) are used to order the entries. ! if on input ind(1) = 0 then indices are initialized in the routine, ! if on input ind(1) != 0 then indices are assumed to have been ! initialized before entering the routine and these ! indices are carried around during the sorting process ! ! no work space needed ! ! free us from machine-dependent sorting-routines ! ! ! adapted from Numerical Recipes pg. 329 (new edition) ! use kinds, only : DP implicit none !-input/output variables integer :: n integer :: ind (*) real(DP) :: ra (*) !-local variables integer :: i, ir, j, l, iind real(DP) :: rra ! initialize index array if (ind (1) .eq.0) then do i = 1, n ind (i) = i enddo endif ! nothing to order if (n.lt.2) return ! initialize indices for hiring and retirement-promotion phase l = n / 2 + 1 ir = n 10 continue ! still in hiring phase if (l.gt.1) then l = l - 1 rra = ra (l) iind = ind (l) ! in retirement-promotion phase. else ! clear a space at the end of the array rra = ra (ir) ! iind = ind (ir) ! retire the top of the heap into it ra (ir) = ra (1) ! ind (ir) = ind (1) ! decrease the size of the corporation ir = ir - 1 ! done with the last promotion if (ir.eq.1) then ! the least competent worker at all ! ra (1) = rra ! ind (1) = iind return endif endif ! wheter in hiring or promotion phase, we i = l ! set up to place rra in its proper level j = l + l ! do while (j.le.ir) if (j.lt.ir) then ! compare to better underling if (ra (j) .lt.ra (j + 1) ) then j = j + 1 elseif (ra (j) .eq.ra (j + 1) ) then if (ind (j) .lt.ind (j + 1) ) j = j + 1 endif endif ! demote rra if (rra.lt.ra (j) ) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j elseif (rra.eq.ra (j) ) then ! demote rra if (iind.lt.ind (j) ) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 endif ! this is the right place for rra else ! set j to terminate do-while loop j = ir + 1 endif enddo ra (i) = rra ind (i) = iind goto 10 ! end subroutine hpsort ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- subroutine ihpsort (n, ia, ind) !--------------------------------------------------------------------- ! sort an integer array ia(1:n) into ascending order using heapsort algorithm. ! n is input, ia is replaced on output by its sorted rearrangement. ! create an index table (ind) by making an exchange in the index array ! whenever an exchange is made on the sorted data array (ia). ! in case of equal values in the data array (ia) the values in the ! index array (ind) are used to order the entries. ! if on input ind(1) = 0 then indices are initialized in the routine, ! if on input ind(1) != 0 then indices are assumed to have been ! initialized before entering the routine and these ! indices are carried around during the sorting process ! ! no work space needed ! ! free us from machine-dependent sorting-routines ! ! ! adapted from Numerical Recipes pg. 329 (new edition) ! implicit none !-input/output variables integer :: n integer :: ind (*) integer :: ia (*) !-local variables integer :: i, ir, j, l, iind integer :: iia ! initialize index array if (ind (1) .eq.0) then do i = 1, n ind (i) = i enddo endif ! nothing to order if (n.lt.2) return ! initialize indices for hiring and retirement-promotion phase l = n / 2 + 1 ir = n 10 continue ! still in hiring phase if (l.gt.1) then l = l - 1 iia = ia (l) iind = ind (l) ! in retirement-promotion phase. else ! clear a space at the end of the array iia = ia (ir) ! iind = ind (ir) ! retire the top of the heap into it ia (ir) = ia (1) ! ind (ir) = ind (1) ! decrease the size of the corporation ir = ir - 1 ! done with the last promotion if (ir.eq.1) then ! the least competent worker at all ! ia (1) = iia ! ind (1) = iind return endif endif ! wheter in hiring or promotion phase, we i = l ! set up to place iia in its proper level j = l + l ! do while (j.le.ir) if (j.lt.ir) then ! compare to better underling if (ia (j) .lt.ia (j + 1) ) then j = j + 1 elseif (ia (j) .eq.ia (j + 1) ) then if (ind (j) .lt.ind (j + 1) ) j = j + 1 endif endif ! demote iia if (iia.lt.ia (j) ) then ia (i) = ia (j) ind (i) = ind (j) i = j j = j + j elseif (iia.eq.ia (j) ) then ! demote iia if (iind.lt.ind (j) ) then ia (i) = ia (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 endif ! this is the right place for iia else ! set j to terminate do-while loop j = ir + 1 endif enddo ia (i) = iia ind (i) = iind goto 10 ! end subroutine ihpsort espresso-5.0.2/flib/make.depend0000644000700200004540000000276012053145634015402 0ustar marsamoscmatomic_number.o : ../Modules/kind.o avrec.o : ../Modules/kind.o bachel.o : ../Modules/constants.o bachel.o : ../Modules/kind.o cryst_to_car.o : ../Modules/kind.o deviatoric.o : ../Modules/io_global.o deviatoric.o : ../Modules/kind.o dost.o : ../Modules/kind.o dylmr2.o : ../Modules/kind.o erf.o : ../Modules/kind.o expint.o : ../Modules/kind.o functionals.o : ../Modules/constants.o functionals.o : ../Modules/kind.o invmat.o : ../Modules/kind.o invmat_complex.o : ../Modules/kind.o latgen.o : ../Modules/kind.o linpack.o : ../Modules/kind.o lsda_functionals.o : ../Modules/constants.o lsda_functionals.o : ../Modules/kind.o metagga.o : ../Modules/constants.o metagga.o : ../Modules/kind.o more_functionals.o : ../Modules/constants.o more_functionals.o : ../Modules/kind.o plot_io.o : ../Modules/io_global.o plot_io.o : ../Modules/kind.o radial_gradients.o : ../Modules/kind.o recips.o : ../Modules/kind.o remove_tot_torque.o : ../Modules/kind.o rgen.o : ../Modules/kind.o set_hubbard_l.o : ../Modules/io_global.o simpsn.o : ../Modules/kind.o sort.o : ../Modules/kind.o sph_bes.o : ../Modules/constants.o sph_bes.o : ../Modules/kind.o sph_dbes.o : ../Modules/constants.o sph_dbes.o : ../Modules/kind.o volume.o : ../Modules/kind.o w0gauss.o : ../Modules/constants.o w0gauss.o : ../Modules/kind.o w1gauss.o : ../Modules/constants.o w1gauss.o : ../Modules/kind.o wgauss.o : ../Modules/constants.o wgauss.o : ../Modules/kind.o ylmr2.o : ../Modules/constants.o ylmr2.o : ../Modules/kind.o transto.o : ../include/opt_param.h espresso-5.0.2/flib/has_xml.f900000644000700200004540000000144712053145634015260 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! LOGICAL FUNCTION has_xml(inp_string) ! ! This function returns true if the last four characters of inp_string are ! .xml or .XML. On output the string .xml or .XML is removed from inp_string ! IMPLICIT NONE CHARACTER(LEN=*), INTENT(INOUT) :: inp_string INTEGER :: leng, start CHARACTER(LEN=4) :: aux LOGICAL, EXTERNAL :: matches has_xml=.FALSE. leng=LEN_TRIM(inp_string) start=MAX(leng-3,1) aux=inp_string(start:leng) IF (matches(aux,'.xml').OR.matches(aux,'.XML')) THEN has_xml=.TRUE. inp_string(leng-3:leng)=' ' ENDIF RETURN END FUNCTION has_xml espresso-5.0.2/flib/lsda_functionals.f900000644000700200004540000007045012053145634017155 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine pz_polarized (rs, ec, vc) !----------------------------------------------------------------------- ! J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ! spin-polarized energy and potential ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, b, c, d, gc, b1, b2 parameter (a = 0.01555d0, b = - 0.0269d0, c = 0.0007d0, d = & - 0.0048d0, gc = - 0.0843d0, b1 = 1.3981d0, b2 = 0.2611d0) real(DP) :: lnrs, rs12, ox, dox REAL(DP), PARAMETER :: xcprefact = 0.022575584d0, pi34 = 0.6203504908994d0 ! REAL(DP) :: betha, etha, csi, prefact ! if (rs.lt.1.0d0) then ! high density formula lnrs = log (rs) ec = a * lnrs + b + c * rs * lnrs + d * rs vc = a * lnrs + (b - a / 3.d0) + 2.d0 / 3.d0 * c * rs * lnrs + & (2.d0 * d-c) / 3.d0 * rs else ! interpolation formula rs12 = sqrt (rs) ox = 1.d0 + b1 * rs12 + b2 * rs dox = 1.d0 + 7.d0 / 6.d0 * b1 * rs12 + 4.d0 / 3.d0 * b2 * rs ec = gc / ox vc = ec * dox / ox endif ! ! IF ( lxc_rel ) THEN ! betha = prefact * pi34 / rs ! etha = DSQRT( 1 + betha**2 ) ! csi = betha + etha ! prefact = 1.0D0 - (3.0D0/2.0D0) * ( (betha*etha - log(csi))/betha**2 )**2 ! ec = ec * prefact ! vc = vc * prefact ! ENDIF return end subroutine pz_polarized ! !----------------------------------------------------------------------- subroutine pz_spin (rs, zeta, ec, vcup, vcdw) !----------------------------------------------------------------------- ! J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, zeta, ec, vcup, vcdw ! real(DP) :: ecu, vcu, ecp, vcp, fz, dfz real(DP) :: p43, third parameter (p43 = 4.0d0 / 3.d0, third = 1.d0 / 3.d0) ! ! unpolarized part (Perdew-Zunger formula) call pz (rs, 1, ecu, vcu) ! polarization contribution call pz_polarized (rs, ecp, vcp) ! fz = ( (1.0d0 + zeta) **p43 + (1.d0 - zeta) **p43 - 2.d0) / & (2.d0**p43 - 2.d0) dfz = p43 * ( (1.0d0 + zeta) **third- (1.d0 - zeta) **third) & / (2.d0**p43 - 2.d0) ! ec = ecu + fz * (ecp - ecu) vcup = vcu + fz * (vcp - vcu) + (ecp - ecu) * dfz * (1.d0 - zeta) vcdw = vcu + fz * (vcp - vcu) + (ecp - ecu) * dfz * ( - 1.d0 - & zeta) ! return end subroutine pz_spin ! !--------- SUBROUTINE vwn_spin(rs, zeta, ec, vcup, vcdw) USE kinds, ONLY: DP IMPLICIT NONE ! parameters: e_c/para, e_c/ferro, alpha_c real(DP), parameter :: & A(3) = (/ 0.0310907_dp, 0.01554535_dp, -0.01688686394039_dp /), & x0(3) = (/ -0.10498_dp, -0.32500_dp, -0.0047584_dp /), & b(3) = (/3.72744_dp, 7.06042_dp, 1.13107_dp /), & c(3) = (/ 12.9352_dp, 18.0578_dp, 13.0045_dp /),& Q(3) = (/ 6.15199081975908_dp, 4.73092690956011_dp, 7.12310891781812_dp /), & tbQ(3) = (/ 1.21178334272806_dp, 2.98479352354082_dp, 0.31757762321188_dp /), & fx0(3) = (/ 12.5549141492_dp, 15.8687885_dp, 12.99914055888256_dp /), & bx0fx0(3) = (/ -0.03116760867894_dp, -0.14460061018521_dp, -0.00041403379428_dp /) ! N.B.: A is expressed in Hartree ! Q = sqrt(4*c - b^2) ! tbQ = 2*b/Q ! fx0 = X(x_0) = x_0^2 + b*x_0 + c ! bx0fx0 = b*x_0/X(x_0) real(DP), intent(in) :: rs, zeta real(DP), intent(out):: ec, vcup, vcdw ! local real(DP) :: zeta3, zeta4, trup, trdw, trup13, trdw13, fz, dfz, fzz4 real(DP) :: sqrtrs, ecP, ecF, ac, De, vcP, vcF, dac, dec1, dec2 real(DP) :: cfz, cfz1, cfz2, iddfz0 ! coefficients for f(z), df/dz, ddf/ddz(0) cfz = 2.0_dp**(4.0_dp/3.0_dp) - 2.0_dp cfz1 = 1.0_dp / cfz cfz2 = 4.0_dp/3.0_dp * cfz1 iddfz0 = 9.0_dp / 8.0_dp *cfz sqrtrs = sqrt(rs) zeta3 = zeta**3 zeta4 = zeta3*zeta trup = 1.0_dp + zeta trdw = 1.0_dp - zeta trup13 = trup**(1.0_dp/3.0_dp) trdw13 = trdw**(1.0_dp/3.0_dp) fz = cfz1 * (trup13*trup + trdw13*trdw - 2.0_dp) ! f(zeta) dfz = cfz2 * (trup13 - trdw13) ! d f / d zeta call padefit(sqrtrs, 1, ecP, vcP) ! ecF = e_c Paramagnetic call padefit(sqrtrs, 2, ecF, vcF) ! ecP = e_c Ferromagnetic call padefit(sqrtrs, 3, ac, dac) ! ac = "spin stiffness" ac = ac * iddfz0 dac = dac * iddfz0 De = ecF - ecP - ac ! e_c[F] - e_c[P] - alpha_c/(ddf/ddz(z=0)) fzz4 = fz * zeta4 ec = ecP + ac * fz + De * fzz4 dec1 = vcP + dac*fz + (vcF - vcP - dac) * fzz4 ! e_c - (r_s/3)*(de_c/dr_s) dec2 = ac*dfz + De*(4.0_dp*zeta3*fz + zeta4*dfz) ! de_c/dzeta ! v_c[s] = e_c - (r_s/3)*(de_c/dr_s) + [sign(s)-zeta]*(de_c/dzeta) vcup = dec1 + (1.0_dp - zeta)*dec2 vcdw = dec1 - (1.0_dp + zeta)*dec2 contains !--- subroutine padefit(x, i, fit, dfit) !---- ! implements formula [4.4] in: ! S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) USE kinds, ONLY: DP implicit none ! input real(DP) :: x ! x is sqrt(r_s) integer :: i ! i is the index of the fit ! output real(DP) :: fit, dfit ! Pade fit calculated in x and its derivative w.r.t. rho ! rs = inv((rho*)^(1/3)) = x^2 ! fit [eq. 4.4] ! dfit/drho = fit - (rs/3)*dfit/drs = ec - (x/6)*dfit/dx ! local real(DP) :: sqx, xx0, Qtxb, atg, fx real(DP) :: txb, txbfx, itxbQ sqx = x * x ! x^2 = r_s xx0 = x - x0(i) ! x - x_0 Qtxb = Q(i) / (2.0_dp*x + b(i)) ! Q / (2x+b) atg = atan(Qtxb) ! tan^-1(Q/(2x+b)) fx = sqx + b(i)*x + c(i) ! X(x) = x^2 + b*x + c fit = A(i) * ( log(sqx/fx) + tbQ(i)*atg - & bx0fx0(i) * ( log(xx0*xx0/fx) + (tbQ(i) + 4.0_dp*x0(i)/Q(i)) * atg ) ) txb = 2.0_dp*x + b(i) txbfx = txb / fx itxbQ = 1.0_dp / (txb*txb + Q(i)*Q(i)) dfit = fit - A(i) / 3.0_dp + A(i)*x/6.0_dp * ( txbfx + 4.0_dp*b(i)*itxbQ + & bx0fx0(i) * ( 2.0_dp/xx0 - txbfx - 4.0_dp*(b(i)+2.0_dp*x0(i))*itxbQ ) ) end subroutine end subroutine !----------------------------------------------------------------------- subroutine pw_spin (rs, zeta, ec, vcup, vcdw) !----------------------------------------------------------------------- ! J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, zeta, ec, vcup, vcdw ! xc parameters, unpolarised real(DP) :: a, a1, b1, b2, b3, b4, c0, c1, c2, c3, d0, d1 parameter (a = 0.031091d0, a1 = 0.21370d0, b1 = 7.5957d0, b2 = & 3.5876d0, b3 = 1.6382d0, b4 = 0.49294d0, c0 = a, c1 = 0.046644d0, & c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, d1 = 1.4408d0) ! xc parameters, polarised real(DP) :: ap, a1p, b1p, b2p, b3p, b4p, c0p, c1p, c2p, c3p, d0p, & d1p parameter (ap = 0.015545d0, a1p = 0.20548d0, b1p = 14.1189d0, b2p & = 6.1977d0, b3p = 3.3662d0, b4p = 0.62517d0, c0p = ap, c1p = & 0.025599d0, c2p = 0.00319d0, c3p = 0.00384d0, d0p = 0.3287d0, d1p & = 1.7697d0) ! xc parameters, antiferro real(DP) :: aa, a1a, b1a, b2a, b3a, b4a, c0a, c1a, c2a, c3a, d0a, & d1a parameter (aa = 0.016887d0, a1a = 0.11125d0, b1a = 10.357d0, b2a = & 3.6231d0, b3a = 0.88026d0, b4a = 0.49671d0, c0a = aa, c1a = & 0.035475d0, c2a = 0.00188d0, c3a = 0.00521d0, d0a = 0.2240d0, d1a & = 0.3969d0) real(DP) :: fz0 parameter (fz0 = 1.709921d0) real(DP) :: rs12, rs32, rs2, zeta2, zeta3, zeta4, fz, dfz real(DP) :: om, dom, olog, epwc, vpwc real(DP) :: omp, domp, ologp, epwcp, vpwcp real(DP) :: oma, doma, ologa, alpha, vpwca ! ! if(rs.lt.0.5d0) then ! high density formula (not implemented) ! ! else if(rs.gt.100.d0) then ! low density formula (not implemented) ! ! else ! interpolation formula zeta2 = zeta * zeta zeta3 = zeta2 * zeta zeta4 = zeta3 * zeta rs12 = sqrt (rs) rs32 = rs * rs12 rs2 = rs**2 ! unpolarised om = 2.d0 * a * (b1 * rs12 + b2 * rs + b3 * rs32 + b4 * rs2) dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs + 1.5d0 * b3 * rs32 & + 2.d0 * b4 * rs2) olog = log (1.d0 + 1.0d0 / om) epwc = - 2.d0 * a * (1.d0 + a1 * rs) * olog vpwc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 * rs) * olog - 2.d0 / & 3.d0 * a * (1.d0 + a1 * rs) * dom / (om * (om + 1.d0) ) ! polarized omp = 2.d0 * ap * (b1p * rs12 + b2p * rs + b3p * rs32 + b4p * rs2) domp = 2.d0 * ap * (0.5d0 * b1p * rs12 + b2p * rs + 1.5d0 * b3p * & rs32 + 2.d0 * b4p * rs2) ologp = log (1.d0 + 1.0d0 / omp) epwcp = - 2.d0 * ap * (1.d0 + a1p * rs) * ologp vpwcp = - 2.d0 * ap * (1.d0 + 2.d0 / 3.d0 * a1p * rs) * ologp - & 2.d0 / 3.d0 * ap * (1.d0 + a1p * rs) * domp / (omp * (omp + 1.d0) & ) ! antiferro oma = 2.d0 * aa * (b1a * rs12 + b2a * rs + b3a * rs32 + b4a * rs2) doma = 2.d0 * aa * (0.5d0 * b1a * rs12 + b2a * rs + 1.5d0 * b3a * & rs32 + 2.d0 * b4a * rs2) ologa = log (1.d0 + 1.0d0 / oma) alpha = 2.d0 * aa * (1.d0 + a1a * rs) * ologa vpwca = + 2.d0 * aa * (1.d0 + 2.d0 / 3.d0 * a1a * rs) * ologa + & 2.d0 / 3.d0 * aa * (1.d0 + a1a * rs) * doma / (oma * (oma + 1.d0) & ) ! fz = ( (1.d0 + zeta) ** (4.d0 / 3.d0) + (1.d0 - zeta) ** (4.d0 / & 3.d0) - 2.d0) / (2.d0** (4.d0 / 3.d0) - 2.d0) dfz = ( (1.d0 + zeta) ** (1.d0 / 3.d0) - (1.d0 - zeta) ** (1.d0 / & 3.d0) ) * 4.d0 / (3.d0 * (2.d0** (4.d0 / 3.d0) - 2.d0) ) ! ec = epwc + alpha * fz * (1.d0 - zeta4) / fz0 + (epwcp - epwc) & * fz * zeta4 ! vcup = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 + (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 - zeta) vcdw = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 - (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 + zeta) ! endif ! return end subroutine pw_spin ! !----------------------------------------------------------------------- subroutine pw_spin_vec (rs, zeta, evc, length) !----------------------------------------------------------------------- ! J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! USE kinds, ONLY : DP implicit none integer :: length real(DP) :: rs(length), zeta(length), evc(length,3) ! xc parameters, unpolarised real(DP) :: a, a1, b1, b2, b3, b4, c0, c1, c2, c3, d0, d1 parameter (a = 0.031091d0, a1 = 0.21370d0, b1 = 7.5957d0, b2 = & 3.5876d0, b3 = 1.6382d0, b4 = 0.49294d0, c0 = a, c1 = 0.046644d0, & c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, d1 = 1.4408d0) ! xc parameters, polarised real(DP) :: ap, a1p, b1p, b2p, b3p, b4p, c0p, c1p, c2p, c3p, d0p, & d1p parameter (ap = 0.015545d0, a1p = 0.20548d0, b1p = 14.1189d0, b2p & = 6.1977d0, b3p = 3.3662d0, b4p = 0.62517d0, c0p = ap, c1p = & 0.025599d0, c2p = 0.00319d0, c3p = 0.00384d0, d0p = 0.3287d0, d1p & = 1.7697d0) ! xc parameters, antiferro real(DP) :: aa, a1a, b1a, b2a, b3a, b4a, c0a, c1a, c2a, c3a, d0a, & d1a parameter (aa = 0.016887d0, a1a = 0.11125d0, b1a = 10.357d0, b2a = & 3.6231d0, b3a = 0.88026d0, b4a = 0.49671d0, c0a = aa, c1a = & 0.035475d0, c2a = 0.00188d0, c3a = 0.00521d0, d0a = 0.2240d0, d1a & = 0.3969d0) real(DP) :: fz0 parameter (fz0 = 1.709921d0) real(DP) :: rs12, rs32, rs2, zeta2, zeta3, zeta4, fz, dfz real(DP) :: om, dom, olog, epwc, vpwc real(DP) :: omp, domp, ologp, epwcp, vpwcp real(DP) :: oma, doma, ologa, alpha, vpwca integer :: i ! ! if(rs.lt.0.5d0) then ! high density formula (not implemented) ! ! else if(rs.gt.100.d0) then ! low density formula (not implemented) ! ! else ! interpolation formula do i=1,length zeta2 = zeta(i) * zeta(i) zeta3 = zeta2 * zeta(i) zeta4 = zeta3 * zeta(i) rs12 = sqrt (rs(i)) rs32 = rs(i) * rs12 rs2 = rs(i)**2 ! unpolarised om = 2.d0 * a * (b1 * rs12 + b2 * rs(i) + b3 * rs32 + b4 * rs2) dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs(i) + 1.5d0 * b3 * rs32 & + 2.d0 * b4 * rs2) olog = log (1.d0 + 1.0d0 / om) epwc = - 2.d0 * a * (1.d0 + a1 * rs(i)) * olog vpwc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 * rs(i)) * olog - 2.d0 / & 3.d0 * a * (1.d0 + a1 * rs(i)) * dom / (om * (om + 1.d0) ) ! polarized omp = 2.d0 * ap * (b1p * rs12 + b2p * rs(i) + b3p * rs32 + b4p * rs2) domp = 2.d0 * ap * (0.5d0 * b1p * rs12 + b2p * rs(i) + 1.5d0 * b3p * & rs32 + 2.d0 * b4p * rs2) ologp = log (1.d0 + 1.0d0 / omp) epwcp = - 2.d0 * ap * (1.d0 + a1p * rs(i)) * ologp vpwcp = - 2.d0 * ap * (1.d0 + 2.d0 / 3.d0 * a1p * rs(i)) * ologp - & 2.d0 / 3.d0 * ap * (1.d0 + a1p * rs(i)) * domp / (omp * (omp + 1.d0) & ) ! antiferro oma = 2.d0 * aa * (b1a * rs12 + b2a * rs(i) + b3a * rs32 + b4a * rs2) doma = 2.d0 * aa * (0.5d0 * b1a * rs12 + b2a * rs(i) + 1.5d0 * b3a * & rs32 + 2.d0 * b4a * rs2) ologa = log (1.d0 + 1.0d0 / oma) alpha = 2.d0 * aa * (1.d0 + a1a * rs(i)) * ologa vpwca = + 2.d0 * aa * (1.d0 + 2.d0 / 3.d0 * a1a * rs(i)) * ologa + & 2.d0 / 3.d0 * aa * (1.d0 + a1a * rs(i)) * doma / (oma * (oma + 1.d0) & ) ! fz = ( (1.d0 + zeta(i)) ** (4.d0 / 3.d0) + (1.d0 - zeta(i)) ** (4.d0 / & 3.d0) - 2.d0) / (2.d0** (4.d0 / 3.d0) - 2.d0) dfz = ( (1.d0 + zeta(i)) ** (1.d0 / 3.d0) - (1.d0 - zeta(i)) ** (1.d0 / & 3.d0) ) * 4.d0 / (3.d0 * (2.d0** (4.d0 / 3.d0) - 2.d0) ) ! evc(i,3) = epwc + alpha * fz * (1.d0 - zeta4) / fz0 + (epwcp - epwc) & * fz * zeta4 ! evc(i,1) = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 + (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 - zeta(i)) evc(i,2) = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 - (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 + zeta(i)) end do ! endif ! end subroutine pw_spin_vec ! !----------------------------------------------------------------------- subroutine becke88_spin (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Becke exchange: A.D. Becke, PRA 38, 3098 (1988) - Spin polarized case ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge ! input: gradient ! output: the up and down energies ! output: first part of the potential ! output: the second part of the potential ! real(DP) :: beta, third parameter (beta = 0.0042d0, third = 1.d0 / 3.d0) real(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee ! rho13 = rho**third rho43 = rho13**4 xs = sqrt (grho) / rho43 xs2 = xs * xs sa2b8 = sqrt (1.0d0 + xs2) shm1 = log (xs + sa2b8) dd = 1.0d0 + 6.0d0 * beta * xs * shm1 dd2 = dd * dd ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0 sx = grho / rho43 * ( - beta / dd) v1x = - (4.d0 / 3.d0) * xs2 * beta * rho13 * ee / dd2 v2x = beta * (ee-dd) / (rho43 * dd2) ! return end subroutine becke88_spin ! !----------------------------------------------------------------------- subroutine perdew86_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) !----------------------------------------------------------------------- ! Perdew gradient correction on correlation: PRB 33, 8822 (1986) ! spin-polarized case ! USE kinds, ONLY : DP implicit none real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c real(DP) :: p1, p2, p3, p4, pc1, pc2, pci parameter (p1 = 0.023266d0, p2 = 7.389d-6, p3 = 8.723d0, p4 = & 0.472d0) parameter (pc1 = 0.001667d0, pc2 = 0.002568d0, pci = pc1 + pc2) real(DP) :: third, pi34 parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) ! pi34=(3/4pi)^(1/3) ! real(DP) :: rho13, rho43, rs, rs2, rs3, cna, cnb, cn, drs real(DP) :: dcna, dcnb, dcn, phi, ephi, dd, ddd ! rho13 = rho**third rho43 = rho13**4 rs = pi34 / rho13 rs2 = rs * rs rs3 = rs * rs2 cna = pc2 + p1 * rs + p2 * rs2 cnb = 1.d0 + p3 * rs + p4 * rs2 + 1.d4 * p2 * rs3 cn = pc1 + cna / cnb drs = - third * pi34 / rho43 dcna = (p1 + 2.d0 * p2 * rs) * drs dcnb = (p3 + 2.d0 * p4 * rs + 3.d4 * p2 * rs2) * drs dcn = dcna / cnb - cna / (cnb * cnb) * dcnb phi = 0.192d0 * pci / cn * sqrt (grho) * rho** ( - 7.d0 / 6.d0) !SdG: in the original paper 1.745*0.11=0.19195 is used dd = (2.d0) **third * sqrt ( ( (1.d0 + zeta) * 0.5d0) ** (5.d0 / & 3.d0) + ( (1.d0 - zeta) * 0.5d0) ** (5.d0 / 3.d0) ) ddd = (2.d0) ** ( - 4.d0 / 3.d0) * 5.d0 * ( ( (1.d0 + zeta) & * 0.5d0) ** (2.d0 / 3.d0) - ( (1.d0 - zeta) * 0.5d0) ** (2.d0 / & 3.d0) ) / (3.d0 * dd) ephi = exp ( - phi) sc = grho / rho43 * cn * ephi / dd v1cup = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - & (7.d0 / 6.d0) * phi) / rho) - sc * ddd / dd * (1.d0 - zeta) & / rho v1cdw = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - & (7.d0 / 6.d0) * phi) / rho) + sc * ddd / dd * (1.d0 + zeta) & / rho v2c = cn * ephi / rho43 * (2.d0 - phi) / dd ! return end subroutine perdew86_spin ! !----------------------------------------------------------------------- subroutine ggac_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) !----------------------------------------------------------------------- ! Perdew-Wang GGA (PW91) correlation part - spin-polarized ! USE kinds, ONLY : DP implicit none real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c real(DP) :: al, pa, pb, pc, pd, cx, cxc0, cc0 parameter (al = 0.09d0, pa = 0.023266d0, pb = 7.389d-6, pc = & 8.723d0, pd = 0.472d0) parameter (cx = - 0.001667d0, cxc0 = 0.002568d0, cc0 = - cx + & cxc0) real(DP) :: third, pi34, nu, be, xkf, xks parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) parameter (nu = 15.755920349483144d0, be = nu * cc0) parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0) ! pi34=(3/4pi)^(1/3), nu=(16/pi)*(3 pi^2)^(1/3) ! xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, rs2, rs3, ec, vcup, vcdw, t, expe, af, y, & xy, qy, s1, h0, ddh0, ee, cn, dcn, cna, dcna, cnb, dcnb, h1, dh1, & ddh1, fz, fz2, fz3, fz4, dfz, bfup, bfdw, dh0up, dh0dw, dh0zup, & dh0zdw, dh1zup, dh1zdw ! rs = pi34 / rho**third rs2 = rs * rs rs3 = rs * rs2 call pw_spin (rs, zeta, ec, vcup, vcdw) kf = xkf / rs ks = xks * sqrt (kf) fz = 0.5d0 * ( (1.d0 + zeta) ** (2.d0 / 3.d0) + (1.d0 - zeta) ** ( & 2.d0 / 3.d0) ) fz2 = fz * fz fz3 = fz2 * fz fz4 = fz3 * fz dfz = ( (1.d0 + zeta) ** ( - 1.d0 / 3.d0) - (1.d0 - zeta) ** ( - & 1.d0 / 3.d0) ) / 3.d0 t = sqrt (grho) / (2.d0 * fz * ks * rho) expe = exp ( - 2.d0 * al * ec / (fz3 * be * be) ) af = 2.d0 * al / be * (1.d0 / (expe-1.d0) ) bfup = expe * (vcup - ec) / fz3 bfdw = expe * (vcdw - ec) / fz3 y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + 2.d0 * al / be * t * t * xy h0 = fz3 * be * be / (2.d0 * al) * log (s1) dh0up = be * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfup / be-7.d0 / 3.d0) ) dh0dw = be * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfdw / be-7.d0 / 3.d0) ) dh0zup = (3.d0 * h0 / fz - be * t * t * fz2 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be+2.d0) ) ) * dfz * (1.d0 - & zeta) dh0zdw = - (3.d0 * h0 / fz - be * t * t * fz3 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be+2.d0) ) ) * dfz * (1.d0 + & zeta) ddh0 = be * fz / (2.d0 * ks * ks * rho) * (xy - qy) / s1 ee = - 100.d0 * fz4 * (ks / kf * t) **2 cna = cxc0 + pa * rs + pb * rs2 dcna = pa * rs + 2.d0 * pb * rs2 cnb = 1.d0 + pc * rs + pd * rs2 + 1.d4 * pb * rs3 dcnb = pc * rs + 2.d0 * pd * rs2 + 3.d4 * pb * rs3 cn = cna / cnb - cx dcn = dcna / cnb - cna * dcnb / (cnb * cnb) h1 = nu * (cn - cc0 - 3.d0 / 7.d0 * cx) * fz3 * t * t * exp (ee) dh1 = - third * (h1 * (7.d0 + 8.d0 * ee) + fz3 * nu * t * t * exp & (ee) * dcn) ddh1 = 2.d0 * h1 * (1.d0 + ee) * rho / grho dh1zup = (1.d0 - zeta) * dfz * h1 * (1.d0 + 2.d0 * ee / fz) dh1zdw = - (1.d0 + zeta) * dfz * h1 * (1.d0 + 2.d0 * ee / fz) sc = rho * (h0 + h1) v1cup = h0 + h1 + dh0up + dh1 + dh0zup + dh1zup v1cdw = h0 + h1 + dh0up + dh1 + dh0zdw + dh1zdw v2c = ddh0 + ddh1 return end subroutine ggac_spin ! !--------------------------------------------------------------- subroutine pbec_spin (rho, zeta, grho, iflag, sc, v1cup, v1cdw, v2c) !--------------------------------------------------------------- ! ! PBE correlation (without LDA part) - spin-polarized ! iflag = 1: J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996). ! iflag = 2: J.P.Perdew et al., PRL 100, 136406 (2008) ! USE kinds, ONLY : DP implicit none integer, intent(in) :: iflag real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c real(DP) :: ga, be(2) parameter (ga = 0.031091d0) data be / 0.066725d0 , 0.046d0 / real(DP) :: third, pi34, xkf, xks parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0) ! pi34=(3/4pi)^(1/3), xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, ec, vcup, vcdw, t, expe, af, y, xy, qy, & s1, h0, ddh0 real(DP) :: fz, fz2, fz3, fz4, dfz, bfup, bfdw, dh0up, dh0dw, & dh0zup, dh0zdw ! rs = pi34 / rho**third call pw_spin (rs, zeta, ec, vcup, vcdw) kf = xkf / rs ks = xks * sqrt (kf) fz = 0.5d0 * ( (1.d0 + zeta) ** (2.d0 / 3.d0) + (1.d0 - zeta) ** ( & 2.d0 / 3.d0) ) fz2 = fz * fz fz3 = fz2 * fz fz4 = fz3 * fz dfz = ( (1.d0 + zeta) ** ( - 1.d0 / 3.d0) - (1.d0 - zeta) ** ( - & 1.d0 / 3.d0) ) / 3.d0 t = sqrt (grho) / (2.d0 * fz * ks * rho) expe = exp ( - ec / (fz3 * ga) ) af = be(iflag) / ga * (1.d0 / (expe-1.d0) ) bfup = expe * (vcup - ec) / fz3 bfdw = expe * (vcdw - ec) / fz3 y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + be(iflag) / ga * t * t * xy h0 = fz3 * ga * log (s1) dh0up = be(iflag) * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfup / be(iflag)-7.d0 / 3.d0) ) dh0dw = be(iflag) * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfdw / be(iflag)-7.d0 / 3.d0) ) dh0zup = (3.d0 * h0 / fz - be(iflag) * t * t * fz2 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be(iflag)+2.d0) ) ) * dfz * (1.d0 - zeta) dh0zdw = - (3.d0 * h0 / fz - be(iflag) * t * t * fz2 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be(iflag)+2.d0) ) ) * dfz * (1.d0 + zeta) ddh0 = be(iflag) * fz / (2.d0 * ks * ks * rho) * (xy - qy) / s1 sc = rho * h0 v1cup = h0 + dh0up + dh0zup v1cdw = h0 + dh0dw + dh0zdw v2c = ddh0 return end subroutine pbec_spin ! !----------------------------------------------------------------------- subroutine slater_spin (rho, zeta, ex, vxup, vxdw) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, spin-polarized case ! USE kinds, ONLY : DP implicit none real(DP) :: rho, zeta, ex, vxup, vxdw real(DP) :: f, alpha, third, p43 parameter (f = - 1.10783814957303361d0, alpha = 2.0d0 / 3.0d0) ! f = -9/8*(3/pi)^(1/3) parameter (third = 1.d0 / 3.d0, p43 = 4.d0 / 3.d0) real(DP) :: exup, exdw, rho13 ! rho13 = ( (1.d0 + zeta) * rho) **third exup = f * alpha * rho13 vxup = p43 * f * alpha * rho13 rho13 = ( (1.d0 - zeta) * rho) **third exdw = f * alpha * rho13 vxdw = p43 * f * alpha * rho13 ex = 0.5d0 * ( (1.d0 + zeta) * exup + (1.d0 - zeta) * exdw) ! return end subroutine slater_spin !----------------------------------------------------------------------- subroutine slater_spin_vec(rho, zeta, evx, length) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, spin-polarized case ! USE kinds, ONLY : DP implicit none integer :: length real(DP) :: rho(length), zeta(length), evx(length,3) real(DP) :: f, alpha, third, p43 parameter (f = - 1.10783814957303361d0, alpha = 2.0d0 / 3.0d0) ! f = -9/8*(3/pi)^(1/3) parameter (third = 1.d0 / 3.d0, p43 = 4.d0 / 3.d0) real(DP) :: exup(length), exdw(length), rho13(length) ! rho13 = ( (1.d0 + zeta) * rho) **third exup = f * alpha * rho13 evx(:,1) = p43 * f * alpha * rho13 rho13 = ( (1.d0 - zeta) * rho) **third exdw = f * alpha * rho13 evx(:,2) = p43 * f * alpha * rho13 evx(:,3) = 0.5d0 * ( (1.d0 + zeta) * exup + (1.d0 - zeta) * exdw) ! end subroutine slater_spin_vec !----------------------------------------------------------------------- SUBROUTINE slater_rxc_spin ( rho, Z, ex, vxup, vxdw ) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, relativistic exchange case ! USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT none real (DP):: rho, ex, vxup, vxdw ! real(DP), PARAMETER :: ZERO=0.D0, ONE=1.D0, PFIVE=.5D0, & OPF=1.5D0, C014=0.014D0 real (DP):: rs, trd, ftrd, tftm, a0, alp, z, fz, fzp, vxp, xp, & beta, sb, alb, vxf, exf TRD = ONE/3.d0 FTRD = 4.d0*TRD TFTM = 2**FTRD-2.d0 A0 = (4.d0/(9.d0*PI))**TRD ! X-alpha parameter: ALP = 2.d0 * TRD IF (rho <= ZERO) THEN EX = ZERO vxup = ZERO vxdw = ZERO RETURN ELSE FZ = ((1.d0+Z)**FTRD+(1.d0-Z)**FTRD-2.d0)/TFTM FZP = FTRD*((1.d0+Z)**TRD-(1.d0-Z)**TRD)/TFTM ENDIF RS = (3.d0 / (4.d0*PI*rho) )**TRD VXP = -3.d0*ALP/(2.d0*PI*A0*RS) XP = 3.d0*VXP/4.d0 BETA = C014/RS SB = SQRT(1.d0+BETA*BETA) ALB = LOG(BETA+SB) VXP = VXP * (-PFIVE + OPF * ALB / (BETA*SB)) XP = XP * (ONE-OPF*((BETA*SB-ALB)/BETA**2)**2) VXF = 2.d0**TRD*VXP EXF = 2.d0**TRD*XP vxup = VXP + FZ*(VXF-VXP) + (1.d0-Z)*FZP*(EXF-XP) vxdw = VXP + FZ*(VXF-VXP) - (1.d0+Z)*FZP*(EXF-XP) EX = XP + FZ*(EXF-XP) END SUBROUTINE slater_rxc_spin !----------------------------------------------------------------------- subroutine slater1_spin (rho, zeta, ex, vxup, vxdw) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, spin-polarized case ! use kinds, only: dp implicit none real(DP) :: rho, zeta, ex, vxup, vxdw real(DP), parameter :: f = - 1.10783814957303361d0, alpha = 1.0d0, & third = 1.d0 / 3.d0, p43 = 4.d0 / 3.d0 ! f = -9/8*(3/pi)^(1/3) real(DP) :: exup, exdw, rho13 ! rho13 = ( (1.d0 + zeta) * rho) **third exup = f * alpha * rho13 vxup = p43 * f * alpha * rho13 rho13 = ( (1.d0 - zeta) * rho) **third exdw = f * alpha * rho13 vxdw = p43 * f * alpha * rho13 ex = 0.5d0 * ( (1.d0 + zeta) * exup + (1.d0 - zeta) * exdw) ! return end subroutine slater1_spin ! !----------------------------------------------------------------------- function dpz_polarized (rs, iflg) !----------------------------------------------------------------------- ! derivative of the correlation potential with respect to local density ! Perdew and Zunger parameterization of the Ceperley-Alder functional ! spin-polarized case ! USE kinds, only : DP USE constants, ONLY : pi, fpi ! implicit none ! real(DP), intent (in) :: rs integer, intent(in) :: iflg real(DP) :: dpz_polarized ! ! local variables ! a,b,c,d,gc,b1,b2 are the parameters defining the functional ! real(DP), parameter :: a = 0.01555d0, b = -0.0269d0, c = 0.0007d0, & d = -0.0048d0, gc = -0.0843d0, b1 = 1.3981d0, b2 = 0.2611d0,& a1 = 7.0d0 * b1 / 6.d0, a2 = 4.d0 * b2 / 3.d0 real(DP) :: x, den, dmx, dmrs ! ! if (iflg == 1) then dmrs = a / rs + 2.d0 / 3.d0 * c * (log (rs) + 1.d0) + & (2.d0 * d-c) / 3.d0 else x = sqrt (rs) den = 1.d0 + x * (b1 + x * b2) dmx = gc * ( (a1 + 2.d0 * a2 * x) * den - 2.d0 * (b1 + 2.d0 * & b2 * x) * (1.d0 + x * (a1 + x * a2) ) ) / den**3 dmrs = 0.5d0 * dmx / x endif ! dpz_polarized = - fpi * rs**4.d0 / 9.d0 * dmrs return ! end function dpz_polarized espresso-5.0.2/flib/atomic_number.f900000644000700200004540000001370612053145634016452 0ustar marsamoscm! ! Copyright (C) 2004-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ------------------------------------------------------------------ function atomic_number(atm) ! ------------------------------------------------------------------ ! implicit none character(len=*) :: atm integer :: atomic_number character(len=2) :: elements(109), atom data elements/' H', 'He', & 'Li','Be',' B',' C',' N',' O',' F','Ne', & 'Na','Mg','Al','Si',' P',' S','Cl','Ar', & ' K','Ca','Sc','Ti',' V','Cr','Mn', & 'Fe','Co','Ni','Cu','Zn', & 'Ga','Ge','As','Se','Br','Kr', & 'Rb','Sr',' Y','Zr','Nb','Mo','Tc', & 'Ru','Rh','Pd','Ag','Cd', & 'In','Sn','Sb','Te',' I','Xe', & 'Cs','Ba','La','Ce','Pr','Nd','Pm','Sm','Eu','Gd', & 'Tb','Dy','Ho','Er','Tm','Yb','Lu', & 'Hf','Ta',' W','Re','Os', & 'Ir','Pt','Au','Hg', & 'Tl','Pb','Bi','Po','At','Rn', & 'Fr','Ra','Ac','Th','Pa',' U','Np','Pu', & 'Am','Cm','Bk','Cf','Es','Fm','Md','No', & 'Lr','Rf','Db','Sg','Bh','Hs','Mt' / character(len=1), external :: capital, lowercase logical, external :: isnumeric integer :: n atom=' ' if ( len(atm) == 1 ) then ! ! Case : atm='X' ! atom(2:2)=capital(atm(1:1)) else if ( ( len_trim(atm) == 1 ) .or. ( isnumeric(atm(2:2)) ) .or. & ( atm(2:2) == '-' ) .or. ( atm(2:2) == '_' ) ) then ! ! Case : atm='X ', 'X_*', 'X-*', 'X[0-9]* ' ! atom(2:2)=capital(atm(1:1)) else if (atm(1:1) == ' ') then ! ! Case : atm=' X*' ! atom(2:2)=capital(atm(2:2)) else ! ! Case : atm='XY*' ! atom(1:1)=capital(atm(1:1)) atom(2:2)=lowercase(atm(2:2)) end if do n=1, 109 if ( atom == elements(n) ) then atomic_number=n return end if end do atomic_number = 0 print '(''Atom '',a2,'' not found'')', atom stop end function atomic_number ! ------------------------------------------------------------------ function atom_name(atomic_number) ! ------------------------------------------------------------------ ! integer :: atomic_number character(len=2) :: atom_name character(len=2) :: elements(109) data elements/' H', 'He', & 'Li','Be',' B',' C',' N',' O',' F','Ne', & 'Na','Mg','Al','Si',' P',' S','Cl','Ar', & ' K','Ca','Sc','Ti',' V','Cr','Mn', & 'Fe','Co','Ni','Cu','Zn', & 'Ga','Ge','As','Se','Br','Kr', & 'Rb','Sr',' Y','Zr','Nb','Mo','Tc', & 'Ru','Rh','Pd','Ag','Cd', & 'In','Sn','Sb','Te',' I','Xe', & 'Cs','Ba','La','Ce','Pr','Nd','Pm','Sm','Eu','Gd', & 'Tb','Dy','Ho','Er','Tm','Yb','Lu', & 'Hf','Ta',' W','Re','Os', & 'Ir','Pt','Au','Hg', & 'Tl','Pb','Bi','Po','At','Rn', & 'Fr','Ra','Ac','Th','Pa',' U','Np','Pu', & 'Am','Cm','Bk','Cf','Es','Fm','Md','No', & 'Lr','Rf','Db','Sg','Bh','Hs','Mt' / if (atomic_number < 1 .or. atomic_number > 109) then call errore('atom_name','invalid atomic number',abs(atomic_number)) else atom_name=elements(atomic_number) end if return end function atom_name ! ------------------------------------------------------------------ function atom_weight(atomic_number) ! ------------------------------------------------------------------ ! USE kinds, ONLY : DP implicit none integer :: atomic_number real(DP) :: atom_weight real(DP) :: weights(109) data weights/ 1.00794_DP, 4.00260_DP, & 6.941_DP,9.01218_DP,10.811_DP,12.0107_DP,14.00674_DP, & 15.9994_DP,18.99840_DP,20.1797_DP, & 22.98977_DP,24.3050_DP,26.98154_DP,28.0855_DP,30.97376_DP, & 32.066_DP,35.4527_DP,39.948_DP, & 39.0983_DP,40.078_DP,44.95591_DP,47.867_DP,50.9415_DP, & 51.9961_DP,54.93805_DP, 55.845_DP, & 58.93320_DP,58.6934_DP,63.546_DP,65.39_DP, & 69.723_DP,72.61_DP,74.92160_DP,78.96_DP,79.904_DP,83.80_DP, & 85.4678_DP,87.62_DP,88.90585_DP,91.224_DP,92.90638_DP, & 95.94_DP,98._DP, & 101.07_DP,102.90550_DP,106.42_DP,107.8682_DP,112.411_DP, & 114.818_DP,118.710_DP,121.760_DP,127.60_DP,126.90447_DP, & 131.29_DP, & 132.90545_DP,137.327_DP,138.9055_DP,140.116_DP,140.90765_DP, & 144.24_DP,145._DP,150.36_DP,151.964_DP,157.25_DP, & 158.92534_DP,162.50_DP,164.93032_DP,167.26_DP, & 168.93421_DP,173.04_DP,174.967_DP, & 178.49_DP,180.9479_DP,183.84_DP,186.207_DP,190.23_DP, & 192.217_DP,195.078_DP,196.96655_DP,200.59_DP, & 204.3833_DP,207.2_DP,208.98038_DP,209._DP,210._DP,222._DP, & 223._DP,226._DP,227._DP,232.0381_DP,231.03588_DP, & 238.0289_DP,237._DP,244._DP, & 243._DP,247._DP,247._DP,251._DP,252._DP,257._DP, & 258._DP,259._DP,262._DP,261._DP,262._DP,266._DP,264._DP, & 277._DP,268._DP / if (atomic_number < 1 .or. atomic_number > 109) then call errore('atom_weight','invalid atomic number',abs(atomic_number)) else atom_weight=weights(atomic_number) end if return end function atom_weight ! espresso-5.0.2/flib/sph_bes.f900000644000700200004540000001543512053145634015252 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine sph_bes (msh, r, q, l, jl) !-------------------------------------------------------------------- ! ! ... input: ! ... msh = number of grid points points ! ... r(1:msh)= radial grid ! ... q = q ! ... l = angular momentum (-1 <= l <= 6) ! ... output: ! ... jl(1:msh) = j_l(q*r(i)) (j_l = spherical bessel function) ! use kinds, only: DP USE constants, ONLY : eps14 ! implicit none ! integer :: msh, l real(DP) :: r (msh), q, jl (msh) ! ! xseries = convergence radius of the series for small x of j_l(x) real(DP) :: x, xl, xseries = 0.05_dp integer :: ir, ir0 integer, external:: semifact ! #if defined (__MASS) real(DP) :: qr(msh), sin_qr(msh), cos_qr(msh) #endif ! case q=0 if (abs (q) < eps14) then if (l == -1) then call errore ('sph_bes', 'j_{-1}(0) ?!?', 1) elseif (l == 0) then jl(:) = 1.d0 else jl(:) = 0.d0 endif return end if ! case l=-1 if (l == - 1) then if (abs (q * r (1) ) < eps14) call errore ('sph_bes', 'j_{-1}(0) ?!?',1) #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) jl = cos_qr / qr #else jl (:) = cos (q * r (:) ) / (q * r (:) ) #endif return end if ! series expansion for small values of the argument ! ir0 is the first grid point for which q*r(ir0) > xseries ! notice that for small q it may happen that q*r(msh) < xseries ! ir0 = msh+1 do ir = 1, msh if ( abs (q * r (ir) ) > xseries ) then ir0 = ir exit end if end do do ir = 1, ir0 - 1 x = q * r (ir) if ( l == 0 ) then xl = 1.0_dp else xl = x**l end if jl (ir) = xl/semifact(2*l+1) * & ( 1.0_dp - x**2/1.0_dp/2.0_dp/(2.0_dp*l+3) * & ( 1.0_dp - x**2/2.0_dp/2.0_dp/(2.0_dp*l+5) * & ( 1.0_dp - x**2/3.0_dp/2.0_dp/(2.0_dp*l+7) * & ( 1.0_dp - x**2/4.0_dp/2.0_dp/(2.0_dp*l+9) ) ) ) ) end do ! the following shouldn't be needed but do you trust compilers ! to do the right thing in this special case ? I don't - PG if ( ir0 > msh ) return if (l == 0) then #if defined (__MASS) qr = q * r call vsin( sin_qr, qr, msh) jl (ir0:) = sin_qr(ir0:) / (q * r (ir0:) ) #else jl (ir0:) = sin (q * r (ir0:) ) / (q * r (ir0:) ) #endif elseif (l == 1) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = ( sin_qr(ir0:) / (q * r (ir0:) ) - & cos_qr(ir0:) ) / (q * r (ir0:) ) #else jl (ir0:) = (sin (q * r (ir0:) ) / (q * r (ir0:) ) - & cos (q * r (ir0:) ) ) / (q * r (ir0:) ) #endif elseif (l == 2) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = ( (3.d0 / (q*r(ir0:)) - (q*r(ir0:)) ) * sin_qr(ir0: ) - & 3.d0 * cos_qr(ir0:) ) / (q*r(ir0:))**2 #else jl (ir0:) = ( (3.d0 / (q*r(ir0:)) - (q*r(ir0:)) ) * sin (q*r(ir0:)) - & 3.d0 * cos (q*r(ir0:)) ) / (q*r(ir0:))**2 #endif elseif (l == 3) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = (sin_qr (ir0:) * & (15.d0 / (q*r(ir0:)) - 6.d0 * (q*r(ir0:)) ) + & cos_qr (ir0:) * ( (q*r(ir0:))**2 - 15.d0) ) / & (q*r(ir0:))**3 #else jl (ir0:) = (sin (q*r(ir0:)) * & (15.d0 / (q*r(ir0:)) - 6.d0 * (q*r(ir0:)) ) + & cos (q*r(ir0:)) * ( (q*r(ir0:))**2 - 15.d0) ) / & (q*r(ir0:)) **3 #endif elseif (l == 4) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = (sin_qr (ir0:) * & (105.d0 - 45.d0 * (q*r(ir0:))**2 + (q*r(ir0:))**4) + & cos_qr (ir0:) * & (10.d0 * (q*r(ir0:))**3 - 105.d0 * (q*r(ir0:))) ) / & (q*r(ir0:))**5 #else jl (ir0:) = (sin (q*r(ir0:)) * & (105.d0 - 45.d0 * (q*r(ir0:))**2 + (q*r(ir0:))**4) + & cos (q*r(ir0:)) * & (10.d0 * (q*r(ir0:))**3 - 105.d0 * (q*r(ir0:))) ) / & (q*r(ir0:))**5 #endif elseif (l == 5) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = (-cos_qr(ir0:) - & (945.d0*cos_qr(ir0:)) / (q*r(ir0:)) ** 4 + & (105.d0*cos_qr(ir0:)) / (q*r(ir0:)) ** 2 + & (945.d0*sin_qr(ir0:)) / (q*r(ir0:)) ** 5 - & (420.d0*sin_qr(ir0:)) / (q*r(ir0:)) ** 3 + & ( 15.d0*sin_qr(ir0:)) / (q*r(ir0:)) ) / (q*r(ir0:)) #else jl (ir0:) = (-cos(q*r(ir0:)) - & (945.d0*cos(q*r(ir0:))) / (q*r(ir0:)) ** 4 + & (105.d0*cos(q*r(ir0:))) / (q*r(ir0:)) ** 2 + & (945.d0*sin(q*r(ir0:))) / (q*r(ir0:)) ** 5 - & (420.d0*sin(q*r(ir0:))) / (q*r(ir0:)) ** 3 + & ( 15.d0*sin(q*r(ir0:))) / (q*r(ir0:)) ) / (q*r(ir0:)) #endif elseif (l == 6) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = ((-10395.d0*cos_qr(ir0:)) / (q*r(ir0:))**5 + & ( 1260.d0*cos_qr(ir0:)) / (q*r(ir0:))**3 - & ( 21.d0*cos_qr(ir0:)) / (q*r(ir0:)) - & sin_qr(ir0:) + & ( 10395.d0*sin_qr(ir0:)) / (q*r(ir0:))**6 - & ( 4725.d0*sin_qr(ir0:)) / (q*r(ir0:))**4 + & ( 210.d0*sin_qr(ir0:)) / (q*r(ir0:))**2 ) / (q*r(ir0:)) #else jl (ir0:) = ((-10395.d0*cos(q*r(ir0:))) / (q*r(ir0:))**5 + & ( 1260.d0*cos(q*r(ir0:))) / (q*r(ir0:))**3 - & ( 21.d0*cos(q*r(ir0:))) / (q*r(ir0:)) - & sin(q*r(ir0:)) + & ( 10395.d0*sin(q*r(ir0:))) / (q*r(ir0:))**6 - & ( 4725.d0*sin(q*r(ir0:))) / (q*r(ir0:))**4 + & ( 210.d0*sin(q*r(ir0:))) / (q*r(ir0:))**2 ) / (q*r(ir0:)) #endif else call errore ('sph_bes', 'not implemented', abs(l)) endif ! return end subroutine sph_bes integer function semifact(n) ! semifact(n) = n!! implicit none integer :: n, i semifact = 1 do i = n, 1, -2 semifact = i*semifact end do return end function semifact espresso-5.0.2/flib/invmat.f900000644000700200004540000000270412053145634015120 0ustar marsamoscm! ! Copyright (C) 2004 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine invmat (n, a, a_inv, da) !----------------------------------------------------------------------- ! computes the inverse "a_inv" of matrix "a", both dimensioned (n,n) ! if the matrix is dimensioned 3x3, it also computes determinant "da" ! matrix "a" is unchanged on output - LAPACK ! USE kinds, ONLY : DP implicit none integer :: n real(DP), DIMENSION (n,n) :: a, a_inv real(DP) :: da ! integer :: info, lda, lwork, ipiv (n) ! info=0: inversion was successful ! lda : leading dimension (the same as n) ! ipiv : work space for pivoting (assumed of length lwork=n) real(DP) :: work (n) ! more work space ! lda = n lwork=n ! a_inv(:,:) = a(:,:) ! call dgetrf (n, n, a_inv, lda, ipiv, info) call errore ('invmat', 'error in DGETRF', abs (info) ) call dgetri (n, a_inv, lda, ipiv, work, lwork, info) call errore ('invmat', 'error in DGETRI', abs (info) ) ! if (n == 3) then da = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) + & a(1,2)*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) + & a(1,3)*(a(2,1)*a(3,2)-a(3,1)*a(2,2)) IF (ABS(da) < 1.d-10) CALL errore(' invmat ',' singular matrix ', 1) else da = 0.d0 end if return end subroutine invmat espresso-5.0.2/flib/sph_dbes.f900000644000700200004540000000727512053145634015421 0ustar marsamoscm! ! Copyright (C) 2001-2004 PWSCF-FPMD-CP90 group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE sph_dbes( MMAX, R, XG, L, DJL ) !---------------------------------------------------------------------------- ! ! ... calculates derivatives of spherical bessel functions j_l(Gr) ! ... with respect to h_alpha,beta (without the factor GAGK(KK,IG)*HTM1) ! ... i.e. -x * D(jl(x))/dx ! USE kinds, ONLY : DP USE constants, ONLY : eps8 ! IMPLICIT NONE ! INTEGER :: MMAX, L REAL(DP) :: XG REAL(DP) :: DJL(MMAX), R(MMAX) ! INTEGER :: IR REAL(DP) :: XRG, XRG2 ! ! IF ( L == 1 ) THEN ! S PART IF( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = SIN(XRG)/XRG-COS(XRG) END DO ENDIF ENDIF ! IF ( L == 2 ) THEN ! P PART IF( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = 2.D0*(SIN(XRG)/XRG-COS(XRG))/XRG - SIN(XRG) END DO ENDIF ENDIF ! IF ( L == 3 ) THEN ! D PART IF ( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = ( SIN(XRG)*(9.D0/(XRG*XRG)-4.D0) - & 9.D0*COS(XRG)/XRG ) /XRG + COS(XRG) END DO END IF END IF ! IF ( L == 4 ) THEN ! F PART IF ( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG XRG2=XRG*XRG DJL(IR) = SIN(XRG)*(60.D0/(XRG2*XRG2)-27.D0/XRG2+1.d0) - & COS(XRG)*(60.D0/XRG2-7.D0)/XRG END DO END IF END IF ! IF ( L == 5 ) THEN ! G PART IF ( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG XRG2=XRG*XRG DJL(IR) = SIN(XRG)*(525.D0/(XRG2*XRG2)-240.D0/XRG2+11.D0)/XRG - & COS(XRG)*(525.D0/(XRG2*XRG2)-65.D0/XRG2+1.D0) END DO END IF END IF ! IF ( L <= 0 .OR. L >= 6 ) & CALL errore( 'sph_dbes', ' L NOT PROGRAMMED, L= ',L ) ! RETURN ! END SUBROUTINE sph_dbes ! SUBROUTINE sph_dbes1 ( nr, r, xg, l, jl, djl ) ! ! calculates x*dj_l(x)/dx using the recursion formula ! dj_l(x)/dx = l/x*j_l(x) - j_(l+1)(x) ! for l=0, and for l>0 : ! dj_l(x)/dx = j_(l-1)(x) - (l+1)/x * j_l(x) ! requires j_l(r) in input ! USE kinds, ONLY : DP USE constants, ONLY : eps8 ! IMPLICIT NONE INTEGER, INTENT(IN) :: l, nr REAL (DP), INTENT(IN) :: xg, jl(nr), r(nr) REAL (DP), INTENT(OUT):: djl(nr) ! if ( xg < eps8 ) then ! ! special case q=0 ! note that x*dj_l(x)/dx = 0 for x = 0 ! djl(:) = 0.0d0 else ! if ( l > 0 ) then call sph_bes ( nr, r, xg, l-1, djl ) djl(:) = djl(:) * (xg * r(:) ) - (l+1) * jl(:) else if ( l == 0 ) then call sph_bes ( nr, r, xg, l+1, djl ) djl(:) = - djl(:) * (xg * r(:) ) else call errore('sph_dbes','l < 0 not implemented', abs(l) ) end if end if ! end SUBROUTINE sph_dbes1 espresso-5.0.2/flib/recips.f900000644000700200004540000000347012053145634015110 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- subroutine recips (a1, a2, a3, b1, b2, b3) !--------------------------------------------------------------------- ! ! This routine generates the reciprocal lattice vectors b1,b2,b3 ! given the real space vectors a1,a2,a3. The b's are units of 2 pi/a. ! ! first the input variables ! use kinds, ONLY: DP implicit none real(DP) :: a1 (3), a2 (3), a3 (3), b1 (3), b2 (3), b3 (3) ! input: first direct lattice vector ! input: second direct lattice vector ! input: third direct lattice vector ! output: first reciprocal lattice vector ! output: second reciprocal lattice vector ! output: third reciprocal lattice vector ! ! then the local variables ! real(DP) :: den, s ! the denominator ! the sign of the permutations integer :: iperm, i, j, k, l, ipol ! counter on the permutations !\ ! Auxiliary variables !/ ! ! Counter on the polarizations ! ! first we compute the denominator ! den = 0 i = 1 j = 2 k = 3 s = 1.d0 100 do iperm = 1, 3 den = den + s * a1 (i) * a2 (j) * a3 (k) l = i i = j j = k k = l enddo i = 2 j = 1 k = 3 s = - s if (s.lt.0.d0) goto 100 ! ! here we compute the reciprocal vectors ! i = 1 j = 2 k = 3 do ipol = 1, 3 b1 (ipol) = (a2 (j) * a3 (k) - a2 (k) * a3 (j) ) / den b2 (ipol) = (a3 (j) * a1 (k) - a3 (k) * a1 (j) ) / den b3 (ipol) = (a1 (j) * a2 (k) - a1 (k) * a2 (j) ) / den l = i i = j j = k k = l enddo return end subroutine recips espresso-5.0.2/PW/0000755000700200004540000000000012053440273012706 5ustar marsamoscmespresso-5.0.2/PW/examples/0000755000700200004540000000000012053440276014527 5ustar marsamoscmespresso-5.0.2/PW/examples/clean_all0000755000700200004540000000005512053145630016363 0ustar marsamoscm#!/bin/bash \rm -rf */results* >& /dev/null espresso-5.0.2/PW/examples/example07/0000755000700200004540000000000012053440301016316 5ustar marsamoscmespresso-5.0.2/PW/examples/example07/reference/0000755000700200004540000000000012053440303020256 5ustar marsamoscmespresso-5.0.2/PW/examples/example07/reference/bands.pt.co0000644000700200004540000000004212053145630022313 0ustar marsamoscm# Re (Im(k)), E-Ef # k-point 1 espresso-5.0.2/PW/examples/example07/reference/bands.pt.im0000644000700200004540000000102512053145630022321 0ustar marsamoscm# Im(k), E-Ef # k-point 1 -0.1581 0.0000 -0.1581 0.0000 -0.3623 0.0000 -0.3623 0.0000 -0.4880 0.0000 -0.4880 0.0000 -1.0638 0.0000 -1.0638 0.0000 -1.1298 0.0000 -1.1298 0.0000 -1.1420 0.0000 -1.1420 0.0000 -1.0638 0.0000 -1.0638 0.0000 -1.1298 0.0000 -1.1298 0.0000 -1.1420 0.0000 -1.1420 0.0000 -0.4880 0.0000 -0.4880 0.0000 -0.3623 0.0000 -0.3623 0.0000 -0.1581 0.0000 -0.1581 0.0000 espresso-5.0.2/PW/examples/example07/reference/pt.ph.out0000644000700200004540000002357612053145630022062 0ustar marsamoscm Program PHONON v.4.1a starts ... Today is 10Jul2009 at 17:48:22 Parallel version (MPI) Number of processors in use: 1 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Check: negative/imaginary core charge= -0.000004 0.000000 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 kinetic-energy cut-off = 30.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-16 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.42000 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.5000 0.0000 0.5000 ) a(2) = ( 0.0000 0.5000 0.5000 ) a(3) = ( -0.5000 0.5000 0.0000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.0000 -1.0000 1.0000 ) b(2) = ( 1.0000 1.0000 1.0000 ) b(3) = ( -1.0000 1.0000 -1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Pt 195.0780 tau( 1) = ( 0.00000 0.00000 0.00000 ) Computing dynamical matrix for q = ( 0.0000000 0.0000000 0.0000000 ) 49 Sym.Ops. (with q -> -q+G ) G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) number of k points= 2 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.7500000 PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients Atomic displacements: There are 1 irreducible representations Representation 1 3 modes -T_1u G_15 G_4- To be done PHONON : 3.49s CPU time, 3.56s wall time Alpha used in Ewald sum = 2.6000 Representation # 1 modes # 1 2 3 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = -0.4109E-32 0.6269E-37 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 -0.7837E-38 Pert. # 3: Fermi energy shift (Ry) = 0.8217E-32 0.3135E-37 iter # 1 total cpu time : 5.9 secs av.it.: 6.3 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.387E-07 Pert. # 1: Fermi energy shift (Ry) = -0.4109E-32 0.6122E-40 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 -0.7653E-41 Pert. # 3: Fermi energy shift (Ry) = 0.1027E-31 0.3061E-40 iter # 2 total cpu time : 8.0 secs av.it.: 14.0 thresh= 0.197E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.114E-08 Pert. # 1: Fermi energy shift (Ry) = 0.4109E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.1284E-31 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.6163E-32 -0.3061E-40 iter # 3 total cpu time : 10.0 secs av.it.: 13.2 thresh= 0.337E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.436E-10 Pert. # 1: Fermi energy shift (Ry) = -0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.4622E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.6163E-32 -0.3061E-40 iter # 4 total cpu time : 12.0 secs av.it.: 12.8 thresh= 0.660E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.123E-13 Pert. # 1: Fermi energy shift (Ry) = 0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.0000E+00 -0.3061E-40 iter # 5 total cpu time : 14.0 secs av.it.: 13.3 thresh= 0.111E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.185E-15 Pert. # 1: Fermi energy shift (Ry) = -0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.4109E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = -0.2054E-32 -0.3061E-40 iter # 6 total cpu time : 15.8 secs av.it.: 12.2 thresh= 0.136E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.215E-17 End of self-consistent calculation Convergence has been achieved Number of q in the star = 1 List of q in the star: 1 0.000000000 0.000000000 0.000000000 Diagonalizing the dynamical matrix q = ( 0.000000000 0.000000000 0.000000000 ) ************************************************************************** omega( 1) = 0.153605 [THz] = 5.123754 [cm-1] omega( 2) = 0.153605 [THz] = 5.123754 [cm-1] omega( 3) = 0.153605 [THz] = 5.123754 [cm-1] ************************************************************************** Mode symmetry, O_h (m-3m) point group: omega( 1 - 3) = 5.1 [cm-1] --> T_1u G_15 G_4- I ************************************************************************** PWSCF : 13.91s CPU Called by init_run: Called by electrons: v_of_rho : 0.00s CPU newd : 0.08s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 22 calls, 0.000 s avg) Called by *egterg: s_psi : 0.32s CPU ( 1208 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.15s CPU ( 586 calls, 0.000 s avg) General routines calbec : 0.25s CPU ( 1296 calls, 0.000 s avg) cft3s : 6.71s CPU ( 23656 calls, 0.000 s avg) interpolate : 0.01s CPU ( 4 calls, 0.002 s avg) davcio : 0.00s CPU ( 204 calls, 0.000 s avg) Parallel routines PHONON : 15.88s CPU time, 17.83s wall time INITIALIZATION: phq_setup : 0.02s CPU phq_init : 1.49s CPU phq_init : 1.49s CPU set_drhoc : 1.13s CPU ( 3 calls, 0.377 s avg) init_vloc : 0.00s CPU init_us_1 : 1.37s CPU newd : 0.08s CPU dvanqq : 0.37s CPU drho : 0.60s CPU DYNAMICAL MATRIX: dynmat0 : 0.81s CPU phqscf : 11.58s CPU dynmatrix : 0.00s CPU phqscf : 11.58s CPU solve_linter : 11.56s CPU drhodv : 0.02s CPU dynmat0 : 0.81s CPU dynmat_us : 0.05s CPU d2ionq : 0.00s CPU dynmatcc : 0.76s CPU dynmat_us : 0.05s CPU addusdynmat : 0.02s CPU phqscf : 11.58s CPU solve_linter : 11.56s CPU solve_linter : 11.56s CPU dvqpsi_us : 0.18s CPU ( 6 calls, 0.029 s avg) ortho : 0.06s CPU ( 36 calls, 0.002 s avg) cgsolve : 6.78s CPU ( 36 calls, 0.188 s avg) incdrhoscf : 0.48s CPU ( 36 calls, 0.013 s avg) addusddens : 0.74s CPU ( 7 calls, 0.105 s avg) vpsifft : 0.41s CPU ( 30 calls, 0.014 s avg) dv_of_drho : 0.16s CPU ( 18 calls, 0.009 s avg) mix_pot : 0.17s CPU ( 6 calls, 0.028 s avg) ef_shift : 0.05s CPU ( 7 calls, 0.007 s avg) localdos : 0.21s CPU psymdvscf : 0.67s CPU ( 6 calls, 0.111 s avg) newdq : 1.41s CPU ( 6 calls, 0.235 s avg) adddvscf : 0.02s CPU ( 30 calls, 0.001 s avg) drhodvus : 0.00s CPU dvqpsi_us : 0.18s CPU ( 6 calls, 0.029 s avg) dvqpsi_us_on : 0.04s CPU ( 6 calls, 0.007 s avg) cgsolve : 6.78s CPU ( 36 calls, 0.188 s avg) ch_psi : 6.70s CPU ( 586 calls, 0.011 s avg) ch_psi : 6.70s CPU ( 586 calls, 0.011 s avg) h_psiq : 6.25s CPU ( 586 calls, 0.011 s avg) last : 0.43s CPU ( 586 calls, 0.001 s avg) h_psiq : 6.25s CPU ( 586 calls, 0.011 s avg) firstfft : 2.84s CPU ( 4894 calls, 0.001 s avg) secondfft : 2.81s CPU ( 4894 calls, 0.001 s avg) add_vuspsi : 0.15s CPU ( 586 calls, 0.000 s avg) incdrhoscf : 0.48s CPU ( 36 calls, 0.013 s avg) drhodvus : 0.00s CPU General routines calbec : 0.25s CPU ( 1296 calls, 0.000 s avg) cft3s : 6.71s CPU ( 23656 calls, 0.000 s avg) cinterpolate : 0.27s CPU ( 151 calls, 0.002 s avg) davcio : 0.00s CPU ( 204 calls, 0.000 s avg) write_rec : 0.02s CPU ( 7 calls, 0.003 s avg) espresso-5.0.2/PW/examples/example07/reference/bands.pt.re0000644000700200004540000000043112053145630022322 0ustar marsamoscm# Re(k), E-Ef # k-point 1 -0.0642 0.0000 0.0642 0.0000 -0.0642 0.0000 0.0642 0.0000 -0.1971 0.0000 0.1971 0.0000 -0.1971 0.0000 0.1971 0.0000 -0.3204 0.0000 0.3204 0.0000 -0.3204 0.0000 0.3204 0.0000 espresso-5.0.2/PW/examples/example07/reference/pt.scf_ph.out0000644000700200004540000002267212053145630022711 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 17:48:16 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.7500000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 578, 18) NL pseudopotentials 0.11 Mb ( 289, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 578, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 18 atomic wfcs total cpu time spent up to now is 1.97 secs per-process dynamical memory: 17.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.33E-05, avg # of iterations = 2.5 total cpu time spent up to now is 2.66 secs total energy = -69.50302370 Ry Harris-Foulkes estimate = -69.50464124 Ry estimated scf accuracy < 0.00285877 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-05, avg # of iterations = 2.0 total cpu time spent up to now is 3.04 secs total energy = -69.50359634 Ry Harris-Foulkes estimate = -69.50389917 Ry estimated scf accuracy < 0.00052019 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.20E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.40 secs total energy = -69.50371007 Ry Harris-Foulkes estimate = -69.50371591 Ry estimated scf accuracy < 0.00002197 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-07, avg # of iterations = 1.0 total cpu time spent up to now is 3.75 secs total energy = -69.50371193 Ry Harris-Foulkes estimate = -69.50371194 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-10, avg # of iterations = 3.0 total cpu time spent up to now is 4.15 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 289 PWs) bands (ev): 9.3170 9.3170 13.3105 13.3105 13.5796 13.5796 14.7740 14.7740 16.0687 16.0687 16.6619 16.6619 31.1505 31.1505 35.9702 35.9702 39.8080 39.8080 k = 0.2500-0.2500 0.7500 ( 283 PWs) bands (ev): 11.2908 11.2908 12.4158 12.4158 13.9356 13.9356 15.5885 15.5885 17.8742 17.8742 20.6638 20.6638 25.0086 25.0086 31.6341 31.6341 33.8373 33.8373 the Fermi energy is 17.9290 ev ! total energy = -69.50371199 Ry Harris-Foulkes estimate = -69.50371200 Ry estimated scf accuracy < 4.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 17.02512017 Ry hartree contribution = 3.82828747 Ry xc contribution = -28.56279204 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00373359 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.09 -0.00015694 0.00000000 0.00000000 -23.09 0.00 0.00 0.00000000 -0.00015694 0.00000000 0.00 -23.09 0.00 0.00000000 0.00000000 -0.00015694 0.00 0.00 -23.09 Writing output data file Pt.save PWSCF : 6.05s CPU time, 6.18s wall time init_run : 1.85s CPU electrons : 2.18s CPU forces : 0.32s CPU stress : 1.46s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.03s CPU Called by electrons: c_bands : 0.92s CPU ( 6 calls, 0.153 s avg) sum_band : 0.69s CPU ( 6 calls, 0.116 s avg) v_of_rho : 0.03s CPU ( 6 calls, 0.005 s avg) newd : 0.52s CPU ( 6 calls, 0.086 s avg) mix_rho : 0.04s CPU ( 6 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.01s CPU ( 30 calls, 0.000 s avg) cegterg : 0.88s CPU ( 12 calls, 0.073 s avg) Called by *egterg: h_psi : 0.77s CPU ( 43 calls, 0.018 s avg) s_psi : 0.02s CPU ( 43 calls, 0.000 s avg) g_psi : 0.01s CPU ( 29 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 39 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 43 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 59 calls, 0.000 s avg) cft3s : 0.94s CPU ( 3010 calls, 0.000 s avg) interpolate : 0.08s CPU ( 48 calls, 0.002 s avg) davcio : 0.00s CPU ( 42 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example07/reference/pt.phX.out0000644000700200004540000004064612053145630022207 0ustar marsamoscm Program PHONON v.4.1a starts ... Today is 10Jul2009 at 17:48:40 Parallel version (MPI) Number of processors in use: 1 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Check: negative/imaginary core charge= -0.000004 0.000000 Calculation of q = 1.0000000 0.0000000 0.0000000 Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 91 609 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 6 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0000000 k( 3) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 4) = ( 1.2500000 -0.2500000 0.7500000), wk = 0.0000000 k( 5) = ( 0.7500000 0.2500000 -0.2500000), wk = 0.2500000 k( 6) = ( 1.7500000 0.2500000 -0.2500000), wk = 0.0000000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 578, 18) NL pseudopotentials 0.11 Mb ( 289, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 578, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/dalcorso/tmp/_phPt.save/charge-density.dat Starting wfc are 18 atomic wfcs total cpu time spent up to now is 1.81 secs per-process dynamical memory: 15.6 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-10, avg # of iterations = 13.3 total cpu time spent up to now is 3.69 secs End of band structure calculation k =-0.2500 0.2500 0.2500 band energies (ev): 9.3170 9.3170 13.3107 13.3107 13.5799 13.5799 14.7743 14.7743 16.0691 16.0691 16.6623 16.6623 31.1506 31.1506 35.9701 35.9701 39.8081 39.8081 k = 0.7500 0.2500 0.2500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 0.2500-0.2500 0.7500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 1.2500-0.2500 0.7500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 0.7500 0.2500-0.2500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 1.7500 0.2500-0.2500 band energies (ev): 9.3170 9.3170 13.3107 13.3107 13.5799 13.5799 14.7743 14.7743 16.0691 16.0691 16.6623 16.6623 31.1506 31.1506 35.9701 35.9701 39.8081 39.8081 the Fermi energy is 17.9295 ev Writing output data file Pt.save bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 kinetic-energy cut-off = 30.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-16 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.42000 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.5000 0.0000 0.5000 ) a(2) = ( 0.0000 0.5000 0.5000 ) a(3) = ( -0.5000 0.5000 0.0000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.0000 -1.0000 1.0000 ) b(2) = ( 1.0000 1.0000 1.0000 ) b(3) = ( -1.0000 1.0000 -1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Pt 195.0780 tau( 1) = ( 0.00000 0.00000 0.00000 ) Computing dynamical matrix for q = ( 1.0000000 0.0000000 0.0000000 ) 17 Sym.Ops. (with q -> -q+G ) G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) number of k points= 6 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0000000 k( 3) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 4) = ( 1.2500000 -0.2500000 0.7500000), wk = 0.0000000 k( 5) = ( 0.7500000 0.2500000 -0.2500000), wk = 0.2500000 k( 6) = ( 1.7500000 0.2500000 -0.2500000), wk = 0.0000000 PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients Atomic displacements: There are 2 irreducible representations Representation 1 2 modes -E_u X_5' M_5' To be done Representation 2 1 modes -A_2u X_4' M_4' To be done PHONON : 7.83s CPU time, 7.96s wall time Alpha used in Ewald sum = 2.6000 Representation # 1 modes # 1 2 Self-consistent Calculation iter # 1 total cpu time : 10.2 secs av.it.: 7.5 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.516E-06 iter # 2 total cpu time : 12.2 secs av.it.: 14.0 thresh= 0.718E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.706E-07 iter # 3 total cpu time : 14.2 secs av.it.: 13.2 thresh= 0.266E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.165E-09 iter # 4 total cpu time : 16.1 secs av.it.: 12.7 thresh= 0.129E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.315E-12 iter # 5 total cpu time : 18.1 secs av.it.: 13.2 thresh= 0.562E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.305E-14 iter # 6 total cpu time : 20.0 secs av.it.: 12.8 thresh= 0.553E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.478E-16 End of self-consistent calculation Convergence has been achieved Representation # 2 mode # 3 Self-consistent Calculation iter # 1 total cpu time : 20.9 secs av.it.: 8.3 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.325E-04 iter # 2 total cpu time : 22.0 secs av.it.: 12.7 thresh= 0.570E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.350E-04 iter # 3 total cpu time : 23.0 secs av.it.: 11.3 thresh= 0.592E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.152E-08 iter # 4 total cpu time : 24.0 secs av.it.: 12.3 thresh= 0.390E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.127E-10 iter # 5 total cpu time : 25.0 secs av.it.: 11.7 thresh= 0.357E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.274E-12 iter # 6 total cpu time : 26.0 secs av.it.: 12.0 thresh= 0.523E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.315E-15 iter # 7 total cpu time : 27.0 secs av.it.: 12.3 thresh= 0.177E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.803E-18 End of self-consistent calculation Convergence has been achieved Number of q in the star = 3 List of q in the star: 1 1.000000000 0.000000000 0.000000000 2 0.000000000 0.000000000 1.000000000 3 0.000000000 1.000000000 0.000000000 Diagonalizing the dynamical matrix q = ( 1.000000000 0.000000000 0.000000000 ) ************************************************************************** omega( 1) = 3.670213 [THz] = 122.425943 [cm-1] omega( 2) = 3.670213 [THz] = 122.425943 [cm-1] omega( 3) = 5.809423 [THz] = 193.782795 [cm-1] ************************************************************************** Mode symmetry, D_4h(4/mmm) point group: omega( 1 - 2) = 122.4 [cm-1] --> E_u X_5' M_5' omega( 3 - 3) = 193.8 [cm-1] --> A_2u X_4' M_4' ************************************************************************** PWSCF : 25.09s CPU init_run : 1.80s CPU electrons : 1.88s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 1.88s CPU v_of_rho : 0.01s CPU ( 2 calls, 0.005 s avg) newd : 0.17s CPU ( 2 calls, 0.085 s avg) Called by c_bands: init_us_2 : 0.01s CPU ( 63 calls, 0.000 s avg) cegterg : 1.70s CPU ( 6 calls, 0.284 s avg) Called by *egterg: h_psi : 1.43s CPU ( 92 calls, 0.016 s avg) s_psi : 0.57s CPU ( 1935 calls, 0.000 s avg) g_psi : 0.02s CPU ( 80 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 86 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.25s CPU ( 985 calls, 0.000 s avg) General routines calbec : 0.43s CPU ( 2079 calls, 0.000 s avg) cft3s : 11.51s CPU ( 40608 calls, 0.000 s avg) interpolate : 0.01s CPU ( 8 calls, 0.002 s avg) davcio : 0.00s CPU ( 389 calls, 0.000 s avg) Parallel routines PHONON : 27.06s CPU time, 27.84s wall time INITIALIZATION: phq_setup : 0.01s CPU phq_init : 2.04s CPU phq_init : 2.04s CPU set_drhoc : 1.13s CPU ( 3 calls, 0.375 s avg) init_vloc : 0.00s CPU ( 2 calls, 0.002 s avg) init_us_1 : 2.82s CPU ( 2 calls, 1.409 s avg) newd : 0.17s CPU ( 2 calls, 0.085 s avg) dvanqq : 0.50s CPU drho : 1.01s CPU DYNAMICAL MATRIX: dynmat0 : 0.82s CPU phqscf : 18.40s CPU dynmatrix : 0.00s CPU phqscf : 18.40s CPU solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) drhodv : 0.03s CPU ( 2 calls, 0.017 s avg) dynmat0 : 0.82s CPU dynmat_us : 0.06s CPU d2ionq : 0.00s CPU dynmatcc : 0.76s CPU dynmat_us : 0.06s CPU addusdynmat : 0.02s CPU phqscf : 18.40s CPU solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) dvqpsi_us : 0.25s CPU ( 9 calls, 0.028 s avg) ortho : 0.08s CPU ( 57 calls, 0.001 s avg) cgsolve : 10.72s CPU ( 57 calls, 0.188 s avg) incdrhoscf : 0.75s CPU ( 57 calls, 0.013 s avg) addusddens : 2.37s CPU ( 15 calls, 0.158 s avg) vpsifft : 0.66s CPU ( 48 calls, 0.014 s avg) dv_of_drho : 0.17s CPU ( 19 calls, 0.009 s avg) mix_pot : 0.15s CPU ( 13 calls, 0.012 s avg) psymdvscf : 0.28s CPU ( 13 calls, 0.022 s avg) newdq : 2.82s CPU ( 13 calls, 0.217 s avg) adddvscf : 0.04s CPU ( 48 calls, 0.001 s avg) drhodvus : 0.00s CPU ( 2 calls, 0.000 s avg) dvqpsi_us : 0.25s CPU ( 9 calls, 0.028 s avg) dvqpsi_us_on : 0.05s CPU ( 9 calls, 0.006 s avg) cgsolve : 10.72s CPU ( 57 calls, 0.188 s avg) ch_psi : 10.62s CPU ( 893 calls, 0.012 s avg) ch_psi : 10.62s CPU ( 893 calls, 0.012 s avg) h_psiq : 9.93s CPU ( 893 calls, 0.011 s avg) last : 0.66s CPU ( 893 calls, 0.001 s avg) h_psiq : 9.93s CPU ( 893 calls, 0.011 s avg) firstfft : 4.41s CPU ( 7608 calls, 0.001 s avg) secondfft : 4.56s CPU ( 7608 calls, 0.001 s avg) add_vuspsi : 0.25s CPU ( 985 calls, 0.000 s avg) incdrhoscf : 0.75s CPU ( 57 calls, 0.013 s avg) drhodvus : 0.00s CPU ( 2 calls, 0.000 s avg) General routines calbec : 0.43s CPU ( 2079 calls, 0.000 s avg) cft3s : 11.51s CPU ( 40608 calls, 0.000 s avg) cinterpolate : 0.27s CPU ( 155 calls, 0.002 s avg) davcio : 0.00s CPU ( 389 calls, 0.000 s avg) write_rec : 0.05s CPU ( 15 calls, 0.003 s avg) espresso-5.0.2/PW/examples/example07/reference/pt.bands.out0000644000700200004540000003337012053145630022533 0ustar marsamoscm Program POST-PROC v.4.1CVS starts ... Today is 26Feb2009 at 16:17:59 Check: negative/imaginary core charge= -0.000004 0.000000 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) double point group O_h (m-3m) there are 16 classes and 6 irreducible representations the character table: E -E 8C3 -8C3 3C2 6C4 -6C4 6C2' i -i 8S6 -8S6 -3C2 -6C2' G_6+ 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 2.00 -2.00 1.00 -1.00 G_7+ 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 2.00 -2.00 1.00 -1.00 G_8+ 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 4.00 -4.00 -1.00 1.00 G_6- 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 -2.00 2.00 -1.00 1.00 G_7- 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 -2.00 2.00 -1.00 1.00 G_8- 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 -4.00 4.00 1.00 -1.00 3s_h 6S4 -6S4 6s_d -3s_h -6s_d G_6+ 0.00 1.41 -1.41 0.00 G_7+ 0.00 -1.41 1.41 0.00 G_8+ 0.00 0.00 0.00 0.00 G_6- 0.00 -1.41 1.41 0.00 G_7- 0.00 1.41 -1.41 0.00 G_8- 0.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 3C2 -3C2 2 -2 4 -4 3 -3 6C2'-6C2' 5 -5 6 -6 14 -13 -14 13 -10 -9 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h-3s_h 26 -26 28 -28 27 -27 6s_d-6s_d 29 -29 30 -30 38 -37 -38 37 -34 -33 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 -E -1 -6C4 -7 -8 -15 -16 -12 -11 -8C3 -17 -19 -20 -18 -24 -21 -22 -23 -i -25 -6S4 -31 -32 -39 -40 -36 -35 -8S6 -41 -43 -44 -42 -48 -45 -46 -47 Band symmetry, O_h (m-3m) double point group: e( 1 - 2) = 7.27272 eV 2 --> G_6+ e( 3 - 6) = 13.29785 eV 4 --> G_8+ e( 7 - 8) = 14.29146 eV 2 --> G_7+ e( 9 - 12) = 16.11924 eV 4 --> G_8+ e( 13 - 14) = 38.36105 eV 2 --> G_6- e( 15 - 18) = 39.65390 eV 4 --> G_8- ************************************************************************** ************************************************************************** xk=( 0.10000, 0.00000, 0.00000 ) double point group C_4v (4mm) there are 7 classes and 2 irreducible representations the character table: E -E 2C4 -2C4 C2 2s_v 2s_d -C2 -2s_v -2s_d G_6 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 G_7 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 2C4 3 4 2s_v-2s_v 5 -5 6 -6 2s_d-2s_d 7 -7 -8 8 -E -1 -2C4 -3 -4 Band symmetry, C_4v (4mm) double point group: e( 1 - 2) = 7.40600 eV 2 --> G_6 D_6 e( 3 - 4) = 13.26585 eV 2 --> G_7 D_7 e( 5 - 6) = 13.35474 eV 2 --> G_6 D_6 e( 7 - 8) = 14.31525 eV 2 --> G_7 D_7 e( 9 - 10) = 16.03365 eV 2 --> G_6 D_6 e( 11 - 12) = 16.15074 eV 2 --> G_7 D_7 e( 13 - 14) = 35.02250 eV 2 --> G_7 D_7 e( 15 - 16) = 38.07544 eV 2 --> G_6 D_6 e( 17 - 18) = 39.12512 eV 2 --> G_6 D_6 ************************************************************************** ************************************************************************** xk=( 1.00000, 0.00000, 0.00000 ) double point group D_4h(4/mmm) there are 14 classes and 4 irreducible representations the character table: E -E 2C4 -2C4 C2 2C2' 2C2'' i -i 2S4 -2S4 s_h -C2 -2C2' -2C2' -s_h G_6+ 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 2.00 -2.00 1.41 -1.41 0.00 G_7+ 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 2.00 -2.00 -1.41 1.41 0.00 G_6- 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 -2.00 2.00 -1.41 1.41 0.00 G_7- 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 -2.00 2.00 1.41 -1.41 0.00 2s_v 2s_d -2s_v -2s_d G_6+ 0.00 0.00 G_7+ 0.00 0.00 G_6- 0.00 0.00 G_7- 0.00 0.00 the symmetry operations in each class: E 1 2C2'-2C2' 2 -2 3 -3 C2 -C2 4 -4 2C2''-2C2' 5 6 -6 -5 2C4 7 8 i 9 2s_v-2s_v 10 -10 11 -11 s_h -s_h 12 -12 2s_d-2s_d 13 14 -14 -13 2S4 15 16 -E -1 -2C4 -7 -8 -i -9 -2S4 -15 -16 Band symmetry, D_4h(4/mmm) double point group: e( 1 - 2) = 10.44178 eV 2 --> G_6+ M_6+ e( 3 - 4) = 10.87347 eV 2 --> G_7+ M_7+ e( 5 - 6) = 17.37445 eV 2 --> G_7+ M_7+ e( 7 - 8) = 17.67776 eV 2 --> G_6+ M_6+ e( 9 - 10) = 18.65959 eV 2 --> G_7+ M_7+ e( 11 - 12) = 19.10266 eV 2 --> G_6- M_6- e( 13 - 14) = 26.26903 eV 2 --> G_6+ M_6+ e( 15 - 16) = 28.73750 eV 2 --> G_6- M_6- e( 17 - 18) = 30.28069 eV 2 --> G_7- M_7- ************************************************************************** ************************************************************************** xk=( 0.40000, 0.20000, 0.10000 ) double point group C_1 (1) there are 2 classes and 1 irreducible representations the character table: E -E G_2 1.00 -1.00 the symmetry operations in each class: E 1 -E -1 Band symmetry, C_1 (1) double point group: e( 1 - 2) = 9.65964 eV 2 --> 2 G_2 e( 3 - 4) = 12.67691 eV 2 --> 2 G_2 e( 5 - 6) = 13.67379 eV 2 --> 2 G_2 e( 7 - 8) = 14.94391 eV 2 --> 2 G_2 e( 9 - 10) = 15.71832 eV 2 --> 2 G_2 e( 11 - 12) = 16.93321 eV 2 --> 2 G_2 e( 13 - 14) = 32.05038 eV 2 --> 2 G_2 e( 15 - 16) = 35.78192 eV 2 --> 2 G_2 e( 17 - 18) = 37.60570 eV 2 --> 2 G_2 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.00000 ) double point group C_2v (mm2) there are 5 classes and 1 irreducible representations the character table: E -E C2 s_v s_v' -C2 -s_v -s_v' G_5 2.00 -2.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 s_v -s_v 3 -3 s_v'-s_v' 4 -4 -E -1 Band symmetry, C_2v (mm2) double point group: e( 1 - 2) = 10.63627 eV 2 --> G_5 D_5 e( 3 - 4) = 12.67775 eV 2 --> G_5 D_5 e( 5 - 6) = 13.51681 eV 2 --> G_5 D_5 e( 7 - 8) = 15.02072 eV 2 --> G_5 D_5 e( 9 - 10) = 15.45492 eV 2 --> G_5 D_5 e( 11 - 12) = 18.07552 eV 2 --> G_5 D_5 e( 13 - 14) = 30.35066 eV 2 --> G_5 D_5 e( 15 - 16) = 32.89540 eV 2 --> G_5 D_5 e( 17 - 18) = 37.60596 eV 2 --> G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) double point group C_3v (3m) there are 6 classes and 3 irreducible representations the character table: E -E 2C3 -2C3 3s_v -3s_v G_4 2.00 -2.00 1.00 -1.00 0.00 0.00 G_5 1.00 -1.00 -1.00 1.00 0.00 0.00 G_6 1.00 -1.00 -1.00 1.00 0.00 0.00 imaginary part E -E 2C3 -2C3 3s_v -3s_v G_4 0.00 0.00 0.00 0.00 0.00 0.00 G_5 0.00 0.00 0.00 0.00 1.00 -1.00 G_6 0.00 0.00 0.00 0.00 -1.00 1.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 -E -1 -2C3 -2 -3 -3s_v -4 -5 -6 Band symmetry, C_3v (3m) double point group: e( 1 - 2) = 10.15556 eV 2 --> G_4 L_6 e( 3 - 4) = 13.22718 eV 2 --> G_5 L_4 e( 3 - 4) = 13.22718 eV 2 --> G_6 L_5 e( 5 - 6) = 14.27679 eV 2 --> G_4 L_6 e( 7 - 8) = 15.38929 eV 2 --> G_4 L_6 e( 9 - 10) = 17.06807 eV 2 --> G_4 L_6 e( 11 - 12) = 17.63232 eV 2 --> G_5 L_4 e( 11 - 12) = 17.63232 eV 2 --> G_6 L_5 e( 13 - 14) = 25.37118 eV 2 --> G_4 L_6 e( 15 - 16) = 34.29231 eV 2 --> G_4 L_6 e( 17 - 18) = 37.68822 eV 2 --> G_4 L_6 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) double point group D_3d (-3m) there are 12 classes and 6 irreducible representations the character table: E -E 2C3 -2C3 3s_v -3s_v i -i 2S6 -2S6 3C2' -3C2' G_4+ 2.00 -2.00 1.00 -1.00 0.00 0.00 2.00 -2.00 1.00 -1.00 0.00 0.00 G_5+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00 G_6+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00 G_4- 2.00 -2.00 1.00 -1.00 0.00 0.00 -2.00 2.00 -1.00 1.00 0.00 0.00 G_5- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00 G_6- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00 imaginary part E -E 2C3 -2C3 3s_v -3s_v i -i 2S6 -2S6 3C2' -3C2' G_4+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G_5+ 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 1.00 -1.00 G_6+ 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 -1.00 1.00 G_4- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G_5- 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 -1.00 1.00 G_6- 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2' 2 4 3 2C3 5 6 i 7 3s_v 8 10 9 2S6 11 12 -E -1 -3C2' -2 -4 -3 -2C3 -5 -6 -i -7 -3s_v -8 -10 -9 -2S6 -11 -12 Band symmetry, D_3d (-3m) double point group: e( 1 - 2) = 10.17424 eV 2 --> G_4+ L_6+ e( 3 - 4) = 13.14245 eV 2 --> G_5+ L_4+ e( 3 - 4) = 13.14245 eV 2 --> G_6+ L_5+ e( 5 - 6) = 14.15869 eV 2 --> G_4+ L_6+ e( 7 - 8) = 16.90324 eV 2 --> G_4- L_6- e( 9 - 10) = 17.29982 eV 2 --> G_4+ L_6+ e( 11 - 12) = 17.96377 eV 2 --> G_5+ L_4+ e( 11 - 12) = 17.96377 eV 2 --> G_6+ L_5+ e( 13 - 14) = 23.35789 eV 2 --> G_4+ L_6+ e( 15 - 16) = 33.87781 eV 2 --> G_4- L_6- e( 17 - 18) = 36.95416 eV 2 --> G_4- L_6- ************************************************************************** ************************************************************************** xk=( 0.75000, 0.75000, 0.00000 ) double point group C_2v (mm2) there are 5 classes and 1 irreducible representations the character table: E -E C2 s_v s_v' -C2 -s_v -s_v' G_5 2.00 -2.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 s_v -s_v 3 -3 s_v'-s_v' 4 -4 -E -1 Band symmetry, C_2v (mm2) double point group: e( 1 - 2) = 11.23710 eV 2 --> G_5 D_5 e( 3 - 4) = 11.98639 eV 2 --> G_5 D_5 e( 5 - 6) = 14.56710 eV 2 --> G_5 D_5 e( 7 - 8) = 16.24938 eV 2 --> G_5 D_5 e( 9 - 10) = 17.53377 eV 2 --> G_5 D_5 e( 11 - 12) = 23.32636 eV 2 --> G_5 D_5 e( 13 - 14) = 24.22494 eV 2 --> G_5 D_5 e( 15 - 16) = 27.55368 eV 2 --> G_5 D_5 e( 17 - 18) = 32.69172 eV 2 --> G_5 D_5 ************************************************************************** espresso-5.0.2/PW/examples/example07/reference/pt.nscf.out0000644000700200004540000001710212053145630022370 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 26Feb2009 at 16:17:49 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Starting configuration read from directory: /home/smogunov/tmp/Pt.save/ Failed to open directory or to read data file! Using input configuration Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( 0.1000000 0.0000000 0.0000000), wk = 0.1250000 k( 3) = ( 1.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 4) = ( 0.4000000 0.2000000 0.1000000), wk = 0.1250000 k( 5) = ( 0.4000000 0.4000000 0.0000000), wk = 0.1250000 k( 6) = ( 0.4000000 0.4000000 0.4000000), wk = 0.1250000 k( 7) = ( 0.5000000 0.5000000 0.5000000), wk = 0.1250000 k( 8) = ( 0.7500000 0.7500000 0.0000000), wk = 0.1250000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 580, 18) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 580, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/smogunov/tmp/Pt.save/charge-density.dat Starting wfc are 18 atomic wfcs total cpu time spent up to now is 3.24 secs per-process dynamical memory: 8.8 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-10, avg # of iterations = 12.9 total cpu time spent up to now is 9.39 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2727 7.2727 13.2979 13.2979 13.2979 13.2979 14.2915 14.2915 16.1192 16.1192 16.1192 16.1192 38.3611 38.3611 39.6539 39.6539 39.6539 39.6539 k = 0.1000 0.0000 0.0000 band energies (ev): 7.4060 7.4060 13.2659 13.2659 13.3547 13.3547 14.3152 14.3152 16.0336 16.0336 16.1507 16.1507 35.0225 35.0225 38.0754 38.0754 39.1251 39.1251 k = 1.0000 0.0000 0.0000 band energies (ev): 10.4418 10.4418 10.8735 10.8735 17.3745 17.3745 17.6778 17.6778 18.6596 18.6596 19.1027 19.1027 26.2690 26.2690 28.7375 28.7375 30.2807 30.2807 k = 0.4000 0.2000 0.1000 band energies (ev): 9.6596 9.6596 12.6769 12.6769 13.6738 13.6738 14.9439 14.9439 15.7183 15.7183 16.9332 16.9332 32.0504 32.0504 35.7819 35.7819 37.6057 37.6057 k = 0.4000 0.4000 0.0000 band energies (ev): 10.6363 10.6363 12.6777 12.6777 13.5168 13.5168 15.0207 15.0207 15.4549 15.4549 18.0755 18.0755 30.3507 30.3507 32.8954 32.8954 37.6060 37.6060 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1556 10.1556 13.2272 13.2272 14.2768 14.2768 15.3893 15.3893 17.0681 17.0681 17.6323 17.6323 25.3712 25.3712 34.2923 34.2923 37.6882 37.6882 k = 0.5000 0.5000 0.5000 band energies (ev): 10.1742 10.1742 13.1425 13.1425 14.1587 14.1587 16.9032 16.9032 17.2998 17.2998 17.9638 17.9638 23.3579 23.3579 33.8778 33.8778 36.9542 36.9542 k = 0.7500 0.7500 0.0000 band energies (ev): 11.2371 11.2371 11.9864 11.9864 14.5671 14.5671 16.2494 16.2494 17.5338 17.5338 23.3264 23.3264 24.2249 24.2249 27.5537 27.5537 32.6917 32.6917 the Fermi energy is 17.4541 ev Writing output data file Pt.save PWSCF : 9.56s CPU time, 9.74s wall time init_run : 3.09s CPU electrons : 6.15s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.05s CPU Called by electrons: c_bands : 6.15s CPU v_of_rho : 0.01s CPU newd : 0.20s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 8 calls, 0.000 s avg) cegterg : 5.60s CPU ( 8 calls, 0.700 s avg) Called by *egterg: h_psi : 4.38s CPU ( 119 calls, 0.037 s avg) s_psi : 0.20s CPU ( 119 calls, 0.002 s avg) g_psi : 0.04s CPU ( 103 calls, 0.000 s avg) cdiaghg : 0.46s CPU ( 111 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 0.17s CPU ( 119 calls, 0.001 s avg) General routines calbec : 0.13s CPU ( 119 calls, 0.001 s avg) cft3 : 0.04s CPU ( 12 calls, 0.004 s avg) cft3s : 3.45s CPU ( 5532 calls, 0.001 s avg) interpolate : 0.02s CPU ( 4 calls, 0.006 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example07/reference/pt.scf.out0000644000700200004540000002756212053145630022225 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 17:47:46 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 85 531 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 586, 18) NL pseudopotentials 0.12 Mb ( 293, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 586, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 18 atomic wfcs total cpu time spent up to now is 2.15 secs per-process dynamical memory: 18.0 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.63E-05, avg # of iterations = 2.2 total cpu time spent up to now is 4.37 secs total energy = -69.48938333 Ry Harris-Foulkes estimate = -69.49382576 Ry estimated scf accuracy < 0.00669665 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.70E-05, avg # of iterations = 2.0 total cpu time spent up to now is 5.47 secs total energy = -69.49113618 Ry Harris-Foulkes estimate = -69.49216661 Ry estimated scf accuracy < 0.00173656 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-05, avg # of iterations = 1.9 total cpu time spent up to now is 6.47 secs total energy = -69.49152610 Ry Harris-Foulkes estimate = -69.49152597 Ry estimated scf accuracy < 0.00002117 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-07, avg # of iterations = 2.1 total cpu time spent up to now is 7.52 secs total energy = -69.49152949 Ry Harris-Foulkes estimate = -69.49152950 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-10, avg # of iterations = 2.7 total cpu time spent up to now is 8.65 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 289 PWs) bands (ev): 7.8772 7.8772 13.2292 13.2292 13.4264 13.4264 14.4376 14.4376 15.9224 15.9224 16.1362 16.1362 35.3889 35.3889 36.0586 36.0586 39.4166 39.4166 k =-0.3750 0.3750-0.1250 ( 290 PWs) bands (ev): 10.2486 10.2486 12.9954 12.9954 13.5532 13.5532 14.7280 14.7280 15.8285 15.8285 17.6679 17.6679 29.6954 29.6954 34.5991 34.5991 37.2964 37.2964 k = 0.3750-0.3750 0.6250 ( 280 PWs) bands (ev): 10.6354 10.6354 13.0659 13.0659 14.2338 14.2338 15.0192 15.0192 17.6452 17.6452 19.5046 19.5046 23.6874 23.6874 34.1690 34.1690 35.7959 35.7959 k = 0.1250-0.1250 0.3750 ( 293 PWs) bands (ev): 9.3017 9.3017 12.6960 12.6960 13.7327 13.7327 14.9244 14.9244 15.6316 15.6316 16.6861 16.6861 33.0450 33.0450 36.5818 36.5818 37.3441 37.3441 k =-0.1250 0.6250 0.1250 ( 287 PWs) bands (ev): 10.8908 10.8908 11.8399 11.8399 14.0057 14.0057 15.7860 15.7860 17.0479 17.0479 17.7783 17.7783 29.8172 29.8172 33.2623 33.2623 34.5894 34.5894 k = 0.6250-0.1250 0.8750 ( 282 PWs) bands (ev): 11.6205 11.6205 12.1714 12.1714 13.7381 13.7381 15.9944 15.9944 17.6842 17.6842 22.8386 22.8386 24.6336 24.6336 28.6991 28.6991 31.3279 31.3279 k = 0.3750 0.1250 0.6250 ( 283 PWs) bands (ev): 11.4017 11.4017 12.7865 12.7865 13.1476 13.1476 15.2398 15.2398 16.8797 16.8797 19.5402 19.5402 26.7746 26.7746 31.9766 31.9766 34.7572 34.7572 k =-0.1250-0.8750 0.1250 ( 282 PWs) bands (ev): 10.7843 10.7843 11.2349 11.2349 15.8006 15.8006 16.9108 16.9108 17.9869 17.9869 20.3557 20.3557 26.3674 26.3674 29.2335 29.2335 31.0472 31.0472 k =-0.3750 0.3750 0.3750 ( 281 PWs) bands (ev): 10.1224 10.1224 13.2697 13.2697 14.3339 14.3339 14.8704 14.8704 16.8997 16.8997 17.4674 17.4674 26.2483 26.2483 34.5190 34.5190 38.0606 38.0606 k = 0.3750-0.3750 1.1250 ( 280 PWs) bands (ev): 11.5839 11.5839 12.6789 12.6789 13.7603 13.7603 15.1964 15.1964 17.0718 17.0718 21.4664 21.4664 24.6727 24.6727 29.9116 29.9116 35.7353 35.7353 the Fermi energy is 17.6821 ev ! total energy = -69.49152951 Ry Harris-Foulkes estimate = -69.49152952 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 17.06705794 Ry hartree contribution = 3.77086769 Ry xc contribution = -28.53673982 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00212133 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.17 -0.00015068 0.00000000 0.00000000 -22.17 0.00 0.00 0.00000000 -0.00015068 0.00000000 0.00 -22.17 0.00 0.00000000 0.00000000 -0.00015068 0.00 0.00 -22.17 Writing output data file Pt.save PWSCF : 10.70s CPU time, 11.60s wall time init_run : 2.06s CPU electrons : 6.51s CPU forces : 0.35s CPU stress : 1.56s CPU Called by init_run: wfcinit : 0.27s CPU potinit : 0.02s CPU Called by electrons: c_bands : 4.61s CPU ( 6 calls, 0.768 s avg) sum_band : 1.33s CPU ( 6 calls, 0.222 s avg) v_of_rho : 0.03s CPU ( 6 calls, 0.005 s avg) newd : 0.52s CPU ( 6 calls, 0.086 s avg) mix_rho : 0.05s CPU ( 6 calls, 0.008 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 150 calls, 0.000 s avg) cegterg : 4.41s CPU ( 60 calls, 0.073 s avg) Called by *egterg: h_psi : 3.91s CPU ( 219 calls, 0.018 s avg) s_psi : 0.10s CPU ( 219 calls, 0.000 s avg) g_psi : 0.06s CPU ( 149 calls, 0.000 s avg) cdiaghg : 0.23s CPU ( 199 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.08s CPU ( 219 calls, 0.000 s avg) General routines calbec : 0.10s CPU ( 299 calls, 0.000 s avg) cft3s : 4.02s CPU ( 13994 calls, 0.000 s avg) interpolate : 0.08s CPU ( 48 calls, 0.002 s avg) davcio : 0.01s CPU ( 210 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example07/run_example0000755000700200004540000000742112053145630020576 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "and the band structure of fcc-Pt with a fully relativistic " $ECHO "pseudo-potential including spin-orbit coupling." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pt.rel-pz-n-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > pt.scf.in << EOF Pt Pt &control calculation = 'scf' restart_mode='from_scratch', prefix='Pt', tprnfor = .true., tstress =.true., pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons mixing_beta = 0.7, conv_thr = 1.0d-8 / ATOMIC_SPECIES Pt 0.0 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.scf.in > pt.scf.out check_failure $? $ECHO " done" # a non self-consistent calculation cat > pt.nscf.in << EOF Pt Pt &control calculation = 'nscf' restart_mode='from_scratch', prefix='Pt', tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons mixing_beta = 0.7, conv_thr = 1.0d-8 / ATOMIC_SPECIES Pt 0.0 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS 8 0.0 0.0 0.0 1.0 0.1 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.4 0.2 0.1 1.0 0.4 0.4 0.0 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 0.75 0.75 0.0 1.0 EOF $ECHO " running the non-scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.nscf.in > pt.nscf.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example07/run_xml_example0000755000700200004540000001542312053145630021457 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "and the band structure of fcc-Pt with a fully relativistic " $ECHO "pseudo-potential including spin-orbit coupling." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pt.rel-pz-n-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > pt.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Pt.rel-pz-n-rrkjus.UPF 0.0 0.0000000 0.00000000 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 250.0 0.7 1.0d-8 smearing mp 0.02 true true 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.scf.xml > pt.scf.out check_failure $? $ECHO " done" # a non self-consistent calculation cat > pt.nscf.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Pt.rel-pz-n-rrkjus.UPF 0.0 0.0000000 0.00000000 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true 30.0 250.0 0.7 1.0d-8 smearing mp 0.02 true true 0.0 0.0 0.0 1.0 0.1 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.4 0.2 0.1 1.0 0.4 0.4 0.0 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 0.75 0.75 0.0 1.0 EOF $ECHO " running the non-scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.nscf.xml > pt.nscf.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example07/README0000644000700200004540000000057312053145630017212 0ustar marsamoscmThis example shows how to use pw.x to calculate the total energy and the band structure of fcc-Pt with a fully relativistic US-PP which includes spin-orbit effects. The calculation proceeds as follows: 1) make a self-consistent calculation for Pt (input=pt.scf.in, output=pt.scf.out). 2) make a band structure calculation for Pt (input=pt.nscf.in, output=pt.nscf.out). espresso-5.0.2/PW/examples/example01/0000755000700200004540000000000012053440301016310 5ustar marsamoscmespresso-5.0.2/PW/examples/example01/reference/0000755000700200004540000000000012053440303020250 5ustar marsamoscmespresso-5.0.2/PW/examples/example01/reference/cu.band.cg.out0000644000700200004540000002612412053145630022715 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:28: 5 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/cu.save/ Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 331 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 170, 8) NL pseudopotentials 0.03 Mb ( 170, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 13, 8) The potential is recalculated from file : /home/dalcorso/tmp/cu.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.82 secs per-process dynamical memory: 10.0 Mb Band Structure Calculation CG style diagonalization ethr = 9.09E-09, avg # of iterations = 19.6 total cpu time spent up to now is 2.00 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2013 11.2013 11.2013 12.0902 12.0902 38.8601 41.0130 k = 0.0000 0.0000 0.1000 band energies (ev): 5.1157 11.1628 11.2327 11.2327 12.0553 12.1046 38.3442 39.7386 k = 0.0000 0.0000 0.2000 band energies (ev): 5.4878 11.0518 11.3258 11.3258 11.9570 12.1462 37.3081 37.7399 k = 0.0000 0.0000 0.3000 band energies (ev): 6.0904 10.8806 11.4770 11.4770 11.8157 12.2112 35.7804 35.7804 k = 0.0000 0.0000 0.4000 band energies (ev): 6.8872 10.6675 11.6763 11.6789 11.6789 12.2935 33.9668 33.9668 k = 0.0000 0.0000 0.5000 band energies (ev): 7.7943 10.4349 11.6327 11.9194 11.9194 12.3851 32.3393 32.3393 k = 0.0000 0.0000 0.6000 band energies (ev): 8.6197 10.2061 11.8840 12.1807 12.1807 12.4773 30.7560 30.9299 k = 0.0000 0.0000 0.7000 band energies (ev): 9.1027 10.0029 12.4369 12.4369 12.5613 12.6833 27.8377 29.7723 k = 0.0000 0.0000 0.8000 band energies (ev): 9.2513 9.8437 12.6279 12.6566 12.6566 13.9731 25.1907 28.9042 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2643 9.7424 12.6709 12.8065 12.8065 15.3576 23.0558 28.3636 k = 0.0000 0.0000 1.0000 band energies (ev): 9.2586 9.7080 12.6858 12.8601 12.8601 16.0644 22.1078 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2013 11.2013 11.2013 12.0902 12.0902 38.8601 41.0130 k = 0.0000 0.1000 0.1000 band energies (ev): 5.2404 11.1423 11.2474 11.2595 12.0461 12.0977 37.2038 38.2087 k = 0.0000 0.2000 0.2000 band energies (ev): 5.9705 10.9903 11.3704 11.3798 11.9347 12.1711 33.7486 34.5125 k = 0.0000 0.3000 0.3000 band energies (ev): 7.1061 10.8094 11.3666 11.5819 11.8082 12.4567 30.4007 31.1635 k = 0.0000 0.4000 0.4000 band energies (ev): 8.4619 10.6806 11.1898 11.7280 11.8290 13.0622 27.3470 28.3088 k = 0.0000 0.5000 0.5000 band energies (ev): 9.6267 10.6775 10.8947 11.7428 12.0921 14.2039 24.5960 26.0247 k = 0.0000 0.6000 0.6000 band energies (ev): 10.1518 10.5385 10.8552 11.8732 12.3435 16.1948 22.1393 24.3503 k = 0.0000 0.7000 0.7000 band energies (ev): 10.0404 10.2353 11.2395 12.1024 12.5596 18.9479 19.9739 23.2572 k = 0.0000 0.8000 0.8000 band energies (ev): 9.6756 9.9823 11.8182 12.3734 12.7237 18.1225 22.0029 22.8456 k = 0.0000 0.9000 0.9000 band energies (ev): 9.3741 9.7815 12.4876 12.5979 12.8255 16.6906 22.1916 25.8664 k = 0.0000 1.0000 1.0000 band energies (ev): 9.2586 9.7080 12.6858 12.8601 12.8601 16.0644 22.1078 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2013 11.2013 11.2013 12.0902 12.0902 38.8601 41.0130 k = 0.1000 0.1000 0.1000 band energies (ev): 5.3641 11.1243 11.2712 11.2712 12.0662 12.0662 35.6738 39.3797 k = 0.2000 0.2000 0.2000 band energies (ev): 6.4305 10.9740 11.3757 11.3757 12.0914 12.0914 30.1316 38.8251 k = 0.3000 0.3000 0.3000 band energies (ev): 7.9085 11.0663 11.3281 11.3281 12.3176 12.3176 25.0854 38.0372 k = 0.4000 0.4000 0.4000 band energies (ev): 8.9122 11.2163 11.2163 12.1713 12.5901 12.5901 20.8495 37.3032 k = 0.5000 0.5000 0.5000 band energies (ev): 9.1127 11.1669 11.1669 12.7054 12.7054 13.4643 18.6413 37.0213 Writing output data file cu.save PWSCF : 2.14s CPU time, 2.33s wall time init_run : 0.64s CPU electrons : 1.18s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 1.18s CPU v_of_rho : 0.00s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) ccgdiagg : 1.05s CPU ( 68 calls, 0.015 s avg) wfcrot : 0.13s CPU ( 68 calls, 0.002 s avg) Called by *cgdiagg: h_psi : 0.99s CPU ( 4069 calls, 0.000 s avg) s_psi : 0.03s CPU ( 8070 calls, 0.000 s avg) cdiaghg : 0.00s CPU ( 68 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 4069 calls, 0.000 s avg) General routines calbec : 0.04s CPU ( 8070 calls, 0.000 s avg) cft3s : 0.72s CPU ( 9096 calls, 0.000 s avg) interpolate : 0.00s CPU davcio : 0.00s CPU ( 28 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/ni.scf.david.out0000644000700200004540000011345312053145630023263 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:40 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 k( 61) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 63) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 64) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 65) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 66) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 67) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 68) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 69) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 70) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 71) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 72) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 73) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 74) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 75) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 76) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 77) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 78) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 79) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 80) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 81) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 82) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 83) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 84) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 85) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 86) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 87) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 88) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 89) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 90) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 91) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 92) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 93) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 94) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 95) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 96) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 97) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 98) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 99) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 100) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 101) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 102) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 103) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 104) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 105) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 106) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 107) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 108) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 109) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 110) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 111) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 112) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 113) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 114) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 115) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 116) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 117) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 118) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 119) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 120) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 atomic + 3 random wfc total cpu time spent up to now is 1.50 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 total cpu time spent up to now is 2.88 secs total energy = -85.35005575 Ry Harris-Foulkes estimate = -85.36840648 Ry estimated scf accuracy < 0.91558347 Ry total magnetization = 1.85 Bohr mag/cell absolute magnetization = 1.87 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 2.0 total cpu time spent up to now is 3.82 secs total energy = -85.52910291 Ry Harris-Foulkes estimate = -85.84199986 Ry estimated scf accuracy < 0.93392466 Ry total magnetization = 0.67 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 1.0 total cpu time spent up to now is 4.65 secs total energy = -85.71067529 Ry Harris-Foulkes estimate = -85.68286109 Ry estimated scf accuracy < 0.04349221 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-04, avg # of iterations = 1.0 total cpu time spent up to now is 5.49 secs total energy = -85.72195595 Ry Harris-Foulkes estimate = -85.72138903 Ry estimated scf accuracy < 0.00128188 Ry total magnetization = 0.62 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-05, avg # of iterations = 2.0 total cpu time spent up to now is 6.41 secs total energy = -85.72234798 Ry Harris-Foulkes estimate = -85.72218992 Ry estimated scf accuracy < 0.00030103 Ry total magnetization = 0.59 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-06, avg # of iterations = 1.8 total cpu time spent up to now is 7.33 secs total energy = -85.72248661 Ry Harris-Foulkes estimate = -85.72247858 Ry estimated scf accuracy < 0.00003441 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.44E-07, avg # of iterations = 1.0 total cpu time spent up to now is 8.16 secs total energy = -85.72248975 Ry Harris-Foulkes estimate = -85.72248942 Ry estimated scf accuracy < 0.00000309 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-08, avg # of iterations = 1.5 total cpu time spent up to now is 9.06 secs total energy = -85.72249130 Ry Harris-Foulkes estimate = -85.72249055 Ry estimated scf accuracy < 0.00000164 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.0 total cpu time spent up to now is 9.89 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9120 12.6403 12.7237 12.7237 13.9674 13.9674 39.4727 42.4109 44.0014 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3391 12.4940 12.8362 12.8411 13.8266 14.0339 38.2933 40.8114 41.8233 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1584 12.2111 13.0526 13.0700 13.6130 14.1571 36.6039 39.3136 39.3758 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.2720 11.8507 13.1518 13.3957 13.6435 14.3190 34.7984 36.9240 37.9143 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.4204 11.4729 13.1993 13.7876 14.1063 14.4960 33.0562 34.8022 35.0428 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.1166 11.1348 13.7246 14.1929 14.6629 14.9103 31.2033 31.8424 33.0618 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.2638 10.8827 14.3318 14.5327 14.7987 16.3747 28.0532 30.5459 31.8085 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.2378 10.7487 14.6333 14.7178 14.8873 17.9391 25.6719 29.9311 31.1465 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7533 12.4200 12.8935 12.8977 13.8048 14.0433 36.2756 39.1047 42.8592 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5453 12.2048 12.9779 13.0815 13.6870 14.2127 34.2597 37.1140 41.9174 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6158 11.8969 12.9166 13.3634 13.8099 14.4736 32.4182 35.2312 39.3633 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.7156 11.5624 12.8190 13.7140 14.2263 14.8743 30.7919 33.4967 35.6959 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.3794 11.2565 13.0674 14.0982 14.5778 15.7748 29.4219 31.5622 32.4412 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.5003 11.0255 13.5614 14.4141 14.7601 17.3450 28.0923 28.6880 31.1642 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.4587 10.9028 13.9045 14.5423 14.8705 18.9888 25.7860 27.9627 30.5806 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.2768 12.1320 12.9066 13.1709 13.6342 14.4853 32.1372 35.0423 43.2095 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.2452 11.9634 12.7383 13.3506 13.7364 14.9229 30.2768 33.2184 40.3512 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.2213 11.7374 12.4840 13.6348 14.0804 15.5989 28.6801 31.6638 36.3665 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 10.8204 11.4997 12.4575 13.9654 14.4289 16.7887 27.3680 30.3866 32.5390 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 10.8990 11.3071 12.7652 14.1828 14.6920 18.5759 26.3890 28.7463 29.8041 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 10.8247 11.2092 13.0470 14.2307 14.8634 20.4641 25.6515 26.3855 29.2117 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.0257 12.0018 12.5667 13.3428 13.7718 15.5600 28.4099 31.4585 41.0969 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.7529 11.9717 12.2594 13.5024 14.0303 16.4891 26.8151 30.0154 37.3166 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.2448 11.7948 12.0502 13.7586 14.3642 17.9338 25.5046 28.9111 33.4080 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.2923 11.6684 12.1314 13.9143 14.6665 19.9278 24.5294 28.1125 29.8823 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.1514 11.6594 12.2852 13.9465 14.8615 22.1140 23.9545 26.6772 28.0355 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.1281 12.0206 12.1765 13.5102 14.1530 17.6718 25.2003 28.7035 37.9213 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.3601 11.6827 12.2748 13.7019 14.3954 19.3047 23.8525 27.7566 34.5390 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.3384 11.5511 12.2978 13.8725 14.6677 21.3639 22.8887 27.1405 30.9747 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.1871 11.4834 12.6290 13.8742 14.5153 20.9385 22.5123 26.9684 34.7729 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 10.9775 11.2912 12.9103 14.0926 14.6994 21.0784 23.3700 26.5025 32.1960 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 10.6502 11.0394 13.5298 14.3480 14.7754 19.8117 25.2621 26.2887 32.4298 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1490 12.3850 12.9155 12.9155 13.9465 13.9465 33.9508 40.6191 42.8593 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9002 12.2435 12.9544 12.9968 13.8846 14.1748 31.8264 39.5831 40.2798 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9011 12.0029 12.8502 13.1655 14.1650 14.4268 29.9624 37.8956 38.1474 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 9.9126 11.7109 12.7079 13.4227 14.6483 14.9231 28.3601 35.5626 35.8389 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.5388 11.4084 12.8534 13.7438 14.7938 16.2052 27.0373 32.0231 34.1889 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 10.6806 11.1643 13.2464 14.0805 14.8324 17.9973 26.0368 28.6479 33.0299 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.5586 12.2711 12.9019 12.9801 13.9475 14.3826 29.6693 37.9512 41.7133 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3982 12.2155 12.7537 13.0607 14.1483 14.7915 27.8106 36.2164 40.0119 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.2096 12.0264 12.5521 13.2669 14.5184 15.5527 26.2409 34.6190 36.6546 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 10.7589 11.7056 12.5499 13.5599 14.7184 16.9898 24.9668 32.4882 33.7645 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 10.9690 11.4203 12.7355 13.8693 14.7503 18.9806 24.0154 29.1748 32.6897 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 9.9715 12.4433 12.6304 13.0293 14.1451 15.4093 25.9849 34.5170 40.6365 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.4972 12.3267 12.5149 13.1743 14.3790 16.3914 24.4791 33.0805 37.5682 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 10.9360 11.9279 12.4598 13.4315 14.5932 17.9594 23.2971 31.9165 33.8122 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.2737 11.5939 12.3715 13.6973 14.6680 19.9684 22.5288 29.9764 31.4465 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 10.7559 12.1785 12.6604 13.2082 14.4333 17.5331 23.0842 31.7385 38.3099 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.0185 11.8733 12.5734 13.4188 14.5881 18.9957 22.1674 30.7157 34.9245 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.0171 11.6638 12.6550 13.5832 14.6895 19.4275 22.3001 29.7834 35.2773 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.0549 12.5367 12.8687 12.8687 14.2846 14.2846 27.5124 39.4295 41.9478 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.6441 12.7232 12.7667 12.8802 14.5676 14.5759 25.6926 38.4692 39.6465 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.2055 12.4176 12.7652 13.0186 14.7459 15.6520 24.1999 36.5086 37.7394 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 10.6757 12.0090 12.7074 13.2669 14.7872 17.3641 23.0424 33.2020 36.2736 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 9.9304 12.6999 12.8053 13.2794 14.4727 15.0935 23.9724 37.4847 40.2945 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.2529 12.5024 12.8956 13.2316 14.6595 16.1515 22.6704 36.1715 38.2403 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 10.6207 12.1883 12.9091 13.1234 14.7086 17.7231 21.8908 34.0191 35.8118 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.3873 12.4130 12.9285 13.2780 14.6634 16.9659 21.7836 35.0550 39.0775 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 9.9677 12.7086 12.7086 14.3520 14.6900 14.6900 22.5008 38.4627 41.4621 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.1167 12.6120 12.7519 13.9393 14.7573 15.8140 21.6821 37.6852 40.1836 ------ SPIN DOWN ---------- k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9423 13.2919 13.3810 13.3810 14.5690 14.5690 39.4757 42.4456 44.0456 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3696 13.1353 13.4958 13.5007 14.4208 14.6386 38.3635 40.8363 41.9152 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1915 12.8346 13.7095 13.7342 14.1981 14.7679 36.7186 39.4223 39.4233 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.3187 12.4526 13.7352 14.0673 14.2766 14.9387 34.9273 37.0338 37.9863 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.5245 12.0534 13.7062 14.4681 14.7453 15.1284 33.1822 34.9011 35.1551 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.3519 11.6971 14.1954 14.8773 15.3164 15.4383 31.3478 31.9671 33.1430 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.5986 11.4322 14.9361 15.1983 15.4945 16.6428 28.2598 30.6380 31.8707 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.6073 11.2916 15.3103 15.3494 15.6322 18.0527 25.9390 30.0091 31.1960 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7851 13.0500 13.5500 13.5564 14.3989 14.6530 36.3891 39.1678 42.8831 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5823 12.8178 13.6113 13.7454 14.2814 14.8368 34.3987 37.2088 41.9618 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6713 12.4899 13.5075 14.0219 14.4222 15.1126 32.5719 35.3449 39.4342 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.8329 12.1351 13.3658 14.3671 14.8446 15.5017 30.9494 33.6152 35.8079 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.6280 11.8124 13.5765 14.7464 15.2362 16.2800 29.5734 31.7072 32.5544 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.8468 11.5706 14.1050 15.0469 15.4723 17.6741 28.2748 28.8396 31.2557 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.8373 11.4425 14.4936 15.1592 15.6179 19.1882 26.0415 28.0867 30.6622 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.3257 12.7273 13.5158 13.8279 14.2358 15.1253 32.2983 35.1568 43.2292 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3257 12.5389 13.3183 13.9798 14.3690 15.5606 30.4550 33.3475 40.4215 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.3759 12.2923 13.0402 14.2474 14.7348 16.1863 28.8676 31.7998 36.4746 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.1004 12.0394 12.9846 14.5704 15.1197 17.2531 27.5551 30.5247 32.6753 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.2676 11.8435 13.2914 14.7820 15.4222 18.9055 26.5693 28.9277 29.9268 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2183 11.7441 13.5979 14.8273 15.6124 20.6945 25.8515 26.5878 29.3299 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1637 12.5547 13.1188 13.9362 14.4469 16.1656 28.6100 31.6003 41.1331 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.9899 12.4955 12.7968 14.0851 14.7226 17.0135 27.0301 30.1659 37.4189 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.5819 12.2943 12.5936 14.3409 15.0767 18.3385 25.7246 29.0676 33.5355 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.6822 12.1941 12.6583 14.4977 15.4017 20.2284 24.7449 28.2782 30.0312 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.5559 12.1927 12.8234 14.5271 15.6107 22.3433 24.1634 26.8834 28.1801 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.4809 12.4758 12.7209 14.0910 14.8612 18.1022 25.4356 28.8675 38.0319 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8102 12.1062 12.8156 14.2851 15.1161 19.6344 24.0961 27.9337 34.6538 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.7575 12.0464 12.8391 14.4557 15.4044 21.6172 23.1291 27.3300 31.1073 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6824 11.8911 13.1703 14.4662 15.2418 21.1953 22.7661 27.1663 34.8663 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4040 11.7854 13.4554 14.6897 15.4362 21.3197 23.5811 26.7161 32.2999 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.0468 11.5628 14.0914 14.9627 15.5124 20.0405 25.4557 26.4955 32.4991 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1843 12.9978 13.5678 13.5678 14.5565 14.5565 34.0896 40.6034 42.9618 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9462 12.8331 13.5845 13.6386 14.5044 14.8055 31.9878 39.5993 40.3950 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9768 12.5673 13.4415 13.8015 14.7873 15.0782 30.1403 38.0085 38.1940 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.0649 12.2490 13.2648 14.0572 15.3194 15.4963 28.5455 35.6610 35.9418 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.8239 11.9299 13.3721 14.3787 15.4838 16.6689 27.2199 32.1674 34.2787 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.0536 11.6846 13.7763 14.7123 15.5424 18.3298 26.2106 28.8322 33.1070 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.6293 12.8206 13.5168 13.6059 14.5849 15.0280 29.8548 38.0246 41.7479 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.5247 12.7222 13.3432 13.6763 14.7952 15.4318 28.0170 36.3135 40.0636 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.4383 12.4965 13.1238 13.8794 15.1834 16.1109 26.4611 34.7274 36.7575 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.1115 12.1663 13.0913 14.1728 15.4121 17.4172 25.1906 32.6211 33.8803 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.3913 11.8919 13.2688 14.4793 15.4652 19.2983 24.2340 29.3468 32.7973 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1882 12.8842 13.2047 13.6288 14.8175 16.0079 26.2194 34.6295 40.6600 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.8222 12.7639 13.0576 13.7684 15.0617 16.8855 24.7367 33.2043 37.6627 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3500 12.3612 12.9964 14.0273 15.2940 18.3275 23.5691 32.0492 33.9357 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7398 12.0197 12.9122 14.2901 15.3880 20.2463 22.8048 30.1346 31.5762 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.1589 12.6382 13.1551 13.8013 15.1298 17.9245 23.3765 31.8742 38.4178 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4743 12.2958 13.1025 14.0143 15.2946 19.2903 22.4821 30.8621 35.0369 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4871 12.0746 13.1954 14.1883 15.3988 19.7105 22.5884 29.9433 35.3727 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.1776 12.9970 13.4810 13.4810 14.9443 14.9443 27.7275 39.4052 42.0659 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.8551 13.1172 13.3540 13.4863 15.2034 15.2450 25.9367 38.4691 39.7586 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.5224 12.8610 13.2887 13.6232 15.4370 16.1479 24.4681 36.5712 37.8449 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.0838 12.4356 13.2427 13.8727 15.4880 17.7343 23.3257 33.3242 36.3731 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.2349 13.2791 13.3996 13.5901 15.1559 15.6915 24.2579 37.5277 40.3441 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.6313 13.0320 13.4868 13.6404 15.3502 16.5818 22.9945 36.2417 38.3355 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0484 12.6516 13.4026 13.7179 15.4095 18.0358 22.2384 34.1264 35.9252 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8005 12.9309 13.5206 13.7076 15.3609 17.3009 22.1505 35.1476 39.1811 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.3330 13.2991 13.2991 14.4427 15.3828 15.3828 22.8438 38.4259 41.5580 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5163 13.1822 13.3418 14.2982 15.4549 16.1781 22.0665 37.6872 40.2830 the Fermi energy is 15.2874 ev ! total energy = -85.72249140 Ry Harris-Foulkes estimate = -85.72249140 Ry estimated scf accuracy < 1.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.28987181 Ry hartree contribution = 14.34997653 Ry xc contribution = -29.60817437 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00012101 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.07 -0.00015682 0.00000000 0.00000000 -23.07 0.00 0.00 0.00000000 -0.00015682 0.00000000 0.00 -23.07 0.00 0.00000000 0.00000000 -0.00015682 0.00 0.00 -23.07 Writing output data file ni.save PWSCF : 10.95s CPU time, 11.52s wall time init_run : 1.43s CPU electrons : 8.39s CPU forces : 0.14s CPU stress : 0.59s CPU Called by init_run: wfcinit : 0.27s CPU potinit : 0.02s CPU Called by electrons: c_bands : 6.26s CPU ( 9 calls, 0.695 s avg) sum_band : 1.64s CPU ( 9 calls, 0.183 s avg) v_of_rho : 0.09s CPU ( 10 calls, 0.009 s avg) newd : 0.32s CPU ( 10 calls, 0.032 s avg) mix_rho : 0.04s CPU ( 9 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.26s CPU ( 2520 calls, 0.000 s avg) cegterg : 5.72s CPU ( 1080 calls, 0.005 s avg) Called by *egterg: h_psi : 4.52s CPU ( 3065 calls, 0.001 s avg) s_psi : 0.14s CPU ( 3065 calls, 0.000 s avg) g_psi : 0.08s CPU ( 1865 calls, 0.000 s avg) cdiaghg : 0.75s CPU ( 2945 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.14s CPU ( 3065 calls, 0.000 s avg) General routines calbec : 0.19s CPU ( 4385 calls, 0.000 s avg) cft3s : 4.19s CPU ( 55346 calls, 0.000 s avg) interpolate : 0.05s CPU ( 38 calls, 0.001 s avg) davcio : 0.01s CPU ( 3600 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/si.band.cg.out0000644000700200004540000002463412053145630022725 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:21 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 351, 8) NL pseudopotentials 0.04 Mb ( 351, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.98 Mb ( 8000, 8) The potential is recalculated from file : silicon.save/charge-density.dat Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.07 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation CG style diagonalization ethr = 1.25E-08, avg # of iterations = 8.8 total cpu time spent up to now is 0.89 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.0000 0.1000 band energies (ev): -5.7668 5.9810 6.0722 6.0722 8.7104 9.0571 9.0571 9.9838 k = 0.0000 0.0000 0.2000 band energies (ev): -5.6337 5.3339 5.6601 5.6601 8.4238 9.6301 9.6301 10.5192 k = 0.0000 0.0000 0.3000 band energies (ev): -5.4133 4.5265 5.1859 5.1859 8.0516 10.3698 10.3698 10.7062 k = 0.0000 0.0000 0.4000 band energies (ev): -5.1063 3.6529 4.7266 4.7266 7.6724 10.1364 11.1866 11.1866 k = 0.0000 0.0000 0.5000 band energies (ev): -4.7129 2.7564 4.3161 4.3161 7.3316 9.3547 12.0595 12.0595 k = 0.0000 0.0000 0.6000 band energies (ev): -4.2358 1.8517 3.9694 3.9694 7.0565 8.6170 12.9618 12.9618 k = 0.0000 0.0000 0.7000 band energies (ev): -3.6801 0.9501 3.6936 3.6936 6.8654 7.9924 13.8856 13.8856 k = 0.0000 0.0000 0.8000 band energies (ev): -3.0530 0.0683 3.4948 3.4948 6.7657 7.4943 14.8291 14.8291 k = 0.0000 0.0000 0.9000 band energies (ev): -2.3563 -0.7867 3.3738 3.3738 6.7691 7.1285 15.7632 15.7632 k = 0.0000 0.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.1000 0.1000 band energies (ev): -5.7218 5.5180 5.8909 6.2146 8.9135 8.9856 9.0810 10.3168 k = 0.0000 0.2000 0.2000 band energies (ev): -5.4577 4.2238 5.0583 6.0750 9.1873 9.2787 9.3685 11.4991 k = 0.0000 0.3000 0.3000 band energies (ev): -5.0244 2.9330 4.0923 5.8016 9.3562 9.6416 9.8965 11.9166 k = 0.0000 0.4000 0.4000 band energies (ev): -4.4382 1.7660 3.1712 5.3917 9.1678 10.2713 10.5715 11.9975 k = 0.0000 0.5000 0.5000 band energies (ev): -3.7277 0.7540 2.3987 4.8964 8.6931 11.0753 11.3920 12.4083 k = 0.0000 0.6000 0.6000 band energies (ev): -2.9584 -0.0844 1.8684 4.3957 8.1262 12.0466 12.3047 13.1205 k = 0.0000 0.7000 0.7000 band energies (ev): -2.2636 -0.7459 1.7118 3.9544 7.6098 11.3920 13.1675 14.0222 k = 0.0000 0.8000 0.8000 band energies (ev): -1.8118 -1.2183 2.0701 3.6165 7.2165 9.3814 14.4148 15.0152 k = 0.0000 0.9000 0.9000 band energies (ev): -1.6351 -1.5030 2.8302 3.4052 6.9710 7.6840 15.6697 15.9429 k = 0.0000 1.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.1000 0.1000 0.1000 band energies (ev): -5.6783 5.1038 6.0496 6.0496 8.8476 9.1205 9.1205 10.6116 k = 0.2000 0.2000 0.2000 band energies (ev): -5.2848 3.2219 5.6599 5.6599 8.5038 9.6359 9.6359 12.3332 k = 0.3000 0.3000 0.3000 band energies (ev): -4.6592 1.4043 5.3188 5.3188 8.1385 9.8032 9.8032 13.8447 k = 0.4000 0.4000 0.4000 band energies (ev): -3.8910 -0.1018 5.1024 5.1024 7.9003 9.6788 9.6788 13.9593 k = 0.5000 0.5000 0.5000 band energies (ev): -3.4180 -0.8220 5.0289 5.0289 7.8139 9.5968 9.5968 13.8378 Writing output data file silicon.save PWSCF : 0.98s CPU time, 1.02s wall time init_run : 0.05s CPU electrons : 0.82s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.82s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) ccgdiagg : 0.73s CPU ( 28 calls, 0.026 s avg) wfcrot : 0.08s CPU ( 28 calls, 0.003 s avg) Called by *cgdiagg: h_psi : 0.74s CPU ( 1988 calls, 0.000 s avg) s_psi : 0.01s CPU ( 3920 calls, 0.000 s avg) cdiaghg : 0.00s CPU ( 28 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 1988 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 3948 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.63s CPU ( 4368 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example01/reference/ni.band.david.out0000644000700200004540000004142012053145630023406 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:18 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file NiUS.RRKJ3.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 k( 29) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 30) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 31) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 32) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 33) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 34) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 35) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 36) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 37) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 38) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 39) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 40) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 41) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 42) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 43) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 44) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 45) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 46) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 47) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 48) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 49) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 50) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 51) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 52) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 53) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 54) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 55) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 56) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 144, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : ni.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.90 secs per-process dynamical memory: 7.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 12.6 total cpu time spent up to now is 1.61 secs End of band structure calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6855 12.6855 12.6855 13.9844 13.9844 39.8745 44.2744 k = 0.0000 0.0000 0.1000 band energies (ev): 5.8883 12.6320 12.7268 12.7268 13.9349 14.0035 39.6517 43.2966 k = 0.0000 0.0000 0.2000 band energies (ev): 6.2995 12.4784 12.8494 12.8494 13.7951 14.0590 39.1224 41.4406 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9611 12.2432 13.0485 13.0485 13.5938 14.1461 38.4976 39.4332 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8252 11.9549 13.3162 13.3162 13.3912 14.2567 37.4937 37.4937 k = 0.0000 0.0000 0.5000 band energies (ev): 8.7855 11.6434 13.3076 13.6371 13.6371 14.3805 35.6924 35.6924 k = 0.0000 0.0000 0.6000 band energies (ev): 9.6217 11.3406 13.5736 13.9882 13.9882 14.5057 33.7707 34.0980 k = 0.0000 0.0000 0.7000 band energies (ev): 10.0806 11.0746 14.3363 14.3363 14.4338 14.6197 30.9560 32.7655 k = 0.0000 0.0000 0.8000 band energies (ev): 10.1989 10.8681 14.6380 14.6380 14.7110 15.7858 28.3092 31.7513 k = 0.0000 0.0000 0.9000 band energies (ev): 10.1879 10.7375 14.7700 14.8457 14.8457 17.1895 26.1814 31.1124 k = 0.0000 0.0000 1.0000 band energies (ev): 10.1729 10.6931 14.7904 14.9202 14.9202 17.8715 25.2664 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6855 12.6855 12.6855 13.9844 13.9844 39.8745 44.2744 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0262 12.6025 12.7459 12.7624 13.9215 13.9924 39.2137 41.5816 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8297 12.3910 12.9143 12.9199 13.7629 14.0787 36.7316 37.7970 k = 0.0000 0.3000 0.3000 band energies (ev): 8.0641 12.1433 12.9235 13.1871 13.5838 14.4299 33.5733 34.3332 k = 0.0000 0.4000 0.4000 band energies (ev): 9.5147 11.9704 12.6919 13.4700 13.5166 15.1740 30.4777 31.3785 k = 0.0000 0.5000 0.5000 band energies (ev): 10.7579 11.9682 12.2941 13.4872 13.8708 16.4670 27.5861 29.0254 k = 0.0000 0.6000 0.6000 band energies (ev): 11.3246 11.8221 12.2024 13.6628 14.2120 18.5742 24.9336 27.3430 k = 0.0000 0.7000 0.7000 band energies (ev): 11.1553 11.4198 12.7038 13.9758 14.5074 21.4542 22.5361 26.2999 k = 0.0000 0.8000 0.8000 band energies (ev): 10.6971 11.0658 13.4597 14.3510 14.7326 20.4188 24.7037 25.9068 k = 0.0000 0.9000 0.9000 band energies (ev): 10.3183 10.7918 14.3667 14.6659 14.8727 18.6967 25.3155 28.6574 k = 0.0000 1.0000 1.0000 band energies (ev): 10.1729 10.6931 14.7904 14.9202 14.9202 17.8715 25.2664 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6855 12.6855 12.6855 13.9844 13.9844 39.8745 44.2744 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1628 12.5765 12.7780 12.7780 13.9477 13.9477 38.3974 41.3946 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3282 12.3629 12.9272 12.9272 13.9609 13.9609 33.2778 40.5232 k = 0.3000 0.3000 0.3000 band energies (ev): 8.8791 12.4603 12.8858 12.8858 14.2374 14.2374 28.1150 39.5576 k = 0.4000 0.4000 0.4000 band energies (ev): 9.8446 12.7466 12.7466 13.6854 14.5975 14.5975 23.7360 38.6690 k = 0.5000 0.5000 0.5000 band energies (ev): 10.0271 12.6830 12.6830 14.7536 14.7536 14.9657 21.5360 38.3257 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3414 13.3414 13.3414 14.5869 14.5869 39.8447 44.2979 k = 0.0000 0.0000 0.1000 band energies (ev): 5.9186 13.2845 13.3838 13.3838 14.5348 14.6066 39.6408 43.3569 k = 0.0000 0.0000 0.2000 band energies (ev): 6.3298 13.1210 13.5098 13.5098 14.3868 14.6639 39.1532 41.5340 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9930 12.8710 13.7147 13.7147 14.1709 14.7537 38.5744 39.5413 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8640 12.5655 13.9434 13.9912 13.9912 14.8680 37.6041 37.6041 k = 0.0000 0.0000 0.5000 band energies (ev): 8.8496 12.2360 13.8125 14.3239 14.3239 14.9959 35.7973 35.7973 k = 0.0000 0.0000 0.6000 band energies (ev): 9.7568 11.9166 13.9815 14.6899 14.6899 15.1252 33.8938 34.1913 k = 0.0000 0.0000 0.7000 band energies (ev): 10.3265 11.6365 14.7005 15.0549 15.0549 15.2432 31.1186 32.8434 k = 0.0000 0.0000 0.8000 band energies (ev): 10.5245 11.4194 15.3376 15.3732 15.3732 15.9342 28.5124 31.8131 k = 0.0000 0.0000 0.9000 band energies (ev): 10.5492 11.2823 15.3986 15.5937 15.5937 17.2531 26.4335 31.1617 k = 0.0000 0.0000 1.0000 band energies (ev): 10.5437 11.2357 15.4198 15.6730 15.6730 17.8924 25.5514 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3414 13.3414 13.3414 14.5869 14.5869 39.8447 44.2979 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0565 13.2512 13.4044 13.4196 14.5205 14.5952 39.2344 41.6365 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8617 13.0205 13.5636 13.5857 14.3530 14.6909 36.8475 37.8760 k = 0.0000 0.3000 0.3000 band energies (ev): 8.1076 12.7474 13.5372 13.8643 14.1637 15.0672 33.7407 34.4349 k = 0.0000 0.4000 0.4000 band energies (ev): 9.6041 12.5490 13.2595 14.0422 14.2081 15.8041 30.6766 31.5027 k = 0.0000 0.5000 0.5000 band energies (ev): 10.9732 12.5255 12.8080 14.0572 14.5778 17.0017 27.8060 29.1744 k = 0.0000 0.6000 0.6000 band energies (ev): 11.7308 12.2610 12.7461 14.2377 14.9340 18.9492 25.1656 27.5224 k = 0.0000 0.7000 0.7000 band energies (ev): 11.6353 11.8499 13.2457 14.5630 15.2423 21.7046 22.7685 26.5137 k = 0.0000 0.8000 0.8000 band energies (ev): 11.1009 11.5845 14.0211 14.9559 15.4774 20.6312 24.9046 26.1244 k = 0.0000 0.9000 0.9000 band energies (ev): 10.6950 11.3321 14.9995 15.2878 15.6235 18.8375 25.5934 28.7587 k = 0.0000 1.0000 1.0000 band energies (ev): 10.5437 11.2357 15.4198 15.6730 15.6730 17.8924 25.5514 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3414 13.3414 13.3414 14.5869 14.5869 39.8447 44.2979 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1932 13.2210 13.4364 13.4364 14.5485 14.5485 38.4599 41.3967 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3656 12.9684 13.5763 13.5763 14.5746 14.5746 33.4238 40.5076 k = 0.3000 0.3000 0.3000 band energies (ev): 8.9824 12.9483 13.5017 13.5017 14.8921 14.8921 28.3212 39.5349 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1535 13.3411 13.3411 13.8799 15.2834 15.2834 24.0317 38.6351 k = 0.5000 0.5000 0.5000 band energies (ev): 10.4256 13.2709 13.2709 14.9680 15.4507 15.4507 21.9343 38.2872 Writing output data file ni.save PWSCF : 1.74s CPU time, 1.85s wall time init_run : 0.83s CPU electrons : 0.71s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 0.71s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.01s CPU ( 56 calls, 0.000 s avg) cegterg : 0.63s CPU ( 57 calls, 0.011 s avg) Called by *egterg: h_psi : 0.38s CPU ( 821 calls, 0.000 s avg) s_psi : 0.01s CPU ( 821 calls, 0.000 s avg) g_psi : 0.01s CPU ( 708 calls, 0.000 s avg) cdiaghg : 0.20s CPU ( 764 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 821 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 821 calls, 0.000 s avg) cft3 : 0.00s CPU ( 9 calls, 0.000 s avg) cft3s : 0.27s CPU ( 7520 calls, 0.000 s avg) interpolate : 0.00s CPU ( 2 calls, 0.001 s avg) davcio : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example01/reference/cu.band.david.out0000644000700200004540000002624312053145630023415 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:32 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/cu.save/ Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 331 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 170, 8) NL pseudopotentials 0.03 Mb ( 170, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 170, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 13, 8) The potential is recalculated from file : /home/dalcorso/tmp/cu.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.82 secs per-process dynamical memory: 10.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 9.09E-09, avg # of iterations = 12.9 total cpu time spent up to now is 1.46 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2012 11.2012 11.2012 12.0901 12.0901 38.8601 41.0130 k = 0.0000 0.0000 0.1000 band energies (ev): 5.1157 11.1627 11.2326 11.2326 12.0552 12.1044 38.3442 39.7386 k = 0.0000 0.0000 0.2000 band energies (ev): 5.4878 11.0517 11.3257 11.3257 11.9568 12.1460 37.3080 37.7399 k = 0.0000 0.0000 0.3000 band energies (ev): 6.0904 10.8805 11.4769 11.4769 11.8155 12.2111 35.7804 35.7804 k = 0.0000 0.0000 0.4000 band energies (ev): 6.8872 10.6674 11.6761 11.6787 11.6787 12.2933 33.9667 33.9667 k = 0.0000 0.0000 0.5000 band energies (ev): 7.7943 10.4348 11.6326 11.9192 11.9192 12.3850 32.3393 32.3393 k = 0.0000 0.0000 0.6000 band energies (ev): 8.6197 10.2060 11.8839 12.1805 12.1805 12.4772 30.7560 30.9299 k = 0.0000 0.0000 0.7000 band energies (ev): 9.1027 10.0028 12.4367 12.4367 12.5611 12.6832 27.8377 29.7723 k = 0.0000 0.0000 0.8000 band energies (ev): 9.2513 9.8435 12.6278 12.6565 12.6565 13.9730 25.1907 28.9042 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2642 9.7423 12.6707 12.8064 12.8064 15.3576 23.0558 28.3636 k = 0.0000 0.0000 1.0000 band energies (ev): 9.2585 9.7079 12.6856 12.8600 12.8600 16.0644 22.1077 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2012 11.2012 11.2012 12.0901 12.0901 38.8601 41.0130 k = 0.0000 0.1000 0.1000 band energies (ev): 5.2404 11.1421 11.2473 11.2594 12.0460 12.0976 37.2038 38.2087 k = 0.0000 0.2000 0.2000 band energies (ev): 5.9705 10.9901 11.3703 11.3797 11.9346 12.1709 33.7486 34.5125 k = 0.0000 0.3000 0.3000 band energies (ev): 7.1061 10.8092 11.3665 11.5818 11.8080 12.4566 30.4007 31.1635 k = 0.0000 0.4000 0.4000 band energies (ev): 8.4619 10.6805 11.1897 11.7278 11.8289 13.0621 27.3469 28.3088 k = 0.0000 0.5000 0.5000 band energies (ev): 9.6266 10.6774 10.8946 11.7427 12.0920 14.2038 24.5960 26.0247 k = 0.0000 0.6000 0.6000 band energies (ev): 10.1517 10.5384 10.8550 11.8731 12.3434 16.1947 22.1393 24.3503 k = 0.0000 0.7000 0.7000 band energies (ev): 10.0403 10.2352 11.2394 12.1022 12.5595 18.9479 19.9738 23.2571 k = 0.0000 0.8000 0.8000 band energies (ev): 9.6756 9.9822 11.8181 12.3733 12.7235 18.1225 22.0028 22.8456 k = 0.0000 0.9000 0.9000 band energies (ev): 9.3740 9.7813 12.4875 12.5978 12.8254 16.6906 22.1916 25.8664 k = 0.0000 1.0000 1.0000 band energies (ev): 9.2585 9.7079 12.6856 12.8600 12.8600 16.0644 22.1077 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2012 11.2012 11.2012 12.0901 12.0901 38.8601 41.0130 k = 0.1000 0.1000 0.1000 band energies (ev): 5.3641 11.1241 11.2711 11.2711 12.0661 12.0661 35.6738 39.3797 k = 0.2000 0.2000 0.2000 band energies (ev): 6.4305 10.9739 11.3755 11.3755 12.0912 12.0912 30.1316 38.8250 k = 0.3000 0.3000 0.3000 band energies (ev): 7.9084 11.0662 11.3280 11.3280 12.3174 12.3174 25.0854 38.0355 k = 0.4000 0.4000 0.4000 band energies (ev): 8.9121 11.2162 11.2162 12.1712 12.5899 12.5899 20.8495 37.3033 k = 0.5000 0.5000 0.5000 band energies (ev): 9.1126 11.1667 11.1667 12.7053 12.7053 13.4643 18.6413 37.0214 Writing output data file cu.save PWSCF : 1.60s CPU time, 1.64s wall time init_run : 0.64s CPU electrons : 0.64s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 0.63s CPU v_of_rho : 0.00s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.57s CPU ( 30 calls, 0.019 s avg) Called by *egterg: h_psi : 0.40s CPU ( 419 calls, 0.001 s avg) s_psi : 0.01s CPU ( 419 calls, 0.000 s avg) g_psi : 0.01s CPU ( 361 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 389 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 419 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 419 calls, 0.000 s avg) cft3s : 0.30s CPU ( 3676 calls, 0.000 s avg) interpolate : 0.00s CPU davcio : 0.00s CPU ( 28 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/ni.scf.cg.out0000644000700200004540000011316412053145630022564 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:28: 7 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 k( 61) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 63) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 64) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 65) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 66) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 67) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 68) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 69) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 70) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 71) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 72) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 73) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 74) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 75) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 76) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 77) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 78) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 79) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 80) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 81) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 82) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 83) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 84) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 85) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 86) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 87) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 88) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 89) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 90) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 91) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 92) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 93) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 94) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 95) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 96) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 97) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 98) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 99) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 100) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 101) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 102) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 103) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 104) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 105) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 106) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 107) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 108) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 109) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 110) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 111) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 112) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 113) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 114) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 115) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 116) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 117) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 118) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 119) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 120) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 9, 9) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 atomic + 3 random wfc total cpu time spent up to now is 1.50 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.4 total cpu time spent up to now is 2.95 secs total energy = -85.36096599 Ry Harris-Foulkes estimate = -85.36514502 Ry estimated scf accuracy < 0.90141751 Ry total magnetization = 1.84 Bohr mag/cell absolute magnetization = 1.85 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 9.01E-03, avg # of iterations = 3.2 total cpu time spent up to now is 4.05 secs total energy = -85.54122001 Ry Harris-Foulkes estimate = -85.82958006 Ry estimated scf accuracy < 0.86841827 Ry total magnetization = 0.68 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 8.68E-03, avg # of iterations = 3.0 total cpu time spent up to now is 5.08 secs total energy = -85.71078604 Ry Harris-Foulkes estimate = -85.68406274 Ry estimated scf accuracy < 0.04302436 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 4.30E-04, avg # of iterations = 3.0 total cpu time spent up to now is 6.10 secs total energy = -85.72197191 Ry Harris-Foulkes estimate = -85.72140004 Ry estimated scf accuracy < 0.00131660 Ry total magnetization = 0.62 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.32E-05, avg # of iterations = 3.4 total cpu time spent up to now is 7.23 secs total energy = -85.72236901 Ry Harris-Foulkes estimate = -85.72222338 Ry estimated scf accuracy < 0.00023033 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 2.30E-06, avg # of iterations = 3.4 total cpu time spent up to now is 8.35 secs total energy = -85.72248656 Ry Harris-Foulkes estimate = -85.72248257 Ry estimated scf accuracy < 0.00003069 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 3.07E-07, avg # of iterations = 3.0 total cpu time spent up to now is 9.38 secs total energy = -85.72249034 Ry Harris-Foulkes estimate = -85.72248982 Ry estimated scf accuracy < 0.00000225 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 2.25E-08, avg # of iterations = 3.2 total cpu time spent up to now is 10.48 secs total energy = -85.72249130 Ry Harris-Foulkes estimate = -85.72249087 Ry estimated scf accuracy < 0.00000101 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.01E-08, avg # of iterations = 3.0 total cpu time spent up to now is 11.50 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9120 12.6401 12.7235 12.7235 13.9672 13.9672 39.4726 42.4109 44.0014 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3390 12.4939 12.8361 12.8409 13.8264 14.0337 38.2933 40.8113 41.8234 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1584 12.2109 13.0524 13.0698 13.6128 14.1569 36.6038 39.3135 39.3758 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.2720 11.8505 13.1516 13.3955 13.6433 14.3188 34.7983 36.9240 37.9143 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.4203 11.4728 13.1991 13.7874 14.1061 14.4958 33.0561 34.8021 35.0427 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.1165 11.1346 13.7245 14.1927 14.6627 14.9101 31.2033 31.8423 33.0617 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.2636 10.8825 14.3316 14.5325 14.7985 16.3746 28.0531 30.5458 31.8084 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.2377 10.7485 14.6331 14.7176 14.8871 17.9390 25.6718 29.9311 31.1465 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7532 12.4198 12.8933 12.8975 13.8046 14.0430 36.2755 39.1047 42.8592 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5452 12.2046 12.9777 13.0813 13.6868 14.2125 34.2597 37.1139 41.9176 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6157 11.8967 12.9164 13.3632 13.8097 14.4734 32.4181 35.2311 39.3632 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.7155 11.5622 12.8188 13.7138 14.2261 14.8741 30.7918 33.4967 35.6958 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.3793 11.2563 13.0672 14.0980 14.5776 15.7747 29.4218 31.5621 32.4411 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.5002 11.0253 13.5612 14.4139 14.7599 17.3449 28.0922 28.6879 31.1642 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.4586 10.9026 13.9043 14.5421 14.8703 18.9888 25.7859 27.9626 30.5806 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.2767 12.1318 12.9064 13.1707 13.6340 14.4851 32.1371 35.0423 43.2095 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.2452 11.9632 12.7382 13.3504 13.7362 14.9227 30.2767 33.2183 40.3511 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.2213 11.7372 12.4838 13.6346 14.0802 15.5988 28.6800 31.6638 36.3664 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 10.8203 11.4995 12.4573 13.9652 14.4287 16.7886 27.3679 30.3865 32.5389 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 10.8988 11.3070 12.7650 14.1826 14.6918 18.5758 26.3889 28.7462 29.8040 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 10.8246 11.2090 13.0468 14.2305 14.8632 20.4640 25.6514 26.3854 29.2117 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.0256 12.0016 12.5665 13.3426 13.7716 15.5598 28.4099 31.4584 41.0969 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.7528 11.9715 12.2592 13.5022 14.0301 16.4889 26.8150 30.0153 37.3165 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.2447 11.7946 12.0500 13.7584 14.3640 17.9337 25.5045 28.9110 33.4079 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.2921 11.6683 12.1313 13.9141 14.6663 19.9277 24.5293 28.1124 29.8822 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.1512 11.6593 12.2850 13.9463 14.8613 22.1139 23.9544 26.6771 28.0355 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.1279 12.0204 12.1763 13.5100 14.1528 17.6717 25.2002 28.7034 37.9212 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.3600 11.6825 12.2746 13.7017 14.3952 19.3046 23.8524 27.7565 34.5389 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.3383 11.5510 12.2976 13.8723 14.6675 21.3638 22.8886 27.1404 30.9747 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.1869 11.4832 12.6289 13.8740 14.5151 20.9384 22.5122 26.9683 34.7729 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 10.9773 11.2911 12.9101 14.0924 14.6992 21.0783 23.3699 26.5024 32.1959 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 10.6500 11.0393 13.5297 14.3478 14.7752 19.8116 25.2620 26.2886 32.4298 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1490 12.3848 12.9153 12.9153 13.9463 13.9463 33.9507 40.6190 42.8592 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9001 12.2433 12.9542 12.9966 13.8844 14.1745 31.8263 39.5831 40.2797 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9010 12.0027 12.8500 13.1653 14.1648 14.4266 29.9623 37.8956 38.1474 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 9.9125 11.7107 12.7077 13.4225 14.6481 14.9229 28.3600 35.5625 35.8388 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.5387 11.4082 12.8532 13.7436 14.7936 16.2050 27.0372 32.0230 34.1889 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 10.6804 11.1642 13.2462 14.0803 14.8322 17.9971 26.0368 28.6478 33.0298 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.5585 12.2709 12.9017 12.9799 13.9472 14.3824 29.6692 37.9511 41.7133 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3981 12.2154 12.7535 13.0605 14.1481 14.7913 27.8105 36.2163 40.0119 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.2094 12.0263 12.5519 13.2667 14.5182 15.5526 26.2409 34.6189 36.6545 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 10.7588 11.7054 12.5498 13.5597 14.7181 16.9896 24.9667 32.4881 33.7645 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 10.9688 11.4202 12.7354 13.8691 14.7501 18.9805 24.0153 29.1747 32.6896 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 9.9714 12.4432 12.6302 13.0291 14.1449 15.4091 25.9848 34.5169 40.6366 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.4971 12.3265 12.5147 13.1741 14.3788 16.3913 24.4790 33.0804 37.5681 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 10.9359 11.9277 12.4597 13.4313 14.5929 17.9593 23.2970 31.9164 33.8121 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.2736 11.5937 12.3713 13.6971 14.6678 19.9683 22.5287 29.9763 31.4464 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 10.7557 12.1783 12.6602 13.2080 14.4331 17.5330 23.0841 31.7385 38.3099 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.0183 11.8731 12.5732 13.4186 14.5879 18.9956 22.1673 30.7157 34.9244 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.0170 11.6637 12.6548 13.5830 14.6893 19.4274 22.3000 29.7833 35.2773 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.0548 12.5366 12.8685 12.8685 14.2844 14.2844 27.5124 39.4294 41.9478 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.6440 12.7230 12.7665 12.8800 14.5674 14.5757 25.6925 38.4692 39.6464 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.2054 12.4174 12.7650 13.0184 14.7457 15.6518 24.1998 36.5086 37.7393 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 10.6755 12.0088 12.7073 13.2667 14.7870 17.3639 23.0422 33.2019 36.2735 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 9.9303 12.6997 12.8051 13.2792 14.4725 15.0933 23.9722 37.4846 40.2945 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.2527 12.5022 12.8954 13.2314 14.6593 16.1514 22.6703 36.1714 38.2403 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 10.6205 12.1882 12.9089 13.1232 14.7084 17.7230 21.8907 34.0190 35.8118 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.3871 12.4128 12.9283 13.2779 14.6632 16.9658 21.7835 35.0549 39.0775 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 9.9676 12.7084 12.7084 14.3519 14.6898 14.6898 22.5007 38.4627 41.4620 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.1166 12.6118 12.7517 13.9392 14.7571 15.8139 21.6820 37.6851 40.1864 ------ SPIN DOWN ---------- k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9423 13.2919 13.3810 13.3810 14.5690 14.5690 39.4758 42.4457 44.0457 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3696 13.1353 13.4958 13.5007 14.4208 14.6386 38.3636 40.8365 41.9152 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1915 12.8346 13.7095 13.7342 14.1981 14.7678 36.7186 39.4224 39.4233 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.3188 12.4526 13.7351 14.0673 14.2766 14.9387 34.9274 37.0338 37.9863 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.5245 12.0534 13.7062 14.4681 14.7453 15.1284 33.1823 34.9012 35.1551 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.3520 11.6971 14.1954 14.8773 15.3164 15.4383 31.3478 31.9672 33.1431 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.5986 11.4322 14.9361 15.1983 15.4945 16.6428 28.2599 30.6380 31.8708 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.6073 11.2916 15.3103 15.3494 15.6322 18.0527 25.9391 30.0092 31.1961 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7852 13.0500 13.5500 13.5564 14.3989 14.6530 36.3891 39.1679 42.8832 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5823 12.8178 13.6113 13.7454 14.2814 14.8367 34.3987 37.2088 41.9619 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6713 12.4899 13.5074 14.0219 14.4222 15.1126 32.5720 35.3450 39.4342 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.8329 12.1351 13.3658 14.3671 14.8446 15.5017 30.9494 33.6153 35.8079 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.6281 11.8124 13.5765 14.7464 15.2362 16.2800 29.5734 31.7072 32.5544 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.8468 11.5706 14.1050 15.0469 15.4722 17.6741 28.2748 28.8397 31.2557 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.8373 11.4425 14.4936 15.1592 15.6179 19.1883 26.0415 28.0868 30.6622 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.3258 12.7273 13.5158 13.8278 14.2358 15.1253 32.2983 35.1569 43.2293 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3257 12.5389 13.3183 13.9798 14.3690 15.5606 30.4551 33.3476 40.4216 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.3760 12.2923 13.0401 14.2474 14.7348 16.1863 28.8677 31.7999 36.4746 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.1005 12.0394 12.9846 14.5704 15.1196 17.2531 27.5551 30.5248 32.6754 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.2676 11.8435 13.2914 14.7820 15.4222 18.9055 26.5694 28.9277 29.9268 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2183 11.7441 13.5979 14.8273 15.6124 20.6945 25.8515 26.5878 29.3299 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1637 12.5547 13.1188 13.9362 14.4468 16.1656 28.6100 31.6003 41.1338 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.9899 12.4955 12.7968 14.0851 14.7225 17.0135 27.0302 30.1660 37.4189 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.5820 12.2943 12.5936 14.3409 15.0767 18.3385 25.7246 29.0676 33.5355 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.6822 12.1941 12.6583 14.4977 15.4017 20.2284 24.7449 28.2782 30.0313 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.5559 12.1927 12.8234 14.5271 15.6107 22.3433 24.1635 26.8834 28.1802 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.4809 12.4758 12.7209 14.0910 14.8611 18.1022 25.4357 28.8675 38.0321 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8102 12.1062 12.8156 14.2851 15.1160 19.6344 24.0961 27.9338 34.6538 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.7575 12.0464 12.8391 14.4557 15.4043 21.6172 23.1292 27.3301 31.1074 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6824 11.8911 13.1703 14.4661 15.2417 21.1953 22.7661 27.1663 34.8663 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4040 11.7854 13.4554 14.6897 15.4362 21.3197 23.5811 26.7161 32.3000 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.0468 11.5628 14.0914 14.9627 15.5124 20.0406 25.4558 26.4955 32.4991 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1844 12.9977 13.5678 13.5678 14.5565 14.5565 34.0896 40.6035 42.9618 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9463 12.8331 13.5845 13.6386 14.5044 14.8055 31.9878 39.5994 40.3950 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9768 12.5673 13.4415 13.8015 14.7873 15.0782 30.1403 38.0086 38.1941 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.0650 12.2490 13.2648 14.0572 15.3194 15.4963 28.5455 35.6611 35.9419 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.8239 11.9299 13.3721 14.3787 15.4837 16.6689 27.2200 32.1674 34.2788 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.0536 11.6846 13.7763 14.7123 15.5423 18.3298 26.2107 28.8322 33.1070 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.6293 12.8206 13.5168 13.6059 14.5849 15.0279 29.8548 38.0246 41.7480 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.5247 12.7222 13.3432 13.6763 14.7951 15.4317 28.0170 36.3136 40.0637 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.4383 12.4965 13.1238 13.8794 15.1834 16.1109 26.4611 34.7275 36.7576 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.1115 12.1663 13.0913 14.1727 15.4121 17.4172 25.1906 32.6212 33.8803 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.3913 11.8919 13.2688 14.4793 15.4652 19.2984 24.2340 29.3469 32.7973 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1882 12.8843 13.2047 13.6288 14.8175 16.0079 26.2194 34.6295 40.6602 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.8222 12.7639 13.0576 13.7684 15.0616 16.8855 24.7368 33.2043 37.6627 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3500 12.3612 12.9964 14.0273 15.2940 18.3276 23.5691 32.0492 33.9358 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7398 12.0197 12.9122 14.2900 15.3880 20.2463 22.8049 30.1346 31.5763 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.1589 12.6382 13.1551 13.8012 15.1298 17.9246 23.3766 31.8742 38.4179 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4743 12.2958 13.1025 14.0142 15.2946 19.2903 22.4822 30.8621 35.0370 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4871 12.0746 13.1954 14.1883 15.3988 19.7106 22.5884 29.9433 35.3727 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.1777 12.9970 13.4810 13.4810 14.9442 14.9442 27.7275 39.4053 42.0659 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.8551 13.1172 13.3540 13.4863 15.2034 15.2450 25.9368 38.4692 39.7586 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.5225 12.8610 13.2887 13.6232 15.4370 16.1479 24.4682 36.5713 37.8450 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.0838 12.4356 13.2427 13.8727 15.4880 17.7343 23.3257 33.3242 36.3732 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.2349 13.2791 13.3996 13.5901 15.1559 15.6915 24.2580 37.5277 40.3444 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.6313 13.0320 13.4868 13.6404 15.3502 16.5818 22.9945 36.2418 38.3356 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0485 12.6516 13.4026 13.7179 15.4094 18.0358 22.2385 34.1265 35.9252 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8005 12.9309 13.5205 13.7076 15.3609 17.3009 22.1505 35.1477 39.1819 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.3330 13.2991 13.2991 14.4427 15.3828 15.3828 22.8438 38.4260 41.5581 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5163 13.1822 13.3418 14.2982 15.4549 16.1781 22.0665 37.6872 40.2831 the Fermi energy is 15.2873 ev ! total energy = -85.72249139 Ry Harris-Foulkes estimate = -85.72249139 Ry estimated scf accuracy < 4.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.28977701 Ry hartree contribution = 14.35011473 Ry xc contribution = -29.60821734 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00012144 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.57 -0.00015342 0.00000000 0.00000000 -22.57 0.00 0.00 0.00000000 -0.00015342 0.00000000 0.00 -22.57 0.00 0.00000000 0.00000000 -0.00015342 0.00 0.00 -22.57 Writing output data file ni.save PWSCF : 12.54s CPU time, 13.13s wall time init_run : 1.43s CPU electrons : 10.00s CPU forces : 0.13s CPU stress : 0.59s CPU Called by init_run: wfcinit : 0.26s CPU potinit : 0.02s CPU Called by electrons: c_bands : 7.86s CPU ( 9 calls, 0.873 s avg) sum_band : 1.65s CPU ( 9 calls, 0.183 s avg) v_of_rho : 0.09s CPU ( 10 calls, 0.009 s avg) newd : 0.32s CPU ( 10 calls, 0.032 s avg) mix_rho : 0.04s CPU ( 9 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.25s CPU ( 2520 calls, 0.000 s avg) ccgdiagg : 5.81s CPU ( 1080 calls, 0.005 s avg) wfcrot : 2.17s CPU ( 1080 calls, 0.002 s avg) Called by *cgdiagg: h_psi : 6.80s CPU ( 24475 calls, 0.000 s avg) s_psi : 0.35s CPU ( 47870 calls, 0.000 s avg) cdiaghg : 0.07s CPU ( 1080 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.27s CPU ( 24475 calls, 0.000 s avg) General routines calbec : 0.33s CPU ( 49190 calls, 0.000 s avg) cft3s : 5.90s CPU ( 76140 calls, 0.000 s avg) interpolate : 0.05s CPU ( 38 calls, 0.001 s avg) davcio : 0.01s CPU ( 3600 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/si.scf.cg.out0000644000700200004540000002417312053145630022572 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:55 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 20 npp = 20 ncplane = 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 20 253 2733 20 253 2733 85 531 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 350, 4) NL pseudopotentials 0.04 Mb ( 350, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.13 secs per-process dynamical memory: 8.1 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold CG style diagonalization ethr = 7.77E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.29 secs total energy = -15.84092282 Ry Harris-Foulkes estimate = -15.86197283 Ry estimated scf accuracy < 0.06153381 Ry iteration # 2 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 7.69E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.39 secs total energy = -15.84402284 Ry Harris-Foulkes estimate = -15.84433371 Ry estimated scf accuracy < 0.00216338 Ry iteration # 3 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 2.70E-05, avg # of iterations = 3.8 total cpu time spent up to now is 0.51 secs total energy = -15.84450634 Ry Harris-Foulkes estimate = -15.84454253 Ry estimated scf accuracy < 0.00007555 Ry iteration # 4 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 9.44E-07, avg # of iterations = 4.0 total cpu time spent up to now is 0.64 secs total energy = -15.84452598 Ry Harris-Foulkes estimate = -15.84452965 Ry estimated scf accuracy < 0.00000816 Ry iteration # 5 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 1.02E-07, avg # of iterations = 3.9 total cpu time spent up to now is 0.76 secs total energy = -15.84452722 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 0.00000007 Ry iteration # 6 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 8.22E-10, avg # of iterations = 4.4 total cpu time spent up to now is 0.89 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 335 PWs) bands (ev): -5.6039 4.6467 5.9568 5.9568 k = 0.1250 0.1250 0.3750 ( 338 PWs) bands (ev): -5.0584 3.0175 4.9012 4.9909 k = 0.1250 0.1250 0.6250 ( 337 PWs) bands (ev): -3.9883 1.3106 3.5165 3.9919 k = 0.1250 0.1250 0.8750 ( 343 PWs) bands (ev): -2.4615 -0.5936 2.7226 3.5069 k = 0.1250 0.3750 0.3750 ( 341 PWs) bands (ev): -4.5395 1.5909 3.8905 5.4637 k = 0.1250 0.3750 0.6250 ( 340 PWs) bands (ev): -3.5490 0.3751 2.8565 4.2745 k = 0.1250 0.3750 0.8750 ( 347 PWs) bands (ev): -2.2719 -0.7033 2.0784 3.2106 k = 0.1250 0.6250 0.6250 ( 344 PWs) bands (ev): -2.8220 -0.4390 2.1614 4.3230 k = 0.3750 0.3750 0.3750 ( 350 PWs) bands (ev): -4.0849 0.2304 5.1432 5.1432 k = 0.3750 0.3750 0.6250 ( 343 PWs) bands (ev): -3.3347 -0.5842 3.9340 4.6556 ! total energy = -15.84452726 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 1.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 4.79352772 Ry hartree contribution = 1.07664023 Ry xc contribution = -4.81493655 Ry ewald contribution = -16.89975867 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -10.24 -0.00006959 0.00000000 0.00000000 -10.24 0.00 0.00 0.00000000 -0.00006959 0.00000000 0.00 -10.24 0.00 0.00000000 0.00000000 -0.00006959 0.00 0.00 -10.24 Writing output data file silicon.save PWSCF : 1.02s CPU time, 1.06s wall time init_run : 0.10s CPU electrons : 0.76s CPU forces : 0.00s CPU stress : 0.03s CPU Called by init_run: wfcinit : 0.06s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.64s CPU ( 7 calls, 0.091 s avg) sum_band : 0.10s CPU ( 7 calls, 0.014 s avg) v_of_rho : 0.01s CPU ( 7 calls, 0.002 s avg) mix_rho : 0.01s CPU ( 7 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 170 calls, 0.000 s avg) ccgdiagg : 0.50s CPU ( 70 calls, 0.007 s avg) wfcrot : 0.18s CPU ( 60 calls, 0.003 s avg) Called by *cgdiagg: h_psi : 0.64s CPU ( 824 calls, 0.001 s avg) cdiaghg : 0.00s CPU ( 60 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 824 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 1608 calls, 0.000 s avg) cft3s : 0.67s CPU ( 2395 calls, 0.000 s avg) davcio : 0.00s CPU ( 240 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/cu.bands.out0000644000700200004540000006523212053145630022513 0ustar marsamoscm Program POST-PROC v.4.1a starts ... Today is 10Jul2009 at 21:27:34 Parallel version (MPI) Number of processors in use: 1 file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 331 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = 4.99015 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 11.20118 eV 3 --> T_2g G_25' G_5+ e( 5 - 6) = 12.09011 eV 2 --> E_g G_12 G_3+ e( 7 - 7) = 38.86010 eV 1 --> A_2u G_2' G_2- e( 8 - 8) = 41.01302 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.10000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 5.11572 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 11.16272 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 11.23258 eV 2 --> E G_5 D_5 e( 5 - 5) = 12.05515 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 12.10443 eV 1 --> B_1 G_3 D_2 e( 7 - 7) = 38.34422 eV 1 --> B_2 G_4 D_2' e( 8 - 8) = 39.73857 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.20000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 5.48782 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 11.05169 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 11.32569 eV 2 --> E G_5 D_5 e( 5 - 5) = 11.95684 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 12.14603 eV 1 --> B_1 G_3 D_2 e( 7 - 7) = 37.30805 eV 1 --> B_2 G_4 D_2' e( 8 - 8) = 37.73990 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.30000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 6.09043 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.88051 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 11.47692 eV 2 --> E G_5 D_5 e( 5 - 5) = 11.81553 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 12.21105 eV 1 --> B_1 G_3 D_2 e( 7 - 8) = 35.78035 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.40000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 6.88721 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.66741 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 11.67615 eV 1 --> A_1 G_1 D_1 e( 4 - 5) = 11.67873 eV 2 --> E G_5 D_5 e( 6 - 6) = 12.29334 eV 1 --> B_1 G_3 D_2 e( 7 - 8) = 33.96674 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.50000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 7.79426 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.43481 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 11.63256 eV 1 --> A_1 G_1 D_1 e( 4 - 5) = 11.91924 eV 2 --> E G_5 D_5 e( 6 - 6) = 12.38498 eV 1 --> B_1 G_3 D_2 e( 7 - 8) = 32.33930 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.60000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 8.61966 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.20600 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 11.88392 eV 1 --> A_1 G_1 D_1 e( 4 - 5) = 12.18053 eV 2 --> E G_5 D_5 e( 6 - 6) = 12.47720 eV 1 --> B_1 G_3 D_2 e( 7 - 7) = 30.75602 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 30.92991 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.70000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 9.10267 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.00277 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 12.43673 eV 2 --> E G_5 D_5 e( 5 - 5) = 12.56114 eV 1 --> B_1 G_3 D_2 e( 6 - 6) = 12.68325 eV 1 --> A_1 G_1 D_1 e( 7 - 7) = 27.83769 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 29.77229 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.80000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 9.25125 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 9.84354 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 12.62779 eV 1 --> B_1 G_3 D_2 e( 4 - 5) = 12.65649 eV 2 --> E G_5 D_5 e( 6 - 6) = 13.97303 eV 1 --> A_1 G_1 D_1 e( 7 - 7) = 25.19066 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 28.90422 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.90000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 9.26422 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 9.74231 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 12.67073 eV 1 --> B_1 G_3 D_2 e( 4 - 5) = 12.80637 eV 2 --> E G_5 D_5 e( 6 - 6) = 15.35755 eV 1 --> A_1 G_1 D_1 e( 7 - 7) = 23.05578 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 28.36357 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 1.00000 ) point group D_4h(4/mmm) there are 10 classes the character table: E 2C4 C2 2C2' 2C2'' i 2S4 s_h 2s_v 2s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00 B_1g 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 B_2g 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 E_g 2.00 0.00 -2.00 0.00 0.00 2.00 0.00 -2.00 0.00 0.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 B_1u 1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 1.00 B_2u 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 E_u 2.00 0.00 -2.00 0.00 0.00 -2.00 0.00 2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C2' 3 4 2C2'' 5 6 2C4 7 8 i 9 s_h 10 2s_v 11 12 2s_d 13 14 2S4 15 16 Band symmetry, D_4h(4/mmm) point group: e( 1 - 1) = 9.25850 eV 1 --> A_1g X_1 M_1 e( 2 - 2) = 9.70788 eV 1 --> B_2g X_3 M_3 e( 3 - 3) = 12.68564 eV 1 --> B_1g X_2 M_2 e( 4 - 5) = 12.85999 eV 2 --> E_g X_5 M_5 e( 6 - 6) = 16.06445 eV 1 --> A_2u X_4' M_4' e( 7 - 7) = 22.10773 eV 1 --> A_1g X_1 M_1 e( 8 - 8) = 28.17964 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = 4.99015 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 11.20118 eV 3 --> T_2g G_25' G_5+ e( 5 - 6) = 12.09011 eV 2 --> E_g G_12 G_3+ e( 7 - 7) = 38.86010 eV 1 --> A_2u G_2' G_2- e( 8 - 8) = 41.01302 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.10000, 0.10000 ) point group C_2v (mm2) there are 4 classes the character table: E C2 s_xz s_yz A_1 1.00 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 -1.00 B_2 1.00 -1.00 -1.00 1.00 the symmetry operations in each class: E 1 C2 2 s_xz 3 s_yz 4 Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 5.24041 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 11.14214 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.24727 eV 1 --> A_2 D_2 S_2 e( 4 - 4) = 11.25939 eV 1 --> A_1 D_1 S_1 e( 5 - 5) = 12.04599 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 12.09755 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 37.20376 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 38.20872 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.20000, 0.20000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 5.97053 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.99015 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.37028 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.37970 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 11.93457 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 12.17093 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 33.74860 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 34.51249 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.30000, 0.30000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 7.10606 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.80924 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.36652 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.58181 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 11.80804 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 12.45660 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 30.40070 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 31.16348 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.40000, 0.40000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 8.46188 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.68048 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.18972 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.72783 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 11.82885 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 13.06207 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 27.34694 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 28.30879 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.50000, 0.50000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 9.62663 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.67739 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 10.89456 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.74267 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.09197 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 14.20383 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 24.59597 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 26.02470 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.60000, 0.60000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 10.15167 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.53844 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 10.85505 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 11.87307 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.34336 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 16.19472 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 22.13928 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 24.35028 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.70000, 0.70000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 10.04028 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.23520 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 11.23943 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 12.10222 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.55949 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 18.94786 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 19.97382 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 23.25714 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.80000, 0.80000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 9.67555 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 9.98224 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 11.81809 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 12.37326 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.72353 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 18.12250 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 22.00282 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 22.84556 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.90000, 0.90000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 9.37403 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 9.78135 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 12.48747 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 12.59777 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.82539 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 16.69060 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 22.19158 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 25.86637 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 1.00000, 1.00000 ) point group D_4h(4/mmm) there are 10 classes the character table: E 2C4 C2 2C2' 2C2'' i 2S4 s_h 2s_v 2s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00 B_1g 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 B_2g 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 E_g 2.00 0.00 -2.00 0.00 0.00 2.00 0.00 -2.00 0.00 0.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 B_1u 1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 1.00 B_2u 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 E_u 2.00 0.00 -2.00 0.00 0.00 -2.00 0.00 2.00 0.00 0.00 the symmetry operations in each class: E 1 2C2' 2 3 C2 4 2C2'' 5 6 2C4 7 8 i 9 2s_v 10 11 s_h 12 2s_d 13 14 2S4 15 16 Band symmetry, D_4h(4/mmm) point group: e( 1 - 1) = 9.25850 eV 1 --> A_1g X_1 M_1 e( 2 - 2) = 9.70788 eV 1 --> B_2g X_3 M_3 e( 3 - 3) = 12.68564 eV 1 --> B_1g X_2 M_2 e( 4 - 5) = 12.85999 eV 2 --> E_g X_5 M_5 e( 6 - 6) = 16.06445 eV 1 --> A_2u X_4' M_4' e( 7 - 7) = 22.10773 eV 1 --> A_1g X_1 M_1 e( 8 - 8) = 28.17964 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = 4.99015 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 11.20118 eV 3 --> T_2g G_25' G_5+ e( 5 - 6) = 12.09011 eV 2 --> E_g G_12 G_3+ e( 7 - 7) = 38.86010 eV 1 --> A_2u G_2' G_2- e( 8 - 8) = 41.01302 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.10000, 0.10000, 0.10000 ) point group C_3v (3m) there are 3 classes the character table: E 2C3 3s_v A_1 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 E 2.00 -1.00 0.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 Band symmetry, C_3v (3m) point group: e( 1 - 1) = 5.36412 eV 1 --> A_1 L_1 e( 2 - 2) = 11.12414 eV 1 --> A_1 L_1 e( 3 - 4) = 11.27112 eV 2 --> E L_3 e( 5 - 6) = 12.06610 eV 2 --> E L_3 e( 7 - 7) = 35.67377 eV 1 --> A_1 L_1 e( 8 - 8) = 39.37968 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.20000, 0.20000, 0.20000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = 6.43050 eV 1 --> A_1 L_1 e( 2 - 2) = 10.97388 eV 1 --> A_1 L_1 e( 3 - 4) = 11.37553 eV 2 --> E L_3 e( 5 - 6) = 12.09122 eV 2 --> E L_3 e( 7 - 7) = 30.13159 eV 1 --> A_1 L_1 e( 8 - 8) = 38.82504 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.30000, 0.30000, 0.30000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = 7.90844 eV 1 --> A_1 L_1 e( 2 - 2) = 11.06617 eV 1 --> A_1 L_1 e( 3 - 4) = 11.32800 eV 2 --> E L_3 e( 5 - 6) = 12.31743 eV 2 --> E L_3 e( 7 - 7) = 25.08542 eV 1 --> A_1 L_1 e( 8 - 8) = 38.03552 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = 8.91212 eV 1 --> A_1 L_1 e( 2 - 3) = 11.21621 eV 2 --> E L_3 e( 4 - 4) = 12.17124 eV 1 --> A_1 L_1 e( 5 - 6) = 12.58992 eV 2 --> E L_3 e( 7 - 7) = 20.84946 eV 1 --> A_1 L_1 e( 8 - 8) = 37.30326 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) point group D_3d (-3m) there are 6 classes the character table: E 2C3 3C2' i 2S6 3s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 2.00 -1.00 0.00 A_1u 1.00 1.00 1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 -2.00 1.00 0.00 the symmetry operations in each class: E 1 3C2' 2 4 3 2C3 5 6 i 7 3s_d 8 10 9 2S6 11 12 Band symmetry, D_3d (-3m) point group: e( 1 - 1) = 9.11264 eV 1 --> A_1g L_1 e( 2 - 3) = 11.16674 eV 2 --> E_g L_3 e( 4 - 5) = 12.70530 eV 2 --> E_g L_3 e( 6 - 6) = 13.46427 eV 1 --> A_2u L_2' e( 7 - 7) = 18.64128 eV 1 --> A_1g L_1 e( 8 - 8) = 37.02136 eV 1 --> A_2u L_2' ************************************************************************** espresso-5.0.2/PW/examples/example01/reference/si.bands.out0000644000700200004540000005411312053145630022513 0ustar marsamoscm Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 15:37: 1 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.10000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.76681 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 5.98100 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 6.07224 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.71044 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 9.05709 eV 2 --> E G_5 D_5 e( 8 - 8) = 9.98378 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.20000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.63372 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 5.33389 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 5.66013 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.42383 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 9.63007 eV 2 --> E G_5 D_5 e( 8 - 8) = 10.51923 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.30000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.41325 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 4.52654 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 5.18587 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.05161 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 10.36976 eV 2 --> E G_5 D_5 e( 8 - 8) = 10.70616 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.40000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.10635 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 3.65285 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 4.72660 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.67236 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 10.13643 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 11.18661 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.50000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -4.71286 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 2.75637 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 4.31609 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.33158 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 9.35468 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 12.05953 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.60000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -4.23578 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 1.85168 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.96936 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.05650 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 8.61696 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 12.96178 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.70000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -3.68012 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 0.95015 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.69360 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.86544 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.99242 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 13.88560 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.80000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -3.05298 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 0.06829 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.49478 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.76567 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.49426 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 14.82910 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.90000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -2.35631 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = -0.78668 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.37380 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.76912 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.12853 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 15.76318 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.00000, 0.10000, 0.10000 ) point group C_2v (mm2) there are 4 classes the character table: E C2 s_xz s_yz A_1 1.00 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 -1.00 B_2 1.00 -1.00 -1.00 1.00 the symmetry operations in each class: E 1 C2 2 s_xz 3 s_yz 4 Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.72181 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 5.51805 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 5.89088 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 6.21456 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.91345 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 8.98563 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 9.08099 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 10.31679 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.20000, 0.20000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.45765 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 4.22376 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 5.05826 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 6.07498 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.18727 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 9.27870 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 9.36851 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.49913 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.30000, 0.30000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.02436 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 2.93304 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 4.09225 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 5.80158 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.35615 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 9.64161 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 9.89651 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.91655 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.40000, 0.40000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -4.43817 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 1.76602 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 3.17121 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 5.39166 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.16778 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 10.27129 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 10.57148 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.99749 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.50000, 0.50000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -3.72767 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 0.75397 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.39873 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 4.89637 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.69308 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 11.07535 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 11.39195 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 12.40832 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.60000, 0.60000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -2.95841 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -0.08443 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 1.86837 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 4.39570 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.12616 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 12.04665 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 12.30467 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 13.12049 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.70000, 0.70000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -2.26355 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -0.74585 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 1.71184 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.95444 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 7.60984 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 11.39200 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 13.16747 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 13.69667 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.80000, 0.80000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -1.81180 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -1.21825 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.07007 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.61647 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 7.21653 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 9.38142 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 14.41482 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 15.01516 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.90000, 0.90000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -1.63507 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -1.50298 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.83020 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.40517 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 6.97105 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 7.68400 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 15.66969 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 15.94292 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 1.00000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.10000, 0.10000, 0.10000 ) point group C_3v (3m) there are 3 classes the character table: E 2C3 3s_v A_1 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 E 2.00 -1.00 0.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 Band symmetry, C_3v (3m) point group: e( 1 - 1) = -5.67829 eV 1 --> A_1 L_1 e( 2 - 2) = 5.10376 eV 1 --> A_1 L_1 e( 3 - 4) = 6.04960 eV 2 --> E L_3 e( 5 - 5) = 8.84762 eV 1 --> A_1 L_1 e( 6 - 7) = 9.12047 eV 2 --> E L_3 e( 8 - 8) = 10.61160 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.20000, 0.20000, 0.20000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -5.28483 eV 1 --> A_1 L_1 e( 2 - 2) = 3.22191 eV 1 --> A_1 L_1 e( 3 - 4) = 5.65990 eV 2 --> E L_3 e( 5 - 5) = 8.50378 eV 1 --> A_1 L_1 e( 6 - 7) = 9.63593 eV 2 --> E L_3 e( 8 - 8) = 12.33324 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.30000, 0.30000, 0.30000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -4.65923 eV 1 --> A_1 L_1 e( 2 - 2) = 1.40426 eV 1 --> A_1 L_1 e( 3 - 4) = 5.31880 eV 2 --> E L_3 e( 5 - 5) = 8.13849 eV 1 --> A_1 L_1 e( 6 - 7) = 9.80320 eV 2 --> E L_3 e( 8 - 8) = 13.84469 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -3.89098 eV 1 --> A_1 L_1 e( 2 - 2) = -0.10176 eV 1 --> A_1 L_1 e( 3 - 4) = 5.10243 eV 2 --> E L_3 e( 5 - 5) = 7.90028 eV 1 --> A_1 L_1 e( 6 - 7) = 9.67884 eV 2 --> E L_3 e( 8 - 8) = 13.95934 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** espresso-5.0.2/PW/examples/example01/reference/al.band.cg.out0000644000700200004540000002450512053145630022703 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:23 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 8) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 4, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) The potential is recalculated from file : al.save/charge-density.dat Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.08 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation CG style diagonalization ethr = 3.33E-08, avg # of iterations = 7.5 total cpu time spent up to now is 0.31 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.0000 0.1000 band energies (ev): -3.0960 20.2345 20.2345 20.4975 22.3537 23.6411 23.6411 27.1548 k = 0.0000 0.0000 0.2000 band energies (ev): -2.8098 18.9731 18.9731 19.2306 21.8284 24.6166 25.3242 25.3242 k = 0.0000 0.0000 0.3000 band energies (ev): -2.3374 17.8217 17.8217 17.9494 21.1220 21.9036 27.1376 27.1376 k = 0.0000 0.0000 0.4000 band energies (ev): -1.6744 16.7876 16.8290 16.8290 19.2414 20.3615 28.9855 28.9855 k = 0.0000 0.0000 0.5000 band energies (ev): -0.8358 15.7868 15.9782 15.9782 16.6943 19.6301 30.7665 30.7665 k = 0.0000 0.0000 0.6000 band energies (ev): 0.1793 14.2790 14.9597 15.2838 15.2838 18.9639 31.6188 32.4007 k = 0.0000 0.0000 0.7000 band energies (ev): 1.3651 12.0073 14.3128 14.7456 14.7456 18.4256 32.6725 33.8804 k = 0.0000 0.0000 0.8000 band energies (ev): 2.7094 9.8878 13.8492 14.3624 14.3624 18.0253 33.7772 35.2252 k = 0.0000 0.0000 0.9000 band energies (ev): 4.1819 7.9476 13.5676 14.1319 14.1319 17.7783 34.7373 36.3496 k = 0.0000 0.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.1000 0.1000 band energies (ev): -3.0010 18.9136 19.5392 21.3627 22.6653 23.4717 23.9539 26.8835 k = 0.0000 0.2000 0.2000 band energies (ev): -2.4299 16.1143 17.2993 21.9193 22.8616 24.0951 24.5795 25.4076 k = 0.0000 0.3000 0.3000 band energies (ev): -1.4870 13.5863 15.0768 21.6459 22.8444 23.7482 24.1181 24.8942 k = 0.0000 0.4000 0.4000 band energies (ev): -0.1882 11.3801 13.0087 19.6780 21.7703 24.1281 24.9937 25.9732 k = 0.0000 0.5000 0.5000 band energies (ev): 1.4594 9.5217 11.1700 17.9574 19.9890 25.7807 26.2524 27.3595 k = 0.0000 0.6000 0.6000 band energies (ev): 3.4334 8.0054 9.6038 16.5473 18.4499 27.7656 27.8169 29.0388 k = 0.0000 0.7000 0.7000 band energies (ev): 5.6963 6.8315 8.3756 15.4530 17.1962 26.1511 29.6916 30.0710 k = 0.0000 0.8000 0.8000 band energies (ev): 5.9965 7.2958 8.4235 14.6760 16.2200 22.4583 31.8163 33.2437 k = 0.0000 0.9000 0.9000 band energies (ev): 5.4971 6.8278 11.0939 14.2121 15.3774 19.2154 33.9822 35.5330 k = 0.0000 1.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.1000 0.1000 0.1000 band energies (ev): -2.9062 17.7709 20.4032 20.4032 23.7477 23.7477 27.0024 27.0024 k = 0.2000 0.2000 0.2000 band energies (ev): -2.0533 13.7137 19.6279 19.6279 24.2362 24.2362 26.4754 26.4754 k = 0.3000 0.3000 0.3000 band energies (ev): -0.6503 9.9632 19.2750 19.2750 22.4589 22.4589 29.0821 29.0821 k = 0.4000 0.4000 0.4000 band energies (ev): 1.2756 6.6142 19.3716 19.3716 20.9653 20.9653 32.2096 32.2096 k = 0.5000 0.5000 0.5000 band energies (ev): 3.5956 3.8189 19.8981 19.8981 19.9672 19.9672 34.4315 34.4315 Writing output data file al.save PWSCF : 0.40s CPU time, 0.41s wall time init_run : 0.05s CPU electrons : 0.22s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.22s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) ccgdiagg : 0.19s CPU ( 29 calls, 0.006 s avg) wfcrot : 0.03s CPU ( 29 calls, 0.001 s avg) Called by *cgdiagg: h_psi : 0.18s CPU ( 1704 calls, 0.000 s avg) s_psi : 0.00s CPU ( 3350 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 29 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 1704 calls, 0.000 s avg) General routines calbec : 0.00s CPU ( 3379 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.15s CPU ( 3870 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example01/reference/ni.band.cg.out0000644000700200004540000004130112053145630022706 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:35 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file NiUS.RRKJ3.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 k( 29) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 30) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 31) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 32) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 33) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 34) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 35) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 36) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 37) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 38) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 39) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 40) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 41) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 42) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 43) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 44) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 45) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 46) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 47) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 48) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 49) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 50) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 51) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 52) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 53) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 54) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 55) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 56) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 18, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : ni.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.88 secs per-process dynamical memory: 7.3 Mb Band Structure Calculation CG style diagonalization ethr = 1.00E-08, avg # of iterations = 14.6 total cpu time spent up to now is 1.77 secs End of band structure calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6857 12.6857 12.6857 13.9846 13.9846 39.8745 44.2744 k = 0.0000 0.0000 0.1000 band energies (ev): 5.8883 12.6323 12.7270 12.7270 13.9351 14.0037 39.6517 43.2966 k = 0.0000 0.0000 0.2000 band energies (ev): 6.2995 12.4786 12.8496 12.8496 13.7953 14.0593 39.1224 41.4406 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9611 12.2434 13.0487 13.0487 13.5941 14.1463 38.4976 39.4332 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8252 11.9552 13.3164 13.3164 13.3914 14.2569 37.4938 37.4938 k = 0.0000 0.0000 0.5000 band energies (ev): 8.7856 11.6436 13.3078 13.6373 13.6373 14.3808 35.6925 35.6925 k = 0.0000 0.0000 0.6000 band energies (ev): 9.6217 11.3408 13.5737 13.9885 13.9885 14.5059 33.7707 34.0980 k = 0.0000 0.0000 0.7000 band energies (ev): 10.0807 11.0748 14.3365 14.3365 14.4339 14.6200 30.9561 32.7655 k = 0.0000 0.0000 0.8000 band energies (ev): 10.1990 10.8683 14.6382 14.6382 14.7113 15.7859 28.3093 31.7513 k = 0.0000 0.0000 0.9000 band energies (ev): 10.1880 10.7377 14.7703 14.8460 14.8460 17.1895 26.1815 31.1124 k = 0.0000 0.0000 1.0000 band energies (ev): 10.1730 10.6933 14.7907 14.9204 14.9204 17.8715 25.2666 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6857 12.6857 12.6857 13.9846 13.9846 39.8745 44.2744 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0263 12.6028 12.7461 12.7626 13.9217 13.9927 39.2137 41.5816 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8297 12.3912 12.9145 12.9201 13.7631 14.0789 36.7317 37.7971 k = 0.0000 0.3000 0.3000 band energies (ev): 8.0641 12.1435 12.9237 13.1874 13.5840 14.4301 33.5734 34.3333 k = 0.0000 0.4000 0.4000 band energies (ev): 9.5147 11.9706 12.6921 13.4702 13.5168 15.1742 30.4778 31.3786 k = 0.0000 0.5000 0.5000 band energies (ev): 10.7580 11.9684 12.2943 13.4874 13.8710 16.4672 27.5861 29.0254 k = 0.0000 0.6000 0.6000 band energies (ev): 11.3247 11.8223 12.2026 13.6630 14.2122 18.5744 24.9337 27.3430 k = 0.0000 0.7000 0.7000 band energies (ev): 11.1555 11.4200 12.7040 13.9761 14.5076 21.4543 22.5362 26.3000 k = 0.0000 0.8000 0.8000 band energies (ev): 10.6973 11.0660 13.4599 14.3513 14.7329 20.4189 24.7038 25.9069 k = 0.0000 0.9000 0.9000 band energies (ev): 10.3184 10.7920 14.3669 14.6661 14.8730 18.6967 25.3156 28.6574 k = 0.0000 1.0000 1.0000 band energies (ev): 10.1730 10.6933 14.7907 14.9204 14.9204 17.8715 25.2666 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6857 12.6857 12.6857 13.9846 13.9846 39.8745 44.2744 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1628 12.5767 12.7782 12.7782 13.9480 13.9480 38.3974 41.3946 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3282 12.3631 12.9274 12.9274 13.9611 13.9611 33.2778 40.5232 k = 0.3000 0.3000 0.3000 band energies (ev): 8.8792 12.4605 12.8860 12.8860 14.2376 14.2376 28.1150 39.5576 k = 0.4000 0.4000 0.4000 band energies (ev): 9.8447 12.7469 12.7469 13.6854 14.5978 14.5978 23.7361 38.6690 k = 0.5000 0.5000 0.5000 band energies (ev): 10.0273 12.6833 12.6833 14.7538 14.7538 14.9657 21.5361 38.3257 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): 5.7794 13.3417 13.3417 13.3417 14.5871 14.5871 39.8447 44.2979 k = 0.0000 0.0000 0.1000 band energies (ev): 5.9185 13.2847 13.3840 13.3840 14.5350 14.6068 39.6408 43.3569 k = 0.0000 0.0000 0.2000 band energies (ev): 6.3298 13.1212 13.5100 13.5100 14.3870 14.6641 39.1532 41.5340 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9930 12.8712 13.7149 13.7149 14.1711 14.7540 38.5744 39.5413 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8640 12.5657 13.9436 13.9914 13.9914 14.8682 37.6041 37.6041 k = 0.0000 0.0000 0.5000 band energies (ev): 8.8496 12.2362 13.8127 14.3241 14.3241 14.9962 35.7973 35.7973 k = 0.0000 0.0000 0.6000 band energies (ev): 9.7569 11.9168 13.9817 14.6901 14.6901 15.1255 33.8938 34.1913 k = 0.0000 0.0000 0.7000 band energies (ev): 10.3265 11.6367 14.7006 15.0551 15.0551 15.2434 31.1187 32.8434 k = 0.0000 0.0000 0.8000 band energies (ev): 10.5246 11.4196 15.3379 15.3735 15.3735 15.9342 28.5125 31.8131 k = 0.0000 0.0000 0.9000 band energies (ev): 10.5493 11.2825 15.3989 15.5940 15.5940 17.2531 26.4336 31.1617 k = 0.0000 0.0000 1.0000 band energies (ev): 10.5439 11.2359 15.4200 15.6732 15.6732 17.8924 25.5515 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7794 13.3417 13.3417 13.3417 14.5871 14.5871 39.8447 44.2979 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0565 13.2514 13.4046 13.4198 14.5207 14.5954 39.2344 41.6365 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8617 13.0207 13.5638 13.5859 14.3533 14.6911 36.8475 37.8760 k = 0.0000 0.3000 0.3000 band energies (ev): 8.1076 12.7476 13.5374 13.8646 14.1640 15.0674 33.7408 34.4349 k = 0.0000 0.4000 0.4000 band energies (ev): 9.6041 12.5492 13.2597 14.0425 14.2083 15.8044 30.6766 31.5028 k = 0.0000 0.5000 0.5000 band energies (ev): 10.9732 12.5257 12.8082 14.0574 14.5780 17.0019 27.8060 29.1744 k = 0.0000 0.6000 0.6000 band energies (ev): 11.7309 12.2612 12.7463 14.2379 14.9342 18.9493 25.1657 27.5225 k = 0.0000 0.7000 0.7000 band energies (ev): 11.6355 11.8501 13.2458 14.5632 15.2426 21.7047 22.7686 26.5137 k = 0.0000 0.8000 0.8000 band energies (ev): 11.1011 11.5847 14.0213 14.9561 15.4777 20.6313 24.9047 26.1245 k = 0.0000 0.9000 0.9000 band energies (ev): 10.6951 11.3323 14.9998 15.2880 15.6238 18.8375 25.5935 28.7588 k = 0.0000 1.0000 1.0000 band energies (ev): 10.5439 11.2359 15.4200 15.6732 15.6732 17.8924 25.5515 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7794 13.3417 13.3417 13.3417 14.5871 14.5871 39.8447 44.2979 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1932 13.2212 13.4367 13.4367 14.5487 14.5487 38.4599 41.3967 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3656 12.9686 13.5765 13.5765 14.5748 14.5748 33.4238 40.5075 k = 0.3000 0.3000 0.3000 band energies (ev): 8.9824 12.9485 13.5019 13.5019 14.8923 14.8923 28.3213 39.5349 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1536 13.3413 13.3413 13.8800 15.2837 15.2837 24.0318 38.6351 k = 0.5000 0.5000 0.5000 band energies (ev): 10.4257 13.2711 13.2711 14.9680 15.4509 15.4509 21.9345 38.2872 Writing output data file ni.save PWSCF : 1.88s CPU time, 2.53s wall time init_run : 0.81s CPU electrons : 0.89s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 0.89s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 56 calls, 0.000 s avg) ccgdiagg : 0.79s CPU ( 99 calls, 0.008 s avg) wfcrot : 0.09s CPU ( 99 calls, 0.001 s avg) Called by *cgdiagg: h_psi : 0.68s CPU ( 6219 calls, 0.000 s avg) s_psi : 0.06s CPU ( 12339 calls, 0.000 s avg) cdiaghg : 0.00s CPU ( 99 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.04s CPU ( 6219 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 12339 calls, 0.000 s avg) cft3 : 0.00s CPU ( 9 calls, 0.000 s avg) cft3s : 0.53s CPU ( 13826 calls, 0.000 s avg) interpolate : 0.00s CPU ( 2 calls, 0.001 s avg) davcio : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example01/reference/cu.scf.cg.out0000644000700200004540000003727612053145630022576 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 11Jul2009 at 11:22:55 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 29 gaussian broad. (Ry)= 0.0200 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 10, 10) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 atomic + 4 random wfc total cpu time spent up to now is 0.76 secs per-process dynamical memory: 10.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 1.23 secs total energy = -87.74274917 Ry Harris-Foulkes estimate = -87.90115645 Ry estimated scf accuracy < 0.21504136 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.95E-03, avg # of iterations = 3.5 total cpu time spent up to now is 1.59 secs total energy = -87.81399720 Ry Harris-Foulkes estimate = -87.89139411 Ry estimated scf accuracy < 0.15242613 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.39E-03, avg # of iterations = 3.0 total cpu time spent up to now is 1.91 secs total energy = -87.84089022 Ry Harris-Foulkes estimate = -87.84098564 Ry estimated scf accuracy < 0.00018824 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.71E-06, avg # of iterations = 5.5 total cpu time spent up to now is 2.42 secs total energy = -87.84116339 Ry Harris-Foulkes estimate = -87.84119245 Ry estimated scf accuracy < 0.00006324 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 5.75E-07, avg # of iterations = 3.0 total cpu time spent up to now is 2.74 secs total energy = -87.84117660 Ry Harris-Foulkes estimate = -87.84117651 Ry estimated scf accuracy < 0.00000002 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.52E-10, avg # of iterations = 4.2 total cpu time spent up to now is 3.15 secs total energy = -87.84117671 Ry Harris-Foulkes estimate = -87.84117679 Ry estimated scf accuracy < 0.00000018 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.52E-10, avg # of iterations = 3.6 total cpu time spent up to now is 3.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9902 11.2011 11.2011 11.2011 12.0900 12.0900 38.8602 41.0130 41.0131 41.0131 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5709 11.0865 11.3028 11.3028 12.0596 12.0596 34.2711 39.2721 39.7082 39.7082 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1553 10.9526 11.3711 11.3711 12.1822 12.1822 27.5276 38.3732 38.3732 38.4661 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7581 11.2414 11.2414 11.7718 12.5305 12.5305 21.8040 37.4538 37.7366 37.7366 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1126 11.1667 11.1667 12.7052 12.7052 13.4643 18.6412 37.0216 37.6108 37.6108 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7619 10.9724 11.3942 11.3942 11.8894 12.1759 36.7454 36.7454 36.7670 38.6741 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0143 10.7491 11.4315 11.5524 11.9730 12.3079 30.0779 34.8354 36.4458 38.9411 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7287 10.8275 11.1807 11.4888 12.5931 12.8057 23.9425 34.0858 34.9379 36.6367 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3833 10.9634 11.3698 11.6201 12.7173 14.6390 19.3208 32.8135 34.6288 36.4059 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3118 11.0366 11.3690 11.4824 12.4842 14.0535 20.5831 31.5887 36.5314 37.3111 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2135 10.8072 11.2557 11.5070 12.0311 12.8219 25.8862 31.4947 39.3197 39.7083 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4954 10.8983 11.3915 11.4734 11.8693 12.2784 32.0409 32.7822 41.5266 42.4821 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7943 10.4347 11.6325 11.9192 11.9192 12.3849 32.3393 32.3393 33.7599 34.5441 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0227 10.2343 11.4502 12.0191 12.6216 12.9852 26.9779 30.3531 31.0981 35.0365 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7667 10.3288 11.2645 11.8943 12.7489 15.5294 21.6001 27.6744 31.3015 35.1325 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0183 10.5263 11.0684 11.7897 12.5062 16.7738 20.0922 26.0416 32.9710 35.8417 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6266 10.6773 10.8945 11.7426 12.0919 14.2038 24.5960 26.0247 35.8985 37.3877 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2057 9.9166 12.5532 12.5532 12.5970 13.2865 26.4700 29.2996 29.2996 33.3064 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4500 9.8713 12.2018 12.4695 12.7942 15.9126 23.7212 25.2517 29.0129 34.1879 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8606 10.1090 11.5076 12.2375 12.6487 19.0055 20.5140 22.9124 30.3242 34.7826 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2584 9.7078 12.6855 12.8599 12.8599 16.0645 22.1077 28.1796 28.1796 32.9217 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3838 10.5246 11.2021 11.9283 11.9815 12.8598 28.3780 29.1672 34.7023 39.7245 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6521 10.6050 10.9251 11.7990 12.4586 14.3779 22.9148 28.5911 31.6502 39.6656 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8897 10.5877 11.1595 11.6868 12.6465 16.6898 19.1411 29.3143 29.7906 39.3669 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6141 10.1147 11.4163 12.3918 12.5493 14.7883 25.8700 26.6503 27.2659 37.8987 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 9.9928 10.2650 11.1240 12.1236 12.7324 18.0166 21.2248 24.7934 27.1016 39.0184 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2723 10.4557 10.7011 12.0025 12.5534 17.1250 21.9644 24.2064 28.8740 40.2128 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.5931 9.9450 11.8838 12.4221 12.8601 17.7229 22.3900 24.9290 26.0238 37.2947 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0285 10.6778 10.6778 12.0570 12.8605 20.9509 20.9509 23.1324 24.0538 44.6541 the Fermi energy is 14.4956 ev ! total energy = -87.84117675 Ry Harris-Foulkes estimate = -87.84117675 Ry estimated scf accuracy < 4.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24225676 Ry hartree contribution = 18.89104059 Ry xc contribution = -14.05625346 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00156581 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -10.74 -0.00007300 0.00000000 0.00000000 -10.74 0.00 0.00 0.00000000 -0.00007300 0.00000000 0.00 -10.74 0.00 0.00000000 0.00000000 -0.00007300 0.00 0.00 -10.74 Writing output data file cu.save PWSCF : 3.96s CPU time, 4.10s wall time init_run : 0.72s CPU electrons : 2.75s CPU forces : 0.05s CPU stress : 0.25s CPU Called by init_run: wfcinit : 0.07s CPU potinit : 0.01s CPU Called by electrons: c_bands : 2.06s CPU ( 7 calls, 0.295 s avg) sum_band : 0.44s CPU ( 7 calls, 0.063 s avg) v_of_rho : 0.04s CPU ( 8 calls, 0.005 s avg) newd : 0.18s CPU ( 8 calls, 0.023 s avg) mix_rho : 0.02s CPU ( 7 calls, 0.003 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 493 calls, 0.000 s avg) ccgdiagg : 1.64s CPU ( 203 calls, 0.008 s avg) wfcrot : 0.47s CPU ( 203 calls, 0.002 s avg) Called by *cgdiagg: h_psi : 1.79s CPU ( 6461 calls, 0.000 s avg) s_psi : 0.08s CPU ( 12719 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 203 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.06s CPU ( 6461 calls, 0.000 s avg) General routines calbec : 0.07s CPU ( 12980 calls, 0.000 s avg) cft3s : 1.54s CPU ( 18687 calls, 0.000 s avg) interpolate : 0.02s CPU ( 15 calls, 0.002 s avg) davcio : 0.00s CPU ( 696 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/si.scf.david.out0000644000700200004540000002443012053145630023264 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:20 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 20 npp = 20 ncplane = 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 20 253 2733 20 253 2733 85 531 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 350, 4) NL pseudopotentials 0.04 Mb ( 350, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 350, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.12 secs per-process dynamical memory: 8.1 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.75E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.30 secs total energy = -15.84097415 Ry Harris-Foulkes estimate = -15.86197052 Ry estimated scf accuracy < 0.06141563 Ry iteration # 2 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.37 secs total energy = -15.84406636 Ry Harris-Foulkes estimate = -15.84437081 Ry estimated scf accuracy < 0.00214295 Ry iteration # 3 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-05, avg # of iterations = 2.5 total cpu time spent up to now is 0.47 secs total energy = -15.84451020 Ry Harris-Foulkes estimate = -15.84454237 Ry estimated scf accuracy < 0.00007086 Ry iteration # 4 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-07, avg # of iterations = 2.1 total cpu time spent up to now is 0.57 secs total energy = -15.84452620 Ry Harris-Foulkes estimate = -15.84452929 Ry estimated scf accuracy < 0.00000682 Ry iteration # 5 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.67 secs total energy = -15.84452724 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-10, avg # of iterations = 2.7 total cpu time spent up to now is 0.78 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 335 PWs) bands (ev): -5.6039 4.6467 5.9568 5.9568 k = 0.1250 0.1250 0.3750 ( 338 PWs) bands (ev): -5.0584 3.0175 4.9012 4.9909 k = 0.1250 0.1250 0.6250 ( 337 PWs) bands (ev): -3.9883 1.3106 3.5165 3.9919 k = 0.1250 0.1250 0.8750 ( 343 PWs) bands (ev): -2.4615 -0.5936 2.7226 3.5069 k = 0.1250 0.3750 0.3750 ( 341 PWs) bands (ev): -4.5395 1.5909 3.8905 5.4636 k = 0.1250 0.3750 0.6250 ( 340 PWs) bands (ev): -3.5491 0.3750 2.8565 4.2745 k = 0.1250 0.3750 0.8750 ( 347 PWs) bands (ev): -2.2719 -0.7033 2.0783 3.2106 k = 0.1250 0.6250 0.6250 ( 344 PWs) bands (ev): -2.8220 -0.4390 2.1614 4.3230 k = 0.3750 0.3750 0.3750 ( 350 PWs) bands (ev): -4.0849 0.2304 5.1432 5.1432 k = 0.3750 0.3750 0.6250 ( 343 PWs) bands (ev): -3.3347 -0.5842 3.9340 4.6556 ! total energy = -15.84452726 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 8.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 4.79352695 Ry hartree contribution = 1.07664132 Ry xc contribution = -4.81493686 Ry ewald contribution = -16.89975867 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -10.23 -0.00006958 0.00000000 0.00000000 -10.23 0.00 0.00 0.00000000 -0.00006958 0.00000000 0.00 -10.23 0.00 0.00000000 0.00000000 -0.00006958 0.00 0.00 -10.23 Writing output data file silicon.save PWSCF : 0.92s CPU time, 1.10s wall time init_run : 0.09s CPU electrons : 0.66s CPU forces : 0.00s CPU stress : 0.03s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.54s CPU ( 7 calls, 0.077 s avg) sum_band : 0.10s CPU ( 7 calls, 0.014 s avg) v_of_rho : 0.01s CPU ( 7 calls, 0.002 s avg) mix_rho : 0.01s CPU ( 7 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 170 calls, 0.000 s avg) cegterg : 0.52s CPU ( 70 calls, 0.007 s avg) Called by *egterg: h_psi : 0.51s CPU ( 213 calls, 0.002 s avg) g_psi : 0.01s CPU ( 133 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 193 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 213 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 233 calls, 0.000 s avg) cft3s : 0.54s CPU ( 1983 calls, 0.000 s avg) davcio : 0.00s CPU ( 240 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/si.band.david.out0000644000700200004540000002465112053145630023422 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37: 0 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 351, 8) NL pseudopotentials 0.04 Mb ( 351, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.17 Mb ( 351, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.98 Mb ( 8000, 8) The potential is recalculated from file : silicon.save/charge-density.dat Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.07 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 10.5 total cpu time spent up to now is 0.99 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.0000 0.1000 band energies (ev): -5.7668 5.9810 6.0722 6.0722 8.7104 9.0571 9.0571 9.9838 k = 0.0000 0.0000 0.2000 band energies (ev): -5.6337 5.3339 5.6601 5.6601 8.4238 9.6301 9.6301 10.5192 k = 0.0000 0.0000 0.3000 band energies (ev): -5.4133 4.5265 5.1859 5.1859 8.0516 10.3698 10.3698 10.7062 k = 0.0000 0.0000 0.4000 band energies (ev): -5.1063 3.6529 4.7266 4.7266 7.6724 10.1364 11.1866 11.1866 k = 0.0000 0.0000 0.5000 band energies (ev): -4.7129 2.7564 4.3161 4.3161 7.3316 9.3547 12.0595 12.0595 k = 0.0000 0.0000 0.6000 band energies (ev): -4.2358 1.8517 3.9694 3.9694 7.0565 8.6170 12.9618 12.9618 k = 0.0000 0.0000 0.7000 band energies (ev): -3.6801 0.9502 3.6936 3.6936 6.8654 7.9924 13.8856 13.8856 k = 0.0000 0.0000 0.8000 band energies (ev): -3.0530 0.0683 3.4948 3.4948 6.7657 7.4943 14.8291 14.8291 k = 0.0000 0.0000 0.9000 band energies (ev): -2.3563 -0.7867 3.3738 3.3738 6.7691 7.1285 15.7632 15.7632 k = 0.0000 0.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.1000 0.1000 band energies (ev): -5.7218 5.5180 5.8909 6.2146 8.9135 8.9856 9.0810 10.3168 k = 0.0000 0.2000 0.2000 band energies (ev): -5.4577 4.2238 5.0583 6.0750 9.1873 9.2787 9.3685 11.4991 k = 0.0000 0.3000 0.3000 band energies (ev): -5.0244 2.9330 4.0923 5.8016 9.3562 9.6416 9.8965 11.9166 k = 0.0000 0.4000 0.4000 band energies (ev): -4.4382 1.7660 3.1712 5.3917 9.1678 10.2713 10.5715 11.9975 k = 0.0000 0.5000 0.5000 band energies (ev): -3.7277 0.7540 2.3987 4.8964 8.6931 11.0753 11.3920 12.4083 k = 0.0000 0.6000 0.6000 band energies (ev): -2.9584 -0.0844 1.8684 4.3957 8.1262 12.0466 12.3047 13.1205 k = 0.0000 0.7000 0.7000 band energies (ev): -2.2636 -0.7459 1.7118 3.9544 7.6098 11.3920 13.1675 13.6967 k = 0.0000 0.8000 0.8000 band energies (ev): -1.8118 -1.2182 2.0701 3.6165 7.2165 9.3814 14.4148 15.0152 k = 0.0000 0.9000 0.9000 band energies (ev): -1.6351 -1.5030 2.8302 3.4052 6.9710 7.6840 15.6697 15.9429 k = 0.0000 1.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.1000 0.1000 0.1000 band energies (ev): -5.6783 5.1038 6.0496 6.0496 8.8476 9.1205 9.1205 10.6116 k = 0.2000 0.2000 0.2000 band energies (ev): -5.2848 3.2219 5.6599 5.6599 8.5038 9.6359 9.6359 12.3332 k = 0.3000 0.3000 0.3000 band energies (ev): -4.6592 1.4043 5.3188 5.3188 8.1385 9.8032 9.8032 13.8447 k = 0.4000 0.4000 0.4000 band energies (ev): -3.8910 -0.1018 5.1024 5.1024 7.9003 9.6788 9.6788 13.9593 k = 0.5000 0.5000 0.5000 band energies (ev): -3.4180 -0.8220 5.0289 5.0289 7.8139 9.5968 9.5968 13.8378 Writing output data file silicon.save PWSCF : 1.08s CPU time, 1.12s wall time init_run : 0.05s CPU electrons : 0.93s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.93s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.83s CPU ( 28 calls, 0.030 s avg) Called by *egterg: h_psi : 0.71s CPU ( 351 calls, 0.002 s avg) g_psi : 0.02s CPU ( 295 calls, 0.000 s avg) cdiaghg : 0.06s CPU ( 323 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 351 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 351 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.61s CPU ( 4162 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example01/reference/al.band.david.out0000644000700200004540000002452212053145630023400 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37: 3 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 8) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.06 Mb ( 113, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 4, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) The potential is recalculated from file : al.save/charge-density.dat Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.08 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 3.33E-08, avg # of iterations = 7.3 total cpu time spent up to now is 0.33 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.0000 0.1000 band energies (ev): -3.0960 20.2345 20.2345 20.4975 22.3537 23.6411 23.6411 25.9287 k = 0.0000 0.0000 0.2000 band energies (ev): -2.8098 18.9731 18.9731 19.2306 21.8284 24.6166 25.3242 25.3242 k = 0.0000 0.0000 0.3000 band energies (ev): -2.3374 17.8217 17.8217 17.9494 21.1220 21.9036 27.1376 27.1376 k = 0.0000 0.0000 0.4000 band energies (ev): -1.6744 16.7876 16.8290 16.8290 19.2414 20.3615 28.9855 28.9855 k = 0.0000 0.0000 0.5000 band energies (ev): -0.8359 15.7868 15.9782 15.9782 16.6943 19.6301 30.7665 30.7665 k = 0.0000 0.0000 0.6000 band energies (ev): 0.1793 14.2789 14.9597 15.2838 15.2838 18.9639 31.6188 32.4007 k = 0.0000 0.0000 0.7000 band energies (ev): 1.3651 12.0073 14.3128 14.7456 14.7456 18.4256 32.6725 33.8804 k = 0.0000 0.0000 0.8000 band energies (ev): 2.7094 9.8878 13.8492 14.3624 14.3624 18.0252 33.7772 35.2252 k = 0.0000 0.0000 0.9000 band energies (ev): 4.1819 7.9476 13.5676 14.1319 14.1319 17.7783 34.7373 36.3496 k = 0.0000 0.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.1000 0.1000 band energies (ev): -3.0011 18.9136 19.5392 21.3627 22.6653 23.4717 23.9539 26.8835 k = 0.0000 0.2000 0.2000 band energies (ev): -2.4299 16.1143 17.2993 21.9193 22.8616 24.0951 24.5795 25.4076 k = 0.0000 0.3000 0.3000 band energies (ev): -1.4870 13.5863 15.0768 21.6459 22.8444 23.7482 24.1181 24.8942 k = 0.0000 0.4000 0.4000 band energies (ev): -0.1882 11.3801 13.0087 19.6780 21.7703 24.1281 24.9937 25.9732 k = 0.0000 0.5000 0.5000 band energies (ev): 1.4594 9.5217 11.1700 17.9574 19.9890 25.7807 26.2524 27.3595 k = 0.0000 0.6000 0.6000 band energies (ev): 3.4333 8.0054 9.6038 16.5473 18.4499 27.7656 27.8169 29.0388 k = 0.0000 0.7000 0.7000 band energies (ev): 5.6963 6.8315 8.3756 15.4530 17.1962 26.1511 29.6916 30.0710 k = 0.0000 0.8000 0.8000 band energies (ev): 5.9965 7.2958 8.4235 14.6759 16.2200 22.4583 31.8163 33.2437 k = 0.0000 0.9000 0.9000 band energies (ev): 5.4971 6.8278 11.0939 14.2121 15.3774 19.2154 33.9822 35.5330 k = 0.0000 1.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.1000 0.1000 0.1000 band energies (ev): -2.9062 17.7709 20.4032 20.4032 23.3001 23.7477 23.7477 27.0024 k = 0.2000 0.2000 0.2000 band energies (ev): -2.0533 13.7137 19.6279 19.6279 23.0615 24.2362 24.2362 26.4754 k = 0.3000 0.3000 0.3000 band energies (ev): -0.6503 9.9632 19.2750 19.2750 22.4589 22.4589 22.9269 26.5121 k = 0.4000 0.4000 0.4000 band energies (ev): 1.2756 6.6142 19.3716 19.3716 20.9653 20.9653 23.1546 24.9938 k = 0.5000 0.5000 0.5000 band energies (ev): 3.5956 3.8189 19.8981 19.8981 19.9672 19.9672 23.7149 23.9816 Writing output data file al.save PWSCF : 0.42s CPU time, 0.45s wall time init_run : 0.05s CPU electrons : 0.25s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.25s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.22s CPU ( 28 calls, 0.008 s avg) Called by *egterg: h_psi : 0.16s CPU ( 261 calls, 0.001 s avg) g_psi : 0.00s CPU ( 205 calls, 0.000 s avg) cdiaghg : 0.06s CPU ( 233 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 261 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 261 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.12s CPU ( 3228 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example01/reference/al.scf.cg.out0000644000700200004540000004556612053145630022564 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:58 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 15 npp = 15 ncplane = 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 15 121 869 15 121 869 43 181 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 60 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0078125 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0234375 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0234375 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0234375 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0234375 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0234375 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0234375 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0234375 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0234375 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0468750 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0468750 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0468750 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0468750 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0468750 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0468750 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0234375 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0468750 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0468750 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0468750 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0468750 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0468750 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0234375 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0468750 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0468750 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0468750 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0468750 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0234375 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0468750 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0468750 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0234375 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0468750 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0234375 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0078125 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0234375 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0234375 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0234375 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0234375 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0234375 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0234375 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0468750 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0468750 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0468750 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0468750 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0234375 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0468750 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0468750 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0468750 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0234375 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0468750 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0234375 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0078125 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0234375 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0234375 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0234375 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0234375 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0468750 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0468750 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0234375 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0078125 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0234375 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 6) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 6, 6) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.15 secs per-process dynamical memory: 4.6 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold CG style diagonalization ethr = 1.96E-04, avg # of iterations = 2.4 total cpu time spent up to now is 0.58 secs total energy = -4.18724727 Ry Harris-Foulkes estimate = -4.18805275 Ry estimated scf accuracy < 0.00583676 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 CG style diagonalization ethr = 1.95E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.81 secs total energy = -4.18725335 Ry Harris-Foulkes estimate = -4.18728429 Ry estimated scf accuracy < 0.00046243 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 CG style diagonalization ethr = 1.54E-05, avg # of iterations = 3.1 total cpu time spent up to now is 1.05 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 113 PWs) bands (ev): -3.0799 19.3075 20.7687 20.7687 23.1345 23.1345 k = 0.0625 0.0625 0.1875 ( 111 PWs) bands (ev): -2.7827 17.6259 19.1893 20.2772 22.4674 25.1255 k = 0.0625 0.0625 0.3125 ( 106 PWs) bands (ev): -2.1902 16.0984 17.7533 18.9161 21.4296 21.8085 k = 0.0625 0.0625 0.4375 ( 103 PWs) bands (ev): -1.3093 14.7950 16.5527 17.6159 18.3710 20.6640 k = 0.0625 0.0625 0.5625 ( 103 PWs) bands (ev): -0.1500 13.7345 15.2344 15.5866 16.6092 19.8030 k = 0.0625 0.0625 0.6875 ( 105 PWs) bands (ev): 1.2792 12.3163 12.9847 14.8645 15.7971 19.0940 k = 0.0625 0.0625 0.8125 ( 105 PWs) bands (ev): 2.9581 9.6947 12.4277 14.3844 15.2584 18.6077 k = 0.0625 0.0625 0.9375 ( 103 PWs) bands (ev): 4.8010 7.3728 12.1587 14.1469 14.9892 18.3586 k = 0.0625 0.1875 0.1875 ( 108 PWs) bands (ev): -2.4860 15.9029 18.1437 21.3076 23.3520 23.7851 k = 0.0625 0.1875 0.3125 ( 104 PWs) bands (ev): -1.8951 14.3532 16.7499 20.7070 21.6904 23.3068 k = 0.0625 0.1875 0.4375 ( 103 PWs) bands (ev): -1.0179 13.0416 15.5182 18.6011 19.5712 22.3327 k = 0.0625 0.1875 0.5625 ( 102 PWs) bands (ev): 0.1388 11.9819 14.4666 15.6002 18.5654 21.5049 k = 0.0625 0.1875 0.6875 ( 102 PWs) bands (ev): 1.5642 11.1705 12.5879 13.8689 17.7882 20.8346 k = 0.0625 0.1875 0.8125 ( 104 PWs) bands (ev): 3.2366 9.9113 10.7193 13.3151 17.2630 20.3726 k = 0.0625 0.1875 0.9375 ( 104 PWs) bands (ev): 5.0686 7.6399 10.4174 13.0518 17.0000 20.1368 k = 0.0625 0.3125 0.3125 ( 104 PWs) bands (ev): -1.3099 12.7878 15.3547 21.4114 22.4618 23.4833 k = 0.0625 0.3125 0.4375 ( 101 PWs) bands (ev): -0.4382 11.4704 14.1065 19.0233 21.9958 23.4259 k = 0.0625 0.3125 0.5625 ( 103 PWs) bands (ev): 0.7106 10.4079 13.0603 16.0836 21.1139 23.5043 k = 0.0625 0.3125 0.6875 ( 104 PWs) bands (ev): 2.1275 9.6064 12.1738 13.3550 20.3732 23.0355 k = 0.0625 0.3125 0.8125 ( 103 PWs) bands (ev): 3.7898 9.0570 10.4577 11.9431 19.8654 22.6356 k = 0.0625 0.3125 0.9375 ( 104 PWs) bands (ev): 5.6027 8.1189 8.8987 11.6128 19.6076 22.4245 k = 0.0625 0.4375 0.4375 ( 98 PWs) bands (ev): 0.4258 10.1489 12.8400 19.0288 21.0999 24.0186 k = 0.0625 0.4375 0.5625 ( 101 PWs) bands (ev): 1.5646 9.0859 11.7852 16.7673 21.3158 23.8782 k = 0.0625 0.4375 0.6875 ( 104 PWs) bands (ev): 2.9671 8.2848 10.9630 14.0393 22.3898 23.2846 k = 0.0625 0.4375 0.8125 ( 105 PWs) bands (ev): 4.6117 7.7492 10.3043 11.5745 22.6889 23.8327 k = 0.0625 0.4375 0.9375 ( 105 PWs) bands (ev): 6.3928 7.4658 8.9446 10.4210 22.4674 24.6842 k = 0.0625 0.5625 0.5625 ( 103 PWs) bands (ev): 2.6902 8.0224 10.7231 17.0674 19.0229 26.0921 k = 0.0625 0.5625 0.6875 ( 103 PWs) bands (ev): 4.0752 7.2232 9.9081 14.9932 19.5277 26.1775 k = 0.0625 0.5625 0.8125 ( 105 PWs) bands (ev): 5.6857 6.6995 9.3429 12.5059 20.9132 25.7075 k = 0.0625 0.6875 0.6875 ( 101 PWs) bands (ev): 5.4261 6.4363 9.0994 15.6025 17.3700 26.6300 k = 0.0625 0.6875 0.8125 ( 104 PWs) bands (ev): 5.8605 7.0397 8.5731 13.7265 18.1484 24.3664 k = 0.0625 0.8125 0.8125 ( 102 PWs) bands (ev): 5.3362 7.8453 8.7942 14.6308 16.1488 22.0436 k = 0.1875 0.1875 0.1875 ( 107 PWs) bands (ev): -2.1900 14.2077 19.7034 19.7034 24.4167 24.4167 k = 0.1875 0.1875 0.3125 ( 103 PWs) bands (ev): -1.6021 12.6561 18.2573 19.7000 21.8873 25.0845 k = 0.1875 0.1875 0.4375 ( 105 PWs) bands (ev): -0.7294 11.3378 17.0420 18.5896 18.9494 24.1620 k = 0.1875 0.1875 0.5625 ( 104 PWs) bands (ev): 0.4235 10.2730 15.7513 16.0744 17.7753 23.3710 k = 0.1875 0.1875 0.6875 ( 105 PWs) bands (ev): 1.8455 9.4651 12.9089 15.3509 16.9731 22.7218 k = 0.1875 0.1875 0.8125 ( 104 PWs) bands (ev): 3.5133 8.8964 10.3142 14.8697 16.4258 22.2720 k = 0.1875 0.3125 0.3125 ( 102 PWs) bands (ev): -1.0183 11.0929 17.3998 20.7074 21.7718 23.2782 k = 0.1875 0.3125 0.4375 ( 103 PWs) bands (ev): -0.1505 9.7666 16.2019 19.2545 20.4577 23.5595 k = 0.1875 0.3125 0.5625 ( 106 PWs) bands (ev): 0.9941 8.6943 15.1663 16.3379 19.6301 24.4260 k = 0.1875 0.3125 0.6875 ( 103 PWs) bands (ev): 2.4085 7.8865 13.3829 14.5389 18.9091 24.8588 k = 0.1875 0.3125 0.8125 ( 104 PWs) bands (ev): 4.0638 7.3414 10.8135 13.9892 18.4047 24.5589 k = 0.1875 0.4375 0.4375 ( 101 PWs) bands (ev): 0.7107 8.4335 14.9984 19.2757 21.2445 22.2834 k = 0.1875 0.4375 0.5625 ( 103 PWs) bands (ev): 1.8458 7.3549 13.9711 17.0143 21.4663 22.2916 k = 0.1875 0.4375 0.6875 ( 101 PWs) bands (ev): 3.2459 6.5440 13.1253 14.3432 21.5715 22.7622 k = 0.1875 0.4375 0.8125 ( 103 PWs) bands (ev): 4.8731 6.0141 11.5321 12.8294 21.1470 24.1586 k = 0.1875 0.5625 0.5625 ( 103 PWs) bands (ev): 2.9683 6.2742 12.9434 17.3100 19.2581 24.3073 k = 0.1875 0.5625 0.6875 ( 103 PWs) bands (ev): 4.3401 5.4702 12.1435 15.2501 19.7668 24.5023 k = 0.1875 0.6875 0.6875 ( 101 PWs) bands (ev): 4.6026 5.7549 11.3580 15.8451 17.6334 26.7365 k = 0.3125 0.3125 0.3125 ( 98 PWs) bands (ev): -0.4380 9.5216 19.2619 19.2619 22.2491 22.2491 k = 0.3125 0.3125 0.4375 ( 103 PWs) bands (ev): 0.4236 8.1830 18.0352 19.5086 19.7046 22.9997 k = 0.3125 0.3125 0.5625 ( 104 PWs) bands (ev): 1.5633 7.1006 16.7598 17.0581 18.8534 24.0151 k = 0.3125 0.3125 0.6875 ( 105 PWs) bands (ev): 2.9662 6.2849 13.9560 16.3264 18.1466 25.2902 k = 0.3125 0.4375 0.4375 ( 103 PWs) bands (ev): 1.2790 6.8356 17.4108 19.7704 20.7820 21.3530 k = 0.3125 0.4375 0.5625 ( 103 PWs) bands (ev): 2.4087 5.7457 16.4379 17.5060 20.7548 21.8481 k = 0.3125 0.4375 0.6875 ( 103 PWs) bands (ev): 3.7926 4.9319 14.6888 15.7813 20.2149 23.0298 k = 0.3125 0.5625 0.5625 ( 105 PWs) bands (ev): 3.5177 4.6554 15.4924 17.7989 19.6747 22.7874 k = 0.4375 0.4375 0.4375 ( 105 PWs) bands (ev): 2.1277 5.4734 19.5273 19.5273 20.5236 20.5236 k = 0.4375 0.4375 0.5625 ( 106 PWs) bands (ev): 3.2420 4.3787 18.1682 18.5361 20.0805 21.5256 the Fermi energy is 8.2613 ev ! total energy = -4.18725737 Ry Harris-Foulkes estimate = -4.18725730 Ry estimated scf accuracy < 0.00000033 Ry The total energy is the sum of the following terms: one-electron contribution = 2.93900564 Ry hartree contribution = 0.00981242 Ry xc contribution = -1.63461777 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = 0.00037687 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -17.49 -0.00011890 0.00000000 0.00000000 -17.49 0.00 0.00 0.00000000 -0.00011890 0.00000000 0.00 -17.49 0.00 0.00000000 0.00000000 -0.00011890 0.00 0.00 -17.49 Writing output data file al.save PWSCF : 1.32s CPU time, 1.40s wall time init_run : 0.13s CPU electrons : 0.91s CPU forces : 0.01s CPU stress : 0.04s CPU Called by init_run: wfcinit : 0.10s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.78s CPU ( 4 calls, 0.194 s avg) sum_band : 0.12s CPU ( 4 calls, 0.031 s avg) v_of_rho : 0.00s CPU ( 4 calls, 0.001 s avg) mix_rho : 0.00s CPU ( 4 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 660 calls, 0.000 s avg) ccgdiagg : 0.64s CPU ( 240 calls, 0.003 s avg) wfcrot : 0.22s CPU ( 180 calls, 0.001 s avg) Called by *cgdiagg: h_psi : 0.78s CPU ( 3607 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 180 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 3607 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 7154 calls, 0.000 s avg) cft3s : 0.72s CPU ( 10832 calls, 0.000 s avg) davcio : 0.00s CPU ( 900 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/cu.scf.david.out0000644000700200004540000003753312053145630023270 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:28 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 29 gaussian broad. (Ry)= 0.0200 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 atomic + 4 random wfc total cpu time spent up to now is 0.75 secs per-process dynamical memory: 10.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.8 total cpu time spent up to now is 1.21 secs total energy = -87.72655606 Ry Harris-Foulkes estimate = -87.90886122 Ry estimated scf accuracy < 0.24742720 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.53 secs total energy = -87.80830159 Ry Harris-Foulkes estimate = -87.90812723 Ry estimated scf accuracy < 0.20149213 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.83E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.79 secs total energy = -87.84080215 Ry Harris-Foulkes estimate = -87.84128629 Ry estimated scf accuracy < 0.00093500 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.50E-06, avg # of iterations = 2.5 total cpu time spent up to now is 2.12 secs total energy = -87.84117874 Ry Harris-Foulkes estimate = -87.84118196 Ry estimated scf accuracy < 0.00003302 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.39 secs total energy = -87.84117482 Ry Harris-Foulkes estimate = -87.84117964 Ry estimated scf accuracy < 0.00001126 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.65 secs total energy = -87.84117674 Ry Harris-Foulkes estimate = -87.84117674 Ry estimated scf accuracy < 0.00000001 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 2.1 total cpu time spent up to now is 2.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9901 11.2011 11.2011 11.2011 12.0900 12.0900 38.8600 41.0130 41.0130 41.0130 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5708 11.0865 11.3028 11.3028 12.0597 12.0597 34.2710 39.2720 39.7082 39.7082 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1552 10.9526 11.3711 11.3711 12.1822 12.1822 27.5275 38.3732 38.3732 38.4660 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7581 11.2414 11.2414 11.7718 12.5305 12.5305 21.8040 37.4538 37.7365 37.7365 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1126 11.1667 11.1667 12.7052 12.7052 13.4642 18.6412 37.0213 37.6107 37.6107 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7619 10.9725 11.3942 11.3942 11.8894 12.1759 36.7454 36.7454 36.7669 38.6741 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0142 10.7491 11.4315 11.5524 11.9730 12.3079 30.0779 34.8354 36.4457 38.9410 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7287 10.8275 11.1807 11.4888 12.5931 12.8057 23.9425 34.0858 34.9379 36.6366 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3833 10.9634 11.3698 11.6201 12.7173 14.6390 19.3208 32.8134 34.6288 36.4058 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3118 11.0366 11.3690 11.4824 12.4842 14.0535 20.5831 31.5886 36.5313 37.3111 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2134 10.8072 11.2557 11.5070 12.0311 12.8219 25.8862 31.4946 39.3197 39.7083 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4954 10.8983 11.3915 11.4734 11.8693 12.2784 32.0409 32.7822 41.5265 42.4817 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7942 10.4347 11.6325 11.9192 11.9192 12.3849 32.3393 32.3393 33.7598 34.5440 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0226 10.2342 11.4502 12.0191 12.6216 12.9852 26.9779 30.3531 31.0981 35.0364 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7667 10.3288 11.2645 11.8944 12.7490 15.5293 21.6001 27.6743 31.3015 35.1325 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0182 10.5263 11.0684 11.7897 12.5062 16.7738 20.0922 26.0416 32.9710 35.8417 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6266 10.6773 10.8945 11.7426 12.0919 14.2038 24.5959 26.0247 35.8984 37.3877 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2057 9.9166 12.5532 12.5532 12.5970 13.2864 26.4700 29.2996 29.2996 33.3063 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4500 9.8713 12.2018 12.4695 12.7942 15.9126 23.7212 25.2517 29.0129 34.1879 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8606 10.1090 11.5076 12.2375 12.6487 19.0055 20.5140 22.9124 30.3241 34.7826 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2584 9.7078 12.6856 12.8599 12.8599 16.0644 22.1077 28.1796 28.1796 32.9217 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3838 10.5246 11.2021 11.9283 11.9816 12.8598 28.3780 29.1671 34.7023 39.7245 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6521 10.6050 10.9251 11.7990 12.4586 14.3779 22.9148 28.5911 31.6502 39.6656 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8897 10.5877 11.1595 11.6868 12.6465 16.6898 19.1411 29.3143 29.7906 39.3669 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6141 10.1146 11.4163 12.3918 12.5494 14.7883 25.8700 26.6503 27.2658 37.8986 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 9.9928 10.2650 11.1240 12.1237 12.7324 18.0166 21.2248 24.7934 27.1015 39.0183 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2723 10.4557 10.7011 12.0025 12.5534 17.1249 21.9644 24.2064 28.8740 40.2127 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.5931 9.9450 11.8838 12.4221 12.8601 17.7228 22.3900 24.9289 26.0238 37.2947 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0285 10.6778 10.6778 12.0570 12.8606 20.9508 20.9508 23.1324 24.0538 44.6533 the Fermi energy is 14.4956 ev ! total energy = -87.84117675 Ry Harris-Foulkes estimate = -87.84117675 Ry estimated scf accuracy < 1.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24218159 Ry hartree contribution = 18.89094590 Ry xc contribution = -14.05623390 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00156585 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -11.03 -0.00007501 0.00000000 0.00000000 -11.03 0.00 0.00 0.00000000 -0.00007501 0.00000000 0.00 -11.03 0.00 0.00000000 0.00000000 -0.00007501 0.00 0.00 -11.03 Writing output data file cu.save PWSCF : 3.41s CPU time, 3.79s wall time init_run : 0.72s CPU electrons : 2.21s CPU forces : 0.05s CPU stress : 0.25s CPU Called by init_run: wfcinit : 0.08s CPU potinit : 0.01s CPU Called by electrons: c_bands : 1.53s CPU ( 7 calls, 0.219 s avg) sum_band : 0.44s CPU ( 7 calls, 0.063 s avg) v_of_rho : 0.04s CPU ( 8 calls, 0.005 s avg) newd : 0.18s CPU ( 8 calls, 0.023 s avg) mix_rho : 0.02s CPU ( 7 calls, 0.003 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 493 calls, 0.000 s avg) cegterg : 1.46s CPU ( 203 calls, 0.007 s avg) Called by *egterg: h_psi : 1.10s CPU ( 651 calls, 0.002 s avg) s_psi : 0.02s CPU ( 651 calls, 0.000 s avg) g_psi : 0.03s CPU ( 419 calls, 0.000 s avg) cdiaghg : 0.24s CPU ( 622 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 651 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 912 calls, 0.000 s avg) cft3s : 1.04s CPU ( 12625 calls, 0.000 s avg) interpolate : 0.02s CPU ( 15 calls, 0.001 s avg) davcio : 0.00s CPU ( 696 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/reference/al.scf.david.out0000644000700200004540000004575412053145630023261 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:26 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 15 npp = 15 ncplane = 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 15 121 869 15 121 869 43 181 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 60 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0078125 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0234375 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0234375 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0234375 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0234375 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0234375 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0234375 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0234375 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0234375 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0468750 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0468750 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0468750 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0468750 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0468750 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0468750 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0234375 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0468750 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0468750 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0468750 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0468750 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0468750 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0234375 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0468750 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0468750 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0468750 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0468750 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0234375 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0468750 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0468750 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0234375 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0468750 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0234375 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0078125 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0234375 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0234375 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0234375 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0234375 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0234375 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0234375 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0468750 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0468750 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0468750 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0468750 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0234375 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0468750 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0468750 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0468750 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0234375 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0468750 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0234375 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0078125 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0234375 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0234375 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0234375 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0234375 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0468750 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0468750 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0234375 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0078125 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0234375 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 6) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 113, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.15 secs per-process dynamical memory: 4.6 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.99E-04, avg # of iterations = 1.4 total cpu time spent up to now is 0.61 secs total energy = -4.18725207 Ry Harris-Foulkes estimate = -4.18806760 Ry estimated scf accuracy < 0.00588404 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.78 secs total energy = -4.18725432 Ry Harris-Foulkes estimate = -4.18728328 Ry estimated scf accuracy < 0.00045440 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.97 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 113 PWs) bands (ev): -3.0799 19.3076 20.7685 20.7685 23.1344 23.1344 k = 0.0625 0.0625 0.1875 ( 111 PWs) bands (ev): -2.7827 17.6258 19.1892 20.2770 22.4670 24.4733 k = 0.0625 0.0625 0.3125 ( 106 PWs) bands (ev): -2.1902 16.0983 17.7532 18.9160 21.4294 21.8083 k = 0.0625 0.0625 0.4375 ( 103 PWs) bands (ev): -1.3094 14.7950 16.5526 17.6159 18.3710 20.6640 k = 0.0625 0.0625 0.5625 ( 103 PWs) bands (ev): -0.1500 13.7344 15.2343 15.5866 16.6091 19.8030 k = 0.0625 0.0625 0.6875 ( 105 PWs) bands (ev): 1.2791 12.3162 12.9847 14.8645 15.7970 19.0940 k = 0.0625 0.0625 0.8125 ( 105 PWs) bands (ev): 2.9581 9.6946 12.4277 14.3844 15.2583 18.6076 k = 0.0625 0.0625 0.9375 ( 103 PWs) bands (ev): 4.8009 7.3727 12.1586 14.1469 14.9892 18.3586 k = 0.0625 0.1875 0.1875 ( 108 PWs) bands (ev): -2.4860 15.9029 18.1433 21.3062 23.3521 23.7854 k = 0.0625 0.1875 0.3125 ( 104 PWs) bands (ev): -1.8951 14.3532 16.7498 20.7071 21.6900 23.3063 k = 0.0625 0.1875 0.4375 ( 103 PWs) bands (ev): -1.0179 13.0416 15.5182 18.6011 19.5711 22.3327 k = 0.0625 0.1875 0.5625 ( 102 PWs) bands (ev): 0.1388 11.9819 14.4665 15.6002 18.5654 21.5047 k = 0.0625 0.1875 0.6875 ( 102 PWs) bands (ev): 1.5641 11.1704 12.5879 13.8689 17.7882 20.8342 k = 0.0625 0.1875 0.8125 ( 104 PWs) bands (ev): 3.2366 9.9113 10.7193 13.3151 17.2629 20.3725 k = 0.0625 0.1875 0.9375 ( 104 PWs) bands (ev): 5.0685 7.6399 10.4174 13.0518 17.0000 20.1366 k = 0.0625 0.3125 0.3125 ( 104 PWs) bands (ev): -1.3100 12.7878 15.3547 21.4109 22.4618 23.4833 k = 0.0625 0.3125 0.4375 ( 101 PWs) bands (ev): -0.4382 11.4704 14.1064 19.0232 21.9962 23.4255 k = 0.0625 0.3125 0.5625 ( 103 PWs) bands (ev): 0.7106 10.4079 13.0602 16.0835 21.1128 23.5043 k = 0.0625 0.3125 0.6875 ( 104 PWs) bands (ev): 2.1275 9.6064 12.1737 13.3550 20.3731 23.0362 k = 0.0625 0.3125 0.8125 ( 103 PWs) bands (ev): 3.7898 9.0569 10.4576 11.9430 19.8652 22.6358 k = 0.0625 0.3125 0.9375 ( 104 PWs) bands (ev): 5.6027 8.1189 8.8987 11.6128 19.6076 22.4238 k = 0.0625 0.4375 0.4375 ( 98 PWs) bands (ev): 0.4258 10.1489 12.8399 19.0288 21.0992 24.0186 k = 0.0625 0.4375 0.5625 ( 101 PWs) bands (ev): 1.5646 9.0859 11.7852 16.7673 21.3158 23.8775 k = 0.0625 0.4375 0.6875 ( 104 PWs) bands (ev): 2.9671 8.2848 10.9629 14.0393 22.3899 23.2854 k = 0.0625 0.4375 0.8125 ( 105 PWs) bands (ev): 4.6116 7.7492 10.3043 11.5745 22.6874 23.8326 k = 0.0625 0.4375 0.9375 ( 105 PWs) bands (ev): 6.3928 7.4658 8.9446 10.4210 22.4673 24.6833 k = 0.0625 0.5625 0.5625 ( 103 PWs) bands (ev): 2.6901 8.0223 10.7231 17.0674 19.0228 26.0921 k = 0.0625 0.5625 0.6875 ( 103 PWs) bands (ev): 4.0752 7.2232 9.9080 14.9931 19.5276 26.1781 k = 0.0625 0.5625 0.8125 ( 105 PWs) bands (ev): 5.6857 6.6995 9.3428 12.5059 20.9132 25.7068 k = 0.0625 0.6875 0.6875 ( 101 PWs) bands (ev): 5.4260 6.4363 9.0994 15.6024 17.3699 26.6300 k = 0.0625 0.6875 0.8125 ( 104 PWs) bands (ev): 5.8605 7.0396 8.5731 13.7265 18.1484 24.3657 k = 0.0625 0.8125 0.8125 ( 102 PWs) bands (ev): 5.3361 7.8453 8.7941 14.6307 16.1488 22.0436 k = 0.1875 0.1875 0.1875 ( 107 PWs) bands (ev): -2.1901 14.2077 19.7033 19.7033 24.4167 24.4167 k = 0.1875 0.1875 0.3125 ( 103 PWs) bands (ev): -1.6022 12.6561 18.2573 19.6998 21.8869 24.1377 k = 0.1875 0.1875 0.4375 ( 105 PWs) bands (ev): -0.7295 11.3377 17.0419 18.5894 18.9494 24.1620 k = 0.1875 0.1875 0.5625 ( 104 PWs) bands (ev): 0.4235 10.2730 15.7513 16.0744 17.7753 23.3710 k = 0.1875 0.1875 0.6875 ( 105 PWs) bands (ev): 1.8454 9.4651 12.9088 15.3509 16.9731 22.7216 k = 0.1875 0.1875 0.8125 ( 104 PWs) bands (ev): 3.5133 8.8963 10.3142 14.8697 16.4257 22.2719 k = 0.1875 0.3125 0.3125 ( 102 PWs) bands (ev): -1.0183 11.0929 17.3991 20.7073 21.7722 23.2782 k = 0.1875 0.3125 0.4375 ( 103 PWs) bands (ev): -0.1505 9.7666 16.2018 19.2543 20.4578 23.5600 k = 0.1875 0.3125 0.5625 ( 106 PWs) bands (ev): 0.9941 8.6943 15.1663 16.3379 19.6300 24.4265 k = 0.1875 0.3125 0.6875 ( 103 PWs) bands (ev): 2.4085 7.8865 13.3829 14.5389 18.9091 24.8584 k = 0.1875 0.3125 0.8125 ( 104 PWs) bands (ev): 4.0637 7.3414 10.8134 13.9891 18.4047 24.5585 k = 0.1875 0.4375 0.4375 ( 101 PWs) bands (ev): 0.7106 8.4335 14.9983 19.2757 21.2448 22.2836 k = 0.1875 0.4375 0.5625 ( 103 PWs) bands (ev): 1.8458 7.3549 13.9710 17.0143 21.4660 22.2907 k = 0.1875 0.4375 0.6875 ( 101 PWs) bands (ev): 3.2459 6.5440 13.1252 14.3432 21.5714 22.7620 k = 0.1875 0.4375 0.8125 ( 103 PWs) bands (ev): 4.8731 6.0140 11.5320 12.8293 21.1470 24.1577 k = 0.1875 0.5625 0.5625 ( 103 PWs) bands (ev): 2.9682 6.2742 12.9433 17.3100 19.2578 24.3072 k = 0.1875 0.5625 0.6875 ( 103 PWs) bands (ev): 4.3400 5.4702 12.1435 15.2501 19.7667 24.5021 k = 0.1875 0.6875 0.6875 ( 101 PWs) bands (ev): 4.6026 5.7549 11.3580 15.8451 17.6333 26.7366 k = 0.3125 0.3125 0.3125 ( 98 PWs) bands (ev): -0.4381 9.5216 19.2619 19.2619 22.2491 22.2491 k = 0.3125 0.3125 0.4375 ( 103 PWs) bands (ev): 0.4236 8.1830 18.0352 19.5086 19.7047 22.9992 k = 0.3125 0.3125 0.5625 ( 104 PWs) bands (ev): 1.5633 7.1005 16.7598 17.0580 18.8533 24.0150 k = 0.3125 0.3125 0.6875 ( 105 PWs) bands (ev): 2.9662 6.2849 13.9560 16.3264 18.1466 25.2901 k = 0.3125 0.4375 0.4375 ( 103 PWs) bands (ev): 1.2790 6.8356 17.4108 19.7704 20.7818 21.3526 k = 0.3125 0.4375 0.5625 ( 103 PWs) bands (ev): 2.4087 5.7457 16.4378 17.5059 20.7539 21.8470 k = 0.3125 0.4375 0.6875 ( 103 PWs) bands (ev): 3.7925 4.9319 14.6888 15.7813 20.2147 23.0298 k = 0.3125 0.5625 0.5625 ( 105 PWs) bands (ev): 3.5176 4.6554 15.4923 17.7989 19.6742 22.7871 k = 0.4375 0.4375 0.4375 ( 105 PWs) bands (ev): 2.1276 5.4734 19.5273 19.5273 20.5236 20.5236 k = 0.4375 0.4375 0.5625 ( 106 PWs) bands (ev): 3.2420 4.3786 18.1677 18.5361 20.0803 21.5256 the Fermi energy is 8.2612 ev ! total energy = -4.18725744 Ry Harris-Foulkes estimate = -4.18725736 Ry estimated scf accuracy < 0.00000034 Ry The total energy is the sum of the following terms: one-electron contribution = 2.93900609 Ry hartree contribution = 0.00981079 Ry xc contribution = -1.63461669 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = 0.00037690 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -17.45 -0.00011862 0.00000000 0.00000000 -17.45 0.00 0.00 0.00000000 -0.00011862 0.00000000 0.00 -17.45 0.00 0.00000000 0.00000000 -0.00011862 0.00 0.00 -17.45 Writing output data file al.save PWSCF : 1.25s CPU time, 1.53s wall time init_run : 0.13s CPU electrons : 0.82s CPU forces : 0.01s CPU stress : 0.04s CPU Called by init_run: wfcinit : 0.11s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.69s CPU ( 4 calls, 0.171 s avg) sum_band : 0.13s CPU ( 4 calls, 0.032 s avg) v_of_rho : 0.00s CPU ( 4 calls, 0.001 s avg) mix_rho : 0.00s CPU ( 4 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 660 calls, 0.000 s avg) cegterg : 0.67s CPU ( 240 calls, 0.003 s avg) Called by *egterg: h_psi : 0.63s CPU ( 705 calls, 0.001 s avg) g_psi : 0.01s CPU ( 405 calls, 0.000 s avg) cdiaghg : 0.08s CPU ( 585 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 705 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 825 calls, 0.000 s avg) cft3s : 0.64s CPU ( 9092 calls, 0.000 s avg) davcio : 0.00s CPU ( 900 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example01/run_example0000755000700200004540000003625012053145630020572 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems: Si, Al, Cu, Ni." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF Al.pz-vbc.UPF Cu.pz-d-rrkjus.UPF Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO for diago in david cg ; do # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > si.scf.$diago.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =18.0, / &electrons diagonalization='$diago' mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-8 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si...\c" $PW_COMMAND < si.scf.$diago.in > si.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > si.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='silicon' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =18.0, nbnd = 8, / &electrons diagonalization='$diago' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Si...\c" $PW_COMMAND < si.band.$diago.in > si.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > al.scf.$diago.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='al' tprnfor = .true. tstress = .true. / &system ibrav= 2, celldm(1) =7.50, nat= 1, ntyp= 1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 / &electrons diagonalization='$diago' mixing_beta = 0.7 / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Al...\c" $PW_COMMAND < al.scf.$diago.in > al.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > al.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='al' / &system ibrav= 2, celldm(1) =7.50, nat= 1, ntyp= 1, ecutwfc =15.0, nbnd = 8 / &electrons diagonalization='$diago' / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Al...\c" $PW_COMMAND < al.band.$diago.in > al.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > cu.scf.$diago.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' tstress = .true. tprnfor = .true. / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='gaussian', degauss=0.02 / &electrons diagonalization='$diago' conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.$diago.in > cu.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0, nbnd = 8 / &electrons diagonalization='$diago' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.$diago.in > cu.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.$diago.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' tprnfor = .true., tstress = .true. / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 / &electrons diagonalization='$diago' conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.$diago.in > ni.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, nbnd = 8 / &electrons diagonalization='$diago' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.$diago.in > ni.band.$diago.out| check_failure $? $ECHO " done" done $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example01/run_xml_example0000755000700200004540000006357512053145630021464 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems: Si, Al, Cu, Ni." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF Al.pz-vbc.UPF Cu.pz-d-rrkjus.UPF Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO for diago in david cg ; do # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > si.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF 0.00 0.00 0.00 0.25 0.25 0.25 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 18.0 $diago plain 0.7 1.0d-8 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si...\c" $PW_COMMAND < si.scf.$diago.xml > si.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > si.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF 0.00 0.00 0.00 0.25 0.25 0.25 $PSEUDO_DIR/ $TMP_DIR/ 18.0 $diago 8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Si...\c" $PW_COMMAND < si.band.$diago.xml > si.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > al.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 26.98 Al.pz-vbc.UPF 0.00 0.00 0.00 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 15.0 $diago 0.7 smearing marzari-vanderbilt 0.05 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Al...\c" $PW_COMMAND < al.scf.$diago.xml > al.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > al.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 26.98 Al.pz-vbc.UPF 0.00 0.00 0.00 $PSEUDO_DIR/ $TMP_DIR/ 15.0 $diago 8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Al...\c" $PW_COMMAND < al.band.$diago.xml > al.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > cu.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 25.0 300.0 $diago 1.0e-8 0.7 smearing gaussian 0.02 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.$diago.xml > cu.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 $diago 8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.$diago.xml > cu.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 24.0 288.0 $diago 1.0e-8 0.7 smearing methfessel-paxton 0.02 2 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.$diago.xml > ni.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 $diago 8 2 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.$diago.xml > ni.band.$diago.out| check_failure $? $ECHO " done" done $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example01/README0000644000700200004540000000604512053145630017204 0ustar marsamoscm This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems: Si, Al, Cu, Ni . The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation for Si (input=si.scf.{david,cg}.in, output=si.scf.{david,cg}.out). The number of computed bands is internally computed as half the number of electrons in the unit cell (4 in this case). 2) make a band structure calculation for Si (input=si.band.{david,cg}.in, output=si.band.{david,cg}). The variable nbnd is explicitly set = 8 so that the 4 valence bands and the first 4 conduction bands are calculated. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 3) make a self-consistent calculation for Al (input=al.scf.{david,cg}.in, output=al.scf.{david,cg}.out). Aluminum is a metal : the smearing technique is used for the calculation of the Fermi energy (a value for the broadening degauss is provided). The number of bands is set to a value somehow larger that half the number of electrons in the cell (this is a quantity to keep under control and provide explicitly if the default value is too small). Marzari-Vanderbilt 'cold smearing' is used. 4) make a band structure calculation for Al. (input=al.band.{david,cg}.in, output=al.band.{david,cg}.out). The variable nbnd is explicitly set = 8. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 5) make a self-consistent calculation for Cu (input=cu.scf.{david,cg}.in, output=cu.scf.{david,cg}.out). Copper is also a metal. Simple Gaussian smearing is used for the calculation of the Fermi energy. K-points are automatically generated. 6) make a band structure calculation for Cu (input=cu.band.{david,cg}.in, output=cu.band.{david,cg}.out). The variable nbnd is explicitly set = 8. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 7) make a self-consistent calculation for Ni (input=ni.scf.{david,cg}.in, output=ni.scf.{david,cg}.out). Nickel is a magnetic metal. A local-spin-density calculation is performed by specifying nspin=2 and an initial guess for the magnetization of each atomic species. This initial guess is used to build spin-up and spin-down starting charges from superposition of atomic charges. Methfessel-Paxton smearing of order one is used. 8) make a band structure calculation for Ni (input=ni.band.{david,cg}.in, output=ni.band.{david,cg}.out). The above is done both for Davidson diagonalization (suffix 'david') and for Conjugate-gradient style diagonalization ('cg'). The code is tolerant about the presence of unnecessary information in the namelists so that it is not necessary to remove them from the input when editing the scf input to get the one for a nscf run. espresso-5.0.2/PW/examples/example09/0000755000700200004540000000000012053440301016320 5ustar marsamoscmespresso-5.0.2/PW/examples/example09/reference/0000755000700200004540000000000012053440303020260 5ustar marsamoscmespresso-5.0.2/PW/examples/example09/reference/c4h6.pw.metaGGA.out0000644000700200004540000002516012053145630023457 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:20:15 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 8.0000 a.u. unit-cell volume = 512.0000 (a.u.)^3 number of atoms/cell = 10 number of atomic types = 2 number of electrons = 22.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW TPSS TPSS (1476) celldm(1)= 8.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file Hmeta.tm.UPF Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1263 points, 0 beta functions with: PseudoPot. # 2 for C read from file C.meta.tm.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1983 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential H 1.00 1.00783 H ( 1.00) C 4.00 12.00000 C ( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 H tau( 1) = ( -0.3396188 -0.3072775 0.2952175 ) 2 H tau( 2) = ( -0.3641150 0.3114112 0.1191170 ) 3 H tau( 3) = ( 0.2545363 -0.3380175 -0.1311087 ) 4 H tau( 4) = ( 0.3886387 -0.2037337 0.2366638 ) 5 H tau( 5) = ( 0.3060188 0.3298075 0.0415838 ) 6 H tau( 6) = ( 0.1176044 0.2002337 -0.3229712 ) 7 C tau( 7) = ( -0.1518812 -0.1636275 0.1645763 ) 8 C tau( 8) = ( -0.1701575 0.1457675 0.1031486 ) 9 C tau( 9) = ( 0.1935900 -0.1791975 0.0638284 ) 10 C tau( 10) = ( 0.1368550 0.1713513 -0.0621193 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 194.5367 ( 5682 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 683, 11) NL pseudopotentials 0.04 Mb ( 683, 4) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.04 Mb ( 5682) G-vector shells 0.00 Mb ( 164) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 683, 44) Each subspace H/S matrix 0.01 Mb ( 44, 44) Each matrix 0.00 Mb ( 4, 11) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 21.99977, renormalised to 22.00000 Starting wfc are 22 atomic wfcs total cpu time spent up to now is 0.28 secs per-process dynamical memory: 8.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.45 secs total energy = -51.78293803 Ry Harris-Foulkes estimate = -51.88409720 Ry estimated scf accuracy < 3.10433795 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.59 secs total energy = -51.91358442 Ry Harris-Foulkes estimate = -51.93181256 Ry estimated scf accuracy < 0.30910947 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-03, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.77 secs total energy = -51.94351458 Ry Harris-Foulkes estimate = -51.95251081 Ry estimated scf accuracy < 0.03877186 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-04, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.93 secs total energy = -51.94877237 Ry Harris-Foulkes estimate = -51.94892150 Ry estimated scf accuracy < 0.00074292 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.10 secs total energy = -51.94895420 Ry Harris-Foulkes estimate = -51.94897149 Ry estimated scf accuracy < 0.00014188 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.28 secs total energy = -51.94896459 Ry Harris-Foulkes estimate = -51.94899356 Ry estimated scf accuracy < 0.00011748 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.44 secs total energy = -51.94897431 Ry Harris-Foulkes estimate = -51.94897510 Ry estimated scf accuracy < 0.00000427 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 683 PWs) bands (ev): -16.0447 -10.0090 -9.5472 -7.9890 -4.9924 -4.1286 -3.5507 -2.6531 -1.4013 -1.1572 0.4485 ! total energy = -51.94897533 Ry Harris-Foulkes estimate = -51.94897541 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -33.02744095 Ry hartree contribution = 24.10031526 Ry xc contribution = -18.36712010 Ry ewald contribution = -24.65472953 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.09757634 0.00963712 -0.03184016 atom 2 type 1 force = 0.00962257 -0.00778389 0.00125317 atom 3 type 1 force = -0.01775239 0.01459015 -0.01889584 atom 4 type 1 force = -0.06653927 0.02241435 0.00418652 atom 5 type 1 force = -0.00016651 0.00780717 0.00203376 atom 6 type 1 force = -0.00360629 -0.01354863 -0.01506266 atom 7 type 2 force = -0.04067759 -0.08625650 0.11665125 atom 8 type 2 force = -0.01252152 0.09556040 0.01173775 atom 9 type 2 force = 0.02552645 -0.02973626 -0.05883797 atom 10 type 2 force = 0.00853821 -0.01268391 -0.01122582 Total force = 0.233645 Total SCF correction = 0.000605 entering subroutine stress ... Message from routine stress: Meta-GGA and stress not implemented Writing output data file pwscf.save Warning: cannot save meta-gga kinetic terms: not implemented. PWSCF : 1.65s CPU time, 2.17s wall time init_run : 0.26s CPU electrons : 1.32s CPU forces : 0.02s CPU stress : 0.00s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.07s CPU Called by electrons: c_bands : 0.61s CPU ( 8 calls, 0.076 s avg) sum_band : 0.14s CPU ( 8 calls, 0.017 s avg) v_of_rho : 0.57s CPU ( 9 calls, 0.064 s avg) mix_rho : 0.03s CPU ( 8 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.00s CPU ( 17 calls, 0.000 s avg) regterg : 0.61s CPU ( 8 calls, 0.076 s avg) Called by *egterg: h_psi : 0.63s CPU ( 28 calls, 0.023 s avg) g_psi : 0.00s CPU ( 19 calls, 0.000 s avg) rdiaghg : 0.01s CPU ( 27 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 28 calls, 0.000 s avg) h_psi_meta : 0.47s CPU ( 28 calls, 0.017 s avg) General routines calbec : 0.00s CPU ( 32 calls, 0.000 s avg) cft3 : 0.10s CPU ( 108 calls, 0.001 s avg) cft3s : 0.66s CPU ( 1312 calls, 0.001 s avg) interpolate : 0.00s CPU ( 9 calls, 0.000 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example09/reference/c4h6.cp.metaGGA.out0000644000700200004540000010037012053145630023430 0ustar marsamoscm=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:19:59 28Apr2008 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/Hmeta.tm.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/C.meta.tm.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 500 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 4.00 Electronic fictitious mass (emass) = 350.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 7486.74 [AU] ibrav = 1 alat = 8.00000000 a1 = 8.00000000 0.00000000 0.00000000 a2 = 0.00000000 8.00000000 0.00000000 a3 = 0.00000000 0.00000000 8.00000000 b1 = 0.12500000 0.00000000 0.00000000 b2 = 0.00000000 0.12500000 0.00000000 b3 = 0.00000000 0.00000000 0.12500000 omega = 512.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 120.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 7.0 , Gcutrho = 13.9 Gcuts = 13.9 NOTA BENE: refg, mmx = 0.050000 2880 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.1500 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 22, of States = 11 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: META-TPSS Correlation functional: META-TPSS Exchange-correlation = SLA PW TPSS TPSS (1476) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 6 mass = 1837.15 (a.u.), 1.01 (amu) rcmax = 0.50 (a.u.) -2.716950 -2.458220 2.361740 -2.912920 2.491290 0.952936 2.036290 -2.704140 -1.048870 3.109110 -1.629870 1.893310 2.448150 2.638460 0.332670 0.940835 1.601870 -2.583770 Species 2 atoms = 4 mass = 21874.66 (a.u.), 12.00 (amu) rcmax = 0.50 (a.u.) -1.215050 -1.309020 1.316610 -1.361260 1.166140 0.825189 1.548720 -1.433580 0.510627 1.094840 1.370810 -0.496954 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 8.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 8.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 8.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 305, nstw = 73, nsts = 305 PEs n.st n.stw n.sts n.g n.gw n.gs 1 609 145 609 11363 1365 11363 0 609 145 609 11363 1365 11363 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nnrx ) = 19683 Number of x-y planes for each processors: nr3l = 27 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nnrx ) = 19683 Number of x-y planes for each processors: nr3sl = 27 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 10 10 10 10 10 10 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 10 10 10 Local number of cell to store the grid ( nnrx ) = 1000 unit vectors of box grid cell in real space: in reciprocal space: 2.9630 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 2.9630 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 2.9630 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 5682 5682 5682 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 5682 5682 5682 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 683 683 683 Small box Mesh ngb = 294 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input H -0.339619E+00 -0.307277E+00 0.295218E+00 H -0.364115E+00 0.311411E+00 0.119117E+00 H 0.254536E+00 -0.338018E+00 -0.131109E+00 H 0.388639E+00 -0.203734E+00 0.236664E+00 H 0.306019E+00 0.329807E+00 0.415838E-01 H 0.117604E+00 0.200234E+00 -0.322971E+00 C -0.151881E+00 -0.163628E+00 0.164576E+00 C -0.170157E+00 0.145767E+00 0.103149E+00 C 0.193590E+00 -0.179198E+00 0.638284E-01 C 0.136855E+00 0.171351E+00 -0.621193E-01 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 dion Specie: 2 1 indv= 1 ang. mom= 0 dion 0.5812 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 11 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 55.85192 formf: vps(g=0)= -0.0015641 rhops(g=0)= -0.0019531 formf: sum_g vps(g)= -0.9006009 sum_g rhops(g)= -0.7180186 formf: vps(g=0)= -0.0054520 rhops(g=0)= -0.0078125 formf: sum_g vps(g)= -1.1169161 sum_g rhops(g)= -2.8720744 Delta V(G=0): 0.033747Ry, 0.918305eV from rhoofr: total integrated electronic density in g-space = 22.000000 in r-space = 22.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 4.58551 0.0 0.0 52.88652 52.88652 52.88652 57.47204 0.0000 0.0000 0.0000 0.0000 2 9.69883 0.0 0.0 45.39858 45.39858 45.39858 55.09741 0.0000 0.0000 0.0000 0.0000 3 14.33796 0.0 0.0 34.59103 34.59103 34.59103 48.92899 0.0000 0.0000 0.0000 0.0000 4 17.16347 0.0 0.0 22.26575 22.26575 22.26575 39.42921 0.0000 0.0000 0.0000 0.0000 5 17.60369 0.0 0.0 10.46585 10.46585 10.46585 28.06954 0.0000 0.0000 0.0000 0.0000 6 15.99332 0.0 0.0 0.68306 0.68306 0.68306 16.67638 0.0000 0.0000 0.0000 0.0000 7 13.19059 0.0 0.0 -6.52684 -6.52684 -6.52684 6.66375 0.0000 0.0000 0.0000 0.0000 8 10.08652 0.0 0.0 -11.36887 -11.36887 -11.36887 -1.28235 0.0000 0.0000 0.0000 0.0000 9 7.31583 0.0 0.0 -14.43219 -14.43219 -14.43219 -7.11636 0.0000 0.0000 0.0000 0.0000 10 5.18993 0.0 0.0 -16.37442 -16.37442 -16.37442 -11.18449 0.0000 0.0000 0.0000 0.0000 11 3.75101 0.0 0.0 -17.73779 -17.73779 -17.73779 -13.98679 0.0000 0.0000 0.0000 0.0000 12 2.86930 0.0 0.0 -18.87022 -18.87022 -18.87022 -16.00092 0.0000 0.0000 0.0000 0.0000 13 2.34822 0.0 0.0 -19.92772 -19.92772 -19.92772 -17.57950 0.0000 0.0000 0.0000 0.0000 14 2.00739 0.0 0.0 -20.93065 -20.93065 -20.93065 -18.92327 0.0000 0.0000 0.0000 0.0000 15 1.72681 0.0 0.0 -21.83636 -21.83636 -21.83636 -20.10955 0.0000 0.0000 0.0000 0.0000 16 1.45306 0.0 0.0 -22.59796 -22.59796 -22.59796 -21.14490 0.0000 0.0000 0.0000 0.0000 17 1.18119 0.0 0.0 -23.19525 -23.19525 -23.19525 -22.01405 0.0000 0.0000 0.0000 0.0000 18 0.92891 0.0 0.0 -23.63971 -23.63971 -23.63971 -22.71079 0.0000 0.0000 0.0000 0.0000 19 0.71519 0.0 0.0 -23.96346 -23.96346 -23.96346 -23.24828 0.0000 0.0000 0.0000 0.0000 20 0.54922 0.0 0.0 -24.20405 -24.20405 -24.20405 -23.65482 0.0000 0.0000 0.0000 0.0000 21 0.42882 0.0 0.0 -24.39291 -24.39291 -24.39291 -23.96409 0.0000 0.0000 0.0000 0.0000 22 0.34430 0.0 0.0 -24.55048 -24.55048 -24.55048 -24.20619 0.0000 0.0000 0.0000 0.0000 23 0.28381 0.0 0.0 -24.68683 -24.68683 -24.68683 -24.40302 0.0000 0.0000 0.0000 0.0000 24 0.23739 0.0 0.0 -24.80517 -24.80517 -24.80517 -24.56778 0.0000 0.0000 0.0000 0.0000 25 0.19870 0.0 0.0 -24.90586 -24.90586 -24.90586 -24.70716 0.0000 0.0000 0.0000 0.0000 26 0.16484 0.0 0.0 -24.98914 -24.98914 -24.98914 -24.82430 0.0000 0.0000 0.0000 0.0000 27 0.13517 0.0 0.0 -25.05641 -25.05641 -25.05641 -24.92124 0.0000 0.0000 0.0000 0.0000 28 0.10998 0.0 0.0 -25.11019 -25.11019 -25.11019 -25.00020 0.0000 0.0000 0.0000 0.0000 29 0.08953 0.0 0.0 -25.15351 -25.15351 -25.15351 -25.06399 0.0000 0.0000 0.0000 0.0000 30 0.07362 0.0 0.0 -25.18927 -25.18927 -25.18927 -25.11565 0.0000 0.0000 0.0000 0.0000 31 0.06163 0.0 0.0 -25.21974 -25.21974 -25.21974 -25.15811 0.0000 0.0000 0.0000 0.0000 32 0.05268 0.0 0.0 -25.24646 -25.24646 -25.24646 -25.19378 0.0000 0.0000 0.0000 0.0000 33 0.04593 0.0 0.0 -25.27040 -25.27040 -25.27040 -25.22447 0.0000 0.0000 0.0000 0.0000 34 0.04070 0.0 0.0 -25.29209 -25.29209 -25.29209 -25.25139 0.0000 0.0000 0.0000 0.0000 35 0.03653 0.0 0.0 -25.31188 -25.31188 -25.31188 -25.27536 0.0000 0.0000 0.0000 0.0000 36 0.03316 0.0 0.0 -25.33008 -25.33008 -25.33008 -25.29692 0.0000 0.0000 0.0000 0.0000 37 0.03047 0.0 0.0 -25.34699 -25.34699 -25.34699 -25.31652 0.0000 0.0000 0.0000 0.0000 38 0.02837 0.0 0.0 -25.36290 -25.36290 -25.36290 -25.33453 0.0000 0.0000 0.0000 0.0000 39 0.02680 0.0 0.0 -25.37811 -25.37811 -25.37811 -25.35131 0.0000 0.0000 0.0000 0.0000 40 0.02570 0.0 0.0 -25.39288 -25.39288 -25.39288 -25.36718 0.0000 0.0000 0.0000 0.0000 41 0.02499 0.0 0.0 -25.40741 -25.40741 -25.40741 -25.38242 0.0000 0.0000 0.0000 0.0000 42 0.02460 0.0 0.0 -25.42187 -25.42187 -25.42187 -25.39727 0.0000 0.0000 0.0000 0.0000 43 0.02447 0.0 0.0 -25.43639 -25.43639 -25.43639 -25.41192 0.0000 0.0000 0.0000 0.0000 44 0.02455 0.0 0.0 -25.45106 -25.45106 -25.45106 -25.42651 0.0000 0.0000 0.0000 0.0000 45 0.02478 0.0 0.0 -25.46595 -25.46595 -25.46595 -25.44116 0.0000 0.0000 0.0000 0.0000 46 0.02515 0.0 0.0 -25.48112 -25.48112 -25.48112 -25.45597 0.0000 0.0000 0.0000 0.0000 47 0.02562 0.0 0.0 -25.49663 -25.49663 -25.49663 -25.47101 0.0000 0.0000 0.0000 0.0000 48 0.02616 0.0 0.0 -25.51251 -25.51251 -25.51251 -25.48635 0.0000 0.0000 0.0000 0.0000 49 0.02677 0.0 0.0 -25.52879 -25.52879 -25.52879 -25.50202 0.0000 0.0000 0.0000 0.0000 50 0.02740 0.0 0.0 -25.54547 -25.54547 -25.54547 -25.51806 0.0000 0.0000 0.0000 0.0000 51 0.02805 0.0 0.0 -25.56255 -25.56255 -25.56255 -25.53450 0.0000 0.0000 0.0000 0.0000 52 0.02868 0.0 0.0 -25.58002 -25.58002 -25.58002 -25.55133 0.0000 0.0000 0.0000 0.0000 53 0.02928 0.0 0.0 -25.59784 -25.59784 -25.59784 -25.56856 0.0000 0.0000 0.0000 0.0000 54 0.02982 0.0 0.0 -25.61597 -25.61597 -25.61597 -25.58615 0.0000 0.0000 0.0000 0.0000 55 0.03029 0.0 0.0 -25.63437 -25.63437 -25.63437 -25.60408 0.0000 0.0000 0.0000 0.0000 56 0.03066 0.0 0.0 -25.65295 -25.65295 -25.65295 -25.62229 0.0000 0.0000 0.0000 0.0000 57 0.03091 0.0 0.0 -25.67165 -25.67165 -25.67165 -25.64074 0.0000 0.0000 0.0000 0.0000 58 0.03104 0.0 0.0 -25.69038 -25.69038 -25.69038 -25.65934 0.0000 0.0000 0.0000 0.0000 59 0.03102 0.0 0.0 -25.70904 -25.70904 -25.70904 -25.67803 0.0000 0.0000 0.0000 0.0000 60 0.03084 0.0 0.0 -25.72754 -25.72754 -25.72754 -25.69671 0.0000 0.0000 0.0000 0.0000 61 0.03049 0.0 0.0 -25.74577 -25.74577 -25.74577 -25.71528 0.0000 0.0000 0.0000 0.0000 62 0.02998 0.0 0.0 -25.76363 -25.76363 -25.76363 -25.73365 0.0000 0.0000 0.0000 0.0000 63 0.02929 0.0 0.0 -25.78100 -25.78100 -25.78100 -25.75171 0.0000 0.0000 0.0000 0.0000 64 0.02844 0.0 0.0 -25.79779 -25.79779 -25.79779 -25.76936 0.0000 0.0000 0.0000 0.0000 65 0.02742 0.0 0.0 -25.81391 -25.81391 -25.81391 -25.78649 0.0000 0.0000 0.0000 0.0000 66 0.02627 0.0 0.0 -25.82927 -25.82927 -25.82927 -25.80300 0.0000 0.0000 0.0000 0.0000 67 0.02498 0.0 0.0 -25.84380 -25.84380 -25.84380 -25.81881 0.0000 0.0000 0.0000 0.0000 68 0.02359 0.0 0.0 -25.85744 -25.85744 -25.85744 -25.83385 0.0000 0.0000 0.0000 0.0000 69 0.02212 0.0 0.0 -25.87015 -25.87015 -25.87015 -25.84803 0.0000 0.0000 0.0000 0.0000 70 0.02059 0.0 0.0 -25.88192 -25.88192 -25.88192 -25.86133 0.0000 0.0000 0.0000 0.0000 71 0.01904 0.0 0.0 -25.89273 -25.89273 -25.89273 -25.87369 0.0000 0.0000 0.0000 0.0000 72 0.01748 0.0 0.0 -25.90259 -25.90259 -25.90259 -25.88511 0.0000 0.0000 0.0000 0.0000 73 0.01594 0.0 0.0 -25.91152 -25.91152 -25.91152 -25.89558 0.0000 0.0000 0.0000 0.0000 74 0.01444 0.0 0.0 -25.91956 -25.91956 -25.91956 -25.90512 0.0000 0.0000 0.0000 0.0000 75 0.01300 0.0 0.0 -25.92675 -25.92675 -25.92675 -25.91375 0.0000 0.0000 0.0000 0.0000 76 0.01163 0.0 0.0 -25.93314 -25.93314 -25.93314 -25.92151 0.0000 0.0000 0.0000 0.0000 77 0.01035 0.0 0.0 -25.93880 -25.93880 -25.93880 -25.92845 0.0000 0.0000 0.0000 0.0000 78 0.00915 0.0 0.0 -25.94377 -25.94377 -25.94377 -25.93461 0.0000 0.0000 0.0000 0.0000 79 0.00806 0.0 0.0 -25.94812 -25.94812 -25.94812 -25.94006 0.0000 0.0000 0.0000 0.0000 80 0.00706 0.0 0.0 -25.95192 -25.95192 -25.95192 -25.94485 0.0000 0.0000 0.0000 0.0000 81 0.00616 0.0 0.0 -25.95521 -25.95521 -25.95521 -25.94905 0.0000 0.0000 0.0000 0.0000 82 0.00536 0.0 0.0 -25.95806 -25.95806 -25.95806 -25.95270 0.0000 0.0000 0.0000 0.0000 83 0.00464 0.0 0.0 -25.96052 -25.96052 -25.96052 -25.95588 0.0000 0.0000 0.0000 0.0000 84 0.00400 0.0 0.0 -25.96263 -25.96263 -25.96263 -25.95862 0.0000 0.0000 0.0000 0.0000 85 0.00345 0.0 0.0 -25.96444 -25.96444 -25.96444 -25.96099 0.0000 0.0000 0.0000 0.0000 86 0.00296 0.0 0.0 -25.96598 -25.96598 -25.96598 -25.96303 0.0000 0.0000 0.0000 0.0000 87 0.00253 0.0 0.0 -25.96730 -25.96730 -25.96730 -25.96477 0.0000 0.0000 0.0000 0.0000 88 0.00216 0.0 0.0 -25.96843 -25.96843 -25.96843 -25.96626 0.0000 0.0000 0.0000 0.0000 89 0.00184 0.0 0.0 -25.96938 -25.96938 -25.96938 -25.96754 0.0000 0.0000 0.0000 0.0000 90 0.00157 0.0 0.0 -25.97019 -25.97019 -25.97019 -25.96863 0.0000 0.0000 0.0000 0.0000 91 0.00133 0.0 0.0 -25.97088 -25.97088 -25.97088 -25.96955 0.0000 0.0000 0.0000 0.0000 92 0.00113 0.0 0.0 -25.97146 -25.97146 -25.97146 -25.97033 0.0000 0.0000 0.0000 0.0000 93 0.00096 0.0 0.0 -25.97196 -25.97196 -25.97196 -25.97100 0.0000 0.0000 0.0000 0.0000 94 0.00081 0.0 0.0 -25.97238 -25.97238 -25.97238 -25.97156 0.0000 0.0000 0.0000 0.0000 95 0.00069 0.0 0.0 -25.97273 -25.97273 -25.97273 -25.97204 0.0000 0.0000 0.0000 0.0000 96 0.00058 0.0 0.0 -25.97303 -25.97303 -25.97303 -25.97244 0.0000 0.0000 0.0000 0.0000 97 0.00049 0.0 0.0 -25.97328 -25.97328 -25.97328 -25.97279 0.0000 0.0000 0.0000 0.0000 98 0.00042 0.0 0.0 -25.97349 -25.97349 -25.97349 -25.97307 0.0000 0.0000 0.0000 0.0000 99 0.00035 0.0 0.0 -25.97367 -25.97367 -25.97367 -25.97332 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 22.000000 in r-space = 22.000000 total energy = -25.97382 Hartree a.u. kinetic energy = 19.18633 Hartree a.u. electrostatic energy = -35.30678 Hartree a.u. esr = 0.00038 Hartree a.u. eself = 55.85192 Hartree a.u. pseudopotential energy = -3.31575 Hartree a.u. n-l pseudopotential energy = 2.64558 Hartree a.u. exchange-correlation energy = -9.18320 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -16.95 -10.92 -10.46 -8.89 -5.91 -5.05 -4.47 -3.55 -2.30 -2.08 -0.46 Allocated memory (kb) = 11900 CELL_PARAMETERS 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 System Density [g/cm^3] : 1.1829 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -13.93847909 -6.06452873 -0.75813231 -6.06452873 -13.75984181 -2.00539206 -0.75813231 -2.00539206 -20.08358063 ATOMIC_POSITIONS H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.484339E-01 0.441839E-02 -0.193341E-01 H 0.222675E-02 -0.411038E-02 -0.231772E-02 H -0.977981E-02 0.810413E-02 -0.809001E-02 H -0.321187E-01 0.969003E-02 0.394347E-02 H 0.161965E-02 0.368851E-02 0.864832E-03 H -0.166186E-02 -0.647797E-02 -0.788998E-02 C -0.173335E-01 -0.436855E-01 0.576932E-01 C -0.589781E-02 0.475733E-01 0.149535E-02 C 0.105803E-01 -0.123403E-01 -0.274883E-01 C 0.418446E-02 -0.666631E-02 -0.263551E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00030 0.0 0.0 -25.97382 -25.97382 -25.97382 -25.97352 0.0000 0.0000 0.0000 0.0000 101 0.00025 0.0 0.0 -25.97395 -25.97395 -25.97395 -25.97370 0.0000 0.0000 0.0000 0.0000 102 0.00021 0.0 0.0 -25.97406 -25.97406 -25.97406 -25.97385 0.0000 0.0000 0.0000 0.0000 103 0.00018 0.0 0.0 -25.97415 -25.97415 -25.97415 -25.97397 0.0000 0.0000 0.0000 0.0000 104 0.00015 0.0 0.0 -25.97422 -25.97422 -25.97422 -25.97407 0.0000 0.0000 0.0000 0.0000 105 0.00013 0.0 0.0 -25.97429 -25.97429 -25.97429 -25.97416 0.0000 0.0000 0.0000 0.0000 106 0.00011 0.0 0.0 -25.97434 -25.97434 -25.97434 -25.97424 0.0000 0.0000 0.0000 0.0000 107 0.00009 0.0 0.0 -25.97439 -25.97439 -25.97439 -25.97430 0.0000 0.0000 0.0000 0.0000 108 0.00008 0.0 0.0 -25.97443 -25.97443 -25.97443 -25.97435 0.0000 0.0000 0.0000 0.0000 109 0.00006 0.0 0.0 -25.97446 -25.97446 -25.97446 -25.97440 0.0000 0.0000 0.0000 0.0000 110 0.00005 0.0 0.0 -25.97449 -25.97449 -25.97449 -25.97444 0.0000 0.0000 0.0000 0.0000 111 0.00005 0.0 0.0 -25.97451 -25.97451 -25.97451 -25.97447 0.0000 0.0000 0.0000 0.0000 112 0.00004 0.0 0.0 -25.97453 -25.97453 -25.97453 -25.97450 0.0000 0.0000 0.0000 0.0000 113 0.00003 0.0 0.0 -25.97455 -25.97455 -25.97455 -25.97452 0.0000 0.0000 0.0000 0.0000 114 0.00003 0.0 0.0 -25.97457 -25.97457 -25.97457 -25.97454 0.0000 0.0000 0.0000 0.0000 115 0.00002 0.0 0.0 -25.97458 -25.97458 -25.97458 -25.97455 0.0000 0.0000 0.0000 0.0000 116 0.00002 0.0 0.0 -25.97459 -25.97459 -25.97459 -25.97457 0.0000 0.0000 0.0000 0.0000 117 0.00002 0.0 0.0 -25.97460 -25.97460 -25.97460 -25.97458 0.0000 0.0000 0.0000 0.0000 118 0.00001 0.0 0.0 -25.97460 -25.97460 -25.97460 -25.97459 0.0000 0.0000 0.0000 0.0000 119 0.00001 0.0 0.0 -25.97461 -25.97461 -25.97461 -25.97460 0.0000 0.0000 0.0000 0.0000 120 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97460 0.0000 0.0000 0.0000 0.0000 121 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97461 0.0000 0.0000 0.0000 0.0000 122 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97462 0.0000 0.0000 0.0000 0.0000 123 0.00001 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97462 0.0000 0.0000 0.0000 0.0000 124 0.00001 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97462 0.0000 0.0000 0.0000 0.0000 125 0.00000 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97463 0.0000 0.0000 0.0000 0.0000 126 0.00000 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97463 0.0000 0.0000 0.0000 0.0000 127 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97463 0.0000 0.0000 0.0000 0.0000 128 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97463 0.0000 0.0000 0.0000 0.0000 129 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 130 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 131 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 132 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 133 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 134 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 135 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.867435D-06 0.1D-05 0.446436D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 136 total energy = -25.97464 Hartree a.u. kinetic energy = 19.18733 Hartree a.u. electrostatic energy = -35.30791 Hartree a.u. esr = 0.00038 Hartree a.u. eself = 55.85192 Hartree a.u. pseudopotential energy = -3.31687 Hartree a.u. n-l pseudopotential energy = 2.64660 Hartree a.u. exchange-correlation energy = -9.18379 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -16.96 -10.93 -10.47 -8.91 -5.91 -5.05 -4.47 -3.57 -2.32 -2.08 -0.47 Allocated memory (kb) = 11900 CELL_PARAMETERS 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 System Density [g/cm^3] : 1.1829 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -14.16875972 -6.16607537 -1.26759663 -6.16607537 -13.79633079 -1.63595495 -1.26759663 -1.63595495 -19.66080505 ATOMIC_POSITIONS H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.487237E-01 0.482894E-02 -0.162940E-01 H 0.472494E-02 -0.373208E-02 0.596498E-03 H -0.929220E-02 0.756100E-02 -0.943960E-02 H -0.332618E-01 0.112282E-01 0.227387E-02 H -0.505123E-04 0.393306E-02 0.807105E-03 H -0.140672E-02 -0.624909E-02 -0.756574E-02 C -0.209621E-01 -0.444245E-01 0.584766E-01 C -0.555646E-02 0.465998E-01 0.466845E-02 C 0.134230E-01 -0.136789E-01 -0.306621E-01 C 0.296821E-02 -0.714242E-02 -0.455580E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 136 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.736663D-06 0.1D-05 0.379169D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /cp_50.save restart file written in 0.049 sec. Averaged Physical Quantities accomulated this run ekinc : 1.00097 1.00097 (AU) ekin : 21.38282 21.38282 (AU) epot : -46.75973 -46.75973 (AU) total energy : -22.67942 -22.67942 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -22.67942 -22.67942 (AU) econs : -22.67942 -22.67942 (AU) pressure : 89.68782 89.68782 (Gpa) volume : 512.00000 512.00000 (AU) initialize : 0.63s CPU total_time : 14.34s CPU ( 136 calls, 0.105 s avg) formf : 0.21s CPU rhoofr : 4.10s CPU ( 137 calls, 0.030 s avg) vofrho : 7.09s CPU ( 137 calls, 0.052 s avg) dforce : 3.06s CPU ( 822 calls, 0.004 s avg) calphi : 0.01s CPU ( 137 calls, 0.000 s avg) ortho : 0.05s CPU ( 137 calls, 0.000 s avg) ortho_iter : 0.01s CPU ( 137 calls, 0.000 s avg) rsg : 0.01s CPU ( 137 calls, 0.000 s avg) rhoset : 0.01s CPU ( 137 calls, 0.000 s avg) updatc : 0.01s CPU ( 137 calls, 0.000 s avg) gram : 0.00s CPU newd : 0.00s CPU ( 137 calls, 0.000 s avg) calbec : 0.00s CPU ( 138 calls, 0.000 s avg) prefor : 0.00s CPU ( 137 calls, 0.000 s avg) strucf : 0.00s CPU nlfl : 0.00s CPU ( 137 calls, 0.000 s avg) nlfq : 0.03s CPU ( 137 calls, 0.000 s avg) nlsm1 : 0.00s CPU ( 412 calls, 0.000 s avg) nlsm2 : 0.02s CPU ( 137 calls, 0.000 s avg) fft : 0.94s CPU ( 1370 calls, 0.001 s avg) ffts : 0.36s CPU ( 548 calls, 0.001 s avg) fftw : 4.18s CPU ( 9864 calls, 0.000 s avg) CP : 15.03s CPU time, 16.14s wall time This run was terminated on: 16:20:15 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/example09/run_example0000755000700200004540000000573712053145630020610 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform SCF" $ECHO "simulation of C4H6 with TPSS metaGGA Exc." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="C.tpss-mt.UPF H.tpss-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > c4h6.pw.metaGGA.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor=.true. tstress=.true. / &system ibrav=1, celldm(1)=8.00, nat=10, ntyp=2, nbnd=11, ecutwfc=30.0, / &electrons / ATOMIC_SPECIES H 1.007825035 H.tpss-mt.UPF C 12.00 C.tpss-mt.UPF ATOMIC_POSITIONS bohr H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 K_POINTS Gamma EOF $ECHO " running the pw.x SCF calculation...\c" $PW_COMMAND < c4h6.pw.metaGGA.in > c4h6.pw.metaGGA.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example09/run_xml_example0000755000700200004540000001177712053145630021471 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform SCF" $ECHO "simulation of C4H6 with TPSS metaGGA Exc." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="C.tpss-mt.UPF H.tpss-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > c4h6.pw.metaGGA.xml << EOF 0.0 0.0 0.0 0.0 0.0 1.007825035 H.tpss-mt.UPF 12.00 C.tpss-mt.UPF -0.271695E+01 -0.245822E+01 0.236174E+01 -0.291292E+01 0.249129E+01 0.952936E+00 0.203629E+01 -0.270414E+01 -0.104887E+01 0.310911E+01 -0.162987E+01 0.189331E+01 0.244815E+01 0.263846E+01 0.332670E+00 0.940835E+00 0.160187E+01 -0.258377E+01 -0.121505E+01 -0.130902E+01 0.131661E+01 -0.136126E+01 0.116614E+01 0.825189E+00 0.154872E+01 -0.143358E+01 0.510627E+00 0.109484E+01 0.137081E+01 -0.496954E+00 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 11 EOF $ECHO " running the pw.x SCF calculation...\c" $PW_COMMAND < c4h6.pw.metaGGA.xml > c4h6.pw.metaGGA.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example09/README0000644000700200004540000000012112053145630017201 0ustar marsamoscmThis example shows how to use pw.x to perform TPSS metaGGA calculation for C4H6 espresso-5.0.2/PW/examples/example08/0000755000700200004540000000000012053440301016317 5ustar marsamoscmespresso-5.0.2/PW/examples/example08/reference/0000755000700200004540000000000012053440303020257 5ustar marsamoscmespresso-5.0.2/PW/examples/example08/reference/feo_user_ns.out0000644000700200004540000006266312053145630023341 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:18:45 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.68 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.1226789 atom 3 spin 1 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7575564 0.3689494 0.0919674 -0.2628351 0.4609168 2 -0.2628351 -0.3192079 0.4791235 0.7575564 0.1599156 3 0.5705074 0.1440156 0.4811031 -0.1776155 0.6251187 4 -0.1776155 -0.6386774 0.4440599 -0.5705074 -0.1946176 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 -0.9589261 -0.0514059 -0.0177300 -0.2696741 -0.0691359 2 0.2696741 -0.0501521 0.0695948 -0.9589261 0.0194427 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.0397092 -0.4449111 0.8120929 0.0784848 0.3671818 5 -0.0784848 0.6808546 0.0448770 -0.0397092 0.7257316 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 Tr[ns(na)]= 6.1226789 atom 4 spin 1 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 0.9720789 0.0486252 0.0214590 0.2175454 0.0700842 2 -0.2175454 0.0528525 -0.0685369 0.9720789 -0.0156844 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0428938 0.4166205 -0.8132501 -0.0767907 -0.3966296 5 -0.0767907 0.6985243 0.0115418 -0.0428938 0.7100661 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 spin 2 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 0.7497696 -0.3778842 -0.0782949 0.2842877 -0.4561791 2 0.2842877 0.3085787 -0.4815467 -0.7497696 -0.1729680 3 0.5813480 0.1874901 0.4495068 -0.1380598 0.6369969 4 0.1380598 0.6272932 -0.4760178 0.5813480 0.1512754 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 12.2453578 exit write_ns Modify starting ns matrices according to input values enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.8658921 atom 3 spin 1 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7408198 0.3870526 0.0636813 -0.3068550 0.4507339 2 -0.3068550 -0.2969977 0.4836962 0.7408198 0.1866985 3 0.5664638 0.1299364 0.4907515 -0.1901179 0.6206879 4 -0.1901179 -0.6416898 0.4333731 -0.5664638 -0.2083167 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1553851 0.1553851 0.2765381 0.2765381 1.0000000 eigenvectors 1 -0.9616965 -0.0508780 -0.0184576 -0.2596211 -0.0693356 2 0.2596211 -0.0506874 0.0694054 -0.9616965 0.0187180 3 0.0569190 0.2738467 -0.8001636 -0.0670591 -0.5263169 4 0.0670591 -0.7658439 0.1457638 0.0569190 -0.6200801 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.008 -0.241 -0.004 0.241 0.517 0.008 -0.241 0.000 -0.008 0.008 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atom 4 Tr[ns(na)]= 6.8658921 atom 4 spin 1 eigenvalues: 0.1553851 0.1553851 0.2765381 0.2765381 1.0000000 eigenvectors 1 -0.9758457 -0.0476637 -0.0226921 -0.1999711 -0.0703557 2 0.1999711 -0.0537212 0.0681385 -0.9758457 0.0144174 3 -0.0348136 -0.4858896 0.8078033 0.0807756 0.3219137 4 0.0807756 -0.6522424 -0.0946715 0.0348136 -0.7469139 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.008 -0.241 -0.004 0.241 0.517 0.008 -0.241 0.000 -0.008 0.008 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atom 4 spin 2 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7446021 0.3833053 0.0697298 -0.2975596 0.4530351 2 -0.2975596 -0.3018185 0.4828614 0.7446021 0.1810429 3 0.5496829 0.0788614 0.5234393 -0.2342535 0.6023007 4 -0.2342535 -0.6499463 0.3932692 -0.5496829 -0.2566772 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 13.7317842 exit write_ns total cpu time spent up to now is 4.47 secs total energy = -173.97410127 Ry Harris-Foulkes estimate = -174.94035763 Ry estimated scf accuracy < 2.60464524 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.54 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.30E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.21 secs total energy = -174.45336982 Ry Harris-Foulkes estimate = -174.46234756 Ry estimated scf accuracy < 0.25991444 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.21 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.28E-04, avg # of iterations = 1.2 total cpu time spent up to now is 7.87 secs total energy = -174.51122921 Ry Harris-Foulkes estimate = -174.47289444 Ry estimated scf accuracy < 0.10737176 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.83E-04, avg # of iterations = 1.5 total cpu time spent up to now is 9.52 secs total energy = -174.53386789 Ry Harris-Foulkes estimate = -174.52520132 Ry estimated scf accuracy < 0.01388344 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.96E-05, avg # of iterations = 2.5 total cpu time spent up to now is 11.26 secs total energy = -174.53663640 Ry Harris-Foulkes estimate = -174.53571104 Ry estimated scf accuracy < 0.00220323 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.87E-06, avg # of iterations = 2.2 total cpu time spent up to now is 13.36 secs total energy = -174.53723792 Ry Harris-Foulkes estimate = -174.53688482 Ry estimated scf accuracy < 0.00057462 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.05E-06, avg # of iterations = 2.5 total cpu time spent up to now is 15.14 secs total energy = -174.53737226 Ry Harris-Foulkes estimate = -174.53737575 Ry estimated scf accuracy < 0.00004425 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 3.2 total cpu time spent up to now is 17.13 secs total energy = -174.53740980 Ry Harris-Foulkes estimate = -174.53739184 Ry estimated scf accuracy < 0.00002335 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.34E-08, avg # of iterations = 1.2 total cpu time spent up to now is 18.78 secs total energy = -174.53741463 Ry Harris-Foulkes estimate = -174.53741301 Ry estimated scf accuracy < 0.00000112 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.01E-09, avg # of iterations = 3.5 total cpu time spent up to now is 20.71 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.7659840 atom 3 spin 1 eigenvalues: 0.9940242 0.9940242 1.0012173 1.0012173 1.0019610 eigenvectors 1 -0.8809080 0.1949766 0.0319643 -0.3653236 0.2269409 2 -0.3653236 -0.1494790 0.2435942 0.8809080 0.0941152 3 0.2789208 0.1079086 0.6138757 -0.1128847 0.7217843 4 -0.1128847 -0.7711437 0.4790234 -0.2789208 -0.2921202 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1021989 0.1021989 0.2925641 0.2925641 0.9840138 eigenvectors 1 0.0076280 0.6678190 -0.7355585 -0.0912391 -0.0677395 2 0.0912391 -0.4637843 -0.3464561 0.0076280 -0.8102404 3 -0.9736383 -0.0501287 -0.0229639 -0.2089155 -0.0730926 4 -0.2089155 0.0554583 -0.0711419 0.9736383 -0.0156836 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atom 4 Tr[ns(na)]= 6.7659840 atom 4 spin 1 eigenvalues: 0.1021989 0.1021989 0.2925641 0.2925641 0.9840138 eigenvectors 1 -0.0904896 0.2945653 0.5090192 0.0139425 0.8035845 2 -0.0139425 0.7578321 -0.6340171 -0.0904896 0.1238150 3 0.9722884 0.0504808 0.0225105 0.2151104 0.0729913 4 -0.2151104 0.0551380 -0.0712867 0.9722884 -0.0161487 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atom 4 spin 2 eigenvalues: 0.9940242 0.9940242 1.0012173 1.0012173 1.0019610 eigenvectors 1 -0.8876310 0.1921273 0.0365456 -0.3486710 0.2286729 2 -0.3486710 -0.1531240 0.2429491 0.8876310 0.0898252 3 0.2755100 0.0853730 0.6275848 -0.1209712 0.7129579 4 -0.1209712 -0.7739627 0.4609166 -0.2755100 -0.3130461 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 nsum = 13.5319680 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7191 -7.4686 1.4530 3.6647 3.6647 5.4897 5.4897 6.8742 7.8272 7.8796 7.8796 8.4597 8.4597 9.8921 11.5962 12.5866 12.5866 13.4549 13.4549 20.0155 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0115 -7.3315 2.4598 3.6249 4.1636 4.2251 5.5876 5.6550 6.2721 6.5390 7.3470 8.7896 9.2130 9.4785 12.5148 12.7492 13.3329 13.6656 17.3707 17.6640 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8314 -7.4842 1.8597 4.1301 4.1644 4.2152 5.6548 5.6835 6.6615 6.6845 7.2432 8.6735 8.8898 9.7818 12.5727 12.8525 13.7795 13.8683 15.3275 16.7002 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2031 -8.1501 3.4508 3.7653 3.7653 4.2973 5.5356 5.5356 6.9739 6.9739 7.8700 9.4387 9.4387 9.5136 12.5354 12.5354 13.1778 13.1778 14.1101 14.3870 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7191 -7.4686 1.4530 3.6647 3.6647 5.4897 5.4897 6.8742 7.8272 7.8796 7.8796 8.4597 8.4597 9.8921 11.5962 12.5866 12.5866 13.4549 13.4549 20.0155 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0115 -7.3315 2.4598 3.6249 4.1636 4.2251 5.5876 5.6550 6.2721 6.5390 7.3470 8.7896 9.2130 9.4785 12.5148 12.7492 13.3329 13.6656 17.3707 17.6640 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8314 -7.4842 1.8597 4.1301 4.1644 4.2152 5.6548 5.6835 6.6615 6.6845 7.2432 8.6735 8.8898 9.7818 12.5727 12.8525 13.7795 13.8683 15.3275 16.7002 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2031 -8.1501 3.4508 3.7653 3.7653 4.2973 5.5356 5.5356 6.9739 6.9739 7.8700 9.4387 9.4387 9.5136 12.5354 12.5354 13.1778 13.1778 14.1101 14.3870 the Fermi energy is 10.6805 ev ! total energy = -174.53741681 Ry Harris-Foulkes estimate = -174.53741512 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 0.53991839 Ry hartree contribution = 28.09152366 Ry xc contribution = -65.85571880 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.19615530 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -86.46 -0.00058773 -0.00024656 -0.00024656 -86.46 -36.27 -36.27 -0.00024656 -0.00058773 -0.00024656 -36.27 -86.46 -36.27 -0.00024656 -0.00024656 -0.00058773 -36.27 -36.27 -86.46 Writing output data file feo_af.save PWSCF : 24.72s CPU time, 26.28s wall time init_run : 2.62s CPU electrons : 18.03s CPU forces : 0.78s CPU stress : 3.12s CPU Called by init_run: wfcinit : 0.38s CPU potinit : 0.11s CPU Called by electrons: c_bands : 9.19s CPU ( 10 calls, 0.919 s avg) sum_band : 5.65s CPU ( 10 calls, 0.565 s avg) v_of_rho : 0.50s CPU ( 11 calls, 0.046 s avg) newd : 2.09s CPU ( 11 calls, 0.190 s avg) mix_rho : 0.31s CPU ( 10 calls, 0.031 s avg) Called by c_bands: init_us_2 : 0.24s CPU ( 272 calls, 0.001 s avg) cegterg : 8.88s CPU ( 80 calls, 0.111 s avg) Called by *egterg: h_psi : 8.12s CPU ( 274 calls, 0.030 s avg) s_psi : 0.31s CPU ( 362 calls, 0.001 s avg) g_psi : 0.06s CPU ( 186 calls, 0.000 s avg) cdiaghg : 0.27s CPU ( 266 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 274 calls, 0.001 s avg) General routines calbec : 0.39s CPU ( 458 calls, 0.001 s avg) cft3 : 0.99s CPU ( 167 calls, 0.006 s avg) cft3s : 8.31s CPU ( 9122 calls, 0.001 s avg) interpolate : 0.39s CPU ( 42 calls, 0.009 s avg) davcio : 0.00s CPU ( 768 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example08/reference/feo_LDA_again.out0000644000700200004540000005464412053145630023422 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:19:11 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.000000 0.000000 Fe2 2 0.000000 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.72 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4251862 atom 3 spin 1 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.9018069 0.1812386 0.0436787 -0.3184358 0.2249173 2 -0.3184358 -0.1550740 0.2344942 0.9018069 0.0794202 3 0.1838967 -0.2796812 0.7712377 -0.2269912 0.4915565 4 0.2269912 0.7290746 -0.1223263 0.1838967 0.6067483 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 atom 3 spin 2 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9716143 0.0399371 0.0170375 0.2254646 0.0569746 2 -0.2254646 0.0427310 -0.0559520 0.9716143 -0.0132211 3 -0.0591782 -0.0610240 0.7338195 0.0403645 0.6727954 4 -0.0403645 0.8121095 -0.3532064 -0.0591782 0.4589031 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 Tr[ns(na)]= 6.4251862 atom 4 spin 1 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9746728 0.0393355 0.0178185 0.2118528 0.0571540 2 -0.2118528 0.0432854 -0.0557082 0.9746728 -0.0124229 3 -0.0285067 -0.4849917 0.8090835 0.0657170 0.3240919 4 -0.0657170 0.6542391 0.0928955 -0.0285067 0.7471347 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 spin 2 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.8988060 0.1826731 0.0414957 -0.3268099 0.2241688 2 -0.3268099 -0.1533815 0.2348903 0.8988060 0.0815088 3 0.2491024 -0.0203584 0.6862100 -0.1526139 0.6658516 4 -0.1526139 -0.7806131 0.3726757 -0.2491024 -0.4079374 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 nsum = 12.8503725 exit write_ns total cpu time spent up to now is 4.49 secs total energy = -174.41116749 Ry Harris-Foulkes estimate = -175.24062365 Ry estimated scf accuracy < 1.83907829 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.80 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.24 secs total energy = -174.80132266 Ry Harris-Foulkes estimate = -174.82982858 Ry estimated scf accuracy < 0.10915999 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.81 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-04, avg # of iterations = 2.0 total cpu time spent up to now is 8.11 secs total energy = -174.82215071 Ry Harris-Foulkes estimate = -174.81940173 Ry estimated scf accuracy < 0.01925761 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.88E-05, avg # of iterations = 1.8 total cpu time spent up to now is 9.98 secs total energy = -174.82396919 Ry Harris-Foulkes estimate = -174.82416263 Ry estimated scf accuracy < 0.00166244 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.05 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.94E-06, avg # of iterations = 3.0 total cpu time spent up to now is 11.90 secs total energy = -174.82455754 Ry Harris-Foulkes estimate = -174.82440517 Ry estimated scf accuracy < 0.00042492 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.52E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.62 secs total energy = -174.82463767 Ry Harris-Foulkes estimate = -174.82463510 Ry estimated scf accuracy < 0.00003442 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.23E-07, avg # of iterations = 3.2 total cpu time spent up to now is 15.63 secs total energy = -174.82465009 Ry Harris-Foulkes estimate = -174.82465934 Ry estimated scf accuracy < 0.00003428 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.22E-07, avg # of iterations = 3.5 total cpu time spent up to now is 17.44 secs total energy = -174.82465720 Ry Harris-Foulkes estimate = -174.82465702 Ry estimated scf accuracy < 0.00000105 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.76E-09, avg # of iterations = 3.8 total cpu time spent up to now is 19.36 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.9389790 atom 3 spin 1 eigenvalues: 0.9856388 0.9856388 0.9995005 0.9995005 0.9999704 eigenvectors 1 -0.9703422 0.0769323 0.0371688 -0.1952354 0.1141011 2 -0.1952354 -0.0873358 0.1102932 0.9703422 0.0229575 3 0.0955956 -0.2481788 0.7901569 -0.1057386 0.5419781 4 -0.1057386 -0.7691085 0.1696251 -0.0955956 -0.5994834 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 atom 3 spin 2 eigenvalues: 0.3300323 0.3300323 0.4304625 0.4391014 0.4391014 eigenvectors 1 0.9010186 0.2093506 0.0797170 0.2332872 0.2890676 2 0.2332872 -0.2129179 0.2877619 -0.9010186 0.0748439 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3117275 -0.6680169 0.0202509 0.1912290 -0.6477660 5 0.1912290 0.3622960 -0.7596676 -0.3117275 -0.3973716 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 Tr[ns(na)]= 6.9389553 atom 4 spin 1 eigenvalues: 0.3300313 0.3300313 0.4304584 0.4390928 0.4390928 eigenvectors 1 0.9075044 0.2029843 0.0881745 0.2066033 0.2911588 2 0.2066033 -0.2190082 0.2852936 -0.9075044 0.0662855 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3229471 -0.6443763 -0.0266800 0.1716274 -0.6710563 5 0.1716274 0.4028383 -0.7594654 -0.3229471 -0.3566271 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 spin 2 eigenvalues: 0.9856386 0.9856386 0.9995005 0.9995005 0.9999704 eigenvectors 1 0.9470929 -0.0849674 -0.0263988 0.2875695 -0.1113662 2 -0.2875695 -0.0795387 0.1133533 0.9470929 0.0338146 3 -0.0945987 0.2553819 -0.7917133 0.1066296 -0.5363314 4 0.1066296 0.7667469 -0.1622062 0.0945987 0.6045407 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 nsum = 13.8779343 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7222 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2986 9.9326 9.9326 10.9601 10.9723 10.9723 12.4960 12.4960 13.9941 14.2632 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7223 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2987 9.9326 9.9326 10.9601 10.9723 10.9723 12.4959 12.4959 13.9941 14.2632 the Fermi energy is 10.9768 ev ! total energy = -174.82465792 Ry Harris-Foulkes estimate = -174.82465763 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56215155 Ry hartree contribution = 27.86074716 Ry xc contribution = -65.73507747 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.00000000 Ry smearing contrib. (-TS) = -0.00318382 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000174 -0.00000174 -0.00000174 atom 2 type 1 force = 0.00000174 0.00000174 0.00000174 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000004 Total SCF correction = 0.000034 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -236.31 -0.00160642 0.00014872 0.00014872 -236.31 21.88 21.88 0.00014872 -0.00160642 0.00014872 21.88 -236.31 21.88 0.00014872 0.00014872 -0.00160642 21.88 21.88 -236.31 Writing output data file feo_af.save PWSCF : 23.27s CPU time, 23.88s wall time init_run : 2.64s CPU electrons : 16.64s CPU forces : 0.70s CPU stress : 3.12s CPU Called by init_run: wfcinit : 0.41s CPU potinit : 0.11s CPU Called by electrons: c_bands : 8.89s CPU ( 9 calls, 0.988 s avg) sum_band : 4.84s CPU ( 9 calls, 0.538 s avg) v_of_rho : 0.45s CPU ( 10 calls, 0.045 s avg) newd : 1.94s CPU ( 10 calls, 0.194 s avg) mix_rho : 0.28s CPU ( 9 calls, 0.031 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 256 calls, 0.001 s avg) cegterg : 8.60s CPU ( 72 calls, 0.119 s avg) Called by *egterg: h_psi : 7.81s CPU ( 276 calls, 0.028 s avg) s_psi : 0.31s CPU ( 364 calls, 0.001 s avg) g_psi : 0.06s CPU ( 196 calls, 0.000 s avg) cdiaghg : 0.29s CPU ( 268 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.20s CPU ( 276 calls, 0.001 s avg) General routines calbec : 0.39s CPU ( 452 calls, 0.001 s avg) cft3 : 0.91s CPU ( 152 calls, 0.006 s avg) cft3s : 7.72s CPU ( 8670 calls, 0.001 s avg) interpolate : 0.36s CPU ( 38 calls, 0.010 s avg) davcio : 0.01s CPU ( 720 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example08/reference/feo_standard.out0000644000700200004540000006227212053145630023457 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:18:11 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.95 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.1226789 atom 3 spin 1 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7575564 0.3689494 0.0919674 -0.2628351 0.4609168 2 -0.2628351 -0.3192079 0.4791235 0.7575564 0.1599156 3 0.5705074 0.1440156 0.4811031 -0.1776155 0.6251187 4 -0.1776155 -0.6386774 0.4440599 -0.5705074 -0.1946176 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 -0.9589261 -0.0514059 -0.0177300 -0.2696741 -0.0691359 2 0.2696741 -0.0501521 0.0695948 -0.9589261 0.0194427 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.0397092 -0.4449111 0.8120929 0.0784848 0.3671818 5 -0.0784848 0.6808546 0.0448770 -0.0397092 0.7257316 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 Tr[ns(na)]= 6.1226789 atom 4 spin 1 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 0.9720789 0.0486252 0.0214590 0.2175454 0.0700842 2 -0.2175454 0.0528525 -0.0685369 0.9720789 -0.0156844 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0428938 0.4166205 -0.8132501 -0.0767907 -0.3966296 5 -0.0767907 0.6985243 0.0115418 -0.0428938 0.7100661 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 spin 2 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 0.7497696 -0.3778842 -0.0782949 0.2842877 -0.4561791 2 0.2842877 0.3085787 -0.4815467 -0.7497696 -0.1729680 3 0.5813480 0.1874901 0.4495068 -0.1380598 0.6369969 4 0.1380598 0.6272932 -0.4760178 0.5813480 0.1512754 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 12.2453578 exit write_ns total cpu time spent up to now is 4.84 secs total energy = -173.87146422 Ry Harris-Foulkes estimate = -174.94035763 Ry estimated scf accuracy < 2.40339611 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.54 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.58E-03, avg # of iterations = 2.2 total cpu time spent up to now is 6.62 secs total energy = -174.40473744 Ry Harris-Foulkes estimate = -174.41164209 Ry estimated scf accuracy < 0.17789218 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.22 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.35E-04, avg # of iterations = 2.0 total cpu time spent up to now is 8.30 secs total energy = -174.44733058 Ry Harris-Foulkes estimate = -174.42204284 Ry estimated scf accuracy < 0.04586806 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.40 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.64E-04, avg # of iterations = 1.8 total cpu time spent up to now is 9.97 secs total energy = -174.45275292 Ry Harris-Foulkes estimate = -174.45200666 Ry estimated scf accuracy < 0.00422680 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.51E-05, avg # of iterations = 2.2 total cpu time spent up to now is 11.70 secs total energy = -174.45424804 Ry Harris-Foulkes estimate = -174.45343861 Ry estimated scf accuracy < 0.00252776 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.36 secs total energy = -174.44861198 Ry Harris-Foulkes estimate = -174.45466713 Ry estimated scf accuracy < 0.00457152 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 1.2 total cpu time spent up to now is 15.01 secs total energy = -174.45108353 Ry Harris-Foulkes estimate = -174.45358872 Ry estimated scf accuracy < 0.00220458 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.87E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.67 secs total energy = -174.45110896 Ry Harris-Foulkes estimate = -174.45363299 Ry estimated scf accuracy < 0.00142704 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.10E-06, avg # of iterations = 1.5 total cpu time spent up to now is 18.32 secs total energy = -174.45319426 Ry Harris-Foulkes estimate = -174.45398204 Ry estimated scf accuracy < 0.00240700 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.10E-06, avg # of iterations = 1.0 total cpu time spent up to now is 19.95 secs total energy = -174.45332386 Ry Harris-Foulkes estimate = -174.45347729 Ry estimated scf accuracy < 0.00052580 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.88E-06, avg # of iterations = 1.0 total cpu time spent up to now is 21.58 secs total energy = -174.45338185 Ry Harris-Foulkes estimate = -174.45339224 Ry estimated scf accuracy < 0.00008958 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.20E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.19 secs total energy = -174.45335503 Ry Harris-Foulkes estimate = -174.45338593 Ry estimated scf accuracy < 0.00004469 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-07, avg # of iterations = 1.0 total cpu time spent up to now is 25.22 secs total energy = -174.45337527 Ry Harris-Foulkes estimate = -174.45337528 Ry estimated scf accuracy < 0.00000134 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.79E-09, avg # of iterations = 3.8 total cpu time spent up to now is 27.24 secs total energy = -174.45337564 Ry Harris-Foulkes estimate = -174.45337629 Ry estimated scf accuracy < 0.00000307 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.79E-09, avg # of iterations = 1.0 total cpu time spent up to now is 28.82 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.8578386 atom 3 spin 1 eigenvalues: 0.9937595 0.9937595 1.0015207 1.0015207 1.0027587 eigenvectors 1 -0.8885908 0.1837050 0.0324470 -0.3590048 0.2161520 2 -0.3590048 -0.1435287 0.2308575 0.8885908 0.0873288 3 0.1979790 -0.2170065 0.7595947 -0.2057337 0.5425882 4 -0.2057337 -0.7518157 0.1879747 -0.1979790 -0.5638410 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.994 0.001 0.001 0.000 0.002 0.001 1.002 0.001 0.002 -0.001 0.001 0.001 1.002 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.002 atom 3 spin 2 eigenvalues: 0.2723450 0.2723450 0.4371918 0.4371918 0.4454460 eigenvectors 1 -0.9075095 -0.1974106 -0.1333006 -0.1015705 -0.3307112 2 -0.1015705 0.2678973 -0.3049112 0.9075095 -0.0370139 3 0.3808740 -0.5782215 -0.1185533 0.1450684 -0.6967748 4 -0.1450684 -0.4707299 0.7361195 0.3808740 0.2653896 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.300 -0.025 -0.025 0.000 -0.050 -0.025 0.422 0.012 -0.043 -0.012 -0.025 0.012 0.422 0.043 -0.012 0.000 -0.043 0.043 0.300 0.000 -0.050 -0.012 -0.012 0.000 0.422 atom 4 Tr[ns(na)]= 6.8583190 atom 4 spin 1 eigenvalues: 0.2723627 0.2723627 0.4373691 0.4373691 0.4455346 eigenvectors 1 -0.9105201 -0.1880851 -0.1435575 -0.0705810 -0.3316426 2 -0.0705810 0.2743569 -0.3000649 0.9105201 -0.0257080 3 0.3974664 -0.5054512 -0.2220412 0.0893977 -0.7274924 4 -0.0893977 -0.5482135 0.7118403 0.3974664 0.1636268 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.300 -0.025 -0.025 0.000 -0.050 -0.025 0.422 0.012 -0.043 -0.012 -0.025 0.012 0.422 0.043 -0.012 0.000 -0.043 0.043 0.300 0.000 -0.050 -0.012 -0.012 0.000 0.422 atom 4 spin 2 eigenvalues: 0.9937602 0.9937602 1.0015206 1.0015206 1.0027590 eigenvectors 1 0.9037940 -0.1771007 -0.0427770 0.3187720 -0.2198778 2 -0.3187720 -0.1516438 0.2291956 0.9037940 0.0775518 3 0.2349458 -0.0632537 0.7070740 -0.1622998 0.6438203 4 -0.1622998 -0.7799392 0.3351903 -0.2349458 -0.4447489 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.994 0.001 0.001 0.000 0.002 0.001 1.002 0.001 0.002 -0.001 0.001 0.001 1.002 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.002 nsum = 13.7161576 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7976 -7.5655 1.8228 3.7247 3.7247 5.5504 5.5504 6.5363 7.7486 7.7836 7.7836 8.4001 8.4001 11.1458 11.1458 11.3109 11.5446 13.3097 13.3097 19.8688 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0998 -7.4151 2.5437 3.4618 4.0292 4.0787 5.6303 5.7003 5.9733 6.3430 7.1847 8.6050 9.0764 10.5670 11.8908 11.9319 13.1107 13.1715 17.3131 17.6374 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9281 -7.5715 1.8790 3.9569 3.9894 4.1598 5.2662 5.9693 6.5842 6.6028 6.8422 8.6643 8.8359 10.7412 11.9114 11.9242 13.4125 13.5649 15.3388 16.6482 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2818 -8.2103 3.1793 3.8389 3.8389 4.9856 5.5915 5.5915 6.9046 6.9046 7.1509 9.3461 9.3461 11.0532 11.0840 11.0840 13.0461 13.0461 14.0474 14.3388 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7976 -7.5655 1.8227 3.7245 3.7245 5.5501 5.5501 6.5361 7.7486 7.7836 7.7836 8.4000 8.4000 11.1460 11.1460 11.3111 11.5447 13.3099 13.3099 19.8688 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0998 -7.4151 2.5436 3.4617 4.0291 4.0787 5.6303 5.7000 5.9730 6.3431 7.1845 8.6048 9.0763 10.5672 11.8910 11.9322 13.1109 13.1717 17.3130 17.6374 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9281 -7.5715 1.8790 3.9568 3.9892 4.1598 5.2660 5.9690 6.5842 6.6028 6.8420 8.6642 8.8358 10.7414 11.9116 11.9244 13.4127 13.5651 15.3388 16.6482 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2818 -8.2103 3.1792 3.8387 3.8387 4.9856 5.5913 5.5913 6.9046 6.9046 7.1507 9.3460 9.3460 11.0534 11.0842 11.0842 13.0463 13.0463 14.0473 14.3388 the Fermi energy is 11.0760 ev ! total energy = -174.45337599 Ry Harris-Foulkes estimate = -174.45337598 Ry estimated scf accuracy < 0.00000028 Ry The total energy is the sum of the following terms: one-electron contribution = 0.61735184 Ry hartree contribution = 27.81918132 Ry xc contribution = -65.73835428 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.36095589 Ry smearing contrib. (-TS) = -0.00321543 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell convergence has been achieved in 15 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00003706 0.00003706 0.00003706 atom 2 type 1 force = -0.00003706 -0.00003706 -0.00003706 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000091 Total SCF correction = 0.000661 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -173.55 -0.00117975 0.00010106 0.00010106 -173.55 14.87 14.87 0.00010106 -0.00117975 0.00010106 14.87 -173.55 14.87 0.00010106 0.00010106 -0.00117975 14.87 14.87 -173.55 Writing output data file feo_af.save PWSCF : 32.74s CPU time, 33.97s wall time init_run : 2.89s CPU electrons : 25.87s CPU forces : 0.70s CPU stress : 3.12s CPU Called by init_run: wfcinit : 0.53s CPU potinit : 0.12s CPU Called by electrons: c_bands : 12.78s CPU ( 15 calls, 0.852 s avg) sum_band : 8.45s CPU ( 15 calls, 0.563 s avg) v_of_rho : 0.73s CPU ( 16 calls, 0.046 s avg) newd : 2.99s CPU ( 16 calls, 0.187 s avg) mix_rho : 0.51s CPU ( 15 calls, 0.034 s avg) Called by c_bands: init_us_2 : 0.32s CPU ( 352 calls, 0.001 s avg) cegterg : 12.31s CPU ( 120 calls, 0.103 s avg) Called by *egterg: h_psi : 11.36s CPU ( 328 calls, 0.035 s avg) s_psi : 0.40s CPU ( 416 calls, 0.001 s avg) g_psi : 0.08s CPU ( 200 calls, 0.000 s avg) cdiaghg : 0.28s CPU ( 320 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.29s CPU ( 328 calls, 0.001 s avg) General routines calbec : 0.51s CPU ( 552 calls, 0.001 s avg) cft3 : 1.44s CPU ( 242 calls, 0.006 s avg) cft3s : 11.64s CPU ( 12972 calls, 0.001 s avg) interpolate : 0.59s CPU ( 62 calls, 0.009 s avg) davcio : 0.01s CPU ( 1008 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example08/reference/feo_wannier.out0000644000700200004540000006021212053145630023312 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:19:39 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns LDA+U Projector read from file Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.67 secs per-process dynamical memory: 28.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 5.6406612 atom 3 spin 1 eigenvalues: 0.9879557 0.9879557 0.9903396 0.9903396 0.9909571 eigenvectors 1 -0.9551858 -0.0468940 -0.0149193 -0.2852675 -0.0618132 2 0.2852675 -0.0443015 0.0627621 -0.9551858 0.0184606 3 -0.0229492 -0.5562961 0.7927156 0.0756032 0.2364195 4 -0.0756032 0.5941714 0.1846809 -0.0229492 0.7788523 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 atom 3 spin 2 eigenvalues: 0.0240864 0.0240864 0.2017543 0.2215931 0.2215931 eigenvectors 1 0.9699510 0.0364923 0.0149502 0.2345068 0.0514425 2 -0.2345068 0.0383319 -0.0507692 0.9699510 -0.0124374 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0314225 0.4196730 -0.8146548 -0.0566935 -0.3949818 5 0.0566935 -0.6983840 -0.0142555 0.0314225 -0.7126395 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.214 -0.006 -0.009 0.006 -0.005 -0.006 0.214 0.009 0.006 0.000 -0.009 0.009 0.025 0.000 -0.010 0.006 0.006 0.000 0.214 atom 4 Tr[ns(na)]= 5.6406613 atom 4 spin 1 eigenvalues: 0.0240863 0.0240863 0.2017543 0.2215932 0.2215932 eigenvectors 1 -0.9703033 -0.0364345 -0.0150267 -0.2330449 -0.0514612 2 0.2330449 -0.0383868 0.0507466 -0.9703033 0.0123598 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0316129 0.4173233 -0.8146981 -0.0565876 -0.3973748 5 0.0565876 -0.6997906 -0.0115172 0.0316129 -0.7113079 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.214 -0.006 -0.009 0.006 -0.005 -0.006 0.214 0.009 0.006 0.000 -0.009 0.009 0.025 0.000 -0.010 0.006 0.006 0.000 0.214 atom 4 spin 2 eigenvalues: 0.9879558 0.9879558 0.9903396 0.9903396 0.9909571 eigenvectors 1 0.9605767 0.0460197 0.0161426 0.2665519 0.0621623 2 0.2665519 -0.0452094 0.0624589 -0.9605767 0.0172495 3 -0.0334730 -0.4660954 0.8109275 0.0715689 0.3448320 4 -0.0715689 0.6672781 0.0700115 -0.0334730 0.7372895 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 nsum = 11.2813225 exit write_ns Modify starting ns matrices according to input values enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4389069 atom 3 spin 1 eigenvalues: 0.9879557 0.9879557 0.9903396 0.9903396 0.9909571 eigenvectors 1 0.9374138 0.0493379 0.0113253 0.3391354 0.0606632 2 0.3391354 -0.0415626 0.0635091 -0.9374138 0.0219466 3 -0.0397854 -0.4040741 0.8139372 0.0682615 0.4098632 4 -0.0682615 0.7065615 -0.0033423 -0.0397854 0.7032191 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 atom 3 spin 2 eigenvalues: 0.0240864 0.0240864 0.2215931 0.2215931 1.0000000 eigenvectors 1 -0.9850274 -0.0334584 -0.0187837 -0.1597480 -0.0522421 2 0.1597480 -0.0410068 0.0494792 -0.9850274 0.0084724 3 0.0334701 0.3939122 -0.8146325 -0.0555093 -0.4207203 4 0.0555093 -0.7132313 0.0154777 0.0334701 -0.6977536 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.481 0.260 -0.009 -0.260 -0.005 0.260 0.481 0.009 -0.260 0.000 -0.009 0.009 0.025 0.000 -0.010 -0.260 -0.260 0.000 0.481 atom 4 Tr[ns(na)]= 6.4389070 atom 4 spin 1 eigenvalues: 0.0240863 0.0240863 0.2215932 0.2215932 1.0000000 eigenvectors 1 -0.9852271 -0.0334069 -0.0188458 -0.1585119 -0.0522527 2 0.1585119 -0.0410487 0.0494556 -0.9852271 0.0084069 3 -0.0163670 -0.5798886 0.7856218 0.0627188 0.2057332 4 -0.0627188 0.5723590 0.2160187 -0.0163670 0.7883778 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.481 0.260 -0.009 -0.260 -0.005 0.260 0.481 0.009 -0.260 0.000 -0.009 0.009 0.025 0.000 -0.010 -0.260 -0.260 0.000 0.481 atom 4 spin 2 eigenvalues: 0.9879558 0.9879558 0.9903396 0.9903396 0.9909571 eigenvectors 1 0.9562943 0.0467205 0.0151647 0.2815293 0.0618852 2 -0.2815293 0.0444848 -0.0627035 0.9562943 -0.0182188 3 -0.0268472 -0.5246667 0.8012418 0.0743086 0.2765751 4 -0.0743086 0.6222779 0.1432358 -0.0268472 0.7655137 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 nsum = 12.8778140 exit write_ns total cpu time spent up to now is 4.46 secs total energy = -174.15073358 Ry Harris-Foulkes estimate = -175.00407466 Ry estimated scf accuracy < 2.39675807 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.48 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.20 secs total energy = -174.58149604 Ry Harris-Foulkes estimate = -174.58521999 Ry estimated scf accuracy < 0.24523348 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.24 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.76E-04, avg # of iterations = 1.2 total cpu time spent up to now is 7.82 secs total energy = -174.64831309 Ry Harris-Foulkes estimate = -174.60020892 Ry estimated scf accuracy < 0.11770690 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.37 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.20E-04, avg # of iterations = 2.0 total cpu time spent up to now is 9.45 secs total energy = -174.67468574 Ry Harris-Foulkes estimate = -174.67175927 Ry estimated scf accuracy < 0.00790771 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.38 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.82E-05, avg # of iterations = 2.5 total cpu time spent up to now is 11.19 secs total energy = -174.67655750 Ry Harris-Foulkes estimate = -174.67565576 Ry estimated scf accuracy < 0.00184333 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.58E-06, avg # of iterations = 1.8 total cpu time spent up to now is 12.75 secs total energy = -174.67679228 Ry Harris-Foulkes estimate = -174.67681945 Ry estimated scf accuracy < 0.00012219 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.36E-07, avg # of iterations = 5.0 total cpu time spent up to now is 14.66 secs total energy = -174.67684628 Ry Harris-Foulkes estimate = -174.67684045 Ry estimated scf accuracy < 0.00000950 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.39E-08, avg # of iterations = 3.2 total cpu time spent up to now is 16.54 secs total energy = -174.67685240 Ry Harris-Foulkes estimate = -174.67684870 Ry estimated scf accuracy < 0.00000466 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 18.18 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 5.9906137 atom 3 spin 1 eigenvalues: 0.9814246 0.9814246 0.9943617 0.9963140 0.9963140 eigenvectors 1 0.9559070 0.0835914 0.0306945 0.2554425 0.1142859 2 0.2554425 -0.0837044 0.1142445 -0.9559070 0.0305401 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.0027790 0.6917693 -0.7072653 -0.1448558 -0.0154961 5 0.1448558 -0.4172865 -0.3904465 0.0027790 -0.8077330 occupations 0.982 -0.001 -0.001 0.000 -0.002 -0.001 0.995 -0.001 -0.002 0.001 -0.001 -0.001 0.995 0.002 0.001 0.000 -0.002 0.002 0.982 0.000 -0.002 0.001 0.001 0.000 0.995 atom 3 spin 2 eigenvalues: 0.0144884 0.0144884 0.0176617 0.0176617 0.9764745 eigenvectors 1 -0.1210259 0.7545720 -0.1308673 -0.0991968 0.6237047 2 -0.0991968 -0.2845398 0.7957484 0.1210259 0.5112086 3 -0.8531159 -0.1109386 0.0005774 -0.4977007 -0.1103612 4 -0.4977007 0.0633837 -0.1277675 0.8531159 -0.0643838 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.018 0.000 0.000 0.000 0.000 0.000 0.335 0.321 0.000 -0.321 0.000 0.321 0.335 0.000 -0.321 0.000 0.000 0.000 0.018 0.000 0.000 -0.321 -0.321 0.000 0.335 atom 4 Tr[ns(na)]= 5.9906141 atom 4 spin 1 eigenvalues: 0.0144885 0.0144885 0.0176618 0.0176618 0.9764745 eigenvectors 1 -0.1561670 0.4470066 0.3577839 -0.0099959 0.8047905 2 -0.0099959 -0.6712126 0.7227254 0.1561670 0.0515128 3 -0.9751781 -0.0806268 -0.0455266 -0.1566513 -0.1261534 4 -0.1566513 0.0991195 -0.1193846 0.9751781 -0.0202651 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.018 0.000 0.000 0.000 0.000 0.000 0.335 0.321 0.000 -0.321 0.000 0.321 0.335 0.000 -0.321 0.000 0.000 0.000 0.018 0.000 0.000 -0.321 -0.321 0.000 0.335 atom 4 spin 2 eigenvalues: 0.9814247 0.9814247 0.9943617 0.9963140 0.9963140 eigenvectors 1 -0.9743505 -0.0760742 -0.0404167 -0.1721924 -0.1164909 2 -0.1721924 0.0905906 -0.1111775 0.9743505 -0.0205869 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.0405551 -0.5586072 0.7847470 0.1390906 0.2261399 5 0.1390906 -0.5836358 -0.1919501 0.0405551 -0.7755859 occupations 0.982 -0.001 -0.001 0.000 -0.002 -0.001 0.995 -0.001 -0.002 0.001 -0.001 -0.001 0.995 0.002 0.001 0.000 -0.002 0.002 0.982 0.000 -0.002 0.001 0.001 0.000 0.995 nsum = 11.9812278 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7628 -7.5193 2.8001 5.0047 5.0047 5.4662 5.4662 6.7590 7.2934 7.2934 7.7830 7.8265 7.8265 9.4263 11.5887 13.1874 13.1874 14.7127 14.7127 15.5091 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.5546 -7.5343 3.7492 4.0889 4.7638 5.4245 5.4932 5.5831 5.7021 6.2797 6.8841 7.6991 7.8438 9.3479 13.2097 13.7136 14.7662 14.9941 17.3578 17.6823 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.5441 -7.5344 2.8784 4.1840 5.1086 5.2755 5.3275 5.5738 6.6204 6.6385 6.9355 7.6877 7.8301 9.4452 13.1760 13.7332 15.0731 15.1405 15.3218 16.7138 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2146 -8.1703 4.5307 4.9368 5.2135 5.2135 5.6808 5.6808 6.6665 6.6665 7.0759 7.9059 7.9059 9.1318 13.2039 13.2039 14.0831 14.3676 14.7108 14.7108 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7628 -7.5193 2.8001 5.0047 5.0047 5.4662 5.4662 6.7590 7.2934 7.2934 7.7830 7.8265 7.8265 9.4263 11.5887 13.1874 13.1874 14.7127 14.7127 15.5091 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.5546 -7.5343 3.7492 4.0889 4.7638 5.4245 5.4932 5.5831 5.7021 6.2797 6.8841 7.6991 7.8438 9.3479 13.2097 13.7136 14.7662 14.9941 17.3578 17.6823 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.5441 -7.5344 2.8784 4.1840 5.1086 5.2755 5.3275 5.5738 6.6204 6.6385 6.9355 7.6877 7.8301 9.4452 13.1760 13.7332 15.0731 15.1405 15.3218 16.7138 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2146 -8.1703 4.5307 4.9368 5.2135 5.2135 5.6808 5.6808 6.6665 6.6665 7.0759 7.9059 7.9059 9.1318 13.2039 13.2039 14.0831 14.3676 14.7108 14.7109 the Fermi energy is 10.3637 ev ! total energy = -174.67685715 Ry Harris-Foulkes estimate = -174.67685319 Ry estimated scf accuracy < 0.00000071 Ry The total energy is the sum of the following terms: one-electron contribution = 0.53356967 Ry hartree contribution = 28.15543574 Ry xc contribution = -65.89943570 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.04286850 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file feo_af.save PWSCF : 18.27s CPU time, 19.62s wall time init_run : 2.60s CPU electrons : 15.50s CPU Called by init_run: wfcinit : 0.37s CPU potinit : 0.11s CPU Called by electrons: c_bands : 7.90s CPU ( 9 calls, 0.878 s avg) sum_band : 4.89s CPU ( 9 calls, 0.544 s avg) v_of_rho : 0.49s CPU ( 10 calls, 0.049 s avg) newd : 1.75s CPU ( 10 calls, 0.175 s avg) mix_rho : 0.27s CPU ( 9 calls, 0.030 s avg) Called by c_bands: init_us_2 : 0.13s CPU ( 152 calls, 0.001 s avg) cegterg : 7.62s CPU ( 72 calls, 0.106 s avg) Called by *egterg: h_psi : 6.95s CPU ( 262 calls, 0.027 s avg) s_psi : 0.19s CPU ( 262 calls, 0.001 s avg) g_psi : 0.06s CPU ( 182 calls, 0.000 s avg) cdiaghg : 0.26s CPU ( 254 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.18s CPU ( 262 calls, 0.001 s avg) General routines calbec : 0.26s CPU ( 334 calls, 0.001 s avg) cft3 : 0.82s CPU ( 142 calls, 0.006 s avg) cft3s : 7.16s CPU ( 8254 calls, 0.001 s avg) interpolate : 0.34s CPU ( 38 calls, 0.009 s avg) davcio : 0.00s CPU ( 448 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example08/reference/feo_LDA.out0000644000700200004540000005464412053145630022263 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:17:46 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.000000 0.000000 Fe2 2 0.000000 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.70 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4251862 atom 3 spin 1 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.9018069 0.1812386 0.0436787 -0.3184358 0.2249173 2 -0.3184358 -0.1550740 0.2344942 0.9018069 0.0794202 3 0.1838967 -0.2796812 0.7712377 -0.2269912 0.4915565 4 0.2269912 0.7290746 -0.1223263 0.1838967 0.6067483 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 atom 3 spin 2 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9716143 0.0399371 0.0170375 0.2254646 0.0569746 2 -0.2254646 0.0427310 -0.0559520 0.9716143 -0.0132211 3 -0.0591782 -0.0610240 0.7338195 0.0403645 0.6727954 4 -0.0403645 0.8121095 -0.3532064 -0.0591782 0.4589031 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 Tr[ns(na)]= 6.4251862 atom 4 spin 1 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9746728 0.0393355 0.0178185 0.2118528 0.0571540 2 -0.2118528 0.0432854 -0.0557082 0.9746728 -0.0124229 3 -0.0285067 -0.4849917 0.8090835 0.0657170 0.3240919 4 -0.0657170 0.6542391 0.0928955 -0.0285067 0.7471347 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 spin 2 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.8988060 0.1826731 0.0414957 -0.3268099 0.2241688 2 -0.3268099 -0.1533815 0.2348903 0.8988060 0.0815088 3 0.2491024 -0.0203584 0.6862100 -0.1526139 0.6658516 4 -0.1526139 -0.7806131 0.3726757 -0.2491024 -0.4079374 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 nsum = 12.8503725 exit write_ns total cpu time spent up to now is 4.49 secs total energy = -174.41116749 Ry Harris-Foulkes estimate = -175.24062365 Ry estimated scf accuracy < 1.83907829 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.80 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.53 secs total energy = -174.80132266 Ry Harris-Foulkes estimate = -174.82982858 Ry estimated scf accuracy < 0.10915999 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.81 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-04, avg # of iterations = 2.0 total cpu time spent up to now is 8.28 secs total energy = -174.82215071 Ry Harris-Foulkes estimate = -174.81940173 Ry estimated scf accuracy < 0.01925761 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.88E-05, avg # of iterations = 1.8 total cpu time spent up to now is 9.97 secs total energy = -174.82396919 Ry Harris-Foulkes estimate = -174.82416263 Ry estimated scf accuracy < 0.00166244 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.05 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.94E-06, avg # of iterations = 3.0 total cpu time spent up to now is 11.86 secs total energy = -174.82455754 Ry Harris-Foulkes estimate = -174.82440517 Ry estimated scf accuracy < 0.00042492 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.52E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.64 secs total energy = -174.82463767 Ry Harris-Foulkes estimate = -174.82463510 Ry estimated scf accuracy < 0.00003442 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.23E-07, avg # of iterations = 3.2 total cpu time spent up to now is 15.65 secs total energy = -174.82465009 Ry Harris-Foulkes estimate = -174.82465934 Ry estimated scf accuracy < 0.00003428 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.22E-07, avg # of iterations = 3.5 total cpu time spent up to now is 17.44 secs total energy = -174.82465720 Ry Harris-Foulkes estimate = -174.82465702 Ry estimated scf accuracy < 0.00000105 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.76E-09, avg # of iterations = 3.8 total cpu time spent up to now is 19.35 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.9389790 atom 3 spin 1 eigenvalues: 0.9856388 0.9856388 0.9995005 0.9995005 0.9999704 eigenvectors 1 -0.9703422 0.0769323 0.0371688 -0.1952354 0.1141011 2 -0.1952354 -0.0873358 0.1102932 0.9703422 0.0229575 3 0.0955956 -0.2481788 0.7901569 -0.1057386 0.5419781 4 -0.1057386 -0.7691085 0.1696251 -0.0955956 -0.5994834 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 atom 3 spin 2 eigenvalues: 0.3300323 0.3300323 0.4304625 0.4391014 0.4391014 eigenvectors 1 0.9010186 0.2093506 0.0797170 0.2332872 0.2890676 2 0.2332872 -0.2129179 0.2877619 -0.9010186 0.0748439 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3117275 -0.6680169 0.0202509 0.1912290 -0.6477660 5 0.1912290 0.3622960 -0.7596676 -0.3117275 -0.3973716 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 Tr[ns(na)]= 6.9389553 atom 4 spin 1 eigenvalues: 0.3300313 0.3300313 0.4304584 0.4390928 0.4390928 eigenvectors 1 0.9075044 0.2029843 0.0881745 0.2066033 0.2911588 2 0.2066033 -0.2190082 0.2852936 -0.9075044 0.0662855 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3229471 -0.6443763 -0.0266800 0.1716274 -0.6710563 5 0.1716274 0.4028383 -0.7594654 -0.3229471 -0.3566271 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 spin 2 eigenvalues: 0.9856386 0.9856386 0.9995005 0.9995005 0.9999704 eigenvectors 1 0.9470929 -0.0849674 -0.0263988 0.2875695 -0.1113662 2 -0.2875695 -0.0795387 0.1133533 0.9470929 0.0338146 3 -0.0945987 0.2553819 -0.7917133 0.1066296 -0.5363314 4 0.1066296 0.7667469 -0.1622062 0.0945987 0.6045407 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 nsum = 13.8779343 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7222 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2986 9.9326 9.9326 10.9601 10.9723 10.9723 12.4960 12.4960 13.9941 14.2632 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7223 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2987 9.9326 9.9326 10.9601 10.9723 10.9723 12.4959 12.4959 13.9941 14.2632 the Fermi energy is 10.9768 ev ! total energy = -174.82465792 Ry Harris-Foulkes estimate = -174.82465763 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56215155 Ry hartree contribution = 27.86074716 Ry xc contribution = -65.73507747 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.00000000 Ry smearing contrib. (-TS) = -0.00318382 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000174 -0.00000174 -0.00000174 atom 2 type 1 force = 0.00000174 0.00000174 0.00000174 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000004 Total SCF correction = 0.000034 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -236.31 -0.00160642 0.00014872 0.00014872 -236.31 21.88 21.88 0.00014872 -0.00160642 0.00014872 21.88 -236.31 21.88 0.00014872 0.00014872 -0.00160642 21.88 21.88 -236.31 Writing output data file feo_af.save PWSCF : 23.26s CPU time, 24.50s wall time init_run : 2.63s CPU electrons : 16.65s CPU forces : 0.70s CPU stress : 3.11s CPU Called by init_run: wfcinit : 0.39s CPU potinit : 0.12s CPU Called by electrons: c_bands : 8.97s CPU ( 9 calls, 0.997 s avg) sum_band : 4.95s CPU ( 9 calls, 0.550 s avg) v_of_rho : 0.48s CPU ( 10 calls, 0.048 s avg) newd : 1.78s CPU ( 10 calls, 0.178 s avg) mix_rho : 0.25s CPU ( 9 calls, 0.028 s avg) Called by c_bands: init_us_2 : 0.24s CPU ( 256 calls, 0.001 s avg) cegterg : 8.68s CPU ( 72 calls, 0.121 s avg) Called by *egterg: h_psi : 7.86s CPU ( 276 calls, 0.028 s avg) s_psi : 0.31s CPU ( 364 calls, 0.001 s avg) g_psi : 0.06s CPU ( 196 calls, 0.000 s avg) cdiaghg : 0.30s CPU ( 268 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 276 calls, 0.001 s avg) General routines calbec : 0.39s CPU ( 452 calls, 0.001 s avg) cft3 : 0.89s CPU ( 152 calls, 0.006 s avg) cft3s : 7.92s CPU ( 8670 calls, 0.001 s avg) interpolate : 0.36s CPU ( 38 calls, 0.009 s avg) davcio : 0.00s CPU ( 720 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example08/reference/pmw.out0000644000700200004540000006075612053145630021636 0ustar marsamoscm Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 16:19:35 Check: negative/imaginary core charge= -0.000003 0.000000 Calling projection .... NBND = 20 NATOMWFC = 20 NKSTOT = 8 10 12 Hubbard_lmax = 2 T ATOMIC WFC # 1 : 1 1 0 1 ATOMIC WFC # 2 : 1 2 1 1 ATOMIC WFC # 3 : 1 2 1 2 ATOMIC WFC # 4 : 1 2 1 3 ATOMIC WFC # 5 : 2 1 0 1 ATOMIC WFC # 6 : 2 2 1 1 ATOMIC WFC # 7 : 2 2 1 2 ATOMIC WFC # 8 : 2 2 1 3 ATOMIC WFC # 9 : 3 1 0 1 ATOMIC WFC # 10 : 3 2 2 1 ATOMIC WFC # 11 : 3 2 2 2 ATOMIC WFC # 12 : 3 2 2 3 ATOMIC WFC # 13 : 3 2 2 4 ATOMIC WFC # 14 : 3 2 2 5 ATOMIC WFC # 15 : 4 1 0 1 ATOMIC WFC # 16 : 4 2 2 1 ATOMIC WFC # 17 : 4 2 2 2 ATOMIC WFC # 18 : 4 2 2 3 ATOMIC WFC # 19 : 4 2 2 4 ATOMIC WFC # 20 : 4 2 2 5 KPOINT = 1 1.00333064142534 0.00 0.00 -0.33 0.01 -0.33 0.01 0.00 0.00 0.33-0.01 0.00 0.00 -0.48 0.02 -0.48 0.02 0.00 0.00 0.48-0.02 0.00 0.00 0.00 0.00 -0.55-0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.45 -0.08-0.07 0.00 0.00 0.00 0.00 0.00 0.00 1.00151941763230 0.00 0.00 -0.43 0.14 0.43-0.14 0.07-0.02 0.00 0.00 0.00 0.00 -0.51 0.16 0.51-0.16 -0.08 0.02 0.00 0.00 -0.01 0.19 -0.73-0.05 0.00 0.00 0.09 0.14 0.00 0.00 0.09 0.13 -0.55-0.26 0.00 0.00 0.00 0.00 0.04 0.11 0.00 0.00 0.00 0.00 1.00151941763230 0.08 0.00 -0.26 0.00 -0.26 0.00 0.00 0.00 -0.52 0.00 -0.08 0.00 -0.31 0.00 -0.31 0.00 0.00 0.00 -0.62 0.00 0.31 0.66 0.17-0.07 0.00 0.00 0.00 0.00 0.14 0.09 0.46 0.40 0.15 0.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.10-0.06 0.00 0.00 0.968093600795185 0.02 0.00 0.17-0.04 -0.18 0.04 -0.51 0.12 -0.01 0.00 0.03 0.00 -0.12 0.03 0.13-0.03 -0.77 0.19 0.01 0.00 0.00-0.06 0.29 0.00 0.00 0.00 0.47 0.64 -0.03-0.02 0.01 0.01 -0.05-0.02 0.00 0.00 0.00 0.00 0.23 0.47 0.02 0.01 0.00 0.00 0.968093600795177 -0.52 0.00 0.11 0.00 0.10 0.00 -0.02 0.00 0.21 0.00 -0.79 0.00 -0.08 0.00 -0.07 0.00 -0.03 0.01 -0.15 0.00 -0.13-0.27 -0.06 0.03 0.00 0.00 0.02 0.03 0.66 0.43 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.02 -0.46-0.26 0.00 0.00 0.943665149372745 0.09 0.00 0.11-0.05 -0.51 0.05 -0.08 0.01 -0.39 0.00 -0.31 0.00 -0.11 0.05 0.47-0.05 0.29-0.05 0.37 0.00 0.16 0.27 0.47-0.06 0.00 0.00 -0.03-0.04 0.04 0.03 -0.32-0.26 -0.62-0.18 0.00 0.00 0.00 0.00 -0.10-0.17 -0.19-0.11 0.00 0.00 0.943665149372743 -0.09 0.00 0.52-0.06 -0.15 0.06 -0.09 0.02 0.36 0.00 0.29 0.00 -0.48 0.05 0.14-0.05 0.31-0.05 -0.34 0.00 -0.17-0.44 0.32 0.01 0.00 0.00 -0.03-0.04 -0.04-0.03 0.47 0.43 -0.39-0.14 0.00 0.00 0.00 0.00 -0.11-0.19 0.17 0.10 0.00 0.00 0.834845084528259 0.00 0.00 -0.48 0.00 -0.48 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 -0.51-0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.56-0.47 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.618788924838533 0.02 0.00 -0.22 0.00 0.22 0.00 -0.84 0.00 0.00 0.00 -0.01 0.00 0.10 0.00 -0.10 0.00 0.42 0.00 0.00 0.00 0.01 0.03 -0.12 0.03 0.00 0.00 0.45 0.37 -0.01-0.01 -0.03-0.02 0.15 0.02 0.00 0.00 0.00 0.00 -0.51-0.60 -0.01-0.01 0.00 0.00 0.618788924838293 0.84 0.00 0.13 0.00 0.12 0.00 0.02 0.00 0.25 0.00 -0.42 0.00 -0.06 0.00 -0.05 0.00 -0.01 0.00 -0.11 0.00 -0.05-0.11 -0.03 0.01 0.00 0.00 -0.01-0.01 -0.49-0.32 0.12 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.01 -0.68-0.39 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 2 0.982912367885352 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.20 0.00 0.22 0.01 0.86 0.01 0.35 0.00-0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.91 0.05 0.00 0.00 0.34-0.02 0.22-0.01 0.00 0.00 0.00 0.00 -0.07 0.00 0.974792369761372 0.24 0.00 -0.34 0.00 -0.73 0.00 -0.42 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.64 0.64 0.00 0.00 0.11-0.36 -0.21 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.941908451210695 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.16 0.51 0.45 0.00 0.00 0.11 0.09 0.51 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.71-0.70 0.00 0.00 0.00 0.00 -0.07-0.07 0.00 0.00 0.00 0.00 0.941882837402977 -0.25 0.00 -0.68 0.00 0.00 0.00 -0.15 0.00 -0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.82 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.907268964401294 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.54-0.38 0.28 0.20 0.00 0.00 0.54 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.20-0.25 0.00 0.00 -0.59-0.73 0.05 0.07 0.00 0.00 0.00 0.00 -0.03-0.03 0.859894658595786 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33-0.31 0.07-0.07 0.27-0.26 -0.58 0.54 -0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15-0.18 0.00 0.00 0.00-0.01 0.61-0.75 0.00 0.00 0.00 0.00 -0.01 0.01 0.840638468888008 0.13 0.00 0.62 0.00 -0.41 0.00 -0.23 0.00 -0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.21 0.21 0.00 0.00 -0.26 0.86 -0.31 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06-0.01 0.00 0.00 0.831189802615992 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.83-0.08 0.20 0.02 0.00 0.00 -0.48-0.05 0.20 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02-0.09 0.00 0.00 0.00 0.00 0.17 0.98 0.00 0.00 0.00 0.00 0.719063464231504 0.42 0.00 0.00 0.00 0.55 0.00 -0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22-0.22 0.00 0.00 0.06-0.21 -0.92 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.01 0.00 0.00 0.669495675161251 -0.83 0.00 0.21 0.00 0.00 0.00 -0.48 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.98 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 3 1.07479303742163 -0.08 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.64 0.00 0.07 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.76 0.00 0.73 0.46 0.00 0.00 0.02-0.02 0.00 0.00 0.04 0.08 0.48 0.03 0.00 0.00 -0.03-0.01 0.00 0.00 -0.07 0.01 0.00 0.00 0.01 0.00 0.952224652598239 0.00 0.00 0.32 0.01 -0.32-0.01 0.46 0.01 0.00 0.00 0.00 0.00 -0.44-0.01 0.44 0.01 0.43 0.01 0.00 0.00 0.00 0.00 -0.13-0.63 0.00 0.00 -0.12-0.43 0.00 0.00 0.00 0.00 0.13 0.49 0.00 0.00 -0.26-0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.949228369445671 0.54 0.00 0.13 0.00 0.13 0.00 0.00 0.00 -0.32 0.00 0.62 0.00 -0.23 0.00 -0.23 0.00 0.00 0.00 0.29 0.00 -0.20-0.12 0.00 0.00 0.19-0.25 0.00 0.00 0.30 0.65 0.20 0.01 0.00 0.00 0.22 0.10 0.00 0.00 -0.48 0.09 0.00 0.00 -0.05 0.02 0.942767472428579 0.08 0.00 -0.17 0.00 -0.17 0.00 0.00 0.00 0.40 0.00 0.64 0.00 0.31 0.00 0.31 0.00 0.00 0.00 -0.41 0.00 0.23 0.14 0.00 0.00 -0.14 0.18 0.00 0.00 0.09 0.19 -0.61-0.04 0.00 0.00 -0.45-0.20 0.00 0.00 -0.45 0.08 0.00 0.00 -0.02 0.01 0.941065092122953 0.00 0.00 0.03 0.26 -0.03-0.26 -0.03-0.22 0.00 0.00 0.00 0.00 -0.04-0.31 0.04 0.31 -0.10-0.78 0.00 0.00 0.00 0.00 -0.25 0.01 0.00 0.00 0.58-0.07 0.00 0.00 0.00 0.00 0.56-0.06 0.00 0.00 0.41-0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.937131684867035 0.09 0.00 0.44 0.00 0.44 0.00 0.00 0.00 -0.19 0.00 -0.06 0.00 0.51 0.00 0.51 0.00 0.00 0.00 0.16 0.00 -0.11-0.07 0.00 0.00 0.38-0.52 0.00 0.00 -0.03-0.07 0.18 0.01 0.00 0.00 -0.66-0.30 0.00 0.00 0.09-0.02 0.00 0.00 -0.01 0.00 0.934748046133173 0.00 0.00 0.54 0.05 -0.54-0.05 0.12 0.01 0.00 0.00 0.00 0.00 0.44 0.04 -0.44-0.04 -0.03 0.00 0.00 0.00 0.00 0.00 -0.20-0.69 0.00 0.00 0.08 0.21 0.00 0.00 0.00 0.00 -0.22-0.61 0.00 0.00 0.08 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.833073122727367 0.04 0.00 -0.50 0.00 -0.50 0.00 0.00 0.00 -0.46 0.00 -0.03 0.00 0.28 0.00 0.28 0.00 0.00 0.00 0.35 0.00 -0.24-0.15 0.00 0.00 -0.39 0.53 0.00 0.00 0.10 0.21 0.50 0.03 0.00 0.00 -0.39-0.17 0.00 0.00 0.05-0.01 0.00 0.00 0.01 0.00 0.632253565141276 0.00 0.00 0.18-0.01 -0.18 0.01 -0.85 0.03 0.00 0.00 0.00 0.00 -0.10 0.00 0.10 0.00 0.44-0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.14 0.62 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 -0.53-0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.631271380917092 -0.82 0.00 0.09 0.00 0.09 0.00 0.00 0.00 -0.28 0.00 0.45 0.00 -0.05 0.00 -0.05 0.00 0.00 0.00 0.12 0.00 -0.12-0.07 0.00 0.00 -0.02 0.03 0.00 0.00 -0.25-0.55 0.26 0.02 0.00 0.00 0.03 0.02 0.00 0.00 -0.72 0.13 0.00 0.00 0.08-0.03 ORTHOGONALITY CHECK PASSED KPOINT = 4 0.971097634968456 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19-0.22 -0.35 0.41 -0.14 0.17 0.05-0.05 -0.49 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15-0.98 0.00 0.00 0.03-0.14 0.00 0.00 0.00 0.00 0.971097436298030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.47 0.31 -0.62-0.41 -0.24-0.16 -0.15-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.95-0.28 0.00 0.00 -0.14-0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.970570539746647 0.38 0.00 -0.38 0.00 -0.38 0.00 0.00 0.00 -0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41-0.85 -0.20-0.24 0.00 0.00 0.00 0.00 0.12-0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.970570539746641 0.00 0.00 -0.65-0.06 0.65 0.06 0.38 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03-0.31 0.81 0.48 0.00 0.00 -0.11-0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.922865811588552 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07-0.57 -0.07-0.57 0.00 0.00 0.07 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.83 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.10 0.827217255641535 0.00 0.00 -0.58-0.02 -0.58-0.02 0.00 0.00 0.58 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94-0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.08-0.10 0.00 0.00 0.815378421298023 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.11 0.17 0.02 0.07 0.01 0.22 0.03 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00 -0.71-0.69 0.00 0.00 0.00 0.00 0.815378129172314 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 -0.08-0.16 0.11 0.21 -0.42-0.82 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14-0.03 0.00 0.00 -0.97 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.604950568269497 0.08 0.00 -0.25-0.01 0.28 0.01 -0.92-0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.03 0.10 0.07 0.00 0.00 0.91 0.39 0.07-0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.604950568269429 0.92 0.00 0.18 0.00 0.13 0.00 0.08 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.11 0.02 0.02 0.00 0.00 -0.07-0.03 0.95-0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 5 1.00333060722339 0.00 0.00 0.48 0.00 0.48 0.00 0.00 0.00 -0.48 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.10-0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.09 0.66 0.01-0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.00151941820757 0.00 0.00 0.54 0.04 -0.54-0.04 0.08 0.01 0.00 0.00 0.00 0.00 0.45 0.03 -0.45-0.03 -0.07-0.01 0.00 0.00 -0.02-0.12 0.08-0.74 0.00 0.00 0.00 0.00 -0.02 0.16 0.01-0.15 0.08-0.60 0.00 0.00 0.00 0.00 0.01 0.12 0.00 0.01 0.00 0.00 1.00151941820757 -0.08 0.00 -0.31 0.00 -0.31 0.00 0.00 0.00 -0.62 0.00 0.08 0.00 -0.26 0.00 -0.26 0.00 0.00 0.00 -0.52 0.00 -0.01 0.74 0.03-0.12 0.00 0.00 -0.01 0.17 0.00 0.00 -0.09 0.60 0.03-0.15 0.00 0.00 0.00 0.00 0.00 0.01 0.01-0.12 0.00 0.00 0.968093557777292 -0.05 0.00 0.12 0.04 -0.13-0.04 0.75 0.27 -0.01 0.00 -0.03 0.00 -0.16-0.06 0.17 0.06 0.49 0.17 0.01 0.00 0.02 0.03 0.05 0.30 0.00 0.00 0.00 0.07 0.10 0.78 0.00-0.01 -0.01-0.05 0.00 0.00 0.00 0.00 0.20 0.49 0.01 0.02 0.00 0.00 0.968093557777288 0.79 0.00 0.08 0.00 0.07 0.00 0.04 0.02 0.15 0.00 0.52 0.00 -0.11 0.00 -0.09 0.00 0.03 0.01 -0.21 0.00 0.00 0.30 0.01-0.03 0.00 0.00 0.07-0.79 0.00 0.07 0.01-0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.01-0.02 -0.07 0.52 0.00 0.00 0.943665176623261 0.26 0.00 0.20 0.00 -0.50 0.00 -0.34 0.00 -0.30 0.00 -0.08 0.00 -0.21 0.00 0.53 0.00 0.10 0.00 0.32 0.00 0.01-0.26 -0.09 0.50 0.00 0.00 0.00-0.04 0.01-0.06 -0.05 0.29 0.13-0.69 0.00 0.00 0.00 0.00 -0.01-0.25 -0.02 0.15 0.00 0.00 0.943665176623259 0.34 0.00 -0.46 0.00 0.06 0.00 0.26 0.00 -0.40 0.00 -0.10 0.00 0.49 0.00 -0.06 0.00 -0.08 0.00 0.43 0.00 0.00-0.51 0.04-0.26 0.00 0.00 0.00-0.06 -0.01 0.04 -0.11 0.69 -0.05 0.29 0.00 0.00 0.00 0.00 0.01 0.15 -0.03 0.25 0.00 0.00 0.834845357195784 0.00 0.00 0.33-0.01 0.33-0.01 0.00 0.00 -0.33 0.01 0.00 0.00 -0.48 0.01 -0.48 0.01 0.00 0.00 0.48-0.01 0.00 0.00 0.00 0.00 -0.10 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.11 0.73 0.02-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.618789761323876 0.02 0.00 -0.09 0.00 0.10 0.00 -0.42-0.01 0.01 0.00 -0.04 0.00 0.21 0.00 -0.23 0.00 0.84 0.02 -0.01 0.00 0.00-0.01 0.02-0.12 0.00 0.00 0.00 0.04 -0.11 0.57 0.00 0.03 -0.03 0.15 0.00 0.00 0.00 0.00 -0.05-0.79 0.01-0.04 0.00 0.00 0.618789761323762 0.42 0.00 0.06 0.00 0.05 0.00 0.02 0.00 0.11 0.00 -0.84 0.00 -0.14 0.00 -0.12 0.00 -0.04 0.00 -0.25 0.00 0.00 0.12 0.00-0.01 0.00 0.00 -0.05 0.58 0.01-0.04 0.02-0.15 -0.01 0.03 0.00 0.00 0.00 0.00 0.00-0.04 -0.10 0.78 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 6 0.982912336357522 -0.20 0.00 0.22 0.00 0.86 0.00 0.35 0.00 -0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91-0.12 0.00 0.00 0.33-0.04 0.22-0.03 0.00 0.00 0.00 0.00 0.07-0.01 0.974792428915909 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.21-0.11 0.30 0.16 0.64 0.34 0.37 0.20 -0.30-0.16 0.86-0.29 0.00 0.00 -0.15 0.34 -0.02-0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.941908451884139 0.25 0.00 0.68 0.00 0.00 0.00 0.14 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99-0.13 0.00 0.00 0.00 0.00 0.09-0.01 0.00 0.00 0.00 0.00 0.941882838036788 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01-0.25 0.02-0.68 0.00 0.00 0.00-0.15 0.02-0.68 0.00 0.00 -0.19 0.98 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.907268834001435 0.00 0.00 0.66 0.00 -0.35 0.00 0.00 0.00 -0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.32 0.04 0.00 0.00 0.93-0.12 -0.09 0.01 0.00 0.00 0.00 0.00 -0.04 0.01 0.859894405748651 -0.46 0.00 -0.10 0.00 -0.38 0.00 0.79 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.24 0.03 0.00 0.00 0.01 0.00 0.96-0.12 0.00 0.00 0.00 0.00 0.02 0.00 0.840638907836761 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11-0.07 0.52-0.33 -0.34 0.22 -0.19 0.12 -0.52 0.33 -0.22-0.20 0.00 0.00 -0.89 0.10 -0.26 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.04 0.04 0.00 0.00 0.831189518236865 0.83 0.00 -0.20 0.00 0.00 0.00 0.48 0.00 -0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.09 0.01 0.00 0.00 0.00 0.00 0.99-0.13 0.00 0.00 0.00 0.00 0.719064336620171 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11-0.40 0.00 0.00 0.14-0.53 -0.19 0.70 0.00 0.00 0.03 0.30 0.00 0.00 0.18 0.13 -0.92-0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.669496639842054 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80-0.20 -0.20 0.05 0.00 0.00 0.46-0.12 -0.20 0.05 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 -0.87 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 7 1.07479306407456 0.07 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.76 0.00 -0.08 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.64 0.00 -0.85-0.20 0.00 0.00 -0.02 0.01 0.00 0.00 0.01-0.09 0.48 0.01 0.00 0.00 -0.03 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.01 0.00 0.952224590395448 0.00 0.00 0.44 0.06 -0.44-0.06 -0.43-0.06 0.00 0.00 0.00 0.00 -0.32-0.05 0.32 0.05 -0.46-0.07 0.00 0.00 0.00 0.00 0.64 0.06 0.00 0.00 -0.45 0.01 0.00 0.00 0.00 0.00 -0.51-0.02 0.00 0.00 0.35 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.949228321865400 0.62 0.00 -0.23 0.00 -0.23 0.00 0.00 0.00 0.29 0.00 0.54 0.00 0.13 0.00 0.13 0.00 0.00 0.00 -0.32 0.00 0.23 0.05 0.00 0.00 -0.29 0.13 0.00 0.00 0.05-0.71 0.20 0.00 0.00 0.00 0.24 0.03 0.00 0.00 0.48 0.07 0.00 0.00 -0.06 0.01 0.942767481913127 -0.64 0.00 -0.31 0.00 -0.31 0.00 0.00 0.00 0.41 0.00 -0.08 0.00 0.17 0.00 0.17 0.00 0.00 0.00 -0.40 0.00 0.26 0.06 0.00 0.00 -0.21 0.10 0.00 0.00 -0.01 0.21 0.61 0.01 0.00 0.00 0.49 0.06 0.00 0.00 -0.46-0.07 0.00 0.00 0.02 0.00 0.941065098727561 0.00 0.00 0.29 0.12 -0.29-0.12 0.72 0.31 0.00 0.00 0.00 0.00 -0.24-0.10 0.24 0.10 0.20 0.09 0.00 0.00 0.00 0.00 0.25-0.04 0.00 0.00 0.56-0.17 0.00 0.00 0.00 0.00 -0.55 0.13 0.00 0.00 -0.52 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.937131658688873 -0.06 0.00 0.51 0.00 0.51 0.00 0.00 0.00 0.16 0.00 0.09 0.00 0.44 0.00 0.44 0.00 0.00 0.00 -0.19 0.00 0.13 0.03 0.00 0.00 -0.58 0.27 0.00 0.00 -0.01 0.08 0.19 0.00 0.00 0.00 -0.72-0.08 0.00 0.00 -0.09-0.01 0.00 0.00 -0.01 0.00 0.934748047432856 0.00 0.00 -0.41-0.18 0.41 0.18 0.03 0.01 0.00 0.00 0.00 0.00 -0.49-0.22 0.49 0.22 -0.11-0.05 0.00 0.00 0.00 0.00 0.71-0.14 0.00 0.00 0.21-0.07 0.00 0.00 0.00 0.00 0.63-0.16 0.00 0.00 -0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.833073393354575 0.03 0.00 -0.28 0.00 -0.28 0.00 0.00 0.00 -0.35 0.00 -0.04 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.46 0.00 -0.28-0.07 0.00 0.00 -0.60 0.28 0.00 0.00 -0.02 0.23 -0.50-0.01 0.00 0.00 0.42 0.05 0.00 0.00 0.05 0.01 0.00 0.00 -0.01 0.00 0.632254275020006 0.00 0.00 0.10 0.00 -0.10 0.00 -0.44 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 0.18 0.00 0.85 0.00 0.00 0.00 0.00 0.00 -0.03-0.01 0.00 0.00 0.63 0.07 0.00 0.00 0.00 0.00 -0.07-0.01 0.00 0.00 0.73 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.631272079289054 -0.45 0.00 0.05 0.00 0.05 0.00 0.00 0.00 -0.12 0.00 0.82 0.00 -0.09 0.00 -0.09 0.00 0.00 0.00 0.28 0.00 -0.13-0.03 0.00 0.00 -0.03 0.01 0.00 0.00 0.04-0.61 -0.26 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 -0.72-0.11 0.00 0.00 -0.08 0.02 ORTHOGONALITY CHECK PASSED KPOINT = 8 0.971097636604146 0.29 0.00 -0.57-0.01 -0.18 0.01 0.09 0.01 -0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.99 0.00 0.00 0.11 0.09 0.00 0.00 0.00 0.00 0.971097437720181 -0.09 0.00 -0.53-0.04 0.76 0.04 0.28 0.02 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.62 0.00 0.00 0.11 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.970570552767571 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25-0.18 -0.28-0.20 -0.21 0.56 0.02 0.22 -0.49 0.37 -0.70 0.26 -0.30 0.58 0.00 0.00 -0.08 0.07 0.03-0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.970570552767571 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.20 0.10 0.24-0.63 0.15 0.43 -0.03 0.30 0.39-0.20 0.62-0.19 -0.39 0.64 0.00 0.00 0.03-0.06 0.01-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.922865624589866 0.00 0.00 0.57-0.07 0.57-0.07 0.00 0.00 -0.57 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.18 0.827217940476984 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.48 0.32 -0.48 0.32 0.00 0.00 0.48-0.32 0.00 0.00 0.00 0.00 0.98 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.04 0.00 0.00 0.815378010897373 0.91 0.00 0.18 0.00 0.06 0.00 0.27 0.02 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01-0.14 0.00 0.00 0.79 0.60 0.00 0.00 0.00 0.00 0.815377718602265 0.27 0.00 -0.17-0.01 0.24 0.01 -0.91-0.06 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.09 0.00 0.00 -0.77-0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.604951681326465 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06-0.03 -0.22 0.13 0.24-0.15 -0.78 0.49 0.02-0.01 -0.01 0.00 -0.06-0.11 0.00 0.00 -0.12 0.13 -0.70-0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.604951681326378 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90-0.20 0.17-0.04 0.13-0.03 0.07-0.02 0.30-0.07 0.09-0.08 -0.01-0.01 0.00 0.00 -0.35 0.91 0.17 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED espresso-5.0.2/PW/examples/example08/run_example0000755000700200004540000001404512053145630020577 0ustar marsamoscm#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy of FeO" $ECHO "using LDA+U approximation. Read file README for more details" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="O.pz-rrkjus.UPF Fe.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard LDA cat > feo_LDA.in << EOF FeO FeO Wustite in LDA &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=1.d-8, Hubbard_U(3)=1.d-8, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA ...\c" $PW_COMMAND < feo_LDA.in > feo_LDA.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard ns initial value cat > feo_standard.in << EOF FeO FeO Wustite whithin LDA+U using standard initial ns matrices &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using standard ns initial matrices...\c" $PW_COMMAND < feo_standard.in > feo_standard.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with user-defined ns initial value cat > feo_user_ns.in << EOF FeO FeO Wustite whithin LDA+U with user-defined ns initial matrices &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true., Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using user-defined ns initial matrices...\c" $PW_COMMAND < feo_user_ns.in > feo_user_ns.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example08/run_xml_example0000755000700200004540000003364012053145630021461 0ustar marsamoscm#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy of FeO" $ECHO "using LDA+U approximation. Read file README for more details" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="O.pz-rrkjus.UPF Fe.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard LDA cat > feo_LDA.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 1.d-8 1.0 Fe.pz-nd-rrkjus.UPF -0.5 1.d-8 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA ...\c" #$PW_COMMAND < feo_LDA.xml > feo_LDA.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard ns initial value cat > feo_standard.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 4.3 1.0 Fe.pz-nd-rrkjus.UPF -0.5 4.3 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using standard ns initial matrices...\c" $PW_COMMAND < feo_standard.xml > feo_standard.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with user-defined ns initial value cat > feo_user_ns.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 4.3 1.d0 1.0 Fe.pz-nd-rrkjus.UPF -0.5 4.3 1.d0 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using user-defined ns initial matrices...\c" $PW_COMMAND < feo_user_ns.xml > feo_user_ns.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example08/README0000644000700200004540000001177012053145630017214 0ustar marsamoscm A simplified rotational invariant LDA+U method is presently implemented in the pw.x code of the ESPRESSO package. The implemented functional is the one proposed, among others, by S.L.Dudarev et al. in PRB, 57, 1505 (1998). A discussion of the method, more details about the current implementation and a description of a method to compute the crucial U parameter are contained in Matteo Cococcioni's PhD thesis at SISSA and in the paper "Linear-response approach to the calculation of the effective" interaction parameters in the LDA+U method" by Matteo Cococcioni and Stefano de Gironcoli, PRB 71, 035105 (2005). A classical example for LDA+U method is FeO that is incorrectly predicted to be a metal by LDA and GGA while it is an insulating antiferromagnetic material in real world. In this example we use FeO in order to illustrate some of the input variables involved in LDA+U calculations. Computational parameters (as wfc and density cutoff, k-points grid etc.) are set so as to make the example reasonably fast and the results are NOT meant to be converged in any sense. The first run is just plain LDA calculation for FeO in the rhombohedral (antiferromagnetic) cell. There are 2 types of Fe atoms in the input because the desired magnetic structure is antiferromagnetic and opposite starting_magnetization for the two types is suggested. The lda_plus_u flag is enabled in the input and a tiny value is set for the Hubbard_U of the two Iron types in order to force the code to write out the occupation matrices for the localized Fe d-levels without affecting the LDA result. Looking at the output it is clear that the resulting solution is metallic: the "correction for metal" energy term is clearly non zero and the Fermi energy falls in the middle of the bands. Coming to the occupation of the localized d-level one can see that they are completely filled for the majority spin [spin 1(up) for atom 3 and spin 2(down) for atom 4] while minority-spin components only are partially filled and with FRACTIONAL occupations. In the second run of the example a realistic value for the Hubbard_U parameter is adopted and the calculation is repeated. The LDA+U functional is now active and disfavors fractional occupations. In spite of that the system still, painfully, converges to a metallic solution with similar fractional occupations as the LDA solution. This is due to the fact that LDA+U calculations can exhibit---even more than spin polarized calculations do---several solutions and one is not guaranteed to fall in the desired global minimum automatically. Though live! We have to live with that and manage to explore several possibilities by suggesting to the system different starting points. This can be done by setting the starting occupation matrices of the system in a user defined way. This is done by exploiting the starting_ns_eigenvalue input variable as in the third calculation of this example. From literature or simple electron counting, one knows that in the minority spin component one would like to occupy completely a single state leaving the other as empty as possible. So, in the third run, by mean of the starting_ns_eigenvalue variable, one enforces the complete occupation of the third eigenvalue of the minority spin components of each Fe atomic type. Why the third eigenvalue ? Because from the "standard LDA+U" run we know that at the first iteration this is the one that is non-degenerate and if occupied completely could lead to an insulating result. This calculation converges rather easily to the desired insulating solution. In the output we can see that the "correction for metal" energy term is essentially zero and Fermi energy falls in a gap. A comment about energetics: Plain LDA calculation has the lowest energy, as expected, since the +U term is a positive defined penalty function added to it and energy can only go up. Notice however that the "standard LDA+U" calculation, the one with fractional occupation of minority-spin levels, has an higher energy than the "user defined ns" one, where one manages to completely fill the desired level. This shows that this later one is indeed the ground state, or at least, a better solution of the problem (still higher than plain LDA, of course). Looking at the output of these calculation one can notice that even in the insulating solution obtained starting with user-defined ns matrices, many of the minority spin occupations are still fractional while LDA+U functional would like them to be either 0 or 1. This is because the projector on localized d-level used in the calculation are based on atomic orbitals that are somehow different from the crystal wavefunctions. So some "spurious" d-level occupation comes from Oxygen 2s and 2p states that protrude toward Iron sites. This is not wrong in general, the important thing is to be consistent and use the U parameter appropriate for the chosen projector, but for some applications it may be disturbing and one could like to have a "better" projector. See PP/examples/example06 for a calculation using localized wannier functions. espresso-5.0.2/PW/examples/example11/0000755000700200004540000000000012053440301016311 5ustar marsamoscmespresso-5.0.2/PW/examples/example11/reference/0000755000700200004540000000000012053440303020251 5ustar marsamoscmespresso-5.0.2/PW/examples/example11/reference/Fe.band_pbe.out0000644000700200004540000007314512053145630023104 0ustar marsamoscm Program PWSCF v.4.2 starts on 23May2010 at 11: 6:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/Fe.save/ Fixed quantization axis for GGA: 0.000000 0.000000 1.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm: we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 675 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PW PBX PBC (1434) EXX-fraction = 0.00 Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.rel-pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 8.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: PSQ Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84500 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 81 gaussian broad. (Ry)= 0.0400 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 2) = ( 0.9750000 0.0000000 0.0000000), wk = 0.0082305 k( 3) = ( 0.9500000 0.0000000 0.0000000), wk = 0.0082305 k( 4) = ( 0.9250000 0.0000000 0.0000000), wk = 0.0082305 k( 5) = ( 0.9000000 0.0000000 0.0000000), wk = 0.0082305 k( 6) = ( 0.8750000 0.0000000 0.0000000), wk = 0.0082305 k( 7) = ( 0.8500000 0.0000000 0.0000000), wk = 0.0082305 k( 8) = ( 0.8250000 0.0000000 0.0000000), wk = 0.0082305 k( 9) = ( 0.8000000 0.0000000 0.0000000), wk = 0.0082305 k( 10) = ( 0.7750000 0.0000000 0.0000000), wk = 0.0082305 k( 11) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0082305 k( 12) = ( 0.7250000 0.0000000 0.0000000), wk = 0.0082305 k( 13) = ( 0.7000000 0.0000000 0.0000000), wk = 0.0082305 k( 14) = ( 0.6750000 0.0000000 0.0000000), wk = 0.0082305 k( 15) = ( 0.6500000 0.0000000 0.0000000), wk = 0.0082305 k( 16) = ( 0.6250000 0.0000000 0.0000000), wk = 0.0082305 k( 17) = ( 0.6000000 0.0000000 0.0000000), wk = 0.0082305 k( 18) = ( 0.5750000 0.0000000 0.0000000), wk = 0.0082305 k( 19) = ( 0.5500000 0.0000000 0.0000000), wk = 0.0082305 k( 20) = ( 0.5250000 0.0000000 0.0000000), wk = 0.0082305 k( 21) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0082305 k( 22) = ( 0.4750000 0.0000000 0.0000000), wk = 0.0082305 k( 23) = ( 0.4500000 0.0000000 0.0000000), wk = 0.0082305 k( 24) = ( 0.4250000 0.0000000 0.0000000), wk = 0.0082305 k( 25) = ( 0.4000000 0.0000000 0.0000000), wk = 0.0082305 k( 26) = ( 0.3750000 0.0000000 0.0000000), wk = 0.0082305 k( 27) = ( 0.3500000 0.0000000 0.0000000), wk = 0.0082305 k( 28) = ( 0.3250000 0.0000000 0.0000000), wk = 0.0082305 k( 29) = ( 0.3000000 0.0000000 0.0000000), wk = 0.0082305 k( 30) = ( 0.2750000 0.0000000 0.0000000), wk = 0.0082305 k( 31) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0082305 k( 32) = ( 0.2250000 0.0000000 0.0000000), wk = 0.0082305 k( 33) = ( 0.2000000 0.0000000 0.0000000), wk = 0.0082305 k( 34) = ( 0.1750000 0.0000000 0.0000000), wk = 0.0082305 k( 35) = ( 0.1500000 0.0000000 0.0000000), wk = 0.0082305 k( 36) = ( 0.1250000 0.0000000 0.0000000), wk = 0.0082305 k( 37) = ( 0.1000000 0.0000000 0.0000000), wk = 0.0082305 k( 38) = ( 0.0750000 0.0000000 0.0000000), wk = 0.0082305 k( 39) = ( 0.0500000 0.0000000 0.0000000), wk = 0.0082305 k( 40) = ( 0.0250000 0.0000000 0.0000000), wk = 0.0082305 k( 41) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 42) = ( 0.0000000 0.0000000 0.0250000), wk = 0.0041152 k( 43) = ( 0.0000000 0.0000000 0.0500000), wk = 0.0041152 k( 44) = ( 0.0000000 0.0000000 0.0750000), wk = 0.0041152 k( 45) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0041152 k( 46) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0041152 k( 47) = ( 0.0000000 0.0000000 0.1500000), wk = 0.0041152 k( 48) = ( 0.0000000 0.0000000 0.1750000), wk = 0.0041152 k( 49) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0041152 k( 50) = ( 0.0000000 0.0000000 0.2250000), wk = 0.0041152 k( 51) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0041152 k( 52) = ( 0.0000000 0.0000000 0.2750000), wk = 0.0041152 k( 53) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0041152 k( 54) = ( 0.0000000 0.0000000 0.3250000), wk = 0.0041152 k( 55) = ( 0.0000000 0.0000000 0.3500000), wk = 0.0041152 k( 56) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0041152 k( 57) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0041152 k( 58) = ( 0.0000000 0.0000000 0.4250000), wk = 0.0041152 k( 59) = ( 0.0000000 0.0000000 0.4500000), wk = 0.0041152 k( 60) = ( 0.0000000 0.0000000 0.4750000), wk = 0.0041152 k( 61) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0041152 k( 62) = ( 0.0000000 0.0000000 0.5250000), wk = 0.0041152 k( 63) = ( 0.0000000 0.0000000 0.5500000), wk = 0.0041152 k( 64) = ( 0.0000000 0.0000000 0.5750000), wk = 0.0041152 k( 65) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0041152 k( 66) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0041152 k( 67) = ( 0.0000000 0.0000000 0.6500000), wk = 0.0041152 k( 68) = ( 0.0000000 0.0000000 0.6750000), wk = 0.0041152 k( 69) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0041152 k( 70) = ( 0.0000000 0.0000000 0.7250000), wk = 0.0041152 k( 71) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0041152 k( 72) = ( 0.0000000 0.0000000 0.7750000), wk = 0.0041152 k( 73) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0041152 k( 74) = ( 0.0000000 0.0000000 0.8250000), wk = 0.0041152 k( 75) = ( 0.0000000 0.0000000 0.8500000), wk = 0.0041152 k( 76) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0041152 k( 77) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0041152 k( 78) = ( 0.0000000 0.0000000 0.9250000), wk = 0.0041152 k( 79) = ( 0.0000000 0.0000000 0.9500000), wk = 0.0041152 k( 80) = ( 0.0000000 0.0000000 0.9750000), wk = 0.0041152 k( 81) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0123457 G cutoff = 223.2339 ( 6963 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 133.9403 ( 3151 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 836, 16) NL pseudopotentials 0.22 Mb ( 418, 34) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6963) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.82 Mb ( 836, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.02 Mb ( 34, 2, 16) The potential is recalculated from file : /home/dalcorso/tmp/Fe.save/charge-density.dat 0.000000 0.000000 1.000000 Starting wfc are 18 atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 6.36 secs per-process dynamical memory: 29.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-12, avg # of iterations = 15.9 total cpu time spent up to now is 48.23 secs End of band structure calculation k = 1.0000 0.0000 0.0000 band energies (ev): 7.9076 7.9079 9.7430 9.7438 12.6190 12.6535 12.6884 14.8161 14.8527 14.8872 22.0440 22.1053 22.2569 22.3940 22.4537 22.4986 k = 0.9750 0.0000 0.0000 band energies (ev): 7.9129 7.9134 9.7477 9.7496 12.6117 12.6428 12.6814 14.8065 14.8382 14.8782 21.9956 22.1145 22.2320 22.3610 22.4768 22.4921 k = 0.9500 0.0000 0.0000 band energies (ev): 7.9289 7.9299 9.7606 9.7687 12.5881 12.6114 12.6625 14.7741 14.7957 14.8555 21.7569 22.0407 22.2612 22.2905 22.5543 22.5569 k = 0.9250 0.0000 0.0000 band energies (ev): 7.9556 7.9566 9.7807 9.8008 12.5451 12.5605 12.6364 14.7141 14.7274 14.8266 21.3464 21.7260 22.3680 22.3735 22.6866 22.6872 k = 0.9000 0.0000 0.0000 band energies (ev): 7.9924 7.9930 9.8071 9.8452 12.4811 12.4911 12.6055 14.6270 14.6356 14.7930 20.8346 21.2951 22.5273 22.5293 22.8692 22.8693 k = 0.8750 0.0000 0.0000 band energies (ev): 8.0380 8.0400 9.8384 9.9023 12.3994 12.4063 12.5702 14.5188 14.5250 14.7542 20.2632 20.8034 22.7310 22.7319 23.0977 23.0977 k = 0.8500 0.0000 0.0000 band energies (ev): 8.0902 8.0970 9.8721 9.9711 12.3031 12.3080 12.5291 14.3943 14.3990 14.7083 19.6587 20.2785 22.9746 22.9752 23.3678 23.3679 k = 0.8250 0.0000 0.0000 band energies (ev): 8.1477 8.1637 9.9052 10.0516 12.1952 12.1989 12.4822 14.2577 14.2615 14.6556 19.0380 19.7389 23.2548 23.2551 23.6754 23.6754 k = 0.8000 0.0000 0.0000 band energies (ev): 8.2092 8.2397 9.9350 10.1437 12.0797 12.0826 12.4295 14.1139 14.1172 14.5963 18.4131 19.1986 23.5684 23.5686 24.0163 24.0164 k = 0.7750 0.0000 0.0000 band energies (ev): 8.2721 8.3246 9.9575 10.2467 11.9587 11.9611 12.3718 13.9660 13.9689 14.5311 17.7924 18.6682 23.9125 23.9126 24.3870 24.3871 k = 0.7500 0.0000 0.0000 band energies (ev): 8.3335 8.4180 9.9677 10.3603 11.8347 11.8366 12.3083 13.8167 13.8193 14.4593 17.1822 18.1563 24.2844 24.2845 24.7842 24.7843 k = 0.7250 0.0000 0.0000 band energies (ev): 8.3902 8.5187 9.9610 10.4832 11.7093 11.7110 12.2397 13.6681 13.6706 14.3819 16.5881 17.6704 24.6816 24.6817 25.2050 25.2051 k = 0.7000 0.0000 0.0000 band energies (ev): 8.4387 8.6274 9.9319 10.6159 11.5854 11.5867 12.1669 13.5231 13.5255 14.2995 16.0148 17.2171 25.1021 25.1022 25.6470 25.6470 k = 0.6750 0.0000 0.0000 band energies (ev): 8.4744 8.7428 9.8750 10.7571 11.4641 11.4650 12.0900 13.3829 13.3853 14.2125 15.4667 16.8016 25.5436 25.5437 26.1078 26.1078 k = 0.6500 0.0000 0.0000 band energies (ev): 8.4937 8.8642 9.7863 10.9057 11.3470 11.3471 12.0098 13.2488 13.2514 14.1216 14.9489 16.4293 26.0045 26.0045 26.5856 26.5856 k = 0.6250 0.0000 0.0000 band energies (ev): 8.4912 8.9910 9.6622 11.0590 11.2342 11.2370 11.9268 13.1219 13.1247 14.0273 14.4658 16.1027 26.4829 26.4830 27.0785 27.0785 k = 0.6000 0.0000 0.0000 band energies (ev): 8.4618 9.1223 9.5011 11.1178 11.1272 11.2329 11.8420 13.0028 13.0062 13.9303 14.0222 15.8227 26.9775 26.9776 27.5850 27.5851 k = 0.5750 0.0000 0.0000 band energies (ev): 8.4009 9.2575 9.3037 11.0227 11.0267 11.3924 11.7575 12.8920 12.8962 13.6225 13.8312 15.5879 27.4867 27.4868 28.1036 28.1037 k = 0.5500 0.0000 0.0000 band energies (ev): 8.3050 9.0732 9.3955 10.9303 10.9333 11.5454 11.6870 12.7895 12.7956 13.2709 13.7305 15.3950 28.0092 28.0093 28.6328 28.6330 k = 0.5250 0.0000 0.0000 band energies (ev): 8.1716 8.8138 9.5356 10.8446 10.8472 11.5523 11.7654 12.6939 12.7041 12.9698 13.6290 15.2383 28.5438 28.5439 29.1709 29.1715 k = 0.5000 0.0000 0.0000 band energies (ev): 8.0015 8.5317 9.6767 10.7664 10.7688 11.4708 11.9343 12.5978 12.6221 12.7264 13.5273 15.1119 29.0891 29.0893 29.6870 29.7177 k = 0.4750 0.0000 0.0000 band energies (ev): 7.7979 8.2330 9.8181 10.6958 10.6981 11.3830 12.1107 12.4624 12.5496 12.5764 13.4260 15.0096 29.6437 29.6442 29.9315 30.2696 k = 0.4500 0.0000 0.0000 band energies (ev): 7.5664 7.9239 9.9587 10.6334 10.6357 11.2947 12.2873 12.3047 12.4880 12.4981 13.3259 14.9260 30.1838 30.2071 30.2119 30.6841 k = 0.4250 0.0000 0.0000 band energies (ev): 7.3134 7.6099 10.0975 10.5778 10.5805 11.2073 12.1693 12.4175 12.4389 12.4804 13.2274 14.8557 30.4655 30.7762 30.7772 30.9178 k = 0.4000 0.0000 0.0000 band energies (ev): 7.0464 7.2960 10.2331 10.5295 10.5332 11.1215 12.0585 12.3809 12.3905 12.6456 13.1310 14.7948 30.7637 31.1685 31.3517 31.3525 k = 0.3750 0.0000 0.0000 band energies (ev): 6.7721 6.9866 10.3625 10.4881 10.4957 11.0381 11.9685 12.3435 12.3510 12.8162 13.0375 14.7410 31.0830 31.4419 31.9293 31.9298 k = 0.3500 0.0000 0.0000 band energies (ev): 6.4967 6.6851 10.4395 10.4531 10.5127 10.9575 11.8934 12.3127 12.3191 12.9474 12.9827 14.6908 31.4241 31.7367 32.5074 32.5079 k = 0.3250 0.0000 0.0000 band energies (ev): 6.2253 6.3947 10.4212 10.4244 10.6264 10.8806 11.8291 12.2888 12.2944 12.8614 13.1434 14.6424 31.7874 32.0535 33.0829 33.0834 k = 0.3000 0.0000 0.0000 band energies (ev): 5.9624 6.1179 10.3995 10.4008 10.7425 10.8073 11.7748 12.2706 12.2756 12.7796 13.2969 14.5970 32.1731 32.3930 33.6517 33.6522 k = 0.2750 0.0000 0.0000 band energies (ev): 5.7113 5.8569 10.3817 10.3821 10.7384 10.8530 11.7272 12.2579 12.2623 12.7027 13.4422 14.5532 32.5811 32.7549 34.2081 34.2086 k = 0.2500 0.0000 0.0000 band energies (ev): 5.4750 5.6136 10.3677 10.3680 10.6741 10.9563 11.6851 12.2497 12.2536 12.6312 13.5783 14.5111 33.0109 33.1390 34.7446 34.7451 k = 0.2250 0.0000 0.0000 band energies (ev): 5.2557 5.3895 10.3568 10.3579 10.6151 11.0518 11.6474 12.2453 12.2487 12.5653 13.7042 14.4709 33.4616 33.5443 35.2513 35.2518 k = 0.2000 0.0000 0.0000 band energies (ev): 5.0554 5.1859 10.3489 10.3508 10.5616 11.1387 11.6139 12.2440 12.2468 12.5057 13.8191 14.4331 33.9316 33.9688 35.7155 35.7160 k = 0.1750 0.0000 0.0000 band energies (ev): 4.8757 5.0038 10.3429 10.3459 10.5140 11.2164 11.5839 12.2447 12.2467 12.4526 13.9220 14.3979 34.4096 34.4180 36.1220 36.1225 k = 0.1500 0.0000 0.0000 band energies (ev): 4.7176 4.8443 10.3386 10.3432 10.4730 11.2847 11.5576 12.2473 12.2481 12.4066 14.0127 14.3660 34.8616 34.9163 36.4279 36.4283 k = 0.1250 0.0000 0.0000 band energies (ev): 4.5824 4.7081 10.3350 10.3419 10.4388 11.3430 11.5350 12.2498 12.2508 12.3680 14.0903 14.3380 35.3168 35.4190 36.6033 36.6034 k = 0.1000 0.0000 0.0000 band energies (ev): 4.4707 4.5959 10.3311 10.3416 10.4122 11.3911 11.5163 12.2508 12.2545 12.3375 14.1544 14.3144 35.7621 35.9139 36.7189 36.7189 k = 0.0750 0.0000 0.0000 band energies (ev): 4.3832 4.5081 10.3272 10.3425 10.3941 11.4290 11.5016 12.2508 12.2587 12.3164 14.2051 14.2955 36.1767 36.3799 36.7910 36.7910 k = 0.0500 0.0000 0.0000 band energies (ev): 4.3204 4.4451 10.3224 10.3434 10.3830 11.4559 11.4914 12.2484 12.2620 12.3037 14.2413 14.2821 36.5282 36.7818 36.8325 36.8325 k = 0.0250 0.0000 0.0000 band energies (ev): 4.2826 4.4071 10.3183 10.3437 10.3773 11.4714 11.4857 12.2451 12.2638 12.2976 14.2630 14.2738 36.7714 36.8533 36.8534 37.0659 k = 0.0000 0.0000 0.0000 band energies (ev): 4.2700 4.3945 10.3167 10.3439 10.3756 11.4757 11.4846 12.2436 12.2645 12.2960 14.2700 14.2712 36.8596 36.8596 36.8596 37.1706 k = 0.0000 0.0000 0.0250 band energies (ev): 4.2826 4.4071 10.3166 10.3472 10.3755 11.4779 11.4792 12.2430 12.2682 12.2953 14.2640 14.2728 36.7714 36.8535 37.0661 37.1581 k = 0.0000 0.0000 0.0500 band energies (ev): 4.3204 4.4451 10.3162 10.3574 10.3751 11.4629 11.4843 12.2413 12.2795 12.2935 14.2422 14.2812 36.5282 36.7820 36.8318 36.8332 k = 0.0000 0.0000 0.0750 band energies (ev): 4.3832 4.5080 10.3153 10.3740 10.3742 11.4358 11.4946 12.2380 12.2901 12.2982 14.2061 14.2946 36.1767 36.3801 36.7928 37.0397 k = 0.0000 0.0000 0.1000 band energies (ev): 4.4707 4.5959 10.3144 10.3734 10.3968 11.3977 11.5093 12.2340 12.2859 12.3237 14.1554 14.3135 35.7621 35.9141 36.7153 36.7226 k = 0.0000 0.0000 0.1250 band energies (ev): 4.5824 4.7081 10.3147 10.3737 10.4266 11.3496 11.5280 12.2304 12.2820 12.3571 14.0914 14.3372 35.3168 35.4193 36.6105 36.7189 k = 0.0000 0.0000 0.1500 band energies (ev): 4.7177 4.8443 10.3159 10.3751 10.4626 11.2914 11.5505 12.2272 12.2785 12.3975 14.0138 14.3652 34.8617 34.9165 36.4213 36.4438 k = 0.0000 0.0000 0.1750 band energies (ev): 4.8757 5.0038 10.3185 10.3778 10.5046 11.2235 11.5767 12.2249 12.2759 12.4447 13.9233 14.3970 34.4097 34.4182 36.1046 36.1507 k = 0.0000 0.0000 0.2000 band energies (ev): 5.0554 5.1858 10.3235 10.3829 10.5521 11.1466 11.6065 12.2245 12.2752 12.4985 13.8206 14.4323 33.9318 33.9689 35.6892 35.7511 k = 0.0000 0.0000 0.2250 band energies (ev): 5.2557 5.3895 10.3305 10.3901 10.6043 11.0614 11.6398 12.2262 12.2765 12.5586 13.7060 14.4701 33.4619 33.5443 35.2178 35.2947 k = 0.0000 0.0000 0.2500 band energies (ev): 5.4750 5.6136 10.3408 10.4005 10.6597 10.9698 11.6772 12.2310 12.2809 12.6244 13.5805 14.5103 33.0112 33.1391 34.7049 34.7953 k = 0.0000 0.0000 0.2750 band energies (ev): 5.7113 5.8569 10.3547 10.4147 10.7104 10.8799 11.7191 12.2397 12.2891 12.6955 13.4452 14.5525 32.5814 32.7550 34.1631 34.2652 k = 0.0000 0.0000 0.3000 band energies (ev): 5.9624 6.1179 10.3729 10.4333 10.7044 10.8440 11.7663 12.2531 12.3021 12.7711 13.3015 14.5962 32.1734 32.3930 33.6022 33.7143 k = 0.0000 0.0000 0.3250 band energies (ev): 6.2253 6.3946 10.3961 10.4568 10.6097 10.8943 11.8202 12.2720 12.3204 12.8485 13.1524 14.6417 31.7877 32.0536 33.0298 33.1502 k = 0.0000 0.0000 0.3500 band energies (ev): 6.4967 6.6850 10.4245 10.4855 10.4916 10.9656 11.8839 12.2971 12.3447 12.9044 13.0216 14.6901 31.4244 31.7367 32.4511 32.5787 k = 0.0000 0.0000 0.3750 band energies (ev): 6.7721 6.9865 10.3650 10.4592 10.5205 11.0440 11.9582 12.3295 12.3760 12.8004 13.0489 14.7403 31.0833 31.4419 31.8703 32.0041 k = 0.0000 0.0000 0.4000 band energies (ev): 7.0463 7.2959 10.2330 10.5003 10.5621 11.1265 12.0470 12.3701 12.4148 12.6354 13.1356 14.7941 30.7641 31.1683 31.2904 31.4300 k = 0.0000 0.0000 0.4250 band energies (ev): 7.3134 7.6098 10.0971 10.5484 10.6106 11.2119 12.1555 12.4205 12.4616 12.4620 13.2299 14.8550 30.4661 30.7139 30.8515 30.9226 k = 0.0000 0.0000 0.4500 band energies (ev): 7.5663 7.9238 9.9584 10.6037 10.6663 11.2995 12.2849 12.2859 12.4844 12.5168 13.3275 14.9254 30.1426 30.1887 30.2882 30.6865 k = 0.0000 0.0000 0.4750 band energies (ev): 7.7979 8.2329 9.8179 10.6659 10.7289 11.3885 12.1061 12.4307 12.5754 12.5805 13.4270 15.0090 29.5783 29.7275 29.9311 30.1895 k = 0.0000 0.0000 0.5000 band energies (ev): 8.0015 8.5315 9.6766 10.7363 10.7997 11.4786 11.9271 12.5557 12.6537 12.7357 13.5280 15.1112 29.0223 29.1745 29.6350 29.6902 k = 0.0000 0.0000 0.5250 band energies (ev): 8.1715 8.8137 9.5355 10.8144 10.8780 11.5690 11.7492 12.6555 12.7363 12.9752 13.6295 15.2377 28.4759 28.6308 29.0870 29.2358 k = 0.0000 0.0000 0.5500 band energies (ev): 8.3049 9.0730 9.3955 10.9001 10.9636 11.5738 11.6593 12.7535 12.8283 13.2738 13.7308 15.3944 27.9406 28.0976 28.5469 28.6990 k = 0.0000 0.0000 0.5750 band energies (ev): 8.4008 9.2575 9.3035 10.9932 11.0553 11.4028 11.7487 12.8570 12.9294 13.6242 13.8313 15.5873 27.4174 27.5764 28.0163 28.1706 k = 0.0000 0.0000 0.6000 band energies (ev): 8.4617 9.1224 9.5008 11.0935 11.1435 11.2468 11.8368 12.9683 13.0397 13.9304 14.0232 15.8222 26.9077 27.0685 27.4964 27.6525 k = 0.0000 0.0000 0.6250 band energies (ev): 8.4911 8.9911 9.6618 11.0598 11.2003 11.2746 11.9229 13.0876 13.1586 14.0273 14.4664 16.1022 26.4128 26.5751 26.9886 27.1464 k = 0.0000 0.0000 0.6500 band energies (ev): 8.4936 8.8643 9.7859 10.9069 11.3131 11.3837 12.0066 13.2146 13.2855 14.1215 14.9493 16.4289 25.9342 26.0978 26.4945 26.6537 k = 0.0000 0.0000 0.6750 band energies (ev): 8.4743 8.7429 9.8745 10.7582 11.4308 11.5007 12.0871 13.3486 13.4197 14.2123 15.4670 16.8012 25.4733 25.6381 26.0156 26.1760 k = 0.0000 0.0000 0.7000 band energies (ev): 8.4386 8.6276 9.9313 10.6169 11.5524 11.6221 12.1641 13.4888 13.5602 14.2991 16.0150 17.2167 25.0318 25.1977 25.5537 25.7151 k = 0.0000 0.0000 0.7250 band energies (ev): 8.3900 8.5189 9.9604 10.4841 11.6766 11.7463 12.2370 13.6337 13.7054 14.3813 16.5883 17.6700 24.6116 24.7784 25.1106 25.2730 k = 0.0000 0.0000 0.7500 band energies (ev): 8.3333 8.4182 9.9671 10.3611 11.8022 11.8719 12.3054 13.7824 13.8543 14.4586 17.1824 18.1559 24.2148 24.3823 24.6886 24.8518 k = 0.0000 0.0000 0.7750 band energies (ev): 8.2719 8.3249 9.9568 10.2475 11.9265 11.9963 12.3687 13.9318 14.0040 14.5301 17.7925 18.6679 23.8435 24.0116 24.2901 24.4540 k = 0.0000 0.0000 0.8000 band energies (ev): 8.2090 8.2399 9.9344 10.1444 12.0480 12.1178 12.4259 14.0801 14.1523 14.5949 18.4132 19.1983 23.5004 23.6688 23.9180 24.0825 k = 0.0000 0.0000 0.8250 band energies (ev): 8.1474 8.1639 9.9046 10.0523 12.1643 12.2342 12.4779 14.2244 14.2967 14.6537 19.0382 19.7385 23.1880 23.3566 23.5757 23.7406 k = 0.0000 0.0000 0.8500 band energies (ev): 8.0900 8.0973 9.8715 9.9718 12.2734 12.3433 12.5237 14.3619 14.4341 14.7056 19.6589 20.2780 22.9096 23.0776 23.2668 23.4317 k = 0.0000 0.0000 0.8750 band energies (ev): 8.0377 8.0402 9.8378 9.9029 12.3716 12.4414 12.5630 14.4880 14.5600 14.7500 20.2636 20.8027 22.6683 22.8349 22.9954 23.1600 k = 0.0000 0.0000 0.9000 band energies (ev): 7.9927 7.9927 9.8065 9.8458 12.4565 12.5262 12.5950 14.5987 14.6705 14.7864 20.8352 21.2937 22.4685 22.6313 22.7664 22.9295 k = 0.0000 0.0000 0.9250 band energies (ev): 7.9559 7.9564 9.7801 9.8014 12.5260 12.5956 12.6205 14.6906 14.7622 14.8153 21.3480 21.7220 22.3184 22.4696 22.5851 22.7446 k = 0.0000 0.0000 0.9500 band energies (ev): 7.9292 7.9296 9.7600 9.7693 12.5768 12.6388 12.6464 14.7590 14.8303 14.8360 21.7629 22.0154 22.2618 22.3521 22.4591 22.6092 k = 0.0000 0.0000 0.9750 band energies (ev): 7.9130 7.9132 9.7472 9.7502 12.6083 12.6498 12.6778 14.8016 14.8485 14.8728 22.0256 22.0556 22.2808 22.3839 22.3995 22.5264 k = 0.0000 0.0000 1.0000 band energies (ev): 7.9076 7.9079 9.7430 9.7438 12.6190 12.6535 12.6884 14.8161 14.8527 14.8872 22.0440 22.1053 22.2569 22.3940 22.4537 22.4986 Writing output data file Fe.save init_run : 4.72s CPU 4.78s WALL ( 1 calls) electrons : 41.42s CPU 41.87s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 2.61s CPU 2.67s WALL ( 1 calls) Called by electrons: c_bands : 41.42s CPU 41.87s WALL ( 1 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 1 calls) newd : 0.25s CPU 0.25s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 81 calls) cegterg : 37.47s CPU 37.65s WALL ( 95 calls) Called by *egterg: h_psi : 28.01s CPU 28.17s WALL ( 1463 calls) s_psi : 1.61s CPU 1.64s WALL ( 1463 calls) g_psi : 0.56s CPU 0.56s WALL ( 1287 calls) cdiaghg : 3.03s CPU 3.03s WALL ( 1368 calls) Called by h_psi: add_vuspsi : 1.54s CPU 1.53s WALL ( 1463 calls) General routines calbec : 1.45s CPU 1.44s WALL ( 1463 calls) cft3s : 21.82s CPU 21.93s WALL ( 57383 calls) interpolate : 0.01s CPU 0.01s WALL ( 4 calls) davcio : 0.00s CPU 0.03s WALL ( 81 calls) Parallel routines PAW routines PAW_pot : 2.51s CPU 2.57s WALL ( 1 calls) PWSCF : 48.09s CPU time, 48.80s WALL time This run was terminated on: 11: 7:12 23May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/example11/reference/Fe.scf_pbe.out0000644000700200004540000010735212053145630022751 0ustar marsamoscm Program PWSCF v.4.2 starts on 23May2010 at 11: 4:11 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Fixed quantization axis for GGA: 0.000000 0.000000 1.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm: we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 627 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) EXX-fraction = 0.00 Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.rel-pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 8.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: PSQ Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84500 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 gaussian broad. (Ry)= 0.0400 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0039062 k( 2) = ( 0.0000000 -0.1250000 0.2500000), wk = 0.0156250 k( 3) = ( 0.0000000 -0.2500000 0.3750000), wk = 0.0156250 k( 4) = ( 0.0000000 -0.3750000 0.5000000), wk = 0.0156250 k( 5) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0156250 k( 6) = ( -0.1250000 -0.1250000 0.3750000), wk = 0.0156250 k( 7) = ( -0.1250000 -0.2500000 0.5000000), wk = 0.0312500 k( 8) = ( -0.1250000 0.6250000 -0.3750000), wk = 0.0312500 k( 9) = ( -0.2500000 0.2500000 0.1250000), wk = 0.0156250 k( 10) = ( -0.2500000 0.7500000 -0.3750000), wk = 0.0156250 k( 11) = ( -0.3750000 0.3750000 0.1250000), wk = 0.0156250 k( 12) = ( -0.3750000 0.2500000 0.2500000), wk = 0.0312500 k( 13) = ( 0.5000000 -0.5000000 0.1250000), wk = 0.0078125 k( 14) = ( 0.5000000 -0.6250000 0.2500000), wk = 0.0312500 k( 15) = ( 0.3750000 -0.6250000 0.3750000), wk = 0.0156250 k( 16) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0039062 k( 17) = ( 0.0000000 -0.1250000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 -0.2500000 0.6250000), wk = 0.0156250 k( 19) = ( -0.1250000 -0.1250000 0.6250000), wk = 0.0156250 k( 20) = ( -0.1250000 0.7500000 -0.2500000), wk = 0.0312500 k( 21) = ( 0.6250000 -0.6250000 0.3750000), wk = 0.0156250 k( 22) = ( 0.5000000 -0.5000000 0.3750000), wk = 0.0078125 k( 23) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0039062 k( 24) = ( 0.0000000 -0.1250000 0.7500000), wk = 0.0156250 k( 25) = ( -0.1250000 0.8750000 -0.1250000), wk = 0.0156250 k( 26) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0039062 k( 27) = ( 0.0000000 0.1250000 0.0000000), wk = 0.0078125 k( 28) = ( -0.1250000 0.2500000 0.0000000), wk = 0.0156250 k( 29) = ( 0.2500000 0.0000000 -0.1250000), wk = 0.0156250 k( 30) = ( -0.2500000 0.3750000 0.0000000), wk = 0.0156250 k( 31) = ( 0.3750000 0.0000000 -0.2500000), wk = 0.0156250 k( 32) = ( -0.3750000 0.5000000 0.0000000), wk = 0.0156250 k( 33) = ( 0.5000000 0.0000000 -0.3750000), wk = 0.0156250 k( 34) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 35) = ( -0.2500000 0.5000000 -0.1250000), wk = 0.0312500 k( 36) = ( 0.5000000 -0.1250000 -0.2500000), wk = 0.0312500 k( 37) = ( 0.6250000 -0.3750000 -0.1250000), wk = 0.0156250 k( 38) = ( 0.2500000 0.1250000 -0.2500000), wk = 0.0312500 k( 39) = ( 0.7500000 -0.3750000 -0.2500000), wk = 0.0312500 k( 40) = ( 0.3750000 0.1250000 -0.3750000), wk = 0.0312500 k( 41) = ( 0.2500000 0.2500000 -0.3750000), wk = 0.0156250 k( 42) = ( -0.5000000 0.1250000 0.5000000), wk = 0.0156250 k( 43) = ( -0.6250000 0.2500000 0.5000000), wk = 0.0312500 k( 44) = ( 0.2500000 0.5000000 -0.6250000), wk = 0.0312500 k( 45) = ( 0.0000000 0.3750000 0.0000000), wk = 0.0078125 k( 46) = ( -0.1250000 0.5000000 0.0000000), wk = 0.0156250 k( 47) = ( 0.5000000 0.0000000 -0.1250000), wk = 0.0156250 k( 48) = ( -0.2500000 0.6250000 0.0000000), wk = 0.0156250 k( 49) = ( 0.6250000 0.0000000 -0.2500000), wk = 0.0156250 k( 50) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 51) = ( 0.7500000 -0.2500000 -0.1250000), wk = 0.0156250 k( 52) = ( -0.5000000 0.3750000 0.5000000), wk = 0.0156250 k( 53) = ( 0.0000000 0.6250000 0.0000000), wk = 0.0078125 k( 54) = ( -0.1250000 0.7500000 0.0000000), wk = 0.0156250 k( 55) = ( 0.7500000 0.0000000 -0.1250000), wk = 0.0156250 k( 56) = ( 0.0000000 0.8750000 0.0000000), wk = 0.0078125 G cutoff = 223.2339 ( 6963 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 133.9403 ( 3151 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 832, 16) NL pseudopotentials 0.22 Mb ( 416, 34) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6963) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.81 Mb ( 832, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.02 Mb ( 34, 2, 16) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 7.99946, renormalised to 8.00000 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.589433 magnetization : 0.000000 0.000000 3.294716 magnetization/charge: 0.000000 0.000000 0.500000 polar coord.: r, theta, phi [deg] : 3.294716 0.000000 360.000000 ============================================================================== Starting wfc are 18 atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 8.56 secs per-process dynamical memory: 29.0 Mb Self-consistent Calculation iteration # 1 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.3 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.395219 magnetization : 0.000000 0.000000 2.740181 magnetization/charge: 0.000000 0.000000 0.428473 polar coord.: r, theta, phi [deg] : 2.740181 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 19.14 secs total energy = -141.77799319 Ry Harris-Foulkes estimate = -141.80275211 Ry estimated scf accuracy < 0.09508976 Ry total magnetization = 0.00 0.00 2.64 Bohr mag/cell absolute magnetization = 2.64 Bohr mag/cell iteration # 2 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.2 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.485986 magnetization : 0.000000 0.000000 2.669744 magnetization/charge: 0.000000 0.000000 0.411617 polar coord.: r, theta, phi [deg] : 2.669744 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 29.63 secs total energy = -141.79047858 Ry Harris-Foulkes estimate = -141.86766618 Ry estimated scf accuracy < 0.18744050 Ry total magnetization = 0.00 0.00 2.52 Bohr mag/cell absolute magnetization = 2.54 Bohr mag/cell iteration # 3 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.453062 magnetization : 0.000000 0.000000 2.314585 magnetization/charge: 0.000000 0.000000 0.358680 polar coord.: r, theta, phi [deg] : 2.314585 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 39.63 secs total energy = -141.83249796 Ry Harris-Foulkes estimate = -141.82866620 Ry estimated scf accuracy < 0.00413691 Ry total magnetization = 0.00 0.00 2.38 Bohr mag/cell absolute magnetization = 2.43 Bohr mag/cell iteration # 4 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 2.5 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.461072 magnetization : 0.000000 0.000000 2.274492 magnetization/charge: 0.000000 0.000000 0.352030 polar coord.: r, theta, phi [deg] : 2.274492 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 49.84 secs total energy = -141.83538308 Ry Harris-Foulkes estimate = -141.83540842 Ry estimated scf accuracy < 0.00019826 Ry total magnetization = 0.00 0.00 2.23 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell iteration # 5 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-06, avg # of iterations = 3.5 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.457677 magnetization : 0.000000 0.000000 2.253943 magnetization/charge: 0.000000 0.000000 0.349033 polar coord.: r, theta, phi [deg] : 2.253943 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 61.04 secs total energy = -141.83546572 Ry Harris-Foulkes estimate = -141.83552566 Ry estimated scf accuracy < 0.00014478 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 6 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 1.4 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458279 magnetization : 0.000000 0.000000 2.260820 magnetization/charge: 0.000000 0.000000 0.350065 polar coord.: r, theta, phi [deg] : 2.260820 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 70.49 secs total energy = -141.83550085 Ry Harris-Foulkes estimate = -141.83549948 Ry estimated scf accuracy < 0.00000367 Ry total magnetization = 0.00 0.00 2.19 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 7 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.59E-08, avg # of iterations = 2.1 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458319 magnetization : 0.000000 0.000000 2.259362 magnetization/charge: 0.000000 0.000000 0.349838 polar coord.: r, theta, phi [deg] : 2.259362 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 81.15 secs total energy = -141.83550424 Ry Harris-Foulkes estimate = -141.83550412 Ry estimated scf accuracy < 0.00000029 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 8 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-09, avg # of iterations = 1.3 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458316 magnetization : 0.000000 0.000000 2.257372 magnetization/charge: 0.000000 0.000000 0.349529 polar coord.: r, theta, phi [deg] : 2.257372 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 90.70 secs total energy = -141.83550435 Ry Harris-Foulkes estimate = -141.83550427 Ry estimated scf accuracy < 0.00000016 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 9 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 1.2 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458323 magnetization : 0.000000 0.000000 2.256428 magnetization/charge: 0.000000 0.000000 0.349383 polar coord.: r, theta, phi [deg] : 2.256428 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 100.27 secs total energy = -141.83550442 Ry Harris-Foulkes estimate = -141.83550439 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 10 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458327 magnetization : 0.000000 0.000000 2.256301 magnetization/charge: 0.000000 0.000000 0.349363 polar coord.: r, theta, phi [deg] : 2.256301 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 110.67 secs total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550443 Ry estimated scf accuracy < 7.9E-10 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 11 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.91E-12, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458329 magnetization : 0.000000 0.000000 2.256189 magnetization/charge: 0.000000 0.000000 0.349346 polar coord.: r, theta, phi [deg] : 2.256189 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 121.28 secs total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550444 Ry estimated scf accuracy < 1.5E-10 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 12 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-12, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458327 magnetization : 0.000000 0.000000 2.256194 magnetization/charge: 0.000000 0.000000 0.349347 polar coord.: r, theta, phi [deg] : 2.256194 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 131.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.1250 ( 401 PWs) bands (ev): 4.5824 4.7081 10.3147 10.3737 10.4266 11.3496 11.5280 12.2304 12.2820 12.3571 14.0914 14.3372 35.3168 35.4193 36.5971 36.7189 k = 0.0000-0.1250 0.2500 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0863 10.2612 11.0110 11.1409 11.6188 11.9454 12.1380 13.0079 13.7399 14.4404 30.9076 31.3262 34.2785 34.3988 k = 0.0000-0.2500 0.3750 ( 407 PWs) bands (ev): 7.3885 7.8279 9.7049 10.2704 11.3361 11.4862 11.7808 11.8795 12.0072 13.7821 14.0993 14.5540 25.1877 25.9717 31.9154 32.0402 k = 0.0000-0.3750 0.5000 ( 406 PWs) bands (ev): 7.8946 9.0784 9.4460 11.0051 11.1687 11.5010 12.3986 12.7835 13.1148 13.9887 14.8960 14.9950 20.5053 21.7052 30.5721 30.6619 k =-0.1250 0.1250 0.1250 ( 393 PWs) bands (ev): 5.1839 5.3159 10.1382 10.1542 10.9188 11.4065 11.4298 12.0161 12.0338 12.8867 14.1654 14.1801 33.4373 33.4643 33.6280 33.6528 k =-0.1250-0.1250 0.3750 ( 399 PWs) bands (ev): 7.1811 7.4598 9.8535 10.0706 11.0255 11.6886 11.7282 11.8456 12.0255 13.4522 13.8435 14.6605 28.1461 28.7476 29.0670 29.6199 k =-0.1250-0.2500 0.5000 ( 405 PWs) bands (ev): 8.2740 9.1905 9.5617 10.0973 11.2752 11.3415 11.6712 12.0714 13.6780 13.7092 14.5232 15.5765 23.0407 23.9391 26.8861 27.4829 k =-0.1250 0.6250-0.3750 ( 404 PWs) bands (ev): 8.3330 9.5713 9.7117 10.2416 11.2750 11.4245 11.7522 12.4290 13.8446 14.7350 15.6502 16.9212 19.7153 20.9799 26.2036 26.7888 k =-0.2500 0.2500 0.1250 ( 400 PWs) bands (ev): 6.7530 6.9673 9.7528 9.9384 11.3501 11.5275 11.5706 11.6981 11.9109 13.9069 14.0156 14.3277 28.0579 28.6448 31.1322 31.4304 k =-0.2500 0.7500-0.3750 ( 406 PWs) bands (ev): 9.0118 9.2466 9.7776 10.3936 10.9130 11.3847 11.6216 12.0554 13.9679 14.4376 16.8509 18.1580 21.1692 22.1470 22.4289 23.2331 k =-0.3750 0.3750 0.1250 ( 406 PWs) bands (ev): 7.9398 8.7852 9.4162 10.6450 11.1210 11.5150 11.6379 11.7897 13.2589 14.1000 14.4641 15.1550 22.6685 23.6053 29.4655 29.7443 k =-0.3750 0.2500 0.2500 ( 402 PWs) bands (ev): 8.2376 8.7421 9.4649 9.6599 11.1528 11.2422 11.4627 11.6684 13.4551 14.0922 14.4513 15.3430 25.6062 26.2781 26.3670 26.9804 k = 0.5000-0.5000 0.1250 ( 406 PWs) bands (ev): 8.0202 9.2862 9.3000 10.9660 11.5680 11.6342 11.6774 12.5121 14.1670 14.5140 14.5993 15.9882 19.6132 20.9413 28.8569 29.1110 k = 0.5000-0.6250 0.2500 ( 410 PWs) bands (ev): 8.6315 9.3121 9.8904 10.2493 10.9175 11.4586 11.5933 11.7668 14.2239 14.5187 15.8285 17.2208 21.0236 22.0339 24.8215 25.4615 k = 0.3750-0.6250 0.3750 ( 408 PWs) bands (ev): 8.9667 9.6171 9.6507 10.4558 11.0247 11.0389 11.7027 11.7415 14.3832 14.4182 19.2580 19.2806 20.2818 20.2862 21.6219 22.5080 k = 0.0000 0.0000 0.3750 ( 398 PWs) bands (ev): 6.7721 6.9865 10.3650 10.4592 10.5206 11.0440 11.9582 12.3295 12.3760 12.8004 13.0489 14.7403 31.0833 31.4419 31.8703 32.0041 k = 0.0000-0.1250 0.5000 ( 408 PWs) bands (ev): 8.0858 8.6891 9.6377 10.3552 10.9797 11.6700 11.8876 12.1811 12.7877 13.0429 13.9712 15.1307 26.0250 26.7657 29.3692 29.9732 k = 0.0000-0.2500 0.6250 ( 416 PWs) bands (ev): 8.4181 9.5570 9.8125 10.1653 11.1660 11.2611 11.9565 12.7061 13.3765 14.9007 15.2180 16.6198 21.0164 22.0718 27.7847 28.3432 k =-0.1250-0.1250 0.6250 ( 414 PWs) bands (ev): 8.7063 9.0369 9.9259 10.4255 10.9694 11.3706 12.2339 12.3061 13.4143 14.4722 15.0973 16.6364 23.9255 24.5052 24.7640 25.1787 k =-0.1250 0.7500-0.2500 ( 410 PWs) bands (ev): 8.6824 9.0359 10.2380 10.3982 10.7474 11.6637 11.9931 12.5152 13.7703 14.7017 18.0470 19.0913 20.1823 21.2279 23.5428 24.2443 k = 0.6250-0.6250 0.3750 ( 408 PWs) bands (ev): 9.2928 9.2950 9.4112 10.2522 10.8421 10.8440 11.6354 11.6651 14.4349 14.4614 15.8141 17.2973 23.9717 24.0199 24.6779 24.7243 k = 0.5000-0.5000 0.3750 ( 408 PWs) bands (ev): 9.1693 9.2600 9.8796 10.5314 10.7535 11.1300 11.6677 11.7073 14.4759 14.5558 18.5827 19.5897 20.3388 21.3443 23.4460 24.1432 k = 0.0000 0.0000 0.6250 ( 414 PWs) bands (ev): 8.4911 8.9911 9.6618 11.0598 11.2004 11.2746 11.9230 13.0876 13.1586 14.0273 14.4664 16.1022 26.4128 26.5751 26.9886 27.1464 k = 0.0000-0.1250 0.7500 ( 410 PWs) bands (ev): 8.4211 8.5479 10.1096 10.4143 11.3663 11.6403 12.5961 13.2979 13.6010 14.7811 17.5242 18.5233 22.1884 22.9276 24.7204 25.2043 k =-0.1250 0.8750-0.1250 ( 415 PWs) bands (ev): 8.2874 8.2904 10.1110 10.1127 11.4702 12.4322 12.4557 13.3800 14.5697 14.5909 20.8303 20.8978 21.5326 21.5993 21.9599 22.5348 k = 0.0000 0.0000 0.8750 ( 398 PWs) bands (ev): 8.0377 8.0402 9.8378 9.9029 12.3716 12.4414 12.5630 14.4880 14.5600 14.7500 20.2636 20.8027 22.6683 22.8349 22.9954 23.1600 k = 0.0000 0.1250 0.0000 ( 401 PWs) bands (ev): 4.5824 4.7081 10.3350 10.3419 10.4388 11.3430 11.5350 12.2498 12.2508 12.3680 14.0903 14.3380 35.3168 35.4190 36.7273 36.7273 k =-0.1250 0.2500 0.0000 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0871 10.2606 11.0224 11.1231 11.6281 11.9466 12.1326 13.0106 13.7373 14.4415 30.9075 31.3262 34.2786 34.3989 k = 0.2500 0.0000-0.1250 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0866 10.2612 11.0206 11.1255 11.6280 11.9416 12.1377 13.0094 13.7381 14.4412 30.9076 31.3261 34.2780 34.3994 k =-0.2500 0.3750 0.0000 ( 407 PWs) bands (ev): 7.3885 7.8280 9.7054 10.2700 11.3228 11.4990 11.8078 11.8464 12.0140 13.7824 14.0971 14.5554 25.1877 25.9718 31.9158 32.0399 k = 0.3750 0.0000-0.2500 ( 407 PWs) bands (ev): 7.3885 7.8280 9.7051 10.2702 11.3338 11.4910 11.7709 11.8807 12.0137 13.7842 14.0946 14.5561 25.1877 25.9717 31.9150 32.0406 k =-0.3750 0.5000 0.0000 ( 406 PWs) bands (ev): 7.8945 9.0785 9.4462 10.9989 11.1715 11.5052 12.3968 12.7838 13.1157 13.9873 14.8992 14.9926 20.5052 21.7053 30.5731 30.6610 k = 0.5000 0.0000-0.3750 ( 406 PWs) bands (ev): 7.8946 9.0784 9.4461 11.0010 11.1747 11.4991 12.3968 12.7836 13.1170 13.9888 14.8884 15.0017 20.5053 21.7051 30.5719 30.6621 k =-0.1250 0.3750-0.1250 ( 399 PWs) bands (ev): 7.1811 7.4599 9.8539 10.0709 11.0224 11.6763 11.7482 11.8408 12.0254 13.4537 13.8405 14.6617 28.1460 28.7471 29.0674 29.6200 k =-0.2500 0.5000-0.1250 ( 405 PWs) bands (ev): 8.2740 9.1908 9.5623 10.0966 11.2708 11.3424 11.6750 12.0713 13.6822 13.7050 14.5226 15.5769 23.0406 23.9392 26.8862 27.4828 k = 0.5000-0.1250-0.2500 ( 405 PWs) bands (ev): 8.2741 9.1907 9.5621 10.0966 11.2844 11.3295 11.6736 12.0717 13.6755 13.7134 14.5211 15.5772 23.0407 23.9390 26.8861 27.4829 k = 0.6250-0.3750-0.1250 ( 404 PWs) bands (ev): 8.3329 9.5715 9.7125 10.2404 11.2678 11.4344 11.7504 12.4285 13.8444 14.7350 15.6504 16.9212 19.7152 20.9801 26.2037 26.7887 k = 0.2500 0.1250-0.2500 ( 400 PWs) bands (ev): 6.7530 6.9673 9.7526 9.9386 11.3627 11.5140 11.5573 11.7145 11.9088 13.9018 14.0227 14.3257 28.0580 28.6447 31.1320 31.4305 k = 0.7500-0.3750-0.2500 ( 406 PWs) bands (ev): 9.0113 9.2475 9.7773 10.3936 10.9130 11.3827 11.6237 12.0553 13.9677 14.4377 16.8509 18.1582 21.1692 22.1462 22.4298 23.2330 k = 0.3750 0.1250-0.3750 ( 406 PWs) bands (ev): 7.9398 8.7851 9.4160 10.6449 11.1252 11.5208 11.6225 11.7949 13.2593 14.1027 14.4611 15.1556 22.6685 23.6052 29.4651 29.7447 k = 0.2500 0.2500-0.3750 ( 402 PWs) bands (ev): 8.2376 8.7421 9.4646 9.6600 11.1509 11.2494 11.4581 11.6676 13.4552 14.0926 14.4512 15.3429 25.6067 26.2729 26.3723 26.9799 k =-0.5000 0.1250 0.5000 ( 406 PWs) bands (ev): 8.0202 9.2867 9.2991 10.9682 11.5733 11.6302 11.6739 12.5117 14.1711 14.5156 14.5941 15.9886 19.6133 20.9411 28.8562 29.1117 k =-0.6250 0.2500 0.5000 ( 410 PWs) bands (ev): 8.6315 9.3120 9.8900 10.2492 10.9190 11.4625 11.5925 11.7625 14.2267 14.5163 15.8285 17.2208 21.0237 22.0338 24.8215 25.4616 k = 0.2500 0.5000-0.6250 ( 410 PWs) bands (ev): 8.6315 9.3121 9.8900 10.2492 10.9196 11.4568 11.5959 11.7640 14.2258 14.5172 15.8284 17.2209 21.0236 22.0338 24.8215 25.4616 k = 0.0000 0.3750 0.0000 ( 398 PWs) bands (ev): 6.7721 6.9866 10.3625 10.4881 10.4957 11.0381 11.9685 12.3435 12.3510 12.8162 13.0375 14.7410 31.0830 31.4419 31.9293 31.9298 k =-0.1250 0.5000 0.0000 ( 408 PWs) bands (ev): 8.0858 8.6893 9.6381 10.3555 10.9778 11.6597 11.8999 12.1806 12.7937 13.0362 13.9706 15.1314 26.0251 26.7656 29.3694 29.9729 k = 0.5000 0.0000-0.1250 ( 408 PWs) bands (ev): 8.0859 8.6892 9.6380 10.3548 10.9795 11.6615 11.8944 12.1837 12.7879 13.0431 13.9690 15.1316 26.0251 26.7654 29.3694 29.9733 k =-0.2500 0.6250 0.0000 ( 416 PWs) bands (ev): 8.4179 9.5583 9.8117 10.1649 11.1732 11.2519 11.9597 12.7052 13.3764 14.9005 15.2180 16.6201 21.0164 22.0719 27.7846 28.3430 k = 0.6250 0.0000-0.2500 ( 416 PWs) bands (ev): 8.4182 9.5573 9.8129 10.1641 11.1673 11.2603 11.9561 12.7064 13.3766 14.9025 15.2159 16.6202 21.0164 22.0717 27.7847 28.3432 k =-0.1250 0.6250-0.1250 ( 414 PWs) bands (ev): 8.7062 9.0372 9.9263 10.4249 10.9697 11.3688 12.2426 12.2992 13.4141 14.4725 15.0966 16.6368 23.9272 24.4952 24.7751 25.1758 k = 0.7500-0.2500-0.1250 ( 410 PWs) bands (ev): 8.6821 9.0363 10.2373 10.3987 10.7483 11.6591 11.9986 12.5138 13.7701 14.7017 18.0471 19.0916 20.1822 21.2278 23.5428 24.2442 k =-0.5000 0.3750 0.5000 ( 408 PWs) bands (ev): 9.1693 9.2600 9.8794 10.5299 10.7549 11.1310 11.6835 11.6903 14.4802 14.5516 18.5826 19.5898 20.3390 21.3441 23.4455 24.1462 k = 0.0000 0.6250 0.0000 ( 414 PWs) bands (ev): 8.4912 8.9910 9.6622 11.0590 11.2343 11.2370 11.9268 13.1219 13.1247 14.0273 14.4658 16.1027 26.4829 26.4830 27.0785 27.0785 k =-0.1250 0.7500 0.0000 ( 410 PWs) bands (ev): 8.4209 8.5481 10.1100 10.4137 11.3693 11.6359 12.5981 13.3001 13.5982 14.7812 17.5241 18.5236 22.1886 22.9271 24.7209 25.2038 k = 0.7500 0.0000-0.1250 ( 410 PWs) bands (ev): 8.4213 8.5477 10.1104 10.4132 11.3673 11.6392 12.5965 13.2989 13.6001 14.7811 17.5241 18.5236 22.1886 22.9270 24.7210 25.2039 k = 0.0000 0.8750 0.0000 ( 398 PWs) bands (ev): 8.0380 8.0400 9.8384 9.9023 12.3995 12.4063 12.5703 14.5188 14.5250 14.7542 20.2632 20.8034 22.7310 22.7319 23.0977 23.0977 the Fermi energy is 12.5628 ev ! total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550444 Ry estimated scf accuracy < 2.4E-12 Ry total all-electron energy = -2545.618681 Ry The total energy is the sum of the following terms: one-electron contribution = 4.44316678 Ry hartree contribution = 8.53527956 Ry xc contribution = -30.82722931 Ry ewald contribution = -42.97249830 Ry one-center paw contrib. = -81.01691342 Ry smearing contrib. (-TS) = 0.00269024 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file Fe.save init_run : 7.05s CPU 7.14s WALL ( 1 calls) electrons : 121.80s CPU 123.07s WALL ( 1 calls) Called by init_run: wfcinit : 2.35s CPU 2.39s WALL ( 1 calls) potinit : 2.52s CPU 2.56s WALL ( 1 calls) Called by electrons: c_bands : 69.35s CPU 70.10s WALL ( 12 calls) sum_band : 16.22s CPU 16.34s WALL ( 12 calls) v_of_rho : 0.94s CPU 0.96s WALL ( 13 calls) newd : 3.27s CPU 3.27s WALL ( 13 calls) mix_rho : 2.88s CPU 2.91s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.62s CPU 0.60s WALL ( 1400 calls) cegterg : 64.24s CPU 64.78s WALL ( 672 calls) Called by *egterg: h_psi : 52.40s CPU 52.87s WALL ( 2160 calls) s_psi : 2.96s CPU 2.97s WALL ( 2160 calls) g_psi : 0.72s CPU 0.72s WALL ( 1432 calls) cdiaghg : 2.27s CPU 2.32s WALL ( 2104 calls) Called by h_psi: add_vuspsi : 2.85s CPU 2.84s WALL ( 2160 calls) General routines calbec : 3.68s CPU 3.76s WALL ( 2832 calls) cft3s : 49.62s CPU 49.99s WALL ( 127311 calls) interpolate : 0.18s CPU 0.18s WALL ( 100 calls) davcio : 0.03s CPU 0.30s WALL ( 2072 calls) Parallel routines PAW routines PAW_pot : 31.52s CPU 31.70s WALL ( 13 calls) PAW_ddot : 2.71s CPU 2.73s WALL ( 256 calls) PAW_symme : 0.17s CPU 0.17s WALL ( 25 calls) PWSCF : 2m10.61s CPU time, 2m12.24s WALL time This run was terminated on: 11: 6:24 23May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/example11/run_example0000755000700200004540000000755112053145630020575 0ustar marsamoscm#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example tests pw.x with PAW in the noncollinear, spin-orbit case." $ECHO "It calculates the band structure of ferromagnetic bcc-Fe." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Fe.rel-pbe-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.scf_pbe.in << EOF &control calculation = 'scf' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, nr1=27, nr2=27, nr3=27, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =45.0, ecutrho =300.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-kjpaw.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with PAW spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.in > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.band_pbe.in << EOF &control calculation = 'bands' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, nr1=27, nr2=27, nr3=27, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =45.0, ecutrho =300.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-kjpaw.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS tpiba_b 3 1.0 0.0 0.0 40 0.0 0.0 0.0 40 0.0 0.0 1.0 1 EOF $ECHO " running the band calculation for Fe with PAW and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.in > Fe.band_pbe.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example11/run_xml_example0000644000700200004540000001456712053145630021457 0ustar marsamoscm#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example tests pw.x with PAW in the noncollinear, spin-orbit case." $ECHO "It calculates the band structure of ferromagnetic bcc-Fe." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Fe.rel-pbe-kjpaw.UPF Au.rel-pz-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.scf_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 45.0 300.0 1.0d-10 smearing mp 0.04 true true 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with PAW spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.xml > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.band_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 45.0 300.0 1.0d-10 smearing mp 0.04 true true 1.0 0.0 0.0 40.0 0.0 0.0 0.0 40.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the band calculation for Fe with PAW and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.xml > Fe.band_pbe.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example11/README0000644000700200004540000000046212053145630017202 0ustar marsamoscmThis example tests pw.x and ph.x for the noncollinear/spin-orbit case and PAW. The calculation proceeds as follows: 1) make a self-consistent calculation for bcc-Fe (input=Fe.scf_pbe.in, output=Fe.scf_pbe.out). 2) make a band calculation for bcc-Fe (input=Fe.band_pbe.in, output=Fe.band_pbe.out). espresso-5.0.2/PW/examples/EXX_example/0000755000700200004540000000000012053440301016673 5ustar marsamoscmespresso-5.0.2/PW/examples/EXX_example/reference/0000755000700200004540000000000012053440303020633 5ustar marsamoscmespresso-5.0.2/PW/examples/EXX_example/reference/co.hse.1nlcc.out-800000644000700200004540000003364612053145630024010 0ustar marsamoscm Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:56:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin Warning: card &IONS ignored Warning: card / ignored IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ3 MD5 check sum: 6343d94e6269eb5d49eee3a5c5ef8fb6 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 PseudoPot. # 2 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) O 6.00 16.00000 ( 1.00) 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0512746 0.0512746 0.0512746 ) 2 O tau( 2) = ( -0.0512746 -0.0512746 -0.0512746 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000103 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.103E-03 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 59.3 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.123E-04 0.000E+00 total cpu time spent up to now is 2.3 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.3472 -15.4362 -12.9167 -12.9167 -9.8191 -2.5484 -2.5484 -1.5477 highest occupied, lowest unoccupied level (ev): -9.8191 -2.5484 ! total energy = -46.43592510 Ry Harris-Foulkes estimate = -46.53132574 Ry estimated scf accuracy < 0.15604071 Ry The total energy is the sum of the following terms: one-electron contribution = -67.96315882 Ry hartree contribution = 35.36824211 Ry xc contribution = -13.72736374 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.75436899 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-03, avg # of iterations = 2.0 negative rho (up, down): 0.117E-05 0.000E+00 total cpu time spent up to now is 3.2 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.6263 -12.3993 -10.2152 -10.2152 -8.3870 -1.4941 -1.0373 -1.0373 highest occupied, lowest unoccupied level (ev): -8.3870 -1.4941 ! total energy = -46.43481331 Ry Harris-Foulkes estimate = -46.50818277 Ry estimated scf accuracy < 0.14289898 Ry The total energy is the sum of the following terms: one-electron contribution = -65.36658280 Ry hartree contribution = 34.54934930 Ry xc contribution = -13.58147502 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -1.16809113 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-03, avg # of iterations = 2.0 total cpu time spent up to now is 4.0 secs k = 0.0000 0.0000 0.0000 band energies (ev): -29.0396 -13.8828 -11.4508 -11.4508 -8.1323 -1.5016 -1.3181 -1.3181 highest occupied, lowest unoccupied level (ev): -8.1323 -1.5016 ! total energy = -46.47218791 Ry Harris-Foulkes estimate = -46.48383527 Ry estimated scf accuracy < 0.03091612 Ry The total energy is the sum of the following terms: one-electron contribution = -67.07998479 Ry hartree contribution = 34.60903495 Ry xc contribution = -13.58723955 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.45401513 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8898 -13.5677 -11.2955 -11.2955 -8.4815 -1.5048 -1.4901 -1.4901 highest occupied, lowest unoccupied level (ev): -8.4815 -1.5048 EXX: now go back to refine exchange calculation -4.0525543195188058 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 3.0 total cpu time spent up to now is 14.2 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.7059 -15.2433 -12.4077 -12.4077 -9.6263 -1.2261 -0.5751 -0.5751 highest occupied, lowest unoccupied level (ev): -9.6263 -1.2261 ! total energy = -45.64680172 Ry Harris-Foulkes estimate = -45.64735928 Ry estimated scf accuracy < 0.00101034 Ry The total energy is the sum of the following terms: one-electron contribution = -70.71249204 Ry hartree contribution = 34.65168530 Ry xc contribution = -10.72693627 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.05246773 Ry + Fock energy = -2.02627716 Ry scf correction = -0.01732222 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-05, avg # of iterations = 2.0 total cpu time spent up to now is 18.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.8017 -15.3194 -12.4754 -12.4754 -9.6937 -1.2274 -0.6295 -0.6295 highest occupied, lowest unoccupied level (ev): -9.6937 -1.2274 -4.0525543195188058 -4.0574367671794755 -4.0628617789316941 est. exchange err (dexx) = 0.00027128 Ry ! total energy = -45.64720309 Ry Harris-Foulkes estimate = -45.64722350 Ry estimated scf accuracy < 0.00008116 Ry The total energy is the sum of the following terms: one-electron contribution = -70.80416716 Ry hartree contribution = 34.73644192 Ry xc contribution = -10.73747008 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.05743677 Ry + Fock energy = -2.03143089 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00655639 -0.00655639 -0.00655639 atom 2 type 2 force = 0.00655639 0.00655639 0.00655639 Total force = 0.016060 Total SCF correction = 0.008133 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file co.save init_run : 1.06s CPU 1.13s WALL ( 1 calls) electrons : 17.55s CPU 18.22s WALL ( 1 calls) forces : 1.10s CPU 1.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.46s CPU 0.47s WALL ( 1 calls) Called by electrons: c_bands : 9.91s CPU 10.01s WALL ( 7 calls) sum_band : 0.52s CPU 0.52s WALL ( 7 calls) v_of_rho : 4.54s CPU 4.61s WALL ( 8 calls) mix_rho : 0.09s CPU 0.10s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 15 calls) regterg : 9.84s CPU 9.94s WALL ( 7 calls) Called by *egterg: h_psi : 9.72s CPU 9.82s WALL ( 26 calls) g_psi : 0.01s CPU 0.01s WALL ( 18 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 23 calls) Called by h_psi: add_vuspsi : 0.05s CPU 0.06s WALL ( 26 calls) General routines calbec : 0.07s CPU 0.07s WALL ( 30 calls) fft : 1.15s CPU 1.17s WALL ( 96 calls) ffts : 5.58s CPU 5.58s WALL ( 462 calls) fftw : 3.19s CPU 3.20s WALL ( 352 calls) davcio : 0.00s CPU 0.01s WALL ( 6 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.16s CPU 0.18s WALL ( 2 calls) vexx : 7.99s CPU 8.08s WALL ( 10 calls) exxen2 : 2.61s CPU 2.62s WALL ( 4 calls) PWSCF : 19.79s CPU 20.72s WALL This run was terminated on: 17:57:18 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/n2.hse.1nlcc.out-800000644000700200004540000003502312053145630023715 0ustar marsamoscm Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:56:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin Warning: card &IONS ignored Warning: card / ignored IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ3 MD5 check sum: 8c9de74fd816ad51f11d6d02916f6c56 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0499045 0.0499045 0.0499045 ) 2 N tau( 2) = ( -0.0499045 -0.0499045 -0.0499045 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000107 0.000000 Initial potential from superposition of free atoms starting charge 9.99999, renormalised to 10.00000 negative rho (up, down): 0.346E-04 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 56.8 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.579E-05 0.000E+00 total cpu time spent up to now is 1.8 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.5765 -14.4414 -12.6941 -12.6941 -11.6513 -2.8011 -2.8011 -1.2775 highest occupied, lowest unoccupied level (ev): -11.6513 -2.8011 ! total energy = -42.85094312 Ry Harris-Foulkes estimate = -42.94419743 Ry estimated scf accuracy < 0.15199183 Ry The total energy is the sum of the following terms: one-electron contribution = -64.27888378 Ry hartree contribution = 33.27455809 Ry xc contribution = -13.26143847 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.70347313 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-03, avg # of iterations = 2.0 negative rho (up, down): 0.157E-07 0.000E+00 total cpu time spent up to now is 2.7 secs k = 0.0000 0.0000 0.0000 band energies (ev): -26.9305 -12.3032 -10.3375 -10.3375 -9.1226 -1.2142 -0.8475 -0.8475 highest occupied, lowest unoccupied level (ev): -9.1226 -1.2142 ! total energy = -42.87826488 Ry Harris-Foulkes estimate = -42.88493920 Ry estimated scf accuracy < 0.01133639 Ry The total energy is the sum of the following terms: one-electron contribution = -62.89713942 Ry hartree contribution = 32.74381068 Ry xc contribution = -13.15436946 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.28191460 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.0 total cpu time spent up to now is 3.6 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.8059 -12.8597 -11.0319 -11.0319 -9.6969 -1.4074 -1.4074 -1.2306 highest occupied, lowest unoccupied level (ev): -9.6969 -1.4074 ! total energy = -42.88040140 Ry Harris-Foulkes estimate = -42.88064219 Ry estimated scf accuracy < 0.00051284 Ry The total energy is the sum of the following terms: one-electron contribution = -63.29401226 Ry hartree contribution = 32.82355631 Ry xc contribution = -13.16911475 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.04782139 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 2.0 total cpu time spent up to now is 4.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6571 -12.7775 -10.9499 -10.9499 -9.5902 -1.3431 -1.3431 -1.2269 highest occupied, lowest unoccupied level (ev): -9.5902 -1.3431 EXX: now go back to refine exchange calculation -3.8673806718052566 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 5.0 total cpu time spent up to now is 12.9 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.4779 -14.4816 -12.0089 -12.0089 -10.9929 -1.0074 -0.3782 -0.3782 highest occupied, lowest unoccupied level (ev): -10.9929 -1.0074 ! total energy = -42.06936396 Ry Harris-Foulkes estimate = -42.06988407 Ry estimated scf accuracy < 0.00090262 Ry The total energy is the sum of the following terms: one-electron contribution = -67.03353759 Ry hartree contribution = 32.74251910 Ry xc contribution = -10.40037054 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.86592991 Ry + Fock energy = -1.93369034 Ry scf correction = -0.02301318 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 2.0 total cpu time spent up to now is 17.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.5761 -14.5831 -12.0935 -12.0935 -11.0995 -1.0092 -0.4558 -0.4558 highest occupied, lowest unoccupied level (ev): -11.0995 -1.0092 -3.8673806718052566 -3.8704837534791134 -3.8740009124941217 est. exchange err (dexx) = 0.00020704 Ry ! total energy = -42.06970580 Ry Harris-Foulkes estimate = -42.06971829 Ry estimated scf accuracy < 0.00005522 Ry The total energy is the sum of the following terms: one-electron contribution = -67.11692706 Ry hartree contribution = 32.81161961 Ry xc contribution = -10.40922956 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.87048375 Ry + Fock energy = -1.93700046 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.89E-07, avg # of iterations = 1.0 total cpu time spent up to now is 24.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.4731 -14.5130 -12.0042 -12.0042 -11.0297 -1.0077 -0.3809 -0.3809 highest occupied, lowest unoccupied level (ev): -11.0297 -1.0077 -3.8740009124941217 -3.8721040771666040 -3.8702160724524322 est. exchange err (dexx) = 0.00000442 Ry ! total energy = -42.06972077 Ry Harris-Foulkes estimate = -42.06974974 Ry estimated scf accuracy < 0.00002920 Ry The total energy is the sum of the following terms: one-electron contribution = -67.08097970 Ry hartree contribution = 32.76481254 Ry xc contribution = -10.40189756 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.87210408 Ry + Fock energy = -1.93510804 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02200006 -0.02200006 -0.02200006 atom 2 type 1 force = 0.02200006 0.02200006 0.02200006 Total force = 0.053889 Total SCF correction = 0.009336 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file n2.save init_run : 0.82s CPU 0.84s WALL ( 1 calls) electrons : 23.76s CPU 24.24s WALL ( 1 calls) forces : 1.03s CPU 1.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.44s CPU 0.45s WALL ( 1 calls) Called by electrons: c_bands : 13.91s CPU 14.02s WALL ( 8 calls) sum_band : 0.58s CPU 0.58s WALL ( 8 calls) v_of_rho : 5.41s CPU 5.47s WALL ( 9 calls) mix_rho : 0.09s CPU 0.10s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.05s WALL ( 17 calls) regterg : 13.84s CPU 13.95s WALL ( 8 calls) Called by *egterg: h_psi : 13.67s CPU 13.76s WALL ( 30 calls) g_psi : 0.01s CPU 0.01s WALL ( 21 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 26 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.07s WALL ( 30 calls) General routines calbec : 0.08s CPU 0.08s WALL ( 34 calls) fft : 1.27s CPU 1.28s WALL ( 106 calls) ffts : 8.11s CPU 8.12s WALL ( 672 calls) fftw : 4.22s CPU 4.21s WALL ( 466 calls) davcio : 0.00s CPU 0.01s WALL ( 7 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.24s CPU 0.26s WALL ( 3 calls) vexx : 11.55s CPU 11.65s WALL ( 13 calls) exxen2 : 3.81s CPU 3.81s WALL ( 6 calls) PWSCF : 25.67s CPU 36.40s WALL This run was terminated on: 17:56:57 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/co.pbe0.1nlcc.out-800000644000700200004540000003075712053145630024057 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 5:31 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! Warning: card &IONS ignored Warning: card / ignored gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file CPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 PseudoPot. # 2 for read from file OPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) O 6.00 16.00000 ( 1.00) 6 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0512746 0.0512746 0.0512746 ) 2 O tau( 2) = ( -0.0512746 -0.0512746 -0.0512746 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000103 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.103E-03 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 4.65 secs per-process dynamical memory: 44.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.123E-04 0.000E+00 total cpu time spent up to now is 9.72 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.3472 -15.4362 -12.9167 -12.9167 -9.8191 -2.5484 -2.5484 -1.5477 highest occupied, lowest unoccupied level (ev): -9.8191 -2.5484 ! total energy = -46.43592510 Ry Harris-Foulkes estimate = -46.53132574 Ry estimated scf accuracy < 0.15604071 Ry The total energy is the sum of the following terms: one-electron contribution = -67.96315881 Ry hartree contribution = 35.36824211 Ry xc contribution = -13.72736374 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.75436899 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-03, avg # of iterations = 2.0 negative rho (up, down): 0.117E-05 0.000E+00 total cpu time spent up to now is 14.05 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.6263 -12.3993 -10.2152 -10.2152 -8.3870 -1.4941 -1.0373 -1.0373 highest occupied, lowest unoccupied level (ev): -8.3870 -1.4941 ! total energy = -46.43481331 Ry Harris-Foulkes estimate = -46.50818277 Ry estimated scf accuracy < 0.14289898 Ry The total energy is the sum of the following terms: one-electron contribution = -65.36658280 Ry hartree contribution = 34.54934930 Ry xc contribution = -13.58147502 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -1.16809113 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-03, avg # of iterations = 2.0 total cpu time spent up to now is 18.41 secs k = 0.0000 0.0000 0.0000 band energies (ev): -29.0396 -13.8828 -11.4508 -11.4508 -8.1323 -1.5016 -1.3181 -1.3181 highest occupied, lowest unoccupied level (ev): -8.1323 -1.5016 ! total energy = -46.47218791 Ry Harris-Foulkes estimate = -46.48383527 Ry estimated scf accuracy < 0.03091612 Ry The total energy is the sum of the following terms: one-electron contribution = -67.07998479 Ry hartree contribution = 34.60903495 Ry xc contribution = -13.58723955 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.45401513 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 22.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8898 -13.5677 -11.2955 -11.2955 -8.4815 -1.5048 -1.4901 -1.4901 highest occupied, lowest unoccupied level (ev): -8.4815 -1.5048 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.03s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -4.64868939815069 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 73.72 secs k = 0.0000 0.0000 0.0000 band energies (ev): -32.1042 -15.6411 -12.8080 -12.8080 -10.0317 -0.8059 -0.1679 -0.1679 highest occupied, lowest unoccupied level (ev): -10.0317 -0.8059 ! total energy = -45.60908687 Ry Harris-Foulkes estimate = -45.60972160 Ry estimated scf accuracy < 0.00103620 Ry The total energy is the sum of the following terms: one-electron contribution = -71.29401769 Ry hartree contribution = 34.63989370 Ry xc contribution = -10.38959871 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.64764442 Ry + Fock energy = -2.32434470 Ry scf correction = -0.02169522 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-05, avg # of iterations = 2.0 total cpu time spent up to now is 97.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.2201 -15.7410 -12.8947 -12.8947 -10.0951 -0.8075 -0.2248 -0.2248 highest occupied, lowest unoccupied level (ev): -10.0951 -0.8075 -4.64868939815069 -4.65359157741610 -4.65918683846216 dexx = 0.00034654 Ry ! total energy = -45.60950686 Ry Harris-Foulkes estimate = -45.60961709 Ry estimated scf accuracy < 0.00013343 Ry The total energy is the sum of the following terms: one-electron contribution = -71.40341330 Ry hartree contribution = 34.74001347 Ry xc contribution = -10.40209154 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.65359158 Ry + Fock energy = -2.32959342 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00635578 -0.00635578 -0.00635578 atom 2 type 2 force = 0.00635578 0.00635578 0.00635578 Total force = 0.015568 Total SCF correction = 0.013458 Writing output data file o2.save Writing output data file o2.save PWSCF : 1m44.23s CPU time, 1m45.85s wall time init_run : 4.53s CPU electrons : 96.63s CPU forces : 2.21s CPU Called by init_run: wfcinit : 0.45s CPU potinit : 1.84s CPU Called by electrons: c_bands : 61.51s CPU ( 7 calls, 8.787 s avg) sum_band : 3.16s CPU ( 7 calls, 0.451 s avg) v_of_rho : 16.08s CPU ( 8 calls, 2.009 s avg) mix_rho : 1.31s CPU ( 7 calls, 0.187 s avg) Called by c_bands: init_us_2 : 0.29s CPU ( 15 calls, 0.019 s avg) regterg : 61.20s CPU ( 7 calls, 8.743 s avg) Called by *egterg: h_psi : 61.03s CPU ( 26 calls, 2.347 s avg) g_psi : 0.12s CPU ( 18 calls, 0.007 s avg) rdiaghg : 0.01s CPU ( 23 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.10s CPU ( 26 calls, 0.004 s avg) General routines calbec : 0.12s CPU ( 30 calls, 0.004 s avg) cft3 : 12.69s CPU ( 89 calls, 0.143 s avg) cft3s : 59.49s CPU ( 814 calls, 0.073 s avg) davcio : 0.00s CPU ( 6 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.68s CPU ( 2 calls, 0.339 s avg) vexx : 51.51s CPU ( 10 calls, 5.151 s avg) exxen2 : 14.88s CPU ( 4 calls, 3.720 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/o2.pbe0.1nlcc.out-800000644000700200004540000003074112053145630023767 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 7:17 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! Warning: card &IONS ignored Warning: card / ignored gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 12.00 (up: 7.00, down: 5.00) number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file OPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0547706 0.0547706 0.0547706 ) 2 O tau( 2) = ( -0.0547706 -0.0547706 -0.0547706 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000243 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000323 Check: negative starting charge=(component2): -0.000215 starting charge 12.00000, renormalised to 12.00000 negative rho (up, down): 0.323E-03 0.215E-03 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 6.05 secs per-process dynamical memory: 57.8 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 1.0 negative rho (up, down): 0.531E-04 0.376E-04 total cpu time spent up to now is 16.24 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.6923 -20.7800 -14.1740 -13.2354 -13.2354 -6.4847 -6.4847 1.4050 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -30.5093 -18.7553 -12.1687 -11.3460 -11.3460 -4.5458 -4.5458 1.7194 ! total energy = -67.95761579 Ry Harris-Foulkes estimate = -67.95564302 Ry estimated scf accuracy < 0.05515757 Ry The total energy is the sum of the following terms: one-electron contribution = -99.69976452 Ry hartree contribution = 51.93688919 Ry xc contribution = -18.29642990 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.08896017 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 2.0 negative rho (up, down): 0.377E-05 0.261E-05 total cpu time spent up to now is 22.60 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.7925 -19.9482 -13.1441 -13.0673 -13.0673 -6.1698 -6.1698 1.5074 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -31.2298 -18.0271 -11.8130 -11.1681 -11.1681 -3.9691 -3.9691 1.7669 ! total energy = -67.96920055 Ry Harris-Foulkes estimate = -67.96571078 Ry estimated scf accuracy < 0.00295181 Ry The total energy is the sum of the following terms: one-electron contribution = -99.59380876 Ry hartree contribution = 51.91022629 Ry xc contribution = -18.29021966 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00812770 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 2.5 total cpu time spent up to now is 28.65 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.6780 -19.9907 -13.0963 -13.0870 -13.0870 -6.2605 -6.2605 1.5082 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.3259 -18.1041 -12.0179 -11.1594 -11.1594 -3.9294 -3.9294 1.7559 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -6.28605820299078 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 4.5 total cpu time spent up to now is 114.70 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -36.2914 -23.2287 -15.4647 -15.4647 -15.0110 -8.2824 -8.2824 2.2947 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -34.5766 -20.5039 -13.8420 -12.4452 -12.4452 -2.3042 -2.3042 2.4814 ! total energy = -66.79014034 Ry Harris-Foulkes estimate = -66.79067319 Ry estimated scf accuracy < 0.00104269 Ry The total energy is the sum of the following terms: one-electron contribution = -105.84201632 Ry hartree contribution = 51.87926468 Ry xc contribution = -13.95660085 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 6.28636320 Ry + Fock energy = -3.14302910 Ry scf correction = -0.02654622 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.69E-06, avg # of iterations = 2.0 total cpu time spent up to now is 169.19 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -36.3893 -23.3263 -15.5545 -15.5545 -15.1035 -8.3980 -8.3980 2.2941 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -34.6658 -20.5798 -13.9334 -12.5072 -12.5072 -2.3725 -2.3725 2.4755 -6.28605820299078 -6.29307063243081 -6.30095667530085 dexx = 0.00043681 Ry ! total energy = -66.79071575 Ry Harris-Foulkes estimate = -66.79076102 Ry estimated scf accuracy < 0.00009238 Ry The total energy is the sum of the following terms: one-electron contribution = -105.96536018 Ry hartree contribution = 51.99070924 Ry xc contribution = -13.97138637 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 6.29307063 Ry + Fock energy = -3.15047834 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01813690 -0.01813690 -0.01813690 atom 2 type 1 force = 0.01813690 0.01813690 0.01813690 Total force = 0.044426 Total SCF correction = 0.016654 Writing output data file o2.save Writing output data file o2.save PWSCF : 3m 2.32s CPU time, 3m 6.52s wall time init_run : 5.98s CPU electrons : 171.73s CPU forces : 3.35s CPU Called by init_run: wfcinit : 0.99s CPU potinit : 3.61s CPU Called by electrons: c_bands : 114.55s CPU ( 6 calls, 19.092 s avg) sum_band : 5.19s CPU ( 6 calls, 0.864 s avg) v_of_rho : 19.78s CPU ( 7 calls, 2.826 s avg) mix_rho : 0.88s CPU ( 6 calls, 0.147 s avg) Called by c_bands: init_us_2 : 0.37s CPU ( 28 calls, 0.013 s avg) regterg : 114.09s CPU ( 12 calls, 9.508 s avg) Called by *egterg: h_psi : 113.98s CPU ( 48 calls, 2.375 s avg) g_psi : 0.22s CPU ( 34 calls, 0.006 s avg) rdiaghg : 0.02s CPU ( 42 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.17s CPU ( 48 calls, 0.004 s avg) General routines calbec : 0.23s CPU ( 56 calls, 0.004 s avg) cft3 : 12.88s CPU ( 146 calls, 0.088 s avg) cft3s : 112.33s CPU ( 1582 calls, 0.071 s avg) davcio : 0.00s CPU ( 52 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 1.15s CPU ( 2 calls, 0.574 s avg) vexx : 98.60s CPU ( 17 calls, 5.800 s avg) exxen2 : 32.32s CPU ( 4 calls, 8.081 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/n.pbe0.1nlcc.out-800000644000700200004540000005143112053145630023703 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 1:23 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 Message from routine setup: the system is metallic, specify occupations warning: symmetry operation # 2 not allowed. fractional translation: -0.0314954 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 3 not allowed. fractional translation: -0.0314954 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0157477 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: -0.0472432 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 7 not allowed. fractional translation: 0.0157477 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 8 not allowed. fractional translation: -0.0472432 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 11 not allowed. fractional translation: 0.0314954 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 12 not allowed. fractional translation: -0.0629909 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 13 not allowed. fractional translation: -0.0314954 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 14 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 17 not allowed. fractional translation: 0.0157477 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 18 not allowed. fractional translation: -0.0472432 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 19 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 20 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 21 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 22 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 23 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0157477 in crystal coordinates warning: symmetry operation # 24 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 25 not allowed. fractional translation: -0.0314954 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 26 not allowed. fractional translation: 0.0000000 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 27 not allowed. fractional translation: 0.0000000 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 28 not allowed. fractional translation: -0.0314954 0.0000000 0.0000000 in crystal coordinates warning: symmetry operation # 29 not allowed. fractional translation: -0.0472432 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 30 not allowed. fractional translation: 0.0157477 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 31 not allowed. fractional translation: -0.0472432 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 32 not allowed. fractional translation: 0.0157477 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 33 not allowed. fractional translation: -0.0629909 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 34 not allowed. fractional translation: 0.0314954 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 35 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 36 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 37 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 38 not allowed. fractional translation: 0.0000000 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 39 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 40 not allowed. fractional translation: -0.0314954 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 41 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 42 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 43 not allowed. fractional translation: -0.0472432 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 44 not allowed. fractional translation: 0.0157477 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 45 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 46 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 47 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 48 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0157477 in crystal coordinates EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-05 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file NPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization N 0.200 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000076 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.308E-04 0.206E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 5.24 secs per-process dynamical memory: 54.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.242E-05 0.587E-05 total cpu time spent up to now is 10.01 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -18.8118 -7.2739 -7.2728 -7.2723 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -17.2469 -5.8689 -5.8676 -5.8659 ! total energy = -21.04676070 Ry Harris-Foulkes estimate = -20.95213962 Ry estimated scf accuracy < 0.05041183 Ry The total energy is the sum of the following terms: one-electron contribution = -19.37942366 Ry hartree contribution = 10.59558397 Ry xc contribution = -6.29470170 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.05718288 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.134E-08 0.381E-06 total cpu time spent up to now is 14.71 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.5389 -7.9707 -7.9692 -7.9678 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -15.8722 -4.6197 -4.6166 -4.6135 ! total energy = -21.05948994 Ry Harris-Foulkes estimate = -21.04869415 Ry estimated scf accuracy < 0.00717570 Ry The total energy is the sum of the following terms: one-electron contribution = -19.49061307 Ry hartree contribution = 10.78764836 Ry xc contribution = -6.44411370 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00137511 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-04, avg # of iterations = 1.5 negative rho (up, down): 0.316E-09 0.442E-07 total cpu time spent up to now is 19.76 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.4238 -7.8573 -7.8558 -7.8544 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -14.7066 -3.5974 -3.5945 -3.5908 ! total energy = -21.05997336 Ry Harris-Foulkes estimate = -21.06008118 Ry estimated scf accuracy < 0.00017041 Ry The total energy is the sum of the following terms: one-electron contribution = -19.44501930 Ry hartree contribution = 10.74974305 Ry xc contribution = -6.43185951 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.02180118 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 24.66 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -19.5158 -7.9454 -7.9440 -7.9425 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -14.8107 -3.6930 -3.6899 -3.6864 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.26080342112995 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 3.5 total cpu time spent up to now is 56.68 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -22.7510 -9.8645 -9.8631 -9.8618 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -16.4288 -2.0185 -2.0171 -2.0146 ! total energy = -20.66306421 Ry Harris-Foulkes estimate = -20.66311698 Ry estimated scf accuracy < 0.00014449 Ry The total energy is the sum of the following terms: one-electron contribution = -21.73986896 Ry hartree contribution = 10.75697182 Ry xc contribution = -4.90296830 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 2.26283925 Ry + Fock energy = -1.13040171 Ry scf correction = 0.00343594 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-06, avg # of iterations = 1.0 total cpu time spent up to now is 71.86 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.7332 -9.8490 -9.8475 -9.8462 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.4036 -1.9973 -1.9959 -1.9936 -2.26080342112995 -2.26333278222075 -2.26603983094666 dexx = 0.00008884 Ry ! total energy = -20.66315135 Ry Harris-Foulkes estimate = -20.66315684 Ry estimated scf accuracy < 0.00000976 Ry The total energy is the sum of the following terms: one-electron contribution = -21.74507778 Ry hartree contribution = 10.76736313 Ry xc contribution = -4.90471315 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 2.26333278 Ry + Fock energy = -1.13301992 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 103.01 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.7264 -9.8319 -9.8305 -9.8292 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.3713 -1.9739 -1.9727 -1.9702 -2.26603983094666 -2.26636255282187 -2.26668674630826 dexx = 0.00000074 Ry ! total energy = -20.66315677 Ry Harris-Foulkes estimate = -20.66315908 Ry estimated scf accuracy < 0.00000061 Ry The total energy is the sum of the following terms: one-electron contribution = -21.75026089 Ry hartree contribution = 10.77041299 Ry xc contribution = -4.90529163 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 2.26636255 Ry + Fock energy = -1.13334337 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000068 Writing output data file o2.save Writing output data file o2.save PWSCF : 1m49.90s CPU time, 1m52.79s wall time init_run : 5.17s CPU electrons : 100.18s CPU forces : 3.30s CPU Called by init_run: wfcinit : 0.50s CPU potinit : 3.35s CPU Called by electrons: c_bands : 58.48s CPU ( 8 calls, 7.310 s avg) sum_band : 3.61s CPU ( 8 calls, 0.451 s avg) v_of_rho : 25.15s CPU ( 9 calls, 2.794 s avg) mix_rho : 1.19s CPU ( 8 calls, 0.148 s avg) Called by c_bands: init_us_2 : 0.43s CPU ( 36 calls, 0.012 s avg) regterg : 58.09s CPU ( 16 calls, 3.630 s avg) Called by *egterg: h_psi : 58.06s CPU ( 44 calls, 1.319 s avg) g_psi : 0.14s CPU ( 26 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 36 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.05s CPU ( 44 calls, 0.001 s avg) General routines calbec : 0.10s CPU ( 52 calls, 0.002 s avg) cft3 : 15.71s CPU ( 182 calls, 0.086 s avg) cft3s : 58.12s CPU ( 778 calls, 0.075 s avg) davcio : 0.00s CPU ( 70 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.97s CPU ( 3 calls, 0.324 s avg) vexx : 47.90s CPU ( 23 calls, 2.083 s avg) exxen2 : 12.58s CPU ( 6 calls, 2.096 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/si.PBE0_nq=2.out0000644000700200004540000004247312053145630023360 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:43:40 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 2 2 2 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.30 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.84 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.05 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.28 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.53 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.618038723237103 0.618038723237103 EXX divergence ( 2)= -102.2162 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.16226177528856 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.6 total cpu time spent up to now is 28.10 secs total energy = -15.84983983 Ry Harris-Foulkes estimate = -15.84984398 Ry estimated scf accuracy < 0.00004275 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-07, avg # of iterations = 1.0 total cpu time spent up to now is 41.10 secs total energy = -15.84984168 Ry Harris-Foulkes estimate = -15.84984126 Ry estimated scf accuracy < 0.00000258 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-08, avg # of iterations = 1.0 total cpu time spent up to now is 54.24 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5247 3.6818 4.9737 4.9737 9.8743 10.2174 10.2174 12.2739 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9638 2.0462 3.8721 4.0587 9.3554 11.0817 11.7980 12.1340 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8533 0.2794 2.5315 2.9259 8.5269 10.1605 13.4039 13.6743 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1525 -1.9031 1.6836 2.4133 8.0560 9.1634 15.7653 15.8550 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4278 0.5495 2.8880 4.4926 10.0626 10.9232 11.1647 13.7005 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3374 -0.8259 1.8533 3.2792 10.1154 10.8515 12.3471 13.3507 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8890 -2.1012 1.0925 2.1744 9.6016 11.5459 12.6304 14.8896 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4656 -1.7729 1.1755 3.2834 9.0802 12.8332 12.8490 14.3963 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9451 -0.8634 4.1239 4.1239 9.0151 10.7545 10.7545 15.2873 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0445 -1.8762 2.9355 3.5936 9.4717 10.8507 11.4360 14.7823 highest occupied, lowest unoccupied level (ev): 4.9737 8.0560 -2.16226177528856 -2.16309702058491 -2.16412653454740 dexx = 0.00009713 Ry ! total energy = -15.84993889 Ry Harris-Foulkes estimate = -15.84993888 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65385866 Ry hartree contribution = 1.09371982 Ry xc contribution = -3.77879255 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16309702 Ry + Fock energy = -1.08206327 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-08, avg # of iterations = 3.0 total cpu time spent up to now is 75.45 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5228 3.6776 4.9568 4.9568 9.8881 10.2256 10.2256 12.2801 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9610 2.0475 3.8629 4.0540 9.3635 11.0888 11.8003 12.1363 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8514 0.2818 2.5305 2.9186 8.5346 10.1636 13.4059 13.6729 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1538 -1.9044 1.6829 2.4051 8.0652 9.1660 15.7640 15.8567 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4251 0.5510 2.8849 4.4819 10.0744 10.9273 11.1685 13.7036 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3349 -0.8255 1.8534 3.2751 10.1189 10.8543 12.3477 13.3510 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8871 -2.1007 1.0934 2.1719 9.6042 11.5454 12.6314 14.8913 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4639 -1.7729 1.1768 3.2752 9.0896 12.8342 12.8496 14.3985 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9449 -0.8619 4.1097 4.1097 9.0282 10.7632 10.7632 15.2934 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0444 -1.8774 2.9335 3.5825 9.4809 10.8540 11.4381 14.7829 highest occupied, lowest unoccupied level (ev): 4.9568 8.0652 -2.16412653454740 -2.16436868627491 -2.16461491529831 dexx = 0.00000204 Ry ! total energy = -15.84995327 Ry Harris-Foulkes estimate = -15.84995344 Ry estimated scf accuracy < 0.00000066 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65256562 Ry hartree contribution = 1.09408965 Ry xc contribution = -3.77891120 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16436869 Ry + Fock energy = -1.08230746 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-08, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-10, avg # of iterations = 2.4 total cpu time spent up to now is 104.19 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5223 3.6776 4.9549 4.9549 9.8898 10.2271 10.2271 12.2808 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9604 2.0482 3.8622 4.0539 9.3646 11.0899 11.8009 12.1367 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8507 0.2823 2.5308 2.9181 8.5355 10.1639 13.4065 13.6730 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1535 -1.9046 1.6832 2.4043 8.0663 9.1663 15.7643 15.8571 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4244 0.5515 2.8848 4.4809 10.0761 10.9280 11.1692 13.7041 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3340 -0.8252 1.8538 3.2750 10.1194 10.8547 12.3478 13.3512 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8864 -2.1003 1.0937 2.1718 9.6045 11.5454 12.6315 14.8916 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4634 -1.7726 1.1773 3.2746 9.0907 12.8345 12.8499 14.3990 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9446 -0.8615 4.1081 4.1081 9.0297 10.7649 10.7649 15.2938 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0440 -1.8775 2.9338 3.5814 9.4820 10.8545 11.4387 14.7831 highest occupied, lowest unoccupied level (ev): 4.9549 8.0663 -2.16461491529831 -2.16465096802675 -2.16468715554926 dexx = 0.00000007 Ry ! total energy = -15.84995366 Ry Harris-Foulkes estimate = -15.84995367 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65225706 Ry hartree contribution = 1.09417953 Ry xc contribution = -3.77893906 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16465097 Ry + Fock energy = -1.08234358 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save PWSCF : 1m48.70s CPU time, 1m50.15s wall time init_run : 0.22s CPU electrons : 108.03s CPU Called by init_run: wfcinit : 0.12s CPU potinit : 0.01s CPU Called by electrons: c_bands : 70.62s CPU ( 11 calls, 6.420 s avg) sum_band : 0.66s CPU ( 11 calls, 0.060 s avg) v_of_rho : 0.13s CPU ( 11 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 11 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 230 calls, 0.000 s avg) cegterg : 70.58s CPU ( 110 calls, 0.642 s avg) Called by *egterg: h_psi : 70.35s CPU ( 346 calls, 0.203 s avg) g_psi : 0.03s CPU ( 226 calls, 0.000 s avg) cdiaghg : 0.20s CPU ( 286 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 346 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 346 calls, 0.000 s avg) cft3 : 0.07s CPU ( 107 calls, 0.001 s avg) cft3s : 70.90s CPU ( 111372 calls, 0.001 s avg) davcio : 0.00s CPU ( 470 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.48s CPU ( 4 calls, 0.120 s avg) vexx : 68.61s CPU ( 187 calls, 0.367 s avg) exxen2 : 36.13s CPU ( 9 calls, 4.015 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/summarize0000644000700200004540000000116412053145630022601 0ustar marsamoscmgrep -e ! n.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > N grep -e ! n2.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > N2 paste N2 N | awk '{be= ($1-$2*2.0) * 13.6058 * 23.06; print "N2 : ",be}' grep -e ! o.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > O grep -e ! o2.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > O2 paste O2 O | awk '{be= ($1-$2*2.0) * 13.6058 * 23.06 ; print "O2 : ",be}' grep -e ! c.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > C grep -e ! co.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > CO paste CO O C | awk '{be= ($1-$2-$3) * 13.6058 * 23.06; print "CO : ",be}' rm C N O CO O2 N2 espresso-5.0.2/PW/examples/EXX_example/reference/n2.pbe0.1nlcc.out-800000644000700200004540000003227712053145630023774 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 3:16 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! Warning: card &IONS ignored Warning: card / ignored gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file NPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0499045 0.0499045 0.0499045 ) 2 N tau( 2) = ( -0.0499045 -0.0499045 -0.0499045 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000107 0.000000 Initial potential from superposition of free atoms starting charge 9.99999, renormalised to 10.00000 negative rho (up, down): 0.346E-04 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 3.86 secs per-process dynamical memory: 42.2 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.579E-05 0.000E+00 total cpu time spent up to now is 7.97 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.5765 -14.4414 -12.6941 -12.6941 -11.6513 -2.8011 -2.8011 -1.2775 highest occupied, lowest unoccupied level (ev): -11.6513 -2.8011 ! total energy = -42.85094312 Ry Harris-Foulkes estimate = -42.94419743 Ry estimated scf accuracy < 0.15199183 Ry The total energy is the sum of the following terms: one-electron contribution = -64.27888378 Ry hartree contribution = 33.27455809 Ry xc contribution = -13.26143847 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.70347313 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-03, avg # of iterations = 2.0 negative rho (up, down): 0.157E-07 0.000E+00 total cpu time spent up to now is 11.48 secs k = 0.0000 0.0000 0.0000 band energies (ev): -26.9305 -12.3032 -10.3375 -10.3375 -9.1226 -1.2142 -0.8475 -0.8475 highest occupied, lowest unoccupied level (ev): -9.1226 -1.2142 ! total energy = -42.87826488 Ry Harris-Foulkes estimate = -42.88493920 Ry estimated scf accuracy < 0.01133639 Ry The total energy is the sum of the following terms: one-electron contribution = -62.89713942 Ry hartree contribution = 32.74381068 Ry xc contribution = -13.15436946 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.28191460 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.0 total cpu time spent up to now is 14.96 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.8059 -12.8597 -11.0319 -11.0319 -9.6969 -1.4074 -1.4074 -1.2306 highest occupied, lowest unoccupied level (ev): -9.6969 -1.4074 ! total energy = -42.88040140 Ry Harris-Foulkes estimate = -42.88064219 Ry estimated scf accuracy < 0.00051284 Ry The total energy is the sum of the following terms: one-electron contribution = -63.29401226 Ry hartree contribution = 32.82355631 Ry xc contribution = -13.16911475 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.04782139 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 2.0 total cpu time spent up to now is 18.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6571 -12.7775 -10.9499 -10.9499 -9.5902 -1.3431 -1.3431 -1.2269 highest occupied, lowest unoccupied level (ev): -9.5902 -1.3431 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -4.46351452937178 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 5.0 total cpu time spent up to now is 61.50 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.8728 -14.8865 -12.4152 -12.4152 -11.3908 -0.6106 0.0258 0.0258 highest occupied, lowest unoccupied level (ev): -11.3908 -0.6106 ! total energy = -42.03042318 Ry Harris-Foulkes estimate = -42.03099798 Ry estimated scf accuracy < 0.00092756 Ry The total energy is the sum of the following terms: one-electron contribution = -67.62107980 Ry hartree contribution = 32.73549986 Ry xc contribution = -10.06237382 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 4.46147466 Ry + Fock energy = -2.23175726 Ry scf correction = -0.02557460 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.28E-06, avg # of iterations = 2.0 total cpu time spent up to now is 84.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.9830 -14.9963 -12.5088 -12.5088 -11.5064 -0.6126 -0.0585 -0.0585 highest occupied, lowest unoccupied level (ev): -11.5064 -0.6126 -4.46351452937178 -4.46614618966420 -4.46928987040768 dexx = 0.00025601 Ry ! total energy = -42.03079797 Ry Harris-Foulkes estimate = -42.03083699 Ry estimated scf accuracy < 0.00005409 Ry The total energy is the sum of the following terms: one-electron contribution = -67.70672931 Ry hartree contribution = 32.80421297 Ry xc contribution = -10.07113080 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 4.46614619 Ry + Fock energy = -2.23464494 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.28E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.65E-07, avg # of iterations = 2.0 total cpu time spent up to now is 126.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.8796 -14.9262 -12.4200 -12.4200 -11.4361 -0.6111 0.0158 0.0158 highest occupied, lowest unoccupied level (ev): -11.4361 -0.6111 -4.46928987040768 -4.46760219969705 -4.46592675302079 dexx = 0.00000611 Ry ! total energy = -42.03082602 Ry Harris-Foulkes estimate = -42.03084966 Ry estimated scf accuracy < 0.00002944 Ry The total energy is the sum of the following terms: one-electron contribution = -67.67258250 Ry hartree contribution = 32.75991035 Ry xc contribution = -10.06414060 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 4.46760220 Ry + Fock energy = -2.23296338 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01952757 -0.01952757 -0.01952757 atom 2 type 1 force = 0.01952757 0.01952757 0.01952757 Total force = 0.047833 Total SCF correction = 0.009935 Writing output data file o2.save Writing output data file o2.save PWSCF : 2m13.02s CPU time, 2m15.38s wall time init_run : 3.79s CPU electrons : 126.49s CPU forces : 1.98s CPU Called by init_run: wfcinit : 0.49s CPU potinit : 1.95s CPU Called by electrons: c_bands : 87.11s CPU ( 8 calls, 10.888 s avg) sum_band : 3.51s CPU ( 8 calls, 0.439 s avg) v_of_rho : 13.37s CPU ( 9 calls, 1.485 s avg) mix_rho : 0.62s CPU ( 8 calls, 0.077 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 17 calls, 0.014 s avg) regterg : 86.79s CPU ( 8 calls, 10.849 s avg) Called by *egterg: h_psi : 86.48s CPU ( 31 calls, 2.790 s avg) g_psi : 0.16s CPU ( 22 calls, 0.007 s avg) rdiaghg : 0.01s CPU ( 27 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 31 calls, 0.004 s avg) General routines calbec : 0.16s CPU ( 35 calls, 0.005 s avg) cft3 : 8.68s CPU ( 98 calls, 0.089 s avg) cft3s : 83.34s CPU ( 1174 calls, 0.071 s avg) davcio : 0.00s CPU ( 7 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.97s CPU ( 3 calls, 0.323 s avg) vexx : 75.72s CPU ( 14 calls, 5.408 s avg) exxen2 : 21.97s CPU ( 6 calls, 3.661 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/si.hse_nq=1.out0000644000700200004540000004415712053145630023451 0ustar marsamoscm Program PWSCF v.4.2CVS starts on 2Feb2010 at 15: 0:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO !!! EXPERIMENTAL VERSION WITH EXACT EXCHANGE !!! Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... !!! XC functional enforced from input : Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX : grid check successful EXX : q->0 dealt with gygi-baldereschi trick EXX : exx div treatment check successful bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.17 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.36 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.43 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.51 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.60 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.500609377992713 0.618038723237103 EXX divergence ( 1)= -140.8010 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.80209891650385 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.9 total cpu time spent up to now is 2.13 secs total energy = -15.89907915 Ry Harris-Foulkes estimate = -15.89909173 Ry estimated scf accuracy < 0.00006898 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.62E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.88 secs total energy = -15.89908465 Ry Harris-Foulkes estimate = -15.89908361 Ry estimated scf accuracy < 0.00000256 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-08, avg # of iterations = 1.2 total cpu time spent up to now is 3.63 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7363 3.6169 4.8526 4.8526 9.8240 10.1951 10.1951 12.1840 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1638 2.0021 3.8571 3.9095 9.3044 10.9827 11.7255 11.9681 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0722 0.2657 2.4787 2.9371 8.4764 9.9978 13.2835 13.5255 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5341 -1.6610 1.7126 2.4459 7.9942 9.0239 15.5037 15.6627 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6368 0.5670 2.8867 4.3174 9.9975 10.8451 11.0751 13.5407 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6159 -0.6445 1.8636 3.2248 10.0182 10.7318 12.1614 13.2105 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3167 -1.7237 1.1050 2.2101 9.4812 11.3693 12.4550 14.6312 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8731 -1.4686 1.1773 3.2508 9.0106 12.6460 12.7211 14.1269 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1857 -0.8091 4.0439 4.0439 8.9846 10.6570 10.6570 15.0673 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4070 -1.6090 2.9091 3.5747 9.4317 10.7385 11.2918 14.5384 highest occupied, lowest unoccupied level (ev): 4.8526 7.9942 -1.80209891650385 -1.80194113286449 -1.80195279231423 dexx = 0.00008472 Ry ! total energy = -15.89916955 Ry Harris-Foulkes estimate = -15.89916950 Ry estimated scf accuracy < 0.00000011 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01798631 Ry hartree contribution = 1.08772172 Ry xc contribution = -4.00608375 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80194113 Ry + Fock energy = -0.90097640 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-08, avg # of iterations = 3.0 total cpu time spent up to now is 4.76 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7403 3.6138 4.8341 4.8341 9.8345 10.1998 10.1998 12.1875 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1646 2.0032 3.8484 3.9027 9.3102 10.9859 11.7256 11.9715 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0709 0.2689 2.4767 2.9324 8.4814 9.9993 13.2849 13.5247 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5316 -1.6576 1.7125 2.4425 7.9983 9.0247 15.5023 15.6652 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6367 0.5705 2.8849 4.3066 10.0047 10.8473 11.0789 13.5426 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6136 -0.6394 1.8638 3.2221 10.0209 10.7337 12.1614 13.2118 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3118 -1.7175 1.1060 2.2102 9.4821 11.3688 12.4557 14.6316 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8706 -1.4633 1.1785 3.2461 9.0157 12.6447 12.7244 14.1275 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1868 -0.8090 4.0335 4.0335 8.9949 10.6624 10.6624 15.0713 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4060 -1.6061 2.9083 3.5682 9.4384 10.7411 11.2927 14.5386 highest occupied, lowest unoccupied level (ev): 4.8341 7.9983 -1.80195279231423 -1.80191835602807 -1.80188733108243 dexx = 0.00000171 Ry ! total energy = -15.89918166 Ry Harris-Foulkes estimate = -15.89918179 Ry estimated scf accuracy < 0.00000059 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01898610 Ry hartree contribution = 1.08619083 Ry xc contribution = -4.00557470 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80191836 Ry + Fock energy = -0.90094367 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-08, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.30E-10, avg # of iterations = 1.9 total cpu time spent up to now is 6.41 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7435 3.6113 4.8280 4.8280 9.8337 10.1986 10.1986 12.1844 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1672 2.0010 3.8444 3.8990 9.3090 10.9841 11.7233 11.9706 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0731 0.2667 2.4744 2.9294 8.4802 9.9980 13.2827 13.5225 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5337 -1.6597 1.7107 2.4400 7.9972 9.0231 15.5000 15.6631 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6391 0.5688 2.8824 4.3025 10.0032 10.8459 11.0774 13.5407 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6157 -0.6410 1.8618 3.2194 10.0194 10.7320 12.1596 13.2099 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3136 -1.7190 1.1044 2.2083 9.4805 11.3669 12.4537 14.6295 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8729 -1.4647 1.1768 3.2432 9.0145 12.6428 12.7225 14.1256 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1896 -0.8110 4.0295 4.0295 8.9935 10.6615 10.6615 15.0705 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4085 -1.6076 2.9059 3.5648 9.4371 10.7394 11.2912 14.5369 highest occupied, lowest unoccupied level (ev): 4.8280 7.9972 -1.80188733108243 -1.80191817524663 -1.80194919695405 dexx = 0.00000009 Ry ! total energy = -15.89918213 Ry Harris-Foulkes estimate = -15.89918214 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01887901 Ry hartree contribution = 1.08636650 Ry xc contribution = -4.00561264 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80191818 Ry + Fock energy = -0.90097460 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save init_run : 0.09s CPU electrons : 6.40s CPU Called by init_run: wfcinit : 0.02s CPU potinit : 0.01s CPU Called by electrons: c_bands : 4.70s CPU ( 11 calls, 0.427 s avg) sum_band : 0.13s CPU ( 11 calls, 0.012 s avg) v_of_rho : 0.13s CPU ( 11 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 11 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 230 calls, 0.000 s avg) cegterg : 4.67s CPU ( 110 calls, 0.042 s avg) Called by *egterg: h_psi : 4.44s CPU ( 346 calls, 0.013 s avg) g_psi : 0.02s CPU ( 226 calls, 0.000 s avg) cdiaghg : 0.12s CPU ( 286 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 346 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 346 calls, 0.000 s avg) cft3 : 0.02s CPU ( 118 calls, 0.000 s avg) cft3s : 2.70s CPU ( 21712 calls, 0.000 s avg) davcio : 0.00s CPU ( 470 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.06s CPU ( 4 calls, 0.016 s avg) vexx : 3.91s CPU ( 187 calls, 0.021 s avg) exxen2 : 1.37s CPU ( 9 calls, 0.153 s avg) PWSCF : 6.78s CPU time, 8.88s wall time This run was terminated on: 15: 0:55 2Feb2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/o2.hse.1nlcc.out-800000644000700200004540000003335012053145630023717 0ustar marsamoscm Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:57:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin Warning: card &IONS ignored Warning: card / ignored IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 12.00 (up: 7.00, down: 5.00) number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0547706 0.0547706 0.0547706 ) 2 O tau( 2) = ( -0.0547706 -0.0547706 -0.0547706 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000243 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000323 Check: negative starting charge=(component2): -0.000215 starting charge 12.00000, renormalised to 12.00000 negative rho (up, down): 0.323E-03 0.215E-03 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 85.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 1.0 negative rho (up, down): 0.531E-04 0.376E-04 total cpu time spent up to now is 4.1 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.6923 -20.7800 -14.1740 -13.2354 -13.2354 -6.4847 -6.4847 1.4050 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -30.5093 -18.7553 -12.1687 -11.3460 -11.3460 -4.5458 -4.5458 1.7194 ! total energy = -67.95761579 Ry Harris-Foulkes estimate = -67.95564302 Ry estimated scf accuracy < 0.05515757 Ry The total energy is the sum of the following terms: one-electron contribution = -99.69976452 Ry hartree contribution = 51.93688919 Ry xc contribution = -18.29642990 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.08896017 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 2.0 negative rho (up, down): 0.377E-05 0.261E-05 total cpu time spent up to now is 5.8 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.7925 -19.9482 -13.1441 -13.0673 -13.0673 -6.1698 -6.1698 1.5074 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -31.2298 -18.0271 -11.8130 -11.1681 -11.1681 -3.9691 -3.9691 1.7669 ! total energy = -67.96920055 Ry Harris-Foulkes estimate = -67.96571078 Ry estimated scf accuracy < 0.00295181 Ry The total energy is the sum of the following terms: one-electron contribution = -99.59380876 Ry hartree contribution = 51.91022629 Ry xc contribution = -18.29021966 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00812770 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 2.5 total cpu time spent up to now is 7.4 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.6780 -19.9907 -13.0963 -13.0870 -13.0870 -6.2605 -6.2605 1.5082 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.3259 -18.1041 -12.0179 -11.1594 -11.1594 -3.9294 -3.9294 1.7559 EXX: now go back to refine exchange calculation -5.5706268677380280 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 4.5 total cpu time spent up to now is 23.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -35.8987 -22.8317 -15.0702 -15.0702 -14.6190 -7.8903 -7.8903 1.8611 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -34.1754 -20.0983 -13.4413 -12.0378 -12.0378 -2.7073 -2.7073 2.0600 ! total energy = -66.83484483 Ry Harris-Foulkes estimate = -66.83531484 Ry estimated scf accuracy < 0.00104511 Ry The total energy is the sum of the following terms: one-electron contribution = -105.13019037 Ry hartree contribution = 51.88226268 Ry xc contribution = -14.35947289 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 5.57136975 Ry + Fock energy = -2.78531343 Ry scf correction = -0.02548695 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.71E-06, avg # of iterations = 2.0 total cpu time spent up to now is 34.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -35.9926 -22.9264 -15.1575 -15.1575 -14.7079 -8.0036 -8.0036 1.8614 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -34.2595 -20.1700 -13.5288 -12.0956 -12.0956 -2.7715 -2.7715 2.0524 -5.5706268677380280 -5.5782211504891297 -5.5865504388903133 est. exchange err (dexx) = 0.00036750 Ry ! total energy = -66.83539269 Ry Harris-Foulkes estimate = -66.83539822 Ry estimated scf accuracy < 0.00009929 Ry The total energy is the sum of the following terms: one-electron contribution = -105.25562077 Ry hartree contribution = 51.99750502 Ry xc contribution = -14.37495214 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 5.57822115 Ry + Fock energy = -2.79327522 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01745547 -0.01745547 -0.01745547 atom 2 type 1 force = 0.01745547 0.01745547 0.01745547 Total force = 0.042757 Total SCF correction = 0.017054 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file o2.save init_run : 1.48s CPU 1.53s WALL ( 1 calls) electrons : 33.40s CPU 34.02s WALL ( 1 calls) forces : 1.68s CPU 1.69s WALL ( 1 calls) Called by init_run: wfcinit : 0.20s CPU 0.20s WALL ( 1 calls) potinit : 0.99s CPU 1.02s WALL ( 1 calls) Called by electrons: c_bands : 18.95s CPU 19.09s WALL ( 6 calls) sum_band : 0.89s CPU 0.89s WALL ( 6 calls) v_of_rho : 8.18s CPU 8.25s WALL ( 7 calls) mix_rho : 0.13s CPU 0.15s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.09s CPU 0.09s WALL ( 28 calls) regterg : 18.85s CPU 18.97s WALL ( 12 calls) Called by *egterg: h_psi : 18.64s CPU 18.77s WALL ( 48 calls) g_psi : 0.02s CPU 0.02s WALL ( 34 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 42 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.10s WALL ( 48 calls) General routines calbec : 0.13s CPU 0.13s WALL ( 56 calls) fft : 1.89s CPU 1.90s WALL ( 158 calls) ffts : 11.43s CPU 11.45s WALL ( 952 calls) fftw : 5.69s CPU 5.71s WALL ( 630 calls) davcio : 0.00s CPU 0.03s WALL ( 52 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.29s CPU 0.31s WALL ( 2 calls) vexx : 15.47s CPU 15.59s WALL ( 17 calls) exxen2 : 5.73s CPU 5.74s WALL ( 4 calls) PWSCF : 36.65s CPU 37.52s WALL This run was terminated on: 17:57:55 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/o.hse.1nlcc.out-800000644000700200004540000003007312053145630023634 0ustar marsamoscm Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:55:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 (up: 4.00, down: 2.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000329 Check: negative starting charge=(component2): -0.000219 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.329E-03 0.219E-03 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 1.4 secs per-process dynamical memory: 83.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.532E-04 0.426E-04 total cpu time spent up to now is 2.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.3441 -9.3514 -9.3512 -9.3499 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -22.3562 -7.5362 -7.5323 -7.5290 ! total energy = -33.74873854 Ry Harris-Foulkes estimate = -33.71144360 Ry estimated scf accuracy < 0.08079053 Ry The total energy is the sum of the following terms: one-electron contribution = -35.08684301 Ry hartree contribution = 18.83758725 Ry xc contribution = -8.92021244 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.06737790 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E-06 0.417E-06 total cpu time spent up to now is 4.3 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.9929 -10.4693 -10.4690 -9.0028 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -21.9270 -7.5043 -6.9550 -6.9482 ! total energy = -33.76095363 Ry Harris-Foulkes estimate = -33.75290383 Ry estimated scf accuracy < 0.00711496 Ry The total energy is the sum of the following terms: one-electron contribution = -35.20872408 Ry hartree contribution = 18.96970121 Ry xc contribution = -9.01197336 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.00193504 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 total cpu time spent up to now is 5.5 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -24.9314 -10.6042 -10.6037 -8.5501 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -21.2771 -7.2153 -6.2178 -6.2098 EXX: now go back to refine exchange calculation -2.8021320627752750 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.60E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.2 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.4113 -12.6356 -12.6350 -10.4066 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -23.3589 -8.8895 -4.6379 -4.6324 -2.8021320627752750 -2.8123811852723186 -2.8229343137898226 est. exchange err (dexx) = 0.00015200 Ry ! total energy = -33.22330351 Ry Harris-Foulkes estimate = -33.22346150 Ry estimated scf accuracy < 0.00038453 Ry The total energy is the sum of the following terms: one-electron contribution = -38.06993583 Ry hartree contribution = 19.04408357 Ry xc contribution = -7.08647284 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 2.81238119 Ry + Fock energy = -1.41146716 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000358 Writing output data file o.save init_run : 1.36s CPU 1.40s WALL ( 1 calls) electrons : 11.81s CPU 12.29s WALL ( 1 calls) forces : 1.58s CPU 1.59s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.98s CPU 1.00s WALL ( 1 calls) Called by electrons: c_bands : 4.23s CPU 4.31s WALL ( 5 calls) sum_band : 0.52s CPU 0.52s WALL ( 5 calls) v_of_rho : 6.43s CPU 6.51s WALL ( 6 calls) mix_rho : 0.09s CPU 0.10s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.07s CPU 0.07s WALL ( 24 calls) regterg : 4.18s CPU 4.25s WALL ( 10 calls) Called by *egterg: h_psi : 4.19s CPU 4.27s WALL ( 26 calls) g_psi : 0.00s CPU 0.01s WALL ( 14 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.02s WALL ( 26 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 34 calls) fft : 1.63s CPU 1.65s WALL ( 137 calls) ffts : 1.88s CPU 1.89s WALL ( 156 calls) fftw : 2.12s CPU 2.12s WALL ( 234 calls) davcio : 0.00s CPU 0.01s WALL ( 44 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.16s CPU 0.18s WALL ( 2 calls) vexx : 3.13s CPU 3.20s WALL ( 10 calls) exxen2 : 1.15s CPU 1.15s WALL ( 3 calls) PWSCF : 14.83s CPU 15.54s WALL This run was terminated on: 17:55:37 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/si.hse_nq=2.out0000644000700200004540000004473512053145630023454 0ustar marsamoscm Program PWSCF v.4.2CVS starts on 2Feb2010 at 15: 0:55 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO !!! EXPERIMENTAL VERSION WITH EXACT EXCHANGE !!! Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... !!! XC functional enforced from input : Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 2 2 2 EXX : q->0 dealt with 8/7 -1/7 trick EXX : grid check successful EXX : q->0 dealt with gygi-baldereschi trick EXX : exx div treatment check successful bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.18 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.37 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.44 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.53 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.62 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.500609377992713 0.618038723237103 EXX divergence ( 2)= -40.0582 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.69270076037686 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.6 total cpu time spent up to now is 10.75 secs total energy = -15.84455604 Ry Harris-Foulkes estimate = -15.84455839 Ry estimated scf accuracy < 0.00004804 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-07, avg # of iterations = 1.0 total cpu time spent up to now is 15.73 secs total energy = -15.84455677 Ry Harris-Foulkes estimate = -15.84455658 Ry estimated scf accuracy < 0.00000374 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-08, avg # of iterations = 1.0 total cpu time spent up to now is 20.70 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1161 4.0843 5.3715 5.3715 9.4936 9.8356 9.8356 11.8912 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5554 2.4505 4.2743 4.4607 8.9755 10.6993 11.4123 11.7544 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4455 0.6832 2.9381 3.3300 8.1494 9.7836 13.0173 13.2879 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7462 -1.4985 2.0921 2.8179 7.6803 8.7850 15.3807 15.4693 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0197 0.9555 3.2938 4.8920 9.6809 10.5431 10.7803 13.3221 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9302 -0.4199 2.2615 3.6834 9.7349 10.4697 11.9671 12.9640 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4833 -1.6958 1.5032 2.5819 9.2224 11.1636 12.2485 14.5080 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0596 -1.3662 1.5856 3.6865 8.7033 12.4460 12.4672 14.0157 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5377 -0.4552 4.5240 4.5240 8.6345 10.3738 10.3738 14.9217 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6382 -1.4675 3.3405 3.9955 9.0915 10.4685 11.0540 14.4039 highest occupied, lowest unoccupied level (ev): 5.3715 7.6803 -1.69270076037686 -1.69428158333302 -1.69602463145811 dexx = 0.00008111 Ry ! total energy = -15.84463797 Ry Harris-Foulkes estimate = -15.84463797 Ry estimated scf accuracy < 9.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12018260 Ry hartree contribution = 1.09841565 Ry xc contribution = -4.00974692 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69428158 Ry + Fock energy = -0.84801232 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-08, avg # of iterations = 3.0 total cpu time spent up to now is 28.26 secs total energy = -15.84464624 Ry Harris-Foulkes estimate = -15.84464662 Ry estimated scf accuracy < 0.00000107 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 33.23 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1134 4.0796 5.3532 5.3532 9.5090 9.8459 9.8459 11.8987 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5519 2.4517 4.2647 4.4553 8.9851 10.7080 11.4159 11.7579 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4427 0.6852 2.9370 3.3225 8.1587 9.7880 13.0203 13.2876 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7469 -1.5002 2.0918 2.8096 7.6912 8.7889 15.3809 15.4719 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0162 0.9569 3.2906 4.8800 9.6944 10.5493 10.7851 13.3267 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9269 -0.4197 2.2620 3.6789 9.7397 10.4737 11.9691 12.9651 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4811 -1.6954 1.5048 2.5795 9.2261 11.1637 12.2510 14.5110 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0579 -1.3661 1.5877 3.6778 8.7144 12.4472 12.4695 14.0194 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5368 -0.4537 4.5088 4.5088 8.6490 10.3847 10.3847 14.9288 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6377 -1.4684 3.3385 3.9838 9.1022 10.4728 11.0578 14.4058 highest occupied, lowest unoccupied level (ev): 5.3532 7.6912 -1.69602463145811 -1.69629397195315 -1.69656547354234 dexx = 0.00000108 Ry ! total energy = -15.84464736 Ry Harris-Foulkes estimate = -15.84464737 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 3.11781846 Ry hartree contribution = 1.09933507 Ry xc contribution = -4.01005355 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69629397 Ry + Fock energy = -0.84828274 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.13E-10, avg # of iterations = 1.5 total cpu time spent up to now is 43.83 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1134 4.0791 5.3509 5.3509 9.5100 9.8471 9.8471 11.8989 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5518 2.4517 4.2636 4.4546 8.9857 10.7087 11.4161 11.7583 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4426 0.6848 2.9369 3.3216 8.1594 9.7883 13.0205 13.2875 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7471 -1.5011 2.0917 2.8085 7.6922 8.7892 15.3813 15.4722 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0160 0.9567 3.2901 4.8785 9.6955 10.5500 10.7853 13.3271 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9266 -0.4201 2.2619 3.6783 9.7401 10.4740 11.9692 12.9650 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4811 -1.6956 1.5048 2.5791 9.2263 11.1636 12.2511 14.5114 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0580 -1.3664 1.5878 3.6767 8.7154 12.4471 12.4698 14.0198 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5369 -0.4539 4.5068 4.5068 8.6498 10.3860 10.3860 14.9294 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6379 -1.4690 3.3382 3.9823 9.1031 10.4730 11.0583 14.4062 highest occupied, lowest unoccupied level (ev): 5.3509 7.6922 -1.69656547354234 -1.69661186828171 -1.69665831123480 dexx = 0.00000002 Ry ! total energy = -15.84464751 Ry Harris-Foulkes estimate = -15.84464753 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 3.11737091 Ry hartree contribution = 1.09959350 Ry xc contribution = -4.01013606 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69661187 Ry + Fock energy = -0.84832916 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save init_run : 0.09s CPU electrons : 44.81s CPU Called by init_run: wfcinit : 0.03s CPU potinit : 0.01s CPU Called by electrons: c_bands : 33.39s CPU ( 12 calls, 2.782 s avg) sum_band : 0.16s CPU ( 12 calls, 0.013 s avg) v_of_rho : 0.15s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 12 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 250 calls, 0.000 s avg) cegterg : 33.35s CPU ( 120 calls, 0.278 s avg) Called by *egterg: h_psi : 33.14s CPU ( 358 calls, 0.093 s avg) g_psi : 0.02s CPU ( 228 calls, 0.000 s avg) cdiaghg : 0.12s CPU ( 298 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 358 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 358 calls, 0.000 s avg) cft3 : 0.02s CPU ( 129 calls, 0.000 s avg) cft3s : 17.46s CPU ( 123068 calls, 0.000 s avg) davcio : 0.01s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.24s CPU ( 4 calls, 0.061 s avg) vexx : 32.54s CPU ( 199 calls, 0.164 s avg) exxen2 : 10.86s CPU ( 10 calls, 1.086 s avg) PWSCF : 45.19s CPU time, 49.34s wall time This run was terminated on: 15: 1:44 2Feb2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/n.hse.1nlcc.out-800000644000700200004540000003731212053145630023636 0ustar marsamoscm Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:55:54 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-05 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ3 MD5 check sum: 8c9de74fd816ad51f11d6d02916f6c56 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization N 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000076 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.308E-04 0.206E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 1.4 secs per-process dynamical memory: 83.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.242E-05 0.587E-05 total cpu time spent up to now is 2.8 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -18.8118 -7.2739 -7.2728 -7.2723 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -17.2469 -5.8689 -5.8676 -5.8659 ! total energy = -21.04676070 Ry Harris-Foulkes estimate = -20.95213962 Ry estimated scf accuracy < 0.05041183 Ry The total energy is the sum of the following terms: one-electron contribution = -19.37942366 Ry hartree contribution = 10.59558397 Ry xc contribution = -6.29470170 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.05718288 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.134E-08 0.381E-06 total cpu time spent up to now is 4.2 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.5389 -7.9707 -7.9692 -7.9678 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -15.8722 -4.6197 -4.6166 -4.6135 ! total energy = -21.05948994 Ry Harris-Foulkes estimate = -21.04869415 Ry estimated scf accuracy < 0.00717570 Ry The total energy is the sum of the following terms: one-electron contribution = -19.49061307 Ry hartree contribution = 10.78764836 Ry xc contribution = -6.44411370 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00137511 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-04, avg # of iterations = 1.5 negative rho (up, down): 0.316E-09 0.442E-07 total cpu time spent up to now is 5.7 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.4238 -7.8573 -7.8558 -7.8544 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -14.7066 -3.5974 -3.5945 -3.5908 ! total energy = -21.05997336 Ry Harris-Foulkes estimate = -21.06008118 Ry estimated scf accuracy < 0.00017041 Ry The total energy is the sum of the following terms: one-electron contribution = -19.44501930 Ry hartree contribution = 10.74974305 Ry xc contribution = -6.43185951 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.02180118 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 7.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -19.5158 -7.9454 -7.9440 -7.9425 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -14.8107 -3.6930 -3.6899 -3.6864 EXX: now go back to refine exchange calculation -1.9627311187737080 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 3.5 total cpu time spent up to now is 14.6 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -22.3494 -9.4641 -9.4627 -9.4615 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -16.0184 -2.4095 -2.4065 -2.4049 ! total energy = -20.68288260 Ry Harris-Foulkes estimate = -20.68291332 Ry estimated scf accuracy < 0.00014127 Ry The total energy is the sum of the following terms: one-electron contribution = -21.45007510 Ry hartree contribution = 10.76446039 Ry xc contribution = -5.07350824 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.96560286 Ry + Fock energy = -0.98136556 Ry scf correction = 0.00591122 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-06, avg # of iterations = 1.0 total cpu time spent up to now is 18.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.3119 -9.4300 -9.4286 -9.4272 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -15.9736 -2.3727 -2.3699 -2.3684 -1.9627311187737080 -1.9656916802639135 -1.9687942314903133 est. exchange err (dexx) = 0.00007099 Ry ! total energy = -20.68295809 Ry Harris-Foulkes estimate = -20.68295525 Ry estimated scf accuracy < 0.00001007 Ry The total energy is the sum of the following terms: one-electron contribution = -21.45114463 Ry hartree contribution = 10.77265441 Ry xc contribution = -5.07472603 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.96569168 Ry + Fock energy = -0.98439712 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.09E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.1 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.3121 -9.4197 -9.4184 -9.4170 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -15.9473 -2.3538 -2.3511 -2.3496 -1.9687942314903133 -1.9691183125646821 -1.9694430117356339 est. exchange err (dexx) = 0.00000031 Ry ! total energy = -20.68296107 Ry Harris-Foulkes estimate = -20.68296208 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -21.45683377 Ry hartree contribution = 10.77593808 Ry xc contribution = -5.07542578 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.96911831 Ry + Fock energy = -0.98472151 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000010 Writing output data file n.save init_run : 1.39s CPU 1.42s WALL ( 1 calls) electrons : 22.27s CPU 23.08s WALL ( 1 calls) forces : 1.60s CPU 1.62s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 1.00s CPU 1.03s WALL ( 1 calls) Called by electrons: c_bands : 8.91s CPU 9.08s WALL ( 8 calls) sum_band : 0.84s CPU 0.85s WALL ( 8 calls) v_of_rho : 10.50s CPU 10.62s WALL ( 9 calls) mix_rho : 0.18s CPU 0.20s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.10s CPU 0.10s WALL ( 36 calls) regterg : 8.82s CPU 8.97s WALL ( 16 calls) Called by *egterg: h_psi : 8.77s CPU 8.92s WALL ( 44 calls) g_psi : 0.01s CPU 0.01s WALL ( 26 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 36 calls) Called by h_psi: add_vuspsi : 0.04s CPU 0.03s WALL ( 44 calls) General routines calbec : 0.03s CPU 0.04s WALL ( 52 calls) fft : 2.39s CPU 2.40s WALL ( 198 calls) ffts : 4.07s CPU 4.08s WALL ( 336 calls) fftw : 4.03s CPU 4.04s WALL ( 442 calls) davcio : 0.00s CPU 0.03s WALL ( 70 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.24s CPU 0.26s WALL ( 3 calls) vexx : 6.93s CPU 7.07s WALL ( 23 calls) exxen2 : 2.31s CPU 2.33s WALL ( 6 calls) PWSCF : 25.34s CPU 26.44s WALL This run was terminated on: 17:56:20 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/si.PBE0_nq=4.out0000644000700200004540000004324312053145630023356 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:45:30 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 4 4 4 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.25 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.99 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.26 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.56 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.90 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.618038723237103 0.618038723237103 EXX divergence ( 4)= -51.1081 0.8333 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.13705926737449 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.9 total cpu time spent up to now is 183.95 secs total energy = -15.83782884 Ry Harris-Foulkes estimate = -15.83783755 Ry estimated scf accuracy < 0.00005799 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.25E-07, avg # of iterations = 1.0 total cpu time spent up to now is 273.84 secs total energy = -15.83782977 Ry Harris-Foulkes estimate = -15.83782989 Ry estimated scf accuracy < 0.00000399 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 1.0 total cpu time spent up to now is 363.68 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5467 3.9718 5.2848 5.2848 9.6924 10.0963 10.0963 12.0987 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9573 2.0984 4.1223 4.3189 9.1946 10.9642 11.7309 12.0639 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7689 0.1319 2.6426 3.0671 8.3384 10.0323 13.4421 13.7659 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0816 -2.0123 1.7390 2.5141 7.8630 8.9863 15.9310 15.9958 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3841 0.4460 3.0933 4.7154 9.8830 10.8924 11.0514 13.7204 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2948 -0.9227 1.9072 3.4734 9.9872 10.7310 12.3754 13.3863 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8800 -2.1221 1.0143 2.2917 9.4407 11.5231 12.6777 15.0164 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4670 -1.8370 1.1079 3.4332 8.9204 12.8160 12.9090 14.5026 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8600 -1.0847 4.3309 4.3309 8.8146 10.6746 10.6746 15.2367 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0425 -1.9910 3.1275 3.8151 9.3277 10.7053 11.3602 14.8972 highest occupied, lowest unoccupied level (ev): 5.2848 7.8630 -2.13705926737449 -2.14016584519746 -2.14369055012551 dexx = 0.00020906 Ry ! total energy = -15.83803896 Ry Harris-Foulkes estimate = -15.83803896 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 2.67236950 Ry hartree contribution = 1.10276686 Ry xc contribution = -3.78173732 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14016585 Ry + Fock energy = -1.07184528 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 3.0 total cpu time spent up to now is 505.22 secs total energy = -15.83807277 Ry Harris-Foulkes estimate = -15.83807479 Ry estimated scf accuracy < 0.00000477 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-08, avg # of iterations = 1.0 total cpu time spent up to now is 595.37 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5406 3.9591 5.2631 5.2631 9.7114 10.1130 10.1130 12.1162 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9513 2.0944 4.1086 4.3056 9.2093 10.9793 11.7393 12.0698 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7640 0.1334 2.6355 3.0574 8.3552 10.0432 13.4478 13.7694 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0778 -2.0090 1.7345 2.5050 7.8804 8.9979 15.9337 15.9991 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3786 0.4481 3.0854 4.6961 9.9011 10.9065 11.0568 13.7280 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2898 -0.9195 1.9051 3.4612 9.9980 10.7408 12.3832 13.3897 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8757 -2.1187 1.0159 2.2845 9.4519 11.5265 12.6862 15.0205 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4628 -1.8329 1.1099 3.4210 8.9364 12.8182 12.9160 14.5072 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8556 -1.0799 4.3150 4.3150 8.8385 10.6858 10.6858 15.2440 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0378 -1.9859 3.1192 3.8006 9.3440 10.7152 11.3691 14.9012 highest occupied, lowest unoccupied level (ev): 5.2631 7.8804 -2.14369055012551 -2.14446224183211 -2.14524685786786 dexx = 0.00000646 Ry ! total energy = -15.83807949 Ry Harris-Foulkes estimate = -15.83807953 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = 2.66699007 Ry hartree contribution = 1.10546468 Ry xc contribution = -3.78261448 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14446224 Ry + Fock energy = -1.07262343 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.91E-09, avg # of iterations = 1.1 total cpu time spent up to now is 790.49 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5399 3.9554 5.2590 5.2590 9.7135 10.1159 10.1159 12.1184 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9507 2.0929 4.1060 4.3021 9.2114 10.9815 11.7408 12.0709 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7637 0.1328 2.6337 3.0558 8.3579 10.0453 13.4481 13.7697 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0777 -2.0092 1.7332 2.5035 7.8831 9.0001 15.9340 15.9991 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3782 0.4480 3.0832 4.6923 9.9036 10.9093 11.0573 13.7289 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2894 -0.9196 1.9043 3.4582 9.9999 10.7426 12.3844 13.3898 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8756 -2.1189 1.0161 2.2828 9.4540 11.5269 12.6874 15.0209 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4629 -1.8327 1.1101 3.4189 8.9388 12.8179 12.9172 14.5077 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8554 -1.0796 4.3122 4.3122 8.8413 10.6875 10.6875 15.2454 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0375 -1.9855 3.1168 3.7978 9.3461 10.7168 11.3710 14.9018 highest occupied, lowest unoccupied level (ev): 5.2590 7.8831 -2.14524685786786 -2.14542665480239 -2.14560699717851 dexx = 0.00000027 Ry ! total energy = -15.83808086 Ry Harris-Foulkes estimate = -15.83808098 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 2.66560445 Ry hartree contribution = 1.10634051 Ry xc contribution = -3.78289040 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14542665 Ry + Fock energy = -1.07280350 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save PWSCF : 13m31.53s CPU time, 13m46.79s wall time init_run : 0.17s CPU electrons : 810.91s CPU Called by init_run: wfcinit : 0.06s CPU potinit : 0.01s CPU Called by electrons: c_bands : 605.86s CPU ( 12 calls, 50.489 s avg) sum_band : 0.40s CPU ( 12 calls, 0.033 s avg) v_of_rho : 0.14s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.01s CPU ( 12 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 250 calls, 0.000 s avg) cegterg : 605.83s CPU ( 120 calls, 5.049 s avg) Called by *egterg: h_psi : 605.52s CPU ( 359 calls, 1.687 s avg) g_psi : 0.03s CPU ( 229 calls, 0.000 s avg) cdiaghg : 0.19s CPU ( 299 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 359 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 359 calls, 0.000 s avg) cft3 : 0.06s CPU ( 117 calls, 0.001 s avg) cft3s : 486.54s CPU ( 922600 calls, 0.001 s avg) davcio : 0.00s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.90s CPU ( 4 calls, 0.226 s avg) vexx : 602.40s CPU ( 200 calls, 3.012 s avg) exxen2 : 203.59s CPU ( 10 calls, 20.359 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/c.pbe0.1nlcc.out-800000644000700200004540000004203512053145630023670 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 0:18 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 warning: symmetry operation # 2 not allowed. fractional translation: -0.0314954 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 3 not allowed. fractional translation: -0.0314954 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0157477 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: -0.0472432 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 7 not allowed. fractional translation: 0.0157477 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 8 not allowed. fractional translation: -0.0472432 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 11 not allowed. fractional translation: 0.0314954 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 12 not allowed. fractional translation: -0.0629909 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 13 not allowed. fractional translation: -0.0314954 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 14 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 17 not allowed. fractional translation: 0.0157477 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 18 not allowed. fractional translation: -0.0472432 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 19 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 20 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 21 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 22 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 23 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0157477 in crystal coordinates warning: symmetry operation # 24 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 25 not allowed. fractional translation: -0.0314954 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 26 not allowed. fractional translation: 0.0000000 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 27 not allowed. fractional translation: 0.0000000 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 28 not allowed. fractional translation: -0.0314954 0.0000000 0.0000000 in crystal coordinates warning: symmetry operation # 29 not allowed. fractional translation: -0.0472432 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 30 not allowed. fractional translation: 0.0157477 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 31 not allowed. fractional translation: -0.0472432 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 32 not allowed. fractional translation: 0.0157477 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 33 not allowed. fractional translation: -0.0629909 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 34 not allowed. fractional translation: 0.0314954 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 35 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 36 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 37 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 38 not allowed. fractional translation: 0.0000000 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 39 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 40 not allowed. fractional translation: -0.0314954 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 41 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 42 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 43 not allowed. fractional translation: -0.0472432 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 44 not allowed. fractional translation: 0.0157477 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 45 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 46 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 47 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 48 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0157477 in crystal coordinates EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 4.00 (up: 3.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file CPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization C 0.200 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000030 0.000000 Initial potential from superposition of free atoms starting charge 3.99996, renormalised to 4.00000 negative rho (up, down): 0.532E-06 0.355E-06 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 5.38 secs per-process dynamical memory: 54.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.332E-07 0.784E-07 total cpu time spent up to now is 10.07 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -13.7963 -5.2656 -5.2650 -5.2644 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -12.6317 -4.2311 -4.2307 -4.2301 ! total energy = -11.85890076 Ry Harris-Foulkes estimate = -11.82107130 Ry estimated scf accuracy < 0.05337063 Ry The total energy is the sum of the following terms: one-electron contribution = -9.16229708 Ry hartree contribution = 5.16121588 Ry xc contribution = -4.05528154 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.01947472 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-03, avg # of iterations = 1.0 total cpu time spent up to now is 14.72 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -14.0625 -5.6235 -5.6232 -5.3245 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -11.8739 -4.1897 -3.1905 -3.1895 ! total energy = -11.86603994 Ry Harris-Foulkes estimate = -11.86089580 Ry estimated scf accuracy < 0.00501892 Ry The total energy is the sum of the following terms: one-electron contribution = -9.19283788 Ry hartree contribution = 5.24412713 Ry xc contribution = -4.13425359 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00001230 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 1.5 total cpu time spent up to now is 19.30 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -13.9616 -5.6022 -5.6019 -5.0954 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -11.3642 -4.0514 -2.5607 -2.5598 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.41432860402800 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.18E-06, avg # of iterations = 2.5 total cpu time spent up to now is 55.26 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.2390 -7.1869 -7.1864 -3.5690 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -12.7571 -2.6063 -1.1574 -1.1568 -1.41432860402800 -1.41685777128472 -1.41957357692056 dexx = 0.00009332 Ry ! total energy = -11.60100261 Ry Harris-Foulkes estimate = -11.60102217 Ry estimated scf accuracy < 0.00009101 Ry The total energy is the sum of the following terms: one-electron contribution = -10.60688509 Ry hartree contribution = 5.24409990 Ry xc contribution = -3.16222509 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 1.41685777 Ry + Fock energy = -0.70978679 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000060 Writing output data file o2.save Writing output data file o2.save PWSCF : 1m 2.89s CPU time, 1m 5.32s wall time init_run : 5.31s CPU electrons : 52.63s CPU forces : 3.70s CPU Called by init_run: wfcinit : 0.50s CPU potinit : 3.49s CPU Called by electrons: c_bands : 27.29s CPU ( 5 calls, 5.458 s avg) sum_band : 2.33s CPU ( 5 calls, 0.465 s avg) v_of_rho : 17.25s CPU ( 6 calls, 2.874 s avg) mix_rho : 0.61s CPU ( 5 calls, 0.122 s avg) Called by c_bands: init_us_2 : 0.28s CPU ( 24 calls, 0.012 s avg) regterg : 27.04s CPU ( 10 calls, 2.704 s avg) Called by *egterg: h_psi : 27.22s CPU ( 28 calls, 0.972 s avg) g_psi : 0.08s CPU ( 16 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 22 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 28 calls, 0.001 s avg) General routines calbec : 0.07s CPU ( 36 calls, 0.002 s avg) cft3 : 11.27s CPU ( 127 calls, 0.089 s avg) cft3s : 27.78s CPU ( 428 calls, 0.065 s avg) davcio : 0.00s CPU ( 44 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 1.44s CPU ( 2 calls, 0.719 s avg) vexx : 21.51s CPU ( 13 calls, 1.655 s avg) exxen2 : 6.14s CPU ( 3 calls, 2.045 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/o.pbe0.1nlcc.out-800000644000700200004540000004231512053145630023705 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:59:17 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 warning: symmetry operation # 2 not allowed. fractional translation: -0.0314954 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 3 not allowed. fractional translation: -0.0314954 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0157477 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: -0.0472432 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 7 not allowed. fractional translation: 0.0157477 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 8 not allowed. fractional translation: -0.0472432 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 11 not allowed. fractional translation: 0.0314954 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 12 not allowed. fractional translation: -0.0629909 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 13 not allowed. fractional translation: -0.0314954 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 14 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 17 not allowed. fractional translation: 0.0157477 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 18 not allowed. fractional translation: -0.0472432 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 19 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 20 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 21 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 22 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 23 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0157477 in crystal coordinates warning: symmetry operation # 24 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 25 not allowed. fractional translation: -0.0314954 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 26 not allowed. fractional translation: 0.0000000 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 27 not allowed. fractional translation: 0.0000000 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 28 not allowed. fractional translation: -0.0314954 0.0000000 0.0000000 in crystal coordinates warning: symmetry operation # 29 not allowed. fractional translation: -0.0472432 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 30 not allowed. fractional translation: 0.0157477 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 31 not allowed. fractional translation: -0.0472432 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 32 not allowed. fractional translation: 0.0157477 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 33 not allowed. fractional translation: -0.0629909 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 34 not allowed. fractional translation: 0.0314954 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 35 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 36 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 37 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 38 not allowed. fractional translation: 0.0000000 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 39 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 40 not allowed. fractional translation: -0.0314954 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 41 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 42 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 43 not allowed. fractional translation: -0.0472432 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 44 not allowed. fractional translation: 0.0157477 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 45 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 46 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 47 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 48 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0157477 in crystal coordinates EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 (up: 4.00, down: 2.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file OPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000329 Check: negative starting charge=(component2): -0.000219 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.329E-03 0.219E-03 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 6.23 secs per-process dynamical memory: 54.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.532E-04 0.426E-04 total cpu time spent up to now is 10.90 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.3441 -9.3514 -9.3512 -9.3499 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -22.3562 -7.5362 -7.5323 -7.5290 ! total energy = -33.74873854 Ry Harris-Foulkes estimate = -33.71144360 Ry estimated scf accuracy < 0.08079053 Ry The total energy is the sum of the following terms: one-electron contribution = -35.08684301 Ry hartree contribution = 18.83758725 Ry xc contribution = -8.92021244 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.06737790 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E-06 0.417E-06 total cpu time spent up to now is 15.61 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.9929 -10.4693 -10.4690 -9.0028 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -21.9270 -7.5043 -6.9550 -6.9482 ! total energy = -33.76095363 Ry Harris-Foulkes estimate = -33.75290383 Ry estimated scf accuracy < 0.00711496 Ry The total energy is the sum of the following terms: one-electron contribution = -35.20872408 Ry hartree contribution = 18.96970121 Ry xc contribution = -9.01197336 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.00193504 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 total cpu time spent up to now is 20.34 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -24.9314 -10.6042 -10.6037 -8.5501 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -21.2771 -7.2153 -6.2178 -6.2098 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -3.15985796672814 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.94E-06, avg # of iterations = 1.0 total cpu time spent up to now is 51.81 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8089 -13.0294 -13.0288 -10.8006 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -23.7646 -9.2970 -4.2355 -4.2298 -3.15985796672814 -3.16932838530962 -3.17917890986216 dexx = 0.00019005 Ry ! total energy = -33.20114402 Ry Harris-Foulkes estimate = -33.20134902 Ry estimated scf accuracy < 0.00034305 Ry The total energy is the sum of the following terms: one-electron contribution = -38.41841547 Ry hartree contribution = 19.03268094 Ry xc contribution = -6.88325598 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 3.16932839 Ry + Fock energy = -1.58958945 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000253 Writing output data file o.save Writing output data file o.save PWSCF : 0m58.60s CPU time, 1m 0.63s wall time init_run : 6.16s CPU electrons : 47.99s CPU forces : 3.21s CPU Called by init_run: wfcinit : 0.50s CPU potinit : 4.24s CPU Called by electrons: c_bands : 23.69s CPU ( 5 calls, 4.737 s avg) sum_band : 2.23s CPU ( 5 calls, 0.447 s avg) v_of_rho : 17.61s CPU ( 6 calls, 2.936 s avg) mix_rho : 0.61s CPU ( 5 calls, 0.123 s avg) Called by c_bands: init_us_2 : 0.28s CPU ( 24 calls, 0.012 s avg) regterg : 23.44s CPU ( 10 calls, 2.344 s avg) Called by *egterg: h_psi : 23.65s CPU ( 26 calls, 0.910 s avg) g_psi : 0.07s CPU ( 14 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 20 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 26 calls, 0.001 s avg) General routines calbec : 0.06s CPU ( 34 calls, 0.002 s avg) cft3 : 11.95s CPU ( 127 calls, 0.094 s avg) cft3s : 24.39s CPU ( 390 calls, 0.063 s avg) davcio : 0.00s CPU ( 44 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.65s CPU ( 2 calls, 0.323 s avg) vexx : 17.89s CPU ( 10 calls, 1.789 s avg) exxen2 : 6.34s CPU ( 3 calls, 2.113 s avg) espresso-5.0.2/PW/examples/EXX_example/reference/si.hse_nq=4.out0000644000700200004540000004473512053145630023456 0ustar marsamoscm Program PWSCF v.4.2CVS starts on 2Feb2010 at 15: 1:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO !!! EXPERIMENTAL VERSION WITH EXACT EXCHANGE !!! Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... !!! XC functional enforced from input : Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 4 4 4 EXX : q->0 dealt with 8/7 -1/7 trick EXX : grid check successful EXX : q->0 dealt with gygi-baldereschi trick EXX : exx div treatment check successful bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.17 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.37 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.45 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.53 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.62 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.500609377992713 0.618038723237103 EXX divergence ( 4)= -2.2006 0.8333 exx_div : 0.04s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.67522126481740 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.7 total cpu time spent up to now is 79.98 secs total energy = -15.83631978 Ry Harris-Foulkes estimate = -15.83634178 Ry estimated scf accuracy < 0.00009493 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-06, avg # of iterations = 1.0 total cpu time spent up to now is 118.79 secs total energy = -15.83632239 Ry Harris-Foulkes estimate = -15.83632278 Ry estimated scf accuracy < 0.00000544 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-08, avg # of iterations = 1.0 total cpu time spent up to now is 157.98 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1290 4.3275 5.6344 5.6344 9.3446 9.7508 9.7508 11.7416 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5400 2.4765 4.4850 4.6722 8.8503 10.6099 11.3710 11.7038 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3527 0.5286 3.0159 3.4428 7.9967 9.6811 13.0688 13.3904 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6682 -1.6040 2.1239 2.8952 7.5211 8.6392 15.5485 15.6113 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9673 0.8437 3.4616 5.0693 9.5318 10.5393 10.6927 13.3541 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8793 -0.5173 2.2907 3.8368 9.6361 10.3766 12.0111 13.0119 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4675 -1.7138 1.4105 2.6689 9.0922 11.1578 12.3105 14.6378 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0534 -1.4256 1.5036 3.8037 8.5730 12.4428 12.5407 14.1252 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4440 -0.6715 4.6943 4.6943 8.4674 10.3183 10.3183 14.8747 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6280 -1.5752 3.4954 4.1819 8.9787 10.3505 11.0019 14.5229 highest occupied, lowest unoccupied level (ev): 5.6344 7.5211 -1.67522126481740 -1.67875258769544 -1.68256736910832 dexx = 0.00014173 Ry ! total energy = -15.83646435 Ry Harris-Foulkes estimate = -15.83646433 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 3.13190383 Ry hartree contribution = 1.10631862 Ry xc contribution = -4.01239712 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.67875259 Ry + Fock energy = -0.84128368 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-08, avg # of iterations = 3.0 total cpu time spent up to now is 218.08 secs total energy = -15.83648095 Ry Harris-Foulkes estimate = -15.83648265 Ry estimated scf accuracy < 0.00000393 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.92E-08, avg # of iterations = 1.0 total cpu time spent up to now is 257.06 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1235 4.3139 5.6121 5.6121 9.3625 9.7667 9.7667 11.7579 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5347 2.4711 4.4708 4.6582 8.8640 10.6244 11.3790 11.7099 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3488 0.5282 3.0086 3.4327 8.0128 9.6920 13.0738 13.3937 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6656 -1.6024 2.1192 2.8858 7.5378 8.6504 15.5513 15.6143 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9626 0.8443 3.4532 5.0495 9.5488 10.5536 10.6975 13.3615 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8753 -0.5156 2.2880 3.8244 9.6464 10.3860 12.0188 13.0148 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4647 -1.7121 1.4117 2.6617 9.1029 11.1607 12.3190 14.6420 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0507 -1.4229 1.5050 3.7914 8.5885 12.4437 12.5480 14.1300 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4407 -0.6680 4.6778 4.6778 8.4893 10.3296 10.3296 14.8826 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6245 -1.5712 3.4865 4.1668 8.9938 10.3598 11.0111 14.5271 highest occupied, lowest unoccupied level (ev): 5.6121 7.5378 -1.68256736910832 -1.68315254701182 -1.68374248920022 dexx = 0.00000238 Ry ! total energy = -15.83648358 Ry Harris-Foulkes estimate = -15.83648361 Ry estimated scf accuracy < 0.00000010 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12644687 Ry hartree contribution = 1.10875977 Ry xc contribution = -4.01321295 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.68315255 Ry + Fock energy = -0.84187124 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.92E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 2.0 total cpu time spent up to now is 339.64 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1231 4.3114 5.6093 5.6093 9.3637 9.7686 9.7686 11.7593 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5343 2.4699 4.4690 4.6558 8.8653 10.6259 11.3800 11.7106 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3487 0.5276 3.0074 3.4317 8.0145 9.6935 13.0740 13.3940 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6656 -1.6027 2.1184 2.8849 7.5394 8.6518 15.5516 15.6143 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9624 0.8439 3.4516 5.0469 9.5503 10.5556 10.6978 13.3622 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8752 -0.5159 2.2874 3.8224 9.6477 10.3872 12.0196 13.0148 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4648 -1.7124 1.4118 2.6606 9.1043 11.1609 12.3198 14.6424 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0509 -1.4230 1.5050 3.7900 8.5901 12.4434 12.5489 14.1304 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4407 -0.6680 4.6759 4.6759 8.4909 10.3309 10.3309 14.8835 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6245 -1.5711 3.4848 4.1649 8.9951 10.3609 11.0125 14.5276 highest occupied, lowest unoccupied level (ev): 5.6093 7.5394 -1.68374248920022 -1.68383977958016 -1.68393717246371 dexx = 0.00000005 Ry ! total energy = -15.83648389 Ry Harris-Foulkes estimate = -15.83648394 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12548922 Ry hartree contribution = 1.10930037 Ry xc contribution = -4.01338610 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.68383978 Ry + Fock energy = -0.84196859 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save init_run : 0.09s CPU electrons : 348.26s CPU Called by init_run: wfcinit : 0.02s CPU potinit : 0.01s CPU Called by electrons: c_bands : 260.95s CPU ( 12 calls, 21.745 s avg) sum_band : 0.15s CPU ( 12 calls, 0.012 s avg) v_of_rho : 0.15s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 12 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 250 calls, 0.000 s avg) cegterg : 260.92s CPU ( 120 calls, 2.174 s avg) Called by *egterg: h_psi : 260.69s CPU ( 364 calls, 0.716 s avg) g_psi : 0.01s CPU ( 234 calls, 0.000 s avg) cdiaghg : 0.12s CPU ( 304 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 364 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 364 calls, 0.000 s avg) cft3 : 0.02s CPU ( 129 calls, 0.000 s avg) cft3s : 134.71s CPU ( 918472 calls, 0.000 s avg) davcio : 0.00s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.56s CPU ( 4 calls, 0.141 s avg) vexx : 260.09s CPU ( 205 calls, 1.269 s avg) exxen2 : 86.44s CPU ( 10 calls, 8.644 s avg) PWSCF : 5m48.63s CPU time, 7m28.68s wall time This run was terminated on: 15: 9:13 2Feb2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/c.hse.1nlcc.out-800000644000700200004540000002761112053145630023624 0ustar marsamoscm Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:55:37 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 4.00 (up: 3.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ3 MD5 check sum: 6343d94e6269eb5d49eee3a5c5ef8fb6 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization C 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000030 0.000000 Initial potential from superposition of free atoms starting charge 3.99996, renormalised to 4.00000 negative rho (up, down): 0.532E-06 0.355E-06 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 83.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.332E-07 0.784E-07 total cpu time spent up to now is 2.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -13.7963 -5.2656 -5.2650 -5.2644 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -12.6317 -4.2311 -4.2307 -4.2301 ! total energy = -11.85890076 Ry Harris-Foulkes estimate = -11.82107130 Ry estimated scf accuracy < 0.05337063 Ry The total energy is the sum of the following terms: one-electron contribution = -9.16229708 Ry hartree contribution = 5.16121588 Ry xc contribution = -4.05528154 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.01947472 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-03, avg # of iterations = 1.0 total cpu time spent up to now is 4.3 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -14.0625 -5.6235 -5.6232 -5.3245 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -11.8739 -4.1897 -3.1905 -3.1895 ! total energy = -11.86603994 Ry Harris-Foulkes estimate = -11.86089580 Ry estimated scf accuracy < 0.00501892 Ry The total energy is the sum of the following terms: one-electron contribution = -9.19283788 Ry hartree contribution = 5.24412713 Ry xc contribution = -4.13425359 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00001230 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 1.5 total cpu time spent up to now is 5.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -13.9616 -5.6022 -5.6019 -5.0954 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -11.3642 -4.0514 -2.5607 -2.5598 EXX: now go back to refine exchange calculation -1.1759192261888298 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.9 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -15.8332 -6.7794 -6.7789 -3.9666 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -12.3439 -2.9970 -1.5421 -1.5413 -1.1759192261888298 -1.1791566282264065 -1.1825472598828355 est. exchange err (dexx) = 0.00007661 Ry ! total energy = -11.61677064 Ry Harris-Foulkes estimate = -11.61677758 Ry estimated scf accuracy < 0.00010005 Ry The total energy is the sum of the following terms: one-electron contribution = -10.37386445 Ry hartree contribution = 5.25150455 Ry xc contribution = -3.29923043 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 1.17915663 Ry + Fock energy = -0.59127363 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000109 Writing output data file c.save init_run : 1.44s CPU 1.48s WALL ( 1 calls) electrons : 12.48s CPU 12.88s WALL ( 1 calls) forces : 1.71s CPU 1.73s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 1.06s CPU 1.08s WALL ( 1 calls) Called by electrons: c_bands : 4.49s CPU 4.59s WALL ( 5 calls) sum_band : 0.52s CPU 0.52s WALL ( 5 calls) v_of_rho : 6.94s CPU 7.00s WALL ( 6 calls) mix_rho : 0.09s CPU 0.10s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.07s CPU 0.07s WALL ( 24 calls) regterg : 4.44s CPU 4.53s WALL ( 10 calls) Called by *egterg: h_psi : 4.45s CPU 4.54s WALL ( 27 calls) g_psi : 0.01s CPU 0.01s WALL ( 15 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 21 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 27 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 35 calls) fft : 1.64s CPU 1.64s WALL ( 137 calls) ffts : 1.97s CPU 1.98s WALL ( 164 calls) fftw : 2.23s CPU 2.23s WALL ( 246 calls) davcio : 0.00s CPU 0.01s WALL ( 44 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.17s CPU 0.18s WALL ( 2 calls) vexx : 3.34s CPU 3.43s WALL ( 12 calls) exxen2 : 1.15s CPU 1.15s WALL ( 3 calls) PWSCF : 15.72s CPU 16.36s WALL This run was terminated on: 17:55:53 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/EXX_example/reference/si.PBE0_nq=1.out0000644000700200004540000004323712053145630023356 0ustar marsamoscm Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:43:21 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.20 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.69 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.88 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.08 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.31 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.618038723237103 0.618038723237103 EXX divergence ( 1)= -203.1095 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.27181629748037 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.8 total cpu time spent up to now is 5.20 secs total energy = -15.90453707 Ry Harris-Foulkes estimate = -15.90457177 Ry estimated scf accuracy < 0.00010597 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.09 secs total energy = -15.90454623 Ry Harris-Foulkes estimate = -15.90454535 Ry estimated scf accuracy < 0.00000237 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-08, avg # of iterations = 1.8 total cpu time spent up to now is 9.10 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1427 3.2157 4.4564 4.4564 10.2062 10.5785 10.5785 12.5690 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5702 1.5989 3.4558 3.5084 9.6862 11.3666 12.1130 12.3493 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4781 -0.1371 2.0726 2.5337 8.8554 10.3763 13.6720 13.9135 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0646 1.3045 2.0417 8.3713 9.4038 15.8895 16.0500 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0429 0.1617 2.4816 3.9194 10.3808 11.2267 11.4611 13.9210 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0498 1.4559 2.8213 10.4002 11.1151 12.5429 13.5989 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7209 -2.1279 0.6946 1.8030 9.8619 11.7530 12.8384 15.0141 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2774 -1.8746 0.7678 2.8485 9.3889 13.0291 13.1099 14.5092 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5910 -1.2168 3.6448 3.6448 9.3670 11.0389 11.0389 15.4337 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8115 -2.0174 2.5050 3.1736 9.8133 11.1224 11.6750 14.9184 highest occupied, lowest unoccupied level (ev): 4.4564 8.3713 -2.27181629748037 -2.27112474751479 -2.27065355502350 dexx = 0.00011018 Ry ! total energy = -15.90465668 Ry Harris-Foulkes estimate = -15.90465662 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55094233 Ry hartree contribution = 1.08386165 Ry xc contribution = -3.77550006 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27112475 Ry + Fock energy = -1.13532678 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-08, avg # of iterations = 3.0 total cpu time spent up to now is 12.17 secs total energy = -15.90467355 Ry Harris-Foulkes estimate = -15.90467429 Ry estimated scf accuracy < 0.00000195 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 14.07 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1488 3.2099 4.4367 4.4367 10.2137 10.5802 10.5802 12.5689 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5732 1.5974 3.4455 3.4995 9.6893 11.3665 12.1105 12.3503 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4792 -0.1367 2.0684 2.5269 8.8582 10.3754 13.6705 13.9099 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0640 1.3022 2.0360 8.3733 9.4022 15.8851 16.0495 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0451 0.1624 2.4777 3.9065 10.3852 11.2260 11.4626 13.9201 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0474 1.4540 2.8165 10.4003 11.1145 12.5403 13.5977 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7187 -2.1245 0.6934 1.8009 9.8606 11.7503 12.8364 15.0117 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2774 -1.8722 0.7667 2.8416 9.3917 13.0251 13.1107 14.5070 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5944 -1.2192 3.6325 3.6325 9.3742 11.0418 11.0418 15.4359 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8129 -2.0172 2.5019 3.1650 9.8173 11.1225 11.6735 14.9160 highest occupied, lowest unoccupied level (ev): 4.4367 8.3733 -2.27065355502350 -2.27054564346299 -2.27044441006744 dexx = 0.00000334 Ry ! total energy = -15.90467707 Ry Harris-Foulkes estimate = -15.90467705 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55296344 Ry hartree contribution = 1.08151708 Ry xc contribution = -3.77472245 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27054564 Ry + Fock energy = -1.13522221 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-10, avg # of iterations = 1.2 total cpu time spent up to now is 18.16 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1501 3.2096 4.4326 4.4326 10.2148 10.5803 10.5803 12.5685 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5738 1.5974 3.4434 3.4979 9.6897 11.3665 12.1098 12.3506 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4794 -0.1365 2.0679 2.5258 8.8583 10.3751 13.6703 13.9092 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0638 1.3020 2.0353 8.3733 9.4018 15.8844 16.0494 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0454 0.1628 2.4771 3.9046 10.3855 11.2258 11.4627 13.9198 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0468 1.4538 2.8158 10.4002 11.1142 12.5398 13.5975 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7181 -2.1237 0.6934 1.8008 9.8601 11.7498 12.8359 15.0112 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2774 -1.8715 0.7668 2.8407 9.3917 13.0245 13.1108 14.5065 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5951 -1.2195 3.6306 3.6306 9.3749 11.0421 11.0421 15.4359 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8132 -2.0169 2.5016 3.1637 9.8176 11.1224 11.6731 14.9155 highest occupied, lowest unoccupied level (ev): 4.4326 8.3733 -2.27044441006744 -2.27042086752961 -2.27039777638653 dexx = 0.00000023 Ry ! total energy = -15.90467808 Ry Harris-Foulkes estimate = -15.90467810 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55336111 Ry hartree contribution = 1.08107858 Ry xc contribution = -3.77458118 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27042087 Ry + Fock energy = -1.13519889 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save PWSCF : 19.07s CPU time, 19.35s wall time init_run : 0.17s CPU electrons : 18.51s CPU Called by init_run: wfcinit : 0.07s CPU potinit : 0.01s CPU Called by electrons: c_bands : 12.64s CPU ( 12 calls, 1.054 s avg) sum_band : 0.39s CPU ( 12 calls, 0.033 s avg) v_of_rho : 0.14s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.01s CPU ( 12 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 250 calls, 0.000 s avg) cegterg : 12.59s CPU ( 120 calls, 0.105 s avg) Called by *egterg: h_psi : 12.28s CPU ( 367 calls, 0.033 s avg) g_psi : 0.03s CPU ( 237 calls, 0.000 s avg) cdiaghg : 0.20s CPU ( 307 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 367 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 367 calls, 0.000 s avg) cft3 : 0.07s CPU ( 117 calls, 0.001 s avg) cft3s : 12.43s CPU ( 24172 calls, 0.001 s avg) davcio : 0.01s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.14s CPU ( 4 calls, 0.035 s avg) vexx : 10.49s CPU ( 208 calls, 0.050 s avg) exxen2 : 5.18s CPU ( 10 calls, 0.518 s avg) espresso-5.0.2/PW/examples/EXX_example/Pseudo/0000755000700200004540000000000012053440303020134 5ustar marsamoscmespresso-5.0.2/PW/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ30000644000700200004540000066512412053145630022401 0ustar marsamoscmN 2 F T 1 4 3 4 0.50000000000E+01-.19373650924E+02 2 -.70000000000E+010.10000000000E+030.70000000000E+010.12500000000E-01 1085 5 4 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 3.00 2P 2 1 0.00 3D 3 2 -2.00 727 7.69047737719E-02 7.78721170347E-02 7.88516279891E-02 7.98434596861E-02 8.08370431893E-02 8.18736243041E-02 8.28677426705E-02 8.39715693505E-02 8.49984547393E-02 8.60209716817E-02 8.71640144761E-02 8.82313564100E-02 8.93615417508E-02 9.04718268174E-02 9.16030179426E-02 9.27673005361E-02 9.39133061471E-02 9.51165645404E-02 9.63164948250E-02 9.75098745106E-02 9.87643293989E-02 9.99752267456E-02 1.01259419400E-01 1.02500537459E-01 1.03831767686E-01 1.05085672250E-01 1.06445561542E-01 1.07782510842E-01 1.09138776188E-01 1.10485471218E-01 1.11910708716E-01 1.13281093016E-01 1.14753764653E-01 1.16152660019E-01 1.17632209591E-01 1.19119466853E-01 1.20603435970E-01 1.22139095826E-01 1.23657754098E-01 1.25226976111E-01 1.26789520974E-01 1.28384905440E-01 1.30001667135E-01 1.31636684167E-01 1.33298867676E-01 1.34961998014E-01 1.36671704072E-01 1.38394444809E-01 1.40114835594E-01 1.41892289817E-01 1.43676543463E-01 1.45477252887E-01 1.47312643345E-01 1.49172668326E-01 1.51029812173E-01 1.52950953334E-01 1.54855990339E-01 1.56826520807E-01 1.58778263727E-01 1.60788803926E-01 1.62805772619E-01 1.64853343717E-01 1.66924150315E-01 1.69034027639E-01 1.71149989657E-01 1.73303607654E-01 1.75481723721E-01 1.77697629203E-01 1.79930325280E-01 1.82200407781E-01 1.84476531048E-01 1.86800514386E-01 1.89161153459E-01 1.91537370488E-01 1.93940138539E-01 1.96381164164E-01 1.98849256930E-01 2.01358797944E-01 2.03885776350E-01 2.06458817514E-01 2.09043095975E-01 2.11683979063E-01 2.14331694372E-01 2.17040496890E-01 2.19761877847E-01 2.22532265107E-01 2.25341160193E-01 2.28151859496E-01 2.31045409635E-01 2.33933614078E-01 2.36888550228E-01 2.39859897661E-01 2.42883814591E-01 2.45933837686E-01 2.49031701628E-01 2.52157994777E-01 2.55334569635E-01 2.58537559847E-01 2.61806622302E-01 2.65081552034E-01 2.68425054559E-01 2.71802856201E-01 2.75216178897E-01 2.78674089686E-01 2.82195164339E-01 2.85730747060E-01 2.89328499344E-01 2.92965762524E-01 2.96654547639E-01 3.00386161217E-01 3.04164978528E-01 3.07987387132E-01 3.11866230353E-01 3.15776053254E-01 3.19767344539E-01 3.23766714533E-01 3.27867728333E-01 3.31964389200E-01 3.36161184096E-01 3.40380511585E-01 3.44664619375E-01 3.48999805601E-01 3.53388711575E-01 3.57830265082E-01 3.62329213163E-01 3.66900185312E-01 3.71496183571E-01 3.76185599512E-01 3.80911668575E-01 3.85698804440E-01 3.90559511635E-01 3.95467511579E-01 4.00434490801E-01 4.05479758275E-01 4.10572293869E-01 4.15747890988E-01 4.20969357740E-01 4.26265046583E-01 4.31623395789E-01 4.37063093848E-01 4.42553217156E-01 4.48119466069E-01 4.53759242931E-01 4.59466255971E-01 4.65245264034E-01 4.71093467143E-01 4.77022438760E-01 4.83027015679E-01 4.89093701450E-01 4.95254597594E-01 5.01478105948E-01 5.07790020500E-01 5.14173953880E-01 5.20645371528E-01 5.27190566747E-01 5.33820229377E-01 5.40539130561E-01 5.47336026856E-01 5.54222033364E-01 5.61193149759E-01 5.68252301255E-01 5.75394823250E-01 5.82641703160E-01 5.89962880116E-01 5.97383098262E-01 6.04902750048E-01 6.12505917830E-01 6.20216415208E-01 6.28010417920E-01 6.35913639832E-01 6.43911879724E-01 6.52011515627E-01 6.60212268992E-01 6.68517219732E-01 6.76925690146E-01 6.85442718892E-01 6.94058918642E-01 7.02791103393E-01 7.11634873546E-01 7.20581206854E-01 7.29646744892E-01 7.38825316874E-01 7.48115662695E-01 7.57527209397E-01 7.67058069352E-01 7.76703691629E-01 7.86476068765E-01 7.96364068987E-01 8.06383302007E-01 8.16528735152E-01 8.26796111883E-01 8.37196460989E-01 8.47724851070E-01 8.58389103522E-01 8.69187035855E-01 8.80118910859E-01 8.91189782288E-01 9.02398891622E-01 9.13749234897E-01 9.25245361646E-01 9.36878737106E-01 9.48665725031E-01 9.60597043463E-01 9.72680889783E-01 9.84914552668E-01 9.97301217924E-01 1.00984773346E+00 1.02254797770E+00 1.03541210156E+00 1.04843502824E+00 1.06162153291E+00 1.07497614583E+00 1.08849409610E+00 1.10218747719E+00 1.11605003065E+00 1.13008813144E+00 1.14430300605E+00 1.15869463379E+00 1.17326977179E+00 1.18802762480E+00 1.20296738354E+00 1.21810180213E+00 1.23342033535E+00 1.24893682940E+00 1.26464433632E+00 1.28055210213E+00 1.29665859052E+00 1.31296588699E+00 1.32948109801E+00 1.34620376517E+00 1.36313585088E+00 1.38028107771E+00 1.39764197353E+00 1.41522138448E+00 1.43301980756E+00 1.45104866105E+00 1.46929461107E+00 1.48777755724E+00 1.50648896641E+00 1.52543741642E+00 1.54462540406E+00 1.56405229803E+00 1.58372333990E+00 1.60364391393E+00 1.62381349994E+00 1.64423722494E+00 1.66491836495E+00 1.68585613493E+00 1.70706321088E+00 1.72853125847E+00 1.75027328306E+00 1.77228565255E+00 1.79457793493E+00 1.81714872972E+00 1.84000321325E+00 1.86314558199E+00 1.88657915208E+00 1.91030689448E+00 1.93433340386E+00 1.95866209974E+00 1.98329602833E+00 2.00823979999E+00 2.03349889393E+00 2.05907287046E+00 2.08497136079E+00 2.11119199407E+00 2.13774567892E+00 2.16463087808E+00 2.19185618018E+00 2.21942251823E+00 2.24733544880E+00 2.27559959241E+00 2.30421963021E+00 2.33319777549E+00 2.36254231356E+00 2.39225524993E+00 2.42234073462E+00 2.45280601560E+00 2.48365114208E+00 2.51488908324E+00 2.54651627383E+00 2.57854085638E+00 2.61097060068E+00 2.64380522632E+00 2.67705464231E+00 2.71072092225E+00 2.74481036084E+00 2.77932978212E+00 2.81428133206E+00 2.84967334068E+00 2.88550992058E+00 2.92179701340E+00 2.95853988999E+00 2.99574532416E+00 3.03341782592E+00 3.07156462242E+00 3.11018875147E+00 3.14930152737E+00 3.18890309783E+00 3.22900394226E+00 3.26960800605E+00 3.31072260941E+00 3.35235378985E+00 3.39450981261E+00 3.43719225338E+00 3.48041379654E+00 3.52417781496E+00 3.56849126957E+00 3.61336178175E+00 3.65879668700E+00 3.70480124538E+00 3.75138491518E+00 3.79855330875E+00 3.84631483140E+00 3.89467588756E+00 3.94364428107E+00 3.99322870196E+00 4.04343601841E+00 4.09427273519E+00 4.14574903615E+00 4.19787280531E+00 4.25064923339E+00 4.30409039540E+00 4.35820138668E+00 4.41299260736E+00 4.46847177701E+00 4.52464794726E+00 4.58152932628E+00 4.63912544903E+00 4.69744331588E+00 4.75649559547E+00 4.81628762034E+00 4.87683052797E+00 4.93813479321E+00 5.00020736851E+00 5.06305915316E+00 5.12670078945E+00 5.19114055948E+00 5.25638967108E+00 5.32245641300E+00 5.38935422590E+00 5.45708945405E+00 5.52567650714E+00 5.59512233205E+00 5.66544137274E+00 5.73664125465E+00 5.80873460016E+00 5.88173295853E+00 5.95564632836E+00 6.03048727162E+00 6.10626599806E+00 6.18299577936E+00 6.26068748911E+00 6.33935368071E+00 6.41900535767E+00 6.49965649024E+00 6.58131834443E+00 6.66400342893E+00 6.74772517645E+00 6.83249615714E+00 6.91832931321E+00 7.00523768064E+00 7.09323550043E+00 7.18233554282E+00 7.27255137941E+00 7.36389737074E+00 7.45638721520E+00 7.55003536448E+00 7.64485590900E+00 7.74086343939E+00 7.83807303034E+00 7.93649892752E+00 8.03615709080E+00 8.13706177569E+00 8.23922922508E+00 8.34267447751E+00 8.44741404434E+00 8.55346314377E+00 8.66083820814E+00 8.76955590626E+00 8.87963259159E+00 8.99108515267E+00 9.10393022032E+00 9.21818528823E+00 9.33386762952E+00 9.45099506388E+00 9.56958483516E+00 9.68965549059E+00 9.81122471490E+00 9.93431151538E+00 1.00589338309E+01 1.01851112083E+01 1.03128624218E+01 1.04422063601E+01 1.05731632710E+01 1.07057523551E+01 1.08399935973E+01 1.09759077957E+01 1.11135143361E+01 1.12528350156E+01 1.13938896569E+01 1.15367002484E+01 1.16812874806E+01 1.18276737708E+01 1.19758799217E+01 1.21259290523E+01 1.22778429572E+01 1.24316444661E+01 1.25873559393E+01 1.27450013467E+01 1.29046030644E+01 1.30661856077E+01 1.32297723452E+01 1.33953874963E+01 1.35630551797E+01 1.37328008265E+01 1.39046487930E+01 1.40786240760E+01 1.42547528492E+01 1.44330600227E+01 1.46135725394E+01 1.47963158317E+01 1.49813166999E+01 1.51686023366E+01 1.53581996243E+01 1.55501357705E+01 1.57444387736E+01 1.59411361633E+01 1.61402567272E+01 1.63418284383E+01 1.65458807893E+01 1.67524419709E+01 1.69615421658E+01 1.71732105515E+01 1.73874773101E+01 1.76043724389E+01 1.78239268215E+01 1.80461708260E+01 1.82711362132E+01 1.84988534659E+01 1.87293551357E+01 1.89626725632E+01 1.91988382540E+01 1.94378846821E+01 1.96798447948E+01 1.99247514531E+01 2.01726382607E+01 2.04235386193E+01 2.06774866062E+01 2.09345164731E+01 2.11946627971E+01 2.14579600031E+01 2.17244432647E+01 2.19941481378E+01 2.22671097114E+01 2.25433641635E+01 2.28229473670E+01 2.31058956473E+01 2.33922456949E+01 2.36820340728E+01 2.39752981550E+01 2.42720747903E+01 2.45724018922E+01 2.48763168540E+01 2.51838576979E+01 2.54950625187E+01 2.58099697194E+01 2.61286178829E+01 2.64510452048E+01 2.67772911930E+01 2.71073945025E+01 2.74413943246E+01 2.77793299902E+01 2.81212408647E+01 2.84671666955E+01 2.88171467903E+01 2.91712212487E+01 2.95294296086E+01 2.98918119333E+01 3.02584078634E+01 3.06292576240E+01 3.10044010359E+01 3.13838779137E+01 3.17677283991E+01 3.21559922092E+01 3.25487090237E+01 3.29459188887E+01 3.33476609413E+01 3.37539750340E+01 3.41649000383E+01 3.45804754180E+01 3.50007397275E+01 3.54257317480E+01 3.58554897647E+01 3.62900518342E+01 3.67294555070E+01 3.71737382011E+01 3.76229367662E+01 3.80770875833E+01 3.85362265515E+01 3.90003892337E+01 3.94696101711E+01 3.99439237431E+01 4.04233634103E+01 4.09079618525E+01 4.13977512331E+01 4.18927628381E+01 4.23930265848E+01 4.28985722379E+01 4.34094279844E+01 4.39256211630E+01 4.44471779145E+01 4.49741232986E+01 4.55064810122E+01 4.60442733655E+01 4.65875213708E+01 4.71362445252E+01 4.76904606128E+01 4.82501858530E+01 4.88154348524E+01 4.93862200531E+01 4.99625521954E+01 5.05444399048E+01 5.11318895556E+01 5.17249054712E+01 5.23234893732E+01 5.29276406715E+01 5.35373561098E+01 5.41526296106E+01 5.47734523240E+01 5.53998123974E+01 5.60316947663E+01 5.66690810983E+01 5.73119496917E+01 5.79602751310E+01 5.86140282605E+01 5.92731760234E+01 5.99376812770E+01 6.06075024973E+01 6.12825938246E+01 6.19629045381E+01 6.26483791552E+01 6.33389571028E+01 6.40345724745E+01 6.47351538753E+01 6.54406240414E+01 6.61508998833E+01 6.68658919147E+01 6.75855041364E+01 6.83096339572E+01 6.90381714605E+01 6.97709996191E+01 7.05079937662E+01 7.12490210528E+01 7.19939406180E+01 7.27426030488E+01 7.34948498511E+01 7.42505134665E+01 7.50094164745E+01 7.57713717196E+01 7.65361815378E+01 7.73036376600E+01 7.80735203864E+01 7.88455987228E+01 7.96196295187E+01 8.03953572026E+01 8.11725132405E+01 8.19508158579E+01 8.27299692983E+01 8.35096635565E+01 8.42895736399E+01 8.50693592056E+01 8.58486640726E+01 8.66271153972E+01 8.74043235993E+01 8.81798810255E+01 8.89533621998E+01 8.97243227309E+01 9.04922984983E+01 9.12568056682E+01 9.20173394218E+01 9.27733735844E+01 9.35243599864E+01 9.42697276081E+01 9.50088820314E+01 9.57412045405E+01 9.64660517285E+01 9.71827543835E+01 9.78906169707E+01 9.85889169939E+01 9.92769039116E+01 9.99537988140E+01 1.00618793250E+02 1.01271048862E+02 1.01909696278E+02 1.02533834754E+02 1.03142531094E+02 1.03734819250E+02 1.04309699348E+02 1.04866137206E+02 1.05403063669E+02 1.05919373855E+02 1.06413926774E+02 1.06885544638E+02 1.07333012476E+02 1.07755077772E+02 1.08150449798E+02 1.08517799812E+02 1.08855760503E+02 1.09162926007E+02 1.09437851976E+02 1.09679055777E+02 1.09885016452E+02 1.10054175562E+02 1.10184937598E+02 1.10275670647E+02 1.10324707636E+02 1.10330347248E+02 1.10290855734E+02 1.10204468270E+02 1.10069391248E+02 1.09883804503E+02 1.09645863884E+02 1.09353704567E+02 1.09005444287E+02 1.08599187370E+02 1.08133028814E+02 1.07605059597E+02 1.07013371673E+02 1.06356064043E+02 1.05631249384E+02 1.04837061080E+02 1.03971661374E+02 1.03033249508E+02 1.02020071393E+02 1.00930429592E+02 9.97626942873E+01 9.85153146683E+01 9.71868319474E+01 9.57758925385E+01 9.42812624021E+01 9.27018423299E+01 9.10366839623E+01 8.92850067321E+01 8.74462158042E+01 8.55199204372E+01 8.35059535935E+01 8.14043917715E+01 7.92155757130E+01 7.69401316160E+01 7.45789923949E+01 7.21334194405E+01 6.96050241601E+01 6.69957896289E+01 6.43080912926E+01 6.15447172948E+01 5.87088874638E+01 5.58042712388E+01 5.28350031732E+01 4.98056967555E+01 4.67214549837E+01 4.35878779512E+01 4.04110664006E+01 3.71976208381E+01 3.39546356379E+01 3.06896872473E+01 2.74108160338E+01 2.41265009696E+01 2.08456264506E+01 1.75774405931E+01 1.43315042699E+01 1.11176306988E+01 7.94581418888E+00 4.82614876619E+00 1.76873542418E+00 -1.21642154338E+00 -4.11952894927E+00 -6.93112997673E+00 -9.64223871081E+00 -1.22444834247E+01 -1.47302568660E+01 -1.70928707634E+01 -1.93267125067E+01 -2.14273997555E+01 -2.33919287373E+01 -2.52188108462E+01 -2.69081909994E+01 -2.84619400486E+01 -2.98837127228E+01 -3.11789602877E+01 -3.23548872107E+01 -3.34203379364E+01 -3.43856004933E+01 -3.52621108889E+01 -3.60620421072E+01 -3.67977610728E+01 -3.74811365724E+01 -3.81226822781E+01 -3.87305213070E+01 -3.93091619539E+01 -3.98580805156E+01 -4.03701150941E+01 -4.08296869759E+01 -4.12108821777E+01 -4.14754478975E+01 -4.15707888310E+01 -4.14280854597E+01 -4.09607060269E+01 -4.00631467280E+01 -3.86108129601E+01 -3.64610559767E+01 -3.34559759680E+01 -2.94279141431E+01 -2.42062200299E+01 -1.76486242500E+01 -9.48266713486E+00 -1.05670680183E+00 1.04766166819E-01 -1.03869381123E-02 1.02980187699E-03 -1.02098926402E-04 1.01223596454E-05 -1.00372903823E-06 9.95862426891E-08 -1.01232878387E-08 1.48861150657E-09 -1.07256909619E-09 9.65210585059E-01 727 1.22762541892E-01 1.24306705023E-01 1.25870291353E-01 1.27453545195E-01 1.29040619054E-01 1.30693402571E-01 1.32283719471E-01 1.34039915973E-01 1.35681922757E-01 1.37318539850E-01 1.39137436684E-01 1.40844000232E-01 1.42646078146E-01 1.44419810881E-01 1.46226145668E-01 1.48083544058E-01 1.49914875683E-01 1.51833543638E-01 1.53748690857E-01 1.55655368463E-01 1.57655189679E-01 1.59591128669E-01 1.61638533789E-01 1.63622848591E-01 1.65743885320E-01 1.67750413635E-01 1.69917612498E-01 1.72051954983E-01 1.74216901600E-01 1.76369107622E-01 1.78640826207E-01 1.80831918556E-01 1.83178187681E-01 1.85415465265E-01 1.87775512566E-01 1.90148871674E-01 1.92519102648E-01 1.94968670535E-01 1.97394577071E-01 1.99898214829E-01 2.02393679447E-01 2.04940320754E-01 2.07520972510E-01 2.10130980914E-01 2.12783691584E-01 2.15439835034E-01 2.18167880679E-01 2.20917531717E-01 2.23665718927E-01 2.26501630935E-01 2.29349884010E-01 2.32224961207E-01 2.35154255989E-01 2.38122767050E-01 2.41089085004E-01 2.44153802180E-01 2.47196575390E-01 2.50339981368E-01 2.53457480640E-01 2.56665661566E-01 2.59885830117E-01 2.63154408734E-01 2.66460242942E-01 2.69827307214E-01 2.73205940092E-01 2.76643674595E-01 2.80120770581E-01 2.83657179861E-01 2.87221460775E-01 2.90844512584E-01 2.94479358576E-01 2.98188785983E-01 3.01956013583E-01 3.05749466965E-01 3.09585581732E-01 3.13482038639E-01 3.17422028977E-01 3.21427209251E-01 3.25461550072E-01 3.29568085088E-01 3.33694525123E-01 3.37909089797E-01 3.42137000859E-01 3.46459864995E-01 3.50804779854E-01 3.55226570413E-01 3.59709447045E-01 3.64198392127E-01 3.68815099849E-01 3.73427228989E-01 3.78142979804E-01 3.82886927432E-01 3.87713321116E-01 3.92582538944E-01 3.97527210357E-01 4.02518282880E-01 4.07588559028E-01 4.12702292114E-01 4.17919079046E-01 4.23148532368E-01 4.28484870153E-01 4.33876705213E-01 4.39325873425E-01 4.44846098421E-01 4.50465266867E-01 4.56110407707E-01 4.61853129289E-01 4.67659460828E-01 4.73547487997E-01 4.79504222312E-01 4.85536285493E-01 4.91638288262E-01 4.97829614509E-01 5.04072055050E-01 5.10441509136E-01 5.16827819511E-01 5.23371563259E-01 5.29913589771E-01 5.36610931468E-01 5.43347055100E-01 5.50185486877E-01 5.57105734078E-01 5.64111787264E-01 5.71202162860E-01 5.78383976140E-01 5.85679326749E-01 5.93017674264E-01 6.00501790413E-01 6.08046523139E-01 6.15688586514E-01 6.23446823212E-01 6.31281860406E-01 6.39211311104E-01 6.47264242415E-01 6.55394156365E-01 6.63654861324E-01 6.71990602678E-01 6.80444019975E-01 6.88997832737E-01 6.97680194123E-01 7.06444735740E-01 7.15330131418E-01 7.24332570505E-01 7.33442687438E-01 7.42667706838E-01 7.52003516191E-01 7.61467576082E-01 7.71052218148E-01 7.80737281689E-01 7.90571035240E-01 8.00506142491E-01 8.10581414247E-01 8.20772350305E-01 8.31102245985E-01 8.41550650705E-01 8.52133671651E-01 8.62858602063E-01 8.73708644163E-01 8.84700590681E-01 8.95828543183E-01 9.07096990016E-01 9.18499033100E-01 9.30066290763E-01 9.41753740253E-01 9.53598627498E-01 9.65601678243E-01 9.77739072091E-01 9.90046702010E-01 1.00248889496E+00 1.01510439031E+00 1.02787196813E+00 1.04080133154E+00 1.05389217459E+00 1.06714925072E+00 1.08057166847E+00 1.09416710396E+00 1.10792159961E+00 1.12186052780E+00 1.13597741160E+00 1.15025883129E+00 1.16472991412E+00 1.17938151321E+00 1.19421189387E+00 1.20923532884E+00 1.22444914326E+00 1.23984662647E+00 1.25544593330E+00 1.27123050485E+00 1.28722390626E+00 1.30341875178E+00 1.31980878018E+00 1.33641071571E+00 1.35321730153E+00 1.37024044028E+00 1.38747701586E+00 1.40492757742E+00 1.42259987649E+00 1.44049293849E+00 1.45861142470E+00 1.47696234599E+00 1.49553304585E+00 1.51434826516E+00 1.53339425145E+00 1.55268348124E+00 1.57221207412E+00 1.59198497555E+00 1.61201266997E+00 1.63228614295E+00 1.65282081943E+00 1.67360928110E+00 1.69465887685E+00 1.71597660906E+00 1.73755551706E+00 1.75941394756E+00 1.78154272010E+00 1.80395160219E+00 1.82664264640E+00 1.84961603098E+00 1.87288211859E+00 1.89643992733E+00 1.92028845924E+00 1.94444709209E+00 1.96890020543E+00 1.99366883124E+00 2.01874275053E+00 2.04413609381E+00 2.06984677621E+00 2.09587817941E+00 2.12224120324E+00 2.14893541996E+00 2.17596400499E+00 2.20333281193E+00 2.23104588687E+00 2.25910775594E+00 2.28751943121E+00 2.31629831702E+00 2.34542466278E+00 2.37492861286E+00 2.40479763242E+00 2.43504487909E+00 2.46567437570E+00 2.49668546586E+00 2.52808630176E+00 2.55988526451E+00 2.59208185987E+00 2.62468409533E+00 2.65769717941E+00 2.69112025285E+00 2.72497264571E+00 2.75924216778E+00 2.79394865959E+00 2.82908698811E+00 2.86467185072E+00 2.90070146705E+00 2.93718394918E+00 2.97412593570E+00 3.01153274433E+00 3.04940918578E+00 3.08776251116E+00 3.12659820631E+00 3.16592120873E+00 3.20573880338E+00 3.24605958499E+00 3.28688327165E+00 3.32822469848E+00 3.37008069013E+00 3.41246801378E+00 3.45538475328E+00 3.49884420530E+00 3.54284816625E+00 3.58740539691E+00 3.63252323682E+00 3.67820914203E+00 3.72446685533E+00 3.77130924310E+00 3.81873975413E+00 3.86676505814E+00 3.91539648062E+00 3.96463454930E+00 4.01449919044E+00 4.06498551422E+00 4.11610621167E+00 4.16787342796E+00 4.22028721400E+00 4.27336293914E+00 4.32710420585E+00 4.38152096405E+00 4.43662396121E+00 4.49241693396E+00 4.54891290190E+00 4.60611856557E+00 4.66404337484E+00 4.72269577882E+00 4.78208649405E+00 4.84222283882E+00 4.90311622231E+00 4.96477176918E+00 5.02720703832E+00 5.09042282804E+00 5.15443545859E+00 5.21925144696E+00 5.28488238025E+00 5.35133793537E+00 5.41863113310E+00 5.48676496318E+00 5.55575910104E+00 5.62561924943E+00 5.69635650285E+00 5.76798296282E+00 5.84051030022E+00 5.91394708871E+00 5.98830820429E+00 6.06360276144E+00 6.13984407860E+00 6.21704247328E+00 6.29521037619E+00 6.37436155877E+00 6.45450706228E+00 6.53565739523E+00 6.61782859526E+00 6.70103326162E+00 6.78527995283E+00 6.87058757804E+00 6.95696457492E+00 7.04442735630E+00 7.13298831788E+00 7.22266186850E+00 7.31346115949E+00 7.40540134438E+00 7.49849377905E+00 7.59275834683E+00 7.68820392094E+00 7.78484810332E+00 7.88270751278E+00 7.98179348707E+00 8.08212330705E+00 8.18371387210E+00 8.28657855399E+00 8.39073512806E+00 8.49619699655E+00 8.60298531040E+00 8.71111057868E+00 8.82059542889E+00 8.93145129992E+00 9.04370089676E+00 9.15735669841E+00 9.27243870365E+00 9.38896530817E+00 9.50695259401E+00 9.62642050627E+00 9.74738546962E+00 9.86986852142E+00 9.99388710971E+00 1.01194612205E+01 1.02466085258E+01 1.03753511656E+01 1.05057072354E+01 1.06376967073E+01 1.07713409609E+01 1.09066600897E+01 1.10436747649E+01 1.11824058111E+01 1.13228758777E+01 1.14651054228E+01 1.16091161214E+01 1.17549308490E+01 1.19025715039E+01 1.20520611309E+01 1.22034222472E+01 1.23566781408E+01 1.25118528393E+01 1.26689691450E+01 1.28280524496E+01 1.29891256036E+01 1.31522144585E+01 1.33173430745E+01 1.34845377422E+01 1.36538228269E+01 1.38252245359E+01 1.39987694497E+01 1.41744836937E+01 1.43523942144E+01 1.45325275919E+01 1.47149117196E+01 1.48995741791E+01 1.50865433925E+01 1.52758469363E+01 1.54675143644E+01 1.56615739547E+01 1.58580559927E+01 1.60569891773E+01 1.62584046461E+01 1.64623323931E+01 1.66688026088E+01 1.68778475435E+01 1.70894978971E+01 1.73037855677E+01 1.75207436986E+01 1.77404033316E+01 1.79627991519E+01 1.81879629042E+01 1.84159296057E+01 1.86467323477E+01 1.88804068377E+01 1.91169863814E+01 1.93565077867E+01 1.95990058947E+01 1.98445171257E+01 2.00930772189E+01 2.03447243532E+01 2.05994943402E+01 2.08574262261E+01 2.11185573612E+01 2.13829263977E+01 2.16505718609E+01 2.19215342721E+01 2.21958525638E+01 2.24735666560E+01 2.27547182602E+01 2.30393472180E+01 2.33274964473E+01 2.36192066249E+01 2.39145205076E+01 2.42134814663E+01 2.45161324346E+01 2.48225168578E+01 2.51326793982E+01 2.54466640390E+01 2.57645166793E+01 2.60862820222E+01 2.64120070797E+01 2.67417369350E+01 2.70755196905E+01 2.74134019649E+01 2.77554319139E+01 2.81016574420E+01 2.84521278118E+01 2.88068915397E+01 2.91659992589E+01 2.95294997130E+01 2.98974447769E+01 3.02698845362E+01 3.06468708511E+01 3.10284555626E+01 3.14146912485E+01 3.18056303839E+01 3.22013265866E+01 3.26018331952E+01 3.30072045925E+01 3.34174954460E+01 3.38327609403E+01 3.42530560551E+01 3.46784369214E+01 3.51089602685E+01 3.55446821495E+01 3.59856602780E+01 3.64319519324E+01 3.68836150956E+01 3.73407083216E+01 3.78032899953E+01 3.82714197428E+01 3.87451564233E+01 3.92245605151E+01 3.97096917379E+01 4.02006107744E+01 4.06973784369E+01 4.12000560185E+01 4.17087051007E+01 4.22233867014E+01 4.27441638247E+01 4.32710982095E+01 4.38042524147E+01 4.43436892232E+01 4.48894714811E+01 4.54416626199E+01 4.60003254219E+01 4.65655238662E+01 4.71373210974E+01 4.77157810549E+01 4.83009670485E+01 4.88929432688E+01 4.94917733020E+01 5.00975207242E+01 5.07102496023E+01 5.13300233612E+01 5.19569053656E+01 5.25909595222E+01 5.32322483643E+01 5.38808354875E+01 5.45367830008E+01 5.52001538864E+01 5.58710097428E+01 5.65494124874E+01 5.72354232690E+01 5.79291028669E+01 5.86305112701E+01 5.93397082367E+01 6.00567526349E+01 6.07817025897E+01 6.15146154606E+01 6.22555480550E+01 6.30045555963E+01 6.37616930107E+01 6.45270137869E+01 6.53005701782E+01 6.60824135962E+01 6.68725940625E+01 6.76711594682E+01 6.84781573936E+01 6.92936329635E+01 7.01176299368E+01 7.09501901768E+01 7.17913538198E+01 7.26411588466E+01 7.34996410405E+01 7.43668341138E+01 7.52427693749E+01 7.61274754247E+01 7.70209783711E+01 7.79233017505E+01 7.88344656910E+01 7.97544875990E+01 8.06833815310E+01 8.16211579802E+01 8.25678241683E+01 8.35233832087E+01 8.44878345335E+01 8.54611733502E+01 8.64433903995E+01 8.74344720177E+01 8.84343997801E+01 8.94431501756E+01 9.04606945113E+01 9.14869987469E+01 9.25220229674E+01 9.35657213280E+01 9.46180418012E+01 9.56789258849E+01 9.67483081446E+01 9.78261162682E+01 9.89122702613E+01 1.00006682581E+02 1.01109257627E+02 1.02219891361E+02 1.03338471055E+02 1.04464874705E+02 1.05598971077E+02 1.06740618831E+02 1.07889666329E+02 1.09045951496E+02 1.10209300698E+02 1.11379529047E+02 1.12556439582E+02 1.13739822436E+02 1.14929455067E+02 1.16125101429E+02 1.17326511147E+02 1.18533419525E+02 1.19745546322E+02 1.20962595916E+02 1.22184256120E+02 1.23410198007E+02 1.24640074649E+02 1.25873521291E+02 1.27110154028E+02 1.28349569384E+02 1.29591343463E+02 1.30835031510E+02 1.32080166761E+02 1.33326260015E+02 1.34572798493E+02 1.35819245263E+02 1.37065038471E+02 1.38309590077E+02 1.39552285702E+02 1.40792482596E+02 1.42029509974E+02 1.43262667344E+02 1.44491223247E+02 1.45714415249E+02 1.46931447992E+02 1.48141492605E+02 1.49343685702E+02 1.50537128068E+02 1.51720883795E+02 1.52893978895E+02 1.54055400672E+02 1.55204096014E+02 1.56338970575E+02 1.57458887781E+02 1.58562667166E+02 1.59649083848E+02 1.60716866732E+02 1.61764697926E+02 1.62791211043E+02 1.63794990621E+02 1.64774570482E+02 1.65728433080E+02 1.66655008018E+02 1.67552671290E+02 1.68419744246E+02 1.69254492439E+02 1.70055125024E+02 1.70819793690E+02 1.71546592064E+02 1.72233555148E+02 1.72878658294E+02 1.73479817486E+02 1.74034888498E+02 1.74541666905E+02 1.74997888181E+02 1.75401228003E+02 1.75749302189E+02 1.76039667977E+02 1.76269824653E+02 1.76437214580E+02 1.76539225088E+02 1.76573189893E+02 1.76536391850E+02 1.76426065056E+02 1.76239398354E+02 1.75973538746E+02 1.75625595342E+02 1.75192644442E+02 1.74671734497E+02 1.74059892303E+02 1.73354129267E+02 1.72551449557E+02 1.71648857778E+02 1.70643368312E+02 1.69532015493E+02 1.68311864434E+02 1.66980023548E+02 1.65533657093E+02 1.63970000041E+02 1.62286373447E+02 1.60480201349E+02 1.58549028318E+02 1.56490539510E+02 1.54302581003E+02 1.51983181926E+02 1.49530578060E+02 1.46943236584E+02 1.44219882266E+02 1.41359525214E+02 1.38361489313E+02 1.35225442598E+02 1.31951428029E+02 1.28539895635E+02 1.24991735496E+02 1.21308310842E+02 1.17491491985E+02 1.13543689971E+02 1.09467890468E+02 1.05267686283E+02 1.00947309371E+02 9.65116608774E+01 9.19663396266E+01 8.73176670098E+01 8.25727093614E+01 7.77392954709E+01 7.28260296023E+01 6.78422984326E+01 6.27982712826E+01 5.77048927595E+01 5.25738664489E+01 4.74176289433E+01 4.22493129645E+01 3.70826984934E+01 3.19321508821E+01 2.68125448000E+01 2.17391736922E+01 1.67276426075E+01 1.17937454336E+01 6.95332460472E+00 2.22211391552E+00 -2.38443534350E+00 -6.85134516090E+00 -1.11643161566E+01 -1.53099467952E+01 -1.92759638775E+01 -2.30514601837E+01 -2.66271362408E+01 -2.99955398765E+01 -3.31512972275E+01 -3.60913271300E+01 -3.88150290787E+01 -4.13244331843E+01 -4.36242993086E+01 -4.57221491011E+01 -4.76282147874E+01 -4.93552837594E+01 -5.09184189070E+01 -5.23345304467E+01 -5.36217747534E+01 -5.47987549718E+01 -5.58834975805E+01 -5.68921807513E+01 -5.78375937177E+01 -5.87273111023E+01 -5.95615754989E+01 -6.03308934709E+01 -6.10133691076E+01 -6.15718231633E+01 -6.19507789273E+01 -6.20734411857E+01 -6.18388502358E+01 -6.11194672049E+01 -5.97595410048E+01 -5.75747246059E+01 -5.43535604050E+01 -4.98615996324E+01 -4.38495352393E+01 -3.60632496199E+01 -2.62905367433E+01 -1.41249430842E+01 -1.57394896984E+00 1.56047637853E-01 -1.54711888793E-02 1.53387447382E-03 -1.52074826049E-04 1.50771027771E-05 -1.49504102705E-06 1.48332836249E-07 -1.50815186185E-08 2.22438092267E-09 -1.61134525066E-09 -6.42464480785E-01 4.28231143784E-01 727 -2.11090974047E-04 -2.16434768376E-04 -2.21913841548E-04 -2.27531618165E-04 -2.33291609523E-04 -2.39197415810E-04 -2.45252728350E-04 -2.51461331914E-04 -2.57827107087E-04 -2.64354032690E-04 -2.71046188268E-04 -2.77907756642E-04 -2.84943026520E-04 -2.92156395182E-04 -2.99552371223E-04 -3.07135577375E-04 -3.14910753396E-04 -3.22882759030E-04 -3.31056577048E-04 -3.39437316360E-04 -3.48030215208E-04 -3.56840644443E-04 -3.65874110879E-04 -3.75136260735E-04 -3.84632883166E-04 -3.94369913882E-04 -4.04353438853E-04 -4.14589698119E-04 -4.25085089688E-04 -4.35846173534E-04 -4.46879675697E-04 -4.58192492489E-04 -4.69791694804E-04 -4.81684532536E-04 -4.93878439112E-04 -5.06381036137E-04 -5.19200138160E-04 -5.32343757555E-04 -5.45820109532E-04 -5.59637617270E-04 -5.73804917183E-04 -5.88330864319E-04 -6.03224537890E-04 -6.18495246953E-04 -6.34152536224E-04 -6.50206192048E-04 -6.66666248510E-04 -6.83542993714E-04 -7.00846976207E-04 -7.18589011574E-04 -7.36780189203E-04 -7.55431879208E-04 -7.74555739543E-04 -7.94163723285E-04 -8.14268086106E-04 -8.34881393933E-04 -8.56016530803E-04 -8.77686706916E-04 -8.99905466890E-04 -9.22686698231E-04 -9.46044640009E-04 -9.69993891759E-04 -9.94549422610E-04 -1.01972658064E-03 -1.04554110245E-03 -1.07200912305E-03 -1.09914718589E-03 -1.12697225322E-03 -1.15550171671E-03 -1.18475340829E-03 -1.21474561132E-03 -1.24549707201E-03 -1.27702701112E-03 -1.30935513601E-03 -1.34250165293E-03 -1.41654304720E-03 -1.41154992591E-03 -1.44752956637E-03 -1.48375014135E-03 -1.52161360518E-03 -1.55990567463E-03 -1.59932578595E-03 -1.63990627907E-03 -1.68118686784E-03 -1.72394811463E-03 -1.76754588135E-03 -1.81237069847E-03 -1.85836365713E-03 -1.90489806041E-03 -1.95361601676E-03 -2.00278293392E-03 -2.05333084756E-03 -2.10571006435E-03 -2.15899184778E-03 -2.21364140581E-03 -2.26934346680E-03 -2.32717556404E-03 -2.38616778576E-03 -2.44624988314E-03 -2.50834343884E-03 -2.57157396301E-03 -2.63691650602E-03 -2.70348817916E-03 -2.77220649585E-03 -2.84207199692E-03 -2.91443073514E-03 -2.98808043698E-03 -3.06361704692E-03 -3.14107510337E-03 -3.22061931653E-03 -3.30217619943E-03 -3.38596644518E-03 -3.47153719686E-03 -3.55942254330E-03 -3.64940596150E-03 -3.74185910844E-03 -3.83661278032E-03 -3.93377573411E-03 -4.03310273955E-03 -4.13551331653E-03 -4.24007083754E-03 -4.34722481783E-03 -4.45765462475E-03 -4.57010100728E-03 -4.68585305959E-03 -4.80450114347E-03 -4.92631080391E-03 -5.05104249545E-03 -5.17866288336E-03 -5.30972377718E-03 -5.44443327363E-03 -5.58209266282E-03 -5.72324302320E-03 -5.86840429865E-03 -6.01663766498E-03 -6.16920906826E-03 -6.32553476629E-03 -6.48545467438E-03 -6.64966426696E-03 -6.81787045525E-03 -6.99048362699E-03 -7.16740115702E-03 -7.34911913829E-03 -7.53495330671E-03 -7.72566781486E-03 -7.92120272498E-03 -8.12182337391E-03 -8.32736571606E-03 -8.53837297601E-03 -8.75422762143E-03 -8.97581323980E-03 -9.20326733953E-03 -9.43595123290E-03 -9.67507727310E-03 -9.91999185947E-03 -1.01710133407E-02 -1.04286800171E-02 -1.06926284338E-02 -1.09630618460E-02 -1.12407600672E-02 -1.15253122093E-02 -1.18170309407E-02 -1.21160899904E-02 -1.24229618663E-02 -1.27371308487E-02 -1.30597589651E-02 -1.33904701703E-02 -1.37295049325E-02 -1.40767094894E-02 -1.44333253877E-02 -1.47986477552E-02 -1.51732389722E-02 -1.55575744875E-02 -1.59510005774E-02 -1.63546802789E-02 -1.67690349905E-02 -1.71935382857E-02 -1.76288100801E-02 -1.80750695574E-02 -1.85324932367E-02 -1.90018656830E-02 -1.94825915128E-02 -1.99759617356E-02 -2.04816526323E-02 -2.10000113508E-02 -2.15315513099E-02 -2.20767360174E-02 -2.26356438293E-02 -2.32084428746E-02 -2.37962366800E-02 -2.43984544343E-02 -2.50161346647E-02 -2.56494623202E-02 -2.62988241612E-02 -2.69644549918E-02 -2.76467965566E-02 -2.83473152501E-02 -2.90643346862E-02 -2.98003273930E-02 -3.05546331880E-02 -3.13280295930E-02 -3.21212317612E-02 -3.29343255657E-02 -3.37682517051E-02 -3.46226563526E-02 -3.54992199722E-02 -3.63980848649E-02 -3.73194190408E-02 -3.82642346421E-02 -3.92325962030E-02 -4.02260781841E-02 -4.12443727349E-02 -4.22880729650E-02 -4.33588993893E-02 -4.44559929474E-02 -4.55814974713E-02 -4.67353779888E-02 -4.79183915274E-02 -4.91315741185E-02 -5.03752482386E-02 -5.16508812136E-02 -5.29576705650E-02 -5.42985358223E-02 -5.56729346573E-02 -5.70825991247E-02 -5.85276359319E-02 -6.00089669629E-02 -6.15281845019E-02 -6.30854657913E-02 -6.46824635747E-02 -6.63198965452E-02 -6.79986306209E-02 -6.97197098427E-02 -7.14850728772E-02 -7.32943475128E-02 -7.51497022554E-02 -7.70522029384E-02 -7.90023404168E-02 -8.10025178794E-02 -8.30527833147E-02 -8.51551049931E-02 -8.73106982465E-02 -8.95208266352E-02 -9.17870577004E-02 -9.41106004613E-02 -9.64928249344E-02 -9.89352535395E-02 -1.01439287558E-01 -1.04007155660E-01 -1.06639999039E-01 -1.09339461669E-01 -1.12107143711E-01 -1.14944981127E-01 -1.17854773188E-01 -1.20837659528E-01 -1.23896643720E-01 -1.27032588809E-01 -1.30248002287E-01 -1.33544921895E-01 -1.36925742329E-01 -1.40391397433E-01 -1.43945271682E-01 -1.47588929375E-01 -1.51324317737E-01 -1.55155278388E-01 -1.59082218872E-01 -1.63108896752E-01 -1.67237448389E-01 -1.71470812280E-01 -1.75811029216E-01 -1.80260786106E-01 -1.84823829482E-01 -1.89502183261E-01 -1.94298530189E-01 -1.99216714995E-01 -2.04259156480E-01 -2.09429328131E-01 -2.14729793351E-01 -2.20165089740E-01 -2.25737465122E-01 -2.31451448251E-01 -2.37309339245E-01 -2.43316313827E-01 -2.49474256811E-01 -2.55788831490E-01 -2.62262841716E-01 -2.68900784408E-01 -2.75706926593E-01 -2.82684589571E-01 -2.89839457356E-01 -2.97175288031E-01 -3.04696720566E-01 -3.12408550529E-01 -3.20315172878E-01 -3.28422300811E-01 -3.36734245585E-01 -3.45256743486E-01 -3.53994151833E-01 -3.62954018080E-01 -3.72139338294E-01 -3.81557792165E-01 -3.91214293771E-01 -4.01114746551E-01 -4.11266254547E-01 -4.21674268483E-01 -4.32346004217E-01 -4.43287344598E-01 -4.54505301586E-01 -4.66007582362E-01 -4.77800364770E-01 -4.89891745333E-01 -5.02289022876E-01 -5.14999861936E-01 -5.28031990262E-01 -5.41394220547E-01 -5.55094359260E-01 -5.69140847843E-01 -5.83542751137E-01 -5.98308893156E-01 -6.13448341947E-01 -6.28970993013E-01 -6.44886262015E-01 -6.61203604713E-01 -6.77934420852E-01 -6.95087773860E-01 -7.12674888449E-01 -7.30707265113E-01 -7.49194829059E-01 -7.68150690898E-01 -7.87585425215E-01 -8.07512050160E-01 -8.27942068674E-01 -8.48889034555E-01 -8.70365320161E-01 -8.92384469370E-01 -9.14960408103E-01 -9.38107900524E-01 -9.61839554310E-01 -9.86171614311E-01 -1.01111839569E+00 -1.03669627364E+00 -1.06292015553E+00 -1.08980748362E+00 -1.11737372142E+00 -1.14563736519E+00 -1.17461488240E+00 -1.20432512171E+00 -1.23478542735E+00 -1.26601602394E+00 -1.29803552886E+00 -1.33086464826E+00 -1.36452263311E+00 -1.39903112258E+00 -1.43441137429E+00 -1.47068576220E+00 -1.50787616806E+00 -1.54600605069E+00 -1.58509899391E+00 -1.62517962363E+00 -1.66627226872E+00 -1.70840274981E+00 -1.75159711118E+00 -1.79588203208E+00 -1.84128526343E+00 -1.88783486445E+00 -1.93555920917E+00 -1.98448903492E+00 -2.03465352467E+00 -2.08608441069E+00 -2.13881300366E+00 -2.19287260056E+00 -2.24829607723E+00 -2.30511829335E+00 -2.36337410927E+00 -2.42309980227E+00 -2.48433221381E+00 -2.54710851787E+00 -2.61146883997E+00 -2.67745189094E+00 -2.74509911945E+00 -2.81445202089E+00 -2.88555306027E+00 -2.95844673052E+00 -3.03317757427E+00 -3.10979228974E+00 -3.18833752702E+00 -3.26886200573E+00 -3.35141541728E+00 -3.43604859572E+00 -3.52281345218E+00 -3.61176365130E+00 -3.70295379965E+00 -3.79643996691E+00 -3.89227983177E+00 -3.99053207285E+00 -4.09125735621E+00 -4.19451731551E+00 -4.30037495599E+00 -4.40889622271E+00 -4.52014721762E+00 -4.63419572859E+00 -4.75111188332E+00 -4.87096726976E+00 -4.99383609385E+00 -5.11979186821E+00 -5.24891300899E+00 -5.38127793822E+00 -5.51696747846E+00 -5.65606448174E+00 -5.79865395010E+00 -5.94482233332E+00 -6.09465880611E+00 -6.24825529860E+00 -6.40570428565E+00 -6.56710268773E+00 -6.73254701470E+00 -6.90213898067E+00 -7.07598122561E+00 -7.25417889224E+00 -7.43683953991E+00 -7.62407451389E+00 -7.81599676745E+00 -8.01272190713E+00 -8.21436936287E+00 -8.42106024788E+00 -8.63291906335E+00 -8.85007399484E+00 -9.07265478861E+00 -9.30079586200E+00 -9.53463411444E+00 -9.77430904801E+00 -1.00199653493E+01 -1.02717489456E+01 -1.05298113405E+01 -1.07943056310E+01 -1.10653898338E+01 -1.13432256714E+01 -1.16279782374E+01 -1.19198161674E+01 -1.22189138336E+01 -1.25254469895E+01 -1.28395980275E+01 -1.31615519456E+01 -1.34914987328E+01 -1.38296330654E+01 -1.41761534451E+01 -1.45312628522E+01 -1.48951708184E+01 -1.52680889164E+01 -1.56502362063E+01 -1.60418339330E+01 -1.64431118134E+01 -1.68543018536E+01 -1.72756426349E+01 -1.77073784034E+01 -1.81497579268E+01 -1.86030363736E+01 -1.90674747136E+01 -1.95433387147E+01 -2.00309018175E+01 -2.05304418297E+01 -2.10422434525E+01 -2.15665980286E+01 -2.21038023331E+01 -2.26541600741E+01 -2.32179822926E+01 -2.37955859299E+01 -2.43872943762E+01 -2.49934386097E+01 -2.56143575166E+01 -2.62503949660E+01 -2.69019044398E+01 -2.75692448776E+01 -2.82527839511E+01 -2.89528971106E+01 -2.96699658564E+01 -3.04043812137E+01 -3.11565423439E+01 -3.19268546271E+01 -3.27157333997E+01 -3.35236012156E+01 -3.43508892491E+01 -3.51980375942E+01 -3.60654938092E+01 -3.69537155693E+01 -3.78631673532E+01 -3.87943245615E+01 -3.97476697256E+01 -4.07236952077E+01 -4.17229025550E+01 -4.27458008750E+01 -4.37929105173E+01 -4.48647592209E+01 -4.59618854754E+01 -4.70848350718E+01 -4.82341648740E+01 -4.94104401935E+01 -5.06142355736E+01 -5.18461348042E+01 -5.31067311346E+01 -5.43966268932E+01 -5.57164332606E+01 -5.70667705474E+01 -5.84482692114E+01 -5.98615668743E+01 -6.13073105920E+01 -6.27861570697E+01 -6.42987701052E+01 -6.58458221913E+01 -6.74279953150E+01 -6.90459777150E+01 -7.07004660758E+01 -7.23921642035E+01 -7.41217840087E+01 -7.58900426571E+01 -7.76976656785E+01 -7.95453835637E+01 -8.14339320387E+01 -8.33640537263E+01 -8.53364942519E+01 -8.73520051983E+01 -8.94113404659E+01 -9.15152574189E+01 -9.36645159643E+01 -9.58598781688E+01 -9.81021061619E+01 -1.00391963190E+02 -1.02730210866E+02 -1.05117610053E+02 -1.07554918613E+02 -1.10042890405E+02 -1.12582275667E+02 -1.15173817579E+02 -1.17818252744E+02 -1.20516309557E+02 -1.23268706611E+02 -1.26076149904E+02 -1.28939334443E+02 -1.31858939074E+02 -1.34835627893E+02 -1.37870046093E+02 -1.40962817957E+02 -1.44114547839E+02 -1.47325814466E+02 -1.50597169763E+02 -1.53929138554E+02 -1.57322212904E+02 -1.60776851382E+02 -1.64293476210E+02 -1.67872470159E+02 -1.71514173572E+02 -1.75218881246E+02 -1.78986838381E+02 -1.82818239695E+02 -1.86713222616E+02 -1.90671865858E+02 -1.94694184943E+02 -1.98780126721E+02 -2.02929568311E+02 -2.07142309392E+02 -2.11418070879E+02 -2.15756486863E+02 -2.20157102299E+02 -2.24619367102E+02 -2.29142630862E+02 -2.33726137698E+02 -2.38369019516E+02 -2.43070292804E+02 -2.47828849521E+02 -2.52643453341E+02 -2.57512732146E+02 -2.62435172281E+02 -2.67409110834E+02 -2.72432729645E+02 -2.77504047814E+02 -2.82620915112E+02 -2.87781004017E+02 -2.92981801638E+02 -2.98220604004E+02 -3.03494505931E+02 -3.08800395139E+02 -3.14134941691E+02 -3.19494592586E+02 -3.24875562583E+02 -3.30273823804E+02 -3.35685100124E+02 -3.41104858696E+02 -3.46528298305E+02 -3.51950344571E+02 -3.57365639693E+02 -3.62768535043E+02 -3.68153081210E+02 -3.73513021621E+02 -3.78841784446E+02 -3.84132473604E+02 -3.89377863215E+02 -3.94570387008E+02 -3.99702136555E+02 -4.04764849306E+02 -4.09749906300E+02 -4.14648324761E+02 -4.19450754559E+02 -4.24147471159E+02 -4.28728375409E+02 -4.33182988178E+02 -4.37500448896E+02 -4.41669514858E+02 -4.45678560278E+02 -4.49515578470E+02 -4.53168182750E+02 -4.56623610352E+02 -4.59868727300E+02 -4.62890036241E+02 -4.65673681326E+02 -4.68205460978E+02 -4.70470838327E+02 -4.72454954996E+02 -4.74142646173E+02 -4.75518461349E+02 -4.76566681054E+02 -4.77271343338E+02 -4.77616266895E+02 -4.77585083620E+02 -4.77161266056E+02 -4.76328165801E+02 -4.75069051018E+02 -4.73367148543E+02 -4.71205690275E+02 -4.68567963367E+02 -4.65437363749E+02 -4.61797456719E+02 -4.57632038429E+02 -4.52925205149E+02 -4.47661426591E+02 -4.41825624712E+02 -4.35403257258E+02 -4.28380408539E+02 -4.20743885085E+02 -4.12481318329E+02 -4.03581270709E+02 -3.94033354418E+02 -3.83828350102E+02 -3.72958336233E+02 -3.61416827018E+02 -3.49198911447E+02 -3.36301405750E+02 -3.22723010876E+02 -3.08464475121E+02 -2.93528767296E+02 -2.77921253561E+02 -2.61649883804E+02 -2.44725381474E+02 -2.27161441733E+02 -2.08974932619E+02 -1.90186102378E+02 -1.70818788750E+02 -1.50900631099E+02 -1.30463284667E+02 -1.09542630968E+02 -8.81789892700E+01 -6.64173211831E+01 -4.43074278864E+01 -2.19041396365E+01 7.32510809534E-01 2.35371303680E+01 4.64388274601E+01 6.93611010459E+01 9.22217584717E+01 1.14932868645E+02 1.37400758210E+02 1.59526051949E+02 1.81203772354E+02 2.02323496509E+02 2.22769584040E+02 2.42421485232E+02 2.61154131964E+02 2.78838425651E+02 2.95341833080E+02 3.10529093221E+02 3.24263053419E+02 3.36405639963E+02 3.46818978623E+02 3.55366672257E+02 3.61915251736E+02 3.66335810038E+02 3.68505834469E+02 3.68311247992E+02 3.65648678102E+02 3.60427963147E+02 3.52574916245E+02 3.42034360908E+02 3.28773455116E+02 3.12785319744E+02 2.94092992227E+02 2.72753710750E+02 2.48863549431E+02 2.22562401226E+02 1.94039307580E+02 1.63538115339E+02 1.31363414277E+02 9.78866875521E+01 6.35525570343E+01 2.88849435366E+01 -5.50711086237E+00 -3.89243270254E+01 -7.05732847191E+01 -9.95644248606E+01 -1.24912884893E+02 -1.45543401256E+02 -1.60300896567E+02 -1.67968861106E+02 -1.67298081069E+02 -1.57050617783E+02 -1.36049178454E+02 -1.03375505055E+02 -5.73825451217E+01 -6.56734199713E+00 6.51112741754E-01 -6.45539396636E-02 6.40012369725E-03 -6.34513329055E-04 6.28827974012E-05 -6.22246845013E-06 6.13655482458E-07 -6.74245296848E-08 4.25046185266E-10 5.35431183674E-09 0.00000000000E+00 0.00000000000E+00 -2.54002098709E-01 727 2.96834679255E-04 3.04349086165E-04 3.12053721253E-04 3.19953400174E-04 3.28053060488E-04 3.36357764753E-04 3.44872703684E-04 3.53603199401E-04 3.62554708754E-04 3.71732826735E-04 3.81143289972E-04 3.90791980320E-04 4.00684928530E-04 4.10828318026E-04 4.21228488764E-04 4.31891941198E-04 4.42825340342E-04 4.54035519937E-04 4.65529486720E-04 4.77314424805E-04 4.89397700172E-04 5.01786865274E-04 5.14489663755E-04 5.27514035291E-04 5.40868120551E-04 5.54560266288E-04 5.68599030553E-04 5.82993188047E-04 5.97751735605E-04 6.12883897815E-04 6.28399132791E-04 6.44307138078E-04 6.60617856719E-04 6.77341483465E-04 6.94488471150E-04 7.12069537222E-04 7.30095670445E-04 7.48578137766E-04 7.67528491355E-04 7.86958575830E-04 8.06880535656E-04 8.27306822739E-04 8.48250204206E-04 8.69723770389E-04 8.91740943001E-04 9.14315483533E-04 9.37461501847E-04 9.61193465002E-04 9.85526206292E-04 1.01047493452E-03 1.03605524351E-03 1.06228312183E-03 1.08917496281E-03 1.11674757480E-03 1.14501819164E-03 1.17400448343E-03 1.20372456764E-03 1.23419702034E-03 1.26544088789E-03 1.29747569880E-03 1.33032147595E-03 1.36399874912E-03 1.39852856778E-03 1.43393251429E-03 1.47023271737E-03 1.50745186593E-03 1.54561322328E-03 1.58474064160E-03 1.62485857695E-03 1.66599210445E-03 1.70816693405E-03 1.75140942653E-03 1.79574661000E-03 1.84120619681E-03 1.88781660084E-03 1.99112285506E-03 1.98493591931E-03 2.03552521096E-03 2.08646630424E-03 2.13970379122E-03 2.19355424564E-03 2.24898779468E-03 2.30605025705E-03 2.36410285580E-03 2.42422964447E-03 2.48553723068E-03 2.54856781905E-03 2.61324069729E-03 2.67868700621E-03 2.74718402470E-03 2.81632796431E-03 2.88741121872E-03 2.96105859580E-03 3.03598306249E-03 3.11283117521E-03 3.19116560874E-03 3.27248095735E-03 3.35543391998E-03 3.43992685447E-03 3.52723928552E-03 3.61615890791E-03 3.70803823851E-03 3.80165479953E-03 3.89827972185E-03 3.99653064142E-03 4.09827249059E-03 4.20184064031E-03 4.30806199030E-03 4.41698441266E-03 4.52883855114E-03 4.64352272038E-03 4.76134394457E-03 4.88167573597E-03 5.00525912851E-03 5.13179553901E-03 5.26180125197E-03 5.39504237651E-03 5.53167176111E-03 5.67134937501E-03 5.81535220882E-03 5.96238274828E-03 6.11306566619E-03 6.26834381869E-03 6.42647251945E-03 6.58924137070E-03 6.75608274938E-03 6.92736692967E-03 7.10276334915E-03 7.28222687256E-03 7.46652469204E-03 7.65594608250E-03 7.84952509707E-03 8.04801299453E-03 8.25213231137E-03 8.46058297183E-03 8.67512293988E-03 8.89494358093E-03 9.11982607263E-03 9.35073592343E-03 9.58726848946E-03 9.82999566777E-03 1.00787767732E-02 1.03343016118E-02 1.05956247919E-02 1.08638062457E-02 1.11387671560E-02 1.14208762946E-02 1.17099099531E-02 1.20066228198E-02 1.23101615076E-02 1.26217545686E-02 1.29415940718E-02 1.32687984580E-02 1.36050511281E-02 1.39494475902E-02 1.43024347447E-02 1.46647597435E-02 1.50359230137E-02 1.54162100228E-02 1.58067033949E-02 1.62068387911E-02 1.66170524583E-02 1.70375889976E-02 1.74691072062E-02 1.79108952365E-02 1.83645691305E-02 1.88296107040E-02 1.93063578754E-02 1.97946019889E-02 2.02960667410E-02 2.08097819201E-02 2.13365299677E-02 2.18769751272E-02 2.24302170629E-02 2.29978703507E-02 2.35805265618E-02 2.41774601333E-02 2.47895356354E-02 2.54170632468E-02 2.60602915998E-02 2.67203153446E-02 2.73963148409E-02 2.80900848879E-02 2.88011843594E-02 2.95300986019E-02 3.02775482629E-02 3.10441806322E-02 3.18301121845E-02 3.26355828961E-02 3.34621284126E-02 3.43089663709E-02 3.51775434921E-02 3.60681232444E-02 3.69812505380E-02 3.79172577211E-02 3.88767671586E-02 3.98618185252E-02 4.08700979611E-02 4.19050412999E-02 4.29657419234E-02 4.40532883319E-02 4.51686808500E-02 4.63120483481E-02 4.74847059253E-02 4.86861714856E-02 4.99187875492E-02 5.11827604787E-02 5.24783355366E-02 5.38069271000E-02 5.51686354192E-02 5.65656563532E-02 5.79975751164E-02 5.94652267273E-02 6.09710088618E-02 6.25137443563E-02 6.40964185531E-02 6.57189971499E-02 6.73825439366E-02 6.90885100254E-02 7.08373565558E-02 7.26311344440E-02 7.44687470636E-02 7.63542569795E-02 7.82869298870E-02 8.02691826569E-02 8.23011830470E-02 8.43842251578E-02 8.65205355496E-02 8.87103789544E-02 9.09560648242E-02 9.32586107048E-02 9.56192368506E-02 9.80394113720E-02 1.00521843203E-01 1.03066037926E-01 1.05675025760E-01 1.08350305397E-01 1.11092582559E-01 1.13905211632E-01 1.16788284701E-01 1.19744556254E-01 1.22775736644E-01 1.25883604628E-01 1.29070360208E-01 1.32337708501E-01 1.35687576715E-01 1.39122106110E-01 1.42643269017E-01 1.46254185346E-01 1.49956470586E-01 1.53752435144E-01 1.57644331851E-01 1.61634878523E-01 1.65726604541E-01 1.69921126901E-01 1.74222644974E-01 1.78632394735E-01 1.83153890692E-01 1.87789997018E-01 1.92544075379E-01 1.97417462055E-01 2.02414892105E-01 2.07538578452E-01 2.12791265379E-01 2.18178325003E-01 2.23700370231E-01 2.29362658886E-01 2.35168202636E-01 2.41121125774E-01 2.47224311285E-01 2.53481536852E-01 2.59898051832E-01 2.66476719372E-01 2.73221315745E-01 2.80137231277E-01 2.87227879547E-01 2.94498138862E-01 3.01951627846E-01 3.09594700957E-01 3.17430543914E-01 3.25465502292E-01 3.33702837506E-01 3.42149795953E-01 3.50809066184E-01 3.59688575326E-01 3.68792288453E-01 3.78126520761E-01 3.87697269622E-01 3.97509223936E-01 4.07570350259E-01 4.17885946741E-01 4.28462536538E-01 4.39306860292E-01 4.50425106730E-01 4.61825294570E-01 4.73513500272E-01 4.85497780578E-01 4.97784281200E-01 5.10383572481E-01 5.23299921813E-01 5.36544086854E-01 5.50122998568E-01 5.64044960828E-01 5.78319943359E-01 5.92955630633E-01 6.07962152878E-01 6.23347800115E-01 6.39122427727E-01 6.55296859053E-01 6.71879802477E-01 6.88882627198E-01 7.06315602500E-01 7.24189507257E-01 7.42515212185E-01 7.61305096277E-01 7.80570146571E-01 8.00322236762E-01 8.20574107024E-01 8.41338167993E-01 8.62627175541E-01 8.84455033828E-01 9.06834989487E-01 9.29780348406E-01 9.53307115318E-01 9.77428063638E-01 1.00215896669E+00 1.02751598440E+00 1.05351310172E+00 1.08016872071E+00 1.10749773835E+00 1.13551844065E+00 1.16424702197E+00 1.19370252523E+00 1.22390236148E+00 1.25486557303E+00 1.28661173838E+00 1.31916160316E+00 1.35253293494E+00 1.38674854552E+00 1.42182858258E+00 1.45779605600E+00 1.49467194797E+00 1.53248076385E+00 1.57124427338E+00 1.61098845948E+00 1.65173650060E+00 1.69351488495E+00 1.73634802595E+00 1.78026433570E+00 1.82529001191E+00 1.87145415394E+00 1.91878385680E+00 1.96730953444E+00 2.01706108326E+00 2.06806995741E+00 2.12036694070E+00 2.17398501257E+00 2.22895734011E+00 2.28531854318E+00 2.34310284654E+00 2.40234655097E+00 2.46308628267E+00 2.52535956117E+00 2.58920540268E+00 2.65466326797E+00 2.72177306567E+00 2.79057799490E+00 2.86111911753E+00 2.93344104110E+00 3.00758780690E+00 3.08360622460E+00 3.16154253547E+00 3.24144574996E+00 3.32336489345E+00 3.40735097613E+00 3.49345580614E+00 3.58173167209E+00 3.67223497279E+00 3.76502016457E+00 3.86014551991E+00 3.95766939611E+00 4.05765151468E+00 4.16015443113E+00 4.26524078968E+00 4.37297624692E+00 4.48342641477E+00 4.59665979721E+00 4.71274627017E+00 4.83175731785E+00 4.95376594252E+00 5.07884760425E+00 5.20707909283E+00 5.33853925708E+00 5.47330920004E+00 5.61147144265E+00 5.75311128847E+00 5.89831541217E+00 6.04717242138E+00 6.19977502883E+00 6.35621619827E+00 6.51659126275E+00 6.68099883223E+00 6.84953957624E+00 7.02231782713E+00 7.19943699450E+00 7.38100732031E+00 7.56713909380E+00 7.75794597047E+00 7.95354445802E+00 8.15405408623E+00 8.35959643341E+00 8.57029689682E+00 8.78628473749E+00 9.00769001683E+00 9.23464900319E+00 9.46729744415E+00 9.70577834779E+00 9.95023605577E+00 1.02008184283E+01 1.04576767284E+01 1.07209675175E+01 1.09908496417E+01 1.12674856789E+01 1.15510435637E+01 1.18416936213E+01 1.21396109334E+01 1.24449757472E+01 1.27579705362E+01 1.30787843118E+01 1.34076095901E+01 1.37446425617E+01 1.40900866703E+01 1.44441471486E+01 1.48070370303E+01 1.51789716289E+01 1.55601731513E+01 1.59508690177E+01 1.63512913959E+01 1.67616774450E+01 1.71822723534E+01 1.76133233094E+01 1.80550867846E+01 1.85078229506E+01 1.89717989842E+01 1.94472886478E+01 1.99345710997E+01 2.04339317983E+01 2.09456653780E+01 2.14700694009E+01 2.20074519062E+01 2.25581240629E+01 2.31224088867E+01 2.37006326725E+01 2.42931309363E+01 2.49002471565E+01 2.55223311909E+01 2.61597418844E+01 2.68128462378E+01 2.74820180244E+01 2.81676417711E+01 2.88701081825E+01 2.95898176451E+01 3.03271798773E+01 3.10826122592E+01 3.18565419132E+01 3.26494062607E+01 3.34616510399E+01 3.42937310672E+01 3.51461118197E+01 3.60192698797E+01 3.69136888849E+01 3.78298659462E+01 3.87683058918E+01 3.97295258078E+01 4.07140537195E+01 4.17224261977E+01 4.27551931773E+01 4.38129160340E+01 4.48961649315E+01 4.60055240012E+01 4.71415875506E+01 4.83049620086E+01 4.94962663440E+01 5.07161300491E+01 5.19651968188E+01 5.32441199609E+01 5.45535681049E+01 5.58942199505E+01 5.72667680109E+01 5.86719177202E+01 6.01103851827E+01 6.15829022769E+01 6.30902113186E+01 6.46330697184E+01 6.62122452052E+01 6.78285210512E+01 6.94826924369E+01 7.11755675365E+01 7.29079675408E+01 7.46807269506E+01 7.64946930500E+01 7.83507255934E+01 8.02496971875E+01 8.21924947022E+01 8.41800151337E+01 8.62131687512E+01 8.82928793918E+01 9.04200809159E+01 9.25957194254E+01 9.48207543693E+01 9.70961540455E+01 9.94228986392E+01 1.01801978383E+02 1.04234394915E+02 1.06721157325E+02 1.09263286457E+02 1.11861810186E+02 1.14517763795E+02 1.17232192266E+02 1.20006144877E+02 1.22840679290E+02 1.25736856493E+02 1.28695742383E+02 1.31718406476E+02 1.34805921363E+02 1.37959359796E+02 1.41179796130E+02 1.44468302497E+02 1.47825950022E+02 1.51253805678E+02 1.54752930880E+02 1.58324382004E+02 1.61969205595E+02 1.65688439013E+02 1.69483108154E+02 1.73354225217E+02 1.77302784800E+02 1.81329766105E+02 1.85436125742E+02 1.89622799647E+02 1.93890697306E+02 1.98240698935E+02 2.02673656802E+02 2.07190387296E+02 2.11791669258E+02 2.16478243528E+02 2.21250805059E+02 2.26110001851E+02 2.31056430951E+02 2.36090634106E+02 2.41213093584E+02 2.46424227792E+02 2.51724385617E+02 2.57113845136E+02 2.62592804116E+02 2.68161377980E+02 2.73819593538E+02 2.79567381317E+02 2.85404574027E+02 2.91330895798E+02 2.97345960278E+02 3.03449259366E+02 3.09640159947E+02 3.15917895608E+02 3.22281559229E+02 3.28730095769E+02 3.35262292816E+02 3.41876776062E+02 3.48571996566E+02 3.55346225459E+02 3.62197543426E+02 3.69123832643E+02 3.76122765965E+02 3.83191798522E+02 3.90328157209E+02 3.97528831452E+02 4.04790562046E+02 4.12109829848E+02 4.19482847739E+02 4.26905546464E+02 4.34373566353E+02 4.41882242566E+02 4.49426597475E+02 4.57001327821E+02 4.64600790193E+02 4.72218993119E+02 4.79849585208E+02 4.87485838894E+02 4.95120643665E+02 5.02746491746E+02 5.10355467713E+02 5.17939234604E+02 5.25489024970E+02 5.32995629561E+02 5.40449384779E+02 5.47840164901E+02 5.55157367334E+02 5.62389910095E+02 5.69526215181E+02 5.76554205348E+02 5.83461293823E+02 5.90234379378E+02 5.96859836551E+02 6.03323515367E+02 6.09610733926E+02 6.15706276432E+02 6.21594392282E+02 6.27258794841E+02 6.32682664568E+02 6.37848650390E+02 6.42738875280E+02 6.47334943173E+02 6.51617950033E+02 6.55568490835E+02 6.59166677518E+02 6.62392153726E+02 6.65224114233E+02 6.67641326169E+02 6.69622158141E+02 6.71144603837E+02 6.72186319168E+02 6.72724654788E+02 6.72736701732E+02 6.72199329995E+02 6.71089242346E+02 6.69383026918E+02 6.67057216227E+02 6.64088352135E+02 6.60453056130E+02 6.56128104251E+02 6.51090511837E+02 6.45317619549E+02 6.38787190195E+02 6.31477511206E+02 6.23367504742E+02 6.14436844358E+02 6.04666081749E+02 5.94036780234E+02 5.82531658014E+02 5.70134736167E+02 5.56831504174E+02 5.42609085361E+02 5.27456417147E+02 5.11364443093E+02 4.94326306518E+02 4.76337562678E+02 4.57396397864E+02 4.37503855626E+02 4.16664077528E+02 3.94884548975E+02 3.72176358190E+02 3.48554459925E+02 3.24037950643E+02 2.98650347795E+02 2.72419877573E+02 2.45379765289E+02 2.17568529598E+02 1.89030279585E+02 1.59815006387E+02 1.29978876229E+02 9.95845137809E+01 6.87012752089E+01 3.74055103989E+01 5.78080276351E+00 -2.60818127011E+01 -5.80836587379E+01 -9.01182629929E+01 -1.22071245258E+02 -1.53820253824E+02 -1.85234961578E+02 -2.16177123550E+02 -2.46500716616E+02 -2.76052158782E+02 -3.04670627110E+02 -3.32188486890E+02 -3.58431835717E+02 -3.83221182142E+02 -4.06372273924E+02 -4.27697080166E+02 -4.47004952784E+02 -4.64103974186E+02 -4.78802512715E+02 -4.90910995613E+02 -5.00243921951E+02 -5.06622129055E+02 -5.09875333034E+02 -5.09844958495E+02 -5.06387282820E+02 -4.99376908532E+02 -4.88710591504E+02 -4.74311444311E+02 -4.56133537719E+02 -4.34166922129E+02 -4.08443097680E+02 -3.79040940149E+02 -3.46093110863E+02 -3.09792945991E+02 -2.70401823864E+02 -2.28256983480E+02 -1.83779729820E+02 -1.37483932774E+02 -8.99846568347E+01 -4.20066733915E+01 5.60749310447E+00 5.18904937797E+01 9.57447561105E+01 1.35939715737E+02 1.71112959292E+02 1.99776982772E+02 2.20333800480E+02 2.31100319884E+02 2.30348010937E+02 2.16363645733E+02 1.87517519765E+02 1.42537324953E+02 7.91455647751E+01 9.06051039350E+00 -8.98295500222E-01 8.90606339052E-02 -8.82981071277E-03 8.75394296957E-04 -8.67549027462E-05 8.58461970186E-06 -8.46588525837E-07 9.30600914265E-08 -5.57400861517E-10 -7.41893225654E-09 0.00000000000E+00 0.00000000000E+00 -1.83267299310E-01 -1.32298817855E-01 1.00000000000E+00 -2.39618120216E+01 -2.39618120248E+01 -2.39618120251E+01 -2.39618120254E+01 -2.39618120258E+01 -2.39618120261E+01 -2.39618120264E+01 -2.39618120267E+01 -2.39618120271E+01 -2.39618120274E+01 -2.39618120278E+01 -2.39618120281E+01 -2.39618120285E+01 -2.39618120289E+01 -2.39618120293E+01 -2.39618120297E+01 -2.39618120301E+01 -2.39618120305E+01 -2.39618120309E+01 -2.39618120314E+01 -2.39618120319E+01 -2.39618120323E+01 -2.39618120328E+01 -2.39618120333E+01 -2.39618120338E+01 -2.39618120343E+01 -2.39618120348E+01 -2.39618120354E+01 -2.39618120360E+01 -2.39618120365E+01 -2.39618120371E+01 -2.39618120377E+01 -2.39618120383E+01 -2.39618120390E+01 -2.39618120396E+01 -2.39618120403E+01 -2.39618120410E+01 -2.39618120417E+01 -2.39618120424E+01 -2.39618120431E+01 -2.39618120439E+01 -2.39618120446E+01 -2.39618120454E+01 -2.39618120462E+01 -2.39618120471E+01 -2.39618120479E+01 -2.39618120488E+01 -2.39618120497E+01 -2.39618120506E+01 -2.39618120516E+01 -2.39618120525E+01 -2.39618120535E+01 -2.39618120545E+01 -2.39618120556E+01 -2.39618120567E+01 -2.39618120577E+01 -2.39618120589E+01 -2.39618120600E+01 -2.39618120612E+01 -2.39618120624E+01 -2.39618120637E+01 -2.39618120649E+01 -2.39618120662E+01 -2.39618120676E+01 -2.39618120690E+01 -2.39618120704E+01 -2.39618120718E+01 -2.39618120733E+01 -2.39618120748E+01 -2.39618120764E+01 -2.39618120780E+01 -2.39618120796E+01 -2.39618120813E+01 -2.39618120830E+01 -2.39618120847E+01 -2.39618120866E+01 -2.39618120884E+01 -2.39618120903E+01 -2.39618120923E+01 -2.39618120943E+01 -2.39618120963E+01 -2.39618120984E+01 -2.39618121006E+01 -2.39618121028E+01 -2.39618121050E+01 -2.39618121073E+01 -2.39618121097E+01 -2.39618121122E+01 -2.39618121147E+01 -2.39618121172E+01 -2.39618121199E+01 -2.39618121226E+01 -2.39618121253E+01 -2.39618121282E+01 -2.39618121311E+01 -2.39618121340E+01 -2.39618121371E+01 -2.39618121402E+01 -2.39618121434E+01 -2.39618121467E+01 -2.39618121501E+01 -2.39618121536E+01 -2.39618121571E+01 -2.39618121608E+01 -2.39618121645E+01 -2.39618121683E+01 -2.39618121723E+01 -2.39618121763E+01 -2.39618121804E+01 -2.39618121846E+01 -2.39618121890E+01 -2.39618121934E+01 -2.39618121980E+01 -2.39618122026E+01 -2.39618122074E+01 -2.39618122123E+01 -2.39618122174E+01 -2.39618122225E+01 -2.39618122278E+01 -2.39618122333E+01 -2.39618122388E+01 -2.39618122445E+01 -2.39618122504E+01 -2.39618122564E+01 -2.39618122626E+01 -2.39618122689E+01 -2.39618122753E+01 -2.39618122820E+01 -2.39618122888E+01 -2.39618122957E+01 -2.39618123029E+01 -2.39618123102E+01 -2.39618123177E+01 -2.39618123254E+01 -2.39618123333E+01 -2.39618123414E+01 -2.39618123497E+01 -2.39618123582E+01 -2.39618123670E+01 -2.39618123759E+01 -2.39618123851E+01 -2.39618123945E+01 -2.39618124042E+01 -2.39618124141E+01 -2.39618124242E+01 -2.39618124346E+01 -2.39618124453E+01 -2.39618124562E+01 -2.39618124674E+01 -2.39618124789E+01 -2.39618124907E+01 -2.39618125028E+01 -2.39618125151E+01 -2.39618125279E+01 -2.39618125409E+01 -2.39618125542E+01 -2.39618125679E+01 -2.39618125820E+01 -2.39618125963E+01 -2.39618126111E+01 -2.39618126262E+01 -2.39618126417E+01 -2.39618126576E+01 -2.39618126739E+01 -2.39618126907E+01 -2.39618127078E+01 -2.39618127254E+01 -2.39618127434E+01 -2.39618127619E+01 -2.39618127808E+01 -2.39618128003E+01 -2.39618128202E+01 -2.39618128406E+01 -2.39618128615E+01 -2.39618128830E+01 -2.39618129050E+01 -2.39618129276E+01 -2.39618129507E+01 -2.39618129744E+01 -2.39618129987E+01 -2.39618130237E+01 -2.39618130492E+01 -2.39618130755E+01 -2.39618131023E+01 -2.39618131299E+01 -2.39618131581E+01 -2.39618131871E+01 -2.39618132168E+01 -2.39618132473E+01 -2.39618132785E+01 -2.39618133105E+01 -2.39618133433E+01 -2.39618133770E+01 -2.39618134115E+01 -2.39618134469E+01 -2.39618134831E+01 -2.39618135203E+01 -2.39618135585E+01 -2.39618135976E+01 -2.39618136376E+01 -2.39618136787E+01 -2.39618137209E+01 -2.39618137641E+01 -2.39618138084E+01 -2.39618138538E+01 -2.39618139003E+01 -2.39618139481E+01 -2.39618139970E+01 -2.39618140472E+01 -2.39618140986E+01 -2.39618141514E+01 -2.39618142055E+01 -2.39618142609E+01 -2.39618143178E+01 -2.39618143761E+01 -2.39618144358E+01 -2.39618144971E+01 -2.39618145599E+01 -2.39618146243E+01 -2.39618146904E+01 -2.39618147581E+01 -2.39618148275E+01 -2.39618148987E+01 -2.39618149717E+01 -2.39618150465E+01 -2.39618151232E+01 -2.39618152018E+01 -2.39618152824E+01 -2.39618153651E+01 -2.39618154498E+01 -2.39618155367E+01 -2.39618156258E+01 -2.39618157172E+01 -2.39618158108E+01 -2.39618159068E+01 -2.39618160052E+01 -2.39618161062E+01 -2.39618162096E+01 -2.39618163157E+01 -2.39618164244E+01 -2.39618165359E+01 -2.39618166503E+01 -2.39618167674E+01 -2.39618168876E+01 -2.39618170108E+01 -2.39618171371E+01 -2.39618172665E+01 -2.39618173993E+01 -2.39618175354E+01 -2.39618176749E+01 -2.39618178179E+01 -2.39618179646E+01 -2.39618181149E+01 -2.39618182691E+01 -2.39618184271E+01 -2.39618185891E+01 -2.39618187552E+01 -2.39618189255E+01 -2.39618191000E+01 -2.39618192790E+01 -2.39618194624E+01 -2.39618196505E+01 -2.39618198433E+01 -2.39618200410E+01 -2.39618202437E+01 -2.39618204514E+01 -2.39618206644E+01 -2.39618208828E+01 -2.39618211066E+01 -2.39618213361E+01 -2.39618215713E+01 -2.39618218125E+01 -2.39618220597E+01 -2.39618223131E+01 -2.39618225729E+01 -2.39618228393E+01 -2.39618231123E+01 -2.39618233922E+01 -2.39618236791E+01 -2.39618239732E+01 -2.39618242747E+01 -2.39618245838E+01 -2.39618249006E+01 -2.39618252254E+01 -2.39618255583E+01 -2.39618258996E+01 -2.39618262494E+01 -2.39618266080E+01 -2.39618269756E+01 -2.39618273524E+01 -2.39618277386E+01 -2.39618281345E+01 -2.39618285403E+01 -2.39618289563E+01 -2.39618293826E+01 -2.39618298197E+01 -2.39618302676E+01 -2.39618307268E+01 -2.39618311974E+01 -2.39618316798E+01 -2.39618321742E+01 -2.39618326810E+01 -2.39618332004E+01 -2.39618337328E+01 -2.39618342784E+01 -2.39618348377E+01 -2.39618354109E+01 -2.39618359983E+01 -2.39618366004E+01 -2.39618372174E+01 -2.39618378498E+01 -2.39618384979E+01 -2.39618391621E+01 -2.39618398428E+01 -2.39618405404E+01 -2.39618412553E+01 -2.39618419880E+01 -2.39618427388E+01 -2.39618435081E+01 -2.39618442966E+01 -2.39618451045E+01 -2.39618459324E+01 -2.39618467808E+01 -2.39618476501E+01 -2.39618485409E+01 -2.39618494536E+01 -2.39618503888E+01 -2.39618513471E+01 -2.39618523289E+01 -2.39618533349E+01 -2.39618543656E+01 -2.39618554216E+01 -2.39618565035E+01 -2.39618576119E+01 -2.39618587475E+01 -2.39618599108E+01 -2.39618611026E+01 -2.39618623235E+01 -2.39618635742E+01 -2.39618648554E+01 -2.39618661677E+01 -2.39618675120E+01 -2.39618688890E+01 -2.39618702994E+01 -2.39618717440E+01 -2.39618732235E+01 -2.39618747389E+01 -2.39618762909E+01 -2.39618778803E+01 -2.39618795080E+01 -2.39618811749E+01 -2.39618828818E+01 -2.39618846297E+01 -2.39618864195E+01 -2.39618882521E+01 -2.39618901285E+01 -2.39618920496E+01 -2.39618940165E+01 -2.39618960301E+01 -2.39618980916E+01 -2.39619002018E+01 -2.39619023620E+01 -2.39619045731E+01 -2.39619068363E+01 -2.39619091527E+01 -2.39619115234E+01 -2.39619139497E+01 -2.39619164325E+01 -2.39619189733E+01 -2.39619215731E+01 -2.39619242331E+01 -2.39619269547E+01 -2.39619297391E+01 -2.39619325876E+01 -2.39619355014E+01 -2.39619384819E+01 -2.39619415303E+01 -2.39619446481E+01 -2.39619478366E+01 -2.39619510971E+01 -2.39619544311E+01 -2.39619578399E+01 -2.39619613249E+01 -2.39619648875E+01 -2.39619685292E+01 -2.39619722514E+01 -2.39619760555E+01 -2.39619799430E+01 -2.39619839154E+01 -2.39619879740E+01 -2.39619921203E+01 -2.39619963559E+01 -2.39620006820E+01 -2.39620051003E+01 -2.39620096120E+01 -2.39620142187E+01 -2.39620189218E+01 -2.39620237227E+01 -2.39620286227E+01 -2.39620336232E+01 -2.39620387255E+01 -2.39620439311E+01 -2.39620492411E+01 -2.39620546568E+01 -2.39620601794E+01 -2.39620658100E+01 -2.39620715499E+01 -2.39620774000E+01 -2.39620833613E+01 -2.39620894348E+01 -2.39620956213E+01 -2.39621019216E+01 -2.39621083364E+01 -2.39621148663E+01 -2.39621215118E+01 -2.39621282732E+01 -2.39621351509E+01 -2.39621421449E+01 -2.39621492553E+01 -2.39621564820E+01 -2.39621638245E+01 -2.39621712824E+01 -2.39621788550E+01 -2.39621865414E+01 -2.39621943406E+01 -2.39622022512E+01 -2.39622102716E+01 -2.39622184000E+01 -2.39622266344E+01 -2.39622349721E+01 -2.39622434106E+01 -2.39622519467E+01 -2.39622605770E+01 -2.39622692977E+01 -2.39622781044E+01 -2.39622869925E+01 -2.39622959569E+01 -2.39623049918E+01 -2.39623140912E+01 -2.39623232482E+01 -2.39623324554E+01 -2.39623417050E+01 -2.39623509882E+01 -2.39623602957E+01 -2.39623696174E+01 -2.39623789422E+01 -2.39623882586E+01 -2.39623975537E+01 -2.39624068139E+01 -2.39624160246E+01 -2.39624251702E+01 -2.39624342336E+01 -2.39624431970E+01 -2.39624520410E+01 -2.39624607449E+01 -2.39624692867E+01 -2.39624776429E+01 -2.39624857882E+01 -2.39624936960E+01 -2.39625013375E+01 -2.39625086825E+01 -2.39625156984E+01 -2.39625223508E+01 -2.39625286029E+01 -2.39625344159E+01 -2.39625397482E+01 -2.39625445559E+01 -2.39625487921E+01 -2.39625524073E+01 -2.39625553487E+01 -2.39625575606E+01 -2.39625589838E+01 -2.39625595554E+01 -2.39625592089E+01 -2.39625578740E+01 -2.39625554760E+01 -2.39625519359E+01 -2.39625471700E+01 -2.39625410900E+01 -2.39625336022E+01 -2.39625246076E+01 -2.39625140015E+01 -2.39625016734E+01 -2.39624875062E+01 -2.39624713763E+01 -2.39624531532E+01 -2.39624326989E+01 -2.39624098678E+01 -2.39623845061E+01 -2.39623564515E+01 -2.39623255325E+01 -2.39622915684E+01 -2.39622543682E+01 -2.39622137308E+01 -2.39621694438E+01 -2.39621212832E+01 -2.39620690130E+01 -2.39620123842E+01 -2.39619511343E+01 -2.39618849868E+01 -2.39618136502E+01 -2.39617368174E+01 -2.39616541648E+01 -2.39615653515E+01 -2.39614700186E+01 -2.39613677878E+01 -2.39612582611E+01 -2.39611410193E+01 -2.39610156212E+01 -2.39608816021E+01 -2.39607384732E+01 -2.39605857200E+01 -2.39604228013E+01 -2.39602491473E+01 -2.39600641591E+01 -2.39598672062E+01 -2.39596576259E+01 -2.39594347211E+01 -2.39591977589E+01 -2.39589459686E+01 -2.39586785401E+01 -2.39583946218E+01 -2.39580933186E+01 -2.39577736901E+01 -2.39574347478E+01 -2.39570754533E+01 -2.39566947156E+01 -2.39562913887E+01 -2.39558642689E+01 -2.39554120922E+01 -2.39549335312E+01 -2.39544271921E+01 -2.39538916116E+01 -2.39533252538E+01 -2.39527265066E+01 -2.39520936780E+01 -2.39514249925E+01 -2.39507185872E+01 -2.39499725078E+01 -2.39491847041E+01 -2.39483530260E+01 -2.39474752184E+01 -2.39465489167E+01 -2.39455716417E+01 -2.39445407944E+01 -2.39434536505E+01 -2.39423073549E+01 -2.39410989158E+01 -2.39398251981E+01 -2.39384829179E+01 -2.39370686351E+01 -2.39355787469E+01 -2.39340094805E+01 -2.39323568858E+01 -2.39306168275E+01 -2.39287849774E+01 -2.39268568059E+01 -2.39248275731E+01 -2.39226923206E+01 -2.39204458616E+01 -2.39180827717E+01 -2.39155973788E+01 -2.39129837530E+01 -2.39102356959E+01 -2.39073467299E+01 -2.39043100866E+01 -2.39011186953E+01 -2.38977651712E+01 -2.38942418027E+01 -2.38905405389E+01 -2.38866529766E+01 -2.38825703466E+01 -2.38782835000E+01 -2.38737828943E+01 -2.38690585788E+01 -2.38641001796E+01 -2.38588968848E+01 -2.38534374290E+01 -2.38477100775E+01 -2.38417026106E+01 -2.38354023073E+01 -2.38287959291E+01 -2.38218697034E+01 -2.38146093069E+01 -2.38069998492E+01 -2.37990258560E+01 -2.37906712526E+01 -2.37819193477E+01 -2.37727528171E+01 -2.37631536881E+01 -2.37531033245E+01 -2.37425824115E+01 -2.37315709424E+01 -2.37200482054E+01 -2.37079927724E+01 -2.36953824883E+01 -2.36821944626E+01 -2.36684050629E+01 -2.36539899106E+01 -2.36389238795E+01 -2.36231810971E+01 -2.36067349506E+01 -2.35895580956E+01 -2.35716224716E+01 -2.35528993214E+01 -2.35333592186E+01 -2.35129721018E+01 -2.34917073174E+01 -2.34695336733E+01 -2.34464195033E+01 -2.34223327451E+01 -2.33972410339E+01 -2.33711118127E+01 -2.33439124637E+01 -2.33156104627E+01 -2.32861735599E+01 -2.32555699917E+01 -2.32237687284E+01 -2.31907397617E+01 -2.31564544404E+01 -2.31208858593E+01 -2.30840093106E+01 -2.30458028065E+01 -2.30062476844E+01 -2.29653293057E+01 -2.29230378613E+01 -2.28793692995E+01 -2.28343263923E+01 -2.27879199546E+01 -2.27401702374E+01 -2.26911085075E+01 -2.26407788304E+01 -2.25892400630E+01 -2.25365680570E+01 -2.24828580567E+01 -2.24282272511E+01 -2.23728174051E+01 -2.23167974413E+01 -2.22603657680E+01 -2.22037520437E+01 -2.21472179237E+01 -2.20910561452E+01 -2.20355870632E+01 -2.19811514519E+01 -2.19299889124E+01 -2.19312445974E+01 -2.19715472357E+01 -2.19442245968E+01 -2.18590640011E+01 -2.17701754194E+01 -2.16773386683E+01 -2.15802792463E+01 -2.14786682896E+01 -2.13721264758E+01 -2.12602324982E+01 -2.11425363697E+01 -2.10185773479E+01 -2.08879057244E+01 -2.07501071859E+01 -2.06048280019E+01 -2.04517990058E+01 -2.02908562675E+01 -2.01219565209E+01 -1.99451858121E+01 -1.97607604210E+01 -1.95690198393E+01 -1.93704123738E+01 -1.91654747076E+01 -1.89548073772E+01 -1.87390485322E+01 -1.85188484394E+01 -1.82948469651E+01 -1.80676557467E+01 -1.78378460485E+01 -1.76059425168E+01 -1.73724223508E+01 -1.71377188863E+01 -1.69022283010E+01 -1.66663180921E+01 -1.64303361025E+01 -1.61946191083E+01 -1.59595002698E+01 -1.57253150236E+01 -1.54924052293E+01 -1.52611215607E+01 -1.50318242447E+01 -1.48048823171E+01 -1.45806715840E+01 -1.43595714791E+01 -1.41419609856E+01 -1.39282137664E+01 -1.37186926239E+01 -1.35137433847E+01 -1.33136882916E+01 -1.31188189771E+01 -1.29293890920E+01 -1.27456066728E+01 -1.25676263514E+01 -1.23955415396E+01 -1.22293767624E+01 -1.20690803672E+01 -1.19145179025E+01 -1.17654665430E+01 -1.16216110355E+01 -1.14825417606E+01 -1.13477556438E+01 -1.12166608183E+01 -1.10885861351E+01 -1.09627968434E+01 -1.08385180359E+01 -1.07149677611E+01 -1.05914020727E+01 -1.04671747163E+01 -1.03418146509E+01 -1.02151252004E+01 -1.00874565666E+01 -9.96034615770E+00 -9.83568965246E+00 -9.71336054776E+00 -9.59268892666E+00 -9.47351778255E+00 -9.35582829108E+00 -9.23960188208E+00 -9.12482023437E+00 -9.01146527084E+00 -8.89951915371E+00 -8.78896427997E+00 -8.67978327712E+00 -8.57195899895E+00 -8.46547452160E+00 -8.36031313975E+00 -8.25645836291E+00 -8.15389391191E+00 -8.05260371552E+00 -7.95257190714E+00 -7.85378282164E+00 -7.75622099232E+00 -7.65987114792E+00 -7.56471820976E+00 -7.47074728898E+00 -7.37794368380E+00 -7.28629287691E+00 -7.19578053290E+00 -7.10639249577E+00 -7.01811478650E+00 -6.93093360065E+00 -6.84483530605E+00 -6.75980644056E+00 -6.67583370977E+00 -6.59290398489E+00 -6.51100430056E+00 -6.43012185277E+00 -6.35016880104E+00 -6.27120715841E+00 -6.19338208248E+00 -6.11648951570E+00 -6.04047375603E+00 -5.96547446667E+00 -5.89140728454E+00 -5.81822440961E+00 -5.74595056106E+00 -5.67457444880E+00 -5.60408492290E+00 -5.53447097187E+00 -5.46572172088E+00 -5.39782643011E+00 -5.33077449304E+00 -5.26455543478E+00 -5.19915891048E+00 -5.13457470368E+00 -5.07079272473E+00 -5.00780300922E+00 -4.94559571643E+00 -4.88416112784E+00 -4.82348964555E+00 -4.76357179088E+00 -4.70439820283E+00 -4.64595963669E+00 -4.58824696256E+00 -4.53125116401E+00 -4.47496333662E+00 -4.41937468664E+00 -4.36447652963E+00 -4.31026028910E+00 -4.25671749521E+00 -4.20383978345E+00 -4.15161889332E+00 -4.10004666710E+00 -4.04911504851E+00 -3.99881608152E+00 -3.94914190904E+00 -3.90008477178E+00 -3.85163700691E+00 -3.80379104698E+00 -3.75653941864E+00 -3.70987474147E+00 -3.66378972684E+00 -3.61827717674E+00 -3.57332998262E+00 -3.52894112427E+00 -3.48510366869E+00 -3.44181076901E+00 -3.39905566334E+00 -3.35683167375E+00 -3.31513220519E+00 -3.27395074439E+00 -3.23328085889E+00 -3.19311619597E+00 -3.15345048164E+00 -3.11427751968E+00 -3.07559119061E+00 -3.03738545077E+00 -2.99965433133E+00 -2.96239193739E+00 -2.92559244701E+00 -2.88925011034E+00 -2.85335924872E+00 -2.81791425378E+00 -2.78290958659E+00 -2.74833977680E+00 -2.71419942179E+00 -2.68048318588E+00 -2.64718579945E+00 -2.61430205821E+00 -2.58182682235E+00 -2.54975501578E+00 -2.51808162539E+00 -2.48680170022E+00 -2.45591035078E+00 -2.42540274828E+00 -2.39527412389E+00 -2.36551976803E+00 -2.33613502967E+00 -2.30711531557E+00 -2.27845608963E+00 -2.25015287219E+00 -2.22220123930E+00 -2.19459682211E+00 -2.16733530613E+00 -2.14041243060E+00 -2.11382398780E+00 -2.08756582243E+00 -2.06163383093E+00 -2.03602396085E+00 -2.01073221020E+00 -1.98575462685E+00 -1.96108730786E+00 -1.93672639888E+00 -1.91266809358E+00 -1.88890863298E+00 -1.86544430488E+00 -1.84227144330E+00 -1.81938642785E+00 -1.79678568317E+00 -1.77446567839E+00 -1.75242292651E+00 -1.73065398393E+00 -1.70915544981E+00 -1.68792396560E+00 -1.66695621450E+00 -1.64624892089E+00 -1.62579884986E+00 -1.60560280669E+00 -1.58565763634E+00 -1.56596022294E+00 -1.54650748934E+00 -1.52729639656E+00 -1.50832394341E+00 -1.48958716591E+00 -1.47108313693E+00 -1.45280896563E+00 -1.43476179711E+00 -1.41693881187E+00 -1.39933722545E+00 -1.38195428793E+00 -1.36478728354E+00 -1.34783353024E+00 -1.33109037926E+00 -1.31455521473E+00 -1.29822545325E+00 -1.28209854349E+00 -1.26617196581E+00 -1.25044323185E+00 -1.23490988412E+00 -1.21956949567E+00 -1.20441966968E+00 -1.18945803907E+00 -1.17468226617E+00 -1.16009004234E+00 -1.14567908759E+00 -1.13144715024E+00 -1.11739200660E+00 -1.10351146055E+00 -1.08980334328E+00 -1.07626551290E+00 -1.06289585410E+00 -1.04969227786E+00 -1.03665272110E+00 -1.02377514635E+00 -1.01105754147E+00 -9.98497919269E-01 -9.86094317273E-01 -9.73844797359E-01 -9.61747446631E-01 -9.49800372413E-01 -9.38001709171E-01 -9.26349613293E-01 -9.14842264067E-01 -9.03477863393E-01 -8.92254635505E-01 -8.81170826695E-01 -8.70224705036E-01 -8.59414560111E-01 -8.48738702750E-01 -8.38195464766E-01 -8.27783198690E-01 -8.17500277519E-01 -8.07345084647E-01 -7.97316053108E-01 -7.87411605699E-01 -7.77629745357E-01 -7.67969873783E-01 -7.58429999026E-01 -7.49008630486E-01 -7.39704296057E-01 -7.30515541917E-01 -7.21440932305E-01 -7.12479049296E-01 -7.03628492577E-01 -6.94887880264E-01 -6.86255844472E-01 -6.77731037549E-01 -6.69312127475E-01 -6.60997798781E-01 -6.52786752333E-01 -6.44677705141E-01 -6.36669416283E-01 -6.28760567269E-01 -6.20949977997E-01 -6.13236413426E-01 -6.05618668293E-01 -5.98095552312E-01 -5.90665889980E-01 -5.83328520397E-01 -5.76082297084E-01 -5.68926087805E-01 -5.61858770209E-01 -5.54879248472E-01 -5.47986427746E-01 -5.41179231014E-01 -5.34456594638E-01 -5.27817468192E-01 -5.21260814299E-01 -5.14785608470E-01 -5.08390838938E-01 -5.02075506510E-01 -4.95838624406E-01 -4.89679218090E-01 -4.83596325149E-01 -4.77588995117E-01 -4.71656289337E-01 -4.65797280813E-01 -4.60011054061E-01 -4.54296704972E-01 -4.48653340667E-01 -4.43080079360E-01 -4.37576050217E-01 -4.32140393222E-01 -4.26772259042E-01 -4.21470808896E-01 -4.16235214422E-01 -4.11064657537E-01 -4.05958330351E-01 -4.00915434980E-01 -3.95935183461E-01 -3.91016797621E-01 -3.86159508950E-01 -3.81362558489E-01 -3.76625196703E-01 -3.71946683370E-01 -3.67326287464E-01 -3.62763287037E-01 -3.58256969112E-01 -3.53806629567E-01 -3.49411573028E-01 -3.45071112758E-01 -3.40784570551E-01 -3.36551276627E-01 -3.32370569525E-01 -3.28241796000E-01 -3.24164310924E-01 -3.20137477181E-01 -3.16160665570E-01 -3.12233254706E-01 -3.08354630924E-01 -3.04524188180E-01 -3.00741327959E-01 -2.97005459184E-01 -2.93315998115E-01 -2.89672368268E-01 -2.86074000318E-01 -2.82520332013E-01 -2.79010808084E-01 -2.75544880161E-01 -2.72122006687E-01 -2.68741652830E-01 -2.65403290403E-01 -2.62106397780E-01 -2.58850459815E-01 -2.55634967761E-01 -2.52459419190E-01 -2.49323317918E-01 -2.46226173921E-01 -2.43167503265E-01 -2.40146828026E-01 -2.37163676217E-01 -2.34217581716E-01 -2.31308084188E-01 -2.28434729019E-01 -2.25597067241E-01 -2.22794655463E-01 -2.20027055804E-01 -2.17293835820E-01 -2.14594568440E-01 -2.11928831898E-01 -2.09296209667E-01 -2.06696290395E-01 -2.04128667838E-01 -2.01592940801E-01 -1.99088713072E-01 -1.96615593359E-01 -1.94173195232E-01 -1.91761137062E-01 -1.89379041960E-01 -1.87026537718E-01 -1.84703256754E-01 -1.82408836049E-01 -1.80142917096E-01 -1.77905145840E-01 -1.75695172625E-01 -1.73512652138E-01 -1.71357243357E-01 -1.69228609493E-01 -1.67126417944E-01 -1.65050340237E-01 -1.63000051982E-01 -1.60975232817E-01 -1.58975566359E-01 -1.57000740157E-01 -1.55050445641E-01 -1.53124378071E-01 -1.51222236498E-01 -1.49343723706E-01 -1.47488546175E-01 -1.45656414030E-01 -1.43847040995E-01 -1.42060144354E-01 -1.40295444899E-01 -1.38552666892E-01 -1.36831538022E-01 -1.35131789358E-01 -1.33453155311E-01 -1.31795373591E-01 -1.30158185166E-01 -1.28541334223E-01 -1.26944568124E-01 -1.25367637373E-01 -1.23810295570E-01 -1.22272299377E-01 -1.20753408480E-01 -1.19253385549E-01 -1.17771996202E-01 -1.16309008969E-01 -1.14864195255E-01 -1.13437329305E-01 -1.12028188169E-01 -1.10636551666E-01 -1.09262202348E-01 -1.07904925472E-01 -1.06564508960E-01 -1.05240743370E-01 -1.03933421859E-01 -1.02642340158E-01 -1.01367296530E-01 -1.00108091749E-01 3.27505463927E-09 3.35796354514E-09 3.44297132574E-09 3.53013111566E-09 3.61949739466E-09 3.71112602175E-09 3.80507427008E-09 3.90140086274E-09 4.00016600952E-09 4.10143144448E-09 4.20526046461E-09 4.31171796933E-09 4.42087050114E-09 4.53278628713E-09 4.64753528173E-09 4.76518921035E-09 4.88582161428E-09 5.00950789664E-09 5.13632536955E-09 5.26635330239E-09 5.39967297145E-09 5.53636771068E-09 5.67652296380E-09 5.82022633774E-09 5.96756765738E-09 6.11863902172E-09 6.27353486148E-09 6.43235199809E-09 6.59518970427E-09 6.76214976609E-09 6.93333654656E-09 7.10885705095E-09 7.28882099362E-09 7.47334086669E-09 7.66253201031E-09 7.85651268481E-09 8.05540414461E-09 8.25933071408E-09 8.46841986524E-09 8.68280229746E-09 8.90261201920E-09 9.12798643179E-09 9.35906641533E-09 9.59599641682E-09 9.83892454043E-09 1.00880026401E-08 1.03433864147E-08 1.06052355050E-08 1.08737135937E-08 1.11489885080E-08 1.14312323242E-08 1.17206214754E-08 1.20173368620E-08 1.23215639647E-08 1.26334929603E-08 1.29533188410E-08 1.32812415361E-08 1.36174660372E-08 1.39622025261E-08 1.43156665065E-08 1.46780789389E-08 1.50496663783E-08 1.54306611166E-08 1.58213013270E-08 1.62218312138E-08 1.66325011648E-08 1.70535679077E-08 1.74852946710E-08 1.79279513485E-08 1.83818146681E-08 1.88471683651E-08 1.93243033592E-08 1.98135179372E-08 2.03151179389E-08 2.08294169489E-08 2.13567364925E-08 2.18974062368E-08 2.24517641974E-08 2.30201569492E-08 2.36029398439E-08 2.42004772318E-08 2.48131426898E-08 2.54413192557E-08 2.60853996672E-08 2.67457866079E-08 2.74228929594E-08 2.81171420594E-08 2.88289679668E-08 2.95588157333E-08 3.03071416820E-08 3.10744136926E-08 3.18611114946E-08 3.26677269676E-08 3.34947644488E-08 3.43427410489E-08 3.52121869757E-08 3.61036458662E-08 3.70176751264E-08 3.79548462809E-08 3.89157453302E-08 3.99009731175E-08 4.09111457056E-08 4.19468947615E-08 4.30088679530E-08 4.40977293534E-08 4.52141598578E-08 4.63588576095E-08 4.75325384367E-08 4.87359363017E-08 4.99698037595E-08 5.12349124301E-08 5.25320534813E-08 5.38620381243E-08 5.52256981222E-08 5.66238863107E-08 5.80574771327E-08 5.95273671860E-08 6.10344757851E-08 6.25797455374E-08 6.41641429338E-08 6.57886589543E-08 6.74543096895E-08 6.91621369768E-08 7.09132090544E-08 7.27086212298E-08 7.45494965675E-08 7.64369865927E-08 7.83722720132E-08 8.03565634602E-08 8.23911022470E-08 8.44771611480E-08 8.66160451968E-08 8.88090925050E-08 9.10576751013E-08 9.33631997927E-08 9.57271090471E-08 9.81508818985E-08 1.00636034875E-07 1.03184122951E-07 1.05796740524E-07 1.08475522413E-07 1.11222144887E-07 1.14038326719E-07 1.16925830262E-07 1.19886462558E-07 1.22922076472E-07 1.26034571858E-07 1.29225896750E-07 1.32498048588E-07 1.35853075473E-07 1.39293077455E-07 1.42820207851E-07 1.46436674602E-07 1.50144741658E-07 1.53946730405E-07 1.57845021124E-07 1.61842054488E-07 1.65940333099E-07 1.70142423062E-07 1.74450955600E-07 1.78868628712E-07 1.83398208871E-07 1.88042532767E-07 1.92804509091E-07 1.97687120374E-07 2.02693424857E-07 2.07826558430E-07 2.13089736598E-07 2.18486256518E-07 2.24019499072E-07 2.29692931002E-07 2.35510107099E-07 2.41474672444E-07 2.47590364712E-07 2.53861016530E-07 2.60290557899E-07 2.66883018676E-07 2.73642531123E-07 2.80573332515E-07 2.87679767823E-07 2.94966292463E-07 3.02437475111E-07 3.10098000597E-07 3.17952672871E-07 3.26006418044E-07 3.34264287511E-07 3.42731461148E-07 3.51413250601E-07 3.60315102652E-07 3.69442602671E-07 3.78801478167E-07 3.88397602420E-07 3.98236998211E-07 4.08325841652E-07 4.18670466106E-07 4.29277366223E-07 4.40153202062E-07 4.51304803337E-07 4.62739173762E-07 4.74463495513E-07 4.86485133808E-07 4.98811641599E-07 5.11450764395E-07 5.24410445202E-07 5.37698829598E-07 5.51324270936E-07 5.65295335688E-07 5.79620808917E-07 5.94309699908E-07 6.09371247934E-07 6.24814928174E-07 6.40650457794E-07 6.56887802177E-07 6.73537181322E-07 6.90609076411E-07 7.08114236545E-07 7.26063685660E-07 7.44468729625E-07 7.63340963525E-07 7.82692279135E-07 8.02534872596E-07 8.22881252287E-07 8.43744246911E-07 8.65137013791E-07 8.87073047389E-07 9.09566188045E-07 9.32630630954E-07 9.56280935380E-07 9.80532034113E-07 1.00539924318E-06 1.03089827180E-06 1.05704523266E-06 1.08385665237E-06 1.11134948229E-06 1.13954110958E-06 1.16844936862E-06 1.19809255263E-06 1.22848942572E-06 1.25965923519E-06 1.29162172416E-06 1.32439714461E-06 1.35800627065E-06 1.39247041231E-06 1.42781142957E-06 1.46405174681E-06 1.50121436770E-06 1.53932289043E-06 1.57840152341E-06 1.61847510134E-06 1.65956910180E-06 1.70170966221E-06 1.74492359732E-06 1.78923841714E-06 1.83468234542E-06 1.88128433856E-06 1.92907410514E-06 1.97808212587E-06 2.02833967426E-06 2.07987883768E-06 2.13273253918E-06 2.18693455976E-06 2.24251956145E-06 2.29952311084E-06 2.35798170342E-06 2.41793278855E-06 2.47941479514E-06 2.54246715806E-06 2.60713034532E-06 2.67344588599E-06 2.74145639892E-06 2.81120562238E-06 2.88273844437E-06 2.95610093398E-06 3.03134037354E-06 3.10850529179E-06 3.18764549790E-06 3.26881211660E-06 3.35205762428E-06 3.43743588610E-06 3.52500219433E-06 3.61481330762E-06 3.70692749165E-06 3.80140456078E-06 3.89830592112E-06 3.99769461473E-06 4.09963536523E-06 4.20419462478E-06 4.31144062243E-06 4.42144341396E-06 4.53427493323E-06 4.65000904508E-06 4.76872159983E-06 4.89049048952E-06 5.01539570575E-06 5.14351939946E-06 5.27494594240E-06 5.40976199065E-06 5.54805655001E-06 5.68992104350E-06 5.83544938096E-06 5.98473803084E-06 6.13788609423E-06 6.29499538133E-06 6.45617049025E-06 6.62151888839E-06 6.79115099642E-06 6.96518027499E-06 7.14372331419E-06 7.32689992596E-06 7.51483323954E-06 7.70764979997E-06 7.90547966986E-06 8.10845653461E-06 8.31671781094E-06 8.53040475921E-06 8.74966259937E-06 8.97464063089E-06 9.20549235666E-06 9.44237561114E-06 9.68545269284E-06 9.93489050132E-06 1.01908606789E-05 1.04535397573E-05 1.07231093091E-05 1.09997561050E-05 1.12836722758E-05 1.15750554809E-05 1.18741090820E-05 1.21810423233E-05 1.24960705181E-05 1.28194152421E-05 1.31513045331E-05 1.34919730988E-05 1.38416625311E-05 1.42006215290E-05 1.45691061294E-05 1.49473799455E-05 1.53357144156E-05 1.57343890595E-05 1.61436917454E-05 1.65639189661E-05 1.69953761262E-05 1.74383778393E-05 1.78932482370E-05 1.83603212894E-05 1.88399411378E-05 1.93324624398E-05 1.98382507284E-05 2.03576827839E-05 2.08911470210E-05 2.14390438906E-05 2.20017862974E-05 2.25798000333E-05 2.31735242288E-05 2.37834118213E-05 2.44099300424E-05 2.50535609247E-05 2.57148018282E-05 2.63941659887E-05 2.70921830873E-05 2.78093998441E-05 2.85463806342E-05 2.93037081310E-05 3.00819839737E-05 3.08818294637E-05 3.17038862885E-05 3.25488172765E-05 3.34173071823E-05 3.43100635053E-05 3.52278173418E-05 3.61713242734E-05 3.71413652927E-05 3.81387477673E-05 3.91643064456E-05 4.02189045046E-05 4.13034346431E-05 4.24188202203E-05 4.35660164447E-05 4.47460116133E-05 4.59598284043E-05 4.72085252262E-05 4.84931976247E-05 4.98149797517E-05 5.11750458980E-05 5.25746120930E-05 5.40149377750E-05 5.54973275347E-05 5.70231329362E-05 5.85937544182E-05 6.02106432794E-05 6.18753037534E-05 6.35892951745E-05 6.53542342424E-05 6.71717973864E-05 6.90437232378E-05 7.09718152125E-05 7.29579442106E-05 7.50040514389E-05 7.71121513601E-05 7.92843347781E-05 8.15227720618E-05 8.38297165183E-05 8.62075079188E-05 8.86585761872E-05 9.11854452584E-05 9.37907371137E-05 9.64771760025E-05 9.92475928602E-05 1.02104929929E-04 1.05052245595E-04 1.08092719449E-04 1.11229657584E-04 1.14466498136E-04 1.17806817092E-04 1.21254334360E-04 1.24812920132E-04 1.28486601537E-04 1.32279569616E-04 1.36196186621E-04 1.40240993654E-04 1.44418718674E-04 1.48734284881E-04 1.53192819490E-04 1.57799662930E-04 1.62560378475E-04 1.67480762334E-04 1.72566854216E-04 1.77824948407E-04 1.83261605367E-04 1.88883663883E-04 1.94698253808E-04 2.00712809397E-04 2.06935083292E-04 2.13373161173E-04 2.20035477110E-04 2.26930829652E-04 2.34068398693E-04 2.41457763139E-04 2.49108919437E-04 2.57032300981E-04 2.65238798467E-04 2.73739781217E-04 2.82547119536E-04 2.91673208151E-04 3.01130990772E-04 3.10933985846E-04 3.21096313551E-04 3.31632724100E-04 3.42558627403E-04 3.53890124176E-04 3.65644038542E-04 3.77837952219E-04 3.90490240360E-04 4.03620109124E-04 4.17247635068E-04 4.31393806450E-04 4.46080566530E-04 4.61330858963E-04 4.77168675395E-04 4.93619105370E-04 5.10708388638E-04 5.28463970013E-04 5.46914556879E-04 5.66090179477E-04 5.86022254119E-04 6.06743649453E-04 6.28288755942E-04 6.50693558695E-04 6.73995713828E-04 6.98234628513E-04 7.23451544890E-04 7.49689628042E-04 7.76994058208E-04 8.05412127452E-04 8.34993340988E-04 8.65789523392E-04 8.97854929934E-04 9.31246363257E-04 9.66023295683E-04 1.00224799738E-03 1.03998567072E-03 1.07930459101E-03 1.12027625408E-03 1.16297553083E-03 1.20748082924E-03 1.25387426411E-03 1.30224183490E-03 1.35267361204E-03 1.40526393214E-03 1.46011160247E-03 1.51732011516E-03 1.57699787160E-03 1.63925841740E-03 1.70422068851E-03 1.77200926903E-03 1.84275466105E-03 1.91659356730E-03 1.99366918707E-03 2.07413152599E-03 2.15813772033E-03 2.24585237652E-03 2.33744792639E-03 2.43310499910E-03 2.53301281024E-03 2.63736956903E-03 2.74638290432E-03 2.86027031028E-03 2.97925961263E-03 3.10358945616E-03 3.23350981476E-03 3.36928252457E-03 3.51118184151E-03 3.65949502411E-03 3.81452294270E-03 3.97658071611E-03 4.14599837699E-03 4.32312156697E-03 4.50831226285E-03 4.70194953513E-03 4.90443034014E-03 5.11617034719E-03 5.33760480205E-03 5.56918942829E-03 5.81140136791E-03 6.06474016274E-03 6.32972877837E-03 6.60691467193E-03 6.89687090568E-03 7.20019730790E-03 7.51752168292E-03 7.84950107207E-03 8.19682306733E-03 8.56020717964E-03 8.94040626363E-03 9.33820800088E-03 9.75443644356E-03 1.01899536205E-02 1.06456612078E-02 1.11225022656E-02 1.16214630444E-02 1.21435748605E-02 1.26899160461E-02 1.32616139727E-02 1.38598471527E-02 1.44858474195E-02 1.51409021893E-02 1.58263568056E-02 1.65436169699E-02 1.72941512591E-02 1.80794937326E-02 1.89012466308E-02 1.97610831661E-02 2.06607504088E-02 2.16020722704E-02 2.25869525831E-02 2.36173782803E-02 2.46954226763E-02 2.58232488481E-02 2.70031131197E-02 2.82373686491E-02 2.95284691188E-02 3.08789725293E-02 3.22915450966E-02 3.37689652520E-02 3.53141277431E-02 3.69300478363E-02 3.86198656174E-02 4.03868503886E-02 4.22344051592E-02 4.41660712274E-02 4.61855328478E-02 4.82966219809E-02 5.05033231199E-02 5.28097781874E-02 5.52202914963E-02 5.77393347663E-02 6.03715521883E-02 6.31217655262E-02 6.59949792453E-02 6.89963856570E-02 7.21313700642E-02 7.54055158954E-02 7.88246098105E-02 8.23946467619E-02 8.61218349920E-02 9.00126009467E-02 9.40735940839E-02 9.83116915529E-02 1.02734002719E-01 1.07347873509E-01 1.12160890541E-01 1.17180885017E-01 1.22415936343E-01 1.27874375427E-01 1.33564787645E-01 1.39496015402E-01 1.45677160281E-01 1.52117584698E-01 1.58826913051E-01 1.65815032286E-01 1.73092091849E-01 1.80668502949E-01 1.88554937100E-01 1.96762323854E-01 2.05301847690E-01 2.14184943979E-01 2.23423293960E-01 2.33028818671E-01 2.43013671743E-01 2.53390231010E-01 2.64171088842E-01 2.75369041135E-01 2.86997074882E-01 2.99068354241E-01 3.11596205035E-01 3.24594097595E-01 3.38075627874E-01 3.52054496755E-01 3.66544487479E-01 3.81559441120E-01 3.97113230029E-01 4.13219729199E-01 4.29892785460E-01 4.47146184467E-01 4.64993615421E-01 4.83448633471E-01 5.02524619767E-01 5.22234739117E-01 5.42591895248E-01 5.63608683635E-01 5.85297341916E-01 6.07669697898E-01 6.30737115176E-01 6.54510436413E-01 6.78999924335E-01 7.04215200516E-01 7.30165182042E-01 7.56858016179E-01 7.84301013160E-01 8.12500577269E-01 8.41462136385E-01 8.71190070198E-01 9.01687637325E-01 9.32956901584E-01 9.64998657701E-01 9.97812356777E-01 1.03139603183E+00 1.06574622381E+00 1.10085790846E+00 1.13672442442E+00 1.17333740314E+00 1.21068670094E+00 1.24876033379E+00 1.28754441538E+00 1.32702309900E+00 1.36717852376E+00 1.40799076587E+00 1.44943779549E+00 1.49149543985E+00 1.53413735323E+00 1.57733499453E+00 1.62105761300E+00 1.66527224281E+00 1.70994370715E+00 1.75503463244E+00 1.80050547324E+00 1.84631454849E+00 1.89241808961E+00 1.93877030092E+00 1.98532343283E+00 2.03202786823E+00 2.07883222224E+00 2.12568345565E+00 2.17252700210E+00 2.21930690892E+00 2.26596599154E+00 2.31244600110E+00 2.35868780492E+00 2.40463157894E+00 2.45021701148E+00 2.49538351721E+00 2.54007045989E+00 2.58421738253E+00 2.62776424303E+00 2.67065165321E+00 2.71282111893E+00 2.75421527854E+00 2.79477813679E+00 2.83445529084E+00 2.87319414484E+00 2.91094410918E+00 2.94765678039E+00 2.98328609712E+00 3.01778846775E+00 3.05112286467E+00 3.08325088035E+00 3.11413674011E+00 3.14374726641E+00 3.17205178959E+00 3.19902199998E+00 3.22463173644E+00 3.24885670673E+00 3.27167413525E+00 3.29306233413E+00 3.31300019416E+00 3.33146659249E+00 3.34843971485E+00 3.36389629042E+00 3.37781073891E+00 3.39015422961E+00 3.40089365402E+00 3.40999051446E+00 3.41739973278E+00 3.42306838495E+00 3.42693436950E+00 3.42892502029E+00 3.42895567689E+00 3.42694625783E+00 3.42288040660E+00 3.41676202871E+00 3.40859881493E+00 3.39840222244E+00 3.38618744435E+00 3.37197336767E+00 3.35578251996E+00 3.33764100487E+00 3.31757842688E+00 3.29562780557E+00 3.27182547978E+00 3.24621100203E+00 3.21882702379E+00 3.18971917187E+00 3.15893591675E+00 3.12652843306E+00 3.09255045302E+00 3.05705811347E+00 3.02010979685E+00 2.98176596709E+00 2.94208900087E+00 2.90114301493E+00 2.85899369019E+00 2.81570809326E+00 2.77135449609E+00 2.72600219439E+00 2.67972132546E+00 2.63258268618E+00 2.58465755168E+00 2.53601749548E+00 2.48673421150E+00 2.43687933872E+00 2.38652428898E+00 2.33574007842E+00 2.28459716316E+00 2.23316527963E+00 2.18149811988E+00 2.12967895681E+00 2.07777447805E+00 2.02584266028E+00 1.97395492531E+00 1.92217367176E+00 1.87055962543E+00 1.81917173091E+00 1.76806705077E+00 1.71730067262E+00 1.66692562406E+00 1.61699279568E+00 1.56755087214E+00 1.51864627146E+00 1.47032309240E+00 1.42262307004E+00 1.37558553942E+00 1.32924740731E+00 1.28364313183E+00 1.23880471003E+00 1.19476167308E+00 1.15154108912E+00 1.10916757343E+00 1.06766330579E+00 1.02704805485E+00 9.87339209169E-01 9.48551814805E-01 9.10698619020E-01 8.73790119925E-01 8.37834621692E-01 8.02838294994E-01 7.68805242345E-01 7.35737567940E-01 7.03635451619E-01 6.72497226549E-01 6.42319460207E-01 6.13097038231E-01 5.84823250713E-01 5.57489880471E-01 5.31087292883E-01 5.05604526801E-01 4.81029386137E-01 4.57348531660E-01 4.34547572581E-01 4.12611157529E-01 3.91523064494E-01 3.71266289389E-01 3.51823132841E-01 3.33175284918E-01 3.15303907457E-01 2.98189713731E-01 2.81813045208E-01 2.66153945188E-01 2.51192229129E-01 2.36907551516E-01 2.23279469152E-01 2.10287500779E-01 1.97911182970E-01 1.86130122266E-01 1.74924043550E-01 1.64272834681E-01 1.54156587444E-01 1.44555634865E-01 1.35450585010E-01 1.26822351337E-01 1.18652179764E-01 1.10921672548E-01 1.03612809161E-01 9.67079642804E-02 9.01899230878E-02 8.40418940228E-02 7.82475191704E-02 7.27908824488E-02 6.76565157684E-02 6.28294033280E-02 5.82949842109E-02 5.40391534383E-02 5.00482616299E-02 4.63091134165E-02 4.28089647365E-02 3.95355191461E-02 3.64769232562E-02 3.36217614052E-02 3.09590496641E-02 2.84782292625E-02 2.61691595132E-02 2.40221103058E-02 2.20277542299E-02 2.01771583821E-02 1.84617759026E-02 1.68734372811E-02 1.54043414666E-02 1.40470468106E-02 1.27944618679E-02 1.16398360784E-02 1.05767503466E-02 9.59910753781E-03 8.70112290562E-03 7.87731446415E-03 7.12249332018E-03 6.43175397770E-03 5.80046462853E-03 5.22425744291E-03 4.69901887384E-03 4.22087998994E-03 3.78620685161E-03 3.39159094612E-03 3.03383969722E-03 2.70996706568E-03 2.41718425666E-03 2.15289055055E-03 1.91466427324E-03 1.70025392175E-03 1.50756946073E-03 1.33467380453E-03 1.17977449905E-03 1.04121561659E-03 9.17469875722E-04 8.07130997576E-04 7.08906308151E-04 6.21609595480E-04 5.44154228864E-04 4.75546546155E-04 4.14879513661E-04 3.61326661895E-04 3.14136299001E-04 2.72626002405E-04 2.36177387933E-04 2.04231154422E-04 1.76282400699E-04 1.51876210733E-04 1.30603501733E-04 1.12097129112E-04 9.60282413729E-05 8.21028772900E-05 7.00587971141E-05 5.96625390210E-05 5.07066915847E-05 4.30073727211E-05 3.64019053047E-05 3.07466794955E-05 2.59151917357E-05 2.17962503661E-05 1.82923378822E-05 1.53181199684E-05 1.27990916420E-05 1.06703510630E-05 8.87549185144E-06 7.36560506244E-06 6.09838231960E-06 5.03731197502E-06 4.15096055657E-06 3.41233216436E-06 2.79829889312E-06 2.28909577280E-06 1.86787413654E-06 1.52030773787E-06 1.23424634502E-06 9.99411935438E-07 8.07132997378E-07 6.50112813817E-07 5.22227956799E-07 4.18353555556E-07 3.34212218771E-07 2.66243789476E-07 2.11493389523E-07 1.67516580169E-07 1.32304569259E-07 1.04192644261E-07 8.18146330626E-08 6.40536441133E-08 4.99992873628E-08 3.89117220788E-08 3.01915349839E-08 2.33545817815E-08 1.80110404468E-08 1.38480268366E-08 1.06152133955E-08 8.11297108327E-09 6.18262419279E-09 4.69846843011E-09 3.56125541445E-09 2.69275200018E-09 2.03056423308E-09 1.52737520062E-09 1.14639220512E-09 8.58998042597E-10 6.43016954775E-10 4.81329928241E-10 3.58934949298E-10 2.66636933033E-10 1.97303830471E-10 1.45425342562E-10 1.06760964232E-10 7.80604175205E-11 5.68424966697E-11 4.12208495631E-11 2.97673102860E-11 2.14051449680E-11 1.53260221066E-11 1.09257157535E-11 7.75453407281E-12 5.47927082343E-12 3.85413262960E-12 2.69862569899E-12 1.88081344844E-12 1.30469956109E-12 9.00764723194E-13 6.18902578224E-13 4.23172042561E-13 2.87917956082E-13 1.94917422301E-13 1.31291126244E-13 8.79822836765E-14 5.86546189740E-14 3.88980628126E-14 2.56592392916E-14 1.68352879214E-14 1.09857279818E-14 7.12916784974E-15 4.60066227099E-15 2.95217984890E-15 1.88354178716E-15 1.19477562636E-15 7.53432513984E-16 4.72299117679E-16 2.94287721588E-16 1.82253733526E-16 1.12175146131E-16 6.86118280102E-17 4.17012684233E-17 2.51833111030E-17 1.51096572811E-17 9.00614843429E-18 5.33249344601E-18 3.13611435771E-18 1.83183735681E-18 1.06262017780E-18 6.12107257048E-19 3.50103976234E-19 1.98814402736E-19 1.12083240955E-19 6.27242988309E-20 3.48411921990E-20 1.92075295758E-20 1.05082420199E-20 5.70462234073E-21 3.07269676675E-21 1.64197162379E-21 8.70404960891E-22 4.57659957286E-22 2.38663415394E-22 1.23425568076E-22 6.32929255565E-23 3.21802777938E-23 1.62204254235E-23 8.10448061919E-24 4.01356867545E-24 1.96983675417E-24 9.58020177382E-25 4.61651438936E-25 2.20393336325E-25 1.04226086266E-25 4.88198500495E-26 2.26467652238E-26 1.04028579388E-26 4.73131945787E-27 2.13029956618E-27 9.49451731708E-28 4.18815957813E-28 1.82824873177E-28 7.89681517824E-29 3.37454702281E-29 1.42648520071E-29 5.96414308020E-30 2.46602690317E-30 1.00822105179E-30 4.07530731314E-31 1.62835578241E-31 6.43071808653E-32 2.50972987741E-32 9.67803373953E-33 3.68701082401E-33 1.38746644136E-33 5.15660882244E-34 1.89248086537E-34 6.85733785256E-35 2.45282521146E-35 8.65952453329E-36 3.01693798133E-36 1.03707748989E-36 3.51686106723E-37 1.17631642699E-37 3.88009975421E-38 1.26193006584E-38 4.04598513112E-39 1.27859157050E-39 3.98179531374E-40 1.22175901249E-40 3.69292661401E-41 1.09939123507E-41 3.22290317882E-42 9.30189702561E-43 2.64265154997E-43 7.38866776902E-44 2.03265141792E-44 5.50100170316E-45 1.46424319771E-45 3.83253869270E-46 9.86211293734E-47 2.49442542325E-47 6.20003405992E-48 1.51406775478E-48 3.63184843351E-49 8.55546393644E-50 1.97876354575E-50 4.49240107658E-51 1.00091216804E-51 2.18798077851E-52 4.69155803777E-53 9.86532514273E-54 2.03385398078E-54 4.10992775650E-55 8.13851737287E-56 1.57885538214E-56 2.99994455164E-57 5.58141583801E-58 1.01653149834E-58 1.81186648341E-59 3.15967601440E-60 5.38952590361E-61 8.27445928384E-07 8.48392819416E-07 8.69869983397E-07 8.91890844245E-07 9.14469165705E-07 9.37619059952E-07 9.61354996414E-07 9.85691810812E-07 1.01064471444E-06 1.03622930365E-06 1.06246156964E-06 1.08935790842E-06 1.11693513105E-06 1.14521047419E-06 1.17420161082E-06 1.20392666134E-06 1.23440420485E-06 1.26565329079E-06 1.29769345084E-06 1.33054471112E-06 1.36422760471E-06 1.39876318449E-06 1.43417303631E-06 1.47047929245E-06 1.50770464547E-06 1.54587236241E-06 1.58500629930E-06 1.62513091609E-06 1.66627129195E-06 1.70845314091E-06 1.75170282796E-06 1.79604738554E-06 1.84151453039E-06 1.88813268093E-06 1.93593097495E-06 1.98493928792E-06 2.03518825158E-06 2.08670927310E-06 2.13953455476E-06 2.19369711401E-06 2.24923080417E-06 2.30617033553E-06 2.36455129709E-06 2.42441017879E-06 2.48578439430E-06 2.54871230442E-06 2.61323324108E-06 2.67938753187E-06 2.74721652529E-06 2.81676261657E-06 2.88806927420E-06 2.96118106706E-06 3.03614369228E-06 3.11300400383E-06 3.19181004179E-06 3.27261106238E-06 3.35545756874E-06 3.44040134249E-06 3.52749547611E-06 3.61679440611E-06 3.70835394708E-06 3.80223132653E-06 3.89848522072E-06 3.99717579128E-06 4.09836472282E-06 4.20211526152E-06 4.30849225463E-06 4.41756219100E-06 4.52939324265E-06 4.64405530739E-06 4.76162005248E-06 4.88216095942E-06 5.00575336992E-06 5.13247453296E-06 5.26240365305E-06 5.39562193981E-06 5.53221265862E-06 5.67226118277E-06 5.81585504675E-06 5.96308400099E-06 6.11404006794E-06 6.26881759960E-06 6.42751333649E-06 6.59022646810E-06 6.75705869490E-06 6.92811429192E-06 7.10350017388E-06 7.28332596205E-06 7.46770405275E-06 7.65674968762E-06 7.85058102561E-06 8.04931921687E-06 8.25308847844E-06 8.46201617191E-06 8.67623288302E-06 8.89587250326E-06 9.12107231359E-06 9.35197307020E-06 9.58871909251E-06 9.83145835337E-06 1.00803425715E-05 1.03355273065E-05 1.05971720557E-05 1.08654403543E-05 1.11404998773E-05 1.14225225443E-05 1.17116846270E-05 1.20081668595E-05 1.23121545511E-05 1.26238377021E-05 1.29434111228E-05 1.32710745547E-05 1.36070327962E-05 1.39514958297E-05 1.43046789536E-05 1.46668029162E-05 1.50380940542E-05 1.54187844339E-05 1.58091119963E-05 1.62093207057E-05 1.66196607024E-05 1.70403884589E-05 1.74717669401E-05 1.79140657681E-05 1.83675613899E-05 1.88325372510E-05 1.93092839721E-05 1.97980995310E-05 2.02992894483E-05 2.08131669792E-05 2.13400533085E-05 2.18802777517E-05 2.24341779609E-05 2.30021001356E-05 2.35843992392E-05 2.41814392207E-05 2.47935932425E-05 2.54212439133E-05 2.60647835272E-05 2.67246143091E-05 2.74011486661E-05 2.80948094450E-05 2.88060301967E-05 2.95352554472E-05 3.02829409753E-05 3.10495540977E-05 3.18355739608E-05 3.26414918401E-05 3.34678114475E-05 3.43150492461E-05 3.51837347727E-05 3.60744109688E-05 3.69876345202E-05 3.79239762046E-05 3.88840212486E-05 3.98683696929E-05 4.08776367682E-05 4.19124532786E-05 4.29734659968E-05 4.40613380677E-05 4.51767494231E-05 4.63203972064E-05 4.74929962085E-05 4.86952793144E-05 4.99279979613E-05 5.11919226079E-05 5.24878432164E-05 5.38165697456E-05 5.51789326575E-05 5.65757834361E-05 5.80079951194E-05 5.94764628454E-05 6.09821044110E-05 6.25258608457E-05 6.41086969998E-05 6.57316021472E-05 6.73955906038E-05 6.91017023610E-05 7.08510037358E-05 7.26445880372E-05 7.44835762495E-05 7.63691177323E-05 7.83023909392E-05 8.02846041540E-05 8.23169962457E-05 8.44008374429E-05 8.65374301271E-05 8.87281096469E-05 9.09742451520E-05 9.32772404493E-05 9.56385348794E-05 9.80596042167E-05 1.00541961591E-04 1.03087158432E-04 1.05696785442E-04 1.08372473586E-04 1.11115895113E-04 1.13928764600E-04 1.16812840022E-04 1.19769923855E-04 1.22801864198E-04 1.25910555926E-04 1.29097941881E-04 1.32366014078E-04 1.35716814955E-04 1.39152438647E-04 1.42675032294E-04 1.46286797383E-04 1.49989991123E-04 1.53786927857E-04 1.57679980504E-04 1.61671582045E-04 1.65764227043E-04 1.69960473198E-04 1.74262942947E-04 1.78674325104E-04 1.83197376535E-04 1.87834923886E-04 1.92589865343E-04 1.97465172447E-04 2.02463891947E-04 2.07589147705E-04 2.12844142647E-04 2.18232160761E-04 2.23756569153E-04 2.29420820147E-04 2.35228453441E-04 2.41183098319E-04 2.47288475917E-04 2.53548401549E-04 2.59966787086E-04 2.66547643404E-04 2.73295082883E-04 2.80213321981E-04 2.87306683863E-04 2.94579601104E-04 3.02036618454E-04 3.09682395676E-04 3.17521710460E-04 3.25559461401E-04 3.33800671060E-04 3.42250489101E-04 3.50914195505E-04 3.59797203866E-04 3.68905064773E-04 3.78243469272E-04 3.87818252424E-04 3.97635396942E-04 4.07701036931E-04 4.18021461713E-04 4.28603119755E-04 4.39452622694E-04 4.50576749464E-04 4.61982450527E-04 4.73676852211E-04 4.85667261156E-04 4.97961168879E-04 5.10566256442E-04 5.23490399253E-04 5.36741671974E-04 5.50328353563E-04 5.64258932440E-04 5.78542111781E-04 5.93186814950E-04 6.08202191066E-04 6.23597620709E-04 6.39382721774E-04 6.55567355472E-04 6.72161632474E-04 6.89175919227E-04 7.06620844412E-04 7.24507305577E-04 7.42846475931E-04 7.61649811312E-04 7.80929057333E-04 8.00696256700E-04 8.20963756726E-04 8.41744217026E-04 8.63050617411E-04 8.84896265976E-04 9.07294807399E-04 9.30260231443E-04 9.53806881675E-04 9.77949464407E-04 1.00270305786E-03 1.02808312155E-03 1.05410550593E-03 1.08078646228E-03 1.10814265278E-03 1.13619116096E-03 1.16494950226E-03 1.19443563503E-03 1.22466797161E-03 1.25566538989E-03 1.28744724501E-03 1.32003338141E-03 1.35344414520E-03 1.38770039683E-03 1.42282352404E-03 1.45883545520E-03 1.49575867296E-03 1.53361622818E-03 1.57243175435E-03 1.61222948223E-03 1.65303425495E-03 1.69487154345E-03 1.73776746228E-03 1.78174878593E-03 1.82684296536E-03 1.87307814514E-03 1.92048318090E-03 1.96908765728E-03 2.01892190630E-03 2.07001702620E-03 2.12240490074E-03 2.17611821902E-03 2.23119049576E-03 2.28765609213E-03 2.34555023702E-03 2.40490904895E-03 2.46576955846E-03 2.52816973107E-03 2.59214849084E-03 2.65774574449E-03 2.72500240616E-03 2.79396042271E-03 2.86466279981E-03 2.93715362847E-03 3.01147811243E-03 3.08768259612E-03 3.16581459334E-03 3.24592281670E-03 3.32805720772E-03 3.41226896775E-03 3.49861058962E-03 3.58713589011E-03 3.67790004321E-03 3.77095961419E-03 3.86637259457E-03 3.96419843793E-03 4.06449809660E-03 4.16733405927E-03 4.27277038958E-03 4.38087276560E-03 4.49170852032E-03 4.60534668318E-03 4.72185802258E-03 4.84131508944E-03 4.96379226194E-03 5.08936579120E-03 5.21811384825E-03 5.35011657210E-03 5.48545611896E-03 5.62421671274E-03 5.76648469678E-03 5.91234858682E-03 6.06189912537E-03 6.21522933729E-03 6.37243458686E-03 6.53361263620E-03 6.69886370512E-03 6.86829053245E-03 7.04199843893E-03 7.22009539155E-03 7.40269206953E-03 7.58990193195E-03 7.78184128693E-03 7.97862936260E-03 8.18038837980E-03 8.38724362646E-03 8.59932353393E-03 8.81675975509E-03 9.03968724436E-03 9.26824433970E-03 9.50257284658E-03 9.74281812400E-03 9.98912917254E-03 1.02416587247E-02 1.05005633371E-02 1.07660034855E-02 1.10381436614E-02 1.13171524714E-02 1.16032027389E-02 1.18964716084E-02 1.21971406516E-02 1.25053959773E-02 1.28214283426E-02 1.31454332673E-02 1.34776111518E-02 1.38181673963E-02 1.41673125240E-02 1.45252623070E-02 1.48922378947E-02 1.52684659458E-02 1.56541787633E-02 1.60496144322E-02 1.64550169612E-02 1.68706364273E-02 1.72967291239E-02 1.77335577119E-02 1.81813913753E-02 1.86405059795E-02 1.91111842339E-02 1.95937158578E-02 2.00883977503E-02 2.05955341645E-02 2.11154368852E-02 2.16484254104E-02 2.21948271383E-02 2.27549775569E-02 2.33292204389E-02 2.39179080410E-02 2.45214013073E-02 2.51400700773E-02 2.57742932990E-02 2.64244592466E-02 2.70909657425E-02 2.77742203852E-02 2.84746407811E-02 2.91926547828E-02 2.99287007310E-02 3.06832277031E-02 3.14566957665E-02 3.22495762372E-02 3.30623519446E-02 3.38955175013E-02 3.47495795795E-02 3.56250571919E-02 3.65224819802E-02 3.74423985079E-02 3.83853645610E-02 3.93519514531E-02 4.03427443383E-02 4.13583425293E-02 4.23993598230E-02 4.34664248315E-02 4.45601813209E-02 4.56812885558E-02 4.68304216512E-02 4.80082719308E-02 4.92155472926E-02 5.04529725812E-02 5.17212899672E-02 5.30212593337E-02 5.43536586701E-02 5.57192844725E-02 5.71189521523E-02 5.85534964513E-02 6.00237718640E-02 6.15306530684E-02 6.30750353621E-02 6.46578351079E-02 6.62799901855E-02 6.79424604505E-02 6.96462282012E-02 7.13922986525E-02 7.31817004170E-02 7.50154859934E-02 7.68947322615E-02 7.88205409849E-02 8.07940393206E-02 8.28163803345E-02 8.48887435248E-02 8.70123353512E-02 8.91883897706E-02 9.14181687791E-02 9.37029629595E-02 9.60440920355E-02 9.84429054303E-02 1.00900782831E-01 1.03419134758E-01 1.05999403137E-01 1.08643061881E-01 1.11351617465E-01 1.14126609517E-01 1.16969611403E-01 1.19882230817E-01 1.22866110373E-01 1.25922928196E-01 1.29054398518E-01 1.32262272269E-01 1.35548337670E-01 1.38914420822E-01 1.42362386294E-01 1.45894137706E-01 1.49511618311E-01 1.53216811565E-01 1.57011741697E-01 1.60898474262E-01 1.64879116699E-01 1.68955818864E-01 1.73130773554E-01 1.77406217029E-01 1.81784429500E-01 1.86267735616E-01 1.90858504920E-01 1.95559152295E-01 2.00372138376E-01 2.05299969949E-01 2.10345200305E-01 2.15510429586E-01 2.20798305078E-01 2.26211521482E-01 2.31752821137E-01 2.37424994210E-01 2.43230878835E-01 2.49173361207E-01 2.55255375619E-01 2.61479904450E-01 2.67849978089E-01 2.74368674794E-01 2.81039120483E-01 2.87864488454E-01 2.94847999022E-01 3.01992919075E-01 3.09302561540E-01 3.16780284752E-01 3.24429491723E-01 3.32253629307E-01 3.40256187240E-01 3.48440697066E-01 3.56810730937E-01 3.65369900263E-01 3.74121854231E-01 3.83070278159E-01 3.92218891692E-01 4.01571446828E-01 4.11131725755E-01 4.20903538496E-01 4.30890720361E-01 4.41097129166E-01 4.51526642241E-01 4.62183153189E-01 4.73070568398E-01 4.84192803283E-01 4.95553778251E-01 5.07157414370E-01 5.19007628728E-01 5.31108329465E-01 5.43463410465E-01 5.56076745682E-01 5.68952183096E-01 5.82093538262E-01 5.95504587451E-01 6.09189060348E-01 6.23150632299E-01 6.37392916065E-01 6.51919453089E-01 6.66733704224E-01 6.81839039921E-01 6.97238729829E-01 7.12935931805E-01 7.28933680290E-01 7.45234874026E-01 7.61842263091E-01 7.78758435222E-01 7.95985801384E-01 8.13526580574E-01 8.31382783805E-01 8.49556197259E-01 8.68048364556E-01 8.86860568122E-01 9.05993809603E-01 9.25448789302E-01 9.45225884605E-01 9.65325127336E-01 9.85746180038E-01 1.00648831111E+00 1.02755036877E+00 1.04893075384E+00 1.07062739122E+00 1.09263770016E+00 1.11495856313E+00 1.13758629335E+00 1.16051660096E+00 1.18374455764E+00 1.20726455988E+00 1.23107029061E+00 1.25515467941E+00 1.27950986098E+00 1.30412713212E+00 1.32899690704E+00 1.35410867088E+00 1.37945093174E+00 1.40501117075E+00 1.43077579062E+00 1.45673006226E+00 1.48285806975E+00 1.50914265354E+00 1.53556535176E+00 1.56210634001E+00 1.58874436913E+00 1.61545670152E+00 1.64221904561E+00 1.66900548871E+00 1.69578842840E+00 1.72253850223E+00 1.74922451611E+00 1.77581337127E+00 1.80226999006E+00 1.82855724057E+00 1.85463586027E+00 1.88046437890E+00 1.90599904071E+00 1.93119372619E+00 1.95599987378E+00 1.98036640142E+00 2.00423962867E+00 2.02756319933E+00 2.05027800511E+00 2.07232211070E+00 2.09363068068E+00 2.11413590858E+00 2.13376694881E+00 2.15244985185E+00 2.17010750331E+00 2.18665956755E+00 2.20202243654E+00 2.21610918462E+00 2.22882953009E+00 2.24008980443E+00 2.24979293009E+00 2.25783840783E+00 2.26412231466E+00 2.26853731363E+00 2.27097267655E+00 2.27131432093E+00 2.26944486266E+00 2.26524368569E+00 2.25858703042E+00 2.24934810224E+00 2.23739720211E+00 2.22260188085E+00 2.20482711903E+00 2.18393553457E+00 2.15978761982E+00 2.13224201064E+00 2.10115578929E+00 2.06638482382E+00 2.02778414596E+00 1.98520837031E+00 1.93851215700E+00 1.88755072057E+00 1.83218038756E+00 1.77225920546E+00 1.70764760560E+00 1.63840889150E+00 1.57074345212E+00 1.50467721877E+00 1.44023307483E+00 1.37743084120E+00 1.31628726551E+00 1.25681601513E+00 1.19902767425E+00 1.14292974547E+00 1.08852665714E+00 1.03581977779E+00 9.84807439680E-01 9.35484973368E-01 8.87844755613E-01 8.41876272567E-01 7.97566199840E-01 7.54898500427E-01 7.13854540616E-01 6.74413223119E-01 6.36551135679E-01 6.00242712563E-01 5.65460405625E-01 5.32174861178E-01 5.00355098784E-01 4.69968688209E-01 4.40981921352E-01 4.13359976633E-01 3.87067074236E-01 3.62066621493E-01 3.38321348459E-01 3.15793434386E-01 2.94444626129E-01 2.74236349696E-01 2.55129816120E-01 2.37086122635E-01 2.20066349915E-01 2.04031655847E-01 1.88943366097E-01 1.74763061473E-01 1.61452661989E-01 1.48974507400E-01 1.37291433925E-01 1.26366846880E-01 1.16164788911E-01 1.06650003576E-01 9.77879940638E-02 8.95450768470E-02 8.18884301666E-02 7.47861372498E-02 6.82072242339E-02 6.21216928043E-02 5.65005475965E-02 5.13158184478E-02 4.65405776198E-02 4.21489521380E-02 3.81161314263E-02 3.44183704308E-02 3.10329884515E-02 2.79383639137E-02 2.51139253266E-02 2.25401386862E-02 2.01984915887E-02 1.80714743271E-02 1.61425582462E-02 1.43961716337E-02 1.28176734254E-02 1.13933249977E-02 1.01102603196E-02 8.95645472724E-03 7.92069257853E-03 6.99253403582E-03 6.16228121382E-03 5.42094391884E-03 4.76020519267E-03 4.17238686116E-03 3.65041527317E-03 3.18778740125E-03 2.77853746015E-03 2.41720418395E-03 2.09879888783E-03 1.81877442441E-03 1.57299513053E-03 1.35770784502E-03 1.16951406413E-03 1.00534328769E-03 8.62427595862E-04 7.38277484539E-04 6.30658975487E-04 5.37572007223E-04 4.57230102571E-04 3.88041300213E-04 3.28590329586E-04 2.77622001539E-04 2.34025781069E-04 1.96821503313E-04 1.65146189603E-04 1.38241916919E-04 1.15444691348E-04 9.61742741377E-05 7.99249076242E-05 6.62568876297E-05 5.47889287534E-05 4.51912693770E-05 3.71794640035E-05 3.05088117535E-05 2.49693713725E-05 2.03815149113E-05 1.65919742704E-05 1.34703370060E-05 1.09059501295E-05 8.80519305296E-06 7.08908330740E-06 5.69118114168E-06 4.55576158711E-06 3.63622499968E-06 2.89371946217E-06 2.29595071426E-06 1.81615747025E-06 1.43223206678E-06 1.12596834998E-06 8.82420556401E-07 6.89358661515E-07 5.36807262380E-07 4.16656528213E-07 3.22335096035E-07 2.48536012203E-07 1.90987929096E-07 1.46264765149E-07 1.11627931976E-07 8.48960311815E-08 6.43376324655E-08 4.85833708467E-08 3.65541511879E-08 2.74027295939E-08 2.04663602671E-08 1.52285593989E-08 1.12883506481E-08 8.33562531418E-09 6.13147967607E-09 4.49258692864E-09 3.27882608566E-09 2.38352909672E-09 1.72582380815E-09 1.24464746720E-09 8.94086044490E-10 6.39761215014E-10 4.56041566775E-10 3.23899385581E-10 2.29270827538E-10 1.61806837257E-10 1.13925995441E-10 8.00995981425E-11 5.63145367522E-11 3.94084086199E-11 2.74480016008E-11 1.90265889671E-11 1.31254470929E-11 9.01040874487E-12 6.15497095189E-12 4.18342717502E-12 2.82902195216E-12 1.90331718354E-12 1.27388214046E-12 8.48130477413E-13 5.61672505266E-13 3.69966231541E-13 2.42365274538E-13 1.57898739337E-13 1.02295624396E-13 6.58984721380E-14 4.22087880378E-14 2.68787215481E-14 1.70161397738E-14 1.07084912549E-14 6.69850677105E-15 4.16463955251E-15 2.57331727604E-15 1.58012738380E-15 9.64138917366E-16 5.84522628121E-16 3.52080716181E-16 2.10681732320E-16 1.25233155833E-16 7.39406348635E-17 4.33592302986E-17 2.52509166755E-17 1.46026644977E-17 8.38509784346E-18 4.78042423546E-18 2.70562585000E-18 1.52010034690E-18 8.47695191065E-19 4.69169039081E-19 2.57691354541E-19 1.40446018461E-19 7.59479018218E-20 4.07451627943E-20 2.16843745121E-20 1.14468083263E-20 5.99299834360E-21 3.11158137099E-21 1.60195347368E-21 8.17719362615E-22 4.13806840051E-22 2.07578721780E-22 1.03207674701E-22 5.08553641455E-23 2.48317993330E-23 1.20136974551E-23 5.75827094394E-24 2.73403213862E-24 1.28575977815E-24 5.98837117850E-25 2.76183390072E-25 1.26116826517E-25 5.70139526755E-26 2.55133357869E-26 1.12999358374E-26 4.95280607667E-27 2.14801130882E-27 9.21667493951E-28 3.91206718651E-28 1.64238057624E-28 6.81894451074E-29 2.79947135625E-29 1.13629034217E-29 4.55926832670E-30 1.80813518879E-30 7.08652176611E-31 2.74433806837E-31 1.04997587579E-31 3.96818954460E-32 1.48118803302E-32 5.45965450541E-33 1.98695914658E-33 7.13858760968E-34 2.53142534423E-34 8.85883142802E-35 3.05896387868E-35 1.04204401153E-35 3.50136884591E-36 1.16025942647E-36 3.79107344984E-37 1.22118819260E-37 3.87738373830E-38 1.21325549677E-38 3.74061970630E-39 1.13614081047E-39 3.39888572082E-40 1.00132306755E-40 2.90443422934E-41 8.29304250835E-42 2.33048084858E-42 6.44420999060E-43 1.75306664429E-43 4.69075502128E-44 1.23427667076E-44 3.19312889830E-45 8.12011361037E-46 2.02934497758E-46 4.98313883038E-47 1.20200821082E-47 2.84755434211E-48 6.62366431302E-49 1.51246954380E-49 3.38950325551E-50 7.45322707718E-51 1.60771115939E-51 3.40112240231E-52 7.05473853611E-53 1.43442065186E-53 2.85825022212E-54 5.58009844691E-55 1.06706228874E-55 1.99816324042E-56 3.66294874006E-57 6.57196322700E-58 1.15373583525E-58 1.98127930305E-59 3.32730552112E-60 5.46292697326E-61 8.76638201014E-62 1.37452506640E-62 2.10521101130E-63 3.14862635758E-64 4.59726313162E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.04662642095E-05 4.09752674405E-05 4.14906731549E-05 4.20125618866E-05 4.25410151822E-05 4.30761156143E-05 4.36179467940E-05 4.41665933842E-05 4.47221411127E-05 4.52846767857E-05 4.58542883012E-05 4.64310646629E-05 4.70150959942E-05 4.76064735519E-05 4.82052897407E-05 4.88116381279E-05 4.94256134574E-05 5.00473116652E-05 5.06768298937E-05 5.13142665076E-05 5.19597211086E-05 5.26132945515E-05 5.32750889595E-05 5.39452077405E-05 5.46237556033E-05 5.53108385734E-05 5.60065640105E-05 5.67110406243E-05 5.74243784922E-05 5.81466890761E-05 5.88780852401E-05 5.96186812679E-05 6.03685928809E-05 6.11279372558E-05 6.18968330437E-05 6.26754003878E-05 6.34637609429E-05 6.42620378938E-05 6.50703559751E-05 6.58888414902E-05 6.67176223314E-05 6.75568279997E-05 6.84065896250E-05 6.92670399869E-05 7.01383135351E-05 7.10205464105E-05 7.19138764666E-05 7.28184432909E-05 7.37343882269E-05 7.46618543959E-05 7.56009867196E-05 7.65519319428E-05 7.75148386560E-05 7.84898573191E-05 7.94771402844E-05 8.04768418208E-05 8.14891181379E-05 8.25141274099E-05 8.35520298012E-05 8.46029874905E-05 8.56671646970E-05 8.67447277053E-05 8.78358448920E-05 8.89406867515E-05 9.00594259232E-05 9.11922372181E-05 9.23392976461E-05 9.35007864438E-05 9.46768851027E-05 9.58677773971E-05 9.70736494133E-05 9.82946895784E-05 9.95310886896E-05 1.00783039945E-04 1.02050738971E-04 1.03334383859E-04 1.04634175187E-04 1.05950316061E-04 1.07283012139E-04 1.08632471667E-04 1.09998905512E-04 1.11382527191E-04 1.12783552908E-04 1.14202201589E-04 1.15638694912E-04 1.17093257343E-04 1.18566116174E-04 1.20057501555E-04 1.21567646530E-04 1.23096787078E-04 1.24645162145E-04 1.26213013681E-04 1.27800586683E-04 1.29408129228E-04 1.31035892516E-04 1.32684130905E-04 1.34353101953E-04 1.36043066461E-04 1.37754288507E-04 1.39487035494E-04 1.41241578189E-04 1.43018190764E-04 1.44817150842E-04 1.46638739537E-04 1.48483241501E-04 1.50350944966E-04 1.52242141792E-04 1.54157127509E-04 1.56096201366E-04 1.58059666377E-04 1.60047829369E-04 1.62061001027E-04 1.64099495947E-04 1.66163632683E-04 1.68253733795E-04 1.70370125904E-04 1.72513139738E-04 1.74683110188E-04 1.76880376358E-04 1.79105281617E-04 1.81358173658E-04 1.83639404544E-04 1.85949330772E-04 1.88288313322E-04 1.90656717717E-04 1.93054914079E-04 1.95483277187E-04 1.97942186536E-04 2.00432026395E-04 2.02953185871E-04 2.05506058964E-04 2.08091044635E-04 2.10708546861E-04 2.13358974707E-04 2.16042742382E-04 2.18760269310E-04 2.21511980191E-04 2.24298305070E-04 2.27119679403E-04 2.29976544129E-04 2.32869345732E-04 2.35798536316E-04 2.38764573677E-04 2.41767921369E-04 2.44809048782E-04 2.47888431212E-04 2.51006549937E-04 2.54163892294E-04 2.57360951752E-04 2.60598227990E-04 2.63876226977E-04 2.67195461050E-04 2.70556448995E-04 2.73959716127E-04 2.77405794375E-04 2.80895222360E-04 2.84428545487E-04 2.88006316022E-04 2.91629093187E-04 2.95297443240E-04 2.99011939570E-04 3.02773162782E-04 3.06581700791E-04 3.10438148914E-04 3.14343109961E-04 3.18297194333E-04 3.22301020114E-04 3.26355213171E-04 3.30460407252E-04 3.34617244081E-04 3.38826373465E-04 3.43088453392E-04 3.47404150135E-04 3.51774138358E-04 3.56199101219E-04 3.60679730479E-04 3.65216726612E-04 3.69810798911E-04 3.74462665604E-04 3.79173053963E-04 3.83942700422E-04 3.88772350687E-04 3.93662759859E-04 3.98614692551E-04 4.03628923003E-04 4.08706235214E-04 4.13847423054E-04 4.19053290397E-04 4.24324651244E-04 4.29662329850E-04 4.35067160857E-04 4.40539989421E-04 4.46081671351E-04 4.51693073235E-04 4.57375072584E-04 4.63128557969E-04 4.68954429156E-04 4.74853597253E-04 4.80826984852E-04 4.86875526171E-04 4.93000167208E-04 4.99201865882E-04 5.05481592191E-04 5.11840328360E-04 5.18279069001E-04 5.24798821263E-04 5.31400604997E-04 5.38085452914E-04 5.44854410748E-04 5.51708537422E-04 5.58648905217E-04 5.65676599936E-04 5.72792721081E-04 5.79998382024E-04 5.87294710184E-04 5.94682847205E-04 6.02163949136E-04 6.09739186615E-04 6.17409745054E-04 6.25176824827E-04 6.33041641458E-04 6.41005425818E-04 6.49069424314E-04 6.57234899093E-04 6.65503128238E-04 6.73875405972E-04 6.82353042863E-04 6.90937366035E-04 6.99629719374E-04 7.08431463744E-04 7.17343977206E-04 7.26368655232E-04 7.35506910932E-04 7.44760175275E-04 7.54129897319E-04 7.63617544442E-04 7.73224602577E-04 7.82952576446E-04 7.92802989802E-04 8.02777385672E-04 8.12877326605E-04 8.23104394921E-04 8.33460192961E-04 8.43946343349E-04 8.54564489248E-04 8.65316294624E-04 8.76203444514E-04 8.87227645294E-04 8.98390624958E-04 9.09694133389E-04 9.21139942645E-04 9.32729847243E-04 9.44465664446E-04 9.56349234561E-04 9.68382421228E-04 9.80567111728E-04 9.92905217285E-04 1.00539867337E-03 1.01804944003E-03 1.03085950219E-03 1.04383086996E-03 1.05696557902E-03 1.07026569086E-03 1.08373329322E-03 1.09737050033E-03 1.11117945333E-03 1.12516232058E-03 1.13932129800E-03 1.15365860949E-03 1.16817650722E-03 1.18287727207E-03 1.19776321392E-03 1.21283667213E-03 1.22810001583E-03 1.24355564436E-03 1.25920598767E-03 1.27505350670E-03 1.29110069377E-03 1.30735007306E-03 1.32380420093E-03 1.34046566645E-03 1.35733709174E-03 1.37442113244E-03 1.39172047819E-03 1.40923785301E-03 1.42697601581E-03 1.44493776080E-03 1.46312591804E-03 1.48154335381E-03 1.50019297118E-03 1.51907771046E-03 1.53820054969E-03 1.55756450517E-03 1.57717263195E-03 1.59702802434E-03 1.61713381649E-03 1.63749318284E-03 1.65810933874E-03 1.67898554096E-03 1.70012508825E-03 1.72153132192E-03 1.74320762642E-03 1.76515742989E-03 1.78738420481E-03 1.80989146854E-03 1.83268278398E-03 1.85576176017E-03 1.87913205293E-03 1.90279736550E-03 1.92676144917E-03 1.95102810397E-03 1.97560117933E-03 2.00048457478E-03 2.02568224059E-03 2.05119817855E-03 2.07703644263E-03 2.10320113972E-03 2.12969643038E-03 2.15652652959E-03 2.18369570752E-03 2.21120829027E-03 2.23906866072E-03 2.26728125926E-03 2.29585058469E-03 2.32478119498E-03 2.35407770814E-03 2.38374480308E-03 2.41378722050E-03 2.44420976374E-03 2.47501729970E-03 2.50621475979E-03 2.53780714082E-03 2.56979950597E-03 2.60219698579E-03 2.63500477911E-03 2.66822815413E-03 2.70187244940E-03 2.73594307486E-03 2.77044551289E-03 2.80538531942E-03 2.84076812504E-03 2.87659963604E-03 2.91288563566E-03 2.94963198516E-03 2.98684462506E-03 3.02452957633E-03 3.06269294162E-03 3.10134090652E-03 3.14047974083E-03 3.18011579985E-03 3.22025552576E-03 3.26090544893E-03 3.30207218931E-03 3.34376245786E-03 3.38598305795E-03 3.42874088689E-03 3.47204293738E-03 3.51589629905E-03 3.56030816002E-03 3.60528580852E-03 3.65083663448E-03 3.69696813123E-03 3.74368789716E-03 3.79100363747E-03 3.83892316597E-03 3.88745440684E-03 3.93660539652E-03 3.98638428559E-03 4.03679934067E-03 4.08785894648E-03 4.13957160775E-03 4.19194595138E-03 4.24499072852E-03 4.29871481670E-03 4.35312722211E-03 4.40823708179E-03 4.46405366601E-03 4.52058638062E-03 4.57784476944E-03 4.63583851680E-03 4.69457745008E-03 4.75407154228E-03 4.81433091472E-03 4.87536583975E-03 4.93718674362E-03 4.99980420926E-03 5.06322897928E-03 5.12747195901E-03 5.19254421952E-03 5.25845700088E-03 5.32522171535E-03 5.39284995076E-03 5.46135347390E-03 5.53074423408E-03 5.60103436669E-03 5.67223619693E-03 5.74436224362E-03 5.81742522307E-03 5.89143805310E-03 5.96641385716E-03 6.04236596857E-03 6.11930793481E-03 6.19725352205E-03 6.27621671967E-03 6.35621174500E-03 6.43725304817E-03 6.51935531707E-03 6.60253348247E-03 6.68680272327E-03 6.77217847194E-03 6.85867642007E-03 6.94631252408E-03 7.03510301113E-03 7.12506438518E-03 7.21621343322E-03 7.30856723169E-03 7.40214315309E-03 7.49695887279E-03 7.59303237601E-03 7.69038196506E-03 7.78902626678E-03 7.88898424014E-03 7.99027518416E-03 8.09291874603E-03 8.19693492947E-03 8.30234410334E-03 8.40916701056E-03 8.51742477720E-03 8.62713892202E-03 8.73833136610E-03 8.85102444296E-03 8.96524090885E-03 9.08100395343E-03 9.19833721082E-03 9.31726477087E-03 9.43781119095E-03 9.56000150798E-03 9.68386125091E-03 9.80941645355E-03 9.93669366792E-03 1.00657199778E-02 1.01965230131E-02 1.03291309641E-02 1.04635725970E-02 1.05998772688E-02 1.07380749440E-02 1.08781962108E-02 1.10202722984E-02 1.11643350944E-02 1.13104171635E-02 1.14585517657E-02 1.16087728764E-02 1.17611152063E-02 1.19156142218E-02 1.20723061670E-02 1.22312280855E-02 1.23924178434E-02 1.25559141532E-02 1.27217565976E-02 1.28899856555E-02 1.30606427276E-02 1.32337701635E-02 1.34094112896E-02 1.35876104379E-02 1.37684129759E-02 1.39518653368E-02 1.41380150520E-02 1.43269107836E-02 1.45186023583E-02 1.47131408028E-02 1.49105783795E-02 1.51109686248E-02 1.53143663872E-02 1.55208278676E-02 1.57304106610E-02 1.59431737987E-02 1.61591777932E-02 1.63784846834E-02 1.66011580823E-02 1.68272632257E-02 1.70568670229E-02 1.72900381085E-02 1.75268468969E-02 1.77673656380E-02 1.80116684746E-02 1.82598315023E-02 1.85119328312E-02 1.87680526493E-02 1.90282732886E-02 1.92926792931E-02 1.95613574892E-02 1.98343970582E-02 2.01118896115E-02 2.03939292684E-02 2.06806127361E-02 2.09720393926E-02 2.12683113726E-02 2.15695336556E-02 2.18758141577E-02 2.21872638256E-02 2.25039967348E-02 2.28261301895E-02 2.31537848277E-02 2.34870847277E-02 2.38261575199E-02 2.41711345009E-02 2.45221507523E-02 2.48793452623E-02 2.52428610525E-02 2.56128453077E-02 2.59894495106E-02 2.63728295800E-02 2.67631460144E-02 2.71605640397E-02 2.75652537610E-02 2.79773903202E-02 2.83971540581E-02 2.88247306812E-02 2.92603114342E-02 2.97040932778E-02 3.01562790715E-02 3.06170777625E-02 3.10867045802E-02 3.15653812362E-02 3.20533361310E-02 3.25508045664E-02 3.30580289640E-02 3.35752590909E-02 3.41027522910E-02 3.46407737238E-02 3.51895966095E-02 3.57495024814E-02 3.63207814456E-02 3.69037324471E-02 3.74986635442E-02 3.81058921898E-02 3.87257455208E-02 3.93585606546E-02 4.00046849937E-02 4.06644765385E-02 4.13383042078E-02 4.20265481672E-02 4.27296001662E-02 4.34478638831E-02 4.41817552784E-02 4.49317029562E-02 4.56981485345E-02 4.64815470231E-02 4.72823672106E-02 4.81010920590E-02 4.89382191073E-02 4.97942608826E-02 5.06697453194E-02 5.15652161874E-02 5.24812335266E-02 5.34183740900E-02 5.43772317944E-02 5.53584181772E-02 5.63625628613E-02 5.73903140257E-02 5.84423388831E-02 5.95193241621E-02 6.06219765961E-02 6.17510234157E-02 6.29072128465E-02 6.40913146091E-02 6.53041204237E-02 6.65464445148E-02 6.78191241188E-02 6.91230199914E-02 7.04590169134E-02 7.18280241964E-02 7.32309761841E-02 7.46688327497E-02 7.61425797884E-02 7.76532297015E-02 7.92018218729E-02 8.07894231338E-02 8.24171282167E-02 8.40860601932E-02 8.57973708963E-02 8.75522413242E-02 8.93518820216E-02 9.11975334379E-02 9.30904662590E-02 9.50319817085E-02 9.70234118169E-02 9.90661196542E-02 1.01161499523E-01 1.03310977109E-01 1.05516009580E-01 1.07778085641E-01 1.10098725526E-01 1.12479480931E-01 1.14921934884E-01 1.17427701543E-01 1.19998425912E-01 1.22635783487E-01 1.25341479804E-01 1.28117249896E-01 1.30964857647E-01 1.33886095050E-01 1.36882781330E-01 1.39956761968E-01 1.43109907577E-01 1.46344112650E-01 1.49661294164E-01 1.53063390022E-01 1.56552357342E-01 1.60130170567E-01 1.63798819395E-01 1.67560306528E-01 1.71416645206E-01 1.75369856547E-01 1.79421966655E-01 1.83575003510E-01 1.87830993609E-01 1.92191958365E-01 1.96659910243E-01 2.01236848625E-01 2.05924755401E-01 2.10725590268E-01 2.15641285727E-01 2.20673741784E-01 2.25824820317E-01 2.31096339138E-01 2.36490065710E-01 2.42007710534E-01 2.47650920182E-01 2.53421269993E-01 2.59320256405E-01 2.65349288941E-01 2.71509681830E-01 2.77802645281E-01 2.84229276393E-01 2.90790549729E-01 2.97487307536E-01 3.04320249638E-01 3.11289923007E-01 3.18396711025E-01 3.25640822457E-01 3.33022280156E-01 3.40540909527E-01 3.48196326770E-01 3.55987926947E-01 3.63914871898E-01 3.71976078057E-01 3.80170204211E-01 3.88495639253E-01 3.96950489988E-01 4.05532569051E-01 4.14239383018E-01 4.23068120763E-01 4.32015642168E-01 4.41078467250E-01 4.50252765816E-01 4.59534347730E-01 4.68918653917E-01 4.78400748197E-01 4.87975310079E-01 4.97636628636E-01 5.07378597586E-01 5.17194711723E-01 5.27078064815E-01 5.37021349135E-01 5.47016856747E-01 5.57056482700E-01 5.67131730272E-01 5.77233718404E-01 5.87353191460E-01 5.97480531453E-01 6.07605772848E-01 6.17718620065E-01 6.27808467788E-01 6.37864424144E-01 6.47875336845E-01 6.57829822311E-01 6.67716297807E-01 6.77523016572E-01 6.87238105892E-01 6.96849608031E-01 7.06345523880E-01 7.15713859159E-01 7.24942672916E-01 7.34020128057E-01 7.42934543522E-01 7.51674447710E-01 7.60228632651E-01 7.68586208342E-01 7.76736656622E-01 7.84669883837E-01 7.92376271489E-01 7.99846723980E-01 8.07072712453E-01 8.14046313697E-01 8.20760242949E-01 8.27207879417E-01 8.33383283240E-01 8.39281202565E-01 8.44897069405E-01 8.50226982887E-01 8.55267678544E-01 8.60016482293E-01 8.64471247825E-01 8.68630276220E-01 8.72492216717E-01 8.76055947751E-01 8.79320437580E-01 8.82284584097E-01 8.84947033741E-01 8.87305979807E-01 8.89358940894E-01 8.91102520726E-01 8.92532151186E-01 8.93641820976E-01 8.94423793079E-01 8.94868314885E-01 8.94965699763E-01 8.94714192347E-01 8.94114498988E-01 8.93167657986E-01 8.91875039151E-01 8.90238342820E-01 8.88259598341E-01 8.85941162008E-01 8.83285714482E-01 8.80296257685E-01 8.76976111181E-01 8.73328908064E-01 8.69358590347E-01 8.65069403880E-01 8.60465892797E-01 8.55552893509E-01 8.50335528268E-01 8.44819198298E-01 8.39009576518E-01 8.32912599883E-01 8.26534461339E-01 8.19881601427E-01 8.12960699540E-01 8.05778664866E-01 7.98342627019E-01 7.90659926386E-01 7.82738104209E-01 7.74584892416E-01 7.66208203217E-01 7.57616118497E-01 7.48816879005E-01 7.39818873372E-01 7.30630626971E-01 7.21260790636E-01 7.11718129253E-01 7.02011510249E-01 6.92149891988E-01 6.82136752305E-01 6.71986686268E-01 6.61708853789E-01 6.51312458501E-01 6.40806735921E-01 6.30200941603E-01 6.19504339306E-01 6.08726189177E-01 5.97875735981E-01 5.86962197378E-01 5.75994752252E-01 5.64982529131E-01 5.53934594678E-01 5.42859942303E-01 5.31767480870E-01 5.20666023554E-01 5.09564276830E-01 4.98470829635E-01 4.87394142703E-01 4.76342538105E-01 4.65324189004E-01 4.54347109656E-01 4.43419145665E-01 4.32547964532E-01 4.21741046512E-01 4.11005675807E-01 4.00348932124E-01 3.89777682616E-01 3.79298574252E-01 3.68918026615E-01 3.58642225183E-01 3.48477115101E-01 3.38428395470E-01 3.28501514186E-01 3.18701663337E-01 3.09033775186E-01 2.99502518750E-01 2.90112296991E-01 2.80867244627E-01 2.71771226569E-01 2.62827836984E-01 2.54040398986E-01 2.45411964945E-01 2.36945317412E-01 2.28642970634E-01 2.20507172661E-01 2.12539908006E-01 2.04742900851E-01 1.97117618759E-01 1.89665276884E-01 1.82386842627E-01 1.75283040720E-01 1.68354358711E-01 1.61601052797E-01 1.55023153990E-01 1.48620474578E-01 1.42392614835E-01 1.36338969968E-01 1.30458737249E-01 1.24750923317E-01 1.19214351609E-01 1.13847669893E-01 1.08649357889E-01 1.03617734934E-01 9.87509676869E-02 9.40470778353E-02 8.95039498029E-02 8.51193384275E-02 8.08908766012E-02 7.68160828592E-02 7.28923689053E-02 6.91170470668E-02 6.54873376695E-02 6.20003763280E-02 5.86532211453E-02 5.54428598189E-02 5.23662166494E-02 4.94201594498E-02 4.66015063526E-02 4.39070325128E-02 4.13334767052E-02 3.88775478120E-02 3.65359311999E-02 3.43052949804E-02 3.21822961513E-02 3.01635866128E-02 2.82458190522E-02 2.64256526909E-02 2.46997588853E-02 2.30648265729E-02 2.15175675545E-02 2.00547216026E-02 1.86730613854E-02 1.73693971963E-02 1.61405814769E-02 1.49835131253E-02 1.38951415765E-02 1.28724706474E-02 1.19125621362E-02 1.10125391683E-02 1.01695892808E-02 9.38096724043E-03 8.64399758867E-03 7.95607691192E-03 7.31467583329E-03 6.71734072586E-03 6.16169514791E-03 5.64544100244E-03 5.16635942439E-03 4.72231140073E-03 4.31123812974E-03 3.93116112707E-03 3.58018208746E-03 3.25648251201E-03 2.95832311195E-03 2.68404300055E-03 2.43205868585E-03 2.20086287726E-03 1.98902311972E-03 1.79518026951E-03 1.61804682596E-03 1.45640513352E-03 1.30910546889E-03 1.17506402727E-03 1.05326082245E-03 9.42737514370E-04 8.42595178016E-04 7.51992026829E-04 6.70141103339E-04 5.96307949221E-04 5.29808266317E-04 4.70005579540E-04 4.16308911850E-04 3.68170480800E-04 3.25083425382E-04 2.86579571154E-04 2.52227240879E-04 2.21629117110E-04 1.94420162445E-04 1.70265602382E-04 1.48858975024E-04 1.29920251153E-04 1.13194027520E-04 9.84477955520E-05 8.54702870872E-05 7.40698981195E-05 6.40731910563E-05 5.53234754496E-05 4.76794667219E-05 4.10140219873E-05 3.52129516890E-05 3.01739054456E-05 2.58053301949E-05 2.20254984795E-05 1.87616044947E-05 1.59489253424E-05 1.35300447917E-05 1.14541367314E-05 9.67630542582E-06 8.15697962725E-06 6.86135758088E-06 5.75889995264E-06 4.82286773536E-06 4.02990222890E-06 3.35964424921E-06 2.79438979153E-06 2.31878715445E-06 1.91961820794E-06 1.58539700830E-06 1.30622518640E-06 1.07360056504E-06 8.80238228797E-07 7.19911847564E-07 5.87313342276E-07 4.77929113491E-07 3.87931182983E-07 3.14081724476E-07 2.53649581908E-07 2.04337491302E-07 1.64218835720E-07 1.31682871350E-07 1.05387466836E-07 8.42162950865E-08 6.72266573022E-08 5.36623833331E-08 4.27097248086E-08 3.38919104292E-08 2.68140041031E-08 2.11498512755E-08 1.66309272048E-08 1.30368410627E-08 1.01872765545E-08 7.93517442770E-09 6.16098480863E-09 4.76783788481E-09 3.67750003238E-09 2.82699935153E-09 2.16581959716E-09 1.65357498227E-09 1.25809030139E-09 9.53821418035E-10 7.20560495360E-10 5.42378534843E-10 4.06764933133E-10 3.03929975910E-10 2.26241557907E-10 1.67772042276E-10 1.23935135934E-10 9.11960391692E-11 6.68409999772E-11 4.87948319084E-11 3.54769977769E-11 2.56885735160E-11 1.85238339041E-11 1.33013866023E-11 9.51075960810E-12 6.77115189331E-12 4.79971545381E-12 3.38727327037E-12 2.37981233837E-12 1.66444152903E-12 1.15878547617E-12 8.03010483045E-13 5.53857123703E-13 3.80195528993E-13 2.59730552222E-13 1.76571076717E-13 1.19445549362E-13 8.03983825725E-14 5.38423859608E-14 3.58734624573E-14 2.37775076770E-14 1.56774371437E-14 1.02818395055E-14 6.70694179202E-15 4.35117752375E-15 2.80729356099E-15 1.80109846762E-15 1.14901352900E-15 7.28819459607E-16 4.59611189727E-16 2.88141181699E-16 1.79569291217E-16 1.11234187263E-16 6.84843064549E-17 4.19041521891E-17 2.54801814955E-17 1.53954807596E-17 9.24261066722E-18 5.51279293011E-18 3.26654636193E-18 1.92269395767E-18 1.12408536854E-18 6.52708665805E-19 3.76385687732E-19 2.15527494020E-19 1.22543380551E-19 6.91760714108E-20 3.87669438173E-20 2.15658781939E-20 1.19078244355E-20 6.52554310725E-21 3.54877633438E-21 1.91503431499E-21 1.02534064839E-21 5.44641405695E-22 2.86985956550E-22 1.49994123590E-22 7.77511818807E-23 3.99681361276E-23 2.03727358567E-23 1.02959688830E-23 5.15846825676E-24 2.56190283876E-24 1.26108680244E-24 6.15204096353E-25 2.97396762588E-25 1.42444696581E-25 6.75925741304E-26 3.17719105285E-26 1.47920261822E-26 6.82024053774E-27 3.11391278809E-27 1.40764875305E-27 6.29954169461E-28 2.79058608520E-28 1.22348326082E-28 5.30836038849E-29 2.27890090568E-29 9.67910832320E-30 4.06660129748E-30 1.68987626291E-30 6.94456852255E-31 2.82190188934E-31 1.13366124262E-31 4.50201694608E-32 1.76705592869E-32 6.85407610912E-33 2.62686839898E-33 9.94610342465E-34 3.71985968545E-34 1.37401639563E-34 5.01165344755E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.65095233424E-08 7.84463710536E-08 8.04322502933E-08 8.24684023002E-08 8.45560997354E-08 8.66966474771E-08 8.88913834371E-08 9.11416793963E-08 9.34489418625E-08 9.58146129493E-08 9.82401712776E-08 1.00727132900E-07 1.03277052247E-07 1.05891523102E-07 1.08572179593E-07 1.11320697217E-07 1.14138793887E-07 1.17028231003E-07 1.19990814557E-07 1.23028396259E-07 1.26142874697E-07 1.29336196520E-07 1.32610357656E-07 1.35967404562E-07 1.39409435502E-07 1.42938601854E-07 1.46557109461E-07 1.50267220008E-07 1.54071252434E-07 1.57971584380E-07 1.61970653680E-07 1.66070959881E-07 1.70275065806E-07 1.74585599157E-07 1.79005254155E-07 1.83536793227E-07 1.88183048731E-07 1.92946924726E-07 1.97831398786E-07 2.02839523866E-07 2.07974430203E-07 2.13239327280E-07 2.18637505825E-07 2.24172339874E-07 2.29847288875E-07 2.35665899852E-07 2.41631809624E-07 2.47748747076E-07 2.54020535489E-07 2.60451094931E-07 2.67044444708E-07 2.73804705874E-07 2.80736103807E-07 2.87842970853E-07 2.95129749030E-07 3.02600992808E-07 3.10261371951E-07 3.18115674440E-07 3.26168809464E-07 3.34425810490E-07 3.42891838404E-07 3.51572184744E-07 3.60472275002E-07 3.69597672016E-07 3.78954079449E-07 3.88547345352E-07 3.98383465820E-07 4.08468588739E-07 4.18809017631E-07 4.29411215590E-07 4.40281809325E-07 4.51427593299E-07 4.62855533979E-07 4.74572774188E-07 4.86586637570E-07 4.98904633167E-07 5.11534460114E-07 5.24484012448E-07 5.37761384045E-07 5.51374873680E-07 5.65332990209E-07 5.79644457891E-07 5.94318221841E-07 6.09363453618E-07 6.24789556962E-07 6.40606173667E-07 6.56823189611E-07 6.73450740932E-07 6.90499220366E-07 7.07979283740E-07 7.25901856634E-07 7.44278141211E-07 7.63119623215E-07 7.82438079154E-07 8.02245583656E-07 8.22554517021E-07 8.43377572955E-07 8.64727766505E-07 8.86618442196E-07 9.09063282368E-07 9.32076315730E-07 9.55671926130E-07 9.79864861539E-07 1.00467024328E-06 1.03010357545E-06 1.05618075468E-06 1.08291807996E-06 1.11033226295E-06 1.13844043833E-06 1.16726017454E-06 1.19680948478E-06 1.22710683826E-06 1.25817117173E-06 1.29002190130E-06 1.32267893464E-06 1.35616268335E-06 1.39049407576E-06 1.42569457000E-06 1.46178616742E-06 1.49879142630E-06 1.53673347603E-06 1.57563603148E-06 1.61552340788E-06 1.65642053598E-06 1.69835297767E-06 1.74134694194E-06 1.78542930123E-06 1.83062760827E-06 1.87697011330E-06 1.92448578168E-06 1.97320431205E-06 2.02315615485E-06 2.07437253139E-06 2.12688545332E-06 2.18072774268E-06 2.23593305237E-06 2.29253588725E-06 2.35057162561E-06 2.41007654138E-06 2.47108782675E-06 2.53364361540E-06 2.59778300638E-06 2.66354608852E-06 2.73097396548E-06 2.80010878147E-06 2.87099374755E-06 2.94367316867E-06 3.01819247135E-06 3.09459823206E-06 3.17293820635E-06 3.25326135869E-06 3.33561789308E-06 3.42005928439E-06 3.50663831059E-06 3.59540908570E-06 3.68642709361E-06 3.77974922278E-06 3.87543380176E-06 3.97354063570E-06 4.07413104367E-06 4.17726789702E-06 4.28301565864E-06 4.39144042331E-06 4.50260995895E-06 4.61659374899E-06 4.73346303582E-06 4.85329086527E-06 4.97615213233E-06 5.10212362789E-06 5.23128408676E-06 5.36371423690E-06 5.49949684985E-06 5.63871679246E-06 5.78146107993E-06 5.92781893021E-06 6.07788181975E-06 6.23174354065E-06 6.38950025931E-06 6.55125057652E-06 6.71709558909E-06 6.88713895299E-06 7.06148694821E-06 7.24024854510E-06 7.42353547254E-06 7.61146228772E-06 7.80414644775E-06 8.00170838308E-06 8.20427157275E-06 8.41196262156E-06 8.62491133920E-06 8.84325082135E-06 9.06711753290E-06 9.29665139321E-06 9.53199586354E-06 9.77329803675E-06 1.00207087292E-05 1.02743825749E-05 1.05344781223E-05 1.08011579335E-05 1.10745886854E-05 1.13549412742E-05 1.16423909221E-05 1.19371172870E-05 1.22393045743E-05 1.25491416526E-05 1.28668221712E-05 1.31925446815E-05 1.35265127609E-05 1.38689351399E-05 1.42200258329E-05 1.45800042717E-05 1.49490954424E-05 1.53275300266E-05 1.57155445449E-05 1.61133815052E-05 1.65212895539E-05 1.69395236314E-05 1.73683451315E-05 1.78080220646E-05 1.82588292253E-05 1.87210483639E-05 1.91949683628E-05 1.96808854167E-05 2.01791032176E-05 2.06899331451E-05 2.12136944604E-05 2.17507145061E-05 2.23013289105E-05 2.28658817975E-05 2.34447260017E-05 2.40382232887E-05 2.46467445809E-05 2.52706701899E-05 2.59103900536E-05 2.65663039798E-05 2.72388218965E-05 2.79283641075E-05 2.86353615551E-05 2.93602560898E-05 3.01035007456E-05 3.08655600237E-05 3.16469101822E-05 3.24480395343E-05 3.32694487524E-05 3.41116511818E-05 3.49751731611E-05 3.58605543506E-05 3.67683480701E-05 3.76991216441E-05 3.86534567565E-05 3.96319498136E-05 4.06352123172E-05 4.16638712459E-05 4.27185694475E-05 4.37999660399E-05 4.49087368233E-05 4.60455747020E-05 4.72111901174E-05 4.84063114917E-05 4.96316856826E-05 5.08880784505E-05 5.21762749358E-05 5.34970801503E-05 5.48513194790E-05 5.62398391963E-05 5.76635069944E-05 5.91232125246E-05 6.06198679540E-05 6.21544085339E-05 6.37277931849E-05 6.53410050950E-05 6.69950523340E-05 6.86909684825E-05 7.04298132780E-05 7.22126732758E-05 7.40406625281E-05 7.59149232792E-05 7.78366266787E-05 7.98069735129E-05 8.18271949542E-05 8.38985533302E-05 8.60223429110E-05 8.81998907179E-05 9.04325573514E-05 9.27217378406E-05 9.50688625141E-05 9.74753978926E-05 9.99428476043E-05 1.02472753324E-04 1.05066695733E-04 1.07726295510E-04 1.10453214337E-04 1.13249155942E-04 1.16115867157E-04 1.19055139011E-04 1.22068807847E-04 1.25158756468E-04 1.28326915311E-04 1.31575263651E-04 1.34905830839E-04 1.38320697561E-04 1.41821997146E-04 1.45411916887E-04 1.49092699410E-04 1.52866644075E-04 1.56736108405E-04 1.60703509557E-04 1.64771325835E-04 1.68942098227E-04 1.73218431996E-04 1.77602998302E-04 1.82098535866E-04 1.86707852679E-04 1.91433827754E-04 1.96279412916E-04 2.01247634645E-04 2.06341595964E-04 2.11564478367E-04 2.16919543809E-04 2.22410136730E-04 2.28039686148E-04 2.33811707787E-04 2.39729806272E-04 2.45797677375E-04 2.52019110312E-04 2.58397990108E-04 2.64938300013E-04 2.71644123983E-04 2.78519649226E-04 2.85569168802E-04 2.92797084303E-04 3.00207908587E-04 3.07806268589E-04 3.15596908201E-04 3.23584691220E-04 3.31774604381E-04 3.40171760450E-04 3.48781401414E-04 3.57608901733E-04 3.66659771686E-04 3.75939660797E-04 3.85454361346E-04 3.95209811970E-04 4.05212101357E-04 4.15467472022E-04 4.25982324194E-04 4.36763219788E-04 4.47816886481E-04 4.59150221890E-04 4.70770297856E-04 4.82684364837E-04 4.94899856401E-04 5.07424393848E-04 5.20265790934E-04 5.33432058721E-04 5.46931410545E-04 5.60772267107E-04 5.74963261702E-04 5.89513245563E-04 6.04431293349E-04 6.19726708770E-04 6.35409030351E-04 6.51488037336E-04 6.67973755749E-04 6.84876464595E-04 7.02206702227E-04 7.19975272865E-04 7.38193253280E-04 7.56871999643E-04 7.76023154549E-04 7.95658654212E-04 8.15790735841E-04 8.36431945200E-04 8.57595144355E-04 8.79293519617E-04 9.01540589679E-04 9.24350213958E-04 9.47736601143E-04 9.71714317953E-04 9.96298298123E-04 1.02150385160E-03 1.04734667397E-03 1.07384285612E-03 1.10100889417E-03 1.12886169957E-03 1.15741860955E-03 1.18669739774E-03 1.21671628512E-03 1.24749395119E-03 1.27904954546E-03 1.31140269915E-03 1.34457353731E-03 1.37858269110E-03 1.41345131042E-03 1.44920107694E-03 1.48585421726E-03 1.52343351662E-03 1.56196233276E-03 1.60146461020E-03 1.64196489489E-03 1.68348834919E-03 1.72606076719E-03 1.76970859047E-03 1.81445892419E-03 1.86033955358E-03 1.90737896088E-03 1.95560634263E-03 2.00505162742E-03 2.05574549407E-03 2.10771939019E-03 2.16100555134E-03 2.21563702046E-03 2.27164766791E-03 2.32907221197E-03 2.38794623980E-03 2.44830622889E-03 2.51018956913E-03 2.57363458530E-03 2.63868056011E-03 2.70536775792E-03 2.77373744884E-03 2.84383193354E-03 2.91569456861E-03 2.98936979256E-03 3.06490315232E-03 3.14234133056E-03 3.22173217350E-03 3.30312471943E-03 3.38656922794E-03 3.47211720980E-03 3.55982145753E-03 3.64973607675E-03 3.74191651821E-03 3.83641961058E-03 3.93330359404E-03 4.03262815459E-03 4.13445445927E-03 4.23884519201E-03 4.34586459055E-03 4.45557848400E-03 4.56805433137E-03 4.68336126100E-03 4.80157011082E-03 4.92275346960E-03 5.04698571911E-03 5.17434307719E-03 5.30490364192E-03 5.43874743666E-03 5.57595645614E-03 5.71661471365E-03 5.86080828919E-03 6.00862537874E-03 6.16015634461E-03 6.31549376690E-03 6.47473249615E-03 6.63796970700E-03 6.80530495320E-03 6.97684022365E-03 7.15267999978E-03 7.33293131409E-03 7.51770380996E-03 7.70710980275E-03 7.90126434213E-03 8.10028527586E-03 8.30429331474E-03 8.51341209900E-03 8.72776826610E-03 8.94749151982E-03 9.17271470083E-03 9.40357385871E-03 9.64020832532E-03 9.88276078976E-03 1.01313773747E-02 1.03862077144E-02 1.06474050338E-02 1.09151262298E-02 1.11895319537E-02 1.14707866951E-02 1.17590588673E-02 1.20545208953E-02 1.23573493038E-02 1.26677248079E-02 1.29858324054E-02 1.33118614701E-02 1.36460058473E-02 1.39884639510E-02 1.43394388617E-02 1.46991384277E-02 1.50677753661E-02 1.54455673668E-02 1.58327371978E-02 1.62295128113E-02 1.66361274531E-02 1.70528197717E-02 1.74798339309E-02 1.79174197219E-02 1.83658326793E-02 1.88253341965E-02 1.92961916438E-02 1.97786784880E-02 2.02730744128E-02 2.07796654411E-02 2.12987440585E-02 2.18306093382E-02 2.23755670669E-02 2.29339298725E-02 2.35060173519E-02 2.40921562012E-02 2.46926803455E-02 2.53079310708E-02 2.59382571558E-02 2.65840150052E-02 2.72455687830E-02 2.79232905462E-02 2.86175603799E-02 2.93287665313E-02 3.00573055444E-02 3.08035823954E-02 3.15680106261E-02 3.23510124789E-02 3.31530190295E-02 3.39744703202E-02 3.48158154913E-02 3.56775129119E-02 3.65600303086E-02 3.74638448932E-02 3.83894434880E-02 3.93373226492E-02 4.03079887874E-02 4.13019582851E-02 4.23197576119E-02 4.33619234352E-02 4.44290027272E-02 4.55215528681E-02 4.66401417439E-02 4.77853478394E-02 4.89577603253E-02 5.01579791398E-02 5.13866150625E-02 5.26442897824E-02 5.39316359569E-02 5.52492972636E-02 5.65979284425E-02 5.79781953285E-02 5.93907748745E-02 6.08363551621E-02 6.23156354020E-02 6.38293259209E-02 6.53781481358E-02 6.69628345131E-02 6.85841285139E-02 7.02427845224E-02 7.19395677574E-02 7.36752541664E-02 7.54506303004E-02 7.72664931681E-02 7.91236500697E-02 8.10229184077E-02 8.29651254748E-02 8.49511082157E-02 8.69817129641E-02 8.90577951517E-02 9.11802189874E-02 9.33498571079E-02 9.55675901946E-02 9.78343065590E-02 1.00150901691E-01 1.02518277774E-01 1.04937343157E-01 1.07409011791E-01 1.09934202623E-01 1.12513838943E-01 1.15148847692E-01 1.17840158716E-01 1.20588703980E-01 1.23395416717E-01 1.26261230540E-01 1.29187078489E-01 1.32173892024E-01 1.35222599959E-01 1.38334127338E-01 1.41509394239E-01 1.44749314528E-01 1.48054794532E-01 1.51426731651E-01 1.54866012897E-01 1.58373513361E-01 1.61950094603E-01 1.65596602972E-01 1.69313867838E-01 1.73102699753E-01 1.76963888528E-01 1.80898201224E-01 1.84906380065E-01 1.88989140261E-01 1.93147167745E-01 1.97381116826E-01 2.01691607754E-01 2.06079224193E-01 2.10544510610E-01 2.15087969578E-01 2.19710058982E-01 2.24411189153E-01 2.29191719900E-01 2.34051957477E-01 2.38992151450E-01 2.44012491497E-01 2.49113104125E-01 2.54294049324E-01 2.59555317135E-01 2.64896824173E-01 2.70318410082E-01 2.75819833934E-01 2.81400770592E-01 2.87060807030E-01 2.92799438620E-01 2.98616065405E-01 3.04509988361E-01 3.10480405654E-01 3.16526408920E-01 3.22646979559E-01 3.28840985084E-01 3.35107175512E-01 3.41444179841E-01 3.47850502601E-01 3.54324520530E-01 3.60864479368E-01 3.67468490804E-01 3.74134529599E-01 3.80860430895E-01 3.87643887759E-01 3.94482448961E-01 4.01373517030E-01 4.08314346618E-01 4.15302043183E-01 4.22333562046E-01 4.29405707831E-01 4.36515134331E-01 4.43658344836E-01 4.50831692943E-01 4.58031383890E-01 4.65253476447E-01 4.72493885393E-01 4.79748384618E-01 4.87012610869E-01 4.94282068189E-01 5.01552133063E-01 5.08818060304E-01 5.16074989713E-01 5.23317953516E-01 5.30541884624E-01 5.37741625707E-01 5.44911939117E-01 5.52047517649E-01 5.59142996158E-01 5.66192964019E-01 5.73191978423E-01 5.80134578498E-01 5.87015300225E-01 5.93828692114E-01 6.00569331610E-01 6.07231842166E-01 6.13810910932E-01 6.20301306982E-01 6.26697899999E-01 6.32995679319E-01 6.39189773243E-01 6.45275468476E-01 6.51248229581E-01 6.57103718297E-01 6.62837812565E-01 6.68446625104E-01 6.73926521340E-01 6.79274136523E-01 6.84486391816E-01 6.89560509153E-01 6.94494024659E-01 6.99284800400E-01 7.03931034257E-01 7.08431267686E-01 7.12784391146E-01 7.16989646991E-01 7.21046629594E-01 7.24955282529E-01 7.28715892610E-01 7.32329080631E-01 7.35795788666E-01 7.39117263810E-01 7.42295038274E-01 7.45330905785E-01 7.48226894281E-01 7.50985234907E-01 7.53608327404E-01 7.56098701974E-01 7.58458977792E-01 7.60691818355E-01 7.62799883885E-01 7.64785781083E-01 7.66652010505E-01 7.68400911895E-01 7.70034607789E-01 7.71554945722E-01 7.72963439329E-01 7.74261208615E-01 7.75448919578E-01 7.76526723307E-01 7.77494194547E-01 7.78350269594E-01 7.79093183182E-01 7.79720403853E-01 7.80228567026E-01 7.80613404737E-01 7.80869670708E-01 7.80991059093E-01 7.80970114902E-01 7.80798133757E-01 7.80465048314E-01 7.79961334580E-01 7.79284593847E-01 7.78434444704E-01 7.77410634604E-01 7.76213040242E-01 7.74841667762E-01 7.73296652776E-01 7.71578260209E-01 7.69686883966E-01 7.67623046442E-01 7.65387397860E-01 7.62980715453E-01 7.60403902500E-01 7.57657987205E-01 7.54744121439E-01 7.51663579352E-01 7.48417755844E-01 7.45008164922E-01 7.41436437935E-01 7.37704321699E-01 7.33813676517E-01 7.29766474098E-01 7.25564795392E-01 7.21210828325E-01 7.16706865468E-01 7.12055301623E-01 7.07258631344E-01 7.02319446393E-01 6.97240433141E-01 6.92024369914E-01 6.86674124291E-01 6.81192650357E-01 6.75582985917E-01 6.69848249671E-01 6.63991638353E-01 6.58016423837E-01 6.51925950210E-01 6.45723630817E-01 6.39412945277E-01 6.32997436456E-01 6.26478736826E-01 6.19862452406E-01 6.13152297058E-01 6.06352035426E-01 5.99465479721E-01 5.92496486465E-01 5.85448953175E-01 5.78326814993E-01 5.71134041252E-01 5.63874631981E-01 5.56552614328E-01 5.49172038915E-01 5.41736976115E-01 5.34251512236E-01 5.26719745632E-01 5.19145782720E-01 5.11533733919E-01 5.03887709493E-01 4.96211815330E-01 4.88510148632E-01 4.80786793549E-01 4.73045816746E-01 4.65291262930E-01 4.57527150342E-01 4.49757466230E-01 4.41986162327E-01 4.34217150348E-01 4.26454297522E-01 4.18701422196E-01 4.10962289519E-01 4.03240607237E-01 3.95540021625E-01 3.87864113574E-01 3.80216394858E-01 3.72600304608E-01 3.65019206007E-01 3.57476383230E-01 3.49975038640E-01 3.42518290267E-01 3.35109169567E-01 3.27750619473E-01 3.20445492759E-01 3.13196550697E-01 3.06006462022E-01 2.98877802200E-01 2.91813052979E-01 2.84814602239E-01 2.77884744096E-01 2.71025679275E-01 2.64239515714E-01 2.57528269386E-01 2.50893865323E-01 2.44338138805E-01 2.37862836708E-01 2.31469618961E-01 2.25160060118E-01 2.18935650982E-01 2.12797800288E-01 2.06747836396E-01 2.00787008981E-01 1.94916490686E-01 1.89137378730E-01 1.83450696433E-01 1.77857394643E-01 1.72358353064E-01 1.66954381440E-01 1.61646220614E-01 1.56434543429E-01 1.51319955481E-01 1.46302995707E-01 1.41384136827E-01 1.36563785617E-01 1.31842283052E-01 1.27219904294E-01 1.22696858571E-01 1.18273288937E-01 1.13949271942E-01 1.09724817237E-01 1.05599867122E-01 1.01574296073E-01 9.76479102639E-02 9.38204471164E-02 9.00915748901E-02 8.64608923501E-02 8.29279285275E-02 7.94921425973E-02 7.61529238943E-02 7.29095920855E-02 6.97613975145E-02 6.67075217337E-02 6.37470782337E-02 6.08791133794E-02 5.81026075588E-02 5.54164765479E-02 5.28195730908E-02 5.03106886949E-02 4.78885556346E-02 4.55518491590E-02 4.32991898916E-02 4.11291464142E-02 3.90402380209E-02 3.70309376281E-02 3.50996748264E-02 3.32448390577E-02 3.14647829009E-02 2.97578254485E-02 2.81222557579E-02 2.65563363571E-02 2.50583067905E-02 2.36263871846E-02 2.22587818177E-02 2.09536826776E-02 1.97092729901E-02 1.85237307049E-02 1.73952319225E-02 1.63219542502E-02 1.53020800738E-02 1.43337997337E-02 1.34153145949E-02 1.25448400003E-02 1.17206081003E-02 1.09408705500E-02 1.02039010671E-02 9.50799784633E-03 8.85148582474E-03 8.23271879403E-03 7.65008135814E-03 7.10199073346E-03 6.58689839108E-03 6.10329154068E-03 5.64969445684E-03 5.22466964899E-03 4.82681887696E-03 4.45478401493E-03 4.10724776680E-03 3.78293423689E-03 3.48060936015E-03 3.19908119656E-03 2.93720009489E-03 2.69385873116E-03 2.46799202762E-03 2.25857695821E-03 2.06463224670E-03 1.88521796400E-03 1.71943503101E-03 1.56642463372E-03 1.42536755723E-03 1.29548344529E-03 1.17602999217E-03 1.06630207325E-03 9.65630821096E-04 8.73382653288E-04 7.88958258316E-04 7.11791545714E-04 6.41348566310E-04 5.77126408356E-04 5.18652075013E-04 4.65481348485E-04 4.17197645783E-04 3.73410870869E-04 3.33756267630E-04 2.97893277902E-04 2.65504408183E-04 2.36294891059E-04 2.09997777283E-04 1.86357735994E-04 1.65137539256E-04 1.46117919135E-04 1.29096524255E-04 1.13886911060E-04 1.00317570927E-04 8.82309940800E-05 7.74827711293E-05 6.79407328532E-05 5.94841287496E-05 5.20028447159E-05 4.53966601457E-05 3.95745446356E-05 3.44539944535E-05 2.99596273642E-05 2.60163742941E-05 2.25637573800E-05 1.95481333882E-05 1.69213449552E-05 1.46403041498E-05 1.26666100912E-05 1.09382264882E-05 9.42755877051E-06 8.10973947197E-06 6.96240419749E-06 5.96548093385E-06 5.10099245428E-06 4.35287145157E-06 3.70678807861E-06 3.14998946583E-06 2.67115078192E-06 2.26023737256E-06 1.90837749008E-06 1.60774511189E-06 1.35145233423E-06 1.13345082215E-06 9.48441794777E-07 7.91794027524E-07 6.59469358598E-07 5.47955196610E-07 4.54203537925E-07 3.75576016995E-07 3.09794529390E-07 2.54896985587E-07 2.09197773191E-07 1.71252526006E-07 1.39826819817E-07 1.13868436703E-07 9.24828618356E-08 7.49116988534E-08 6.05137118314E-08 4.87482233468E-08 3.91606191024E-08 3.13697298162E-08 2.50568805312E-08 1.99564160589E-08 1.58475288683E-08 1.25472323315E-08 9.90433779590E-09 7.79430846832E-09 6.11487656234E-09 4.78232258791E-09 3.72832707885E-09 2.89731548747E-09 2.24422646515E-09 1.73264233990E-09 1.33322834327E-09 1.02243408226E-09 7.81416951610E-10 5.95152691275E-10 4.51703168406E-10 3.41615756971E-10 2.57432452458E-10 1.93290145425E-10 1.44596333322E-10 1.07767020619E-10 8.00156850785E-11 5.91840125369E-11 4.36066598153E-11 3.20036287877E-11 2.33949540413E-11 1.70333492586E-11 1.23512476736E-11 8.91933135375E-12 6.41419176710E-12 4.59321693938E-12 3.27517316559E-12 2.32525449671E-12 1.64362207935E-12 1.15665734993E-12 8.10316142866E-13 5.65101813063E-13 3.92280273502E-13 2.71043253820E-13 1.86392137053E-13 1.27566779962E-13 8.68845310816E-14 5.88864951659E-14 3.97128000267E-14 2.66476988761E-14 1.77899946759E-14 1.18154694901E-14 7.80651166605E-15 5.13056695316E-15 3.35387687252E-15 2.18058493736E-15 1.40998145144E-15 9.06647102088E-16 5.79718624792E-16 3.68569636710E-16 2.32977522693E-16 1.46409449678E-16 9.14645628538E-17 5.67979862892E-17 3.50571477448E-17 2.15055530919E-17 1.31105667592E-17 7.94246155245E-18 4.78098241388E-18 2.85938525530E-18 1.69897268305E-18 1.00281902344E-18 5.87956202987E-19 3.42386772877E-19 1.98016533568E-19 1.13726275976E-19 6.48570239280E-20 3.67241298110E-20 2.06445438353E-20 1.15206992174E-20 6.38163775345E-21 3.50852609795E-21 1.91432428032E-21 1.03648495387E-21 5.56833219364E-22 2.96796874982E-22 1.56935950513E-22 8.23134541032E-23 4.28213408756E-23 2.20925567987E-23 1.13027116108E-23 5.73355995793E-24 2.88353106639E-24 1.43759452558E-24 7.10414844717E-25 3.47939095892E-25 1.68873364156E-25 8.12150139187E-26 3.86971190856E-26 1.82657436023E-26 8.54006397031E-27 3.95455772402E-27 1.81340610847E-27 8.23377997596E-28 3.70131857428E-28 1.64706986017E-28 7.25455117412E-29 3.16224843618E-29 1.36399118252E-29 5.82102940020E-30 2.45755059860E-30 1.02626767373E-30 4.23852407630E-31 7.65081586620E-08 7.84449718261E-08 8.04308156442E-08 8.24669313328E-08 8.45545915302E-08 8.66951010915E-08 8.88897979045E-08 9.11400537256E-08 9.34472750377E-08 9.58129039285E-08 9.82384189926E-08 1.00725336255E-07 1.03275210121E-07 1.05889634342E-07 1.08570243018E-07 1.11318711617E-07 1.14136758021E-07 1.17026143598E-07 1.19988674309E-07 1.23026201831E-07 1.26140624716E-07 1.29333889580E-07 1.32607992316E-07 1.35964979343E-07 1.39406948887E-07 1.42936052289E-07 1.46554495354E-07 1.50264539725E-07 1.54068504298E-07 1.57968766674E-07 1.61967764643E-07 1.66067997707E-07 1.70272028644E-07 1.74582485108E-07 1.79002061273E-07 1.83533519517E-07 1.88179692146E-07 1.92943483167E-07 1.97827870103E-07 2.02835905853E-07 2.07970720600E-07 2.13235523767E-07 2.18633606025E-07 2.24168341349E-07 2.29843189125E-07 2.35661696316E-07 2.41627499674E-07 2.47744328018E-07 2.54016004561E-07 2.60446449302E-07 2.67039681473E-07 2.73799822055E-07 2.80731096353E-07 2.87837836634E-07 2.95124484837E-07 3.02595595349E-07 3.10255837853E-07 3.18110000245E-07 3.26162991625E-07 3.34419845370E-07 3.42885722276E-07 3.51565913784E-07 3.60465845290E-07 3.69591079533E-07 3.78947320075E-07 3.88540414862E-07 3.98376359883E-07 4.08461302913E-07 4.18801547362E-07 4.29403556208E-07 4.40273956043E-07 4.51419541208E-07 4.62847278047E-07 4.74564309254E-07 4.86577958344E-07 4.98895734223E-07 5.11525335889E-07 5.24474657241E-07 5.37751792008E-07 5.51365038817E-07 5.65322906374E-07 5.79634118780E-07 5.94307620992E-07 6.09352584406E-07 6.24778412593E-07 6.40594747176E-07 6.56811473855E-07 6.73438728589E-07 6.90486903927E-07 7.07966655507E-07 7.25888908715E-07 7.44264865512E-07 7.63106011440E-07 7.82424122793E-07 8.02231273987E-07 8.22539845100E-07 8.43362529611E-07 8.64712342336E-07 8.86602627562E-07 9.09047067383E-07 9.32059690261E-07 9.55654879784E-07 9.79847383661E-07 1.00465232294E-06 1.03008520147E-06 1.05616191555E-06 1.08289876392E-06 1.11031245792E-06 1.13842013193E-06 1.16723935408E-06 1.19678813725E-06 1.22708495032E-06 1.25814872968E-06 1.28999889114E-06 1.32265534197E-06 1.35613849343E-06 1.39046927347E-06 1.42566913984E-06 1.46176009349E-06 1.49876469231E-06 1.53670606526E-06 1.57560792681E-06 1.61549459173E-06 1.65639099035E-06 1.69832268410E-06 1.74131588148E-06 1.78539745447E-06 1.83059495531E-06 1.87693663373E-06 1.92445145457E-06 1.97316911595E-06 2.02312006776E-06 2.07433553076E-06 2.12684751602E-06 2.18068884499E-06 2.23589316999E-06 2.29249499524E-06 2.35052969842E-06 2.41003355281E-06 2.47104374992E-06 2.53359842276E-06 2.59773666969E-06 2.66349857882E-06 2.73092525308E-06 2.80005883591E-06 2.87094253762E-06 2.94362066236E-06 3.01813863584E-06 3.09454303371E-06 3.17288161066E-06 3.25320333029E-06 3.33555839569E-06 3.41999828083E-06 3.50657576273E-06 3.59534495444E-06 3.68636133887E-06 3.77968180347E-06 3.87536467574E-06 3.97346975976E-06 4.07405837351E-06 4.17719338722E-06 4.28293926264E-06 4.39136209336E-06 4.50252964608E-06 4.61651140301E-06 4.73337860526E-06 4.85320429737E-06 4.97606337298E-06 5.10203262161E-06 5.23119077667E-06 5.36361856469E-06 5.49939875572E-06 5.63861621509E-06 5.78135795647E-06 5.92771319621E-06 6.07777340911E-06 6.23163238562E-06 6.38938629042E-06 6.55113372254E-06 6.71697577698E-06 6.88701610787E-06 7.06136099330E-06 7.24011940169E-06 7.42340305990E-06 7.61132652309E-06 7.80400724629E-06 8.00156565779E-06 8.20412523442E-06 8.41181257873E-06 8.62475749809E-06 8.84309308581E-06 9.06695580436E-06 9.29648557058E-06 9.53182584318E-06 9.77312371240E-06 1.00205299919E-05 1.02741993129E-05 1.05342902212E-05 1.08009652758E-05 1.10743911506E-05 1.13547387389E-05 1.16421832598E-05 1.19369043678E-05 1.22390862653E-05 1.25489178172E-05 1.28665926695E-05 1.31923093702E-05 1.35262714928E-05 1.38686877643E-05 1.42197721951E-05 1.45797442132E-05 1.49488288008E-05 1.53272566352E-05 1.57152642328E-05 1.61130940972E-05 1.65209948704E-05 1.69392214883E-05 1.73680353399E-05 1.78077044309E-05 1.82585035510E-05 1.87207144455E-05 1.91946259916E-05 1.96805343787E-05 2.01787432935E-05 2.06895641100E-05 2.12133160836E-05 2.17503265510E-05 2.23009311348E-05 2.28654739527E-05 2.34443078328E-05 2.40377945343E-05 2.46463049733E-05 2.52702194542E-05 2.59099279081E-05 2.65658301358E-05 2.72383360579E-05 2.79278659706E-05 2.86348508087E-05 2.93597324146E-05 3.01029638145E-05 3.08650095011E-05 3.16463457241E-05 3.24474607879E-05 3.32688553562E-05 3.41110427649E-05 3.49745493433E-05 3.58599147421E-05 3.67676922712E-05 3.76984492451E-05 3.86527673372E-05 3.96312429432E-05 4.06344875540E-05 4.16631281371E-05 4.27178075286E-05 4.37991848350E-05 4.49079358442E-05 4.60447534482E-05 4.72103480758E-05 4.84054481361E-05 4.96308004736E-05 5.08871708350E-05 5.21753443468E-05 5.34961260062E-05 5.48503411838E-05 5.62388361388E-05 5.76624785477E-05 5.91221580464E-05 6.06187867853E-05 6.21532999993E-05 6.37266565918E-05 6.53398397334E-05 6.69938574757E-05 6.86897433812E-05 7.04285571682E-05 7.22113853729E-05 7.40393420275E-05 7.59135693559E-05 7.78352384869E-05 7.98055501855E-05 8.18257356021E-05 8.38970570417E-05 8.60208087514E-05 8.81983177290E-05 9.04309445505E-05 9.27200842204E-05 9.50671670417E-05 9.74736595089E-05 9.99410652236E-05 1.02470925833E-04 1.05064821990E-04 1.07724374345E-04 1.10451244551E-04 1.13247136304E-04 1.16113796405E-04 1.19053015852E-04 1.22066630956E-04 1.25156524485E-04 1.28324626842E-04 1.31572917268E-04 1.34903425075E-04 1.38318230915E-04 1.41819468077E-04 1.45409323816E-04 1.49090040719E-04 1.52863918103E-04 1.56733313450E-04 1.60700643874E-04 1.64768387635E-04 1.68939085676E-04 1.73215343213E-04 1.77599831358E-04 1.82095288785E-04 1.86704523435E-04 1.91430414267E-04 1.96275913056E-04 2.01244046228E-04 2.06337916750E-04 2.11560706060E-04 2.16915676054E-04 2.22406171114E-04 2.28035620195E-04 2.33807538961E-04 2.39725531972E-04 2.45793294933E-04 2.52014616994E-04 2.58393383110E-04 2.64933576461E-04 2.71639280931E-04 2.78514683652E-04 2.85564077609E-04 2.92791864314E-04 3.00202556547E-04 3.07800781160E-04 3.15591281960E-04 3.23578922659E-04 3.31768689902E-04 3.40165696366E-04 3.48775183943E-04 3.57602526999E-04 3.66653235714E-04 3.75932959512E-04 3.85447490572E-04 3.95202767424E-04 4.05204878647E-04 4.15460066648E-04 4.25974731541E-04 4.36755435123E-04 4.47808904954E-04 4.59142038529E-04 4.70761907563E-04 4.82675762383E-04 4.94891036430E-04 5.07415350865E-04 5.20256519309E-04 5.33422552678E-04 5.46921664165E-04 5.60762274324E-04 5.74953016293E-04 5.89502741150E-04 6.04420523395E-04 6.19715666572E-04 6.35397709038E-04 6.51476429863E-04 6.67961854894E-04 6.84864262955E-04 7.02194192213E-04 7.19962446696E-04 7.38180102981E-04 7.56858517037E-04 7.76009331254E-04 7.95644481636E-04 8.15776205175E-04 8.36417047414E-04 8.57579870193E-04 8.79277859590E-04 9.01524534060E-04 9.24333752775E-04 9.47719724175E-04 9.71697014723E-04 9.96280557889E-04 1.02148566335E-03 1.04732802642E-03 1.07382373770E-03 1.10098929302E-03 1.12884160354E-03 1.15739800618E-03 1.18667627426E-03 1.21669462843E-03 1.24747174787E-03 1.27902678175E-03 1.31137936097E-03 1.34454961020E-03 1.37855816023E-03 1.41342616063E-03 1.44917529265E-03 1.48582778254E-03 1.52340641511E-03 1.56193454770E-03 1.60143612441E-03 1.64193569078E-03 1.68345840872E-03 1.72603007186E-03 1.76967712134E-03 1.81442666182E-03 1.86030647808E-03 1.90734505184E-03 1.95557157915E-03 2.00501598807E-03 2.05570895688E-03 2.10768193267E-03 2.16096715042E-03 2.21559765251E-03 2.27160730871E-03 2.32903083670E-03 2.38790382302E-03 2.44826274455E-03 2.51014499051E-03 2.57358888503E-03 2.63863371016E-03 2.70531972955E-03 2.77368821260E-03 2.84378145927E-03 2.91564282540E-03 2.98931674872E-03 3.06484877541E-03 3.14228558734E-03 3.22167502989E-03 3.30306614054E-03 3.38650917802E-03 3.47205565220E-03 3.55975835474E-03 3.64967139032E-03 3.74185020875E-03 3.83635163775E-03 3.93323391650E-03 4.03255673003E-03 4.13438124430E-03 4.23877014223E-03 4.34578766046E-03 4.45549962699E-03 4.56797349972E-03 4.68327840582E-03 4.80148518206E-03 4.92266641598E-03 5.04689648811E-03 5.17425161506E-03 5.30480989358E-03 5.43865134573E-03 5.57585796488E-03 5.71651376295E-03 5.86070481851E-03 6.00851932610E-03 6.16004764655E-03 6.31538235848E-03 6.47461831085E-03 6.63785267675E-03 6.80518500829E-03 6.97671729276E-03 7.15255400988E-03 7.33280219046E-03 7.51757147610E-03 7.70697418037E-03 7.90112535113E-03 8.10014283425E-03 8.30414733863E-03 8.51326250256E-03 8.72761496149E-03 8.94733441720E-03 9.17255370827E-03 9.40340888217E-03 9.64003926861E-03 9.88258755448E-03 1.01311998602E-02 1.03860258178E-02 1.06472186498E-02 1.09149352508E-02 1.11893362697E-02 1.14705861934E-02 1.17588534331E-02 1.20543104109E-02 1.23571336489E-02 1.26675038597E-02 1.29856060383E-02 1.33116295559E-02 1.36457682548E-02 1.39882205462E-02 1.43391895078E-02 1.46988829848E-02 1.50675136914E-02 1.54452993145E-02 1.58324626188E-02 1.62292315537E-02 1.66358393614E-02 1.70525246876E-02 1.74795316924E-02 1.79171101640E-02 1.83655156335E-02 1.88250094907E-02 1.92958591027E-02 1.97783379326E-02 2.02727256607E-02 2.07793083062E-02 2.12983783511E-02 2.18302348648E-02 2.23751836306E-02 2.29335372722E-02 2.35056153832E-02 2.40917446554E-02 2.46922590104E-02 2.53074997302E-02 2.59378155896E-02 2.65835629895E-02 2.72451060897E-02 2.79228169436E-02 2.86170756320E-02 2.93282703982E-02 3.00567977825E-02 3.08030627568E-02 3.15674788591E-02 3.23504683277E-02 3.31524622345E-02 3.39739006178E-02 3.48152326142E-02 3.56769165886E-02 3.65594202640E-02 3.74632208484E-02 3.83888051606E-02 3.93366697529E-02 4.03073210322E-02 4.13012753780E-02 4.23190592561E-02 4.33612093308E-02 4.44282725712E-02 4.55208063543E-02 4.66393785634E-02 4.77845676804E-02 4.89569628735E-02 5.01571640786E-02 5.13857820730E-02 5.26434385438E-02 5.39307661466E-02 5.52484085577E-02 5.65970205157E-02 5.79772678548E-02 5.93898275270E-02 6.08353876139E-02 6.23146473261E-02 6.38283169910E-02 6.53771180262E-02 6.69617828996E-02 6.85830550740E-02 7.02416889358E-02 7.19384497067E-02 7.36741133375E-02 7.54494663831E-02 7.72653058567E-02 7.91224390638E-02 8.10216834128E-02 8.29638662028E-02 8.49498243861E-02 8.69804043048E-02 8.90564613992E-02 9.11788598886E-02 9.33484724203E-02 9.55661796880E-02 9.78328700158E-02 1.00149438908E-01 1.02516788563E-01 1.04935827347E-01 1.07407469228E-01 1.09932633171E-01 1.12512242488E-01 1.15147224142E-01 1.17838508003E-01 1.20587026059E-01 1.23393711571E-01 1.26259498180E-01 1.29185318957E-01 1.32172105393E-01 1.35220786337E-01 1.38332286868E-01 1.41507527104E-01 1.44747420949E-01 1.48052874774E-01 1.51424786024E-01 1.54864041758E-01 1.58371517117E-01 1.61948073714E-01 1.65594557952E-01 1.69311799260E-01 1.73100608250E-01 1.76961774796E-01 1.80896066028E-01 1.84904224237E-01 1.88986964707E-01 1.93144973447E-01 1.97378904846E-01 2.01689379236E-01 2.06076980367E-01 2.10542252796E-01 2.15085699188E-01 2.19707777527E-01 2.24408898241E-01 2.29189421246E-01 2.34049652901E-01 2.38989842885E-01 2.44010180990E-01 2.49110793844E-01 2.54291741556E-01 2.59553014294E-01 2.64894528804E-01 2.70316124861E-01 2.75817561674E-01 2.81398514247E-01 2.87058569694E-01 2.92797223536E-01 2.98613875963E-01 3.04507828104E-01 3.10478278278E-01 3.16524318276E-01 3.22644929659E-01 3.28838980098E-01 3.35105219772E-01 3.41442277839E-01 3.47848658994E-01 3.54322740137E-01 3.60862767169E-01 3.67466851942E-01 3.74132969373E-01 3.80858954766E-01 3.87642501338E-01 3.94481158012E-01 4.01372327463E-01 4.08313264482E-01 4.15301074665E-01 4.22332713459E-01 4.29404985606E-01 4.36514545013E-01 4.43657895069E-01 4.50831389458E-01 4.58031233495E-01 4.65253486013E-01 4.72494061837E-01 4.79748734887E-01 4.87013141922E-01 4.94282786978E-01 5.01553046511E-01 5.08819175284E-01 5.16076313020E-01 5.23319491846E-01 5.30543644543E-01 5.37743613624E-01 5.44914161252E-01 5.52049980002E-01 5.59145704473E-01 5.66195923751E-01 5.73195194699E-01 5.80138056082E-01 5.87019043474E-01 5.93832704939E-01 6.00573617434E-01 6.07236403883E-01 6.13815750862E-01 6.20306426826E-01 6.26703300793E-01 6.33001361395E-01 6.39195736180E-01 6.45281711057E-01 6.51254749753E-01 6.57110513126E-01 6.62844878200E-01 6.68453956736E-01 6.73934113169E-01 6.79281981727E-01 6.84494482524E-01 6.89568836419E-01 6.94502578447E-01 6.99293569571E-01 7.03940006562E-01 7.08440429768E-01 7.12793728550E-01 7.16999144180E-01 7.21056269978E-01 7.24965048501E-01 7.28725765594E-01 7.32339041144E-01 7.35805816387E-01 7.39127337664E-01 7.42305136530E-01 7.45341006170E-01 7.48236974097E-01 7.50995271175E-01 7.53618297012E-01 7.56108581841E-01 7.58468745046E-01 7.60701450513E-01 7.62809359054E-01 7.64795078158E-01 7.66661109375E-01 7.68409793646E-01 7.70043254907E-01 7.71563342278E-01 7.72971571158E-01 7.74269063461E-01 7.75456487209E-01 7.76533995586E-01 7.77501165452E-01 7.78356935157E-01 7.79099541355E-01 7.79726454270E-01 7.80234310650E-01 7.80618843370E-01 7.80874806359E-01 7.80995893180E-01 7.80974647280E-01 7.80802361585E-01 7.80468964745E-01 7.79964928380E-01 7.79287852597E-01 7.78437355724E-01 7.77413184944E-01 7.76215216682E-01 7.74843456805E-01 7.73298040641E-01 7.71579232829E-01 7.69687426980E-01 7.67623145192E-01 7.65387037381E-01 7.62979880472E-01 7.60402577424E-01 7.57656156115E-01 7.54741768088E-01 7.51660687150E-01 7.48414307856E-01 7.45004143855E-01 7.41431826133E-01 7.37699101131E-01 7.33807828769E-01 7.29759980363E-01 7.25557636457E-01 7.21202984563E-01 7.16698316825E-01 7.12046027605E-01 7.07248611005E-01 7.02308658323E-01 6.97228855448E-01 6.92011980213E-01 6.86660899686E-01 6.81178567427E-01 6.75568020696E-01 6.69832377630E-01 6.63974834384E-01 6.57998662229E-01 6.51907204633E-01 6.45703874299E-01 6.39392150176E-01 6.32975574439E-01 6.26457749434E-01 6.19842334587E-01 6.13133043279E-01 6.06333639680E-01 5.99447935532E-01 5.92479786892E-01 5.85433090823E-01 5.78311782016E-01 5.71119829364E-01 5.63861232461E-01 5.56540018029E-01 5.49160236276E-01 5.41725957167E-01 5.34241266612E-01 5.26710262581E-01 5.19137051113E-01 5.11525742262E-01 5.03880445940E-01 4.96205267693E-01 4.88504304393E-01 4.80781639875E-01 4.73041340499E-01 4.65287450681E-01 4.57523988386E-01 4.49754940599E-01 4.41984258805E-01 4.34215854481E-01 4.26453594638E-01 4.18701297417E-01 4.10962727774E-01 4.03241593282E-01 3.95541540054E-01 3.87866148834E-01 3.80218931267E-01 3.72603326367E-01 3.65022697216E-01 3.57480327904E-01 3.49979420726E-01 3.42523093655E-01 3.35114378105E-01 3.27756216987E-01 3.20451463062E-01 3.13202877607E-01 3.06013129375E-01 2.98884793863E-01 2.91820352870E-01 2.84822194332E-01 2.77892612443E-01 2.71033808014E-01 2.64247889086E-01 2.57536871747E-01 2.50902681156E-01 2.44347152737E-01 2.37872033515E-01 2.31478983590E-01 2.25169577692E-01 2.18945306816E-01 2.12807579900E-01 2.06757725519E-01 2.00796993573E-01 1.94926556946E-01 1.89147513106E-01 1.83460885630E-01 1.77867625641E-01 1.72368613123E-01 1.66964658114E-01 1.61656501758E-01 1.56444817212E-01 1.51330210391E-01 1.46313220566E-01 1.41394320795E-01 1.36573918204E-01 1.31852354122E-01 1.27229904076E-01 1.22706777666E-01 1.18283118321E-01 1.13959002977E-01 1.09734441673E-01 1.05609377102E-01 1.01583684139E-01 9.76571693602E-02 9.38295705893E-02 9.01005564930E-02 8.64697262440E-02 8.29366092813E-02 7.95006651879E-02 7.61612837051E-02 7.29177849047E-02 6.97694195327E-02 6.67153695400E-02 6.37547488116E-02 6.08866041017E-02 5.81099161818E-02 5.54236012047E-02 5.28265122839E-02 5.03174412883E-02 4.78951208450E-02 4.55582265462E-02 4.33053793486E-02 4.11351481569E-02 3.90460525764E-02 3.70365658235E-02 3.51051177766E-02 3.32500981531E-02 3.14698597942E-02 2.97627220420E-02 2.81269741897E-02 2.65608789881E-02 2.50626761902E-02 2.36305861172E-02 2.22628132285E-02 2.09575496789E-02 1.97129788475E-02 1.85272788232E-02 1.73986258322E-02 1.63251975939E-02 1.53051765930E-02 1.43367532557E-02 1.34181290197E-02 1.25475192886E-02 1.17231562609E-02 1.09432916281E-02 1.02061991331E-02 9.51017698489E-03 8.85355012390E-03 8.23467233540E-03 7.65192820724E-03 7.10373493061E-03 6.58854394280E-03 6.10484241157E-03 5.65115456204E-03 5.22604284706E-03 4.82810896339E-03 4.45599471610E-03 4.10838273449E-03 3.78399704330E-03 3.48160349341E-03 3.20001005679E-03 2.93806699067E-03 2.69466687658E-03 2.46874453972E-03 2.25927685487E-03 2.06528244504E-03 1.88582127912E-03 1.71999417516E-03 1.56694221588E-03 1.42584608299E-03 1.29592531715E-03 1.17643751010E-03 1.06667743558E-03 9.65976125705E-04 8.73699899002E-04 7.89249346591E-04 7.12058282517E-04 6.41592664199E-04 5.77349488731E-04 5.18855670532E-04 4.65666905604E-04 4.17366527422E-04 3.73564359162E-04 3.33895566770E-04 2.98019517035E-04 2.65618644351E-04 2.36398112513E-04 2.10090909521E-04 1.86441641222E-04 1.65213019081E-04 1.46185717624E-04 1.29157330945E-04 1.13941363916E-04 1.00366259237E-04 8.82744612851E-05 7.75215175697E-05 6.79752184431E-05 5.95147755642E-05 5.20300394926E-05 4.54207566950E-05 3.95958661621E-05 3.44728357845E-05 2.99762566542E-05 2.60310311818E-05 2.25766592499E-05 1.95594775881E-05 1.69313104457E-05 1.46490530790E-05 1.26742892984E-05 1.09449538148E-05 9.43344074432E-06 8.11487219448E-06 6.96687418328E-06 5.96936590282E-06 5.10436207701E-06 4.35578804865E-06 3.70930727489E-06 3.15216080075E-06 2.67301827742E-06 2.26184005981E-06 1.90974989690E-06 1.60891771236E-06 1.35245196234E-06 1.13430105130E-06 9.49163284979E-07 7.92404842144E-07 6.59985252520E-07 5.48389877653E-07 4.54568903337E-07 3.75882366775E-07 3.10050758184E-07 2.55110754791E-07 2.09375664883E-07 1.71400180201E-07 1.39949056522E-07 1.13969364114E-07 9.25659719798E-08 7.49799518810E-08 6.05696100766E-08 4.87938762077E-08 3.91977997032E-08 3.13999243418E-08 2.50813310484E-08 1.99761575680E-08 1.58634212628E-08 1.25599878774E-08 9.91454468305E-09 7.80245093043E-09 6.12135200950E-09 4.78745614699E-09 3.73238389324E-09 2.90051108631E-09 2.24673547557E-09 1.73460578202E-09 1.33475971727E-09 1.02362442997E-09 7.82339050439E-10 5.95864516822E-10 4.52250743037E-10 3.42035484695E-10 2.57753025709E-10 1.93534096449E-10 1.44781291678E-10 1.07906728583E-10 8.01208144269E-11 5.92628189976E-11 4.36655054022E-11 3.20473970312E-11 2.34273787536E-11 1.70572737834E-11 1.23688284802E-11 8.93219726008E-12 6.42356794068E-12 4.60002105715E-12 3.28008966413E-12 2.32879165588E-12 1.64615571568E-12 1.15846411230E-12 8.11598770719E-13 5.66008210473E-13 3.92917846886E-13 2.71489639340E-13 1.86703189024E-13 1.27782491303E-13 8.70334000095E-14 5.89887302054E-14 3.97826607918E-14 2.66951971319E-14 1.78221242742E-14 1.18370911207E-14 7.82098601251E-15 5.14020542881E-15 3.36026079726E-15 2.18479034356E-15 1.41273656395E-15 9.08442050452E-16 5.80881452755E-16 3.69318666577E-16 2.33457225047E-16 1.46714872935E-16 9.16578744890E-17 5.69196069097E-17 3.51332008675E-17 2.15528196932E-17 1.31397602244E-17 7.96037903115E-18 4.79190923239E-18 2.86600591578E-18 1.70295801400E-18 1.00520215073E-18 5.89371715459E-19 3.43221851091E-19 1.98505805747E-19 1.14010948961E-19 6.50214900059E-20 3.68184711993E-20 2.06982699027E-20 1.15510720453E-20 6.39868141173E-21 3.51801852668E-21 1.91957099952E-21 1.03936270178E-21 5.58399357599E-22 2.97642498991E-22 1.57388901586E-22 8.25541166021E-23 4.29481657700E-23 2.21588386781E-23 1.13370621876E-23 5.75121124156E-24 2.89252345656E-24 1.44213586061E-24 7.12688129613E-25 3.49066910939E-25 1.69427845273E-25 8.14851303751E-26 3.88274899847E-26 1.83280775894E-26 8.56958506378E-27 3.96840458306E-27 1.81983785258E-27 8.26336089013E-28 3.71478789818E-28 1.65314109060E-28 7.28163743176E-29 3.17420775991E-29 1.36921626102E-29 5.84361596253E-30 2.46720933665E-30 1.03035316848E-30 4.25561491145E-31 5.54641935624E-08 5.68682762373E-08 5.83079034307E-08 5.97839749563E-08 6.12974134065E-08 6.28491647294E-08 6.44401988196E-08 6.60715101249E-08 6.77441182677E-08 6.94590686822E-08 7.12174332677E-08 7.30203110590E-08 7.48688289130E-08 7.67641422130E-08 7.87074355912E-08 8.06999236685E-08 8.27428518144E-08 8.48374969250E-08 8.69851682211E-08 8.91872080664E-08 9.14449928071E-08 9.37599336312E-08 9.61334774516E-08 9.85671078097E-08 1.01062345803E-07 1.03620751035E-07 1.06243922592E-07 1.08933500041E-07 1.11691164454E-07 1.14518639460E-07 1.17417692322E-07 1.20390135042E-07 1.23437825491E-07 1.26562668574E-07 1.29766617419E-07 1.33051674596E-07 1.36419893372E-07 1.39873378992E-07 1.43414289994E-07 1.47044839563E-07 1.50767296907E-07 1.54583988683E-07 1.58497300444E-07 1.62509678137E-07 1.66623629625E-07 1.70841726260E-07 1.75166604487E-07 1.79600967494E-07 1.84147586900E-07 1.88809304485E-07 1.93589033974E-07 1.98489762850E-07 2.03514554223E-07 2.08666548751E-07 2.13948966592E-07 2.19365109427E-07 2.24918362517E-07 2.30612196822E-07 2.36450171170E-07 2.42435934480E-07 2.48573228045E-07 2.54865887868E-07 2.61317847060E-07 2.67933138301E-07 2.74715896358E-07 2.81670360669E-07 2.88800877994E-07 2.96111905132E-07 3.03608011706E-07 3.11293883019E-07 3.19174322984E-07 3.27254257122E-07 3.35538735649E-07 3.44032936624E-07 3.52742169188E-07 3.61671876887E-07 3.70827641067E-07 3.80215184369E-07 3.89840374300E-07 3.99709226906E-07 4.09827910528E-07 4.20202749659E-07 4.30840228898E-07 4.41746997000E-07 4.52929871034E-07 4.64395840645E-07 4.76152072420E-07 4.88205914368E-07 5.00564900513E-07 5.13236755604E-07 5.26229399942E-07 5.39550954330E-07 5.53209745150E-07 5.67214309567E-07 5.81573400864E-07 5.96295993912E-07 6.11391290784E-07 6.26868726500E-07 6.42737974932E-07 6.59008954843E-07 6.75691836089E-07 6.92797045979E-07 7.10335275786E-07 7.28317487436E-07 7.46754920352E-07 7.65659098487E-07 7.85041837520E-07 8.04915252244E-07 8.25291764139E-07 8.46184109134E-07 8.67605345566E-07 8.89568862346E-07 9.12088387323E-07 9.35177995866E-07 9.58852119664E-07 9.83125555739E-07 1.00801347570E-06 1.03353143523E-06 1.05969538380E-06 1.08652167463E-06 1.11402707494E-06 1.14222877640E-06 1.17114440589E-06 1.20079203649E-06 1.23119019885E-06 1.26235789266E-06 1.29431459864E-06 1.32708029062E-06 1.36067544809E-06 1.39512106896E-06 1.43043868273E-06 1.46665036387E-06 1.50377874570E-06 1.54184703449E-06 1.58087902396E-06 1.62089911017E-06 1.66193230678E-06 1.70400426065E-06 1.74714126787E-06 1.79137029026E-06 1.83671897211E-06 1.88321565757E-06 1.93088940830E-06 1.97977002164E-06 2.02988804926E-06 2.08127481621E-06 2.13396244056E-06 2.18798385342E-06 2.24337281956E-06 2.30016395846E-06 2.35839276603E-06 2.41809563671E-06 2.47930988628E-06 2.54207377514E-06 2.60642653225E-06 2.67240837962E-06 2.74006055750E-06 2.80942535009E-06 2.88054611201E-06 2.95346729540E-06 3.02823447766E-06 3.10489438999E-06 3.18349494655E-06 3.26408527443E-06 3.34671574437E-06 3.43143800219E-06 3.51830500113E-06 3.60737103490E-06 3.69869177161E-06 3.79232428862E-06 3.88832710814E-06 3.98676023384E-06 4.08768518836E-06 4.19116505174E-06 4.29726450087E-06 4.40604984986E-06 4.51758909155E-06 4.63195193996E-06 4.74920987388E-06 4.86943618153E-06 4.99270600635E-06 5.11909639401E-06 5.24868634052E-06 5.38155684160E-06 5.51779094332E-06 5.65747379400E-06 5.80069269739E-06 5.94753716728E-06 6.09809898340E-06 6.25247224882E-06 6.41075344872E-06 6.57304151071E-06 6.73943786665E-06 6.91004651605E-06 7.08497409103E-06 7.26432992300E-06 7.44822611097E-06 7.63677759161E-06 7.83010221104E-06 8.02832079855E-06 8.23155724203E-06 8.43993856546E-06 8.65359500823E-06 8.87266010659E-06 9.09727077704E-06 9.32756740192E-06 9.56369391717E-06 9.80579790222E-06 1.00540306722E-05 1.03085473727E-05 1.05695070762E-05 1.08370728823E-05 1.11114120188E-05 1.13926959467E-05 1.16811004673E-05 1.19768058318E-05 1.22799968542E-05 1.25908630267E-05 1.29095986381E-05 1.32364028951E-05 1.35714800471E-05 1.39150395133E-05 1.42672960142E-05 1.46284697052E-05 1.49987863145E-05 1.53784772840E-05 1.57677799139E-05 1.61669375112E-05 1.65761995414E-05 1.69958217846E-05 1.74260664953E-05 1.78672025660E-05 1.83195056956E-05 1.87832585613E-05 1.92587509957E-05 1.97462801671E-05 2.02461507659E-05 2.07586751948E-05 2.12841737637E-05 2.18229748899E-05 2.23754153036E-05 2.29418402579E-05 2.35226037447E-05 2.41180687157E-05 2.47286073094E-05 2.53546010832E-05 2.59964412522E-05 2.66545289332E-05 2.73292753955E-05 2.80211023178E-05 2.87304420515E-05 2.94577378910E-05 3.02034443503E-05 3.09680274471E-05 3.17519649940E-05 3.25557468966E-05 3.33798754600E-05 3.42248657020E-05 3.50912456753E-05 3.59795567969E-05 3.68903541864E-05 3.78242070128E-05 3.87816988500E-05 3.97634280411E-05 4.07700080721E-05 4.18020679551E-05 4.28602526212E-05 4.39452233230E-05 4.50576580481E-05 4.61982519415E-05 4.73677177406E-05 4.85667862200E-05 4.97962066474E-05 5.10567472521E-05 5.23491957042E-05 5.36743596065E-05 5.50330669987E-05 5.64261668747E-05 5.78545297122E-05 5.93190480163E-05 6.08206368767E-05 6.23602345391E-05 6.39388029906E-05 6.55573285605E-05 6.72168225355E-05 6.89183217916E-05 7.06628894407E-05 7.24516154945E-05 7.42856175443E-05 7.61660414592E-05 7.80940621007E-05 8.00708840558E-05 8.20977423891E-05 8.41759034131E-05 8.63066654786E-05 8.84913597845E-05 9.07313512085E-05 9.30280391590E-05 9.53828584472E-05 9.77972801833E-05 1.00272812693E-04 1.02811002460E-04 1.05413435088E-04 1.08081736293E-04 1.10817572913E-04 1.13622653952E-04 1.16498731644E-04 1.19447602542E-04 1.22471108644E-04 1.25571138539E-04 1.28749628584E-04 1.32008564109E-04 1.35349980661E-04 1.38775965265E-04 1.42288657731E-04 1.45890251984E-04 1.49582997434E-04 1.53369200373E-04 1.57251225419E-04 1.61231496982E-04 1.65312500779E-04 1.69496785381E-04 1.73786963802E-04 1.78185715123E-04 1.82695786164E-04 1.87319993193E-04 1.92061223678E-04 1.96922438089E-04 2.01906671737E-04 2.07017036664E-04 2.12256723583E-04 2.17629003859E-04 2.23137231548E-04 2.28784845486E-04 2.34575371420E-04 2.40512424211E-04 2.46599710078E-04 2.52841028900E-04 2.59240276585E-04 2.65801447488E-04 2.72528636895E-04 2.79426043569E-04 2.86497972361E-04 2.93748836882E-04 3.01183162247E-04 3.08805587884E-04 3.16620870421E-04 3.24633886634E-04 3.32849636478E-04 3.41273246190E-04 3.49909971471E-04 3.58765200751E-04 3.67844458525E-04 3.77153408789E-04 3.86697858546E-04 3.96483761410E-04 4.06517221300E-04 4.16804496218E-04 4.27352002132E-04 4.38166316948E-04 4.49254184589E-04 4.60622519168E-04 4.72278409271E-04 4.84229122344E-04 4.96482109192E-04 5.09045008590E-04 5.21925652003E-04 5.35132068438E-04 5.48672489399E-04 5.62555353979E-04 5.76789314076E-04 5.91383239732E-04 6.06346224619E-04 6.21687591643E-04 6.37416898704E-04 6.53543944593E-04 6.70078775032E-04 6.87031688868E-04 7.04413244424E-04 7.22234266000E-04 7.40505850541E-04 7.59239374468E-04 7.78446500679E-04 7.98139185726E-04 8.18329687163E-04 8.39030571083E-04 8.60254719839E-04 8.82015339950E-04 9.04325970216E-04 9.27200490017E-04 9.50653127830E-04 9.74698469948E-04 9.99351469415E-04 1.02462745519E-03 1.05054214151E-03 1.07711163753E-03 1.10435245715E-03 1.13228152912E-03 1.16091620735E-03 1.19027428153E-03 1.22037398799E-03 1.25123402075E-03 1.28287354301E-03 1.31531219871E-03 1.34857012455E-03 1.38266796221E-03 1.41762687087E-03 1.45346854010E-03 1.49021520296E-03 1.52788964953E-03 1.56651524065E-03 1.60611592212E-03 1.64671623913E-03 1.68834135111E-03 1.73101704692E-03 1.77476976037E-03 1.81962658619E-03 1.86561529629E-03 1.91276435651E-03 1.96110294365E-03 2.01066096306E-03 2.06146906649E-03 2.11355867052E-03 2.16696197527E-03 2.22171198369E-03 2.27784252125E-03 2.33538825606E-03 2.39438471957E-03 2.45486832763E-03 2.51687640217E-03 2.58044719327E-03 2.64561990186E-03 2.71243470285E-03 2.78093276892E-03 2.85115629470E-03 2.92314852169E-03 2.99695376362E-03 3.07261743248E-03 3.15018606510E-03 3.22970735039E-03 3.31123015716E-03 3.39480456258E-03 3.48048188134E-03 3.56831469542E-03 3.65835688456E-03 3.75066365740E-03 3.84529158336E-03 3.94229862520E-03 4.04174417229E-03 4.14368907472E-03 4.24819567806E-03 4.35532785891E-03 4.46515106131E-03 4.57773233386E-03 4.69314036769E-03 4.81144553528E-03 4.93271993005E-03 5.05703740691E-03 5.18447362356E-03 5.31510608277E-03 5.44901417553E-03 5.58627922507E-03 5.72698453188E-03 5.87121541958E-03 6.01905928186E-03 6.17060563026E-03 6.32594614303E-03 6.48517471493E-03 6.64838750807E-03 6.81568300374E-03 6.98716205529E-03 7.16292794208E-03 7.34308642441E-03 7.52774579961E-03 7.71701695919E-03 7.91101344697E-03 8.10985151849E-03 8.31365020141E-03 8.52253135703E-03 8.73661974299E-03 8.95604307706E-03 9.18093210209E-03 9.41142065211E-03 9.64764571953E-03 9.88974752357E-03 1.01378695798E-02 1.03921587708E-02 1.06527654180E-02 1.09198433549E-02 1.11935500007E-02 1.14740464364E-02 1.17614974804E-02 1.20560717666E-02 1.23579418230E-02 1.26672841512E-02 1.29842793078E-02 1.33091119859E-02 1.36419710981E-02 1.39830498608E-02 1.43325458793E-02 1.46906612333E-02 1.50576025643E-02 1.54335811636E-02 1.58188130603E-02 1.62135191116E-02 1.66179250930E-02 1.70322617889E-02 1.74567650847E-02 1.78916760595E-02 1.83372410780E-02 1.87937118849E-02 1.92613456979E-02 1.97404053024E-02 2.02311591453E-02 2.07338814297E-02 2.12488522092E-02 2.17763574824E-02 2.23166892874E-02 2.28701457948E-02 2.34370314022E-02 2.40176568261E-02 2.46123391946E-02 2.52214021381E-02 2.58451758799E-02 2.64839973244E-02 2.71382101452E-02 2.78081648702E-02 2.84942189657E-02 2.91967369183E-02 2.99160903140E-02 3.06526579153E-02 3.14068257350E-02 3.21789871071E-02 3.29695427540E-02 3.37789008503E-02 3.46074770822E-02 3.54556947026E-02 3.63239845812E-02 3.72127852496E-02 3.81225429411E-02 3.90537116236E-02 4.00067530266E-02 4.09821366616E-02 4.19803398342E-02 4.30018476489E-02 4.40471530052E-02 4.51167565847E-02 4.62111668284E-02 4.73308999041E-02 4.84764796623E-02 4.96484375814E-02 5.08473127000E-02 5.20736515360E-02 5.33280079932E-02 5.46109432519E-02 5.59230256450E-02 5.72648305181E-02 5.86369400715E-02 6.00399431857E-02 6.14744352271E-02 6.29410178335E-02 6.44402986798E-02 6.59728912210E-02 6.75394144121E-02 6.91404924048E-02 7.07767542178E-02 7.24488333815E-02 7.41573675548E-02 7.59029981129E-02 7.76863697056E-02 7.95081297831E-02 8.13689280902E-02 8.32694161258E-02 8.52102465666E-02 8.71920726551E-02 8.92155475478E-02 9.12813236250E-02 9.33900517586E-02 9.55423805373E-02 9.77389554481E-02 9.99804180118E-02 1.02267404872E-01 1.04600546833E-01 1.06980467854E-01 1.09407783983E-01 1.11883102244E-01 1.14407019468E-01 1.16980121070E-01 1.19602979767E-01 1.22276154234E-01 1.25000187713E-01 1.27775606546E-01 1.30602918658E-01 1.33482611969E-01 1.36415152755E-01 1.39400983927E-01 1.42440523264E-01 1.45534161567E-01 1.48682260757E-01 1.51885151904E-01 1.55143133189E-01 1.58456467808E-01 1.61825381806E-01 1.65250061853E-01 1.68730652954E-01 1.72267256102E-01 1.75859925875E-01 1.79508667972E-01 1.83213436702E-01 1.86974132418E-01 1.90790598909E-01 1.94662620750E-01 1.98589920613E-01 2.02572156544E-01 2.06608919219E-01 2.10699729179E-01 2.14844034045E-01 2.19041205739E-01 2.23290537703E-01 2.27591242125E-01 2.31942447196E-01 2.36343194400E-01 2.40792435839E-01 2.45289031624E-01 2.49831747335E-01 2.54419251559E-01 2.59050113533E-01 2.63722800901E-01 2.68435677597E-01 2.73187001884E-01 2.77974924556E-01 2.82797487325E-01 2.87652621417E-01 2.92538146396E-01 2.97451769231E-01 3.02391083638E-01 3.07353569714E-01 3.12336593888E-01 3.17337409205E-01 3.22353155983E-01 3.27380862851E-01 3.32417448196E-01 3.37459722050E-01 3.42504388427E-01 3.47548048147E-01 3.52587202154E-01 3.57618255360E-01 3.62637521026E-01 3.67641225704E-01 3.72625514746E-01 3.77586458405E-01 3.82520058524E-01 3.87422255830E-01 3.92288937834E-01 3.97115947333E-01 4.01899091505E-01 4.06634151601E-01 4.11316893204E-01 4.15943077034E-01 4.20508470281E-01 4.25008858426E-01 4.29440057499E-01 4.33797926741E-01 4.38078381600E-01 4.42277406999E-01 4.46391070802E-01 4.50415537394E-01 4.54347081286E-01 4.58182100634E-01 4.61917130574E-01 4.65548856252E-01 4.69074125413E-01 4.72489960424E-01 4.75793569589E-01 4.78982357602E-01 4.82053934989E-01 4.85006126382E-01 4.87836977465E-01 4.90544760432E-01 4.93127977796E-01 4.95585364399E-01 4.97915887468E-01 5.00118744575E-01 5.02193359379E-01 5.04139375023E-01 5.05956645095E-01 5.07645222073E-01 5.09205343195E-01 5.10637413723E-01 5.11941987615E-01 5.13119745619E-01 5.14171470859E-01 5.15098022028E-01 5.15900304305E-01 5.16579238178E-01 5.17135726395E-01 5.17570619261E-01 5.17884678577E-01 5.18078540507E-01 5.18152677691E-01 5.18107360934E-01 5.17942620787E-01 5.17658209344E-01 5.17253562517E-01 5.16727763044E-01 5.16079504377E-01 5.15307055553E-01 5.14408226995E-01 5.13380337095E-01 5.12220179253E-01 5.10923988847E-01 5.09487409441E-01 5.07905457260E-01 5.06172482764E-01 5.04282127839E-01 5.02227276912E-01 5.00000000000E-01 4.97592786214E-01 4.95002728098E-01 4.92228204207E-01 4.89267664614E-01 4.86119631193E-01 4.82782697791E-01 4.79255530291E-01 4.75536866564E-01 4.71625516329E-01 4.67520360901E-01 4.63220352859E-01 4.58724515616E-01 4.54031942910E-01 4.49141798214E-01 4.44053314070E-01 4.38765791355E-01 4.33278598486E-01 4.27591170557E-01 4.21703008433E-01 4.15613677787E-01 4.09322808096E-01 4.02830091599E-01 3.96135282222E-01 3.89238194473E-01 3.82138702313E-01 3.74836738005E-01 3.67332290958E-01 3.59625406543E-01 3.51716184919E-01 3.43604779844E-01 3.35291397486E-01 3.26776295241E-01 3.18059780553E-01 3.09142209736E-01 3.00023986810E-01 2.90705562345E-01 2.81187432310E-01 2.71470136941E-01 2.61554259615E-01 2.51440425732E-01 2.41129301621E-01 2.30621593442E-01 2.19918046108E-01 2.09019442222E-01 1.97926601013E-01 1.86640377302E-01 1.75161660466E-01 1.63491373434E-01 1.51630471689E-01 1.39579942309E-01 1.27340803028E-01 1.14914101342E-01 1.02300913657E-01 8.95023445056E-02 7.65195258256E-02 6.33536163354E-02 5.00058010124E-02 3.64772907003E-02 2.27693218661E-02 8.88315653416E-03 -5.17991757714E-03 -1.94185866846E-02 -3.38315103048E-02 -4.84173203215E-02 -6.31746197211E-02 -7.81019809633E-02 -9.31979439511E-02 -1.08461013569E-01 -1.23889656758E-01 -1.39482299092E-01 -1.55237320838E-01 -1.71153052472E-01 -1.87227769632E-01 -2.03459687496E-01 -2.19846954576E-01 -2.36387645936E-01 -2.53079755822E-01 -2.69921189736E-01 -2.86909755970E-01 -3.04043156623E-01 -3.21318978149E-01 -3.38734681474E-01 -3.56287591753E-01 -3.73974887809E-01 -3.91793591340E-01 -4.09740555978E-01 -4.27812456272E-01 -4.46005776698E-01 -4.64316800802E-01 -4.82741600562E-01 -5.01276026099E-01 -5.19915695842E-01 -5.38655987248E-01 -5.57492028223E-01 -5.76418689327E-01 -5.95430576894E-01 -6.14522027182E-01 -6.33687101633E-01 -6.52919583371E-01 -6.72212975001E-01 -6.91560497809E-01 -7.10955092407E-01 -7.30389420902E-01 -7.49855870596E-01 -7.69346559261E-01 -7.88853341982E-01 -8.08367819547E-01 -8.27881348343E-01 -8.47385051716E-01 -8.66869832696E-01 -8.86326387997E-01 -9.05745223169E-01 -9.25116668769E-01 -9.44430897392E-01 -9.63677941388E-01 -9.82847711090E-01 -1.00193001335E+00 -1.02091457020E+00 -1.03979103742E+00 -1.05854902277E+00 -1.07717810379E+00 -1.09566784484E+00 -1.11400781325E+00 -1.13218759445E+00 -1.15019680577E+00 -1.16802510887E+00 -1.18566222071E+00 -1.20309792270E+00 -1.22032206824E+00 -1.23732458834E+00 -1.25409549532E+00 -1.27062488461E+00 -1.28690293451E+00 -1.30291990399E+00 -1.31866612852E+00 -1.33413201388E+00 -1.34930802814E+00 -1.36418469171E+00 -1.37875256557E+00 -1.39300223781E+00 -1.40692430849E+00 -1.42050937295E+00 -1.43374800364E+00 -1.44663073060E+00 -1.45914802067E+00 -1.47129025556E+00 -1.48304770887E+00 -1.49441052220E+00 -1.50536868047E+00 -1.51591198653E+00 -1.52603003520E+00 -1.53571218687E+00 -1.54494754084E+00 -1.55372490832E+00 -1.56203278554E+00 -1.56985932672E+00 -1.57719231737E+00 -1.58401914783E+00 -1.59032678727E+00 -1.59610175828E+00 -1.60133011218E+00 -1.60599740518E+00 -1.61008867562E+00 -1.61358842226E+00 -1.61648058406E+00 -1.61874852137E+00 -1.62037499875E+00 -1.62134216978E+00 -1.62163156381E+00 -1.62122407500E+00 -1.62009995377E+00 -1.61823880097E+00 -1.61561956491E+00 -1.61222054151E+00 -1.60801937787E+00 -1.60299307939E+00 -1.59711802085E+00 -1.59036996166E+00 -1.58272406554E+00 -1.57415492498E+00 -1.56463659078E+00 -1.55414260700E+00 -1.54264605157E+00 -1.53011958302E+00 -1.51653549365E+00 -1.50186576940E+00 -1.48608215692E+00 -1.46915623812E+00 -1.45105951264E+00 -1.43176348862E+00 -1.41123978200E+00 -1.38946022501E+00 -1.36639698398E+00 -1.34202268701E+00 -1.31631056174E+00 -1.28923458371E+00 -1.26076963552E+00 -1.23089167728E+00 -1.19957792841E+00 -1.16680706137E+00 -1.13255940728E+00 -1.09681717400E+00 -1.05956467603E+00 -1.02079195191E+00 -9.80521934605E-01 -9.38746995773E-01 -8.95459093295E-01 -8.50653781800E-01 -8.04330512369E-01 -7.56492943514E-01 -7.07149262890E-01 -6.56312519158E-01 -6.04000963262E-01 -5.50238398207E-01 -4.95054536349E-01 -4.38485362859E-01 -3.80573503981E-01 -3.21368598434E-01 -2.60927670061E-01 -1.99310309916E-01 -1.36538779657E-01 -7.27067285551E-02 -7.92409543312E-03 5.76893979795E-02 1.24003984179E-01 1.90879615832E-01 2.58165765255E-01 3.25701262521E-01 3.93314177596E-01 4.60821752283E-01 5.28030388084E-01 5.94735696152E-01 6.60722616394E-01 7.25765612507E-01 7.89628950201E-01 8.52067066091E-01 9.12825034871E-01 9.71639142533E-01 1.02823757343E+00 1.08234121897E+00 1.13366461564E+00 1.18191701987E+00 1.22680362683E+00 1.26802694003E+00 1.30528829783E+00 1.33828956224E+00 1.36673497468E+00 1.39033318205E+00 1.40879943522E+00 1.42185796077E+00 1.42924450460E+00 1.43070904449E+00 1.42601866616E+00 1.41496059476E+00 1.39734537131E+00 1.37301015978E+00 1.34182216782E+00 1.30368215985E+00 1.25852803743E+00 1.20633845762E+00 1.14713645520E+00 1.08099302999E+00 1.00803065560E+00 9.28426660513E-01 8.42416427403E-01 7.50296351162E-01 6.52426491012E-01 5.49232846955E-01 4.41209186083E-01 3.28918339918E-01 2.12992890176E-01 9.41351572797E-02 -2.68835961675E-02 -1.49224835730E-01 -2.71985387767E-01 -3.94201120851E-01 -5.14851758730E-01 -6.32866901752E-01 -7.47133325464E-01 -8.56503614290E-01 -9.59806174538E-01 -1.05585665421E+00 -1.14347077701E+00 -1.22147857437E+00 -1.28873997215E+00 -1.34416165775E+00 -1.38671511895E+00 -1.41545570747E+00 -1.42954253910E+00 -1.42825899748E+00 -1.41103356209E+00 -1.37746063184E+00 -1.32732096626E+00 -1.26060131676E+00 -1.17751277195E+00 -1.07850729612E+00 -9.64291899175E-01 -8.35839842414E-01 -6.94398259432E-01 -5.41491557577E-01 -3.78919965197E-01 -2.08752606329E-01 -3.33145199914E-02 1.44832901367E-01 3.22918497881E-01 4.97995287816E-01 6.66981970566E-01 8.26712017895E-01 9.73990186558E-01 1.10565605764E+00 1.21865395141E+00 1.31010828435E+00 1.37740313127E+00 1.41826443709E+00 1.43084299708E+00 1.41379600268E+00 1.36636464333E+00 1.28844497922E+00 1.18064907053E+00 1.04435318477E+00 8.81729824556E-01 6.95760343847E-01 4.90225071786E-01 2.69668159298E-01 3.93348217356E-02 -1.94920715091E-01 -4.26757439337E-01 -6.49499816335E-01 -8.56318773152E-01 -1.04043873778E+00 -1.19536658226E+00 -1.31513674256E+00 -1.39456517543E+00 -1.42950323544E+00 -1.41708110039E+00 -1.35592913897E+00 -1.24636471190E+00 -1.09053144398E+00 -8.92478118225E-01 -6.58165137893E-01 -3.95388078346E-01 -1.13610282904E-01 1.76300212748E-01 4.62429920717E-01 7.32270748088E-01 9.73252147372E-01 1.17333803478E+00 1.32166551653E+00 1.40919622158E+00 1.42934543214E+00 1.37854974533E+00 1.25673124414E+00 1.06761566422E+00 8.18864338657E-01 5.21985220940E-01 1.91997315977E-01 -1.53164534600E-01 -4.93501558096E-01 -8.08037818447E-01 -1.07609917120E+00 -1.27872019540E+00 -1.40009431984E+00 -1.42896472164E+00 -1.35984104884E+00 -1.19392184129E+00 -9.39606779037E-01 -6.12498251935E-01 -2.34819209298E-01 2.58099000863E-12 2.67961478981E-12 2.78200822075E-12 2.88831430907E-12 2.99868256521E-12 3.11326821273E-12 3.23223240654E-12 3.35574245965E-12 3.48397207841E-12 3.61710160684E-12 3.75531828027E-12 3.89881648864E-12 4.04779804995E-12 4.20247249406E-12 4.36305735737E-12 4.52977848879E-12 4.70287036737E-12 4.88257643206E-12 5.06914942411E-12 5.26285174251E-12 5.46395581303E-12 5.67274447140E-12 5.88951136103E-12 6.11456134606E-12 6.34821094008E-12 6.59078875130E-12 6.84263594470E-12 7.10410672186E-12 7.37556881910E-12 7.65740402469E-12 7.95000871578E-12 8.25379441588E-12 8.56918837364E-12 8.89663416372E-12 9.23659231066E-12 9.58954093657E-12 9.95597643353E-12 1.03364141618E-11 1.07313891745E-11 1.11414569702E-11 1.15671942743E-11 1.20091998500E-11 1.24680953402E-11 1.29445261423E-11 1.34391623155E-11 1.39526995233E-11 1.44858600119E-11 1.50393936259E-11 1.56140788631E-11 1.62107239690E-11 1.68301680740E-11 1.74732823733E-11 1.81409713522E-11 1.88341740580E-11 1.95538654211E-11 2.03010576258E-11 2.10768015341E-11 2.18821881633E-11 2.27183502209E-11 2.35864636971E-11 2.44877495194E-11 2.54234752690E-11 2.63949569641E-11 2.74035609106E-11 2.84507056234E-11 2.95378638221E-11 3.06665645014E-11 3.18383950821E-11 3.30550036437E-11 3.43181012416E-11 3.56294643146E-11 3.69909371822E-11 3.84044346395E-11 3.98719446493E-11 4.13955311387E-11 4.29773369013E-11 4.46195866112E-11 4.63245899518E-11 4.80947448639E-11 4.99325409185E-11 5.18405628180E-11 5.38214940313E-11 5.58781205680E-11 5.80133348967E-11 6.02301400128E-11 6.25316536624E-11 6.49211127264E-11 6.74018777737E-11 6.99774377869E-11 7.26514150696E-11 7.54275703409E-11 7.83098080241E-11 8.13021817386E-11 8.44089000003E-11 8.76343321409E-11 9.09830144527E-11 9.44596565690E-11 9.80691480871E-11 1.01816565446E-10 1.05707179064E-10 1.09746460754E-10 1.13940091418E-10 1.18293969035E-10 1.22814216957E-10 1.27507192523E-10 1.32379495997E-10 1.37437979853E-10 1.42689758412E-10 1.48142217845E-10 1.53803026564E-10 1.59680146007E-10 1.65781841834E-10 1.72116695550E-10 1.78693616579E-10 1.85521854789E-10 1.92611013505E-10 1.99971063014E-10 2.07612354586E-10 2.15545635033E-10 2.23782061824E-10 2.32333218779E-10 2.41211132354E-10 2.50428288563E-10 2.59997650532E-10 2.69932676735E-10 2.80247339921E-10 2.90956146762E-10 3.02074158260E-10 3.13617010928E-10 3.25600938778E-10 3.38042796158E-10 3.50960081449E-10 3.64370961682E-10 3.78294298085E-10 3.92749672608E-10 4.07757415469E-10 4.23338633737E-10 4.39515241027E-10 4.56309988314E-10 4.73746495931E-10 4.91849286789E-10 5.10643820868E-10 5.30156531019E-10 5.50414860145E-10 5.71447299796E-10 5.93283430236E-10 6.15953962047E-10 6.39490779322E-10 6.63926984504E-10 6.89296944946E-10 7.15636341238E-10 7.42982217398E-10 7.71373032960E-10 8.00848717074E-10 8.31450724656E-10 8.63222094690E-10 8.96207510765E-10 9.30453363908E-10 9.66007817838E-10 1.00292087670E-09 1.04124445538E-09 1.08103245255E-09 1.12234082642E-09 1.16522767349E-09 1.20975331024E-09 1.25598035792E-09 1.30397383069E-09 1.35380122699E-09 1.40553262453E-09 1.45924077879E-09 1.51500122539E-09 1.57289238628E-09 1.63299568007E-09 1.69539563653E-09 1.76018001545E-09 1.82743993008E-09 1.89726997527E-09 1.96976836053E-09 2.04503704810E-09 2.12318189640E-09 2.20431280887E-09 2.28854388857E-09 2.37599359862E-09 2.46678492886E-09 2.56104556874E-09 2.65890808698E-09 2.76051011796E-09 2.86599455532E-09 2.97550975291E-09 3.08920973343E-09 3.20725440506E-09 3.32980978632E-09 3.45704823961E-09 3.58914871356E-09 3.72629699475E-09 3.86868596896E-09 4.01651589245E-09 4.16999467362E-09 4.32933816539E-09 4.49477046875E-09 4.66652424797E-09 4.84484105780E-09 5.02997168317E-09 5.22217649193E-09 5.42172580096E-09 5.62890025640E-09 5.84399122832E-09 6.06730122046E-09 6.29914429573E-09 6.53984651785E-09 6.78974640992E-09 7.04919543054E-09 7.31855846805E-09 7.59821435371E-09 7.88855639450E-09 8.18999292620E-09 8.50294788771E-09 8.82786141724E-09 9.16519047128E-09 9.51540946730E-09 9.87901095090E-09 1.02565062885E-08 1.06484263865E-08 1.10553224381E-08 1.14777666981E-08 1.19163532880E-08 1.23716990314E-08 1.28444443217E-08 1.33352540222E-08 1.38448184018E-08 1.43738541050E-08 1.49231051605E-08 1.54933440271E-08 1.60853726800E-08 1.67000237389E-08 1.73381616387E-08 1.80006838456E-08 1.86885221185E-08 1.94026438201E-08 2.01440532767E-08 2.09137931912E-08 2.17129461090E-08 2.25426359407E-08 2.34040295422E-08 2.42983383565E-08 2.52268201164E-08 2.61907806139E-08 2.71915755364E-08 2.82306123730E-08 2.93093523940E-08 3.04293127060E-08 3.15920683850E-08 3.27992546919E-08 3.40525693716E-08 3.53537750410E-08 3.67047016675E-08 3.81072491422E-08 3.95633899522E-08 4.10751719539E-08 4.26447212531E-08 4.42742451948E-08 4.59660354673E-08 4.77224713247E-08 4.95460229330E-08 5.14392548436E-08 5.34048295996E-08 5.54455114801E-08 5.75641703871E-08 5.97637858815E-08 6.20474513732E-08 6.44183784703E-08 6.68799014963E-08 6.94354821778E-08 7.20887145133E-08 7.48433298265E-08 7.77032020130E-08 8.06723529885E-08 8.37549583434E-08 8.69553532152E-08 9.02780383835E-08 9.37276865995E-08 9.73091491565E-08 1.01027462711E-07 1.04887856365E-07 1.08895759020E-07 1.13056807008E-07 1.17376852020E-07 1.21861969331E-07 1.26518466346E-07 1.31352891466E-07 1.36372043293E-07 1.41582980198E-07 1.46993030235E-07 1.52609801454E-07 1.58441192590E-07 1.64495404175E-07 1.70780950066E-07 1.77306669414E-07 1.84081739094E-07 1.91115686608E-07 1.98418403478E-07 2.06000159156E-07 2.13871615459E-07 2.22043841563E-07 2.30528329562E-07 2.39337010628E-07 2.48482271783E-07 2.57976973315E-07 2.67834466857E-07 2.78068614159E-07 2.88693806574E-07 2.99724985293E-07 3.11177662346E-07 3.23067942412E-07 3.35412545457E-07 3.48228830240E-07 3.61534818715E-07 3.75349221365E-07 3.89691463503E-07 4.04581712582E-07 4.20040906540E-07 4.36090783236E-07 4.52753911003E-07 4.70053720374E-07 4.88014537012E-07 5.06661615907E-07 5.26021176873E-07 5.46120441399E-07 5.66987670914E-07 5.88652206503E-07 6.11144510153E-07 6.34496207561E-07 6.58740132587E-07 6.83910373392E-07 7.10042320356E-07 7.37172715806E-07 7.65339705654E-07 7.94582893008E-07 8.24943393822E-07 8.56463894676E-07 8.89188712759E-07 9.23163858148E-07 9.58437098457E-07 9.95058025958E-07 1.03307812726E-06 1.07255085567E-06 1.11353170626E-06 1.15607829388E-06 1.20025043408E-06 1.24611022716E-06 1.29372214538E-06 1.34315312361E-06 1.39447265328E-06 1.44775288004E-06 1.50306870511E-06 1.56049789049E-06 1.62012116817E-06 1.68202235355E-06 1.74628846314E-06 1.81300983681E-06 1.88228026466E-06 1.95419711869E-06 2.02886148963E-06 2.10637832886E-06 2.18685659576E-06 2.27040941077E-06 2.35715421421E-06 2.44721293114E-06 2.54071214261E-06 2.63778326333E-06 2.73856272619E-06 2.84319217377E-06 2.95181865720E-06 3.06459484257E-06 3.18167922523E-06 3.30323635222E-06 3.42943705325E-06 3.56045868043E-06 3.69648535718E-06 3.83770823657E-06 3.98432576960E-06 4.13654398360E-06 4.29457677133E-06 4.45864619107E-06 4.62898277808E-06 4.80582586808E-06 4.98942393289E-06 5.18003492897E-06 5.37792665919E-06 5.58337714842E-06 5.79667503337E-06 6.01811996734E-06 6.24802304035E-06 6.48670721530E-06 6.73450778067E-06 6.99177282059E-06 7.25886370263E-06 7.53615558437E-06 7.82403793902E-06 8.12291510129E-06 8.43320683382E-06 8.75534891533E-06 9.08979375106E-06 9.43701100644E-06 9.79748826494E-06 1.01717317108E-05 1.05602668380E-05 1.09636391859E-05 1.13824151028E-05 1.18171825390E-05 1.22685518697E-05 1.27371567489E-05 1.32236549963E-05 1.37287295178E-05 1.42530892603E-05 1.47974702039E-05 1.53626363908E-05 1.59493809938E-05 1.65585274252E-05 1.71909304882E-05 1.78474775710E-05 1.85290898876E-05 1.92367237643E-05 1.99713719764E-05 2.07340651341E-05 2.15258731227E-05 2.23479065954E-05 2.32013185249E-05 2.40873058117E-05 2.50071109551E-05 2.59620237861E-05 2.69533832674E-05 2.79825793600E-05 2.90510549618E-05 3.01603079187E-05 3.13118931125E-05 3.25074246271E-05 3.37485779974E-05 3.50370925427E-05 3.63747737883E-05 3.77634959792E-05 3.92052046881E-05 4.07019195224E-05 4.22557369333E-05 4.38688331309E-05 4.55434671092E-05 4.72819837855E-05 4.90868172584E-05 5.09604941878E-05 5.29056373032E-05 5.49249690439E-05 5.70213153360E-05 5.91976095124E-05 6.14568963789E-05 6.38023364352E-05 6.62372102530E-05 6.87649230196E-05 7.13890092518E-05 7.41131376873E-05 7.69411163589E-05 7.98768978604E-05 8.29245848086E-05 8.60884355113E-05 8.93728698468E-05 9.27824753642E-05 9.63220136115E-05 9.99964267013E-05 1.03810844121E-04 1.07770589797E-04 1.11881189427E-04 1.16148378080E-04 1.20578108080E-04 1.25176557194E-04 1.29950137110E-04 1.34905502239E-04 1.40049558848E-04 1.45389474521E-04 1.50932687984E-04 1.56686919287E-04 1.62660180366E-04 1.68860785996E-04 1.75297365151E-04 1.81978872783E-04 1.88914602037E-04 1.96114196920E-04 2.03587665429E-04 2.11345393175E-04 2.19398157501E-04 2.27757142121E-04 2.36433952299E-04 2.45440630585E-04 2.54789673125E-04 2.64494046576E-04 2.74567205635E-04 2.85023111206E-04 2.95876249241E-04 3.07141650259E-04 3.18834909577E-04 3.30972208285E-04 3.43570334972E-04 3.56646708253E-04 3.70219400099E-04 3.84307160020E-04 3.98929440124E-04 4.14106421070E-04 4.29859038966E-04 4.46209013228E-04 4.63178875445E-04 4.80791999269E-04 4.99072631387E-04 5.18045923589E-04 5.37737965986E-04 5.58175821402E-04 5.79387560997E-04 6.01402301144E-04 6.24250241615E-04 6.47962705111E-04 6.72572178185E-04 6.98112353605E-04 7.24618174193E-04 7.52125878209E-04 7.80673046302E-04 8.10298650109E-04 8.41043102525E-04 8.72948309721E-04 9.06057724950E-04 9.40416404210E-04 9.76071063802E-04 1.01307013986E-03 1.05146384993E-03 1.09130425659E-03 1.13264533325E-03 1.17554303220E-03 1.22005535488E-03 1.26624242452E-03 1.31416656124E-03 1.36389235959E-03 1.41548676866E-03 1.46901917485E-03 1.52456148730E-03 1.58218822616E-03 1.64197661367E-03 1.70400666821E-03 1.76836130132E-03 1.83512641790E-03 1.90439101946E-03 1.97624731074E-03 2.05079080960E-03 2.12812046036E-03 2.20833875063E-03 2.29155183171E-03 2.37786964270E-03 2.46740603830E-03 2.56027892052E-03 2.65661037425E-03 2.75652680682E-03 2.86015909170E-03 2.96764271632E-03 3.07911793409E-03 3.19472992087E-03 3.31462893562E-03 3.43897048576E-03 3.56791549682E-03 3.70163048691E-03 3.84028774569E-03 3.98406551816E-03 4.13314819319E-03 4.28772649691E-03 4.44799769093E-03 4.61416577555E-03 4.78644169786E-03 4.96504356484E-03 5.15019686145E-03 5.34213467372E-03 5.54109791692E-03 5.74733556857E-03 5.96110490659E-03 6.18267175234E-03 6.41231071852E-03 6.65030546197E-03 6.89694894125E-03 7.15254367889E-03 7.41740202825E-03 7.69184644480E-03 7.97620976183E-03 8.27083547024E-03 8.57607800240E-03 8.89230301975E-03 9.21988770406E-03 9.55922105197E-03 9.91070417258E-03 1.02747505879E-02 1.06517865356E-02 1.10422512741E-02 1.14465973890E-02 1.18652911012E-02 1.22988125759E-02 1.27476562314E-02 1.32123310484E-02 1.36933608787E-02 1.41912847519E-02 1.47066571812E-02 1.52400484661E-02 1.57920449924E-02 1.63632495277E-02 1.69542815127E-02 1.75657773475E-02 1.81983906708E-02 1.88527926328E-02 1.95296721597E-02 2.02297362098E-02 2.09537100200E-02 2.17023373407E-02 2.24763806606E-02 2.32766214177E-02 2.41038601974E-02 2.49589169162E-02 2.58426309900E-02 2.67558614856E-02 2.76994872558E-02 2.86744070562E-02 2.96815396427E-02 3.07218238499E-02 3.17962186496E-02 3.29057031878E-02 3.40512768009E-02 3.52339590108E-02 3.64547894971E-02 3.77148280494E-02 3.90151544965E-02 4.03568686158E-02 4.17410900216E-02 4.31689580351E-02 4.46416315346E-02 4.61602887912E-02 4.77261272888E-02 4.93403635320E-02 5.10042328451E-02 5.27189891653E-02 5.44859048324E-02 5.63062703822E-02 5.81813943455E-02 6.01126030599E-02 6.21012405007E-02 6.41486681358E-02 6.62562648144E-02 6.84254266964E-02 7.06575672307E-02 7.29541171937E-02 7.53165247967E-02 7.77462558744E-02 8.02447941656E-02 8.28136416978E-02 8.54543192909E-02 8.81683671906E-02 9.09573458483E-02 9.38228368599E-02 9.67664440790E-02 9.97897949201E-02 1.02894541865E-01 1.06082364188E-01 1.09354969914E-01 1.12714098024E-01 1.16161520915E-01 1.19699047137E-01 1.23328524400E-01 1.27051842880E-01 1.30870938801E-01 1.34787798327E-01 1.38804461734E-01 1.42923027878E-01 1.47145658933E-01 1.51474585395E-01 1.55912111326E-01 1.60460619818E-01 1.65122578623E-01 1.69900545939E-01 1.74797176272E-01 1.79815226333E-01 1.84957560903E-01 1.90227158574E-01 1.95627117300E-01 2.01160659649E-01 2.06831137653E-01 2.12642037154E-01 2.18596981507E-01 2.24699734528E-01 2.30954202559E-01 2.37364435502E-01 2.43934626721E-01 2.50669111657E-01 2.57572365088E-01 2.64648996908E-01 2.71903746389E-01 2.79341474898E-01 2.86967157077E-01 2.94785870593E-01 3.02802784590E-01 3.11023147109E-01 3.19452271794E-01 3.28095524359E-01 3.36958309391E-01 3.46046058217E-01 3.55364218672E-01 3.64918247776E-01 3.74713608408E-01 3.84755771145E-01 3.95050222448E-01 4.05602480276E-01 4.16418117962E-01 4.27502796724E-01 4.38862306431E-01 4.50502613070E-01 4.62429909633E-01 4.74650664696E-01 4.87171659546E-01 5.00000000000E-01 5.13143084187E-01 5.26608539943E-01 5.40404203816E-01 5.54538125962E-01 5.69018576296E-01 5.83854050769E-01 5.99053277746E-01 6.14625224509E-01 6.30579103868E-01 6.46924380887E-01 6.63670779720E-01 6.80828290566E-01 6.98407176722E-01 7.16417981764E-01 7.34871536819E-01 7.53778967965E-01 7.73151703725E-01 7.93001482677E-01 8.13340361168E-01 8.34180721137E-01 8.55535278046E-01 8.77417088910E-01 8.99839560442E-01 9.22816457298E-01 9.46361910430E-01 9.70490425538E-01 9.95216891640E-01 1.02055658973E+00 1.04652520155E+00 1.07313881847E+00 1.10041395044E+00 1.12836753510E+00 1.15701694691E+00 1.18638000646E+00 1.21647498978E+00 1.24732063782E+00 1.27893616593E+00 1.31134127347E+00 1.34455615344E+00 1.37860150217E+00 1.41349852897E+00 1.44926896591E+00 1.48593507742E+00 1.52351966993E+00 1.56204610141E+00 1.60153829068E+00 1.64202072666E+00 1.68351847723E+00 1.72605719784E+00 1.76966313973E+00 1.81436315757E+00 1.86018471660E+00 1.90715589898E+00 1.95530540932E+00 2.00466257926E+00 2.05525737090E+00 2.10712037887E+00 2.16028283102E+00 2.21477658738E+00 2.27063413719E+00 2.32788859395E+00 2.38657368801E+00 2.44672375672E+00 2.50837373169E+00 2.57155912301E+00 2.63631600022E+00 2.70268096963E+00 2.77069114794E+00 2.84038413173E+00 2.91179796270E+00 2.98497108846E+00 3.05994231846E+00 3.13675077520E+00 3.21543584024E+00 3.29603709503E+00 3.37859425642E+00 3.46314710668E+00 3.54973541815E+00 3.63839887218E+00 3.72917697277E+00 3.82210895464E+00 3.91723368587E+00 4.01458956543E+00 4.11421441552E+00 4.21614536902E+00 4.32041875238E+00 4.42706996407E+00 4.53613334909E+00 4.64764206972E+00 4.76162797314E+00 4.87812145609E+00 4.99715132728E+00 5.11874466785E+00 5.24292669055E+00 5.36972059803E+00 5.49914744087E+00 5.63122597587E+00 5.76597252507E+00 5.90340083612E+00 6.04352194433E+00 6.18634403705E+00 6.33187232048E+00 6.48010888959E+00 6.63105260103E+00 6.78469894947E+00 6.94103994727E+00 7.10006400749E+00 7.26175582998E+00 7.42609629033E+00 7.59306233124E+00 7.76262685556E+00 7.93475862050E+00 8.10942213197E+00 8.28657753818E+00 8.46618052119E+00 8.64818218548E+00 8.83252894182E+00 9.01916238537E+00 9.20801916625E+00 9.39903085123E+00 9.59212377486E+00 9.78721887855E+00 9.98423153598E+00 1.01830713634E+01 1.03836420135E+01 1.05858409509E+01 1.07895592092E+01 1.09946811266E+01 1.12010840616E+01 1.14086380853E+01 1.16172056511E+01 1.18266412418E+01 1.20367909916E+01 1.22474922854E+01 1.24585733336E+01 1.26698527237E+01 1.28811389483E+01 1.30922299110E+01 1.33029124109E+01 1.35129616064E+01 1.37221404599E+01 1.39301991653E+01 1.41368745602E+01 1.43418895239E+01 1.45449523654E+01 1.47457562023E+01 1.49439783352E+01 1.51392796200E+01 1.53313038418E+01 1.55196770951E+01 1.57040071745E+01 1.58838829806E+01 1.60588739463E+01 1.62285294906E+01 1.63923785038E+01 1.65499288734E+01 1.67006670569E+01 1.68440577088E+01 1.69795433718E+01 1.71065442407E+01 1.72244580081E+01 1.73326598035E+01 1.74305022370E+01 1.75173155581E+01 1.75924079434E+01 1.76550659268E+01 1.77045549849E+01 1.77401202934E+01 1.77609876698E+01 1.77663647178E+01 1.77554421914E+01 1.77273955949E+01 1.76813870371E+01 1.76165673584E+01 1.75320785490E+01 1.74270564772E+01 1.73006339474E+01 1.71519441068E+01 1.69801242189E+01 1.67843198237E+01 1.65636893015E+01 1.63174088578E+01 1.60446779454E+01 1.57447251382E+01 1.54168144687E+01 1.50602522407E+01 1.46743943245E+01 1.42586539393E+01 1.38125099247E+01 1.33355154973E+01 1.28273074847E+01 1.22876160253E+01 1.17162747125E+01 1.11132311593E+01 1.04785579484E+01 9.81246392728E+00 9.11530579651E+00 8.38759993094E+00 7.63003436239E+00 6.84348084051E+00 6.02900687661E+00 5.18788766234E+00 4.32161773679E+00 3.43193361440E+00 2.52091257081E+00 1.59074663886E+00 6.43876253361E-01 -3.16986477745E-01 -1.28885100244E+00 -2.26844310753E+00 -3.25220150515E+00 -4.23627648765E+00 -5.21653092944E+00 -6.18854392637E+00 -7.14761737432E+00 -8.08878579495E+00 -9.00682972249E+00 -9.89629296561E+00 -1.07515040551E+01 -1.15663010932E+01 -1.23316127046E+01 -1.30407491204E+01 -1.36872541711E+01 -1.42646774894E+01 -1.47666322935E+01 -1.51868589103E+01 -1.55192939867E+01 -1.57581452480E+01 -1.58979715596E+01 -1.59337679315E+01 -1.58610549798E+01 -1.56759722056E+01 -1.53753743215E+01 -1.49569296670E+01 -1.44192195882E+01 -1.37618374697E+01 -1.29854859152E+01 -1.20920703766E+01 -1.10847873350E+01 -9.96820494331E+00 -8.74833385665E+00 -7.43268580638E+00 -6.03031732313E+00 -4.55185589492E+00 -3.00950576035E+00 -1.41703049830E+00 2.10290408913E-01 1.85573378155E+00 3.50123630333E+00 5.12753178082E+00 6.71432410544E+00 8.24049747655E+00 9.68436488291E+00 1.10239551553E+01 1.22373380908E+01 1.33029862064E+01 1.42001706034E+01 1.49093872296E+01 1.54128085064E+01 1.56947538794E+01 1.57421713581E+01 1.55451205716E+01 1.50972463250E+01 1.43962301287E+01 1.34442057596E+01 1.22481236558E+01 1.08200479198E+01 9.17736899017E+00 7.34291472769E+00 5.34494283312E+00 3.21699827631E+00 9.97620846917E-01 -1.27010986732E+00 -3.53920174038E+00 -5.75955535057E+00 -7.87894810586E+00 -9.84419238044E+00 -1.16024561316E+01 -1.31027270031E+01 -1.42973927925E+01 -1.51439025716E+01 -1.56064639595E+01 -1.56577234087E+01 -1.52803682699E+01 -1.44685823434E+01 -1.32292811260E+01 -1.15830496156E+01 -9.56470494638E+00 -7.22340890026E+00 -4.62226205702E+00 -1.83732249603E+00 1.04399207330E+00 3.92513890546E+00 6.70331575185E+00 9.27292097273E+00 1.15295373370E+01 1.33743312044E+01 1.47187199892E+01 1.54891225691E+01 1.56315719937E+01 1.51159402072E+01 1.39395035617E+01 1.21295688274E+01 9.74488535785E+00 6.87559288469E+00 3.64149841314E+00 1.88541274300E-01 -3.31660723429E+00 -6.69375538676E+00 -9.75803451276E+00 -1.23300583209E+01 -1.42469407511E+01 -1.53735792245E+01 -1.56134913672E+01 -1.49184045717E+01 -1.32957528585E+01 -1.08132476800E+01 -7.59977012738E+00 -3.84198967979E+00 2.23647576972E-01 4.32360383977E+00 8.16427046310E+00 1.14525634344E+01 1.39188933522E+01 1.53408956526E+01 1.55659633354E+01 1.45304017466E+01 1.22729727038E+01 8.94075678363E+00 4.78566829153E+00 1.50617505050E-01 -4.55478749260E+00 -8.88802065087E+00 -1.24147295456E+01 -1.47537906490E+01 -1.56219606085E+01 -1.48730564548E+01 -1.25263785153E+01 -8.77948689514E+00 -4.00154156816E+00 1.29477309073E+00 6.50228555781E+00 1.09860297497E+01 1.41613297752E+01 1.55743638292E+01 1.49744181267E+01 1.23664015758E+01 8.03316641110E+00 2.51997701642E+00 -3.42195863998E+00 -8.92999848017E+00 -1.31530343290E+01 -1.53869577176E+01 -1.52018026741E+01 -1.25376350617E+01 -7.74791487012E+00 -1.57501553372E+00 4.94735003673E+00 1.06569575038E+01 1.44691934345E+01 1.55920800546E+01 1.37081076122E+01 9.08056019126E+00 2.55102723402E+00 -4.58694779911E+00 -1.08277970553E+01 -1.47692066867E+01 -1.54402074857E+01 espresso-5.0.2/PW/examples/EXX_example/Pseudo/OPBE085nlcc.RRKJ30000644000700200004540000066767612053145630022574 0ustar marsamoscmO 2 F T 1 4 3 4 0.60000000000E+01-.31667579632E+02 2 -.70000000000E+010.10000000000E+030.80000000000E+010.12500000000E-01 1095 5 4 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 4.00 2P 2 1 0.00 3D 3 2 -2.00 725 9.92768830589E-02 1.00525632895E-01 1.01790090085E-01 1.03070452204E-01 1.04394638428E-01 1.05667465860E-01 1.06990748009E-01 1.08368824761E-01 1.09716597953E-01 1.11080576050E-01 1.12496880401E-01 1.13922793419E-01 1.15330371157E-01 1.16797617977E-01 1.18248380602E-01 1.19747100757E-01 1.21282261700E-01 1.22753484604E-01 1.24343556397E-01 1.25884425764E-01 1.27485060059E-01 1.29084557875E-01 1.30681239751E-01 1.32376279444E-01 1.33989844666E-01 1.35692496906E-01 1.37403872959E-01 1.39119222586E-01 1.40881809688E-01 1.42654443036E-01 1.44433132108E-01 1.46262136581E-01 1.48123758576E-01 1.49945547588E-01 1.51850916006E-01 1.53766728721E-01 1.55696667479E-01 1.57653675769E-01 1.59644352513E-01 1.61656517841E-01 1.63672775185E-01 1.65746813013E-01 1.67832208027E-01 1.69923019831E-01 1.72087888520E-01 1.74212605863E-01 1.76441768206E-01 1.78638854724E-01 1.80904776073E-01 1.83161066078E-01 1.85473645800E-01 1.87798508564E-01 1.90156086992E-01 1.92577125157E-01 1.94959618495E-01 1.97448500836E-01 1.99904312667E-01 2.02439549665E-01 2.04965811259E-01 2.07581718860E-01 2.10153285667E-01 2.12807395865E-01 2.15502146732E-01 2.18207601270E-01 2.20926937038E-01 2.23737049015E-01 2.26525079671E-01 2.29407390221E-01 2.32247034745E-01 2.35209220870E-01 2.38155772851E-01 2.41154182199E-01 2.44173881851E-01 2.47251525916E-01 2.50372338548E-01 2.53509610126E-01 2.56703673845E-01 2.59929876148E-01 2.63198641185E-01 2.66510873627E-01 2.69871609182E-01 2.73243719421E-01 2.76708514397E-01 2.80172484395E-01 2.83697923741E-01 2.87269489198E-01 2.90877761267E-01 2.94538497072E-01 2.98239497172E-01 3.02003910858E-01 3.05781351536E-01 3.09649750398E-01 3.13525850838E-01 3.17479727252E-01 3.21471963578E-01 3.25514341652E-01 3.29607251377E-01 3.33761229160E-01 3.37947542239E-01 3.42209951152E-01 3.46512908654E-01 3.50867283693E-01 3.55287218937E-01 3.59749407007E-01 3.64270291135E-01 3.68870215029E-01 3.73491743125E-01 3.78196809069E-01 3.82952321640E-01 3.87770517206E-01 3.92644709345E-01 3.97584489583E-01 4.02584321309E-01 4.07654049252E-01 4.12783576969E-01 4.17965585426E-01 4.23233550157E-01 4.28550781830E-01 4.33940717193E-01 4.39404131465E-01 4.44930638169E-01 4.50524069102E-01 4.56185573743E-01 4.61933750671E-01 4.67740828016E-01 4.73621209313E-01 4.79579459069E-01 4.85610559298E-01 4.91725809095E-01 4.97902788904E-01 5.04172895586E-01 5.10502396520E-01 5.16937460081E-01 5.23430780695E-01 5.30021119953E-01 5.36679068937E-01 5.43436372124E-01 5.50262673374E-01 5.57199792219E-01 5.64198815523E-01 5.71300845155E-01 5.78481522377E-01 5.85762508475E-01 5.93123968980E-01 6.00587838610E-01 6.08144835489E-01 6.15789621710E-01 6.23544502711E-01 6.31374356864E-01 6.39325129224E-01 6.47363487475E-01 6.55511826052E-01 6.63746246108E-01 6.72104304897E-01 6.80553668033E-01 6.89113359549E-01 6.97786338297E-01 7.06560108883E-01 7.15445354580E-01 7.24452750924E-01 7.33553754501E-01 7.42789149764E-01 7.52133063419E-01 7.61581345695E-01 7.71172810132E-01 7.80867587713E-01 7.90693889029E-01 8.00630994081E-01 8.10710314043E-01 8.20902420300E-01 8.31229178153E-01 8.41685665769E-01 8.52270293487E-01 8.62996516986E-01 8.73845682337E-01 8.84838472325E-01 8.95970013402E-01 9.07237541729E-01 9.18651876182E-01 9.30206712671E-01 9.41906359114E-01 9.53753567353E-01 9.65750629514E-01 9.77895201125E-01 9.90195060352E-01 1.00265650985E+00 1.01526132779E+00 1.02803511795E+00 1.04096235277E+00 1.05405968755E+00 1.06731610724E+00 1.08074113930E+00 1.09433558855E+00 1.10809996658E+00 1.12203925032E+00 1.13614924655E+00 1.15044065860E+00 1.16491410257E+00 1.17955934208E+00 1.19440436045E+00 1.20942568255E+00 1.22463652278E+00 1.24003995595E+00 1.25564009335E+00 1.27142772866E+00 1.28742530549E+00 1.30361683016E+00 1.32001553717E+00 1.33661602927E+00 1.35342784921E+00 1.37045341930E+00 1.38769141419E+00 1.40514653684E+00 1.42281702081E+00 1.44071530220E+00 1.45883548863E+00 1.47718613201E+00 1.49576613757E+00 1.51457891573E+00 1.53362940365E+00 1.55292057341E+00 1.57245061799E+00 1.59223045940E+00 1.61225678838E+00 1.63253549311E+00 1.65306823330E+00 1.67386374249E+00 1.69491283734E+00 1.71623328491E+00 1.73782050414E+00 1.75967759983E+00 1.78180955187E+00 1.80422314355E+00 1.82691353879E+00 1.84989388155E+00 1.87315929296E+00 1.89672066315E+00 1.92057540382E+00 1.94473427394E+00 1.96919172546E+00 1.99396120802E+00 2.01903998330E+00 2.04443373070E+00 2.07014869206E+00 2.09618453700E+00 2.12255035751E+00 2.14924713321E+00 2.17627829139E+00 2.20364914894E+00 2.23136853058E+00 2.25943111285E+00 2.28784885644E+00 2.31662475497E+00 2.34575784843E+00 2.37526656164E+00 2.40513721258E+00 2.43538841220E+00 2.46601826084E+00 2.49703434728E+00 2.52843870510E+00 2.56023942156E+00 2.59243862852E+00 2.62504463663E+00 2.65806031923E+00 2.69148716635E+00 2.72534140753E+00 2.75961572130E+00 2.79432271838E+00 2.82946598939E+00 2.86505103763E+00 2.90108513632E+00 2.93756911629E+00 2.97451587401E+00 3.01192408047E+00 3.04980212008E+00 3.08815872515E+00 3.12699628093E+00 3.16632135571E+00 3.20614261629E+00 3.24646346106E+00 3.28729170330E+00 3.32863178134E+00 3.37049441454E+00 3.41287989708E+00 3.45580093286E+00 3.49926033331E+00 3.54326484231E+00 3.58782589389E+00 3.63294276684E+00 3.67862994811E+00 3.72489153376E+00 3.77173149900E+00 3.81916316405E+00 3.86718991664E+00 3.91582012056E+00 3.96506132054E+00 4.01492288305E+00 4.06540950015E+00 4.11653123831E+00 4.16829629492E+00 4.22070891682E+00 4.27378414475E+00 4.32752404615E+00 4.38193863624E+00 4.43703907283E+00 4.49283000254E+00 4.54932361331E+00 4.60652565607E+00 4.66444734147E+00 4.72309564579E+00 4.78248235285E+00 4.84261426923E+00 4.90350128337E+00 4.96515371734E+00 5.02758058015E+00 5.09079159102E+00 5.15479647139E+00 5.21960579057E+00 5.28522893584E+00 5.35167562675E+00 5.41895792754E+00 5.48708416532E+00 5.55606749041E+00 5.62591554389E+00 5.69664196272E+00 5.76825552113E+00 5.84076829990E+00 5.91419274501E+00 5.98853811407E+00 6.06381692410E+00 6.14004099504E+00 6.21722200720E+00 6.29537134564E+00 6.37450263428E+00 6.45462576790E+00 6.53575658721E+00 6.61790377103E+00 6.70108242169E+00 6.78530508387E+00 6.87058442634E+00 6.95693419185E+00 7.04436664902E+00 7.13289625228E+00 7.22253670118E+00 7.31330208141E+00 7.40520450416E+00 7.49826095875E+00 7.59248387382E+00 7.68788887582E+00 7.78448932931E+00 7.88230222650E+00 7.98134030517E+00 8.08162079919E+00 8.18315757467E+00 8.28596786336E+00 8.39006627154E+00 8.49546945443E+00 8.60219291962E+00 8.71025429725E+00 8.81966919475E+00 8.93045500737E+00 9.04262828178E+00 9.15620605301E+00 9.27120701684E+00 9.38764800305E+00 9.50554575647E+00 9.62492124181E+00 9.74578915663E+00 9.86817138143E+00 9.99208393888E+00 1.01175477676E+01 1.02445812661E+01 1.03732034012E+01 1.05034345291E+01 1.06352943294E+01 1.07688030698E+01 1.09039803909E+01 1.10408480967E+01 1.11794258601E+01 1.13197355179E+01 1.14617985636E+01 1.16056356093E+01 1.17512695439E+01 1.18987218925E+01 1.20480152442E+01 1.21991723715E+01 1.23522154578E+01 1.25071691031E+01 1.26640547435E+01 1.28228979944E+01 1.29837217305E+01 1.31465504158E+01 1.33114087851E+01 1.34783214686E+01 1.36473136764E+01 1.38184107416E+01 1.39916384242E+01 1.41670223553E+01 1.43445895502E+01 1.45243657118E+01 1.47063784510E+01 1.48906543923E+01 1.50772214660E+01 1.52661066343E+01 1.54573392583E+01 1.56509466015E+01 1.58469584657E+01 1.60454023723E+01 1.62463093729E+01 1.64497075234E+01 1.66556286752E+01 1.68641015233E+01 1.70751573600E+01 1.72888275772E+01 1.75051426102E+01 1.77241350324E+01 1.79458360929E+01 1.81702785604E+01 1.83974948542E+01 1.86275185232E+01 1.88603820073E+01 1.90961198585E+01 1.93347658077E+01 1.95763541364E+01 1.98209198492E+01 2.00684978210E+01 2.03191235948E+01 2.05728331663E+01 2.08296624226E+01 2.10896479199E+01 2.13528265239E+01 2.16192357101E+01 2.18889127920E+01 2.21618957713E+01 2.24382229976E+01 2.27179331938E+01 2.30010652300E+01 2.32876585810E+01 2.35777529973E+01 2.38713880471E+01 2.41686050998E+01 2.44694442980E+01 2.47739468198E+01 2.50821544021E+01 2.53941084912E+01 2.57098517284E+01 2.60294263902E+01 2.63528751362E+01 2.66802417454E+01 2.70115690899E+01 2.73469016103E+01 2.76862829620E+01 2.80297578406E+01 2.83773714940E+01 2.87291682489E+01 2.90851943922E+01 2.94454948765E+01 2.98101163612E+01 3.01791049702E+01 3.05525069345E+01 3.09303697367E+01 3.13127400569E+01 3.16996655327E+01 3.20911933802E+01 3.24873721579E+01 3.28882492107E+01 3.32938733072E+01 3.37042927893E+01 3.41195561583E+01 3.45397124898E+01 3.49648109058E+01 3.53949002065E+01 3.58300298169E+01 3.62702493053E+01 3.67156078144E+01 3.71661551622E+01 3.76219408530E+01 3.80830144191E+01 3.85494258047E+01 3.90212241813E+01 3.94984598668E+01 3.99811816001E+01 4.04694394089E+01 4.09632822671E+01 4.14627599108E+01 4.19679207630E+01 4.24788138833E+01 4.29954880790E+01 4.35179914399E+01 4.40463720131E+01 4.45806774247E+01 4.51209551762E+01 4.56672517961E+01 4.62196139944E+01 4.67780874355E+01 4.73427174474E+01 4.79135489575E+01 4.84906255568E+01 4.90739912121E+01 4.96636879528E+01 5.02597576509E+01 5.08622412696E+01 5.14711785569E+01 5.20866085367E+01 5.27085688292E+01 5.33370961926E+01 5.39722259230E+01 5.46139922428E+01 5.52624278102E+01 5.59175637727E+01 5.65794300374E+01 5.72480542479E+01 5.79234630682E+01 5.86056807471E+01 5.92947298114E+01 5.99906308007E+01 6.06934018685E+01 6.14030591601E+01 6.21196162007E+01 6.28430842662E+01 6.35734716396E+01 6.43107842340E+01 6.50550246686E+01 6.58061927646E+01 6.65642850955E+01 6.73292947248E+01 6.81012114650E+01 6.88800211497E+01 6.96657060550E+01 7.04582440469E+01 7.12576093828E+01 7.20637711342E+01 7.28766944236E+01 7.36963391996E+01 7.45226605334E+01 7.53556081342E+01 7.61951264466E+01 7.70411539049E+01 7.78936232652E+01 7.87524609846E+01 7.96175869576E+01 8.04889143295E+01 8.13663495646E+01 8.22497911622E+01 8.31391308416E+01 8.40342515096E+01 8.49350287028E+01 8.58413284819E+01 8.67530088610E+01 8.76699179517E+01 8.85918945298E+01 8.95187671906E+01 9.04503543002E+01 9.13864631833E+01 9.23268902725E+01 9.32714199488E+01 9.42198248415E+01 9.51718648579E+01 9.61272868531E+01 9.70858244228E+01 9.80471967435E+01 9.90111089311E+01 9.99772507425E+01 1.00945296563E+02 1.01914904404E+02 1.02885715823E+02 1.03857354835E+02 1.04829427778E+02 1.05801522164E+02 1.06773206636E+02 1.07744029769E+02 1.08713519830E+02 1.09681183664E+02 1.10646506521E+02 1.11608950693E+02 1.12567955396E+02 1.13522935636E+02 1.14473281470E+02 1.15418357393E+02 1.16357501433E+02 1.17290024215E+02 1.18215208419E+02 1.19132307779E+02 1.20040545970E+02 1.20939116427E+02 1.21827180573E+02 1.22703867826E+02 1.23568274074E+02 1.24419460983E+02 1.25256455383E+02 1.26078247728E+02 1.26883791828E+02 1.27672003804E+02 1.28441760914E+02 1.29191900953E+02 1.29921221514E+02 1.30628478661E+02 1.31312386864E+02 1.31971617609E+02 1.32604798835E+02 1.33210514477E+02 1.33787303467E+02 1.34333659567E+02 1.34848030420E+02 1.35328817559E+02 1.35774375787E+02 1.36183013083E+02 1.36552990403E+02 1.36882521780E+02 1.37169774507E+02 1.37412869351E+02 1.37609881093E+02 1.37758839431E+02 1.37857729524E+02 1.37904493510E+02 1.37897031762E+02 1.37833204626E+02 1.37710834518E+02 1.37527708317E+02 1.37281579964E+02 1.36970173913E+02 1.36591188469E+02 1.36142300127E+02 1.35621168056E+02 1.35025439380E+02 1.34352754776E+02 1.33600755016E+02 1.32767088191E+02 1.31849417178E+02 1.30845428685E+02 1.29752842231E+02 1.28569420767E+02 1.27292981581E+02 1.25921408789E+02 1.24452665868E+02 1.22884810357E+02 1.21216008711E+02 1.19444552640E+02 1.17568876508E+02 1.15587575636E+02 1.13499426135E+02 1.11303405344E+02 1.08998713896E+02 1.06584798078E+02 1.04061374234E+02 1.01428452921E+02 9.86863648847E+01 9.58357871726E+01 9.28777698043E+01 8.98137633494E+01 8.66456458042E+01 8.33757503811E+01 8.00068919874E+01 7.65423936266E+01 7.29861116821E+01 6.93424592210E+01 6.56164280256E+01 6.18136074687E+01 5.79402009208E+01 5.40030379342E+01 5.00095825065E+01 4.59679360176E+01 4.18868342727E+01 3.77756380662E+01 3.36443161394E+01 2.95034196640E+01 2.53640478344E+01 2.12378027701E+01 1.71367341388E+01 1.30732715355E+01 9.06014482536E+00 5.11029100774E+00 1.23674814294E+00 -2.54746497028E+00 -6.22948234633E+00 -9.79673819490E+00 -1.32371266354E+01 -1.65391730643E+01 -1.96922156233E+01 -2.26865935323E+01 -2.55138406285E+01 -2.81668787223E+01 -3.06402068261E+01 -3.29300800086E+01 -3.50346705215E+01 -3.69542025797E+01 -3.86910513448E+01 -4.02497937697E+01 -4.16371986471E+01 -4.28621412367E+01 -4.39354254258E+01 -4.48694963952E+01 -4.56780244401E+01 -4.63753401011E+01 -4.69757013471E+01 -4.74923733135E+01 -4.79365042914E+01 -4.83157846935E+01 -4.86328829944E+01 -4.88836609481E+01 -4.90551846920E+01 -4.91235660950E+01 -4.90516942108E+01 -4.87869491209E+01 -4.82590339523E+01 -4.73781160692E+01 -4.60335395831E+01 -4.40934600663E+01 -4.14058683671E+01 -3.78015797962E+01 -3.31002273260E+01 -2.71177123836E+01 -1.97010117919E+01 -1.05524743765E+01 -1.17174525202E+00 1.16171546050E-01 -1.15177191578E-02 1.14191624712E-03 -1.13215300399E-04 1.12239660084E-05 -1.11153848741E-06 1.10022631960E-07 -1.10978069621E-08 1.80400825974E-09 -5.32059343951E-10 1.32980917982E+00 725 1.71573654397E-01 1.73731785917E-01 1.75917063415E-01 1.78129828344E-01 1.80415879287E-01 1.82619159338E-01 1.84906575860E-01 1.87285459524E-01 1.89616014360E-01 1.91974730914E-01 1.94420756329E-01 1.96884109769E-01 1.99318960123E-01 2.01853275439E-01 2.04362095310E-01 2.06951329973E-01 2.09601856525E-01 2.12149238929E-01 2.14893211332E-01 2.17558277248E-01 2.20322974735E-01 2.23087669383E-01 2.25849430775E-01 2.28774420043E-01 2.31567504250E-01 2.34508601271E-01 2.37465835509E-01 2.40431496559E-01 2.43476589100E-01 2.46540045794E-01 2.49615403605E-01 2.52775302040E-01 2.55990704661E-01 2.59142794504E-01 2.62434022414E-01 2.65744536585E-01 2.69080249922E-01 2.72462532353E-01 2.75902255654E-01 2.79379370266E-01 2.82865422779E-01 2.86448508439E-01 2.90052491403E-01 2.93667712411E-01 2.97406661106E-01 3.01082167241E-01 3.04931407394E-01 3.08730384838E-01 3.12644822007E-01 3.16545864683E-01 3.20541795787E-01 3.24560409866E-01 3.28635272278E-01 3.32816856856E-01 3.36937825360E-01 3.41236014812E-01 3.45482654515E-01 3.49862331556E-01 3.54230067862E-01 3.58747662935E-01 3.63195373074E-01 3.67781368148E-01 3.72436963690E-01 3.77113070874E-01 3.81814924353E-01 3.86668746960E-01 3.91489411693E-01 3.96467811725E-01 4.01379407755E-01 4.06495207741E-01 4.11588551311E-01 4.16770275363E-01 4.21990175891E-01 4.27308566885E-01 4.32701093409E-01 4.38124076785E-01 4.43643713641E-01 4.49219552636E-01 4.54868852414E-01 4.60592988521E-01 4.66400390926E-01 4.72230151522E-01 4.78215684454E-01 4.84203700875E-01 4.90296349682E-01 4.96468599706E-01 5.02704967003E-01 5.09031401285E-01 5.15427944460E-01 5.21932594503E-01 5.28462749651E-01 5.35146308337E-01 5.41846763277E-01 5.48679102043E-01 5.55578713244E-01 5.62565005652E-01 5.69638653923E-01 5.76816970360E-01 5.84052963293E-01 5.91418371557E-01 5.98855036665E-01 6.06380763313E-01 6.14018876788E-01 6.21731174327E-01 6.29544684215E-01 6.37492855594E-01 6.45481523591E-01 6.53612358313E-01 6.61831141730E-01 6.70157993996E-01 6.78582029842E-01 6.87119049470E-01 6.95760012650E-01 7.04521201701E-01 7.13386045852E-01 7.22342642294E-01 7.31446006010E-01 7.40635974252E-01 7.49951084726E-01 7.59392701119E-01 7.68943834746E-01 7.78610849540E-01 7.88395731659E-01 7.98329043359E-01 8.08365321995E-01 8.18528242817E-01 8.28825435515E-01 8.39248685435E-01 8.49816652638E-01 8.60492628430E-01 8.71328204740E-01 8.82268122709E-01 8.93388216207E-01 9.04610964578E-01 9.16000055212E-01 9.27507327138E-01 9.39184928388E-01 9.50983193816E-01 9.62970769224E-01 9.75067574136E-01 9.87341073099E-01 9.99751420996E-01 1.01233427211E+00 1.02505715347E+00 1.03795617762E+00 1.05101621180E+00 1.06422860007E+00 1.07763002691E+00 1.09116301796E+00 1.10490301667E+00 1.11879545763E+00 1.13287721049E+00 1.14710915752E+00 1.16155302520E+00 1.17615591060E+00 1.19094910546E+00 1.20593759573E+00 1.22110100125E+00 1.23645696411E+00 1.25202313328E+00 1.26775278024E+00 1.28371296944E+00 1.29986135170E+00 1.31619126465E+00 1.33276651632E+00 1.34952180990E+00 1.36650358824E+00 1.38367795973E+00 1.40109662814E+00 1.41871142163E+00 1.43655837778E+00 1.45462953357E+00 1.47292245505E+00 1.49145934036E+00 1.51020974344E+00 1.52920774397E+00 1.54844548920E+00 1.56791860684E+00 1.58764499526E+00 1.60761447005E+00 1.62783425975E+00 1.64830903137E+00 1.66904271110E+00 1.69003162584E+00 1.71128868896E+00 1.73282441277E+00 1.75460907899E+00 1.77668486222E+00 1.79902646007E+00 1.82166138039E+00 1.84457172329E+00 1.86777331042E+00 1.89126763517E+00 1.91505572893E+00 1.93914595094E+00 1.96353160171E+00 1.98823044179E+00 2.01324366903E+00 2.03855470202E+00 2.06420963606E+00 2.09017017053E+00 2.11645818647E+00 2.14307893599E+00 2.17003937964E+00 2.19732462460E+00 2.22497170166E+00 2.25295460079E+00 2.28129525028E+00 2.30998502265E+00 2.33903979952E+00 2.36846378160E+00 2.39825503374E+00 2.42842150550E+00 2.45896053501E+00 2.48989277071E+00 2.52120878853E+00 2.55292286460E+00 2.58503345731E+00 2.61754641806E+00 2.65047009669E+00 2.68380963836E+00 2.71756233789E+00 2.75174637939E+00 2.78635661117E+00 2.82140296011E+00 2.85688843114E+00 2.89282763327E+00 2.92920578262E+00 2.96605231490E+00 3.00336001173E+00 3.04113426128E+00 3.07938352257E+00 3.11811924324E+00 3.15733377962E+00 3.19704902276E+00 3.23725726525E+00 3.27797670955E+00 3.31920341627E+00 3.36095537024E+00 3.40322380662E+00 3.44603110844E+00 3.48937313605E+00 3.53325954749E+00 3.57770092673E+00 3.62269708590E+00 3.66826329977E+00 3.71440153194E+00 3.76111777274E+00 3.80842111665E+00 3.85632641096E+00 3.90482530591E+00 3.95393780475E+00 4.00366921200E+00 4.05401833929E+00 4.10501581996E+00 4.15663960654E+00 4.20892064194E+00 4.26185622304E+00 4.31545922085E+00 4.36973339260E+00 4.42469243870E+00 4.48034028833E+00 4.53669102017E+00 4.59374979075E+00 4.65151949720E+00 4.71002722479E+00 4.76926142246E+00 4.82924324497E+00 4.88997906576E+00 4.95147838611E+00 5.01375363026E+00 5.07680665032E+00 5.14065910444E+00 5.20530931971E+00 5.27077155571E+00 5.33706066539E+00 5.40418108015E+00 5.47214410828E+00 5.54096450690E+00 5.61064839371E+00 5.68120914014E+00 5.75265458533E+00 5.82500287665E+00 5.89825507462E+00 5.97243259676E+00 6.04754064075E+00 6.12359086803E+00 6.20060263536E+00 6.27857536844E+00 6.35753345152E+00 6.43748422881E+00 6.51843485313E+00 6.60040781595E+00 6.68340932639E+00 6.76745375649E+00 6.85255415491E+00 6.93872655262E+00 7.02597933459E+00 7.11432970087E+00 7.20379180066E+00 7.29437330415E+00 7.38609960570E+00 7.47897481996E+00 7.57301611160E+00 7.66824252565E+00 7.76466244158E+00 7.86229661164E+00 7.96115524294E+00 8.06125750911E+00 8.16261564183E+00 8.26524977652E+00 8.36917188676E+00 8.47439901715E+00 8.58094893046E+00 8.68883724912E+00 8.79808076503E+00 8.90869629254E+00 9.02070204040E+00 9.13411429407E+00 9.24894989238E+00 9.36522953078E+00 9.48296779157E+00 9.60218717014E+00 9.72290114648E+00 9.84513304101E+00 9.96889821155E+00 1.00942174528E+01 1.02211121684E+01 1.03495985465E+01 1.04796981321E+01 1.06114313401E+01 1.07448183706E+01 1.08798789490E+01 1.10166364902E+01 1.11551083006E+01 1.12953214582E+01 1.14372913012E+01 1.15810437232E+01 1.17266004333E+01 1.18739833589E+01 1.20232162015E+01 1.21743202634E+01 1.23273204403E+01 1.24822404106E+01 1.26391044965E+01 1.27979337976E+01 1.29587574321E+01 1.31215970487E+01 1.32864795623E+01 1.34534281873E+01 1.36224721092E+01 1.37936335493E+01 1.39669421188E+01 1.41424219232E+01 1.43201026037E+01 1.45000095132E+01 1.46821713811E+01 1.48666150720E+01 1.50533709502E+01 1.52424660777E+01 1.54339304693E+01 1.56277927650E+01 1.58240824214E+01 1.60228316429E+01 1.62240695862E+01 1.64278252914E+01 1.66341347367E+01 1.68430236410E+01 1.70545295252E+01 1.72686803188E+01 1.74855120380E+01 1.77050565494E+01 1.79273466745E+01 1.81524175321E+01 1.83803031538E+01 1.86110385551E+01 1.88446577467E+01 1.90811983039E+01 1.93206943349E+01 1.95631835126E+01 1.98087029734E+01 2.00572884285E+01 2.03089793447E+01 2.05638129775E+01 2.08218283481E+01 2.10830648023E+01 2.13475607440E+01 2.16153585631E+01 2.18864954847E+01 2.21610156124E+01 2.24389585794E+01 2.27203666495E+01 2.30052825556E+01 2.32937488849E+01 2.35858091996E+01 2.38815072905E+01 2.41808876725E+01 2.44839946769E+01 2.47908749306E+01 2.51015729340E+01 2.54161363435E+01 2.57346112258E+01 2.60570458152E+01 2.63834867849E+01 2.67139847719E+01 2.70485869997E+01 2.73873448814E+01 2.77303061208E+01 2.80775242386E+01 2.84290478702E+01 2.87849319068E+01 2.91452260894E+01 2.95099844494E+01 2.98792612114E+01 3.02531090593E+01 3.06315842147E+01 3.10147407557E+01 3.14026352852E+01 3.17953238610E+01 3.21928644254E+01 3.25953131320E+01 3.30027296289E+01 3.34151722501E+01 3.38327002613E+01 3.42553741475E+01 3.46832542109E+01 3.51164018820E+01 3.55548793645E+01 3.59987487164E+01 3.64480731240E+01 3.69029163142E+01 3.73633430451E+01 3.78294178410E+01 3.83012063880E+01 3.87787749737E+01 3.92621905304E+01 3.97515202643E+01 4.02468324052E+01 4.07481956667E+01 4.12556784961E+01 4.17693523264E+01 4.22892866105E+01 4.28155525319E+01 4.33482222210E+01 4.38873673645E+01 4.44330616398E+01 4.49853781569E+01 4.55443906862E+01 4.61101748630E+01 4.66828048677E+01 4.72623574820E+01 4.78489082302E+01 4.84425343729E+01 4.90433141045E+01 4.96513241382E+01 5.02666444307E+01 5.08893527774E+01 5.15195298017E+01 5.21572552737E+01 5.28026091679E+01 5.34556735355E+01 5.41165291371E+01 5.47852583278E+01 5.54619427955E+01 5.61466664522E+01 5.68395112413E+01 5.75405614623E+01 5.82499007353E+01 5.89676129604E+01 5.96937829975E+01 6.04284958002E+01 6.11718358092E+01 6.19238885046E+01 6.26847396150E+01 6.34544741818E+01 6.42331783649E+01 6.50209378176E+01 6.58178382472E+01 6.66239660409E+01 6.74394063222E+01 6.82642460974E+01 6.90985697810E+01 6.99424639005E+01 7.07960132493E+01 7.16593038649E+01 7.25324196208E+01 7.34154454240E+01 7.43084657529E+01 7.52115638914E+01 7.61248230345E+01 7.70483256626E+01 7.79821540272E+01 7.89263887530E+01 7.98811107315E+01 8.08463991015E+01 8.18223324111E+01 8.28089885077E+01 8.38064429988E+01 8.48147720564E+01 8.58340486191E+01 8.68643453060E+01 8.79057331809E+01 8.89582812436E+01 9.00220572314E+01 9.10971264983E+01 9.21835528984E+01 9.32813977956E+01 9.43907206956E+01 9.55115784338E+01 9.66440252574E+01 9.77881132629E+01 9.89438907090E+01 1.00111404118E+02 1.01290695910E+02 1.02481805538E+02 1.03684769037E+02 1.04899618369E+02 1.06126382030E+02 1.07365084038E+02 1.08615744532E+02 1.09878378544E+02 1.11152997010E+02 1.12439605244E+02 1.13738203741E+02 1.15048787428E+02 1.16371345225E+02 1.17705860453E+02 1.19052309632E+02 1.20410663159E+02 1.21780883896E+02 1.23162928471E+02 1.24556744678E+02 1.25962273489E+02 1.27379447035E+02 1.28808189071E+02 1.30248414170E+02 1.31700027866E+02 1.33162925412E+02 1.34636992308E+02 1.36122103268E+02 1.37618121766E+02 1.39124899712E+02 1.40642277544E+02 1.42170082106E+02 1.43708128563E+02 1.45256217054E+02 1.46814135033E+02 1.48381653792E+02 1.49958530784E+02 1.51544506553E+02 1.53139305643E+02 1.54742635184E+02 1.56354184789E+02 1.57973625194E+02 1.59600608478E+02 1.61234766132E+02 1.62875709524E+02 1.64523028277E+02 1.66176289700E+02 1.67835038417E+02 1.69498794432E+02 1.71167053689E+02 1.72839285907E+02 1.74514934530E+02 1.76193415043E+02 1.77874114817E+02 1.79556391274E+02 1.81239571645E+02 1.82922951040E+02 1.84605792344E+02 1.86287324209E+02 1.87966740630E+02 1.89643199071E+02 1.91315820143E+02 1.92983685335E+02 1.94645836766E+02 1.96301275300E+02 1.97948959284E+02 1.99587803495E+02 2.01216677624E+02 2.02834404690E+02 2.04439760111E+02 2.06031470018E+02 2.07608209382E+02 2.09168601674E+02 2.10711215922E+02 2.12234566665E+02 2.13737111414E+02 2.15217249474E+02 2.16673320885E+02 2.18103603862E+02 2.19506314299E+02 2.20879604023E+02 2.22221558816E+02 2.23530197395E+02 2.24803470156E+02 2.26039256949E+02 2.27235366945E+02 2.28389536307E+02 2.29499427232E+02 2.30562627170E+02 2.31576647144E+02 2.32538921450E+02 2.33446806073E+02 2.34297578666E+02 2.35088437525E+02 2.35816501393E+02 2.36478809144E+02 2.37072319911E+02 2.37593913392E+02 2.38040390198E+02 2.38408472738E+02 2.38694806715E+02 2.38895962031E+02 2.39008435308E+02 2.39028651974E+02 2.38952969166E+02 2.38777679218E+02 2.38499013655E+02 2.38113147527E+02 2.37616205173E+02 2.37004265792E+02 2.36273370696E+02 2.35419530793E+02 2.34438735426E+02 2.33326961727E+02 2.32080185565E+02 2.30694393620E+02 2.29165595900E+02 2.27489840860E+02 2.25663230460E+02 2.23681937945E+02 2.21542226129E+02 2.19240468317E+02 2.16773169351E+02 2.14136990241E+02 2.11328773117E+02 2.08345568648E+02 2.05184665282E+02 2.01843619998E+02 1.98320291651E+02 1.94612875373E+02 1.90719939702E+02 1.86640464270E+02 1.82373880925E+02 1.77920114499E+02 1.73279626667E+02 1.68453460088E+02 1.63443283547E+02 1.58251438665E+02 1.52880985528E+02 1.47335749901E+02 1.41620368347E+02 1.35740333299E+02 1.29702036351E+02 1.23512808353E+02 1.17180957462E+02 1.10715802045E+02 1.04127699547E+02 9.74280684253E+01 9.06294036384E+01 8.37452833433E+01 7.67903658568E+01 6.97803758883E+01 6.27320781610E+01 5.56632369635E+01 4.85925609075E+01 4.15396298961E+01 3.45248049328E+01 2.75691174948E+01 2.06941387584E+01 1.39218262549E+01 7.27434878458E+00 7.73887374045E-01 -5.55758611038E+00 -1.16985537465E+01 -1.76282173427E+01 -2.33267841766E+01 -2.87757702015E+01 -3.39583154692E+01 -3.88595091022E+01 -4.34667150215E+01 -4.77698919964E+01 -5.17618977943E+01 -5.54387653854E+01 -5.87999370544E+01 -6.18484409004E+01 -6.45909894290E+01 -6.70379794053E+01 -6.92033688701E+01 -7.11044032228E+01 -7.27611622565E+01 -7.41958961779E+01 -7.54321177768E+01 -7.64934188178E+01 -7.74019782566E+01 -7.81767350514E+01 -7.88312032172E+01 -7.93709185956E+01 -7.97905203292E+01 -8.00704933647E+01 -8.01736272766E+01 -8.00412883787E+01 -7.95896550885E+01 -7.87061376628E+01 -7.72462937645E+01 -7.50316677603E+01 -7.18491269446E+01 -6.74524578285E+01 -6.15671650733E+01 -5.39001701185E+01 -4.41519008960E+01 -3.20729415495E+01 -1.71780607323E+01 -1.90735676591E+00 1.89103035864E-01 -1.87484434829E-02 1.85880141837E-03 -1.84290905012E-04 1.82702677146E-05 -1.80933413219E-06 1.79088013630E-07 -1.80657825976E-08 2.94532058416E-09 -8.70812971247E-10 -8.10121965150E-01 4.94137948517E-01 725 -2.61498521621E-04 -2.68118389377E-04 -2.74905839942E-04 -2.81865115700E-04 -2.89000566428E-04 -2.96316652020E-04 -3.03817945274E-04 -3.11509134747E-04 -3.19395027690E-04 -3.27480553047E-04 -3.35770764542E-04 -3.44270843835E-04 -3.52986103757E-04 -3.61921991638E-04 -3.71084092706E-04 -3.80478133582E-04 -3.90109985855E-04 -3.99985669755E-04 -4.10111357916E-04 -4.20493379233E-04 -4.31138222818E-04 -4.42052542055E-04 -4.53243158762E-04 -4.64717067450E-04 -4.76481439698E-04 -4.88543628637E-04 -5.00911173540E-04 -5.13591804541E-04 -5.26593447463E-04 -5.39924228774E-04 -5.53592480661E-04 -5.67606746247E-04 -5.81975784923E-04 -5.96708577826E-04 -6.11814333453E-04 -6.27302493415E-04 -6.43182738339E-04 -6.59464993921E-04 -6.76159437127E-04 -6.93276502554E-04 -7.10826888954E-04 -7.28821565921E-04 -7.47271780745E-04 -7.66189065445E-04 -7.85585243974E-04 -8.05472439612E-04 -8.25863082544E-04 -8.46769917625E-04 -8.68206012352E-04 -8.90184765025E-04 -9.12719913130E-04 -9.35825541916E-04 -9.59516093207E-04 -9.83806374424E-04 -1.00871156784E-03 -1.03424724007E-03 -1.06042935182E-03 -1.08727426781E-03 -1.11479876706E-03 -1.14302005337E-03 -1.17195576602E-03 -1.20162399086E-03 -1.23204327160E-03 -1.26323262135E-03 -1.29521153457E-03 -1.32799999923E-03 -1.36161850929E-03 -1.39608807752E-03 -1.43143024864E-03 -1.46766711278E-03 -1.50482131930E-03 -1.54291609091E-03 -1.58197523823E-03 -1.67386937072E-03 -1.71558469134E-03 -1.70549916257E-03 -1.74890826385E-03 -1.79282257868E-03 -1.83814283971E-03 -1.88462547702E-03 -1.93242434270E-03 -1.98127434366E-03 -2.03169523854E-03 -2.08304391103E-03 -2.13581637358E-03 -2.18945772964E-03 -2.24549413422E-03 -2.30199237978E-03 -2.36005979899E-03 -2.42033029918E-03 -2.48079552312E-03 -2.54399249867E-03 -2.60833472527E-03 -2.67467568234E-03 -2.74196561086E-03 -2.81165138253E-03 -2.88243193429E-03 -2.95588176431E-03 -3.03050965350E-03 -3.10696922389E-03 -3.18622747040E-03 -3.26643329894E-03 -3.34921614991E-03 -3.43412396113E-03 -3.52112937170E-03 -3.60994845904E-03 -3.70167814982E-03 -3.79454806825E-03 -3.89133390413E-03 -3.98967972707E-03 -4.09082538843E-03 -4.19431476721E-03 -4.30013525084E-03 -4.40946004038E-03 -4.52069602663E-03 -4.63551114217E-03 -4.75250325477E-03 -4.87312787327E-03 -4.99670379528E-03 -5.12271733142E-03 -5.25268218339E-03 -5.38497429792E-03 -5.52192267620E-03 -5.66117882478E-03 -5.80499591961E-03 -5.95216911076E-03 -6.10237682128E-03 -6.25673838319E-03 -6.41557808618E-03 -6.57759183527E-03 -6.74442715050E-03 -6.91456427096E-03 -7.09039028926E-03 -7.26943280760E-03 -7.45367412430E-03 -7.64244291433E-03 -7.83592878466E-03 -8.03419090536E-03 -8.23721564166E-03 -8.44638715052E-03 -8.65942451963E-03 -8.87908548594E-03 -9.10384930802E-03 -9.33455377515E-03 -9.57057790014E-03 -9.81296212756E-03 -1.00612187942E-02 -1.03159406430E-02 -1.05766103632E-02 -1.08448052209E-02 -1.11191295176E-02 -1.14006847505E-02 -1.16892387654E-02 -1.19852417166E-02 -1.22885965120E-02 -1.25996921812E-02 -1.29187174967E-02 -1.32459504520E-02 -1.35809012410E-02 -1.39249309146E-02 -1.42773856811E-02 -1.46390425263E-02 -1.50096200596E-02 -1.53891242344E-02 -1.57787514543E-02 -1.61784684664E-02 -1.65879257632E-02 -1.70080024035E-02 -1.74381788643E-02 -1.78799697451E-02 -1.83323969856E-02 -1.87967034457E-02 -1.92724124985E-02 -1.97600315042E-02 -2.02603946127E-02 -2.07730229786E-02 -2.12993297733E-02 -2.18384985821E-02 -2.23914502373E-02 -2.29575885868E-02 -2.35398981886E-02 -2.41350797662E-02 -2.47460667282E-02 -2.53723246555E-02 -2.60143747714E-02 -2.66737162079E-02 -2.73487113813E-02 -2.80405954832E-02 -2.87505505714E-02 -2.94786493460E-02 -3.02249625176E-02 -3.09896386800E-02 -3.17742304283E-02 -3.25784379747E-02 -3.34036396818E-02 -3.42492415653E-02 -3.51161770845E-02 -3.60048810781E-02 -3.69163396432E-02 -3.78510792692E-02 -3.88090836289E-02 -3.97917015370E-02 -4.07987240544E-02 -4.18315842872E-02 -4.28908654268E-02 -4.39762787971E-02 -4.50893659047E-02 -4.62305263990E-02 -4.74011302771E-02 -4.86013793265E-02 -4.98315495343E-02 -5.10930989682E-02 -5.23864338533E-02 -5.37120692172E-02 -5.50719475060E-02 -5.64661172581E-02 -5.78955952361E-02 -5.93614063192E-02 -6.08635834609E-02 -6.24043706563E-02 -6.39842217888E-02 -6.56039389618E-02 -6.72643870371E-02 -6.89675052061E-02 -7.07131547233E-02 -7.25033900274E-02 -7.43387566526E-02 -7.62203214866E-02 -7.81496895148E-02 -8.01285067850E-02 -8.21564022841E-02 -8.42366326459E-02 -8.63683453555E-02 -8.85551886485E-02 -9.07964369611E-02 -9.30949225328E-02 -9.54512268444E-02 -9.78678456271E-02 -1.00345288778E-01 -1.02885035864E-01 -1.05489608777E-01 -1.08159687627E-01 -1.10897535984E-01 -1.13704927753E-01 -1.16583317628E-01 -1.19534165095E-01 -1.22559853782E-01 -1.25662183719E-01 -1.28843199819E-01 -1.32104631846E-01 -1.35448368790E-01 -1.38877015357E-01 -1.42392707620E-01 -1.45997050169E-01 -1.49692644099E-01 -1.53481874505E-01 -1.57366907653E-01 -1.61350269463E-01 -1.65434290501E-01 -1.69621637458E-01 -1.73915184020E-01 -1.78317541410E-01 -1.82830935316E-01 -1.87459404365E-01 -1.92203871819E-01 -1.97069358442E-01 -2.02057427274E-01 -2.07171867148E-01 -2.12415739256E-01 -2.17792404183E-01 -2.23305248013E-01 -2.28957094000E-01 -2.34752249963E-01 -2.40694719059E-01 -2.46786796607E-01 -2.53033310000E-01 -2.59437857013E-01 -2.66004429081E-01 -2.72737277649E-01 -2.79640324917E-01 -2.86718061488E-01 -2.93975363546E-01 -3.01416017488E-01 -3.09044607883E-01 -3.16867009658E-01 -3.24886674604E-01 -3.33109731726E-01 -3.41540890843E-01 -3.50184953564E-01 -3.59047873774E-01 -3.68135383767E-01 -3.77452561783E-01 -3.87005337381E-01 -3.96800267934E-01 -4.06842902039E-01 -4.17139856342E-01 -4.27696633075E-01 -4.38521087256E-01 -4.49619291882E-01 -4.60998356246E-01 -4.72665135486E-01 -4.84627175118E-01 -4.96891577215E-01 -5.09466904936E-01 -5.22359588348E-01 -5.35579380241E-01 -5.49133097807E-01 -5.63029454820E-01 -5.77277666603E-01 -5.91886500625E-01 -6.06864376598E-01 -6.22221258031E-01 -6.37967104057E-01 -6.54111024639E-01 -6.70663257917E-01 -6.87633698004E-01 -7.05033976839E-01 -7.22874339445E-01 -7.41165575621E-01 -7.59919523739E-01 -7.79148186588E-01 -7.98862580808E-01 -8.19075937399E-01 -8.39800618452E-01 -8.61049113460E-01 -8.82834513864E-01 -9.05171446871E-01 -9.28072952240E-01 -9.51553730912E-01 -9.75628068311E-01 -1.00031152032E+00 -1.02561844832E+00 -1.05156601059E+00 -1.07816888155E+00 -1.10544485003E+00 -1.13340964103E+00 -1.16208216521E+00 -1.19147912314E+00 -1.22161871370E+00 -1.25252128518E+00 -1.28420384888E+00 -1.31668793077E+00 -1.34999280945E+00 -1.38413903222E+00 -1.41914888652E+00 -1.45504252018E+00 -1.49184431537E+00 -1.52957570128E+00 -1.56825968695E+00 -1.60792176552E+00 -1.64858599703E+00 -1.69027708836E+00 -1.73302178329E+00 -1.77684603773E+00 -1.82177744589E+00 -1.86784361147E+00 -1.91507378068E+00 -1.96349609212E+00 -2.01314120442E+00 -2.06404102222E+00 -2.11622449093E+00 -2.16972681749E+00 -2.22457977785E+00 -2.28081716208E+00 -2.33847393606E+00 -2.39758688369E+00 -2.45819137042E+00 -2.52032561023E+00 -2.58402791036E+00 -2.64933780187E+00 -2.71629560510E+00 -2.78494260313E+00 -2.85532158604E+00 -2.92747561649E+00 -3.00145027673E+00 -3.07728979485E+00 -3.15504326994E+00 -3.23475596209E+00 -3.31647960754E+00 -3.40026319172E+00 -3.48615898262E+00 -3.57421959360E+00 -3.66450049883E+00 -3.75705579816E+00 -3.85194374153E+00 -3.94922197516E+00 -4.04895082820E+00 -4.15119201206E+00 -4.25600824881E+00 -4.36346403344E+00 -4.47362522257E+00 -4.58655951603E+00 -4.70233747583E+00 -4.82102867164E+00 -4.94270697889E+00 -5.06744669416E+00 -5.19532399527E+00 -5.32641838806E+00 -5.46080944578E+00 -5.59857997346E+00 -5.73981343874E+00 -5.88459768150E+00 -6.03301991858E+00 -6.18517149216E+00 -6.34114640904E+00 -6.50103761631E+00 -6.66494456404E+00 -6.83296674389E+00 -7.00520639823E+00 -7.18176821157E+00 -7.36276056935E+00 -7.54829288813E+00 -7.73847787579E+00 -7.93343157872E+00 -8.13327245913E+00 -8.33812093950E+00 -8.54810148514E+00 -8.76334206633E+00 -8.98397206696E+00 -9.21012516716E+00 -9.44193830928E+00 -9.67955073299E+00 -9.92310674030E+00 -1.01727522517E+01 -1.04286377855E+01 -1.06909171485E+01 -1.09597486403E+01 -1.12352925193E+01 -1.15177150799E+01 -1.18071842236E+01 -1.21038749343E+01 -1.24079629728E+01 -1.27196298737E+01 -1.30390625907E+01 -1.33664502306E+01 -1.37019883495E+01 -1.40458755352E+01 -1.43983159736E+01 -1.47595187416E+01 -1.51296971528E+01 -1.55090699481E+01 -1.58978612231E+01 -1.62962993144E+01 -1.67046194605E+01 -1.71230602128E+01 -1.75518675122E+01 -1.79912919949E+01 -1.84415909693E+01 -1.89030257084E+01 -1.93758663851E+01 -1.98603866078E+01 -2.03568666098E+01 -2.08655955996E+01 -2.13868655394E+01 -2.19209780512E+01 -2.24682401022E+01 -2.30289647292E+01 -2.36034740899E+01 -2.41920954951E+01 -2.47951648800E+01 -2.54130240607E+01 -2.60460243568E+01 -2.66945230571E+01 -2.73588861037E+01 -2.80394866814E+01 -2.87367066453E+01 -2.94509369590E+01 -3.01825733583E+01 -3.09320252444E+01 -3.16997053048E+01 -3.24860389972E+01 -3.32914578271E+01 -3.41164048373E+01 -3.49613299931E+01 -3.58266934469E+01 -3.67129644104E+01 -3.76206221855E+01 -3.85501546650E+01 -3.95020609788E+01 -4.04768479787E+01 -4.14750341826E+01 -4.24971472446E+01 -4.35437258927E+01 -4.46153181512E+01 -4.57124823164E+01 -4.68357891622E+01 -4.79858158177E+01 -4.91631551879E+01 -5.03684068869E+01 -5.16021827772E+01 -5.28651054904E+01 -5.41578082378E+01 -5.54809348266E+01 -5.68351410040E+01 -5.82210924595E+01 -5.96394659629E+01 -6.10909484076E+01 -6.25762398202E+01 -6.40960483150E+01 -6.56510946869E+01 -6.72421100726E+01 -6.88698342662E+01 -7.05350211258E+01 -7.22384315533E+01 -7.39808386519E+01 -7.57630246984E+01 -7.75857818642E+01 -7.94499118231E+01 -8.13562265827E+01 -8.33055457619E+01 -8.52986989135E+01 -8.73365232763E+01 -8.94198640295E+01 -9.15495748036E+01 -9.37265156042E+01 -9.59515548015E+01 -9.82255637761E+01 -1.00549422502E+02 -1.02924014542E+02 -1.05350227973E+02 -1.07828954810E+02 -1.10361089951E+02 -1.12947528934E+02 -1.15589170026E+02 -1.18286910850E+02 -1.21041649016E+02 -1.23854278745E+02 -1.26725692964E+02 -1.29656778681E+02 -1.32648418629E+02 -1.35701487857E+02 -1.38816852416E+02 -1.41995369859E+02 -1.45237885027E+02 -1.48545229724E+02 -1.51918220463E+02 -1.55357657205E+02 -1.58864319160E+02 -1.62438965452E+02 -1.66082332997E+02 -1.69795128430E+02 -1.73578034736E+02 -1.77431700561E+02 -1.81356741525E+02 -1.85353736702E+02 -1.89423224454E+02 -1.93565702192E+02 -1.97781616774E+02 -2.02071369167E+02 -2.06435304697E+02 -2.10873711317E+02 -2.15386815517E+02 -2.19974778180E+02 -2.24637690656E+02 -2.29375568831E+02 -2.34188350079E+02 -2.39075885895E+02 -2.44037940870E+02 -2.49074182221E+02 -2.54184179705E+02 -2.59367395573E+02 -2.64623178629E+02 -2.69950762773E+02 -2.75349256173E+02 -2.80817635006E+02 -2.86354738405E+02 -2.91959262262E+02 -2.97629747075E+02 -3.03364578023E+02 -3.09161969655E+02 -3.15019963456E+02 -3.20936417667E+02 -3.26908998855E+02 -3.32935174148E+02 -3.39012203211E+02 -3.45137125159E+02 -3.51306757550E+02 -3.57517678904E+02 -3.63766224124E+02 -3.70048475392E+02 -3.76360248316E+02 -3.82697086836E+02 -3.89054251321E+02 -3.95426708469E+02 -4.01809122701E+02 -4.08195844562E+02 -4.14580902260E+02 -4.20957991609E+02 -4.27320464910E+02 -4.33661323340E+02 -4.39973206082E+02 -4.46248379702E+02 -4.52478732768E+02 -4.58655764124E+02 -4.64770574020E+02 -4.70813858757E+02 -4.76775899516E+02 -4.82646558209E+02 -4.88415271005E+02 -4.94071038289E+02 -4.99602424289E+02 -5.04997550409E+02 -5.10244093115E+02 -5.15329278046E+02 -5.20239884729E+02 -5.24962239245E+02 -5.29482221460E+02 -5.33785262674E+02 -5.37856354261E+02 -5.41680048304E+02 -5.45240469725E+02 -5.48521321989E+02 -5.51505901150E+02 -5.54177106720E+02 -5.56517460122E+02 -5.58509121682E+02 -5.60133911959E+02 -5.61373335582E+02 -5.62208608402E+02 -5.62620687616E+02 -5.62590305127E+02 -5.62098005092E+02 -5.61124183392E+02 -5.59649135797E+02 -5.57653103462E+02 -5.55116329653E+02 -5.52019116126E+02 -5.48341888170E+02 -5.44065261541E+02 -5.39170118020E+02 -5.33637684189E+02 -5.27449617709E+02 -5.20588099520E+02 -5.13035931252E+02 -5.04776641329E+02 -4.95794598474E+02 -4.86075128349E+02 -4.75604643970E+02 -4.64370777811E+02 -4.52362526893E+02 -4.39570402839E+02 -4.25986593670E+02 -4.11605127384E+02 -3.96422052727E+02 -3.80435622376E+02 -3.63646489046E+02 -3.46057905450E+02 -3.27675937009E+02 -3.08509680017E+02 -2.88571488677E+02 -2.67877208230E+02 -2.46446414619E+02 -2.24302663203E+02 -2.01473734750E+02 -1.77991889800E+02 -1.53894124521E+02 -1.29222424434E+02 -1.04024013949E+02 -7.83516056559E+01 -5.22636362197E+01 -2.58244958597E+01 8.95262693554E-01 2.78187291947E+01 5.48624701374E+01 8.19363895493E+01 1.08943623441E+02 1.35780481154E+02 1.62336430159E+02 1.88494141014E+02 2.14129591438E+02 2.39112252368E+02 2.63305344839E+02 2.86566200180E+02 3.08746713054E+02 3.29693918162E+02 3.49250683402E+02 3.67256544855E+02 3.83548691955E+02 3.97963109961E+02 4.10335907074E+02 4.20504822782E+02 4.28310945930E+02 4.33600651468E+02 4.36227770308E+02 4.36056012424E+02 4.32961658379E+02 4.26836536036E+02 4.17591306359E+02 4.05159070194E+02 3.89499324860E+02 3.70602283337E+02 3.48493582439E+02 3.23239393283E+02 2.94951949071E+02 2.63795497747E+02 2.29992673576E+02 1.93831264832E+02 1.55671332212E+02 1.15952590821E+02 7.52019164010E+01 3.40407712825E+01 -6.80775671674E+00 -4.65127410514E+01 -8.41306281403E+01 -1.18602707069E+02 -1.48755944008E+02 -1.73308666786E+02 -1.90883030077E+02 -2.00026808767E+02 -1.99247579810E+02 -1.87065184569E+02 -1.62070791662E+02 -1.23163626772E+02 -6.83759263067E+01 -7.81821839133E+00 7.75129642483E-01 -7.68494810245E-02 7.61918145211E-03 -7.55410534338E-04 7.49050883240E-05 -7.42954293784E-06 7.33449101368E-07 -6.22697917429E-08 -7.31573289622E-09 1.55580479486E-08 0.00000000000E+00 0.00000000000E+00 -3.53557466798E-01 725 4.01635447384E-04 4.11802898917E-04 4.22227740803E-04 4.32916488913E-04 4.43875824071E-04 4.55112596225E-04 4.66633828731E-04 4.78446722744E-04 4.90558661715E-04 5.02977216010E-04 5.15710147641E-04 5.28765415112E-04 5.42151178404E-04 5.55875804064E-04 5.69947870443E-04 5.84376173053E-04 5.99169730065E-04 6.14337787950E-04 6.29889827250E-04 6.45835568513E-04 6.62184978362E-04 6.78948275727E-04 6.96135938232E-04 7.13758708746E-04 7.31827602093E-04 7.50353911940E-04 7.69349217857E-04 7.88825392550E-04 8.08794609287E-04 8.29269349503E-04 8.50262410605E-04 8.71786913968E-04 8.93856313135E-04 9.16484402231E-04 9.39685324581E-04 9.63473581551E-04 9.87864041612E-04 1.01287194963E-03 1.03851293641E-03 1.06480302844E-03 1.09175865792E-03 1.11939667305E-03 1.14773434854E-03 1.17678939641E-03 1.20657997706E-03 1.23712471064E-03 1.26844268864E-03 1.30055348590E-03 1.33347717277E-03 1.36723432769E-03 1.40184605007E-03 1.43733397342E-03 1.47372027894E-03 1.51102770934E-03 1.54927958305E-03 1.58849980885E-03 1.62871290075E-03 1.66994399334E-03 1.71221885751E-03 1.75556391654E-03 1.80000626261E-03 1.84557367377E-03 1.89229463126E-03 1.94019833735E-03 1.98931473355E-03 2.03967451936E-03 2.09130917146E-03 2.14425096335E-03 2.19853298555E-03 2.25418916628E-03 2.31125429266E-03 2.36976403246E-03 2.42975495639E-03 2.56984812653E-03 2.63390546755E-03 2.61950283252E-03 2.68616975144E-03 2.75362504456E-03 2.82323299387E-03 2.89462719932E-03 2.96803930092E-03 3.04306938501E-03 3.12050557258E-03 3.19937296468E-03 3.28042555729E-03 3.36282160517E-03 3.44887548667E-03 3.53565823188E-03 3.62484739372E-03 3.71740648091E-03 3.81029125392E-03 3.90734746100E-03 4.00617207600E-03 4.10805796941E-03 4.21141742587E-03 4.31844187383E-03 4.42716193231E-03 4.53996392838E-03 4.65458806697E-03 4.77202798665E-03 4.89374818148E-03 5.01694533112E-03 5.14408973760E-03 5.27449630477E-03 5.40812680327E-03 5.54455016393E-03 5.68543069647E-03 5.82808693845E-03 5.97672490188E-03 6.12777752908E-03 6.28312417164E-03 6.44207476264E-03 6.60461186570E-03 6.77251368198E-03 6.94336916292E-03 7.11970582650E-03 7.29940106986E-03 7.48466216289E-03 7.67445743735E-03 7.86801137520E-03 8.06761824196E-03 8.27081958900E-03 8.48114612059E-03 8.69503955609E-03 8.91591833753E-03 9.14195685469E-03 9.37267027630E-03 9.60975679021E-03 9.85370904316E-03 1.01025540194E-02 1.03587896695E-02 1.06201152204E-02 1.08901502960E-02 1.11651510213E-02 1.14481219929E-02 1.17380506765E-02 1.20352247289E-02 1.23397373917E-02 1.26515705837E-02 1.29728230912E-02 1.33000432915E-02 1.36374113538E-02 1.39826259325E-02 1.43369600231E-02 1.46994742806E-02 1.50717501902E-02 1.54530504361E-02 1.58442770542E-02 1.62446495416E-02 1.66565602789E-02 1.70778992766E-02 1.75103383896E-02 1.79535292066E-02 1.84081586702E-02 1.88740813252E-02 1.93518930495E-02 1.98418827043E-02 2.03444752107E-02 2.08589339097E-02 2.13873233423E-02 2.19286598945E-02 2.24841235756E-02 2.30532935806E-02 2.36361834734E-02 2.42346099076E-02 2.48485297509E-02 2.54774168924E-02 2.61226089718E-02 2.67833248052E-02 2.74618633912E-02 2.81567504489E-02 2.88698739162E-02 2.96005172331E-02 3.03494569591E-02 3.11179607665E-02 3.19053120078E-02 3.27136573322E-02 3.35417666983E-02 3.43910426185E-02 3.52605877537E-02 3.61549336725E-02 3.70690872756E-02 3.80075013234E-02 3.89693746569E-02 3.99555034190E-02 4.09681697837E-02 4.20048992519E-02 4.30675725012E-02 4.41579901444E-02 4.52762701502E-02 4.64225308244E-02 4.75970059376E-02 4.88020578901E-02 5.00372431403E-02 5.13046593871E-02 5.26034190313E-02 5.39349460314E-02 5.52999111450E-02 5.66998197375E-02 5.81354808724E-02 5.96068831043E-02 6.11160814635E-02 6.26627725362E-02 6.42491410424E-02 6.58760829301E-02 6.75431760940E-02 6.92527689320E-02 7.10054818645E-02 7.28034060928E-02 7.46468608531E-02 7.65362818891E-02 7.84738928263E-02 8.04603261750E-02 8.24963791662E-02 8.45850110910E-02 8.67263147310E-02 8.89218474888E-02 9.11731814677E-02 9.34803850943E-02 9.58468773882E-02 9.82733675333E-02 1.00761090088E-01 1.03311376735E-01 1.05927187683E-01 1.08608333353E-01 1.11357951205E-01 1.14176889287E-01 1.17066789027E-01 1.20030106097E-01 1.23069359021E-01 1.26184012414E-01 1.29379026183E-01 1.32653135778E-01 1.36011896695E-01 1.39454236609E-01 1.42984478057E-01 1.46603530364E-01 1.50315205780E-01 1.54120308806E-01 1.58021111640E-01 1.62021470463E-01 1.66122448044E-01 1.70327509385E-01 1.74639376679E-01 1.79060292227E-01 1.83592502368E-01 1.88239658834E-01 1.93004527560E-01 1.97890246260E-01 2.02899478723E-01 2.08035127421E-01 2.13301183766E-01 2.18700928218E-01 2.24236836973E-01 2.29912898601E-01 2.35732773950E-01 2.41699795340E-01 2.47817839725E-01 2.54090489200E-01 2.60521838787E-01 2.67116295066E-01 2.73877871680E-01 2.80809996991E-01 2.87918848390E-01 2.95205885917E-01 3.02678776657E-01 3.10339953474E-01 3.18195220952E-01 3.26249283015E-01 3.34507300683E-01 3.42974472569E-01 3.51655148991E-01 3.60555929814E-01 3.69682955108E-01 3.79039780340E-01 3.88633797737E-01 3.98470540525E-01 4.08556138863E-01 4.18897118530E-01 4.29499511051E-01 4.40370208318E-01 4.51516691726E-01 4.62944790912E-01 4.74661548764E-01 4.86675966861E-01 4.98993374334E-01 5.11623163735E-01 5.24572575895E-01 5.37848995637E-01 5.51461556776E-01 5.65419058311E-01 5.79729313104E-01 5.94401425631E-01 6.09445454620E-01 6.24869935075E-01 6.40685020631E-01 6.56899182752E-01 6.73524459139E-01 6.90570191201E-01 7.08047294899E-01 7.25966303467E-01 7.44338801238E-01 7.63175703523E-01 7.82490143242E-01 8.02292026282E-01 8.22596295842E-01 8.43413453142E-01 8.64756875317E-01 8.86640705087E-01 9.09078411569E-01 9.32082939968E-01 9.55669580858E-01 9.79853623059E-01 1.00464907218E+00 1.03007165058E+00 1.05613656230E+00 1.08286165218E+00 1.11026266804E+00 1.13835618760E+00 1.16716038594E+00 1.19669369036E+00 1.22697304280E+00 1.25801874424E+00 1.28984978642E+00 1.32248536166E+00 1.35594557969E+00 1.39025288417E+00 1.42542732239E+00 1.46149146292E+00 1.49846725551E+00 1.53637857985E+00 1.57524751449E+00 1.61510038485E+00 1.65595975893E+00 1.69785293441E+00 1.74080408890E+00 1.78484223565E+00 1.82999305030E+00 1.87628448485E+00 1.92374776092E+00 1.97240905173E+00 2.02230138054E+00 2.07345437837E+00 2.12589960557E+00 2.17967127379E+00 2.23480036049E+00 2.29132427155E+00 2.34927595132E+00 2.40869074711E+00 2.46960778564E+00 2.53206403244E+00 2.59609744549E+00 2.66174908527E+00 2.72905882823E+00 2.79806904965E+00 2.86882215223E+00 2.94136304172E+00 3.01573496166E+00 3.09198498695E+00 3.17016209906E+00 3.25031080901E+00 3.33248513259E+00 3.41673390485E+00 3.50310902745E+00 3.59166420387E+00 3.68245590905E+00 3.77553848610E+00 3.87097061620E+00 3.96881113792E+00 4.06912076717E+00 4.17196143381E+00 4.27739654808E+00 4.38549182659E+00 4.49631341789E+00 4.60993131403E+00 4.72641347635E+00 4.84583527019E+00 4.96826626987E+00 5.09378588533E+00 5.22246938535E+00 5.35439703800E+00 5.48964966021E+00 5.62831243389E+00 5.77046848277E+00 5.91620725079E+00 6.06561729494E+00 6.21879126678E+00 6.37582394563E+00 6.53681167077E+00 6.70185350264E+00 6.87105059665E+00 7.04450693471E+00 7.22233087218E+00 7.40462929353E+00 7.59151564681E+00 7.78310405380E+00 7.97951152412E+00 8.18086015278E+00 8.38727217239E+00 8.59887475764E+00 8.81579612621E+00 9.03817116524E+00 9.26613386200E+00 9.49982449863E+00 9.73938744233E+00 9.98496550024E+00 1.02367113835E+01 1.04947779138E+01 1.07593221324E+01 1.10305048333E+01 1.13084924710E+01 1.15934531164E+01 1.18855598838E+01 1.21849910027E+01 1.24919284217E+01 1.28065571194E+01 1.31290682606E+01 1.34596583848E+01 1.37985262359E+01 1.41458771338E+01 1.45019214085E+01 1.48668729390E+01 1.52409533448E+01 1.56243867702E+01 1.60174043987E+01 1.64202424722E+01 1.68331441166E+01 1.72563555037E+01 1.76901320328E+01 1.81347316190E+01 1.85904229925E+01 1.90574761482E+01 1.95361699143E+01 2.00267914225E+01 2.05296311565E+01 2.10449894665E+01 2.15731713922E+01 2.21144905522E+01 2.26692680771E+01 2.32378316181E+01 2.38205171545E+01 2.44176688854E+01 2.50296375439E+01 2.56567844337E+01 2.62994759888E+01 2.69580899582E+01 2.76330113217E+01 2.83246352894E+01 2.90333632025E+01 2.97596100118E+01 3.05037960027E+01 3.12663516285E+01 3.20477210750E+01 3.28483528367E+01 3.36687101829E+01 3.45092646234E+01 3.53704970085E+01 3.62529021546E+01 3.71569828365E+01 3.80832550489E+01 3.90322438510E+01 4.00044888624E+01 4.10005389044E+01 4.20209560764E+01 4.30663136173E+01 4.41371980724E+01 4.52342099619E+01 4.63579572106E+01 4.75090686281E+01 4.86881781841E+01 4.98959393825E+01 5.11330150770E+01 5.24000857930E+01 5.36978427371E+01 5.50269927475E+01 5.63882565864E+01 5.77823705076E+01 5.92100839843E+01 6.06721637235E+01 6.21693883417E+01 6.37025543440E+01 6.52724722926E+01 6.68799697470E+01 6.85258885707E+01 7.02110864138E+01 7.19364400563E+01 7.37028361339E+01 7.55111854136E+01 7.73624090582E+01 7.92574470216E+01 8.11972558076E+01 8.31828081848E+01 8.52150932148E+01 8.72951182851E+01 8.94239060879E+01 9.16024963416E+01 9.38319443436E+01 9.61133255302E+01 9.84477278307E+01 1.00836258628E+02 1.03280041211E+02 1.05780212225E+02 1.08337929862E+02 1.10954363217E+02 1.13630700109E+02 1.16368142484E+02 1.19167907506E+02 1.22031226960E+02 1.24959348512E+02 1.27953531570E+02 1.31015050807E+02 1.34145192745E+02 1.37345256135E+02 1.40616552724E+02 1.43960404104E+02 1.47378144714E+02 1.50871113723E+02 1.54440663476E+02 1.58088151900E+02 1.61814943899E+02 1.65622410464E+02 1.69511927063E+02 1.73484870226E+02 1.77542620701E+02 1.81686558316E+02 1.85918062926E+02 1.90238509276E+02 1.94649270154E+02 1.99151709360E+02 2.03747184179E+02 2.08437040188E+02 2.13222609238E+02 2.18105210183E+02 2.23086142473E+02 2.28166685618E+02 2.33348095754E+02 2.38631603685E+02 2.44018408495E+02 2.49509678506E+02 2.55106548035E+02 2.60810105102E+02 2.66621401454E+02 2.72541436301E+02 2.78571158268E+02 2.84711460007E+02 2.90963171827E+02 2.97327061281E+02 3.03803818549E+02 3.10394063446E+02 3.17098330583E+02 3.23917066671E+02 3.30850624254E+02 3.37899255359E+02 3.45063105466E+02 3.52342204446E+02 3.59736461856E+02 3.67245655690E+02 3.74869430739E+02 3.82607282631E+02 3.90458557606E+02 3.98422437197E+02 4.06497929122E+02 4.14683864973E+02 4.22978883698E+02 4.31381422004E+02 4.39889706593E+02 4.48501744640E+02 4.57215305271E+02 4.66027919542E+02 4.74936857111E+02 4.83939122434E+02 4.93031439182E+02 5.02210237360E+02 5.11471641381E+02 5.20811457780E+02 5.30225155240E+02 5.39707862920E+02 5.49254343825E+02 5.58858987727E+02 5.68515797213E+02 5.78218366559E+02 5.87959873859E+02 5.97733062849E+02 6.07530227454E+02 6.17343198608E+02 6.27163326542E+02 6.36981467818E+02 6.46787969970E+02 6.56572654517E+02 6.66324805308E+02 6.76033151941E+02 6.85685853549E+02 6.95270490548E+02 7.04774046773E+02 7.14182895955E+02 7.23482793532E+02 7.32658859665E+02 7.41695572902E+02 7.50576760333E+02 7.59285582358E+02 7.67804532123E+02 7.76115425436E+02 7.84199397601E+02 7.92036894547E+02 7.99607680060E+02 8.06890824777E+02 8.13864717266E+02 8.20507060624E+02 8.26794885755E+02 8.32704552546E+02 8.38211768495E+02 8.43291597630E+02 8.47918482105E+02 8.52066259023E+02 8.55708188769E+02 8.58816981191E+02 8.61364828370E+02 8.63323441244E+02 8.64664091290E+02 8.65357656741E+02 8.65374673763E+02 8.64685394007E+02 8.63259845126E+02 8.61067904485E+02 8.58079368905E+02 8.54264041421E+02 8.49591817590E+02 8.44032784940E+02 8.37557325327E+02 8.30136230403E+02 8.21740821978E+02 8.12343083790E+02 8.01915802264E+02 7.90432715202E+02 7.77868673659E+02 7.64199815040E+02 7.49403740981E+02 7.33459716082E+02 7.16348869222E+02 6.98054414539E+02 6.78561879915E+02 6.57859353260E+02 6.35937731450E+02 6.12790995308E+02 5.88416488191E+02 5.62815214134E+02 5.35992141769E+02 5.07956527521E+02 4.78722247007E+02 4.48308139794E+02 4.16738363342E+02 3.84042756736E+02 3.50257218070E+02 3.15424077587E+02 2.79592483420E+02 2.42818789473E+02 2.05166939963E+02 1.66708847488E+02 1.27524770604E+02 8.77036709545E+01 4.73435605516E+01 6.55181780004E+00 -3.45545177667E+01 -7.58484952489E+01 -1.17193042525E+02 -1.58440807561E+02 -1.99434070969E+02 -2.40004724582E+02 -2.79974341373E+02 -3.19154335153E+02 -3.57346244668E+02 -3.94342125226E+02 -4.29925097039E+02 -4.63870034447E+02 -4.95944442679E+02 -5.25909511222E+02 -5.53521382217E+02 -5.78532646486E+02 -6.00694077967E+02 -6.19756647873E+02 -6.35473813353E+02 -6.47604123732E+02 -6.55914157758E+02 -6.60181813611E+02 -6.60199981993E+02 -6.55780625140E+02 -6.46759286918E+02 -6.33000070017E+02 -6.14401097990E+02 -5.90900505581E+02 -5.62482976433E+02 -5.29186867934E+02 -4.91111943113E+02 -4.48427732190E+02 -4.01382535108E+02 -3.50313056050E+02 -2.95654635512E+02 -2.37952011515E+02 -1.77870478519E+02 -1.16207233850E+02 -5.39026030627E+01 7.94931872964E+00 6.80912717619E+01 1.25095587640E+02 1.77360354839E+02 2.23110665662E+02 2.60407189396E+02 2.87164989490E+02 3.01186436039E+02 3.00212841373E+02 2.82003724281E+02 2.44426088921E+02 1.85811955257E+02 1.03184999242E+02 1.18011392952E+01 -1.17001245352E+00 1.15999756620E-01 -1.15007048711E-02 1.14024771534E-03 -1.13064887949E-04 1.12144899339E-05 -1.10708629247E-06 9.39301362077E-08 1.11293422822E-08 -2.35835527026E-08 0.00000000000E+00 0.00000000000E+00 -2.33262637209E-01 -1.53962804588E-01 8.50000000000E-01 -3.39436687950E+01 -3.39436687985E+01 -3.39436687987E+01 -3.39436687988E+01 -3.39436687990E+01 -3.39436687992E+01 -3.39436687994E+01 -3.39436687996E+01 -3.39436687998E+01 -3.39436688000E+01 -3.39436688002E+01 -3.39436688004E+01 -3.39436688007E+01 -3.39436688009E+01 -3.39436688011E+01 -3.39436688014E+01 -3.39436688016E+01 -3.39436688019E+01 -3.39436688021E+01 -3.39436688024E+01 -3.39436688027E+01 -3.39436688029E+01 -3.39436688032E+01 -3.39436688035E+01 -3.39436688038E+01 -3.39436688041E+01 -3.39436688044E+01 -3.39436688048E+01 -3.39436688051E+01 -3.39436688055E+01 -3.39436688058E+01 -3.39436688062E+01 -3.39436688065E+01 -3.39436688069E+01 -3.39436688073E+01 -3.39436688077E+01 -3.39436688081E+01 -3.39436688085E+01 -3.39436688089E+01 -3.39436688094E+01 -3.39436688098E+01 -3.39436688103E+01 -3.39436688108E+01 -3.39436688112E+01 -3.39436688117E+01 -3.39436688123E+01 -3.39436688128E+01 -3.39436688133E+01 -3.39436688139E+01 -3.39436688144E+01 -3.39436688150E+01 -3.39436688156E+01 -3.39436688162E+01 -3.39436688168E+01 -3.39436688175E+01 -3.39436688181E+01 -3.39436688188E+01 -3.39436688195E+01 -3.39436688202E+01 -3.39436688209E+01 -3.39436688217E+01 -3.39436688224E+01 -3.39436688232E+01 -3.39436688240E+01 -3.39436688248E+01 -3.39436688257E+01 -3.39436688265E+01 -3.39436688274E+01 -3.39436688283E+01 -3.39436688292E+01 -3.39436688302E+01 -3.39436688312E+01 -3.39436688322E+01 -3.39436688332E+01 -3.39436688342E+01 -3.39436688353E+01 -3.39436688364E+01 -3.39436688376E+01 -3.39436688387E+01 -3.39436688399E+01 -3.39436688411E+01 -3.39436688424E+01 -3.39436688437E+01 -3.39436688450E+01 -3.39436688464E+01 -3.39436688477E+01 -3.39436688492E+01 -3.39436688506E+01 -3.39436688521E+01 -3.39436688536E+01 -3.39436688552E+01 -3.39436688568E+01 -3.39436688585E+01 -3.39436688602E+01 -3.39436688619E+01 -3.39436688637E+01 -3.39436688655E+01 -3.39436688674E+01 -3.39436688693E+01 -3.39436688713E+01 -3.39436688733E+01 -3.39436688753E+01 -3.39436688775E+01 -3.39436688796E+01 -3.39436688819E+01 -3.39436688841E+01 -3.39436688865E+01 -3.39436688889E+01 -3.39436688913E+01 -3.39436688939E+01 -3.39436688965E+01 -3.39436688991E+01 -3.39436689018E+01 -3.39436689046E+01 -3.39436689075E+01 -3.39436689104E+01 -3.39436689134E+01 -3.39436689165E+01 -3.39436689197E+01 -3.39436689229E+01 -3.39436689262E+01 -3.39436689296E+01 -3.39436689331E+01 -3.39436689367E+01 -3.39436689404E+01 -3.39436689442E+01 -3.39436689480E+01 -3.39436689520E+01 -3.39436689560E+01 -3.39436689602E+01 -3.39436689645E+01 -3.39436689688E+01 -3.39436689733E+01 -3.39436689779E+01 -3.39436689826E+01 -3.39436689875E+01 -3.39436689924E+01 -3.39436689975E+01 -3.39436690027E+01 -3.39436690081E+01 -3.39436690135E+01 -3.39436690192E+01 -3.39436690249E+01 -3.39436690308E+01 -3.39436690369E+01 -3.39436690431E+01 -3.39436690494E+01 -3.39436690560E+01 -3.39436690627E+01 -3.39436690695E+01 -3.39436690765E+01 -3.39436690838E+01 -3.39436690911E+01 -3.39436690987E+01 -3.39436691065E+01 -3.39436691145E+01 -3.39436691226E+01 -3.39436691310E+01 -3.39436691396E+01 -3.39436691484E+01 -3.39436691574E+01 -3.39436691667E+01 -3.39436691762E+01 -3.39436691859E+01 -3.39436691959E+01 -3.39436692061E+01 -3.39436692166E+01 -3.39436692273E+01 -3.39436692384E+01 -3.39436692497E+01 -3.39436692613E+01 -3.39436692731E+01 -3.39436692853E+01 -3.39436692978E+01 -3.39436693106E+01 -3.39436693237E+01 -3.39436693372E+01 -3.39436693510E+01 -3.39436693652E+01 -3.39436693797E+01 -3.39436693945E+01 -3.39436694098E+01 -3.39436694254E+01 -3.39436694415E+01 -3.39436694579E+01 -3.39436694747E+01 -3.39436694920E+01 -3.39436695097E+01 -3.39436695279E+01 -3.39436695465E+01 -3.39436695656E+01 -3.39436695852E+01 -3.39436696052E+01 -3.39436696258E+01 -3.39436696469E+01 -3.39436696685E+01 -3.39436696907E+01 -3.39436697134E+01 -3.39436697367E+01 -3.39436697606E+01 -3.39436697851E+01 -3.39436698102E+01 -3.39436698360E+01 -3.39436698624E+01 -3.39436698894E+01 -3.39436699172E+01 -3.39436699456E+01 -3.39436699748E+01 -3.39436700047E+01 -3.39436700354E+01 -3.39436700668E+01 -3.39436700990E+01 -3.39436701320E+01 -3.39436701659E+01 -3.39436702006E+01 -3.39436702362E+01 -3.39436702727E+01 -3.39436703101E+01 -3.39436703485E+01 -3.39436703878E+01 -3.39436704281E+01 -3.39436704695E+01 -3.39436705118E+01 -3.39436705553E+01 -3.39436705998E+01 -3.39436706455E+01 -3.39436706923E+01 -3.39436707402E+01 -3.39436707894E+01 -3.39436708399E+01 -3.39436708916E+01 -3.39436709446E+01 -3.39436709989E+01 -3.39436710546E+01 -3.39436711117E+01 -3.39436711702E+01 -3.39436712302E+01 -3.39436712917E+01 -3.39436713548E+01 -3.39436714195E+01 -3.39436714857E+01 -3.39436715537E+01 -3.39436716233E+01 -3.39436716947E+01 -3.39436717679E+01 -3.39436718429E+01 -3.39436719198E+01 -3.39436719986E+01 -3.39436720794E+01 -3.39436721623E+01 -3.39436722472E+01 -3.39436723342E+01 -3.39436724234E+01 -3.39436725149E+01 -3.39436726086E+01 -3.39436727047E+01 -3.39436728032E+01 -3.39436729042E+01 -3.39436730077E+01 -3.39436731138E+01 -3.39436732225E+01 -3.39436733339E+01 -3.39436734482E+01 -3.39436735652E+01 -3.39436736853E+01 -3.39436738083E+01 -3.39436739343E+01 -3.39436740635E+01 -3.39436741960E+01 -3.39436743317E+01 -3.39436744708E+01 -3.39436746134E+01 -3.39436747595E+01 -3.39436749093E+01 -3.39436750628E+01 -3.39436752201E+01 -3.39436753813E+01 -3.39436755465E+01 -3.39436757158E+01 -3.39436758893E+01 -3.39436760671E+01 -3.39436762493E+01 -3.39436764361E+01 -3.39436766274E+01 -3.39436768235E+01 -3.39436770244E+01 -3.39436772303E+01 -3.39436774413E+01 -3.39436776575E+01 -3.39436778790E+01 -3.39436781060E+01 -3.39436783385E+01 -3.39436785768E+01 -3.39436788209E+01 -3.39436790711E+01 -3.39436793274E+01 -3.39436795899E+01 -3.39436798589E+01 -3.39436801345E+01 -3.39436804168E+01 -3.39436807060E+01 -3.39436810023E+01 -3.39436813058E+01 -3.39436816167E+01 -3.39436819352E+01 -3.39436822614E+01 -3.39436825955E+01 -3.39436829378E+01 -3.39436832883E+01 -3.39436836474E+01 -3.39436840151E+01 -3.39436843917E+01 -3.39436847773E+01 -3.39436851723E+01 -3.39436855768E+01 -3.39436859909E+01 -3.39436864150E+01 -3.39436868493E+01 -3.39436872940E+01 -3.39436877492E+01 -3.39436882154E+01 -3.39436886926E+01 -3.39436891811E+01 -3.39436896813E+01 -3.39436901933E+01 -3.39436907173E+01 -3.39436912538E+01 -3.39436918028E+01 -3.39436923648E+01 -3.39436929399E+01 -3.39436935285E+01 -3.39436941308E+01 -3.39436947472E+01 -3.39436953778E+01 -3.39436960231E+01 -3.39436966833E+01 -3.39436973587E+01 -3.39436980496E+01 -3.39436987564E+01 -3.39436994793E+01 -3.39437002187E+01 -3.39437009748E+01 -3.39437017482E+01 -3.39437025389E+01 -3.39437033475E+01 -3.39437041741E+01 -3.39437050193E+01 -3.39437058832E+01 -3.39437067663E+01 -3.39437076688E+01 -3.39437085913E+01 -3.39437095338E+01 -3.39437104970E+01 -3.39437114810E+01 -3.39437124862E+01 -3.39437135131E+01 -3.39437145618E+01 -3.39437156328E+01 -3.39437167265E+01 -3.39437178431E+01 -3.39437189830E+01 -3.39437201466E+01 -3.39437213341E+01 -3.39437225459E+01 -3.39437237824E+01 -3.39437250438E+01 -3.39437263304E+01 -3.39437276425E+01 -3.39437289804E+01 -3.39437303445E+01 -3.39437317349E+01 -3.39437331519E+01 -3.39437345957E+01 -3.39437360666E+01 -3.39437375647E+01 -3.39437390902E+01 -3.39437406433E+01 -3.39437422242E+01 -3.39437438328E+01 -3.39437454694E+01 -3.39437471339E+01 -3.39437488264E+01 -3.39437505468E+01 -3.39437522952E+01 -3.39437540713E+01 -3.39437558751E+01 -3.39437577064E+01 -3.39437595649E+01 -3.39437614504E+01 -3.39437633624E+01 -3.39437653007E+01 -3.39437672647E+01 -3.39437692539E+01 -3.39437712676E+01 -3.39437733052E+01 -3.39437753659E+01 -3.39437774488E+01 -3.39437795530E+01 -3.39437816773E+01 -3.39437838206E+01 -3.39437859815E+01 -3.39437881588E+01 -3.39437903507E+01 -3.39437925556E+01 -3.39437947718E+01 -3.39437969970E+01 -3.39437992293E+01 -3.39438014662E+01 -3.39438037052E+01 -3.39438059436E+01 -3.39438081785E+01 -3.39438104066E+01 -3.39438126246E+01 -3.39438148287E+01 -3.39438170152E+01 -3.39438191797E+01 -3.39438213178E+01 -3.39438234246E+01 -3.39438254950E+01 -3.39438275235E+01 -3.39438295042E+01 -3.39438314309E+01 -3.39438332968E+01 -3.39438350947E+01 -3.39438368172E+01 -3.39438384561E+01 -3.39438400029E+01 -3.39438414482E+01 -3.39438427825E+01 -3.39438439953E+01 -3.39438450757E+01 -3.39438460120E+01 -3.39438467918E+01 -3.39438474019E+01 -3.39438478284E+01 -3.39438480564E+01 -3.39438480704E+01 -3.39438478536E+01 -3.39438473884E+01 -3.39438466561E+01 -3.39438456371E+01 -3.39438443103E+01 -3.39438426536E+01 -3.39438406435E+01 -3.39438382553E+01 -3.39438354627E+01 -3.39438322379E+01 -3.39438285516E+01 -3.39438243728E+01 -3.39438196687E+01 -3.39438144047E+01 -3.39438085441E+01 -3.39438020483E+01 -3.39437948764E+01 -3.39437869854E+01 -3.39437783296E+01 -3.39437688610E+01 -3.39437585289E+01 -3.39437472797E+01 -3.39437350570E+01 -3.39437218010E+01 -3.39437074489E+01 -3.39436919344E+01 -3.39436751874E+01 -3.39436571342E+01 -3.39436376970E+01 -3.39436167937E+01 -3.39435943379E+01 -3.39435702384E+01 -3.39435443992E+01 -3.39435167189E+01 -3.39434870910E+01 -3.39434554030E+01 -3.39434215364E+01 -3.39433853666E+01 -3.39433467622E+01 -3.39433055847E+01 -3.39432616883E+01 -3.39432149197E+01 -3.39431651172E+01 -3.39431121107E+01 -3.39430557209E+01 -3.39429957595E+01 -3.39429320279E+01 -3.39428643172E+01 -3.39427924075E+01 -3.39427160676E+01 -3.39426350540E+01 -3.39425491104E+01 -3.39424579676E+01 -3.39423613419E+01 -3.39422589351E+01 -3.39421504336E+01 -3.39420355074E+01 -3.39419138095E+01 -3.39417849751E+01 -3.39416486204E+01 -3.39415043419E+01 -3.39413517156E+01 -3.39411902953E+01 -3.39410196124E+01 -3.39408391739E+01 -3.39406484620E+01 -3.39404469320E+01 -3.39402340120E+01 -3.39400091005E+01 -3.39397715659E+01 -3.39395207441E+01 -3.39392559378E+01 -3.39389764140E+01 -3.39386814030E+01 -3.39383700962E+01 -3.39380416442E+01 -3.39376951550E+01 -3.39373296917E+01 -3.39369442705E+01 -3.39365378584E+01 -3.39361093706E+01 -3.39356576685E+01 -3.39351815564E+01 -3.39346797794E+01 -3.39341510202E+01 -3.39335938961E+01 -3.39330069560E+01 -3.39323886773E+01 -3.39317374621E+01 -3.39310516337E+01 -3.39303294333E+01 -3.39295690154E+01 -3.39287684445E+01 -3.39279256902E+01 -3.39270386231E+01 -3.39261050101E+01 -3.39251225094E+01 -3.39240886657E+01 -3.39230009048E+01 -3.39218565280E+01 -3.39206527063E+01 -3.39193864750E+01 -3.39180547265E+01 -3.39166542045E+01 -3.39151814970E+01 -3.39136330291E+01 -3.39120050560E+01 -3.39102936546E+01 -3.39084947163E+01 -3.39066039383E+01 -3.39046168147E+01 -3.39025286280E+01 -3.39003344393E+01 -3.38980290787E+01 -3.38956071353E+01 -3.38930629464E+01 -3.38903905865E+01 -3.38875838564E+01 -3.38846362708E+01 -3.38815410465E+01 -3.38782910895E+01 -3.38748789818E+01 -3.38712969678E+01 -3.38675369400E+01 -3.38635904249E+01 -3.38594485669E+01 -3.38551021136E+01 -3.38505413989E+01 -3.38457563266E+01 -3.38407363530E+01 -3.38354704690E+01 -3.38299471821E+01 -3.38241544968E+01 -3.38180798959E+01 -3.38117103198E+01 -3.38050321464E+01 -3.37980311696E+01 -3.37906925782E+01 -3.37830009332E+01 -3.37749401458E+01 -3.37664934536E+01 -3.37576433981E+01 -3.37483718000E+01 -3.37386597354E+01 -3.37284875114E+01 -3.37178346413E+01 -3.37066798199E+01 -3.36950008988E+01 -3.36827748617E+01 -3.36699777995E+01 -3.36565848868E+01 -3.36425703577E+01 -3.36279074832E+01 -3.36125685495E+01 -3.35965248364E+01 -3.35797465990E+01 -3.35622030498E+01 -3.35438623434E+01 -3.35246915643E+01 -3.35046567171E+01 -3.34837227215E+01 -3.34618534105E+01 -3.34390115348E+01 -3.34151587726E+01 -3.33902557468E+01 -3.33642620505E+01 -3.33371362813E+01 -3.33088360876E+01 -3.32793182270E+01 -3.32485386397E+01 -3.32164525387E+01 -3.31830145196E+01 -3.31481786939E+01 -3.31118988472E+01 -3.30741286283E+01 -3.30348217732E+01 -3.29939323691E+01 -3.29514151643E+01 -3.29072259321E+01 -3.28613218958E+01 -3.28136622249E+01 -3.27642086125E+01 -3.27129259472E+01 -3.26597830919E+01 -3.26047537869E+01 -3.25478176934E+01 -3.24889615975E+01 -3.24281807955E+01 -3.23654806822E+01 -3.23008785647E+01 -3.22344057223E+01 -3.21661097300E+01 -3.20960570548E+01 -3.20243359196E+01 -3.19510594108E+01 -3.18763687671E+01 -3.18004367376E+01 -3.17234708197E+01 -3.16457160788E+01 -3.15674570965E+01 -3.14890183874E+01 -3.14107623463E+01 -3.13362861527E+01 -3.13400594947E+01 -3.14068086782E+01 -3.13781017377E+01 -3.12642154594E+01 -3.11448843447E+01 -3.10198566172E+01 -3.08888415899E+01 -3.07515109811E+01 -3.06075028632E+01 -3.04564285372E+01 -3.02978824228E+01 -3.01314548040E+01 -2.99567469869E+01 -2.97733881512E+01 -2.95810529428E+01 -2.93794786823E+01 -2.91684809969E+01 -2.89479667105E+01 -2.87179429735E+01 -2.84785218518E+01 -2.82299199278E+01 -2.79724528548E+01 -2.77065252388E+01 -2.74326166358E+01 -2.71512648190E+01 -2.68630477234E+01 -2.65685655703E+01 -2.62684245998E+01 -2.59632235811E+01 -2.56535438912E+01 -2.53399434977E+01 -2.50229547376E+01 -2.47030854103E+01 -2.43808224491E+01 -2.40566373137E+01 -2.37309922461E+01 -2.34043466280E+01 -2.30771628297E+01 -2.27499111104E+01 -2.24230732977E+01 -2.20971451119E+01 -2.17726371079E+01 -2.14500742782E+01 -2.11299944027E+01 -2.08129452471E+01 -2.04994807144E+01 -2.01901560438E+01 -1.98855221365E+01 -1.95861190748E+01 -1.92924688901E+01 -1.90050676255E+01 -1.87243767396E+01 -1.84508139083E+01 -1.81847432895E+01 -1.79264653507E+01 -1.76762063878E+01 -1.74341079156E+01 -1.72002161742E+01 -1.69744720690E+01 -1.67567019627E+01 -1.65466098491E+01 -1.63437715813E+01 -1.61476319904E+01 -1.59575059286E+01 -1.57725845023E+01 -1.55919480317E+01 -1.54145875941E+01 -1.52394373821E+01 -1.50654205413E+01 -1.48915116678E+01 -1.47168197432E+01 -1.45406959853E+01 -1.43628719245E+01 -1.41838095371E+01 -1.40054928496E+01 -1.38303989105E+01 -1.36584158358E+01 -1.34887343987E+01 -1.33211627512E+01 -1.31556744402E+01 -1.29922433677E+01 -1.28308437838E+01 -1.26714502803E+01 -1.25140377839E+01 -1.23585815503E+01 -1.22050571579E+01 -1.20534405027E+01 -1.19037077924E+01 -1.17558355414E+01 -1.16098005653E+01 -1.14655799767E+01 -1.13231511800E+01 -1.11824918670E+01 -1.10435800125E+01 -1.09063938703E+01 -1.07709119684E+01 -1.06371131060E+01 -1.05049763485E+01 -1.03744810248E+01 -1.02456067228E+01 -1.01183332863E+01 -9.99264081121E+00 -9.86850964236E+00 -9.74592037006E+00 -9.62485382683E+00 -9.50529108424E+00 -9.38721344978E+00 -9.27060246375E+00 -9.15543989628E+00 -9.04170774438E+00 -8.92938822902E+00 -8.81833695289E+00 -8.70866105281E+00 -8.60060983263E+00 -8.49390324223E+00 -8.38839204141E+00 -8.28419143270E+00 -8.18128513879E+00 -8.07965708457E+00 -7.97929139453E+00 -7.88017239031E+00 -7.78228458821E+00 -7.68561269676E+00 -7.59014161431E+00 -7.49585642669E+00 -7.40274240482E+00 -7.31078500248E+00 -7.21996985396E+00 -7.13028277175E+00 -7.04170974460E+00 -6.95423693510E+00 -6.86785067757E+00 -6.78253747598E+00 -6.69828400179E+00 -6.61507709196E+00 -6.53290374683E+00 -6.45175112814E+00 -6.37160655704E+00 -6.29245751210E+00 -6.21429162742E+00 -6.13709669067E+00 -6.06086064125E+00 -5.98557156837E+00 -5.91121770926E+00 -5.83778744733E+00 -5.76526931037E+00 -5.69365196880E+00 -5.62292423387E+00 -5.55307505599E+00 -5.48409352294E+00 -5.41596885825E+00 -5.34869041946E+00 -5.28224769650E+00 -5.21663031004E+00 -5.15182800982E+00 -5.08783067312E+00 -5.02462830310E+00 -4.96221102727E+00 -4.90056909588E+00 -4.83969288043E+00 -4.77957287212E+00 -4.72019968034E+00 -4.66156403116E+00 -4.60365676589E+00 -4.54646883961E+00 -4.48999131970E+00 -4.43421538444E+00 -4.37913232161E+00 -4.32473352707E+00 -4.27101050344E+00 -4.21795485869E+00 -4.16555830483E+00 -4.11381265661E+00 -4.06270983019E+00 -4.01224184190E+00 -3.96240080692E+00 -3.91317893813E+00 -3.86456854479E+00 -3.81656203141E+00 -3.76915189652E+00 -3.72233073152E+00 -3.67609121956E+00 -3.63042613436E+00 -3.58532833913E+00 -3.54079078548E+00 -3.49680651232E+00 -3.45336864483E+00 -3.41047039340E+00 -3.36810505259E+00 -3.32626600012E+00 -3.28494669591E+00 -3.24414068102E+00 -3.20384157675E+00 -3.16404308360E+00 -3.12473898038E+00 -3.08592312324E+00 -3.04758944473E+00 -3.00973195290E+00 -2.97234473033E+00 -2.93542193328E+00 -2.89895779077E+00 -2.86294660367E+00 -2.82738274383E+00 -2.79226065320E+00 -2.75757484296E+00 -2.72331989264E+00 -2.68949044931E+00 -2.65608122670E+00 -2.62308700437E+00 -2.59050262686E+00 -2.55832300295E+00 -2.52654310474E+00 -2.49515796694E+00 -2.46416268604E+00 -2.43355241953E+00 -2.40332238515E+00 -2.37346786010E+00 -2.34398418030E+00 -2.31486673969E+00 -2.28611098942E+00 -2.25771243719E+00 -2.22966664654E+00 -2.20196923612E+00 -2.17461587898E+00 -2.14760230197E+00 -2.12092428496E+00 -2.09457766028E+00 -2.06855831197E+00 -2.04286217521E+00 -2.01748523564E+00 -1.99242352874E+00 -1.96767313922E+00 -1.94323020039E+00 -1.91909089356E+00 -1.89525144747E+00 -1.87170813765E+00 -1.84845728590E+00 -1.82549525965E+00 -1.80281847146E+00 -1.78042337839E+00 -1.75830648151E+00 -1.73646432533E+00 -1.71489349725E+00 -1.69359062705E+00 -1.67255238634E+00 -1.65177548807E+00 -1.63125668598E+00 -1.61099277415E+00 -1.59098058644E+00 -1.57121699603E+00 -1.55169891493E+00 -1.53242329350E+00 -1.51338711994E+00 -1.49458741990E+00 -1.47602125591E+00 -1.45768572702E+00 -1.43957796829E+00 -1.42169515035E+00 -1.40403447898E+00 -1.38659319466E+00 -1.36936857214E+00 -1.35235792001E+00 -1.33555858029E+00 -1.31896792801E+00 -1.30258337081E+00 -1.28640234850E+00 -1.27042233273E+00 -1.25464082652E+00 -1.23905536390E+00 -1.22366351111E+00 -1.20846285983E+00 -1.19345103655E+00 -1.17862569556E+00 -1.16398452029E+00 -1.14952522294E+00 -1.13524554415E+00 -1.12114325258E+00 -1.10721614465E+00 -1.09346204413E+00 -1.07987880182E+00 -1.06646429522E+00 -1.05321642821E+00 -1.04013322424E+00 -1.02721185580E+00 -1.01445161171E+00 -1.00184989178E+00 -9.89404712920E-01 -9.77114130536E-01 -9.64976224202E-01 -9.52989097347E-01 -9.41150876958E-01 -9.29459713291E-01 -9.17913779578E-01 -9.06511273468E-01 -8.95250409711E-01 -8.84129430646E-01 -8.73146598599E-01 -8.62300197479E-01 -8.51588532515E-01 -8.41009950219E-01 -8.30562756700E-01 -8.20245340306E-01 -8.10056088920E-01 -7.99993410450E-01 -7.90055732583E-01 -7.80241502536E-01 -7.70549186815E-01 -7.60977270977E-01 -7.51524259389E-01 -7.42188675008E-01 -7.32969050986E-01 -7.23863963202E-01 -7.14871980635E-01 -7.05991698269E-01 -6.97221728543E-01 -6.88560701130E-01 -6.80007262728E-01 -6.71560076844E-01 -6.63217823588E-01 -6.54979199467E-01 -6.46842917178E-01 -6.38807705411E-01 -6.30872308648E-01 -6.23035486966E-01 -6.15296015847E-01 -6.07652685959E-01 -6.00104303063E-01 -5.92649687685E-01 -5.85287675028E-01 -5.78017114760E-01 -5.70836870842E-01 -5.63745821347E-01 -5.56742858283E-01 -5.49826887423E-01 -5.42996828134E-01 -5.36251613203E-01 -5.29590188678E-01 -5.23011513698E-01 -5.16514560330E-01 -5.10098313414E-01 -5.03761770397E-01 -4.97503941181E-01 -4.91323847969E-01 -4.85220525107E-01 -4.79193018939E-01 -4.73240387656E-01 -4.67361701146E-01 -4.61556040853E-01 -4.55822499630E-01 -4.50160181600E-01 -4.44568202014E-01 -4.39045687114E-01 -4.33591773997E-01 -4.28205610476E-01 -4.22886354953E-01 -4.17633176283E-01 -4.12445253646E-01 -4.07321776420E-01 -4.02261944050E-01 -3.97264965927E-01 -3.92330061264E-01 -3.87456458970E-01 -3.82643397537E-01 -3.77890124913E-01 -3.73195898390E-01 -3.68559984485E-01 -3.63981658828E-01 -3.59460206045E-01 -3.54994919651E-01 -3.50585101935E-01 -3.46230063855E-01 -3.41929124927E-01 -3.37681613120E-01 -3.33486864752E-01 -3.29344224385E-01 -3.25253044724E-01 -3.21212686512E-01 -3.17222518436E-01 -3.13281917024E-01 -3.09390266549E-01 -3.05546958933E-01 -3.01751393650E-01 -2.98002977637E-01 -2.94301125196E-01 -2.90645257903E-01 -2.87034804524E-01 -2.83469200917E-01 -2.79947889949E-01 -2.76470321409E-01 -2.73035951919E-01 -2.69644244852E-01 -2.66294670247E-01 -2.62986704725E-01 -2.59719831412E-01 -2.56493539850E-01 -2.53307325926E-01 -2.50160691787E-01 -2.47053145765E-01 -2.43984202300E-01 -2.40953381862E-01 -2.37960210881E-01 -2.35004221667E-01 -2.32084952341E-01 -2.29201946760E-01 -2.26354754450E-01 -2.23542930531E-01 -2.20766035650E-01 -2.18023635911E-01 -2.15315302809E-01 -2.12640613160E-01 -2.09999149040E-01 -2.07390497715E-01 -2.04814251577E-01 -2.02270008082E-01 -1.99757369687E-01 -1.97275943788E-01 -1.94825342657E-01 -1.92405183381E-01 -1.90015087807E-01 -1.87654682477E-01 -1.85323598573E-01 -1.83021471859E-01 -1.80747942621E-01 -1.78502655618E-01 -1.76285260017E-01 -1.74095409347E-01 -1.71932761439E-01 -1.69796978375E-01 -1.67687726434E-01 -1.65604676042E-01 -1.63547501717E-01 -1.61515882022E-01 -1.59509499512E-01 -1.57528040686E-01 -1.55571195936E-01 -1.53638659503E-01 -1.51730129423E-01 -1.49845307484E-01 -1.47983899179E-01 -1.46145613660E-01 -1.44330163690E-01 -1.42537265602E-01 -1.40766639252E-01 -1.39018007975E-01 -1.37291098545E-01 -1.35585641128E-01 -1.33901369244E-01 -1.32238019721E-01 -1.30595332658E-01 -1.28973051381E-01 -1.27370922406E-01 -1.25788695397E-01 -1.24226123127E-01 -1.22682961441E-01 -1.21158969218E-01 3.73032926838E-09 3.82476387436E-09 3.92158914843E-09 4.02086561293E-09 4.12265532244E-09 4.22702190260E-09 4.33403058986E-09 4.44374827227E-09 4.55624353131E-09 4.67158668476E-09 4.78984983066E-09 4.91110689238E-09 5.03543366486E-09 5.16290786197E-09 5.29360916511E-09 5.42761927303E-09 5.56502195291E-09 5.70590309272E-09 5.85035075495E-09 5.99845523163E-09 6.15030910082E-09 6.30600728448E-09 6.46564710781E-09 6.62932836012E-09 6.79715335720E-09 6.96922700535E-09 7.14565686689E-09 7.32655322751E-09 7.51202916515E-09 7.70220062076E-09 7.89718647077E-09 8.09710860144E-09 8.30209198508E-09 8.51226475817E-09 8.72775830152E-09 8.94870732241E-09 9.17524993883E-09 9.40752776587E-09 9.64568600423E-09 9.88987353111E-09 1.01402429932E-08 1.03969509023E-08 1.06601577330E-08 1.09300280232E-08 1.12067304770E-08 1.14904380701E-08 1.17813281581E-08 1.20795825875E-08 1.23853878091E-08 1.26989349949E-08 1.30204201578E-08 1.33500442738E-08 1.36880134081E-08 1.40345388436E-08 1.43898372135E-08 1.47541306365E-08 1.51276468559E-08 1.55106193819E-08 1.59032876379E-08 1.63058971101E-08 1.67186995011E-08 1.71419528877E-08 1.75759218816E-08 1.80208777959E-08 1.84770988140E-08 1.89448701642E-08 1.94244842980E-08 1.99162410731E-08 2.04204479409E-08 2.09374201392E-08 2.14674808890E-08 2.20109615972E-08 2.25682020638E-08 2.31395506946E-08 2.37253647191E-08 2.43260104143E-08 2.49418633339E-08 2.55733085431E-08 2.62207408600E-08 2.68845651026E-08 2.75651963419E-08 2.82630601622E-08 2.89785929274E-08 2.97122420538E-08 3.04644662907E-08 3.12357360075E-08 3.20265334880E-08 3.28373532326E-08 3.36687022678E-08 3.45211004638E-08 3.53950808601E-08 3.62911899991E-08 3.72099882687E-08 3.81520502530E-08 3.91179650924E-08 4.01083368526E-08 4.11237849030E-08 4.21649443046E-08 4.32324662079E-08 4.43270182611E-08 4.54492850281E-08 4.65999684178E-08 4.77797881235E-08 4.89894820744E-08 5.02298068979E-08 5.15015383937E-08 5.28054720202E-08 5.41424233933E-08 5.55132287977E-08 5.69187457107E-08 5.83598533406E-08 5.98374531776E-08 6.13524695593E-08 6.29058502501E-08 6.44985670362E-08 6.61316163347E-08 6.78060198189E-08 6.95228250592E-08 7.12831061805E-08 7.30879645362E-08 7.49385293994E-08 7.68359586716E-08 7.87814396094E-08 8.07761895704E-08 8.28214567767E-08 8.49185210993E-08 8.70686948616E-08 8.92733236635E-08 9.15337872269E-08 9.38515002624E-08 9.62279133580E-08 9.86645138906E-08 1.01162826961E-07 1.03724416352E-07 1.06350885514E-07 1.09043878566E-07 1.11805081341E-07 1.14636222434E-07 1.17539074298E-07 1.20515454355E-07 1.23567226142E-07 1.26696300481E-07 1.29904636684E-07 1.33194243785E-07 1.36567181806E-07 1.40025563054E-07 1.43571553452E-07 1.47207373903E-07 1.50935301689E-07 1.54757671907E-07 1.58676878942E-07 1.62695377975E-07 1.66815686532E-07 1.71040386074E-07 1.75372123623E-07 1.79813613433E-07 1.84367638705E-07 1.89037053344E-07 1.93824783761E-07 1.98733830723E-07 2.03767271245E-07 2.08928260541E-07 2.14220034016E-07 2.19645909312E-07 2.25209288408E-07 2.30913659770E-07 2.36762600565E-07 2.42759778921E-07 2.48908956253E-07 2.55213989646E-07 2.61678834299E-07 2.68307546035E-07 2.75104283873E-07 2.82073312665E-07 2.89219005807E-07 2.96545848014E-07 3.04058438168E-07 3.11761492246E-07 3.19659846312E-07 3.27758459598E-07 3.36062417656E-07 3.44576935602E-07 3.53307361430E-07 3.62259179427E-07 3.71438013663E-07 3.80849631585E-07 3.90499947694E-07 4.00395027322E-07 4.10541090507E-07 4.20944515969E-07 4.31611845192E-07 4.42549786606E-07 4.53765219885E-07 4.65265200356E-07 4.77056963519E-07 4.89147929690E-07 5.01545708764E-07 5.14258105106E-07 5.27293122561E-07 5.40658969609E-07 5.54364064643E-07 5.68417041396E-07 5.82826754501E-07 5.97602285211E-07 6.12752947254E-07 6.28288292854E-07 6.44218118911E-07 6.60552473334E-07 6.77301661558E-07 6.94476253218E-07 7.12087089013E-07 7.30145287741E-07 7.48662253533E-07 7.67649683272E-07 7.87119574209E-07 8.07084231789E-07 8.27556277683E-07 8.48548658030E-07 8.70074651912E-07 8.92147880043E-07 9.14782313701E-07 9.37992283897E-07 9.61792490792E-07 9.86198013369E-07 1.01122431936E-06 1.03688727547E-06 1.06320315780E-06 1.09018866269E-06 1.11786091771E-06 1.14623749304E-06 1.17533641314E-06 1.20517616873E-06 1.23577572912E-06 1.26715455484E-06 1.29933261065E-06 1.33233037890E-06 1.36616887327E-06 1.40086965285E-06 1.43645483666E-06 1.47294711853E-06 1.51036978244E-06 1.54874671823E-06 1.58810243783E-06 1.62846209181E-06 1.66985148658E-06 1.71229710189E-06 1.75582610895E-06 1.80046638900E-06 1.84624655243E-06 1.89319595842E-06 1.94134473518E-06 1.99072380071E-06 2.04136488419E-06 2.09330054800E-06 2.14656421031E-06 2.20119016840E-06 2.25721362257E-06 2.31467070081E-06 2.37359848416E-06 2.43403503279E-06 2.49601941289E-06 2.55959172427E-06 2.62479312888E-06 2.69166588004E-06 2.76025335265E-06 2.83060007420E-06 2.90275175680E-06 2.97675533005E-06 3.05265897501E-06 3.13051215907E-06 3.21036567198E-06 3.29227166290E-06 3.37628367860E-06 3.46245670276E-06 3.55084719661E-06 3.64151314061E-06 3.73451407764E-06 3.82991115729E-06 3.92776718169E-06 4.02814665272E-06 4.13111582061E-06 4.23674273416E-06 4.34509729248E-06 4.45625129841E-06 4.57027851353E-06 4.68725471503E-06 4.80725775428E-06 4.93036761742E-06 5.05666648769E-06 5.18623880996E-06 5.31917135724E-06 5.45555329939E-06 5.59547627401E-06 5.73903445976E-06 5.88632465198E-06 6.03744634086E-06 6.19250179219E-06 6.35159613079E-06 6.51483742674E-06 6.68233678451E-06 6.85420843502E-06 7.03056983094E-06 7.21154174510E-06 7.39724837235E-06 7.58781743485E-06 7.78338029104E-06 7.98407204828E-06 8.19003167953E-06 8.40140214398E-06 8.61833051195E-06 8.84096809422E-06 9.06947057583E-06 9.30399815470E-06 9.54471568517E-06 9.79179282668E-06 1.00454041977E-05 1.03057295356E-05 1.05729538613E-05 1.08472676516E-05 1.11288670160E-05 1.14179538812E-05 1.17147361820E-05 1.20194280594E-05 1.23322500658E-05 1.26534293781E-05 1.29832000188E-05 1.33218030852E-05 1.36694869878E-05 1.40265076968E-05 1.43931289991E-05 1.47696227646E-05 1.51562692225E-05 1.55533572486E-05 1.59611846641E-05 1.63800585451E-05 1.68102955451E-05 1.72522222297E-05 1.77061754248E-05 1.81725025779E-05 1.86515621350E-05 1.91437239309E-05 1.96493695970E-05 2.01688929838E-05 2.07027006014E-05 2.12512120778E-05 2.18148606358E-05 2.23940935888E-05 2.29893728578E-05 2.36011755091E-05 2.42299943146E-05 2.48763383346E-05 2.55407335261E-05 2.62237233749E-05 2.69258695556E-05 2.76477526186E-05 2.83899727060E-05 2.91531502984E-05 2.99379269929E-05 3.07449663142E-05 3.15749545608E-05 3.24286016871E-05 3.33066422237E-05 3.42098362374E-05 3.51389703325E-05 3.60948586956E-05 3.70783441866E-05 3.80902994763E-05 3.91316282347E-05 4.02032663708E-05 4.13061833279E-05 4.24413834352E-05 4.36099073199E-05 4.48128333820E-05 4.60512793344E-05 4.73264038123E-05 4.86394080543E-05 4.99915376590E-05 5.13840844209E-05 5.28183882492E-05 5.42958391727E-05 5.58178794363E-05 5.73860056927E-05 5.90017712933E-05 6.06667886845E-05 6.23827319132E-05 6.41513392466E-05 6.59744159140E-05 6.78538369725E-05 6.97915503073E-05 7.17895797686E-05 7.38500284554E-05 7.59750821505E-05 7.81670129157E-05 8.04281828544E-05 8.27610480500E-05 8.51681626875E-05 8.76521833690E-05 9.02158736313E-05 9.28621086749E-05 9.55938803170E-05 9.84143021765E-05 1.01326615104E-04 1.04334192870E-04 1.07440548118E-04 1.10649338607E-04 1.13964373741E-04 1.17389621417E-04 1.20929215195E-04 1.24587461809E-04 1.28368849041E-04 1.32278053961E-04 1.36319951575E-04 1.40499623872E-04 1.44822369320E-04 1.49293712802E-04 1.53919416043E-04 1.58705488527E-04 1.63658198946E-04 1.68784087202E-04 1.74089976976E-04 1.79582988920E-04 1.85270554471E-04 1.91160430345E-04 1.97260713718E-04 2.03579858157E-04 2.10126690310E-04 2.16910427413E-04 2.23940695641E-04 2.31227549352E-04 2.38781491263E-04 2.46613493611E-04 2.54735020336E-04 2.63158050346E-04 2.71895101917E-04 2.80959258273E-04 2.90364194418E-04 3.00124205272E-04 3.10254235182E-04 3.20769908861E-04 3.31687563850E-04 3.43024284549E-04 3.54797937922E-04 3.67027210929E-04 3.79731649797E-04 3.92931701203E-04 4.06648755463E-04 4.20905191838E-04 4.35724426043E-04 4.51130960081E-04 4.67150434508E-04 4.83809683247E-04 5.01136791083E-04 5.19161153958E-04 5.37913542214E-04 5.57426166916E-04 5.77732749419E-04 5.98868594316E-04 6.20870665955E-04 6.43777668680E-04 6.67630130981E-04 6.92470493747E-04 7.18343202817E-04 7.45294806029E-04 7.73374055004E-04 8.02632011865E-04 8.33122161151E-04 8.64900527171E-04 8.98025797050E-04 9.32559449742E-04 9.68565891310E-04 1.00611259675E-03 1.04527025869E-03 1.08611294327E-03 1.12871825359E-03 1.17316750099E-03 1.21954588468E-03 1.26794267994E-03 1.31845143549E-03 1.37117018021E-03 1.42620163998E-03 1.48365346476E-03 1.54363846665E-03 1.60627486935E-03 1.67168656954E-03 1.74000341069E-03 1.81136147006E-03 1.88590335926E-03 1.96377853915E-03 2.04514364969E-03 2.13016285544E-03 2.21900820743E-03 2.31186002208E-03 2.40890727807E-03 2.51034803184E-03 2.61638985265E-03 2.72725027805E-03 2.84315729066E-03 2.96434981723E-03 3.09107825095E-03 3.22360499809E-03 3.36220504998E-03 3.50716658144E-03 3.65879157690E-03 3.81739648529E-03 3.98331290507E-03 4.15688830057E-03 4.33848675110E-03 4.52848973417E-03 4.72729694416E-03 4.93532714819E-03 5.15301908046E-03 5.38083237684E-03 5.61924855130E-03 5.86877201589E-03 6.12993114610E-03 6.40327939332E-03 6.68939644639E-03 6.98888944417E-03 7.30239424100E-03 7.63057672738E-03 7.97413420768E-03 8.33379683737E-03 8.71032912168E-03 9.10453147837E-03 9.51724186664E-03 9.94933748474E-03 1.04017365388E-02 1.08754000853E-02 1.13713339497E-02 1.18905907242E-02 1.24342718470E-02 1.30035297653E-02 1.35995701863E-02 1.42236544171E-02 1.48771017976E-02 1.55612922293E-02 1.62776688013E-02 1.70277405186E-02 1.78130851339E-02 1.86353520864E-02 1.94962655503E-02 2.03976275960E-02 2.13413214664E-02 2.23293149715E-02 2.33636640034E-02 2.44465161749E-02 2.55801145837E-02 2.67668017043E-02 2.80090234104E-02 2.93093331300E-02 3.06703961340E-02 3.20949939606E-02 3.35860289775E-02 3.51465290818E-02 3.67796525389E-02 3.84886929617E-02 4.02770844287E-02 4.21484067420E-02 4.41063908241E-02 4.61549242512E-02 4.82980569231E-02 5.05400068660E-02 5.28851661649E-02 5.53381070233E-02 5.79035879439E-02 6.05865600264E-02 6.33921733753E-02 6.63257836109E-02 6.93929584751E-02 7.25994845225E-02 7.59513738868E-02 7.94548711096E-02 8.31164600202E-02 8.69428706492E-02 9.09410861630E-02 9.51183497977E-02 9.94821717764E-02 1.04040336186E-01 1.08800907790E-01 1.13772238757E-01 1.18962975269E-01 1.24382063985E-01 1.30038758329E-01 1.35942624566E-01 1.42103547625E-01 1.48531736639E-01 1.55237730147E-01 1.62232400925E-01 1.69526960387E-01 1.77132962513E-01 1.85062307245E-01 1.93327243293E-01 2.01940370293E-01 2.10914640255E-01 2.20263358220E-01 2.30000182077E-01 2.40139121451E-01 2.50694535580E-01 2.61681130124E-01 2.73113952794E-01 2.85008387734E-01 2.97380148561E-01 3.10245269964E-01 3.23620097783E-01 3.37521277449E-01 3.51965740713E-01 3.66970690534E-01 3.82553584048E-01 3.98732113509E-01 4.15524185087E-01 4.32947895438E-01 4.51021505936E-01 4.69763414463E-01 4.89192124670E-01 5.09326212604E-01 5.30184290618E-01 5.51784968474E-01 5.74146811564E-01 5.97288296170E-01 6.21227761710E-01 6.45983359907E-01 6.71573000838E-01 6.98014295846E-01 7.25324497272E-01 7.53520435038E-01 7.82618450067E-01 8.12634324596E-01 8.43583209420E-01 8.75479548156E-01 9.08336998616E-01 9.42168351418E-01 9.76985445987E-01 1.01279908412E+00 1.04961894133E+00 1.08745347619E+00 1.12630983801E+00 1.16619377303E+00 1.20710952961E+00 1.24905976270E+00 1.29204543803E+00 1.33606573643E+00 1.38111795887E+00 1.42719743258E+00 1.47429741894E+00 1.52240902359E+00 1.57152110961E+00 1.62162021408E+00 1.67269046902E+00 1.72471352722E+00 1.77766849375E+00 1.83153186389E+00 1.88627746819E+00 1.94187642555E+00 1.99829710489E+00 2.05550509638E+00 2.11346319285E+00 2.17213138215E+00 2.23146685126E+00 2.29142400270E+00 2.35195448400E+00 2.41300723071E+00 2.47452852371E+00 2.53646206099E+00 2.59874904454E+00 2.66132828259E+00 2.72413630735E+00 2.78710750841E+00 2.85017428187E+00 2.91326719491E+00 2.97631516557E+00 3.03924565750E+00 3.10198488875E+00 3.16445805424E+00 3.22658956064E+00 3.28830327287E+00 3.34952277056E+00 3.41017161330E+00 3.47017361273E+00 3.52945310954E+00 3.58793525335E+00 3.64554628284E+00 3.70221380366E+00 3.75786706111E+00 3.81243720457E+00 3.86585754015E+00 3.91806376808E+00 3.96899420096E+00 4.01858995872E+00 4.06679513619E+00 4.11355693866E+00 4.15882578090E+00 4.20255534486E+00 4.24470259119E+00 4.28522771965E+00 4.32409407346E+00 4.36126798266E+00 4.39671854164E+00 4.43041731595E+00 4.46233797404E+00 4.49245583929E+00 4.52074735851E+00 4.54718948283E+00 4.57175895779E+00 4.59443151957E+00 4.61518099473E+00 4.63397830156E+00 4.65079035158E+00 4.66557885044E+00 4.67829899839E+00 4.68889809122E+00 4.69731402408E+00 4.70347370177E+00 4.70729136131E+00 4.70866681463E+00 4.70748362278E+00 4.70363212355E+00 4.69709091122E+00 4.68786622120E+00 4.67596908041E+00 4.66141527973E+00 4.64422533198E+00 4.62442441568E+00 4.60204230486E+00 4.57711328505E+00 4.54967605615E+00 4.51977362222E+00 4.48745316897E+00 4.45276592933E+00 4.41576703765E+00 4.37651537328E+00 4.33507339401E+00 4.29150696024E+00 4.24588515045E+00 4.19828006884E+00 4.14876664586E+00 4.09742243241E+00 4.04432738864E+00 3.98956366798E+00 3.93321539746E+00 3.87536845496E+00 3.81611024434E+00 3.75552946928E+00 3.69371590656E+00 3.63076017971E+00 3.56675353369E+00 3.50178761152E+00 3.43595423348E+00 3.36934517961E+00 3.30205197632E+00 3.23416568762E+00 3.16577671169E+00 3.09697458332E+00 3.02784778276E+00 2.95845420008E+00 2.88890941328E+00 2.81929768895E+00 2.74970154733E+00 2.68020161018E+00 2.61087645760E+00 2.54180249387E+00 2.47305382267E+00 2.40470213188E+00 2.33681658793E+00 2.26946373992E+00 2.20270743362E+00 2.13660873511E+00 2.07122586438E+00 2.00661413857E+00 1.94282592488E+00 1.87991060305E+00 1.81791453721E+00 1.75688105698E+00 1.69685044761E+00 1.63785994891E+00 1.57994376278E+00 1.52313306912E+00 1.46745604969E+00 1.41293791985E+00 1.35960096764E+00 1.30746460008E+00 1.25654539624E+00 1.20685716673E+00 1.15841101929E+00 1.11121543016E+00 1.06527632066E+00 1.02059713883E+00 9.77178945489E-01 9.35020504494E-01 8.94118376663E-01 8.54467016953E-01 8.16058874482E-01 7.78884494925E-01 7.42932624854E-01 7.08190317570E-01 6.74643039975E-01 6.42274780050E-01 6.11068154486E-01 5.81004516045E-01 5.52064060226E-01 5.24225930821E-01 4.97468323976E-01 4.71768590375E-01 4.47103335191E-01 4.23448515477E-01 4.00779534685E-01 3.79071334039E-01 3.58298480505E-01 3.38435251143E-01 3.19455713643E-01 3.01333802901E-01 2.84043393489E-01 2.67558367938E-01 2.51852680770E-01 2.36900418229E-01 2.22675853727E-01 2.09153499011E-01 1.96308151112E-01 1.84114935132E-01 1.72549342990E-01 1.61587268215E-01 1.51205036937E-01 1.41379435220E-01 1.32087732902E-01 1.23307704104E-01 1.15017644614E-01 1.07196386303E-01 9.98233087987E-02 9.28783485857E-02 8.63420057384E-02 8.01953484802E-02 7.44200157522E-02 6.89982179785E-02 6.39127362017E-02 5.91469197581E-02 5.46846826496E-02 5.05104987615E-02 4.66093960627E-02 4.29669499142E-02 3.95692756022E-02 3.64030201958E-02 3.34553538240E-02 3.07139604518E-02 2.81670282258E-02 2.58032394518E-02 2.36117602555E-02 2.15822299721E-02 1.97047503016E-02 1.79698742622E-02 1.63685949687E-02 1.48923342575E-02 1.35329311798E-02 1.22826303784E-02 1.11340703654E-02 1.00802717140E-02 9.11462518133E-03 8.23087977376E-03 7.42313077297E-03 6.68580773622E-03 6.01366248882E-03 5.40175712593E-03 4.84545204276E-03 4.34039401242E-03 3.88250433221E-03 3.46796705924E-03 3.09321735706E-03 2.75492997516E-03 2.45000788318E-03 2.17557108141E-03 1.92894560891E-03 1.70765276963E-03 1.50939859618E-03 1.33206356971E-03 1.17369261306E-03 1.03248537299E-03 9.06786805583E-04 7.95078077248E-04 6.95967792117E-04 6.08183554619E-04 5.30563874276E-04 4.62050417897E-04 4.01680612468E-04 3.48580600303E-04 3.01958546236E-04 2.61098295007E-04 2.25353375402E-04 1.94141346277E-04 1.66938478213E-04 1.43274763320E-04 1.22729244644E-04 1.04925655580E-04 8.95283589386E-05 7.62385745122E-05 6.47908834691E-05 5.49499973976E-05 4.65077795018E-05 3.92805052140E-05 3.31063493743E-05 2.78430871018E-05 2.33659955579E-05 1.95659439574E-05 1.63476594106E-05 1.36281564807E-05 1.13353186915E-05 9.40662062624E-06 7.78797970064E-06 6.43272717117E-06 5.30068844051E-06 4.35736324210E-06 3.57319681679E-06 2.92293373070E-06 2.38504652000E-06 1.94123187958E-06 1.57596763381E-06 1.27612423723E-06 1.03062504560E-06 8.30150071361E-07 6.66878390788E-07 5.34264800841E-07 4.26846730390E-07 3.40077793211E-07 2.70184727863E-07 2.14044802424E-07 1.69081070364E-07 1.33173866355E-07 1.04589672923E-07 8.19028822379E-08 6.39506641282E-08 4.97880217274E-08 3.86493208682E-08 2.99161579360E-08 2.30906065265E-08 1.77730136694E-08 1.36436315471E-08 1.04474719457E-08 7.98185946954E-09 6.08623707411E-09 4.63384489787E-09 3.52495181671E-09 2.68136958984E-09 2.03247093591E-09 1.53838778137E-09 1.16016694392E-09 8.71702597299E-10 6.52512942001E-10 4.86589073769E-10 3.61465828477E-10 2.67474750732E-10 1.97145877697E-10 1.44730619727E-10 1.05822771749E-10 7.70587103184E-11 5.58812172744E-11 4.03542094267E-11 2.90180185391E-11 2.07768335940E-11 1.48115376657E-11 1.05125069773E-11 7.42803082216E-12 5.22489937880E-12 3.65842601089E-12 2.54975057453E-12 1.76873532478E-12 1.22113608001E-12 8.39025867010E-13 5.73680905576E-13 3.90321569398E-13 2.64243819344E-13 1.77987676982E-13 1.19275206908E-13 7.95165553324E-14 5.27331494800E-14 3.47856333954E-14 2.28232293084E-14 1.48931237639E-14 9.66487439352E-15 6.23703455182E-15 4.00222071556E-15 2.55348856061E-15 1.61974053049E-15 1.02141891760E-15 6.40290595127E-16 3.98962968130E-16 2.47079855169E-16 1.52075066448E-16 9.30166798491E-17 5.65342437236E-17 3.41409527703E-17 2.04841482573E-17 1.22096409806E-17 7.22927302173E-18 4.25164207597E-18 2.48343176999E-18 1.44060162987E-18 8.29839112919E-19 4.74639579718E-19 2.69535077457E-19 1.51952790154E-19 8.50363028015E-20 4.72348047699E-20 2.60400130704E-20 1.42462424480E-20 7.73388566228E-21 4.16573024956E-21 2.22606420943E-21 1.18003259611E-21 6.20463411570E-22 3.23563656126E-22 1.67332248739E-22 8.58085020974E-23 4.36280282003E-23 2.19906816208E-23 1.09875863364E-23 5.44137280343E-24 2.67059910161E-24 1.29883446937E-24 6.25884273687E-25 2.98798910819E-25 1.41305053775E-25 6.61878735418E-26 3.07035715448E-26 1.41037995879E-26 6.41455426136E-27 2.88818926525E-27 1.28723734498E-27 5.67818763927E-28 2.47869213527E-28 1.07063165635E-28 4.57514012411E-29 1.93400238383E-29 8.08609087299E-30 3.34340674339E-30 1.36693547799E-30 5.52526966665E-31 2.20771642043E-31 8.71875233219E-32 3.40269282049E-32 1.31215095528E-32 4.99887179117E-33 1.88113949439E-33 6.99139180241E-34 2.56585377248E-34 9.29730152586E-35 3.32559184137E-35 1.17407916053E-35 4.09044648860E-36 1.40610111911E-36 4.76827817621E-37 1.59489307494E-37 5.26079469123E-38 1.71097953425E-38 5.48573580381E-39 1.73357858825E-39 5.39873156640E-40 1.65653064289E-40 5.00709387371E-41 1.49062525289E-41 4.36983083964E-42 1.26121774044E-42 3.58310584784E-43 1.00181396429E-43 2.75603717507E-44 7.45873505645E-45 1.98535360763E-45 5.19651841917E-46 1.33720249761E-46 3.38219803171E-47 8.40666808310E-48 2.05294100562E-48 4.92447827178E-49 1.16005195951E-49 2.68305244975E-50 6.09137289452E-51 1.35716937944E-51 2.96676415738E-52 6.36147859177E-53 1.33768499058E-53 2.75780600612E-54 5.57287937148E-55 1.10355067254E-55 2.14087290801E-56 4.06783502309E-57 7.56826051054E-58 1.37839643539E-58 2.45686402643E-59 4.28448999445E-60 7.30817289839E-61 1.21895956317E-61 1.98755065170E-62 3.16717170604E-63 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.22802814186E-06 1.25911581836E-06 1.29099048293E-06 1.32367205827E-06 1.35718097141E-06 1.39153816649E-06 1.42676511786E-06 1.46288384349E-06 1.49991691874E-06 1.53788749047E-06 1.57681929150E-06 1.61673665545E-06 1.65766453195E-06 1.69962850222E-06 1.74265479510E-06 1.78677030338E-06 1.83200260066E-06 1.87837995858E-06 1.92593136445E-06 1.97468653943E-06 2.02467595704E-06 2.07593086227E-06 2.12848329105E-06 2.18236609032E-06 2.23761293855E-06 2.29425836677E-06 2.35233778016E-06 2.41188748021E-06 2.47294468735E-06 2.53554756427E-06 2.59973523975E-06 2.66554783311E-06 2.73302647931E-06 2.80221335462E-06 2.87315170303E-06 2.94588586323E-06 3.02046129636E-06 3.09692461441E-06 3.17532360936E-06 3.25570728304E-06 3.33812587776E-06 3.42263090773E-06 3.50927519124E-06 3.59811288366E-06 3.68919951133E-06 3.78259200624E-06 3.87834874160E-06 3.97652956835E-06 4.07719585255E-06 4.18041051377E-06 4.28623806436E-06 4.39474464982E-06 4.50599809013E-06 4.62006792211E-06 4.73702544293E-06 4.85694375464E-06 4.97989780988E-06 5.10596445870E-06 5.23522249663E-06 5.36775271390E-06 5.50363794593E-06 5.64296312516E-06 5.78581533405E-06 5.93228385959E-06 6.08246024904E-06 6.23643836721E-06 6.39431445507E-06 6.55618718994E-06 6.72215774715E-06 6.89232986330E-06 7.06680990106E-06 7.24570691567E-06 7.42913272312E-06 7.61720197000E-06 7.81003220518E-06 8.00774395327E-06 8.21046078997E-06 8.41830941928E-06 8.63141975271E-06 8.84992499048E-06 9.07396170475E-06 9.30366992501E-06 9.53919322559E-06 9.78067881538E-06 1.00282776299E-05 1.02821444254E-05 1.05424378761E-05 1.08093206728E-05 1.10829596248E-05 1.13635257644E-05 1.16511944532E-05 1.19461454923E-05 1.22485632344E-05 1.25586366992E-05 1.28765596910E-05 1.32025309208E-05 1.35367541294E-05 1.38794382156E-05 1.42307973663E-05 1.45910511906E-05 1.49604248569E-05 1.53391492338E-05 1.57274610340E-05 1.61256029630E-05 1.65338238699E-05 1.69523789036E-05 1.73815296721E-05 1.78215444056E-05 1.82726981250E-05 1.87352728128E-05 1.92095575901E-05 1.96958488970E-05 2.01944506778E-05 2.07056745710E-05 2.12298401044E-05 2.17672748943E-05 2.23183148507E-05 2.28833043869E-05 2.34625966349E-05 2.40565536662E-05 2.46655467181E-05 2.52899564253E-05 2.59301730585E-05 2.65865967677E-05 2.72596378327E-05 2.79497169192E-05 2.86572653420E-05 2.93827253343E-05 3.01265503243E-05 3.08892052186E-05 3.16711666925E-05 3.24729234884E-05 3.32949767205E-05 3.41378401887E-05 3.50020406996E-05 3.58881183954E-05 3.67966270916E-05 3.77281346234E-05 3.86832232002E-05 3.96624897698E-05 4.06665463914E-05 4.16960206178E-05 4.27515558880E-05 4.38338119292E-05 4.49434651690E-05 4.60812091584E-05 4.72477550049E-05 4.84438318172E-05 4.96701871609E-05 5.09275875252E-05 5.22168188027E-05 5.35386867798E-05 5.48940176408E-05 5.62836584842E-05 5.77084778515E-05 5.91693662709E-05 6.06672368130E-05 6.22030256620E-05 6.37776927006E-05 6.53922221096E-05 6.70476229833E-05 6.87449299601E-05 7.04852038686E-05 7.22695323914E-05 7.40990307439E-05 7.59748423720E-05 7.78981396661E-05 7.98701246941E-05 8.18920299524E-05 8.39651191361E-05 8.60906879291E-05 8.82700648131E-05 9.05046118982E-05 9.27957257741E-05 9.51448383828E-05 9.75534179132E-05 1.00022969719E-04 1.02555037258E-04 1.05151203060E-04 1.07813089711E-04 1.10542360870E-04 1.13340722309E-04 1.16209922977E-04 1.19151756095E-04 1.22168060274E-04 1.25260720665E-04 1.28431670139E-04 1.31682890490E-04 1.35016413680E-04 1.38434323100E-04 1.41938754882E-04 1.45531899223E-04 1.49216001762E-04 1.52993364980E-04 1.56866349637E-04 1.60837376249E-04 1.64908926600E-04 1.69083545293E-04 1.73363841339E-04 1.77752489786E-04 1.82252233395E-04 1.86865884345E-04 1.91596326001E-04 1.96446514706E-04 2.01419481633E-04 2.06518334675E-04 2.11746260392E-04 2.17106525997E-04 2.22602481400E-04 2.28237561296E-04 2.34015287318E-04 2.39939270232E-04 2.46013212191E-04 2.52240909054E-04 2.58626252751E-04 2.65173233717E-04 2.71885943385E-04 2.78768576740E-04 2.85825434941E-04 2.93060928004E-04 3.00479577564E-04 3.08086019690E-04 3.15885007787E-04 3.23881415564E-04 3.32080240074E-04 3.40486604840E-04 3.49105763053E-04 3.57943100851E-04 3.67004140685E-04 3.76294544766E-04 3.85820118603E-04 3.95586814626E-04 4.05600735905E-04 4.15868139962E-04 4.26395442674E-04 4.37189222283E-04 4.48256223503E-04 4.59603361731E-04 4.71237727362E-04 4.83166590221E-04 4.95397404097E-04 5.07937811401E-04 5.20795647933E-04 5.33978947775E-04 5.47495948309E-04 5.61355095356E-04 5.75565048447E-04 5.90134686233E-04 6.05073112023E-04 6.20389659467E-04 6.36093898382E-04 6.52195640723E-04 6.68704946709E-04 6.85632131098E-04 7.02987769629E-04 7.20782705614E-04 7.39028056711E-04 7.57735221857E-04 7.76915888382E-04 7.96582039301E-04 8.16745960787E-04 8.37420249839E-04 8.58617822141E-04 8.80351920113E-04 9.02636121179E-04 9.25484346229E-04 9.48910868305E-04 9.72930321500E-04 9.97557710087E-04 1.02280841787E-03 1.04869821779E-03 1.07524328175E-03 1.10246019067E-03 1.13036594490E-03 1.15897797473E-03 1.18831415131E-03 1.21839279779E-03 1.24923270069E-03 1.28085312167E-03 1.31327380951E-03 1.34651501239E-03 1.38059749055E-03 1.41554252918E-03 1.45137195174E-03 1.48810813348E-03 1.52577401543E-03 1.56439311869E-03 1.60398955903E-03 1.64458806196E-03 1.68621397810E-03 1.72889329897E-03 1.77265267316E-03 1.81751942292E-03 1.86352156119E-03 1.91068780900E-03 1.95904761335E-03 2.00863116556E-03 2.05946942001E-03 2.11159411343E-03 2.16503778461E-03 2.21983379466E-03 2.27601634775E-03 2.33362051236E-03 2.39268224310E-03 2.45323840304E-03 2.51532678664E-03 2.57898614323E-03 2.64425620105E-03 2.71117769200E-03 2.77979237685E-03 2.85014307127E-03 2.92227367231E-03 2.99622918577E-03 3.07205575401E-03 3.14980068468E-03 3.22951248003E-03 3.31124086702E-03 3.39503682811E-03 3.48095263296E-03 3.56904187076E-03 3.65935948349E-03 3.75196179996E-03 3.84690657070E-03 3.94425300373E-03 4.04406180127E-03 4.14639519726E-03 4.25131699595E-03 4.35889261134E-03 4.46918910765E-03 4.58227524085E-03 4.69822150113E-03 4.81710015649E-03 4.93898529741E-03 5.06395288266E-03 5.19208078613E-03 5.32344884501E-03 5.45813890904E-03 5.59623489099E-03 5.73782281847E-03 5.88299088696E-03 6.03182951420E-03 6.18443139589E-03 6.34089156279E-03 6.50130743929E-03 6.66577890333E-03 6.83440834788E-03 7.00730074392E-03 7.18456370499E-03 7.36630755332E-03 7.55264538761E-03 7.74369315247E-03 7.93956970958E-03 8.14039691063E-03 8.34629967202E-03 8.55740605144E-03 8.77384732628E-03 8.99575807406E-03 9.22327625472E-03 9.45654329507E-03 9.69570417518E-03 9.94090751698E-03 1.01923056750E-02 1.04500548293E-02 1.07143150808E-02 1.09852505487E-02 1.12630294707E-02 1.15478243051E-02 1.18398118357E-02 1.21391732795E-02 1.24460943967E-02 1.27607656031E-02 1.30833820861E-02 1.34141439224E-02 1.37532561996E-02 1.41009291402E-02 1.44573782284E-02 1.48228243405E-02 1.51974938780E-02 1.55816189043E-02 1.59754372841E-02 1.63791928272E-02 1.67931354340E-02 1.72175212467E-02 1.76526128021E-02 1.80986791894E-02 1.85559962109E-02 1.90248465473E-02 1.95055199261E-02 1.99983132949E-02 2.05035309976E-02 2.10214849562E-02 2.15524948558E-02 2.20968883344E-02 2.26550011767E-02 2.32271775136E-02 2.38137700248E-02 2.44151401472E-02 2.50316582880E-02 2.56637040423E-02 2.63116664163E-02 2.69759440551E-02 2.76569454763E-02 2.83550893087E-02 2.90708045362E-02 2.98045307479E-02 3.05567183933E-02 3.13278290438E-02 3.21183356595E-02 3.29287228627E-02 3.37594872171E-02 3.46111375136E-02 3.54841950618E-02 3.63791939891E-02 3.72966815454E-02 3.82372184148E-02 3.92013790347E-02 4.01897519212E-02 4.12029400018E-02 4.22415609554E-02 4.33062475600E-02 4.43976480467E-02 4.55164264628E-02 4.66632630414E-02 4.78388545794E-02 4.90439148235E-02 5.02791748638E-02 5.15453835362E-02 5.28433078324E-02 5.41737333189E-02 5.55374645642E-02 5.69353255750E-02 5.83681602405E-02 5.98368327862E-02 6.13422282363E-02 6.28852528850E-02 6.44668347777E-02 6.60879242003E-02 6.77494941791E-02 6.94525409887E-02 7.11980846706E-02 7.29871695607E-02 7.48208648266E-02 7.67002650144E-02 7.86264906053E-02 8.06006885822E-02 8.26240330055E-02 8.46977255994E-02 8.68229963471E-02 8.90011040967E-02 9.12333371763E-02 9.35210140191E-02 9.58654837979E-02 9.82681270697E-02 1.00730356429E-01 1.03253617173E-01 1.05839387970E-01 1.08489181547E-01 1.11204545376E-01 1.13987062376E-01 1.16838351621E-01 1.19760069057E-01 1.22753908225E-01 1.25821600997E-01 1.28964918315E-01 1.32185670940E-01 1.35485710202E-01 1.38866928765E-01 1.42331261395E-01 1.45880685725E-01 1.49517223041E-01 1.53242939055E-01 1.57059944696E-01 1.60970396892E-01 1.64976499365E-01 1.69080503417E-01 1.73284708725E-01 1.77591464129E-01 1.82003168423E-01 1.86522271139E-01 1.91151273332E-01 1.95892728356E-01 2.00749242632E-01 2.05723476418E-01 2.10818144554E-01 2.16036017209E-01 2.21379920608E-01 2.26852737749E-01 2.32457409097E-01 2.38196933266E-01 2.44074367675E-01 2.50092829183E-01 2.56255494695E-01 2.62565601746E-01 2.69026449044E-01 2.75641396987E-01 2.82413868137E-01 2.89347347654E-01 2.96445383687E-01 3.03711587716E-01 3.11149634838E-01 3.18763264004E-01 3.26556278183E-01 3.34532544474E-01 3.42695994139E-01 3.51050622557E-01 3.59600489105E-01 3.68349716948E-01 3.77302492732E-01 3.86463066179E-01 3.95835749582E-01 4.05424917174E-01 4.15235004385E-01 4.25270506965E-01 4.35535979973E-01 4.46036036615E-01 4.56775346930E-01 4.67758636310E-01 4.78990683843E-01 4.90476320473E-01 5.02220426962E-01 5.14227931639E-01 5.26503807939E-01 5.39053071694E-01 5.51880778187E-01 5.64992018944E-01 5.78391918247E-01 5.92085629356E-01 6.06078330428E-01 6.20375220105E-01 6.34981512770E-01 6.49902433433E-01 6.65143212249E-01 6.80709078627E-01 6.96605254925E-01 7.12836949707E-01 7.29409350530E-01 7.46327616245E-01 7.63596868794E-01 7.81222184460E-01 7.99208584560E-01 8.17561025549E-01 8.36284388499E-01 8.55383467934E-01 8.74862959988E-01 8.94727449847E-01 9.14981398448E-01 9.35629128410E-01 9.56674809140E-01 9.78122441097E-01 9.99975839170E-01 1.02223861513E+00 1.04491415912E+00 1.06800562015E+00 1.09151588549E+00 1.11544755907E+00 1.13980293867E+00 1.16458399195E+00 1.18979233124E+00 1.21542918711E+00 1.24149538056E+00 1.26799129384E+00 1.29491683993E+00 1.32227143042E+00 1.35005394196E+00 1.37826268114E+00 1.40689534769E+00 1.43594899599E+00 1.46541999497E+00 1.49530398606E+00 1.52559583942E+00 1.55628960824E+00 1.58737848111E+00 1.61885473242E+00 1.65070967065E+00 1.68293358469E+00 1.71551568796E+00 1.74844406035E+00 1.78170558802E+00 1.81528590087E+00 1.84916930780E+00 1.88333872967E+00 1.91777562986E+00 1.95245994255E+00 1.98736999869E+00 2.02248244948E+00 2.05777218763E+00 2.09321226625E+00 2.12877381536E+00 2.16442595626E+00 2.20013571352E+00 2.23586792492E+00 2.27158514928E+00 2.30724757221E+00 2.34281291009E+00 2.37823631218E+00 2.41347026124E+00 2.44846447256E+00 2.48316579187E+00 2.51751809219E+00 2.55146216991E+00 2.58493564036E+00 2.61787283324E+00 2.65020468821E+00 2.68185865111E+00 2.71275857104E+00 2.74282459909E+00 2.77197308891E+00 2.80011649995E+00 2.82716330382E+00 2.85301789458E+00 2.87758050359E+00 2.90074711978E+00 2.92240941626E+00 2.94245468407E+00 2.96076577423E+00 2.97722104913E+00 2.99169434439E+00 3.00405494255E+00 3.01416755985E+00 3.02189234760E+00 3.02708490970E+00 3.02959633786E+00 3.02927326640E+00 3.02595794840E+00 3.01948835514E+00 3.00969830106E+00 2.99641759620E+00 2.97947222868E+00 2.95868457942E+00 2.93387367183E+00 2.90485545895E+00 2.87144315102E+00 2.83344758612E+00 2.79067764710E+00 2.74294072774E+00 2.69004325136E+00 2.63179124521E+00 2.56799097389E+00 2.49844963531E+00 2.42297612255E+00 2.34138185514E+00 2.25377374978E+00 2.16781733363E+00 2.08355838224E+00 2.00103920084E+00 1.92029856777E+00 1.84137168472E+00 1.76429013414E+00 1.68908184369E+00 1.61577105850E+00 1.54437832169E+00 1.47492046415E+00 1.40741060465E+00 1.34185816155E+00 1.27826887746E+00 1.21664485809E+00 1.15698462665E+00 1.09928319445E+00 1.04353214838E+00 9.89719755264E-01 9.37831082480E-01 8.87848133817E-01 8.39749998887E-01 7.93513013966E-01 7.49110931751E-01 7.06515097313E-01 6.65694627462E-01 6.26616590894E-01 5.89246186769E-01 5.53546919828E-01 5.19480770654E-01 4.87008360243E-01 4.56089108537E-01 4.26681386964E-01 3.98742665348E-01 3.72229653652E-01 3.47098439111E-01 3.23304619198E-01 3.00803430795E-01 2.79549875758E-01 2.59498842932E-01 2.40605226531E-01 2.22824040694E-01 2.06110529932E-01 1.90420275154E-01 1.75709294939E-01 1.61934141693E-01 1.49051992396E-01 1.37020733634E-01 1.25799040690E-01 1.15346450474E-01 1.05623428156E-01 9.65914273997E-02 8.82129441367E-02 8.04515638780E-02 7.32720026024E-02 6.66401412967E-02 6.05230542640E-02 5.48890313533E-02 4.97075942899E-02 4.49495073213E-02 4.05867824127E-02 3.65926792516E-02 3.29417003406E-02 2.96095814718E-02 2.65732778913E-02 2.38109464714E-02 2.13019242182E-02 1.90267034432E-02 1.69669039352E-02 1.51052424632E-02 1.34254999429E-02 1.19124865920E-02 1.05520053931E-02 9.33081417419E-03 8.23658660579E-03 7.25787240173E-03 6.38405699566E-03 5.60532095127E-03 4.91259934746E-03 4.29754136276E-03 3.75247026545E-03 3.27034399808E-03 2.84471652606E-03 2.46970010218E-03 2.13992858006E-03 1.85052189173E-03 1.59705178676E-03 1.37550891343E-03 1.18227130581E-03 1.01407432529E-03 8.67982090272E-04 7.41360413912E-04 6.31851257429E-04 5.37348694443E-04 4.55976371587E-04 3.86066441022E-04 3.26139932234E-04 2.74888523207E-04 2.31157664896E-04 1.93931007783E-04 1.62316075116E-04 1.35531124185E-04 1.12893134649E-04 9.38068613320E-05 7.77548881070E-05 6.42886193399E-05 5.30201458019E-05 4.36149229520E-05 3.57852009277E-05 2.92841474136E-05 2.39006067188E-05 1.94544408134E-05 1.57924007077E-05 1.27844793317E-05 1.03206999587E-05 8.30829715164E-06 6.66925016643E-06 5.33813167923E-06 4.26023759166E-06 3.38996647403E-06 2.68941991886E-06 2.12719767156E-06 1.67736387203E-06 1.31856306873E-06 1.03326684887E-06 8.07133961558E-07 6.28468693181E-07 4.87763987288E-07 3.77317387584E-07 2.90909326928E-07 2.23534592969E-07 1.71178979107E-07 1.30634185209E-07 9.93449738883E-08 7.52834233587E-08 5.68458552615E-08 4.27686637228E-08 3.20598383392E-08 2.39434666872E-08 1.78149288133E-08 1.32048640661E-08 9.75030624200E-09 7.17165247554E-09 5.25436028224E-09 3.83446082323E-09 2.78713947795E-09 2.01777138823E-09 1.45491351841E-09 1.04484928538E-09 7.47359869364E-10 5.32460478578E-10 3.77892327926E-10 2.67203821665E-10 1.88289047604E-10 1.32279599598E-10 9.27081357744E-11 6.48799553053E-11 4.54030770626E-11 3.16238587464E-11 2.19216977853E-11 1.51229966367E-11 1.03819786786E-11 7.09210152242E-12 4.82054202555E-12 3.25998917368E-12 2.19335374282E-12 1.46806729674E-12 9.77462645342E-13 6.47355860535E-13 4.26428399332E-13 2.79370347258E-13 1.82018817292E-13 1.17930002987E-13 7.59756142909E-14 4.86670994437E-14 3.09939601461E-14 1.96231018160E-14 1.23502405752E-14 7.72623862169E-15 4.80411161772E-15 2.96877462404E-15 1.82316925832E-15 1.11257263489E-15 6.74600927066E-16 4.06394444810E-16 2.43217876382E-16 1.44595336535E-16 8.53862299271E-17 5.00794287197E-17 2.91696760896E-17 1.68720095967E-17 9.69006639646E-18 5.52551416837E-18 3.12799047747E-18 1.75778277750E-18 9.80464370269E-19 5.42780851416E-19 2.98196168566E-19 1.62563361294E-19 8.79314148389E-20 4.71871135804E-20 2.51198692450E-20 1.32642304856E-20 6.94661194849E-21 3.60782393090E-21 1.85803297363E-21 9.48748702520E-22 4.80277247954E-22 2.41006438325E-22 1.19870766474E-22 5.90877611213E-23 2.88623983776E-23 1.39690973634E-23 6.69815394529E-24 3.18157342394E-24 1.49684692436E-24 6.97444058247E-25 3.21799388960E-25 1.47011580381E-25 6.64896983270E-26 2.97672686815E-26 1.31901601687E-26 5.78404377391E-27 2.50972861203E-27 1.07740306507E-27 4.57538619324E-28 1.92183696302E-28 7.98334607056E-29 3.27923583432E-29 1.33173718471E-29 5.34639099146E-30 2.12146847464E-30 8.31922176319E-31 3.22355329349E-31 1.23403653687E-31 4.66655460503E-32 1.74290288183E-32 6.42822426885E-33 2.34089262164E-33 8.41541213369E-34 2.98608814351E-34 1.04566415546E-34 3.61303623386E-35 1.23160129772E-35 4.14106447154E-36 1.37316668281E-36 4.48981421163E-37 1.44727417064E-37 4.59846722315E-38 1.43991467302E-38 4.44265246318E-39 1.35035944102E-39 4.04274558882E-40 1.19190299975E-40 3.45986645499E-41 9.88660250432E-42 2.78047149265E-42 7.69461144350E-43 2.09490318182E-43 5.60997936199E-44 1.47736742997E-44 3.82520303826E-45 9.73569120184E-46 2.43518443341E-46 5.98487326364E-47 1.44490785138E-47 3.42602310333E-48 7.97640118144E-49 1.82301664938E-49 4.08921875911E-50 9.00023733784E-51 1.94324715988E-51 4.11488621191E-52 8.54352808632E-53 1.73883706523E-53 3.46827855177E-54 6.77785616563E-55 1.29742566994E-55 2.43204406119E-56 4.46318444207E-57 8.01653806240E-58 1.40890021592E-58 2.42217885996E-59 4.07219796859E-60 6.69334601846E-61 1.07529100340E-61 1.68792116334E-62 2.58818438951E-63 3.87549413580E-64 5.66523677949E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.31873705302E-05 -4.37306011090E-05 -4.42806647000E-05 -4.48376472523E-05 -4.54016357964E-05 -4.59727184572E-05 -4.65509844682E-05 -4.71365241856E-05 -4.77294291017E-05 -4.83297918601E-05 -4.89377062694E-05 -4.95532673185E-05 -5.01765711908E-05 -5.08077152797E-05 -5.14467982039E-05 -5.20939198222E-05 -5.27491812499E-05 -5.34126848740E-05 -5.40845343693E-05 -5.47648347148E-05 -5.54536922102E-05 -5.61512144920E-05 -5.68575105509E-05 -5.75726907483E-05 -5.82968668341E-05 -5.90301519637E-05 -5.97726607159E-05 -6.05245091108E-05 -6.12858146279E-05 -6.20566962244E-05 -6.28372743539E-05 -6.36276709851E-05 -6.44280096211E-05 -6.52384153183E-05 -6.60590147063E-05 -6.68899360077E-05 -6.77313090577E-05 -6.85832653248E-05 -6.94459379315E-05 -7.03194616744E-05 -7.12039730461E-05 -7.20996102559E-05 -7.30065132516E-05 -7.39248237417E-05 -7.48546852169E-05 -7.57962429732E-05 -7.67496441340E-05 -7.77150376736E-05 -7.86925744401E-05 -7.96824071792E-05 -8.06846905581E-05 -8.16995811895E-05 -8.27272376560E-05 -8.37678205354E-05 -8.48214924251E-05 -8.58884179680E-05 -8.69687638781E-05 -8.80626989664E-05 -8.91703941677E-05 -9.02920225668E-05 -9.14277594258E-05 -9.25777822116E-05 -9.37422706234E-05 -9.49214066210E-05 -9.61153744532E-05 -9.73243606863E-05 -9.85485542337E-05 -9.97881463853E-05 -1.01043330837E-04 -1.02314303722E-04 -1.03601263640E-04 -1.04904411689E-04 -1.06223951498E-04 -1.07560089256E-04 -1.08913033746E-04 -1.10282996379E-04 -1.11670191223E-04 -1.13074835041E-04 -1.14497147322E-04 -1.15937350317E-04 -1.17395669072E-04 -1.18872331463E-04 -1.20367568235E-04 -1.21881613034E-04 -1.23414702446E-04 -1.24967076034E-04 -1.26538976374E-04 -1.28130649092E-04 -1.29742342908E-04 -1.31374309666E-04 -1.33026804383E-04 -1.34700085281E-04 -1.36394413831E-04 -1.38110054796E-04 -1.39847276266E-04 -1.41606349706E-04 -1.43387549997E-04 -1.45191155475E-04 -1.47017447981E-04 -1.48866712900E-04 -1.50739239208E-04 -1.52635319515E-04 -1.54555250116E-04 -1.56499331029E-04 -1.58467866051E-04 -1.60461162798E-04 -1.62479532756E-04 -1.64523291333E-04 -1.66592757903E-04 -1.68688255857E-04 -1.70810112658E-04 -1.72958659887E-04 -1.75134233296E-04 -1.77337172864E-04 -1.79567822844E-04 -1.81826531824E-04 -1.84113652776E-04 -1.86429543113E-04 -1.88774564745E-04 -1.91149084138E-04 -1.93553472364E-04 -1.95988105170E-04 -1.98453363026E-04 -2.00949631193E-04 -2.03477299776E-04 -2.06036763792E-04 -2.08628423226E-04 -2.11252683098E-04 -2.13909953523E-04 -2.16600649778E-04 -2.19325192364E-04 -2.22084007074E-04 -2.24877525061E-04 -2.27706182900E-04 -2.30570422662E-04 -2.33470691981E-04 -2.36407444125E-04 -2.39381138064E-04 -2.42392238545E-04 -2.45441216164E-04 -2.48528547440E-04 -2.51654714887E-04 -2.54820207092E-04 -2.58025518794E-04 -2.61271150955E-04 -2.64557610843E-04 -2.67885412112E-04 -2.71255074879E-04 -2.74667125807E-04 -2.78122098191E-04 -2.81620532035E-04 -2.85162974142E-04 -2.88749978197E-04 -2.92382104853E-04 -2.96059921824E-04 -2.99784003967E-04 -3.03554933376E-04 -3.07373299474E-04 -3.11239699101E-04 -3.15154736615E-04 -3.19119023978E-04 -3.23133180858E-04 -3.27197834725E-04 -3.31313620949E-04 -3.35481182896E-04 -3.39701172037E-04 -3.43974248043E-04 -3.48301078890E-04 -3.52682340968E-04 -3.57118719181E-04 -3.61610907059E-04 -3.66159606865E-04 -3.70765529704E-04 -3.75429395638E-04 -3.80151933796E-04 -3.84933882489E-04 -3.89775989330E-04 -3.94679011343E-04 -3.99643715090E-04 -4.04670876787E-04 -4.09761282429E-04 -4.14915727908E-04 -4.20135019147E-04 -4.25419972215E-04 -4.30771413468E-04 -4.36190179669E-04 -4.41677118124E-04 -4.47233086815E-04 -4.52858954533E-04 -4.58555601018E-04 -4.64323917095E-04 -4.70164804813E-04 -4.76079177591E-04 -4.82067960358E-04 -4.88132089701E-04 -4.94272514012E-04 -5.00490193635E-04 -5.06786101023E-04 -5.13161220884E-04 -5.19616550341E-04 -5.26153099090E-04 -5.32771889553E-04 -5.39473957049E-04 -5.46260349947E-04 -5.53132129840E-04 -5.60090371705E-04 -5.67136164081E-04 -5.74270609233E-04 -5.81494823331E-04 -5.88809936626E-04 -5.96217093626E-04 -6.03717453279E-04 -6.11312189157E-04 -6.19002489639E-04 -6.26789558102E-04 -6.34674613109E-04 -6.42658888603E-04 -6.50743634105E-04 -6.58930114905E-04 -6.67219612272E-04 -6.75613423648E-04 -6.84112862862E-04 -6.92719260331E-04 -7.01433963277E-04 -7.10258335939E-04 -7.19193759787E-04 -7.28241633746E-04 -7.37403374417E-04 -7.46680416300E-04 -7.56074212026E-04 -7.65586232585E-04 -7.75217967563E-04 -7.84970925377E-04 -7.94846633518E-04 -8.04846638792E-04 -8.14972507570E-04 -8.25225826035E-04 -8.35608200438E-04 -8.46121257353E-04 -8.56766643939E-04 -8.67546028202E-04 -8.78461099262E-04 -8.89513567626E-04 -9.00705165460E-04 -9.12037646867E-04 -9.23512788172E-04 -9.35132388203E-04 -9.46898268581E-04 -9.58812274017E-04 -9.70876272604E-04 -9.83092156121E-04 -9.95461840339E-04 -1.00798726533E-03 -1.02067039577E-03 -1.03351322127E-03 -1.04651775671E-03 -1.05968604252E-03 -1.07302014505E-03 -1.08652215692E-03 -1.10019419729E-03 -1.11403841229E-03 -1.12805697530E-03 -1.14225208735E-03 -1.15662597744E-03 -1.17118090296E-03 -1.18591914998E-03 -1.20084303369E-03 -1.21595489877E-03 -1.23125711973E-03 -1.24675210136E-03 -1.26244227908E-03 -1.27833011934E-03 -1.29441812008E-03 -1.31070881108E-03 -1.32720475440E-03 -1.34390854481E-03 -1.36082281023E-03 -1.37795021214E-03 -1.39529344601E-03 -1.41285524182E-03 -1.43063836443E-03 -1.44864561409E-03 -1.46687982689E-03 -1.48534387524E-03 -1.50404066836E-03 -1.52297315276E-03 -1.54214431273E-03 -1.56155717085E-03 -1.58121478849E-03 -1.60112026636E-03 -1.62127674500E-03 -1.64168740531E-03 -1.66235546913E-03 -1.68328419976E-03 -1.70447690253E-03 -1.72593692533E-03 -1.74766765925E-03 -1.76967253912E-03 -1.79195504408E-03 -1.81451869825E-03 -1.83736707127E-03 -1.86050377897E-03 -1.88393248398E-03 -1.90765689634E-03 -1.93168077421E-03 -1.95600792449E-03 -1.98064220348E-03 -2.00558751758E-03 -2.03084782400E-03 -2.05642713142E-03 -2.08232950070E-03 -2.10855904568E-03 -2.13511993381E-03 -2.16201638699E-03 -2.18925268226E-03 -2.21683315262E-03 -2.24476218780E-03 -2.27304423506E-03 -2.30168379999E-03 -2.33068544735E-03 -2.36005380191E-03 -2.38979354930E-03 -2.41990943687E-03 -2.45040627457E-03 -2.48128893589E-03 -2.51256235869E-03 -2.54423154624E-03 -2.57630156806E-03 -2.60877756095E-03 -2.64166472995E-03 -2.67496834932E-03 -2.70869376357E-03 -2.74284638852E-03 -2.77743171228E-03 -2.81245529641E-03 -2.84792277692E-03 -2.88383986546E-03 -2.92021235038E-03 -2.95704609796E-03 -2.99434705351E-03 -3.03212124260E-03 -3.07037477228E-03 -3.10911383231E-03 -3.14834469645E-03 -3.18807372371E-03 -3.22830735969E-03 -3.26905213794E-03 -3.31031468127E-03 -3.35210170322E-03 -3.39442000940E-03 -3.43727649902E-03 -3.48067816631E-03 -3.52463210207E-03 -3.56914549520E-03 -3.61422563425E-03 -3.65987990905E-03 -3.70611581237E-03 -3.75294094156E-03 -3.80036300024E-03 -3.84838980013E-03 -3.89702926274E-03 -3.94628942126E-03 -3.99617842238E-03 -4.04670452822E-03 -4.09787611826E-03 -4.14970169135E-03 -4.20218986770E-03 -4.25534939102E-03 -4.30918913057E-03 -4.36371808343E-03 -4.41894537663E-03 -4.47488026948E-03 -4.53153215590E-03 -4.58891056677E-03 -4.64702517241E-03 -4.70588578506E-03 -4.76550236142E-03 -4.82588500530E-03 -4.88704397028E-03 -4.94898966247E-03 -5.01173264333E-03 -5.07528363254E-03 -5.13965351096E-03 -5.20485332367E-03 -5.27089428307E-03 -5.33778777207E-03 -5.40554534734E-03 -5.47417874268E-03 -5.54369987245E-03 -5.61412083510E-03 -5.68545391676E-03 -5.75771159499E-03 -5.83090654257E-03 -5.90505163141E-03 -5.98015993658E-03 -6.05624474042E-03 -6.13331953676E-03 -6.21139803530E-03 -6.29049416607E-03 -6.37062208401E-03 -6.45179617370E-03 -6.53403105418E-03 -6.61734158396E-03 -6.70174286617E-03 -6.78725025374E-03 -6.87387935490E-03 -6.96164603872E-03 -7.05056644083E-03 -7.14065696933E-03 -7.23193431082E-03 -7.32441543670E-03 -7.41811760954E-03 -7.51305838970E-03 -7.60925564215E-03 -7.70672754345E-03 -7.80549258899E-03 -7.90556960039E-03 -8.00697773317E-03 -8.10973648461E-03 -8.21386570188E-03 -8.31938559038E-03 -8.42631672239E-03 -8.53468004593E-03 -8.64449689389E-03 -8.75578899349E-03 -8.86857847600E-03 -8.98288788676E-03 -9.09874019548E-03 -9.21615880695E-03 -9.33516757201E-03 -9.45579079887E-03 -9.57805326482E-03 -9.70198022826E-03 -9.82759744120E-03 -9.95493116202E-03 -1.00840081688E-02 -1.02148557729E-02 -1.03475018332E-02 -1.04819747705E-02 -1.06183035826E-02 -1.07565178599E-02 -1.08966478013E-02 -1.10387242309E-02 -1.11827786149E-02 -1.13288430792E-02 -1.14769504279E-02 -1.16271341618E-02 -1.17794284980E-02 -1.19338683896E-02 -1.20904895471E-02 -1.22493284592E-02 -1.24104224150E-02 -1.25738095273E-02 -1.27395287556E-02 -1.29076199308E-02 -1.30781237802E-02 -1.32510819538E-02 -1.34265370512E-02 -1.36045326489E-02 -1.37851133298E-02 -1.39683247121E-02 -1.41542134808E-02 -1.43428274185E-02 -1.45342154390E-02 -1.47284276208E-02 -1.49255152422E-02 -1.51255308172E-02 -1.53285281336E-02 -1.55345622911E-02 -1.57436897413E-02 -1.59559683295E-02 -1.61714573369E-02 -1.63902175252E-02 -1.66123111819E-02 -1.68378021678E-02 -1.70667559656E-02 -1.72992397305E-02 -1.75353223422E-02 -1.77750744590E-02 -1.80185685735E-02 -1.82658790701E-02 -1.85170822844E-02 -1.87722565653E-02 -1.90314823383E-02 -1.92948421712E-02 -1.95624208422E-02 -1.98343054105E-02 -2.01105852884E-02 -2.03913523168E-02 -2.06767008426E-02 -2.09667277992E-02 -2.12615327888E-02 -2.15612181688E-02 -2.18658891398E-02 -2.21756538373E-02 -2.24906234262E-02 -2.28109121982E-02 -2.31366376730E-02 -2.34679207024E-02 -2.38048855779E-02 -2.41476601420E-02 -2.44963759030E-02 -2.48511681535E-02 -2.52121760930E-02 -2.55795429547E-02 -2.59534161353E-02 -2.63339473306E-02 -2.67212926743E-02 -2.71156128817E-02 -2.75170733979E-02 -2.79258445512E-02 -2.83421017103E-02 -2.87660254476E-02 -2.91978017073E-02 -2.96376219783E-02 -3.00856834733E-02 -3.05421893128E-02 -3.10073487155E-02 -3.14813771936E-02 -3.19644967550E-02 -3.24569361111E-02 -3.29589308914E-02 -3.34707238640E-02 -3.39925651630E-02 -3.45247125224E-02 -3.50674315175E-02 -3.56209958128E-02 -3.61856874170E-02 -3.67617969458E-02 -3.73496238920E-02 -3.79494769032E-02 -3.85616740672E-02 -3.91865432053E-02 -3.98244221740E-02 -4.04756591745E-02 -4.11406130705E-02 -4.18196537146E-02 -4.25131622831E-02 -4.32215316194E-02 -4.39451665861E-02 -4.46844844263E-02 -4.54399151327E-02 -4.62119018269E-02 -4.70009011469E-02 -4.78073836438E-02 -4.86318341872E-02 -4.94747523802E-02 -5.03366529829E-02 -5.12180663449E-02 -5.21195388468E-02 -5.30416333505E-02 -5.39849296575E-02 -5.49500249768E-02 -5.59375344002E-02 -5.69480913859E-02 -5.79823482502E-02 -5.90409766664E-02 -6.01246681709E-02 -6.12341346762E-02 -6.23701089906E-02 -6.35333453430E-02 -6.47246199135E-02 -6.59447313688E-02 -6.71945014018E-02 -6.84747752734E-02 -6.97864223585E-02 -7.11303366922E-02 -7.25074375173E-02 -7.39186698310E-02 -7.53650049307E-02 -7.68474409561E-02 -7.83670034274E-02 -7.99247457782E-02 -8.15217498807E-02 -8.31591265621E-02 -8.48380161099E-02 -8.65595887652E-02 -8.83250452002E-02 -9.01356169790E-02 -9.19925669986E-02 -9.38971899081E-02 -9.58508125024E-02 -9.78547940882E-02 -9.99105268191E-02 -1.02019435996E-01 -1.04182980331E-01 -1.06402652164E-01 -1.08679977646E-01 -1.11016516855E-01 -1.13413863875E-01 -1.15873646803E-01 -1.18397527699E-01 -1.20987202464E-01 -1.23644400646E-01 -1.26370885161E-01 -1.29168451931E-01 -1.32038929431E-01 -1.34984178130E-01 -1.38006089832E-01 -1.41106586902E-01 -1.44287621366E-01 -1.47551173892E-01 -1.50899252622E-01 -1.54333891871E-01 -1.57857150661E-01 -1.61471111101E-01 -1.65177876587E-01 -1.68979569824E-01 -1.72878330661E-01 -1.76876313714E-01 -1.80975685786E-01 -1.85178623061E-01 -1.89487308069E-01 -1.93903926400E-01 -1.98430663174E-01 -2.03069699240E-01 -2.07823207100E-01 -2.12693346548E-01 -2.17682260012E-01 -2.22792067590E-01 -2.28024861766E-01 -2.33382701799E-01 -2.38867607783E-01 -2.44481554350E-01 -2.50226464028E-01 -2.56104200240E-01 -2.62116559928E-01 -2.68265265813E-01 -2.74551958273E-01 -2.80978186844E-01 -2.87545401344E-01 -2.94254942609E-01 -3.01108032854E-01 -3.08105765669E-01 -3.15249095634E-01 -3.22538827587E-01 -3.29975605543E-01 -3.37559901281E-01 -3.45292002623E-01 -3.53172001422E-01 -3.61199781282E-01 -3.69375005046E-01 -3.77697102089E-01 -3.86165255438E-01 -3.94778388787E-01 -4.03535153438E-01 -4.12433915225E-01 -4.21472741491E-01 -4.30649388176E-01 -4.39961287083E-01 -4.49405533421E-01 -4.58978873688E-01 -4.68677693995E-01 -4.78498008936E-01 -4.88435451097E-01 -4.98485261325E-01 -5.08642279875E-01 -5.18900938551E-01 -5.29255253983E-01 -5.39698822170E-01 -5.50224814430E-01 -5.60825974902E-01 -5.71494619753E-01 -5.82222638237E-01 -5.93001495754E-01 -6.03822239073E-01 -6.14675503852E-01 -6.25551524620E-01 -6.36440147344E-01 -6.47330844720E-01 -6.58212734315E-01 -6.69074599658E-01 -6.79904914374E-01 -6.90691869434E-01 -7.01423403562E-01 -7.12087236829E-01 -7.22670907403E-01 -7.33161811421E-01 -7.43547245880E-01 -7.53814454421E-01 -7.63950675803E-01 -7.73943194833E-01 -7.83779395443E-01 -7.93446815534E-01 -8.02933203157E-01 -8.12226573497E-01 -8.21315266071E-01 -8.30188001450E-01 -8.38833936747E-01 -8.47242719004E-01 -8.55404535533E-01 -8.63310160200E-01 -8.70950994502E-01 -8.78319102266E-01 -8.85407236696E-01 -8.92208858408E-01 -8.98718143098E-01 -9.04929977393E-01 -9.10839941439E-01 -9.16444276797E-01 -9.21739838226E-01 -9.26724027989E-01 -9.31394711446E-01 -9.35750112795E-01 -9.39788690024E-01 -9.43508988365E-01 -9.46909471812E-01 -9.49988332626E-01 -9.52743279122E-01 -9.55171302542E-01 -9.57268424305E-01 -9.59029425572E-01 -9.60447561684E-01 -9.61514264823E-01 -9.62218838966E-01 -9.62550721829E-01 -9.62507980607E-01 -9.62091347252E-01 -9.61301906561E-01 -9.60141095525E-01 -9.58610702105E-01 -9.56712863430E-01 -9.54450063432E-01 -9.51825129918E-01 -9.48841231101E-01 -9.45501871574E-01 -9.41810887768E-01 -9.37772442882E-01 -9.33391021309E-01 -9.28671422572E-01 -9.23618754781E-01 -9.18238427625E-01 -9.12536144924E-01 -9.06517896752E-01 -9.00189951145E-01 -8.93558845429E-01 -8.86631377163E-01 -8.79414594740E-01 -8.71915787651E-01 -8.64142476444E-01 -8.56102402385E-01 -8.47803516851E-01 -8.39253970485E-01 -8.30462102110E-01 -8.21436427445E-01 -8.12185627634E-01 -8.02718537616E-01 -7.93044134341E-01 -7.83171524876E-01 -7.73109934396E-01 -7.62868694104E-01 -7.52457229074E-01 -7.41885046056E-01 -7.31155576922E-01 -7.20284522176E-01 -7.09281559122E-01 -6.98156397631E-01 -6.86918767965E-01 -6.75578408655E-01 -6.64145054449E-01 -6.52628424330E-01 -6.41038209651E-01 -6.29384062358E-01 -6.17675583352E-01 -6.05922310973E-01 -5.94133709642E-01 -5.82319158648E-01 -5.70487941118E-01 -5.58649233157E-01 -5.46812093193E-01 -5.34985451517E-01 -5.23178100049E-01 -5.11398682330E-01 -4.99655683760E-01 -4.87957422093E-01 -4.76312038202E-01 -4.64727487141E-01 -4.53211529494E-01 -4.41771723063E-01 -4.30415414879E-01 -4.19149733577E-01 -4.07981582144E-01 -3.96917631062E-01 -3.85964311861E-01 -3.75127811114E-01 -3.64414064874E-01 -3.53828753595E-01 -3.43377297539E-01 -3.33064852690E-01 -3.22896307197E-01 -3.12876278360E-01 -3.03009110165E-01 -2.93298871386E-01 -2.83749354258E-01 -2.74364073738E-01 -2.65146267334E-01 -2.56098895530E-01 -2.47224642782E-01 -2.38525919091E-01 -2.30004862135E-01 -2.21663339960E-01 -2.13502954199E-01 -2.05525043810E-01 -1.97730689311E-01 -1.90120717491E-01 -1.82695706556E-01 -1.75455991707E-01 -1.68401671096E-01 -1.61532612153E-01 -1.54848458224E-01 -1.48348635521E-01 -1.42032360320E-01 -1.35898646400E-01 -1.29946312671E-01 -1.24173990973E-01 -1.18580134007E-01 -1.13163023379E-01 -1.07920777705E-01 -1.02851360788E-01 -9.79525898006E-02 -9.32221434781E-02 -8.86575702931E-02 -8.42562965854E-02 -8.00156346369E-02 -7.59327906730E-02 -7.20048727774E-02 -6.82288987074E-02 -6.46018036009E-02 -6.11204475660E-02 -5.77816231460E-02 -5.45820626551E-02 -5.15184453797E-02 -4.85874046416E-02 -4.57855347209E-02 -4.31093976359E-02 -4.05555297780E-02 -3.81204483998E-02 -3.58006579534E-02 -3.35926562775E-02 -3.14929406302E-02 -2.94980135622E-02 -2.76043886298E-02 -2.58085959383E-02 -2.41071875141E-02 -2.24967424966E-02 -2.09738721445E-02 -1.95352246474E-02 -1.81774897370E-02 -1.68974030872E-02 -1.56917504967E-02 -1.45573718454E-02 -1.34911648150E-02 -1.24900883693E-02 -1.15511659840E-02 -1.06714886214E-02 -9.84821744427E-03 -9.07858626433E-03 -8.35990372185E-03 -7.68955519460E-03 -7.06500443524E-03 -6.48379493746E-03 -5.94355103292E-03 -5.44197872214E-03 -4.97686624381E-03 -4.54608438833E-03 -4.14758656270E-03 -3.77940861496E-03 -3.43966842736E-03 -3.12656528872E-03 -2.83837905706E-03 -2.57346912442E-03 -2.33027319660E-03 -2.10730590084E-03 -1.90315723517E-03 -1.71649087327E-03 -1.54604233892E-03 -1.39061706432E-03 -1.24908834640E-03 -1.12039521521E-03 -1.00354022817E-03 -8.97587203812E-04 -8.01658908134E-04 -7.14934706243E-04 -6.36648191502E-04 -5.66084803767E-04 -5.02579447702E-04 -4.45514121475E-04 -3.94315565449E-04 -3.48452939766E-04 -3.07435538955E-04 -2.70810550985E-04 -2.38160867402E-04 -2.09102950447E-04 -1.83284762326E-04 -1.60383761056E-04 -1.40104966633E-04 -1.22179100566E-04 -1.06360801180E-04 -9.24269164737E-05 -8.01748757155E-05 -6.94211404357E-05 -5.99997349378E-05 -5.17608559971E-05 -4.45695609735E-05 -3.83045331809E-05 -3.28569230016E-05 -2.81292629285E-05 -2.40344544460E-05 -2.04948244292E-05 -1.74412485502E-05 -1.48123390183E-05 -1.25536938608E-05 -1.06172048553E-05 -8.96042116294E-06 -7.54596568006E-06 -6.34100111170E-06 -5.31674278724E-06 -4.44801527097E-06 -3.71284987336E-06 -3.09212023703E-06 -2.56921325365E-06 -2.12973266188E-06 -1.76123277922E-06 -1.45298385790E-06 -1.19578987098E-06 -9.81721401131E-07 -8.03987786364E-07 -6.56791920330E-07 -5.35197522556E-07 -4.35012225533E-07 -3.52684884458E-07 -2.85215640114E-07 -2.30077385878E-07 -1.85147405966E-07 -1.48648063505E-07 -1.19095524006E-07 -9.52556023179E-08 -7.61059199099E-08 -6.08036548928E-08 -4.84374699470E-08 -3.84986175982E-08 -3.05080083772E-08 -2.41030169159E-08 -1.89845962798E-08 -1.49068923728E-08 -1.16684138133E-08 -9.10454907845E-09 -7.08124647875E-09 -5.48969421139E-09 -4.24185745325E-09 -3.26674726970E-09 -2.50731214727E-09 -1.91785732567E-09 -1.46190987437E-09 -1.11045885271E-09 -8.40509886246E-10 -6.33902320423E-10 -4.76344822462E-10 -3.56632020313E-10 -2.66010592674E-10 -1.97668252004E-10 -1.46323382598E-10 -1.07896790970E-10 -7.92501718626E-11 -5.79785597318E-11 -4.22462851087E-11 -3.06578444437E-11 -2.21566712067E-11 -1.59461099607E-11 -1.14279832800E-11 -8.15503833552E-12 -5.79429583266E-12 -4.09892482987E-12 -2.88675522753E-12 -2.02393458162E-12 -1.41255368931E-12 -9.81319909447E-13 -6.78560019690E-13 -4.66995265439E-13 -3.19858178449E-13 -2.18020388499E-13 -1.47878484906E-13 -9.98054695555E-14 -6.70221035791E-14 -4.47784115868E-14 -2.97631188462E-14 -1.96797318637E-14 -1.29438181481E-14 -8.46796903063E-15 -5.50985960661E-15 -3.56546872989E-15 -2.29444471822E-15 -1.46822662566E-15 -9.34183956524E-16 -5.90968618271E-16 -3.71670115700E-16 -2.32370065448E-16 -1.44410820619E-16 -8.92038516756E-17 -5.47644434967E-17 -3.34126883667E-17 -2.02575946645E-17 -1.22037602829E-17 -7.30455863313E-18 -4.34363734237E-18 -2.56588216276E-18 -1.50559194374E-18 -8.77462733537E-19 -5.07883193083E-19 -2.91927652943E-19 -1.66619130056E-19 -9.44222278097E-20 -5.31232226478E-20 -2.96698887875E-20 -1.64485950307E-20 -9.05070956439E-21 -4.94238322128E-21 -2.67823507408E-21 -1.44004962305E-21 -7.68210397246E-22 -4.06549842592E-22 -2.13419795950E-22 -1.11121663516E-22 -5.73800850289E-23 -2.93816909051E-23 -1.49176249672E-23 -7.50902349903E-24 -3.74697776993E-24 -1.85329710353E-24 -9.08504449928E-25 -4.41345140996E-25 -2.12446461745E-25 -1.01318902940E-25 -4.78685872294E-26 -2.24015769111E-26 -1.03829907863E-26 -4.76573224581E-27 -2.16594205189E-27 -9.74585879402E-28 -4.34105078393E-28 -1.91388476281E-28 -8.35077668732E-29 -3.60554913172E-29 -1.54025281208E-29 -6.50924333452E-30 -2.72099683089E-30 -1.12492866739E-30 -4.59897437121E-31 -1.85898090403E-31 -7.42856470494E-32 -2.93419021831E-32 -1.14541148397E-32 -4.41835347982E-33 -1.68391425281E-33 -6.33978010103E-34 -2.35752555347E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.84897557982E-08 9.07298845171E-08 9.30267223589E-08 9.53817049213E-08 9.77963041447E-08 1.00272029232E-07 1.02810427590E-07 1.05413085802E-07 1.08081630612E-07 1.10817729947E-07 1.13623093958E-07 1.16499476088E-07 1.19448674168E-07 1.22472531544E-07 1.25572938222E-07 1.28751832058E-07 1.32011199963E-07 1.35353079147E-07 1.38779558392E-07 1.42292779358E-07 1.45894937922E-07 1.49588285549E-07 1.53375130701E-07 1.57257840278E-07 1.61238841097E-07 1.65320621414E-07 1.69505732472E-07 1.73796790100E-07 1.78196476348E-07 1.82707541161E-07 1.87332804100E-07 1.92075156103E-07 1.96937561292E-07 2.01923058826E-07 2.07034764803E-07 2.12275874202E-07 2.17649662885E-07 2.23159489642E-07 2.28808798293E-07 2.34601119836E-07 2.40540074657E-07 2.46629374795E-07 2.52872826256E-07 2.59274331398E-07 2.65837891366E-07 2.72567608596E-07 2.79467689375E-07 2.86542446476E-07 2.93796301846E-07 3.01233789379E-07 3.08859557740E-07 3.16678373278E-07 3.24695123003E-07 3.32914817639E-07 3.41342594755E-07 3.49983721983E-07 3.58843600300E-07 3.67927767413E-07 3.77241901216E-07 3.86791823337E-07 3.96583502780E-07 4.06623059658E-07 4.16916769010E-07 4.27471064731E-07 4.38292543590E-07 4.49387969355E-07 4.60764277016E-07 4.72428577125E-07 4.84388160239E-07 4.96650501474E-07 5.09223265180E-07 5.22114309729E-07 5.35331692431E-07 5.48883674566E-07 5.62778726547E-07 5.77025533218E-07 5.91632999280E-07 6.06610254857E-07 6.21966661202E-07 6.37711816549E-07 6.53855562112E-07 6.70407988235E-07 6.87379440701E-07 7.04780527195E-07 7.22622123937E-07 7.40915382479E-07 7.59671736675E-07 7.78902909827E-07 7.98620922014E-07 8.18838097602E-07 8.39567072949E-07 8.60820804304E-07 8.82612575902E-07 9.04956008269E-07 9.27865066738E-07 9.51354070169E-07 9.75437699909E-07 1.00013100896E-06 1.02544943140E-06 1.05140879200E-06 1.07802531616E-06 1.10531564000E-06 1.13329682082E-06 1.16198634768E-06 1.19140215242E-06 1.22156262079E-06 1.25248660398E-06 1.28419343042E-06 1.31670291782E-06 1.35003538558E-06 1.38421166748E-06 1.41925312471E-06 1.45518165922E-06 1.49201972741E-06 1.52979035414E-06 1.56851714718E-06 1.60822431190E-06 1.64893666644E-06 1.69067965720E-06 1.73347937478E-06 1.77736257022E-06 1.82235667180E-06 1.86848980211E-06 1.91579079570E-06 1.96428921703E-06 2.01401537899E-06 2.06500036184E-06 2.11727603265E-06 2.17087506518E-06 2.22583096031E-06 2.28217806703E-06 2.33995160384E-06 2.39918768080E-06 2.45992332210E-06 2.52219648916E-06 2.58604610442E-06 2.65151207563E-06 2.71863532079E-06 2.78745779373E-06 2.85802251033E-06 2.93037357543E-06 3.00455621034E-06 3.08061678118E-06 3.15860282777E-06 3.23856309344E-06 3.32054755540E-06 3.40460745604E-06 3.49079533496E-06 3.57916506174E-06 3.66977186969E-06 3.76267239031E-06 3.85792468873E-06 3.95558829998E-06 4.05572426617E-06 4.15839517471E-06 4.26366519737E-06 4.37160013040E-06 4.48226743566E-06 4.59573628279E-06 4.71207759243E-06 4.83136408054E-06 4.95367030386E-06 5.07907270649E-06 5.20764966770E-06 5.33948155088E-06 5.47465075377E-06 5.61324175999E-06 5.75534119181E-06 5.90103786430E-06 6.05042284082E-06 6.20358948997E-06 6.36063354391E-06 6.52165315820E-06 6.68674897316E-06 6.85602417675E-06 7.02958456906E-06 7.20753862845E-06 7.38999757932E-06 7.57707546165E-06 7.76888920225E-06 7.96555868786E-06 8.16720684002E-06 8.37395969199E-06 8.58594646740E-06 8.80329966112E-06 9.02615512196E-06 9.25465213766E-06 9.48893352189E-06 9.72914570351E-06 9.97543881808E-06 1.02279668017E-05 1.04868874872E-05 1.07523627028E-05 1.10245583731E-05 1.13036446232E-05 1.15897958843E-05 1.18831910035E-05 1.21840133550E-05 1.24924509549E-05 1.28086965788E-05 1.31329478819E-05 1.34654075231E-05 1.38062832911E-05 1.41557882346E-05 1.45141407952E-05 1.48815649441E-05 1.52582903220E-05 1.56445523826E-05 1.60405925395E-05 1.64466583176E-05 1.68630035072E-05 1.72898883231E-05 1.77275795668E-05 1.81763507934E-05 1.86364824825E-05 1.91082622135E-05 1.95919848454E-05 2.00879527008E-05 2.05964757550E-05 2.11178718296E-05 2.16524667913E-05 2.22005947551E-05 2.27625982936E-05 2.33388286506E-05 2.39296459607E-05 2.45354194747E-05 2.51565277898E-05 2.57933590862E-05 2.64463113700E-05 2.71157927218E-05 2.78022215513E-05 2.85060268592E-05 2.92276485048E-05 2.99675374813E-05 3.07261561972E-05 3.15039787653E-05 3.23014912990E-05 3.31191922159E-05 3.39575925493E-05 3.48172162673E-05 3.56986006005E-05 3.66022963773E-05 3.75288683679E-05 3.84788956375E-05 3.94529719081E-05 4.04517059290E-05 4.14757218571E-05 4.25256596475E-05 4.36021754522E-05 4.47059420311E-05 4.58376491713E-05 4.69980041186E-05 4.81877320189E-05 4.94075763716E-05 5.06582994935E-05 5.19406829953E-05 5.32555282696E-05 5.46036569917E-05 5.59859116326E-05 5.74031559852E-05 5.88562757039E-05 6.03461788576E-05 6.18737964971E-05 6.34400832362E-05 6.50460178480E-05 6.66926038765E-05 6.83808702626E-05 7.01118719874E-05 7.18866907304E-05 7.37064355454E-05 7.55722435527E-05 7.74852806494E-05 7.94467422369E-05 8.14578539682E-05 8.35198725122E-05 8.56340863388E-05 8.78018165235E-05 9.00244175715E-05 9.23032782641E-05 9.46398225253E-05 9.70355103105E-05 9.94918385184E-05 1.02010341925E-04 1.04592594142E-04 1.07240208597E-04 1.09954839546E-04 1.12738183098E-04 1.15591978281E-04 1.18518008122E-04 1.21518100763E-04 1.24594130599E-04 1.27748019451E-04 1.30981737763E-04 1.34297305832E-04 1.37696795068E-04 1.41182329287E-04 1.44756086037E-04 1.48420297954E-04 1.52177254157E-04 1.56029301676E-04 1.59978846912E-04 1.64028357144E-04 1.68180362064E-04 1.72437455355E-04 1.76802296311E-04 1.81277611490E-04 1.85866196422E-04 1.90570917343E-04 1.95394712990E-04 2.00340596429E-04 2.05411656933E-04 2.10611061911E-04 2.15942058878E-04 2.21407977483E-04 2.27012231582E-04 2.32758321366E-04 2.38649835541E-04 2.44690453566E-04 2.50883947946E-04 2.57234186578E-04 2.63745135166E-04 2.70420859687E-04 2.77265528924E-04 2.84283417067E-04 2.91478906365E-04 2.98856489867E-04 3.06420774207E-04 3.14176482480E-04 3.22128457182E-04 3.30281663218E-04 3.38641190996E-04 3.47212259598E-04 3.56000220019E-04 3.65010558502E-04 3.74248899952E-04 3.83721011429E-04 3.93432805738E-04 4.03390345107E-04 4.13599844954E-04 4.24067677751E-04 4.34800376985E-04 4.45804641221E-04 4.57087338263E-04 4.68655509417E-04 4.80516373872E-04 4.92677333181E-04 5.05145975856E-04 5.17930082082E-04 5.31037628548E-04 5.44476793393E-04 5.58255961287E-04 5.72383728634E-04 5.86868908899E-04 6.01720538079E-04 6.16947880308E-04 6.32560433596E-04 6.48567935721E-04 6.64980370261E-04 6.81807972783E-04 6.99061237181E-04 7.16750922177E-04 7.34888057982E-04 7.53483953125E-04 7.72550201451E-04 7.92098689294E-04 8.12141602834E-04 8.32691435627E-04 8.53760996332E-04 8.75363416629E-04 8.97512159332E-04 9.20221026705E-04 9.43504168987E-04 9.67376093124E-04 9.91851671726E-04 1.01694615224E-03 1.04267516636E-03 1.06905473966E-03 1.09610130145E-03 1.12383169496E-03 1.15226318762E-03 1.18141348179E-03 1.21130072559E-03 1.24194352406E-03 1.27336095066E-03 1.30557255893E-03 1.33859839453E-03 1.37245900756E-03 1.40717546515E-03 1.44276936442E-03 1.47926284568E-03 1.51667860606E-03 1.55503991334E-03 1.59437062028E-03 1.63469517916E-03 1.67603865675E-03 1.71842674966E-03 1.76188580001E-03 1.80644281154E-03 1.85212546606E-03 1.89896214038E-03 1.94698192356E-03 1.99621463465E-03 2.04669084087E-03 2.09844187613E-03 2.15149986017E-03 2.20589771800E-03 2.26166919993E-03 2.31884890201E-03 2.37747228702E-03 2.43757570595E-03 2.49919641998E-03 2.56237262302E-03 2.62714346478E-03 2.69354907441E-03 2.76163058466E-03 2.83143015672E-03 2.90299100556E-03 2.97635742592E-03 3.05157481892E-03 3.12868971931E-03 3.20774982335E-03 3.28880401739E-03 3.37190240710E-03 3.45709634740E-03 3.54443847314E-03 3.63398273041E-03 3.72578440872E-03 3.81990017382E-03 3.91638810137E-03 4.01530771138E-03 4.11672000345E-03 4.22068749283E-03 4.32727424735E-03 4.43654592517E-03 4.54856981345E-03 4.66341486790E-03 4.78115175321E-03 4.90185288451E-03 5.02559246964E-03 5.15244655253E-03 5.28249305751E-03 5.41581183460E-03 5.55248470590E-03 5.69259551299E-03 5.83623016542E-03 5.98347669027E-03 6.13442528284E-03 6.28916835850E-03 6.44780060565E-03 6.61041903989E-03 6.77712305935E-03 6.94801450134E-03 7.12319770008E-03 7.30277954588E-03 7.48686954546E-03 7.67557988365E-03 7.86902548641E-03 8.06732408521E-03 8.27059628275E-03 8.47896562015E-03 8.69255864546E-03 8.91150498371E-03 9.13593740834E-03 9.36599191422E-03 9.60180779204E-03 9.84352770432E-03 1.00912977630E-02 1.03452676085E-02 1.06055904903E-02 1.08724233496E-02 1.11459269028E-02 1.14262657274E-02 1.17136083491E-02 1.20081273309E-02 1.23099993634E-02 1.26194053574E-02 1.29365305380E-02 1.32615645400E-02 1.35947015061E-02 1.39361401857E-02 1.42860840362E-02 1.46447413258E-02 1.50123252383E-02 1.53890539796E-02 1.57751508857E-02 1.61708445330E-02 1.65763688502E-02 1.69919632317E-02 1.74178726533E-02 1.78543477896E-02 1.83016451325E-02 1.87600271123E-02 1.92297622205E-02 1.97111251333E-02 2.02043968385E-02 2.07098647621E-02 2.12278228985E-02 2.17585719408E-02 2.23024194134E-02 2.28596798060E-02 2.34306747092E-02 2.40157329509E-02 2.46151907352E-02 2.52293917812E-02 2.58586874644E-02 2.65034369582E-02 2.71640073769E-02 2.78407739197E-02 2.85341200156E-02 2.92444374686E-02 2.99721266040E-02 3.07175964153E-02 3.14812647109E-02 3.22635582617E-02 3.30649129480E-02 3.38857739074E-02 3.47265956809E-02 3.55878423603E-02 3.64699877330E-02 3.73735154280E-02 3.82989190586E-02 3.92467023658E-02 4.02173793580E-02 4.12114744509E-02 4.22295226031E-02 4.32720694509E-02 4.43396714394E-02 4.54328959499E-02 4.65523214252E-02 4.76985374893E-02 4.88721450638E-02 5.00737564788E-02 5.13039955791E-02 5.25634978242E-02 5.38529103819E-02 5.51728922154E-02 5.65241141630E-02 5.79072590094E-02 5.93230215491E-02 6.07721086393E-02 6.22552392443E-02 6.37731444683E-02 6.53265675769E-02 6.69162640062E-02 6.85430013598E-02 7.02075593902E-02 7.19107299671E-02 7.36533170286E-02 7.54361365166E-02 7.72600162937E-02 7.91257960418E-02 8.10343271403E-02 8.29864725236E-02 8.49831065157E-02 8.70251146421E-02 8.91133934160E-02 9.12488500985E-02 9.34324024318E-02 9.56649783424E-02 9.79475156144E-02 1.00280961531E-01 1.02666272480E-01 1.05104413530E-01 1.07596357961E-01 1.10143086763E-01 1.12745588090E-01 1.15404856678E-01 1.18121893208E-01 1.20897703634E-01 1.23733298455E-01 1.26629691941E-01 1.29587901304E-01 1.32608945819E-01 1.35693845883E-01 1.38843622019E-01 1.42059293820E-01 1.45341878825E-01 1.48692391337E-01 1.52111841168E-01 1.55601232315E-01 1.59161561569E-01 1.62793817043E-01 1.66498976631E-01 1.70278006380E-01 1.74131858790E-01 1.78061471027E-01 1.82067763053E-01 1.86151635665E-01 1.90313968456E-01 1.94555617674E-01 1.98877414000E-01 2.03280160224E-01 2.07764628831E-01 2.12331559496E-01 2.16981656475E-01 2.21715585903E-01 2.26533972993E-01 2.31437399144E-01 2.36426398940E-01 2.41501457066E-01 2.46663005118E-01 2.51911418324E-01 2.57247012169E-01 2.62670038938E-01 2.68180684157E-01 2.73779062965E-01 2.79465216398E-01 2.85239107598E-01 2.91100617951E-01 2.97049543166E-01 3.03085589292E-01 3.09208368684E-01 3.15417395931E-01 3.21712083750E-01 3.28091738858E-01 3.34555557837E-01 3.41102622995E-01 3.47731898246E-01 3.54442225025E-01 3.61232318234E-01 3.68100762272E-01 3.75046007124E-01 3.82066364572E-01 3.89160004509E-01 3.96324951409E-01 4.03559080961E-01 4.10860116895E-01 4.18225628022E-01 4.25653025530E-01 4.33139560549E-01 4.40682322016E-01 4.48278234885E-01 4.55924058704E-01 4.63616386587E-01 4.71351644634E-01 4.79126091809E-01 4.86935820341E-01 4.94776756656E-01 5.02644662896E-01 5.10535139058E-01 5.18443625777E-01 5.26365407812E-01 5.34295618252E-01 5.42229243476E-01 5.50161128917E-01 5.58085985644E-01 5.65998397794E-01 5.73892830888E-01 5.81763641041E-01 5.89605085097E-01 5.97411331695E-01 6.05176473272E-01 6.12894539023E-01 6.20559508787E-01 6.28165327881E-01 6.35705922839E-01 6.43175218038E-01 6.50567153183E-01 6.57875701589E-01 6.65094889225E-01 6.72218814427E-01 6.79241668234E-01 6.86157755216E-01 6.92961514730E-01 6.99647542456E-01 7.06210612096E-01 7.12645697092E-01 7.18947992202E-01 7.25112934756E-01 7.31136225426E-01 7.37013848287E-01 7.42742089984E-01 7.48317557768E-01 7.53737196183E-01 7.58998302162E-01 7.64098538287E-01 7.69035943972E-01 7.73808944326E-01 7.78416356430E-01 7.82857392819E-01 7.87131661910E-01 7.91239165171E-01 7.95180290825E-01 7.98955803910E-01 8.02566832526E-01 8.06014850157E-01 8.09301653958E-01 8.12429338960E-01 8.15400268167E-01 8.18217038573E-01 8.20882443179E-01 8.23399429113E-01 8.25771052040E-01 8.28000427059E-01 8.30090676353E-01 8.32044873883E-01 8.33865987460E-01 8.35556818532E-01 8.37119940062E-01 8.38557632835E-01 8.39871820542E-01 8.41064003914E-01 8.42135194130E-01 8.43085845626E-01 8.43915788296E-01 8.44624158918E-01 8.45209331462E-01 8.45668845676E-01 8.45999333121E-01 8.46196439490E-01 8.46254741750E-01 8.46167658261E-01 8.45927349690E-01 8.45524608116E-01 8.44948731383E-01 8.44189602424E-01 8.43244876319E-01 8.42114407353E-01 8.40798187632E-01 8.39296347112E-01 8.37609153424E-01 8.35737011502E-01 8.33680463020E-01 8.31440185636E-01 8.29016992056E-01 8.26411828920E-01 8.23625775509E-01 8.20660042294E-01 8.17515969314E-01 8.14195024407E-01 8.10698801289E-01 8.07029017494E-01 8.03187512177E-01 7.99176243794E-01 7.94997287664E-01 7.90652833410E-01 7.86145182313E-01 7.81476744551E-01 7.76650036366E-01 7.71667677139E-01 7.66532386400E-01 7.61246980767E-01 7.55814370830E-01 7.50237557981E-01 7.44519631209E-01 7.38663763842E-01 7.32673210274E-01 7.26551302659E-01 7.20301447584E-01 7.13927122734E-01 7.07431873541E-01 7.00819309834E-01 6.94093102479E-01 6.87254909905E-01 6.80310559140E-01 6.73263883765E-01 6.66118764977E-01 6.58879128258E-01 6.51548940049E-01 6.44132204436E-01 6.36632959833E-01 6.29055275675E-01 6.21403249112E-01 6.13681001700E-01 6.05892676088E-01 5.98042432701E-01 5.90134446403E-01 5.82172903150E-01 5.74161996623E-01 5.66105924833E-01 5.58008886698E-01 5.49875078596E-01 5.41708690865E-01 5.33513904289E-01 5.25294886523E-01 5.17055788489E-01 5.08800740733E-01 5.00533849733E-01 4.92259194186E-01 4.83980821250E-01 4.75702742773E-01 4.67428931493E-01 4.59163317240E-01 4.50909783132E-01 4.42672161798E-01 4.34454231616E-01 4.26259713012E-01 4.18092264806E-01 4.09955480653E-01 4.01852885566E-01 3.93787932573E-01 3.85763999499E-01 3.77784385908E-01 3.69852310215E-01 3.61970907001E-01 3.54143224518E-01 3.46372222437E-01 3.38660769815E-01 3.31011643326E-01 3.23427525734E-01 3.15911004640E-01 3.08464571496E-01 3.01090620879E-01 2.93791450048E-01 2.86569258752E-01 2.79426149300E-01 2.72364126884E-01 2.65385100131E-01 2.58490881883E-01 2.51683190178E-01 2.44963649429E-01 2.38333791762E-01 2.31795058502E-01 2.25348801791E-01 2.18996286303E-01 2.12738691033E-01 2.06577111142E-01 2.00512559838E-01 1.94545970248E-01 1.88678197282E-01 1.82910019455E-01 1.77242140644E-01 1.71675191767E-01 1.66209732365E-01 1.60846252066E-01 1.55585171928E-01 1.50426845644E-01 1.45371560603E-01 1.40419538809E-01 1.35570937643E-01 1.30825850489E-01 1.26184307215E-01 1.21646274524E-01 1.17211656181E-01 1.12880293143E-01 1.08651963593E-01 1.04526382902E-01 1.00503203549E-01 9.65820150062E-02 9.27623436217E-02 8.90436525192E-02 8.54253415395E-02 8.19067472453E-02 7.84871430111E-02 7.51657392195E-02 7.19416835824E-02 6.88140616036E-02 6.57818971982E-02 6.28441534801E-02 5.99997337290E-02 5.72474825422E-02 5.45861871775E-02 5.20145790871E-02 4.95313356444E-02 4.71350820582E-02 4.48243934708E-02 4.25977972313E-02 4.04537753360E-02 3.83907670236E-02 3.64071715140E-02 3.45013508764E-02 3.26716330119E-02 3.09163147359E-02 2.92336649431E-02 2.76219278406E-02 2.60793262306E-02 2.46040648279E-02 2.31943335948E-02 2.18483110783E-02 2.05641677335E-02 1.93400692186E-02 1.81741796470E-02 1.70646647838E-02 1.60096951725E-02 1.50074491815E-02 1.40561159591E-02 1.31538982860E-02 1.22990153186E-02 1.14897052116E-02 1.07242276169E-02 1.00008660486E-02 9.31793011206E-03 8.67375759069E-03 8.06671638846E-03 7.49520632457E-03 6.95766077922E-03 6.45254818943E-03 5.97837339479E-03 5.53367883377E-03 5.11704559191E-03 4.72709430384E-03 4.36248591157E-03 4.02192228236E-03 3.70414668950E-03 3.40794416035E-03 3.13214169581E-03 2.87560836646E-03 2.63725529015E-03 2.41603549685E-03 2.21094368630E-03 2.02101588447E-03 1.84532900483E-03 1.68300032079E-03 1.53318685543E-03 1.39508469511E-03 1.26792823302E-03 1.15098934939E-03 1.04357653434E-03 9.45033959857E-04 8.54740506879E-04 7.72108753548E-04 6.96583930536E-04 6.27642849025E-04 5.64792806906E-04 5.07570478458E-04 4.55540792567E-04 4.08295804313E-04 3.65453564479E-04 3.26656991308E-04 2.91572748553E-04 2.59890133590E-04 2.31319979088E-04 2.05593571448E-04 1.82462081013E-04 1.61699422615E-04 1.43091714194E-04 1.26441064666E-04 1.11565181594E-04 9.82964241407E-05 8.64808930700E-05 7.59775587810E-05 6.66574282686E-05 5.84027518099E-05 5.11062701303E-05 4.46705027872E-05 3.90070785455E-05 3.40361085856E-05 2.96856035499E-05 2.58909356516E-05 2.25414409673E-05 1.96111245030E-05 1.70305980697E-05 1.47622951755E-05 1.27721593825E-05 1.10293770148E-05 9.50612376542E-06 8.17732512724E-06 7.02043049621E-06 6.01520073343E-06 5.14350891325E-06 4.38915393257E-06 3.73768660742E-06 3.17624786778E-06 2.69341856498E-06 2.27908046851E-06 1.92428793666E-06 1.62114975971E-06 1.36272065813E-06 1.14290191229E-06 9.56350598547E-07 7.98396908872E-07 6.64969037242E-07 5.52525125384E-07 4.57991772429E-07 3.78708627725E-07 3.12378602752E-07 2.57023256469E-07 2.10942928301E-07 1.72681213801E-07 1.40993399731E-07 1.14818497363E-07 9.32545351823E-08 7.55367944692E-08 6.10186933390E-08 4.91550464991E-08 3.94874491067E-08 3.16315535251E-08 2.52660273870E-08 2.01230000873E-08 1.59798225694E-08 1.26519820091E-08 9.98702868833E-09 7.85938698547E-09 6.16593598814E-09 4.82225776595E-09 3.75946285132E-09 2.92151299713E-09 2.26297084918E-09 1.74711483455E-09 1.34436537274E-09 1.03097551813E-09 7.87945393093E-10 6.00125326466E-10 4.55477527689E-10 3.44470455815E-10 2.59583838796E-10 1.94905611870E-10 1.45804923444E-10 1.08667848016E-10 8.06845912650E-11 5.96788120860E-11 4.39712566976E-11 3.22712342867E-11 2.35905924546E-11 1.71758012630E-11 1.24545514930E-11 8.99393762662E-12 6.46784834274E-12 4.63164393324E-12 3.30257582049E-12 2.34471115603E-12 1.65737641593E-12 1.16633751584E-12 8.17098387836E-13 5.69832095746E-13 3.95564240575E-13 2.73312509236E-13 1.87952822388E-13 1.28635020058E-13 8.76121731621E-14 5.93797094720E-14 4.00454562384E-14 2.68709381361E-14 1.79390450204E-14 1.19144740120E-14 7.87193136287E-15 5.17356660426E-15 3.38198910558E-15 2.19886469788E-15 1.42180262985E-15 9.14249247114E-16 5.84580079628E-16 3.71660788443E-16 2.34931714570E-16 1.47637667384E-16 9.22319470206E-17 5.72745789002E-17 3.53513500137E-17 2.16860525130E-17 1.32206200709E-17 8.00914129680E-18 4.82112578291E-18 2.88339723303E-18 1.71324192726E-18 1.01124261290E-18 5.92895673604E-19 3.45263601333E-19 1.99680562082E-19 1.14682111631E-19 6.54022081862E-20 3.70328766227E-20 2.08181326507E-20 1.16175853412E-20 6.43531398396E-21 3.53804108007E-21 1.93043081518E-21 1.04520701773E-21 5.61519754870E-22 2.99295249204E-22 1.58257224503E-22 8.30065837008E-23 4.31819842540E-23 2.22786535030E-23 1.13979366764E-23 5.78187360985E-24 2.90783339950E-24 1.44971273733E-24 7.16404390973E-25 3.50873134900E-25 1.70297677576E-25 8.19001289644E-26 3.90236239172E-26 1.84198899253E-26 8.61214862473E-27 3.98794389121E-27 1.82871880737E-27 8.30332163372E-28 3.73258602429E-28 1.66098665899E-28 7.31586103614E-29 3.18897907766E-29 1.37552358309E-29 5.87025645818E-30 2.47833816621E-30 1.03495048124E-30 4.27439261720E-31 1.74568007032E-31 7.04902591089E-32 2.81388153004E-32 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.84884569752E-08 9.07285528142E-08 9.30253569436E-08 9.53803049401E-08 9.77948687226E-08 1.00270557471E-07 1.02808918572E-07 1.05411538582E-07 1.08080044224E-07 1.10816103400E-07 1.13621426234E-07 1.16497766145E-07 1.19446920937E-07 1.22470733929E-07 1.25571095100E-07 1.28749942277E-07 1.32009262341E-07 1.35351092473E-07 1.38777521425E-07 1.42290690825E-07 1.45892796517E-07 1.49586089934E-07 1.53372879503E-07 1.57255532090E-07 1.61236474477E-07 1.65318194881E-07 1.69503244511E-07 1.73794239156E-07 1.78193860826E-07 1.82704859426E-07 1.87330054475E-07 1.92072336870E-07 1.96934670689E-07 2.01920095047E-07 2.07031725994E-07 2.12272758464E-07 2.17646468271E-07 2.23156214156E-07 2.28805439886E-07 2.34597676410E-07 2.40536544059E-07 2.46625754818E-07 2.52869114638E-07 2.59270525819E-07 2.65833989448E-07 2.72563607899E-07 2.79463587399E-07 2.86538240656E-07 2.93791989555E-07 3.01229367920E-07 3.08855024350E-07 3.16673725124E-07 3.24690357179E-07 3.32909931165E-07 3.41337584579E-07 3.49978584972E-07 3.58838333244E-07 3.67922367019E-07 3.77236364108E-07 3.86786146055E-07 3.96577681776E-07 4.06617091292E-07 4.16910649552E-07 4.27464790357E-07 4.38286110378E-07 4.49381373283E-07 4.60757513962E-07 4.72421642862E-07 4.84381050432E-07 4.96643211679E-07 5.09215790840E-07 5.22106646174E-07 5.35323834870E-07 5.48875618087E-07 5.62770466115E-07 5.77017063670E-07 5.91624315322E-07 6.06601351061E-07 6.21957532004E-07 6.37702456242E-07 6.53845964845E-07 6.70398148010E-07 6.87369351367E-07 7.04770182446E-07 7.22611517307E-07 7.40904507340E-07 7.59660586228E-07 7.78891477104E-07 7.98609199868E-07 8.18826078707E-07 8.39554749792E-07 8.60808169183E-07 8.82599620920E-07 9.04942725329E-07 9.27851447537E-07 9.51340106196E-07 9.75423382435E-07 1.00011632904E-06 1.02543437985E-06 1.05139335942E-06 1.07800949290E-06 1.10529941617E-06 1.13328018628E-06 1.16196929204E-06 1.19138466501E-06 1.22154469068E-06 1.25246821997E-06 1.28417458102E-06 1.31668359124E-06 1.35001556975E-06 1.38419135000E-06 1.41923229290E-06 1.45516030005E-06 1.49199782752E-06 1.52976789986E-06 1.56849412446E-06 1.60820070636E-06 1.64891246332E-06 1.69065484138E-06 1.73345393074E-06 1.77733648207E-06 1.82232992322E-06 1.86846237639E-06 1.91576267570E-06 1.96426038516E-06 2.01398581724E-06 2.06497005174E-06 2.11724495525E-06 2.17084320105E-06 2.22579828954E-06 2.28214456920E-06 2.33991725802E-06 2.39915246551E-06 2.45988721533E-06 2.52215946834E-06 2.58600814643E-06 2.65147315673E-06 2.71859541666E-06 2.78741687942E-06 2.85798056028E-06 2.93033056341E-06 3.00451210948E-06 3.08057156390E-06 3.15855646582E-06 3.23851555783E-06 3.32049881643E-06 3.40455748325E-06 3.49074409711E-06 3.57911252680E-06 3.66971800483E-06 3.76261716187E-06 3.85786806219E-06 3.95553023994E-06 4.05566473635E-06 4.15833413790E-06 4.26360261541E-06 4.37153596418E-06 4.48220164509E-06 4.59566882674E-06 4.71200842873E-06 4.83129316597E-06 4.95359759410E-06 5.07899815610E-06 5.20757323008E-06 5.33940317825E-06 5.47457039715E-06 5.61315936916E-06 5.75525671527E-06 5.90095124924E-06 6.05033403312E-06 6.20349843413E-06 6.36054018301E-06 6.52155743389E-06 6.68665082561E-06 6.85592354462E-06 7.02948138946E-06 7.20743283688E-06 7.38988910967E-06 7.57696424612E-06 7.76877517133E-06 7.96544177028E-06 8.16708696272E-06 8.37383678003E-06 8.58582044397E-06 8.80317044744E-06 9.02602263729E-06 9.25451629919E-06 9.48879424472E-06 9.72900290060E-06 9.97529240017E-06 1.02278166773E-05 1.04867335624E-05 1.07522048815E-05 1.10243965567E-05 1.13034787104E-05 1.15896257716E-05 1.18830165845E-05 1.21838345206E-05 1.24922675934E-05 1.28085085756E-05 1.31327551195E-05 1.34652098811E-05 1.38060806459E-05 1.41555804596E-05 1.45139277605E-05 1.48813465166E-05 1.52580663652E-05 1.56443227564E-05 1.60403571005E-05 1.64464169186E-05 1.68627559975E-05 1.72896345479E-05 1.77273193674E-05 1.81760840073E-05 1.86362089429E-05 1.91079817496E-05 1.95916972818E-05 2.00876578578E-05 2.05961734483E-05 2.11175618704E-05 2.16521489857E-05 2.22002689047E-05 2.27622641946E-05 2.33384860943E-05 2.39292947330E-05 2.45350593562E-05 2.51561585552E-05 2.57929805049E-05 2.64459232055E-05 2.71153947314E-05 2.78018134864E-05 2.85056084647E-05 2.92272195193E-05 2.99670976367E-05 3.07257052186E-05 3.15035163709E-05 3.23010171998E-05 3.31187061157E-05 3.39570941443E-05 3.48167052461E-05 3.56980766438E-05 3.66017591575E-05 3.75283175494E-05 3.84783308763E-05 3.94523928511E-05 4.04511122143E-05 4.14751131139E-05 4.25250354952E-05 4.36015355010E-05 4.47052858810E-05 4.58369764123E-05 4.69973143303E-05 4.81870247705E-05 4.94068512210E-05 5.06575559876E-05 5.19399206695E-05 5.32547466477E-05 5.46028555853E-05 5.59850899410E-05 5.74023134950E-05 5.88554118886E-05 6.03452931777E-05 6.18728883991E-05 6.34391521527E-05 6.50450631974E-05 6.66916250622E-05 6.83798666732E-05 7.01108429959E-05 7.18856356940E-05 7.37053538049E-05 7.55711344323E-05 7.74841434561E-05 7.94455762604E-05 8.14566584801E-05 8.35186467656E-05 8.56328295681E-05 8.78005279435E-05 9.00230963774E-05 9.23019236305E-05 9.46384336060E-05 9.70340862380E-05 9.94903784031E-05 1.02008844855E-04 1.04591059182E-04 1.07238634789E-04 1.09953225906E-04 1.12736528619E-04 1.15590281929E-04 1.18516268837E-04 1.21516317459E-04 1.24592302163E-04 1.27746144741E-04 1.30979815608E-04 1.34295335031E-04 1.37694774391E-04 1.41180257472E-04 1.44753961791E-04 1.48418119950E-04 1.52175021035E-04 1.56027012040E-04 1.59976499334E-04 1.64025950158E-04 1.68177894167E-04 1.72434925007E-04 1.76799701931E-04 1.81274951459E-04 1.85863469079E-04 1.90568120986E-04 1.95391845873E-04 2.00337656762E-04 2.05408642881E-04 2.10607971593E-04 2.15938890365E-04 2.21404728797E-04 2.27008900695E-04 2.32754906200E-04 2.38646333964E-04 2.44686863394E-04 2.50880266938E-04 2.57230412437E-04 2.63741265537E-04 2.70416892155E-04 2.77261461014E-04 2.84279246240E-04 2.91474630021E-04 2.98852105336E-04 3.06416278755E-04 3.14171873304E-04 3.22123731405E-04 3.30276817893E-04 3.38636223102E-04 3.47207166035E-04 3.55994997612E-04 3.65005203994E-04 3.74243410004E-04 3.83715382618E-04 3.93427034555E-04 4.03384427954E-04 4.13593778142E-04 4.24061457498E-04 4.34793999414E-04 4.45798102358E-04 4.57080634031E-04 4.68648635640E-04 4.80509326266E-04 4.92670107355E-04 5.05138567308E-04 5.17922486197E-04 5.31029840593E-04 5.44468808519E-04 5.58247774521E-04 5.72375334876E-04 5.86860302923E-04 6.01711714526E-04 6.16938833685E-04 6.32551158272E-04 6.48558425921E-04 6.64970620067E-04 6.81797976127E-04 6.99050987843E-04 7.16740413780E-04 7.34877283989E-04 7.53472906833E-04 7.72538875990E-04 7.92087077622E-04 8.12129697730E-04 8.32679229688E-04 8.53748481972E-04 8.75350586069E-04 8.97499004598E-04 9.20207539624E-04 9.43490341178E-04 9.67361915999E-04 9.91837136480E-04 1.01693124985E-03 1.04265988757E-03 1.06903907498E-03 1.09608524116E-03 1.12381522909E-03 1.15224630597E-03 1.18139617387E-03 1.21128298067E-03 1.24192533114E-03 1.27334229846E-03 1.30555343589E-03 1.33857878879E-03 1.37243890698E-03 1.40715485728E-03 1.44274823650E-03 1.47924118463E-03 1.51665639846E-03 1.55501714546E-03 1.59434727802E-03 1.63467124809E-03 1.67601412207E-03 1.71840159620E-03 1.76186001223E-03 1.80641637350E-03 1.85209836144E-03 1.89893435244E-03 1.94695343514E-03 1.99618542819E-03 2.04666089833E-03 2.09841117905E-03 2.15146838963E-03 2.20586545461E-03 2.26163612380E-03 2.31881499278E-03 2.37743752382E-03 2.43754006739E-03 2.49915988414E-03 2.56233516743E-03 2.62710506643E-03 2.69350970969E-03 2.76159022942E-03 2.83138878619E-03 2.90294859435E-03 2.97631394803E-03 3.05153024770E-03 3.12864402746E-03 3.20770298289E-03 3.28875599966E-03 3.37185318273E-03 3.45704588631E-03 3.54438674449E-03 3.63392970263E-03 3.72573004944E-03 3.81984444990E-03 3.91633097884E-03 4.01524915546E-03 4.11665997850E-03 4.22062596234E-03 4.32721117392E-03 4.43648127050E-03 4.54850353830E-03 4.66334693207E-03 4.78108211555E-03 4.90178150284E-03 5.02551930077E-03 5.15237155225E-03 5.28241618051E-03 5.41573303449E-03 5.55240393518E-03 5.69251272301E-03 5.83614530636E-03 5.98338971111E-03 6.13433613136E-03 6.28907698121E-03 6.44770694779E-03 6.61032304539E-03 6.77702467081E-03 6.94791365999E-03 7.12309434578E-03 7.30267361703E-03 7.48676097903E-03 7.67546861511E-03 7.86891144972E-03 8.06720721277E-03 8.27047650538E-03 8.47884286705E-03 8.69243284417E-03 8.91137606008E-03 9.13580528653E-03 9.36585651658E-03 9.60166903916E-03 9.84338551495E-03 1.00911520540E-02 1.03451182948E-02 1.06054374850E-02 1.08722665637E-02 1.11457662454E-02 1.14261011053E-02 1.17134396673E-02 1.20079544920E-02 1.23098222680E-02 1.26192239037E-02 1.29363446220E-02 1.32613740555E-02 1.35945063444E-02 1.39359402357E-02 1.42858791845E-02 1.46445314564E-02 1.50121102328E-02 1.53888337168E-02 1.57749252420E-02 1.61706133820E-02 1.65761320629E-02 1.69917206764E-02 1.74176241954E-02 1.78540932917E-02 1.83013844544E-02 1.87597601108E-02 1.92294887494E-02 1.97108450436E-02 2.02041099779E-02 2.07095709754E-02 2.12275220273E-02 2.17582638236E-02 2.23021038855E-02 2.28593566995E-02 2.34303438528E-02 2.40153941701E-02 2.46148438520E-02 2.52290366145E-02 2.58583238296E-02 2.65030646672E-02 2.71636262381E-02 2.78403837383E-02 2.85337205930E-02 2.92440286029E-02 2.99717080897E-02 3.07171680433E-02 3.14808262687E-02 3.22631095330E-02 3.30644537134E-02 3.38853039434E-02 3.47261147609E-02 3.55873502538E-02 3.64694842064E-02 3.73730002439E-02 3.82983919764E-02 3.92461631411E-02 4.02168277434E-02 4.12109101954E-02 4.22289454527E-02 4.32714791482E-02 4.43390677238E-02 4.54322785579E-02 4.65516900902E-02 4.76978919419E-02 4.88714850319E-02 5.00730816875E-02 5.13033057513E-02 5.25627926801E-02 5.38521896396E-02 5.51721555911E-02 5.65233613710E-02 5.79064897623E-02 5.93222355581E-02 6.07713056145E-02 6.22544188949E-02 6.37723065026E-02 6.53257117030E-02 6.69153899322E-02 6.85421087939E-02 7.02066480414E-02 7.19097995452E-02 7.36523672449E-02 7.54351670843E-02 7.72590269282E-02 7.91247864613E-02 8.10332970662E-02 8.29854216812E-02 8.49820346347E-02 8.70240214571E-02 8.91122786673E-02 9.12477135327E-02 9.34312438025E-02 9.56637974110E-02 9.79463121509E-02 1.00279735314E-01 1.02665023301E-01 1.05103141189E-01 1.07595062270E-01 1.10141767549E-01 1.12744245193E-01 1.15403489954E-01 1.18120502530E-01 1.20896288892E-01 1.23731859557E-01 1.26628228817E-01 1.29586413906E-01 1.32607434121E-01 1.35692309885E-01 1.38842061746E-01 1.42057709326E-01 1.45340270193E-01 1.48690758682E-01 1.52110184637E-01 1.55599552093E-01 1.59159857876E-01 1.62792090139E-01 1.66497226818E-01 1.70276234003E-01 1.74130064240E-01 1.78059654744E-01 1.82065925526E-01 1.86149777439E-01 1.90312090129E-01 1.94553719906E-01 1.98875497509E-01 2.03278225793E-01 2.07762677310E-01 2.12329591806E-01 2.16979673608E-01 2.21713588928E-01 2.26531963058E-01 2.31435377477E-01 2.36424366858E-01 2.41499415972E-01 2.46660956507E-01 2.51909363787E-01 2.57244953396E-01 2.62667977718E-01 2.68178622387E-01 2.73777002649E-01 2.79463159652E-01 2.85237056651E-01 2.91098575154E-01 2.97047510989E-01 3.03083570330E-01 3.09206365658E-01 3.15415411693E-01 3.21710121284E-01 3.28089801285E-01 3.34553648414E-01 3.41100745120E-01 3.47730055459E-01 3.54440421006E-01 3.61230556813E-01 3.68099047420E-01 3.75044342962E-01 3.82064755366E-01 3.89158454670E-01 3.96323465497E-01 4.03557663679E-01 4.10858773088E-01 4.18224362677E-01 4.25651843774E-01 4.33138467639E-01 4.40681323341E-01 4.48277335959E-01 4.55923265160E-01 4.63615704169E-01 4.71351079190E-01 4.79125649284E-01 4.86935506764E-01 4.94776578132E-01 5.02644625593E-01 5.10535249191E-01 5.18443889598E-01 5.26365831593E-01 5.34296208266E-01 5.42230005979E-01 5.50162070132E-01 5.58087111733E-01 5.65999714842E-01 5.73894344872E-01 5.81765357811E-01 5.89607010345E-01 5.97413470925E-01 6.05178831774E-01 6.12897121836E-01 6.20562320671E-01 6.28168373279E-01 6.35709205841E-01 6.43178742347E-01 6.50570922073E-01 6.57879717869E-01 6.65099155195E-01 6.72223331843E-01 6.79246438261E-01 6.86162778390E-01 6.92966790914E-01 6.99653070800E-01 7.06216390996E-01 7.12651724151E-01 7.18954264189E-01 7.25119447571E-01 7.31142974062E-01 7.37020826802E-01 7.42749291467E-01 7.48324974316E-01 7.53744818878E-01 7.59006121055E-01 7.64106542384E-01 7.69044121231E-01 7.73817281655E-01 7.78424839700E-01 7.82866006874E-01 7.87140390597E-01 7.91247991372E-01 7.95189196504E-01 7.98964770162E-01 8.02575839651E-01 8.06023877734E-01 8.09310680935E-01 8.12438343759E-01 8.15409228798E-01 8.18225932762E-01 8.20891248509E-01 8.23408123177E-01 8.25779612603E-01 8.28008832231E-01 8.30098904773E-01 8.32052904906E-01 8.33873801345E-01 8.35564396637E-01 8.37127265029E-01 8.38564688768E-01 8.39878593169E-01 8.41070480724E-01 8.42141364484E-01 8.43091700823E-01 8.43921321584E-01 8.44629365449E-01 8.45214208156E-01 8.45673391005E-01 8.46003546772E-01 8.46200321911E-01 8.46258293550E-01 8.46170879463E-01 8.45930238820E-01 8.45527161129E-01 8.44950940440E-01 8.44191455529E-01 8.43246360325E-01 8.42115508829E-01 8.40798892856E-01 8.39296642067E-01 8.37609023791E-01 8.35736442655E-01 8.33679440016E-01 8.31438693213E-01 8.29015014625E-01 8.26409350556E-01 8.23622779944E-01 8.20656512911E-01 8.17511889137E-01 8.14190376092E-01 8.10693567117E-01 8.07023179360E-01 8.03181051581E-01 7.99169141831E-01 7.94989525010E-01 7.90644390317E-01 7.86136038591E-01 7.81466879560E-01 7.76639429001E-01 7.71656305817E-01 7.66520229047E-01 7.61234014801E-01 7.55800573147E-01 7.50222904941E-01 7.44504098614E-01 7.38647326924E-01 7.32655843673E-01 7.26532980403E-01 7.20282143071E-01 7.13906808710E-01 7.07410522076E-01 7.00796892299E-01 6.94069589523E-01 6.87232341552E-01 6.80288930497E-01 6.73243189431E-01 6.66098999049E-01 6.58860284338E-01 6.51531011248E-01 6.44115183380E-01 6.36616838672E-01 6.29040046087E-01 6.21388902315E-01 6.13667528456E-01 6.05880066717E-01 5.98030677084E-01 5.90123533996E-01 5.82162822992E-01 5.74152737348E-01 5.66097474679E-01 5.58001233521E-01 5.49868209875E-01 5.41702593724E-01 5.33508565501E-01 5.25290292525E-01 5.17051925398E-01 5.08797594353E-01 5.00531405575E-01 4.92257437478E-01 4.83979736954E-01 4.75702315595E-01 4.67429145902E-01 4.59164157480E-01 4.50911233239E-01 4.42674205614E-01 4.34456852804E-01 4.26262895071E-01 4.18095991090E-01 4.09959734381E-01 4.01857649843E-01 3.93793190402E-01 3.85769733798E-01 3.77790579525E-01 3.69858945947E-01 3.61977967602E-01 3.54150692723E-01 3.46380080970E-01 3.38669001411E-01 3.31020230740E-01 3.23436451759E-01 3.15920252122E-01 3.08474123345E-01 3.01100460089E-01 2.93801559707E-01 2.86579622055E-01 2.79436749567E-01 2.72374947569E-01 2.65396124838E-01 2.58502094378E-01 2.51694574402E-01 2.44975189511E-01 2.38345472029E-01 2.31806863494E-01 2.25360716272E-01 2.19008295271E-01 2.12750779733E-01 2.06589265079E-01 2.00524764783E-01 1.94558212253E-01 1.88690462688E-01 1.82922294905E-01 1.77254413091E-01 1.71687448483E-01 1.66221960953E-01 1.60858440466E-01 1.55597308428E-01 1.50438918890E-01 1.45383559605E-01 1.40431452948E-01 1.35582756681E-01 1.30837564575E-01 1.26195906891E-01 1.21657750729E-01 1.17223000263E-01 1.12891496858E-01 1.08663019111E-01 1.04537282812E-01 1.00513940861E-01 9.65925831543E-02 9.27727364648E-02 8.90538643432E-02 8.54353670571E-02 8.19165815954E-02 7.84967817574E-02 7.51751783489E-02 7.19509195017E-02 6.88230911359E-02 6.57907175781E-02 6.28527623489E-02 6.00081291282E-02 5.72556629068E-02 5.45941513280E-02 5.20223262217E-02 4.95388653294E-02 4.71423942185E-02 4.48314883793E-02 4.26046754980E-02 4.04604378964E-02 3.83972151265E-02 3.64134067091E-02 3.45073750013E-02 3.26774481784E-02 3.09219233165E-02 2.92390695572E-02 2.76271313398E-02 2.60843316846E-02 2.46088755099E-02 2.31989529669E-02 2.18527427767E-02 2.05684155539E-02 1.93441371019E-02 1.81780716646E-02 1.70683851231E-02 1.60132481232E-02 1.50108391216E-02 1.40593473409E-02 1.31569756236E-02 1.23019431741E-02 1.14924881834E-02 1.07268703267E-02 1.00033731302E-02 9.32030619993E-03 8.67600730930E-03 8.06884434181E-03 7.49721708649E-03 6.95955888408E-03 6.45433812341E-03 5.98005958770E-03 5.53526565143E-03 5.11853732902E-03 4.72849517747E-03 4.36380005518E-03 4.02315374035E-03 3.70529941233E-03 3.40902200016E-03 3.13314840264E-03 2.87654758485E-03 2.63813055638E-03 2.41685023660E-03 2.21170121278E-03 2.02171939702E-03 1.84598158795E-03 1.68360494359E-03 1.53374637148E-03 1.39560184264E-03 1.26840563553E-03 1.15142951651E-03 1.04398186311E-03 9.45406736188E-04 8.55082907348E-04 7.72422847412E-04 6.96871681970E-04 6.27906119560E-04 5.65033358044E-04 5.07789974440E-04 4.55740803280E-04 4.08477808308E-04 3.65618952083E-04 3.26807067815E-04 2.91708737470E-04 2.60013179925E-04 2.31431152660E-04 2.05693870206E-04 1.82552434599E-04 1.61780697829E-04 1.43164715739E-04 1.26506538171E-04 1.11623816868E-04 9.83488583527E-05 8.65277138561E-05 7.60193072688E-05 6.66946020156E-05 5.84358076523E-05 5.11356269401E-05 4.46965441355E-05 3.90301552728E-05 3.40565412794E-05 2.97036849318E-05 2.59069328778E-05 2.25555689475E-05 1.96235936844E-05 1.70415828425E-05 1.47719541195E-05 1.27806364125E-05 1.10368024721E-05 9.51261545721E-06 8.18298931240E-06 7.02536281766E-06 6.01948709763E-06 5.14722631738E-06 4.39237124030E-06 3.74046527446E-06 3.17864261855E-06 2.69547802191E-06 2.28084773571E-06 1.92580113972E-06 1.62244254359E-06 1.36382264507E-06 1.14383912182E-06 9.57145831636E-07 7.99070098316E-07 6.65537566364E-07 5.53004117084E-07 4.58394350617E-07 3.79046153108E-07 3.12660884876E-07 2.57258743872E-07 2.11138878542E-07 1.72843845060E-07 1.41128025579E-07 1.14929646223E-07 9.33460559077E-08 7.56119493758E-08 6.10802399366E-08 4.92053090793E-08 3.95283812544E-08 3.16647925382E-08 2.52929415060E-08 2.01447293553E-08 1.59973140723E-08 1.26660201723E-08 9.99826123933E-09 7.86834713123E-09 6.17306129744E-09 4.82790619312E-09 3.76392628918E-09 2.92502870161E-09 2.26573103737E-09 1.74927472043E-09 1.34604987189E-09 1.03228482229E-09 7.88959588620E-10 6.00908207266E-10 4.56079731601E-10 3.44932035215E-10 2.59936359697E-10 1.95173861654E-10 1.46008294969E-10 1.08821457177E-10 8.08001758687E-11 5.97654520374E-11 4.40359487500E-11 3.23193489101E-11 2.36262355432E-11 1.72020993422E-11 1.24738756824E-11 9.00807878310E-12 6.47815344969E-12 4.63912186115E-12 3.30797898527E-12 2.34859829443E-12 1.66016063265E-12 1.16832289473E-12 8.18507763865E-13 5.70828026088E-13 3.96264767479E-13 2.73802953101E-13 1.88294563294E-13 1.28872005691E-13 8.77757185696E-14 5.94920197596E-14 4.01221992443E-14 2.69231139274E-14 1.79743375515E-14 1.19382233929E-14 7.88782961427E-15 5.18415293611E-15 3.38900062050E-15 2.20348339209E-15 1.42482841405E-15 9.16220480823E-16 5.85857075118E-16 3.72483335892E-16 2.35458485488E-16 1.47973049843E-16 9.24442151138E-17 5.74081223533E-17 3.54348567054E-17 2.17379501544E-17 1.32526730265E-17 8.02881330478E-18 4.83312229663E-18 2.89066585931E-18 1.71761720147E-18 1.01385885633E-18 5.94449615577E-19 3.46180325323E-19 2.00217658761E-19 1.14994603599E-19 6.55827424964E-20 3.71364329505E-20 2.08771052872E-20 1.16509235285E-20 6.45402127834E-21 3.54845986469E-21 1.93618944596E-21 1.04836548220E-21 5.63238633931E-22 3.00223327573E-22 1.58754332663E-22 8.32707031673E-23 4.33211681607E-23 2.23513932831E-23 1.14356334335E-23 5.80124403571E-24 2.91770144320E-24 1.45469621639E-24 7.18898964225E-25 3.52110716100E-25 1.70906115291E-25 8.21965261534E-26 3.91666770880E-26 1.84882867036E-26 8.64454058332E-27 4.00313712383E-27 1.83577583694E-27 8.33577794430E-28 3.74736443900E-28 1.66764787284E-28 7.34557909134E-29 3.20210025582E-29 1.38125621387E-29 5.89503674560E-30 2.48893489331E-30 1.03943268181E-30 4.29314279060E-31 1.75343634795E-31 7.08074891352E-32 2.82670797118E-32 1.11540481649E-32 4.34981096666E-33 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.86303174600E-08 6.01145509350E-08 6.16363579553E-08 6.31966896996E-08 6.47965214255E-08 6.64368530798E-08 6.81187099228E-08 6.98431431693E-08 7.16112306459E-08 7.34240774643E-08 7.52828167126E-08 7.71886101626E-08 7.91426489970E-08 8.11461545530E-08 8.32003790864E-08 8.53066065538E-08 8.74661534153E-08 8.96803694574E-08 9.19506386366E-08 9.42783799444E-08 9.66650482941E-08 9.91121354304E-08 1.01621170862E-07 1.04193722816E-07 1.06831399221E-07 1.09535848709E-07 1.12308761649E-07 1.15151871200E-07 1.18066954398E-07 1.21055833262E-07 1.24120375940E-07 1.27262497867E-07 1.30484162972E-07 1.33787384898E-07 1.37174228266E-07 1.40646809960E-07 1.44207300458E-07 1.47857925178E-07 1.51600965879E-07 1.55438762081E-07 1.59373712530E-07 1.63408276695E-07 1.67544976309E-07 1.71786396942E-07 1.76135189616E-07 1.80594072466E-07 1.85165832438E-07 1.89853327026E-07 1.94659486065E-07 1.99587313557E-07 2.04639889552E-07 2.09820372071E-07 2.15131999081E-07 2.20578090517E-07 2.26162050361E-07 2.31887368765E-07 2.37757624234E-07 2.43776485866E-07 2.49947715640E-07 2.56275170771E-07 2.62762806118E-07 2.69414676659E-07 2.76234940025E-07 2.83227859096E-07 2.90397804666E-07 2.97749258180E-07 3.05286814528E-07 3.13015184920E-07 3.20939199832E-07 3.29063812022E-07 3.37394099630E-07 3.45935269347E-07 3.54692659672E-07 3.63671744249E-07 3.72878135289E-07 3.82317587074E-07 3.91995999556E-07 4.01919422048E-07 4.12094056997E-07 4.22526263869E-07 4.33222563117E-07 4.44189640263E-07 4.55434350071E-07 4.66963720833E-07 4.78784958765E-07 4.90905452506E-07 5.03332777741E-07 5.16074701931E-07 5.29139189175E-07 5.42534405177E-07 5.56268722362E-07 5.70350725100E-07 5.84789215075E-07 5.99593216786E-07 6.14771983187E-07 6.30335001471E-07 6.46291999000E-07 6.62652949382E-07 6.79428078710E-07 6.96627871949E-07 7.14263079489E-07 7.32344723871E-07 7.50884106666E-07 7.69892815549E-07 7.89382731532E-07 8.09366036399E-07 8.29855220313E-07 8.50863089626E-07 8.72402774882E-07 8.94487739026E-07 9.17131785814E-07 9.40349068446E-07 9.64154098409E-07 9.88561754547E-07 1.01358729236E-06 1.03924635355E-06 1.06555497576E-06 1.09252960267E-06 1.12018709419E-06 1.14854473705E-06 1.17762025560E-06 1.20743182287E-06 1.23799807195E-06 1.26933810762E-06 1.30147151829E-06 1.33441838824E-06 1.36819931022E-06 1.40283539823E-06 1.43834830081E-06 1.47476021452E-06 1.51209389780E-06 1.55037268525E-06 1.58962050217E-06 1.62986187950E-06 1.67112196921E-06 1.71342655999E-06 1.75680209333E-06 1.80127568011E-06 1.84687511752E-06 1.89362890641E-06 1.94156626914E-06 1.99071716782E-06 2.04111232304E-06 2.09278323308E-06 2.14576219360E-06 2.20008231780E-06 2.25577755714E-06 2.31288272256E-06 2.37143350621E-06 2.43146650378E-06 2.49301923739E-06 2.55613017900E-06 2.62083877448E-06 2.68718546827E-06 2.75521172862E-06 2.82496007356E-06 2.89647409744E-06 2.96979849818E-06 3.04497910522E-06 3.12206290813E-06 3.20109808603E-06 3.28213403766E-06 3.36522141227E-06 3.45041214126E-06 3.53775947066E-06 3.62731799441E-06 3.71914368843E-06 3.81329394568E-06 3.90982761196E-06 4.00880502274E-06 4.11028804084E-06 4.21434009511E-06 4.32102622004E-06 4.43041309644E-06 4.54256909311E-06 4.65756430954E-06 4.77547061976E-06 4.89636171723E-06 5.02031316090E-06 5.14740242246E-06 5.27770893469E-06 5.41131414121E-06 5.54830154726E-06 5.68875677199E-06 5.83276760189E-06 5.98042404570E-06 6.13181839065E-06 6.28704526013E-06 6.44620167283E-06 6.60938710338E-06 6.77670354448E-06 6.94825557070E-06 7.12415040378E-06 7.30449797965E-06 7.48941101718E-06 7.67900508854E-06 7.87339869149E-06 8.07271332341E-06 8.27707355723E-06 8.48660711928E-06 8.70144496909E-06 8.92172138129E-06 9.14757402943E-06 9.37914407209E-06 9.61657624106E-06 9.86001893178E-06 1.01096242961E-05 1.03655483374E-05 1.06279510078E-05 1.08969963086E-05 1.11728523924E-05 1.14556916682E-05 1.17456909094E-05 1.20430313637E-05 1.23478988673E-05 1.26604839599E-05 1.29809820046E-05 1.33095933097E-05 1.36465232538E-05 1.39919824142E-05 1.43461866985E-05 1.47093574795E-05 1.50817217334E-05 1.54635121819E-05 1.58549674373E-05 1.62563321518E-05 1.66678571703E-05 1.70897996873E-05 1.75224234070E-05 1.79659987091E-05 1.84208028166E-05 1.88871199698E-05 1.93652416037E-05 1.98554665299E-05 2.03581011235E-05 2.08734595142E-05 2.14018637832E-05 2.19436441636E-05 2.24991392475E-05 2.30686961969E-05 2.36526709608E-05 2.42514284980E-05 2.48653430043E-05 2.54947981470E-05 2.61401873040E-05 2.68019138101E-05 2.74803912085E-05 2.81760435092E-05 2.88893054544E-05 2.96206227892E-05 3.03704525407E-05 3.11392633033E-05 3.19275355312E-05 3.27357618389E-05 3.35644473085E-05 3.44141098055E-05 3.52852803019E-05 3.61785032084E-05 3.70943367136E-05 3.80333531336E-05 3.89961392686E-05 3.99832967698E-05 4.09954425151E-05 4.20332089944E-05 4.30972447044E-05 4.41882145536E-05 4.53068002780E-05 4.64537008659E-05 4.76296329952E-05 4.88353314807E-05 5.00715497327E-05 5.13390602276E-05 5.26386549902E-05 5.39711460882E-05 5.53373661395E-05 5.67381688313E-05 5.81744294540E-05 5.96470454468E-05 6.11569369585E-05 6.27050474219E-05 6.42923441423E-05 6.59198189018E-05 6.75884885779E-05 6.92993957789E-05 7.10536094937E-05 7.28522257600E-05 7.46963683475E-05 7.65871894599E-05 7.85258704534E-05 8.05136225742E-05 8.25516877146E-05 8.46413391873E-05 8.67838825203E-05 8.89806562716E-05 9.12330328639E-05 9.35424194412E-05 9.59102587464E-05 9.83380300217E-05 1.00827249931E-04 1.03379473505E-04 1.05996295114E-04 1.08679349459E-04 1.11430312594E-04 1.14250902967E-04 1.17142882498E-04 1.20108057672E-04 1.23148280668E-04 1.26265450513E-04 1.29461514266E-04 1.32738468234E-04 1.36098359210E-04 1.39543285759E-04 1.43075399516E-04 1.46696906531E-04 1.50410068648E-04 1.54217204905E-04 1.58120692987E-04 1.62122970706E-04 1.66226537516E-04 1.70433956074E-04 1.74747853832E-04 1.79170924679E-04 1.83705930615E-04 1.88355703471E-04 1.93123146673E-04 1.98011237049E-04 2.03023026685E-04 2.08161644821E-04 2.13430299799E-04 2.18832281062E-04 2.24370961202E-04 2.30049798052E-04 2.35872336845E-04 2.41842212414E-04 2.47963151454E-04 2.54238974843E-04 2.60673600011E-04 2.67271043384E-04 2.74035422873E-04 2.80970960438E-04 2.88081984714E-04 2.95372933693E-04 3.02848357490E-04 3.10512921163E-04 3.18371407615E-04 3.26428720561E-04 3.34689887576E-04 3.43160063212E-04 3.51844532202E-04 3.60748712736E-04 3.69878159825E-04 3.79238568745E-04 3.88835778572E-04 3.98675775802E-04 4.08764698061E-04 4.19108837911E-04 4.29714646751E-04 4.40588738812E-04 4.51737895253E-04 4.63169068367E-04 4.74889385878E-04 4.86906155359E-04 4.99226868751E-04 5.11859207000E-04 5.24811044808E-04 5.38090455503E-04 5.51705716030E-04 5.65665312066E-04 5.79977943263E-04 5.94652528623E-04 6.09698212004E-04 6.25124367768E-04 6.40940606561E-04 6.57156781247E-04 6.73782992982E-04 6.90829597439E-04 7.08307211198E-04 7.26226718279E-04 7.44599276846E-04 7.63436326080E-04 7.82749593216E-04 8.02551100755E-04 8.22853173860E-04 8.43668447929E-04 8.65009876357E-04 8.86890738493E-04 9.09324647789E-04 9.32325560154E-04 9.55907782508E-04 9.80085981559E-04 1.00487519278E-03 1.03029082962E-03 1.05634869293E-03 1.08306498064E-03 1.11045629767E-03 1.13853966602E-03 1.16733253524E-03 1.19685279302E-03 1.22711877613E-03 1.25814928160E-03 1.28996357814E-03 1.32258141787E-03 1.35602304839E-03 1.39030922502E-03 1.42546122344E-03 1.46150085259E-03 1.49845046792E-03 1.53633298492E-03 1.57517189299E-03 1.61499126967E-03 1.65581579520E-03 1.69767076738E-03 1.74058211691E-03 1.78457642297E-03 1.82968092926E-03 1.87592356038E-03 1.92333293861E-03 1.97193840113E-03 2.02177001761E-03 2.07285860822E-03 2.12523576209E-03 2.17893385622E-03 2.23398607477E-03 2.29042642893E-03 2.34828977713E-03 2.40761184582E-03 2.46842925067E-03 2.53077951837E-03 2.59470110881E-03 2.66023343788E-03 2.72741690079E-03 2.79629289589E-03 2.86690384905E-03 2.93929323871E-03 3.01350562133E-03 3.08958665761E-03 3.16758313916E-03 3.24754301594E-03 3.32951542416E-03 3.41355071498E-03 3.49970048374E-03 3.58801759991E-03 3.67855623776E-03 3.77137190761E-03 3.86652148792E-03 3.96406325797E-03 4.06405693138E-03 4.16656369033E-03 4.27164622051E-03 4.37936874690E-03 4.48979707033E-03 4.60299860480E-03 4.71904241565E-03 4.83799925858E-03 4.95994161945E-03 5.08494375501E-03 5.21308173448E-03 5.34443348197E-03 5.47907881988E-03 5.61709951318E-03 5.75857931458E-03 5.90360401073E-03 6.05226146930E-03 6.20464168710E-03 6.36083683910E-03 6.52094132853E-03 6.68505183795E-03 6.85326738135E-03 7.02568935733E-03 7.20242160321E-03 7.38357045037E-03 7.56924478053E-03 7.75955608315E-03 7.95461851397E-03 8.15454895458E-03 8.35946707318E-03 8.56949538639E-03 8.78475932222E-03 9.00538728422E-03 9.23151071670E-03 9.46326417111E-03 9.70078537366E-03 9.94421529398E-03 1.01936982150E-02 1.04493818039E-02 1.07114171845E-02 1.09799590103E-02 1.12551655393E-02 1.15371987094E-02 1.18262242153E-02 1.21224115862E-02 1.24259342651E-02 1.27369696888E-02 1.30556993692E-02 1.33823089755E-02 1.37169884176E-02 1.40599319304E-02 1.44113381593E-02 1.47714102467E-02 1.51403559189E-02 1.55183875745E-02 1.59057223737E-02 1.63025823279E-02 1.67091943905E-02 1.71257905481E-02 1.75526079131E-02 1.79898888156E-02 1.84378808973E-02 1.88968372047E-02 1.93670162834E-02 1.98486822724E-02 2.03421049989E-02 2.08475600725E-02 2.13653289806E-02 2.18956991823E-02 2.24389642035E-02 2.29954237307E-02 2.35653837044E-02 2.41491564125E-02 2.47470605822E-02 2.53594214717E-02 2.59865709600E-02 2.66288476359E-02 2.72865968858E-02 2.79601709790E-02 2.86499291517E-02 2.93562376889E-02 3.00794700036E-02 3.08200067135E-02 3.15782357147E-02 3.23545522528E-02 3.31493589894E-02 3.39630660657E-02 3.47960911618E-02 3.56488595512E-02 3.65218041505E-02 3.74153655641E-02 3.83299921230E-02 3.92661399175E-02 4.02242728234E-02 4.12048625214E-02 4.22083885084E-02 4.32353381014E-02 4.42862064324E-02 4.53614964342E-02 4.64617188169E-02 4.75873920334E-02 4.87390422341E-02 4.99172032103E-02 5.11224163248E-02 5.23552304294E-02 5.36162017689E-02 5.49058938701E-02 5.62248774151E-02 5.75737300992E-02 5.89530364703E-02 6.03633877514E-02 6.18053816431E-02 6.32796221064E-02 6.47867191246E-02 6.63272884424E-02 6.79019512830E-02 6.95113340394E-02 7.11560679411E-02 7.28367886943E-02 7.45541360935E-02 7.63087536046E-02 7.81012879173E-02 7.99323884657E-02 8.18027069161E-02 8.37128966206E-02 8.56636120338E-02 8.76555080942E-02 8.96892395647E-02 9.17654603349E-02 9.38848226808E-02 9.60479764818E-02 9.82555683930E-02 1.00508240972E-01 1.02806631756E-01 1.05151372295E-01 1.07543087127E-01 1.09982392710E-01 1.12469896292E-01 1.15006194731E-01 1.17591873260E-01 1.20227504193E-01 1.22913645567E-01 1.25650839734E-01 1.28439611885E-01 1.31280468513E-01 1.34173895817E-01 1.37120358034E-01 1.40120295715E-01 1.43174123931E-01 1.46282230416E-01 1.49444973643E-01 1.52662680834E-01 1.55935645907E-01 1.59264127355E-01 1.62648346063E-01 1.66088483062E-01 1.69584677218E-01 1.73137022864E-01 1.76745567375E-01 1.80410308681E-01 1.84131192732E-01 1.87908110913E-01 1.91740897408E-01 1.95629326532E-01 1.99573110009E-01 2.03571894239E-01 2.07625257518E-01 2.11732707256E-01 2.15893677166E-01 2.20107524464E-01 2.24373527061E-01 2.28690880773E-01 2.33058696553E-01 2.37475997755E-01 2.41941717449E-01 2.46454695786E-01 2.51013677439E-01 2.55617309130E-01 2.60264137256E-01 2.64952605627E-01 2.69681053349E-01 2.74447712842E-01 2.79250708043E-01 2.84088052786E-01 2.88957649400E-01 2.93857287530E-01 2.98784643214E-01 3.03737278234E-01 3.08712639762E-01 3.13708060330E-01 3.18720758139E-01 3.23747837743E-01 3.28786291118E-01 3.33832999156E-01 3.38884733592E-01 3.43938159397E-01 3.48989837661E-01 3.54036228981E-01 3.59073697381E-01 3.64098514776E-01 3.69106866007E-01 3.74094854458E-01 3.79058508263E-01 3.83993787124E-01 3.88896589737E-01 3.93762761832E-01 3.98588104838E-01 4.03368385143E-01 4.08099343966E-01 4.12776707807E-01 4.17396199458E-01 4.21953549558E-01 4.26444508635E-01 4.30864859616E-01 4.35210430744E-01 4.39477108842E-01 4.43660852862E-01 4.47757707653E-01 4.51763817841E-01 4.55675441757E-01 4.59488965288E-01 4.63200915552E-01 4.66807974279E-01 4.70306990761E-01 4.73694994245E-01 4.76969205623E-01 4.80127048262E-01 4.83166157834E-01 4.86084390978E-01 4.88879832628E-01 4.91550801858E-01 4.94095856076E-01 4.96513793402E-01 4.98803653090E-01 5.00964713847E-01 5.02996489907E-01 5.04898724750E-01 5.06671382365E-01 5.08314635961E-01 5.09828854086E-01 5.11214584107E-01 5.12472533048E-01 5.13603545823E-01 5.14608580912E-01 5.15488683587E-01 5.16244956816E-01 5.16878530012E-01 5.17390525839E-01 5.17782025301E-01 5.18054031395E-01 5.18207431614E-01 5.18242959605E-01 5.18161156317E-01 5.17962330940E-01 5.17646521951E-01 5.17213458542E-01 5.16662522641E-01 5.15992711712E-01 5.15202602389E-01 5.14290314904E-01 5.13253478156E-01 5.12089195063E-01 5.10794007696E-01 5.09363861461E-01 5.07794067374E-01 5.06079261219E-01 5.04213358143E-01 5.02189500931E-01 5.00000000000E-01 4.97637574948E-01 4.95099577536E-01 4.92384652884E-01 4.89491515172E-01 4.86418947533E-01 4.83165801825E-01 4.79730998285E-01 4.76113525069E-01 4.72312437686E-01 4.68326858317E-01 4.64155975041E-01 4.59799040961E-01 4.55255373233E-01 4.50524352017E-01 4.45605419333E-01 4.40498077849E-01 4.35201889594E-01 4.29716474607E-01 4.24041509517E-01 4.18176726080E-01 4.12121909660E-01 4.05876897665E-01 3.99441577952E-01 3.92815887193E-01 3.85999809221E-01 3.78993373352E-01 3.71796652694E-01 3.64409762443E-01 3.56832858179E-01 3.49066134160E-01 3.41109821619E-01 3.32964187076E-01 3.24629530653E-01 3.16106184422E-01 3.07394510755E-01 2.98494900712E-01 2.89407772447E-01 2.80133569649E-01 2.70672760005E-01 2.61025833700E-01 2.51193301957E-01 2.41175695594E-01 2.30973563635E-01 2.20587471945E-01 2.10018001904E-01 1.99265749117E-01 1.88331322166E-01 1.77215341385E-01 1.65918437693E-01 1.54441251445E-01 1.42784431339E-01 1.30948633352E-01 1.18934519735E-01 1.06742758042E-01 9.43740202227E-02 8.18289817681E-02 6.91083209284E-02 5.62127180021E-02 4.31428547146E-02 2.98994136947E-02 1.64830780663E-02 2.89453116935E-03 -1.08655435690E-02 -2.47964625941E-02 -3.88975419905E-02 -5.31680970321E-02 -6.76074414894E-02 -8.22148866660E-02 -9.69897401366E-02 -1.11931304157E-01 -1.27038873714E-01 -1.42311734196E-01 -1.57749158637E-01 -1.73350404533E-01 -1.89114710174E-01 -2.05041290509E-01 -2.21129332483E-01 -2.37377989864E-01 -2.53786377535E-01 -2.70353565253E-01 -2.87078570865E-01 -3.03960353005E-01 -3.20997803280E-01 -3.38189737958E-01 -3.55534889209E-01 -3.73031895919E-01 -3.90679294129E-01 -4.08475507157E-01 -4.26418835468E-01 -4.44507446349E-01 -4.62739363486E-01 -4.81112456515E-01 -4.99624430649E-01 -5.18272816473E-01 -5.37054960012E-01 -5.55968013193E-01 -5.75008924792E-01 -5.94174432000E-01 -6.13461052708E-01 -6.32865078641E-01 -6.52382569438E-01 -6.72009347799E-01 -6.91740995791E-01 -7.11572852416E-01 -7.31500012528E-01 -7.51517327155E-01 -7.71619405319E-01 -7.91800617356E-01 -8.12055099808E-01 -8.32376761864E-01 -8.52759293350E-01 -8.73196174240E-01 -8.93680685635E-01 -9.14205922129E-01 -9.34764805467E-01 -9.55350099388E-01 -9.75954425511E-01 -9.96570280103E-01 -1.01719005157E+00 -1.03780603848E+00 -1.05841046794E+00 -1.07899551410E+00 -1.09955331656E+00 -1.12007599859E+00 -1.14055568472E+00 -1.16098451782E+00 -1.18135467513E+00 -1.20165838332E+00 -1.22188793230E+00 -1.24203568759E+00 -1.26209410121E+00 -1.28205572086E+00 -1.30191319732E+00 -1.32165929008E+00 -1.34128687091E+00 -1.36078892560E+00 -1.38015855356E+00 -1.39938896548E+00 -1.41847347893E+00 -1.43740551196E+00 -1.45617857469E+00 -1.47478625898E+00 -1.49322222619E+00 -1.51148019308E+00 -1.52955391592E+00 -1.54743717298E+00 -1.56512374522E+00 -1.58260739556E+00 -1.59988184661E+00 -1.61694075703E+00 -1.63377769649E+00 -1.65038611953E+00 -1.66675933814E+00 -1.68289049339E+00 -1.69877252593E+00 -1.71439814574E+00 -1.72975980096E+00 -1.74484964595E+00 -1.75965950881E+00 -1.77418085815E+00 -1.78840476947E+00 -1.80232189110E+00 -1.81592240969E+00 -1.82919601559E+00 -1.84213186791E+00 -1.85471855957E+00 -1.86694408230E+00 -1.87879579175E+00 -1.89026037275E+00 -1.90132380490E+00 -1.91197132851E+00 -1.92218741107E+00 -1.93195571431E+00 -1.94125906208E+00 -1.95007940900E+00 -1.95839781028E+00 -1.96619439257E+00 -1.97344832628E+00 -1.98013779935E+00 -1.98623999271E+00 -1.99173105766E+00 -1.99658609538E+00 -2.00077913868E+00 -2.00428313637E+00 -2.00706994045E+00 -2.00911029628E+00 -2.01037383622E+00 -2.01082907679E+00 -2.01044341987E+00 -2.00918315813E+00 -2.00701348509E+00 -2.00389851018E+00 -1.99980127910E+00 -1.99468380002E+00 -1.98850707587E+00 -1.98123114325E+00 -1.97281511843E+00 -1.96321725079E+00 -1.95239498430E+00 -1.94030502741E+00 -1.92690343203E+00 -1.91214568196E+00 -1.89598679137E+00 -1.87838141399E+00 -1.85928396328E+00 -1.83864874453E+00 -1.81643009909E+00 -1.79258256129E+00 -1.76706578827E+00 -1.73988282979E+00 -1.71099131162E+00 -1.68034480807E+00 -1.64789821125E+00 -1.61360797274E+00 -1.57743236137E+00 -1.53933173762E+00 -1.49926884506E+00 -1.45720911916E+00 -1.41312101367E+00 -1.36697634485E+00 -1.31875065376E+00 -1.26842358636E+00 -1.21597929155E+00 -1.16140683680E+00 -1.10467187647E+00 -1.04548639895E+00 -9.83841353756E-01 -9.19766120933E-01 -8.53298794362E-01 -7.84486713750E-01 -7.13387001874E-01 -6.40067104432E-01 -5.64605329548E-01 -4.87091383623E-01 -4.07626899821E-01 -3.26325955093E-01 -2.43315571261E-01 -1.58736194842E-01 -7.27421507203E-02 1.44979366439E-02 1.02800760820E-01 1.91967996756E-01 2.81786017318E-01 3.72025670995E-01 4.62442129260E-01 5.52774812566E-01 6.42747404480E-01 7.32067963898E-01 8.20429145751E-01 9.07508540974E-01 9.92969146888E-01 1.07645997939E+00 1.15761683857E+00 1.23606323945E+00 1.31141151958E+00 1.38326413495E+00 1.45121515568E+00 1.51485197205E+00 1.57375722126E+00 1.62751094407E+00 1.67569297965E+00 1.71788560528E+00 1.75367642631E+00 1.78266151943E+00 1.80444883024E+00 1.81866182332E+00 1.82494338001E+00 1.82295993571E+00 1.81240584440E+00 1.79300795408E+00 1.76453037179E+00 1.72677939185E+00 1.67960855514E+00 1.62292380132E+00 1.55668866910E+00 1.48092949321E+00 1.39574053892E+00 1.30128900809E+00 1.19781984254E+00 1.08566024291E+00 9.65223813622E-01 8.37014236571E-01 7.01628369162E-01 5.59758655486E-01 4.12194733312E-01 2.59824114577E-01 1.03631813169E-01 -5.53012084730E-02 -2.15800902907E-01 -3.76604438575E-01 -5.36366060948E-01 -6.93664629601E-01 -8.47012936334E-01 -9.94868895188E-01 -1.13564867685E+00 -1.26774183713E+00 -1.38952846163E+00 -1.49939831601E+00 -1.59577195357E+00 -1.67712368826E+00 -1.74200629299E+00 -1.78907722882E+00 -1.81712615212E+00 -1.82510338301E+00 -1.81214895186E+00 -1.77762177011E+00 -1.72112840064E+00 -1.64255083111E+00 -1.54207258398E+00 -1.42020243129E+00 -1.27779492267E+00 -1.11606688555E+00 -9.36609019006E-01 -7.41391681385E-01 -5.32763970433E-01 -3.13445216751E-01 -8.65080611237E-02 1.44647632465E-01 3.76330659892E-01 6.04604632850E-01 8.25344688405E-01 1.03430479365E+00 1.22719540401E+00 1.39977090768E+00 1.54792592195E+00 1.66779910393E+00 1.75588270594E+00 1.80913565285E+00 1.82509745816E+00 1.80199984251E+00 1.73887249065E+00 1.63563900264E+00 1.49319878573E+00 1.31349042242E+00 1.09953196470E+00 8.55433675183E-01 5.86378990013E-01 2.98569944529E-01 -8.65996795042E-04 -3.04009811358E-01 -6.02326379765E-01 -8.86880949059E-01 -1.14859428309E+00 -1.37853223956E+00 -1.56822339481E+00 -1.70999611347E+00 -1.79732421691E+00 -1.82516825238E+00 -1.79029743135E+00 -1.69157573829E+00 -1.53019467002E+00 -1.30983471767E+00 -1.03673821395E+00 -7.19677690776E-01 -3.69806553708E-01 -3.82766941093E-04 3.73638614032E-01 7.36141869234E-01 1.07050637215E+00 1.36036377170E+00 1.59042991862E+00 1.74737605670E+00 1.82069555205E+00 1.80351541684E+00 1.69329684854E+00 1.49236673383E+00 1.20822331890E+00 8.53564695560E-01 4.45998896841E-01 7.40948226549E-03 -4.37029578979E-01 -8.60171676841E-01 -1.23450239938E+00 -1.53395659538E+00 -1.73584390501E+00 -1.82275301429E+00 -1.78428474188E+00 -1.61845284674E+00 -1.33259213788E+00 -9.43628627450E-01 2.78643147105E-12 2.89290658058E-12 3.00345031657E-12 3.11821814936E-12 3.23737149012E-12 3.36107791786E-12 3.48951141511E-12 3.62285261263E-12 3.76128904344E-12 3.90501540657E-12 4.05423384088E-12 4.20915420938E-12 4.36999439434E-12 4.53698060376E-12 4.71034768950E-12 4.89033947755E-12 5.07720911103E-12 5.27121940611E-12 5.47264322172E-12 5.68176384326E-12 5.89887538105E-12 6.12428318392E-12 6.35830426871E-12 6.60126776610E-12 6.85351538351E-12 7.11540188567E-12 7.38729559360E-12 7.66957890257E-12 7.96264881996E-12 8.26691752358E-12 8.58281294138E-12 8.91077935328E-12 9.25127801604E-12 9.60478781194E-12 9.97180592232E-12 1.03528485268E-11 1.07484515292E-11 1.11591713115E-11 1.15855855158E-11 1.20282938573E-11 1.24879189674E-11 1.29651072697E-11 1.34605298887E-11 1.39748835939E-11 1.45088917798E-11 1.50633054834E-11 1.56389044401E-11 1.62364981806E-11 1.68569271693E-11 1.75010639868E-11 1.81698145561E-11 1.88641194180E-11 1.95849550527E-11 2.03333352538E-11 2.11103125542E-11 2.19169797059E-11 2.27544712172E-11 2.36239649483E-11 2.45266837676E-11 2.54638972719E-11 2.64369235717E-11 2.74471311453E-11 2.84959407631E-11 2.95848274859E-11 3.07153227396E-11 3.18890164690E-11 3.31075593738E-11 3.43726652300E-11 3.56861133008E-11 3.70497508380E-11 3.84654956812E-11 3.99353389539E-11 4.14613478647E-11 4.30456686142E-11 4.46905294136E-11 4.63982436186E-11 4.81712129824E-11 5.00119310345E-11 5.19229865866E-11 5.39070673743E-11 5.59669638368E-11 5.81055730415E-11 6.03259027585E-11 6.26310756908E-11 6.50243338658E-11 6.75090431955E-11 7.00886982098E-11 7.27669269716E-11 7.55474961792E-11 7.84343164638E-11 8.14314478897E-11 8.45431056642E-11 8.77736660658E-11 9.11276725995E-11 9.46098423863E-11 9.82250727980E-11 1.01978448344E-10 1.05875247824E-10 1.09920951750E-10 1.14121250055E-10 1.18482050096E-10 1.23009484961E-10 1.27709922098E-10 1.32589972263E-10 1.37656498827E-10 1.42916627420E-10 1.48377755957E-10 1.54047565045E-10 1.59934028777E-10 1.66045425956E-10 1.72390351732E-10 1.78977729692E-10 1.85816824413E-10 1.92917254488E-10 2.00289006055E-10 2.07942446842E-10 2.15888340750E-10 2.24137862986E-10 2.32702615786E-10 2.41594644730E-10 2.50826455681E-10 2.60411032379E-10 2.70361854693E-10 2.80692917588E-10 2.91418750802E-10 3.02554439283E-10 3.14115644403E-10 3.26118625987E-10 3.38580265177E-10 3.51518088179E-10 3.64950290906E-10 3.78895764574E-10 3.93374122269E-10 4.08405726528E-10 4.24011717983E-10 4.40214045088E-10 4.57035494990E-10 4.74499725577E-10 4.92631298749E-10 5.11455714965E-10 5.30999449104E-10 5.51289987700E-10 5.72355867600E-10 5.94226716101E-10 6.16933292610E-10 6.40507531915E-10 6.64982589089E-10 6.90392886123E-10 7.16774160340E-10 7.44163514650E-10 7.72599469739E-10 8.02122018238E-10 8.32772680973E-10 8.64594565357E-10 8.97632426018E-10 9.31932727745E-10 9.67543710830E-10 1.00451545892E-09 1.04289996944E-09 1.08275122675E-09 1.12412527804E-09 1.16708031218E-09 1.21167674152E-09 1.25797728690E-09 1.30604706583E-09 1.35595368408E-09 1.40776733076E-09 1.46156087703E-09 1.51740997859E-09 1.57539318210E-09 1.63559203559E-09 1.69809120323E-09 1.76297858434E-09 1.83034543703E-09 1.90028650656E-09 1.97290015854E-09 2.04828851735E-09 2.12655760969E-09 2.20781751375E-09 2.29218251400E-09 2.37977126189E-09 2.47070694279E-09 2.56511744917E-09 2.66313556051E-09 2.76489913002E-09 2.87055127851E-09 2.98024059569E-09 3.09412134913E-09 3.21235370124E-09 3.33510393450E-09 3.46254468532E-09 3.59485518684E-09 3.73222152100E-09 3.87483688024E-09 4.02290183920E-09 4.17662463680E-09 4.33622146914E-09 4.50191679350E-09 4.67394364403E-09 4.85254395951E-09 5.03796892358E-09 5.23047931800E-09 5.43034588942E-09 5.63784973015E-09 5.85328267346E-09 6.07694770403E-09 6.30915938406E-09 6.55024429563E-09 6.80054150003E-09 7.06040301458E-09 7.33019430772E-09 7.61029481297E-09 7.90109846256E-09 8.20301424144E-09 8.51646676245E-09 8.84189686352E-09 9.17976222758E-09 9.53053802629E-09 9.89471758827E-09 1.02728130929E-08 1.06653562905E-08 1.10728992506E-08 1.14960151376E-08 1.19352990176E-08 1.23913686947E-08 1.28648655803E-08 1.33564555947E-08 1.38668301040E-08 1.43967068920E-08 1.49468311702E-08 1.55179766252E-08 1.61109465071E-08 1.67265747593E-08 1.73657271908E-08 1.80293026942E-08 1.87182345097E-08 1.94334915377E-08 2.01760797012E-08 2.09470433602E-08 2.17474667811E-08 2.25784756609E-08 2.34412387105E-08 2.43369692984E-08 2.52669271566E-08 2.62324201528E-08 2.72348061291E-08 2.82754948120E-08 2.93559497945E-08 3.04776905945E-08 3.16422947916E-08 3.28514002458E-08 3.41067074006E-08 3.54099816744E-08 3.67630559432E-08 3.81678331179E-08 3.96262888204E-08 4.11404741623E-08 4.27125186282E-08 4.43446330716E-08 4.60391128230E-08 4.77983409179E-08 4.96247914481E-08 5.15210330410E-08 5.34897324709E-08 5.55336584102E-08 5.76556853220E-08 5.98587975023E-08 6.21460932769E-08 6.45207893580E-08 6.69862253676E-08 6.95458685338E-08 7.22033185662E-08 7.49623127179E-08 7.78267310406E-08 8.08006018410E-08 8.38881073448E-08 8.70935895779E-08 9.04215564717E-08 9.38766882023E-08 9.74638437712E-08 1.01188067838E-07 1.05054597813E-07 1.09068871223E-07 1.13236533357E-07 1.17563445201E-07 1.22055691684E-07 1.26719590231E-07 1.31561699645E-07 1.36588829333E-07 1.41808048875E-07 1.47226697970E-07 1.52852396751E-07 1.58693056503E-07 1.64756890784E-07 1.71052426974E-07 1.77588518266E-07 1.84374356111E-07 1.91419483144E-07 1.98733806599E-07 2.06327612237E-07 2.14211578810E-07 2.22396793074E-07 2.30894765374E-07 2.39717445830E-07 2.48877241136E-07 2.58387032002E-07 2.68260191263E-07 2.78510602680E-07 2.89152680458E-07 3.00201389512E-07 3.11672266502E-07 3.23581441675E-07 3.35945661544E-07 3.48782312426E-07 3.62109444885E-07 3.75945799106E-07 3.90310831240E-07 4.05224740751E-07 4.20708498812E-07 4.36783877785E-07 4.53473481821E-07 4.70800778639E-07 4.88790132508E-07 5.07466838496E-07 5.26857158022E-07 5.46988355770E-07 5.67888738011E-07 5.89587692384E-07 6.12115729203E-07 6.35504524339E-07 6.59786963734E-07 6.84997189627E-07 7.11170648528E-07 7.38344141042E-07 7.66555873580E-07 7.95845512053E-07 8.26254237616E-07 8.57824804535E-07 8.90601600268E-07 9.24630707836E-07 9.59959970580E-07 9.96639059387E-07 1.03471954248E-06 1.07425495788E-06 1.11530088861E-06 1.15791504083E-06 1.20215732487E-06 1.24808993941E-06 1.29577745888E-06 1.34528692416E-06 1.39668793676E-06 1.45005275662E-06 1.50545640356E-06 1.56297676272E-06 1.62269469392E-06 1.68469414526E-06 1.74906227102E-06 1.81588955404E-06 1.88526993286E-06 1.95730093360E-06 2.03208380693E-06 2.10972367026E-06 2.19032965536E-06 2.27401506160E-06 2.36089751500E-06 2.45109913346E-06 2.54474669814E-06 2.64197183150E-06 2.74291118209E-06 2.84770661633E-06 2.95650541773E-06 3.06946049357E-06 3.18673058955E-06 3.30848051261E-06 3.43488136222E-06 3.56611077051E-06 3.70235315152E-06 3.84379996005E-06 3.99064996023E-06 4.14310950443E-06 4.30139282282E-06 4.46572232385E-06 4.63632890630E-06 4.81345228314E-06 4.99734131782E-06 5.18825437324E-06 5.38645967416E-06 5.59223568332E-06 5.80587149192E-06 6.02766722496E-06 6.25793446206E-06 6.49699667426E-06 6.74518967744E-06 7.00286210308E-06 7.27037588688E-06 7.54810677601E-06 7.83644485563E-06 8.13579509551E-06 8.44657791743E-06 8.76922978415E-06 9.10420381080E-06 9.45197039958E-06 9.81301789854E-06 1.01878532854E-05 1.05770028777E-05 1.09810130691E-05 1.14004510949E-05 1.18359058256E-05 1.22879885915E-05 1.27573340375E-05 1.32446010117E-05 1.37504734870E-05 1.42756615178E-05 1.48209022331E-05 1.53869608674E-05 1.59746318306E-05 1.65847398188E-05 1.72181409670E-05 1.78757240455E-05 1.85584117021E-05 1.92671617511E-05 2.00029685110E-05 2.07668641939E-05 2.15599203464E-05 2.23832493457E-05 2.32380059528E-05 2.41253889237E-05 2.50466426823E-05 2.60030590567E-05 2.69959790807E-05 2.80267948643E-05 2.90969515343E-05 3.02079492490E-05 3.13613452885E-05 3.25587562245E-05 3.38018601724E-05 3.50923991279E-05 3.64321813924E-05 3.78230840901E-05 3.92670557797E-05 4.07661191655E-05 4.23223739105E-05 4.39379995554E-05 4.56152585482E-05 4.73564993880E-05 4.91641598874E-05 5.10407705576E-05 5.29889581213E-05 5.50114491581E-05 5.71110738873E-05 5.92907700920E-05 6.15535871926E-05 6.39026904722E-05 6.63413654614E-05 6.88730224881E-05 7.15012013976E-05 7.42295764507E-05 7.70619614050E-05 8.00023147874E-05 8.30547453642E-05 8.62235178158E-05 8.95130586244E-05 9.29279621826E-05 9.64729971294E-05 1.00153112924E-04 1.03973446667E-04 1.07939330172E-04 1.12056297305E-04 1.16330091597E-04 1.20766674144E-04 1.25372231788E-04 1.30153185623E-04 1.35116199801E-04 1.40268190672E-04 1.45616336267E-04 1.51168086124E-04 1.56931171489E-04 1.62913615888E-04 1.69123746095E-04 1.75570203504E-04 1.82261955919E-04 1.89208309790E-04 1.96418922887E-04 2.03903817454E-04 2.11673393837E-04 2.19738444626E-04 2.28110169305E-04 2.36800189450E-04 2.45820564479E-04 2.55183807984E-04 2.64902904659E-04 2.74991327846E-04 2.85463057727E-04 2.96332600175E-04 3.07615006300E-04 3.19325892693E-04 3.31481462424E-04 3.44098526790E-04 3.57194527855E-04 3.70787561809E-04 3.84896403169E-04 3.99540529858E-04 4.14740149181E-04 4.30516224744E-04 4.46890504336E-04 4.63885548813E-04 4.81524762017E-04 4.99832421763E-04 5.18833711936E-04 5.38554755724E-04 5.59022650041E-04 5.80265501164E-04 6.02312461639E-04 6.25193768484E-04 6.48940782744E-04 6.73586030433E-04 6.99163244919E-04 7.25707410783E-04 7.53254809219E-04 7.81843065010E-04 8.11511195140E-04 8.42299659079E-04 8.74250410822E-04 9.07406952706E-04 9.41814391081E-04 9.77519493887E-04 1.01457075019E-03 1.05301843176E-03 1.09291465669E-03 1.13431345523E-03 1.17727083781E-03 1.22184486527E-03 1.26809572159E-03 1.31608578885E-03 1.36587972486E-03 1.41754454320E-03 1.47114969594E-03 1.52676715912E-03 1.58447152088E-03 1.64434007258E-03 1.70645290275E-03 1.77089299406E-03 1.83774632346E-03 1.90710196536E-03 1.97905219812E-03 2.05369261392E-03 2.13112223193E-03 2.21144361500E-03 2.29476299002E-03 2.38119037179E-03 2.47083969071E-03 2.56382892427E-03 2.66028023247E-03 2.76032009712E-03 2.86407946535E-03 2.97169389710E-03 3.08330371698E-03 3.19905417028E-03 3.31909558344E-03 3.44358352892E-03 3.57267899458E-03 3.70654855762E-03 3.84536456317E-03 3.98930530755E-03 4.13855522627E-03 4.29330508688E-03 4.45375218653E-03 4.62010055453E-03 4.79256115974E-03 4.97135212290E-03 5.15669893390E-03 5.34883467401E-03 5.54800024300E-03 5.75444459130E-03 5.96842495693E-03 6.19020710742E-03 6.42006558648E-03 6.65828396547E-03 6.90515509959E-03 7.16098138855E-03 7.42607504188E-03 7.70075834851E-03 7.98536395059E-03 8.28023512143E-03 8.58572604721E-03 8.90220211245E-03 9.23004018893E-03 9.56962892775E-03 9.92136905434E-03 1.02856736661E-02 1.06629685322E-02 1.10536923957E-02 1.14582972767E-02 1.18772487767E-02 1.23110263841E-02 1.27601237795E-02 1.32250491407E-02 1.37063254466E-02 1.42044907805E-02 1.47200986302E-02 1.52537181864E-02 1.58059346370E-02 1.63773494575E-02 1.69685806966E-02 1.75802632565E-02 1.82130491658E-02 1.88676078459E-02 1.95446263690E-02 2.02448097074E-02 2.09688809717E-02 2.17175816394E-02 2.24916717713E-02 2.32919302145E-02 2.41191547924E-02 2.49741624795E-02 2.58577895613E-02 2.67708917768E-02 2.77143444445E-02 2.86890425696E-02 2.96959009323E-02 3.07358541568E-02 3.18098567601E-02 3.29188831791E-02 3.40639277778E-02 3.52460048320E-02 3.64661484935E-02 3.77254127319E-02 3.90248712556E-02 4.03656174131E-02 4.17487640726E-02 4.31754434847E-02 4.46468071270E-02 4.61640255325E-02 4.77282881053E-02 4.93408029254E-02 5.10027965443E-02 5.27155137778E-02 5.44802174965E-02 5.62981884212E-02 5.81707249274E-02 6.00991428639E-02 6.20847753930E-02 6.41289728588E-02 6.62331026911E-02 6.83985493542E-02 7.06267143489E-02 7.29190162776E-02 7.52768909843E-02 7.77017917798E-02 8.01951897643E-02 8.27585742606E-02 8.53934533717E-02 8.81013546755E-02 9.08838260725E-02 9.37424368001E-02 9.66787786306E-02 9.96944672658E-02 1.02791143946E-01 1.05970477285E-01 1.09234165354E-01 1.12583938010E-01 1.16021559512E-01 1.19548831401E-01 1.23167595686E-01 1.26879738316E-01 1.30687192972E-01 1.34591945152E-01 1.38596036574E-01 1.42701569873E-01 1.46910713594E-01 1.51225707464E-01 1.55648867911E-01 1.60182593828E-01 1.64829372522E-01 1.69591785821E-01 1.74472516285E-01 1.79474353467E-01 1.84600200151E-01 1.89853078486E-01 1.95236135952E-01 2.00752651023E-01 2.06406038468E-01 2.12199854133E-01 2.18137799116E-01 2.24223723189E-01 2.30461627338E-01 2.36855665300E-01 2.43410143954E-01 2.50129522447E-01 2.57018409958E-01 2.64081561983E-01 2.71323875111E-01 2.78750380235E-01 2.86366234240E-01 2.94176710245E-01 3.02187186544E-01 3.10403134502E-01 3.18830105744E-01 3.27473719092E-01 3.36339647852E-01 3.45433608154E-01 3.54761349243E-01 3.64328646684E-01 3.74141299628E-01 3.84205133310E-01 3.94526007984E-01 4.05109835407E-01 4.15962603729E-01 4.27090411192E-01 4.38499508265E-01 4.50196346683E-01 4.62187632075E-01 4.74480374413E-01 4.87081927006E-01 5.00000000000E-01 5.13242629348E-01 5.26818114955E-01 5.40735000948E-01 5.55002082199E-01 5.69628412211E-01 5.84623311186E-01 5.99996374286E-01 6.15757480096E-01 6.31916799270E-01 6.48484803390E-01 6.65472274011E-01 6.82890311922E-01 7.00750346598E-01 7.19064145869E-01 7.37843825791E-01 7.57101860729E-01 7.76851093652E-01 7.97104746643E-01 8.17876431630E-01 8.39180161324E-01 8.61030360399E-01 8.83441876874E-01 9.06429993743E-01 9.30010440823E-01 9.54199406838E-01 9.79013551742E-01 1.00447001929E+00 1.03058644982E+00 1.05738099334E+00 1.08487232281E+00 1.11307964773E+00 1.14202272791E+00 1.17172188762E+00 1.20219802989E+00 1.23347265113E+00 1.26556785608E+00 1.29850637291E+00 1.33231156869E+00 1.36700746514E+00 1.40261875461E+00 1.43917081635E+00 1.47668973310E+00 1.51520230786E+00 1.55473608103E+00 1.59531934769E+00 1.63698117518E+00 1.67975142093E+00 1.72366075035E+00 1.76874065502E+00 1.81502347098E+00 1.86254239702E+00 1.91133151315E+00 1.96142579889E+00 2.01286115165E+00 2.06567440478E+00 2.11990334544E+00 2.17558673215E+00 2.23276431180E+00 2.29147683605E+00 2.35176607708E+00 2.41367484236E+00 2.47724698837E+00 2.54252743306E+00 2.60956216685E+00 2.67839826200E+00 2.74908387997E+00 2.82166827675E+00 2.89620180571E+00 2.97273591780E+00 3.05132315886E+00 3.13201716360E+00 3.21487264626E+00 3.29994538728E+00 3.38729221611E+00 3.47697098955E+00 3.56904056557E+00 3.66356077223E+00 3.76059237160E+00 3.86019701825E+00 3.96243721239E+00 4.06737624725E+00 4.17507815072E+00 4.28560762107E+00 4.39902995675E+00 4.51541098017E+00 4.63481695557E+00 4.75731450093E+00 4.88297049421E+00 5.01185197387E+00 5.14402603408E+00 5.27955971478E+00 5.41851988694E+00 5.56097313339E+00 5.70698562570E+00 5.85662299748E+00 6.00995021477E+00 6.16703144389E+00 6.32792991761E+00 6.49270779999E+00 6.66142605083E+00 6.83414429011E+00 7.01092066334E+00 7.19181170836E+00 7.37687222416E+00 7.56615514249E+00 7.75971140260E+00 7.95758982968E+00 8.15983701738E+00 8.36649721458E+00 8.57761221655E+00 8.79322126063E+00 9.01336092601E+00 9.23806503746E+00 9.46736457240E+00 9.70128757060E+00 9.93985904555E+00 1.01831008965E+01 1.04310318197E+01 1.06836672177E+01 1.09410191041E+01 1.12030960038E+01 1.14699028442E+01 1.17414408381E+01 1.20177073531E+01 1.22986957684E+01 1.25843953136E+01 1.28747908897E+01 1.31698628687E+01 1.34695868688E+01 1.37739335048E+01 1.40828681100E+01 1.43963504280E+01 1.47143342719E+01 1.50367671498E+01 1.53635898543E+01 1.56947360141E+01 1.60301316064E+01 1.63696944291E+01 1.67133335309E+01 1.70609485987E+01 1.74124293010E+01 1.77676545868E+01 1.81264919395E+01 1.84887965850E+01 1.88544106535E+01 1.92231622962E+01 1.95948647553E+01 1.99693153886E+01 2.03462946490E+01 2.07255650193E+01 2.11068699039E+01 2.14899324780E+01 2.18744544957E+01 2.22601150592E+01 2.26465693517E+01 2.30334473347E+01 2.34203524149E+01 2.38068600821E+01 2.41925165231E+01 2.45768372151E+01 2.49593055049E+01 2.53393711768E+01 2.57164490185E+01 2.60899173896E+01 2.64591168012E+01 2.68233485147E+01 2.71818731707E+01 2.75339094553E+01 2.78786328185E+01 2.82151742547E+01 2.85426191599E+01 2.88600062802E+01 2.91663267671E+01 2.94605233582E+01 2.97414896997E+01 3.00080698331E+01 3.02590578666E+01 3.04931978531E+01 3.07091839024E+01 3.09056605496E+01 3.10812234114E+01 3.12344201565E+01 3.13637518227E+01 3.14676745117E+01 3.15446014965E+01 3.15929057758E+01 3.16109231116E+01 3.15969555890E+01 3.15492757341E+01 3.14661312325E+01 3.13457502864E+01 3.11863476506E+01 3.09861313883E+01 3.07433103868E+01 3.04561026713E+01 3.01227445544E+01 2.97415006600E+01 2.93106748507E+01 2.88286220928E+01 2.82937612837E+01 2.77045890636E+01 2.70596946288E+01 2.63577755552E+01 2.55976546344E+01 2.47782977152E+01 2.38988325338E+01 2.29585685036E+01 2.19570174211E+01 2.08939713027E+01 1.97699729000E+01 1.85852672226E+01 1.73403314165E+01 1.60359618919E+01 1.46732987598E+01 1.32538503953E+01 1.17795179250E+01 1.02526194065E+01 8.67591344330E+00 7.05262194264E+00 5.38645169470E+00 3.68161441972E+00 1.94284489237E+00 1.75416722665E-01 -1.61484466289E+00 -3.42146325601E+00 -5.23654040018E+00 -7.05193142795E+00 -8.85896792709E+00 -1.06484304685E+01 -1.24105700863E+01 -1.41351370896E+01 -1.58114178214E+01 -1.74282799649E+01 -1.89742269740E+01 -2.04374621646E+01 -2.18059629538E+01 -2.30675656677E+01 -2.42100612271E+01 -2.52213019694E+01 -2.60893196838E+01 -2.68024548143E+01 -2.73494966067E+01 -2.77198337782E+01 -2.79036150652E+01 -2.78919187555E+01 -2.76769300357E+01 -2.72521246837E+01 -2.66124573138E+01 -2.57545520357E+01 -2.46768930258E+01 -2.33800121301E+01 -2.18666702371E+01 -2.01420287655E+01 -1.82138072381E+01 -1.60924225448E+01 -1.37911051639E+01 -1.13259873171E+01 -8.71615779375E+00 -5.98367801340E+00 -3.15355381998E+00 -2.53657532365E-01 2.68540506211E+00 5.63048777316E+00 8.54616165173E+00 1.13950410590E+01 1.41381811213E+01 1.67355484204E+01 1.91465654131E+01 2.13307274674E+01 2.32482895416E+01 2.48610174139E+01 2.61329960145E+01 2.70314848352E+01 2.75278076263E+01 2.75982606906E+01 2.72250211047E+01 2.63970332235E+01 2.51108489423E+01 2.33713945272E+01 2.11926344969E+01 1.85981012016E+01 1.56212575597E+01 1.23056600465E+01 8.70488966888E+00 4.88222048225E+00 9.09998383897E-01 -3.13129238396E+00 -7.15429124200E+00 -1.10663599205E+01 -1.47715159937E+01 -1.81726879098E+01 -2.11742648270E+01 -2.36848998197E+01 -2.56205091407E+01 -2.69073936533E+01 -2.74853918594E+01 -2.73109578606E+01 -2.63600429410E+01 -2.46306472269E+01 -2.21448991418E+01 -1.89505162729E+01 -1.51215029831E+01 -1.07579487707E+01 -5.98480804919E+00 -9.49567516231E-01 4.18125782997E+00 9.22681454628E+00 1.39977473968E+01 1.83030819420E+01 2.19579839365E+01 2.47921541575E+01 2.66585443832E+01 2.74420108706E+01 2.70674607647E+01 2.55069999808E+01 2.27855641883E+01 1.89845136196E+01 1.42427032155E+01 8.75460692316E+00 2.76518215458E+00 -3.43869123213E+00 -9.54017500834E+00 -1.52075943614E+01 -2.01122229244E+01 -2.39479741073E+01 -2.64519829867E+01 -2.74248287430E+01 -2.67489618057E+01 -2.44037880925E+01 -2.04758504815E+01 -1.51626578612E+01 -8.76896229137E+00 -1.69468396444E+00 5.58577092915E+00 1.25523800157E+01 1.86753737425E+01 2.34561032182E+01 2.64701210043E+01 2.74090132660E+01 2.61170483769E+01 2.26185299124E+01 1.71319454952E+01 1.00676500765E+01 2.00694086213E+00 -6.33804890926E+00 -1.41822675751E+01 -2.07399328915E+01 -2.53052566818E+01 -2.73340222505E+01 -2.65169185824E+01 -2.28349623737E+01 -1.65878675287E+01 -8.38802887897E+00 8.84085555148E-01 1.01630283184E+01 1.83146967553E+01 2.42751998589E+01 2.71966053226E+01 2.65802426658E+01 2.23767508647E+01 1.50334705750E+01 5.47451749915E+00 -4.99309691198E+00 -1.48432197089E+01 -2.25479560437E+01 -2.68207090147E+01 -2.68476625047E+01 -2.24661781503E+01 -1.42510207574E+01 -3.47960510220E+00 8.03468193418E+00 1.82284691817E+01 2.51553869239E+01 2.73728334640E+01 2.42727574832E+01 1.62795954834E+01 4.85415053231E+00 -7.72522904619E+00 -1.87871609725E+01 -2.58297345467E+01 espresso-5.0.2/PW/examples/EXX_example/Pseudo/NPBE085nlcc.RRKJ30000644000700200004540000066304012053145630022550 0ustar marsamoscmN 2 F T 1 4 3 4 0.50000000000E+01-.19391341360E+02 2 -.70000000000E+010.10000000000E+030.70000000000E+010.12500000000E-01 1085 5 4 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 3.00 2P 2 1 0.00 3D 3 2 -2.00 713 7.69481897942E-01 7.79160790802E-01 7.88961429227E-01 7.98885344590E-01 8.08941123353E-01 8.19080982023E-01 8.29474351556E-01 8.39796533857E-01 8.50386916874E-01 8.61171749959E-01 8.71912890628E-01 8.82866567901E-01 8.94060809417E-01 9.05189693372E-01 9.16647457471E-01 9.28194843476E-01 9.39826558182E-01 9.51665716995E-01 9.63598596753E-01 9.75740689109E-01 9.88102852013E-01 1.00042142163E+00 1.01305235722E+00 1.02577082353E+00 1.03873912332E+00 1.05169724731E+00 1.06503317503E+00 1.07835838445E+00 1.09196296693E+00 1.10564850768E+00 1.11963003341E+00 1.13364229694E+00 1.14792650529E+00 1.16237576558E+00 1.17699301706E+00 1.19182831092E+00 1.20675144896E+00 1.22201250166E+00 1.23733013801E+00 1.25292182729E+00 1.26864424021E+00 1.28467118162E+00 1.30076446409E+00 1.31713540545E+00 1.33376547377E+00 1.35044302309E+00 1.36749770125E+00 1.38464321834E+00 1.40207465012E+00 1.41971288866E+00 1.43756946326E+00 1.45566967541E+00 1.47397053753E+00 1.49248588461E+00 1.51131051606E+00 1.53033113201E+00 1.54949894455E+00 1.56910186680E+00 1.58874580681E+00 1.60872995092E+00 1.62901221575E+00 1.64948241661E+00 1.67023273105E+00 1.69121751957E+00 1.71251983277E+00 1.73404824223E+00 1.75588375846E+00 1.77796119486E+00 1.80031468415E+00 1.82294750390E+00 1.84588953322E+00 1.86913541539E+00 1.89259521878E+00 1.91642899816E+00 1.94055033251E+00 1.96492709831E+00 1.98963023966E+00 2.01469796849E+00 2.04000715954E+00 2.06569555859E+00 2.09165196703E+00 2.11798188133E+00 2.14463609064E+00 2.17157141665E+00 2.19890290663E+00 2.22657363880E+00 2.25458630401E+00 2.28293312698E+00 2.31164051375E+00 2.34074202170E+00 2.37015067856E+00 2.39999287712E+00 2.43016706933E+00 2.46074192536E+00 2.49169598274E+00 2.52302465853E+00 2.55475896295E+00 2.58691087360E+00 2.61943637183E+00 2.65238002843E+00 2.68576641564E+00 2.71953165661E+00 2.75373472933E+00 2.78836969845E+00 2.82344744769E+00 2.85898412827E+00 2.89489518428E+00 2.93134992007E+00 2.96821117872E+00 3.00553877651E+00 3.04335837661E+00 3.08161579529E+00 3.12042018678E+00 3.15961823608E+00 3.19940383200E+00 3.23963147062E+00 3.28038033223E+00 3.32162428787E+00 3.36342462915E+00 3.40574369170E+00 3.44855826123E+00 3.49194789549E+00 3.53586048631E+00 3.58035035464E+00 3.62538082066E+00 3.67098760331E+00 3.71715849593E+00 3.76390727092E+00 3.81125048687E+00 3.85919608140E+00 3.90773585768E+00 3.95687870828E+00 4.00666741273E+00 4.05705646084E+00 4.10808249679E+00 4.15977423506E+00 4.21207338305E+00 4.26506421463E+00 4.31871834715E+00 4.37303718462E+00 4.42802748352E+00 4.48374202127E+00 4.54013581902E+00 4.59723377378E+00 4.65507294544E+00 4.71362453451E+00 4.77290907133E+00 4.83294985832E+00 4.89373377314E+00 4.95529081874E+00 5.01761824513E+00 5.08072568473E+00 5.14465508702E+00 5.20934969289E+00 5.27487098623E+00 5.34123399017E+00 5.40839715856E+00 5.47643776300E+00 5.54531629675E+00 5.61506922652E+00 5.68569675349E+00 5.75721233175E+00 5.82962647794E+00 5.90296380001E+00 5.97720020006E+00 6.05238110527E+00 6.12851812911E+00 6.20560240360E+00 6.28365909510E+00 6.36268865470E+00 6.44272667959E+00 6.52377114878E+00 6.60581939505E+00 6.68891092223E+00 6.77304518797E+00 6.85822922476E+00 6.94450107740E+00 7.03184571529E+00 7.12029123986E+00 7.20985703730E+00 7.30054302266E+00 7.39237419069E+00 7.48534029240E+00 7.57951018488E+00 7.67483633353E+00 7.77137440277E+00 7.86911508838E+00 7.96810557766E+00 8.06832697706E+00 8.16980477864E+00 8.27256610980E+00 8.37661703768E+00 8.48197722297E+00 8.58866542200E+00 8.69669885723E+00 8.80608015758E+00 8.91684578262E+00 9.02899732049E+00 9.14256255330E+00 9.25756233622E+00 9.37400084856E+00 9.49190425964E+00 9.61129149179E+00 9.73218044695E+00 9.85459443579E+00 9.97854515890E+00 1.01040465077E+01 1.02311397509E+01 1.03598182089E+01 1.04901261749E+01 1.06220690718E+01 1.07556658760E+01 1.08909499296E+01 1.10279278620E+01 1.11666414086E+01 1.13070845498E+01 1.14493096559E+01 1.15933021379E+01 1.17391295533E+01 1.18867754448E+01 1.20362784115E+01 1.21876699199E+01 1.23409611806E+01 1.24961740415E+01 1.26533407862E+01 1.28124968988E+01 1.29736364166E+01 1.31368207285E+01 1.33020394485E+01 1.34693458939E+01 1.36387531972E+01 1.38102886395E+01 1.39839852557E+01 1.41598659956E+01 1.43379535858E+01 1.45182867569E+01 1.47008820694E+01 1.48857751605E+01 1.50729970753E+01 1.52625673932E+01 1.54545246308E+01 1.56488936173E+01 1.58457114233E+01 1.60449981438E+01 1.62467901235E+01 1.64511286940E+01 1.66580198724E+01 1.68675322910E+01 1.70796604110E+01 1.72944666005E+01 1.75119728251E+01 1.77322101949E+01 1.79552169866E+01 1.81810306170E+01 1.84096790290E+01 1.86412084013E+01 1.88756403369E+01 1.91130254480E+01 1.93533903243E+01 1.95967813658E+01 1.98432277822E+01 2.00927761129E+01 2.03454575708E+01 2.06013183259E+01 2.08603931515E+01 2.11227305551E+01 2.13883562291E+01 2.16573296742E+01 2.19296784756E+01 2.22054494581E+01 2.24846914484E+01 2.27674392036E+01 2.30537409980E+01 2.33436448263E+01 2.36371878164E+01 2.39344220871E+01 2.42353923664E+01 2.45401444467E+01 2.48487251926E+01 2.51611849364E+01 2.54775699273E+01 2.57979308344E+01 2.61223177953E+01 2.64507813413E+01 2.67833735904E+01 2.71201430662E+01 2.74611387090E+01 2.78064299866E+01 2.81560477662E+01 2.85100662279E+01 2.88685261982E+01 2.92314959681E+01 2.95990185679E+01 2.99711622917E+01 3.03479770167E+01 3.07295300399E+01 3.11158688435E+01 3.15070661814E+01 3.19031739347E+01 3.23042547041E+01 3.27103775632E+01 3.31215973731E+01 3.35379781471E+01 3.39595914183E+01 3.43864980482E+01 3.48187643172E+01 3.52564565589E+01 3.56996468052E+01 3.61483990085E+01 3.66027824730E+01 3.70628730991E+01 3.75287378454E+01 3.80004501304E+01 3.84780809579E+01 3.89617093024E+01 3.94514028781E+01 3.99472442731E+01 4.04493085856E+01 4.09576678196E+01 4.14724090388E+01 4.19936055807E+01 4.25213429173E+01 4.30556983156E+01 4.35967547924E+01 4.41446006364E+01 4.46993136793E+01 4.52609857727E+01 4.58296982258E+01 4.64055447986E+01 4.69886074185E+01 4.75789796004E+01 4.81767552856E+01 4.87820191898E+01 4.93948731677E+01 5.00154026906E+01 5.06437103579E+01 5.12798913370E+01 5.19240391837E+01 5.25762596060E+01 5.32366460585E+01 5.39053060444E+01 5.45823373317E+01 5.52678471314E+01 5.59619391369E+01 5.66647201157E+01 5.73762978786E+01 5.80967804859E+01 5.88262795563E+01 5.95649058147E+01 6.03127728892E+01 6.10699954390E+01 6.18366867210E+01 6.26129679162E+01 6.33989514867E+01 6.41947651940E+01 6.50005237575E+01 6.58163509744E+01 6.66423738568E+01 6.74787160411E+01 6.83255047997E+01 6.91828692550E+01 7.00509387679E+01 7.09298446972E+01 7.18197228467E+01 7.27207048453E+01 7.36329283416E+01 7.45565303990E+01 7.54916528938E+01 7.64384340794E+01 7.73970177310E+01 7.83675497311E+01 7.93501732327E+01 8.03450384586E+01 8.13522941231E+01 8.23720915256E+01 8.34045824215E+01 8.44499211082E+01 8.55082677249E+01 8.65797762115E+01 8.76646076246E+01 8.87629243048E+01 8.98748898162E+01 9.10006683687E+01 9.21404287808E+01 9.32943365423E+01 9.44625690518E+01 9.56452911701E+01 9.68426842304E+01 9.80549204657E+01 9.92821801963E+01 1.00524643853E+02 1.01782493343E+02 1.03055912275E+02 1.04345089335E+02 1.05650209358E+02 1.06971465277E+02 1.08309048207E+02 1.09663151234E+02 1.11033974201E+02 1.12421711271E+02 1.13826565114E+02 1.15248738240E+02 1.16688433645E+02 1.18145858119E+02 1.19621221950E+02 1.21114733697E+02 1.22626607229E+02 1.24157056736E+02 1.25706299905E+02 1.27274554188E+02 1.28862042530E+02 1.30468987041E+02 1.32095613250E+02 1.33742147180E+02 1.35408821558E+02 1.37095863625E+02 1.38803510796E+02 1.40531996661E+02 1.42281559265E+02 1.44052439693E+02 1.45844877565E+02 1.47659119895E+02 1.49495409115E+02 1.51353996313E+02 1.53235129940E+02 1.55139062608E+02 1.57066047514E+02 1.59016342195E+02 1.60990202305E+02 1.62987889690E+02 1.65009665018E+02 1.67055792321E+02 1.69126536059E+02 1.71222164954E+02 1.73342946421E+02 1.75489151802E+02 1.77661053133E+02 1.79858924652E+02 1.82083041996E+02 1.84333681331E+02 1.86611122786E+02 1.88915645079E+02 1.91247529660E+02 1.93607060046E+02 1.95994519034E+02 1.98410193258E+02 2.00854366761E+02 2.03327329550E+02 2.05829366494E+02 2.08360769295E+02 2.10921826842E+02 2.13512828761E+02 2.16134067157E+02 2.18785833471E+02 2.21468418026E+02 2.24182113778E+02 2.26927213910E+02 2.29704008175E+02 2.32512790045E+02 2.35353851262E+02 2.38227481454E+02 2.41133972545E+02 2.44073613247E+02 2.47046693096E+02 2.50053498793E+02 2.53094317527E+02 2.56169433087E+02 2.59279129155E+02 2.62423686575E+02 2.65603383956E+02 2.68818498193E+02 2.72069302889E+02 2.75356068874E+02 2.78679064176E+02 2.82038552526E+02 2.85434795428E+02 2.88868048294E+02 2.92338564069E+02 2.95846589690E+02 2.99392368315E+02 3.02976136427E+02 3.06598125448E+02 3.10258560893E+02 3.13957661370E+02 3.17695638515E+02 3.21472696680E+02 3.25289033065E+02 3.29144834902E+02 3.33040282997E+02 3.36975546802E+02 3.40950787193E+02 3.44966154335E+02 3.49021787401E+02 3.53117814763E+02 3.57254351668E+02 3.61431501667E+02 3.65649354295E+02 3.69907985768E+02 3.74207456747E+02 3.78547813429E+02 3.82929084809E+02 3.87351284151E+02 3.91814406158E+02 3.96318426459E+02 4.00863303269E+02 4.05448972110E+02 4.10075348916E+02 4.14742327069E+02 4.19449776164E+02 4.24197542979E+02 4.28985447550E+02 4.33813284999E+02 4.38680822327E+02 4.43587798005E+02 4.48533921142E+02 4.53518869605E+02 4.58542289345E+02 4.63603792490E+02 4.68702956675E+02 4.73839323099E+02 4.79012395430E+02 4.84221637931E+02 4.89466474890E+02 4.94746287705E+02 5.00060414638E+02 5.05408148247E+02 5.10788733575E+02 5.16201368011E+02 5.21645197021E+02 5.27119314534E+02 5.32622759782E+02 5.38154516024E+02 5.43713507893E+02 5.49298600139E+02 5.54908594973E+02 5.60542230761E+02 5.66198178103E+02 5.71875039837E+02 5.77571347257E+02 5.83285558092E+02 5.89016054510E+02 5.94761140419E+02 6.00519038856E+02 6.06287889521E+02 6.12065746499E+02 6.17850575408E+02 6.23640250437E+02 6.29432552777E+02 6.35225166083E+02 6.41015674658E+02 6.46801561638E+02 6.52580203989E+02 6.58348870876E+02 6.64104720759E+02 6.69844797948E+02 6.75566029670E+02 6.81265223600E+02 6.86939063627E+02 6.92584107981E+02 6.98196785616E+02 7.03773392625E+02 7.09310090264E+02 7.14802900922E+02 7.20247704909E+02 7.25640238442E+02 7.30976089295E+02 7.36250694601E+02 7.41459337089E+02 7.46597143090E+02 7.51659078416E+02 7.56639946951E+02 7.61534385862E+02 7.66336865122E+02 7.71041682534E+02 7.75642963801E+02 7.80134657072E+02 7.84510533405E+02 7.88764182906E+02 7.92889013209E+02 7.96878247874E+02 8.00724924330E+02 8.04421892876E+02 8.07961814627E+02 8.11337161956E+02 8.14540216371E+02 8.17563069137E+02 8.20397620766E+02 8.23035581229E+02 8.25468471021E+02 8.27687621909E+02 8.29684178468E+02 8.31449100500E+02 8.32973165042E+02 8.34246969758E+02 8.35260936807E+02 8.36005316657E+02 8.36470193910E+02 8.36645492644E+02 8.36520982990E+02 8.36086289132E+02 8.35330897570E+02 8.34244166582E+02 8.32815336710E+02 8.31033543340E+02 8.28887828375E+02 8.26367156394E+02 8.23460428960E+02 8.20156503366E+02 8.16444210870E+02 8.12312378493E+02 8.07749851182E+02 8.02745517074E+02 7.97288335236E+02 7.91367364509E+02 7.84971795576E+02 7.78090986870E+02 7.70714500532E+02 7.62832144905E+02 7.54434016864E+02 7.45510550684E+02 7.36052567733E+02 7.26051332413E+02 7.15498610116E+02 7.04386731251E+02 6.92708657487E+02 6.80458055415E+02 6.67629372022E+02 6.54217917434E+02 6.40219951550E+02 6.25632776399E+02 6.10454833265E+02 5.94685805807E+02 5.78326728513E+02 5.61380099421E+02 5.43850000007E+02 5.25742218128E+02 5.07064376720E+02 4.87826066943E+02 4.68038985015E+02 4.47717071972E+02 4.26876657091E+02 4.05536601362E+02 3.83718442941E+02 3.61446541195E+02 3.38748218209E+02 3.15653897518E+02 2.92197235571E+02 2.68415246281E+02 2.44348413718E+02 2.20040793320E+02 1.95540094339E+02 1.70897744632E+02 1.46168930694E+02 1.21412611114E+02 9.66914974602E+01 7.20720007545E+01 4.76241353240E+01 2.34213786788E+01 -4.59520429210E-01 -2.39387886649E+01 -4.69339355544E+01 -6.93601266584E+01 -9.11306258480E+01 -1.12157312390E+02 -1.32351274343E+02 -1.51623482571E+02 -1.69885545665E+02 -1.87050545939E+02 -2.03033955997E+02 -2.17754630668E+02 -2.31135868703E+02 -2.43106537422E+02 -2.53602244290E+02 -2.62566544385E+02 -2.69952160390E+02 -2.75722193554E+02 -2.79851295448E+02 -2.82326766368E+02 -2.83149542165E+02 -2.82335023920E+02 -2.79913700516E+02 -2.75931510370E+02 -2.70449883796E+02 -2.63545403937E+02 -2.55309028253E+02 -2.45844808405E+02 -2.35268059920E+02 -2.23702939893E+02 -2.11279412050E+02 -1.98129606832E+02 -1.84383622356E+02 -1.70164866554E+02 -1.55585114710E+02 -1.40739548474E+02 -1.25702169059E+02 -1.10522132968E+02 -9.52217632350E+01 -7.97972003367E+01 -6.42233826177E+01 -4.84614664738E+01 -3.25058659388E+01 -1.61339161404E+01 -1.66288570490E+00 1.64865186056E-01 -1.63453927265E-02 1.62053978695E-03 -1.60662523552E-04 1.59266712930E-05 -1.57409592938E-06 1.52578831257E-07 -1.55139881929E-08 4.73975710139E-09 -7.29242781368E-10 1.06097703741E+00 713 1.22525231950E+00 1.24066409975E+00 1.25626973646E+00 1.27207166804E+00 1.28808351612E+00 1.30422960162E+00 1.32077820254E+00 1.33721534595E+00 1.35407826955E+00 1.37125015492E+00 1.38835424393E+00 1.40579606578E+00 1.42361978352E+00 1.44134165099E+00 1.45958516623E+00 1.47797200495E+00 1.49649372791E+00 1.51534511794E+00 1.53434633497E+00 1.55368007243E+00 1.57336355332E+00 1.59297962205E+00 1.61309145566E+00 1.63334347106E+00 1.65399234569E+00 1.67462670326E+00 1.69586056961E+00 1.71707908919E+00 1.73874142332E+00 1.76053347048E+00 1.78279564588E+00 1.80510819110E+00 1.82785280068E+00 1.85086039254E+00 1.87413559117E+00 1.89775765618E+00 1.92152054563E+00 1.94582003254E+00 1.97021097694E+00 1.99503746474E+00 2.02007277699E+00 2.04559188085E+00 2.07121799747E+00 2.09728552690E+00 2.12376506840E+00 2.15032186577E+00 2.17747748023E+00 2.20477898351E+00 2.23253505693E+00 2.26062054211E+00 2.28905371981E+00 2.31787468230E+00 2.34701535415E+00 2.37649776975E+00 2.40647186316E+00 2.43675842045E+00 2.46728030679E+00 2.49849307671E+00 2.52977321513E+00 2.56159412775E+00 2.59388926682E+00 2.62648435531E+00 2.65952520434E+00 2.69293970952E+00 2.72685927439E+00 2.76113924406E+00 2.79590787988E+00 2.83106204923E+00 2.86665578919E+00 2.90269435550E+00 2.93922499715E+00 2.97623933647E+00 3.01359507468E+00 3.05154553875E+00 3.08995397167E+00 3.12876961391E+00 3.16810474685E+00 3.20801989001E+00 3.24832024369E+00 3.28922382485E+00 3.33055467821E+00 3.37247982552E+00 3.41492140179E+00 3.45781116394E+00 3.50133112509E+00 3.54539136658E+00 3.58999608916E+00 3.63513310386E+00 3.68084418390E+00 3.72718250848E+00 3.77401049233E+00 3.82152818924E+00 3.86957492282E+00 3.91825945542E+00 3.96754782689E+00 4.01743287336E+00 4.06796367554E+00 4.11915924899E+00 4.17095001447E+00 4.22340651374E+00 4.27656768895E+00 4.33033253539E+00 4.38479441494E+00 4.43994398197E+00 4.49579853366E+00 4.55238365265E+00 4.60956563071E+00 4.66761238515E+00 4.72630697845E+00 4.78574409297E+00 4.84596441191E+00 4.90688222905E+00 4.96867037248E+00 5.03108626318E+00 5.09443676267E+00 5.15849171740E+00 5.22337647173E+00 5.28904973933E+00 5.35560857629E+00 5.42299343396E+00 5.49116766995E+00 5.56025721695E+00 5.63017969325E+00 5.70102114398E+00 5.77272356266E+00 5.84534356943E+00 5.91886189551E+00 5.99330042457E+00 6.06868542790E+00 6.14502952505E+00 6.22231984193E+00 6.30057050151E+00 6.37984929671E+00 6.46008426755E+00 6.54133349733E+00 6.62364249758E+00 6.70691908853E+00 6.79129673174E+00 6.87673058339E+00 6.96322294997E+00 7.05078460671E+00 7.13949915862E+00 7.22929549671E+00 7.32021314357E+00 7.41231079296E+00 7.50554298638E+00 7.59994229746E+00 7.69554567264E+00 7.79233246899E+00 7.89035024171E+00 7.98959473196E+00 8.09008129026E+00 8.19187638023E+00 8.29489029001E+00 8.39922043010E+00 8.50489064827E+00 8.61183531168E+00 8.72017681442E+00 8.82985272227E+00 8.94092087079E+00 9.05338167270E+00 9.16725652465E+00 9.28256217735E+00 9.39933770180E+00 9.51754506255E+00 9.63725625516E+00 9.75848978507E+00 9.88123173016E+00 1.00055220315E+01 1.01313615369E+01 1.02588066779E+01 1.03878543959E+01 1.05185005934E+01 1.06508078907E+01 1.07847755954E+01 1.09204149206E+01 1.10577862366E+01 1.11968658731E+01 1.13376984413E+01 1.14803147525E+01 1.16247148062E+01 1.17709383036E+01 1.19189691629E+01 1.20689164853E+01 1.22207052121E+01 1.23744235472E+01 1.25300569497E+01 1.26876802061E+01 1.28472636037E+01 1.30088476185E+01 1.31724753368E+01 1.33381565203E+01 1.35059224398E+01 1.36758029373E+01 1.38478254368E+01 1.40219942601E+01 1.41983672670E+01 1.43769471493E+01 1.45577780387E+01 1.47408931153E+01 1.49262991649E+01 1.51140377884E+01 1.53041390954E+01 1.54966316123E+01 1.56915524069E+01 1.58889201861E+01 1.60887571209E+01 1.62911287125E+01 1.64960245825E+01 1.67035150313E+01 1.69136088238E+01 1.71263362081E+01 1.73417501426E+01 1.75598613328E+01 1.77807360276E+01 1.80043649201E+01 1.82308310948E+01 1.84601116948E+01 1.86923138279E+01 1.89274117030E+01 1.91654666061E+01 1.94065285674E+01 1.96506155687E+01 1.98977624079E+01 2.01480204237E+01 2.04014459928E+01 2.06580299409E+01 2.09178696516E+01 2.11809489436E+01 2.14473524447E+01 2.17171011899E+01 2.19902386168E+01 2.22668172579E+01 2.25468737047E+01 2.28304441890E+01 2.31175902727E+01 2.34083384424E+01 2.37027453706E+01 2.40008604704E+01 2.43027150156E+01 2.46083702447E+01 2.49178657464E+01 2.52312604788E+01 2.55485865528E+01 2.58699017770E+01 2.61952718801E+01 2.65247066860E+01 2.68583151291E+01 2.71960887623E+01 2.75381266086E+01 2.78844637566E+01 2.82351497741E+01 2.85902455678E+01 2.89498106922E+01 2.93138897140E+01 2.96825560586E+01 3.00558442686E+01 3.04338347982E+01 3.08165700870E+01 3.12041239305E+01 3.15965429294E+01 3.19939011051E+01 3.23962482355E+01 3.28036577742E+01 3.32161851362E+01 3.36339074846E+01 3.40568658807E+01 3.44851548863E+01 3.49188185713E+01 3.53579314495E+01 3.58025712127E+01 3.62527932918E+01 3.67086745122E+01 3.71702912640E+01 3.76377027468E+01 3.81109918848E+01 3.85902299196E+01 3.90754897745E+01 3.95668460793E+01 4.00643789588E+01 4.05681620776E+01 4.10782761075E+01 4.15948008773E+01 4.21178168508E+01 4.26474070052E+01 4.31836486433E+01 4.37266197220E+01 4.42764306961E+01 4.48331309476E+01 4.53968383927E+01 4.59676181854E+01 4.65455789410E+01 4.71307893162E+01 4.77233579397E+01 4.83233643183E+01 4.89309155203E+01 4.95460872741E+01 5.01689952984E+01 5.07997222975E+01 5.14383679383E+01 5.20850421449E+01 5.27398323555E+01 5.34028404992E+01 5.40741804116E+01 5.47539490523E+01 5.54422519620E+01 5.61391947715E+01 5.68448921416E+01 5.75594459541E+01 5.82829665660E+01 5.90155747871E+01 5.97573772764E+01 6.05084909340E+01 6.12690288436E+01 6.20391167073E+01 6.28188624249E+01 6.36083974376E+01 6.44078413430E+01 6.52173088573E+01 6.60369385308E+01 6.68668472068E+01 6.77071709385E+01 6.85580328062E+01 6.94195649985E+01 7.02919080576E+01 7.11751859849E+01 7.20695449838E+01 7.29751145795E+01 7.38920440158E+01 7.48204638167E+01 7.57605228619E+01 7.67123707080E+01 7.76761423313E+01 7.86519998356E+01 7.96400794142E+01 8.06405443724E+01 8.16535462701E+01 8.26792341265E+01 8.37177762058E+01 8.47693213887E+01 8.58340408042E+01 8.69120901887E+01 8.80036402284E+01 8.91088560622E+01 9.02279077030E+01 9.13609668297E+01 9.25082055264E+01 9.36698015243E+01 9.48459311529E+01 9.60367753481E+01 9.72425166930E+01 9.84633355653E+01 9.96994248952E+01 1.00950963831E+02 1.02218155746E+02 1.03501183389E+02 1.04800243889E+02 1.06115539477E+02 1.07447267059E+02 1.08795629307E+02 1.10160831838E+02 1.11543080663E+02 1.12942584968E+02 1.14359560991E+02 1.15794218377E+02 1.17246776316E+02 1.18717453088E+02 1.20206474603E+02 1.21714061060E+02 1.23240441407E+02 1.24785847949E+02 1.26350508687E+02 1.27934662826E+02 1.29538547205E+02 1.31162402767E+02 1.32806471201E+02 1.34470998232E+02 1.36156238849E+02 1.37862438251E+02 1.39589852918E+02 1.41338741378E+02 1.43109364118E+02 1.44901982664E+02 1.46716865857E+02 1.48554277289E+02 1.50414499416E+02 1.52297794877E+02 1.54204452396E+02 1.56134746318E+02 1.58088963807E+02 1.60067392221E+02 1.62070321279E+02 1.64098043414E+02 1.66150859109E+02 1.68229062783E+02 1.70332961689E+02 1.72462860222E+02 1.74619065928E+02 1.76801897054E+02 1.79011662897E+02 1.81248686228E+02 1.83513289593E+02 1.85805796328E+02 1.88126535804E+02 1.90475842940E+02 1.92854049952E+02 1.95261497481E+02 1.97698526696E+02 2.00165484331E+02 2.02662716770E+02 2.05190579116E+02 2.07749425174E+02 2.10339614186E+02 2.12961506201E+02 2.15615471901E+02 2.18301873318E+02 2.21021088607E+02 2.23773489892E+02 2.26559456381E+02 2.29379372114E+02 2.32233618844E+02 2.35122590045E+02 2.38046671974E+02 2.41006264611E+02 2.44001763787E+02 2.47033571949E+02 2.50102092496E+02 2.53207735722E+02 2.56350908973E+02 2.59532029415E+02 2.62751512382E+02 2.66009778558E+02 2.69307249332E+02 2.72644352871E+02 2.76021515293E+02 2.79439168965E+02 2.82897747376E+02 2.86397687536E+02 2.89939428686E+02 2.93523410940E+02 2.97150080712E+02 3.00819882206E+02 3.04533263982E+02 3.08290677896E+02 3.12092574695E+02 3.15939411224E+02 3.19831640257E+02 3.23769724034E+02 3.27754116689E+02 3.31785283196E+02 3.35863684111E+02 3.39989781173E+02 3.44164040080E+02 3.48386925501E+02 3.52658900358E+02 3.56980431774E+02 3.61351987251E+02 3.65774028888E+02 3.70247024693E+02 3.74771439965E+02 3.79347736676E+02 3.83976380457E+02 3.88657831877E+02 3.93392552835E+02 3.98181000756E+02 4.03023633867E+02 4.07920905031E+02 4.12873266957E+02 4.17881167890E+02 4.22945052544E+02 4.28065362947E+02 4.33242535929E+02 4.38477003946E+02 4.43769195033E+02 4.49119530439E+02 4.54528427898E+02 4.59996295518E+02 4.65523537503E+02 4.71110548566E+02 4.76757717441E+02 4.82465422300E+02 4.88234033316E+02 4.94063911311E+02 4.99955406176E+02 5.05908856765E+02 5.11924590403E+02 5.18002923092E+02 5.24144155048E+02 5.30348576308E+02 5.36616458926E+02 5.42948061375E+02 5.49343625155E+02 5.55803374350E+02 5.62327515934E+02 5.68916236076E+02 5.75569702413E+02 5.82288060369E+02 5.89071434253E+02 5.95919923722E+02 6.02833605495E+02 6.09812529032E+02 6.16856718843E+02 6.23966170013E+02 6.31140847383E+02 6.38380688177E+02 6.45685593638E+02 6.53055433940E+02 6.60490043493E+02 6.67989218984E+02 6.75552720902E+02 6.83180267328E+02 6.90871536822E+02 6.98626163331E+02 7.06443735552E+02 7.14323795597E+02 7.22265836016E+02 7.30269298724E+02 7.38333571975E+02 7.46457989293E+02 7.54641826394E+02 7.62884299441E+02 7.71184562074E+02 7.79541704495E+02 7.87954748851E+02 7.96422648834E+02 8.04944285607E+02 8.13518464928E+02 8.22143916926E+02 8.30819289323E+02 8.39543148047E+02 8.48313972216E+02 8.57130152101E+02 8.65989984926E+02 8.74891672859E+02 8.83833318799E+02 8.92812924301E+02 9.01828383348E+02 9.10877482353E+02 9.19957894154E+02 9.29067174802E+02 9.38202760389E+02 9.47361962760E+02 9.56541965368E+02 9.65739819347E+02 9.74952439900E+02 9.84176601762E+02 9.93408934494E+02 1.00264591999E+03 1.01188388525E+03 1.02111899954E+03 1.03034727143E+03 1.03956454093E+03 1.04876647680E+03 1.05794857202E+03 1.06710613826E+03 1.07623430123E+03 1.08532799676E+03 1.09438196407E+03 1.10339074274E+03 1.11234866703E+03 1.12124986014E+03 1.13008823105E+03 1.13885746812E+03 1.14755103399E+03 1.15616216236E+03 1.16468385107E+03 1.17310885857E+03 1.18142969797E+03 1.18963863383E+03 1.19772767560E+03 1.20568857539E+03 1.21351282029E+03 1.22119163165E+03 1.22871595711E+03 1.23607647071E+03 1.24326356421E+03 1.25026734776E+03 1.25707764377E+03 1.26368398449E+03 1.27007560935E+03 1.27624146174E+03 1.28217018735E+03 1.28785013088E+03 1.29326933666E+03 1.29841554531E+03 1.30327619460E+03 1.30783841865E+03 1.31208904817E+03 1.31601461213E+03 1.31960133887E+03 1.32283515847E+03 1.32570170655E+03 1.32818632735E+03 1.33027407910E+03 1.33194974003E+03 1.33319781436E+03 1.33400254148E+03 1.33434790435E+03 1.33421763982E+03 1.33359525125E+03 1.33246402152E+03 1.33080702797E+03 1.32860715892E+03 1.32584713352E+03 1.32250952019E+03 1.31857676211E+03 1.31403119987E+03 1.30885510101E+03 1.30303068893E+03 1.29654017728E+03 1.28936580504E+03 1.28148987646E+03 1.27289480494E+03 1.26356315869E+03 1.25347771145E+03 1.24262149935E+03 1.23097787784E+03 1.21853058893E+03 1.20526382829E+03 1.19116232262E+03 1.17621140839E+03 1.16039712046E+03 1.14370628395E+03 1.12612661571E+03 1.10764682933E+03 1.08825675194E+03 1.06794744388E+03 1.04671132994E+03 1.02454233681E+03 1.00143603954E+03 9.77389815716E+02 9.52403009071E+02 9.26477101654E+02 8.99615892772E+02 8.71825689352E+02 8.43115501184E+02 8.13497245354E+02 7.82985957776E+02 7.51600010632E+02 7.19361334521E+02 6.86295646483E+02 6.52432678169E+02 6.17806407244E+02 5.82455286620E+02 5.46422469767E+02 5.09756031709E+02 4.72509178590E+02 4.34740446360E+02 3.96513880794E+02 3.57899199356E+02 3.18971923459E+02 2.79813482792E+02 2.40511280510E+02 2.01158716372E+02 1.61855158324E+02 1.22705859595E+02 8.38218082871E+01 4.53195073000E+01 7.32067212587E+00 -3.00481580886E+01 -6.66561058667E+01 -1.02368544973E+02 -1.37047799619E+02 -1.70553962387E+02 -2.02745833298E+02 -2.33481986902E+02 -2.62621967917E+02 -2.90027615724E+02 -3.15564517026E+02 -3.39103578473E+02 -3.60522710467E+02 -3.79708611443E+02 -3.96558627336E+02 -4.10982668827E+02 -4.22905149467E+02 -4.32266910602E+02 -4.39027085396E+02 -4.43164847938E+02 -4.44680986961E+02 -4.43599231977E+02 -4.39967252788E+02 -4.33857247170E+02 -4.25366023989E+02 -4.14614483301E+02 -4.01746401325E+02 -3.86926421533E+02 -3.70337174386E+02 -3.52175459012E+02 -3.32647453299E+02 -3.11962963488E+02 -2.90328784585E+02 -2.67941328858E+02 -2.44978796245E+02 -2.21593305628E+02 -1.97903605836E+02 -1.73989231104E+02 -1.49887289016E+02 -1.25593402905E+02 -1.01069474546E+02 -7.62553053783E+01 -5.11425731832E+01 -2.53811010266E+01 -2.61566492479E+00 2.59327555242E-01 -2.57107690686E-02 2.54905609402E-03 -2.52716855859E-04 2.50521100070E-05 -2.47595166206E-06 2.39963680565E-07 -2.44038464935E-08 7.48645434846E-09 -1.15320400337E-09 -6.70366911328E-01 4.23765183595E-01 713 -6.56893998281E-04 -6.73523352500E-04 -6.90573681005E-04 -7.08055640818E-04 -7.25980158749E-04 -7.44358438218E-04 -7.63201966265E-04 -7.82522520725E-04 -8.02332177591E-04 -8.22643318561E-04 -8.43468638779E-04 -8.64821154768E-04 -8.86714212568E-04 -9.09161496073E-04 -9.32177035591E-04 -9.55775216608E-04 -9.79970788781E-04 -1.00477887516E-03 -1.03021498163E-03 -1.05629500662E-03 -1.08303525102E-03 -1.11045242840E-03 -1.13856367541E-03 -1.16738656253E-03 -1.19693910506E-03 -1.22723977432E-03 -1.25830750927E-03 -1.29016172830E-03 -1.32282234138E-03 -1.35630976250E-03 -1.39064492245E-03 -1.42584928187E-03 -1.46194484470E-03 -1.49895417188E-03 -1.53690039553E-03 -1.57580723334E-03 -1.61569900341E-03 -1.65660063947E-03 -1.69853770646E-03 -1.74153641649E-03 -1.78562364524E-03 -1.83082694876E-03 -1.87717458067E-03 -1.92469550986E-03 -1.97341943855E-03 -2.02337682090E-03 -2.07459888202E-03 -2.12711763749E-03 -2.18096591335E-03 -2.23617736669E-03 -2.29278650658E-03 -2.35082871575E-03 -2.41034027261E-03 -2.47135837399E-03 -2.53392115836E-03 -2.59806772969E-03 -2.66383818185E-03 -2.73127362374E-03 -2.80041620489E-03 -2.87130914191E-03 -2.94399674542E-03 -3.01852444778E-03 -3.09493883150E-03 -3.17328765831E-03 -3.25361989909E-03 -3.33598576438E-03 -3.42043673587E-03 -3.50702559847E-03 -3.71915089120E-03 -3.81134389354E-03 -3.78057114951E-03 -3.87686102754E-03 -3.97482556220E-03 -4.07550979775E-03 -4.17885311373E-03 -4.28403212127E-03 -4.39230746095E-03 -4.50326882127E-03 -4.61787336627E-03 -4.73355007835E-03 -4.85402739233E-03 -4.97813511016E-03 -5.10236457189E-03 -5.23315430335E-03 -5.36438649593E-03 -5.50034903183E-03 -5.64064006557E-03 -5.78246774717E-03 -5.92875562019E-03 -6.07821671228E-03 -6.23377600969E-03 -6.39050294778E-03 -6.55238314140E-03 -6.71878352320E-03 -6.88807265926E-03 -7.06198795039E-03 -7.24174449290E-03 -7.42445384798E-03 -7.61265041116E-03 -7.80606276275E-03 -8.00256699936E-03 -8.20631128877E-03 -8.41311548169E-03 -8.62646165349E-03 -8.84446952780E-03 -9.06802882450E-03 -9.29821913490E-03 -9.53410575310E-03 -9.77424138480E-03 -1.00219310081E-02 -1.02762824543E-02 -1.05363740534E-02 -1.08031297161E-02 -1.10759510906E-02 -1.13559310923E-02 -1.16440645144E-02 -1.19391755356E-02 -1.22405665167E-02 -1.25512902882E-02 -1.28690035185E-02 -1.31943896814E-02 -1.35279475525E-02 -1.38714540698E-02 -1.42226835361E-02 -1.45824967708E-02 -1.49512002058E-02 -1.53290677734E-02 -1.57169279582E-02 -1.61155229439E-02 -1.65240750297E-02 -1.69423695413E-02 -1.73707677898E-02 -1.78101685630E-02 -1.82605037394E-02 -1.87232668483E-02 -1.91974044538E-02 -1.96835799479E-02 -2.01809718815E-02 -2.06928337963E-02 -2.12162480318E-02 -2.17533761132E-02 -2.23039381708E-02 -2.28687521834E-02 -2.34479825628E-02 -2.40413322497E-02 -2.46508079046E-02 -2.52741805670E-02 -2.59133653638E-02 -2.65696990984E-02 -2.72426935060E-02 -2.79313594018E-02 -2.86387544943E-02 -2.93638300577E-02 -3.01076056358E-02 -3.08689935389E-02 -3.16507539561E-02 -3.24519656485E-02 -3.32738792088E-02 -3.41161938723E-02 -3.49794069877E-02 -3.58655403003E-02 -3.67729723288E-02 -3.77043173943E-02 -3.86580957101E-02 -3.96367157992E-02 -4.06411602092E-02 -4.16687785300E-02 -4.27244359609E-02 -4.38052492802E-02 -4.49140244893E-02 -4.60520385779E-02 -4.72173610595E-02 -4.84121834481E-02 -4.96385522056E-02 -5.08947169761E-02 -5.21829775541E-02 -5.35042190953E-02 -5.48587937723E-02 -5.62472147337E-02 -5.76709794523E-02 -5.91303056391E-02 -6.06276583943E-02 -6.21628365972E-02 -6.37358768321E-02 -6.53504521258E-02 -6.70037215224E-02 -6.86998275408E-02 -7.04393592105E-02 -7.22220257847E-02 -7.40502389417E-02 -7.59253248514E-02 -7.78470364272E-02 -7.98176311476E-02 -8.18389536841E-02 -8.39093311656E-02 -8.60337848253E-02 -8.82127667487E-02 -9.04448535748E-02 -9.27351423862E-02 -9.50822218058E-02 -9.74898154755E-02 -9.99567907508E-02 -1.02487437214E-01 -1.05081944143E-01 -1.07741313443E-01 -1.10468980135E-01 -1.13265617164E-01 -1.16132174450E-01 -1.19072685292E-01 -1.22087123470E-01 -1.25177628616E-01 -1.28346438915E-01 -1.31595264273E-01 -1.34925861001E-01 -1.38341728274E-01 -1.41843297934E-01 -1.45434116660E-01 -1.49116338713E-01 -1.52889622406E-01 -1.56761164708E-01 -1.60728083600E-01 -1.64797375151E-01 -1.68969209001E-01 -1.73246780152E-01 -1.77631574887E-01 -1.82128188655E-01 -1.86738594225E-01 -1.91465808308E-01 -1.96312663367E-01 -2.01281408973E-01 -2.06376671894E-01 -2.11601416900E-01 -2.16956732961E-01 -2.22449033452E-01 -2.28080106190E-01 -2.33853234986E-01 -2.39773526646E-01 -2.45842029137E-01 -2.52065451748E-01 -2.58446097391E-01 -2.64988088379E-01 -2.71695891454E-01 -2.78573001886E-01 -2.85623818421E-01 -2.92855243574E-01 -3.00266617682E-01 -3.07867902434E-01 -3.15660355978E-01 -3.23650894376E-01 -3.31843884687E-01 -3.40243453450E-01 -3.48855127494E-01 -3.57684781181E-01 -3.66739837309E-01 -3.76022733720E-01 -3.85538804544E-01 -3.95300340834E-01 -4.05304585868E-01 -4.15564015071E-01 -4.26082368991E-01 -4.36867549297E-01 -4.47924862775E-01 -4.59262103291E-01 -4.70887665268E-01 -4.82805560074E-01 -4.95026133912E-01 -5.07555363472E-01 -5.20403163941E-01 -5.33573374250E-01 -5.47078505662E-01 -5.60926752096E-01 -5.75123492305E-01 -5.89680789592E-01 -6.04603873231E-01 -6.19908217136E-01 -6.35597470338E-01 -6.51684399893E-01 -6.68178493813E-01 -6.85089758572E-01 -7.02429317165E-01 -7.20206944523E-01 -7.38434902476E-01 -7.57123480119E-01 -7.76285473492E-01 -7.95932055811E-01 -8.16076884845E-01 -8.36730408828E-01 -8.57906288751E-01 -8.79617543588E-01 -9.01878708597E-01 -9.24703725289E-01 -9.48105728599E-01 -9.72099592675E-01 -9.96700722827E-01 -1.02192403110E+00 -1.04778480764E+00 -1.07430117047E+00 -1.10148802333E+00 -1.12936254558E+00 -1.15794104205E+00 -1.18724429348E+00 -1.21728745189E+00 -1.24809145245E+00 -1.27967212126E+00 -1.31205614818E+00 -1.34525487217E+00 -1.37929586872E+00 -1.41419807182E+00 -1.44998219672E+00 -1.48667070028E+00 -1.52428741742E+00 -1.56285629494E+00 -1.60239997562E+00 -1.64294366036E+00 -1.68451245493E+00 -1.72713243495E+00 -1.77083041212E+00 -1.81563403948E+00 -1.86156850423E+00 -1.90866689128E+00 -1.95695422055E+00 -2.00646398574E+00 -2.05722320634E+00 -2.10926799384E+00 -2.16262648374E+00 -2.21733606685E+00 -2.27342735772E+00 -2.33093630737E+00 -2.38989959666E+00 -2.45035300550E+00 -2.51233491843E+00 -2.57588282103E+00 -2.64103587174E+00 -2.70783753606E+00 -2.77632503202E+00 -2.84654495194E+00 -2.91853819845E+00 -2.99235191819E+00 -3.06802996775E+00 -3.14561897657E+00 -3.22516886757E+00 -3.30672842940E+00 -3.39034834367E+00 -3.47608064286E+00 -3.56397804590E+00 -3.65409478617E+00 -3.74648860390E+00 -3.84121608933E+00 -3.93833534852E+00 -4.03790600328E+00 -4.13999117234E+00 -4.24465418238E+00 -4.35195772117E+00 -4.46197258589E+00 -4.57476336357E+00 -4.69040170978E+00 -4.80895692992E+00 -4.93050586412E+00 -5.05512032950E+00 -5.18288106263E+00 -5.31386350075E+00 -5.44815162894E+00 -5.58582657805E+00 -5.72697414896E+00 -5.87168217861E+00 -6.02003993099E+00 -6.17213722821E+00 -6.32807007478E+00 -6.48793594686E+00 -6.65182998770E+00 -6.81985635515E+00 -6.99211636558E+00 -7.16871854528E+00 -7.34977058986E+00 -7.53538364805E+00 -7.72567277811E+00 -7.92075570736E+00 -8.12074992165E+00 -8.32578241880E+00 -8.53597606021E+00 -8.75146302980E+00 -8.97237353791E+00 -9.19884385897E+00 -9.43101191721E+00 -9.66902270944E+00 -9.91302113566E+00 -1.01631565617E+01 -1.04195829914E+01 -1.06824561983E+01 -1.09519387341E+01 -1.12281942538E+01 -1.15113933784E+01 -1.18017069884E+01 -1.20993150496E+01 -1.24043961720E+01 -1.27171400576E+01 -1.30377354796E+01 -1.33663767604E+01 -1.37032675295E+01 -1.40486104368E+01 -1.44026153219E+01 -1.47654981685E+01 -1.51374801328E+01 -1.55187846740E+01 -1.59096464399E+01 -1.63103000714E+01 -1.67209897052E+01 -1.71419620701E+01 -1.75734728811E+01 -1.80157821593E+01 -1.84691588327E+01 -1.89338731347E+01 -1.94102081379E+01 -1.98984485344E+01 -2.03988896923E+01 -2.09118312785E+01 -2.14375800178E+01 -2.19764526723E+01 -2.25287728308E+01 -2.30948681099E+01 -2.36750787827E+01 -2.42697530065E+01 -2.48792400402E+01 -2.55039077826E+01 -2.61441243213E+01 -2.68002727910E+01 -2.74727397453E+01 -2.81619253257E+01 -2.88682360734E+01 -2.95920907184E+01 -3.03339134136E+01 -3.10941452643E+01 -3.18732273428E+01 -3.26716229469E+01 -3.34897942157E+01 -3.43282264033E+01 -3.51874033360E+01 -3.60678291020E+01 -3.69700150747E+01 -3.78944854629E+01 -3.88417768006E+01 -3.98124352249E+01 -4.08070239245E+01 -4.18261129517E+01 -4.28702900908E+01 -4.39401551574E+01 -4.50363185203E+01 -4.61594060612E+01 -4.73100592476E+01 -4.84889322948E+01 -4.96966908004E+01 -5.09340187733E+01 -5.22016149524E+01 -5.35001903688E+01 -5.48304734241E+01 -5.61932090876E+01 -5.75891548928E+01 -5.90190877897E+01 -6.04837992431E+01 -6.19840987052E+01 -6.35208097188E+01 -6.50947759669E+01 -6.67068576800E+01 -6.83579314659E+01 -7.00488949957E+01 -7.17806581521E+01 -7.35541539960E+01 -7.53703337307E+01 -7.72301646175E+01 -7.91346354172E+01 -8.10847539145E+01 -8.30815449517E+01 -8.51260555894E+01 -8.72193519998E+01 -8.93625184075E+01 -9.15566605452E+01 -9.38029037331E+01 -9.61023968454E+01 -9.84563032468E+01 -1.00865810507E+02 -1.03332128084E+02 -1.05856481977E+02 -1.08440122887E+02 -1.11084320687E+02 -1.13790364446E+02 -1.16559566730E+02 -1.19393259805E+02 -1.22292793520E+02 -1.25259543253E+02 -1.28294900493E+02 -1.31400281516E+02 -1.34577116233E+02 -1.37826859295E+02 -1.41150984129E+02 -1.44550979023E+02 -1.48028356584E+02 -1.51584643995E+02 -1.55221389070E+02 -1.58940151530E+02 -1.62742514593E+02 -1.66630072066E+02 -1.70604434290E+02 -1.74667229692E+02 -1.78820094309E+02 -1.83064680629E+02 -1.87402652127E+02 -1.91835682398E+02 -1.96365455100E+02 -2.00993659577E+02 -2.05721994178E+02 -2.10552163682E+02 -2.15485870913E+02 -2.20524826528E+02 -2.25670738939E+02 -2.30925313142E+02 -2.36290253401E+02 -2.41767254099E+02 -2.47358004020E+02 -2.53064180024E+02 -2.58887444109E+02 -2.64829444056E+02 -2.70891805353E+02 -2.77076133238E+02 -2.83384006705E+02 -2.89816973542E+02 -2.96376548792E+02 -3.03064211985E+02 -3.09881399534E+02 -3.16829502533E+02 -3.23909861589E+02 -3.31123763529E+02 -3.38472433711E+02 -3.45957030657E+02 -3.53578645466E+02 -3.61338287527E+02 -3.69236886491E+02 -3.77275279846E+02 -3.85454209718E+02 -3.93774316763E+02 -4.02236125523E+02 -4.10840047830E+02 -4.19586362810E+02 -4.28475219944E+02 -4.37506621511E+02 -4.46680418901E+02 -4.55996295673E+02 -4.65453772271E+02 -4.75052178460E+02 -4.84790654678E+02 -4.94668135279E+02 -5.04683342083E+02 -5.14834763791E+02 -5.25120655292E+02 -5.35539014465E+02 -5.46087578005E+02 -5.56763799666E+02 -5.67564840921E+02 -5.78487558617E+02 -5.89528485068E+02 -6.00683816261E+02 -6.11949396618E+02 -6.23320702009E+02 -6.34792818332E+02 -6.46360440949E+02 -6.58017833492E+02 -6.69758835736E+02 -6.81576827319E+02 -6.93464715902E+02 -7.05414924904E+02 -7.17419362521E+02 -7.29469418834E+02 -7.41555930896E+02 -7.53669175421E+02 -7.65798847204E+02 -7.77934034752E+02 -7.90063207411E+02 -8.02174196917E+02 -8.14254171332E+02 -8.26289626835E+02 -8.38266362619E+02 -8.50169462305E+02 -8.61983283188E+02 -8.73691434000E+02 -8.85276761110E+02 -8.96721333203E+02 -9.08006426919E+02 -9.19112513693E+02 -9.30019247067E+02 -9.40705454029E+02 -9.51149123375E+02 -9.61327400958E+02 -9.71216580908E+02 -9.80792103103E+02 -9.90028556072E+02 -9.98899668681E+02 -1.00737832196E+03 -1.01543655308E+03 -1.02304556295E+03 -1.03017572904E+03 -1.03679662580E+03 -1.04287703886E+03 -1.04838499703E+03 -1.05328778893E+03 -1.05755201263E+03 -1.06114359722E+03 -1.06402786134E+03 -1.06616955084E+03 -1.06753290221E+03 -1.06808170084E+03 -1.06777935112E+03 -1.06658895207E+03 -1.06447337861E+03 -1.06139537644E+03 -1.05731766097E+03 -1.05220302084E+03 -1.04601444528E+03 -1.03871524312E+03 -1.03026918224E+03 -1.02064064048E+03 -1.00979476252E+03 -9.97697630478E+02 -9.84316447509E+02 -9.69619731340E+02 -9.53577522605E+02 -9.36161604007E+02 -9.17345738155E+02 -8.97105914412E+02 -8.75420609412E+02 -8.52271067490E+02 -8.27641589186E+02 -8.01519846553E+02 -7.73897192094E+02 -7.44769012595E+02 -7.14135067801E+02 -6.81999866430E+02 -6.48373043463E+02 -6.13269762336E+02 -5.76711114434E+02 -5.38724552505E+02 -4.99344316596E+02 -4.58611876716E+02 -4.16576382508E+02 -3.73295126977E+02 -3.28833988843E+02 -2.83267912965E+02 -2.36681344284E+02 -1.89168687373E+02 -1.40834739993E+02 -9.17951037257E+01 -4.21765789001E+01 7.88247186799E+00 5.82318079844E+01 1.08709029571E+02 1.59139369370E+02 2.09335536803E+02 2.59097651589E+02 3.08213271146E+02 3.56457513032E+02 4.03593313070E+02 4.49371812016E+02 4.93532899820E+02 5.35805936473E+02 5.75910659701E+02 6.13558321356E+02 6.48453048136E+02 6.80293478603E+02 7.08774676305E+02 7.33590372177E+02 7.54435547033E+02 7.71009389930E+02 7.83018675348E+02 7.90181580216E+02 7.92231996324E+02 7.88924364705E+02 7.80039080417E+02 7.65388530746E+02 7.44823785814E+02 7.18242031437E+02 6.85594763117E+02 6.46896822226E+02 6.02236304864E+02 5.51785400039E+02 4.95812174831E+02 4.34693317706E+02 3.68927811773E+02 2.99151454447E+02 2.26152072110E+02 1.50885168949E+02 7.44896116738E+01 -1.69723255915E+00 -7.61257744708E+01 -1.47023042160E+02 -2.12385732948E+02 -2.69979640255E+02 -3.17348344706E+02 -3.51834989420E+02 -3.70622096558E+02 -3.70795468955E+02 -3.49443602352E+02 -3.03770917333E+02 -2.31548783367E+02 -1.28899421883E+02 -1.47839651577E+01 1.46574186073E+00 -1.45319585162E-01 1.44075799759E-02 -1.42844711372E-03 1.41676146851E-04 -1.40933783410E-05 1.45949250468E-06 -2.33665809244E-07 1.04225424188E-07 -2.05110077141E-08 0.00000000000E+00 0.00000000000E+00 -1.74148680379E-01 713 9.47502904751E-04 9.71489059982E-04 9.96082427881E-04 1.02129838012E-03 1.04715267752E-03 1.07366147986E-03 1.10084135605E-03 1.12870929441E-03 1.15728271333E-03 1.18657947216E-03 1.21661788235E-03 1.24741671892E-03 1.27899523217E-03 1.31137315974E-03 1.34457073891E-03 1.37860871929E-03 1.41350837576E-03 1.44929152178E-03 1.48598052303E-03 1.52359831137E-03 1.56216839919E-03 1.60171489408E-03 1.64226251397E-03 1.68383660246E-03 1.72646314479E-03 1.77016878399E-03 1.81498083756E-03 1.86092731456E-03 1.90803693311E-03 1.95633913831E-03 2.00586412070E-03 2.05664283509E-03 2.10870701990E-03 2.16208921703E-03 2.21682279218E-03 2.27294195572E-03 2.33048178405E-03 2.38947824155E-03 2.44996820303E-03 2.51198947681E-03 2.57558082832E-03 2.64078200436E-03 2.70763375793E-03 2.77617787368E-03 2.84645719409E-03 2.91851564615E-03 2.99239826894E-03 3.06815124165E-03 3.14582191256E-03 3.22545882855E-03 3.30711176550E-03 3.39083175935E-03 3.47667113807E-03 3.56468355428E-03 3.65492401887E-03 3.74744893533E-03 3.84231613502E-03 3.93958491331E-03 4.03931606666E-03 4.14157193061E-03 4.24641641874E-03 4.35391506263E-03 4.46413505279E-03 4.57714528070E-03 4.69301638184E-03 4.81182077986E-03 4.93363273182E-03 5.05852837464E-03 5.36288662914E-03 5.49585046387E-03 5.45313310043E-03 5.59201330358E-03 5.73331994298E-03 5.87854455985E-03 6.02760491468E-03 6.17932236499E-03 6.33550102168E-03 6.49555457175E-03 6.66085120795E-03 6.82771962828E-03 7.00148736581E-03 7.18048363722E-03 7.35969585494E-03 7.54832435414E-03 7.73763036051E-03 7.93373992594E-03 8.13608168387E-03 8.34066658734E-03 8.55167211262E-03 8.76726339406E-03 8.99161940724E-03 9.21769614930E-03 9.45119075834E-03 9.69119849258E-03 9.93539160744E-03 1.01862524359E-02 1.04455205696E-02 1.07090684683E-02 1.09805182725E-02 1.12594876562E-02 1.15429391239E-02 1.18368041900E-02 1.21351107553E-02 1.24428351227E-02 1.27572944180E-02 1.30797604266E-02 1.34117783413E-02 1.37520144154E-02 1.40984007530E-02 1.44556649397E-02 1.48225324188E-02 1.51976887225E-02 1.55824561842E-02 1.59759813172E-02 1.63798294713E-02 1.67954245713E-02 1.72210869798E-02 1.76558246476E-02 1.81040000290E-02 1.85622697228E-02 1.90316109650E-02 1.95127402473E-02 2.00082001618E-02 2.05148108364E-02 2.10338080432E-02 2.15656310539E-02 2.21106748832E-02 2.26701266229E-02 2.32450494175E-02 2.38343367915E-02 2.44376839965E-02 2.50556110778E-02 2.56894067059E-02 2.63389767032E-02 2.70064582392E-02 2.76903520386E-02 2.83916078696E-02 2.91090572515E-02 2.98473535500E-02 3.06023300658E-02 3.13770826302E-02 3.21712139093E-02 3.29858982535E-02 3.38213755181E-02 3.46772245169E-02 3.55563198998E-02 3.64554799300E-02 3.73774473416E-02 3.83241381579E-02 3.92948580555E-02 4.02882019022E-02 4.13085434066E-02 4.23543900334E-02 4.34272056440E-02 4.45254393074E-02 4.56530460977E-02 4.68087125520E-02 4.79942343151E-02 4.92091880894E-02 5.04542900359E-02 5.17324394131E-02 5.30413240408E-02 5.43846890771E-02 5.57604267354E-02 5.71719859370E-02 5.86207817773E-02 6.01030324141E-02 6.16257003083E-02 6.31846739724E-02 6.47839704873E-02 6.64254271864E-02 6.81062926691E-02 6.98297083718E-02 7.15986108881E-02 7.34105050890E-02 7.52686922410E-02 7.71744459089E-02 7.91282798332E-02 8.11309410317E-02 8.31845774831E-02 8.52895154517E-02 8.74492887610E-02 8.96636216236E-02 9.19325808272E-02 9.42614255880E-02 9.66461130222E-02 9.90925745974E-02 1.01601666562E-01 1.04172988944E-01 1.06810000812E-01 1.09514614904E-01 1.12286492857E-01 1.15128876340E-01 1.18044418871E-01 1.21030744520E-01 1.24095049386E-01 1.27237995439E-01 1.30457566471E-01 1.33761066266E-01 1.37146495026E-01 1.40619195982E-01 1.44177569461E-01 1.47827765524E-01 1.51570077581E-01 1.55405955656E-01 1.59340335046E-01 1.63374197158E-01 1.67508923879E-01 1.71750303339E-01 1.76098320625E-01 1.80556061006E-01 1.85126747162E-01 1.89812849653E-01 1.94616905739E-01 1.99543942181E-01 2.04594606595E-01 2.09773995403E-01 2.15085217512E-01 2.20527815489E-01 2.26112104134E-01 2.31833999390E-01 2.37703530862E-01 2.43720975385E-01 2.49890933478E-01 2.56215563127E-01 2.62701471492E-01 2.69351511916E-01 2.76170036364E-01 2.83161130666E-01 2.90328049211E-01 2.97677447491E-01 3.05213603307E-01 3.12938116717E-01 3.20860197850E-01 3.28982445776E-01 3.37309603277E-01 3.45849013118E-01 3.54602224540E-01 3.63578875024E-01 3.72782306670E-01 3.82218465831E-01 3.91893788534E-01 4.01813326858E-01 4.11983422255E-01 4.22414000171E-01 4.33104175515E-01 4.44068248145E-01 4.55308078269E-01 4.66833613759E-01 4.78651163637E-01 4.90766691352E-01 5.03188166623E-01 5.15924054998E-01 5.28985037807E-01 5.42374675414E-01 5.56100665567E-01 5.70180655233E-01 5.84610783984E-01 5.99408963409E-01 6.14580626326E-01 6.30137149738E-01 6.46086209053E-01 6.62439034073E-01 6.79207714116E-01 6.96398080391E-01 7.14025015608E-01 7.32097163964E-01 7.50628798974E-01 7.69625512862E-01 7.89105295887E-01 8.09079969183E-01 8.29557335146E-01 8.50554751539E-01 8.72079811013E-01 8.94154753282E-01 9.16784918195E-01 9.39988683054E-01 9.63779740322E-01 9.88172525560E-01 1.01318307770E+00 1.03882550806E+00 1.06511748862E+00 1.09207387415E+00 1.11971310700E+00 1.14805131418E+00 1.17710817594E+00 1.20689879232E+00 1.23744285738E+00 1.26875915105E+00 1.30086862772E+00 1.33379139413E+00 1.36754641295E+00 1.40215513272E+00 1.43763976961E+00 1.47402183836E+00 1.51132339894E+00 1.54957055926E+00 1.58878483736E+00 1.62899100945E+00 1.67021260949E+00 1.71247957091E+00 1.75581379099E+00 1.80024543800E+00 1.84579738239E+00 1.89250803152E+00 1.94039385570E+00 1.98949454017E+00 2.03983742523E+00 2.09145240356E+00 2.14437186650E+00 2.19863017879E+00 2.25426187610E+00 2.31129963681E+00 2.36977980144E+00 2.42973858795E+00 2.49121360184E+00 2.55424351534E+00 2.61886820924E+00 2.68512404766E+00 2.75305869616E+00 2.82270829728E+00 2.89412111953E+00 2.96733618546E+00 3.04240552182E+00 3.11936976877E+00 3.19828280336E+00 3.27918882854E+00 3.36213968814E+00 3.44718827668E+00 3.53438621717E+00 3.62378886382E+00 3.71545030043E+00 3.80942701488E+00 3.90578166135E+00 4.00456798137E+00 4.10585312715E+00 4.20969613118E+00 4.31616496859E+00 4.42532292295E+00 4.53723725863E+00 4.65197996286E+00 4.76962141424E+00 4.89023471860E+00 5.01389492358E+00 5.14067808033E+00 5.27066241871E+00 5.40393119825E+00 5.54056605712E+00 5.68065081388E+00 5.82427147821E+00 5.97151907270E+00 6.12248494036E+00 6.27725953166E+00 6.43594490722E+00 6.59863427626E+00 6.76543097058E+00 6.93643498768E+00 7.11175711770E+00 7.29150099315E+00 7.47578302443E+00 7.66471206839E+00 7.85840922634E+00 8.05699154960E+00 8.26058278597E+00 8.46930962658E+00 8.68330082826E+00 8.90268597333E+00 9.12760351530E+00 9.35819403561E+00 9.59459481810E+00 9.83695606071E+00 1.00854239324E+01 1.03401549440E+01 1.06013044498E+01 1.08690327791E+01 1.11435058825E+01 1.14248935630E+01 1.17133653191E+01 1.20091042800E+01 1.23122877063E+01 1.26231062214E+01 1.29417476714E+01 1.32684086134E+01 1.36032880040E+01 1.39465949565E+01 1.42985384905E+01 1.46593340556E+01 1.50292037804E+01 1.54083723708E+01 1.57970742727E+01 1.61955455611E+01 1.66040323177E+01 1.70227810552E+01 1.74520513220E+01 1.78921007894E+01 1.83432030398E+01 1.88056303870E+01 1.92796631396E+01 1.97655949691E+01 2.02637182132E+01 2.07743355507E+01 2.12977585082E+01 2.18343060765E+01 2.23843006066E+01 2.29480805144E+01 2.35259842787E+01 2.41183640275E+01 2.47255756699E+01 2.53479880379E+01 2.59859761992E+01 2.66399280351E+01 2.73102333764E+01 2.79973004928E+01 2.87015400557E+01 2.94233780873E+01 3.01632468452E+01 3.09215887716E+01 3.16988607493E+01 3.24955295188E+01 3.33120676786E+01 3.41489660196E+01 3.50067267084E+01 3.58858535928E+01 3.67868772738E+01 3.77103287343E+01 3.86567605806E+01 3.96267304214E+01 4.06208154077E+01 4.16396019611E+01 4.26836940489E+01 4.37537035185E+01 4.48502665773E+01 4.59740195191E+01 4.71256305421E+01 4.83057663267E+01 4.95151267327E+01 5.07544097273E+01 5.20243423819E+01 5.33256623344E+01 5.46591257216E+01 5.60255064535E+01 5.74255923263E+01 5.88601956705E+01 6.03301387956E+01 6.18362695218E+01 6.33794530411E+01 6.49605698050E+01 6.65805226162E+01 6.82402367376E+01 6.99406558393E+01 7.16827400484E+01 7.34674760024E+01 7.52958715862E+01 7.71689524556E+01 7.90877692967E+01 8.10533966823E+01 8.30669273553E+01 8.51294820205E+01 8.72422023494E+01 8.94062559415E+01 9.16228307603E+01 9.38931437839E+01 9.62184358706E+01 9.85999715228E+01 1.01039045585E+02 1.03536970597E+02 1.06095092470E+02 1.08714783295E+02 1.11397438364E+02 1.14144483951E+02 1.16957373777E+02 1.19837586204E+02 1.22786631611E+02 1.25806047958E+02 1.28897399274E+02 1.32062280599E+02 1.35302315244E+02 1.38619160453E+02 1.42014494464E+02 1.45490030384E+02 1.49047512884E+02 1.52688710562E+02 1.56415427597E+02 1.60229495858E+02 1.64132774933E+02 1.68127158273E+02 1.72214567772E+02 1.76396950741E+02 1.80676291255E+02 1.85054596703E+02 1.89533910176E+02 1.94116294535E+02 1.98803848275E+02 2.03598696999E+02 2.08502987817E+02 2.13518902870E+02 2.18648645384E+02 2.23894448331E+02 2.29258561954E+02 2.34743270318E+02 2.40350872860E+02 2.46083692875E+02 2.51944079730E+02 2.57934393876E+02 2.64057019473E+02 2.70314356576E+02 2.76708819876E+02 2.83242838610E+02 2.89918850287E+02 2.96739305419E+02 3.03706663818E+02 3.10823382601E+02 3.18091930154E+02 3.25514771714E+02 3.33094367663E+02 3.40833177343E+02 3.48733645967E+02 3.56798210692E+02 3.65029291559E+02 3.73429287274E+02 3.82000576076E+02 3.90745504174E+02 3.99666388630E+02 4.08765508745E+02 4.18045098937E+02 4.27507346491E+02 4.37154387559E+02 4.46988296244E+02 4.57011081402E+02 4.67224679206E+02 4.77630948378E+02 4.88231659145E+02 4.99028485506E+02 5.10023004330E+02 5.21216674862E+02 5.32610841484E+02 5.44206715867E+02 5.56005372339E+02 5.68007739055E+02 5.80214577002E+02 5.92626484770E+02 6.05243869871E+02 6.18066953042E+02 6.31095743028E+02 6.44330031233E+02 6.57769367386E+02 6.71413066171E+02 6.85260167729E+02 6.99309439466E+02 7.13559351977E+02 7.28008069713E+02 7.42653421422E+02 7.57492899031E+02 7.72523624352E+02 7.87742342975E+02 8.03145393031E+02 8.18728691693E+02 8.34487717382E+02 8.50417481162E+02 8.66512509725E+02 8.82766823451E+02 8.99173911971E+02 9.15726703384E+02 9.32417563289E+02 9.49238235734E+02 9.66179854298E+02 9.83232890076E+02 1.00038713458E+03 1.01763168202E+03 1.03495488490E+03 1.05234434967E+03 1.06978688667E+03 1.08726849953E+03 1.10477435415E+03 1.12228874372E+03 1.13979507016E+03 1.15727581760E+03 1.17471251502E+03 1.19208572434E+03 1.20937500445E+03 1.22655888450E+03 1.24361484847E+03 1.26051930325E+03 1.27724755888E+03 1.29377380657E+03 1.31007109811E+03 1.32611132708E+03 1.34186521070E+03 1.35730227743E+03 1.37239085040E+03 1.38709804068E+03 1.40138973484E+03 1.41523059142E+03 1.42858404524E+03 1.44141229571E+03 1.45367632394E+03 1.46533589868E+03 1.47634958742E+03 1.48667477513E+03 1.49626769376E+03 1.50508344293E+03 1.51307603615E+03 1.52019842512E+03 1.52640257112E+03 1.53163947656E+03 1.53585926919E+03 1.53901125665E+03 1.54104401789E+03 1.54190548722E+03 1.54154305531E+03 1.53990367823E+03 1.53693399456E+03 1.53258046191E+03 1.52678949947E+03 1.51950763694E+03 1.51068169779E+03 1.50025897047E+03 1.48818740889E+03 1.47441584945E+03 1.45889423645E+03 1.44157386723E+03 1.42240765587E+03 1.40135041115E+03 1.37835913561E+03 1.35339334014E+03 1.32641538518E+03 1.29739083482E+03 1.26628883044E+03 1.23308249270E+03 1.19774933504E+03 1.16027171549E+03 1.12063727918E+03 1.07883946509E+03 1.03487799087E+03 9.88759391059E+02 9.40497556908E+02 8.90114311713E+02 8.37639982127E+02 7.83114017780E+02 7.26585600061E+02 6.68114274610E+02 6.07770593624E+02 5.45636778074E+02 4.81807349127E+02 4.16389813774E+02 3.49505283800E+02 2.81289131100E+02 2.11891605621E+02 1.41478420298E+02 7.02313132954E+01 -1.65143483672E+00 -7.39545526240E+01 -1.46445378498E+02 -2.18873566460E+02 -2.90970866471E+02 -3.62451033026E+02 -4.33009867862E+02 -5.02325398658E+02 -5.70058251660E+02 -6.35852208080E+02 -6.99334985658E+02 -7.60119272494E+02 -8.17804027732E+02 -8.71976108807E+02 -9.22212218911E+02 -9.68081248819E+02 -1.00914701265E+03 -1.04497145344E+03 -1.07511833367E+03 -1.09915746189E+03 -1.11666951632E+03 -1.12725149545E+03 -1.13052287461E+03 -1.12613250620E+03 -1.11376633253E+03 -1.09315600095E+03 -1.06408840807E+03 -1.02641630114E+03 -9.80069963284E+02 -9.25070098111E+02 -8.61541957155E+02 -7.89730790955E+02 -7.10018649135E+02 -6.22942545704E+02 -5.29213949861E+02 -4.29739483822E+02 -3.25642612708E+02 -2.18285955692E+02 -1.09293651900E+02 -5.72951835244E-01 1.05666203565E+02 2.06895246724E+02 3.00257042440E+02 3.82565023841E+02 4.50315523236E+02 4.99718743667E+02 5.26755439166E+02 5.27267923703E+02 4.97101697576E+02 4.32266831561E+02 3.29580463288E+02 1.83511630148E+02 2.10515180117E+01 -2.08713229871E+00 2.06926750356E-01 -2.05155671952E-02 2.03402684852E-03 -2.01739003893E-04 2.00684413549E-05 -2.07858734246E-06 3.33232288833E-07 -1.48889408811E-07 2.93105038627E-08 0.00000000000E+00 0.00000000000E+00 -1.21838702422E-01 -8.52644894627E-02 8.50000000000E-01 -2.92624683645E+01 -2.92624683677E+01 -2.92624683682E+01 -2.92624683688E+01 -2.92624683693E+01 -2.92624683699E+01 -2.92624683705E+01 -2.92624683710E+01 -2.92624683717E+01 -2.92624683723E+01 -2.92624683729E+01 -2.92624683736E+01 -2.92624683742E+01 -2.92624683749E+01 -2.92624683756E+01 -2.92624683764E+01 -2.92624683771E+01 -2.92624683779E+01 -2.92624683786E+01 -2.92624683794E+01 -2.92624683803E+01 -2.92624683811E+01 -2.92624683820E+01 -2.92624683828E+01 -2.92624683838E+01 -2.92624683847E+01 -2.92624683856E+01 -2.92624683866E+01 -2.92624683876E+01 -2.92624683886E+01 -2.92624683897E+01 -2.92624683908E+01 -2.92624683919E+01 -2.92624683930E+01 -2.92624683942E+01 -2.92624683954E+01 -2.92624683966E+01 -2.92624683978E+01 -2.92624683991E+01 -2.92624684004E+01 -2.92624684018E+01 -2.92624684032E+01 -2.92624684046E+01 -2.92624684061E+01 -2.92624684075E+01 -2.92624684091E+01 -2.92624684106E+01 -2.92624684123E+01 -2.92624684139E+01 -2.92624684156E+01 -2.92624684173E+01 -2.92624684191E+01 -2.92624684209E+01 -2.92624684228E+01 -2.92624684247E+01 -2.92624684267E+01 -2.92624684287E+01 -2.92624684308E+01 -2.92624684329E+01 -2.92624684351E+01 -2.92624684373E+01 -2.92624684396E+01 -2.92624684419E+01 -2.92624684443E+01 -2.92624684468E+01 -2.92624684493E+01 -2.92624684519E+01 -2.92624684545E+01 -2.92624684573E+01 -2.92624684601E+01 -2.92624684629E+01 -2.92624684658E+01 -2.92624684688E+01 -2.92624684719E+01 -2.92624684751E+01 -2.92624684783E+01 -2.92624684817E+01 -2.92624684851E+01 -2.92624684886E+01 -2.92624684921E+01 -2.92624684958E+01 -2.92624684996E+01 -2.92624685034E+01 -2.92624685074E+01 -2.92624685115E+01 -2.92624685156E+01 -2.92624685199E+01 -2.92624685243E+01 -2.92624685287E+01 -2.92624685333E+01 -2.92624685381E+01 -2.92624685429E+01 -2.92624685478E+01 -2.92624685529E+01 -2.92624685581E+01 -2.92624685635E+01 -2.92624685690E+01 -2.92624685746E+01 -2.92624685803E+01 -2.92624685862E+01 -2.92624685923E+01 -2.92624685985E+01 -2.92624686049E+01 -2.92624686114E+01 -2.92624686181E+01 -2.92624686249E+01 -2.92624686320E+01 -2.92624686392E+01 -2.92624686466E+01 -2.92624686542E+01 -2.92624686619E+01 -2.92624686699E+01 -2.92624686781E+01 -2.92624686864E+01 -2.92624686950E+01 -2.92624687038E+01 -2.92624687129E+01 -2.92624687221E+01 -2.92624687316E+01 -2.92624687414E+01 -2.92624687513E+01 -2.92624687616E+01 -2.92624687721E+01 -2.92624687828E+01 -2.92624687939E+01 -2.92624688052E+01 -2.92624688168E+01 -2.92624688287E+01 -2.92624688408E+01 -2.92624688533E+01 -2.92624688662E+01 -2.92624688793E+01 -2.92624688928E+01 -2.92624689066E+01 -2.92624689207E+01 -2.92624689353E+01 -2.92624689501E+01 -2.92624689654E+01 -2.92624689811E+01 -2.92624689971E+01 -2.92624690136E+01 -2.92624690304E+01 -2.92624690477E+01 -2.92624690655E+01 -2.92624690836E+01 -2.92624691023E+01 -2.92624691214E+01 -2.92624691410E+01 -2.92624691611E+01 -2.92624691817E+01 -2.92624692028E+01 -2.92624692245E+01 -2.92624692467E+01 -2.92624692694E+01 -2.92624692928E+01 -2.92624693167E+01 -2.92624693413E+01 -2.92624693664E+01 -2.92624693922E+01 -2.92624694187E+01 -2.92624694458E+01 -2.92624694736E+01 -2.92624695021E+01 -2.92624695313E+01 -2.92624695613E+01 -2.92624695920E+01 -2.92624696235E+01 -2.92624696558E+01 -2.92624696889E+01 -2.92624697229E+01 -2.92624697577E+01 -2.92624697934E+01 -2.92624698300E+01 -2.92624698675E+01 -2.92624699060E+01 -2.92624699455E+01 -2.92624699859E+01 -2.92624700274E+01 -2.92624700699E+01 -2.92624701135E+01 -2.92624701582E+01 -2.92624702040E+01 -2.92624702510E+01 -2.92624702991E+01 -2.92624703485E+01 -2.92624703992E+01 -2.92624704511E+01 -2.92624705043E+01 -2.92624705589E+01 -2.92624706149E+01 -2.92624706722E+01 -2.92624707311E+01 -2.92624707914E+01 -2.92624708532E+01 -2.92624709166E+01 -2.92624709816E+01 -2.92624710482E+01 -2.92624711166E+01 -2.92624711866E+01 -2.92624712584E+01 -2.92624713321E+01 -2.92624714076E+01 -2.92624714850E+01 -2.92624715644E+01 -2.92624716457E+01 -2.92624717292E+01 -2.92624718147E+01 -2.92624719024E+01 -2.92624719923E+01 -2.92624720845E+01 -2.92624721790E+01 -2.92624722759E+01 -2.92624723752E+01 -2.92624724771E+01 -2.92624725815E+01 -2.92624726886E+01 -2.92624727984E+01 -2.92624729109E+01 -2.92624730263E+01 -2.92624731446E+01 -2.92624732659E+01 -2.92624733902E+01 -2.92624735177E+01 -2.92624736484E+01 -2.92624737824E+01 -2.92624739198E+01 -2.92624740606E+01 -2.92624742051E+01 -2.92624743531E+01 -2.92624745049E+01 -2.92624746605E+01 -2.92624748200E+01 -2.92624749836E+01 -2.92624751513E+01 -2.92624753232E+01 -2.92624754994E+01 -2.92624756801E+01 -2.92624758654E+01 -2.92624760553E+01 -2.92624762500E+01 -2.92624764496E+01 -2.92624766543E+01 -2.92624768641E+01 -2.92624770792E+01 -2.92624772997E+01 -2.92624775257E+01 -2.92624777575E+01 -2.92624779951E+01 -2.92624782386E+01 -2.92624784883E+01 -2.92624787443E+01 -2.92624790067E+01 -2.92624792758E+01 -2.92624795516E+01 -2.92624798343E+01 -2.92624801242E+01 -2.92624804213E+01 -2.92624807259E+01 -2.92624810382E+01 -2.92624813583E+01 -2.92624816864E+01 -2.92624820228E+01 -2.92624823677E+01 -2.92624827212E+01 -2.92624830836E+01 -2.92624834551E+01 -2.92624838359E+01 -2.92624842263E+01 -2.92624846264E+01 -2.92624850366E+01 -2.92624854571E+01 -2.92624858881E+01 -2.92624863299E+01 -2.92624867828E+01 -2.92624872471E+01 -2.92624877229E+01 -2.92624882107E+01 -2.92624887107E+01 -2.92624892232E+01 -2.92624897485E+01 -2.92624902870E+01 -2.92624908389E+01 -2.92624914046E+01 -2.92624919845E+01 -2.92624925788E+01 -2.92624931879E+01 -2.92624938123E+01 -2.92624944523E+01 -2.92624951082E+01 -2.92624957804E+01 -2.92624964694E+01 -2.92624971756E+01 -2.92624978993E+01 -2.92624986411E+01 -2.92624994013E+01 -2.92625001804E+01 -2.92625009788E+01 -2.92625017971E+01 -2.92625026358E+01 -2.92625034952E+01 -2.92625043759E+01 -2.92625052785E+01 -2.92625062034E+01 -2.92625071513E+01 -2.92625081226E+01 -2.92625091179E+01 -2.92625101378E+01 -2.92625111830E+01 -2.92625122539E+01 -2.92625133512E+01 -2.92625144756E+01 -2.92625156277E+01 -2.92625168082E+01 -2.92625180177E+01 -2.92625192569E+01 -2.92625205266E+01 -2.92625218274E+01 -2.92625231601E+01 -2.92625245255E+01 -2.92625259243E+01 -2.92625273574E+01 -2.92625288254E+01 -2.92625303293E+01 -2.92625318699E+01 -2.92625334480E+01 -2.92625350645E+01 -2.92625367203E+01 -2.92625384164E+01 -2.92625401536E+01 -2.92625419329E+01 -2.92625437552E+01 -2.92625456217E+01 -2.92625475332E+01 -2.92625494907E+01 -2.92625514955E+01 -2.92625535484E+01 -2.92625556507E+01 -2.92625578034E+01 -2.92625600076E+01 -2.92625622646E+01 -2.92625645754E+01 -2.92625669413E+01 -2.92625693635E+01 -2.92625718432E+01 -2.92625743818E+01 -2.92625769804E+01 -2.92625796404E+01 -2.92625823632E+01 -2.92625851500E+01 -2.92625880023E+01 -2.92625909214E+01 -2.92625939088E+01 -2.92625969659E+01 -2.92626000941E+01 -2.92626032950E+01 -2.92626065701E+01 -2.92626099208E+01 -2.92626133487E+01 -2.92626168554E+01 -2.92626204425E+01 -2.92626241116E+01 -2.92626278642E+01 -2.92626317021E+01 -2.92626356269E+01 -2.92626396403E+01 -2.92626437439E+01 -2.92626479394E+01 -2.92626522287E+01 -2.92626566133E+01 -2.92626610951E+01 -2.92626656758E+01 -2.92626703571E+01 -2.92626751409E+01 -2.92626800289E+01 -2.92626850228E+01 -2.92626901244E+01 -2.92626953356E+01 -2.92627006580E+01 -2.92627060934E+01 -2.92627116436E+01 -2.92627173104E+01 -2.92627230953E+01 -2.92627290002E+01 -2.92627350267E+01 -2.92627411765E+01 -2.92627474511E+01 -2.92627538523E+01 -2.92627603814E+01 -2.92627670401E+01 -2.92627738297E+01 -2.92627807517E+01 -2.92627878074E+01 -2.92627949980E+01 -2.92628023247E+01 -2.92628097886E+01 -2.92628173908E+01 -2.92628251321E+01 -2.92628330133E+01 -2.92628410351E+01 -2.92628491980E+01 -2.92628575025E+01 -2.92628659488E+01 -2.92628745369E+01 -2.92628832669E+01 -2.92628921383E+01 -2.92629011508E+01 -2.92629103036E+01 -2.92629195959E+01 -2.92629290263E+01 -2.92629385935E+01 -2.92629482956E+01 -2.92629581307E+01 -2.92629680963E+01 -2.92629781897E+01 -2.92629884077E+01 -2.92629987469E+01 -2.92630092032E+01 -2.92630197722E+01 -2.92630304491E+01 -2.92630412283E+01 -2.92630521040E+01 -2.92630630695E+01 -2.92630741176E+01 -2.92630852405E+01 -2.92630964296E+01 -2.92631076756E+01 -2.92631189683E+01 -2.92631302968E+01 -2.92631416493E+01 -2.92631530129E+01 -2.92631643738E+01 -2.92631757171E+01 -2.92631870268E+01 -2.92631982858E+01 -2.92632094755E+01 -2.92632205760E+01 -2.92632315663E+01 -2.92632424234E+01 -2.92632531232E+01 -2.92632636394E+01 -2.92632739445E+01 -2.92632840086E+01 -2.92632938002E+01 -2.92633032854E+01 -2.92633124283E+01 -2.92633211906E+01 -2.92633295314E+01 -2.92633374074E+01 -2.92633447723E+01 -2.92633515772E+01 -2.92633577697E+01 -2.92633632946E+01 -2.92633680930E+01 -2.92633721025E+01 -2.92633752568E+01 -2.92633774856E+01 -2.92633787145E+01 -2.92633788645E+01 -2.92633778518E+01 -2.92633755879E+01 -2.92633719788E+01 -2.92633669252E+01 -2.92633603218E+01 -2.92633520573E+01 -2.92633420138E+01 -2.92633300669E+01 -2.92633160846E+01 -2.92632999277E+01 -2.92632814490E+01 -2.92632604928E+01 -2.92632368948E+01 -2.92632104811E+01 -2.92631810683E+01 -2.92631484628E+01 -2.92631124598E+01 -2.92630728436E+01 -2.92630293861E+01 -2.92629818468E+01 -2.92629299720E+01 -2.92628734939E+01 -2.92628121301E+01 -2.92627455827E+01 -2.92626735377E+01 -2.92625956638E+01 -2.92625116119E+01 -2.92624210142E+01 -2.92623234826E+01 -2.92622186084E+01 -2.92621059611E+01 -2.92619850869E+01 -2.92618555079E+01 -2.92617167206E+01 -2.92615681948E+01 -2.92614093722E+01 -2.92612396651E+01 -2.92610584544E+01 -2.92608650887E+01 -2.92606588823E+01 -2.92604391133E+01 -2.92602050223E+01 -2.92599558101E+01 -2.92596906359E+01 -2.92594086151E+01 -2.92591088173E+01 -2.92587902636E+01 -2.92584519249E+01 -2.92580927187E+01 -2.92577115071E+01 -2.92573070935E+01 -2.92568782199E+01 -2.92564235641E+01 -2.92559417365E+01 -2.92554312764E+01 -2.92548906491E+01 -2.92543182419E+01 -2.92537123605E+01 -2.92530712249E+01 -2.92523929656E+01 -2.92516756187E+01 -2.92509171220E+01 -2.92501153100E+01 -2.92492679087E+01 -2.92483725310E+01 -2.92474266708E+01 -2.92464276976E+01 -2.92453728508E+01 -2.92442592332E+01 -2.92430838048E+01 -2.92418433760E+01 -2.92405346008E+01 -2.92391539694E+01 -2.92376978006E+01 -2.92361622340E+01 -2.92345432216E+01 -2.92328365195E+01 -2.92310376783E+01 -2.92291420347E+01 -2.92271447012E+01 -2.92250405558E+01 -2.92228242323E+01 -2.92204901086E+01 -2.92180322956E+01 -2.92154446256E+01 -2.92127206397E+01 -2.92098535754E+01 -2.92068363528E+01 -2.92036615617E+01 -2.92003214466E+01 -2.91968078924E+01 -2.91931124087E+01 -2.91892261145E+01 -2.91851397213E+01 -2.91808435162E+01 -2.91763273447E+01 -2.91715805919E+01 -2.91665921645E+01 -2.91613504706E+01 -2.91558434005E+01 -2.91500583057E+01 -2.91439819776E+01 -2.91376006257E+01 -2.91308998554E+01 -2.91238646446E+01 -2.91164793198E+01 -2.91087275322E+01 -2.91005922324E+01 -2.90920556449E+01 -2.90830992419E+01 -2.90737037166E+01 -2.90638489559E+01 -2.90535140125E+01 -2.90426770767E+01 -2.90313154478E+01 -2.90194055043E+01 -2.90069226749E+01 -2.89938414084E+01 -2.89801351433E+01 -2.89657762780E+01 -2.89507361396E+01 -2.89349849537E+01 -2.89184918141E+01 -2.89012246521E+01 -2.88831502064E+01 -2.88642339940E+01 -2.88444402803E+01 -2.88237320513E+01 -2.88020709857E+01 -2.87794174286E+01 -2.87557303663E+01 -2.87309674027E+01 -2.87050847373E+01 -2.86780371456E+01 -2.86497779617E+01 -2.86202590638E+01 -2.85894308625E+01 -2.85572422933E+01 -2.85236408126E+01 -2.84885723988E+01 -2.84519815581E+01 -2.84138113367E+01 -2.83740033391E+01 -2.83324977542E+01 -2.82892333896E+01 -2.82441477148E+01 -2.81971769159E+01 -2.81482559609E+01 -2.80973186786E+01 -2.80442978527E+01 -2.79891253311E+01 -2.79317321553E+01 -2.78720487091E+01 -2.78100048919E+01 -2.77455303170E+01 -2.76785545398E+01 -2.76090073196E+01 -2.75368189180E+01 -2.74619204395E+01 -2.73842442198E+01 -2.73037242677E+01 -2.72202967674E+01 -2.71339006494E+01 -2.70444782396E+01 -2.69519759952E+01 -2.68563453408E+01 -2.67575436167E+01 -2.66555351532E+01 -2.65502924882E+01 -2.64417977434E+01 -2.63300441784E+01 -2.62150379402E+01 -2.60968000248E+01 -2.59753684668E+01 -2.58508007641E+01 -2.57231765373E+01 -2.55926004061E+01 -2.54592050398E+01 -2.53231542991E+01 -2.51846463323E+01 -2.50439164050E+01 -2.49012391318E+01 -2.47569296236E+01 -2.46113428620E+01 -2.44648703514E+01 -2.43179327886E+01 -2.41728103410E+01 -2.40771234564E+01 -2.40161712370E+01 -2.38860828817E+01 -2.36979848856E+01 -2.35049592242E+01 -2.33070004530E+01 -2.31040835647E+01 -2.28961637037E+01 -2.26831778786E+01 -2.24650490564E+01 -2.22416928772E+01 -2.20130270210E+01 -2.17789829954E+01 -2.15395198293E+01 -2.12946388870E+01 -2.10443988009E+01 -2.07889293931E+01 -2.05284434468E+01 -2.02632452995E+01 -1.99937354536E+01 -1.97204107117E+01 -1.94438597121E+01 -1.91647541114E+01 -1.88838360143E+01 -1.86019025250E+01 -1.83197884791E+01 -1.80383484733E+01 -1.77584392509E+01 -1.74809033303E+01 -1.72065545130E+01 -1.69361656166E+01 -1.66704584844E+01 -1.64100960747E+01 -1.61556762406E+01 -1.59077267059E+01 -1.56667007137E+01 -1.54329728672E+01 -1.52068347807E+01 -1.49884902931E+01 -1.47780501512E+01 -1.45755262335E+01 -1.43808255446E+01 -1.41937443725E+01 -1.40139631539E+01 -1.38410427566E+01 -1.36744230530E+01 -1.35134248454E+01 -1.33572564165E+01 -1.32050262165E+01 -1.30557634847E+01 -1.29084489372E+01 -1.27620580403E+01 -1.26156198551E+01 -1.24682949757E+01 -1.23194767275E+01 -1.21689205411E+01 -1.20170657339E+01 -1.18657505005E+01 -1.17172595108E+01 -1.15714803691E+01 -1.14276694659E+01 -1.12856528212E+01 -1.11454073456E+01 -1.10069103083E+01 -1.08701393277E+01 -1.07350723617E+01 -1.06016876985E+01 -1.04699639480E+01 -1.03398800339E+01 -1.02114151852E+01 -1.00845489290E+01 -9.95926108339E+00 -9.83553175041E+00 -9.71334130959E+00 -9.59267041167E+00 -9.47349997268E+00 -9.35581116826E+00 -9.23958542821E+00 -9.12480443135E+00 -9.01145010051E+00 -8.89950459787E+00 -8.78895032041E+00 -8.67976989554E+00 -8.57194617703E+00 -8.46546224094E+00 -8.36030138189E+00 -8.25644710931E+00 -8.15388314397E+00 -8.05259341452E+00 -7.95256205427E+00 -7.85377339798E+00 -7.75621197884E+00 -7.65986252546E+00 -7.56470995902E+00 -7.47073939051E+00 -7.37793611798E+00 -7.28628562395E+00 -7.19577357282E+00 -7.10638580839E+00 -7.01810835141E+00 -6.93092739724E+00 -6.84482931345E+00 -6.75980063764E+00 -6.67582807513E+00 -6.59289849683E+00 -6.51099893709E+00 -6.43011659158E+00 -6.35016102451E+00 -6.27119681961E+00 -6.19337456850E+00 -6.11647680562E+00 -6.04045302364E+00 -5.96546231071E+00 -5.89140370583E+00 -5.81822113371E+00 -5.74594757398E+00 -5.67457173712E+00 -5.60408247377E+00 -5.53446877296E+00 -5.46571976036E+00 -5.39782469661E+00 -5.33077297564E+00 -5.26455412299E+00 -5.19915779416E+00 -5.13457377305E+00 -5.07079197034E+00 -5.00780242192E+00 -4.94559528733E+00 -4.88416084826E+00 -4.82348950706E+00 -4.76357178519E+00 -4.70439832185E+00 -4.64595987244E+00 -4.58824730720E+00 -4.53125160979E+00 -4.47496387589E+00 -4.41937531182E+00 -4.36447723322E+00 -4.31026106369E+00 -4.25671833347E+00 -4.20384067811E+00 -4.15161983723E+00 -4.10004765321E+00 -4.04911606990E+00 -3.99881713141E+00 -3.94914298085E+00 -3.90008585911E+00 -3.85163810363E+00 -3.80379214720E+00 -3.75654051677E+00 -3.70987583227E+00 -3.66379080543E+00 -3.61827823865E+00 -3.57333102380E+00 -3.52894214114E+00 -3.48510465816E+00 -3.44181172849E+00 -3.39905659078E+00 -3.35683256764E+00 -3.31513306456E+00 -3.27395156883E+00 -3.23328164855E+00 -3.19311695152E+00 -3.15345120429E+00 -3.11427821114E+00 -3.07559185307E+00 -3.03738608686E+00 -2.99965494410E+00 -2.96239253023E+00 -2.92559302365E+00 -2.88925067476E+00 -2.85335980512E+00 -2.81791480651E+00 -2.78291014009E+00 -2.74834033556E+00 -2.71419999027E+00 -2.68048376846E+00 -2.64718640039E+00 -2.61430268157E+00 -2.58182747196E+00 -2.54975569521E+00 -2.51808233785E+00 -2.48680244860E+00 -2.45591113759E+00 -2.42540357561E+00 -2.39527499342E+00 -2.36552068103E+00 -2.33613598694E+00 -2.30711631751E+00 -2.27845713621E+00 -2.25015396297E+00 -2.22220237346E+00 -2.19459799846E+00 -2.16733652313E+00 -2.14041368641E+00 -2.11382528029E+00 -2.08756714923E+00 -2.06163518946E+00 -2.03602534833E+00 -2.01073362373E+00 -1.98575606340E+00 -1.96108876432E+00 -1.93672787210E+00 -1.91266958039E+00 -1.88891013020E+00 -1.86544580938E+00 -1.84227295199E+00 -1.81938793772E+00 -1.79678719131E+00 -1.77446718198E+00 -1.75242442287E+00 -1.73065547048E+00 -1.70915692414E+00 -1.68792542543E+00 -1.66695765769E+00 -1.64625034547E+00 -1.62580025400E+00 -1.60560418872E+00 -1.58565899473E+00 -1.56596155633E+00 -1.54650879649E+00 -1.52729767640E+00 -1.50832519497E+00 -1.48958838839E+00 -1.47108432963E+00 -1.45281012799E+00 -1.43476292866E+00 -1.41693991228E+00 -1.39933829446E+00 -1.38195532539E+00 -1.36478828939E+00 -1.34783450450E+00 -1.33109132202E+00 -1.31455612616E+00 -1.29822633359E+00 -1.28209939303E+00 -1.26617278490E+00 -1.25044402088E+00 -1.23491064353E+00 -1.21957022596E+00 -1.20442037135E+00 -1.18945871268E+00 -1.17468291230E+00 -1.16009066158E+00 -1.14567968057E+00 -1.13144771761E+00 -1.11739254901E+00 -1.10351197868E+00 -1.08980383780E+00 -1.07626598449E+00 -1.06289630346E+00 -1.04969270568E+00 -1.03665312807E+00 -1.02377553317E+00 -1.01105790882E+00 -9.98498267850E-01 -9.86094647756E-01 -9.73845110418E-01 -9.61747742931E-01 -9.49800652609E-01 -9.38001973908E-01 -9.26349863206E-01 -9.14842499778E-01 -9.03478085511E-01 -8.92254844627E-01 -8.81171023403E-01 -8.70224889897E-01 -8.59414733679E-01 -8.48738865564E-01 -8.38195617348E-01 -8.27783341547E-01 -8.17500411142E-01 -8.07345209511E-01 -7.97316169674E-01 -7.87411714405E-01 -7.77629745286E-01 -7.67969873718E-01 -7.58429998962E-01 -7.49008630423E-01 -7.39704295995E-01 -7.30515541855E-01 -7.21440932244E-01 -7.12479049236E-01 -7.03628492518E-01 -6.94887880206E-01 -6.86255844414E-01 -6.77731037492E-01 -6.69312127419E-01 -6.60997798725E-01 -6.52786752278E-01 -6.44677705087E-01 -6.36669416229E-01 -6.28760567216E-01 -6.20949977945E-01 -6.13236413374E-01 -6.05618668242E-01 -5.98095552262E-01 -5.90665889930E-01 -5.83328520348E-01 -5.76082297036E-01 -5.68926087757E-01 -5.61858770162E-01 -5.54879248425E-01 -5.47986427699E-01 -5.41179230968E-01 -5.34456594593E-01 -5.27817468147E-01 -5.21260814255E-01 -5.14785608426E-01 -5.08390838896E-01 -5.02075506468E-01 -4.95838624364E-01 -4.89679218049E-01 -4.83596325108E-01 -4.77588995077E-01 -4.71656289298E-01 -4.65797280773E-01 -4.60011054022E-01 -4.54296704934E-01 -4.48653340630E-01 -4.43080079323E-01 -4.37576050180E-01 -4.32140393185E-01 -4.26772259006E-01 -4.21470808861E-01 -4.16235214387E-01 -4.11064657502E-01 -4.05958330316E-01 -4.00915434946E-01 -3.95935183428E-01 -3.91016797588E-01 -3.86159508918E-01 -3.81362558457E-01 -3.76625196671E-01 -3.71946683339E-01 -3.67326287433E-01 -3.62763287006E-01 -3.58256969082E-01 -3.53806629537E-01 -3.49411572998E-01 -3.45071112729E-01 -3.40784570523E-01 -3.36551276599E-01 -3.32370569497E-01 -3.28241795973E-01 -3.24164310897E-01 -3.20137477154E-01 -3.16160665543E-01 -3.12233254680E-01 -3.08354630898E-01 -3.04524188154E-01 -3.00741327934E-01 -2.97005459159E-01 -2.93315998091E-01 -2.89672368244E-01 -2.86074000294E-01 -2.82520331989E-01 -2.79010808060E-01 -2.75544880138E-01 -2.72122006664E-01 -2.68741652807E-01 -2.65403290380E-01 -2.62106397758E-01 -2.58850459793E-01 -2.55634967739E-01 -2.52459419169E-01 -2.49323317897E-01 -2.46226173900E-01 -2.43167503244E-01 -2.40146828006E-01 -2.37163676197E-01 -2.34217581696E-01 -2.31308084168E-01 -2.28434728999E-01 -2.25597067222E-01 -2.22794655445E-01 -2.20027055786E-01 -2.17293835802E-01 -2.14594568422E-01 -2.11928831880E-01 -2.09296209649E-01 -2.06696290377E-01 -2.04128667821E-01 -2.01592940784E-01 -1.99088713055E-01 -1.96615593342E-01 -1.94173195215E-01 -1.91761137046E-01 -1.89379041944E-01 -1.87026537702E-01 -1.84703256738E-01 -1.82408836033E-01 -1.80142917081E-01 -1.77905145825E-01 -1.75695172610E-01 -1.73512652124E-01 -1.71357243342E-01 -1.69228609479E-01 -1.67126417930E-01 -1.65050340223E-01 -1.63000051968E-01 -1.60975232803E-01 -1.58975566346E-01 -1.57000740144E-01 -1.55050445627E-01 -1.53124378058E-01 -1.51222236485E-01 -1.49343723693E-01 -1.47488546163E-01 -1.45656414017E-01 -1.43847040983E-01 -1.42060144342E-01 -1.40295444887E-01 -1.38552666881E-01 -1.36831538010E-01 -1.35131789347E-01 -1.33453155300E-01 -1.31795373580E-01 -1.30158185155E-01 -1.28541334212E-01 -1.26944568113E-01 -1.25367637362E-01 -1.23810295559E-01 -1.22272299367E-01 -1.20753408470E-01 -1.19253385539E-01 -1.17771996192E-01 -1.16309008959E-01 -1.14864195245E-01 -1.13437329296E-01 -1.12028188160E-01 -1.10636551656E-01 -1.09262202339E-01 -1.07904925463E-01 -1.06564508951E-01 -1.05240743361E-01 -1.03933421851E-01 -1.02642340149E-01 -1.01367296522E-01 -1.00108091741E-01 4.93011752923E-09 5.05492468364E-09 5.18289137875E-09 5.31409760040E-09 5.44862535934E-09 5.58655874254E-09 5.72798396572E-09 5.87298942727E-09 6.02166576350E-09 6.17410590530E-09 6.33040513622E-09 6.49066115208E-09 6.65497412196E-09 6.82344675090E-09 6.99618434407E-09 7.17329487259E-09 7.35488904104E-09 7.54108035667E-09 7.73198520034E-09 7.92772289931E-09 8.12841580180E-09 8.33418935347E-09 8.54517217590E-09 8.76149614694E-09 8.98329648317E-09 9.21071182447E-09 9.44388432062E-09 9.68295972024E-09 9.92808746188E-09 1.01794207674E-08 1.04371167379E-08 1.07013364517E-08 1.09722450653E-08 1.12500119165E-08 1.15348106302E-08 1.18268192273E-08 1.21262202353E-08 1.24332008033E-08 1.27479528183E-08 1.30706730256E-08 1.34015631514E-08 1.37408300295E-08 1.40886857301E-08 1.44453476925E-08 1.48110388613E-08 1.51859878256E-08 1.55704289620E-08 1.59646025809E-08 1.63687550772E-08 1.67831390840E-08 1.72080136307E-08 1.76436443051E-08 1.80903034191E-08 1.85482701793E-08 1.90178308615E-08 1.94992789898E-08 1.99929155199E-08 2.04990490275E-08 2.10179959011E-08 2.15500805403E-08 2.20956355578E-08 2.26550019884E-08 2.32285295014E-08 2.38165766200E-08 2.44195109449E-08 2.50377093846E-08 2.56715583909E-08 2.63214542008E-08 2.69878030842E-08 2.76710215977E-08 2.83715368457E-08 2.90897867471E-08 2.98262203094E-08 3.05812979095E-08 3.13554915814E-08 3.21492853120E-08 3.29631753432E-08 3.37976704830E-08 3.46532924230E-08 3.55305760655E-08 3.64300698573E-08 3.73523361336E-08 3.82979514693E-08 3.92675070398E-08 4.02616089907E-08 4.12808788174E-08 4.23259537535E-08 4.33974871699E-08 4.44961489831E-08 4.56226260748E-08 4.67776227215E-08 4.79618610350E-08 4.91760814146E-08 5.04210430102E-08 5.16975241973E-08 5.30063230643E-08 5.43482579116E-08 5.57241677641E-08 5.71349128960E-08 5.85813753696E-08 6.00644595867E-08 6.15850928554E-08 6.31442259702E-08 6.47428338069E-08 6.63819159333E-08 6.80624972347E-08 6.97856285556E-08 7.15523873573E-08 7.33638783929E-08 7.52212343987E-08 7.71256168034E-08 7.90782164555E-08 8.10802543691E-08 8.31329824879E-08 8.52376844701E-08 8.73956764916E-08 8.96083080707E-08 9.18769629132E-08 9.42030597792E-08 9.65880533718E-08 9.90334352483E-08 1.01540734755E-07 1.04111519984E-07 1.06747398757E-07 1.09450019634E-07 1.12221072943E-07 1.15062291842E-07 1.17975453404E-07 1.20962379729E-07 1.24024939092E-07 1.27165047107E-07 1.30384667932E-07 1.33685815500E-07 1.37070554780E-07 1.40541003073E-07 1.44099331340E-07 1.47747765564E-07 1.51488588143E-07 1.55324139326E-07 1.59256818676E-07 1.63289086582E-07 1.67423465794E-07 1.71662543014E-07 1.76008970516E-07 1.80465467809E-07 1.85034823345E-07 1.89719896272E-07 1.94523618225E-07 1.99448995168E-07 2.04499109283E-07 2.09677120903E-07 2.14986270501E-07 2.20429880720E-07 2.26011358465E-07 2.31734197042E-07 2.37601978352E-07 2.43618375145E-07 2.49787153324E-07 2.56112174318E-07 2.62597397506E-07 2.69246882709E-07 2.76064792741E-07 2.83055396029E-07 2.90223069300E-07 2.97572300333E-07 3.05107690782E-07 3.12833959076E-07 3.20755943389E-07 3.28878604682E-07 3.37207029834E-07 3.45746434843E-07 3.54502168111E-07 3.63479713818E-07 3.72684695374E-07 3.82122878970E-07 3.91800177209E-07 4.01722652838E-07 4.11896522570E-07 4.22328161011E-07 4.33024104680E-07 4.43991056136E-07 4.55235888211E-07 4.66765648351E-07 4.78587563069E-07 4.90709042512E-07 5.03137685142E-07 5.15881282547E-07 5.28947824363E-07 5.42345503332E-07 5.56082720487E-07 5.70168090469E-07 5.84610446987E-07 5.99418848407E-07 6.14602583497E-07 6.30171177316E-07 6.46134397251E-07 6.62502259217E-07 6.79285034009E-07 6.96493253826E-07 7.14137718958E-07 7.32229504651E-07 7.50779968141E-07 7.69800755882E-07 7.89303810951E-07 8.09301380650E-07 8.29806024305E-07 8.50830621266E-07 8.72388379114E-07 8.94492842084E-07 9.17157899706E-07 9.40397795668E-07 9.64227136913E-07 9.88660902974E-07 1.01371445555E-06 1.03940354832E-06 1.06574433705E-06 1.09275338991E-06 1.12044769813E-06 1.14884468685E-06 1.17796222631E-06 1.20781864337E-06 1.23843273320E-06 1.26982377145E-06 1.30201152657E-06 1.33501627259E-06 1.36885880219E-06 1.40356044004E-06 1.43914305661E-06 1.47562908231E-06 1.51304152191E-06 1.55140396950E-06 1.59074062371E-06 1.63107630341E-06 1.67243646378E-06 1.71484721289E-06 1.75833532856E-06 1.80292827587E-06 1.84865422498E-06 1.89554206949E-06 1.94362144531E-06 1.99292274996E-06 2.04347716249E-06 2.09531666382E-06 2.14847405774E-06 2.20298299240E-06 2.25887798236E-06 2.31619443134E-06 2.37496865549E-06 2.43523790728E-06 2.49704040015E-06 2.56041533368E-06 2.62540291957E-06 2.69204440825E-06 2.76038211624E-06 2.83045945427E-06 2.90232095614E-06 2.97601230840E-06 3.05158038084E-06 3.12907325779E-06 3.20854027032E-06 3.29003202930E-06 3.37360045940E-06 3.45929883400E-06 3.54718181111E-06 3.63730547025E-06 3.72972735038E-06 3.82450648890E-06 3.92170346171E-06 4.02138042439E-06 4.12360115462E-06 4.22843109567E-06 4.33593740122E-06 4.44618898141E-06 4.55925655017E-06 4.67521267396E-06 4.79413182186E-06 4.91609041705E-06 5.04116688987E-06 5.16944173232E-06 5.30099755417E-06 5.43591914065E-06 5.57429351185E-06 5.71620998386E-06 5.86176023160E-06 6.01103835362E-06 6.16414093869E-06 6.32116713434E-06 6.48221871755E-06 6.64740016735E-06 6.81681873973E-06 6.99058454464E-06 7.16881062539E-06 7.35161304040E-06 7.53911094734E-06 7.73142668989E-06 7.92868588705E-06 8.13101752523E-06 8.33855405306E-06 8.55143147911E-06 8.76978947268E-06 8.99377146757E-06 9.22352476910E-06 9.45920066449E-06 9.70095453657E-06 9.94894598108E-06 1.02033389277E-05 1.04643017646E-05 1.07320074675E-05 1.10066337321E-05 1.12883631112E-05 1.15773831559E-05 1.18738865618E-05 1.21780713189E-05 1.24901408677E-05 1.28103042591E-05 1.31387763203E-05 1.34757778257E-05 1.38215356734E-05 1.41762830679E-05 1.45402597084E-05 1.49137119835E-05 1.52968931723E-05 1.56900636524E-05 1.60934911147E-05 1.65074507856E-05 1.69322256564E-05 1.73681067211E-05 1.78153932216E-05 1.82743929017E-05 1.87454222697E-05 1.92288068706E-05 1.97248815667E-05 2.02339908289E-05 2.07564890377E-05 2.12927407954E-05 2.18431212482E-05 2.24080164209E-05 2.29878235629E-05 2.35829515067E-05 2.41938210391E-05 2.48208652862E-05 2.54645301121E-05 2.61252745319E-05 2.68035711405E-05 2.74999065559E-05 2.82147818804E-05 2.89487131776E-05 2.97022319678E-05 3.04758857414E-05 3.12702384923E-05 3.20858712707E-05 3.29233827571E-05 3.37833898579E-05 3.46665283241E-05 3.55734533932E-05 3.65048404562E-05 3.74613857501E-05 3.84438070773E-05 3.94528445532E-05 4.04892613825E-05 4.15538446666E-05 4.26474062424E-05 4.37707835546E-05 4.49248405619E-05 4.61104686805E-05 4.73285877643E-05 4.85801471250E-05 4.98661265933E-05 5.11875376230E-05 5.25454244397E-05 5.39408652371E-05 5.53749734211E-05 5.68488989064E-05 5.83638294653E-05 5.99209921329E-05 6.15216546709E-05 6.31671270918E-05 6.48587632472E-05 6.65979624827E-05 6.83861713622E-05 7.02248854655E-05 7.21156512615E-05 7.40600680615E-05 7.60597900557E-05 7.81165284363E-05 8.02320536127E-05 8.24081975210E-05 8.46468560339E-05 8.69499914747E-05 8.93196352405E-05 9.17578905396E-05 9.42669352484E-05 9.68490248937E-05 9.95064957658E-05 1.02241768168E-04 1.05057349812E-04 1.07955839359E-04 1.10939930123E-04 1.14012413936E-04 1.17176185187E-04 1.20434245038E-04 1.23789705836E-04 1.27245795713E-04 1.30805863408E-04 1.34473383286E-04 1.38251960605E-04 1.42145337008E-04 1.46157396268E-04 1.50292170298E-04 1.54553845429E-04 1.58946768978E-04 1.63475456117E-04 1.68144597060E-04 1.72959064567E-04 1.77923921814E-04 1.83044430607E-04 1.88326059986E-04 1.93774495222E-04 1.99395647236E-04 2.05195662449E-04 2.11180933091E-04 2.17358107997E-04 2.23734103895E-04 2.30316117227E-04 2.37111636523E-04 2.44128455353E-04 2.51374685883E-04 2.58858773071E-04 2.66589509527E-04 2.74576051073E-04 2.82827933034E-04 2.91355087298E-04 3.00167860179E-04 3.09277031126E-04 3.18693832311E-04 3.28429969151E-04 3.38497641790E-04 3.48909567611E-04 3.59679004808E-04 3.70819777074E-04 3.82346299470E-04 3.94273605511E-04 4.06617375552E-04 4.19393966509E-04 4.32620443010E-04 4.46314610016E-04 4.60495047000E-04 4.75181143757E-04 4.90393137912E-04 5.06152154230E-04 5.22480245783E-04 5.39400437092E-04 5.56936769324E-04 5.75114347644E-04 5.93959390823E-04 6.13499283220E-04 6.33762629239E-04 6.54779310381E-04 6.76580545025E-04 6.99198951056E-04 7.22668611476E-04 7.47025143153E-04 7.72305768835E-04 7.98549392605E-04 8.25796678925E-04 8.54090135445E-04 8.83474199751E-04 9.13995330244E-04 9.45702101337E-04 9.78645303172E-04 1.01287804608E-03 1.04845586997E-03 1.08543685898E-03 1.12388176145E-03 1.16385411565E-03 1.20542038145E-03 1.24865007819E-03 1.29361592905E-03 1.34039401225E-03 1.38906391937E-03 1.43970892109E-03 1.49241614076E-03 1.54727673607E-03 1.60438608925E-03 1.66384400619E-03 1.72575492484E-03 1.79022813331E-03 1.85737799816E-03 1.92732420331E-03 2.00019200000E-03 2.07611246832E-03 2.15522279092E-03 2.23766653919E-03 2.32359397280E-03 2.41316235282E-03 2.50653626931E-03 2.60388798385E-03 2.70539778766E-03 2.81125437609E-03 2.92165524000E-03 3.03680707493E-03 3.15692620866E-03 3.28223904808E-03 3.41298254602E-03 3.54940468898E-03 3.69176500658E-03 3.84033510367E-03 3.99539921587E-03 4.15725478969E-03 4.32621308809E-03 4.50259982246E-03 4.68675581225E-03 4.87903767298E-03 5.07981853419E-03 5.28948878802E-03 5.50845686992E-03 5.73715007250E-03 5.97601539384E-03 6.22552042147E-03 6.48615425339E-03 6.75842845732E-03 7.04287806966E-03 7.34006263553E-03 7.65056729110E-03 7.97500388997E-03 8.31401217471E-03 8.66826099531E-03 9.03844957579E-03 9.42530883070E-03 9.82960273283E-03 1.02521297338E-02 1.06937242390E-02 1.11552581383E-02 1.16376423944E-02 1.21418286900E-02 1.26688111353E-02 1.32196280376E-02 1.37953637342E-02 1.43971504901E-02 1.50261704621E-02 1.56836577300E-02 1.63709003971E-02 1.70892427603E-02 1.78400875512E-02 1.86248982501E-02 1.94452014721E-02 2.03025894274E-02 2.11987224564E-02 2.21353316393E-02 2.31142214814E-02 2.41372726733E-02 2.52064449277E-02 2.63237798896E-02 2.74914041231E-02 2.87115321701E-02 2.99864696830E-02 3.13186166283E-02 3.27104705593E-02 3.41646299569E-02 3.56837976345E-02 3.72707842054E-02 3.89285116078E-02 4.06600166847E-02 4.24684548136E-02 4.43571035808E-02 4.63293664952E-02 4.83887767341E-02 5.05390009156E-02 5.27838428883E-02 5.51272475303E-02 5.75733045491E-02 6.01262522697E-02 6.27904814028E-02 6.55705387788E-02 6.84711310351E-02 7.14971282432E-02 7.46535674595E-02 7.79456561845E-02 8.13787757115E-02 8.49584843475E-02 8.86905204862E-02 9.25808055111E-02 9.66354465071E-02 1.00860738757E-01 1.05263167995E-01 1.09849412399E-01 1.14626344280E-01 1.19601031458E-01 1.24780738269E-01 1.30172926205E-01 1.35785254116E-01 1.41625577975E-01 1.47701950141E-01 1.54022618108E-01 1.60596022682E-01 1.67430795564E-01 1.74535756285E-01 1.81919908471E-01 1.89592435374E-01 1.97562694650E-01 2.05840212332E-01 2.14434675953E-01 2.23355926795E-01 2.32613951202E-01 2.42218870932E-01 2.52180932511E-01 2.62510495540E-01 2.73218019932E-01 2.84314052041E-01 2.95809209656E-01 3.07714165827E-01 3.20039631510E-01 3.32796336999E-01 3.45995012145E-01 3.59646365334E-01 3.73761061245E-01 3.88349697359E-01 4.03422779259E-01 4.18990694712E-01 4.35063686569E-01 4.51651824516E-01 4.68764975712E-01 4.86412774354E-01 5.04604590260E-01 5.23349496494E-01 5.42656236156E-01 5.62533188396E-01 5.82988333769E-01 6.04029219039E-01 6.25662921550E-01 6.47896013303E-01 6.70734524886E-01 6.94183909390E-01 7.18249006511E-01 7.42934006968E-01 7.68242417455E-01 7.94177026288E-01 8.20739869950E-01 8.47932200737E-01 8.75754455700E-01 9.04206227078E-01 9.33286234440E-01 9.62992298723E-01 9.93321318360E-01 1.02426924769E+00 1.05583107783E+00 1.08800082013E+00 1.12077149249E+00 1.15413510842E+00 1.18808266930E+00 1.22260415955E+00 1.25768854508E+00 1.29332377489E+00 1.32949678580E+00 1.36619351039E+00 1.40339888796E+00 1.44109687846E+00 1.47927047918E+00 1.51790174409E+00 1.55697180543E+00 1.59646089746E+00 1.63634838177E+00 1.67661277407E+00 1.71723177171E+00 1.75818228161E+00 1.79944044811E+00 1.84098167993E+00 1.88278067580E+00 1.92481144801E+00 1.96704734305E+00 2.00946105865E+00 2.05202465632E+00 2.09470956851E+00 2.13748659941E+00 2.18032591840E+00 2.22319704512E+00 2.26606882504E+00 2.30890939427E+00 2.35168613253E+00 2.39436560289E+00 2.43691347698E+00 2.47929444420E+00 2.52147210353E+00 2.56340883639E+00 2.60506565887E+00 2.64640205179E+00 2.68737576678E+00 2.72794260667E+00 2.76805617836E+00 2.80766761636E+00 2.84672527517E+00 2.88517438861E+00 2.92295669441E+00 2.96001002234E+00 2.99626784432E+00 3.03165878512E+00 3.06610609263E+00 3.09952706699E+00 3.13183244833E+00 3.16292576364E+00 3.19270263400E+00 3.22105004454E+00 3.24784558091E+00 3.27297208031E+00 3.29636787075E+00 3.31798831913E+00 3.33779165882E+00 3.35573912031E+00 3.37179505361E+00 3.38592704176E+00 3.39810600507E+00 3.40830629548E+00 3.41650578065E+00 3.42268591743E+00 3.42683181441E+00 3.42893228318E+00 3.42897987821E+00 3.42697092505E+00 3.42290553691E+00 3.41678761931E+00 3.40862486306E+00 3.39842872538E+00 3.38621439947E+00 3.37200077242E+00 3.35581037191E+00 3.33766930170E+00 3.31760716642E+00 3.29565698580E+00 3.27185509883E+00 3.24624105822E+00 3.21885751560E+00 3.18975009800E+00 3.15896727608E+00 3.12656022468E+00 3.09258267625E+00 3.05709076782E+00 3.02014288206E+00 2.98179948311E+00 2.94212294788E+00 2.90117739331E+00 2.85902850054E+00 2.81574333640E+00 2.77139017302E+00 2.72603830632E+00 2.67975787377E+00 2.63261967244E+00 2.58469497762E+00 2.53605536299E+00 2.48677252260E+00 2.43691809557E+00 2.38656349384E+00 2.33577973366E+00 2.28463727122E+00 2.23320584301E+00 2.18153861774E+00 2.12971940082E+00 2.07781488040E+00 2.02588134105E+00 1.97399191226E+00 1.92220899422E+00 1.87059331420E+00 1.81920381814E+00 1.76809756988E+00 1.71732965821E+00 1.66695311177E+00 1.61701882214E+00 1.56757547484E+00 1.51866948867E+00 1.47034496306E+00 1.42264363365E+00 1.37560483597E+00 1.32926547716E+00 1.28366001564E+00 1.23882044863E+00 1.19477630743E+00 1.15155466020E+00 1.10918012213E+00 1.06767487286E+00 1.02705868081E+00 9.87348934241E-01 9.48560678830E-01 9.10706661393E-01 8.73797379529E-01 8.37841136835E-01 8.02844103353E-01 7.68810380912E-01 7.35742072968E-01 7.03639358580E-01 6.72500570089E-01 6.42322274108E-01 6.13099355380E-01 5.84825103064E-01 5.57491299026E-01 5.31088307664E-01 5.05605166834E-01 4.81029679436E-01 4.57348505213E-01 4.34547252345E-01 4.12610568420E-01 3.91522230391E-01 3.71265233129E-01 3.51821876228E-01 3.33173848726E-01 3.15302311441E-01 2.98187976637E-01 2.81811184789E-01 2.66151978216E-01 2.51190171415E-01 2.36905417931E-01 2.23277273646E-01 2.10285256401E-01 1.97908901896E-01 1.86127815820E-01 1.74921722232E-01 1.64270508194E-01 1.54154264716E-01 1.44553324083E-01 1.35448293644E-01 1.26820086172E-01 1.18649946924E-01 1.10919477530E-01 1.03610656859E-01 9.67058590168E-02 9.01878686425E-02 8.40398936607E-02 7.82455756697E-02 7.27889981289E-02 6.76546925176E-02 6.28276426303E-02 5.82932871727E-02 5.40375208141E-02 5.00466938482E-02 4.63076106037E-02 4.28075267419E-02 3.95341455647E-02 3.64756134514E-02 3.36205145308E-02 3.09578646854E-02 2.84771049763E-02 2.61680945676E-02 2.40211032184E-02 2.20268034058E-02 2.01762621305E-02 1.84609324530E-02 1.68726447980E-02 1.54035980639E-02 1.40463505646E-02 1.27938108301E-02 1.16392282865E-02 1.05761838351E-02 9.59858034820E-03 8.70063309464E-03 7.87686011215E-03 7.12207253829E-03 6.43136491422E-03 5.80010547466E-03 5.22392643763E-03 4.69871430822E-03 4.22060021064E-03 3.78595026391E-03 3.39135601619E-03 3.03362495399E-03 2.70977110204E-03 2.41700573028E-03 2.15272818420E-03 1.91451685475E-03 1.70012030354E-03 1.50744855905E-03 1.33456459838E-03 1.17967602887E-03 1.04112698265E-03 9.17390236422E-04 8.07059567466E-04 7.08842355899E-04 6.21552441697E-04 5.44103243849E-04 4.75501147582E-04 4.14839164233E-04 3.61290866974E-04 3.14104604248E-04 2.72597991429E-04 2.36152679980E-04 2.04209402101E-04 1.76263287777E-04 1.51859449979E-04 1.30588832850E-04 1.12084316742E-04 9.60170731903E-05 8.20931621792E-05 7.00503634445E-05 5.96552330128E-05 5.07003757684E-05 4.30019244914E-05 3.63972155668E-05 3.07426514032E-05 2.59117395176E-05 2.17932982390E-05 1.82898190465E-05 1.53159756846E-05 1.27972703825E-05 1.06688077364E-05 8.87418709510E-06 7.36450459940E-06 6.09745637570E-06 5.03653475221E-06 4.15030975841E-06 3.41178856985E-06 2.79784597513E-06 2.28871935738E-06 1.86756209968E-06 1.52004973648E-06 1.23403357881E-06 9.99236937025E-07 8.06989447602E-07 6.49995379893E-07 5.22132150834E-07 4.18275611284E-07 3.34148984470E-07 2.66192635243E-07 2.11452127224E-07 1.67483394335E-07 1.32277956329E-07 1.04171364678E-07 8.17976681658E-08 6.40401592958E-08 4.99886009058E-08 3.89032788652E-08 3.01848844008E-08 2.33493592046E-08 1.80069517762E-08 1.38448356254E-08 1.06127301715E-08 8.11104452058E-09 6.18113383779E-09 4.69731872899E-09 3.56037082656E-09 2.69207304926E-09 2.03004453089E-09 1.52697840474E-09 1.14608991875E-09 8.58768158719E-10 6.42842326480E-10 4.81197304891E-10 3.58834611259E-10 2.66561314039E-10 1.97247063591E-10 1.45382896549E-10 1.06729353456E-10 7.80369715540E-11 5.68251780233E-11 4.12081101224E-11 2.97579787119E-11 2.13983387662E-11 1.53210792613E-11 1.09221418061E-11 7.75196134062E-12 5.47742711465E-12 3.85281735290E-12 2.69769170428E-12 1.88015328830E-12 1.30423514572E-12 9.00439567978E-13 6.18676022056E-13 4.23014957133E-13 2.87809577309E-13 1.94843022112E-13 1.31240310517E-13 8.79477542795E-14 5.86312780142E-14 3.88823678946E-14 2.56487418995E-14 1.68283046833E-14 1.09811078324E-14 7.12612802031E-15 4.59867340111E-15 2.95088595990E-15 1.88270485487E-15 1.19423741230E-15 7.53088433900E-16 4.72080456452E-16 2.94149600708E-16 1.82167019500E-16 1.12121042232E-16 6.85782818134E-17 4.16806003778E-17 2.51706590098E-17 1.51019624830E-17 9.00149933821E-18 5.32970321351E-18 3.13445103500E-18 1.83085257479E-18 1.06204115732E-18 6.11769192026E-19 3.49907992126E-19 1.98701600659E-19 1.12018786966E-19 6.26877410947E-20 3.48206112488E-20 1.91960303788E-20 1.05018660775E-20 5.70111438318E-21 3.07078182697E-21 1.64093456353E-21 8.69847829480E-22 4.57363083243E-22 2.38506522477E-22 1.23343342672E-22 6.32501953763E-23 3.21582615429E-23 1.62091797556E-23 8.09878667625E-24 4.01071122263E-24 1.96841562141E-24 9.57319802162E-25 4.61309445533E-25 2.20227894546E-25 1.04146806531E-25 4.87822215315E-26 2.26290780798E-26 1.03946254516E-26 4.72752557797E-27 2.12856870991E-27 9.48670088793E-28 4.18466600278E-28 1.82670351353E-28 7.89005262839E-29 3.37161900096E-29 1.42523112767E-29 5.95883060639E-30 2.46380135883E-30 1.00729915894E-30 4.07153187041E-31 1.62682738496E-31 6.42460271789E-32 2.50731183982E-32 9.66858676234E-33 3.68336457242E-33 1.38607630294E-33 5.15137450587E-34 1.89053467879E-34 6.85019350326E-35 2.45023625404E-35 8.65026475505E-36 3.01366970891E-36 1.03593932408E-36 3.51295095547E-37 1.17499149081E-37 3.87567236432E-38 1.26047134722E-38 4.04124719506E-39 1.27707478988E-39 3.97701018891E-40 1.22027163667E-40 3.68837228804E-41 1.09801775786E-41 3.21882440416E-42 9.28997184970E-43 2.63921959517E-43 7.37894760053E-44 2.02994263503E-44 5.49357571294E-45 1.46224091771E-45 3.82722991095E-46 9.84827495482E-47 2.49088002034E-47 6.19110760069E-48 1.51185965662E-48 3.62648322549E-49 8.54266169279E-50 1.97576425880E-50 4.48550372798E-51 9.99355567664E-52 2.18453410484E-52 4.68407208162E-53 9.84938056008E-54 2.03052438772E-54 4.10311263971E-55 8.12484794771E-56 1.57616934947E-56 2.99477510202E-57 5.57167411480E-58 1.01473440441E-58 1.80862209466E-59 3.15394535951E-60 5.37962521177E-61 8.27445928384E-07 8.48392819416E-07 8.69869983397E-07 8.91890844245E-07 9.14469165705E-07 9.37619059952E-07 9.61354996414E-07 9.85691810812E-07 1.01064471444E-06 1.03622930365E-06 1.06246156964E-06 1.08935790842E-06 1.11693513105E-06 1.14521047419E-06 1.17420161082E-06 1.20392666134E-06 1.23440420485E-06 1.26565329079E-06 1.29769345084E-06 1.33054471112E-06 1.36422760471E-06 1.39876318449E-06 1.43417303631E-06 1.47047929245E-06 1.50770464547E-06 1.54587236241E-06 1.58500629930E-06 1.62513091609E-06 1.66627129195E-06 1.70845314091E-06 1.75170282796E-06 1.79604738554E-06 1.84151453039E-06 1.88813268093E-06 1.93593097495E-06 1.98493928792E-06 2.03518825158E-06 2.08670927310E-06 2.13953455476E-06 2.19369711401E-06 2.24923080417E-06 2.30617033553E-06 2.36455129709E-06 2.42441017879E-06 2.48578439430E-06 2.54871230442E-06 2.61323324108E-06 2.67938753187E-06 2.74721652529E-06 2.81676261657E-06 2.88806927420E-06 2.96118106706E-06 3.03614369228E-06 3.11300400383E-06 3.19181004179E-06 3.27261106238E-06 3.35545756874E-06 3.44040134249E-06 3.52749547611E-06 3.61679440611E-06 3.70835394708E-06 3.80223132653E-06 3.89848522072E-06 3.99717579128E-06 4.09836472282E-06 4.20211526152E-06 4.30849225463E-06 4.41756219100E-06 4.52939324265E-06 4.64405530739E-06 4.76162005248E-06 4.88216095942E-06 5.00575336992E-06 5.13247453296E-06 5.26240365305E-06 5.39562193981E-06 5.53221265862E-06 5.67226118277E-06 5.81585504675E-06 5.96308400099E-06 6.11404006794E-06 6.26881759960E-06 6.42751333649E-06 6.59022646810E-06 6.75705869490E-06 6.92811429192E-06 7.10350017388E-06 7.28332596205E-06 7.46770405275E-06 7.65674968762E-06 7.85058102561E-06 8.04931921687E-06 8.25308847844E-06 8.46201617191E-06 8.67623288302E-06 8.89587250326E-06 9.12107231359E-06 9.35197307020E-06 9.58871909251E-06 9.83145835337E-06 1.00803425715E-05 1.03355273065E-05 1.05971720557E-05 1.08654403543E-05 1.11404998773E-05 1.14225225443E-05 1.17116846270E-05 1.20081668595E-05 1.23121545511E-05 1.26238377021E-05 1.29434111228E-05 1.32710745547E-05 1.36070327962E-05 1.39514958297E-05 1.43046789536E-05 1.46668029162E-05 1.50380940542E-05 1.54187844339E-05 1.58091119963E-05 1.62093207057E-05 1.66196607024E-05 1.70403884589E-05 1.74717669401E-05 1.79140657681E-05 1.83675613899E-05 1.88325372510E-05 1.93092839721E-05 1.97980995310E-05 2.02992894483E-05 2.08131669792E-05 2.13400533085E-05 2.18802777517E-05 2.24341779609E-05 2.30021001356E-05 2.35843992392E-05 2.41814392207E-05 2.47935932425E-05 2.54212439133E-05 2.60647835272E-05 2.67246143091E-05 2.74011486661E-05 2.80948094450E-05 2.88060301967E-05 2.95352554472E-05 3.02829409753E-05 3.10495540977E-05 3.18355739608E-05 3.26414918401E-05 3.34678114475E-05 3.43150492461E-05 3.51837347727E-05 3.60744109688E-05 3.69876345202E-05 3.79239762046E-05 3.88840212486E-05 3.98683696929E-05 4.08776367682E-05 4.19124532786E-05 4.29734659968E-05 4.40613380677E-05 4.51767494231E-05 4.63203972064E-05 4.74929962085E-05 4.86952793144E-05 4.99279979613E-05 5.11919226079E-05 5.24878432164E-05 5.38165697456E-05 5.51789326575E-05 5.65757834361E-05 5.80079951194E-05 5.94764628454E-05 6.09821044110E-05 6.25258608457E-05 6.41086969998E-05 6.57316021472E-05 6.73955906038E-05 6.91017023610E-05 7.08510037358E-05 7.26445880372E-05 7.44835762495E-05 7.63691177323E-05 7.83023909392E-05 8.02846041540E-05 8.23169962457E-05 8.44008374429E-05 8.65374301271E-05 8.87281096469E-05 9.09742451520E-05 9.32772404493E-05 9.56385348794E-05 9.80596042167E-05 1.00541961591E-04 1.03087158432E-04 1.05696785442E-04 1.08372473586E-04 1.11115895113E-04 1.13928764600E-04 1.16812840022E-04 1.19769923855E-04 1.22801864198E-04 1.25910555926E-04 1.29097941881E-04 1.32366014078E-04 1.35716814955E-04 1.39152438647E-04 1.42675032294E-04 1.46286797383E-04 1.49989991123E-04 1.53786927857E-04 1.57679980504E-04 1.61671582045E-04 1.65764227043E-04 1.69960473198E-04 1.74262942947E-04 1.78674325104E-04 1.83197376535E-04 1.87834923886E-04 1.92589865343E-04 1.97465172447E-04 2.02463891947E-04 2.07589147705E-04 2.12844142647E-04 2.18232160761E-04 2.23756569153E-04 2.29420820147E-04 2.35228453441E-04 2.41183098319E-04 2.47288475917E-04 2.53548401549E-04 2.59966787086E-04 2.66547643404E-04 2.73295082883E-04 2.80213321981E-04 2.87306683863E-04 2.94579601104E-04 3.02036618454E-04 3.09682395676E-04 3.17521710460E-04 3.25559461401E-04 3.33800671060E-04 3.42250489101E-04 3.50914195505E-04 3.59797203866E-04 3.68905064773E-04 3.78243469272E-04 3.87818252424E-04 3.97635396942E-04 4.07701036931E-04 4.18021461713E-04 4.28603119755E-04 4.39452622694E-04 4.50576749464E-04 4.61982450527E-04 4.73676852211E-04 4.85667261156E-04 4.97961168879E-04 5.10566256442E-04 5.23490399253E-04 5.36741671974E-04 5.50328353563E-04 5.64258932440E-04 5.78542111781E-04 5.93186814950E-04 6.08202191066E-04 6.23597620709E-04 6.39382721774E-04 6.55567355472E-04 6.72161632474E-04 6.89175919227E-04 7.06620844412E-04 7.24507305577E-04 7.42846475931E-04 7.61649811312E-04 7.80929057333E-04 8.00696256700E-04 8.20963756726E-04 8.41744217026E-04 8.63050617411E-04 8.84896265976E-04 9.07294807399E-04 9.30260231443E-04 9.53806881675E-04 9.77949464407E-04 1.00270305786E-03 1.02808312155E-03 1.05410550593E-03 1.08078646228E-03 1.10814265278E-03 1.13619116096E-03 1.16494950226E-03 1.19443563503E-03 1.22466797161E-03 1.25566538989E-03 1.28744724501E-03 1.32003338141E-03 1.35344414520E-03 1.38770039683E-03 1.42282352404E-03 1.45883545520E-03 1.49575867296E-03 1.53361622818E-03 1.57243175435E-03 1.61222948223E-03 1.65303425495E-03 1.69487154345E-03 1.73776746228E-03 1.78174878593E-03 1.82684296536E-03 1.87307814514E-03 1.92048318090E-03 1.96908765728E-03 2.01892190630E-03 2.07001702620E-03 2.12240490074E-03 2.17611821902E-03 2.23119049576E-03 2.28765609213E-03 2.34555023702E-03 2.40490904895E-03 2.46576955846E-03 2.52816973107E-03 2.59214849084E-03 2.65774574449E-03 2.72500240616E-03 2.79396042271E-03 2.86466279981E-03 2.93715362847E-03 3.01147811243E-03 3.08768259612E-03 3.16581459334E-03 3.24592281670E-03 3.32805720772E-03 3.41226896775E-03 3.49861058962E-03 3.58713589011E-03 3.67790004321E-03 3.77095961419E-03 3.86637259457E-03 3.96419843793E-03 4.06449809660E-03 4.16733405927E-03 4.27277038958E-03 4.38087276560E-03 4.49170852032E-03 4.60534668318E-03 4.72185802258E-03 4.84131508944E-03 4.96379226194E-03 5.08936579120E-03 5.21811384825E-03 5.35011657210E-03 5.48545611896E-03 5.62421671274E-03 5.76648469678E-03 5.91234858682E-03 6.06189912537E-03 6.21522933729E-03 6.37243458686E-03 6.53361263620E-03 6.69886370512E-03 6.86829053245E-03 7.04199843893E-03 7.22009539155E-03 7.40269206953E-03 7.58990193195E-03 7.78184128693E-03 7.97862936260E-03 8.18038837980E-03 8.38724362646E-03 8.59932353393E-03 8.81675975509E-03 9.03968724436E-03 9.26824433970E-03 9.50257284658E-03 9.74281812400E-03 9.98912917254E-03 1.02416587247E-02 1.05005633371E-02 1.07660034855E-02 1.10381436614E-02 1.13171524714E-02 1.16032027389E-02 1.18964716084E-02 1.21971406516E-02 1.25053959773E-02 1.28214283426E-02 1.31454332673E-02 1.34776111518E-02 1.38181673963E-02 1.41673125240E-02 1.45252623070E-02 1.48922378947E-02 1.52684659458E-02 1.56541787633E-02 1.60496144322E-02 1.64550169612E-02 1.68706364273E-02 1.72967291239E-02 1.77335577119E-02 1.81813913753E-02 1.86405059795E-02 1.91111842339E-02 1.95937158578E-02 2.00883977503E-02 2.05955341645E-02 2.11154368852E-02 2.16484254104E-02 2.21948271383E-02 2.27549775569E-02 2.33292204389E-02 2.39179080410E-02 2.45214013073E-02 2.51400700773E-02 2.57742932990E-02 2.64244592466E-02 2.70909657425E-02 2.77742203852E-02 2.84746407811E-02 2.91926547828E-02 2.99287007310E-02 3.06832277031E-02 3.14566957665E-02 3.22495762372E-02 3.30623519446E-02 3.38955175013E-02 3.47495795795E-02 3.56250571919E-02 3.65224819802E-02 3.74423985079E-02 3.83853645610E-02 3.93519514531E-02 4.03427443383E-02 4.13583425293E-02 4.23993598230E-02 4.34664248315E-02 4.45601813209E-02 4.56812885558E-02 4.68304216512E-02 4.80082719308E-02 4.92155472926E-02 5.04529725812E-02 5.17212899672E-02 5.30212593337E-02 5.43536586701E-02 5.57192844725E-02 5.71189521523E-02 5.85534964513E-02 6.00237718640E-02 6.15306530684E-02 6.30750353621E-02 6.46578351079E-02 6.62799901855E-02 6.79424604505E-02 6.96462282012E-02 7.13922986525E-02 7.31817004170E-02 7.50154859934E-02 7.68947322615E-02 7.88205409849E-02 8.07940393206E-02 8.28163803345E-02 8.48887435248E-02 8.70123353512E-02 8.91883897706E-02 9.14181687791E-02 9.37029629595E-02 9.60440920355E-02 9.84429054303E-02 1.00900782831E-01 1.03419134758E-01 1.05999403137E-01 1.08643061881E-01 1.11351617465E-01 1.14126609517E-01 1.16969611403E-01 1.19882230817E-01 1.22866110373E-01 1.25922928196E-01 1.29054398518E-01 1.32262272269E-01 1.35548337670E-01 1.38914420822E-01 1.42362386294E-01 1.45894137706E-01 1.49511618311E-01 1.53216811565E-01 1.57011741697E-01 1.60898474262E-01 1.64879116699E-01 1.68955818864E-01 1.73130773554E-01 1.77406217029E-01 1.81784429500E-01 1.86267735616E-01 1.90858504920E-01 1.95559152295E-01 2.00372138376E-01 2.05299969949E-01 2.10345200305E-01 2.15510429586E-01 2.20798305078E-01 2.26211521482E-01 2.31752821137E-01 2.37424994210E-01 2.43230878835E-01 2.49173361207E-01 2.55255375619E-01 2.61479904450E-01 2.67849978089E-01 2.74368674794E-01 2.81039120483E-01 2.87864488454E-01 2.94847999022E-01 3.01992919075E-01 3.09302561540E-01 3.16780284752E-01 3.24429491723E-01 3.32253629307E-01 3.40256187240E-01 3.48440697066E-01 3.56810730937E-01 3.65369900263E-01 3.74121854231E-01 3.83070278159E-01 3.92218891692E-01 4.01571446828E-01 4.11131725755E-01 4.20903538496E-01 4.30890720361E-01 4.41097129166E-01 4.51526642241E-01 4.62183153189E-01 4.73070568398E-01 4.84192803283E-01 4.95553778251E-01 5.07157414370E-01 5.19007628728E-01 5.31108329465E-01 5.43463410465E-01 5.56076745682E-01 5.68952183096E-01 5.82093538262E-01 5.95504587451E-01 6.09189060348E-01 6.23150632299E-01 6.37392916065E-01 6.51919453089E-01 6.66733704224E-01 6.81839039921E-01 6.97238729829E-01 7.12935931805E-01 7.28933680290E-01 7.45234874026E-01 7.61842263091E-01 7.78758435222E-01 7.95985801384E-01 8.13526580574E-01 8.31382783805E-01 8.49556197259E-01 8.68048364556E-01 8.86860568122E-01 9.05993809603E-01 9.25448789302E-01 9.45225884605E-01 9.65325127336E-01 9.85746180038E-01 1.00648831111E+00 1.02755036877E+00 1.04893075384E+00 1.07062739122E+00 1.09263770016E+00 1.11495856313E+00 1.13758629335E+00 1.16051660096E+00 1.18374455764E+00 1.20726455988E+00 1.23107029061E+00 1.25515467941E+00 1.27950986098E+00 1.30412713212E+00 1.32899690704E+00 1.35410867088E+00 1.37945093174E+00 1.40501117075E+00 1.43077579062E+00 1.45673006226E+00 1.48285806975E+00 1.50914265354E+00 1.53556535176E+00 1.56210634001E+00 1.58874436913E+00 1.61545670152E+00 1.64221904561E+00 1.66900548871E+00 1.69578842840E+00 1.72253850223E+00 1.74922451611E+00 1.77581337127E+00 1.80226999006E+00 1.82855724057E+00 1.85463586027E+00 1.88046437890E+00 1.90599904071E+00 1.93119372619E+00 1.95599987378E+00 1.98036640142E+00 2.00423962867E+00 2.02756319933E+00 2.05027800511E+00 2.07232211070E+00 2.09363068068E+00 2.11413590858E+00 2.13376694881E+00 2.15244985185E+00 2.17010750331E+00 2.18665956755E+00 2.20202243654E+00 2.21610918462E+00 2.22882953009E+00 2.24008980443E+00 2.24979293009E+00 2.25783840783E+00 2.26412231466E+00 2.26853731363E+00 2.27097267655E+00 2.27131432093E+00 2.26944486266E+00 2.26524368569E+00 2.25858703042E+00 2.24934810224E+00 2.23739720211E+00 2.22260188085E+00 2.20482711903E+00 2.18393553457E+00 2.15978761982E+00 2.13224201064E+00 2.10115578929E+00 2.06638482382E+00 2.02778414596E+00 1.98520837031E+00 1.93851215700E+00 1.88755072057E+00 1.83218038756E+00 1.77225920546E+00 1.70764760560E+00 1.63840889150E+00 1.57074345212E+00 1.50467721877E+00 1.44023307483E+00 1.37743084120E+00 1.31628726551E+00 1.25681601513E+00 1.19902767425E+00 1.14292974547E+00 1.08852665714E+00 1.03581977779E+00 9.84807439680E-01 9.35484973368E-01 8.87844755613E-01 8.41876272567E-01 7.97566199840E-01 7.54898500427E-01 7.13854540616E-01 6.74413223119E-01 6.36551135679E-01 6.00242712563E-01 5.65460405625E-01 5.32174861178E-01 5.00355098784E-01 4.69968688209E-01 4.40981921352E-01 4.13359976633E-01 3.87067074236E-01 3.62066621493E-01 3.38321348459E-01 3.15793434386E-01 2.94444626129E-01 2.74236349696E-01 2.55129816120E-01 2.37086122635E-01 2.20066349915E-01 2.04031655847E-01 1.88943366097E-01 1.74763061473E-01 1.61452661989E-01 1.48974507400E-01 1.37291433925E-01 1.26366846880E-01 1.16164788911E-01 1.06650003576E-01 9.77879940638E-02 8.95450768470E-02 8.18884301666E-02 7.47861372498E-02 6.82072242339E-02 6.21216928043E-02 5.65005475965E-02 5.13158184478E-02 4.65405776198E-02 4.21489521380E-02 3.81161314263E-02 3.44183704308E-02 3.10329884515E-02 2.79383639137E-02 2.51139253266E-02 2.25401386862E-02 2.01984915887E-02 1.80714743271E-02 1.61425582462E-02 1.43961716337E-02 1.28176734254E-02 1.13933249977E-02 1.01102603196E-02 8.95645472724E-03 7.92069257853E-03 6.99253403582E-03 6.16228121382E-03 5.42094391884E-03 4.76020519267E-03 4.17238686116E-03 3.65041527317E-03 3.18778740125E-03 2.77853746015E-03 2.41720418395E-03 2.09879888783E-03 1.81877442441E-03 1.57299513053E-03 1.35770784502E-03 1.16951406413E-03 1.00534328769E-03 8.62427595862E-04 7.38277484539E-04 6.30658975487E-04 5.37572007223E-04 4.57230102571E-04 3.88041300213E-04 3.28590329586E-04 2.77622001539E-04 2.34025781069E-04 1.96821503313E-04 1.65146189603E-04 1.38241916919E-04 1.15444691348E-04 9.61742741377E-05 7.99249076242E-05 6.62568876297E-05 5.47889287534E-05 4.51912693770E-05 3.71794640035E-05 3.05088117535E-05 2.49693713725E-05 2.03815149113E-05 1.65919742704E-05 1.34703370060E-05 1.09059501295E-05 8.80519305296E-06 7.08908330740E-06 5.69118114168E-06 4.55576158711E-06 3.63622499968E-06 2.89371946217E-06 2.29595071426E-06 1.81615747025E-06 1.43223206678E-06 1.12596834998E-06 8.82420556401E-07 6.89358661515E-07 5.36807262380E-07 4.16656528213E-07 3.22335096035E-07 2.48536012203E-07 1.90987929096E-07 1.46264765149E-07 1.11627931976E-07 8.48960311815E-08 6.43376324655E-08 4.85833708467E-08 3.65541511879E-08 2.74027295939E-08 2.04663602671E-08 1.52285593989E-08 1.12883506481E-08 8.33562531418E-09 6.13147967607E-09 4.49258692864E-09 3.27882608566E-09 2.38352909672E-09 1.72582380815E-09 1.24464746720E-09 8.94086044490E-10 6.39761215014E-10 4.56041566775E-10 3.23899385581E-10 2.29270827538E-10 1.61806837257E-10 1.13925995441E-10 8.00995981425E-11 5.63145367522E-11 3.94084086199E-11 2.74480016008E-11 1.90265889671E-11 1.31254470929E-11 9.01040874487E-12 6.15497095189E-12 4.18342717502E-12 2.82902195216E-12 1.90331718354E-12 1.27388214046E-12 8.48130477413E-13 5.61672505266E-13 3.69966231541E-13 2.42365274538E-13 1.57898739337E-13 1.02295624396E-13 6.58984721380E-14 4.22087880378E-14 2.68787215481E-14 1.70161397738E-14 1.07084912549E-14 6.69850677105E-15 4.16463955251E-15 2.57331727604E-15 1.58012738380E-15 9.64138917366E-16 5.84522628121E-16 3.52080716181E-16 2.10681732320E-16 1.25233155833E-16 7.39406348635E-17 4.33592302986E-17 2.52509166755E-17 1.46026644977E-17 8.38509784346E-18 4.78042423546E-18 2.70562585000E-18 1.52010034690E-18 8.47695191065E-19 4.69169039081E-19 2.57691354541E-19 1.40446018461E-19 7.59479018218E-20 4.07451627943E-20 2.16843745121E-20 1.14468083263E-20 5.99299834360E-21 3.11158137099E-21 1.60195347368E-21 8.17719362615E-22 4.13806840051E-22 2.07578721780E-22 1.03207674701E-22 5.08553641455E-23 2.48317993330E-23 1.20136974551E-23 5.75827094394E-24 2.73403213862E-24 1.28575977815E-24 5.98837117850E-25 2.76183390072E-25 1.26116826517E-25 5.70139526755E-26 2.55133357869E-26 1.12999358374E-26 4.95280607667E-27 2.14801130882E-27 9.21667493951E-28 3.91206718651E-28 1.64238057624E-28 6.81894451074E-29 2.79947135625E-29 1.13629034217E-29 4.55926832670E-30 1.80813518879E-30 7.08652176611E-31 2.74433806837E-31 1.04997587579E-31 3.96818954460E-32 1.48118803302E-32 5.45965450541E-33 1.98695914658E-33 7.13858760968E-34 2.53142534423E-34 8.85883142802E-35 3.05896387868E-35 1.04204401153E-35 3.50136884591E-36 1.16025942647E-36 3.79107344984E-37 1.22118819260E-37 3.87738373830E-38 1.21325549677E-38 3.74061970630E-39 1.13614081047E-39 3.39888572082E-40 1.00132306755E-40 2.90443422934E-41 8.29304250835E-42 2.33048084858E-42 6.44420999060E-43 1.75306664429E-43 4.69075502128E-44 1.23427667076E-44 3.19312889830E-45 8.12011361037E-46 2.02934497758E-46 4.98313883038E-47 1.20200821082E-47 2.84755434211E-48 6.62366431302E-49 1.51246954380E-49 3.38950325551E-50 7.45322707718E-51 1.60771115939E-51 3.40112240231E-52 7.05473853611E-53 1.43442065186E-53 2.85825022212E-54 5.58009844691E-55 1.06706228874E-55 1.99816324042E-56 3.66294874006E-57 6.57196322700E-58 1.15373583525E-58 1.98127930305E-59 3.32730552112E-60 5.46292697326E-61 8.76638201014E-62 1.37452506640E-62 2.10521101130E-63 3.14862635758E-64 4.59726313162E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.96492459439E-05 5.02737568593E-05 5.09061231657E-05 5.15464436722E-05 5.21948184308E-05 5.28513487519E-05 5.35161372203E-05 5.41892877111E-05 5.48709054063E-05 5.55610968106E-05 5.62599697686E-05 5.69676334812E-05 5.76841985232E-05 5.84097768601E-05 5.91444818657E-05 5.98884283402E-05 6.06417325276E-05 6.14045121340E-05 6.21768863463E-05 6.29589758506E-05 6.37509028508E-05 6.45527910884E-05 6.53647658611E-05 6.61869540428E-05 6.70194841031E-05 6.78624861280E-05 6.87160918394E-05 6.95804346163E-05 7.04556495154E-05 7.13418732923E-05 7.22392444228E-05 7.31479031244E-05 7.40679913786E-05 7.49996529527E-05 7.59430334224E-05 7.68982801947E-05 7.78655425306E-05 7.88449715690E-05 7.98367203494E-05 8.08409438369E-05 8.18577989456E-05 8.28874445633E-05 8.39300415768E-05 8.49857528962E-05 8.60547434813E-05 8.71371803665E-05 8.82332326875E-05 8.93430717077E-05 9.04668708445E-05 9.16048056970E-05 9.27570540728E-05 9.39237960166E-05 9.51052138374E-05 9.63014921377E-05 9.75128178422E-05 9.87393802269E-05 9.99813709485E-05 1.01238984075E-04 1.02512416114E-04 1.03801866048E-04 1.05107535361E-04 1.06429628069E-04 1.07768350759E-04 1.09123912613E-04 1.10496525446E-04 1.11886403737E-04 1.13293764663E-04 1.14718828133E-04 1.16161816823E-04 1.17622956209E-04 1.19102474604E-04 1.20600603191E-04 1.22117576065E-04 1.23653630263E-04 1.25209005804E-04 1.26783945727E-04 1.28378696128E-04 1.29993506198E-04 1.31628628264E-04 1.33284317827E-04 1.34960833602E-04 1.36658437556E-04 1.38377394955E-04 1.40117974401E-04 1.41880447874E-04 1.43665090776E-04 1.45472181972E-04 1.47302003838E-04 1.49154842300E-04 1.51030986882E-04 1.52930730748E-04 1.54854370753E-04 1.56802207485E-04 1.58774545313E-04 1.60771692436E-04 1.62793960928E-04 1.64841666791E-04 1.66915130002E-04 1.69014674563E-04 1.71140628551E-04 1.73293324173E-04 1.75473097813E-04 1.77680290087E-04 1.79915245896E-04 1.82178314481E-04 1.84469849476E-04 1.86790208964E-04 1.89139755533E-04 1.91518856331E-04 1.93927883128E-04 1.96367212368E-04 1.98837225234E-04 2.01338307701E-04 2.03870850604E-04 2.06435249691E-04 2.09031905692E-04 2.11661224378E-04 2.14323616623E-04 2.17019498472E-04 2.19749291205E-04 2.22513421402E-04 2.25312321008E-04 2.28146427404E-04 2.31016183475E-04 2.33922037676E-04 2.36864444106E-04 2.39843862577E-04 2.42860758685E-04 2.45915603887E-04 2.49008875569E-04 2.52141057125E-04 2.55312638030E-04 2.58524113920E-04 2.61775986665E-04 2.65068764451E-04 2.68402961858E-04 2.71779099941E-04 2.75197706311E-04 2.78659315218E-04 2.82164467636E-04 2.85713711343E-04 2.89307601013E-04 2.92946698298E-04 2.96631571919E-04 3.00362797751E-04 3.04140958918E-04 3.07966645882E-04 3.11840456535E-04 3.15762996292E-04 3.19734878188E-04 3.23756722973E-04 3.27829159207E-04 3.31952823364E-04 3.36128359923E-04 3.40356421480E-04 3.44637668838E-04 3.48972771121E-04 3.53362405872E-04 3.57807259163E-04 3.62308025700E-04 3.66865408933E-04 3.71480121167E-04 3.76152883671E-04 3.80884426793E-04 3.85675490074E-04 3.90526822364E-04 3.95439181940E-04 4.00413336622E-04 4.05450063898E-04 4.10550151041E-04 4.15714395236E-04 4.20943603703E-04 4.26238593823E-04 4.31600193269E-04 4.37029240133E-04 4.42526583061E-04 4.48093081379E-04 4.53729605236E-04 4.59437035735E-04 4.65216265074E-04 4.71068196685E-04 4.76993745375E-04 4.82993837471E-04 4.89069410964E-04 4.95221415657E-04 5.01450813314E-04 5.07758577812E-04 5.14145695292E-04 5.20613164315E-04 5.27161996016E-04 5.33793214270E-04 5.40507855845E-04 5.47306970568E-04 5.54191621491E-04 5.61162885058E-04 5.68221851270E-04 5.75369623863E-04 5.82607320476E-04 5.89936072830E-04 5.97357026903E-04 6.04871343115E-04 6.12480196505E-04 6.20184776920E-04 6.27986289200E-04 6.35885953368E-04 6.43885004824E-04 6.51984694537E-04 6.60186289243E-04 6.68491071644E-04 6.76900340611E-04 6.85415411390E-04 6.94037615806E-04 7.02768302474E-04 7.11608837013E-04 7.20560602261E-04 7.29624998492E-04 7.38803443640E-04 7.48097373517E-04 7.57508242046E-04 7.67037521487E-04 7.76686702671E-04 7.86457295233E-04 7.96350827855E-04 8.06368848505E-04 8.16512924681E-04 8.26784643660E-04 8.37185612750E-04 8.47717459544E-04 8.58381832176E-04 8.69180399585E-04 8.80114851777E-04 8.91186900093E-04 9.02398277483E-04 9.13750738777E-04 9.25246060966E-04 9.36886043486E-04 9.48672508497E-04 9.60607301180E-04 9.72692290026E-04 9.84929367133E-04 9.97320448510E-04 1.00986747438E-03 1.02257240949E-03 1.03543724341E-03 1.04846399089E-03 1.06165469213E-03 1.07501141313E-03 1.08853624604E-03 1.10223130946E-03 1.11609874879E-03 1.13014073658E-03 1.14435947287E-03 1.15875718554E-03 1.17333613068E-03 1.18809859294E-03 1.20304688590E-03 1.21818335244E-03 1.23351036512E-03 1.24903032655E-03 1.26474566980E-03 1.28065885874E-03 1.29677238852E-03 1.31308878590E-03 1.32961060967E-03 1.34634045110E-03 1.36328093432E-03 1.38043471676E-03 1.39780448957E-03 1.41539297808E-03 1.43320294221E-03 1.45123717694E-03 1.46949851276E-03 1.48798981610E-03 1.50671398987E-03 1.52567397384E-03 1.54487274519E-03 1.56431331896E-03 1.58399874855E-03 1.60393212625E-03 1.62411658367E-03 1.64455529235E-03 1.66525146419E-03 1.68620835204E-03 1.70742925023E-03 1.72891749507E-03 1.75067646543E-03 1.77270958332E-03 1.79502031439E-03 1.81761216859E-03 1.84048870067E-03 1.86365351082E-03 1.88711024526E-03 1.91086259684E-03 1.93491430565E-03 1.95926915967E-03 1.98393099537E-03 2.00890369838E-03 2.03419120413E-03 2.05979749851E-03 2.08572661855E-03 2.11198265311E-03 2.13856974353E-03 2.16549208438E-03 2.19275392415E-03 2.22035956597E-03 2.24831336835E-03 2.27661974593E-03 2.30528317022E-03 2.33430817037E-03 2.36369933397E-03 2.39346130781E-03 2.42359879870E-03 2.45411657428E-03 2.48501946385E-03 2.51631235922E-03 2.54800021553E-03 2.58008805215E-03 2.61258095355E-03 2.64548407019E-03 2.67880261943E-03 2.71254188644E-03 2.74670722517E-03 2.78130405926E-03 2.81633788304E-03 2.85181426250E-03 2.88773883629E-03 2.92411731672E-03 2.96095549082E-03 2.99825922138E-03 3.03603444800E-03 3.07428718819E-03 3.11302353845E-03 3.15224967543E-03 3.19197185704E-03 3.23219642359E-03 3.27292979903E-03 3.31417849208E-03 3.35594909750E-03 3.39824829730E-03 3.44108286201E-03 3.48445965199E-03 3.52838561869E-03 3.57286780600E-03 3.61791335163E-03 3.66352948845E-03 3.70972354591E-03 3.75650295147E-03 3.80387523205E-03 3.85184801552E-03 3.90042903218E-03 3.94962611635E-03 3.99944720788E-03 4.04990035378E-03 4.10099370983E-03 4.15273554223E-03 4.20513422932E-03 4.25819826327E-03 4.31193625184E-03 4.36635692019E-03 4.42146911265E-03 4.47728179465E-03 4.53380405457E-03 4.59104510569E-03 4.64901428816E-03 4.70772107103E-03 4.76717505428E-03 4.82738597093E-03 4.88836368918E-03 4.95011821463E-03 5.01265969243E-03 5.07599840967E-03 5.14014479759E-03 5.20510943407E-03 5.27090304599E-03 5.33753651170E-03 5.40502086363E-03 5.47336729083E-03 5.54258714161E-03 5.61269192628E-03 5.68369331991E-03 5.75560316517E-03 5.82843347521E-03 5.90219643663E-03 5.97690441252E-03 6.05256994556E-03 6.12920576120E-03 6.20682477087E-03 6.28544007538E-03 6.36506496826E-03 6.44571293928E-03 6.52739767802E-03 6.61013307751E-03 6.69393323800E-03 6.77881247079E-03 6.86478530216E-03 6.95186647742E-03 7.04007096502E-03 7.12941396081E-03 7.21991089237E-03 7.31157742349E-03 7.40442945870E-03 7.49848314800E-03 7.59375489165E-03 7.69026134512E-03 7.78801942411E-03 7.88704630983E-03 7.98735945427E-03 8.08897658571E-03 8.19191571433E-03 8.29619513801E-03 8.40183344826E-03 8.50884953632E-03 8.61726259939E-03 8.72709214712E-03 8.83835800822E-03 8.95108033723E-03 9.06527962151E-03 9.18097668848E-03 9.29819271295E-03 9.41694922478E-03 9.53726811663E-03 9.65917165207E-03 9.78268247380E-03 9.90782361221E-03 1.00346184941E-02 1.01630909517E-02 1.02932652321E-02 1.04251660064E-02 1.05588183800E-02 1.06942479026E-02 1.08314805785E-02 1.09705428773E-02 1.11114617453E-02 1.12542646165E-02 1.13989794245E-02 1.15456346149E-02 1.16942591573E-02 1.18448825581E-02 1.19975348745E-02 1.21522467272E-02 1.23090493150E-02 1.24679744294E-02 1.26290544691E-02 1.27923224560E-02 1.29578120504E-02 1.31255575681E-02 1.32955939970E-02 1.34679570145E-02 1.36426830056E-02 1.38198090813E-02 1.39993730983E-02 1.41814136779E-02 1.43659702272E-02 1.45530829599E-02 1.47427929177E-02 1.49351419931E-02 1.51301729526E-02 1.53279294603E-02 1.55284561026E-02 1.57317984139E-02 1.59380029027E-02 1.61471170787E-02 1.63591894811E-02 1.65742697071E-02 1.67924084420E-02 1.70136574901E-02 1.72380698065E-02 1.74656995299E-02 1.76966020165E-02 1.79308338754E-02 1.81684530045E-02 1.84095186281E-02 1.86540913354E-02 1.89022331205E-02 1.91540074236E-02 1.94094791734E-02 1.96687148313E-02 1.99317824369E-02 2.01987516544E-02 2.04696938215E-02 2.07446819992E-02 2.10237910238E-02 2.13070975598E-02 2.15946801553E-02 2.18866192988E-02 2.21829974782E-02 2.24838992414E-02 2.27894112590E-02 2.30996223890E-02 2.34146237438E-02 2.37345087592E-02 2.40593732657E-02 2.43893155622E-02 2.47244364920E-02 2.50648395211E-02 2.54106308197E-02 2.57619193453E-02 2.61188169295E-02 2.64814383670E-02 2.68499015075E-02 2.72243273507E-02 2.76048401445E-02 2.79915674858E-02 2.83846404251E-02 2.87841935741E-02 2.91903652166E-02 2.96032974232E-02 3.00231361694E-02 3.04500314575E-02 3.08841374423E-02 3.13256125605E-02 3.17746196642E-02 3.22313261589E-02 3.26959041451E-02 3.31685305647E-02 3.36493873513E-02 3.41386615860E-02 3.46365456567E-02 3.51432374229E-02 3.56589403853E-02 3.61838638601E-02 3.67182231590E-02 3.72622397734E-02 3.78161415650E-02 3.83801629612E-02 3.89545451563E-02 3.95395363181E-02 4.01353918007E-02 4.07423743628E-02 4.13607543917E-02 4.19908101343E-02 4.26328279335E-02 4.32871024706E-02 4.39539370150E-02 4.46336436796E-02 4.53265436828E-02 4.60329676169E-02 4.67532557237E-02 4.74877581761E-02 4.82368353668E-02 4.90008582035E-02 4.97802084110E-02 5.05752788402E-02 5.13864737831E-02 5.22142092959E-02 5.30589135272E-02 5.39210270543E-02 5.48010032249E-02 5.56993085061E-02 5.66164228392E-02 5.75528400011E-02 5.85090679718E-02 5.94856293069E-02 6.04830615172E-02 6.15019174524E-02 6.25427656907E-02 6.36061909326E-02 6.46927943996E-02 6.58031942366E-02 6.69380259180E-02 6.80979426569E-02 6.92836158168E-02 7.04957353252E-02 7.17350100882E-02 7.30021684064E-02 7.42979583901E-02 7.56231483730E-02 7.69785273250E-02 7.83649052614E-02 7.97831136480E-02 8.12340058013E-02 8.27184572821E-02 8.42373662820E-02 8.57916539996E-02 8.73822650071E-02 8.90101676042E-02 9.06763541580E-02 9.23818414266E-02 9.41276708660E-02 9.59149089155E-02 9.77446472624E-02 9.96180030811E-02 1.01536119246E-01 1.03500164512E-01 1.05511333671E-01 1.07570847657E-01 1.09679953633E-01 1.11839925016E-01 1.14052061473E-01 1.16317688860E-01 1.18638159106E-01 1.21014850050E-01 1.23449165206E-01 1.25942533471E-01 1.28496408762E-01 1.31112269575E-01 1.33791618469E-01 1.36535981465E-01 1.39346907351E-01 1.42225966901E-01 1.45174751987E-01 1.48194874586E-01 1.51287965675E-01 1.54455674013E-01 1.57699664788E-01 1.61021618147E-01 1.64423227579E-01 1.67906198157E-01 1.71472244634E-01 1.75123089379E-01 1.78860460151E-01 1.82686087703E-01 1.86601703213E-01 1.90609035527E-01 1.94709808218E-01 1.98905736449E-01 2.03198523634E-01 2.07589857895E-01 2.12081408305E-01 2.16674820914E-01 2.21371714561E-01 2.26173676448E-01 2.31082257501E-01 2.36098967489E-01 2.41225269915E-01 2.46462576676E-01 2.51812242486E-01 2.57275559067E-01 2.62853749111E-01 2.68547960020E-01 2.74359257417E-01 2.80288618445E-01 2.86336924867E-01 2.92504955956E-01 2.98793381210E-01 3.05202752894E-01 3.11733498424E-01 3.18385912613E-01 3.25160149807E-01 3.32056215920E-01 3.39073960399E-01 3.46213068157E-01 3.53473051486E-01 3.60853241996E-01 3.68352782618E-01 3.75970619692E-01 3.83705495206E-01 3.91555939211E-01 3.99520262460E-01 4.07596549339E-01 4.15782651107E-01 4.24076179532E-01 4.32474500952E-01 4.40974730835E-01 4.49573728877E-01 4.58268094711E-01 4.67054164273E-01 4.75928006880E-01 4.84885423085E-01 4.93921943344E-01 5.03032827558E-01 5.12213065518E-01 5.21457378311E-01 5.30760220689E-01 5.40115784461E-01 5.49518002878E-01 5.58960556053E-01 5.68436877380E-01 5.77940160938E-01 5.87463369832E-01 5.96999245430E-01 6.06540317396E-01 6.16078914443E-01 6.25607175672E-01 6.35117062365E-01 6.44600370064E-01 6.54048740730E-01 6.63453674789E-01 6.72806542795E-01 6.82098596462E-01 6.91320978749E-01 7.00464732697E-01 7.09520808668E-01 7.18480069623E-01 7.27333294078E-01 7.36071176341E-01 7.44684323652E-01 7.53163249837E-01 7.61498365110E-01 7.69679961679E-01 7.77698194826E-01 7.85543059225E-01 7.93204360267E-01 8.00671680296E-01 8.07934339715E-01 8.14981353052E-01 8.21801380236E-01 8.28382673449E-01 8.34713020129E-01 8.40779682900E-01 8.46569337422E-01 8.52068009388E-01 8.57261012186E-01 8.62134894872E-01 8.66683786734E-01 8.70904007437E-01 8.74792157746E-01 8.78345126492E-01 8.81560097065E-01 8.84434553443E-01 8.86966285713E-01 8.89153395082E-01 8.90994298370E-01 8.92487731968E-01 8.93632755252E-01 8.94428753462E-01 8.94875440017E-01 8.94972858295E-01 8.94721382843E-01 8.94121720047E-01 8.93174908242E-01 8.91882317277E-01 8.90245647534E-01 8.88266928404E-01 8.85948516232E-01 8.83293091730E-01 8.80303656875E-01 8.76983531290E-01 8.73336348130E-01 8.69366049474E-01 8.65076881240E-01 8.60473387633E-01 8.55560405139E-01 8.50343056089E-01 8.44826741787E-01 8.39017135238E-01 8.32920173485E-01 8.26542049565E-01 8.19889204115E-01 8.12968316626E-01 8.05786296388E-01 7.98350273121E-01 7.90667587321E-01 7.82745780344E-01 7.74592584234E-01 7.66215911321E-01 7.57623843614E-01 7.48824621991E-01 7.39826635215E-01 7.30638408797E-01 7.21268593709E-01 7.11725954985E-01 7.02019360201E-01 6.92157767873E-01 6.82144464247E-01 6.71994233896E-01 6.61716236869E-01 6.51319676934E-01 6.40813789743E-01 6.30207830983E-01 6.19511064542E-01 6.08732750698E-01 5.97882134341E-01 5.86968433255E-01 5.76000826446E-01 5.64988442560E-01 5.53940348378E-01 5.42865537422E-01 5.31772918668E-01 5.20671305396E-01 5.09569404187E-01 4.98475804076E-01 4.87398965896E-01 4.76347211811E-01 4.65328715074E-01 4.54351490026E-01 4.43423382352E-01 4.32552059632E-01 4.21745002196E-01 4.11009494314E-01 4.00352615758E-01 3.89781233745E-01 3.79301995298E-01 3.68921320055E-01 3.58645393541E-01 3.48480160946E-01 3.38431321411E-01 3.28504322867E-01 3.18704357433E-01 3.09036357399E-01 2.99504991804E-01 2.90114663630E-01 2.80869507610E-01 2.71773388663E-01 2.62829900963E-01 2.54042367627E-01 2.45413841023E-01 2.36947103696E-01 2.28644669886E-01 2.20508787629E-01 2.12541441423E-01 2.04744355429E-01 1.97118997191E-01 1.89666581834E-01 1.82388076731E-01 1.75284206585E-01 1.68355458908E-01 1.61602089860E-01 1.55024130417E-01 1.48621392824E-01 1.42393477311E-01 1.36339779040E-01 1.30459495237E-01 1.24751632493E-01 1.19215014191E-01 1.13848288052E-01 1.08649933739E-01 1.03618270538E-01 9.87514650512E-02 9.40475389106E-02 8.95043764837E-02 8.51197325510E-02 8.08912399470E-02 7.68164171491E-02 7.28926758030E-02 6.91173281780E-02 6.54875945417E-02 6.20006104508E-02 5.86534339507E-02 5.54430526815E-02 5.23663908872E-02 4.94203163246E-02 4.66016470704E-02 4.39071582251E-02 4.13335885094E-02 3.88776467525E-02 3.65360182691E-02 3.43053711197E-02 3.21823622522E-02 3.01636435182E-02 2.82458675575E-02 2.64256935455E-02 2.46997927938E-02 2.30648541964E-02 2.15175895122E-02 2.00547384731E-02 1.86730737083E-02 1.73694054734E-02 1.61405861741E-02 1.49835146739E-02 1.38951403746E-02 1.28724670617E-02 1.19125565033E-02 1.10125317963E-02 1.01695804506E-02 9.38095720748E-03 8.64398658422E-03 7.95606514452E-03 7.31466349016E-03 6.71732797423E-03 6.16168213638E-03 5.64542786222E-03 5.16634627059E-03 4.72229833354E-03 4.31122523557E-03 3.93114847968E-03 3.58016974903E-03 3.25647053415E-03 2.95831153664E-03 2.68403186109E-03 2.43204800771E-03 2.20085267889E-03 1.98901341334E-03 1.79517106180E-03 1.61803811875E-03 1.45639692443E-03 1.30909775184E-03 1.17505679311E-03 1.05325405937E-03 9.42731208392E-04 8.42589313378E-04 7.51986586368E-04 6.70136068821E-04 5.96303301640E-04 5.29803986161E-04 4.70001647024E-04 4.16305307126E-04 3.68167184132E-04 3.25080417303E-04 2.86576832597E-04 2.52224753285E-04 2.21626862520E-04 1.94418123571E-04 1.70263762665E-04 1.48857318676E-04 1.29918763185E-04 1.13192693758E-04 9.84466026507E-05 8.54692225219E-05 7.40689501816E-05 6.40723488368E-05 5.53227288186E-05 4.76788063040E-05 4.10134391329E-05 3.52124384430E-05 3.01734545137E-05 2.58049349093E-05 2.20251527629E-05 1.87613028242E-05 1.59486627135E-05 1.35298166825E-05 1.14539390681E-05 9.67613454812E-06 8.15683225603E-06 6.86123078662E-06 5.75879112547E-06 4.82277455668E-06 4.02982264460E-06 3.35957644464E-06 2.79433216804E-06 2.31873830747E-06 1.91957690549E-06 1.58536217411E-06 1.30619588304E-06 1.07357597827E-06 8.80217653389E-07 7.19894674414E-07 5.87299046799E-07 4.77917245173E-07 3.87921356018E-07 3.14073609406E-07 2.53642898186E-07 2.04332000691E-07 1.64214336458E-07 1.31679193006E-07 1.05384465790E-07 8.42138506229E-08 6.72246687118E-08 5.36607662164E-08 4.27084137659E-08 3.38908507923E-08 2.68131503210E-08 2.11491655164E-08 1.66303781506E-08 1.30364028728E-08 1.01869279789E-08 7.93489805006E-09 6.16076640305E-09 4.76766587121E-09 3.67736501703E-09 2.82689374090E-09 2.16573727461E-09 1.65351103840E-09 1.25804080994E-09 9.53783250485E-10 7.20531168014E-10 5.42356083263E-10 4.06747809429E-10 3.03916965053E-10 2.26231709818E-10 1.67764616940E-10 1.23929559222E-10 9.11918674225E-11 6.68378917367E-11 4.87925254409E-11 3.54752932853E-11 2.56873191168E-11 1.85229146235E-11 1.33007157762E-11 9.51027219318E-12 6.77079928541E-12 4.79946149306E-12 3.38709117487E-12 2.37968236144E-12 1.66434917755E-12 1.15872016196E-12 8.02964506841E-13 5.53824913358E-13 3.80173071090E-13 2.59714970013E-13 1.76560318285E-13 1.19438158370E-13 8.03933305670E-14 5.38389503397E-14 3.58711381166E-14 2.37759433781E-14 1.56763899255E-14 1.02811421991E-14 6.70647999563E-15 4.35087337316E-15 2.80709435218E-15 1.80096872569E-15 1.14892951071E-15 7.28765364458E-16 4.59576563688E-16 2.88119148587E-16 1.79555354978E-16 1.11225425736E-16 6.84788319377E-17 4.19007527243E-17 2.54780838096E-17 1.53941945800E-17 9.24182712994E-18 5.51231871022E-18 3.26626124260E-18 1.92252367728E-18 1.12398436013E-18 6.52649158716E-19 3.76350873162E-19 2.15507268627E-19 1.22531714109E-19 6.91693903275E-20 3.87631455694E-20 2.15637347697E-20 1.19066238823E-20 6.52487574372E-21 3.54840819664E-21 1.91483281110E-21 1.02523121759E-21 5.44582448584E-22 2.86954447881E-22 1.49977421246E-22 7.77424010821E-23 3.99635583471E-23 2.03703694203E-23 1.02947560314E-23 5.15785202112E-24 2.56159247920E-24 1.26093187982E-24 6.15127457754E-25 2.97359194916E-25 1.42426450676E-25 6.75837950163E-26 3.17677262629E-26 1.47900509437E-26 6.81931711745E-27 3.11348531772E-27 1.40745282986E-27 6.29865272951E-28 2.79018683260E-28 1.22330579308E-28 5.30757976175E-29 2.27856115307E-29 9.67764540562E-30 4.06597819976E-30 1.68961377304E-30 6.94347499656E-31 2.82145144081E-31 1.13347780039E-31 4.50127848212E-32 1.76676211491E-32 6.85292089073E-33 2.62641961175E-33 9.94438101700E-34 3.71920672899E-34 1.37377192976E-34 5.01074965221E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.61851441803E-08 8.83669313603E-08 9.06039507388E-08 9.28976005254E-08 9.52493143253E-08 9.76605620356E-08 1.00132850764E-07 1.02667725771E-07 1.05266771435E-07 1.07931612244E-07 1.10663913808E-07 1.13465383906E-07 1.16337773546E-07 1.19282878063E-07 1.22302538245E-07 1.25398641474E-07 1.28573122917E-07 1.31827966725E-07 1.35165207282E-07 1.38586930469E-07 1.42095274975E-07 1.45692433627E-07 1.49380654766E-07 1.53162243648E-07 1.57039563888E-07 1.61015038936E-07 1.65091153591E-07 1.69270455556E-07 1.73555557029E-07 1.77949136337E-07 1.82453939606E-07 1.87072782485E-07 1.91808551897E-07 1.96664207851E-07 2.01642785286E-07 2.06747395974E-07 2.11981230460E-07 2.17347560058E-07 2.22849738895E-07 2.28491206009E-07 2.34275487498E-07 2.40206198723E-07 2.46287046566E-07 2.52521831753E-07 2.58914451223E-07 2.65468900567E-07 2.72189276525E-07 2.79079779546E-07 2.86144716414E-07 2.93388502938E-07 3.00815666717E-07 3.08430849964E-07 3.16238812409E-07 3.24244434278E-07 3.32452719338E-07 3.40868798028E-07 3.49497930663E-07 3.58345510724E-07 3.67417068230E-07 3.76718273190E-07 3.86254939151E-07 3.96033026830E-07 4.06058647841E-07 4.16338068513E-07 4.26877713808E-07 4.37684171335E-07 4.48764195471E-07 4.60124711578E-07 4.71772820335E-07 4.83715802176E-07 4.95961121838E-07 5.08516433029E-07 5.21389583212E-07 5.34588618506E-07 5.48121788722E-07 5.61997552511E-07 5.76224582658E-07 5.90811771499E-07 6.05768236481E-07 6.21103325856E-07 6.36826624533E-07 6.52947960057E-07 6.69477408763E-07 6.86425302065E-07 7.03802232919E-07 7.21619062441E-07 7.39886926697E-07 7.58617243662E-07 7.77821720359E-07 7.97512360171E-07 8.17701470350E-07 8.38401669706E-07 8.59625896492E-07 8.81387416494E-07 9.03699831322E-07 9.26577086911E-07 9.50033482236E-07 9.74083678251E-07 9.98742707051E-07 1.02402598127E-06 1.04994930371E-06 1.07652887723E-06 1.10378131484E-06 1.13172365014E-06 1.16037334791E-06 1.18974831506E-06 1.21986691181E-06 1.25074796318E-06 1.28241077072E-06 1.31487512462E-06 1.34816131606E-06 1.38229014985E-06 1.41728295753E-06 1.45316161061E-06 1.48994853427E-06 1.52766672141E-06 1.56633974698E-06 1.60599178272E-06 1.64664761227E-06 1.68833264670E-06 1.73107294031E-06 1.77489520701E-06 1.81982683693E-06 1.86589591359E-06 1.91313123146E-06 1.96156231391E-06 2.01121943170E-06 2.06213362190E-06 2.11433670726E-06 2.16786131613E-06 2.22274090284E-06 2.27900976860E-06 2.33670308297E-06 2.39585690579E-06 2.45650820978E-06 2.51869490360E-06 2.58245585554E-06 2.64783091787E-06 2.71486095168E-06 2.78358785248E-06 2.85405457631E-06 2.92630516666E-06 3.00038478197E-06 3.07633972384E-06 3.15421746599E-06 3.23406668392E-06 3.31593728533E-06 3.39988044132E-06 3.48594861837E-06 3.57419561113E-06 3.66467657604E-06 3.75744806581E-06 3.85256806474E-06 3.95009602500E-06 4.05009290377E-06 4.15262120130E-06 4.25774500006E-06 4.36553000468E-06 4.47604358312E-06 4.58935480869E-06 4.70553450328E-06 4.82465528159E-06 4.94679159652E-06 5.07201978571E-06 5.20041811922E-06 5.33206684851E-06 5.46704825652E-06 5.60544670916E-06 5.74734870799E-06 5.89284294429E-06 6.04202035453E-06 6.19497417715E-06 6.35180001085E-06 6.51259587434E-06 6.67746226762E-06 6.84650223475E-06 7.01982142826E-06 7.19752817519E-06 7.37973354480E-06 7.56655141793E-06 7.75809855827E-06 7.95449468520E-06 8.15586254875E-06 8.36232800619E-06 8.57402010076E-06 8.79107114230E-06 9.01361678991E-06 9.24179613677E-06 9.47575179703E-06 9.71562999495E-06 9.96158065629E-06 1.02137575020E-05 1.04723181442E-05 1.07374241849E-05 1.10092413166E-05 1.12879394265E-05 1.15736927018E-05 1.18666797392E-05 1.21670836564E-05 1.24750922062E-05 1.27908978942E-05 1.31146980990E-05 1.34466951955E-05 1.37870966812E-05 1.41361153064E-05 1.44939692063E-05 1.48608820381E-05 1.52370831205E-05 1.56228075768E-05 1.60182964819E-05 1.64237970132E-05 1.68395626047E-05 1.72658531058E-05 1.77029349431E-05 1.81510812872E-05 1.86105722236E-05 1.90816949272E-05 1.95647438423E-05 2.00600208660E-05 2.05678355373E-05 2.10885052305E-05 2.16223553529E-05 2.21697195490E-05 2.27309399084E-05 2.33063671795E-05 2.38963609890E-05 2.45012900663E-05 2.51215324742E-05 2.57574758446E-05 2.64095176212E-05 2.70780653074E-05 2.77635367214E-05 2.84663602566E-05 2.91869751496E-05 2.99258317548E-05 3.06833918253E-05 3.14601288016E-05 3.22565281075E-05 3.30730874531E-05 3.39103171458E-05 3.47687404091E-05 3.56488937097E-05 3.65513270921E-05 3.74766045227E-05 3.84253042417E-05 3.93980191245E-05 4.03953570522E-05 4.14179412907E-05 4.24664108809E-05 4.35414210370E-05 4.46436435563E-05 4.57737672384E-05 4.69324983159E-05 4.81205608949E-05 4.93386974078E-05 5.05876690767E-05 5.18682563887E-05 5.31812595834E-05 5.45274991530E-05 5.59078163543E-05 5.73230737339E-05 5.87741556674E-05 6.02619689113E-05 6.17874431690E-05 6.33515316717E-05 6.49552117737E-05 6.65994855619E-05 6.82853804824E-05 7.00139499815E-05 7.17862741634E-05 7.36034604645E-05 7.54666443452E-05 7.73769899982E-05 7.93356910756E-05 8.13439714338E-05 8.34030858977E-05 8.55143210438E-05 8.76789960035E-05 8.98984632860E-05 9.21741096230E-05 9.45073568335E-05 9.68996627120E-05 9.93525219376E-05 1.01867467007E-04 1.04446069191E-04 1.07089939514E-04 1.09800729760E-04 1.12580133506E-04 1.15429887171E-04 1.18351771108E-04 1.21347610709E-04 1.24419277547E-04 1.27568690540E-04 1.30797817153E-04 1.34108674618E-04 1.37503331201E-04 1.40983907483E-04 1.44552577690E-04 1.48211571044E-04 1.51963173156E-04 1.55809727446E-04 1.59753636613E-04 1.63797364124E-04 1.67943435754E-04 1.72194441163E-04 1.76553035503E-04 1.81021941079E-04 1.85603949045E-04 1.90301921141E-04 1.95118791476E-04 2.00057568359E-04 2.05121336173E-04 2.10313257294E-04 2.15636574063E-04 2.21094610804E-04 2.26690775898E-04 2.32428563901E-04 2.38311557724E-04 2.44343430861E-04 2.50527949679E-04 2.56868975760E-04 2.63370468306E-04 2.70036486606E-04 2.76871192555E-04 2.83878853253E-04 2.91063843651E-04 2.98430649282E-04 3.05983869043E-04 3.13728218061E-04 3.21668530623E-04 3.29809763182E-04 3.38156997441E-04 3.46715443509E-04 3.55490443142E-04 3.64487473061E-04 3.73712148357E-04 3.83170225979E-04 3.92867608311E-04 4.02810346835E-04 4.13004645895E-04 4.23456866544E-04 4.34173530496E-04 4.45161324173E-04 4.56427102855E-04 4.67977894934E-04 4.79820906274E-04 4.91963524680E-04 5.04413324481E-04 5.17178071223E-04 5.30265726488E-04 5.43684452824E-04 5.57442618803E-04 5.71548804207E-04 5.86011805343E-04 6.00840640486E-04 6.16044555463E-04 6.31633029379E-04 6.47615780477E-04 6.64002772152E-04 6.80804219113E-04 6.98030593700E-04 7.15692632352E-04 7.33801342246E-04 7.52368008093E-04 7.71404199109E-04 7.90921776159E-04 8.10932899073E-04 8.31450034149E-04 8.52485961846E-04 8.74053784659E-04 8.96166935197E-04 9.18839184457E-04 9.42084650310E-04 9.65917806186E-04 9.90353489988E-04 1.01540691322E-03 1.04109367032E-03 1.06742974829E-03 1.09443153648E-03 1.12211583665E-03 1.15049987333E-03 1.17960130434E-03 1.20943823163E-03 1.24002921240E-03 1.27139327045E-03 1.30354990782E-03 1.33651911676E-03 1.37032139192E-03 1.40497774292E-03 1.44050970715E-03 1.47693936295E-03 1.51428934307E-03 1.55258284847E-03 1.59184366250E-03 1.63209616534E-03 1.67336534886E-03 1.71567683183E-03 1.75905687550E-03 1.80353239954E-03 1.84913099838E-03 1.89588095796E-03 1.94381127288E-03 1.99295166394E-03 2.04333259614E-03 2.09498529709E-03 2.14794177590E-03 2.20223484247E-03 2.25789812731E-03 2.31496610176E-03 2.37347409879E-03 2.43345833420E-03 2.49495592841E-03 2.55800492872E-03 2.62264433212E-03 2.68891410866E-03 2.75685522533E-03 2.82650967058E-03 2.89792047933E-03 2.97113175866E-03 3.04618871404E-03 3.12313767625E-03 3.20202612884E-03 3.28290273633E-03 3.36581737302E-03 3.45082115246E-03 3.53796645768E-03 3.62730697203E-03 3.71889771081E-03 3.81279505362E-03 3.90905677743E-03 4.00774209041E-03 4.10891166661E-03 4.21262768137E-03 4.31895384754E-03 4.42795545255E-03 4.53969939633E-03 4.65425423010E-03 4.77169019595E-03 4.89207926748E-03 5.01549519116E-03 5.14201352878E-03 5.27171170073E-03 5.40466903034E-03 5.54096678912E-03 5.68068824305E-03 5.82391869986E-03 5.97074555736E-03 6.12125835284E-03 6.27554881348E-03 6.43371090795E-03 6.59584089899E-03 6.76203739725E-03 6.93240141616E-03 7.10703642805E-03 7.28604842138E-03 7.46954595922E-03 7.65764023894E-03 7.85044515306E-03 8.04807735151E-03 8.25065630496E-03 8.45830436959E-03 8.67114685311E-03 8.88931208205E-03 9.11293147049E-03 9.34213959001E-03 9.57707424113E-03 9.81787652604E-03 1.00646909227E-02 1.03176653606E-02 1.05769512974E-02 1.08427037975E-02 1.11150816122E-02 1.13942472602E-02 1.16803671113E-02 1.19736114697E-02 1.22741546605E-02 1.25821751162E-02 1.28978554655E-02 1.32213826239E-02 1.35529478845E-02 1.38927470117E-02 1.42409803353E-02 1.45978528469E-02 1.49635742971E-02 1.53383592944E-02 1.57224274059E-02 1.61160032588E-02 1.65193166434E-02 1.69326026182E-02 1.73561016155E-02 1.77900595487E-02 1.82347279208E-02 1.86903639345E-02 1.91572306029E-02 1.96355968620E-02 2.01257376843E-02 2.06279341924E-02 2.11424737757E-02 2.16696502057E-02 2.22097637544E-02 2.27631213115E-02 2.33300365042E-02 2.39108298159E-02 2.45058287073E-02 2.51153677361E-02 2.57397886784E-02 2.63794406500E-02 2.70346802273E-02 2.77058715688E-02 2.83933865361E-02 2.90976048149E-02 2.98189140348E-02 3.05577098894E-02 3.13143962550E-02 3.20893853082E-02 3.28830976424E-02 3.36959623829E-02 3.45284173002E-02 3.53809089216E-02 3.62538926397E-02 3.71478328198E-02 3.80632029032E-02 3.90004855084E-02 3.99601725279E-02 4.09427652222E-02 4.19487743089E-02 4.29787200477E-02 4.40331323202E-02 4.51125507048E-02 4.62175245448E-02 4.73486130115E-02 4.85063851597E-02 4.96914199760E-02 5.09043064196E-02 5.21456434543E-02 5.34160400719E-02 5.47161153055E-02 5.60464982333E-02 5.74078279706E-02 5.88007536507E-02 6.02259343934E-02 6.16840392599E-02 6.31757471945E-02 6.47017469509E-02 6.62627370029E-02 6.78594254390E-02 6.94925298389E-02 7.11627771322E-02 7.28709034371E-02 7.46176538789E-02 7.64037823866E-02 7.82300514675E-02 8.00972319571E-02 8.20061027447E-02 8.39574504724E-02 8.59520692063E-02 8.79907600800E-02 9.00743309066E-02 9.22035957603E-02 9.43793745245E-02 9.66024924061E-02 9.88737794135E-02 1.01194069798E-01 1.03564201455E-01 1.05985015288E-01 1.08457354528E-01 1.10982064008E-01 1.13559989400E-01 1.16191976394E-01 1.18878869840E-01 1.21621512834E-01 1.24420745751E-01 1.27277405230E-01 1.30192323106E-01 1.33166325272E-01 1.36200230506E-01 1.39294849214E-01 1.42450982135E-01 1.45669418967E-01 1.48950936937E-01 1.52296299309E-01 1.55706253819E-01 1.59181531052E-01 1.62722842740E-01 1.66330880004E-01 1.70006311517E-01 1.73749781604E-01 1.77561908267E-01 1.81443281144E-01 1.85394459393E-01 1.89415969517E-01 1.93508303103E-01 1.97671914513E-01 2.01907218489E-01 2.06214587710E-01 2.10594350270E-01 2.15046787111E-01 2.19572129380E-01 2.24170555751E-01 2.28842189677E-01 2.33587096606E-01 2.38405281154E-01 2.43296684235E-01 2.48261180166E-01 2.53298573745E-01 2.58408597309E-01 2.63590907788E-01 2.68845083752E-01 2.74170622473E-01 2.79566936999E-01 2.85033353263E-01 2.90569107230E-01 2.96173342102E-01 3.01845105584E-01 3.07583347242E-01 3.13386915947E-01 3.19254557443E-01 3.25184912041E-01 3.31176512460E-01 3.37227781839E-01 3.43337031939E-01 3.49502461544E-01 3.55722155102E-01 3.61994081610E-01 3.68316093776E-01 3.74685927479E-01 3.81101201548E-01 3.87559417889E-01 3.94057961978E-01 4.00594103754E-01 4.07164998923E-01 4.13767690710E-01 4.20399112077E-01 4.27056088429E-01 4.33735340831E-01 4.40433489760E-01 4.47147059407E-01 4.53872482550E-01 4.60606106014E-01 4.67344196725E-01 4.74082948381E-01 4.80818488730E-01 4.87546887478E-01 4.94264164809E-01 5.00966300519E-01 5.07649243765E-01 5.14308923389E-01 5.20941258821E-01 5.27542171519E-01 5.34107596911E-01 5.40633496811E-01 5.47115872245E-01 5.53550776635E-01 5.59934329282E-01 5.66262729068E-01 5.72532268290E-01 5.78739346549E-01 5.84880484577E-01 5.90952337912E-01 5.96951710275E-01 6.02875566557E-01 6.08721045251E-01 6.14485470206E-01 6.20166361544E-01 6.25761445591E-01 6.31268663655E-01 6.36686179495E-01 6.42012385308E-01 6.47245906067E-01 6.52385602043E-01 6.57430569353E-01 6.62380138356E-01 6.67233869762E-01 6.71991548287E-01 6.76653173737E-01 6.81218949372E-01 6.85689267463E-01 6.90064691916E-01 6.94345937909E-01 6.98533848453E-01 7.02629367842E-01 7.06633511964E-01 7.10547335431E-01 7.14371895560E-01 7.18108213183E-01 7.21757230309E-01 7.25319764655E-01 7.28796461037E-01 7.32187739637E-01 7.35493741088E-01 7.38714268329E-01 7.41848725104E-01 7.44896050939E-01 7.47854652340E-01 7.50722329880E-01 7.53496200714E-01 7.56172615988E-01 7.58747072404E-01 7.61214117137E-01 7.63567245082E-01 7.65798787296E-01 7.67899789317E-01 7.69859877918E-01 7.71668954581E-01 7.73323196422E-01 7.74820568215E-01 7.76159137529E-01 7.77337077860E-01 7.78352671595E-01 7.79204312768E-01 7.79890509643E-01 7.80409887071E-01 7.80761188669E-01 7.80943278778E-01 7.80955144228E-01 7.80795895895E-01 7.80464770060E-01 7.79961129563E-01 7.79284464767E-01 7.78434394323E-01 7.77410665742E-01 7.76213155784E-01 7.74841870655E-01 7.73296946033E-01 7.71578646905E-01 7.69687367248E-01 7.67623629523E-01 7.65388084023E-01 7.62981508055E-01 7.60404804969E-01 7.57659003044E-01 7.54745254230E-01 7.51664832754E-01 7.48419133597E-01 7.45009670849E-01 7.41438075943E-01 7.37706095782E-01 7.33815590757E-01 7.29768532671E-01 7.25567002566E-01 7.21213188466E-01 7.16709383040E-01 7.12057981193E-01 7.07261477585E-01 7.02322464085E-01 6.97243627176E-01 6.92027745300E-01 6.86677686154E-01 6.81196403947E-01 6.75586936609E-01 6.69852402972E-01 6.63995999904E-01 6.58020999419E-01 6.51930745749E-01 6.45728652386E-01 6.39418199107E-01 6.33002928937E-01 6.26484024250E-01 6.19867535851E-01 6.13157177717E-01 6.06356714600E-01 5.99469958824E-01 5.92500767020E-01 5.85453036810E-01 5.78330703445E-01 5.71137736361E-01 5.63878135688E-01 5.56555928676E-01 5.49175166046E-01 5.41739918265E-01 5.34254271736E-01 5.26722324905E-01 5.19148184280E-01 5.11535960362E-01 5.03889763503E-01 4.96213699670E-01 4.88511866146E-01 4.80788347153E-01 4.73047209432E-01 4.65292497758E-01 4.57528230437E-01 4.49758394783E-01 4.41986942588E-01 4.34217785623E-01 4.26454791170E-01 4.18701777628E-01 4.10962510190E-01 4.03240696646E-01 3.95539983312E-01 3.87863951113E-01 3.80216111858E-01 3.72599904704E-01 3.65018692862E-01 3.57475760527E-01 3.49974310083E-01 3.42517459573E-01 3.35108240465E-01 3.27749595700E-01 3.20444378057E-01 3.13195348810E-01 3.06005176691E-01 2.98876437160E-01 2.91811611957E-01 2.84813088950E-01 2.77883162240E-01 2.71024032534E-01 2.64237807746E-01 2.57526503827E-01 2.50892045781E-01 2.44336268856E-01 2.37860919895E-01 2.31467658791E-01 2.25158060057E-01 2.18933614454E-01 2.12795730672E-01 2.06745737023E-01 2.00784883130E-01 1.94914341584E-01 1.89135209548E-01 1.83448510282E-01 1.77855194574E-01 1.72356142062E-01 1.66952162426E-01 1.61643996440E-01 1.56432316876E-01 1.51317729255E-01 1.46300772442E-01 1.41381919076E-01 1.36561575857E-01 1.31840083676E-01 1.27217717614E-01 1.22694686814E-01 1.18271134242E-01 1.13947136362E-01 1.09722702735E-01 1.05597775572E-01 1.01572229257E-01 9.76458698735E-02 9.38184347487E-02 9.00895920497E-02 8.64589404481E-02 8.29260088815E-02 7.94902564311E-02 7.61510723383E-02 7.29077761769E-02 6.97596181981E-02 6.67057798625E-02 6.37453745698E-02 6.08774485952E-02 5.81009822383E-02 5.54148911880E-02 5.28180281032E-02 5.03091844076E-02 4.78870922941E-02 4.55504269323E-02 4.32978088683E-02 4.11278066094E-02 3.90389393770E-02 3.70296800179E-02 3.50984580558E-02 3.32436628683E-02 3.14636469729E-02 2.97567294040E-02 2.81211991635E-02 2.65553187274E-02 2.50573275910E-02 2.36254458348E-02 2.22578776943E-02 2.09528151178E-02 1.97084412948E-02 1.85229341415E-02 1.73944697284E-02 1.63212256356E-02 1.53013842251E-02 1.43331358164E-02 1.34146817560E-02 1.25442373720E-02 1.17200348023E-02 1.09403256921E-02 1.02033837522E-02 9.50750717288E-03 8.85102088891E-03 8.23227869223E-03 7.64966518922E-03 7.10159760080E-03 6.58652740458E-03 6.10294181864E-03 5.64936512773E-03 5.22435985309E-03 4.82652776789E-03 4.45451076103E-03 4.10699155246E-03 3.78269426370E-03 3.48038484793E-03 3.19887138434E-03 2.93700424172E-03 2.69367611683E-03 2.46782195328E-03 2.25841874687E-03 2.06448524365E-03 1.88508153711E-03 1.71930857095E-03 1.56630755412E-03 1.42525929469E-03 1.29538345939E-03 1.17593776532E-03 1.06621711056E-03 9.65552650113E-04 8.73310823707E-04 7.88892341619E-04 7.11731134768E-04 6.41293274920E-04 5.77075870767E-04 5.18605945389E-04 4.65439300345E-04 4.17159371417E-04 3.73376080726E-04 3.33724689692E-04 2.97864657037E-04 2.65478505495E-04 2.36271483144E-04 2.09976654875E-04 1.86338704096E-04 1.65120416535E-04 1.46102537241E-04 1.29082727142E-04 1.13874554326E-04 1.00306521158E-04 8.82211282230E-05 7.74739758678E-05 6.79329040081E-05 5.94771706963E-05 5.19966698211E-05 4.53911882238E-05 3.95697024257E-05 3.44497151163E-05 2.99558500982E-05 2.60130447569E-05 2.25608262687E-05 1.95455559376E-05 1.69190805654E-05 1.46383160301E-05 1.26648649199E-05 1.09366975229E-05 9.42622183315E-06 8.10857274830E-06 6.96138804702E-06 5.96459771055E-06 5.10022633788E-06 4.35220828918E-06 3.70621523659E-06 3.14949569143E-06 2.67072607469E-06 2.25987286485E-06 1.90806533664E-06 1.60747838786E-06 1.35122494135E-06 1.13325740265E-06 9.48277652651E-07 7.91655056603E-07 6.59351977180E-07 5.47856288109E-07 4.54120397187E-07 3.75506301855E-07 3.09736217098E-07 2.54848333717E-07 2.09157284675E-07 1.71218917951E-07 1.39798995777E-07 1.13845462087E-07 9.24639421754E-08 7.48961606431E-08 6.05009856931E-08 4.87378292807E-08 3.91521536043E-08 3.13628546597E-08 2.50513130300E-08 1.99519206401E-08 1.58439098038E-08 1.25443274872E-08 9.90201327417E-09 7.79245403090E-09 6.11340173223E-09 4.78115334090E-09 3.72740304480E-09 2.89658759052E-09 2.24365494098E-09 1.73219507543E-09 1.33287949110E-09 1.02216290857E-09 7.81206881428E-10 5.94990520181E-10 4.51578414019E-10 3.41520127335E-10 2.57359411885E-10 1.93234561234E-10 1.44554189487E-10 1.07735186528E-10 7.99917295282E-11 5.91660546753E-11 4.35932501778E-11 3.19936547197E-11 2.33875648121E-11 1.70278970074E-11 1.23472410311E-11 8.91639917001E-12 6.41205486232E-12 4.59166619636E-12 3.27405261325E-12 2.32444830412E-12 1.64304460035E-12 1.15624553659E-12 8.10023790064E-13 5.64895212159E-13 3.92134945112E-13 2.70941503248E-13 1.86321233833E-13 1.27517608629E-13 8.68505960060E-14 5.88631901152E-14 3.96968746795E-14 2.66368711245E-14 1.77826702981E-14 1.18105404940E-14 7.80321197441E-15 5.12836966569E-15 3.35242151335E-15 2.17962621235E-15 1.40935335129E-15 9.06237893497E-16 5.79453523861E-16 3.68398872166E-16 2.32868159048E-16 1.46339818207E-16 9.14204907706E-17 5.67702585349E-17 3.50398086582E-17 2.14947769077E-17 1.31039110013E-17 7.93837657373E-18 4.77849122048E-18 2.85787581608E-18 1.69806406976E-18 1.00227569542E-18 5.87633481030E-19 3.42196383941E-19 1.97904984847E-19 1.13661373743E-19 6.48195275931E-20 3.67026211374E-20 2.06322949917E-20 1.15137746329E-20 6.37775205088E-21 3.50636197411E-21 1.91312811721E-21 1.03582887972E-21 5.56476170490E-22 2.96604090507E-22 1.56832687925E-22 8.22585889139E-23 4.27924281189E-23 2.20774463930E-23 1.12948807150E-23 5.72953603555E-24 2.88148111240E-24 1.43655926907E-24 7.09896625483E-25 3.47682001523E-25 1.68746967309E-25 8.11534402392E-26 3.86674011194E-26 1.82515348000E-26 8.53333484018E-27 3.95140147358E-27 1.81194007996E-27 8.22703751403E-28 3.69824852226E-28 1.64568607250E-28 7.24837763336E-29 3.15952269708E-29 1.36280031734E-29 5.81588171708E-30 2.45534932658E-30 1.02533658856E-30 4.23462915014E-31 8.61851684727E-08 8.83669562675E-08 9.06039762766E-08 9.28976267097E-08 9.52493411724E-08 9.76605895623E-08 1.00132878988E-07 1.02667754709E-07 1.05266801105E-07 1.07931642665E-07 1.10663945000E-07 1.13465415887E-07 1.16337806336E-07 1.19282911683E-07 1.22302572715E-07 1.25398676818E-07 1.28573159154E-07 1.31828003880E-07 1.35165245377E-07 1.38586969529E-07 1.42095315023E-07 1.45692474689E-07 1.49380696866E-07 1.53162286814E-07 1.57039608146E-07 1.61015084314E-07 1.65091200117E-07 1.69270503260E-07 1.73555605940E-07 1.77949186485E-07 1.82453991024E-07 1.87072835203E-07 1.91808605949E-07 1.96664263270E-07 2.01642842108E-07 2.06747454234E-07 2.11981290194E-07 2.17347621303E-07 2.22849801690E-07 2.28491270394E-07 2.34275553512E-07 2.40206266406E-07 2.46287115962E-07 2.52521902905E-07 2.58914524175E-07 2.65468975365E-07 2.72189353215E-07 2.79079858177E-07 2.86144797034E-07 2.93388585598E-07 3.00815751469E-07 3.08430936859E-07 3.16238901503E-07 3.24244525627E-07 3.32452812998E-07 3.40868894057E-07 3.49498029122E-07 3.58345611674E-07 3.67417171734E-07 3.76718379312E-07 3.86255047958E-07 3.96033138390E-07 4.06058762224E-07 4.16338185790E-07 4.26877834052E-07 4.37684294621E-07 4.48764321876E-07 4.60124841181E-07 4.71772953217E-07 4.83715938420E-07 4.95961261529E-07 5.08516576255E-07 5.21389730061E-07 5.34588769071E-07 5.48121943096E-07 5.61997710791E-07 5.76224744943E-07 5.90811937891E-07 6.05768407083E-07 6.21103500776E-07 6.36826803878E-07 6.52948143941E-07 6.69477597300E-07 6.86425495374E-07 7.03802431120E-07 7.21619265658E-07 7.39887135057E-07 7.58617457295E-07 7.77821939398E-07 7.97512584754E-07 8.17701700618E-07 8.38401905801E-07 8.59626138562E-07 8.81387664691E-07 9.03700085802E-07 9.26577347832E-07 9.50033749761E-07 9.74083952547E-07 9.98742988290E-07 1.02402626963E-06 1.04994959937E-06 1.07652918037E-06 1.10378162565E-06 1.13172396882E-06 1.16037367466E-06 1.18974865008E-06 1.21986725531E-06 1.25074831537E-06 1.28241113183E-06 1.31487549488E-06 1.34816169568E-06 1.38229053909E-06 1.41728335662E-06 1.45316201980E-06 1.48994895382E-06 1.52766715158E-06 1.56634018804E-06 1.60599223494E-06 1.64664807595E-06 1.68833312211E-06 1.73107342776E-06 1.77489570680E-06 1.81982734937E-06 1.86589643901E-06 1.91313177018E-06 1.96156286626E-06 2.01121999804E-06 2.06213420257E-06 2.11433730264E-06 2.16786192658E-06 2.22274152875E-06 2.27901041036E-06 2.33670374097E-06 2.39585758046E-06 2.45650890153E-06 2.51869561285E-06 2.58245658276E-06 2.64783166350E-06 2.71486171619E-06 2.78358863634E-06 2.85405538002E-06 2.92630599072E-06 3.00038562690E-06 3.07634059016E-06 3.15421835425E-06 3.23406759467E-06 3.31593821914E-06 3.39988139878E-06 3.48594960007E-06 3.57419661769E-06 3.66467760809E-06 3.75744912399E-06 3.85256914971E-06 3.95009713745E-06 4.05009404439E-06 4.15262237081E-06 4.25774619918E-06 4.36553123417E-06 4.47604484374E-06 4.58935610124E-06 4.70553582856E-06 4.82465664043E-06 4.94679298977E-06 5.07202121424E-06 5.20041958394E-06 5.33206835032E-06 5.46704979637E-06 5.60544828801E-06 5.74735032682E-06 5.89284460412E-06 6.04202205640E-06 6.19497592212E-06 6.35180180001E-06 6.51259770883E-06 6.67746414858E-06 6.84650416334E-06 7.01982340570E-06 7.19753020272E-06 7.37973562369E-06 7.56655354948E-06 7.75810074381E-06 7.95449692611E-06 8.15586484642E-06 8.36233036206E-06 8.57402251632E-06 8.79107361905E-06 9.01361932941E-06 9.24179874061E-06 9.47575446683E-06 9.71563273239E-06 9.96158346308E-06 1.02137603799E-05 1.04723210950E-05 1.07374272104E-05 1.10092444189E-05 1.12879426074E-05 1.15736959633E-05 1.18666830833E-05 1.21670870852E-05 1.24750957219E-05 1.27909014990E-05 1.31147017952E-05 1.34466989853E-05 1.37871005671E-05 1.41361192907E-05 1.44939732916E-05 1.48608862270E-05 1.52370874156E-05 1.56228119807E-05 1.60183009975E-05 1.64238016432E-05 1.68395673522E-05 1.72658579736E-05 1.77029399342E-05 1.81510864049E-05 1.86105774710E-05 1.90817003077E-05 1.95647493592E-05 2.00600265228E-05 2.05678413376E-05 2.10885111778E-05 2.16223614511E-05 2.21697258019E-05 2.27309463198E-05 2.33063737535E-05 2.38963677298E-05 2.45012969781E-05 2.51215395613E-05 2.57574831115E-05 2.64095250724E-05 2.70780729477E-05 2.77635445556E-05 2.84663682895E-05 2.91869833864E-05 2.99258402006E-05 3.06834004855E-05 3.14601376816E-05 3.22565372129E-05 3.30730967895E-05 3.39103267192E-05 3.47687502256E-05 3.56489037755E-05 3.65513374135E-05 3.74766151061E-05 3.84253150939E-05 3.93980302523E-05 4.03953684626E-05 4.14179529910E-05 4.24664228784E-05 4.35414333392E-05 4.46436561711E-05 4.57737801737E-05 4.69325115799E-05 4.81205744961E-05 4.93387113547E-05 5.05876833781E-05 5.18682710536E-05 5.31812746212E-05 5.45275145732E-05 5.59078321666E-05 5.73230899484E-05 5.87741722943E-05 6.02619859612E-05 6.17874606527E-05 6.33515496003E-05 6.49552301585E-05 6.65995044147E-05 6.82853998151E-05 7.00139698064E-05 7.17862944930E-05 7.36034813119E-05 7.54666657236E-05 7.73770119212E-05 7.93357135571E-05 8.13439944882E-05 8.34031095397E-05 8.55143452885E-05 8.76790208664E-05 8.98984887829E-05 9.21741357701E-05 9.45073836476E-05 9.68996902102E-05 9.93525501376E-05 1.01867495927E-04 1.04446098849E-04 1.07089969929E-04 1.09800760953E-04 1.12580165495E-04 1.15429919978E-04 1.18351804753E-04 1.21347645214E-04 1.24419312934E-04 1.27568726833E-04 1.30797854374E-04 1.34108712792E-04 1.37503370351E-04 1.40983947636E-04 1.44552618872E-04 1.48211613281E-04 1.51963216474E-04 1.55809771875E-04 1.59753682181E-04 1.63797410861E-04 1.67943483691E-04 1.72194490329E-04 1.76553085932E-04 1.81021992804E-04 1.85604002099E-04 1.90301975558E-04 1.95118847292E-04 2.00057625612E-04 2.05121394899E-04 2.10313317532E-04 2.15636635852E-04 2.21094674185E-04 2.26690840912E-04 2.32428630592E-04 2.38311626135E-04 2.44343501038E-04 2.50528021668E-04 2.56869049609E-04 2.63370544065E-04 2.70036564324E-04 2.76871272284E-04 2.83878935046E-04 2.91063927563E-04 2.98430735369E-04 3.05983957362E-04 3.13728308672E-04 3.21668623586E-04 3.29809858561E-04 3.38157095299E-04 3.46715543913E-04 3.55490546159E-04 3.64487578762E-04 3.73712256813E-04 3.83170337265E-04 3.92867722501E-04 4.02810464009E-04 4.13004766132E-04 4.23456989927E-04 4.34173657110E-04 4.45161454105E-04 4.56427236195E-04 4.67978031774E-04 4.79821046709E-04 4.91963668807E-04 5.04413472401E-04 5.17178223040E-04 5.30265882309E-04 5.43684612757E-04 5.57442782961E-04 5.71548972707E-04 5.86011978304E-04 6.00840818031E-04 6.16044737719E-04 6.31633216475E-04 6.47615972547E-04 6.64002969335E-04 6.80804421553E-04 6.98030801541E-04 7.15692845746E-04 7.33801561348E-04 7.52368233063E-04 7.71404430114E-04 7.90922013367E-04 8.10933142659E-04 8.31450284295E-04 8.52486218738E-04 8.74054048489E-04 8.96167206162E-04 9.18839462762E-04 9.42084936164E-04 9.65918099808E-04 9.90353791600E-04 1.01540722305E-03 1.04109398861E-03 1.06743007529E-03 1.09443187243E-03 1.12211618183E-03 1.15050022800E-03 1.17960166878E-03 1.20943860613E-03 1.24002959725E-03 1.27139366596E-03 1.30355031431E-03 1.33651953456E-03 1.37032182136E-03 1.40497818436E-03 1.44051016094E-03 1.47693982947E-03 1.51428982270E-03 1.55258334161E-03 1.59184416957E-03 1.63209668675E-03 1.67336588506E-03 1.71567738328E-03 1.75905744267E-03 1.80353298291E-03 1.84913159847E-03 1.89588157528E-03 1.94381190798E-03 1.99295231737E-03 2.04333326848E-03 2.09498598894E-03 2.14794248789E-03 2.20223557524E-03 2.25789888152E-03 2.31496687812E-03 2.37347489800E-03 2.43345915700E-03 2.49495677558E-03 2.55800580105E-03 2.62264523044E-03 2.68891503382E-03 2.75685617823E-03 2.82651065214E-03 2.89792149051E-03 2.97113280044E-03 3.04618978747E-03 3.12313878238E-03 3.20202726880E-03 3.28290391127E-03 3.36581858413E-03 3.45082240099E-03 3.53796774492E-03 3.62730829932E-03 3.71889907955E-03 3.81279646526E-03 3.90905823347E-03 4.00774359242E-03 4.10891321623E-03 4.21262928028E-03 4.31895549750E-03 4.42795715540E-03 4.53970115398E-03 4.65425604452E-03 4.77169206922E-03 4.89208120173E-03 5.01549718864E-03 5.14201559181E-03 5.27171383174E-03 5.40467123185E-03 5.54096906376E-03 5.68069059355E-03 5.82392112908E-03 5.97074806827E-03 6.12126094853E-03 6.27555149719E-03 6.43371368303E-03 6.59584376896E-03 6.76204036576E-03 6.93240448702E-03 7.10703960523E-03 7.28605170903E-03 7.46954936167E-03 7.65764376069E-03 7.85044879883E-03 8.04808112620E-03 8.25066021370E-03 8.45830841773E-03 8.67115104623E-03 8.88931642598E-03 9.11293597131E-03 9.34214425409E-03 9.57707907509E-03 9.81788153681E-03 1.00646961175E-02 1.03176707470E-02 1.05769568833E-02 1.08427095912E-02 1.11150876222E-02 1.13942534957E-02 1.16803735815E-02 1.19736181846E-02 1.22741616303E-02 1.25821823516E-02 1.28978629779E-02 1.32213904249E-02 1.35529559865E-02 1.38927554274E-02 1.42409890782E-02 1.45978619310E-02 1.49635837371E-02 1.53383691057E-02 1.57224376046E-02 1.61160138616E-02 1.65193276680E-02 1.69326140829E-02 1.73561135396E-02 1.77900719522E-02 1.82347408249E-02 1.86903773612E-02 1.91572445753E-02 1.96356114043E-02 2.01257528215E-02 2.06279499512E-02 2.11424901836E-02 2.16696672919E-02 2.22097815489E-02 2.27631398462E-02 2.33300558122E-02 2.39108499321E-02 2.45058496680E-02 2.51153895794E-02 2.57398114443E-02 2.63794643802E-02 2.70347049654E-02 2.77058973606E-02 2.83934134295E-02 2.90976328600E-02 2.98189432842E-02 3.05577403981E-02 3.13144280805E-02 3.20894185107E-02 3.28831322850E-02 3.36959985316E-02 3.45284550243E-02 3.53809482933E-02 3.62539337349E-02 3.71478757178E-02 3.80632476872E-02 3.90005322652E-02 3.99602213486E-02 4.09428162021E-02 4.19488275477E-02 4.29787756499E-02 4.40331903951E-02 4.51126113668E-02 4.62175879137E-02 4.73486792126E-02 4.85064543242E-02 4.96914922413E-02 5.09043819293E-02 5.21457223588E-02 5.34161225285E-02 5.47162014789E-02 5.60465882958E-02 5.74079221023E-02 5.88008520403E-02 6.02260372380E-02 6.16841467659E-02 6.31758595777E-02 6.47018644370E-02 6.62628598280E-02 6.78595538498E-02 6.94926640936E-02 7.11629175006E-02 7.28710502013E-02 7.46178073337E-02 7.64039428403E-02 7.82302192422E-02 8.00974073894E-02 8.20062861863E-02 8.39576422907E-02 8.59522697852E-02 8.79909698204E-02 9.00745502272E-02 9.22038250984E-02 9.43796143366E-02 9.66027431686E-02 9.88740416238E-02 1.01194343975E-01 1.03564488141E-01 1.05985315047E-01 1.08457667950E-01 1.10982391708E-01 1.13560332018E-01 1.16192334599E-01 1.18879244329E-01 1.21621904331E-01 1.24421155013E-01 1.27277833045E-01 1.30192770293E-01 1.33166792687E-01 1.36200719036E-01 1.39295359786E-01 1.42451515710E-01 1.45669976546E-01 1.48951519562E-01 1.52296908062E-01 1.55706889826E-01 1.59182195480E-01 1.62723536803E-01 1.66331604962E-01 1.70007068679E-01 1.73750572327E-01 1.77562733958E-01 1.81444143262E-01 1.85395359453E-01 1.89416909086E-01 1.93509283804E-01 1.97672938027E-01 2.01908286556E-01 2.06215702127E-01 2.10595512898E-01 2.15047999871E-01 2.19573394257E-01 2.24171874794E-01 2.28843564999E-01 2.33588530387E-01 2.38406775641E-01 2.43298241741E-01 2.48262803073E-01 2.53300264502E-01 2.58410358434E-01 2.63592741867E-01 2.68846993441E-01 2.74172610494E-01 2.79569006144E-01 2.85035506389E-01 2.90571347261E-01 2.96175672027E-01 3.01847528454E-01 3.07585866170E-01 3.13389534107E-01 3.19257278063E-01 3.25187738405E-01 3.31179447902E-01 3.37230829742E-01 3.43340195726E-01 3.49505744680E-01 3.55725561084E-01 3.61997613962E-01 3.68319756046E-01 3.74689723229E-01 3.81105134349E-01 3.87563491312E-01 3.94062179586E-01 4.00598469094E-01 4.07169515513E-01 4.13772362033E-01 4.20403941567E-01 4.27061079459E-01 4.33740496703E-01 4.40438813688E-01 4.47152554506E-01 4.53878151821E-01 4.60611952326E-01 4.67350222802E-01 4.74089156782E-01 4.80824881835E-01 4.87553467467E-01 4.94270933643E-01 5.00973259922E-01 5.07656395203E-01 5.14316268051E-01 5.20948797596E-01 5.27549904974E-01 5.34115525275E-01 5.40641619948E-01 5.47124189635E-01 5.53559287351E-01 5.59943031971E-01 5.66271621929E-01 5.72541349054E-01 5.78748612460E-01 5.84889932377E-01 5.90961963817E-01 5.96961509967E-01 6.02885535168E-01 6.08731177349E-01 6.14495759788E-01 6.20176802031E-01 6.25772029822E-01 6.31279383887E-01 6.36697027409E-01 6.42023352013E-01 6.47256982112E-01 6.52396777438E-01 6.57441833585E-01 6.62391480418E-01 6.67245278185E-01 6.72003011180E-01 6.76664678828E-01 6.81230484063E-01 6.85700818883E-01 6.90076246988E-01 6.94357483418E-01 6.98545371122E-01 7.02640854417E-01 7.06644949296E-01 7.10558710572E-01 7.14383195855E-01 7.18119426369E-01 7.21768344611E-01 7.25330768879E-01 7.28807344664E-01 7.32198492905E-01 7.35504355062E-01 7.38724734956E-01 7.41859037247E-01 7.44906202384E-01 7.47864637770E-01 7.50732144802E-01 7.53505841345E-01 7.56182079075E-01 7.58756354984E-01 7.61223216215E-01 7.63576157234E-01 7.65807508177E-01 7.67908313087E-01 7.69868196582E-01 7.71677057790E-01 7.73331073096E-01 7.74828207013E-01 7.76166526843E-01 7.77344205813E-01 7.78359526032E-01 7.79210881262E-01 7.79896779481E-01 7.80415845256E-01 7.80766821916E-01 7.80948573506E-01 7.80960086559E-01 7.80800471648E-01 7.80468964745E-01 7.79964928380E-01 7.79287852597E-01 7.78437355724E-01 7.77413184944E-01 7.76215216682E-01 7.74843456805E-01 7.73298040641E-01 7.71579232829E-01 7.69687426980E-01 7.67623145192E-01 7.65387037381E-01 7.62979880472E-01 7.60402577424E-01 7.57656156115E-01 7.54741768088E-01 7.51660687150E-01 7.48414307856E-01 7.45004143855E-01 7.41431826133E-01 7.37699101131E-01 7.33807828769E-01 7.29759980363E-01 7.25557636457E-01 7.21202984563E-01 7.16698316825E-01 7.12046027605E-01 7.07248611005E-01 7.02308658323E-01 6.97228855448E-01 6.92011980213E-01 6.86660899686E-01 6.81178567427E-01 6.75568020696E-01 6.69832377630E-01 6.63974834384E-01 6.57998662229E-01 6.51907204633E-01 6.45703874299E-01 6.39392150176E-01 6.32975574439E-01 6.26457749434E-01 6.19842334587E-01 6.13133043279E-01 6.06333639680E-01 5.99447935532E-01 5.92479786892E-01 5.85433090823E-01 5.78311782016E-01 5.71119829364E-01 5.63861232461E-01 5.56540018029E-01 5.49160236276E-01 5.41725957167E-01 5.34241266612E-01 5.26710262581E-01 5.19137051113E-01 5.11525742262E-01 5.03880445940E-01 4.96205267693E-01 4.88504304393E-01 4.80781639875E-01 4.73041340499E-01 4.65287450681E-01 4.57523988386E-01 4.49754940599E-01 4.41984258805E-01 4.34215854481E-01 4.26453594638E-01 4.18701297417E-01 4.10962727774E-01 4.03241593282E-01 3.95541540054E-01 3.87866148834E-01 3.80218931267E-01 3.72603326367E-01 3.65022697216E-01 3.57480327904E-01 3.49979420726E-01 3.42523093655E-01 3.35114378105E-01 3.27756216987E-01 3.20451463062E-01 3.13202877607E-01 3.06013129375E-01 2.98884793863E-01 2.91820352870E-01 2.84822194332E-01 2.77892612443E-01 2.71033808014E-01 2.64247889086E-01 2.57536871747E-01 2.50902681156E-01 2.44347152737E-01 2.37872033515E-01 2.31478983590E-01 2.25169577692E-01 2.18945306816E-01 2.12807579900E-01 2.06757725519E-01 2.00796993573E-01 1.94926556946E-01 1.89147513106E-01 1.83460885630E-01 1.77867625641E-01 1.72368613123E-01 1.66964658114E-01 1.61656501758E-01 1.56444817212E-01 1.51330210391E-01 1.46313220566E-01 1.41394320795E-01 1.36573918204E-01 1.31852354122E-01 1.27229904076E-01 1.22706777666E-01 1.18283118321E-01 1.13959002977E-01 1.09734441673E-01 1.05609377102E-01 1.01583684139E-01 9.76571693602E-02 9.38295705893E-02 9.01005564930E-02 8.64697262440E-02 8.29366092813E-02 7.95006651879E-02 7.61612837051E-02 7.29177849047E-02 6.97694195327E-02 6.67153695400E-02 6.37547488116E-02 6.08866041017E-02 5.81099161818E-02 5.54236012047E-02 5.28265122839E-02 5.03174412883E-02 4.78951208450E-02 4.55582265462E-02 4.33053793486E-02 4.11351481569E-02 3.90460525764E-02 3.70365658235E-02 3.51051177766E-02 3.32500981531E-02 3.14698597942E-02 2.97627220420E-02 2.81269741897E-02 2.65608789881E-02 2.50626761902E-02 2.36305861172E-02 2.22628132285E-02 2.09575496789E-02 1.97129788475E-02 1.85272788232E-02 1.73986258322E-02 1.63251975939E-02 1.53051765930E-02 1.43367532557E-02 1.34181290197E-02 1.25475192886E-02 1.17231562609E-02 1.09432916281E-02 1.02061991331E-02 9.51017698489E-03 8.85355012390E-03 8.23467233540E-03 7.65192820724E-03 7.10373493061E-03 6.58854394280E-03 6.10484241157E-03 5.65115456204E-03 5.22604284706E-03 4.82810896339E-03 4.45599471610E-03 4.10838273449E-03 3.78399704330E-03 3.48160349341E-03 3.20001005679E-03 2.93806699067E-03 2.69466687658E-03 2.46874453972E-03 2.25927685487E-03 2.06528244504E-03 1.88582127912E-03 1.71999417516E-03 1.56694221588E-03 1.42584608299E-03 1.29592531715E-03 1.17643751010E-03 1.06667743558E-03 9.65976125705E-04 8.73699899002E-04 7.89249346591E-04 7.12058282517E-04 6.41592664199E-04 5.77349488731E-04 5.18855670532E-04 4.65666905604E-04 4.17366527422E-04 3.73564359162E-04 3.33895566770E-04 2.98019517035E-04 2.65618644351E-04 2.36398112513E-04 2.10090909521E-04 1.86441641222E-04 1.65213019081E-04 1.46185717624E-04 1.29157330945E-04 1.13941363916E-04 1.00366259237E-04 8.82744612851E-05 7.75215175697E-05 6.79752184431E-05 5.95147755642E-05 5.20300394926E-05 4.54207566950E-05 3.95958661621E-05 3.44728357845E-05 2.99762566542E-05 2.60310311818E-05 2.25766592499E-05 1.95594775881E-05 1.69313104457E-05 1.46490530790E-05 1.26742892984E-05 1.09449538148E-05 9.43344074432E-06 8.11487219448E-06 6.96687418328E-06 5.96936590282E-06 5.10436207701E-06 4.35578804865E-06 3.70930727489E-06 3.15216080075E-06 2.67301827742E-06 2.26184005981E-06 1.90974989690E-06 1.60891771236E-06 1.35245196234E-06 1.13430105130E-06 9.49163284979E-07 7.92404842144E-07 6.59985252520E-07 5.48389877653E-07 4.54568903337E-07 3.75882366775E-07 3.10050758184E-07 2.55110754791E-07 2.09375664883E-07 1.71400180201E-07 1.39949056522E-07 1.13969364114E-07 9.25659719798E-08 7.49799518810E-08 6.05696100766E-08 4.87938762077E-08 3.91977997032E-08 3.13999243418E-08 2.50813310484E-08 1.99761575680E-08 1.58634212628E-08 1.25599878774E-08 9.91454468305E-09 7.80245093043E-09 6.12135200950E-09 4.78745614699E-09 3.73238389324E-09 2.90051108631E-09 2.24673547557E-09 1.73460578202E-09 1.33475971727E-09 1.02362442997E-09 7.82339050439E-10 5.95864516822E-10 4.52250743037E-10 3.42035484695E-10 2.57753025709E-10 1.93534096449E-10 1.44781291678E-10 1.07906728583E-10 8.01208144269E-11 5.92628189976E-11 4.36655054022E-11 3.20473970312E-11 2.34273787536E-11 1.70572737834E-11 1.23688284802E-11 8.93219726008E-12 6.42356794068E-12 4.60002105715E-12 3.28008966413E-12 2.32879165588E-12 1.64615571568E-12 1.15846411230E-12 8.11598770719E-13 5.66008210473E-13 3.92917846886E-13 2.71489639340E-13 1.86703189024E-13 1.27782491303E-13 8.70334000095E-14 5.89887302054E-14 3.97826607918E-14 2.66951971319E-14 1.78221242742E-14 1.18370911207E-14 7.82098601251E-15 5.14020542881E-15 3.36026079726E-15 2.18479034356E-15 1.41273656395E-15 9.08442050452E-16 5.80881452755E-16 3.69318666577E-16 2.33457225047E-16 1.46714872935E-16 9.16578744890E-17 5.69196069097E-17 3.51332008675E-17 2.15528196932E-17 1.31397602244E-17 7.96037903115E-18 4.79190923239E-18 2.86600591578E-18 1.70295801400E-18 1.00520215073E-18 5.89371715459E-19 3.43221851091E-19 1.98505805747E-19 1.14010948961E-19 6.50214900059E-20 3.68184711993E-20 2.06982699027E-20 1.15510720453E-20 6.39868141173E-21 3.51801852668E-21 1.91957099952E-21 1.03936270178E-21 5.58399357599E-22 2.97642498991E-22 1.57388901586E-22 8.25541166021E-23 4.29481657700E-23 2.21588386781E-23 1.13370621876E-23 5.75121124156E-24 2.89252345656E-24 1.44213586061E-24 7.12688129613E-25 3.49066910939E-25 1.69427845273E-25 8.14851303751E-26 3.88274899847E-26 1.83280775894E-26 8.56958506378E-27 3.96840458306E-27 1.81983785258E-27 8.26336089013E-28 3.71478789818E-28 1.65314109060E-28 7.28163743176E-29 3.17420775991E-29 1.36921626102E-29 5.84361596253E-30 2.46720933665E-30 1.03035316848E-30 4.25561491145E-31 6.04985036718E-08 6.20300304885E-08 6.36003280862E-08 6.52103779517E-08 6.68611864182E-08 6.85537852944E-08 7.02892325091E-08 7.20686127729E-08 7.38930382560E-08 7.57636492831E-08 7.76816150466E-08 7.96481343368E-08 8.16644362919E-08 8.37317811654E-08 8.58514611147E-08 8.80248010081E-08 9.02531592529E-08 9.25379286449E-08 9.48805372386E-08 9.72824492397E-08 9.97451659206E-08 1.02270226558E-07 1.04859209397E-07 1.07513732635E-07 1.10235455434E-07 1.13026078957E-07 1.15887347436E-07 1.18821049254E-07 1.21829018068E-07 1.24913133958E-07 1.28075324592E-07 1.31317566443E-07 1.34641886016E-07 1.38050361116E-07 1.41545122149E-07 1.45128353454E-07 1.48802294665E-07 1.52569242112E-07 1.56431550258E-07 1.60391633169E-07 1.64451966024E-07 1.68615086659E-07 1.72883597160E-07 1.77260165480E-07 1.81747527115E-07 1.86348486808E-07 1.91065920307E-07 1.95902776157E-07 2.00862077547E-07 2.05946924197E-07 2.11160494300E-07 2.16506046502E-07 2.21986921942E-07 2.27606546343E-07 2.33368432146E-07 2.39276180714E-07 2.45333484576E-07 2.51544129739E-07 2.57911998052E-07 2.64441069635E-07 2.71135425363E-07 2.77999249419E-07 2.85036831911E-07 2.92252571548E-07 2.99650978395E-07 3.07236676690E-07 3.15014407731E-07 3.22989032845E-07 3.31165536422E-07 3.39549029033E-07 3.48144750624E-07 3.56958073789E-07 3.65994507130E-07 3.75259698700E-07 3.84759439532E-07 3.94499667260E-07 4.04486469830E-07 4.14726089302E-07 4.25224925757E-07 4.35989541293E-07 4.47026664127E-07 4.58343192801E-07 4.69946200496E-07 4.81842939449E-07 4.94040845487E-07 5.06547542677E-07 5.19370848087E-07 5.32518776677E-07 5.45999546303E-07 5.59821582858E-07 5.73993525537E-07 5.88524232234E-07 6.03422785082E-07 6.18698496129E-07 6.34360913156E-07 6.50419825646E-07 6.66885270904E-07 6.83767540328E-07 7.01077185843E-07 7.18825026497E-07 7.37022155219E-07 7.55679945757E-07 7.74810059787E-07 7.94424454196E-07 8.14535388562E-07 8.35155432813E-07 8.56297475082E-07 8.77974729769E-07 9.00200745791E-07 9.22989415058E-07 9.46354981152E-07 9.70312048229E-07 9.94875590152E-07 1.02006095984E-06 1.04588389888E-06 1.07236054734E-06 1.09950745388E-06 1.12734158611E-06 1.15588034113E-06 1.18514155647E-06 1.21514352122E-06 1.24590498746E-06 1.27744518194E-06 1.30978381818E-06 1.34294110871E-06 1.37693777775E-06 1.41179507416E-06 1.44753478470E-06 1.48417924766E-06 1.52175136681E-06 1.56027462575E-06 1.59977310254E-06 1.64027148477E-06 1.68179508502E-06 1.72436985662E-06 1.76802240991E-06 1.81278002888E-06 1.85867068820E-06 1.90572307070E-06 1.95396658531E-06 2.00343138547E-06 2.05414838790E-06 2.10614929200E-06 2.15946659962E-06 2.21413363539E-06 2.27018456752E-06 2.32765442921E-06 2.38657914050E-06 2.44699553071E-06 2.50894136152E-06 2.57245535051E-06 2.63757719537E-06 2.70434759875E-06 2.77280829364E-06 2.84300206951E-06 2.91497279901E-06 2.98876546540E-06 3.06442619069E-06 3.14200226443E-06 3.22154217329E-06 3.30309563134E-06 3.38671361114E-06 3.47244837562E-06 3.56035351067E-06 3.65048395870E-06 3.74289605296E-06 3.83764755273E-06 3.93479767942E-06 4.03440715361E-06 4.13653823297E-06 4.24125475117E-06 4.34862215780E-06 4.45870755925E-06 4.57157976064E-06 4.68730930886E-06 4.80596853664E-06 4.92763160772E-06 5.05237456327E-06 5.18027536934E-06 5.31141396564E-06 5.44587231547E-06 5.58373445695E-06 5.72508655555E-06 5.87001695793E-06 6.01861624713E-06 6.17097729923E-06 6.32719534135E-06 6.48736801118E-06 6.65159541798E-06 6.81998020517E-06 6.99262761445E-06 7.16964555159E-06 7.35114465383E-06 7.53723835908E-06 7.72804297672E-06 7.92367776039E-06 8.12426498243E-06 8.32993001031E-06 8.54080138501E-06 8.75701090131E-06 8.97869369014E-06 9.20598830308E-06 9.43903679887E-06 9.67798483224E-06 9.92298174487E-06 1.01741806588E-05 1.04317385720E-05 1.06958164565E-05 1.09665793592E-05 1.12441965047E-05 1.15288414010E-05 1.18206919483E-05 1.21199305498E-05 1.24267442261E-05 1.27413247313E-05 1.30638686737E-05 1.33945776381E-05 1.37336583118E-05 1.40813226140E-05 1.44377878280E-05 1.48032767371E-05 1.51780177636E-05 1.55622451116E-05 1.59561989136E-05 1.63601253801E-05 1.67742769538E-05 1.71989124671E-05 1.76342973037E-05 1.80807035649E-05 1.85384102390E-05 1.90077033762E-05 1.94888762668E-05 1.99822296245E-05 2.04880717747E-05 2.10067188466E-05 2.15384949710E-05 2.20837324828E-05 2.26427721283E-05 2.32159632785E-05 2.38036641470E-05 2.44062420140E-05 2.50240734556E-05 2.56575445790E-05 2.63070512640E-05 2.69729994098E-05 2.76558051888E-05 2.83558953068E-05 2.90737072691E-05 2.98096896538E-05 3.05643023924E-05 3.13380170566E-05 3.21313171531E-05 3.29446984256E-05 3.37786691642E-05 3.46337505231E-05 3.55104768457E-05 3.64093959989E-05 3.73310697146E-05 3.82760739411E-05 3.92449992023E-05 4.02384509666E-05 4.12570500251E-05 4.23014328790E-05 4.33722521375E-05 4.44701769248E-05 4.55958932980E-05 4.67501046757E-05 4.79335322769E-05 4.91469155716E-05 5.03910127420E-05 5.16666011564E-05 5.29744778539E-05 5.43154600425E-05 5.56903856089E-05 5.71001136416E-05 5.85455249673E-05 6.00275227004E-05 6.15470328071E-05 6.31050046829E-05 6.47024117455E-05 6.63402520418E-05 6.80195488716E-05 6.97413514252E-05 7.15067354389E-05 7.33168038657E-05 7.51726875640E-05 7.70755460028E-05 7.90265679852E-05 8.10269723902E-05 8.30780089331E-05 8.51809589449E-05 8.73371361719E-05 8.95478875948E-05 9.18145942691E-05 9.41386721866E-05 9.65215731582E-05 9.89647857193E-05 1.01469836058E-04 1.04038288968E-04 1.06671748822E-04 1.09371860574E-04 1.12140310783E-04 1.14978828667E-04 1.17889187178E-04 1.20873204109E-04 1.23932743228E-04 1.27069715435E-04 1.30286079958E-04 1.33583845573E-04 1.36965071851E-04 1.40431870448E-04 1.43986406415E-04 1.47630899550E-04 1.51367625779E-04 1.55198918575E-04 1.59127170409E-04 1.63154834244E-04 1.67284425056E-04 1.71518521405E-04 1.75859767040E-04 1.80310872541E-04 1.84874617010E-04 1.89553849800E-04 1.94351492284E-04 1.99270539679E-04 2.04314062905E-04 2.09485210496E-04 2.14787210560E-04 2.20223372786E-04 2.25797090501E-04 2.31511842779E-04 2.37371196608E-04 2.43378809103E-04 2.49538429781E-04 2.55853902890E-04 2.62329169798E-04 2.68968271442E-04 2.75775350836E-04 2.82754655647E-04 2.89910540829E-04 2.97247471330E-04 3.04770024861E-04 3.12482894737E-04 3.20390892792E-04 3.28498952360E-04 3.36812131339E-04 3.45335615325E-04 3.54074720828E-04 3.63034898567E-04 3.72221736849E-04 3.81640965031E-04 3.91298457072E-04 4.01200235166E-04 4.11352473473E-04 4.21761501945E-04 4.32433810238E-04 4.43376051731E-04 4.54595047640E-04 4.66097791237E-04 4.77891452175E-04 4.89983380918E-04 5.02381113280E-04 5.15092375089E-04 5.28125086947E-04 5.41487369129E-04 5.55187546589E-04 5.69234154098E-04 5.83635941509E-04 5.98401879149E-04 6.13541163352E-04 6.29063222118E-04 6.44977720929E-04 6.61294568691E-04 6.78023923838E-04 6.95176200576E-04 7.12762075294E-04 7.30792493118E-04 7.49278674644E-04 7.68232122823E-04 7.87664630025E-04 8.07588285273E-04 8.28015481658E-04 8.48958923939E-04 8.70431636318E-04 8.92446970427E-04 9.15018613491E-04 9.38160596705E-04 9.61887303811E-04 9.86213479888E-04 1.01115424036E-03 1.03672508020E-03 1.06294188343E-03 1.08982093274E-03 1.11737891946E-03 1.14563295369E-03 1.17460057471E-03 1.20429976168E-03 1.23474894450E-03 1.26596701505E-03 1.29797333863E-03 1.33078776569E-03 1.36443064388E-03 1.39892283033E-03 1.43428570427E-03 1.47054117997E-03 1.50771171995E-03 1.54582034850E-03 1.58489066560E-03 1.62494686110E-03 1.66601372927E-03 1.70811668369E-03 1.75128177251E-03 1.79553569406E-03 1.84090581283E-03 1.88742017588E-03 1.93510752952E-03 1.98399733654E-03 2.03411979375E-03 2.08550584993E-03 2.13818722426E-03 2.19219642515E-03 2.24756676951E-03 2.30433240250E-03 2.36252831769E-03 2.42219037776E-03 2.48335533560E-03 2.54606085599E-03 2.61034553774E-03 2.67624893631E-03 2.74381158699E-03 2.81307502863E-03 2.88408182790E-03 2.95687560405E-03 3.03150105434E-03 3.10800397995E-03 3.18643131256E-03 3.26683114147E-03 3.34925274133E-03 3.43374660059E-03 3.52036445045E-03 3.60915929454E-03 3.70018543926E-03 3.79349852475E-03 3.88915555659E-03 3.98721493816E-03 4.08773650372E-03 4.19078155224E-03 4.29641288189E-03 4.40469482540E-03 4.51569328600E-03 4.62947577433E-03 4.74611144598E-03 4.86567113989E-03 4.98822741756E-03 5.11385460307E-03 5.24262882391E-03 5.37462805271E-03 5.50993214976E-03 5.64862290645E-03 5.79078408955E-03 5.93650148645E-03 6.08586295116E-03 6.23895845142E-03 6.39588011654E-03 6.55672228632E-03 6.72158156083E-03 6.89055685115E-03 7.06374943113E-03 7.24126299003E-03 7.42320368620E-03 7.60968020176E-03 7.80080379818E-03 7.99668837295E-03 8.19745051723E-03 8.40320957444E-03 8.61408769995E-03 8.83020992175E-03 9.05170420207E-03 9.27870150013E-03 9.51133583576E-03 9.74974435417E-03 9.99406739163E-03 1.02444485422E-02 1.05010347252E-02 1.07639762545E-02 1.10334269073E-02 1.13095439955E-02 1.15924884368E-02 1.18824248274E-02 1.21795215155E-02 1.24839506750E-02 1.27958883814E-02 1.31155146873E-02 1.34430136993E-02 1.37785736557E-02 1.41223870047E-02 1.44746504831E-02 1.48355651966E-02 1.52053366994E-02 1.55841750755E-02 1.59722950198E-02 1.63699159198E-02 1.67772619379E-02 1.71945620937E-02 1.76220503469E-02 1.80599656798E-02 1.85085521803E-02 1.89680591250E-02 1.94387410618E-02 1.99208578921E-02 2.04146749534E-02 2.09204631009E-02 2.14384987882E-02 2.19690641483E-02 2.25124470728E-02 2.30689412901E-02 2.36388464432E-02 2.42224681653E-02 2.48201181544E-02 2.54321142457E-02 2.60587804825E-02 2.67004471847E-02 2.73574510151E-02 2.80301350426E-02 2.87188488035E-02 2.94239483584E-02 3.01457963467E-02 3.08847620369E-02 3.16412213733E-02 3.24155570175E-02 3.32081583862E-02 3.40194216834E-02 3.48497499271E-02 3.56995529709E-02 3.65692475182E-02 3.74592571310E-02 3.83700122308E-02 3.93019500918E-02 4.02555148272E-02 4.12311573651E-02 4.22293354172E-02 4.32505134363E-02 4.42951625646E-02 4.53637605705E-02 4.64567917745E-02 4.75747469623E-02 4.87181232859E-02 4.98874241503E-02 5.10831590870E-02 5.23058436119E-02 5.35559990673E-02 5.48341524480E-02 5.61408362098E-02 5.74765880591E-02 5.88419507248E-02 6.02374717088E-02 6.16637030164E-02 6.31212008647E-02 6.46105253680E-02 6.61322401994E-02 6.76869122277E-02 6.92751111278E-02 7.08974089653E-02 7.25543797517E-02 7.42465989714E-02 7.59746430778E-02 7.77390889589E-02 7.95405133691E-02 8.13794923287E-02 8.32566004875E-02 8.51724104530E-02 8.71274920818E-02 8.91224117318E-02 9.11577314761E-02 9.32340082759E-02 9.53517931118E-02 9.75116300730E-02 9.97140554025E-02 1.01959596498E-01 1.04248770866E-01 1.06582085033E-01 1.08960033405E-01 1.11383097083E-01 1.13851742626E-01 1.16366420770E-01 1.18927565093E-01 1.21535590632E-01 1.24190892451E-01 1.26893844157E-01 1.29644796367E-01 1.32444075126E-01 1.35291980275E-01 1.38188783770E-01 1.41134727958E-01 1.44130023797E-01 1.47174849044E-01 1.50269346391E-01 1.53413621560E-01 1.56607741363E-01 1.59851731728E-01 1.63145575682E-01 1.66489211316E-01 1.69882529717E-01 1.73325372883E-01 1.76817531616E-01 1.80358743412E-01 1.83948690333E-01 1.87586996895E-01 1.91273227948E-01 1.95006886581E-01 1.98787412046E-01 2.02614177714E-01 2.06486489066E-01 2.10403581744E-01 2.14364619649E-01 2.18368693124E-01 2.22414817209E-01 2.26501929995E-01 2.30628891083E-01 2.34794480170E-01 2.38997395763E-01 2.43236254046E-01 2.47509587910E-01 2.51815846165E-01 2.56153392948E-01 2.60520507335E-01 2.64915383199E-01 2.69336129295E-01 2.73780769617E-01 2.78247244037E-01 2.82733409231E-01 2.87237039924E-01 2.91755830465E-01 2.96287396739E-01 3.00829278444E-01 3.05378941743E-01 3.09933782292E-01 3.14491128675E-01 3.19048246241E-01 3.23602341356E-01 3.28150566076E-01 3.32690023242E-01 3.37217772003E-01 3.41730833756E-01 3.46226198504E-01 3.50700831624E-01 3.55151681023E-01 3.59575684672E-01 3.63969778495E-01 3.68330904581E-01 3.72656019694E-01 3.76942104036E-01 3.81186170225E-01 3.85385272435E-01 3.89536515650E-01 3.93637064957E-01 3.97684154825E-01 4.01675098286E-01 4.05607295949E-01 4.09478244744E-01 4.13285546326E-01 4.17026915024E-01 4.20700185249E-01 4.24303318240E-01 4.27834408057E-01 4.31291686693E-01 4.34673528199E-01 4.37978451717E-01 4.41205123290E-01 4.44352356348E-01 4.47419110774E-01 4.50404490417E-01 4.53307738985E-01 4.56128234217E-01 4.58865480250E-01 4.61519098120E-01 4.64088814341E-01 4.66574447510E-01 4.68975892923E-01 4.71293105174E-01 4.73526078746E-01 4.75674826607E-01 4.77739356846E-01 4.79719647380E-01 4.81615618794E-01 4.83427105365E-01 4.85153824337E-01 4.86795343500E-01 4.88351047124E-01 4.89820100287E-01 4.91201411596E-01 4.92493594280E-01 4.93694925591E-01 4.94803304383E-01 4.95816206673E-01 4.96730638929E-01 4.97543088712E-01 4.98249472219E-01 4.98845078160E-01 4.99324507281E-01 4.99681606737E-01 4.99909398390E-01 5.00000000000E-01 4.99945731379E-01 4.99742997184E-01 4.99389351137E-01 4.98882399508E-01 4.98219803133E-01 4.97399279323E-01 4.96418603641E-01 4.95275611555E-01 4.93968199957E-01 4.92494328556E-01 4.90852021138E-01 4.89039366692E-01 4.87054520420E-01 4.84895704603E-01 4.82561209353E-01 4.80049393243E-01 4.77358683809E-01 4.74487577945E-01 4.71434642177E-01 4.68198512831E-01 4.64777896090E-01 4.61171567955E-01 4.57378374098E-01 4.53397229631E-01 4.49227118772E-01 4.44867094436E-01 4.40316277739E-01 4.35573857423E-01 4.30639089214E-01 4.25511295110E-01 4.20189862604E-01 4.14674243858E-01 4.08963954815E-01 4.03058574266E-01 3.96957742883E-01 3.90661162202E-01 3.84168593582E-01 3.77479857135E-01 3.70594830628E-01 3.63513448372E-01 3.56235700095E-01 3.48761629798E-01 3.41091334614E-01 3.33224963655E-01 3.25162716863E-01 3.16904843857E-01 3.08451642794E-01 2.99803459225E-01 2.90960684964E-01 2.81923756970E-01 2.72693156231E-01 2.63269406662E-01 2.53653074015E-01 2.43844764802E-01 2.33845125220E-01 2.23654840097E-01 2.13274631845E-01 2.02705259424E-01 1.91947517316E-01 1.81002234518E-01 1.69870273542E-01 1.58552529435E-01 1.47049928818E-01 1.35363428949E-01 1.23494016818E-01 1.11442708278E-01 9.92105472186E-02 8.67986048054E-02 7.42079787822E-02 6.14397928642E-02 4.84951962323E-02 3.53753631522E-02 2.20814927392E-02 8.61480889346E-03 -5.02343956671E-03 -1.88319785456E-02 -3.28095080540E-02 -4.69547013045E-02 -6.12662034854E-02 -7.57426301801E-02 -9.03825653994E-02 -1.05184559193E-01 -1.20147124814E-01 -1.35268735396E-01 -1.50547820137E-01 -1.65982759947E-01 -1.81571882554E-01 -1.97313457053E-01 -2.13205687888E-01 -2.29246708271E-01 -2.45434573040E-01 -2.61767250969E-01 -2.78242616557E-01 -2.94858441321E-01 -3.11612384623E-01 -3.28501984094E-01 -3.45524645689E-01 -3.62677633455E-01 -3.79958059063E-01 -3.97362871191E-01 -4.14888844844E-01 -4.32532570698E-01 -4.50290444568E-01 -4.68158657091E-01 -4.86133183752E-01 -5.04209775338E-01 -5.22383948950E-01 -5.40650979672E-01 -5.59005893015E-01 -5.77443458251E-01 -5.95958182729E-01 -6.14544307289E-01 -6.33195802855E-01 -6.51906368313E-01 -6.70669429721E-01 -6.89478140948E-01 -7.08325385766E-01 -7.27203781446E-01 -7.46105683873E-01 -7.65023194178E-01 -7.83948166875E-01 -8.02872219464E-01 -8.21786743444E-01 -8.40682916649E-01 -8.59551716832E-01 -8.78383936358E-01 -8.97170197885E-01 -9.15900970880E-01 -9.34566588800E-01 -9.53157266772E-01 -9.71663119573E-01 -9.90074179717E-01 -1.00838041546E+00 -1.02657174851E+00 -1.04463807124E+00 -1.06256926327E+00 -1.08035520708E+00 -1.09798580271E+00 -1.11545098113E+00 -1.13274071632E+00 -1.14984503586E+00 -1.16675402986E+00 -1.18345785824E+00 -1.19994675617E+00 -1.21621103769E+00 -1.23224109742E+00 -1.24802741037E+00 -1.26356052978E+00 -1.27883108305E+00 -1.29382976580E+00 -1.30854733406E+00 -1.32297459459E+00 -1.33710239351E+00 -1.35092160324E+00 -1.36442310778E+00 -1.37759778658E+00 -1.39043649690E+00 -1.40293005483E+00 -1.41506921521E+00 -1.42684465029E+00 -1.43824692750E+00 -1.44926648626E+00 -1.45989361401E+00 -1.47011842165E+00 -1.47993081832E+00 -1.48932048584E+00 -1.49827685278E+00 -1.50678906836E+00 -1.51484597632E+00 -1.52243608872E+00 -1.52954756005E+00 -1.53616816158E+00 -1.54228525612E+00 -1.54788577340E+00 -1.55295618609E+00 -1.55748248675E+00 -1.56145016567E+00 -1.56484418990E+00 -1.56764898357E+00 -1.56984840969E+00 -1.57142575348E+00 -1.57236370764E+00 -1.57264435948E+00 -1.57224918034E+00 -1.57115901722E+00 -1.56935408722E+00 -1.56681397459E+00 -1.56351763091E+00 -1.55944337850E+00 -1.55456891741E+00 -1.54887133611E+00 -1.54232712627E+00 -1.53491220190E+00 -1.52660192300E+00 -1.51737112427E+00 -1.50719414895E+00 -1.49604488826E+00 -1.48389682667E+00 -1.47072309349E+00 -1.45649652094E+00 -1.44118970915E+00 -1.42477509851E+00 -1.40722504961E+00 -1.38851193128E+00 -1.36860821691E+00 -1.34748658965E+00 -1.32512005663E+00 -1.30148207283E+00 -1.27654667463E+00 -1.25028862373E+00 -1.22268356152E+00 -1.19370817429E+00 -1.16334036965E+00 -1.13155946432E+00 -1.09834638359E+00 -1.06368387282E+00 -1.02755672031E+00 -9.89955265552E-01 -9.50901748718E-01 -9.10388771919E-01 -8.68408535973E-01 -8.24956729798E-01 -7.80032821058E-01 -7.33640357745E-01 -6.85787280177E-01 -6.36486242834E-01 -5.85754945323E-01 -5.33616471596E-01 -4.80099636440E-01 -4.25239337963E-01 -3.69076914733E-01 -3.11660505950E-01 -2.53045412849E-01 -1.93289426323E-01 -1.32414135535E-01 -7.05103607442E-02 -7.68471967677E-03 5.59466825627E-02 1.20257998565E-01 1.85113411627E-01 2.50366941296E-01 3.15862286360E-01 3.81432710552E-01 4.46900976539E-01 5.12079334164E-01 5.76769568877E-01 6.40763117247E-01 7.03841256107E-01 7.65775372366E-01 8.26327320763E-01 8.85249876926E-01 9.42287293277E-01 9.97175965334E-01 1.04964521598E+00 1.09941820517E+00 1.14621297227E+00 1.18974361808E+00 1.22972163308E+00 1.26585737777E+00 1.29786172049E+00 1.32544783711E+00 1.34833317588E+00 1.36624158957E+00 1.37890563546E+00 1.38606904221E+00 1.38748934042E+00 1.38294065181E+00 1.37221662917E+00 1.35513353679E+00 1.33153345771E+00 1.30128761104E+00 1.26429975895E+00 1.22050967894E+00 1.16989667280E+00 1.11248307944E+00 1.04833775389E+00 9.77579470015E-01 9.00380199443E-01 8.16968214270E-01 7.27630955715E-01 6.32717606122E-01 5.32641296631E-01 4.27880878326E-01 3.18982180383E-01 2.06558675115E-01 9.12914668341E-02 -2.60714806118E-02 -1.44716963731E-01 -2.63769092486E-01 -3.82292860501E-01 -4.99298812631E-01 -6.13748884490E-01 -7.24563480567E-01 -8.30629847093E-01 -9.30811782570E-01 -1.02396071261E+00 -1.10892813622E+00 -1.18457942795E+00 -1.24980895369E+00 -1.30355642827E+00 -1.34482440937E+00 -1.37269678522E+00 -1.38635807351E+00 -1.38511330588E+00 -1.36840822662E+00 -1.33584948728E+00 -1.28722447034E+00 -1.22252032743E+00 -1.14194177046E+00 -1.04592711054E+00 -9.35161999787E-01 -8.10590298645E-01 -6.73421466564E-01 -5.25133860695E-01 -3.67473327024E-01 -2.02446484267E-01 -3.23081352895E-02 1.40457703516E-01 3.13163585118E-01 4.82951551949E-01 6.46833385151E-01 8.01738212842E-01 9.44567315575E-01 1.07225574623E+00 1.18184013287E+00 1.27053175929E+00 1.33579372372E+00 1.37542066707E+00 1.38761924649E+00 1.37108721777E+00 1.32508869294E+00 1.24952287208E+00 1.14498332589E+00 1.01280474677E+00 8.55094009095E-01 6.74742404329E-01 4.75416063195E-01 2.61521864224E-01 3.81465722018E-02 -1.89032434972E-01 -4.13865698484E-01 -6.29879342162E-01 -8.30450589745E-01 -1.00900854970E+00 -1.15925624232E+00 -1.27540831487E+00 -1.35243732671E+00 -1.38631995716E+00 -1.37427307731E+00 -1.31496843047E+00 -1.20871379034E+00 -1.05758802584E+00 -8.65517611959E-01 -6.38282896567E-01 -3.83443961682E-01 -1.10178276357E-01 1.70974431765E-01 4.48460564471E-01 7.10149880709E-01 9.43851571513E-01 1.13789314623E+00 1.28173986378E+00 1.36662638957E+00 1.38616692087E+00 1.33690570018E+00 1.21876716424E+00 1.03536449950E+00 7.94127600934E-01 5.06216783000E-01 1.86197347625E-01 -1.48537649850E-01 -4.78593571472E-01 -7.83628134643E-01 -1.04359173168E+00 -1.24009186028E+00 -1.35779944346E+00 -1.38579771111E+00 -1.31876216705E+00 -1.15785514495E+00 -9.11222582342E-01 -5.93995542880E-01 -2.27725651894E-01 4.04780637292E-12 4.20248113521E-12 4.36306632887E-12 4.52978780327E-12 4.70288003795E-12 4.88258647236E-12 5.06915984826E-12 5.26286256519E-12 5.46396704950E-12 5.67275613747E-12 5.88952347314E-12 6.11457392126E-12 6.34822399609E-12 6.59080230651E-12 6.84265001820E-12 7.10412133348E-12 7.37558398943E-12 7.65741977510E-12 7.95002506846E-12 8.25381139387E-12 8.56920600086E-12 8.89665246501E-12 9.23661131182E-12 9.58956066437E-12 9.95599691577E-12 1.03364354273E-11 1.07314112533E-11 1.11414798934E-11 1.15672180743E-11 1.20092245602E-11 1.24681209955E-11 1.29445527789E-11 1.34391899710E-11 1.39527282366E-11 1.44858898235E-11 1.50394245779E-11 1.56141109990E-11 1.62107573343E-11 1.68302027158E-11 1.74733183403E-11 1.81410086952E-11 1.88342128297E-11 1.95539056762E-11 2.03010994212E-11 2.10768449286E-11 2.18822332183E-11 2.27183969998E-11 2.35865122661E-11 2.44877999470E-11 2.54235276265E-11 2.63950113253E-11 2.74036173523E-11 2.84507642254E-11 2.95379246671E-11 3.06666276753E-11 3.18384606743E-11 3.30550717466E-11 3.43181719517E-11 3.56295377317E-11 3.69910134102E-11 3.84045137860E-11 3.98720268262E-11 4.13956164622E-11 4.29774254921E-11 4.46196785947E-11 4.63246854580E-11 4.80948440279E-11 4.99326438807E-11 5.18406697240E-11 5.38216050324E-11 5.58782358214E-11 5.80134545655E-11 6.02302642666E-11 6.25317826770E-11 6.49212466847E-11 6.74020168654E-11 6.99775822092E-11 7.26515650272E-11 7.54277260463E-11 7.83099696982E-11 8.13023496105E-11 8.44090743082E-11 8.76345131321E-11 9.09832023841E-11 9.44598517073E-11 9.80693507094E-11 1.01816775840E-10 1.05707397529E-10 1.09746687600E-10 1.13940326967E-10 1.18294213622E-10 1.22814470930E-10 1.27507456243E-10 1.32379769840E-10 1.37438264208E-10 1.42690053683E-10 1.48142524453E-10 1.53803344947E-10 1.59680476617E-10 1.65782185143E-10 1.72117052048E-10 1.78693986773E-10 1.85522239209E-10 1.92611412699E-10 1.99971477551E-10 2.07612785058E-10 2.15546082056E-10 2.23782526037E-10 2.32333700845E-10 2.41211632964E-10 2.50428808432E-10 2.59998190406E-10 2.69933237386E-10 2.80247922153E-10 2.90956751410E-10 3.02074786191E-10 3.13617663044E-10 3.25601616015E-10 3.38043499487E-10 3.50960811883E-10 3.64371720271E-10 3.78295085921E-10 3.92750490825E-10 4.07758265245E-10 4.23339516298E-10 4.39516157646E-10 4.56310940314E-10 4.73747484686E-10 4.91850313728E-10 5.10644887475E-10 5.30157638839E-10 5.50416010782E-10 5.71448494917E-10 5.93284671574E-10 6.15955251404E-10 6.39492118570E-10 6.63928375590E-10 6.89298389893E-10 7.15637842151E-10 7.42983776462E-10 7.71374652450E-10 8.00850399354E-10 8.31452472182E-10 8.63223910020E-10 8.96209396554E-10 9.30455322920E-10 9.66009852945E-10 1.00292299089E-09 1.04124665176E-09 1.08103473435E-09 1.12234319700E-09 1.16523013635E-09 1.20975586901E-09 1.25598301638E-09 1.30397659278E-09 1.35380409680E-09 1.40553560631E-09 1.45924387697E-09 1.51500444458E-09 1.57289573127E-09 1.63299915585E-09 1.69539924828E-09 1.76018376858E-09 1.82744383020E-09 1.89727402824E-09 1.96977257243E-09 2.04504142527E-09 2.12318644542E-09 2.20431753662E-09 2.28854880218E-09 2.37599870555E-09 2.46679023683E-09 2.56105108582E-09 2.65891382157E-09 2.76051607880E-09 2.86600075152E-09 2.97551619395E-09 3.08921642919E-09 3.20726136582E-09 3.32981702281E-09 3.45705576298E-09 3.58915653545E-09 3.72630512727E-09 3.86869442474E-09 4.01652468465E-09 4.17000381595E-09 4.32934767214E-09 4.49478035482E-09 4.66653452889E-09 4.84485174977E-09 5.02998280307E-09 5.22218805734E-09 5.42173783025E-09 5.62891276871E-09 5.84400424360E-09 6.06731475955E-09 6.29915838034E-09 6.53986117065E-09 6.78976165456E-09 7.04921129169E-09 7.31857497145E-09 7.59823152625E-09 7.88857426421E-09 8.19001152238E-09 8.50296724093E-09 8.82788155943E-09 9.16521143578E-09 9.51543128891E-09 9.87903366599E-09 1.02565299351E-08 1.06484510043E-08 1.10553480684E-08 1.14777933844E-08 1.19163810755E-08 1.23717279676E-08 1.28444744559E-08 1.33352854063E-08 1.38448510897E-08 1.43738881534E-08 1.49231406286E-08 1.54933809767E-08 1.60854111759E-08 1.67000638489E-08 1.73382034337E-08 1.80007273997E-08 1.86885675095E-08 1.94026911292E-08 2.01441025892E-08 2.09138445962E-08 2.17129996998E-08 2.25426918151E-08 2.34040878029E-08 2.42983991106E-08 2.52268834766E-08 2.61908466981E-08 2.71916444681E-08 2.82306842819E-08 2.93094274160E-08 3.04293909836E-08 3.15921500677E-08 3.27993399365E-08 3.40526583426E-08 3.53538679112E-08 3.67047986179E-08 3.81073503631E-08 3.95634956432E-08 4.10752823247E-08 4.26448365239E-08 4.42743655968E-08 4.59661612434E-08 4.77226027302E-08 4.95461602361E-08 5.14393983262E-08 5.34049795580E-08 5.54456682257E-08 5.75643342474E-08 5.97639572011E-08 6.20476305143E-08 6.44185658140E-08 6.68800974435E-08 6.94356871506E-08 7.20889289557E-08 7.48435542059E-08 7.77034368215E-08 8.06725987443E-08 8.37552155923E-08 8.69556225317E-08 9.02783203732E-08 9.37279819003E-08 9.73094584405E-08 1.01027786687E-07 1.04888195779E-07 1.08896114659E-07 1.13057179703E-07 1.17377242646E-07 1.21862378811E-07 1.26518895654E-07 1.31353341628E-07 1.36372515395E-07 1.41583475382E-07 1.46993549709E-07 1.52610346492E-07 1.58441764538E-07 1.64496004453E-07 1.70781580174E-07 1.77307330937E-07 1.84082433706E-07 1.91116416077E-07 1.98419169671E-07 2.06000964048E-07 2.13872461136E-07 2.22044730230E-07 2.30529263551E-07 2.39337992403E-07 2.48483303951E-07 2.57978058631E-07 2.67835608236E-07 2.78069814685E-07 2.88695069509E-07 2.99726314087E-07 3.11179060652E-07 3.23069414094E-07 3.35414094605E-07 3.48230461183E-07 3.61536536036E-07 3.75351029916E-07 3.89693368422E-07 4.04583719309E-07 4.20043020838E-07 4.36093011206E-07 4.52756259111E-07 4.70056195466E-07 4.88017146344E-07 5.06664367167E-07 5.26024078206E-07 5.46123501439E-07 5.66990898810E-07 5.88655611954E-07 6.11148103440E-07 6.34499999584E-07 6.58744134899E-07 6.83914598248E-07 7.10046780748E-07 7.37177425513E-07 7.65344679289E-07 7.94588146072E-07 8.24948942755E-07 8.56469756920E-07 8.89194906817E-07 9.23170403653E-07 9.58444016239E-07 9.95065338120E-07 1.03308585726E-06 1.07255902840E-06 1.11354034814E-06 1.15608743295E-06 1.20026010011E-06 1.24612045174E-06 1.29373296207E-06 1.34316456801E-06 1.39448476320E-06 1.44776569564E-06 1.50308226902E-06 1.56051224798E-06 1.62013636731E-06 1.68203844539E-06 1.74630550192E-06 1.81302788013E-06 1.88229937369E-06 1.95421735842E-06 2.02888292910E-06 2.10640104139E-06 2.18688065927E-06 2.27043490805E-06 2.35718123319E-06 2.44724156527E-06 2.54074249119E-06 2.63781543187E-06 2.73859682681E-06 2.84322832563E-06 2.95185698692E-06 3.06463548474E-06 3.18172232287E-06 3.30328205735E-06 3.42948552746E-06 3.56051009548E-06 3.69653989563E-06 3.83776609249E-06 3.98438714929E-06 4.13660910638E-06 4.29464587036E-06 4.45871951422E-06 4.62906058888E-06 4.80590844672E-06 4.98951157727E-06 5.18012795583E-06 5.37802540533E-06 5.58348197194E-06 5.79678631508E-06 6.01823811216E-06 6.24814847888E-06 6.48684040544E-06 6.73464920938E-06 6.99192300571E-06 7.25902319492E-06 7.53632496953E-06 7.82421783999E-06 8.12310618058E-06 8.43340979609E-06 8.75556451004E-06 9.09002277534E-06 9.43725430817E-06 9.79774674596E-06 1.01720063304E-05 1.05605586166E-05 1.09639492088E-05 1.13827445246E-05 1.18175325879E-05 1.22689238521E-05 1.27375520547E-05 1.32240751041E-05 1.37291760003E-05 1.42535637908E-05 1.47979745624E-05 1.53631724711E-05 1.59499508105E-05 1.65591331218E-05 1.71915743450E-05 1.78481620142E-05 1.85298174983E-05 1.92374972888E-05 1.99721943365E-05 2.07349394387E-05 2.15268026792E-05 2.23488949232E-05 2.32023693684E-05 2.40884231550E-05 2.50082990373E-05 2.59632871179E-05 2.69547266481E-05 2.79840078965E-05 2.90525740878E-05 3.01619234162E-05 3.13136111338E-05 3.25092517189E-05 3.37505211259E-05 3.50391591204E-05 3.63769717030E-05 3.77658336244E-05 3.92076909954E-05 4.07045639960E-05 4.22585496871E-05 4.38718249271E-05 4.55466494006E-05 4.72853687594E-05 4.90904178839E-05 5.09643242661E-05 5.29097115211E-05 5.49293030304E-05 5.70259257233E-05 5.92025139998E-05 6.14621138018E-05 6.38078868380E-05 6.62431149666E-05 6.87712047443E-05 7.13956921451E-05 7.41202474575E-05 7.69486803651E-05 7.98849452182E-05 8.29331465030E-05 8.60975445171E-05 8.93825612561E-05 9.27927865227E-05 9.63329842632E-05 1.00008099142E-04 1.03823263364E-04 1.07783803747E-04 1.11895249063E-04 1.16163337657E-04 1.20594025339E-04 1.25193493582E-04 1.29968158021E-04 1.34924677271E-04 1.40069962065E-04 1.45411184747E-04 1.50955789105E-04 1.56711500579E-04 1.62686336837E-04 1.68888618759E-04 1.75326981812E-04 1.82010387861E-04 1.88948137407E-04 1.96149882283E-04 2.03625638819E-04 2.11385801491E-04 2.19441157078E-04 2.27802899333E-04 2.36482644206E-04 2.45492445618E-04 2.54844811817E-04 2.64552722338E-04 2.74629645582E-04 2.85089557036E-04 2.95946958174E-04 3.07216896028E-04 3.18914983492E-04 3.31057420359E-04 3.43661015120E-04 3.56743207568E-04 3.70322092211E-04 3.84416442545E-04 3.99045736194E-04 4.14230180976E-04 4.29990741896E-04 4.46349169119E-04 4.63328026955E-04 4.80950723873E-04 4.99241543608E-04 5.18225677373E-04 5.37929257223E-04 5.58379390617E-04 5.79604196206E-04 6.01632840895E-04 6.24495578224E-04 6.48223788102E-04 6.72850017952E-04 6.98408025306E-04 7.24932821897E-04 7.52460719297E-04 7.81029376162E-04 8.10677847120E-04 8.41446633363E-04 8.73377735003E-04 9.06514705239E-04 9.40902706396E-04 9.76588567896E-04 1.01362084622E-03 1.05204988694E-03 1.09192788884E-03 1.13330897021E-03 1.17624923750E-03 1.22080685608E-03 1.26704212365E-03 1.31501754584E-03 1.36479791459E-03 1.41645038892E-03 1.47004457856E-03 1.52565263018E-03 1.58334931660E-03 1.64321212879E-03 1.70532137098E-03 1.76976025874E-03 1.83661502028E-03 1.90597500104E-03 1.97793277149E-03 2.05258423850E-03 2.13002876003E-03 2.21036926364E-03 2.29371236848E-03 2.38016851113E-03 2.46985207538E-03 2.56288152579E-03 2.65937954546E-03 2.75947317782E-03 2.86329397266E-03 2.97097813653E-03 3.08266668745E-03 3.19850561417E-03 3.31864603994E-03 3.44324439097E-03 3.57246256963E-03 3.70646813244E-03 3.84543447293E-03 3.98954100953E-03 4.13897337845E-03 4.29392363161E-03 4.45459043984E-03 4.62117930124E-03 4.79390275476E-03 4.97298059921E-03 5.15864011753E-03 5.35111630646E-03 5.55065211167E-03 5.75749866828E-03 5.97191554677E-03 6.19417100441E-03 6.42454224203E-03 6.66331566618E-03 6.91078715667E-03 7.16726233940E-03 7.43305686437E-03 7.70849668889E-03 7.99391836584E-03 8.28966933681E-03 8.59610823009E-03 8.91360516328E-03 9.24254205042E-03 9.58331291334E-03 9.93632419714E-03 1.03019950894E-02 1.06807578433E-02 1.10730581032E-02 1.14793552343E-02 1.19001226543E-02 1.23358481668E-02 1.27870342981E-02 1.32541986336E-02 1.37378741566E-02 1.42386095871E-02 1.47569697203E-02 1.52935357649E-02 1.58489056804E-02 1.64236945125E-02 1.70185347257E-02 1.76340765339E-02 1.82709882264E-02 1.89299564899E-02 1.96116867255E-02 2.03169033595E-02 2.10463501479E-02 2.18007904731E-02 2.25810076331E-02 2.33878051210E-02 2.42220068953E-02 2.50844576395E-02 2.59760230104E-02 2.68975898746E-02 2.78500665322E-02 2.88343829277E-02 2.98514908462E-02 3.09023640960E-02 3.19879986759E-02 3.31094129283E-02 3.42676476756E-02 3.54637663426E-02 3.66988550633E-02 3.79740227718E-02 3.92904012803E-02 4.06491453420E-02 4.20514327019E-02 4.34984641354E-02 4.49914634772E-02 4.65316776419E-02 4.81203766384E-02 4.97588535806E-02 5.14484246981E-02 5.31904293499E-02 5.49862300441E-02 5.68372124707E-02 5.87447855487E-02 6.07103814970E-02 6.27354559321E-02 6.48214880007E-02 6.69699805551E-02 6.91824603778E-02 7.14604784650E-02 7.38056103788E-02 7.62194566755E-02 7.87036434240E-02 8.12598228221E-02 8.38896739239E-02 8.65949034906E-02 8.93772469754E-02 9.22384696568E-02 9.51803679329E-02 9.82047707881E-02 1.01313541447E-01 1.04508579225E-01 1.07791821594E-01 1.11165246462E-01 1.14630874691E-01 1.18190772852E-01 1.21847056225E-01 1.25601892052E-01 1.29457503047E-01 1.33416171151E-01 1.37480241541E-01 1.41652126879E-01 1.45934311780E-01 1.50329357501E-01 1.54839906806E-01 1.59468688985E-01 1.64218524997E-01 1.69092332680E-01 1.74093131987E-01 1.79224050179E-01 1.84488326905E-01 1.89889319108E-01 1.95430505643E-01 2.01115491529E-01 2.06948011738E-01 2.12931934385E-01 2.19071263234E-01 2.25370139372E-01 2.31832841953E-01 2.38463787881E-01 2.45267530313E-01 2.52248755908E-01 2.59412280700E-01 2.66763044575E-01 2.74306104299E-01 2.82046625135E-01 2.89989871114E-01 2.98141194104E-01 3.06506021903E-01 3.15089845667E-01 3.23898207099E-01 3.32936685940E-01 3.42210888422E-01 3.51726437494E-01 3.61488965724E-01 3.71504111903E-01 3.81777522460E-01 3.92314858766E-01 4.03121811355E-01 4.14204121857E-01 4.25567612991E-01 4.37218226291E-01 4.49162066145E-01 4.61405447110E-01 4.73954939227E-01 4.86817402827E-01 5.00000000000E-01 5.13510165324E-01 5.27355548456E-01 5.41543995377E-01 5.56083553709E-01 5.70982479274E-01 5.86249242822E-01 6.01892536937E-01 6.17921283102E-01 6.34344638942E-01 6.51172005625E-01 6.68413035432E-01 6.86077639497E-01 7.04175995705E-01 7.22718556763E-01 7.41716058434E-01 7.61179527933E-01 7.81120292501E-01 8.01549988130E-01 8.22480568465E-01 8.43924313865E-01 8.65893840634E-01 8.88402110415E-01 9.11462439745E-01 9.35088509779E-01 9.59294376171E-01 9.84094479123E-01 1.00950365359E+00 1.03553713964E+00 1.06221059299E+00 1.08954009569E+00 1.11754216695E+00 1.14623377414E+00 1.17563234396E+00 1.20575577372E+00 1.23662244282E+00 1.26825122435E+00 1.30066149688E+00 1.33387315635E+00 1.36790662816E+00 1.40278287939E+00 1.43852343118E+00 1.47515037125E+00 1.51268636656E+00 1.55115467618E+00 1.59057916421E+00 1.63098431293E+00 1.67239523605E+00 1.71483769209E+00 1.75833809791E+00 1.80292354237E+00 1.84862180006E+00 1.89546134517E+00 1.94347136541E+00 1.99268177599E+00 2.04312323369E+00 2.09482715081E+00 2.14782570919E+00 2.20215187411E+00 2.25783940801E+00 2.31492288409E+00 2.37343769949E+00 2.43342008829E+00 2.49490713383E+00 2.55793678060E+00 2.62254784537E+00 2.68878002739E+00 2.75667391766E+00 2.82627100691E+00 2.89761369216E+00 2.97074528174E+00 3.04570999828E+00 3.12255297967E+00 3.20132027757E+00 3.28205885314E+00 3.36481656984E+00 3.44964218281E+00 3.53658532451E+00 3.62569648638E+00 3.71702699603E+00 3.81062898970E+00 3.90655537952E+00 4.00485981535E+00 4.10559664067E+00 4.20882084238E+00 4.31458799406E+00 4.42295419235E+00 4.53397598636E+00 4.64771029964E+00 4.76421434472E+00 4.88354552977E+00 5.00576135760E+00 5.13091931659E+00 5.25907676366E+00 5.39029079936E+00 5.52461813498E+00 5.66211495191E+00 5.80283675346E+00 5.94683820920E+00 6.09417299241E+00 6.24489361067E+00 6.39905123025E+00 6.55669549467E+00 6.71787433796E+00 6.88263379318E+00 7.05101779693E+00 7.22306799036E+00 7.39882351758E+00 7.57832082202E+00 7.76159344166E+00 7.94867180379E+00 8.13958302017E+00 8.33435068331E+00 8.53299466455E+00 8.73553091475E+00 8.94197126819E+00 9.15232325014E+00 9.36658988871E+00 9.58476953127E+00 9.80685566567E+00 1.00328367463E+01 1.02626960248E+01 1.04964113860E+01 1.07339551867E+01 1.09752940989E+01 1.12203889555E+01 1.14691945969E+01 1.17216597188E+01 1.19777267178E+01 1.22373315352E+01 1.25004034954E+01 1.27668651388E+01 1.30366320447E+01 1.33096126450E+01 1.35857080235E+01 1.38648117017E+01 1.41468094053E+01 1.44315788122E+01 1.47189892784E+01 1.50089015399E+01 1.53011673884E+01 1.55956293195E+01 1.58921201518E+01 1.61904626144E+01 1.64904689032E+01 1.67919402036E+01 1.70946661793E+01 1.73984244270E+01 1.77029798969E+01 1.80080842780E+01 1.83134753498E+01 1.86188763003E+01 1.89239950121E+01 1.92285233167E+01 1.95321362195E+01 1.98344910977E+01 2.01352268724E+01 2.04339631586E+01 2.07302993960E+01 2.10238139634E+01 2.13140632818E+01 2.16005809095E+01 2.18828766348E+01 2.21604355717E+01 2.24327172632E+01 2.26991548011E+01 2.29591539670E+01 2.32120924035E+01 2.34573188237E+01 2.36941522683E+01 2.39218814199E+01 2.41397639847E+01 2.43470261547E+01 2.45428621604E+01 2.47264339297E+01 2.48968708652E+01 2.50532697561E+01 2.51946948408E+01 2.53201780370E+01 2.54287193577E+01 2.55192875324E+01 2.55908208537E+01 2.56422282706E+01 2.56723907508E+01 2.56801629356E+01 2.56643751106E+01 2.56238355190E+01 2.55573330421E+01 2.54636402728E+01 2.53415170120E+01 2.51897142116E+01 2.50069783951E+01 2.47920565811E+01 2.45437017383E+01 2.42606787985E+01 2.39417712533E+01 2.35857883596E+01 2.31915729769E+01 2.27580100571E+01 2.22840358054E+01 2.17686475277E+01 2.12109141751E+01 2.06099875928E+01 1.99651144762E+01 1.92756490277E+01 1.85410663050E+01 1.77609762397E+01 1.69351383017E+01 1.60634767688E+01 1.51460965548E+01 1.41832995356E+01 1.31756012994E+01 1.21237482336E+01 1.10287348449E+01 9.89182119259E+00 8.71455029716E+00 7.49876536795E+00 6.24662666723E+00 4.96064421741E+00 3.64382058981E+00 2.29932423003E+00 9.30682633126E-01 -4.58184019419E-01 -1.86295307274E+00 -3.27889185755E+00 -4.70085275620E+00 -6.12327125840E+00 -7.54016740927E+00 -8.94515106986E+00 -1.03314314261E+01 -1.16918311914E+01 -1.30188059561E+01 -1.43044691388E+01 -1.55406229875E+01 -1.67183608663E+01 -1.78245706729E+01 -1.88495827668E+01 -1.97840651612E+01 -2.06186942557E+01 -2.13442383589E+01 -2.19516495069E+01 -2.24321635041E+01 -2.27774079818E+01 -2.29795181220E+01 -2.30312595265E+01 -2.29261575275E+01 -2.26586320166E+01 -2.22241366787E+01 -2.16193012451E+01 -2.08420751409E+01 -1.98918706290E+01 -1.87697032790E+01 -1.74783273018E+01 -1.60223630096E+01 -1.44084133803E+01 -1.26451664379E+01 -1.07434799177E+01 -8.71644446520E+00 -6.57942144595E+00 -4.35005131937E+00 -2.04822847325E+00 3.03961561661E-01 2.68234648068E+00 5.06081689607E+00 7.41152473679E+00 9.70513325424E+00 1.19111208865E+01 1.39981404227E+01 1.59344339193E+01 1.76883026473E+01 1.92286299834E+01 2.05254536086E+01 2.15505816416E+01 2.22782454388E+01 2.26857797450E+01 2.27543187285E+01 2.24694942084E+01 2.18221201502E+01 2.08088453229E+01 1.94327539669E+01 1.77038925032E+01 1.56396988333E+01 1.32653097429E+01 1.06137214689E+01 7.72577874068E+00 4.64996870273E+00 1.44199819736E+00 -1.83586394049E+00 -5.11569354780E+00 -8.32507506113E+00 -1.13885240078E+01 -1.42291610194E+01 -1.67706207007E+01 -1.89391678987E+01 -2.06659821690E+01 -2.18895588206E+01 -2.25581622180E+01 -2.26322545282E+01 -2.20868114056E+01 -2.09134258993E+01 -1.91220939248E+01 -1.67425698022E+01 -1.38251795094E+01 -1.04409833106E+01 -6.68118912566E+00 -2.65573412528E+00 1.50902488897E+00 5.67354144970E+00 9.68922137142E+00 1.34034241248E+01 1.66652211687E+01 1.93317546914E+01 2.12749841359E+01 2.23885526174E+01 2.25944543025E+01 2.18491409814E+01 2.01486757922E+01 1.75325289542E+01 1.40856189633E+01 9.93823713303E+00 5.26355695520E+00 2.72524555304E-01 -4.79394718744E+00 -9.67540246489E+00 -1.41046252398E+01 -1.78223239090E+01 -2.05930569158E+01 -2.22215419789E+01 -2.25683198939E+01 -2.15636156425E+01 -1.92181746340E+01 -1.56298695145E+01 -1.09849897964E+01 -5.55335447295E+00 3.23268508105E-01 6.24949745419E+00 1.18009395322E+01 1.65539602330E+01 2.01188850305E+01 2.21742999310E+01 2.24996211127E+01 2.10027819589E+01 1.77398102394E+01 1.29233016781E+01 6.91738256160E+00 2.17708131746E-01 -6.58365888604E+00 -1.28470749146E+01 -1.79447108396E+01 -2.13256765692E+01 -2.25805616496E+01 -2.14980677914E+01 -1.81060924041E+01 -1.26901961960E+01 -5.78397669394E+00 1.87151307893E+00 9.39864486800E+00 1.58796151305E+01 2.04693116340E+01 2.25117634983E+01 2.16445797138E+01 1.78748557985E+01 1.16114368697E+01 3.64246830477E+00 -4.94622601918E+00 -1.29077512270E+01 -1.90118839746E+01 -2.22408797493E+01 -2.19732497777E+01 -1.81223630341E+01 -1.11991237057E+01 -2.27658590682E+00 7.15108335670E+00 1.54039618933E+01 2.09143091931E+01 2.25373711880E+01 1.98142074989E+01 1.31253787121E+01 3.68734944168E+00 -6.63014458664E+00 -1.56508997214E+01 -2.13479594823E+01 -2.23178489404E+01 espresso-5.0.2/PW/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ30000644000700200004540000065760012053145630022366 0ustar marsamoscmC 2 F T 1 4 3 4 0.40000000000E+01-.10784603940E+02 2 -.70000000000E+010.10000000000E+030.60000000000E+010.12500000000E-01 1073 5 4 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 2.00 2P 2 1 0.00 3D 3 2 -2.00 715 5.59476133159E-01 5.66513478043E-01 5.73639341885E-01 5.80854838118E-01 5.88190796048E-01 5.95545976523E-01 6.03081825874E-01 6.10598859928E-01 6.18332768941E-01 6.26093930250E-01 6.33949699340E-01 6.41961458622E-01 6.50035030049E-01 6.58166394925E-01 6.66484267605E-01 6.74850442004E-01 6.83344400239E-01 6.91989493890E-01 7.00619970795E-01 7.09483223164E-01 7.18400221080E-01 7.27410904724E-01 7.36559750901E-01 7.45821869574E-01 7.55214464733E-01 7.64740442280E-01 7.74281459041E-01 7.84088320948E-01 7.93939697604E-01 8.03919803348E-01 8.14053676550E-01 8.24256069333E-01 8.34656791636E-01 8.45152012182E-01 8.55752333028E-01 8.66527429777E-01 8.77437759082E-01 8.88489974746E-01 8.99625392409E-01 9.10992732099E-01 9.22393923905E-01 9.34046070457E-01 9.45772219251E-01 9.57695768782E-01 9.69681800543E-01 9.81918146981E-01 9.94273830057E-01 1.00676809747E+00 1.01941095415E+00 1.03228818934E+00 1.04522459562E+00 1.05838905009E+00 1.07167899201E+00 1.08520991344E+00 1.09879236423E+00 1.11267771179E+00 1.12664145034E+00 1.14080194303E+00 1.15517668274E+00 1.16972359360E+00 1.18439567448E+00 1.19928880193E+00 1.21440352246E+00 1.22964020860E+00 1.24515201658E+00 1.26078117987E+00 1.27666902183E+00 1.29272037029E+00 1.30898091155E+00 1.32543867182E+00 1.34209888421E+00 1.35898499659E+00 1.37609968226E+00 1.39337961663E+00 1.41093174891E+00 1.42867245588E+00 1.44664078175E+00 1.46484099229E+00 1.48326421835E+00 1.50191483907E+00 1.52081755549E+00 1.53993357519E+00 1.55931982195E+00 1.57892533500E+00 1.59879050894E+00 1.61888206734E+00 1.63927159435E+00 1.65988093379E+00 1.68074559228E+00 1.70190881196E+00 1.72330014314E+00 1.74497858548E+00 1.76694068806E+00 1.78915257140E+00 1.81166703923E+00 1.83443535486E+00 1.85753832210E+00 1.88089405026E+00 1.90452244222E+00 1.92851592158E+00 1.95274674466E+00 1.97732300062E+00 2.00219531147E+00 2.02737716234E+00 2.05287591839E+00 2.07870574422E+00 2.10485959445E+00 2.13132743790E+00 2.15812612569E+00 2.18527539901E+00 2.21277567271E+00 2.24058306426E+00 2.26879625398E+00 2.29730626889E+00 2.32622729348E+00 2.35547456868E+00 2.38509615752E+00 2.41512029742E+00 2.44547642788E+00 2.47625500422E+00 2.50738130558E+00 2.53893635243E+00 2.57086606609E+00 2.60320304079E+00 2.63594024077E+00 2.66911181079E+00 2.70266753524E+00 2.73667438566E+00 2.77108774015E+00 2.80595189714E+00 2.84124440229E+00 2.87698066966E+00 2.91317226086E+00 2.94981882769E+00 2.98691262571E+00 3.02448214635E+00 3.06253316894E+00 3.10104943872E+00 3.14005142869E+00 3.17956408062E+00 3.21953775094E+00 3.26004770135E+00 3.30104509563E+00 3.34257578414E+00 3.38461934747E+00 3.42719016127E+00 3.47030183119E+00 3.51394559761E+00 3.55815259888E+00 3.60289176153E+00 3.64822839523E+00 3.69410454006E+00 3.74057518412E+00 3.78762400056E+00 3.83526914431E+00 3.88349938186E+00 3.93236539227E+00 3.98180484360E+00 4.03191508383E+00 4.08261093678E+00 4.13396778777E+00 4.18596521572E+00 4.23861698457E+00 4.29192844532E+00 4.34591895572E+00 4.40058217695E+00 4.45592835466E+00 4.51198380107E+00 4.56872977105E+00 4.62620710232E+00 4.68438063555E+00 4.74330983365E+00 4.80297232709E+00 4.86339294688E+00 4.92455730497E+00 4.98648940439E+00 5.04923126907E+00 5.11272869230E+00 5.17704020172E+00 5.24216203610E+00 5.30808730041E+00 5.37486135620E+00 5.44246754250E+00 5.51092424088E+00 5.58023468836E+00 5.65043045666E+00 5.72149697584E+00 5.79346262726E+00 5.86633655822E+00 5.94012187687E+00 6.01483512933E+00 6.09049134165E+00 6.16709566489E+00 6.24466928235E+00 6.32320837644E+00 6.40274955914E+00 6.48327576083E+00 6.56482494047E+00 6.64739767505E+00 6.73100683817E+00 6.81566910883E+00 6.90140070032E+00 6.98820312974E+00 7.07610349946E+00 7.16509864781E+00 7.25522685646E+00 7.34647341824E+00 7.43889075908E+00 7.53244422647E+00 7.62718788952E+00 7.72312289311E+00 7.82025752064E+00 7.91862572572E+00 8.01821769672E+00 8.11906936155E+00 8.22119309592E+00 8.32459289706E+00 8.42929437477E+00 8.53531927883E+00 8.64267219743E+00 8.75137537352E+00 8.86144723574E+00 8.97290057404E+00 9.08576134638E+00 9.20003357913E+00 9.31575012421E+00 9.43291213503E+00 9.55156181434E+00 9.67169080403E+00 9.79333505296E+00 9.91651136493E+00 1.00412329045E+01 1.01675259074E+01 1.02954028818E+01 1.04248955170E+01 1.05560056807E+01 1.06887747415E+01 1.08232046139E+01 1.09593328000E+01 1.10971644012E+01 1.12367378158E+01 1.13780611938E+01 1.15211616002E+01 1.16660635029E+01 1.18127835336E+01 1.19613551272E+01 1.21117869859E+01 1.22641152740E+01 1.24183589259E+01 1.25745385370E+01 1.27326848373E+01 1.28928179298E+01 1.30549653261E+01 1.32191488787E+01 1.33853996010E+01 1.35537379085E+01 1.37241970571E+01 1.38967945525E+01 1.40715659769E+01 1.42485305966E+01 1.44277193673E+01 1.46091682900E+01 1.47928880856E+01 1.49789237678E+01 1.51672964612E+01 1.53580396055E+01 1.55511760257E+01 1.57467415979E+01 1.59447652576E+01 1.61452813482E+01 1.63483133426E+01 1.65538994606E+01 1.67620705921E+01 1.69728551542E+01 1.71862930990E+01 1.74024096608E+01 1.76212438088E+01 1.78428291215E+01 1.80671997685E+01 1.82943859257E+01 1.85244315725E+01 1.87573673003E+01 1.89932288809E+01 1.92320551058E+01 1.94738827186E+01 1.97187481024E+01 1.99666898157E+01 2.02177491239E+01 2.04719608155E+01 2.07293662520E+01 2.09900079266E+01 2.12539216442E+01 2.15211522637E+01 2.17917377655E+01 2.20657272711E+01 2.23431538572E+01 2.26240667024E+01 2.29085101028E+01 2.31965225128E+01 2.34881555124E+01 2.37834482681E+01 2.40824535992E+01 2.43852109431E+01 2.46917700506E+01 2.50021810405E+01 2.53164893552E+01 2.56347427347E+01 2.59569945398E+01 2.62832892603E+01 2.66136829495E+01 2.69482224565E+01 2.72869644680E+01 2.76299551254E+01 2.79772534356E+01 2.83289102704E+01 2.86849800037E+01 2.90455203484E+01 2.94105835001E+01 2.97802285555E+01 3.01545124879E+01 3.05334907521E+01 3.09172244073E+01 3.13057743524E+01 3.16991959413E+01 3.20975546743E+01 3.25009082505E+01 3.29093216827E+01 3.33228586766E+01 3.37415781253E+01 3.41655497725E+01 3.45948374272E+01 3.50295085989E+01 3.54696253748E+01 3.59152620940E+01 3.63664850485E+01 3.68233599196E+01 3.72859629905E+01 3.77543622120E+01 3.82286296416E+01 3.87088380010E+01 3.91950637385E+01 3.96873789808E+01 4.01858593653E+01 4.06905846672E+01 4.12016268270E+01 4.17190687952E+01 4.22429888636E+01 4.27734655536E+01 4.33105820495E+01 4.38544209866E+01 4.44050622271E+01 4.49625946602E+01 4.55271000652E+01 4.60986668440E+01 4.66773794591E+01 4.72633299074E+01 4.78566043045E+01 4.84572951351E+01 4.90654920955E+01 4.96812911900E+01 5.03047808743E+01 5.09360606648E+01 5.15752246257E+01 5.22223684351E+01 5.28775918939E+01 5.35409953374E+01 5.42126763314E+01 5.48927386670E+01 5.55812839642E+01 5.62784171952E+01 5.69842432059E+01 5.76988693086E+01 5.84224001779E+01 5.91549481176E+01 5.98966222389E+01 6.06475324096E+01 6.14077947943E+01 6.21775188209E+01 6.29568231784E+01 6.37458240129E+01 6.45446376902E+01 6.53533849756E+01 6.61721847624E+01 6.70011609848E+01 6.78404358064E+01 6.86901330392E+01 6.95503810922E+01 7.04213042621E+01 7.13030342792E+01 7.21956998772E+01 7.30994325967E+01 7.40143657583E+01 7.49406349564E+01 7.58783738560E+01 7.68277223032E+01 7.77888171898E+01 7.87618007199E+01 7.97468135038E+01 8.07439988671E+01 8.17535029035E+01 8.27754696392E+01 8.38100494346E+01 8.48573910193E+01 8.59176436337E+01 8.69909621080E+01 8.80774985447E+01 8.91774100599E+01 9.02908522286E+01 9.14179845525E+01 9.25589681032E+01 9.37139623384E+01 9.48831326341E+01 9.60666426750E+01 9.72646601231E+01 9.84773510599E+01 9.97048871355E+01 1.00947437997E+02 1.02205177298E+02 1.03478278382E+02 1.04766918348E+02 1.06071273051E+02 1.07391522477E+02 1.08727846676E+02 1.10080427559E+02 1.11449449078E+02 1.12835095592E+02 1.14237554322E+02 1.15657012427E+02 1.17093660460E+02 1.18547688994E+02 1.20019289483E+02 1.21508657031E+02 1.23015986472E+02 1.24541473478E+02 1.26085318380E+02 1.27647717832E+02 1.29228874195E+02 1.30828989168E+02 1.32448265026E+02 1.34086907424E+02 1.35745121427E+02 1.37423113724E+02 1.39121092201E+02 1.40839266023E+02 1.42577845162E+02 1.44337040366E+02 1.46117063810E+02 1.47918128517E+02 1.49740447306E+02 1.51584235649E+02 1.53449707428E+02 1.55337079861E+02 1.57246567877E+02 1.59178389276E+02 1.61132760788E+02 1.63109900116E+02 1.65110025681E+02 1.67133354532E+02 1.69180105676E+02 1.71250496690E+02 1.73344746113E+02 1.75463071352E+02 1.77605689745E+02 1.79772818763E+02 1.81964674356E+02 1.84181472670E+02 1.86423428288E+02 1.88690755361E+02 1.90983666669E+02 1.93302373608E+02 1.95647086566E+02 1.98018013692E+02 2.00415362027E+02 2.02839336109E+02 2.05290138831E+02 2.07767970271E+02 2.10273028310E+02 2.12805507947E+02 2.15365601038E+02 2.17953496400E+02 2.20569379547E+02 2.23213431897E+02 2.25885831108E+02 2.28586750363E+02 2.31316359266E+02 2.34074820485E+02 2.36862294233E+02 2.39678933342E+02 2.42524885077E+02 2.45400291716E+02 2.48305287702E+02 2.51240001112E+02 2.54204553376E+02 2.57199056849E+02 2.60223617836E+02 2.63278331557E+02 2.66363287214E+02 2.69478561810E+02 2.72624224424E+02 2.75800332985E+02 2.79006934287E+02 2.82244064397E+02 2.85511746426E+02 2.88809991887E+02 2.92138798184E+02 2.95498150128E+02 2.98888016509E+02 3.02308352360E+02 3.05759096650E+02 3.09240171409E+02 3.12751481906E+02 3.16292915458E+02 3.19864340169E+02 3.23465605302E+02 3.27096539316E+02 3.30756949590E+02 3.34446621261E+02 3.38165316806E+02 3.41912774239E+02 3.45688706853E+02 3.49492802592E+02 3.53324721283E+02 3.57184095804E+02 3.61070529356E+02 3.64983595153E+02 3.68922834716E+02 3.72887757395E+02 3.76877838439E+02 3.80892518043E+02 3.84931200175E+02 3.88993250952E+02 3.93077997514E+02 3.97184726525E+02 4.01312682780E+02 4.05461067425E+02 4.09629037213E+02 4.13815701931E+02 4.18020123565E+02 4.22241314474E+02 4.26478235459E+02 4.30729794585E+02 4.34994844825E+02 4.39272182872E+02 4.43560546639E+02 4.47858614248E+02 4.52165001434E+02 4.56478259805E+02 4.60796875127E+02 4.65119264960E+02 4.69443776904E+02 4.73768686195E+02 4.78092194304E+02 4.82412425784E+02 4.86727426856E+02 4.91035163013E+02 4.95333516684E+02 4.99620285346E+02 5.03893178611E+02 5.08149816384E+02 5.12387726940E+02 5.16604343542E+02 5.20797003117E+02 5.24962943086E+02 5.29099300000E+02 5.33203105946E+02 5.37271287531E+02 5.41300662458E+02 5.45287937403E+02 5.49229706580E+02 5.53122447980E+02 5.56962522511E+02 5.60746170571E+02 5.64469510989E+02 5.68128537859E+02 5.71719119175E+02 5.75236994436E+02 5.78677772788E+02 5.82036931275E+02 5.85309812687E+02 5.88491624782E+02 5.91577437400E+02 5.94562182277E+02 5.97440651027E+02 6.00207494388E+02 6.02857221066E+02 6.05384197161E+02 6.07782645310E+02 6.10046644780E+02 6.12170131056E+02 6.14146895908E+02 6.15970588522E+02 6.17634715282E+02 6.19132641937E+02 6.20457594202E+02 6.21602660293E+02 6.22560792662E+02 6.23324811372E+02 6.23887406849E+02 6.24241143941E+02 6.24378466300E+02 6.24291701280E+02 6.23973065819E+02 6.23414672663E+02 6.22608537484E+02 6.21546587282E+02 6.20220668939E+02 6.18622559255E+02 6.16743975924E+02 6.14576589473E+02 6.12112036886E+02 6.09341935429E+02 6.06257899219E+02 6.02851556429E+02 5.99114568177E+02 5.95038649211E+02 5.90615590556E+02 5.85837283524E+02 5.80695746487E+02 5.75183153376E+02 5.69291864685E+02 5.63014460458E+02 5.56343777082E+02 5.49272944995E+02 5.41795431198E+02 5.33905083494E+02 5.25596178279E+02 5.16863471772E+02 5.07702254994E+02 4.98108411566E+02 4.88078479832E+02 4.77609718964E+02 4.66700177932E+02 4.55348770099E+02 4.43555350098E+02 4.31320795930E+02 4.18647094309E+02 4.05537430361E+02 3.91996280293E+02 3.78029508804E+02 3.63644467851E+02 3.48850100117E+02 3.33657043292E+02 3.18077737259E+02 3.02126531190E+02 2.85819791553E+02 2.69176009633E+02 2.52215905718E+02 2.34962531706E+02 2.17441367735E+02 1.99680412913E+02 1.81710267465E+02 1.63564204616E+02 1.45278229463E+02 1.26891122691E+02 1.08444466085E+02 8.99826469633E+01 7.15528382790E+01 5.32049512239E+01 3.49915565869E+01 1.69677712648E+01 -8.08893741158E-01 -1.82787272765E+01 -3.53800585815E+01 -5.20495466292E+01 -6.82225224854E+01 -8.38333877387E+01 -9.88160699172E+01 -1.13104538824E+02 -1.26633383040E+02 -1.39338446274E+02 -1.51157523494E+02 -1.62031111687E+02 -1.71903211904E+02 -1.80722174439E+02 -1.88441577701E+02 -1.95021128372E+02 -2.00427567249E+02 -2.04635561190E+02 -2.07628559166E+02 -2.09399584966E+02 -2.09951935801E+02 -2.09299752214E+02 -2.07468420203E+02 -2.04494763097E+02 -2.00426978264E+02 -1.95324272107E+02 -1.89256146336E+02 -1.82301291900E+02 -1.74546051817E+02 -1.66082424955E+02 -1.57005597985E+02 -1.47411015725E+02 -1.37391033415E+02 -1.27031236611E+02 -1.16406574722E+02 -1.05577530652E+02 -9.45866479186E+01 -8.34558644651E+01 -7.21852657058E+01 -6.07540408534E+01 -4.91249974126E+01 -3.72512056551E+01 -2.51138468255E+01 -1.25282851245E+01 -1.29798716838E+00 1.28687679261E-01 -1.27586215037E-02 1.26494607097E-03 -1.25414228933E-04 1.24328815250E-05 -1.23115357204E-06 1.19321161555E-07 -1.13635362686E-08 3.70718625829E-09 -3.23251887388E-09 7.18959822071E-01 715 8.11662688642E-01 8.21872150541E-01 8.32210031742E-01 8.42677947564E-01 8.53320270898E-01 8.63991349011E-01 8.74923484584E-01 8.85829629097E-01 8.97049068076E-01 9.08308757921E-01 9.19705805270E-01 9.31328455070E-01 9.43041228305E-01 9.54838404299E-01 9.66905108044E-01 9.79042604840E-01 9.91365186628E-01 1.00390650602E+00 1.01642807553E+00 1.02928589098E+00 1.04222235385E+00 1.05529493994E+00 1.06856766043E+00 1.08200480425E+00 1.09563099439E+00 1.10945056226E+00 1.12329311819E+00 1.13751969470E+00 1.15181178966E+00 1.16629051710E+00 1.18099204491E+00 1.19579363545E+00 1.21088214064E+00 1.22610819596E+00 1.24148699944E+00 1.25711888592E+00 1.27294699792E+00 1.28898084598E+00 1.30513610339E+00 1.32162671861E+00 1.33816769227E+00 1.35507157250E+00 1.37208354747E+00 1.38938140879E+00 1.40677090021E+00 1.42452236580E+00 1.44244740306E+00 1.46057364588E+00 1.47891557806E+00 1.49759667311E+00 1.51636474656E+00 1.53546297463E+00 1.55474366880E+00 1.57437314317E+00 1.59407873419E+00 1.61422222541E+00 1.63448054228E+00 1.65502408113E+00 1.67587801801E+00 1.69698181403E+00 1.71826789546E+00 1.73987420735E+00 1.76180163417E+00 1.78390677725E+00 1.80641009454E+00 1.82908453992E+00 1.85213359552E+00 1.87542021643E+00 1.89901029648E+00 1.92288653788E+00 1.94705656907E+00 1.97155412741E+00 1.99638308773E+00 2.02145238284E+00 2.04691592843E+00 2.07265342135E+00 2.09872107559E+00 2.12512506561E+00 2.15185269635E+00 2.17891023049E+00 2.20633331566E+00 2.23406613696E+00 2.26219063059E+00 2.29063351698E+00 2.31945297109E+00 2.34860110544E+00 2.37818101161E+00 2.40808021417E+00 2.43834988709E+00 2.46905227581E+00 2.50008603495E+00 2.53153611647E+00 2.56339758801E+00 2.59562175086E+00 2.62828459674E+00 2.66131607866E+00 2.69483247875E+00 2.72871602201E+00 2.76299538165E+00 2.79780360117E+00 2.83295689346E+00 2.86861086152E+00 2.90469446867E+00 2.94122720088E+00 2.97821966386E+00 3.01569232275E+00 3.05363506505E+00 3.09203350395E+00 3.13091195338E+00 3.17029884844E+00 3.21019484734E+00 3.25053686234E+00 3.29146692739E+00 3.33282829202E+00 3.37478532760E+00 3.41721610040E+00 3.46018983732E+00 3.50374723403E+00 3.54778679140E+00 3.59243874507E+00 3.63759562794E+00 3.68337407094E+00 3.72969632626E+00 3.77660935930E+00 3.82410308669E+00 3.87222672205E+00 3.92090805177E+00 3.97024351518E+00 4.02016897527E+00 4.07074822061E+00 4.12194901663E+00 4.17379359429E+00 4.22629868581E+00 4.27946381778E+00 4.33327795335E+00 4.38778211755E+00 4.44298474354E+00 4.49886246135E+00 4.55544483779E+00 4.61276782776E+00 4.67076005559E+00 4.72952990398E+00 4.78900717904E+00 4.84925791334E+00 4.91025283361E+00 4.97201266320E+00 5.03455709642E+00 5.09787357718E+00 5.16200701796E+00 5.22691276009E+00 5.29268489594E+00 5.35924007957E+00 5.42665753366E+00 5.49491385132E+00 5.56403523685E+00 5.63400561942E+00 5.70489800718E+00 5.77662280430E+00 5.84932017276E+00 5.92286765440E+00 5.99737380068E+00 6.07280933748E+00 6.14919414621E+00 6.22653605032E+00 6.30486298828E+00 6.38416593283E+00 6.46445973443E+00 6.54578236310E+00 6.62810693287E+00 6.71149233254E+00 6.79588805916E+00 6.88137978941E+00 6.96793544827E+00 7.05559086607E+00 7.14432545792E+00 7.23417387588E+00 7.32519670813E+00 7.41731605266E+00 7.51061626377E+00 7.60509204198E+00 7.70073357595E+00 7.79760627714E+00 7.89568628648E+00 7.99500017374E+00 8.09555273098E+00 8.19738951204E+00 8.30048967616E+00 8.40489420804E+00 8.51061639222E+00 8.61766083307E+00 8.72605148655E+00 8.83581010056E+00 8.94694423499E+00 9.05948450675E+00 9.17342557413E+00 9.28882025428E+00 9.40564414026E+00 9.52395199421E+00 9.64374480355E+00 9.76504124259E+00 9.88786546501E+00 1.00122409536E+01 1.01381700559E+01 1.02656919276E+01 1.03948021853E+01 1.05255560661E+01 1.06579325900E+01 1.07920073563E+01 1.09277306647E+01 1.10651805056E+01 1.12043586880E+01 1.13452773144E+01 1.14879854208E+01 1.16324690677E+01 1.17787801402E+01 1.19269366353E+01 1.20769444802E+01 1.22288407323E+01 1.23826568719E+01 1.25383997039E+01 1.26961014202E+01 1.28557887543E+01 1.30174803039E+01 1.31812136284E+01 1.33469947313E+01 1.35148710942E+01 1.36848445883E+01 1.38569761611E+01 1.40312540033E+01 1.42077300644E+01 1.43864287464E+01 1.45673692233E+01 1.47505894745E+01 1.49361077311E+01 1.51239698328E+01 1.53141786970E+01 1.55067941033E+01 1.57018190415E+01 1.58993077300E+01 1.60992677567E+01 1.63017546326E+01 1.65067803368E+01 1.67143840782E+01 1.69246013317E+01 1.71374562895E+01 1.73529973403E+01 1.75712372746E+01 1.77922284100E+01 1.80159982761E+01 1.82425767861E+01 1.84720084553E+01 1.87043224943E+01 1.89395587901E+01 1.91777490867E+01 1.94189383119E+01 1.96631561482E+01 1.99104507628E+01 2.01608476538E+01 2.04143983473E+01 2.06711308821E+01 2.09310901327E+01 2.11943282306E+01 2.14608609352E+01 2.17307533629E+01 2.20040362482E+01 2.22807580598E+01 2.25609519898E+01 2.28446700202E+01 2.31319541479E+01 2.34228541555E+01 2.37174041899E+01 2.40156596182E+01 2.43176652713E+01 2.46234624229E+01 2.49331089480E+01 2.52466415539E+01 2.55641167086E+01 2.58855831392E+01 2.62110904177E+01 2.65406823771E+01 2.68744227255E+01 2.72123559026E+01 2.75545338095E+01 2.79010127032E+01 2.82518458921E+01 2.86070861776E+01 2.89667894918E+01 2.93310156710E+01 2.96998152367E+01 3.00732481710E+01 3.04513760996E+01 3.08342510151E+01 3.12219379594E+01 3.16144920725E+01 3.20119845367E+01 3.24144634530E+01 3.28220000940E+01 3.32346587190E+01 3.36524951860E+01 3.40755842414E+01 3.45039827840E+01 3.49377673608E+01 3.53769952676E+01 3.58217386525E+01 3.62720701956E+01 3.67280558588E+01 3.71897649126E+01 3.76572747280E+01 3.81306499141E+01 3.86099717295E+01 3.90953081931E+01 3.95867414922E+01 4.00843386393E+01 4.05881851771E+01 4.10983549413E+01 4.16149268231E+01 4.21379845192E+01 4.26676037990E+01 4.32038703707E+01 4.37468668942E+01 4.42966738521E+01 4.48533798026E+01 4.54170730792E+01 4.59878340463E+01 4.65657576773E+01 4.71509277287E+01 4.77434384911E+01 4.83433823820E+01 4.89508449034E+01 4.95659271807E+01 5.01887218100E+01 5.08193267189E+01 5.14578320452E+01 5.21043455651E+01 5.27589634857E+01 5.34217811441E+01 5.40929091469E+01 5.47724461163E+01 5.54604965978E+01 5.61571661013E+01 5.68625655109E+01 5.75767995033E+01 5.82999778153E+01 5.90322161525E+01 5.97736189552E+01 6.05243065181E+01 6.12843924466E+01 6.20539906836E+01 6.28332218970E+01 6.36222059751E+01 6.44210588278E+01 6.52299093674E+01 6.60488762860E+01 6.68780878206E+01 6.77176665480E+01 6.85677459033E+01 6.94284508700E+01 7.02999156089E+01 7.11822702821E+01 7.20756541420E+01 7.29801955921E+01 7.38960389658E+01 7.48233207648E+01 7.57621798247E+01 7.67127609321E+01 7.76752096530E+01 7.86496675839E+01 7.96362852947E+01 8.06352102441E+01 8.16465947300E+01 8.26705908845E+01 8.37073544027E+01 8.47570371988E+01 8.58198021839E+01 8.68958076870E+01 8.79852131433E+01 8.90881870656E+01 9.02048882867E+01 9.13354889846E+01 9.24801576933E+01 9.36390632791E+01 9.48123809581E+01 9.60002832663E+01 9.72029500144E+01 9.84205584788E+01 9.96532883281E+01 1.00901325863E+02 1.02164851484E+02 1.03444056306E+02 1.04739127152E+02 1.06050254900E+02 1.07377633009E+02 1.08721458230E+02 1.10081924555E+02 1.11459234889E+02 1.12853587906E+02 1.14265189945E+02 1.15694245068E+02 1.17140961267E+02 1.18605550537E+02 1.20088221915E+02 1.21589193577E+02 1.23108681370E+02 1.24646901898E+02 1.26204079830E+02 1.27780435928E+02 1.29376198193E+02 1.30991592429E+02 1.32626850109E+02 1.34282204992E+02 1.35957888530E+02 1.37654140719E+02 1.39371199141E+02 1.41109307123E+02 1.42868705741E+02 1.44649644106E+02 1.46452368469E+02 1.48277130872E+02 1.50124182932E+02 1.51993781691E+02 1.53886182425E+02 1.55801646383E+02 1.57740434922E+02 1.59702812106E+02 1.61689044957E+02 1.63699401108E+02 1.65734152333E+02 1.67793570342E+02 1.69877931751E+02 1.71987513233E+02 1.74122592747E+02 1.76283453534E+02 1.78470378469E+02 1.80683651656E+02 1.82923563930E+02 1.85190400856E+02 1.87484456242E+02 1.89806022959E+02 1.92155394738E+02 1.94532870199E+02 1.96938747132E+02 1.99373325690E+02 2.01836907777E+02 2.04329797158E+02 2.06852298782E+02 2.09404718745E+02 2.11987365213E+02 2.14600547600E+02 2.17244575053E+02 2.19919760552E+02 2.22626414820E+02 2.25364853401E+02 2.28135388566E+02 2.30938336744E+02 2.33774012842E+02 2.36642733195E+02 2.39544815189E+02 2.42480574256E+02 2.45450328670E+02 2.48454394667E+02 2.51493089884E+02 2.54566730355E+02 2.57675632030E+02 2.60820111069E+02 2.64000481462E+02 2.67217057500E+02 2.70470151241E+02 2.73760074136E+02 2.77087135681E+02 2.80451643392E+02 2.83853903355E+02 2.87294218439E+02 2.90772889938E+02 2.94290215547E+02 2.97846490616E+02 3.01442006443E+02 3.05077051178E+02 3.08751908828E+02 3.12466858887E+02 3.16222176476E+02 3.20018131969E+02 3.23854989845E+02 3.27733009177E+02 3.31652442594E+02 3.35613537569E+02 3.39616531598E+02 3.43661658632E+02 3.47749141990E+02 3.51879196978E+02 3.56052031706E+02 3.60267843000E+02 3.64526818506E+02 3.68829136287E+02 3.73174961326E+02 3.77564449877E+02 3.81997742214E+02 3.86474969924E+02 3.90996247008E+02 3.95561676027E+02 4.00171343463E+02 4.04825319727E+02 4.09523659755E+02 4.14266399789E+02 4.19053559333E+02 4.23885137523E+02 4.28761115326E+02 4.33681450583E+02 4.38646081272E+02 4.43654922188E+02 4.48707863667E+02 4.53804771849E+02 4.58945486950E+02 4.64129821450E+02 4.69357560619E+02 4.74628459689E+02 4.79942243445E+02 4.85298604556E+02 4.90697202960E+02 4.96137663269E+02 5.01619574384E+02 5.07142488589E+02 5.12705917563E+02 5.18309334049E+02 5.23952167923E+02 5.29633805739E+02 5.35353588263E+02 5.41110809787E+02 5.46904715331E+02 5.52734499267E+02 5.58599303625E+02 5.64498215744E+02 5.70430266640E+02 5.76394428843E+02 5.82389614373E+02 5.88414672179E+02 5.94468387052E+02 6.00549475908E+02 6.06656586578E+02 6.12788295168E+02 6.18943103262E+02 6.25119436223E+02 6.31315639783E+02 6.37529978321E+02 6.43760631245E+02 6.50005691536E+02 6.56263161986E+02 6.62530952677E+02 6.68806878507E+02 6.75088655762E+02 6.81373899581E+02 6.87660120474E+02 6.93944722289E+02 7.00224997662E+02 7.06498125953E+02 7.12761169787E+02 7.19011071668E+02 7.25244651240E+02 7.31458601079E+02 7.37649484014E+02 7.43813730344E+02 7.49947632941E+02 7.56047345329E+02 7.62108877087E+02 7.68128091876E+02 7.74100702226E+02 7.80022268060E+02 7.85888191733E+02 7.91693714951E+02 7.97433916682E+02 8.03103707708E+02 8.08697829361E+02 8.14210848565E+02 8.19637156274E+02 8.24970962891E+02 8.30206296268E+02 8.35336998225E+02 8.40356721848E+02 8.45258928934E+02 8.50036886858E+02 8.54683667419E+02 8.59192142654E+02 8.63554984522E+02 8.67764661977E+02 8.71813439835E+02 8.75693377068E+02 8.79396325950E+02 8.82913930769E+02 8.86237627928E+02 8.89358645312E+02 8.92268002331E+02 8.94956511518E+02 8.97414778163E+02 8.99633203385E+02 9.01601984963E+02 9.03311120930E+02 9.04750412029E+02 9.05909466524E+02 9.06777704113E+02 9.07344361731E+02 9.07598499802E+02 9.07529009252E+02 9.07124619926E+02 9.06373909504E+02 9.05265313702E+02 9.03787138322E+02 9.01927571530E+02 8.99674698256E+02 8.97016515958E+02 8.93940951781E+02 8.90435882121E+02 8.86489152517E+02 8.82088601459E+02 8.77222085151E+02 8.71877504682E+02 8.66042835793E+02 8.59706161480E+02 8.52855706570E+02 8.45479876268E+02 8.37567297225E+02 8.29106862197E+02 8.20087777587E+02 8.10499616481E+02 8.00332373016E+02 7.89576523667E+02 7.78223091069E+02 7.66263712950E+02 7.53690716042E+02 7.40497195431E+02 7.26677097973E+02 7.12225311981E+02 6.97137762671E+02 6.81411511771E+02 6.65044865270E+02 6.48037484491E+02 6.30390504715E+02 6.12106658545E+02 5.93190405580E+02 5.73648066413E+02 5.53487963518E+02 5.32720564140E+02 5.11358630024E+02 4.89417368374E+02 4.66914587048E+02 4.43870849703E+02 4.20309632321E+02 3.96257479081E+02 3.71744153526E+02 3.46802787496E+02 3.21470021534E+02 2.95786136858E+02 2.69795175023E+02 2.43545042861E+02 2.17087598738E+02 1.90478717002E+02 1.63778326274E+02 1.37050417377E+02 1.10363016234E+02 8.37881171582E+01 5.74015711071E+01 3.12829236964E+01 5.51519767138E+00 -1.98153851413E+01 -4.46197491262E+01 -6.88063806110E+01 -9.22818201692E+01 -1.14951235926E+02 -1.36719079237E+02 -1.57489828441E+02 -1.77168819677E+02 -1.95663164340E+02 -2.12882753156E+02 -2.28741339513E+02 -2.43157697292E+02 -2.56056841536E+02 -2.67371298422E+02 -2.77042406727E+02 -2.85021628388E+02 -2.91271840025E+02 -2.95768573763E+02 -2.98501167897E+02 -2.99473783093E+02 -2.98706234339E+02 -2.96234582284E+02 -2.92111422796E+02 -2.86405809892E+02 -2.79202744883E+02 -2.70602163770E+02 -2.60717359766E+02 -2.49672784696E+02 -2.37601188453E+02 -2.24640077411E+02 -2.10927505608E+02 -1.96597260275E+02 -1.81773563738E+02 -1.66565500296E+02 -1.51061486389E+02 -1.35324244394E+02 -1.19386924033E+02 -1.03251249914E+02 -8.68888205059E+01 -7.02475015905E+01 -5.32608822438E+01 -3.59023588260E+01 -1.79080050615E+01 -1.85512202317E+00 1.83924274278E-01 -1.82350029397E-02 1.80789875607E-03 -1.79245789966E-04 1.77694368271E-05 -1.75958635288E-06 1.70509235845E-07 -1.62345286497E-08 5.32197546805E-09 -4.64794421638E-09 -4.99421504771E-01 3.47131657270E-01 715 -5.30147021853E-04 -5.43567760294E-04 -5.57328246483E-04 -5.71437081183E-04 -5.85903082887E-04 -6.00735293327E-04 -6.15942983130E-04 -6.31535657610E-04 -6.47523062710E-04 -6.63915191093E-04 -6.80722288387E-04 -6.97954859590E-04 -7.15623675637E-04 -7.33739780131E-04 -7.52314496245E-04 -7.71359433799E-04 -7.90886496521E-04 -8.10907889480E-04 -8.31436126721E-04 -8.52484039085E-04 -8.74064782226E-04 -8.96191844837E-04 -9.18879057078E-04 -9.42140599226E-04 -9.65991010531E-04 -9.90445198307E-04 -1.01551844725E-03 -1.04122642900E-03 -1.06758521190E-03 -1.09461127110E-03 -1.12232149881E-03 -1.15073321486E-03 -1.17986417754E-03 -1.20973259471E-03 -1.24035713513E-03 -1.27175694021E-03 -1.30395163588E-03 -1.33696134496E-03 -1.37080669962E-03 -1.40550885440E-03 -1.44108949933E-03 -1.47757087354E-03 -1.51497577916E-03 -1.55332759553E-03 -1.59265029389E-03 -1.63296845228E-03 -1.67430727095E-03 -1.71669258810E-03 -1.76015089604E-03 -1.80470935773E-03 -1.85039582376E-03 -1.89723884978E-03 -1.94526771433E-03 -1.99451243714E-03 -2.04500379790E-03 -2.09677335549E-03 -2.14985346771E-03 -2.20427731153E-03 -2.26007890379E-03 -2.31729312245E-03 -2.37595572846E-03 -2.43610338805E-03 -2.49777369565E-03 -2.56100519743E-03 -2.62583741535E-03 -2.69231087190E-03 -2.76046711539E-03 -2.83034874595E-03 -2.90199944215E-03 -2.97546398829E-03 -3.14910328435E-03 -3.12881375380E-03 -3.20711288439E-03 -3.28851147932E-03 -3.37266243176E-03 -3.45669359897E-03 -3.54489497346E-03 -3.63457433865E-03 -3.72694141596E-03 -3.82070950726E-03 -3.91739502550E-03 -4.01666143416E-03 -4.11898064211E-03 -4.22329799739E-03 -4.32967392927E-03 -4.43892268479E-03 -4.55232194699E-03 -4.66691018879E-03 -4.78477983338E-03 -4.90608713813E-03 -5.03031627958E-03 -5.15760798740E-03 -5.28899111217E-03 -5.42191330269E-03 -5.55867941081E-03 -5.70044466351E-03 -5.84451599756E-03 -5.99258378845E-03 -6.14390501577E-03 -6.29941089857E-03 -6.45827886953E-03 -6.62230009000E-03 -6.79006595068E-03 -6.96172913041E-03 -7.13813302083E-03 -7.31899990563E-03 -7.50464145856E-03 -7.69327327246E-03 -7.88878382799E-03 -8.08813211613E-03 -8.29411773409E-03 -8.50234450560E-03 -8.71835644440E-03 -8.93941521278E-03 -9.16539989062E-03 -9.39743916382E-03 -9.63532040828E-03 -9.87940102954E-03 -1.01290313018E-02 -1.03859676318E-02 -1.06485973033E-02 -1.09183569436E-02 -1.11944230749E-02 -1.14777336785E-02 -1.17690543863E-02 -1.20664461125E-02 -1.23719450320E-02 -1.26850766649E-02 -1.30061957866E-02 -1.33352532126E-02 -1.36729701499E-02 -1.40191315736E-02 -1.43738865047E-02 -1.47379318583E-02 -1.51107313335E-02 -1.54932920116E-02 -1.58857224589E-02 -1.62877236903E-02 -1.66998958758E-02 -1.71228884764E-02 -1.75558021507E-02 -1.80007262418E-02 -1.84556148469E-02 -1.89236855147E-02 -1.94031920430E-02 -1.98942414123E-02 -2.03970480963E-02 -2.09143110873E-02 -2.14430135991E-02 -2.19861830855E-02 -2.25431856898E-02 -2.31131372532E-02 -2.36981488055E-02 -2.42988521211E-02 -2.49129196306E-02 -2.55435872302E-02 -2.61904852632E-02 -2.68541536426E-02 -2.75336168654E-02 -2.82301896412E-02 -2.89450673431E-02 -2.96782824199E-02 -3.04290081174E-02 -3.11996735074E-02 -3.19893508001E-02 -3.27987450977E-02 -3.36295353233E-02 -3.44798263968E-02 -3.53539901800E-02 -3.62478349345E-02 -3.71660156683E-02 -3.81068418501E-02 -3.90709177778E-02 -4.00606673979E-02 -4.10750104277E-02 -4.21138200936E-02 -4.31811618982E-02 -4.42735092055E-02 -4.53938449009E-02 -4.65436934809E-02 -4.77217423061E-02 -4.89301316911E-02 -5.01688759534E-02 -5.14384508062E-02 -5.27403229650E-02 -5.40753964986E-02 -5.54451261342E-02 -5.68481609879E-02 -5.82864589075E-02 -5.97625756146E-02 -6.12751759223E-02 -6.28260627046E-02 -6.44170667046E-02 -6.60477065356E-02 -6.77196988393E-02 -6.94339448062E-02 -7.11921961143E-02 -7.29940243628E-02 -7.48418699520E-02 -7.67368063999E-02 -7.86787640402E-02 -8.06703035778E-02 -8.27120555529E-02 -8.48064255501E-02 -8.69535933494E-02 -8.91542734867E-02 -9.14115683490E-02 -9.37255027899E-02 -9.60978662563E-02 -9.85304936460E-02 -1.01024713321E-01 -1.03581917040E-01 -1.06203779225E-01 -1.08892490380E-01 -1.11648451801E-01 -1.14475082308E-01 -1.17374057189E-01 -1.20343339835E-01 -1.23391173949E-01 -1.26513711494E-01 -1.29717136851E-01 -1.33000610335E-01 -1.36367662681E-01 -1.39819065515E-01 -1.43358125883E-01 -1.46987834086E-01 -1.50707945988E-01 -1.54523653699E-01 -1.58434750197E-01 -1.62444937385E-01 -1.66557542877E-01 -1.70773375301E-01 -1.75096397863E-01 -1.79528155481E-01 -1.84073490765E-01 -1.88732056087E-01 -1.93509887621E-01 -1.98408366275E-01 -2.03430910343E-01 -2.08579576813E-01 -2.13859690789E-01 -2.19272728248E-01 -2.24823814915E-01 -2.30514391773E-01 -2.36350087124E-01 -2.42331898026E-01 -2.48466491229E-01 -2.54755318821E-01 -2.61204282298E-01 -2.67815489491E-01 -2.74594740490E-01 -2.81545735630E-01 -2.88671489683E-01 -2.95979664927E-01 -3.03471162751E-01 -3.11153038758E-01 -3.19028521285E-01 -3.27103674628E-01 -3.35383451654E-01 -3.43872411377E-01 -3.52576604746E-01 -3.61501520499E-01 -3.70650793680E-01 -3.80032999534E-01 -3.89651687183E-01 -3.99514221621E-01 -4.09626590555E-01 -4.19994660818E-01 -4.30625475286E-01 -4.41524587217E-01 -4.52700109695E-01 -4.64158004016E-01 -4.75906256034E-01 -4.87951287947E-01 -5.00302187350E-01 -5.12964835679E-01 -5.25948123956E-01 -5.39259833451E-01 -5.52908049649E-01 -5.66902249312E-01 -5.81250182847E-01 -5.95961533680E-01 -6.11044758518E-01 -6.26509930977E-01 -6.42367097497E-01 -6.58623978195E-01 -6.75293432245E-01 -6.92383964388E-01 -7.09907349849E-01 -7.27873427963E-01 -7.46293872526E-01 -7.65181240936E-01 -7.84547015227E-01 -8.04400579552E-01 -8.24758517903E-01 -8.45630973990E-01 -8.67031225862E-01 -8.88972308603E-01 -9.11468904687E-01 -9.34534834250E-01 -9.58184733280E-01 -9.82432097727E-01 -1.00729368143E+00 -1.03278308182E+00 -1.05891783846E+00 -1.08571404395E+00 -1.11318762738E+00 -1.14135525170E+00 -1.17023636829E+00 -1.19984765124E+00 -1.23020867640E+00 -1.26133585535E+00 -1.29325158347E+00 -1.32597473722E+00 -1.35952458891E+00 -1.39392243965E+00 -1.42919169741E+00 -1.46535127575E+00 -1.50242623574E+00 -1.54043876593E+00 -1.57941139237E+00 -1.61937039251E+00 -1.66034026895E+00 -1.70234429911E+00 -1.74541055823E+00 -1.78956678896E+00 -1.83483902440E+00 -1.88125504392E+00 -1.92884505653E+00 -1.97763802287E+00 -2.02766446115E+00 -2.07895426905E+00 -2.13154152294E+00 -2.18545802062E+00 -2.24073677324E+00 -2.29741216811E+00 -2.35551956146E+00 -2.41509639811E+00 -2.47617849638E+00 -2.53880327838E+00 -2.60301009319E+00 -2.66884108254E+00 -2.73633295790E+00 -2.80553028889E+00 -2.87647646584E+00 -2.94921526151E+00 -3.02378982719E+00 -3.10024812492E+00 -3.17863814917E+00 -3.25900738269E+00 -3.34140667187E+00 -3.42588534995E+00 -3.51249884591E+00 -3.60129731499E+00 -3.69233915926E+00 -3.78567817869E+00 -3.88137332105E+00 -3.97948544103E+00 -4.08007169291E+00 -4.18319739320E+00 -4.28892552218E+00 -4.39732085101E+00 -4.50845196864E+00 -4.62238571200E+00 -4.73919397593E+00 -4.85894871644E+00 -4.98172369467E+00 -5.10759500024E+00 -5.23664057715E+00 -5.36893955949E+00 -5.50457435080E+00 -5.64362919402E+00 -5.78618789703E+00 -5.93233960686E+00 -6.08217584213E+00 -6.23578636681E+00 -6.39326668192E+00 -6.55471569260E+00 -6.72023027728E+00 -6.88991510487E+00 -7.06387010449E+00 -7.24220732769E+00 -7.42503413542E+00 -7.61246320219E+00 -7.80460829979E+00 -8.00158955822E+00 -8.20352715601E+00 -8.41054396977E+00 -8.62276910918E+00 -8.84033086157E+00 -9.06336303820E+00 -9.29200155123E+00 -9.52638880217E+00 -9.76666540621E+00 -1.00129802430E+01 -1.02654816688E+01 -1.05243257606E+01 -1.07896702767E+01 -1.10616763882E+01 -1.13405098110E+01 -1.16263412149E+01 -1.19193449792E+01 -1.22196983052E+01 -1.25275834417E+01 -1.28431888417E+01 -1.31667050612E+01 -1.34983290296E+01 -1.38382612035E+01 -1.41867082243E+01 -1.45438808191E+01 -1.49099936509E+01 -1.52852700965E+01 -1.56699347790E+01 -1.60642206984E+01 -1.64683656717E+01 -1.68826118848E+01 -1.73072105354E+01 -1.77424141206E+01 -1.81884859097E+01 -1.86456918347E+01 -1.91143075755E+01 -1.95946119718E+01 -2.00868924273E+01 -2.05914433712E+01 -2.11085653347E+01 -2.16385658614E+01 -2.21817604960E+01 -2.27384709103E+01 -2.33090291583E+01 -2.38937717961E+01 -2.44930468609E+01 -2.51072047334E+01 -2.57366107588E+01 -2.63816341608E+01 -2.70426540560E+01 -2.77200604507E+01 -2.84142465889E+01 -2.91256227938E+01 -2.98546018522E+01 -3.06016111514E+01 -3.13670818141E+01 -3.21514628379E+01 -3.29552062521E+01 -3.37787774297E+01 -3.46226528258E+01 -3.54873176832E+01 -3.63732703620E+01 -3.72810181552E+01 -3.82110816685E+01 -3.91639907792E+01 -4.01402896879E+01 -4.11405327649E+01 -4.21652867820E+01 -4.32151318798E+01 -4.42906584175E+01 -4.53924730755E+01 -4.65211932543E+01 -4.76774499670E+01 -4.88618874638E+01 -5.00751632795E+01 -5.13179520493E+01 -5.25909363267E+01 -5.38948207205E+01 -5.52303156993E+01 -5.65981557782E+01 -5.79990824190E+01 -5.94338576189E+01 -6.09032540388E+01 -6.24080644856E+01 -6.39490948717E+01 -6.55271679145E+01 -6.71431207398E+01 -6.87978112181E+01 -7.04921065136E+01 -7.22268969294E+01 -7.40030868662E+01 -7.58215967712E+01 -7.76833660270E+01 -7.95893497496E+01 -8.15405199932E+01 -8.35378696428E+01 -8.55824040123E+01 -8.76751490925E+01 -8.98171475682E+01 -9.20094600229E+01 -9.42531634588E+01 -9.65493546628E+01 -9.88991461007E+01 -1.01303669763E+02 -1.03764072100E+02 -1.06281520454E+02 -1.08857196378E+02 -1.11492301594E+02 -1.14188051825E+02 -1.16945681154E+02 -1.19766440886E+02 -1.22651595667E+02 -1.25602429398E+02 -1.28620238157E+02 -1.31706338433E+02 -1.34862054251E+02 -1.38088729269E+02 -1.41387719060E+02 -1.44760390641E+02 -1.48208125526E+02 -1.51732316758E+02 -1.55334367247E+02 -1.59015689097E+02 -1.62777705512E+02 -1.66621845464E+02 -1.70549547063E+02 -1.74562252258E+02 -1.78661408806E+02 -1.82848467452E+02 -1.87124879918E+02 -1.91492098026E+02 -1.95951572361E+02 -2.00504751828E+02 -2.05153079848E+02 -2.09897988012E+02 -2.14740905759E+02 -2.19683247842E+02 -2.24726413472E+02 -2.29871789078E+02 -2.35120739908E+02 -2.40474608740E+02 -2.45934715106E+02 -2.51502350704E+02 -2.57178774525E+02 -2.62965212079E+02 -2.68862849198E+02 -2.74872829864E+02 -2.80996251678E+02 -2.87234161704E+02 -2.93587551214E+02 -3.00057349951E+02 -3.06644426608E+02 -3.13349575439E+02 -3.20173516911E+02 -3.27116890230E+02 -3.34180246723E+02 -3.41364043504E+02 -3.48668637906E+02 -3.56094281544E+02 -3.63641109797E+02 -3.71309137777E+02 -3.79098249359E+02 -3.87008195301E+02 -3.95038577335E+02 -4.03188842927E+02 -4.11458278393E+02 -4.19845995210E+02 -4.28350924052E+02 -4.36971802662E+02 -4.45707167532E+02 -4.54555338998E+02 -4.63514415395E+02 -4.72582257644E+02 -4.81756481094E+02 -4.91034439565E+02 -5.00413215235E+02 -5.09889605796E+02 -5.19460109647E+02 -5.29120915881E+02 -5.38867885894E+02 -5.48696543479E+02 -5.58602058076E+02 -5.68579229475E+02 -5.78622475841E+02 -5.88725815941E+02 -5.98882854697E+02 -6.09086768062E+02 -6.19330285804E+02 -6.29605677104E+02 -6.39904734258E+02 -6.50218755019E+02 -6.60538530782E+02 -6.70854324515E+02 -6.81155860144E+02 -6.91432304192E+02 -7.01672249595E+02 -7.11863702848E+02 -7.21994066497E+02 -7.32050126759E+02 -7.42018035847E+02 -7.51883303647E+02 -7.61630780977E+02 -7.71244649032E+02 -7.80708406662E+02 -7.90004862896E+02 -7.99116125271E+02 -8.08023593287E+02 -8.16707954302E+02 -8.25149171153E+02 -8.33326488958E+02 -8.41218426450E+02 -8.48802778279E+02 -8.56056621904E+02 -8.62956317287E+02 -8.69477516164E+02 -8.75595175962E+02 -8.81283568238E+02 -8.86516301146E+02 -8.91266333613E+02 -8.95506006015E+02 -8.99207062349E+02 -9.02340684630E+02 -9.04877531854E+02 -9.06787775536E+02 -9.08041152984E+02 -9.08607014348E+02 -9.08454382614E+02 -9.07552014657E+02 -9.05868475310E+02 -9.03372209692E+02 -9.00031626504E+02 -8.95815194158E+02 -8.90691534353E+02 -8.84629528496E+02 -8.77598437235E+02 -8.69568019876E+02 -8.60508670773E+02 -8.50391559509E+02 -8.39188785611E+02 -8.26873540082E+02 -8.13420281019E+02 -7.98804915894E+02 -7.83005000563E+02 -7.65999943683E+02 -7.47771231045E+02 -7.28302653949E+02 -7.07580555469E+02 -6.85594087379E+02 -6.62335480761E+02 -6.37800327093E+02 -6.11987877975E+02 -5.84901347560E+02 -5.56548235955E+02 -5.26940663961E+02 -4.96095714499E+02 -4.64035784064E+02 -4.30788953208E+02 -3.96389354486E+02 -3.60877552298E+02 -3.24300930361E+02 -2.86714077217E+02 -2.48179176996E+02 -2.08766393639E+02 -1.68554252506E+02 -1.27630012103E+02 -8.60900230272E+01 -4.40400626706E+01 -1.59565581602E+00 4.11176510468E+01 8.39640359928E+01 1.26797204937E+02 1.69460251708E+02 2.11785570453E+02 2.53594857198E+02 2.94699183099E+02 3.34899183219E+02 3.73985343181E+02 4.11738419434E+02 4.47930007207E+02 4.82323258295E+02 5.14673790625E+02 5.44730780407E+02 5.72238293727E+02 5.96936841570E+02 6.18565214140E+02 6.36862605974E+02 6.51571058838E+02 6.62438258776E+02 6.69220723693E+02 6.71687403707E+02 6.69623746931E+02 6.62836261811E+02 6.51157633837E+02 6.34452427998E+02 6.12623439776E+02 5.85618743765E+02 5.53439484287E+02 5.16148471216E+02 4.73879606803E+02 4.26848187503E+02 3.75362081613E+02 3.19833765201E+02 2.60793148227E+02 1.98901054026E+02 1.34963127062E+02 6.99438106526E+01 4.97987137063E+00 -5.86072931921E+01 -1.19301613476E+02 -1.75386026843E+02 -2.24941824092E+02 -2.65856256733E+02 -2.95841799449E+02 -3.12471518050E+02 -3.13235937724E+02 -2.95631464844E+02 -2.57262450358E+02 -1.96231795404E+02 -1.09276334359E+02 -1.25186673039E+01 1.24115108493E+00 -1.23052690600E-01 1.21999433123E-02 -1.20961076288E-03 1.19951662386E-04 -1.19069210014E-05 1.15351210901E-06 -6.18870260505E-08 -3.39053905007E-08 2.82506290947E-08 0.00000000000E+00 0.00000000000E+00 -1.14191866299E-01 715 6.85478976676E-04 7.02831963044E-04 7.20624242531E-04 7.38866935904E-04 7.57571445454E-04 7.76749462123E-04 7.96412972812E-04 8.16574267872E-04 8.37245948786E-04 8.58440936045E-04 8.80172477225E-04 9.02454155267E-04 9.25299896966E-04 9.48723981678E-04 9.72741050239E-04 9.97366114126E-04 1.02261456483E-03 1.04850218348E-03 1.07504515071E-03 1.10226005677E-03 1.13016391190E-03 1.15877415694E-03 1.18810867426E-03 1.21818579893E-03 1.24902433016E-03 1.28064354310E-03 1.31306320080E-03 1.34630356667E-03 1.38038541706E-03 1.41533005428E-03 1.45115931992E-03 1.48789560849E-03 1.52556188144E-03 1.56418168145E-03 1.60377914724E-03 1.64437902857E-03 1.68600670175E-03 1.72868818552E-03 1.77245015727E-03 1.81731996974E-03 1.86332566810E-03 1.91049600750E-03 1.95886047104E-03 2.00844928819E-03 2.05929345366E-03 2.11142474683E-03 2.16487575156E-03 2.21967987661E-03 2.27587137646E-03 2.33348537275E-03 2.39255787626E-03 2.45312580937E-03 2.51522702916E-03 2.57890035109E-03 2.64418557322E-03 2.71112350113E-03 2.77975597338E-03 2.85012588772E-03 2.92227722783E-03 2.99625509088E-03 3.07210571566E-03 3.14987651155E-03 3.22961608806E-03 3.31137428530E-03 3.39520220509E-03 3.48115224292E-03 3.56927812065E-03 3.65963492018E-03 3.75227911778E-03 3.84726861945E-03 4.07049392190E-03 4.04557914025E-03 4.14683247695E-03 4.25207675509E-03 4.36087245266E-03 4.46954191110E-03 4.58357697443E-03 4.69953313334E-03 4.81895819348E-03 4.94020789471E-03 5.06522257211E-03 5.19357236747E-03 5.32586271438E-03 5.46074332545E-03 5.59829411889E-03 5.73955734070E-03 5.88616845619E-03 6.03433969535E-03 6.18674764071E-03 6.34359566491E-03 6.50422312932E-03 6.66881152744E-03 6.83867893146E-03 7.01055868335E-03 7.18740410095E-03 7.37069202069E-03 7.55697921076E-03 7.74842894546E-03 7.94409108947E-03 8.14516048617E-03 8.35058434450E-03 8.56265641197E-03 8.77957609869E-03 9.00153836294E-03 9.22962629041E-03 9.46348439234E-03 9.70351354583E-03 9.94743201004E-03 1.02002160286E-02 1.04579781912E-02 1.07243004975E-02 1.09935601488E-02 1.12728532542E-02 1.15586761904E-02 1.18508781958E-02 1.21509042211E-02 1.24584843022E-02 1.27740780038E-02 1.30968549611E-02 1.34290662857E-02 1.37686495019E-02 1.41174457454E-02 1.44744032607E-02 1.48407232429E-02 1.52173906274E-02 1.56019244297E-02 1.59969331859E-02 1.64018127452E-02 1.68170185908E-02 1.72424916592E-02 1.76791571229E-02 1.81267426229E-02 1.85854416107E-02 1.90561494831E-02 1.95381814411E-02 2.00328315826E-02 2.05402401391E-02 2.10600288324E-02 2.15929685926E-02 2.21398934271E-02 2.26996574130E-02 2.32749368341E-02 2.38631170100E-02 2.44683206725E-02 2.50883145642E-02 2.57232424393E-02 2.63733806675E-02 2.70421888606E-02 2.77258098417E-02 2.84281215039E-02 2.91483191606E-02 2.98852749272E-02 3.06416946503E-02 3.14183927307E-02 3.22123936813E-02 3.30278458644E-02 3.38642802612E-02 3.47223929236E-02 3.56009425451E-02 3.65016142105E-02 3.74259473287E-02 3.83739857162E-02 3.93446805057E-02 4.03411441863E-02 4.13621963811E-02 4.24087471726E-02 4.34829504722E-02 4.45823886330E-02 4.57126633921E-02 4.68684170537E-02 4.80556153598E-02 4.92721019793E-02 5.05186576631E-02 5.17983934554E-02 5.31099330085E-02 5.44531249970E-02 5.58331794273E-02 5.72455920858E-02 5.86941898305E-02 6.01809314570E-02 6.17041486815E-02 6.32665894760E-02 6.48682814357E-02 6.65098450049E-02 6.81931656597E-02 6.99194137709E-02 7.16904601295E-02 7.35045882140E-02 7.53643150491E-02 7.72729221141E-02 7.92287147370E-02 8.12340118833E-02 8.32911686023E-02 8.53995837619E-02 8.75614648446E-02 8.97779822013E-02 9.20513897955E-02 9.43811544703E-02 9.67704146913E-02 9.92205577214E-02 1.01731512780E-01 1.04306571362E-01 1.06946557091E-01 1.09654566174E-01 1.12430843822E-01 1.15276325469E-01 1.18194997143E-01 1.21186910515E-01 1.24254374708E-01 1.27399756006E-01 1.30624777302E-01 1.33931238132E-01 1.37321303367E-01 1.40797798082E-01 1.44361257035E-01 1.48016079885E-01 1.51764433139E-01 1.55603734538E-01 1.59544558668E-01 1.63582005304E-01 1.67724016503E-01 1.71969542636E-01 1.76323130339E-01 1.80785795146E-01 1.85361795144E-01 1.90054990821E-01 1.94865096442E-01 1.99798788919E-01 2.04855834610E-01 2.10041002470E-01 2.15358585783E-01 2.20809652344E-01 2.26399309456E-01 2.32129570029E-01 2.38006666926E-01 2.44030195154E-01 2.50207915962E-01 2.56541636968E-01 2.63035773933E-01 2.69692998837E-01 2.76520171609E-01 2.83519223088E-01 2.90696758642E-01 2.98054667234E-01 3.05600200518E-01 3.13334680403E-01 3.21266690679E-01 3.29398138930E-01 3.37736629387E-01 3.46284914530E-01 3.55050469551E-01 3.64038088247E-01 3.73251684734E-01 3.82701124043E-01 3.92387621160E-01 4.02320265807E-01 4.12503255154E-01 4.22944413591E-01 4.33650146104E-01 4.44626357132E-01 4.55880858995E-01 4.67420749178E-01 4.79250753146E-01 4.91381919825E-01 5.03818870484E-01 5.16571108437E-01 5.29646379268E-01 5.43052274322E-01 5.56797891756E-01 5.70890427867E-01 5.85340353486E-01 6.00155392142E-01 6.15345857371E-01 6.30920064675E-01 6.46889745093E-01 6.63262525810E-01 6.80049891378E-01 6.97261906585E-01 7.14909028045E-01 7.33003498511E-01 7.51555350377E-01 7.70577095836E-01 7.90079678849E-01 8.10076114843E-01 8.30579390515E-01 8.51599514791E-01 8.73153080435E-01 8.95251108062E-01 9.17908808220E-01 9.41138918975E-01 9.64956526635E-01 9.89377855413E-01 1.01441775465E+00 1.04008839335E+00 1.06641116113E+00 1.09339920453E+00 1.12106969153E+00 1.14943947912E+00 1.17852753848E+00 1.20835174332E+00 1.23893101223E+00 1.27028281453E+00 1.30242878983E+00 1.33538654497E+00 1.36917873754E+00 1.40382617700E+00 1.43934947089E+00 1.47577017038E+00 1.51311340004E+00 1.55140073876E+00 1.59065748165E+00 1.63090488339E+00 1.67217186112E+00 1.71448283495E+00 1.75786274012E+00 1.80233911224E+00 1.84794219304E+00 1.89469647749E+00 1.94263433539E+00 1.99178447033E+00 2.04217602155E+00 2.09384294139E+00 2.14681691547E+00 2.20112807094E+00 2.25681268476E+00 2.31390661515E+00 2.37244354182E+00 2.43245939003E+00 2.49399320096E+00 2.55708243120E+00 2.62176653745E+00 2.68808419401E+00 2.75607943365E+00 2.82579338137E+00 2.89726872981E+00 2.97054994022E+00 3.04568272652E+00 3.12271548870E+00 3.20169455502E+00 3.28266831958E+00 3.36568765646E+00 3.45080702280E+00 3.53807394455E+00 3.62754601364E+00 3.71927932939E+00 3.81333049349E+00 3.90975532684E+00 4.00861582372E+00 4.10997403215E+00 4.21389136471E+00 4.32043355179E+00 4.42966440498E+00 4.54165555523E+00 4.65647189855E+00 4.77418890681E+00 4.89487617674E+00 5.01860991406E+00 5.14546878367E+00 5.27552673352E+00 5.40886817903E+00 5.54557456517E+00 5.68572964961E+00 5.82942209960E+00 5.97673835953E+00 6.12777137198E+00 6.28261418050E+00 6.44136216048E+00 6.60411369573E+00 6.77096956375E+00 6.94203209505E+00 7.11740782774E+00 7.29720568019E+00 7.48153404643E+00 7.67050817499E+00 7.86424638354E+00 8.06286477198E+00 8.26648681171E+00 8.47524036469E+00 8.68925072732E+00 8.90865320191E+00 9.13357705699E+00 9.36416710810E+00 9.60056220657E+00 9.84290803486E+00 1.00913517216E+01 1.03460485668E+01 1.06071539712E+01 1.08748268311E+01 1.11492340560E+01 1.14305415477E+01 1.17189223194E+01 1.20145521140E+01 1.23176150271E+01 1.26282929113E+01 1.29467782445E+01 1.32732628811E+01 1.36079486052E+01 1.39510394044E+01 1.43027436826E+01 1.46632757153E+01 1.50328561690E+01 1.54117105146E+01 1.58000678892E+01 1.61981639482E+01 1.66062423456E+01 1.70245494868E+01 1.74533399964E+01 1.78928730754E+01 1.83434159038E+01 1.88052409586E+01 1.92786258199E+01 1.97638592892E+01 2.02612318339E+01 2.07710447144E+01 2.12936054293E+01 2.18292271454E+01 2.23782346383E+01 2.29409544279E+01 2.35177268991E+01 2.41088959294E+01 2.47148179536E+01 2.53358535396E+01 2.59723743016E+01 2.66247609377E+01 2.72934020450E+01 2.79786952913E+01 2.86810486807E+01 2.94008781557E+01 3.01386130489E+01 3.08946885554E+01 3.16695546694E+01 3.24636644938E+01 3.32774903888E+01 3.41115097937E+01 3.49662129211E+01 3.58421040371E+01 3.67396916721E+01 3.76595063333E+01 3.86020818071E+01 3.95679706913E+01 4.05577304940E+01 4.15719417308E+01 4.26111889312E+01 4.36760738412E+01 4.47672125264E+01 4.58852324438E+01 4.70307779826E+01 4.82045051110E+01 4.94070869878E+01 5.06392087898E+01 5.19015741815E+01 5.31949000026E+01 5.45199191259E+01 5.58773816993E+01 5.72680511163E+01 5.86927118291E+01 6.01521621849E+01 6.16472181273E+01 6.31787127218E+01 6.47474962195E+01 6.63544409402E+01 6.80004295289E+01 6.96863730461E+01 7.14131902490E+01 7.31818308651E+01 7.49932537145E+01 7.68484441007E+01 7.87484011814E+01 8.06941501061E+01 8.26867330079E+01 8.47272137423E+01 8.68166748214E+01 8.89562255247E+01 9.11469872503E+01 9.33901112319E+01 9.56867669724E+01 9.80381447411E+01 1.00445459270E+02 1.02909945662E+02 1.05432860930E+02 1.08015488983E+02 1.10659129878E+02 1.13365110368E+02 1.16134778815E+02 1.18969506729E+02 1.21870686876E+02 1.24839737581E+02 1.27878097482E+02 1.30987230446E+02 1.34168619088E+02 1.37423773005E+02 1.40754220219E+02 1.44161514808E+02 1.47647229002E+02 1.51212958769E+02 1.54860322351E+02 1.58590955292E+02 1.62406518009E+02 1.66308686728E+02 1.70299164013E+02 1.74379662291E+02 1.78551919323E+02 1.82817688321E+02 1.87178737343E+02 1.91636853186E+02 1.96193837584E+02 2.00851505070E+02 2.05611682108E+02 2.10476209516E+02 2.15446935638E+02 2.20525720639E+02 2.25714429710E+02 2.31014935579E+02 2.36429114878E+02 2.41958845562E+02 2.47606005763E+02 2.53372472060E+02 2.59260118894E+02 2.65270813677E+02 2.71406408647E+02 2.77668753231E+02 2.84059677975E+02 2.90580993425E+02 2.97234493626E+02 3.04021945344E+02 3.10945086381E+02 3.18005624554E+02 3.25205231777E+02 3.32545537793E+02 3.40028129144E+02 3.47654541188E+02 3.55426255283E+02 3.63344692940E+02 3.71411210449E+02 3.79627092106E+02 3.87993542816E+02 3.96511688647E+02 4.05182559636E+02 4.14007090560E+02 4.22986111305E+02 4.32120338330E+02 4.41410366485E+02 4.50856661818E+02 4.60459553891E+02 4.70219222247E+02 4.80135691155E+02 4.90208815502E+02 5.00438278281E+02 5.10823570142E+02 5.21363982592E+02 5.32058599083E+02 5.42906277387E+02 5.53905641860E+02 5.65055067808E+02 5.76352670731E+02 5.87796287119E+02 5.99383466866E+02 6.11111453413E+02 6.22977173180E+02 6.34977215024E+02 6.47107817154E+02 6.59364850565E+02 6.71743799952E+02 6.84239750750E+02 6.96847365462E+02 7.09560870835E+02 7.22374036275E+02 7.35280154133E+02 7.48272024224E+02 7.61341930935E+02 7.74481624591E+02 7.87682301949E+02 8.00934584019E+02 8.14228497485E+02 8.27553453711E+02 8.40898225989E+02 8.54250934290E+02 8.67599016881E+02 8.80929216616E+02 8.94227557311E+02 9.07479322908E+02 9.20669040929E+02 9.33780459953E+02 9.46796533688E+02 9.59699398269E+02 9.72470361532E+02 9.85089881530E+02 9.97537552988E+02 1.00979209099E+03 1.02183132139E+03 1.03363216591E+03 1.04517063375E+03 1.05642181642E+03 1.06735987194E+03 1.07795803365E+03 1.08818859924E+03 1.09802293385E+03 1.10743147903E+03 1.11638375261E+03 1.12484836076E+03 1.13279301610E+03 1.14018454877E+03 1.14698893557E+03 1.15317131845E+03 1.15869604423E+03 1.16352669337E+03 1.16762612456E+03 1.17095652510E+03 1.17347945696E+03 1.17515592561E+03 1.17594644091E+03 1.17581109458E+03 1.17470963915E+03 1.17260158350E+03 1.16944628635E+03 1.16520306367E+03 1.15983131271E+03 1.15329063272E+03 1.14554096210E+03 1.13654273250E+03 1.12625702268E+03 1.11464573416E+03 1.10167177176E+03 1.08729924275E+03 1.07149366474E+03 1.05422219157E+03 1.03545384779E+03 1.01515978451E+03 9.93313542122E+02 9.69891338583E+02 9.44872362744E+02 9.18239090597E+02 8.89977615095E+02 8.60077993427E+02 8.28534607646E+02 7.95346549063E+02 7.60518006010E+02 7.24058678354E+02 6.85984206393E+02 6.46316608206E+02 6.05084729676E+02 5.62324718749E+02 5.18080496263E+02 4.72404241854E+02 4.25356889441E+02 3.77008620005E+02 3.27439360911E+02 2.76739276642E+02 2.25009255990E+02 1.72361386382E+02 1.18919411616E+02 6.48191583815E+01 1.02089444743E+01 -4.47500724121E+01 -9.98835724641E+01 -1.55003824681E+02 -2.09909510683E+02 -2.64385615673E+02 -3.18203433643E+02 -3.71120664458E+02 -4.22881658887E+02 -4.73217788929E+02 -5.21847989161E+02 -5.68479487015E+02 -6.12808724704E+02 -6.54522526368E+02 -6.93299498586E+02 -7.28811736923E+02 -7.60726817860E+02 -7.88710147504E+02 -8.12427681567E+02 -8.31549051015E+02 -8.45751139700E+02 -8.54722160293E+02 -8.58166256723E+02 -8.55808700250E+02 -8.47401718681E+02 -8.32731032441E+02 -8.11623137303E+02 -7.83953413850E+02 -7.49655126189E+02 -7.08729366452E+02 -6.61256025790E+02 -6.07405824789E+02 -5.47453459668E+02 -4.81791865523E+02 -4.10947574700E+02 -3.35597083948E+02 -2.56584056479E+02 -1.74937072600E+02 -9.18874727732E+01 -8.88662655638E+00 7.23783453129E+01 1.49971734459E+02 2.21701146972E+02 2.85116628650E+02 3.37520321975E+02 3.75990986781E+02 3.97429065223E+02 3.98629179162E+02 3.76392890687E+02 3.27658918957E+02 2.50001226547E+02 1.39252798104E+02 1.59559801830E+01 -1.58194012464E+00 1.56839881059E-01 -1.55497425631E-02 1.54173992315E-03 -1.52887553425E-04 1.51763519597E-05 -1.47010644823E-06 7.86035514289E-08 4.34372383202E-08 -3.61487365743E-08 0.00000000000E+00 0.00000000000E+00 -8.92209403343E-02 -6.97330029633E-02 1.00000000000E+00 -1.96192927530E+01 -1.96192927558E+01 -1.96192927562E+01 -1.96192927566E+01 -1.96192927571E+01 -1.96192927575E+01 -1.96192927580E+01 -1.96192927584E+01 -1.96192927589E+01 -1.96192927594E+01 -1.96192927599E+01 -1.96192927605E+01 -1.96192927610E+01 -1.96192927615E+01 -1.96192927621E+01 -1.96192927627E+01 -1.96192927633E+01 -1.96192927639E+01 -1.96192927645E+01 -1.96192927651E+01 -1.96192927658E+01 -1.96192927664E+01 -1.96192927671E+01 -1.96192927678E+01 -1.96192927686E+01 -1.96192927693E+01 -1.96192927701E+01 -1.96192927708E+01 -1.96192927716E+01 -1.96192927724E+01 -1.96192927733E+01 -1.96192927741E+01 -1.96192927750E+01 -1.96192927759E+01 -1.96192927768E+01 -1.96192927778E+01 -1.96192927788E+01 -1.96192927798E+01 -1.96192927808E+01 -1.96192927818E+01 -1.96192927829E+01 -1.96192927840E+01 -1.96192927851E+01 -1.96192927863E+01 -1.96192927875E+01 -1.96192927887E+01 -1.96192927900E+01 -1.96192927912E+01 -1.96192927926E+01 -1.96192927939E+01 -1.96192927953E+01 -1.96192927967E+01 -1.96192927981E+01 -1.96192927996E+01 -1.96192928012E+01 -1.96192928027E+01 -1.96192928043E+01 -1.96192928060E+01 -1.96192928077E+01 -1.96192928094E+01 -1.96192928112E+01 -1.96192928130E+01 -1.96192928148E+01 -1.96192928168E+01 -1.96192928187E+01 -1.96192928207E+01 -1.96192928228E+01 -1.96192928249E+01 -1.96192928271E+01 -1.96192928293E+01 -1.96192928316E+01 -1.96192928339E+01 -1.96192928363E+01 -1.96192928387E+01 -1.96192928413E+01 -1.96192928438E+01 -1.96192928465E+01 -1.96192928492E+01 -1.96192928520E+01 -1.96192928548E+01 -1.96192928577E+01 -1.96192928607E+01 -1.96192928638E+01 -1.96192928670E+01 -1.96192928702E+01 -1.96192928735E+01 -1.96192928769E+01 -1.96192928804E+01 -1.96192928839E+01 -1.96192928876E+01 -1.96192928914E+01 -1.96192928952E+01 -1.96192928992E+01 -1.96192929032E+01 -1.96192929073E+01 -1.96192929116E+01 -1.96192929160E+01 -1.96192929204E+01 -1.96192929250E+01 -1.96192929297E+01 -1.96192929345E+01 -1.96192929395E+01 -1.96192929445E+01 -1.96192929497E+01 -1.96192929551E+01 -1.96192929605E+01 -1.96192929661E+01 -1.96192929719E+01 -1.96192929777E+01 -1.96192929838E+01 -1.96192929900E+01 -1.96192929963E+01 -1.96192930028E+01 -1.96192930095E+01 -1.96192930163E+01 -1.96192930233E+01 -1.96192930305E+01 -1.96192930379E+01 -1.96192930454E+01 -1.96192930532E+01 -1.96192930611E+01 -1.96192930693E+01 -1.96192930776E+01 -1.96192930862E+01 -1.96192930950E+01 -1.96192931040E+01 -1.96192931132E+01 -1.96192931227E+01 -1.96192931324E+01 -1.96192931423E+01 -1.96192931525E+01 -1.96192931630E+01 -1.96192931737E+01 -1.96192931847E+01 -1.96192931960E+01 -1.96192932075E+01 -1.96192932194E+01 -1.96192932315E+01 -1.96192932440E+01 -1.96192932567E+01 -1.96192932698E+01 -1.96192932833E+01 -1.96192932970E+01 -1.96192933111E+01 -1.96192933256E+01 -1.96192933405E+01 -1.96192933557E+01 -1.96192933713E+01 -1.96192933873E+01 -1.96192934037E+01 -1.96192934205E+01 -1.96192934377E+01 -1.96192934554E+01 -1.96192934735E+01 -1.96192934921E+01 -1.96192935111E+01 -1.96192935307E+01 -1.96192935507E+01 -1.96192935712E+01 -1.96192935923E+01 -1.96192936139E+01 -1.96192936360E+01 -1.96192936587E+01 -1.96192936820E+01 -1.96192937058E+01 -1.96192937303E+01 -1.96192937554E+01 -1.96192937811E+01 -1.96192938074E+01 -1.96192938345E+01 -1.96192938622E+01 -1.96192938906E+01 -1.96192939197E+01 -1.96192939496E+01 -1.96192939802E+01 -1.96192940116E+01 -1.96192940438E+01 -1.96192940768E+01 -1.96192941107E+01 -1.96192941454E+01 -1.96192941810E+01 -1.96192942175E+01 -1.96192942549E+01 -1.96192942932E+01 -1.96192943325E+01 -1.96192943728E+01 -1.96192944142E+01 -1.96192944565E+01 -1.96192945000E+01 -1.96192945445E+01 -1.96192945902E+01 -1.96192946370E+01 -1.96192946851E+01 -1.96192947343E+01 -1.96192947848E+01 -1.96192948365E+01 -1.96192948896E+01 -1.96192949440E+01 -1.96192949997E+01 -1.96192950569E+01 -1.96192951156E+01 -1.96192951757E+01 -1.96192952373E+01 -1.96192953005E+01 -1.96192953653E+01 -1.96192954317E+01 -1.96192954998E+01 -1.96192955697E+01 -1.96192956412E+01 -1.96192957146E+01 -1.96192957899E+01 -1.96192958671E+01 -1.96192959462E+01 -1.96192960273E+01 -1.96192961104E+01 -1.96192961957E+01 -1.96192962831E+01 -1.96192963727E+01 -1.96192964646E+01 -1.96192965588E+01 -1.96192966554E+01 -1.96192967544E+01 -1.96192968560E+01 -1.96192969601E+01 -1.96192970668E+01 -1.96192971762E+01 -1.96192972884E+01 -1.96192974034E+01 -1.96192975213E+01 -1.96192976422E+01 -1.96192977661E+01 -1.96192978932E+01 -1.96192980235E+01 -1.96192981571E+01 -1.96192982940E+01 -1.96192984344E+01 -1.96192985784E+01 -1.96192987259E+01 -1.96192988772E+01 -1.96192990323E+01 -1.96192991914E+01 -1.96192993544E+01 -1.96192995216E+01 -1.96192996929E+01 -1.96192998686E+01 -1.96193000487E+01 -1.96193002334E+01 -1.96193004227E+01 -1.96193006168E+01 -1.96193008158E+01 -1.96193010198E+01 -1.96193012289E+01 -1.96193014433E+01 -1.96193016631E+01 -1.96193018885E+01 -1.96193021195E+01 -1.96193023563E+01 -1.96193025991E+01 -1.96193028480E+01 -1.96193031032E+01 -1.96193033648E+01 -1.96193036330E+01 -1.96193039079E+01 -1.96193041898E+01 -1.96193044787E+01 -1.96193047749E+01 -1.96193050786E+01 -1.96193053899E+01 -1.96193057090E+01 -1.96193060361E+01 -1.96193063715E+01 -1.96193067152E+01 -1.96193070677E+01 -1.96193074289E+01 -1.96193077993E+01 -1.96193081789E+01 -1.96193085681E+01 -1.96193089670E+01 -1.96193093759E+01 -1.96193097951E+01 -1.96193102248E+01 -1.96193106653E+01 -1.96193111168E+01 -1.96193115796E+01 -1.96193120540E+01 -1.96193125403E+01 -1.96193130388E+01 -1.96193135498E+01 -1.96193140735E+01 -1.96193146103E+01 -1.96193151606E+01 -1.96193157246E+01 -1.96193163027E+01 -1.96193168953E+01 -1.96193175026E+01 -1.96193181251E+01 -1.96193187632E+01 -1.96193194171E+01 -1.96193200874E+01 -1.96193207744E+01 -1.96193214785E+01 -1.96193222001E+01 -1.96193229397E+01 -1.96193236977E+01 -1.96193244746E+01 -1.96193252707E+01 -1.96193260867E+01 -1.96193269229E+01 -1.96193277799E+01 -1.96193286581E+01 -1.96193295582E+01 -1.96193304805E+01 -1.96193314257E+01 -1.96193323943E+01 -1.96193333868E+01 -1.96193344039E+01 -1.96193354462E+01 -1.96193365142E+01 -1.96193376085E+01 -1.96193387299E+01 -1.96193398789E+01 -1.96193410562E+01 -1.96193422624E+01 -1.96193434984E+01 -1.96193447647E+01 -1.96193460621E+01 -1.96193473914E+01 -1.96193487533E+01 -1.96193501485E+01 -1.96193515779E+01 -1.96193530422E+01 -1.96193545423E+01 -1.96193560791E+01 -1.96193576533E+01 -1.96193592659E+01 -1.96193609177E+01 -1.96193626097E+01 -1.96193643427E+01 -1.96193661178E+01 -1.96193679360E+01 -1.96193697981E+01 -1.96193717052E+01 -1.96193736584E+01 -1.96193756587E+01 -1.96193777071E+01 -1.96193798048E+01 -1.96193819529E+01 -1.96193841525E+01 -1.96193864048E+01 -1.96193887109E+01 -1.96193910720E+01 -1.96193934894E+01 -1.96193959643E+01 -1.96193984980E+01 -1.96194010918E+01 -1.96194037470E+01 -1.96194064648E+01 -1.96194092468E+01 -1.96194120942E+01 -1.96194150084E+01 -1.96194179910E+01 -1.96194210432E+01 -1.96194241667E+01 -1.96194273628E+01 -1.96194306332E+01 -1.96194339792E+01 -1.96194374026E+01 -1.96194409048E+01 -1.96194444875E+01 -1.96194481523E+01 -1.96194519008E+01 -1.96194557347E+01 -1.96194596556E+01 -1.96194636653E+01 -1.96194677654E+01 -1.96194719577E+01 -1.96194762438E+01 -1.96194806257E+01 -1.96194851049E+01 -1.96194896834E+01 -1.96194943628E+01 -1.96194991450E+01 -1.96195040318E+01 -1.96195090250E+01 -1.96195141263E+01 -1.96195193376E+01 -1.96195246608E+01 -1.96195300975E+01 -1.96195356495E+01 -1.96195413188E+01 -1.96195471069E+01 -1.96195530158E+01 -1.96195590471E+01 -1.96195652024E+01 -1.96195714836E+01 -1.96195778923E+01 -1.96195844300E+01 -1.96195910983E+01 -1.96195978988E+01 -1.96196048329E+01 -1.96196119020E+01 -1.96196191076E+01 -1.96196264507E+01 -1.96196339328E+01 -1.96196415548E+01 -1.96196493177E+01 -1.96196572226E+01 -1.96196652701E+01 -1.96196734609E+01 -1.96196817957E+01 -1.96196902748E+01 -1.96196988983E+01 -1.96197076665E+01 -1.96197165792E+01 -1.96197256361E+01 -1.96197348367E+01 -1.96197441802E+01 -1.96197536656E+01 -1.96197632918E+01 -1.96197730572E+01 -1.96197829600E+01 -1.96197929981E+01 -1.96198031689E+01 -1.96198134697E+01 -1.96198238972E+01 -1.96198344478E+01 -1.96198451173E+01 -1.96198559014E+01 -1.96198667948E+01 -1.96198777920E+01 -1.96198888869E+01 -1.96199000727E+01 -1.96199113420E+01 -1.96199226868E+01 -1.96199340982E+01 -1.96199455666E+01 -1.96199570818E+01 -1.96199686323E+01 -1.96199802062E+01 -1.96199917902E+01 -1.96200033701E+01 -1.96200149308E+01 -1.96200264557E+01 -1.96200379273E+01 -1.96200493267E+01 -1.96200606334E+01 -1.96200718257E+01 -1.96200828804E+01 -1.96200937724E+01 -1.96201044753E+01 -1.96201149604E+01 -1.96201251974E+01 -1.96201351539E+01 -1.96201447953E+01 -1.96201540848E+01 -1.96201629832E+01 -1.96201714486E+01 -1.96201794368E+01 -1.96201869003E+01 -1.96201937891E+01 -1.96202000498E+01 -1.96202056256E+01 -1.96202104565E+01 -1.96202144786E+01 -1.96202176240E+01 -1.96202198210E+01 -1.96202209935E+01 -1.96202210606E+01 -1.96202199368E+01 -1.96202175315E+01 -1.96202137488E+01 -1.96202084871E+01 -1.96202016389E+01 -1.96201930905E+01 -1.96201827214E+01 -1.96201704045E+01 -1.96201560051E+01 -1.96201393811E+01 -1.96201203820E+01 -1.96200988490E+01 -1.96200746143E+01 -1.96200475005E+01 -1.96200173205E+01 -1.96199838765E+01 -1.96199469598E+01 -1.96199063501E+01 -1.96198618150E+01 -1.96198131092E+01 -1.96197599738E+01 -1.96197021360E+01 -1.96196393077E+01 -1.96195711854E+01 -1.96194974491E+01 -1.96194177613E+01 -1.96193317663E+01 -1.96192390893E+01 -1.96191393353E+01 -1.96190320882E+01 -1.96189169094E+01 -1.96187933372E+01 -1.96186608851E+01 -1.96185190410E+01 -1.96183672655E+01 -1.96182049908E+01 -1.96180316190E+01 -1.96178465211E+01 -1.96176490347E+01 -1.96174384630E+01 -1.96172140727E+01 -1.96169750925E+01 -1.96167207106E+01 -1.96164500735E+01 -1.96161622833E+01 -1.96158563958E+01 -1.96155314183E+01 -1.96151863067E+01 -1.96148199638E+01 -1.96144312359E+01 -1.96140189106E+01 -1.96135817136E+01 -1.96131183060E+01 -1.96126272808E+01 -1.96121071599E+01 -1.96115563906E+01 -1.96109733420E+01 -1.96103563011E+01 -1.96097034691E+01 -1.96090129574E+01 -1.96082827829E+01 -1.96075108640E+01 -1.96066950154E+01 -1.96058329439E+01 -1.96049222428E+01 -1.96039603869E+01 -1.96029447267E+01 -1.96018724829E+01 -1.96007407401E+01 -1.95995464411E+01 -1.95982863794E+01 -1.95969571936E+01 -1.95955553593E+01 -1.95940771821E+01 -1.95925187903E+01 -1.95908761262E+01 -1.95891449384E+01 -1.95873207729E+01 -1.95853989641E+01 -1.95833746256E+01 -1.95812426405E+01 -1.95789976514E+01 -1.95766340497E+01 -1.95741459653E+01 -1.95715272548E+01 -1.95687714905E+01 -1.95658719478E+01 -1.95628215934E+01 -1.95596130718E+01 -1.95562386925E+01 -1.95526904158E+01 -1.95489598392E+01 -1.95450381821E+01 -1.95409162714E+01 -1.95365845253E+01 -1.95320329378E+01 -1.95272510621E+01 -1.95222279934E+01 -1.95169523521E+01 -1.95114122655E+01 -1.95055953498E+01 -1.94994886912E+01 -1.94930788273E+01 -1.94863517271E+01 -1.94792927712E+01 -1.94718867321E+01 -1.94641177529E+01 -1.94559693269E+01 -1.94474242764E+01 -1.94384647314E+01 -1.94290721079E+01 -1.94192270861E+01 -1.94089095891E+01 -1.93980987609E+01 -1.93867729445E+01 -1.93749096606E+01 -1.93624855860E+01 -1.93494765330E+01 -1.93358574283E+01 -1.93216022930E+01 -1.93066842237E+01 -1.92910753732E+01 -1.92747469335E+01 -1.92576691191E+01 -1.92398111520E+01 -1.92211412478E+01 -1.92016266045E+01 -1.91812333922E+01 -1.91599267461E+01 -1.91376707613E+01 -1.91144284912E+01 -1.90901619487E+01 -1.90648321115E+01 -1.90383989314E+01 -1.90108213479E+01 -1.89820573076E+01 -1.89520637892E+01 -1.89207968342E+01 -1.88882115857E+01 -1.88542623350E+01 -1.88189025759E+01 -1.87820850706E+01 -1.87437619249E+01 -1.87038846766E+01 -1.86624043966E+01 -1.86192718058E+01 -1.85744374081E+01 -1.85278516423E+01 -1.84794650550E+01 -1.84292284969E+01 -1.83770933448E+01 -1.83230117530E+01 -1.82669369381E+01 -1.82088234998E+01 -1.81486277843E+01 -1.80863082931E+01 -1.80218261461E+01 -1.79551456028E+01 -1.78862346514E+01 -1.78150656728E+01 -1.77416161907E+01 -1.76658697162E+01 -1.75878167002E+01 -1.75074556054E+01 -1.74247941098E+01 -1.73398504562E+01 -1.72526549572E+01 -1.71632516666E+01 -1.70717002212E+01 -1.69780778491E+01 -1.68824815289E+01 -1.67850302630E+01 -1.66858674013E+01 -1.65851629068E+01 -1.64831153992E+01 -1.63799537273E+01 -1.62759377163E+01 -1.61713575933E+01 -1.60665314175E+01 -1.59617996335E+01 -1.58575156300E+01 -1.57540309485E+01 -1.56524203667E+01 -1.55748194279E+01 -1.55086522488E+01 -1.54026899845E+01 -1.52673088906E+01 -1.51294480113E+01 -1.49891258814E+01 -1.48463146311E+01 -1.47009357181E+01 -1.45528594618E+01 -1.44019095381E+01 -1.42478732808E+01 -1.40905180726E+01 -1.39296133486E+01 -1.37649568734E+01 -1.35964031486E+01 -1.34238912150E+01 -1.32474688948E+01 -1.30673107232E+01 -1.28837274494E+01 -1.26971659250E+01 -1.25081993018E+01 -1.23175085417E+01 -1.21258571479E+01 -1.19340616315E+01 -1.17429604677E+01 -1.15533841656E+01 -1.13661286264E+01 -1.11819332978E+01 -1.10014648618E+01 -1.08253064548E+01 -1.06539518059E+01 -1.04878032612E+01 -1.03271724724E+01 -1.01722825364E+01 -1.00232705458E+01 -9.88018978535E+00 -9.74301112734E+00 -9.61162349433E+00 -9.48583354343E+00 -9.36536496407E+00 -9.24985797962E+00 -9.13886980654E+00 -9.03187697098E+00 -8.92828052577E+00 -8.82741536498E+00 -8.72856501159E+00 -8.63098346549E+00 -8.53392595457E+00 -8.43669073816E+00 -8.33867448013E+00 -8.23944414655E+00 -8.13882890388E+00 -8.03715525882E+00 -7.93577867952E+00 -7.83637713779E+00 -7.73886184503E+00 -7.64267658295E+00 -7.54769213737E+00 -7.45389297287E+00 -7.36126380326E+00 -7.26978958411E+00 -7.17945550573E+00 -7.09024698642E+00 -7.00214966602E+00 -6.91514939981E+00 -6.82923225270E+00 -6.74438449368E+00 -6.66059259058E+00 -6.57784320502E+00 -6.49612318768E+00 -6.41541957378E+00 -6.33571957875E+00 -6.25701059414E+00 -6.17928018375E+00 -6.10251607989E+00 -6.02670617985E+00 -5.95183854258E+00 -5.87790138541E+00 -5.80488308107E+00 -5.73277215471E+00 -5.66155728111E+00 -5.59122728204E+00 -5.52177112368E+00 -5.45317791420E+00 -5.38543690136E+00 -5.31853747018E+00 -5.25246914082E+00 -5.18722156646E+00 -5.12278453132E+00 -5.05914794868E+00 -4.99630185894E+00 -4.93423642784E+00 -4.87294194458E+00 -4.81240882018E+00 -4.75262758574E+00 -4.69358889079E+00 -4.63528350172E+00 -4.57770230020E+00 -4.52083628167E+00 -4.46467655383E+00 -4.40921433520E+00 -4.35444095370E+00 -4.30034784526E+00 -4.24685380024E+00 -4.19402332114E+00 -4.14199979994E+00 -4.09062257608E+00 -4.03980858453E+00 -3.98960075930E+00 -3.94001645429E+00 -3.89109968093E+00 -3.84279040863E+00 -3.79505571056E+00 -3.74791392653E+00 -3.70135769241E+00 -3.65537973548E+00 -3.60997287327E+00 -3.56513001245E+00 -3.52084414773E+00 -3.47710836076E+00 -3.43391581908E+00 -3.39125977504E+00 -3.34913356478E+00 -3.30753060720E+00 -3.26644440295E+00 -3.22586853340E+00 -3.18579665972E+00 -3.14622252183E+00 -3.10713993751E+00 -3.06854280139E+00 -3.03042508407E+00 -2.99278083114E+00 -2.95560416227E+00 -2.91888927034E+00 -2.88263042049E+00 -2.84682194927E+00 -2.81145826371E+00 -2.77653384048E+00 -2.74204322501E+00 -2.70798103063E+00 -2.67434193772E+00 -2.64112069284E+00 -2.60831210793E+00 -2.57591105947E+00 -2.54391248762E+00 -2.51231139546E+00 -2.48110284815E+00 -2.45028197217E+00 -2.41984395448E+00 -2.38978404179E+00 -2.36009753978E+00 -2.33077981233E+00 -2.30182628079E+00 -2.27323242326E+00 -2.24499377381E+00 -2.21710592184E+00 -2.18956451132E+00 -2.16236524013E+00 -2.13550385937E+00 -2.10897617270E+00 -2.08277803568E+00 -2.05690535511E+00 -2.03135408843E+00 -2.00612024304E+00 -1.98119987576E+00 -1.95658909216E+00 -1.93228404600E+00 -1.90828093863E+00 -1.88457601845E+00 -1.86116558026E+00 -1.83804596482E+00 -1.81521355820E+00 -1.79266479126E+00 -1.77039613915E+00 -1.74840412076E+00 -1.72668529816E+00 -1.70523627615E+00 -1.68405370168E+00 -1.66313426340E+00 -1.64247469112E+00 -1.62207175532E+00 -1.60192226669E+00 -1.58202307558E+00 -1.56237107158E+00 -1.54296318299E+00 -1.52379637637E+00 -1.50486765609E+00 -1.48617406381E+00 -1.46771267804E+00 -1.44948061372E+00 -1.43147502171E+00 -1.41369308836E+00 -1.39613203507E+00 -1.37878911787E+00 -1.36166162693E+00 -1.34474688618E+00 -1.32804225287E+00 -1.31154511713E+00 -1.29525290158E+00 -1.27916306092E+00 -1.26327308149E+00 -1.24758048091E+00 -1.23208280767E+00 -1.21677764075E+00 -1.20166258919E+00 -1.18673529180E+00 -1.17199341668E+00 -1.15743466094E+00 -1.14305675030E+00 -1.12885743870E+00 -1.11483450801E+00 -1.10098576763E+00 -1.08730905417E+00 -1.07380223111E+00 -1.06046318845E+00 -1.04728984237E+00 -1.03428013496E+00 -1.02143203383E+00 -1.00874353182E+00 -9.96212646697E-01 -9.83837420837E-01 -9.71615920909E-01 -9.59546237586E-01 -9.47626485241E-01 -9.35854801655E-01 -9.24229347725E-01 -9.12748307180E-01 -9.01409886295E-01 -8.90212313614E-01 -8.79153839669E-01 -8.68232736715E-01 -8.57447298455E-01 -8.46795839774E-01 -8.36276696482E-01 -8.25888225047E-01 -8.15628802345E-01 -8.05496825404E-01 -7.95490711155E-01 -7.85608896185E-01 -7.75849836493E-01 -7.66212007251E-01 -7.56693902564E-01 -7.47294035237E-01 -7.38010936542E-01 -7.28843155989E-01 -7.19789261101E-01 -7.10847837189E-01 -7.02017487133E-01 -6.93296831161E-01 -6.84684506639E-01 -6.76179167854E-01 -6.67779485805E-01 -6.59484147997E-01 -6.51291857819E-01 -6.43201336043E-01 -6.35211318016E-01 -6.27320555239E-01 -6.19527814723E-01 -6.11831878790E-01 -6.04231544888E-01 -5.96725625399E-01 -5.89312947458E-01 -5.81992352768E-01 -5.74762697416E-01 -5.67622851700E-01 -5.60571605092E-01 -5.53607685288E-01 -5.46730660207E-01 -5.39939065344E-01 -5.33231834525E-01 -5.26607922266E-01 -5.20066293567E-01 -5.13605926285E-01 -5.07225810976E-01 -5.00924950732E-01 -4.94702361032E-01 -4.88557069583E-01 -4.82488116171E-01 -4.76494552510E-01 -4.70575442093E-01 -4.64729860047E-01 -4.58956892988E-01 -4.53255637169E-01 -4.47625205217E-01 -4.42064715615E-01 -4.36573299523E-01 -4.31150098898E-01 -4.25794266353E-01 -4.20504965028E-01 -4.15281368460E-01 -4.10122660450E-01 -4.05028034940E-01 -3.99996695885E-01 -3.95027857127E-01 -3.90120742276E-01 -3.85274584584E-01 -3.80488626830E-01 -3.75762121198E-01 -3.71094329161E-01 -3.66484521369E-01 -3.61931977529E-01 -3.57435986300E-01 -3.52995845168E-01 -3.48610860354E-01 -3.44280346696E-01 -3.40003627543E-01 -3.35780034649E-01 -3.31608908068E-01 -3.27489596054E-01 -3.23421454955E-01 -3.19403849117E-01 -3.15436150780E-01 -3.11517739984E-01 -3.07648004468E-01 -3.03826339578E-01 -3.00052148173E-01 -2.96324840518E-01 -2.92643834231E-01 -2.89008554138E-01 -2.85418432219E-01 -2.81872907511E-01 -2.78371426019E-01 -2.74913440628E-01 -2.71498411021E-01 -2.68125803594E-01 -2.64795091369E-01 -2.61505753916E-01 -2.58257277268E-01 -2.55049153846E-01 -2.51880882373E-01 -2.48751967801E-01 -2.45661921229E-01 -2.42610259832E-01 -2.39596506782E-01 -2.36620191174E-01 -2.33680847952E-01 -2.30778017838E-01 -2.27911247259E-01 -2.25080088276E-01 -2.22284098514E-01 -2.19522841095E-01 -2.16795884567E-01 -2.14102802837E-01 -2.11443175105E-01 -2.08816585800E-01 -2.06222624511E-01 -2.03660885926E-01 -2.01130969770E-01 -1.98632480736E-01 -1.96165028432E-01 -1.93728227313E-01 -1.91321696623E-01 -1.88945060338E-01 -1.86597947103E-01 -1.84279990176E-01 -1.81990827373E-01 -1.79730101007E-01 -1.77497457835E-01 -1.75292549002E-01 -1.73115029986E-01 -1.70964560546E-01 -1.68840804667E-01 -1.66743430506E-01 -1.64672110346E-01 -1.62626520539E-01 -1.60606341455E-01 -1.58611257440E-01 -1.56640956756E-01 -1.54695131540E-01 -1.52773477754E-01 -1.50875695134E-01 -1.49001487148E-01 -1.47150560948E-01 -1.45322627322E-01 -1.43517400653E-01 -1.41734598870E-01 -1.39973943405E-01 -1.38235159155E-01 -1.36517974429E-01 -1.34822120914E-01 -1.33147333631E-01 -1.31493350889E-01 -1.29859914250E-01 -1.28246768487E-01 -1.26653661543E-01 -1.25080344491E-01 -1.23526571498E-01 -1.21992099782E-01 -1.20476689581E-01 -1.18980104107E-01 -1.17502109516E-01 -1.16042474869E-01 -1.14600972095E-01 -1.13177375956E-01 -1.11771464013E-01 -1.10383016588E-01 -1.09011816734E-01 -1.07657650198E-01 -1.06320305388E-01 -1.04999573343E-01 -1.03695247695E-01 -1.02407124640E-01 -1.01135002907E-01 -9.98786837241E-02 -9.86379707885E-02 -9.74126702365E-02 -9.62025906124E-02 -9.50075428387E-02 -9.38273401870E-02 -9.26617982481E-02 -9.15107349036E-02 -9.03739702977E-02 -8.92513268085E-02 -8.81426290207E-02 -8.70477036980E-02 -8.59663797561E-02 -8.48984882359E-02 -8.38438622773E-02 -8.28023370927E-02 -8.17737499418E-02 -8.07579401056E-02 -7.97547488619E-02 3.74975167915E-09 3.84467740674E-09 3.94200620655E-09 4.04179891348E-09 4.14411790247E-09 4.24902712759E-09 4.35659216191E-09 4.46688023858E-09 4.57996029278E-09 4.69590300488E-09 4.81478084457E-09 4.93666811617E-09 5.06164100511E-09 5.18977762551E-09 5.32115806904E-09 5.45586445496E-09 5.59398098148E-09 5.73559397836E-09 5.88079196092E-09 6.02966568533E-09 6.18230820534E-09 6.33881493049E-09 6.49928368571E-09 6.66381477252E-09 6.83251103165E-09 7.00547790742E-09 7.18282351359E-09 7.36465870097E-09 7.55109712671E-09 7.74225532535E-09 7.93825278168E-09 8.13921200540E-09 8.34525860777E-09 8.55652138004E-09 8.77313237407E-09 8.99522698478E-09 9.22294403486E-09 9.45642586153E-09 9.69581840553E-09 9.94127130233E-09 1.01929379757E-08 1.04509757337E-08 1.07155458667E-08 1.09868137488E-08 1.12649489405E-08 1.15501252955E-08 1.18425210686E-08 1.21423190276E-08 1.24497065676E-08 1.27648758279E-08 1.30880238123E-08 1.34193525122E-08 1.37590690328E-08 1.41073857229E-08 1.44645203073E-08 1.48306960231E-08 1.52061417592E-08 1.55910921995E-08 1.59857879696E-08 1.63904757871E-08 1.68054086161E-08 1.72308458252E-08 1.76670533497E-08 1.81143038580E-08 1.85728769217E-08 1.90430591910E-08 1.95251445734E-08 2.00194344177E-08 2.05262377026E-08 2.10458712295E-08 2.15786598210E-08 2.21249365236E-08 2.26850428163E-08 2.32593288240E-08 2.38481535364E-08 2.44518850327E-08 2.50709007113E-08 2.57055875265E-08 2.63563422296E-08 2.70235716180E-08 2.77076927887E-08 2.84091333999E-08 2.91283319377E-08 2.98657379911E-08 3.06218125324E-08 3.13970282063E-08 3.21918696248E-08 3.30068336707E-08 3.38424298081E-08 3.46991804014E-08 3.55776210417E-08 3.64783008820E-08 3.74017829805E-08 3.83486446528E-08 3.93194778334E-08 4.03148894454E-08 4.13355017804E-08 4.23819528881E-08 4.34548969747E-08 4.45550048129E-08 4.56829641611E-08 4.68394801936E-08 4.80252759422E-08 4.92410927480E-08 5.04876907257E-08 5.17658492387E-08 5.30763673873E-08 5.44200645082E-08 5.57977806872E-08 5.72103772851E-08 5.86587374767E-08 6.01437668032E-08 6.16663937389E-08 6.32275702724E-08 6.48282725025E-08 6.64695012486E-08 6.81522826774E-08 6.98776689450E-08 7.16467388559E-08 7.34605985373E-08 7.53203821325E-08 7.72272525102E-08 7.91824019925E-08 8.11870531016E-08 8.32424593249E-08 8.53499058997E-08 8.75107106180E-08 8.97262246518E-08 9.19978333986E-08 9.43269573493E-08 9.67150529777E-08 9.91636136522E-08 1.01674170572E-07 1.04248293724E-07 1.06887592868E-07 1.09593718546E-07 1.12368363113E-07 1.15213261799E-07 1.18130193796E-07 1.21120983371E-07 1.24187501012E-07 1.27331664597E-07 1.30555440599E-07 1.33860845314E-07 1.37249946129E-07 1.40724862813E-07 1.44287768851E-07 1.47940892801E-07 1.51686519695E-07 1.55526992471E-07 1.59464713439E-07 1.63502145790E-07 1.67641815140E-07 1.71886311113E-07 1.76238288966E-07 1.80700471254E-07 1.85275649538E-07 1.89966686136E-07 1.94776515917E-07 1.99708148148E-07 2.04764668375E-07 2.09949240364E-07 2.15265108086E-07 2.20715597752E-07 2.26304119902E-07 2.32034171546E-07 2.37909338360E-07 2.43933296936E-07 2.50109817095E-07 2.56442764251E-07 2.62936101838E-07 2.69593893808E-07 2.76420307175E-07 2.83419614639E-07 2.90596197272E-07 2.97954547268E-07 3.05499270773E-07 3.13235090775E-07 3.21166850079E-07 3.29299514351E-07 3.37638175243E-07 3.46188053595E-07 3.54954502722E-07 3.63943011782E-07 3.73159209234E-07 3.82608866378E-07 3.92297900993E-07 4.02232381063E-07 4.12418528599E-07 4.22862723561E-07 4.33571507877E-07 4.44551589571E-07 4.55809846985E-07 4.67353333126E-07 4.79189280106E-07 4.91325103713E-07 5.03768408083E-07 5.16526990509E-07 5.29608846355E-07 5.43022174112E-07 5.56775380574E-07 5.70877086150E-07 5.85336130316E-07 6.00161577198E-07 6.15362721309E-07 6.30949093427E-07 6.46930466626E-07 6.63316862461E-07 6.80118557316E-07 6.97346088912E-07 7.15010262981E-07 7.33122160120E-07 7.51693142812E-07 7.70734862635E-07 7.90259267655E-07 8.10278610010E-07 8.30805453686E-07 8.51852682505E-07 8.73433508306E-07 8.95561479350E-07 9.18250488932E-07 9.41514784224E-07 9.65368975344E-07 9.89828044661E-07 1.01490735634E-06 1.04062266614E-06 1.06699013145E-06 1.09402632163E-06 1.12174822855E-06 1.15017327746E-06 1.17931933815E-06 1.20920473633E-06 1.23984826541E-06 1.27126919849E-06 1.30348730070E-06 1.33652284193E-06 1.37039660976E-06 1.40512992284E-06 1.44074464455E-06 1.47726319712E-06 1.51470857595E-06 1.55310436449E-06 1.59247474939E-06 1.63284453608E-06 1.67423916480E-06 1.71668472700E-06 1.76020798220E-06 1.80483637526E-06 1.85059805421E-06 1.89752188840E-06 1.94563748724E-06 1.99497521944E-06 2.04556623268E-06 2.09744247387E-06 2.15063670996E-06 2.20518254922E-06 2.26111446321E-06 2.31846780922E-06 2.37727885341E-06 2.43758479447E-06 2.49942378803E-06 2.56283497161E-06 2.62785849035E-06 2.69453552331E-06 2.76290831065E-06 2.83302018132E-06 2.90491558176E-06 2.97864010512E-06 3.05424052148E-06 3.13176480877E-06 3.21126218458E-06 3.29278313883E-06 3.37637946732E-06 3.46210430622E-06 3.55001216751E-06 3.64015897533E-06 3.73260210345E-06 3.82740041365E-06 3.92461429524E-06 4.02430570561E-06 4.12653821202E-06 4.23137703439E-06 4.33888908942E-06 4.44914303586E-06 4.56220932108E-06 4.67816022896E-06 4.79706992907E-06 4.91901452727E-06 5.04407211778E-06 5.17232283662E-06 5.30384891666E-06 5.43873474417E-06 5.57706691704E-06 5.71893430460E-06 5.86442810919E-06 6.01364192950E-06 6.16667182571E-06 6.32361638649E-06 6.48457679805E-06 6.64965691500E-06 6.81896333347E-06 6.99260546623E-06 7.17069562004E-06 7.35334907531E-06 7.54068416802E-06 7.73282237417E-06 7.92988839661E-06 8.13201025451E-06 8.33931937551E-06 8.55195069057E-06 8.77004273170E-06 8.99373773260E-06 9.22318173234E-06 9.45852468222E-06 9.69992055580E-06 9.94752746231E-06 1.02015077636E-05 1.04620281944E-05 1.07292599868E-05 1.10033789980E-05 1.12845658424E-05 1.15730060275E-05 1.18688900946E-05 1.21724137629E-05 1.24837780795E-05 1.28031895725E-05 1.31308604108E-05 1.34670085671E-05 1.38118579877E-05 1.41656387665E-05 1.45285873255E-05 1.49009466007E-05 1.52829662339E-05 1.56749027713E-05 1.60770198678E-05 1.64895884987E-05 1.69128871778E-05 1.73472021835E-05 1.77928277913E-05 1.82500665152E-05 1.87192293563E-05 1.92006360602E-05 1.96946153829E-05 2.02015053659E-05 2.07216536206E-05 2.12554176223E-05 2.18031650143E-05 2.23652739227E-05 2.29421332819E-05 2.35341431713E-05 2.41417151645E-05 2.47652726893E-05 2.54052514020E-05 2.60620995738E-05 2.67362784915E-05 2.74282628722E-05 2.81385412931E-05 2.88676166363E-05 2.96160065506E-05 3.03842439287E-05 3.11728774034E-05 3.19824718604E-05 3.28136089710E-05 3.36668877444E-05 3.45429250997E-05 3.54423564599E-05 3.63658363680E-05 3.73140391264E-05 3.82876594595E-05 3.92874132029E-05 4.03140380171E-05 4.13682941301E-05 4.24509651071E-05 4.35628586509E-05 4.47048074321E-05 4.58776699530E-05 4.70823314438E-05 4.83197047942E-05 4.95907315227E-05 5.08963827821E-05 5.22376604069E-05 5.36155980005E-05 5.50312620675E-05 5.64857531899E-05 5.79802072511E-05 5.95157967099E-05 6.10937319252E-05 6.27152625350E-05 6.43816788915E-05 6.60943135553E-05 6.78545428505E-05 6.96637884846E-05 7.15235192346E-05 7.34352527038E-05 7.54005571518E-05 7.74210534004E-05 7.94984168202E-05 8.16343794005E-05 8.38307319061E-05 8.60893261268E-05 8.84120772211E-05 9.08009661604E-05 9.32580422780E-05 9.57854259268E-05 9.83853112522E-05 1.01059969083E-04 1.03811749950E-04 1.06643087234E-04 1.09556500447E-04 1.12554598667E-04 1.15640084111E-04 1.18815755875E-04 1.22084513827E-04 1.25449362685E-04 1.28913416266E-04 1.32479901925E-04 1.36152165195E-04 1.39933674626E-04 1.43828026850E-04 1.47838951863E-04 1.51970318552E-04 1.56226140461E-04 1.60610581828E-04 1.65127963883E-04 1.69782771440E-04 1.74579659781E-04 1.79523461856E-04 1.84619195811E-04 1.89872072853E-04 1.95287505484E-04 2.00871116099E-04 2.06628745993E-04 2.12566464763E-04 2.18690580159E-04 2.25007648377E-04 2.31524484831E-04 2.38248175422E-04 2.45186088325E-04 2.52345886326E-04 2.59735539725E-04 2.67363339846E-04 2.75237913163E-04 2.83368236093E-04 2.91763650477E-04 3.00433879773E-04 3.09389046018E-04 3.18639687571E-04 3.28196777693E-04 3.38071743994E-04 3.48276488788E-04 3.58823410408E-04 3.69725425514E-04 3.80995992455E-04 3.92649135722E-04 4.04699471557E-04 4.17162234759E-04 4.30053306759E-04 4.43389245012E-04 4.57187313772E-04 4.71465516324E-04 4.86242628727E-04 5.01538235155E-04 5.17372764896E-04 5.33767531111E-04 5.50744771404E-04 5.68327690318E-04 5.86540503834E-04 6.05408485966E-04 6.24958017562E-04 6.45216637397E-04 6.66213095686E-04 6.87977410117E-04 7.10540924526E-04 7.33936370339E-04 7.58197930908E-04 7.83361308882E-04 8.09463796741E-04 8.36544350664E-04 8.64643667856E-04 8.93804267523E-04 9.24070575639E-04 9.55489013705E-04 9.88108091661E-04 1.02197850516E-03 1.05715323738E-03 1.09368766564E-03 1.13163967294E-03 1.17106976476E-03 1.21204119127E-03 1.25462007525E-03 1.29887554595E-03 1.34487987920E-03 1.39270864394E-03 1.44244085563E-03 1.49415913669E-03 1.54794988439E-03 1.60390344642E-03 1.66211430460E-03 1.72268126699E-03 1.78570766879E-03 1.85130158249E-03 1.91957603754E-03 1.99064925003E-03 2.06464486287E-03 2.14169219677E-03 2.22192651262E-03 2.30548928570E-03 2.39252849214E-03 2.48319890834E-03 2.57766242371E-03 2.67608836734E-03 2.77865384920E-03 2.88554411645E-03 2.99695292546E-03 3.11308293022E-03 3.23414608770E-03 3.36036408096E-03 3.49196876062E-03 3.62920260543E-03 3.77231920274E-03 3.92158374949E-03 4.07727357469E-03 4.23967868403E-03 4.40910232759E-03 4.58586159134E-03 4.77028801344E-03 4.96272822621E-03 5.16354462454E-03 5.37311606191E-03 5.59183857468E-03 5.82012613594E-03 6.05841143955E-03 6.30714671571E-03 6.56680457879E-03 6.83787890861E-03 7.12088576616E-03 7.41636434478E-03 7.72487795788E-03 8.04701506422E-03 8.38339033182E-03 8.73464574157E-03 9.10145173156E-03 9.48450838315E-03 9.88454664984E-03 1.03023296299E-02 1.07386538837E-02 1.11943507972E-02 1.16702879909E-02 1.21673707781E-02 1.26865436696E-02 1.32287919288E-02 1.37951431763E-02 1.43866690444E-02 1.50044868832E-02 1.56497615184E-02 1.63237070598E-02 1.70275887631E-02 1.77627249433E-02 1.85304889405E-02 1.93323111374E-02 2.01696810292E-02 2.10441493437E-02 2.19573302132E-02 2.29109033948E-02 2.39066165400E-02 2.49462875110E-02 2.60318067424E-02 2.71651396467E-02 2.83483290607E-02 2.95834977310E-02 3.08728508345E-02 3.22186785322E-02 3.36233585512E-02 3.50893587916E-02 3.66192399529E-02 3.82156581763E-02 3.98813676956E-02 4.16192234920E-02 4.34321839450E-02 4.53233134741E-02 4.72957851604E-02 4.93528833433E-02 5.14980061798E-02 5.37346681595E-02 5.60665025625E-02 5.84972638501E-02 6.10308299768E-02 6.36712046090E-02 6.64225192393E-02 6.92890351798E-02 7.22751454203E-02 7.53853763359E-02 7.86243892252E-02 8.19969816641E-02 8.55080886541E-02 8.91627835476E-02 9.29662787282E-02 9.69239260275E-02 1.01041216854E-01 1.05323782012E-01 1.09777391193E-01 1.14407952099E-01 1.19221509203E-01 1.24224242084E-01 1.29422463346E-01 1.34822616068E-01 1.40431270782E-01 1.46255121932E-01 1.52300983800E-01 1.58575785871E-01 1.65086567605E-01 1.71840472603E-01 1.78844742124E-01 1.86106707942E-01 1.93633784520E-01 2.01433460464E-01 2.09513289256E-01 2.17880879228E-01 2.26543882773E-01 2.35509984767E-01 2.44786890196E-01 2.54382310971E-01 2.64303951926E-01 2.74559495993E-01 2.85156588549E-01 2.96102820944E-01 3.07405713201E-01 3.19072695912E-01 3.31111091335E-01 3.43528093713E-01 3.56330748825E-01 3.69525932823E-01 3.83120330351E-01 3.97120412017E-01 4.11532411231E-01 4.26362300478E-01 4.41615767058E-01 4.57298188376E-01 4.73414606807E-01 4.89969704243E-01 5.06967776364E-01 5.24412706719E-01 5.42307940704E-01 5.60656459501E-01 5.79460754095E-01 5.98722799427E-01 6.18444028798E-01 6.38625308611E-01 6.59266913544E-01 6.80368502258E-01 7.01929093728E-01 7.23947044295E-01 7.46420025537E-01 7.69345003043E-01 7.92718216186E-01 8.16535158971E-01 8.40790562033E-01 8.65478375857E-01 8.90591755280E-01 9.16123045337E-01 9.42063768472E-01 9.68404613151E-01 9.95135423903E-01 1.02224519275E+00 1.04972205203E+00 1.07755326857E+00 1.10572523912E+00 1.13422348692E+00 1.16303265940E+00 1.19213652661E+00 1.22151798051E+00 1.25115903448E+00 1.28104082317E+00 1.31114360192E+00 1.34144674578E+00 1.37192874725E+00 1.40256721255E+00 1.43333885555E+00 1.46421948882E+00 1.49518401103E+00 1.52620638974E+00 1.55725963871E+00 1.58831578866E+00 1.61934585041E+00 1.65031976907E+00 1.68120636799E+00 1.71197328119E+00 1.74258687262E+00 1.77301214088E+00 1.80321260766E+00 1.83315018847E+00 1.86278504397E+00 1.89207541021E+00 1.92097740656E+00 1.94944481961E+00 1.97742886202E+00 2.00487790525E+00 2.03173718528E+00 2.05794848127E+00 2.08344976683E+00 2.10817483495E+00 2.13205289753E+00 2.15500816191E+00 2.17695938734E+00 2.19781942554E+00 2.21750485190E+00 2.23596880140E+00 2.25317571801E+00 2.26909208912E+00 2.28368655364E+00 2.29693000417E+00 2.30879568284E+00 2.31925927033E+00 2.32829896752E+00 2.33589556962E+00 2.34203253216E+00 2.34669602878E+00 2.34987500045E+00 2.35156119587E+00 2.35174920300E+00 2.35043647152E+00 2.34762332610E+00 2.34331297045E+00 2.33751148231E+00 2.33022779905E+00 2.32147369433E+00 2.31126374573E+00 2.29961529347E+00 2.28654839059E+00 2.27208574455E+00 2.25625265079E+00 2.23907691826E+00 2.22058878751E+00 2.20082084140E+00 2.17980790911E+00 2.15758696360E+00 2.13419701307E+00 2.10967898691E+00 2.08407561642E+00 2.05743131104E+00 2.02979203036E+00 2.00120515254E+00 1.97171933966E+00 1.94138440041E+00 1.91025115082E+00 1.87837127342E+00 1.84579717535E+00 1.81258184610E+00 1.77877871519E+00 1.74444151045E+00 1.70962411727E+00 1.67438043947E+00 1.63876426206E+00 1.60282911650E+00 1.56662814901E+00 1.53021399223E+00 1.49362594168E+00 1.45692815341E+00 1.42017099588E+00 1.38340384934E+00 1.34667499886E+00 1.31002664485E+00 1.27350951491E+00 1.23716802533E+00 1.20104512608E+00 1.16518222314E+00 1.12961910718E+00 1.09439388900E+00 1.05954294153E+00 1.02510084873E+00 9.91100361271E-01 9.57572359209E-01 9.24545821567E-01 8.92047802889E-01 8.60103416742E-01 8.28735826105E-01 7.97966240578E-01 7.67813920319E-01 7.38296186574E-01 7.09428438640E-01 6.81224177077E-01 6.53695032955E-01 6.26850802875E-01 6.00699489514E-01 5.75247347351E-01 5.50498933277E-01 5.26457161710E-01 5.03123363842E-01 4.80497350614E-01 4.58577478994E-01 4.37360721142E-01 4.16842736001E-01 3.97017942874E-01 3.77879596537E-01 3.59419863438E-01 3.41629898538E-01 3.24499922372E-01 3.08019297905E-01 2.92176606792E-01 2.76959724661E-01 2.62355895072E-01 2.48351801829E-01 2.34933639332E-01 2.22087180735E-01 2.09797843639E-01 1.98050753143E-01 1.86830802071E-01 1.76122708237E-01 1.65911068638E-01 1.56180410493E-01 1.46915239088E-01 1.38100082387E-01 1.29719532424E-01 1.21758283496E-01 1.14201167192E-01 1.07033184344E-01 1.00239533961E-01 9.38056392571E-02 8.77171708696E-02 8.19600674003E-02 7.65205533956E-02 7.13851549077E-02 6.65407127719E-02 6.19743937437E-02 5.76736996365E-02 5.36264746059E-02 4.98209107178E-02 4.62455519419E-02 4.28892967019E-02 3.97413991146E-02 3.67914690384E-02 3.40294710524E-02 3.14457224730E-02 2.90308905142E-02 2.67759886879E-02 2.46723725306E-02 2.27117347424E-02 2.08860998081E-02 1.91878181724E-02 1.76095600261E-02 1.61443087616E-02 1.47853541435E-02 1.35262852396E-02 1.23609831507E-02 1.12836135724E-02 1.02886192206E-02 9.37071214657E-03 8.52486596623E-03 7.74630802463E-03 7.03051151546E-03 6.37318757298E-03 5.77027735240E-03 5.21794411412E-03 4.71256532559E-03 4.25072479441E-03 3.82920484538E-03 3.44497855386E-03 3.09520204753E-03 2.77720688809E-03 2.48849254443E-03 2.22671896828E-03 1.98969928318E-03 1.77539259731E-03 1.58189695023E-03 1.40744240335E-03 1.25038428321E-03 1.10919658656E-03 9.82465555160E-04 8.68883427941E-04 7.67242377443E-04 6.76428636538E-04 5.95416820902E-04 5.23264451793E-04 4.59106682898E-04 4.02151234188E-04 3.51673534888E-04 3.07012076799E-04 2.67563978424E-04 2.32780759489E-04 2.02164324705E-04 1.75263154816E-04 1.51668702298E-04 1.31011988340E-04 1.12960397161E-04 9.72146630902E-05 8.35060453244E-05 7.15936848026E-05 6.12621372202E-05 5.23190758473E-05 4.45931575147E-05 3.79320448966E-05 3.22005780299E-05 2.72790878847E-05 2.30618447258E-05 1.94556339797E-05 1.63784523428E-05 1.37583169366E-05 1.15321804183E-05 9.64494509946E-06 8.04856930184E-06 6.70125938047E-06 5.56674107330E-06 4.61360408404E-06 3.81471406941E-06 3.14668647892E-06 2.58941698180E-06 2.12566350766E-06 1.74067522297E-06 1.42186405992E-06 1.15851470729E-06 9.41529260195E-07 7.63203007152E-07 6.17028104903E-07 4.97522154356E-07 4.00078942446E-07 3.20838854269E-07 2.56576686915E-07 2.04606501790E-07 1.62709314254E-07 1.29028469909E-07 1.02029229122E-07 8.04480765118E-08 6.32477750208E-08 4.95793185567E-08 3.87498202104E-08 3.01954917817E-08 2.34589768107E-08 1.81703944754E-08 1.40315364745E-08 1.08027342215E-08 8.29198017069E-09 6.34594566095E-09 4.84258905815E-09 3.68490067316E-09 2.79473686393E-09 2.11249084848E-09 1.59142672521E-09 1.19487376130E-09 8.94161203111E-10 6.66953853459E-10 4.95915594608E-10 3.67640237774E-10 2.71799511527E-10 2.00466607751E-10 1.47581258154E-10 1.08528381228E-10 7.98075229903E-11 5.84520181339E-11 4.26371706464E-11 3.09733496033E-11 2.24066207051E-11 1.61409882267E-11 1.15778079594E-11 8.26878363238E-12 5.87966102280E-12 4.16230916372E-12 2.93334725020E-12 2.05785666697E-12 1.43702513506E-12 9.98817144770E-13 6.90962473142E-13 4.75711804702E-13 3.25932908532E-13 2.22218803368E-13 1.50756090073E-13 1.01761433561E-13 6.83405294144E-14 4.56596278415E-14 3.03470923877E-14 2.00633720862E-14 1.31936196646E-14 8.62914751582E-15 5.61288398509E-15 3.63068394059E-15 2.33531042541E-15 1.49356385337E-15 9.49718270950E-16 6.00379759283E-16 3.77298929760E-16 2.35689923450E-16 1.46338834242E-16 9.03042335429E-17 5.53800021408E-17 3.37489397585E-17 2.04359650245E-17 1.22948470091E-17 7.34866990611E-18 4.36331141701E-18 2.57341197961E-18 1.50747939813E-18 8.77011469779E-19 5.06679548970E-19 2.90668261492E-19 1.65561529242E-19 9.36224024540E-20 5.25556167125E-20 2.92844765039E-20 1.61954952355E-20 8.88890770750E-21 4.84125990813E-21 2.61626756175E-21 1.40273960657E-21 7.46105018645E-22 3.93647205553E-22 2.05993945448E-22 1.06904753337E-22 5.50160612630E-23 2.80728150935E-23 1.42016864760E-23 7.12203774967E-24 3.54022882882E-24 1.74410580535E-24 8.51490608120E-25 4.11910567220E-25 1.97420349107E-25 9.37337627440E-26 4.40822695081E-26 2.05325815645E-26 9.47070238678E-27 4.32540207865E-27 1.95579086440E-27 8.75417584534E-28 3.87837363870E-28 1.70047190215E-28 7.37764763501E-29 3.16692281816E-29 1.34483788309E-29 5.64880139215E-30 2.34658819845E-30 9.63942664809E-31 3.91505660764E-31 1.57193802439E-31 6.23850535525E-32 2.44686429375E-32 9.48329047118E-33 3.63130637077E-33 1.37358458958E-33 5.13180078310E-34 1.89338254448E-34 6.89751478801E-35 2.48063707772E-35 8.80602463418E-36 3.08511607254E-36 1.06651273401E-36 3.63739594774E-37 1.22368958347E-37 4.06006816185E-38 1.32831491391E-38 4.28447653454E-39 1.36221561149E-39 4.26841556645E-40 1.31789466021E-40 4.00873424299E-41 1.20106023066E-41 3.54381159076E-42 1.02953496664E-42 2.94436393382E-43 8.28773762241E-44 2.29555519873E-44 6.25545296923E-45 1.67671785817E-45 4.41978584992E-46 1.14548959260E-46 2.91834932561E-47 7.30711549236E-48 1.79772152703E-48 4.34480818770E-49 1.03131972082E-49 2.40376563333E-50 5.50005875021E-51 1.23514518914E-51 2.72171074954E-52 5.88349941150E-53 5.09564607337E-07 5.22464295503E-07 5.35690540764E-07 5.49251609949E-07 5.63155979162E-07 5.77412339081E-07 5.92029600389E-07 6.07016899345E-07 6.22383603491E-07 6.38139317511E-07 6.54293889232E-07 6.70857415781E-07 6.87840249891E-07 7.05253006380E-07 7.23106568779E-07 7.41412096135E-07 7.60181029990E-07 7.79425101528E-07 7.99156338910E-07 8.19387074791E-07 8.40129954027E-07 8.61397941580E-07 8.83204330624E-07 9.05562750845E-07 9.28487176972E-07 9.51991937502E-07 9.76091723658E-07 1.00080159858E-06 1.02613700671E-06 1.05211378351E-06 1.07874816527E-06 1.10605679934E-06 1.13405675448E-06 1.16276553154E-06 1.19220107443E-06 1.22238178129E-06 1.25332651603E-06 1.28505462007E-06 1.31758592450E-06 1.35094076240E-06 1.38513998160E-06 1.42020495769E-06 1.45615760740E-06 1.49302040225E-06 1.53081638266E-06 1.56956917231E-06 1.60930299290E-06 1.65004267932E-06 1.69181369516E-06 1.73464214861E-06 1.77855480880E-06 1.82357912251E-06 1.86974323134E-06 1.91707598931E-06 1.96560698087E-06 2.01536653940E-06 2.06638576617E-06 2.11869654979E-06 2.17233158611E-06 2.22732439871E-06 2.28370935979E-06 2.34152171169E-06 2.40079758894E-06 2.46157404077E-06 2.52388905434E-06 2.58778157845E-06 2.65329154790E-06 2.72045990843E-06 2.78932864231E-06 2.85994079462E-06 2.93234050010E-06 3.00657301077E-06 3.08268472423E-06 3.16072321259E-06 3.24073725228E-06 3.32277685450E-06 3.40689329648E-06 3.49313915352E-06 3.58156833189E-06 3.67223610247E-06 3.76519913535E-06 3.86051553518E-06 3.95824487758E-06 4.05844824628E-06 4.16118827136E-06 4.26652916839E-06 4.37453677853E-06 4.48527860973E-06 4.59882387889E-06 4.71524355512E-06 4.83461040412E-06 4.95699903366E-06 5.08248594018E-06 5.21114955664E-06 5.34307030152E-06 5.47833062906E-06 5.61701508087E-06 5.75921033868E-06 5.90500527858E-06 6.05449102656E-06 6.20776101542E-06 6.36491104324E-06 6.52603933318E-06 6.69124659494E-06 6.86063608765E-06 7.03431368443E-06 7.21238793859E-06 7.39497015141E-06 7.58217444177E-06 7.77411781744E-06 7.97092024823E-06 8.17270474097E-06 8.37959741635E-06 8.59172758782E-06 8.80922784236E-06 9.03223412334E-06 9.26088581554E-06 9.49532583222E-06 9.73570070443E-06 9.98216067266E-06 1.02348597807E-05 1.04939559718E-05 1.07596111877E-05 1.10319914695E-05 1.13112670616E-05 1.15976125181E-05 1.18912068120E-05 1.21922334467E-05 1.25008805711E-05 1.28173410970E-05 1.31418128197E-05 1.34744985415E-05 1.38156061987E-05 1.41653489913E-05 1.45239455164E-05 1.48916199050E-05 1.52686019616E-05 1.56551273082E-05 1.60514375314E-05 1.64577803336E-05 1.68744096876E-05 1.73015859951E-05 1.77395762503E-05 1.81886542056E-05 1.86491005438E-05 1.91212030527E-05 1.96052568054E-05 2.01015643445E-05 2.06104358714E-05 2.11321894399E-05 2.16671511552E-05 2.22156553776E-05 2.27780449316E-05 2.33546713198E-05 2.39458949431E-05 2.45520853254E-05 2.51736213451E-05 2.58108914711E-05 2.64642940067E-05 2.71342373373E-05 2.78211401866E-05 2.85254318778E-05 2.92475526018E-05 2.99879536928E-05 3.07470979099E-05 3.15254597264E-05 3.23235256266E-05 3.31417944093E-05 3.39807775001E-05 3.48409992706E-05 3.57229973663E-05 3.66273230424E-05 3.75545415087E-05 3.85052322821E-05 3.94799895497E-05 4.04794225393E-05 4.15041559004E-05 4.25548300948E-05 4.36321017966E-05 4.47366443023E-05 4.58691479523E-05 4.70303205615E-05 4.82208878621E-05 4.94415939568E-05 5.06932017841E-05 5.19764935950E-05 5.32922714415E-05 5.46413576781E-05 5.60245954756E-05 5.74428493481E-05 5.88970056928E-05 6.03879733445E-05 6.19166841428E-05 6.34840935152E-05 6.50911810731E-05 6.67389512249E-05 6.84284338030E-05 7.01606847074E-05 7.19367865655E-05 7.37578494088E-05 7.56250113660E-05 7.75394393745E-05 7.95023299094E-05 8.15149097311E-05 8.35784366517E-05 8.56942003211E-05 8.78635230325E-05 9.00877605488E-05 9.23683029495E-05 9.47065754992E-05 9.71040395380E-05 9.95621933949E-05 1.02082573323E-04 1.04666754461E-04 1.07316351815E-04 1.10033021270E-04 1.12818460620E-04 1.15674410634E-04 1.18602656142E-04 1.21605027147E-04 1.24683399971E-04 1.27839698426E-04 1.31075895017E-04 1.34394012174E-04 1.37796123512E-04 1.41284355131E-04 1.44860886942E-04 1.48527954028E-04 1.52287848041E-04 1.56142918634E-04 1.60095574925E-04 1.64148287009E-04 1.68303587492E-04 1.72564073078E-04 1.76932406193E-04 1.81411316640E-04 1.86003603310E-04 1.90712135932E-04 1.95539856855E-04 2.00489782899E-04 2.05565007227E-04 2.10768701283E-04 2.16104116772E-04 2.21574587689E-04 2.27183532401E-04 2.32934455782E-04 2.38830951402E-04 2.44876703768E-04 2.51075490628E-04 2.57431185327E-04 2.63947759227E-04 2.70629284186E-04 2.77479935098E-04 2.84503992502E-04 2.91705845253E-04 2.99089993260E-04 3.06661050298E-04 3.14423746887E-04 3.22382933243E-04 3.30543582304E-04 3.38910792841E-04 3.47489792630E-04 3.56285941722E-04 3.65304735787E-04 3.74551809539E-04 3.84032940257E-04 3.93754051386E-04 4.03721216238E-04 4.13940661775E-04 4.24418772499E-04 4.35162094432E-04 4.46177339202E-04 4.57471388227E-04 4.69051297011E-04 4.80924299540E-04 4.93097812799E-04 5.05579441394E-04 5.18376982298E-04 5.31498429708E-04 5.44951980035E-04 5.58746037014E-04 5.72889216941E-04 5.87390354045E-04 6.02258506001E-04 6.17502959567E-04 6.33133236382E-04 6.49159098894E-04 6.65590556449E-04 6.82437871524E-04 6.99711566128E-04 7.17422428352E-04 7.35581519097E-04 7.54200178959E-04 7.73290035298E-04 7.92863009479E-04 8.12931324296E-04 8.33507511587E-04 8.54604420037E-04 8.76235223177E-04 8.98413427587E-04 9.21152881307E-04 9.44467782453E-04 9.68372688058E-04 9.92882523130E-04 1.01801258994E-03 1.04377857754E-03 1.07019657154E-03 1.09728306408E-03 1.12505496414E-03 1.15352960800E-03 1.18272477006E-03 1.21265867387E-03 1.24335000349E-03 1.27481791506E-03 1.30708204874E-03 1.34016254089E-03 1.37408003661E-03 1.40885570255E-03 1.44451124004E-03 1.48106889861E-03 1.51855148977E-03 1.55698240117E-03 1.59638561116E-03 1.63678570362E-03 1.67820788325E-03 1.72067799119E-03 1.76422252106E-03 1.80886863538E-03 1.85464418241E-03 1.90157771342E-03 1.94969850041E-03 1.99903655419E-03 2.04962264303E-03 2.10148831169E-03 2.15466590094E-03 2.20918856763E-03 2.26509030514E-03 2.32240596450E-03 2.38117127586E-03 2.44142287067E-03 2.50319830428E-03 2.56653607915E-03 2.63147566868E-03 2.69805754155E-03 2.76632318677E-03 2.83631513921E-03 2.90807700596E-03 2.98165349313E-03 3.05709043352E-03 3.13443481478E-03 3.21373480848E-03 3.29503979969E-03 3.37840041748E-03 3.46386856604E-03 3.55149745663E-03 3.64134164035E-03 3.73345704165E-03 3.82790099272E-03 3.92473226874E-03 4.02401112394E-03 4.12579932860E-03 4.23016020699E-03 4.33715867616E-03 4.44686128575E-03 4.55933625881E-03 4.67465353350E-03 4.79288480597E-03 4.91410357420E-03 5.03838518291E-03 5.16580686964E-03 5.29644781190E-03 5.43038917552E-03 5.56771416412E-03 5.70850806986E-03 5.85285832542E-03 6.00085455718E-03 6.15258863977E-03 6.30815475196E-03 6.46764943383E-03 6.63117164541E-03 6.79882282668E-03 6.97070695910E-03 7.14693062857E-03 7.32760308993E-03 7.51283633303E-03 7.70274515040E-03 7.89744720654E-03 8.09706310885E-03 8.30171648037E-03 8.51153403411E-03 8.72664564934E-03 8.94718444952E-03 9.17328688230E-03 9.40509280123E-03 9.64274554954E-03 9.88639204594E-03 1.01361828723E-02 1.03922723637E-02 1.06548187001E-02 1.09239840008E-02 1.11999344209E-02 1.14828402496E-02 1.17728760114E-02 1.20702205695E-02 1.23750572316E-02 1.26875738579E-02 1.30079629720E-02 1.33364218742E-02 1.36731527577E-02 1.40183628269E-02 1.43722644188E-02 1.47350751274E-02 1.51070179308E-02 1.54883213207E-02 1.58792194356E-02 1.62799521967E-02 1.66907654468E-02 1.71119110925E-02 1.75436472497E-02 1.79862383919E-02 1.84399555021E-02 1.89050762287E-02 1.93818850435E-02 1.98706734045E-02 2.03717399215E-02 2.08853905258E-02 2.14119386430E-02 2.19517053705E-02 2.25050196579E-02 2.30722184915E-02 2.36536470837E-02 2.42496590647E-02 2.48606166799E-02 2.54868909906E-02 2.61288620790E-02 2.67869192576E-02 2.74614612829E-02 2.81528965736E-02 2.88616434331E-02 2.95881302765E-02 3.03327958621E-02 3.10960895279E-02 3.18784714325E-02 3.26804128007E-02 3.35023961739E-02 3.43449156654E-02 3.52084772207E-02 3.60935988824E-02 3.70008110605E-02 3.79306568070E-02 3.88836920967E-02 3.98604861114E-02 4.08616215311E-02 4.18876948286E-02 4.29393165705E-02 4.40171117225E-02 4.51217199603E-02 4.62537959854E-02 4.74140098464E-02 4.86030472649E-02 4.98216099670E-02 5.10704160196E-02 5.23502001717E-02 5.36617142010E-02 5.50057272650E-02 5.63830262575E-02 5.77944161694E-02 5.92407204544E-02 6.07227813996E-02 6.22414604997E-02 6.37976388369E-02 6.53922174635E-02 6.70261177900E-02 6.87002819759E-02 7.04156733248E-02 7.21732766828E-02 7.39740988402E-02 7.58191689357E-02 7.77095388643E-02 7.96462836863E-02 8.16305020392E-02 8.36633165510E-02 8.57458742548E-02 8.78793470044E-02 9.00649318900E-02 9.23038516540E-02 9.45973551063E-02 9.69467175384E-02 9.93532411356E-02 1.01818255387E-01 1.04343117492E-01 1.06929212763E-01 1.09577955026E-01 1.12290787009E-01 1.15069180733E-01 1.17914637891E-01 1.20828690212E-01 1.23812899835E-01 1.26868859646E-01 1.29998193629E-01 1.33202557185E-01 1.36483637447E-01 1.39843153573E-01 1.43282857028E-01 1.46804531840E-01 1.50409994843E-01 1.54101095888E-01 1.57879718035E-01 1.61747777723E-01 1.65707224900E-01 1.69760043131E-01 1.73908249669E-01 1.78153895491E-01 1.82499065293E-01 1.86945877447E-01 1.91496483914E-01 1.96153070101E-01 2.00917854679E-01 2.05793089338E-01 2.10781058487E-01 2.15884078893E-01 2.21104499251E-01 2.26444699683E-01 2.31907091171E-01 2.37494114897E-01 2.43208241512E-01 2.49051970301E-01 2.55027828268E-01 2.61138369109E-01 2.67386172082E-01 2.73773840765E-01 2.80304001695E-01 2.86979302872E-01 2.93802412145E-01 3.00776015440E-01 3.07902814849E-01 3.15185526559E-01 3.22626878614E-01 3.30229608503E-01 3.37996460561E-01 3.45930183177E-01 3.54033525802E-01 3.62309235732E-01 3.70760054672E-01 3.79388715060E-01 3.88197936138E-01 3.97190419766E-01 4.06368845954E-01 4.15735868106E-01 4.25294107965E-01 4.35046150233E-01 4.44994536860E-01 4.55141760989E-01 4.65490260521E-01 4.76042411316E-01 4.86800519978E-01 4.97766816229E-01 5.08943444846E-01 5.20332457138E-01 5.31935801949E-01 5.43755316163E-01 5.55792714690E-01 5.68049579914E-01 5.80527350577E-01 5.93227310076E-01 6.06150574153E-01 6.19298077953E-01 6.32670562418E-01 6.46268560009E-01 6.60092379706E-01 6.74142091285E-01 6.88417508826E-01 7.02918173438E-01 7.17643335166E-01 7.32591934056E-01 7.47762580349E-01 7.63153533786E-01 7.78762681971E-01 7.94587517800E-01 8.10625115896E-01 8.26872108047E-01 8.43324657607E-01 8.59978432835E-01 8.76828579159E-01 8.93869690324E-01 9.11095778414E-01 9.28500242724E-01 9.46075837453E-01 9.63814638223E-01 9.81708007375E-01 9.99746558061E-01 1.01792011711E+00 1.03621768663E+00 1.05462740445E+00 1.07313650321E+00 1.09173126832E+00 1.11039699465E+00 1.12911794201E+00 1.14787728950E+00 1.16665708863E+00 1.18543821538E+00 1.20420032115E+00 1.22292178271E+00 1.24157965121E+00 1.26014960024E+00 1.27860587317E+00 1.29692122974E+00 1.31506689205E+00 1.33301249012E+00 1.35072600712E+00 1.36817372436E+00 1.38532016643E+00 1.40212804636E+00 1.41855821138E+00 1.43456958918E+00 1.45011913523E+00 1.46516178117E+00 1.47965038485E+00 1.49353568211E+00 1.50676624094E+00 1.51928841815E+00 1.53104631922E+00 1.54198176168E+00 1.55203424258E+00 1.56114091061E+00 1.56923654341E+00 1.57625353083E+00 1.58212186469E+00 1.58676913592E+00 1.59012053971E+00 1.59209888967E+00 1.59262464176E+00 1.59161592905E+00 1.58898860819E+00 1.58465631886E+00 1.57853055702E+00 1.57052076348E+00 1.56053442877E+00 1.54847721579E+00 1.53425310151E+00 1.51776453918E+00 1.49891264257E+00 1.47759739375E+00 1.45371787596E+00 1.42717253343E+00 1.39785945951E+00 1.36567671519E+00 1.33052267957E+00 1.29229643418E+00 1.25089818292E+00 1.20622970953E+00 1.15819487430E+00 1.10681325451E+00 1.05683469046E+00 1.00826775874E+00 9.61118623692E-01 9.15391052064E-01 8.71086426344E-01 8.28203756439E-01 7.86739690290E-01 7.46688524808E-01 7.08042219443E-01 6.70790415605E-01 6.34920465782E-01 6.00417476501E-01 5.67264369001E-01 5.35441960731E-01 5.04929069413E-01 4.75702639734E-01 4.47737890800E-01 4.21008480692E-01 3.95486682936E-01 3.71143568801E-01 3.47949189051E-01 3.25872749278E-01 3.04882774070E-01 2.84947256794E-01 2.66033793545E-01 2.48109701363E-01 2.31142122104E-01 2.15098114128E-01 1.99944734259E-01 1.85649112399E-01 1.72178520795E-01 1.59500439494E-01 1.47582618984E-01 1.36393140583E-01 1.25900474779E-01 1.16073537457E-01 1.06881743805E-01 9.82950596027E-02 9.02840495687E-02 8.28199224587E-02 7.58745726448E-02 6.94206179528E-02 6.34314335882E-02 5.78811820406E-02 5.27448389019E-02 4.79982145863E-02 4.36179719782E-02 3.95816400759E-02 3.58676237253E-02 3.24552095709E-02 2.93245683720E-02 2.64567538497E-02 2.38336982496E-02 2.14382048154E-02 1.92539373789E-02 1.72654072804E-02 1.54579578365E-02 1.38177465794E-02 1.23317254872E-02 1.09876194317E-02 9.77390306066E-03 8.67977633519E-03 7.69513893216E-03 6.81056372019E-03 6.01726950798E-03 5.30709325673E-03 4.67246193931E-03 4.10636421888E-03 3.60232210927E-03 3.15436276846E-03 2.75699056480E-03 2.40515954410E-03 2.09424641332E-03 1.82002414489E-03 1.57863629322E-03 1.36657210324E-03 1.18064247897E-03 1.01795686884E-03 8.75901113240E-04 7.52116289535E-04 6.44478579704E-04 5.51080176353E-04 4.70211234270E-04 4.00342866567E-04 3.40111177220E-04 2.88302315180E-04 2.43838529401E-04 2.05765198982E-04 1.73238808198E-04 1.45515832487E-04 1.21942498351E-04 1.01945377768E-04 8.50227758131E-05 7.07368689741E-05 5.87065508682E-05 4.86009417834E-05 4.01335186241E-05 3.30568223534E-05 2.71577008767E-05 2.22530464537E-05 1.81859880984E-05 1.48225010070E-05 1.20483967847E-05 9.76666009755E-06 7.89509931195E-06 6.36428067636E-06 5.11571761426E-06 4.10028871056E-06 3.27685996295E-06 2.61108881590E-06 2.07438938154E-06 1.64304006595E-06 1.29741654981E-06 1.02133471235E-06 8.01489629880E-07 6.26978222320E-07 4.88894461028E-07 3.79987288460E-07 2.94372536569E-07 2.27291168428E-07 1.74907110011E-07 1.34138790513E-07 1.02519274845E-07 7.80805562281E-08 5.92581856582E-08 4.48129540093E-08 3.37668173926E-08 2.53506726956E-08 1.89619534336E-08 1.41303314238E-08 1.04900823260E-08 7.75790748246E-09 5.71520512811E-09 4.19395495887E-09 3.06552497410E-09 2.23183180267E-09 1.61838843673E-09 1.16885915309E-09 8.40812825819E-10 6.02424967277E-10 4.29927558306E-10 3.05645680773E-10 2.16492568085E-10 1.52821164062E-10 1.07551674726E-10 7.55118012375E-11 5.29401081935E-11 3.71139425800E-11 2.58970837734E-11 1.79846156393E-11 1.24297580568E-11 8.54889036532E-12 5.85081504227E-12 3.98433802566E-12 2.69961879240E-12 1.81981850005E-12 1.22040958577E-12 8.14155204108E-13 5.40262257936E-13 3.56590094498E-13 2.34084217896E-13 1.52821269726E-13 9.92143469125E-14 6.40492347248E-14 4.11122818855E-14 2.62371315241E-14 1.66462647752E-14 1.04988333051E-14 6.58198323817E-15 4.10139177560E-15 2.53998599293E-15 1.56323172138E-15 9.56033958247E-16 5.80960633129E-16 3.50758799301E-16 2.10389244321E-16 1.25359061532E-16 7.41940131160E-17 4.36140236559E-17 2.54618745582E-17 1.47612731488E-17 8.49744388969E-18 4.85674372163E-18 2.75584843289E-18 1.55231233933E-18 8.67913459380E-19 4.81622389031E-19 2.65233723587E-19 1.44944267484E-19 7.85925643823E-20 4.22792586040E-20 2.25629358193E-20 1.19438000002E-20 6.27081375877E-21 3.26508886807E-21 1.68581745725E-21 8.63027601979E-22 4.38017060643E-22 2.20375142370E-22 1.09898531168E-22 5.43163722158E-23 2.66029932057E-23 1.29104633395E-23 6.20747278503E-24 2.95664354647E-24 1.39490015024E-24 6.51771712049E-25 3.01580819085E-25 1.38170296015E-25 6.26721661182E-26 2.81403429015E-26 1.25061510236E-26 5.50049549000E-27 2.39390757743E-27 1.03082092651E-27 4.39108150905E-28 1.85017844567E-28 7.70992706309E-29 3.17703061872E-29 1.29439313378E-29 5.21342460643E-30 2.07553348575E-30 8.16625638864E-31 3.17496521274E-31 1.21958730285E-31 4.62784956500E-32 1.73448925566E-32 6.41981961068E-33 2.34619878856E-33 8.46503264184E-34 3.01470295424E-34 1.05959963671E-34 3.67492848592E-35 1.25745753535E-35 4.24425742806E-36 1.41286199164E-36 4.63780133954E-37 1.50093782866E-37 4.78822168574E-38 1.50545792980E-38 4.66408741187E-39 1.42360096562E-39 4.28008347032E-40 1.26729109815E-40 3.69468551609E-41 1.06040369737E-41 2.99552049728E-42 8.32710861560E-43 2.27745342637E-43 6.12702259425E-44 1.62107982309E-44 4.21719188401E-45 1.07848551933E-45 2.71071622349E-46 6.69480880089E-47 1.62435556173E-47 3.87093626755E-48 9.05826285593E-49 2.08098299243E-49 4.69230612416E-50 1.03823711335E-50 2.25369991811E-51 4.79822463174E-52 1.00171530704E-52 2.05012458574E-53 4.11200320881E-54 8.08132463448E-55 1.55580916928E-55 2.93333804413E-56 5.41484276392E-57 9.78390056149E-58 1.72991075940E-58 2.99228140139E-59 5.06207196067E-60 8.37297742399E-61 1.35373699908E-61 2.13878412933E-62 3.30104784249E-63 4.97578088376E-64 7.32261134183E-65 1.05180479952E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.32997766215E-05 4.38444210073E-05 4.43959161855E-05 4.49543483288E-05 4.55198046937E-05 4.60923736346E-05 4.66721446169E-05 4.72592082318E-05 4.78536562095E-05 4.84555814344E-05 4.90650779591E-05 4.96822410195E-05 5.03071670490E-05 5.09399536944E-05 5.15806998306E-05 5.22295055761E-05 5.28864723091E-05 5.35517026826E-05 5.42253006411E-05 5.49073714365E-05 5.55980216447E-05 5.62973591821E-05 5.70054933225E-05 5.77225347144E-05 5.84485953979E-05 5.91837888226E-05 5.99282298652E-05 6.06820348471E-05 6.14453215531E-05 6.22182092497E-05 6.30008187033E-05 6.37932721997E-05 6.45956935626E-05 6.54082081737E-05 6.62309429913E-05 6.70640265710E-05 6.79075890856E-05 6.87617623450E-05 6.96266798173E-05 7.05024766494E-05 7.13892896883E-05 7.22872575023E-05 7.31965204027E-05 7.41172204658E-05 7.50495015550E-05 7.59935093435E-05 7.69493913367E-05 7.79172968956E-05 7.88973772600E-05 7.98897855721E-05 8.08946769005E-05 8.19122082642E-05 8.29425386577E-05 8.39858290752E-05 8.50422425361E-05 8.61119441107E-05 8.71951009452E-05 8.82918822888E-05 8.94024595195E-05 9.05270061710E-05 9.16656979602E-05 9.28187128141E-05 9.39862308978E-05 9.51684346430E-05 9.63655087760E-05 9.75776403469E-05 9.88050187588E-05 1.00047835797E-04 1.01306285660E-04 1.02580564989E-04 1.03870872898E-04 1.05177411006E-04 1.06500383469E-04 1.07839997011E-04 1.09196460955E-04 1.10569987260E-04 1.11960790548E-04 1.13369088143E-04 1.14795100102E-04 1.16239049251E-04 1.17701161217E-04 1.19181664469E-04 1.20680790346E-04 1.22198773100E-04 1.23735849928E-04 1.25292261012E-04 1.26868249555E-04 1.28464061819E-04 1.30079947165E-04 1.31716158090E-04 1.33372950267E-04 1.35050582587E-04 1.36749317196E-04 1.38469419538E-04 1.40211158399E-04 1.41974805941E-04 1.43760637756E-04 1.45568932898E-04 1.47399973934E-04 1.49254046985E-04 1.51131441771E-04 1.53032451659E-04 1.54957373704E-04 1.56906508699E-04 1.58880161221E-04 1.60878639679E-04 1.62902256362E-04 1.64951327487E-04 1.67026173251E-04 1.69127117877E-04 1.71254489668E-04 1.73408621057E-04 1.75589848660E-04 1.77798513328E-04 1.80034960198E-04 1.82299538753E-04 1.84592602869E-04 1.86914510876E-04 1.89265625613E-04 1.91646314482E-04 1.94056949509E-04 1.96497907401E-04 1.98969569601E-04 2.01472322356E-04 2.04006556770E-04 2.06572668867E-04 2.09171059655E-04 2.11802135188E-04 2.14466306628E-04 2.17163990310E-04 2.19895607808E-04 2.22661586000E-04 2.25462357136E-04 2.28298358902E-04 2.31170034496E-04 2.34077832687E-04 2.37022207896E-04 2.40003620258E-04 2.43022535699E-04 2.46079426009E-04 2.49174768914E-04 2.52309048150E-04 2.55482753541E-04 2.58696381076E-04 2.61950432984E-04 2.65245417813E-04 2.68581850513E-04 2.71960252512E-04 2.75381151802E-04 2.78845083016E-04 2.82352587519E-04 2.85904213487E-04 2.89500515993E-04 2.93142057100E-04 2.96829405940E-04 3.00563138811E-04 3.04343839262E-04 3.08172098188E-04 3.12048513920E-04 3.15973692319E-04 3.19948246872E-04 3.23972798789E-04 3.28047977097E-04 3.32174418741E-04 3.36352768685E-04 3.40583680008E-04 3.44867814014E-04 3.49205840326E-04 3.53598437001E-04 3.58046290629E-04 3.62550096443E-04 3.67110558431E-04 3.71728389439E-04 3.76404311290E-04 3.81139054895E-04 3.85933360364E-04 3.90787977129E-04 3.95703664054E-04 4.00681189561E-04 4.05721331743E-04 4.10824878495E-04 4.15992627628E-04 4.21225387004E-04 4.26523974654E-04 4.31889218911E-04 4.37321958541E-04 4.42823042871E-04 4.48393331925E-04 4.54033696559E-04 4.59745018595E-04 4.65528190962E-04 4.71384117839E-04 4.77313714789E-04 4.83317908911E-04 4.89397638981E-04 4.95553855601E-04 5.01787521350E-04 5.08099610931E-04 5.14491111329E-04 5.20963021963E-04 5.27516354844E-04 5.34152134735E-04 5.40871399314E-04 5.47675199330E-04 5.54564598779E-04 5.61540675062E-04 5.68604519160E-04 5.75757235805E-04 5.82999943652E-04 5.90333775458E-04 5.97759878257E-04 6.05279413546E-04 6.12893557463E-04 6.20603500974E-04 6.28410450064E-04 6.36315625921E-04 6.44320265135E-04 6.52425619888E-04 6.60632958158E-04 6.68943563911E-04 6.77358737311E-04 6.85879794922E-04 6.94508069915E-04 7.03244912283E-04 7.12091689049E-04 7.21049784489E-04 7.30120600344E-04 7.39305556045E-04 7.48606088940E-04 7.58023654517E-04 7.67559726639E-04 7.77215797774E-04 7.86993379235E-04 7.96894001416E-04 8.06919214039E-04 8.17070586395E-04 8.27349707599E-04 8.37758186837E-04 8.48297653624E-04 8.58969758066E-04 8.69776171117E-04 8.80718584849E-04 8.91798712718E-04 9.03018289841E-04 9.14379073269E-04 9.25882842269E-04 9.37531398608E-04 9.49326566838E-04 9.61270194591E-04 9.73364152871E-04 9.85610336354E-04 9.98010663693E-04 1.01056707782E-03 1.02328154627E-03 1.03615606148E-03 1.04919264111E-03 1.06239332838E-03 1.07576019238E-03 1.08929532843E-03 1.10300085839E-03 1.11687893101E-03 1.13093172227E-03 1.14516143575E-03 1.15957030295E-03 1.17416058371E-03 1.18893456651E-03 1.20389456886E-03 1.21904293770E-03 1.23438204977E-03 1.24991431196E-03 1.26564216174E-03 1.28156806755E-03 1.29769452918E-03 1.31402407821E-03 1.33055927839E-03 1.34730272606E-03 1.36425705061E-03 1.38142491486E-03 1.39880901554E-03 1.41641208368E-03 1.43423688512E-03 1.45228622092E-03 1.47056292781E-03 1.48906987872E-03 1.50780998316E-03 1.52678618780E-03 1.54600147687E-03 1.56545887271E-03 1.58516143624E-03 1.60511226749E-03 1.62531450608E-03 1.64577133178E-03 1.66648596503E-03 1.68746166745E-03 1.70870174242E-03 1.73020953562E-03 1.75198843557E-03 1.77404187423E-03 1.79637332756E-03 1.81898631611E-03 1.84188440562E-03 1.86507120760E-03 1.88855037997E-03 1.91232562767E-03 1.93640070326E-03 1.96077940763E-03 1.98546559057E-03 2.01046315149E-03 2.03577604005E-03 2.06140825684E-03 2.08736385410E-03 2.11364693640E-03 2.14026166133E-03 2.16721224026E-03 2.19450293906E-03 2.22213807880E-03 2.25012203658E-03 2.27845924623E-03 2.30715419915E-03 2.33621144504E-03 2.36563559275E-03 2.39543131105E-03 2.42560332953E-03 2.45615643938E-03 2.48709549425E-03 2.51842541118E-03 2.55015117140E-03 2.58227782130E-03 2.61481047330E-03 2.64775430680E-03 2.68111456913E-03 2.71489657647E-03 2.74910571487E-03 2.78374744124E-03 2.81882728433E-03 2.85435084577E-03 2.89032380112E-03 2.92675190095E-03 2.96364097187E-03 3.00099691768E-03 3.03882572046E-03 3.07713344171E-03 3.11592622353E-03 3.15521028978E-03 3.19499194728E-03 3.23527758703E-03 3.27607368549E-03 3.31738680579E-03 3.35922359906E-03 3.40159080573E-03 3.44449525686E-03 3.48794387555E-03 3.53194367825E-03 3.57650177625E-03 3.62162537707E-03 3.66732178598E-03 3.71359840744E-03 3.76046274667E-03 3.80792241121E-03 3.85598511246E-03 3.90465866738E-03 3.95395100005E-03 4.00387014342E-03 4.05442424102E-03 4.10562154868E-03 4.15747043635E-03 4.20997938993E-03 4.26315701312E-03 4.31701202932E-03 4.37155328358E-03 4.42678974459E-03 4.48273050672E-03 4.53938479203E-03 4.59676195247E-03 4.65487147197E-03 4.71372296869E-03 4.77332619725E-03 4.83369105106E-03 4.89482756467E-03 4.95674591616E-03 5.01945642963E-03 5.08296957774E-03 5.14729598421E-03 5.21244642657E-03 5.27843183876E-03 5.34526331396E-03 5.41295210737E-03 5.48150963914E-03 5.55094749732E-03 5.62127744089E-03 5.69251140288E-03 5.76466149353E-03 5.83774000358E-03 5.91175940759E-03 5.98673236736E-03 6.06267173547E-03 6.13959055882E-03 6.21750208239E-03 6.29641975296E-03 6.37635722299E-03 6.45732835465E-03 6.53934722383E-03 6.62242812438E-03 6.70658557235E-03 6.79183431044E-03 6.87818931252E-03 6.96566578823E-03 7.05427918779E-03 7.14404520688E-03 7.23497979166E-03 7.32709914393E-03 7.42041972646E-03 7.51495826839E-03 7.61073177088E-03 7.70775751283E-03 7.80605305680E-03 7.90563625510E-03 8.00652525604E-03 8.10873851032E-03 8.21229477771E-03 8.31721313378E-03 8.42351297693E-03 8.53121403557E-03 8.64033637553E-03 8.75090040768E-03 8.86292689574E-03 8.97643696440E-03 9.09145210758E-03 9.20799419701E-03 9.32608549101E-03 9.44574864360E-03 9.56700671380E-03 9.68988317526E-03 9.81440192617E-03 9.94058729950E-03 1.00684640735E-02 1.01980574824E-02 1.03293932279E-02 1.04624974904E-02 1.05973969410E-02 1.07341187537E-02 1.08726906179E-02 1.10131407517E-02 1.11554979150E-02 1.12997914235E-02 1.14460511630E-02 1.15943076039E-02 1.17445918166E-02 1.18969354871E-02 1.20513709330E-02 1.22079311204E-02 1.23666496808E-02 1.25275609293E-02 1.26906998825E-02 1.28561022774E-02 1.30238045911E-02 1.31938440610E-02 1.33662587054E-02 1.35410873449E-02 1.37183696247E-02 1.38981460373E-02 1.40804579465E-02 1.42653476112E-02 1.44528582110E-02 1.46430338720E-02 1.48359196937E-02 1.50315617767E-02 1.52300072513E-02 1.54313043069E-02 1.56355022231E-02 1.58426514005E-02 1.60528033936E-02 1.62660109445E-02 1.64823280176E-02 1.67018098354E-02 1.69245129156E-02 1.71504951094E-02 1.73798156409E-02 1.76125351483E-02 1.78487157258E-02 1.80884209671E-02 1.83317160108E-02 1.85786675866E-02 1.88293440633E-02 1.90838154986E-02 1.93421536903E-02 1.96044322292E-02 1.98707265537E-02 2.01411140064E-02 2.04156738923E-02 2.06944875391E-02 2.09776383594E-02 2.12652119150E-02 2.15572959830E-02 2.18539806246E-02 2.21553582555E-02 2.24615237193E-02 2.27725743627E-02 2.30886101132E-02 2.34097335598E-02 2.37360500357E-02 2.40676677039E-02 2.44046976456E-02 2.47472539519E-02 2.50954538168E-02 2.54494176356E-02 2.58092691040E-02 2.61751353224E-02 2.65471469016E-02 2.69254380735E-02 2.73101468045E-02 2.77014149117E-02 2.80993881845E-02 2.85042165082E-02 2.89160539926E-02 2.93350591038E-02 2.97613948003E-02 3.01952286737E-02 3.06367330925E-02 3.10860853514E-02 3.15434678243E-02 3.20090681223E-02 3.24830792557E-02 3.29656998019E-02 3.34571340768E-02 3.39575923119E-02 3.44672908367E-02 3.49864522653E-02 3.55153056896E-02 3.60540868764E-02 3.66030384710E-02 3.71624102063E-02 3.77324591164E-02 3.83134497578E-02 3.89056544344E-02 3.95093534299E-02 4.01248352456E-02 4.07523968438E-02 4.13923438980E-02 4.20449910489E-02 4.27106621664E-02 4.33896906182E-02 4.40824195441E-02 4.47892021373E-02 4.55104019313E-02 4.62463930933E-02 4.69975607239E-02 4.77643011626E-02 4.85470223001E-02 4.93461438962E-02 5.01620979034E-02 5.09953287972E-02 5.18462939114E-02 5.27154637789E-02 5.36033224788E-02 5.45103679874E-02 5.54371125353E-02 5.63840829681E-02 5.73518211123E-02 5.83408841446E-02 5.93518449655E-02 6.03852925748E-02 6.14418324517E-02 6.25220869353E-02 6.36266956079E-02 6.47563156787E-02 6.59116223684E-02 6.70933092927E-02 6.83020888455E-02 6.95386925791E-02 7.08038715823E-02 7.20983968539E-02 7.34230596717E-02 7.47786719543E-02 7.61660666169E-02 7.75860979170E-02 7.90396417903E-02 8.05275961751E-02 8.20508813227E-02 8.36104400935E-02 8.52072382351E-02 8.68422646418E-02 8.85165315939E-02 9.02310749719E-02 9.19869544469E-02 9.37852536414E-02 9.56270802606E-02 9.75135661893E-02 9.94458675522E-02 1.01425164736E-01 1.03452662368E-01 1.05529589246E-01 1.07657198225E-01 1.09836766044E-01 1.12069593099E-01 1.14357003153E-01 1.16700342982E-01 1.19100981950E-01 1.21560311513E-01 1.24079744636E-01 1.26660715134E-01 1.29304676922E-01 1.32013103165E-01 1.34787485340E-01 1.37629332180E-01 1.40540168516E-01 1.43521534000E-01 1.46574981706E-01 1.49702076600E-01 1.52904393883E-01 1.56183517188E-01 1.59541036627E-01 1.62978546698E-01 1.66497644022E-01 1.70099924922E-01 1.73786982827E-01 1.77560405507E-01 1.81421772117E-01 1.85372650061E-01 1.89414591666E-01 1.93549130647E-01 1.97777778385E-01 2.02102019992E-01 2.06523310169E-01 2.11043068851E-01 2.15662676645E-01 2.20383470042E-01 2.25206736425E-01 2.30133708855E-01 2.35165560645E-01 2.40303399725E-01 2.45548262794E-01 2.50901109281E-01 2.56362815095E-01 2.61934166203E-01 2.67615852018E-01 2.73408458632E-01 2.79312461883E-01 2.85328220299E-01 2.91455967913E-01 2.97695806983E-01 3.04047700628E-01 3.10511465421E-01 3.17086763945E-01 3.23773097359E-01 3.30569797995E-01 3.37476022026E-01 3.44490742243E-01 3.51612740967E-01 3.58840603164E-01 3.66172709780E-01 3.73607231362E-01 3.81142121996E-01 3.88775113634E-01 3.96503710843E-01 4.04325186034E-01 4.12236575234E-01 4.20234674434E-01 4.28316036591E-01 4.36476969315E-01 4.44713533310E-01 4.53021541596E-01 4.61396559582E-01 4.69833906004E-01 4.78328654785E-01 4.86875637831E-01 4.95469448791E-01 5.04104447782E-01 5.12774767092E-01 5.21474317846E-01 5.30196797594E-01 5.38935698809E-01 5.47684318207E-01 5.56435766840E-01 5.65182980845E-01 5.73918732749E-01 5.82635643176E-01 5.91326192811E-01 5.99982734415E-01 6.08597504694E-01 6.17162635773E-01 6.25670166023E-01 6.34112049946E-01 6.42480166814E-01 6.50766327729E-01 6.58962280750E-01 6.67059713736E-01 6.75050254527E-01 6.82925468076E-01 6.90676850179E-01 6.98295817428E-01 7.05773693054E-01 7.13101688347E-01 7.20270879398E-01 7.27272178964E-01 7.34096303322E-01 7.40733734079E-01 7.47174675027E-01 7.53409004234E-01 7.59426221743E-01 7.65215393405E-01 7.70765091558E-01 7.76063333513E-01 7.81097518980E-01 7.85854367884E-01 7.90321643790E-01 7.94493803953E-01 7.98367246017E-01 8.01938618114E-01 8.05204826161E-01 8.08163040737E-01 8.10810703506E-01 8.13145533181E-01 8.15165530999E-01 8.16868985699E-01 8.18254477997E-01 8.19320884544E-01 8.20067381368E-01 8.20493446791E-01 8.20598863825E-01 8.20383722044E-01 8.19848418931E-01 8.18993660710E-01 8.17820462656E-01 8.16330148891E-01 8.14524351679E-01 8.12405010206E-01 8.09974368875E-01 8.07234975105E-01 8.04189676648E-01 8.00841618435E-01 7.97194238956E-01 7.93251266185E-01 7.89016713062E-01 7.84494872537E-01 7.79690312200E-01 7.74607868491E-01 7.69252640520E-01 7.63629983499E-01 7.57745501800E-01 7.51605041659E-01 7.45214683535E-01 7.38580734137E-01 7.31709718133E-01 7.24608369561E-01 7.17283622954E-01 7.09742604180E-01 7.01992621036E-01 6.94041153588E-01 6.85895844280E-01 6.77564487825E-01 6.69055020888E-01 6.60375511581E-01 6.51534148773E-01 6.42539231266E-01 6.33399156844E-01 6.24117324637E-01 6.14707318707E-01 6.05177764769E-01 5.95537341931E-01 5.85794771007E-01 5.75958802692E-01 5.66038205673E-01 5.56041754818E-01 5.45978219283E-01 5.35856350523E-01 5.25684870279E-01 5.15472458579E-01 5.05227741745E-01 4.94959280441E-01 4.84675557775E-01 4.74384967480E-01 4.64095802210E-01 4.53816241964E-01 4.43554342685E-01 4.33318025063E-01 4.23115063571E-01 4.12953075775E-01 4.02839511965E-01 3.92781645124E-01 3.82786561304E-01 3.72861150416E-01 3.63012097503E-01 3.53245874509E-01 3.43568732593E-01 3.33986695017E-01 3.24505550636E-01 3.15130848015E-01 3.05867890209E-01 2.96721730193E-01 2.87697166996E-01 2.78798742508E-01 2.70030738990E-01 2.61397177274E-01 2.52901815650E-01 2.44548149420E-01 2.36339411116E-01 2.28278571356E-01 2.20368340308E-01 2.12611169745E-01 2.05009255653E-01 1.97564541366E-01 1.90278721188E-01 1.83153244466E-01 1.76189320088E-01 1.69387921352E-01 1.62749791183E-01 1.56275447657E-01 1.49965189796E-01 1.43819103602E-01 1.37837068290E-01 1.32018762705E-01 1.26363671877E-01 1.20871093694E-01 1.15540145679E-01 1.10369771825E-01 1.05358749496E-01 1.00505696354E-01 9.58090773155E-02 9.12672115025E-02 8.68782792041E-02 8.26403288175E-02 7.85512837729E-02 7.46089494332E-02 7.08110199658E-02 6.71550851819E-02 6.36386373426E-02 6.02590779291E-02 5.70137243767E-02 5.38998167709E-02 5.09145245047E-02 4.80549528949E-02 4.53181497566E-02 4.27011119310E-02 4.02007917647E-02 3.78141035335E-02 3.55379298070E-02 3.33691277452E-02 3.13045353192E-02 2.93409774464E-02 2.74752720304E-02 2.57042358927E-02 2.40246905850E-02 2.24334680674E-02 2.09274162409E-02 1.95034043173E-02 1.81583280151E-02 1.68891145649E-02 1.56927275115E-02 1.45661712993E-02 1.35064956268E-02 1.25107995602E-02 1.15762353941E-02 1.07000122486E-02 9.87939939680E-03 9.11172931288E-03 8.39440043759E-03 7.72487965553E-03 7.10070448284E-03 6.51948496411E-03 5.97890527964E-03 5.47672506547E-03 5.01078045011E-03 4.57898481377E-03 4.17932927666E-03 3.80988292495E-03 3.46879278362E-03 3.15428354678E-03 2.86465707722E-03 2.59829168723E-03 2.35364121418E-03 2.12923390444E-03 1.92367111978E-03 1.73562588107E-03 1.56384126392E-03 1.40712866118E-03 1.26436592731E-03 1.13449541947E-03 1.01652194973E-03 9.09510663050E-04 8.12584854580E-04 7.24923740084E-04 6.45760192190E-04 5.74378454921E-04 5.10111848164E-04 4.52340473127E-04 4.00488929044E-04 3.54024050712E-04 3.12452675625E-04 2.75319448729E-04 2.42204672028E-04 2.12722205496E-04 1.86517424979E-04 1.63265242041E-04 1.42668189927E-04 1.24454579168E-04 1.08376725613E-04 9.42092530713E-05 8.17474721026E-05 7.08058359325E-05 6.12164739268E-05 5.28278025622E-05 4.55032133747E-05 3.91198369535E-05 3.35673816767E-05 2.87470455526E-05 2.45704992440E-05 2.09589381008E-05 1.78422008157E-05 1.51579521435E-05 1.28509269842E-05 1.08722330249E-05 9.17870905898E-06 7.73233605369E-06 6.49969801722E-06 5.45148971816E-06 4.56206833582E-06 3.80906193670E-06 3.17312483824E-06 2.63729549699E-06 2.18685794570E-06 1.80908956630E-06 1.49301728701E-06 1.22919982399E-06 1.00953369572E-06 8.27080873773E-07 6.75916067388E-07 5.50991773060E-07 4.48019351083E-07 3.63364519443E-07 2.93955780033E-07 2.37204412795E-07 1.90934789482E-07 1.53319861078E-07 1.22797025705E-07 9.81002051460E-08 7.81806048522E-08 6.21688902616E-08 4.93471094330E-08 3.91247937489E-08 3.10187310692E-08 2.45181312182E-08 1.93208260672E-08 1.51782749319E-08 1.18866845747E-08 9.27948018724E-09 7.22094304837E-09 5.60085212879E-09 4.32998652993E-09 3.33636339452E-09 2.56210190875E-09 1.96081833916E-09 1.49546982362E-09 1.13657597914E-09 8.60757413573E-10 6.49539046897E-10 4.88373869550E-10 3.65849496343E-10 2.73045715095E-10 2.03016273953E-10 1.50372489135E-10 1.10949967719E-10 8.15429035384E-11 5.96930873584E-11 4.35230377244E-11 3.16045625724E-11 2.28556541410E-11 1.64599456751E-11 1.18040573166E-11 8.42906505137E-12 5.99307081015E-12 4.24245994497E-12 2.98992685171E-12 2.09774975948E-12 1.46511808039E-12 1.01857409398E-12 7.04836818676E-13 4.85439471717E-13 3.32741070301E-13 2.26974201400E-13 1.54070313680E-13 1.04065578968E-13 6.99381047903E-14 4.67640201266E-14 3.11080870410E-14 2.05859148876E-14 1.35510828474E-14 8.87270391843E-15 5.77812560158E-15 3.74228998611E-15 2.41033533098E-15 1.54374935185E-15 9.83115952186E-16 6.22487000075E-16 3.91851921978E-16 2.45215544118E-16 1.52537315452E-16 9.43134538679E-17 5.79572270518E-17 3.53952089128E-17 2.14807977585E-17 1.29536173279E-17 7.76125056123E-18 4.61994862278E-18 2.73194380121E-18 1.60472077402E-18 9.36232595166E-19 5.42484855539E-19 3.12157377837E-19 1.78362596723E-19 1.01190504682E-19 5.69957722745E-20 3.18693386524E-20 1.76885044286E-20 9.74443040425E-21 5.32755814794E-21 2.89044651758E-21 1.55605433401E-21 8.31122827418E-22 4.40395950211E-22 2.31481108549E-22 1.20680708633E-22 6.23972697031E-23 3.19928973790E-23 1.62650744460E-23 8.19835469156E-24 4.09655324373E-24 2.02901030175E-24 9.96037171297E-25 4.84555780753E-25 2.33582138510E-25 1.11561195260E-25 5.27853973102E-26 2.47394666622E-26 1.14839401993E-26 5.27913855486E-27 2.40299896587E-27 1.08295063407E-27 4.83140871759E-28 2.13350538833E-28 9.32422330373E-29 4.03249604478E-29 1.72552116647E-29 7.30455328668E-30 3.05868888333E-30 1.26673486408E-30 5.18781730617E-31 2.10073441918E-31 8.40975580927E-32 3.32781234754E-32 1.30146995275E-32 5.02973616783E-33 1.92055640736E-33 7.24459273950E-34 2.69922662662E-34 9.93197837555E-35 3.60856850855E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.20007399345E-08 7.38234472391E-08 7.56922965934E-08 7.76084560887E-08 7.95731233867E-08 8.15875264679E-08 8.36529243994E-08 8.57706081215E-08 8.79419012550E-08 9.01681609283E-08 9.24507786256E-08 9.47911810566E-08 9.71908310483E-08 9.96512284596E-08 1.02173911118E-07 1.04760455782E-07 1.07412479125E-07 1.10131638747E-07 1.12919634210E-07 1.15778208103E-07 1.18709147124E-07 1.21714283207E-07 1.24795494657E-07 1.27954707331E-07 1.31193895838E-07 1.34515084776E-07 1.37920349995E-07 1.41411819894E-07 1.44991676754E-07 1.48662158102E-07 1.52425558106E-07 1.56284229012E-07 1.60240582613E-07 1.64297091756E-07 1.68456291891E-07 1.72720782651E-07 1.77093229479E-07 1.81576365294E-07 1.86172992201E-07 1.90885983237E-07 1.95718284174E-07 2.00672915354E-07 2.05752973580E-07 2.10961634050E-07 2.16302152344E-07 2.21777866456E-07 2.27392198882E-07 2.33148658760E-07 2.39050844059E-07 2.45102443835E-07 2.51307240529E-07 2.57669112337E-07 2.64192035631E-07 2.70880087446E-07 2.77737448026E-07 2.84768403440E-07 2.91977348258E-07 2.99368788299E-07 3.06947343447E-07 3.14717750540E-07 3.22684866326E-07 3.30853670507E-07 3.39229268842E-07 3.47816896346E-07 3.56621920555E-07 3.65649844888E-07 3.74906312083E-07 3.84397107721E-07 3.94128163849E-07 4.04105562683E-07 4.14335540411E-07 4.24824491088E-07 4.35578970638E-07 4.46605700947E-07 4.57911574067E-07 4.69503656520E-07 4.81389193721E-07 4.93575614500E-07 5.06070535750E-07 5.18881767185E-07 5.32017316223E-07 5.45485392989E-07 5.59294415448E-07 5.73453014667E-07 5.87970040208E-07 6.02854565659E-07 6.18115894308E-07 6.33763564955E-07 6.49807357874E-07 6.66257300929E-07 6.83123675838E-07 7.00417024600E-07 7.18148156088E-07 7.36328152798E-07 7.54968377781E-07 7.74080481746E-07 7.93676410335E-07 8.13768411598E-07 8.34369043642E-07 8.55491182483E-07 8.77148030094E-07 8.99353122654E-07 9.22120339012E-07 9.45463909358E-07 9.69398424121E-07 9.93938843083E-07 1.01910050474E-06 1.04489913586E-06 1.07135086137E-06 1.09847221437E-06 1.12628014650E-06 1.15479203853E-06 1.18402571123E-06 1.21399943650E-06 1.24473194878E-06 1.27624245679E-06 1.30855065551E-06 1.34167673848E-06 1.37564141046E-06 1.41046590034E-06 1.44617197442E-06 1.48278195001E-06 1.52031870938E-06 1.55880571405E-06 1.59826701950E-06 1.63872729013E-06 1.68021181475E-06 1.72274652232E-06 1.76635799822E-06 1.81107350082E-06 1.85692097852E-06 1.90392908725E-06 1.95212720834E-06 2.00154546693E-06 2.05221475074E-06 2.10416672943E-06 2.15743387436E-06 2.21204947889E-06 2.26804767922E-06 2.32546347568E-06 2.38433275461E-06 2.44469231083E-06 2.50657987061E-06 2.57003411523E-06 2.63509470520E-06 2.70180230500E-06 2.77019860854E-06 2.84032636519E-06 2.91222940650E-06 2.98595267361E-06 3.06154224533E-06 3.13904536694E-06 3.21851047971E-06 3.29998725118E-06 3.38352660621E-06 3.46918075880E-06 3.55700324474E-06 3.64704895503E-06 3.73937417022E-06 3.83403659559E-06 3.93109539718E-06 4.03061123881E-06 4.13264631997E-06 4.23726441467E-06 4.34453091137E-06 4.45451285376E-06 4.56727898274E-06 4.68289977931E-06 4.80144750867E-06 4.92299626539E-06 5.04762201965E-06 5.17540266481E-06 5.30641806601E-06 5.44075011015E-06 5.57848275701E-06 5.71970209178E-06 5.86449637879E-06 6.01295611676E-06 6.16517409526E-06 6.32124545279E-06 6.48126773619E-06 6.64534096160E-06 6.81356767698E-06 6.98605302620E-06 7.16290481475E-06 7.34423357710E-06 7.53015264579E-06 7.72077822225E-06 7.91622944943E-06 8.11662848625E-06 8.32210058395E-06 8.53277416433E-06 8.74878090007E-06 8.97025579696E-06 9.19733727829E-06 9.43016727136E-06 9.66889129616E-06 9.91365855632E-06 1.01646220324E-05 1.04219385773E-05 1.06857690145E-05 1.09562782386E-05 1.12336353181E-05 1.15180136011E-05 1.18095908239E-05 1.21085492219E-05 1.24150756434E-05 1.27293616663E-05 1.30516037181E-05 1.33820031985E-05 1.37207666052E-05 1.40681056628E-05 1.44242374557E-05 1.47893845628E-05 1.51637751974E-05 1.55476433497E-05 1.59412289323E-05 1.63447779310E-05 1.67585425581E-05 1.71827814100E-05 1.76177596286E-05 1.80637490675E-05 1.85210284614E-05 1.89898836004E-05 1.94706075084E-05 1.99635006267E-05 2.04688710011E-05 2.09870344746E-05 2.15183148851E-05 2.20630442670E-05 2.26215630594E-05 2.31942203182E-05 2.37813739345E-05 2.43833908583E-05 2.50006473274E-05 2.56335291027E-05 2.62824317091E-05 2.69477606828E-05 2.76299318242E-05 2.83293714582E-05 2.90465167003E-05 2.97818157295E-05 3.05357280685E-05 3.13087248707E-05 3.21012892144E-05 3.29139164049E-05 3.37471142835E-05 3.46014035449E-05 3.54773180625E-05 3.63754052218E-05 3.72962262623E-05 3.82403566281E-05 3.92083863275E-05 4.02009203009E-05 4.12185787994E-05 4.22619977719E-05 4.33318292619E-05 4.44287418153E-05 4.55534208977E-05 4.67065693225E-05 4.78889076896E-05 4.91011748358E-05 5.03441282959E-05 5.16185447758E-05 5.29252206378E-05 5.42649723974E-05 5.56386372334E-05 5.70470735107E-05 5.84911613163E-05 5.99718030085E-05 6.14899237805E-05 6.30464722382E-05 6.46424209920E-05 6.62787672645E-05 6.79565335127E-05 6.96767680664E-05 7.14405457826E-05 7.32489687165E-05 7.51031668095E-05 7.70042985943E-05 7.89535519179E-05 8.09521446836E-05 8.30013256105E-05 8.51023750129E-05 8.72566055996E-05 8.94653632929E-05 9.17300280687E-05 9.40520148172E-05 9.64327742260E-05 9.88737936855E-05 1.01376598216E-04 1.03942751422E-04 1.06573856461E-04 1.09271557053E-04 1.12037538499E-04 1.14873528732E-04 1.17781299401E-04 1.20762666969E-04 1.23819493850E-04 1.26953689569E-04 1.30167211953E-04 1.33462068353E-04 1.36840316893E-04 1.40304067755E-04 1.43855484496E-04 1.47496785394E-04 1.51230244831E-04 1.55058194714E-04 1.58983025925E-04 1.63007189813E-04 1.67133199718E-04 1.71363632544E-04 1.75701130359E-04 1.80148402043E-04 1.84708224976E-04 1.89383446767E-04 1.94176987029E-04 1.99091839198E-04 2.04131072394E-04 2.09297833338E-04 2.14595348305E-04 2.20026925136E-04 2.25595955299E-04 2.31305915996E-04 2.37160372331E-04 2.43162979527E-04 2.49317485200E-04 2.55627731693E-04 2.62097658464E-04 2.68731304539E-04 2.75532811023E-04 2.82506423677E-04 2.89656495554E-04 2.96987489712E-04 3.04503981982E-04 3.12210663819E-04 3.20112345213E-04 3.28213957677E-04 3.36520557318E-04 3.45037327971E-04 3.53769584422E-04 3.62722775709E-04 3.71902488505E-04 3.81314450586E-04 3.90964534386E-04 4.00858760644E-04 4.11003302139E-04 4.21404487517E-04 4.32068805220E-04 4.43002907509E-04 4.54213614586E-04 4.65707918828E-04 4.77492989114E-04 4.89576175272E-04 5.01965012628E-04 5.14667226681E-04 5.27690737876E-04 5.41043666518E-04 5.54734337790E-04 5.68771286908E-04 5.83163264404E-04 5.97919241531E-04 6.13048415816E-04 6.28560216741E-04 6.44464311573E-04 6.60770611336E-04 6.77489276928E-04 6.94630725400E-04 7.12205636382E-04 7.30224958672E-04 7.48699916992E-04 7.67642018907E-04 7.87063061918E-04 8.06975140733E-04 8.27390654714E-04 8.48322315514E-04 8.69783154898E-04 8.91786532764E-04 9.14346145356E-04 9.37476033683E-04 9.61190592150E-04 9.85504577397E-04 1.01043311736E-03 1.03599172055E-03 1.06219628556E-03 1.08906311084E-03 1.11660890465E-03 1.14485079530E-03 1.17380634166E-03 1.20349354387E-03 1.23393085435E-03 1.26513718911E-03 1.29713193926E-03 1.32993498288E-03 1.36356669712E-03 1.39804797063E-03 1.43340021631E-03 1.46964538432E-03 1.50680597544E-03 1.54490505475E-03 1.58396626566E-03 1.62401384425E-03 1.66507263398E-03 1.70716810074E-03 1.75032634830E-03 1.79457413408E-03 1.83993888537E-03 1.88644871584E-03 1.93413244258E-03 1.98301960346E-03 2.03314047490E-03 2.08452609015E-03 2.13720825790E-03 2.19121958144E-03 2.24659347821E-03 2.30336419983E-03 2.36156685263E-03 2.42123741866E-03 2.48241277717E-03 2.54513072664E-03 2.60943000734E-03 2.67535032436E-03 2.74293237123E-03 2.81221785412E-03 2.88324951655E-03 2.95607116475E-03 3.03072769351E-03 3.10726511277E-03 3.18573057469E-03 3.26617240148E-03 3.34864011377E-03 3.43318445973E-03 3.51985744474E-03 3.60871236190E-03 3.69980382310E-03 3.79318779089E-03 3.88892161104E-03 3.98706404587E-03 4.08767530828E-03 4.19081709663E-03 4.29655263033E-03 4.40494668631E-03 4.51606563623E-03 4.62997748458E-03 4.74675190757E-03 4.86646029298E-03 4.98917578077E-03 5.11497330466E-03 5.24392963461E-03 5.37612342023E-03 5.51163523509E-03 5.65054762204E-03 5.79294513951E-03 5.93891440872E-03 6.08854416201E-03 6.24192529210E-03 6.39915090246E-03 6.56031635865E-03 6.72551934083E-03 6.89485989728E-03 7.06844049905E-03 7.24636609575E-03 7.42874417240E-03 7.61568480751E-03 7.80730073227E-03 8.00370739093E-03 8.20502300237E-03 8.41136862285E-03 8.62286821002E-03 8.83964868811E-03 9.06184001437E-03 9.28957524680E-03 9.52299061306E-03 9.76222558072E-03 1.00074229288E-02 1.02587288204E-02 1.05162928770E-02 1.07802682536E-02 1.10508117158E-02 1.13280837171E-02 1.16122484789E-02 1.19034740707E-02 1.22019324919E-02 1.25077997556E-02 1.28212559723E-02 1.31424854362E-02 1.34716767124E-02 1.38090227246E-02 1.41547208456E-02 1.45089729873E-02 1.48719856936E-02 1.52439702328E-02 1.56251426930E-02 1.60157240771E-02 1.64159403997E-02 1.68260227851E-02 1.72462075662E-02 1.76767363842E-02 1.81178562896E-02 1.85698198444E-02 1.90328852240E-02 1.95073163215E-02 1.99933828513E-02 2.04913604545E-02 2.10015308040E-02 2.15241817109E-02 2.20596072305E-02 2.26081077697E-02 2.31699901933E-02 2.37455679318E-02 2.43351610882E-02 2.49390965452E-02 2.55577080718E-02 2.61913364299E-02 2.68403294802E-02 2.75050422874E-02 2.81858372240E-02 2.88830840744E-02 2.95971601363E-02 3.03284503213E-02 3.10773472542E-02 3.18442513696E-02 3.26295710067E-02 3.34337225024E-02 3.42571302802E-02 3.51002269380E-02 3.59634533309E-02 3.68472586519E-02 3.77521005075E-02 3.86784449901E-02 3.96267667449E-02 4.05975490324E-02 4.15912837850E-02 4.26084716583E-02 4.36496220755E-02 4.47152532658E-02 4.58058922946E-02 4.69220750865E-02 4.80643464403E-02 4.92332600343E-02 5.04293784226E-02 5.16532730216E-02 5.29055240851E-02 5.41867206687E-02 5.54974605815E-02 5.68383503255E-02 5.82100050213E-02 5.96130483192E-02 6.10481122954E-02 6.25158373324E-02 6.40168719819E-02 6.55518728109E-02 6.71215042281E-02 6.87264382912E-02 7.03673544936E-02 7.20449395291E-02 7.37598870341E-02 7.55128973057E-02 7.73046769953E-02 7.91359387759E-02 8.10074009815E-02 8.29197872193E-02 8.48738259510E-02 8.68702500436E-02 8.89097962883E-02 9.09932048848E-02 9.31212188921E-02 9.52945836419E-02 9.75140461150E-02 9.97803542782E-02 1.02094256382E-01 1.04456500215E-01 1.06867832317E-01 1.09328997144E-01 1.11840736195E-01 1.14403787080E-01 1.17018882551E-01 1.19686749476E-01 1.22408107765E-01 1.25183669240E-01 1.28014136456E-01 1.30900201465E-01 1.33842544523E-01 1.36841832746E-01 1.39898718696E-01 1.43013838926E-01 1.46187812451E-01 1.49421239165E-01 1.52714698200E-01 1.56068746225E-01 1.59483915676E-01 1.62960712939E-01 1.66499616465E-01 1.70101074826E-01 1.73765504717E-01 1.77493288898E-01 1.81284774077E-01 1.85140268748E-01 1.89060040970E-01 1.93044316097E-01 1.97093274462E-01 2.01207049021E-01 2.05385722956E-01 2.09629327237E-01 2.13937838160E-01 2.18311174857E-01 2.22749196787E-01 2.27251701213E-01 2.31818420670E-01 2.36449020439E-01 2.41143096027E-01 2.45900170666E-01 2.50719692841E-01 2.55601033852E-01 2.60543485433E-01 2.65546257424E-01 2.70608475522E-01 2.75729179116E-01 2.80907319228E-01 2.86141756561E-01 2.91431259689E-01 2.96774503390E-01 3.02170067144E-01 3.07616433815E-01 3.13111988535E-01 3.18655017808E-01 3.24243708856E-01 3.29876149220E-01 3.35550326652E-01 3.41264129294E-01 3.47015346193E-01 3.52801668151E-01 3.58620688942E-01 3.64469906913E-01 3.70346726989E-01 3.76248463103E-01 3.82172341068E-01 3.88115501913E-01 3.94075005683E-01 4.00047835751E-01 4.06030903611E-01 4.12021054198E-01 4.18015071731E-01 4.24009686071E-01 4.30001579619E-01 4.35987394735E-01 4.41963741676E-01 4.47927207049E-01 4.53874362750E-01 4.59801775388E-01 4.65706016147E-01 4.71583671072E-01 4.77431351724E-01 4.83245706179E-01 4.89023430299E-01 4.94761279229E-01 5.00456079048E-01 5.06104738500E-01 5.11704260720E-01 5.17251754880E-01 5.22744447629E-01 5.28179694257E-01 5.33554989441E-01 5.38867977470E-01 5.44116461822E-01 5.49298413954E-01 5.54411981179E-01 5.59455493484E-01 5.64427469151E-01 5.69326619028E-01 5.74151849317E-01 5.78902262728E-01 5.83577157858E-01 5.88176026664E-01 5.92698549899E-01 5.97144590386E-01 6.01514184021E-01 6.05807528403E-01 6.10024969008E-01 6.14166982829E-01 6.18234159423E-01 6.22227179334E-01 6.26146789852E-01 6.29993778109E-01 6.33768941513E-01 6.37473055542E-01 6.41106838915E-01 6.44670916185E-01 6.48165777786E-01 6.51591737559E-01 6.54948887776E-01 6.58237051659E-01 6.61455733351E-01 6.64604065269E-01 6.67680752687E-01 6.70684015361E-01 6.73611525895E-01 6.76460344469E-01 6.79226849419E-01 6.81906663074E-01 6.84494572053E-01 6.86984441162E-01 6.89369119799E-01 6.91640339709E-01 6.93788602706E-01 6.95804660310E-01 6.97684739823E-01 6.99426621949E-01 7.01028171571E-01 7.02487341341E-01 7.03802175096E-01 7.04970811098E-01 7.05991485098E-01 7.06862533194E-01 7.07582394505E-01 7.08149613654E-01 7.08562843043E-01 7.08820844954E-01 7.08922493440E-01 7.08866776051E-01 7.08652795357E-01 7.08279770305E-01 7.07747037397E-01 7.07054051694E-01 7.06200387663E-01 7.05185739850E-01 7.04009923408E-01 7.02672874461E-01 7.01174650328E-01 6.99515429600E-01 6.97695512080E-01 6.95715318580E-01 6.93575390603E-01 6.91276389883E-01 6.88819097818E-01 6.86204414778E-01 6.83433359304E-01 6.80507067198E-01 6.77426790517E-01 6.74193896458E-01 6.70809866155E-01 6.67276293385E-01 6.63594883185E-01 6.59767450390E-01 6.55795918083E-01 6.51682315973E-01 6.47428778699E-01 6.43037544053E-01 6.38510951138E-01 6.33851438449E-01 6.29061541881E-01 6.24143892671E-01 6.19101215256E-01 6.13936325064E-01 6.08652126251E-01 6.03251609384E-01 5.97737848834E-01 5.92114000029E-01 5.86383296974E-01 5.80549049639E-01 5.74614641036E-01 5.68581375029E-01 5.62454893458E-01 5.56238779269E-01 5.49936675546E-01 5.43552281914E-01 5.37089350807E-01 5.30551683577E-01 5.23943126434E-01 5.17267566226E-01 5.10528926047E-01 5.03731160673E-01 4.96878251843E-01 4.89974203376E-01 4.83023036155E-01 4.76028782962E-01 4.68995483207E-01 4.61927177559E-01 4.54827902494E-01 4.47701684801E-01 4.40552536054E-01 4.33384447100E-01 4.26201382570E-01 4.19007275473E-01 4.11806021884E-01 4.04601475763E-01 3.97397443954E-01 3.90197681375E-01 3.83005886438E-01 3.75825696737E-01 3.68660685011E-01 3.61514355422E-01 3.54390140153E-01 3.47291396354E-01 3.40221403442E-01 3.33183360756E-01 3.26180385583E-01 3.19215511547E-01 3.12291687347E-01 3.05411775854E-01 2.98578553538E-01 2.91794710214E-01 2.85062849087E-01 2.78385487066E-01 2.71765055344E-01 2.65203900181E-01 2.58704283895E-01 2.52268386007E-01 2.45898304525E-01 2.39596057325E-01 2.33363583597E-01 2.27202745333E-01 2.21115328826E-01 2.15103046137E-01 2.09167536517E-01 2.03310367762E-01 1.97533037453E-01 1.91836974092E-01 1.86223538090E-01 1.80694022604E-01 1.75249654209E-01 1.69891593396E-01 1.64620934889E-01 1.59438707773E-01 1.54345875454E-01 1.49343335429E-01 1.44431918896E-01 1.39612390203E-01 1.34885446152E-01 1.30251715188E-01 1.25711756466E-01 1.21266058848E-01 1.16915039833E-01 1.12659044453E-01 1.08498344160E-01 1.04433135734E-01 1.00463540233E-01 9.65896020159E-02 9.28112878622E-02 8.91284862182E-02 8.55410065855E-02 8.20485790791E-02 7.86508541726E-02 7.53474026480E-02 7.21377157641E-02 6.90212056568E-02 6.59972059786E-02 6.30649727847E-02 6.02236856690E-02 5.74724491510E-02 5.48102943102E-02 5.22361806659E-02 4.97489982930E-02 4.73475701665E-02 4.50306547228E-02 4.27969486251E-02 4.06450897185E-02 3.85736601591E-02 3.65811897003E-02 3.46661591184E-02 3.28270037591E-02 3.10621171871E-02 2.93698549185E-02 2.77485382172E-02 2.61964579375E-02 2.47118783928E-02 2.32930412335E-02 2.19381693148E-02 2.06454705396E-02 1.94131416579E-02 1.82393720096E-02 1.71223471940E-02 1.60602526543E-02 1.50512771634E-02 1.40936162001E-02 1.31854752047E-02 1.23250727057E-02 1.15106433076E-02 1.07404405343E-02 1.00127395205E-02 9.32583954732E-03 8.67806641597E-03 8.06777465873E-03 7.49334958286E-03 6.95320914740E-03 6.44580567180E-03 5.96962737690E-03 5.52319975935E-03 5.10508680133E-03 4.71389201812E-03 4.34825934658E-03 4.00687387851E-03 3.68846244288E-03 3.39179404205E-03 3.11568014684E-03 2.85897485633E-03 2.62057492808E-03 2.39941968521E-03 2.19449080666E-03 2.00481200728E-03 1.82944861463E-03 1.66750704944E-03 1.51813421659E-03 1.38051681376E-03 1.25388056463E-03 1.13748938381E-03 1.03064448012E-03 9.32683405233E-04 8.42979054207E-04 7.60938624418E-04 6.86002539188E-04 6.17643342169E-04 5.55364568326E-04 4.98699597110E-04 4.47210493111E-04 4.00486839227E-04 3.58144567165E-04 3.19826112039E-04 2.85209727053E-04 2.53982833331E-04 2.25853563650E-04 2.00551154200E-04 1.77824796948E-04 1.57442523945E-04 1.39190125177E-04 1.22870101441E-04 1.08300653474E-04 9.53147084440E-05 8.37589846876E-05 7.34930954374E-05 6.43886921388E-05 5.63286478139E-05 4.92062808286E-05 4.29234997361E-05 3.73811898266E-05 3.24997815468E-05 2.82082833650E-05 2.44424429155E-05 2.11442230034E-05 1.82613087149E-05 1.57466452028E-05 1.35580056700E-05 1.16575890505E-05 1.00116468923E-05 8.59013898514E-06 7.36641734531E-06 6.31693828948E-06 5.40610559436E-06 4.61720332825E-06 3.93530985696E-06 3.34713366751E-06 2.84086083231E-06 2.40601366232E-06 2.03332007426E-06 1.71459317930E-06 1.44262058767E-06 1.21106291603E-06 1.01436098093E-06 8.47651162315E-07 7.06688425807E-07 5.87776500006E-07 4.87704716033E-07 4.03691029894E-07 3.33330763838E-07 2.74550620364E-07 2.25567541508E-07 1.84852006169E-07 1.51095379313E-07 1.23180948423E-07 1.00158304559E-07 8.12207473271E-08 6.56854149710E-08 5.29758622733E-08 4.26068300381E-08 3.41709702900E-08 2.73273109845E-08 2.17912628128E-08 1.73259885549E-08 1.37349723250E-08 1.08556419282E-08 8.55391238540E-09 6.71953248081E-09 5.26212894801E-09 4.10785465627E-09 3.19655791615E-09 2.47939982740E-09 1.91685548565E-09 1.47704289322E-09 1.13433063512E-09 8.68181835245E-10 6.62197655450E-10 5.03328694277E-10 3.81227137997E-10 2.87716465675E-10 2.16358963824E-10 1.62104313194E-10 1.21005116635E-10 8.99874858951E-11 6.66667372364E-11 4.91998979071E-11 3.61681321176E-11 2.64833873076E-11 1.93145672828E-11 1.40293835494E-11 1.01487424208E-11 7.31111323046E-12 5.24480987563E-12 3.74651939095E-12 2.66474074499E-12 1.88706620839E-12 1.33045646844E-12 9.33837728235E-13 6.52491612253E-13 4.53822965054E-13 3.14181754011E-13 2.16487600966E-13 1.48462570212E-13 1.01322706154E-13 6.88138880851E-14 4.65048496323E-14 3.12713196428E-14 2.09214911578E-14 1.39254688228E-14 9.22082399287E-15 6.07356881702E-15 3.97927306060E-15 2.59310420451E-15 1.68059533978E-15 1.08318701027E-15 6.94241551914E-16 4.42439634732E-16 2.80351388831E-16 1.76614061661E-16 1.10608867044E-16 6.88596052529E-17 4.26104821069E-17 2.62067223207E-17 1.60184281112E-17 9.72980612469E-18 5.87261219050E-18 3.52181563807E-18 2.09833560640E-18 1.24199759914E-18 7.30244046196E-19 4.26461953036E-19 2.47354965937E-19 1.42479264489E-19 8.14958561495E-20 4.62843198856E-20 2.60980421822E-20 1.46089280347E-20 8.11755708391E-21 4.47701588281E-21 2.45057159726E-21 1.33112951863E-21 7.17472984382E-22 3.83690235335E-22 2.03564948142E-22 1.07134382873E-22 5.59260805405E-23 2.89544284883E-23 1.48657086106E-23 7.56799046180E-24 3.81991447915E-24 1.91142819540E-24 9.48082677573E-25 4.66090559210E-25 2.27081452437E-25 1.09630416248E-25 5.24407224884E-26 2.48510079186E-26 1.16655706023E-26 5.42378991642E-27 7.20006003545E-08 7.38233041256E-08 7.56921498570E-08 7.76083056376E-08 7.95729691269E-08 8.15873683029E-08 8.36527622303E-08 8.57704418470E-08 8.79417307713E-08 9.01679861286E-08 9.24505994007E-08 9.47909972945E-08 9.71906426341E-08 9.96510352755E-08 1.02173713043E-07 1.04760252693E-07 1.07412270894E-07 1.10131425244E-07 1.12919415303E-07 1.15777983653E-07 1.18708916993E-07 1.21714047249E-07 1.24795252726E-07 1.27954459275E-07 1.31193641502E-07 1.34514824001E-07 1.37920082618E-07 1.41411545748E-07 1.44991395668E-07 1.48661869900E-07 1.52425262607E-07 1.56283926032E-07 1.60240271962E-07 1.64296773241E-07 1.68455965312E-07 1.72720447804E-07 1.77092886155E-07 1.81576013278E-07 1.86172631273E-07 1.90885613172E-07 1.95717904740E-07 2.00672526313E-07 2.05752574689E-07 2.10961225061E-07 2.16301733000E-07 2.21777436496E-07 2.27391758037E-07 2.33148206753E-07 2.39050380610E-07 2.45101968652E-07 2.51306753316E-07 2.57668612789E-07 2.64191523436E-07 2.70879562284E-07 2.77736909568E-07 2.84767851350E-07 2.91976782191E-07 2.99368207900E-07 3.06946748354E-07 3.14717140380E-07 3.22684240720E-07 3.30853029062E-07 3.39228611157E-07 3.47816222010E-07 3.56621229147E-07 3.65649135976E-07 3.74905585222E-07 3.84396362458E-07 3.94127399719E-07 4.04104779207E-07 4.14334737099E-07 4.24823667438E-07 4.35578126136E-07 4.46604835065E-07 4.57910686263E-07 4.69502746240E-07 4.81388260395E-07 4.93574657545E-07 5.06069554568E-07 5.18880761163E-07 5.32016284732E-07 5.45484335384E-07 5.59293331068E-07 5.73451902835E-07 5.87968900228E-07 6.02853396819E-07 6.18114695878E-07 6.33762336185E-07 6.49806097997E-07 6.66256009156E-07 6.83122351362E-07 7.00415666595E-07 7.18146763703E-07 7.36326725164E-07 7.54966914006E-07 7.74078980913E-07 7.93674871508E-07 8.13766833814E-07 8.34367425916E-07 8.55489523803E-07 8.77146329423E-07 8.99351378930E-07 9.22118551145E-07 9.45462076231E-07 9.69396544587E-07 9.93936915968E-07 1.01909852884E-06 1.04489710994E-06 1.07134878416E-06 1.09847008458E-06 1.12627796279E-06 1.15478979954E-06 1.18402341556E-06 1.21399708271E-06 1.24472953541E-06 1.27623998233E-06 1.30854811840E-06 1.34167413714E-06 1.37563874327E-06 1.41046316563E-06 1.44616917048E-06 1.48277907509E-06 1.52031576168E-06 1.55880269174E-06 1.59826392068E-06 1.63872411286E-06 1.68020855705E-06 1.72274318215E-06 1.76635457350E-06 1.81106998940E-06 1.85691737821E-06 1.90392539579E-06 1.95212342344E-06 2.00154158622E-06 2.05221077179E-06 2.10416264975E-06 2.15742969141E-06 2.21204519006E-06 2.26804328182E-06 2.32545896695E-06 2.38432813175E-06 2.44468757095E-06 2.50657501074E-06 2.57002913234E-06 2.63508959617E-06 2.70179706664E-06 2.77019323757E-06 2.84032085826E-06 2.91222376017E-06 2.98594688435E-06 3.06153630952E-06 3.13903928087E-06 3.21850423958E-06 3.29998085309E-06 3.38352004616E-06 3.46917403269E-06 3.55699634836E-06 3.64704188408E-06 3.73936692028E-06 3.83402916212E-06 3.93108777555E-06 4.03060342425E-06 4.13263830759E-06 4.23725619948E-06 4.34452248822E-06 4.45450421740E-06 4.56727012776E-06 4.68289070018E-06 4.80143819972E-06 4.92298672080E-06 5.04761223346E-06 5.17539263090E-06 5.30640777812E-06 5.44073956184E-06 5.57847194169E-06 5.71969100269E-06 5.86448500901E-06 6.01294445918E-06 6.16516214260E-06 6.32123319758E-06 6.48125517077E-06 6.64532807811E-06 6.81355446738E-06 6.98603948224E-06 7.16289092796E-06 7.34421933881E-06 7.53013804710E-06 7.72076325404E-06 7.91621410235E-06 8.11661275071E-06 8.32208445011E-06 8.53275762212E-06 8.74876393915E-06 8.97023840674E-06 9.19731944790E-06 9.43014898966E-06 9.66887255173E-06 9.91363933745E-06 1.01646023270E-05 1.04219183732E-05 1.06857482991E-05 1.09562569988E-05 1.12336135407E-05 1.15179912725E-05 1.18095679302E-05 1.21085257488E-05 1.24150515761E-05 1.27293369899E-05 1.30515784172E-05 1.33819772572E-05 1.37207400073E-05 1.40680783918E-05 1.44242094944E-05 1.47893558939E-05 1.51637458030E-05 1.55476132113E-05 1.59411980311E-05 1.63447462478E-05 1.67585100731E-05 1.71827481028E-05 1.76177254785E-05 1.80637140532E-05 1.85209925610E-05 1.89898467914E-05 1.94705697679E-05 1.99634619311E-05 2.04688313262E-05 2.09869937957E-05 2.15182731768E-05 2.20630015032E-05 2.26215192134E-05 2.31941753627E-05 2.37813278414E-05 2.43833435989E-05 2.50005988721E-05 2.56334794212E-05 2.62823807705E-05 2.69477084552E-05 2.76298782751E-05 2.83293165541E-05 2.90464604070E-05 2.97817580118E-05 3.05356688904E-05 3.13086641953E-05 3.21012270038E-05 3.29138526203E-05 3.37470488851E-05 3.46013364919E-05 3.54772493130E-05 3.63753347329E-05 3.72961539901E-05 3.82402825276E-05 3.92083103522E-05 4.02008424036E-05 4.12184989315E-05 4.22619158835E-05 4.33317453020E-05 4.44286557315E-05 4.55533326364E-05 4.67064788285E-05 4.78888149066E-05 4.91010797059E-05 5.03440307597E-05 5.16184447727E-05 5.29251181053E-05 5.42648672716E-05 5.56385294488E-05 5.70469630001E-05 5.84910480108E-05 5.99716868375E-05 6.14898046717E-05 6.30463501172E-05 6.46422957829E-05 6.62786388892E-05 6.79564018912E-05 6.96766331167E-05 7.14404074206E-05 7.32488268562E-05 7.51030213625E-05 7.70041494699E-05 7.89533990234E-05 8.09519879238E-05 8.30011648877E-05 8.51022102271E-05 8.72564366483E-05 8.94651900709E-05 9.17298504683E-05 9.40518327278E-05 9.64325875344E-05 9.88736022755E-05 1.01376401969E-04 1.03942550215E-04 1.06573650170E-04 1.09271345549E-04 1.12037321650E-04 1.14873306405E-04 1.17781071456E-04 1.20762433265E-04 1.23819254242E-04 1.26953443908E-04 1.30166960087E-04 1.33461810125E-04 1.36840052142E-04 1.40303796318E-04 1.43855206204E-04 1.47496500074E-04 1.51229952307E-04 1.55057894804E-04 1.58982718443E-04 1.63006874567E-04 1.67132876514E-04 1.71363301181E-04 1.75700790632E-04 1.80148053742E-04 1.84707867884E-04 1.89383080664E-04 1.94176611688E-04 1.99091454386E-04 2.04130677875E-04 2.09297428866E-04 2.14594933630E-04 2.20026500002E-04 2.25595519443E-04 2.31305469149E-04 2.37159914216E-04 2.43162509862E-04 2.49317003694E-04 2.55627238049E-04 2.62097152378E-04 2.68730785699E-04 2.75532279109E-04 2.82505878361E-04 2.89655936500E-04 2.96986916575E-04 3.04503394410E-04 3.12210061450E-04 3.20111727675E-04 3.28213324592E-04 3.36519908296E-04 3.45036662614E-04 3.53768902320E-04 3.62722076444E-04 3.71901771648E-04 3.81313715696E-04 3.90963781014E-04 4.00857988328E-04 4.11002510406E-04 4.21403675882E-04 4.32067973186E-04 4.43002054567E-04 4.54212740216E-04 4.65707022495E-04 4.77492070271E-04 4.89575233358E-04 5.01964047070E-04 5.14666236889E-04 5.27689723249E-04 5.41042626437E-04 5.54733271623E-04 5.68770194008E-04 5.83162144107E-04 5.97918093157E-04 6.13047238668E-04 6.28559010107E-04 6.44463074723E-04 6.60769343520E-04 6.77487977381E-04 6.94629393338E-04 7.12204271000E-04 7.30223559149E-04 7.48698482484E-04 7.67640548551E-04 7.87061554831E-04 8.06973596010E-04 8.27389071429E-04 8.48320692718E-04 8.69781491621E-04 8.91784828012E-04 9.14344398110E-04 9.37474242902E-04 9.61188756768E-04 9.85502696322E-04 1.01043118947E-03 1.03598974471E-03 1.06219426060E-03 1.08906103555E-03 1.11660677782E-03 1.14484861567E-03 1.17380410794E-03 1.20349125475E-03 1.23392850849E-03 1.26513478513E-03 1.29712947576E-03 1.32993245841E-03 1.36356411022E-03 1.39804531979E-03 1.43339750000E-03 1.46964260095E-03 1.50680312341E-03 1.54490213241E-03 1.58396327133E-03 1.62401077620E-03 1.66506949046E-03 1.70716487995E-03 1.75032304841E-03 1.79457075320E-03 1.83993542158E-03 1.88644516718E-03 1.93412880705E-03 1.98301587901E-03 2.03313665945E-03 2.08452218155E-03 2.13720425397E-03 2.19121547995E-03 2.24658927689E-03 2.30335989635E-03 2.36156244463E-03 2.42123290371E-03 2.48240815280E-03 2.54512599034E-03 2.60942515653E-03 2.67534535641E-03 2.74292728347E-03 2.81221264382E-03 2.88324418094E-03 2.95606570098E-03 3.03072209870E-03 3.10725938396E-03 3.18572470888E-03 3.26616639562E-03 3.34863396475E-03 3.43317816437E-03 3.51985099981E-03 3.60870576412E-03 3.69979706912E-03 3.79318087732E-03 3.88891453442E-03 3.98705680267E-03 4.08766789493E-03 4.19080950950E-03 4.29654486573E-03 4.40493874049E-03 4.51605750538E-03 4.62996916484E-03 4.74674339503E-03 4.86645158366E-03 4.98916687064E-03 5.11496418964E-03 5.24392031057E-03 5.37611388298E-03 5.51162548040E-03 5.65053764563E-03 5.79293493705E-03 5.93890397583E-03 6.08853349428E-03 6.24191438508E-03 6.39913975165E-03 6.56030495953E-03 6.72550768883E-03 6.89484798782E-03 7.06842832753E-03 7.24635365753E-03 7.42873146283E-03 7.61567182194E-03 7.80728746603E-03 8.00369383936E-03 8.20500916080E-03 8.41135448665E-03 8.62285377455E-03 8.83963394877E-03 9.06182496659E-03 9.28955988605E-03 9.52297493487E-03 9.76220958067E-03 1.00074066025E-02 1.02587121636E-02 1.05162758856E-02 1.07802509235E-02 1.10507940430E-02 1.13280656979E-02 1.16122301095E-02 1.19034553476E-02 1.22019134119E-02 1.25077803155E-02 1.28212361692E-02 1.31424652674E-02 1.34716561755E-02 1.38090018175E-02 1.41546995664E-02 1.45089513346E-02 1.48719636661E-02 1.52439478299E-02 1.56251199143E-02 1.60157009227E-02 1.64159168702E-02 1.68259988817E-02 1.72461832904E-02 1.76767117383E-02 1.81178312766E-02 1.85697944677E-02 1.90328594881E-02 1.95072902313E-02 1.99933564128E-02 2.04913336745E-02 2.10015036903E-02 2.15241542721E-02 2.20595794766E-02 2.26080797114E-02 2.31699618429E-02 2.37455393028E-02 2.43351321953E-02 2.49390674046E-02 2.55576787013E-02 2.61913068489E-02 2.68402997098E-02 2.75050123505E-02 2.81858071455E-02 2.88830538813E-02 2.95971298575E-02 3.03284199883E-02 3.10773169007E-02 3.18442210318E-02 3.26295407238E-02 3.34336923161E-02 3.42571002355E-02 3.51001970828E-02 3.59634237167E-02 3.68472293335E-02 3.77520715435E-02 3.86784164431E-02 3.96267386815E-02 4.05975215236E-02 4.15912569064E-02 4.26084454902E-02 4.36495967036E-02 4.47152287807E-02 4.58058687927E-02 4.69220526702E-02 4.80643252180E-02 4.92332401210E-02 5.04293599402E-02 5.16532560991E-02 5.29055088591E-02 5.41867072836E-02 5.54974491902E-02 5.68383410895E-02 5.82099981113E-02 5.96130439154E-02 6.10481105881E-02 6.25158385223E-02 6.40168762810E-02 6.55518804426E-02 6.71215154278E-02 6.87264533071E-02 7.03673735871E-02 7.20449629755E-02 7.37599151230E-02 7.55129303421E-02 7.73047152999E-02 7.91359826859E-02 8.10074508515E-02 8.29198434218E-02 8.48738888774E-02 8.68703201049E-02 8.89098739159E-02 9.09932905317E-02 9.31213130334E-02 9.52946867759E-02 9.75141587641E-02 9.97804769900E-02 1.02094389730E-01 1.04456644801E-01 1.06867988769E-01 1.09329166122E-01 1.11840918387E-01 1.14403983208E-01 1.17019093368E-01 1.19686975771E-01 1.22408350361E-01 1.25183928997E-01 1.28014414272E-01 1.30900498278E-01 1.33842861311E-01 1.36842170529E-01 1.39899078539E-01 1.43014221937E-01 1.46188219785E-01 1.49421672025E-01 1.52715157838E-01 1.56069233944E-01 1.59484432831E-01 1.62961260940E-01 1.66500196775E-01 1.70101688967E-01 1.73766154267E-01 1.77493975494E-01 1.81285499419E-01 1.85141034598E-01 1.89060849152E-01 1.93045168500E-01 1.97094173042E-01 2.01207995802E-01 2.05386720028E-01 2.09630376760E-01 2.13938942364E-01 2.18312336044E-01 2.22750417330E-01 2.27252983556E-01 2.31819767330E-01 2.36450434006E-01 2.41144579163E-01 2.45901726106E-01 2.50721323391E-01 2.55602742391E-01 2.60545274909E-01 2.65548130855E-01 2.70610435994E-01 2.75731229782E-01 2.80909463304E-01 2.86143997324E-01 2.91433600477E-01 2.96776947596E-01 3.02172618211E-01 3.07619095236E-01 3.13114763845E-01 3.18657910582E-01 3.24246722699E-01 3.29879287766E-01 3.35553593553E-01 3.41267528215E-01 3.47018880804E-01 3.52805342117E-01 3.58624505914E-01 3.64473870521E-01 3.70350840826E-01 3.76252730719E-01 3.82176765954E-01 3.88120087489E-01 3.94079755289E-01 4.00052752624E-01 4.06035990876E-01 4.12026314853E-01 4.18020508625E-01 4.24015301892E-01 4.30007376875E-01 4.35993375733E-01 4.41969908504E-01 4.47933561557E-01 4.53880906530E-01 4.59808509751E-01 4.65712942104E-01 4.71590789312E-01 4.77438662595E-01 4.83253209665E-01 4.89031125999E-01 4.94769166336E-01 5.00464156327E-01 5.06113004268E-01 5.11712712829E-01 5.17260390693E-01 5.22753264009E-01 5.28188687548E-01 5.33564155454E-01 5.38877311473E-01 5.44125958527E-01 5.49308067512E-01 5.54421785175E-01 5.59465440936E-01 5.64437552513E-01 5.69336830195E-01 5.74162179637E-01 5.78912703015E-01 5.83587698414E-01 5.88186657305E-01 5.92709259986E-01 5.97155368863E-01 6.01525019456E-01 6.05818409042E-01 6.10035882830E-01 6.14177917608E-01 6.18245102801E-01 6.22238118895E-01 6.26157713205E-01 6.30004672977E-01 6.33779795824E-01 6.37483857524E-01 6.41117577195E-01 6.44681579890E-01 6.48176356638E-01 6.51602221967E-01 6.54959268923E-01 6.58247321576E-01 6.61465884974E-01 6.64614092477E-01 6.67690650312E-01 6.70693779163E-01 6.73621152496E-01 6.76469831237E-01 6.79236194295E-01 6.81915864327E-01 6.84503627966E-01 6.86993349627E-01 6.89377877832E-01 6.91648942869E-01 6.93797044434E-01 6.95812931732E-01 6.97692831366E-01 6.99434523806E-01 7.01035873702E-01 7.02494833464E-01 7.03809446688E-01 7.04977851394E-01 7.05998283081E-01 7.06869077599E-01 7.07588673812E-01 7.08155616085E-01 7.08568556562E-01 7.08826257256E-01 7.08927591956E-01 7.08871547938E-01 7.08657227496E-01 7.08283849299E-01 7.07750749562E-01 7.07057383061E-01 7.06203323966E-01 7.05188266527E-01 7.04012025592E-01 7.02674536978E-01 7.01175857688E-01 6.99516165994E-01 6.97695761371E-01 6.95715064301E-01 6.93574615943E-01 6.91275077689E-01 6.88817230579E-01 6.86201974623E-01 6.83430327990E-01 6.80503426105E-01 6.77422520635E-01 6.74188978379E-01 6.70804280065E-01 6.67270019050E-01 6.63587899942E-01 6.59759737135E-01 6.55787453256E-01 6.51673077551E-01 6.47418744176E-01 6.43026690429E-01 6.38499254903E-01 6.33838875568E-01 6.29048087775E-01 6.24129522203E-01 6.19085902707E-01 6.13920044112E-01 6.08634849913E-01 6.03233309895E-01 5.97718497662E-01 5.92093568077E-01 5.86361754595E-01 5.80526366494E-01 5.74590785989E-01 5.68558465227E-01 5.62432923149E-01 5.56217742218E-01 5.49916565005E-01 5.43533090616E-01 5.37071070971E-01 5.30534306911E-01 5.23926644150E-01 5.17251969043E-01 5.10514204201E-01 5.03717303929E-01 4.96865249502E-01 4.89962044291E-01 4.83011708735E-01 4.76018275189E-01 4.68985782649E-01 4.61918271378E-01 4.54819777465E-01 4.47694327321E-01 4.40545932160E-01 4.33378582480E-01 4.26196242584E-01 4.19002845162E-01 4.11802285988E-01 4.04598418739E-01 3.97395049991E-01 3.90195934409E-01 3.83004770172E-01 3.75825194655E-01 3.68660780398E-01 3.61515031378E-01 3.54391379613E-01 3.47293182104E-01 3.40223718137E-01 3.33186186936E-01 3.26183705693E-01 3.19219307950E-01 3.12295942346E-01 3.05416471705E-01 2.98583672470E-01 2.91800234443E-01 2.85068760833E-01 2.78391768574E-01 2.71771688894E-01 2.65210868106E-01 2.58711568600E-01 2.52275969981E-01 2.45906170361E-01 2.39604187730E-01 2.33371961412E-01 2.27211353547E-01 2.21124150590E-01 2.15112064779E-01 2.09176735559E-01 2.03319730932E-01 1.97542548703E-01 1.91846617608E-01 1.86233298308E-01 1.80703884226E-01 1.75259602214E-01 1.69901613056E-01 1.64631011779E-01 1.59448827788E-01 1.54356024818E-01 1.49353500711E-01 1.44442087019E-01 1.39622548456E-01 1.34895582204E-01 1.30261817094E-01 1.25721812681E-01 1.21276058235E-01 1.16924971670E-01 1.12668898444E-01 1.08508110440E-01 1.04442804879E-01 1.00473103261E-01 9.65990503942E-02 9.28206135133E-02 8.91376815207E-02 8.55500643768E-02 8.20574926570E-02 7.86596172954E-02 7.53560095340E-02 7.21461610903E-02 6.90294845560E-02 6.60053140359E-02 6.30729060333E-02 6.02314405847E-02 5.74800226458E-02 5.48176837252E-02 5.22433837632E-02 4.97560132469E-02 4.73543955536E-02 4.50372895118E-02 4.28033921656E-02 4.06513417292E-02 3.85797207153E-02 3.65870592209E-02 3.46718383525E-02 3.28324937723E-02 3.10674193466E-02 2.93749708788E-02 2.77534699050E-02 2.62012075365E-02 2.47164483285E-02 2.32974341572E-02 2.19423880884E-02 2.06495182199E-02 1.94170214811E-02 1.82430873756E-02 1.71259016514E-02 1.60636498849E-02 1.50545209675E-02 1.40967104817E-02 1.31884239572E-02 1.23278799979E-02 1.15133132700E-02 1.07429773460E-02 1.00151473963E-02 9.32812272554E-03 8.68022914656E-03 8.06982119197E-03 7.49528415865E-03 6.95503598500E-03 6.44752896019E-03 5.97125126569E-03 5.52472835025E-03 5.10652414027E-03 4.71524208783E-03 4.34952605989E-03 4.00806107210E-03 3.68957387174E-03 3.39283337436E-03 3.11665095953E-03 2.85988063109E-03 2.62141904799E-03 2.40020543181E-03 2.19522135756E-03 2.00549043424E-03 1.83007788214E-03 1.66809001368E-03 1.51867362487E-03 1.38101530431E-03 1.25434066683E-03 1.13791351871E-03 1.03103496136E-03 9.33042440197E-04 8.43308745531E-04 7.61240971718E-04 6.86279441038E-04 6.17896598293E-04 5.55595881984E-04 4.98910577643E-04 4.47402658645E-04 4.00661619492E-04 3.58303306423E-04 3.19970072699E-04 2.85340098142E-04 2.54100727415E-04 2.25960019479E-04 2.00647140053E-04 1.77911213967E-04 1.57520209428E-04 1.39259855842E-04 1.22932596630E-04 1.08356578305E-04 9.53646768900E-05 8.38035625810E-05 7.35328033957E-05 6.44240084028E-05 5.63600109949E-05 4.92340925628E-05 4.29481266005E-05 3.74029600365E-05 3.25189936809E-05 2.82252091514E-05 2.44573292029E-05 2.11572936404E-05 1.82727663389E-05 1.57566729384E-05 1.35667687384E-05 1.16652362912E-05 1.00183122012E-05 8.59594267059E-06 7.37146740649E-06 6.32133162175E-06 5.40991983016E-06 4.62050798453E-06 3.93816704861E-06 3.34959877396E-06 2.84298311863E-06 2.40783685630E-06 2.03488290109E-06 1.71592985555E-06 1.44376127644E-06 1.21203414511E-06 1.01518602589E-06 8.48350396554E-07 7.07279639423E-07 5.88275189503E-07 4.88124346763E-07 4.04043273135E-07 3.33625710345E-07 2.74796972181E-07 2.25772783749E-07 1.85022560427E-07 1.51236740252E-07 1.23297805045E-07 1.00254647551E-07 8.12999637976E-08 6.57503718086E-08 5.30289792777E-08 4.26501438784E-08 3.42061902723E-08 2.73558675265E-08 2.18143494492E-08 1.73445982215E-08 1.37499286031E-08 1.08676258619E-08 8.56348542610E-09 6.72715605383E-09 5.26818108389E-09 4.11264408049E-09 3.20033594562E-09 2.48237038123E-09 1.91918348037E-09 1.47886125896E-09 1.13574615885E-09 8.69280010070E-10 6.63046690749E-10 5.03982819999E-10 3.81729317486E-10 2.88100614743E-10 2.16651759207E-10 1.62326660879E-10 1.21173339494E-10 9.01142806321E-11 6.67619424701E-11 4.92711082528E-11 3.62211872098E-11 2.65227596752E-11 1.93436687554E-11 1.40508063184E-11 1.01644479076E-11 7.32257944399E-12 5.25314589793E-12 3.75255394291E-12 2.66909040519E-12 1.89018772956E-12 1.33268672137E-12 9.35424062679E-13 6.53614829617E-13 4.54614621208E-13 3.14737131283E-13 2.16875387765E-13 1.48732049697E-13 1.01509069372E-13 6.89421418768E-14 4.65926768486E-14 3.13311621742E-14 2.09620593290E-14 1.39528295663E-14 9.23918131609E-15 6.08582066121E-15 3.98740652407E-15 2.59847455282E-15 1.68412191239E-15 1.08549002569E-15 6.95737113549E-16 4.43405340176E-16 2.80971382120E-16 1.77009792507E-16 1.10859969922E-16 6.90179888548E-17 4.27097806639E-17 2.62685975621E-17 1.60567457517E-17 9.75338671670E-18 5.88703170151E-18 3.53057659610E-18 2.10362398847E-18 1.24516883601E-18 7.32133051617E-19 4.27579587963E-19 2.48011703840E-19 1.42862505701E-19 8.17179326049E-20 4.64120945416E-20 2.61710316233E-20 1.46503193476E-20 8.14085689774E-21 4.49003404031E-21 2.45779030808E-21 1.33510181401E-21 7.19641953600E-22 3.84865275944E-22 2.04196482718E-22 1.07471082593E-22 5.61041321039E-23 2.90478101804E-23 1.49142760864E-23 7.59303722093E-24 3.83272107053E-24 1.91791969124E-24 9.51344331303E-25 4.67714853758E-25 2.27883088055E-25 1.10022451678E-25 5.26306815062E-26 2.49421943791E-26 1.17089302331E-26 5.44421076815E-27 5.64588588176E-08 5.78881215488E-08 5.93535662340E-08 6.08561088235E-08 6.23966884550E-08 6.39762680404E-08 6.55958348682E-08 6.72564012198E-08 6.89590050030E-08 7.07047103999E-08 7.24946085330E-08 7.43298181462E-08 7.62114863048E-08 7.81407891122E-08 8.01189324447E-08 8.21471527059E-08 8.42267175987E-08 8.63589269182E-08 8.85451133640E-08 9.07866433730E-08 9.30849179738E-08 9.54413736619E-08 9.78574832979E-08 1.00334757028E-07 1.02874743229E-07 1.05479029472E-07 1.08149243521E-07 1.10887054346E-07 1.13694173166E-07 1.16572354520E-07 1.19523397365E-07 1.22549146196E-07 1.25651492205E-07 1.28832374456E-07 1.32093781103E-07 1.35437750630E-07 1.38866373125E-07 1.42381791587E-07 1.45986203265E-07 1.49681861031E-07 1.53471074790E-07 1.57356212922E-07 1.61339703761E-07 1.65424037118E-07 1.69611765831E-07 1.73905507363E-07 1.78307945441E-07 1.82821831729E-07 1.87449987548E-07 1.92195305645E-07 1.97060751993E-07 2.02049367652E-07 2.07164270665E-07 2.12408658009E-07 2.17785807592E-07 2.23299080304E-07 2.28951922114E-07 2.34747866229E-07 2.40690535296E-07 2.46783643672E-07 2.53030999742E-07 2.59436508302E-07 2.66004172996E-07 2.72738098821E-07 2.79642494695E-07 2.86721676081E-07 2.93980067691E-07 3.01422206248E-07 3.09052743322E-07 3.16876448238E-07 3.24898211058E-07 3.33123045634E-07 3.41556092745E-07 3.50202623309E-07 3.59068041679E-07 3.68157889016E-07 3.77477846759E-07 3.87033740172E-07 3.96831541985E-07 4.06877376128E-07 4.17177521560E-07 4.27738416189E-07 4.38566660903E-07 4.49669023689E-07 4.61052443865E-07 4.72724036421E-07 4.84691096460E-07 4.96961103763E-07 5.09541727461E-07 5.22440830828E-07 5.35666476200E-07 5.49226930008E-07 5.63130667948E-07 5.77386380281E-07 5.92002977259E-07 6.06989594698E-07 6.22355599689E-07 6.38110596447E-07 6.54264432322E-07 6.70827203946E-07 6.87809263548E-07 7.05221225425E-07 7.23073972573E-07 7.41378663492E-07 7.60146739158E-07 7.79389930175E-07 7.99120264107E-07 8.19350072996E-07 8.40092001069E-07 8.61359012638E-07 8.83164400211E-07 9.05521792791E-07 9.28445164400E-07 9.51948842810E-07 9.76047518502E-07 1.00075625384E-06 1.02609049250E-06 1.05206606911E-06 1.07869921914E-06 1.10600658907E-06 1.13400524678E-06 1.16271269223E-06 1.19214686836E-06 1.22232617239E-06 1.25326946720E-06 1.28499609321E-06 1.31752588046E-06 1.35087916095E-06 1.38507678140E-06 1.42014011626E-06 1.45609108106E-06 1.49295214613E-06 1.53074635062E-06 1.56949731693E-06 1.60922926544E-06 1.64996702967E-06 1.69173607180E-06 1.73456249856E-06 1.77847307760E-06 1.82349525415E-06 1.86965716823E-06 1.91698767222E-06 1.96551634888E-06 2.01527352984E-06 2.06629031459E-06 2.11859858988E-06 2.17223104967E-06 2.22722121555E-06 2.28360345770E-06 2.34141301637E-06 2.40068602390E-06 2.46145952732E-06 2.52377151148E-06 2.58766092281E-06 2.65316769363E-06 2.72033276716E-06 2.78919812306E-06 2.85980680371E-06 2.93220294105E-06 3.00643178423E-06 3.08253972784E-06 3.16057434096E-06 3.24058439680E-06 3.32261990329E-06 3.40673213426E-06 3.49297366151E-06 3.58139838765E-06 3.67206157983E-06 3.76501990423E-06 3.86033146151E-06 3.95805582310E-06 4.05825406845E-06 4.16098882320E-06 4.26632429827E-06 4.37432633009E-06 4.48506242165E-06 4.59860178474E-06 4.71501538317E-06 4.83437597717E-06 4.95675816881E-06 5.08223844865E-06 5.21089524354E-06 5.34280896563E-06 5.47806206262E-06 5.61673906932E-06 5.75892666041E-06 5.90471370467E-06 6.05419132050E-06 6.20745293285E-06 6.36459433163E-06 6.52571373155E-06 6.69091183349E-06 6.86029188748E-06 7.03395975717E-06 7.21202398601E-06 7.39459586509E-06 7.58178950268E-06 7.77372189553E-06 7.97051300199E-06 8.17228581698E-06 8.37916644885E-06 8.59128419817E-06 8.80877163856E-06 9.03176469951E-06 9.26040275132E-06 9.49482869222E-06 9.73518903764E-06 9.98163401177E-06 1.02343176415E-05 1.04933978524E-05 1.07590365679E-05 1.10313998100E-05 1.13106578033E-05 1.15969850811E-05 1.18905605947E-05 1.21915678253E-05 1.25001948982E-05 1.28166347009E-05 1.31410850032E-05 1.34737485809E-05 1.38148333428E-05 1.41645524600E-05 1.45231244998E-05 1.48907735615E-05 1.52677294172E-05 1.56542276547E-05 1.60505098253E-05 1.64568235940E-05 1.68734228950E-05 1.73005680898E-05 1.77385261302E-05 1.81875707247E-05 1.86479825101E-05 1.91200492262E-05 1.96040658960E-05 2.01003350098E-05 2.06091667143E-05 2.11308790061E-05 2.16657979308E-05 2.22142577864E-05 2.27766013319E-05 2.33531800022E-05 2.39443541266E-05 2.45504931548E-05 2.51719758871E-05 2.58091907114E-05 2.64625358455E-05 2.71324195861E-05 2.78192605635E-05 2.85234880036E-05 2.92455419954E-05 2.99858737665E-05 3.07449459644E-05 3.15232329457E-05 3.23212210723E-05 3.31394090154E-05 3.39783080666E-05 3.48384424574E-05 3.57203496864E-05 3.66245808553E-05 3.75517010130E-05 3.85022895080E-05 3.94769403509E-05 4.04762625846E-05 4.15008806652E-05 4.25514348518E-05 4.36285816058E-05 4.47329940014E-05 4.58653621457E-05 4.70263936092E-05 4.82168138681E-05 4.94373667568E-05 5.06888149325E-05 5.19719403514E-05 5.32875447566E-05 5.46364501786E-05 5.60194994487E-05 5.74375567249E-05 5.88915080312E-05 6.03822618110E-05 6.19107494937E-05 6.34779260762E-05 6.50847707187E-05 6.67322873564E-05 6.84215053251E-05 7.01534800042E-05 7.19292934751E-05 7.37500551961E-05 7.56169026951E-05 7.75310022790E-05 7.94935497615E-05 8.15057712088E-05 8.35689237051E-05 8.56842961362E-05 8.78532099935E-05 9.00770201986E-05 9.23571159483E-05 9.46949215806E-05 9.70918974634E-05 9.95495409050E-05 1.02069387088E-04 1.04653010026E-04 1.07302023545E-04 1.10018082291E-04 1.12802882760E-04 1.15658164355E-04 1.18585710471E-04 1.21587349609E-04 1.24664956511E-04 1.27820453331E-04 1.31055810833E-04 1.34373049619E-04 1.37774241385E-04 1.41261510216E-04 1.44837033906E-04 1.48503045317E-04 1.52261833768E-04 1.56115746460E-04 1.60067189941E-04 1.64118631600E-04 1.68272601206E-04 1.72531692485E-04 1.76898564729E-04 1.81375944456E-04 1.85966627104E-04 1.90673478772E-04 1.95499438004E-04 2.00447517616E-04 2.05520806568E-04 2.10722471891E-04 2.16055760652E-04 2.21524001973E-04 2.27130609106E-04 2.32879081549E-04 2.38773007224E-04 2.44816064707E-04 2.51012025514E-04 2.57364756442E-04 2.63878221976E-04 2.70556486747E-04 2.77403718058E-04 2.84424188471E-04 2.91622278460E-04 2.99002479133E-04 3.06569395014E-04 3.14327746901E-04 3.22282374801E-04 3.30438240922E-04 3.38800432761E-04 3.47374166249E-04 3.56164788991E-04 3.65177783578E-04 3.74418770983E-04 3.83893514044E-04 3.93607921035E-04 4.03568049322E-04 4.13780109116E-04 4.24250467313E-04 4.34985651435E-04 4.45992353670E-04 4.57277435010E-04 4.68847929488E-04 4.80711048534E-04 4.92874185425E-04 5.05344919856E-04 5.18131022618E-04 5.31240460397E-04 5.44681400691E-04 5.58462216849E-04 5.72591493236E-04 5.87078030525E-04 6.01930851122E-04 6.17159204724E-04 6.32772574018E-04 6.48780680518E-04 6.65193490548E-04 6.82021221373E-04 6.99274347485E-04 7.16963607036E-04 7.35100008442E-04 7.53694837140E-04 7.72759662518E-04 7.92306345012E-04 8.12347043384E-04 8.32894222171E-04 8.53960659326E-04 8.75559454041E-04 8.97704034765E-04 9.20408167421E-04 9.43685963820E-04 9.67551890287E-04 9.92020776493E-04 1.01710782451E-03 1.04282861808E-03 1.06919913211E-03 1.09623574243E-03 1.12395523573E-03 1.15237481979E-03 1.18151213394E-03 1.21138525976E-03 1.24201273210E-03 1.27341355027E-03 1.30560718962E-03 1.33861361325E-03 1.37245328419E-03 1.40714717769E-03 1.44271679395E-03 1.47918417107E-03 1.51657189836E-03 1.55490312992E-03 1.59420159861E-03 1.63449163033E-03 1.67579815859E-03 1.71814673951E-03 1.76156356716E-03 1.80607548917E-03 1.85171002291E-03 1.89849537180E-03 1.94646044228E-03 1.99563486091E-03 2.04604899212E-03 2.09773395620E-03 2.15072164782E-03 2.20504475490E-03 2.26073677802E-03 2.31783205023E-03 2.37636575729E-03 2.43637395844E-03 2.49789360764E-03 2.56096257531E-03 2.62561967051E-03 2.69190466372E-03 2.75985831010E-03 2.82952237328E-03 2.90093964973E-03 2.97415399362E-03 3.04921034231E-03 3.12615474244E-03 3.20503437647E-03 3.28589759001E-03 3.36879391962E-03 3.45377412132E-03 3.54089019966E-03 3.63019543750E-03 3.72174442643E-03 3.81559309787E-03 3.91179875481E-03 4.01042010431E-03 4.11151729068E-03 4.21515192935E-03 4.32138714152E-03 4.43028758954E-03 4.54191951302E-03 4.65635076575E-03 4.77365085338E-03 4.89389097190E-03 5.01714404690E-03 5.14348477369E-03 5.27298965823E-03 5.40573705888E-03 5.54180722904E-03 5.68128236062E-03 5.82424662842E-03 5.97078623538E-03 6.12098945869E-03 6.27494669688E-03 6.43275051776E-03 6.59449570734E-03 6.76027931964E-03 6.93020072749E-03 7.10436167422E-03 7.28286632638E-03 7.46582132741E-03 7.65333585223E-03 7.84552166288E-03 8.04249316511E-03 8.24436746596E-03 8.45126443234E-03 8.66330675060E-03 8.88061998712E-03 9.10333264982E-03 9.33157625079E-03 9.56548536976E-03 9.80519771872E-03 1.00508542074E-02 1.03025990097E-02 1.05605796314E-02 1.08249469782E-02 1.10958554255E-02 1.13734628884E-02 1.16579308931E-02 1.19494246490E-02 1.22481131215E-02 1.25541691062E-02 1.28677693033E-02 1.31890943930E-02 1.35183291121E-02 1.38556623309E-02 1.42012871303E-02 1.45554008810E-02 1.49182053218E-02 1.52899066393E-02 1.56707155478E-02 1.60608473699E-02 1.64605221170E-02 1.68699645708E-02 1.72894043643E-02 1.77190760635E-02 1.81592192492E-02 1.86100785981E-02 1.90719039647E-02 1.95449504622E-02 2.00294785440E-02 2.05257540835E-02 2.10340484547E-02 2.15546386110E-02 2.20878071638E-02 2.26338424600E-02 2.31930386580E-02 2.37656958031E-02 2.43521199006E-02 2.49526229880E-02 2.55675232045E-02 2.61971448594E-02 2.68418184970E-02 2.75018809604E-02 2.81776754510E-02 2.88695515862E-02 2.95778654532E-02 3.03029796591E-02 3.10452633773E-02 3.18050923900E-02 3.25828491256E-02 3.33789226911E-02 3.41937089001E-02 3.50276102945E-02 3.58810361600E-02 3.67544025355E-02 3.76481322158E-02 3.85626547461E-02 3.94984064100E-02 4.04558302074E-02 4.14353758255E-02 4.24374995988E-02 4.34626644600E-02 4.45113398801E-02 4.55840017975E-02 4.66811325353E-02 4.78032207056E-02 4.89507611018E-02 5.01242545763E-02 5.13242079034E-02 5.25511336278E-02 5.38055498965E-02 5.50879802736E-02 5.63989535379E-02 5.77390034615E-02 5.91086685695E-02 6.05084918787E-02 6.19390206156E-02 6.34008059119E-02 6.48944024769E-02 6.64203682456E-02 6.79792640022E-02 6.95716529764E-02 7.11981004136E-02 7.28591731155E-02 7.45554389528E-02 7.62874663459E-02 7.80558237153E-02 7.98610788987E-02 8.17037985341E-02 8.35845474088E-02 8.55038877717E-02 8.74623786087E-02 8.94605748804E-02 9.14990267197E-02 9.35782785902E-02 9.56988684026E-02 9.78613265888E-02 1.00066175134E-01 1.02313926561E-01 1.04605082879E-01 1.06940134471E-01 1.09319558953E-01 1.11743819972E-01 1.14213365963E-01 1.16728628858E-01 1.19290022747E-01 1.21897942490E-01 1.24552762275E-01 1.27254834144E-01 1.30004486453E-01 1.32802022293E-01 1.35647717871E-01 1.38541820830E-01 1.41484548541E-01 1.44476086340E-01 1.47516585729E-01 1.50606162542E-01 1.53744895061E-01 1.56932822115E-01 1.60169941135E-01 1.63456206185E-01 1.66791525975E-01 1.70175761841E-01 1.73608725728E-01 1.77090178144E-01 1.80619826127E-01 1.84197321203E-01 1.87822257353E-01 1.91494169005E-01 1.95212529036E-01 1.98976746819E-01 2.02786166297E-01 2.06640064124E-01 2.10537647847E-01 2.14478054174E-01 2.18460347318E-01 2.22483517433E-01 2.26546479162E-01 2.30648070297E-01 2.34787050581E-01 2.38962100646E-01 2.43171821125E-01 2.47414731929E-01 2.51689271721E-01 2.55993797601E-01 2.60326585004E-01 2.64685827850E-01 2.69069638940E-01 2.73476050629E-01 2.77903015781E-01 2.82348409037E-01 2.86810028391E-01 2.91285597101E-01 2.95772765957E-01 3.00269115892E-01 3.04772160980E-01 3.09279351802E-01 3.13788079214E-01 3.18295678500E-01 3.22799433939E-01 3.27296583758E-01 3.31784325509E-01 3.36259821823E-01 3.40720206571E-01 3.45162591401E-01 3.49584072638E-01 3.53981738533E-01 3.58352676843E-01 3.62693982696E-01 3.67002766723E-01 3.71276163413E-01 3.75511339650E-01 3.79705503374E-01 3.83855912318E-01 3.87959882757E-01 3.92014798196E-01 3.96018117933E-01 3.99967385412E-01 4.03860236273E-01 4.07694406025E-01 4.11467737236E-01 4.15178186139E-01 4.18823828555E-01 4.22402865031E-01 4.25913625070E-01 4.29354570358E-01 4.32724296875E-01 4.36021535777E-01 4.39245152942E-01 4.42394147095E-01 4.45467646395E-01 4.48464903406E-01 4.51385288376E-01 4.54228280746E-01 4.56993458830E-01 4.59680487643E-01 4.62289104809E-01 4.64819104572E-01 4.67270319887E-01 4.69642602618E-01 4.71935801874E-01 4.74149740523E-01 4.76284189968E-01 4.78338843219E-01 4.80313286378E-01 4.82206968591E-01 4.84019170565E-01 4.85748971704E-01 4.87395215936E-01 4.88956476247E-01 4.90431017921E-01 4.91816760438E-01 4.93111237922E-01 4.94311557951E-01 4.95414358489E-01 4.96415762576E-01 4.97311330323E-01 4.98096007644E-01 4.98764071028E-01 4.99309067540E-01 4.99723749104E-01 5.00000000000E-01 5.00129910117E-01 5.00109525507E-01 4.99935999236E-01 4.99606530193E-01 4.99118365790E-01 4.98468804542E-01 4.97655198527E-01 4.96674955719E-01 4.95525542182E-01 4.94204484140E-01 4.92709369911E-01 4.91037851708E-01 4.89187647316E-01 4.87156541642E-01 4.84942388144E-01 4.82543110139E-01 4.79956702003E-01 4.77181230258E-01 4.74214834551E-01 4.71055728542E-01 4.67702200680E-01 4.64152614905E-01 4.60405411247E-01 4.56459106352E-01 4.52312293922E-01 4.47963645088E-01 4.43411908703E-01 4.38655911580E-01 4.33694558657E-01 4.28526833114E-01 4.23151796432E-01 4.17568588400E-01 4.11776427081E-01 4.05774608730E-01 3.99562507680E-01 3.93139576187E-01 3.86505344242E-01 3.79659419358E-01 3.72601486324E-01 3.65331306933E-01 3.57848719692E-01 3.50153639501E-01 3.42246057317E-01 3.34126039787E-01 3.25793728871E-01 3.17249341430E-01 3.08493168798E-01 2.99525576329E-01 2.90347002912E-01 2.80957960468E-01 2.71359033401E-01 2.61550878036E-01 2.51534222006E-01 2.41309863616E-01 2.30878671161E-01 2.20241582216E-01 2.09399602883E-01 1.98353807009E-01 1.87105335366E-01 1.75655394814E-01 1.64005257440E-01 1.52156259689E-01 1.40109801498E-01 1.27867345444E-01 1.15430415937E-01 1.02800598458E-01 8.99795388842E-02 7.69689429232E-02 6.37705756801E-02 5.03862614024E-02 3.68178834305E-02 2.30673843965E-02 9.13676670980E-03 -4.97190662678E-03 -1.92565108299E-02 -3.37148577341E-02 -4.83446937348E-02 -6.31436972368E-02 -7.81094755710E-02 -9.32395613476E-02 -1.08531408217E-01 -1.23982386013E-01 -1.39589775272E-01 -1.55350761102E-01 -1.71262426420E-01 -1.87321744546E-01 -2.03525571190E-01 -2.19870635836E-01 -2.36353532577E-01 -2.52970710428E-01 -2.69718463191E-01 -2.86592918909E-01 -3.03590029011E-01 -3.20705557194E-01 -3.37935068165E-01 -3.55273916306E-01 -3.72717234385E-01 -3.90259922410E-01 -4.07896636733E-01 -4.25621779525E-01 -4.43429488735E-01 -4.61313628643E-01 -4.79267781131E-01 -4.97285237780E-01 -5.15358992905E-01 -5.33481737627E-01 -5.51645855096E-01 -5.69843416933E-01 -5.88066180993E-01 -6.06305590507E-01 -6.24552774663E-01 -6.42798550677E-01 -6.61033427371E-01 -6.79247610289E-01 -6.97431008331E-01 -7.15573241891E-01 -7.33663652465E-01 -7.51691313664E-01 -7.69645043562E-01 -7.87513418285E-01 -8.05284786732E-01 -8.22947286295E-01 -8.40488859451E-01 -8.57897271064E-01 -8.75160126224E-01 -8.92264888476E-01 -9.09198898224E-01 -9.25949391158E-01 -9.42503516494E-01 -9.58848354864E-01 -9.74970935652E-01 -9.90858253625E-01 -1.00649728468E+00 -1.02187500053E+00 -1.03697838229E+00 -1.05179443262E+00 -1.06631018660E+00 -1.08051272098E+00 -1.09438916189E+00 -1.10792669089E+00 -1.12111254931E+00 -1.13393404089E+00 -1.14637853269E+00 -1.15843345431E+00 -1.17008629537E+00 -1.18132460142E+00 -1.19213596819E+00 -1.20250803443E+00 -1.21242847322E+00 -1.22188498199E+00 -1.23086527136E+00 -1.23935705277E+00 -1.24734802520E+00 -1.25482586103E+00 -1.26177819111E+00 -1.26819258935E+00 -1.27405655677E+00 -1.27935750541E+00 -1.28408274198E+00 -1.28821945163E+00 -1.29175468194E+00 -1.29467532723E+00 -1.29696811348E+00 -1.29861958390E+00 -1.29961608545E+00 -1.29994375650E+00 -1.29958851562E+00 -1.29853605199E+00 -1.29677181735E+00 -1.29428101992E+00 -1.29104862027E+00 -1.28705932961E+00 -1.28229761041E+00 -1.27674767988E+00 -1.27039351633E+00 -1.26321886867E+00 -1.25520726944E+00 -1.24634205134E+00 -1.23660636783E+00 -1.22598321778E+00 -1.21445547462E+00 -1.20200592014E+00 -1.18861728329E+00 -1.17427228421E+00 -1.15895368378E+00 -1.14264433897E+00 -1.12532726428E+00 -1.10698569955E+00 -1.08760318446E+00 -1.06716363984E+00 -1.04565145633E+00 -1.02305159045E+00 -9.99349668360E-01 -9.74532097656E-01 -9.48586187380E-01 -9.21500276427E-01 -8.93263870598E-01 -8.63867788449E-01 -8.33304316069E-01 -8.01567370922E-01 -7.68652674800E-01 -7.34557935913E-01 -6.99283040125E-01 -6.62830251231E-01 -6.25204420153E-01 -5.86413202835E-01 -5.46467286572E-01 -5.05380624385E-01 -4.63170677008E-01 -4.19858661899E-01 -3.75469808628E-01 -3.30033619940E-01 -2.83585308723E-01 -2.36175263539E-01 -1.87845969006E-01 -1.38644020307E-01 -8.86218360246E-02 -3.78379237696E-02 1.36428586874E-02 6.57490489065E-02 1.18402334210E-01 1.71517317600E-01 2.25001297931E-01 2.78754067378E-01 3.32667729462E-01 3.86626541182E-01 4.40506783047E-01 4.94176661096E-01 5.47481990362E-01 6.00129722770E-01 6.51932444649E-01 7.02708041279E-01 7.52267105393E-01 8.00413283483E-01 8.46943698783E-01 8.91649456585E-01 9.34316237513E-01 9.74724984352E-01 1.01265268790E+00 1.04787327713E+00 1.08015861869E+00 1.10927963034E+00 1.13500751253E+00 1.15711510169E+00 1.17537834806E+00 1.18957792014E+00 1.19950093663E+00 1.20494282579E+00 1.20570931062E+00 1.20161851685E+00 1.19250319894E+00 1.17821307735E+00 1.15861727827E+00 1.13360686461E+00 1.10309744440E+00 1.06703184022E+00 1.02538279987E+00 9.78155725747E-01 9.25391396708E-01 8.67168652739E-01 8.03607009104E-01 7.34869162793E-01 6.61163350274E-01 5.82745511681E-01 4.99921212745E-01 4.13047272118E-01 3.22533038240E-01 2.28841256765E-01 1.32488466776E-01 3.40448618506E-02 -6.58664495089E-02 -1.66570850288E-01 -2.67344354117E-01 -3.67416541661E-01 -4.65974355973E-01 -5.62166814224E-01 -6.55110687258E-01 -7.43897190500E-01 -8.27599719749E-01 -9.05282653151E-01 -9.76011225937E-01 -1.03886246731E+00 -1.09293716890E+00 -1.13737283168E+00 -1.17135751276E+00 -1.19414446553E+00 -1.20506743621E+00 -1.20355644665E+00 -1.18915385901E+00 -1.16153048105E+00 -1.12050143409E+00 -1.06604146811E+00 -9.98299371787E-01 -9.17611090731E-01 -8.24511135063E-01 -7.19741830444E-01 -6.04259945121E-01 -4.79240212032E-01 -3.46075261002E-01 -2.06371483576E-01 -6.19403741354E-02 8.52150723300E-02 2.32919271205E-01 3.78848559720E-01 5.20561506087E-01 6.55535096667E-01 7.81206741910E-01 8.95021879052E-01 9.94486764536E-01 1.07722584330E+00 1.14104285816E+00 1.18398462463E+00 1.20440614957E+00 1.20103552338E+00 1.17303677314E+00 1.12006863819E+00 1.04233703161E+00 9.40638794509E-01 8.16394248140E-01 6.71666017758E-01 5.09161656742E-01 3.32217755325E-01 1.44763489545E-01 -4.87380347115E-02 -2.43371751154E-01 -4.33876345376E-01 -6.14773317706E-01 -7.80518047241E-01 -9.25670430323E-01 -1.04508149355E+00 -1.13409114740E+00 -1.18873099776E+00 -1.20592492629E+00 -1.18367905522E+00 -1.12125180599E+00 -1.01929412994E+00 -8.79949723663E-01 -7.06905233397E-01 -5.05381186204E-01 -2.82055737075E-01 -4.49153430967E-02 1.96970803405E-01 4.33752342185E-01 6.55171031542E-01 8.50996909522E-01 1.01151356984E+00 1.12803375781E+00 1.19342163488E+00 1.20259373647E+00 1.15296725973E+00 1.04482229572E+00 8.81544399260E-01 6.69715873480E-01 4.19028668163E-01 1.41999069359E-01 -1.46525555080E-01 -4.30064953547E-01 -6.91391163329E-01 -9.13566190360E-01 -1.08108070338E+00 -1.18102599015E+00 -1.20421746777E+00 -1.14617809233E+00 -1.00788582697E+00 -7.96192539643E-01 -5.23833643792E-01 -2.08969269854E-01 1.25771183908E-01 3.72553716246E-12 3.86789737502E-12 4.01569745545E-12 4.16914527194E-12 4.32845663575E-12 4.49385560473E-12 4.66557479841E-12 4.84385572519E-12 5.02894912198E-12 5.22111530684E-12 5.42062454513E-12 5.62775742955E-12 5.84280527482E-12 6.06607052740E-12 6.29786719080E-12 6.53852126725E-12 6.78837121616E-12 7.04776843016E-12 7.31707772929E-12 7.59667787408E-12 7.88696209827E-12 8.18833866183E-12 8.50123142517E-12 8.82608044524E-12 9.16334259446E-12 9.51349220323E-12 9.87702172707E-12 1.02544424392E-11 1.06462851496E-11 1.10531009517E-11 1.14754619970E-11 1.19139623003E-11 1.23692185748E-11 1.28418710996E-11 1.33325846200E-11 1.38420492827E-11 1.43709816062E-11 1.49201254886E-11 1.54902532539E-11 1.60821667379E-11 1.66966984165E-11 1.73347125758E-11 1.79971065283E-11 1.86848118743E-11 1.93987958127E-11 2.01400625008E-11 2.09096544668E-11 2.17086540760E-11 2.25381850529E-11 2.33994140619E-11 2.42935523478E-11 2.52218574398E-11 2.61856349194E-11 2.71862402571E-11 2.82250807187E-11 2.93036173444E-11 3.04233670036E-11 3.15859045282E-11 3.27928649277E-11 3.40459456886E-11 3.53469091615E-11 3.66975850401E-11 3.80998729343E-11 3.95557450418E-11 4.10672489218E-11 4.26365103751E-11 4.42657364333E-11 4.59572184630E-11 4.77133353887E-11 4.95365570382E-11 5.14294476161E-11 5.33946693108E-11 5.54349860377E-11 5.75532673272E-11 5.97524923599E-11 6.20357541570E-11 6.44062639301E-11 6.68673555974E-11 6.94224904728E-11 7.20752621339E-11 7.48294014759E-11 7.76887819589E-11 8.06574250556E-11 8.37395059070E-11 8.69393591945E-11 9.02614852364E-11 9.37105563167E-11 9.72914232569E-11 1.01009122238E-10 1.04868881883E-10 1.08876130610E-10 1.13036504271E-10 1.17355854071E-10 1.21840254803E-10 1.26496013390E-10 1.31329677754E-10 1.36348046027E-10 1.41558176110E-10 1.46967395600E-10 1.52583312097E-10 1.58413823902E-10 1.64467131125E-10 1.70751747219E-10 1.77276510951E-10 1.84050598838E-10 1.91083538045E-10 1.98385219793E-10 2.05965913263E-10 2.13836280043E-10 2.22007389120E-10 2.30490732450E-10 2.39298241117E-10 2.48442302116E-10 2.57935775774E-10 2.67792013834E-10 2.78024878238E-10 2.88648760617E-10 2.99678602536E-10 3.11129916505E-10 3.23018807797E-10 3.35361997099E-10 3.48176844029E-10 3.61481371547E-10 3.75294291308E-10 3.89635029973E-10 4.04523756535E-10 4.19981410681E-10 4.36029732246E-10 4.52691291784E-10 4.69989522315E-10 4.87948752278E-10 5.06594239749E-10 5.25952207963E-10 5.46049882197E-10 5.66915528055E-10 5.88578491224E-10 6.11069238748E-10 6.34419401873E-10 6.58661820534E-10 6.83830589545E-10 7.09961106545E-10 7.37090121785E-10 7.65255789813E-10 7.94497723134E-10 8.24857047920E-10 8.56376461853E-10 8.89100294173E-10 9.23074568025E-10 9.58347065183E-10 9.94967393252E-10 1.03298705544E-09 1.07245952298E-09 1.11344031034E-09 1.15598705332E-09 1.20015959006E-09 1.24602004526E-09 1.29363291748E-09 1.34306516992E-09 1.39438632455E-09 1.44766855992E-09 1.50298681264E-09 1.56041888278E-09 1.62004554330E-09 1.68195065365E-09 1.74622127769E-09 1.81294780615E-09 1.88222408375E-09 1.95414754120E-09 2.02881933219E-09 2.10634447569E-09 2.18683200363E-09 2.27039511424E-09 2.35715133125E-09 2.44722266918E-09 2.54073580497E-09 2.63782225605E-09 2.73861856542E-09 2.84326649359E-09 2.95191321799E-09 3.06471153996E-09 3.18182009966E-09 3.30340359912E-09 3.42963303395E-09 3.56068593378E-09 3.69674661196E-09 3.83800642474E-09 3.98466404044E-09 4.13692571882E-09 4.29500560115E-09 4.45912601142E-09 4.62951776896E-09 4.80642051310E-09 4.99008304018E-09 5.18076365344E-09 5.37873052630E-09 5.58426207954E-09 5.79764737281E-09 6.01918651119E-09 6.24919106726E-09 6.48798451926E-09 6.73590270605E-09 6.99329429938E-09 7.26052129430E-09 7.53795951823E-09 7.82599915951E-09 8.12504531618E-09 8.43551856564E-09 8.75785555619E-09 9.09250962108E-09 9.43995141607E-09 9.80066958137E-09 1.01751714288E-08 1.05639836552E-08 1.09676530833E-08 1.13867474307E-08 1.18218561082E-08 1.22735910487E-08 1.27425875679E-08 1.32295052578E-08 1.37350289142E-08 1.42598694998E-08 1.48047651440E-08 1.53704821812E-08 1.59578162281E-08 1.65675933030E-08 1.72006709873E-08 1.78579396316E-08 1.85403236076E-08 1.92487826085E-08 1.99843129981E-08 2.07479492126E-08 2.15407652149E-08 2.23638760050E-08 2.32184391884E-08 2.41056566034E-08 2.50267760120E-08 2.59830928541E-08 2.69759520695E-08 2.80067499892E-08 2.90769362993E-08 3.01880160794E-08 3.13415519192E-08 3.25391661162E-08 3.37825429569E-08 3.50734310856E-08 3.64136459630E-08 3.78050724201E-08 3.92496673078E-08 4.07494622495E-08 4.23065664979E-08 4.39231699009E-08 4.56015459814E-08 4.73440551346E-08 4.91531479468E-08 5.10313686419E-08 5.29813586591E-08 5.50058603676E-08 5.71077209225E-08 5.92898962693E-08 6.15554552998E-08 6.39075841683E-08 6.63495907719E-08 6.88849094017E-08 7.15171055726E-08 7.42498810369E-08 7.70870789898E-08 8.00326894734E-08 8.30908549878E-08 8.62658763160E-08 8.95622185717E-08 9.29845174775E-08 9.65375858843E-08 1.00226420538E-07 1.04056209107E-07 1.08032337474E-07 1.12160397313E-07 1.16446193950E-07 1.20895754526E-07 1.25515336469E-07 1.30311436301E-07 1.35290798762E-07 1.40460426301E-07 1.45827588922E-07 1.51399834400E-07 1.57184998901E-07 1.63191217995E-07 1.69426938098E-07 1.75900928345E-07 1.82622292923E-07 1.89600483869E-07 1.96845314362E-07 2.04366972517E-07 2.12176035712E-07 2.20283485460E-07 2.28700722846E-07 2.37439584557E-07 2.46512359525E-07 2.55931806206E-07 2.65711170511E-07 2.75864204436E-07 2.86405185391E-07 2.97348936273E-07 3.08710846306E-07 3.20506892675E-07 3.32753662989E-07 3.45468378597E-07 3.58668918803E-07 3.72373845993E-07 3.86602431737E-07 4.01374683876E-07 4.16711374648E-07 4.32634069890E-07 4.49165159353E-07 4.66327888171E-07 4.84146389540E-07 5.02645718643E-07 5.21851887861E-07 5.41791903343E-07 5.62493802963E-07 5.83986695727E-07 6.06300802693E-07 6.29467499442E-07 6.53519360178E-07 6.78490203513E-07 7.04415139993E-07 7.31330621449E-07 7.59274492221E-07 7.88286042349E-07 8.18406062786E-07 8.49676902724E-07 8.82142529109E-07 9.15848588422E-07 9.50842470829E-07 9.87173376772E-07 1.02489238610E-06 1.06405252987E-06 1.10470886480E-06 1.14691855071E-06 1.19074093078E-06 1.23623761493E-06 1.28347256642E-06 1.33251219166E-06 1.38342543356E-06 1.43628386836E-06 1.49116180616E-06 1.54813639536E-06 1.60728773099E-06 1.66869896726E-06 1.73245643432E-06 1.79864975958E-06 1.86737199352E-06 1.93871974047E-06 2.01279329422E-06 2.08969677892E-06 2.16953829528E-06 2.25243007240E-06 2.33848862537E-06 2.42783491888E-06 2.52059453707E-06 2.61689785988E-06 2.71688024609E-06 2.82068222338E-06 2.92844968562E-06 3.04033409769E-06 3.15649270810E-06 3.27708876973E-06 3.40229176898E-06 3.53227766369E-06 3.66722913005E-06 3.80733581905E-06 3.95279462256E-06 4.10380994969E-06 4.26059401361E-06 4.42336712928E-06 4.59235802263E-06 4.76780415142E-06 4.94995203837E-06 5.13905761701E-06 5.33538659065E-06 5.53921480509E-06 5.75082863550E-06 5.97052538803E-06 6.19861371674E-06 6.43541405640E-06 6.68125907178E-06 6.93649412407E-06 7.20147775500E-06 7.47658218949E-06 7.76219385735E-06 8.05871393490E-06 8.36655890718E-06 8.68616115159E-06 9.01796954371E-06 9.36245008617E-06 9.72008656155E-06 1.00913812099E-05 1.04768554325E-05 1.08770505216E-05 1.12925284187E-05 1.17238725015E-05 1.21716884004E-05 1.26366048461E-05 1.31192745502E-05 1.36203751182E-05 1.41406099979E-05 1.46807094635E-05 1.52414316373E-05 1.58235635504E-05 1.64279222429E-05 1.70553559069E-05 1.77067450724E-05 1.83830038379E-05 1.90850811485E-05 1.98139621219E-05 2.05706694249E-05 2.13562647025E-05 2.21718500602E-05 2.30185696039E-05 2.38976110371E-05 2.48102073193E-05 2.57576383867E-05 2.67412329388E-05 2.77623702921E-05 2.88224823045E-05 2.99230553721E-05 3.10656325023E-05 3.22518154644E-05 3.34832670226E-05 3.47617132531E-05 3.60889459486E-05 3.74668251140E-05 3.88972815566E-05 4.03823195740E-05 4.19240197437E-05 4.35245418181E-05 4.51861277283E-05 4.69111047025E-05 4.87018885012E-05 5.05609867742E-05 5.24910025456E-05 5.44946378285E-05 5.65746973776E-05 5.87340925818E-05 6.09758455044E-05 6.33030930752E-05 6.57190914400E-05 6.82272204745E-05 7.08309884670E-05 7.35340369784E-05 7.63401458838E-05 7.92532386038E-05 8.22773875325E-05 8.54168196690E-05 8.86759224601E-05 9.20592498622E-05 9.55715286305E-05 9.92176648434E-05 1.03002750672E-04 1.06932071400E-04 1.11011112715E-04 1.15245568255E-04 1.19641347459E-04 1.24204583691E-04 1.28941642681E-04 1.33859131271E-04 1.38963906495E-04 1.44263084989E-04 1.49764052759E-04 1.55474475307E-04 1.61402308137E-04 1.67555807647E-04 1.73943542428E-04 1.80574404981E-04 1.87457623870E-04 1.94602776322E-04 2.02019801294E-04 2.09719013025E-04 2.17711115085E-04 2.26007214946E-04 2.34618839085E-04 2.43557948647E-04 2.52836955686E-04 2.62468739997E-04 2.72466666568E-04 2.82844603676E-04 2.93616941641E-04 3.04798612266E-04 3.16405108993E-04 3.28452507784E-04 3.40957488780E-04 3.53937358727E-04 3.67410074238E-04 3.81394265885E-04 3.95909263173E-04 4.10975120414E-04 4.26612643537E-04 4.42843417869E-04 4.59689836911E-04 4.77175132159E-04 4.95323403985E-04 5.14159653636E-04 5.33709816371E-04 5.54000795786E-04 5.75060499364E-04 5.96917875288E-04 6.19602950564E-04 6.43146870496E-04 6.67581939557E-04 6.92941663702E-04 7.19260794175E-04 7.46575372854E-04 7.74922779186E-04 8.04341778764E-04 8.34872573601E-04 8.66556854147E-04 8.99437853126E-04 9.33560401216E-04 9.68970984670E-04 1.00571780491E-03 1.04385084017E-03 1.08342190925E-03 1.12448473740E-03 1.16709502455E-03 1.21131051573E-03 1.25719107393E-03 1.30479875540E-03 1.35419788747E-03 1.40545514895E-03 1.45863965324E-03 1.51382303413E-03 1.57107953450E-03 1.63048609782E-03 1.69212246279E-03 1.75607126090E-03 1.82241811721E-03 1.89125175439E-03 1.96266410006E-03 2.03675039752E-03 2.11360931999E-03 2.19334308849E-03 2.27605759333E-03 2.36186251938E-03 2.45087147525E-03 2.54320212632E-03 2.63897633191E-03 2.73832028654E-03 2.84136466536E-03 2.94824477399E-03 3.05910070270E-03 3.17407748502E-03 3.29332526108E-03 3.41699944547E-03 3.54526089988E-03 3.67827611062E-03 3.81621737098E-03 3.95926296861E-03 4.10759737793E-03 4.26141145766E-03 4.42090265361E-03 4.58627520660E-03 4.75774036578E-03 4.93551660727E-03 5.11982985820E-03 5.31091372617E-03 5.50900973421E-03 5.71436756117E-03 5.92724528766E-03 6.14790964746E-03 6.37663628437E-03 6.61371001467E-03 6.85942509485E-03 7.11408549484E-03 7.37800517653E-03 7.65150837759E-03 7.93492990042E-03 8.22861540620E-03 8.53292171385E-03 8.84821710386E-03 9.17488162670E-03 9.51330741572E-03 9.86389900429E-03 1.02270736471E-02 1.06032616449E-02 1.09929066733E-02 1.13964661144E-02 1.18144113912E-02 1.22472283051E-02 1.26954173750E-02 1.31594941783E-02 1.36399896936E-02 1.41374506439E-02 1.46524398401E-02 1.51855365246E-02 1.57373367144E-02 1.63084535419E-02 1.68995175955E-02 1.75111772561E-02 1.81440990311E-02 1.87989678850E-02 1.94764875645E-02 2.01773809192E-02 2.09023902157E-02 2.16522774452E-02 2.24278246236E-02 2.32298340836E-02 2.40591287572E-02 2.49165524489E-02 2.58029700986E-02 2.67192680327E-02 2.76663542040E-02 2.86451584191E-02 2.96566325524E-02 3.07017507472E-02 3.17815096023E-02 3.28969283450E-02 3.40490489897E-02 3.52389364816E-02 3.64676788265E-02 3.77363872064E-02 3.90461960819E-02 4.03982632808E-02 4.17937700757E-02 4.32339212505E-02 4.47199451569E-02 4.62530937647E-02 4.78346427053E-02 4.94658913135E-02 5.11481626689E-02 5.28828036405E-02 5.46711849390E-02 5.65147011809E-02 5.84147709682E-02 6.03728369908E-02 6.23903661560E-02 6.44688497530E-02 6.66098036580E-02 6.88147685891E-02 7.10853104185E-02 7.34230205510E-02 7.58295163787E-02 7.83064418212E-02 8.08554679636E-02 8.34782938014E-02 8.61766471046E-02 8.89522854142E-02 9.18069971810E-02 9.47426030602E-02 9.77609573744E-02 1.00863949756E-01 1.04053506980E-01 1.07331595004E-01 1.10700221213E-01 1.14161436896E-01 1.17717339941E-01 1.21370077777E-01 1.25121850545E-01 1.28974914515E-01 1.32931585737E-01 1.36994243927E-01 1.41165336575E-01 1.45447383255E-01 1.49842980134E-01 1.54354804631E-01 1.58985620218E-01 1.63738281305E-01 1.68615738172E-01 1.73621041898E-01 1.78757349206E-01 1.84027927178E-01 1.89436157741E-01 1.94985541834E-01 2.00679703177E-01 2.06522391515E-01 2.12517485234E-01 2.18668993235E-01 2.24981055935E-01 2.31457945279E-01 2.38104063637E-01 2.44923941483E-01 2.51922233745E-01 2.59103714744E-01 2.66473271675E-01 2.74035896598E-01 2.81796676966E-01 2.89760784775E-01 2.97933464482E-01 3.06320019916E-01 3.14925800528E-01 3.23756187394E-01 3.32816579543E-01 3.42112381293E-01 3.51648991400E-01 3.61431794969E-01 3.71466159168E-01 3.81757433849E-01 3.92310958200E-01 4.03132074436E-01 4.14226149331E-01 4.25598603917E-01 4.37254950978E-01 4.49200838843E-01 4.61442098339E-01 4.73984787453E-01 4.86835224977E-01 5.00000000000E-01 5.13485939477E-01 5.27300047042E-01 5.41449481787E-01 5.55941561794E-01 5.70783768870E-01 5.85983753373E-01 6.01549339123E-01 6.17488528393E-01 6.33809506960E-01 6.50520649227E-01 6.67630523398E-01 6.85147896710E-01 7.03081740715E-01 7.21441236606E-01 7.40235780589E-01 7.59474989294E-01 7.79168705228E-01 7.99327002254E-01 8.19960191112E-01 8.41078824963E-01 8.62693704960E-01 8.84815885843E-01 9.07456681552E-01 9.30627670858E-01 9.54340703005E-01 9.78607903363E-01 1.00344167908E+00 1.02885472476E+00 1.05486002808E+00 1.08147087549E+00 1.10870085784E+00 1.13656387599E+00 1.16507414646E+00 1.19424620701E+00 1.22409492222E+00 1.25463548904E+00 1.28588344231E+00 1.31785466024E+00 1.35056536990E+00 1.38403215255E+00 1.41827194911E+00 1.45330206538E+00 1.48914017734E+00 1.52580433633E+00 1.56331297411E+00 1.60168490794E+00 1.64093934541E+00 1.68109588928E+00 1.72217454202E+00 1.76419571030E+00 1.80718020917E+00 1.85114926603E+00 1.89612452426E+00 1.94212804646E+00 1.98918231728E+00 2.03731024574E+00 2.08653516682E+00 2.13688084249E+00 2.18837146171E+00 2.24103163956E+00 2.29488641520E+00 2.34996124841E+00 2.40628201473E+00 2.46387499885E+00 2.52276688593E+00 2.58298475090E+00 2.64455604511E+00 2.70750858034E+00 2.77187050974E+00 2.83767030542E+00 2.90493673234E+00 2.97369881825E+00 3.04398581935E+00 3.11582718120E+00 3.18925249480E+00 3.26429144733E+00 3.34097376734E+00 3.41932916410E+00 3.49938726087E+00 3.58117752177E+00 3.66472917222E+00 3.75007111256E+00 3.83723182495E+00 3.92623927326E+00 4.01712079605E+00 4.10990299256E+00 4.20461160177E+00 4.30127137465E+00 4.39990593972E+00 4.50053766210E+00 4.60318749633E+00 4.70787483322E+00 4.81461734104E+00 4.92343080153E+00 5.03432894105E+00 5.14732325736E+00 5.26242284262E+00 5.37963420302E+00 5.49896107575E+00 5.62040424374E+00 5.74396134901E+00 5.86962670508E+00 5.99739110914E+00 6.12724165473E+00 6.25916154540E+00 6.39312991013E+00 6.52912162108E+00 6.66710711421E+00 6.80705221335E+00 6.94891795818E+00 7.09266043660E+00 7.23823062178E+00 7.38557421420E+00 7.53463148888E+00 7.68533714780E+00 7.83762017764E+00 7.99140371257E+00 8.14660490186E+00 8.30313478207E+00 8.46089815319E+00 8.61979345822E+00 8.77971266543E+00 8.94054115266E+00 9.10215759255E+00 9.26443383790E+00 9.42723480618E+00 9.59041836196E+00 9.75383519645E+00 9.91732870289E+00 1.00807348469E+01 1.02438820307E+01 1.04065909504E+01 1.05686744461E+01 1.07299373423E+01 1.08901762812E+01 1.10491795454E+01 1.12067268722E+01 1.13625892582E+01 1.15165287553E+01 1.16682982585E+01 1.18176412860E+01 1.19642917533E+01 1.21079737423E+01 1.22484012669E+01 1.23852780385E+01 1.25182972315E+01 1.26471412534E+01 1.27714815218E+01 1.28909782515E+01 1.30052802555E+01 1.31140247641E+01 1.32168372667E+01 1.33133313807E+01 1.34031087522E+01 1.34857589958E+01 1.35608596773E+01 1.36279763474E+01 1.36866626316E+01 1.37364603855E+01 1.37768999201E+01 1.38075003085E+01 1.38277697800E+01 1.38372062105E+01 1.38352977205E+01 1.38215233878E+01 1.37953540859E+01 1.37562534592E+01 1.37036790447E+01 1.36370835510E+01 1.35559163072E+01 1.34596248915E+01 1.33476569521E+01 1.32194622324E+01 1.30744948103E+01 1.29122155657E+01 1.27320948858E+01 1.25336156191E+01 1.23162762904E+01 1.20795945838E+01 1.18231111055E+01 1.15463934326E+01 1.12490404548E+01 1.09306870153E+01 1.05910088525E+01 1.02297278449E+01 9.84661755849E+00 9.44150909120E+00 9.01429720900E+00 8.56494676204E+00 8.09349936686E+00 7.60008033549E+00 7.08490582790E+00 6.54829019843E+00 5.99065350143E+00 5.41252911463E+00 4.81457143199E+00 4.19756357042E+00 3.56242502673E+00 2.91021921276E+00 2.24216078779E+00 1.55962269792E+00 8.64142822348E-01 1.57430116612E-01 -5.58629867771E-01 -1.28197021794E+00 -2.01033878999E+00 -2.74129538650E+00 -3.47221014304E+00 -4.20026329478E+00 -4.92244650346E+00 -5.63556593255E+00 -6.33624726738E+00 -7.02097186556E+00 -7.68632098020E+00 -8.32847302096E+00 -8.94343641873E+00 -9.52709509787E+00 -1.00752293775E+01 -1.05835402073E+01 -1.10476768954E+01 -1.14632684646E+01 -1.18259587433E+01 -1.21314452646E+01 -1.23755220033E+01 -1.25541259321E+01 -1.26633873219E+01 -1.26996836442E+01 -1.26596968614E+01 -1.25401474131E+01 -1.23352290631E+01 -1.20426214056E+01 -1.16609496588E+01 -1.11895257688E+01 -1.06284185198E+01 -9.97852207865E+00 -9.24162176837E+00 -8.42045572982E+00 -7.51877099850E+00 -6.54137239511E+00 -5.49416251231E+00 -4.38417097672E+00 -3.21957108152E+00 -2.00968182631E+00 -7.64953372740E-01 5.03066066225E-01 1.78178383181E+00 3.05763874297E+00 4.31620099744E+00 5.54229747988E+00 6.72016360410E+00 7.83362243448E+00 8.86629136555E+00 9.80181608354E+00 1.06241308884E+01 1.13177437171E+01 1.18680433858E+01 1.22616256572E+01 1.24866337635E+01 1.25331079737E+01 1.23933377145E+01 1.20622086649E+01 1.15375361618E+01 1.08203752330E+01 9.91529663709E+00 8.83061750761E+00 7.57857460436E+00 6.17542784333E+00 4.64148176332E+00 3.00101295858E+00 1.28209232887E+00 -4.83707667926E-01 -2.26172867291E+00 -4.01477038820E+00 -5.70376507507E+00 -7.28858099555E+00 -8.72894873356E+00 -9.98549925356E+00 -1.10208969478E+01 -1.18010449050E+01 -1.22963333649E+01 -1.24828960208E+01 -1.23438327458E+01 -1.18703517749E+01 -1.10627797137E+01 -9.93138437071E+00 -8.49695374708E+00 -6.79107499462E+00 -4.85606020566E+00 -2.74447191530E+00 -5.18210510562E-01 1.75286141819E+00 3.99276628966E+00 6.12171882302E+00 8.05885870871E+00 9.72534808314E+00 1.10477455488E+01 1.19615401513E+01 1.24147012229E+01 1.23710751060E+01 1.18134394982E+01 1.07460127508E+01 9.19621117732E+00 7.21545455147E+00 4.87884048466E+00 2.28354383689E+00 -4.54151374637E-01 -3.20321298804E+00 -5.82355831105E+00 -8.17293822544E+00 -1.01147559164E+01 -1.15264643475E+01 -1.23080875836E+01 -1.23903256611E+01 -1.17416405209E+01 -1.03736915568E+01 -8.34450323121E+00 -5.75881222738E+00 -2.76516354815E+00 4.50494091641E-01 3.67472610548E+00 6.67977107722E+00 9.23935242325E+00 1.11462278958E+01 1.22302551201E+01 1.23754974857E+01 1.15347308872E+01 9.73967457580E+00 7.10539071135E+00 3.82759961093E+00 1.72149015934E-01 -3.54345586340E+00 -6.97574459557E+00 -9.78658829813E+00 -1.16776277429E+01 -1.24245565158E+01 -1.19074515824E+01 -1.01331532909E+01 -7.24596044662E+00 -3.52369114198E+00 6.42520742228E-01 4.78452912377E+00 8.40728779128E+00 1.10482455174E+01 1.23394579228E+01 1.20643473506E+01 1.02004263540E+01 6.93986643402E+00 2.68171824931E+00 -2.00713181514E+00 -6.46078682876E+00 -1.00064385232E+01 -1.20683030259E+01 -1.22680127948E+01 -1.05040621913E+01 -6.99360905055E+00 -2.26385008730E+00 2.91271474005E+00 7.63521367453E+00 1.10288803389E+01 1.24125118920E+01 1.14475231608E+01 8.23565534410E+00 3.33763910403E+00 -2.30249249280E+00 -7.52443392660E+00 -1.11857230883E+01 -1.24189574845E+01 -1.08551276733E+01 espresso-5.0.2/PW/examples/EXX_example/Pseudo/CPBE085nlcc.RRKJ30000644000700200004540000065551412053145630022544 0ustar marsamoscmC 2 F T 1 4 3 4 0.40000000000E+01-.10792873834E+02 2 -.70000000000E+010.10000000000E+030.60000000000E+010.12500000000E-01 1073 5 4 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 2.00 2P 2 1 0.00 3D 3 2 -2.00 701 -6.29644541851E-01 -6.37564496591E-01 -6.45584072151E-01 -6.53704521608E-01 -6.61935585617E-01 -6.70234974012E-01 -6.78668045819E-01 -6.87228497931E-01 -6.95842831005E-01 -7.04622970778E-01 -7.13461385505E-01 -7.22481729018E-01 -7.31531590482E-01 -7.40761549505E-01 -7.50047429194E-01 -7.59493754516E-01 -7.69050803049E-01 -7.78709207239E-01 -7.88503818076E-01 -7.98439469680E-01 -8.08514041021E-01 -8.18624765611E-01 -8.28960350046E-01 -8.39367978082E-01 -8.49913183292E-01 -8.60646314811E-01 -8.71411490444E-01 -8.82408542407E-01 -8.93480430547E-01 -9.04768104790E-01 -9.16127875785E-01 -9.27633084132E-01 -9.39295388285E-01 -9.51167754102E-01 -9.63090004574E-01 -9.75214564441E-01 -9.87489109143E-01 -9.99901918579E-01 -1.01249562726E+00 -1.02521008280E+00 -1.03811445391E+00 -1.05114718436E+00 -1.06438692927E+00 -1.07777733637E+00 -1.09132471115E+00 -1.10507049916E+00 -1.11895285856E+00 -1.13301863121E+00 -1.14728653013E+00 -1.16171240546E+00 -1.17634277540E+00 -1.19113838030E+00 -1.20609974791E+00 -1.22128122000E+00 -1.23663115939E+00 -1.25216769149E+00 -1.26796885035E+00 -1.28389287534E+00 -1.30006412207E+00 -1.31639207018E+00 -1.33296491627E+00 -1.34970738317E+00 -1.36671968902E+00 -1.38388445892E+00 -1.40130287386E+00 -1.41892540018E+00 -1.43676229565E+00 -1.45486852494E+00 -1.47312525529E+00 -1.49166558027E+00 -1.51043589402E+00 -1.52944689146E+00 -1.54866185159E+00 -1.56815429043E+00 -1.58788331171E+00 -1.60784832996E+00 -1.62808459367E+00 -1.64855008923E+00 -1.66928944471E+00 -1.69028557049E+00 -1.71155077442E+00 -1.73308549115E+00 -1.75487199550E+00 -1.77694748534E+00 -1.79928991187E+00 -1.82192703433E+00 -1.84483943185E+00 -1.86804031542E+00 -1.89155079297E+00 -1.91533971930E+00 -1.93943503878E+00 -1.96383699868E+00 -1.98853355385E+00 -2.01355264221E+00 -2.03886100912E+00 -2.06452573009E+00 -2.09048416675E+00 -2.11678118621E+00 -2.14339794911E+00 -2.17036550750E+00 -2.19768524245E+00 -2.22530619050E+00 -2.25330520091E+00 -2.28163935319E+00 -2.31035004495E+00 -2.33940803615E+00 -2.36882667852E+00 -2.39862208740E+00 -2.42880429691E+00 -2.45935784216E+00 -2.49028774561E+00 -2.52161547535E+00 -2.55332104909E+00 -2.58544443004E+00 -2.61796185136E+00 -2.65089830870E+00 -2.68422196985E+00 -2.71800175428E+00 -2.75218203648E+00 -2.78681190156E+00 -2.82185977686E+00 -2.85735369983E+00 -2.89329260081E+00 -2.92968458003E+00 -2.96653817761E+00 -3.00384257615E+00 -3.04163585071E+00 -3.07989256169E+00 -3.11862833736E+00 -3.15786080467E+00 -3.19758020054E+00 -3.23779994254E+00 -3.27852722673E+00 -3.31976006027E+00 -3.36152110018E+00 -3.40380283780E+00 -3.44661869510E+00 -3.48997262940E+00 -3.53386630335E+00 -3.57831484112E+00 -3.62332825624E+00 -3.66889821532E+00 -3.71505202923E+00 -3.76177920267E+00 -3.80909492345E+00 -3.85700427400E+00 -3.90552044163E+00 -3.95464747048E+00 -4.00439058327E+00 -4.05475515984E+00 -4.10576044614E+00 -4.15740087193E+00 -4.20969886319E+00 -4.26264560029E+00 -4.31626257047E+00 -4.37055113964E+00 -4.42551833564E+00 -4.48119169946E+00 -4.53755102955E+00 -4.59462681613E+00 -4.65242164167E+00 -4.71094149073E+00 -4.77020166475E+00 -4.83019473622E+00 -4.89095098719E+00 -4.95247389736E+00 -5.01476013804E+00 -5.07783942680E+00 -5.14170415299E+00 -5.20638227219E+00 -5.27186919403E+00 -5.33817764027E+00 -5.40532392688E+00 -5.47330692050E+00 -5.54215528499E+00 -5.61186317160E+00 -5.68244582528E+00 -5.75392241387E+00 -5.82629274338E+00 -5.89958235622E+00 -5.97377691514E+00 -6.04892161124E+00 -6.12499864060E+00 -6.20204506571E+00 -6.28005245559E+00 -6.35904149120E+00 -6.43902403981E+00 -6.52001277613E+00 -6.60202332328E+00 -6.68505352657E+00 -6.76914658192E+00 -6.85427892119E+00 -6.94049479824E+00 -7.02779010277E+00 -7.11618399625E+00 -7.20568620888E+00 -7.29632215555E+00 -7.38808896572E+00 -7.48101848379E+00 -7.57510970882E+00 -7.67038343091E+00 -7.76686323439E+00 -7.86454966887E+00 -7.96346604224E+00 -8.06363036472E+00 -8.16504947802E+00 -8.26774365240E+00 -8.37172976757E+00 -8.47702306485E+00 -8.58364971532E+00 -8.69160452854E+00 -8.80092137921E+00 -8.91161630983E+00 -9.02369981045E+00 -9.13719064232E+00 -9.25211277723E+00 -9.36847636658E+00 -9.48630748694E+00 -9.60561911183E+00 -9.72642793703E+00 -9.84876079033E+00 -9.97262773274E+00 -1.00980542238E+01 -1.02250577126E+01 -1.03536557924E+01 -1.04838725442E+01 -1.06157276355E+01 -1.07492404727E+01 -1.08844313911E+01 -1.10213234066E+01 -1.11599332323E+01 -1.13002883247E+01 -1.14424073115E+01 -1.15863156144E+01 -1.17320279997E+01 -1.18795769169E+01 -1.20289772529E+01 -1.21802619183E+01 -1.23334419532E+01 -1.24885520476E+01 -1.26456085395E+01 -1.28046421844E+01 -1.29656770897E+01 -1.31287327869E+01 -1.32938389250E+01 -1.34610208635E+01 -1.36303029520E+01 -1.38017172616E+01 -1.39752831091E+01 -1.41510320583E+01 -1.43289876191E+01 -1.45091812488E+01 -1.46916385848E+01 -1.48763941534E+01 -1.50634672383E+01 -1.52528950086E+01 -1.54446981558E+01 -1.56389172068E+01 -1.58355744775E+01 -1.60347041938E+01 -1.62363365363E+01 -1.64405035564E+01 -1.66472333238E+01 -1.68565660200E+01 -1.70685258117E+01 -1.72831506558E+01 -1.75004699534E+01 -1.77205222195E+01 -1.79433399363E+01 -1.81689547345E+01 -1.83974054886E+01 -1.86287252361E+01 -1.88629550470E+01 -1.91001234364E+01 -1.93402731156E+01 -1.95834407882E+01 -1.98296607884E+01 -2.00789740291E+01 -2.03314207130E+01 -2.05870363753E+01 -2.08458635929E+01 -2.11079431509E+01 -2.13733118766E+01 -2.16420136030E+01 -2.19140913241E+01 -2.21895850510E+01 -2.24685357813E+01 -2.27509928563E+01 -2.30369956007E+01 -2.33265881470E+01 -2.36198188398E+01 -2.39167285686E+01 -2.42173669055E+01 -2.45217795464E+01 -2.48300117552E+01 -2.51421145328E+01 -2.54581332645E+01 -2.57781200323E+01 -2.61021221586E+01 -2.64301894208E+01 -2.67623748361E+01 -2.70987254821E+01 -2.74392999031E+01 -2.77841437199E+01 -2.81333162681E+01 -2.84868700854E+01 -2.88448556180E+01 -2.92073348408E+01 -2.95743565689E+01 -2.99459840656E+01 -3.03222697449E+01 -3.07032760909E+01 -3.10890562667E+01 -3.14796757005E+01 -3.18751899002E+01 -3.22756635547E+01 -3.26811562896E+01 -3.30917312991E+01 -3.35074498848E+01 -3.39283790846E+01 -3.43545816056E+01 -3.47861242264E+01 -3.52230724789E+01 -3.56654917399E+01 -3.61134545158E+01 -3.65670254980E+01 -3.70262759074E+01 -3.74912765044E+01 -3.79620972838E+01 -3.84388132484E+01 -3.89214921639E+01 -3.94102130570E+01 -3.99050485948E+01 -4.04060749850E+01 -4.09133672654E+01 -4.14270053513E+01 -4.19470651961E+01 -4.24736287415E+01 -4.30067739423E+01 -4.35465833118E+01 -4.40931384849E+01 -4.46465241785E+01 -4.52068214267E+01 -4.57741182924E+01 -4.63484999860E+01 -4.69300528555E+01 -4.75188668041E+01 -4.81150287473E+01 -4.87186322574E+01 -4.93297644712E+01 -4.99485210718E+01 -5.05749945189E+01 -5.12092791375E+01 -5.18514701553E+01 -5.25016660049E+01 -5.31599615373E+01 -5.38264590863E+01 -5.45012563957E+01 -5.51844555212E+01 -5.58761593573E+01 -5.65764703952E+01 -5.72854941529E+01 -5.80033354021E+01 -5.87301040325E+01 -5.94659049651E+01 -6.02108500753E+01 -6.09650484733E+01 -6.17286133868E+01 -6.25016571909E+01 -6.32842955025E+01 -6.40766424487E+01 -6.48788160139E+01 -6.56909345087E+01 -6.65131161711E+01 -6.73454847327E+01 -6.81881590671E+01 -6.90412644251E+01 -6.99049248587E+01 -7.07792676543E+01 -7.16644185992E+01 -7.25605070485E+01 -7.34676642129E+01 -7.43860193610E+01 -7.53157075300E+01 -7.62568616529E+01 -7.72096173406E+01 -7.81741121198E+01 -7.91504833136E+01 -8.01388719057E+01 -8.11394173991E+01 -8.21522642214E+01 -8.31775544941E+01 -8.42154342944E+01 -8.52660501078E+01 -8.63295498588E+01 -8.74060832984E+01 -8.84958013393E+01 -8.95988555080E+01 -9.07154008165E+01 -9.18455910450E+01 -9.29895833412E+01 -9.41475356501E+01 -9.53196064994E+01 -9.65059575681E+01 -9.77067499311E+01 -9.89221474165E+01 -1.00152314608E+02 -1.01397417520E+02 -1.02657623770E+02 -1.03933101993E+02 -1.05224022707E+02 -1.06530556826E+02 -1.07852877299E+02 -1.09191158049E+02 -1.10545573991E+02 -1.11916301810E+02 -1.13303519744E+02 -1.14707405994E+02 -1.16128140528E+02 -1.17565905187E+02 -1.19020881431E+02 -1.20493253740E+02 -1.21983205449E+02 -1.23490923220E+02 -1.25016592391E+02 -1.26560401519E+02 -1.28122537882E+02 -1.29703191441E+02 -1.31302552179E+02 -1.32920810851E+02 -1.34558158721E+02 -1.36214788667E+02 -1.37890892690E+02 -1.39586665079E+02 -1.41302299297E+02 -1.43037989597E+02 -1.44793931182E+02 -1.46570318708E+02 -1.48367347308E+02 -1.50185212605E+02 -1.52024109742E+02 -1.53884234375E+02 -1.55765781766E+02 -1.57668946834E+02 -1.59593924332E+02 -1.61540908357E+02 -1.63510093071E+02 -1.65501671084E+02 -1.67515834943E+02 -1.69552776142E+02 -1.71612684625E+02 -1.73695750426E+02 -1.75802160292E+02 -1.77932101416E+02 -1.80085758182E+02 -1.82263313704E+02 -1.84464948866E+02 -1.86690842602E+02 -1.88941171119E+02 -1.91216109000E+02 -1.93515826762E+02 -1.95840493478E+02 -1.98190273537E+02 -2.00565329289E+02 -2.02965818474E+02 -2.05391895408E+02 -2.07843710281E+02 -2.10321408975E+02 -2.12825132039E+02 -2.15355015784E+02 -2.17911191352E+02 -2.20493783141E+02 -2.23102911138E+02 -2.25738688139E+02 -2.28401220193E+02 -2.31090607659E+02 -2.33806941763E+02 -2.36550307458E+02 -2.39320780788E+02 -2.42118429895E+02 -2.44943312713E+02 -2.47795479251E+02 -2.50674968755E+02 -2.53581809907E+02 -2.56516021019E+02 -2.59477608844E+02 -2.62466567815E+02 -2.65482880459E+02 -2.68526515648E+02 -2.71597428888E+02 -2.74695561296E+02 -2.77820839179E+02 -2.80973172915E+02 -2.84152456979E+02 -2.87358568682E+02 -2.90591367466E+02 -2.93850694729E+02 -2.97136372354E+02 -3.00448202139E+02 -3.03785965239E+02 -3.07149421073E+02 -3.10538306204E+02 -3.13952334144E+02 -3.17391193781E+02 -3.20854548315E+02 -3.24342035407E+02 -3.27853264512E+02 -3.31387817170E+02 -3.34945245214E+02 -3.38525070127E+02 -3.42126781160E+02 -3.45749835551E+02 -3.49393655367E+02 -3.53057628448E+02 -3.56741105227E+02 -3.60443398709E+02 -3.64163782473E+02 -3.67901489674E+02 -3.71655711655E+02 -3.75425596089E+02 -3.79210246046E+02 -3.83008718274E+02 -3.86820021536E+02 -3.90643115368E+02 -3.94476908389E+02 -3.98320256341E+02 -4.02171960874E+02 -4.06030767896E+02 -4.09895365324E+02 -4.13764381929E+02 -4.17636385425E+02 -4.21509880186E+02 -4.25383306173E+02 -4.29255036400E+02 -4.33123375922E+02 -4.36986558571E+02 -4.40842746633E+02 -4.44690027617E+02 -4.48526413172E+02 -4.52349836637E+02 -4.56158150969E+02 -4.59949127215E+02 -4.63720452282E+02 -4.67469726889E+02 -4.71194463359E+02 -4.74892084409E+02 -4.78559919906E+02 -4.82195206361E+02 -4.85795083534E+02 -4.89356593851E+02 -4.92876679122E+02 -4.96352179746E+02 -4.99779832708E+02 -5.03156269078E+02 -5.06478013003E+02 -5.09741479869E+02 -5.12942974342E+02 -5.16078689513E+02 -5.19144704243E+02 -5.22136983479E+02 -5.25051375318E+02 -5.27883610964E+02 -5.30629303316E+02 -5.33283945910E+02 -5.35842912425E+02 -5.38301456154E+02 -5.40654709197E+02 -5.42897682565E+02 -5.45025266062E+02 -5.47032228202E+02 -5.48913217104E+02 -5.50662760838E+02 -5.52275268065E+02 -5.53745029981E+02 -5.55066221110E+02 -5.56232901393E+02 -5.57239018508E+02 -5.58078410271E+02 -5.58744807453E+02 -5.59231837270E+02 -5.59533027268E+02 -5.59641809471E+02 -5.59551525135E+02 -5.59255429937E+02 -5.58746700267E+02 -5.58018439248E+02 -5.57063683921E+02 -5.55875413386E+02 -5.54446556839E+02 -5.52770003015E+02 -5.50838610329E+02 -5.48645217752E+02 -5.46182656473E+02 -5.43443762898E+02 -5.40421392328E+02 -5.37108433786E+02 -5.33497826062E+02 -5.29582574921E+02 -5.25355771604E+02 -5.20810612674E+02 -5.15940420976E+02 -5.10738668828E+02 -5.05199002136E+02 -4.99315266344E+02 -4.93081534350E+02 -4.86492136107E+02 -4.79541690289E+02 -4.72225137908E+02 -4.64537778185E+02 -4.56475306785E+02 -4.48033856019E+02 -4.39210038175E+02 -4.30000990804E+02 -4.20404425029E+02 -4.10418676557E+02 -4.00042759542E+02 -3.89276423238E+02 -3.78120211833E+02 -3.66575527229E+02 -3.54644694899E+02 -3.42331032618E+02 -3.29638922458E+02 -3.16573885618E+02 -3.03142660061E+02 -2.89353280790E+02 -2.75215162792E+02 -2.60739185815E+02 -2.45937781401E+02 -2.30825020777E+02 -2.15416704229E+02 -1.99730450137E+02 -1.83785783993E+02 -1.67604225539E+02 -1.51209374097E+02 -1.34626989826E+02 -1.17885070641E+02 -1.01013922346E+02 -8.40462212357E+01 -6.70170665641E+01 -4.99640214829E+01 -3.29271395310E+01 -1.59489750335E+01 9.25425824256E-01 1.76485559281E+01 3.41705027932E+01 5.04390325239E+01 6.63997047301E+01 8.19960227792E+01 9.71696214021E+01 1.11860496719E+02 1.26007281023E+02 1.39547565558E+02 1.52418275250E+02 1.64556097264E+02 1.75897965882E+02 1.86381605698E+02 1.95946133812E+02 2.04532721327E+02 2.12085312894E+02 2.18551402266E+02 2.23882860314E+02 2.28036809035E+02 2.30976535563E+02 2.32672435403E+02 2.33102973385E+02 2.32255648124E+02 2.30127941699E+02 2.26728235488E+02 2.22076668428E+02 2.16205912005E+02 2.09161833157E+02 2.01004014899E+02 1.91806101112E+02 1.81655932822E+02 1.70655442398E+02 1.58920274535E+02 1.46579106637E+02 1.33772648378E+02 1.20652310225E+02 1.07378545493E+02 9.41188910733E+01 8.10457593646E+01 6.83340695114E+01 5.61588534378E+01 4.46930322436E+01 3.41056282969E+01 2.45608465483E+01 1.62178792819E+01 9.23826375502E+00 3.74153494450E+00 2.94073462401E-01 -2.91556272168E-02 2.89060628091E-03 -2.86585760695E-04 2.84111881805E-05 -2.81621631317E-06 2.80970503199E-07 -2.71209408549E-08 1.07515870356E-09 -1.83551765814E-09 7.40347429922E-10 8.39948465847E-01 701 -8.40578686627E-01 -8.51151866757E-01 -8.61858041191E-01 -8.72698882794E-01 -8.83687446957E-01 -8.94767078997E-01 -9.06025277127E-01 -9.17453600901E-01 -9.28953655496E-01 -9.40675288654E-01 -9.52474564268E-01 -9.64516863994E-01 -9.76598431164E-01 -9.88920488568E-01 -1.00131713978E+00 -1.01392803943E+00 -1.02668677864E+00 -1.03958077789E+00 -1.05265658630E+00 -1.06592080055E+00 -1.07937050485E+00 -1.09286818116E+00 -1.10666639253E+00 -1.12056050405E+00 -1.13463841923E+00 -1.14896730950E+00 -1.16333868811E+00 -1.17801995641E+00 -1.19280085034E+00 -1.20787013596E+00 -1.22303541722E+00 -1.23839487410E+00 -1.25396411762E+00 -1.26981390059E+00 -1.28573005827E+00 -1.30191645078E+00 -1.31830304237E+00 -1.33487419506E+00 -1.35168687723E+00 -1.36866070675E+00 -1.38588813521E+00 -1.40328679096E+00 -1.42096204141E+00 -1.43883823982E+00 -1.45692407367E+00 -1.47527477603E+00 -1.49380778798E+00 -1.51258562628E+00 -1.53163339224E+00 -1.55089198241E+00 -1.57042366557E+00 -1.59017587142E+00 -1.61014932482E+00 -1.63041668557E+00 -1.65090888028E+00 -1.67165019834E+00 -1.69274495591E+00 -1.71400359304E+00 -1.73559227269E+00 -1.75739012970E+00 -1.77951500623E+00 -1.80186621903E+00 -1.82457785156E+00 -1.84749279063E+00 -1.87074651177E+00 -1.89427266412E+00 -1.91808496250E+00 -1.94225701029E+00 -1.96662969053E+00 -1.99138114370E+00 -2.01643965234E+00 -2.04181943215E+00 -2.06747147314E+00 -2.09349398399E+00 -2.11983235608E+00 -2.14648571628E+00 -2.17350128321E+00 -2.20082280440E+00 -2.22850991930E+00 -2.25653986914E+00 -2.28492902591E+00 -2.31367800331E+00 -2.34276307180E+00 -2.37223395428E+00 -2.40206117097E+00 -2.43228188328E+00 -2.46287002480E+00 -2.49384331408E+00 -2.52522995839E+00 -2.55698827614E+00 -2.58915566748E+00 -2.62173243174E+00 -2.65470244495E+00 -2.68810305617E+00 -2.72188981565E+00 -2.75615237969E+00 -2.79080701781E+00 -2.82591368386E+00 -2.86144714962E+00 -2.89744900061E+00 -2.93392104821E+00 -2.97079508948E+00 -3.00817392934E+00 -3.04600014559E+00 -3.08432909067E+00 -3.12312165719E+00 -3.16239566110E+00 -3.20217270133E+00 -3.24246610934E+00 -3.28325527624E+00 -3.32454682654E+00 -3.36636951808E+00 -3.40869660100E+00 -3.45158147011E+00 -3.49499239043E+00 -3.53896275194E+00 -3.58344994137E+00 -3.62854617101E+00 -3.67417700097E+00 -3.72040806395E+00 -3.76719715422E+00 -3.81458171004E+00 -3.86256032770E+00 -3.91114378684E+00 -3.96034354334E+00 -4.01014506955E+00 -4.06059930619E+00 -4.11167220868E+00 -4.16338463567E+00 -4.21576019773E+00 -4.26878577792E+00 -4.32247934290E+00 -4.37685047059E+00 -4.43189650101E+00 -4.48764769119E+00 -4.54409402495E+00 -4.60125341254E+00 -4.65913113875E+00 -4.71772939690E+00 -4.77706840849E+00 -4.83716155599E+00 -4.89799765598E+00 -4.95961323613E+00 -5.02199425578E+00 -5.08516095437E+00 -5.14912017493E+00 -5.21388950082E+00 -5.27947433237E+00 -5.34588163897E+00 -5.41311857022E+00 -5.48121089305E+00 -5.55015111335E+00 -5.61996919386E+00 -5.69065334526E+00 -5.76223225126E+00 -5.83470775508E+00 -5.90808920903E+00 -5.98241344179E+00 -6.05765341305E+00 -6.13384985293E+00 -6.21100624418E+00 -6.28913051874E+00 -6.36824316060E+00 -6.44833417236E+00 -6.52944406013E+00 -6.61157745382E+00 -6.69472985956E+00 -6.77894102345E+00 -6.86420072565E+00 -6.95054632998E+00 -7.03797169155E+00 -7.12649377274E+00 -7.21613438665E+00 -7.30689199453E+00 -7.39880489309E+00 -7.49186524797E+00 -7.58609341100E+00 -7.68151499158E+00 -7.77812972044E+00 -7.87597170658E+00 -7.97502175662E+00 -8.07534029649E+00 -8.17690346237E+00 -8.27976081425E+00 -8.38390103067E+00 -8.48935175142E+00 -8.59612881721E+00 -8.70424914530E+00 -8.81373360704E+00 -8.92457927459E+00 -9.03684390675E+00 -9.15049593891E+00 -9.26559453089E+00 -9.38213415084E+00 -9.50014038522E+00 -9.61962622432E+00 -9.74062563056E+00 -9.86313470620E+00 -9.98719603579E+00 -1.01128082160E+01 -1.02399990374E+01 -1.03688000037E+01 -1.04992118028E+01 -1.06312655839E+01 -1.07649853816E+01 -1.09003803250E+01 -1.10374774702E+01 -1.11762993644E+01 -1.13168663449E+01 -1.14592133799E+01 -1.16033334846E+01 -1.17492719198E+01 -1.18970501073E+01 -1.20466820273E+01 -1.21981927291E+01 -1.23516142333E+01 -1.25069600789E+01 -1.26642650832E+01 -1.28235465660E+01 -1.29848268004E+01 -1.31481416328E+01 -1.33135044616E+01 -1.34809492920E+01 -1.36504994225E+01 -1.38221783152E+01 -1.39960181531E+01 -1.41720451706E+01 -1.43502852797E+01 -1.45307656323E+01 -1.47135169428E+01 -1.48985615286E+01 -1.50859360499E+01 -1.52756653670E+01 -1.54677834306E+01 -1.56623099214E+01 -1.58592881999E+01 -1.60587381104E+01 -1.62607036130E+01 -1.64651994178E+01 -1.66722718553E+01 -1.68819427258E+01 -1.70942530991E+01 -1.73092351566E+01 -1.75269149561E+01 -1.77473320936E+01 -1.79705204175E+01 -1.81965124380E+01 -1.84253509755E+01 -1.86570618018E+01 -1.88916870677E+01 -1.91292581432E+01 -1.93698170386E+01 -1.96133979673E+01 -1.98600470433E+01 -2.01097899815E+01 -2.03626764211E+01 -2.06187339652E+01 -2.08780167440E+01 -2.11405545240E+01 -2.14063930083E+01 -2.16755724858E+01 -2.19481357443E+01 -2.22241202475E+01 -2.25035796559E+01 -2.27865462106E+01 -2.30730705951E+01 -2.33631920504E+01 -2.36569620013E+01 -2.39544238085E+01 -2.42556196884E+01 -2.45606015496E+01 -2.48694134856E+01 -2.51821103430E+01 -2.54987301582E+01 -2.58193299731E+01 -2.61439587790E+01 -2.64726624027E+01 -2.68054954687E+01 -2.71425116470E+01 -2.74837583702E+01 -2.78292924797E+01 -2.81791684260E+01 -2.85334353614E+01 -2.88921518032E+01 -2.92553751566E+01 -2.96231588223E+01 -2.99955575272E+01 -3.03726371584E+01 -3.07544501931E+01 -3.11410555516E+01 -3.15325177750E+01 -3.19288914391E+01 -3.23302427287E+01 -3.27366326383E+01 -3.31481215933E+01 -3.35647776786E+01 -3.39866614785E+01 -3.44138425217E+01 -3.48463839747E+01 -3.52843522899E+01 -3.57278182386E+01 -3.61768446623E+01 -3.66315097242E+01 -3.70918743085E+01 -3.75580176374E+01 -3.80300098406E+01 -3.85079182452E+01 -3.89918256037E+01 -3.94817970552E+01 -3.99779170718E+01 -4.04802556033E+01 -4.09888960745E+01 -4.15039094338E+01 -4.20253830385E+01 -4.25533909708E+01 -4.30880195933E+01 -4.36293484935E+01 -4.41774620291E+01 -4.47324420227E+01 -4.52943779727E+01 -4.58633535735E+01 -4.64394579741E+01 -4.70227786450E+01 -4.76134028467E+01 -4.82114273823E+01 -4.88169385888E+01 -4.94300315392E+01 -5.00508006908E+01 -5.06793394674E+01 -5.13157479949E+01 -5.19601167111E+01 -5.26125511177E+01 -5.32731482063E+01 -5.39420096984E+01 -5.46192357526E+01 -5.53049330446E+01 -5.59992029470E+01 -5.67021548455E+01 -5.74138927834E+01 -5.81345269002E+01 -5.88641661586E+01 -5.96029236385E+01 -6.03509074925E+01 -6.11082352688E+01 -6.18750207000E+01 -6.26513790336E+01 -6.34374302704E+01 -6.42332904123E+01 -6.50390843595E+01 -6.58549284014E+01 -6.66809502569E+01 -6.75172733252E+01 -6.83640235007E+01 -6.92213278779E+01 -7.00893178377E+01 -7.09681199623E+01 -7.18578708411E+01 -7.27587009193E+01 -7.36707464041E+01 -7.45941446221E+01 -7.55290323539E+01 -7.64755504252E+01 -7.74338386588E+01 -7.84040437182E+01 -7.93863056156E+01 -8.03807736616E+01 -8.13875934607E+01 -8.24069161226E+01 -8.34388916085E+01 -8.44836742129E+01 -8.55414162308E+01 -8.66122751102E+01 -8.76964087317E+01 -8.87939748718E+01 -8.99051386496E+01 -9.10300586798E+01 -9.21689021008E+01 -9.33218344424E+01 -9.44890255524E+01 -9.56706432694E+01 -9.68668601944E+01 -9.80778514061E+01 -9.93037893778E+01 -1.00544854290E+02 -1.01801223506E+02 -1.03073077956E+02 -1.04360601133E+02 -1.05663976246E+02 -1.06983391391E+02 -1.08319032679E+02 -1.09671092797E+02 -1.11039761340E+02 -1.12425233186E+02 -1.13827703749E+02 -1.15247370360E+02 -1.16684432781E+02 -1.18139092323E+02 -1.19611551104E+02 -1.21102015897E+02 -1.22610691815E+02 -1.24137788467E+02 -1.25683516517E+02 -1.27248087397E+02 -1.28831716743E+02 -1.30434619372E+02 -1.32057013771E+02 -1.33699119428E+02 -1.35361157730E+02 -1.37043352195E+02 -1.38745927693E+02 -1.40469111595E+02 -1.42213131789E+02 -1.43978218873E+02 -1.45764604735E+02 -1.47572522569E+02 -1.49402207927E+02 -1.51253898420E+02 -1.53127831595E+02 -1.55024247347E+02 -1.56943388057E+02 -1.58885495581E+02 -1.60850815798E+02 -1.62839593035E+02 -1.64852076053E+02 -1.66888511819E+02 -1.68949151592E+02 -1.71034244896E+02 -1.73144044822E+02 -1.75278804474E+02 -1.77438777964E+02 -1.79624220061E+02 -1.81835387674E+02 -1.84072536510E+02 -1.86335925316E+02 -1.88625811709E+02 -1.90942454335E+02 -1.93286113086E+02 -1.95657047093E+02 -1.98055516100E+02 -2.00481780474E+02 -2.02936099915E+02 -2.05418734775E+02 -2.07929944849E+02 -2.10469989440E+02 -2.13039127599E+02 -2.15637617460E+02 -2.18265717213E+02 -2.20923682936E+02 -2.23611770583E+02 -2.26330234662E+02 -2.29079327569E+02 -2.31859301779E+02 -2.34670405328E+02 -2.37512886809E+02 -2.40386991008E+02 -2.43292960971E+02 -2.46231036710E+02 -2.49201455585E+02 -2.52204451253E+02 -2.55240255152E+02 -2.58309093227E+02 -2.61411189436E+02 -2.64546761414E+02 -2.67716024017E+02 -2.70919185866E+02 -2.74156450947E+02 -2.77428017664E+02 -2.80734078588E+02 -2.84074819095E+02 -2.87450418822E+02 -2.90861050416E+02 -2.94306877437E+02 -2.97788057462E+02 -3.01304738377E+02 -3.04857058959E+02 -3.08445150294E+02 -3.12069131166E+02 -3.15729111877E+02 -3.19425190728E+02 -3.23157455351E+02 -3.26925979632E+02 -3.30730826756E+02 -3.34572045410E+02 -3.38449670045E+02 -3.42363721133E+02 -3.46314203576E+02 -3.50301105680E+02 -3.54324399708E+02 -3.58384039538E+02 -3.62479961042E+02 -3.66612080722E+02 -3.70780295132E+02 -3.74984479386E+02 -3.79224487188E+02 -3.83500149137E+02 -3.87811271783E+02 -3.92157637389E+02 -3.96539001956E+02 -4.00955094460E+02 -4.05405616100E+02 -4.09890238829E+02 -4.14408603855E+02 -4.18960321372E+02 -4.23544968453E+02 -4.28162087622E+02 -4.32811187048E+02 -4.37491736969E+02 -4.42203170084E+02 -4.46944879143E+02 -4.51716216084E+02 -4.56516489513E+02 -4.61344964987E+02 -4.66200860787E+02 -4.71083349175E+02 -4.75991552135E+02 -4.80924541334E+02 -4.85881335456E+02 -4.90860898844E+02 -4.95862139653E+02 -5.00883907354E+02 -5.05924991472E+02 -5.10984119298E+02 -5.16059953640E+02 -5.21151091168E+02 -5.26256060148E+02 -5.31373317804E+02 -5.36501248703E+02 -5.41638162528E+02 -5.46782291072E+02 -5.51931786690E+02 -5.57084719731E+02 -5.62239075485E+02 -5.67392752742E+02 -5.72543560397E+02 -5.77689216097E+02 -5.82827341863E+02 -5.87955463666E+02 -5.93071007091E+02 -5.98171295896E+02 -6.03253548729E+02 -6.08314876354E+02 -6.13352279609E+02 -6.18362646422E+02 -6.23342749077E+02 -6.28289241253E+02 -6.33198656415E+02 -6.38067403483E+02 -6.42891766148E+02 -6.47667898341E+02 -6.52391823468E+02 -6.57059430017E+02 -6.61666470511E+02 -6.66208558836E+02 -6.70681166912E+02 -6.75079623354E+02 -6.79399111035E+02 -6.83634664481E+02 -6.87781168745E+02 -6.91833355884E+02 -6.95785805399E+02 -6.99632940342E+02 -7.03369027280E+02 -7.06988174449E+02 -7.10484330365E+02 -7.13851283207E+02 -7.17082660148E+02 -7.20171926324E+02 -7.23112385023E+02 -7.25897177576E+02 -7.28519283305E+02 -7.30971520783E+02 -7.33246548364E+02 -7.35336865106E+02 -7.37234813449E+02 -7.38932580359E+02 -7.40422200207E+02 -7.41695557969E+02 -7.42744392526E+02 -7.43560300554E+02 -7.44134741288E+02 -7.44459041844E+02 -7.44524402900E+02 -7.44321905179E+02 -7.43842516532E+02 -7.43077100511E+02 -7.42016424574E+02 -7.40651169865E+02 -7.38971942275E+02 -7.36969283381E+02 -7.34633683276E+02 -7.31955594328E+02 -7.28925445948E+02 -7.25533660416E+02 -7.21770670499E+02 -7.17626937994E+02 -7.13092973821E+02 -7.08159359749E+02 -7.02816771692E+02 -6.97056004747E+02 -6.90868000041E+02 -6.84243873078E+02 -6.77174945084E+02 -6.69652775591E+02 -6.61669197498E+02 -6.53216354758E+02 -6.44286742338E+02 -6.34873248950E+02 -6.24969202385E+02 -6.14568417888E+02 -6.03665249695E+02 -5.92254645192E+02 -5.80332203282E+02 -5.67894235354E+02 -5.54937830305E+02 -5.41460923162E+02 -5.27462367523E+02 -5.12942011718E+02 -4.97900779204E+02 -4.82340752904E+02 -4.66265263621E+02 -4.49678982286E+02 -4.32588016534E+02 -4.15000011048E+02 -3.96924251598E+02 -3.78371772591E+02 -3.59355468097E+02 -3.39890205305E+02 -3.19992940890E+02 -2.99682838468E+02 -2.78981387942E+02 -2.57912524283E+02 -2.36502746186E+02 -2.14781232085E+02 -1.92779953612E+02 -1.70533783461E+02 -1.48080597275E+02 -1.25461366305E+02 -1.02720239769E+02 -7.99046134849E+01 -5.70651828361E+01 -3.42559761940E+01 -1.15343665606E+01 1.10389428900E+01 3.33999629785E+01 5.54814959037E+01 7.72132509032E+01 9.85220016102E+01 1.19331790965E+02 1.39564186378E+02 1.59138591912E+02 1.77972620587E+02 1.95982531143E+02 2.13083734480E+02 2.29191372297E+02 2.44220971171E+02 2.58089174722E+02 2.70714554686E+02 2.82018501236E+02 2.91926190747E+02 3.00367628212E+02 3.07278759393E+02 3.12602643954E+02 3.16290681391E+02 3.18303875170E+02 3.18614119550E+02 3.17205489853E+02 3.14075511581E+02 3.09236382667E+02 3.02716116990E+02 2.94559574618E+02 2.84829340124E+02 2.73606408556E+02 2.60990634149E+02 2.47100898204E+02 2.32074951409E+02 2.16068889321E+02 1.99256224918E+02 1.81826531878E+02 1.63983645935E+02 1.45943431715E+02 1.27931150299E+02 1.10178499858E+02 9.29204496947E+01 7.63920519861E+01 6.08254964961E+01 4.64477672526E+01 3.34794887880E+01 2.21347478172E+01 1.26312766983E+01 5.12937073302E+00 4.04964209011E-01 -4.01497823641E-02 3.98061109293E-03 -3.94653030558E-04 3.91247102387E-05 -3.87819990171E-06 3.86853997842E-07 -3.73702745017E-08 1.54617106703E-09 -2.46570522035E-09 9.91554416410E-10 -6.28147305207E-01 4.69236480081E-01 701 -1.64321331997E-03 -1.68481147514E-03 -1.72746269324E-03 -1.77119363272E-03 -1.81603162687E-03 -1.86200470095E-03 -1.90914158970E-03 -1.95747175525E-03 -2.00702540560E-03 -2.05783351344E-03 -2.10992783557E-03 -2.16334093270E-03 -2.21810618983E-03 -2.27425783711E-03 -2.33183097123E-03 -2.39086157734E-03 -2.45138655159E-03 -2.51344372416E-03 -2.57707188289E-03 -2.64231079756E-03 -2.70920124473E-03 -2.77778503320E-03 -2.84810503022E-03 -2.92020518818E-03 -2.99413057217E-03 -3.06992738809E-03 -3.14764301158E-03 -3.22732601758E-03 -3.30902621072E-03 -3.39279465647E-03 -3.47868371299E-03 -3.56674706394E-03 -3.65703975197E-03 -3.74961821317E-03 -3.84454031230E-03 -3.94186537900E-03 -4.04165424484E-03 -4.14396928137E-03 -4.24887443908E-03 -4.35643528740E-03 -4.46671905564E-03 -4.57979467507E-03 -4.69573282196E-03 -4.81460596176E-03 -4.93648839442E-03 -5.06145630081E-03 -5.18958779033E-03 -5.32096294975E-03 -5.45566389328E-03 -5.59377481384E-03 -5.73538203574E-03 -5.88057406863E-03 -6.02944166278E-03 -6.18207786586E-03 -6.33857808106E-03 -6.49904012672E-03 -6.66356429752E-03 -6.83225342710E-03 -7.00521295239E-03 -7.18255097948E-03 -7.36437835123E-03 -7.55080871650E-03 -7.74195860123E-03 -7.93794748124E-03 -8.13889785696E-03 -8.68674796597E-03 -8.55888381906E-03 -8.77185273035E-03 -8.99911792582E-03 -9.22217225967E-03 -9.45844760382E-03 -9.69294766080E-03 -9.94235241153E-03 -1.01920656987E-02 -1.04520000470E-02 -1.07180719024E-02 -1.09868787833E-02 -1.12654135078E-02 -1.15484257925E-02 -1.18424319747E-02 -1.21444787999E-02 -1.24491340208E-02 -1.27647280152E-02 -1.30865218095E-02 -1.34216084678E-02 -1.37573663039E-02 -1.41071891942E-02 -1.44646147485E-02 -1.48307241892E-02 -1.52051283310E-02 -1.55900581508E-02 -1.59837399308E-02 -1.63906729185E-02 -1.68032523631E-02 -1.72291862648E-02 -1.76679774775E-02 -1.81129285614E-02 -1.85730814284E-02 -1.90439121772E-02 -1.95246163439E-02 -2.00206379089E-02 -2.05253993654E-02 -2.10479186727E-02 -2.15783048091E-02 -2.21242220102E-02 -2.26854484233E-02 -2.32605234076E-02 -2.38478896942E-02 -2.44510785699E-02 -2.50705233910E-02 -2.57031231125E-02 -2.63566171829E-02 -2.70226520141E-02 -2.77056738108E-02 -2.84072181753E-02 -2.91278907557E-02 -2.98654656356E-02 -3.06200970999E-02 -3.13962141253E-02 -3.21905002930E-02 -3.30061624493E-02 -3.38386362336E-02 -3.46973107409E-02 -3.55756014972E-02 -3.64760892208E-02 -3.73998956877E-02 -3.83468562770E-02 -3.93180842633E-02 -4.03094491415E-02 -4.13342653225E-02 -4.23810559471E-02 -4.34523514551E-02 -4.45530344178E-02 -4.56800850791E-02 -4.68352730498E-02 -4.80218516152E-02 -4.92387686260E-02 -5.04864696335E-02 -5.17611639351E-02 -5.30725692593E-02 -5.44171907918E-02 -5.57936503798E-02 -5.72067916937E-02 -5.86523863473E-02 -6.01386344251E-02 -6.16613641445E-02 -6.32209233785E-02 -6.48229843848E-02 -6.64643868856E-02 -6.81458842133E-02 -6.98711176973E-02 -7.16392869036E-02 -7.34559157268E-02 -7.53141358578E-02 -7.72213556714E-02 -7.91741592758E-02 -8.11790532381E-02 -8.32343102922E-02 -8.53414409870E-02 -8.74996233231E-02 -8.97158249492E-02 -9.19864098713E-02 -9.43167096938E-02 -9.67031221495E-02 -9.91484653492E-02 -1.01662353316E-01 -1.04235714361E-01 -1.06871303388E-01 -1.09579877829E-01 -1.12350489827E-01 -1.15196970261E-01 -1.18111955598E-01 -1.21104583545E-01 -1.24168238928E-01 -1.27312435578E-01 -1.30535587443E-01 -1.33836963726E-01 -1.37227162737E-01 -1.40699665734E-01 -1.44264013823E-01 -1.47912659755E-01 -1.51656670278E-01 -1.55498731370E-01 -1.59435412871E-01 -1.63470379160E-01 -1.67608550705E-01 -1.71849561535E-01 -1.76201503837E-01 -1.80662419629E-01 -1.85235892259E-01 -1.89925463904E-01 -1.94731487394E-01 -1.99659788734E-01 -2.04715352125E-01 -2.09896498148E-01 -2.15213446059E-01 -2.20657427017E-01 -2.26243979759E-01 -2.31971313433E-01 -2.37843161056E-01 -2.43867167201E-01 -2.50038456427E-01 -2.56368190492E-01 -2.62857511402E-01 -2.69512133931E-01 -2.76333058288E-01 -2.83331630367E-01 -2.90498804711E-01 -2.97853333414E-01 -3.05396005051E-01 -3.13125220039E-01 -3.21050904940E-01 -3.29175763342E-01 -3.37512294078E-01 -3.46056572068E-01 -3.54813013239E-01 -3.63796744473E-01 -3.73006091363E-01 -3.82447161492E-01 -3.92127443199E-01 -4.02055481237E-01 -4.12232818216E-01 -4.22665950325E-01 -4.33365172415E-01 -4.44333459177E-01 -4.55583346732E-01 -4.67113423236E-01 -4.78940835118E-01 -4.91062773675E-01 -5.03490840002E-01 -5.16235467870E-01 -5.29304101205E-01 -5.42703703593E-01 -5.56439687892E-01 -5.70524660104E-01 -5.84969090740E-01 -5.99773424519E-01 -6.14957804880E-01 -6.30519421589E-01 -6.46483971098E-01 -6.62844999090E-01 -6.79622445121E-01 -6.96826994464E-01 -7.14464206399E-01 -7.32550482912E-01 -7.51091256161E-01 -7.70101787947E-01 -7.89596344407E-01 -8.09581255822E-01 -8.30072568738E-01 -8.51083460718E-01 -8.72624081305E-01 -8.94714098335E-01 -9.17356784725E-01 -9.40576425633E-01 -9.64386243646E-01 -9.88795448898E-01 -1.01382034163E+00 -1.03948227180E+00 -1.06579212661E+00 -1.09276806002E+00 -1.12042485921E+00 -1.14878324202E+00 -1.17785911680E+00 -1.20766957124E+00 -1.23823627523E+00 -1.26957832449E+00 -1.30170956586E+00 -1.33465479336E+00 -1.36843243780E+00 -1.40306857182E+00 -1.43857744811E+00 -1.47498506929E+00 -1.51231717487E+00 -1.55058986746E+00 -1.58983192787E+00 -1.63006981024E+00 -1.67132187956E+00 -1.71362165276E+00 -1.75698707519E+00 -1.80145323844E+00 -1.84704127347E+00 -1.89378530799E+00 -1.94171258009E+00 -1.99084776537E+00 -2.04122948058E+00 -2.09288901333E+00 -2.14584776498E+00 -2.20014986071E+00 -2.25582636049E+00 -2.31291134217E+00 -2.37143809588E+00 -2.43144517410E+00 -2.49297480922E+00 -2.55605506186E+00 -2.62073190149E+00 -2.68704814473E+00 -2.75503723576E+00 -2.82474862234E+00 -2.89622208826E+00 -2.96950564299E+00 -3.04463837621E+00 -3.12167402232E+00 -3.20065752873E+00 -3.28163735329E+00 -3.36466344062E+00 -3.44979205562E+00 -3.53707216386E+00 -3.62655707661E+00 -3.71830413886E+00 -3.81237529653E+00 -3.90881882263E+00 -4.00770485129E+00 -4.10909010481E+00 -4.21303879201E+00 -4.31961461582E+00 -4.42888184782E+00 -4.54091587510E+00 -4.65577766137E+00 -4.77354391129E+00 -4.89428697393E+00 -5.01807922175E+00 -5.14500393893E+00 -5.27513116772E+00 -5.40855127584E+00 -5.54534051282E+00 -5.68558862837E+00 -5.82937562548E+00 -5.97679793505E+00 -6.12794126210E+00 -6.28290929071E+00 -6.44178701476E+00 -6.60467828284E+00 -6.77168451822E+00 -6.94290874538E+00 -7.11845708353E+00 -7.29843767543E+00 -7.48296590877E+00 -7.67214981423E+00 -7.86611323796E+00 -8.06497148748E+00 -8.26885156633E+00 -8.47787689323E+00 -8.69217703509E+00 -8.91189035621E+00 -9.13714559925E+00 -9.36808506265E+00 -9.60485605322E+00 -9.84759626597E+00 -1.00964605552E+01 -1.03516067869E+01 -1.06131837653E+01 -1.08813640932E+01 -1.11563027445E+01 -1.14381809032E+01 -1.17271634235E+01 -1.20234324879E+01 -1.23271660552E+01 -1.26385614659E+01 -1.29578045075E+01 -1.32850939696E+01 -1.36206282099E+01 -1.39646206915E+01 -1.43172770450E+01 -1.46788153912E+01 -1.50494621616E+01 -1.54294419328E+01 -1.58189936182E+01 -1.62183460585E+01 -1.66277584761E+01 -1.70474725955E+01 -1.74777498331E+01 -1.79188531643E+01 -1.83710543432E+01 -1.88346318606E+01 -1.93098662240E+01 -1.97970523702E+01 -2.02964889555E+01 -2.08084817706E+01 -2.13333367681E+01 -2.18713834105E+01 -2.24229481741E+01 -2.29883716255E+01 -2.35679889475E+01 -2.41621641929E+01 -2.47712545895E+01 -2.53956304346E+01 -2.60356767387E+01 -2.66917775650E+01 -2.73643374185E+01 -2.80537586991E+01 -2.87604654653E+01 -2.94848867589E+01 -3.02274531912E+01 -3.09886269852E+01 -3.17688624650E+01 -3.25686337972E+01 -3.33884174474E+01 -3.42287211965E+01 -3.50900392290E+01 -3.59729023396E+01 -3.68778308033E+01 -3.78053781915E+01 -3.87560991194E+01 -3.97305621495E+01 -4.07293581099E+01 -4.17530756068E+01 -4.28023360242E+01 -4.38777652460E+01 -4.49800021421E+01 -4.61097089359E+01 -4.72675535013E+01 -4.84542250401E+01 -4.96704363615E+01 -5.09169035350E+01 -5.21943652335E+01 -5.35035783445E+01 -5.48453176432E+01 -5.62203743534E+01 -5.76295583341E+01 -5.90737008332E+01 -6.05536428142E+01 -6.20702656982E+01 -6.36244473497E+01 -6.52171000413E+01 -6.68491500519E+01 -6.85215539004E+01 -7.02352769934E+01 -7.19913212219E+01 -7.37906965470E+01 -7.56344454456E+01 -7.75236342517E+01 -7.94593495949E+01 -8.14426999462E+01 -8.34748251338E+01 -8.55568834185E+01 -8.76900654412E+01 -8.98755866713E+01 -9.21146841404E+01 -9.44086278772E+01 -9.67587086340E+01 -9.91662555549E+01 -1.01632615565E+02 -1.04159173570E+02 -1.06747336865E+02 -1.09398552300E+02 -1.12114281282E+02 -1.14896029916E+02 -1.17745335393E+02 -1.20663755173E+02 -1.23652892462E+02 -1.26714379026E+02 -1.29849870496E+02 -1.33061073357E+02 -1.36349713527E+02 -1.39717555545E+02 -1.43166406591E+02 -1.46698100445E+02 -1.50314503692E+02 -1.54017535549E+02 -1.57809132209E+02 -1.61691277378E+02 -1.65665990450E+02 -1.69735328811E+02 -1.73901387930E+02 -1.78166297848E+02 -1.82532227951E+02 -1.87001390010E+02 -1.91576028916E+02 -1.96258436044E+02 -2.01050934989E+02 -2.05955886816E+02 -2.10975697110E+02 -2.16112809700E+02 -2.21369706429E+02 -2.26748903492E+02 -2.32252963745E+02 -2.37884477823E+02 -2.43646095288E+02 -2.49540471550E+02 -2.55570328038E+02 -2.61738407445E+02 -2.68047495877E+02 -2.74500406910E+02 -2.81100003946E+02 -2.87849162614E+02 -2.94750816354E+02 -3.01807906652E+02 -3.09023419342E+02 -3.16400370500E+02 -3.23941799828E+02 -3.31650774126E+02 -3.39530384663E+02 -3.47583749977E+02 -3.55814004537E+02 -3.64224307302E+02 -3.72817824562E+02 -3.81597746577E+02 -3.90567272160E+02 -3.99729609584E+02 -4.09087965107E+02 -4.18645558990E+02 -4.28405606496E+02 -4.38371312971E+02 -4.48545875398E+02 -4.58932490600E+02 -4.69534320782E+02 -4.80354514866E+02 -4.91396196318E+02 -5.02662446958E+02 -5.14156317634E+02 -5.25880818093E+02 -5.37838890539E+02 -5.50033441615E+02 -5.62467296692E+02 -5.75143217513E+02 -5.88063884565E+02 -6.01231881939E+02 -6.14649709013E+02 -6.28319753749E+02 -6.42244277846E+02 -6.56425437940E+02 -6.70865238745E+02 -6.85565537450E+02 -7.00528034196E+02 -7.15754267423E+02 -7.31245567823E+02 -7.47003092407E+02 -7.63027767348E+02 -7.79320308932E+02 -7.95881176983E+02 -8.12710582412E+02 -8.29808456131E+02 -8.47174444624E+02 -8.64807885785E+02 -8.82707775314E+02 -9.00872781995E+02 -9.19301193280E+02 -9.37990921929E+02 -9.56939453396E+02 -9.76143853214E+02 -9.95600746918E+02 -1.01530624659E+03 -1.03525599919E+03 -1.05544509896E+03 -1.07586809799E+03 -1.09651896527E+03 -1.11739106467E+03 -1.13847712355E+03 -1.15976920376E+03 -1.18125867031E+03 -1.20293617107E+03 -1.22479159203E+03 -1.24681403891E+03 -1.26899178925E+03 -1.29131228705E+03 -1.31376207223E+03 -1.33632678061E+03 -1.35899108687E+03 -1.38173869161E+03 -1.40455226512E+03 -1.42741343352E+03 -1.45030272310E+03 -1.47319954634E+03 -1.49608214715E+03 -1.51892759017E+03 -1.54171170454E+03 -1.56440907049E+03 -1.58699296166E+03 -1.60943534357E+03 -1.63170681939E+03 -1.65377661406E+03 -1.67561253651E+03 -1.69718095980E+03 -1.71844679749E+03 -1.73937346638E+03 -1.75992289496E+03 -1.78005546758E+03 -1.79973004279E+03 -1.81890392922E+03 -1.83753286160E+03 -1.85557102388E+03 -1.87297103136E+03 -1.88968393046E+03 -1.90565922768E+03 -1.92084487136E+03 -1.93518730766E+03 -1.94863148177E+03 -1.96112086551E+03 -1.97259752114E+03 -1.98300213274E+03 -1.99227404343E+03 -2.00035135113E+03 -2.00717097027E+03 -2.01266868428E+03 -2.01677928298E+03 -2.01943663209E+03 -2.02057379111E+03 -2.02012315284E+03 -2.01801657490E+03 -2.01418552003E+03 -2.00856123612E+03 -2.00107492966E+03 -1.99165796304E+03 -1.98024206376E+03 -1.96675955819E+03 -1.95114361340E+03 -1.93332849465E+03 -1.91324987346E+03 -1.89084510263E+03 -1.86605355406E+03 -1.83881697429E+03 -1.80907983763E+03 -1.77678975071E+03 -1.74189784973E+03 -1.70435927077E+03 -1.66413359145E+03 -1.62118533265E+03 -1.57548448474E+03 -1.52700704189E+03 -1.47573558311E+03 -1.42165987778E+03 -1.36477751970E+03 -1.30509456976E+03 -1.24262627373E+03 -1.17739775449E+03 -1.10944476297E+03 -1.03881445269E+03 -9.65566166189E+02 -8.89772273270E+02 -8.11518987025E+02 -7.30907224571E+02 -6.48053506623E+02 -5.63090799708E+02 -4.76169435820E+02 -3.87457981815E+02 -2.97144130009E+02 -2.05435551075E+02 -1.12560743055E+02 -1.87698250718E+01 7.56647077094E+01 1.70447283315E+02 2.65258655430E+02 3.59755389311E+02 4.53569432629E+02 5.46307899391E+02 6.37552943622E+02 7.26861866273E+02 8.13767444077E+02 8.97778502623E+02 9.78380797572E+02 1.05503824771E+03 1.12719453601E+03 1.19427517049E+03 1.25569004822E+03 1.31083658052E+03 1.35910349186E+03 1.39987531721E+03 1.43253774834E+03 1.45648391408E+03 1.47112168902E+03 1.47588222932E+03 1.47022979200E+03 1.45367309615E+03 1.42577833163E+03 1.38618404244E+03 1.33461808669E+03 1.27091690290E+03 1.19504724889E+03 1.10713067444E+03 1.00747087684E+03 8.96584064146E+02 7.75232378459E+02 6.44460301670E+02 5.05633758261E+02 3.60481402350E+02 2.11137172896E+02 6.01827297187E+01 -8.93122815781E+01 -2.33755067088E+02 -3.69003727728E+02 -4.90355958878E+02 -5.92559922125E+02 -6.69856964409E+02 -7.16069065210E+02 -7.24746809747E+02 -6.89405653100E+02 -6.03812795831E+02 -4.62985499110E+02 -2.58852741729E+02 -2.98046576016E+01 2.95495374678E+00 -2.92966058657E-01 2.90458865350E-02 -2.87961970857E-03 2.85424320379E-04 -2.82608916485E-05 2.73074085595E-06 -2.39575641843E-07 7.12850126831E-08 -7.52628817116E-08 0.00000000000E+00 0.00000000000E+00 -6.87895508033E-02 701 2.05074884550E-03 2.10266381454E-03 2.15589301804E-03 2.21046972604E-03 2.26642805082E-03 2.32380296822E-03 2.38263033950E-03 2.44294693375E-03 2.50479045089E-03 2.56819954519E-03 2.63321384949E-03 2.69987399994E-03 2.76822166138E-03 2.83829955343E-03 2.91015147716E-03 2.98382234245E-03 3.05935819610E-03 3.13680625061E-03 3.21621491364E-03 3.29763381833E-03 3.38111385428E-03 3.46670719937E-03 3.55446735238E-03 3.64444916641E-03 3.73670888320E-03 3.83130416824E-03 3.92829414684E-03 4.02773944111E-03 4.12970220778E-03 4.23424617711E-03 4.34143669271E-03 4.45134075238E-03 4.56402704998E-03 4.67956601837E-03 4.79802987344E-03 4.91949265924E-03 5.04403029427E-03 5.17172061893E-03 5.30264344414E-03 5.43688060130E-03 5.57451599336E-03 5.71563564731E-03 5.86032776794E-03 6.00868279295E-03 6.16079344951E-03 6.31675481222E-03 6.47666436248E-03 6.64062204951E-03 6.80873035274E-03 6.98109434591E-03 7.15782176274E-03 7.33902306424E-03 7.52481150780E-03 7.71530321796E-03 7.91061725896E-03 8.11087570923E-03 8.31620373763E-03 8.52672968172E-03 8.74258512798E-03 8.96390499404E-03 9.19082761302E-03 9.42349482000E-03 9.66205204065E-03 9.90664838216E-03 1.01574367264E-02 1.08381950543E-02 1.06816327955E-02 1.09474531142E-02 1.12310359285E-02 1.15094515048E-02 1.18043015774E-02 1.20970024692E-02 1.24082291243E-02 1.27198890622E-02 1.30442745204E-02 1.33763216357E-02 1.37118172273E-02 1.40594287914E-02 1.44126489782E-02 1.47795581715E-02 1.51564963728E-02 1.55367328775E-02 1.59305947558E-02 1.63322076650E-02 1.67503668562E-02 1.71694312367E-02 1.76060007202E-02 1.80520698597E-02 1.85089776504E-02 1.89762477225E-02 1.94566444638E-02 1.99479724824E-02 2.04558101787E-02 2.09707330323E-02 2.15022996366E-02 2.20498929849E-02 2.26052168214E-02 2.31794794859E-02 2.37670739770E-02 2.43670107170E-02 2.49860357421E-02 2.56160014656E-02 2.62680865124E-02 2.69300338363E-02 2.76113479102E-02 2.83117549571E-02 2.90294475151E-02 2.97625002820E-02 3.05152901923E-02 3.12883607092E-02 3.20778695754E-02 3.28934135622E-02 3.37246433164E-02 3.45770699790E-02 3.54526040007E-02 3.63519985719E-02 3.72724980382E-02 3.82142989722E-02 3.91828927958E-02 4.01741752180E-02 4.11921237625E-02 4.22310877152E-02 4.33027059436E-02 4.43988220275E-02 4.55226425089E-02 4.66755596624E-02 4.78573753349E-02 4.90694748844E-02 5.03067433766E-02 5.15856873954E-02 5.28920903838E-02 5.42290925561E-02 5.56027509369E-02 5.70093307925E-02 5.84510270251E-02 5.99318831773E-02 6.14505978599E-02 6.30077326333E-02 6.45985942208E-02 6.62352328358E-02 6.79133264808E-02 6.96311725694E-02 7.13947824868E-02 7.31989241972E-02 7.50537643029E-02 7.69541464104E-02 7.89005054067E-02 8.08998815450E-02 8.29483676923E-02 8.50469021404E-02 8.72000128600E-02 8.94067134110E-02 9.16738588310E-02 9.39929504136E-02 9.63731747205E-02 9.88103134255E-02 1.01312438551E-01 1.03877419816E-01 1.06507143320E-01 1.09200596065E-01 1.11966432346E-01 1.14800151364E-01 1.17708377897E-01 1.20686658013E-01 1.23738495897E-01 1.26875822865E-01 1.30087407851E-01 1.33376679443E-01 1.36756983845E-01 1.40214766911E-01 1.43767186740E-01 1.47405131729E-01 1.51139941700E-01 1.54963436469E-01 1.58887420286E-01 1.62909947759E-01 1.67030129185E-01 1.71261117148E-01 1.75594852408E-01 1.80043175053E-01 1.84596755555E-01 1.89269326380E-01 1.94064236179E-01 1.98977256729E-01 2.04012947966E-01 2.09177433056E-01 2.14470278895E-01 2.19901537754E-01 2.25468807267E-01 2.31176550330E-01 2.37029184715E-01 2.43027172202E-01 2.49177757996E-01 2.55487147922E-01 2.61953284088E-01 2.68588865063E-01 2.75383048795E-01 2.82355123260E-01 2.89502899793E-01 2.96831032995E-01 3.04349033310E-01 3.12050889143E-01 3.19950465899E-01 3.28049215466E-01 3.36354252651E-01 3.44866856981E-01 3.53601122827E-01 3.62545881058E-01 3.71724409222E-01 3.81137721947E-01 3.90783883906E-01 4.00675233264E-01 4.10815167207E-01 4.21219218546E-01 4.31882567281E-01 4.42810734825E-01 4.54022515007E-01 4.65515879907E-01 4.77298451128E-01 4.89379557710E-01 5.01769844668E-01 5.14471275802E-01 5.27491957913E-01 5.40844707706E-01 5.54533265167E-01 5.68573232380E-01 5.82962916185E-01 5.97723630878E-01 6.12851959974E-01 6.28362344842E-01 6.44267786652E-01 6.60577577969E-01 6.77300420086E-01 6.94443095713E-01 7.12021298322E-01 7.30048085661E-01 7.48524084267E-01 7.67474338889E-01 7.86895451229E-01 8.06819347023E-01 8.27238120536E-01 8.48176567424E-01 8.69648022871E-01 8.91659469372E-01 9.14231330938E-01 9.37370435857E-01 9.61095802208E-01 9.85425211303E-01 1.01036661395E+00 1.03594000745E+00 1.06216183140E+00 1.08904478151E+00 1.11661334656E+00 1.14487170431E+00 1.17385007511E+00 1.20356496915E+00 1.23402793402E+00 1.26525930107E+00 1.29728566433E+00 1.33012065897E+00 1.36378692350E+00 1.39830293214E+00 1.43369451070E+00 1.46998152701E+00 1.50718531819E+00 1.54533289965E+00 1.58444810525E+00 1.62454826453E+00 1.66566427872E+00 1.70781917012E+00 1.75104543170E+00 1.79536091799E+00 1.84079804559E+00 1.88738891024E+00 1.93515367369E+00 1.98412820931E+00 2.03434551651E+00 2.08582857411E+00 2.13861914157E+00 2.19273969152E+00 2.24823394644E+00 2.30512833678E+00 2.36346540436E+00 2.42327915790E+00 2.48460044179E+00 2.54747737674E+00 2.61194901397E+00 2.67804215635E+00 2.74581177438E+00 2.81529665861E+00 2.88653934004E+00 2.95958138952E+00 3.03447090070E+00 3.11126053658E+00 3.18998541142E+00 3.27070283248E+00 3.35346621781E+00 3.43831737240E+00 3.52531794599E+00 3.61451762325E+00 3.70597628710E+00 3.79974278216E+00 3.89588410767E+00 3.99445638448E+00 4.09552009697E+00 4.19913757842E+00 4.30537901080E+00 4.41430553779E+00 4.52598370072E+00 4.64048505493E+00 4.75788686465E+00 4.87824946708E+00 5.00166030209E+00 5.12819019990E+00 5.25791928729E+00 5.39092707106E+00 5.52729378424E+00 5.66711344418E+00 5.81046220952E+00 5.95743576601E+00 6.10812440909E+00 6.26261848903E+00 6.42102188731E+00 6.58342209417E+00 6.74993180892E+00 6.92064624966E+00 7.09567738110E+00 7.27512511395E+00 7.45910972976E+00 7.64773824316E+00 7.84113996470E+00 8.03942106699E+00 8.24271110992E+00 8.45113666487E+00 8.66482631656E+00 8.88391250212E+00 9.10853019067E+00 9.33882335695E+00 9.57492687829E+00 9.81699525912E+00 1.00651724500E+01 1.03196169152E+01 1.05804827126E+01 1.08479315395E+01 1.11221360281E+01 1.14032569149E+01 1.16914717627E+01 1.19869643769E+01 1.22899066762E+01 1.26004918823E+01 1.29189169769E+01 1.32453677473E+01 1.35800595104E+01 1.39231857663E+01 1.42749725384E+01 1.46356256441E+01 1.50053724178E+01 1.53844349974E+01 1.57730595758E+01 1.61714780766E+01 1.65799385717E+01 1.69986886433E+01 1.74279946379E+01 1.78681132367E+01 1.83193166507E+01 1.87818874333E+01 1.92561058873E+01 1.97422701358E+01 2.02406658639E+01 2.07516164653E+01 2.12754236994E+01 2.18124137805E+01 2.23629149188E+01 2.29272662507E+01 2.35058153273E+01 2.40989122547E+01 2.47069250817E+01 2.53302265330E+01 2.59691982326E+01 2.66242220773E+01 2.72957091623E+01 2.79840669496E+01 2.86897204396E+01 2.94130880237E+01 3.01546239538E+01 3.09147740933E+01 3.16940005800E+01 3.24927838687E+01 3.33116033155E+01 3.41509636965E+01 3.50113672625E+01 3.58933431892E+01 3.67974269227E+01 3.77241559373E+01 3.86741069832E+01 3.96478471111E+01 4.06459680605E+01 4.16690645233E+01 4.27177700935E+01 4.37927016286E+01 4.48945214545E+01 4.60238789738E+01 4.71814649619E+01 4.83679716018E+01 4.95841084781E+01 5.08306128842E+01 5.21082194866E+01 5.34177036930E+01 5.47598466134E+01 5.61354455856E+01 5.75453270164E+01 5.89903244536E+01 6.04712980131E+01 6.19891372088E+01 6.35447357384E+01 6.51390154601E+01 6.67729209546E+01 6.84474191253E+01 7.01634974149E+01 7.19221665238E+01 7.37244638187E+01 7.55714388777E+01 7.74641915832E+01 7.94038175875E+01 8.13914553594E+01 8.34282609075E+01 8.55154279004E+01 8.76541612066E+01 8.98457111063E+01 9.20913380713E+01 9.43923430706E+01 9.67500568443E+01 9.91658354863E+01 1.01641062375E+02 1.04177159958E+02 1.06775573750E+02 1.09437789614E+02 1.12165324407E+02 1.14959721943E+02 1.17822567159E+02 1.20755470916E+02 1.23760091895E+02 1.26838111058E+02 1.29991256687E+02 1.33221285070E+02 1.36530001765E+02 1.39919230642E+02 1.43390851225E+02 1.46946781837E+02 1.50588966192E+02 1.54319404975E+02 1.58140134551E+02 1.62053221141E+02 1.66060794284E+02 1.70165007892E+02 1.74368064038E+02 1.78672217938E+02 1.83079758079E+02 1.87593013909E+02 1.92214380413E+02 1.96946273924E+02 2.01791169977E+02 2.06751588651E+02 2.11830097429E+02 2.17029311311E+02 2.22351888472E+02 2.27800536168E+02 2.33378014514E+02 2.39087124997E+02 2.44930727043E+02 2.50911720338E+02 2.57033051339E+02 2.63297721998E+02 2.69708782008E+02 2.76269328484E+02 2.82982501456E+02 2.89851499099E+02 2.96879554341E+02 3.04069973457E+02 3.11426070290E+02 3.18951240810E+02 3.26648907649E+02 3.34522547544E+02 3.42575671571E+02 3.50811852846E+02 3.59234679922E+02 3.67847813267E+02 3.76654923586E+02 3.85659736798E+02 3.94866016546E+02 4.04277555974E+02 4.13898182033E+02 4.23731752195E+02 4.33782157914E+02 4.44053310550E+02 4.54549151968E+02 4.65273633246E+02 4.76230735272E+02 4.87424449622E+02 4.98858779652E+02 5.10537726255E+02 5.22465307681E+02 5.34645535961E+02 5.47082410781E+02 5.59779921364E+02 5.72742056611E+02 5.85972762354E+02 5.99475967754E+02 6.13255570175E+02 6.27315415072E+02 6.41659309169E+02 6.56291007862E+02 6.71214182390E+02 6.86432459413E+02 7.01949364309E+02 7.17768342969E+02 7.33892739892E+02 7.50325779350E+02 7.67070579795E+02 7.84130120686E+02 8.01507224016E+02 8.19204580498E+02 8.37224691407E+02 8.55569873935E+02 8.74242249299E+02 8.93243736874E+02 9.12575997021E+02 9.32240473201E+02 9.52238321032E+02 9.72570434129E+02 9.93237386274E+02 1.01423944064E+03 1.03557651113E+03 1.05724815678E+03 1.07925355164E+03 1.10159144300E+03 1.12426017021E+03 1.14725759704E+03 1.17058111976E+03 1.19422760182E+03 1.21819338277E+03 1.24247425327E+03 1.26706536385E+03 1.29196128462E+03 1.31715589657E+03 1.34264240444E+03 1.36841328581E+03 1.39446026361E+03 1.42077426701E+03 1.44734539534E+03 1.47416287897E+03 1.50121505406E+03 1.52848930683E+03 1.55597205062E+03 1.58364866628E+03 1.61150349535E+03 1.63951975244E+03 1.66767952501E+03 1.69596370249E+03 1.72435196001E+03 1.75282268866E+03 1.78135297798E+03 1.80991854690E+03 1.83849372628E+03 1.86705139082E+03 1.89556294571E+03 1.92399825681E+03 1.95232563395E+03 1.98051175929E+03 2.00852168541E+03 2.03631876801E+03 2.06386464622E+03 2.09111919573E+03 2.11804050426E+03 2.14458484224E+03 2.17070661678E+03 2.19635838219E+03 2.22149077095E+03 2.24605251664E+03 2.26999042422E+03 2.29324934062E+03 2.31577218364E+03 2.33749992017E+03 2.35837156635E+03 2.37832422384E+03 2.39729305775E+03 2.41521136660E+03 2.43201058435E+03 2.44762031540E+03 2.46196841428E+03 2.47498102546E+03 2.48658263022E+03 2.49669616639E+03 2.50524310568E+03 2.51214351991E+03 2.51731625233E+03 2.52067900500E+03 2.52214848611E+03 2.52164058426E+03 2.51907053276E+03 2.51435308502E+03 2.50740273908E+03 2.49813395423E+03 2.48646139698E+03 2.47230020208E+03 2.45556626385E+03 2.43617653751E+03 2.41404936012E+03 2.38910483397E+03 2.36126516917E+03 2.33045510401E+03 2.29660234727E+03 2.25963801739E+03 2.21949714546E+03 2.17611916901E+03 2.12944851623E+03 2.07943515463E+03 2.02603521393E+03 1.96921163924E+03 1.90893485403E+03 1.84518348088E+03 1.77794509224E+03 1.70721699643E+03 1.63300703398E+03 1.55533446677E+03 1.47423083522E+03 1.38974088790E+03 1.30192353996E+03 1.21085284598E+03 1.11661903667E+03 1.01932952748E+03 9.19109982344E+02 8.16105424986E+02 7.10481278749E+02 6.02424501908E+02 4.92144660245E+02 3.79875025429E+02 2.65873626230E+02 1.50424294487E+02 3.38376421117E+01 -8.35480102777E+01 -2.01365772248E+02 -3.19219450644E+02 -4.36682920321E+02 -5.53299600266E+02 -6.68582193821E+02 -7.82012540078E+02 -8.93041754115E+02 -1.00109064192E+03 -1.10555041744E+03 -1.20578380079E+03 -1.30112655150E+03 -1.39088945664E+03 -1.47436088712E+03 -1.55080997583E+03 -1.61949048886E+03 -1.67964552909E+03 -1.73051310211E+03 -1.77133273068E+03 -1.80135322240E+03 -1.81984170715E+03 -1.82609418982E+03 -1.81944768764E+03 -1.79929427155E+03 -1.76509714198E+03 -1.71640901982E+03 -1.65289310221E+03 -1.57434686764E+03 -1.48072893584E+03 -1.37218930631E+03 -1.24910316040E+03 -1.11210838257E+03 -9.62146866878E+02 -8.00509514685E+02 -6.28884572965E+02 -4.49408681893E+02 -2.64719502184E+02 -7.80082103538E+01 1.06930671272E+02 2.85655730239E+02 4.53046474937E+02 6.03289236941E+02 7.29890455179E+02 8.25729303841E+02 8.83165592079E+02 8.94222475164E+02 8.50878309177E+02 7.45421161429E+02 5.71682278029E+02 3.19678217478E+02 3.68136086589E+01 -3.64984937222E+00 3.61860819989E-01 -3.58764029697E-02 3.55679913749E-03 -3.52545205179E-04 3.49066101637E-05 -3.37258913910E-06 2.95750578146E-07 -8.82240453364E-08 9.32609548747E-08 0.00000000000E+00 0.00000000000E+00 -5.55050977147E-02 -4.47937649674E-02 8.50000000000E-01 -2.50685245125E+01 -2.50685245151E+01 -2.50685245154E+01 -2.50685245156E+01 -2.50685245159E+01 -2.50685245162E+01 -2.50685245165E+01 -2.50685245168E+01 -2.50685245171E+01 -2.50685245174E+01 -2.50685245178E+01 -2.50685245181E+01 -2.50685245185E+01 -2.50685245188E+01 -2.50685245192E+01 -2.50685245195E+01 -2.50685245199E+01 -2.50685245203E+01 -2.50685245207E+01 -2.50685245211E+01 -2.50685245216E+01 -2.50685245220E+01 -2.50685245224E+01 -2.50685245229E+01 -2.50685245234E+01 -2.50685245238E+01 -2.50685245243E+01 -2.50685245248E+01 -2.50685245254E+01 -2.50685245259E+01 -2.50685245264E+01 -2.50685245270E+01 -2.50685245276E+01 -2.50685245281E+01 -2.50685245287E+01 -2.50685245293E+01 -2.50685245300E+01 -2.50685245306E+01 -2.50685245313E+01 -2.50685245320E+01 -2.50685245327E+01 -2.50685245334E+01 -2.50685245341E+01 -2.50685245349E+01 -2.50685245356E+01 -2.50685245364E+01 -2.50685245372E+01 -2.50685245381E+01 -2.50685245389E+01 -2.50685245398E+01 -2.50685245407E+01 -2.50685245416E+01 -2.50685245425E+01 -2.50685245435E+01 -2.50685245445E+01 -2.50685245455E+01 -2.50685245465E+01 -2.50685245476E+01 -2.50685245487E+01 -2.50685245498E+01 -2.50685245510E+01 -2.50685245522E+01 -2.50685245534E+01 -2.50685245546E+01 -2.50685245559E+01 -2.50685245572E+01 -2.50685245585E+01 -2.50685245599E+01 -2.50685245613E+01 -2.50685245627E+01 -2.50685245642E+01 -2.50685245657E+01 -2.50685245673E+01 -2.50685245688E+01 -2.50685245705E+01 -2.50685245721E+01 -2.50685245739E+01 -2.50685245756E+01 -2.50685245774E+01 -2.50685245793E+01 -2.50685245812E+01 -2.50685245831E+01 -2.50685245851E+01 -2.50685245871E+01 -2.50685245892E+01 -2.50685245914E+01 -2.50685245936E+01 -2.50685245958E+01 -2.50685245981E+01 -2.50685246005E+01 -2.50685246029E+01 -2.50685246054E+01 -2.50685246080E+01 -2.50685246106E+01 -2.50685246133E+01 -2.50685246161E+01 -2.50685246189E+01 -2.50685246218E+01 -2.50685246248E+01 -2.50685246278E+01 -2.50685246309E+01 -2.50685246341E+01 -2.50685246374E+01 -2.50685246408E+01 -2.50685246442E+01 -2.50685246478E+01 -2.50685246514E+01 -2.50685246551E+01 -2.50685246589E+01 -2.50685246628E+01 -2.50685246668E+01 -2.50685246709E+01 -2.50685246752E+01 -2.50685246795E+01 -2.50685246839E+01 -2.50685246884E+01 -2.50685246931E+01 -2.50685246979E+01 -2.50685247028E+01 -2.50685247078E+01 -2.50685247129E+01 -2.50685247182E+01 -2.50685247236E+01 -2.50685247292E+01 -2.50685247349E+01 -2.50685247407E+01 -2.50685247467E+01 -2.50685247528E+01 -2.50685247591E+01 -2.50685247655E+01 -2.50685247721E+01 -2.50685247789E+01 -2.50685247858E+01 -2.50685247930E+01 -2.50685248003E+01 -2.50685248078E+01 -2.50685248154E+01 -2.50685248233E+01 -2.50685248314E+01 -2.50685248396E+01 -2.50685248481E+01 -2.50685248568E+01 -2.50685248657E+01 -2.50685248749E+01 -2.50685248842E+01 -2.50685248938E+01 -2.50685249037E+01 -2.50685249138E+01 -2.50685249241E+01 -2.50685249348E+01 -2.50685249456E+01 -2.50685249568E+01 -2.50685249683E+01 -2.50685249800E+01 -2.50685249920E+01 -2.50685250043E+01 -2.50685250170E+01 -2.50685250300E+01 -2.50685250432E+01 -2.50685250569E+01 -2.50685250708E+01 -2.50685250852E+01 -2.50685250998E+01 -2.50685251149E+01 -2.50685251303E+01 -2.50685251462E+01 -2.50685251624E+01 -2.50685251790E+01 -2.50685251961E+01 -2.50685252136E+01 -2.50685252315E+01 -2.50685252499E+01 -2.50685252687E+01 -2.50685252881E+01 -2.50685253079E+01 -2.50685253282E+01 -2.50685253490E+01 -2.50685253703E+01 -2.50685253922E+01 -2.50685254147E+01 -2.50685254377E+01 -2.50685254613E+01 -2.50685254854E+01 -2.50685255102E+01 -2.50685255356E+01 -2.50685255617E+01 -2.50685255884E+01 -2.50685256158E+01 -2.50685256439E+01 -2.50685256727E+01 -2.50685257022E+01 -2.50685257324E+01 -2.50685257634E+01 -2.50685257952E+01 -2.50685258278E+01 -2.50685258613E+01 -2.50685258955E+01 -2.50685259307E+01 -2.50685259667E+01 -2.50685260036E+01 -2.50685260414E+01 -2.50685260802E+01 -2.50685261200E+01 -2.50685261608E+01 -2.50685262026E+01 -2.50685262455E+01 -2.50685262894E+01 -2.50685263344E+01 -2.50685263806E+01 -2.50685264279E+01 -2.50685264765E+01 -2.50685265262E+01 -2.50685265772E+01 -2.50685266295E+01 -2.50685266831E+01 -2.50685267380E+01 -2.50685267943E+01 -2.50685268521E+01 -2.50685269112E+01 -2.50685269719E+01 -2.50685270341E+01 -2.50685270978E+01 -2.50685271632E+01 -2.50685272301E+01 -2.50685272988E+01 -2.50685273692E+01 -2.50685274413E+01 -2.50685275153E+01 -2.50685275911E+01 -2.50685276688E+01 -2.50685277484E+01 -2.50685278301E+01 -2.50685279138E+01 -2.50685279995E+01 -2.50685280875E+01 -2.50685281776E+01 -2.50685282699E+01 -2.50685283646E+01 -2.50685284617E+01 -2.50685285611E+01 -2.50685286630E+01 -2.50685287675E+01 -2.50685288746E+01 -2.50685289844E+01 -2.50685290969E+01 -2.50685292121E+01 -2.50685293303E+01 -2.50685294514E+01 -2.50685295755E+01 -2.50685297027E+01 -2.50685298330E+01 -2.50685299666E+01 -2.50685301035E+01 -2.50685302438E+01 -2.50685303876E+01 -2.50685305349E+01 -2.50685306859E+01 -2.50685308406E+01 -2.50685309991E+01 -2.50685311616E+01 -2.50685313281E+01 -2.50685314986E+01 -2.50685316734E+01 -2.50685318525E+01 -2.50685320360E+01 -2.50685322241E+01 -2.50685324167E+01 -2.50685326141E+01 -2.50685328163E+01 -2.50685330235E+01 -2.50685332358E+01 -2.50685334533E+01 -2.50685336760E+01 -2.50685339043E+01 -2.50685341381E+01 -2.50685343776E+01 -2.50685346230E+01 -2.50685348743E+01 -2.50685351318E+01 -2.50685353955E+01 -2.50685356656E+01 -2.50685359423E+01 -2.50685362257E+01 -2.50685365159E+01 -2.50685368132E+01 -2.50685371176E+01 -2.50685374294E+01 -2.50685377486E+01 -2.50685380756E+01 -2.50685384104E+01 -2.50685387532E+01 -2.50685391042E+01 -2.50685394636E+01 -2.50685398316E+01 -2.50685402084E+01 -2.50685405941E+01 -2.50685409890E+01 -2.50685413932E+01 -2.50685418070E+01 -2.50685422306E+01 -2.50685426642E+01 -2.50685431079E+01 -2.50685435621E+01 -2.50685440269E+01 -2.50685445025E+01 -2.50685449893E+01 -2.50685454874E+01 -2.50685459970E+01 -2.50685465185E+01 -2.50685470519E+01 -2.50685475977E+01 -2.50685481560E+01 -2.50685487271E+01 -2.50685493112E+01 -2.50685499086E+01 -2.50685505196E+01 -2.50685511443E+01 -2.50685517832E+01 -2.50685524364E+01 -2.50685531043E+01 -2.50685537870E+01 -2.50685544849E+01 -2.50685551983E+01 -2.50685559274E+01 -2.50685566724E+01 -2.50685574338E+01 -2.50685582117E+01 -2.50685590064E+01 -2.50685598183E+01 -2.50685606476E+01 -2.50685614945E+01 -2.50685623594E+01 -2.50685632425E+01 -2.50685641441E+01 -2.50685650645E+01 -2.50685660040E+01 -2.50685669627E+01 -2.50685679410E+01 -2.50685689392E+01 -2.50685699574E+01 -2.50685709959E+01 -2.50685720549E+01 -2.50685731347E+01 -2.50685742355E+01 -2.50685753575E+01 -2.50685765009E+01 -2.50685776658E+01 -2.50685788525E+01 -2.50685800611E+01 -2.50685812916E+01 -2.50685825444E+01 -2.50685838193E+01 -2.50685851166E+01 -2.50685864363E+01 -2.50685877783E+01 -2.50685891428E+01 -2.50685905296E+01 -2.50685919388E+01 -2.50685933702E+01 -2.50685948237E+01 -2.50685962992E+01 -2.50685977964E+01 -2.50685993151E+01 -2.50686008550E+01 -2.50686024157E+01 -2.50686039969E+01 -2.50686055981E+01 -2.50686072187E+01 -2.50686088582E+01 -2.50686105160E+01 -2.50686121912E+01 -2.50686138831E+01 -2.50686155908E+01 -2.50686173134E+01 -2.50686190496E+01 -2.50686207984E+01 -2.50686225584E+01 -2.50686243283E+01 -2.50686261065E+01 -2.50686278914E+01 -2.50686296811E+01 -2.50686314738E+01 -2.50686332673E+01 -2.50686350593E+01 -2.50686368475E+01 -2.50686386292E+01 -2.50686404016E+01 -2.50686421618E+01 -2.50686439063E+01 -2.50686456319E+01 -2.50686473347E+01 -2.50686490108E+01 -2.50686506559E+01 -2.50686522656E+01 -2.50686538349E+01 -2.50686553587E+01 -2.50686568315E+01 -2.50686582475E+01 -2.50686596002E+01 -2.50686608832E+01 -2.50686620892E+01 -2.50686632109E+01 -2.50686642400E+01 -2.50686651683E+01 -2.50686659864E+01 -2.50686666850E+01 -2.50686672537E+01 -2.50686676818E+01 -2.50686679577E+01 -2.50686680693E+01 -2.50686680036E+01 -2.50686677470E+01 -2.50686672850E+01 -2.50686666022E+01 -2.50686656823E+01 -2.50686645082E+01 -2.50686630615E+01 -2.50686613229E+01 -2.50686592722E+01 -2.50686568876E+01 -2.50686541463E+01 -2.50686510241E+01 -2.50686474956E+01 -2.50686435337E+01 -2.50686391099E+01 -2.50686341941E+01 -2.50686287544E+01 -2.50686227571E+01 -2.50686161668E+01 -2.50686089459E+01 -2.50686010549E+01 -2.50685924519E+01 -2.50685830927E+01 -2.50685729309E+01 -2.50685619172E+01 -2.50685499998E+01 -2.50685371240E+01 -2.50685232321E+01 -2.50685082632E+01 -2.50684921530E+01 -2.50684748340E+01 -2.50684562348E+01 -2.50684362800E+01 -2.50684148904E+01 -2.50683919823E+01 -2.50683674677E+01 -2.50683412536E+01 -2.50683132422E+01 -2.50682833303E+01 -2.50682514094E+01 -2.50682173649E+01 -2.50681810764E+01 -2.50681424167E+01 -2.50681012521E+01 -2.50680574418E+01 -2.50680108374E+01 -2.50679612828E+01 -2.50679086134E+01 -2.50678526560E+01 -2.50677932284E+01 -2.50677301388E+01 -2.50676631849E+01 -2.50675921544E+01 -2.50675168234E+01 -2.50674369563E+01 -2.50673523055E+01 -2.50672626101E+01 -2.50671675957E+01 -2.50670669736E+01 -2.50669604402E+01 -2.50668476759E+01 -2.50667283447E+01 -2.50666020929E+01 -2.50664685487E+01 -2.50663273211E+01 -2.50661779987E+01 -2.50660201490E+01 -2.50658533170E+01 -2.50656770246E+01 -2.50654907689E+01 -2.50652940212E+01 -2.50650862255E+01 -2.50648667976E+01 -2.50646351233E+01 -2.50643905568E+01 -2.50641324195E+01 -2.50638599982E+01 -2.50635725432E+01 -2.50632692669E+01 -2.50629493413E+01 -2.50626118968E+01 -2.50622560193E+01 -2.50618807487E+01 -2.50614850762E+01 -2.50610679420E+01 -2.50606282329E+01 -2.50601647796E+01 -2.50596763541E+01 -2.50591616663E+01 -2.50586193617E+01 -2.50580480177E+01 -2.50574461407E+01 -2.50568121622E+01 -2.50561444355E+01 -2.50554412318E+01 -2.50547007364E+01 -2.50539210441E+01 -2.50531001554E+01 -2.50522359716E+01 -2.50513262901E+01 -2.50503687997E+01 -2.50493610751E+01 -2.50483005713E+01 -2.50471846187E+01 -2.50460104163E+01 -2.50447750260E+01 -2.50434753660E+01 -2.50421082041E+01 -2.50406701506E+01 -2.50391576509E+01 -2.50375669779E+01 -2.50358942239E+01 -2.50341352924E+01 -2.50322858892E+01 -2.50303415133E+01 -2.50282974477E+01 -2.50261487492E+01 -2.50238902382E+01 -2.50215164881E+01 -2.50190218140E+01 -2.50164002613E+01 -2.50136455933E+01 -2.50107512789E+01 -2.50077104794E+01 -2.50045160349E+01 -2.50011604505E+01 -2.49976358810E+01 -2.49939341163E+01 -2.49900465652E+01 -2.49859642394E+01 -2.49816777360E+01 -2.49771772204E+01 -2.49724524078E+01 -2.49674925441E+01 -2.49622863869E+01 -2.49568221849E+01 -2.49510876571E+01 -2.49450699712E+01 -2.49387557215E+01 -2.49321309055E+01 -2.49251809009E+01 -2.49178904405E+01 -2.49102435876E+01 -2.49022237098E+01 -2.48938134529E+01 -2.48849947134E+01 -2.48757486104E+01 -2.48660554575E+01 -2.48558947331E+01 -2.48452450507E+01 -2.48340841283E+01 -2.48223887572E+01 -2.48101347706E+01 -2.47972970109E+01 -2.47838492975E+01 -2.47697643936E+01 -2.47550139723E+01 -2.47395685837E+01 -2.47233976199E+01 -2.47064692819E+01 -2.46887505447E+01 -2.46702071236E+01 -2.46508034401E+01 -2.46305025885E+01 -2.46092663025E+01 -2.45870549230E+01 -2.45638273660E+01 -2.45395410917E+01 -2.45141520751E+01 -2.44876147776E+01 -2.44598821200E+01 -2.44309054580E+01 -2.44006345591E+01 -2.43690175825E+01 -2.43360010616E+01 -2.43015298891E+01 -2.42655473063E+01 -2.42279948959E+01 -2.41888125791E+01 -2.41479386173E+01 -2.41053096192E+01 -2.40608605540E+01 -2.40145247702E+01 -2.39662340216E+01 -2.39159185013E+01 -2.38635068834E+01 -2.38089263738E+01 -2.37521027706E+01 -2.36929605356E+01 -2.36314228763E+01 -2.35674118415E+01 -2.35008484287E+01 -2.34316527072E+01 -2.33597439562E+01 -2.32850408192E+01 -2.32074614773E+01 -2.31269238407E+01 -2.30433457614E+01 -2.29566452685E+01 -2.28667408268E+01 -2.27735516209E+01 -2.26769978673E+01 -2.25770011553E+01 -2.24734848198E+01 -2.23663743475E+01 -2.22555978199E+01 -2.21410863948E+01 -2.20227748295E+01 -2.19006020494E+01 -2.17745117640E+01 -2.16444531363E+01 -2.15103815064E+01 -2.13722591775E+01 -2.12300562657E+01 -2.10837516213E+01 -2.09333338263E+01 -2.07788022746E+01 -2.06201683413E+01 -2.04574566496E+01 -2.02907064411E+01 -2.01199730579E+01 -1.99453295439E+01 -1.97668683713E+01 -1.95847032967E+01 -1.93989713479E+01 -1.92098349377E+01 -1.90174840912E+01 -1.88221387623E+01 -1.86240511958E+01 -1.84235082656E+01 -1.82208336815E+01 -1.80163899097E+01 -1.78105795802E+01 -1.76038460682E+01 -1.73966728202E+01 -1.71895808590E+01 -1.69831237314E+01 -1.67778789852E+01 -1.65744350735E+01 -1.63733724356E+01 -1.61756365432E+01 -1.59887945321E+01 -1.57992531114E+01 -1.55859978453E+01 -1.53615086052E+01 -1.51387085561E+01 -1.49181503254E+01 -1.47003484210E+01 -1.44857592167E+01 -1.42747603771E+01 -1.40676316935E+01 -1.38645398593E+01 -1.36655300219E+01 -1.34705268351E+01 -1.32793470478E+01 -1.30917243882E+01 -1.29073457469E+01 -1.27258957195E+01 -1.25471048084E+01 -1.23707953651E+01 -1.21969189247E+01 -1.20255790431E+01 -1.18570350444E+01 -1.16916841307E+01 -1.15300219453E+01 -1.13725846908E+01 -1.12198788924E+01 -1.10723073022E+01 -1.09301006402E+01 -1.07932644403E+01 -1.06615482336E+01 -1.05344412148E+01 -1.04111952862E+01 -1.02908738776E+01 -1.01724237824E+01 -1.00547675464E+01 -9.93691539383E+00 -9.81809778131E+00 -9.69792195132E+00 -9.57666743034E+00 -9.45582043267E+00 -9.33728059180E+00 -9.22091172524E+00 -9.10612320759E+00 -8.99278424080E+00 -8.88087480446E+00 -8.77037527253E+00 -8.66126640032E+00 -8.55352931184E+00 -8.44714548757E+00 -8.34209675266E+00 -8.23836526552E+00 -8.13593350688E+00 -8.03478426922E+00 -7.93490064664E+00 -7.83626602514E+00 -7.73886407335E+00 -7.64267873356E+00 -7.54769421320E+00 -7.45389497674E+00 -7.36126573784E+00 -7.26979145199E+00 -7.17945730937E+00 -7.09024872816E+00 -7.00215134808E+00 -6.91515102428E+00 -6.82923382153E+00 -6.74438600867E+00 -6.66059405335E+00 -6.57784461703E+00 -6.49612455021E+00 -6.41542088789E+00 -6.33572084529E+00 -6.25701181373E+00 -6.17928135678E+00 -6.10251720649E+00 -6.02670725990E+00 -5.95183957566E+00 -5.87790237084E+00 -5.80488401784E+00 -5.73277304152E+00 -5.66155811633E+00 -5.59122806372E+00 -5.52177184950E+00 -5.45317858150E+00 -5.38543750709E+00 -5.31853801095E+00 -5.25246961281E+00 -5.18722196546E+00 -5.12278485273E+00 -5.05914818745E+00 -4.99630200961E+00 -4.93423648449E+00 -4.87294190086E+00 -4.81240866927E+00 -4.75262732034E+00 -4.69358850315E+00 -4.63528298361E+00 -4.57770164290E+00 -4.52083547597E+00 -4.46467559004E+00 -4.40921320316E+00 -4.35443964276E+00 -4.30034634430E+00 -4.24684130927E+00 -4.19399984542E+00 -4.14198782612E+00 -4.09062197478E+00 -4.03980810553E+00 -3.98960018516E+00 -3.94001577926E+00 -3.89109933371E+00 -3.84279037847E+00 -3.79505577404E+00 -3.74791407685E+00 -3.70135792294E+00 -3.65538003977E+00 -3.60997324501E+00 -3.56513044551E+00 -3.52084463611E+00 -3.47710889863E+00 -3.43391640074E+00 -3.39126039497E+00 -3.34913421760E+00 -3.30753128772E+00 -3.26644510612E+00 -3.22586925440E+00 -3.18579739388E+00 -3.14622326473E+00 -3.10714068493E+00 -3.06854354935E+00 -3.03042582883E+00 -2.99278156923E+00 -2.95560489049E+00 -2.91888998579E+00 -2.88263112055E+00 -2.84682263163E+00 -2.81145892637E+00 -2.77653448178E+00 -2.74204384358E+00 -2.70798162543E+00 -2.67434250802E+00 -2.64112123822E+00 -2.60831262826E+00 -2.57591155490E+00 -2.54391295857E+00 -2.51231184260E+00 -2.48110327238E+00 -2.45028237456E+00 -2.41984433631E+00 -2.38978440447E+00 -2.36009788484E+00 -2.33078014140E+00 -2.30182659557E+00 -2.27323272545E+00 -2.24499406515E+00 -2.21710620402E+00 -2.18956478601E+00 -2.16236550892E+00 -2.13550412376E+00 -2.10897643408E+00 -2.08277829531E+00 -2.05690561414E+00 -2.03135434782E+00 -2.00612050365E+00 -1.98120013825E+00 -1.95658935706E+00 -1.93228431367E+00 -1.90828120929E+00 -1.88457629216E+00 -1.86116585697E+00 -1.83804624434E+00 -1.81521384022E+00 -1.79266507539E+00 -1.77039642492E+00 -1.74840440761E+00 -1.72668558549E+00 -1.70523656331E+00 -1.68405398801E+00 -1.66313454821E+00 -1.64247497372E+00 -1.62207203504E+00 -1.60192254286E+00 -1.58202334759E+00 -1.56237133883E+00 -1.54296344494E+00 -1.52379663254E+00 -1.50486790602E+00 -1.48617430710E+00 -1.46771291437E+00 -1.44948084281E+00 -1.43147524333E+00 -1.41369330234E+00 -1.39613224130E+00 -1.37878931627E+00 -1.36166181749E+00 -1.34474706891E+00 -1.32804242783E+00 -1.31154528442E+00 -1.29525306132E+00 -1.27916321325E+00 -1.26327322659E+00 -1.24758061899E+00 -1.23208293893E+00 -1.21677776540E+00 -1.20166270749E+00 -1.18673540397E+00 -1.17199352297E+00 -1.15743476161E+00 -1.14305684558E+00 -1.12885752885E+00 -1.11483459327E+00 -1.10098584824E+00 -1.08730913037E+00 -1.07380230312E+00 -1.06046325649E+00 -1.04728990666E+00 -1.03428019569E+00 -1.02143209121E+00 -1.00874358603E+00 -9.96212697919E-01 -9.83837469240E-01 -9.71615966654E-01 -9.59546280824E-01 -9.47626526116E-01 -9.35854840302E-01 -9.24229384272E-01 -9.12748341747E-01 -9.01409918995E-01 -8.90212344551E-01 -8.79153868943E-01 -8.68232764418E-01 -8.57447324674E-01 -8.46795864591E-01 -8.36276719972E-01 -8.25888247281E-01 -8.15628823390E-01 -8.05496845322E-01 -7.95490730004E-01 -7.85608914019E-01 -7.75849853365E-01 -7.66212023208E-01 -7.56693917652E-01 -7.47294049498E-01 -7.38010950016E-01 -7.28843168714E-01 -7.19789273113E-01 -7.10847848521E-01 -7.02017497818E-01 -6.93296841229E-01 -6.84684516119E-01 -6.76179176774E-01 -6.67779494191E-01 -6.59484155874E-01 -6.51291865211E-01 -6.43201342973E-01 -6.35211324506E-01 -6.27320561310E-01 -6.19527820396E-01 -6.11831884084E-01 -6.04231549821E-01 -5.96725629990E-01 -5.89312951724E-01 -5.81992356725E-01 -5.74762701081E-01 -5.67622855087E-01 -5.60571608216E-01 -5.53607684502E-01 -5.46730659431E-01 -5.39939064577E-01 -5.33231833767E-01 -5.26607921517E-01 -5.20066292828E-01 -5.13605925556E-01 -5.07225810255E-01 -5.00924950020E-01 -4.94702360329E-01 -4.88557068889E-01 -4.82488115486E-01 -4.76494551833E-01 -4.70575441424E-01 -4.64729859387E-01 -4.58956892336E-01 -4.53255636525E-01 -4.47625204581E-01 -4.42064714987E-01 -4.36573298903E-01 -4.31150098286E-01 -4.25794265748E-01 -4.20504964431E-01 -4.15281367870E-01 -4.10122659867E-01 -4.05028034365E-01 -3.99996695317E-01 -3.95027856566E-01 -3.90120741722E-01 -3.85274584037E-01 -3.80488626289E-01 -3.75762120664E-01 -3.71094328634E-01 -3.66484520848E-01 -3.61931977015E-01 -3.57435985793E-01 -3.52995844666E-01 -3.48610859859E-01 -3.44280346207E-01 -3.40003627060E-01 -3.35780034172E-01 -3.31608907597E-01 -3.27489595589E-01 -3.23421454496E-01 -3.19403848663E-01 -3.15436150332E-01 -3.11517739541E-01 -3.07648004031E-01 -3.03826339147E-01 -3.00052147746E-01 -2.96324840097E-01 -2.92643833815E-01 -2.89008553727E-01 -2.85418431814E-01 -2.81872907111E-01 -2.78371425623E-01 -2.74913440237E-01 -2.71498410636E-01 -2.68125803213E-01 -2.64795090993E-01 -2.61505753544E-01 -2.58257276902E-01 -2.55049153484E-01 -2.51880882015E-01 -2.48751967447E-01 -2.45661920880E-01 -2.42610259488E-01 -2.39596506442E-01 -2.36620190838E-01 -2.33680847620E-01 -2.30778017510E-01 -2.27911246935E-01 -2.25080087956E-01 -2.22284098198E-01 -2.19522840783E-01 -2.16795884259E-01 -2.14102802533E-01 -2.11443174805E-01 -2.08816585503E-01 -2.06222624218E-01 -2.03660885637E-01 -2.01130969484E-01 -1.98632480454E-01 -1.96165028153E-01 -1.93728227038E-01 -1.91321696351E-01 -1.88945060069E-01 -1.86597946837E-01 -1.84279989914E-01 -1.81990827115E-01 -1.79730100752E-01 -1.77497457583E-01 -1.75292548753E-01 -1.73115029741E-01 -1.70964560304E-01 -1.68840804427E-01 -1.66743430270E-01 -1.64672110112E-01 -1.62626520307E-01 -1.60606341227E-01 -1.58611257214E-01 -1.56640956533E-01 -1.54695131321E-01 -1.52773477537E-01 -1.50875694919E-01 -1.49001486936E-01 -1.47150560739E-01 -1.45322627116E-01 -1.43517400449E-01 -1.41734598668E-01 -1.39973943207E-01 -1.38235158958E-01 -1.36517974235E-01 -1.34822120723E-01 -1.33147333441E-01 -1.31493350702E-01 -1.29859914066E-01 -1.28246768305E-01 -1.26653661363E-01 -1.25080344314E-01 -1.23526571322E-01 -1.21992099609E-01 -1.20476689409E-01 -1.18980103938E-01 -1.17502109349E-01 -1.16042474705E-01 -1.14600971933E-01 -1.13177375796E-01 -1.11771463854E-01 -1.10383016431E-01 -1.09011816579E-01 -1.07657650045E-01 -1.06320305237E-01 -1.04999573194E-01 -1.03695247548E-01 -1.02407124495E-01 -1.01135002764E-01 -9.98786835822E-02 -9.86379706483E-02 -9.74126700981E-02 -9.62025904757E-02 -9.50075427038E-02 -9.38273400537E-02 -9.26617981164E-02 -9.15107347736E-02 -9.03739701693E-02 -8.92513266817E-02 -8.81426288955E-02 -8.70477035743E-02 -8.59663796340E-02 -8.48984881153E-02 -8.38438621582E-02 -8.28023369751E-02 -8.17737498256E-02 -8.07579399909E-02 -7.97547487486E-02 2.64821146096E-08 2.71525128008E-08 2.78398822169E-08 2.85446524870E-08 2.92672641166E-08 3.00081687627E-08 3.07678295160E-08 3.15467211905E-08 3.23453306202E-08 3.31641569633E-08 3.40037120145E-08 3.48645205246E-08 3.57471205285E-08 3.66520636818E-08 3.75799156051E-08 3.85312562380E-08 3.95066802014E-08 4.05067971691E-08 4.15322322489E-08 4.25836263736E-08 4.36616367011E-08 4.47669370254E-08 4.59002181981E-08 4.70621885596E-08 4.82535743821E-08 4.94751203238E-08 5.07275898938E-08 5.20117659299E-08 5.33284510876E-08 5.46784683419E-08 5.60626615013E-08 5.74818957361E-08 5.89370581182E-08 6.04290581761E-08 6.19588284635E-08 6.35273251416E-08 6.51355285775E-08 6.67844439563E-08 6.84751019099E-08 7.02085591607E-08 7.19858991827E-08 7.38082328782E-08 7.56766992725E-08 7.75924662255E-08 7.95567311622E-08 8.15707218205E-08 8.36356970191E-08 8.57529474443E-08 8.79237964562E-08 9.01496009168E-08 9.24317520371E-08 9.47716762474E-08 9.71708360886E-08 9.96307311264E-08 1.02152898889E-07 1.04738915827E-07 1.07390398300E-07 1.10109003586E-07 1.12896430919E-07 1.15754422548E-07 1.18684764830E-07 1.21689289343E-07 1.24769874032E-07 1.27928444385E-07 1.31166974631E-07 1.34487488982E-07 1.37892062891E-07 1.41382824354E-07 1.44961955237E-07 1.48631692641E-07 1.52394330302E-07 1.56252220022E-07 1.60207773140E-07 1.64263462042E-07 1.68421821699E-07 1.72685451262E-07 1.77057015677E-07 1.81539247357E-07 1.86134947887E-07 1.90846989775E-07 1.95678318252E-07 2.00631953105E-07 2.05710990572E-07 2.10918605274E-07 2.16258052200E-07 2.21732668740E-07 2.27345876775E-07 2.33101184811E-07 2.39002190178E-07 2.45052581272E-07 2.51256139866E-07 2.57616743470E-07 2.64138367759E-07 2.70825089055E-07 2.77681086874E-07 2.84710646542E-07 2.91918161872E-07 2.99308137910E-07 3.06885193754E-07 3.14654065435E-07 3.22619608887E-07 3.30786802972E-07 3.39160752600E-07 3.47746691918E-07 3.56549987579E-07 3.65576142103E-07 3.74830797308E-07 3.84319737846E-07 3.94048894812E-07 4.04024349455E-07 4.14252336979E-07 4.24739250440E-07 4.35491644744E-07 4.46516240743E-07 4.57819929437E-07 4.69409776281E-07 4.81293025605E-07 4.93477105137E-07 5.05969630653E-07 5.18778410733E-07 5.31911451644E-07 5.45376962345E-07 5.59183359619E-07 5.73339273336E-07 5.87853551845E-07 6.02735267509E-07 6.17993722375E-07 6.33638453986E-07 6.49679241353E-07 6.66126111056E-07 6.82989343524E-07 7.00279479454E-07 7.18007326404E-07 7.36183965551E-07 7.54820758617E-07 7.73929354972E-07 7.93521698916E-07 8.13610037153E-07 8.34206926439E-07 8.55325241437E-07 8.76978182769E-07 8.99179285265E-07 9.21942426424E-07 9.45281835097E-07 9.69212100378E-07 9.93748180728E-07 1.01890541333E-06 1.04469952366E-06 1.07114663536E-06 1.09826328028E-06 1.12606640883E-06 1.15457340058E-06 1.18380207512E-06 1.21377070321E-06 1.24449801822E-06 1.27600322778E-06 1.30830602589E-06 1.34142660515E-06 1.37538566943E-06 1.41020444678E-06 1.44590470277E-06 1.48250875403E-06 1.52003948225E-06 1.55852034847E-06 1.59797540775E-06 1.63842932424E-06 1.67990738655E-06 1.72243552365E-06 1.76604032099E-06 1.81074903719E-06 1.85658962108E-06 1.90359072916E-06 1.95178174353E-06 2.00119279028E-06 2.05185475832E-06 2.10379931870E-06 2.15705894442E-06 2.21166693076E-06 2.26765741607E-06 2.32506540317E-06 2.38392678119E-06 2.44427834807E-06 2.50615783355E-06 2.56960392280E-06 2.63465628058E-06 2.70135557607E-06 2.76974350836E-06 2.83986283245E-06 2.91175738608E-06 2.98547211710E-06 3.06105311164E-06 3.13854762289E-06 3.21800410073E-06 3.29947222198E-06 3.38300292156E-06 3.46864842428E-06 3.55646227758E-06 3.64649938503E-06 3.73881604065E-06 3.83346996421E-06 3.93052033729E-06 4.03002784033E-06 4.13205469066E-06 4.23666468138E-06 4.34392322132E-06 4.45389737599E-06 4.56665590955E-06 4.68226932783E-06 4.80080992253E-06 4.92235181644E-06 5.04697100983E-06 5.17474542808E-06 5.30575497044E-06 5.44008156005E-06 5.57780919530E-06 5.71902400233E-06 5.86381428908E-06 6.01227060050E-06 6.16448577533E-06 6.32055500419E-06 6.48057588926E-06 6.64464850537E-06 6.81287546274E-06 6.98536197121E-06 7.16221590621E-06 7.34354787630E-06 7.52947129251E-06 7.72010243941E-06 7.91556054795E-06 8.11596787023E-06 8.32144975606E-06 8.53213473160E-06 8.74815457987E-06 8.96964442341E-06 9.19674280894E-06 9.42959179429E-06 9.66833703741E-06 9.91312788777E-06 1.01641174800E-05 1.04214628299E-05 1.06853249329E-05 1.09558688653E-05 1.12332638875E-05 1.15176835504E-05 1.18093058042E-05 1.21083131101E-05 1.24148925548E-05 1.27292359681E-05 1.30515400432E-05 1.33820064598E-05 1.37208420115E-05 1.40682587350E-05 1.44244740436E-05 1.47897108637E-05 1.51641977748E-05 1.55481691529E-05 1.59418653183E-05 1.63455326861E-05 1.67594239212E-05 1.71837980974E-05 1.76189208600E-05 1.80650645927E-05 1.85225085894E-05 1.89915392294E-05 1.94724501576E-05 1.99655424695E-05 2.04711249006E-05 2.09895140204E-05 2.15210344323E-05 2.20660189771E-05 2.26248089434E-05 2.31977542821E-05 2.37852138272E-05 2.43875555215E-05 2.50051566486E-05 2.56384040709E-05 2.62876944734E-05 2.69534346137E-05 2.76360415788E-05 2.83359430480E-05 2.90535775632E-05 2.97893948051E-05 3.05438558776E-05 3.13174335986E-05 3.21106127992E-05 3.29238906293E-05 3.37577768726E-05 3.46127942682E-05 3.54894788415E-05 3.63883802432E-05 3.73100620972E-05 3.82551023570E-05 3.92240936719E-05 4.02176437624E-05 4.12363758050E-05 4.22809288271E-05 4.33519581123E-05 4.44501356162E-05 4.55761503921E-05 4.67307090287E-05 4.79145360988E-05 4.91283746192E-05 5.03729865233E-05 5.16491531448E-05 5.29576757151E-05 5.42993758728E-05 5.56750961867E-05 5.70857006924E-05 5.85320754427E-05 6.00151290723E-05 6.15357933774E-05 6.30950239098E-05 6.46938005874E-05 6.63331283196E-05 6.80140376494E-05 6.97375854128E-05 7.15048554142E-05 7.33169591206E-05 7.51750363731E-05 7.70802561178E-05 7.90338171549E-05 8.10369489080E-05 8.30909122135E-05 8.51970001310E-05 8.73565387740E-05 8.95708881634E-05 9.18414431032E-05 9.41696340790E-05 9.65569281802E-05 9.90048300469E-05 1.01514882841E-04 1.04088669246E-04 1.06727812485E-04 1.09433977378E-04 1.12208871417E-04 1.15054245873E-04 1.17971896935E-04 1.20963666875E-04 1.24031445245E-04 1.27177170110E-04 1.30402829309E-04 1.33710461751E-04 1.37102158747E-04 1.40580065375E-04 1.44146381886E-04 1.47803365144E-04 1.51553330105E-04 1.55398651340E-04 1.59341764588E-04 1.63385168370E-04 1.67531425626E-04 1.71783165408E-04 1.76143084620E-04 1.80613949799E-04 1.85198598946E-04 1.89899943412E-04 1.94720969829E-04 1.99664742097E-04 2.04734403425E-04 2.09933178428E-04 2.15264375282E-04 2.20731387938E-04 2.26337698395E-04 2.32086879041E-04 2.37982595052E-04 2.44028606863E-04 2.50228772709E-04 2.56587051226E-04 2.63107504139E-04 2.69794299016E-04 2.76651712100E-04 2.83684131226E-04 2.90896058810E-04 2.98292114936E-04 3.05877040517E-04 3.13655700552E-04 3.21633087479E-04 3.29814324613E-04 3.38204669693E-04 3.46809518526E-04 3.55634408731E-04 3.64685023598E-04 3.73967196056E-04 3.83486912753E-04 3.93250318256E-04 4.03263719372E-04 4.13533589599E-04 4.24066573701E-04 4.34869492421E-04 4.45949347329E-04 4.57313325817E-04 4.68968806239E-04 4.80923363202E-04 4.93184773017E-04 5.05761019311E-04 5.18660298806E-04 5.31891027271E-04 5.45461845657E-04 5.59381626409E-04 5.73659479978E-04 5.88304761523E-04 6.03327077821E-04 6.18736294390E-04 6.34542542821E-04 6.50756228348E-04 6.67388037642E-04 6.84448946848E-04 7.01950229876E-04 7.19903466944E-04 7.38320553390E-04 7.57213708767E-04 7.76595486209E-04 7.96478782108E-04 8.16876846093E-04 8.37803291318E-04 8.59272105090E-04 8.81297659833E-04 9.03894724399E-04 9.27078475751E-04 9.50864511022E-04 9.75268859962E-04 1.00030799780E-03 1.02599885851E-03 1.05235884852E-03 1.07940586092E-03 1.10715829000E-03 1.13563504649E-03 1.16485557306E-03 1.19483986055E-03 1.22560846464E-03 1.25718252303E-03 1.28958377337E-03 1.32283457163E-03 1.35695791116E-03 1.39197744245E-03 1.42791749344E-03 1.46480309071E-03 1.50265998121E-03 1.54151465487E-03 1.58139436797E-03 1.62232716728E-03 1.66434191512E-03 1.70746831523E-03 1.75173693957E-03 1.79717925612E-03 1.84382765760E-03 1.89171549122E-03 1.94087708955E-03 1.99134780245E-03 2.04316403011E-03 2.09636325738E-03 2.15098408927E-03 2.20706628776E-03 2.26465080992E-03 2.32377984749E-03 2.38449686785E-03 2.44684665651E-03 2.51087536115E-03 2.57663053736E-03 2.64416119594E-03 2.71351785211E-03 2.78475257641E-03 2.85791904761E-03 2.93307260754E-03 3.01027031798E-03 3.08957101971E-03 3.17103539376E-03 3.25472602502E-03 3.34070746818E-03 3.42904631623E-03 3.51981127153E-03 3.61307321962E-03 3.70890530582E-03 3.80738301471E-03 3.90858425277E-03 4.01258943403E-03 4.11948156914E-03 4.22934635779E-03 4.34227228467E-03 4.45835071921E-03 4.57767601902E-03 4.70034563750E-03 4.82646023541E-03 4.95612379690E-03 5.08944374994E-03 5.22653109145E-03 5.36750051721E-03 5.51247055686E-03 5.66156371406E-03 5.81490661213E-03 5.97263014525E-03 6.13486963555E-03 6.30176499626E-03 6.47346090112E-03 6.65010696038E-03 6.83185790351E-03 7.01887376901E-03 7.21132010146E-03 7.40936815614E-03 7.61319511148E-03 7.82298428967E-03 8.03892538563E-03 8.26121470476E-03 8.49005540959E-03 8.72565777596E-03 8.96823945868E-03 9.21802576734E-03 9.47524995233E-03 9.74015350170E-03 1.00129864489E-02 1.02940076922E-02 1.05834853253E-02 1.08816969812E-02 1.11889301873E-02 1.15054827345E-02 1.18316630590E-02 1.21677906380E-02 1.25141963998E-02 1.28712231484E-02 1.32392260023E-02 1.36185728498E-02 1.40096448193E-02 1.44128367664E-02 1.48285577766E-02 1.52572316866E-02 1.56992976212E-02 1.61552105494E-02 1.66254418582E-02 1.71104799449E-02 1.76108308283E-02 1.81270187796E-02 1.86595869726E-02 1.92090981535E-02 1.97761353322E-02 2.03613024922E-02 2.09652253231E-02 2.15885519729E-02 2.22319538217E-02 2.28961262767E-02 2.35817895885E-02 2.42896896890E-02 2.50205990500E-02 2.57753175637E-02 2.65546734442E-02 2.73595241495E-02 2.81907573247E-02 2.90492917652E-02 2.99360783995E-02 3.08521012920E-02 3.17983786632E-02 3.27759639292E-02 3.37859467569E-02 3.48294541364E-02 3.59076514672E-02 3.70217436587E-02 3.81729762428E-02 3.93626364974E-02 4.05920545781E-02 4.18626046580E-02 4.31757060717E-02 4.45328244628E-02 4.59354729313E-02 4.73852131789E-02 4.88836566492E-02 5.04324656598E-02 5.20333545236E-02 5.36880906540E-02 5.53984956534E-02 5.71664463776E-02 5.89938759753E-02 6.08827748958E-02 6.28351918616E-02 6.48532348014E-02 6.69390717373E-02 6.90949316228E-02 7.13231051245E-02 7.36259453434E-02 7.60058684696E-02 7.84653543646E-02 8.10069470655E-02 8.36332552059E-02 8.63469523462E-02 8.91507772088E-02 9.20475338118E-02 9.50400914955E-02 9.81313848367E-02 1.01324413445E-01 1.04622241638E-01 1.08027997986E-01 1.11544874730E-01 1.15176127064E-01 1.18925072281E-01 1.22795088775E-01 1.26789614915E-01 1.30912147770E-01 1.35166241700E-01 1.39555506810E-01 1.44083607282E-01 1.48754259566E-01 1.53571230476E-01 1.58538335158E-01 1.63659434980E-01 1.68938435331E-01 1.74379283363E-01 1.79985965688E-01 1.85762506050E-01 1.91712963005E-01 1.97841427637E-01 2.04152021327E-01 2.10648893638E-01 2.17336220321E-01 2.24218201516E-01 2.31299060173E-01 2.38583040743E-01 2.46074408203E-01 2.53777447462E-01 2.61696463201E-01 2.69835780222E-01 2.78199744351E-01 2.86792723976E-01 2.95619112270E-01 3.04683330180E-01 3.13989830226E-01 3.23543101189E-01 3.33347673747E-01 3.43408127094E-01 3.53729096618E-01 3.64315282654E-01 3.75171460355E-01 3.86302490700E-01 3.97713332630E-01 4.09409056309E-01 4.21394857475E-01 4.33676072809E-01 4.46258196260E-01 4.59146896186E-01 4.72348033187E-01 4.85867678417E-01 4.99712132178E-01 5.13887942498E-01 5.28401923384E-01 5.43261172380E-01 5.58473086993E-01 5.74045379507E-01 5.89986089634E-01 6.06303594398E-01 6.23006614564E-01 6.40104216893E-01 6.57605811407E-01 6.75521142809E-01 6.93860275149E-01 7.12633568747E-01 7.31851648394E-01 7.51525361755E-01 7.71665726941E-01 7.92283868170E-01 8.13390938472E-01 8.34998028413E-01 8.57116059911E-01 8.79755664251E-01 9.02927043579E-01 9.26639815282E-01 9.50902838872E-01 9.75724025203E-01 1.00111012817E+00 1.02706651929E+00 1.05359694605E+00 1.08070327518E+00 1.10838522252E+00 1.13664007170E+00 1.16546238432E+00 1.19484370479E+00 1.22477226373E+00 1.25523268424E+00 1.28620569601E+00 1.31766786267E+00 1.34959132841E+00 1.38194359000E+00 1.41468730112E+00 1.44778011560E+00 1.48117457645E+00 1.51481805742E+00 1.54865276332E+00 1.58261579494E+00 1.61663928317E+00 1.65065059639E+00 1.68457262317E+00 1.71832413107E+00 1.75182020025E+00 1.78497272851E+00 1.81769100181E+00 1.84988940959E+00 1.88150972096E+00 1.91250085100E+00 1.94281200262E+00 1.97239278509E+00 2.00119333644E+00 2.02916444891E+00 2.05625769711E+00 2.08242556804E+00 2.10762159223E+00 2.13180047531E+00 2.15491822919E+00 2.17693230209E+00 2.19780170667E+00 2.21748714548E+00 2.23595113305E+00 2.25315811395E+00 2.26907457614E+00 2.28366915905E+00 2.29691275574E+00 2.30877860876E+00 2.31924239915E+00 2.32828232813E+00 2.33587919114E+00 2.34201644394E+00 2.34668026031E+00 2.34985958131E+00 2.35154615568E+00 2.35173457136E+00 2.35042227793E+00 2.34760959990E+00 2.34329974080E+00 2.33749877806E+00 2.33021564874E+00 2.32146212610E+00 2.31125278725E+00 2.29960497192E+00 2.28653873254E+00 2.27207677596E+00 2.25624439691E+00 2.23906940360E+00 2.22058203577E+00 2.20081487544E+00 2.17980275087E+00 2.15758263405E+00 2.13419353221E+00 2.10967637365E+00 2.08407388863E+00 2.05743048543E+00 2.02979212248E+00 2.00120617677E+00 1.97172130912E+00 1.94138732699E+00 1.91025504512E+00 1.87837614475E+00 1.84580303170E+00 1.81258869415E+00 1.77878656026E+00 1.74445035653E+00 1.70963396702E+00 1.67439129419E+00 1.63877612171E+00 1.60284197970E+00 1.56664201284E+00 1.53022885174E+00 1.49363990747E+00 1.45694125163E+00 1.42018325416E+00 1.38341529603E+00 1.34668566261E+00 1.31003651340E+00 1.27351861803E+00 1.23717639330E+00 1.20105278943E+00 1.16518921244E+00 1.12962545300E+00 1.09439962181E+00 1.05954809161E+00 1.02510544608E+00 9.91104435577E-01 9.57575939731E-01 9.24548937087E-01 8.92050481651E-01 8.60105686390E-01 8.28737713628E-01 7.97967772263E-01 7.67815121707E-01 7.38297082418E-01 7.09429052870E-01 6.81224532773E-01 6.53695152316E-01 6.26850707204E-01 6.00699199196E-01 5.75246881846E-01 5.50498311109E-01 5.26456400465E-01 5.03122480168E-01 4.80496360224E-01 4.58576396677E-01 4.37359560771E-01 4.16841510548E-01 3.97016664428E-01 3.77878276322E-01 3.59418511835E-01 3.41628525111E-01 3.24498535892E-01 3.08017906377E-01 2.92175217486E-01 2.76958344140E-01 2.62354529225E-01 2.48350455899E-01 2.34932317954E-01 2.22085887961E-01 2.09796582976E-01 1.98049527584E-01 1.86829614128E-01 1.76121559971E-01 1.65909961693E-01 1.56179346124E-01 1.46914218195E-01 1.38099105543E-01 1.29718599903E-01 1.21757395300E-01 1.14200323080E-01 1.07032383855E-01 1.00238776442E-01 9.38049238822E-02 8.77164966656E-02 8.19594332658E-02 7.65199581213E-02 7.13845971947E-02 6.65401912491E-02 6.19739069833E-02 5.76732461693E-02 5.36260529344E-02 4.98205193290E-02 4.62451893181E-02 4.28889613312E-02 3.97410894993E-02 3.67911837036E-02 3.40292085526E-02 3.14454813982E-02 2.90306694953E-02 2.67757864004E-02 2.46721876988E-02 2.27115661415E-02 2.08859462669E-02 1.91876785743E-02 1.76094333104E-02 1.61441939234E-02 1.47852502341E-02 1.35261913659E-02 1.23608984740E-02 1.12835373079E-02 1.02885506354E-02 9.37065055841E-03 8.52481074138E-03 7.74625857611E-03 7.03046730092E-03 6.37314809249E-03 5.77024214629E-03 5.21791276070E-03 4.71253743891E-03 4.25070002203E-03 3.82918286617E-03 3.44495907586E-03 3.09518480585E-03 2.77719164292E-03 2.48847907908E-03 2.22670708735E-03 1.98968881081E-03 1.77538337550E-03 1.58188883732E-03 1.40743527251E-03 1.25037802111E-03 1.10919109210E-03 9.82460738249E-04 8.68879208472E-04 7.67238684259E-04 6.76425406523E-04 5.95413998149E-04 5.23261986837E-04 4.59104532025E-04 4.02149358811E-04 3.51671900977E-04 3.07010654374E-04 2.67562741095E-04 2.32779684047E-04 2.02163390751E-04 1.75262344438E-04 1.51667999776E-04 1.31011379888E-04 1.12959870696E-04 9.72142080273E-05 8.35056523974E-05 7.15933459038E-05 6.12618452603E-05 5.23188246304E-05 4.45929416295E-05 3.79318596198E-05 3.22004192417E-05 2.72789519941E-05 2.30617286053E-05 1.94555349075E-05 1.63783679526E-05 1.37582451732E-05 1.15321194982E-05 9.64489347687E-06 8.04852563871E-06 6.70122251996E-06 5.56671001662E-06 4.61357797012E-06 3.81469215707E-06 3.14666813119E-06 2.58940165224E-06 2.12565072830E-06 1.74066459382E-06 1.42185523977E-06 1.15850740564E-06 9.41523230253E-07 7.63198039726E-07 6.17024023060E-07 4.97518808802E-07 4.00076207508E-07 3.20836624420E-07 2.56574873767E-07 2.04605031501E-07 1.62708125294E-07 1.29027511149E-07 1.02028458193E-07 8.04474584043E-08 6.32472808872E-08 4.95789246974E-08 3.87495072128E-08 3.01952437925E-08 2.34587809230E-08 1.81702402139E-08 1.40314153642E-08 1.08026394278E-08 8.29190619986E-09 6.34588811141E-09 4.84254441530E-09 3.68486614191E-09 2.79471024310E-09 2.11247039568E-09 1.59141106470E-09 1.19486181075E-09 8.94152114148E-10 6.66946963548E-10 4.95910388277E-10 3.67636315498E-10 2.71796564822E-10 2.00464399355E-10 1.47579606296E-10 1.08527147192E-10 7.98066013376E-11 5.84513325787E-11 4.26366628010E-11 3.09729749645E-11 2.24063454955E-11 1.61407869184E-11 1.15776613424E-11 8.26867731412E-12 5.87958426731E-12 4.16225399853E-12 2.93330778167E-12 2.05782855814E-12 1.43700520927E-12 9.98803086091E-13 6.90952601156E-13 4.75704905959E-13 3.25928111035E-13 2.22215483561E-13 1.50753804277E-13 1.01759867669E-13 6.83394621833E-14 4.56589042391E-14 3.03466043445E-14 2.00630446664E-14 1.31934011847E-14 8.62900252232E-15 5.61278829060E-15 3.63062113524E-15 2.33526943828E-15 1.49353725780E-15 9.49701113595E-16 6.00368755556E-16 3.77291914469E-16 2.35685477793E-16 1.46336034114E-16 9.03024807181E-17 5.53789117444E-17 3.37482657247E-17 2.04355510285E-17 1.22945943744E-17 7.34851674902E-18 4.36321918263E-18 2.57335680692E-18 1.50744661922E-18 8.76992129317E-19 5.06668217041E-19 2.90661668728E-19 1.65557721044E-19 9.36202186139E-20 5.25543735379E-20 2.92837740570E-20 1.61951013005E-20 8.88868846518E-21 4.84113882837E-21 2.61620121432E-21 1.40270353711E-21 7.46085566167E-22 3.93636799486E-22 2.05988424286E-22 1.06901848232E-22 5.50145454853E-23 2.80720309318E-23 1.42012842911E-23 7.12183327049E-24 3.54012578360E-24 1.74405434011E-24 8.51465136377E-25 4.11898075781E-25 1.97414279991E-25 9.37308416412E-26 4.40808769112E-26 2.05319240442E-26 9.47039495721E-27 4.32525975357E-27 1.95572563212E-27 8.75387988427E-28 3.87824073347E-28 1.70041283731E-28 7.37738789506E-29 3.16680980895E-29 1.34478924281E-29 5.64859431765E-30 2.34650101263E-30 9.63906365920E-31 3.91490718790E-31 1.57187722100E-31 6.23826079257E-32 2.44676707912E-32 9.48290862557E-33 3.63115818938E-33 1.37352778502E-33 5.13158570818E-34 1.89330212788E-34 6.89721790686E-35 2.48052887674E-35 8.80563539083E-36 3.08497788094E-36 1.06646432340E-36 3.63722863657E-37 1.22363254588E-37 4.05987639456E-38 1.32825133848E-38 4.28426874254E-39 1.36214866687E-39 4.26820301154E-40 1.31782816111E-40 4.00852928301E-41 1.20099800789E-41 3.54362556452E-42 1.02948020709E-42 2.94420525402E-43 8.28728506478E-44 2.29542819112E-44 6.25510229710E-45 1.67662262254E-45 4.41953149850E-46 1.14542280219E-46 2.91817692180E-47 7.30667813259E-48 1.79761250977E-48 4.34454124372E-49 1.03125552359E-49 2.40361403814E-50 5.49970732912E-51 1.23506523470E-51 2.72153225391E-52 5.88310849918E-53 5.09564607337E-07 5.22464295503E-07 5.35690540764E-07 5.49251609949E-07 5.63155979162E-07 5.77412339081E-07 5.92029600389E-07 6.07016899345E-07 6.22383603491E-07 6.38139317511E-07 6.54293889232E-07 6.70857415781E-07 6.87840249891E-07 7.05253006380E-07 7.23106568779E-07 7.41412096135E-07 7.60181029990E-07 7.79425101528E-07 7.99156338910E-07 8.19387074791E-07 8.40129954027E-07 8.61397941580E-07 8.83204330624E-07 9.05562750845E-07 9.28487176972E-07 9.51991937502E-07 9.76091723658E-07 1.00080159858E-06 1.02613700671E-06 1.05211378351E-06 1.07874816527E-06 1.10605679934E-06 1.13405675448E-06 1.16276553154E-06 1.19220107443E-06 1.22238178129E-06 1.25332651603E-06 1.28505462007E-06 1.31758592450E-06 1.35094076240E-06 1.38513998160E-06 1.42020495769E-06 1.45615760740E-06 1.49302040225E-06 1.53081638266E-06 1.56956917231E-06 1.60930299290E-06 1.65004267932E-06 1.69181369516E-06 1.73464214861E-06 1.77855480880E-06 1.82357912251E-06 1.86974323134E-06 1.91707598931E-06 1.96560698087E-06 2.01536653940E-06 2.06638576617E-06 2.11869654979E-06 2.17233158611E-06 2.22732439871E-06 2.28370935979E-06 2.34152171169E-06 2.40079758894E-06 2.46157404077E-06 2.52388905434E-06 2.58778157845E-06 2.65329154790E-06 2.72045990843E-06 2.78932864231E-06 2.85994079462E-06 2.93234050010E-06 3.00657301077E-06 3.08268472423E-06 3.16072321259E-06 3.24073725228E-06 3.32277685450E-06 3.40689329648E-06 3.49313915352E-06 3.58156833189E-06 3.67223610247E-06 3.76519913535E-06 3.86051553518E-06 3.95824487758E-06 4.05844824628E-06 4.16118827136E-06 4.26652916839E-06 4.37453677853E-06 4.48527860973E-06 4.59882387889E-06 4.71524355512E-06 4.83461040412E-06 4.95699903366E-06 5.08248594018E-06 5.21114955664E-06 5.34307030152E-06 5.47833062906E-06 5.61701508087E-06 5.75921033868E-06 5.90500527858E-06 6.05449102656E-06 6.20776101542E-06 6.36491104324E-06 6.52603933318E-06 6.69124659494E-06 6.86063608765E-06 7.03431368443E-06 7.21238793859E-06 7.39497015141E-06 7.58217444177E-06 7.77411781744E-06 7.97092024823E-06 8.17270474097E-06 8.37959741635E-06 8.59172758782E-06 8.80922784236E-06 9.03223412334E-06 9.26088581554E-06 9.49532583222E-06 9.73570070443E-06 9.98216067266E-06 1.02348597807E-05 1.04939559718E-05 1.07596111877E-05 1.10319914695E-05 1.13112670616E-05 1.15976125181E-05 1.18912068120E-05 1.21922334467E-05 1.25008805711E-05 1.28173410970E-05 1.31418128197E-05 1.34744985415E-05 1.38156061987E-05 1.41653489913E-05 1.45239455164E-05 1.48916199050E-05 1.52686019616E-05 1.56551273082E-05 1.60514375314E-05 1.64577803336E-05 1.68744096876E-05 1.73015859951E-05 1.77395762503E-05 1.81886542056E-05 1.86491005438E-05 1.91212030527E-05 1.96052568054E-05 2.01015643445E-05 2.06104358714E-05 2.11321894399E-05 2.16671511552E-05 2.22156553776E-05 2.27780449316E-05 2.33546713198E-05 2.39458949431E-05 2.45520853254E-05 2.51736213451E-05 2.58108914711E-05 2.64642940067E-05 2.71342373373E-05 2.78211401866E-05 2.85254318778E-05 2.92475526018E-05 2.99879536928E-05 3.07470979099E-05 3.15254597264E-05 3.23235256266E-05 3.31417944093E-05 3.39807775001E-05 3.48409992706E-05 3.57229973663E-05 3.66273230424E-05 3.75545415087E-05 3.85052322821E-05 3.94799895497E-05 4.04794225393E-05 4.15041559004E-05 4.25548300948E-05 4.36321017966E-05 4.47366443023E-05 4.58691479523E-05 4.70303205615E-05 4.82208878621E-05 4.94415939568E-05 5.06932017841E-05 5.19764935950E-05 5.32922714415E-05 5.46413576781E-05 5.60245954756E-05 5.74428493481E-05 5.88970056928E-05 6.03879733445E-05 6.19166841428E-05 6.34840935152E-05 6.50911810731E-05 6.67389512249E-05 6.84284338030E-05 7.01606847074E-05 7.19367865655E-05 7.37578494088E-05 7.56250113660E-05 7.75394393745E-05 7.95023299094E-05 8.15149097311E-05 8.35784366517E-05 8.56942003211E-05 8.78635230325E-05 9.00877605488E-05 9.23683029495E-05 9.47065754992E-05 9.71040395380E-05 9.95621933949E-05 1.02082573323E-04 1.04666754461E-04 1.07316351815E-04 1.10033021270E-04 1.12818460620E-04 1.15674410634E-04 1.18602656142E-04 1.21605027147E-04 1.24683399971E-04 1.27839698426E-04 1.31075895017E-04 1.34394012174E-04 1.37796123512E-04 1.41284355131E-04 1.44860886942E-04 1.48527954028E-04 1.52287848041E-04 1.56142918634E-04 1.60095574925E-04 1.64148287009E-04 1.68303587492E-04 1.72564073078E-04 1.76932406193E-04 1.81411316640E-04 1.86003603310E-04 1.90712135932E-04 1.95539856855E-04 2.00489782899E-04 2.05565007227E-04 2.10768701283E-04 2.16104116772E-04 2.21574587689E-04 2.27183532401E-04 2.32934455782E-04 2.38830951402E-04 2.44876703768E-04 2.51075490628E-04 2.57431185327E-04 2.63947759227E-04 2.70629284186E-04 2.77479935098E-04 2.84503992502E-04 2.91705845253E-04 2.99089993260E-04 3.06661050298E-04 3.14423746887E-04 3.22382933243E-04 3.30543582304E-04 3.38910792841E-04 3.47489792630E-04 3.56285941722E-04 3.65304735787E-04 3.74551809539E-04 3.84032940257E-04 3.93754051386E-04 4.03721216238E-04 4.13940661775E-04 4.24418772499E-04 4.35162094432E-04 4.46177339202E-04 4.57471388227E-04 4.69051297011E-04 4.80924299540E-04 4.93097812799E-04 5.05579441394E-04 5.18376982298E-04 5.31498429708E-04 5.44951980035E-04 5.58746037014E-04 5.72889216941E-04 5.87390354045E-04 6.02258506001E-04 6.17502959567E-04 6.33133236382E-04 6.49159098894E-04 6.65590556449E-04 6.82437871524E-04 6.99711566128E-04 7.17422428352E-04 7.35581519097E-04 7.54200178959E-04 7.73290035298E-04 7.92863009479E-04 8.12931324296E-04 8.33507511587E-04 8.54604420037E-04 8.76235223177E-04 8.98413427587E-04 9.21152881307E-04 9.44467782453E-04 9.68372688058E-04 9.92882523130E-04 1.01801258994E-03 1.04377857754E-03 1.07019657154E-03 1.09728306408E-03 1.12505496414E-03 1.15352960800E-03 1.18272477006E-03 1.21265867387E-03 1.24335000349E-03 1.27481791506E-03 1.30708204874E-03 1.34016254089E-03 1.37408003661E-03 1.40885570255E-03 1.44451124004E-03 1.48106889861E-03 1.51855148977E-03 1.55698240117E-03 1.59638561116E-03 1.63678570362E-03 1.67820788325E-03 1.72067799119E-03 1.76422252106E-03 1.80886863538E-03 1.85464418241E-03 1.90157771342E-03 1.94969850041E-03 1.99903655419E-03 2.04962264303E-03 2.10148831169E-03 2.15466590094E-03 2.20918856763E-03 2.26509030514E-03 2.32240596450E-03 2.38117127586E-03 2.44142287067E-03 2.50319830428E-03 2.56653607915E-03 2.63147566868E-03 2.69805754155E-03 2.76632318677E-03 2.83631513921E-03 2.90807700596E-03 2.98165349313E-03 3.05709043352E-03 3.13443481478E-03 3.21373480848E-03 3.29503979969E-03 3.37840041748E-03 3.46386856604E-03 3.55149745663E-03 3.64134164035E-03 3.73345704165E-03 3.82790099272E-03 3.92473226874E-03 4.02401112394E-03 4.12579932860E-03 4.23016020699E-03 4.33715867616E-03 4.44686128575E-03 4.55933625881E-03 4.67465353350E-03 4.79288480597E-03 4.91410357420E-03 5.03838518291E-03 5.16580686964E-03 5.29644781190E-03 5.43038917552E-03 5.56771416412E-03 5.70850806986E-03 5.85285832542E-03 6.00085455718E-03 6.15258863977E-03 6.30815475196E-03 6.46764943383E-03 6.63117164541E-03 6.79882282668E-03 6.97070695910E-03 7.14693062857E-03 7.32760308993E-03 7.51283633303E-03 7.70274515040E-03 7.89744720654E-03 8.09706310885E-03 8.30171648037E-03 8.51153403411E-03 8.72664564934E-03 8.94718444952E-03 9.17328688230E-03 9.40509280123E-03 9.64274554954E-03 9.88639204594E-03 1.01361828723E-02 1.03922723637E-02 1.06548187001E-02 1.09239840008E-02 1.11999344209E-02 1.14828402496E-02 1.17728760114E-02 1.20702205695E-02 1.23750572316E-02 1.26875738579E-02 1.30079629720E-02 1.33364218742E-02 1.36731527577E-02 1.40183628269E-02 1.43722644188E-02 1.47350751274E-02 1.51070179308E-02 1.54883213207E-02 1.58792194356E-02 1.62799521967E-02 1.66907654468E-02 1.71119110925E-02 1.75436472497E-02 1.79862383919E-02 1.84399555021E-02 1.89050762287E-02 1.93818850435E-02 1.98706734045E-02 2.03717399215E-02 2.08853905258E-02 2.14119386430E-02 2.19517053705E-02 2.25050196579E-02 2.30722184915E-02 2.36536470837E-02 2.42496590647E-02 2.48606166799E-02 2.54868909906E-02 2.61288620790E-02 2.67869192576E-02 2.74614612829E-02 2.81528965736E-02 2.88616434331E-02 2.95881302765E-02 3.03327958621E-02 3.10960895279E-02 3.18784714325E-02 3.26804128007E-02 3.35023961739E-02 3.43449156654E-02 3.52084772207E-02 3.60935988824E-02 3.70008110605E-02 3.79306568070E-02 3.88836920967E-02 3.98604861114E-02 4.08616215311E-02 4.18876948286E-02 4.29393165705E-02 4.40171117225E-02 4.51217199603E-02 4.62537959854E-02 4.74140098464E-02 4.86030472649E-02 4.98216099670E-02 5.10704160196E-02 5.23502001717E-02 5.36617142010E-02 5.50057272650E-02 5.63830262575E-02 5.77944161694E-02 5.92407204544E-02 6.07227813996E-02 6.22414604997E-02 6.37976388369E-02 6.53922174635E-02 6.70261177900E-02 6.87002819759E-02 7.04156733248E-02 7.21732766828E-02 7.39740988402E-02 7.58191689357E-02 7.77095388643E-02 7.96462836863E-02 8.16305020392E-02 8.36633165510E-02 8.57458742548E-02 8.78793470044E-02 9.00649318900E-02 9.23038516540E-02 9.45973551063E-02 9.69467175384E-02 9.93532411356E-02 1.01818255387E-01 1.04343117492E-01 1.06929212763E-01 1.09577955026E-01 1.12290787009E-01 1.15069180733E-01 1.17914637891E-01 1.20828690212E-01 1.23812899835E-01 1.26868859646E-01 1.29998193629E-01 1.33202557185E-01 1.36483637447E-01 1.39843153573E-01 1.43282857028E-01 1.46804531840E-01 1.50409994843E-01 1.54101095888E-01 1.57879718035E-01 1.61747777723E-01 1.65707224900E-01 1.69760043131E-01 1.73908249669E-01 1.78153895491E-01 1.82499065293E-01 1.86945877447E-01 1.91496483914E-01 1.96153070101E-01 2.00917854679E-01 2.05793089338E-01 2.10781058487E-01 2.15884078893E-01 2.21104499251E-01 2.26444699683E-01 2.31907091171E-01 2.37494114897E-01 2.43208241512E-01 2.49051970301E-01 2.55027828268E-01 2.61138369109E-01 2.67386172082E-01 2.73773840765E-01 2.80304001695E-01 2.86979302872E-01 2.93802412145E-01 3.00776015440E-01 3.07902814849E-01 3.15185526559E-01 3.22626878614E-01 3.30229608503E-01 3.37996460561E-01 3.45930183177E-01 3.54033525802E-01 3.62309235732E-01 3.70760054672E-01 3.79388715060E-01 3.88197936138E-01 3.97190419766E-01 4.06368845954E-01 4.15735868106E-01 4.25294107965E-01 4.35046150233E-01 4.44994536860E-01 4.55141760989E-01 4.65490260521E-01 4.76042411316E-01 4.86800519978E-01 4.97766816229E-01 5.08943444846E-01 5.20332457138E-01 5.31935801949E-01 5.43755316163E-01 5.55792714690E-01 5.68049579914E-01 5.80527350577E-01 5.93227310076E-01 6.06150574153E-01 6.19298077953E-01 6.32670562418E-01 6.46268560009E-01 6.60092379706E-01 6.74142091285E-01 6.88417508826E-01 7.02918173438E-01 7.17643335166E-01 7.32591934056E-01 7.47762580349E-01 7.63153533786E-01 7.78762681971E-01 7.94587517800E-01 8.10625115896E-01 8.26872108047E-01 8.43324657607E-01 8.59978432835E-01 8.76828579159E-01 8.93869690324E-01 9.11095778414E-01 9.28500242724E-01 9.46075837453E-01 9.63814638223E-01 9.81708007375E-01 9.99746558061E-01 1.01792011711E+00 1.03621768663E+00 1.05462740445E+00 1.07313650321E+00 1.09173126832E+00 1.11039699465E+00 1.12911794201E+00 1.14787728950E+00 1.16665708863E+00 1.18543821538E+00 1.20420032115E+00 1.22292178271E+00 1.24157965121E+00 1.26014960024E+00 1.27860587317E+00 1.29692122974E+00 1.31506689205E+00 1.33301249012E+00 1.35072600712E+00 1.36817372436E+00 1.38532016643E+00 1.40212804636E+00 1.41855821138E+00 1.43456958918E+00 1.45011913523E+00 1.46516178117E+00 1.47965038485E+00 1.49353568211E+00 1.50676624094E+00 1.51928841815E+00 1.53104631922E+00 1.54198176168E+00 1.55203424258E+00 1.56114091061E+00 1.56923654341E+00 1.57625353083E+00 1.58212186469E+00 1.58676913592E+00 1.59012053971E+00 1.59209888967E+00 1.59262464176E+00 1.59161592905E+00 1.58898860819E+00 1.58465631886E+00 1.57853055702E+00 1.57052076348E+00 1.56053442877E+00 1.54847721579E+00 1.53425310151E+00 1.51776453918E+00 1.49891264257E+00 1.47759739375E+00 1.45371787596E+00 1.42717253343E+00 1.39785945951E+00 1.36567671519E+00 1.33052267957E+00 1.29229643418E+00 1.25089818292E+00 1.20622970953E+00 1.15819487430E+00 1.10681325451E+00 1.05683469046E+00 1.00826775874E+00 9.61118623692E-01 9.15391052064E-01 8.71086426344E-01 8.28203756439E-01 7.86739690290E-01 7.46688524808E-01 7.08042219443E-01 6.70790415605E-01 6.34920465782E-01 6.00417476501E-01 5.67264369001E-01 5.35441960731E-01 5.04929069413E-01 4.75702639734E-01 4.47737890800E-01 4.21008480692E-01 3.95486682936E-01 3.71143568801E-01 3.47949189051E-01 3.25872749278E-01 3.04882774070E-01 2.84947256794E-01 2.66033793545E-01 2.48109701363E-01 2.31142122104E-01 2.15098114128E-01 1.99944734259E-01 1.85649112399E-01 1.72178520795E-01 1.59500439494E-01 1.47582618984E-01 1.36393140583E-01 1.25900474779E-01 1.16073537457E-01 1.06881743805E-01 9.82950596027E-02 9.02840495687E-02 8.28199224587E-02 7.58745726448E-02 6.94206179528E-02 6.34314335882E-02 5.78811820406E-02 5.27448389019E-02 4.79982145863E-02 4.36179719782E-02 3.95816400759E-02 3.58676237253E-02 3.24552095709E-02 2.93245683720E-02 2.64567538497E-02 2.38336982496E-02 2.14382048154E-02 1.92539373789E-02 1.72654072804E-02 1.54579578365E-02 1.38177465794E-02 1.23317254872E-02 1.09876194317E-02 9.77390306066E-03 8.67977633519E-03 7.69513893216E-03 6.81056372019E-03 6.01726950798E-03 5.30709325673E-03 4.67246193931E-03 4.10636421888E-03 3.60232210927E-03 3.15436276846E-03 2.75699056480E-03 2.40515954410E-03 2.09424641332E-03 1.82002414489E-03 1.57863629322E-03 1.36657210324E-03 1.18064247897E-03 1.01795686884E-03 8.75901113240E-04 7.52116289535E-04 6.44478579704E-04 5.51080176353E-04 4.70211234270E-04 4.00342866567E-04 3.40111177220E-04 2.88302315180E-04 2.43838529401E-04 2.05765198982E-04 1.73238808198E-04 1.45515832487E-04 1.21942498351E-04 1.01945377768E-04 8.50227758131E-05 7.07368689741E-05 5.87065508682E-05 4.86009417834E-05 4.01335186241E-05 3.30568223534E-05 2.71577008767E-05 2.22530464537E-05 1.81859880984E-05 1.48225010070E-05 1.20483967847E-05 9.76666009755E-06 7.89509931195E-06 6.36428067636E-06 5.11571761426E-06 4.10028871056E-06 3.27685996295E-06 2.61108881590E-06 2.07438938154E-06 1.64304006595E-06 1.29741654981E-06 1.02133471235E-06 8.01489629880E-07 6.26978222320E-07 4.88894461028E-07 3.79987288460E-07 2.94372536569E-07 2.27291168428E-07 1.74907110011E-07 1.34138790513E-07 1.02519274845E-07 7.80805562281E-08 5.92581856582E-08 4.48129540093E-08 3.37668173926E-08 2.53506726956E-08 1.89619534336E-08 1.41303314238E-08 1.04900823260E-08 7.75790748246E-09 5.71520512811E-09 4.19395495887E-09 3.06552497410E-09 2.23183180267E-09 1.61838843673E-09 1.16885915309E-09 8.40812825819E-10 6.02424967277E-10 4.29927558306E-10 3.05645680773E-10 2.16492568085E-10 1.52821164062E-10 1.07551674726E-10 7.55118012375E-11 5.29401081935E-11 3.71139425800E-11 2.58970837734E-11 1.79846156393E-11 1.24297580568E-11 8.54889036532E-12 5.85081504227E-12 3.98433802566E-12 2.69961879240E-12 1.81981850005E-12 1.22040958577E-12 8.14155204108E-13 5.40262257936E-13 3.56590094498E-13 2.34084217896E-13 1.52821269726E-13 9.92143469125E-14 6.40492347248E-14 4.11122818855E-14 2.62371315241E-14 1.66462647752E-14 1.04988333051E-14 6.58198323817E-15 4.10139177560E-15 2.53998599293E-15 1.56323172138E-15 9.56033958247E-16 5.80960633129E-16 3.50758799301E-16 2.10389244321E-16 1.25359061532E-16 7.41940131160E-17 4.36140236559E-17 2.54618745582E-17 1.47612731488E-17 8.49744388969E-18 4.85674372163E-18 2.75584843289E-18 1.55231233933E-18 8.67913459380E-19 4.81622389031E-19 2.65233723587E-19 1.44944267484E-19 7.85925643823E-20 4.22792586040E-20 2.25629358193E-20 1.19438000002E-20 6.27081375877E-21 3.26508886807E-21 1.68581745725E-21 8.63027601979E-22 4.38017060643E-22 2.20375142370E-22 1.09898531168E-22 5.43163722158E-23 2.66029932057E-23 1.29104633395E-23 6.20747278503E-24 2.95664354647E-24 1.39490015024E-24 6.51771712049E-25 3.01580819085E-25 1.38170296015E-25 6.26721661182E-26 2.81403429015E-26 1.25061510236E-26 5.50049549000E-27 2.39390757743E-27 1.03082092651E-27 4.39108150905E-28 1.85017844567E-28 7.70992706309E-29 3.17703061872E-29 1.29439313378E-29 5.21342460643E-30 2.07553348575E-30 8.16625638864E-31 3.17496521274E-31 1.21958730285E-31 4.62784956500E-32 1.73448925566E-32 6.41981961068E-33 2.34619878856E-33 8.46503264184E-34 3.01470295424E-34 1.05959963671E-34 3.67492848592E-35 1.25745753535E-35 4.24425742806E-36 1.41286199164E-36 4.63780133954E-37 1.50093782866E-37 4.78822168574E-38 1.50545792980E-38 4.66408741187E-39 1.42360096562E-39 4.28008347032E-40 1.26729109815E-40 3.69468551609E-41 1.06040369737E-41 2.99552049728E-42 8.32710861560E-43 2.27745342637E-43 6.12702259425E-44 1.62107982309E-44 4.21719188401E-45 1.07848551933E-45 2.71071622349E-46 6.69480880089E-47 1.62435556173E-47 3.87093626755E-48 9.05826285593E-49 2.08098299243E-49 4.69230612416E-50 1.03823711335E-50 2.25369991811E-51 4.79822463174E-52 1.00171530704E-52 2.05012458574E-53 4.11200320881E-54 8.08132463448E-55 1.55580916928E-55 2.93333804413E-56 5.41484276392E-57 9.78390056149E-58 1.72991075940E-58 2.99228140139E-59 5.06207196067E-60 8.37297742399E-61 1.35373699908E-61 2.13878412933E-62 3.30104784249E-63 4.97578088376E-64 7.32261134183E-65 1.05180479952E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.15069765016E-04 1.16517164333E-04 1.17982769686E-04 1.19466810079E-04 1.20969517396E-04 1.22491126437E-04 1.24031874959E-04 1.25592003703E-04 1.27171756445E-04 1.28771380023E-04 1.30391124380E-04 1.32031242606E-04 1.33691990972E-04 1.35373628971E-04 1.37076419364E-04 1.38800628214E-04 1.40546524933E-04 1.42314382318E-04 1.44104476602E-04 1.45917087490E-04 1.47752498204E-04 1.49610995532E-04 1.51492869867E-04 1.53398415254E-04 1.55327929439E-04 1.57281713912E-04 1.59260073954E-04 1.61263318687E-04 1.63291761123E-04 1.65345718208E-04 1.67425510876E-04 1.69531464099E-04 1.71663906936E-04 1.73823172583E-04 1.76009598430E-04 1.78223526109E-04 1.80465301551E-04 1.82735275035E-04 1.85033801249E-04 1.87361239341E-04 1.89717952977E-04 1.92104310397E-04 1.94520684474E-04 1.96967452768E-04 1.99444997592E-04 2.01953706065E-04 2.04493970176E-04 2.07066186847E-04 2.09670757989E-04 2.12308090570E-04 2.14978596677E-04 2.17682693580E-04 2.20420803799E-04 2.23193355167E-04 2.26000780898E-04 2.28843519657E-04 2.31722015625E-04 2.34636718571E-04 2.37588083921E-04 2.40576572829E-04 2.43602652251E-04 2.46666795015E-04 2.49769479897E-04 2.52911191696E-04 2.56092421306E-04 2.59313665800E-04 2.62575428499E-04 2.65878219059E-04 2.69222553542E-04 2.72608954506E-04 2.76037951079E-04 2.79510079044E-04 2.83025880925E-04 2.86585906069E-04 2.90190710733E-04 2.93840858172E-04 2.97536918723E-04 3.01279469900E-04 3.05069096478E-04 3.08906390590E-04 3.12791951815E-04 3.16726387276E-04 3.20710311729E-04 3.24744347666E-04 3.28829125408E-04 3.32965283202E-04 3.37153467326E-04 3.41394332185E-04 3.45688540416E-04 3.50036762990E-04 3.54439679320E-04 3.58897977361E-04 3.63412353725E-04 3.67983513782E-04 3.72612171779E-04 3.77299050942E-04 3.82044883597E-04 3.86850411280E-04 3.91716384855E-04 3.96643564630E-04 4.01632720476E-04 4.06684631947E-04 4.11800088404E-04 4.16979889134E-04 4.22224843479E-04 4.27535770962E-04 4.32913501411E-04 4.38358875095E-04 4.43872742849E-04 4.49455966211E-04 4.55109417556E-04 4.60833980231E-04 4.66630548693E-04 4.72500028650E-04 4.78443337202E-04 4.84461402985E-04 4.90555166314E-04 4.96725579330E-04 5.02973606154E-04 5.09300223028E-04 5.15706418479E-04 5.22193193462E-04 5.28761561524E-04 5.35412548963E-04 5.42147194980E-04 5.48966551851E-04 5.55871685085E-04 5.62863673595E-04 5.69943609860E-04 5.77112600105E-04 5.84371764464E-04 5.91722237163E-04 5.99165166693E-04 6.06701715988E-04 6.14333062611E-04 6.22060398936E-04 6.29884932334E-04 6.37807885359E-04 6.45830495946E-04 6.53954017596E-04 6.62179719578E-04 6.70508887124E-04 6.78942821632E-04 6.87482840867E-04 6.96130279168E-04 7.04886487656E-04 7.13752834448E-04 7.22730704863E-04 7.31821501649E-04 7.41026645191E-04 7.50347573743E-04 7.59785743646E-04 7.69342629556E-04 7.79019724678E-04 7.88818540996E-04 7.98740609510E-04 8.08787480476E-04 8.18960723646E-04 8.29261928515E-04 8.39692704568E-04 8.50254681533E-04 8.60949509635E-04 8.71778859851E-04 8.82744424176E-04 8.93847915881E-04 9.05091069787E-04 9.16475642531E-04 9.28003412842E-04 9.39676181820E-04 9.51495773216E-04 9.63464033716E-04 9.75582833230E-04 9.87854065184E-04 1.00027964682E-03 1.01286151948E-03 1.02560164893E-03 1.03850202566E-03 1.05156466519E-03 1.06479160836E-03 1.07818492173E-03 1.09174669779E-03 1.10547905538E-03 1.11938413998E-03 1.13346412404E-03 1.14772120733E-03 1.16215761729E-03 1.17677560938E-03 1.19157746739E-03 1.20656550385E-03 1.22174206038E-03 1.23710950803E-03 1.25267024766E-03 1.26842671033E-03 1.28438135767E-03 1.30053668225E-03 1.31689520801E-03 1.33345949059E-03 1.35023211779E-03 1.36721570994E-03 1.38441292033E-03 1.40182643558E-03 1.41945897613E-03 1.43731329659E-03 1.45539218624E-03 1.47369846939E-03 1.49223500589E-03 1.51100469154E-03 1.53001045854E-03 1.54925527596E-03 1.56874215020E-03 1.58847412546E-03 1.60845428420E-03 1.62868574766E-03 1.64917167628E-03 1.66991527026E-03 1.69091977002E-03 1.71218845672E-03 1.73372465278E-03 1.75553172236E-03 1.77761307193E-03 1.79997215078E-03 1.82261245154E-03 1.84553751076E-03 1.86875090944E-03 1.89225627361E-03 1.91605727483E-03 1.94015763086E-03 1.96456110617E-03 1.98927151252E-03 2.01429270962E-03 2.03962860566E-03 2.06528315797E-03 2.09126037359E-03 2.11756430993E-03 2.14419907541E-03 2.17116883004E-03 2.19847778615E-03 2.22613020897E-03 2.25413041735E-03 2.28248278438E-03 2.31119173815E-03 2.34026176233E-03 2.36969739697E-03 2.39950323914E-03 2.42968394368E-03 2.46024422391E-03 2.49118885235E-03 2.52252266150E-03 2.55425054456E-03 2.58637745618E-03 2.61890841328E-03 2.65184849577E-03 2.68520284739E-03 2.71897667648E-03 2.75317525679E-03 2.78780392831E-03 2.82286809810E-03 2.85837324111E-03 2.89432490107E-03 2.93072869130E-03 2.96759029562E-03 3.00491546920E-03 3.04271003950E-03 3.08097990712E-03 3.11973104675E-03 3.15896950810E-03 3.19870141679E-03 3.23893297537E-03 3.27967046423E-03 3.32092024258E-03 3.36268874945E-03 3.40498250470E-03 3.44780810998E-03 3.49117224979E-03 3.53508169252E-03 3.57954329147E-03 3.62456398594E-03 3.67015080226E-03 3.71631085492E-03 3.76305134767E-03 3.81037957459E-03 3.85830292124E-03 3.90682886583E-03 3.95596498032E-03 4.00571893164E-03 4.05609848284E-03 4.10711149430E-03 4.15876592492E-03 4.21106983339E-03 4.26403137940E-03 4.31765882491E-03 4.37196053540E-03 4.42694498119E-03 4.48262073872E-03 4.53899649188E-03 4.59608103334E-03 4.65388326589E-03 4.71241220385E-03 4.77167697441E-03 4.83168681902E-03 4.89245109487E-03 4.95397927628E-03 5.01628095613E-03 5.07936584739E-03 5.14324378458E-03 5.20792472523E-03 5.27341875150E-03 5.33973607161E-03 5.40688702150E-03 5.47488206633E-03 5.54373180212E-03 5.61344695737E-03 5.68403839466E-03 5.75551711234E-03 5.82789424616E-03 5.90118107104E-03 5.97538900270E-03 6.05052959943E-03 6.12661456387E-03 6.20365574475E-03 6.28166513867E-03 6.36065489198E-03 6.44063730256E-03 6.52162482170E-03 6.60363005599E-03 6.68666576919E-03 6.77074488421E-03 6.85588048500E-03 6.94208581856E-03 7.02937429690E-03 7.11775949908E-03 7.20725517325E-03 7.29787523867E-03 7.38963378786E-03 7.48254508864E-03 7.57662358631E-03 7.67188390579E-03 7.76834085381E-03 7.86600942107E-03 7.96490478455E-03 8.06504230968E-03 8.16643755269E-03 8.26910626284E-03 8.37306438483E-03 8.47832806110E-03 8.58491363423E-03 8.69283764932E-03 8.80211685649E-03 8.91276821326E-03 9.02480888708E-03 9.13825625784E-03 9.25312792039E-03 9.36944168713E-03 9.48721559057E-03 9.60646788599E-03 9.72721705406E-03 9.84948180350E-03 9.97328107384E-03 1.00986340381E-02 1.02255601055E-02 1.03540789245E-02 1.04842103851E-02 1.06159746222E-02 1.07493920184E-02 1.08844832065E-02 1.10212690729E-02 1.11597707602E-02 1.13000096704E-02 1.14420074678E-02 1.15857860823E-02 1.17313677118E-02 1.18787748263E-02 1.20280301700E-02 1.21791567653E-02 1.23321779152E-02 1.24871172074E-02 1.26439985167E-02 1.28028460087E-02 1.29636841431E-02 1.31265376769E-02 1.32914316678E-02 1.34583914775E-02 1.36274427753E-02 1.37986115412E-02 1.39719240698E-02 1.41474069733E-02 1.43250871855E-02 1.45049919650E-02 1.46871488988E-02 1.48715859059E-02 1.50583312411E-02 1.52474134985E-02 1.54388616151E-02 1.56327048744E-02 1.58289729104E-02 1.60276957113E-02 1.62289036229E-02 1.64326273527E-02 1.66388979735E-02 1.68477469275E-02 1.70592060298E-02 1.72733074725E-02 1.74900838282E-02 1.77095680544E-02 1.79317934970E-02 1.81567938946E-02 1.83846033817E-02 1.86152564936E-02 1.88487881695E-02 1.90852337571E-02 1.93246290161E-02 1.95670101224E-02 1.98124136721E-02 2.00608766853E-02 2.03124366105E-02 2.05671313280E-02 2.08249991542E-02 2.10860788458E-02 2.13504096033E-02 2.16180310753E-02 2.18889833626E-02 2.21633070215E-02 2.24410430686E-02 2.27222329840E-02 2.30069187157E-02 2.32951426832E-02 2.35869477814E-02 2.38823773846E-02 2.41814753502E-02 2.44842860224E-02 2.47908542361E-02 2.51012253203E-02 2.54154451024E-02 2.57335599110E-02 2.60556165800E-02 2.63816624521E-02 2.67117453821E-02 2.70459137402E-02 2.73842164157E-02 2.77267028200E-02 2.80734228896E-02 2.84244270898E-02 2.87797664173E-02 2.91394924032E-02 2.95036571159E-02 2.98723131639E-02 3.02455136983E-02 3.06233124158E-02 3.10057635603E-02 3.13929219261E-02 3.17848428594E-02 3.21815822610E-02 3.25831965874E-02 3.29897428534E-02 3.34012786330E-02 3.38178620615E-02 3.42395518361E-02 3.46664072178E-02 3.50984880314E-02 3.55358546672E-02 3.59785680807E-02 3.64266897935E-02 3.68802818933E-02 3.73394070334E-02 3.78041284331E-02 3.82745098762E-02 3.87506157110E-02 3.92325108489E-02 3.97202607629E-02 4.02139314859E-02 4.07135896094E-02 4.12193022804E-02 4.17311371995E-02 4.22491626179E-02 4.27734473342E-02 4.33040606906E-02 4.38410725697E-02 4.43845533897E-02 4.49345740999E-02 4.54912061761E-02 4.60545216150E-02 4.66245929281E-02 4.72014931364E-02 4.77852957630E-02 4.83760748264E-02 4.89739048334E-02 4.95788607707E-02 5.01910180969E-02 5.08104527333E-02 5.14372410554E-02 5.20714598825E-02 5.27131864675E-02 5.33624984867E-02 5.40194740281E-02 5.46841915800E-02 5.53567300186E-02 5.60371685955E-02 5.67255869243E-02 5.74220649672E-02 5.81266830206E-02 5.88395217002E-02 5.95606619264E-02 6.02901849081E-02 6.10281721267E-02 6.17747053198E-02 6.25298664638E-02 6.32937377563E-02 6.40664015988E-02 6.48479405780E-02 6.56384374469E-02 6.64379751066E-02 6.72466365862E-02 6.80645050238E-02 6.88916636465E-02 6.97281957506E-02 7.05741846814E-02 7.14297138130E-02 7.22948665286E-02 7.31697262000E-02 7.40543761679E-02 7.49488997221E-02 7.58533800822E-02 7.67679003789E-02 7.76925436351E-02 7.86273927488E-02 7.95725304754E-02 8.05280394122E-02 8.14940019834E-02 8.24705004259E-02 8.34576167775E-02 8.44554328658E-02 8.54640302995E-02 8.64834904614E-02 8.75138945035E-02 8.85553233453E-02 8.96078576744E-02 9.06715779496E-02 9.17465644089E-02 9.28328970796E-02 9.39306557936E-02 9.50399202064E-02 9.61607698215E-02 9.72932840200E-02 9.84375420954E-02 9.95936232953E-02 1.00761606869E-01 1.01941572125E-01 1.03133598490E-01 1.04337765586E-01 1.05554153307E-01 1.06782841912E-01 1.08023912125E-01 1.09277445249E-01 1.10543523288E-01 1.11822229089E-01 1.13113646488E-01 1.14417860483E-01 1.15734957409E-01 1.17065025142E-01 1.18408153315E-01 1.19764433553E-01 1.21133959730E-01 1.22516828246E-01 1.23913138329E-01 1.25322992360E-01 1.26746496222E-01 1.28183759679E-01 1.29634896781E-01 1.31100026304E-01 1.32579272214E-01 1.34072764170E-01 1.35580638065E-01 1.37103036595E-01 1.38640109878E-01 1.40192016102E-01 1.41758922229E-01 1.43341004732E-01 1.44938450386E-01 1.46551457105E-01 1.48180234831E-01 1.49825006475E-01 1.51486008917E-01 1.53163494055E-01 1.54857729921E-01 1.56569001855E-01 1.58297613744E-01 1.60043889323E-01 1.61808173546E-01 1.63590834025E-01 1.65392262540E-01 1.67212876616E-01 1.69053121181E-01 1.70913470297E-01 1.72794428955E-01 1.74696534964E-01 1.76620360900E-01 1.78566516142E-01 1.80535648977E-01 1.82528448781E-01 1.84545648278E-01 1.86588025864E-01 1.88656408002E-01 1.90751671689E-01 1.92874746975E-01 1.95026619544E-01 1.97208333351E-01 1.99420993293E-01 2.01665767933E-01 2.03943892235E-01 2.06256670334E-01 2.08605478303E-01 2.10991766922E-01 2.13417064420E-01 2.15882979191E-01 2.18391202448E-01 2.20943510815E-01 2.23541768816E-01 2.26187931254E-01 2.28884045444E-01 2.31632253278E-01 2.34434793086E-01 2.37294001265E-01 2.40212313643E-01 2.43192266528E-01 2.46236497417E-01 2.49347745310E-01 2.52528850582E-01 2.55782754378E-01 2.59112497457E-01 2.62521218449E-01 2.66012151458E-01 2.69588622948E-01 2.73254047855E-01 2.77011924863E-01 2.80865830758E-01 2.84819413812E-01 2.88876386117E-01 2.93040514787E-01 2.97315611980E-01 3.01705523636E-01 3.06214116884E-01 3.10845266039E-01 3.15602837112E-01 3.20490670785E-01 3.25512563771E-01 3.30672248529E-01 3.35973371252E-01 3.41419468129E-01 3.47013939815E-01 3.52760024121E-01 3.58660766901E-01 3.64718991163E-01 3.70937264432E-01 3.77317864408E-01 3.83862743019E-01 3.90573488940E-01 3.97451288742E-01 4.04496886801E-01 4.11710544198E-01 4.19091996808E-01 4.26640412890E-01 4.34354350465E-01 4.42231714859E-01 4.50269716833E-01 4.58464831730E-01 4.66812760190E-01 4.75308390973E-01 4.83945766522E-01 4.92718051940E-01 5.01617508108E-01 5.10635469728E-01 5.19762329115E-01 5.28987526613E-01 5.38299548556E-01 5.47685933711E-01 5.57133289177E-01 5.66627316718E-01 5.76152850521E-01 5.85693907339E-01 5.95233749950E-01 6.04754964830E-01 6.14239554827E-01 6.23669047559E-01 6.33024620112E-01 6.42287240451E-01 6.51437825796E-01 6.60457417946E-01 6.69327375324E-01 6.78029581170E-01 6.86546667006E-01 6.94862250105E-01 7.02962468241E-01 7.10839583673E-01 7.18487382497E-01 7.25899782025E-01 7.33070838343E-01 7.39994754324E-01 7.46665887993E-01 7.53078761206E-01 7.59228068545E-01 7.65108686345E-01 7.70715681797E-01 7.76044322020E-01 7.81090083063E-01 7.85848658739E-01 7.90315969256E-01 7.94488169575E-01 7.98361657460E-01 8.01933081159E-01 8.05199346709E-01 8.08157624806E-01 8.10805357231E-01 8.13140262813E-01 8.15160342905E-01 8.16863886362E-01 8.18249474015E-01 8.19315982630E-01 8.20062588350E-01 8.20488769608E-01 8.20594309532E-01 8.20379297808E-01 8.19844132033E-01 8.18989518542E-01 8.17816472724E-01 8.16326318814E-01 8.14520689188E-01 8.12401523146E-01 8.09971065204E-01 8.07231862895E-01 8.04186764087E-01 8.00838913826E-01 7.97191750719E-01 7.93249002859E-01 7.89014683304E-01 7.84493085128E-01 7.79688776044E-01 7.74606592618E-01 7.69251634090E-01 7.63629255802E-01 7.57745062264E-01 7.51604899850E-01 7.45214849164E-01 7.38581217062E-01 7.31710528367E-01 7.24609517276E-01 7.17285118488E-01 7.09744458044E-01 7.01994843921E-01 6.94043756375E-01 6.85898838048E-01 6.77567883861E-01 6.69058830699E-01 6.60379746901E-01 6.51538821577E-01 6.42544353740E-01 6.33404741295E-01 6.24122629465E-01 6.14712347362E-01 6.05182521066E-01 5.95541829920E-01 5.85798994886E-01 5.75962766808E-01 5.66041914599E-01 5.56045213350E-01 5.45981432401E-01 5.35859323364E-01 5.25687608129E-01 5.15474966861E-01 5.05230026011E-01 4.94961346363E-01 4.84677411134E-01 4.74386614159E-01 4.64097248179E-01 4.53817493274E-01 4.43555405459E-01 4.33318905483E-01 4.23115767867E-01 4.12953610219E-01 4.02839882858E-01 3.92781858788E-01 3.82786624069E-01 3.72861068616E-01 3.63011877460E-01 3.53245522530E-01 3.43568254955E-01 3.33986097963E-01 3.24504840363E-01 3.15130030669E-01 3.05866971872E-01 2.96720716881E-01 2.87696064647E-01 2.78797556977E-01 2.70029476041E-01 2.61395842576E-01 2.52900414766E-01 2.44546687804E-01 2.36337894110E-01 2.28277004179E-01 2.20366728055E-01 2.12609517381E-01 2.05007568009E-01 1.97562823136E-01 1.90276976923E-01 1.83151478573E-01 1.76187536826E-01 1.69386124829E-01 1.62747985354E-01 1.56273636322E-01 1.49963376599E-01 1.43817292029E-01 1.37835261667E-01 1.32016964199E-01 1.26361884493E-01 1.20869320280E-01 1.15538388920E-01 1.10368034247E-01 1.05357033468E-01 1.00504004086E-01 9.58074108614E-02 9.12655727622E-02 8.68766699250E-02 8.26387505971E-02 7.85497380611E-02 7.46074375355E-02 7.08095430459E-02 6.71536442654E-02 6.36372333203E-02 6.02577115609E-02 5.70123962954E-02 5.38985274866E-02 5.09132744087E-02 4.80537422646E-02 4.53169787599E-02 4.26999806309E-02 4.01997001242E-02 3.78130514207E-02 3.55369170000E-02 3.33681539371E-02 3.13036001232E-02 2.93400804011E-02 2.74744126047E-02 2.57034134913E-02 2.40239045531E-02 2.24327176960E-02 2.09267007717E-02 1.95027229479E-02 1.81576799035E-02 1.68884988346E-02 1.56921432561E-02 1.45656175866E-02 1.35059715037E-02 1.25103040569E-02 1.15757675277E-02 1.06995710276E-02 9.87898382430E-03 9.11133839055E-03 8.39403316876E-03 7.72453504845E-03 7.10038155358E-03 6.51918273934E-03 5.97862279918E-03 5.47646138459E-03 5.01053464172E-03 4.57875597029E-03 4.17911651183E-03 3.80968537529E-03 3.46860960980E-03 3.15411393480E-03 2.86450023933E-03 2.59814686278E-03 2.35350767023E-03 2.12911093619E-03 1.92355805095E-03 1.73552206406E-03 1.56374607979E-03 1.40704151963E-03 1.26428626644E-03 1.13442270548E-03 1.01645567651E-03 9.09450351664E-04 8.12530052706E-04 7.24874021352E-04 6.45715155475E-04 5.74337723569E-04 5.10075069187E-04 4.52307316351E-04 4.00459086230E-04 3.53997234652E-04 3.12428619227E-04 2.75297904089E-04 2.42185409495E-04 2.12705012743E-04 1.86502106085E-04 1.63251616569E-04 1.42656092037E-04 1.24443856730E-04 1.08367239358E-04 9.42008757536E-05 8.17400876994E-05 7.07993388667E-05 6.12107683229E-05 5.28228015333E-05 4.54988383426E-05 3.91160170022E-05 3.35640529391E-05 2.87441506317E-05 2.45679866675E-05 2.09567618084E-05 1.78403196796E-05 1.51563295203E-05 1.28495302981E-05 1.08710333806E-05 9.17768088352E-06 7.73145676579E-06 6.49894772308E-06 5.45085093231E-06 4.56152572562E-06 3.80860208751E-06 3.17273602539E-06 2.63696751247E-06 2.18658192504E-06 1.80885783042E-06 1.49282320007E-06 1.22903766584E-06 1.00939854794E-06 8.26968517989E-07 6.75822894870E-07 5.50914704572E-07 4.47955766009E-07 3.63312193291E-07 2.93912829493E-07 2.37169247559E-07 1.90906070117E-07 1.53296462894E-07 1.22778012264E-07 9.80847942213E-08 7.81681441933E-08 6.21588373172E-08 4.93390138838E-08 3.91182824881E-08 3.10134953007E-08 2.45139338531E-08 1.93174714898E-08 1.51756022504E-08 1.18845618763E-08 9.27779966508E-09 7.21961688213E-09 5.59980901382E-09 4.32916876332E-09 3.33572443726E-09 2.56160435326E-09 1.96043222093E-09 1.49517122367E-09 1.13634587145E-09 8.60580718028E-10 6.49403853969E-10 4.88270807955E-10 3.65771219263E-10 2.72986484332E-10 2.02971624633E-10 1.50338960431E-10 1.10924887437E-10 8.15242164842E-11 5.96792191343E-11 4.35127870850E-11 3.15970167009E-11 2.28501222428E-11 1.64559071484E-11 1.18011214714E-11 8.42693993915E-12 5.99153920808E-12 4.24136093431E-12 2.98914174990E-12 2.09719142545E-12 1.46472282129E-12 1.01829556869E-12 7.04641466897E-13 4.85303102999E-13 3.32646330785E-13 2.26908701504E-13 1.54025251022E-13 1.04034730534E-13 6.99170930232E-14 4.67497811795E-14 3.10984874805E-14 2.05794768280E-14 1.35467878743E-14 8.86985395700E-15 5.77624471974E-15 3.74105546484E-15 2.40952954380E-15 1.54322635794E-15 9.82778434276E-16 6.22270434238E-16 3.91713773965E-16 2.45127939069E-16 1.52482093562E-16 9.42788552746E-17 5.79356824885E-17 3.53818762894E-17 2.14725988060E-17 1.29486073973E-17 7.75820896931E-18 4.61811406686E-18 2.73084457731E-18 1.60406654387E-18 9.35845847542E-19 5.42257795595E-19 3.12024994975E-19 1.78285955310E-19 1.01146449461E-19 5.69706305785E-20 3.18550951847E-20 1.76804946399E-20 9.73995975899E-21 5.32508173903E-21 2.88908527305E-21 1.55531187974E-21 8.30721054519E-22 4.40180262201E-22 2.31366250264E-22 1.20620042603E-22 6.23654913653E-23 3.19763901573E-23 1.62565723054E-23 8.19401311180E-24 4.09435545666E-24 2.02790750797E-24 9.95488735483E-25 4.84285489845E-25 2.33450142161E-25 1.11497329608E-25 5.27547849234E-26 2.47249321561E-26 1.14771054153E-26 5.27595568941E-27 2.40153129865E-27 1.08228059683E-27 4.82838056432E-28 2.13215079430E-28 9.31822626294E-29 4.02986877408E-29 1.72438234578E-29 7.29966979359E-30 3.05661744605E-30 1.26586586460E-30 5.18421223754E-31 2.09925567556E-31 8.40375933716E-32 3.32540876072E-32 1.30051776725E-32 5.02600867366E-33 1.91911468670E-33 7.23908405017E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.05223154394E-08 8.25607474106E-08 8.46507825252E-08 8.67937271226E-08 8.89909206124E-08 9.12437363113E-08 9.35535823018E-08 9.59219023121E-08 9.83501766186E-08 1.00839922971E-07 1.03392697541E-07 1.06010095895E-07 1.08693753991E-07 1.11445349203E-07 1.14266601364E-07 1.17159273850E-07 1.20125174672E-07 1.23166157616E-07 1.26284123392E-07 1.29481020830E-07 1.32758848092E-07 1.36119653928E-07 1.39565538947E-07 1.43098656939E-07 1.46721216216E-07 1.50435480993E-07 1.54243772806E-07 1.58148471958E-07 1.62152019012E-07 1.66256916313E-07 1.70465729552E-07 1.74781089374E-07 1.79205693015E-07 1.83742305995E-07 1.88393763841E-07 1.93162973863E-07 1.98052916970E-07 2.03066649533E-07 2.08207305293E-07 2.13478097324E-07 2.18882320041E-07 2.24423351252E-07 2.30104654281E-07 2.35929780121E-07 2.41902369661E-07 2.48026155960E-07 2.54304966578E-07 2.60742725971E-07 2.67343457943E-07 2.74111288160E-07 2.81050446731E-07 2.88165270848E-07 2.95460207503E-07 3.02939816260E-07 3.10608772112E-07 3.18471868397E-07 3.26534019799E-07 3.34800265415E-07 3.43275771910E-07 3.51965836742E-07 3.60875891473E-07 3.70011505167E-07 3.79378387870E-07 3.88982394176E-07 3.98829526890E-07 4.08925940776E-07 4.19277946410E-07 4.29892014117E-07 4.40774778020E-07 4.51933040185E-07 4.63373774872E-07 4.75104132896E-07 4.87131446094E-07 4.99463231910E-07 5.12107198089E-07 5.25071247503E-07 5.38363483080E-07 5.51992212878E-07 5.65965955273E-07 5.80293444280E-07 5.94983635022E-07 6.10045709315E-07 6.25489081417E-07 6.41323403907E-07 6.57558573717E-07 6.74204738324E-07 6.91272302083E-07 7.08771932741E-07 7.26714568095E-07 7.45111422833E-07 7.63973995543E-07 7.83314075901E-07 8.03143752035E-07 8.23475418088E-07 8.44321781957E-07 8.65695873241E-07 8.87611051381E-07 9.10081014013E-07 9.33119805529E-07 9.56741825853E-07 9.80961839442E-07 1.00579498452E-06 1.03125678251E-06 1.05736314781E-06 1.08413039763E-06 1.11157526229E-06 1.13971489562E-06 1.16856688570E-06 1.19814926586E-06 1.22848052593E-06 1.25957962381E-06 1.29146599732E-06 1.32415957635E-06 1.35768079531E-06 1.39205060590E-06 1.42729049022E-06 1.46342247417E-06 1.50046914124E-06 1.53845364664E-06 1.57739973171E-06 1.61733173883E-06 1.65827462659E-06 1.70025398540E-06 1.74329605350E-06 1.78742773334E-06 1.83267660838E-06 1.87907096039E-06 1.92663978705E-06 1.97541282013E-06 2.02542054404E-06 2.07669421491E-06 2.12926588011E-06 2.18316839826E-06 2.23843545981E-06 2.29510160806E-06 2.35320226078E-06 2.41277373232E-06 2.47385325632E-06 2.53647900896E-06 2.60069013287E-06 2.66652676153E-06 2.73403004441E-06 2.80324217265E-06 2.87420640545E-06 2.94696709709E-06 3.02156972467E-06 3.09806091652E-06 3.17648848135E-06 3.25690143813E-06 3.33935004670E-06 3.42388583923E-06 3.51056165240E-06 3.59943166040E-06 3.69055140884E-06 3.78397784942E-06 3.87976937555E-06 3.97798585884E-06 4.07868868649E-06 4.18194079970E-06 4.28780673300E-06 4.39635265455E-06 4.50764640751E-06 4.62175755245E-06 4.73875741083E-06 4.85871910955E-06 4.98171762667E-06 5.10782983824E-06 5.23713456639E-06 5.36971262857E-06 5.50564688803E-06 5.64502230568E-06 5.78792599309E-06 5.93444726700E-06 6.08467770514E-06 6.23871120341E-06 6.39664403462E-06 6.55857490860E-06 6.72460503394E-06 6.89483818121E-06 7.06938074782E-06 7.24834182451E-06 7.43183326351E-06 7.61996974848E-06 7.81286886613E-06 8.01065117975E-06 8.21344030453E-06 8.42136298480E-06 8.63454917326E-06 8.85313211218E-06 9.07724841667E-06 9.30703816002E-06 9.54264496130E-06 9.78421607505E-06 1.00319024833E-05 1.02858589900E-05 1.05462443177E-05 1.08132212066E-05 1.10869565165E-05 1.13676213309E-05 1.16553910641E-05 1.19504455704E-05 1.22529692569E-05 1.25631511988E-05 1.28811852569E-05 1.32072701994E-05 1.35416098260E-05 1.38844130949E-05 1.42358942538E-05 1.45962729733E-05 1.49657744846E-05 1.53446297201E-05 1.57330754576E-05 1.61313544681E-05 1.65397156680E-05 1.69584142742E-05 1.73877119637E-05 1.78278770368E-05 1.82791845855E-05 1.87419166645E-05 1.92163624680E-05 1.97028185102E-05 2.02015888104E-05 2.07129850834E-05 2.12373269335E-05 2.17749420551E-05 2.23261664366E-05 2.28913445709E-05 2.34708296702E-05 2.40649838869E-05 2.46741785400E-05 2.52987943464E-05 2.59392216596E-05 2.65958607131E-05 2.72691218702E-05 2.79594258808E-05 2.86672041442E-05 2.93928989781E-05 3.01369638956E-05 3.08998638877E-05 3.16820757145E-05 3.24840882025E-05 3.33064025502E-05 3.41495326408E-05 3.50140053637E-05 3.59003609431E-05 3.68091532758E-05 3.77409502766E-05 3.86963342338E-05 3.96759021720E-05 4.06802662256E-05 4.17100540206E-05 4.27659090672E-05 4.38484911608E-05 4.49584767948E-05 4.60965595825E-05 4.72634506907E-05 4.84598792831E-05 4.96865929765E-05 5.09443583068E-05 5.22339612079E-05 5.35562075028E-05 5.49119234059E-05 5.63019560395E-05 5.77271739626E-05 5.91884677126E-05 6.06867503620E-05 6.22229580877E-05 6.37980507561E-05 6.54130125215E-05 6.70688524409E-05 6.87666051038E-05 7.05073312778E-05 7.22921185706E-05 7.41220821090E-05 7.59983652347E-05 7.79221402178E-05 7.98946089884E-05 8.19170038865E-05 8.39905884312E-05 8.61166581087E-05 8.82965411811E-05 9.05315995147E-05 9.28232294296E-05 9.51728625712E-05 9.75819668028E-05 1.00052047122E-04 1.02584646597E-04 1.05181347334E-04 1.07843771459E-04 1.10573582131E-04 1.13372484580E-04 1.16242227170E-04 1.19184602489E-04 1.22201448466E-04 1.25294649520E-04 1.28466137728E-04 1.31717894039E-04 1.35051949499E-04 1.38470386524E-04 1.41975340197E-04 1.45568999592E-04 1.49253609149E-04 1.53031470064E-04 1.56904941725E-04 1.60876443184E-04 1.64948454661E-04 1.69123519094E-04 1.73404243715E-04 1.77793301681E-04 1.82293433736E-04 1.86907449916E-04 1.91638231302E-04 1.96488731812E-04 2.01461980037E-04 2.06561081134E-04 2.11789218749E-04 2.17149657005E-04 2.22645742531E-04 2.28280906543E-04 2.34058666982E-04 2.39982630698E-04 2.46056495695E-04 2.52284053433E-04 2.58669191182E-04 2.65215894442E-04 2.71928249417E-04 2.78810445558E-04 2.85866778165E-04 2.93101651056E-04 3.00519579303E-04 3.08125192037E-04 3.15923235323E-04 3.23918575109E-04 3.32116200243E-04 3.40521225572E-04 3.49138895120E-04 3.57974585337E-04 3.67033808436E-04 3.76322215817E-04 3.85845601564E-04 3.95609906047E-04 4.05621219595E-04 4.15885786281E-04 4.26410007783E-04 4.37200447356E-04 4.48263833895E-04 4.59607066100E-04 4.71237216753E-04 4.83161537090E-04 4.95387461295E-04 5.07922611090E-04 5.20774800459E-04 5.33952040473E-04 5.47462544247E-04 5.61314732012E-04 5.75517236319E-04 5.90078907371E-04 6.05008818488E-04 6.20316271708E-04 6.36010803525E-04 6.52102190775E-04 6.68600456661E-04 6.85515876936E-04 7.02858986234E-04 7.20640584557E-04 7.38871743931E-04 7.57563815214E-04 7.76728435088E-04 7.96377533212E-04 8.16523339555E-04 8.37178391919E-04 8.58355543632E-04 8.80067971447E-04 9.02329183626E-04 9.25153028227E-04 9.48553701597E-04 9.72545757069E-04 9.97144113879E-04 1.02236406630E-03 1.04822129300E-03 1.07473186664E-03 1.10191226366E-03 1.12977937442E-03 1.15835051342E-03 1.18764342994E-03 1.21767631882E-03 1.24846783157E-03 1.28003708772E-03 1.31240368644E-03 1.34558771849E-03 1.37960977842E-03 1.41449097707E-03 1.45025295438E-03 1.48691789251E-03 1.52450852931E-03 1.56304817206E-03 1.60256071155E-03 1.64307063657E-03 1.68460304867E-03 1.72718367730E-03 1.77083889534E-03 1.81559573497E-03 1.86148190394E-03 1.90852580223E-03 1.95675653907E-03 2.00620395047E-03 2.05689861703E-03 2.10887188227E-03 2.16215587140E-03 2.21678351045E-03 2.27278854594E-03 2.33020556501E-03 2.38907001594E-03 2.44941822928E-03 2.51128743937E-03 2.57471580641E-03 2.63974243908E-03 2.70640741760E-03 2.77475181746E-03 2.84481773353E-03 2.91664830491E-03 2.99028774022E-03 3.06578134355E-03 3.14317554100E-03 3.22251790777E-03 3.30385719595E-03 3.38724336292E-03 3.47272760037E-03 3.56036236402E-03 3.65020140397E-03 3.74229979579E-03 3.83671397229E-03 3.93350175593E-03 4.03272239210E-03 4.13443658303E-03 4.23870652247E-03 4.34559593119E-03 4.45517009318E-03 4.56749589275E-03 4.68264185232E-03 4.80067817114E-03 4.92167676479E-03 5.04571130552E-03 5.17285726354E-03 5.30319194907E-03 5.43679455537E-03 5.57374620268E-03 5.71412998301E-03 5.85803100594E-03 6.00553644536E-03 6.15673558713E-03 6.31171987775E-03 6.47058297403E-03 6.63342079374E-03 6.80033156728E-03 6.97141589041E-03 7.14677677798E-03 7.32651971871E-03 7.51075273112E-03 7.69958642039E-03 7.89313403645E-03 8.09151153308E-03 8.29483762813E-03 8.50323386488E-03 8.71682467451E-03 8.93573743968E-03 9.16010255926E-03 9.39005351422E-03 9.62572693464E-03 9.86726266789E-03 1.01148038479E-02 1.03684969658E-02 1.06284919412E-02 1.08949421953E-02 1.11680047249E-02 1.14478401770E-02 1.17346129254E-02 1.20284911479E-02 1.23296469048E-02 1.26382562184E-02 1.29544991539E-02 1.32785599007E-02 1.36106268555E-02 1.39508927060E-02 1.42995545161E-02 1.46568138110E-02 1.50228766646E-02 1.53979537871E-02 1.57822606132E-02 1.61760173921E-02 1.65794492771E-02 1.69927864171E-02 1.74162640478E-02 1.78501225845E-02 1.82946077145E-02 1.87499704907E-02 1.92164674253E-02 1.96943605843E-02 2.01839176814E-02 2.06854121730E-02 2.11991233528E-02 2.17253364464E-02 2.22643427060E-02 2.28164395046E-02 2.33819304298E-02 2.39611253777E-02 2.45543406449E-02 2.51618990210E-02 2.57841298796E-02 2.64213692678E-02 2.70739599951E-02 2.77422517202E-02 2.84266010363E-02 2.91273715548E-02 2.98449339860E-02 3.05796662186E-02 3.13319533953E-02 3.21021879866E-02 3.28907698604E-02 3.36981063492E-02 3.45246123125E-02 3.53707101959E-02 3.62368300849E-02 3.71234097549E-02 3.80308947152E-02 3.89597382479E-02 3.99104014404E-02 4.08833532119E-02 4.18790703329E-02 4.28980374373E-02 4.39407470266E-02 4.50076994662E-02 4.60994029721E-02 4.72163735893E-02 4.83591351587E-02 4.95282192752E-02 5.07241652331E-02 5.19475199602E-02 5.31988379398E-02 5.44786811189E-02 5.57876188027E-02 5.71262275346E-02 5.84950909604E-02 5.98947996767E-02 6.13259510621E-02 6.27891490902E-02 6.42850041246E-02 6.58141326938E-02 6.73771572455E-02 6.89747058797E-02 7.06074120596E-02 7.22759142981E-02 7.39808558217E-02 7.57228842072E-02 7.75026509933E-02 7.93208112640E-02 8.11780232038E-02 8.30749476238E-02 8.50122474559E-02 8.69905872168E-02 8.90106324383E-02 9.10730490638E-02 9.31785028104E-02 9.53276584942E-02 9.75211793193E-02 9.97597261287E-02 1.02043956615E-01 1.04374524493E-01 1.06752078630E-01 1.09177262133E-01 1.11650711398E-01 1.14173055108E-01 1.16744913196E-01 1.19366895753E-01 1.22039601903E-01 1.24763618618E-01 1.27539519499E-01 1.30367863504E-01 1.33249193629E-01 1.36184035549E-01 1.39172896203E-01 1.42216262345E-01 1.45314599037E-01 1.48468348107E-01 1.51677926561E-01 1.54943724950E-01 1.58266105699E-01 1.61645401397E-01 1.65081913048E-01 1.68575908293E-01 1.72127619591E-01 1.75737242379E-01 1.79404933206E-01 1.83130807839E-01 1.86914939362E-01 1.90757356255E-01 1.94658040466E-01 1.98616925485E-01 2.02633894422E-01 2.06708778090E-01 2.10841353115E-01 2.15031340064E-01 2.19278401611E-01 2.23582140747E-01 2.27942099036E-01 2.32357754942E-01 2.36828522219E-01 2.41353748391E-01 2.45932713326E-01 2.50564627914E-01 2.55248632870E-01 2.59983797667E-01 2.64769119613E-01 2.69603523098E-01 2.74485859007E-01 2.79414904327E-01 2.84389361959E-01 2.89407860754E-01 2.94468955777E-01 2.99571128831E-01 3.04712789239E-01 3.09892274918E-01 3.15107853738E-01 3.20357725201E-01 3.25640022437E-01 3.30952814546E-01 3.36294109274E-01 3.41661856065E-01 3.47053949465E-01 3.52468232915E-01 3.57902502913E-01 3.63354513570E-01 3.68821981541E-01 3.74302591346E-01 3.79794001062E-01 3.85293848392E-01 3.90799757085E-01 3.96309343697E-01 4.01820224680E-01 4.07330023761E-01 4.12836379590E-01 4.18336953629E-01 4.23829438222E-01 4.29311564826E-01 4.34781112336E-01 4.40235915450E-01 4.45673873019E-01 4.51092956306E-01 4.56491217087E-01 4.61866795502E-01 4.67217927589E-01 4.72542952395E-01 4.77840318572E-01 4.83108590356E-01 4.88346452831E-01 4.93552716356E-01 4.98726320053E-01 5.03866334234E-01 5.08971961656E-01 5.14042537478E-01 5.19077527811E-01 5.24076526734E-01 5.29039251671E-01 5.33965537001E-01 5.38855325806E-01 5.43708659639E-01 5.48525666215E-01 5.53306544925E-01 5.58051550085E-01 5.62760971826E-01 5.67435114543E-01 5.72074272826E-01 5.76678704785E-01 5.81248602702E-01 5.85784060911E-01 5.90285040830E-01 5.94751333040E-01 5.99182516296E-01 6.03577913336E-01 6.07936543335E-01 6.12257070796E-01 6.16537750665E-01 6.20776369378E-01 6.24970181528E-01 6.29115841747E-01 6.33209331357E-01 6.37245879284E-01 6.41219876622E-01 6.45124784197E-01 6.48953032412E-01 6.52695912571E-01 6.56344782138E-01 6.59895405928E-01 6.63344787192E-01 6.66689963750E-01 6.69928009952E-01 6.73056039118E-01 6.76071206429E-01 6.78970712164E-01 6.81751805246E-01 6.84411787009E-01 6.86948015129E-01 6.89357907661E-01 6.91638947129E-01 6.93788684611E-01 6.95804743788E-01 6.97684824923E-01 6.99426708720E-01 7.01028260068E-01 7.02487431619E-01 7.03802267214E-01 7.04970905120E-01 7.05991581089E-01 7.06862631223E-01 7.07582494645E-01 7.08149715980E-01 7.08562947636E-01 7.08820951896E-01 7.08922602820E-01 7.08866887959E-01 7.08652909889E-01 7.08279887559E-01 7.07747157476E-01 7.07054174707E-01 7.06200513720E-01 7.05185869068E-01 7.04010055905E-01 7.02673010362E-01 7.01174789761E-01 6.99515572697E-01 6.97695658977E-01 6.95715469418E-01 6.93575545526E-01 6.91276549039E-01 6.88819261359E-01 6.86204582859E-01 6.83433532083E-01 6.80507244838E-01 6.77426973183E-01 6.74194084318E-01 6.70810059379E-01 6.67276492145E-01 6.63595087657E-01 6.59767660750E-01 6.55796134507E-01 6.51682538641E-01 6.47429007790E-01 6.43037779746E-01 6.38511193612E-01 6.33851687882E-01 6.29061798451E-01 6.24144156552E-01 6.19101486622E-01 6.13936604079E-01 6.08652413037E-01 6.03251903913E-01 5.97738150970E-01 5.92114309754E-01 5.86383614433E-01 5.80549375015E-01 5.74614974478E-01 5.68581698570E-01 5.62455207046E-01 5.56239082915E-01 5.49936969285E-01 5.43552565794E-01 5.37089624887E-01 5.30551947922E-01 5.23943381121E-01 5.17267811340E-01 5.10529161680E-01 5.03731386924E-01 4.96878468819E-01 4.89974411193E-01 4.83023234931E-01 4.76028972821E-01 4.68995664281E-01 4.61927349981E-01 4.54828066403E-01 4.47701840338E-01 4.40552683365E-01 4.33384586330E-01 4.26201513869E-01 4.19007398993E-01 4.11806137776E-01 4.04601584181E-01 3.97397545052E-01 3.90197775307E-01 3.83005973361E-01 3.75825776806E-01 3.68660758384E-01 3.61514422254E-01 3.54390200602E-01 3.47291450579E-01 3.40221451600E-01 3.33183403007E-01 3.26180422088E-01 3.19215542466E-01 3.12291712841E-01 3.05411796087E-01 2.98578568674E-01 2.91794720419E-01 2.85062854525E-01 2.78385487906E-01 2.71765051754E-01 2.65203892331E-01 2.58704271954E-01 2.52268370146E-01 2.45898284917E-01 2.39596034140E-01 2.33363557007E-01 2.27202715510E-01 2.21115295941E-01 2.15103010358E-01 2.09167498015E-01 2.03310326703E-01 1.97532994003E-01 1.91836928415E-01 1.86223490347E-01 1.80693972952E-01 1.75249602805E-01 1.69891540393E-01 1.64620880435E-01 1.59438652014E-01 1.54345818532E-01 1.49343277482E-01 1.44431860058E-01 1.39612330603E-01 1.34885385918E-01 1.30251654440E-01 1.25711695322E-01 1.21265997422E-01 1.16914978233E-01 1.12658982783E-01 1.08498282522E-01 1.04433074223E-01 1.00463478941E-01 9.65895410296E-02 9.28112272653E-02 8.91284260898E-02 8.55409470005E-02 8.20485201082E-02 7.86507958825E-02 7.53473451011E-02 7.21376590191E-02 6.90211497683E-02 6.59971509971E-02 6.30649187568E-02 6.02236326377E-02 5.74723971553E-02 5.48102433856E-02 5.22361308440E-02 4.97489496019E-02 4.73475226308E-02 4.50306083638E-02 4.27969034606E-02 4.06450457632E-02 3.85736174245E-02 3.65811481948E-02 3.46661188476E-02 3.28269647257E-02 3.10620793912E-02 2.93698183575E-02 2.77485028862E-02 2.61964238291E-02 2.47118454976E-02 2.32930095398E-02 2.19381388092E-02 2.06454412066E-02 1.94131134806E-02 1.82393449693E-02 1.71223212707E-02 1.60602278266E-02 1.50512534089E-02 1.40935934950E-02 1.31854535246E-02 1.23250520252E-02 1.15106236005E-02 1.07404217739E-02 1.00127216796E-02 9.32582259817E-03 8.67805033066E-03 8.06775940903E-03 7.49333514046E-03 6.95319548391E-03 6.44579275887E-03 5.96961518627E-03 5.52318826295E-03 5.10507597133E-03 4.71388182698E-03 4.34824976713E-03 4.00686488397E-03 3.68845400696E-03 3.39178613894E-03 3.11567275129E-03 2.85896794365E-03 2.62056847421E-03 2.39941366673E-03 2.19448520079E-03 2.00480679193E-03 1.82944376842E-03 1.66750255171E-03 1.51813004738E-03 1.38051295385E-03 1.25387699554E-03 1.13748608779E-03 1.03064144016E-03 9.32680605054E-04 8.42976478248E-04 7.60936257839E-04 6.86000367855E-04 6.17641352644E-04 5.55362747854E-04 4.98697933601E-04 4.47208975125E-04 4.00485455958E-04 3.58143308421E-04 3.19824968226E-04 2.85208689196E-04 2.53981893010E-04 2.25852712971E-04 2.00550385777E-04 1.77824103885E-04 1.57441899808E-04 1.39189563980E-04 1.22869597620E-04 1.08300201869E-04 9.53143042776E-05 8.37586235425E-05 7.34927732377E-05 6.43884051299E-05 5.63283925428E-05 4.92060541247E-05 4.29232986984E-05 3.73810118524E-05 3.24996242626E-05 2.82081446056E-05 2.44423207092E-05 2.11441155581E-05 1.82612144047E-05 1.57465625551E-05 1.35579333534E-05 1.16575258630E-05 1.00115917505E-05 8.59009091367E-06 7.36637546684E-06 6.31690181544E-06 5.40607389253E-06 4.61717583148E-06 3.93528605761E-06 3.34711311221E-06 2.84084311709E-06 2.40599842803E-06 2.03330700234E-06 1.71458198785E-06 1.44261102780E-06 1.21105476855E-06 1.01435405322E-06 8.47645285549E-07 7.06683452366E-07 5.87772301130E-07 4.87701179694E-07 4.03688058866E-07 3.33328273956E-07 2.74548538961E-07 2.25565806000E-07 1.84850562805E-07 1.51094182048E-07 1.23179957919E-07 1.00157487300E-07 8.12200748366E-08 6.56848631206E-08 5.29754106767E-08 4.26064615196E-08 3.41706704206E-08 2.73270676778E-08 2.17910659744E-08 1.73258297793E-08 1.37348446341E-08 1.08555395465E-08 8.55383054737E-09 6.71946726670E-09 5.26207714380E-09 4.10781363503E-09 3.19652553772E-09 2.47937435390E-09 1.91683551050E-09 1.47702728182E-09 1.13431847531E-09 8.68172396242E-10 6.62190353790E-10 5.03323065752E-10 3.81222814589E-10 2.87713156671E-10 2.16356440410E-10 1.62102395938E-10 1.21003665351E-10 8.99863914724E-11 6.66659150735E-11 4.91992826592E-11 3.61676735104E-11 2.64830468140E-11 1.93143154961E-11 1.40291981148E-11 1.01486064138E-11 7.31101389111E-12 5.24473762381E-12 3.74646706457E-12 2.66470301263E-12 1.88703911863E-12 1.33043710554E-12 9.33823950247E-13 6.52481852766E-13 4.53816083772E-13 3.14176924671E-13 2.16484227649E-13 1.48460225163E-13 1.01321083798E-13 6.88127711882E-14 4.65040845172E-14 3.12707981359E-14 2.09211374981E-14 1.39252302198E-14 9.22066385167E-15 6.07346190202E-15 3.97920206131E-15 2.59305731022E-15 1.68056453575E-15 1.08316688756E-15 6.94228480372E-16 4.42431191707E-16 2.80345966709E-16 1.76610599803E-16 1.10606669761E-16 6.88582189196E-17 4.26096127029E-17 2.62061804258E-17 1.60180924398E-17 9.72959949812E-18 5.87248580537E-18 3.52173882957E-18 2.09828923064E-18 1.24196978243E-18 7.30227472574E-19 4.26452144828E-19 2.47349201118E-19 1.42475899621E-19 8.14939058606E-20 4.62831975048E-20 2.60974008943E-20 1.46085642887E-20 8.11735228109E-21 4.47690143012E-21 2.45050811862E-21 1.33109458051E-21 7.17453903428E-22 3.83679896139E-22 2.03559390164E-22 1.07131419087E-22 5.59245129487E-23 2.89536061877E-23 1.48652808559E-23 7.56776982402E-24 3.81980164524E-24 1.91137099128E-24 9.48053930368E-25 4.66076240744E-25 2.27074384683E-25 1.09626959233E-25 5.24390471363E-26 2.48502035676E-26 1.16651880694E-26 5.42360972932E-27 8.05231455759E-08 8.25615985621E-08 8.46516552237E-08 8.67946219136E-08 8.89918380550E-08 9.12446769790E-08 9.35545467825E-08 9.59228912087E-08 9.83511905492E-08 1.00840962569E-07 1.03393763457E-07 1.06011188794E-07 1.08694874557E-07 1.11446498135E-07 1.14267779382E-07 1.17160481689E-07 1.20126413088E-07 1.23167427382E-07 1.26285425302E-07 1.29482355697E-07 1.32760216752E-07 1.36121057235E-07 1.39566977779E-07 1.43100132195E-07 1.46722728818E-07 1.50437031886E-07 1.54245362960E-07 1.58150102366E-07 1.62153690694E-07 1.66258630312E-07 1.70467486942E-07 1.74782891251E-07 1.79207540506E-07 1.83744200255E-07 1.88395706054E-07 1.93164965243E-07 1.98054958761E-07 2.03068743011E-07 2.08209451767E-07 2.13480298136E-07 2.18884576565E-07 2.24425664900E-07 2.30107026498E-07 2.35932212390E-07 2.41904863503E-07 2.48028712933E-07 2.54307588280E-07 2.60745414040E-07 2.67346214060E-07 2.74114114048E-07 2.81053344155E-07 2.88168241620E-07 2.95463253479E-07 3.02942939344E-07 3.10611974256E-07 3.18475151602E-07 3.26537386117E-07 3.34803716951E-07 3.43279310821E-07 3.51969465239E-07 3.60879611824E-07 3.70015319698E-07 3.79382298965E-07 3.88986404279E-07 3.98833638507E-07 4.08930156478E-07 4.19282268831E-07 4.29896445958E-07 4.40779322052E-07 4.51937699248E-07 4.63378551878E-07 4.75109030831E-07 4.87136468020E-07 4.99468380964E-07 5.12112477491E-07 5.25076660551E-07 5.38369033159E-07 5.51997903457E-07 5.65971789907E-07 5.80299426618E-07 5.94989768801E-07 6.10051998371E-07 6.25495529680E-07 6.41330015406E-07 6.57565352586E-07 6.74211688799E-07 6.91279428510E-07 7.08779239573E-07 7.26722059898E-07 7.45119104291E-07 7.63981871457E-07 7.83322151193E-07 8.03152031754E-07 8.23483907407E-07 8.44330486183E-07 8.65704797814E-07 8.87620201880E-07 9.10090396157E-07 9.33129425182E-07 9.56751689028E-07 9.80971952303E-07 1.00580535338E-06 1.03126741387E-06 1.05737404830E-06 1.08414157406E-06 1.11158672166E-06 1.13972664508E-06 1.16857893260E-06 1.19816161773E-06 1.22849319049E-06 1.25959260897E-06 1.29147931120E-06 1.32417322728E-06 1.35769479181E-06 1.39206495672E-06 1.42730520433E-06 1.46343756077E-06 1.50048460976E-06 1.53846950674E-06 1.57741599331E-06 1.61734841210E-06 1.65829172194E-06 1.70027151353E-06 1.74331402536E-06 1.78744616015E-06 1.83269550167E-06 1.87909033197E-06 1.92665964902E-06 1.97543318491E-06 2.02544142436E-06 2.07671562381E-06 2.12928783098E-06 2.18319090482E-06 2.23845853612E-06 2.29512526856E-06 2.35322652025E-06 2.41279860592E-06 2.47387875959E-06 2.53650515786E-06 2.60071694373E-06 2.66655425111E-06 2.73405822989E-06 2.80327107165E-06 2.87423603603E-06 2.94699747778E-06 3.02160087445E-06 3.09809285486E-06 3.17652122822E-06 3.25693501399E-06 3.33938447254E-06 3.42392113657E-06 3.51059784329E-06 3.59946876747E-06 3.69058945529E-06 3.78401685902E-06 3.87980937269E-06 3.97802686850E-06 4.07873073432E-06 4.18198391199E-06 4.28785093668E-06 4.39639797725E-06 4.50769287757E-06 4.62180519891E-06 4.73880626347E-06 4.85876919891E-06 4.98176898405E-06 5.10788249574E-06 5.23718855693E-06 5.36976798589E-06 5.50570364674E-06 5.64508050124E-06 5.78798566189E-06 5.93450844633E-06 6.08474043324E-06 6.23877551949E-06 6.39670997887E-06 6.55864252225E-06 6.72467435925E-06 6.89490926151E-06 7.06945362754E-06 7.24841654919E-06 7.43190987987E-06 7.62004830440E-06 7.81294941072E-06 8.01073376335E-06 8.21352497876E-06 8.42144980258E-06 8.63463818886E-06 8.85322338124E-06 9.07734199623E-06 9.30713410858E-06 9.54274333883E-06 9.78431694304E-06 1.00320059048E-05 1.02859650297E-05 1.05463530417E-05 1.08133326830E-05 1.10870708150E-05 1.13677385230E-05 1.16555112229E-05 1.19505687710E-05 1.22530955765E-05 1.25632807161E-05 1.28813180530E-05 1.32074063574E-05 1.35417494308E-05 1.38845562339E-05 1.42360410164E-05 1.45964234513E-05 1.49659287720E-05 1.53447879134E-05 1.57332376556E-05 1.61315207722E-05 1.65398861822E-05 1.69585891051E-05 1.73878912204E-05 1.78280608316E-05 1.82793730331E-05 1.87421098828E-05 1.92165605777E-05 1.97030216352E-05 2.02017970776E-05 2.07131986229E-05 2.12375458790E-05 2.17751665433E-05 2.23263966078E-05 2.28915805690E-05 2.34710716428E-05 2.40652319852E-05 2.46744329190E-05 2.52990551653E-05 2.59394890813E-05 2.65961349047E-05 2.72694030032E-05 2.79597141309E-05 2.86674996915E-05 2.93932020075E-05 3.01372745964E-05 3.09001824541E-05 3.16824023457E-05 3.24844231027E-05 3.33067459286E-05 3.41498847122E-05 3.50143663481E-05 3.59007310662E-05 3.68095327688E-05 3.77413393769E-05 3.86967331845E-05 3.96763112225E-05 4.06806856316E-05 4.17104840444E-05 4.27663499775E-05 4.38489432332E-05 4.49589403119E-05 4.60970348341E-05 4.72639379738E-05 4.84603789024E-05 4.96871052443E-05 5.09448835433E-05 5.22344997415E-05 5.35567596700E-05 5.49124895519E-05 5.63025365183E-05 5.77277691370E-05 5.91890779547E-05 6.06873760533E-05 6.22235996194E-05 6.37987085291E-05 6.54136869470E-05 6.70695439406E-05 6.87673141100E-05 7.05080582337E-05 7.22928639306E-05 7.41228463391E-05 7.59991488127E-05 7.79229436335E-05 7.98954327440E-05 8.19178484971E-05 8.39914544248E-05 8.61175460267E-05 8.82974515787E-05 9.05325329609E-05 9.28241865080E-05 9.51738438801E-05 9.75829729558E-05 1.00053078748E-04 1.02585704341E-04 1.05182431858E-04 1.07844883440E-04 1.10574722264E-04 1.13373653579E-04 1.16243425765E-04 1.19185831430E-04 1.22202708522E-04 1.25295941477E-04 1.28467462396E-04 1.31719252244E-04 1.35053342091E-04 1.38471814375E-04 1.41976804197E-04 1.45570500659E-04 1.49255148221E-04 1.53033048103E-04 1.56906559717E-04 1.60878102141E-04 1.64950155622E-04 1.69125263121E-04 1.73406031899E-04 1.77795135140E-04 1.82295313616E-04 1.86909377394E-04 1.91640207583E-04 1.96490758130E-04 2.01464057662E-04 2.06563211363E-04 2.11791402915E-04 2.17151896474E-04 2.22648038703E-04 2.28283260856E-04 2.34061080906E-04 2.39985105743E-04 2.46059033410E-04 2.52286655405E-04 2.58671859038E-04 2.65218629851E-04 2.71931054090E-04 2.78813321249E-04 2.85869726672E-04 2.93104674224E-04 3.00522679023E-04 3.08128370248E-04 3.15926494013E-04 3.23921916317E-04 3.32119626058E-04 3.40524738138E-04 3.49142496634E-04 3.57978278052E-04 3.67037594663E-04 3.76326097924E-04 3.85849581981E-04 3.95613987263E-04 4.05625404164E-04 4.15890076822E-04 4.26414406980E-04 4.37204957962E-04 4.48268458731E-04 4.59611808062E-04 4.71242078807E-04 4.83166522281E-04 4.95392572740E-04 5.07927851990E-04 5.20780174093E-04 5.33957550205E-04 5.47468193525E-04 5.61320524372E-04 5.75523175387E-04 5.90084996865E-04 6.05015062220E-04 6.20322673586E-04 6.36017367558E-04 6.52108921071E-04 6.68607357435E-04 6.85522952509E-04 7.02866241035E-04 7.20648023131E-04 7.38879370934E-04 7.57571635423E-04 7.76736453401E-04 7.96385754650E-04 8.16531769269E-04 8.37187035188E-04 8.58364405870E-04 8.80077058206E-04 9.02338500598E-04 9.25162581250E-04 9.48563496656E-04 9.72555800301E-04 9.97154411578E-04 1.02237462492E-03 1.04823211916E-03 1.07474296711E-03 1.10192364542E-03 1.12979104459E-03 1.15836247932E-03 1.18765569907E-03 1.21768889888E-03 1.24848073044E-03 1.28005031349E-03 1.31241724740E-03 1.34560162316E-03 1.37962403551E-03 1.41450559552E-03 1.45026794336E-03 1.48693326143E-03 1.52452428782E-03 1.56306433003E-03 1.60257727913E-03 1.64308762416E-03 1.68462046693E-03 1.72720153717E-03 1.77085720803E-03 1.81561451198E-03 1.86150115707E-03 1.90854554355E-03 1.95677678100E-03 2.00622470572E-03 2.05691989864E-03 2.10889370361E-03 2.16217824618E-03 2.21680645274E-03 2.27281207016E-03 2.33022968595E-03 2.38909474877E-03 2.44944358956E-03 2.51131344304E-03 2.57474246983E-03 2.63976977903E-03 2.70643545129E-03 2.77478056252E-03 2.84484720807E-03 2.91667852747E-03 2.99031872985E-03 3.06581311977E-03 3.14320812382E-03 3.22255131771E-03 3.30389145408E-03 3.38727849083E-03 3.47276362021E-03 3.56039929850E-03 3.65023927639E-03 3.74233863005E-03 3.83675379288E-03 3.93354258799E-03 4.03276426141E-03 4.13447951603E-03 4.23875054628E-03 4.34564107362E-03 4.45521638277E-03 4.56754335875E-03 4.68269052475E-03 4.80072808078E-03 4.92172794322E-03 5.04576378513E-03 5.17291107755E-03 5.30324713156E-03 5.43685114129E-03 5.57380422789E-03 5.71418948428E-03 5.85809202102E-03 6.00559901294E-03 6.15679974691E-03 6.31178567045E-03 6.47065044143E-03 6.63348997870E-03 6.80040251376E-03 6.97148864352E-03 7.14685138398E-03 7.32659622508E-03 7.51083118655E-03 7.69966687483E-03 7.89321654117E-03 8.09159614065E-03 8.29492439251E-03 8.50332284141E-03 8.71691591999E-03 8.93583101237E-03 9.16019851894E-03 9.39015192223E-03 9.62582785391E-03 9.86736616300E-03 1.01149099851E-02 1.03686058131E-02 1.06286035683E-02 1.08950566739E-02 1.11681221284E-02 1.14479605808E-02 1.17347364068E-02 1.20286177863E-02 1.23297767817E-02 1.26383894174E-02 1.29546357608E-02 1.32787000035E-02 1.36107705446E-02 1.39510400742E-02 1.42997056585E-02 1.46569688253E-02 1.50230356512E-02 1.53981168488E-02 1.57824278557E-02 1.61761889238E-02 1.65796252093E-02 1.69929668640E-02 1.74164491268E-02 1.78503124160E-02 1.82948024220E-02 1.87501702011E-02 1.92166722689E-02 1.96945706947E-02 2.01841331959E-02 2.06856332326E-02 2.11993501022E-02 2.17255690342E-02 2.22645812847E-02 2.28166842308E-02 2.33821814644E-02 2.39613828858E-02 2.45546047960E-02 2.51621699893E-02 2.57844078438E-02 2.64216544116E-02 2.70742525070E-02 2.77425517939E-02 2.84269088706E-02 2.91276873539E-02 2.98452579598E-02 3.05799985824E-02 3.13322943704E-02 3.21025378001E-02 3.28911287459E-02 3.36984745464E-02 3.45249900676E-02 3.53710977619E-02 3.62372277216E-02 3.71238177292E-02 3.80313133013E-02 3.89601677273E-02 3.99108421025E-02 4.08838053540E-02 4.18795342602E-02 4.28985134635E-02 4.39412354739E-02 4.50082006656E-02 4.60999172638E-02 4.72169013225E-02 4.83596766926E-02 4.95287749785E-02 5.07247354845E-02 5.19481051491E-02 5.31994384661E-02 5.44792973934E-02 5.57882512475E-02 5.71268765833E-02 5.84957570585E-02 5.98954832820E-02 6.13266526446E-02 6.27898691330E-02 6.42857431240E-02 6.58148911594E-02 6.73779357011E-02 6.89755048632E-02 7.06082321233E-02 7.22767560097E-02 7.39817197641E-02 7.57237709791E-02 7.75035612095E-02 7.93217455559E-02 8.11789822200E-02 8.30759320300E-02 8.50132579358E-02 8.69916244724E-02 8.90116971902E-02 9.10741420518E-02 9.31796247938E-02 9.53288102523E-02 9.75223616520E-02 9.97609398566E-02 1.02045202580E-01 1.04375803560E-01 1.06753391684E-01 1.09178610083E-01 1.11652095176E-01 1.14174475670E-01 1.16746371521E-01 1.19368392846E-01 1.22041138792E-01 1.24765196357E-01 1.27541139169E-01 1.30369526209E-01 1.33250900503E-01 1.36185787750E-01 1.39174694918E-01 1.42218108787E-01 1.45316494448E-01 1.48470293756E-01 1.51679923745E-01 1.54945774995E-01 1.58268209958E-01 1.61647561254E-01 1.65084129914E-01 1.68578183608E-01 1.72129954823E-01 1.75739639025E-01 1.79407392790E-01 1.83133331915E-01 1.86917529511E-01 1.90760014085E-01 1.94660767611E-01 1.98619723607E-01 2.02636765207E-01 2.06711723250E-01 2.10844374384E-01 2.15034439200E-01 2.19281580394E-01 2.23585400976E-01 2.27945442530E-01 2.32361183536E-01 2.36832037766E-01 2.41357352755E-01 2.45936408384E-01 2.50568415553E-01 2.55252514982E-01 2.59987776149E-01 2.64773196365E-01 2.69607700017E-01 2.74490137984E-01 2.79419287245E-01 2.84393850691E-01 2.89412457155E-01 2.94473661681E-01 2.99575946048E-01 3.04717719550E-01 3.09897320067E-01 3.15113015430E-01 3.20363005096E-01 3.25645422144E-01 3.30958335615E-01 3.36299753193E-01 3.41667624249E-01 3.47059843253E-01 3.52474253562E-01 3.57908651583E-01 3.63360791325E-01 3.68828389337E-01 3.74309130024E-01 3.79800671339E-01 3.85300650855E-01 3.90806692179E-01 3.96316411720E-01 4.01827425771E-01 4.07337357893E-01 4.12843846565E-01 4.18344553064E-01 4.23837169543E-01 4.29319427261E-01 4.34789104905E-01 4.40244036959E-01 4.45682122054E-01 4.51101331225E-01 4.56499716012E-01 4.61875416319E-01 4.67226667940E-01 4.72551809676E-01 4.77849289927E-01 4.83117672682E-01 4.88355642774E-01 4.93562010312E-01 4.98735714174E-01 5.03875824430E-01 5.08981543602E-01 5.14052206624E-01 5.19087279392E-01 5.24086355784E-01 5.29049153034E-01 5.33975505355E-01 5.38865355678E-01 5.43718745431E-01 5.48535802229E-01 5.53316725389E-01 5.58061769188E-01 5.62771223745E-01 5.67445393483E-01 5.72084573054E-01 5.76689020670E-01 5.81258928751E-01 5.85794391809E-01 5.90295371475E-01 5.94761658579E-01 5.99192832155E-01 6.03588215243E-01 6.07946827334E-01 6.12267333253E-01 6.16547988256E-01 6.20786579063E-01 6.24980360502E-01 6.29125987363E-01 6.33219441025E-01 6.37255950334E-01 6.41229906127E-01 6.45134768765E-01 6.48962967932E-01 6.52705793924E-01 6.56354603108E-01 6.59905159903E-01 6.63354467362E-01 6.66699563107E-01 6.69937521283E-01 6.73065455007E-01 6.76080519251E-01 6.78979914084E-01 6.81760888216E-01 6.84420742763E-01 6.86956835184E-01 6.89366583312E-01 6.91647469445E-01 6.93797044434E-01 6.95812931732E-01 6.97692831366E-01 6.99434523806E-01 7.01035873702E-01 7.02494833464E-01 7.03809446688E-01 7.04977851394E-01 7.05998283081E-01 7.06869077599E-01 7.07588673812E-01 7.08155616085E-01 7.08568556562E-01 7.08826257256E-01 7.08927591956E-01 7.08871547938E-01 7.08657227496E-01 7.08283849299E-01 7.07750749562E-01 7.07057383061E-01 7.06203323966E-01 7.05188266527E-01 7.04012025592E-01 7.02674536978E-01 7.01175857688E-01 6.99516165994E-01 6.97695761371E-01 6.95715064301E-01 6.93574615943E-01 6.91275077689E-01 6.88817230579E-01 6.86201974623E-01 6.83430327990E-01 6.80503426105E-01 6.77422520635E-01 6.74188978379E-01 6.70804280065E-01 6.67270019050E-01 6.63587899942E-01 6.59759737135E-01 6.55787453256E-01 6.51673077551E-01 6.47418744176E-01 6.43026690429E-01 6.38499254903E-01 6.33838875568E-01 6.29048087775E-01 6.24129522203E-01 6.19085902707E-01 6.13920044112E-01 6.08634849913E-01 6.03233309895E-01 5.97718497662E-01 5.92093568077E-01 5.86361754595E-01 5.80526366494E-01 5.74590785989E-01 5.68558465227E-01 5.62432923149E-01 5.56217742218E-01 5.49916565005E-01 5.43533090616E-01 5.37071070971E-01 5.30534306911E-01 5.23926644150E-01 5.17251969043E-01 5.10514204201E-01 5.03717303929E-01 4.96865249502E-01 4.89962044291E-01 4.83011708735E-01 4.76018275189E-01 4.68985782649E-01 4.61918271378E-01 4.54819777465E-01 4.47694327321E-01 4.40545932160E-01 4.33378582480E-01 4.26196242584E-01 4.19002845162E-01 4.11802285988E-01 4.04598418739E-01 3.97395049991E-01 3.90195934409E-01 3.83004770172E-01 3.75825194655E-01 3.68660780398E-01 3.61515031378E-01 3.54391379613E-01 3.47293182104E-01 3.40223718137E-01 3.33186186936E-01 3.26183705693E-01 3.19219307950E-01 3.12295942346E-01 3.05416471705E-01 2.98583672470E-01 2.91800234443E-01 2.85068760833E-01 2.78391768574E-01 2.71771688894E-01 2.65210868106E-01 2.58711568600E-01 2.52275969981E-01 2.45906170361E-01 2.39604187730E-01 2.33371961412E-01 2.27211353547E-01 2.21124150590E-01 2.15112064779E-01 2.09176735559E-01 2.03319730932E-01 1.97542548703E-01 1.91846617608E-01 1.86233298308E-01 1.80703884226E-01 1.75259602214E-01 1.69901613056E-01 1.64631011779E-01 1.59448827788E-01 1.54356024818E-01 1.49353500711E-01 1.44442087019E-01 1.39622548456E-01 1.34895582204E-01 1.30261817094E-01 1.25721812681E-01 1.21276058235E-01 1.16924971670E-01 1.12668898444E-01 1.08508110440E-01 1.04442804879E-01 1.00473103261E-01 9.65990503942E-02 9.28206135133E-02 8.91376815207E-02 8.55500643768E-02 8.20574926570E-02 7.86596172954E-02 7.53560095340E-02 7.21461610903E-02 6.90294845560E-02 6.60053140359E-02 6.30729060333E-02 6.02314405847E-02 5.74800226458E-02 5.48176837252E-02 5.22433837632E-02 4.97560132469E-02 4.73543955536E-02 4.50372895118E-02 4.28033921656E-02 4.06513417292E-02 3.85797207153E-02 3.65870592209E-02 3.46718383525E-02 3.28324937723E-02 3.10674193466E-02 2.93749708788E-02 2.77534699050E-02 2.62012075365E-02 2.47164483285E-02 2.32974341572E-02 2.19423880884E-02 2.06495182199E-02 1.94170214811E-02 1.82430873756E-02 1.71259016514E-02 1.60636498849E-02 1.50545209675E-02 1.40967104817E-02 1.31884239572E-02 1.23278799979E-02 1.15133132700E-02 1.07429773460E-02 1.00151473963E-02 9.32812272554E-03 8.68022914656E-03 8.06982119197E-03 7.49528415865E-03 6.95503598500E-03 6.44752896019E-03 5.97125126569E-03 5.52472835025E-03 5.10652414027E-03 4.71524208783E-03 4.34952605989E-03 4.00806107210E-03 3.68957387174E-03 3.39283337436E-03 3.11665095953E-03 2.85988063109E-03 2.62141904799E-03 2.40020543181E-03 2.19522135756E-03 2.00549043424E-03 1.83007788214E-03 1.66809001368E-03 1.51867362487E-03 1.38101530431E-03 1.25434066683E-03 1.13791351871E-03 1.03103496136E-03 9.33042440197E-04 8.43308745531E-04 7.61240971718E-04 6.86279441038E-04 6.17896598293E-04 5.55595881984E-04 4.98910577643E-04 4.47402658645E-04 4.00661619492E-04 3.58303306423E-04 3.19970072699E-04 2.85340098142E-04 2.54100727415E-04 2.25960019479E-04 2.00647140053E-04 1.77911213967E-04 1.57520209428E-04 1.39259855842E-04 1.22932596630E-04 1.08356578305E-04 9.53646768900E-05 8.38035625810E-05 7.35328033957E-05 6.44240084028E-05 5.63600109949E-05 4.92340925628E-05 4.29481266005E-05 3.74029600365E-05 3.25189936809E-05 2.82252091514E-05 2.44573292029E-05 2.11572936404E-05 1.82727663389E-05 1.57566729384E-05 1.35667687384E-05 1.16652362912E-05 1.00183122012E-05 8.59594267059E-06 7.37146740649E-06 6.32133162175E-06 5.40991983016E-06 4.62050798453E-06 3.93816704861E-06 3.34959877396E-06 2.84298311863E-06 2.40783685630E-06 2.03488290109E-06 1.71592985555E-06 1.44376127644E-06 1.21203414511E-06 1.01518602589E-06 8.48350396554E-07 7.07279639423E-07 5.88275189503E-07 4.88124346763E-07 4.04043273135E-07 3.33625710345E-07 2.74796972181E-07 2.25772783749E-07 1.85022560427E-07 1.51236740252E-07 1.23297805045E-07 1.00254647551E-07 8.12999637976E-08 6.57503718086E-08 5.30289792777E-08 4.26501438784E-08 3.42061902723E-08 2.73558675265E-08 2.18143494492E-08 1.73445982215E-08 1.37499286031E-08 1.08676258619E-08 8.56348542610E-09 6.72715605383E-09 5.26818108389E-09 4.11264408049E-09 3.20033594562E-09 2.48237038123E-09 1.91918348037E-09 1.47886125896E-09 1.13574615885E-09 8.69280010070E-10 6.63046690749E-10 5.03982819999E-10 3.81729317486E-10 2.88100614743E-10 2.16651759207E-10 1.62326660879E-10 1.21173339494E-10 9.01142806321E-11 6.67619424701E-11 4.92711082528E-11 3.62211872098E-11 2.65227596752E-11 1.93436687554E-11 1.40508063184E-11 1.01644479076E-11 7.32257944399E-12 5.25314589793E-12 3.75255394291E-12 2.66909040519E-12 1.89018772956E-12 1.33268672137E-12 9.35424062679E-13 6.53614829617E-13 4.54614621208E-13 3.14737131283E-13 2.16875387765E-13 1.48732049697E-13 1.01509069372E-13 6.89421418768E-14 4.65926768486E-14 3.13311621742E-14 2.09620593290E-14 1.39528295663E-14 9.23918131609E-15 6.08582066121E-15 3.98740652407E-15 2.59847455282E-15 1.68412191239E-15 1.08549002569E-15 6.95737113549E-16 4.43405340176E-16 2.80971382120E-16 1.77009792507E-16 1.10859969922E-16 6.90179888548E-17 4.27097806639E-17 2.62685975621E-17 1.60567457517E-17 9.75338671670E-18 5.88703170151E-18 3.53057659610E-18 2.10362398847E-18 1.24516883601E-18 7.32133051617E-19 4.27579587963E-19 2.48011703840E-19 1.42862505701E-19 8.17179326049E-20 4.64120945416E-20 2.61710316233E-20 1.46503193476E-20 8.14085689774E-21 4.49003404031E-21 2.45779030808E-21 1.33510181401E-21 7.19641953600E-22 3.84865275944E-22 2.04196482718E-22 1.07471082593E-22 5.61041321039E-23 2.90478101804E-23 1.49142760864E-23 7.59303722093E-24 3.83272107053E-24 1.91791969124E-24 9.51344331303E-25 4.67714853758E-25 2.27883088055E-25 1.10022451678E-25 5.26306815062E-26 2.49421943791E-26 1.17089302331E-26 5.44421076815E-27 6.51182478678E-08 6.67667240378E-08 6.84569315744E-08 7.01899269119E-08 7.19667932282E-08 7.37886411222E-08 7.56566093074E-08 7.75718653243E-08 7.95356062696E-08 8.15490595446E-08 8.36134836226E-08 8.57301688350E-08 8.79004381782E-08 9.01256481405E-08 9.24071895497E-08 9.47464884425E-08 9.71450069561E-08 9.96042442415E-08 1.02125737401E-07 1.04711062449E-07 1.07361835297E-07 1.10079712763E-07 1.12866393607E-07 1.15723619594E-07 1.18653176583E-07 1.21656895640E-07 1.24736654186E-07 1.27894377169E-07 1.31132038266E-07 1.34451661120E-07 1.37855320602E-07 1.41345144106E-07 1.44923312884E-07 1.48592063407E-07 1.52353688760E-07 1.56210540079E-07 1.60165028020E-07 1.64219624263E-07 1.68376863061E-07 1.72639342820E-07 1.77009727725E-07 1.81490749407E-07 1.86085208646E-07 1.90795977125E-07 1.95625999225E-07 2.00578293862E-07 2.05655956377E-07 2.10862160472E-07 2.16200160187E-07 2.21673291942E-07 2.27284976618E-07 2.33038721695E-07 2.38938123445E-07 2.44986869180E-07 2.51188739558E-07 2.57547610942E-07 2.64067457828E-07 2.70752355325E-07 2.77606481704E-07 2.84634121009E-07 2.91839665735E-07 2.99227619574E-07 3.06802600228E-07 3.14569342297E-07 3.22532700238E-07 3.30697651397E-07 3.39069299124E-07 3.47652875960E-07 3.56453746906E-07 3.65477412781E-07 3.74729513657E-07 3.84215832382E-07 3.93942298200E-07 4.03914990453E-07 4.14140142381E-07 4.24624145019E-07 4.35373551193E-07 4.46395079611E-07 4.57695619067E-07 4.69282232745E-07 4.81162162633E-07 4.93342834050E-07 5.05831860287E-07 5.18637047367E-07 5.31766398919E-07 5.45228121189E-07 5.59030628159E-07 5.73182546814E-07 5.87692722530E-07 6.02570224604E-07 6.17824351922E-07 6.33464638772E-07 6.49500860799E-07 6.65943041123E-07 6.82801456595E-07 7.00086644227E-07 7.17809407773E-07 7.35980824484E-07 7.54612252033E-07 7.73715335609E-07 7.93302015200E-07 8.13384533055E-07 8.33975441333E-07 8.55087609951E-07 8.76734234627E-07 8.98928845127E-07 9.21685313722E-07 9.45017863860E-07 9.68941079052E-07 9.93469911990E-07 1.01861969389E-06 1.04440614409E-06 1.07084537983E-06 1.09795392639E-06 1.12574872737E-06 1.15424715528E-06 1.18346702245E-06 1.21342659210E-06 1.24414458977E-06 1.27564021507E-06 1.30793315362E-06 1.34104358937E-06 1.37499221725E-06 1.40980025606E-06 1.44548946175E-06 1.48208214102E-06 1.51960116527E-06 1.55806998487E-06 1.59751264384E-06 1.63795379487E-06 1.67941871470E-06 1.72193331998E-06 1.76552418343E-06 1.81021855042E-06 1.85604435605E-06 1.90303024260E-06 1.95120557741E-06 2.00060047123E-06 2.05124579707E-06 2.10317320949E-06 2.15641516434E-06 2.21100493911E-06 2.26697665369E-06 2.32436529169E-06 2.38320672233E-06 2.44353772283E-06 2.50539600143E-06 2.56882022092E-06 2.63385002283E-06 2.70052605218E-06 2.76888998293E-06 2.83898454397E-06 2.91085354585E-06 2.98454190818E-06 3.06009568768E-06 3.13756210694E-06 3.21698958401E-06 3.29842776258E-06 3.38192754305E-06 3.46754111433E-06 3.55532198645E-06 3.64532502404E-06 3.73760648055E-06 3.83222403348E-06 3.92923682037E-06 4.02870547579E-06 4.13069216922E-06 4.23526064393E-06 4.34247625678E-06 4.45240601909E-06 4.56511863851E-06 4.68068456197E-06 4.79917601969E-06 4.92066707032E-06 5.04523364726E-06 5.17295360606E-06 5.30390677312E-06 5.43817499555E-06 5.57584219234E-06 5.71699440678E-06 5.86171986027E-06 6.01010900739E-06 6.16225459252E-06 6.31825170769E-06 6.47819785212E-06 6.64219299303E-06 6.81033962824E-06 6.98274285010E-06 7.15951041126E-06 7.34075279195E-06 7.52658326905E-06 7.71711798686E-06 7.91247602968E-06 8.11277949625E-06 8.31815357602E-06 8.52872662740E-06 8.74463025795E-06 8.96599940664E-06 9.19297242819E-06 9.42569117946E-06 9.66430110816E-06 9.90895134372E-06 1.01597947904E-05 1.04169882231E-05 1.06806923848E-05 1.09510720876E-05 1.12282963154E-05 1.15125383294E-05 1.18039757766E-05 1.21027908005E-05 1.24091701554E-05 1.27233053225E-05 1.30453926301E-05 1.33756333756E-05 1.37142339521E-05 1.40614059767E-05 1.44173664229E-05 1.47823377564E-05 1.51565480738E-05 1.55402312452E-05 1.59336270603E-05 1.63369813784E-05 1.67505462817E-05 1.71745802332E-05 1.76093482375E-05 1.80551220071E-05 1.85121801319E-05 1.89808082529E-05 1.94612992411E-05 1.99539533803E-05 2.04590785546E-05 2.09769904409E-05 2.15080127059E-05 2.20524772085E-05 2.26107242069E-05 2.31831025715E-05 2.37699700023E-05 2.43716932528E-05 2.49886483589E-05 2.56212208735E-05 2.62698061081E-05 2.69348093789E-05 2.76166462603E-05 2.83157428446E-05 2.90325360079E-05 2.97674736829E-05 3.05210151390E-05 3.12936312689E-05 3.20858048824E-05 3.28980310087E-05 3.37308172048E-05 3.45846838727E-05 3.54601645845E-05 3.63578064155E-05 3.72781702858E-05 3.82218313107E-05 3.91893791594E-05 4.01814184239E-05 4.11985689956E-05 4.22414664533E-05 4.33107624591E-05 4.44071251660E-05 4.55312396346E-05 4.66838082609E-05 4.78655512149E-05 4.90772068899E-05 5.03195323638E-05 5.15933038714E-05 5.28993172890E-05 5.42383886312E-05 5.56113545602E-05 5.70190729079E-05 5.84624232116E-05 5.99423072625E-05 6.14596496686E-05 6.30153984319E-05 6.46105255398E-05 6.62460275715E-05 6.79229263200E-05 6.96422694297E-05 7.14051310497E-05 7.32126125042E-05 7.50658429797E-05 7.69659802290E-05 7.89142112937E-05 8.09117532444E-05 8.29598539402E-05 8.50597928064E-05 8.72128816331E-05 8.94204653927E-05 9.16839230788E-05 9.40046685661E-05 9.63841514921E-05 9.88238581605E-05 1.01325312468E-04 1.03890076856E-04 1.06519753279E-04 1.09215984212E-04 1.11980453665E-04 1.14814888240E-04 1.17721058201E-04 1.20700778581E-04 1.23755910313E-04 1.26888361386E-04 1.30100088037E-04 1.33393095968E-04 1.36769441595E-04 1.40231233331E-04 1.43780632897E-04 1.47419856668E-04 1.51151177054E-04 1.54976923915E-04 1.58899486009E-04 1.62921312482E-04 1.67044914392E-04 1.71272866270E-04 1.75607807721E-04 1.80052445071E-04 1.84609553046E-04 1.89281976501E-04 1.94072632186E-04 1.98984510566E-04 2.04020677672E-04 2.09184277016E-04 2.14478531539E-04 2.19906745616E-04 2.25472307110E-04 2.31178689479E-04 2.37029453929E-04 2.43028251632E-04 2.49178825990E-04 2.55485014961E-04 2.61950753440E-04 2.68580075705E-04 2.75377117920E-04 2.82346120701E-04 2.89491431745E-04 2.96817508533E-04 3.04328921088E-04 3.12030354816E-04 3.19926613402E-04 3.28022621797E-04 3.36323429262E-04 3.44834212502E-04 3.53560278872E-04 3.62507069659E-04 3.71680163459E-04 3.81085279623E-04 3.90728281800E-04 4.00615181566E-04 4.10752142138E-04 4.21145482191E-04 4.31801679759E-04 4.42727376242E-04 4.53929380510E-04 4.65414673104E-04 4.77190410552E-04 4.89263929783E-04 5.01642752659E-04 5.14334590609E-04 5.27347349390E-04 5.40689133958E-04 5.54368253465E-04 5.68393226375E-04 5.82772785714E-04 5.97515884442E-04 6.12631700963E-04 6.28129644774E-04 6.44019362246E-04 6.60310742555E-04 6.77013923758E-04 6.94139299016E-04 7.11697522976E-04 7.29699518305E-04 7.48156482390E-04 7.67079894198E-04 7.86481521313E-04 8.06373427135E-04 8.26767978268E-04 8.47677852079E-04 8.69116044453E-04 8.91095877726E-04 9.13631008825E-04 9.36735437599E-04 9.60423515358E-04 9.84709953620E-04 1.00960983307E-03 1.03513861273E-03 1.06131213939E-03 1.08814665720E-03 1.11565881757E-03 1.14386568926E-03 1.17278476875E-03 1.20243399079E-03 1.23283173934E-03 1.26399685863E-03 1.29594866456E-03 1.32870695642E-03 1.36229202876E-03 1.39672468367E-03 1.43202624331E-03 1.46821856274E-03 1.50532404304E-03 1.54336564478E-03 1.58236690180E-03 1.62235193530E-03 1.66334546830E-03 1.70537284039E-03 1.74846002291E-03 1.79263363441E-03 1.83792095651E-03 1.88434995019E-03 1.93194927234E-03 1.98074829280E-03 2.03077711180E-03 2.08206657772E-03 2.13464830536E-03 2.18855469464E-03 2.24381894960E-03 2.30047509803E-03 2.35855801142E-03 2.41810342545E-03 2.47914796085E-03 2.54172914491E-03 2.60588543327E-03 2.67165623243E-03 2.73908192259E-03 2.80820388111E-03 2.87906450648E-03 2.95170724282E-03 3.02617660496E-03 3.10251820405E-03 3.18077877375E-03 3.26100619703E-03 3.34324953356E-03 3.42755904764E-03 3.51398623688E-03 3.60258386135E-03 3.69340597353E-03 3.78650794875E-03 3.88194651643E-03 3.97977979192E-03 4.08006730901E-03 4.18287005321E-03 4.28825049566E-03 4.39627262777E-03 4.50700199667E-03 4.62050574127E-03 4.73685262915E-03 4.85611309426E-03 4.97835927522E-03 5.10366505461E-03 5.23210609890E-03 5.36375989927E-03 5.49870581320E-03 5.63702510688E-03 5.77880099848E-03 5.92411870225E-03 6.07306547349E-03 6.22573065431E-03 6.38220572033E-03 6.54258432823E-03 6.70696236417E-03 6.87543799312E-03 7.04811170903E-03 7.22508638599E-03 7.40646733020E-03 7.59236233290E-03 7.78288172419E-03 7.97813842775E-03 8.17824801655E-03 8.38332876931E-03 8.59350172807E-03 8.80889075649E-03 9.02962259919E-03 9.25582694191E-03 9.48763647259E-03 9.72518694332E-03 9.96861723323E-03 1.02180694122E-02 1.04736888052E-02 1.07356240581E-02 1.10040272037E-02 1.12790537284E-02 1.15608626406E-02 1.18496165388E-02 1.21454816812E-02 1.24486280555E-02 1.27592294495E-02 1.30774635226E-02 1.34035118775E-02 1.37375601327E-02 1.40797979956E-02 1.44304193354E-02 1.47896222576E-02 1.51576091775E-02 1.55345868952E-02 1.59207666699E-02 1.63163642945E-02 1.67216001712E-02 1.71366993855E-02 1.75618917818E-02 1.79974120373E-02 1.84434997364E-02 1.89003994450E-02 1.93683607834E-02 1.98476384992E-02 2.03384925394E-02 2.08411881214E-02 2.13559958028E-02 2.18831915508E-02 2.24230568092E-02 2.29758785648E-02 2.35419494115E-02 2.41215676125E-02 2.47150371612E-02 2.53226678388E-02 2.59447752698E-02 2.65816809753E-02 2.72337124219E-02 2.79012030692E-02 2.85844924122E-02 2.92839260205E-02 2.99998555739E-02 3.07326388927E-02 3.14826399636E-02 3.22502289611E-02 3.30357822623E-02 3.38396824572E-02 3.46623183515E-02 3.55040849643E-02 3.63653835170E-02 3.72466214166E-02 3.81482122294E-02 3.90705756477E-02 4.00141374464E-02 4.09793294314E-02 4.19665893768E-02 4.29763609529E-02 4.40090936420E-02 4.50652426431E-02 4.61452687647E-02 4.72496383037E-02 4.83788229116E-02 4.95332994462E-02 5.07135498082E-02 5.19200607627E-02 5.31533237436E-02 5.44138346414E-02 5.57020935730E-02 5.70186046331E-02 5.83638756254E-02 5.97384177743E-02 6.11427454153E-02 6.25773756628E-02 6.40428280562E-02 6.55396241816E-02 6.70682872686E-02 6.86293417629E-02 7.02233128712E-02 7.18507260798E-02 7.35121066448E-02 7.52079790535E-02 7.69388664553E-02 7.87052900630E-02 8.05077685218E-02 8.23468172461E-02 8.42229477229E-02 8.61366667820E-02 8.80884758310E-02 9.00788700546E-02 9.21083375792E-02 9.41773585994E-02 9.62864044688E-02 9.84359367523E-02 1.00626406241E-01 1.02858251930E-01 1.05131899953E-01 1.07447762490E-01 1.09806236620E-01 1.12207703150E-01 1.14652525402E-01 1.17141047957E-01 1.19673595370E-01 1.22250470847E-01 1.24871954884E-01 1.27538303876E-01 1.30249748693E-01 1.33006493228E-01 1.35808712911E-01 1.38656553201E-01 1.41550128056E-01 1.44489518378E-01 1.47474770444E-01 1.50505894323E-01 1.53582862275E-01 1.56705607162E-01 1.59874020833E-01 1.63087952538E-01 1.66347207332E-01 1.69651544503E-01 1.73000676018E-01 1.76394265001E-01 1.79831924243E-01 1.83313214750E-01 1.86837644353E-01 1.90404666370E-01 1.94013678332E-01 1.97664020800E-01 2.01354976255E-01 2.05085768096E-01 2.08855559743E-01 2.12663453856E-01 2.16508491692E-01 2.20389652599E-01 2.24305853666E-01 2.28255949537E-01 2.32238732411E-01 2.36252932220E-01 2.40297217025E-01 2.44370193612E-01 2.48470408328E-01 2.52596348144E-01 2.56746441976E-01 2.60919062257E-01 2.65112526790E-01 2.69325100863E-01 2.73554999666E-01 2.77800390988E-01 2.82059398216E-01 2.86330103631E-01 2.90610552013E-01 2.94898754535E-01 2.99192692967E-01 3.03490324164E-01 3.07789584840E-01 3.12088396619E-01 3.16384671338E-01 3.20676316598E-01 3.24961241525E-01 3.29237362731E-01 3.33502610437E-01 3.37754934724E-01 3.41992311879E-01 3.46212750786E-01 3.50414299320E-01 3.54595050694E-01 3.58753149693E-01 3.62886798743E-01 3.66994263746E-01 3.71073879610E-01 3.75124055402E-01 3.79143279042E-01 3.83130121465E-01 3.87083240157E-01 3.91001381984E-01 3.94883385226E-01 3.98728180725E-01 4.02534792051E-01 4.06302334612E-01 4.10030013597E-01 4.13717120689E-01 4.17363029437E-01 4.20967189240E-01 4.24529117825E-01 4.28048392189E-01 4.31524637909E-01 4.34957516768E-01 4.38346712649E-01 4.41691915639E-01 4.44992804302E-01 4.48249026079E-01 4.51460175786E-01 4.54625772161E-01 4.57745232438E-01 4.60817844901E-01 4.63842739361E-01 4.66818855523E-01 4.69744909139E-01 4.72619355877E-01 4.75440352762E-01 4.78205717055E-01 4.80912882370E-01 4.83558851782E-01 4.86140147658E-01 4.88652757855E-01 4.91092077896E-01 4.93452848641E-01 4.95729088961E-01 4.97914022797E-01 5.00000000000E-01 5.01979423023E-01 5.03848065264E-01 5.05602632717E-01 5.07239840591E-01 5.08756414775E-01 5.10149093688E-01 5.11414630473E-01 5.12549795483E-01 5.13551378988E-01 5.14416194074E-01 5.15141079661E-01 5.15722903613E-01 5.16158565883E-01 5.16445001667E-01 5.16579184529E-01 5.16558129468E-01 5.16378895918E-01 5.16038590637E-01 5.15534370506E-01 5.14863445186E-01 5.14023079667E-01 5.13010596669E-01 5.11823378916E-01 5.10458871271E-01 5.08914582730E-01 5.07188088288E-01 5.05277030667E-01 5.03179121921E-01 5.00892144907E-01 4.98413954640E-01 4.95742479532E-01 4.92875722512E-01 4.89811762041E-01 4.86548753024E-01 4.83084927620E-01 4.79418595957E-01 4.75548146758E-01 4.71472047882E-01 4.67188846778E-01 4.62697170869E-01 4.57995727859E-01 4.53083305974E-01 4.47958774137E-01 4.42621082084E-01 4.37069260428E-01 4.31302420665E-01 4.25319755141E-01 4.19120536964E-01 4.12704119890E-01 4.06069938158E-01 3.99217506303E-01 3.92146418927E-01 3.84856350451E-01 3.77347054836E-01 3.69618365276E-01 3.61670193872E-01 3.53502531283E-01 3.45115446350E-01 3.36509085700E-01 3.27683673327E-01 3.18639510148E-01 3.09376973533E-01 2.99896516806E-01 2.90198668725E-01 2.80284032915E-01 2.70153287287E-01 2.59807183407E-01 2.49246545835E-01 2.38472271425E-01 2.27485328590E-01 2.16286756521E-01 2.04877664383E-01 1.93259230470E-01 1.81432701335E-01 1.69399390904E-01 1.57160679578E-01 1.44718013336E-01 1.32072902862E-01 1.19226922702E-01 1.06181710484E-01 9.29389662182E-02 7.95004517126E-02 6.58679901269E-02 5.20434657079E-02 3.80288237393E-02 2.38260707462E-02 9.43727499735E-03 -5.13543265231E-03 -1.98898575353E-02 -3.48237395174E-02 -4.99347508730E-02 -6.52204936494E-02 -8.06784964830E-02 -9.63062108313E-02 -1.12101006595E-01 -1.28060167103E-01 -1.44180883446E-01 -1.60460248153E-01 -1.76895248196E-01 -1.93482757349E-01 -2.10219527905E-01 -2.27102181782E-01 -2.44127201051E-01 -2.61290917938E-01 -2.78589504344E-01 -2.96018960968E-01 -3.13575106077E-01 -3.31253564040E-01 -3.49049753684E-01 -3.66958876598E-01 -3.84975905467E-01 -4.03095572559E-01 -4.21312358475E-01 -4.39620481273E-01 -4.58013886098E-01 -4.76486235427E-01 -4.95030900051E-01 -5.13640950909E-01 -5.32309151900E-01 -5.51027953756E-01 -5.69789489109E-01 -5.88585568816E-01 -6.07407679647E-01 -6.26246983401E-01 -6.45094317505E-01 -6.63940197152E-01 -6.82774819001E-01 -7.01588066457E-01 -7.20369516521E-01 -7.39108448203E-01 -7.57793852441E-01 -7.76414443477E-01 -7.94958671611E-01 -8.13414737239E-01 -8.31770606053E-01 -8.50014025285E-01 -8.68132540841E-01 -8.86113515170E-01 -9.03944145694E-01 -9.21611483633E-01 -9.39102453019E-01 -9.56403869721E-01 -9.73502460295E-01 -9.90384880453E-01 -1.00703773298E+00 -1.02344758489E+00 -1.03960098372E+00 -1.05548447271E+00 -1.07108460474E+00 -1.08638795501E+00 -1.10138113219E+00 -1.11605078797E+00 -1.13038362507E+00 -1.14436640345E+00 -1.15798594479E+00 -1.17122913527E+00 -1.18408292646E+00 -1.19653433449E+00 -1.20857043753E+00 -1.22017837150E+00 -1.23134532416E+00 -1.24205852769E+00 -1.25230524974E+00 -1.26207278312E+00 -1.27134843424E+00 -1.28011951037E+00 -1.28837330591E+00 -1.29609708779E+00 -1.30327808003E+00 -1.30990344784E+00 -1.31596028118E+00 -1.32143557803E+00 -1.32631622764E+00 -1.33058899369E+00 -1.33424049773E+00 -1.33725720306E+00 -1.33962539906E+00 -1.34133118634E+00 -1.34236046284E+00 -1.34269891099E+00 -1.34233198624E+00 -1.34124490707E+00 -1.33942264675E+00 -1.33684992698E+00 -1.33351121370E+00 -1.32939071525E+00 -1.32447238309E+00 -1.31873991533E+00 -1.31217676331E+00 -1.30476614148E+00 -1.29649104072E+00 -1.28733424557E+00 -1.27727835539E+00 -1.26630580990E+00 -1.25439891923E+00 -1.24153989886E+00 -1.22771090970E+00 -1.21289410356E+00 -1.19707167431E+00 -1.18022591509E+00 -1.16233928175E+00 -1.14339446290E+00 -1.12337445682E+00 -1.10226265551E+00 -1.08004293622E+00 -1.05669976068E+00 -1.03221828228E+00 -1.00658446160E+00 -9.79785190246E-01 -9.51808423591E-01 -9.22643322281E-01 -8.92280402891E-01 -8.60711697803E-01 -8.27930924425E-01 -7.93933663837E-01 -7.58717548875E-01 -7.22282461647E-01 -6.84630740405E-01 -6.45767395617E-01 -6.05700335032E-01 -5.64440597450E-01 -5.22002594807E-01 -4.78404362120E-01 -4.33667814689E-01 -3.87819011886E-01 -3.40888426800E-01 -2.92912430472E-01 -2.43943068744E-01 -1.94024223553E-01 -1.43204022597E-01 -9.15366085070E-02 -3.90824132086E-02 1.40915723551E-02 6.79115353442E-02 1.22296587377E-01 1.77158522747E-01 2.32401591370E-01 2.87922289583E-01 3.43609172194E-01 3.99342689411E-01 4.54995052610E-01 5.10430133127E-01 5.65488674850E-01 6.19867991353E-01 6.73374504928E-01 7.25820111100E-01 7.77009172998E-01 8.26738879046E-01 8.74799679860E-01 9.20975810185E-01 9.65045901681E-01 1.00678369234E+00 1.04595883818E+00 1.08233783271E+00 1.11568503926E+00 1.14576384108E+00 1.17233791340E+00 1.19517262124E+00 1.21403654585E+00 1.22870314190E+00 1.23895252644E+00 1.24457339935E+00 1.24536509387E+00 1.24113975388E+00 1.23172463313E+00 1.21696450940E+00 1.19672420442E+00 1.17089119816E+00 1.13937832303E+00 1.10212652101E+00 1.05910764358E+00 1.01032727083E+00 9.55827522831E-01 8.95689832619E-01 8.30037646314E-01 7.59039012008E-01 6.82909015069E-01 6.01912013504E-01 5.16363623100E-01 4.26632398275E-01 3.33141150944E-01 2.36367846464E-01 1.36846012890E-01 3.51645974704E-02 -6.80327972529E-02 -1.72049366110E-01 -2.76137310815E-01 -3.79500872942E-01 -4.81300254095E-01 -5.80656482618E-01 -6.76657279946E-01 -7.68363971576E-01 -8.54819477292E-01 -9.35057402632E-01 -1.00811223841E+00 -1.07303065732E+00 -1.12888387603E+00 -1.17478102791E+00 -1.20988346526E+00 -1.23341988098E+00 -1.24470210820E+00 -1.24314142220E+00 -1.22826513340E+00 -1.19973322244E+00 -1.15735472999E+00 -1.10110357555E+00 -1.03113344145E+00 -9.47791322565E-01 -8.51629309044E-01 -7.43414141648E-01 -6.24134056731E-01 -4.95002424204E-01 -3.57457677491E-01 -2.13159042359E-01 -6.39775932472E-02 8.80177963431E-02 2.40579986811E-01 3.91308890113E-01 5.37682775758E-01 6.77095648182E-01 8.06900634256E-01 9.24459151638E-01 1.02719543754E+00 1.11265580487E+00 1.17857176157E+00 1.22292588288E+00 1.24401907185E+00 1.24053758575E+00 1.21161795652E+00 1.15690769944E+00 1.07661950006E+00 9.71576407597E-01 8.43245457684E-01 6.93757115322E-01 5.25907985331E-01 3.43144398406E-01 1.49524761199E-01 -5.03410288357E-02 -2.51376248861E-01 -4.48146539823E-01 -6.34993214176E-01 -8.06189288418E-01 -9.56115733863E-01 -1.07945422736E+00 -1.17139140902E+00 -1.22782836424E+00 -1.24558780114E+00 -1.22261026329E+00 -1.15812978163E+00 -1.05281871727E+00 -9.08891273009E-01 -7.30155348881E-01 -5.22003175103E-01 -2.91332551208E-01 -4.63926088810E-02 2.03449173786E-01 4.48018458166E-01 6.76719608954E-01 8.78986200714E-01 1.04478225452E+00 1.16513479187E+00 1.23267327643E+00 1.24214704847E+00 1.19088835675E+00 1.07918650451E+00 9.10538397492E-01 6.91742830792E-01 4.32810522456E-01 1.46669419223E-01 -1.51344781075E-01 -4.44209791303E-01 -7.14131020997E-01 -9.43613385407E-01 -1.11663745132E+00 -1.21986993891E+00 -1.24382418430E+00 -1.18387589361E+00 -1.04103519518E+00 -8.22379314926E-01 -5.41062534083E-01 -2.15842269837E-01 1.29907798566E-01 5.92884039743E-12 6.15539322384E-12 6.39060308584E-12 6.63480078602E-12 6.88832976760E-12 7.15154659745E-12 7.42482146757E-12 7.70853871575E-12 8.00309736606E-12 8.30891169011E-12 8.62641178962E-12 8.95604420138E-12 9.29827252523E-12 9.65357807608E-12 1.00224605608E-11 1.04054387812E-11 1.08030513634E-11 1.12158575155E-11 1.16444378141E-11 1.20893950207E-11 1.25513549298E-11 1.30309672484E-11 1.35289065102E-11 1.40458730243E-11 1.45825938600E-11 1.51398238691E-11 1.57183467482E-11 1.63189761400E-11 1.69425567787E-11 1.75899656769E-11 1.82621133600E-11 1.89599451463E-11 1.96844424763E-11 2.04366242938E-11 2.12175484780E-11 2.20283133320E-11 2.28700591273E-11 2.37439697073E-11 2.46512741524E-11 2.55932485087E-11 2.65712175825E-11 2.75865568036E-11 2.86406941597E-11 2.97351122047E-11 3.08713501439E-11 3.20510059987E-11 3.32757388540E-11 3.45472711916E-11 3.58673913128E-11 3.72379558535E-11 3.86608923952E-11 4.01382021762E-11 4.16719629062E-11 4.32643316880E-11 4.49175480518E-11 4.66339371046E-11 4.84159128005E-11 5.02659813353E-11 5.21867446717E-11 5.41809041986E-11 5.62512645299E-11 5.84007374500E-11 6.06323460077E-11 6.29492287690E-11 6.53546442303E-11 6.78519754018E-11 7.04447345653E-11 7.31365682135E-11 7.59312621791E-11 7.88327469587E-11 8.18451032412E-11 8.49725676464E-11 8.82195386840E-11 9.15905829390E-11 9.50904414951E-11 9.87240366018E-11 1.02496478598E-10 1.06413073097E-10 1.10479328453E-10 1.14700963502E-10 1.19083915611E-10 1.23634349023E-10 1.28358663530E-10 1.33263503473E-10 1.38355767085E-10 1.43642616195E-10 1.49131486300E-10 1.54830097020E-10 1.60746462960E-10 1.66888904975E-10 1.73266061879E-10 1.79886902591E-10 1.86760738750E-10 1.93897237810E-10 2.01306436638E-10 2.08998755631E-10 2.16985013368E-10 2.25276441826E-10 2.33884702180E-10 2.42821901200E-10 2.52100608278E-10 2.61733873111E-10 2.71735244045E-10 2.82118787139E-10 2.92899105942E-10 3.04091362031E-10 3.15711296339E-10 3.27775251290E-10 3.40300193782E-10 3.53303739053E-10 3.66804175452E-10 3.80820490162E-10 3.95372395902E-10 4.10480358653E-10 4.26165626440E-10 4.42450259216E-10 4.59357159888E-10 4.76910106525E-10 4.95133785803E-10 5.14053827724E-10 5.33696841661E-10 5.54090453780E-10 5.75263345900E-10 5.97245295822E-10 6.20067219216E-10 6.43761213101E-10 6.68360600979E-10 6.93899979710E-10 7.20415268165E-10 7.47943757743E-10 7.76524164817E-10 8.06196685186E-10 8.37003050608E-10 8.68986587489E-10 9.02192277817E-10 9.36666822428E-10 9.72458706684E-10 1.00961826866E-09 1.04819776996E-09 1.08825146917E-09 1.12983569823E-09 1.17300894160E-09 1.21783191856E-09 1.26436766859E-09 1.31268164000E-09 1.36284178201E-09 1.41491864033E-09 1.46898545632E-09 1.52511827003E-09 1.58339602716E-09 1.64390069005E-09 1.70671735297E-09 1.77193436182E-09 1.83964343832E-09 1.90993980908E-09 1.98292233945E-09 2.05869367265E-09 2.13736037404E-09 2.21903308105E-09 2.30382665876E-09 2.39186036147E-09 2.48325800035E-09 2.57814811766E-09 2.67666416746E-09 2.77894470333E-09 2.88513357323E-09 2.99538012179E-09 3.10983940036E-09 3.22867238508E-09 3.35204620325E-09 3.48013436840E-09 3.61311702431E-09 3.75118119834E-09 3.89452106450E-09 4.04333821652E-09 4.19784195134E-09 4.35824956351E-09 4.52478665076E-09 4.69768743126E-09 4.87719507306E-09 5.06356203606E-09 5.25705042704E-09 5.45793236834E-09 5.66649038049E-09 5.88301777961E-09 6.10781908987E-09 6.34121047180E-09 6.58352016691E-09 6.83508895935E-09 7.09627065511E-09 7.36743257969E-09 7.64895609464E-09 7.94123713390E-09 8.24468676064E-09 8.55973174537E-09 8.88681516611E-09 9.22639703154E-09 9.57895492794E-09 9.94498469083E-09 1.03250011023E-08 1.07195386150E-08 1.11291521038E-08 1.15544176459E-08 1.19959333314E-08 1.24543201041E-08 1.29302226350E-08 1.34243102287E-08 1.39372777647E-08 1.44698466750E-08 1.50227659581E-08 1.55968132328E-08 1.61927958318E-08 1.68115519366E-08 1.74539517568E-08 1.81208987537E-08 1.88133309108E-08 1.95322220530E-08 2.02785832162E-08 2.10534640688E-08 2.18579543883E-08 2.26931855936E-08 2.35603323363E-08 2.44606141526E-08 2.53952971780E-08 2.63656959285E-08 2.73731751488E-08 2.84191517316E-08 2.95050967103E-08 3.06325373274E-08 3.18030591827E-08 3.30183084630E-08 3.42799942567E-08 3.55898909579E-08 3.69498407612E-08 3.83617562526E-08 3.98276230990E-08 4.13495028407E-08 4.29295357904E-08 4.45699440431E-08 4.62730346010E-08 4.80412026175E-08 4.98769347657E-08 5.17828127351E-08 5.37615168621E-08 5.58158298993E-08 5.79486409286E-08 6.01629494240E-08 6.24618694696E-08 6.48486341384E-08 6.73266000392E-08 6.98992520362E-08 7.25702081499E-08 7.53432246444E-08 7.82222013097E-08 8.12111869453E-08 8.43143850540E-08 8.75361597524E-08 9.08810419077E-08 9.43537355089E-08 9.79591242815E-08 1.01702278555E-07 1.05588462390E-07 1.09623140987E-07 1.13811988362E-07 1.18160895332E-07 1.22675977796E-07 1.27363585332E-07 1.32230310131E-07 1.37282996261E-07 1.42528749291E-07 1.47974946287E-07 1.53629246177E-07 1.59499600527E-07 1.65594264717E-07 1.71921809549E-07 1.78491133301E-07 1.85311474235E-07 1.92392423586E-07 1.99743939049E-07 2.07376358781E-07 2.15300415931E-07 2.23527253736E-07 2.32068441187E-07 2.40935989292E-07 2.50142367964E-07 2.59700523553E-07 2.69623897050E-07 2.79926442979E-07 2.90622649019E-07 3.01727556372E-07 3.13256780907E-07 3.25226535115E-07 3.37653650901E-07 3.50555603246E-07 3.63950534774E-07 3.77857281259E-07 3.92295398101E-07 4.07285187815E-07 4.22847728577E-07 4.39004903847E-07 4.55779433139E-07 4.73194903950E-07 4.91275804920E-07 5.10047560256E-07 5.29536565467E-07 5.49770224466E-07 5.70776988091E-07 5.92586394093E-07 6.15229108653E-07 6.38736969488E-07 6.63143030592E-07 6.88481608702E-07 7.14788331522E-07 7.42100187800E-07 7.70455579311E-07 7.99894374827E-07 8.30457966146E-07 8.62189326264E-07 8.95133069765E-07 9.29335515516E-07 9.64844751759E-07 1.00171070368E-06 1.03998520358E-06 1.07972206369E-06 1.12097715178E-06 1.16380846969E-06 1.20827623480E-06 1.25444296465E-06 1.30237356475E-06 1.35213541982E-06 1.40379848843E-06 1.45743540126E-06 1.51312156321E-06 1.57093525923E-06 1.63095776439E-06 1.69327345799E-06 1.75796994208E-06 1.82513816458E-06 1.89487254694E-06 1.96727111681E-06 2.04243564571E-06 2.12047179196E-06 2.20148924907E-06 2.28560189980E-06 2.37292797607E-06 2.46359022499E-06 2.55771608124E-06 2.65543784597E-06 2.75689287261E-06 2.86222375968E-06 2.97157855100E-06 3.08511094355E-06 3.20298050323E-06 3.32535288882E-06 3.45240008456E-06 3.58430064155E-06 3.72123992833E-06 3.86341039108E-06 4.01101182366E-06 4.16425164805E-06 4.32334520537E-06 4.48851605805E-06 4.65999630354E-06 4.83802689995E-06 5.02285800404E-06 5.21474932224E-06 5.41397047489E-06 5.62080137446E-06 5.83553261814E-06 6.05846589541E-06 6.28991441108E-06 6.53020332454E-06 6.77967020569E-06 7.03866550817E-06 7.30755306075E-06 7.58671057735E-06 7.87653018643E-06 8.17741898070E-06 8.48979958757E-06 8.81411076142E-06 9.15080799844E-06 9.50036417478E-06 9.86327020905E-06 1.02400357500E-05 1.06311898904E-05 1.10372819081E-05 1.14588820351E-05 1.18965822561E-05 1.23509971373E-05 1.28227646869E-05 1.33125472479E-05 1.38210324252E-05 1.43489340479E-05 1.48969931682E-05 1.54659790980E-05 1.60566904850E-05 1.66699564302E-05 1.73066376467E-05 1.79676276638E-05 1.86538540761E-05 1.93662798399E-05 2.01059046192E-05 2.08737661829E-05 2.16709418544E-05 2.24985500168E-05 2.33577516748E-05 2.42497520764E-05 2.51758023952E-05 2.61372014774E-05 2.71352976542E-05 2.81714906239E-05 2.92472334039E-05 3.03640343584E-05 3.15234593010E-05 3.27271336785E-05 3.39767448366E-05 3.52740443712E-05 3.66208505694E-05 3.80190509417E-05 3.94706048514E-05 4.09775462423E-05 4.25419864697E-05 4.41661172385E-05 4.58522136528E-05 4.76026373795E-05 4.94198399326E-05 5.13063660804E-05 5.32648573819E-05 5.52980558564E-05 5.74088077914E-05 5.96000676939E-05 6.18749023912E-05 6.42364952851E-05 6.66881507674E-05 6.92332988005E-05 7.18754996712E-05 7.46184489231E-05 7.74659824735E-05 8.04220819241E-05 8.34908800699E-05 8.66766666154E-05 8.99838941052E-05 9.34171840773E-05 9.69813334463E-05 1.00681321127E-04 1.04522314905E-04 1.08509678563E-04 1.12648979281E-04 1.16945995300E-04 1.21406723886E-04 1.26037389582E-04 1.30844452771E-04 1.35834618561E-04 1.41014845996E-04 1.46392357615E-04 1.51974649362E-04 1.57769500872E-04 1.63784986128E-04 1.70029484528E-04 1.76511692349E-04 1.83240634647E-04 1.90225677593E-04 1.97476541265E-04 2.05003312914E-04 2.12816460726E-04 2.20926848083E-04 2.29345748358E-04 2.38084860249E-04 2.47156323686E-04 2.56572736315E-04 2.66347170594E-04 2.76493191512E-04 2.87024874963E-04 2.97956826790E-04 3.09304202527E-04 3.21082727865E-04 3.33308719857E-04 3.45999108910E-04 3.59171461567E-04 3.72844004122E-04 3.87035647092E-04 4.01766010581E-04 4.17055450553E-04 4.32925086070E-04 4.49396827501E-04 4.66493405753E-04 4.84238402559E-04 5.02656281849E-04 5.21772422248E-04 5.41613150743E-04 5.62205777549E-04 5.83578632222E-04 6.05761101059E-04 6.28783665829E-04 6.52677943873E-04 6.77476729639E-04 7.03214037663E-04 7.29925147088E-04 7.57646647736E-04 7.86416487802E-04 8.16274023218E-04 8.47260068739E-04 8.79416950818E-04 9.12788562307E-04 9.47420419061E-04 9.83359718499E-04 1.02065540018E-03 1.05935820846E-03 1.09952075732E-03 1.14119759732E-03 1.18444528500E-03 1.22932245443E-03 1.27588989134E-03 1.32421060969E-03 1.37434993077E-03 1.42637556500E-03 1.48035769644E-03 1.53636907008E-03 1.59448508204E-03 1.65478387272E-03 1.71734642297E-03 1.78225665344E-03 1.84960152716E-03 1.91947115530E-03 1.99195890651E-03 2.06716151959E-03 2.14517921983E-03 2.22611583892E-03 2.31007893874E-03 2.39717993889E-03 2.48753424821E-03 2.58126140038E-03 2.67848519355E-03 2.77933383429E-03 2.88394008582E-03 2.99244142068E-03 3.10498017785E-03 3.22170372455E-03 3.34276462271E-03 3.46832080014E-03 3.59853572672E-03 3.73357859544E-03 3.87362450853E-03 4.01885466867E-03 4.16945657550E-03 4.32562422731E-03 4.48755832815E-03 4.65546650033E-03 4.82956350242E-03 5.01007145279E-03 5.19722005877E-03 5.39124685137E-03 5.59239742579E-03 5.80092568759E-03 6.01709410454E-03 6.24117396433E-03 6.47344563795E-03 6.71419884883E-03 6.96373294775E-03 7.22235719342E-03 7.49039103870E-03 7.76816442249E-03 8.05601806710E-03 8.35430378111E-03 8.66338476755E-03 8.98363593736E-03 9.31544422790E-03 9.65920892651E-03 1.00153419987E-02 1.03842684211E-02 1.07664265186E-02 1.11622683060E-02 1.15722598327E-02 1.19968815324E-02 1.24366285747E-02 1.28920112205E-02 1.33635551799E-02 1.38518019721E-02 1.43573092877E-02 1.48806513519E-02 1.54224192891E-02 1.59832214881E-02 1.65636839667E-02 1.71644507370E-02 1.77861841692E-02 1.84295653532E-02 1.90952944598E-02 1.97840910979E-02 2.04966946694E-02 2.12338647197E-02 2.19963812849E-02 2.27850452337E-02 2.36006786032E-02 2.44441249306E-02 2.53162495767E-02 2.62179400441E-02 2.71501062870E-02 2.81136810147E-02 2.91096199859E-02 3.01389022964E-02 3.12025306576E-02 3.23015316674E-02 3.34369560736E-02 3.46098790285E-02 3.58214003377E-02 3.70726447012E-02 3.83647619496E-02 3.96989272751E-02 4.10763414599E-02 4.24982311021E-02 4.39658488424E-02 4.54804735931E-02 4.70434107720E-02 4.86559925445E-02 5.03195780770E-02 5.20355538056E-02 5.38053337238E-02 5.56303596956E-02 5.75121017963E-02 5.94520586907E-02 6.14517580508E-02 6.35127570241E-02 6.56366427562E-02 6.78250329786E-02 7.00795766683E-02 7.24019547899E-02 7.47938811287E-02 7.72571032252E-02 7.97934034227E-02 8.24046000370E-02 8.50925486614E-02 8.78591436173E-02 9.07063195621E-02 9.36360532672E-02 9.66503655754E-02 9.97513235498E-02 1.02941042825E-01 1.06221690169E-01 1.09595486263E-01 1.13064708712E-01 1.16631695278E-01 1.20298847359E-01 1.24068633689E-01 1.27943594279E-01 1.31926344577E-01 1.36019579844E-01 1.40226079729E-01 1.44548713018E-01 1.48990442535E-01 1.53554330166E-01 1.58243541953E-01 1.63061353225E-01 1.68011153697E-01 1.73096452480E-01 1.78320882931E-01 1.83688207252E-01 1.89202320746E-01 1.94867255643E-01 2.00687184370E-01 2.06666422155E-01 2.12809428843E-01 2.19120809802E-01 2.25605315775E-01 2.32267841568E-01 2.39113423454E-01 2.46147235166E-01 2.53374582420E-01 2.60800895873E-01 2.68431722523E-01 2.76272715538E-01 2.84329622613E-01 2.92608273001E-01 3.01114563442E-01 3.09854443341E-01 3.18833899632E-01 3.28058941907E-01 3.37535588520E-01 3.47269854524E-01 3.57267742405E-01 3.67535236728E-01 3.78078303856E-01 3.88902897930E-01 4.00014974200E-01 4.11420510576E-01 4.23125537797E-01 4.35136177877E-01 4.47458689349E-01 4.60099516110E-01 4.73065334242E-01 4.86363087815E-01 5.00000000000E-01 5.13983540960E-01 5.28321365075E-01 5.43021287181E-01 5.58091283763E-01 5.73539495676E-01 5.89374231298E-01 6.05603970122E-01 6.22237366752E-01 6.39283255298E-01 6.56750654135E-01 6.74648771010E-01 6.92987008458E-01 7.11774969509E-01 7.31022463657E-01 7.50739513059E-01 7.70936358950E-01 7.91623468244E-01 8.12811540305E-01 8.34511513870E-01 8.56734574107E-01 8.79492159794E-01 9.02795970612E-01 9.26657974535E-01 9.51090415316E-01 9.76105820054E-01 1.00171700685E+00 1.02793709250E+00 1.05477950034E+00 1.08225796803E+00 1.11038655552E+00 1.13917965300E+00 1.16865198891E+00 1.19881863802E+00 1.22969502951E+00 1.26129695516E+00 1.29364057750E+00 1.32674243802E+00 1.36061946540E+00 1.39528898376E+00 1.43076872094E+00 1.46707681676E+00 1.50423183127E+00 1.54225275308E+00 1.58115900755E+00 1.62097046511E+00 1.66170744945E+00 1.70339074577E+00 1.74604160892E+00 1.78968177159E+00 1.83433345238E+00 1.88001936395E+00 1.92676272095E+00 1.97458724806E+00 2.02351718788E+00 2.07357730875E+00 2.12479291255E+00 2.17718984235E+00 2.23079449000E+00 2.28563380360E+00 2.34173529481E+00 2.39912704599E+00 2.45783771725E+00 2.51789655311E+00 2.57933338903E+00 2.64217865756E+00 2.70646339411E+00 2.77221924225E+00 2.83947845852E+00 2.90827391649E+00 2.97863911015E+00 3.05060815632E+00 3.12421579603E+00 3.19949739467E+00 3.27648894058E+00 3.35522704211E+00 3.43574892262E+00 3.51809241333E+00 3.60229594360E+00 3.68839852838E+00 3.77643975239E+00 3.86645975075E+00 3.95849918554E+00 4.05259921794E+00 4.14880147543E+00 4.24714801368E+00 4.34768127259E+00 4.45044402599E+00 4.55547932466E+00 4.66283043194E+00 4.77254075184E+00 4.88465374882E+00 4.99921285919E+00 5.11626139346E+00 5.23584242952E+00 5.35799869623E+00 5.48277244719E+00 5.61020532460E+00 5.74033821290E+00 5.87321108228E+00 6.00886282203E+00 6.14733106369E+00 6.28865199430E+00 6.43286015982E+00 6.57998825906E+00 6.73006692849E+00 6.88312451834E+00 7.03918686043E+00 7.19827702836E+00 7.36041509069E+00 7.52561785767E+00 7.69389862243E+00 7.86526689734E+00 8.03972814630E+00 8.21728351401E+00 8.39792955301E+00 8.58165794939E+00 8.76845524825E+00 8.95830257973E+00 9.15117538669E+00 9.34704315476E+00 9.54586914592E+00 9.74761013619E+00 9.95221615849E+00 1.01596302511E+01 1.03697882125E+01 1.05826183633E+01 1.07980413152E+01 1.10159697475E+01 1.12363081916E+01 1.14589528229E+01 1.16837912601E+01 1.19107023716E+01 1.21395560889E+01 1.23702132254E+01 1.26025253001E+01 1.28363343658E+01 1.30714728397E+01 1.33077633358E+01 1.35450184971E+01 1.37830408270E+01 1.40216225169E+01 1.42605452708E+01 1.44995801226E+01 1.47384872465E+01 1.49770157589E+01 1.52149035097E+01 1.54518768624E+01 1.56876504618E+01 1.59219269895E+01 1.61543969054E+01 1.63847381753E+01 1.66126159861E+01 1.68376824470E+01 1.70595762792E+01 1.72779224950E+01 1.74923320669E+01 1.77024015899E+01 1.79077129400E+01 1.81078329296E+01 1.83023129659E+01 1.84906887146E+01 1.86724797733E+01 1.88471893608E+01 1.90143040258E+01 1.91732933830E+01 1.93236098810E+01 1.94646886108E+01 1.95959471614E+01 1.97167855308E+01 1.98265861012E+01 1.99247136882E+01 2.00105156725E+01 2.00833222259E+01 2.01424466423E+01 2.01871857850E+01 2.02168206628E+01 2.02306171482E+01 2.02278268502E+01 2.02076881569E+01 2.01694274618E+01 2.01122605889E+01 2.00353944328E+01 1.99380288291E+01 1.98193586720E+01 1.96785762961E+01 1.95148741384E+01 1.93274476987E+01 1.91154988145E+01 1.88782392682E+01 1.86148947418E+01 1.83247091369E+01 1.80069492738E+01 1.76609099853E+01 1.72859196169E+01 1.68813459469E+01 1.64466025341E+01 1.59811555029E+01 1.54845307679E+01 1.49563217035E+01 1.43961972526E+01 1.38039104730E+01 1.31793075077E+01 1.25223369662E+01 1.18330596935E+01 1.11116589017E+01 1.03584506262E+01 9.57389446720E+00 8.75860456306E+00 7.91336073598E+00 7.03911973933E+00 6.13702652521E+00 5.20842543927E+00 4.25487123739E+00 3.27813980601E+00 2.28023845401E+00 1.26341562989E+00 2.30169903398E-01 -8.16741964420E-01 -1.87429805411E+00 -2.93920563009E+00 -4.00789701411E+00 -5.07652722620E+00 -6.14097364351E+00 -7.19683794035E+00 -8.23945058423E+00 -9.26387817548E+00 -1.02649763009E+01 -1.12377465988E+01 -1.21766017326E+01 -1.30757058488E+01 -1.39290410599E+01 -1.47304380029E+01 -1.54736112731E+01 -1.61521999635E+01 -1.67598135091E+01 -1.72900829912E+01 -1.77367180101E+01 -1.80935691678E+01 -1.83546961359E+01 -1.85144411966E+01 -1.85675080504E+01 -1.85090455775E+01 -1.83342589131E+01 -1.80346590790E+01 -1.76068535377E+01 -1.70488322964E+01 -1.63595893893E+01 -1.55392253822E+01 -1.45890475872E+01 -1.35116662266E+01 -1.23110845855E+01 -1.09927809980E+01 -9.56378032794E+00 -8.03271243097E+00 -6.40985493700E+00 -4.70715756786E+00 -2.93824511967E+00 -1.11839619825E+00 7.35505190228E-01 2.60504801287E+00 4.47040521371E+00 6.31047977357E+00 8.10308791612E+00 9.82518110810E+00 1.14531079428E+01 1.29629163151E+01 1.43306954834E+01 1.55329566725E+01 1.65470497903E+01 1.73516126294E+01 1.79270475927E+01 1.82560195532E+01 1.83239669365E+01 1.81196165380E+01 1.76354909907E+01 1.68683962191E+01 1.58198747211E+01 1.44966091511E+01 1.29107595321E+01 1.10802165566E+01 9.02875295233E+00 6.78605486728E+00 4.38761577290E+00 1.87447658578E+00 -7.07202342195E-01 -3.30674893318E+00 -5.86977468040E+00 -8.33916079459E+00 -1.06562328719E+01 -1.27621152167E+01 -1.45992485304E+01 -1.61130464770E+01 -1.72536578403E+01 -1.79777918208E+01 -1.82505548055E+01 -1.80472380496E+01 -1.73549875979E+01 -1.61742809624E+01 -1.45201301404E+01 -1.24229281235E+01 -9.92885674689E+00 -7.09977819042E+00 -4.01254124192E+00 -7.57647048249E-01 2.56276214475E+00 5.83760369974E+00 8.95022795164E+00 1.17824134950E+01 1.42188958313E+01 1.61523003379E+01 1.74883091010E+01 1.81508509471E+01 1.80870676041E+01 1.72717792925E+01 1.57111534312E+01 1.34452739023E+01 1.05493187252E+01 7.13308398177E+00 3.33864368303E+00 -6.63989713521E-01 -4.68324130027E+00 -8.51430388760E+00 -1.19492028738E+01 -1.47882275786E+01 -1.68522087291E+01 -1.79949770165E+01 -1.81152127806E+01 -1.71668059619E+01 -1.51668031181E+01 -1.22000386202E+01 -8.41964220439E+00 -4.04279333877E+00 6.58642601468E-01 5.37261466178E+00 9.76612541907E+00 1.35083483421E+01 1.62962859537E+01 1.78811824581E+01 1.80935333220E+01 1.68642947815E+01 1.42398418072E+01 1.03884004461E+01 5.59612259495E+00 2.51689595489E-01 -5.18069167024E+00 -1.01988520002E+01 -1.43084317770E+01 -1.70732164046E+01 -1.81652598281E+01 -1.74092291833E+01 -1.48151253667E+01 -1.05939197145E+01 -5.15179475955E+00 9.39394191870E-01 6.99519653499E+00 1.22918324677E+01 1.61530313144E+01 1.80408418618E+01 1.76386178453E+01 1.49134816073E+01 1.01463965161E+01 3.92079256288E+00 -2.93451688877E+00 -9.44596060944E+00 -1.46298626833E+01 -1.76444012203E+01 -1.79363858748E+01 -1.53574108430E+01 -1.02249706360E+01 -3.30985053634E+00 4.25851981040E+00 1.11630254218E+01 1.61247185534E+01 1.81476500470E+01 1.67367931676E+01 1.20408981190E+01 4.87977832125E+00 -3.36634746927E+00 -1.10010604533E+01 -1.63540296996E+01 -1.81570737928E+01 -1.58706843502E+01 espresso-5.0.2/PW/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ30000644000700200004540000067153212053145630022402 0ustar marsamoscmO 2 F T 1 4 3 4 0.60000000000E+01-.31636197285E+02 2 -.70000000000E+010.10000000000E+030.80000000000E+010.12500000000E-01 1095 5 4 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 4.00 2P 2 1 0.00 3D 3 2 -2.00 737 2.95721679252E-02 2.99441400946E-02 3.03207911013E-02 3.07021797980E-02 3.10742713349E-02 3.14872198962E-02 3.18734489809E-02 3.23002870935E-02 3.26831550714E-02 3.31065092967E-02 3.35085435940E-02 3.39258133733E-02 3.43665917644E-02 3.47766275303E-02 3.52370206180E-02 3.56878262971E-02 3.60961479322E-02 3.65613190671E-02 3.70586988188E-02 3.74675280525E-02 3.79721221022E-02 3.84464925732E-02 3.89200863039E-02 3.94102586575E-02 3.99271067385E-02 4.04201639499E-02 4.09283495787E-02 4.14519747824E-02 4.19561778119E-02 4.25073314541E-02 4.30260756466E-02 4.35816928286E-02 4.41082869009E-02 4.46688471274E-02 4.52337285518E-02 4.57972993130E-02 4.63804399535E-02 4.69575977566E-02 4.75552232047E-02 4.81560877831E-02 4.87385162200E-02 4.93658277104E-02 4.99983799555E-02 5.06272348016E-02 5.12521220564E-02 5.19045074716E-02 5.25564002056E-02 5.32179945623E-02 5.38849102214E-02 5.45585166877E-02 5.52548447665E-02 5.59452148776E-02 5.66574435719E-02 5.73587703878E-02 5.80805016386E-02 5.88082214778E-02 5.95467082085E-02 6.03049412821E-02 6.10527362145E-02 6.18285961229E-02 6.25964263224E-02 6.33923159141E-02 6.41765255735E-02 6.50116723072E-02 6.57931097199E-02 6.66500843600E-02 6.74819579161E-02 6.83174375866E-02 6.91946319569E-02 7.00602115533E-02 7.09289200521E-02 7.18410615753E-02 7.27416152541E-02 7.36315071523E-02 7.46009816498E-02 7.55018382870E-02 7.64785713125E-02 7.74162718838E-02 7.83948894317E-02 7.93916868676E-02 8.03890708718E-02 8.13963083090E-02 8.24153746654E-02 8.34675018043E-02 8.44945708352E-02 8.55816214916E-02 8.66460169586E-02 8.77372996805E-02 8.88371919088E-02 8.99656317223E-02 9.10888578472E-02 9.22307185276E-02 9.33991414499E-02 9.45689788392E-02 9.57491929964E-02 9.69759720069E-02 9.81818857193E-02 9.94182937215E-02 1.00671224520E-01 1.01936940469E-01 1.03219454580E-01 1.04515526370E-01 1.05828405838E-01 1.07165021229E-01 1.08507614633E-01 1.09874166730E-01 1.11260693739E-01 1.12655407483E-01 1.14068254545E-01 1.15502339279E-01 1.16961942445E-01 1.18432718554E-01 1.19918809723E-01 1.21423081826E-01 1.22957220128E-01 1.24505944135E-01 1.26072735184E-01 1.27647770286E-01 1.29263316683E-01 1.30889111679E-01 1.32534032616E-01 1.34193012632E-01 1.35894166474E-01 1.37592664767E-01 1.39324940529E-01 1.41084449582E-01 1.42849307928E-01 1.44646786197E-01 1.46470705428E-01 1.48317467170E-01 1.50175658230E-01 1.52070295606E-01 1.53978889614E-01 1.55919153737E-01 1.57884495642E-01 1.59861289152E-01 1.61878405491E-01 1.63910039769E-01 1.65970824252E-01 1.68064010079E-01 1.70171830135E-01 1.72315382871E-01 1.74484143837E-01 1.76677848959E-01 1.78899755224E-01 1.81149616754E-01 1.83429100271E-01 1.85735205382E-01 1.88070557357E-01 1.90440668824E-01 1.92831702576E-01 1.95264645892E-01 1.97713231254E-01 2.00202975239E-01 2.02722809078E-01 2.05268008860E-01 2.07856153571E-01 2.10465656385E-01 2.13113151030E-01 2.15796172298E-01 2.18511294601E-01 2.21257711753E-01 2.24040604243E-01 2.26859030278E-01 2.29713013954E-01 2.32604621488E-01 2.35528239325E-01 2.38492249376E-01 2.41490546182E-01 2.44528163758E-01 2.47602027835E-01 2.50719079466E-01 2.53870283336E-01 2.57067354891E-01 2.60299008718E-01 2.63571160133E-01 2.66885487221E-01 2.70249121741E-01 2.73643239655E-01 2.77088324431E-01 2.80568555084E-01 2.84101396994E-01 2.87672284949E-01 2.91293855110E-01 2.94954471490E-01 2.98665306187E-01 3.02425549997E-01 3.06227457984E-01 3.10078236421E-01 3.13980367309E-01 3.17927941884E-01 3.21930015776E-01 3.25978242206E-01 3.30077470354E-01 3.34229093396E-01 3.38432978855E-01 3.42688558009E-01 3.47002086449E-01 3.51365435660E-01 3.55782693513E-01 3.60260709116E-01 3.64789189996E-01 3.69379445191E-01 3.74028268079E-01 3.78728722017E-01 3.83494191491E-01 3.88318593641E-01 3.93202934038E-01 3.98147874019E-01 4.03155324613E-01 4.08228576520E-01 4.13362434175E-01 4.18560341553E-01 4.23825294430E-01 4.29155845177E-01 4.34556623513E-01 4.40021471365E-01 4.45554348814E-01 4.51158661716E-01 4.56834394273E-01 4.62581232258E-01 4.68399150655E-01 4.74291271003E-01 4.80255964449E-01 4.86298087150E-01 4.92414430320E-01 4.98607714477E-01 5.04879409708E-01 5.11229302439E-01 5.17659664738E-01 5.24171328701E-01 5.30763820534E-01 5.37437751439E-01 5.44202545156E-01 5.51042255419E-01 5.57978651497E-01 5.64992894605E-01 5.72100073184E-01 5.79297315951E-01 5.86583498654E-01 5.93959320591E-01 6.01432389022E-01 6.08995669964E-01 6.16657498824E-01 6.24410441848E-01 6.32266348574E-01 6.40220637346E-01 6.48268363226E-01 6.56427060592E-01 6.64681109453E-01 6.73041983831E-01 6.81507804866E-01 6.90077358333E-01 6.98759638593E-01 7.07547478692E-01 7.16446984694E-01 7.25458393171E-01 7.34583704456E-01 7.43821958294E-01 7.53177860661E-01 7.62651106939E-01 7.72244126408E-01 7.81955174370E-01 7.91792353441E-01 8.01750042805E-01 8.11833178255E-01 8.22045835433E-01 8.32384160836E-01 8.42854452949E-01 8.53453497403E-01 8.64188549012E-01 8.75057707888E-01 8.86063679856E-01 8.97207717963E-01 9.08492162166E-01 9.19919158957E-01 9.31488146331E-01 9.43204360275E-01 9.55066443163E-01 9.67078712973E-01 9.79242732169E-01 9.91557472538E-01 1.00402811025E+00 1.01665723012E+00 1.02944113528E+00 1.04239148779E+00 1.05549978529E+00 1.06877475046E+00 1.08221654954E+00 1.09582832862E+00 1.10960863742E+00 1.12356501544E+00 1.13769453810E+00 1.15200422372E+00 1.16649152625E+00 1.18116125995E+00 1.19601632140E+00 1.21105784946E+00 1.22628951141E+00 1.24171026816E+00 1.25732704240E+00 1.27313952904E+00 1.28915050012E+00 1.30536295015E+00 1.32177858959E+00 1.33840163276E+00 1.35523286316E+00 1.37227567230E+00 1.38953358399E+00 1.40700745601E+00 1.42470154420E+00 1.44261784440E+00 1.46075947407E+00 1.47912916164E+00 1.49772896520E+00 1.51656306351E+00 1.53563534017E+00 1.55494445469E+00 1.57449812300E+00 1.59429736352E+00 1.61434484873E+00 1.63464497563E+00 1.65519921022E+00 1.67601360965E+00 1.69708764635E+00 1.71842764005E+00 1.74003516605E+00 1.76191399300E+00 1.78406831708E+00 1.80650074466E+00 1.82921524317E+00 1.85221500046E+00 1.87550400102E+00 1.89908513898E+00 1.92296229807E+00 1.94713993472E+00 1.97162099602E+00 1.99640963774E+00 2.02151035001E+00 2.04692465379E+00 2.07266036583E+00 2.09871781257E+00 2.12510268102E+00 2.15181914970E+00 2.17887129877E+00 2.20626278818E+00 2.23399841492E+00 2.26208235202E+00 2.29051912450E+00 2.31931205083E+00 2.34846759230E+00 2.37798846537E+00 2.40788073451E+00 2.43814709396E+00 2.46879414623E+00 2.49982530546E+00 2.53124684314E+00 2.56306182326E+00 2.59527708800E+00 2.62789541915E+00 2.66092368946E+00 2.69436652269E+00 2.72822872269E+00 2.76251586260E+00 2.79723307572E+00 2.83238616381E+00 2.86797961987E+00 2.90401944961E+00 2.94051199647E+00 2.97746173693E+00 3.01487490810E+00 3.05275711429E+00 3.09111431667E+00 3.12995229096E+00 3.16927736129E+00 3.20909517665E+00 3.24941179407E+00 3.29023469002E+00 3.33156819763E+00 3.37341988613E+00 3.41579573836E+00 3.45870291430E+00 3.50214697596E+00 3.54613565630E+00 3.59067493695E+00 3.63577222012E+00 3.68143379373E+00 3.72766739245E+00 3.77447939777E+00 3.82187769352E+00 3.86986891817E+00 3.91846071787E+00 3.96766039592E+00 4.01747585804E+00 4.06791371499E+00 4.11898308786E+00 4.17069086062E+00 4.22304473538E+00 4.27605361603E+00 4.32972468236E+00 4.38406641042E+00 4.43908724479E+00 4.49479548008E+00 4.55119918758E+00 4.60830765373E+00 4.66612908218E+00 4.72467197301E+00 4.78394572903E+00 4.84395934816E+00 4.90472123634E+00 4.96624124838E+00 5.02852848529E+00 5.09159214874E+00 5.15544204241E+00 5.22008748598E+00 5.28553839109E+00 5.35180463554E+00 5.41889579647E+00 5.48682246878E+00 5.55559466998E+00 5.62522200716E+00 5.69571630393E+00 5.76708655106E+00 5.83934438648E+00 5.91250030526E+00 5.98656473860E+00 6.06154972979E+00 6.13746517480E+00 6.21432332401E+00 6.29213519317E+00 6.37091181664E+00 6.45066536701E+00 6.53140767257E+00 6.61315015625E+00 6.69590505439E+00 6.77968453247E+00 6.86450073683E+00 6.95036622969E+00 7.03729324750E+00 7.12529472816E+00 7.21438313592E+00 7.30457164996E+00 7.39587333723E+00 7.48830116469E+00 7.58186857038E+00 7.67658903178E+00 7.77247604337E+00 7.86954353597E+00 7.96780482826E+00 8.06727475176E+00 8.16796670027E+00 8.26989518160E+00 8.37307474395E+00 8.47751969635E+00 8.58324481996E+00 8.69026502520E+00 8.79859495305E+00 8.90825017172E+00 9.01924531977E+00 9.13159626921E+00 9.24531814505E+00 9.36042666605E+00 9.47693776515E+00 9.59486707007E+00 9.71423091753E+00 9.83504514386E+00 9.95732604017E+00 1.00810903960E+01 1.02063541371E+01 1.03331346717E+01 1.04614479823E+01 1.05913116463E+01 1.07227424692E+01 1.08557573622E+01 1.09903739671E+01 1.11266094255E+01 1.12644813419E+01 1.14040070299E+01 1.15452047289E+01 1.16880918191E+01 1.18326862416E+01 1.19790061547E+01 1.21270695293E+01 1.22768945040E+01 1.24284994957E+01 1.25819027028E+01 1.27371226432E+01 1.28941776093E+01 1.30530862611E+01 1.32138671349E+01 1.33765389898E+01 1.35411202952E+01 1.37076298866E+01 1.38760864691E+01 1.40465089104E+01 1.42189157845E+01 1.43933259667E+01 1.45697582573E+01 1.47482312897E+01 1.49287638864E+01 1.51113747049E+01 1.52960822899E+01 1.54829053052E+01 1.56718622481E+01 1.58629713827E+01 1.60562512119E+01 1.62517197620E+01 1.64493951340E+01 1.66492951675E+01 1.68514378702E+01 1.70558403174E+01 1.72625203175E+01 1.74714947568E+01 1.76827805628E+01 1.78963943824E+01 1.81123526066E+01 1.83306711134E+01 1.85513657150E+01 1.87744517214E+01 1.89999439834E+01 1.92278571682E+01 1.94582052129E+01 1.96910018162E+01 1.99262600657E+01 2.01639923586E+01 2.04042108418E+01 2.06469267354E+01 2.08921507432E+01 2.11398928248E+01 2.13901623352E+01 2.16429675147E+01 2.18983162017E+01 2.21562149581E+01 2.24166696437E+01 2.26796851416E+01 2.29452650730E+01 2.32134121877E+01 2.34841279169E+01 2.37574126204E+01 2.40332651334E+01 2.43116831539E+01 2.45926628829E+01 2.48761988212E+01 2.51622841112E+01 2.54509101034E+01 2.57420664820E+01 2.60357408623E+01 2.63319191443E+01 2.66305850417E+01 2.69317201727E+01 2.72353038896E+01 2.75413131484E+01 2.78497224155E+01 2.81605036274E+01 2.84736259010E+01 2.87890554136E+01 2.91067556239E+01 2.94266864097E+01 2.97488048426E+01 3.00730641704E+01 3.03994140883E+01 3.07278006515E+01 3.10581658956E+01 3.13904475555E+01 3.17245792605E+01 3.20604900046E+01 3.23981039970E+01 3.27373407265E+01 3.30781142250E+01 3.34203332382E+01 3.37639010024E+01 3.41087146139E+01 3.44546653984E+01 3.48016378632E+01 3.51495101854E+01 3.54981534031E+01 3.58474313084E+01 3.61972001440E+01 3.65473084309E+01 3.68975963094E+01 3.72478953965E+01 3.75980285292E+01 3.79478093319E+01 3.82970417780E+01 3.86455198771E+01 3.89930273346E+01 3.93393369676E+01 3.96842107718E+01 4.00273988798E+01 4.03686394775E+01 4.07076585953E+01 4.10441690261E+01 4.13778706714E+01 4.17084494345E+01 4.20355771045E+01 4.23589109082E+01 4.26780928670E+01 4.29927494966E+01 4.33024912211E+01 4.36069120407E+01 4.39055890685E+01 4.41980818797E+01 4.44839323804E+01 4.47626642448E+01 4.50337824517E+01 4.52967729001E+01 4.55511021789E+01 4.57962171679E+01 4.60315446562E+01 4.62564912154E+01 4.64704427033E+01 4.66727645935E+01 4.68628012576E+01 4.70398764236E+01 4.72032927618E+01 4.73523324510E+01 4.74862568669E+01 4.76043072001E+01 4.77057048022E+01 4.77896514990E+01 4.78553305084E+01 4.79019069565E+01 4.79285290689E+01 4.79343290270E+01 4.79184244847E+01 4.78799199104E+01 4.78179083078E+01 4.77314732470E+01 4.76196910264E+01 4.74816330558E+01 4.73163685966E+01 4.71229678912E+01 4.69005055284E+01 4.66480639772E+01 4.63647379413E+01 4.60496384737E+01 4.57018980327E+01 4.53206756378E+01 4.49051625132E+01 4.44545882301E+01 4.39682271795E+01 4.34454057224E+01 4.28855094586E+01 4.22879912795E+01 4.16523796779E+01 4.09782876752E+01 4.02654219946E+01 3.95135927575E+01 3.87227236182E+01 3.78928621568E+01 3.70241905465E+01 3.61170365763E+01 3.51718848487E+01 3.41893878605E+01 3.31703773436E+01 3.21158753416E+01 3.10271049869E+01 2.99055010100E+01 2.87527196357E+01 2.75706475657E+01 2.63614102267E+01 2.51273786558E+01 2.38711749018E+01 2.25956757405E+01 2.13040144266E+01 1.99995797921E+01 1.86860129316E+01 1.73672005173E+01 1.60472647617E+01 1.47305494518E+01 1.34216015788E+01 1.21251484287E+01 1.08460691113E+01 9.58936075394E+00 8.36009875149E+00 7.16339029882E+00 6.00432133576E+00 4.88789648850E+00 3.81897155566E+00 2.80217873011E+00 1.84184416128E+00 9.41898402982E-01 1.05779414551E-01 -6.63670749736E-01 -1.36431540179E+00 -1.99483759724E+00 -2.55485843901E+00 -3.04505695916E+00 -3.46729075190E+00 -3.82471341389E+00 -4.12188692092E+00 -4.36488450252E+00 -4.56137992207E+00 -4.72071832115E+00 -4.85396224016E+00 -4.97390632226E+00 -5.09505287254E+00 -5.23353956897E+00 -5.40700920719E+00 -5.63441086019E+00 -5.93572041606E+00 -6.33156718323E+00 -6.84275325793E+00 -7.48965070108E+00 -8.29146198747E+00 -9.26532915741E+00 -1.04252781130E+01 -1.17809865280E+01 -1.33363669623E+01 -1.50879622296E+01 -1.70231570619E+01 -1.91182210477E+01 -2.13362117020E+01 -2.36247860547E+01 -2.59139939788E+01 -2.81141600122E+01 -3.01140018603E+01 -3.17791884327E+01 -3.29516075115E+01 -3.34496982394E+01 -3.30703120828E+01 -3.15926679212E+01 -2.87854079838E+01 -2.44152292266E+01 -1.82823109269E+01 -1.00505276304E+01 -1.14262216482E+00 1.13284162404E-01 -1.12314480999E-02 1.11353177727E-03 -1.10400310398E-04 1.09451351916E-05 -1.08406377286E-06 1.06917087313E-07 -1.04686176989E-08 8.65702034544E-10 1.96722553728E-10 1.35136377728E+00 737 4.72808830990E-02 4.78756035248E-02 4.84778046176E-02 4.90875804727E-02 4.96851043305E-02 5.03413016671E-02 5.09605664229E-02 5.16381989973E-02 5.22546991758E-02 5.29292000436E-02 5.35747301980E-02 5.42425942215E-02 5.49447203451E-02 5.56044572530E-02 5.63362853850E-02 5.70556020355E-02 5.77159611576E-02 5.84576719725E-02 5.92459378209E-02 5.99102282897E-02 6.07108277286E-02 6.14698926467E-02 6.22289651633E-02 6.30125687154E-02 6.38350302664E-02 6.46250362795E-02 6.54375784812E-02 6.62730606748E-02 6.70824593564E-02 6.79593127680E-02 6.87915852049E-02 6.96772978250E-02 7.05231778666E-02 7.14183862592E-02 7.23209860498E-02 7.32230270134E-02 7.41540849354E-02 7.50779975024E-02 7.60322331772E-02 7.69923885642E-02 7.79279166847E-02 7.89282808667E-02 7.99374465832E-02 8.09429056659E-02 8.19441734102E-02 8.29858110276E-02 8.40282356400E-02 8.50859126416E-02 8.61526711476E-02 8.72304312213E-02 8.83418423624E-02 8.94465132830E-02 9.05836253471E-02 9.17070382604E-02 9.28609056938E-02 9.40249438490E-02 9.52058769703E-02 9.64164681227E-02 9.76140566040E-02 9.88530670046E-02 1.00082519261E-01 1.01353456364E-01 1.02609687591E-01 1.03939837683E-01 1.05195925487E-01 1.06560651107E-01 1.07891859965E-01 1.09230133523E-01 1.10629322469E-01 1.12014117647E-01 1.13405368209E-01 1.14860030415E-01 1.16300417520E-01 1.17727878687E-01 1.19269866331E-01 1.20717107819E-01 1.22273740976E-01 1.23777450238E-01 1.25341219585E-01 1.26932956738E-01 1.28527818205E-01 1.30138941308E-01 1.31769146702E-01 1.33448455821E-01 1.35094792366E-01 1.36828304737E-01 1.38532328539E-01 1.40276812613E-01 1.42036082318E-01 1.43838197867E-01 1.45635598040E-01 1.47461961047E-01 1.49328534305E-01 1.51199822238E-01 1.53088510872E-01 1.55045794983E-01 1.56976388737E-01 1.58952927646E-01 1.60955720052E-01 1.62979478643E-01 1.65029936330E-01 1.67102547229E-01 1.69201943360E-01 1.71337962646E-01 1.73485528893E-01 1.75670097454E-01 1.77886094463E-01 1.80116860096E-01 1.82376567416E-01 1.84669553012E-01 1.87001974723E-01 1.89353558363E-01 1.91730231524E-01 1.94136091547E-01 1.96587653811E-01 1.99063405691E-01 2.01568308387E-01 2.04088510421E-01 2.06669670910E-01 2.09269049900E-01 2.11899277137E-01 2.14553197112E-01 2.17270615305E-01 2.19988234420E-01 2.22757564132E-01 2.25569419154E-01 2.28392938475E-01 2.31266686904E-01 2.34182004136E-01 2.37133853975E-01 2.40106151281E-01 2.43134315238E-01 2.46186605721E-01 2.49288123843E-01 2.52429604513E-01 2.55591851113E-01 2.58815706439E-01 2.62064787263E-01 2.65359812217E-01 2.68705443764E-01 2.72076623449E-01 2.75503245693E-01 2.78970487805E-01 2.82478032805E-01 2.86030564323E-01 2.89627794095E-01 2.93272134772E-01 2.96959414519E-01 3.00693422506E-01 3.04481996840E-01 3.08305671160E-01 3.12194161601E-01 3.16110419306E-01 3.20090571758E-01 3.24119070943E-01 3.28189287982E-01 3.32326137301E-01 3.36499208535E-01 3.40732079289E-01 3.45021333649E-01 3.49362204874E-01 3.53753651669E-01 3.58203055613E-01 3.62709164948E-01 3.67272130576E-01 3.71894903328E-01 3.76569670407E-01 3.81308351016E-01 3.86102400447E-01 3.90959026044E-01 3.95873964306E-01 4.00857113041E-01 4.05895809301E-01 4.11006668695E-01 4.16173877791E-01 4.21405858229E-01 4.26705085533E-01 4.32081731585E-01 4.37509298842E-01 4.43016832703E-01 4.48582064241E-01 4.54229793430E-01 4.59939516307E-01 4.65729215203E-01 4.71582543811E-01 4.77515392878E-01 4.83526724338E-01 4.89605717054E-01 4.95762647945E-01 5.02001146377E-01 5.08312975372E-01 5.14711033137E-01 5.21183661645E-01 5.27737816536E-01 5.34375588923E-01 5.41096914389E-01 5.47901106278E-01 5.54797126992E-01 5.61773625144E-01 5.68836502803E-01 5.75995548319E-01 5.83236370372E-01 5.90575066662E-01 5.98007245930E-01 6.05523237957E-01 6.13142093631E-01 6.20855357229E-01 6.28664582098E-01 6.36570856289E-01 6.44577015004E-01 6.52687859031E-01 6.60896187591E-01 6.69207022781E-01 6.77624741500E-01 6.86147457707E-01 6.94781866897E-01 7.03519419302E-01 7.12365872691E-01 7.21326204244E-01 7.30400549752E-01 7.39588623544E-01 7.48890571702E-01 7.58310962311E-01 7.67847670132E-01 7.77507730903E-01 7.87286776634E-01 7.97188841461E-01 8.07216174545E-01 8.17368658234E-01 8.27649688468E-01 8.38060628359E-01 8.48600991051E-01 8.59271840359E-01 8.70086676986E-01 8.81023175959E-01 8.92112281501E-01 9.03327588419E-01 9.14690615455E-01 9.26197509540E-01 9.37846896041E-01 9.49639968241E-01 9.61587696909E-01 9.73680350258E-01 9.85929934809E-01 9.98326164658E-01 1.01088600675E+00 1.02360321810E+00 1.03647104224E+00 1.04951448827E+00 1.06271171824E+00 1.07607919101E+00 1.08961448793E+00 1.10331614419E+00 1.11719711453E+00 1.13124752357E+00 1.14547625672E+00 1.15988390436E+00 1.17447355306E+00 1.18924411418E+00 1.20420250314E+00 1.21934856124E+00 1.23468599596E+00 1.25021261966E+00 1.26594016525E+00 1.28186097069E+00 1.29798230636E+00 1.31431021794E+00 1.33083955728E+00 1.34757952860E+00 1.36452588584E+00 1.38168919554E+00 1.39906707767E+00 1.41666367536E+00 1.43448107704E+00 1.45252290969E+00 1.47079253733E+00 1.48928949709E+00 1.50802151614E+00 1.52698702608E+00 1.54619246457E+00 1.56564038840E+00 1.58532970284E+00 1.60526807141E+00 1.62545951259E+00 1.64589916574E+00 1.66660388494E+00 1.68756202439E+00 1.70878629618E+00 1.73027731398E+00 1.75203991795E+00 1.77407244872E+00 1.79638596164E+00 1.81897672881E+00 1.84185507387E+00 1.86501781506E+00 1.88847217837E+00 1.91222267482E+00 1.93627134824E+00 1.96062381521E+00 1.98527904903E+00 2.01024727674E+00 2.03552852013E+00 2.06112715388E+00 2.08704787407E+00 2.11329356492E+00 2.13987065792E+00 2.16678073842E+00 2.19402909087E+00 2.22162118337E+00 2.24955872928E+00 2.27784824646E+00 2.30649306899E+00 2.33549811862E+00 2.36486777555E+00 2.39460547850E+00 2.42471767339E+00 2.45521038678E+00 2.48608228170E+00 2.51734481554E+00 2.54899999381E+00 2.58105216448E+00 2.61350812175E+00 2.64637052056E+00 2.67964851735E+00 2.71334196484E+00 2.74746040352E+00 2.78200667558E+00 2.81698672905E+00 2.85240712668E+00 2.88827218874E+00 2.92458817091E+00 2.96136023280E+00 2.99859466695E+00 3.03629623709E+00 3.07447110913E+00 3.11312627058E+00 3.15226658215E+00 3.19189862149E+00 3.23202944888E+00 3.27266193716E+00 3.31380786258E+00 3.35546842975E+00 3.39765242350E+00 3.44036650945E+00 3.48361722180E+00 3.52741050989E+00 3.57175394427E+00 3.61665421489E+00 3.66211852689E+00 3.70815238606E+00 3.75476575046E+00 3.80196329818E+00 3.84975444460E+00 3.89814385833E+00 3.94714173655E+00 3.99675378489E+00 4.04698975575E+00 4.09785487998E+00 4.14935974054E+00 4.20150919063E+00 4.25431387767E+00 4.30778128324E+00 4.36191915199E+00 4.41673633077E+00 4.47224105474E+00 4.52844251512E+00 4.58534806860E+00 4.64296721825E+00 4.70130995963E+00 4.76038365973E+00 4.82019819019E+00 4.88076253769E+00 4.94208620716E+00 5.00417845497E+00 5.06704932600E+00 5.13070792349E+00 5.19516394139E+00 5.26042909262E+00 5.32651066409E+00 5.39342052565E+00 5.46116832446E+00 5.52976538151E+00 5.59922077574E+00 5.66954666861E+00 5.74075276063E+00 5.81285077570E+00 5.88585087823E+00 5.95976528971E+00 6.03460433948E+00 6.11038049096E+00 6.18710446585E+00 6.26478842505E+00 6.34344406078E+00 6.42308393430E+00 6.50371878985E+00 6.58536293988E+00 6.66802754811E+00 6.75172495477E+00 6.83646921349E+00 6.92227195801E+00 7.00914667324E+00 7.09710681603E+00 7.18616564854E+00 7.27633613573E+00 7.36763297824E+00 7.46006936367E+00 7.55365891760E+00 7.64841655955E+00 7.74435665530E+00 7.84149275387E+00 7.93984046874E+00 8.03941437059E+00 8.14022918740E+00 8.24230052141E+00 8.34564330778E+00 8.45027333946E+00 8.55620638059E+00 8.66345779161E+00 8.77204439014E+00 8.88198219938E+00 8.99328668263E+00 9.10597645586E+00 9.22006615401E+00 9.33557417181E+00 9.45251731164E+00 9.57091230702E+00 9.69077818898E+00 9.81213097873E+00 9.93499004317E+00 1.00593730285E+01 1.01852976283E+01 1.03127831665E+01 1.04418485027E+01 1.05725119465E+01 1.07047929786E+01 1.08387110019E+01 1.09742854158E+01 1.11115362287E+01 1.12504830128E+01 1.13911463528E+01 1.15335461876E+01 1.16777034896E+01 1.18236390952E+01 1.19713737222E+01 1.21209287774E+01 1.22723257465E+01 1.24255861620E+01 1.25807321958E+01 1.27377851785E+01 1.28967686009E+01 1.30577039456E+01 1.32206142913E+01 1.33855227984E+01 1.35524523101E+01 1.37214263615E+01 1.38924686913E+01 1.40656026804E+01 1.42408530430E+01 1.44182432014E+01 1.45977983423E+01 1.47795426198E+01 1.49635010474E+01 1.51496989640E+01 1.53381612970E+01 1.55289139980E+01 1.57219823308E+01 1.59173922229E+01 1.61151703258E+01 1.63153420900E+01 1.65179350798E+01 1.67229748643E+01 1.69304892835E+01 1.71405051054E+01 1.73530492643E+01 1.75681497432E+01 1.77858338351E+01 1.80061295022E+01 1.82290643107E+01 1.84546671486E+01 1.86829657041E+01 1.89139884698E+01 1.91477642575E+01 1.93843216247E+01 1.96236893762E+01 1.98658967188E+01 2.01109725585E+01 2.03589462596E+01 2.06098468741E+01 2.08637039770E+01 2.11205469721E+01 2.13804055809E+01 2.16433091148E+01 2.19092874023E+01 2.21783700853E+01 2.24505870310E+01 2.27259676865E+01 2.30045419169E+01 2.32863394720E+01 2.35713898545E+01 2.38597228216E+01 2.41513678815E+01 2.44463543659E+01 2.47447117548E+01 2.50464692710E+01 2.53516557828E+01 2.56603004691E+01 2.59724318051E+01 2.62880783389E+01 2.66072682132E+01 2.69300297699E+01 2.72563899912E+01 2.75863768493E+01 2.79200169657E+01 2.82573369664E+01 2.85983630257E+01 2.89431208958E+01 2.92916355401E+01 2.96439317595E+01 3.00000335744E+01 3.03599642771E+01 3.07237468195E+01 3.10914030340E+01 3.14629543243E+01 3.18384211332E+01 3.22178228245E+01 3.26011782998E+01 3.29885050362E+01 3.33798196606E+01 3.37751376205E+01 3.41744733756E+01 3.45778396697E+01 3.49852485301E+01 3.53967100259E+01 3.58122330703E+01 3.62318250259E+01 3.66554912932E+01 3.70832358535E+01 3.75150606283E+01 3.79509658201E+01 3.83909492618E+01 3.88350069553E+01 3.92831325517E+01 3.97353170554E+01 4.01915492948E+01 4.06518152998E+01 4.11160984674E+01 4.15843789805E+01 4.20566342962E+01 4.25328384670E+01 4.30129622563E+01 4.34969728844E+01 4.39848338301E+01 4.44765046843E+01 4.49719410795E+01 4.54710942636E+01 4.59739109164E+01 4.64803334443E+01 4.69902987470E+01 4.75037392929E+01 4.80205816655E+01 4.85407469283E+01 4.90641504819E+01 4.95907015089E+01 5.01203025580E+01 5.06528497980E+01 5.11882322499E+01 5.17263315542E+01 5.22670220391E+01 5.28101696592E+01 5.33556322123E+01 5.39032590011E+01 5.44528899187E+01 5.50043559447E+01 5.55574776400E+01 5.61120658114E+01 5.66679203412E+01 5.72248300101E+01 5.77825720405E+01 5.83409118240E+01 5.88996019631E+01 5.94583820388E+01 6.00169782192E+01 6.05751026168E+01 6.11324526383E+01 6.16887105114E+01 6.22435427705E+01 6.27965994002E+01 6.33475138950E+01 6.38959017550E+01 6.44413603324E+01 6.49834685028E+01 6.55217851008E+01 6.60558493731E+01 6.65851793794E+01 6.71092717922E+01 6.76276012262E+01 6.81396192944E+01 6.86447541455E+01 6.91424095995E+01 6.96319646407E+01 7.01127727268E+01 7.05841608306E+01 7.10454292195E+01 7.14958506219E+01 7.19346695366E+01 7.23611016540E+01 7.27743334942E+01 7.31735218094E+01 7.35577930102E+01 7.39262429541E+01 7.42779362119E+01 7.46119065036E+01 7.49271556545E+01 7.52226542175E+01 7.54973408611E+01 7.57501231484E+01 7.59798770761E+01 7.61854479314E+01 7.63656507663E+01 7.65192708319E+01 7.66450648683E+01 7.67417618336E+01 7.68080645909E+01 7.68426511286E+01 7.68441767191E+01 7.68112758392E+01 7.67425646317E+01 7.66366438155E+01 7.64921017887E+01 7.63075180559E+01 7.60814671704E+01 7.58125232386E+01 7.54992647724E+01 7.51402797936E+01 7.47341721137E+01 7.42795672940E+01 7.37751199528E+01 7.32195212360E+01 7.26115069982E+01 7.19498667135E+01 7.12334528795E+01 7.04611914052E+01 6.96320921993E+01 6.87452608963E+01 6.77999109819E+01 6.67953768268E+01 6.57311271092E+01 6.46067790167E+01 6.34221131121E+01 6.21770886122E+01 6.08718591013E+01 5.95067887999E+01 5.80824691337E+01 5.65997351919E+01 5.50596826133E+01 5.34636841543E+01 5.18134058969E+01 5.01108231366E+01 4.83582354679E+01 4.65582806374E+01 4.47139474202E+01 4.28285866276E+01 4.09059200751E+01 3.89500472166E+01 3.69654490536E+01 3.49569883336E+01 3.29299063711E+01 3.08898151313E+01 2.88426845863E+01 2.67948245224E+01 2.47528601051E+01 2.27237009991E+01 2.07145025767E+01 1.87326195113E+01 1.67855508760E+01 1.48808756212E+01 1.30261785901E+01 1.12289664491E+01 9.49657286041E+00 7.83605312977E+00 6.25406773001E+00 4.75675542944E+00 3.34959551083E+00 2.03726063941E+00 8.23460560811E-01 -2.89221674614E-01 -1.29949960856E+00 -2.20755612248E+00 -3.01521791165E+00 -3.72612615541E+00 -4.34590077815E+00 -4.88229206298E+00 -5.34531386248E+00 -5.74735158434E+00 -6.10323593552E+00 -6.43027324787E+00 -6.74822130862E+00 -7.07919836669E+00 -7.44751096895E+00 -7.87938555282E+00 -8.40258669473E+00 -9.04590308914E+00 -9.83848231086E+00 -1.08089930548E+01 -1.19845940983E+01 -1.33896891477E+01 -1.50444481166E+01 -1.69630782013E+01 -1.91518324807E+01 -2.16067514181E+01 -2.43111424731E+01 -2.72328184033E+01 -3.03211343828E+01 -3.35038915746E+01 -3.66842097927E+01 -3.97375191778E+01 -4.25088792396E+01 -4.48109107517E+01 -4.64227208577E+01 -4.70903218492E+01 -4.65291971503E+01 -4.44298122386E+01 -4.04674889865E+01 -3.43145061004E+01 -2.56898641776E+01 -1.41207870624E+01 -1.60520172564E+00 1.59146162727E-01 -1.57783915164E-02 1.56433438150E-03 -1.55094814978E-04 1.53761652065E-05 -1.52292825191E-06 1.50197080879E-07 -1.47062284450E-08 1.21488732629E-09 2.78623579728E-10 -9.55816237693E-01 6.77125366118E-01 737 -9.93878423398E-05 -1.01903857916E-04 -1.04483566748E-04 -1.07128581241E-04 -1.09840554614E-04 -1.12621181943E-04 -1.15472201211E-04 -1.18395394399E-04 -1.21392588601E-04 -1.24465657162E-04 -1.27616520852E-04 -1.30847149066E-04 -1.34159561054E-04 -1.37555827183E-04 -1.41038070232E-04 -1.44608466721E-04 -1.48269248265E-04 -1.52022702975E-04 -1.55871176886E-04 -1.59817075421E-04 -1.63862864900E-04 -1.68011074077E-04 -1.72264295719E-04 -1.76625188235E-04 -1.81096477326E-04 -1.85680957700E-04 -1.90381494810E-04 -1.95201026649E-04 -2.00142565586E-04 -2.05209200251E-04 -2.10404097459E-04 -2.15730504196E-04 -2.21191749647E-04 -2.26791247274E-04 -2.32532496951E-04 -2.38419087155E-04 -2.44454697202E-04 -2.50643099554E-04 -2.56988162172E-04 -2.63493850935E-04 -2.70164232119E-04 -2.77003474939E-04 -2.84015854156E-04 -2.91205752744E-04 -2.98577664636E-04 -3.06136197528E-04 -3.13886075762E-04 -3.21832143277E-04 -3.29979366637E-04 -3.38332838136E-04 -3.46897778982E-04 -3.55679542556E-04 -3.64683617764E-04 -3.73915632463E-04 -3.83381356981E-04 -3.93086707723E-04 -4.03037750871E-04 -4.13240706171E-04 -4.23701950824E-04 -4.34428023473E-04 -4.45425628288E-04 -4.56701639155E-04 -4.68263103976E-04 -4.80117249071E-04 -4.92271483697E-04 -5.04733404679E-04 -5.17510801156E-04 -5.30611659452E-04 -5.44044168067E-04 -5.57816722795E-04 -5.71937931972E-04 -5.86416621857E-04 -6.01261842147E-04 -6.16482871636E-04 -6.32089224012E-04 -6.48090653806E-04 -6.64497162489E-04 -6.81319004719E-04 -6.98566694758E-04 -7.16251013037E-04 -7.54930227396E-04 -7.52941875088E-04 -7.72133487755E-04 -7.91566824085E-04 -8.11750894117E-04 -8.32206543332E-04 -8.53446452035E-04 -8.74973561878E-04 -8.97221290506E-04 -9.19633279087E-04 -9.42989133957E-04 -9.66905729958E-04 -9.91368336087E-04 -1.01658365783E-03 -1.04233698464E-03 -1.06861062503E-03 -1.09577052901E-03 -1.12330775482E-03 -1.15173683831E-03 -1.18104233451E-03 -1.21085631537E-03 -1.24161662360E-03 -1.27292611780E-03 -1.30520524362E-03 -1.33834772754E-03 -1.37209105164E-03 -1.40682052862E-03 -1.44244275260E-03 -1.47914734817E-03 -1.51635546624E-03 -1.55485700334E-03 -1.59399787058E-03 -1.63454925341E-03 -1.67586639863E-03 -1.71831734619E-03 -1.76179671111E-03 -1.80627356094E-03 -1.85203707965E-03 -1.89910966585E-03 -1.94709549362E-03 -1.99626340116E-03 -2.04704707834E-03 -2.09854638675E-03 -2.15181828081E-03 -2.20623714218E-03 -2.26218184946E-03 -2.31929858879E-03 -2.37827717511E-03 -2.43828154871E-03 -2.50003364760E-03 -2.56349666504E-03 -2.62812856357E-03 -2.69479578583E-03 -2.76299737014E-03 -2.83287272994E-03 -2.90472108757E-03 -2.97826485204E-03 -3.05355970236E-03 -3.13076234920E-03 -3.21018906161E-03 -3.29147165218E-03 -3.37464845099E-03 -3.46013710156E-03 -3.54784008841E-03 -3.63750039390E-03 -3.72948006896E-03 -3.82409770851E-03 -3.92083854576E-03 -4.01996761202E-03 -4.12178441289E-03 -4.22622806195E-03 -4.33313541165E-03 -4.44274936130E-03 -4.55524362129E-03 -4.67071404854E-03 -4.78894605398E-03 -4.91006958609E-03 -5.03441434073E-03 -5.16180297817E-03 -5.29257372226E-03 -5.42647773507E-03 -5.56372425559E-03 -5.70479512134E-03 -5.84903083141E-03 -5.99717136023E-03 -6.14879609168E-03 -6.30479870872E-03 -6.46411411025E-03 -6.62799729887E-03 -6.79558950273E-03 -6.96771021702E-03 -7.14393620930E-03 -7.32492764555E-03 -7.51022027794E-03 -7.70045634326E-03 -7.89542278727E-03 -8.09519401619E-03 -8.30038130406E-03 -8.51020715191E-03 -8.72575755680E-03 -8.94667166246E-03 -9.17301959122E-03 -9.40535919622E-03 -9.64335597385E-03 -9.88763008708E-03 -1.01377510286E-02 -1.03944537424E-02 -1.06575140047E-02 -1.09274114947E-02 -1.12039640148E-02 -1.14875100828E-02 -1.17783015520E-02 -1.20765226466E-02 -1.23823851306E-02 -1.26957436430E-02 -1.30171127932E-02 -1.33465180742E-02 -1.36846412352E-02 -1.40308047561E-02 -1.43861129682E-02 -1.47503171954E-02 -1.51237531797E-02 -1.55065336916E-02 -1.58990994183E-02 -1.63015986988E-02 -1.67142426434E-02 -1.71373284527E-02 -1.75712889862E-02 -1.80158961352E-02 -1.84720257717E-02 -1.89396385691E-02 -1.94190414825E-02 -1.99105624512E-02 -2.04147227701E-02 -2.09315239806E-02 -2.14612622650E-02 -2.20046775279E-02 -2.25616694685E-02 -2.31328630249E-02 -2.37184145510E-02 -2.43187553265E-02 -2.49343958778E-02 -2.55654706134E-02 -2.62127503238E-02 -2.68763360527E-02 -2.75566101372E-02 -2.82542471814E-02 -2.89694800661E-02 -2.97028710816E-02 -3.04547029335E-02 -3.12255612808E-02 -3.20161746157E-02 -3.28265661095E-02 -3.36574915116E-02 -3.45095014139E-02 -3.53831044860E-02 -3.62788990631E-02 -3.71971718694E-02 -3.81386872334E-02 -3.91040448704E-02 -4.00941023978E-02 -4.11091529650E-02 -4.21495078270E-02 -4.32166604919E-02 -4.43105175210E-02 -4.54323048671E-02 -4.65821864955E-02 -4.77614078101E-02 -4.89705189754E-02 -5.02100129815E-02 -5.14810920555E-02 -5.27842018994E-02 -5.41202647044E-02 -5.54904050582E-02 -5.68948861879E-02 -5.83351896400E-02 -5.98118271729E-02 -6.13259306066E-02 -6.28782367736E-02 -6.44698184852E-02 -6.61019310809E-02 -6.77749459853E-02 -6.94906430310E-02 -7.12494849425E-02 -7.30529940041E-02 -7.49022364815E-02 -7.67982940620E-02 -7.87423462918E-02 -8.07354114877E-02 -8.27790866606E-02 -8.48743054993E-02 -8.70228285218E-02 -8.92255700754E-02 -9.14839742794E-02 -9.37996787603E-02 -9.61738779919E-02 -9.86083258740E-02 -1.01104323016E-01 -1.03663414512E-01 -1.06287252142E-01 -1.08977657539E-01 -1.11735995366E-01 -1.14564172502E-01 -1.17464134824E-01 -1.20437153083E-01 -1.23485671893E-01 -1.26611259238E-01 -1.29815902391E-01 -1.33101650974E-01 -1.36470607270E-01 -1.39924574642E-01 -1.43466325202E-01 -1.47097659485E-01 -1.50820638018E-01 -1.54637968775E-01 -1.58551878686E-01 -1.62564884543E-01 -1.66679343024E-01 -1.70898131854E-01 -1.75223326632E-01 -1.79658177326E-01 -1.84205269110E-01 -1.88867443171E-01 -1.93647433917E-01 -1.98548340813E-01 -2.03573551641E-01 -2.08725713552E-01 -2.14008166484E-01 -2.19424505507E-01 -2.24977712143E-01 -2.30671248061E-01 -2.36509210993E-01 -2.42494688877E-01 -2.48631396664E-01 -2.54923861324E-01 -2.61375182468E-01 -2.67989746633E-01 -2.74771488542E-01 -2.81725108370E-01 -2.88854488336E-01 -2.96164284291E-01 -3.03658860126E-01 -3.11343227863E-01 -3.19221696435E-01 -3.27299793549E-01 -3.35581961755E-01 -3.44073657944E-01 -3.52780205166E-01 -3.61707069350E-01 -3.70859307009E-01 -3.80243422981E-01 -3.89864831939E-01 -3.99729411080E-01 -4.09843516360E-01 -4.20213591044E-01 -4.30845612994E-01 -4.41746873054E-01 -4.52923419900E-01 -4.64382676272E-01 -4.76131902739E-01 -4.88178152173E-01 -5.00528802427E-01 -5.13191766524E-01 -5.26175065902E-01 -5.39486387249E-01 -5.53134464303E-01 -5.67127441878E-01 -5.81474074560E-01 -5.96183427007E-01 -6.11264792594E-01 -6.26727004366E-01 -6.42580412454E-01 -6.58834489032E-01 -6.75499117232E-01 -6.92585042897E-01 -7.10102647236E-01 -7.28063131733E-01 -7.46477406894E-01 -7.65357039956E-01 -7.84713514769E-01 -8.04559184793E-01 -8.24906245768E-01 -8.45767215581E-01 -8.67155421311E-01 -8.89083663057E-01 -9.11565954489E-01 -9.34616139466E-01 -9.58248331215E-01 -9.82477628184E-01 -1.00731854654E+00 -1.03278684235E+00 -1.05889813915E+00 -1.08566899601E+00 -1.11311546574E+00 -1.14125500251E+00 -1.17010485014E+00 -1.19968290403E+00 -1.23000750145E+00 -1.26109730644E+00 -1.29297181740E+00 -1.32565065219E+00 -1.35915400112E+00 -1.39350280355E+00 -1.42871808124E+00 -1.46482166916E+00 -1.50183598690E+00 -1.53978353097E+00 -1.57868853484E+00 -1.61857419864E+00 -1.65946571610E+00 -1.70138814672E+00 -1.74436737902E+00 -1.78842999028E+00 -1.83360302143E+00 -1.87991445593E+00 -1.92739294232E+00 -1.97606724291E+00 -2.02596810199E+00 -2.07712581779E+00 -2.12957178997E+00 -2.18333856758E+00 -2.23845910527E+00 -2.29496711465E+00 -2.35289771459E+00 -2.41228603718E+00 -2.47316914185E+00 -2.53558369283E+00 -2.59956902127E+00 -2.66516295900E+00 -2.73240694741E+00 -2.80134143274E+00 -2.87200888340E+00 -2.94445289318E+00 -3.01871686003E+00 -3.09484729864E+00 -3.17288998540E+00 -3.25289284566E+00 -3.33490461039E+00 -3.41897542249E+00 -3.50515622514E+00 -3.59349989643E+00 -3.68406008788E+00 -3.77689159119E+00 -3.87205132590E+00 -3.96959693552E+00 -4.06958752802E+00 -4.17208366125E+00 -4.27714768026E+00 -4.38484326111E+00 -4.49523539860E+00 -4.60839082811E+00 -4.72437794534E+00 -4.84326680733E+00 -4.96512925954E+00 -5.09003833873E+00 -5.21806944961E+00 -5.34929984090E+00 -5.48380762566E+00 -5.62167444370E+00 -5.76298210727E+00 -5.90781589198E+00 -6.05626206683E+00 -6.20840928226E+00 -6.36434873883E+00 -6.52417287462E+00 -6.68797730959E+00 -6.85585888483E+00 -7.02791806303E+00 -7.20425602811E+00 -7.38497768036E+00 -7.57019014042E+00 -7.76000224146E+00 -7.95452625437E+00 -8.15387649479E+00 -8.35817049704E+00 -8.56752759075E+00 -8.78207088059E+00 -9.00192572665E+00 -9.22722054301E+00 -9.45808667909E+00 -9.69465847958E+00 -9.93707328386E+00 -1.01854713374E+01 -1.04399968183E+01 -1.07007961721E+01 -1.09680198167E+01 -1.12418217262E+01 -1.15223581311E+01 -1.18097902590E+01 -1.21042819246E+01 -1.24060009131E+01 -1.27151185621E+01 -1.30318099085E+01 -1.33562541863E+01 -1.36886340635E+01 -1.40291364750E+01 -1.43779522827E+01 -1.47352763638E+01 -1.51013077125E+01 -1.54762499032E+01 -1.58603102766E+01 -1.62537007449E+01 -1.66566379073E+01 -1.70693425007E+01 -1.74920398654E+01 -1.79249599870E+01 -1.83683375361E+01 -1.88224121050E+01 -1.92874277178E+01 -1.97636333475E+01 -2.02512831485E+01 -2.07506359239E+01 -2.12619556128E+01 -2.17855111971E+01 -2.23215770733E+01 -2.28704320051E+01 -2.34323611390E+01 -2.40076537705E+01 -2.45966053032E+01 -2.51995154491E+01 -2.58166905734E+01 -2.64484415635E+01 -2.70950849809E+01 -2.77569425603E+01 -2.84343417054E+01 -2.91276154988E+01 -2.98371014893E+01 -3.05631437664E+01 -3.13060913426E+01 -3.20662985268E+01 -3.28441251028E+01 -3.36399364373E+01 -3.44541021470E+01 -3.52869988333E+01 -3.61390067665E+01 -3.70105117617E+01 -3.79019046185E+01 -3.88135811553E+01 -3.97459420423E+01 -4.06993919706E+01 -4.16743409385E+01 -4.26712027944E+01 -4.36903962069E+01 -4.47323425924E+01 -4.57974685271E+01 -4.68862032998E+01 -4.79989795960E+01 -4.91362337948E+01 -5.02984043987E+01 -5.14859321313E+01 -5.26992608237E+01 -5.39388352704E+01 -5.52051018179E+01 -5.64985079556E+01 -5.78195013900E+01 -5.91685303586E+01 -6.05460418937E+01 -6.19524830523E+01 -6.33882980267E+01 -6.48539301296E+01 -6.63498191717E+01 -6.78764010633E+01 -6.94341082497E+01 -7.10233680099E+01 -7.26446012841E+01 -7.42982225399E+01 -7.59846387741E+01 -7.77042484137E+01 -7.94574397560E+01 -8.12445911490E+01 -8.30660684632E+01 -8.49222249950E+01 -8.68133994313E+01 -8.87399153942E+01 -9.07020784316E+01 -9.27001770910E+01 -9.47344786810E+01 -9.68052300197E+01 -9.89126541117E+01 -1.01056948871E+02 -1.03238285707E+02 -1.05456807364E+02 -1.07712625786E+02 -1.10005820244E+02 -1.12336434652E+02 -1.14704476096E+02 -1.17109912414E+02 -1.19552668484E+02 -1.22032625649E+02 -1.24549617440E+02 -1.27103427617E+02 -1.29693787177E+02 -1.32320371525E+02 -1.34982797371E+02 -1.37680618961E+02 -1.40413325811E+02 -1.43180339231E+02 -1.45981007820E+02 -1.48814605130E+02 -1.51680324910E+02 -1.54577278710E+02 -1.57504490314E+02 -1.60460893160E+02 -1.63445325508E+02 -1.66456526241E+02 -1.69493131108E+02 -1.72553667937E+02 -1.75636552093E+02 -1.78740082695E+02 -1.81862436449E+02 -1.85001665395E+02 -1.88155689459E+02 -1.91322293910E+02 -1.94499122809E+02 -1.97683676127E+02 -2.00873302339E+02 -2.04065196239E+02 -2.07256391239E+02 -2.10443757862E+02 -2.13623995307E+02 -2.16793630006E+02 -2.19949007828E+02 -2.23086292313E+02 -2.26201458248E+02 -2.29290288189E+02 -2.32348367667E+02 -2.35371082559E+02 -2.38353613333E+02 -2.41290932651E+02 -2.44177802636E+02 -2.47008770850E+02 -2.49778168190E+02 -2.52480106282E+02 -2.55108477110E+02 -2.57656949653E+02 -2.60118971044E+02 -2.62487764895E+02 -2.64756332568E+02 -2.66917454524E+02 -2.68963690668E+02 -2.70887384549E+02 -2.72680666179E+02 -2.74335456557E+02 -2.75843472309E+02 -2.77196232690E+02 -2.78385067602E+02 -2.79401124795E+02 -2.80235381068E+02 -2.80878653468E+02 -2.81321610898E+02 -2.81554790508E+02 -2.81568611002E+02 -2.81353392696E+02 -2.80899375410E+02 -2.80196740480E+02 -2.79235634122E+02 -2.78006192707E+02 -2.76498571278E+02 -2.74702973173E+02 -2.72609682691E+02 -2.70209100954E+02 -2.67491783966E+02 -2.64448483581E+02 -2.61070191389E+02 -2.57348186452E+02 -2.53274085766E+02 -2.48839898238E+02 -2.44038082759E+02 -2.38861609430E+02 -2.33304024456E+02 -2.27359520606E+02 -2.21023010413E+02 -2.14290202808E+02 -2.07157686581E+02 -1.99623016644E+02 -1.91684804503E+02 -1.83342813935E+02 -1.74598061573E+02 -1.65452919771E+02 -1.55911226216E+02 -1.45978397314E+02 -1.35661543064E+02 -1.24969588657E+02 -1.13913397175E+02 -1.02505894983E+02 -9.07622012759E+01 -7.86997551724E+01 -6.63384462406E+01 -5.37007432661E+01 -4.08118199354E+01 -2.76996780730E+01 -1.43952658805E+01 -9.32588705810E-01 1.26511904669E+01 2.63156592423E+01 4.00170816904E+01 5.37083388935E+01 6.73388902986E+01 8.08547604363E+01 9.41985500333E+01 1.07309481774E+02 1.20123479589E+02 1.32573289852E+02 1.44588646129E+02 1.56096484730E+02 1.67021215079E+02 1.77285050441E+02 1.86808404205E+02 1.95510357545E+02 2.03309203591E+02 2.10123074450E+02 2.15870655474E+02 2.20471994183E+02 2.23849407459E+02 2.25928495659E+02 2.26639266587E+02 2.25917377386E+02 2.23705500697E+02 2.19954821210E+02 2.14626669700E+02 2.07694303062E+02 1.99144836525E+02 1.88981339062E+02 1.77225095891E+02 1.63918049942E+02 1.49125424377E+02 1.32938530956E+02 1.15477759860E+02 9.68957421907E+01 7.73806587922E+01 5.71596564625E+01 3.65023013326E+01 1.57239664881E+01 -4.81099893710E+00 -2.46865403176E+01 -4.34329127565E+01 -6.05258626094E+01 -7.53875439811E+01 -8.73899260491E+01 -9.58616851629E+01 -1.00099886103E+02 -9.93880309434E+01 -9.30234616098E+01 -8.03484983562E+01 -6.08694914043E+01 -3.36832165374E+01 -3.84036640466E+00 3.80749386146E-01 -3.77490213511E-02 3.74258379752E-03 -3.71049482130E-04 3.67823761918E-05 -3.64131329392E-06 3.53264571584E-07 -2.78724749339E-08 -1.75889376416E-09 2.87103358410E-09 0.00000000000E+00 0.00000000000E+00 -4.75002042138E-01 737 1.41307990200E-04 1.44885219522E-04 1.48553006861E-04 1.52313644707E-04 1.56169483583E-04 1.60122933515E-04 1.64176465542E-04 1.68332613254E-04 1.72593974382E-04 1.76963212419E-04 1.81443058283E-04 1.86036312027E-04 1.90745844586E-04 1.95574599576E-04 2.00525595129E-04 2.05601925782E-04 2.10806764411E-04 2.16143364213E-04 2.21615060742E-04 2.27225273990E-04 2.32977510528E-04 2.38875365695E-04 2.44922525850E-04 2.51122770669E-04 2.57479975512E-04 2.63998113846E-04 2.70681259726E-04 2.77533590342E-04 2.84559388631E-04 2.91763045953E-04 2.99149064836E-04 3.06722061791E-04 3.14486770195E-04 3.22448043254E-04 3.30610857032E-04 3.38980313562E-04 3.47561644039E-04 3.56360212084E-04 3.65381517101E-04 3.74631197710E-04 3.84115035277E-04 3.93838957521E-04 4.03809042225E-04 4.14031521032E-04 4.24512783339E-04 4.35259380293E-04 4.46278028883E-04 4.57575616143E-04 4.69159203451E-04 4.81036030947E-04 4.93213522056E-04 5.05699288127E-04 5.18501133195E-04 5.31627058855E-04 5.45085269262E-04 5.58884176265E-04 5.73032404657E-04 5.87538797571E-04 6.02412422008E-04 6.17662574499E-04 6.33298786922E-04 6.49330832455E-04 6.65768731687E-04 6.82622758880E-04 6.99903448393E-04 7.17621601264E-04 7.35788291963E-04 7.54414875312E-04 7.73512993584E-04 7.93094583780E-04 8.13171885088E-04 8.33757446536E-04 8.54864134834E-04 8.76505142414E-04 8.98693995684E-04 9.21444563470E-04 9.44771065698E-04 9.68688082271E-04 9.93210562189E-04 1.01835383289E-03 1.07277243206E-03 1.07054190791E-03 1.09782466919E-03 1.12545748757E-03 1.15415088032E-03 1.18323695263E-03 1.21343065566E-03 1.24403975920E-03 1.27566797057E-03 1.30754151354E-03 1.34074638548E-03 1.37474927751E-03 1.40953039963E-03 1.44537729126E-03 1.48199259586E-03 1.51935098047E-03 1.55796341985E-03 1.59712123053E-03 1.63754087318E-03 1.67920305507E-03 1.72159430576E-03 1.76532572025E-03 1.80984453525E-03 1.85573653433E-03 1.90285524139E-03 1.95083460394E-03 2.00021259301E-03 2.05085950401E-03 2.10303965609E-03 2.15594832039E-03 2.21068573387E-03 2.26634176904E-03 2.32399160782E-03 2.38273694285E-03 2.44309237836E-03 2.50491100892E-03 2.56815090628E-03 2.63321588442E-03 2.70013713525E-03 2.76836523693E-03 2.83827459174E-03 2.91047109026E-03 2.98370112979E-03 3.05943760568E-03 3.13681119904E-03 3.21634971759E-03 3.29756161497E-03 3.38140892370E-03 3.46672750393E-03 3.55452483405E-03 3.64475054400E-03 3.73665038118E-03 3.83143293487E-03 3.92840128737E-03 4.02775054644E-03 4.12989964937E-03 4.23446245483E-03 4.34151819586E-03 4.45128659901E-03 4.56420878127E-03 4.67977474860E-03 4.79803811227E-03 4.91958270973E-03 5.04427430865E-03 5.17175576910E-03 5.30253398159E-03 5.43705384871E-03 5.57460016100E-03 5.71554392609E-03 5.86030357126E-03 6.00879696925E-03 6.16079826000E-03 6.31664771267E-03 6.47658978001E-03 6.64075880775E-03 6.80885942495E-03 6.98107379545E-03 7.15786362826E-03 7.33898457004E-03 7.52490885067E-03 7.71529362387E-03 7.91043190669E-03 8.11099769483E-03 8.31607490287E-03 8.52669604847E-03 8.74227930723E-03 8.96407139946E-03 9.19059142029E-03 9.42359112781E-03 9.66187588633E-03 9.90659186607E-03 1.01571516020E-02 1.04144779949E-02 1.06779281724E-02 1.09483988910E-02 1.12255982902E-02 1.15096324966E-02 1.18013569376E-02 1.20996923251E-02 1.24061546736E-02 1.27202460736E-02 1.30420676505E-02 1.33724005783E-02 1.37107833979E-02 1.40580833686E-02 1.44137066144E-02 1.47786802750E-02 1.51526970340E-02 1.55364299332E-02 1.59296294239E-02 1.63327728348E-02 1.67462157760E-02 1.71702200061E-02 1.76050861130E-02 1.80506164645E-02 1.85075345200E-02 1.89758807914E-02 1.94566113960E-02 1.99487883583E-02 2.04539558980E-02 2.09717748579E-02 2.15027188661E-02 2.20469519191E-02 2.26050946856E-02 2.31773605949E-02 2.37640517451E-02 2.43655889413E-02 2.49825829098E-02 2.56147238248E-02 2.62632391822E-02 2.69280833815E-02 2.76096917264E-02 2.83085299498E-02 2.90253331589E-02 2.97601117710E-02 3.05132887988E-02 3.12859037671E-02 3.20778269174E-02 3.28899390093E-02 3.37224672630E-02 3.45760240785E-02 3.54513310007E-02 3.63485860928E-02 3.72688748286E-02 3.82123488210E-02 3.91795540365E-02 4.01714409384E-02 4.11883473783E-02 4.22310693506E-02 4.33000131324E-02 4.43960091350E-02 4.55200854556E-02 4.66722887893E-02 4.78536862718E-02 4.90650594840E-02 5.03071335538E-02 5.15807563600E-02 5.28863440759E-02 5.42249779205E-02 5.55975096268E-02 5.70051521522E-02 5.84483311417E-02 5.99274984935E-02 6.14447529686E-02 6.29999846661E-02 6.45949197678E-02 6.62298077438E-02 6.79064039439E-02 6.96254952837E-02 7.13877914006E-02 7.31949881860E-02 7.50477302643E-02 7.69473250429E-02 7.88953632818E-02 8.08922365446E-02 8.29400333158E-02 8.50394932110E-02 8.71922187927E-02 8.93992634588E-02 9.16621505118E-02 9.39826562354E-02 9.63613282041E-02 9.88006752263E-02 1.01301372755E-01 1.03865573519E-01 1.06494794488E-01 1.09190576397E-01 1.11954596207E-01 1.14788307008E-01 1.17693969969E-01 1.20672921649E-01 1.23727652902E-01 1.26859475740E-01 1.30070441176E-01 1.33362871426E-01 1.36738471561E-01 1.40199728044E-01 1.43748496174E-01 1.47386972649E-01 1.51117505267E-01 1.54942677937E-01 1.58864440369E-01 1.62885498784E-01 1.67008613724E-01 1.71235608600E-01 1.75569940926E-01 1.80013851041E-01 1.84570162488E-01 1.89241788101E-01 1.94031715953E-01 1.98942517846E-01 2.03978118210E-01 2.09141088665E-01 2.14434364188E-01 2.19861784836E-01 2.25426520419E-01 2.31132147908E-01 2.36982021903E-01 2.42980224893E-01 2.49129724526E-01 2.55435124995E-01 2.61900107769E-01 2.68528712321E-01 2.75324830826E-01 2.82292867339E-01 2.89437628853E-01 2.96762893177E-01 3.04273405513E-01 3.11974268360E-01 3.19869732670E-01 3.27964720058E-01 3.36265041056E-01 3.44775102220E-01 3.53500185217E-01 3.62446707473E-01 3.71619098784E-01 3.81023586132E-01 3.90665769009E-01 4.00552316404E-01 4.10688761825E-01 4.21081718003E-01 4.31737395660E-01 4.42662911206E-01 4.53864404212E-01 4.65349717071E-01 4.77125183036E-01 4.89198551611E-01 5.01577391308E-01 5.14269471259E-01 5.27281996453E-01 5.40624191865E-01 5.54303768439E-01 5.68329086250E-01 5.82709175376E-01 5.97453193671E-01 6.12569653869E-01 6.28068902576E-01 6.43959561916E-01 6.60252171395E-01 6.76957051024E-01 6.94084236418E-01 7.11644219947E-01 7.29648247383E-01 7.48107718115E-01 7.67033573576E-01 7.86438218132E-01 8.06333241790E-01 8.26731091304E-01 8.47644650093E-01 8.69087128061E-01 8.91071099458E-01 9.13611258930E-01 9.36721085937E-01 9.60414637828E-01 9.84707183079E-01 1.00961348807E+00 1.03514947010E+00 1.06133064969E+00 1.08817346892E+00 1.11569426336E+00 1.14391058766E+00 1.17283978523E+00 1.20249965834E+00 1.23290914389E+00 1.26408645603E+00 1.29605150739E+00 1.32882398441E+00 1.36242395984E+00 1.39687288702E+00 1.43219142118E+00 1.46840195419E+00 1.50552670399E+00 1.54358920530E+00 1.58261229644E+00 1.62262078215E+00 1.66363918555E+00 1.70569294923E+00 1.74880814594E+00 1.79301131494E+00 1.83833017296E+00 1.88479261619E+00 1.93242735179E+00 1.98126414682E+00 2.03133289591E+00 2.08266464348E+00 2.13529126326E+00 2.18924475147E+00 2.24455954247E+00 2.30126864546E+00 2.35940786619E+00 2.41901284005E+00 2.48012037502E+00 2.54276825839E+00 2.60699494112E+00 2.67284020731E+00 2.74034478759E+00 2.80954959027E+00 2.88049830785E+00 2.95323403065E+00 3.02780140667E+00 3.10424670710E+00 3.18261679087E+00 3.26295959593E+00 3.34532504397E+00 3.42976310015E+00 3.51632643967E+00 3.60506721373E+00 3.69604131481E+00 3.78930257380E+00 3.88490987847E+00 3.98292075848E+00 4.08339558950E+00 4.18639634555E+00 4.29198475777E+00 4.40022693084E+00 4.51118797354E+00 4.62493602007E+00 4.74154036192E+00 4.86107229097E+00 4.98360424991E+00 5.10921141240E+00 5.23797006754E+00 5.36995812932E+00 5.50525651603E+00 5.64394719341E+00 5.78611420783E+00 5.93184366772E+00 6.08122421276E+00 6.23434638140E+00 6.39130259262E+00 6.55218773648E+00 6.71709906265E+00 6.88613618190E+00 7.05940124659E+00 7.23699811727E+00 7.41903400513E+00 7.60561874196E+00 7.79686341698E+00 7.99288408759E+00 8.19379710658E+00 8.39972370883E+00 8.61078657198E+00 8.82711174953E+00 9.04882891039E+00 9.27606950783E+00 9.50896949295E+00 9.74766658256E+00 9.99230360507E+00 1.02430244620E+01 1.04999783013E+01 1.07633174353E+01 1.10331966345E+01 1.13097755325E+01 1.15932166869E+01 1.18836872171E+01 1.21813568213E+01 1.24864005388E+01 1.27989966316E+01 1.31193277011E+01 1.34475805233E+01 1.37839461343E+01 1.41286198317E+01 1.44818010516E+01 1.48436948023E+01 1.52145093454E+01 1.55944585727E+01 1.59837614291E+01 1.63826401024E+01 1.67913238449E+01 1.72100456166E+01 1.76390440158E+01 1.80785626971E+01 1.85288505788E+01 1.89901625390E+01 1.94627583536E+01 1.99469038584E+01 2.04428704795E+01 2.09509353559E+01 2.14713814850E+01 2.20044983694E+01 2.25505808848E+01 2.31099304045E+01 2.36828549615E+01 2.42696684866E+01 2.48706914575E+01 2.54862509606E+01 2.61166807480E+01 2.67623215688E+01 2.74235204893E+01 2.81006316144E+01 2.87940164147E+01 2.95040429849E+01 3.02310867258E+01 3.09755302150E+01 3.17377637279E+01 3.25181837793E+01 3.33171959333E+01 3.41352116933E+01 3.49726512320E+01 3.58299408864E+01 3.67075164252E+01 3.76058200815E+01 3.85253021587E+01 3.94664203333E+01 4.04296403472E+01 4.14154360216E+01 4.24242875688E+01 4.34566844816E+01 4.45131232816E+01 4.55941080382E+01 4.67001506171E+01 4.78317708321E+01 4.89894945848E+01 5.01738576775E+01 5.13854011897E+01 5.26246740913E+01 5.38922324610E+01 5.51886395318E+01 5.65144654562E+01 5.78702861468E+01 5.92566850647E+01 6.06742511864E+01 6.21235803529E+01 6.36052723770E+01 6.51199344003E+01 6.66681774785E+01 6.82506175295E+01 6.98678757405E+01 7.15205763747E+01 7.32093469002E+01 7.49348192173E+01 7.66976266632E+01 7.84984048233E+01 8.03377909517E+01 8.22164226709E+01 8.41349383986E+01 8.60939749160E+01 8.80941690703E+01 9.01361537342E+01 9.22205605582E+01 9.43480163005E+01 9.65191422569E+01 9.87345548495E+01 1.00994863237E+02 1.03300667665E+02 1.05652559253E+02 1.08051118589E+02 1.10496914168E+02 1.12990500199E+02 1.15532416830E+02 1.18123186597E+02 1.20763314261E+02 1.23453283942E+02 1.26193558455E+02 1.28984575080E+02 1.31826747027E+02 1.34720457491E+02 1.37666060658E+02 1.40663877036E+02 1.43714191630E+02 1.46817251933E+02 1.49973264862E+02 1.53182393747E+02 1.56444755661E+02 1.59760417634E+02 1.63129394546E+02 1.66551645703E+02 1.70027069605E+02 1.73555503083E+02 1.77136715277E+02 1.80770404843E+02 1.84456195717E+02 1.88193633100E+02 1.91982179066E+02 1.95821207238E+02 1.99709999547E+02 2.03647741314E+02 2.07633514898E+02 2.11666296346E+02 2.15744948689E+02 2.19868218517E+02 2.24034728121E+02 2.28242971825E+02 2.32491309143E+02 2.36777958844E+02 2.41100993612E+02 2.45458333287E+02 2.49847738429E+02 2.54266804948E+02 2.58712955416E+02 2.63183435814E+02 2.67675305059E+02 2.72185431356E+02 2.76710482969E+02 2.81246924098E+02 2.85791004460E+02 2.90338756145E+02 2.94885982788E+02 2.99428257365E+02 3.03960910352E+02 3.08479027619E+02 3.12977439480E+02 3.17450718147E+02 3.21893168699E+02 3.26298824155E+02 3.30661438739E+02 3.34974484142E+02 3.39231141446E+02 3.43424297750E+02 3.47546542307E+02 3.51590160903E+02 3.55547132895E+02 3.59409127585E+02 3.63167503695E+02 3.66813304703E+02 3.70337260491E+02 3.73729785054E+02 3.76980978333E+02 3.80080628173E+02 3.83018210901E+02 3.85782897289E+02 3.88363556620E+02 3.90748763143E+02 3.92926802720E+02 3.94885682770E+02 3.96613143673E+02 3.98096669043E+02 3.99323501606E+02 4.00280659101E+02 4.00954950775E+02 4.01333000566E+02 4.01401266027E+02 4.01146066670E+02 4.00553609326E+02 3.99610019279E+02 3.98301373298E+02 3.96613735379E+02 3.94533197009E+02 3.92045919015E+02 3.89138177676E+02 3.85796415315E+02 3.82007293968E+02 3.77757753143E+02 3.73035071667E+02 3.67826934908E+02 3.62121505832E+02 3.55907500962E+02 3.49174272076E+02 3.41911892300E+02 3.34111247336E+02 3.25764134454E+02 3.16863365309E+02 3.07402873555E+02 2.97377831976E+02 2.86784773513E+02 2.75621718178E+02 2.63888307196E+02 2.51585944000E+02 2.38717938376E+02 2.25289660018E+02 2.11308697320E+02 1.96785018223E+02 1.81731140421E+02 1.66162303074E+02 1.50096642255E+02 1.33555372143E+02 1.16562962790E+02 9.91473226041E+01 8.13399783691E+01 6.31762509006E+01 4.46954272484E+01 2.59409258717E+01 6.96045133719E+00 -1.21938653846E+01 -3.14653388548E+01 -5.07926258005E+01 -7.01096423027E+01 -8.93455101091E+01 -1.08424538436E+02 -1.27266239927E+02 -1.45785395081E+02 -1.63892163598E+02 -1.81492254346E+02 -1.98487156276E+02 -2.14774440387E+02 -2.30248138372E+02 -2.44799205675E+02 -2.58316076228E+02 -2.70685316985E+02 -2.81792389397E+02 -2.91522526689E+02 -2.99761733025E+02 -3.06397914867E+02 -3.11322149536E+02 -3.14430102954E+02 -3.15623600598E+02 -3.14812362807E+02 -3.11915913155E+02 -3.06865668290E+02 -2.99607218970E+02 -2.90102813946E+02 -2.78334055135E+02 -2.64304819165E+02 -2.48044410535E+02 -2.29610962669E+02 -2.09095089570E+02 -1.86623794562E+02 -1.62364629846E+02 -1.36530094583E+02 -1.09382234799E+02 -8.12373910374E+01 -5.24709962584E+01 -2.35222811479E+01 5.10132518985E+00 3.28204060695E+01 5.89808030025E+01 8.28524818604E+01 1.03630809184E+02 1.20441288595E+02 1.32349138308E+02 1.38375522466E+02 1.37522630548E+02 1.28811753783E+02 1.11326574223E+02 8.43784524746E+01 4.67108939610E+01 5.32750393141E+00 -5.28190187537E-01 5.23668937562E-02 -5.19185609528E-03 5.14734070217E-04 -5.10258914297E-05 5.05133336493E-06 -4.90013323885E-07 3.86199897188E-08 2.47165848033E-09 -4.00296259799E-09 0.00000000000E+00 0.00000000000E+00 -3.40795049774E-01 -2.44684776765E-01 1.00000000000E+00 -2.90083017013E+01 -2.90083017046E+01 -2.90083017044E+01 -2.90083017042E+01 -2.90083017041E+01 -2.90083017039E+01 -2.90083017037E+01 -2.90083017035E+01 -2.90083017034E+01 -2.90083017032E+01 -2.90083017030E+01 -2.90083017028E+01 -2.90083017026E+01 -2.90083017024E+01 -2.90083017021E+01 -2.90083017019E+01 -2.90083017017E+01 -2.90083017015E+01 -2.90083017012E+01 -2.90083017010E+01 -2.90083017007E+01 -2.90083017005E+01 -2.90083017002E+01 -2.90083017000E+01 -2.90083016997E+01 -2.90083016994E+01 -2.90083016991E+01 -2.90083016988E+01 -2.90083016985E+01 -2.90083016982E+01 -2.90083016979E+01 -2.90083016975E+01 -2.90083016972E+01 -2.90083016969E+01 -2.90083016965E+01 -2.90083016961E+01 -2.90083016958E+01 -2.90083016954E+01 -2.90083016950E+01 -2.90083016946E+01 -2.90083016942E+01 -2.90083016938E+01 -2.90083016933E+01 -2.90083016929E+01 -2.90083016924E+01 -2.90083016920E+01 -2.90083016915E+01 -2.90083016910E+01 -2.90083016905E+01 -2.90083016900E+01 -2.90083016895E+01 -2.90083016889E+01 -2.90083016884E+01 -2.90083016878E+01 -2.90083016872E+01 -2.90083016866E+01 -2.90083016860E+01 -2.90083016854E+01 -2.90083016847E+01 -2.90083016841E+01 -2.90083016834E+01 -2.90083016827E+01 -2.90083016820E+01 -2.90083016813E+01 -2.90083016805E+01 -2.90083016797E+01 -2.90083016790E+01 -2.90083016781E+01 -2.90083016773E+01 -2.90083016765E+01 -2.90083016756E+01 -2.90083016747E+01 -2.90083016738E+01 -2.90083016729E+01 -2.90083016719E+01 -2.90083016709E+01 -2.90083016699E+01 -2.90083016689E+01 -2.90083016678E+01 -2.90083016667E+01 -2.90083016656E+01 -2.90083016644E+01 -2.90083016633E+01 -2.90083016621E+01 -2.90083016608E+01 -2.90083016596E+01 -2.90083016583E+01 -2.90083016569E+01 -2.90083016556E+01 -2.90083016542E+01 -2.90083016527E+01 -2.90083016513E+01 -2.90083016498E+01 -2.90083016482E+01 -2.90083016466E+01 -2.90083016450E+01 -2.90083016433E+01 -2.90083016416E+01 -2.90083016399E+01 -2.90083016381E+01 -2.90083016362E+01 -2.90083016343E+01 -2.90083016324E+01 -2.90083016304E+01 -2.90083016284E+01 -2.90083016263E+01 -2.90083016242E+01 -2.90083016220E+01 -2.90083016197E+01 -2.90083016174E+01 -2.90083016150E+01 -2.90083016126E+01 -2.90083016101E+01 -2.90083016076E+01 -2.90083016050E+01 -2.90083016023E+01 -2.90083015995E+01 -2.90083015967E+01 -2.90083015938E+01 -2.90083015909E+01 -2.90083015878E+01 -2.90083015847E+01 -2.90083015815E+01 -2.90083015783E+01 -2.90083015749E+01 -2.90083015715E+01 -2.90083015679E+01 -2.90083015643E+01 -2.90083015606E+01 -2.90083015568E+01 -2.90083015529E+01 -2.90083015489E+01 -2.90083015448E+01 -2.90083015406E+01 -2.90083015363E+01 -2.90083015319E+01 -2.90083015273E+01 -2.90083015227E+01 -2.90083015179E+01 -2.90083015130E+01 -2.90083015080E+01 -2.90083015029E+01 -2.90083014976E+01 -2.90083014922E+01 -2.90083014867E+01 -2.90083014810E+01 -2.90083014752E+01 -2.90083014692E+01 -2.90083014631E+01 -2.90083014568E+01 -2.90083014504E+01 -2.90083014438E+01 -2.90083014371E+01 -2.90083014301E+01 -2.90083014230E+01 -2.90083014157E+01 -2.90083014083E+01 -2.90083014006E+01 -2.90083013927E+01 -2.90083013847E+01 -2.90083013764E+01 -2.90083013680E+01 -2.90083013593E+01 -2.90083013504E+01 -2.90083013412E+01 -2.90083013319E+01 -2.90083013223E+01 -2.90083013124E+01 -2.90083013024E+01 -2.90083012920E+01 -2.90083012814E+01 -2.90083012705E+01 -2.90083012594E+01 -2.90083012480E+01 -2.90083012362E+01 -2.90083012242E+01 -2.90083012119E+01 -2.90083011993E+01 -2.90083011863E+01 -2.90083011730E+01 -2.90083011594E+01 -2.90083011454E+01 -2.90083011311E+01 -2.90083011164E+01 -2.90083011014E+01 -2.90083010859E+01 -2.90083010701E+01 -2.90083010539E+01 -2.90083010373E+01 -2.90083010202E+01 -2.90083010027E+01 -2.90083009848E+01 -2.90083009664E+01 -2.90083009475E+01 -2.90083009282E+01 -2.90083009084E+01 -2.90083008881E+01 -2.90083008672E+01 -2.90083008459E+01 -2.90083008239E+01 -2.90083008015E+01 -2.90083007784E+01 -2.90083007548E+01 -2.90083007306E+01 -2.90083007058E+01 -2.90083006803E+01 -2.90083006542E+01 -2.90083006275E+01 -2.90083006000E+01 -2.90083005719E+01 -2.90083005430E+01 -2.90083005134E+01 -2.90083004831E+01 -2.90083004520E+01 -2.90083004201E+01 -2.90083003874E+01 -2.90083003539E+01 -2.90083003195E+01 -2.90083002843E+01 -2.90083002481E+01 -2.90083002111E+01 -2.90083001731E+01 -2.90083001341E+01 -2.90083000941E+01 -2.90083000532E+01 -2.90083000112E+01 -2.90082999681E+01 -2.90082999239E+01 -2.90082998787E+01 -2.90082998322E+01 -2.90082997846E+01 -2.90082997358E+01 -2.90082996857E+01 -2.90082996344E+01 -2.90082995818E+01 -2.90082995278E+01 -2.90082994725E+01 -2.90082994158E+01 -2.90082993576E+01 -2.90082992979E+01 -2.90082992368E+01 -2.90082991740E+01 -2.90082991097E+01 -2.90082990438E+01 -2.90082989762E+01 -2.90082989068E+01 -2.90082988357E+01 -2.90082987628E+01 -2.90082986881E+01 -2.90082986114E+01 -2.90082985328E+01 -2.90082984522E+01 -2.90082983696E+01 -2.90082982848E+01 -2.90082981979E+01 -2.90082981088E+01 -2.90082980174E+01 -2.90082979237E+01 -2.90082978277E+01 -2.90082977291E+01 -2.90082976281E+01 -2.90082975245E+01 -2.90082974183E+01 -2.90082973093E+01 -2.90082971976E+01 -2.90082970831E+01 -2.90082969656E+01 -2.90082968452E+01 -2.90082967217E+01 -2.90082965950E+01 -2.90082964651E+01 -2.90082963319E+01 -2.90082961953E+01 -2.90082960553E+01 -2.90082959116E+01 -2.90082957644E+01 -2.90082956133E+01 -2.90082954584E+01 -2.90082952996E+01 -2.90082951367E+01 -2.90082949696E+01 -2.90082947983E+01 -2.90082946226E+01 -2.90082944425E+01 -2.90082942577E+01 -2.90082940683E+01 -2.90082938739E+01 -2.90082936747E+01 -2.90082934703E+01 -2.90082932607E+01 -2.90082930458E+01 -2.90082928253E+01 -2.90082925993E+01 -2.90082923674E+01 -2.90082921296E+01 -2.90082918858E+01 -2.90082916357E+01 -2.90082913792E+01 -2.90082911161E+01 -2.90082908463E+01 -2.90082905695E+01 -2.90082902857E+01 -2.90082899946E+01 -2.90082896961E+01 -2.90082893899E+01 -2.90082890758E+01 -2.90082887536E+01 -2.90082884232E+01 -2.90082880843E+01 -2.90082877367E+01 -2.90082873802E+01 -2.90082870145E+01 -2.90082866394E+01 -2.90082862546E+01 -2.90082858599E+01 -2.90082854551E+01 -2.90082850398E+01 -2.90082846138E+01 -2.90082841769E+01 -2.90082837286E+01 -2.90082832688E+01 -2.90082827971E+01 -2.90082823133E+01 -2.90082818169E+01 -2.90082813077E+01 -2.90082807853E+01 -2.90082802493E+01 -2.90082796995E+01 -2.90082791355E+01 -2.90082785568E+01 -2.90082779631E+01 -2.90082773539E+01 -2.90082767290E+01 -2.90082760878E+01 -2.90082754299E+01 -2.90082747549E+01 -2.90082740623E+01 -2.90082733516E+01 -2.90082726224E+01 -2.90082718742E+01 -2.90082711064E+01 -2.90082703185E+01 -2.90082695100E+01 -2.90082686804E+01 -2.90082678290E+01 -2.90082669553E+01 -2.90082660586E+01 -2.90082651383E+01 -2.90082641939E+01 -2.90082632246E+01 -2.90082622298E+01 -2.90082612087E+01 -2.90082601607E+01 -2.90082590849E+01 -2.90082579808E+01 -2.90082568473E+01 -2.90082556839E+01 -2.90082544895E+01 -2.90082532635E+01 -2.90082520048E+01 -2.90082507126E+01 -2.90082493859E+01 -2.90082480239E+01 -2.90082466254E+01 -2.90082451896E+01 -2.90082437152E+01 -2.90082422013E+01 -2.90082406468E+01 -2.90082390504E+01 -2.90082374110E+01 -2.90082357274E+01 -2.90082339983E+01 -2.90082322224E+01 -2.90082303984E+01 -2.90082285249E+01 -2.90082266005E+01 -2.90082246237E+01 -2.90082225930E+01 -2.90082205068E+01 -2.90082183636E+01 -2.90082161616E+01 -2.90082138991E+01 -2.90082115744E+01 -2.90082091856E+01 -2.90082067309E+01 -2.90082042083E+01 -2.90082016158E+01 -2.90081989512E+01 -2.90081962126E+01 -2.90081933975E+01 -2.90081905038E+01 -2.90081875291E+01 -2.90081844709E+01 -2.90081813267E+01 -2.90081780939E+01 -2.90081747697E+01 -2.90081713514E+01 -2.90081678361E+01 -2.90081642207E+01 -2.90081605023E+01 -2.90081566775E+01 -2.90081527431E+01 -2.90081486956E+01 -2.90081445315E+01 -2.90081402471E+01 -2.90081358386E+01 -2.90081313021E+01 -2.90081266334E+01 -2.90081218284E+01 -2.90081168827E+01 -2.90081117916E+01 -2.90081065506E+01 -2.90081011548E+01 -2.90080955990E+01 -2.90080898780E+01 -2.90080839865E+01 -2.90080779187E+01 -2.90080716689E+01 -2.90080652309E+01 -2.90080585985E+01 -2.90080517651E+01 -2.90080447240E+01 -2.90080374681E+01 -2.90080299900E+01 -2.90080222824E+01 -2.90080143371E+01 -2.90080061461E+01 -2.90079977009E+01 -2.90079889926E+01 -2.90079800120E+01 -2.90079707497E+01 -2.90079611956E+01 -2.90079513395E+01 -2.90079411707E+01 -2.90079306780E+01 -2.90079198497E+01 -2.90079086739E+01 -2.90078971380E+01 -2.90078852290E+01 -2.90078729332E+01 -2.90078602364E+01 -2.90078471241E+01 -2.90078335807E+01 -2.90078195905E+01 -2.90078051366E+01 -2.90077902019E+01 -2.90077747682E+01 -2.90077588168E+01 -2.90077423281E+01 -2.90077252816E+01 -2.90077076561E+01 -2.90076894293E+01 -2.90076705783E+01 -2.90076510787E+01 -2.90076309056E+01 -2.90076100326E+01 -2.90075884324E+01 -2.90075660765E+01 -2.90075429350E+01 -2.90075189768E+01 -2.90074941696E+01 -2.90074684795E+01 -2.90074418712E+01 -2.90074143077E+01 -2.90073857505E+01 -2.90073561594E+01 -2.90073254924E+01 -2.90072937055E+01 -2.90072607531E+01 -2.90072265872E+01 -2.90071911577E+01 -2.90071544124E+01 -2.90071162967E+01 -2.90070767535E+01 -2.90070357232E+01 -2.90069931433E+01 -2.90069489487E+01 -2.90069030713E+01 -2.90068554396E+01 -2.90068059794E+01 -2.90067546126E+01 -2.90067012576E+01 -2.90066458294E+01 -2.90065882387E+01 -2.90065283923E+01 -2.90064661925E+01 -2.90064015374E+01 -2.90063343200E+01 -2.90062644286E+01 -2.90061917463E+01 -2.90061161507E+01 -2.90060375136E+01 -2.90059557009E+01 -2.90058705724E+01 -2.90057819810E+01 -2.90056897730E+01 -2.90055937874E+01 -2.90054938556E+01 -2.90053898010E+01 -2.90052814389E+01 -2.90051685757E+01 -2.90050510087E+01 -2.90049285258E+01 -2.90048009046E+01 -2.90046679123E+01 -2.90045293051E+01 -2.90043848278E+01 -2.90042342126E+01 -2.90040771796E+01 -2.90039134350E+01 -2.90037426716E+01 -2.90035645671E+01 -2.90033787842E+01 -2.90031849692E+01 -2.90029827520E+01 -2.90027717443E+01 -2.90025515396E+01 -2.90023217120E+01 -2.90020818152E+01 -2.90018313814E+01 -2.90015699207E+01 -2.90012969197E+01 -2.90010118404E+01 -2.90007141189E+01 -2.90004031648E+01 -2.90000783588E+01 -2.89997390526E+01 -2.89993845663E+01 -2.89990141879E+01 -2.89986271710E+01 -2.89982227336E+01 -2.89978000564E+01 -2.89973582807E+01 -2.89968965067E+01 -2.89964137917E+01 -2.89959091478E+01 -2.89953815399E+01 -2.89948298833E+01 -2.89942530417E+01 -2.89936498244E+01 -2.89930189839E+01 -2.89923592130E+01 -2.89916691423E+01 -2.89909473373E+01 -2.89901922948E+01 -2.89894024403E+01 -2.89885761245E+01 -2.89877116195E+01 -2.89868071155E+01 -2.89858607169E+01 -2.89848704382E+01 -2.89838342000E+01 -2.89827498244E+01 -2.89816150312E+01 -2.89804274320E+01 -2.89791845266E+01 -2.89778836969E+01 -2.89765222019E+01 -2.89750971725E+01 -2.89736056050E+01 -2.89720443560E+01 -2.89704101353E+01 -2.89686994999E+01 -2.89669088473E+01 -2.89650344082E+01 -2.89630722397E+01 -2.89610182172E+01 -2.89588680274E+01 -2.89566171595E+01 -2.89542608974E+01 -2.89517943112E+01 -2.89492122478E+01 -2.89465093225E+01 -2.89436799094E+01 -2.89407181315E+01 -2.89376178516E+01 -2.89343726616E+01 -2.89309758728E+01 -2.89274205052E+01 -2.89236992774E+01 -2.89198045955E+01 -2.89157285428E+01 -2.89114628690E+01 -2.89069989800E+01 -2.89023279267E+01 -2.88974403956E+01 -2.88923266984E+01 -2.88869767627E+01 -2.88813801231E+01 -2.88755259133E+01 -2.88694028586E+01 -2.88629992699E+01 -2.88563030393E+01 -2.88493016367E+01 -2.88419821094E+01 -2.88343310829E+01 -2.88263347654E+01 -2.88179789554E+01 -2.88092490532E+01 -2.88001300769E+01 -2.87906066840E+01 -2.87806631989E+01 -2.87702836483E+01 -2.87594518046E+01 -2.87481512393E+01 -2.87363653883E+01 -2.87240776298E+01 -2.87112713786E+01 -2.86979301979E+01 -2.86840379315E+01 -2.86695788615E+01 -2.86545378924E+01 -2.86389007692E+01 -2.86226543317E+01 -2.86057868138E+01 -2.85882881921E+01 -2.85701505935E+01 -2.85513687702E+01 -2.85319406525E+01 -2.85118679912E+01 -2.84911571039E+01 -2.84698197392E+01 -2.84478740759E+01 -2.84253458762E+01 -2.84022698109E+01 -2.83786909790E+01 -2.83546666375E+01 -2.83302681627E+01 -2.83055832509E+01 -2.82807183623E+01 -2.82558013933E+01 -2.82309845362E+01 -2.82064472472E+01 -2.81823991839E+01 -2.81590828891E+01 -2.81367758795E+01 -2.81157916331E+01 -2.80964787477E+01 -2.80792172600E+01 -2.80673828725E+01 -2.81290460949E+01 -2.82490394483E+01 -2.82818828015E+01 -2.82380773186E+01 -2.81910226576E+01 -2.81404689564E+01 -2.80861070860E+01 -2.80275666819E+01 -2.79644175062E+01 -2.78961748160E+01 -2.78223091678E+01 -2.77422607498E+01 -2.76554579089E+01 -2.75613390902E+01 -2.74593769802E+01 -2.73491033001E+01 -2.72301324746E+01 -2.71021823293E+01 -2.69650900578E+01 -2.68188219514E+01 -2.66634757843E+01 -2.64992753020E+01 -2.63265569367E+01 -2.61457496289E+01 -2.59573493858E+01 -2.57618908299E+01 -2.55599183743E+01 -2.53519596796E+01 -2.51385037022E+01 -2.49199849539E+01 -2.46967747220E+01 -2.44691790953E+01 -2.42374428902E+01 -2.40017580626E+01 -2.37622749895E+01 -2.35191150565E+01 -2.32723832362E+01 -2.30221796878E+01 -2.27686097696E+01 -2.25117921801E+01 -2.22518651885E+01 -2.19889910872E+01 -2.17233590909E+01 -2.14551869471E+01 -2.11847215196E+01 -2.09122385821E+01 -2.06380420190E+01 -2.03624625907E+01 -2.00858563772E+01 -1.98086029806E+01 -1.95311035311E+01 -1.92537785173E+01 -1.89770654408E+01 -1.87014162749E+01 -1.84272946989E+01 -1.81551730669E+01 -1.78855290669E+01 -1.76188420226E+01 -1.73555887894E+01 -1.70962392011E+01 -1.68412510274E+01 -1.65910644115E+01 -1.63460957674E+01 -1.61067311327E+01 -1.58733189896E+01 -1.56461625929E+01 -1.54255118693E+01 -1.52115549942E+01 -1.50044097920E+01 -1.48041151642E+01 -1.46106228155E+01 -1.44237896291E+01 -1.42433711397E+01 -1.40690166708E+01 -1.39002668391E+01 -1.37365542967E+01 -1.35772087738E+01 -1.34214677127E+01 -1.32684940546E+01 -1.31174030513E+01 -1.29673003440E+01 -1.28173339792E+01 -1.26667635399E+01 -1.25150501602E+01 -1.23619718920E+01 -1.22079144375E+01 -1.20545271857E+01 -1.19038727552E+01 -1.17558625033E+01 -1.16098262457E+01 -1.14656044230E+01 -1.13231744397E+01 -1.11825139878E+01 -1.10436010422E+01 -1.09064138566E+01 -1.07709309596E+01 -1.06371311500E+01 -1.05049934939E+01 -1.03744973200E+01 -1.02456222167E+01 -1.01183480280E+01 -9.99265484999E+00 -9.86852302791E+00 -9.74593315237E+00 -9.62486605627E+00 -9.50530281157E+00 -9.38722472618E+00 -9.27061334087E+00 -9.15545042627E+00 -9.04171797991E+00 -8.92939822333E+00 -8.81836991514E+00 -8.70871755502E+00 -8.60064182036E+00 -8.49391051407E+00 -8.38839858200E+00 -8.28419727882E+00 -8.18129032566E+00 -8.07966164587E+00 -7.97929536249E+00 -7.88017579573E+00 -7.78228746054E+00 -7.68561506414E+00 -7.59014350366E+00 -7.49585786372E+00 -7.40274341416E+00 -7.31078560768E+00 -7.21997007759E+00 -7.13028263546E+00 -7.04170926917E+00 -6.95423614052E+00 -6.86784958310E+00 -6.78253610021E+00 -6.69828236273E+00 -6.61507520705E+00 -6.53290163303E+00 -6.45174880198E+00 -6.37160403468E+00 -6.29245480938E+00 -6.21428875987E+00 -6.13709367359E+00 -6.06085748969E+00 -5.98556829720E+00 -5.91121433316E+00 -5.83778398082E+00 -5.76526576778E+00 -5.69364836427E+00 -5.62292058135E+00 -5.55307136920E+00 -5.48408981534E+00 -5.41596514300E+00 -5.34868670937E+00 -5.28224400398E+00 -5.21662664700E+00 -5.15182438769E+00 -5.08782710270E+00 -5.02462479452E+00 -4.96220758992E+00 -4.90056573835E+00 -4.83968961043E+00 -4.77956969641E+00 -4.72019660466E+00 -4.66156106023E+00 -4.60365390331E+00 -4.54646608784E+00 -4.48998868005E+00 -4.43421285704E+00 -4.37912990543E+00 -4.32473121991E+00 -4.27100830195E+00 -4.21795275842E+00 -4.16555630030E+00 -4.11381074133E+00 -4.06270799678E+00 -4.01224008215E+00 -3.96239911190E+00 -3.91317729829E+00 -3.86456695009E+00 -3.81656047143E+00 -3.76915036057E+00 -3.72232920883E+00 -3.67608969933E+00 -3.63042460594E+00 -3.58532679213E+00 -3.54078920990E+00 -3.49680489866E+00 -3.45336698419E+00 -3.41046867755E+00 -3.36810327409E+00 -3.32626415240E+00 -3.28494477327E+00 -3.24413867873E+00 -3.20383949103E+00 -3.16404091168E+00 -3.12473672047E+00 -3.08592077451E+00 -3.04758700731E+00 -3.00972942782E+00 -2.97234211949E+00 -2.93541923939E+00 -2.89895501727E+00 -2.86294375468E+00 -2.82737982406E+00 -2.79225766789E+00 -2.75757179779E+00 -2.72331679367E+00 -2.68948730287E+00 -2.65607803933E+00 -2.62308378276E+00 -2.59049937779E+00 -2.55831973318E+00 -2.52653982101E+00 -2.49515467588E+00 -2.46415939412E+00 -2.43354913306E+00 -2.40331911019E+00 -2.37346460247E+00 -2.34398094554E+00 -2.31486353302E+00 -2.28610781577E+00 -2.25770930116E+00 -2.22966355239E+00 -2.20196618777E+00 -2.17461288003E+00 -2.14759935567E+00 -2.12092139425E+00 -2.09457482776E+00 -2.06855553994E+00 -2.04285946567E+00 -2.01748259029E+00 -1.99242094902E+00 -1.96767062630E+00 -1.94322775518E+00 -1.91908851675E+00 -1.89524913952E+00 -1.87170589883E+00 -1.84845511626E+00 -1.82549315909E+00 -1.80281643968E+00 -1.78042141497E+00 -1.75830458588E+00 -1.73646249678E+00 -1.71489173497E+00 -1.69358893012E+00 -1.67255075375E+00 -1.65177391871E+00 -1.63125517868E+00 -1.61099132767E+00 -1.59097919947E+00 -1.57121566723E+00 -1.55169764291E+00 -1.53242207682E+00 -1.51338595716E+00 -1.49458630953E+00 -1.47602019645E+00 -1.45768471697E+00 -1.43957700612E+00 -1.42169423456E+00 -1.40403360804E+00 -1.38659236705E+00 -1.36936778636E+00 -1.35235717456E+00 -1.33555787369E+00 -1.31896725880E+00 -1.30258273754E+00 -1.28640174976E+00 -1.27042176711E+00 -1.25464029264E+00 -1.23905486044E+00 -1.22366303673E+00 -1.20846241325E+00 -1.19345061651E+00 -1.17862530084E+00 -1.16398414970E+00 -1.14952487533E+00 -1.13524521837E+00 -1.12114294756E+00 -1.10721585933E+00 -1.09346177749E+00 -1.07987855287E+00 -1.06646406301E+00 -1.05321621183E+00 -1.04013302280E+00 -1.02721185476E+00 -1.01445161068E+00 -1.00184989077E+00 -9.89404711918E-01 -9.77114129546E-01 -9.64976223225E-01 -9.52989096382E-01 -9.41150876005E-01 -9.29459712350E-01 -9.17913778648E-01 -9.06511272550E-01 -8.95250408804E-01 -8.84129429751E-01 -8.73146597715E-01 -8.62300196606E-01 -8.51588531653E-01 -8.41009949368E-01 -8.30562755859E-01 -8.20245339475E-01 -8.10056088099E-01 -7.99993409640E-01 -7.90055731783E-01 -7.80241501746E-01 -7.70549186035E-01 -7.60977270206E-01 -7.51524258628E-01 -7.42188674256E-01 -7.32969050244E-01 -7.23863962469E-01 -7.14871979911E-01 -7.05991697554E-01 -6.97221727837E-01 -6.88560700433E-01 -6.80007262039E-01 -6.71560076164E-01 -6.63217822917E-01 -6.54979198804E-01 -6.46842916523E-01 -6.38807704764E-01 -6.30872308009E-01 -6.23035486335E-01 -6.15296015224E-01 -6.07652685343E-01 -6.00104302455E-01 -5.92649687085E-01 -5.85287674435E-01 -5.78017114174E-01 -5.70836870264E-01 -5.63745820776E-01 -5.56742857719E-01 -5.49826886867E-01 -5.42996827584E-01 -5.36251612660E-01 -5.29590188142E-01 -5.23011513168E-01 -5.16514559807E-01 -5.10098312897E-01 -5.03761769887E-01 -4.97503940677E-01 -4.91323847471E-01 -4.85220524615E-01 -4.79193018454E-01 -4.73240387177E-01 -4.67361700673E-01 -4.61556040385E-01 -4.55822499168E-01 -4.50160181144E-01 -4.44568201564E-01 -4.39045686670E-01 -4.33591773558E-01 -4.28205610042E-01 -4.22886354524E-01 -4.17633175860E-01 -4.12445253229E-01 -4.07321776008E-01 -4.02261943643E-01 -3.97264965525E-01 -3.92330060866E-01 -3.87456458578E-01 -3.82643397149E-01 -3.77890124530E-01 -3.73195898012E-01 -3.68559984112E-01 -3.63981658459E-01 -3.59460205681E-01 -3.54994919291E-01 -3.50585101580E-01 -3.46230063504E-01 -3.41929124580E-01 -3.37681612778E-01 -3.33486864414E-01 -3.29344224052E-01 -3.25253044394E-01 -3.21212686187E-01 -3.17222518115E-01 -3.13281916707E-01 -3.09390266236E-01 -3.05546958623E-01 -3.01751393345E-01 -2.98002977335E-01 -2.94301124898E-01 -2.90645257609E-01 -2.87034804233E-01 -2.83469200630E-01 -2.79947889666E-01 -2.76470321129E-01 -2.73035951642E-01 -2.69644244579E-01 -2.66294669977E-01 -2.62986704459E-01 -2.59719831149E-01 -2.56493539590E-01 -2.53307325669E-01 -2.50160691534E-01 -2.47053145515E-01 -2.43984202052E-01 -2.40953381618E-01 -2.37960210640E-01 -2.35004221429E-01 -2.32084952105E-01 -2.29201946528E-01 -2.26354754221E-01 -2.23542930305E-01 -2.20766035426E-01 -2.18023635690E-01 -2.15315302591E-01 -2.12640612945E-01 -2.09999148828E-01 -2.07390497505E-01 -2.04814251369E-01 -2.02270007877E-01 -1.99757369485E-01 -1.97275943588E-01 -1.94825342459E-01 -1.92405183186E-01 -1.90015087615E-01 -1.87654682287E-01 -1.85323598386E-01 -1.83021471673E-01 -1.80747942438E-01 -1.78502655437E-01 -1.76285259839E-01 -1.74095409171E-01 -1.71932761265E-01 -1.69796978203E-01 -1.67687726264E-01 -1.65604675874E-01 -1.63547501551E-01 -1.61515881858E-01 -1.59509499350E-01 -1.57528040526E-01 -1.55571195779E-01 -1.53638659347E-01 -1.51730129269E-01 -1.49845307332E-01 -1.47983899029E-01 -1.46145613512E-01 -1.44330163544E-01 -1.42537265458E-01 -1.40766639109E-01 -1.39018007834E-01 -1.37291098406E-01 -1.35585640991E-01 -1.33901369109E-01 -1.32238019587E-01 -1.30595332526E-01 -1.28973051251E-01 -1.27370922277E-01 -1.25788695269E-01 -1.24226123001E-01 -1.22682961317E-01 -1.21158969096E-01 9.87962088182E-09 1.01297253863E-08 1.03861613529E-08 1.06490890653E-08 1.09186728647E-08 1.11950812528E-08 1.14784869971E-08 1.17690672388E-08 1.20670036035E-08 1.23724823150E-08 1.26856943112E-08 1.30068353641E-08 1.33361062016E-08 1.36737126331E-08 1.40198656786E-08 1.43747817001E-08 1.47386825368E-08 1.51117956442E-08 1.54943542361E-08 1.58865974301E-08 1.62887703975E-08 1.67011245164E-08 1.71239175286E-08 1.75574137010E-08 1.80018839908E-08 1.84576062147E-08 1.89248652227E-08 1.94039530761E-08 1.98951692300E-08 2.03988207206E-08 2.09152223573E-08 2.14446969192E-08 2.19875753567E-08 2.25441969992E-08 2.31149097661E-08 2.37000703855E-08 2.43000446160E-08 2.49152074762E-08 2.55459434790E-08 2.61926468716E-08 2.68557218823E-08 2.75355829731E-08 2.82326550987E-08 2.89473739725E-08 2.96801863384E-08 3.04315502506E-08 3.12019353599E-08 3.19918232071E-08 3.28017075239E-08 3.36320945422E-08 3.44835033098E-08 3.53564660155E-08 3.62515283215E-08 3.71692497045E-08 3.81102038059E-08 3.90749787899E-08 4.00641777113E-08 4.10784188930E-08 4.21183363120E-08 4.31845799962E-08 4.42778164303E-08 4.53987289732E-08 4.65480182845E-08 4.77264027631E-08 4.89346189961E-08 5.01734222195E-08 5.14435867904E-08 5.27459066707E-08 5.40811959243E-08 5.54502892255E-08 5.68540423811E-08 5.82933328655E-08 5.97690603695E-08 6.12821473623E-08 6.28335396691E-08 6.44242070620E-08 6.60551438663E-08 6.77273695827E-08 6.94419295245E-08 7.11998954713E-08 7.30023663391E-08 7.48504688677E-08 7.67453583252E-08 7.86882192305E-08 8.06802660937E-08 8.27227441762E-08 8.48169302690E-08 8.69641334911E-08 8.91656961087E-08 9.14229943742E-08 9.37374393870E-08 9.61104779763E-08 9.85435936055E-08 1.01038307300E-07 1.03596178600E-07 1.06218806534E-07 1.08907830618E-07 1.11664931885E-07 1.14491833934E-07 1.17390304006E-07 1.20362154094E-07 1.23409242071E-07 1.26533472860E-07 1.29736799616E-07 1.33021224955E-07 1.36388802204E-07 1.39841636687E-07 1.43381887039E-07 1.47011766559E-07 1.50733544596E-07 1.54549547965E-07 1.58462162405E-07 1.62473834073E-07 1.66587071072E-07 1.70804445020E-07 1.75128592664E-07 1.79562217524E-07 1.84108091586E-07 1.88769057042E-07 1.93548028059E-07 1.98447992613E-07 2.03472014352E-07 2.08623234516E-07 2.13904873903E-07 2.19320234883E-07 2.24872703469E-07 2.30565751431E-07 2.36402938476E-07 2.42387914470E-07 2.48524421725E-07 2.54816297344E-07 2.61267475621E-07 2.67881990505E-07 2.74663978125E-07 2.81617679381E-07 2.88747442597E-07 2.96057726250E-07 3.03553101753E-07 3.11238256325E-07 3.19117995926E-07 3.27197248263E-07 3.35481065880E-07 3.43974629321E-07 3.52683250378E-07 3.61612375414E-07 3.70767588781E-07 3.80154616314E-07 3.89779328919E-07 3.99647746256E-07 4.09766040505E-07 4.20140540241E-07 4.30777734395E-07 4.41684276321E-07 4.52866987972E-07 4.64332864170E-07 4.76089076995E-07 4.88142980280E-07 5.00502114225E-07 5.13174210119E-07 5.26167195194E-07 5.39489197594E-07 5.53148551476E-07 5.67153802232E-07 5.81513711857E-07 5.96237264441E-07 6.11333671807E-07 6.26812379293E-07 6.42683071678E-07 6.58955679264E-07 6.75640384103E-07 6.92747626395E-07 7.10288111040E-07 7.28272814358E-07 7.46712990986E-07 7.65620180945E-07 7.85006216886E-07 8.04883231527E-07 8.25263665276E-07 8.46160274042E-07 8.67586137262E-07 8.89554666111E-07 9.12079611943E-07 9.35175074928E-07 9.58855512923E-07 9.83135750566E-07 1.00803098860E-06 1.03355681342E-06 1.05972920693E-06 1.08656455652E-06 1.11407966546E-06 1.14229176343E-06 1.17121851740E-06 1.20087804272E-06 1.23128891455E-06 1.26247017959E-06 1.29444136801E-06 1.32722250586E-06 1.36083412759E-06 1.39529728907E-06 1.43063358084E-06 1.46686514174E-06 1.50401467287E-06 1.54210545192E-06 1.58116134787E-06 1.62120683606E-06 1.66226701363E-06 1.70436761541E-06 1.74753503015E-06 1.79179631720E-06 1.83717922368E-06 1.88371220192E-06 1.93142442755E-06 1.98034581795E-06 2.03050705114E-06 2.08193958525E-06 2.13467567845E-06 2.18874840935E-06 2.24419169802E-06 2.30104032744E-06 2.35932996562E-06 2.41909718819E-06 2.48037950166E-06 2.54321536719E-06 2.60764422505E-06 2.67370651970E-06 2.74144372546E-06 2.81089837294E-06 2.88211407608E-06 2.95513555993E-06 3.03000868909E-06 3.10678049703E-06 3.18549921596E-06 3.26621430771E-06 3.34897649519E-06 3.43383779487E-06 3.52085154994E-06 3.61007246444E-06 3.70155663825E-06 3.79536160296E-06 3.89154635874E-06 3.99017141213E-06 4.09129881481E-06 4.19499220343E-06 4.30131684042E-06 4.41033965598E-06 4.52212929099E-06 4.63675614128E-06 4.75429240283E-06 4.87481211834E-06 4.99839122494E-06 5.12510760315E-06 5.25504112719E-06 5.38827371657E-06 5.52488938906E-06 5.66497431504E-06 5.80861687337E-06 5.95590770862E-06 6.10693978993E-06 6.26180847134E-06 6.42061155384E-06 6.58344934893E-06 6.75042474402E-06 6.92164326948E-06 7.09721316750E-06 7.27724546283E-06 7.46185403539E-06 7.65115569483E-06 7.84527025709E-06 8.04432062304E-06 8.24843285922E-06 8.45773628079E-06 8.67236353667E-06 8.89245069703E-06 9.11813734317E-06 9.34956665977E-06 9.58688552970E-06 9.83024463144E-06 1.00797985391E-05 1.03357058251E-05 1.05981291660E-05 1.08672354509E-05 1.11431958926E-05 1.14261861427E-05 1.17163864089E-05 1.20139815760E-05 1.23191613305E-05 1.26321202879E-05 1.29530581244E-05 1.32821797117E-05 1.36196952558E-05 1.39658204394E-05 1.43207765688E-05 1.46847907246E-05 1.50580959165E-05 1.54409312429E-05 1.58335420545E-05 1.62361801229E-05 1.66491038142E-05 1.70725782667E-05 1.75068755747E-05 1.79522749768E-05 1.84090630502E-05 1.88775339097E-05 1.93579894139E-05 1.98507393756E-05 2.03561017798E-05 2.08744030073E-05 2.14059780647E-05 2.19511708220E-05 2.25103342559E-05 2.30838307012E-05 2.36720321095E-05 2.42753203153E-05 2.48940873100E-05 2.55287355243E-05 2.61796781188E-05 2.68473392837E-05 2.75321545468E-05 2.82345710916E-05 2.89550480843E-05 2.96940570114E-05 3.04520820273E-05 3.12296203120E-05 3.20271824408E-05 3.28452927647E-05 3.36844898024E-05 3.45453266454E-05 3.54283713742E-05 3.63342074892E-05 3.72634343535E-05 3.82166676511E-05 3.91945398582E-05 4.01977007305E-05 4.12268178056E-05 4.22825769210E-05 4.33656827498E-05 4.44768593525E-05 4.56168507471E-05 4.67864214980E-05 4.79863573236E-05 4.92174657238E-05 5.04805766288E-05 5.17765430678E-05 5.31062418618E-05 5.44705743376E-05 5.58704670667E-05 5.73068726286E-05 5.87807704001E-05 6.02931673707E-05 6.18450989861E-05 6.34376300202E-05 6.50718554773E-05 6.67489015249E-05 6.84699264589E-05 7.02361217019E-05 7.20487128373E-05 7.39089606778E-05 7.58181623732E-05 7.77776525558E-05 7.97888045277E-05 8.18530314889E-05 8.39717878105E-05 8.61465703526E-05 8.83789198305E-05 9.06704222299E-05 9.30227102730E-05 9.54374649393E-05 9.79164170411E-05 1.00461348858E-04 1.03074095828E-04 1.05756548312E-04 1.08510653407E-04 1.11338416842E-04 1.14241904943E-04 1.17223246660E-04 1.20284635690E-04 1.23428332662E-04 1.26656667422E-04 1.29972041391E-04 1.33376930026E-04 1.36873885368E-04 1.40465538693E-04 1.44154603265E-04 1.47943877200E-04 1.51836246434E-04 1.55834687821E-04 1.59942272340E-04 1.64162168444E-04 1.68497645527E-04 1.72952077544E-04 1.77528946769E-04 1.82231847708E-04 1.87064491165E-04 1.92030708483E-04 1.97134455952E-04 2.02379819394E-04 2.07771018949E-04 2.13312414045E-04 2.19008508582E-04 2.24863956330E-04 2.30883566550E-04 2.37072309853E-04 2.43435324306E-04 2.49977921787E-04 2.56705594621E-04 2.63624022489E-04 2.70739079634E-04 2.78056842370E-04 2.85583596922E-04 2.93325847591E-04 3.01290325282E-04 3.09483996389E-04 3.17914072074E-04 3.26588017945E-04 3.35513564155E-04 3.44698715945E-04 3.54151764644E-04 3.63881299158E-04 3.73896217961E-04 3.84205741612E-04 3.94819425838E-04 4.05747175182E-04 4.16999257267E-04 4.28586317698E-04 4.40519395618E-04 4.52809939976E-04 4.65469826511E-04 4.78511375510E-04 4.91947370360E-04 5.05791076943E-04 5.20056263903E-04 5.34757223837E-04 5.49908795443E-04 5.65526386687E-04 5.81625999013E-04 5.98224252668E-04 6.15338413182E-04 6.32986419066E-04 6.51186910775E-04 6.69959261013E-04 6.89323606421E-04 7.09300880741E-04 7.29912849500E-04 7.51182146308E-04 7.73132310832E-04 7.95787828533E-04 8.19174172250E-04 8.43317845718E-04 8.68246429113E-04 8.93988626717E-04 9.20574316810E-04 9.48034603894E-04 9.76401873359E-04 1.00570984870E-03 1.03599365144E-03 1.06728986382E-03 1.09963659448E-03 1.13307354718E-03 1.16764209279E-03 1.20338534465E-03 1.24034823745E-03 1.27857760990E-03 1.31812229120E-03 1.35903319165E-03 1.40136339753E-03 1.44516827043E-03 1.49050555129E-03 1.53743546936E-03 1.58602085627E-03 1.63632726552E-03 1.68842309762E-03 1.74237973114E-03 1.79827165991E-03 1.85617663680E-03 1.91617582418E-03 1.97835395161E-03 2.04279948085E-03 2.10960477882E-03 2.17886629860E-03 2.25068476902E-03 2.32516539325E-03 2.40241805671E-03 2.48255754478E-03 2.56570377081E-03 2.65198201490E-03 2.74152317383E-03 2.83446402288E-03 2.93094748984E-03 3.03112294204E-03 3.13514648673E-03 3.24318128565E-03 3.35539788427E-03 3.47197455655E-03 3.59309766573E-03 3.71896204206E-03 3.84977137811E-03 3.98573864257E-03 4.12708651324E-03 4.27404783021E-03 4.42686607010E-03 4.58579584223E-03 4.75110340777E-03 4.92306722294E-03 5.10197850716E-03 5.28814183747E-03 5.48187577018E-03 5.68351349110E-03 5.89340349545E-03 6.11191029892E-03 6.33941518099E-03 6.57631696222E-03 6.82303281658E-03 7.07999912068E-03 7.34767234119E-03 7.62652996225E-03 7.91707145442E-03 8.21981928696E-03 8.53531998524E-03 8.86414523510E-03 9.20689303609E-03 9.56418890562E-03 9.93668713599E-03 1.03250721065E-02 1.07300596526E-02 1.11523984948E-02 1.15928717293E-02 1.20522983821E-02 1.25315350309E-02 1.30314774953E-02 1.35530625985E-02 1.40972700043E-02 1.46651241301E-02 1.52576961405E-02 1.58761060230E-02 1.65215247497E-02 1.71951765271E-02 1.78983411381E-02 1.86323563772E-02 1.93986205851E-02 2.01985952824E-02 2.10338079087E-02 2.19058546676E-02 2.28164034831E-02 2.37671970683E-02 2.47600561127E-02 2.57968825876E-02 2.68796631760E-02 2.80104728286E-02 2.91914784485E-02 3.04249427101E-02 3.17132280117E-02 3.30588005679E-02 3.44642346425E-02 3.59322169256E-02 3.74655510567E-02 3.90671622965E-02 4.07401023499E-02 4.24875543404E-02 4.43128379399E-02 4.62194146529E-02 4.82108932573E-02 5.02910354022E-02 5.24637613621E-02 5.47331559481E-02 5.71034745743E-02 5.95791494786E-02 6.21647960958E-02 6.48652195795E-02 6.76854214697E-02 7.06306065027E-02 7.37061895558E-02 7.69178027234E-02 8.02713025148E-02 8.37727771666E-02 8.74285540606E-02 9.12452072349E-02 9.52295649773E-02 9.93887174861E-02 1.03730024585E-01 1.08261123470E-01 1.12989936480E-01 1.17924678856E-01 1.23073866478E-01 1.28446323549E-01 1.34051190198E-01 1.39897929980E-01 1.45996337227E-01 1.52356544231E-01 1.58989028208E-01 1.65904618007E-01 1.73114500527E-01 1.80630226781E-01 1.88463717571E-01 1.96627268709E-01 2.05133555733E-01 2.13995638052E-01 2.23226962466E-01 2.32841365972E-01 2.42853077807E-01 2.53276720629E-01 2.64127310772E-01 2.75420257476E-01 2.87171361019E-01 2.99396809633E-01 3.12113175136E-01 3.25337407146E-01 3.39086825803E-01 3.53379112857E-01 3.68232301042E-01 3.83664761585E-01 3.99695189755E-01 4.16342588318E-01 4.33626248772E-01 4.51565730232E-01 4.70180835852E-01 4.89491586619E-01 5.09518192428E-01 5.30281020278E-01 5.51800559469E-01 5.74097383676E-01 5.97192109771E-01 6.21105353273E-01 6.45857680306E-01 6.71469555971E-01 6.97961289013E-01 7.25352972702E-01 7.53664421847E-01 7.82915105875E-01 8.13124077918E-01 8.44309899875E-01 8.76490563434E-01 9.09683407044E-01 9.43905028881E-01 9.79171195836E-01 1.01549674862E+00 1.05289550307E+00 1.09138014784E+00 1.13096213858E+00 1.17165158885E+00 1.21345715805E+00 1.25638593655E+00 1.30044332848E+00 1.34563293246E+00 1.39195642067E+00 1.43941341686E+00 1.48800137368E+00 1.53771544993E+00 1.58854838838E+00 1.64049039487E+00 1.69352901919E+00 1.74764903883E+00 1.80283234612E+00 1.85905783980E+00 1.91630132185E+00 1.97453540052E+00 2.03372940058E+00 2.09384928171E+00 2.15485756625E+00 2.21671327707E+00 2.27937188693E+00 2.34278528023E+00 2.40690172821E+00 2.47166587874E+00 2.53701876167E+00 2.60289781076E+00 2.66923690308E+00 2.73596641689E+00 2.80301330868E+00 2.87030121021E+00 2.93775054615E+00 3.00527867282E+00 3.07280003855E+00 3.14022636580E+00 3.20746685528E+00 3.27442841191E+00 3.34101589262E+00 3.40713237535E+00 3.47267944896E+00 3.53755752295E+00 3.60166615632E+00 3.66490440414E+00 3.72717118052E+00 3.78836563631E+00 3.84838754955E+00 3.90713772677E+00 3.96451841253E+00 4.02043370484E+00 4.07478997350E+00 4.12749627835E+00 4.17846478431E+00 4.22761116941E+00 4.27485502246E+00 4.32012022623E+00 4.36333532221E+00 4.40443385259E+00 4.44335467513E+00 4.48004224635E+00 4.51444686852E+00 4.54652489559E+00 4.57623889342E+00 4.60355774974E+00 4.62845672889E+00 4.65091746714E+00 4.67092790406E+00 4.68848214595E+00 4.70358025754E+00 4.71622797859E+00 4.72643636256E+00 4.73422133487E+00 4.73960316914E+00 4.74260588006E+00 4.74325653269E+00 4.74158446815E+00 4.73762044674E+00 4.73139570989E+00 4.72294096314E+00 4.71228528242E+00 4.69945494678E+00 4.68447220045E+00 4.66735394768E+00 4.64811038328E+00 4.62674356251E+00 4.60324591310E+00 4.57759869321E+00 4.54977039880E+00 4.51971512555E+00 4.48737089150E+00 4.45268263690E+00 4.41568273939E+00 4.37643007766E+00 4.33498710885E+00 4.29141969268E+00 4.24579690690E+00 4.19819085501E+00 4.14867646669E+00 4.09733129211E+00 4.04423529066E+00 3.98947061501E+00 3.93312139144E+00 3.87527349706E+00 3.81601433501E+00 3.75543260823E+00 3.69361809281E+00 3.63066141156E+00 3.56665380881E+00 3.50168692694E+00 3.43585258560E+00 3.36924256427E+00 3.30194838884E+00 3.23406112283E+00 3.16567116397E+00 3.09686804688E+00 3.02774025184E+00 2.95835102711E+00 2.88881053969E+00 2.81920305152E+00 2.74961107858E+00 2.68011523880E+00 2.61079410870E+00 2.54172408921E+00 2.47297928092E+00 2.40463136883E+00 2.33674951671E+00 2.26940027131E+00 2.20264747620E+00 2.13655219556E+00 2.07117264771E+00 2.00656414833E+00 1.94277906341E+00 1.87986677172E+00 1.81787363662E+00 1.75684298721E+00 1.69681510841E+00 1.63782723993E+00 1.57991358377E+00 1.52310532012E+00 1.46743063126E+00 1.41291473319E+00 1.35957991483E+00 1.30744558421E+00 1.25652832157E+00 1.20684193887E+00 1.15839754533E+00 1.11120361879E+00 1.06526608232E+00 1.02058838580E+00 9.77171592013E-01 9.35014466879E-01 8.94113573357E-01 8.54463368630E-01 8.16056304108E-01 7.78882927821E-01 7.42931988745E-01 7.08190542630E-01 6.74644058861E-01 6.42276527926E-01 6.11070569043E-01 5.81007537510E-01 5.52067631365E-01 5.24229996934E-01 4.97472832888E-01 4.71773492415E-01 4.47108583170E-01 4.23454064659E-01 4.00785342753E-01 3.79077361054E-01 3.58304688863E-01 3.38441605525E-01 3.19462180968E-01 3.01340352266E-01 2.84049996112E-01 2.67564997100E-01 2.51859311748E-01 2.36907028235E-01 2.22682421838E-01 2.09160006104E-01 1.96314579791E-01 1.84121269663E-01 1.72555569228E-01 1.61593373534E-01 1.51211010159E-01 1.41385266548E-01 1.32093413844E-01 1.23313227411E-01 1.15023004204E-01 1.07201577200E-01 9.98283270621E-02 9.28831912449E-02 8.63466707301E-02 8.01998345849E-02 7.44243225331E-02 6.90023457217E-02 6.39166858581E-02 5.91506928872E-02 5.46882813650E-02 5.05139256782E-02 4.66126542462E-02 4.29700428323E-02 3.95722070777E-02 3.64057943618E-02 3.34579750816E-02 3.07164334291E-02 2.81693577397E-02 2.58054304714E-02 2.36138178682E-02 2.15841593509E-02 1.97065566756E-02 1.79715628885E-02 1.63701711062E-02 1.48938031435E-02 1.35342980080E-02 1.22839002791E-02 1.11352483875E-02 1.00813628091E-02 9.11563418921E-03 8.23181141036E-03 7.42398961929E-03 6.68659822924E-03 6.01438891385E-03 5.40242361049E-03 4.84606255172E-03 4.34095234456E-03 3.88301411788E-03 3.46843175920E-03 3.09364026234E-03 2.75531420785E-03 2.45035639807E-03 2.17588666844E-03 1.92923089624E-03 1.70791022739E-03 1.50963054069E-03 1.33227216816E-03 1.17387988861E-03 1.03265321015E-03 9.06936955791E-04 7.95212164724E-04 6.96087319782E-04 6.08289910113E-04 5.30658336002E-04 4.62134161042E-04 4.01754714985E-04 3.48646048793E-04 3.02016241719E-04 2.61149058540E-04 2.25397953540E-04 1.94180416338E-04 1.66972653342E-04 1.43304597348E-04 1.22755236706E-04 1.04948254521E-04 8.95479674720E-05 7.62555531492E-05 6.48055542101E-05 5.49626471918E-05 4.65186634765E-05 3.92898496816E-05 3.31143546206E-05 2.78499299653E-05 2.33718318077E-05 1.95709104783E-05 1.63518762054E-05 1.36317284991E-05 1.13383374958E-05 9.40916590371E-06 7.79012063262E-06 6.43452366875E-06 5.30219225656E-06 4.35861896901E-06 3.57424277901E-06 2.92380278082E-06 2.38576674666E-06 1.94182723521E-06 1.57645848944E-06 1.27652787158E-06 1.03095607479E-06 8.30420825380E-07 6.67099242343E-07 5.34444451685E-07 4.26992459901E-07 3.40195673526E-07 2.70279809490E-07 2.14121273891E-07 1.69142395107E-07 1.33222899972E-07 1.04628764850E-07 8.19339572209E-08 6.39752939512E-08 4.98074859792E-08 3.86646580093E-08 2.99282080747E-08 2.31000471323E-08 1.77803892915E-08 1.36493784606E-08 1.04519385235E-08 7.98532296212E-09 6.08891738406E-09 4.63591584771E-09 3.52655033417E-09 2.68260316928E-09 2.03341950878E-09 1.53911620384E-09 1.16072425447E-09 8.72127405278E-10 6.52835530951E-10 4.86833106121E-10 3.61649721749E-10 2.67612784056E-10 1.97249077914E-10 1.44807468061E-10 1.05879765051E-10 7.71008049553E-11 5.59121787103E-11 4.03768863585E-11 2.90345569428E-11 2.07888431209E-11 1.48202204269E-11 1.05187567726E-11 7.43250925162E-12 5.22809395620E-12 3.66069433047E-12 2.55135372142E-12 1.76986302959E-12 1.22192556712E-12 8.39575909577E-13 5.74062254923E-13 3.90584655947E-13 2.64424410448E-13 1.78111012720E-13 1.19359007839E-13 7.95731985848E-14 5.27712348961E-14 3.48111047361E-14 2.28401726283E-14 1.49043328314E-14 9.67224893496E-15 6.24185919311E-15 4.00535926551E-15 2.55551856145E-15 1.62104590552E-15 1.02225339514E-15 6.40820871456E-16 3.99297907050E-16 2.47290122558E-16 1.52206252569E-16 9.30980152896E-17 5.65843524781E-17 3.41716256599E-17 2.05028020905E-17 1.22209108367E-17 7.23603649318E-18 4.25567375202E-18 2.48581864394E-18 1.44200497333E-18 8.30658428803E-19 4.75114535833E-19 2.69808435350E-19 1.52108977773E-19 8.51248875138E-20 4.72846734613E-20 2.60678751489E-20 1.42616905172E-20 7.74238467252E-21 4.17036956298E-21 2.22857660213E-21 1.18138226263E-21 6.21182573545E-22 3.23943708844E-22 1.67531422848E-22 8.59120039947E-23 4.36813548149E-23 2.20179195009E-23 1.10013771187E-23 5.44829339055E-24 2.67404091195E-24 1.30053064883E-24 6.26712497716E-25 2.99199560389E-25 1.41497040587E-25 6.62789940975E-26 3.07464014695E-26 1.41237343625E-26 6.42374086183E-27 2.89238032205E-27 1.28912996111E-27 5.68664658351E-28 2.48243348307E-28 1.07226900531E-28 4.58222933495E-29 1.93703864777E-29 8.09895282542E-30 3.34879489800E-30 1.36916739601E-30 5.53440995644E-31 2.21141660135E-31 8.73355718726E-32 3.40854664525E-32 1.31443794901E-32 5.00769881830E-33 1.88450477964E-33 7.00406307135E-34 2.57056507688E-34 9.31459635279E-35 3.33185907056E-35 1.17632071172E-35 4.09835808287E-36 1.40885629452E-36 4.77774340518E-37 1.59810034421E-37 5.27151203149E-38 1.71451063278E-38 5.49720483771E-39 1.73725022763E-39 5.41031481550E-40 1.66013110286E-40 5.01811844741E-41 1.49395000938E-41 4.37970429261E-42 1.26410446520E-42 3.59141360221E-43 1.00416694116E-43 2.76259440041E-44 7.47671145143E-45 1.99020063673E-45 5.20936976313E-46 1.34055238019E-46 3.39078076871E-47 8.42827750293E-48 2.05828647941E-48 4.93746676013E-49 1.16315125242E-49 2.69031349788E-50 6.10807105044E-51 1.36093788168E-51 2.97510860129E-52 6.37960243827E-53 1.34154530243E-53 2.76586733811E-54 5.58937981606E-55 1.10686030348E-55 2.14737641867E-56 4.08035168170E-57 7.59184832481E-58 1.38274785323E-58 2.46472002286E-59 4.29836653830E-60 7.33214750839E-61 1.22300990010E-61 1.99423990671E-62 3.17796831696E-63 4.94790069674E-64 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.22802814186E-06 1.25911581836E-06 1.29099048293E-06 1.32367205827E-06 1.35718097141E-06 1.39153816649E-06 1.42676511786E-06 1.46288384349E-06 1.49991691874E-06 1.53788749047E-06 1.57681929150E-06 1.61673665545E-06 1.65766453195E-06 1.69962850222E-06 1.74265479510E-06 1.78677030338E-06 1.83200260066E-06 1.87837995858E-06 1.92593136445E-06 1.97468653943E-06 2.02467595704E-06 2.07593086227E-06 2.12848329105E-06 2.18236609032E-06 2.23761293855E-06 2.29425836677E-06 2.35233778016E-06 2.41188748021E-06 2.47294468735E-06 2.53554756427E-06 2.59973523975E-06 2.66554783311E-06 2.73302647931E-06 2.80221335462E-06 2.87315170303E-06 2.94588586323E-06 3.02046129636E-06 3.09692461441E-06 3.17532360936E-06 3.25570728304E-06 3.33812587776E-06 3.42263090773E-06 3.50927519124E-06 3.59811288366E-06 3.68919951133E-06 3.78259200624E-06 3.87834874160E-06 3.97652956835E-06 4.07719585255E-06 4.18041051377E-06 4.28623806436E-06 4.39474464982E-06 4.50599809013E-06 4.62006792211E-06 4.73702544293E-06 4.85694375464E-06 4.97989780988E-06 5.10596445870E-06 5.23522249663E-06 5.36775271390E-06 5.50363794593E-06 5.64296312516E-06 5.78581533405E-06 5.93228385959E-06 6.08246024904E-06 6.23643836721E-06 6.39431445507E-06 6.55618718994E-06 6.72215774715E-06 6.89232986330E-06 7.06680990106E-06 7.24570691567E-06 7.42913272312E-06 7.61720197000E-06 7.81003220518E-06 8.00774395327E-06 8.21046078997E-06 8.41830941928E-06 8.63141975271E-06 8.84992499048E-06 9.07396170475E-06 9.30366992501E-06 9.53919322559E-06 9.78067881538E-06 1.00282776299E-05 1.02821444254E-05 1.05424378761E-05 1.08093206728E-05 1.10829596248E-05 1.13635257644E-05 1.16511944532E-05 1.19461454923E-05 1.22485632344E-05 1.25586366992E-05 1.28765596910E-05 1.32025309208E-05 1.35367541294E-05 1.38794382156E-05 1.42307973663E-05 1.45910511906E-05 1.49604248569E-05 1.53391492338E-05 1.57274610340E-05 1.61256029630E-05 1.65338238699E-05 1.69523789036E-05 1.73815296721E-05 1.78215444056E-05 1.82726981250E-05 1.87352728128E-05 1.92095575901E-05 1.96958488970E-05 2.01944506778E-05 2.07056745710E-05 2.12298401044E-05 2.17672748943E-05 2.23183148507E-05 2.28833043869E-05 2.34625966349E-05 2.40565536662E-05 2.46655467181E-05 2.52899564253E-05 2.59301730585E-05 2.65865967677E-05 2.72596378327E-05 2.79497169192E-05 2.86572653420E-05 2.93827253343E-05 3.01265503243E-05 3.08892052186E-05 3.16711666925E-05 3.24729234884E-05 3.32949767205E-05 3.41378401887E-05 3.50020406996E-05 3.58881183954E-05 3.67966270916E-05 3.77281346234E-05 3.86832232002E-05 3.96624897698E-05 4.06665463914E-05 4.16960206178E-05 4.27515558880E-05 4.38338119292E-05 4.49434651690E-05 4.60812091584E-05 4.72477550049E-05 4.84438318172E-05 4.96701871609E-05 5.09275875252E-05 5.22168188027E-05 5.35386867798E-05 5.48940176408E-05 5.62836584842E-05 5.77084778515E-05 5.91693662709E-05 6.06672368130E-05 6.22030256620E-05 6.37776927006E-05 6.53922221096E-05 6.70476229833E-05 6.87449299601E-05 7.04852038686E-05 7.22695323914E-05 7.40990307439E-05 7.59748423720E-05 7.78981396661E-05 7.98701246941E-05 8.18920299524E-05 8.39651191361E-05 8.60906879291E-05 8.82700648131E-05 9.05046118982E-05 9.27957257741E-05 9.51448383828E-05 9.75534179132E-05 1.00022969719E-04 1.02555037258E-04 1.05151203060E-04 1.07813089711E-04 1.10542360870E-04 1.13340722309E-04 1.16209922977E-04 1.19151756095E-04 1.22168060274E-04 1.25260720665E-04 1.28431670139E-04 1.31682890490E-04 1.35016413680E-04 1.38434323100E-04 1.41938754882E-04 1.45531899223E-04 1.49216001762E-04 1.52993364980E-04 1.56866349637E-04 1.60837376249E-04 1.64908926600E-04 1.69083545293E-04 1.73363841339E-04 1.77752489786E-04 1.82252233395E-04 1.86865884345E-04 1.91596326001E-04 1.96446514706E-04 2.01419481633E-04 2.06518334675E-04 2.11746260392E-04 2.17106525997E-04 2.22602481400E-04 2.28237561296E-04 2.34015287318E-04 2.39939270232E-04 2.46013212191E-04 2.52240909054E-04 2.58626252751E-04 2.65173233717E-04 2.71885943385E-04 2.78768576740E-04 2.85825434941E-04 2.93060928004E-04 3.00479577564E-04 3.08086019690E-04 3.15885007787E-04 3.23881415564E-04 3.32080240074E-04 3.40486604840E-04 3.49105763053E-04 3.57943100851E-04 3.67004140685E-04 3.76294544766E-04 3.85820118603E-04 3.95586814626E-04 4.05600735905E-04 4.15868139962E-04 4.26395442674E-04 4.37189222283E-04 4.48256223503E-04 4.59603361731E-04 4.71237727362E-04 4.83166590221E-04 4.95397404097E-04 5.07937811401E-04 5.20795647933E-04 5.33978947775E-04 5.47495948309E-04 5.61355095356E-04 5.75565048447E-04 5.90134686233E-04 6.05073112023E-04 6.20389659467E-04 6.36093898382E-04 6.52195640723E-04 6.68704946709E-04 6.85632131098E-04 7.02987769629E-04 7.20782705614E-04 7.39028056711E-04 7.57735221857E-04 7.76915888382E-04 7.96582039301E-04 8.16745960787E-04 8.37420249839E-04 8.58617822141E-04 8.80351920113E-04 9.02636121179E-04 9.25484346229E-04 9.48910868305E-04 9.72930321500E-04 9.97557710087E-04 1.02280841787E-03 1.04869821779E-03 1.07524328175E-03 1.10246019067E-03 1.13036594490E-03 1.15897797473E-03 1.18831415131E-03 1.21839279779E-03 1.24923270069E-03 1.28085312167E-03 1.31327380951E-03 1.34651501239E-03 1.38059749055E-03 1.41554252918E-03 1.45137195174E-03 1.48810813348E-03 1.52577401543E-03 1.56439311869E-03 1.60398955903E-03 1.64458806196E-03 1.68621397810E-03 1.72889329897E-03 1.77265267316E-03 1.81751942292E-03 1.86352156119E-03 1.91068780900E-03 1.95904761335E-03 2.00863116556E-03 2.05946942001E-03 2.11159411343E-03 2.16503778461E-03 2.21983379466E-03 2.27601634775E-03 2.33362051236E-03 2.39268224310E-03 2.45323840304E-03 2.51532678664E-03 2.57898614323E-03 2.64425620105E-03 2.71117769200E-03 2.77979237685E-03 2.85014307127E-03 2.92227367231E-03 2.99622918577E-03 3.07205575401E-03 3.14980068468E-03 3.22951248003E-03 3.31124086702E-03 3.39503682811E-03 3.48095263296E-03 3.56904187076E-03 3.65935948349E-03 3.75196179996E-03 3.84690657070E-03 3.94425300373E-03 4.04406180127E-03 4.14639519726E-03 4.25131699595E-03 4.35889261134E-03 4.46918910765E-03 4.58227524085E-03 4.69822150113E-03 4.81710015649E-03 4.93898529741E-03 5.06395288266E-03 5.19208078613E-03 5.32344884501E-03 5.45813890904E-03 5.59623489099E-03 5.73782281847E-03 5.88299088696E-03 6.03182951420E-03 6.18443139589E-03 6.34089156279E-03 6.50130743929E-03 6.66577890333E-03 6.83440834788E-03 7.00730074392E-03 7.18456370499E-03 7.36630755332E-03 7.55264538761E-03 7.74369315247E-03 7.93956970958E-03 8.14039691063E-03 8.34629967202E-03 8.55740605144E-03 8.77384732628E-03 8.99575807406E-03 9.22327625472E-03 9.45654329507E-03 9.69570417518E-03 9.94090751698E-03 1.01923056750E-02 1.04500548293E-02 1.07143150808E-02 1.09852505487E-02 1.12630294707E-02 1.15478243051E-02 1.18398118357E-02 1.21391732795E-02 1.24460943967E-02 1.27607656031E-02 1.30833820861E-02 1.34141439224E-02 1.37532561996E-02 1.41009291402E-02 1.44573782284E-02 1.48228243405E-02 1.51974938780E-02 1.55816189043E-02 1.59754372841E-02 1.63791928272E-02 1.67931354340E-02 1.72175212467E-02 1.76526128021E-02 1.80986791894E-02 1.85559962109E-02 1.90248465473E-02 1.95055199261E-02 1.99983132949E-02 2.05035309976E-02 2.10214849562E-02 2.15524948558E-02 2.20968883344E-02 2.26550011767E-02 2.32271775136E-02 2.38137700248E-02 2.44151401472E-02 2.50316582880E-02 2.56637040423E-02 2.63116664163E-02 2.69759440551E-02 2.76569454763E-02 2.83550893087E-02 2.90708045362E-02 2.98045307479E-02 3.05567183933E-02 3.13278290438E-02 3.21183356595E-02 3.29287228627E-02 3.37594872171E-02 3.46111375136E-02 3.54841950618E-02 3.63791939891E-02 3.72966815454E-02 3.82372184148E-02 3.92013790347E-02 4.01897519212E-02 4.12029400018E-02 4.22415609554E-02 4.33062475600E-02 4.43976480467E-02 4.55164264628E-02 4.66632630414E-02 4.78388545794E-02 4.90439148235E-02 5.02791748638E-02 5.15453835362E-02 5.28433078324E-02 5.41737333189E-02 5.55374645642E-02 5.69353255750E-02 5.83681602405E-02 5.98368327862E-02 6.13422282363E-02 6.28852528850E-02 6.44668347777E-02 6.60879242003E-02 6.77494941791E-02 6.94525409887E-02 7.11980846706E-02 7.29871695607E-02 7.48208648266E-02 7.67002650144E-02 7.86264906053E-02 8.06006885822E-02 8.26240330055E-02 8.46977255994E-02 8.68229963471E-02 8.90011040967E-02 9.12333371763E-02 9.35210140191E-02 9.58654837979E-02 9.82681270697E-02 1.00730356429E-01 1.03253617173E-01 1.05839387970E-01 1.08489181547E-01 1.11204545376E-01 1.13987062376E-01 1.16838351621E-01 1.19760069057E-01 1.22753908225E-01 1.25821600997E-01 1.28964918315E-01 1.32185670940E-01 1.35485710202E-01 1.38866928765E-01 1.42331261395E-01 1.45880685725E-01 1.49517223041E-01 1.53242939055E-01 1.57059944696E-01 1.60970396892E-01 1.64976499365E-01 1.69080503417E-01 1.73284708725E-01 1.77591464129E-01 1.82003168423E-01 1.86522271139E-01 1.91151273332E-01 1.95892728356E-01 2.00749242632E-01 2.05723476418E-01 2.10818144554E-01 2.16036017209E-01 2.21379920608E-01 2.26852737749E-01 2.32457409097E-01 2.38196933266E-01 2.44074367675E-01 2.50092829183E-01 2.56255494695E-01 2.62565601746E-01 2.69026449044E-01 2.75641396987E-01 2.82413868137E-01 2.89347347654E-01 2.96445383687E-01 3.03711587716E-01 3.11149634838E-01 3.18763264004E-01 3.26556278183E-01 3.34532544474E-01 3.42695994139E-01 3.51050622557E-01 3.59600489105E-01 3.68349716948E-01 3.77302492732E-01 3.86463066179E-01 3.95835749582E-01 4.05424917174E-01 4.15235004385E-01 4.25270506965E-01 4.35535979973E-01 4.46036036615E-01 4.56775346930E-01 4.67758636310E-01 4.78990683843E-01 4.90476320473E-01 5.02220426962E-01 5.14227931639E-01 5.26503807939E-01 5.39053071694E-01 5.51880778187E-01 5.64992018944E-01 5.78391918247E-01 5.92085629356E-01 6.06078330428E-01 6.20375220105E-01 6.34981512770E-01 6.49902433433E-01 6.65143212249E-01 6.80709078627E-01 6.96605254925E-01 7.12836949707E-01 7.29409350530E-01 7.46327616245E-01 7.63596868794E-01 7.81222184460E-01 7.99208584560E-01 8.17561025549E-01 8.36284388499E-01 8.55383467934E-01 8.74862959988E-01 8.94727449847E-01 9.14981398448E-01 9.35629128410E-01 9.56674809140E-01 9.78122441097E-01 9.99975839170E-01 1.02223861513E+00 1.04491415912E+00 1.06800562015E+00 1.09151588549E+00 1.11544755907E+00 1.13980293867E+00 1.16458399195E+00 1.18979233124E+00 1.21542918711E+00 1.24149538056E+00 1.26799129384E+00 1.29491683993E+00 1.32227143042E+00 1.35005394196E+00 1.37826268114E+00 1.40689534769E+00 1.43594899599E+00 1.46541999497E+00 1.49530398606E+00 1.52559583942E+00 1.55628960824E+00 1.58737848111E+00 1.61885473242E+00 1.65070967065E+00 1.68293358469E+00 1.71551568796E+00 1.74844406035E+00 1.78170558802E+00 1.81528590087E+00 1.84916930780E+00 1.88333872967E+00 1.91777562986E+00 1.95245994255E+00 1.98736999869E+00 2.02248244948E+00 2.05777218763E+00 2.09321226625E+00 2.12877381536E+00 2.16442595626E+00 2.20013571352E+00 2.23586792492E+00 2.27158514928E+00 2.30724757221E+00 2.34281291009E+00 2.37823631218E+00 2.41347026124E+00 2.44846447256E+00 2.48316579187E+00 2.51751809219E+00 2.55146216991E+00 2.58493564036E+00 2.61787283324E+00 2.65020468821E+00 2.68185865111E+00 2.71275857104E+00 2.74282459909E+00 2.77197308891E+00 2.80011649995E+00 2.82716330382E+00 2.85301789458E+00 2.87758050359E+00 2.90074711978E+00 2.92240941626E+00 2.94245468407E+00 2.96076577423E+00 2.97722104913E+00 2.99169434439E+00 3.00405494255E+00 3.01416755985E+00 3.02189234760E+00 3.02708490970E+00 3.02959633786E+00 3.02927326640E+00 3.02595794840E+00 3.01948835514E+00 3.00969830106E+00 2.99641759620E+00 2.97947222868E+00 2.95868457942E+00 2.93387367183E+00 2.90485545895E+00 2.87144315102E+00 2.83344758612E+00 2.79067764710E+00 2.74294072774E+00 2.69004325136E+00 2.63179124521E+00 2.56799097389E+00 2.49844963531E+00 2.42297612255E+00 2.34138185514E+00 2.25377374978E+00 2.16781733363E+00 2.08355838224E+00 2.00103920084E+00 1.92029856777E+00 1.84137168472E+00 1.76429013414E+00 1.68908184369E+00 1.61577105850E+00 1.54437832169E+00 1.47492046415E+00 1.40741060465E+00 1.34185816155E+00 1.27826887746E+00 1.21664485809E+00 1.15698462665E+00 1.09928319445E+00 1.04353214838E+00 9.89719755264E-01 9.37831082480E-01 8.87848133817E-01 8.39749998887E-01 7.93513013966E-01 7.49110931751E-01 7.06515097313E-01 6.65694627462E-01 6.26616590894E-01 5.89246186769E-01 5.53546919828E-01 5.19480770654E-01 4.87008360243E-01 4.56089108537E-01 4.26681386964E-01 3.98742665348E-01 3.72229653652E-01 3.47098439111E-01 3.23304619198E-01 3.00803430795E-01 2.79549875758E-01 2.59498842932E-01 2.40605226531E-01 2.22824040694E-01 2.06110529932E-01 1.90420275154E-01 1.75709294939E-01 1.61934141693E-01 1.49051992396E-01 1.37020733634E-01 1.25799040690E-01 1.15346450474E-01 1.05623428156E-01 9.65914273997E-02 8.82129441367E-02 8.04515638780E-02 7.32720026024E-02 6.66401412967E-02 6.05230542640E-02 5.48890313533E-02 4.97075942899E-02 4.49495073213E-02 4.05867824127E-02 3.65926792516E-02 3.29417003406E-02 2.96095814718E-02 2.65732778913E-02 2.38109464714E-02 2.13019242182E-02 1.90267034432E-02 1.69669039352E-02 1.51052424632E-02 1.34254999429E-02 1.19124865920E-02 1.05520053931E-02 9.33081417419E-03 8.23658660579E-03 7.25787240173E-03 6.38405699566E-03 5.60532095127E-03 4.91259934746E-03 4.29754136276E-03 3.75247026545E-03 3.27034399808E-03 2.84471652606E-03 2.46970010218E-03 2.13992858006E-03 1.85052189173E-03 1.59705178676E-03 1.37550891343E-03 1.18227130581E-03 1.01407432529E-03 8.67982090272E-04 7.41360413912E-04 6.31851257429E-04 5.37348694443E-04 4.55976371587E-04 3.86066441022E-04 3.26139932234E-04 2.74888523207E-04 2.31157664896E-04 1.93931007783E-04 1.62316075116E-04 1.35531124185E-04 1.12893134649E-04 9.38068613320E-05 7.77548881070E-05 6.42886193399E-05 5.30201458019E-05 4.36149229520E-05 3.57852009277E-05 2.92841474136E-05 2.39006067188E-05 1.94544408134E-05 1.57924007077E-05 1.27844793317E-05 1.03206999587E-05 8.30829715164E-06 6.66925016643E-06 5.33813167923E-06 4.26023759166E-06 3.38996647403E-06 2.68941991886E-06 2.12719767156E-06 1.67736387203E-06 1.31856306873E-06 1.03326684887E-06 8.07133961558E-07 6.28468693181E-07 4.87763987288E-07 3.77317387584E-07 2.90909326928E-07 2.23534592969E-07 1.71178979107E-07 1.30634185209E-07 9.93449738883E-08 7.52834233587E-08 5.68458552615E-08 4.27686637228E-08 3.20598383392E-08 2.39434666872E-08 1.78149288133E-08 1.32048640661E-08 9.75030624200E-09 7.17165247554E-09 5.25436028224E-09 3.83446082323E-09 2.78713947795E-09 2.01777138823E-09 1.45491351841E-09 1.04484928538E-09 7.47359869364E-10 5.32460478578E-10 3.77892327926E-10 2.67203821665E-10 1.88289047604E-10 1.32279599598E-10 9.27081357744E-11 6.48799553053E-11 4.54030770626E-11 3.16238587464E-11 2.19216977853E-11 1.51229966367E-11 1.03819786786E-11 7.09210152242E-12 4.82054202555E-12 3.25998917368E-12 2.19335374282E-12 1.46806729674E-12 9.77462645342E-13 6.47355860535E-13 4.26428399332E-13 2.79370347258E-13 1.82018817292E-13 1.17930002987E-13 7.59756142909E-14 4.86670994437E-14 3.09939601461E-14 1.96231018160E-14 1.23502405752E-14 7.72623862169E-15 4.80411161772E-15 2.96877462404E-15 1.82316925832E-15 1.11257263489E-15 6.74600927066E-16 4.06394444810E-16 2.43217876382E-16 1.44595336535E-16 8.53862299271E-17 5.00794287197E-17 2.91696760896E-17 1.68720095967E-17 9.69006639646E-18 5.52551416837E-18 3.12799047747E-18 1.75778277750E-18 9.80464370269E-19 5.42780851416E-19 2.98196168566E-19 1.62563361294E-19 8.79314148389E-20 4.71871135804E-20 2.51198692450E-20 1.32642304856E-20 6.94661194849E-21 3.60782393090E-21 1.85803297363E-21 9.48748702520E-22 4.80277247954E-22 2.41006438325E-22 1.19870766474E-22 5.90877611213E-23 2.88623983776E-23 1.39690973634E-23 6.69815394529E-24 3.18157342394E-24 1.49684692436E-24 6.97444058247E-25 3.21799388960E-25 1.47011580381E-25 6.64896983270E-26 2.97672686815E-26 1.31901601687E-26 5.78404377391E-27 2.50972861203E-27 1.07740306507E-27 4.57538619324E-28 1.92183696302E-28 7.98334607056E-29 3.27923583432E-29 1.33173718471E-29 5.34639099146E-30 2.12146847464E-30 8.31922176319E-31 3.22355329349E-31 1.23403653687E-31 4.66655460503E-32 1.74290288183E-32 6.42822426885E-33 2.34089262164E-33 8.41541213369E-34 2.98608814351E-34 1.04566415546E-34 3.61303623386E-35 1.23160129772E-35 4.14106447154E-36 1.37316668281E-36 4.48981421163E-37 1.44727417064E-37 4.59846722315E-38 1.43991467302E-38 4.44265246318E-39 1.35035944102E-39 4.04274558882E-40 1.19190299975E-40 3.45986645499E-41 9.88660250432E-42 2.78047149265E-42 7.69461144350E-43 2.09490318182E-43 5.60997936199E-44 1.47736742997E-44 3.82520303826E-45 9.73569120184E-46 2.43518443341E-46 5.98487326364E-47 1.44490785138E-47 3.42602310333E-48 7.97640118144E-49 1.82301664938E-49 4.08921875911E-50 9.00023733784E-51 1.94324715988E-51 4.11488621191E-52 8.54352808632E-53 1.73883706523E-53 3.46827855177E-54 6.77785616563E-55 1.29742566994E-55 2.43204406119E-56 4.46318444207E-57 8.01653806240E-58 1.40890021592E-58 2.42217885996E-59 4.07219796859E-60 6.69334601846E-61 1.07529100340E-61 1.68792116334E-62 2.58818438951E-63 3.87549413580E-64 5.66523677949E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -7.02836961173E-05 -7.11677564015E-05 -7.20629368034E-05 -7.29693771972E-05 -7.38872192167E-05 -7.48166062768E-05 -7.57576835968E-05 -7.67105982223E-05 -7.76754990486E-05 -7.86525368441E-05 -7.96418642735E-05 -8.06436359216E-05 -8.16580083181E-05 -8.26851399611E-05 -8.37251913429E-05 -8.47783249741E-05 -8.58447054098E-05 -8.69244992748E-05 -8.80178752898E-05 -8.91250042979E-05 -9.02460592908E-05 -9.13812154367E-05 -9.25306501069E-05 -9.36945429037E-05 -9.48730756886E-05 -9.60664326109E-05 -9.72748001359E-05 -9.84983670746E-05 -9.97373246129E-05 -1.00991866341E-04 -1.02262188286E-04 -1.03548488939E-04 -1.04850969287E-04 -1.06169832849E-04 -1.07505285699E-04 -1.08857536507E-04 -1.10226796567E-04 -1.11613279828E-04 -1.13017202935E-04 -1.14438785253E-04 -1.15878248911E-04 -1.17335818828E-04 -1.18811722755E-04 -1.20306191308E-04 -1.21819458000E-04 -1.23351759287E-04 -1.24903334594E-04 -1.26474426362E-04 -1.28065280077E-04 -1.29676144318E-04 -1.31307270787E-04 -1.32958914354E-04 -1.34631333094E-04 -1.36324788328E-04 -1.38039544666E-04 -1.39775870044E-04 -1.41534035769E-04 -1.43314316563E-04 -1.45116990601E-04 -1.46942339558E-04 -1.48790648651E-04 -1.50662206687E-04 -1.52557306104E-04 -1.54476243020E-04 -1.56419317276E-04 -1.58386832486E-04 -1.60379096082E-04 -1.62396419366E-04 -1.64439117551E-04 -1.66507509820E-04 -1.68601919368E-04 -1.70722673455E-04 -1.72870103460E-04 -1.75044544930E-04 -1.77246337630E-04 -1.79475825601E-04 -1.81733357213E-04 -1.84019285216E-04 -1.86333966798E-04 -1.88677763640E-04 -1.91051041972E-04 -1.93454172632E-04 -1.95887531122E-04 -1.98351497668E-04 -2.00846457279E-04 -2.03372799806E-04 -2.05930920005E-04 -2.08521217597E-04 -2.11144097331E-04 -2.13799969049E-04 -2.16489247747E-04 -2.19212353642E-04 -2.21969712236E-04 -2.24761754385E-04 -2.27588916364E-04 -2.30451639936E-04 -2.33350372420E-04 -2.36285566765E-04 -2.39257681616E-04 -2.42267181386E-04 -2.45314536332E-04 -2.48400222627E-04 -2.51524722432E-04 -2.54688523974E-04 -2.57892121624E-04 -2.61136015969E-04 -2.64420713894E-04 -2.67746728660E-04 -2.71114579987E-04 -2.74524794129E-04 -2.77977903964E-04 -2.81474449071E-04 -2.85014975818E-04 -2.88600037445E-04 -2.92230194152E-04 -2.95906013187E-04 -2.99628068934E-04 -3.03396943002E-04 -3.07213224316E-04 -3.11077509211E-04 -3.14990401523E-04 -3.18952512685E-04 -3.22964461822E-04 -3.27026875846E-04 -3.31140389559E-04 -3.35305645745E-04 -3.39523295276E-04 -3.43793997215E-04 -3.48118418911E-04 -3.52497236113E-04 -3.56931133069E-04 -3.61420802636E-04 -3.65966946388E-04 -3.70570274723E-04 -3.75231506978E-04 -3.79951371541E-04 -3.84730605962E-04 -3.89569957069E-04 -3.94470181089E-04 -3.99432043761E-04 -4.04456320457E-04 -4.09543796306E-04 -4.14695266314E-04 -4.19911535490E-04 -4.25193418968E-04 -4.30541742142E-04 -4.35957340787E-04 -4.41441061196E-04 -4.46993760308E-04 -4.52616305845E-04 -4.58309576445E-04 -4.64074461803E-04 -4.69911862806E-04 -4.75822691677E-04 -4.81807872116E-04 -4.87868339448E-04 -4.94005040763E-04 -5.00218935069E-04 -5.06510993441E-04 -5.12882199174E-04 -5.19333547933E-04 -5.25866047913E-04 -5.32480719994E-04 -5.39178597903E-04 -5.45960728374E-04 -5.52828171312E-04 -5.59781999960E-04 -5.66823301067E-04 -5.73953175055E-04 -5.81172736194E-04 -5.88483112779E-04 -5.95885447300E-04 -6.03380896626E-04 -6.10970632184E-04 -6.18655840144E-04 -6.26437721602E-04 -6.34317492770E-04 -6.42296385167E-04 -6.50375645811E-04 -6.58556537413E-04 -6.66840338576E-04 -6.75228343996E-04 -6.83721864664E-04 -6.92322228070E-04 -7.01030778413E-04 -7.09848876812E-04 -7.18777901515E-04 -7.27819248121E-04 -7.36974329793E-04 -7.46244577484E-04 -7.55631440158E-04 -7.65136385018E-04 -7.74760897738E-04 -7.84506482692E-04 -7.94374663192E-04 -8.04366981729E-04 -8.14485000209E-04 -8.24730300205E-04 -8.35104483197E-04 -8.45609170832E-04 -8.56246005171E-04 -8.67016648948E-04 -8.77922785837E-04 -8.88966120706E-04 -9.00148379892E-04 -9.11471311470E-04 -9.22936685526E-04 -9.34546294435E-04 -9.46301953144E-04 -9.58205499455E-04 -9.70258794316E-04 -9.82463722109E-04 -9.94822190951E-04 -1.00733613299E-03 -1.02000750470E-03 -1.03283828722E-03 -1.04583048663E-03 -1.05898613426E-03 -1.07230728707E-03 -1.08579602790E-03 -1.09945446584E-03 -1.11328473655E-03 -1.12728900259E-03 -1.14146945377E-03 -1.15582830751E-03 -1.17036780914E-03 -1.18509023230E-03 -1.19999787929E-03 -1.21509308139E-03 -1.23037819929E-03 -1.24585562342E-03 -1.26152777436E-03 -1.27739710316E-03 -1.29346609180E-03 -1.30973725353E-03 -1.32621313330E-03 -1.34289630812E-03 -1.35978938750E-03 -1.37689501388E-03 -1.39421586298E-03 -1.41175464427E-03 -1.42951410142E-03 -1.44749701265E-03 -1.46570619128E-03 -1.48414448607E-03 -1.50281478173E-03 -1.52171999937E-03 -1.54086309694E-03 -1.56024706973E-03 -1.57987495080E-03 -1.59974981151E-03 -1.61987476196E-03 -1.64025295151E-03 -1.66088756929E-03 -1.68178184466E-03 -1.70293904777E-03 -1.72436249004E-03 -1.74605552473E-03 -1.76802154742E-03 -1.79026399659E-03 -1.81278635415E-03 -1.83559214597E-03 -1.85868494250E-03 -1.88206835927E-03 -1.90574605753E-03 -1.92972174477E-03 -1.95399917535E-03 -1.97858215110E-03 -2.00347452189E-03 -2.02868018628E-03 -2.05420309214E-03 -2.08004723726E-03 -2.10621666999E-03 -2.13271548991E-03 -2.15954784846E-03 -2.18671794962E-03 -2.21423005057E-03 -2.24208846239E-03 -2.27029755073E-03 -2.29886173652E-03 -2.32778549669E-03 -2.35707336487E-03 -2.38672993213E-03 -2.41675984771E-03 -2.44716781977E-03 -2.47795861616E-03 -2.50913706518E-03 -2.54070805635E-03 -2.57267654120E-03 -2.60504753409E-03 -2.63782611300E-03 -2.67101742037E-03 -2.70462666390E-03 -2.73865911743E-03 -2.77312012178E-03 -2.80801508561E-03 -2.84334948630E-03 -2.87912887088E-03 -2.91535885685E-03 -2.95204513320E-03 -2.98919346124E-03 -3.02680967561E-03 -3.06489968520E-03 -3.10346947413E-03 -3.14252510272E-03 -3.18207270852E-03 -3.22211850724E-03 -3.26266879386E-03 -3.30372994363E-03 -3.34530841309E-03 -3.38741074120E-03 -3.43004355036E-03 -3.47321354755E-03 -3.51692752541E-03 -3.56119236341E-03 -3.60601502893E-03 -3.65140257850E-03 -3.69736215889E-03 -3.74390100838E-03 -3.79102645793E-03 -3.83874593240E-03 -3.88706695184E-03 -3.93599713272E-03 -3.98554418922E-03 -4.03571593453E-03 -4.08652028218E-03 -4.13796524737E-03 -4.19005894834E-03 -4.24280960775E-03 -4.29622555407E-03 -4.35031522302E-03 -4.40508715899E-03 -4.46055001654E-03 -4.51671256183E-03 -4.57358367421E-03 -4.63117234768E-03 -4.68948769249E-03 -4.74853893671E-03 -4.80833542782E-03 -4.86888663436E-03 -4.93020214758E-03 -4.99229168312E-03 -5.05516508271E-03 -5.11883231590E-03 -5.18330348187E-03 -5.24858881114E-03 -5.31469866747E-03 -5.38164354963E-03 -5.44943409336E-03 -5.51808107320E-03 -5.58759540449E-03 -5.65798814529E-03 -5.72927049844E-03 -5.80145381354E-03 -5.87454958906E-03 -5.94856947443E-03 -6.02352527216E-03 -6.09942894007E-03 -6.17629259345E-03 -6.25412850733E-03 -6.33294911880E-03 -6.41276702927E-03 -6.49359500691E-03 -6.57544598901E-03 -6.65833308448E-03 -6.74226957630E-03 -6.82726892408E-03 -6.91334476666E-03 -7.00051092473E-03 -7.08878140349E-03 -7.17817039542E-03 -7.26869228302E-03 -7.36036164168E-03 -7.45319324250E-03 -7.54720205529E-03 -7.64240325154E-03 -7.73881220743E-03 -7.83644450698E-03 -7.93531594520E-03 -8.03544253131E-03 -8.13684049202E-03 -8.23952627489E-03 -8.34351655175E-03 -8.44882822218E-03 -8.55547841703E-03 -8.66348450209E-03 -8.77286408178E-03 -8.88363500288E-03 -8.99581535842E-03 -9.10942349157E-03 -9.22447799968E-03 -9.34099773833E-03 -9.45900182556E-03 -9.57850964607E-03 -9.69954085561E-03 -9.82211538541E-03 -9.94625344674E-03 -1.00719755355E-02 -1.01993024370E-02 -1.03282552309E-02 -1.04588552959E-02 -1.05911243149E-02 -1.07250842804E-02 -1.08607574996E-02 -1.09981665997E-02 -1.11373345335E-02 -1.12782845852E-02 -1.14210403760E-02 -1.15656258703E-02 -1.17120653813E-02 -1.18603835776E-02 -1.20106054892E-02 -1.21627565146E-02 -1.23168624266E-02 -1.24729493797E-02 -1.26310439172E-02 -1.27911729777E-02 -1.29533639030E-02 -1.31176444454E-02 -1.32840427753E-02 -1.34525874893E-02 -1.36233076180E-02 -1.37962326345E-02 -1.39713924629E-02 -1.41488174869E-02 -1.43285385586E-02 -1.45105870079E-02 -1.46949946521E-02 -1.48817938049E-02 -1.50710172869E-02 -1.52626984355E-02 -1.54568711153E-02 -1.56535697291E-02 -1.58528292283E-02 -1.60546851251E-02 -1.62591735031E-02 -1.64663310301E-02 -1.66761949697E-02 -1.68888031944E-02 -1.71041941979E-02 -1.73224071091E-02 -1.75434817053E-02 -1.77674584264E-02 -1.79943783894E-02 -1.82242834031E-02 -1.84572159835E-02 -1.86932193694E-02 -1.89323375388E-02 -1.91746152253E-02 -1.94200979352E-02 -1.96688319654E-02 -1.99208644211E-02 -2.01762432348E-02 -2.04350171855E-02 -2.06972359182E-02 -2.09629499645E-02 -2.12322107636E-02 -2.15050706835E-02 -2.17815830437E-02 -2.20618021381E-02 -2.23457832582E-02 -2.26335827177E-02 -2.29252578776E-02 -2.32208671716E-02 -2.35204701334E-02 -2.38241274236E-02 -2.41319008578E-02 -2.44438534364E-02 -2.47600493740E-02 -2.50805541307E-02 -2.54054344437E-02 -2.57347583607E-02 -2.60685952732E-02 -2.64070159522E-02 -2.67500925835E-02 -2.70978988056E-02 -2.74505097477E-02 -2.78080020694E-02 -2.81704540015E-02 -2.85379453883E-02 -2.89105577306E-02 -2.92883742313E-02 -2.96714798408E-02 -3.00599613052E-02 -3.04539072157E-02 -3.08534080588E-02 -3.12585562694E-02 -3.16694462844E-02 -3.20861745987E-02 -3.25088398227E-02 -3.29375427419E-02 -3.33723863782E-02 -3.38134760529E-02 -3.42609194523E-02 -3.47148266952E-02 -3.51753104019E-02 -3.56424857665E-02 -3.61164706310E-02 -3.65973855610E-02 -3.70853539255E-02 -3.75805019776E-02 -3.80829589387E-02 -3.85928570853E-02 -3.91103318381E-02 -3.96355218542E-02 -4.01685691227E-02 -4.07096190625E-02 -4.12588206236E-02 -4.18163263917E-02 -4.23822926962E-02 -4.29568797206E-02 -4.35402516181E-02 -4.41325766294E-02 -4.47340272044E-02 -4.53447801285E-02 -4.59650166519E-02 -4.65949226236E-02 -4.72346886287E-02 -4.78845101311E-02 -4.85445876193E-02 -4.92151267580E-02 -4.98963385430E-02 -5.05884394618E-02 -5.12916516586E-02 -5.20062031040E-02 -5.27323277707E-02 -5.34702658136E-02 -5.42202637552E-02 -5.49825746773E-02 -5.57574584172E-02 -5.65451817706E-02 -5.73460186997E-02 -5.81602505476E-02 -5.89881662586E-02 -5.98300626050E-02 -6.06862444202E-02 -6.15570248376E-02 -6.24427255376E-02 -6.33436769994E-02 -6.42602187614E-02 -6.51926996872E-02 -6.61414782399E-02 -6.71069227618E-02 -6.80894117634E-02 -6.90893342182E-02 -7.01070898654E-02 -7.11430895203E-02 -7.21977553919E-02 -7.32715214082E-02 -7.43648335494E-02 -7.54781501882E-02 -7.66119424384E-02 -7.77666945106E-02 -7.89429040761E-02 -8.01410826381E-02 -8.13617559106E-02 -8.26054642045E-02 -8.38727628218E-02 -8.51642224560E-02 -8.64804296010E-02 -8.78219869656E-02 -8.91895138954E-02 -9.05836468014E-02 -9.20050395943E-02 -9.34543641250E-02 -9.49323106303E-02 -9.64395881843E-02 -9.79769251536E-02 -9.95450696575E-02 -1.01144790031E-01 -1.02776875293E-01 -1.04442135610E-01 -1.06141402773E-01 -1.07875530663E-01 -1.09645395724E-01 -1.11451897433E-01 -1.13295958763E-01 -1.15178526652E-01 -1.17100572461E-01 -1.19063092422E-01 -1.21067108090E-01 -1.23113666777E-01 -1.25203841975E-01 -1.27338733772E-01 -1.29519469250E-01 -1.31747202866E-01 -1.34023116816E-01 -1.36348421372E-01 -1.38724355207E-01 -1.41152185679E-01 -1.43633209097E-01 -1.46168750946E-01 -1.48760166081E-01 -1.51408838881E-01 -1.54116183358E-01 -1.56883643220E-01 -1.59712691880E-01 -1.62604832417E-01 -1.65561597463E-01 -1.68584549043E-01 -1.71675278324E-01 -1.74835405306E-01 -1.78066578420E-01 -1.81370474042E-01 -1.84748795915E-01 -1.88203274467E-01 -1.91735666021E-01 -1.95347751897E-01 -1.99041337380E-01 -2.02818250572E-01 -2.06680341094E-01 -2.10629478644E-01 -2.14667551407E-01 -2.18796464290E-01 -2.23018136989E-01 -2.27334501872E-01 -2.31747501663E-01 -2.36259086932E-01 -2.40871213362E-01 -2.45585838794E-01 -2.50404920037E-01 -2.55330409427E-01 -2.60364251136E-01 -2.65508377199E-01 -2.70764703272E-01 -2.76135124092E-01 -2.81621508628E-01 -2.87225694932E-01 -2.92949484643E-01 -2.98794637175E-01 -3.04762863542E-01 -3.10855819831E-01 -3.17075100311E-01 -3.23422230161E-01 -3.29898657816E-01 -3.36505746922E-01 -3.43244767893E-01 -3.50116889065E-01 -3.57123167448E-01 -3.64264539060E-01 -3.71541808870E-01 -3.78955640314E-01 -3.86506544428E-01 -3.94194868567E-01 -4.02020784755E-01 -4.09984277643E-01 -4.18085132116E-01 -4.26322920561E-01 -4.34696989805E-01 -4.43206447774E-01 -4.51850149878E-01 -4.60626685180E-01 -4.69534362373E-01 -4.78571195621E-01 -4.87734890314E-01 -4.97022828788E-01 -5.06432056090E-01 -5.15959265837E-01 -5.25600786271E-01 -5.35352566576E-01 -5.45210163560E-01 -5.55168728801E-01 -5.65222996362E-01 -5.75367271202E-01 -5.85595418389E-01 -5.95900853273E-01 -6.06276532735E-01 -6.16714947677E-01 -6.27208116912E-01 -6.37747582597E-01 -6.48324407404E-01 -6.58929173593E-01 -6.69551984165E-01 -6.80182466293E-01 -6.90809777201E-01 -7.01422612706E-01 -7.12009218583E-01 -7.22557404962E-01 -7.33054563930E-01 -7.43487690516E-01 -7.53843407215E-01 -7.64107992222E-01 -7.74267411484E-01 -7.84307354713E-01 -7.94213275423E-01 -8.03970435075E-01 -8.13563951334E-01 -8.22978850439E-01 -8.32200123621E-01 -8.41212787454E-01 -8.50001947987E-01 -8.58552868401E-01 -8.66851039917E-01 -8.74882255556E-01 -8.82632686299E-01 -8.90088959099E-01 -8.97238236093E-01 -9.04068294273E-01 -9.10567604757E-01 -9.16725410707E-01 -9.22531802803E-01 -9.27977791097E-01 -9.33055371930E-01 -9.37757588490E-01 -9.42078583496E-01 -9.46013642348E-01 -9.49559225038E-01 -9.52712985002E-01 -9.55473773036E-01 -9.57841624361E-01 -9.59817726895E-01 -9.61404368806E-01 -9.62604863464E-01 -9.63423449984E-01 -9.63865167716E-01 -9.63935703188E-01 -9.63641208278E-01 -9.62988088690E-01 -9.61982762187E-01 -9.60631386511E-01 -9.58939557422E-01 -9.56911977949E-01 -9.54552100650E-01 -9.51861745456E-01 -9.48840696617E-01 -9.45486283220E-01 -9.41792948827E-01 -9.37754485384E-01 -9.33373048185E-01 -9.28653436597E-01 -9.23600758563E-01 -9.18220423603E-01 -9.12518135357E-01 -9.06499883713E-01 -9.00171936513E-01 -8.93540830882E-01 -8.86613364171E-01 -8.79396584557E-01 -8.71897781310E-01 -8.64124474747E-01 -8.56084405895E-01 -8.47785525889E-01 -8.39235985119E-01 -8.30444122147E-01 -8.21418452426E-01 -8.12167656825E-01 -8.02700570000E-01 -7.93026168611E-01 -7.83153559425E-01 -7.73091967313E-01 -7.62850723163E-01 -7.52439251754E-01 -7.41867059552E-01 -7.31137950620E-01 -7.20267257254E-01 -7.09264656406E-01 -6.98139857618E-01 -6.86902590855E-01 -6.75562594357E-01 -6.64129602582E-01 -6.52613334233E-01 -6.41023480381E-01 -6.29369692700E-01 -6.17661571823E-01 -6.05908655826E-01 -5.94120408874E-01 -5.82306210003E-01 -5.70475342097E-01 -5.58636981024E-01 -5.46800184979E-01 -5.34973884032E-01 -5.23166869886E-01 -5.11387785874E-01 -4.99645117194E-01 -4.87947181409E-01 -4.76302119209E-01 -4.64717885470E-01 -4.53202240611E-01 -4.41762742275E-01 -4.30406737343E-01 -4.19141354311E-01 -4.07973496034E-01 -3.96909832870E-01 -3.85956796237E-01 -3.75120572603E-01 -3.64407097928E-01 -3.53822052579E-01 -3.43370856740E-01 -3.33058666328E-01 -3.22890369434E-01 -3.12870583308E-01 -3.03003651895E-01 -2.93293643936E-01 -2.83744351644E-01 -2.74359289959E-01 -2.65141696383E-01 -2.56094531402E-01 -2.47220479480E-01 -2.38521950634E-01 -2.30001082569E-01 -2.21659743361E-01 -2.13499534681E-01 -2.05521795533E-01 -1.97727606489E-01 -1.90117794393E-01 -1.82692937517E-01 -1.75453371131E-01 -1.68399193464E-01 -1.61530272025E-01 -1.54846250247E-01 -1.48346554431E-01 -1.42030400948E-01 -1.35896803674E-01 -1.29944581622E-01 -1.24172366736E-01 -1.18578611828E-01 -1.13161598611E-01 -1.07919445819E-01 -1.02850117368E-01 -9.79514305481E-02 -9.32210642150E-02 -8.86565669613E-02 -8.42553652483E-02 -8.00147714804E-02 -7.59319920060E-02 -7.20041350316E-02 -6.82282184379E-02 -6.46011774857E-02 -6.11198724054E-02 -5.77810958623E-02 -5.45815802916E-02 -5.15180050993E-02 -4.85870037258E-02 -4.57851705682E-02 -4.31090677605E-02 -4.05552318075E-02 -3.81201800735E-02 -3.58004171201E-02 -3.35924408933E-02 -3.14927487560E-02 -2.94978433616E-02 -2.76042383658E-02 -2.58084639711E-02 -2.41070722983E-02 -2.24966425783E-02 -2.09737861579E-02 -1.95351513127E-02 -1.81774278565E-02 -1.68973515428E-02 -1.56917082466E-02 -1.45573379208E-02 -1.34911383173E-02 -1.24900684668E-02 -1.15511519089E-02 -1.06714796665E-02 -9.84821296018E-03 -9.07858565627E-03 -8.35990644672E-03 -7.68956075809E-03 -7.06501238892E-03 -6.48380487599E-03 -5.94356259136E-03 -5.44199157327E-03 -4.97688009554E-03 -4.54609898126E-03 -4.14760166772E-03 -3.77942403092E-03 -3.43968397889E-03 -3.12658082412E-03 -2.83839444629E-03 -2.57348425718E-03 -2.33028798053E-03 -2.10732025979E-03 -1.90317110763E-03 -1.71650421080E-03 -1.54605510479E-03 -1.39062923214E-03 -1.24909989893E-03 -1.12040614318E-03 -1.00355052924E-03 -8.97596881644E-04 -8.01667971451E-04 -7.14943168047E-04 -6.36656068334E-04 -5.66092115043E-04 -5.02586215116E-04 -4.45520368464E-04 -3.94321316723E-04 -3.48458220881E-04 -3.07440375952E-04 -2.70814970067E-04 -2.38164894663E-04 -2.09106611634E-04 -1.83288082643E-04 -1.60386765004E-04 -1.40107677875E-04 -1.22181541825E-04 -1.06362994159E-04 -9.24288817963E-05 -8.01766328921E-05 -6.94227078403E-05 -6.00011298028E-05 -5.17620944197E-05 -4.45706579335E-05 -3.83055025668E-05 -3.28577776447E-05 -2.81300146424E-05 -2.40351140708E-05 -2.04954018790E-05 -1.74417528633E-05 -1.48127784083E-05 -1.25540757691E-05 -1.06175360025E-05 -8.96070760055E-06 -7.54621284078E-06 -6.34121385814E-06 -5.31692545888E-06 -4.44817172906E-06 -3.71298354359E-06 -3.09223414973E-06 -2.56931008168E-06 -2.12981475588E-06 -1.76130220043E-06 -1.45304240869E-06 -1.19583912414E-06 -9.81762723824E-07 -8.04022363421E-07 -6.56820775592E-07 -5.35221538179E-07 -4.35032159390E-07 -3.52701385761E-07 -2.85229263394E-07 -2.30088603446E-07 -1.85156618980E-07 -1.48655611771E-07 -1.19101694634E-07 -9.52606373371E-08 -7.61100229631E-08 -6.08069971067E-08 -4.84401841655E-08 -3.85008166464E-08 -3.05097845058E-08 -2.41044469586E-08 -1.89857440195E-08 -1.49078105836E-08 -1.16691460143E-08 -9.10513103627E-09 -7.08170748813E-09 -5.49005818407E-09 -4.24214383940E-09 -3.26697183496E-09 -2.50748762554E-09 -1.91799396540E-09 -1.46201589390E-09 -1.11054081840E-09 -8.40573025209E-10 -6.33950778206E-10 -4.76381874462E-10 -3.56660244589E-10 -2.66032010617E-10 -1.97684442381E-10 -1.46335573634E-10 -1.07905934389E-10 -7.92570021757E-11 -5.79836415126E-11 -4.22500505303E-11 -3.06606229566E-11 -2.21587129015E-11 -1.59476038795E-11 -1.14290717056E-11 -8.15582789289E-12 -5.79486607449E-12 -4.09933484685E-12 -2.88704871437E-12 -2.02414370171E-12 -1.41270200914E-12 -9.81424616196E-13 -6.78633589138E-13 -4.67046710384E-13 -3.19893978610E-13 -2.18045179763E-13 -1.47895567657E-13 -9.98171816901E-14 -6.70300928421E-14 -4.47838333777E-14 -2.97667791474E-14 -1.96821899726E-14 -1.29454601270E-14 -8.46905993753E-15 -5.51058043621E-15 -3.56594239689E-15 -2.29475423173E-15 -1.46842773029E-15 -9.34313874767E-16 -5.91052061868E-16 -3.71723395126E-16 -2.32403882684E-16 -1.44432155821E-16 -8.92172300411E-17 -5.47727807732E-17 -3.34178516617E-17 -2.02607721063E-17 -1.22057031454E-17 -7.30573891523E-18 -4.34434966024E-18 -2.56630920486E-18 -1.50584624030E-18 -8.77613133198E-19 -5.07971532189E-19 -2.91979178372E-19 -1.66648971164E-19 -9.44393869175E-20 -5.31330180479E-20 -2.96754396200E-20 -1.64517172456E-20 -9.05245255868E-21 -4.94334886486E-21 -2.67876593921E-21 -1.44033919479E-21 -7.68367104997E-22 -4.06633971297E-22 -2.13464595530E-22 -1.11145324659E-22 -5.73924782725E-23 -2.93881278037E-23 -1.49209398263E-23 -7.51071590270E-24 -3.74783430762E-24 -1.85372678359E-24 -9.08718074936E-25 -4.41450390122E-25 -2.12497841870E-25 -1.01343753271E-25 -4.78804935904E-26 -2.24072273814E-26 -1.03856465964E-26 -4.76696837497E-27 -2.16651173319E-27 -9.74845804097E-28 -4.34222475153E-28 -1.91440957329E-28 -8.35309851951E-29 -3.60656557821E-29 -1.54069306910E-29 -6.51112975321E-30 -2.72179633592E-30 -1.12526378412E-30 -4.60036337222E-31 -1.85955012325E-31 -7.43087073688E-32 -2.93511363406E-32 -1.14577692061E-32 -4.41978252377E-33 -1.68446637197E-33 -6.34188731194E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.90600996046E-08 8.10615154708E-08 8.31135974167E-08 8.52176280599E-08 8.73749224876E-08 8.95868290788E-08 9.18547303467E-08 9.41800438030E-08 9.65642228440E-08 9.90087576586E-08 1.01515176160E-07 1.04085044942E-07 1.06719970254E-07 1.09421599010E-07 1.12191619817E-07 1.15031764026E-07 1.17943806819E-07 1.20929568317E-07 1.23990914718E-07 1.27129759462E-07 1.30348064428E-07 1.33647841161E-07 1.37031152129E-07 1.40500112008E-07 1.44056889013E-07 1.47703706242E-07 1.51442843075E-07 1.55276636593E-07 1.59207483040E-07 1.63237839321E-07 1.67370224540E-07 1.71607221571E-07 1.75951478673E-07 1.80405711147E-07 1.84972703032E-07 1.89655308844E-07 1.94456455363E-07 1.99379143460E-07 2.04426449974E-07 2.09601529632E-07 2.14907617028E-07 2.20348028635E-07 2.25926164886E-07 2.31645512295E-07 2.37509645638E-07 2.43522230186E-07 2.49687023998E-07 2.56007880268E-07 2.62488749733E-07 2.69133683144E-07 2.75946833798E-07 2.82932460133E-07 2.90094928387E-07 2.97438715334E-07 3.04968411074E-07 3.12688721909E-07 3.20604473278E-07 3.28720612781E-07 3.37042213262E-07 3.45574475989E-07 3.54322733896E-07 3.63292454924E-07 3.72489245435E-07 3.81918853715E-07 3.91587173570E-07 4.01500248007E-07 4.11664273012E-07 4.22085601425E-07 4.32770746905E-07 4.43726388009E-07 4.54959372359E-07 4.66476720925E-07 4.78285632417E-07 4.90393487776E-07 5.02807854796E-07 5.15536492847E-07 5.28587357730E-07 5.41968606648E-07 5.55688603303E-07 5.69755923125E-07 5.84179358630E-07 5.98967924921E-07 6.14130865314E-07 6.29677657124E-07 6.45618017582E-07 6.61961909914E-07 6.78719549563E-07 6.95901410577E-07 7.13518232156E-07 7.31581025364E-07 7.50101080008E-07 7.69089971698E-07 7.88559569083E-07 8.08522041265E-07 8.28989865408E-07 8.49975834535E-07 8.71493065527E-07 8.93555007318E-07 9.16175449300E-07 9.39368529948E-07 9.63148745650E-07 9.87530959771E-07 1.01253041194E-06 1.03816272759E-06 1.06444392768E-06 1.09139043879E-06 1.11901910329E-06 1.14734718994E-06 1.17639240465E-06 1.20617290157E-06 1.23670729441E-06 1.26801466808E-06 1.30011459063E-06 1.33302712549E-06 1.36677284396E-06 1.40137283815E-06 1.43684873407E-06 1.47322270522E-06 1.51051748641E-06 1.54875638798E-06 1.58796331039E-06 1.62816275911E-06 1.66937985998E-06 1.71164037491E-06 1.75497071794E-06 1.79939797182E-06 1.84494990485E-06 1.89165498834E-06 1.93954241429E-06 1.98864211374E-06 2.03898477541E-06 2.09060186491E-06 2.14352564438E-06 2.19778919270E-06 2.25342642612E-06 2.31047211948E-06 2.36896192795E-06 2.42893240929E-06 2.49042104673E-06 2.55346627238E-06 2.61810749124E-06 2.68438510585E-06 2.75234054155E-06 2.82201627233E-06 2.89345584741E-06 2.96670391847E-06 3.04180626750E-06 3.11880983549E-06 3.19776275171E-06 3.27871436383E-06 3.36171526872E-06 3.44681734411E-06 3.53407378102E-06 3.62353911697E-06 3.71526927007E-06 3.80932157401E-06 3.90575481386E-06 4.00462926280E-06 4.10600671983E-06 4.20995054836E-06 4.31652571582E-06 4.42579883429E-06 4.53783820208E-06 4.65271384649E-06 4.77049756750E-06 4.89126298269E-06 5.01508557326E-06 5.14204273114E-06 5.27221380746E-06 5.40568016206E-06 5.54252521437E-06 5.68283449554E-06 5.82669570192E-06 5.97419874984E-06 6.12543583181E-06 6.28050147416E-06 6.43949259610E-06 6.60250857028E-06 6.76965128494E-06 6.94102520755E-06 7.11673745010E-06 7.29689783606E-06 7.48161896903E-06 7.67101630307E-06 7.86520821491E-06 8.06431607787E-06 8.26846433777E-06 8.47778059070E-06 8.69239566270E-06 8.91244369163E-06 9.13806221089E-06 9.36939223545E-06 9.60657834996E-06 9.84976879909E-06 1.00991155802E-05 1.03547745383E-05 1.06169054635E-05 1.08856721908E-05 1.11612427026E-05 1.14437892335E-05 1.17334883781E-05 1.20305212012E-05 1.23350733513E-05 1.26473351760E-05 1.29675018417E-05 1.32957734550E-05 1.36323551879E-05 1.39774574062E-05 1.43312958008E-05 1.46940915224E-05 1.50660713200E-05 1.54474676824E-05 1.58385189832E-05 1.62394696306E-05 1.66505702191E-05 1.70720776869E-05 1.75042554762E-05 1.79473736976E-05 1.84017092991E-05 1.88675462393E-05 1.93451756646E-05 1.98348960912E-05 2.03370135917E-05 2.08518419863E-05 2.13797030389E-05 2.19209266582E-05 2.24758511039E-05 2.30448231978E-05 2.36281985410E-05 2.42263417356E-05 2.48396266128E-05 2.54684364663E-05 2.61131642921E-05 2.67742130338E-05 2.74519958345E-05 2.81469362948E-05 2.88594687375E-05 2.95900384793E-05 3.03391021086E-05 3.11071277710E-05 3.18945954616E-05 3.27019973253E-05 3.35298379639E-05 3.43786347516E-05 3.52489181579E-05 3.61412320796E-05 3.70561341801E-05 3.79941962380E-05 3.89560045043E-05 3.99421600685E-05 4.09532792346E-05 4.19899939055E-05 4.30529519782E-05 4.41428177483E-05 4.52602723252E-05 4.64060140575E-05 4.75807589689E-05 4.87852412063E-05 5.00202134975E-05 5.12864476221E-05 5.25847348929E-05 5.39158866511E-05 5.52807347720E-05 5.66801321857E-05 5.81149534089E-05 5.95860950918E-05 6.10944765777E-05 6.26410404776E-05 6.42267532583E-05 6.58526058468E-05 6.75196142487E-05 6.92288201826E-05 7.09812917310E-05 7.27781240071E-05 7.46204398390E-05 7.65093904705E-05 7.84461562800E-05 8.04319475180E-05 8.24680050625E-05 8.45556011936E-05 8.66960403886E-05 8.88906601359E-05 9.11408317702E-05 9.34479613288E-05 9.58134904294E-05 9.82388971703E-05 1.00725697053E-04 1.03275443927E-04 1.05889730964E-04 1.08570191647E-04 1.11318500792E-04 1.14136375597E-04 1.17025576708E-04 1.19987909322E-04 1.23025224311E-04 1.26139419380E-04 1.29332440248E-04 1.32606281867E-04 1.35962989661E-04 1.39404660807E-04 1.42933445541E-04 1.46551548503E-04 1.50261230106E-04 1.54064807955E-04 1.57964658286E-04 1.61963217452E-04 1.66062983439E-04 1.70266517430E-04 1.74576445398E-04 1.78995459747E-04 1.83526320987E-04 1.88171859459E-04 1.92934977101E-04 1.97818649254E-04 2.02825926520E-04 2.07959936662E-04 2.13223886558E-04 2.18621064196E-04 2.24154840724E-04 2.29828672555E-04 2.35646103518E-04 2.41610767069E-04 2.47726388553E-04 2.53996787528E-04 2.60425880144E-04 2.67017681583E-04 2.73776308561E-04 2.80705981891E-04 2.87811029115E-04 2.95095887199E-04 3.02565105293E-04 3.10223347570E-04 3.18075396125E-04 3.26126153954E-04 3.34380648009E-04 3.42844032326E-04 3.51521591232E-04 3.60418742634E-04 3.69541041394E-04 3.78894182781E-04 3.88484006018E-04 3.98316497913E-04 4.08397796585E-04 4.18734195278E-04 4.29332146279E-04 4.40198264928E-04 4.51339333732E-04 4.62762306579E-04 4.74474313062E-04 4.86482662912E-04 4.98794850537E-04 5.11418559678E-04 5.24361668185E-04 5.37632252910E-04 5.51238594717E-04 5.65189183631E-04 5.79492724106E-04 5.94158140425E-04 6.09194582242E-04 6.24611430259E-04 6.40418302040E-04 6.56625057984E-04 6.73241807434E-04 6.90278914947E-04 7.07747006718E-04 7.25656977165E-04 7.44019995679E-04 7.62847513547E-04 7.82151271035E-04 8.01943304668E-04 8.22235954673E-04 8.43041872619E-04 8.64374029244E-04 8.86245722480E-04 9.08670585675E-04 9.31662596020E-04 9.55236083189E-04 9.79405738194E-04 1.00418662246E-03 1.02959417712E-03 1.05564423255E-03 1.08235301815E-03 1.10973717233E-03 1.13781375281E-03 1.16660024707E-03 1.19611458323E-03 1.22637514098E-03 1.25740076298E-03 1.28921076644E-03 1.32182495498E-03 1.35526363085E-03 1.38954760739E-03 1.42469822182E-03 1.46073734837E-03 1.49768741168E-03 1.53557140061E-03 1.57441288229E-03 1.61423601661E-03 1.65506557101E-03 1.69692693568E-03 1.73984613906E-03 1.78384986380E-03 1.82896546310E-03 1.87522097738E-03 1.92264515143E-03 1.97126745200E-03 2.02111808573E-03 2.07222801760E-03 2.12462898978E-03 2.17835354100E-03 2.23343502632E-03 2.28990763743E-03 2.34780642345E-03 2.40716731218E-03 2.46802713195E-03 2.53042363393E-03 2.59439551500E-03 2.65998244121E-03 2.72722507177E-03 2.79616508360E-03 2.86684519654E-03 2.93930919914E-03 3.01360197500E-03 3.08976952987E-03 3.16785901930E-03 3.24791877700E-03 3.32999834389E-03 3.41414849776E-03 3.50042128380E-03 3.58887004565E-03 3.67954945739E-03 3.77251555613E-03 3.86782577551E-03 3.96553897985E-03 4.06571549924E-03 4.16841716539E-03 4.27370734830E-03 4.38165099386E-03 4.49231466229E-03 4.60576656748E-03 4.72207661727E-03 4.84131645462E-03 4.96355949981E-03 5.08888099356E-03 5.21735804117E-03 5.34906965767E-03 5.48409681402E-03 5.62252248436E-03 5.76443169435E-03 5.90991157058E-03 6.05905139120E-03 6.21194263753E-03 6.36867904705E-03 6.52935666736E-03 6.69407391156E-03 6.86293161470E-03 7.03603309160E-03 7.21348419592E-03 7.39539338048E-03 7.58187175904E-03 7.77303316930E-03 7.96899423736E-03 8.16987444354E-03 8.37579618968E-03 8.58688486781E-03 8.80326893037E-03 9.02507996188E-03 9.25245275218E-03 9.48552537113E-03 9.72443924500E-03 9.96933923433E-03 1.02203737135E-02 1.04776946519E-02 1.07414576967E-02 1.10118222576E-02 1.12889515927E-02 1.15730128968E-02 1.18641773908E-02 1.21626204135E-02 1.24685215147E-02 1.27820645502E-02 1.31034377788E-02 1.34328339610E-02 1.37704504599E-02 1.41164893432E-02 1.44711574878E-02 1.48346666863E-02 1.52072337550E-02 1.55890806439E-02 1.59804345490E-02 1.63815280262E-02 1.67925991073E-02 1.72138914179E-02 1.76456542971E-02 1.80881429195E-02 1.85416184190E-02 1.90063480141E-02 1.94826051361E-02 1.99706695582E-02 2.04708275269E-02 2.09833718957E-02 2.15086022600E-02 2.20468250941E-02 2.25983538903E-02 2.31635092989E-02 2.37426192713E-02 2.43360192034E-02 2.49440520814E-02 2.55670686290E-02 2.62054274561E-02 2.68594952091E-02 2.75296467224E-02 2.82162651709E-02 2.89197422246E-02 2.96404782032E-02 3.03788822325E-02 3.11353724017E-02 3.19103759205E-02 3.27043292781E-02 3.35176784020E-02 3.43508788170E-02 3.52043958050E-02 3.60787045641E-02 3.69742903680E-02 3.78916487245E-02 3.88312855344E-02 3.97937172482E-02 4.07794710227E-02 4.17890848757E-02 4.28231078398E-02 4.38821001132E-02 4.49666332093E-02 4.60772901031E-02 4.72146653750E-02 4.83793653509E-02 4.95720082392E-02 5.07932242635E-02 5.20436557903E-02 5.33239574522E-02 5.46347962655E-02 5.59768517418E-02 5.73508159928E-02 5.87573938282E-02 6.01973028460E-02 6.16712735138E-02 6.31800492418E-02 6.47243864456E-02 6.63050545986E-02 6.79228362731E-02 6.95785271697E-02 7.12729361328E-02 7.30068851539E-02 7.47812093582E-02 7.65967569772E-02 7.84543893034E-02 8.03549806279E-02 8.22994181586E-02 8.42886019188E-02 8.63234446237E-02 8.84048715356E-02 9.05338202940E-02 9.27112407214E-02 9.49380946018E-02 9.72153554314E-02 9.95440081399E-02 1.01925048780E-01 1.04359484185E-01 1.06848331590E-01 1.09392618219E-01 1.11993380833E-01 1.14651665236E-01 1.17368525745E-01 1.20145024605E-01 1.22982231374E-01 1.25881222243E-01 1.28843079318E-01 1.31868889843E-01 1.34959745371E-01 1.38116740878E-01 1.41340973815E-01 1.44633543099E-01 1.47995548043E-01 1.51428087213E-01 1.54932257222E-01 1.58509151446E-01 1.62159858668E-01 1.65885461648E-01 1.69687035605E-01 1.73565646624E-01 1.77522349975E-01 1.81558188342E-01 1.85674189964E-01 1.89871366685E-01 1.94150711901E-01 1.98513198419E-01 2.02959776207E-01 2.07491370044E-01 2.12108877067E-01 2.16813164209E-01 2.21605065532E-01 2.26485379438E-01 2.31454865783E-01 2.36514242868E-01 2.41664184316E-01 2.46905315836E-01 2.52238211868E-01 2.57663392119E-01 2.63181317971E-01 2.68792388783E-01 2.74496938077E-01 2.80295229609E-01 2.86187453329E-01 2.92173721233E-01 2.98254063116E-01 3.04428422211E-01 3.10696650745E-01 3.17058505396E-01 3.23513642665E-01 3.30061614178E-01 3.36701861906E-01 3.43433713333E-01 3.50256376572E-01 3.57168935438E-01 3.64170344498E-01 3.71259424102E-01 3.78434855420E-01 3.85695175496E-01 3.93038772329E-01 4.00463880023E-01 4.07968573994E-01 4.15550766287E-01 4.23208201007E-01 4.30938449899E-01 4.38738908097E-01 4.46606790074E-01 4.54539125832E-01 4.62532757346E-01 4.70584335312E-01 4.78690316227E-01 4.86846959838E-01 4.95050327005E-01 5.03296278009E-01 5.11580471355E-01 5.19898363110E-01 5.28245206820E-01 5.36616054049E-01 5.45005755596E-01 5.53408963424E-01 5.61820133357E-01 5.70233528586E-01 5.78643224047E-01 5.87043111687E-01 5.95426906703E-01 6.03788154756E-01 6.12120240243E-01 6.20416395637E-01 6.28669711940E-01 6.36873150291E-01 6.45019554744E-01 6.53101666254E-01 6.61112137866E-01 6.69043551149E-01 6.76888433847E-01 6.84639278768E-01 6.92288563873E-01 6.99828773561E-01 7.07252421099E-01 7.14552072159E-01 7.21720369391E-01 7.28750057964E-01 7.35634011983E-01 7.42365261668E-01 7.48937021185E-01 7.55342716979E-01 7.61576016455E-01 7.67630856822E-01 7.73501473926E-01 7.79182430826E-01 7.84668645919E-01 7.89955420328E-01 7.95038464310E-01 7.99913922395E-01 8.04578396947E-01 8.09028969852E-01 8.13263222004E-01 8.17279250255E-01 8.21075681503E-01 8.24651683585E-01 8.28006972623E-01 8.31141816533E-01 8.34057034358E-01 8.36753991143E-01 8.39234588094E-01 8.41501247776E-01 8.43556894161E-01 8.45404927373E-01 8.47049193042E-01 8.48493946223E-01 8.49743809910E-01 8.50803728270E-01 8.51678914759E-01 8.52374795403E-01 8.52896947610E-01 8.53251034942E-01 8.53442738411E-01 8.53477684905E-01 8.53361373464E-01 8.53099100189E-01 8.52695882621E-01 8.52156384477E-01 8.51484841665E-01 8.50684990460E-01 8.49759998738E-01 8.48712401049E-01 8.47544038210E-01 8.46256001955E-01 8.44848584931E-01 8.43321236075E-01 8.41672521080E-01 8.39900087239E-01 8.38000631519E-01 8.35969870184E-01 8.33802507701E-01 8.31492202050E-01 8.29031522875E-01 8.26411898213E-01 8.23623544858E-01 8.20657615451E-01 8.17513340141E-01 8.14192186626E-01 8.10695748480E-01 8.07025743089E-01 8.03184009457E-01 7.99172505887E-01 7.94993307537E-01 7.90648603870E-01 7.86140695996E-01 7.81471993924E-01 7.76645013717E-01 7.71662374576E-01 7.66526795842E-01 7.61241093941E-01 7.55808179264E-01 7.50231053001E-01 7.44512803926E-01 7.38656605154E-01 7.32665710853E-01 7.26543452945E-01 7.20293237780E-01 7.13918542794E-01 7.07422913170E-01 7.00809958498E-01 6.94083349415E-01 6.87245520435E-01 6.80301531666E-01 6.73255216443E-01 6.66110455741E-01 6.58871174842E-01 6.51541339999E-01 6.44124955106E-01 6.36626058390E-01 6.29048719104E-01 6.21397034217E-01 6.13675125106E-01 6.05887134248E-01 5.98037221894E-01 5.90129562744E-01 5.82168342588E-01 5.74157754950E-01 5.66101997684E-01 5.58005269560E-01 5.49871766805E-01 5.41705679620E-01 5.33511188649E-01 5.25292461415E-01 5.17053648715E-01 5.08798880971E-01 5.00532264545E-01 4.92257878023E-01 4.83979768458E-01 4.75701947596E-01 4.67428388081E-01 4.59163019654E-01 4.50909725351E-01 4.42672337722E-01 4.34454635077E-01 4.26260337772E-01 4.18093104572E-01 4.09956529075E-01 4.01854136250E-01 3.93789379081E-01 3.85765635360E-01 3.77786204618E-01 3.69854305251E-01 3.61973071819E-01 3.54145552564E-01 3.46374707151E-01 3.38663404637E-01 3.31014421701E-01 3.23430441118E-01 3.15914050508E-01 3.08467741343E-01 3.01093908230E-01 2.93794848459E-01 2.86572761818E-01 2.79429750661E-01 2.72367820227E-01 2.65388879197E-01 2.58494740472E-01 2.51687122155E-01 2.44967648726E-01 2.38337852383E-01 2.31799174530E-01 2.25352967392E-01 2.19000495728E-01 2.12742938624E-01 2.06581391339E-01 2.00516867178E-01 1.94550299372E-01 1.88682542940E-01 1.82914376507E-01 1.77246504068E-01 1.71679556659E-01 1.66214093943E-01 1.60850605675E-01 1.55589513044E-01 1.50431169875E-01 1.45375863695E-01 1.40423816645E-01 1.35575186250E-01 1.30830066039E-01 1.26188486027E-01 1.21650413065E-01 1.17215751074E-01 1.12884341162E-01 1.08655961668E-01 1.04530328121E-01 1.00507093158E-01 9.65858464105E-02 9.27661143864E-02 8.90473603702E-02 8.54289843636E-02 8.19103230896E-02 7.84906500830E-02 7.51691758861E-02 7.19450483691E-02 6.88173531931E-02 6.57851144286E-02 6.28472953433E-02 6.00027993683E-02 5.72504712499E-02 5.45890983918E-02 5.20174123896E-02 4.95340907563E-02 4.71377588369E-02 4.48269919060E-02 4.26003174409E-02 4.04562175619E-02 3.83931316271E-02 3.64094589715E-02 3.45035617740E-02 3.26737680411E-02 3.09183746877E-02 2.92356507035E-02 2.76238403849E-02 2.60811666182E-02 2.46058341967E-02 2.31960331560E-02 2.18499421106E-02 2.05657315778E-02 1.93415672726E-02 1.81756133598E-02 1.70660356502E-02 1.60110047281E-02 1.50086989974E-02 1.40573076365E-02 1.31550334517E-02 1.23000956195E-02 1.14907323108E-02 1.07252031882E-02 1.00017917727E-02 9.31880767212E-03 8.67458866823E-03 8.06750265946E-03 7.49594945578E-03 6.95836242464E-03 6.45320998699E-03 5.97899696324E-03 5.53426576978E-03 5.11759746735E-03 4.72761266328E-03 4.36297227000E-03 4.02237812308E-03 3.70457346227E-03 3.40834327965E-03 3.13251453942E-03 2.87595627411E-03 2.63757956241E-03 2.41633739425E-03 2.21122442853E-03 2.02127664983E-03 1.84557092981E-03 1.68322449980E-03 1.53339434072E-03 1.39527649675E-03 1.26810531913E-03 1.15115264638E-03 1.04372692736E-03 9.45172293290E-04 8.54867584970E-04 7.72225341117E-04 6.96690753773E-04 6.27740596365E-04 5.64882129966E-04 5.07651993036E-04 4.55615079698E-04 4.08363411360E-04 3.65515006266E-04 3.26712751284E-04 2.91623279979E-04 2.59935860733E-04 2.31361298443E-04 2.05630852948E-04 1.82495669337E-04 1.61729639204E-04 1.43118857514E-04 1.26465411326E-04 1.11586987539E-04 9.83159258273E-05 8.64983086089E-05 7.59930890539E-05 6.66712580127E-05 5.84150506698E-05 5.11171936767E-05 4.46801935010E-05 3.90156667687E-05 3.40437134378E-05 2.96923338115E-05 2.58968906159E-05 2.25467005118E-05 1.96157668676E-05 1.70346880862E-05 1.47658918053E-05 1.27753161412E-05 1.10321423762E-05 9.50854154709E-06 8.17943485592E-06 7.02226775359E-06 6.01679748245E-06 5.14489380501E-06 4.39035259430E-06 3.73872191181E-06 3.17714018423E-06 2.69418599339E-06 2.27973905603E-06 1.92485187831E-06 1.62163158338E-06 1.36313139478E-06 1.14325125211E-06 9.56647033775E-07 7.98647864090E-07 6.65180987919E-07 5.52703705396E-07 4.58141871316E-07 3.78834478433E-07 3.12483860534E-07 2.57111069661E-07 2.11016001608E-07 1.72741864736E-07 1.41043608791E-07 1.14859952511E-07 9.32886711624E-08 7.55648274574E-08 6.10416513840E-08 4.91737961895E-08 3.95027188593E-08 3.16439538601E-08 2.52760685260E-08 2.01311071795E-08 1.59863488244E-08 1.26572199886E-08 9.99121998314E-09 7.86273048213E-09 6.16859490807E-09 4.82436563927E-09 3.76112856987E-09 2.92282507427E-09 2.26400099880E-09 1.74792096765E-09 1.34499409786E-09 1.03146422042E-09 7.88323956875E-10 6.00417557480E-10 4.55702323014E-10 3.44642762811E-10 2.59715438196E-10 1.95005754898E-10 1.45880848224E-10 1.08725196552E-10 8.07277448416E-11 5.97111600063E-11 4.39954107621E-11 3.22891992893E-11 2.36039011719E-11 1.71856208982E-11 1.24617672658E-11 8.99921814443E-12 6.47169650958E-12 4.63443642730E-12 3.30459357618E-12 2.34616279811E-12 1.65841619616E-12 1.16707898089E-12 8.17624747662E-13 5.70204053131E-13 3.95825876401E-13 2.73495685702E-13 1.88080461895E-13 1.28723535239E-13 8.76732591351E-14 5.94216592719E-14 4.00741215182E-14 2.68904273025E-14 1.79522280032E-14 1.19233453606E-14 7.87787008503E-15 5.17752113784E-15 3.38460829896E-15 2.20059006165E-15 1.42293295919E-15 9.14985641691E-16 5.85057133109E-16 3.71968075123E-16 2.35128507488E-16 1.47762962099E-16 9.23112485731E-17 5.73244701025E-17 3.53825480226E-17 2.17054415968E-17 1.32325952399E-17 8.01649093569E-18 4.82560782513E-18 2.88611290084E-18 1.71487660760E-18 1.01222009500E-18 5.93476262062E-19 3.45606112691E-19 1.99881236251E-19 1.14798867933E-19 6.54696615383E-20 3.70715687479E-20 2.08401669117E-20 1.16300417191E-20 6.44230374722E-21 3.54193395174E-21 1.93258247520E-21 1.04638715261E-21 5.62162001829E-22 2.99642019843E-22 1.58442966171E-22 8.31052705972E-23 4.32339896708E-23 2.23058324028E-23 1.14120219102E-23 5.78911128799E-24 2.91152055150E-24 1.45157479164E-24 7.17336476036E-25 3.51335550441E-25 1.70525016670E-25 8.20108757709E-26 3.90770746424E-26 1.84454457908E-26 8.62425156360E-27 3.99362067499E-27 1.83135557882E-27 8.31544848176E-28 3.73810774860E-28 1.66347550589E-28 7.32696461482E-29 3.19388152633E-29 1.37766544604E-29 5.87951497410E-30 2.48229733456E-30 1.03662511767E-30 4.28139799259E-31 1.74857792227E-31 7.06087796721E-32 2.81867358742E-32 1.11219385639E-32 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.90575182627E-08 8.10588687820E-08 8.31108837265E-08 8.52148456722E-08 8.73720696633E-08 8.95839040347E-08 9.18517312546E-08 9.41769687884E-08 9.65610699848E-08 9.90055249841E-08 1.01511861650E-07 1.04081646524E-07 1.06716485805E-07 1.09418026352E-07 1.12187956716E-07 1.15028008192E-07 1.17939955905E-07 1.20925619917E-07 1.23986866363E-07 1.27125608622E-07 1.30343808509E-07 1.33643477503E-07 1.37026678003E-07 1.40495524620E-07 1.44052185494E-07 1.47698883652E-07 1.51437898400E-07 1.55271566742E-07 1.59202284845E-07 1.63232509533E-07 1.67364759827E-07 1.71601618518E-07 1.75945733777E-07 1.80399820817E-07 1.84966663587E-07 1.89649116509E-07 1.94450106268E-07 1.99372633636E-07 2.04419775352E-07 2.09594686041E-07 2.14900600190E-07 2.20340834164E-07 2.25918788285E-07 2.31637948954E-07 2.37501890829E-07 2.43514279062E-07 2.49678871589E-07 2.55999521479E-07 2.62480179339E-07 2.69124895789E-07 2.75937823989E-07 2.82923222238E-07 2.90085456633E-07 2.97429003799E-07 3.04958453690E-07 3.12678512451E-07 3.20594005366E-07 3.28709879870E-07 3.37031208645E-07 3.45563192787E-07 3.54311165057E-07 3.63280593218E-07 3.72477083446E-07 3.81906383843E-07 3.91574388020E-07 4.01487138787E-07 4.11650831929E-07 4.22071820078E-07 4.32756616680E-07 4.43711900073E-07 4.54944517657E-07 4.66461490174E-07 4.78270016095E-07 4.90377476123E-07 5.02791437803E-07 5.15519660254E-07 5.28570099017E-07 5.41950911026E-07 5.55670459712E-07 5.69737320224E-07 5.84160284793E-07 5.98948368224E-07 6.14110813535E-07 6.29657097729E-07 6.45596937722E-07 6.61940296412E-07 6.78697388910E-07 6.95878688923E-07 7.13494935299E-07 7.31557138742E-07 7.50076588691E-07 7.69064860379E-07 7.88533822066E-07 8.08495642458E-07 8.28962798310E-07 8.49948082229E-07 8.71464610667E-07 8.93525832117E-07 9.16145535525E-07 9.39337858901E-07 9.63117298160E-07 9.87498716183E-07 1.01249735210E-06 1.03812883083E-06 1.06440917283E-06 1.09135480411E-06 1.11898256651E-06 1.14730972823E-06 1.17635399459E-06 1.20613351916E-06 1.23666691503E-06 1.26797326649E-06 1.30007214095E-06 1.33298360119E-06 1.36672821784E-06 1.40132708231E-06 1.43680181992E-06 1.47317460343E-06 1.51046816692E-06 1.54870581997E-06 1.58791146224E-06 1.62810959842E-06 1.66932535352E-06 1.71158448861E-06 1.75491341688E-06 1.79933922017E-06 1.84488966591E-06 1.89159322443E-06 1.93947908683E-06 1.98857718314E-06 2.03891820109E-06 2.09053360525E-06 2.14345565673E-06 2.19771743330E-06 2.25335285013E-06 2.31039668091E-06 2.36888457965E-06 2.42885310291E-06 2.49033973271E-06 2.55338289989E-06 2.61802200817E-06 2.68429745878E-06 2.75225067568E-06 2.82192413151E-06 2.89336137404E-06 2.96660705350E-06 3.04170695039E-06 3.11870800417E-06 3.19765834253E-06 3.27860731152E-06 3.36160550638E-06 3.44670480314E-06 3.53395839108E-06 3.62342080592E-06 3.71514796398E-06 3.80919719706E-06 3.90562728831E-06 4.00449850894E-06 4.10587265594E-06 4.20981309064E-06 4.31638477836E-06 4.42565432900E-06 4.53769003865E-06 4.65256193230E-06 4.77034180761E-06 4.89110327975E-06 5.01492182744E-06 5.14187484011E-06 5.27204166628E-06 5.40550366313E-06 5.54234424738E-06 5.68264894739E-06 5.82650545663E-06 5.97400368850E-06 6.12523583252E-06 6.28029641190E-06 6.43928234271E-06 6.60229299435E-06 6.76943025173E-06 6.94079857890E-06 7.11650508437E-06 7.29665958803E-06 7.48137468978E-06 7.67076583993E-06 7.86495141133E-06 8.06405277334E-06 8.26819436774E-06 8.47750378641E-06 8.69211185117E-06 8.91215269546E-06 9.13776384821E-06 9.36908631978E-06 9.60626469009E-06 9.84944719899E-06 1.00987858389E-05 1.03544364496E-05 1.06165588162E-05 1.08853167682E-05 1.11608782826E-05 1.14434155883E-05 1.17331052741E-05 1.20301283991E-05 1.23346706055E-05 1.26469222349E-05 1.29670784471E-05 1.32953393423E-05 1.36319100858E-05 1.39770010365E-05 1.43308278783E-05 1.46936117546E-05 1.50655794071E-05 1.54469633168E-05 1.58380018499E-05 1.62389394062E-05 1.66500265724E-05 1.70715202781E-05 1.75036839568E-05 1.79467877104E-05 1.84011084780E-05 1.88669302088E-05 1.93445440396E-05 1.98342484769E-05 2.03363495835E-05 2.08511611691E-05 2.13790049872E-05 2.19202109358E-05 2.24751172634E-05 2.30440707807E-05 2.36274270770E-05 2.42255507425E-05 2.48388155962E-05 2.54676049195E-05 2.61123116953E-05 2.67733388542E-05 2.74510995258E-05 2.81460172968E-05 2.88585264759E-05 2.95890723652E-05 3.03381115382E-05 3.11061121252E-05 3.18935541057E-05 3.27009296086E-05 3.35287432190E-05 3.43775122944E-05 3.52477672870E-05 3.61400520757E-05 3.70549243058E-05 3.79929557371E-05 3.89547326016E-05 3.99408559692E-05 4.09519421237E-05 4.19886229474E-05 4.30515463162E-05 4.41413765039E-05 4.52587945978E-05 4.64044989236E-05 4.75792054817E-05 4.87836483950E-05 5.00185803668E-05 5.12847731513E-05 5.25830180358E-05 5.39141263346E-05 5.52789298963E-05 5.66782816229E-05 5.81130560026E-05 5.95841496563E-05 6.10924818974E-05 6.26389953060E-05 6.42246563175E-05 6.58504558265E-05 6.75174098053E-05 6.92265599387E-05 7.09789742743E-05 7.27757478896E-05 7.46180035759E-05 7.65068925395E-05 7.84435951203E-05 8.04293215294E-05 8.24653126041E-05 8.45528405832E-05 8.66932099012E-05 8.88877580031E-05 9.11378561786E-05 9.34449104193E-05 9.58103622959E-05 9.82356898583E-05 1.00722408558E-04 1.03272072196E-04 1.05886273889E-04 1.08566647069E-04 1.11314866497E-04 1.14132649313E-04 1.17021756108E-04 1.19983992018E-04 1.23021207857E-04 1.26135301266E-04 1.29328217902E-04 1.32601952651E-04 1.35958550871E-04 1.39400109670E-04 1.42928779214E-04 1.46546764070E-04 1.50256324580E-04 1.54059778272E-04 1.57959501303E-04 1.61957929947E-04 1.66057562111E-04 1.70260958892E-04 1.74570746179E-04 1.78989616286E-04 1.83520329635E-04 1.88165716475E-04 1.92928678647E-04 1.97812191397E-04 2.02819305226E-04 2.07953147798E-04 2.13216925883E-04 2.18613927362E-04 2.24147523276E-04 2.29821169922E-04 2.35638411017E-04 2.41602879895E-04 2.47718301782E-04 2.53988496110E-04 2.60417378903E-04 2.67008965210E-04 2.73767371614E-04 2.80696818791E-04 2.87801634141E-04 2.95086254485E-04 3.02555228827E-04 3.10213221186E-04 3.18065013500E-04 3.26115508609E-04 3.34369733299E-04 3.42832841438E-04 3.51510117181E-04 3.60406978259E-04 3.69528979352E-04 3.78881815544E-04 3.88471325869E-04 3.98303496939E-04 4.08384466672E-04 4.18720528110E-04 4.29318133327E-04 4.40183897450E-04 4.51324602763E-04 4.62747202928E-04 4.74458827308E-04 4.86466785395E-04 4.98778571351E-04 5.11401868670E-04 5.24344554945E-04 5.37614706762E-04 5.51220604720E-04 5.65170738566E-04 5.79473812471E-04 5.94138750428E-04 6.09174701792E-04 6.24591046961E-04 6.40397403187E-04 6.56603630547E-04 6.73219838057E-04 6.90256389936E-04 7.07723912033E-04 7.25633298414E-04 7.43995718106E-04 7.62822622023E-04 7.82125750051E-04 8.01917138324E-04 8.22209126667E-04 8.43014366239E-04 8.64345827357E-04 8.86216807522E-04 9.08640939637E-04 9.31632200442E-04 9.55204919146E-04 9.79373786283E-04 1.00415386279E-03 1.02956058930E-03 1.05560979567E-03 1.08231771079E-03 1.10970097251E-03 1.13777663800E-03 1.16656219420E-03 1.19607556861E-03 1.22633514035E-03 1.25735975147E-03 1.28916871854E-03 1.32178184456E-03 1.35521943110E-03 1.38950229084E-03 1.42465176030E-03 1.46068971301E-03 1.49763857290E-03 1.53552132805E-03 1.57436154486E-03 1.61418338243E-03 1.65501160740E-03 1.69687160913E-03 1.73978941523E-03 1.78379170751E-03 1.82890583824E-03 1.87515984697E-03 1.92258247756E-03 1.97120319580E-03 2.02105220736E-03 2.07216047623E-03 2.12455974355E-03 2.17828254700E-03 2.23336224057E-03 2.28983301486E-03 2.34772991785E-03 2.40708887620E-03 2.46794671705E-03 2.53034119034E-03 2.59431099173E-03 2.65989578600E-03 2.72713623104E-03 2.79607400244E-03 2.86675181868E-03 2.93921346689E-03 3.01350382925E-03 3.08966891003E-03 3.16775586327E-03 3.24781302115E-03 3.32988992299E-03 3.41403734498E-03 3.50030733063E-03 3.58875322188E-03 3.67942969108E-03 3.77239277355E-03 3.86769990110E-03 3.96540993618E-03 4.06558320697E-03 4.16828154320E-03 4.27356831287E-03 4.38150845982E-03 4.49216854214E-03 4.60561677157E-03 4.72192305374E-03 4.84115902935E-03 4.96339811635E-03 5.08871555309E-03 5.21718844245E-03 5.34889579696E-03 5.48391858503E-03 5.62233977819E-03 5.76424439943E-03 5.90971957262E-03 6.05885457309E-03 6.21174087932E-03 6.36847222584E-03 6.52914465726E-03 6.69385658359E-03 6.86270883677E-03 7.03580472837E-03 7.21325010878E-03 7.39515342745E-03 7.58162579468E-03 7.77278104467E-03 7.96873579988E-03 8.16960953697E-03 8.37552465399E-03 8.58660653911E-03 8.80298364083E-03 9.02478753963E-03 9.25215302121E-03 9.48521815123E-03 9.72412435160E-03 9.96901647848E-03 1.02200429017E-02 1.04773555861E-02 1.07411101741E-02 1.10114660705E-02 1.12885865286E-02 1.15726387381E-02 1.18637939148E-02 1.21622273922E-02 1.24681187146E-02 1.27816517325E-02 1.31030146991E-02 1.34324003691E-02 1.37700060997E-02 1.41160339527E-02 1.44706907989E-02 1.48341884248E-02 1.52067436401E-02 1.55885783884E-02 1.59799198592E-02 1.63810006015E-02 1.67920586403E-02 1.72133375942E-02 1.76450867950E-02 1.80875614102E-02 1.85410225660E-02 1.90057374736E-02 1.94819795563E-02 1.99700285794E-02 2.04701707816E-02 2.09826990081E-02 2.15079128459E-02 2.20461187609E-02 2.25976302366E-02 2.31627679147E-02 2.37418597375E-02 2.43352410919E-02 2.49432549546E-02 2.55662520402E-02 2.62045909489E-02 2.68586383173E-02 2.75287689699E-02 2.82153660716E-02 2.89188212821E-02 2.96395349109E-02 3.03779160733E-02 3.11343828477E-02 3.19093624330E-02 3.27032913075E-02 3.35166153876E-02 3.43497901868E-02 3.52032809757E-02 3.60775629407E-02 3.69731213439E-02 3.78904516814E-02 3.88300598420E-02 3.97924622642E-02 4.07781860926E-02 4.17877693328E-02 4.28217610050E-02 4.38807212950E-02 4.49652217037E-02 4.60758451934E-02 4.72131863317E-02 4.83778514320E-02 4.95704586898E-02 5.07916383159E-02 5.20420326638E-02 5.33222963534E-02 5.46330963882E-02 5.59751122668E-02 5.73490360882E-02 5.87555726494E-02 6.01954395356E-02 6.16693672019E-02 6.31780990460E-02 6.47223914711E-02 6.63030139385E-02 6.79207490085E-02 6.95763923698E-02 7.12707528554E-02 7.30046524453E-02 7.47789262540E-02 7.65944225020E-02 7.84520024717E-02 8.03525404443E-02 8.22969236182E-02 8.42860520076E-02 8.63208383193E-02 8.84022078078E-02 9.05310981052E-02 9.27084590273E-02 9.49352523523E-02 9.72124515712E-02 9.95410416094E-02 1.01922018516E-01 1.04356389122E-01 1.06845170661E-01 1.09389390356E-01 1.11990084970E-01 1.14648300308E-01 1.17365090689E-01 1.20141518365E-01 1.22978652899E-01 1.25877570490E-01 1.28839353252E-01 1.31865088441E-01 1.34955867623E-01 1.38112785788E-01 1.41336940404E-01 1.44629430407E-01 1.47991355130E-01 1.51423813165E-01 1.54927901148E-01 1.58504712485E-01 1.62155335990E-01 1.65880854457E-01 1.69682343142E-01 1.73560868170E-01 1.77517484854E-01 1.81553235925E-01 1.85669149674E-01 1.89866237996E-01 1.94145494348E-01 1.98507891596E-01 2.02954379774E-01 2.07485883732E-01 2.12103300682E-01 2.16807497637E-01 2.21599308740E-01 2.26479532484E-01 2.31448928818E-01 2.36508216143E-01 2.41658068185E-01 2.46899110764E-01 2.52231918436E-01 2.57657011029E-01 2.63174850051E-01 2.68785834998E-01 2.74490299529E-01 2.80288507547E-01 2.86180649153E-01 2.92166836506E-01 2.98247099562E-01 3.04421381730E-01 3.10689535415E-01 3.17051317481E-01 3.23506384623E-01 3.30054288666E-01 3.36694471787E-01 3.43426261685E-01 3.50248866693E-01 3.57161370852E-01 3.64162728964E-01 3.71251761618E-01 3.78427150232E-01 3.85687432099E-01 3.93030995479E-01 4.00456074736E-01 4.07960745558E-01 4.15542920262E-01 4.23200343230E-01 4.30930586487E-01 4.38731045452E-01 4.46598934885E-01 4.54531285077E-01 4.62524938291E-01 4.70576545513E-01 4.78682563529E-01 4.86839252374E-01 4.95042673191E-01 5.03288686543E-01 5.11572951210E-01 5.19890923529E-01 5.28237857305E-01 5.36608804356E-01 5.44998615720E-01 5.53401943590E-01 5.61813244000E-01 5.70226780342E-01 5.78636627729E-01 5.87036678268E-01 5.95420647288E-01 6.03782080566E-01 6.12114362581E-01 6.20410725860E-01 6.28664261427E-01 6.36867930410E-01 6.45014576816E-01 6.53096941507E-01 6.61107677401E-01 6.69039365890E-01 6.76884534495E-01 6.84635675751E-01 6.92285267294E-01 6.99825793140E-01 7.07249766120E-01 7.14549751406E-01 7.21718391089E-01 7.28748429713E-01 7.35632740692E-01 7.42364353489E-01 7.48936481445E-01 7.55342550108E-01 7.61576225918E-01 7.67631445050E-01 7.73502442242E-01 7.79183779382E-01 7.84670373626E-01 7.89957524791E-01 7.95040941767E-01 7.99916767658E-01 8.04581603348E-01 8.09032529195E-01 8.13267124523E-01 8.17283484578E-01 8.21080234626E-01 8.24656540853E-01 8.28012117725E-01 8.31147231505E-01 8.34062699598E-01 8.36759885446E-01 8.39240688694E-01 8.41507530410E-01 8.43563333145E-01 8.45411495703E-01 8.47055862507E-01 8.48500687540E-01 8.49750592882E-01 8.50810521962E-01 8.51685687694E-01 8.52381515785E-01 8.52903583557E-01 8.53257554748E-01 8.53449110821E-01 8.53483879404E-01 8.53367360586E-01 8.53104851826E-01 8.52701372344E-01 8.52161587853E-01 8.51489736563E-01 8.50689557347E-01 8.49764220943E-01 8.48716264990E-01 8.47547533569E-01 8.46259121785E-01 8.44851325676E-01 8.43323597487E-01 8.41674506004E-01 8.39901701249E-01 8.38001882379E-01 8.35970767106E-01 8.33803060383E-01 8.31492419476E-01 8.29031411856E-01 8.26411461683E-01 8.23622779944E-01 8.20656512911E-01 8.17511889137E-01 8.14190376092E-01 8.10693567117E-01 8.07023179360E-01 8.03181051581E-01 7.99169141831E-01 7.94989525010E-01 7.90644390317E-01 7.86136038591E-01 7.81466879560E-01 7.76639429001E-01 7.71656305817E-01 7.66520229047E-01 7.61234014801E-01 7.55800573147E-01 7.50222904941E-01 7.44504098614E-01 7.38647326924E-01 7.32655843673E-01 7.26532980403E-01 7.20282143071E-01 7.13906808710E-01 7.07410522076E-01 7.00796892299E-01 6.94069589523E-01 6.87232341552E-01 6.80288930497E-01 6.73243189431E-01 6.66098999049E-01 6.58860284338E-01 6.51531011248E-01 6.44115183380E-01 6.36616838672E-01 6.29040046087E-01 6.21388902315E-01 6.13667528456E-01 6.05880066717E-01 5.98030677084E-01 5.90123533996E-01 5.82162822992E-01 5.74152737348E-01 5.66097474679E-01 5.58001233521E-01 5.49868209875E-01 5.41702593724E-01 5.33508565501E-01 5.25290292525E-01 5.17051925398E-01 5.08797594353E-01 5.00531405575E-01 4.92257437478E-01 4.83979736954E-01 4.75702315595E-01 4.67429145902E-01 4.59164157480E-01 4.50911233239E-01 4.42674205614E-01 4.34456852804E-01 4.26262895071E-01 4.18095991090E-01 4.09959734381E-01 4.01857649843E-01 3.93793190402E-01 3.85769733798E-01 3.77790579525E-01 3.69858945947E-01 3.61977967602E-01 3.54150692723E-01 3.46380080970E-01 3.38669001411E-01 3.31020230740E-01 3.23436451759E-01 3.15920252122E-01 3.08474123345E-01 3.01100460089E-01 2.93801559707E-01 2.86579622055E-01 2.79436749567E-01 2.72374947569E-01 2.65396124838E-01 2.58502094378E-01 2.51694574402E-01 2.44975189511E-01 2.38345472029E-01 2.31806863494E-01 2.25360716272E-01 2.19008295271E-01 2.12750779733E-01 2.06589265079E-01 2.00524764783E-01 1.94558212253E-01 1.88690462688E-01 1.82922294905E-01 1.77254413091E-01 1.71687448483E-01 1.66221960953E-01 1.60858440466E-01 1.55597308428E-01 1.50438918890E-01 1.45383559605E-01 1.40431452948E-01 1.35582756681E-01 1.30837564575E-01 1.26195906891E-01 1.21657750729E-01 1.17223000263E-01 1.12891496858E-01 1.08663019111E-01 1.04537282812E-01 1.00513940861E-01 9.65925831543E-02 9.27727364648E-02 8.90538643432E-02 8.54353670571E-02 8.19165815954E-02 7.84967817574E-02 7.51751783489E-02 7.19509195017E-02 6.88230911359E-02 6.57907175781E-02 6.28527623489E-02 6.00081291282E-02 5.72556629068E-02 5.45941513280E-02 5.20223262217E-02 4.95388653294E-02 4.71423942185E-02 4.48314883793E-02 4.26046754980E-02 4.04604378964E-02 3.83972151265E-02 3.64134067091E-02 3.45073750013E-02 3.26774481784E-02 3.09219233165E-02 2.92390695572E-02 2.76271313398E-02 2.60843316846E-02 2.46088755099E-02 2.31989529669E-02 2.18527427767E-02 2.05684155539E-02 1.93441371019E-02 1.81780716646E-02 1.70683851231E-02 1.60132481232E-02 1.50108391216E-02 1.40593473409E-02 1.31569756236E-02 1.23019431741E-02 1.14924881834E-02 1.07268703267E-02 1.00033731302E-02 9.32030619993E-03 8.67600730930E-03 8.06884434181E-03 7.49721708649E-03 6.95955888408E-03 6.45433812341E-03 5.98005958770E-03 5.53526565143E-03 5.11853732902E-03 4.72849517747E-03 4.36380005518E-03 4.02315374035E-03 3.70529941233E-03 3.40902200016E-03 3.13314840264E-03 2.87654758485E-03 2.63813055638E-03 2.41685023660E-03 2.21170121278E-03 2.02171939702E-03 1.84598158795E-03 1.68360494359E-03 1.53374637148E-03 1.39560184264E-03 1.26840563553E-03 1.15142951651E-03 1.04398186311E-03 9.45406736188E-04 8.55082907348E-04 7.72422847412E-04 6.96871681970E-04 6.27906119560E-04 5.65033358044E-04 5.07789974440E-04 4.55740803280E-04 4.08477808308E-04 3.65618952083E-04 3.26807067815E-04 2.91708737470E-04 2.60013179925E-04 2.31431152660E-04 2.05693870206E-04 1.82552434599E-04 1.61780697829E-04 1.43164715739E-04 1.26506538171E-04 1.11623816868E-04 9.83488583527E-05 8.65277138561E-05 7.60193072688E-05 6.66946020156E-05 5.84358076523E-05 5.11356269401E-05 4.46965441355E-05 3.90301552728E-05 3.40565412794E-05 2.97036849318E-05 2.59069328778E-05 2.25555689475E-05 1.96235936844E-05 1.70415828425E-05 1.47719541195E-05 1.27806364125E-05 1.10368024721E-05 9.51261545721E-06 8.18298931240E-06 7.02536281766E-06 6.01948709763E-06 5.14722631738E-06 4.39237124030E-06 3.74046527446E-06 3.17864261855E-06 2.69547802191E-06 2.28084773571E-06 1.92580113972E-06 1.62244254359E-06 1.36382264507E-06 1.14383912182E-06 9.57145831636E-07 7.99070098316E-07 6.65537566364E-07 5.53004117084E-07 4.58394350617E-07 3.79046153108E-07 3.12660884876E-07 2.57258743872E-07 2.11138878542E-07 1.72843845060E-07 1.41128025579E-07 1.14929646223E-07 9.33460559077E-08 7.56119493758E-08 6.10802399366E-08 4.92053090793E-08 3.95283812544E-08 3.16647925382E-08 2.52929415060E-08 2.01447293553E-08 1.59973140723E-08 1.26660201723E-08 9.99826123933E-09 7.86834713123E-09 6.17306129744E-09 4.82790619312E-09 3.76392628918E-09 2.92502870161E-09 2.26573103737E-09 1.74927472043E-09 1.34604987189E-09 1.03228482229E-09 7.88959588620E-10 6.00908207266E-10 4.56079731601E-10 3.44932035215E-10 2.59936359697E-10 1.95173861654E-10 1.46008294969E-10 1.08821457177E-10 8.08001758687E-11 5.97654520374E-11 4.40359487500E-11 3.23193489101E-11 2.36262355432E-11 1.72020993422E-11 1.24738756824E-11 9.00807878310E-12 6.47815344969E-12 4.63912186115E-12 3.30797898527E-12 2.34859829443E-12 1.66016063265E-12 1.16832289473E-12 8.18507763865E-13 5.70828026088E-13 3.96264767479E-13 2.73802953101E-13 1.88294563294E-13 1.28872005691E-13 8.77757185696E-14 5.94920197596E-14 4.01221992443E-14 2.69231139274E-14 1.79743375515E-14 1.19382233929E-14 7.88782961427E-15 5.18415293611E-15 3.38900062050E-15 2.20348339209E-15 1.42482841405E-15 9.16220480823E-16 5.85857075118E-16 3.72483335892E-16 2.35458485488E-16 1.47973049843E-16 9.24442151138E-17 5.74081223533E-17 3.54348567054E-17 2.17379501544E-17 1.32526730265E-17 8.02881330478E-18 4.83312229663E-18 2.89066585931E-18 1.71761720147E-18 1.01385885633E-18 5.94449615577E-19 3.46180325323E-19 2.00217658761E-19 1.14994603599E-19 6.55827424964E-20 3.71364329505E-20 2.08771052872E-20 1.16509235285E-20 6.45402127834E-21 3.54845986469E-21 1.93618944596E-21 1.04836548220E-21 5.63238633931E-22 3.00223327573E-22 1.58754332663E-22 8.32707031673E-23 4.33211681607E-23 2.23513932831E-23 1.14356334335E-23 5.80124403571E-24 2.91770144320E-24 1.45469621639E-24 7.18898964225E-25 3.52110716100E-25 1.70906115291E-25 8.21965261534E-26 3.91666770880E-26 1.84882867036E-26 8.64454058332E-27 4.00313712383E-27 1.83577583694E-27 8.33577794430E-28 3.74736443900E-28 1.66764787284E-28 7.34557909134E-29 3.20210025582E-29 1.38125621387E-29 5.89503674560E-30 2.48893489331E-30 1.03943268181E-30 4.29314279060E-31 1.75343634795E-31 7.08074891352E-32 2.82670797118E-32 1.11540481649E-32 4.34981096666E-33 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.70431896057E-08 5.84872447630E-08 5.99678563474E-08 6.14859497892E-08 6.30424739458E-08 6.46384016954E-08 6.62747305444E-08 6.79524832512E-08 6.96727084657E-08 7.14364813843E-08 7.32449044221E-08 7.50991079021E-08 7.70002507613E-08 7.89495212755E-08 8.09481378019E-08 8.29973495404E-08 8.50984373146E-08 8.72527143721E-08 8.94615272059E-08 9.17262563953E-08 9.40483174692E-08 9.64291617907E-08 9.88702774644E-08 1.01373190266E-07 1.03939464598E-07 1.06570704464E-07 1.09268554473E-07 1.12034700869E-07 1.14870872582E-07 1.17778842313E-07 1.20760427634E-07 1.23817492133E-07 1.26951946574E-07 1.30165750092E-07 1.33460911418E-07 1.36839490132E-07 1.40303597957E-07 1.43855400070E-07 1.47497116462E-07 1.51231023324E-07 1.55059454466E-07 1.58984802781E-07 1.63009521738E-07 1.67136126916E-07 1.71367197575E-07 1.75705378270E-07 1.80153380503E-07 1.84713984418E-07 1.89390040539E-07 1.94184471551E-07 1.99100274126E-07 2.04140520798E-07 2.09308361884E-07 2.14607027448E-07 2.20039829326E-07 2.25610163193E-07 2.31321510686E-07 2.37177441578E-07 2.43181616014E-07 2.49337786794E-07 2.55649801720E-07 2.62121606004E-07 2.68757244729E-07 2.75560865380E-07 2.82536720437E-07 2.89689170030E-07 2.97022684667E-07 3.04541848029E-07 3.12251359831E-07 3.20156038761E-07 3.28260825495E-07 3.36570785780E-07 3.45091113606E-07 3.53827134445E-07 3.62784308587E-07 3.71968234549E-07 3.81384652573E-07 3.91039448218E-07 4.00938656035E-07 4.11088463339E-07 4.21495214080E-07 4.32165412804E-07 4.43105728719E-07 4.54322999865E-07 4.65824237388E-07 4.77616629922E-07 4.89707548080E-07 5.02104549063E-07 5.14815381383E-07 5.27847989706E-07 5.41210519818E-07 5.54911323715E-07 5.68958964825E-07 5.83362223359E-07 5.98130101799E-07 6.13271830525E-07 6.28796873586E-07 6.44714934612E-07 6.61035962880E-07 6.77770159536E-07 6.94927983966E-07 7.12520160335E-07 7.30557684293E-07 7.49051829842E-07 7.68014156388E-07 7.87456515962E-07 8.07391060629E-07 8.27830250085E-07 8.48786859442E-07 8.70273987213E-07 8.92305063503E-07 9.14893858396E-07 9.38054490568E-07 9.61801436109E-07 9.86149537569E-07 1.01111401324E-06 1.03671046666E-06 1.06295489637E-06 1.08986370593E-06 1.11745371412E-06 1.14574216553E-06 1.17474674126E-06 1.20448557002E-06 1.23497723945E-06 1.26624080774E-06 1.29829581553E-06 1.33116229811E-06 1.36486079800E-06 1.39941237772E-06 1.43483863301E-06 1.47116170629E-06 1.50840430052E-06 1.54658969336E-06 1.58574175179E-06 1.62588494693E-06 1.66704436941E-06 1.70924574502E-06 1.75251545080E-06 1.79688053150E-06 1.84236871654E-06 1.88900843728E-06 1.93682884482E-06 1.98585982822E-06 2.03613203317E-06 2.08767688115E-06 2.14052658907E-06 2.19471418942E-06 2.25027355088E-06 2.30723939951E-06 2.36564734047E-06 2.42553388023E-06 2.48693644945E-06 2.54989342629E-06 2.61444416048E-06 2.68062899787E-06 2.74848930564E-06 2.81806749819E-06 2.88940706361E-06 2.96255259089E-06 3.03754979776E-06 3.11444555929E-06 3.19328793719E-06 3.27412620980E-06 3.35701090297E-06 3.44199382154E-06 3.52912808182E-06 3.61846814469E-06 3.71006984973E-06 3.80399045004E-06 3.90028864808E-06 3.99902463232E-06 4.10026011487E-06 4.20405837008E-06 4.31048427404E-06 4.41960434512E-06 4.53148678561E-06 4.64620152428E-06 4.76382026010E-06 4.88441650709E-06 5.00806564019E-06 5.13484494245E-06 5.26483365325E-06 5.39811301791E-06 5.53476633837E-06 5.67487902534E-06 5.81853865161E-06 5.96583500684E-06 6.11686015363E-06 6.27170848507E-06 6.43047678373E-06 6.59326428218E-06 6.76017272493E-06 6.93130643211E-06 7.10677236458E-06 7.28668019085E-06 7.47114235555E-06 7.66027414975E-06 7.85419378301E-06 8.05302245721E-06 8.25688444235E-06 8.46590715418E-06 8.68022123383E-06 8.89996062947E-06 9.12526268000E-06 9.35626820088E-06 9.59312157214E-06 9.83597082860E-06 1.00849677524E-05 1.03402679678E-05 1.06020310385E-05 1.08704205673E-05 1.11456042984E-05 1.14277542221E-05 1.17170466825E-05 1.20136624874E-05 1.23177870216E-05 1.26296103626E-05 1.29493273992E-05 1.32771379536E-05 1.36132469061E-05 1.39578643233E-05 1.43112055888E-05 1.46734915388E-05 1.50449485989E-05 1.54258089268E-05 1.58163105562E-05 1.62166975465E-05 1.66272201347E-05 1.70481348920E-05 1.74797048841E-05 1.79221998357E-05 1.83758962985E-05 1.88410778249E-05 1.93180351442E-05 1.98070663450E-05 2.03084770612E-05 2.08225806626E-05 2.13496984515E-05 2.18901598626E-05 2.24443026693E-05 2.30124731949E-05 2.35950265284E-05 2.41923267468E-05 2.48047471426E-05 2.54326704565E-05 2.60764891173E-05 2.67366054864E-05 2.74134321096E-05 2.81073919744E-05 2.88189187748E-05 2.95484571818E-05 3.02964631215E-05 3.10634040595E-05 3.18497592935E-05 3.26560202522E-05 3.34826908027E-05 3.43302875647E-05 3.51993402340E-05 3.60903919126E-05 3.70039994484E-05 3.79407337830E-05 3.89011803081E-05 3.98859392314E-05 4.08956259512E-05 4.19308714411E-05 4.29923226440E-05 4.40806428760E-05 4.51965122407E-05 4.63406280542E-05 4.75137052805E-05 4.87164769776E-05 4.99496947561E-05 5.12141292478E-05 5.25105705875E-05 5.38398289061E-05 5.52027348366E-05 5.66001400327E-05 5.80329177007E-05 5.95019631449E-05 6.10081943261E-05 6.25525524352E-05 6.41360024808E-05 6.57595338915E-05 6.74241611339E-05 6.91309243457E-05 7.08808899850E-05 7.26751514965E-05 7.45148299934E-05 7.64010749580E-05 7.83350649586E-05 8.03180083854E-05 8.23511442049E-05 8.44357427329E-05 8.65731064274E-05 8.87645707017E-05 9.10115047576E-05 9.33153124398E-05 9.56774331123E-05 9.80993425561E-05 1.00582553890E-04 1.03128618516E-04 1.05739127085E-04 1.08415710492E-04 1.11160040889E-04 1.13973832736E-04 1.16858843861E-04 1.19816876563E-04 1.22849778736E-04 1.25959445017E-04 1.29147817972E-04 1.32416889306E-04 1.35768701106E-04 1.39205347112E-04 1.42728974024E-04 1.46341782842E-04 1.50046030234E-04 1.53844029950E-04 1.57738154254E-04 1.61730835414E-04 1.65824567211E-04 1.70021906493E-04 1.74325474772E-04 1.78737959857E-04 1.83262117526E-04 1.87900773246E-04 1.92656823931E-04 1.97533239749E-04 2.02533065971E-04 2.07659424867E-04 2.12915517652E-04 2.18304626478E-04 2.23830116480E-04 2.29495437869E-04 2.35304128080E-04 2.41259813978E-04 2.47366214109E-04 2.53627141019E-04 2.60046503627E-04 2.66628309653E-04 2.73376668116E-04 2.80295791889E-04 2.87390000317E-04 2.94663721907E-04 3.02121497078E-04 3.09767980989E-04 3.17607946429E-04 3.25646286787E-04 3.33888019089E-04 3.42338287123E-04 3.51002364626E-04 3.59885658570E-04 3.68993712512E-04 3.78332210044E-04 3.87906978315E-04 3.97723991658E-04 4.07789375291E-04 4.18109409120E-04 4.28690531641E-04 4.39539343927E-04 4.50662613730E-04 4.62067279673E-04 4.73760455555E-04 4.85749434760E-04 4.98041694779E-04 5.10644901842E-04 5.23566915669E-04 5.36815794337E-04 5.50399799273E-04 5.64327400363E-04 5.78607281201E-04 5.93248344460E-04 6.08259717399E-04 6.23650757507E-04 6.39431058295E-04 6.55610455217E-04 6.72199031757E-04 6.89207125654E-04 7.06645335288E-04 7.24524526224E-04 7.42855837918E-04 7.61650690590E-04 7.80920792272E-04 8.00678146024E-04 8.20935057333E-04 8.41704141700E-04 8.62998332406E-04 8.84830888476E-04 9.07215402845E-04 9.30165810718E-04 9.53696398137E-04 9.77821810773E-04 1.00255706292E-03 1.02791754671E-03 1.05391904158E-03 1.08057772394E-03 1.10791017713E-03 1.13593340151E-03 1.16466482497E-03 1.19412231356E-03 1.22432418241E-03 1.25528920696E-03 1.28703663447E-03 1.31958619570E-03 1.35295811707E-03 1.38717313290E-03 1.42225249815E-03 1.45821800132E-03 1.49509197775E-03 1.53289732324E-03 1.57165750792E-03 1.61139659060E-03 1.65213923334E-03 1.69391071643E-03 1.73673695375E-03 1.78064450847E-03 1.82566060914E-03 1.87181316616E-03 1.91913078871E-03 1.96764280199E-03 2.01737926494E-03 2.06837098839E-03 2.12064955361E-03 2.17424733134E-03 2.22919750126E-03 2.28553407192E-03 2.34329190118E-03 2.40250671710E-03 2.46321513934E-03 2.52545470108E-03 2.58926387148E-03 2.65468207859E-03 2.72174973292E-03 2.79050825150E-03 2.86100008247E-03 2.93326873038E-03 3.00735878192E-03 3.08331593238E-03 3.16118701271E-03 3.24102001713E-03 3.32286413149E-03 3.40676976223E-03 3.49278856602E-03 3.58097348011E-03 3.67137875334E-03 3.76405997791E-03 3.85907412186E-03 3.95647956228E-03 4.05633611930E-03 4.15870509085E-03 4.26364928819E-03 4.37123307231E-03 4.48152239105E-03 4.59458481712E-03 4.71048958700E-03 4.82930764065E-03 4.95111166209E-03 5.07597612098E-03 5.20397731502E-03 5.33519341330E-03 5.46970450067E-03 5.60759262298E-03 5.74894183338E-03 5.89383823957E-03 6.04237005209E-03 6.19462763366E-03 6.35070354953E-03 6.51069261892E-03 6.67469196757E-03 6.84280108133E-03 7.01512186093E-03 7.19175867783E-03 7.37281843125E-03 7.55841060636E-03 7.74864733365E-03 7.94364344950E-03 8.14351655792E-03 8.34838709361E-03 8.55837838612E-03 8.77361672540E-03 8.99423142855E-03 9.22035490784E-03 9.45212274002E-03 9.68967373700E-03 9.93315001773E-03 1.01826970815E-02 1.04384638825E-02 1.07006029059E-02 1.09692702447E-02 1.12446256789E-02 1.15268327552E-02 1.18160588683E-02 1.21124753436E-02 1.24162575215E-02 1.27275848424E-02 1.30466409339E-02 1.33736136985E-02 1.37086954034E-02 1.40520827711E-02 1.44039770714E-02 1.47645842152E-02 1.51341148488E-02 1.55127844500E-02 1.59008134253E-02 1.62984272085E-02 1.67058563600E-02 1.71233366677E-02 1.75511092492E-02 1.79894206542E-02 1.84385229691E-02 1.88986739214E-02 1.93701369863E-02 1.98531814928E-02 2.03480827319E-02 2.08551220646E-02 2.13745870309E-02 2.19067714595E-02 2.24519755780E-02 2.30105061231E-02 2.35826764514E-02 2.41688066505E-02 2.47692236501E-02 2.53842613324E-02 2.60142606434E-02 2.66595697032E-02 2.73205439156E-02 2.79975460776E-02 2.86909464877E-02 2.94011230532E-02 3.01284613964E-02 3.08733549592E-02 3.16362051062E-02 3.24174212258E-02 3.32174208290E-02 3.40366296461E-02 3.48754817204E-02 3.57344194990E-02 3.66138939204E-02 3.75143644980E-02 3.84362994003E-02 3.93801755259E-02 4.03464785746E-02 4.13357031122E-02 4.23483526311E-02 4.33849396033E-02 4.44459855279E-02 4.55320209713E-02 4.66435855995E-02 4.77812282025E-02 4.89455067099E-02 5.01369881973E-02 5.13562488823E-02 5.26038741104E-02 5.38804583292E-02 5.51866050501E-02 5.65229267986E-02 5.78900450490E-02 5.92885901459E-02 6.07192012104E-02 6.21825260289E-02 6.36792209263E-02 6.52099506195E-02 6.67753880525E-02 6.83762142115E-02 7.00131179176E-02 7.16867955982E-02 7.33979510337E-02 7.51472950800E-02 7.69355453643E-02 7.87634259538E-02 8.06316669954E-02 8.25410043248E-02 8.44921790447E-02 8.64859370690E-02 8.85230286329E-02 9.06042077660E-02 9.27302317288E-02 9.49018604078E-02 9.71198556713E-02 9.93849806811E-02 1.01697999159E-01 1.04059674609E-01 1.06470769488E-01 1.08932044329E-01 1.11444256812E-01 1.14008160775E-01 1.16624505183E-01 1.19294033022E-01 1.22017480147E-01 1.24795574057E-01 1.27629032619E-01 1.30518562715E-01 1.33464858827E-01 1.36468601551E-01 1.39530456042E-01 1.42651070384E-01 1.45831073883E-01 1.49071075291E-01 1.52371660944E-01 1.55733392825E-01 1.59156806545E-01 1.62642409242E-01 1.66190677398E-01 1.69802054571E-01 1.73476949042E-01 1.77215731376E-01 1.81018731900E-01 1.84886238097E-01 1.88818491905E-01 1.92815686944E-01 1.96877965653E-01 2.01005416341E-01 2.05198070163E-01 2.09455898018E-01 2.13778807361E-01 2.18166638955E-01 2.22619163546E-01 2.27136078469E-01 2.31717004203E-01 2.36361480863E-01 2.41068964649E-01 2.45838824244E-01 2.50670337187E-01 2.55562686215E-01 2.60514955591E-01 2.65526127420E-01 2.70595077976E-01 2.75720574043E-01 2.80901269289E-01 2.86135700679E-01 2.91422284957E-01 2.96759315191E-01 3.02144957428E-01 3.07577247455E-01 3.13054087687E-01 3.18573244222E-01 3.24132344069E-01 3.29728872571E-01 3.35360171065E-01 3.41023434788E-01 3.46715711066E-01 3.52433897810E-01 3.58174742354E-01 3.63934840659E-01 3.69710636918E-01 3.75498423601E-01 3.81294341954E-01 3.87094383011E-01 3.92894389129E-01 3.98690056101E-01 4.04476935864E-01 4.10250439842E-01 4.16005842963E-01 4.21738288375E-01 4.27442792888E-01 4.33114253185E-01 4.38747452814E-01 4.44337069996E-01 4.49877686265E-01 4.55363795959E-01 4.60789816579E-01 4.66150100021E-01 4.71438944686E-01 4.76650608472E-01 4.81779322626E-01 4.86819306455E-01 4.91764782867E-01 4.96609994706E-01 5.01349221839E-01 5.05976798958E-01 5.10487134011E-01 5.14874727210E-01 5.19134190516E-01 5.23260267513E-01 5.27247853556E-01 5.31092016065E-01 5.34788014837E-01 5.38331322220E-01 5.41717642982E-01 5.44942933707E-01 5.48003421514E-01 5.50895621915E-01 5.53616355583E-01 5.56162763813E-01 5.58532322452E-01 5.60722854049E-01 5.62732537993E-01 5.64559918394E-01 5.66203909468E-01 5.67663798181E-01 5.68939243944E-01 5.70030275128E-01 5.70937282214E-01 5.71661007400E-01 5.72202530527E-01 5.72563251200E-01 5.72744867044E-01 5.72749348064E-01 5.72578907125E-01 5.72235966634E-01 5.71723121568E-01 5.71043099035E-01 5.70198714660E-01 5.69192826120E-01 5.68028284257E-01 5.66707882244E-01 5.65234303369E-01 5.63610068057E-01 5.61837480802E-01 5.59918577750E-01 5.57855075676E-01 5.55648323157E-01 5.53299254699E-01 5.50808348573E-01 5.48175589063E-01 5.45400433713E-01 5.42481786067E-01 5.39417974208E-01 5.36206735205E-01 5.32845205310E-01 5.29329915459E-01 5.25656791273E-01 5.21821156370E-01 5.17817737337E-01 5.13640668283E-01 5.09283492350E-01 5.04739157080E-01 5.00000000000E-01 4.95059072201E-01 4.89914410300E-01 4.84565407533E-01 4.79011523087E-01 4.73252280698E-01 4.67287267182E-01 4.61116130898E-01 4.54738580148E-01 4.48154381530E-01 4.41363358237E-01 4.34365388319E-01 4.27160402914E-01 4.19748384440E-01 4.12129364777E-01 4.04303423423E-01 3.96270685647E-01 3.88031320633E-01 3.79585539620E-01 3.70933594062E-01 3.62075773777E-01 3.53012405131E-01 3.43743849228E-01 3.34270500122E-01 3.24592783065E-01 3.14711152771E-01 3.04626091720E-01 2.94338108491E-01 2.83847736127E-01 2.73155530546E-01 2.62262068979E-01 2.51167948450E-01 2.39873784299E-01 2.28380208737E-01 2.16687869445E-01 2.04797428211E-01 1.92709559610E-01 1.80424949720E-01 1.67944294885E-01 1.55268300517E-01 1.42397679950E-01 1.29333153334E-01 1.16075446590E-01 1.02625290415E-01 8.89834193621E-02 7.51505709799E-02 6.11274850473E-02 4.69149028937E-02 3.25135668316E-02 1.79242197111E-02 3.14760461799E-03 -1.18155352677E-02 -2.69644566269E-02 -4.22984157484E-02 -5.78166680394E-02 -7.35184672723E-02 -8.94030645369E-02 -1.05469706868E-01 -1.21717635516E-01 -1.38146083829E-01 -1.54754274714E-01 -1.71541417646E-01 -1.88506705201E-01 -2.05649309076E-01 -2.22968375577E-01 -2.40463020563E-01 -2.58132323817E-01 -2.75975322834E-01 -2.93991006037E-01 -3.12178305402E-01 -3.30536088516E-01 -3.49063150076E-01 -3.67758202857E-01 -3.86619868178E-01 -4.05646665922E-01 -4.24837004132E-01 -4.44189168276E-01 -4.63701310226E-01 -4.83371437031E-01 -5.03197399585E-01 -5.23176881263E-01 -5.43307386642E-01 -5.63586230400E-01 -5.84010526522E-01 -6.04577177925E-01 -6.25282866610E-01 -6.46124044494E-01 -6.67096925024E-01 -6.88197475704E-01 -7.09421411662E-01 -7.30764190368E-01 -7.52221007623E-01 -7.73786794911E-01 -7.95456218220E-01 -8.17223678398E-01 -8.39083313122E-01 -8.61029000519E-01 -8.83054364481E-01 -9.05152781664E-01 -9.27317390189E-01 -9.49541099972E-01 -9.71816604672E-01 -9.94136395129E-01 -1.01649277423E+00 -1.03887787303E+00 -1.06128366805E+00 -1.08370199949E+00 -1.10612459026E+00 -1.12854306559E+00 -1.15094897298E+00 -1.17333380236E+00 -1.19568900608E+00 -1.21800601872E+00 -1.24027627628E+00 -1.26249123465E+00 -1.28464238710E+00 -1.30672128068E+00 -1.32871953119E+00 -1.35062883667E+00 -1.37244098919E+00 -1.39414788489E+00 -1.41574153200E+00 -1.43721405694E+00 -1.45855770828E+00 -1.47976485853E+00 -1.50082800377E+00 -1.52173976108E+00 -1.54249286380E+00 -1.56308015449E+00 -1.58349457585E+00 -1.60372915948E+00 -1.62377701253E+00 -1.64363130240E+00 -1.66328523949E+00 -1.68273205806E+00 -1.70196499534E+00 -1.72097726895E+00 -1.73976205265E+00 -1.75831245064E+00 -1.77662147041E+00 -1.79468199420E+00 -1.81248674928E+00 -1.83002827700E+00 -1.84729890082E+00 -1.86429069334E+00 -1.88099544242E+00 -1.89740461649E+00 -1.91350932913E+00 -1.92930030306E+00 -1.94476783350E+00 -1.95990175113E+00 -1.97469138463E+00 -1.98912552293E+00 -2.00319237733E+00 -2.01687954339E+00 -2.03017396296E+00 -2.04306188615E+00 -2.05552883364E+00 -2.06755955920E+00 -2.07913801268E+00 -2.09024730353E+00 -2.10086966501E+00 -2.11098641922E+00 -2.12057794306E+00 -2.12962363535E+00 -2.13810188519E+00 -2.14599004182E+00 -2.15326438613E+00 -2.15990010392E+00 -2.16587126139E+00 -2.17115078276E+00 -2.17571043048E+00 -2.17952078824E+00 -2.18255124701E+00 -2.18476999439E+00 -2.18614400763E+00 -2.18663905060E+00 -2.18621967509E+00 -2.18484922667E+00 -2.18248985568E+00 -2.17910253357E+00 -2.17464707508E+00 -2.16908216669E+00 -2.16236540176E+00 -2.15445332282E+00 -2.14530147160E+00 -2.13486444718E+00 -2.12309597277E+00 -2.10994897179E+00 -2.09537565369E+00 -2.07932761013E+00 -2.06175592212E+00 -2.04261127868E+00 -2.02184410759E+00 -1.99940471895E+00 -1.97524346211E+00 -1.94931089628E+00 -1.92156315135E+00 -1.89200354371E+00 -1.86058599432E+00 -1.82726001837E+00 -1.79197656416E+00 -1.75468827574E+00 -1.71534977332E+00 -1.67391795164E+00 -1.63035229688E+00 -1.58461522247E+00 -1.53667242403E+00 -1.48649325366E+00 -1.43405111394E+00 -1.37932387126E+00 -1.32229428862E+00 -1.26295047764E+00 -1.20125508979E+00 -1.13689493215E+00 -1.06986016293E+00 -1.00018273093E+00 -9.27904060630E-01 -8.53075630726E-01 -7.75759558332E-01 -6.96029186027E-01 -6.13969668541E-01 -5.29678555446E-01 -4.43266365855E-01 -3.54857150649E-01 -2.64589037368E-01 -1.72614751991E-01 -7.91021122710E-02 1.57655142273E-02 1.11788794302E-01 2.08752063027E-01 3.06423015508E-01 4.04552465157E-01 5.02874177700E-01 6.01104790706E-01 6.98943828957E-01 7.96073826479E-01 8.92160566535E-01 9.86853451323E-01 1.07978601349E+00 1.17057658183E+00 1.25882911386E+00 1.34413420792E+00 1.42607030762E+00 1.50420511107E+00 1.57809719726E+00 1.64729788136E+00 1.71135330988E+00 1.76980680590E+00 1.82220147322E+00 1.86808306700E+00 1.90700313625E+00 1.93852244201E+00 1.96221465194E+00 1.97767030953E+00 1.98450107268E+00 1.98234421271E+00 1.97086736046E+00 1.94977348184E+00 1.91880605939E+00 1.87775445142E+00 1.82645939369E+00 1.76481860198E+00 1.69279242716E+00 1.61040950642E+00 1.51777234681E+00 1.41506276891E+00 1.30254713019E+00 1.18058123897E+00 1.04961486175E+00 9.10195718136E-01 7.62972849722E-01 6.08699242082E-01 4.48233572270E-01 2.82540948796E-01 1.12692506875E-01 -6.01362807951E-02 -2.34668717943E-01 -4.09531561645E-01 -5.83261395921E-01 -7.54312827786E-01 -9.21068620070E-01 -1.08185185979E+00 -1.23494024093E+00 -1.37858251562E+00 -1.51101713775E+00 -1.63049308768E+00 -1.73529282514E+00 -1.82375727096E+00 -1.89431266467E+00 -1.94549908704E+00 -1.97600037216E+00 -1.98467506500E+00 -1.97058800740E+00 -1.93304205942E+00 -1.87160938510E+00 -1.78616165409E+00 -1.67689843454E+00 -1.54437298121E+00 -1.38951455836E+00 -1.21364638258E+00 -1.01849823028E+00 -8.06212731366E-01 -5.79344368923E-01 -3.40850228935E-01 -9.40715980431E-02 1.57294404272E-01 4.09233846057E-01 6.57466174339E-01 8.97505882876E-01 1.12473570137E+00 1.33449104357E+00 1.52215509710E+00 1.68326353913E+00 1.81361742343E+00 1.90940231440E+00 1.96731125088E+00 1.98466862213E+00 1.95955154532E+00 1.89090486903E+00 1.77864551351E+00 1.62375152264E+00 1.42833097224E+00 1.19566578739E+00 9.30225597466E-01 6.37647034657E-01 3.24674388082E-01 -9.41712267639E-04 -3.30589871091E-01 -6.54988729975E-01 -9.64422356347E-01 -1.24901770205E+00 -1.49905949855E+00 -1.70533565221E+00 -1.85950378441E+00 -1.95446712237E+00 -1.98474560600E+00 -1.94682597381E+00 -1.83947288663E+00 -1.66398201573E+00 -1.42435564342E+00 -1.12738187946E+00 -7.82600252137E-01 -4.02139326928E-01 -4.16232861527E-04 4.06306430360E-01 8.00503919817E-01 1.16410244126E+00 1.47930253275E+00 1.72948372761E+00 1.90015191534E+00 1.97988185039E+00 1.96119962872E+00 1.84134447627E+00 1.62284672312E+00 1.31386019899E+00 9.28193209991E-01 4.84993287404E-01 8.05730504571E-03 -4.75239767863E-01 -9.35377850119E-01 -1.34243690113E+00 -1.66807285219E+00 -1.88761148934E+00 -1.98211919981E+00 -1.94028758537E+00 -1.75995674475E+00 -1.44910278096E+00 -1.02613157422E+00 1.88995457689E-12 1.96217351473E-12 2.03715208235E-12 2.11499573072E-12 2.19581394028E-12 2.27972037495E-12 2.36683304199E-12 2.45727445792E-12 2.55117182088E-12 2.64865718952E-12 2.74986766867E-12 2.85494560225E-12 2.96403877341E-12 3.07730061239E-12 3.19489041230E-12 3.31697355316E-12 3.44372173450E-12 3.57531321683E-12 3.71193307232E-12 3.85377344517E-12 4.00103382174E-12 4.15392131119E-12 4.31265093673E-12 4.47744593804E-12 4.64853808521E-12 4.82616800476E-12 5.01058551801E-12 5.20204999244E-12 5.40083070651E-12 5.60720722832E-12 5.82146980883E-12 6.04391979007E-12 6.27487002895E-12 6.51464533726E-12 6.76358293851E-12 7.02203294218E-12 7.29035883613E-12 7.56893799781E-12 7.85816222504E-12 8.15843828698E-12 8.47018849628E-12 8.79385130297E-12 9.12988191115E-12 9.47875291917E-12 9.84095498429E-12 1.02169975128E-11 1.06074093763E-11 1.10127396559E-11 1.14335584138E-11 1.18704574957E-11 1.23240513629E-11 1.27949779563E-11 1.32838995939E-11 1.37915039023E-11 1.43185047834E-11 1.48656434191E-11 1.54336893129E-11 1.60234413729E-11 1.66357290348E-11 1.72714134290E-11 1.79313885911E-11 1.86165827198E-11 1.93279594820E-11 2.00665193682E-11 2.08333010997E-11 2.16293830894E-11 2.24558849585E-11 2.33139691110E-11 2.42048423690E-11 2.51297576693E-11 2.60900158261E-11 2.70869673604E-11 2.81220143989E-11 2.91966126467E-11 3.03122734342E-11 3.14705658427E-11 3.26731189112E-11 3.39216239274E-11 3.52178368067E-11 3.65635805613E-11 3.79607478645E-11 3.94113037121E-11 4.09172881866E-11 4.24808193259E-11 4.41040961023E-11 4.57894015154E-11 4.75391058025E-11 4.93556697725E-11 5.12416482665E-11 5.31996937514E-11 5.52325600498E-11 5.73431062136E-11 5.95343005444E-11 6.18092247689E-11 6.41710783721E-11 6.66231830982E-11 6.91689876214E-11 7.18120723967E-11 7.45561546953E-11 7.74050938329E-11 8.03628965968E-11 8.34337228819E-11 8.66218915407E-11 8.99318864578E-11 9.33683628555E-11 9.69361538415E-11 1.00640277206E-10 1.04485942479E-10 1.08478558257E-10 1.12623739809E-10 1.16927316974E-10 1.21395342363E-10 1.26034099866E-10 1.30850113495E-10 1.35850156557E-10 1.41041261179E-10 1.46430728201E-10 1.52026137441E-10 1.57835358357E-10 1.63866561116E-10 1.70128228080E-10 1.76629165742E-10 1.83378517105E-10 1.90385774547E-10 1.97660793166E-10 2.05213804643E-10 2.13055431633E-10 2.21196702701E-10 2.29649067836E-10 2.38424414555E-10 2.47535084616E-10 2.56993891383E-10 2.66814137843E-10 2.77009635315E-10 2.87594722876E-10 2.98584287525E-10 3.09993785125E-10 3.21839262134E-10 3.34137378180E-10 3.46905429484E-10 3.60161373191E-10 3.73923852622E-10 3.88212223496E-10 4.03046581150E-10 4.18447788804E-10 4.34437506900E-10 4.51038223567E-10 4.68273286251E-10 4.86166934544E-10 5.04744334284E-10 5.24031612940E-10 5.44055896363E-10 5.64845346933E-10 5.86429203170E-10 6.08837820851E-10 6.32102715707E-10 6.56256607742E-10 6.81333467257E-10 7.07368562617E-10 7.34398509863E-10 7.62461324200E-10 7.91596473467E-10 8.21844933641E-10 8.53249246472E-10 8.85853579305E-10 9.19703787205E-10 9.54847477441E-10 9.91334076448E-10 1.02921489933E-09 1.06854322205E-09 1.10937435633E-09 1.15176572746E-09 1.19577695505E-09 1.24146993690E-09 1.28890893601E-09 1.33816067103E-09 1.38929441001E-09 1.44238206788E-09 1.49749830755E-09 1.55472064497E-09 1.61412955808E-09 1.67580860004E-09 1.73984451673E-09 1.80632736874E-09 1.87535065803E-09 1.94701145945E-09 2.02141055724E-09 2.09865258680E-09 2.17884618180E-09 2.26210412703E-09 2.34854351697E-09 2.43828592047E-09 2.53145755175E-09 2.62818944791E-09 2.72861765316E-09 2.83288341024E-09 2.94113335899E-09 3.05351974260E-09 3.17020062175E-09 3.29134009688E-09 3.41710853897E-09 3.54768282918E-09 3.68324660758E-09 3.82399053143E-09 3.97011254332E-09 4.12181814955E-09 4.27932070915E-09 4.44284173395E-09 4.61261120009E-09 4.78886787147E-09 4.97185963554E-09 5.16184385191E-09 5.35908771433E-09 5.56386862641E-09 5.77647459180E-09 5.99720461918E-09 6.22636914285E-09 6.46429045924E-09 6.71130318021E-09 6.96775470367E-09 7.23400570206E-09 7.51043062968E-09 7.79741824926E-09 8.09537217870E-09 8.40471145872E-09 8.72587114217E-09 9.05930290586E-09 9.40547568581E-09 9.76487633671E-09 1.01380103166E-08 1.05254023978E-08 1.09275974048E-08 1.13451609805E-08 1.17786803818E-08 1.22287653055E-08 1.26960487455E-08 1.31811878832E-08 1.36848650118E-08 1.42077884956E-08 1.47506937663E-08 1.53143443574E-08 1.58995329777E-08 1.65070826264E-08 1.71378477504E-08 1.77927154457E-08 1.84726067052E-08 1.91784777141E-08 1.99113211940E-08 2.06721677995E-08 2.14620875675E-08 2.22821914218E-08 2.31336327356E-08 2.40176089536E-08 2.49353632755E-08 2.58881864049E-08 2.68774183640E-08 2.79044503781E-08 2.89707268324E-08 3.00777473027E-08 3.12270686646E-08 3.24203072828E-08 3.36591412842E-08 3.49453129177E-08 3.62806310043E-08 3.76669734808E-08 3.91062900406E-08 4.06006048757E-08 4.21520195229E-08 4.37627158194E-08 4.54349589706E-08 4.71711007360E-08 4.89735827359E-08 5.08449398852E-08 5.27878039578E-08 5.48049072877E-08 5.68990866112E-08 5.90732870555E-08 6.13305662811E-08 6.36740987804E-08 6.61071803426E-08 6.86332326876E-08 7.12558082777E-08 7.39785953132E-08 7.68054229183E-08 7.97402665259E-08 8.27872534674E-08 8.59506687764E-08 8.92349612140E-08 9.26447495249E-08 9.61848289311E-08 9.98601778754E-08 1.03675965021E-07 1.07637556520E-07 1.11750523559E-07 1.16020650189E-07 1.20453941465E-07 1.25056631884E-07 1.29835194153E-07 1.34796348292E-07 1.39947071077E-07 1.45294605858E-07 1.50846472735E-07 1.56610479137E-07 1.62594730797E-07 1.68807643152E-07 1.75257953167E-07 1.81954731631E-07 1.88907395897E-07 1.96125723135E-07 2.03619864069E-07 2.11400357252E-07 2.19478143884E-07 2.27864583189E-07 2.36571468392E-07 2.45611043294E-07 2.54996019486E-07 2.64739594221E-07 2.74855468966E-07 2.85357868667E-07 2.96261561740E-07 3.07581880842E-07 3.19334744417E-07 3.31536679077E-07 3.44204842835E-07 3.57357049226E-07 3.71011792343E-07 3.85188272838E-07 3.99906424913E-07 4.15186944336E-07 4.31051317538E-07 4.47521851810E-07 4.64621706663E-07 4.82374926374E-07 5.00806473791E-07 5.19942265410E-07 5.39809207810E-07 5.60435235461E-07 5.81849349995E-07 6.04081660959E-07 6.27163428137E-07 6.51127105478E-07 6.76006386711E-07 7.01836252692E-07 7.28653020566E-07 7.56494394806E-07 7.85399520193E-07 8.15409036826E-07 8.46565137231E-07 8.78911625650E-07 9.12493979588E-07 9.47359413721E-07 9.83556946229E-07 1.02113746768E-06 1.06015381251E-06 1.10066083330E-06 1.14271547778E-06 1.18637686887E-06 1.23170638777E-06 1.27876776011E-06 1.32762714556E-06 1.37835323069E-06 1.43101732552E-06 1.48569346364E-06 1.54245850623E-06 1.60139224998E-06 1.66257753923E-06 1.72610038226E-06 1.79205007209E-06 1.86051931195E-06 1.93160434537E-06 2.00540509140E-06 2.08202528488E-06 2.16157262215E-06 2.24415891220E-06 2.32990023371E-06 2.41891709802E-06 2.51133461828E-06 2.60728268513E-06 2.70689614903E-06 2.81031500956E-06 2.91768461192E-06 3.02915585096E-06 3.14488538293E-06 3.26503584537E-06 3.38977608537E-06 3.51928139646E-06 3.65373376462E-06 3.79332212363E-06 3.93824262018E-06 4.08869888900E-06 4.24490233861E-06 4.40707244781E-06 4.57543707361E-06 4.75023277081E-06 4.93170512374E-06 5.12010909070E-06 5.31570936151E-06 5.51878072864E-06 5.72960847248E-06 5.94848876138E-06 6.17572906674E-06 6.41164859411E-06 6.65657873056E-06 6.91086350914E-06 7.17486009101E-06 7.44893926595E-06 7.73348597185E-06 8.02889983409E-06 8.33559572528E-06 8.65400434648E-06 8.98457283037E-06 9.32776536750E-06 9.68406385627E-06 1.00539685777E-05 1.04379988956E-05 1.08366939841E-05 1.12506135818E-05 1.16803387753E-05 1.21264728124E-05 1.25896419460E-05 1.30704963104E-05 1.35697108305E-05 1.40879861656E-05 1.46260496897E-05 1.51846565078E-05 1.57645905123E-05 1.63666654779E-05 1.69917261992E-05 1.76406496715E-05 1.83143463154E-05 1.90137612487E-05 1.97398756068E-05 2.04937079120E-05 2.12763154958E-05 2.20887959749E-05 2.29322887827E-05 2.38079767591E-05 2.47170878010E-05 2.56608965741E-05 2.66407262913E-05 2.76579505563E-05 2.87139952791E-05 2.98103406623E-05 3.09485232637E-05 3.21301381358E-05 3.33568410478E-05 3.46303507896E-05 3.59524515647E-05 3.73249954722E-05 3.87499050833E-05 4.02291761149E-05 4.17648802037E-05 4.33591677856E-05 4.50142710836E-05 4.67325072078E-05 4.85162813729E-05 5.03680902368E-05 5.22905253646E-05 5.42862768236E-05 5.63581369135E-05 5.85090040362E-05 6.07418867122E-05 6.30599077475E-05 6.54663085572E-05 6.79644536511E-05 7.05578352886E-05 7.32500783074E-05 7.60449451339E-05 7.89463409810E-05 8.19583192416E-05 8.50850870827E-05 8.83310112505E-05 9.17006240914E-05 9.51986297989E-05 9.88299108940E-05 1.02599534947E-04 1.06512761552E-04 1.10575049557E-04 1.14792064573E-04 1.19169686750E-04 1.23714018853E-04 1.28431394636E-04 1.33328387524E-04 1.38411819620E-04 1.43688771049E-04 1.49166589641E-04 1.54852900984E-04 1.60755618842E-04 1.66882955955E-04 1.73243435251E-04 1.79845901461E-04 1.86699533166E-04 1.93813855292E-04 2.01198752060E-04 2.08864480417E-04 2.16821683957E-04 2.25081407359E-04 2.33655111350E-04 2.42554688217E-04 2.51792477891E-04 2.61381284614E-04 2.71334394219E-04 2.81665592041E-04 2.92389181477E-04 3.03520003221E-04 3.15073455209E-04 3.27065513270E-04 3.39512752546E-04 3.52432369667E-04 3.65842205745E-04 3.79760770189E-04 3.94207265377E-04 4.09201612224E-04 4.24764476654E-04 4.40917297041E-04 4.57682312614E-04 4.75082592884E-04 4.93142068126E-04 5.11885560935E-04 5.31338818912E-04 5.51528548504E-04 5.72482450043E-04 5.94229254021E-04 6.16798758643E-04 6.40221868700E-04 6.64530635802E-04 6.89758300024E-04 7.15939332997E-04 7.43109482506E-04 7.71305818625E-04 8.00566781462E-04 8.30932230537E-04 8.62443495870E-04 8.95143430812E-04 9.29076466690E-04 9.64288669304E-04 1.00082779735E-03 1.03874336283E-03 1.07808669347E-03 1.11891099724E-03 1.16127142909E-03 1.20522515981E-03 1.25083144726E-03 1.29815170992E-03 1.34724960286E-03 1.39819109618E-03 1.45104455605E-03 1.50588082836E-03 1.56277332503E-03 1.62179811314E-03 1.68303400690E-03 1.74656266250E-03 1.81246867599E-03 1.88083968419E-03 1.95176646881E-03 2.02534306371E-03 2.10166686551E-03 2.18083874754E-03 2.26296317725E-03 2.34814833718E-03 2.43650624948E-03 2.52815290412E-03 2.62320839087E-03 2.72179703510E-03 2.82404753746E-03 2.93009311756E-03 3.04007166167E-03 3.15412587449E-03 3.27240343521E-03 3.39505715763E-03 3.52224515470E-03 3.65413100739E-03 3.79088393788E-03 3.93267898730E-03 4.07969719786E-03 4.23212579957E-03 4.39015840147E-03 4.55399518747E-03 4.72384311672E-03 4.89991612868E-03 5.08243535266E-03 5.27162932206E-03 5.46773419314E-03 5.67099396831E-03 5.88166072393E-03 6.09999484256E-03 6.32626524957E-03 6.56074965407E-03 6.80373479398E-03 7.05551668520E-03 7.31640087476E-03 7.58670269771E-03 7.86674753767E-03 8.15687109078E-03 8.45741963290E-03 8.76875028976E-03 9.09123130986E-03 9.42524233979E-03 9.77117470167E-03 1.01294316724E-02 1.05004287641E-02 1.08845940062E-02 1.12823682270E-02 1.16942053367E-02 1.21205726088E-02 1.25619509613E-02 1.30188352362E-02 1.34917344773E-02 1.39811722042E-02 1.44876866844E-02 1.50118311997E-02 1.55541743094E-02 1.61153001062E-02 1.66958084668E-02 1.72963152947E-02 1.79174527550E-02 1.85598694993E-02 1.92242308819E-02 1.99112191634E-02 2.06215337034E-02 2.13558911394E-02 2.21150255518E-02 2.28996886136E-02 2.37106497239E-02 2.45486961244E-02 2.54146329968E-02 2.63092835416E-02 2.72334890361E-02 2.81881088712E-02 2.91740205664E-02 3.01921197607E-02 3.12433201811E-02 3.23285535854E-02 3.34487696813E-02 3.46049360187E-02 3.57980378580E-02 3.70290780114E-02 3.82990766593E-02 3.96090711420E-02 4.09601157260E-02 4.23532813478E-02 4.37896553345E-02 4.52703411043E-02 4.67964578486E-02 4.83691401969E-02 4.99895378693E-02 5.16588153186E-02 5.33781513668E-02 5.51487388389E-02 5.69717842018E-02 5.88485072114E-02 6.07801405757E-02 6.27679296408E-02 6.48131321081E-02 6.69170177899E-02 6.90808684150E-02 7.13059774926E-02 7.35936502472E-02 7.59452036349E-02 7.83619664554E-02 8.08452795718E-02 8.33964962532E-02 8.60169826556E-02 8.87081184554E-02 9.14712976529E-02 9.43079295627E-02 9.72194400064E-02 1.00207272727E-01 1.03272891040E-01 1.06417779744E-01 1.09643447295E-01 1.12951428278E-01 1.16343286177E-01 1.19820616459E-01 1.23385049999E-01 1.27038256830E-01 1.30781950250E-01 1.34617891279E-01 1.38547893466E-01 1.42573828049E-01 1.46697629461E-01 1.50921301156E-01 1.55246921753E-01 1.59676651468E-01 1.64212738793E-01 1.68857527389E-01 1.73613463142E-01 1.78483101330E-01 1.83469113818E-01 1.88574296218E-01 1.93801574922E-01 1.99154013896E-01 2.04634821154E-01 2.10247354759E-01 2.15995128249E-01 2.21881815338E-01 2.27911253757E-01 2.34087448073E-01 2.40414571366E-01 2.46896965587E-01 2.53539140486E-01 2.60345770982E-01 2.67321692861E-01 2.74471896761E-01 2.81801520389E-01 2.89315839015E-01 2.97020254325E-01 3.04920281820E-01 3.13021537013E-01 3.21329720835E-01 3.29850604743E-01 3.38590016205E-01 3.47553825360E-01 3.56747933834E-01 3.66178266819E-01 3.75850769673E-01 3.85771410361E-01 3.95946189081E-01 4.06381156319E-01 4.17082440286E-01 4.28056284176E-01 4.39309092842E-01 4.50847487118E-01 4.62678362105E-01 4.74808942896E-01 4.87246827333E-01 5.00000000000E-01 5.13076796057E-01 5.26485830386E-01 5.40235974145E-01 5.54336360841E-01 5.68796393864E-01 5.83625754186E-01 5.98834408214E-01 6.14432615805E-01 6.30430938444E-01 6.46840247585E-01 6.63671733161E-01 6.80936912259E-01 6.98647637973E-01 7.16816108422E-01 7.35454875951E-01 7.54576856505E-01 7.74195339191E-01 7.94323996016E-01 8.14976891820E-01 8.36168494396E-01 8.57913684795E-01 8.80227767842E-01 9.03126482834E-01 9.26626014448E-01 9.50743003845E-01 9.75494559982E-01 1.00089827112E+00 1.02697221656E+00 1.05373497854E+00 1.08120565435E+00 1.10940386868E+00 1.13834978611E+00 1.16806412379E+00 1.19856816432E+00 1.22988376874E+00 1.26203338974E+00 1.29504008487E+00 1.32892753001E+00 1.36372003271E+00 1.39944254573E+00 1.43612068047E+00 1.47378072035E+00 1.51244963409E+00 1.55215508877E+00 1.59292546268E+00 1.63478985777E+00 1.67777811168E+00 1.72192080926E+00 1.76724929335E+00 1.81379567489E+00 1.86159284198E+00 1.91067446799E+00 1.96107501837E+00 2.01282975609E+00 2.06597474550E+00 2.12054685441E+00 2.17658375431E+00 2.23412391828E+00 2.29320661673E+00 2.35387191042E+00 2.41616064079E+00 2.48011441733E+00 2.54577560177E+00 2.61318728884E+00 2.68239328357E+00 2.75343807486E+00 2.82636680508E+00 2.90122523575E+00 2.97805970904E+00 3.05691710501E+00 3.13784479458E+00 3.22089058810E+00 3.30610267956E+00 3.39352958642E+00 3.48322008519E+00 3.57522314269E+00 3.66958784330E+00 3.76636331214E+00 3.86559863466E+00 3.96734277258E+00 4.07164447665E+00 4.17855219650E+00 4.28811398788E+00 4.40037741776E+00 4.51538946755E+00 4.63319643516E+00 4.75384383601E+00 4.87737630373E+00 5.00383749103E+00 5.13326997099E+00 5.26571513961E+00 5.40121311972E+00 5.53980266699E+00 5.68152107823E+00 5.82640410236E+00 5.97448585441E+00 6.12579873262E+00 6.28037333874E+00 6.43823840163E+00 6.59942070392E+00 6.76394501151E+00 6.93183400549E+00 7.10310821609E+00 7.27778595774E+00 7.45588326466E+00 7.63741382593E+00 7.82238891895E+00 8.01081733998E+00 8.20270533069E+00 8.39805649897E+00 8.59687173263E+00 8.79914910443E+00 9.00488376659E+00 9.21406783334E+00 9.42669024950E+00 9.64273664364E+00 9.86218916393E+00 1.00850262951E+01 1.03112226548E+01 1.05407487679E+01 1.07735708173E+01 1.10096503694E+01 1.12489440735E+01 1.14914033338E+01 1.17369739522E+01 1.19855957416E+01 1.22372021093E+01 1.24917196077E+01 1.27490674542E+01 1.30091570173E+01 1.32718912709E+01 1.35371642138E+01 1.38048602567E+01 1.40748535750E+01 1.43470074280E+01 1.46211734447E+01 1.48971908766E+01 1.51748858180E+01 1.54540703942E+01 1.57345419190E+01 1.60160820221E+01 1.62984557480E+01 1.65814106280E+01 1.68646757266E+01 1.71479606652E+01 1.74309546252E+01 1.77133253326E+01 1.79947180287E+01 1.82747544292E+01 1.85530316761E+01 1.88291212875E+01 1.91025681095E+01 1.93728892761E+01 1.96395731836E+01 1.99020784862E+01 2.01598331201E+01 2.04122333645E+01 2.06586429491E+01 2.08983922174E+01 2.11307773564E+01 2.13550597057E+01 2.15704651566E+01 2.17761836568E+01 2.19713688342E+01 2.21551377566E+01 2.23265708422E+01 2.24847119415E+01 2.26285686076E+01 2.27571125763E+01 2.28692804768E+01 2.29639747959E+01 2.30400651190E+01 2.30963896733E+01 2.31317571975E+01 2.31449491667E+01 2.31347223979E+01 2.30998120659E+01 2.30389351578E+01 2.29507943950E+01 2.28340826529E+01 2.26874879079E+01 2.25096987394E+01 2.22994104175E+01 2.20553316020E+01 2.17761916817E+01 2.14607487754E+01 2.11077984191E+01 2.07161829578E+01 2.02848016585E+01 1.98126215561E+01 1.92986890391E+01 1.87421421768E+01 1.81422237823E+01 1.74982951995E+01 1.68098507936E+01 1.60765331106E+01 1.52981898688E+01 1.44752184611E+01 1.36077982790E+01 1.26962786803E+01 1.17412427823E+01 1.07435253536E+01 9.70423079956E+00 8.62475109058E+00 7.50678346689E+00 6.35234772836E+00 5.16380289742E+00 3.94386301919E+00 2.69561183945E+00 1.42251607502E+00 1.28436968282E-01 -1.18236020829E+00 -2.50513383796E+00 -3.83410066651E+00 -5.16329731499E+00 -6.48637692791E+00 -7.79658920517E+00 -9.08679612934E+00 -1.03494930612E+01 -1.15768356538E+01 -1.27606730251E+01 -1.38925876109E+01 -1.49639420913E+01 -1.59659337475E+01 -1.68896565561E+01 -1.77261712492E+01 -1.84665835267E+01 -1.91021304800E+01 -1.96242751921E+01 -2.00248093503E+01 -2.02959635642E+01 -2.04305249160E+01 -2.04219610885E+01 -2.02645502159E+01 -1.99535153801E+01 -1.94851624406E+01 -1.88570196312E+01 -1.80679770931E+01 -1.71184242344E+01 -1.60103825280E+01 -1.47476310718E+01 -1.33358219616E+01 -1.17825822565E+01 -1.00975990749E+01 -8.29268413929E+00 -6.38181391769E+00 -4.38114138459E+00 -2.30897536905E+00 -1.85723481456E-01 1.96620527135E+00 4.12254184520E+00 6.25734580102E+00 8.34324404669E+00 1.03517218464E+01 1.22534674517E+01 1.40187707153E+01 1.56179748746E+01 1.70219793251E+01 1.82027896573E+01 1.91341095036E+01 1.97919668527E+01 2.01553654707E+01 2.02069499367E+01 1.99336706272E+01 1.93274327975E+01 1.83857118075E+01 1.71121145806E+01 1.55168656861E+01 1.36171950875E+01 1.14376037316E+01 9.00998288574E+00 6.37356359939E+00 3.57467399743E+00 6.66284444230E-01 -2.29267594612E+00 -5.23824332920E+00 -8.10258963063E+00 -1.08154382452E+01 -1.33057151292E+01 -1.55034157443E+01 -1.73416575152E+01 -1.87588758351E+01 -1.97011095220E+01 -2.01243094092E+01 -1.99965919737E+01 -1.93003491782E+01 -1.80341167512E+01 -1.62140967262E+01 -1.38752270622E+01 -1.10716924220E+01 -7.87677653562E+00 -4.38196877647E+00 -6.95256251007E-01 3.06144175497E+00 6.75570760429E+00 1.02488988001E+01 1.34011872935E+01 1.60772407758E+01 1.81523692199E+01 1.95189065636E+01 2.00925466298E+01 1.98183077810E+01 1.86757664704E+01 1.66831801466E+01 1.39001193077E+01 1.04282510433E+01 6.40996567847E+00 2.02461662313E+00 -2.51774785210E+00 -6.98514449670E+00 -1.11347269803E+01 -1.47258077712E+01 -1.75342757755E+01 -1.93676660255E+01 -2.00799661851E+01 -1.95851085736E+01 -1.78680145746E+01 -1.49920493262E+01 -1.11018252833E+01 -6.42047642080E+00 -1.24081710844E+00 4.08980097655E+00 9.19062680825E+00 1.36737726517E+01 1.71741367601E+01 1.93809463556E+01 2.00683863774E+01 1.91224329302E+01 1.65608806550E+01 1.25437022580E+01 7.37135225139E+00 1.46944599088E+00 -4.64060537879E+00 -1.03840011547E+01 -1.51854057156E+01 -1.85280536567E+01 -2.00134793051E+01 -1.94152107004E+01 -1.67193486092E+01 -1.21453381598E+01 -6.14156382990E+00 6.47311537237E-01 7.44118648414E+00 1.34096914509E+01 1.77738645835E+01 1.99128651028E+01 1.94615754549E+01 1.63838543863E+01 1.10072366766E+01 4.00834321675E+00 -3.65585572442E+00 -1.08679384154E+01 -1.65092077381E+01 -1.96376405892E+01 -1.96573754496E+01 -1.64493314359E+01 -1.04343409978E+01 -2.54770425166E+00 5.88284955425E+00 1.33465571729E+01 1.84183217163E+01 2.00418961773E+01 1.77720763199E+01 1.19196269146E+01 3.55412168511E+00 -5.65627371726E+00 -1.37556212503E+01 -1.89120669131E+01 espresso-5.0.2/PW/examples/EXX_example/run_example0000755000700200004540000003111412053145630021147 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "of silicon and of a few small molecules using hybrid functionals." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF" x_gamma_extrapolation=".TRUE." exxdiv_treatment="gygi-baldereschi" if [ ! -z "$1" ] ; then exxdiv_treatment="$1" ; fi if [ "$exxdiv_treatment" = "vcut_ws" ] ; then x_gamma_extrapolation=.FALSE. ; fi if [ "$exxdiv_treatment" = "vcut_spheric" ] ; then x_gamma_extrapolation=.FALSE. ; fi ecutvcut=0.7 $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" $ECHO $ECHO " running PBE0 calculation for Si with nq=1,2,4 \c" $ECHO for nq in 1 2 4 ; do # self-consistent calculation cat > si.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='pbe0', nqx1 = $nq, nqx2 = $nq, nqx3 = $nq, exxdiv_treatment='$exxdiv_treatment' ecutvcut=$ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &electrons mixing_beta = 0.7 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si with nq = $nq ...\c" $PW_COMMAND < si.in > si.PBE0_nq=${nq}.out $ECHO " done" grep -e ! si.PBE0_nq=${nq}.out | tail -1 #rm -f si.in done $ECHO $ECHO " running HSE calculation for Si with nq=1,2,4 \c" $ECHO for nq in 1 2 4 ; do # self-consistent calculation cat > si.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='hse', nqx1 = $nq, nqx2 = $nq, nqx3 = $nq, x_gamma_extrapolation = $x_gamma_extrapolation exxdiv_treatment = '$exxdiv_treatment' / &electrons mixing_beta = 0.7 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si with nq = $nq ...\c" $PW_COMMAND < si.in > si.hse_nq=${nq}.out $ECHO " done" grep -e ! si.hse_nq=${nq}.out | tail -1 #rm -f si.in done $ECHO $ECHO " running now a few molecules with Gamma sampling ...\c" $ECHO PSEUDO_DIR=$EXAMPLE_DIR/Pseudo $ECHO " pseudo directory changed to: $PSEUDO_DIR" $ECHO for xc in pbe0 hse ; do $ECHO " Exchange and correlation is: " $xc "...\c" $ECHO ps=1nlcc ecut=80 rm -fr $TMP_DIR/* cat > o.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'o', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = $ecut , input_dft = '$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 2.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / ATOMIC_SPECIES O 16.0 OPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom O 0.1 0.2 0.3 K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running oxygen atom..\c" $PW_COMMAND < o.inp > o.$xc.$ps.out-$ecut $ECHO " done" rm -fr $TMP_DIR/* cat > c.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'c', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 2.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / ATOMIC_SPECIES C 16.0 CPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom C 0.1 0.2 0.3 K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running carbon atom..\c" $PW_COMMAND < c.inp > c.$xc.$ps.out-$ecut $ECHO " done" rm -fr $TMP_DIR/* cat > n.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'n', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 3.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-4 / ATOMIC_SPECIES N 16.0 NPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom N 0.1 0.2 0.3 K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running nitrogen atom..\c" $PW_COMMAND < n.inp > n.$xc.$ps.out-$ecut $ECHO " done" rm -fr $TMP_DIR/* b=0.3169 cat > n2.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'n2', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 2, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nbnd = 8 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 1.d-4 / &IONS / ATOMIC_SPECIES N 16.0 NPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom N $b $b $b N -$b -$b -$b K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running n2 molecule..\c" $PW_COMMAND < n2.inp > n2.$xc.$ps.out-$ecut $ECHO " done" rm -fr $TMP_DIR/* b=0.3256 cat > co.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'co', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 2, ntyp = 2, ecutwfc = $ecut , input_dft='$xc' nbnd = 8 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / &IONS / ATOMIC_SPECIES C 16.0 CPBE$ps.RRKJ3 O 16.0 OPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom C $b $b $b O -$b -$b -$b K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running co molecule..\c" $PW_COMMAND < co.inp > co.$xc.$ps.out-$ecut $ECHO " done" rm -fr $TMP_DIR/* b=0.3478 cat > o2.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'o2', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 2, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 8 tot_magnetization = 2.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / &IONS / ATOMIC_SPECIES O 16.0 OPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom O $b $b $b O -$b -$b -$b K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running o2 molecule..\c" $PW_COMMAND < o2.inp > o2.$xc.$ps.out-$ecut $ECHO " done" $ECHO cat > summarize << EOF grep -e ! n.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > N grep -e ! n2.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > N2 paste N2 N | awk '{be= (\$1-\$2*2.0) * 13.6058 * 23.06; print "N2 : ",be}' grep -e ! o.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > O grep -e ! o2.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > O2 paste O2 O | awk '{be= (\$1-\$2*2.0) * 13.6058 * 23.06 ; print "O2 : ",be}' grep -e ! c.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > C grep -e ! co.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > CO paste CO O C | awk '{be= (\$1-\$2-\$3) * 13.6058 * 23.06; print "CO : ",be}' rm C N O CO O2 N2 EOF sh summarize $ECHO done #rm -f *.inp rm -fr $TMP_DIR/* $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/EXX_example/README0000644000700200004540000002410212053145630017561 0ustar marsamoscm Hybrid Hartree-Fock+DFT functionals are a still evolving feature in PWscf. Only a few functionalities are implemented. WHICH FUNCTIONALS ARE IMPLEMENTED ? The following hybrid functionals are implemented: Hartree-Fock, PBE0, B3LYP, HSE (see Modules/functionals.f90 for updated info and more details). Usually in PWscf the functional to be used is read from pseudopotential files but we do not have so far a pseudopotential generator for hybrid functionals so one needs to use pseudopotentials generated with some other functionals (eg. LDA, PBE, BLYP) and force the usage of a hybrid functional using input variable "input_dft" in system namelist; for instance, input_dft="pbe0" will force the usage of PBE0 irrespective of the functional used in the pseudopotential generation. HOW DOES THE ALGORITHM WORK ? The algorithm is quite standard: see for instance Chawla and Voth, JCP {bf 108}, 4697 (1998); Sorouri, Foulkes and Hine, JCP {\bf 124}, 064105 (2006); Spencer and Alavi, PRB {\bf 77}, 193110 (2008). Basically, one generates auxiliary densities $\rho_{-q}=\phi^{*}_{k+q}*\psi_k$ in real space and transforms them to reciprocal space using FFT; the Poisson equation is solved and the resulting potential is transformed back to real space using FFT, then multiplied by $\phi_{k+q}$ and the results are accumulated. The only tricky point is the treatment of the $q\rightarrow 0$ limit, which is described below, and in the Appendix A.5 of the QE paper (note the reference to the Gygi and Baldereschi paper). See J. Comp. Chem. {\bf 29}, 2098 (2008); JACS {\bf 129}, 10402 (2007) for examples of applications. HOW DOES SELF-CONSISTENCY WORK ? The usage of hybrid functionals is VERY expensive (see later). Moreover self-consistency should be reached on the density-matrix, instead of the charge density as in traditional DFT. This is not feasible with plane waves. The strategy used here is to consider an auxiliary set of wavefunctions psi in addition to the usual set phi and to minimize the auxiliary functional (let us focus on HF for simplicity): E[phi,psi] = T[phi] + E_ext[phi] + E_Hartree[phi] + - 0.5* where Vx[psi] is the fock operator defined with the auxiliary function psi. Taking the functional derivatives w.r.t. phi it can be shown that the scf condition for phi are the HF equation with fixed Fock operator, so Vx does not enter in the scf procedure and one can mix density as usual. The minimum condition w.r.t. psi is simply psi=phi so when both psi and phi are minimized the standard HF energy is obtained. Actually one can show that the functional E[phi,psi] above is E[phi,psi] = E_HF[phi] + dexx[phi,psi] where dexx is a positive definite addition to E_HF . The scf procedure goes as follow. 0) a normal scf (with LDA or similar functionals) is performed 1) hybrid functional is switched on and psi = phi (the current best wfcs) 2) a new scf is performed w.r.t phi, keeping fixed Vx[psi] 3) dexx[phi,psi] is computed and if it exceeds the required tolerance the proceedure is repeated from point 1) HF may require several phi-scf cycles to reach full convergence. B3LYP and PBE0, due to the smaller fraction of HF exchange included, require usually a smaller number of phi-scf cycles HOW EXPENSIVE IS THE CALCULATION ? Very expensive. Applying the Fock operator on a single vawefunction (phi_k,v) requires the calculation of an integral over the whole BZ and all psi bands. For each needed pair psi_k+q,v' and phi_k,v an auxiliary charge density rho(-q+G) is built in real space and then FFT to reciprocal space where the corresponding Poisson equation is solved. This auxiliary potential is FFT back in real space where it is multiplied by psi_k+q,v' and added to Vx[psi]phi... The cost of the operation is therefore roughly NBND * NQS * ( 2 * FFT + ... ) where NQS is the number of q-points chosen to represent the BZ integration, and depends in general on the localization of the Wannier functions of the system. For comparison non-local pseudopotentials in the KB formulation (without exploiting the locality of the KB projetors) cost NKB * (2 * NPW) where NKB is typically of the order of NBND but NPW cost at least an order of magnitude less than an FFT. Therefore even when one can take NQS=1 (for large non-metallic system this should be ok) hybrid functionals will require at least an order of magnitude more resources that a standard calculation. HOW CAN I CHOSE NQS IN INPUT ? In the system namelist there are three variables nqx1,nqx2,nqx3 that define the regular q-grid in the BZ in a way similar to the automatic k-points generation. Their value must be compatible with the k-points used (that is k+q must be equivalent to some other k in the k-points list) Their default value are nqx1=1,nqx2=1,nqx3=1 (BZ integration is approximated by gamma point value only). DIVERGENCE AT q->0 The BZ integral to be performed has a diverging kernel when (q+G)->0. This is dealt with by adding and subtracting a term with the same divergence that can be integrated analytically and performing numerically the integration for the non divergent residue [Gygi-Baldereschi, PRB 34, 4405 (1986)]. One problem is left: the now non divergent q=0 term is not easily determined since it is a 0/0 (non analytic) limit. Several options have been considered: 1) just discard it ... this is not a good idea in general because it induces an error proportional to 1/(NQS*Omega) in the total energy where Omega is the volume of the Wigner-Seitz cell of the crystal. As one wish to keep NQS as small as possible this may be large. 2) exploit the fact that the term has the above dependence and extract it from a calculation with a given nqx1,nqx2,nqx3 and the one with a grid twice as coarse in each direction. One does not really need to perform two calculations but can do it internally (even when nqx? are not even numbers...). This seems to work and it is set as the default. In order to disable this feature [and get back to option 1)] set x_gamma_extrapolation = .false. 3) perform calculations in q-grids that are shifted away from gamma so that the 0/0 term is not needed. This create some extra complication in the coding and cannot be used with Gamma-only k-point integration. In some tests it didn;t seem superior to option 2) ... it was never ully implemented and now it has been removed. 4) use the value at small (q+G) to estimate the (q+G)->0 limit. This again has been tried and found to offer, for low order numerical differentiation, no better results that option 2). It is possible than higher-order formulas yield better results but this has not been explored. This option is currently not implemented but it would be easy to re-implement it. 5) use a spherical cutoff for coulomb potential (exxdiv_treatement='vcut_spheric') In the case of strongly anisotropic supercells, such that one (or two) of the products nki*ai (nki=number of k-points along axis i, ai=cell length along i axis) is much larger than the others (for instance: nkz*az=50 A >> nky*ay=nkx*ax=10 A), it can be shown that the fourier transform of 1/(q+G)**2 does not behave as 1/|r-r'| for small q+G, thus producing instabilities with respect to the k point sampling. In order to avoid this problem you have 2 possibilities: 1) change your supercell to a cubic one (all nki*ai of similar value) 2) use a real-space Wigner-Seitz cutoff. For this you have to turn on exxidv_treatment="vcut_ws" and converge your results with respect to ecutvcut (reciprocal space cutoff for the correction, i.e.: coulomb=1/(q+G)**2 for (q+G)**2> ecutvcut, coulomb=cutoffed_coulomb for (q+G)**2 < ecutvcut). Typical values for ecutvcut range from 0.7 to 2.0. OTHER LIMITATIONS So far only NORM-CONSERVING pseudopotentials are implemented. there is no fundamental problem in defining HF for US pseudopotentials but since some density-like object is required one would need to operate on the dense charge-density FFT grid anyway with no computational gain. Maybe this is not true and one can find ways to perform this integrals more efficently. So far I did not think to much to this point. PARALLEL IMPLEMENTATION ? At present, both plane-wave and k-point parallelization have been implemented. This is what is mostly needed for large systems. An experimental parallelization on the band structure is also available (pw.x -nbgrp N) WHAT PROPERTIES CAN I COMPUTE ? Energy and forces (thanks to Hellmann-Feynman theorem forces do not require extra calculations). In principle also stresses but the corresponding formulas have not yet been coded. So structural optimization is OK if the cell shape is kept fixed. Band structure ? yes and no. Obviously one computes wfc during the scf cycle and their eigenvalues are printed in output. This can be sufficient to draw a band structure or a DOS, but the problem arises when one wishes non-scf calculations in k-points different from those computed during the scf cycle. At present it is not possible because this would require the knowledge of all bands at k+q that we do not have. I do not know how to by-pass this problem. ELECTRIC FIELD I did not dig into this issue but Paolo Umari is using EXX with electric field. For details it would be better to ask him directly. AN EXAMPLE run_example script in this directory performs two series of calculations: 1) total energy of Silicon using different values for nqx, 2) calculation of binding energy of o2,co,n2 from calculations in a 12 au cubic box and gamma sampling. Running it will generate directory "results" to be compared with directory "reference" Please report problems and suggestions to QE developers (in particolar: Stefano de Gironcoli , Paolo Giannozzi , Layla Martin-Samos ), and keep in mind that this feature is still experimental. espresso-5.0.2/PW/examples/ESM_example/0000755000700200004540000000000012053440301016653 5ustar marsamoscmespresso-5.0.2/PW/examples/ESM_example/reference/0000755000700200004540000000000012053440303020613 5ustar marsamoscmespresso-5.0.2/PW/examples/ESM_example/reference/Al111.bc2_efield.out0000644000700200004540000014017112053145630024111 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:28: 8 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Metal-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00000 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.3 secs total energy = -26.56120197 Ry Harris-Foulkes estimate = -27.35123149 Ry estimated scf accuracy < 1.09567205 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 5.22E-03, avg # of iterations = 19.0 total cpu time spent up to now is 49.2 secs total energy = -15.80018310 Ry Harris-Foulkes estimate = -43.19081142 Ry estimated scf accuracy < 885.27998542 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 5.22E-03, avg # of iterations = 19.4 total cpu time spent up to now is 84.6 secs total energy = -26.54181106 Ry Harris-Foulkes estimate = -27.91551599 Ry estimated scf accuracy < 24.56505053 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.22E-03, avg # of iterations = 4.1 total cpu time spent up to now is 91.7 secs total energy = -27.26851512 Ry Harris-Foulkes estimate = -27.37585091 Ry estimated scf accuracy < 3.69602816 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.22E-03, avg # of iterations = 1.1 total cpu time spent up to now is 97.3 secs total energy = -27.28377820 Ry Harris-Foulkes estimate = -27.30859416 Ry estimated scf accuracy < 0.76811728 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.717E-03 0.000E+00 total cpu time spent up to now is 102.8 secs total energy = -27.24629021 Ry Harris-Foulkes estimate = -27.29769215 Ry estimated scf accuracy < 0.48464928 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.31E-03, avg # of iterations = 3.9 negative rho (up, down): 0.193E-03 0.000E+00 total cpu time spent up to now is 109.9 secs total energy = -27.39421367 Ry Harris-Foulkes estimate = -27.40710801 Ry estimated scf accuracy < 0.70038918 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.31E-03, avg # of iterations = 1.1 total cpu time spent up to now is 115.5 secs total energy = -27.36003879 Ry Harris-Foulkes estimate = -27.40322954 Ry estimated scf accuracy < 0.67809876 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.31E-03, avg # of iterations = 1.0 negative rho (up, down): 0.105E-06 0.000E+00 total cpu time spent up to now is 121.1 secs total energy = -27.31199255 Ry Harris-Foulkes estimate = -27.37026091 Ry estimated scf accuracy < 0.27726912 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.32E-03, avg # of iterations = 2.5 total cpu time spent up to now is 128.1 secs total energy = -27.35669019 Ry Harris-Foulkes estimate = -27.44291477 Ry estimated scf accuracy < 0.98286831 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.32E-03, avg # of iterations = 1.0 total cpu time spent up to now is 133.6 secs total energy = -27.32339147 Ry Harris-Foulkes estimate = -27.37636312 Ry estimated scf accuracy < 0.25105150 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.20E-03, avg # of iterations = 3.6 total cpu time spent up to now is 140.3 secs total energy = -27.37252199 Ry Harris-Foulkes estimate = -27.37346642 Ry estimated scf accuracy < 0.09761236 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 4.65E-04, avg # of iterations = 4.2 total cpu time spent up to now is 147.8 secs total energy = -27.37729354 Ry Harris-Foulkes estimate = -27.39414491 Ry estimated scf accuracy < 0.26897569 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 1.0 total cpu time spent up to now is 153.4 secs total energy = -27.38432614 Ry Harris-Foulkes estimate = -27.38262154 Ry estimated scf accuracy < 0.03131032 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.49E-04, avg # of iterations = 5.2 total cpu time spent up to now is 160.9 secs total energy = -27.38531593 Ry Harris-Foulkes estimate = -27.38623364 Ry estimated scf accuracy < 0.06710375 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 166.4 secs total energy = -27.38535510 Ry Harris-Foulkes estimate = -27.38576955 Ry estimated scf accuracy < 0.05495381 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 171.8 secs total energy = -27.38049782 Ry Harris-Foulkes estimate = -27.38567902 Ry estimated scf accuracy < 0.05393250 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.1 total cpu time spent up to now is 177.3 secs total energy = -27.38141450 Ry Harris-Foulkes estimate = -27.38221925 Ry estimated scf accuracy < 0.01658138 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged ethr = 7.90E-05, avg # of iterations = 4.5 total cpu time spent up to now is 184.2 secs total energy = -27.38245068 Ry Harris-Foulkes estimate = -27.38289161 Ry estimated scf accuracy < 0.00274831 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.31E-05, avg # of iterations = 13.6 total cpu time spent up to now is 198.4 secs total energy = -27.38438088 Ry Harris-Foulkes estimate = -27.38519463 Ry estimated scf accuracy < 0.00625512 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.31E-05, avg # of iterations = 3.6 total cpu time spent up to now is 204.6 secs total energy = -27.38444950 Ry Harris-Foulkes estimate = -27.38456813 Ry estimated scf accuracy < 0.00156876 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged ethr = 7.47E-06, avg # of iterations = 2.6 total cpu time spent up to now is 210.6 secs total energy = -27.38434240 Ry Harris-Foulkes estimate = -27.38448810 Ry estimated scf accuracy < 0.00085405 Ry iteration # 23 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 4.07E-06, avg # of iterations = 7.0 total cpu time spent up to now is 218.4 secs total energy = -27.38451828 Ry Harris-Foulkes estimate = -27.38453679 Ry estimated scf accuracy < 0.00002966 Ry iteration # 24 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.41E-07, avg # of iterations = 11.9 total cpu time spent up to now is 233.9 secs total energy = -27.38459156 Ry Harris-Foulkes estimate = -27.38459459 Ry estimated scf accuracy < 0.00001989 Ry iteration # 25 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 9.47E-08, avg # of iterations = 5.2 negative rho (up, down): 0.147E-07 0.000E+00 total cpu time spent up to now is 241.3 secs total energy = -27.38458851 Ry Harris-Foulkes estimate = -27.38459553 Ry estimated scf accuracy < 0.00004506 Ry iteration # 26 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.47E-08, avg # of iterations = 1.2 total cpu time spent up to now is 246.8 secs total energy = -27.38458189 Ry Harris-Foulkes estimate = -27.38458914 Ry estimated scf accuracy < 0.00002166 Ry iteration # 27 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.47E-08, avg # of iterations = 3.1 negative rho (up, down): 0.993E-07 0.000E+00 total cpu time spent up to now is 253.4 secs total energy = -27.38458704 Ry Harris-Foulkes estimate = -27.38458849 Ry estimated scf accuracy < 0.00000911 Ry iteration # 28 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.34E-08, avg # of iterations = 2.8 total cpu time spent up to now is 259.4 secs total energy = -27.38458716 Ry Harris-Foulkes estimate = -27.38458768 Ry estimated scf accuracy < 0.00000233 Ry iteration # 29 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.11E-08, avg # of iterations = 4.3 total cpu time spent up to now is 266.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -13.9019 -13.5418 -12.9471 -12.1135 -11.0390 -9.7825 -8.2879 -6.8129 -4.9937 -3.1497 -1.3626 0.0301 0.5208 0.8956 1.3571 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -13.5279 -13.1685 -12.5750 -11.7431 -10.6707 -9.4164 -7.9221 -6.4613 -4.6430 -2.8056 -1.0254 0.3778 0.8952 1.2585 1.7171 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -12.4111 -12.0540 -11.4645 -10.6380 -9.5722 -8.3260 -6.8380 -5.4126 -3.6236 -1.9134 -0.9313 -0.4630 -0.0508 0.2973 0.7882 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -10.5681 -10.2152 -9.6329 -8.8174 -7.7682 -6.5537 -5.2123 -4.8361 -4.4462 -3.8444 -3.4678 -3.0015 -2.0113 -1.7166 -0.8250 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -8.0358 -8.0249 -7.7186 -7.6540 -7.1505 -7.0902 -6.3765 -6.3312 -5.4843 -4.9233 -3.9535 -3.8492 -2.5328 -2.3959 -1.2561 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -13.5279 -13.1685 -12.5750 -11.7431 -10.6707 -9.4164 -7.9221 -6.4613 -4.6430 -2.8056 -1.0253 0.3781 0.8962 1.2597 1.7199 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -13.5279 -13.1685 -12.5750 -11.7431 -10.6707 -9.4164 -7.9221 -6.4613 -4.6430 -2.8056 -1.0253 0.3781 0.8959 1.2588 1.7171 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -12.7825 -12.4246 -11.8337 -11.0054 -9.9372 -8.6880 -7.1966 -5.7603 -3.9522 -2.1440 -0.4262 0.8814 1.4969 1.6884 1.8183 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6566 -1.0072 -0.6929 -0.0271 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2885 -2.1677 -0.9823 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2884 -2.1677 -0.9811 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0072 -0.6931 -0.0284 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -12.7825 -12.4246 -11.8337 -11.0054 -9.9372 -8.6880 -7.1966 -5.7603 -3.9522 -2.1440 -0.4262 0.8805 1.4963 1.6928 1.7749 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -12.4111 -12.0540 -11.4645 -10.6380 -9.5722 -8.3260 -6.8380 -5.4126 -3.6236 -1.9134 -0.9313 -0.4629 -0.0506 0.2974 0.7885 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -12.7825 -12.4246 -11.8337 -11.0054 -9.9372 -8.6880 -7.1966 -5.7603 -3.9522 -2.1440 -0.4262 0.8805 1.4982 1.6890 1.8024 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -12.4111 -12.0540 -11.4645 -10.6380 -9.5722 -8.3260 -6.8380 -5.4126 -3.6236 -1.9134 -0.9313 -0.4628 -0.0507 0.2976 0.7886 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0072 -0.6929 -0.0281 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -9.4733 -9.1233 -8.5461 -7.7389 -6.7039 -5.5183 -4.2601 -3.8143 -3.8040 -3.5756 -3.3250 -2.9008 -2.6055 -2.3469 -2.0938 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -6.9627 -6.9509 -6.6549 -6.5803 -6.0961 -6.0206 -5.3286 -5.2939 -4.4776 -4.1939 -3.8787 -3.8375 -3.4192 -3.1801 -2.6075 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -9.4733 -9.1233 -8.5461 -7.7389 -6.7039 -5.5183 -4.2601 -3.8143 -3.8040 -3.5756 -3.3250 -2.9008 -2.6055 -2.3468 -2.0914 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0073 -0.6931 -0.0286 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -10.5681 -10.2152 -9.6329 -8.8174 -7.7682 -6.5537 -5.2123 -4.8361 -4.4462 -3.8444 -3.4678 -3.0015 -2.0112 -1.7166 -0.8253 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0069 -0.6927 -0.0283 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0070 -0.6930 -0.0260 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -10.5681 -10.2152 -9.6329 -8.8174 -7.7682 -6.5537 -5.2123 -4.8361 -4.4462 -3.8444 -3.4678 -3.0015 -2.0113 -1.7166 -0.8251 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2884 -2.1677 -0.9824 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -6.9627 -6.9509 -6.6549 -6.5804 -6.0961 -6.0206 -5.3286 -5.2939 -4.4776 -4.1939 -3.8787 -3.8375 -3.4192 -3.1801 -2.6075 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -6.9627 -6.9509 -6.6549 -6.5803 -6.0961 -6.0206 -5.3286 -5.2939 -4.4776 -4.1939 -3.8787 -3.8375 -3.4192 -3.1801 -2.6075 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2883 -2.1677 -0.9777 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -8.0358 -8.0249 -7.7186 -7.6540 -7.1505 -7.0902 -6.3765 -6.3312 -5.4843 -4.9233 -3.9535 -3.8492 -2.5328 -2.3959 -1.2560 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2885 -2.1677 -0.9818 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -9.4733 -9.1233 -8.5461 -7.7389 -6.7039 -5.5183 -4.2601 -3.8143 -3.8040 -3.5756 -3.3250 -2.9008 -2.6055 -2.3468 -2.0944 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2884 -2.1676 -0.9812 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -8.0358 -8.0249 -7.7186 -7.6540 -7.1505 -7.0902 -6.3765 -6.3312 -5.4843 -4.9233 -3.9535 -3.8492 -2.5328 -2.3959 -1.2560 the Fermi energy is -3.0078 ev ! total energy = -27.38458727 Ry Harris-Foulkes estimate = -27.38458770 Ry estimated scf accuracy < 0.00000038 Ry The total energy is the sum of the following terms: one-electron contribution = -6091.81405155 Ry hartree contribution = 3047.52656039 Ry xc contribution = -11.06491295 Ry ewald contribution = 3027.96511646 Ry smearing contrib. (-TS) = 0.00270039 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 93.4795043 -92.1196488 1.3598554 -19.98 0.0000 103.8162934 -102.1518398 1.6644536 -19.80 0.0000 128.4507082 -126.5753749 1.8753333 -19.62 0.0000 168.5066595 -166.5612420 1.9454175 -19.44 0.0000 216.6522131 -214.7225332 1.9296799 -19.26 0.0000 264.7966591 -262.8829074 1.9137517 -19.08 0.0000 312.9417088 -311.0436573 1.8980515 -18.90 0.0000 361.0866627 -359.2045751 1.8820876 -18.72 0.0000 409.2312041 -407.3647831 1.8664210 -18.54 0.0000 457.3766628 -455.5262371 1.8504256 -18.36 0.0000 505.5207065 -503.6859185 1.8347880 -18.18 0.0000 553.6666520 -551.8478856 1.8187664 -18.00 0.0000 601.8102232 -600.0070714 1.8031518 -17.82 0.0000 649.9566233 -648.1695130 1.7871103 -17.64 0.0000 698.0997609 -696.3282486 1.7715123 -17.46 0.0000 746.2465704 -744.4911127 1.7554577 -17.28 0.0000 794.3893256 -792.6494567 1.7398689 -17.10 0.0000 842.5364877 -840.8126788 1.7238089 -16.92 0.0000 890.6789224 -888.9707009 1.7082215 -16.74 0.0000 938.8263706 -937.1342066 1.6921641 -16.56 0.0000 986.9685553 -985.2919854 1.6765699 -16.38 0.0000 1035.1162158 -1033.4556924 1.6605233 -16.20 0.0000 1083.2582270 -1081.6133131 1.6449140 -16.02 0.0000 1131.4060210 -1129.7771343 1.6288868 -15.84 0.0000 1179.5479391 -1177.9346853 1.6132538 -15.66 0.0000 1227.6957855 -1226.0985313 1.5972542 -15.48 0.0000 1275.8376916 -1274.2561021 1.5815896 -15.30 0.0000 1323.9855097 -1322.4198843 1.5656254 -15.12 0.0000 1372.1274835 -1370.5775621 1.5499214 -14.94 0.0000 1420.2751955 -1418.7411953 1.5340002 -14.76 0.0000 1468.4173122 -1466.8990625 1.5182497 -14.58 0.0000 1516.5648458 -1515.0624678 1.5023780 -14.40 0.0000 1564.7071740 -1563.2205992 1.4865747 -14.22 0.0000 1612.8544645 -1611.3837064 1.4707581 -14.04 0.0000 1660.9970640 -1659.5421672 1.4548968 -13.86 0.0000 1709.1440565 -1707.7049168 1.4391397 -13.68 0.0000 1757.2869762 -1755.8637601 1.4232161 -13.50 0.0000 1805.4336266 -1804.0261056 1.4075210 -13.32 0.0000 1853.5769030 -1852.1853710 1.3915320 -13.14 0.0000 1901.7231791 -1900.3472800 1.3758991 -12.96 0.0000 1949.8668346 -1948.5069926 1.3598420 -12.78 0.0000 1998.0127154 -1996.6684477 1.3442677 -12.60 0.0000 2046.1567560 -2044.8286170 1.3281390 -12.42 0.0000 2094.3022296 -2092.9896166 1.3126130 -12.24 0.0000 2142.4466407 -2141.1502359 1.2964048 -12.06 0.0000 2190.5916972 -2189.3107934 1.2809038 -11.88 0.0000 2238.7364335 -2237.4718399 1.2645936 -11.70 0.0000 2286.8810477 -2285.6319865 1.2490611 -11.52 0.0000 2335.0260074 -2333.7934234 1.2325840 -11.34 0.0001 2383.1700946 -2381.9532050 1.2168896 -11.16 0.0001 2431.3150538 -2430.1149787 1.2000751 -10.98 0.0002 2479.4583627 -2478.2744566 1.1839061 -10.80 0.0003 2527.6028049 -2526.4364980 1.1663068 -10.62 0.0004 2575.7446408 -2574.5957497 1.1488911 -10.44 0.0006 2623.8873306 -2622.7579720 1.1293586 -10.26 0.0010 2672.0258775 -2670.9170942 1.1087833 -10.08 0.0016 2720.1637764 -2719.0793884 1.0843880 -9.90 0.0025 2768.2943620 -2767.2385052 1.0558568 -9.72 0.0040 2816.4199046 -2815.4007260 1.0191786 -9.54 0.0064 2864.5306858 -2863.5600109 0.9706749 -9.36 0.0102 2912.6249016 -2911.7219451 0.9029565 -9.18 0.0160 2960.6859885 -2959.8816789 0.8043096 -9.00 0.0252 3008.7016412 -3008.0429082 0.6587329 -8.82 0.0392 3056.6393224 -3056.2035117 0.4358107 -8.64 0.0599 3104.4624165 -3104.3628507 0.0995658 -8.46 0.0894 3152.1045325 -3152.5182024 -0.4136699 -8.28 0.1296 3199.4827309 -3200.5252591 -1.0425282 -8.10 0.1802 3246.4743416 -3248.6013713 -2.1270297 -7.92 0.2368 3292.9350577 -3297.1852143 -4.2501566 -7.74 0.2901 3338.6967533 -3346.0779632 -7.3812099 -7.56 0.3303 3383.6080993 -3394.5930430 -10.9849438 -7.38 0.3538 3427.5486587 -3441.9870321 -14.4383734 -7.20 0.3631 3470.4508030 -3487.4618116 -17.0110086 -7.02 0.3637 3512.2839122 -3530.2893615 -18.0054493 -6.84 0.3611 3553.0462212 -3570.1920171 -17.1457959 -6.66 0.3600 3592.7432918 -3607.4164012 -14.6731094 -6.48 0.3604 3631.3788606 -3642.6748919 -11.2960313 -6.30 0.3586 3668.9529214 -3676.7662381 -7.8133167 -6.12 0.3531 3705.4705631 -3710.4330426 -4.9624795 -5.94 0.3487 3740.9478170 -3744.2270151 -3.2791981 -5.76 0.3514 3775.3943526 -3778.6127766 -3.2184240 -5.58 0.3604 3808.8044182 -3813.6060000 -4.8015818 -5.40 0.3681 3841.1512193 -3848.7505594 -7.5993401 -5.22 0.3682 3872.4163226 -3883.5015590 -11.0852364 -5.04 0.3619 3902.5959796 -3917.1233236 -14.5273440 -4.86 0.3551 3931.7105673 -3948.8180782 -17.1075109 -4.68 0.3519 3959.7756832 -3977.8603046 -18.0846215 -4.50 0.3536 3986.8041034 -4003.9775160 -17.1734127 -4.32 0.3595 4012.7870644 -4027.4213812 -14.6343168 -4.14 0.3659 4037.7120601 -4048.9074365 -11.1953764 -3.96 0.3669 4061.5578079 -4069.2334105 -7.6756026 -3.78 0.3611 4084.3257449 -4089.1418360 -4.8160911 -3.60 0.3542 4106.0276389 -4109.1812870 -3.1536481 -3.42 0.3534 4126.6858210 -4129.8169502 -3.1311292 -3.24 0.3591 4146.2986929 -4151.0556406 -4.7569477 -3.06 0.3648 4164.8546901 -4172.4424091 -7.5877189 -2.88 0.3646 4182.3352988 -4193.4277399 -11.0924411 -2.70 0.3599 4198.7437869 -4213.2781086 -14.5343217 -2.52 0.3558 4214.0898791 -4231.1917513 -17.1018721 -2.34 0.3551 4228.3875290 -4246.4496026 -18.0620735 -2.16 0.3577 4241.6367256 -4258.7803889 -17.1436632 -1.98 0.3625 4253.8318759 -4268.4448761 -14.6130002 -1.80 0.3663 4264.9581615 -4276.1574319 -11.1992704 -1.62 0.3644 4275.0065900 -4282.7193143 -7.7127243 -1.44 0.3561 4283.9824432 -4288.8681392 -4.8856960 -1.26 0.3481 4291.9084355 -4295.1544317 -3.2459963 -1.08 0.3476 4298.8064806 -4302.0386541 -3.2321735 -0.90 0.3549 4304.6773418 -4309.5241156 -4.8467738 -0.72 0.3631 4309.5024550 -4317.1517070 -7.6492520 -0.54 0.3659 4313.2579763 -4324.3726021 -11.1146258 -0.36 0.3638 4315.9372657 -4330.4502527 -14.5129870 -0.18 0.3611 4317.5431637 -4334.5838830 -17.0407193 0.00 0.3602 4318.0854675 -4336.0562587 -17.9707912 0.18 0.3612 4317.5641710 -4334.6016035 -17.0374325 0.36 0.3639 4315.9793563 -4330.4859519 -14.5065956 0.54 0.3660 4313.3203250 -4324.4257665 -11.1054415 0.72 0.3632 4309.5854747 -4317.2230995 -7.6376248 0.90 0.3550 4304.7797154 -4309.6127324 -4.8330170 1.08 0.3477 4298.9292306 -4302.1457288 -3.2164982 1.26 0.3481 4292.0500086 -4295.2785147 -3.2285061 1.44 0.3561 4284.1444927 -4289.0108800 -4.8663873 1.62 0.3643 4275.1873347 -4282.8788819 -7.6915472 1.80 0.3663 4265.1596458 -4276.3358181 -11.1761723 1.98 0.3625 4254.0519362 -4268.6399507 -14.5880145 2.16 0.3577 4241.8774614 -4258.9943966 -17.1169352 2.34 0.3552 4228.6463202 -4246.6802096 -18.0338894 2.52 0.3559 4214.3687659 -4231.4413540 -17.0725881 2.70 0.3600 4199.0399673 -4213.5442753 -14.5043080 2.88 0.3647 4182.6509349 -4193.7129098 -11.0619749 3.06 0.3648 4165.1872011 -4172.7441635 -7.5569624 3.24 0.3591 4146.6504268 -4151.3763497 -4.7259229 3.42 0.3534 4127.0545356 -4130.1543199 -3.0997843 3.60 0.3542 4106.4156107 -4109.5375085 -3.1218978 3.78 0.3611 4084.7309384 -4089.5148470 -4.7839086 3.96 0.3670 4061.9820645 -4069.6251196 -7.6430550 4.14 0.3660 4038.1534404 -4049.3161119 -11.1626715 4.32 0.3597 4013.2467923 -4027.8485565 -14.6017642 4.50 0.3537 3987.2805109 -4004.4218753 -17.1413644 4.68 0.3520 3960.2695805 -3978.3229289 -18.0533484 4.86 0.3550 3932.2210211 -3949.2981360 -17.0771149 5.04 0.3618 3903.1236718 -3917.6213848 -14.4977130 5.22 0.3681 3872.9612238 -3884.0173247 -11.0561010 5.40 0.3680 3841.7136643 -3849.2840511 -7.5703868 5.58 0.3604 3809.3848947 -3814.1574772 -4.7725825 5.76 0.3515 3775.9923669 -3779.1816984 -3.1893315 5.94 0.3489 3741.5640285 -3744.8142010 -3.2501724 6.12 0.3532 3706.1035386 -3711.0374001 -4.9338615 6.30 0.3587 3669.6036105 -3677.3891240 -7.7855135 6.48 0.3604 3632.0453248 -3643.3146969 -11.2693720 6.66 0.3598 3593.4273244 -3608.0749724 -14.6476480 6.84 0.3609 3553.7460884 -3570.8672870 -17.1211986 7.02 0.3634 3513.0026215 -3530.9835980 -17.9809765 7.20 0.3629 3471.1868268 -3488.1725689 -16.9857421 7.38 0.3538 3428.3053287 -3442.7169092 -14.4115805 7.56 0.3307 3384.3827471 -3395.3393145 -10.9565674 7.74 0.2908 3339.4912633 -3346.8434523 -7.3521890 7.92 0.2379 3293.7444881 -3297.9670299 -4.2225418 8.10 0.1814 3247.2986694 -3249.4024412 -2.1037718 8.28 0.1308 3200.3154740 -3201.3426511 -1.0271771 8.46 0.0906 3152.9448316 -3153.3548203 -0.4099887 8.64 0.0610 3105.3037338 -3105.2158520 0.0878817 8.82 0.0401 3057.4810452 -3057.0756448 0.4054005 9.00 0.0260 3009.5382379 -3008.9315515 0.6066864 9.18 0.0167 2961.5175409 -2960.7892952 0.7282457 9.36 0.0107 2913.4472358 -2912.6462611 0.8009747 9.54 0.0068 2865.3443956 -2864.5030809 0.8413147 9.72 0.0043 2817.2220637 -2816.3607426 0.8613210 9.90 0.0028 2769.0856719 -2768.2170030 0.8686688 10.08 0.0018 2720.9423718 -2720.0751292 0.8672425 10.26 0.0011 2672.7922193 -2671.9309988 0.8612205 10.44 0.0007 2624.6404923 -2623.7894555 0.8510368 10.62 0.0005 2576.4846074 -2575.6450455 0.8395619 10.80 0.0003 2528.3295261 -2527.5037366 0.8257896 10.98 0.0002 2480.1712028 -2479.3591346 0.8120682 11.16 0.0001 2432.0148025 -2431.2179779 0.7968246 11.34 0.0001 2383.8554187 -2383.0732630 0.7821556 11.52 0.0001 2335.6985047 -2334.9321818 0.7663229 11.70 0.0000 2287.5386630 -2286.7874297 0.7512333 11.88 0.0000 2239.3815303 -2238.6463489 0.7351813 12.06 0.0000 2191.2215164 -2190.5016338 0.7198826 12.24 0.0000 2143.0642506 -2142.3604798 0.7037708 12.42 0.0000 2094.9042219 -2094.2158735 0.6883485 12.60 0.0000 2046.7468212 -2046.0745733 0.6722479 12.78 0.0000 1998.5868814 -1997.9301464 0.6567350 12.96 0.0000 1950.4293090 -1949.7886331 0.6406760 13.14 0.0000 1902.2695374 -1901.6444516 0.6250857 13.32 0.0000 1854.1117443 -1853.5026621 0.6090821 13.50 0.0000 1805.9522066 -1805.3587858 0.5934208 13.68 0.0000 1757.7941422 -1757.2166643 0.5774778 13.86 0.0000 1709.6348940 -1709.0731445 0.5617496 14.04 0.0000 1661.4765121 -1660.9306444 0.5458677 14.22 0.0000 1613.3175992 -1612.7875226 0.5300765 14.40 0.0000 1565.1588615 -1564.6446080 0.5142535 14.58 0.0000 1517.0003184 -1516.5019142 0.4984042 14.76 0.0000 1468.8411970 -1468.3585614 0.4826356 14.94 0.0000 1420.6830466 -1420.2163127 0.4667339 15.12 0.0000 1372.5235254 -1372.0725113 0.4510141 15.30 0.0000 1324.3657776 -1323.9307111 0.4350665 15.48 0.0000 1276.2058536 -1275.7864648 0.4193888 15.66 0.0000 1228.0485049 -1227.6451022 0.4034027 15.84 0.0000 1179.8881886 -1179.5004292 0.3877594 16.02 0.0000 1131.7312216 -1131.3594790 0.3717426 16.20 0.0000 1083.5705372 -1083.2144114 0.3561258 16.38 0.0000 1035.4139214 -1035.0738347 0.3400867 16.56 0.0000 987.2529058 -986.9284179 0.3244879 16.74 0.0000 939.0965978 -938.7881629 0.3084349 16.92 0.0000 890.9353005 -890.6424547 0.2928457 17.10 0.0000 842.7792454 -842.5024582 0.2767872 17.28 0.0000 794.6177262 -794.3565270 0.2611993 17.46 0.0000 746.4618594 -746.2167159 0.2451435 17.64 0.0000 698.3001874 -698.0706386 0.2295488 17.82 0.0000 650.1444363 -649.9309326 0.2135037 18.00 0.0000 601.9826871 -601.7847925 0.1978946 18.18 0.0000 553.8269734 -553.6451062 0.1818672 18.36 0.0000 505.6652271 -505.4989901 0.1662370 18.54 0.0000 457.5094696 -457.3592357 0.1502339 18.72 0.0000 409.3478081 -409.2132317 0.1345764 18.90 0.0000 361.1919250 -361.0733218 0.1186032 19.08 0.0000 313.0304292 -312.9275159 0.1029133 19.26 0.0000 264.8743410 -264.7873664 0.0869746 19.44 0.0000 216.7130884 -216.6418402 0.0712483 19.62 0.0000 172.5066731 -172.3653520 0.1413210 19.80 0.0000 136.9479654 -136.5957528 0.3522126 19.98 0.0000 111.1743157 -110.5175169 0.6567988 20.16 0.0000 96.3062145 -95.2978813 1.0083332 convergence has been achieved in 29 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000120 0.00000161 -0.00202782 atom 2 type 1 force = 0.00000089 -0.00000258 0.00702296 atom 3 type 1 force = -0.00000119 0.00000132 -0.00543694 atom 4 type 1 force = 0.00000113 0.00000056 0.00001106 atom 5 type 1 force = 0.00000030 0.00000022 0.00541229 atom 6 type 1 force = -0.00000136 0.00000189 -0.00697072 atom 7 type 1 force = 0.00000142 -0.00000303 0.00198918 Total force = 0.012839 Total SCF correction = 0.001031 Writing output data file Al111.save init_run : 5.10s CPU 5.40s WALL ( 1 calls) electrons : 257.42s CPU 261.10s WALL ( 1 calls) forces : 1.56s CPU 1.59s WALL ( 1 calls) Called by init_run: wfcinit : 4.29s CPU 4.37s WALL ( 1 calls) potinit : 0.30s CPU 0.40s WALL ( 1 calls) Called by electrons: c_bands : 232.52s CPU 235.54s WALL ( 29 calls) sum_band : 21.67s CPU 22.07s WALL ( 29 calls) v_of_rho : 2.54s CPU 2.69s WALL ( 30 calls) mix_rho : 0.33s CPU 0.35s WALL ( 29 calls) Called by c_bands: init_us_2 : 3.15s CPU 3.45s WALL ( 2040 calls) cegterg : 224.81s CPU 227.25s WALL ( 988 calls) Called by *egterg: h_psi : 172.91s CPU 173.82s WALL ( 5629 calls) g_psi : 2.90s CPU 3.09s WALL ( 4607 calls) cdiaghg : 6.63s CPU 6.13s WALL ( 5595 calls) Called by h_psi: add_vuspsi : 19.64s CPU 20.68s WALL ( 5629 calls) General routines calbec : 24.38s CPU 23.77s WALL ( 5663 calls) fft : 0.56s CPU 0.54s WALL ( 333 calls) fftw : 136.91s CPU 137.10s WALL ( 113818 calls) davcio : 0.03s CPU 0.93s WALL ( 3026 calls) EXX routines PWSCF : 4m24.28s CPU 4m28.62s WALL This run was terminated on: 22:32:37 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/reference/esm_data.sh0000755000700200004540000000077512053145630022745 0ustar marsamoscm#!/bin/sh # Prints the ESM summary data (charge and potentials) to stdout # Usage: esm_data.sh {pw output filename} # # Original version by Brandon Wood and Minoru Otani # echo '# z (A) Tot chg (e) Avg v_hartree Avg v_local Avg v_hart+v_loc' echo '# (eV) (eV) (eV)' ngrid=`grep 'Dense grid:' $1 | awk -F ',' '{print $3}' | sed 's/)//'` let ngrid="$ngrid+5" grep -A${ngrid} 'ESM Charge and Potential' $1 | tail -n${ngrid} | tail -n+6 espresso-5.0.2/PW/examples/ESM_example/reference/Al111.bc3_p005.out0000644000700200004540000015013412053145630023346 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:41:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 14 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 2982, 14) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.55 Mb ( 2982, 56) Each subspace H/S matrix 0.05 Mb ( 56, 56) Each matrix 0.01 Mb ( 56, 14) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 20.99500 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 total cpu time spent up to now is 14.2 secs total energy = -27.49216588 Ry Harris-Foulkes estimate = -28.90401343 Ry estimated scf accuracy < 1.49565211 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 7.12E-03, avg # of iterations = 17.7 total cpu time spent up to now is 48.9 secs total energy = -1.60851931 Ry Harris-Foulkes estimate = -67.89358949 Ry estimated scf accuracy < 1119.20290748 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged ethr = 7.12E-03, avg # of iterations = 23.0 total cpu time spent up to now is 96.3 secs total energy = -28.18231371 Ry Harris-Foulkes estimate = -29.60144693 Ry estimated scf accuracy < 29.03587727 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 3.8 total cpu time spent up to now is 102.7 secs total energy = -28.20262025 Ry Harris-Foulkes estimate = -29.28069212 Ry estimated scf accuracy < 20.53089622 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 5.5 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 110.2 secs total energy = -29.04926948 Ry Harris-Foulkes estimate = -29.09698538 Ry estimated scf accuracy < 12.16711349 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.6 negative rho (up, down): 0.208E-01 0.000E+00 total cpu time spent up to now is 115.8 secs total energy = -29.29244884 Ry Harris-Foulkes estimate = -29.21580478 Ry estimated scf accuracy < 23.60131319 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.268E-01 0.000E+00 total cpu time spent up to now is 121.4 secs total energy = -28.96713216 Ry Harris-Foulkes estimate = -29.31871531 Ry estimated scf accuracy < 28.61493174 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.218E-01 0.000E+00 total cpu time spent up to now is 126.9 secs total energy = -28.64131855 Ry Harris-Foulkes estimate = -29.07913882 Ry estimated scf accuracy < 7.55753540 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 132.4 secs total energy = -29.05904687 Ry Harris-Foulkes estimate = -29.05197217 Ry estimated scf accuracy < 5.88681568 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.233E-01 0.000E+00 total cpu time spent up to now is 138.0 secs total energy = -28.96640283 Ry Harris-Foulkes estimate = -29.07005905 Ry estimated scf accuracy < 5.80417696 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.734E-02 0.000E+00 total cpu time spent up to now is 143.4 secs total energy = -29.00326850 Ry Harris-Foulkes estimate = -29.01273884 Ry estimated scf accuracy < 0.54041538 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 8.8 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 155.1 secs total energy = -29.66501001 Ry Harris-Foulkes estimate = -29.94362885 Ry estimated scf accuracy < 66.61036421 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.3 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 161.1 secs total energy = -28.82954246 Ry Harris-Foulkes estimate = -29.68849341 Ry estimated scf accuracy < 50.51039858 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 3.1 negative rho (up, down): 0.432E-01 0.000E+00 total cpu time spent up to now is 167.2 secs total energy = -29.09788624 Ry Harris-Foulkes estimate = -29.06555885 Ry estimated scf accuracy < 17.00114150 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.0 negative rho (up, down): 0.481E-01 0.000E+00 total cpu time spent up to now is 172.7 secs total energy = -29.16382609 Ry Harris-Foulkes estimate = -29.10953420 Ry estimated scf accuracy < 19.27341750 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.3 negative rho (up, down): 0.255E-01 0.000E+00 total cpu time spent up to now is 178.1 secs total energy = -28.86326852 Ry Harris-Foulkes estimate = -29.18410612 Ry estimated scf accuracy < 21.17152236 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 183.4 secs total energy = -28.77437047 Ry Harris-Foulkes estimate = -28.92489473 Ry estimated scf accuracy < 9.61228036 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.3 negative rho (up, down): 0.150E-01 0.000E+00 total cpu time spent up to now is 188.9 secs total energy = -28.64607115 Ry Harris-Foulkes estimate = -28.80606568 Ry estimated scf accuracy < 5.14121874 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 5.0 negative rho (up, down): 0.912E-02 0.000E+00 total cpu time spent up to now is 196.7 secs total energy = -28.78648288 Ry Harris-Foulkes estimate = -28.82958936 Ry estimated scf accuracy < 0.36752211 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.75E-03, avg # of iterations = 7.3 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 207.2 secs total energy = -28.99413675 Ry Harris-Foulkes estimate = -29.00737229 Ry estimated scf accuracy < 2.58848909 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.75E-03, avg # of iterations = 2.2 negative rho (up, down): 0.627E-02 0.000E+00 total cpu time spent up to now is 212.7 secs total energy = -28.83237472 Ry Harris-Foulkes estimate = -29.01506116 Ry estimated scf accuracy < 5.28398533 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.75E-03, avg # of iterations = 2.1 negative rho (up, down): 0.661E-02 0.000E+00 total cpu time spent up to now is 218.1 secs total energy = -28.90865117 Ry Harris-Foulkes estimate = -28.91351335 Ry estimated scf accuracy < 0.03577617 Ry iteration # 23 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.70E-04, avg # of iterations = 11.3 negative rho (up, down): 0.423E-02 0.000E+00 total cpu time spent up to now is 231.5 secs total energy = -28.92073603 Ry Harris-Foulkes estimate = -28.93019237 Ry estimated scf accuracy < 0.19472857 Ry iteration # 24 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 2.9 negative rho (up, down): 0.153E-03 0.000E+00 total cpu time spent up to now is 238.0 secs total energy = -28.91982804 Ry Harris-Foulkes estimate = -28.93136041 Ry estimated scf accuracy < 0.20733058 Ry iteration # 25 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 2.3 negative rho (up, down): 0.133E-03 0.000E+00 total cpu time spent up to now is 244.2 secs total energy = -28.92708390 Ry Harris-Foulkes estimate = -28.93023785 Ry estimated scf accuracy < 0.08767423 Ry iteration # 26 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 1.0 negative rho (up, down): 0.454E-03 0.000E+00 total cpu time spent up to now is 250.0 secs total energy = -28.92454862 Ry Harris-Foulkes estimate = -28.92797503 Ry estimated scf accuracy < 0.03694698 Ry iteration # 27 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 1.0 negative rho (up, down): 0.671E-04 0.000E+00 total cpu time spent up to now is 255.9 secs total energy = -28.92571761 Ry Harris-Foulkes estimate = -28.92570187 Ry estimated scf accuracy < 0.00170422 Ry iteration # 28 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 8.12E-06, avg # of iterations = 13.6 negative rho (up, down): 0.110E-03 0.000E+00 total cpu time spent up to now is 271.9 secs total energy = -28.92762867 Ry Harris-Foulkes estimate = -28.92756927 Ry estimated scf accuracy < 0.00394924 Ry iteration # 29 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 8.12E-06, avg # of iterations = 5.1 negative rho (up, down): 0.155E-03 0.000E+00 total cpu time spent up to now is 279.1 secs total energy = -28.92738512 Ry Harris-Foulkes estimate = -28.92765906 Ry estimated scf accuracy < 0.00358619 Ry iteration # 30 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-06, avg # of iterations = 1.0 negative rho (up, down): 0.552E-04 0.000E+00 total cpu time spent up to now is 284.3 secs total energy = -28.92732316 Ry Harris-Foulkes estimate = -28.92740419 Ry estimated scf accuracy < 0.00293579 Ry iteration # 31 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-06, avg # of iterations = 1.0 negative rho (up, down): 0.205E-03 0.000E+00 total cpu time spent up to now is 289.8 secs total energy = -28.92663783 Ry Harris-Foulkes estimate = -28.92734950 Ry estimated scf accuracy < 0.00258469 Ry iteration # 32 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-06, avg # of iterations = 2.3 negative rho (up, down): 0.775E-04 0.000E+00 total cpu time spent up to now is 296.7 secs total energy = -28.92694270 Ry Harris-Foulkes estimate = -28.92691556 Ry estimated scf accuracy < 0.00012820 Ry iteration # 33 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 11.4 negative rho (up, down): 0.694E-04 0.000E+00 total cpu time spent up to now is 311.9 secs total energy = -28.92721464 Ry Harris-Foulkes estimate = -28.92722078 Ry estimated scf accuracy < 0.00028020 Ry iteration # 34 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 3.1 negative rho (up, down): 0.271E-04 0.000E+00 total cpu time spent up to now is 318.1 secs total energy = -28.92719528 Ry Harris-Foulkes estimate = -28.92721652 Ry estimated scf accuracy < 0.00024612 Ry iteration # 35 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 4.5 negative rho (up, down): 0.729E-06 0.000E+00 total cpu time spent up to now is 327.7 secs total energy = -28.92721963 Ry Harris-Foulkes estimate = -28.92725162 Ry estimated scf accuracy < 0.00022579 Ry iteration # 36 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 2.6 negative rho (up, down): 0.203E-04 0.000E+00 total cpu time spent up to now is 333.6 secs total energy = -28.92715966 Ry Harris-Foulkes estimate = -28.92722483 Ry estimated scf accuracy < 0.00002954 Ry iteration # 37 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.41E-07, avg # of iterations = 4.8 negative rho (up, down): 0.614E-05 0.000E+00 total cpu time spent up to now is 340.7 secs total energy = -28.92717360 Ry Harris-Foulkes estimate = -28.92717218 Ry estimated scf accuracy < 0.00001717 Ry iteration # 38 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 8.18E-08, avg # of iterations = 2.3 total cpu time spent up to now is 346.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -16.3717 -16.0109 -15.4170 -14.5821 -13.5079 -12.2516 -10.7554 -9.2796 -7.4586 -5.6105 -3.8109 -2.3561 -1.5902 -1.2307 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -15.9976 -15.6376 -15.0449 -14.2118 -13.1396 -11.8854 -10.3896 -8.9279 -7.1080 -5.2666 -3.4744 -2.0137 -1.2271 -0.8646 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -14.8809 -14.5231 -13.9344 -13.1066 -12.0411 -10.7951 -9.3056 -7.8793 -6.0889 -4.3762 -3.3970 -2.9308 -2.5171 -2.1571 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -13.0379 -12.6843 -12.1029 -11.2860 -10.2372 -9.0228 -7.6805 -7.3058 -6.9150 -6.3131 -5.9351 -5.4700 -4.4797 -4.1821 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -10.5053 -10.4949 -10.1877 -10.1232 -9.6204 -9.5600 -8.8453 -8.8000 -7.9533 -7.3920 -6.4221 -6.3188 -4.9999 -4.8639 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -15.9976 -15.6376 -15.0449 -14.2118 -13.1396 -11.8854 -10.3896 -8.9279 -7.1080 -5.2666 -3.4744 -2.0137 -1.2269 -0.8630 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -15.9976 -15.6376 -15.0449 -14.2118 -13.1396 -11.8854 -10.3896 -8.9279 -7.1080 -5.2666 -3.4744 -2.0137 -1.2271 -0.8646 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -15.2522 -14.8937 -14.3036 -13.4740 -12.4061 -11.1570 -9.6642 -8.2270 -6.4174 -4.6054 -2.8785 -1.5496 -0.8962 -0.6634 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1265 -3.4742 -3.1578 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7561 -4.6357 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7560 -4.6357 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1266 -3.4745 -3.1578 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -15.2522 -14.8937 -14.3036 -13.4740 -12.4061 -11.1570 -9.6642 -8.2270 -6.4174 -4.6054 -2.8786 -1.5495 -0.8973 -0.7028 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -14.8809 -14.5231 -13.9344 -13.1066 -12.0411 -10.7951 -9.3056 -7.8793 -6.0889 -4.3762 -3.3971 -2.9309 -2.5171 -2.1571 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -15.2522 -14.8937 -14.3036 -13.4740 -12.4061 -11.1570 -9.6642 -8.2270 -6.4174 -4.6054 -2.8785 -1.5496 -0.8969 -0.6665 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -14.8809 -14.5231 -13.9344 -13.1066 -12.0411 -10.7951 -9.3056 -7.8793 -6.0889 -4.3762 -3.3971 -2.9308 -2.5171 -2.1569 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5722 -4.1266 -3.4741 -3.1571 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -11.9431 -11.5924 -11.0160 -10.2076 -9.1728 -7.9875 -6.7285 -6.2844 -6.2734 -6.0447 -5.7940 -5.3701 -5.0741 -4.8135 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -9.4323 -9.4209 -9.1240 -9.0495 -8.5660 -8.4904 -7.7974 -7.7627 -6.9466 -6.6636 -6.3475 -6.3066 -5.8892 -5.6488 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -11.9431 -11.5924 -11.0160 -10.2076 -9.1728 -7.9875 -6.7285 -6.2844 -6.2734 -6.0447 -5.7940 -5.3701 -5.0741 -4.8138 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1266 -3.4741 -3.1571 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -13.0379 -12.6843 -12.1029 -11.2860 -10.2372 -9.0228 -7.6805 -7.3058 -6.9150 -6.3130 -5.9351 -5.4700 -4.4796 -4.1822 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1264 -3.4741 -3.1572 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1265 -3.4743 -3.1572 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -13.0379 -12.6843 -12.1029 -11.2860 -10.2372 -9.0228 -7.6805 -7.3058 -6.9150 -6.3131 -5.9351 -5.4700 -4.4800 -4.1821 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7559 -4.6356 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -9.4322 -9.4210 -9.1240 -9.0495 -8.5660 -8.4904 -7.7974 -7.7627 -6.9466 -6.6636 -6.3475 -6.3066 -5.8892 -5.6488 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -9.4323 -9.4209 -9.1240 -9.0495 -8.5660 -8.4904 -7.7974 -7.7627 -6.9466 -6.6636 -6.3475 -6.3066 -5.8892 -5.6488 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7562 -4.6356 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -10.5053 -10.4949 -10.1877 -10.1232 -9.6204 -9.5600 -8.8453 -8.8000 -7.9533 -7.3920 -6.4221 -6.3188 -4.9999 -4.8639 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7558 -4.6356 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -11.9431 -11.5924 -11.0160 -10.2076 -9.1728 -7.9875 -6.7285 -6.2844 -6.2734 -6.0447 -5.7940 -5.3701 -5.0741 -4.8137 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7560 -4.6355 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -10.5053 -10.4950 -10.1877 -10.1232 -9.6205 -9.5600 -8.8453 -8.8000 -7.9533 -7.3920 -6.4221 -6.3188 -4.9999 -4.8639 the Fermi energy is -5.4739 ev ! total energy = -28.92718028 Ry Harris-Foulkes estimate = -28.92717495 Ry estimated scf accuracy < 0.00000077 Ry The total energy is the sum of the following terms: one-electron contribution = -14452.25888607 Ry hartree contribution = 7225.87385266 Ry xc contribution = -11.06298470 Ry ewald contribution = 7208.51839567 Ry smearing contrib. (-TS) = 0.00244216 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 7474.6169723 -7475.5920509 -0.9750786 -19.98 0.0000 9171.6807384 -9172.8713934 -1.1906550 -19.80 0.0000 10375.4405653 -10376.7844596 -1.3438943 -19.62 0.0000 10832.6611445 -10834.0633797 -1.4022353 -19.44 0.0000 10832.8685273 -10834.2707421 -1.4022147 -19.26 0.0000 10832.6184834 -10834.0207246 -1.4022411 -19.08 0.0000 10832.9094109 -10834.3116203 -1.4022095 -18.90 0.0000 10832.5796619 -10833.9819084 -1.4022465 -18.72 0.0000 10832.9459015 -10834.3481064 -1.4022049 -18.54 0.0000 10832.5457499 -10833.9480011 -1.4022513 -18.36 0.0000 10832.9770065 -10834.3792077 -1.4022012 -18.18 0.0000 10832.5176545 -10833.9199097 -1.4022551 -18.00 0.0000 10833.0019116 -10834.4041103 -1.4021987 -17.82 0.0000 10832.4960907 -10833.8983486 -1.4022580 -17.64 0.0000 10833.0200071 -10834.4222045 -1.4021974 -17.46 0.0000 10832.4815586 -10833.8838180 -1.4022595 -17.28 0.0000 10833.0309061 -10834.4331038 -1.4021977 -17.10 0.0000 10832.4743286 -10833.8765881 -1.4022595 -16.92 0.0000 10833.0344562 -10834.4366560 -1.4021998 -16.74 0.0000 10832.4744347 -10833.8766926 -1.4022578 -16.56 0.0000 10833.0307416 -10834.4329453 -1.4022038 -16.38 0.0000 10832.4816760 -10833.8839303 -1.4022543 -16.20 0.0000 10833.0200776 -10834.4222875 -1.4022098 -16.02 0.0000 10832.4956259 -10833.8978747 -1.4022488 -15.84 0.0000 10833.0029973 -10834.4052154 -1.4022181 -15.66 0.0000 10832.5156504 -10833.9178916 -1.4022412 -15.48 0.0000 10832.9802297 -10834.3824585 -1.4022288 -15.30 0.0000 10832.5409322 -10833.9431636 -1.4022315 -15.12 0.0000 10832.9526725 -10834.3549144 -1.4022419 -14.94 0.0000 10832.5705013 -10833.9727210 -1.4022197 -14.76 0.0000 10832.9213585 -10834.3236159 -1.4022574 -14.58 0.0000 10832.6032716 -10834.0054775 -1.4022059 -14.40 0.0000 10832.8874172 -10834.2896928 -1.4022755 -14.22 0.0000 10832.6380795 -10834.0402701 -1.4021906 -14.04 0.0000 10832.8520346 -10834.2543310 -1.4022964 -13.86 0.0000 10832.6737259 -10834.0759004 -1.4021746 -13.68 0.0000 10832.8164100 -10834.2187305 -1.4023205 -13.50 0.0000 10832.7090181 -10834.1111775 -1.4021594 -13.32 0.0000 10832.7817137 -10834.1840630 -1.4023493 -13.14 0.0000 10832.7428109 -10834.1449592 -1.4021483 -12.96 0.0000 10832.7490449 -10834.1514313 -1.4023864 -12.78 0.0000 10832.7740431 -10834.1761914 -1.4021483 -12.60 0.0000 10832.7193910 -10834.1218317 -1.4024407 -12.42 0.0000 10832.8017686 -10834.2039437 -1.4021750 -12.24 0.0000 10832.6935871 -10834.0961210 -1.4025339 -12.06 0.0000 10832.8251743 -10834.2274382 -1.4022639 -11.88 0.0000 10832.6722693 -10834.0749875 -1.4027182 -11.70 0.0000 10832.8435746 -10834.2460777 -1.4025031 -11.52 0.0000 10832.6558056 -10834.0589350 -1.4031294 -11.34 0.0001 10832.8563523 -10834.2594613 -1.4031089 -11.16 0.0001 10832.6441644 -10834.0482638 -1.4040994 -10.98 0.0002 10832.8627834 -10834.2673930 -1.4046096 -10.80 0.0003 10832.6366115 -10834.0430649 -1.4064535 -10.62 0.0004 10832.8615687 -10834.2698859 -1.4083172 -10.44 0.0007 10832.6309803 -10834.0432218 -1.4122416 -10.26 0.0011 10832.8496858 -10834.2671578 -1.4174720 -10.08 0.0017 10832.6218658 -10834.0484175 -1.4265517 -9.90 0.0026 10832.8194872 -10834.2596214 -1.4401343 -9.72 0.0042 10832.5960954 -10834.0581449 -1.4620495 -9.54 0.0066 10832.7515329 -10834.2478729 -1.4963400 -9.36 0.0104 10832.5214199 -10834.0717208 -1.5503009 -9.18 0.0164 10832.5966414 -10834.2326919 -1.6360505 -9.00 0.0256 10832.3186234 -10834.0882350 -1.7696116 -8.82 0.0397 10832.2330690 -10834.2149064 -1.9818374 -8.64 0.0605 10831.7972381 -10834.1060530 -2.3088149 -8.46 0.0900 10831.3735299 -10834.1881138 -2.8145839 -8.28 0.1302 10830.5299075 -10833.9677320 -3.4378246 -8.10 0.1808 10829.4102136 -10833.9288803 -4.5186667 -7.92 0.2373 10827.6875109 -10834.3274001 -6.6398892 -7.74 0.2904 10825.2926273 -10835.0631004 -9.7704731 -7.56 0.3304 10822.0598243 -10835.4344468 -13.3746225 -7.38 0.3537 10817.8020648 -10834.6307440 -16.8286792 -7.20 0.3629 10812.5994350 -10832.0010525 -19.4016175 -7.02 0.3634 10806.1978092 -10826.5934416 -20.3956324 -6.84 0.3610 10798.8920032 -10818.4269143 -19.5349110 -6.66 0.3599 10790.3227229 -10807.3833886 -17.0606658 -6.48 0.3605 10780.9205088 -10794.6025803 -13.6820715 -6.30 0.3588 10770.2011763 -10780.3992888 -10.1981125 -6.12 0.3533 10758.7033862 -10766.0501133 -7.3467270 -5.94 0.3490 10745.8662428 -10751.5297510 -5.6635082 -5.76 0.3516 10732.3118846 -10737.9154364 -5.6035518 -5.58 0.3605 10717.3944098 -10724.5823423 -7.1879325 -5.40 0.3681 10701.7474787 -10711.7348029 -9.9873242 -5.22 0.3682 10684.6806978 -10698.1555530 -13.4748552 -5.04 0.3619 10666.8664402 -10683.7851101 -16.9186699 -4.86 0.3551 10647.6533616 -10667.1537160 -19.5003544 -4.68 0.3519 10627.7167103 -10648.1957335 -20.4790232 -4.50 0.3536 10606.4293057 -10625.9985653 -19.5692596 -4.32 0.3595 10584.3951624 -10601.4268578 -17.0316954 -4.14 0.3658 10561.0231507 -10574.6172809 -13.5941303 -3.96 0.3668 10536.8301592 -10546.9057970 -10.0756378 -3.78 0.3610 10511.3262588 -10518.5433353 -7.2170765 -3.60 0.3541 10484.9626554 -10490.5180312 -5.5553759 -3.42 0.3534 10457.3789963 -10462.9123233 -5.5333270 -3.24 0.3591 10428.8953396 -10436.0548787 -7.1595391 -3.06 0.3648 10399.2424851 -10409.2331468 -9.9906616 -2.88 0.3647 10368.5924930 -10382.0883683 -13.4958753 -2.70 0.3600 10336.8264412 -10353.7649176 -16.9384763 -2.52 0.3559 10304.0063642 -10323.5134654 -19.5071012 -2.34 0.3552 10270.1635966 -10290.6323839 -20.4687873 -2.16 0.3577 10235.2114978 -10254.7636880 -19.5521903 -1.98 0.3624 10199.2991906 -10216.3227377 -17.0235471 -1.80 0.3662 10162.1918617 -10175.8035891 -13.6117274 -1.62 0.3642 10124.1637873 -10134.2906179 -10.1268306 -1.44 0.3560 10084.8782115 -10092.1791386 -7.3009271 -1.26 0.3480 10044.7549555 -10050.4168708 -5.6619154 -1.08 0.3475 10003.3688217 -10009.0170980 -5.6482763 -0.90 0.3549 9961.2119594 -9968.4748217 -7.2628623 -0.72 0.3631 9917.7355356 -9927.8006973 -10.0651617 -0.54 0.3660 9873.4776850 -9887.0082748 -13.5305898 -0.36 0.3640 9827.8439803 -9844.7732512 -16.9292709 -0.18 0.3613 9781.4429819 -9800.9009382 -19.4579563 0.00 0.3604 9733.6674204 -9754.0569318 -20.3895114 0.18 0.3613 9685.1380129 -9704.5963333 -19.4583204 0.36 0.3640 9635.2380250 -9652.1680075 -16.9299824 0.54 0.3660 9584.5628680 -9598.0945044 -13.5316364 0.72 0.3631 9532.5235501 -9542.5901217 -10.0665717 0.90 0.3549 9479.6872957 -9486.9520168 -7.2647211 1.08 0.3476 9425.5502751 -9431.2010180 -5.6507429 1.26 0.3481 9370.6200365 -9376.2852436 -5.6652072 1.44 0.3561 9314.4519854 -9321.7573046 -7.3053192 1.62 0.3643 9257.4178344 -9267.5504529 -10.1326185 1.80 0.3663 9199.1564780 -9212.7756848 -13.6192068 1.98 0.3625 9139.9414218 -9156.9743798 -17.0329580 2.16 0.3577 9079.5656344 -9099.1293436 -19.5637091 2.34 0.3552 9018.1937150 -9038.6762237 -20.4825087 2.52 0.3559 8955.7491912 -8975.2722733 -19.5230821 2.70 0.3600 8892.2446223 -8909.2013752 -16.9567529 2.88 0.3647 8827.7233814 -8841.2399005 -13.5165190 3.06 0.3649 8762.0488739 -8772.0626537 -10.0137798 3.24 0.3592 8695.4134103 -8702.5987049 -7.1852946 3.42 0.3534 8627.5734063 -8633.1353040 -5.5618977 3.60 0.3541 8558.8667992 -8564.4537374 -5.5869383 3.78 0.3610 8488.9084451 -8496.1601889 -7.2517437 3.96 0.3668 8418.1195717 -8428.2330034 -10.1134317 4.14 0.3658 8345.9934295 -8359.6283636 -13.6349341 4.32 0.3594 8273.0699647 -8290.1452355 -17.0752709 4.50 0.3535 8198.7888901 -8218.4041748 -19.6152847 4.68 0.3518 8123.7778296 -8144.3050194 -20.5271898 4.86 0.3550 8047.4036327 -8066.9540778 -19.5504451 5.04 0.3619 7970.3145137 -7987.2851191 -16.9706055 5.22 0.3683 7891.8221480 -7905.3508096 -13.5286615 5.40 0.3681 7812.5823836 -7822.6254371 -10.0430535 5.58 0.3604 7731.9269755 -7739.1725457 -7.2455702 5.76 0.3515 7650.5337450 -7656.1966908 -5.6629458 5.94 0.3488 7567.7905098 -7573.5148586 -5.7243488 6.12 0.3531 7484.3135134 -7491.7220777 -7.4085643 6.30 0.3586 7399.5187211 -7409.7791639 -10.2604428 6.48 0.3604 7313.9209855 -7327.6654377 -13.7444522 6.66 0.3600 7227.0349256 -7244.1578035 -17.1228778 6.84 0.3612 7139.2838777 -7158.8809351 -19.5970574 7.02 0.3637 7050.3039245 -7070.7620854 -20.4581610 7.20 0.3631 6960.3814366 -6979.8465853 -19.4651487 7.38 0.3537 6869.2995056 -6886.1932337 -16.8937281 7.56 0.3302 6777.2306834 -6790.6719056 -13.4412222 7.74 0.2899 6684.1810640 -6694.0189947 -9.8379307 7.92 0.2366 6590.2505563 -6596.9572492 -6.7066929 8.10 0.1799 6495.6950551 -6500.2776965 -4.5826415 8.28 0.1293 6400.4941185 -6403.9904680 -3.4963495 8.46 0.0891 6305.0644694 -6307.9293462 -2.8648769 8.64 0.0596 6209.1740477 -6211.5221856 -2.3481379 8.82 0.0389 6113.3403487 -6115.3480463 -2.0076976 9.00 0.0250 6017.1184174 -6018.8982668 -1.7798495 9.18 0.0159 5921.1283456 -5922.7572477 -1.6289021 9.36 0.0100 5824.7517665 -5826.2761274 -1.5243609 9.54 0.0063 5728.7128581 -5730.1633902 -1.4505321 9.72 0.0040 5632.2618028 -5633.6573547 -1.3955518 9.90 0.0025 5536.2133641 -5537.5657022 -1.3523382 10.08 0.0016 5439.7257926 -5441.0427939 -1.3170013 10.26 0.0010 5343.6776414 -5344.9634772 -1.2858358 10.44 0.0006 5247.1747726 -5248.4330476 -1.2582750 10.62 0.0004 5151.1243622 -5152.3562069 -1.2318447 10.80 0.0002 5054.6211795 -5055.8285285 -1.2073490 10.98 0.0002 4958.5607958 -4959.7435779 -1.1827821 11.16 0.0001 4862.0699629 -4863.2294499 -1.1594870 11.34 0.0001 4765.9898151 -4767.1254796 -1.1356645 11.52 0.0000 4669.5229931 -4670.6358189 -1.1128257 11.70 0.0000 4573.4126957 -4574.5020104 -1.0893147 11.88 0.0000 4476.9807967 -4478.0474324 -1.0666357 12.06 0.0000 4380.8302056 -4381.8734770 -1.0432714 12.24 0.0000 4284.4432499 -4285.4638811 -1.0206312 12.42 0.0000 4188.2430368 -4189.2403870 -0.9973502 12.60 0.0000 4091.9098596 -4092.8845580 -0.9746983 12.78 0.0000 3995.6519584 -3996.6034361 -0.9514776 12.96 0.0000 3899.3798874 -3900.3086822 -0.9287948 13.14 0.0000 3803.0578628 -3803.9634880 -0.9056252 13.32 0.0000 3706.8524148 -3707.7353185 -0.8829037 13.50 0.0000 3610.4617629 -3611.3215436 -0.8597807 13.68 0.0000 3514.3263905 -3515.1634090 -0.8370185 13.86 0.0000 3417.8647703 -3418.6787090 -0.8139386 14.04 0.0000 3321.8006723 -3322.5918090 -0.7911367 14.22 0.0000 3225.2680607 -3226.0361574 -0.7680967 14.40 0.0000 3129.2740690 -3130.0193266 -0.7452575 14.58 0.0000 3032.6728354 -3033.3950891 -0.7222537 14.76 0.0000 2936.7453833 -2937.4447640 -0.6993807 14.94 0.0000 2840.0802796 -2840.7566886 -0.6764090 15.12 0.0000 2744.2134541 -2744.8669602 -0.6535062 15.30 0.0000 2647.4915206 -2648.1220829 -0.6305624 15.48 0.0000 2551.6771988 -2552.2848328 -0.6076340 15.66 0.0000 2454.9075867 -2455.4923003 -0.5847137 15.84 0.0000 2359.1356529 -2359.6974170 -0.5617641 16.02 0.0000 2262.3293700 -2262.8682329 -0.5388629 16.20 0.0000 2166.5880053 -2167.1039018 -0.5158965 16.38 0.0000 2069.7575930 -2070.2506031 -0.4930100 16.56 0.0000 1974.0336291 -1974.5036602 -0.4700311 16.74 0.0000 1877.1927809 -1877.6399361 -0.4471552 16.92 0.0000 1781.4721060 -1781.8962738 -0.4241677 17.10 0.0000 1684.6352408 -1685.0365393 -0.4012986 17.28 0.0000 1588.9032436 -1589.2815499 -0.3783063 17.46 0.0000 1492.0850481 -1492.4404883 -0.3554402 17.64 0.0000 1396.3270846 -1396.6595312 -0.3324466 17.82 0.0000 1299.5420416 -1299.8516220 -0.3095804 18.00 0.0000 1203.7439082 -1204.0304967 -0.2865885 18.18 0.0000 1107.0058261 -1107.2695453 -0.2637192 18.36 0.0000 1011.1542227 -1011.3949544 -0.2407317 18.54 0.0000 914.4757838 -914.6936407 -0.2178569 18.72 0.0000 818.5587505 -818.7536267 -0.1948762 18.90 0.0000 721.9510934 -722.1230871 -0.1719937 19.08 0.0000 625.9584055 -626.1074270 -0.1490215 19.26 0.0000 529.4307561 -529.5568858 -0.1261297 19.44 0.0000 433.3542630 -433.4574307 -0.1031677 19.62 0.0000 806.3325380 -806.4739956 -0.1414576 19.80 0.0000 1949.9135742 -1950.1939275 -0.2803532 19.98 0.0000 3610.8754991 -3611.3628430 -0.4873439 20.16 0.0000 5536.7269737 -5537.4567454 -0.7297717 convergence has been achieved in 38 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000042 0.00000096 -0.00178028 atom 2 type 1 force = 0.00000179 -0.00000210 0.00696713 atom 3 type 1 force = 0.00000035 0.00000225 -0.00555063 atom 4 type 1 force = -0.00000154 0.00000069 -0.00002841 atom 5 type 1 force = 0.00000040 -0.00000188 0.00552890 atom 6 type 1 force = -0.00000221 -0.00000144 -0.00694243 atom 7 type 1 force = 0.00000163 0.00000152 0.00180573 Total force = 0.012828 Total SCF correction = 0.001609 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file Al111.save init_run : 5.05s CPU 5.32s WALL ( 1 calls) electrons : 333.61s CPU 340.75s WALL ( 1 calls) forces : 1.50s CPU 1.58s WALL ( 1 calls) Called by init_run: wfcinit : 4.37s CPU 4.47s WALL ( 1 calls) potinit : 0.26s CPU 0.30s WALL ( 1 calls) Called by electrons: c_bands : 300.39s CPU 306.52s WALL ( 38 calls) sum_band : 28.85s CPU 29.50s WALL ( 38 calls) v_of_rho : 3.42s CPU 3.57s WALL ( 39 calls) mix_rho : 0.45s CPU 0.49s WALL ( 38 calls) Called by c_bands: init_us_2 : 5.09s CPU 4.73s WALL ( 2652 calls) cegterg : 289.68s CPU 295.04s WALL ( 1309 calls) Called by *egterg: h_psi : 228.02s CPU 229.88s WALL ( 6958 calls) g_psi : 3.70s CPU 3.83s WALL ( 5615 calls) cdiaghg : 6.92s CPU 6.81s WALL ( 6924 calls) Called by h_psi: add_vuspsi : 27.16s CPU 27.21s WALL ( 6958 calls) General routines calbec : 30.91s CPU 30.85s WALL ( 6992 calls) fft : 0.77s CPU 0.73s WALL ( 432 calls) fftw : 178.83s CPU 182.05s WALL ( 138438 calls) davcio : 0.11s CPU 1.18s WALL ( 3944 calls) EXX routines PWSCF : 5m40.43s CPU 5m48.26s WALL This run was terminated on: 22:47:10 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/reference/Al111.bc3.out0000644000700200004540000012746312053145630022613 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:32:37 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00000 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.2 secs total energy = -28.48254217 Ry Harris-Foulkes estimate = -28.88691878 Ry estimated scf accuracy < 0.58153184 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 17.9 total cpu time spent up to now is 42.3 secs total energy = -24.43478038 Ry Harris-Foulkes estimate = -32.98671470 Ry estimated scf accuracy < 167.90410339 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 14.4 total cpu time spent up to now is 64.0 secs total energy = -28.86949767 Ry Harris-Foulkes estimate = -28.91768492 Ry estimated scf accuracy < 0.80038049 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.77E-03, avg # of iterations = 3.5 total cpu time spent up to now is 70.5 secs total energy = -28.84499433 Ry Harris-Foulkes estimate = -29.01572684 Ry estimated scf accuracy < 4.86576073 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.77E-03, avg # of iterations = 2.0 total cpu time spent up to now is 76.3 secs total energy = -28.93455479 Ry Harris-Foulkes estimate = -28.96624252 Ry estimated scf accuracy < 0.92137491 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.77E-03, avg # of iterations = 1.0 total cpu time spent up to now is 82.1 secs total energy = -28.95167066 Ry Harris-Foulkes estimate = -28.95399405 Ry estimated scf accuracy < 0.03241399 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged ethr = 1.54E-04, avg # of iterations = 13.1 total cpu time spent up to now is 96.2 secs total energy = -28.96574887 Ry Harris-Foulkes estimate = -28.97969911 Ry estimated scf accuracy < 0.19887284 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 2.3 total cpu time spent up to now is 102.2 secs total energy = -28.96540156 Ry Harris-Foulkes estimate = -28.97273479 Ry estimated scf accuracy < 0.01463730 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.97E-05, avg # of iterations = 3.9 total cpu time spent up to now is 108.6 secs total energy = -28.95461168 Ry Harris-Foulkes estimate = -28.96628200 Ry estimated scf accuracy < 0.00914707 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.36E-05, avg # of iterations = 3.0 total cpu time spent up to now is 114.6 secs total energy = -28.94810310 Ry Harris-Foulkes estimate = -28.95578015 Ry estimated scf accuracy < 0.01232349 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.36E-05, avg # of iterations = 1.4 total cpu time spent up to now is 120.2 secs total energy = -28.93084739 Ry Harris-Foulkes estimate = -28.94843646 Ry estimated scf accuracy < 0.01237341 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 4.36E-05, avg # of iterations = 3.7 total cpu time spent up to now is 126.8 secs total energy = -28.92831466 Ry Harris-Foulkes estimate = -28.93135743 Ry estimated scf accuracy < 0.00560032 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.67E-05, avg # of iterations = 6.0 total cpu time spent up to now is 134.1 secs total energy = -28.92984578 Ry Harris-Foulkes estimate = -28.92889237 Ry estimated scf accuracy < 0.00310054 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.48E-05, avg # of iterations = 8.5 total cpu time spent up to now is 142.2 secs total energy = -28.92906440 Ry Harris-Foulkes estimate = -28.93042572 Ry estimated scf accuracy < 0.00124823 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 5.94E-06, avg # of iterations = 10.5 total cpu time spent up to now is 150.8 secs total energy = -28.92869913 Ry Harris-Foulkes estimate = -28.92920705 Ry estimated scf accuracy < 0.00017785 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 8.47E-07, avg # of iterations = 10.5 total cpu time spent up to now is 163.1 secs total energy = -28.92883011 Ry Harris-Foulkes estimate = -28.92879744 Ry estimated scf accuracy < 0.00002112 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.01E-07, avg # of iterations = 8.1 total cpu time spent up to now is 173.5 secs total energy = -28.92882326 Ry Harris-Foulkes estimate = -28.92884184 Ry estimated scf accuracy < 0.00002424 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.01E-07, avg # of iterations = 2.8 total cpu time spent up to now is 179.4 secs total energy = -28.92860473 Ry Harris-Foulkes estimate = -28.92882463 Ry estimated scf accuracy < 0.00000812 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.87E-08, avg # of iterations = 2.1 total cpu time spent up to now is 185.2 secs total energy = -28.92861941 Ry Harris-Foulkes estimate = -28.92860537 Ry estimated scf accuracy < 0.00004797 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.87E-08, avg # of iterations = 1.0 total cpu time spent up to now is 190.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -14.9050 -14.5449 -13.9506 -13.1165 -12.0421 -10.7855 -9.2909 -7.8159 -5.9966 -4.1523 -2.3635 -0.9472 -0.2425 0.0966 0.1700 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -14.5310 -14.1716 -13.5786 -12.7462 -11.6738 -10.4194 -8.9251 -7.4642 -5.6459 -3.8083 -2.0266 -0.6022 0.1232 0.4690 0.5361 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -13.4142 -13.0572 -12.4680 -11.6410 -10.5753 -9.3290 -7.8411 -6.4155 -4.6265 -2.9159 -1.9339 -1.4657 -1.0539 -0.7046 -0.2152 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -11.5712 -11.2184 -10.6365 -9.8204 -8.7714 -7.5568 -6.2153 -5.8392 -5.4494 -4.8477 -4.4709 -4.0045 -3.0144 -2.7195 -1.8282 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -9.0388 -9.0280 -8.7218 -8.6572 -8.1540 -8.0938 -7.3795 -7.3343 -6.4875 -5.9264 -4.9565 -4.8522 -3.5358 -3.3989 -2.2582 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5310 -14.1716 -13.5786 -12.7462 -11.6738 -10.4194 -8.9251 -7.4642 -5.6459 -3.8083 -2.0265 -0.6019 0.1246 0.4704 0.5396 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5310 -14.1716 -13.5786 -12.7462 -11.6738 -10.4194 -8.9251 -7.4642 -5.6459 -3.8083 -2.0265 -0.6022 0.1249 0.4699 0.5361 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7855 -13.4277 -12.8372 -12.0084 -10.9404 -9.6910 -8.1996 -6.7633 -4.9551 -3.1467 -1.4280 -0.1142 0.5398 0.7495 0.8184 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1080 -2.6601 -2.0100 -1.6961 -1.0247 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2912 -3.1705 -1.9846 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2913 -3.1707 -1.9858 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1080 -2.6602 -2.0100 -1.6960 -1.0314 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7855 -13.4277 -12.8372 -12.0084 -10.9404 -9.6910 -8.1996 -6.7633 -4.9551 -3.1467 -1.4276 -0.1140 0.5400 0.7503 0.8162 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4142 -13.0572 -12.4680 -11.6410 -10.5753 -9.3290 -7.8411 -6.4155 -4.6265 -2.9161 -1.9342 -1.4659 -1.0536 -0.7045 -0.2142 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -13.7855 -13.4277 -12.8372 -12.0084 -10.9404 -9.6910 -8.1996 -6.7633 -4.9551 -3.1467 -1.4280 -0.1143 0.5404 0.7502 0.8226 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4142 -13.0572 -12.4680 -11.6410 -10.5753 -9.3290 -7.8411 -6.4155 -4.6265 -2.9159 -1.9342 -1.4660 -1.0537 -0.7045 -0.2148 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1079 -2.6602 -2.0101 -1.6961 -1.0251 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -10.4764 -10.1265 -9.5496 -8.7419 -7.7070 -6.5214 -5.2631 -4.8174 -4.8070 -4.5788 -4.3282 -3.9043 -3.6089 -3.3497 -3.0959 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -7.9658 -7.9540 -7.6581 -7.5835 -7.0996 -7.0242 -6.3316 -6.2970 -5.4807 -5.1971 -4.8818 -4.8406 -4.4226 -4.1831 -3.6106 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -10.4764 -10.1265 -9.5496 -8.7419 -7.7070 -6.5214 -5.2631 -4.8174 -4.8070 -4.5788 -4.3282 -3.9043 -3.6089 -3.3493 -3.0931 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1079 -2.6601 -2.0100 -1.6960 -1.0305 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5712 -11.2184 -10.6365 -9.8204 -8.7714 -7.5568 -6.2153 -5.8392 -5.4494 -4.8477 -4.4709 -4.0045 -3.0143 -2.7195 -1.8284 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1079 -2.6601 -2.0101 -1.6961 -1.0323 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1080 -2.6602 -2.0101 -1.6961 -1.0324 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5712 -11.2184 -10.6365 -9.8204 -8.7714 -7.5568 -6.2153 -5.8392 -5.4494 -4.8477 -4.4709 -4.0045 -3.0143 -2.7193 -1.8281 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2911 -3.1705 -1.9851 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -7.9658 -7.9540 -7.6581 -7.5835 -7.0996 -7.0241 -6.3316 -6.2970 -5.4807 -5.1971 -4.8818 -4.8406 -4.4226 -4.1831 -3.6106 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -7.9658 -7.9540 -7.6581 -7.5835 -7.0996 -7.0242 -6.3316 -6.2970 -5.4807 -5.1971 -4.8818 -4.8406 -4.4226 -4.1831 -3.6106 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2914 -3.1706 -1.9817 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0388 -9.0280 -8.7218 -8.6571 -8.1540 -8.0938 -7.3795 -7.3343 -6.4875 -5.9264 -4.9565 -4.8522 -3.5358 -3.3988 -2.2583 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2911 -3.1705 -1.9826 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -10.4764 -10.1265 -9.5496 -8.7419 -7.7070 -6.5214 -5.2631 -4.8174 -4.8070 -4.5788 -4.3282 -3.9043 -3.6089 -3.3499 -3.0880 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2912 -3.1707 -1.9846 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0388 -9.0280 -8.7218 -8.6572 -8.1540 -8.0938 -7.3795 -7.3343 -6.4875 -5.9264 -4.9565 -4.8522 -3.5358 -3.3988 -2.2582 the Fermi energy is -4.0109 ev ! total energy = -28.92859874 Ry Harris-Foulkes estimate = -28.92862008 Ry estimated scf accuracy < 0.00000054 Ry The total energy is the sum of the following terms: one-electron contribution = -14454.44204843 Ry hartree contribution = 7228.05733278 Ry xc contribution = -11.06497892 Ry ewald contribution = 7208.51839567 Ry smearing contrib. (-TS) = 0.00270016 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 7475.5558562 -7475.5920509 -0.0361948 -19.98 0.0000 9172.8267062 -9172.8713934 -0.0446872 -19.80 0.0000 10376.7337975 -10376.7844596 -0.0506621 -19.62 0.0000 10834.0104071 -10834.0633797 -0.0529726 -19.44 0.0000 10834.2178159 -10834.2707421 -0.0529262 -19.26 0.0000 10833.9677408 -10834.0207246 -0.0529838 -19.08 0.0000 10834.2587045 -10834.3116203 -0.0529159 -18.90 0.0000 10833.9289144 -10833.9819084 -0.0529940 -18.72 0.0000 10834.2951996 -10834.3481064 -0.0529068 -18.54 0.0000 10833.8949982 -10833.9480011 -0.0530030 -18.36 0.0000 10834.3263084 -10834.3792077 -0.0528993 -18.18 0.0000 10833.8668993 -10833.9199097 -0.0530103 -18.00 0.0000 10834.3512166 -10834.4041103 -0.0528937 -17.82 0.0000 10833.8453328 -10833.8983486 -0.0530158 -17.64 0.0000 10834.3693143 -10834.4222045 -0.0528902 -17.46 0.0000 10833.8307989 -10833.8838180 -0.0530191 -17.28 0.0000 10834.3802146 -10834.4331038 -0.0528892 -17.10 0.0000 10833.8235680 -10833.8765881 -0.0530201 -16.92 0.0000 10834.3837651 -10834.4366560 -0.0528909 -16.74 0.0000 10833.8236742 -10833.8766926 -0.0530184 -16.56 0.0000 10834.3800500 -10834.4329453 -0.0528953 -16.38 0.0000 10833.8309163 -10833.8839303 -0.0530140 -16.20 0.0000 10834.3693847 -10834.4222875 -0.0529028 -16.02 0.0000 10833.8448679 -10833.8978747 -0.0530068 -15.84 0.0000 10834.3523022 -10834.4052154 -0.0529132 -15.66 0.0000 10833.8648949 -10833.9178916 -0.0529967 -15.48 0.0000 10834.3295317 -10834.3824585 -0.0529267 -15.30 0.0000 10833.8901798 -10833.9431636 -0.0529838 -15.12 0.0000 10834.3019711 -10834.3549144 -0.0529433 -14.94 0.0000 10833.9197526 -10833.9727210 -0.0529684 -14.76 0.0000 10834.2706532 -10834.3236159 -0.0529628 -14.58 0.0000 10833.9525270 -10834.0054775 -0.0529506 -14.40 0.0000 10834.2367077 -10834.2896928 -0.0529851 -14.22 0.0000 10833.9873391 -10834.0402701 -0.0529310 -14.04 0.0000 10834.2013206 -10834.2543310 -0.0530104 -13.86 0.0000 10834.0229899 -10834.0759004 -0.0529106 -13.68 0.0000 10834.1656915 -10834.2187305 -0.0530390 -13.50 0.0000 10834.0582864 -10834.1111775 -0.0528911 -13.32 0.0000 10834.1309908 -10834.1840630 -0.0530723 -13.14 0.0000 10834.0920831 -10834.1449592 -0.0528761 -12.96 0.0000 10834.0983174 -10834.1514313 -0.0531139 -12.78 0.0000 10834.1233183 -10834.1761914 -0.0528730 -12.60 0.0000 10834.0686585 -10834.1218317 -0.0531732 -12.42 0.0000 10834.1510452 -10834.2039437 -0.0528985 -12.24 0.0000 10834.0428482 -10834.0961210 -0.0532728 -12.06 0.0000 10834.1744489 -10834.2274382 -0.0529893 -11.88 0.0000 10834.0215206 -10834.0749875 -0.0534668 -11.70 0.0000 10834.1928416 -10834.2460777 -0.0532361 -11.52 0.0000 10834.0050417 -10834.0589350 -0.0538933 -11.34 0.0001 10834.2056036 -10834.2594613 -0.0538577 -11.16 0.0001 10833.9933772 -10834.0482638 -0.0548865 -10.98 0.0002 10834.2120091 -10834.2673930 -0.0553839 -10.80 0.0003 10833.9857931 -10834.0430649 -0.0572718 -10.62 0.0004 10834.2107611 -10834.2698859 -0.0591248 -10.44 0.0007 10833.9801271 -10834.0432218 -0.0630947 -10.26 0.0011 10834.1988451 -10834.2671578 -0.0683127 -10.08 0.0017 10833.9709877 -10834.0484175 -0.0774298 -9.90 0.0026 10834.1686341 -10834.2596214 -0.0909873 -9.72 0.0042 10833.9452314 -10834.0581449 -0.1129135 -9.54 0.0066 10834.1007298 -10834.2478729 -0.1471431 -9.36 0.0104 10833.8706665 -10834.0717208 -0.2010543 -9.18 0.0163 10833.9460277 -10834.2326919 -0.2866642 -9.00 0.0256 10833.6681774 -10834.0882350 -0.4200576 -8.82 0.0396 10833.5829100 -10834.2149064 -0.6319965 -8.64 0.0604 10833.1474445 -10834.1060530 -0.9586086 -8.46 0.0900 10832.7242510 -10834.1881138 -1.4638628 -8.28 0.1302 10831.8812625 -10833.9677320 -2.0864695 -8.10 0.1808 10830.7623569 -10833.9288803 -3.1665234 -7.92 0.2373 10829.0405636 -10834.3274001 -5.2868365 -7.74 0.2904 10826.6466862 -10835.0631004 -8.4164142 -7.56 0.3304 10823.4149167 -10835.4344468 -12.0195301 -7.38 0.3537 10819.1581176 -10834.6307440 -15.4726264 -7.20 0.3629 10813.9563159 -10832.0010525 -18.0447366 -7.02 0.3635 10807.5553380 -10826.5934416 -19.0381037 -6.84 0.3610 10800.2500996 -10818.4269143 -18.1768147 -6.66 0.3599 10791.6813931 -10807.3833886 -15.7019955 -6.48 0.3604 10782.2799749 -10794.6025803 -12.3226053 -6.30 0.3586 10771.5617461 -10780.3992888 -8.8375427 -6.12 0.3532 10760.0655266 -10766.0501133 -5.9845867 -5.94 0.3488 10747.2303749 -10751.5297510 -4.2993760 -5.76 0.3515 10733.6784697 -10737.9154364 -4.2369668 -5.58 0.3604 10718.7637438 -10724.5823423 -5.8185986 -5.40 0.3681 10703.1198196 -10711.7348029 -8.6149833 -5.22 0.3682 10686.0560908 -10698.1555530 -12.0994622 -5.04 0.3619 10668.2449009 -10683.7851101 -15.5402091 -4.86 0.3551 10649.0347409 -10667.1537160 -18.1189751 -4.68 0.3520 10629.1008822 -10648.1957335 -19.0948512 -4.50 0.3537 10607.8160105 -10625.9985653 -18.1825548 -4.32 0.3596 10585.7841447 -10601.4268578 -15.6427131 -4.14 0.3660 10562.4139961 -10574.6172809 -12.2032848 -3.96 0.3670 10538.2224471 -10546.9057970 -8.6833498 -3.78 0.3611 10512.7195011 -10518.5433353 -5.8238343 -3.60 0.3542 10486.3564951 -10490.5180312 -4.1615361 -3.42 0.3534 10458.7731663 -10462.9123233 -4.1391571 -3.24 0.3591 10430.2897620 -10436.0548787 -5.7651167 -3.06 0.3648 10400.6371850 -10409.2331468 -8.5959618 -2.88 0.3646 10369.9876282 -10382.0883683 -12.1007401 -2.70 0.3599 10338.2222444 -10353.7649176 -15.5426732 -2.52 0.3558 10305.4031389 -10323.5134654 -18.1103266 -2.34 0.3551 10271.5616686 -10290.6323839 -19.0707153 -2.16 0.3577 10236.6111236 -10254.7636880 -18.1525645 -1.98 0.3625 10200.7004976 -10216.3227377 -15.6222401 -1.80 0.3663 10163.5947389 -10175.8035891 -12.2088502 -1.62 0.3643 10125.5679523 -10134.2906179 -8.7226656 -1.44 0.3561 10086.2832028 -10092.1791386 -5.8959358 -1.26 0.3481 10046.1603248 -10050.4168708 -4.2565460 -1.08 0.3476 10004.7741198 -10009.0170980 -4.2429781 -0.90 0.3549 9962.6169166 -9968.4748217 -5.8579051 -0.72 0.3631 9919.1399735 -9927.8006973 -8.6607239 -0.54 0.3659 9874.8816738 -9887.0082748 -12.1266010 -0.36 0.3638 9829.2477075 -9844.7732512 -15.5255437 -0.18 0.3611 9782.8468933 -9800.9009382 -18.0540449 0.00 0.3602 9735.0720197 -9754.0569318 -18.9849121 0.18 0.3611 9686.5439131 -9704.5963333 -18.0524202 0.36 0.3638 9636.6456793 -9652.1680075 -15.5223282 0.54 0.3659 9585.9726483 -9598.0945044 -12.1218561 0.72 0.3631 9533.9355962 -9542.5901217 -8.6545255 0.90 0.3549 9481.1016896 -9486.9520168 -5.8503272 1.08 0.3477 9426.9669409 -9431.2010180 -4.2340771 1.26 0.3481 9372.0388930 -9376.2852436 -4.2463506 1.44 0.3561 9315.8728576 -9321.7573046 -5.8844470 1.62 0.3643 9258.8405874 -9267.5504529 -8.7098655 1.80 0.3663 9200.5809647 -9212.7756848 -12.1947201 1.98 0.3625 9141.3675986 -9156.9743798 -15.6067812 2.16 0.3577 9080.9935307 -9099.1293436 -18.1358128 2.34 0.3551 9019.6234817 -9038.6762237 -19.0527421 2.52 0.3558 8957.1810463 -8975.2722733 -18.0912270 2.70 0.3599 8893.6788271 -8909.2013752 -15.5225482 2.88 0.3646 8829.1602209 -8841.2399005 -12.0796796 3.06 0.3648 8763.4886215 -8772.0626537 -8.5740322 3.24 0.3591 8696.8563472 -8702.5987049 -5.7423577 3.42 0.3534 8629.0197217 -8633.1353040 -4.1155823 3.60 0.3542 8560.3166005 -8564.4537374 -4.1371369 3.78 0.3611 8490.3616083 -8496.1601889 -5.7985806 3.96 0.3670 8419.5758099 -8428.2330034 -8.6571935 4.14 0.3660 8347.4522004 -8359.6283636 -12.1761632 4.32 0.3596 8274.5306813 -8290.1452355 -15.6145543 4.50 0.3537 8200.2508926 -8218.4041748 -18.1532822 4.68 0.3520 8125.2406326 -8144.3050194 -19.0643868 4.86 0.3551 8048.8668372 -8066.9540778 -18.0872406 5.04 0.3619 7971.7779900 -7987.2851191 -15.5071292 5.22 0.3682 7893.2858415 -7905.3508096 -12.0649681 5.40 0.3681 7814.0464188 -7822.6254371 -8.5790183 5.58 0.3604 7733.3914237 -7739.1725457 -5.7811220 5.76 0.3515 7651.9987339 -7656.1966908 -4.1979569 5.94 0.3488 7569.2560257 -7573.5148586 -4.2588329 6.12 0.3532 7485.7795454 -7491.7220777 -5.9425322 6.30 0.3587 7400.9851433 -7409.7791639 -8.7940205 6.48 0.3604 7315.3877593 -7327.6654377 -12.2776784 6.66 0.3599 7228.5020580 -7244.1578035 -15.6557455 6.84 0.3610 7140.7515939 -7158.8809351 -18.1293413 7.02 0.3635 7051.7725590 -7070.7620854 -18.9895265 7.20 0.3630 6961.8513930 -6979.8465853 -17.9951922 7.38 0.3538 6870.7709711 -6886.1932337 -15.4222625 7.56 0.3305 6778.7034114 -6790.6719056 -11.9684943 7.74 0.2904 6685.6541498 -6694.0189947 -8.3648449 7.92 0.2373 6591.7223936 -6596.9572492 -5.2348556 8.10 0.1808 6497.1634628 -6500.2776965 -3.1142337 8.28 0.1302 6401.9565138 -6403.9904680 -2.0339542 8.46 0.0900 6306.5181589 -6307.9293462 -1.4111873 8.64 0.0604 6210.6163633 -6211.5221856 -0.9058223 8.82 0.0396 6114.7689104 -6115.3480463 -0.5791359 9.00 0.0256 6018.5311183 -6018.8982668 -0.3671485 9.18 0.0163 5922.5235228 -5922.7572477 -0.2337249 9.36 0.0104 5826.1280305 -5826.2761274 -0.1480969 9.54 0.0066 5730.0692144 -5730.1633902 -0.0941759 9.72 0.0042 5633.5974132 -5633.6573547 -0.0599415 9.90 0.0026 5537.5276884 -5537.5657022 -0.0380139 10.08 0.0017 5441.0183371 -5441.0427939 -0.0244568 10.26 0.0011 5344.9481360 -5344.9634772 -0.0153412 10.44 0.0007 5248.4229225 -5248.4330476 -0.0101251 10.62 0.0004 5152.3500496 -5152.3562069 -0.0061573 10.80 0.0003 5055.8242221 -5055.8285285 -0.0043064 10.98 0.0002 4959.7411576 -4959.7435779 -0.0024203 11.16 0.0001 4863.2275252 -4863.2294499 -0.0019248 11.34 0.0001 4767.1245822 -4767.1254796 -0.0008974 11.52 0.0000 4670.6348843 -4670.6358189 -0.0009345 11.70 0.0000 4574.5017320 -4574.5020104 -0.0002784 11.88 0.0000 4478.0469221 -4478.0474324 -0.0005102 12.06 0.0000 4381.8734435 -4381.8734770 -0.0000335 12.24 0.0000 4285.4635632 -4285.4638811 -0.0003178 12.42 0.0000 4189.2404431 -4189.2403870 0.0000561 12.60 0.0000 4092.8843387 -4092.8845580 -0.0002193 12.78 0.0000 3996.6035166 -3996.6034361 0.0000806 12.96 0.0000 3900.3085215 -3900.3086822 -0.0001607 13.14 0.0000 3803.9635649 -3803.9634880 0.0000769 13.32 0.0000 3707.7351989 -3707.7353185 -0.0001196 13.50 0.0000 3611.3216052 -3611.3215436 0.0000615 13.68 0.0000 3515.1633223 -3515.1634090 -0.0000866 13.86 0.0000 3418.6787508 -3418.6787090 0.0000418 14.04 0.0000 3322.5917508 -3322.5918090 -0.0000582 14.22 0.0000 3226.0361787 -3226.0361574 0.0000213 14.40 0.0000 3130.0192935 -3130.0193266 -0.0000331 14.58 0.0000 3033.3950907 -3033.3950891 0.0000016 14.76 0.0000 2937.4447532 -2937.4447640 -0.0000108 14.94 0.0000 2840.7566724 -2840.7566886 -0.0000162 15.12 0.0000 2744.8669689 -2744.8669602 0.0000087 15.30 0.0000 2648.1220512 -2648.1220829 -0.0000317 15.48 0.0000 2552.2848580 -2552.2848328 0.0000252 15.66 0.0000 2455.4922557 -2455.4923003 -0.0000446 15.84 0.0000 2359.6974558 -2359.6974170 0.0000387 16.02 0.0000 2262.8681782 -2262.8682329 -0.0000547 16.20 0.0000 2167.1039510 -2167.1039018 0.0000492 16.38 0.0000 2070.2505411 -2070.2506031 -0.0000619 16.56 0.0000 1974.5037169 -1974.5036602 0.0000567 16.74 0.0000 1877.6398698 -1877.6399361 -0.0000663 16.92 0.0000 1781.8963349 -1781.8962738 0.0000612 17.10 0.0000 1685.0364713 -1685.0365393 -0.0000680 17.28 0.0000 1589.2816128 -1589.2815499 0.0000629 17.46 0.0000 1492.4404212 -1492.4404883 -0.0000671 17.64 0.0000 1396.6595931 -1396.6595312 0.0000619 17.82 0.0000 1299.8515582 -1299.8516220 -0.0000638 18.00 0.0000 1204.0305551 -1204.0304967 0.0000585 18.18 0.0000 1107.2694870 -1107.2695453 -0.0000583 18.36 0.0000 1011.3950073 -1011.3949544 0.0000529 18.54 0.0000 914.6935898 -914.6936407 -0.0000509 18.72 0.0000 818.7536720 -818.7536267 0.0000454 18.90 0.0000 722.1230450 -722.1230871 -0.0000420 19.08 0.0000 626.1074633 -626.1074270 0.0000363 19.26 0.0000 529.5568540 -529.5568858 -0.0000318 19.44 0.0000 433.4574567 -433.4574307 0.0000260 19.62 0.0000 806.4716996 -806.4739956 -0.0022959 19.80 0.0000 1950.1856685 -1950.1939275 -0.0082590 19.98 0.0000 3611.3460797 -3611.3628430 -0.0167633 20.16 0.0000 5537.4302724 -5537.4567454 -0.0264730 convergence has been achieved in 20 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000094 -0.00000008 -0.00197771 atom 2 type 1 force = 0.00000305 -0.00000396 0.00704751 atom 3 type 1 force = -0.00000240 0.00000350 -0.00549540 atom 4 type 1 force = -0.00000033 0.00000404 -0.00003569 atom 5 type 1 force = -0.00000102 0.00000014 0.00545367 atom 6 type 1 force = 0.00000148 -0.00000116 -0.00699069 atom 7 type 1 force = 0.00000015 -0.00000247 0.00199832 Total force = 0.012899 Total SCF correction = 0.001350 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file Al111.save init_run : 5.07s CPU 5.39s WALL ( 1 calls) electrons : 182.18s CPU 185.11s WALL ( 1 calls) forces : 1.50s CPU 1.58s WALL ( 1 calls) Called by init_run: wfcinit : 4.32s CPU 4.43s WALL ( 1 calls) potinit : 0.28s CPU 0.33s WALL ( 1 calls) Called by electrons: c_bands : 165.06s CPU 167.47s WALL ( 20 calls) sum_band : 15.01s CPU 15.25s WALL ( 20 calls) v_of_rho : 1.78s CPU 1.87s WALL ( 21 calls) mix_rho : 0.13s CPU 0.24s WALL ( 20 calls) Called by c_bands: init_us_2 : 2.08s CPU 2.42s WALL ( 1428 calls) cegterg : 160.18s CPU 161.69s WALL ( 680 calls) Called by *egterg: h_psi : 122.79s CPU 123.09s WALL ( 4805 calls) g_psi : 2.17s CPU 2.19s WALL ( 4091 calls) cdiaghg : 5.65s CPU 5.67s WALL ( 4771 calls) Called by h_psi: add_vuspsi : 14.68s CPU 14.60s WALL ( 4805 calls) General routines calbec : 16.92s CPU 16.84s WALL ( 4839 calls) fft : 0.45s CPU 0.42s WALL ( 234 calls) fftw : 96.28s CPU 96.88s WALL ( 80144 calls) davcio : 0.02s CPU 0.65s WALL ( 2108 calls) EXX routines PWSCF : 3m 8.98s CPU 3m12.59s WALL This run was terminated on: 22:35:50 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/reference/Al111.bc3_m005.out0000644000700200004540000014702412053145630023347 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:35:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00500 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.5 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.1 secs total energy = -27.60816143 Ry Harris-Foulkes estimate = -28.88915061 Ry estimated scf accuracy < 1.26196498 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 6.01E-03, avg # of iterations = 17.8 total cpu time spent up to now is 49.9 secs total energy = -6.61026087 Ry Harris-Foulkes estimate = -66.92315758 Ry estimated scf accuracy < 1085.24523245 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 5 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 5 eigenvalues not converged ethr = 6.01E-03, avg # of iterations = 20.3 total cpu time spent up to now is 90.5 secs total energy = -26.21246507 Ry Harris-Foulkes estimate = -29.02756166 Ry estimated scf accuracy < 76.00007923 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 6.01E-03, avg # of iterations = 15.0 total cpu time spent up to now is 113.6 secs total energy = -28.00946779 Ry Harris-Foulkes estimate = -30.10985831 Ry estimated scf accuracy < 82.59285343 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 2.5 negative rho (up, down): 0.686E-03 0.000E+00 total cpu time spent up to now is 119.6 secs total energy = -28.87174984 Ry Harris-Foulkes estimate = -29.05205339 Ry estimated scf accuracy < 4.99071537 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 1.1 negative rho (up, down): 0.161E-01 0.000E+00 total cpu time spent up to now is 125.1 secs total energy = -29.11598856 Ry Harris-Foulkes estimate = -28.99713906 Ry estimated scf accuracy < 8.90885069 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.122E-01 0.000E+00 total cpu time spent up to now is 130.6 secs total energy = -28.54292906 Ry Harris-Foulkes estimate = -29.21683017 Ry estimated scf accuracy < 25.27830858 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.309E-02 0.000E+00 total cpu time spent up to now is 136.2 secs total energy = -28.89422930 Ry Harris-Foulkes estimate = -28.90577942 Ry estimated scf accuracy < 0.16784591 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.99E-04, avg # of iterations = 3.2 negative rho (up, down): 0.240E-02 0.000E+00 total cpu time spent up to now is 142.8 secs total energy = -28.92645840 Ry Harris-Foulkes estimate = -28.92759950 Ry estimated scf accuracy < 0.13931214 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 2.3 total cpu time spent up to now is 148.6 secs total energy = -28.93755020 Ry Harris-Foulkes estimate = -28.93254967 Ry estimated scf accuracy < 0.45334899 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.5 negative rho (up, down): 0.327E-04 0.000E+00 total cpu time spent up to now is 154.2 secs total energy = -29.01242349 Ry Harris-Foulkes estimate = -28.94194273 Ry estimated scf accuracy < 1.13494302 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 6.63E-04, avg # of iterations = 11.5 total cpu time spent up to now is 165.7 secs total energy = -29.17522310 Ry Harris-Foulkes estimate = -29.10937348 Ry estimated scf accuracy < 13.83905088 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged ethr = 6.63E-04, avg # of iterations = 2.9 total cpu time spent up to now is 172.1 secs total energy = -29.12349053 Ry Harris-Foulkes estimate = -29.18656784 Ry estimated scf accuracy < 19.01932501 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.2 total cpu time spent up to now is 177.6 secs total energy = -28.92934097 Ry Harris-Foulkes estimate = -29.12844963 Ry estimated scf accuracy < 14.89945447 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.0 total cpu time spent up to now is 183.1 secs total energy = -28.92120413 Ry Harris-Foulkes estimate = -28.97995258 Ry estimated scf accuracy < 3.39546376 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 2.1 negative rho (up, down): 0.193E-03 0.000E+00 total cpu time spent up to now is 189.0 secs total energy = -28.91540211 Ry Harris-Foulkes estimate = -28.94288347 Ry estimated scf accuracy < 0.40092013 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 2.9 negative rho (up, down): 0.139E-04 0.000E+00 total cpu time spent up to now is 195.3 secs total energy = -28.91949129 Ry Harris-Foulkes estimate = -28.94007075 Ry estimated scf accuracy < 0.59023480 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 4.5 negative rho (up, down): 0.301E-03 0.000E+00 total cpu time spent up to now is 201.8 secs total energy = -28.93283811 Ry Harris-Foulkes estimate = -28.93687611 Ry estimated scf accuracy < 0.14497748 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.0 total cpu time spent up to now is 207.3 secs total energy = -28.92919325 Ry Harris-Foulkes estimate = -28.93471460 Ry estimated scf accuracy < 0.16914210 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.0 total cpu time spent up to now is 212.7 secs total energy = -28.92772025 Ry Harris-Foulkes estimate = -28.93051939 Ry estimated scf accuracy < 0.03536494 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.68E-04, avg # of iterations = 3.9 total cpu time spent up to now is 219.4 secs total energy = -28.92847937 Ry Harris-Foulkes estimate = -28.92880699 Ry estimated scf accuracy < 0.00046904 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 19.5 total cpu time spent up to now is 241.6 secs total energy = -28.93019050 Ry Harris-Foulkes estimate = -28.93012672 Ry estimated scf accuracy < 0.00154715 Ry iteration # 23 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 12.3 total cpu time spent up to now is 251.3 secs total energy = -28.92997124 Ry Harris-Foulkes estimate = -28.93021492 Ry estimated scf accuracy < 0.00129452 Ry iteration # 24 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 5.6 total cpu time spent up to now is 259.8 secs total energy = -28.92970622 Ry Harris-Foulkes estimate = -28.93014608 Ry estimated scf accuracy < 0.00173007 Ry iteration # 25 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 3.7 total cpu time spent up to now is 266.5 secs total energy = -28.92981216 Ry Harris-Foulkes estimate = -28.92980828 Ry estimated scf accuracy < 0.00019916 Ry iteration # 26 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.48E-07, avg # of iterations = 4.9 negative rho (up, down): 0.121E-04 0.000E+00 total cpu time spent up to now is 273.5 secs total energy = -28.92988798 Ry Harris-Foulkes estimate = -28.92983910 Ry estimated scf accuracy < 0.00013038 Ry iteration # 27 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.6 negative rho (up, down): 0.259E-05 0.000E+00 total cpu time spent up to now is 279.3 secs total energy = -28.92981562 Ry Harris-Foulkes estimate = -28.92990492 Ry estimated scf accuracy < 0.00004932 Ry iteration # 28 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.35E-07, avg # of iterations = 2.1 negative rho (up, down): 0.703E-05 0.000E+00 total cpu time spent up to now is 285.4 secs total energy = -28.92982153 Ry Harris-Foulkes estimate = -28.92982106 Ry estimated scf accuracy < 0.00002429 Ry iteration # 29 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.16E-07, avg # of iterations = 5.8 negative rho (up, down): 0.201E-05 0.000E+00 total cpu time spent up to now is 293.8 secs total energy = -28.92981003 Ry Harris-Foulkes estimate = -28.92982573 Ry estimated scf accuracy < 0.00001275 Ry iteration # 30 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.07E-08, avg # of iterations = 3.5 negative rho (up, down): 0.248E-06 0.000E+00 total cpu time spent up to now is 300.7 secs total energy = -28.92980796 Ry Harris-Foulkes estimate = -28.92981214 Ry estimated scf accuracy < 0.00000421 Ry iteration # 31 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 4.8 negative rho (up, down): 0.539E-05 0.000E+00 total cpu time spent up to now is 308.6 secs total energy = -28.92981564 Ry Harris-Foulkes estimate = -28.92980921 Ry estimated scf accuracy < 0.00000111 Ry iteration # 32 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 5.6 negative rho (up, down): 0.688E-06 0.000E+00 total cpu time spent up to now is 317.6 secs total energy = -28.92980897 Ry Harris-Foulkes estimate = -28.92981602 Ry estimated scf accuracy < 0.00000413 Ry iteration # 33 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 3.0 total cpu time spent up to now is 324.2 secs total energy = -28.92980534 Ry Harris-Foulkes estimate = -28.92980911 Ry estimated scf accuracy < 0.00000141 Ry iteration # 34 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 1.0 total cpu time spent up to now is 329.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -13.4379 -13.0776 -12.4831 -11.6498 -10.5755 -9.3194 -7.8256 -6.3517 -4.5341 -2.6941 -0.9192 0.4106 0.6339 1.1402 1.4275 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -13.0639 -12.7043 -12.1110 -11.2794 -10.2071 -8.9533 -7.4598 -6.0000 -4.1834 -2.3499 -0.5812 0.7650 1.0092 1.5036 1.7975 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -11.9471 -11.5898 -11.0005 -10.1742 -9.1086 -7.8628 -6.3757 -4.9512 -3.1637 -1.4559 -0.4709 0.0002 0.4093 0.7474 1.2516 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -10.1041 -9.7511 -9.1690 -8.3536 -7.3047 -6.0905 -4.7494 -4.3721 -3.9825 -3.3813 -3.0061 -2.5378 -1.5479 -1.2563 -0.3623 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -7.5718 -7.5609 -7.2545 -7.1898 -6.6865 -6.6262 -5.9127 -5.8675 -5.0206 -4.4599 -3.4907 -3.3857 -2.0709 -1.9331 -0.7949 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -13.0639 -12.7043 -12.1110 -11.2794 -10.2071 -8.9533 -7.4598 -6.0000 -4.1834 -2.3499 -0.5812 0.7650 1.0092 1.5051 1.8001 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -13.0639 -12.7043 -12.1110 -11.2794 -10.2071 -8.9533 -7.4598 -6.0000 -4.1834 -2.3499 -0.5812 0.7650 1.0092 1.5051 1.7999 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -12.3185 -11.9604 -11.3697 -10.5416 -9.4737 -8.2248 -6.7343 -5.2990 -3.4924 -1.6879 0.0208 1.3043 1.7338 1.9777 2.1928 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1929 -0.5448 -0.2336 0.4352 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8264 -1.7050 -0.5200 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7050 -0.5197 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6426 -1.1928 -0.5448 -0.2338 0.4365 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -12.3185 -11.9604 -11.3697 -10.5416 -9.4737 -8.2248 -6.7343 -5.2990 -3.4924 -1.6879 0.0208 1.3043 1.7337 1.9777 2.1938 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -11.9471 -11.5898 -11.0005 -10.1742 -9.1086 -7.8628 -6.3757 -4.9512 -3.1637 -1.4559 -0.4709 0.0002 0.4093 0.7474 1.2511 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -12.3185 -11.9604 -11.3697 -10.5416 -9.4737 -8.2248 -6.7343 -5.2990 -3.4924 -1.6879 0.0208 1.3043 1.7338 1.9799 2.1936 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -11.9471 -11.5898 -11.0005 -10.1742 -9.1086 -7.8628 -6.3757 -4.9512 -3.1637 -1.4559 -0.4709 0.0002 0.4093 0.7475 1.2513 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1929 -0.5449 -0.2337 0.4349 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -9.0093 -8.6591 -8.0821 -7.2752 -6.2403 -5.0551 -3.7970 -3.3504 -3.3400 -3.1115 -2.8611 -2.4372 -2.1424 -1.8851 -1.6307 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -6.4987 -6.4869 -6.1907 -6.1162 -5.6321 -5.5566 -4.8648 -4.8302 -4.0138 -3.7300 -3.4151 -3.3733 -2.9554 -2.7168 -2.1440 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -9.0093 -8.6591 -8.0821 -7.2752 -6.2403 -5.0551 -3.7970 -3.3504 -3.3400 -3.1115 -2.8611 -2.4372 -2.1424 -1.8851 -1.6303 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1928 -0.5449 -0.2336 0.4353 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -10.1041 -9.7511 -9.1690 -8.3536 -7.3047 -6.0905 -4.7494 -4.3721 -3.9825 -3.3813 -3.0061 -2.5378 -1.5479 -1.2563 -0.3623 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1928 -0.5448 -0.2335 0.4348 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1928 -0.5447 -0.2328 0.4351 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -10.1041 -9.7511 -9.1690 -8.3536 -7.3047 -6.0905 -4.7494 -4.3721 -3.9825 -3.3813 -3.0061 -2.5378 -1.5479 -1.2563 -0.3623 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7049 -0.5200 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -6.4987 -6.4869 -6.1907 -6.1162 -5.6321 -5.5566 -4.8648 -4.8302 -4.0139 -3.7300 -3.4151 -3.3733 -2.9554 -2.7168 -2.1440 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -6.4987 -6.4869 -6.1907 -6.1162 -5.6321 -5.5566 -4.8648 -4.8302 -4.0139 -3.7300 -3.4152 -3.3733 -2.9554 -2.7168 -2.1440 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7050 -0.5198 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -7.5718 -7.5609 -7.2544 -7.1898 -6.6865 -6.6262 -5.9127 -5.8675 -5.0206 -4.4599 -3.4907 -3.3857 -2.0709 -1.9331 -0.7949 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8264 -1.7050 -0.5201 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -9.0093 -8.6591 -8.0821 -7.2752 -6.2403 -5.0551 -3.7970 -3.3504 -3.3400 -3.1115 -2.8611 -2.4372 -2.1424 -1.8851 -1.6310 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7050 -0.5206 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -7.5718 -7.5609 -7.2544 -7.1898 -6.6865 -6.6262 -5.9127 -5.8675 -5.0206 -4.4599 -3.4907 -3.3857 -2.0709 -1.9332 -0.7950 the Fermi energy is -2.5436 ev ! total energy = -28.92980047 Ry Harris-Foulkes estimate = -28.92980537 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -14456.70551195 Ry hartree contribution = 7230.32148403 Ry xc contribution = -11.06685796 Ry ewald contribution = 7208.51839567 Ry smearing contrib. (-TS) = 0.00268974 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 7476.5890220 -7475.5920509 0.9969710 -19.98 0.0000 9174.0890440 -9172.8713934 1.2176506 -19.80 0.0000 10378.1590248 -10376.7844596 1.3745653 -19.62 0.0000 10835.4975892 -10834.0633797 1.4342094 -19.44 0.0000 10835.7050265 -10834.2707421 1.4342844 -19.26 0.0000 10835.4549170 -10834.0207246 1.4341925 -19.08 0.0000 10835.7459207 -10834.3116203 1.4343003 -18.90 0.0000 10835.4160854 -10833.9819084 1.4341770 -18.72 0.0000 10835.7824208 -10834.3481064 1.4343144 -18.54 0.0000 10835.3821646 -10833.9480011 1.4341634 -18.36 0.0000 10835.8135339 -10834.3792077 1.4343262 -18.18 0.0000 10835.3540619 -10833.9199097 1.4341523 -18.00 0.0000 10835.8384456 -10834.4041103 1.4343353 -17.82 0.0000 10835.3324925 -10833.8983486 1.4341439 -17.64 0.0000 10835.8565457 -10834.4222045 1.4343412 -17.46 0.0000 10835.3179567 -10833.8838180 1.4341386 -17.28 0.0000 10835.8674476 -10834.4331038 1.4343438 -17.10 0.0000 10835.3107249 -10833.8765881 1.4341368 -16.92 0.0000 10835.8709986 -10834.4366560 1.4343427 -16.74 0.0000 10835.3108311 -10833.8766926 1.4341385 -16.56 0.0000 10835.8672831 -10834.4329453 1.4343377 -16.38 0.0000 10835.3180743 -10833.8839303 1.4341440 -16.20 0.0000 10835.8566163 -10834.4222875 1.4343289 -16.02 0.0000 10835.3320279 -10833.8978747 1.4341532 -15.84 0.0000 10835.8395315 -10834.4052154 1.4343161 -15.66 0.0000 10835.3520578 -10833.9178916 1.4341661 -15.48 0.0000 10835.8167580 -10834.3824585 1.4342996 -15.30 0.0000 10835.3773462 -10833.9431636 1.4341825 -15.12 0.0000 10835.7891938 -10834.3549144 1.4342794 -14.94 0.0000 10835.4069232 -10833.9727210 1.4342022 -14.76 0.0000 10835.7578716 -10834.3236159 1.4342557 -14.58 0.0000 10835.4397021 -10834.0054775 1.4342246 -14.40 0.0000 10835.7239216 -10834.2896928 1.4342288 -14.22 0.0000 10835.4745192 -10834.0402701 1.4342491 -14.04 0.0000 10835.6885299 -10834.2543310 1.4341989 -13.86 0.0000 10835.5101751 -10834.0759004 1.4342746 -13.68 0.0000 10835.6528963 -10834.2187305 1.4341657 -13.50 0.0000 10835.5454768 -10834.1111775 1.4342993 -13.32 0.0000 10835.6181912 -10834.1840630 1.4341282 -13.14 0.0000 10835.5792787 -10834.1449592 1.4343195 -12.96 0.0000 10835.5855142 -10834.1514313 1.4340829 -12.78 0.0000 10835.6105192 -10834.1761914 1.4343278 -12.60 0.0000 10835.5558525 -10834.1218317 1.4340208 -12.42 0.0000 10835.6382515 -10834.2039437 1.4343078 -12.24 0.0000 10835.5300408 -10834.0961210 1.4339198 -12.06 0.0000 10835.6616610 -10834.2274382 1.4342228 -11.88 0.0000 10835.5087135 -10834.0749875 1.4337260 -11.70 0.0000 10835.6800601 -10834.2460777 1.4339823 -11.52 0.0000 10835.4922368 -10834.0589350 1.4333018 -11.34 0.0001 10835.6928288 -10834.2594613 1.4333676 -11.16 0.0001 10835.4805762 -10834.0482638 1.4323125 -10.98 0.0002 10835.6992408 -10834.2673930 1.4318478 -10.80 0.0003 10835.4729960 -10834.0430649 1.4299311 -10.62 0.0004 10835.6979959 -10834.2698859 1.4281100 -10.44 0.0007 10835.4673296 -10834.0432218 1.4241078 -10.26 0.0011 10835.6860736 -10834.2671578 1.4189158 -10.08 0.0017 10835.4581763 -10834.0484175 1.4097588 -9.90 0.0026 10835.6558338 -10834.2596214 1.3962124 -9.72 0.0042 10835.4323740 -10834.0581449 1.3742291 -9.54 0.0066 10835.5878520 -10834.2478729 1.3399792 -9.36 0.0104 10835.3576950 -10834.0717208 1.2859741 -9.18 0.0164 10835.4329759 -10834.2326919 1.2002840 -9.00 0.0256 10835.1549608 -10834.0882350 1.0667258 -8.82 0.0396 10835.0695096 -10834.2149064 0.8546031 -8.64 0.0604 10834.6337597 -10834.1060530 0.5277067 -8.46 0.0900 10834.2102263 -10834.1881138 0.0221125 -8.28 0.1302 10833.3667850 -10833.9677320 -0.6009471 -8.10 0.1808 10832.2473419 -10833.9288803 -1.6815384 -7.92 0.2373 10830.5248984 -10834.3274001 -3.8025017 -7.74 0.2904 10828.1302694 -10835.0631004 -6.9328311 -7.56 0.3305 10824.8976451 -10835.4344468 -10.5368017 -7.38 0.3538 10820.6398766 -10834.6307440 -13.9908674 -7.20 0.3630 10815.4370074 -10832.0010525 -16.5640451 -7.02 0.3635 10809.0348282 -10826.5934416 -17.5586134 -6.84 0.3610 10801.7282944 -10818.4269143 -16.6986199 -6.66 0.3599 10793.1581532 -10807.3833886 -14.2252354 -6.48 0.3604 10783.7552347 -10794.6025803 -10.8473456 -6.30 0.3586 10773.0353984 -10780.3992888 -7.3638903 -6.12 0.3532 10761.5375732 -10766.0501133 -4.5125401 -5.94 0.3488 10748.7007823 -10751.5297510 -2.8289687 -5.76 0.3514 10735.1473353 -10737.9154364 -2.7681011 -5.58 0.3604 10720.2311233 -10724.5823423 -4.3512191 -5.40 0.3681 10704.5858959 -10711.7348029 -7.1489070 -5.22 0.3682 10687.5209797 -10698.1555530 -10.6345733 -5.04 0.3619 10669.7088214 -10683.7851101 -14.0762886 -4.86 0.3551 10650.4978236 -10667.1537160 -16.6558924 -4.68 0.3519 10630.5633520 -10648.1957335 -17.6323814 -4.50 0.3536 10609.2780221 -10625.9985653 -16.7205432 -4.32 0.3595 10587.2459685 -10601.4268578 -14.1808893 -4.14 0.3659 10563.8758665 -10574.6172809 -10.7414145 -3.96 0.3669 10539.6847070 -10546.9057970 -7.2210899 -3.78 0.3610 10514.1824389 -10518.5433353 -4.3608964 -3.60 0.3541 10487.8204388 -10490.5180312 -2.6975924 -3.42 0.3533 10460.2383459 -10462.9123233 -2.6739774 -3.24 0.3591 10431.7563902 -10436.0548787 -4.2984885 -3.06 0.3647 10402.1053748 -10409.2331468 -7.1277720 -2.88 0.3646 10371.4574558 -10382.0883683 -10.6309124 -2.70 0.3599 10339.6937167 -10353.7649176 -14.0712008 -2.52 0.3558 10306.8762313 -10323.5134654 -16.6372341 -2.34 0.3551 10273.0363389 -10290.6323839 -17.5960449 -2.16 0.3577 10238.0873104 -10254.7636880 -16.6763777 -1.98 0.3625 10202.1781575 -10216.3227377 -14.1445802 -1.80 0.3663 10165.0737866 -10175.8035891 -10.7298025 -1.62 0.3644 10127.0483162 -10134.2906179 -7.2423018 -1.44 0.3562 10087.7647253 -10092.1791386 -4.4144133 -1.26 0.3482 10047.6428579 -10050.4168708 -2.7740129 -1.08 0.3477 10006.2574116 -10009.0170980 -2.7596863 -0.90 0.3550 9964.1007505 -9968.4748217 -4.3740712 -0.72 0.3632 9920.6240488 -9927.8006973 -7.1766486 -0.54 0.3660 9876.3657819 -9887.0082748 -10.6424929 -0.36 0.3639 9830.7315970 -9844.7732512 -14.0416542 -0.18 0.3612 9784.3304349 -9800.9009382 -16.5705033 0.00 0.3602 9736.5550183 -9754.0569318 -17.5019134 0.18 0.3612 9688.0262461 -9704.5963333 -16.5700872 0.36 0.3639 9638.1271045 -9652.1680075 -14.0409030 0.54 0.3660 9587.4529670 -9598.0945044 -10.6415374 0.72 0.3632 9535.4145087 -9542.5901217 -7.1756130 0.90 0.3550 9482.5789849 -9486.9520168 -4.3730318 1.08 0.3477 9428.4423857 -9431.2010180 -2.7586323 1.26 0.3481 9373.5123971 -9376.2852436 -2.7728465 1.44 0.3561 9317.3443572 -9321.7573046 -4.4129475 1.62 0.3643 9260.3101502 -9267.5504529 -7.2403027 1.80 0.3662 9202.0486635 -9212.7756848 -10.7270213 1.98 0.3625 9142.8335560 -9156.9743798 -14.1408238 2.16 0.3577 9082.4578113 -9099.1293436 -16.6715322 2.34 0.3551 9021.0861185 -9038.6762237 -17.5901052 2.52 0.3558 8958.6420159 -8975.2722733 -16.6302574 2.70 0.3599 8895.1380975 -8909.2013752 -14.0632778 2.88 0.3646 8830.6178042 -8841.2399005 -10.6220962 3.06 0.3647 8764.9445844 -8772.0626537 -7.1180693 3.24 0.3590 8698.3108659 -8702.5987049 -4.2878390 3.42 0.3533 8630.4730049 -8633.1353040 -2.6622991 3.60 0.3541 8561.7689360 -8564.4537374 -2.6848014 3.78 0.3610 8491.8132222 -8496.1601889 -4.3469666 3.96 0.3669 8421.0269351 -8428.2330034 -7.2060683 4.14 0.3660 8348.9029146 -8359.6283636 -10.7254490 4.32 0.3596 8275.9810411 -8290.1452355 -14.1641944 4.50 0.3537 8201.7008176 -8218.4041748 -16.7033572 4.68 0.3519 8126.6901426 -8144.3050194 -17.6148768 4.86 0.3550 8050.3159612 -8066.9540778 -16.6381167 5.04 0.3618 7973.2269859 -7987.2851191 -14.0581332 5.22 0.3681 7894.7349929 -7905.3508096 -10.6158166 5.40 0.3680 7815.4961402 -7822.6254371 -7.1292969 5.58 0.3603 7734.8419783 -7739.1725457 -4.3305674 5.76 0.3515 7653.4503360 -7656.1966908 -2.7463548 5.94 0.3489 7570.7086283 -7573.5148586 -2.8062303 6.12 0.3533 7487.2330256 -7491.7220777 -4.4890520 6.30 0.3587 7402.4392097 -7409.7791639 -7.3399542 6.48 0.3604 7316.8422163 -7327.6654377 -10.8232214 6.66 0.3599 7229.9568044 -7244.1578035 -14.2009991 6.84 0.3609 7142.2068536 -7158.8809351 -16.6740816 7.02 0.3633 7053.2287874 -7070.7620854 -17.5332980 7.20 0.3628 6963.3092319 -6979.8465853 -16.5373534 7.38 0.3538 6872.2309014 -6886.1932337 -13.9623323 7.56 0.3307 6780.1654641 -6790.6719056 -10.5064415 7.74 0.2909 6687.1176174 -6694.0189947 -6.9013773 7.92 0.2381 6593.1857643 -6596.9572492 -3.7714849 8.10 0.1817 6498.6245638 -6500.2776965 -1.6531327 8.28 0.1311 6403.4127094 -6403.9904680 -0.5777586 8.46 0.0909 6307.9666709 -6307.9293462 0.0373247 8.64 0.0613 6212.0544138 -6211.5221856 0.5322282 8.82 0.0404 6116.1940049 -6115.3480463 0.8459586 9.00 0.0262 6019.9410278 -6018.8982668 1.0427610 9.18 0.0168 5923.9164754 -5922.7572477 1.1592278 9.36 0.0108 5827.5025308 -5826.2761274 1.2264033 9.54 0.0069 5731.4241844 -5730.1633902 1.2607941 9.72 0.0044 5634.9319357 -5633.6573547 1.2745811 9.90 0.0028 5538.8411675 -5537.5657022 1.2754653 10.08 0.0018 5442.3102239 -5441.0427939 1.2674300 10.26 0.0012 5346.2181256 -5344.9634772 1.2546484 10.44 0.0007 5249.6706817 -5248.4330476 1.2376341 10.62 0.0005 5153.5754405 -5152.3562069 1.2192336 10.80 0.0003 5057.0270360 -5055.8285285 1.1985075 10.98 0.0002 4960.9213478 -4959.7435779 1.1777699 11.16 0.0001 4864.3849549 -4863.2294499 1.1555050 11.34 0.0001 4768.2592515 -4767.1254796 1.1337718 11.52 0.0001 4671.7466999 -4670.6358189 1.1108810 11.70 0.0000 4575.5907135 -4574.5020104 1.0887031 11.88 0.0000 4479.1130051 -4478.0474324 1.0655727 12.06 0.0000 4382.9166514 -4381.8734770 1.0431744 12.24 0.0000 4286.4838534 -4285.4638811 1.0199723 12.42 0.0000 4190.2378333 -4189.2403870 0.9974463 12.60 0.0000 4093.8588056 -4092.8845580 0.9742476 12.78 0.0000 3997.5550665 -3996.6034361 0.9516305 12.96 0.0000 3901.2371499 -3900.3086822 0.9284677 13.14 0.0000 3804.8692629 -3803.9634880 0.9057750 13.32 0.0000 3708.6179813 -3707.7353185 0.8826628 13.50 0.0000 3612.1814454 -3611.3215436 0.8599017 13.68 0.0000 3516.0002548 -3515.1634090 0.8368459 13.86 0.0000 3419.4927302 -3418.6787090 0.8140212 14.04 0.0000 3323.3828313 -3322.5918090 0.7910223 14.22 0.0000 3226.8042958 -3226.0361574 0.7681384 14.40 0.0000 3130.7645209 -3130.0193266 0.7451944 14.58 0.0000 3034.1173450 -3033.3950891 0.7222559 14.76 0.0000 2938.1441267 -2937.4447640 0.6993627 14.94 0.0000 2841.4330639 -2840.7566886 0.6763752 15.12 0.0000 2745.5204877 -2744.8669602 0.6535275 15.30 0.0000 2648.7525801 -2648.1220829 0.6304972 15.48 0.0000 2552.8925214 -2552.2848328 0.6076886 15.66 0.0000 2456.0769227 -2455.4923003 0.5846224 15.84 0.0000 2360.2592630 -2359.6974170 0.5618460 16.02 0.0000 2263.4069839 -2262.8682329 0.5387511 16.20 0.0000 2167.6199012 -2167.1039018 0.5159994 16.38 0.0000 2070.7434865 -2070.2506031 0.4928835 16.56 0.0000 1974.9738090 -1974.5036602 0.4701488 16.74 0.0000 1878.0869558 -1877.6399361 0.4470196 16.92 0.0000 1782.3205681 -1781.8962738 0.4242943 17.10 0.0000 1685.4376989 -1685.0365393 0.4011596 17.28 0.0000 1589.6599859 -1589.2815499 0.3784360 17.46 0.0000 1492.7957914 -1492.4404883 0.3553031 17.64 0.0000 1396.9921053 -1396.6595312 0.3325740 17.82 0.0000 1300.1610720 -1299.8516220 0.3094500 18.00 0.0000 1204.3172054 -1204.0304967 0.2867087 18.18 0.0000 1107.5331453 -1107.2695453 0.2636000 18.36 0.0000 1011.6357947 -1011.3949544 0.2408403 18.54 0.0000 914.9113935 -914.6936407 0.2177527 18.72 0.0000 818.9485959 -818.7536267 0.1949692 18.90 0.0000 722.2949948 -722.1230871 0.1719078 19.08 0.0000 626.2565229 -626.1074270 0.1490959 19.26 0.0000 529.6829505 -529.5568858 0.1260647 19.44 0.0000 433.5606515 -433.4574307 0.1032208 19.62 0.0000 806.6167867 -806.4739956 0.1427911 19.80 0.0000 1950.4793135 -1950.1939275 0.2853860 19.98 0.0000 3611.8602989 -3611.3628430 0.4974559 20.16 0.0000 5538.2025314 -5537.4567454 0.7457860 convergence has been achieved in 34 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000051 0.00000013 -0.00201264 atom 2 type 1 force = 0.00000046 0.00000061 0.00690728 atom 3 type 1 force = 0.00000010 -0.00000098 -0.00525461 atom 4 type 1 force = -0.00000055 -0.00000151 -0.00005377 atom 5 type 1 force = 0.00000054 0.00000017 0.00531732 atom 6 type 1 force = -0.00000069 -0.00000039 -0.00688406 atom 7 type 1 force = -0.00000036 0.00000197 0.00198047 Total force = 0.012608 Total SCF correction = 0.001165 Writing output data file Al111.save init_run : 5.01s CPU 5.20s WALL ( 1 calls) electrons : 320.11s CPU 324.42s WALL ( 1 calls) forces : 1.54s CPU 1.58s WALL ( 1 calls) Called by init_run: wfcinit : 4.34s CPU 4.38s WALL ( 1 calls) potinit : 0.23s CPU 0.24s WALL ( 1 calls) Called by electrons: c_bands : 290.19s CPU 293.75s WALL ( 34 calls) sum_band : 26.12s CPU 26.63s WALL ( 34 calls) v_of_rho : 2.85s CPU 2.97s WALL ( 35 calls) mix_rho : 0.45s CPU 0.41s WALL ( 34 calls) Called by c_bands: init_us_2 : 4.04s CPU 4.08s WALL ( 2380 calls) cegterg : 280.99s CPU 283.92s WALL ( 1158 calls) Called by *egterg: h_psi : 214.27s CPU 215.18s WALL ( 7207 calls) g_psi : 4.24s CPU 3.91s WALL ( 6015 calls) cdiaghg : 7.92s CPU 7.96s WALL ( 7173 calls) Called by h_psi: add_vuspsi : 25.30s CPU 25.46s WALL ( 7207 calls) General routines calbec : 29.71s CPU 29.29s WALL ( 7241 calls) fft : 0.57s CPU 0.61s WALL ( 388 calls) fftw : 167.88s CPU 169.46s WALL ( 139350 calls) davcio : 0.05s CPU 1.07s WALL ( 3536 calls) EXX routines PWSCF : 5m26.93s CPU 5m31.75s WALL This run was terminated on: 22:41:22 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/reference/Al111.bc2.out0000644000700200004540000013054412053145630022604 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:24:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Metal-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00000 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.6 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.2 secs total energy = -28.48060626 Ry Harris-Foulkes estimate = -28.88692770 Ry estimated scf accuracy < 0.58153689 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 18.3 total cpu time spent up to now is 42.3 secs total energy = -24.35177368 Ry Harris-Foulkes estimate = -32.98881117 Ry estimated scf accuracy < 169.26464931 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 14.7 total cpu time spent up to now is 64.2 secs total energy = -28.83078925 Ry Harris-Foulkes estimate = -28.86027314 Ry estimated scf accuracy < 0.52419078 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 2.6 total cpu time spent up to now is 70.2 secs total energy = -28.83455273 Ry Harris-Foulkes estimate = -28.88712822 Ry estimated scf accuracy < 1.18067500 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 2.0 total cpu time spent up to now is 76.1 secs total energy = -28.87933946 Ry Harris-Foulkes estimate = -28.91371232 Ry estimated scf accuracy < 1.18166134 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 1.4 total cpu time spent up to now is 81.6 secs total energy = -28.89609349 Ry Harris-Foulkes estimate = -28.90078109 Ry estimated scf accuracy < 0.02367959 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged ethr = 1.13E-04, avg # of iterations = 13.2 total cpu time spent up to now is 97.4 secs total energy = -28.93104447 Ry Harris-Foulkes estimate = -28.93447985 Ry estimated scf accuracy < 0.12338315 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.4 total cpu time spent up to now is 103.5 secs total energy = -28.93106351 Ry Harris-Foulkes estimate = -28.93272988 Ry estimated scf accuracy < 0.08590576 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 1.0 total cpu time spent up to now is 109.0 secs total energy = -28.92711377 Ry Harris-Foulkes estimate = -28.93158288 Ry estimated scf accuracy < 0.05654667 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 1.5 total cpu time spent up to now is 114.6 secs total energy = -28.92899988 Ry Harris-Foulkes estimate = -28.92987407 Ry estimated scf accuracy < 0.00363297 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.73E-05, avg # of iterations = 11.9 total cpu time spent up to now is 126.2 secs total energy = -28.92742735 Ry Harris-Foulkes estimate = -28.93067612 Ry estimated scf accuracy < 0.00843423 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.73E-05, avg # of iterations = 9.8 total cpu time spent up to now is 136.7 secs total energy = -28.92751930 Ry Harris-Foulkes estimate = -28.92962424 Ry estimated scf accuracy < 0.00771612 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 4.1 total cpu time spent up to now is 144.2 secs total energy = -28.92765068 Ry Harris-Foulkes estimate = -28.92924408 Ry estimated scf accuracy < 0.00440814 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 2.8 total cpu time spent up to now is 150.4 secs total energy = -28.92852293 Ry Harris-Foulkes estimate = -28.92915816 Ry estimated scf accuracy < 0.01220624 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 1.0 total cpu time spent up to now is 155.8 secs total energy = -28.92844407 Ry Harris-Foulkes estimate = -28.92873368 Ry estimated scf accuracy < 0.00497028 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 1.0 total cpu time spent up to now is 161.3 secs total energy = -28.92849573 Ry Harris-Foulkes estimate = -28.92854366 Ry estimated scf accuracy < 0.00042784 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.04E-06, avg # of iterations = 9.6 total cpu time spent up to now is 170.3 secs total energy = -28.92856241 Ry Harris-Foulkes estimate = -28.92856672 Ry estimated scf accuracy < 0.00001824 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 8.69E-08, avg # of iterations = 10.8 total cpu time spent up to now is 184.4 secs total energy = -28.92860542 Ry Harris-Foulkes estimate = -28.92860770 Ry estimated scf accuracy < 0.00001862 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 189.9 secs total energy = -28.92860804 Ry Harris-Foulkes estimate = -28.92860588 Ry estimated scf accuracy < 0.00002067 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 195.4 secs total energy = -28.92861193 Ry Harris-Foulkes estimate = -28.92860905 Ry estimated scf accuracy < 0.00002180 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 200.9 secs total energy = -28.92860620 Ry Harris-Foulkes estimate = -28.92861240 Ry estimated scf accuracy < 0.00003316 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 206.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -14.9129 -14.5521 -13.9582 -13.1239 -12.0502 -10.7936 -9.2991 -7.8242 -6.0049 -4.1608 -2.3728 -0.9620 -0.3147 -0.0143 0.0646 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -14.5389 -14.1788 -13.5861 -12.7535 -11.6819 -10.4275 -8.9333 -7.4725 -5.6542 -3.8167 -2.0356 -0.6163 0.0561 0.3568 0.4332 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -13.4222 -13.0644 -12.4756 -11.6484 -10.5834 -9.3371 -7.8493 -6.4238 -4.6348 -2.9243 -1.9422 -1.4734 -1.0620 -0.7131 -0.2225 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -11.5791 -11.2256 -10.6440 -9.8278 -8.7794 -7.5648 -6.2234 -5.8471 -5.4568 -4.8554 -4.4791 -4.0119 -3.0225 -2.7277 -1.8366 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -9.0467 -9.0361 -8.7290 -8.6643 -8.1616 -8.1013 -7.3870 -7.3417 -6.4954 -5.9345 -4.9648 -4.8602 -3.5442 -3.4069 -2.2673 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5389 -14.1788 -13.5861 -12.7535 -11.6819 -10.4275 -8.9333 -7.4725 -5.6542 -3.8167 -2.0357 -0.6159 0.0561 0.3568 0.4332 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5389 -14.1788 -13.5861 -12.7535 -11.6819 -10.4275 -8.9333 -7.4725 -5.6542 -3.8167 -2.0357 -0.6163 0.0561 0.3568 0.4332 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7935 -13.4349 -12.8448 -12.0158 -10.9484 -9.6991 -8.2079 -6.7715 -4.9634 -3.1551 -1.4369 -0.1248 0.5204 0.7476 0.7893 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1156 -2.6678 -2.0176 -1.7041 -1.0407 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1787 -1.9934 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1787 -1.9936 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1156 -2.6677 -2.0177 -1.7039 -1.0401 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7935 -13.4349 -12.8448 -12.0158 -10.9484 -9.6991 -8.2079 -6.7715 -4.9634 -3.1549 -1.4369 -0.1253 0.5213 0.7373 0.7950 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4222 -13.0644 -12.4756 -11.6484 -10.5834 -9.3371 -7.8493 -6.4238 -4.6348 -2.9244 -1.9423 -1.4733 -1.0621 -0.7128 -0.2225 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -13.7935 -13.4349 -12.8448 -12.0158 -10.9484 -9.6991 -8.2079 -6.7715 -4.9634 -3.1551 -1.4368 -0.1254 0.5218 0.7406 0.8010 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4222 -13.0644 -12.4756 -11.6484 -10.5834 -9.3371 -7.8493 -6.4238 -4.6348 -2.9244 -1.9421 -1.4734 -1.0617 -0.7128 -0.2222 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1155 -2.6677 -2.0176 -1.7039 -1.0392 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -10.4843 -10.1337 -9.5572 -8.7493 -7.7150 -6.5294 -5.2712 -4.8255 -4.8148 -4.5861 -4.3355 -3.9119 -3.6164 -3.3581 -3.1032 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -7.9736 -7.9621 -7.6653 -7.5907 -7.1072 -7.0316 -6.3390 -6.3044 -5.4886 -5.2050 -4.8897 -4.8479 -4.4304 -4.1910 -3.6185 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -10.4843 -10.1337 -9.5572 -8.7493 -7.7150 -6.5294 -5.2712 -4.8255 -4.8148 -4.5861 -4.3356 -3.9118 -3.6164 -3.3580 -3.1000 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1155 -2.6678 -2.0176 -1.7040 -1.0407 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5791 -11.2256 -10.6440 -9.8278 -8.7794 -7.5648 -6.2234 -5.8471 -5.4568 -4.8554 -4.4791 -4.0119 -3.0225 -2.7277 -1.8365 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1155 -2.6679 -2.0176 -1.7040 -1.0406 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1156 -2.6679 -2.0178 -1.7040 -1.0405 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5791 -11.2256 -10.6440 -9.8278 -8.7794 -7.5648 -6.2234 -5.8471 -5.4568 -4.8554 -4.4791 -4.0119 -3.0225 -2.7278 -1.8365 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1787 -1.9937 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -7.9736 -7.9621 -7.6653 -7.5907 -7.1072 -7.0316 -6.3390 -6.3044 -5.4886 -5.2051 -4.8897 -4.8479 -4.4304 -4.1910 -3.6185 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -7.9736 -7.9621 -7.6653 -7.5907 -7.1072 -7.0316 -6.3390 -6.3044 -5.4886 -5.2050 -4.8897 -4.8479 -4.4304 -4.1910 -3.6185 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2994 -3.1787 -1.9935 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0467 -9.0361 -8.7290 -8.6644 -8.1616 -8.1012 -7.3869 -7.3417 -6.4954 -5.9345 -4.9648 -4.8602 -3.5442 -3.4069 -2.2669 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1788 -1.9939 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -10.4843 -10.1337 -9.5572 -8.7493 -7.7150 -6.5294 -5.2712 -4.8255 -4.8148 -4.5861 -4.3355 -3.9119 -3.6165 -3.3581 -3.1048 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2997 -3.1787 -1.9939 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0467 -9.0361 -8.7290 -8.6644 -8.1616 -8.1012 -7.3869 -7.3417 -6.4954 -5.9345 -4.9648 -4.8602 -3.5442 -3.4069 -2.2672 the Fermi energy is -4.0188 ev ! total energy = -28.92859628 Ry Harris-Foulkes estimate = -28.92861115 Ry estimated scf accuracy < 0.00000081 Ry The total energy is the sum of the following terms: one-electron contribution = -6093.38218200 Ry hartree contribution = 3047.55073864 Ry xc contribution = -11.06497083 Ry ewald contribution = 3027.96511646 Ry smearing contrib. (-TS) = 0.00270145 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 93.4829112 -93.4829666 -0.0000554 -19.98 0.0000 103.8265142 -103.8266985 -0.0001843 -19.80 0.0000 128.4677428 -128.4680198 -0.0002770 -19.62 0.0000 168.5305080 -168.5309378 -0.0004299 -19.44 0.0000 216.6828754 -216.6833746 -0.0004992 -19.26 0.0000 264.8341353 -264.8348101 -0.0006748 -19.08 0.0000 312.9859988 -312.9867211 -0.0007223 -18.90 0.0000 361.1377666 -361.1386854 -0.0009188 -18.72 0.0000 409.2891218 -409.2900684 -0.0009466 -18.54 0.0000 457.4413944 -457.4425559 -0.0011615 -18.36 0.0000 505.5922519 -505.5934245 -0.0011725 -18.18 0.0000 553.7450113 -553.7464139 -0.0014026 -18.00 0.0000 601.8953964 -601.8967967 -0.0014003 -17.82 0.0000 650.0486103 -650.0502521 -0.0016417 -17.64 0.0000 698.1985618 -698.2001922 -0.0016304 -17.46 0.0000 746.3521852 -746.3540638 -0.0018787 -17.28 0.0000 794.5017543 -794.5036171 -0.0018628 -17.10 0.0000 842.6557302 -842.6578433 -0.0021131 -16.92 0.0000 890.8049788 -890.8070768 -0.0020980 -16.74 0.0000 938.9592409 -938.9615859 -0.0023450 -16.56 0.0000 987.1082394 -987.1105754 -0.0023360 -16.38 0.0000 1035.2627138 -1035.2652878 -0.0025741 -16.20 0.0000 1083.4115389 -1083.4141158 -0.0025769 -16.02 0.0000 1131.5661467 -1131.5689470 -0.0028003 -15.84 0.0000 1179.7148787 -1179.7176997 -0.0028210 -15.66 0.0000 1227.8695389 -1227.8725625 -0.0030236 -15.48 0.0000 1276.0182589 -1276.0213270 -0.0030681 -15.30 0.0000 1324.1728909 -1324.1761350 -0.0032441 -15.12 0.0000 1372.3216785 -1372.3249967 -0.0033183 -14.94 0.0000 1420.4762043 -1420.4796662 -0.0034620 -14.76 0.0000 1468.6251347 -1468.6287061 -0.0035714 -14.58 0.0000 1516.7794821 -1516.7831596 -0.0036775 -14.40 0.0000 1564.9286240 -1564.9324514 -0.0038274 -14.22 0.0000 1613.0827282 -1613.0866194 -0.0038912 -14.04 0.0000 1661.2321413 -1661.2362275 -0.0040863 -13.86 0.0000 1709.3859472 -1709.3900512 -0.0041040 -13.68 0.0000 1757.5356802 -1757.5400286 -0.0043484 -13.50 0.0000 1805.6891436 -1805.6934614 -0.0043178 -13.32 0.0000 1853.8392327 -1853.8438479 -0.0046153 -13.14 0.0000 1901.9923209 -1901.9968568 -0.0045359 -12.96 0.0000 1950.1427879 -1950.1476782 -0.0048903 -12.78 0.0000 1998.2954792 -1998.3002451 -0.0047660 -12.60 0.0000 2046.4463288 -2046.4515118 -0.0051830 -12.42 0.0000 2094.5986096 -2094.6036340 -0.0050244 -12.24 0.0000 2142.7498250 -2142.7553408 -0.0055158 -12.06 0.0000 2190.9016818 -2190.9070299 -0.0053481 -11.88 0.0000 2239.0532128 -2239.0591556 -0.0059428 -11.70 0.0000 2287.2046135 -2287.2104413 -0.0058278 -11.52 0.0000 2335.3563483 -2335.3629508 -0.0066025 -11.34 0.0001 2383.5071943 -2383.5138771 -0.0066828 -11.16 0.0001 2431.6588890 -2431.6667190 -0.0078300 -10.98 0.0002 2479.8089006 -2479.8173450 -0.0084444 -10.80 0.0003 2527.9599992 -2527.9704521 -0.0104529 -10.62 0.0004 2576.1084272 -2576.1208533 -0.0124261 -10.44 0.0007 2624.2576196 -2624.2741408 -0.0165213 -10.26 0.0011 2672.4025455 -2672.4244121 -0.0218665 -10.08 0.0017 2720.5466540 -2720.5777730 -0.0311190 -9.90 0.0026 2768.6832186 -2768.7280364 -0.0448179 -9.72 0.0042 2816.8144288 -2816.8813272 -0.0668984 -9.54 0.0066 2864.9304606 -2865.0317547 -0.1012941 -9.36 0.0104 2913.0293740 -2913.1847636 -0.1553895 -9.18 0.0163 2961.0944350 -2961.3356347 -0.2411997 -9.00 0.0256 3009.1131322 -3009.4879447 -0.3748125 -8.82 0.0396 3057.0526937 -3057.6396789 -0.5869852 -8.64 0.0604 3104.8762613 -3105.7901054 -0.9138442 -8.46 0.0900 3152.5172302 -3153.9365807 -1.4193505 -8.28 0.1302 3199.8925221 -3201.9347325 -2.0422104 -8.10 0.1808 3246.8794478 -3250.0019605 -3.1225126 -7.92 0.2373 3293.3338398 -3298.5769063 -5.2430664 -7.74 0.2904 3339.0878913 -3347.4607633 -8.3728721 -7.56 0.3304 3383.9907544 -3395.9669537 -11.9761992 -7.38 0.3537 3427.9225496 -3443.3520433 -15.4294936 -7.20 0.3630 3470.8161374 -3488.8179406 -18.0018031 -7.02 0.3635 3512.6411859 -3531.6365841 -18.9953982 -6.84 0.3610 3553.3959669 -3571.5303639 -18.1343970 -6.66 0.3599 3593.0858746 -3608.7458356 -15.6599611 -6.48 0.3604 3631.7143800 -3643.9954562 -12.2810762 -6.30 0.3587 3669.2812251 -3678.0778850 -8.7966600 -6.12 0.3532 3705.7913360 -3711.7358237 -5.9444877 -5.94 0.3489 3741.2606942 -3745.5208752 -4.2601809 -5.76 0.3515 3775.6990160 -3779.8977738 -4.1987577 -5.58 0.3604 3809.1006561 -3814.8820740 -5.7814179 -5.40 0.3681 3841.4389480 -3850.0177718 -8.5788238 -5.22 0.3682 3872.6955761 -3884.7598475 -12.0642714 -5.04 0.3619 3902.8668711 -3918.3727506 -15.5058795 -4.86 0.3550 3931.9732315 -3950.0585821 -18.0853506 -4.68 0.3519 3960.0302194 -3979.0919455 -19.0617261 -4.50 0.3536 3987.0505497 -4005.2002360 -18.1496862 -4.32 0.3595 4013.0254155 -4028.6352353 -15.6098199 -4.14 0.3659 4037.9423147 -4050.1123730 -12.1700583 -3.96 0.3669 4061.7800161 -4070.4294772 -8.6494612 -3.78 0.3610 4084.5400285 -4090.3289898 -5.7889613 -3.60 0.3541 4106.2341833 -4110.3595659 -4.1253826 -3.42 0.3533 4126.8848477 -4130.9863216 -4.1014738 -3.24 0.3591 4146.4904227 -4152.2161313 -5.7257086 -3.06 0.3647 4165.0393012 -4173.5939983 -8.5546972 -2.88 0.3646 4182.5128853 -4194.5704422 -12.0575569 -2.70 0.3599 4198.9143240 -4214.4119158 -15.4975919 -2.52 0.3559 4214.2532076 -4232.3166651 -18.0634575 -2.34 0.3552 4228.5433726 -4247.5656278 -19.0222552 -2.16 0.3578 4241.7847372 -4259.8875143 -18.1027771 -1.98 0.3626 4253.9716929 -4269.5431191 -15.5714262 -1.80 0.3664 4265.0894483 -4277.2467692 -12.1573209 -1.62 0.3644 4275.1290558 -4283.7997748 -8.6707190 -1.44 0.3562 4284.0958363 -4289.9396888 -5.8438526 -1.26 0.3482 4292.0125195 -4296.2171094 -4.2045899 -1.08 0.3477 4298.9010037 -4303.0924164 -4.1914127 -0.90 0.3550 4304.7620093 -4310.5690099 -5.8070006 -0.72 0.3632 4309.5769186 -4318.1876826 -8.6107640 -0.54 0.3660 4313.3218480 -4325.3997123 -12.0778643 -0.36 0.3639 4315.9901566 -4331.4684423 -15.4782857 -0.18 0.3612 4317.5847367 -4335.5932085 -18.0084718 0.00 0.3602 4318.1154872 -4337.0566629 -18.9411757 0.18 0.3612 4317.5825339 -4335.5931436 -18.0106097 0.36 0.3638 4315.9860911 -4331.4685713 -15.4824803 0.54 0.3659 4313.3155649 -4325.3995205 -12.0839556 0.72 0.3631 4309.5694130 -4318.1879349 -8.6185219 0.90 0.3549 4304.7525577 -4310.5686997 -5.8161421 1.08 0.3476 4298.8911595 -4303.0927808 -4.2016213 1.26 0.3481 4292.0011671 -4296.2166948 -4.2155277 1.44 0.3561 4284.0849874 -4289.9401491 -5.8551617 1.62 0.3643 4275.1172538 -4283.7992742 -8.6820204 1.80 0.3663 4265.0790864 -4277.2473047 -12.1682183 1.98 0.3625 4253.9610328 -4269.5425549 -15.5815220 2.16 0.3577 4241.7764038 -4259.8881010 -18.1116972 2.34 0.3551 4228.5353478 -4247.5650254 -19.0296776 2.52 0.3558 4214.2481354 -4232.3172764 -18.0691410 2.70 0.3599 4198.9099048 -4214.4113027 -15.5013979 2.88 0.3646 4182.5115903 -4194.5710503 -12.0594600 3.06 0.3648 4165.0386265 -4173.5934025 -8.5547760 3.24 0.3591 4146.4925874 -4152.2167080 -5.7241206 3.42 0.3534 4126.8873466 -4130.9857707 -4.0984242 3.60 0.3542 4106.2389849 -4110.3600844 -4.1210994 3.78 0.3611 4084.5448315 -4090.3285100 -5.7836785 3.96 0.3670 4061.7865085 -4070.4299126 -8.6434041 4.14 0.3659 4037.9485595 -4050.1119875 -12.1634280 4.32 0.3596 4013.0327929 -4028.6355662 -15.6027733 4.50 0.3536 3987.0576443 -4005.1999641 -18.1423198 4.68 0.3519 3960.0380863 -3979.0921547 -19.0540684 4.86 0.3550 3931.9810719 -3950.0584387 -18.0773668 5.04 0.3618 3902.8753412 -3918.3728259 -15.4974847 5.22 0.3682 3872.7044911 -3884.7598419 -12.0553509 5.40 0.3681 3841.4484503 -3850.0177068 -8.5692565 5.58 0.3604 3809.1111107 -3814.8822097 -5.7710990 5.76 0.3515 3775.7099558 -3779.8975680 -4.1876122 5.94 0.3489 3741.2729814 -3745.5211496 -4.2481682 6.12 0.3532 3705.8038806 -3711.7354828 -5.9316022 6.30 0.3587 3669.2953576 -3678.0782893 -8.7829317 6.48 0.3605 3631.7284190 -3643.9949920 -12.2665730 6.66 0.3600 3593.1015663 -3608.7463552 -15.6447889 6.84 0.3611 3553.4110988 -3571.5297940 -18.1186952 7.02 0.3636 3512.6578705 -3531.6371987 -18.9793283 7.20 0.3630 3470.8317561 -3488.8172874 -17.9855313 7.38 0.3538 3427.9395565 -3443.3527282 -15.4131717 7.56 0.3305 3384.0062947 -3395.9662441 -11.9599494 7.74 0.2904 3339.1047093 -3347.4614899 -8.3567807 7.92 0.2373 3293.3489848 -3298.5761704 -5.2271856 8.10 0.1808 3246.8958295 -3250.0026975 -3.1068680 8.28 0.1302 3199.9071926 -3201.9340025 -2.0268099 8.46 0.0900 3152.5331030 -3153.9372952 -1.4041922 8.64 0.0604 3104.8904925 -3105.7894145 -0.8989220 8.82 0.0396 3057.0680455 -3057.6403380 -0.5722925 9.00 0.0256 3009.1269814 -3009.4873254 -0.3603440 9.18 0.0163 2961.1092542 -2961.3362063 -0.2269521 9.36 0.0104 2913.0428856 -2913.1842469 -0.1413613 9.54 0.0066 2864.9447245 -2865.0322094 -0.0874849 9.72 0.0042 2816.8276325 -2816.8809410 -0.0533085 9.90 0.0026 2768.6968998 -2768.7283481 -0.0314483 10.08 0.0017 2720.5595699 -2720.5775410 -0.0179711 10.26 0.0011 2672.4156176 -2672.4245596 -0.0089420 10.44 0.0007 2624.2702599 -2624.2740816 -0.0038217 10.62 0.0004 2576.1208682 -2576.1208211 0.0000471 10.80 0.0003 2527.9723704 -2527.9705779 0.0017925 10.98 0.0002 2479.8206960 -2479.8171241 0.0035720 11.16 0.0001 2431.6709919 -2431.6670355 0.0039564 11.34 0.0001 2383.5183380 -2383.5134652 0.0048728 11.52 0.0000 2335.3681783 -2335.3634567 0.0047216 11.70 0.0000 2287.2151080 -2287.2098436 0.0052643 11.88 0.0000 2239.0647590 -2239.0598421 0.0049169 12.06 0.0000 2190.9115375 -2190.9062586 0.0052789 12.24 0.0000 2142.7610703 -2142.7561921 0.0048782 12.42 0.0000 2094.6078447 -2094.6027083 0.0051365 12.60 0.0000 2046.4572501 -2046.4525056 0.0047446 12.78 0.0000 1998.3041187 -1998.2991905 0.0049282 12.96 0.0000 1950.1533563 -1950.1487859 0.0045704 13.14 0.0000 1902.0003957 -1901.9957044 0.0046913 13.32 0.0000 1853.8494145 -1853.8450360 0.0043784 13.50 0.0000 1805.6966892 -1805.6922469 0.0044423 13.68 0.0000 1757.5454377 -1757.5412596 0.0041781 13.86 0.0000 1709.3930027 -1709.3888138 0.0041889 14.04 0.0000 1661.2414342 -1661.2374611 0.0039731 14.22 0.0000 1613.0893348 -1613.0854001 0.0039346 14.40 0.0000 1564.9374107 -1564.9336459 0.0037648 14.58 0.0000 1516.7856813 -1516.7820002 0.0036811 14.76 0.0000 1468.6333737 -1468.6298201 0.0035536 14.94 0.0000 1420.4820371 -1420.4786077 0.0034294 15.12 0.0000 1372.3293298 -1372.3259902 0.0033395 15.30 0.0000 1324.1783958 -1324.1752157 0.0031801 15.48 0.0000 1276.0252858 -1276.0221633 0.0031225 15.66 0.0000 1227.8747509 -1227.8718175 0.0029334 15.84 0.0000 1179.7212486 -1179.7183461 0.0029024 16.02 0.0000 1131.5710955 -1131.5684059 0.0026896 16.20 0.0000 1083.4172249 -1083.4145456 0.0026793 16.38 0.0000 1035.2674230 -1035.2649744 0.0024486 16.56 0.0000 987.1132214 -987.1107683 0.0024531 16.74 0.0000 938.9637272 -938.9615167 0.0022105 16.92 0.0000 890.8092438 -890.8070199 0.0022239 17.10 0.0000 842.6600026 -842.6580275 0.0019751 17.28 0.0000 794.5052974 -794.5033055 0.0019919 17.46 0.0000 746.3562445 -746.3545020 0.0017424 17.64 0.0000 698.2013863 -698.1996292 0.0017571 17.82 0.0000 650.0524491 -650.0509369 0.0015122 18.00 0.0000 601.8975138 -601.8959938 0.0015199 18.18 0.0000 553.7486140 -553.7473299 0.0012841 18.36 0.0000 505.5936816 -505.5924010 0.0012805 18.54 0.0000 457.4447380 -457.4436800 0.0010579 18.72 0.0000 409.2898903 -409.2888511 0.0010392 18.90 0.0000 361.1408211 -361.1399877 0.0008334 19.08 0.0000 312.9861392 -312.9853429 0.0007963 19.26 0.0000 264.8368648 -264.8362546 0.0006101 19.44 0.0000 216.6824261 -216.6818740 0.0005521 19.62 0.0000 172.4828246 -172.4824367 0.0003878 19.80 0.0000 136.9309308 -136.9306238 0.0003070 19.98 0.0000 111.1640949 -111.1639288 0.0001661 20.16 0.0000 96.3028075 -96.3027461 0.0000614 convergence has been achieved in 22 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000396 -0.00000037 -0.00167028 atom 2 type 1 force = 0.00000022 -0.00000023 0.00666591 atom 3 type 1 force = -0.00000126 0.00000218 -0.00521981 atom 4 type 1 force = 0.00000393 0.00000131 -0.00005125 atom 5 type 1 force = 0.00000287 -0.00000257 0.00560645 atom 6 type 1 force = 0.00000031 0.00000163 -0.00714762 atom 7 type 1 force = -0.00000211 -0.00000195 0.00181660 Total force = 0.012661 Total SCF correction = 0.001344 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file Al111.save init_run : 5.07s CPU 5.33s WALL ( 1 calls) electrons : 198.28s CPU 200.77s WALL ( 1 calls) forces : 1.67s CPU 1.72s WALL ( 1 calls) Called by init_run: wfcinit : 4.32s CPU 4.40s WALL ( 1 calls) potinit : 0.28s CPU 0.30s WALL ( 1 calls) Called by electrons: c_bands : 179.35s CPU 181.40s WALL ( 22 calls) sum_band : 16.52s CPU 16.74s WALL ( 22 calls) v_of_rho : 1.92s CPU 1.98s WALL ( 23 calls) mix_rho : 0.25s CPU 0.25s WALL ( 22 calls) Called by c_bands: init_us_2 : 2.83s CPU 2.65s WALL ( 1564 calls) cegterg : 173.39s CPU 175.07s WALL ( 748 calls) Called by *egterg: h_psi : 133.21s CPU 133.35s WALL ( 4745 calls) g_psi : 2.61s CPU 2.38s WALL ( 3963 calls) cdiaghg : 5.69s CPU 5.68s WALL ( 4711 calls) Called by h_psi: add_vuspsi : 15.76s CPU 15.80s WALL ( 4745 calls) General routines calbec : 18.52s CPU 18.24s WALL ( 4779 calls) fft : 0.36s CPU 0.41s WALL ( 256 calls) fftw : 104.44s CPU 105.12s WALL ( 87444 calls) davcio : 0.05s CPU 0.73s WALL ( 2312 calls) EXX routines PWSCF : 3m25.33s CPU 3m28.42s WALL This run was terminated on: 22:28: 8 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/reference/H2O.noesm.out0000644000700200004540000005147312053145630023073 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:23:35 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 6369 3181 793 458581 162113 20303 Tot 3185 1591 397 bravais-lattice index = 6 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 9600.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Ordinary Periodic Boundary Conditions celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 1.200000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.200000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.833333 ) PseudoPot. # 1 for H read from file: /home/Brandon/src/espresso/pseudo/H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file: /home/Brandon/src/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential H 1.00 1.00794 H ( 1.00) O 6.00 55.84700 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.5000000 0.0000000 ) 2 H tau( 2) = ( 0.0431388 0.4310286 0.0430783 ) 3 H tau( 3) = ( 0.0366354 0.5764064 0.0359492 ) number of k points= 1 gaussian smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 229291 G-vectors FFT dimensions: ( 96, 96, 120) Smooth grid: 81057 G-vectors FFT dimensions: ( 64, 64, 80) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.24 Mb ( 10152, 8) NL pseudopotentials 1.86 Mb ( 10152, 12) Each V/rho on FFT grid 16.88 Mb (1105920) Each G-vector array 1.75 Mb ( 229291) G-vector shells 0.10 Mb ( 12605) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.48 Mb ( 10152, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 135.00 Mb (1105920, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001104 starting charge 7.80759, renormalised to 8.00000 negative rho (up, down): 0.113E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 6.3 secs per-process dynamical memory: 113.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.623E-03 0.000E+00 total cpu time spent up to now is 9.8 secs total energy = -34.15546573 Ry Harris-Foulkes estimate = -34.57481875 Ry estimated scf accuracy < 0.66685302 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.34E-03, avg # of iterations = 2.0 negative rho (up, down): 0.151E-02 0.000E+00 total cpu time spent up to now is 13.1 secs total energy = -34.24877020 Ry Harris-Foulkes estimate = -34.29902946 Ry estimated scf accuracy < 0.12012437 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.50E-03, avg # of iterations = 4.0 negative rho (up, down): 0.125E-02 0.000E+00 total cpu time spent up to now is 16.2 secs total energy = -34.25176542 Ry Harris-Foulkes estimate = -34.26168810 Ry estimated scf accuracy < 0.01755051 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.19E-04, avg # of iterations = 4.0 negative rho (up, down): 0.586E-03 0.000E+00 total cpu time spent up to now is 19.3 secs total energy = -34.25343391 Ry Harris-Foulkes estimate = -34.25348823 Ry estimated scf accuracy < 0.00041277 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.16E-06, avg # of iterations = 10.0 negative rho (up, down): 0.518E-03 0.000E+00 total cpu time spent up to now is 22.7 secs total energy = -34.25355956 Ry Harris-Foulkes estimate = -34.25352984 Ry estimated scf accuracy < 0.00002954 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.69E-07, avg # of iterations = 4.0 negative rho (up, down): 0.391E-03 0.000E+00 total cpu time spent up to now is 25.8 secs total energy = -34.25356927 Ry Harris-Foulkes estimate = -34.25356651 Ry estimated scf accuracy < 0.00000356 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.45E-08, avg # of iterations = 2.0 negative rho (up, down): 0.290E-03 0.000E+00 total cpu time spent up to now is 28.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10152 PWs) bands (ev): -25.2553 -13.0540 -9.1754 -7.1530 -0.9890 0.2072 0.6285 0.6582 the Fermi energy is -4.0773 ev ! total energy = -34.25356999 Ry Harris-Foulkes estimate = -34.25357021 Ry estimated scf accuracy < 0.00000074 Ry The total energy is the sum of the following terms: one-electron contribution = -65.18261814 Ry hartree contribution = 34.02195223 Ry xc contribution = -8.39476070 Ry ewald contribution = 5.30185662 Ry smearing contrib. (-TS) = -0.00000000 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -6.24 0.0000 -6.7256510 6.8221255 0.0964745 -6.14 0.0000 -6.7161669 6.8162384 0.1000716 -6.03 0.0000 -6.6952846 6.7990479 0.1037632 -5.93 0.0000 -6.6630042 6.7703759 0.1073717 -5.82 0.0000 -6.6193256 6.7303702 0.1110447 -5.72 0.0000 -6.5642489 6.6789256 0.1146768 -5.61 0.0000 -6.4977740 6.6160961 0.1183221 -5.50 0.0000 -6.4199009 6.5418835 0.1219826 -5.40 0.0000 -6.3306297 6.4562299 0.1256002 -5.29 0.0000 -6.2299604 6.3592448 0.1292845 -5.19 0.0000 -6.1178929 6.2507760 0.1328831 -5.08 0.0000 -5.9944272 6.1310063 0.1365790 -4.97 0.0000 -5.8595635 5.9997370 0.1401735 -4.87 0.0000 -5.7133016 5.8571662 0.1438646 -4.76 0.0000 -5.5556416 5.7031129 0.1474713 -4.66 0.0000 -5.3865835 5.5377254 0.1511419 -4.55 0.0000 -5.2061273 5.3609011 0.1547738 -4.45 0.0000 -5.0142730 5.1726877 0.1584147 -4.34 0.0000 -4.8110207 4.9730977 0.1620769 -4.23 0.0000 -4.5963705 4.7620580 0.1656875 -4.13 0.0000 -4.3703223 4.5396975 0.1693752 -4.02 0.0000 -4.1328763 4.3058410 0.1729647 -3.92 0.0000 -3.8840324 4.0606965 0.1766641 -3.81 0.0000 -3.6237909 3.8040398 0.1802489 -3.70 0.0000 -3.3521521 3.5360928 0.1839407 -3.60 0.0000 -3.0691161 3.2566549 0.1875388 -3.49 0.0000 -2.7746835 2.9658875 0.1912041 -3.39 0.0000 -2.4688546 2.6636836 0.1948291 -3.28 0.0001 -2.1516300 2.3500845 0.1984545 -3.18 0.0001 -1.8230109 2.0251210 0.2021101 -3.07 0.0001 -1.4829989 1.6886896 0.2056907 -2.96 0.0002 -1.1315963 1.3409611 0.2093648 -2.86 0.0002 -0.7688060 0.9817087 0.2129027 -2.75 0.0003 -0.3946317 0.6111985 0.2165668 -2.65 0.0004 -0.0090787 0.2291461 0.2200674 -2.54 0.0006 0.3878450 -0.1641697 0.2236752 -2.43 0.0009 0.7961269 -0.5689971 0.2271298 -2.33 0.0012 1.2157494 -0.9851427 0.2306067 -2.22 0.0017 1.6466889 -1.4127236 0.2339653 -2.12 0.0024 2.0889140 -1.8517156 0.2371984 -2.01 0.0034 2.5423798 -2.3020398 0.2403399 -1.91 0.0050 3.0070196 -2.7638805 0.2431390 -1.80 0.0072 3.4827327 -3.2369546 0.2457780 -1.69 0.0103 3.9693737 -3.7216279 0.2477458 -1.59 0.0147 4.4667394 -4.2174772 0.2492621 -1.48 0.0210 4.9745452 -4.7249490 0.2495961 -1.38 0.0304 5.4923780 -5.2436154 0.2487626 -1.27 0.0449 6.0196157 -5.7738373 0.2457785 -1.16 0.0664 6.5553135 -6.3153744 0.2399391 -1.06 0.0978 7.0980653 -6.8682879 0.2297774 -0.95 0.1437 7.6458182 -7.4327607 0.2130575 -0.85 0.2127 8.1955600 -8.0082823 0.1872778 -0.74 0.3186 8.7427557 -8.5958326 0.1469231 -0.64 0.4781 9.2804749 -9.1924498 0.0880251 -0.53 0.7126 9.7982958 -9.8019441 -0.0036483 -0.42 1.0399 10.2809526 -10.4368885 -0.1559359 -0.32 1.4253 10.7074652 -11.0749342 -0.3674690 -0.21 1.7462 11.0536271 -11.6421275 -0.5885003 -0.11 1.9058 11.2992781 -12.0703373 -0.7710592 0.00 1.9720 11.4336875 -12.3244386 -0.8907511 0.11 2.0303 11.4520462 -12.3964478 -0.9444016 0.21 1.9997 11.3510854 -12.2838945 -0.9328091 0.32 1.7897 11.1333243 -11.9808999 -0.8475756 0.42 1.4559 10.8119902 -11.5292176 -0.7172274 0.53 1.1031 10.4080631 -10.9967589 -0.5886958 0.64 0.7929 9.9440146 -10.4133819 -0.4693673 0.74 0.5488 9.4397698 -9.7947695 -0.3549998 0.85 0.3733 8.9110890 -9.1782351 -0.2671462 0.95 0.2541 8.3693781 -8.5809489 -0.2115708 1.06 0.1735 7.8224396 -7.9942374 -0.1717978 1.16 0.1186 7.2755485 -7.4188539 -0.1433054 1.27 0.0808 6.7323028 -6.8547468 -0.1224440 1.38 0.0550 6.1951716 -6.3020401 -0.1068685 1.48 0.0378 5.6658367 -5.7608402 -0.0950034 1.59 0.0263 5.1454257 -5.2308440 -0.0854183 1.69 0.0185 4.6346912 -4.7124985 -0.0778074 1.80 0.0130 4.1341446 -4.2052675 -0.0711229 1.91 0.0091 3.6441448 -3.7097243 -0.0655795 2.01 0.0064 3.1649475 -3.2253063 -0.0603589 2.12 0.0045 2.6967330 -2.7525247 -0.0557916 2.22 0.0032 2.2396249 -2.2909522 -0.0513274 2.33 0.0023 1.7937067 -1.8409091 -0.0472024 2.43 0.0017 1.3590364 -1.4021953 -0.0431589 2.54 0.0012 0.9356565 -0.9748873 -0.0392309 2.65 0.0008 0.5235984 -0.5590262 -0.0354278 2.75 0.0006 0.1228852 -0.1544674 -0.0315822 2.86 0.0004 -0.2664676 0.2385615 -0.0279061 2.96 0.0003 -0.6444494 0.6203463 -0.0241032 3.07 0.0002 -1.0110531 0.9905702 -0.0204829 3.18 0.0002 -1.3662732 1.3495533 -0.0167199 3.28 0.0001 -1.7101055 1.6969982 -0.0131073 3.39 0.0001 -2.0425469 2.0331573 -0.0093896 3.49 0.0001 -2.3635952 2.3578406 -0.0057545 3.60 0.0000 -2.6732490 2.6711639 -0.0020851 3.70 0.0000 -2.9715075 2.9730910 0.0015835 3.81 0.0000 -3.2583699 3.2635797 0.0052098 3.92 0.0000 -3.5338356 3.5427432 0.0089075 4.02 0.0000 -3.7979043 3.8104097 0.0125055 4.13 0.0000 -4.0505755 4.0667932 0.0162177 4.23 0.0000 -4.2918491 4.3116567 0.0198077 4.34 0.0000 -4.5217249 4.5452399 0.0235150 4.45 0.0000 -4.7402030 4.7673200 0.0271171 4.55 0.0000 -4.9472831 4.9780855 0.0308023 4.66 0.0000 -5.1429653 5.1773963 0.0344311 4.76 0.0000 -5.3272494 5.3653341 0.0380847 4.87 0.0000 -5.5001354 5.5418806 0.0417452 4.97 0.0000 -5.6616234 5.7069911 0.0453677 5.08 0.0000 -5.8117133 5.8607679 0.0490547 5.19 0.0000 -5.9504050 6.0030608 0.0526558 5.29 0.0000 -6.0776987 6.1340546 0.0563559 5.40 0.0000 -6.1935942 6.2535458 0.0599516 5.50 0.0000 -6.2980915 6.3617396 0.0636480 5.61 0.0000 -6.3911907 6.4584459 0.0672552 5.72 0.0000 -6.4728918 6.5438242 0.0709324 5.82 0.0000 -6.5431947 6.6177581 0.0745634 5.93 0.0000 -6.6020995 6.6803119 0.0782124 6.03 0.0000 -6.6496061 6.7314783 0.0818721 6.14 0.0000 -6.6857146 6.7712077 0.0854931 6.24 0.0000 -6.7104249 6.7996019 0.0891770 6.35 0.0000 -6.7237370 6.8165157 0.0927787 convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00043393 -0.00019692 -0.00016191 atom 2 type 1 force = 0.00017205 0.00016310 0.00004065 atom 3 type 1 force = 0.00026188 0.00003382 0.00012127 Total force = 0.000291 Total SCF correction = 0.000118 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file H2O.save init_run : 5.74s CPU 5.85s WALL ( 1 calls) electrons : 21.01s CPU 22.31s WALL ( 1 calls) forces : 1.86s CPU 1.87s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.14s WALL ( 1 calls) potinit : 2.70s CPU 2.71s WALL ( 1 calls) Called by electrons: c_bands : 3.74s CPU 3.78s WALL ( 7 calls) sum_band : 4.43s CPU 4.62s WALL ( 7 calls) v_of_rho : 9.52s CPU 9.99s WALL ( 8 calls) newd : 2.71s CPU 3.12s WALL ( 8 calls) mix_rho : 0.89s CPU 0.91s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.08s CPU 0.07s WALL ( 15 calls) regterg : 3.68s CPU 3.72s WALL ( 7 calls) Called by *egterg: h_psi : 3.26s CPU 3.30s WALL ( 40 calls) s_psi : 0.06s CPU 0.06s WALL ( 40 calls) g_psi : 0.03s CPU 0.05s WALL ( 32 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 39 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.05s WALL ( 40 calls) General routines calbec : 0.11s CPU 0.09s WALL ( 51 calls) fft : 7.33s CPU 7.40s WALL ( 127 calls) ffts : 0.26s CPU 0.33s WALL ( 15 calls) fftw : 3.11s CPU 3.11s WALL ( 242 calls) interpolate : 1.33s CPU 1.44s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) EXX routines PWSCF : 28.92s CPU 30.62s WALL This run was terminated on: 22:24: 5 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/reference/H2O.bc1.out0000644000700200004540000005147512053145630022421 0ustar marsamoscm Program PWSCF v.4.99 starts on 23Apr2012 at 22:24: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 6369 3181 793 458581 162113 20303 Tot 3185 1591 397 bravais-lattice index = 6 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 9600.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Vacuum celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 1.200000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.200000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.833333 ) PseudoPot. # 1 for H read from file: /home/Brandon/src/espresso/pseudo/H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file: /home/Brandon/src/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential H 1.00 1.00794 H ( 1.00) O 6.00 55.84700 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.5000000 0.0000000 ) 2 H tau( 2) = ( 0.0431388 0.4310286 0.0430783 ) 3 H tau( 3) = ( 0.0366354 0.5764064 0.0359492 ) number of k points= 1 gaussian smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 229291 G-vectors FFT dimensions: ( 96, 96, 120) Smooth grid: 81057 G-vectors FFT dimensions: ( 64, 64, 80) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.24 Mb ( 10152, 8) NL pseudopotentials 1.86 Mb ( 10152, 12) Each V/rho on FFT grid 16.88 Mb (1105920) Each G-vector array 1.75 Mb ( 229291) G-vector shells 0.10 Mb ( 12605) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.48 Mb ( 10152, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 135.00 Mb (1105920, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001104 starting charge 7.80759, renormalised to 8.00000 negative rho (up, down): 0.113E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 7.2 secs per-process dynamical memory: 113.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.622E-03 0.000E+00 total cpu time spent up to now is 10.9 secs total energy = -34.15653230 Ry Harris-Foulkes estimate = -34.57455082 Ry estimated scf accuracy < 0.66442710 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.31E-03, avg # of iterations = 2.0 negative rho (up, down): 0.143E-02 0.000E+00 total cpu time spent up to now is 14.1 secs total energy = -34.24783112 Ry Harris-Foulkes estimate = -34.29751187 Ry estimated scf accuracy < 0.11911412 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-03, avg # of iterations = 6.0 negative rho (up, down): 0.117E-02 0.000E+00 total cpu time spent up to now is 17.4 secs total energy = -34.25154693 Ry Harris-Foulkes estimate = -34.26064573 Ry estimated scf accuracy < 0.01647268 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.06E-04, avg # of iterations = 6.0 negative rho (up, down): 0.663E-03 0.000E+00 total cpu time spent up to now is 20.7 secs total energy = -34.25308656 Ry Harris-Foulkes estimate = -34.25310132 Ry estimated scf accuracy < 0.00034304 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.29E-06, avg # of iterations = 12.0 negative rho (up, down): 0.367E-03 0.000E+00 total cpu time spent up to now is 24.5 secs total energy = -34.25321501 Ry Harris-Foulkes estimate = -34.25321341 Ry estimated scf accuracy < 0.00003631 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.54E-07, avg # of iterations = 2.0 negative rho (up, down): 0.369E-03 0.000E+00 total cpu time spent up to now is 27.5 secs total energy = -34.25323034 Ry Harris-Foulkes estimate = -34.25322191 Ry estimated scf accuracy < 0.00000146 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.83E-08, avg # of iterations = 3.0 negative rho (up, down): 0.290E-03 0.000E+00 total cpu time spent up to now is 30.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10152 PWs) bands (ev): -25.3492 -13.1481 -9.2655 -7.2448 -1.1068 0.1064 0.5162 0.5489 the Fermi energy is -4.1833 ev ! total energy = -34.25323095 Ry Harris-Foulkes estimate = -34.25323057 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -57.03053523 Ry hartree contribution = 29.91405571 Ry xc contribution = -8.39370510 Ry ewald contribution = 1.25695368 Ry smearing contrib. (-TS) = -0.00000000 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -6.24 0.0000 -39.7492650 39.8284615 0.0791965 -6.14 0.0000 -39.6404315 39.7885970 0.1481655 -6.03 0.0000 -39.3170125 39.5141236 0.1971111 -5.93 0.0000 -38.7582461 38.9737689 0.2155229 -5.82 0.0000 -38.0743344 38.2899763 0.2156419 -5.72 0.0000 -37.3903580 37.6058808 0.2155228 -5.61 0.0000 -36.7066338 36.9222674 0.2156336 -5.50 0.0000 -36.0224844 36.2380169 0.2155326 -5.40 0.0000 -35.3389113 35.5545279 0.2156166 -5.29 0.0000 -34.6546409 34.8701883 0.2155474 -5.19 0.0000 -33.9711543 34.1867506 0.2155963 -5.08 0.0000 -33.2868363 33.5023980 0.2155617 -4.97 0.0000 -32.6033583 32.8189364 0.2155782 -4.87 0.0000 -31.9190710 32.1346417 0.2155707 -4.76 0.0000 -31.2355274 31.4510929 0.2155656 -4.66 0.0000 -30.5513366 30.7669081 0.2155715 -4.55 0.0000 -29.8676734 30.0832330 0.2155596 -4.45 0.0000 -29.1836191 29.3991834 0.2155643 -4.34 0.0000 -28.4998125 28.7153713 0.2155588 -4.23 0.0000 -27.8159018 28.0314535 0.2155517 -4.13 0.0000 -27.1319617 27.3475210 0.2155593 -4.02 0.0000 -26.4481699 26.6637071 0.2155372 -3.92 0.0000 -25.7641344 25.9796909 0.2155565 -3.81 0.0000 -25.0804137 25.2959380 0.2155243 -3.70 0.0000 -24.3963383 24.6118844 0.2155462 -3.60 0.0000 -23.7126318 23.9281456 0.2155139 -3.49 0.0000 -23.0285747 23.2440995 0.2155247 -3.39 0.0000 -22.3448312 22.5603345 0.2155033 -3.28 0.0001 -21.6608396 21.8763298 0.2154902 -3.18 0.0001 -20.9770264 21.1925120 0.2154855 -3.07 0.0001 -20.2931277 20.5085671 0.2154394 -2.96 0.0002 -19.6092412 19.8246867 0.2154455 -2.86 0.0002 -18.9254419 19.1408033 0.2153614 -2.75 0.0003 -18.2415082 18.4568660 0.2153578 -2.65 0.0004 -17.5577983 17.7730322 0.2152339 -2.54 0.0006 -16.8738727 17.0890545 0.2151818 -2.43 0.0009 -16.1902466 16.4052506 0.2150040 -2.33 0.0012 -15.5064200 15.7212540 0.2148340 -2.22 0.0017 -14.8229074 15.0374582 0.2145507 -2.12 0.0024 -14.1393120 14.3534638 0.2141517 -2.01 0.0034 -13.4560119 13.6696566 0.2136447 -1.91 0.0049 -12.7728562 12.9856818 0.2128256 -1.80 0.0071 -12.0900321 12.3018482 0.2118161 -1.69 0.0102 -11.4077290 11.6179062 0.2101772 -1.59 0.0146 -10.7259794 10.9340344 0.2080550 -1.48 0.0208 -10.0453442 10.2501364 0.2047923 -1.38 0.0303 -9.3658735 9.5662151 0.2003416 -1.27 0.0447 -8.6886017 8.8823739 0.1937722 -1.16 0.0662 -8.0140382 8.1983870 0.1843488 -1.06 0.0975 -7.3440039 7.5146242 0.1706203 -0.95 0.1434 -6.6801795 6.8305403 0.1503607 -0.85 0.2124 -6.0258671 6.1469119 0.1210448 -0.74 0.3182 -5.3854049 5.4626085 0.0772037 -0.64 0.4776 -4.7658026 4.7806170 0.0148144 -0.53 0.7122 -4.1775160 4.0972278 -0.0802882 -0.42 1.0395 -3.6356627 3.3996513 -0.2360114 -0.32 1.4249 -3.1614731 2.7105501 -0.4509230 -0.21 1.7459 -2.7788300 2.1034932 -0.6753367 -0.11 1.9056 -2.5082770 1.6470359 -0.8612411 0.00 1.9717 -2.3601454 1.3758735 -0.9842718 0.11 2.0300 -2.3396337 1.2983904 -1.0412432 0.21 1.9994 -2.4496576 1.4167172 -1.0329404 0.32 1.7896 -2.6879808 1.7369845 -0.9509963 0.42 1.4560 -3.0411995 2.2172949 -0.8239046 0.53 1.1035 -3.4884327 2.7897613 -0.6986714 0.64 0.7934 -4.0072551 3.4246230 -0.5826322 0.74 0.5494 -4.5776081 4.1059858 -0.4716224 0.85 0.3739 -5.1839783 4.7968447 -0.3871335 0.95 0.2547 -5.8146354 5.4796485 -0.3349868 1.06 0.1741 -6.4621552 6.1634943 -0.2986609 1.16 0.1190 -7.1208531 6.8471963 -0.2736568 1.27 0.0811 -7.7875265 7.5312125 -0.2563140 1.38 0.0554 -8.4593416 8.2150717 -0.2442698 1.48 0.0381 -9.1349048 8.8989269 -0.2359779 1.59 0.0266 -9.8128856 9.5829317 -0.2299539 1.69 0.0187 -10.4926175 10.2666649 -0.2259526 1.80 0.0132 -11.1736165 10.9507647 -0.2228518 1.91 0.0092 -11.8553726 11.6344341 -0.2209385 2.01 0.0064 -12.5378867 12.3185653 -0.2193215 2.12 0.0045 -13.2206273 13.0022361 -0.2183913 2.22 0.0032 -13.9038846 13.6863347 -0.2175500 2.33 0.0024 -14.5871257 14.3700660 -0.2170597 2.43 0.0017 -15.2707383 15.0540808 -0.2166575 2.54 0.0012 -15.9542708 15.7379133 -0.2163575 2.65 0.0008 -16.6380278 16.4218168 -0.2162109 2.75 0.0006 -17.3217506 17.1057633 -0.2159873 2.86 0.0004 -18.0055348 17.7895580 -0.2159768 2.96 0.0003 -18.6893955 18.4736011 -0.2157944 3.07 0.0002 -19.3731589 19.1573180 -0.2158409 3.18 0.0002 -20.0571188 19.8414151 -0.2157037 3.28 0.0001 -20.7408567 20.5251060 -0.2157507 3.39 0.0001 -21.4248705 21.2091995 -0.2156711 3.49 0.0001 -22.1086058 21.8929238 -0.2156820 3.60 0.0000 -22.7926228 22.5769561 -0.2156667 3.70 0.0000 -23.4763938 23.2607657 -0.2156281 3.81 0.0000 -24.1603659 23.9446943 -0.2156717 3.92 0.0000 -24.8442101 24.6286193 -0.2155908 4.02 0.0000 -25.5281013 25.3124285 -0.2156728 4.13 0.0000 -26.2120408 25.9964686 -0.2155721 4.23 0.0000 -26.8958372 26.6801751 -0.2156621 4.34 0.0000 -27.5798706 27.3642981 -0.2155725 4.45 0.0000 -28.2635862 28.0479481 -0.2156382 4.55 0.0000 -28.9476850 28.7320960 -0.2155890 4.66 0.0000 -29.6313598 29.4157558 -0.2156041 4.76 0.0000 -30.3154731 30.0998580 -0.2156151 4.87 0.0000 -30.9991648 30.7835984 -0.2155665 4.97 0.0000 -31.6832306 31.4675881 -0.2156425 5.08 0.0000 -32.3670013 32.1514677 -0.2155335 5.19 0.0000 -33.0509611 32.8352982 -0.2156629 5.29 0.0000 -33.7348614 33.5193489 -0.2155125 5.40 0.0000 -34.4186757 34.2030055 -0.2156702 5.50 0.0000 -35.1027309 34.8872235 -0.2155075 5.61 0.0000 -35.7863904 35.5707286 -0.2156618 5.72 0.0000 -36.4705927 36.2550735 -0.2155192 5.82 0.0000 -37.1541227 36.9384833 -0.2156394 5.93 0.0000 -37.8384300 37.6228857 -0.2155443 6.03 0.0000 -38.4759313 38.2788500 -0.1970813 6.14 0.0000 -39.0080326 38.8598262 -0.1482064 6.24 0.0000 -39.4114016 39.3322509 -0.0791507 6.35 0.0000 -39.6661980 39.6661739 -0.0000241 convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00057421 -0.00018708 0.00055654 atom 2 type 1 force = 0.00025608 -0.00010262 -0.00030345 atom 3 type 1 force = 0.00031814 0.00028970 -0.00025309 Total force = 0.000499 Total SCF correction = 0.000053 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file H2O.save init_run : 6.24s CPU 6.77s WALL ( 1 calls) electrons : 22.60s CPU 23.48s WALL ( 1 calls) forces : 2.67s CPU 2.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.17s WALL ( 1 calls) potinit : 2.79s CPU 2.91s WALL ( 1 calls) Called by electrons: c_bands : 4.01s CPU 4.03s WALL ( 7 calls) sum_band : 4.45s CPU 4.54s WALL ( 7 calls) v_of_rho : 10.86s CPU 11.17s WALL ( 8 calls) newd : 2.75s CPU 3.10s WALL ( 8 calls) mix_rho : 0.86s CPU 0.90s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.08s CPU 0.06s WALL ( 15 calls) regterg : 3.96s CPU 3.97s WALL ( 7 calls) Called by *egterg: h_psi : 3.43s CPU 3.53s WALL ( 45 calls) s_psi : 0.11s CPU 0.06s WALL ( 45 calls) g_psi : 0.05s CPU 0.05s WALL ( 37 calls) rdiaghg : 0.02s CPU 0.03s WALL ( 44 calls) Called by h_psi: add_vuspsi : 0.06s CPU 0.06s WALL ( 45 calls) General routines calbec : 0.05s CPU 0.09s WALL ( 56 calls) fft : 7.32s CPU 7.38s WALL ( 128 calls) ffts : 0.34s CPU 0.33s WALL ( 15 calls) fftw : 3.19s CPU 3.29s WALL ( 262 calls) interpolate : 1.30s CPU 1.42s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) EXX routines PWSCF : 31.89s CPU 33.70s WALL This run was terminated on: 22:24:39 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/ESM_example/run_example0000755000700200004540000002411612053145630021133 0ustar marsamoscm#!/bin/sh ############################################################################### ## ## ESM EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use ESM to calculate Al(111) and H2O" $ECHO "using the three available sets of boundary conditions." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Al.pbe-rrkj.UPF H.pbe-rrkjus.UPF O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # scf calculation for H2O with no ESM cat > H2O.noesm.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='H2O', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 6, celldm(1) =20.0, celldm(3) = 1.200 nat= 3, ntyp= 2, ecutwfc = 25.0, ecutrho = 200.0, occupations='smearing', smearing='gaussian', degauss=0.05, assume_isolated = 'esm', esm_bc='pbc' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES H 1.00794 H.pbe-rrkjus.UPF O 55.847 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.500000000 0.000000000 0 0 0 H 0.043138813 0.431028632 0.043078297 0 0 0 H 0.036635422 0.576406407 0.035949164 K_POINTS gamma EOF $ECHO " running the scf calculation for H2O without ESM...\c" $PW_COMMAND < H2O.noesm.in > H2O.noesm.out check_failure $? $ECHO " done" # scf calculation for H2O with ESM bc1 (vacuum-slab-vacuum) cat > H2O.bc1.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='H2O', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 6, celldm(1) =20.0, celldm(3) = 1.200 nat= 3, ntyp= 2, ecutwfc = 25.0, ecutrho = 200.0, occupations='smearing', smearing='gaussian', degauss=0.05, assume_isolated = 'esm', esm_bc='bc1' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES H 1.00794 H.pbe-rrkjus.UPF O 55.847 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.500000000 0.000000000 0 0 0 H 0.043138813 0.431028632 0.043078297 0 0 0 H 0.036635422 0.576406407 0.035949164 K_POINTS gamma EOF $ECHO " running the scf calculation for H2O with ESM bc1 (vacuum-slab-vacuum)...\c" $PW_COMMAND < H2O.bc1.in > H2O.bc1.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # scf calculation for Al(111) with ESM bc2 (metal-slab-metal), no field cat > Al111.bc2.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc2' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc2 (metal-slab-metal)" $ECHO " (no applied field)...\c" $PW_COMMAND < Al111.bc2.in > Al111.bc2.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc2 (metal-slab-metal), with field cat > Al111.bc2_efield.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc2', esm_efield=0.00192148511256006 / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc2 (metal-slab-metal)" $ECHO " with applied electric field...\c" $PW_COMMAND < Al111.bc2_efield.in > Al111.bc2_efield.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal), uncharged cat > Al111.bc3.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc3' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc3 (metal-slab-metal)" $ECHO " (neutrally charged)...\c" $PW_COMMAND < Al111.bc3.in > Al111.bc3.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal), - charged cat > Al111.bc3_m005.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, tot_charge = -0.005, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc3' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal)" $ECHO " (-0.005e charged)...\c" $PW_COMMAND < Al111.bc3_m005.in > Al111.bc3_m005.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal), + charged cat > Al111.bc3_p005.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, tot_charge = 0.005, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc3' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal)" $ECHO " (+0.005e charged)...\c" $PW_COMMAND < Al111.bc3_p005.in > Al111.bc3_p005.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/ESM_example/README0000644000700200004540000000547212053145630017552 0ustar marsamoscmThis example shows how to use the Effective Screening Medium Method (ESM) to calculate the total energy, charge density, force, and potential of a polarized or charged medium. ESM screens the electronic charge of a polarized/charged medium along one perpendicular direction by introducing a classical charge model and a local relative permittivity into the first-principles calculation framework. This permits calculations using open boundary conditions (OBC). The method is described in detail in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). In addition to 'pbc' (ordinary periodic boundary conditions with ESM disabled), the code allows three different sets of boundary conditions perpendicular to the polarized medium: 1) 'bc1' : Immerse the medium between two semi-infinite vacuum regions; 2) 'bc2' : Immerse the medium between two semi-infinite metallic electrodes, with optional fixed field applied between them; 3) 'bc3' : Immerse the medium between one semi-infinite vacuum region and one semi-infinite metallic electrode. The example calculation proceeds as follows: esm_bc = 'bc1': 1) make a self-consistent calculation for H2O with esm_bc = 'pbc' (ESM off) (input=H2O.noesm.in, output=H2O.noesm.out). Using 'pbc' causes the code to print out the density and potential (hartree + local) along z, even though ESM is disabled. Note that the molecule has a z-oriented dipole. 2) make a self-consistent calculation for H2O with esm_bc = 'bc1' (input=H2O.bc1.in, output=H2O.bc1.out). This simulates the water molecule in an infinite vacuum along the z-direction, preventing dipole-dipole interaction between periodic images. esm_bc = 'bc2': 3) make a self-consistent calculation for Al(111) with esm_bc = 'bc2', without an applied field (input=Al111.bc2.in, output=Al111.bc2.out). This simulates the slab sandwiched between two uncharged semi-infinite metal electrodes. 4) make a self-consistent calculation for Al(111) with esm_bc = 'bc2', this time with an applied field (input=Al111.bc2_efield.in, output=Al111.bc2_efield.out). The slab polarizes in response. esm_bc = 'bc3': 5) make a self-consistent calculation for Al(111) with esm_bc = 'bc3' to simulate a semi-infinite system in contact with vacuum (input=Al111.bc3.in, output=Al111.bc3.out). 6) make a self-consistent calculation for Al(111) with esm_bc = 'bc3' to simulate a semi-infinite system in contact with vacuum with a weakly negative (-0.005e) overall charge (input=Al111.bc3_m005.in, output=Al111.bc3_m005.out). Note that the charge migrates to the surface/ vacuum interface. 7) Repeat #6 but with a weakly positive (+0.005e) overall charge (input=Al111.bc3_p005.in, output=Al111.bc3_p005.out). espresso-5.0.2/PW/examples/example03/0000755000700200004540000000000012053440301016312 5ustar marsamoscmespresso-5.0.2/PW/examples/example03/reference/0000755000700200004540000000000012053440303020252 5ustar marsamoscmespresso-5.0.2/PW/examples/example03/reference/si.md2.out0000644000700200004540000063766412053145630022132 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:28 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 100 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 84.0013 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.02 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.02 secs total energy = -14.43221844 Ry Harris-Foulkes estimate = -14.55439923 Ry estimated scf accuracy < 0.32475485 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.02 secs total energy = -14.44690675 Ry Harris-Foulkes estimate = -14.44918383 Ry estimated scf accuracy < 0.01103534 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.03 secs total energy = -14.44790295 Ry Harris-Foulkes estimate = -14.44786774 Ry estimated scf accuracy < 0.00018520 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.03 secs total energy = -14.44793712 Ry Harris-Foulkes estimate = -14.44793646 Ry estimated scf accuracy < 0.00000454 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.03 secs total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793732 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.59E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1611 7.5135 7.5135 ! total energy = -14.44793734 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 5.0E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329868 -0.02329868 -0.02329868 atom 2 type 1 force = 0.02329868 0.02329868 0.02329868 Total force = 0.057070 Total SCF correction = 0.000008 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123035762 -0.123035762 -0.123035762 Si 0.123035762 0.123035762 0.123035762 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793734 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.06 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs total energy = -14.44798775 Ry Harris-Foulkes estimate = -14.44798775 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1652 7.5112 7.5112 ! total energy = -14.44798776 Ry Harris-Foulkes estimate = -14.44798776 Ry estimated scf accuracy < 2.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286616 -0.02286616 -0.02286616 atom 2 type 1 force = 0.02286616 0.02286616 0.02286616 Total force = 0.056010 Total SCF correction = 0.000009 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123106623 -0.123106623 -0.123106623 Si 0.123106623 0.123106623 0.123106623 kinetic energy (Ekin) = 0.00005655 Ry temperature = 5.95210786 K Ekin + Etot (const) = -14.44793121 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation first order charge density extrapolation total cpu time spent up to now is 0.09 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.88E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.09 secs total energy = -14.44808490 Ry Harris-Foulkes estimate = -14.44808490 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.32E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.10 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1735 7.5070 7.5070 ! total energy = -14.44808491 Ry Harris-Foulkes estimate = -14.44808491 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02201813 -0.02201813 -0.02201813 atom 2 type 1 force = 0.02201813 0.02201813 0.02201813 Total force = 0.053933 Total SCF correction = 0.000009 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123211279 -0.123211279 -0.123211279 Si 0.123211279 0.123211279 0.123211279 kinetic energy (Ekin) = 0.00015323 Ry temperature = 16.12920248 K Ekin + Etot (const) = -14.44793167 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.12 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.19E-14, avg # of iterations = 3.0 total cpu time spent up to now is 0.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.1856 7.5008 7.5008 ! total energy = -14.44822169 Ry Harris-Foulkes estimate = -14.44822169 Ry estimated scf accuracy < 1.0E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02077327 -0.02077327 -0.02077327 atom 2 type 1 force = 0.02077327 0.02077327 0.02077327 Total force = 0.050884 Total SCF correction = 0.000000 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123347822 -0.123347822 -0.123347822 Si 0.123347822 0.123347822 0.123347822 kinetic energy (Ekin) = 0.00028938 Ry temperature = 30.45975105 K Ekin + Etot (const) = -14.44793231 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.15 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.78E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2015 7.4927 7.4927 ! total energy = -14.44838817 Ry Harris-Foulkes estimate = -14.44838817 Ry estimated scf accuracy < 2.7E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01915028 -0.01915028 -0.01915028 atom 2 type 1 force = 0.01915028 0.01915028 0.01915028 Total force = 0.046908 Total SCF correction = 0.000003 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123513760 -0.123513760 -0.123513760 Si 0.123513760 0.123513760 0.123513760 kinetic energy (Ekin) = 0.00045510 Ry temperature = 47.90340302 K Ekin + Etot (const) = -14.44793306 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.17 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.94E-13, avg # of iterations = 3.0 total cpu time spent up to now is 0.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2208 7.4828 7.4828 ! total energy = -14.44857230 Ry Harris-Foulkes estimate = -14.44857230 Ry estimated scf accuracy < 1.7E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01718564 -0.01718564 -0.01718564 atom 2 type 1 force = 0.01718564 0.01718564 0.01718564 Total force = 0.042096 Total SCF correction = 0.000000 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123706076 -0.123706076 -0.123706076 Si 0.123706076 0.123706076 0.123706076 kinetic energy (Ekin) = 0.00063841 Ry temperature = 67.19764144 K Ekin + Etot (const) = -14.44793389 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.20 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.73E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2432 7.4714 7.4714 ! total energy = -14.44876086 Ry Harris-Foulkes estimate = -14.44876086 Ry estimated scf accuracy < 5.4E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01492116 -0.01492116 -0.01492116 atom 2 type 1 force = 0.01492116 0.01492116 0.01492116 Total force = 0.036549 Total SCF correction = 0.000004 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123921295 -0.123921295 -0.123921295 Si 0.123921295 0.123921295 0.123921295 kinetic energy (Ekin) = 0.00082613 Ry temperature = 86.95693126 K Ekin + Etot (const) = -14.44793473 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.23 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.01E-13, avg # of iterations = 3.0 total cpu time spent up to now is 0.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2684 7.4586 7.4586 ! total energy = -14.44894042 Ry Harris-Foulkes estimate = -14.44894042 Ry estimated scf accuracy < 3.1E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01240093 -0.01240093 -0.01240093 atom 2 type 1 force = 0.01240093 0.01240093 0.01240093 Total force = 0.030376 Total SCF correction = 0.000001 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124155549 -0.124155549 -0.124155549 Si 0.124155549 0.124155549 0.124155549 kinetic energy (Ekin) = 0.00100491 Ry temperature = 105.77453854 K Ekin + Etot (const) = -14.44793552 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.25 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.12E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2958 7.4447 7.4447 ! total energy = -14.44909834 Ry Harris-Foulkes estimate = -14.44909834 Ry estimated scf accuracy < 1.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00967628 -0.00967628 -0.00967628 atom 2 type 1 force = 0.00967628 0.00967628 0.00967628 Total force = 0.023702 Total SCF correction = 0.000006 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124404656 -0.124404656 -0.124404656 Si 0.124404656 0.124404656 0.124404656 kinetic energy (Ekin) = 0.00116214 Ry temperature = 122.32513948 K Ekin + Etot (const) = -14.44793620 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.14E-13, avg # of iterations = 2.0 total cpu time spent up to now is 0.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3250 7.4300 7.4300 ! total energy = -14.44922364 Ry Harris-Foulkes estimate = -14.44922364 Ry estimated scf accuracy < 5.1E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00679734 -0.00679734 -0.00679734 atom 2 type 1 force = 0.00679734 0.00679734 0.00679734 Total force = 0.016650 Total SCF correction = 0.000001 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124664196 -0.124664196 -0.124664196 Si 0.124664196 0.124664196 0.124664196 kinetic energy (Ekin) = 0.00128691 Ry temperature = 135.45829612 K Ekin + Etot (const) = -14.44793673 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.30 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3554 7.4147 7.4147 ! total energy = -14.44930777 Ry Harris-Foulkes estimate = -14.44930777 Ry estimated scf accuracy < 2.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00382063 -0.00382063 -0.00382063 atom 2 type 1 force = 0.00382063 0.00382063 0.00382063 Total force = 0.009359 Total SCF correction = 0.000008 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124929601 -0.124929601 -0.124929601 Si 0.124929601 0.124929601 0.124929601 kinetic energy (Ekin) = 0.00137071 Ry temperature = 144.27802870 K Ekin + Etot (const) = -14.44793706 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.02E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3866 7.3990 7.3990 ! total energy = -14.44934517 Ry Harris-Foulkes estimate = -14.44934517 Ry estimated scf accuracy < 7.3E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00079696 -0.00079696 -0.00079696 atom 2 type 1 force = 0.00079696 0.00079696 0.00079696 Total force = 0.001952 Total SCF correction = 0.000003 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125196229 -0.125196229 -0.125196229 Si 0.125196229 0.125196229 0.125196229 kinetic energy (Ekin) = 0.00140797 Ry temperature = 148.20037832 K Ekin + Etot (const) = -14.44793720 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.36 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.26E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3834 7.3834 7.4180 ! total energy = -14.44933358 Ry Harris-Foulkes estimate = -14.44933358 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00221613 0.00221615 0.00221617 atom 2 type 1 force = -0.00221613 -0.00221615 -0.00221617 Total force = 0.005428 Total SCF correction = 0.000011 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125459455 -0.125459455 -0.125459455 Si 0.125459455 0.125459455 0.125459455 kinetic energy (Ekin) = 0.00139646 Ry temperature = 146.98926761 K Ekin + Etot (const) = -14.44793711 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.32E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3679 7.3679 7.4491 ! total energy = -14.44927415 Ry Harris-Foulkes estimate = -14.44927415 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00517209 0.00517209 0.00517209 atom 2 type 1 force = -0.00517209 -0.00517209 -0.00517209 Total force = 0.012669 Total SCF correction = 0.000005 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125714743 -0.125714743 -0.125714743 Si 0.125714743 0.125714743 0.125714743 kinetic energy (Ekin) = 0.00133733 Ry temperature = 140.76454479 K Ekin + Etot (const) = -14.44793683 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.42 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.31E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3530 7.3530 7.4791 ! total energy = -14.44917130 Ry Harris-Foulkes estimate = -14.44917131 Ry estimated scf accuracy < 4.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00801548 0.00801547 0.00801546 atom 2 type 1 force = -0.00801548 -0.00801547 -0.00801546 Total force = 0.019634 Total SCF correction = 0.000013 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125957727 -0.125957727 -0.125957727 Si 0.125957727 0.125957727 0.125957727 kinetic energy (Ekin) = 0.00123495 Ry temperature = 129.98851687 K Ekin + Etot (const) = -14.44793636 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.44 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3387 7.3387 7.5080 ! total energy = -14.44903234 Ry Harris-Foulkes estimate = -14.44903234 Ry estimated scf accuracy < 1.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01070739 0.01070739 0.01070739 atom 2 type 1 force = -0.01070739 -0.01070739 -0.01070739 Total force = 0.026228 Total SCF correction = 0.000008 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126184276 -0.126184276 -0.126184276 Si 0.126184276 0.126184276 0.126184276 kinetic energy (Ekin) = 0.00109660 Ry temperature = 115.42638916 K Ekin + Etot (const) = -14.44793574 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.47 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.56E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.48 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7621 7.3255 7.3255 7.5347 ! total energy = -14.44886693 Ry Harris-Foulkes estimate = -14.44886693 Ry estimated scf accuracy < 5.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01319728 0.01319727 0.01319727 atom 2 type 1 force = -0.01319728 -0.01319727 -0.01319727 Total force = 0.032327 Total SCF correction = 0.000015 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126390568 -0.126390567 -0.126390567 Si 0.126390568 0.126390567 0.126390567 kinetic energy (Ekin) = 0.00093191 Ry temperature = 98.09097868 K Ekin + Etot (const) = -14.44793502 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.50 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.64E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3135 7.3135 7.5593 ! total energy = -14.44868639 Ry Harris-Foulkes estimate = -14.44868639 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01545644 0.01545644 0.01545644 atom 2 type 1 force = -0.01545644 -0.01545644 -0.01545644 Total force = 0.037860 Total SCF correction = 0.000011 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126573135 -0.126573135 -0.126573134 Si 0.126573135 0.126573135 0.126573134 kinetic energy (Ekin) = 0.00075214 Ry temperature = 79.16932707 K Ekin + Etot (const) = -14.44793425 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.51E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.53 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3029 7.3029 7.5808 ! total energy = -14.44850296 Ry Harris-Foulkes estimate = -14.44850296 Ry estimated scf accuracy < 6.0E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01744009 0.01744008 0.01744007 atom 2 type 1 force = -0.01744009 -0.01744008 -0.01744007 Total force = 0.042719 Total SCF correction = 0.000016 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126728932 -0.126728932 -0.126728932 Si 0.126728932 0.126728932 0.126728932 kinetic energy (Ekin) = 0.00056949 Ry temperature = 59.94359252 K Ekin + Etot (const) = -14.44793347 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.56 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.20E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2938 7.2938 7.5995 ! total energy = -14.44832895 Ry Harris-Foulkes estimate = -14.44832895 Ry estimated scf accuracy < 4.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01913086 0.01913087 0.01913087 atom 2 type 1 force = -0.01913086 -0.01913087 -0.01913087 Total force = 0.046861 Total SCF correction = 0.000014 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126855365 -0.126855365 -0.126855365 Si 0.126855365 0.126855365 0.126855365 kinetic energy (Ekin) = 0.00039621 Ry temperature = 41.70423664 K Ekin + Etot (const) = -14.44793274 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.58 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.38E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2865 7.2865 7.6144 ! total energy = -14.44817595 Ry Harris-Foulkes estimate = -14.44817595 Ry estimated scf accuracy < 6.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02049240 0.02049240 0.02049239 atom 2 type 1 force = -0.02049240 -0.02049240 -0.02049239 Total force = 0.050196 Total SCF correction = 0.000017 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126950343 -0.126950343 -0.126950343 Si 0.126950343 0.126950343 0.126950343 kinetic energy (Ekin) = 0.00024385 Ry temperature = 25.66674145 K Ekin + Etot (const) = -14.44793210 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.61 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.83E-13, avg # of iterations = 3.0 total cpu time spent up to now is 0.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2810 7.2810 7.6258 ! total energy = -14.44805409 Ry Harris-Foulkes estimate = -14.44805409 Ry estimated scf accuracy < 5.4E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02151773 0.02151773 0.02151773 atom 2 type 1 force = -0.02151773 -0.02151773 -0.02151773 Total force = 0.052707 Total SCF correction = 0.000016 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127012293 -0.127012293 -0.127012292 Si 0.127012293 0.127012293 0.127012292 kinetic energy (Ekin) = 0.00012249 Ry temperature = 12.89354126 K Ekin + Etot (const) = -14.44793160 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.64 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797142 Ry Harris-Foulkes estimate = -14.44797142 Ry estimated scf accuracy < 5.4E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02218005 0.02218004 0.02218004 atom 2 type 1 force = -0.02218005 -0.02218004 -0.02218004 Total force = 0.054330 Total SCF correction = 0.000015 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127040197 -0.127040197 -0.127040197 Si 0.127040197 0.127040197 0.127040197 kinetic energy (Ekin) = 0.00004016 Ry temperature = 4.22716347 K Ekin + Etot (const) = -14.44793126 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.66 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.45E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2758 7.2758 7.6365 ! total energy = -14.44793336 Ry Harris-Foulkes estimate = -14.44793336 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02248208 0.02248208 0.02248208 atom 2 type 1 force = -0.02248208 -0.02248208 -0.02248208 Total force = 0.055070 Total SCF correction = 0.000012 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127033593 -0.127033593 -0.127033593 Si 0.127033593 0.127033593 0.127033593 kinetic energy (Ekin) = 0.00000226 Ry temperature = 0.23754500 K Ekin + Etot (const) = -14.44793110 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.69 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.77E-14, avg # of iterations = 3.0 total cpu time spent up to now is 0.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2762 7.2762 7.6357 ! total energy = -14.44794241 Ry Harris-Foulkes estimate = -14.44794241 Ry estimated scf accuracy < 1.2E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02240988 0.02240987 0.02240987 atom 2 type 1 force = -0.02240988 -0.02240987 -0.02240987 Total force = 0.054893 Total SCF correction = 0.000002 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126992591 -0.126992591 -0.126992591 Si 0.126992591 0.126992591 0.126992591 kinetic energy (Ekin) = 0.00001127 Ry temperature = 1.18658975 K Ekin + Etot (const) = -14.44793114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.71 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.04E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2785 7.2785 7.6310 ! total energy = -14.44799798 Ry Harris-Foulkes estimate = -14.44799799 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02197387 0.02197388 0.02197389 atom 2 type 1 force = -0.02197387 -0.02197388 -0.02197389 Total force = 0.053825 Total SCF correction = 0.000037 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126917860 -0.126917860 -0.126917860 Si 0.126917860 0.126917860 0.126917860 kinetic energy (Ekin) = 0.00006662 Ry temperature = 7.01270397 K Ekin + Etot (const) = -14.44793136 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.74 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.65E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.74 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2830 7.2830 7.6217 ! total energy = -14.44809643 Ry Harris-Foulkes estimate = -14.44809644 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02116235 0.02116234 0.02116233 atom 2 type 1 force = -0.02116235 -0.02116234 -0.02116233 Total force = 0.051837 Total SCF correction = 0.000045 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126810647 -0.126810646 -0.126810646 Si 0.126810647 0.126810646 0.126810646 kinetic energy (Ekin) = 0.00016466 Ry temperature = 17.33206256 K Ekin + Etot (const) = -14.44793177 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.77 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.96E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2889 7.2889 7.6094 ! total energy = -14.44823127 Ry Harris-Foulkes estimate = -14.44823127 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02001865 0.02001866 0.02001868 atom 2 type 1 force = -0.02001865 -0.02001866 -0.02001868 Total force = 0.049036 Total SCF correction = 0.000066 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126672705 -0.126672705 -0.126672705 Si 0.126672705 0.126672705 0.126672705 kinetic energy (Ekin) = 0.00029895 Ry temperature = 31.46690210 K Ekin + Etot (const) = -14.44793232 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.80 secs total energy = -14.44839360 Ry Harris-Foulkes estimate = -14.44839361 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.13E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.80 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2971 7.2971 7.5927 ! total energy = -14.44839360 Ry Harris-Foulkes estimate = -14.44839360 Ry estimated scf accuracy < 5.8E-12 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01852099 0.01852098 0.01852098 atom 2 type 1 force = -0.01852099 -0.01852098 -0.01852098 Total force = 0.045367 Total SCF correction = 0.000001 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126506336 -0.126506335 -0.126506335 Si 0.126506336 0.126506335 0.126506335 kinetic energy (Ekin) = 0.00046063 Ry temperature = 48.48510134 K Ekin + Etot (const) = -14.44793297 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.83 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.80E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.3067 7.3067 7.5731 ! total energy = -14.44857265 Ry Harris-Foulkes estimate = -14.44857265 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01671927 0.01671928 0.01671929 atom 2 type 1 force = -0.01671927 -0.01671928 -0.01671929 Total force = 0.040954 Total SCF correction = 0.000033 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126314303 -0.126314302 -0.126314302 Si 0.126314303 0.126314302 0.126314302 kinetic energy (Ekin) = 0.00063894 Ry temperature = 67.25363083 K Ekin + Etot (const) = -14.44793371 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.85 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.49E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3180 7.3180 7.5500 ! total energy = -14.44875645 Ry Harris-Foulkes estimate = -14.44875645 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01461923 0.01461923 0.01461921 atom 2 type 1 force = -0.01461923 -0.01461923 -0.01461921 Total force = 0.035810 Total SCF correction = 0.000032 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126099830 -0.126099830 -0.126099830 Si 0.126099830 0.126099830 0.126099830 kinetic energy (Ekin) = 0.00082196 Ry temperature = 86.51791019 K Ekin + Etot (const) = -14.44793449 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.88 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.15E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3303 7.3303 7.5249 ! total energy = -14.44893262 Ry Harris-Foulkes estimate = -14.44893262 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01227596 0.01227597 0.01227598 atom 2 type 1 force = -0.01227596 -0.01227597 -0.01227598 Total force = 0.030070 Total SCF correction = 0.000040 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125866514 -0.125866514 -0.125866514 Si 0.125866514 0.125866514 0.125866514 kinetic energy (Ekin) = 0.00099738 Ry temperature = 104.98281444 K Ekin + Etot (const) = -14.44793523 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.91 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.32E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3442 7.3442 7.4969 ! total energy = -14.44908919 Ry Harris-Foulkes estimate = -14.44908919 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00969370 0.00969369 0.00969367 atom 2 type 1 force = -0.00969370 -0.00969369 -0.00969367 Total force = 0.023745 Total SCF correction = 0.000051 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125618320 -0.125618319 -0.125618319 Si 0.125618320 0.125618319 0.125618319 kinetic energy (Ekin) = 0.00115326 Ry temperature = 121.39035837 K Ekin + Etot (const) = -14.44793592 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.97E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3584 7.3584 7.4681 ! total energy = -14.44921536 Ry Harris-Foulkes estimate = -14.44921537 Ry estimated scf accuracy < 6.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00695030 0.00695031 0.00695032 atom 2 type 1 force = -0.00695030 -0.00695031 -0.00695032 Total force = 0.017025 Total SCF correction = 0.000056 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125359456 -0.125359456 -0.125359456 Si 0.125359456 0.125359456 0.125359456 kinetic energy (Ekin) = 0.00127889 Ry temperature = 134.61333577 K Ekin + Etot (const) = -14.44793647 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.96 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.96 secs total energy = -14.44930232 Ry Harris-Foulkes estimate = -14.44930233 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3737 7.3737 7.4372 ! total energy = -14.44930232 Ry Harris-Foulkes estimate = -14.44930232 Ry estimated scf accuracy < 6.0E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00405122 0.00405122 0.00405121 atom 2 type 1 force = -0.00405122 -0.00405122 -0.00405121 Total force = 0.009923 Total SCF correction = 0.000003 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125094375 -0.125094375 -0.125094374 Si 0.125094375 0.125094375 0.125094374 kinetic energy (Ekin) = 0.00136549 Ry temperature = 143.72877558 K Ekin + Etot (const) = -14.44793683 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.99 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.34E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3893 7.3893 7.4061 ! total energy = -14.44934380 Ry Harris-Foulkes estimate = -14.44934380 Ry estimated scf accuracy < 8.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00107023 0.00107023 0.00107024 atom 2 type 1 force = -0.00107023 -0.00107023 -0.00107024 Total force = 0.002622 Total SCF correction = 0.000020 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124827651 -0.124827650 -0.124827650 Si 0.124827651 0.124827650 0.124827650 kinetic energy (Ekin) = 0.00140677 Ry temperature = 148.07407009 K Ekin + Etot (const) = -14.44793703 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.26E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.02 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3745 7.4051 7.4051 ! total energy = -14.44933660 Ry Harris-Foulkes estimate = -14.44933660 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00195751 -0.00195756 -0.00195764 atom 2 type 1 force = 0.00195751 0.00195756 0.00195764 Total force = 0.004795 Total SCF correction = 0.000023 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124563931 -0.124563931 -0.124563931 Si 0.124563931 0.124563931 0.124563931 kinetic energy (Ekin) = 0.00139957 Ry temperature = 147.31657404 K Ekin + Etot (const) = -14.44793702 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.04 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.38E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3437 7.4205 7.4205 ! total energy = -14.44928086 Ry Harris-Foulkes estimate = -14.44928086 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00496562 -0.00496570 -0.00496580 atom 2 type 1 force = 0.00496562 0.00496570 0.00496580 Total force = 0.012163 Total SCF correction = 0.000031 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124307833 -0.124307833 -0.124307833 Si 0.124307833 0.124307833 0.124307833 kinetic energy (Ekin) = 0.00134406 Ry temperature = 141.47306115 K Ekin + Etot (const) = -14.44793680 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.07 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.20E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.07 secs total energy = -14.44918013 Ry Harris-Foulkes estimate = -14.44918015 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.14E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.08 secs total energy = -14.44918014 Ry Harris-Foulkes estimate = -14.44918015 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3136 7.4357 7.4357 ! total energy = -14.44918014 Ry Harris-Foulkes estimate = -14.44918014 Ry estimated scf accuracy < 2.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00791392 -0.00791390 -0.00791388 atom 2 type 1 force = 0.00791392 0.00791390 0.00791388 Total force = 0.019385 Total SCF correction = 0.000003 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124063883 -0.124063883 -0.124063884 Si 0.124063883 0.124063883 0.124063884 kinetic energy (Ekin) = 0.00124377 Ry temperature = 130.91680024 K Ekin + Etot (const) = -14.44793637 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.10 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.84E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2851 7.4501 7.4501 ! total energy = -14.44904119 Ry Harris-Foulkes estimate = -14.44904119 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01073953 -0.01073953 -0.01073938 atom 2 type 1 force = 0.01073953 0.01073953 0.01073938 Total force = 0.026306 Total SCF correction = 0.000034 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123836417 -0.123836418 -0.123836418 Si 0.123836417 0.123836418 0.123836418 kinetic energy (Ekin) = 0.00110541 Ry temperature = 116.35386417 K Ekin + Etot (const) = -14.44793577 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.13 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.85E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.14 secs total energy = -14.44887355 Ry Harris-Foulkes estimate = -14.44887357 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.56E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.14 secs total energy = -14.44887356 Ry Harris-Foulkes estimate = -14.44887356 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.72E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.14 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7621 7.2585 7.4636 7.4636 ! total energy = -14.44887356 Ry Harris-Foulkes estimate = -14.44887356 Ry estimated scf accuracy < 3.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01339306 -0.01339295 -0.01339298 atom 2 type 1 force = 0.01339306 0.01339295 0.01339298 Total force = 0.032806 Total SCF correction = 0.000002 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123629509 -0.123629510 -0.123629510 Si 0.123629509 0.123629510 0.123629510 kinetic energy (Ekin) = 0.00093852 Ry temperature = 98.78700242 K Ekin + Etot (const) = -14.44793504 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.16 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.16E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.17 secs total energy = -14.44868897 Ry Harris-Foulkes estimate = -14.44868898 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2343 7.4759 7.4759 ! total energy = -14.44868897 Ry Harris-Foulkes estimate = -14.44868897 Ry estimated scf accuracy < 4.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01582132 -0.01582132 -0.01582133 atom 2 type 1 force = 0.01582132 0.01582132 0.01582133 Total force = 0.038754 Total SCF correction = 0.000024 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123446886 -0.123446886 -0.123446887 Si 0.123446886 0.123446886 0.123446887 kinetic energy (Ekin) = 0.00075475 Ry temperature = 79.44337220 K Ekin + Etot (const) = -14.44793422 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.19 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.20 secs total energy = -14.44850048 Ry Harris-Foulkes estimate = -14.44850049 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.20 secs total energy = -14.44850048 Ry Harris-Foulkes estimate = -14.44850049 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.34E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.2130 7.4868 7.4868 ! total energy = -14.44850049 Ry Harris-Foulkes estimate = -14.44850049 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01797603 -0.01797604 -0.01797601 atom 2 type 1 force = 0.01797603 0.01797604 0.01797601 Total force = 0.044032 Total SCF correction = 0.000001 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123291855 -0.123291855 -0.123291856 Si 0.123291855 0.123291855 0.123291856 kinetic energy (Ekin) = 0.00056710 Ry temperature = 59.69219269 K Ekin + Etot (const) = -14.44793338 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.22 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.27E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1950 7.4960 7.4960 ! total energy = -14.44832156 Ry Harris-Foulkes estimate = -14.44832157 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01981453 -0.01981454 -0.01981456 atom 2 type 1 force = 0.01981453 0.01981454 0.01981456 Total force = 0.048536 Total SCF correction = 0.000032 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123167238 -0.123167238 -0.123167239 Si 0.123167238 0.123167238 0.123167239 kinetic energy (Ekin) = 0.00038899 Ry temperature = 40.94456225 K Ekin + Etot (const) = -14.44793257 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.25 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.69E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.25 secs total energy = -14.44816509 Ry Harris-Foulkes estimate = -14.44816511 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.07E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.26 secs total energy = -14.44816510 Ry Harris-Foulkes estimate = -14.44816511 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.95E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1805 7.5034 7.5034 ! total energy = -14.44816510 Ry Harris-Foulkes estimate = -14.44816510 Ry estimated scf accuracy < 9.3E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02129836 -0.02129835 -0.02129838 atom 2 type 1 force = 0.02129836 0.02129835 0.02129838 Total force = 0.052170 Total SCF correction = 0.000002 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123075313 -0.123075313 -0.123075314 Si 0.123075313 0.123075313 0.123075314 kinetic energy (Ekin) = 0.00023324 Ry temperature = 24.55032511 K Ekin + Etot (const) = -14.44793186 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.89E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1698 7.5089 7.5089 ! total energy = -14.44804243 Ry Harris-Foulkes estimate = -14.44804244 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02239638 -0.02239638 -0.02239635 atom 2 type 1 force = 0.02239638 0.02239638 0.02239635 Total force = 0.054860 Total SCF correction = 0.000030 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017765 -0.123017765 -0.123017766 Si 0.123017765 0.123017765 0.123017766 kinetic energy (Ekin) = 0.00011113 Ry temperature = 11.69765954 K Ekin + Etot (const) = -14.44793130 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.30 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.31 secs total energy = -14.44796249 Ry Harris-Foulkes estimate = -14.44796251 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.31 secs total energy = -14.44796250 Ry Harris-Foulkes estimate = -14.44796251 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.32 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796250 Ry Harris-Foulkes estimate = -14.44796250 Ry estimated scf accuracy < 4.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308520 -0.02308519 -0.02308518 atom 2 type 1 force = 0.02308520 0.02308519 0.02308518 Total force = 0.056547 Total SCF correction = 0.000001 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122995651 -0.122995652 -0.122995652 Si 0.122995651 0.122995652 0.122995652 kinetic energy (Ekin) = 0.00003157 Ry temperature = 3.32253760 K Ekin + Etot (const) = -14.44793094 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.34 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.28E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1605 7.5136 7.5136 ! total energy = -14.44793114 Ry Harris-Foulkes estimate = -14.44793114 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02335022 -0.02335021 -0.02335020 atom 2 type 1 force = 0.02335022 0.02335021 0.02335020 Total force = 0.057196 Total SCF correction = 0.000015 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123009379 -0.123009379 -0.123009380 Si 0.123009379 0.123009379 0.123009380 kinetic energy (Ekin) = 0.00000035 Ry temperature = 0.03681836 K Ekin + Etot (const) = -14.44793079 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.36 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.81E-13, avg # of iterations = 4.0 total cpu time spent up to now is 1.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1621 7.5128 7.5128 ! total energy = -14.44795065 Ry Harris-Foulkes estimate = -14.44795065 Ry estimated scf accuracy < 5.2E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02318573 -0.02318574 -0.02318573 atom 2 type 1 force = 0.02318573 0.02318574 0.02318573 Total force = 0.056793 Total SCF correction = 0.000009 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123058696 -0.123058696 -0.123058696 Si 0.123058696 0.123058696 0.123058696 kinetic energy (Ekin) = 0.00001977 Ry temperature = 2.08095623 K Ekin + Etot (const) = -14.44793088 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.46E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.40 secs total energy = -14.44801957 Ry Harris-Foulkes estimate = -14.44801963 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.40 secs total energy = -14.44801959 Ry Harris-Foulkes estimate = -14.44801962 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.82E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1678 7.5099 7.5099 ! total energy = -14.44801960 Ry Harris-Foulkes estimate = -14.44801960 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02259516 -0.02259515 -0.02259514 atom 2 type 1 force = 0.02259516 0.02259515 0.02259514 Total force = 0.055347 Total SCF correction = 0.000002 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123142694 -0.123142695 -0.123142695 Si 0.123142694 0.123142695 0.123142695 kinetic energy (Ekin) = 0.00008840 Ry temperature = 9.30534244 K Ekin + Etot (const) = -14.44793120 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.15E-13, avg # of iterations = 5.0 total cpu time spent up to now is 1.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1776 7.5049 7.5049 ! total energy = -14.44813295 Ry Harris-Foulkes estimate = -14.44813295 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02159117 -0.02159117 -0.02159118 atom 2 type 1 force = 0.02159117 0.02159117 0.02159118 Total force = 0.052887 Total SCF correction = 0.000016 Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123259834 -0.123259835 -0.123259835 Si 0.123259834 0.123259835 0.123259835 kinetic energy (Ekin) = 0.00020124 Ry temperature = 21.18186327 K Ekin + Etot (const) = -14.44793172 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.46 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.23E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.46 secs total energy = -14.44828241 Ry Harris-Foulkes estimate = -14.44828246 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.47 secs total energy = -14.44828242 Ry Harris-Foulkes estimate = -14.44828246 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.09E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1912 7.4979 7.4979 ! total energy = -14.44828244 Ry Harris-Foulkes estimate = -14.44828244 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02019543 -0.02019542 -0.02019542 atom 2 type 1 force = 0.02019543 0.02019542 0.02019542 Total force = 0.049468 Total SCF correction = 0.000006 Entering Dynamics: iteration = 52 time = 0.0503 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123407973 -0.123407973 -0.123407974 Si 0.123407973 0.123407973 0.123407974 kinetic energy (Ekin) = 0.00035004 Ry temperature = 36.84493191 K Ekin + Etot (const) = -14.44793239 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.06E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.50 secs total energy = -14.44845716 Ry Harris-Foulkes estimate = -14.44845724 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.50 secs total energy = -14.44845718 Ry Harris-Foulkes estimate = -14.44845725 Ry estimated scf accuracy < 0.00000019 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2085 7.4891 7.4891 ! total energy = -14.44845721 Ry Harris-Foulkes estimate = -14.44845721 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01843690 -0.01843690 -0.01843689 atom 2 type 1 force = 0.01843690 0.01843690 0.01843689 Total force = 0.045161 Total SCF correction = 0.000012 Entering Dynamics: iteration = 53 time = 0.0513 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123584412 -0.123584412 -0.123584412 Si 0.123584412 0.123584412 0.123584412 kinetic energy (Ekin) = 0.00052403 Ry temperature = 55.15802684 K Ekin + Etot (const) = -14.44793318 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.76E-11, avg # of iterations = 5.0 total cpu time spent up to now is 1.53 secs total energy = -14.44864465 Ry Harris-Foulkes estimate = -14.44864467 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.52E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.54 secs total energy = -14.44864466 Ry Harris-Foulkes estimate = -14.44864467 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.79E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.2291 7.4786 7.4786 ! total energy = -14.44864466 Ry Harris-Foulkes estimate = -14.44864466 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01635221 -0.01635221 -0.01635220 atom 2 type 1 force = 0.01635221 0.01635221 0.01635220 Total force = 0.040055 Total SCF correction = 0.000005 Entering Dynamics: iteration = 54 time = 0.0522 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123785950 -0.123785950 -0.123785950 Si 0.123785950 0.123785950 0.123785950 kinetic energy (Ekin) = 0.00071063 Ry temperature = 74.80011755 K Ekin + Etot (const) = -14.44793403 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.56 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.32E-12, avg # of iterations = 5.0 total cpu time spent up to now is 1.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2526 7.4666 7.4666 ! total energy = -14.44883136 Ry Harris-Foulkes estimate = -14.44883137 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01398405 -0.01398405 -0.01398404 atom 2 type 1 force = 0.01398405 0.01398405 0.01398404 Total force = 0.034254 Total SCF correction = 0.000026 Entering Dynamics: iteration = 55 time = 0.0532 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124008953 -0.124008953 -0.124008953 Si 0.124008953 0.124008953 0.124008953 kinetic energy (Ekin) = 0.00089651 Ry temperature = 94.36518665 K Ekin + Etot (const) = -14.44793485 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.59 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.60 secs total energy = -14.44900406 Ry Harris-Foulkes estimate = -14.44900409 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.18E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.60 secs total energy = -14.44900407 Ry Harris-Foulkes estimate = -14.44900409 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.2786 7.4534 7.4534 ! total energy = -14.44900408 Ry Harris-Foulkes estimate = -14.44900408 Ry estimated scf accuracy < 8.7E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01137924 -0.01137924 -0.01137923 atom 2 type 1 force = 0.01137924 0.01137924 0.01137923 Total force = 0.027873 Total SCF correction = 0.000001 Entering Dynamics: iteration = 56 time = 0.0542 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124249422 -0.124249422 -0.124249422 Si 0.124249422 0.124249422 0.124249422 kinetic energy (Ekin) = 0.00106847 Ry temperature = 112.46565251 K Ekin + Etot (const) = -14.44793561 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.63 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.08E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.63 secs total energy = -14.44915069 Ry Harris-Foulkes estimate = -14.44915071 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.64 secs total energy = -14.44915070 Ry Harris-Foulkes estimate = -14.44915071 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3068 7.4391 7.4391 ! total energy = -14.44915070 Ry Harris-Foulkes estimate = -14.44915070 Ry estimated scf accuracy < 5.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00858886 -0.00858886 -0.00858885 atom 2 type 1 force = 0.00858886 0.00858886 0.00858885 Total force = 0.021038 Total SCF correction = 0.000003 Entering Dynamics: iteration = 57 time = 0.0552 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124503075 -0.124503074 -0.124503075 Si 0.124503075 0.124503074 0.124503075 kinetic energy (Ekin) = 0.00121447 Ry temperature = 127.83243558 K Ekin + Etot (const) = -14.44793624 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.66 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.13E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.67 secs total energy = -14.44926109 Ry Harris-Foulkes estimate = -14.44926111 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.67 secs total energy = -14.44926109 Ry Harris-Foulkes estimate = -14.44926111 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.67 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3365 7.4242 7.4242 ! total energy = -14.44926110 Ry Harris-Foulkes estimate = -14.44926110 Ry estimated scf accuracy < 2.3E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00566588 -0.00566588 -0.00566588 atom 2 type 1 force = 0.00566588 0.00566588 0.00566588 Total force = 0.013879 Total SCF correction = 0.000001 Entering Dynamics: iteration = 58 time = 0.0561 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124765424 -0.124765424 -0.124765424 Si 0.124765424 0.124765424 0.124765424 kinetic energy (Ekin) = 0.00132440 Ry temperature = 139.40418397 K Ekin + Etot (const) = -14.44793670 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.70 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.20E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3673 7.4087 7.4087 ! total energy = -14.44932781 Ry Harris-Foulkes estimate = -14.44932782 Ry estimated scf accuracy < 8.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00266438 -0.00266438 -0.00266437 atom 2 type 1 force = 0.00266438 0.00266438 0.00266437 Total force = 0.006526 Total SCF correction = 0.000006 Entering Dynamics: iteration = 59 time = 0.0571 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125031863 -0.125031863 -0.125031863 Si 0.125031863 0.125031863 0.125031863 kinetic energy (Ekin) = 0.00139085 Ry temperature = 146.39862355 K Ekin + Etot (const) = -14.44793696 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.73 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.74 secs total energy = -14.44934646 Ry Harris-Foulkes estimate = -14.44934656 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.10E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.74 secs total energy = -14.44934648 Ry Harris-Foulkes estimate = -14.44934659 Ry estimated scf accuracy < 0.00000030 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.10E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.74 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3930 7.3930 7.3986 ! total energy = -14.44934653 Ry Harris-Foulkes estimate = -14.44934653 Ry estimated scf accuracy < 1.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00036135 0.00036138 0.00036142 atom 2 type 1 force = -0.00036135 -0.00036138 -0.00036142 Total force = 0.000885 Total SCF correction = 0.000003 Entering Dynamics: iteration = 60 time = 0.0581 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125297748 -0.125297747 -0.125297747 Si 0.125297748 0.125297747 0.125297747 kinetic energy (Ekin) = 0.00140951 Ry temperature = 148.36252412 K Ekin + Etot (const) = -14.44793702 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.77 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.77 secs total energy = -14.44931627 Ry Harris-Foulkes estimate = -14.44931630 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.38E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.78 secs total energy = -14.44931627 Ry Harris-Foulkes estimate = -14.44931630 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.38E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.78 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3774 7.3774 7.4300 ! total energy = -14.44931629 Ry Harris-Foulkes estimate = -14.44931629 Ry estimated scf accuracy < 3.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00335905 0.00335904 0.00335895 atom 2 type 1 force = -0.00335905 -0.00335904 -0.00335895 Total force = 0.008228 Total SCF correction = 0.000006 Entering Dynamics: iteration = 61 time = 0.0590 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125558476 -0.125558476 -0.125558476 Si 0.125558476 0.125558476 0.125558476 kinetic energy (Ekin) = 0.00137943 Ry temperature = 145.19642771 K Ekin + Etot (const) = -14.44793685 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.65E-11, avg # of iterations = 5.0 total cpu time spent up to now is 1.81 secs total energy = -14.44923952 Ry Harris-Foulkes estimate = -14.44923953 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.81 secs total energy = -14.44923953 Ry Harris-Foulkes estimate = -14.44923953 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3621 7.3621 7.4607 ! total energy = -14.44923953 Ry Harris-Foulkes estimate = -14.44923953 Ry estimated scf accuracy < 1.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00627747 0.00627742 0.00627744 atom 2 type 1 force = -0.00627747 -0.00627742 -0.00627744 Total force = 0.015377 Total SCF correction = 0.000003 Entering Dynamics: iteration = 62 time = 0.0600 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125809569 -0.125809569 -0.125809569 Si 0.125809569 0.125809569 0.125809569 kinetic energy (Ekin) = 0.00130303 Ry temperature = 137.15447777 K Ekin + Etot (const) = -14.44793650 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.84 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.97E-12, avg # of iterations = 5.0 total cpu time spent up to now is 1.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3474 7.3474 7.4904 ! total energy = -14.44912182 Ry Harris-Foulkes estimate = -14.44912183 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00906812 0.00906803 0.00906807 atom 2 type 1 force = -0.00906812 -0.00906803 -0.00906807 Total force = 0.022212 Total SCF correction = 0.000012 Entering Dynamics: iteration = 63 time = 0.0610 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126046743 -0.126046743 -0.126046743 Si 0.126046743 0.126046743 0.126046743 kinetic energy (Ekin) = 0.00118586 Ry temperature = 124.82101848 K Ekin + Etot (const) = -14.44793597 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.86 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.23E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.87 secs total energy = -14.44897145 Ry Harris-Foulkes estimate = -14.44897147 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.87 secs total energy = -14.44897146 Ry Harris-Foulkes estimate = -14.44897147 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.3335 7.3335 7.5185 ! total energy = -14.44897146 Ry Harris-Foulkes estimate = -14.44897146 Ry estimated scf accuracy < 7.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01168753 0.01168779 0.01168765 atom 2 type 1 force = -0.01168753 -0.01168779 -0.01168765 Total force = 0.028629 Total SCF correction = 0.000004 Entering Dynamics: iteration = 64 time = 0.0619 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126265978 -0.126265977 -0.126265977 Si 0.126265978 0.126265977 0.126265977 kinetic energy (Ekin) = 0.00103615 Ry temperature = 109.06358096 K Ekin + Etot (const) = -14.44793531 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.90 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.45E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3208 7.3208 7.5444 ! total energy = -14.44879883 Ry Harris-Foulkes estimate = -14.44879883 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01409364 0.01409367 0.01409332 atom 2 type 1 force = -0.01409364 -0.01409367 -0.01409332 Total force = 0.034522 Total SCF correction = 0.000028 Entering Dynamics: iteration = 65 time = 0.0629 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126463579 -0.126463578 -0.126463579 Si 0.126463579 0.126463578 0.126463579 kinetic energy (Ekin) = 0.00086426 Ry temperature = 90.97086581 K Ekin + Etot (const) = -14.44793456 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.94 secs total energy = -14.44861565 Ry Harris-Foulkes estimate = -14.44861572 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.94 secs total energy = -14.44861568 Ry Harris-Foulkes estimate = -14.44861572 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3092 7.3092 7.5679 ! total energy = -14.44861569 Ry Harris-Foulkes estimate = -14.44861569 Ry estimated scf accuracy < 3.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01625074 0.01625077 0.01625074 atom 2 type 1 force = -0.01625074 -0.01625077 -0.01625074 Total force = 0.039806 Total SCF correction = 0.000004 Entering Dynamics: iteration = 66 time = 0.0639 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126636237 -0.126636235 -0.126636237 Si 0.126636237 0.126636235 0.126636237 kinetic energy (Ekin) = 0.00068191 Ry temperature = 71.77671501 K Ekin + Etot (const) = -14.44793378 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.97 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.97E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.97 secs total energy = -14.44843441 Ry Harris-Foulkes estimate = -14.44843442 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.98 secs total energy = -14.44843442 Ry Harris-Foulkes estimate = -14.44843442 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.98 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2992 7.2992 7.5884 ! total energy = -14.44843442 Ry Harris-Foulkes estimate = -14.44843442 Ry estimated scf accuracy < 4.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01812618 0.01812615 0.01812619 atom 2 type 1 force = -0.01812618 -0.01812615 -0.01812619 Total force = 0.044400 Total SCF correction = 0.000003 Entering Dynamics: iteration = 67 time = 0.0648 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126781071 -0.126781070 -0.126781072 Si 0.126781071 0.126781070 0.126781072 kinetic energy (Ekin) = 0.00050140 Ry temperature = 52.77629295 K Ekin + Etot (const) = -14.44793302 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.00 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.84E-12, avg # of iterations = 4.0 total cpu time spent up to now is 2.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2908 7.2908 7.6056 ! total energy = -14.44826713 Ry Harris-Foulkes estimate = -14.44826713 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01969307 0.01969281 0.01969276 atom 2 type 1 force = -0.01969307 -0.01969281 -0.01969276 Total force = 0.048238 Total SCF correction = 0.000010 Entering Dynamics: iteration = 68 time = 0.0658 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126895678 -0.126895677 -0.126895679 Si 0.126895678 0.126895677 0.126895679 kinetic energy (Ekin) = 0.00033481 Ry temperature = 35.24144424 K Ekin + Etot (const) = -14.44793232 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.03 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.12E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.03 secs total energy = -14.44812493 Ry Harris-Foulkes estimate = -14.44812497 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.04 secs total energy = -14.44812494 Ry Harris-Foulkes estimate = -14.44812497 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2842 7.2842 7.6192 ! total energy = -14.44812495 Ry Harris-Foulkes estimate = -14.44812495 Ry estimated scf accuracy < 1.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02092818 0.02092825 0.02092806 atom 2 type 1 force = -0.02092818 -0.02092825 -0.02092806 Total force = 0.051263 Total SCF correction = 0.000004 Entering Dynamics: iteration = 69 time = 0.0668 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126978162 -0.126978160 -0.126978164 Si 0.126978162 0.126978160 0.126978164 kinetic energy (Ekin) = 0.00019322 Ry temperature = 20.33793708 K Ekin + Etot (const) = -14.44793173 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.07 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.35E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2794 7.2794 7.6291 ! total energy = -14.44801728 Ry Harris-Foulkes estimate = -14.44801728 Ry estimated scf accuracy < 7.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02181506 0.02181488 0.02181502 atom 2 type 1 force = -0.02181506 -0.02181488 -0.02181502 Total force = 0.053436 Total SCF correction = 0.000028 Entering Dynamics: iteration = 70 time = 0.0677 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127027160 -0.127027159 -0.127027164 Si 0.127027160 0.127027159 0.127027164 kinetic energy (Ekin) = 0.00008599 Ry temperature = 9.05129753 K Ekin + Etot (const) = -14.44793128 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.09 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.10 secs total energy = -14.44795119 Ry Harris-Foulkes estimate = -14.44795121 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.83E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.10 secs total energy = -14.44795120 Ry Harris-Foulkes estimate = -14.44795121 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.10 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2766 7.2766 7.6349 ! total energy = -14.44795120 Ry Harris-Foulkes estimate = -14.44795120 Ry estimated scf accuracy < 8.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02234113 0.02234118 0.02234126 atom 2 type 1 force = -0.02234113 -0.02234118 -0.02234126 Total force = 0.054725 Total SCF correction = 0.000003 Entering Dynamics: iteration = 71 time = 0.0687 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127041867 -0.127041866 -0.127041871 Si 0.127041867 0.127041866 0.127041871 kinetic energy (Ekin) = 0.00002019 Ry temperature = 2.12484982 K Ekin + Etot (const) = -14.44793101 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.12 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.32E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2757 7.2757 7.6367 ! total energy = -14.44793106 Ry Harris-Foulkes estimate = -14.44793106 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02249889 0.02249884 0.02249889 atom 2 type 1 force = -0.02249889 -0.02249884 -0.02249889 Total force = 0.055111 Total SCF correction = 0.000018 Entering Dynamics: iteration = 72 time = 0.0697 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127022038 -0.127022038 -0.127022043 Si 0.127022038 0.127022038 0.127022043 kinetic energy (Ekin) = 0.00000013 Ry temperature = 0.01373210 K Ekin + Etot (const) = -14.44793093 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.15 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.81E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.16 secs total energy = -14.44795818 Ry Harris-Foulkes estimate = -14.44795818 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2769 7.2769 7.6343 ! total energy = -14.44795818 Ry Harris-Foulkes estimate = -14.44795818 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02228620 0.02228613 0.02228616 atom 2 type 1 force = -0.02228620 -0.02228613 -0.02228616 Total force = 0.054590 Total SCF correction = 0.000010 Entering Dynamics: iteration = 73 time = 0.0706 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126968002 -0.126968002 -0.126968008 Si 0.126968002 0.126968002 0.126968008 kinetic energy (Ekin) = 0.00002714 Ry temperature = 2.85651209 K Ekin + Etot (const) = -14.44793104 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.18 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.02E-09, avg # of iterations = 4.0 total cpu time spent up to now is 2.19 secs total energy = -14.44803039 Ry Harris-Foulkes estimate = -14.44803100 Ry estimated scf accuracy < 0.00000102 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 3.0 total cpu time spent up to now is 2.19 secs total energy = -14.44803056 Ry Harris-Foulkes estimate = -14.44803108 Ry estimated scf accuracy < 0.00000146 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 3.0 total cpu time spent up to now is 2.20 secs total energy = -14.44803076 Ry Harris-Foulkes estimate = -14.44803076 Ry estimated scf accuracy < 0.00000001 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.20 secs total energy = -14.44803078 Ry Harris-Foulkes estimate = -14.44803078 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 1.0 total cpu time spent up to now is 2.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2800 7.2800 7.6279 ! total energy = -14.44803078 Ry Harris-Foulkes estimate = -14.44803078 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02170608 0.02170613 0.02170617 atom 2 type 1 force = -0.02170608 -0.02170613 -0.02170617 Total force = 0.053169 Total SCF correction = 0.000012 Entering Dynamics: iteration = 74 time = 0.0716 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126880648 -0.126880648 -0.126880655 Si 0.126880648 0.126880648 0.126880655 kinetic energy (Ekin) = 0.00009944 Ry temperature = 10.46662822 K Ekin + Etot (const) = -14.44793134 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.23 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 4.0 total cpu time spent up to now is 2.23 secs total energy = -14.44814391 Ry Harris-Foulkes estimate = -14.44814418 Ry estimated scf accuracy < 0.00000044 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.24 secs total energy = -14.44814397 Ry Harris-Foulkes estimate = -14.44814425 Ry estimated scf accuracy < 0.00000080 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2850 7.2850 7.6175 ! total energy = -14.44814408 Ry Harris-Foulkes estimate = -14.44814408 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02076724 0.02076579 0.02076643 atom 2 type 1 force = -0.02076724 -0.02076579 -0.02076643 Total force = 0.050867 Total SCF correction = 0.000014 Entering Dynamics: iteration = 75 time = 0.0726 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126761418 -0.126761420 -0.126761426 Si 0.126761418 0.126761420 0.126761426 kinetic energy (Ekin) = 0.00021228 Ry temperature = 22.34394117 K Ekin + Etot (const) = -14.44793181 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.27 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.27 secs total energy = -14.44829062 Ry Harris-Foulkes estimate = -14.44829066 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.28 secs total energy = -14.44829063 Ry Harris-Foulkes estimate = -14.44829065 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2920 7.2920 7.6033 ! total energy = -14.44829064 Ry Harris-Foulkes estimate = -14.44829064 Ry estimated scf accuracy < 9.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01948056 0.01948057 0.01948055 atom 2 type 1 force = -0.01948056 -0.01948057 -0.01948055 Total force = 0.047717 Total SCF correction = 0.000005 Entering Dynamics: iteration = 76 time = 0.0735 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126612286 -0.126612291 -0.126612296 Si 0.126612286 0.126612291 0.126612296 kinetic energy (Ekin) = 0.00035822 Ry temperature = 37.70564856 K Ekin + Etot (const) = -14.44793242 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.30 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.35E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.31 secs total energy = -14.44846074 Ry Harris-Foulkes estimate = -14.44846074 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.3006 7.3006 7.5856 ! total energy = -14.44846074 Ry Harris-Foulkes estimate = -14.44846074 Ry estimated scf accuracy < 6.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01786661 0.01786654 0.01786659 atom 2 type 1 force = -0.01786661 -0.01786654 -0.01786659 Total force = 0.043764 Total SCF correction = 0.000032 Entering Dynamics: iteration = 77 time = 0.0745 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126435729 -0.126435737 -0.126435742 Si 0.126435729 0.126435737 0.126435742 kinetic energy (Ekin) = 0.00052761 Ry temperature = 55.53523733 K Ekin + Etot (const) = -14.44793313 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.17E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.34 secs total energy = -14.44864306 Ry Harris-Foulkes estimate = -14.44864309 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.34 secs total energy = -14.44864307 Ry Harris-Foulkes estimate = -14.44864308 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3109 7.3109 7.5646 ! total energy = -14.44864307 Ry Harris-Foulkes estimate = -14.44864307 Ry estimated scf accuracy < 1.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01594744 0.01594752 0.01594756 atom 2 type 1 force = -0.01594744 -0.01594752 -0.01594756 Total force = 0.039063 Total SCF correction = 0.000003 Entering Dynamics: iteration = 78 time = 0.0755 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126234695 -0.126234705 -0.126234709 Si 0.126234695 0.126234705 0.126234709 kinetic energy (Ekin) = 0.00070917 Ry temperature = 74.64637849 K Ekin + Etot (const) = -14.44793390 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.37 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.65E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.37 secs total energy = -14.44882542 Ry Harris-Foulkes estimate = -14.44882543 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3226 7.3226 7.5407 ! total energy = -14.44882542 Ry Harris-Foulkes estimate = -14.44882543 Ry estimated scf accuracy < 7.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01375131 0.01375163 0.01375157 atom 2 type 1 force = -0.01375131 -0.01375163 -0.01375157 Total force = 0.033684 Total SCF correction = 0.000035 Entering Dynamics: iteration = 79 time = 0.0764 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126012553 -0.126012565 -0.126012569 Si 0.126012553 0.126012565 0.126012569 kinetic energy (Ekin) = 0.00089075 Ry temperature = 93.75856908 K Ekin + Etot (const) = -14.44793467 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.40 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.54E-10, avg # of iterations = 1.0 total cpu time spent up to now is 2.40 secs total energy = -14.44899545 Ry Harris-Foulkes estimate = -14.44899549 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.72E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.41 secs total energy = -14.44899547 Ry Harris-Foulkes estimate = -14.44899548 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.3355 7.3355 7.5144 ! total energy = -14.44899547 Ry Harris-Foulkes estimate = -14.44899547 Ry estimated scf accuracy < 1.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01131086 0.01131107 0.01131125 atom 2 type 1 force = -0.01131086 -0.01131107 -0.01131125 Total force = 0.027706 Total SCF correction = 0.000004 Entering Dynamics: iteration = 80 time = 0.0774 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125773049 -0.125773063 -0.125773066 Si 0.125773049 0.125773063 0.125773066 kinetic energy (Ekin) = 0.00106006 Ry temperature = 111.58007382 K Ekin + Etot (const) = -14.44793541 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.44 secs total energy = -14.44914159 Ry Harris-Foulkes estimate = -14.44914160 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.34E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.44 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3495 7.3495 7.4861 ! total energy = -14.44914159 Ry Harris-Foulkes estimate = -14.44914160 Ry estimated scf accuracy < 8.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00866345 0.00866385 0.00866360 atom 2 type 1 force = -0.00866345 -0.00866385 -0.00866360 Total force = 0.021221 Total SCF correction = 0.000033 Entering Dynamics: iteration = 81 time = 0.0784 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125520248 -0.125520263 -0.125520265 Si 0.125520248 0.125520263 0.125520265 kinetic energy (Ekin) = 0.00120554 Ry temperature = 126.89340280 K Ekin + Etot (const) = -14.44793605 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.46 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.47 secs total energy = -14.44925366 Ry Harris-Foulkes estimate = -14.44925371 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.47 secs total energy = -14.44925367 Ry Harris-Foulkes estimate = -14.44925369 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3643 7.3643 7.4562 ! total energy = -14.44925368 Ry Harris-Foulkes estimate = -14.44925368 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00585045 0.00585080 0.00585054 atom 2 type 1 force = -0.00585045 -0.00585080 -0.00585054 Total force = 0.014331 Total SCF correction = 0.000005 Entering Dynamics: iteration = 82 time = 0.0793 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125258466 -0.125258482 -0.125258484 Si 0.125258466 0.125258482 0.125258484 kinetic energy (Ekin) = 0.00131712 Ry temperature = 138.63803129 K Ekin + Etot (const) = -14.44793656 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.50 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.50 secs total energy = -14.44932381 Ry Harris-Foulkes estimate = -14.44932382 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3797 7.3797 7.4253 ! total energy = -14.44932381 Ry Harris-Foulkes estimate = -14.44932382 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00291729 0.00291752 0.00291727 atom 2 type 1 force = -0.00291729 -0.00291752 -0.00291727 Total force = 0.007146 Total SCF correction = 0.000032 Entering Dynamics: iteration = 83 time = 0.0803 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124992206 -0.124992222 -0.124992225 Si 0.124992206 0.124992222 0.124992225 kinetic energy (Ekin) = 0.00138692 Ry temperature = 145.98469977 K Ekin + Etot (const) = -14.44793689 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.88E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.53 secs total energy = -14.44934683 Ry Harris-Foulkes estimate = -14.44934688 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.53 secs total energy = -14.44934685 Ry Harris-Foulkes estimate = -14.44934687 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.73E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3940 7.3953 7.3953 ! total energy = -14.44934686 Ry Harris-Foulkes estimate = -14.44934686 Ry estimated scf accuracy < 2.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00008795 -0.00008749 -0.00008775 atom 2 type 1 force = 0.00008795 0.00008749 0.00008775 Total force = 0.000215 Total SCF correction = 0.000004 Entering Dynamics: iteration = 84 time = 0.0813 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124726082 -0.124726097 -0.124726101 Si 0.124726082 0.124726097 0.124726101 kinetic energy (Ekin) = 0.00140983 Ry temperature = 148.39612632 K Ekin + Etot (const) = -14.44793703 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.56 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.19E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.56 secs total energy = -14.44932087 Ry Harris-Foulkes estimate = -14.44932088 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3627 7.4110 7.4110 ! total energy = -14.44932087 Ry Harris-Foulkes estimate = -14.44932088 Ry estimated scf accuracy < 7.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00311352 -0.00311337 -0.00311338 atom 2 type 1 force = 0.00311352 0.00311337 0.00311338 Total force = 0.007626 Total SCF correction = 0.000031 Entering Dynamics: iteration = 85 time = 0.0822 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124464736 -0.124464751 -0.124464756 Si 0.124464736 0.124464751 0.124464756 kinetic energy (Ekin) = 0.00138393 Ry temperature = 145.66954672 K Ekin + Etot (const) = -14.44793695 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.59 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.59 secs total energy = -14.44924730 Ry Harris-Foulkes estimate = -14.44924734 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.59 secs total energy = -14.44924731 Ry Harris-Foulkes estimate = -14.44924733 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.83E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3320 7.4264 7.4264 ! total energy = -14.44924732 Ry Harris-Foulkes estimate = -14.44924732 Ry estimated scf accuracy < 3.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00610668 -0.00610639 -0.00610654 atom 2 type 1 force = 0.00610668 0.00610639 0.00610654 Total force = 0.014958 Total SCF correction = 0.000003 Entering Dynamics: iteration = 86 time = 0.0832 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124212764 -0.124212778 -0.124212784 Si 0.124212764 0.124212778 0.124212784 kinetic energy (Ekin) = 0.00131066 Ry temperature = 137.95773299 K Ekin + Etot (const) = -14.44793666 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.62 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.61E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.62 secs total energy = -14.44913100 Ry Harris-Foulkes estimate = -14.44913101 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.62 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3025 7.4413 7.4413 ! total energy = -14.44913100 Ry Harris-Foulkes estimate = -14.44913100 Ry estimated scf accuracy < 6.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00901295 -0.00901289 -0.00901269 atom 2 type 1 force = 0.00901295 0.00901289 0.00901269 Total force = 0.022077 Total SCF correction = 0.000034 Entering Dynamics: iteration = 87 time = 0.0842 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123974627 -0.123974639 -0.123974645 Si 0.123974627 0.123974639 0.123974645 kinetic energy (Ekin) = 0.00119483 Ry temperature = 125.76543723 K Ekin + Etot (const) = -14.44793617 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.65 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.10E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.65 secs total energy = -14.44897980 Ry Harris-Foulkes estimate = -14.44897983 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.76E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.65 secs total energy = -14.44897981 Ry Harris-Foulkes estimate = -14.44897982 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.84E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.2746 7.4554 7.4554 ! total energy = -14.44897981 Ry Harris-Foulkes estimate = -14.44897981 Ry estimated scf accuracy < 1.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01177899 -0.01177890 -0.01177889 atom 2 type 1 force = 0.01177899 0.01177890 0.01177889 Total force = 0.028852 Total SCF correction = 0.000002 Entering Dynamics: iteration = 88 time = 0.0851 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123754569 -0.123754580 -0.123754587 Si 0.123754569 0.123754580 0.123754587 kinetic energy (Ekin) = 0.00104429 Ry temperature = 109.91994966 K Ekin + Etot (const) = -14.44793552 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.68 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.39E-11, avg # of iterations = 2.0 total cpu time spent up to now is 2.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2489 7.4685 7.4685 ! total energy = -14.44880421 Ry Harris-Foulkes estimate = -14.44880422 Ry estimated scf accuracy < 9.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01435241 -0.01435193 -0.01435229 atom 2 type 1 force = 0.01435241 0.01435193 0.01435229 Total force = 0.035156 Total SCF correction = 0.000044 Entering Dynamics: iteration = 89 time = 0.0861 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123556541 -0.123556550 -0.123556559 Si 0.123556541 0.123556550 0.123556559 kinetic energy (Ekin) = 0.00086946 Ry temperature = 91.51782687 K Ekin + Etot (const) = -14.44793475 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.70 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.97E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.71 secs total energy = -14.44861654 Ry Harris-Foulkes estimate = -14.44861657 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.71 secs total energy = -14.44861655 Ry Harris-Foulkes estimate = -14.44861656 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.2258 7.4802 7.4802 ! total energy = -14.44861655 Ry Harris-Foulkes estimate = -14.44861655 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01668086 -0.01668078 -0.01668072 atom 2 type 1 force = 0.01668086 0.01668078 0.01668072 Total force = 0.040859 Total SCF correction = 0.000002 Entering Dynamics: iteration = 90 time = 0.0871 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123384118 -0.123384125 -0.123384134 Si 0.123384118 0.123384125 0.123384134 kinetic energy (Ekin) = 0.00068263 Ry temperature = 71.85199457 K Ekin + Etot (const) = -14.44793393 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.74 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.74 secs total energy = -14.44843014 Ry Harris-Foulkes estimate = -14.44843016 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.43E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.75 secs total energy = -14.44843015 Ry Harris-Foulkes estimate = -14.44843015 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2057 7.4905 7.4905 ! total energy = -14.44843015 Ry Harris-Foulkes estimate = -14.44843015 Ry estimated scf accuracy < 7.8E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01871953 -0.01871946 -0.01871935 atom 2 type 1 force = 0.01871953 0.01871946 0.01871935 Total force = 0.045853 Total SCF correction = 0.000002 Entering Dynamics: iteration = 91 time = 0.0880 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123240428 -0.123240432 -0.123240443 Si 0.123240428 0.123240432 0.123240443 kinetic energy (Ekin) = 0.00049706 Ry temperature = 52.31962006 K Ekin + Etot (const) = -14.44793309 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.77 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.23E-13, avg # of iterations = 4.0 total cpu time spent up to now is 2.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1890 7.4991 7.4991 ! total energy = -14.44825837 Ry Harris-Foulkes estimate = -14.44825837 Ry estimated scf accuracy < 5.0E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02042635 -0.02042625 -0.02042621 atom 2 type 1 force = 0.02042635 0.02042625 0.02042621 Total force = 0.050034 Total SCF correction = 0.000008 Entering Dynamics: iteration = 92 time = 0.0890 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123128092 -0.123128093 -0.123128105 Si 0.123128092 0.123128093 0.123128105 kinetic energy (Ekin) = 0.00032606 Ry temperature = 34.32033799 K Ekin + Etot (const) = -14.44793231 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.76E-12, avg # of iterations = 4.0 total cpu time spent up to now is 2.80 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1759 7.5057 7.5057 ! total energy = -14.44811362 Ry Harris-Foulkes estimate = -14.44811362 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02176564 -0.02176558 -0.02176535 atom 2 type 1 force = 0.02176564 0.02176558 0.02176535 Total force = 0.053314 Total SCF correction = 0.000021 Entering Dynamics: iteration = 93 time = 0.0900 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123049164 -0.123049163 -0.123049175 Si 0.123049164 0.123049163 0.123049175 kinetic energy (Ekin) = 0.00018197 Ry temperature = 19.15373489 K Ekin + Etot (const) = -14.44793165 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.83 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.85E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.83 secs total energy = -14.44800640 Ry Harris-Foulkes estimate = -14.44800643 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.84 secs total energy = -14.44800641 Ry Harris-Foulkes estimate = -14.44800643 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.31E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1667 7.5104 7.5105 ! total energy = -14.44800642 Ry Harris-Foulkes estimate = -14.44800642 Ry estimated scf accuracy < 7.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02270904 -0.02270907 -0.02270902 atom 2 type 1 force = 0.02270904 0.02270907 0.02270902 Total force = 0.055626 Total SCF correction = 0.000003 Entering Dynamics: iteration = 94 time = 0.0910 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123005093 -0.123005090 -0.123005103 Si 0.123005093 0.123005090 0.123005103 kinetic energy (Ekin) = 0.00007526 Ry temperature = 7.92121025 K Ekin + Etot (const) = -14.44793116 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.86 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.03E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794457 Ry Harris-Foulkes estimate = -14.44794458 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02323655 -0.02323714 -0.02323677 atom 2 type 1 force = 0.02323655 0.02323714 0.02323677 Total force = 0.056918 Total SCF correction = 0.000028 Entering Dynamics: iteration = 95 time = 0.0919 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122996690 -0.122996685 -0.122996697 Si 0.122996690 0.122996685 0.122996697 kinetic energy (Ekin) = 0.00001370 Ry temperature = 1.44181541 K Ekin + Etot (const) = -14.44793088 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.03E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.89 secs total energy = -14.44793260 Ry Harris-Foulkes estimate = -14.44793264 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.90 secs total energy = -14.44793261 Ry Harris-Foulkes estimate = -14.44793264 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1607 7.5136 7.5136 ! total energy = -14.44793262 Ry Harris-Foulkes estimate = -14.44793262 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02333782 -0.02333786 -0.02333775 atom 2 type 1 force = 0.02333782 0.02333786 0.02333775 Total force = 0.057166 Total SCF correction = 0.000008 Entering Dynamics: iteration = 96 time = 0.0929 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123024108 -0.123024102 -0.123024114 Si 0.123024108 0.123024102 0.123024114 kinetic energy (Ekin) = 0.00000180 Ry temperature = 0.18925604 K Ekin + Etot (const) = -14.44793082 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.92 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.93 secs total energy = -14.44797137 Ry Harris-Foulkes estimate = -14.44797149 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.93 secs total energy = -14.44797141 Ry Harris-Foulkes estimate = -14.44797146 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1638 7.5119 7.5119 ! total energy = -14.44797143 Ry Harris-Foulkes estimate = -14.44797143 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02300938 -0.02300984 -0.02300940 atom 2 type 1 force = 0.02300938 0.02300984 0.02300940 Total force = 0.056362 Total SCF correction = 0.000010 Entering Dynamics: iteration = 97 time = 0.0939 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123086845 -0.123086837 -0.123086849 Si 0.123086845 0.123086837 0.123086849 kinetic energy (Ekin) = 0.00004043 Ry temperature = 4.25532943 K Ekin + Etot (const) = -14.44793100 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.96 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.68E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.96 secs total energy = -14.44805815 Ry Harris-Foulkes estimate = -14.44805816 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.78E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1711 7.5082 7.5082 ! total energy = -14.44805816 Ry Harris-Foulkes estimate = -14.44805816 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02225847 -0.02225854 -0.02225840 atom 2 type 1 force = 0.02225847 0.02225854 0.02225840 Total force = 0.054522 Total SCF correction = 0.000026 Entering Dynamics: iteration = 98 time = 0.0948 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123183747 -0.123183739 -0.123183749 Si 0.123183747 0.123183739 0.123183749 kinetic energy (Ekin) = 0.00012676 Ry temperature = 13.34255199 K Ekin + Etot (const) = -14.44793140 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.99 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.99 secs total energy = -14.44818644 Ry Harris-Foulkes estimate = -14.44818650 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-09, avg # of iterations = 3.0 total cpu time spent up to now is 3.00 secs total energy = -14.44818647 Ry Harris-Foulkes estimate = -14.44818649 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.99E-10, avg # of iterations = 2.0 total cpu time spent up to now is 3.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1824 7.5024 7.5024 ! total energy = -14.44818647 Ry Harris-Foulkes estimate = -14.44818647 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02110164 -0.02110171 -0.02110165 atom 2 type 1 force = 0.02110164 0.02110171 0.02110165 Total force = 0.051688 Total SCF correction = 0.000004 Entering Dynamics: iteration = 99 time = 0.0958 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123313039 -0.123313030 -0.123313039 Si 0.123313039 0.123313030 0.123313039 kinetic energy (Ekin) = 0.00025449 Ry temperature = 26.78723397 K Ekin + Etot (const) = -14.44793198 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-10, avg # of iterations = 4.0 total cpu time spent up to now is 3.03 secs total energy = -14.44834701 Ry Harris-Foulkes estimate = -14.44834705 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 3.03 secs total energy = -14.44834702 Ry Harris-Foulkes estimate = -14.44834706 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 3.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.1974 7.4947 7.4947 ! total energy = -14.44834704 Ry Harris-Foulkes estimate = -14.44834704 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01956269 -0.01956275 -0.01956271 atom 2 type 1 force = 0.01956269 0.01956275 0.01956271 Total force = 0.047919 Total SCF correction = 0.000008 Entering Dynamics: iteration = 100 time = 0.0968 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123472358 -0.123472349 -0.123472356 Si 0.123472358 0.123472349 0.123472356 kinetic energy (Ekin) = 0.00041432 Ry temperature = 43.61084997 K Ekin + Etot (const) = -14.44793271 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.04 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.41E-11, avg # of iterations = 4.0 total cpu time spent up to now is 3.04 secs total energy = -14.44852821 Ry Harris-Foulkes estimate = -14.44852822 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 3.05 secs total energy = -14.44852821 Ry Harris-Foulkes estimate = -14.44852822 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-10, avg # of iterations = 2.0 total cpu time spent up to now is 3.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.2160 7.4852 7.4852 ! total energy = -14.44852821 Ry Harris-Foulkes estimate = -14.44852821 Ry estimated scf accuracy < 2.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01767495 -0.01767499 -0.01767490 atom 2 type 1 force = 0.01767495 0.01767499 0.01767490 Total force = 0.043295 Total SCF correction = 0.000002 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Writing output data file pwscf.save PWSCF : 3.07s CPU time, 3.53s wall time init_run : 0.02s CPU electrons : 0.74s CPU ( 101 calls, 0.007 s avg) update_pot : 0.45s CPU ( 100 calls, 0.004 s avg) forces : 0.07s CPU ( 101 calls, 0.001 s avg) Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.43s CPU ( 295 calls, 0.001 s avg) sum_band : 0.09s CPU ( 295 calls, 0.000 s avg) v_of_rho : 0.14s CPU ( 296 calls, 0.000 s avg) mix_rho : 0.02s CPU ( 295 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 591 calls, 0.000 s avg) cegterg : 0.41s CPU ( 295 calls, 0.001 s avg) Called by *egterg: h_psi : 0.30s CPU ( 1022 calls, 0.000 s avg) g_psi : 0.01s CPU ( 726 calls, 0.000 s avg) cdiaghg : 0.07s CPU ( 821 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 1022 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 1222 calls, 0.000 s avg) cft3 : 0.07s CPU ( 1290 calls, 0.000 s avg) cft3s : 0.27s CPU ( 7984 calls, 0.000 s avg) davcio : 0.00s CPU ( 1564 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example03/reference/si.md8.out0000644000700200004540000116033612053145630022124 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:31 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Found additional translation: -0.5000 -0.5000 0.0000 Found additional translation: -0.5000 0.0000 -0.5000 Found additional translation: 0.0000 -0.5000 -0.5000 bravais-lattice index = 1 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 100 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 84.0013 ( 3239 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 437, 16) NL pseudopotentials 0.21 Mb ( 437, 32) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 3239) G-vector shells 0.00 Mb ( 73) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.43 Mb ( 437, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 32, 16) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 31.99603, renormalised to 32.00000 Starting wfc are 32 atomic wfcs total cpu time spent up to now is 0.04 secs per-process dynamical memory: 3.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs total energy = -62.14832068 Ry Harris-Foulkes estimate = -62.29615145 Ry estimated scf accuracy < 0.43519475 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.09 secs total energy = -62.17410687 Ry Harris-Foulkes estimate = -62.17581399 Ry estimated scf accuracy < 0.01653717 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.12 secs total energy = -62.17575000 Ry Harris-Foulkes estimate = -62.17579144 Ry estimated scf accuracy < 0.00037432 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.14 secs total energy = -62.17578522 Ry Harris-Foulkes estimate = -62.17578844 Ry estimated scf accuracy < 0.00000826 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.17 secs total energy = -62.17578714 Ry Harris-Foulkes estimate = -62.17578728 Ry estimated scf accuracy < 0.00000033 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0940 -1.0940 -1.0940 -0.9566 -0.9566 -0.9566 3.5686 3.5686 3.5686 3.6377 3.6377 3.6377 6.4885 6.8187 6.8187 ! total energy = -62.17578719 Ry Harris-Foulkes estimate = -62.17578719 Ry estimated scf accuracy < 9.0E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 2 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 3 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 4 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 5 type 1 force = 0.01508585 0.01508585 0.01508585 atom 6 type 1 force = 0.01508585 0.01508585 0.01508585 atom 7 type 1 force = 0.01508585 0.01508585 0.01508585 atom 8 type 1 force = 0.01508585 0.01508585 0.01508585 Total force = 0.073905 Total SCF correction = 0.000053 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123023156 -0.123023156 -0.123023156 Si 0.376976844 0.376976844 -0.123023156 Si 0.376976844 -0.123023156 0.376976844 Si -0.123023156 0.376976844 0.376976844 Si 0.123023156 0.123023156 0.123023156 Si 0.623023156 0.623023156 0.123023156 Si 0.623023156 0.123023156 0.623023156 Si 0.123023156 0.623023156 0.623023156 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -62.17578719 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.22 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.28 secs total energy = -62.17587202 Ry Harris-Foulkes estimate = -62.17587202 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.75E-11, avg # of iterations = 1.0 total cpu time spent up to now is 0.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0932 -1.0932 -1.0932 -0.9574 -0.9574 -0.9574 3.5688 3.5688 3.5688 3.6372 3.6372 3.6372 6.4909 6.8174 6.8174 ! total energy = -62.17587202 Ry Harris-Foulkes estimate = -62.17587202 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 2 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 3 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 4 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 5 type 1 force = 0.01490278 0.01490278 0.01490278 atom 6 type 1 force = 0.01490278 0.01490278 0.01490278 atom 7 type 1 force = 0.01490278 0.01490278 0.01490278 atom 8 type 1 force = 0.01490278 0.01490278 0.01490278 Total force = 0.073008 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123069187 -0.123069187 -0.123069187 Si 0.376930813 0.376930813 -0.123069187 Si 0.376930813 -0.123069187 0.376930813 Si -0.123069187 0.376930813 0.376930813 Si 0.123069187 0.123069187 0.123069187 Si 0.623069187 0.623069187 0.123069187 Si 0.623069187 0.123069187 0.623069187 Si 0.123069187 0.623069187 0.623069187 kinetic energy (Ekin) = 0.00009524 Ry temperature = 1.43212453 K Ekin + Etot (const) = -62.17577678 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation first order charge density extrapolation total cpu time spent up to now is 0.33 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.62E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.40 secs total energy = -62.17603760 Ry Harris-Foulkes estimate = -62.17603760 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.07E-11, avg # of iterations = 1.0 total cpu time spent up to now is 0.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0914 -1.0914 -1.0914 -0.9589 -0.9589 -0.9589 3.5696 3.5696 3.5696 3.6365 3.6365 3.6365 6.4959 6.8148 6.8148 ! total energy = -62.17603760 Ry Harris-Foulkes estimate = -62.17603760 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 2 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 3 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 4 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 5 type 1 force = 0.01454193 0.01454193 0.01454193 atom 6 type 1 force = 0.01454193 0.01454193 0.01454193 atom 7 type 1 force = 0.01454193 0.01454193 0.01454193 atom 8 type 1 force = 0.01454193 0.01454193 0.01454193 Total force = 0.071241 Total SCF correction = 0.000004 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123137539 -0.123137539 -0.123137539 Si 0.376862461 0.376862461 -0.123137539 Si 0.376862461 -0.123137539 0.376862461 Si -0.123137539 0.376862461 0.376862461 Si 0.123137539 0.123137539 0.123137539 Si 0.623137539 0.623137539 0.123137539 Si 0.623137539 0.123137539 0.623137539 Si 0.123137539 0.623137539 0.623137539 kinetic energy (Ekin) = 0.00026031 Ry temperature = 3.91431284 K Ekin + Etot (const) = -62.17577729 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.50E-14, avg # of iterations = 4.0 total cpu time spent up to now is 0.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2231 -1.0888 -1.0888 -1.0888 -0.9612 -0.9612 -0.9612 3.5706 3.5706 3.5706 3.6353 3.6353 3.6353 6.5033 6.8110 6.8110 ! total energy = -62.17627598 Ry Harris-Foulkes estimate = -62.17627598 Ry estimated scf accuracy < 3.4E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 2 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 3 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 4 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 5 type 1 force = 0.01400680 0.01400680 0.01400680 atom 6 type 1 force = 0.01400680 0.01400680 0.01400680 atom 7 type 1 force = 0.01400680 0.01400680 0.01400680 atom 8 type 1 force = 0.01400680 0.01400680 0.01400680 Total force = 0.068619 Total SCF correction = 0.000008 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123227390 -0.123227390 -0.123227390 Si 0.376772610 0.376772610 -0.123227390 Si 0.376772610 -0.123227390 0.376772610 Si -0.123227390 0.376772610 0.376772610 Si 0.123227390 0.123227390 0.123227390 Si 0.623227390 0.623227390 0.123227390 Si 0.623227390 0.123227390 0.623227390 Si 0.123227390 0.623227390 0.623227390 kinetic energy (Ekin) = 0.00049798 Ry temperature = 7.48800668 K Ekin + Etot (const) = -62.17577801 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.55 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0854 -1.0854 -1.0854 -0.9642 -0.9642 -0.9642 3.5720 3.5720 3.5720 3.6337 3.6337 3.6337 6.5131 6.8059 6.8059 ! total energy = -62.17657576 Ry Harris-Foulkes estimate = -62.17657576 Ry estimated scf accuracy < 6.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 2 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 3 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 4 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 5 type 1 force = 0.01330527 0.01330527 0.01330527 atom 6 type 1 force = 0.01330527 0.01330527 0.01330527 atom 7 type 1 force = 0.01330527 0.01330527 0.01330527 atom 8 type 1 force = 0.01330527 0.01330527 0.01330527 Total force = 0.065182 Total SCF correction = 0.000013 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123337664 -0.123337664 -0.123337664 Si 0.376662336 0.376662336 -0.123337664 Si 0.376662336 -0.123337664 0.376662336 Si -0.123337664 0.376662336 0.376662336 Si 0.123337664 0.123337664 0.123337664 Si 0.623337664 0.623337664 0.123337664 Si 0.623337664 0.123337664 0.623337664 Si 0.123337664 0.623337664 0.623337664 kinetic energy (Ekin) = 0.00079686 Ry temperature = 11.98232490 K Ekin + Etot (const) = -62.17577890 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.65 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.04E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0813 -1.0813 -1.0813 -0.9678 -0.9678 -0.9678 3.5737 3.5737 3.5737 3.6318 3.6318 3.6318 6.5251 6.7998 6.7998 ! total energy = -62.17692267 Ry Harris-Foulkes estimate = -62.17692267 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 2 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 3 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 4 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 5 type 1 force = 0.01244759 0.01244759 0.01244759 atom 6 type 1 force = 0.01244759 0.01244759 0.01244759 atom 7 type 1 force = 0.01244759 0.01244759 0.01244759 atom 8 type 1 force = 0.01244759 0.01244759 0.01244759 Total force = 0.060980 Total SCF correction = 0.000024 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123467045 -0.123467045 -0.123467045 Si 0.376532955 0.376532955 -0.123467045 Si 0.376532955 -0.123467045 0.376532955 Si -0.123467045 0.376532955 0.376532955 Si 0.123467045 0.123467045 0.123467045 Si 0.623467045 0.623467045 0.123467045 Si 0.623467045 0.123467045 0.623467045 Si 0.123467045 0.623467045 0.623467045 kinetic energy (Ekin) = 0.00114275 Ry temperature = 17.18334836 K Ekin + Etot (const) = -62.17577993 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.75 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.63E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2225 -1.0764 -1.0764 -1.0764 -0.9722 -0.9722 -0.9722 3.5758 3.5758 3.5758 3.6296 3.6296 3.6296 6.5393 6.7925 6.7925 ! total energy = -62.17730031 Ry Harris-Foulkes estimate = -62.17730031 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 2 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 3 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 4 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 5 type 1 force = 0.01144688 0.01144688 0.01144688 atom 6 type 1 force = 0.01144688 0.01144688 0.01144688 atom 7 type 1 force = 0.01144688 0.01144688 0.01144688 atom 8 type 1 force = 0.01144688 0.01144688 0.01144688 Total force = 0.056078 Total SCF correction = 0.000036 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123613996 -0.123613996 -0.123613996 Si 0.376386004 0.376386004 -0.123613996 Si 0.376386004 -0.123613996 0.376386004 Si -0.123613996 0.376386004 0.376386004 Si 0.123613996 0.123613996 0.123613996 Si 0.623613996 0.623613996 0.123613996 Si 0.623613996 0.123613996 0.623613996 Si 0.123613996 0.623613996 0.623613996 kinetic energy (Ekin) = 0.00151928 Ry temperature = 22.84525748 K Ekin + Etot (const) = -62.17578103 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.13E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0711 -1.0711 -1.0711 -0.9770 -0.9770 -0.9770 3.5781 3.5781 3.5781 3.6270 3.6270 3.6270 6.5552 6.7844 6.7844 ! total energy = -62.17769098 Ry Harris-Foulkes estimate = -62.17769098 Ry estimated scf accuracy < 8.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 2 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 3 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 4 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 5 type 1 force = 0.01031654 0.01031654 0.01031654 atom 6 type 1 force = 0.01031654 0.01031654 0.01031654 atom 7 type 1 force = 0.01031654 0.01031654 0.01031654 atom 8 type 1 force = 0.01031654 0.01031654 0.01031654 Total force = 0.050541 Total SCF correction = 0.000059 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123776782 -0.123776782 -0.123776782 Si 0.376223218 0.376223218 -0.123776782 Si 0.376223218 -0.123776782 0.376223218 Si -0.123776782 0.376223218 0.376223218 Si 0.123776782 0.123776782 0.123776782 Si 0.623776782 0.623776782 0.123776782 Si 0.623776782 0.123776782 0.623776782 Si 0.123776782 0.623776782 0.623776782 kinetic energy (Ekin) = 0.00190881 Ry temperature = 28.70263048 K Ekin + Etot (const) = -62.17578216 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.95 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.46E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.00 secs total energy = -62.17807653 Ry Harris-Foulkes estimate = -62.17807654 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2220 -1.0651 -1.0651 -1.0651 -0.9825 -0.9825 -0.9825 3.5808 3.5808 3.5808 3.6241 3.6241 3.6241 6.5731 6.7752 6.7752 ! total energy = -62.17807653 Ry Harris-Foulkes estimate = -62.17807653 Ry estimated scf accuracy < 6.9E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 2 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 3 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 4 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 5 type 1 force = 0.00907315 0.00907315 0.00907315 atom 6 type 1 force = 0.00907315 0.00907315 0.00907315 atom 7 type 1 force = 0.00907315 0.00907315 0.00907315 atom 8 type 1 force = 0.00907315 0.00907315 0.00907315 Total force = 0.044449 Total SCF correction = 0.000006 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123953495 -0.123953495 -0.123953495 Si 0.376046505 0.376046505 -0.123953495 Si 0.376046505 -0.123953495 0.376046505 Si -0.123953495 0.376046505 0.376046505 Si 0.123953495 0.123953495 0.123953495 Si 0.623953495 0.623953495 0.123953495 Si 0.623953495 0.123953495 0.623953495 Si 0.123953495 0.623953495 0.623953495 kinetic energy (Ekin) = 0.00229327 Ry temperature = 34.48360323 K Ekin + Etot (const) = -62.17578326 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.06 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.08E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.12 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2218 -1.0588 -1.0588 -1.0588 -0.9883 -0.9883 -0.9883 3.5837 3.5837 3.5837 3.6210 3.6210 3.6210 6.5924 6.7654 6.7654 ! total energy = -62.17843928 Ry Harris-Foulkes estimate = -62.17843929 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 2 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 3 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 4 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 5 type 1 force = 0.00773260 0.00773260 0.00773260 atom 6 type 1 force = 0.00773260 0.00773260 0.00773260 atom 7 type 1 force = 0.00773260 0.00773260 0.00773260 atom 8 type 1 force = 0.00773260 0.00773260 0.00773260 Total force = 0.037882 Total SCF correction = 0.000033 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124142078 -0.124142078 -0.124142078 Si 0.375857922 0.375857922 -0.124142078 Si 0.375857922 -0.124142078 0.375857922 Si -0.124142078 0.375857922 0.375857922 Si 0.124142078 0.124142078 0.124142078 Si 0.624142078 0.624142078 0.124142078 Si 0.624142078 0.124142078 0.624142078 Si 0.124142078 0.624142078 0.624142078 kinetic energy (Ekin) = 0.00265500 Ry temperature = 39.92296100 K Ekin + Etot (const) = -62.17578428 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.15 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.47E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2216 -1.0520 -1.0520 -1.0520 -0.9946 -0.9946 -0.9946 3.5869 3.5869 3.5869 3.6176 3.6176 3.6176 6.6132 6.7549 6.7549 ! total energy = -62.17876283 Ry Harris-Foulkes estimate = -62.17876283 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 2 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 3 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 4 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 5 type 1 force = 0.00631338 0.00631338 0.00631338 atom 6 type 1 force = 0.00631338 0.00631338 0.00631338 atom 7 type 1 force = 0.00631338 0.00631338 0.00631338 atom 8 type 1 force = 0.00631338 0.00631338 0.00631338 Total force = 0.030929 Total SCF correction = 0.000031 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124340350 -0.124340350 -0.124340350 Si 0.375659650 0.375659650 -0.124340350 Si 0.375659650 -0.124340350 0.375659650 Si -0.124340350 0.375659650 0.375659650 Si 0.124340350 0.124340350 0.124340350 Si 0.624340350 0.624340350 0.124340350 Si 0.624340350 0.124340350 0.624340350 Si 0.124340350 0.624340350 0.624340350 kinetic energy (Ekin) = 0.00297765 Ry temperature = 44.77454755 K Ekin + Etot (const) = -62.17578518 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.24 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.34E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.29 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0452 -1.0452 -1.0452 -1.0011 -1.0011 -1.0011 3.5903 3.5903 3.5903 3.6141 3.6141 3.6141 6.6347 6.7440 6.7440 ! total energy = -62.17903277 Ry Harris-Foulkes estimate = -62.17903278 Ry estimated scf accuracy < 7.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 2 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 3 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 4 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 5 type 1 force = 0.00483365 0.00483365 0.00483365 atom 6 type 1 force = 0.00483365 0.00483365 0.00483365 atom 7 type 1 force = 0.00483365 0.00483365 0.00483365 atom 8 type 1 force = 0.00483365 0.00483365 0.00483365 Total force = 0.023680 Total SCF correction = 0.000057 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124546043 -0.124546043 -0.124546043 Si 0.375453957 0.375453957 -0.124546043 Si 0.375453957 -0.124546043 0.375453957 Si -0.124546043 0.375453957 0.375453957 Si 0.124546043 0.124546043 0.124546043 Si 0.624546043 0.624546043 0.124546043 Si 0.624546043 0.124546043 0.624546043 Si 0.124546043 0.624546043 0.624546043 kinetic energy (Ekin) = 0.00324687 Ry temperature = 48.82276365 K Ekin + Etot (const) = -62.17578590 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.36 secs total energy = -62.17923739 Ry Harris-Foulkes estimate = -62.17923740 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.03E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0381 -1.0381 -1.0381 -1.0079 -1.0079 -1.0079 3.5939 3.5939 3.5939 3.6104 3.6104 3.6104 6.6575 6.7325 6.7325 ! total energy = -62.17923739 Ry Harris-Foulkes estimate = -62.17923739 Ry estimated scf accuracy < 4.8E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 2 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 3 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 4 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 5 type 1 force = 0.00331177 0.00331177 0.00331177 atom 6 type 1 force = 0.00331177 0.00331177 0.00331177 atom 7 type 1 force = 0.00331177 0.00331177 0.00331177 atom 8 type 1 force = 0.00331177 0.00331177 0.00331177 Total force = 0.016224 Total SCF correction = 0.000004 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124756818 -0.124756818 -0.124756818 Si 0.375243182 0.375243182 -0.124756818 Si 0.375243182 -0.124756818 0.375243182 Si -0.124756818 0.375243182 0.375243182 Si 0.124756818 0.124756818 0.124756818 Si 0.624756818 0.624756818 0.124756818 Si 0.624756818 0.124756818 0.624756818 Si 0.124756818 0.624756818 0.624756818 kinetic energy (Ekin) = 0.00345096 Ry temperature = 51.89166686 K Ekin + Etot (const) = -62.17578643 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.42 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0310 -1.0310 -1.0310 -1.0148 -1.0148 -1.0148 3.5977 3.5977 3.5977 3.6066 3.6066 3.6066 6.6806 6.7209 6.7209 ! total energy = -62.17936808 Ry Harris-Foulkes estimate = -62.17936808 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00176602 -0.00176603 -0.00176602 atom 2 type 1 force = -0.00176602 -0.00176602 -0.00176602 atom 3 type 1 force = -0.00176602 -0.00176603 -0.00176602 atom 4 type 1 force = -0.00176602 -0.00176602 -0.00176602 atom 5 type 1 force = 0.00176602 0.00176603 0.00176602 atom 6 type 1 force = 0.00176603 0.00176602 0.00176602 atom 7 type 1 force = 0.00176602 0.00176603 0.00176602 atom 8 type 1 force = 0.00176602 0.00176602 0.00176602 Total force = 0.008652 Total SCF correction = 0.000033 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124970305 -0.124970305 -0.124970305 Si 0.375029695 0.375029695 -0.124970305 Si 0.375029695 -0.124970305 0.375029695 Si -0.124970305 0.375029695 0.375029695 Si 0.124970305 0.124970305 0.124970305 Si 0.624970305 0.624970305 0.124970305 Si 0.624970305 0.124970305 0.624970305 Si 0.124970305 0.624970305 0.624970305 kinetic energy (Ekin) = 0.00358133 Ry temperature = 53.85212793 K Ekin + Etot (const) = -62.17578674 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.24E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0238 -1.0238 -1.0238 -1.0219 -1.0219 -1.0219 3.6016 3.6016 3.6016 3.6026 3.6026 3.6026 6.7042 6.7090 6.7090 ! total energy = -62.17941967 Ry Harris-Foulkes estimate = -62.17941967 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00021456 -0.00021451 -0.00021455 atom 2 type 1 force = -0.00021453 -0.00021458 -0.00021454 atom 3 type 1 force = -0.00021454 -0.00021452 -0.00021456 atom 4 type 1 force = -0.00021455 -0.00021457 -0.00021454 atom 5 type 1 force = 0.00021456 0.00021451 0.00021455 atom 6 type 1 force = 0.00021453 0.00021458 0.00021454 atom 7 type 1 force = 0.00021454 0.00021451 0.00021455 atom 8 type 1 force = 0.00021455 0.00021458 0.00021454 Total force = 0.001051 Total SCF correction = 0.000029 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125184120 -0.125184120 -0.125184120 Si 0.374815880 0.374815880 -0.125184120 Si 0.374815880 -0.125184120 0.374815880 Si -0.125184120 0.374815880 0.374815880 Si 0.125184120 0.125184120 0.125184120 Si 0.625184120 0.625184120 0.125184120 Si 0.625184120 0.125184120 0.625184120 Si 0.125184120 0.625184120 0.625184120 kinetic energy (Ekin) = 0.00363284 Ry temperature = 54.62665078 K Ekin + Etot (const) = -62.17578683 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.58 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.66E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0289 -1.0289 -1.0289 -1.0169 -1.0169 -1.0169 3.5987 3.5987 3.5987 3.6055 3.6055 3.6055 6.6974 6.6974 6.7276 ! total energy = -62.17939061 Ry Harris-Foulkes estimate = -62.17939061 Ry estimated scf accuracy < 6.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00132502 0.00132481 0.00132496 atom 2 type 1 force = 0.00132496 0.00132516 0.00132498 atom 3 type 1 force = 0.00132493 0.00132480 0.00132499 atom 4 type 1 force = 0.00132505 0.00132517 0.00132503 atom 5 type 1 force = -0.00132502 -0.00132480 -0.00132498 atom 6 type 1 force = -0.00132496 -0.00132517 -0.00132500 atom 7 type 1 force = -0.00132494 -0.00132479 -0.00132498 atom 8 type 1 force = -0.00132505 -0.00132519 -0.00132501 Total force = 0.006491 Total SCF correction = 0.000054 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125395902 -0.125395902 -0.125395902 Si 0.374604098 0.374604098 -0.125395902 Si 0.374604098 -0.125395902 0.374604098 Si -0.125395902 0.374604098 0.374604098 Si 0.125395902 0.125395902 0.125395902 Si 0.625395902 0.625395902 0.125395902 Si 0.625395902 0.125395902 0.625395902 Si 0.125395902 0.625395902 0.625395902 kinetic energy (Ekin) = 0.00360392 Ry temperature = 54.19171876 K Ekin + Etot (const) = -62.17578669 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.67 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.57E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.72 secs total energy = -62.17928290 Ry Harris-Foulkes estimate = -62.17928291 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0359 -1.0358 -1.0358 -1.0101 -1.0101 -1.0101 3.5948 3.5948 3.5948 3.6095 3.6095 3.6095 6.6857 6.6857 6.7511 ! total energy = -62.17928290 Ry Harris-Foulkes estimate = -62.17928290 Ry estimated scf accuracy < 2.1E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00283594 0.00283608 0.00283604 atom 2 type 1 force = 0.00283597 0.00283565 0.00283590 atom 3 type 1 force = 0.00283610 0.00283611 0.00283598 atom 4 type 1 force = 0.00283573 0.00283548 0.00283584 atom 5 type 1 force = -0.00283594 -0.00283609 -0.00283606 atom 6 type 1 force = -0.00283598 -0.00283564 -0.00283591 atom 7 type 1 force = -0.00283609 -0.00283609 -0.00283597 atom 8 type 1 force = -0.00283572 -0.00283550 -0.00283582 Total force = 0.013893 Total SCF correction = 0.000018 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125603331 -0.125603331 -0.125603331 Si 0.374396669 0.374396669 -0.125603331 Si 0.374396669 -0.125603331 0.374396669 Si -0.125603331 0.374396669 0.374396669 Si 0.125603331 0.125603331 0.125603331 Si 0.625603331 0.625603331 0.125603331 Si 0.625603331 0.125603331 0.625603331 Si 0.125603331 0.625603331 0.625603331 kinetic energy (Ekin) = 0.00349657 Ry temperature = 52.57746607 K Ekin + Etot (const) = -62.17578634 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.78 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.62E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0426 -1.0426 -1.0426 -1.0036 -1.0036 -1.0035 3.5909 3.5909 3.5909 3.6134 3.6135 3.6135 6.6743 6.6743 6.7740 ! total energy = -62.17910196 Ry Harris-Foulkes estimate = -62.17910196 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00430181 0.00430638 0.00430284 atom 2 type 1 force = 0.00430373 0.00429925 0.00430316 atom 3 type 1 force = 0.00430298 0.00430632 0.00430184 atom 4 type 1 force = 0.00430263 0.00429922 0.00430326 atom 5 type 1 force = -0.00430187 -0.00430661 -0.00430245 atom 6 type 1 force = -0.00430364 -0.00429902 -0.00430298 atom 7 type 1 force = -0.00430288 -0.00430682 -0.00430223 atom 8 type 1 force = -0.00430277 -0.00429873 -0.00430345 Total force = 0.021079 Total SCF correction = 0.000071 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125804157 -0.125804150 -0.125804155 Si 0.374195846 0.374195839 -0.125804155 Si 0.374195845 -0.125804150 0.374195843 Si -0.125804156 0.374195839 0.374195845 Si 0.125804157 0.125804150 0.125804155 Si 0.625804154 0.625804161 0.125804155 Si 0.625804155 0.125804149 0.625804156 Si 0.125804156 0.625804162 0.625804154 kinetic energy (Ekin) = 0.00331617 Ry temperature = 49.86481131 K Ekin + Etot (const) = -62.17578579 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.87 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.15E-10, avg # of iterations = 5.0 total cpu time spent up to now is 1.93 secs total energy = -62.17885622 Ry Harris-Foulkes estimate = -62.17885628 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.96 secs total energy = -62.17885622 Ry Harris-Foulkes estimate = -62.17885632 Ry estimated scf accuracy < 0.00000026 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0492 -1.0492 -1.0492 -0.9973 -0.9973 -0.9973 3.5871 3.5871 3.5871 3.6174 3.6174 3.6174 6.6633 6.6633 6.7963 ! total energy = -62.17885626 Ry Harris-Foulkes estimate = -62.17885626 Ry estimated scf accuracy < 3.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00570919 0.00571012 0.00571094 atom 2 type 1 force = 0.00571111 0.00570948 0.00571141 atom 3 type 1 force = 0.00571075 0.00571109 0.00570917 atom 4 type 1 force = 0.00570996 0.00571009 0.00570942 atom 5 type 1 force = -0.00571025 -0.00570935 -0.00571006 atom 6 type 1 force = -0.00571151 -0.00571169 -0.00570935 atom 7 type 1 force = -0.00571006 -0.00570873 -0.00571073 atom 8 type 1 force = -0.00570920 -0.00571100 -0.00571079 Total force = 0.027974 Total SCF correction = 0.000016 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125996219 -0.125996204 -0.125996213 Si 0.374003790 0.374003773 -0.125996212 Si 0.374003787 -0.125996203 0.374003781 Si -0.125996216 0.374003773 0.374003785 Si 0.125996217 0.125996205 0.125996216 Si 0.625996210 0.625996224 0.125996216 Si 0.625996214 0.125996205 0.625996216 Si 0.125996217 0.625996227 0.625996212 kinetic energy (Ekin) = 0.00307118 Ry temperature = 46.18098884 K Ekin + Etot (const) = -62.17578508 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.03 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.42E-11, avg # of iterations = 5.0 total cpu time spent up to now is 2.09 secs total energy = -62.17855694 Ry Harris-Foulkes estimate = -62.17855696 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.64E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.12 secs total energy = -62.17855694 Ry Harris-Foulkes estimate = -62.17855697 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.64E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0555 -1.0555 -1.0554 -0.9915 -0.9914 -0.9914 3.5835 3.5835 3.5835 3.6212 3.6212 3.6212 6.6528 6.6528 6.8175 ! total energy = -62.17855696 Ry Harris-Foulkes estimate = -62.17855696 Ry estimated scf accuracy < 1.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00704532 0.00704339 0.00704616 atom 2 type 1 force = 0.00704442 0.00704636 0.00704563 atom 3 type 1 force = 0.00704568 0.00704373 0.00704454 atom 4 type 1 force = 0.00704454 0.00704665 0.00704365 atom 5 type 1 force = -0.00704518 -0.00704712 -0.00704433 atom 6 type 1 force = -0.00704545 -0.00704357 -0.00704436 atom 7 type 1 force = -0.00704458 -0.00704641 -0.00704532 atom 8 type 1 force = -0.00704475 -0.00704305 -0.00704597 Total force = 0.034513 Total SCF correction = 0.000013 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126177468 -0.126177447 -0.126177456 Si 0.373822546 0.373822522 -0.126177454 Si 0.373822544 -0.126177444 0.373822531 Si -0.126177463 0.373822524 0.373822537 Si 0.126177464 0.126177443 0.126177463 Si 0.626177452 0.626177476 0.126177463 Si 0.626177461 0.126177445 0.626177461 Si 0.126177465 0.626177481 0.626177455 kinetic energy (Ekin) = 0.00277271 Ry temperature = 41.69300325 K Ekin + Etot (const) = -62.17578424 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.19 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.45E-13, avg # of iterations = 6.0 total cpu time spent up to now is 2.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0613 -1.0613 -1.0613 -0.9860 -0.9860 -0.9860 3.5801 3.5801 3.5801 3.6248 3.6248 3.6248 6.6429 6.6429 6.8376 ! total energy = -62.17821729 Ry Harris-Foulkes estimate = -62.17821729 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00829259 0.00829434 0.00829222 atom 2 type 1 force = 0.00829672 0.00829460 0.00829459 atom 3 type 1 force = 0.00829365 0.00829463 0.00829410 atom 4 type 1 force = 0.00829513 0.00829451 0.00829714 atom 5 type 1 force = -0.00829324 -0.00828612 -0.00829569 atom 6 type 1 force = -0.00829507 -0.00830250 -0.00829591 atom 7 type 1 force = -0.00829553 -0.00828649 -0.00829295 atom 8 type 1 force = -0.00829426 -0.00830298 -0.00829350 Total force = 0.040635 Total SCF correction = 0.000074 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126345987 -0.126345959 -0.126345970 Si 0.373654037 0.373654004 -0.126345965 Si 0.373654030 -0.126345953 0.373654013 Si -0.126345978 0.373654006 0.373654024 Si 0.126345981 0.126345962 0.126345977 Si 0.626345961 0.626345984 0.126345977 Si 0.626345974 0.126345965 0.626345977 Si 0.126345982 0.626345991 0.626345967 kinetic energy (Ekin) = 0.00243398 Ry temperature = 36.59950082 K Ekin + Etot (const) = -62.17578331 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.29 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.28E-11, avg # of iterations = 5.0 total cpu time spent up to now is 2.34 secs total energy = -62.17785196 Ry Harris-Foulkes estimate = -62.17785206 Ry estimated scf accuracy < 0.00000014 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-10, avg # of iterations = 5.0 total cpu time spent up to now is 2.39 secs total energy = -62.17785197 Ry Harris-Foulkes estimate = -62.17785212 Ry estimated scf accuracy < 0.00000041 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-10, avg # of iterations = 5.0 total cpu time spent up to now is 2.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2221 -1.0668 -1.0668 -1.0668 -0.9810 -0.9810 -0.9810 3.5768 3.5769 3.5769 3.6282 3.6282 3.6282 6.6338 6.6338 6.8564 ! total energy = -62.17785203 Ry Harris-Foulkes estimate = -62.17785203 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00944732 0.00945009 0.00944740 atom 2 type 1 force = 0.00944824 0.00944505 0.00944971 atom 3 type 1 force = 0.00944590 0.00945044 0.00944657 atom 4 type 1 force = 0.00944820 0.00944299 0.00944600 atom 5 type 1 force = -0.00944530 -0.00944604 -0.00945142 atom 6 type 1 force = -0.00944878 -0.00944711 -0.00945092 atom 7 type 1 force = -0.00944970 -0.00944642 -0.00944365 atom 8 type 1 force = -0.00944589 -0.00944901 -0.00944368 Total force = 0.046282 Total SCF correction = 0.000036 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126500006 -0.126499965 -0.126499984 Si 0.373500030 0.373499982 -0.126499971 Si 0.373500016 -0.126499956 0.373499994 Si -0.126499991 0.373499983 0.373500010 Si 0.126500001 0.126499982 0.126499984 Si 0.626499967 0.626499991 0.126499985 Si 0.626499982 0.126499986 0.626499998 Si 0.126500000 0.626499997 0.626499984 kinetic energy (Ekin) = 0.00206971 Ry temperature = 31.12202125 K Ekin + Etot (const) = -62.17578232 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.96E-11, avg # of iterations = 6.0 total cpu time spent up to now is 2.51 secs total energy = -62.17747680 Ry Harris-Foulkes estimate = -62.17747685 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-10, avg # of iterations = 6.0 total cpu time spent up to now is 2.56 secs total energy = -62.17747680 Ry Harris-Foulkes estimate = -62.17747688 Ry estimated scf accuracy < 0.00000023 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0718 -1.0718 -1.0718 -0.9766 -0.9766 -0.9765 3.5739 3.5739 3.5739 3.6314 3.6314 3.6314 6.6254 6.6254 6.8735 ! total energy = -62.17747683 Ry Harris-Foulkes estimate = -62.17747684 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01049576 0.01048503 0.01049360 atom 2 type 1 force = 0.01049090 0.01050184 0.01049420 atom 3 type 1 force = 0.01049546 0.01048830 0.01049761 atom 4 type 1 force = 0.01049293 0.01049988 0.01048971 atom 5 type 1 force = -0.01049162 -0.01050121 -0.01049254 atom 6 type 1 force = -0.01050064 -0.01048808 -0.01049703 atom 7 type 1 force = -0.01049185 -0.01049733 -0.01048963 atom 8 type 1 force = -0.01049093 -0.01048843 -0.01049593 Total force = 0.051409 Total SCF correction = 0.000042 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126637914 -0.126637877 -0.126637890 Si 0.373362127 0.373362081 -0.126637869 Si 0.373362112 -0.126637861 0.373362089 Si -0.126637897 0.373362076 0.373362098 Si 0.126637916 0.126637884 0.126637885 Si 0.626637855 0.626637900 0.126637880 Si 0.626637886 0.126637894 0.626637918 Si 0.126637915 0.626637903 0.626637890 kinetic energy (Ekin) = 0.00169551 Ry temperature = 25.49524231 K Ekin + Etot (const) = -62.17578132 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.63 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.50E-11, avg # of iterations = 7.0 total cpu time spent up to now is 2.69 secs total energy = -62.17710753 Ry Harris-Foulkes estimate = -62.17710759 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-10, avg # of iterations = 6.0 total cpu time spent up to now is 2.74 secs total energy = -62.17710754 Ry Harris-Foulkes estimate = -62.17710762 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-10, avg # of iterations = 6.0 total cpu time spent up to now is 2.78 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2226 -1.0763 -1.0763 -1.0763 -0.9726 -0.9726 -0.9726 3.5713 3.5713 3.5713 3.6342 3.6342 3.6342 6.6179 6.6179 6.8888 ! total energy = -62.17710757 Ry Harris-Foulkes estimate = -62.17710757 Ry estimated scf accuracy < 3.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01142578 0.01142597 0.01142296 atom 2 type 1 force = 0.01142504 0.01142700 0.01142386 atom 3 type 1 force = 0.01142412 0.01142359 0.01142766 atom 4 type 1 force = 0.01142401 0.01142206 0.01142472 atom 5 type 1 force = -0.01142318 -0.01142503 -0.01142567 atom 6 type 1 force = -0.01142343 -0.01142346 -0.01142540 atom 7 type 1 force = -0.01142713 -0.01142516 -0.01142368 atom 8 type 1 force = -0.01142522 -0.01142498 -0.01142444 Total force = 0.055970 Total SCF correction = 0.000016 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126758284 -0.126758251 -0.126758263 Si 0.373241760 0.373241720 -0.126758232 Si 0.373241743 -0.126758230 0.373241724 Si -0.126758268 0.373241701 0.373241721 Si 0.126758297 0.126758248 0.126758248 Si 0.626758209 0.626758274 0.126758238 Si 0.626758250 0.126758265 0.626758303 Si 0.126758292 0.626758274 0.626758261 kinetic energy (Ekin) = 0.00132722 Ry temperature = 19.95723229 K Ekin + Etot (const) = -62.17578035 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.82 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.29E-12, avg # of iterations = 6.0 total cpu time spent up to now is 2.89 secs total energy = -62.17675968 Ry Harris-Foulkes estimate = -62.17675970 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-11, avg # of iterations = 6.0 total cpu time spent up to now is 2.93 secs total energy = -62.17675968 Ry Harris-Foulkes estimate = -62.17675971 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-11, avg # of iterations = 6.0 total cpu time spent up to now is 2.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2228 -1.0802 -1.0802 -1.0802 -0.9692 -0.9692 -0.9692 3.5689 3.5689 3.5689 3.6367 3.6367 3.6367 6.6114 6.6114 6.9022 ! total energy = -62.17675969 Ry Harris-Foulkes estimate = -62.17675969 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01223387 0.01223259 0.01223046 atom 2 type 1 force = 0.01223246 0.01223345 0.01223163 atom 3 type 1 force = 0.01223199 0.01223289 0.01223516 atom 4 type 1 force = 0.01223249 0.01223219 0.01223429 atom 5 type 1 force = -0.01223240 -0.01223269 -0.01223434 atom 6 type 1 force = -0.01223187 -0.01223310 -0.01223242 atom 7 type 1 force = -0.01223373 -0.01223186 -0.01223109 atom 8 type 1 force = -0.01223281 -0.01223350 -0.01223369 Total force = 0.059928 Total SCF correction = 0.000012 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126859876 -0.126859849 -0.126859863 Si 0.373140170 0.373140136 -0.126859820 Si 0.373140149 -0.126859823 0.373140140 Si -0.126859863 0.373140103 0.373140124 Si 0.126859902 0.126859836 0.126859833 Si 0.626859788 0.626859871 0.126859820 Si 0.626859837 0.126859861 0.626859914 Si 0.126859894 0.626859866 0.626859853 kinetic energy (Ekin) = 0.00098025 Ry temperature = 14.73985380 K Ekin + Etot (const) = -62.17577945 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.00 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.60E-12, avg # of iterations = 7.0 total cpu time spent up to now is 3.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0835 -1.0834 -1.0834 -0.9663 -0.9663 -0.9663 3.5670 3.5670 3.5670 3.6389 3.6389 3.6389 6.6059 6.6059 6.9135 ! total energy = -62.17644763 Ry Harris-Foulkes estimate = -62.17644763 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01290962 0.01291750 0.01291587 atom 2 type 1 force = 0.01291136 0.01290607 0.01291570 atom 3 type 1 force = 0.01291383 0.01291787 0.01290760 atom 4 type 1 force = 0.01291090 0.01290441 0.01290660 atom 5 type 1 force = -0.01291321 -0.01291637 -0.01291212 atom 6 type 1 force = -0.01291209 -0.01290662 -0.01291148 atom 7 type 1 force = -0.01291078 -0.01291628 -0.01291231 atom 8 type 1 force = -0.01290963 -0.01290659 -0.01290986 Total force = 0.063253 Total SCF correction = 0.000079 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126941653 -0.126941619 -0.126941637 Si 0.373058398 0.373058362 -0.126941584 Si 0.373058377 -0.126941588 0.373058368 Si -0.126941640 0.373058312 0.373058337 Si 0.126941686 0.126941599 0.126941598 Si 0.626941547 0.626941657 0.126941583 Si 0.626941605 0.126941631 0.626941705 Si 0.126941679 0.626941647 0.626941630 kinetic energy (Ekin) = 0.00066899 Ry temperature = 10.05955277 K Ekin + Etot (const) = -62.17577864 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-10, avg # of iterations = 6.0 total cpu time spent up to now is 3.16 secs total energy = -62.17618416 Ry Harris-Foulkes estimate = -62.17618426 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-10, avg # of iterations = 6.0 total cpu time spent up to now is 3.21 secs total energy = -62.17618415 Ry Harris-Foulkes estimate = -62.17618434 Ry estimated scf accuracy < 0.00000055 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-10, avg # of iterations = 5.0 total cpu time spent up to now is 3.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2231 -1.0861 -1.0861 -1.0861 -0.9640 -0.9640 -0.9640 3.5654 3.5654 3.5654 3.6406 3.6406 3.6406 6.6015 6.6015 6.9226 ! total energy = -62.17618423 Ry Harris-Foulkes estimate = -62.17618423 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01345099 0.01345615 0.01345710 atom 2 type 1 force = 0.01346014 0.01345540 0.01346058 atom 3 type 1 force = 0.01345830 0.01345602 0.01345174 atom 4 type 1 force = 0.01345302 0.01345533 0.01345285 atom 5 type 1 force = -0.01345661 -0.01345273 -0.01345369 atom 6 type 1 force = -0.01345609 -0.01346080 -0.01345541 atom 7 type 1 force = -0.01345551 -0.01345264 -0.01345903 atom 8 type 1 force = -0.01345424 -0.01345674 -0.01345415 Total force = 0.065919 Total SCF correction = 0.000036 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127002783 -0.127002735 -0.127002756 Si 0.372997286 0.372997241 -0.127002686 Si 0.372997264 -0.127002699 0.372997244 Si -0.127002768 0.372997174 0.372997200 Si 0.127002815 0.127002712 0.127002712 Si 0.627002652 0.627002781 0.127002693 Si 0.627002720 0.127002752 0.627002837 Si 0.127002814 0.627002774 0.627002755 kinetic energy (Ekin) = 0.00040627 Ry temperature = 6.10901298 K Ekin + Etot (const) = -62.17577797 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.28 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.23E-11, avg # of iterations = 7.0 total cpu time spent up to now is 3.34 secs total energy = -62.17598024 Ry Harris-Foulkes estimate = -62.17598029 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 6.0 total cpu time spent up to now is 3.38 secs total energy = -62.17598024 Ry Harris-Foulkes estimate = -62.17598032 Ry estimated scf accuracy < 0.00000023 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 4.0 total cpu time spent up to now is 3.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0881 -1.0880 -1.0880 -0.9623 -0.9623 -0.9623 3.5642 3.5642 3.5642 3.6419 3.6419 3.6419 6.5982 6.5982 6.9294 ! total energy = -62.17598027 Ry Harris-Foulkes estimate = -62.17598027 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01385767 0.01386478 0.01386252 atom 2 type 1 force = 0.01386084 0.01385462 0.01386136 atom 3 type 1 force = 0.01386375 0.01386606 0.01385852 atom 4 type 1 force = 0.01386146 0.01385879 0.01386144 atom 5 type 1 force = -0.01386381 -0.01385661 -0.01385687 atom 6 type 1 force = -0.01385881 -0.01386870 -0.01385912 atom 7 type 1 force = -0.01385986 -0.01385901 -0.01386716 atom 8 type 1 force = -0.01386124 -0.01385994 -0.01386070 Total force = 0.067905 Total SCF correction = 0.000039 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127042642 -0.127042569 -0.127042596 Si 0.372957450 0.372957387 -0.127042511 Si 0.372957430 -0.127042526 0.372957392 Si -0.127042619 0.372957308 0.372957340 Si 0.127042664 0.127042556 0.127042557 Si 0.627042484 0.627042618 0.127042530 Si 0.627042562 0.127042600 0.627042685 Si 0.127042671 0.627042626 0.627042605 kinetic energy (Ekin) = 0.00020283 Ry temperature = 3.04989100 K Ekin + Etot (const) = -62.17577745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.45 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.52E-11, avg # of iterations = 7.0 total cpu time spent up to now is 3.51 secs total energy = -62.17584404 Ry Harris-Foulkes estimate = -62.17584406 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.78E-11, avg # of iterations = 6.0 total cpu time spent up to now is 3.56 secs total energy = -62.17584404 Ry Harris-Foulkes estimate = -62.17584407 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.78E-11, avg # of iterations = 5.0 total cpu time spent up to now is 3.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0893 -1.0893 -1.0893 -0.9612 -0.9612 -0.9612 3.5634 3.5634 3.5634 3.6427 3.6427 3.6428 6.5961 6.5961 6.9338 ! total energy = -62.17584405 Ry Harris-Foulkes estimate = -62.17584405 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01412510 0.01412452 0.01412353 atom 2 type 1 force = 0.01412505 0.01412412 0.01412520 atom 3 type 1 force = 0.01412390 0.01412552 0.01412514 atom 4 type 1 force = 0.01412472 0.01412421 0.01412485 atom 5 type 1 force = -0.01412500 -0.01412378 -0.01412408 atom 6 type 1 force = -0.01412468 -0.01412526 -0.01412542 atom 7 type 1 force = -0.01412481 -0.01412414 -0.01412566 atom 8 type 1 force = -0.01412428 -0.01412519 -0.01412355 Total force = 0.069196 Total SCF correction = 0.000014 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127060820 -0.127060723 -0.127060758 Si 0.372939295 0.372939212 -0.127060656 Si 0.372939275 -0.127060671 0.372939221 Si -0.127060790 0.372939122 0.372939160 Si 0.127060832 0.127060721 0.127060722 Si 0.627060636 0.627060774 0.127060685 Si 0.627060722 0.127060768 0.627060850 Si 0.127060849 0.627060796 0.627060776 kinetic energy (Ekin) = 0.00006695 Ry temperature = 1.00677828 K Ekin + Etot (const) = -62.17577710 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.63 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.79E-12, avg # of iterations = 7.0 total cpu time spent up to now is 3.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0899 -1.0899 -1.0899 -0.9608 -0.9608 -0.9607 3.5631 3.5631 3.5631 3.6431 3.6431 3.6431 6.5951 6.5951 6.9359 ! total energy = -62.17578110 Ry Harris-Foulkes estimate = -62.17578110 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01424323 0.01425196 0.01424618 atom 2 type 1 force = 0.01424374 0.01423549 0.01424413 atom 3 type 1 force = 0.01424677 0.01425152 0.01424381 atom 4 type 1 force = 0.01424533 0.01424024 0.01424502 atom 5 type 1 force = -0.01424936 -0.01424695 -0.01424267 atom 6 type 1 force = -0.01424103 -0.01424275 -0.01423868 atom 7 type 1 force = -0.01424299 -0.01424698 -0.01424984 atom 8 type 1 force = -0.01424569 -0.01424252 -0.01424796 Total force = 0.069785 Total SCF correction = 0.000083 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127057135 -0.127057000 -0.127057053 Si 0.372943003 0.372942888 -0.127056936 Si 0.372942989 -0.127056941 0.372942914 Si -0.127057095 0.372942795 0.372942845 Si 0.127057128 0.127057017 0.127057026 Si 0.627056929 0.627057067 0.127056985 Si 0.627057020 0.127057069 0.627057142 Si 0.127057161 0.627057105 0.627057077 kinetic energy (Ekin) = 0.00000416 Ry temperature = 0.06259184 K Ekin + Etot (const) = -62.17577694 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.73 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.72E-11, avg # of iterations = 6.0 total cpu time spent up to now is 3.78 secs total energy = -62.17579396 Ry Harris-Foulkes estimate = -62.17579398 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-11, avg # of iterations = 6.0 total cpu time spent up to now is 3.83 secs total energy = -62.17579396 Ry Harris-Foulkes estimate = -62.17579399 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-11, avg # of iterations = 5.0 total cpu time spent up to now is 3.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0898 -1.0898 -1.0898 -0.9608 -0.9608 -0.9608 3.5631 3.5631 3.5631 3.6431 3.6431 3.6431 6.5953 6.5953 6.9355 ! total energy = -62.17579397 Ry Harris-Foulkes estimate = -62.17579397 Ry estimated scf accuracy < 3.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01422033 0.01421974 0.01422105 atom 2 type 1 force = 0.01422011 0.01421978 0.01422125 atom 3 type 1 force = 0.01421933 0.01422129 0.01421861 atom 4 type 1 force = 0.01422135 0.01422026 0.01422014 atom 5 type 1 force = -0.01422230 -0.01421904 -0.01422207 atom 6 type 1 force = -0.01421997 -0.01422237 -0.01421788 atom 7 type 1 force = -0.01421890 -0.01421747 -0.01421943 atom 8 type 1 force = -0.01421997 -0.01422219 -0.01422167 Total force = 0.069665 Total SCF correction = 0.000020 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127031623 -0.127031452 -0.127031519 Si 0.372968538 0.372968390 -0.127031388 Si 0.372968528 -0.127031382 0.372968431 Si -0.127031571 0.372968294 0.372968358 Si 0.127031593 0.127031489 0.127031499 Si 0.627031395 0.627031530 0.127031461 Si 0.627031493 0.127031546 0.627031608 Si 0.127031646 0.627031584 0.627031549 kinetic energy (Ekin) = 0.00001700 Ry temperature = 0.25558642 K Ekin + Etot (const) = -62.17577697 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.90 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.69E-09, avg # of iterations = 6.0 total cpu time spent up to now is 3.96 secs total energy = -62.17588095 Ry Harris-Foulkes estimate = -62.17588259 Ry estimated scf accuracy < 0.00000229 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.14E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.00 secs total energy = -62.17588089 Ry Harris-Foulkes estimate = -62.17588370 Ry estimated scf accuracy < 0.00000842 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.14E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.05 secs total energy = -62.17588212 Ry Harris-Foulkes estimate = -62.17588213 Ry estimated scf accuracy < 0.00000003 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.59E-11, avg # of iterations = 5.0 total cpu time spent up to now is 4.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0890 -1.0890 -1.0890 -0.9616 -0.9615 -0.9615 3.5636 3.5636 3.5636 3.6425 3.6425 3.6425 6.5966 6.5967 6.9326 ! total energy = -62.17588213 Ry Harris-Foulkes estimate = -62.17588214 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01405340 0.01405725 0.01405024 atom 2 type 1 force = 0.01405261 0.01404702 0.01405037 atom 3 type 1 force = 0.01404905 0.01405659 0.01405355 atom 4 type 1 force = 0.01405116 0.01404594 0.01405185 atom 5 type 1 force = -0.01405061 -0.01405372 -0.01405297 atom 6 type 1 force = -0.01405142 -0.01404986 -0.01404896 atom 7 type 1 force = -0.01405450 -0.01405245 -0.01405253 atom 8 type 1 force = -0.01404969 -0.01405077 -0.01405155 Total force = 0.068838 Total SCF correction = 0.000057 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126984540 -0.126984326 -0.126984419 Si 0.373015644 0.373015454 -0.126984273 Si 0.373015632 -0.126984246 0.373015520 Si -0.126984479 0.373015353 0.373015439 Si 0.126984492 0.126984388 0.126984402 Si 0.626984292 0.626984428 0.126984373 Si 0.626984393 0.126984453 0.626984505 Si 0.126984565 0.626984496 0.626984452 kinetic energy (Ekin) = 0.00010494 Ry temperature = 1.57794977 K Ekin + Etot (const) = -62.17577720 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.17 secs total energy = -62.17604192 Ry Harris-Foulkes estimate = -62.17604206 Ry estimated scf accuracy < 0.00000019 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.21 secs total energy = -62.17604192 Ry Harris-Foulkes estimate = -62.17604216 Ry estimated scf accuracy < 0.00000071 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-10, avg # of iterations = 5.0 total cpu time spent up to now is 4.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0875 -1.0875 -1.0874 -0.9629 -0.9628 -0.9628 3.5645 3.5646 3.5646 3.6415 3.6415 3.6415 6.5992 6.5992 6.9274 ! total energy = -62.17604202 Ry Harris-Foulkes estimate = -62.17604202 Ry estimated scf accuracy < 5.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01373442 0.01374330 0.01373511 atom 2 type 1 force = 0.01373181 0.01372954 0.01374358 atom 3 type 1 force = 0.01373870 0.01375345 0.01373727 atom 4 type 1 force = 0.01375335 0.01373277 0.01374259 atom 5 type 1 force = -0.01374497 -0.01373254 -0.01374314 atom 6 type 1 force = -0.01373901 -0.01375508 -0.01373032 atom 7 type 1 force = -0.01374264 -0.01372156 -0.01374471 atom 8 type 1 force = -0.01373167 -0.01374990 -0.01374037 Total force = 0.067310 Total SCF correction = 0.000082 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126916376 -0.126916105 -0.126916236 Si 0.373083827 0.373083592 -0.126916062 Si 0.373083824 -0.126916001 0.373083694 Si -0.126916276 0.373083492 0.373083615 Si 0.126916293 0.126916209 0.126916211 Si 0.626916102 0.626916212 0.126916210 Si 0.626916199 0.126916299 0.626916304 Si 0.126916407 0.626916303 0.626916265 kinetic energy (Ekin) = 0.00026442 Ry temperature = 3.97609154 K Ekin + Etot (const) = -62.17577760 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.28 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.99E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.34 secs total energy = -62.17626700 Ry Harris-Foulkes estimate = -62.17626721 Ry estimated scf accuracy < 0.00000030 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.50E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.39 secs total energy = -62.17626701 Ry Harris-Foulkes estimate = -62.17626732 Ry estimated scf accuracy < 0.00000089 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.50E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2231 -1.0853 -1.0853 -1.0852 -0.9648 -0.9647 -0.9647 3.5659 3.5659 3.5659 3.6401 3.6401 3.6401 6.6029 6.6029 6.9198 ! total energy = -62.17626714 Ry Harris-Foulkes estimate = -62.17626715 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01328249 0.01328497 0.01328510 atom 2 type 1 force = 0.01328626 0.01328485 0.01329054 atom 3 type 1 force = 0.01329035 0.01329227 0.01328981 atom 4 type 1 force = 0.01328841 0.01328497 0.01328181 atom 5 type 1 force = -0.01328360 -0.01328779 -0.01328408 atom 6 type 1 force = -0.01329173 -0.01328418 -0.01328075 atom 7 type 1 force = -0.01329191 -0.01328540 -0.01329083 atom 8 type 1 force = -0.01328025 -0.01328970 -0.01329160 Total force = 0.065092 Total SCF correction = 0.000066 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126827823 -0.126827492 -0.126827661 Si 0.373172403 0.373172121 -0.126827452 Si 0.373172416 -0.126827352 0.373172268 Si -0.126827677 0.373172022 0.373172177 Si 0.126827704 0.126827634 0.126827628 Si 0.626827509 0.626827605 0.126827661 Si 0.626827603 0.126827752 0.626827703 Si 0.126827865 0.626827710 0.626827675 kinetic energy (Ekin) = 0.00048897 Ry temperature = 7.35255124 K Ekin + Etot (const) = -62.17577818 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.62E-10, avg # of iterations = 7.0 total cpu time spent up to now is 4.52 secs total energy = -62.17654820 Ry Harris-Foulkes estimate = -62.17654837 Ry estimated scf accuracy < 0.00000024 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.66E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.57 secs total energy = -62.17654820 Ry Harris-Foulkes estimate = -62.17654847 Ry estimated scf accuracy < 0.00000078 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.66E-10, avg # of iterations = 5.0 total cpu time spent up to now is 4.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0824 -1.0824 -1.0824 -0.9672 -0.9672 -0.9672 3.5676 3.5676 3.5676 3.6382 3.6382 3.6382 6.6077 6.6077 6.9099 ! total energy = -62.17654831 Ry Harris-Foulkes estimate = -62.17654832 Ry estimated scf accuracy < 8.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01269523 0.01268072 0.01269420 atom 2 type 1 force = 0.01270057 0.01270443 0.01269259 atom 3 type 1 force = 0.01270938 0.01269215 0.01270432 atom 4 type 1 force = 0.01268102 0.01271004 0.01269787 atom 5 type 1 force = -0.01268893 -0.01268926 -0.01268087 atom 6 type 1 force = -0.01270420 -0.01269351 -0.01270410 atom 7 type 1 force = -0.01269732 -0.01270338 -0.01269326 atom 8 type 1 force = -0.01269575 -0.01270119 -0.01271075 Total force = 0.062202 Total SCF correction = 0.000088 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126719784 -0.126719415 -0.126719602 Si 0.373280474 0.373280151 -0.126719358 Si 0.373280516 -0.126719221 0.373280342 Si -0.126719613 0.373280061 0.373280230 Si 0.126719638 0.126719581 0.126719582 Si 0.626719416 0.626719515 0.126719613 Si 0.626719517 0.126719706 0.626719618 Si 0.126719835 0.626719622 0.626719576 kinetic energy (Ekin) = 0.00076942 Ry temperature = 11.56964499 K Ekin + Etot (const) = -62.17577889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.64 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.87E-10, avg # of iterations = 8.0 total cpu time spent up to now is 4.71 secs total energy = -62.17687385 Ry Harris-Foulkes estimate = -62.17687409 Ry estimated scf accuracy < 0.00000036 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.75 secs total energy = -62.17687385 Ry Harris-Foulkes estimate = -62.17687423 Ry estimated scf accuracy < 0.00000107 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 5.0 total cpu time spent up to now is 4.78 secs total energy = -62.17687401 Ry Harris-Foulkes estimate = -62.17687402 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.76E-11, avg # of iterations = 6.0 total cpu time spent up to now is 4.82 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0789 -1.0789 -1.0789 -0.9703 -0.9703 -0.9702 3.5697 3.5697 3.5697 3.6359 3.6359 3.6359 6.6135 6.6135 6.8979 ! total energy = -62.17687402 Ry Harris-Foulkes estimate = -62.17687402 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01197357 0.01197666 0.01197144 atom 2 type 1 force = 0.01197046 0.01196855 0.01197676 atom 3 type 1 force = 0.01196919 0.01198132 0.01197318 atom 4 type 1 force = 0.01198146 0.01196838 0.01197317 atom 5 type 1 force = -0.01197603 -0.01197357 -0.01197618 atom 6 type 1 force = -0.01197179 -0.01197616 -0.01197163 atom 7 type 1 force = -0.01197380 -0.01196640 -0.01197226 atom 8 type 1 force = -0.01197305 -0.01197877 -0.01197449 Total force = 0.058659 Total SCF correction = 0.000074 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126593366 -0.126592955 -0.126593167 Si 0.373406919 0.373406552 -0.126592882 Si 0.373406988 -0.126592700 0.373406794 Si -0.126593158 0.373406471 0.373406661 Si 0.126593190 0.126593150 0.126593152 Si 0.626592946 0.626593042 0.126593188 Si 0.626593052 0.126593293 0.626593156 Si 0.126593428 0.626593147 0.626593096 kinetic energy (Ekin) = 0.00109428 Ry temperature = 16.45449359 K Ekin + Etot (const) = -62.17577974 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.91 secs total energy = -62.17723063 Ry Harris-Foulkes estimate = -62.17723088 Ry estimated scf accuracy < 0.00000034 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.96 secs total energy = -62.17723065 Ry Harris-Foulkes estimate = -62.17723101 Ry estimated scf accuracy < 0.00000100 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-09, avg # of iterations = 5.0 total cpu time spent up to now is 5.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2225 -1.0749 -1.0748 -1.0748 -0.9739 -0.9739 -0.9739 3.5721 3.5721 3.5721 3.6333 3.6333 3.6333 6.6203 6.6203 6.8838 ! total energy = -62.17723080 Ry Harris-Foulkes estimate = -62.17723081 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01111934 0.01112388 0.01112196 atom 2 type 1 force = 0.01112173 0.01111683 0.01112895 atom 3 type 1 force = 0.01112757 0.01112762 0.01111842 atom 4 type 1 force = 0.01112445 0.01112407 0.01112359 atom 5 type 1 force = -0.01112639 -0.01112892 -0.01111838 atom 6 type 1 force = -0.01112788 -0.01112427 -0.01112116 atom 7 type 1 force = -0.01111980 -0.01112080 -0.01112690 atom 8 type 1 force = -0.01111903 -0.01111841 -0.01112647 Total force = 0.054492 Total SCF correction = 0.000049 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126449881 -0.126449420 -0.126449660 Si 0.373550436 0.373550016 -0.126449323 Si 0.373550541 -0.126449099 0.373550313 Si -0.126449628 0.373549955 0.373550166 Si 0.126449664 0.126449637 0.126449657 Si 0.626449397 0.626449494 0.126449693 Si 0.626449519 0.126449810 0.626449616 Si 0.126449953 0.626449606 0.626449538 kinetic energy (Ekin) = 0.00145013 Ry temperature = 21.80543561 K Ekin + Etot (const) = -62.17578067 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.03 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.23E-10, avg # of iterations = 6.0 total cpu time spent up to now is 5.09 secs total energy = -62.17760378 Ry Harris-Foulkes estimate = -62.17760387 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.13 secs total energy = -62.17760379 Ry Harris-Foulkes estimate = -62.17760391 Ry estimated scf accuracy < 0.00000033 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2223 -1.0702 -1.0702 -1.0702 -0.9780 -0.9780 -0.9780 3.5749 3.5749 3.5749 3.6303 3.6303 3.6303 6.6281 6.6281 6.8679 ! total energy = -62.17760384 Ry Harris-Foulkes estimate = -62.17760384 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01015400 0.01014899 0.01014805 atom 2 type 1 force = 0.01015075 0.01015750 0.01015317 atom 3 type 1 force = 0.01015058 0.01014739 0.01015410 atom 4 type 1 force = 0.01015330 0.01015566 0.01015391 atom 5 type 1 force = -0.01015500 -0.01015424 -0.01015211 atom 6 type 1 force = -0.01015236 -0.01015282 -0.01015186 atom 7 type 1 force = -0.01014723 -0.01015047 -0.01015079 atom 8 type 1 force = -0.01015404 -0.01015202 -0.01015447 Total force = 0.049736 Total SCF correction = 0.000043 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126290810 -0.126290307 -0.126290577 Si 0.373709533 0.373709072 -0.126290179 Si 0.373709674 -0.126289922 0.373709417 Si -0.126290513 0.373709028 0.373709256 Si 0.126290550 0.126290537 0.126290578 Si 0.626290264 0.626290362 0.126290616 Si 0.626290410 0.126290746 0.626290494 Si 0.126290893 0.626290483 0.626290394 kinetic energy (Ekin) = 0.00182218 Ry temperature = 27.39985160 K Ekin + Etot (const) = -62.17578166 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.20 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.76E-11, avg # of iterations = 6.0 total cpu time spent up to now is 5.27 secs total energy = -62.17797741 Ry Harris-Foulkes estimate = -62.17797747 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-10, avg # of iterations = 6.0 total cpu time spent up to now is 5.31 secs total energy = -62.17797741 Ry Harris-Foulkes estimate = -62.17797751 Ry estimated scf accuracy < 0.00000027 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.35 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2221 -1.0650 -1.0650 -1.0650 -0.9827 -0.9827 -0.9827 3.5779 3.5779 3.5779 3.6271 3.6271 3.6271 6.6368 6.6368 6.8502 ! total energy = -62.17797745 Ry Harris-Foulkes estimate = -62.17797746 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00906794 0.00906943 0.00906285 atom 2 type 1 force = 0.00907322 0.00907070 0.00906460 atom 3 type 1 force = 0.00906778 0.00906638 0.00907528 atom 4 type 1 force = 0.00906735 0.00906935 0.00907304 atom 5 type 1 force = -0.00906968 -0.00906626 -0.00907062 atom 6 type 1 force = -0.00906593 -0.00906952 -0.00906938 atom 7 type 1 force = -0.00906605 -0.00906748 -0.00906700 atom 8 type 1 force = -0.00907462 -0.00907262 -0.00906878 Total force = 0.044429 Total SCF correction = 0.000037 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126117820 -0.126117273 -0.126117582 Si 0.373882557 0.373882051 -0.126117122 Si 0.373882725 -0.126116828 0.373882452 Si -0.126117480 0.373882022 0.373882274 Si 0.126117515 0.126117521 0.126117577 Si 0.626117215 0.626117309 0.126117618 Si 0.626117385 0.126117765 0.626117455 Si 0.126117903 0.626117433 0.626117329 kinetic energy (Ekin) = 0.00219479 Ry temperature = 33.00279449 K Ekin + Etot (const) = -62.17578267 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.38 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.71E-11, avg # of iterations = 7.0 total cpu time spent up to now is 5.45 secs total energy = -62.17833576 Ry Harris-Foulkes estimate = -62.17833579 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.49 secs total energy = -62.17833576 Ry Harris-Foulkes estimate = -62.17833581 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.53 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0594 -1.0594 -1.0594 -0.9878 -0.9878 -0.9878 3.5812 3.5812 3.5812 3.6236 3.6236 3.6236 6.6462 6.6462 6.8310 ! total energy = -62.17833578 Ry Harris-Foulkes estimate = -62.17833578 Ry estimated scf accuracy < 4.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00788232 0.00788170 0.00788230 atom 2 type 1 force = 0.00788106 0.00788030 0.00788273 atom 3 type 1 force = 0.00788152 0.00788334 0.00788162 atom 4 type 1 force = 0.00788366 0.00788320 0.00788175 atom 5 type 1 force = -0.00788303 -0.00788426 -0.00788258 atom 6 type 1 force = -0.00788039 -0.00787994 -0.00788274 atom 7 type 1 force = -0.00788254 -0.00788439 -0.00788094 atom 8 type 1 force = -0.00788262 -0.00787995 -0.00788213 Total force = 0.038614 Total SCF correction = 0.000022 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125932731 -0.125932141 -0.125932489 Si 0.374067678 0.374067126 -0.125931965 Si 0.374067874 -0.125931634 0.374067584 Si -0.125932346 0.374067117 0.374067389 Si 0.125932380 0.125932404 0.125932477 Si 0.625932070 0.625932161 0.125932520 Si 0.625932261 0.125932681 0.625932319 Si 0.125932814 0.625932288 0.625932166 kinetic energy (Ekin) = 0.00255214 Ry temperature = 38.37620336 K Ekin + Etot (const) = -62.17578364 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.56 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.57E-11, avg # of iterations = 6.0 total cpu time spent up to now is 5.62 secs total energy = -62.17866337 Ry Harris-Foulkes estimate = -62.17866339 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.66 secs total energy = -62.17866337 Ry Harris-Foulkes estimate = -62.17866341 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0534 -1.0534 -1.0534 -0.9934 -0.9934 -0.9934 3.5847 3.5847 3.5847 3.6199 3.6199 3.6199 6.6563 6.6563 6.8105 ! total energy = -62.17866339 Ry Harris-Foulkes estimate = -62.17866339 Ry estimated scf accuracy < 2.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00660162 0.00660134 0.00660364 atom 2 type 1 force = 0.00660103 0.00660190 0.00660129 atom 3 type 1 force = 0.00660375 0.00660307 0.00660280 atom 4 type 1 force = 0.00660433 0.00660382 0.00660228 atom 5 type 1 force = -0.00660164 -0.00660344 -0.00660413 atom 6 type 1 force = -0.00660294 -0.00660239 -0.00660258 atom 7 type 1 force = -0.00660293 -0.00660224 -0.00660217 atom 8 type 1 force = -0.00660323 -0.00660207 -0.00660113 Total force = 0.032346 Total SCF correction = 0.000012 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125737510 -0.125736877 -0.125737260 Si 0.374262931 0.374262334 -0.125736675 Si 0.374263159 -0.125736305 0.374262851 Si -0.125737075 0.374262347 0.374262638 Si 0.125737111 0.125737150 0.125737239 Si 0.625736790 0.625736878 0.125737287 Si 0.625737002 0.125737463 0.625737050 Si 0.125737590 0.625737009 0.625736870 kinetic energy (Ekin) = 0.00287884 Ry temperature = 43.28873287 K Ekin + Etot (const) = -62.17578455 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.73 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.14E-12, avg # of iterations = 6.0 total cpu time spent up to now is 5.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0470 -1.0470 -1.0470 -0.9994 -0.9994 -0.9993 3.5884 3.5884 3.5884 3.6161 3.6161 3.6161 6.6670 6.6670 6.7888 ! total energy = -62.17894595 Ry Harris-Foulkes estimate = -62.17894595 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00524694 0.00524053 0.00524385 atom 2 type 1 force = 0.00523950 0.00524366 0.00524611 atom 3 type 1 force = 0.00523528 0.00524005 0.00524000 atom 4 type 1 force = 0.00524544 0.00524296 0.00523702 atom 5 type 1 force = -0.00524727 -0.00525017 -0.00524149 atom 6 type 1 force = -0.00523904 -0.00523719 -0.00524068 atom 7 type 1 force = -0.00523768 -0.00524591 -0.00524031 atom 8 type 1 force = -0.00524316 -0.00523391 -0.00524451 Total force = 0.025679 Total SCF correction = 0.000090 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125534234 -0.125533568 -0.125533982 Si 0.374466227 0.374465591 -0.125533334 Si 0.374466481 -0.125532933 0.374466161 Si -0.125533752 0.374465626 0.374465926 Si 0.125533789 0.125533838 0.125533956 Si 0.625533469 0.625533556 0.125534011 Si 0.625533704 0.125534193 0.625533736 Si 0.125534317 0.625533697 0.625533524 kinetic energy (Ekin) = 0.00316060 Ry temperature = 47.52559954 K Ekin + Etot (const) = -62.17578535 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.83 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.20E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.89 secs total energy = -62.17917079 Ry Harris-Foulkes estimate = -62.17917091 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 6.0 total cpu time spent up to now is 5.93 secs total energy = -62.17917080 Ry Harris-Foulkes estimate = -62.17917097 Ry estimated scf accuracy < 0.00000045 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0404 -1.0404 -1.0404 -1.0057 -1.0057 -1.0057 3.5922 3.5922 3.5922 3.6121 3.6121 3.6122 6.6781 6.6781 6.7664 ! total energy = -62.17917087 Ry Harris-Foulkes estimate = -62.17917087 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00381225 0.00381325 0.00381177 atom 2 type 1 force = 0.00381536 0.00381593 0.00381189 atom 3 type 1 force = 0.00381408 0.00380782 0.00381444 atom 4 type 1 force = 0.00380907 0.00381333 0.00381288 atom 5 type 1 force = -0.00381560 -0.00381474 -0.00381062 atom 6 type 1 force = -0.00381098 -0.00381496 -0.00381164 atom 7 type 1 force = -0.00381212 -0.00381131 -0.00381246 atom 8 type 1 force = -0.00381205 -0.00380932 -0.00381625 Total force = 0.018678 Total SCF correction = 0.000037 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125325107 -0.125324406 -0.125324852 Si 0.374675379 0.374674705 -0.125324141 Si 0.374675656 -0.125323715 0.374675327 Si -0.125324583 0.374674757 0.374675067 Si 0.125324609 0.125324670 0.125324824 Si 0.625324298 0.625324379 0.125324883 Si 0.625324554 0.125325073 0.625324571 Si 0.125325193 0.625324537 0.625324321 kinetic energy (Ekin) = 0.00338487 Ry temperature = 50.89786838 K Ekin + Etot (const) = -62.17578601 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.00 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.80E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.06 secs total energy = -62.17932781 Ry Harris-Foulkes estimate = -62.17932788 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.11 secs total energy = -62.17932782 Ry Harris-Foulkes estimate = -62.17932791 Ry estimated scf accuracy < 0.00000024 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 4.0 total cpu time spent up to now is 6.14 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0335 -1.0335 -1.0335 -1.0124 -1.0123 -1.0123 3.5961 3.5961 3.5961 3.6081 3.6082 3.6082 6.6896 6.6896 6.7433 ! total energy = -62.17932786 Ry Harris-Foulkes estimate = -62.17932786 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00232845 0.00232843 0.00232909 atom 2 type 1 force = 0.00233145 0.00232967 0.00232968 atom 3 type 1 force = 0.00232717 0.00232829 0.00232649 atom 4 type 1 force = 0.00233063 0.00233090 0.00233102 atom 5 type 1 force = -0.00233087 -0.00232900 -0.00233122 atom 6 type 1 force = -0.00233157 -0.00233167 -0.00232359 atom 7 type 1 force = -0.00233256 -0.00232789 -0.00233487 atom 8 type 1 force = -0.00232271 -0.00232873 -0.00232659 Total force = 0.011411 Total SCF correction = 0.000030 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125112405 -0.125111671 -0.125112148 Si 0.374888109 0.374887395 -0.125111372 Si 0.374888404 -0.125110924 0.374888063 Si -0.125111836 0.374887467 0.374887785 Si 0.125111852 0.125111927 0.125112114 Si 0.625111548 0.625111623 0.125112190 Si 0.625111824 0.125112380 0.625111822 Si 0.125112504 0.625111803 0.625111546 kinetic energy (Ekin) = 0.00354137 Ry temperature = 53.25118528 K Ekin + Etot (const) = -62.17578649 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.18 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.06E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.24 secs total energy = -62.17940940 Ry Harris-Foulkes estimate = -62.17940942 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.29 secs total energy = -62.17940940 Ry Harris-Foulkes estimate = -62.17940942 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.32 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0265 -1.0265 -1.0265 -1.0192 -1.0192 -1.0192 3.6000 3.6000 3.6000 3.6042 3.6042 3.6042 6.7013 6.7013 6.7198 ! total energy = -62.17940941 Ry Harris-Foulkes estimate = -62.17940941 Ry estimated scf accuracy < 4.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00080741 0.00080467 0.00080525 atom 2 type 1 force = 0.00080512 0.00080926 0.00080581 atom 3 type 1 force = 0.00080865 0.00080505 0.00080704 atom 4 type 1 force = 0.00080585 0.00080784 0.00080856 atom 5 type 1 force = -0.00080896 -0.00080877 -0.00080872 atom 6 type 1 force = -0.00080476 -0.00080574 -0.00080491 atom 7 type 1 force = -0.00080584 -0.00080636 -0.00080752 atom 8 type 1 force = -0.00080747 -0.00080595 -0.00080550 Total force = 0.003952 Total SCF correction = 0.000025 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124898465 -0.124897700 -0.124898208 Si 0.375102076 0.375101327 -0.124897366 Si 0.375102393 -0.124896898 0.375102038 Si -0.124897853 0.375101416 0.375101745 Si 0.124897854 0.124897943 0.124898162 Si 0.624897562 0.624897630 0.124898260 Si 0.624897856 0.124898449 0.624897834 Si 0.124898576 0.624897832 0.624897535 kinetic energy (Ekin) = 0.00362264 Ry temperature = 54.47326159 K Ekin + Etot (const) = -62.17578677 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.36 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.42E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.42 secs total energy = -62.17941124 Ry Harris-Foulkes estimate = -62.17941125 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.41E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.46 secs total energy = -62.17941124 Ry Harris-Foulkes estimate = -62.17941126 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.41E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0262 -1.0262 -1.0262 -1.0195 -1.0195 -1.0195 3.6002 3.6002 3.6002 3.6040 3.6040 3.6040 6.6962 6.7131 6.7131 ! total energy = -62.17941125 Ry Harris-Foulkes estimate = -62.17941125 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00073834 -0.00074227 -0.00073839 atom 2 type 1 force = -0.00074044 -0.00073875 -0.00073951 atom 3 type 1 force = -0.00073776 -0.00073808 -0.00073844 atom 4 type 1 force = -0.00073856 -0.00073608 -0.00073924 atom 5 type 1 force = 0.00073687 0.00073612 0.00073591 atom 6 type 1 force = 0.00073859 0.00074117 0.00073843 atom 7 type 1 force = 0.00074119 0.00073937 0.00074039 atom 8 type 1 force = 0.00073844 0.00073852 0.00074083 Total force = 0.003619 Total SCF correction = 0.000011 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124685658 -0.124684868 -0.124685401 Si 0.375314906 0.375314125 -0.124684495 Si 0.375315250 -0.124684004 0.375314879 Si -0.124685003 0.375314236 0.375314569 Si 0.124684986 0.124685089 0.124685340 Si 0.624684711 0.624684774 0.124685464 Si 0.624685027 0.124685653 0.624684981 Si 0.124685781 0.624684995 0.624684661 kinetic energy (Ekin) = 0.00362441 Ry temperature = 54.49987089 K Ekin + Etot (const) = -62.17578684 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.53 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.18E-12, avg # of iterations = 5.0 total cpu time spent up to now is 6.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0334 -1.0333 -1.0333 -1.0125 -1.0125 -1.0125 3.5964 3.5964 3.5964 3.6079 3.6079 3.6079 6.6727 6.7248 6.7248 ! total energy = -62.17933255 Ry Harris-Foulkes estimate = -62.17933255 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00229046 -0.00229250 -0.00229670 atom 2 type 1 force = -0.00228904 -0.00228525 -0.00229331 atom 3 type 1 force = -0.00228936 -0.00229497 -0.00228521 atom 4 type 1 force = -0.00229188 -0.00228795 -0.00228598 atom 5 type 1 force = 0.00228245 0.00229025 0.00229394 atom 6 type 1 force = 0.00229449 0.00228771 0.00229633 atom 7 type 1 force = 0.00229695 0.00229283 0.00228599 atom 8 type 1 force = 0.00228685 0.00228988 0.00228495 Total force = 0.011220 Total SCF correction = 0.000087 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124476366 -0.124475556 -0.124476120 Si 0.375524222 0.375523416 -0.124475145 Si 0.375524592 -0.124474633 0.375524213 Si -0.124475671 0.375523544 0.375523886 Si 0.124475621 0.124475751 0.124476039 Si 0.624475381 0.624475431 0.124476193 Si 0.624475723 0.124476376 0.624475638 Si 0.124476496 0.624475672 0.624475295 kinetic energy (Ekin) = 0.00354588 Ry temperature = 53.31895137 K Ekin + Etot (const) = -62.17578667 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.62 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.68 secs total energy = -62.17917603 Ry Harris-Foulkes estimate = -62.17917615 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.73 secs total energy = -62.17917604 Ry Harris-Foulkes estimate = -62.17917621 Ry estimated scf accuracy < 0.00000045 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0405 -1.0405 -1.0404 -1.0056 -1.0056 -1.0056 3.5927 3.5927 3.5927 3.6116 3.6117 3.6117 6.6497 6.7364 6.7364 ! total energy = -62.17917611 Ry Harris-Foulkes estimate = -62.17917611 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00382883 -0.00383122 -0.00383267 atom 2 type 1 force = -0.00383087 -0.00382716 -0.00383555 atom 3 type 1 force = -0.00382832 -0.00383307 -0.00382806 atom 4 type 1 force = -0.00383116 -0.00382868 -0.00382422 atom 5 type 1 force = 0.00382729 0.00383274 0.00382831 atom 6 type 1 force = 0.00382811 0.00382663 0.00382703 atom 7 type 1 force = 0.00383409 0.00383085 0.00383314 atom 8 type 1 force = 0.00382970 0.00382991 0.00383201 Total force = 0.018763 Total SCF correction = 0.000032 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124272952 -0.124272124 -0.124272721 Si 0.375727658 0.375726832 -0.124271682 Si 0.375728059 -0.124271145 0.375727671 Si -0.124272219 0.375726974 0.375727332 Si 0.124272132 0.124272295 0.124272615 Si 0.624271928 0.624271960 0.124272797 Si 0.624272304 0.124272980 0.624272179 Si 0.124273090 0.624272228 0.624271810 kinetic energy (Ekin) = 0.00338982 Ry temperature = 50.97236259 K Ekin + Etot (const) = -62.17578629 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.81 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.49E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.86 secs total energy = -62.17894824 Ry Harris-Foulkes estimate = -62.17894829 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.91 secs total energy = -62.17894825 Ry Harris-Foulkes estimate = -62.17894831 Ry estimated scf accuracy < 0.00000017 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0475 -1.0475 -1.0475 -0.9989 -0.9989 -0.9989 3.5891 3.5891 3.5891 3.6153 3.6153 3.6153 6.6274 6.7477 6.7477 ! total energy = -62.17894828 Ry Harris-Foulkes estimate = -62.17894828 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00534074 -0.00534229 -0.00534159 atom 2 type 1 force = -0.00534242 -0.00533849 -0.00534137 atom 3 type 1 force = -0.00534159 -0.00534001 -0.00533825 atom 4 type 1 force = -0.00533457 -0.00533797 -0.00533796 atom 5 type 1 force = 0.00533862 0.00533886 0.00533666 atom 6 type 1 force = 0.00533808 0.00533653 0.00533993 atom 7 type 1 force = 0.00534280 0.00534042 0.00534038 atom 8 type 1 force = 0.00533981 0.00534294 0.00534222 Total force = 0.026159 Total SCF correction = 0.000015 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124077735 -0.124076892 -0.124077521 Si 0.375922894 0.375922054 -0.124076417 Si 0.375923326 -0.124075854 0.375922935 Si -0.124076956 0.375922212 0.375922584 Si 0.124076837 0.124077034 0.124077381 Si 0.624076668 0.624076681 0.124077596 Si 0.624077087 0.124077780 0.624076916 Si 0.124077880 0.624076985 0.624076526 kinetic energy (Ekin) = 0.00316258 Ry temperature = 47.55535273 K Ekin + Etot (const) = -62.17578570 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.98 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.16E-12, avg # of iterations = 6.0 total cpu time spent up to now is 7.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0544 -1.0544 -1.0543 -0.9924 -0.9924 -0.9924 3.5858 3.5858 3.5858 3.6188 3.6188 3.6188 6.6060 6.7585 6.7585 ! total energy = -62.17865875 Ry Harris-Foulkes estimate = -62.17865875 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00680403 -0.00680085 -0.00680077 atom 2 type 1 force = -0.00679990 -0.00680186 -0.00680219 atom 3 type 1 force = -0.00679273 -0.00680082 -0.00680199 atom 4 type 1 force = -0.00680734 -0.00680037 -0.00679955 atom 5 type 1 force = 0.00680255 0.00680069 0.00679312 atom 6 type 1 force = 0.00679717 0.00680170 0.00679591 atom 7 type 1 force = 0.00679670 0.00680405 0.00680854 atom 8 type 1 force = 0.00680758 0.00679746 0.00680692 Total force = 0.033318 Total SCF correction = 0.000100 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123892962 -0.123892099 -0.123892761 Si 0.376107692 0.376106835 -0.123891594 Si 0.376108167 -0.123891002 0.376107759 Si -0.123892142 0.376107011 0.376107400 Si 0.123891983 0.123892212 0.123892575 Si 0.623891841 0.623891843 0.123892827 Si 0.623892301 0.123893025 0.623892105 Si 0.123893119 0.623892176 0.623891689 kinetic energy (Ekin) = 0.00287384 Ry temperature = 43.21358699 K Ekin + Etot (const) = -62.17578491 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.07 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.13 secs total energy = -62.17832013 Ry Harris-Foulkes estimate = -62.17832027 Ry estimated scf accuracy < 0.00000019 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-10, avg # of iterations = 6.0 total cpu time spent up to now is 7.18 secs total energy = -62.17832014 Ry Harris-Foulkes estimate = -62.17832034 Ry estimated scf accuracy < 0.00000053 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-10, avg # of iterations = 4.0 total cpu time spent up to now is 7.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0609 -1.0609 -1.0609 -0.9863 -0.9863 -0.9863 3.5827 3.5827 3.5827 3.6221 3.6221 3.6221 6.5857 6.7688 6.7688 ! total energy = -62.17832022 Ry Harris-Foulkes estimate = -62.17832023 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00819674 -0.00819876 -0.00819186 atom 2 type 1 force = -0.00818860 -0.00819578 -0.00819498 atom 3 type 1 force = -0.00818925 -0.00819358 -0.00820001 atom 4 type 1 force = -0.00820959 -0.00819307 -0.00819520 atom 5 type 1 force = 0.00819069 0.00820137 0.00819239 atom 6 type 1 force = 0.00819594 0.00820443 0.00819536 atom 7 type 1 force = 0.00820030 0.00819051 0.00819902 atom 8 type 1 force = 0.00819724 0.00818488 0.00819529 Total force = 0.040150 Total SCF correction = 0.000049 Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123720770 -0.123719891 -0.123720574 Si 0.376279922 0.376279036 -0.123719349 Si 0.376280438 -0.123718726 0.376279996 Si -0.123719929 0.376279234 0.376279636 Si 0.123719702 0.123719979 0.123720344 Si 0.623719594 0.623719597 0.123720638 Si 0.623720103 0.123720841 0.623719878 Si 0.123720941 0.623719930 0.623719432 kinetic energy (Ekin) = 0.00253626 Ry temperature = 38.13738844 K Ekin + Etot (const) = -62.17578397 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.25 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.41E-11, avg # of iterations = 6.0 total cpu time spent up to now is 7.31 secs total energy = -62.17794780 Ry Harris-Foulkes estimate = -62.17794787 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.35 secs total energy = -62.17794781 Ry Harris-Foulkes estimate = -62.17794791 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2221 -1.0672 -1.0672 -1.0671 -0.9806 -0.9806 -0.9806 3.5798 3.5798 3.5799 3.6251 3.6251 3.6252 6.5669 6.7784 6.7784 ! total energy = -62.17794785 Ry Harris-Foulkes estimate = -62.17794785 Ry estimated scf accuracy < 9.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00950618 -0.00950688 -0.00950503 atom 2 type 1 force = -0.00950801 -0.00950475 -0.00950381 atom 3 type 1 force = -0.00950266 -0.00950766 -0.00950634 atom 4 type 1 force = -0.00950330 -0.00950112 -0.00950568 atom 5 type 1 force = 0.00950404 0.00949975 0.00950335 atom 6 type 1 force = 0.00950479 0.00951084 0.00950395 atom 7 type 1 force = 0.00950515 0.00950521 0.00950766 atom 8 type 1 force = 0.00950617 0.00950460 0.00950590 Total force = 0.046565 Total SCF correction = 0.000030 Entering Dynamics: iteration = 52 time = 0.0503 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123563170 -0.123562275 -0.123562977 Si 0.376437557 0.376436648 -0.123561692 Si 0.376438122 -0.123561045 0.376437641 Si -0.123562303 0.376436874 0.376437282 Si 0.123562008 0.123562327 0.123562699 Si 0.623561937 0.623561951 0.123563036 Si 0.623562495 0.123563248 0.623562245 Si 0.123563353 0.623562273 0.623561766 kinetic energy (Ekin) = 0.00216493 Ry temperature = 32.55385282 K Ekin + Etot (const) = -62.17578292 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.42 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-11, avg # of iterations = 6.0 total cpu time spent up to now is 7.49 secs total energy = -62.17755853 Ry Harris-Foulkes estimate = -62.17755856 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.53 secs total energy = -62.17755853 Ry Harris-Foulkes estimate = -62.17755857 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 4.0 total cpu time spent up to now is 7.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2223 -1.0729 -1.0729 -1.0729 -0.9753 -0.9753 -0.9753 3.5773 3.5773 3.5773 3.6279 3.6279 3.6279 6.5497 6.7872 6.7872 ! total energy = -62.17755855 Ry Harris-Foulkes estimate = -62.17755855 Ry estimated scf accuracy < 2.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01071377 -0.01071594 -0.01071445 atom 2 type 1 force = -0.01071463 -0.01071017 -0.01071319 atom 3 type 1 force = -0.01071361 -0.01071378 -0.01071226 atom 4 type 1 force = -0.01070763 -0.01070895 -0.01070929 atom 5 type 1 force = 0.01070967 0.01070766 0.01070860 atom 6 type 1 force = 0.01071423 0.01071472 0.01071241 atom 7 type 1 force = 0.01071394 0.01071302 0.01071411 atom 8 type 1 force = 0.01071180 0.01071344 0.01071408 Total force = 0.052479 Total SCF correction = 0.000017 Entering Dynamics: iteration = 53 time = 0.0513 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123422015 -0.123421108 -0.123421826 Si 0.376578745 0.376577821 -0.123420479 Si 0.376579362 -0.123419808 0.376578843 Si -0.123421112 0.376578076 0.376578490 Si 0.123420754 0.123421110 0.123421492 Si 0.623420726 0.623420750 0.123421877 Si 0.623421332 0.123422098 0.623421057 Si 0.123422208 0.623421061 0.623420545 kinetic energy (Ekin) = 0.00177675 Ry temperature = 26.71682229 K Ekin + Etot (const) = -62.17578180 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.59 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.44E-12, avg # of iterations = 7.0 total cpu time spent up to now is 7.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2226 -1.0782 -1.0781 -1.0781 -0.9707 -0.9706 -0.9706 3.5750 3.5750 3.5750 3.6304 3.6304 3.6304 6.5343 6.7951 6.7951 ! total energy = -62.17717026 Ry Harris-Foulkes estimate = -62.17717027 Ry estimated scf accuracy < 8.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01180419 -0.01180047 -0.01179685 atom 2 type 1 force = -0.01179937 -0.01180249 -0.01179741 atom 3 type 1 force = -0.01179495 -0.01179922 -0.01180387 atom 4 type 1 force = -0.01180287 -0.01179915 -0.01180367 atom 5 type 1 force = 0.01180770 0.01179840 0.01179706 atom 6 type 1 force = 0.01179136 0.01180307 0.01179936 atom 7 type 1 force = 0.01179266 0.01180086 0.01180377 atom 8 type 1 force = 0.01180966 0.01179900 0.01180161 Total force = 0.057810 Total SCF correction = 0.000105 Entering Dynamics: iteration = 54 time = 0.0522 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123298979 -0.123298053 -0.123298782 Si 0.376701823 0.376700877 -0.123297375 Si 0.376702498 -0.123296682 0.376701928 Si -0.123298038 0.376701167 0.376701580 Si 0.123297623 0.123298004 0.123298393 Si 0.623297613 0.623297667 0.123298830 Si 0.623298270 0.123299062 0.623297988 Si 0.123299190 0.623297959 0.623297439 kinetic energy (Ekin) = 0.00138960 Ry temperature = 20.89520068 K Ekin + Etot (const) = -62.17578066 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.69 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.75 secs total energy = -62.17680097 Ry Harris-Foulkes estimate = -62.17680113 Ry estimated scf accuracy < 0.00000022 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.72E-10, avg # of iterations = 6.0 total cpu time spent up to now is 7.79 secs total energy = -62.17680099 Ry Harris-Foulkes estimate = -62.17680121 Ry estimated scf accuracy < 0.00000059 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.72E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2228 -1.0828 -1.0827 -1.0827 -0.9666 -0.9665 -0.9665 3.5731 3.5731 3.5731 3.6325 3.6325 3.6325 6.5208 6.8020 6.8020 ! total energy = -62.17680108 Ry Harris-Foulkes estimate = -62.17680108 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01274910 -0.01275754 -0.01275202 atom 2 type 1 force = -0.01276190 -0.01275499 -0.01275870 atom 3 type 1 force = -0.01275836 -0.01275367 -0.01275112 atom 4 type 1 force = -0.01274808 -0.01275123 -0.01275529 atom 5 type 1 force = 0.01275907 0.01275344 0.01275162 atom 6 type 1 force = 0.01274769 0.01275314 0.01275046 atom 7 type 1 force = 0.01275270 0.01275717 0.01275766 atom 8 type 1 force = 0.01275797 0.01275368 0.01275739 Total force = 0.062483 Total SCF correction = 0.000039 Entering Dynamics: iteration = 55 time = 0.0532 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123195512 -0.123194581 -0.123195313 Si 0.376805311 0.376804355 -0.123193855 Si 0.376806050 -0.123193133 0.376805440 Si -0.123194532 0.376804686 0.376805091 Si 0.123194077 0.123194473 0.123194866 Si 0.623194068 0.623194159 0.123195354 Si 0.623194782 0.123195607 0.623194501 Si 0.123195755 0.623194434 0.623193915 kinetic energy (Ekin) = 0.00102150 Ry temperature = 15.36018129 K Ekin + Etot (const) = -62.17577958 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.86 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.95E-11, avg # of iterations = 6.0 total cpu time spent up to now is 7.92 secs total energy = -62.17646833 Ry Harris-Foulkes estimate = -62.17646838 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-10, avg # of iterations = 6.0 total cpu time spent up to now is 7.96 secs total energy = -62.17646833 Ry Harris-Foulkes estimate = -62.17646841 Ry estimated scf accuracy < 0.00000021 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0867 -1.0866 -1.0866 -0.9631 -0.9631 -0.9631 3.5715 3.5715 3.5715 3.6343 3.6343 3.6343 6.5095 6.8078 6.8078 ! total energy = -62.17646836 Ry Harris-Foulkes estimate = -62.17646836 Ry estimated scf accuracy < 9.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01355655 -0.01356686 -0.01356107 atom 2 type 1 force = -0.01356375 -0.01356276 -0.01355997 atom 3 type 1 force = -0.01356550 -0.01356029 -0.01356361 atom 4 type 1 force = -0.01355567 -0.01355173 -0.01355734 atom 5 type 1 force = 0.01356085 0.01355756 0.01355784 atom 6 type 1 force = 0.01355832 0.01356125 0.01355841 atom 7 type 1 force = 0.01355674 0.01356013 0.01356195 atom 8 type 1 force = 0.01356556 0.01356271 0.01356379 Total force = 0.066432 Total SCF correction = 0.000025 Entering Dynamics: iteration = 56 time = 0.0542 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123112853 -0.123111933 -0.123112658 Si 0.376887981 0.376887015 -0.123111148 Si 0.376888780 -0.123110398 0.376888132 Si -0.123111833 0.376887403 0.376887792 Si 0.123111347 0.123111753 0.123112151 Si 0.623111334 0.623111467 0.123112689 Si 0.623112104 0.123112967 0.623111831 Si 0.123113142 0.623111726 0.623111211 kinetic energy (Ekin) = 0.00068977 Ry temperature = 10.37199272 K Ekin + Etot (const) = -62.17577859 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.03 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.87E-12, avg # of iterations = 8.0 total cpu time spent up to now is 8.10 secs total energy = -62.17618787 Ry Harris-Foulkes estimate = -62.17618788 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.88E-11, avg # of iterations = 5.0 total cpu time spent up to now is 8.14 secs total energy = -62.17618788 Ry Harris-Foulkes estimate = -62.17618789 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.88E-11, avg # of iterations = 5.0 total cpu time spent up to now is 8.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0898 -1.0898 -1.0898 -0.9603 -0.9603 -0.9603 3.5702 3.5702 3.5702 3.6357 3.6357 3.6357 6.5005 6.8124 6.8124 ! total energy = -62.17618788 Ry Harris-Foulkes estimate = -62.17618788 Ry estimated scf accuracy < 4.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01420521 -0.01420990 -0.01420863 atom 2 type 1 force = -0.01420877 -0.01420723 -0.01420667 atom 3 type 1 force = -0.01420763 -0.01420683 -0.01420633 atom 4 type 1 force = -0.01420597 -0.01420391 -0.01420597 atom 5 type 1 force = 0.01420559 0.01420501 0.01420608 atom 6 type 1 force = 0.01420825 0.01420655 0.01420731 atom 7 type 1 force = 0.01420786 0.01420954 0.01420798 atom 8 type 1 force = 0.01420588 0.01420677 0.01420623 Total force = 0.069599 Total SCF correction = 0.000024 Entering Dynamics: iteration = 57 time = 0.0552 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123051999 -0.123051097 -0.123051813 Si 0.376948840 0.376947868 -0.123050248 Si 0.376949702 -0.123049469 0.376949019 Si -0.123050940 0.376948318 0.376948688 Si 0.123050421 0.123050836 0.123051240 Si 0.623050409 0.623050581 0.123051832 Si 0.623051233 0.123052137 0.623050969 Si 0.123052335 0.623050826 0.623050312 kinetic energy (Ekin) = 0.00041012 Ry temperature = 6.16699336 K Ekin + Etot (const) = -62.17577776 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.21 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.41E-12, avg # of iterations = 6.0 total cpu time spent up to now is 8.28 secs total energy = -62.17597300 Ry Harris-Foulkes estimate = -62.17597301 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.71E-11, avg # of iterations = 6.0 total cpu time spent up to now is 8.32 secs total energy = -62.17597300 Ry Harris-Foulkes estimate = -62.17597302 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.71E-11, avg # of iterations = 5.0 total cpu time spent up to now is 8.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0921 -1.0921 -1.0921 -0.9583 -0.9583 -0.9583 3.5693 3.5693 3.5693 3.6368 3.6368 3.6368 6.4939 6.8158 6.8158 ! total energy = -62.17597301 Ry Harris-Foulkes estimate = -62.17597301 Ry estimated scf accuracy < 1.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01468378 -0.01468822 -0.01468687 atom 2 type 1 force = -0.01468695 -0.01468512 -0.01468472 atom 3 type 1 force = -0.01468255 -0.01468069 -0.01468463 atom 4 type 1 force = -0.01468414 -0.01468332 -0.01468229 atom 5 type 1 force = 0.01468046 0.01468182 0.01468274 atom 6 type 1 force = 0.01468452 0.01468443 0.01468545 atom 7 type 1 force = 0.01468674 0.01468464 0.01468898 atom 8 type 1 force = 0.01468571 0.01468646 0.01468134 Total force = 0.071939 Total SCF correction = 0.000012 Entering Dynamics: iteration = 58 time = 0.0561 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123013683 -0.123012806 -0.123013512 Si 0.376987156 0.376986180 -0.123011887 Si 0.376988087 -0.123011075 0.376987366 Si -0.123012586 0.376986695 0.376987047 Si 0.123012028 0.123012455 0.123012867 Si 0.623012023 0.623012235 0.123013516 Si 0.623012906 0.123013847 0.623012654 Si 0.123014069 0.623012468 0.623011949 kinetic energy (Ekin) = 0.00019589 Ry temperature = 2.94563881 K Ekin + Etot (const) = -62.17577711 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.39 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.96E-13, avg # of iterations = 6.0 total cpu time spent up to now is 8.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0936 -1.0936 -1.0936 -0.9570 -0.9570 -0.9570 3.5687 3.5687 3.5687 3.6374 3.6374 3.6374 6.4897 6.8180 6.8180 ! total energy = -62.17583403 Ry Harris-Foulkes estimate = -62.17583403 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01498427 -0.01499494 -0.01498604 atom 2 type 1 force = -0.01498706 -0.01498280 -0.01498629 atom 3 type 1 force = -0.01498574 -0.01498586 -0.01498535 atom 4 type 1 force = -0.01498612 -0.01497963 -0.01498584 atom 5 type 1 force = 0.01498269 0.01498553 0.01498317 atom 6 type 1 force = 0.01498862 0.01498250 0.01498281 atom 7 type 1 force = 0.01498708 0.01499371 0.01498776 atom 8 type 1 force = 0.01498480 0.01498150 0.01498979 Total force = 0.073415 Total SCF correction = 0.000059 Entering Dynamics: iteration = 59 time = 0.0571 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122998368 -0.122997531 -0.122998213 Si 0.377002467 0.377001494 -0.122996530 Si 0.377003469 -0.122995683 0.377002711 Si -0.122997234 0.377002080 0.377002404 Si 0.122996634 0.122997076 0.122997492 Si 0.622996645 0.622996886 0.122998198 Si 0.622997584 0.122998572 0.622997344 Si 0.122998804 0.622997106 0.622996594 kinetic energy (Ekin) = 0.00005734 Ry temperature = 0.86220515 K Ekin + Etot (const) = -62.17577669 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.49 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.58E-11, avg # of iterations = 6.0 total cpu time spent up to now is 8.55 secs total energy = -62.17577762 Ry Harris-Foulkes estimate = -62.17577765 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-10, avg # of iterations = 5.0 total cpu time spent up to now is 8.59 secs total energy = -62.17577762 Ry Harris-Foulkes estimate = -62.17577766 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-10, avg # of iterations = 4.0 total cpu time spent up to now is 8.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0942 -1.0942 -1.0941 -0.9565 -0.9565 -0.9565 3.5684 3.5685 3.5685 3.6377 3.6377 3.6377 6.4881 6.8188 6.8188 ! total energy = -62.17577764 Ry Harris-Foulkes estimate = -62.17577764 Ry estimated scf accuracy < 5.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01510596 -0.01510836 -0.01510757 atom 2 type 1 force = -0.01510780 -0.01510816 -0.01510616 atom 3 type 1 force = -0.01510597 -0.01510363 -0.01510676 atom 4 type 1 force = -0.01510657 -0.01510604 -0.01510619 atom 5 type 1 force = 0.01510452 0.01510230 0.01510549 atom 6 type 1 force = 0.01510874 0.01510651 0.01510416 atom 7 type 1 force = 0.01510722 0.01511069 0.01510827 atom 8 type 1 force = 0.01510582 0.01510669 0.01510877 Total force = 0.074007 Total SCF correction = 0.000029 Entering Dynamics: iteration = 60 time = 0.0581 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123006239 -0.123005447 -0.123006103 Si 0.376994589 0.376993618 -0.123004361 Si 0.376995665 -0.123003474 0.376994867 Si -0.123005070 0.376994277 0.376994574 Si 0.123004423 0.123004879 0.123005303 Si 0.623004457 0.623004725 0.123006064 Si 0.623005450 0.123006491 0.623005225 Si 0.123006725 0.623004931 0.623004430 kinetic energy (Ekin) = 0.00000112 Ry temperature = 0.01679906 K Ekin + Etot (const) = -62.17577652 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.66 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.30E-12, avg # of iterations = 6.0 total cpu time spent up to now is 8.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0939 -1.0939 -1.0938 -0.9568 -0.9568 -0.9568 3.5686 3.5686 3.5686 3.6376 3.6376 3.6376 6.4889 6.8184 6.8184 ! total energy = -62.17580654 Ry Harris-Foulkes estimate = -62.17580655 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01504652 -0.01504580 -0.01504911 atom 2 type 1 force = -0.01504647 -0.01504435 -0.01504232 atom 3 type 1 force = -0.01504479 -0.01504660 -0.01504445 atom 4 type 1 force = -0.01504118 -0.01504251 -0.01504319 atom 5 type 1 force = 0.01504206 0.01503467 0.01504410 atom 6 type 1 force = 0.01504178 0.01505461 0.01504749 atom 7 type 1 force = 0.01504593 0.01503606 0.01504635 atom 8 type 1 force = 0.01504920 0.01505392 0.01504112 Total force = 0.073704 Total SCF correction = 0.000091 Entering Dynamics: iteration = 61 time = 0.0590 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123037205 -0.123036458 -0.123037093 Si 0.376963615 0.376962650 -0.123035280 Si 0.376964768 -0.123034361 0.376963932 Si -0.123035994 0.376963385 0.376963654 Si 0.123035302 0.123035758 0.123036206 Si 0.623035357 0.623035671 0.123037027 Si 0.623036410 0.123037490 0.623036201 Si 0.123037746 0.623035864 0.623035353 kinetic energy (Ekin) = 0.00002993 Ry temperature = 0.45011630 K Ekin + Etot (const) = -62.17577661 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.77 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.41E-09, avg # of iterations = 6.0 total cpu time spent up to now is 8.82 secs total energy = -62.17591868 Ry Harris-Foulkes estimate = -62.17591963 Ry estimated scf accuracy < 0.00000130 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-09, avg # of iterations = 5.0 total cpu time spent up to now is 8.87 secs total energy = -62.17591872 Ry Harris-Foulkes estimate = -62.17592016 Ry estimated scf accuracy < 0.00000409 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-09, avg # of iterations = 6.0 total cpu time spent up to now is 8.91 secs total energy = -62.17591934 Ry Harris-Foulkes estimate = -62.17591935 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.67E-11, avg # of iterations = 6.0 total cpu time spent up to now is 8.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0927 -1.0927 -1.0926 -0.9578 -0.9578 -0.9578 3.5690 3.5690 3.5691 3.6370 3.6370 3.6370 6.4923 6.8167 6.8167 ! total energy = -62.17591935 Ry Harris-Foulkes estimate = -62.17591935 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01480475 -0.01480989 -0.01480219 atom 2 type 1 force = -0.01480113 -0.01479673 -0.01479888 atom 3 type 1 force = -0.01480039 -0.01480569 -0.01480215 atom 4 type 1 force = -0.01479965 -0.01479407 -0.01480290 atom 5 type 1 force = 0.01479714 0.01480535 0.01480089 atom 6 type 1 force = 0.01480064 0.01479751 0.01480328 atom 7 type 1 force = 0.01480524 0.01480553 0.01480111 atom 8 type 1 force = 0.01480288 0.01479800 0.01480084 Total force = 0.072512 Total SCF correction = 0.000061 Entering Dynamics: iteration = 62 time = 0.0600 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123090897 -0.123090200 -0.123090804 Si 0.376909923 0.376908970 -0.123088914 Si 0.376911154 -0.123087974 0.376910276 Si -0.123089634 0.376909785 0.376910012 Si 0.123088893 0.123089363 0.123089828 Si 0.623088976 0.623089331 0.123090712 Si 0.623090096 0.123091214 0.623089896 Si 0.123091489 0.623089511 0.623088995 kinetic energy (Ekin) = 0.00014240 Ry temperature = 2.14129631 K Ekin + Etot (const) = -62.17577695 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.97 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.13E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.03 secs total energy = -62.17611042 Ry Harris-Foulkes estimate = -62.17611073 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-09, avg # of iterations = 6.0 total cpu time spent up to now is 9.07 secs total energy = -62.17611045 Ry Harris-Foulkes estimate = -62.17611090 Ry estimated scf accuracy < 0.00000121 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-09, avg # of iterations = 6.0 total cpu time spent up to now is 9.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0906 -1.0906 -1.0906 -0.9596 -0.9596 -0.9596 3.5699 3.5699 3.5699 3.6361 3.6361 3.6361 6.4981 6.8136 6.8136 ! total energy = -62.17611064 Ry Harris-Foulkes estimate = -62.17611064 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01437639 -0.01438624 -0.01437871 atom 2 type 1 force = -0.01438171 -0.01438576 -0.01438149 atom 3 type 1 force = -0.01437880 -0.01436537 -0.01437870 atom 4 type 1 force = -0.01438383 -0.01438492 -0.01438228 atom 5 type 1 force = 0.01436490 0.01438736 0.01436683 atom 6 type 1 force = 0.01437795 0.01437256 0.01438235 atom 7 type 1 force = 0.01439384 0.01439140 0.01439549 atom 8 type 1 force = 0.01438404 0.01437096 0.01437652 Total force = 0.070449 Total SCF correction = 0.000052 Entering Dynamics: iteration = 63 time = 0.0610 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123166655 -0.123166025 -0.123166585 Si 0.376834155 0.376833208 -0.123164624 Si 0.376835468 -0.123163636 0.376834550 Si -0.123165353 0.376834105 0.376834294 Si 0.123164534 0.123165052 0.123165502 Si 0.623164664 0.623165052 0.123166473 Si 0.623165876 0.123167028 0.623165687 Si 0.123167310 0.623165216 0.623164704 kinetic energy (Ekin) = 0.00033312 Ry temperature = 5.00903352 K Ekin + Etot (const) = -62.17577752 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.14 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.77E-11, avg # of iterations = 7.0 total cpu time spent up to now is 9.20 secs total energy = -62.17637113 Ry Harris-Foulkes estimate = -62.17637127 Ry estimated scf accuracy < 0.00000020 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-10, avg # of iterations = 6.0 total cpu time spent up to now is 9.25 secs total energy = -62.17637114 Ry Harris-Foulkes estimate = -62.17637135 Ry estimated scf accuracy < 0.00000062 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0878 -1.0877 -1.0877 -0.9622 -0.9621 -0.9621 3.5710 3.5710 3.5710 3.6348 3.6348 3.6348 6.5064 6.8094 6.8094 ! total energy = -62.17637123 Ry Harris-Foulkes estimate = -62.17637123 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01378774 -0.01378604 -0.01379221 atom 2 type 1 force = -0.01378949 -0.01379601 -0.01378887 atom 3 type 1 force = -0.01378567 -0.01378389 -0.01378418 atom 4 type 1 force = -0.01378603 -0.01378396 -0.01378463 atom 5 type 1 force = 0.01377848 0.01377637 0.01378815 atom 6 type 1 force = 0.01378629 0.01379559 0.01378186 atom 7 type 1 force = 0.01379228 0.01378439 0.01378620 atom 8 type 1 force = 0.01379187 0.01379355 0.01379368 Total force = 0.067544 Total SCF correction = 0.000051 Entering Dynamics: iteration = 64 time = 0.0619 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123263576 -0.123263011 -0.123263536 Si 0.376737222 0.376736271 -0.123261498 Si 0.376738623 -0.123260457 0.376737666 Si -0.123262232 0.376737267 0.376737417 Si 0.123261323 0.123261886 0.123262340 Si 0.623261514 0.623261949 0.123263388 Si 0.623262826 0.123264000 0.623262639 Si 0.123264302 0.623262094 0.623261585 kinetic energy (Ekin) = 0.00059293 Ry temperature = 8.91579041 K Ekin + Etot (const) = -62.17577830 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.09E-10, avg # of iterations = 7.0 total cpu time spent up to now is 9.38 secs total energy = -62.17668859 Ry Harris-Foulkes estimate = -62.17668872 Ry estimated scf accuracy < 0.00000018 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.53E-10, avg # of iterations = 6.0 total cpu time spent up to now is 9.43 secs total energy = -62.17668859 Ry Harris-Foulkes estimate = -62.17668879 Ry estimated scf accuracy < 0.00000055 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.53E-10, avg # of iterations = 6.0 total cpu time spent up to now is 9.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0841 -1.0841 -1.0841 -0.9654 -0.9654 -0.9653 3.5725 3.5725 3.5725 3.6331 3.6331 3.6331 6.5169 6.8040 6.8040 ! total energy = -62.17668868 Ry Harris-Foulkes estimate = -62.17668868 Ry estimated scf accuracy < 1.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01303451 -0.01303043 -0.01303315 atom 2 type 1 force = -0.01303274 -0.01303493 -0.01303386 atom 3 type 1 force = -0.01302981 -0.01302763 -0.01302884 atom 4 type 1 force = -0.01303128 -0.01303343 -0.01303103 atom 5 type 1 force = 0.01303239 0.01302601 0.01303421 atom 6 type 1 force = 0.01302470 0.01303362 0.01303625 atom 7 type 1 force = 0.01303178 0.01303418 0.01302778 atom 8 type 1 force = 0.01303947 0.01303260 0.01302863 Total force = 0.063843 Total SCF correction = 0.000047 Entering Dynamics: iteration = 65 time = 0.0629 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123380505 -0.123379997 -0.123380493 Si 0.376620284 0.376619325 -0.123378379 Si 0.376621777 -0.123377274 0.376620783 Si -0.123379114 0.376620424 0.376620538 Si 0.123378117 0.123378715 0.123379184 Si 0.623378355 0.623378851 0.123380314 Si 0.623379779 0.123380979 0.623379588 Si 0.123381308 0.623378976 0.623378465 kinetic energy (Ekin) = 0.00090943 Ry temperature = 13.67500885 K Ekin + Etot (const) = -62.17577925 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.72E-11, avg # of iterations = 7.0 total cpu time spent up to now is 9.57 secs total energy = -62.17704786 Ry Harris-Foulkes estimate = -62.17704793 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.08E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.61 secs total energy = -62.17704786 Ry Harris-Foulkes estimate = -62.17704797 Ry estimated scf accuracy < 0.00000029 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.08E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2226 -1.0797 -1.0797 -1.0797 -0.9693 -0.9692 -0.9692 3.5744 3.5744 3.5744 3.6311 3.6311 3.6311 6.5297 6.7974 6.7974 ! total energy = -62.17704791 Ry Harris-Foulkes estimate = -62.17704791 Ry estimated scf accuracy < 6.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01212297 -0.01212554 -0.01212547 atom 2 type 1 force = -0.01212680 -0.01212484 -0.01212211 atom 3 type 1 force = -0.01212436 -0.01212345 -0.01212572 atom 4 type 1 force = -0.01212313 -0.01212377 -0.01212411 atom 5 type 1 force = 0.01212324 0.01211883 0.01212373 atom 6 type 1 force = 0.01212313 0.01212579 0.01212495 atom 7 type 1 force = 0.01212325 0.01212565 0.01212665 atom 8 type 1 force = 0.01212764 0.01212734 0.01212209 Total force = 0.059397 Total SCF correction = 0.000022 Entering Dynamics: iteration = 66 time = 0.0639 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123516042 -0.123515596 -0.123516061 Si 0.376484731 0.376483769 -0.123513867 Si 0.376486321 -0.123512699 0.376485288 Si -0.123514604 0.376484971 0.376485050 Si 0.123513519 0.123514146 0.123514638 Si 0.623513805 0.623514366 0.123515850 Si 0.623515340 0.123516570 0.623515151 Si 0.123516929 0.623514472 0.623513951 kinetic energy (Ekin) = 0.00126760 Ry temperature = 19.06075160 K Ekin + Etot (const) = -62.17578031 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.68 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.68E-11, avg # of iterations = 7.0 total cpu time spent up to now is 9.74 secs total energy = -62.17743196 Ry Harris-Foulkes estimate = -62.17743198 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.93E-11, avg # of iterations = 5.0 total cpu time spent up to now is 9.79 secs total energy = -62.17743196 Ry Harris-Foulkes estimate = -62.17743199 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.93E-11, avg # of iterations = 4.0 total cpu time spent up to now is 9.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0747 -1.0747 -1.0747 -0.9738 -0.9738 -0.9738 3.5765 3.5765 3.5765 3.6287 3.6287 3.6287 6.5445 6.7899 6.7899 ! total energy = -62.17743198 Ry Harris-Foulkes estimate = -62.17743198 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01107890 -0.01108449 -0.01107724 atom 2 type 1 force = -0.01107999 -0.01107954 -0.01107572 atom 3 type 1 force = -0.01107826 -0.01107271 -0.01108099 atom 4 type 1 force = -0.01107548 -0.01107592 -0.01107791 atom 5 type 1 force = 0.01107283 0.01107462 0.01107522 atom 6 type 1 force = 0.01107873 0.01107867 0.01107777 atom 7 type 1 force = 0.01108236 0.01107848 0.01108202 atom 8 type 1 force = 0.01107871 0.01108089 0.01107685 Total force = 0.054271 Total SCF correction = 0.000017 Entering Dynamics: iteration = 67 time = 0.0648 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123668584 -0.123668208 -0.123668632 Si 0.376332172 0.376331206 -0.123666355 Si 0.376333861 -0.123665121 0.376332784 Si -0.123667094 0.376332518 0.376332558 Si 0.123665918 0.123666575 0.123667092 Si 0.623666260 0.623666886 0.123668391 Si 0.623667912 0.123669166 0.623667724 Si 0.123669555 0.623666978 0.623666440 kinetic energy (Ekin) = 0.00165055 Ry temperature = 24.81913010 K Ekin + Etot (const) = -62.17578143 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.86 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.16E-12, avg # of iterations = 6.0 total cpu time spent up to now is 9.93 secs total energy = -62.17782293 Ry Harris-Foulkes estimate = -62.17782294 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-11, avg # of iterations = 6.0 total cpu time spent up to now is 9.97 secs total energy = -62.17782293 Ry Harris-Foulkes estimate = -62.17782295 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0691 -1.0691 -1.0691 -0.9788 -0.9788 -0.9788 3.5790 3.5790 3.5790 3.6261 3.6261 3.6261 6.5611 6.7813 6.7813 ! total energy = -62.17782294 Ry Harris-Foulkes estimate = -62.17782294 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00990879 -0.00991291 -0.00990941 atom 2 type 1 force = -0.00990899 -0.00990814 -0.00990494 atom 3 type 1 force = -0.00990662 -0.00990146 -0.00990864 atom 4 type 1 force = -0.00990587 -0.00990833 -0.00990721 atom 5 type 1 force = 0.00990442 0.00990274 0.00990667 atom 6 type 1 force = 0.00990727 0.00991034 0.00990759 atom 7 type 1 force = 0.00990946 0.00990806 0.00991064 atom 8 type 1 force = 0.00990912 0.00990969 0.00990530 Total force = 0.048537 Total SCF correction = 0.000015 Entering Dynamics: iteration = 68 time = 0.0658 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123836336 -0.123836037 -0.123836414 Si 0.376164403 0.376163435 -0.123834046 Si 0.376166195 -0.123832741 0.376165071 Si -0.123834789 0.376164856 0.376164858 Si 0.123833519 0.123834205 0.123834752 Si 0.623833922 0.623834618 0.123836138 Si 0.623835695 0.123836971 0.623835509 Si 0.123837391 0.623834694 0.623834132 kinetic energy (Ekin) = 0.00204038 Ry temperature = 30.68101209 K Ekin + Etot (const) = -62.17578255 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.05 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.99E-12, avg # of iterations = 6.0 total cpu time spent up to now is 10.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0630 -1.0630 -1.0630 -0.9844 -0.9844 -0.9844 3.5817 3.5817 3.5818 3.6231 3.6231 3.6231 6.5795 6.7720 6.7720 ! total energy = -62.17820270 Ry Harris-Foulkes estimate = -62.17820271 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00862805 -0.00863936 -0.00863079 atom 2 type 1 force = -0.00863239 -0.00862725 -0.00862494 atom 3 type 1 force = -0.00862834 -0.00862889 -0.00862845 atom 4 type 1 force = -0.00862824 -0.00862194 -0.00863298 atom 5 type 1 force = 0.00861761 0.00863142 0.00862322 atom 6 type 1 force = 0.00863481 0.00862162 0.00862723 atom 7 type 1 force = 0.00863747 0.00863919 0.00863491 atom 8 type 1 force = 0.00862712 0.00862520 0.00863179 Total force = 0.042275 Total SCF correction = 0.000104 Entering Dynamics: iteration = 69 time = 0.0668 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124017331 -0.124017126 -0.124017443 Si 0.375983384 0.375982421 -0.124014977 Si 0.375985284 -0.124013606 0.375984114 Si -0.124015728 0.375983959 0.375983908 Si 0.124014348 0.124015083 0.124015648 Si 0.624014838 0.624015583 0.124017129 Si 0.624016736 0.124018036 0.624016548 Si 0.124018470 0.624015649 0.624015074 kinetic energy (Ekin) = 0.00241907 Ry temperature = 36.37529761 K Ekin + Etot (const) = -62.17578363 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.14 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.69E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.20 secs total energy = -62.17855380 Ry Harris-Foulkes estimate = -62.17855399 Ry estimated scf accuracy < 0.00000026 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.24 secs total energy = -62.17855382 Ry Harris-Foulkes estimate = -62.17855409 Ry estimated scf accuracy < 0.00000073 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0565 -1.0565 -1.0565 -0.9904 -0.9904 -0.9904 3.5847 3.5848 3.5848 3.6199 3.6199 3.6199 6.5993 6.7619 6.7619 ! total energy = -62.17855394 Ry Harris-Foulkes estimate = -62.17855394 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00726270 -0.00726656 -0.00726665 atom 2 type 1 force = -0.00726448 -0.00726357 -0.00726010 atom 3 type 1 force = -0.00725545 -0.00725530 -0.00725568 atom 4 type 1 force = -0.00725813 -0.00725433 -0.00725844 atom 5 type 1 force = 0.00725191 0.00725479 0.00725379 atom 6 type 1 force = 0.00725939 0.00725804 0.00725510 atom 7 type 1 force = 0.00726446 0.00726394 0.00726726 atom 8 type 1 force = 0.00726500 0.00726298 0.00726471 Total force = 0.035567 Total SCF correction = 0.000034 Entering Dynamics: iteration = 70 time = 0.0677 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124209474 -0.124209369 -0.124209627 Si 0.375791214 0.375790258 -0.124207051 Si 0.375793237 -0.124205607 0.375792020 Si -0.124207808 0.375791928 0.375791816 Si 0.124206307 0.124207097 0.124207678 Si 0.624206896 0.624207689 0.124209255 Si 0.624208927 0.124210251 0.624208742 Si 0.124210700 0.624207752 0.624207167 kinetic energy (Ekin) = 0.00276932 Ry temperature = 41.64189211 K Ekin + Etot (const) = -62.17578462 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.06E-10, avg # of iterations = 6.0 total cpu time spent up to now is 10.38 secs total energy = -62.17886078 Ry Harris-Foulkes estimate = -62.17886085 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.42 secs total energy = -62.17886078 Ry Harris-Foulkes estimate = -62.17886089 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0497 -1.0497 -1.0497 -0.9968 -0.9968 -0.9967 3.5880 3.5880 3.5880 3.6165 3.6165 3.6165 6.6204 6.7512 6.7512 ! total energy = -62.17886083 Ry Harris-Foulkes estimate = -62.17886083 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00581624 -0.00582213 -0.00582351 atom 2 type 1 force = -0.00581743 -0.00582172 -0.00581463 atom 3 type 1 force = -0.00581869 -0.00581142 -0.00581753 atom 4 type 1 force = -0.00582145 -0.00581917 -0.00581917 atom 5 type 1 force = 0.00581081 0.00581509 0.00581686 atom 6 type 1 force = 0.00581772 0.00582199 0.00581647 atom 7 type 1 force = 0.00582116 0.00581854 0.00582230 atom 8 type 1 force = 0.00582412 0.00581882 0.00581923 Total force = 0.028505 Total SCF correction = 0.000029 Entering Dynamics: iteration = 71 time = 0.0687 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124410545 -0.124410549 -0.124410749 Si 0.375590115 0.375589159 -0.124408050 Si 0.375592259 -0.124406528 0.375590996 Si -0.124408824 0.375590965 0.375590792 Si 0.124407187 0.124408037 0.124408637 Si 0.624407885 0.624408732 0.124410309 Si 0.624410053 0.124411396 0.624409873 Si 0.124411869 0.624408787 0.624408192 kinetic energy (Ekin) = 0.00307537 Ry temperature = 46.24392589 K Ekin + Etot (const) = -62.17578546 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.59E-11, avg # of iterations = 6.0 total cpu time spent up to now is 10.56 secs total energy = -62.17910982 Ry Harris-Foulkes estimate = -62.17910984 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.31E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.61 secs total energy = -62.17910982 Ry Harris-Foulkes estimate = -62.17910985 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.31E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0428 -1.0427 -1.0427 -1.0034 -1.0034 -1.0034 3.5915 3.5915 3.5915 3.6129 3.6129 3.6129 6.6424 6.7401 6.7401 ! total energy = -62.17910983 Ry Harris-Foulkes estimate = -62.17910983 Ry estimated scf accuracy < 5.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00432389 -0.00433132 -0.00432740 atom 2 type 1 force = -0.00432294 -0.00432114 -0.00431931 atom 3 type 1 force = -0.00431983 -0.00431796 -0.00431998 atom 4 type 1 force = -0.00432326 -0.00431957 -0.00432282 atom 5 type 1 force = 0.00431534 0.00431700 0.00432366 atom 6 type 1 force = 0.00432115 0.00432211 0.00432415 atom 7 type 1 force = 0.00432548 0.00432770 0.00432421 atom 8 type 1 force = 0.00432793 0.00432317 0.00431749 Total force = 0.021176 Total SCF correction = 0.000025 Entering Dynamics: iteration = 72 time = 0.0697 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124618252 -0.124618377 -0.124618513 Si 0.375382380 0.375381428 -0.124615680 Si 0.375384650 -0.124614077 0.375383341 Si -0.124616475 0.375383371 0.375383133 Si 0.124614690 0.124615604 0.124616232 Si 0.624615506 0.624616408 0.124618001 Si 0.624617819 0.124619185 0.624617642 Si 0.124619682 0.624616458 0.624615844 kinetic energy (Ekin) = 0.00332371 Ry temperature = 49.97825847 K Ekin + Etot (const) = -62.17578612 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.67 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.81E-11, avg # of iterations = 6.0 total cpu time spent up to now is 10.73 secs total energy = -62.17929021 Ry Harris-Foulkes estimate = -62.17929023 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.78 secs total energy = -62.17929022 Ry Harris-Foulkes estimate = -62.17929024 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0357 -1.0356 -1.0356 -1.0103 -1.0103 -1.0102 3.5952 3.5952 3.5952 3.6091 3.6091 3.6091 6.6653 6.7286 6.7286 ! total energy = -62.17929023 Ry Harris-Foulkes estimate = -62.17929023 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00279143 -0.00279956 -0.00279281 atom 2 type 1 force = -0.00279335 -0.00279147 -0.00278653 atom 3 type 1 force = -0.00278631 -0.00278396 -0.00279000 atom 4 type 1 force = -0.00279042 -0.00278650 -0.00279153 atom 5 type 1 force = 0.00278347 0.00278330 0.00279125 atom 6 type 1 force = 0.00278847 0.00279108 0.00279090 atom 7 type 1 force = 0.00279476 0.00279450 0.00279265 atom 8 type 1 force = 0.00279481 0.00279261 0.00278607 Total force = 0.013670 Total SCF correction = 0.000011 Entering Dynamics: iteration = 73 time = 0.0706 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124830244 -0.124830502 -0.124830564 Si 0.375170358 0.375169411 -0.124827586 Si 0.375172764 -0.124825900 0.375171404 Si -0.124828410 0.375171500 0.375171189 Si 0.124826465 0.124827442 0.124828112 Si 0.624827408 0.624828369 0.124829976 Si 0.624829875 0.124831263 0.624829697 Si 0.124831784 0.624828416 0.624827773 kinetic energy (Ekin) = 0.00350365 Ry temperature = 52.68396859 K Ekin + Etot (const) = -62.17578658 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.48E-12, avg # of iterations = 6.0 total cpu time spent up to now is 10.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0286 -1.0285 -1.0285 -1.0173 -1.0172 -1.0172 3.5990 3.5990 3.5990 3.6052 3.6052 3.6053 6.6886 6.7169 6.7169 ! total energy = -62.17939454 Ry Harris-Foulkes estimate = -62.17939455 Ry estimated scf accuracy < 7.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00124358 -0.00125355 -0.00125216 atom 2 type 1 force = -0.00124264 -0.00123623 -0.00124110 atom 3 type 1 force = -0.00124032 -0.00124133 -0.00123246 atom 4 type 1 force = -0.00123635 -0.00123209 -0.00123694 atom 5 type 1 force = 0.00123736 0.00123760 0.00123734 atom 6 type 1 force = 0.00123473 0.00123807 0.00123956 atom 7 type 1 force = 0.00123948 0.00124572 0.00124593 atom 8 type 1 force = 0.00125131 0.00124181 0.00123983 Total force = 0.006078 Total SCF correction = 0.000098 Entering Dynamics: iteration = 74 time = 0.0716 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125044145 -0.125044551 -0.125044538 Si 0.374956428 0.374955497 -0.125041398 Si 0.374958974 -0.125039628 0.374957575 Si -0.125042242 0.374957738 0.374957346 Si 0.125040140 0.125041180 0.125041890 Si 0.625041205 0.625042230 0.125043854 Si 0.625043833 0.125045253 0.625043664 Si 0.125045808 0.625042279 0.625041605 kinetic energy (Ekin) = 0.00360773 Ry temperature = 54.24905198 K Ekin + Etot (const) = -62.17578681 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.94 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.07E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.00 secs total energy = -62.17941874 Ry Harris-Foulkes estimate = -62.17941889 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.04 secs total energy = -62.17941875 Ry Harris-Foulkes estimate = -62.17941896 Ry estimated scf accuracy < 0.00000055 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-10, avg # of iterations = 4.0 total cpu time spent up to now is 11.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0243 -1.0243 -1.0243 -1.0215 -1.0215 -1.0215 3.6013 3.6013 3.6013 3.6029 3.6029 3.6029 6.7051 6.7051 6.7121 ! total energy = -62.17941884 Ry Harris-Foulkes estimate = -62.17941884 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00030812 0.00029486 0.00030457 atom 2 type 1 force = 0.00030692 0.00030844 0.00031367 atom 3 type 1 force = 0.00030956 0.00031903 0.00030811 atom 4 type 1 force = 0.00031092 0.00031123 0.00030809 atom 5 type 1 force = -0.00031854 -0.00030355 -0.00031549 atom 6 type 1 force = -0.00031278 -0.00031618 -0.00030630 atom 7 type 1 force = -0.00030485 -0.00030589 -0.00029716 atom 8 type 1 force = -0.00029934 -0.00030795 -0.00031549 Total force = 0.001512 Total SCF correction = 0.000045 Entering Dynamics: iteration = 75 time = 0.0726 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125257574 -0.125258148 -0.125258043 Si 0.374742970 0.374742057 -0.125254728 Si 0.374745659 -0.125252866 0.374744219 Si -0.125255597 0.374744454 0.374743976 Si 0.125253326 0.125254452 0.125255185 Si 0.625254521 0.625255606 0.125257262 Si 0.625257323 0.125258774 0.625257176 Si 0.125259371 0.625255670 0.625254952 kinetic energy (Ekin) = 0.00363202 Ry temperature = 54.61420933 K Ekin + Etot (const) = -62.17578682 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.17 secs total energy = -62.17936272 Ry Harris-Foulkes estimate = -62.17936279 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.21 secs total energy = -62.17936272 Ry Harris-Foulkes estimate = -62.17936282 Ry estimated scf accuracy < 0.00000024 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0313 -1.0313 -1.0313 -1.0145 -1.0145 -1.0145 3.5974 3.5974 3.5974 3.6069 3.6069 3.6069 6.6933 6.6933 6.7357 ! total energy = -62.17936276 Ry Harris-Foulkes estimate = -62.17936276 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00183913 0.00182918 0.00183505 atom 2 type 1 force = 0.00183899 0.00184189 0.00184597 atom 3 type 1 force = 0.00184082 0.00184659 0.00184158 atom 4 type 1 force = 0.00184120 0.00184341 0.00183839 atom 5 type 1 force = -0.00184679 -0.00183853 -0.00184384 atom 6 type 1 force = -0.00184202 -0.00184571 -0.00183623 atom 7 type 1 force = -0.00183683 -0.00183672 -0.00183421 atom 8 type 1 force = -0.00183449 -0.00184010 -0.00184670 Total force = 0.009015 Total SCF correction = 0.000031 Entering Dynamics: iteration = 76 time = 0.0735 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125468179 -0.125468937 -0.125468732 Si 0.374532334 0.374531444 -0.125465224 Si 0.374535170 -0.125463269 0.374533690 Si -0.125466126 0.374533999 0.374533429 Si 0.125463677 0.125464902 0.125465650 Si 0.625465010 0.625466149 0.125467852 Si 0.625467994 0.125469475 0.625467872 Si 0.125470119 0.625466236 0.625465465 kinetic energy (Ekin) = 0.00357616 Ry temperature = 53.77424717 K Ekin + Etot (const) = -62.17578661 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.28 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-11, avg # of iterations = 6.0 total cpu time spent up to now is 11.35 secs total energy = -62.17922950 Ry Harris-Foulkes estimate = -62.17922951 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.39 secs total energy = -62.17922950 Ry Harris-Foulkes estimate = -62.17922951 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-11, avg # of iterations = 4.0 total cpu time spent up to now is 11.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0382 -1.0382 -1.0382 -1.0078 -1.0078 -1.0078 3.5935 3.5935 3.5935 3.6108 3.6109 3.6109 6.6818 6.6818 6.7589 ! total energy = -62.17922950 Ry Harris-Foulkes estimate = -62.17922951 Ry estimated scf accuracy < 3.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00333676 0.00332750 0.00333199 atom 2 type 1 force = 0.00333421 0.00333582 0.00334603 atom 3 type 1 force = 0.00334079 0.00334675 0.00334011 atom 4 type 1 force = 0.00334062 0.00334172 0.00333469 atom 5 type 1 force = -0.00334503 -0.00334635 -0.00333926 atom 6 type 1 force = -0.00334083 -0.00333671 -0.00333482 atom 7 type 1 force = -0.00333485 -0.00333156 -0.00333568 atom 8 type 1 force = -0.00333167 -0.00333718 -0.00334307 Total force = 0.016353 Total SCF correction = 0.000015 Entering Dynamics: iteration = 77 time = 0.0745 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125673662 -0.125674618 -0.125674307 Si 0.374326816 0.374325951 -0.125670585 Si 0.374329809 -0.125668536 0.374328287 Si -0.125671527 0.374328674 0.374327999 Si 0.125668893 0.125670216 0.125670988 Si 0.625670372 0.625671570 0.125673323 Si 0.625673546 0.125675063 0.625673448 Si 0.125675753 0.625671680 0.625670846 kinetic energy (Ekin) = 0.00344332 Ry temperature = 51.77682268 K Ekin + Etot (const) = -62.17578618 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.02E-12, avg # of iterations = 6.0 total cpu time spent up to now is 11.52 secs total energy = -62.17902555 Ry Harris-Foulkes estimate = -62.17902556 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.56 secs total energy = -62.17902555 Ry Harris-Foulkes estimate = -62.17902556 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0449 -1.0449 -1.0449 -1.0014 -1.0014 -1.0014 3.5896 3.5896 3.5896 3.6148 3.6148 3.6148 6.6705 6.6705 6.7817 ! total energy = -62.17902556 Ry Harris-Foulkes estimate = -62.17902556 Ry estimated scf accuracy < 2.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00478386 0.00477423 0.00478161 atom 2 type 1 force = 0.00478053 0.00478442 0.00479273 atom 3 type 1 force = 0.00478961 0.00479518 0.00478606 atom 4 type 1 force = 0.00479173 0.00479145 0.00478555 atom 5 type 1 force = -0.00479405 -0.00479598 -0.00478681 atom 6 type 1 force = -0.00478892 -0.00478589 -0.00478389 atom 7 type 1 force = -0.00478276 -0.00477962 -0.00478587 atom 8 type 1 force = -0.00478000 -0.00478379 -0.00478938 Total force = 0.023449 Total SCF correction = 0.000015 Entering Dynamics: iteration = 78 time = 0.0755 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125871803 -0.125872971 -0.125872542 Si 0.374128636 0.374127802 -0.125868589 Si 0.374131800 -0.125866442 0.374130231 Si -0.125869573 0.374130703 0.374129915 Si 0.125866751 0.125868168 0.125868980 Si 0.625868382 0.625869645 0.125871450 Si 0.625871756 0.125873314 0.625871677 Si 0.125874050 0.625869782 0.625868876 kinetic energy (Ekin) = 0.00323997 Ry temperature = 48.71912354 K Ekin + Etot (const) = -62.17578558 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.63 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.68E-12, avg # of iterations = 5.0 total cpu time spent up to now is 11.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2216 -1.0514 -1.0513 -1.0513 -0.9953 -0.9953 -0.9952 3.5859 3.5859 3.5859 3.6187 3.6187 3.6187 6.6597 6.6597 6.8036 ! total energy = -62.17876035 Ry Harris-Foulkes estimate = -62.17876036 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00616733 0.00616675 0.00616906 atom 2 type 1 force = 0.00616767 0.00616092 0.00618437 atom 3 type 1 force = 0.00617312 0.00618574 0.00616766 atom 4 type 1 force = 0.00617480 0.00616960 0.00616243 atom 5 type 1 force = -0.00618097 -0.00617935 -0.00617426 atom 6 type 1 force = -0.00617522 -0.00617258 -0.00616852 atom 7 type 1 force = -0.00616666 -0.00616674 -0.00616566 atom 8 type 1 force = -0.00616007 -0.00616435 -0.00617508 Total force = 0.030231 Total SCF correction = 0.000091 Entering Dynamics: iteration = 79 time = 0.0764 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126060477 -0.126061859 -0.126061308 Si 0.373939923 0.373939109 -0.126057100 Si 0.373943266 -0.126054854 0.373941642 Si -0.126058141 0.373942202 0.373941291 Si 0.126055122 0.126056635 0.126057494 Si 0.626056914 0.626058246 0.126060110 Si 0.626060502 0.126062100 0.626060443 Si 0.126062892 0.626058421 0.626057428 kinetic energy (Ekin) = 0.00297553 Ry temperature = 44.74269930 K Ekin + Etot (const) = -62.17578482 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.73 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.78 secs total energy = -62.17844574 Ry Harris-Foulkes estimate = -62.17844585 Ry estimated scf accuracy < 0.00000016 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.82 secs total energy = -62.17844575 Ry Harris-Foulkes estimate = -62.17844591 Ry estimated scf accuracy < 0.00000046 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2218 -1.0575 -1.0575 -1.0575 -0.9896 -0.9896 -0.9896 3.5823 3.5823 3.5823 3.6224 3.6224 3.6224 6.6494 6.6494 6.8245 ! total energy = -62.17844582 Ry Harris-Foulkes estimate = -62.17844582 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00747496 0.00746894 0.00747022 atom 2 type 1 force = 0.00747919 0.00747314 0.00748828 atom 3 type 1 force = 0.00747590 0.00748749 0.00747840 atom 4 type 1 force = 0.00748110 0.00748223 0.00747476 atom 5 type 1 force = -0.00748962 -0.00747878 -0.00748447 atom 6 type 1 force = -0.00748072 -0.00748759 -0.00747585 atom 7 type 1 force = -0.00747364 -0.00746744 -0.00747338 atom 8 type 1 force = -0.00746718 -0.00747800 -0.00747795 Total force = 0.036634 Total SCF correction = 0.000047 Entering Dynamics: iteration = 80 time = 0.0774 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126237677 -0.126239282 -0.126238607 Si 0.373762690 0.373761888 -0.126234117 Si 0.373766207 -0.126231773 0.373764532 Si -0.126235226 0.373765186 0.373764139 Si 0.126231996 0.126233623 0.126234520 Si 0.626233963 0.626235353 0.126237294 Si 0.626237775 0.126239423 0.626237738 Si 0.126240272 0.626235582 0.626234501 kinetic energy (Ekin) = 0.00266187 Ry temperature = 40.02625334 K Ekin + Etot (const) = -62.17578395 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.89 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.87E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.95 secs total energy = -62.17809574 Ry Harris-Foulkes estimate = -62.17809580 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.02E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.00 secs total energy = -62.17809574 Ry Harris-Foulkes estimate = -62.17809584 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 12.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2220 -1.0633 -1.0632 -1.0632 -0.9843 -0.9843 -0.9843 3.5789 3.5789 3.5790 3.6260 3.6260 3.6260 6.6397 6.6397 6.8441 ! total energy = -62.17809578 Ry Harris-Foulkes estimate = -62.17809578 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00869361 0.00868775 0.00869123 atom 2 type 1 force = 0.00869196 0.00868836 0.00870393 atom 3 type 1 force = 0.00869648 0.00871170 0.00869415 atom 4 type 1 force = 0.00870165 0.00869567 0.00869477 atom 5 type 1 force = -0.00870849 -0.00870065 -0.00870078 atom 6 type 1 force = -0.00869959 -0.00870190 -0.00869448 atom 7 type 1 force = -0.00868959 -0.00868776 -0.00868994 atom 8 type 1 force = -0.00868602 -0.00869316 -0.00869887 Total force = 0.042601 Total SCF correction = 0.000040 Entering Dynamics: iteration = 81 time = 0.0784 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126401533 -0.126403370 -0.126402566 Si 0.373598798 0.373598002 -0.126397774 Si 0.373602497 -0.126395319 0.373600767 Si -0.126398955 0.373601517 0.373600333 Si 0.126395504 0.126397256 0.126398191 Si 0.626397659 0.626399104 0.126401133 Si 0.626401711 0.126403412 0.626401694 Si 0.126404319 0.626399399 0.626398222 kinetic energy (Ekin) = 0.00231279 Ry temperature = 34.77721194 K Ekin + Etot (const) = -62.17578299 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.07 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-11, avg # of iterations = 7.0 total cpu time spent up to now is 12.14 secs total energy = -62.17772537 Ry Harris-Foulkes estimate = -62.17772539 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.19 secs total energy = -62.17772537 Ry Harris-Foulkes estimate = -62.17772541 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 4.0 total cpu time spent up to now is 12.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0686 -1.0686 -1.0685 -0.9795 -0.9795 -0.9795 3.5758 3.5758 3.5758 3.6293 3.6293 3.6293 6.6308 6.6308 6.8623 ! total energy = -62.17772539 Ry Harris-Foulkes estimate = -62.17772539 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00981038 0.00980439 0.00980877 atom 2 type 1 force = 0.00981062 0.00980550 0.00982569 atom 3 type 1 force = 0.00981296 0.00983217 0.00980839 atom 4 type 1 force = 0.00982157 0.00981325 0.00981314 atom 5 type 1 force = -0.00982647 -0.00981638 -0.00981753 atom 6 type 1 force = -0.00981749 -0.00982075 -0.00980812 atom 7 type 1 force = -0.00981089 -0.00980002 -0.00981391 atom 8 type 1 force = -0.00980068 -0.00981814 -0.00981643 Total force = 0.048078 Total SCF correction = 0.000037 Entering Dynamics: iteration = 82 time = 0.0793 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126550331 -0.126552409 -0.126551469 Si 0.373449966 0.373449167 -0.126546350 Si 0.373453849 -0.126543774 0.373452057 Si -0.126547608 0.373452911 0.373451591 Si 0.126543928 0.126545821 0.126546793 Si 0.626546286 0.626547780 0.126549917 Si 0.626550587 0.126552357 0.626550587 Si 0.126553323 0.626548146 0.626546876 kinetic energy (Ekin) = 0.00194339 Ry temperature = 29.22257118 K Ekin + Etot (const) = -62.17578199 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.26 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.31E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.32 secs total energy = -62.17735041 Ry Harris-Foulkes estimate = -62.17735044 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.37 secs total energy = -62.17735041 Ry Harris-Foulkes estimate = -62.17735045 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0734 -1.0734 -1.0734 -0.9752 -0.9752 -0.9751 3.5730 3.5730 3.5730 3.6324 3.6324 3.6324 6.6228 6.6228 6.8789 ! total energy = -62.17735043 Ry Harris-Foulkes estimate = -62.17735043 Ry estimated scf accuracy < 2.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01081887 0.01080671 0.01081532 atom 2 type 1 force = 0.01081505 0.01081786 0.01083465 atom 3 type 1 force = 0.01082473 0.01083660 0.01082114 atom 4 type 1 force = 0.01082967 0.01082667 0.01081796 atom 5 type 1 force = -0.01083282 -0.01083476 -0.01082321 atom 6 type 1 force = -0.01082960 -0.01082058 -0.01081668 atom 7 type 1 force = -0.01081747 -0.01081188 -0.01082094 atom 8 type 1 force = -0.01080842 -0.01082061 -0.01082824 Total force = 0.053017 Total SCF correction = 0.000013 Entering Dynamics: iteration = 83 time = 0.0803 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126682522 -0.126684861 -0.126683772 Si 0.373317733 0.373316938 -0.126678295 Si 0.373321816 -0.126675595 0.373319957 Si -0.126679638 0.373320924 0.373319453 Si 0.126675725 0.126677755 0.126678781 Si 0.626678290 0.626679848 0.126682098 Si 0.626682860 0.126684708 0.626682869 Si 0.126685737 0.626680284 0.626678909 kinetic energy (Ekin) = 0.00156943 Ry temperature = 23.59930471 K Ekin + Etot (const) = -62.17578100 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.44 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.96E-12, avg # of iterations = 6.0 total cpu time spent up to now is 12.50 secs total energy = -62.17698670 Ry Harris-Foulkes estimate = -62.17698672 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.79E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.54 secs total energy = -62.17698670 Ry Harris-Foulkes estimate = -62.17698672 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.79E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.58 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0777 -1.0777 -1.0776 -0.9714 -0.9714 -0.9714 3.5704 3.5704 3.5704 3.6351 3.6351 3.6351 6.6156 6.6156 6.8935 ! total energy = -62.17698671 Ry Harris-Foulkes estimate = -62.17698671 Ry estimated scf accuracy < 5.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01170753 0.01169462 0.01170581 atom 2 type 1 force = 0.01170375 0.01170842 0.01172346 atom 3 type 1 force = 0.01171630 0.01172788 0.01171109 atom 4 type 1 force = 0.01172131 0.01171785 0.01170892 atom 5 type 1 force = -0.01172411 -0.01172408 -0.01171401 atom 6 type 1 force = -0.01171923 -0.01171259 -0.01170578 atom 7 type 1 force = -0.01170681 -0.01170205 -0.01171054 atom 8 type 1 force = -0.01169874 -0.01171004 -0.01171895 Total force = 0.057378 Total SCF correction = 0.000007 Entering Dynamics: iteration = 84 time = 0.0813 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126796744 -0.126799361 -0.126798106 Si 0.373203466 0.373202680 -0.126792244 Si 0.373207767 -0.126789415 0.373205833 Si -0.126793677 0.373206922 0.373205287 Si 0.126789525 0.126791694 0.126792789 Si 0.626792306 0.626793937 0.126796311 Si 0.626797162 0.126799096 0.626797177 Si 0.126800193 0.626794448 0.626792953 kinetic energy (Ekin) = 0.00120666 Ry temperature = 18.14446891 K Ekin + Etot (const) = -62.17578005 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.61 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.94E-13, avg # of iterations = 7.0 total cpu time spent up to now is 12.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0814 -1.0813 -1.0813 -0.9682 -0.9681 -0.9681 3.5682 3.5682 3.5682 3.6375 3.6375 3.6375 6.6094 6.6094 6.9062 ! total energy = -62.17664941 Ry Harris-Foulkes estimate = -62.17664941 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01247246 0.01246332 0.01247208 atom 2 type 1 force = 0.01246949 0.01246878 0.01249082 atom 3 type 1 force = 0.01248170 0.01249891 0.01247529 atom 4 type 1 force = 0.01248503 0.01247753 0.01247084 atom 5 type 1 force = -0.01248977 -0.01249527 -0.01248044 atom 6 type 1 force = -0.01248605 -0.01247388 -0.01247170 atom 7 type 1 force = -0.01247287 -0.01246985 -0.01247459 atom 8 type 1 force = -0.01246000 -0.01246953 -0.01248230 Total force = 0.061126 Total SCF correction = 0.000059 Entering Dynamics: iteration = 85 time = 0.0822 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126891820 -0.126894731 -0.126893297 Si 0.373108338 0.373107560 -0.126887022 Si 0.373112877 -0.126884050 0.373110857 Si -0.126888551 0.373112073 0.373110264 Si 0.126884155 0.126886453 0.126887641 Si 0.626887156 0.626888879 0.126891381 Si 0.626892320 0.126894344 0.626892337 Si 0.126895524 0.626889472 0.626887838 kinetic energy (Ekin) = 0.00087024 Ry temperature = 13.08566885 K Ekin + Etot (const) = -62.17577917 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.71 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.05E-11, avg # of iterations = 5.0 total cpu time spent up to now is 12.77 secs total energy = -62.17635243 Ry Harris-Foulkes estimate = -62.17635249 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-10, avg # of iterations = 4.0 total cpu time spent up to now is 12.81 secs total energy = -62.17635243 Ry Harris-Foulkes estimate = -62.17635254 Ry estimated scf accuracy < 0.00000032 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-10, avg # of iterations = 4.0 total cpu time spent up to now is 12.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0844 -1.0844 -1.0844 -0.9655 -0.9655 -0.9655 3.5664 3.5664 3.5664 3.6395 3.6395 3.6395 6.6043 6.6043 6.9168 ! total energy = -62.17635247 Ry Harris-Foulkes estimate = -62.17635247 Ry estimated scf accuracy < 3.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01310782 0.01308980 0.01310479 atom 2 type 1 force = 0.01310053 0.01310811 0.01312487 atom 3 type 1 force = 0.01311537 0.01312943 0.01310994 atom 4 type 1 force = 0.01311987 0.01311649 0.01310335 atom 5 type 1 force = -0.01312412 -0.01312682 -0.01311324 atom 6 type 1 force = -0.01312264 -0.01311169 -0.01310343 atom 7 type 1 force = -0.01310538 -0.01309836 -0.01310770 atom 8 type 1 force = -0.01309145 -0.01310696 -0.01311857 Total force = 0.064230 Total SCF correction = 0.000020 Entering Dynamics: iteration = 86 time = 0.0832 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126966777 -0.126970009 -0.126968372 Si 0.373033319 0.373032561 -0.126961653 Si 0.373038119 -0.126958531 0.373036005 Si -0.126963288 0.373037357 0.373035353 Si 0.126958640 0.126961063 0.126962364 Si 0.626961864 0.626963696 0.126966338 Si 0.626967362 0.126969486 0.626967378 Si 0.126970761 0.626964377 0.626962587 kinetic energy (Ekin) = 0.00057407 Ry temperature = 8.63219276 K Ekin + Etot (const) = -62.17577841 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.88 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.45E-11, avg # of iterations = 5.0 total cpu time spent up to now is 12.93 secs total energy = -62.17610809 Ry Harris-Foulkes estimate = -62.17610811 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.98 secs total energy = -62.17610809 Ry Harris-Foulkes estimate = -62.17610812 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-11, avg # of iterations = 4.0 total cpu time spent up to now is 13.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0868 -1.0868 -1.0868 -0.9634 -0.9634 -0.9634 3.5649 3.5649 3.5649 3.6411 3.6411 3.6411 6.6003 6.6003 6.9252 ! total energy = -62.17610810 Ry Harris-Foulkes estimate = -62.17610810 Ry estimated scf accuracy < 7.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01360424 0.01358568 0.01360224 atom 2 type 1 force = 0.01359593 0.01360420 0.01362236 atom 3 type 1 force = 0.01361352 0.01362795 0.01360798 atom 4 type 1 force = 0.01362028 0.01361587 0.01360165 atom 5 type 1 force = -0.01362377 -0.01362792 -0.01360990 atom 6 type 1 force = -0.01361948 -0.01360619 -0.01359934 atom 7 type 1 force = -0.01360142 -0.01359725 -0.01360711 atom 8 type 1 force = -0.01358931 -0.01360235 -0.01361787 Total force = 0.066668 Total SCF correction = 0.000028 Entering Dynamics: iteration = 87 time = 0.0842 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127020852 -0.127024434 -0.127022569 Si 0.372979169 0.372978444 -0.127015375 Si 0.372984256 -0.127012095 0.372982040 Si -0.127017118 0.372983541 0.372981320 Si 0.127012213 0.127014755 0.127016197 Si 0.627015666 0.627017628 0.127020421 Si 0.627021526 0.127023757 0.627021532 Si 0.127025139 0.627018404 0.627016434 kinetic energy (Ekin) = 0.00033032 Ry temperature = 4.96698331 K Ekin + Etot (const) = -62.17577778 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.04 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.10E-12, avg # of iterations = 7.0 total cpu time spent up to now is 13.10 secs total energy = -62.17592626 Ry Harris-Foulkes estimate = -62.17592627 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-11, avg # of iterations = 6.0 total cpu time spent up to now is 13.15 secs total energy = -62.17592626 Ry Harris-Foulkes estimate = -62.17592628 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-11, avg # of iterations = 5.0 total cpu time spent up to now is 13.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0886 -1.0886 -1.0885 -0.9619 -0.9619 -0.9619 3.5639 3.5639 3.5639 3.6422 3.6422 3.6422 6.5973 6.5973 6.9312 ! total energy = -62.17592627 Ry Harris-Foulkes estimate = -62.17592627 Ry estimated scf accuracy < 1.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01395928 0.01394324 0.01395833 atom 2 type 1 force = 0.01395585 0.01396107 0.01398163 atom 3 type 1 force = 0.01397236 0.01398684 0.01396460 atom 4 type 1 force = 0.01397737 0.01397352 0.01396048 atom 5 type 1 force = -0.01398369 -0.01398182 -0.01396793 atom 6 type 1 force = -0.01397629 -0.01396749 -0.01395763 atom 7 type 1 force = -0.01395735 -0.01395192 -0.01396431 atom 8 type 1 force = -0.01394754 -0.01396345 -0.01397518 Total force = 0.068420 Total SCF correction = 0.000013 Entering Dynamics: iteration = 88 time = 0.0851 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127053500 -0.127057457 -0.127055340 Si 0.372946441 0.372945756 -0.127047636 Si 0.372951840 -0.127044189 0.372949510 Si -0.127049494 0.372951173 0.372948716 Si 0.127044322 0.127046985 0.127048590 Si 0.627048016 0.627050121 0.127053079 Si 0.627054267 0.127056614 0.627054252 Si 0.127058108 0.627050997 0.627048829 kinetic energy (Ekin) = 0.00014895 Ry temperature = 2.23975842 K Ekin + Etot (const) = -62.17577732 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.22 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.84E-12, avg # of iterations = 7.0 total cpu time spent up to now is 13.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0896 -1.0896 -1.0896 -0.9610 -0.9610 -0.9610 3.5633 3.5633 3.5633 3.6429 3.6429 3.6429 6.5956 6.5956 6.9348 ! total energy = -62.17581437 Ry Harris-Foulkes estimate = -62.17581437 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01417718 0.01416118 0.01417291 atom 2 type 1 force = 0.01416506 0.01416965 0.01419710 atom 3 type 1 force = 0.01418648 0.01421065 0.01418176 atom 4 type 1 force = 0.01419703 0.01418427 0.01417425 atom 5 type 1 force = -0.01419567 -0.01420648 -0.01418473 atom 6 type 1 force = -0.01419392 -0.01417374 -0.01416880 atom 7 type 1 force = -0.01417772 -0.01417331 -0.01417969 atom 8 type 1 force = -0.01415844 -0.01417223 -0.01419278 Total force = 0.069475 Total SCF correction = 0.000088 Entering Dynamics: iteration = 89 time = 0.0861 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127064387 -0.127068743 -0.127066357 Si 0.372935454 0.372934818 -0.127058105 Si 0.372941199 -0.127054471 0.372938749 Si -0.127060078 0.372940577 0.372937868 Si 0.127054642 0.127057410 0.127059210 Si 0.627058579 0.627060858 0.127063989 Si 0.627065246 0.127067714 0.627065207 Si 0.127069345 0.627061837 0.627059439 kinetic energy (Ekin) = 0.00003734 Ry temperature = 0.56144955 K Ekin + Etot (const) = -62.17577703 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.78E-11, avg # of iterations = 6.0 total cpu time spent up to now is 13.38 secs total energy = -62.17577690 Ry Harris-Foulkes estimate = -62.17577697 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-10, avg # of iterations = 6.0 total cpu time spent up to now is 13.43 secs total energy = -62.17577690 Ry Harris-Foulkes estimate = -62.17577701 Ry estimated scf accuracy < 0.00000034 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0900 -1.0899 -1.0899 -0.9607 -0.9607 -0.9607 3.5630 3.5630 3.5631 3.6432 3.6432 3.6432 6.5950 6.5950 6.9360 ! total energy = -62.17577695 Ry Harris-Foulkes estimate = -62.17577695 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01424177 0.01422075 0.01424112 atom 2 type 1 force = 0.01423734 0.01424861 0.01427055 atom 3 type 1 force = 0.01426257 0.01427549 0.01425351 atom 4 type 1 force = 0.01426881 0.01426572 0.01424553 atom 5 type 1 force = -0.01426479 -0.01427355 -0.01425187 atom 6 type 1 force = -0.01426951 -0.01425289 -0.01424048 atom 7 type 1 force = -0.01424918 -0.01423673 -0.01425213 atom 8 type 1 force = -0.01422702 -0.01424740 -0.01426624 Total force = 0.069823 Total SCF correction = 0.000052 Entering Dynamics: iteration = 90 time = 0.0871 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127053414 -0.127058201 -0.127055515 Si 0.372946322 0.372945751 -0.127046669 Si 0.372952451 -0.127042841 0.372949865 Si -0.127048760 0.372951878 0.372948887 Si 0.127043065 0.127045925 0.127047954 Si 0.627047239 0.627049717 0.127053041 Si 0.627054353 0.127056963 0.627054285 Si 0.127058744 0.627050808 0.627048151 kinetic energy (Ekin) = 0.00000001 Ry temperature = 0.00012249 K Ekin + Etot (const) = -62.17577694 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.86E-11, avg # of iterations = 5.0 total cpu time spent up to now is 13.56 secs total energy = -62.17581548 Ry Harris-Foulkes estimate = -62.17581552 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-10, avg # of iterations = 7.0 total cpu time spent up to now is 13.60 secs total energy = -62.17581548 Ry Harris-Foulkes estimate = -62.17581555 Ry estimated scf accuracy < 0.00000020 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0896 -1.0896 -1.0896 -0.9610 -0.9610 -0.9610 3.5633 3.5633 3.5633 3.6429 3.6429 3.6429 6.5956 6.5956 6.9348 ! total energy = -62.17581551 Ry Harris-Foulkes estimate = -62.17581551 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01416930 0.01414517 0.01416842 atom 2 type 1 force = 0.01416263 0.01417660 0.01419659 atom 3 type 1 force = 0.01419168 0.01420091 0.01418182 atom 4 type 1 force = 0.01419334 0.01419434 0.01417039 atom 5 type 1 force = -0.01419204 -0.01420610 -0.01417651 atom 6 type 1 force = -0.01419721 -0.01417480 -0.01416897 atom 7 type 1 force = -0.01417348 -0.01416524 -0.01417841 atom 8 type 1 force = -0.01415422 -0.01417088 -0.01419333 Total force = 0.069464 Total SCF correction = 0.000049 Entering Dynamics: iteration = 91 time = 0.0880 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127020692 -0.127025947 -0.127022925 Si 0.372978928 0.372978443 -0.127013443 Si 0.372985486 -0.127009414 0.372982750 Si -0.127015656 0.372984967 0.372981656 Si 0.127009705 0.127012635 0.127014939 Si 0.627014107 0.627016819 0.127020345 Si 0.627021704 0.127024468 0.627021601 Si 0.127026417 0.627018028 0.627015077 kinetic energy (Ekin) = 0.00003847 Ry temperature = 0.57850821 K Ekin + Etot (const) = -62.17577704 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.67 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.63E-12, avg # of iterations = 7.0 total cpu time spent up to now is 13.74 secs total energy = -62.17592847 Ry Harris-Foulkes estimate = -62.17592851 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 6.0 total cpu time spent up to now is 13.78 secs total energy = -62.17592847 Ry Harris-Foulkes estimate = -62.17592854 Ry estimated scf accuracy < 0.00000018 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 6.0 total cpu time spent up to now is 13.82 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0885 -1.0885 -1.0885 -0.9619 -0.9619 -0.9619 3.5639 3.5639 3.5639 3.6422 3.6422 3.6422 6.5974 6.5974 6.9311 ! total energy = -62.17592850 Ry Harris-Foulkes estimate = -62.17592850 Ry estimated scf accuracy < 7.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01395353 0.01393212 0.01394859 atom 2 type 1 force = 0.01394479 0.01395400 0.01398374 atom 3 type 1 force = 0.01396898 0.01399418 0.01396197 atom 4 type 1 force = 0.01398018 0.01396724 0.01395368 atom 5 type 1 force = -0.01398145 -0.01398458 -0.01396760 atom 6 type 1 force = -0.01397820 -0.01396236 -0.01394584 atom 7 type 1 force = -0.01395203 -0.01394078 -0.01395736 atom 8 type 1 force = -0.01393581 -0.01395982 -0.01397718 Total force = 0.068399 Total SCF correction = 0.000029 Entering Dynamics: iteration = 92 time = 0.0890 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126966552 -0.126972308 -0.126968924 Si 0.373032939 0.373032555 -0.126958752 Si 0.373039963 -0.126954506 0.373037066 Si -0.126961094 0.373039495 0.373035844 Si 0.126954884 0.126957880 0.126960483 Si 0.626959520 0.626962490 0.126966242 Si 0.626967640 0.126970575 0.626967493 Si 0.126972700 0.626963820 0.626960549 kinetic energy (Ekin) = 0.00015117 Ry temperature = 2.27318550 K Ekin + Etot (const) = -62.17577732 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.87E-11, avg # of iterations = 6.0 total cpu time spent up to now is 13.91 secs total energy = -62.17611128 Ry Harris-Foulkes estimate = -62.17611135 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.95 secs total energy = -62.17611128 Ry Harris-Foulkes estimate = -62.17611139 Ry estimated scf accuracy < 0.00000031 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0868 -1.0868 -1.0868 -0.9634 -0.9634 -0.9634 3.5649 3.5650 3.5650 3.6411 3.6411 3.6411 6.6003 6.6003 6.9251 ! total energy = -62.17611133 Ry Harris-Foulkes estimate = -62.17611133 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01358969 0.01357464 0.01359408 atom 2 type 1 force = 0.01358996 0.01359056 0.01362239 atom 3 type 1 force = 0.01361287 0.01363192 0.01359739 atom 4 type 1 force = 0.01361554 0.01361103 0.01359413 atom 5 type 1 force = -0.01362421 -0.01361944 -0.01360655 atom 6 type 1 force = -0.01361815 -0.01360641 -0.01359259 atom 7 type 1 force = -0.01359121 -0.01358391 -0.01359902 atom 8 type 1 force = -0.01357449 -0.01359839 -0.01360983 Total force = 0.066636 Total SCF correction = 0.000037 Entering Dynamics: iteration = 93 time = 0.0900 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126891553 -0.126897833 -0.126894058 Si 0.373107809 0.373107527 -0.126883152 Si 0.373115335 -0.126878674 0.373112253 Si -0.126885632 0.373114915 0.373110897 Si 0.126879151 0.126882219 0.126885143 Si 0.626884029 0.626887275 0.126891275 Si 0.626892714 0.126895832 0.626892511 Si 0.126898146 0.626888739 0.626885131 kinetic energy (Ekin) = 0.00033354 Ry temperature = 5.01542212 K Ekin + Etot (const) = -62.17577779 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.02 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.16E-11, avg # of iterations = 7.0 total cpu time spent up to now is 14.08 secs total energy = -62.17635654 Ry Harris-Foulkes estimate = -62.17635659 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 6.0 total cpu time spent up to now is 14.13 secs total energy = -62.17635654 Ry Harris-Foulkes estimate = -62.17635662 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 6.0 total cpu time spent up to now is 14.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0844 -1.0844 -1.0843 -0.9655 -0.9655 -0.9655 3.5664 3.5664 3.5664 3.6395 3.6395 3.6395 6.6044 6.6044 6.9167 ! total energy = -62.17635657 Ry Harris-Foulkes estimate = -62.17635657 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01308935 0.01307152 0.01309253 atom 2 type 1 force = 0.01308692 0.01309193 0.01312372 atom 3 type 1 force = 0.01311521 0.01313404 0.01309873 atom 4 type 1 force = 0.01311851 0.01311214 0.01309427 atom 5 type 1 force = -0.01312908 -0.01312571 -0.01310474 atom 6 type 1 force = -0.01311683 -0.01310618 -0.01308967 atom 7 type 1 force = -0.01308823 -0.01307964 -0.01309804 atom 8 type 1 force = -0.01307586 -0.01309810 -0.01311680 Total force = 0.064188 Total SCF correction = 0.000020 Entering Dynamics: iteration = 94 time = 0.0910 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126796462 -0.126803294 -0.126799095 Si 0.373202768 0.373202594 -0.126787408 Si 0.373210837 -0.126782682 0.373207545 Si -0.126790034 0.373210461 0.373206050 Si 0.126783266 0.126786411 0.126789687 Si 0.626788405 0.626791943 0.126796217 Si 0.626797699 0.126801012 0.626797424 Si 0.126803522 0.626793553 0.626789579 kinetic energy (Ekin) = 0.00057816 Ry temperature = 8.69367680 K Ekin + Etot (const) = -62.17577842 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.20 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-11, avg # of iterations = 7.0 total cpu time spent up to now is 14.27 secs total energy = -62.17665420 Ry Harris-Foulkes estimate = -62.17665422 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.72E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.32 secs total energy = -62.17665420 Ry Harris-Foulkes estimate = -62.17665423 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.72E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0813 -1.0813 -1.0813 -0.9682 -0.9682 -0.9682 3.5682 3.5683 3.5683 3.6375 3.6375 3.6375 6.6095 6.6095 6.9061 ! total energy = -62.17665421 Ry Harris-Foulkes estimate = -62.17665421 Ry estimated scf accuracy < 5.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01245141 0.01243454 0.01245578 atom 2 type 1 force = 0.01245480 0.01245466 0.01248472 atom 3 type 1 force = 0.01248026 0.01250040 0.01246727 atom 4 type 1 force = 0.01248010 0.01247707 0.01245970 atom 5 type 1 force = -0.01249312 -0.01248805 -0.01246926 atom 6 type 1 force = -0.01248237 -0.01246931 -0.01245360 atom 7 type 1 force = -0.01245093 -0.01244368 -0.01246227 atom 8 type 1 force = -0.01244016 -0.01246563 -0.01248235 Total force = 0.061074 Total SCF correction = 0.000026 Entering Dynamics: iteration = 95 time = 0.0919 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126682259 -0.126689668 -0.126685013 Si 0.373316843 0.373316779 -0.126672500 Si 0.373325497 -0.126667502 0.373321975 Si -0.126675280 0.373325159 0.373320327 Si 0.126668204 0.126671435 0.126675092 Si 0.626673621 0.626677472 0.126682043 Si 0.626683572 0.126687092 0.626683209 Si 0.126689803 0.626679234 0.626674868 kinetic energy (Ekin) = 0.00087503 Ry temperature = 13.15770483 K Ekin + Etot (const) = -62.17577918 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.39 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.67E-12, avg # of iterations = 6.0 total cpu time spent up to now is 14.46 secs total energy = -62.17699201 Ry Harris-Foulkes estimate = -62.17699202 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.97E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.50 secs total energy = -62.17699201 Ry Harris-Foulkes estimate = -62.17699203 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.97E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0776 -1.0776 -1.0776 -0.9714 -0.9714 -0.9714 3.5705 3.5705 3.5705 3.6351 3.6351 3.6351 6.6157 6.6157 6.8933 ! total energy = -62.17699202 Ry Harris-Foulkes estimate = -62.17699202 Ry estimated scf accuracy < 6.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01168423 0.01166610 0.01168668 atom 2 type 1 force = 0.01168336 0.01168294 0.01171933 atom 3 type 1 force = 0.01171326 0.01173843 0.01169989 atom 4 type 1 force = 0.01171823 0.01171187 0.01169354 atom 5 type 1 force = -0.01173107 -0.01172440 -0.01170341 atom 6 type 1 force = -0.01171381 -0.01170131 -0.01168432 atom 7 type 1 force = -0.01168282 -0.01167683 -0.01169617 atom 8 type 1 force = -0.01167139 -0.01169679 -0.01171554 Total force = 0.057317 Total SCF correction = 0.000025 Entering Dynamics: iteration = 96 time = 0.0929 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126550121 -0.126558136 -0.126552993 Si 0.373448852 0.373448896 -0.126539604 Si 0.373458135 -0.126534305 0.373454363 Si -0.126542540 0.373457834 0.373452553 Si 0.126535135 0.126538463 0.126542533 Si 0.626540857 0.626545040 0.126549934 Si 0.626551512 0.126555248 0.626551041 Si 0.126558169 0.626546960 0.626542173 kinetic energy (Ekin) = 0.00121196 Ry temperature = 18.22409581 K Ekin + Etot (const) = -62.17578006 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.57 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.63 secs total energy = -62.17735601 Ry Harris-Foulkes estimate = -62.17735603 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.36E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.68 secs total energy = -62.17735601 Ry Harris-Foulkes estimate = -62.17735604 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.36E-11, avg # of iterations = 4.0 total cpu time spent up to now is 14.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0733 -1.0733 -1.0733 -0.9752 -0.9752 -0.9752 3.5730 3.5730 3.5730 3.6323 3.6323 3.6323 6.6229 6.6229 6.8786 ! total energy = -62.17735602 Ry Harris-Foulkes estimate = -62.17735602 Ry estimated scf accuracy < 6.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01078871 0.01077095 0.01079273 atom 2 type 1 force = 0.01079277 0.01079326 0.01083191 atom 3 type 1 force = 0.01082567 0.01084557 0.01080485 atom 4 type 1 force = 0.01082439 0.01082179 0.01080175 atom 5 type 1 force = -0.01084028 -0.01083312 -0.01081456 atom 6 type 1 force = -0.01082288 -0.01081066 -0.01079045 atom 7 type 1 force = -0.01079314 -0.01078280 -0.01080376 atom 8 type 1 force = -0.01077524 -0.01080498 -0.01082248 Total force = 0.052948 Total SCF correction = 0.000026 Entering Dynamics: iteration = 97 time = 0.0939 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126401423 -0.126410071 -0.126404407 Si 0.373597427 0.373597581 -0.126390081 Si 0.373607390 -0.126384460 0.373603335 Si -0.126393184 0.373607119 0.373601360 Si 0.126385428 0.126388862 0.126393374 Si 0.626391480 0.626396014 0.126401262 Si 0.626402886 0.126406854 0.626402289 Si 0.126409995 0.626398101 0.626392867 kinetic energy (Ekin) = 0.00157501 Ry temperature = 23.68322431 K Ekin + Etot (const) = -62.17578101 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.75 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.51E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.81 secs total energy = -62.17773102 Ry Harris-Foulkes estimate = -62.17773104 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.86 secs total energy = -62.17773102 Ry Harris-Foulkes estimate = -62.17773104 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0685 -1.0685 -1.0685 -0.9795 -0.9795 -0.9795 3.5759 3.5759 3.5759 3.6293 3.6293 3.6293 6.6310 6.6310 6.8621 ! total energy = -62.17773103 Ry Harris-Foulkes estimate = -62.17773103 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00978060 0.00976118 0.00977940 atom 2 type 1 force = 0.00978139 0.00978576 0.00982299 atom 3 type 1 force = 0.00981454 0.00983507 0.00979564 atom 4 type 1 force = 0.00981475 0.00980992 0.00979379 atom 5 type 1 force = -0.00983225 -0.00982403 -0.00980695 atom 6 type 1 force = -0.00981156 -0.00979974 -0.00978163 atom 7 type 1 force = -0.00978028 -0.00977259 -0.00979160 atom 8 type 1 force = -0.00976718 -0.00979556 -0.00981165 Total force = 0.048000 Total SCF correction = 0.000019 Entering Dynamics: iteration = 98 time = 0.0948 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126237713 -0.126247023 -0.126240810 Si 0.373761017 0.373761286 -0.126225481 Si 0.373771710 -0.126219519 0.373767344 Si -0.126228763 0.373771463 0.373765199 Si 0.126220628 0.126224182 0.126229162 Si 0.626227043 0.626231946 0.126237577 Si 0.626239248 0.126243459 0.626238508 Si 0.126246830 0.626234207 0.626228501 kinetic energy (Ekin) = 0.00194903 Ry temperature = 29.30727282 K Ekin + Etot (const) = -62.17578201 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.93 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.42E-12, avg # of iterations = 6.0 total cpu time spent up to now is 15.00 secs total energy = -62.17810124 Ry Harris-Foulkes estimate = -62.17810124 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-11, avg # of iterations = 5.0 total cpu time spent up to now is 15.04 secs total energy = -62.17810124 Ry Harris-Foulkes estimate = -62.17810125 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-11, avg # of iterations = 5.0 total cpu time spent up to now is 15.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2220 -1.0632 -1.0632 -1.0632 -0.9844 -0.9844 -0.9843 3.5790 3.5790 3.5790 3.6259 3.6259 3.6259 6.6399 6.6399 6.8439 ! total energy = -62.17810124 Ry Harris-Foulkes estimate = -62.17810124 Ry estimated scf accuracy < 1.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00866157 0.00863860 0.00865891 atom 2 type 1 force = 0.00866035 0.00866607 0.00870417 atom 3 type 1 force = 0.00869509 0.00871833 0.00867785 atom 4 type 1 force = 0.00869650 0.00869057 0.00867265 atom 5 type 1 force = -0.00871168 -0.00870742 -0.00868910 atom 6 type 1 force = -0.00869816 -0.00868121 -0.00866285 atom 7 type 1 force = -0.00866150 -0.00864953 -0.00866877 atom 8 type 1 force = -0.00864217 -0.00867542 -0.00869286 Total force = 0.042515 Total SCF correction = 0.000014 Entering Dynamics: iteration = 99 time = 0.0958 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126060707 -0.126070715 -0.126063922 Si 0.373937899 0.373938293 -0.126047520 Si 0.373949377 -0.126041196 0.373944672 Si -0.126050994 0.373949145 0.373942350 Si 0.126042457 0.126046136 0.126051613 Si 0.626049256 0.626054552 0.126060594 Si 0.626062314 0.126066787 0.626061421 Si 0.126070399 0.626056997 0.626050791 kinetic energy (Ekin) = 0.00231824 Ry temperature = 34.85911295 K Ekin + Etot (const) = -62.17578300 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 15.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.72E-12, avg # of iterations = 6.0 total cpu time spent up to now is 15.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2218 -1.0574 -1.0574 -1.0574 -0.9897 -0.9896 -0.9896 3.5824 3.5824 3.5824 3.6224 3.6224 3.6224 6.6495 6.6495 6.8242 ! total energy = -62.17845085 Ry Harris-Foulkes estimate = -62.17845086 Ry estimated scf accuracy < 9.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00744328 0.00741706 0.00743779 atom 2 type 1 force = 0.00743585 0.00743966 0.00748025 atom 3 type 1 force = 0.00747487 0.00750485 0.00746182 atom 4 type 1 force = 0.00748202 0.00747475 0.00745577 atom 5 type 1 force = -0.00750526 -0.00748965 -0.00746475 atom 6 type 1 force = -0.00746568 -0.00745930 -0.00743842 atom 7 type 1 force = -0.00743304 -0.00743137 -0.00745268 atom 8 type 1 force = -0.00743204 -0.00745599 -0.00747978 Total force = 0.036542 Total SCF correction = 0.000114 Entering Dynamics: iteration = 100 time = 0.0968 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125872277 -0.125883022 -0.125875617 Si 0.374126195 0.374126719 -0.125858077 Si 0.374138517 -0.125851353 0.374133454 Si -0.125861740 0.374138302 0.374130946 Si 0.125852765 0.125856594 0.125862606 Si 0.625860008 0.625865710 0.125872194 Si 0.625873972 0.125878709 0.625872894 Si 0.125882560 0.625868342 0.625861601 kinetic energy (Ekin) = 0.00266690 Ry temperature = 40.10188575 K Ekin + Etot (const) = -62.17578395 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 15.19 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 5.0 total cpu time spent up to now is 15.25 secs total energy = -62.17876459 Ry Harris-Foulkes estimate = -62.17876482 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 6.0 total cpu time spent up to now is 15.29 secs total energy = -62.17876461 Ry Harris-Foulkes estimate = -62.17876494 Ry estimated scf accuracy < 0.00000093 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 5.0 total cpu time spent up to now is 15.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2216 -1.0513 -1.0512 -1.0512 -0.9954 -0.9954 -0.9953 3.5859 3.5859 3.5860 3.6186 3.6186 3.6186 6.6598 6.6598 6.8033 ! total energy = -62.17876475 Ry Harris-Foulkes estimate = -62.17876475 Ry estimated scf accuracy < 4.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00612307 0.00610908 0.00612900 atom 2 type 1 force = 0.00614540 0.00613530 0.00617058 atom 3 type 1 force = 0.00617774 0.00619006 0.00615068 atom 4 type 1 force = 0.00615669 0.00616693 0.00615027 atom 5 type 1 force = -0.00619320 -0.00617245 -0.00616217 atom 6 type 1 force = -0.00615801 -0.00614179 -0.00613467 atom 7 type 1 force = -0.00612998 -0.00613152 -0.00613951 atom 8 type 1 force = -0.00612171 -0.00615560 -0.00616417 Total force = 0.030131 Total SCF correction = 0.000075 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000012 cm^2/s atom 2 D = 0.00000012 cm^2/s atom 3 D = 0.00000012 cm^2/s atom 4 D = 0.00000012 cm^2/s atom 5 D = 0.00000012 cm^2/s atom 6 D = 0.00000012 cm^2/s atom 7 D = 0.00000012 cm^2/s atom 8 D = 0.00000012 cm^2/s < D > = 0.00000012 cm^2/s Writing output data file pwscf.save PWSCF : 15.36s CPU time, 17.15s wall time init_run : 0.03s CPU electrons : 11.92s CPU ( 101 calls, 0.118 s avg) update_pot : 0.94s CPU ( 100 calls, 0.009 s avg) forces : 0.52s CPU ( 101 calls, 0.005 s avg) Called by init_run: wfcinit : 0.01s CPU potinit : 0.00s CPU Called by electrons: c_bands : 10.07s CPU ( 350 calls, 0.029 s avg) sum_band : 1.11s CPU ( 350 calls, 0.003 s avg) v_of_rho : 0.43s CPU ( 351 calls, 0.001 s avg) mix_rho : 0.13s CPU ( 350 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.14s CPU ( 701 calls, 0.000 s avg) cegterg : 9.88s CPU ( 350 calls, 0.028 s avg) Called by *egterg: h_psi : 6.21s CPU ( 1851 calls, 0.003 s avg) g_psi : 0.21s CPU ( 1500 calls, 0.000 s avg) cdiaghg : 1.90s CPU ( 1650 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.37s CPU ( 1851 calls, 0.000 s avg) General routines calbec : 0.49s CPU ( 2051 calls, 0.000 s avg) cft3 : 0.37s CPU ( 1455 calls, 0.000 s avg) cft3s : 5.47s CPU ( 40356 calls, 0.000 s avg) davcio : 0.01s CPU ( 1912 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example03/reference/si.md2_G3X.out0000644000700200004540000072200112053145630022567 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:49 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 100 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 4 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.5000000 k( 2) = ( 1.0000000 0.0000000 0.0000000), wk = 0.5000000 k( 3) = ( 0.0000000 1.0000000 0.0000000), wk = 0.5000000 k( 4) = ( 0.0000000 0.0000000 1.0000000), wk = 0.5000000 G cutoff = 84.0013 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.03 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.04 secs total energy = -15.53708617 Ry Harris-Foulkes estimate = -15.57401271 Ry estimated scf accuracy < 0.10879526 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.04 secs total energy = -15.54353143 Ry Harris-Foulkes estimate = -15.54395743 Ry estimated scf accuracy < 0.00413353 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 1.8 total cpu time spent up to now is 0.05 secs total energy = -15.54394196 Ry Harris-Foulkes estimate = -15.54395229 Ry estimated scf accuracy < 0.00009356 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs total energy = -15.54395076 Ry Harris-Foulkes estimate = -15.54395157 Ry estimated scf accuracy < 0.00000207 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.07 secs total energy = -15.54395125 Ry Harris-Foulkes estimate = -15.54395128 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4885 6.8186 6.8186 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0939 -0.9566 3.5685 3.6376 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0939 -0.9566 3.5685 3.6376 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0939 -0.9566 3.5685 3.6376 ! total energy = -15.54395126 Ry Harris-Foulkes estimate = -15.54395126 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01508762 -0.01508762 -0.01508762 atom 2 type 1 force = 0.01508762 0.01508762 0.01508762 Total force = 0.036957 Total SCF correction = 0.000027 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123023159 -0.123023159 -0.123023159 Si 0.123023159 0.123023159 0.123023159 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -15.54395126 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.10 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.09E-10, avg # of iterations = 3.8 total cpu time spent up to now is 0.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4908 6.8173 6.8173 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0932 -0.9574 3.5688 3.6372 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0932 -0.9574 3.5688 3.6372 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0932 -0.9574 3.5688 3.6372 ! total energy = -15.54397247 Ry Harris-Foulkes estimate = -15.54397247 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01490342 -0.01490342 -0.01490342 atom 2 type 1 force = 0.01490342 0.01490342 0.01490342 Total force = 0.036506 Total SCF correction = 0.000001 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123069193 -0.123069193 -0.123069193 Si 0.123069193 0.123069193 0.123069193 kinetic energy (Ekin) = 0.00002381 Ry temperature = 2.50668296 K Ekin + Etot (const) = -15.54394866 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation first order charge density extrapolation total cpu time spent up to now is 0.14 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.48E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.4960 6.8147 6.8147 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0913 -0.9589 3.5696 3.6364 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0913 -0.9589 3.5696 3.6364 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0913 -0.9589 3.5696 3.6364 ! total energy = -15.54401387 Ry Harris-Foulkes estimate = -15.54401387 Ry estimated scf accuracy < 6.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01454223 -0.01454230 -0.01454231 atom 2 type 1 force = 0.01454223 0.01454230 0.01454231 Total force = 0.035621 Total SCF correction = 0.000038 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123137549 -0.123137549 -0.123137549 Si 0.123137549 0.123137549 0.123137549 kinetic energy (Ekin) = 0.00006509 Ry temperature = 6.85099833 K Ekin + Etot (const) = -15.54394879 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.18 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.85E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.5031 6.8110 6.8110 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0889 -0.9611 3.5705 3.6353 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0889 -0.9611 3.5705 3.6353 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0889 -0.9611 3.5705 3.6353 ! total energy = -15.54407348 Ry Harris-Foulkes estimate = -15.54407348 Ry estimated scf accuracy < 5.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01400781 -0.01400781 -0.01400783 atom 2 type 1 force = 0.01400781 0.01400781 0.01400783 Total force = 0.034312 Total SCF correction = 0.000049 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123227406 -0.123227407 -0.123227407 Si 0.123227406 0.123227407 0.123227407 kinetic energy (Ekin) = 0.00012451 Ry temperature = 13.10567722 K Ekin + Etot (const) = -15.54394897 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.22 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.98E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.24 secs total energy = -15.54414843 Ry Harris-Foulkes estimate = -15.54414844 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2229 6.5131 6.8059 6.8059 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0854 -0.9642 3.5720 3.6337 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0854 -0.9642 3.5720 3.6337 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0854 -0.9642 3.5720 3.6337 ! total energy = -15.54414843 Ry Harris-Foulkes estimate = -15.54414843 Ry estimated scf accuracy < 9.8E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01330696 -0.01330694 -0.01330693 atom 2 type 1 force = 0.01330696 0.01330694 0.01330693 Total force = 0.032595 Total SCF correction = 0.000007 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123337689 -0.123337689 -0.123337689 Si 0.123337689 0.123337689 0.123337689 kinetic energy (Ekin) = 0.00019924 Ry temperature = 20.97204027 K Ekin + Etot (const) = -15.54394919 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.27 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.88E-12, avg # of iterations = 3.8 total cpu time spent up to now is 0.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2227 6.5250 6.7998 6.7998 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9678 3.5737 3.6318 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9678 3.5737 3.6318 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0813 -0.9678 3.5737 3.6318 ! total energy = -15.54423518 Ry Harris-Foulkes estimate = -15.54423518 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01244849 -0.01244851 -0.01244852 atom 2 type 1 force = 0.01244849 0.01244851 0.01244852 Total force = 0.030492 Total SCF correction = 0.000026 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123467079 -0.123467080 -0.123467080 Si 0.123467079 0.123467080 0.123467080 kinetic energy (Ekin) = 0.00028573 Ry temperature = 30.07541222 K Ekin + Etot (const) = -15.54394945 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.31 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.29E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2225 6.5393 6.7924 6.7924 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0764 -0.9722 3.5758 3.6295 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0764 -0.9722 3.5758 3.6295 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0764 -0.9722 3.5758 3.6295 ! total energy = -15.54432960 Ry Harris-Foulkes estimate = -15.54432960 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01144760 -0.01144756 -0.01144755 atom 2 type 1 force = 0.01144760 0.01144756 0.01144755 Total force = 0.028041 Total SCF correction = 0.000026 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123614041 -0.123614042 -0.123614042 Si 0.123614041 0.123614042 0.123614042 kinetic energy (Ekin) = 0.00037988 Ry temperature = 39.98516208 K Ekin + Etot (const) = -15.54394972 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.35 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.51E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2222 6.5551 6.7844 6.7844 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0711 -0.9769 3.5781 3.6270 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0711 -0.9769 3.5781 3.6270 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0711 -0.9769 3.5781 3.6270 ! total energy = -15.54442728 Ry Harris-Foulkes estimate = -15.54442728 Ry estimated scf accuracy < 5.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01031755 -0.01031755 -0.01031757 atom 2 type 1 force = 0.01031755 0.01031755 0.01031757 Total force = 0.025273 Total SCF correction = 0.000048 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123776840 -0.123776840 -0.123776841 Si 0.123776840 0.123776840 0.123776841 kinetic energy (Ekin) = 0.00047728 Ry temperature = 50.23713447 K Ekin + Etot (const) = -15.54395001 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.40 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.58E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.41 secs total energy = -15.54452368 Ry Harris-Foulkes estimate = -15.54452369 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.5731 6.7752 6.7752 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0651 -0.9824 3.5808 3.6241 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0651 -0.9824 3.5808 3.6241 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0651 -0.9824 3.5808 3.6241 ! total energy = -15.54452368 Ry Harris-Foulkes estimate = -15.54452368 Ry estimated scf accuracy < 4.6E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00907385 -0.00907383 -0.00907382 atom 2 type 1 force = 0.00907385 0.00907383 0.00907382 Total force = 0.022226 Total SCF correction = 0.000005 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123953566 -0.123953567 -0.123953567 Si 0.123953566 0.123953567 0.123953567 kinetic energy (Ekin) = 0.00057340 Ry temperature = 60.35548577 K Ekin + Etot (const) = -15.54395028 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.45 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.24E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.5923 6.7654 6.7654 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0588 -0.9883 3.5837 3.6210 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0588 -0.9883 3.5837 3.6210 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0588 -0.9883 3.5837 3.6210 ! total energy = -15.54461438 Ry Harris-Foulkes estimate = -15.54461438 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00773317 -0.00773314 -0.00773312 atom 2 type 1 force = 0.00773317 0.00773314 0.00773312 Total force = 0.018942 Total SCF correction = 0.000025 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124142163 -0.124142163 -0.124142163 Si 0.124142163 0.124142163 0.124142163 kinetic energy (Ekin) = 0.00066385 Ry temperature = 69.87577472 K Ekin + Etot (const) = -15.54395053 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.96E-12, avg # of iterations = 3.2 total cpu time spent up to now is 0.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6132 6.7548 6.7548 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0520 -0.9946 3.5869 3.6176 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0520 -0.9946 3.5869 3.6176 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0520 -0.9946 3.5869 3.6176 ! total energy = -15.54469528 Ry Harris-Foulkes estimate = -15.54469528 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00631348 -0.00631344 -0.00631344 atom 2 type 1 force = 0.00631348 0.00631344 0.00631344 Total force = 0.015465 Total SCF correction = 0.000023 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124340450 -0.124340450 -0.124340451 Si 0.124340450 0.124340450 0.124340451 kinetic energy (Ekin) = 0.00074452 Ry temperature = 78.36705552 K Ekin + Etot (const) = -15.54395075 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.44E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6347 6.7439 6.7439 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0452 -1.0010 3.5903 3.6141 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0452 -1.0010 3.5903 3.6141 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0452 -1.0010 3.5903 3.6141 ! total energy = -15.54476277 Ry Harris-Foulkes estimate = -15.54476277 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00483386 -0.00483386 -0.00483387 atom 2 type 1 force = 0.00483386 0.00483386 0.00483387 Total force = 0.011840 Total SCF correction = 0.000041 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124546157 -0.124546157 -0.124546158 Si 0.124546157 0.124546157 0.124546158 kinetic energy (Ekin) = 0.00081183 Ry temperature = 85.45213403 K Ekin + Etot (const) = -15.54395093 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.58 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.77E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6577 6.7324 6.7324 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0379 -1.0080 3.5939 3.6103 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0379 -1.0080 3.5939 3.6103 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0379 -1.0080 3.5939 3.6103 ! total energy = -15.54481392 Ry Harris-Foulkes estimate = -15.54481392 Ry estimated scf accuracy < 6.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00331079 -0.00331083 -0.00331086 atom 2 type 1 force = 0.00331079 0.00331083 0.00331086 Total force = 0.008110 Total SCF correction = 0.000054 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124756946 -0.124756946 -0.124756946 Si 0.124756946 0.124756946 0.124756946 kinetic energy (Ekin) = 0.00086286 Ry temperature = 90.82261140 K Ekin + Etot (const) = -15.54395106 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.62 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.49E-10, avg # of iterations = 2.8 total cpu time spent up to now is 0.63 secs total energy = -15.54484658 Ry Harris-Foulkes estimate = -15.54484659 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6807 6.7208 6.7208 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0309 -1.0149 3.5977 3.6065 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0309 -1.0149 3.5977 3.6065 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0309 -1.0149 3.5977 3.6065 ! total energy = -15.54484659 Ry Harris-Foulkes estimate = -15.54484659 Ry estimated scf accuracy < 6.4E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00176488 -0.00176488 -0.00176487 atom 2 type 1 force = 0.00176488 0.00176488 0.00176487 Total force = 0.004323 Total SCF correction = 0.000005 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124970444 -0.124970444 -0.124970444 Si 0.124970444 0.124970444 0.124970444 kinetic energy (Ekin) = 0.00089544 Ry temperature = 94.25222199 K Ekin + Etot (const) = -15.54395115 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.67 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.26E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.7042 6.7090 6.7090 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0238 -1.0219 3.6016 3.6026 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0238 -1.0219 3.6016 3.6026 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0238 -1.0219 3.6016 3.6026 ! total energy = -15.54485948 Ry Harris-Foulkes estimate = -15.54485948 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00021364 -0.00021358 -0.00021358 atom 2 type 1 force = 0.00021364 0.00021358 0.00021358 Total force = 0.000523 Total SCF correction = 0.000021 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125184269 -0.125184269 -0.125184270 Si 0.125184269 0.125184269 0.125184270 kinetic energy (Ekin) = 0.00090830 Ry temperature = 95.60627586 K Ekin + Etot (const) = -15.54395117 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.71 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.11E-11, avg # of iterations = 2.8 total cpu time spent up to now is 0.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6973 6.6973 6.7276 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0289 -1.0169 3.5987 3.6055 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0289 -1.0169 3.5987 3.6055 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0289 -1.0169 3.5987 3.6055 ! total energy = -15.54485220 Ry Harris-Foulkes estimate = -15.54485220 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00132617 0.00132622 0.00132619 atom 2 type 1 force = -0.00132617 -0.00132622 -0.00132619 Total force = 0.003248 Total SCF correction = 0.000023 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125396060 -0.125396059 -0.125396060 Si 0.125396060 0.125396059 0.125396060 kinetic energy (Ekin) = 0.00090106 Ry temperature = 94.84363431 K Ekin + Etot (const) = -15.54395114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.75 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.04E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6855 6.6855 6.7513 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0359 -1.0100 3.5947 3.6095 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0359 -1.0100 3.5947 3.6095 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0359 -1.0100 3.5947 3.6095 ! total energy = -15.54482525 Ry Harris-Foulkes estimate = -15.54482525 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00283774 0.00283785 0.00283778 atom 2 type 1 force = -0.00283774 -0.00283785 -0.00283778 Total force = 0.006951 Total SCF correction = 0.000034 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125603494 -0.125603493 -0.125603494 Si 0.125603494 0.125603493 0.125603494 kinetic energy (Ekin) = 0.00087420 Ry temperature = 92.01648571 K Ekin + Etot (const) = -15.54395106 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.12E-11, avg # of iterations = 2.8 total cpu time spent up to now is 0.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6743 6.6743 6.7738 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0425 -1.0036 3.5909 3.6134 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0425 -1.0036 3.5909 3.6134 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0425 -1.0036 3.5909 3.6134 ! total energy = -15.54478000 Ry Harris-Foulkes estimate = -15.54478000 Ry estimated scf accuracy < 5.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00430366 0.00430369 0.00430364 atom 2 type 1 force = -0.00430366 -0.00430369 -0.00430364 Total force = 0.010542 Total SCF correction = 0.000049 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125804322 -0.125804321 -0.125804323 Si 0.125804322 0.125804321 0.125804323 kinetic energy (Ekin) = 0.00082908 Ry temperature = 87.26736926 K Ekin + Etot (const) = -15.54395092 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.84 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.94E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.85 secs total energy = -15.54471855 Ry Harris-Foulkes estimate = -15.54471856 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6633 6.6633 6.7962 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0492 -0.9973 3.5871 3.6174 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0492 -0.9973 3.5871 3.6174 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0492 -0.9973 3.5871 3.6174 ! total energy = -15.54471855 Ry Harris-Foulkes estimate = -15.54471855 Ry estimated scf accuracy < 4.2E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00571161 0.00571155 0.00571159 atom 2 type 1 force = -0.00571161 -0.00571155 -0.00571159 Total force = 0.013990 Total SCF correction = 0.000004 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125996384 -0.125996383 -0.125996384 Si 0.125996384 0.125996383 0.125996384 kinetic energy (Ekin) = 0.00076782 Ry temperature = 80.81912119 K Ekin + Etot (const) = -15.54395074 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2217 6.6528 6.6528 6.8174 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0554 -0.9915 3.5835 3.6211 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0554 -0.9915 3.5835 3.6211 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0554 -0.9915 3.5835 3.6211 ! total energy = -15.54464371 Ry Harris-Foulkes estimate = -15.54464371 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00704666 0.00704670 0.00704672 atom 2 type 1 force = -0.00704666 -0.00704670 -0.00704672 Total force = 0.017261 Total SCF correction = 0.000022 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126177629 -0.126177627 -0.126177629 Si 0.126177629 0.126177627 0.126177629 kinetic energy (Ekin) = 0.00069318 Ry temperature = 72.96320099 K Ekin + Etot (const) = -15.54395052 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.70E-12, avg # of iterations = 3.2 total cpu time spent up to now is 0.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2219 6.6428 6.6428 6.8377 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0614 -0.9860 3.5800 3.6248 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0614 -0.9860 3.5800 3.6248 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0614 -0.9860 3.5800 3.6248 ! total energy = -15.54455877 Ry Harris-Foulkes estimate = -15.54455877 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00829653 0.00829654 0.00829655 atom 2 type 1 force = -0.00829653 -0.00829654 -0.00829655 Total force = 0.020322 Total SCF correction = 0.000020 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126346140 -0.126346138 -0.126346140 Si 0.126346140 0.126346138 0.126346140 kinetic energy (Ekin) = 0.00060848 Ry temperature = 64.04746065 K Ekin + Etot (const) = -15.54395029 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.98 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2221 6.6338 6.6338 6.8562 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0667 -0.9811 3.5769 3.6282 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0667 -0.9811 3.5769 3.6282 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0667 -0.9811 3.5769 3.6282 ! total energy = -15.54446744 Ry Harris-Foulkes estimate = -15.54446744 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00944904 0.00944902 0.00944902 atom 2 type 1 force = -0.00944904 -0.00944902 -0.00944902 Total force = 0.023145 Total SCF correction = 0.000033 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126500147 -0.126500144 -0.126500146 Si 0.126500147 0.126500144 0.126500146 kinetic energy (Ekin) = 0.00051740 Ry temperature = 54.46007560 K Ekin + Etot (const) = -15.54395004 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2223 6.6253 6.6253 6.8736 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0719 -0.9765 3.5738 3.6314 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0719 -0.9765 3.5738 3.6314 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0719 -0.9765 3.5738 3.6314 ! total energy = -15.54437362 Ry Harris-Foulkes estimate = -15.54437363 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01049601 0.01049604 0.01049603 atom 2 type 1 force = -0.01049601 -0.01049604 -0.01049603 Total force = 0.025710 Total SCF correction = 0.000042 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126638043 -0.126638040 -0.126638042 Si 0.126638043 0.126638040 0.126638042 kinetic energy (Ekin) = 0.00042383 Ry temperature = 44.61168503 K Ekin + Etot (const) = -15.54394979 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.06 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.52E-11, avg # of iterations = 3.8 total cpu time spent up to now is 1.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.6180 6.6180 6.8885 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0761 -0.9727 3.5713 3.6341 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0761 -0.9727 3.5713 3.6341 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0761 -0.9727 3.5713 3.6341 ! total energy = -15.54428129 Ry Harris-Foulkes estimate = -15.54428130 Ry estimated scf accuracy < 8.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01142637 0.01142638 0.01142636 atom 2 type 1 force = -0.01142637 -0.01142638 -0.01142636 Total force = 0.027989 Total SCF correction = 0.000059 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126758400 -0.126758397 -0.126758399 Si 0.126758400 0.126758397 0.126758399 kinetic energy (Ekin) = 0.00033175 Ry temperature = 34.91912459 K Ekin + Etot (const) = -15.54394955 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.11 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.58E-11, avg # of iterations = 3.8 total cpu time spent up to now is 1.12 secs total energy = -15.54419432 Ry Harris-Foulkes estimate = -15.54419433 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.6114 6.6114 6.9021 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0801 -0.9692 3.5689 3.6367 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0801 -0.9692 3.5689 3.6367 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0801 -0.9692 3.5689 3.6367 ! total energy = -15.54419432 Ry Harris-Foulkes estimate = -15.54419432 Ry estimated scf accuracy < 6.9E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01223428 0.01223426 0.01223430 atom 2 type 1 force = -0.01223428 -0.01223426 -0.01223430 Total force = 0.029968 Total SCF correction = 0.000006 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126859978 -0.126859975 -0.126859978 Si 0.126859978 0.126859975 0.126859978 kinetic energy (Ekin) = 0.00024500 Ry temperature = 25.78844514 K Ekin + Etot (const) = -15.54394932 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.15 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.42E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.6059 6.6059 6.9134 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0834 -0.9663 3.5670 3.6388 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0834 -0.9663 3.5670 3.6388 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0834 -0.9663 3.5670 3.6388 ! total energy = -15.54411630 Ry Harris-Foulkes estimate = -15.54411631 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01291360 0.01291360 0.01291363 atom 2 type 1 force = -0.01291360 -0.01291360 -0.01291363 Total force = 0.031632 Total SCF correction = 0.000023 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126941735 -0.126941731 -0.126941734 Si 0.126941735 0.126941731 0.126941734 kinetic energy (Ekin) = 0.00016719 Ry temperature = 17.59793771 K Ekin + Etot (const) = -15.54394912 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.20 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.70E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.6014 6.6014 6.9227 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0861 -0.9640 3.5653 3.6406 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0861 -0.9640 3.5653 3.6406 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0861 -0.9640 3.5653 3.6406 ! total energy = -15.54405046 Ry Harris-Foulkes estimate = -15.54405046 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01345752 0.01345751 0.01345753 atom 2 type 1 force = -0.01345752 -0.01345751 -0.01345753 Total force = 0.032964 Total SCF correction = 0.000021 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127002835 -0.127002831 -0.127002834 Si 0.127002835 0.127002831 0.127002834 kinetic energy (Ekin) = 0.00010151 Ry temperature = 10.68494933 K Ekin + Etot (const) = -15.54394895 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.24 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.67E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.5982 6.5982 6.9293 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0880 -0.9624 3.5642 3.6418 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0880 -0.9624 3.5642 3.6418 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0880 -0.9624 3.5642 3.6418 ! total energy = -15.54399948 Ry Harris-Foulkes estimate = -15.54399948 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01386276 0.01386274 0.01386274 atom 2 type 1 force = -0.01386276 -0.01386274 -0.01386274 Total force = 0.033957 Total SCF correction = 0.000029 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127042657 -0.127042652 -0.127042655 Si 0.127042657 0.127042652 0.127042655 kinetic energy (Ekin) = 0.00005066 Ry temperature = 5.33260357 K Ekin + Etot (const) = -15.54394882 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.56E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5959 6.5959 6.9340 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0894 -0.9612 3.5634 3.6428 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0894 -0.9612 3.5634 3.6428 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0894 -0.9612 3.5634 3.6428 ! total energy = -15.54396544 Ry Harris-Foulkes estimate = -15.54396544 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01412647 0.01412642 0.01412643 atom 2 type 1 force = -0.01412647 -0.01412642 -0.01412643 Total force = 0.034603 Total SCF correction = 0.000034 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127060795 -0.127060790 -0.127060793 Si 0.127060795 0.127060790 0.127060793 kinetic energy (Ekin) = 0.00001671 Ry temperature = 1.75882875 K Ekin + Etot (const) = -15.54394873 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.07E-11, avg # of iterations = 2.8 total cpu time spent up to now is 1.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.5951 6.5951 6.9357 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6431 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6431 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6431 ! total energy = -15.54394972 Ry Harris-Foulkes estimate = -15.54394972 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01424620 0.01424615 0.01424617 atom 2 type 1 force = -0.01424620 -0.01424615 -0.01424617 Total force = 0.034896 Total SCF correction = 0.000034 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127057066 -0.127057061 -0.127057064 Si 0.127057066 0.127057061 0.127057064 kinetic energy (Ekin) = 0.00000103 Ry temperature = 0.10870672 K Ekin + Etot (const) = -15.54394869 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.36 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-12, avg # of iterations = 2.8 total cpu time spent up to now is 1.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5952 6.5952 6.9355 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6430 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6430 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6430 ! total energy = -15.54395297 Ry Harris-Foulkes estimate = -15.54395297 Ry estimated scf accuracy < 2.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01422188 0.01422184 0.01422187 atom 2 type 1 force = -0.01422188 -0.01422184 -0.01422187 Total force = 0.034836 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127031508 -0.127031502 -0.127031506 Si 0.127031508 0.127031502 0.127031506 kinetic energy (Ekin) = 0.00000427 Ry temperature = 0.44909559 K Ekin + Etot (const) = -15.54394870 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.40 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.07E-10, avg # of iterations = 2.8 total cpu time spent up to now is 1.41 secs total energy = -15.54397502 Ry Harris-Foulkes estimate = -15.54397507 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.48E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5966 6.5966 6.9326 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0890 -0.9615 3.5636 3.6425 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0890 -0.9615 3.5636 3.6425 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0890 -0.9615 3.5636 3.6425 ! total energy = -15.54397504 Ry Harris-Foulkes estimate = -15.54397504 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01405371 0.01405370 0.01405374 atom 2 type 1 force = -0.01405371 -0.01405370 -0.01405374 Total force = 0.034424 Total SCF correction = 0.000011 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126984378 -0.126984372 -0.126984375 Si 0.126984378 0.126984372 0.126984375 kinetic energy (Ekin) = 0.00002628 Ry temperature = 2.76636584 K Ekin + Etot (const) = -15.54394875 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.45 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.69E-13, avg # of iterations = 4.8 total cpu time spent up to now is 1.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.5992 6.5992 6.9273 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0874 -0.9628 3.5645 3.6415 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0874 -0.9628 3.5645 3.6415 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0874 -0.9628 3.5645 3.6415 ! total energy = -15.54401504 Ry Harris-Foulkes estimate = -15.54401504 Ry estimated scf accuracy < 1.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01374048 0.01374042 0.01374045 atom 2 type 1 force = -0.01374048 -0.01374042 -0.01374045 Total force = 0.033657 Total SCF correction = 0.000004 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126916157 -0.126916151 -0.126916154 Si 0.126916157 0.126916151 0.126916154 kinetic energy (Ekin) = 0.00006619 Ry temperature = 6.96656436 K Ekin + Etot (const) = -15.54394885 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.6028 6.6028 6.9198 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0853 -0.9647 3.5658 3.6401 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0853 -0.9647 3.5658 3.6401 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0853 -0.9647 3.5658 3.6401 ! total energy = -15.54407135 Ry Harris-Foulkes estimate = -15.54407135 Ry estimated scf accuracy < 3.9E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01328768 0.01328766 0.01328765 atom 2 type 1 force = -0.01328768 -0.01328766 -0.01328765 Total force = 0.032548 Total SCF correction = 0.000012 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126827540 -0.126827534 -0.126827537 Si 0.126827540 0.126827534 0.126827537 kinetic energy (Ekin) = 0.00012235 Ry temperature = 12.87880441 K Ekin + Etot (const) = -15.54394900 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.80E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2229 6.6076 6.6076 6.9098 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0824 -0.9672 3.5676 3.6381 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0824 -0.9672 3.5676 3.6381 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0824 -0.9672 3.5676 3.6381 ! total energy = -15.54414168 Ry Harris-Foulkes estimate = -15.54414168 Ry estimated scf accuracy < 9.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01269707 0.01269703 0.01269705 atom 2 type 1 force = -0.01269707 -0.01269703 -0.01269705 Total force = 0.031101 Total SCF correction = 0.000016 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126719434 -0.126719428 -0.126719431 Si 0.126719434 0.126719428 0.126719431 kinetic energy (Ekin) = 0.00019250 Ry temperature = 20.26205306 K Ekin + Etot (const) = -15.54394918 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.57 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.49E-11, avg # of iterations = 3.5 total cpu time spent up to now is 1.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2227 6.6134 6.6134 6.8980 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0789 -0.9702 3.5696 3.6359 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0789 -0.9702 3.5696 3.6359 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0789 -0.9702 3.5696 3.6359 ! total energy = -15.54422313 Ry Harris-Foulkes estimate = -15.54422313 Ry estimated scf accuracy < 5.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01197371 0.01197366 0.01197371 atom 2 type 1 force = -0.01197371 -0.01197366 -0.01197371 Total force = 0.029329 Total SCF correction = 0.000026 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126592948 -0.126592943 -0.126592946 Si 0.126592948 0.126592943 0.126592946 kinetic energy (Ekin) = 0.00027374 Ry temperature = 28.81353106 K Ekin + Etot (const) = -15.54394939 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.61 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.31E-10, avg # of iterations = 3.5 total cpu time spent up to now is 1.63 secs total energy = -15.54431234 Ry Harris-Foulkes estimate = -15.54431237 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.12E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.64 secs total energy = -15.54431235 Ry Harris-Foulkes estimate = -15.54431236 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2225 6.6203 6.6203 6.8838 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0748 -0.9739 3.5721 3.6333 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0748 -0.9739 3.5721 3.6333 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0748 -0.9739 3.5721 3.6333 ! total energy = -15.54431235 Ry Harris-Foulkes estimate = -15.54431235 Ry estimated scf accuracy < 7.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01112309 0.01112304 0.01112307 atom 2 type 1 force = -0.01112309 -0.01112304 -0.01112307 Total force = 0.027246 Total SCF correction = 0.000000 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126449390 -0.126449385 -0.126449387 Si 0.126449390 0.126449385 0.126449387 kinetic energy (Ekin) = 0.00036273 Ry temperature = 38.18037279 K Ekin + Etot (const) = -15.54394962 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.67 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.93E-11, avg # of iterations = 3.5 total cpu time spent up to now is 1.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2223 6.6281 6.6281 6.8679 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0702 -0.9780 3.5748 3.6303 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0702 -0.9780 3.5748 3.6303 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0702 -0.9780 3.5748 3.6303 ! total energy = -15.54440563 Ry Harris-Foulkes estimate = -15.54440563 Ry estimated scf accuracy < 8.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01015170 0.01015164 0.01015170 atom 2 type 1 force = -0.01015170 -0.01015164 -0.01015170 Total force = 0.024866 Total SCF correction = 0.000016 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126290249 -0.126290244 -0.126290247 Si 0.126290249 0.126290244 0.126290247 kinetic energy (Ekin) = 0.00045576 Ry temperature = 47.97276419 K Ekin + Etot (const) = -15.54394986 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.72 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.83E-10, avg # of iterations = 3.5 total cpu time spent up to now is 1.73 secs total energy = -15.54449903 Ry Harris-Foulkes estimate = -15.54449907 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.73E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.74 secs total energy = -15.54449904 Ry Harris-Foulkes estimate = -15.54449905 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.6368 6.6368 6.8501 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0650 -0.9827 3.5779 3.6271 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0650 -0.9827 3.5779 3.6271 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0650 -0.9827 3.5779 3.6271 ! total energy = -15.54449905 Ry Harris-Foulkes estimate = -15.54449905 Ry estimated scf accuracy < 1.6E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00906796 0.00906792 0.00906794 atom 2 type 1 force = -0.00906796 -0.00906792 -0.00906794 Total force = 0.022212 Total SCF correction = 0.000000 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126117190 -0.126117185 -0.126117187 Si 0.126117190 0.126117185 0.126117187 kinetic energy (Ekin) = 0.00054893 Ry temperature = 57.77927468 K Ekin + Etot (const) = -15.54395012 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.78 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.34E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.79 secs total energy = -15.54458863 Ry Harris-Foulkes estimate = -15.54458864 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.80 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.6462 6.6462 6.8309 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0594 -0.9878 3.5812 3.6236 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0594 -0.9878 3.5812 3.6236 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0594 -0.9878 3.5812 3.6236 ! total energy = -15.54458863 Ry Harris-Foulkes estimate = -15.54458863 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00788084 0.00788080 0.00788081 atom 2 type 1 force = -0.00788084 -0.00788080 -0.00788081 Total force = 0.019304 Total SCF correction = 0.000002 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125932034 -0.125932029 -0.125932031 Si 0.125932034 0.125932029 0.125932031 kinetic energy (Ekin) = 0.00063827 Ry temperature = 67.18329109 K Ekin + Etot (const) = -15.54395036 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.83 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.58E-10, avg # of iterations = 2.8 total cpu time spent up to now is 1.84 secs total energy = -15.54467052 Ry Harris-Foulkes estimate = -15.54467054 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.11E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.85 secs total energy = -15.54467053 Ry Harris-Foulkes estimate = -15.54467053 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6563 6.6563 6.8104 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0533 -0.9934 3.5847 3.6199 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0533 -0.9934 3.5847 3.6199 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0533 -0.9934 3.5847 3.6199 ! total energy = -15.54467053 Ry Harris-Foulkes estimate = -15.54467053 Ry estimated scf accuracy < 2.2E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00660077 0.00660074 0.00660075 atom 2 type 1 force = -0.00660077 -0.00660074 -0.00660075 Total force = 0.016168 Total SCF correction = 0.000000 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125736746 -0.125736742 -0.125736743 Si 0.125736746 0.125736742 0.125736743 kinetic energy (Ekin) = 0.00071994 Ry temperature = 75.77985099 K Ekin + Etot (const) = -15.54395059 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.11E-11, avg # of iterations = 1.8 total cpu time spent up to now is 1.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6669 6.6670 6.7888 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0470 -0.9994 3.5884 3.6160 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0470 -0.9994 3.5884 3.6160 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0470 -0.9994 3.5884 3.6160 ! total energy = -15.54474115 Ry Harris-Foulkes estimate = -15.54474116 Ry estimated scf accuracy < 8.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00523946 0.00523943 0.00523946 atom 2 type 1 force = -0.00523946 -0.00523943 -0.00523946 Total force = 0.012834 Total SCF correction = 0.000003 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125533416 -0.125533412 -0.125533413 Si 0.125533416 0.125533412 0.125533413 kinetic energy (Ekin) = 0.00079037 Ry temperature = 83.19288316 K Ekin + Etot (const) = -15.54395078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 1.8 total cpu time spent up to now is 1.95 secs total energy = -15.54479735 Ry Harris-Foulkes estimate = -15.54479738 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.96 secs total energy = -15.54479736 Ry Harris-Foulkes estimate = -15.54479737 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.96 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6781 6.6781 6.7663 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0403 -1.0057 3.5922 3.6121 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0403 -1.0057 3.5922 3.6121 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0403 -1.0057 3.5922 3.6121 ! total energy = -15.54479737 Ry Harris-Foulkes estimate = -15.54479737 Ry estimated scf accuracy < 5.5E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00381009 0.00381007 0.00381007 atom 2 type 1 force = -0.00381009 -0.00381007 -0.00381007 Total force = 0.009333 Total SCF correction = 0.000000 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125324237 -0.125324234 -0.125324235 Si 0.125324237 0.125324234 0.125324235 kinetic energy (Ekin) = 0.00084641 Ry temperature = 89.09189597 K Ekin + Etot (const) = -15.54395095 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.99 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.22E-11, avg # of iterations = 1.8 total cpu time spent up to now is 2.01 secs total energy = -15.54483658 Ry Harris-Foulkes estimate = -15.54483659 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6896 6.6896 6.7432 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0335 -1.0123 3.5961 3.6081 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0335 -1.0123 3.5961 3.6081 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0335 -1.0123 3.5961 3.6081 ! total energy = -15.54483658 Ry Harris-Foulkes estimate = -15.54483658 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00232638 0.00232635 0.00232636 atom 2 type 1 force = -0.00232638 -0.00232635 -0.00232636 Total force = 0.005698 Total SCF correction = 0.000001 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125111488 -0.125111485 -0.125111486 Si 0.125111488 0.125111485 0.125111486 kinetic energy (Ekin) = 0.00088551 Ry temperature = 93.20694006 K Ekin + Etot (const) = -15.54395107 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.04 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.58E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.05 secs total energy = -15.54485692 Ry Harris-Foulkes estimate = -15.54485694 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.66E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.06 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.7013 6.7013 6.7197 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0265 -1.0192 3.6000 3.6041 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0265 -1.0192 3.6000 3.6041 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0265 -1.0192 3.6000 3.6041 ! total energy = -15.54485693 Ry Harris-Foulkes estimate = -15.54485693 Ry estimated scf accuracy < 9.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00080356 0.00080353 0.00080354 atom 2 type 1 force = -0.00080356 -0.00080353 -0.00080354 Total force = 0.001968 Total SCF correction = 0.000001 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124897505 -0.124897503 -0.124897503 Si 0.124897505 0.124897503 0.124897503 kinetic energy (Ekin) = 0.00090579 Ry temperature = 95.34160267 K Ekin + Etot (const) = -15.54395114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.09 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.10 secs total energy = -15.54485734 Ry Harris-Foulkes estimate = -15.54485736 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6961 6.7130 6.7130 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0262 -1.0195 3.6002 3.6040 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0262 -1.0195 3.6002 3.6040 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0262 -1.0195 3.6002 3.6040 ! total energy = -15.54485734 Ry Harris-Foulkes estimate = -15.54485735 Ry estimated scf accuracy < 9.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00074226 -0.00074227 -0.00074228 atom 2 type 1 force = 0.00074226 0.00074227 0.00074228 Total force = 0.001818 Total SCF correction = 0.000001 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124684662 -0.124684660 -0.124684660 Si 0.124684662 0.124684660 0.124684660 kinetic energy (Ekin) = 0.00090619 Ry temperature = 95.38363297 K Ekin + Etot (const) = -15.54395116 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.14 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.49E-11, avg # of iterations = 1.8 total cpu time spent up to now is 2.15 secs total energy = -15.54483762 Ry Harris-Foulkes estimate = -15.54483763 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6727 6.7248 6.7248 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0333 -1.0125 3.5964 3.6078 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0333 -1.0125 3.5964 3.6078 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0333 -1.0125 3.5964 3.6078 ! total energy = -15.54483762 Ry Harris-Foulkes estimate = -15.54483763 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00229392 -0.00229393 -0.00229393 atom 2 type 1 force = 0.00229392 0.00229393 0.00229393 Total force = 0.005619 Total SCF correction = 0.000001 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124475339 -0.124475339 -0.124475337 Si 0.124475339 0.124475339 0.124475337 kinetic energy (Ekin) = 0.00088651 Ry temperature = 93.31207201 K Ekin + Etot (const) = -15.54395112 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.19 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.10E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6497 6.7364 6.7364 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0405 -1.0056 3.5926 3.6116 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0405 -1.0056 3.5926 3.6116 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0405 -1.0056 3.5926 3.6116 ! total energy = -15.54479847 Ry Harris-Foulkes estimate = -15.54479847 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00383375 -0.00383375 -0.00383374 atom 2 type 1 force = 0.00383375 0.00383375 0.00383374 Total force = 0.009391 Total SCF correction = 0.000003 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124271901 -0.124271901 -0.124271900 Si 0.124271901 0.124271901 0.124271900 kinetic energy (Ekin) = 0.00084744 Ry temperature = 89.20049959 K Ekin + Etot (const) = -15.54395102 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.23 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.62E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.25 secs total energy = -15.54474145 Ry Harris-Foulkes estimate = -15.54474148 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.75E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.26 secs total energy = -15.54474146 Ry Harris-Foulkes estimate = -15.54474147 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6273 6.7477 6.7477 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0475 -0.9988 3.5891 3.6153 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0475 -0.9988 3.5891 3.6153 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0475 -0.9988 3.5891 3.6153 ! total energy = -15.54474146 Ry Harris-Foulkes estimate = -15.54474146 Ry estimated scf accuracy < 4.6E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00534376 -0.00534376 -0.00534378 atom 2 type 1 force = 0.00534376 0.00534376 0.00534378 Total force = 0.013090 Total SCF correction = 0.000000 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124076666 -0.124076667 -0.124076665 Si 0.124076666 0.124076667 0.124076665 kinetic energy (Ekin) = 0.00079059 Ry temperature = 83.21579952 K Ekin + Etot (const) = -15.54395087 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.29 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.10E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6059 6.7585 6.7585 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0544 -0.9924 3.5858 3.6188 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0544 -0.9924 3.5858 3.6188 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0544 -0.9924 3.5858 3.6188 ! total energy = -15.54466903 Ry Harris-Foulkes estimate = -15.54466904 Ry estimated scf accuracy < 4.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00680517 -0.00680515 -0.00680515 atom 2 type 1 force = 0.00680517 0.00680515 0.00680515 Total force = 0.016669 Total SCF correction = 0.000004 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123891876 -0.123891877 -0.123891875 Si 0.123891876 0.123891877 0.123891875 kinetic energy (Ekin) = 0.00071836 Ry temperature = 75.61303240 K Ekin + Etot (const) = -15.54395068 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.39E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.35 secs total energy = -15.54458436 Ry Harris-Foulkes estimate = -15.54458437 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.5857 6.7688 6.7688 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0609 -0.9863 3.5827 3.6221 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0609 -0.9863 3.5827 3.6221 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0609 -0.9863 3.5827 3.6221 ! total energy = -15.54458436 Ry Harris-Foulkes estimate = -15.54458437 Ry estimated scf accuracy < 9.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00819973 -0.00819972 -0.00819973 atom 2 type 1 force = 0.00819973 0.00819972 0.00819973 Total force = 0.020085 Total SCF correction = 0.000001 Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123719672 -0.123719674 -0.123719671 Si 0.123719672 0.123719674 0.123719671 kinetic energy (Ekin) = 0.00063392 Ry temperature = 66.72561183 K Ekin + Etot (const) = -15.54395044 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.14E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.40 secs total energy = -15.54449123 Ry Harris-Foulkes estimate = -15.54449125 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2221 6.5668 6.7784 6.7784 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0672 -0.9805 3.5798 3.6251 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0672 -0.9805 3.5798 3.6251 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0672 -0.9805 3.5798 3.6251 ! total energy = -15.54449124 Ry Harris-Foulkes estimate = -15.54449124 Ry estimated scf accuracy < 7.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00950929 -0.00950928 -0.00950930 atom 2 type 1 force = 0.00950929 0.00950928 0.00950930 Total force = 0.023293 Total SCF correction = 0.000001 Entering Dynamics: iteration = 52 time = 0.0503 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123562065 -0.123562067 -0.123562064 Si 0.123562065 0.123562067 0.123562064 kinetic energy (Ekin) = 0.00054106 Ry temperature = 56.95116319 K Ekin + Etot (const) = -15.54395018 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.44 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.90E-11, avg # of iterations = 2.0 total cpu time spent up to now is 2.45 secs total energy = -15.54439389 Ry Harris-Foulkes estimate = -15.54439390 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2223 6.5496 6.7872 6.7872 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0729 -0.9753 3.5773 3.6279 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0729 -0.9753 3.5773 3.6279 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0729 -0.9753 3.5773 3.6279 ! total energy = -15.54439389 Ry Harris-Foulkes estimate = -15.54439390 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01071629 -0.01071628 -0.01071630 atom 2 type 1 force = 0.01071629 0.01071628 0.01071630 Total force = 0.026249 Total SCF correction = 0.000001 Entering Dynamics: iteration = 53 time = 0.0513 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123420906 -0.123420909 -0.123420906 Si 0.123420906 0.123420909 0.123420906 kinetic energy (Ekin) = 0.00044400 Ry temperature = 46.73414472 K Ekin + Etot (const) = -15.54394990 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.17E-12, avg # of iterations = 3.8 total cpu time spent up to now is 2.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2225 6.5342 6.7951 6.7951 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0781 -0.9706 3.5750 3.6304 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0781 -0.9706 3.5750 3.6304 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0781 -0.9706 3.5750 3.6304 ! total energy = -15.54429681 Ry Harris-Foulkes estimate = -15.54429681 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01180431 -0.01180426 -0.01180429 atom 2 type 1 force = 0.01180431 0.01180426 0.01180429 Total force = 0.028914 Total SCF correction = 0.000001 Entering Dynamics: iteration = 54 time = 0.0522 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123297866 -0.123297870 -0.123297866 Si 0.123297866 0.123297870 0.123297866 kinetic energy (Ekin) = 0.00034720 Ry temperature = 36.54530129 K Ekin + Etot (const) = -15.54394962 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.54 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.33E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.55 secs total energy = -15.54420451 Ry Harris-Foulkes estimate = -15.54420453 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.56 secs total energy = -15.54420452 Ry Harris-Foulkes estimate = -15.54420452 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.5208 6.8020 6.8020 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0827 -0.9665 3.5731 3.6325 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0827 -0.9665 3.5731 3.6325 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0827 -0.9665 3.5731 3.6325 ! total energy = -15.54420452 Ry Harris-Foulkes estimate = -15.54420452 Ry estimated scf accuracy < 2.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01275798 -0.01275796 -0.01275798 atom 2 type 1 force = 0.01275798 0.01275796 0.01275798 Total force = 0.031251 Total SCF correction = 0.000000 Entering Dynamics: iteration = 55 time = 0.0532 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123194409 -0.123194413 -0.123194409 Si 0.123194409 0.123194413 0.123194409 kinetic energy (Ekin) = 0.00025518 Ry temperature = 26.85930614 K Ekin + Etot (const) = -15.54394935 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.60 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.54E-12, avg # of iterations = 3.8 total cpu time spent up to now is 2.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.5095 6.8078 6.8078 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0866 -0.9631 3.5715 3.6343 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0866 -0.9631 3.5715 3.6343 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0866 -0.9631 3.5715 3.6343 ! total energy = -15.54412136 Ry Harris-Foulkes estimate = -15.54412136 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01356378 -0.01356375 -0.01356377 atom 2 type 1 force = 0.01356378 0.01356375 0.01356377 Total force = 0.033224 Total SCF correction = 0.000003 Entering Dynamics: iteration = 56 time = 0.0542 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123111772 -0.123111776 -0.123111772 Si 0.123111772 0.123111776 0.123111772 kinetic energy (Ekin) = 0.00017226 Ry temperature = 18.13163347 K Ekin + Etot (const) = -15.54394910 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.64 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.41E-11, avg # of iterations = 3.5 total cpu time spent up to now is 2.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.5005 6.8124 6.8124 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9603 3.5702 3.6357 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9603 3.5702 3.6357 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0898 -0.9603 3.5702 3.6357 ! total energy = -15.54405126 Ry Harris-Foulkes estimate = -15.54405127 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01420993 -0.01420991 -0.01420991 atom 2 type 1 force = 0.01420993 0.01420991 0.01420991 Total force = 0.034807 Total SCF correction = 0.000005 Entering Dynamics: iteration = 57 time = 0.0552 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123050946 -0.123050951 -0.123050946 Si 0.123050946 0.123050951 0.123050946 kinetic energy (Ekin) = 0.00010238 Ry temperature = 10.77585412 K Ekin + Etot (const) = -15.54394889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.68 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 3.2 total cpu time spent up to now is 2.70 secs total energy = -15.54399757 Ry Harris-Foulkes estimate = -15.54399760 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.56E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.71 secs total energy = -15.54399758 Ry Harris-Foulkes estimate = -15.54399759 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.90E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4939 6.8158 6.8158 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0921 -0.9583 3.5692 3.6367 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0921 -0.9583 3.5692 3.6367 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0921 -0.9583 3.5692 3.6367 ! total energy = -15.54399759 Ry Harris-Foulkes estimate = -15.54399759 Ry estimated scf accuracy < 6.4E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01468712 -0.01468709 -0.01468712 atom 2 type 1 force = 0.01468712 0.01468709 0.01468712 Total force = 0.035976 Total SCF correction = 0.000001 Entering Dynamics: iteration = 58 time = 0.0561 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123012664 -0.123012669 -0.123012664 Si 0.123012664 0.123012669 0.123012664 kinetic energy (Ekin) = 0.00004886 Ry temperature = 5.14264289 K Ekin + Etot (const) = -15.54394873 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.75 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.63E-12, avg # of iterations = 3.2 total cpu time spent up to now is 2.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.4897 6.8179 6.8179 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0936 -0.9570 3.5687 3.6374 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0936 -0.9570 3.5687 3.6374 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0936 -0.9570 3.5687 3.6374 ! total energy = -15.54396289 Ry Harris-Foulkes estimate = -15.54396289 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01498798 -0.01498792 -0.01498794 atom 2 type 1 force = 0.01498798 0.01498792 0.01498794 Total force = 0.036713 Total SCF correction = 0.000005 Entering Dynamics: iteration = 59 time = 0.0571 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122997388 -0.122997393 -0.122997388 Si 0.122997388 0.122997393 0.122997388 kinetic energy (Ekin) = 0.00001427 Ry temperature = 1.50183457 K Ekin + Etot (const) = -15.54394862 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.79 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.66E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.81 secs total energy = -15.54394885 Ry Harris-Foulkes estimate = -15.54394886 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.82 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.4880 6.8188 6.8188 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0941 -0.9565 3.5684 3.6377 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0941 -0.9565 3.5684 3.6377 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0941 -0.9565 3.5684 3.6377 ! total energy = -15.54394885 Ry Harris-Foulkes estimate = -15.54394885 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01510826 -0.01510823 -0.01510825 atom 2 type 1 force = 0.01510826 0.01510823 0.01510825 Total force = 0.037007 Total SCF correction = 0.000003 Entering Dynamics: iteration = 60 time = 0.0581 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123005302 -0.123005307 -0.123005302 Si 0.123005302 0.123005307 0.123005302 kinetic energy (Ekin) = 0.00000027 Ry temperature = 0.02837761 K Ekin + Etot (const) = -15.54394858 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.85 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.99E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.4889 6.8184 6.8184 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0938 -0.9568 3.5686 3.6375 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0938 -0.9568 3.5686 3.6375 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0938 -0.9568 3.5686 3.6375 ! total energy = -15.54395614 Ry Harris-Foulkes estimate = -15.54395614 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01504578 -0.01504576 -0.01504579 atom 2 type 1 force = 0.01504578 0.01504576 0.01504579 Total force = 0.036854 Total SCF correction = 0.000004 Entering Dynamics: iteration = 61 time = 0.0590 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123036310 -0.123036316 -0.123036311 Si 0.123036310 0.123036316 0.123036311 kinetic energy (Ekin) = 0.00000754 Ry temperature = 0.79318908 K Ekin + Etot (const) = -15.54394860 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.44E-09, avg # of iterations = 1.8 total cpu time spent up to now is 2.91 secs total energy = -15.54398414 Ry Harris-Foulkes estimate = -15.54398468 Ry estimated scf accuracy < 0.00000083 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-08, avg # of iterations = 2.2 total cpu time spent up to now is 2.92 secs total energy = -15.54398435 Ry Harris-Foulkes estimate = -15.54398449 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-09, avg # of iterations = 2.2 total cpu time spent up to now is 2.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4923 6.8166 6.8166 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0927 -0.9578 3.5690 3.6370 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0927 -0.9578 3.5690 3.6370 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0927 -0.9578 3.5690 3.6370 ! total energy = -15.54398440 Ry Harris-Foulkes estimate = -15.54398440 Ry estimated scf accuracy < 8.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01480220 -0.01480216 -0.01480220 atom 2 type 1 force = 0.01480220 0.01480216 0.01480220 Total force = 0.036258 Total SCF correction = 0.000003 Entering Dynamics: iteration = 62 time = 0.0600 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123090039 -0.123090045 -0.123090040 Si 0.123090039 0.123090045 0.123090040 kinetic energy (Ekin) = 0.00003572 Ry temperature = 3.75945101 K Ekin + Etot (const) = -15.54394869 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.96 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 2.5 total cpu time spent up to now is 2.97 secs total energy = -15.54403228 Ry Harris-Foulkes estimate = -15.54403230 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.37E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.98 secs total energy = -15.54403229 Ry Harris-Foulkes estimate = -15.54403229 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.4981 6.8136 6.8136 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0906 -0.9596 3.5698 3.6361 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0906 -0.9596 3.5698 3.6361 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0906 -0.9596 3.5698 3.6361 ! total energy = -15.54403229 Ry Harris-Foulkes estimate = -15.54403229 Ry estimated scf accuracy < 7.0E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01438031 -0.01438027 -0.01438030 atom 2 type 1 force = 0.01438031 0.01438027 0.01438030 Total force = 0.035224 Total SCF correction = 0.000000 Entering Dynamics: iteration = 63 time = 0.0610 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123165841 -0.123165847 -0.123165842 Si 0.123165841 0.123165847 0.123165842 kinetic energy (Ekin) = 0.00008346 Ry temperature = 8.78456051 K Ekin + Etot (const) = -15.54394883 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.24E-12, avg # of iterations = 4.2 total cpu time spent up to now is 3.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.5064 6.8094 6.8094 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0877 -0.9621 3.5710 3.6348 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0877 -0.9621 3.5710 3.6348 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0877 -0.9621 3.5710 3.6348 ! total energy = -15.54409750 Ry Harris-Foulkes estimate = -15.54409750 Ry estimated scf accuracy < 6.8E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01378694 -0.01378690 -0.01378694 atom 2 type 1 force = 0.01378694 0.01378690 0.01378694 Total force = 0.033771 Total SCF correction = 0.000011 Entering Dynamics: iteration = 64 time = 0.0619 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123262805 -0.123262811 -0.123262806 Si 0.123262805 0.123262811 0.123262806 kinetic energy (Ekin) = 0.00014847 Ry temperature = 15.62750269 K Ekin + Etot (const) = -15.54394903 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.07 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.59E-12, avg # of iterations = 3.5 total cpu time spent up to now is 3.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.5169 6.8039 6.8039 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0841 -0.9653 3.5725 3.6331 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0841 -0.9653 3.5725 3.6331 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0841 -0.9653 3.5725 3.6331 ! total energy = -15.54417691 Ry Harris-Foulkes estimate = -15.54417691 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01303066 -0.01303067 -0.01303068 atom 2 type 1 force = 0.01303066 0.01303067 0.01303068 Total force = 0.031918 Total SCF correction = 0.000022 Entering Dynamics: iteration = 65 time = 0.0629 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123379771 -0.123379776 -0.123379771 Si 0.123379771 0.123379776 0.123379771 kinetic energy (Ekin) = 0.00022765 Ry temperature = 23.96151391 K Ekin + Etot (const) = -15.54394926 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.11 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.35E-11, avg # of iterations = 3.2 total cpu time spent up to now is 3.13 secs total energy = -15.54426675 Ry Harris-Foulkes estimate = -15.54426676 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.14 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.5297 6.7974 6.7974 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0797 -0.9692 3.5744 3.6311 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0797 -0.9692 3.5744 3.6311 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0797 -0.9692 3.5744 3.6311 ! total energy = -15.54426675 Ry Harris-Foulkes estimate = -15.54426676 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01212258 -0.01212249 -0.01212246 atom 2 type 1 force = 0.01212258 0.01212249 0.01212246 Total force = 0.029694 Total SCF correction = 0.000015 Entering Dynamics: iteration = 66 time = 0.0639 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123515344 -0.123515349 -0.123515344 Si 0.123515344 0.123515349 0.123515344 kinetic energy (Ekin) = 0.00031723 Ry temperature = 33.39081608 K Ekin + Etot (const) = -15.54394953 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.17 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.79E-11, avg # of iterations = 3.5 total cpu time spent up to now is 3.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2224 6.5445 6.7898 6.7898 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0746 -0.9738 3.5765 3.6287 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0746 -0.9738 3.5765 3.6287 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0746 -0.9738 3.5765 3.6287 ! total energy = -15.54436280 Ry Harris-Foulkes estimate = -15.54436280 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01107569 -0.01107563 -0.01107571 atom 2 type 1 force = 0.01107569 0.01107563 0.01107571 Total force = 0.027130 Total SCF correction = 0.000008 Entering Dynamics: iteration = 67 time = 0.0648 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123667917 -0.123667922 -0.123667918 Si 0.123667917 0.123667922 0.123667918 kinetic energy (Ekin) = 0.00041299 Ry temperature = 43.47087087 K Ekin + Etot (const) = -15.54394981 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.21 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.40E-10, avg # of iterations = 2.5 total cpu time spent up to now is 3.23 secs total energy = -15.54446052 Ry Harris-Foulkes estimate = -15.54446059 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-09, avg # of iterations = 2.2 total cpu time spent up to now is 3.24 secs total energy = -15.54446055 Ry Harris-Foulkes estimate = -15.54446057 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.17E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2221 6.5612 6.7813 6.7813 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0690 -0.9788 3.5790 3.6260 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0690 -0.9788 3.5790 3.6260 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0690 -0.9788 3.5790 3.6260 ! total energy = -15.54446056 Ry Harris-Foulkes estimate = -15.54446056 Ry estimated scf accuracy < 2.0E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00990473 -0.00990469 -0.00990473 atom 2 type 1 force = 0.00990473 0.00990469 0.00990473 Total force = 0.024262 Total SCF correction = 0.000000 Entering Dynamics: iteration = 68 time = 0.0658 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123835694 -0.123835698 -0.123835694 Si 0.123835694 0.123835698 0.123835694 kinetic energy (Ekin) = 0.00051046 Ry temperature = 53.73061126 K Ekin + Etot (const) = -15.54395009 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.81E-11, avg # of iterations = 1.8 total cpu time spent up to now is 3.30 secs total energy = -15.54455549 Ry Harris-Foulkes estimate = -15.54455550 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2219 6.5795 6.7719 6.7719 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0630 -0.9844 3.5817 3.6231 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0630 -0.9844 3.5817 3.6231 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0630 -0.9844 3.5817 3.6231 ! total energy = -15.54455550 Ry Harris-Foulkes estimate = -15.54455550 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00862594 -0.00862592 -0.00862594 atom 2 type 1 force = 0.00862594 0.00862592 0.00862594 Total force = 0.021129 Total SCF correction = 0.000003 Entering Dynamics: iteration = 69 time = 0.0668 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124016711 -0.124016715 -0.124016711 Si 0.124016711 0.124016715 0.124016711 kinetic energy (Ekin) = 0.00060514 Ry temperature = 63.69555232 K Ekin + Etot (const) = -15.54395036 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.40E-10, avg # of iterations = 2.5 total cpu time spent up to now is 3.35 secs total energy = -15.54464328 Ry Harris-Foulkes estimate = -15.54464330 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.67E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.35 secs total energy = -15.54464329 Ry Harris-Foulkes estimate = -15.54464329 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2217 6.5993 6.7618 6.7618 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0565 -0.9904 3.5848 3.6199 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0565 -0.9904 3.5848 3.6199 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0565 -0.9904 3.5848 3.6199 ! total energy = -15.54464329 Ry Harris-Foulkes estimate = -15.54464329 Ry estimated scf accuracy < 1.5E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00725645 -0.00725642 -0.00725645 atom 2 type 1 force = 0.00725645 0.00725642 0.00725645 Total force = 0.017775 Total SCF correction = 0.000000 Entering Dynamics: iteration = 70 time = 0.0677 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124208866 -0.124208870 -0.124208866 Si 0.124208866 0.124208870 0.124208866 kinetic energy (Ekin) = 0.00069268 Ry temperature = 72.91058192 K Ekin + Etot (const) = -15.54395061 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.36E-11, avg # of iterations = 2.0 total cpu time spent up to now is 3.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6204 6.7512 6.7512 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0497 -0.9968 3.5880 3.6164 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0497 -0.9968 3.5880 3.6164 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0497 -0.9968 3.5880 3.6164 ! total energy = -15.54471998 Ry Harris-Foulkes estimate = -15.54471998 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00581431 -0.00581430 -0.00581434 atom 2 type 1 force = 0.00581431 0.00581430 0.00581434 Total force = 0.014242 Total SCF correction = 0.000003 Entering Dynamics: iteration = 71 time = 0.0687 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124409946 -0.124409949 -0.124409946 Si 0.124409946 0.124409949 0.124409946 kinetic energy (Ekin) = 0.00076917 Ry temperature = 80.96112196 K Ekin + Etot (const) = -15.54395081 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.44 secs total energy = -15.54478218 Ry Harris-Foulkes estimate = -15.54478220 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.54E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.45 secs total energy = -15.54478219 Ry Harris-Foulkes estimate = -15.54478219 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6425 6.7400 6.7400 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0427 -1.0034 3.5915 3.6128 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0427 -1.0034 3.5915 3.6128 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0427 -1.0034 3.5915 3.6128 ! total energy = -15.54478219 Ry Harris-Foulkes estimate = -15.54478219 Ry estimated scf accuracy < 7.0E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00431776 -0.00431774 -0.00431776 atom 2 type 1 force = 0.00431776 0.00431774 0.00431776 Total force = 0.010576 Total SCF correction = 0.000000 Entering Dynamics: iteration = 72 time = 0.0697 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124617653 -0.124617656 -0.124617653 Si 0.124617653 0.124617656 0.124617653 kinetic energy (Ekin) = 0.00083121 Ry temperature = 87.49166177 K Ekin + Etot (const) = -15.54395098 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.48 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.21E-11, avg # of iterations = 1.8 total cpu time spent up to now is 3.49 secs total energy = -15.54482723 Ry Harris-Foulkes estimate = -15.54482724 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6653 6.7285 6.7285 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0356 -1.0103 3.5952 3.6091 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0356 -1.0103 3.5952 3.6091 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0356 -1.0103 3.5952 3.6091 ! total energy = -15.54482723 Ry Harris-Foulkes estimate = -15.54482723 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00278539 -0.00278537 -0.00278539 atom 2 type 1 force = 0.00278539 0.00278537 0.00278539 Total force = 0.006823 Total SCF correction = 0.000001 Entering Dynamics: iteration = 73 time = 0.0706 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124829636 -0.124829638 -0.124829636 Si 0.124829636 0.124829638 0.124829636 kinetic energy (Ekin) = 0.00087614 Ry temperature = 92.22094366 K Ekin + Etot (const) = -15.54395109 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.35E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.55 secs total energy = -15.54485324 Ry Harris-Foulkes estimate = -15.54485326 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6886 6.7168 6.7168 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0285 -1.0172 3.5990 3.6052 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0285 -1.0172 3.5990 3.6052 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0285 -1.0172 3.5990 3.6052 ! total energy = -15.54485324 Ry Harris-Foulkes estimate = -15.54485325 Ry estimated scf accuracy < 8.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00123548 -0.00123545 -0.00123547 atom 2 type 1 force = 0.00123548 0.00123545 0.00123547 Total force = 0.003026 Total SCF correction = 0.000001 Entering Dynamics: iteration = 74 time = 0.0716 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125043515 -0.125043517 -0.125043515 Si 0.125043515 0.125043517 0.125043515 kinetic energy (Ekin) = 0.00090210 Ry temperature = 94.95320802 K Ekin + Etot (const) = -15.54395115 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.58 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.60 secs total energy = -15.54485924 Ry Harris-Foulkes estimate = -15.54485926 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.7050 6.7050 6.7122 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0243 -1.0214 3.6013 3.6029 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0243 -1.0214 3.6013 3.6029 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0243 -1.0214 3.6013 3.6029 ! total energy = -15.54485925 Ry Harris-Foulkes estimate = -15.54485925 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00031403 0.00031404 0.00031403 atom 2 type 1 force = -0.00031403 -0.00031404 -0.00031403 Total force = 0.000769 Total SCF correction = 0.000001 Entering Dynamics: iteration = 75 time = 0.0726 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125256912 -0.125256914 -0.125256912 Si 0.125256912 0.125256914 0.125256912 kinetic energy (Ekin) = 0.00090810 Ry temperature = 95.58496088 K Ekin + Etot (const) = -15.54395115 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.63 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.99E-11, avg # of iterations = 1.8 total cpu time spent up to now is 3.64 secs total energy = -15.54484516 Ry Harris-Foulkes estimate = -15.54484516 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6933 6.6933 6.7357 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0313 -1.0145 3.5973 3.6069 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0313 -1.0145 3.5973 3.6069 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0313 -1.0145 3.5973 3.6069 ! total energy = -15.54484516 Ry Harris-Foulkes estimate = -15.54484516 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00184595 0.00184597 0.00184596 atom 2 type 1 force = -0.00184595 -0.00184597 -0.00184596 Total force = 0.004522 Total SCF correction = 0.000001 Entering Dynamics: iteration = 76 time = 0.0735 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125467476 -0.125467477 -0.125467476 Si 0.125467476 0.125467477 0.125467476 kinetic energy (Ekin) = 0.00089406 Ry temperature = 94.10732387 K Ekin + Etot (const) = -15.54395110 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.68 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.34E-11, avg # of iterations = 2.5 total cpu time spent up to now is 3.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6817 6.6817 6.7590 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0382 -1.0078 3.5934 3.6108 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0382 -1.0078 3.5934 3.6108 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0382 -1.0078 3.5934 3.6108 ! total energy = -15.54481177 Ry Harris-Foulkes estimate = -15.54481177 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00334394 0.00334393 0.00334391 atom 2 type 1 force = -0.00334394 -0.00334393 -0.00334391 Total force = 0.008191 Total SCF correction = 0.000003 Entering Dynamics: iteration = 77 time = 0.0745 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125672907 -0.125672907 -0.125672907 Si 0.125672907 0.125672907 0.125672907 kinetic energy (Ekin) = 0.00086078 Ry temperature = 90.60401303 K Ekin + Etot (const) = -15.54395099 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.72 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.74 secs total energy = -15.54476070 Ry Harris-Foulkes estimate = -15.54476073 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.75 secs total energy = -15.54476071 Ry Harris-Foulkes estimate = -15.54476072 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6704 6.6704 6.7817 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0449 -1.0013 3.5896 3.6148 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0449 -1.0013 3.5896 3.6148 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0449 -1.0013 3.5896 3.6148 ! total energy = -15.54476071 Ry Harris-Foulkes estimate = -15.54476071 Ry estimated scf accuracy < 6.1E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00479213 0.00479215 0.00479213 atom 2 type 1 force = -0.00479213 -0.00479215 -0.00479213 Total force = 0.011738 Total SCF correction = 0.000000 Entering Dynamics: iteration = 78 time = 0.0755 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125870982 -0.125870982 -0.125870982 Si 0.125870982 0.125870982 0.125870982 kinetic energy (Ekin) = 0.00080987 Ry temperature = 85.24569628 K Ekin + Etot (const) = -15.54395084 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.78 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-11, avg # of iterations = 2.5 total cpu time spent up to now is 3.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6596 6.6596 6.8036 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0513 -0.9952 3.5858 3.6187 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0514 -0.9952 3.5858 3.6187 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0513 -0.9952 3.5858 3.6187 ! total energy = -15.54469435 Ry Harris-Foulkes estimate = -15.54469435 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00617657 0.00617655 0.00617655 atom 2 type 1 force = -0.00617657 -0.00617655 -0.00617655 Total force = 0.015129 Total SCF correction = 0.000004 Entering Dynamics: iteration = 79 time = 0.0764 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126059576 -0.126059576 -0.126059577 Si 0.126059576 0.126059576 0.126059577 kinetic energy (Ekin) = 0.00074370 Ry temperature = 78.28033672 K Ekin + Etot (const) = -15.54395065 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.82 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.71E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.83 secs total energy = -15.54461565 Ry Harris-Foulkes estimate = -15.54461567 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.84 secs total energy = -15.54461566 Ry Harris-Foulkes estimate = -15.54461567 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.6493 6.6493 6.8245 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0575 -0.9895 3.5823 3.6224 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0575 -0.9895 3.5823 3.6224 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0575 -0.9895 3.5823 3.6224 ! total energy = -15.54461566 Ry Harris-Foulkes estimate = -15.54461566 Ry estimated scf accuracy < 3.8E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00748358 0.00748357 0.00748358 atom 2 type 1 force = -0.00748358 -0.00748357 -0.00748358 Total force = 0.018331 Total SCF correction = 0.000000 Entering Dynamics: iteration = 80 time = 0.0774 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126236684 -0.126236683 -0.126236685 Si 0.126236684 0.126236683 0.126236685 kinetic energy (Ekin) = 0.00066523 Ry temperature = 70.02086426 K Ekin + Etot (const) = -15.54395043 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.88 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.58E-11, avg # of iterations = 2.8 total cpu time spent up to now is 3.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.6397 6.6397 6.8442 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0632 -0.9842 3.5789 3.6260 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0632 -0.9842 3.5789 3.6260 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0632 -0.9842 3.5789 3.6260 ! total energy = -15.54452811 Ry Harris-Foulkes estimate = -15.54452812 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00870132 0.00870128 0.00870129 atom 2 type 1 force = -0.00870132 -0.00870128 -0.00870129 Total force = 0.021314 Total SCF correction = 0.000004 Entering Dynamics: iteration = 81 time = 0.0784 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126400436 -0.126400434 -0.126400436 Si 0.126400436 0.126400434 0.126400436 kinetic energy (Ekin) = 0.00057792 Ry temperature = 60.83068467 K Ekin + Etot (const) = -15.54395019 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.92 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.42E-10, avg # of iterations = 2.8 total cpu time spent up to now is 3.93 secs total energy = -15.54443547 Ry Harris-Foulkes estimate = -15.54443550 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.93E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.94 secs total energy = -15.54443548 Ry Harris-Foulkes estimate = -15.54443549 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2222 6.6308 6.6308 6.8624 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0686 -0.9794 3.5758 3.6293 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0686 -0.9794 3.5758 3.6293 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0686 -0.9794 3.5758 3.6293 ! total energy = -15.54443549 Ry Harris-Foulkes estimate = -15.54443549 Ry estimated scf accuracy < 1.1E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00981911 0.00981910 0.00981911 atom 2 type 1 force = -0.00981911 -0.00981910 -0.00981911 Total force = 0.024052 Total SCF correction = 0.000000 Entering Dynamics: iteration = 82 time = 0.0793 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126549116 -0.126549114 -0.126549116 Si 0.126549116 0.126549114 0.126549116 kinetic energy (Ekin) = 0.00048554 Ry temperature = 51.10720315 K Ekin + Etot (const) = -15.54394995 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.98 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-11, avg # of iterations = 2.8 total cpu time spent up to now is 4.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2224 6.6227 6.6227 6.8789 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0734 -0.9751 3.5729 3.6324 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0734 -0.9751 3.5729 3.6324 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0734 -0.9751 3.5729 3.6324 ! total energy = -15.54434173 Ry Harris-Foulkes estimate = -15.54434174 Ry estimated scf accuracy < 9.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01082712 0.01082709 0.01082710 atom 2 type 1 force = -0.01082712 -0.01082709 -0.01082710 Total force = 0.026521 Total SCF correction = 0.000004 Entering Dynamics: iteration = 83 time = 0.0803 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126681177 -0.126681174 -0.126681177 Si 0.126681177 0.126681174 0.126681177 kinetic energy (Ekin) = 0.00039204 Ry temperature = 41.26514386 K Ekin + Etot (const) = -15.54394969 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.03 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.04 secs total energy = -15.54425079 Ry Harris-Foulkes estimate = -15.54425083 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.05 secs total energy = -15.54425080 Ry Harris-Foulkes estimate = -15.54425082 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.76E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.6155 6.6155 6.8936 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0777 -0.9713 3.5704 3.6351 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0777 -0.9713 3.5704 3.6351 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0777 -0.9713 3.5704 3.6351 ! total energy = -15.54425081 Ry Harris-Foulkes estimate = -15.54425081 Ry estimated scf accuracy < 1.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01171689 0.01171688 0.01171690 atom 2 type 1 force = -0.01171689 -0.01171688 -0.01171690 Total force = 0.028700 Total SCF correction = 0.000000 Entering Dynamics: iteration = 84 time = 0.0813 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126795253 -0.126795250 -0.126795254 Si 0.126795253 0.126795250 0.126795254 kinetic energy (Ekin) = 0.00030135 Ry temperature = 31.71949471 K Ekin + Etot (const) = -15.54394946 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.08 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.02E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.09 secs total energy = -15.54416650 Ry Harris-Foulkes estimate = -15.54416651 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.10 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.6094 6.6094 6.9063 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9681 3.5682 3.6375 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9681 3.5682 3.6375 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0813 -0.9681 3.5682 3.6375 ! total energy = -15.54416650 Ry Harris-Foulkes estimate = -15.54416650 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01248140 0.01248138 0.01248141 atom 2 type 1 force = -0.01248140 -0.01248138 -0.01248141 Total force = 0.030573 Total SCF correction = 0.000001 Entering Dynamics: iteration = 85 time = 0.0822 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126890171 -0.126890168 -0.126890172 Si 0.126890171 0.126890168 0.126890172 kinetic energy (Ekin) = 0.00021726 Ry temperature = 22.86862765 K Ekin + Etot (const) = -15.54394924 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.13 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.05E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.15 secs total energy = -15.54409230 Ry Harris-Foulkes estimate = -15.54409231 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.6042 6.6042 6.9168 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0844 -0.9655 3.5664 3.6395 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0844 -0.9655 3.5664 3.6395 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0844 -0.9655 3.5664 3.6395 ! total energy = -15.54409230 Ry Harris-Foulkes estimate = -15.54409231 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01311465 0.01311464 0.01311466 atom 2 type 1 force = -0.01311465 -0.01311464 -0.01311466 Total force = 0.032124 Total SCF correction = 0.000001 Entering Dynamics: iteration = 86 time = 0.0832 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126964958 -0.126964955 -0.126964959 Si 0.126964958 0.126964955 0.126964959 kinetic energy (Ekin) = 0.00014325 Ry temperature = 15.07871675 K Ekin + Etot (const) = -15.54394905 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.18 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.88E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.20 secs total energy = -15.54403125 Ry Harris-Foulkes estimate = -15.54403127 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.21 secs total energy = -15.54403126 Ry Harris-Foulkes estimate = -15.54403126 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.6002 6.6002 6.9252 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6411 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6411 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6411 ! total energy = -15.54403126 Ry Harris-Foulkes estimate = -15.54403126 Ry estimated scf accuracy < 8.2E-13 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01361175 0.01361172 0.01361176 atom 2 type 1 force = -0.01361175 -0.01361172 -0.01361176 Total force = 0.033342 Total SCF correction = 0.000000 Entering Dynamics: iteration = 87 time = 0.0842 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127018853 -0.127018849 -0.127018854 Si 0.127018853 0.127018849 0.127018854 kinetic energy (Ekin) = 0.00008237 Ry temperature = 8.66978156 K Ekin + Etot (const) = -15.54394889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.25 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5973 6.5973 6.9312 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 ! total energy = -15.54398586 Ry Harris-Foulkes estimate = -15.54398587 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01396889 0.01396885 0.01396888 atom 2 type 1 force = -0.01396889 -0.01396885 -0.01396888 Total force = 0.034217 Total SCF correction = 0.000001 Entering Dynamics: iteration = 88 time = 0.0851 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127051306 -0.127051302 -0.127051307 Si 0.127051306 0.127051302 0.127051307 kinetic energy (Ekin) = 0.00003709 Ry temperature = 3.90364386 K Ekin + Etot (const) = -15.54394877 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.29 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.30 secs total energy = -15.54395795 Ry Harris-Foulkes estimate = -15.54395797 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.55E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.31 secs total energy = -15.54395796 Ry Harris-Foulkes estimate = -15.54395797 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.32 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5956 6.5956 6.9348 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 ! total energy = -15.54395796 Ry Harris-Foulkes estimate = -15.54395796 Ry estimated scf accuracy < 7.6E-13 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01418370 0.01418367 0.01418371 atom 2 type 1 force = -0.01418370 -0.01418367 -0.01418371 Total force = 0.034743 Total SCF correction = 0.000000 Entering Dynamics: iteration = 89 time = 0.0861 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127061988 -0.127061984 -0.127061989 Si 0.127061988 0.127061984 0.127061989 kinetic energy (Ekin) = 0.00000925 Ry temperature = 0.97415130 K Ekin + Etot (const) = -15.54394871 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.35 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.28E-12, avg # of iterations = 3.2 total cpu time spent up to now is 4.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.5950 6.5950 6.9360 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0899 -0.9607 3.5630 3.6431 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0899 -0.9607 3.5630 3.6431 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0899 -0.9607 3.5630 3.6431 ! total energy = -15.54394868 Ry Harris-Foulkes estimate = -15.54394868 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01425430 0.01425426 0.01425430 atom 2 type 1 force = -0.01425430 -0.01425426 -0.01425430 Total force = 0.034916 Total SCF correction = 0.000001 Entering Dynamics: iteration = 90 time = 0.0871 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127050790 -0.127050786 -0.127050791 Si 0.127050790 0.127050786 0.127050791 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00013938 K Ekin + Etot (const) = -15.54394868 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.24E-15, avg # of iterations = 4.8 total cpu time spent up to now is 4.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5956 6.5956 6.9347 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 ! total energy = -15.54395841 Ry Harris-Foulkes estimate = -15.54395841 Ry estimated scf accuracy < 1.2E-12 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01418025 0.01418022 0.01418026 atom 2 type 1 force = -0.01418025 -0.01418022 -0.01418026 Total force = 0.034734 Total SCF correction = 0.000000 Entering Dynamics: iteration = 91 time = 0.0880 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127017826 -0.127017822 -0.127017828 Si 0.127017826 0.127017822 0.127017828 kinetic energy (Ekin) = 0.00000970 Ry temperature = 1.02107436 K Ekin + Etot (const) = -15.54394871 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.57E-11, avg # of iterations = 3.0 total cpu time spent up to now is 4.45 secs total energy = -15.54398673 Ry Harris-Foulkes estimate = -15.54398675 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5974 6.5974 6.9311 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 ! total energy = -15.54398674 Ry Harris-Foulkes estimate = -15.54398674 Ry estimated scf accuracy < 7.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01396214 0.01396210 0.01396214 atom 2 type 1 force = -0.01396214 -0.01396210 -0.01396214 Total force = 0.034200 Total SCF correction = 0.000002 Entering Dynamics: iteration = 92 time = 0.0890 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126963432 -0.126963427 -0.126963433 Si 0.126963432 0.126963427 0.126963433 kinetic energy (Ekin) = 0.00003796 Ry temperature = 3.99558997 K Ekin + Etot (const) = -15.54394878 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.70E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.50 secs total energy = -15.54403250 Ry Harris-Foulkes estimate = -15.54403256 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 2.2 total cpu time spent up to now is 4.51 secs total energy = -15.54403252 Ry Harris-Foulkes estimate = -15.54403254 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.6003 6.6003 6.9250 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6410 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6410 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6410 ! total energy = -15.54403253 Ry Harris-Foulkes estimate = -15.54403253 Ry estimated scf accuracy < 2.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01360157 0.01360154 0.01360158 atom 2 type 1 force = -0.01360157 -0.01360154 -0.01360158 Total force = 0.033317 Total SCF correction = 0.000000 Entering Dynamics: iteration = 93 time = 0.0900 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126888159 -0.126888155 -0.126888161 Si 0.126888159 0.126888155 0.126888161 kinetic energy (Ekin) = 0.00008363 Ry temperature = 8.80301578 K Ekin + Etot (const) = -15.54394890 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.55 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.93E-11, avg # of iterations = 3.2 total cpu time spent up to now is 4.56 secs total energy = -15.54409391 Ry Harris-Foulkes estimate = -15.54409392 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.6044 6.6044 6.9166 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0843 -0.9655 3.5664 3.6394 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0843 -0.9655 3.5664 3.6394 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0843 -0.9655 3.5664 3.6394 ! total energy = -15.54409391 Ry Harris-Foulkes estimate = -15.54409392 Ry estimated scf accuracy < 8.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01310126 0.01310122 0.01310127 atom 2 type 1 force = -0.01310126 -0.01310122 -0.01310127 Total force = 0.032091 Total SCF correction = 0.000002 Entering Dynamics: iteration = 94 time = 0.0910 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126792777 -0.126792773 -0.126792779 Si 0.126792777 0.126792773 0.126792779 kinetic energy (Ekin) = 0.00014486 Ry temperature = 15.24779410 K Ekin + Etot (const) = -15.54394905 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.59 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.08E-10, avg # of iterations = 3.2 total cpu time spent up to now is 4.61 secs total energy = -15.54416836 Ry Harris-Foulkes estimate = -15.54416841 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 2.2 total cpu time spent up to now is 4.62 secs total energy = -15.54416838 Ry Harris-Foulkes estimate = -15.54416840 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.62 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.6095 6.6095 6.9060 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9682 3.5682 3.6374 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9682 3.5682 3.6374 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0813 -0.9682 3.5682 3.6374 ! total energy = -15.54416839 Ry Harris-Foulkes estimate = -15.54416839 Ry estimated scf accuracy < 2.7E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01246486 0.01246483 0.01246488 atom 2 type 1 force = -0.01246486 -0.01246483 -0.01246488 Total force = 0.030533 Total SCF correction = 0.000000 Entering Dynamics: iteration = 95 time = 0.0919 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126678262 -0.126678259 -0.126678264 Si 0.126678262 0.126678259 0.126678264 kinetic energy (Ekin) = 0.00021914 Ry temperature = 23.06663642 K Ekin + Etot (const) = -15.54394925 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.65 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.64E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.66 secs total energy = -15.54425289 Ry Harris-Foulkes estimate = -15.54425290 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.67 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.6157 6.6157 6.8933 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0776 -0.9714 3.5704 3.6350 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0776 -0.9714 3.5704 3.6350 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0776 -0.9714 3.5704 3.6350 ! total energy = -15.54425289 Ry Harris-Foulkes estimate = -15.54425289 Ry estimated scf accuracy < 7.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01169729 0.01169726 0.01169730 atom 2 type 1 force = -0.01169729 -0.01169726 -0.01169730 Total force = 0.028652 Total SCF correction = 0.000001 Entering Dynamics: iteration = 96 time = 0.0929 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126545793 -0.126545789 -0.126545794 Si 0.126545793 0.126545789 0.126545794 kinetic energy (Ekin) = 0.00030343 Ry temperature = 31.93826770 K Ekin + Etot (const) = -15.54394946 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.70 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.01E-10, avg # of iterations = 2.8 total cpu time spent up to now is 4.71 secs total energy = -15.54434391 Ry Harris-Foulkes estimate = -15.54434395 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.57E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.72 secs total energy = -15.54434393 Ry Harris-Foulkes estimate = -15.54434394 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2224 6.6229 6.6229 6.8785 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0733 -0.9752 3.5730 3.6323 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0733 -0.9752 3.5730 3.6323 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0733 -0.9752 3.5730 3.6323 ! total energy = -15.54434393 Ry Harris-Foulkes estimate = -15.54434393 Ry estimated scf accuracy < 1.2E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01080456 0.01080453 0.01080457 atom 2 type 1 force = -0.01080456 -0.01080453 -0.01080457 Total force = 0.026466 Total SCF correction = 0.000000 Entering Dynamics: iteration = 97 time = 0.0939 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126396739 -0.126396736 -0.126396741 Si 0.126396739 0.126396736 0.126396741 kinetic energy (Ekin) = 0.00039423 Ry temperature = 41.49554271 K Ekin + Etot (const) = -15.54394970 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.76 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.61E-11, avg # of iterations = 2.8 total cpu time spent up to now is 4.78 secs total energy = -15.54443770 Ry Harris-Foulkes estimate = -15.54443771 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2222 6.6310 6.6310 6.8620 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0684 -0.9795 3.5759 3.6292 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0684 -0.9795 3.5759 3.6292 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0684 -0.9795 3.5759 3.6292 ! total energy = -15.54443770 Ry Harris-Foulkes estimate = -15.54443770 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00979394 0.00979391 0.00979395 atom 2 type 1 force = -0.00979394 -0.00979391 -0.00979395 Total force = 0.023990 Total SCF correction = 0.000001 Entering Dynamics: iteration = 98 time = 0.0948 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126232652 -0.126232649 -0.126232654 Si 0.126232652 0.126232649 0.126232654 kinetic energy (Ekin) = 0.00048775 Ry temperature = 51.33955163 K Ekin + Etot (const) = -15.54394995 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.82 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.35E-10, avg # of iterations = 2.8 total cpu time spent up to now is 4.83 secs total energy = -15.54453024 Ry Harris-Foulkes estimate = -15.54453027 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.84 secs total energy = -15.54453025 Ry Harris-Foulkes estimate = -15.54453026 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.6399 6.6399 6.8437 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0631 -0.9844 3.5790 3.6259 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0631 -0.9844 3.5790 3.6259 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0631 -0.9844 3.5790 3.6259 ! total energy = -15.54453025 Ry Harris-Foulkes estimate = -15.54453025 Ry estimated scf accuracy < 1.1E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00867377 0.00867375 0.00867379 atom 2 type 1 force = -0.00867377 -0.00867375 -0.00867379 Total force = 0.021246 Total SCF correction = 0.000000 Entering Dynamics: iteration = 99 time = 0.0958 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126055251 -0.126055248 -0.126055253 Si 0.126055251 0.126055248 0.126055253 kinetic energy (Ekin) = 0.00058005 Ry temperature = 61.05522306 K Ekin + Etot (const) = -15.54395020 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.88 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.96E-11, avg # of iterations = 2.0 total cpu time spent up to now is 4.89 secs total energy = -15.54461763 Ry Harris-Foulkes estimate = -15.54461764 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.6496 6.6496 6.8241 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0574 -0.9897 3.5824 3.6223 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0574 -0.9897 3.5824 3.6223 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0574 -0.9897 3.5824 3.6223 ! total energy = -15.54461764 Ry Harris-Foulkes estimate = -15.54461764 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00745374 0.00745372 0.00745375 atom 2 type 1 force = -0.00745374 -0.00745372 -0.00745375 Total force = 0.018258 Total SCF correction = 0.000000 Entering Dynamics: iteration = 100 time = 0.0968 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125866409 -0.125866407 -0.125866411 Si 0.125866409 0.125866407 0.125866411 kinetic energy (Ekin) = 0.00066720 Ry temperature = 70.22798110 K Ekin + Etot (const) = -15.54395044 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.91 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.10E-10, avg # of iterations = 2.8 total cpu time spent up to now is 4.92 secs total energy = -15.54469606 Ry Harris-Foulkes estimate = -15.54469608 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6599 6.6599 6.8031 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0512 -0.9954 3.5859 3.6186 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0512 -0.9954 3.5859 3.6186 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0512 -0.9954 3.5859 3.6186 ! total energy = -15.54469607 Ry Harris-Foulkes estimate = -15.54469607 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00614463 0.00614461 0.00614464 atom 2 type 1 force = -0.00614463 -0.00614461 -0.00614464 Total force = 0.015051 Total SCF correction = 0.000001 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000012 cm^2/s atom 2 D = 0.00000012 cm^2/s < D > = 0.00000012 cm^2/s Writing output data file pwscf.save PWSCF : 4.95s CPU time, 5.73s wall time init_run : 0.02s CPU electrons : 2.08s CPU ( 101 calls, 0.021 s avg) update_pot : 0.46s CPU ( 100 calls, 0.005 s avg) forces : 0.09s CPU ( 101 calls, 0.001 s avg) Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 1.62s CPU ( 279 calls, 0.006 s avg) sum_band : 0.27s CPU ( 279 calls, 0.001 s avg) v_of_rho : 0.14s CPU ( 280 calls, 0.001 s avg) mix_rho : 0.02s CPU ( 279 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.08s CPU ( 2640 calls, 0.000 s avg) cegterg : 1.49s CPU ( 1116 calls, 0.001 s avg) Called by *egterg: h_psi : 1.11s CPU ( 3593 calls, 0.000 s avg) g_psi : 0.04s CPU ( 2473 calls, 0.000 s avg) cdiaghg : 0.21s CPU ( 2789 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 3593 calls, 0.000 s avg) General routines calbec : 0.06s CPU ( 4393 calls, 0.000 s avg) cft3 : 0.06s CPU ( 1242 calls, 0.000 s avg) cft3s : 1.00s CPU ( 29564 calls, 0.000 s avg) davcio : 0.02s CPU ( 6408 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example03/run_example0000755000700200004540000001160112053145630020565 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform molecular dynamics for" $ECHO "2- and 8-atom cells of Si starting with compressed bonds along (111)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 2-atom cell cat > si.md2.in << EOF &control calculation='md' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', dt=20, nstep=100, disk_io='high' / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0d-8 mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G-point...\c" $PW_COMMAND < si.md2.in > si.md2.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2.out > MD2 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 8-atom cell cat > si.md8.in << EOF &control calculation='md' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', dt=20, nstep=100, disk_io='high' / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS {automatic} 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 8 atom cell. G-point...\c" $PW_COMMAND < si.md8.in > si.md8.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md8.out > MD8 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 2-atom cell. Gamma+3X cat > si.md2_G3X.in << EOF &control calculation='md' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', dt=20, nstep=100, disk_io='high' / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS 4 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G3X-points...\c" $PW_COMMAND < si.md2_G3X.in > si.md2_G3X.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et} \ /Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2_G3X.out > MD2_G3X $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example03/run_xml_example0000755000700200004540000002345612053145630021460 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform molecular dynamics for" $ECHO "2- and 8-atom cells of Si starting with compressed bonds along (111)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 2-atom cell cat > si.md2.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF -0.123 -0.123 -0.123 0.123 0.123 0.123 from_scratch $PSEUDO_DIR/ $TMP_DIR/ high 8.0 true 0.7 1.0d-8 20.0 100 second-order second-order 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G-point...\c" $PW_COMMAND < si.md2.xml > si.md2.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2.out > MD2 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 8-atom cell cat > si.md8.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF -0.123 -0.123 -0.123 0.377 0.377 -0.123 0.377 -0.123 0.377 -0.123 0.377 0.377 0.123 0.123 0.123 0.623 0.623 0.123 0.623 0.123 0.623 0.123 0.623 0.623 from_scratch $PSEUDO_DIR/ $TMP_DIR/ high 8.0 true 0.7 1.0d-8 20.0 100 second-order second-order 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 8 atom cell. G-point...\c" $PW_COMMAND < si.md8.xml > si.md8.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md8.out > MD8 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 2-atom cell. Gamma+3X cat > si.md2_G3X.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF -0.123 -0.123 -0.123 0.123 0.123 0.123 from_scratch $PSEUDO_DIR/ $TMP_DIR/ high 8.0 true 0.7 1.0d-8 20.0 100 second-order second-order 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G3X-points...\c" $PW_COMMAND < si.md2_G3X.xml > si.md2_G3X.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et} \ /Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2_G3X.out > MD2_G3X $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example03/README0000644000700200004540000000330112053145630017176 0ustar marsamoscm This example illustrates how to use pw.x to perform molecular dynamics for an 8-atom cell of Si starting with compressed bonds along 111 The calculation proceeds as follows (for the meaning of the cited input variables see the file 'INPUT_PW' in the directory 'pwdocs') 1) make a MD run for Si in the diamond structure in a 2-atom cell starting with the bond along (111) slightly compressed. Use the Gamma point only. 2) make a MD run for Si in the diamond structure in a 8-atom cell starting with the bond along (111) slightly compressed. Use the Gamma point only. Note that the two calculations do not give exactly the same results because the BZ samplig is different. 3) make a MD run for Si in the diamond structure in a 2-atom cell starting with the bond along (111) slightly compressed. Use the Gamma and the 3 X points for the BZ sampling. It should give the same result as the calculation with 8 atoms (clearly the total energy is 4 times larger) In all the three calculation above: calculation='md' specifies that a MD run is performed. dt=20 defines the time step in (Rydberg) atomic unit of time. The mass of each type of atom is specified in the cards ATOMIC_SPECIES (for Si, 28.086 is the atomic mass in a.m.u.) nstep=100 is the number of steps in the MD run. potential_extrapolation='wfc2' meansd that starting guess for the potential and the wavefunctions at the new atomic positions will be extrapolated from previous history. nosym=.true. states that symmetry should not be used in the MD run. Additional variables (such as temperature) could be set in a MD run. Refer to INPUT_PW for their meaning. espresso-5.0.2/PW/examples/VCSexample/0000755000700200004540000000000012053440301016523 5ustar marsamoscmespresso-5.0.2/PW/examples/VCSexample/reference/0000755000700200004540000000000012053440303020463 5ustar marsamoscmespresso-5.0.2/PW/examples/VCSexample/reference/As.bfgs00.out0000644000700200004540000027653612053145630022667 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 3:50 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.24 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.06 secs total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.36 secs total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.68 secs total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.12 secs total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810616 Ry hartree contribution = 1.22165533 Ry xc contribution = -6.50439941 Ry ewald contribution = -27.88552965 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -25.4401221654 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.625315125 0.000000000 0.850906851 -0.312657446 0.541539390 0.850906914 -0.312657446 -0.541539390 0.850906914 ATOMIC_POSITIONS (crystal) As 0.276399692 0.276399998 0.276399998 As -0.276399692 -0.276399998 -0.276399998 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1469021), wk = 0.0625000 k( 2) = ( -0.1332661 -0.2308235 0.2448368), wk = 0.1250000 k( 3) = ( 0.2665323 0.4616469 -0.0489674), wk = 0.1250000 k( 4) = ( 0.1332662 0.2308235 0.0489674), wk = 0.1250000 k( 5) = ( -0.2665323 0.0000000 0.3427716), wk = 0.0625000 k( 6) = ( 0.1332662 0.6924704 0.0489674), wk = 0.1250000 k( 7) = ( 0.0000000 0.4616469 0.1469021), wk = 0.1250000 k( 8) = ( 0.5330646 0.0000000 -0.2448369), wk = 0.0625000 k( 9) = ( 0.3997985 -0.2308235 -0.1469021), wk = 0.1250000 k( 10) = ( 0.2665323 0.0000000 -0.0489674), wk = 0.0625000 k( 11) = ( 0.2665323 0.0000000 0.2448368), wk = 0.0625000 k( 12) = ( 0.1332662 -0.2308235 0.3427715), wk = 0.1250000 k( 13) = ( 0.5330646 0.4616469 0.0489673), wk = 0.1250000 k( 14) = ( 0.3997985 0.2308235 0.1469021), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4407063), wk = 0.0625000 k( 16) = ( 0.3997985 0.6924704 0.1469021), wk = 0.1250000 k( 17) = ( 0.2665323 0.4616469 0.2448368), wk = 0.1250000 k( 18) = ( 0.7995969 0.0000000 -0.1469022), wk = 0.0625000 k( 19) = ( 0.6663308 -0.2308235 -0.0489674), wk = 0.1250000 k( 20) = ( 0.5330646 0.0000000 0.0489673), wk = 0.0625000 extrapolated charge 11.76095, renormalised to 10.00000 total cpu time spent up to now is 2.70 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.1 total cpu time spent up to now is 3.56 secs total energy = -25.46196647 Ry Harris-Foulkes estimate = -26.46821635 Ry estimated scf accuracy < 0.01522401 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-04, avg # of iterations = 3.1 total cpu time spent up to now is 4.06 secs total energy = -25.49056485 Ry Harris-Foulkes estimate = -25.49591690 Ry estimated scf accuracy < 0.01382368 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 1.0 total cpu time spent up to now is 4.37 secs total energy = -25.48980889 Ry Harris-Foulkes estimate = -25.49113726 Ry estimated scf accuracy < 0.00318754 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.19E-05, avg # of iterations = 1.0 total cpu time spent up to now is 4.68 secs total energy = -25.48972170 Ry Harris-Foulkes estimate = -25.49000380 Ry estimated scf accuracy < 0.00052281 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 5.10 secs total energy = -25.48986242 Ry Harris-Foulkes estimate = -25.48986211 Ry estimated scf accuracy < 0.00000334 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-08, avg # of iterations = 1.6 total cpu time spent up to now is 5.42 secs total energy = -25.48986182 Ry Harris-Foulkes estimate = -25.48986279 Ry estimated scf accuracy < 0.00000299 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.99E-08, avg # of iterations = 1.0 total cpu time spent up to now is 5.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.1469 ( 531 PWs) bands (ev): -7.4955 0.6241 4.3725 4.3725 5.8117 8.5689 9.3234 9.3234 13.3295 k =-0.1333-0.2308 0.2448 ( 522 PWs) bands (ev): -6.5664 -1.8567 3.6162 4.5287 6.5671 7.1564 8.0760 10.6598 12.7808 k = 0.2665 0.4616-0.0490 ( 520 PWs) bands (ev): -5.2806 -3.9253 3.7342 4.1891 5.1988 8.0649 8.8216 9.9623 15.0333 k = 0.1333 0.2308 0.0490 ( 525 PWs) bands (ev): -7.0003 -1.0345 3.6445 4.6922 6.0085 8.4050 9.0253 10.4520 12.6753 k =-0.2665 0.0000 0.3428 ( 519 PWs) bands (ev): -6.2078 -1.5318 2.3114 2.9561 4.6886 8.6414 10.2325 10.5854 12.5739 k = 0.1333 0.6925 0.0490 ( 510 PWs) bands (ev): -4.8405 -3.4559 1.2770 2.4552 5.3994 8.4367 11.0607 12.2351 13.0275 k = 0.0000 0.4616 0.1469 ( 521 PWs) bands (ev): -5.6321 -3.1342 2.1205 4.1730 5.5127 8.6893 9.6872 10.8490 12.7112 k = 0.5331 0.0000-0.2448 ( 510 PWs) bands (ev): -5.1554 -2.8292 1.4598 2.5062 3.6710 8.7422 11.7708 13.1685 13.4193 k = 0.3998-0.2308-0.1469 ( 521 PWs) bands (ev): -5.6320 -3.1342 2.1205 4.1730 5.5127 8.6893 9.6872 10.8490 12.7112 k = 0.2665 0.0000-0.0490 ( 525 PWs) bands (ev): -7.0003 -1.0345 3.6445 4.6922 6.0085 8.4051 9.0253 10.4520 12.6753 k = 0.2665 0.0000 0.2448 ( 522 PWs) bands (ev): -6.5664 -1.8567 3.6162 4.5287 6.5671 7.1564 8.0760 10.6598 12.7808 k = 0.1333-0.2308 0.3428 ( 519 PWs) bands (ev): -6.2078 -1.5317 2.3114 2.9561 4.6886 8.6414 10.2325 10.5854 12.5739 k = 0.5331 0.4616 0.0490 ( 510 PWs) bands (ev): -4.8405 -3.4558 1.2770 2.4552 5.3994 8.4367 11.0607 12.2351 13.0275 k = 0.3998 0.2308 0.1469 ( 521 PWs) bands (ev): -5.6320 -3.1342 2.1205 4.1729 5.5127 8.6893 9.6872 10.8490 12.7112 k = 0.0000 0.0000 0.4407 ( 522 PWs) bands (ev): -6.3297 -1.9333 4.4767 4.4767 5.0697 7.2953 7.2953 8.1469 14.5535 k = 0.3998 0.6925 0.1469 ( 520 PWs) bands (ev): -5.4499 -2.6738 1.4537 3.5278 4.8205 8.5296 8.7393 11.4165 14.3377 k = 0.2665 0.4616 0.2448 ( 510 PWs) bands (ev): -5.1554 -2.8292 1.4598 2.5062 3.6710 8.7422 11.7708 13.1685 13.4193 k = 0.7996 0.0000-0.1469 ( 520 PWs) bands (ev): -5.4499 -2.6738 1.4537 3.5278 4.8205 8.5296 8.7393 11.4165 14.3377 k = 0.6663-0.2308-0.0490 ( 510 PWs) bands (ev): -4.8405 -3.4558 1.2770 2.4552 5.3994 8.4367 11.0607 12.2351 13.0275 k = 0.5331 0.0000 0.0490 ( 520 PWs) bands (ev): -5.2806 -3.9253 3.7342 4.1891 5.1988 8.0649 8.8216 9.9623 15.0333 the Fermi energy is 7.0992 ev ! total energy = -25.48986189 Ry Harris-Foulkes estimate = -25.48986194 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 5.91105620 Ry hartree contribution = 1.32276591 Ry xc contribution = -6.21965663 Ry ewald contribution = -26.50405479 Ry smearing contrib. (-TS) = 0.00002742 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000014 0.00000000 -0.00790915 atom 2 type 1 force = -0.00000014 0.00000000 0.00790915 Total force = 0.011185 Total SCF correction = 0.000180 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -56.77 -0.00057759 0.00000000 0.00000000 -84.97 0.00 0.00 0.00000000 -0.00057759 0.00000000 0.00 -84.97 0.00 0.00000000 0.00000000 -0.00000258 0.00 0.00 -0.38 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -25.4401221654 Ry enthalpy new = -25.4898618853 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0713269446 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.615391616 0.000000000 0.849318738 -0.307695729 0.532945331 0.849318824 -0.307695729 -0.532945331 0.849318824 ATOMIC_POSITIONS (crystal) As 0.276556773 0.276557033 0.276557033 As -0.276556773 -0.276557033 -0.276557033 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1471768), wk = 0.0625000 k( 2) = ( -0.1354151 -0.2345456 0.2452946), wk = 0.1250000 k( 3) = ( 0.2708303 0.4690913 -0.0490589), wk = 0.1250000 k( 4) = ( 0.1354151 0.2345456 0.0490589), wk = 0.1250000 k( 5) = ( -0.2708302 0.0000000 0.3434125), wk = 0.0625000 k( 6) = ( 0.1354151 0.7036369 0.0490589), wk = 0.1250000 k( 7) = ( 0.0000000 0.4690913 0.1471768), wk = 0.1250000 k( 8) = ( 0.5416605 0.0000000 -0.2452947), wk = 0.0625000 k( 9) = ( 0.4062454 -0.2345456 -0.1471768), wk = 0.1250000 k( 10) = ( 0.2708303 0.0000000 -0.0490589), wk = 0.0625000 k( 11) = ( 0.2708303 0.0000000 0.2452946), wk = 0.0625000 k( 12) = ( 0.1354152 -0.2345456 0.3434125), wk = 0.1250000 k( 13) = ( 0.5416606 0.4690913 0.0490589), wk = 0.1250000 k( 14) = ( 0.4062454 0.2345456 0.1471767), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4415303), wk = 0.0625000 k( 16) = ( 0.4062454 0.7036369 0.1471767), wk = 0.1250000 k( 17) = ( 0.2708303 0.4690913 0.2452946), wk = 0.1250000 k( 18) = ( 0.8124908 0.0000000 -0.1471768), wk = 0.0625000 k( 19) = ( 0.6770757 -0.2345456 -0.0490590), wk = 0.1250000 k( 20) = ( 0.5416606 0.0000000 0.0490589), wk = 0.0625000 extrapolated charge 9.65560, renormalised to 10.00000 total cpu time spent up to now is 6.00 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.1 total cpu time spent up to now is 6.64 secs total energy = -25.49315765 Ry Harris-Foulkes estimate = -25.30171129 Ry estimated scf accuracy < 0.00073252 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-06, avg # of iterations = 3.1 total cpu time spent up to now is 7.14 secs total energy = -25.49420847 Ry Harris-Foulkes estimate = -25.49438634 Ry estimated scf accuracy < 0.00042298 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.23E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.45 secs total energy = -25.49420151 Ry Harris-Foulkes estimate = -25.49423098 Ry estimated scf accuracy < 0.00007488 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.49E-07, avg # of iterations = 1.0 total cpu time spent up to now is 7.75 secs total energy = -25.49419746 Ry Harris-Foulkes estimate = -25.49420596 Ry estimated scf accuracy < 0.00001501 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 3.0 total cpu time spent up to now is 8.16 secs total energy = -25.49420212 Ry Harris-Foulkes estimate = -25.49420216 Ry estimated scf accuracy < 0.00000029 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-09, avg # of iterations = 1.1 total cpu time spent up to now is 8.46 secs total energy = -25.49420204 Ry Harris-Foulkes estimate = -25.49420213 Ry estimated scf accuracy < 0.00000019 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 1.3 total cpu time spent up to now is 8.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.1472 ( 531 PWs) bands (ev): -7.3635 1.2015 4.7472 4.7472 6.1794 9.0451 9.7877 9.7877 13.8015 k =-0.1354-0.2345 0.2453 ( 522 PWs) bands (ev): -6.4023 -1.4523 3.8535 4.8563 7.0830 7.6497 8.5525 11.2013 13.1925 k = 0.2708 0.4691-0.0491 ( 520 PWs) bands (ev): -5.0485 -3.6423 4.0323 4.4478 5.6217 8.5565 9.2849 10.4138 15.4932 k = 0.1354 0.2345 0.0491 ( 525 PWs) bands (ev): -6.8430 -0.5753 3.9729 5.0347 6.3599 8.9536 9.4341 10.9578 13.0763 k =-0.2708 0.0000 0.3434 ( 519 PWs) bands (ev): -6.0351 -1.0991 2.5374 3.2774 5.0374 9.1167 10.8445 11.1453 13.1335 k = 0.1354 0.7036 0.0491 ( 510 PWs) bands (ev): -4.5971 -3.1246 1.4882 2.6845 5.7729 8.9987 11.5440 12.8511 13.5753 k = 0.0000 0.4691 0.1472 ( 521 PWs) bands (ev): -5.4159 -2.7937 2.3454 4.5000 5.8371 9.1627 10.2878 11.3424 13.1458 k = 0.5417 0.0000-0.2453 ( 510 PWs) bands (ev): -4.9110 -2.4972 1.7066 2.8023 3.9554 9.0851 12.3600 13.7886 14.1365 k = 0.4062-0.2345-0.1472 ( 521 PWs) bands (ev): -5.4159 -2.7937 2.3454 4.5001 5.8371 9.1627 10.2878 11.3424 13.1458 k = 0.2708 0.0000-0.0491 ( 525 PWs) bands (ev): -6.8430 -0.5753 3.9729 5.0347 6.3599 8.9536 9.4340 10.9578 13.0763 k = 0.2708 0.0000 0.2453 ( 522 PWs) bands (ev): -6.4023 -1.4523 3.8535 4.8563 7.0830 7.6497 8.5525 11.2013 13.1925 k = 0.1354-0.2345 0.3434 ( 519 PWs) bands (ev): -6.0351 -1.0991 2.5374 3.2774 5.0374 9.1167 10.8445 11.1453 13.1335 k = 0.5417 0.4691 0.0491 ( 510 PWs) bands (ev): -4.5971 -3.1246 1.4882 2.6845 5.7729 8.9987 11.5440 12.8510 13.5753 k = 0.4062 0.2345 0.1472 ( 521 PWs) bands (ev): -5.4159 -2.7937 2.3454 4.5000 5.8371 9.1627 10.2877 11.3424 13.1458 k = 0.0000 0.0000 0.4415 ( 522 PWs) bands (ev): -6.1822 -1.6031 4.8484 4.8484 5.6096 7.7504 7.7505 8.7338 15.0379 k = 0.4062 0.7036 0.1472 ( 520 PWs) bands (ev): -5.2637 -2.3185 1.6629 3.8500 5.2486 9.1449 9.2620 12.0386 14.7866 k = 0.2708 0.4691 0.2453 ( 510 PWs) bands (ev): -4.9110 -2.4972 1.7066 2.8023 3.9554 9.0851 12.3600 13.7886 14.1365 k = 0.8125 0.0000-0.1472 ( 520 PWs) bands (ev): -5.2637 -2.3185 1.6629 3.8500 5.2486 9.1449 9.2620 12.0386 14.7866 k = 0.6771-0.2345-0.0491 ( 510 PWs) bands (ev): -4.5971 -3.1246 1.4882 2.6845 5.7729 8.9987 11.5440 12.8511 13.5753 k = 0.5417 0.0000 0.0491 ( 520 PWs) bands (ev): -5.0485 -3.6424 4.0323 4.4478 5.6217 8.5565 9.2849 10.4138 15.4932 the Fermi energy is 7.1403 ev ! total energy = -25.49420205 Ry Harris-Foulkes estimate = -25.49420205 Ry estimated scf accuracy < 1.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.27097793 Ry hartree contribution = 1.28115576 Ry xc contribution = -6.26181564 Ry ewald contribution = -26.78454728 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000030 0.00000000 -0.01445710 atom 2 type 1 force = -0.00000030 0.00000000 0.01445710 Total force = 0.020445 Total SCF correction = 0.000018 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.63 -0.00036214 0.00000000 0.00000000 -53.27 0.00 0.00 0.00000000 -0.00036215 0.00000000 0.00 -53.27 0.00 0.00000000 0.00000000 0.00009958 0.00 0.00 14.65 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -25.4898618853 Ry enthalpy new = -25.4942020532 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.2173987989 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.587519842 0.000000000 0.856188287 -0.293760157 0.508807607 0.856188582 -0.293760157 -0.508807607 0.856188582 ATOMIC_POSITIONS (crystal) As 0.273599184 0.273599113 0.273599113 As -0.273599184 -0.273599113 -0.273599113 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1459959), wk = 0.0625000 k( 2) = ( -0.1418391 -0.2456724 0.2433265), wk = 0.1250000 k( 3) = ( 0.2836783 0.4913449 -0.0486652), wk = 0.1250000 k( 4) = ( 0.1418392 0.2456724 0.0486653), wk = 0.1250000 k( 5) = ( -0.2836782 0.0000000 0.3406570), wk = 0.0625000 k( 6) = ( 0.1418392 0.7370173 0.0486653), wk = 0.1250000 k( 7) = ( 0.0000000 0.4913449 0.1459959), wk = 0.1250000 k( 8) = ( 0.5673565 0.0000000 -0.2433264), wk = 0.0625000 k( 9) = ( 0.4255174 -0.2456724 -0.1459958), wk = 0.1250000 k( 10) = ( 0.2836783 0.0000000 -0.0486652), wk = 0.0625000 k( 11) = ( 0.2836784 0.0000000 0.2433265), wk = 0.0625000 k( 12) = ( 0.1418393 -0.2456724 0.3406571), wk = 0.1250000 k( 13) = ( 0.5673566 0.4913449 0.0486654), wk = 0.1250000 k( 14) = ( 0.4255175 0.2456724 0.1459960), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4379877), wk = 0.0625000 k( 16) = ( 0.4255175 0.7370173 0.1459960), wk = 0.1250000 k( 17) = ( 0.2836784 0.4913449 0.2433265), wk = 0.1250000 k( 18) = ( 0.8510348 0.0000000 -0.1459957), wk = 0.0625000 k( 19) = ( 0.7091957 -0.2456724 -0.0486652), wk = 0.1250000 k( 20) = ( 0.5673566 0.0000000 0.0486654), wk = 0.0625000 extrapolated charge 9.11677, renormalised to 10.00000 total cpu time spent up to now is 9.05 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 total cpu time spent up to now is 9.87 secs total energy = -25.49086580 Ry Harris-Foulkes estimate = -24.97256972 Ry estimated scf accuracy < 0.00603130 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 10.38 secs total energy = -25.49760972 Ry Harris-Foulkes estimate = -25.49910418 Ry estimated scf accuracy < 0.00329934 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.30E-05, avg # of iterations = 1.0 total cpu time spent up to now is 10.67 secs total energy = -25.49775861 Ry Harris-Foulkes estimate = -25.49788890 Ry estimated scf accuracy < 0.00038953 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.90E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.97 secs total energy = -25.49771541 Ry Harris-Foulkes estimate = -25.49777917 Ry estimated scf accuracy < 0.00011396 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-06, avg # of iterations = 2.6 total cpu time spent up to now is 11.35 secs total energy = -25.49774648 Ry Harris-Foulkes estimate = -25.49774679 Ry estimated scf accuracy < 0.00000201 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-08, avg # of iterations = 1.8 total cpu time spent up to now is 11.68 secs total energy = -25.49774601 Ry Harris-Foulkes estimate = -25.49774663 Ry estimated scf accuracy < 0.00000112 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 12.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.1460 ( 531 PWs) bands (ev): -6.9643 2.4692 5.9705 5.9705 7.1314 10.4645 11.0880 11.0880 15.0380 k =-0.1418-0.2457 0.2433 ( 522 PWs) bands (ev): -5.9094 -0.3954 4.3635 5.9947 8.5642 8.9402 9.6448 12.5858 14.3888 k = 0.2837 0.4913-0.0487 ( 520 PWs) bands (ev): -4.3319 -2.8810 5.0075 5.0504 6.7404 9.8922 10.2773 11.1501 16.3034 k = 0.1418 0.2457 0.0487 ( 525 PWs) bands (ev): -6.3675 0.6838 5.0520 5.8079 7.2036 10.1325 10.6881 12.1424 14.0597 k =-0.2837 0.0000 0.3407 ( 519 PWs) bands (ev): -5.5201 -0.0822 3.2325 4.3358 5.8300 10.5712 12.6625 12.6813 14.4768 k = 0.1418 0.7370 0.0487 ( 510 PWs) bands (ev): -3.8703 -2.2002 2.1079 3.1973 6.6946 10.5325 12.9706 14.4311 14.7763 k = 0.0000 0.4913 0.1460 ( 521 PWs) bands (ev): -4.7694 -1.8244 3.0642 5.2372 6.5978 10.0804 11.8712 12.7616 14.2756 k = 0.5674 0.0000-0.2433 ( 510 PWs) bands (ev): -4.1919 -1.5490 2.2314 3.7831 4.5769 10.1376 13.7299 15.1294 15.8373 k = 0.4255-0.2457-0.1460 ( 521 PWs) bands (ev): -4.7694 -1.8244 3.0642 5.2372 6.5978 10.0804 11.8712 12.7616 14.2756 k = 0.2837 0.0000-0.0487 ( 525 PWs) bands (ev): -6.3675 0.6838 5.0520 5.8079 7.2036 10.1325 10.6881 12.1424 14.0597 k = 0.2837 0.0000 0.2433 ( 522 PWs) bands (ev): -5.9094 -0.3954 4.3635 5.9947 8.5642 8.9401 9.6448 12.5858 14.3888 k = 0.1418-0.2457 0.3407 ( 519 PWs) bands (ev): -5.5201 -0.0822 3.2325 4.3358 5.8299 10.5712 12.6625 12.6813 14.4768 k = 0.5674 0.4913 0.0487 ( 510 PWs) bands (ev): -3.8703 -2.2002 2.1079 3.1973 6.6946 10.5325 12.9706 14.4311 14.7763 k = 0.4255 0.2457 0.1460 ( 521 PWs) bands (ev): -4.7694 -1.8244 3.0642 5.2372 6.5978 10.0804 11.8712 12.7616 14.2756 k = 0.0000 0.0000 0.4380 ( 522 PWs) bands (ev): -5.7294 -1.0713 6.1171 6.1171 7.4940 8.9838 8.9838 10.2767 16.3146 k = 0.4255 0.7370 0.1460 ( 520 PWs) bands (ev): -4.6810 -1.6006 2.3471 4.9278 6.4193 10.6430 10.9980 13.8384 15.8566 k = 0.2837 0.4913 0.2433 ( 510 PWs) bands (ev): -4.1919 -1.5490 2.2314 3.7831 4.5769 10.1376 13.7299 15.1294 15.8373 k = 0.8510 0.0000-0.1460 ( 520 PWs) bands (ev): -4.6810 -1.6006 2.3471 4.9278 6.4193 10.6430 10.9980 13.8384 15.8566 k = 0.7092-0.2457-0.0487 ( 510 PWs) bands (ev): -3.8703 -2.2002 2.1079 3.1973 6.6946 10.5325 12.9706 14.4311 14.7763 k = 0.5674 0.0000 0.0487 ( 520 PWs) bands (ev): -4.3319 -2.8810 5.0075 5.0504 6.7404 9.8922 10.2773 11.1501 16.3034 the Fermi energy is 8.6214 ev ! total energy = -25.49774618 Ry Harris-Foulkes estimate = -25.49774624 Ry estimated scf accuracy < 0.00000010 Ry The total energy is the sum of the following terms: one-electron contribution = 7.26866617 Ry hartree contribution = 1.15258399 Ry xc contribution = -6.36495139 Ry ewald contribution = -27.55407213 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000001 0.00000000 -0.01671982 atom 2 type 1 force = -0.00000001 0.00000000 0.01671982 Total force = 0.023645 Total SCF correction = 0.000264 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 40.67 0.00028243 0.00000000 0.00000000 41.55 0.00 0.00 0.00000000 0.00028243 0.00000000 0.00 41.55 0.00 0.00000000 0.00000000 0.00026452 0.00 0.00 38.91 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -25.4942020532 Ry enthalpy new = -25.4977461757 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0620916378 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.595132569 0.000000000 0.859724605 -0.297566428 0.515400451 0.859724837 -0.297566428 -0.515400451 0.859724837 ATOMIC_POSITIONS (crystal) As 0.272889114 0.272889111 0.272889111 As -0.272889114 -0.272889111 -0.272889111 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1453954), wk = 0.0625000 k( 2) = ( -0.1400247 -0.2425299 0.2423256), wk = 0.1250000 k( 3) = ( 0.2800496 0.4850597 -0.0484651), wk = 0.1250000 k( 4) = ( 0.1400248 0.2425299 0.0484651), wk = 0.1250000 k( 5) = ( -0.2800495 0.0000000 0.3392558), wk = 0.0625000 k( 6) = ( 0.1400248 0.7275896 0.0484651), wk = 0.1250000 k( 7) = ( 0.0000000 0.4850597 0.1453954), wk = 0.1250000 k( 8) = ( 0.5600991 0.0000000 -0.2423256), wk = 0.0625000 k( 9) = ( 0.4200744 -0.2425299 -0.1453953), wk = 0.1250000 k( 10) = ( 0.2800496 0.0000000 -0.0484651), wk = 0.0625000 k( 11) = ( 0.2800497 0.0000000 0.2423256), wk = 0.0625000 k( 12) = ( 0.1400249 -0.2425299 0.3392559), wk = 0.1250000 k( 13) = ( 0.5600992 0.4850597 0.0484652), wk = 0.1250000 k( 14) = ( 0.4200744 0.2425299 0.1453954), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4361861), wk = 0.0625000 k( 16) = ( 0.4200744 0.7275896 0.1453954), wk = 0.1250000 k( 17) = ( 0.2800497 0.4850597 0.2423256), wk = 0.1250000 k( 18) = ( 0.8401488 0.0000000 -0.1453953), wk = 0.0625000 k( 19) = ( 0.7001240 -0.2425299 -0.0484650), wk = 0.1250000 k( 20) = ( 0.5600992 0.0000000 0.0484652), wk = 0.0625000 extrapolated charge 10.29427, renormalised to 10.00000 total cpu time spent up to now is 12.32 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 12.95 secs total energy = -25.49860714 Ry Harris-Foulkes estimate = -25.67287047 Ry estimated scf accuracy < 0.00037342 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.73E-06, avg # of iterations = 3.0 total cpu time spent up to now is 13.46 secs total energy = -25.49926228 Ry Harris-Foulkes estimate = -25.49939095 Ry estimated scf accuracy < 0.00031723 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.17E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.76 secs total energy = -25.49925827 Ry Harris-Foulkes estimate = -25.49928000 Ry estimated scf accuracy < 0.00006024 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.02E-07, avg # of iterations = 1.0 total cpu time spent up to now is 14.06 secs total energy = -25.49925378 Ry Harris-Foulkes estimate = -25.49926107 Ry estimated scf accuracy < 0.00001531 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-07, avg # of iterations = 2.4 total cpu time spent up to now is 14.40 secs total energy = -25.49925606 Ry Harris-Foulkes estimate = -25.49925634 Ry estimated scf accuracy < 0.00000062 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.17E-09, avg # of iterations = 2.4 total cpu time spent up to now is 14.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.1454 ( 531 PWs) bands (ev): -7.0800 1.9608 5.6241 5.6241 6.7008 10.0623 10.6487 10.6487 14.5804 k =-0.1400-0.2425 0.2423 ( 522 PWs) bands (ev): -6.0528 -0.7722 4.1344 5.7090 8.1010 8.4362 9.1543 12.0674 13.9786 k = 0.2800 0.4851-0.0485 ( 520 PWs) bands (ev): -4.5357 -3.1397 4.7436 4.7854 6.3292 9.4363 9.8007 10.7088 15.9217 k = 0.1400 0.2425 0.0485 ( 525 PWs) bands (ev): -6.5065 0.2635 4.7516 5.4764 6.8589 9.6203 10.3188 11.6421 13.6140 k =-0.2800 0.0000 0.3393 ( 519 PWs) bands (ev): -5.6697 -0.4852 3.0233 4.0420 5.4459 10.2181 12.0459 12.1482 13.8864 k = 0.1400 0.7276 0.0485 ( 510 PWs) bands (ev): -4.0834 -2.5085 1.9050 2.9671 6.3238 10.0018 12.5503 13.8879 14.2305 k = 0.0000 0.4851 0.1454 ( 521 PWs) bands (ev): -4.9619 -2.1358 2.8628 4.8997 6.2859 9.6194 11.3171 12.2903 13.8293 k = 0.5601 0.0000-0.2423 ( 510 PWs) bands (ev): -4.4139 -1.8310 1.9616 3.5133 4.2717 9.8639 13.1647 14.5054 15.1735 k = 0.4201-0.2425-0.1454 ( 521 PWs) bands (ev): -4.9619 -2.1358 2.8628 4.8997 6.2859 9.6194 11.3171 12.2903 13.8293 k = 0.2800 0.0000-0.0485 ( 525 PWs) bands (ev): -6.5065 0.2635 4.7516 5.4764 6.8589 9.6203 10.3188 11.6421 13.6140 k = 0.2800 0.0000 0.2423 ( 522 PWs) bands (ev): -6.0528 -0.7722 4.1344 5.7090 8.1010 8.4362 9.1543 12.0674 13.9786 k = 0.1400-0.2425 0.3393 ( 519 PWs) bands (ev): -5.6697 -0.4852 3.0233 4.0420 5.4459 10.2181 12.0458 12.1482 13.8864 k = 0.5601 0.4851 0.0485 ( 510 PWs) bands (ev): -4.0834 -2.5085 1.9050 2.9671 6.3238 10.0018 12.5503 13.8879 14.2305 k = 0.4201 0.2425 0.1454 ( 521 PWs) bands (ev): -4.9619 -2.1358 2.8628 4.8997 6.2859 9.6194 11.3171 12.2903 13.8293 k = 0.0000 0.0000 0.4362 ( 522 PWs) bands (ev): -5.8507 -1.3896 5.7845 5.7845 6.9823 8.5411 8.5411 9.6922 15.8638 k = 0.4201 0.7276 0.1454 ( 520 PWs) bands (ev): -4.8308 -1.9495 2.1473 4.6371 5.9957 10.1344 10.4358 13.2714 15.3980 k = 0.2800 0.4851 0.2423 ( 510 PWs) bands (ev): -4.4139 -1.8310 1.9616 3.5133 4.2717 9.8639 13.1647 14.5054 15.1735 k = 0.8401 0.0000-0.1454 ( 520 PWs) bands (ev): -4.8308 -1.9495 2.1473 4.6371 5.9957 10.1344 10.4358 13.2714 15.3980 k = 0.7001-0.2425-0.0485 ( 510 PWs) bands (ev): -4.0834 -2.5085 1.9050 2.9671 6.3238 10.0018 12.5503 13.8879 14.2305 k = 0.5601 0.0000 0.0485 ( 520 PWs) bands (ev): -4.5357 -3.1397 4.7436 4.7853 6.3292 9.4363 9.8007 10.7087 15.9217 the Fermi energy is 8.1583 ev ! total energy = -25.49925629 Ry Harris-Foulkes estimate = -25.49925630 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 6.94775514 Ry hartree contribution = 1.18242484 Ry xc contribution = -6.32414144 Ry ewald contribution = -27.30532201 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000007 0.00000000 -0.00569172 atom 2 type 1 force = -0.00000007 0.00000000 0.00569172 Total force = 0.008049 Total SCF correction = 0.000050 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 7.57 0.00001908 0.00000000 0.00000000 2.81 0.00 0.00 0.00000000 0.00001908 0.00000000 0.00 2.81 0.00 0.00000000 0.00000000 0.00011624 0.00 0.00 17.10 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -25.4977461757 Ry enthalpy new = -25.4992562892 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0266745220 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.594665487 0.000000000 0.863742521 -0.297332851 0.514995958 0.863742724 -0.297332851 -0.514995958 0.863742724 ATOMIC_POSITIONS (crystal) As 0.272031606 0.272031578 0.272031578 As -0.272031606 -0.272031578 -0.272031578 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1447190), wk = 0.0625000 k( 2) = ( -0.1401347 -0.2427204 0.2411984), wk = 0.1250000 k( 3) = ( 0.2802696 0.4854407 -0.0482397), wk = 0.1250000 k( 4) = ( 0.1401348 0.2427204 0.0482397), wk = 0.1250000 k( 5) = ( -0.2802695 0.0000000 0.3376777), wk = 0.0625000 k( 6) = ( 0.1401348 0.7281611 0.0482397), wk = 0.1250000 k( 7) = ( 0.0000000 0.4854407 0.1447190), wk = 0.1250000 k( 8) = ( 0.5605391 0.0000000 -0.2411983), wk = 0.0625000 k( 9) = ( 0.4204043 -0.2427204 -0.1447190), wk = 0.1250000 k( 10) = ( 0.2802696 0.0000000 -0.0482397), wk = 0.0625000 k( 11) = ( 0.2802696 0.0000000 0.2411984), wk = 0.0625000 k( 12) = ( 0.1401349 -0.2427204 0.3376778), wk = 0.1250000 k( 13) = ( 0.5605392 0.4854407 0.0482397), wk = 0.1250000 k( 14) = ( 0.4204044 0.2427204 0.1447191), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4341571), wk = 0.0625000 k( 16) = ( 0.4204044 0.7281611 0.1447191), wk = 0.1250000 k( 17) = ( 0.2802696 0.4854407 0.2411984), wk = 0.1250000 k( 18) = ( 0.8408087 0.0000000 -0.1447190), wk = 0.0625000 k( 19) = ( 0.7006739 -0.2427204 -0.0482396), wk = 0.1250000 k( 20) = ( 0.5605392 0.0000000 0.0482397), wk = 0.0625000 extrapolated charge 10.03087, renormalised to 10.00000 total cpu time spent up to now is 15.05 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.94E-08, avg # of iterations = 1.0 total cpu time spent up to now is 15.93 secs total energy = -25.49944612 Ry Harris-Foulkes estimate = -25.51762267 Ry estimated scf accuracy < 0.00000993 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-08, avg # of iterations = 2.9 total cpu time spent up to now is 16.34 secs total energy = -25.49945309 Ry Harris-Foulkes estimate = -25.49945396 Ry estimated scf accuracy < 0.00000200 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 1.1 total cpu time spent up to now is 16.64 secs total energy = -25.49945317 Ry Harris-Foulkes estimate = -25.49945324 Ry estimated scf accuracy < 0.00000019 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-09, avg # of iterations = 1.9 total cpu time spent up to now is 16.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.1447 ( 531 PWs) bands (ev): -7.0804 1.8676 5.6432 5.6432 6.6221 10.0756 10.6195 10.6195 14.5405 k =-0.1401-0.2427 0.2412 ( 522 PWs) bands (ev): -6.0533 -0.8083 4.0832 5.7426 8.0871 8.3764 9.0680 11.9881 13.9735 k = 0.2803 0.4854-0.0482 ( 520 PWs) bands (ev): -4.5303 -3.1582 4.6818 4.8101 6.2870 9.4009 9.7025 10.5648 15.7993 k = 0.1401 0.2427 0.0482 ( 525 PWs) bands (ev): -6.5061 0.2378 4.7702 5.4071 6.8039 9.5066 10.3265 11.5552 13.5295 k =-0.2803 0.0000 0.3377 ( 519 PWs) bands (ev): -5.6714 -0.5511 3.0265 4.0629 5.3697 10.2539 12.0135 12.1083 13.7921 k = 0.1401 0.7282 0.0482 ( 510 PWs) bands (ev): -4.0845 -2.5267 1.8965 2.9213 6.2701 9.9576 12.5547 13.8331 14.1234 k = 0.0000 0.4854 0.1447 ( 521 PWs) bands (ev): -4.9621 -2.1478 2.8691 4.8343 6.2288 9.4987 11.2552 12.2754 13.7779 k = 0.5605 0.0000-0.2412 ( 510 PWs) bands (ev): -4.4190 -1.8365 1.9009 3.5334 4.2037 9.8778 13.0689 14.3774 15.0638 k = 0.4204-0.2427-0.1447 ( 521 PWs) bands (ev): -4.9621 -2.1478 2.8691 4.8343 6.2288 9.4987 11.2552 12.2754 13.7779 k = 0.2803 0.0000-0.0482 ( 525 PWs) bands (ev): -6.5061 0.2378 4.7702 5.4071 6.8039 9.5066 10.3265 11.5552 13.5295 k = 0.2803 0.0000 0.2412 ( 522 PWs) bands (ev): -6.0533 -0.8083 4.0832 5.7426 8.0871 8.3764 9.0680 11.9881 13.9735 k = 0.1401-0.2427 0.3377 ( 519 PWs) bands (ev): -5.6714 -0.5511 3.0265 4.0629 5.3697 10.2539 12.0135 12.1083 13.7921 k = 0.5605 0.4854 0.0482 ( 510 PWs) bands (ev): -4.0845 -2.5267 1.8965 2.9213 6.2701 9.9576 12.5547 13.8331 14.1234 k = 0.4204 0.2427 0.1447 ( 521 PWs) bands (ev): -4.9621 -2.1478 2.8691 4.8343 6.2287 9.4987 11.2552 12.2754 13.7779 k = 0.0000 0.0000 0.4342 ( 522 PWs) bands (ev): -5.8498 -1.4882 5.8189 5.8189 7.0246 8.5080 8.5080 9.6380 15.8149 k = 0.4204 0.7282 0.1447 ( 520 PWs) bands (ev): -4.8246 -2.0312 2.1556 4.6609 5.9623 10.0871 10.4360 13.2576 15.3160 k = 0.2803 0.4854 0.2412 ( 510 PWs) bands (ev): -4.4190 -1.8365 1.9009 3.5334 4.2037 9.8778 13.0689 14.3774 15.0638 k = 0.8408 0.0000-0.1447 ( 520 PWs) bands (ev): -4.8246 -2.0312 2.1556 4.6609 5.9623 10.0871 10.4360 13.2576 15.3161 k = 0.7007-0.2427-0.0482 ( 510 PWs) bands (ev): -4.0845 -2.5267 1.8965 2.9212 6.2701 9.9576 12.5547 13.8331 14.1234 k = 0.5605 0.0000 0.0482 ( 520 PWs) bands (ev): -4.5303 -3.1582 4.6818 4.8101 6.2870 9.4009 9.7025 10.5648 15.7993 the Fermi energy is 8.1444 ev ! total energy = -25.49945319 Ry Harris-Foulkes estimate = -25.49945320 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 6.93059469 Ry hartree contribution = 1.17922906 Ry xc contribution = -6.31839497 Ry ewald contribution = -27.29090918 Ry smearing contrib. (-TS) = 0.00002721 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000008 0.00000000 -0.00018740 atom 2 type 1 force = -0.00000008 0.00000000 0.00018740 Total force = 0.000265 Total SCF correction = 0.000080 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 2.09 -0.00000612 0.00000000 0.00000000 -0.90 0.00 0.00 0.00000000 -0.00000611 0.00000000 0.00 -0.90 0.00 0.00000000 0.00000000 0.00005479 0.00 0.00 8.06 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -25.4992562892 Ry enthalpy new = -25.4994531908 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0112933333 bohr new conv_thr = 0.0000000187 Ry CELL_PARAMETERS (alat) 0.594069466 0.000000000 0.866031920 -0.297034790 0.514479798 0.866032085 -0.297034790 -0.514479798 0.866032085 ATOMIC_POSITIONS (crystal) As 0.271794229 0.271794169 0.271794169 As -0.271794229 -0.271794169 -0.271794169 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1443365), wk = 0.0625000 k( 2) = ( -0.1402753 -0.2429639 0.2405608), wk = 0.1250000 k( 3) = ( 0.2805508 0.4859277 -0.0481121), wk = 0.1250000 k( 4) = ( 0.1402754 0.2429639 0.0481122), wk = 0.1250000 k( 5) = ( -0.2805507 0.0000000 0.3367851), wk = 0.0625000 k( 6) = ( 0.1402754 0.7288916 0.0481122), wk = 0.1250000 k( 7) = ( 0.0000000 0.4859277 0.1443365), wk = 0.1250000 k( 8) = ( 0.5611015 0.0000000 -0.2405607), wk = 0.0625000 k( 9) = ( 0.4208262 -0.2429639 -0.1443364), wk = 0.1250000 k( 10) = ( 0.2805508 0.0000000 -0.0481121), wk = 0.0625000 k( 11) = ( 0.2805508 0.0000000 0.2405608), wk = 0.0625000 k( 12) = ( 0.1402755 -0.2429639 0.3367851), wk = 0.1250000 k( 13) = ( 0.5611016 0.4859277 0.0481122), wk = 0.1250000 k( 14) = ( 0.4208262 0.2429639 0.1443365), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4330094), wk = 0.0625000 k( 16) = ( 0.4208262 0.7288916 0.1443365), wk = 0.1250000 k( 17) = ( 0.2805508 0.4859277 0.2405608), wk = 0.1250000 k( 18) = ( 0.8416523 0.0000000 -0.1443364), wk = 0.0625000 k( 19) = ( 0.7013770 -0.2429639 -0.0481121), wk = 0.1250000 k( 20) = ( 0.5611016 0.0000000 0.0481122), wk = 0.0625000 extrapolated charge 10.00641, renormalised to 10.00000 total cpu time spent up to now is 17.25 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.27E-09, avg # of iterations = 1.9 total cpu time spent up to now is 18.04 secs total energy = -25.49948152 Ry Harris-Foulkes estimate = -25.50325318 Ry estimated scf accuracy < 0.00000051 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.14E-09, avg # of iterations = 2.1 total cpu time spent up to now is 18.43 secs total energy = -25.49948179 Ry Harris-Foulkes estimate = -25.49948182 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.02E-10, avg # of iterations = 1.0 total cpu time spent up to now is 18.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.1443 ( 531 PWs) bands (ev): -7.0816 1.8395 5.6595 5.6595 6.5967 10.0832 10.6158 10.6158 14.5427 k =-0.1403-0.2430 0.2406 ( 522 PWs) bands (ev): -6.0545 -0.8132 4.0604 5.7559 8.0944 8.3642 9.0543 11.9636 13.9825 k = 0.2806 0.4859-0.0481 ( 520 PWs) bands (ev): -4.5266 -3.1602 4.6560 4.8211 6.2812 9.3930 9.6803 10.5097 15.7463 k = 0.1403 0.2430 0.0481 ( 525 PWs) bands (ev): -6.5055 0.2366 4.7838 5.3817 6.7832 9.4736 10.3294 11.5311 13.5069 k =-0.2806 0.0000 0.3368 ( 519 PWs) bands (ev): -5.6743 -0.5692 3.0274 4.0800 5.3533 10.2715 12.0170 12.1058 13.7781 k = 0.1403 0.7289 0.0481 ( 510 PWs) bands (ev): -4.0859 -2.5271 1.8972 2.9056 6.2552 9.9560 12.5652 13.8171 14.0939 k = 0.0000 0.4859 0.1443 ( 521 PWs) bands (ev): -4.9602 -2.1468 2.8713 4.8179 6.2030 9.4611 11.2417 12.2778 13.7683 k = 0.5611 0.0000-0.2406 ( 510 PWs) bands (ev): -4.4194 -1.8379 1.8856 3.5487 4.1828 9.8806 13.0425 14.3464 15.0314 k = 0.4208-0.2430-0.1443 ( 521 PWs) bands (ev): -4.9602 -2.1468 2.8713 4.8179 6.2030 9.4611 11.2417 12.2778 13.7682 k = 0.2806 0.0000-0.0481 ( 525 PWs) bands (ev): -6.5055 0.2366 4.7838 5.3817 6.7832 9.4736 10.3294 11.5311 13.5069 k = 0.2806 0.0000 0.2406 ( 522 PWs) bands (ev): -6.0545 -0.8132 4.0604 5.7558 8.0943 8.3642 9.0543 11.9636 13.9825 k = 0.1403-0.2430 0.3368 ( 519 PWs) bands (ev): -5.6743 -0.5692 3.0274 4.0800 5.3533 10.2715 12.0170 12.1058 13.7781 k = 0.5611 0.4859 0.0481 ( 510 PWs) bands (ev): -4.0859 -2.5271 1.8972 2.9056 6.2552 9.9560 12.5652 13.8171 14.0939 k = 0.4208 0.2430 0.1443 ( 521 PWs) bands (ev): -4.9602 -2.1468 2.8713 4.8179 6.2030 9.4611 11.2417 12.2778 13.7682 k = 0.0000 0.0000 0.4330 ( 522 PWs) bands (ev): -5.8557 -1.5195 5.8399 5.8399 7.0558 8.5121 8.5121 9.6392 15.8000 k = 0.4208 0.7289 0.1443 ( 520 PWs) bands (ev): -4.8293 -2.0521 2.1618 4.6767 5.9647 10.0864 10.4506 13.2649 15.2923 k = 0.2806 0.4859 0.2406 ( 510 PWs) bands (ev): -4.4194 -1.8379 1.8856 3.5487 4.1828 9.8806 13.0425 14.3464 15.0314 k = 0.8417 0.0000-0.1443 ( 520 PWs) bands (ev): -4.8293 -2.0521 2.1618 4.6766 5.9647 10.0864 10.4506 13.2649 15.2923 k = 0.7014-0.2430-0.0481 ( 510 PWs) bands (ev): -4.0859 -2.5271 1.8972 2.9056 6.2552 9.9560 12.5652 13.8171 14.0939 k = 0.5611 0.0000 0.0481 ( 520 PWs) bands (ev): -4.5266 -3.1602 4.6560 4.8211 6.2811 9.3930 9.6803 10.5097 15.7463 the Fermi energy is 8.1516 ev ! total energy = -25.49948180 Ry Harris-Foulkes estimate = -25.49948180 Ry estimated scf accuracy < 8.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.92562926 Ry hartree contribution = 1.17936343 Ry xc contribution = -6.31735336 Ry ewald contribution = -27.28714849 Ry smearing contrib. (-TS) = 0.00002736 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000005 0.00000000 0.00131752 atom 2 type 1 force = -0.00000005 0.00000000 -0.00131752 Total force = 0.001863 Total SCF correction = 0.000008 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.99 -0.00000482 0.00000000 0.00000000 -0.71 0.00 0.00 0.00000000 -0.00000481 0.00000000 0.00 -0.71 0.00 0.00000000 0.00000000 0.00002988 0.00 0.00 4.40 number of scf cycles = 7 number of bfgs steps = 6 enthalpy old = -25.4994531908 Ry enthalpy new = -25.4994817987 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0067682406 bohr new conv_thr = 0.0000000286 Ry CELL_PARAMETERS (alat) 0.593745507 0.000000000 0.867754769 -0.296872752 0.514199269 0.867754890 -0.296872752 -0.514199269 0.867754890 ATOMIC_POSITIONS (crystal) As 0.271815057 0.271814967 0.271814967 As -0.271815057 -0.271814967 -0.271814967 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1440499), wk = 0.0625000 k( 2) = ( -0.1403519 -0.2430964 0.2400832), wk = 0.1250000 k( 3) = ( 0.2807039 0.4861928 -0.0480166), wk = 0.1250000 k( 4) = ( 0.1403519 0.2430964 0.0480166), wk = 0.1250000 k( 5) = ( -0.2807038 0.0000000 0.3361164), wk = 0.0625000 k( 6) = ( 0.1403519 0.7292893 0.0480166), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861928 0.1440499), wk = 0.1250000 k( 8) = ( 0.5614077 0.0000000 -0.2400832), wk = 0.0625000 k( 9) = ( 0.4210558 -0.2430964 -0.1440499), wk = 0.1250000 k( 10) = ( 0.2807039 0.0000000 -0.0480166), wk = 0.0625000 k( 11) = ( 0.2807039 0.0000000 0.2400832), wk = 0.0625000 k( 12) = ( 0.1403520 -0.2430964 0.3361164), wk = 0.1250000 k( 13) = ( 0.5614078 0.4861928 0.0480166), wk = 0.1250000 k( 14) = ( 0.4210558 0.2430964 0.1440499), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4321497), wk = 0.0625000 k( 16) = ( 0.4210558 0.7292893 0.1440499), wk = 0.1250000 k( 17) = ( 0.2807039 0.4861928 0.2400832), wk = 0.1250000 k( 18) = ( 0.8421116 0.0000000 -0.1440499), wk = 0.0625000 k( 19) = ( 0.7017597 -0.2430964 -0.0480166), wk = 0.1250000 k( 20) = ( 0.5614078 0.0000000 0.0480166), wk = 0.0625000 extrapolated charge 10.00896, renormalised to 10.00000 total cpu time spent up to now is 19.02 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.70E-09, avg # of iterations = 2.4 total cpu time spent up to now is 19.78 secs total energy = -25.49949591 Ry Harris-Foulkes estimate = -25.50475957 Ry estimated scf accuracy < 0.00000023 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-09, avg # of iterations = 3.0 total cpu time spent up to now is 20.23 secs total energy = -25.49949641 Ry Harris-Foulkes estimate = -25.49949653 Ry estimated scf accuracy < 0.00000033 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-09, avg # of iterations = 1.0 total cpu time spent up to now is 20.53 secs total energy = -25.49949639 Ry Harris-Foulkes estimate = -25.49949643 Ry estimated scf accuracy < 0.00000009 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.76E-10, avg # of iterations = 1.1 total cpu time spent up to now is 20.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.1440 ( 531 PWs) bands (ev): -7.0890 1.8180 5.6587 5.6587 6.5769 10.0681 10.6037 10.6037 14.5439 k =-0.1404-0.2431 0.2401 ( 522 PWs) bands (ev): -6.0630 -0.8207 4.0394 5.7459 8.0910 8.3509 9.0529 11.9419 13.9779 k = 0.2807 0.4862-0.0480 ( 520 PWs) bands (ev): -4.5333 -3.1665 4.6340 4.8132 6.2738 9.3767 9.6718 10.4746 15.7078 k = 0.1404 0.2431 0.0480 ( 525 PWs) bands (ev): -6.5114 0.2275 4.7814 5.3613 6.7617 9.4549 10.3123 11.5133 13.4935 k =-0.2807 0.0000 0.3361 ( 519 PWs) bands (ev): -5.6853 -0.5834 3.0167 4.0821 5.3476 10.2644 12.0100 12.0967 13.7751 k = 0.1404 0.7293 0.0480 ( 510 PWs) bands (ev): -4.0978 -2.5332 1.8931 2.8930 6.2409 9.9513 12.5592 13.7950 14.0734 k = 0.0000 0.4862 0.1440 ( 521 PWs) bands (ev): -4.9663 -2.1542 2.8619 4.8089 6.1765 9.4411 11.2264 12.2659 13.7567 k = 0.5614 0.0000-0.2401 ( 510 PWs) bands (ev): -4.4282 -1.8509 1.8793 3.5496 4.1697 9.8650 13.0223 14.3323 15.0045 k = 0.4211-0.2431-0.1440 ( 521 PWs) bands (ev): -4.9663 -2.1542 2.8619 4.8089 6.1765 9.4411 11.2264 12.2659 13.7567 k = 0.2807 0.0000-0.0480 ( 525 PWs) bands (ev): -6.5114 0.2275 4.7814 5.3613 6.7617 9.4549 10.3123 11.5133 13.4935 k = 0.2807 0.0000 0.2401 ( 522 PWs) bands (ev): -6.0630 -0.8207 4.0394 5.7459 8.0910 8.3509 9.0529 11.9419 13.9779 k = 0.1404-0.2431 0.3361 ( 519 PWs) bands (ev): -5.6853 -0.5834 3.0167 4.0822 5.3476 10.2644 12.0100 12.0967 13.7751 k = 0.5614 0.4862 0.0480 ( 510 PWs) bands (ev): -4.0979 -2.5332 1.8931 2.8930 6.2409 9.9513 12.5592 13.7950 14.0734 k = 0.4211 0.2431 0.1440 ( 521 PWs) bands (ev): -4.9663 -2.1542 2.8619 4.8089 6.1765 9.4411 11.2263 12.2659 13.7567 k = 0.0000 0.0000 0.4321 ( 522 PWs) bands (ev): -5.8711 -1.5343 5.8394 5.8394 7.0596 8.5140 8.5140 9.6400 15.7804 k = 0.4211 0.7293 0.1440 ( 520 PWs) bands (ev): -4.8471 -2.0602 2.1575 4.6755 5.9652 10.0848 10.4467 13.2562 15.2749 k = 0.2807 0.4862 0.2401 ( 510 PWs) bands (ev): -4.4282 -1.8509 1.8793 3.5496 4.1697 9.8650 13.0223 14.3324 15.0045 k = 0.8421 0.0000-0.1440 ( 520 PWs) bands (ev): -4.8471 -2.0601 2.1575 4.6755 5.9652 10.0848 10.4467 13.2562 15.2749 k = 0.7018-0.2431-0.0480 ( 510 PWs) bands (ev): -4.0979 -2.5332 1.8931 2.8930 6.2409 9.9513 12.5592 13.7949 14.0734 k = 0.5614 0.0000 0.0480 ( 520 PWs) bands (ev): -4.5333 -3.1664 4.6340 4.8132 6.2738 9.3767 9.6718 10.4746 15.7078 the Fermi energy is 8.2936 ev ! total energy = -25.49949639 Ry Harris-Foulkes estimate = -25.49949639 Ry estimated scf accuracy < 4.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.91082761 Ry hartree contribution = 1.18278603 Ry xc contribution = -6.31667870 Ry ewald contribution = -27.27645893 Ry smearing contrib. (-TS) = 0.00002761 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000010 0.00000000 0.00149899 atom 2 type 1 force = 0.00000010 0.00000000 -0.00149899 Total force = 0.002120 Total SCF correction = 0.000053 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.67 -0.00000169 0.00000000 0.00000000 -0.25 0.00 0.00 0.00000000 -0.00000169 0.00000000 0.00 -0.25 0.00 0.00000000 0.00000000 0.00001704 0.00 0.00 2.51 number of scf cycles = 8 number of bfgs steps = 7 enthalpy old = -25.4994817987 Ry enthalpy new = -25.4994963920 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0074329186 bohr new conv_thr = 0.0000000146 Ry CELL_PARAMETERS (alat) 0.593581549 0.000000000 0.869490284 -0.296790765 0.514057193 0.869490399 -0.296790765 -0.514057193 0.869490399 ATOMIC_POSITIONS (crystal) As 0.271958575 0.271958501 0.271958501 As -0.271958575 -0.271958501 -0.271958501 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1437624), wk = 0.0625000 k( 2) = ( -0.1403907 -0.2431636 0.2396040), wk = 0.1250000 k( 3) = ( 0.2807814 0.4863272 -0.0479208), wk = 0.1250000 k( 4) = ( 0.1403907 0.2431636 0.0479208), wk = 0.1250000 k( 5) = ( -0.2807814 0.0000000 0.3354455), wk = 0.0625000 k( 6) = ( 0.1403907 0.7294908 0.0479208), wk = 0.1250000 k( 7) = ( 0.0000000 0.4863272 0.1437624), wk = 0.1250000 k( 8) = ( 0.5615628 0.0000000 -0.2396040), wk = 0.0625000 k( 9) = ( 0.4211721 -0.2431636 -0.1437624), wk = 0.1250000 k( 10) = ( 0.2807814 0.0000000 -0.0479208), wk = 0.0625000 k( 11) = ( 0.2807814 0.0000000 0.2396040), wk = 0.0625000 k( 12) = ( 0.1403908 -0.2431636 0.3354455), wk = 0.1250000 k( 13) = ( 0.5615628 0.4863272 0.0479208), wk = 0.1250000 k( 14) = ( 0.4211721 0.2431636 0.1437624), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4312871), wk = 0.0625000 k( 16) = ( 0.4211721 0.7294908 0.1437624), wk = 0.1250000 k( 17) = ( 0.2807814 0.4863272 0.2396040), wk = 0.1250000 k( 18) = ( 0.8423442 0.0000000 -0.1437624), wk = 0.0625000 k( 19) = ( 0.7019535 -0.2431636 -0.0479208), wk = 0.1250000 k( 20) = ( 0.5615628 0.0000000 0.0479208), wk = 0.0625000 extrapolated charge 10.01444, renormalised to 10.00000 total cpu time spent up to now is 21.12 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.39E-09, avg # of iterations = 1.8 total cpu time spent up to now is 21.86 secs total energy = -25.49950783 Ry Harris-Foulkes estimate = -25.50797575 Ry estimated scf accuracy < 0.00000083 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-09, avg # of iterations = 3.0 total cpu time spent up to now is 22.29 secs total energy = -25.49950933 Ry Harris-Foulkes estimate = -25.49950973 Ry estimated scf accuracy < 0.00000104 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-09, avg # of iterations = 1.0 total cpu time spent up to now is 22.59 secs total energy = -25.49950928 Ry Harris-Foulkes estimate = -25.49950939 Ry estimated scf accuracy < 0.00000023 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-09, avg # of iterations = 1.4 total cpu time spent up to now is 22.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.1438 ( 531 PWs) bands (ev): -7.1017 1.7916 5.6459 5.6459 6.5527 10.0357 10.5815 10.5815 14.5404 k =-0.1404-0.2432 0.2396 ( 522 PWs) bands (ev): -6.0779 -0.8342 4.0138 5.7202 8.0775 8.3300 9.0525 11.9136 13.9616 k = 0.2808 0.4863-0.0479 ( 520 PWs) bands (ev): -4.5483 -3.1784 4.6081 4.7922 6.2605 9.3494 9.6642 10.4398 15.6672 k = 0.1404 0.2432 0.0479 ( 525 PWs) bands (ev): -6.5231 0.2089 4.7677 5.3372 6.7330 9.4357 10.2795 11.4910 13.4782 k =-0.2808 0.0000 0.3354 ( 519 PWs) bands (ev): -5.7035 -0.6017 2.9965 4.0743 5.3425 10.2407 11.9909 12.0779 13.7711 k = 0.1404 0.7295 0.0479 ( 510 PWs) bands (ev): -4.1190 -2.5461 1.8839 2.8777 6.2212 9.9394 12.5402 13.7614 14.0487 k = 0.0000 0.4863 0.1438 ( 521 PWs) bands (ev): -4.9794 -2.1700 2.8436 4.7989 6.1426 9.4223 11.2028 12.2406 13.7380 k = 0.5616 0.0000-0.2396 ( 510 PWs) bands (ev): -4.4447 -1.8744 1.8738 3.5408 4.1556 9.8354 12.9966 14.3184 14.9702 k = 0.4212-0.2432-0.1438 ( 521 PWs) bands (ev): -4.9793 -2.1700 2.8436 4.7989 6.1426 9.4223 11.2028 12.2406 13.7380 k = 0.2808 0.0000-0.0479 ( 525 PWs) bands (ev): -6.5231 0.2089 4.7677 5.3372 6.7330 9.4357 10.2795 11.4910 13.4782 k = 0.2808 0.0000 0.2396 ( 522 PWs) bands (ev): -6.0779 -0.8342 4.0137 5.7202 8.0775 8.3300 9.0525 11.9136 13.9616 k = 0.1404-0.2432 0.3354 ( 519 PWs) bands (ev): -5.7035 -0.6017 2.9965 4.0743 5.3425 10.2407 11.9909 12.0779 13.7711 k = 0.5616 0.4863 0.0479 ( 510 PWs) bands (ev): -4.1190 -2.5461 1.8839 2.8777 6.2212 9.9394 12.5402 13.7614 14.0487 k = 0.4212 0.2432 0.1438 ( 521 PWs) bands (ev): -4.9793 -2.1700 2.8436 4.7989 6.1426 9.4223 11.2028 12.2406 13.7380 k = 0.0000 0.0000 0.4313 ( 522 PWs) bands (ev): -5.8949 -1.5464 5.8250 5.8250 7.0460 8.5107 8.5107 9.6345 15.7514 k = 0.4212 0.7295 0.1438 ( 520 PWs) bands (ev): -4.8755 -2.0667 2.1455 4.6628 5.9607 10.0775 10.4276 13.2328 15.2539 k = 0.2808 0.4863 0.2396 ( 510 PWs) bands (ev): -4.4447 -1.8744 1.8738 3.5408 4.1556 9.8354 12.9966 14.3184 14.9702 k = 0.8423 0.0000-0.1438 ( 520 PWs) bands (ev): -4.8755 -2.0667 2.1455 4.6628 5.9607 10.0775 10.4276 13.2328 15.2540 k = 0.7020-0.2432-0.0479 ( 510 PWs) bands (ev): -4.1190 -2.5461 1.8839 2.8777 6.2212 9.9394 12.5402 13.7614 14.0487 k = 0.5616 0.0000 0.0479 ( 520 PWs) bands (ev): -4.5483 -3.1784 4.6081 4.7922 6.2605 9.3494 9.6642 10.4398 15.6672 the Fermi energy is 8.2727 ev ! total energy = -25.49950930 Ry Harris-Foulkes estimate = -25.49950930 Ry estimated scf accuracy < 9.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.88576031 Ry hartree contribution = 1.18869511 Ry xc contribution = -6.31571244 Ry ewald contribution = -27.25828015 Ry smearing contrib. (-TS) = 0.00002788 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000008 0.00000000 0.00111996 atom 2 type 1 force = 0.00000008 0.00000000 -0.00111996 Total force = 0.001584 Total SCF correction = 0.000077 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.38 0.00000056 0.00000000 0.00000000 0.08 0.00 0.00 0.00000000 0.00000055 0.00000000 0.00 0.08 0.00 0.00000000 0.00000000 0.00000665 0.00 0.00 0.98 number of scf cycles = 9 number of bfgs steps = 8 enthalpy old = -25.4994963920 Ry enthalpy new = -25.4995092972 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0081685310 bohr new conv_thr = 0.0000000129 Ry CELL_PARAMETERS (alat) 0.593590322 0.000000000 0.871049361 -0.296795146 0.514064675 0.871049471 -0.296795146 -0.514064675 0.871049471 ATOMIC_POSITIONS (crystal) As 0.272185912 0.272185864 0.272185864 As -0.272185912 -0.272185864 -0.272185864 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1435051), wk = 0.0625000 k( 2) = ( -0.1403886 -0.2431601 0.2391751), wk = 0.1250000 k( 3) = ( 0.2807773 0.4863201 -0.0478350), wk = 0.1250000 k( 4) = ( 0.1403886 0.2431601 0.0478350), wk = 0.1250000 k( 5) = ( -0.2807772 0.0000000 0.3348451), wk = 0.0625000 k( 6) = ( 0.1403886 0.7294802 0.0478350), wk = 0.1250000 k( 7) = ( 0.0000000 0.4863201 0.1435051), wk = 0.1250000 k( 8) = ( 0.5615545 0.0000000 -0.2391751), wk = 0.0625000 k( 9) = ( 0.4211659 -0.2431601 -0.1435051), wk = 0.1250000 k( 10) = ( 0.2807773 0.0000000 -0.0478350), wk = 0.0625000 k( 11) = ( 0.2807773 0.0000000 0.2391751), wk = 0.0625000 k( 12) = ( 0.1403887 -0.2431601 0.3348451), wk = 0.1250000 k( 13) = ( 0.5615545 0.4863201 0.0478350), wk = 0.1250000 k( 14) = ( 0.4211659 0.2431601 0.1435051), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4305152), wk = 0.0625000 k( 16) = ( 0.4211659 0.7294802 0.1435051), wk = 0.1250000 k( 17) = ( 0.2807773 0.4863201 0.2391751), wk = 0.1250000 k( 18) = ( 0.8423318 0.0000000 -0.1435051), wk = 0.0625000 k( 19) = ( 0.7019432 -0.2431601 -0.0478350), wk = 0.1250000 k( 20) = ( 0.5615545 0.0000000 0.0478350), wk = 0.0625000 extrapolated charge 10.01819, renormalised to 10.00000 total cpu time spent up to now is 23.19 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 1.4 total cpu time spent up to now is 23.92 secs total energy = -25.49951344 Ry Harris-Foulkes estimate = -25.51014945 Ry estimated scf accuracy < 0.00000155 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 3.0 total cpu time spent up to now is 24.35 secs total energy = -25.49951599 Ry Harris-Foulkes estimate = -25.49951668 Ry estimated scf accuracy < 0.00000177 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 24.66 secs total energy = -25.49951593 Ry Harris-Foulkes estimate = -25.49951609 Ry estimated scf accuracy < 0.00000035 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-09, avg # of iterations = 1.4 total cpu time spent up to now is 25.00 secs total energy = -25.49951595 Ry Harris-Foulkes estimate = -25.49951596 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 25.44 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1174 1.7632 5.6239 5.6239 6.5270 9.9916 10.5525 10.5525 14.5321 k =-0.1404-0.2432 0.2392 ( 522 PWs) bands (ev): -6.0965 -0.8520 3.9868 5.6841 8.0561 8.3044 9.0517 11.8821 13.9363 k = 0.2808 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5686 -3.1941 4.5814 4.7622 6.2431 9.3150 9.6571 10.4085 15.6287 k = 0.1404 0.2432 0.0478 ( 525 PWs) bands (ev): -6.5381 0.1839 4.7456 5.3122 6.7011 9.4172 10.2367 11.4666 13.4620 k =-0.2808 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7256 -0.6220 2.9706 4.0585 5.3375 10.2052 11.9629 12.0519 13.7653 k = 0.1404 0.7295 0.0478 ( 510 PWs) bands (ev): -4.1455 -2.5637 1.8711 2.8615 6.1984 9.9218 12.5115 13.7212 14.0221 k = 0.0000 0.4863 0.1435 ( 521 PWs) bands (ev): -4.9968 -2.1914 2.8195 4.7885 6.1059 9.4058 11.1741 12.2059 13.7144 k = 0.5616 0.0000-0.2392 ( 510 PWs) bands (ev): -4.4661 -1.9043 1.8690 3.5245 4.1417 9.7971 12.9684 14.3048 14.9326 k = 0.4212-0.2432-0.1435 ( 521 PWs) bands (ev): -4.9968 -2.1914 2.8195 4.7885 6.1059 9.4058 11.1741 12.2059 13.7144 k = 0.2808 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5381 0.1839 4.7456 5.3122 6.7011 9.4172 10.2367 11.4666 13.4620 k = 0.2808 0.0000 0.2392 ( 522 PWs) bands (ev): -6.0965 -0.8520 3.9868 5.6841 8.0561 8.3044 9.0517 11.8821 13.9363 k = 0.1404-0.2432 0.3348 ( 519 PWs) bands (ev): -5.7256 -0.6220 2.9706 4.0585 5.3375 10.2052 11.9629 12.0519 13.7653 k = 0.5616 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1455 -2.5637 1.8711 2.8615 6.1984 9.9218 12.5115 13.7212 14.0221 k = 0.4212 0.2432 0.1435 ( 521 PWs) bands (ev): -4.9968 -2.1914 2.8195 4.7885 6.1059 9.4058 11.1741 12.2059 13.7144 k = 0.0000 0.0000 0.4305 ( 522 PWs) bands (ev): -5.9228 -1.5555 5.8001 5.8001 7.0182 8.5024 8.5024 9.6230 15.7169 k = 0.4212 0.7295 0.1435 ( 520 PWs) bands (ev): -4.9095 -2.0719 2.1280 4.6416 5.9516 10.0653 10.3968 13.1985 15.2314 k = 0.2808 0.4863 0.2392 ( 510 PWs) bands (ev): -4.4661 -1.9043 1.8690 3.5245 4.1417 9.7971 12.9684 14.3048 14.9326 k = 0.8423 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9095 -2.0719 2.1280 4.6416 5.9515 10.0653 10.3968 13.1985 15.2314 k = 0.7019-0.2432-0.0478 ( 510 PWs) bands (ev): -4.1455 -2.5637 1.8711 2.8615 6.1984 9.9218 12.5115 13.7212 14.0221 k = 0.5616 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5686 -3.1941 4.5814 4.7622 6.2431 9.3150 9.6571 10.4085 15.6287 the Fermi energy is 8.2470 ev ! total energy = -25.49951596 Ry Harris-Foulkes estimate = -25.49951596 Ry estimated scf accuracy < 2.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.85408479 Ry hartree contribution = 1.19601663 Ry xc contribution = -6.31447050 Ry ewald contribution = -27.23517501 Ry smearing contrib. (-TS) = 0.00002813 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000006 0.00000000 0.00029788 atom 2 type 1 force = 0.00000006 0.00000000 -0.00029788 Total force = 0.000421 Total SCF correction = 0.000043 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.07 0.00000045 0.00000000 0.00000000 0.07 0.00 0.00 0.00000000 0.00000045 0.00000000 0.00 0.07 0.00 0.00000000 0.00000000 -0.00000234 0.00 0.00 -0.34 number of scf cycles = 10 number of bfgs steps = 9 enthalpy old = -25.4995092972 Ry enthalpy new = -25.4995159573 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0013570163 bohr new conv_thr = 0.0000000100 Ry CELL_PARAMETERS (alat) 0.593650311 0.000000000 0.870999790 -0.296825151 0.514116577 0.870999909 -0.296825151 -0.514116577 0.870999909 ATOMIC_POSITIONS (crystal) As 0.272234803 0.272234771 0.272234771 As -0.272234803 -0.272234771 -0.272234771 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1435132), wk = 0.0625000 k( 2) = ( -0.1403744 -0.2431355 0.2391887), wk = 0.1250000 k( 3) = ( 0.2807489 0.4862710 -0.0478377), wk = 0.1250000 k( 4) = ( 0.1403745 0.2431355 0.0478377), wk = 0.1250000 k( 5) = ( -0.2807488 0.0000000 0.3348642), wk = 0.0625000 k( 6) = ( 0.1403745 0.7294066 0.0478377), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862710 0.1435132), wk = 0.1250000 k( 8) = ( 0.5614978 0.0000000 -0.2391887), wk = 0.0625000 k( 9) = ( 0.4211233 -0.2431355 -0.1435132), wk = 0.1250000 k( 10) = ( 0.2807489 0.0000000 -0.0478377), wk = 0.0625000 k( 11) = ( 0.2807489 0.0000000 0.2391887), wk = 0.0625000 k( 12) = ( 0.1403745 -0.2431355 0.3348642), wk = 0.1250000 k( 13) = ( 0.5614978 0.4862710 0.0478377), wk = 0.1250000 k( 14) = ( 0.4211234 0.2431355 0.1435132), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4305397), wk = 0.0625000 k( 16) = ( 0.4211234 0.7294066 0.1435132), wk = 0.1250000 k( 17) = ( 0.2807489 0.4862710 0.2391887), wk = 0.1250000 k( 18) = ( 0.8422467 0.0000000 -0.1435132), wk = 0.0625000 k( 19) = ( 0.7018722 -0.2431355 -0.0478377), wk = 0.1250000 k( 20) = ( 0.5614978 0.0000000 0.0478377), wk = 0.0625000 extrapolated charge 10.00145, renormalised to 10.00000 total cpu time spent up to now is 25.72 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.84E-10, avg # of iterations = 4.0 total cpu time spent up to now is 26.52 secs total energy = -25.49951631 Ry Harris-Foulkes estimate = -25.50036413 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-10, avg # of iterations = 2.3 total cpu time spent up to now is 26.93 secs total energy = -25.49951632 Ry Harris-Foulkes estimate = -25.49951633 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-10, avg # of iterations = 1.0 total cpu time spent up to now is 27.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1193 1.7626 5.6196 5.6196 6.5265 9.9857 10.5494 10.5494 14.5309 k =-0.1404-0.2431 0.2392 ( 522 PWs) bands (ev): -6.0987 -0.8537 3.9858 5.6785 8.0528 8.3026 9.0528 11.8808 13.9323 k = 0.2807 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5715 -3.1959 4.5808 4.7575 6.2416 9.3116 9.6584 10.4102 15.6295 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5401 0.1810 4.7415 5.3117 6.6994 9.4183 10.2313 11.4660 13.4623 k =-0.2807 0.0000 0.3349 ( 519 PWs) bands (ev): -5.7281 -0.6227 2.9674 4.0548 5.3385 10.1992 11.9592 12.0490 13.7660 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1486 -2.5659 1.8695 2.8611 6.1972 9.9199 12.5071 13.7180 14.0218 k = 0.0000 0.4863 0.1435 ( 521 PWs) bands (ev): -4.9992 -2.1942 2.8163 4.7888 6.1041 9.4075 11.1721 12.2015 13.7125 k = 0.5615 0.0000-0.2392 ( 510 PWs) bands (ev): -4.4687 -1.9078 1.8699 3.5209 4.1421 9.7923 12.9676 14.3062 14.9315 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -4.9992 -2.1942 2.8163 4.7888 6.1041 9.4075 11.1721 12.2015 13.7125 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5401 0.1810 4.7415 5.3117 6.6994 9.4183 10.2312 11.4660 13.4623 k = 0.2807 0.0000 0.2392 ( 522 PWs) bands (ev): -6.0987 -0.8537 3.9858 5.6785 8.0528 8.3026 9.0528 11.8808 13.9323 k = 0.1404-0.2431 0.3349 ( 519 PWs) bands (ev): -5.7281 -0.6227 2.9674 4.0548 5.3385 10.1992 11.9592 12.0490 13.7660 k = 0.5615 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1486 -2.5659 1.8695 2.8611 6.1972 9.9199 12.5071 13.7180 14.0218 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -4.9992 -2.1942 2.8163 4.7888 6.1041 9.4075 11.1721 12.2015 13.7125 k = 0.0000 0.0000 0.4305 ( 522 PWs) bands (ev): -5.9257 -1.5536 5.7949 5.7949 7.0118 8.5009 8.5009 9.6215 15.7144 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9132 -2.0706 2.1253 4.6374 5.9502 10.0639 10.3918 13.1937 15.2311 k = 0.2807 0.4863 0.2392 ( 510 PWs) bands (ev): -4.4687 -1.9078 1.8699 3.5209 4.1421 9.7923 12.9676 14.3062 14.9315 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9132 -2.0706 2.1253 4.6374 5.9502 10.0639 10.3918 13.1937 15.2311 k = 0.7019-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1486 -2.5659 1.8695 2.8611 6.1972 9.9199 12.5071 13.7180 14.0218 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5715 -3.1959 4.5808 4.7575 6.2415 9.3116 9.6583 10.4102 15.6295 the Fermi energy is 8.2452 ev ! total energy = -25.49951632 Ry Harris-Foulkes estimate = -25.49951633 Ry estimated scf accuracy < 2.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.85089395 Ry hartree contribution = 1.19690446 Ry xc contribution = -6.31445103 Ry ewald contribution = -27.23289173 Ry smearing contrib. (-TS) = 0.00002803 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000005 0.00000000 0.00005459 atom 2 type 1 force = 0.00000005 0.00000000 -0.00005459 Total force = 0.000077 Total SCF correction = 0.000033 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.05 0.00000060 0.00000000 0.00000000 0.09 0.00 0.00 0.00000000 0.00000060 0.00000000 0.00 0.09 0.00 0.00000000 0.00000000 -0.00000026 0.00 0.00 -0.04 bfgs converged in 11 scf cycles and 10 bfgs steps End of BFGS Geometry Optimization Final enthalpy = -25.4995163242 Ry CELL_PARAMETERS (alat) 0.593650311 0.000000000 0.870999790 -0.296825151 0.514116577 0.870999909 -0.296825151 -0.514116577 0.870999909 ATOMIC_POSITIONS (crystal) As 0.272234803 0.272234771 0.272234771 As -0.272234803 -0.272234771 -0.272234771 Writing output data file pwscf.save PWSCF : 27.42s CPU time, 30.22s wall time init_run : 0.22s CPU electrons : 24.14s CPU ( 11 calls, 2.195 s avg) update_pot : 0.86s CPU ( 10 calls, 0.086 s avg) forces : 0.45s CPU ( 11 calls, 0.041 s avg) stress : 1.13s CPU ( 11 calls, 0.103 s avg) Called by init_run: wfcinit : 0.12s CPU potinit : 0.03s CPU Called by electrons: c_bands : 20.34s CPU ( 62 calls, 0.328 s avg) sum_band : 3.53s CPU ( 62 calls, 0.057 s avg) v_of_rho : 0.14s CPU ( 66 calls, 0.002 s avg) mix_rho : 0.06s CPU ( 62 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.44s CPU ( 2940 calls, 0.000 s avg) cegterg : 19.99s CPU ( 1240 calls, 0.016 s avg) Called by *egterg: h_psi : 16.74s CPU ( 3962 calls, 0.004 s avg) g_psi : 0.37s CPU ( 2702 calls, 0.000 s avg) cdiaghg : 1.01s CPU ( 3602 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.22s CPU ( 3962 calls, 0.000 s avg) General routines calbec : 0.45s CPU ( 4402 calls, 0.000 s avg) cft3 : 0.11s CPU ( 270 calls, 0.000 s avg) cft3s : 16.98s CPU ( 69536 calls, 0.000 s avg) davcio : 0.03s CPU ( 4180 calls, 0.000 s avg) espresso-5.0.2/PW/examples/VCSexample/reference/As.vcs00.out0000644000700200004540000161213112053145630022523 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 1:54 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 55 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 0.08218 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.22 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.02 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.1053 4.3672 5.8103 5.8103 8.3763 10.9345 11.7163 11.7165 16.4778 k =-0.1436-0.2488 0.2558 band energies (ev): -6.0372 0.2617 5.2399 5.5079 9.2633 10.3987 11.6102 13.5119 15.6363 k = 0.2873 0.4976-0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4772 13.7300 17.6631 k = 0.1436 0.2488 0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4284 10.7697 12.3697 13.8790 15.2983 k =-0.2873 0.0000 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6880 16.8165 k = 0.1436 0.7464 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2402 k = 0.0000 0.4976 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.5746 0.0000-0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7916 17.6328 18.3764 k = 0.4309-0.2488-0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9988 13.3681 15.9865 k = 0.2873 0.0000-0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4285 10.7694 12.3698 13.8792 15.2974 k = 0.2873 0.0000 0.2558 band energies (ev): -6.0372 0.2618 5.2399 5.5079 9.2633 10.3987 11.6090 13.5148 15.6552 k = 0.1436-0.2488 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6879 16.8166 k = 0.5746 0.4976 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2400 k = 0.4309 0.2488 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.0000 0.0000 0.4604 band energies (ev): -5.9719 0.7085 5.7288 5.7288 7.3744 10.0048 10.0050 11.9991 17.4416 k = 0.4309 0.7464 0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5757 11.9681 14.4003 17.7560 k = 0.2873 0.4976 0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7915 17.6328 18.3766 k = 0.8619 0.0000-0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5756 11.9686 14.4003 17.7392 k = 0.7182-0.2488-0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5629 13.2833 15.6264 17.2398 k = 0.5746 0.0000 0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4771 13.7300 17.6616 the Fermi energy is 9.6597 ev total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.33 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.0137 4.5096 5.9380 5.9381 8.4241 11.0300 11.7524 11.7528 16.5509 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6223 9.2928 10.5195 11.6919 13.5528 15.7069 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3682 -2.4877 4.7630 6.1415 7.8721 10.8059 12.5735 13.8146 17.7136 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1599 8.5304 10.7972 12.4587 13.9539 15.3382 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5614 1.1092 3.5498 4.2737 7.5078 10.4114 13.6941 13.7628 16.8964 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7309 -1.4913 2.9825 6.6809 7.7627 12.2948 13.0567 13.4189 16.0825 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0732 -1.5260 3.6852 3.7197 6.0134 10.0511 15.9001 17.7087 18.4680 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7308 -1.4913 2.9825 6.6810 7.7627 12.2949 13.0567 13.4189 16.0825 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1600 8.5304 10.7971 12.4587 13.9540 15.3373 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6224 9.2928 10.5195 11.6916 13.5551 15.7227 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5614 1.1093 3.5498 4.2736 7.5078 10.4114 13.6942 13.7628 16.8965 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7308 -1.4913 2.9826 6.6809 7.7627 12.2948 13.0568 13.4188 16.0825 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8778 0.8254 5.8543 5.8544 7.4017 10.0552 10.0553 12.1125 17.4008 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8693 -0.0639 2.4169 4.7578 7.5018 11.6692 12.0524 14.4661 17.7785 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0733 -1.5258 3.6852 3.7196 6.0134 10.0510 15.9001 17.7086 18.4681 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8693 -0.0638 2.4168 4.7579 7.5019 11.6692 12.0526 14.4660 17.7666 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7102 17.3371 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3682 -2.4878 4.7631 6.1415 7.8722 10.8059 12.5735 13.8146 17.7129 the Fermi energy is 9.9953 ev total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.70 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9927 4.5235 5.9705 5.9706 8.4388 11.0429 11.7623 11.7624 16.5663 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9214 0.3953 5.3529 5.6540 9.3021 10.5326 11.7025 13.5665 15.7205 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3451 -2.4672 4.7917 6.1569 7.8811 10.8174 12.5862 13.8272 17.7277 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5451 10.8073 12.4730 13.9643 15.3517 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5389 1.1307 3.5672 4.3006 7.5166 10.4234 13.7111 13.7777 16.9052 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8351 -1.8061 2.3285 4.2477 8.0558 11.6231 13.3241 15.7232 17.3514 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7088 -1.4682 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0501 -1.5020 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4808 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7088 -1.4681 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5452 10.8073 12.4730 13.9646 15.3517 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9214 0.3953 5.3530 5.6539 9.3020 10.5326 11.7023 13.5658 15.7172 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5389 1.1306 3.5672 4.3007 7.5166 10.4235 13.7111 13.7777 16.9053 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8350 -1.8061 2.3285 4.2477 8.0558 11.6232 13.3242 15.7233 17.3514 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7088 -1.4681 3.0037 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8546 0.8376 5.8877 5.8878 7.4151 10.0643 10.0644 12.1201 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5100 11.6863 12.0666 14.4791 17.7694 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0501 -1.5021 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4807 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5099 11.6863 12.0667 14.4792 17.7697 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8351 -1.8060 2.3285 4.2477 8.0558 11.6232 13.3241 15.7235 17.3514 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3452 -2.4671 4.7917 6.1569 7.8810 10.8174 12.5862 13.8273 17.7278 the Fermi energy is 10.0046 ev total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.22 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9952 4.5217 5.9677 5.9678 8.4362 11.0416 11.7604 11.7604 16.5651 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2998 10.5320 11.7016 13.5634 15.7173 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5861 13.8270 17.7266 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9622 15.3512 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7083 13.7754 16.9056 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9621 15.3512 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2997 10.5320 11.7016 13.5634 15.7174 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7082 13.7754 16.9055 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8578 0.8377 5.8849 5.8849 7.4114 10.0632 10.0632 12.1209 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7702 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7703 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7212 17.3501 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5860 13.8271 17.7266 the Fermi energy is 10.0034 ev total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-04 EPSF = 0.10E-03 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.589710814 0.000000000 0.822238879 -0.294855233 0.510704638 0.822238893 -0.294855233 -0.510704638 0.822238893 new unit-cell volume = 255.9438 (a.u.)^3 new positions in cryst coord As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 new positions in cart coord (alat unit) As 0.000000079 0.000000000 0.711366931 As -0.000000079 0.000000000 -0.711366931 Ekin = 0.00000000 Ry T = 0.0 K Etot = -25.44012217 CELL_PARAMETERS (alat) 0.589710814 0.000000000 0.822238879 -0.294855233 0.510704638 0.822238893 -0.294855233 -0.510704638 0.822238893 ATOMIC_POSITIONS (crystal) As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1520239), wk = 0.0625000 k( 2) = ( -0.1413122 -0.2447599 0.2533733), wk = 0.1250000 k( 3) = ( 0.2826245 0.4895197 -0.0506747), wk = 0.1250000 k( 4) = ( 0.1413122 0.2447599 0.0506746), wk = 0.1250000 k( 5) = ( -0.2826245 0.0000000 0.3547226), wk = 0.0625000 k( 6) = ( 0.1413122 0.7342796 0.0506746), wk = 0.1250000 k( 7) = ( 0.0000000 0.4895197 0.1520239), wk = 0.1250000 k( 8) = ( 0.5652489 0.0000000 -0.2533733), wk = 0.0625000 k( 9) = ( 0.4239367 -0.2447599 -0.1520240), wk = 0.1250000 k( 10) = ( 0.2826245 0.0000000 -0.0506747), wk = 0.0625000 k( 11) = ( 0.2826245 0.0000000 0.2533732), wk = 0.0625000 k( 12) = ( 0.1413122 -0.2447599 0.3547225), wk = 0.1250000 k( 13) = ( 0.5652489 0.4895197 0.0506746), wk = 0.1250000 k( 14) = ( 0.4239367 0.2447599 0.1520239), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4560718), wk = 0.0625000 k( 16) = ( 0.4239367 0.7342796 0.1520239), wk = 0.1250000 k( 17) = ( 0.2826245 0.4895197 0.2533732), wk = 0.1250000 k( 18) = ( 0.8478734 0.0000000 -0.1520241), wk = 0.0625000 k( 19) = ( 0.7065611 -0.2447599 -0.0506747), wk = 0.1250000 k( 20) = ( 0.5652489 0.0000000 0.0506746), wk = 0.0625000 extrapolated charge 10.41310, renormalised to 10.00000 total cpu time spent up to now is 2.84 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 total cpu time spent up to now is 3.50 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1074 3.7290 5.6123 5.6123 7.8024 10.3848 11.1709 11.1709 15.7010 k =-0.1413-0.2448 0.2534 band energies (ev): -6.0616 -0.0513 4.9040 5.3703 8.6078 9.7382 10.8932 12.8693 14.9058 k = 0.2826 0.4895-0.0507 band energies (ev): -4.5429 -2.7625 4.5170 5.6485 7.2005 10.1476 11.7431 12.9851 16.9590 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5079 0.8623 4.6665 6.5580 7.9221 10.2873 11.5764 13.1929 14.6512 k =-0.2826 0.0000 0.3547 band energies (ev): -5.6784 0.6199 3.1807 3.9660 6.8314 9.8695 12.8906 13.0616 15.8797 k = 0.1413 0.7343 0.0507 band energies (ev): -4.0322 -2.1313 2.0215 3.7617 7.4206 10.8688 12.6735 14.9544 16.3809 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9043 -1.7968 2.7384 6.0653 7.2303 11.4931 12.3021 12.7664 15.2355 k = 0.5652 0.0000-0.2534 band energies (ev): -4.2696 -1.7523 3.1341 3.4018 5.4251 9.5831 15.0253 16.7250 17.3694 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9043 -1.7968 2.7384 6.0653 7.2303 11.4931 12.3021 12.7664 15.2354 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5079 0.8623 4.6665 6.5580 7.9221 10.2873 11.5764 13.1929 14.6512 k = 0.2826 0.0000 0.2534 band energies (ev): -6.0616 -0.0513 4.9040 5.3703 8.6078 9.7382 10.8932 12.8693 14.9058 k = 0.1413-0.2448 0.3547 band energies (ev): -5.6784 0.6199 3.1807 3.9660 6.8314 9.8695 12.8906 13.0616 15.8797 k = 0.5652 0.4895 0.0507 band energies (ev): -4.0322 -2.1313 2.0215 3.7617 7.4206 10.8688 12.6735 14.9544 16.3809 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9043 -1.7968 2.7384 6.0653 7.2303 11.4931 12.3021 12.7664 15.2354 k = 0.0000 0.0000 0.4561 band energies (ev): -5.9543 0.2669 5.5496 5.5496 6.7375 9.4075 9.4075 11.1725 16.5449 k = 0.4239 0.7343 0.1520 band energies (ev): -4.9662 -0.5764 2.1104 4.4677 6.8257 10.9280 11.3177 13.7715 16.8231 k = 0.2826 0.4895 0.2534 band energies (ev): -4.2696 -1.7523 3.1341 3.4018 5.4251 9.5831 15.0253 16.7250 17.3694 k = 0.8479 0.0000-0.1520 band energies (ev): -4.9662 -0.5763 2.1104 4.4676 6.8257 10.9280 11.3177 13.7715 16.8231 k = 0.7066-0.2448-0.0507 band energies (ev): -4.0322 -2.1313 2.0215 3.7617 7.4206 10.8688 12.6735 14.9544 16.3809 k = 0.5652 0.0000 0.0507 band energies (ev): -4.5429 -2.7625 4.5170 5.6485 7.2005 10.1476 11.7431 12.9851 16.9591 the Fermi energy is 8.9980 ev total energy = -25.45860839 Ry Harris-Foulkes estimate = -25.70449290 Ry estimated scf accuracy < 0.00082333 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 4.00 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1969 3.6547 5.4706 5.4706 7.7506 10.3660 11.1431 11.1432 15.8495 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1653 -0.1478 4.9210 5.2190 8.5708 9.7594 10.9342 12.8213 15.0177 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6641 -2.8501 4.3955 5.6892 7.2325 10.1291 11.8101 13.0441 17.0035 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5971 0.7190 4.5542 6.5513 7.9547 10.2456 11.5508 13.1533 14.7498 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7978 0.5020 3.2061 3.8838 6.9185 9.8721 12.8007 12.9978 15.9980 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1796 -2.2485 2.0299 3.8296 7.4380 10.8237 12.7231 14.9100 16.3760 k = 0.0000 0.4895 0.1520 band energies (ev): -5.0096 -1.9285 2.6931 6.1475 7.2164 11.4983 12.2213 12.8394 15.2997 k = 0.5652 0.0000-0.2534 band energies (ev): -4.4012 -1.8968 3.2386 3.3270 5.4982 9.6258 14.9636 16.6941 17.3373 k = 0.4239-0.2448-0.1520 band energies (ev): -5.0096 -1.9286 2.6931 6.1475 7.2164 11.4983 12.2213 12.8394 15.2997 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5971 0.7190 4.5542 6.5513 7.9547 10.2456 11.5508 13.1533 14.7498 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1653 -0.1478 4.9210 5.2190 8.5708 9.7594 10.9342 12.8213 15.0177 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7978 0.5021 3.2061 3.8838 6.9185 9.8721 12.8007 12.9979 15.9980 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1797 -2.2485 2.0299 3.8296 7.4380 10.8237 12.7231 14.9100 16.3760 k = 0.4239 0.2448 0.1520 band energies (ev): -5.0096 -1.9286 2.6931 6.1475 7.2164 11.4983 12.2213 12.8394 15.2997 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0914 0.3257 5.4103 5.4103 6.6355 9.4299 9.4299 11.2676 16.6907 k = 0.4239 0.7343 0.1520 band energies (ev): -5.1269 -0.6092 2.1473 4.3679 6.8793 10.8491 11.3014 13.7066 16.9810 k = 0.2826 0.4895 0.2534 band energies (ev): -4.4012 -1.8967 3.2386 3.3270 5.4982 9.6258 14.9636 16.6941 17.3373 k = 0.8479 0.0000-0.1520 band energies (ev): -5.1269 -0.6092 2.1473 4.3679 6.8793 10.8490 11.3014 13.7066 16.9810 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1796 -2.2485 2.0299 3.8296 7.4380 10.8237 12.7231 14.9100 16.3760 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6641 -2.8501 4.3955 5.6892 7.2325 10.1291 11.8101 13.0441 17.0035 the Fermi energy is 8.9462 ev total energy = -25.46012328 Ry Harris-Foulkes estimate = -25.46039781 Ry estimated scf accuracy < 0.00067883 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.32 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1659 3.6732 5.5080 5.5080 7.7796 10.3826 11.1673 11.1673 15.8488 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1324 -0.1193 4.9345 5.2590 8.5989 9.7662 10.9433 12.8509 15.0216 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6290 -2.8210 4.4318 5.6988 7.2464 10.1481 11.8149 13.0517 17.0219 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5663 0.7545 4.5885 6.5662 7.9635 10.2744 11.5707 13.1749 14.7609 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7627 0.5320 3.2209 3.9142 6.9215 9.8958 12.8322 13.0241 15.9968 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1412 -2.2154 2.0496 3.8359 7.4479 10.8503 12.7413 14.9325 16.3917 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9769 -1.8937 2.7207 6.1498 7.2309 11.5174 12.2523 12.8504 15.3065 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3656 -1.8580 3.2377 3.3567 5.5040 9.6453 14.9855 16.7169 17.3555 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9769 -1.8937 2.7207 6.1498 7.2309 11.5174 12.2523 12.8504 15.3065 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5663 0.7545 4.5885 6.5662 7.9635 10.2744 11.5707 13.1749 14.7609 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1324 -0.1193 4.9345 5.2590 8.5989 9.7662 10.9433 12.8509 15.0216 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7627 0.5320 3.2208 3.9142 6.9215 9.8958 12.8322 13.0241 15.9968 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1413 -2.2154 2.0496 3.8359 7.4479 10.8503 12.7413 14.9325 16.3917 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9769 -1.8937 2.7208 6.1498 7.2309 11.5174 12.2523 12.8504 15.3065 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0534 0.3278 5.4483 5.4483 6.6761 9.4450 9.4450 11.2633 16.6991 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0857 -0.5923 2.1625 4.4010 6.8908 10.8765 11.3194 13.7337 16.9809 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3656 -1.8580 3.2377 3.3567 5.5040 9.6453 14.9855 16.7169 17.3555 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0857 -0.5923 2.1625 4.4010 6.8908 10.8765 11.3194 13.7337 16.9809 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1412 -2.2154 2.0496 3.8359 7.4479 10.8503 12.7413 14.9325 16.3917 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6290 -2.8210 4.4318 5.6988 7.2464 10.1481 11.8149 13.0517 17.0219 the Fermi energy is 8.9688 ev total energy = -25.46010206 Ry Harris-Foulkes estimate = -25.46015303 Ry estimated scf accuracy < 0.00014946 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.62 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1535 3.6834 5.5228 5.5228 7.7902 10.3904 11.1767 11.1767 15.8496 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1193 -0.1070 4.9411 5.2745 8.6092 9.7717 10.9486 12.8620 15.0242 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6151 -2.8089 4.4459 5.7040 7.2527 10.1565 11.8189 13.0564 17.0288 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5539 0.7691 4.6019 6.5738 7.9688 10.2849 11.5796 13.1844 14.7649 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7488 0.5451 3.2273 3.9262 6.9246 9.9043 12.8446 13.0350 15.9986 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1261 -2.2020 2.0574 3.8400 7.4539 10.8606 12.7479 14.9423 16.3994 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9638 -1.8795 2.7313 6.1529 7.2385 11.5253 12.2644 12.8552 15.3109 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3513 -1.8429 3.2397 3.3684 5.5078 9.6521 14.9957 16.7268 17.3642 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9638 -1.8795 2.7313 6.1529 7.2385 11.5253 12.2644 12.8552 15.3109 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5539 0.7691 4.6019 6.5738 7.9688 10.2849 11.5796 13.1844 14.7649 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1193 -0.1070 4.9411 5.2745 8.6092 9.7717 10.9486 12.8620 15.0242 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7488 0.5451 3.2273 3.9262 6.9246 9.9043 12.8446 13.0350 15.9986 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1261 -2.2019 2.0574 3.8400 7.4539 10.8606 12.7479 14.9423 16.3994 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9638 -1.8795 2.7313 6.1529 7.2385 11.5253 12.2644 12.8552 15.3109 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0385 0.3316 5.4631 5.4631 6.6900 9.4516 9.4516 11.2652 16.7016 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0698 -0.5836 2.1687 4.4140 6.8961 10.8880 11.3277 13.7446 16.9818 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3513 -1.8429 3.2396 3.3684 5.5078 9.6521 14.9957 16.7268 17.3642 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0698 -0.5835 2.1687 4.4140 6.8961 10.8880 11.3277 13.7447 16.9818 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1261 -2.2019 2.0574 3.8400 7.4539 10.8606 12.7479 14.9423 16.3994 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6151 -2.8090 4.4459 5.7040 7.2527 10.1565 11.8189 13.0564 17.0288 the Fermi energy is 8.9788 ev total energy = -25.46008395 Ry Harris-Foulkes estimate = -25.46010817 Ry estimated scf accuracy < 0.00004700 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-07, avg # of iterations = 2.5 total cpu time spent up to now is 4.97 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1413 3.6937 5.5373 5.5373 7.8005 10.3982 11.1861 11.1861 15.8503 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1064 -0.0949 4.9476 5.2897 8.6194 9.7773 10.9539 12.8728 15.0268 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6014 -2.7970 4.4597 5.7093 7.2590 10.1649 11.8229 13.0612 17.0355 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5418 0.7835 4.6152 6.5814 7.9741 10.2951 11.5885 13.1940 14.7689 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7351 0.5582 3.2337 3.9380 6.9278 9.9126 12.8569 13.0458 16.0004 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1112 -2.1886 2.0651 3.8441 7.4600 10.8707 12.7543 14.9521 16.4072 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9509 -1.8655 2.7417 6.1561 7.2460 11.5330 12.2763 12.8600 15.3154 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3372 -1.8281 3.2418 3.3799 5.5116 9.6586 15.0061 16.7365 17.3729 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9509 -1.8655 2.7417 6.1561 7.2460 11.5330 12.2763 12.8600 15.3154 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5418 0.7835 4.6152 6.5814 7.9741 10.2951 11.5885 13.1940 14.7689 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1064 -0.0949 4.9476 5.2897 8.6194 9.7773 10.9539 12.8728 15.0268 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7351 0.5582 3.2337 3.9380 6.9278 9.9126 12.8569 13.0458 16.0004 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1112 -2.1886 2.0651 3.8441 7.4600 10.8707 12.7543 14.9521 16.4072 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9509 -1.8655 2.7417 6.1561 7.2460 11.5330 12.2763 12.8600 15.3154 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0240 0.3356 5.4777 5.4777 6.7035 9.4583 9.4583 11.2673 16.7041 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0541 -0.5748 2.1748 4.4267 6.9014 10.8993 11.3359 13.7555 16.9828 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3372 -1.8280 3.2418 3.3799 5.5116 9.6586 15.0061 16.7365 17.3729 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0541 -0.5748 2.1748 4.4267 6.9014 10.8993 11.3359 13.7555 16.9828 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1112 -2.1886 2.0651 3.8441 7.4600 10.8707 12.7543 14.9521 16.4072 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6014 -2.7970 4.4596 5.7093 7.2590 10.1649 11.8229 13.0612 17.0355 the Fermi energy is 8.9887 ev total energy = -25.46009172 Ry Harris-Foulkes estimate = -25.46009232 Ry estimated scf accuracy < 0.00000113 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.2 total cpu time spent up to now is 5.35 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1384 3.6962 5.5408 5.5408 7.8031 10.4002 11.1882 11.1882 15.8506 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1033 -0.0920 4.9492 5.2932 8.6218 9.7787 10.9552 12.8753 15.0275 k = 0.2826 0.4895-0.0507 band energies (ev): -4.5981 -2.7942 4.4629 5.7106 7.2605 10.1669 11.8239 13.0624 17.0371 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5388 0.7869 4.6183 6.5832 7.9755 10.2975 11.5906 13.1962 14.7698 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7319 0.5612 3.2353 3.9408 6.9285 9.9147 12.8598 13.0483 16.0010 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1076 -2.1855 2.0670 3.8451 7.4615 10.8731 12.7559 14.9544 16.4091 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9478 -1.8621 2.7441 6.1569 7.2479 11.5349 12.2792 12.8611 15.3165 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3338 -1.8245 3.2424 3.3826 5.5126 9.6602 15.0085 16.7388 17.3751 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9478 -1.8621 2.7441 6.1569 7.2479 11.5349 12.2792 12.8611 15.3165 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5388 0.7869 4.6183 6.5832 7.9755 10.2975 11.5906 13.1962 14.7698 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1033 -0.0920 4.9492 5.2932 8.6218 9.7787 10.9552 12.8753 15.0275 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7319 0.5612 3.2353 3.9408 6.9285 9.9147 12.8598 13.0483 16.0010 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1077 -2.1855 2.0670 3.8451 7.4615 10.8731 12.7559 14.9544 16.4091 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9478 -1.8621 2.7441 6.1569 7.2479 11.5349 12.2792 12.8611 15.3165 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0205 0.3366 5.4811 5.4811 6.7068 9.4598 9.4598 11.2680 16.7048 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0504 -0.5727 2.1763 4.4297 6.9027 10.9020 11.3379 13.7581 16.9831 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3338 -1.8245 3.2424 3.3826 5.5126 9.6602 15.0085 16.7388 17.3751 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0504 -0.5727 2.1763 4.4297 6.9027 10.9020 11.3379 13.7581 16.9831 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1076 -2.1855 2.0670 3.8451 7.4615 10.8731 12.7559 14.9544 16.4091 k = 0.5652 0.0000 0.0507 band energies (ev): -4.5981 -2.7942 4.4629 5.7106 7.2605 10.1669 11.8239 13.0624 17.0371 the Fermi energy is 8.9911 ev total energy = -25.46009209 Ry Harris-Foulkes estimate = -25.46009217 Ry estimated scf accuracy < 0.00000020 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.1 total cpu time spent up to now is 5.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.1520 ( 531 PWs) bands (ev): -7.1390 3.6957 5.5400 5.5400 7.8027 10.3999 11.1877 11.1877 15.8506 k =-0.1413-0.2448 0.2534 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.2826 0.4895-0.0507 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4622 5.7105 7.2602 10.1666 11.8237 13.0622 17.0368 k = 0.1413 0.2448 0.0507 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7697 k =-0.2826 0.0000 0.3547 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.1413 0.7343 0.0507 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4088 k = 0.0000 0.4895 0.1520 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.5652 0.0000-0.2534 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.4239-0.2448-0.1520 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.2826 0.0000-0.0507 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7697 k = 0.2826 0.0000 0.2534 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.1413-0.2448 0.3547 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.5652 0.4895 0.0507 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4088 k = 0.4239 0.2448 0.1520 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.0000 0.0000 0.4561 ( 522 PWs) bands (ev): -6.0213 0.3365 5.4803 5.4803 6.7061 9.4595 9.4595 11.2681 16.7047 k = 0.4239 0.7343 0.1520 ( 520 PWs) bands (ev): -5.0512 -0.5730 2.1761 4.4290 6.9025 10.9015 11.3374 13.7576 16.9831 k = 0.2826 0.4895 0.2534 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.8479 0.0000-0.1520 ( 520 PWs) bands (ev): -5.0512 -0.5730 2.1761 4.4290 6.9025 10.9015 11.3374 13.7576 16.9831 k = 0.7066-0.2448-0.0507 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4088 k = 0.5652 0.0000 0.0507 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7105 7.2602 10.1666 11.8237 13.0622 17.0368 the Fermi energy is 8.9906 ev ! total energy = -25.46009210 Ry Harris-Foulkes estimate = -25.46009210 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000023 0.00000000 -0.10461274 atom 2 type 1 force = -0.00000023 0.00000000 0.10461274 Total force = 0.147945 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 143.05 0.00107864 0.00000000 0.00000000 158.67 0.00 0.00 0.00000000 0.00107863 0.00000000 0.00 158.67 0.00 0.00000000 0.00000000 0.00076010 0.00 0.00 111.81 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.607379908 0.000000000 0.838897948 -0.303689825 0.526006625 0.838897997 -0.303689825 -0.526006625 0.838897997 new unit-cell volume = 277.0120 (a.u.)^3 new positions in cryst coord As 0.284850305 0.284850357 0.284850357 As -0.284850305 -0.284850357 -0.284850357 new positions in cart coord (alat unit) As 0.000000042 0.000000000 0.716881124 As -0.000000042 0.000000000 -0.716881124 Ekin = 0.02014296 Ry T = 706.7 K Etot = -25.43994914 CELL_PARAMETERS (alat) 0.607379908 0.000000000 0.838897948 -0.303689825 0.526006625 0.838897997 -0.303689825 -0.526006625 0.838897997 ATOMIC_POSITIONS (crystal) As 0.284850305 0.284850357 0.284850357 As -0.284850305 -0.284850357 -0.284850357 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1490050), wk = 0.0625000 k( 2) = ( -0.1372013 -0.2376396 0.2483417), wk = 0.1250000 k( 3) = ( 0.2744027 0.4752792 -0.0496684), wk = 0.1250000 k( 4) = ( 0.1372014 0.2376396 0.0496683), wk = 0.1250000 k( 5) = ( -0.2744027 0.0000000 0.3476784), wk = 0.0625000 k( 6) = ( 0.1372014 0.7129188 0.0496683), wk = 0.1250000 k( 7) = ( 0.0000000 0.4752792 0.1490050), wk = 0.1250000 k( 8) = ( 0.5488054 0.0000000 -0.2483417), wk = 0.0625000 k( 9) = ( 0.4116041 -0.2376396 -0.1490050), wk = 0.1250000 k( 10) = ( 0.2744027 0.0000000 -0.0496684), wk = 0.0625000 k( 11) = ( 0.2744027 0.0000000 0.2483417), wk = 0.0625000 k( 12) = ( 0.1372014 -0.2376396 0.3476783), wk = 0.1250000 k( 13) = ( 0.5488054 0.4752792 0.0496683), wk = 0.1250000 k( 14) = ( 0.4116041 0.2376396 0.1490050), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4470150), wk = 0.0625000 k( 16) = ( 0.4116041 0.7129188 0.1490050), wk = 0.1250000 k( 17) = ( 0.2744027 0.4752792 0.2483417), wk = 0.1250000 k( 18) = ( 0.8232081 0.0000000 -0.1490051), wk = 0.0625000 k( 19) = ( 0.6860068 -0.2376396 -0.0496684), wk = 0.1250000 k( 20) = ( 0.5488054 0.0000000 0.0496683), wk = 0.0625000 extrapolated charge 10.76052, renormalised to 10.00000 total cpu time spent up to now is 5.93 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 6.61 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.3267 2.2625 4.9400 4.9400 6.7276 9.2851 10.1417 10.1417 14.3205 k =-0.1372-0.2376 0.2483 band energies (ev): -6.3374 -0.8968 4.1526 4.8315 7.4397 8.3889 9.5103 11.6733 13.5739 k = 0.2744 0.4753-0.0497 band energies (ev): -4.9281 -3.3234 4.0080 4.8079 6.0790 8.9824 10.3086 11.4885 15.6964 k = 0.1372 0.2376 0.0497 band energies (ev): -6.7744 -0.0246 4.0756 5.5231 6.8767 9.3957 10.0303 11.8103 13.4689 k =-0.2744 0.0000 0.3477 band energies (ev): -5.9665 -0.3759 2.5882 3.3791 5.7117 8.9934 11.4661 11.7857 14.1575 k = 0.1372 0.7129 0.0497 band energies (ev): -4.4452 -2.7612 1.5243 2.9954 6.3478 9.5801 11.6238 13.5661 14.6664 k = 0.0000 0.4753 0.1490 band energies (ev): -5.2790 -2.4409 2.2870 5.0437 6.2803 10.0770 10.9353 11.6735 13.7758 k = 0.5488 0.0000-0.2483 band energies (ev): -4.7102 -2.2769 2.1990 2.8628 4.4627 8.8387 13.4273 14.9499 15.4219 k = 0.4116-0.2376-0.1490 band energies (ev): -5.2790 -2.4409 2.2870 5.0437 6.2803 10.0770 10.9353 11.6735 13.7758 k = 0.2744 0.0000-0.0497 band energies (ev): -6.7744 -0.0246 4.0756 5.5231 6.8767 9.3957 10.0303 11.8103 13.4689 k = 0.2744 0.0000 0.2483 band energies (ev): -6.3374 -0.8968 4.1526 4.8315 7.4397 8.3889 9.5103 11.6733 13.5739 k = 0.1372-0.2376 0.3477 band energies (ev): -5.9665 -0.3759 2.5882 3.3791 5.7117 8.9934 11.4661 11.7857 14.1575 k = 0.5488 0.4753 0.0497 band energies (ev): -4.4452 -2.7612 1.5243 2.9954 6.3478 9.5801 11.6238 13.5661 14.6664 k = 0.4116 0.2376 0.1490 band energies (ev): -5.2790 -2.4409 2.2870 5.0437 6.2803 10.0770 10.9353 11.6735 13.7758 k = 0.0000 0.0000 0.4470 band energies (ev): -6.1828 -0.7378 4.9268 4.9268 5.6546 8.2988 8.2988 9.6018 15.1957 k = 0.4116 0.7129 0.1490 band energies (ev): -5.2490 -1.5368 1.6268 3.8985 5.7169 9.6202 10.0226 12.5171 15.3063 k = 0.2744 0.4753 0.2483 band energies (ev): -4.7102 -2.2769 2.1990 2.8629 4.4627 8.8387 13.4273 14.9499 15.4219 k = 0.8232 0.0000-0.1490 band energies (ev): -5.2490 -1.5368 1.6268 3.8985 5.7169 9.6202 10.0226 12.5171 15.3063 k = 0.6860-0.2376-0.0497 band energies (ev): -4.4452 -2.7612 1.5243 2.9954 6.3478 9.5801 11.6238 13.5661 14.6664 k = 0.5488 0.0000 0.0497 band energies (ev): -4.9281 -3.3234 4.0080 4.8079 6.0790 8.9824 10.3086 11.4885 15.6964 the Fermi energy is 7.8247 ev total energy = -25.47744714 Ry Harris-Foulkes estimate = -25.91217864 Ry estimated scf accuracy < 0.00269229 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-05, avg # of iterations = 3.1 total cpu time spent up to now is 7.13 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.5059 2.0433 4.6877 4.6877 6.6490 9.2062 10.0698 10.0699 14.5823 k =-0.1372-0.2376 0.2483 band energies (ev): -6.5427 -1.1021 4.1431 4.5563 7.3566 8.3921 9.5578 11.5636 13.7836 k = 0.2744 0.4753-0.0497 band energies (ev): -5.1659 -3.5070 3.7895 4.8426 6.1148 8.9224 10.3807 11.5253 15.7762 k = 0.1372 0.2376 0.0497 band energies (ev): -6.9540 -0.3084 3.8742 5.4741 6.8886 9.2807 9.9805 11.7160 13.6748 k =-0.2744 0.0000 0.3477 band energies (ev): -6.1998 -0.6115 2.5939 3.2316 5.8387 8.9532 11.3105 11.6491 14.3642 k = 0.1372 0.7129 0.0497 band energies (ev): -4.7289 -2.9934 1.5420 3.0769 6.3377 9.4796 11.6973 13.4240 14.6507 k = 0.0000 0.4753 0.1490 band energies (ev): -5.4889 -2.6997 2.2052 5.1532 6.2132 10.0715 10.7659 11.7387 13.8997 k = 0.5488 0.0000-0.2483 band energies (ev): -4.9652 -2.5643 2.3522 2.7289 4.5622 8.8985 13.2754 14.8492 15.3538 k = 0.4116-0.2376-0.1490 band energies (ev): -5.4889 -2.6998 2.2052 5.1532 6.2132 10.0715 10.7659 11.7387 13.8997 k = 0.2744 0.0000-0.0497 band energies (ev): -6.9540 -0.3084 3.8742 5.4741 6.8886 9.2807 9.9805 11.7160 13.6748 k = 0.2744 0.0000 0.2483 band energies (ev): -6.5427 -1.1021 4.1431 4.5563 7.3566 8.3921 9.5578 11.5636 13.7836 k = 0.1372-0.2376 0.3477 band energies (ev): -6.1998 -0.6115 2.5939 3.2316 5.8387 8.9532 11.3105 11.6491 14.3642 k = 0.5488 0.4753 0.0497 band energies (ev): -4.7289 -2.9934 1.5420 3.0769 6.3377 9.4796 11.6973 13.4240 14.6507 k = 0.4116 0.2376 0.1490 band energies (ev): -5.4889 -2.6997 2.2052 5.1532 6.2132 10.0715 10.7659 11.7387 13.8997 k = 0.0000 0.0000 0.4470 band energies (ev): -6.4473 -0.7154 4.6773 4.6773 5.4813 8.3205 8.3205 9.7290 15.4679 k = 0.4116 0.7129 0.1490 band energies (ev): -5.5576 -1.6344 1.6674 3.7205 5.7951 9.4531 9.9676 12.3691 15.5869 k = 0.2744 0.4753 0.2483 band energies (ev): -4.9652 -2.5643 2.3522 2.7289 4.5622 8.8985 13.2754 14.8492 15.3538 k = 0.8232 0.0000-0.1490 band energies (ev): -5.5576 -1.6344 1.6674 3.7205 5.7951 9.4531 9.9676 12.3691 15.5869 k = 0.6860-0.2376-0.0497 band energies (ev): -4.7289 -2.9934 1.5420 3.0769 6.3377 9.4796 11.6973 13.4240 14.6507 k = 0.5488 0.0000 0.0497 band energies (ev): -5.1659 -3.5070 3.7895 4.8426 6.1148 8.9224 10.3807 11.5253 15.7762 the Fermi energy is 7.8155 ev total energy = -25.48275700 Ry Harris-Foulkes estimate = -25.48371124 Ry estimated scf accuracy < 0.00243508 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.43 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.4482 2.0886 4.7540 4.7540 6.6954 9.2434 10.1151 10.1151 14.5830 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4816 -1.0482 4.1728 4.6283 7.4102 8.4083 9.5770 11.6179 13.7917 k = 0.2744 0.4753-0.0497 band energies (ev): -5.1009 -3.4524 3.8547 4.8645 6.1427 8.9601 10.3953 11.5475 15.8111 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8966 -0.2431 3.9355 5.5073 6.9094 9.3382 10.0159 11.7572 13.6907 k =-0.2744 0.0000 0.3477 band energies (ev): -6.1348 -0.5563 2.6265 3.2861 5.8471 9.0037 11.3643 11.6981 14.3637 k = 0.1372 0.7129 0.0497 band energies (ev): -4.6583 -2.9326 1.5771 3.0940 6.3609 9.5290 11.7333 13.4716 14.6791 k = 0.0000 0.4753 0.1490 band energies (ev): -5.4281 -2.6353 2.2550 5.1626 6.2446 10.1066 10.8238 11.7661 13.9132 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8995 -2.4929 2.3563 2.7821 4.5763 8.9370 13.3197 14.9002 15.3818 k = 0.4116-0.2376-0.1490 band energies (ev): -5.4281 -2.6353 2.2550 5.1626 6.2446 10.1066 10.8238 11.7661 13.9132 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8966 -0.2431 3.9355 5.5073 6.9094 9.3382 10.0159 11.7572 13.6907 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4816 -1.0482 4.1728 4.6283 7.4102 8.4083 9.5770 11.6179 13.7917 k = 0.1372-0.2376 0.3477 band energies (ev): -6.1348 -0.5563 2.6265 3.2861 5.8471 9.0037 11.3643 11.6981 14.3637 k = 0.5488 0.4753 0.0497 band energies (ev): -4.6583 -2.9325 1.5771 3.0940 6.3609 9.5290 11.7333 13.4716 14.6791 k = 0.4116 0.2376 0.1490 band energies (ev): -5.4281 -2.6353 2.2550 5.1626 6.2446 10.1066 10.8238 11.7661 13.9132 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3769 -0.7017 4.7451 4.7451 5.5533 8.3493 8.3493 9.7274 15.4817 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4816 -1.5997 1.6981 3.7799 5.8178 9.5059 10.0025 12.4201 15.5891 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8995 -2.4929 2.3563 2.7821 4.5763 8.9370 13.3197 14.9002 15.3818 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4816 -1.5997 1.6981 3.7799 5.8178 9.5059 10.0025 12.4201 15.5891 k = 0.6860-0.2376-0.0497 band energies (ev): -4.6583 -2.9326 1.5771 3.0940 6.3609 9.5290 11.7333 13.4716 14.6791 k = 0.5488 0.0000 0.0497 band energies (ev): -5.1009 -3.4524 3.8547 4.8646 6.1427 8.9601 10.3953 11.5475 15.8111 the Fermi energy is 7.8582 ev total energy = -25.48267034 Ry Harris-Foulkes estimate = -25.48285633 Ry estimated scf accuracy < 0.00056796 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.74 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.4247 2.1117 4.7807 4.7807 6.7136 9.2603 10.1334 10.1334 14.5850 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4568 -1.0244 4.1869 4.6565 7.4302 8.4201 9.5881 11.6390 13.7966 k = 0.2744 0.4753-0.0497 band energies (ev): -5.0746 -3.4292 3.8802 4.8761 6.1554 8.9769 10.4050 11.5596 15.8242 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8731 -0.2154 3.9599 5.5233 6.9214 9.3594 10.0323 11.7758 13.6968 k =-0.2744 0.0000 0.3477 band energies (ev): -6.1086 -0.5315 2.6405 3.3079 5.8542 9.0220 11.3863 11.7190 14.3674 k = 0.1372 0.7129 0.0497 band energies (ev): -4.6299 -2.9070 1.5914 3.1036 6.3740 9.5487 11.7466 13.4925 14.6934 k = 0.0000 0.4753 0.1490 band energies (ev): -5.4032 -2.6085 2.2743 5.1704 6.2604 10.1216 10.8469 11.7783 13.9213 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8726 -2.4643 2.3621 2.8033 4.5849 8.9507 13.3405 14.9220 15.3963 k = 0.4116-0.2376-0.1490 band energies (ev): -5.4032 -2.6085 2.2743 5.1704 6.2604 10.1216 10.8469 11.7783 13.9213 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8731 -0.2154 3.9599 5.5233 6.9214 9.3594 10.0323 11.7758 13.6968 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4568 -1.0244 4.1869 4.6565 7.4302 8.4201 9.5881 11.6390 13.7966 k = 0.1372-0.2376 0.3477 band energies (ev): -6.1086 -0.5315 2.6405 3.3079 5.8542 9.0220 11.3863 11.7190 14.3674 k = 0.5488 0.4753 0.0497 band energies (ev): -4.6299 -2.9070 1.5914 3.1036 6.3740 9.5487 11.7466 13.4925 14.6934 k = 0.4116 0.2376 0.1490 band energies (ev): -5.4032 -2.6085 2.2743 5.1704 6.2604 10.1216 10.8469 11.7783 13.9213 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3491 -0.6905 4.7720 4.7720 5.5781 8.3624 8.3624 9.7334 15.4862 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4517 -1.5818 1.7108 3.8034 5.8285 9.5281 10.0187 12.4415 15.5916 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8727 -2.4643 2.3621 2.8033 4.5849 8.9506 13.3405 14.9220 15.3963 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4517 -1.5818 1.7108 3.8034 5.8285 9.5281 10.0187 12.4415 15.5916 k = 0.6860-0.2376-0.0497 band energies (ev): -4.6299 -2.9070 1.5914 3.1036 6.3740 9.5487 11.7466 13.4925 14.6934 k = 0.5488 0.0000 0.0497 band energies (ev): -5.0746 -3.4292 3.8802 4.8761 6.1554 8.9769 10.4050 11.5596 15.8242 the Fermi energy is 7.8749 ev total energy = -25.48259694 Ry Harris-Foulkes estimate = -25.48269150 Ry estimated scf accuracy < 0.00018863 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 2.1 total cpu time spent up to now is 8.07 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.4006 2.1359 4.8081 4.8081 6.7320 9.2777 10.1523 10.1523 14.5872 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4314 -0.9999 4.2015 4.6853 7.4505 8.4326 9.5998 11.6606 13.8018 k = 0.2744 0.4753-0.0497 band energies (ev): -5.0477 -3.4053 3.9063 4.8883 6.1686 8.9943 10.4153 11.5723 15.8376 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8491 -0.1869 3.9850 5.5400 6.9339 9.3808 10.0494 11.7951 13.7031 k =-0.2744 0.0000 0.3477 band energies (ev): -6.0819 -0.5057 2.6549 3.3303 5.8618 9.0406 11.4090 11.7406 14.3718 k = 0.1372 0.7129 0.0497 band energies (ev): -4.6008 -2.8808 1.6061 3.1137 6.3878 9.5688 11.7602 13.5141 14.7085 k = 0.0000 0.4753 0.1490 band energies (ev): -5.3778 -2.5809 2.2941 5.1786 6.2769 10.1371 10.8707 11.7909 13.9298 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8451 -2.4349 2.3684 2.8251 4.5939 8.9645 13.3622 14.9442 15.4119 k = 0.4116-0.2376-0.1490 band energies (ev): -5.3778 -2.5809 2.2941 5.1786 6.2769 10.1371 10.8707 11.7908 13.9298 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8491 -0.1869 3.9850 5.5400 6.9339 9.3808 10.0494 11.7951 13.7031 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4314 -0.9999 4.2015 4.6853 7.4505 8.4326 9.5998 11.6606 13.8018 k = 0.1372-0.2376 0.3477 band energies (ev): -6.0819 -0.5057 2.6549 3.3303 5.8618 9.0406 11.4090 11.7406 14.3718 k = 0.5488 0.4753 0.0497 band energies (ev): -4.6008 -2.8808 1.6061 3.1137 6.3878 9.5689 11.7602 13.5141 14.7085 k = 0.4116 0.2376 0.1490 band energies (ev): -5.3778 -2.5809 2.2941 5.1786 6.2769 10.1371 10.8707 11.7908 13.9298 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3206 -0.6785 4.7995 4.7995 5.6032 8.3760 8.3760 9.7402 15.4908 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4212 -1.5631 1.7238 3.8275 5.8397 9.5509 10.0357 12.4635 15.5944 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8451 -2.4349 2.3684 2.8251 4.5939 8.9645 13.3622 14.9442 15.4119 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4211 -1.5631 1.7238 3.8275 5.8397 9.5509 10.0357 12.4635 15.5944 k = 0.6860-0.2376-0.0497 band energies (ev): -4.6008 -2.8808 1.6061 3.1137 6.3878 9.5688 11.7602 13.5141 14.7085 k = 0.5488 0.0000 0.0497 band energies (ev): -5.0477 -3.4053 3.9063 4.8883 6.1686 8.9943 10.4152 11.5723 15.8376 the Fermi energy is 7.8920 ev total energy = -25.48262212 Ry Harris-Foulkes estimate = -25.48262557 Ry estimated scf accuracy < 0.00000652 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 8.48 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.3948 2.1415 4.8146 4.8146 6.7366 9.2820 10.1568 10.1568 14.5877 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4253 -0.9941 4.2050 4.6923 7.4555 8.4356 9.6024 11.6658 13.8031 k = 0.2744 0.4753-0.0497 band energies (ev): -5.0412 -3.3996 3.9125 4.8912 6.1718 8.9985 10.4176 11.5752 15.8404 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8433 -0.1801 3.9909 5.5440 6.9370 9.3861 10.0535 11.7996 13.7047 k =-0.2744 0.0000 0.3477 band energies (ev): -6.0754 -0.4996 2.6584 3.3357 5.8636 9.0452 11.4145 11.7457 14.3728 k = 0.1372 0.7129 0.0497 band energies (ev): -4.5938 -2.8745 1.6097 3.1162 6.3911 9.5737 11.7635 13.5192 14.7121 k = 0.0000 0.4753 0.1490 band energies (ev): -5.3716 -2.5743 2.2989 5.1806 6.2809 10.1408 10.8765 11.7938 13.9319 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8385 -2.4279 2.3699 2.8303 4.5961 8.9679 13.3673 14.9495 15.4157 k = 0.4116-0.2376-0.1490 band energies (ev): -5.3716 -2.5743 2.2989 5.1806 6.2809 10.1408 10.8765 11.7938 13.9319 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8433 -0.1801 3.9909 5.5440 6.9370 9.3861 10.0535 11.7996 13.7047 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4253 -0.9941 4.2050 4.6923 7.4555 8.4356 9.6024 11.6658 13.8031 k = 0.1372-0.2376 0.3477 band energies (ev): -6.0754 -0.4996 2.6584 3.3357 5.8636 9.0452 11.4145 11.7457 14.3728 k = 0.5488 0.4753 0.0497 band energies (ev): -4.5938 -2.8745 1.6097 3.1162 6.3911 9.5737 11.7635 13.5192 14.7121 k = 0.4116 0.2376 0.1490 band energies (ev): -5.3716 -2.5743 2.2989 5.1806 6.2809 10.1408 10.8764 11.7938 13.9319 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3137 -0.6757 4.8061 4.8061 5.6095 8.3791 8.3792 9.7418 15.4921 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4138 -1.5588 1.7270 3.8332 5.8424 9.5564 10.0396 12.4689 15.5951 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8385 -2.4279 2.3699 2.8303 4.5961 8.9679 13.3673 14.9495 15.4157 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4138 -1.5588 1.7270 3.8332 5.8424 9.5564 10.0396 12.4689 15.5951 k = 0.6860-0.2376-0.0497 band energies (ev): -4.5938 -2.8745 1.6097 3.1162 6.3911 9.5737 11.7635 13.5192 14.7121 k = 0.5488 0.0000 0.0497 band energies (ev): -5.0412 -3.3996 3.9125 4.8912 6.1718 8.9985 10.4176 11.5752 15.8404 the Fermi energy is 7.8958 ev total energy = -25.48262551 Ry Harris-Foulkes estimate = -25.48262563 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-09, avg # of iterations = 1.8 total cpu time spent up to now is 8.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.1490 ( 531 PWs) bands (ev): -7.3958 2.1407 4.8134 4.8134 6.7360 9.2815 10.1559 10.1559 14.5878 k =-0.1372-0.2376 0.2483 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4355 9.6020 11.6648 13.8031 k = 0.2744 0.4753-0.0497 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1715 8.9980 10.4173 11.5749 15.8398 k = 0.1372 0.2376 0.0497 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k =-0.2744 0.0000 0.3477 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0444 11.4136 11.7447 14.3729 k = 0.1372 0.7129 0.0497 ( 510 PWs) bands (ev): -4.5951 -2.8756 1.6091 3.1159 6.3908 9.5729 11.7629 13.5183 14.7116 k = 0.0000 0.4753 0.1490 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.5488 0.0000-0.2483 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8294 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.4116-0.2376-0.1490 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.2744 0.0000-0.0497 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9368 9.3852 10.0528 11.7987 13.7045 k = 0.2744 0.0000 0.2483 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1372-0.2376 0.3477 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0444 11.4135 11.7447 14.3730 k = 0.5488 0.4753 0.0497 ( 510 PWs) bands (ev): -4.5951 -2.8756 1.6091 3.1159 6.3908 9.5729 11.7629 13.5183 14.7116 k = 0.4116 0.2376 0.1490 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.0000 0.0000 0.4470 ( 522 PWs) bands (ev): -6.3150 -0.6759 4.8048 4.8048 5.6084 8.3786 8.3786 9.7421 15.4921 k = 0.4116 0.7129 0.1490 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5556 10.0389 12.4680 15.5952 k = 0.2744 0.4753 0.2483 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8294 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.8232 0.0000-0.1490 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5556 10.0389 12.4680 15.5952 k = 0.6860-0.2376-0.0497 ( 510 PWs) bands (ev): -4.5951 -2.8756 1.6091 3.1159 6.3908 9.5729 11.7629 13.5183 14.7116 k = 0.5488 0.0000 0.0497 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1715 8.9979 10.4173 11.5749 15.8398 the Fermi energy is 7.8951 ev ! total energy = -25.48262553 Ry Harris-Foulkes estimate = -25.48262556 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000015 0.00000000 -0.06498882 atom 2 type 1 force = -0.00000015 0.00000000 0.06498882 Total force = 0.091908 Total SCF correction = 0.000170 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 33.17 0.00014883 0.00000000 0.00000000 21.89 0.00 0.00 0.00000000 0.00014882 0.00000000 0.00 21.89 0.00 0.00000000 0.00000000 0.00037872 0.00 0.00 55.71 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.607374985 0.000000000 0.860065832 -0.303687414 0.526002287 0.860065935 -0.303687414 -0.526002287 0.860065935 new unit-cell volume = 283.9972 (a.u.)^3 new positions in cryst coord As 0.280296918 0.280296974 0.280296974 As -0.280296918 -0.280296974 -0.280296974 new positions in cart coord (alat unit) As 0.000000010 0.000000000 0.723221560 As -0.000000010 0.000000000 -0.723221560 Ekin = 0.04390974 Ry T = 1123.7 K Etot = -25.43871579 CELL_PARAMETERS (alat) 0.607374985 0.000000000 0.860065832 -0.303687414 0.526002287 0.860065935 -0.303687414 -0.526002287 0.860065935 ATOMIC_POSITIONS (crystal) As 0.280296918 0.280296974 0.280296974 As -0.280296918 -0.280296974 -0.280296974 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1453377), wk = 0.0625000 k( 2) = ( -0.1372024 -0.2376416 0.2422295), wk = 0.1250000 k( 3) = ( 0.2744049 0.4752831 -0.0484459), wk = 0.1250000 k( 4) = ( 0.1372025 0.2376416 0.0484459), wk = 0.1250000 k( 5) = ( -0.2744049 0.0000000 0.3391213), wk = 0.0625000 k( 6) = ( 0.1372025 0.7129247 0.0484459), wk = 0.1250000 k( 7) = ( 0.0000000 0.4752831 0.1453377), wk = 0.1250000 k( 8) = ( 0.5488098 0.0000000 -0.2422295), wk = 0.0625000 k( 9) = ( 0.4116074 -0.2376416 -0.1453377), wk = 0.1250000 k( 10) = ( 0.2744049 0.0000000 -0.0484459), wk = 0.0625000 k( 11) = ( 0.2744049 0.0000000 0.2422295), wk = 0.0625000 k( 12) = ( 0.1372025 -0.2376416 0.3391213), wk = 0.1250000 k( 13) = ( 0.5488098 0.4752831 0.0484459), wk = 0.1250000 k( 14) = ( 0.4116074 0.2376416 0.1453377), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4360131), wk = 0.0625000 k( 16) = ( 0.4116074 0.7129247 0.1453377), wk = 0.1250000 k( 17) = ( 0.2744049 0.4752831 0.2422295), wk = 0.1250000 k( 18) = ( 0.8232147 0.0000000 -0.1453378), wk = 0.0625000 k( 19) = ( 0.6860123 -0.2376416 -0.0484459), wk = 0.1250000 k( 20) = ( 0.5488098 0.0000000 0.0484459), wk = 0.0625000 extrapolated charge 10.24595, renormalised to 10.00000 total cpu time spent up to now is 9.09 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.1 total cpu time spent up to now is 9.81 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4205 1.5969 4.8322 4.8322 6.3223 9.0423 9.9030 9.9030 14.1295 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4572 -1.2081 3.8142 4.7495 7.2800 7.9703 9.0520 11.3962 13.2605 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0544 -3.5339 3.9444 4.4582 5.8433 8.6701 9.7507 10.6666 15.4576 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8681 -0.3613 4.0012 5.1338 6.4732 9.2483 9.4258 11.2520 13.1877 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1159 -0.8260 2.4702 3.3575 5.3605 9.0643 11.1660 11.4349 13.6724 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6439 -2.9845 1.4955 2.7486 5.9619 9.3468 11.5977 13.0710 13.9509 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4064 -2.6821 2.2434 4.7360 5.8452 9.5204 10.5800 11.4255 13.3260 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9012 -2.4934 1.9266 2.8493 4.1383 8.8654 12.7512 14.2969 14.6563 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4064 -2.6821 2.2434 4.7360 5.8452 9.5204 10.5800 11.4255 13.3260 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8681 -0.3613 4.0012 5.1338 6.4732 9.2483 9.4258 11.2520 13.1877 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4572 -1.2081 3.8142 4.7495 7.2800 7.9703 9.0520 11.3962 13.2605 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1159 -0.8259 2.4702 3.3575 5.3605 9.0643 11.1660 11.4350 13.6724 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6439 -2.9845 1.4955 2.7486 5.9619 9.3468 11.5977 13.0710 13.9509 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4064 -2.6821 2.2434 4.7360 5.8452 9.5204 10.5800 11.4255 13.3260 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3466 -1.2691 4.8878 4.8878 5.7265 8.0832 8.0832 9.2485 15.0418 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4409 -1.9693 1.6274 3.8698 5.5538 9.4143 9.6777 12.2605 14.9631 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9012 -2.4934 1.9266 2.8493 4.1383 8.8654 12.7512 14.2969 14.6563 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4409 -1.9693 1.6274 3.8698 5.5538 9.4143 9.6777 12.2605 14.9631 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6439 -2.9845 1.4955 2.7486 5.9619 9.3468 11.5977 13.0710 13.9509 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0544 -3.5339 3.9444 4.4582 5.8433 8.6701 9.7507 10.6666 15.4576 the Fermi energy is 7.6358 ev total energy = -25.49247908 Ry Harris-Foulkes estimate = -25.62955985 Ry estimated scf accuracy < 0.00037076 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.71E-06, avg # of iterations = 3.0 total cpu time spent up to now is 10.33 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4689 1.5072 4.7683 4.7683 6.3008 9.0081 9.8868 9.8868 14.2062 k =-0.1372-0.2376 0.2422 band energies (ev): -6.5126 -1.2778 3.8059 4.6845 7.2724 7.9400 9.0525 11.3645 13.3327 k = 0.2744 0.4753-0.0484 band energies (ev): -5.1203 -3.5899 3.8957 4.4557 5.8495 8.6479 9.7526 10.6647 15.5213 k = 0.1372 0.2376 0.0484 band energies (ev): -6.9176 -0.4498 3.9537 5.1114 6.4534 9.2299 9.4123 11.2208 13.2643 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1783 -0.9051 2.4703 3.3241 5.3792 9.0694 11.1195 11.3929 13.7183 k = 0.1372 0.7129 0.0484 band energies (ev): -4.7214 -3.0549 1.5102 2.7622 5.9407 9.3213 11.6304 13.0203 13.9464 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4653 -2.7589 2.2355 4.7478 5.8116 9.5239 10.5361 11.4272 13.3688 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9734 -2.5731 1.9543 2.8207 4.1520 8.9055 12.6958 14.2829 14.6045 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4653 -2.7589 2.2355 4.7478 5.8116 9.5239 10.5361 11.4272 13.3688 k = 0.2744 0.0000-0.0484 band energies (ev): -6.9176 -0.4498 3.9537 5.1114 6.4534 9.2299 9.4123 11.2208 13.2643 k = 0.2744 0.0000 0.2422 band energies (ev): -6.5126 -1.2778 3.8059 4.6845 7.2724 7.9400 9.0525 11.3645 13.3327 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1783 -0.9051 2.4703 3.3241 5.3792 9.0694 11.1195 11.3929 13.7183 k = 0.5488 0.4753 0.0484 band energies (ev): -4.7214 -3.0549 1.5102 2.7622 5.9407 9.3213 11.6304 13.0203 13.9464 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4653 -2.7589 2.2355 4.7478 5.8116 9.5239 10.5361 11.4272 13.3688 k = 0.0000 0.0000 0.4360 band energies (ev): -6.4146 -1.2954 4.8263 4.8263 5.6994 8.0868 8.0868 9.2454 15.1451 k = 0.4116 0.7129 0.1453 band energies (ev): -5.5208 -2.0159 1.6399 3.8300 5.5712 9.3617 9.6525 12.2124 15.0511 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9734 -2.5731 1.9543 2.8207 4.1520 8.9055 12.6958 14.2829 14.6045 k = 0.8232 0.0000-0.1453 band energies (ev): -5.5208 -2.0159 1.6399 3.8300 5.5712 9.3617 9.6525 12.2124 15.0511 k = 0.6860-0.2376-0.0484 band energies (ev): -4.7214 -3.0549 1.5102 2.7622 5.9407 9.3213 11.6304 13.0203 13.9464 k = 0.5488 0.0000 0.0484 band energies (ev): -5.1203 -3.5899 3.8957 4.4557 5.8495 8.6479 9.7526 10.6647 15.5213 the Fermi energy is 7.8827 ev total energy = -25.49293773 Ry Harris-Foulkes estimate = -25.49302300 Ry estimated scf accuracy < 0.00020601 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.65 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4497 1.5240 4.7899 4.7899 6.3151 9.0233 9.9025 9.9025 14.2070 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4923 -1.2594 3.8170 4.7081 7.2898 7.9477 9.0598 11.3823 13.3365 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0987 -3.5715 3.9169 4.4644 5.8595 8.6616 9.7591 10.6735 15.5272 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8985 -0.4278 3.9736 5.1236 6.4625 9.2487 9.4239 11.2347 13.2683 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1567 -0.8870 2.4832 3.3418 5.3834 9.0856 11.1381 11.4100 13.7203 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6980 -3.0347 1.5214 2.7695 5.9504 9.3372 11.6427 13.0377 13.9560 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4450 -2.7374 2.2517 4.7525 5.8237 9.5335 10.5557 11.4396 13.3742 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9515 -2.5495 1.9575 2.8381 4.1583 8.9176 12.7115 14.2951 14.6192 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4450 -2.7374 2.2517 4.7525 5.8237 9.5335 10.5557 11.4396 13.3742 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8985 -0.4278 3.9736 5.1236 6.4625 9.2487 9.4239 11.2347 13.2683 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4923 -1.2594 3.8170 4.7081 7.2898 7.9477 9.0598 11.3823 13.3365 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1567 -0.8870 2.4832 3.3418 5.3834 9.0856 11.1381 11.4100 13.7203 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6980 -3.0347 1.5214 2.7695 5.9504 9.3372 11.6427 13.0377 13.9560 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4450 -2.7374 2.2517 4.7525 5.8237 9.5335 10.5557 11.4396 13.3742 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3914 -1.2882 4.8484 4.8484 5.7220 8.0973 8.0973 9.2480 15.1506 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4956 -2.0043 1.6515 3.8493 5.5794 9.3800 9.6652 12.2306 15.0533 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9515 -2.5495 1.9575 2.8381 4.1583 8.9176 12.7115 14.2951 14.6192 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4956 -2.0043 1.6515 3.8493 5.5794 9.3800 9.6652 12.2306 15.0533 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6980 -3.0347 1.5214 2.7695 5.9504 9.3372 11.6427 13.0377 13.9560 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0987 -3.5715 3.9169 4.4644 5.8595 8.6615 9.7591 10.6735 15.5272 the Fermi energy is 7.8904 ev total energy = -25.49293129 Ry Harris-Foulkes estimate = -25.49294817 Ry estimated scf accuracy < 0.00003613 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-07, avg # of iterations = 1.4 total cpu time spent up to now is 10.97 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4391 1.5362 4.8015 4.8015 6.3232 9.0320 9.9112 9.9112 14.2084 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4812 -1.2480 3.8241 4.7203 7.2983 7.9552 9.0660 11.3920 13.3391 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0868 -3.5606 3.9279 4.4708 5.8662 8.6699 9.7650 10.6802 15.5304 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8878 -0.4148 3.9843 5.1317 6.4697 9.2577 9.4317 11.2436 13.2706 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1450 -0.8751 2.4903 3.3514 5.3883 9.0931 11.1486 11.4200 13.7239 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6853 -3.0229 1.5279 2.7750 5.9579 9.3461 11.6487 13.0481 13.9631 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4337 -2.7250 2.2601 4.7575 5.8321 9.5401 10.5663 11.4467 13.3784 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9393 -2.5366 1.9618 2.8474 4.1636 8.9231 12.7219 14.3033 14.6291 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4337 -2.7250 2.2601 4.7575 5.8321 9.5401 10.5663 11.4467 13.3784 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8878 -0.4148 3.9843 5.1317 6.4697 9.2577 9.4317 11.2436 13.2706 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4812 -1.2480 3.8241 4.7203 7.2983 7.9552 9.0660 11.3920 13.3391 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1450 -0.8751 2.4903 3.3514 5.3883 9.0930 11.1486 11.4201 13.7239 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6853 -3.0229 1.5279 2.7750 5.9579 9.3461 11.6487 13.0481 13.9631 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4337 -2.7250 2.2601 4.7575 5.8321 9.5401 10.5663 11.4467 13.3784 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3791 -1.2807 4.8600 4.8600 5.7318 8.1040 8.1040 9.2538 15.1532 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4824 -1.9950 1.6578 3.8595 5.5851 9.3904 9.6736 12.2410 15.0555 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9394 -2.5366 1.9618 2.8474 4.1636 8.9231 12.7219 14.3033 14.6291 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4824 -1.9950 1.6578 3.8595 5.5851 9.3904 9.6736 12.2410 15.0555 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6853 -3.0229 1.5279 2.7750 5.9579 9.3461 11.6487 13.0481 13.9631 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0868 -3.5606 3.9279 4.4708 5.8662 8.6699 9.7650 10.6802 15.5304 the Fermi energy is 7.8979 ev total energy = -25.49293373 Ry Harris-Foulkes estimate = -25.49293479 Ry estimated scf accuracy < 0.00000196 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-08, avg # of iterations = 3.0 total cpu time spent up to now is 11.41 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4356 1.5398 4.8053 4.8053 6.3258 9.0348 9.9141 9.9141 14.2088 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4776 -1.2444 3.8263 4.7243 7.3012 7.9573 9.0678 11.3952 13.3400 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0830 -3.5572 3.9315 4.4727 5.8682 8.6726 9.7667 10.6822 15.5315 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8843 -0.4107 3.9878 5.1343 6.4718 9.2607 9.4342 11.2464 13.2714 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1412 -0.8715 2.4926 3.3546 5.3896 9.0956 11.1520 11.4232 13.7249 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6811 -3.0191 1.5300 2.7767 5.9601 9.3489 11.6508 13.0514 13.9652 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4301 -2.7211 2.2629 4.7589 5.8347 9.5421 10.5698 11.4491 13.3797 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9354 -2.5324 1.9629 2.8504 4.1652 8.9250 12.7251 14.3058 14.6321 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4301 -2.7211 2.2629 4.7589 5.8347 9.5421 10.5698 11.4491 13.3797 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8843 -0.4107 3.9878 5.1343 6.4718 9.2607 9.4342 11.2464 13.2714 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4776 -1.2444 3.8263 4.7243 7.3012 7.9573 9.0678 11.3952 13.3400 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1412 -0.8715 2.4926 3.3546 5.3896 9.0956 11.1520 11.4232 13.7249 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6811 -3.0191 1.5300 2.7767 5.9601 9.3490 11.6508 13.0514 13.9652 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4301 -2.7211 2.2629 4.7589 5.8347 9.5422 10.5698 11.4491 13.3797 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3751 -1.2787 4.8638 4.8638 5.7353 8.1061 8.1061 9.2553 15.1542 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4781 -1.9923 1.6599 3.8628 5.5869 9.3938 9.6762 12.2443 15.0562 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9354 -2.5324 1.9629 2.8504 4.1652 8.9250 12.7251 14.3058 14.6321 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4781 -1.9923 1.6599 3.8628 5.5869 9.3938 9.6762 12.2443 15.0563 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6811 -3.0191 1.5300 2.7767 5.9601 9.3489 11.6508 13.0514 13.9652 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0830 -3.5572 3.9315 4.4727 5.8682 8.6726 9.7667 10.6822 15.5315 the Fermi energy is 7.9001 ev total energy = -25.49293517 Ry Harris-Foulkes estimate = -25.49293521 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 11.72 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4358 1.5396 4.8051 4.8051 6.3257 9.0347 9.9139 9.9139 14.2088 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4777 -1.2446 3.8262 4.7240 7.3011 7.9572 9.0677 11.3950 13.3400 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0832 -3.5574 3.9313 4.4727 5.8682 8.6724 9.7666 10.6821 15.5314 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8845 -0.4109 3.9876 5.1341 6.4717 9.2606 9.4340 11.2463 13.2713 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1414 -0.8716 2.4925 3.3544 5.3896 9.0955 11.1518 11.4231 13.7249 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6814 -3.0193 1.5299 2.7766 5.9600 9.3488 11.6507 13.0512 13.9651 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4303 -2.7213 2.2628 4.7589 5.8346 9.5421 10.5696 11.4489 13.3797 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9356 -2.5326 1.9629 2.8503 4.1651 8.9249 12.7249 14.3057 14.6320 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4303 -2.7213 2.2628 4.7589 5.8346 9.5421 10.5696 11.4489 13.3797 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8845 -0.4109 3.9876 5.1341 6.4717 9.2606 9.4340 11.2463 13.2713 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4777 -1.2446 3.8262 4.7240 7.3011 7.9572 9.0677 11.3950 13.3400 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1414 -0.8716 2.4925 3.3544 5.3896 9.0955 11.1518 11.4231 13.7249 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6814 -3.0193 1.5299 2.7766 5.9600 9.3488 11.6507 13.0512 13.9651 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4303 -2.7213 2.2628 4.7589 5.8346 9.5421 10.5696 11.4489 13.3797 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3753 -1.2787 4.8636 4.8636 5.7351 8.1060 8.1060 9.2553 15.1542 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4784 -1.9925 1.6598 3.8626 5.5868 9.3936 9.6760 12.2441 15.0563 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9356 -2.5326 1.9629 2.8503 4.1651 8.9249 12.7249 14.3057 14.6320 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4784 -1.9925 1.6598 3.8626 5.5868 9.3936 9.6760 12.2441 15.0563 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6814 -3.0193 1.5299 2.7766 5.9600 9.3488 11.6507 13.0512 13.9651 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0832 -3.5574 3.9313 4.4727 5.8682 8.6724 9.7666 10.6821 15.5314 the Fermi energy is 7.9000 ev total energy = -25.49293512 Ry Harris-Foulkes estimate = -25.49293518 Ry estimated scf accuracy < 0.00000012 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-09, avg # of iterations = 1.5 total cpu time spent up to now is 12.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.1453 ( 531 PWs) bands (ev): -7.4364 1.5390 4.8044 4.8044 6.3253 9.0342 9.9134 9.9134 14.2088 k =-0.1372-0.2376 0.2422 ( 522 PWs) bands (ev): -6.4784 -1.2452 3.8259 4.7233 7.3006 7.9569 9.0674 11.3944 13.3399 k = 0.2744 0.4753-0.0484 ( 520 PWs) bands (ev): -5.0839 -3.5580 3.9306 4.4724 5.8678 8.6720 9.7663 10.6818 15.5313 k = 0.1372 0.2376 0.0484 ( 525 PWs) bands (ev): -6.8851 -0.4117 3.9870 5.1337 6.4714 9.2600 9.4336 11.2458 13.2712 k =-0.2744 0.0000 0.3391 ( 519 PWs) bands (ev): -6.1421 -0.8723 2.4922 3.3538 5.3894 9.0951 11.1512 11.4225 13.7248 k = 0.1372 0.7129 0.0484 ( 510 PWs) bands (ev): -4.6821 -3.0200 1.5295 2.7764 5.9597 9.3483 11.6504 13.0506 13.9648 k = 0.0000 0.4753 0.1453 ( 521 PWs) bands (ev): -5.4309 -2.7220 2.2623 4.7587 5.8342 9.5417 10.5690 11.4485 13.3795 k = 0.5488 0.0000-0.2422 ( 510 PWs) bands (ev): -4.9363 -2.5334 1.9628 2.8497 4.1649 8.9246 12.7243 14.3053 14.6315 k = 0.4116-0.2376-0.1453 ( 521 PWs) bands (ev): -5.4309 -2.7220 2.2623 4.7587 5.8342 9.5417 10.5690 11.4485 13.3795 k = 0.2744 0.0000-0.0484 ( 525 PWs) bands (ev): -6.8851 -0.4117 3.9870 5.1337 6.4714 9.2600 9.4336 11.2457 13.2712 k = 0.2744 0.0000 0.2422 ( 522 PWs) bands (ev): -6.4784 -1.2452 3.8259 4.7233 7.3006 7.9569 9.0674 11.3944 13.3399 k = 0.1372-0.2376 0.3391 ( 519 PWs) bands (ev): -6.1421 -0.8723 2.4922 3.3538 5.3894 9.0951 11.1512 11.4225 13.7248 k = 0.5488 0.4753 0.0484 ( 510 PWs) bands (ev): -4.6821 -3.0200 1.5295 2.7764 5.9597 9.3483 11.6504 13.0506 13.9648 k = 0.4116 0.2376 0.1453 ( 521 PWs) bands (ev): -5.4309 -2.7220 2.2623 4.7587 5.8342 9.5417 10.5690 11.4485 13.3795 k = 0.0000 0.0000 0.4360 ( 522 PWs) bands (ev): -6.3760 -1.2791 4.8629 4.8629 5.7345 8.1056 8.1056 9.2551 15.1541 k = 0.4116 0.7129 0.1453 ( 520 PWs) bands (ev): -5.4791 -1.9929 1.6594 3.8620 5.5866 9.3930 9.6756 12.2435 15.0562 k = 0.2744 0.4753 0.2422 ( 510 PWs) bands (ev): -4.9363 -2.5334 1.9628 2.8497 4.1649 8.9246 12.7243 14.3053 14.6315 k = 0.8232 0.0000-0.1453 ( 520 PWs) bands (ev): -5.4791 -1.9929 1.6594 3.8620 5.5866 9.3930 9.6756 12.2435 15.0562 k = 0.6860-0.2376-0.0484 ( 510 PWs) bands (ev): -4.6821 -3.0200 1.5295 2.7764 5.9597 9.3483 11.6504 13.0506 13.9648 k = 0.5488 0.0000 0.0484 ( 520 PWs) bands (ev): -5.0839 -3.5580 3.9306 4.4724 5.8678 8.6720 9.7663 10.6818 15.5313 the Fermi energy is 7.8997 ev ! total energy = -25.49293513 Ry Harris-Foulkes estimate = -25.49293513 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000007 0.00000000 -0.03788553 atom 2 type 1 force = -0.00000007 0.00000000 0.03788553 Total force = 0.053578 Total SCF correction = 0.000014 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.09 -0.00009200 0.00000000 0.00000000 -13.53 0.00 0.00 0.00000000 -0.00009201 0.00000000 0.00 -13.53 0.00 0.00000000 0.00000000 0.00016187 0.00 0.00 23.81 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.607123293 0.000000000 0.884743141 -0.303561572 0.525784306 0.884743298 -0.303561572 -0.525784306 0.884743298 new unit-cell volume = 291.9037 (a.u.)^3 new positions in cryst coord As 0.275314475 0.275314531 0.275314531 As -0.275314475 -0.275314531 -0.275314531 new positions in cart coord (alat unit) As 0.000000007 0.000000000 0.730747965 As -0.000000007 0.000000000 -0.730747965 Ekin = 0.03174661 Ry T = 1120.4 K Etot = -25.46118852 CELL_PARAMETERS (alat) 0.607123293 0.000000000 0.884743141 -0.303561572 0.525784306 0.884743298 -0.303561572 -0.525784306 0.884743298 ATOMIC_POSITIONS (crystal) As 0.275314475 0.275314531 0.275314531 As -0.275314475 -0.275314531 -0.275314531 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1412839), wk = 0.0625000 k( 2) = ( -0.1372593 -0.2377401 0.2354732), wk = 0.1250000 k( 3) = ( 0.2745187 0.4754801 -0.0470947), wk = 0.1250000 k( 4) = ( 0.1372593 0.2377401 0.0470946), wk = 0.1250000 k( 5) = ( -0.2745186 0.0000000 0.3296625), wk = 0.0625000 k( 6) = ( 0.1372593 0.7132202 0.0470946), wk = 0.1250000 k( 7) = ( 0.0000000 0.4754801 0.1412839), wk = 0.1250000 k( 8) = ( 0.5490373 0.0000000 -0.2354732), wk = 0.0625000 k( 9) = ( 0.4117780 -0.2377401 -0.1412840), wk = 0.1250000 k( 10) = ( 0.2745187 0.0000000 -0.0470947), wk = 0.0625000 k( 11) = ( 0.2745187 0.0000000 0.2354732), wk = 0.0625000 k( 12) = ( 0.1372594 -0.2377401 0.3296625), wk = 0.1250000 k( 13) = ( 0.5490374 0.4754801 0.0470946), wk = 0.1250000 k( 14) = ( 0.4117780 0.2377401 0.1412839), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4238518), wk = 0.0625000 k( 16) = ( 0.4117780 0.7132202 0.1412839), wk = 0.1250000 k( 17) = ( 0.2745187 0.4754801 0.2354732), wk = 0.1250000 k( 18) = ( 0.8235560 0.0000000 -0.1412840), wk = 0.0625000 k( 19) = ( 0.6862967 -0.2377401 -0.0470947), wk = 0.1250000 k( 20) = ( 0.5490374 0.0000000 0.0470946), wk = 0.0625000 extrapolated charge 10.27085, renormalised to 10.00000 total cpu time spent up to now is 12.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 13.02 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4502 0.9452 4.8445 4.8445 5.8139 8.8984 9.6269 9.6269 13.7404 k =-0.1373-0.2377 0.2355 band energies (ev): -6.4972 -1.5019 3.4479 4.8255 7.1068 7.4645 8.4571 10.9373 12.9591 k = 0.2745 0.4755-0.0471 band energies (ev): -5.0834 -3.7011 3.9960 4.0200 5.5087 8.3355 9.0551 9.7169 14.7964 k = 0.1373 0.2377 0.0471 band energies (ev): -6.8998 -0.6192 4.0206 4.6925 5.9971 8.6956 9.1661 10.6354 12.6781 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1661 -1.2674 2.3641 3.3938 4.8395 9.1433 10.8484 11.0693 12.9733 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7141 -3.1525 1.4029 2.4103 5.5280 9.0253 11.4767 12.6055 13.1566 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4579 -2.8331 2.2193 4.2804 5.3988 8.7640 10.1806 11.1393 12.8312 k = 0.5490 0.0000-0.2355 band energies (ev): -4.9890 -2.6043 1.5061 2.8875 3.6688 8.8452 12.0507 13.4694 13.8446 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4579 -2.8331 2.2193 4.2804 5.3988 8.7640 10.1806 11.1393 12.8312 k = 0.2745 0.0000-0.0471 band energies (ev): -6.8998 -0.6192 4.0206 4.6925 5.9971 8.6956 9.1661 10.6354 12.6781 k = 0.2745 0.0000 0.2355 band energies (ev): -6.4972 -1.5019 3.4479 4.8255 7.1068 7.4645 8.4571 10.9373 12.9591 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1661 -1.2674 2.3641 3.3938 4.8395 9.1433 10.8484 11.0693 12.9733 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7141 -3.1525 1.4029 2.4103 5.5280 9.0253 11.4767 12.6055 13.1566 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4579 -2.8331 2.2193 4.2804 5.3988 8.7640 10.1806 11.1393 12.8312 k = 0.0000 0.0000 0.4239 band energies (ev): -6.3825 -1.9172 4.9767 4.9767 5.8530 7.7839 7.7839 8.7438 14.6576 k = 0.4118 0.7132 0.1413 band energies (ev): -5.4713 -2.4770 1.5916 3.9207 5.2594 9.2511 9.2743 12.0256 14.3704 k = 0.2745 0.4755 0.2355 band energies (ev): -4.9890 -2.6043 1.5061 2.8875 3.6688 8.8452 12.0507 13.4694 13.8446 k = 0.8236 0.0000-0.1413 band energies (ev): -5.4713 -2.4770 1.5916 3.9207 5.2594 9.2511 9.2743 12.0256 14.3704 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7141 -3.1525 1.4029 2.4103 5.5280 9.0253 11.4768 12.6055 13.1566 k = 0.5490 0.0000 0.0471 band energies (ev): -5.0834 -3.7011 3.9960 4.0200 5.5087 8.3355 9.0551 9.7169 14.7964 the Fermi energy is 7.1641 ev total energy = -25.49641333 Ry Harris-Foulkes estimate = -25.64584864 Ry estimated scf accuracy < 0.00052271 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-06, avg # of iterations = 3.0 total cpu time spent up to now is 13.51 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.5043 0.8395 4.7777 4.7777 5.7796 8.8589 9.6006 9.6007 13.8264 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5588 -1.5857 3.4378 4.7580 7.0978 7.4190 8.4503 10.8951 13.0419 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1576 -3.7666 3.9468 4.0129 5.5055 8.3085 9.0473 9.7081 14.8896 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9557 -0.7223 3.9716 4.6661 5.9631 8.6745 9.1535 10.5975 12.7705 k =-0.2745 0.0000 0.3297 band energies (ev): -6.2347 -1.3576 2.3583 3.3593 4.8485 9.1549 10.7847 11.0150 13.0158 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7999 -3.2340 1.4198 2.4211 5.4973 8.9913 11.4992 12.5425 13.1630 k = 0.0000 0.4755 0.1413 band energies (ev): -5.5246 -2.9210 2.2134 4.2863 5.3570 8.7660 10.1296 11.1136 12.8939 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0697 -2.6959 1.5317 2.8585 3.6726 8.8979 11.9852 13.4745 13.7554 k = 0.4118-0.2377-0.1413 band energies (ev): -5.5246 -2.9210 2.2134 4.2863 5.3570 8.7660 10.1296 11.1136 12.8939 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9557 -0.7223 3.9716 4.6661 5.9631 8.6745 9.1535 10.5975 12.7705 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5588 -1.5857 3.4378 4.7580 7.0978 7.4190 8.4503 10.8951 13.0419 k = 0.1373-0.2377 0.3297 band energies (ev): -6.2347 -1.3576 2.3583 3.3593 4.8485 9.1549 10.7847 11.0150 13.0158 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7999 -3.2340 1.4198 2.4211 5.4973 8.9913 11.4992 12.5425 13.1630 k = 0.4118 0.2377 0.1413 band energies (ev): -5.5246 -2.9210 2.2134 4.2863 5.3570 8.7660 10.1296 11.1136 12.8939 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4559 -1.9592 4.9124 4.9124 5.8233 7.7795 7.7795 8.7236 14.7667 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5582 -2.5335 1.6002 3.8808 5.2678 9.1898 9.2370 11.9617 14.4660 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0697 -2.6959 1.5317 2.8585 3.6726 8.8979 11.9852 13.4745 13.7554 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5582 -2.5335 1.6002 3.8808 5.2678 9.1898 9.2370 11.9617 14.4660 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7999 -3.2340 1.4198 2.4211 5.4973 8.9913 11.4992 12.5425 13.1630 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1576 -3.7666 3.9468 4.0129 5.5055 8.3085 9.0473 9.7081 14.8896 the Fermi energy is 7.1551 ev total energy = -25.49700723 Ry Harris-Foulkes estimate = -25.49711060 Ry estimated scf accuracy < 0.00024129 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.79 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4829 0.8588 4.8011 4.8011 5.7949 8.8788 9.6186 9.6186 13.8274 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5361 -1.5653 3.4508 4.7843 7.1177 7.4282 8.4582 10.9138 13.0478 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1333 -3.7462 3.9702 4.0232 5.5170 8.3246 9.0550 9.7184 14.8922 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9343 -0.6978 3.9933 4.6797 5.9749 8.6872 9.1745 10.6125 12.7728 k =-0.2745 0.0000 0.3297 band energies (ev): -6.2106 -1.3382 2.3748 3.3786 4.8532 9.1735 10.8060 11.0344 13.0185 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7736 -3.2117 1.4317 2.4301 5.5091 9.0086 11.5145 12.5634 13.1720 k = 0.0000 0.4755 0.1413 band energies (ev): -5.5019 -2.8969 2.2313 4.2919 5.3715 8.7758 10.1501 11.1314 12.8997 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0453 -2.6694 1.5359 2.8774 3.6803 8.9116 12.0029 13.4830 13.7761 k = 0.4118-0.2377-0.1413 band energies (ev): -5.5019 -2.8969 2.2313 4.2919 5.3715 8.7758 10.1501 11.1314 12.8997 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9343 -0.6978 3.9933 4.6797 5.9749 8.6872 9.1745 10.6125 12.7728 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5361 -1.5653 3.4508 4.7843 7.1177 7.4282 8.4582 10.9138 13.0478 k = 0.1373-0.2377 0.3297 band energies (ev): -6.2106 -1.3382 2.3748 3.3786 4.8532 9.1735 10.8060 11.0344 13.0185 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7736 -3.2117 1.4317 2.4301 5.5091 9.0086 11.5145 12.5634 13.1720 k = 0.4118 0.2377 0.1413 band energies (ev): -5.5019 -2.8969 2.2313 4.2918 5.3715 8.7758 10.1501 11.1314 12.8997 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4297 -1.9504 4.9367 4.9367 5.8493 7.7913 7.7913 8.7275 14.7732 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5295 -2.5215 1.6144 3.9018 5.2771 9.2109 9.2515 11.9832 14.4686 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0453 -2.6694 1.5359 2.8774 3.6803 8.9116 12.0029 13.4830 13.7761 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5295 -2.5215 1.6144 3.9018 5.2771 9.2109 9.2515 11.9832 14.4686 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7736 -3.2117 1.4317 2.4301 5.5091 9.0086 11.5145 12.5634 13.1720 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1333 -3.7462 3.9702 4.0232 5.5170 8.3246 9.0550 9.7184 14.8922 the Fermi energy is 7.1750 ev total energy = -25.49700579 Ry Harris-Foulkes estimate = -25.49702159 Ry estimated scf accuracy < 0.00003566 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-07, avg # of iterations = 1.2 total cpu time spent up to now is 14.09 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4729 0.8710 4.8115 4.8115 5.8030 8.8873 9.6270 9.6270 13.8289 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5257 -1.5540 3.4577 4.7951 7.1256 7.4364 8.4646 10.9230 13.0504 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1222 -3.7358 3.9799 4.0298 5.5238 8.3328 9.0615 9.7253 14.8939 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9243 -0.6853 4.0028 4.6875 5.9827 8.6949 9.1824 10.6212 12.7745 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1998 -1.3268 2.3818 3.3873 4.8587 9.1801 10.8164 11.0442 13.0227 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7618 -3.2005 1.4376 2.4358 5.5168 9.0171 11.5208 12.5737 13.1782 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4913 -2.8852 2.2387 4.2974 5.3800 8.7821 10.1598 11.1397 12.9032 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0339 -2.6573 1.5405 2.8857 3.6862 8.9161 12.0130 13.4894 13.7876 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4913 -2.8852 2.2387 4.2974 5.3800 8.7821 10.1598 11.1397 12.9032 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9243 -0.6853 4.0028 4.6875 5.9827 8.6949 9.1824 10.6212 12.7745 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5257 -1.5540 3.4577 4.7951 7.1256 7.4364 8.4646 10.9230 13.0504 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1998 -1.3268 2.3818 3.3873 4.8587 9.1801 10.8164 11.0442 13.0227 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7618 -3.2005 1.4376 2.4358 5.5168 9.0171 11.5208 12.5737 13.1782 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4913 -2.8852 2.2387 4.2974 5.3800 8.7821 10.1598 11.1397 12.9032 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4185 -1.9421 4.9471 4.9471 5.8582 7.7981 7.7981 8.7345 14.7757 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5175 -2.5122 1.6206 3.9108 5.2831 9.2209 9.2600 11.9936 14.4708 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0339 -2.6572 1.5405 2.8857 3.6862 8.9161 12.0130 13.4894 13.7876 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5175 -2.5122 1.6206 3.9108 5.2831 9.2209 9.2600 11.9936 14.4708 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7618 -3.2005 1.4376 2.4358 5.5168 9.0171 11.5208 12.5737 13.1782 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1222 -3.7358 3.9799 4.0297 5.5237 8.3328 9.0615 9.7253 14.8939 the Fermi energy is 7.1828 ev total energy = -25.49700764 Ry Harris-Foulkes estimate = -25.49700906 Ry estimated scf accuracy < 0.00000264 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.64E-08, avg # of iterations = 3.0 total cpu time spent up to now is 14.55 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4689 0.8753 4.8158 4.8158 5.8061 8.8909 9.6304 9.6304 13.8293 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5215 -1.5498 3.4603 4.7997 7.1290 7.4390 8.4667 10.9266 13.0516 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1177 -3.7318 3.9840 4.0321 5.5263 8.3360 9.0635 9.7277 14.8945 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9203 -0.6805 4.0068 4.6904 5.9855 8.6977 9.1859 10.6244 12.7751 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1954 -1.3226 2.3848 3.3908 4.8604 9.1832 10.8205 11.0480 13.0239 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7570 -3.1961 1.4399 2.4379 5.5196 9.0204 11.5235 12.5778 13.1803 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4871 -2.8806 2.2419 4.2991 5.3831 8.7844 10.1638 11.1430 12.9045 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0293 -2.6523 1.5420 2.8892 3.6881 8.9183 12.0167 13.4915 13.7919 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4871 -2.8806 2.2419 4.2991 5.3831 8.7844 10.1638 11.1430 12.9045 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9203 -0.6805 4.0068 4.6904 5.9855 8.6977 9.1859 10.6244 12.7751 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5215 -1.5498 3.4603 4.7997 7.1290 7.4390 8.4667 10.9266 13.0516 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1954 -1.3226 2.3848 3.3908 4.8604 9.1832 10.8205 11.0480 13.0239 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7570 -3.1961 1.4399 2.4379 5.5196 9.0204 11.5235 12.5778 13.1803 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4871 -2.8806 2.2419 4.2991 5.3831 8.7844 10.1638 11.1430 12.9045 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4138 -1.9395 4.9515 4.9515 5.8624 7.8006 7.8006 8.7364 14.7770 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5124 -2.5091 1.6232 3.9146 5.2853 9.2249 9.2631 11.9977 14.4716 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0293 -2.6523 1.5420 2.8892 3.6881 8.9183 12.0167 13.4915 13.7919 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5124 -2.5091 1.6232 3.9146 5.2853 9.2249 9.2631 11.9977 14.4716 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7570 -3.1961 1.4399 2.4379 5.5196 9.0204 11.5235 12.5778 13.1803 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1177 -3.7318 3.9840 4.0321 5.5263 8.3360 9.0635 9.7277 14.8945 the Fermi energy is 7.1863 ev total energy = -25.49700936 Ry Harris-Foulkes estimate = -25.49700942 Ry estimated scf accuracy < 0.00000028 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 14.87 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4692 0.8750 4.8155 4.8155 5.8060 8.8907 9.6302 9.6302 13.8293 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5218 -1.5501 3.4602 4.7994 7.1288 7.4389 8.4665 10.9263 13.0515 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1180 -3.7321 3.9837 4.0319 5.5261 8.3358 9.0634 9.7276 14.8945 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9206 -0.6808 4.0065 4.6902 5.9853 8.6975 9.1857 10.6242 12.7751 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1957 -1.3229 2.3846 3.3906 4.8603 9.1830 10.8202 11.0477 13.0239 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7574 -3.1964 1.4397 2.4377 5.5194 9.0202 11.5233 12.5775 13.1802 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4874 -2.8809 2.2417 4.2990 5.3829 8.7842 10.1635 11.1428 12.9044 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0296 -2.6527 1.5419 2.8889 3.6880 8.9182 12.0165 13.4914 13.7916 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4874 -2.8809 2.2417 4.2990 5.3829 8.7842 10.1635 11.1428 12.9044 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9206 -0.6808 4.0065 4.6902 5.9853 8.6975 9.1857 10.6242 12.7751 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5218 -1.5501 3.4602 4.7994 7.1288 7.4389 8.4665 10.9263 13.0515 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1957 -1.3229 2.3846 3.3906 4.8603 9.1830 10.8202 11.0477 13.0239 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7574 -3.1964 1.4397 2.4377 5.5194 9.0202 11.5233 12.5775 13.1802 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4874 -2.8809 2.2417 4.2990 5.3829 8.7842 10.1635 11.1428 12.9044 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4142 -1.9397 4.9512 4.9512 5.8621 7.8004 7.8004 8.7364 14.7770 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5128 -2.5094 1.6230 3.9143 5.2852 9.2246 9.2629 11.9974 14.4716 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0296 -2.6527 1.5419 2.8889 3.6880 8.9182 12.0165 13.4914 13.7916 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5128 -2.5094 1.6230 3.9143 5.2852 9.2246 9.2629 11.9974 14.4716 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7574 -3.1964 1.4397 2.4377 5.5194 9.0202 11.5233 12.5775 13.1802 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1180 -3.7321 3.9837 4.0319 5.5261 8.3357 9.0634 9.7276 14.8945 the Fermi energy is 7.1860 ev total energy = -25.49700929 Ry Harris-Foulkes estimate = -25.49700937 Ry estimated scf accuracy < 0.00000014 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 2.0 total cpu time spent up to now is 15.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.1413 ( 531 PWs) bands (ev): -7.4699 0.8743 4.8147 4.8147 5.8055 8.8901 9.6296 9.6296 13.8293 k =-0.1373-0.2377 0.2355 ( 522 PWs) bands (ev): -6.5225 -1.5509 3.4597 4.7985 7.1282 7.4385 8.4662 10.9257 13.0514 k = 0.2745 0.4755-0.0471 ( 520 PWs) bands (ev): -5.1188 -3.7328 3.9829 4.0316 5.5257 8.3352 9.0630 9.7272 14.8945 k = 0.1373 0.2377 0.0471 ( 525 PWs) bands (ev): -6.9213 -0.6817 4.0058 4.6898 5.9849 8.6971 9.1851 10.6236 12.7751 k =-0.2745 0.0000 0.3297 ( 519 PWs) bands (ev): -6.1965 -1.3236 2.3841 3.3899 4.8601 9.1824 10.8195 11.0470 13.0238 k = 0.1373 0.7132 0.0471 ( 510 PWs) bands (ev): -4.7582 -3.1972 1.4394 2.4374 5.5190 9.0196 11.5229 12.5767 13.1799 k = 0.0000 0.4755 0.1413 ( 521 PWs) bands (ev): -5.4881 -2.8817 2.2411 4.2987 5.3824 8.7839 10.1628 11.1422 12.9043 k = 0.5490 0.0000-0.2355 ( 510 PWs) bands (ev): -5.0304 -2.6536 1.5417 2.8883 3.6878 8.9178 12.0158 13.4911 13.7908 k = 0.4118-0.2377-0.1413 ( 521 PWs) bands (ev): -5.4881 -2.8817 2.2411 4.2987 5.3824 8.7839 10.1628 11.1422 12.9043 k = 0.2745 0.0000-0.0471 ( 525 PWs) bands (ev): -6.9213 -0.6817 4.0058 4.6898 5.9849 8.6971 9.1851 10.6236 12.7751 k = 0.2745 0.0000 0.2355 ( 522 PWs) bands (ev): -6.5225 -1.5509 3.4597 4.7985 7.1282 7.4385 8.4662 10.9257 13.0514 k = 0.1373-0.2377 0.3297 ( 519 PWs) bands (ev): -6.1965 -1.3236 2.3841 3.3899 4.8601 9.1824 10.8195 11.0470 13.0238 k = 0.5490 0.4755 0.0471 ( 510 PWs) bands (ev): -4.7582 -3.1972 1.4394 2.4374 5.5190 9.0196 11.5229 12.5767 13.1799 k = 0.4118 0.2377 0.1413 ( 521 PWs) bands (ev): -5.4881 -2.8817 2.2411 4.2987 5.3824 8.7839 10.1628 11.1422 12.9043 k = 0.0000 0.0000 0.4239 ( 522 PWs) bands (ev): -6.4150 -1.9401 4.9504 4.9504 5.8614 7.8000 7.8000 8.7361 14.7769 k = 0.4118 0.7132 0.1413 ( 520 PWs) bands (ev): -5.5137 -2.5099 1.6226 3.9136 5.2849 9.2240 9.2623 11.9967 14.4716 k = 0.2745 0.4755 0.2355 ( 510 PWs) bands (ev): -5.0304 -2.6536 1.5417 2.8883 3.6878 8.9178 12.0158 13.4911 13.7908 k = 0.8236 0.0000-0.1413 ( 520 PWs) bands (ev): -5.5137 -2.5099 1.6226 3.9136 5.2849 9.2240 9.2623 11.9967 14.4716 k = 0.6863-0.2377-0.0471 ( 510 PWs) bands (ev): -4.7582 -3.1972 1.4394 2.4374 5.5190 9.0196 11.5229 12.5767 13.1799 k = 0.5490 0.0000 0.0471 ( 520 PWs) bands (ev): -5.1188 -3.7328 3.9829 4.0316 5.5257 8.3352 9.0630 9.7272 14.8945 the Fermi energy is 7.1855 ev ! total energy = -25.49700931 Ry Harris-Foulkes estimate = -25.49700931 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000006 0.00000000 -0.00454326 atom 2 type 1 force = -0.00000006 0.00000000 0.00454326 Total force = 0.006425 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -35.67 -0.00029479 0.00000000 0.00000000 -43.37 0.00 0.00 0.00000000 -0.00029479 0.00000000 0.00 -43.37 0.00 0.00000000 0.00000000 -0.00013779 0.00 0.00 -20.27 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.605258663 0.000000000 0.910002226 -0.302629258 0.524169475 0.910002438 -0.302629258 -0.524169475 0.910002438 new unit-cell volume = 298.3960 (a.u.)^3 new positions in cryst coord As 0.276932786 0.276932813 0.276932813 As -0.276932786 -0.276932813 -0.276932813 new positions in cart coord (alat unit) As 0.000000024 0.000000000 0.756028522 As -0.000000024 0.000000000 -0.756028522 Ekin = 0.03615244 Ry T = 1157.4 K Etot = -25.46085687 CELL_PARAMETERS (alat) 0.605258663 0.000000000 0.910002226 -0.302629258 0.524169475 0.910002438 -0.302629258 -0.524169475 0.910002438 ATOMIC_POSITIONS (crystal) As 0.276932786 0.276932813 0.276932813 As -0.276932786 -0.276932813 -0.276932813 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1373623), wk = 0.0625000 k( 2) = ( -0.1376821 -0.2384725 0.2289371), wk = 0.1250000 k( 3) = ( 0.2753644 0.4769450 -0.0457874), wk = 0.1250000 k( 4) = ( 0.1376822 0.2384725 0.0457874), wk = 0.1250000 k( 5) = ( -0.2753643 0.0000000 0.3205120), wk = 0.0625000 k( 6) = ( 0.1376822 0.7154175 0.0457874), wk = 0.1250000 k( 7) = ( 0.0000000 0.4769450 0.1373623), wk = 0.1250000 k( 8) = ( 0.5507287 0.0000000 -0.2289372), wk = 0.0625000 k( 9) = ( 0.4130465 -0.2384725 -0.1373623), wk = 0.1250000 k( 10) = ( 0.2753644 0.0000000 -0.0457874), wk = 0.0625000 k( 11) = ( 0.2753644 0.0000000 0.2289371), wk = 0.0625000 k( 12) = ( 0.1376823 -0.2384725 0.3205120), wk = 0.1250000 k( 13) = ( 0.5507288 0.4769450 0.0457874), wk = 0.1250000 k( 14) = ( 0.4130466 0.2384725 0.1373623), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4120868), wk = 0.0625000 k( 16) = ( 0.4130466 0.7154175 0.1373623), wk = 0.1250000 k( 17) = ( 0.2753644 0.4769450 0.2289371), wk = 0.1250000 k( 18) = ( 0.8260931 0.0000000 -0.1373623), wk = 0.0625000 k( 19) = ( 0.6884110 -0.2384725 -0.0457875), wk = 0.1250000 k( 20) = ( 0.5507288 0.0000000 0.0457874), wk = 0.0625000 extrapolated charge 10.21757, renormalised to 10.00000 total cpu time spent up to now is 15.51 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.5 total cpu time spent up to now is 16.22 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6408 0.5462 4.6422 4.6422 5.4720 8.4652 9.3171 9.3171 13.6722 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7176 -1.7314 3.1009 4.4942 6.9101 7.1392 8.3797 10.5569 12.7261 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3101 -3.8956 3.6575 3.7090 5.3012 7.9532 8.9059 9.2561 14.2844 k = 0.1377 0.2385 0.0458 band energies (ev): -7.0782 -0.9132 3.8134 4.3313 5.6057 8.3910 8.7929 10.3050 12.4417 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4274 -1.5558 2.1122 3.2623 4.7121 8.8537 10.5541 10.7778 12.8564 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0117 -3.3685 1.2679 2.1931 5.2348 8.8380 11.2031 12.1440 12.8090 k = 0.0000 0.4769 0.1374 band energies (ev): -5.6595 -3.0816 1.9825 4.0957 4.9418 8.4891 9.8589 10.7826 12.5509 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2379 -2.9271 1.3927 2.7462 3.4593 8.4854 11.6675 13.2032 13.3765 k = 0.4130-0.2385-0.1374 band energies (ev): -5.6595 -3.0816 1.9825 4.0957 4.9418 8.4891 9.8589 10.7826 12.5509 k = 0.2754 0.0000-0.0458 band energies (ev): -7.0782 -0.9132 3.8134 4.3313 5.6057 8.3910 8.7929 10.3050 12.4417 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7176 -1.7314 3.1009 4.4942 6.9101 7.1392 8.3797 10.5569 12.7261 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4274 -1.5558 2.1122 3.2623 4.7121 8.8537 10.5541 10.7778 12.8564 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0117 -3.3685 1.2679 2.1931 5.2348 8.8380 11.2031 12.1440 12.8090 k = 0.4130 0.2385 0.1374 band energies (ev): -5.6595 -3.0816 1.9825 4.0957 4.9418 8.4891 9.8589 10.7826 12.5509 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7058 -2.1246 4.7631 4.7631 5.6760 7.6958 7.6958 8.5673 14.3197 k = 0.4130 0.7154 0.1374 band energies (ev): -5.8393 -2.6367 1.4295 3.7302 5.1649 8.9597 9.1314 11.6790 14.1047 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2379 -2.9271 1.3927 2.7462 3.4593 8.4854 11.6675 13.2032 13.3765 k = 0.8261 0.0000-0.1374 band energies (ev): -5.8393 -2.6367 1.4295 3.7302 5.1649 8.9597 9.1314 11.6790 14.1047 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0117 -3.3685 1.2679 2.1931 5.2348 8.8380 11.2031 12.1440 12.8090 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3101 -3.8956 3.6575 3.7090 5.3012 7.9532 8.9059 9.2561 14.2844 the Fermi energy is 6.9677 ev total energy = -25.49508706 Ry Harris-Foulkes estimate = -25.61046311 Ry estimated scf accuracy < 0.00016872 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-06, avg # of iterations = 3.1 total cpu time spent up to now is 16.79 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6927 0.4913 4.5777 4.5777 5.4527 8.4224 9.2895 9.2895 13.7503 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7769 -1.7877 3.0991 4.4217 6.8819 7.1366 8.3951 10.5246 12.7849 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3803 -3.9471 3.6518 3.6663 5.3061 7.9328 8.9258 9.2741 14.3716 k = 0.1377 0.2385 0.0458 band energies (ev): -7.1305 -0.9919 3.7615 4.3193 5.5991 8.3969 8.7567 10.2858 12.5202 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4941 -1.6087 2.0991 3.2239 4.7450 8.8388 10.4989 10.7350 12.9145 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0918 -3.4328 1.2769 2.2135 5.2305 8.8118 11.1969 12.0986 12.8415 k = 0.0000 0.4769 0.1374 band energies (ev): -5.7205 -3.1549 1.9629 4.1244 4.9251 8.5101 9.8196 10.7513 12.6057 k = 0.5507 0.0000-0.2289 band energies (ev): -5.3102 -3.0083 1.4354 2.7114 3.4816 8.5017 11.6317 13.1978 13.3605 k = 0.4130-0.2385-0.1374 band energies (ev): -5.7205 -3.1549 1.9629 4.1244 4.9251 8.5101 9.8196 10.7513 12.6057 k = 0.2754 0.0000-0.0458 band energies (ev): -7.1305 -0.9919 3.7615 4.3193 5.5991 8.3969 8.7567 10.2858 12.5202 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7769 -1.7877 3.0991 4.4217 6.8819 7.1366 8.3951 10.5246 12.7849 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4941 -1.6087 2.0991 3.2239 4.7450 8.8388 10.4989 10.7350 12.9145 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0918 -3.4328 1.2769 2.2135 5.2305 8.8118 11.1969 12.0986 12.8415 k = 0.4130 0.2385 0.1374 band energies (ev): -5.7205 -3.1549 1.9629 4.1244 4.9251 8.5101 9.8196 10.7513 12.6057 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7810 -2.1201 4.6965 4.6965 5.6172 7.6966 7.6966 8.5869 14.3948 k = 0.4130 0.7154 0.1374 band energies (ev): -5.9267 -2.6532 1.4281 3.6838 5.1817 8.9078 9.1132 11.6233 14.1841 k = 0.2754 0.4769 0.2289 band energies (ev): -5.3102 -3.0083 1.4354 2.7114 3.4816 8.5017 11.6317 13.1978 13.3605 k = 0.8261 0.0000-0.1374 band energies (ev): -5.9267 -2.6532 1.4281 3.6838 5.1817 8.9078 9.1132 11.6233 14.1841 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0918 -3.4328 1.2769 2.2135 5.2305 8.8118 11.1969 12.0985 12.8415 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3803 -3.9471 3.6518 3.6663 5.3061 7.9328 8.9258 9.2741 14.3716 the Fermi energy is 7.0793 ev total energy = -25.49551376 Ry Harris-Foulkes estimate = -25.49560614 Ry estimated scf accuracy < 0.00026293 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-06, avg # of iterations = 1.0 total cpu time spent up to now is 17.11 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6760 0.5031 4.5962 4.5962 5.4630 8.4383 9.3029 9.3029 13.7508 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7592 -1.7734 3.1084 4.4424 6.8977 7.1411 8.3999 10.5378 12.7902 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3614 -3.9319 3.6705 3.6730 5.3138 7.9446 8.9298 9.2794 14.3724 k = 0.1377 0.2385 0.0458 band energies (ev): -7.1140 -0.9741 3.7788 4.3288 5.6062 8.4045 8.7737 10.2961 12.5223 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4753 -1.5958 2.1118 3.2393 4.7468 8.8541 10.5148 10.7492 12.9151 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0715 -3.4162 1.2862 2.2195 5.2377 8.8242 11.2097 12.1135 12.8462 k = 0.0000 0.4769 0.1374 band energies (ev): -5.7030 -3.1368 1.9770 4.1272 4.9344 8.5156 9.8340 10.7654 12.6102 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2914 -2.9883 1.4371 2.7266 3.4857 8.5136 11.6434 13.2076 13.3681 k = 0.4130-0.2385-0.1374 band energies (ev): -5.7030 -3.1368 1.9770 4.1272 4.9344 8.5156 9.8340 10.7654 12.6102 k = 0.2754 0.0000-0.0458 band energies (ev): -7.1140 -0.9741 3.7788 4.3288 5.6062 8.4045 8.7737 10.2961 12.5223 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7592 -1.7734 3.1084 4.4424 6.8977 7.1411 8.3999 10.5378 12.7902 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4753 -1.5958 2.1118 3.2393 4.7468 8.8541 10.5148 10.7492 12.9151 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0715 -3.4162 1.2862 2.2195 5.2377 8.8242 11.2097 12.1135 12.8462 k = 0.4130 0.2385 0.1374 band energies (ev): -5.7030 -3.1368 1.9770 4.1272 4.9344 8.5156 9.8340 10.7654 12.6102 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7605 -2.1162 4.7159 4.7159 5.6386 7.7052 7.7052 8.5876 14.3994 k = 0.4130 0.7154 0.1374 band energies (ev): -5.9045 -2.6459 1.4394 3.7007 5.1877 8.9234 9.1231 11.6397 14.1852 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2914 -2.9883 1.4371 2.7266 3.4857 8.5136 11.6434 13.2076 13.3681 k = 0.8261 0.0000-0.1374 band energies (ev): -5.9045 -2.6459 1.4394 3.7007 5.1877 8.9234 9.1231 11.6397 14.1852 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0715 -3.4162 1.2862 2.2195 5.2377 8.8242 11.2097 12.1135 12.8462 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3614 -3.9319 3.6705 3.6730 5.3138 7.9446 8.9298 9.2794 14.3724 the Fermi energy is 7.0838 ev total energy = -25.49548208 Ry Harris-Foulkes estimate = -25.49552309 Ry estimated scf accuracy < 0.00007531 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.53E-07, avg # of iterations = 2.0 total cpu time spent up to now is 17.47 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6577 0.5198 4.6162 4.6162 5.4755 8.4549 9.3179 9.3179 13.7524 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7400 -1.7558 3.1196 4.4640 6.9135 7.1504 8.4079 10.5530 12.7957 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3408 -3.9143 3.6823 3.6900 5.3239 7.9583 8.9372 9.2876 14.3740 k = 0.1377 0.2385 0.0458 band energies (ev): -7.0957 -0.9532 3.7973 4.3409 5.6167 8.4146 8.7904 10.3093 12.5250 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4550 -1.5789 2.1252 3.2560 4.7522 8.8687 10.5328 10.7658 12.9185 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0496 -3.3970 1.2968 2.2277 5.2482 8.8384 11.2230 12.1305 12.8533 k = 0.0000 0.4769 0.1374 band energies (ev): -5.6837 -3.1162 1.9917 4.1335 4.9468 8.5235 9.8502 10.7808 12.6157 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2707 -2.9663 1.4420 2.7429 3.4928 8.5247 11.6585 13.2200 13.3794 k = 0.4130-0.2385-0.1374 band energies (ev): -5.6837 -3.1162 1.9917 4.1335 4.9468 8.5235 9.8502 10.7808 12.6157 k = 0.2754 0.0000-0.0458 band energies (ev): -7.0957 -0.9532 3.7973 4.3409 5.6167 8.4146 8.7904 10.3093 12.5250 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7400 -1.7558 3.1196 4.4640 6.9135 7.1504 8.4079 10.5530 12.7957 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4550 -1.5789 2.1252 3.2560 4.7522 8.8687 10.5328 10.7658 12.9185 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0496 -3.3970 1.2968 2.2277 5.2482 8.8384 11.2230 12.1305 12.8533 k = 0.4130 0.2385 0.1374 band energies (ev): -5.6837 -3.1162 1.9917 4.1335 4.9468 8.5235 9.8502 10.7808 12.6157 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7389 -2.1075 4.7365 4.7365 5.6588 7.7158 7.7158 8.5938 14.4034 k = 0.4130 0.7154 0.1374 band energies (ev): -5.8813 -2.6342 1.4514 3.7186 5.1961 8.9410 9.1359 11.6580 14.1874 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2707 -2.9663 1.4420 2.7429 3.4928 8.5247 11.6585 13.2200 13.3794 k = 0.8261 0.0000-0.1374 band energies (ev): -5.8813 -2.6342 1.4514 3.7186 5.1961 8.9410 9.1359 11.6580 14.1875 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0496 -3.3970 1.2968 2.2277 5.2482 8.8384 11.2230 12.1305 12.8533 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3408 -3.9143 3.6823 3.6900 5.3238 7.9583 8.9372 9.2876 14.3740 the Fermi energy is 7.0930 ev total energy = -25.49549228 Ry Harris-Foulkes estimate = -25.49549248 Ry estimated scf accuracy < 0.00000039 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.93E-09, avg # of iterations = 2.9 total cpu time spent up to now is 17.88 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6558 0.5218 4.6184 4.6184 5.4770 8.4567 9.3196 9.3196 13.7527 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7379 -1.7538 3.1209 4.4663 6.9152 7.1516 8.4088 10.5547 12.7964 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3386 -3.9123 3.6834 3.6921 5.3250 7.9598 8.9381 9.2886 14.3742 k = 0.1377 0.2385 0.0458 band energies (ev): -7.0937 -0.9509 3.7993 4.3423 5.6180 8.4158 8.7922 10.3108 12.5253 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4528 -1.5770 2.1267 3.2579 4.7529 8.8703 10.5348 10.7676 12.9190 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0472 -3.3949 1.2979 2.2286 5.2495 8.8400 11.2244 12.1324 12.8541 k = 0.0000 0.4769 0.1374 band energies (ev): -5.6816 -3.1140 1.9933 4.1343 4.9482 8.5244 9.8520 10.7825 12.6164 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2685 -2.9640 1.4426 2.7446 3.4937 8.5259 11.6602 13.2215 13.3807 k = 0.4130-0.2385-0.1374 band energies (ev): -5.6816 -3.1140 1.9933 4.1343 4.9482 8.5244 9.8520 10.7825 12.6164 k = 0.2754 0.0000-0.0458 band energies (ev): -7.0937 -0.9509 3.7993 4.3423 5.6180 8.4158 8.7922 10.3108 12.5253 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7379 -1.7538 3.1209 4.4663 6.9152 7.1516 8.4088 10.5547 12.7964 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4528 -1.5770 2.1267 3.2579 4.7529 8.8703 10.5348 10.7676 12.9190 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0472 -3.3949 1.2979 2.2286 5.2495 8.8400 11.2244 12.1324 12.8541 k = 0.4130 0.2385 0.1374 band energies (ev): -5.6816 -3.1140 1.9933 4.1343 4.9482 8.5244 9.8520 10.7825 12.6164 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7366 -2.1064 4.7387 4.7387 5.6609 7.7170 7.7170 8.5947 14.4040 k = 0.4130 0.7154 0.1374 band energies (ev): -5.8788 -2.6328 1.4527 3.7206 5.1971 8.9429 9.1373 11.6600 14.1878 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2685 -2.9640 1.4426 2.7446 3.4937 8.5259 11.6602 13.2215 13.3807 k = 0.8261 0.0000-0.1374 band energies (ev): -5.8788 -2.6328 1.4527 3.7206 5.1971 8.9429 9.1373 11.6600 14.1878 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0472 -3.3949 1.2979 2.2286 5.2495 8.8400 11.2244 12.1324 12.8541 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3385 -3.9123 3.6834 3.6921 5.3250 7.9598 8.9381 9.2886 14.3742 the Fermi energy is 7.0942 ev total energy = -25.49549274 Ry Harris-Foulkes estimate = -25.49549282 Ry estimated scf accuracy < 0.00000014 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-09, avg # of iterations = 2.0 total cpu time spent up to now is 18.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.1374 ( 531 PWs) bands (ev): -7.6565 0.5212 4.6175 4.6175 5.4765 8.4560 9.3189 9.3189 13.7527 k =-0.1377-0.2385 0.2289 ( 522 PWs) bands (ev): -6.7387 -1.7544 3.1205 4.4654 6.9145 7.1515 8.4086 10.5541 12.7962 k = 0.2754 0.4769-0.0458 ( 520 PWs) bands (ev): -5.3394 -3.9130 3.6831 3.6912 5.3247 7.9593 8.9379 9.2884 14.3742 k = 0.1377 0.2385 0.0458 ( 525 PWs) bands (ev): -7.0945 -0.9517 3.7985 4.3419 5.6177 8.4154 8.7914 10.3103 12.5252 k =-0.2754 0.0000 0.3205 ( 519 PWs) bands (ev): -6.4537 -1.5776 2.1261 3.2572 4.7529 8.8696 10.5341 10.7670 12.9190 k = 0.1377 0.7154 0.0458 ( 510 PWs) bands (ev): -5.0482 -3.3956 1.2975 2.2284 5.2492 8.8394 11.2238 12.1317 12.8539 k = 0.0000 0.4769 0.1374 ( 521 PWs) bands (ev): -5.6824 -3.1148 1.9927 4.1342 4.9478 8.5242 9.8513 10.7818 12.6162 k = 0.5507 0.0000-0.2289 ( 510 PWs) bands (ev): -5.2693 -2.9649 1.4426 2.7440 3.4936 8.5254 11.6597 13.2211 13.3803 k = 0.4130-0.2385-0.1374 ( 521 PWs) bands (ev): -5.6824 -3.1148 1.9927 4.1342 4.9478 8.5242 9.8513 10.7818 12.6162 k = 0.2754 0.0000-0.0458 ( 525 PWs) bands (ev): -7.0945 -0.9517 3.7985 4.3419 5.6177 8.4154 8.7914 10.3103 12.5252 k = 0.2754 0.0000 0.2289 ( 522 PWs) bands (ev): -6.7387 -1.7544 3.1205 4.4654 6.9145 7.1515 8.4086 10.5541 12.7962 k = 0.1377-0.2385 0.3205 ( 519 PWs) bands (ev): -6.4537 -1.5776 2.1261 3.2572 4.7529 8.8696 10.5341 10.7670 12.9190 k = 0.5507 0.4769 0.0458 ( 510 PWs) bands (ev): -5.0482 -3.3956 1.2975 2.2284 5.2492 8.8394 11.2238 12.1317 12.8539 k = 0.4130 0.2385 0.1374 ( 521 PWs) bands (ev): -5.6824 -3.1148 1.9927 4.1342 4.9478 8.5242 9.8513 10.7818 12.6162 k = 0.0000 0.0000 0.4121 ( 522 PWs) bands (ev): -6.7375 -2.1066 4.7378 4.7378 5.6600 7.7166 7.7166 8.5948 14.4038 k = 0.4130 0.7154 0.1374 ( 520 PWs) bands (ev): -5.8798 -2.6331 1.4522 3.7198 5.1969 8.9422 9.1369 11.6593 14.1878 k = 0.2754 0.4769 0.2289 ( 510 PWs) bands (ev): -5.2693 -2.9649 1.4426 2.7440 3.4936 8.5254 11.6597 13.2211 13.3803 k = 0.8261 0.0000-0.1374 ( 520 PWs) bands (ev): -5.8798 -2.6331 1.4522 3.7198 5.1969 8.9422 9.1369 11.6593 14.1878 k = 0.6884-0.2385-0.0458 ( 510 PWs) bands (ev): -5.0482 -3.3956 1.2975 2.2284 5.2492 8.8394 11.2238 12.1317 12.8539 k = 0.5507 0.0000 0.0458 ( 520 PWs) bands (ev): -5.3394 -3.9130 3.6831 3.6912 5.3247 7.9593 8.9379 9.2884 14.3742 the Fermi energy is 7.0940 ev ! total energy = -25.49549276 Ry Harris-Foulkes estimate = -25.49549276 Ry estimated scf accuracy < 8.6E-10 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00851334 atom 2 type 1 force = 0.00000000 0.00000000 0.00851334 Total force = 0.012040 Total SCF correction = 0.000026 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -38.88 -0.00027107 0.00000000 0.00000000 -39.88 0.00 0.00 0.00000000 -0.00027107 0.00000000 0.00 -39.88 0.00 0.00000000 0.00000000 -0.00025081 0.00 0.00 -36.90 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.602026574 0.000000000 0.889945751 -0.301013209 0.521370380 0.889945899 -0.301013209 -0.521370380 0.889945899 new unit-cell volume = 288.7110 (a.u.)^3 new positions in cryst coord As 0.276788771 0.276788798 0.276788798 As -0.276788771 -0.276788798 -0.276788798 new positions in cart coord (alat unit) As 0.000000027 0.000000000 0.738981102 As -0.000000027 0.000000000 -0.738981102 Ekin = 0.00969643 Ry T = 994.0 K Etot = -25.48579633 CELL_PARAMETERS (alat) 0.602026574 0.000000000 0.889945751 -0.301013209 0.521370380 0.889945899 -0.301013209 -0.521370380 0.889945899 ATOMIC_POSITIONS (crystal) As 0.276788771 0.276788798 0.276788798 As -0.276788771 -0.276788798 -0.276788798 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1404580), wk = 0.0625000 k( 2) = ( -0.1384213 -0.2397528 0.2340966), wk = 0.1250000 k( 3) = ( 0.2768427 0.4795056 -0.0468193), wk = 0.1250000 k( 4) = ( 0.1384214 0.2397528 0.0468193), wk = 0.1250000 k( 5) = ( -0.2768427 0.0000000 0.3277353), wk = 0.0625000 k( 6) = ( 0.1384214 0.7192584 0.0468193), wk = 0.1250000 k( 7) = ( 0.0000000 0.4795056 0.1404580), wk = 0.1250000 k( 8) = ( 0.5536854 0.0000000 -0.2340967), wk = 0.0625000 k( 9) = ( 0.4152641 -0.2397528 -0.1404580), wk = 0.1250000 k( 10) = ( 0.2768427 0.0000000 -0.0468193), wk = 0.0625000 k( 11) = ( 0.2768428 0.0000000 0.2340966), wk = 0.0625000 k( 12) = ( 0.1384214 -0.2397528 0.3277353), wk = 0.1250000 k( 13) = ( 0.5536855 0.4795056 0.0468193), wk = 0.1250000 k( 14) = ( 0.4152641 0.2397528 0.1404580), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4213740), wk = 0.0625000 k( 16) = ( 0.4152641 0.7192584 0.1404580), wk = 0.1250000 k( 17) = ( 0.2768428 0.4795056 0.2340966), wk = 0.1250000 k( 18) = ( 0.8305282 0.0000000 -0.1404580), wk = 0.0625000 k( 19) = ( 0.6921068 -0.2397528 -0.0468194), wk = 0.1250000 k( 20) = ( 0.5536855 0.0000000 0.0468193), wk = 0.0625000 extrapolated charge 9.66456, renormalised to 10.00000 total cpu time spent up to now is 18.49 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 19.13 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.5146 1.0202 4.8621 4.8621 5.9361 8.9220 9.7615 9.7615 14.1994 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5713 -1.4454 3.4973 4.7486 7.3141 7.6319 8.7954 11.0906 13.2885 k = 0.2768 0.4795-0.0468 band energies (ev): -5.1500 -3.6863 3.9592 4.1039 5.7239 8.4556 9.3727 9.9118 15.0943 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9483 -0.6094 4.0415 4.7719 6.0731 8.9447 9.2312 10.8211 13.0746 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2662 -1.2129 2.4124 3.4676 5.1227 9.2752 11.0172 11.2283 13.4393 k = 0.1384 0.7193 0.0468 band energies (ev): -4.8228 -3.1481 1.5354 2.5525 5.6565 9.2587 11.6961 12.7020 13.4450 k = 0.0000 0.4795 0.1405 band energies (ev): -5.5031 -2.8563 2.2550 4.5067 5.4093 9.0442 10.3532 11.2758 13.1481 k = 0.5537 0.0000-0.2341 band energies (ev): -5.0605 -2.6835 1.7500 2.9533 3.8592 8.9774 12.2164 13.8294 14.0245 k = 0.4153-0.2398-0.1405 band energies (ev): -5.5031 -2.8563 2.2551 4.5067 5.4093 9.0442 10.3532 11.2757 13.1481 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9483 -0.6094 4.0415 4.7719 6.0731 8.9447 9.2312 10.8211 13.0746 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5713 -1.4454 3.4973 4.7486 7.3141 7.6319 8.7954 11.0906 13.2885 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2662 -1.2129 2.4124 3.4676 5.1227 9.2752 11.0172 11.2283 13.4393 k = 0.5537 0.4795 0.0468 band energies (ev): -4.8228 -3.1481 1.5354 2.5525 5.6565 9.2587 11.6961 12.7020 13.4450 k = 0.4153 0.2398 0.1405 band energies (ev): -5.5031 -2.8563 2.2551 4.5067 5.4093 9.0442 10.3532 11.2757 13.1481 k = 0.0000 0.0000 0.4214 band energies (ev): -6.5361 -1.7518 4.9786 4.9786 6.0085 8.0550 8.0550 9.0681 15.0334 k = 0.4153 0.7193 0.1405 band energies (ev): -5.6518 -2.3267 1.6899 3.9556 5.5444 9.3868 9.5197 12.1470 14.7863 k = 0.2768 0.4795 0.2341 band energies (ev): -5.0605 -2.6835 1.7500 2.9533 3.8592 8.9774 12.2164 13.8294 14.0245 k = 0.8305 0.0000-0.1405 band energies (ev): -5.6518 -2.3267 1.6899 3.9556 5.5444 9.3868 9.5197 12.1470 14.7863 k = 0.6921-0.2398-0.0468 band energies (ev): -4.8228 -3.1481 1.5354 2.5525 5.6565 9.2587 11.6961 12.7020 13.4450 k = 0.5537 0.0000 0.0468 band energies (ev): -5.1500 -3.6863 3.9592 4.1039 5.7239 8.4556 9.3727 9.9118 15.0943 the Fermi energy is 7.5747 ev total energy = -25.49633773 Ry Harris-Foulkes estimate = -25.31446264 Ry estimated scf accuracy < 0.00058788 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.88E-06, avg # of iterations = 3.0 total cpu time spent up to now is 19.62 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4315 1.1185 4.9678 4.9678 5.9735 8.9849 9.8081 9.8081 14.0800 k =-0.1384-0.2398 0.2341 band energies (ev): -6.4769 -1.3500 3.5049 4.8662 7.3547 7.6488 8.7788 11.1489 13.1937 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0386 -3.6015 4.0516 4.0962 5.7204 8.4908 9.3510 9.8959 14.9663 k = 0.1384 0.2398 0.0468 band energies (ev): -6.8645 -0.4794 4.1262 4.7962 6.0912 8.9486 9.2847 10.8596 12.9561 k =-0.2768 0.0000 0.3277 band energies (ev): -6.1601 -1.1195 2.4339 3.5306 5.0785 9.2929 11.1082 11.3011 13.3564 k = 0.1384 0.7193 0.0468 band energies (ev): -4.6945 -3.0426 1.5239 2.5254 5.6720 9.3051 11.6948 12.7801 13.4135 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4055 -2.7374 2.2882 4.4676 5.4450 9.0220 10.4240 11.3192 13.0682 k = 0.5537 0.0000-0.2341 band energies (ev): -4.9442 -2.5520 1.6894 3.0102 3.8311 8.9457 12.2839 13.8193 14.0953 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4055 -2.7374 2.2882 4.4676 5.4450 9.0220 10.4240 11.3192 13.0682 k = 0.2768 0.0000-0.0468 band energies (ev): -6.8645 -0.4794 4.1262 4.7962 6.0912 8.9486 9.2847 10.8596 12.9561 k = 0.2768 0.0000 0.2341 band energies (ev): -6.4769 -1.3500 3.5049 4.8662 7.3547 7.6488 8.7788 11.1489 13.1937 k = 0.1384-0.2398 0.3277 band energies (ev): -6.1601 -1.1195 2.4339 3.5306 5.0785 9.2929 11.1082 11.3011 13.3564 k = 0.5537 0.4795 0.0468 band energies (ev): -4.6945 -3.0426 1.5239 2.5254 5.6720 9.3051 11.6948 12.7801 13.4135 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4055 -2.7374 2.2882 4.4676 5.4450 9.0220 10.4240 11.3192 13.0682 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4170 -1.7483 5.0864 5.0864 6.0941 8.0576 8.0576 9.0442 14.9157 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5127 -2.2914 1.6921 4.0307 5.5223 9.4713 9.5557 12.2357 14.6655 k = 0.2768 0.4795 0.2341 band energies (ev): -4.9442 -2.5520 1.6894 3.0102 3.8311 8.9457 12.2839 13.8193 14.0953 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5127 -2.2914 1.6921 4.0307 5.5223 9.4713 9.5557 12.2357 14.6655 k = 0.6921-0.2398-0.0468 band energies (ev): -4.6945 -3.0426 1.5239 2.5254 5.6720 9.3051 11.6948 12.7801 13.4135 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0386 -3.6015 4.0516 4.0962 5.7204 8.4908 9.3510 9.8959 14.9663 the Fermi energy is 7.4120 ev total energy = -25.49738573 Ry Harris-Foulkes estimate = -25.49759923 Ry estimated scf accuracy < 0.00053273 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.33E-06, avg # of iterations = 1.0 total cpu time spent up to now is 19.92 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4580 1.1006 4.9380 4.9380 5.9561 8.9596 9.7865 9.7865 14.0798 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5050 -1.3724 3.4903 4.8322 7.3296 7.6420 8.7726 11.1271 13.1857 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0689 -3.6254 4.0213 4.0862 5.7084 8.4722 9.3455 9.8873 14.9643 k = 0.1384 0.2398 0.0468 band energies (ev): -6.8907 -0.5079 4.0984 4.7818 6.0803 8.9366 9.2567 10.8436 12.9525 k =-0.2768 0.0000 0.3277 band energies (ev): -6.1902 -1.1394 2.4129 3.5060 5.0771 9.2689 11.0820 11.2785 13.3562 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7273 -3.0688 1.5094 2.5165 5.6610 9.2850 11.6756 12.7562 13.4047 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4333 -2.7663 2.2652 4.4645 5.4301 9.0134 10.4003 11.2971 13.0613 k = 0.5537 0.0000-0.2341 band energies (ev): -4.9742 -2.5847 1.6881 2.9861 3.8249 8.9270 12.2654 13.8115 14.0742 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4333 -2.7663 2.2652 4.4645 5.4301 9.0134 10.4003 11.2971 13.0613 k = 0.2768 0.0000-0.0468 band energies (ev): -6.8907 -0.5079 4.0984 4.7818 6.0803 8.9366 9.2567 10.8436 12.9525 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5050 -1.3724 3.4903 4.8322 7.3296 7.6420 8.7726 11.1271 13.1856 k = 0.1384-0.2398 0.3277 band energies (ev): -6.1902 -1.1394 2.4129 3.5060 5.0771 9.2689 11.0820 11.2785 13.3562 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7273 -3.0688 1.5094 2.5165 5.6610 9.2850 11.6756 12.7562 13.4047 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4333 -2.7663 2.2652 4.4645 5.4301 9.0134 10.4003 11.2971 13.0613 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4501 -1.7529 5.0550 5.0550 6.0581 8.0446 8.0446 9.0458 14.9075 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5490 -2.3012 1.6738 4.0037 5.5134 9.4461 9.5402 12.2095 14.6641 k = 0.2768 0.4795 0.2341 band energies (ev): -4.9742 -2.5847 1.6881 2.9861 3.8249 8.9270 12.2654 13.8115 14.0742 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5490 -2.3012 1.6738 4.0037 5.5134 9.4461 9.5402 12.2095 14.6641 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7273 -3.0688 1.5094 2.5165 5.6610 9.2850 11.6756 12.7562 13.4047 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0689 -3.6254 4.0213 4.0862 5.7084 8.4722 9.3455 9.8873 14.9643 the Fermi energy is 7.3869 ev total energy = -25.49737134 Ry Harris-Foulkes estimate = -25.49741284 Ry estimated scf accuracy < 0.00010919 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-06, avg # of iterations = 1.0 total cpu time spent up to now is 20.22 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4706 1.0884 4.9241 4.9241 5.9467 8.9482 9.7761 9.7761 14.0786 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5183 -1.3850 3.4823 4.8172 7.3189 7.6348 8.7668 11.1162 13.1821 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0832 -3.6377 4.0079 4.0795 5.7012 8.4626 9.3400 9.8810 14.9628 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9034 -0.5227 4.0856 4.7733 6.0725 8.9290 9.2452 10.8342 12.9504 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2042 -1.1516 2.4035 3.4945 5.0730 9.2592 11.0691 11.2668 13.3534 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7426 -3.0823 1.5022 2.5107 5.6533 9.2749 11.6672 12.7441 13.3986 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4467 -2.7807 2.2551 4.4600 5.4210 9.0074 10.3886 11.2868 13.0573 k = 0.5537 0.0000-0.2341 band energies (ev): -4.9886 -2.6001 1.6846 2.9749 3.8196 8.9200 12.2544 13.8053 14.0622 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4467 -2.7807 2.2551 4.4600 5.4210 9.0074 10.3886 11.2868 13.0573 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9034 -0.5227 4.0856 4.7733 6.0725 8.9290 9.2452 10.8342 12.9504 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5183 -1.3850 3.4823 4.8172 7.3189 7.6348 8.7668 11.1162 13.1821 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2042 -1.1516 2.4035 3.4945 5.0730 9.2592 11.0691 11.2668 13.3534 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7426 -3.0823 1.5022 2.5107 5.6533 9.2749 11.6672 12.7441 13.3986 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4467 -2.7807 2.2551 4.4600 5.4210 9.0074 10.3886 11.2868 13.0573 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4650 -1.7594 5.0407 5.0407 6.0441 8.0372 8.0372 9.0413 14.9046 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5652 -2.3096 1.6655 3.9914 5.5073 9.4337 9.5311 12.1967 14.6625 k = 0.2768 0.4795 0.2341 band energies (ev): -4.9886 -2.6001 1.6846 2.9749 3.8196 8.9200 12.2544 13.8053 14.0622 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5652 -2.3096 1.6655 3.9913 5.5073 9.4337 9.5311 12.1967 14.6625 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7426 -3.0823 1.5022 2.5107 5.6533 9.2749 11.6672 12.7441 13.3986 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0832 -3.6377 4.0079 4.0795 5.7012 8.4626 9.3400 9.8810 14.9628 the Fermi energy is 7.3762 ev total energy = -25.49736260 Ry Harris-Foulkes estimate = -25.49737708 Ry estimated scf accuracy < 0.00002461 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-07, avg # of iterations = 3.0 total cpu time spent up to now is 20.63 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4827 1.0769 4.9108 4.9108 5.9379 8.9374 9.7661 9.7661 14.0775 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5310 -1.3969 3.4748 4.8029 7.3088 7.6281 8.7613 11.1058 13.1786 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0968 -3.6494 3.9950 4.0731 5.6944 8.4535 9.3348 9.8751 14.9614 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9154 -0.5368 4.0734 4.7652 6.0653 8.9219 9.2343 10.8252 12.9484 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2176 -1.1632 2.3946 3.4835 5.0693 9.2501 11.0568 11.2557 13.3507 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7571 -3.0951 1.4953 2.5052 5.6460 9.2652 11.6593 12.7326 13.3928 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4594 -2.7944 2.2454 4.4558 5.4125 9.0017 10.3774 11.2769 13.0535 k = 0.5537 0.0000-0.2341 band energies (ev): -5.0024 -2.6148 1.6814 2.9642 3.8147 8.9132 12.2440 13.7994 14.0509 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4594 -2.7944 2.2454 4.4558 5.4125 9.0017 10.3774 11.2769 13.0535 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9154 -0.5368 4.0734 4.7652 6.0653 8.9219 9.2343 10.8252 12.9484 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5310 -1.3969 3.4748 4.8029 7.3088 7.6281 8.7613 11.1058 13.1786 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2176 -1.1632 2.3946 3.4835 5.0693 9.2501 11.0568 11.2557 13.3507 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7571 -3.0951 1.4953 2.5052 5.6460 9.2652 11.6593 12.7326 13.3928 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4594 -2.7944 2.2454 4.4558 5.4125 9.0017 10.3774 11.2769 13.0535 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4793 -1.7655 5.0271 5.0271 6.0309 8.0301 8.0301 9.0371 14.9018 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5806 -2.3176 1.6576 3.9796 5.5016 9.4219 9.5223 12.1846 14.6609 k = 0.2768 0.4795 0.2341 band energies (ev): -5.0024 -2.6148 1.6814 2.9642 3.8147 8.9132 12.2440 13.7994 14.0509 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5806 -2.3176 1.6576 3.9796 5.5016 9.4219 9.5223 12.1846 14.6609 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7571 -3.0951 1.4953 2.5052 5.6460 9.2652 11.6593 12.7326 13.3928 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0968 -3.6494 3.9950 4.0731 5.6944 8.4535 9.3348 9.8751 14.9614 the Fermi energy is 7.3660 ev total energy = -25.49737009 Ry Harris-Foulkes estimate = -25.49737028 Ry estimated scf accuracy < 0.00000089 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.94E-09, avg # of iterations = 1.0 total cpu time spent up to now is 20.93 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4822 1.0774 4.9113 4.9113 5.9382 8.9378 9.7666 9.7666 14.0776 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5305 -1.3965 3.4751 4.8035 7.3092 7.6282 8.7616 11.1062 13.1787 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0962 -3.6490 3.9955 4.0734 5.6946 8.4538 9.3350 9.8753 14.9614 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9149 -0.5363 4.0739 4.7655 6.0655 8.9222 9.2347 10.8256 12.9485 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2170 -1.1627 2.3949 3.4839 5.0693 9.2504 11.0573 11.2562 13.3508 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7565 -3.0946 1.4956 2.5054 5.6462 9.2656 11.6596 12.7331 13.3930 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4589 -2.7939 2.2458 4.4559 5.4128 9.0019 10.3779 11.2773 13.0536 k = 0.5537 0.0000-0.2341 band energies (ev): -5.0018 -2.6142 1.6814 2.9646 3.8148 8.9134 12.2445 13.7996 14.0513 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4589 -2.7939 2.2458 4.4559 5.4128 9.0019 10.3779 11.2773 13.0536 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9149 -0.5363 4.0739 4.7655 6.0655 8.9222 9.2347 10.8256 12.9485 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5305 -1.3965 3.4751 4.8035 7.3092 7.6282 8.7616 11.1062 13.1787 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2170 -1.1627 2.3949 3.4839 5.0693 9.2504 11.0573 11.2562 13.3508 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7565 -3.0946 1.4956 2.5054 5.6462 9.2656 11.6596 12.7331 13.3930 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4589 -2.7939 2.2458 4.4559 5.4128 9.0019 10.3778 11.2773 13.0536 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4787 -1.7653 5.0276 5.0276 6.0314 8.0304 8.0304 9.0372 14.9019 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5800 -2.3173 1.6579 3.9801 5.5018 9.4223 9.5227 12.1851 14.6609 k = 0.2768 0.4795 0.2341 band energies (ev): -5.0018 -2.6142 1.6814 2.9646 3.8148 8.9134 12.2445 13.7996 14.0513 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5800 -2.3173 1.6579 3.9801 5.5018 9.4223 9.5227 12.1851 14.6609 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7565 -3.0946 1.4956 2.5054 5.6462 9.2656 11.6596 12.7331 13.3930 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0962 -3.6490 3.9955 4.0734 5.6946 8.4538 9.3350 9.8753 14.9615 the Fermi energy is 7.3664 ev total energy = -25.49736985 Ry Harris-Foulkes estimate = -25.49737011 Ry estimated scf accuracy < 0.00000047 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-09, avg # of iterations = 2.0 total cpu time spent up to now is 21.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.1405 ( 531 PWs) bands (ev): -7.4808 1.0787 4.9129 4.9129 5.9391 8.9390 9.7678 9.7678 14.0776 k =-0.1384-0.2398 0.2341 ( 522 PWs) bands (ev): -6.5290 -1.3951 3.4759 4.8052 7.3103 7.6288 8.7622 11.1074 13.1790 k = 0.2768 0.4795-0.0468 ( 520 PWs) bands (ev): -5.0946 -3.6476 3.9971 4.0740 5.6953 8.4548 9.3356 9.8759 14.9616 k = 0.1384 0.2398 0.0468 ( 525 PWs) bands (ev): -6.9135 -0.5346 4.0754 4.7663 6.0662 8.9230 9.2360 10.8267 12.9486 k =-0.2768 0.0000 0.3277 ( 519 PWs) bands (ev): -6.2154 -1.1614 2.3959 3.4852 5.0696 9.2515 11.0587 11.2575 13.3509 k = 0.1384 0.7193 0.0468 ( 510 PWs) bands (ev): -4.7548 -3.0931 1.4963 2.5060 5.6470 9.2667 11.6605 12.7344 13.3936 k = 0.0000 0.4795 0.1405 ( 521 PWs) bands (ev): -5.4574 -2.7923 2.2469 4.4563 5.4137 9.0025 10.3792 11.2785 13.0540 k = 0.5537 0.0000-0.2341 ( 510 PWs) bands (ev): -5.0002 -2.6125 1.6817 2.9659 3.8152 8.9142 12.2457 13.8002 14.0526 k = 0.4153-0.2398-0.1405 ( 521 PWs) bands (ev): -5.4574 -2.7923 2.2469 4.4563 5.4137 9.0025 10.3791 11.2785 13.0540 k = 0.2768 0.0000-0.0468 ( 525 PWs) bands (ev): -6.9135 -0.5346 4.0754 4.7663 6.0662 8.9230 9.2360 10.8267 12.9486 k = 0.2768 0.0000 0.2341 ( 522 PWs) bands (ev): -6.5290 -1.3951 3.4759 4.8052 7.3103 7.6288 8.7622 11.1074 13.1790 k = 0.1384-0.2398 0.3277 ( 519 PWs) bands (ev): -6.2154 -1.1614 2.3959 3.4852 5.0696 9.2515 11.0587 11.2575 13.3509 k = 0.5537 0.4795 0.0468 ( 510 PWs) bands (ev): -4.7548 -3.0931 1.4963 2.5060 5.6470 9.2667 11.6605 12.7344 13.3936 k = 0.4153 0.2398 0.1405 ( 521 PWs) bands (ev): -5.4574 -2.7923 2.2469 4.4563 5.4137 9.0025 10.3791 11.2785 13.0540 k = 0.0000 0.0000 0.4214 ( 522 PWs) bands (ev): -6.4770 -1.7647 5.0293 5.0293 6.0329 8.0312 8.0312 9.0374 14.9021 k = 0.4153 0.7193 0.1405 ( 520 PWs) bands (ev): -5.5782 -2.3164 1.6588 3.9815 5.5024 9.4237 9.5237 12.1865 14.6610 k = 0.2768 0.4795 0.2341 ( 510 PWs) bands (ev): -5.0002 -2.6125 1.6817 2.9659 3.8152 8.9142 12.2457 13.8002 14.0526 k = 0.8305 0.0000-0.1405 ( 520 PWs) bands (ev): -5.5782 -2.3164 1.6588 3.9815 5.5023 9.4237 9.5237 12.1865 14.6610 k = 0.6921-0.2398-0.0468 ( 510 PWs) bands (ev): -4.7548 -3.0931 1.4963 2.5060 5.6470 9.2667 11.6605 12.7344 13.3936 k = 0.5537 0.0000 0.0468 ( 520 PWs) bands (ev): -5.0946 -3.6476 3.9971 4.0740 5.6953 8.4548 9.3356 9.8759 14.9616 the Fermi energy is 7.3676 ev ! total energy = -25.49736992 Ry Harris-Foulkes estimate = -25.49736992 Ry estimated scf accuracy < 9.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000004 0.00000000 -0.01500236 atom 2 type 1 force = -0.00000004 0.00000000 0.01500236 Total force = 0.021217 Total SCF correction = 0.000027 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -19.22 -0.00014846 0.00000000 0.00000000 -21.84 0.00 0.00 0.00000000 -0.00014846 0.00000000 0.00 -21.84 0.00 0.00000000 0.00000000 -0.00009506 0.00 0.00 -13.98 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.597675664 0.000000000 0.888981575 -0.298837749 0.517602356 0.888981723 -0.298837749 -0.517602356 0.888981723 new unit-cell volume = 284.2447 (a.u.)^3 new positions in cryst coord As 0.276380389 0.276380413 0.276380413 As -0.276380389 -0.276380413 -0.276380413 new positions in cart coord (alat unit) As 0.000000032 0.000000000 0.737091344 As -0.000000032 0.000000000 -0.737091344 Ekin = 0.00102937 Ry T = 834.3 K Etot = -25.49634055 CELL_PARAMETERS (alat) 0.597675664 0.000000000 0.888981575 -0.298837749 0.517602356 0.888981723 -0.298837749 -0.517602356 0.888981723 ATOMIC_POSITIONS (crystal) As 0.276380389 0.276380413 0.276380413 As -0.276380389 -0.276380413 -0.276380413 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1406103), wk = 0.0625000 k( 2) = ( -0.1394290 -0.2414981 0.2343505), wk = 0.1250000 k( 3) = ( 0.2788581 0.4829963 -0.0468701), wk = 0.1250000 k( 4) = ( 0.1394290 0.2414981 0.0468701), wk = 0.1250000 k( 5) = ( -0.2788580 0.0000000 0.3280908), wk = 0.0625000 k( 6) = ( 0.1394290 0.7244944 0.0468701), wk = 0.1250000 k( 7) = ( 0.0000000 0.4829963 0.1406103), wk = 0.1250000 k( 8) = ( 0.5577161 0.0000000 -0.2343506), wk = 0.0625000 k( 9) = ( 0.4182871 -0.2414981 -0.1406103), wk = 0.1250000 k( 10) = ( 0.2788581 0.0000000 -0.0468701), wk = 0.0625000 k( 11) = ( 0.2788581 0.0000000 0.2343505), wk = 0.0625000 k( 12) = ( 0.1394291 -0.2414981 0.3280907), wk = 0.1250000 k( 13) = ( 0.5577161 0.4829963 0.0468701), wk = 0.1250000 k( 14) = ( 0.4182871 0.2414981 0.1406103), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4218310), wk = 0.0625000 k( 16) = ( 0.4182871 0.7244944 0.1406103), wk = 0.1250000 k( 17) = ( 0.2788581 0.4829963 0.2343505), wk = 0.1250000 k( 18) = ( 0.8365742 0.0000000 -0.1406104), wk = 0.0625000 k( 19) = ( 0.6971452 -0.2414981 -0.0468702), wk = 0.1250000 k( 20) = ( 0.5577161 0.0000000 0.0468701), wk = 0.0625000 extrapolated charge 9.84288, renormalised to 10.00000 total cpu time spent up to now is 21.54 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 22.07 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.4241 1.2800 5.0924 5.0924 6.1162 9.1727 9.9941 9.9941 14.3480 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4596 -1.2321 3.5948 4.9703 7.5617 7.8511 8.9761 11.3448 13.4505 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9962 -3.5295 4.1522 4.2076 5.9022 8.6889 9.5401 10.0496 15.1846 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8455 -0.3504 4.2400 4.9166 6.2264 9.1248 9.4776 11.0480 13.2017 k =-0.2789 0.0000 0.3281 band energies (ev): -6.1446 -0.9993 2.5250 3.6504 5.2471 9.5068 11.3413 11.5084 13.6235 k = 0.1394 0.7245 0.0469 band energies (ev): -4.6573 -2.9568 1.6232 2.6305 5.8210 9.5191 11.9282 12.9928 13.6301 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3653 -2.6527 2.3756 4.6223 5.5601 9.1969 10.6325 11.5340 13.3034 k = 0.5577 0.0000-0.2344 band energies (ev): -4.9010 -2.4802 1.8170 3.1213 3.9564 9.1361 12.4808 14.0673 14.3107 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3653 -2.6528 2.3756 4.6223 5.5601 9.1969 10.6325 11.5340 13.3034 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8455 -0.3504 4.2400 4.9166 6.2264 9.1248 9.4776 11.0480 13.2017 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4596 -1.2321 3.5948 4.9703 7.5617 7.8511 8.9761 11.3448 13.4505 k = 0.1394-0.2415 0.3281 band energies (ev): -6.1446 -0.9993 2.5250 3.6504 5.2471 9.5068 11.3413 11.5084 13.6235 k = 0.5577 0.4830 0.0469 band energies (ev): -4.6573 -2.9568 1.6232 2.6305 5.8210 9.5191 11.9282 12.9928 13.6301 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3653 -2.6527 2.3756 4.6223 5.5601 9.1969 10.6325 11.5340 13.3034 k = 0.0000 0.0000 0.4218 band energies (ev): -6.4183 -1.6435 5.2131 5.2131 6.3237 8.2526 8.2526 9.3161 15.1865 k = 0.4183 0.7245 0.1406 band energies (ev): -5.5055 -2.1798 1.7899 4.1480 5.7197 9.7080 9.7570 12.4711 14.9234 k = 0.2789 0.4830 0.2344 band energies (ev): -4.9010 -2.4802 1.8170 3.1213 3.9564 9.1361 12.4808 14.0673 14.3107 k = 0.8366 0.0000-0.1406 band energies (ev): -5.5055 -2.1798 1.7899 4.1480 5.7197 9.7080 9.7570 12.4711 14.9234 k = 0.6971-0.2415-0.0469 band energies (ev): -4.6573 -2.9568 1.6232 2.6305 5.8210 9.5191 11.9282 12.9928 13.6301 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9962 -3.5295 4.1522 4.2076 5.9022 8.6889 9.5401 10.0496 15.1846 the Fermi energy is 7.6190 ev total energy = -25.49778899 Ry Harris-Foulkes estimate = -25.41100722 Ry estimated scf accuracy < 0.00016428 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-06, avg # of iterations = 3.0 total cpu time spent up to now is 22.56 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.3832 1.3221 5.1454 5.1454 6.1352 9.2052 10.0181 10.0181 14.2908 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4131 -1.1879 3.5981 5.0304 7.5832 7.8568 8.9654 11.3722 13.4089 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9413 -3.4891 4.1996 4.2023 5.9004 8.7062 9.5267 10.0397 15.1224 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8044 -0.2883 4.2830 4.9268 6.2336 9.1247 9.5057 11.0648 13.1462 k =-0.2789 0.0000 0.3281 band energies (ev): -6.0922 -0.9579 2.5386 3.6825 5.2229 9.5152 11.3883 11.5440 13.5845 k = 0.1394 0.7245 0.0469 band energies (ev): -4.5940 -2.9063 1.6186 2.6164 5.8265 9.5416 11.9281 13.0298 13.6164 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3176 -2.5952 2.3943 4.6001 5.5762 9.1837 10.6659 11.5577 13.2672 k = 0.5577 0.0000-0.2344 band energies (ev): -4.8440 -2.4156 1.7851 3.1507 3.9414 9.1224 12.5114 14.0532 14.3517 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3176 -2.5952 2.3943 4.6001 5.5762 9.1837 10.6659 11.5577 13.2672 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8044 -0.2883 4.2830 4.9268 6.2336 9.1247 9.5057 11.0648 13.1462 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4131 -1.1879 3.5981 5.0304 7.5832 7.8568 8.9654 11.3722 13.4089 k = 0.1394-0.2415 0.3281 band energies (ev): -6.0922 -0.9579 2.5386 3.6825 5.2229 9.5152 11.3883 11.5440 13.5845 k = 0.5577 0.4830 0.0469 band energies (ev): -4.5940 -2.9063 1.6186 2.6164 5.8265 9.5416 11.9281 13.0298 13.6164 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3176 -2.5952 2.3943 4.6001 5.5762 9.1837 10.6659 11.5577 13.2672 k = 0.0000 0.0000 0.4218 band energies (ev): -6.3589 -1.6476 5.2676 5.2676 6.3707 8.2539 8.2539 9.2995 15.1354 k = 0.4183 0.7245 0.1406 band energies (ev): -5.4358 -2.1684 1.7937 4.1863 5.7087 9.7493 9.7738 12.5151 14.8666 k = 0.2789 0.4830 0.2344 band energies (ev): -4.8440 -2.4156 1.7851 3.1507 3.9414 9.1224 12.5114 14.0532 14.3517 k = 0.8366 0.0000-0.1406 band energies (ev): -5.4358 -2.1684 1.7937 4.1863 5.7087 9.7493 9.7738 12.5151 14.8666 k = 0.6971-0.2415-0.0469 band energies (ev): -4.5940 -2.9063 1.6186 2.6164 5.8265 9.5416 11.9281 13.0298 13.6164 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9413 -3.4891 4.1996 4.2023 5.9004 8.7062 9.5267 10.0397 15.1224 the Fermi energy is 7.7996 ev total energy = -25.49803642 Ry Harris-Foulkes estimate = -25.49809029 Ry estimated scf accuracy < 0.00012801 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-06, avg # of iterations = 1.0 total cpu time spent up to now is 22.86 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.3964 1.3143 5.1304 5.1304 6.1268 9.1922 10.0074 10.0074 14.2911 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4271 -1.1986 3.5911 5.0131 7.5706 7.8542 8.9631 11.3618 13.4046 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9564 -3.5008 4.1842 4.1978 5.8949 8.6971 9.5248 10.0360 15.1219 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8174 -0.3023 4.2690 4.9202 6.2287 9.1193 9.4914 11.0574 13.1446 k =-0.2789 0.0000 0.3281 band energies (ev): -6.1072 -0.9670 2.5279 3.6702 5.2231 9.5031 11.3750 11.5329 13.5850 k = 0.1394 0.7245 0.0469 band energies (ev): -4.6104 -2.9191 1.6115 2.6124 5.8217 9.5319 11.9184 13.0181 13.6123 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3314 -2.6095 2.3826 4.5995 5.5693 9.1801 10.6546 11.5463 13.2639 k = 0.5577 0.0000-0.2344 band energies (ev): -4.8590 -2.4320 1.7854 3.1386 3.9390 9.1129 12.5027 14.0504 14.3414 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3314 -2.6095 2.3826 4.5995 5.5693 9.1801 10.6546 11.5463 13.2639 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8174 -0.3023 4.2690 4.9202 6.2287 9.1193 9.4914 11.0574 13.1446 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4271 -1.1986 3.5911 5.0131 7.5706 7.8542 8.9631 11.3618 13.4046 k = 0.1394-0.2415 0.3281 band energies (ev): -6.1072 -0.9670 2.5279 3.6702 5.2231 9.5031 11.3750 11.5329 13.5850 k = 0.5577 0.4830 0.0469 band energies (ev): -4.6104 -2.9191 1.6115 2.6124 5.8217 9.5319 11.9184 13.0181 13.6123 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3314 -2.6095 2.3826 4.5995 5.5693 9.1801 10.6546 11.5463 13.2639 k = 0.0000 0.0000 0.4218 band energies (ev): -6.3756 -1.6486 5.2517 5.2517 6.3520 8.2477 8.2477 9.3016 15.1311 k = 0.4183 0.7245 0.1406 band energies (ev): -5.4543 -2.1721 1.7843 4.1727 5.7047 9.7369 9.7665 12.5020 14.8663 k = 0.2789 0.4830 0.2344 band energies (ev): -4.8590 -2.4320 1.7854 3.1386 3.9390 9.1129 12.5027 14.0504 14.3414 k = 0.8366 0.0000-0.1406 band energies (ev): -5.4543 -2.1721 1.7843 4.1727 5.7047 9.7369 9.7665 12.5020 14.8663 k = 0.6971-0.2415-0.0469 band energies (ev): -4.6104 -2.9191 1.6115 2.6124 5.8217 9.5318 11.9184 13.0181 13.6123 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9564 -3.5008 4.1842 4.1978 5.8949 8.6971 9.5248 10.0360 15.1219 the Fermi energy is 7.7969 ev total energy = -25.49803674 Ry Harris-Foulkes estimate = -25.49804410 Ry estimated scf accuracy < 0.00002237 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.16 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.4010 1.3100 5.1252 5.1252 6.1233 9.1879 10.0035 10.0035 14.2907 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4320 -1.2031 3.5883 5.0075 7.5667 7.8516 8.9611 11.3578 13.4032 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9617 -3.5053 4.1792 4.1955 5.8923 8.6936 9.5229 10.0338 15.1215 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8221 -0.3077 4.2643 4.9172 6.2260 9.1166 9.4872 11.0540 13.1439 k =-0.2789 0.0000 0.3281 band energies (ev): -6.1124 -0.9713 2.5243 3.6659 5.2218 9.4996 11.3702 11.5286 13.5840 k = 0.1394 0.7245 0.0469 band energies (ev): -4.6161 -2.9241 1.6089 2.6104 5.8189 9.5281 11.9154 13.0137 13.6101 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3363 -2.6148 2.3789 4.5980 5.5660 9.1780 10.6504 11.5424 13.2624 k = 0.5577 0.0000-0.2344 band energies (ev): -4.8643 -2.4377 1.7842 3.1344 3.9371 9.1103 12.4988 14.0483 14.3369 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3363 -2.6148 2.3789 4.5980 5.5660 9.1780 10.6504 11.5424 13.2624 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8221 -0.3077 4.2643 4.9172 6.2260 9.1166 9.4872 11.0540 13.1439 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4320 -1.2031 3.5883 5.0075 7.5667 7.8516 8.9611 11.3578 13.4032 k = 0.1394-0.2415 0.3281 band energies (ev): -6.1124 -0.9713 2.5243 3.6659 5.2218 9.4996 11.3702 11.5286 13.5840 k = 0.5577 0.4830 0.0469 band energies (ev): -4.6161 -2.9241 1.6089 2.6104 5.8189 9.5281 11.9154 13.0137 13.6101 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3363 -2.6148 2.3789 4.5980 5.5660 9.1780 10.6504 11.5424 13.2624 k = 0.0000 0.0000 0.4218 band energies (ev): -6.3812 -1.6508 5.2464 5.2464 6.3466 8.2450 8.2450 9.3001 15.1301 k = 0.4183 0.7245 0.1406 band energies (ev): -5.4603 -2.1750 1.7812 4.1681 5.7025 9.7323 9.7632 12.4973 14.8658 k = 0.2789 0.4830 0.2344 band energies (ev): -4.8643 -2.4377 1.7842 3.1344 3.9371 9.1103 12.4988 14.0483 14.3369 k = 0.8366 0.0000-0.1406 band energies (ev): -5.4603 -2.1750 1.7812 4.1681 5.7025 9.7323 9.7632 12.4973 14.8658 k = 0.6971-0.2415-0.0469 band energies (ev): -4.6161 -2.9241 1.6089 2.6104 5.8189 9.5281 11.9154 13.0137 13.6101 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9617 -3.5053 4.1792 4.1955 5.8923 8.6936 9.5229 10.0338 15.1215 the Fermi energy is 7.7944 ev total energy = -25.49803371 Ry Harris-Foulkes estimate = -25.49803773 Ry estimated scf accuracy < 0.00000713 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-08, avg # of iterations = 2.6 total cpu time spent up to now is 23.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.1406 ( 531 PWs) bands (ev): -7.4068 1.3047 5.1189 5.1189 6.1191 9.1827 9.9988 9.9988 14.2903 k =-0.1394-0.2415 0.2344 ( 522 PWs) bands (ev): -6.4380 -1.2088 3.5848 5.0006 7.5619 7.8484 8.9586 11.3530 13.4016 k = 0.2789 0.4830-0.0469 ( 520 PWs) bands (ev): -4.9682 -3.5108 4.1731 4.1926 5.8891 8.6893 9.5205 10.0311 15.1210 k = 0.1394 0.2415 0.0469 ( 525 PWs) bands (ev): -6.8278 -0.3144 4.2584 4.9135 6.2225 9.1133 9.4820 11.0498 13.1430 k =-0.2789 0.0000 0.3281 ( 519 PWs) bands (ev): -6.1188 -0.9767 2.5200 3.6607 5.2201 9.4954 11.3642 11.5233 13.5827 k = 0.1394 0.7245 0.0469 ( 510 PWs) bands (ev): -4.6231 -2.9302 1.6057 2.6079 5.8155 9.5236 11.9117 13.0083 13.6074 k = 0.0000 0.4830 0.1406 ( 521 PWs) bands (ev): -5.3424 -2.6213 2.3743 4.5961 5.5620 9.1754 10.6452 11.5376 13.2606 k = 0.5577 0.0000-0.2344 ( 510 PWs) bands (ev): -4.8709 -2.4447 1.7828 3.1293 3.9349 9.1071 12.4939 14.0458 14.3314 k = 0.4183-0.2415-0.1406 ( 521 PWs) bands (ev): -5.3424 -2.6213 2.3743 4.5961 5.5620 9.1754 10.6452 11.5376 13.2606 k = 0.2789 0.0000-0.0469 ( 525 PWs) bands (ev): -6.8278 -0.3144 4.2584 4.9135 6.2225 9.1133 9.4820 11.0498 13.1430 k = 0.2789 0.0000 0.2344 ( 522 PWs) bands (ev): -6.4380 -1.2088 3.5848 5.0006 7.5619 7.8484 8.9586 11.3530 13.4016 k = 0.1394-0.2415 0.3281 ( 519 PWs) bands (ev): -6.1188 -0.9767 2.5200 3.6607 5.2201 9.4954 11.3642 11.5233 13.5827 k = 0.5577 0.4830 0.0469 ( 510 PWs) bands (ev): -4.6231 -2.9302 1.6057 2.6079 5.8155 9.5236 11.9117 13.0083 13.6074 k = 0.4183 0.2415 0.1406 ( 521 PWs) bands (ev): -5.3424 -2.6213 2.3743 4.5961 5.5620 9.1754 10.6452 11.5376 13.2606 k = 0.0000 0.0000 0.4218 ( 522 PWs) bands (ev): -6.3880 -1.6535 5.2398 5.2398 6.3402 8.2417 8.2417 9.2983 15.1289 k = 0.4183 0.7245 0.1406 ( 520 PWs) bands (ev): -5.4677 -2.1786 1.7774 4.1625 5.6999 9.7267 9.7590 12.4914 14.8652 k = 0.2789 0.4830 0.2344 ( 510 PWs) bands (ev): -4.8709 -2.4447 1.7828 3.1293 3.9349 9.1071 12.4939 14.0458 14.3314 k = 0.8366 0.0000-0.1406 ( 520 PWs) bands (ev): -5.4677 -2.1786 1.7774 4.1625 5.6999 9.7267 9.7590 12.4914 14.8652 k = 0.6971-0.2415-0.0469 ( 510 PWs) bands (ev): -4.6231 -2.9302 1.6057 2.6079 5.8155 9.5236 11.9117 13.0083 13.6074 k = 0.5577 0.0000 0.0469 ( 520 PWs) bands (ev): -4.9682 -3.5108 4.1731 4.1926 5.8891 8.6893 9.5205 10.0311 15.1210 the Fermi energy is 7.7912 ev ! total energy = -25.49803542 Ry Harris-Foulkes estimate = -25.49803544 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.01599817 atom 2 type 1 force = 0.00000000 0.00000000 0.01599817 Total force = 0.022625 Total SCF correction = 0.000100 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -7.38 -0.00004459 0.00000000 0.00000000 -6.56 0.00 0.00 0.00000000 -0.00004459 0.00000000 0.00 -6.56 0.00 0.00000000 0.00000000 -0.00006139 0.00 0.00 -9.03 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.592945156 0.000000000 0.887432032 -0.296472485 0.513505583 0.887432176 -0.296472485 -0.513505583 0.887432176 new unit-cell volume = 279.2753 (a.u.)^3 new positions in cryst coord As 0.275688358 0.275688378 0.275688378 As -0.275688358 -0.275688378 -0.275688378 new positions in cart coord (alat unit) As 0.000000040 0.000000000 0.733964153 As -0.000000040 0.000000000 -0.733964153 Ekin = 0.00173767 Ry T = 723.9 K Etot = -25.49629775 CELL_PARAMETERS (alat) 0.592945156 0.000000000 0.887432032 -0.296472485 0.513505583 0.887432176 -0.296472485 -0.513505583 0.887432176 ATOMIC_POSITIONS (crystal) As 0.275688358 0.275688378 0.275688378 As -0.275688358 -0.275688378 -0.275688378 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1408558), wk = 0.0625000 k( 2) = ( -0.1405414 -0.2434248 0.2347597), wk = 0.1250000 k( 3) = ( 0.2810828 0.4868496 -0.0469520), wk = 0.1250000 k( 4) = ( 0.1405414 0.2434248 0.0469519), wk = 0.1250000 k( 5) = ( -0.2810827 0.0000000 0.3286637), wk = 0.0625000 k( 6) = ( 0.1405414 0.7302744 0.0469519), wk = 0.1250000 k( 7) = ( 0.0000000 0.4868496 0.1408558), wk = 0.1250000 k( 8) = ( 0.5621656 0.0000000 -0.2347598), wk = 0.0625000 k( 9) = ( 0.4216242 -0.2434248 -0.1408559), wk = 0.1250000 k( 10) = ( 0.2810828 0.0000000 -0.0469520), wk = 0.0625000 k( 11) = ( 0.2810828 0.0000000 0.2347597), wk = 0.0625000 k( 12) = ( 0.1405415 -0.2434248 0.3286636), wk = 0.1250000 k( 13) = ( 0.5621656 0.4868496 0.0469519), wk = 0.1250000 k( 14) = ( 0.4216242 0.2434248 0.1408558), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4225675), wk = 0.0625000 k( 16) = ( 0.4216242 0.7302744 0.1408558), wk = 0.1250000 k( 17) = ( 0.2810828 0.4868496 0.2347597), wk = 0.1250000 k( 18) = ( 0.8432484 0.0000000 -0.1408559), wk = 0.0625000 k( 19) = ( 0.7027070 -0.2434248 -0.0469520), wk = 0.1250000 k( 20) = ( 0.5621656 0.0000000 0.0469519), wk = 0.0625000 extrapolated charge 9.82207, renormalised to 10.00000 total cpu time spent up to now is 23.79 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.8 total cpu time spent up to now is 24.38 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.3304 1.5292 5.3382 5.3382 6.3243 9.4710 10.2653 10.2653 14.5900 k =-0.1405-0.2434 0.2348 band energies (ev): -6.3460 -1.0208 3.7289 5.2125 7.8523 8.1041 9.1875 11.6226 13.7229 k = 0.2811 0.4868-0.0470 band energies (ev): -4.8426 -3.3698 4.3510 4.3705 6.1247 8.9668 9.7391 10.2223 15.3739 k = 0.1405 0.2434 0.0470 band energies (ev): -6.7393 -0.0968 4.4613 5.0884 6.4121 9.3351 9.7740 11.2994 13.4285 k =-0.2811 0.0000 0.3287 band energies (ev): -6.0232 -0.7928 2.6808 3.8603 5.4137 9.8025 11.6914 11.8129 13.8778 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4959 -2.7675 1.7568 2.7519 6.0168 9.8065 12.2268 13.3115 13.8714 k = 0.0000 0.4868 0.1409 band energies (ev): -5.2262 -2.4523 2.5356 4.7808 5.7400 9.3837 10.9309 11.8438 13.5487 k = 0.5622 0.0000-0.2348 band energies (ev): -4.7449 -2.2792 1.9308 3.3185 4.0922 9.3791 12.7581 14.3338 14.6194 k = 0.4216-0.2434-0.1409 band energies (ev): -5.2262 -2.4523 2.5356 4.7808 5.7400 9.3837 10.9309 11.8438 13.5487 k = 0.2811 0.0000-0.0470 band energies (ev): -6.7393 -0.0968 4.4613 5.0884 6.4121 9.3351 9.7740 11.2994 13.4285 k = 0.2811 0.0000 0.2348 band energies (ev): -6.3460 -1.0208 3.7289 5.2125 7.8523 8.1041 9.1875 11.6226 13.7229 k = 0.1405-0.2434 0.3287 band energies (ev): -6.0232 -0.7928 2.6808 3.8603 5.4137 9.8025 11.6914 11.8129 13.8778 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4959 -2.7675 1.7568 2.7519 6.0168 9.8065 12.2268 13.3115 13.8714 k = 0.4216 0.2434 0.1409 band energies (ev): -5.2262 -2.4523 2.5356 4.7808 5.7400 9.3837 10.9309 11.8438 13.5487 k = 0.0000 0.0000 0.4226 band energies (ev): -6.3023 -1.5271 5.4670 5.4670 6.6867 8.4901 8.4901 9.6107 15.4558 k = 0.4216 0.7303 0.1409 band energies (ev): -5.3637 -2.0324 1.9378 4.3674 5.9435 10.0194 10.0610 12.8273 15.1576 k = 0.2811 0.4868 0.2348 band energies (ev): -4.7449 -2.2792 1.9308 3.3185 4.0922 9.3791 12.7581 14.3338 14.6194 k = 0.8432 0.0000-0.1409 band energies (ev): -5.3637 -2.0324 1.9378 4.3674 5.9435 10.0194 10.0610 12.8273 15.1576 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4959 -2.7675 1.7568 2.7519 6.0168 9.8065 12.2268 13.3115 13.8714 k = 0.5622 0.0000 0.0470 band energies (ev): -4.8426 -3.3698 4.3510 4.3705 6.1247 8.9668 9.7391 10.2223 15.3739 the Fermi energy is 8.0468 ev total energy = -25.49811374 Ry Harris-Foulkes estimate = -25.39819944 Ry estimated scf accuracy < 0.00020498 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-06, avg # of iterations = 3.0 total cpu time spent up to now is 24.88 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.2875 1.5699 5.3954 5.3954 6.3445 9.5069 10.2900 10.2900 14.5240 k =-0.1405-0.2434 0.2348 band energies (ev): -6.2968 -0.9755 3.7298 5.2782 7.8729 8.1092 9.1715 11.6490 13.6773 k = 0.2811 0.4868-0.0470 band energies (ev): -4.7838 -3.3283 4.3418 4.4217 6.1205 8.9839 9.7204 10.2077 15.3011 k = 0.1405 0.2434 0.0470 band energies (ev): -6.6962 -0.0306 4.5072 5.0959 6.4177 9.3309 9.8028 11.3143 13.3646 k =-0.2811 0.0000 0.3287 band energies (ev): -5.9673 -0.7521 2.6963 3.8940 5.3828 9.8070 11.7442 11.8503 13.8337 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4274 -2.7145 1.7490 2.7332 6.0199 9.8287 12.2236 13.3492 13.8552 k = 0.0000 0.4868 0.1409 band energies (ev): -5.1756 -2.3909 2.5547 4.7518 5.7552 9.3647 10.9638 11.8713 13.5072 k = 0.5622 0.0000-0.2348 band energies (ev): -4.6838 -2.2094 1.8911 3.3492 4.0730 9.3604 12.7884 14.3119 14.6656 k = 0.4216-0.2434-0.1409 band energies (ev): -5.1756 -2.3909 2.5547 4.7518 5.7552 9.3647 10.9638 11.8713 13.5072 k = 0.2811 0.0000-0.0470 band energies (ev): -6.6962 -0.0306 4.5072 5.0959 6.4177 9.3309 9.8028 11.3143 13.3646 k = 0.2811 0.0000 0.2348 band energies (ev): -6.2968 -0.9755 3.7298 5.2782 7.8729 8.1092 9.1715 11.6490 13.6773 k = 0.1405-0.2434 0.3287 band energies (ev): -5.9673 -0.7521 2.6963 3.8940 5.3828 9.8070 11.7442 11.8503 13.8337 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4274 -2.7145 1.7490 2.7332 6.0199 9.8287 12.2236 13.3492 13.8552 k = 0.4216 0.2434 0.1409 band energies (ev): -5.1756 -2.3909 2.5547 4.7518 5.7552 9.3647 10.9638 11.8713 13.5072 k = 0.0000 0.0000 0.4226 band energies (ev): -6.2382 -1.5373 5.5261 5.5261 6.7400 8.4890 8.4890 9.5878 15.3990 k = 0.4216 0.7303 0.1409 band energies (ev): -5.2876 -2.0263 1.9414 4.4081 5.9289 10.0354 10.1049 12.8751 15.0923 k = 0.2811 0.4868 0.2348 band energies (ev): -4.6838 -2.2094 1.8911 3.3492 4.0730 9.3604 12.7884 14.3119 14.6656 k = 0.8432 0.0000-0.1409 band energies (ev): -5.2876 -2.0263 1.9414 4.4081 5.9289 10.0354 10.1049 12.8751 15.0923 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4274 -2.7145 1.7490 2.7332 6.0199 9.8287 12.2236 13.3492 13.8552 k = 0.5622 0.0000 0.0470 band energies (ev): -4.7838 -3.3283 4.3418 4.4217 6.1205 8.9839 9.7203 10.2077 15.3011 the Fermi energy is 8.0517 ev total energy = -25.49842258 Ry Harris-Foulkes estimate = -25.49849572 Ry estimated scf accuracy < 0.00017416 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-06, avg # of iterations = 1.0 total cpu time spent up to now is 25.17 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.3021 1.5623 5.3786 5.3786 6.3355 9.4917 10.2779 10.2779 14.5247 k =-0.1405-0.2434 0.2348 band energies (ev): -6.3124 -0.9868 3.7222 5.2585 7.8592 8.1066 9.1697 11.6379 13.6720 k = 0.2811 0.4868-0.0470 band energies (ev): -4.8007 -3.3409 4.3373 4.4043 6.1147 8.9738 9.7190 10.2042 15.3011 k = 0.1405 0.2434 0.0470 band energies (ev): -6.7106 -0.0459 4.4915 5.0893 6.4128 9.3256 9.7865 11.3065 13.3634 k =-0.2811 0.0000 0.3287 band energies (ev): -5.9841 -0.7612 2.6838 3.8802 5.3840 9.7937 11.7292 11.8381 13.8347 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4459 -2.7285 1.7413 2.7292 6.0151 9.8183 12.2128 13.3363 13.8510 k = 0.0000 0.4868 0.1409 band energies (ev): -5.1910 -2.4067 2.5414 4.7521 5.7478 9.3615 10.9519 11.8577 13.5035 k = 0.5622 0.0000-0.2348 band energies (ev): -4.7005 -2.2279 1.8923 3.3356 4.0708 9.3496 12.7793 14.3097 14.6544 k = 0.4216-0.2434-0.1409 band energies (ev): -5.1910 -2.4067 2.5414 4.7521 5.7478 9.3615 10.9519 11.8577 13.5035 k = 0.2811 0.0000-0.0470 band energies (ev): -6.7106 -0.0459 4.4915 5.0893 6.4128 9.3256 9.7865 11.3065 13.3634 k = 0.2811 0.0000 0.2348 band energies (ev): -6.3124 -0.9868 3.7222 5.2585 7.8592 8.1066 9.1697 11.6379 13.6720 k = 0.1405-0.2434 0.3287 band energies (ev): -5.9841 -0.7612 2.6838 3.8802 5.3840 9.7937 11.7292 11.8381 13.8347 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4459 -2.7285 1.7413 2.7292 6.0151 9.8183 12.2128 13.3363 13.8510 k = 0.4216 0.2434 0.1409 band energies (ev): -5.1910 -2.4067 2.5414 4.7521 5.7478 9.3615 10.9519 11.8577 13.5035 k = 0.0000 0.0000 0.4226 band energies (ev): -6.2570 -1.5373 5.5082 5.5082 6.7183 8.4824 8.4824 9.5914 15.3939 k = 0.4216 0.7303 0.1409 band energies (ev): -5.3086 -2.0290 1.9307 4.3928 5.9249 10.0277 10.0911 12.8602 15.0923 k = 0.2811 0.4868 0.2348 band energies (ev): -4.7005 -2.2279 1.8923 3.3356 4.0708 9.3496 12.7793 14.3097 14.6544 k = 0.8432 0.0000-0.1409 band energies (ev): -5.3086 -2.0290 1.9307 4.3928 5.9249 10.0277 10.0911 12.8602 15.0923 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4459 -2.7285 1.7413 2.7292 6.0151 9.8183 12.2128 13.3363 13.8510 k = 0.5622 0.0000 0.0470 band energies (ev): -4.8007 -3.3409 4.3373 4.4043 6.1147 8.9738 9.7190 10.2042 15.3011 the Fermi energy is 8.0492 ev total energy = -25.49842484 Ry Harris-Foulkes estimate = -25.49843378 Ry estimated scf accuracy < 0.00002935 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.0 total cpu time spent up to now is 25.47 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.3069 1.5580 5.3732 5.3732 6.3318 9.4871 10.2740 10.2740 14.5243 k =-0.1405-0.2434 0.2348 band energies (ev): -6.3175 -0.9915 3.7193 5.2526 7.8553 8.1038 9.1677 11.6339 13.6705 k = 0.2811 0.4868-0.0470 band energies (ev): -4.8062 -3.3455 4.3349 4.3991 6.1120 8.9701 9.7171 10.2019 15.3007 k = 0.1405 0.2434 0.0470 band energies (ev): -6.7154 -0.0516 4.4866 5.0862 6.4098 9.3229 9.7822 11.3031 13.3626 k =-0.2811 0.0000 0.3287 band energies (ev): -5.9895 -0.7656 2.6800 3.8758 5.3827 9.7902 11.7240 11.8336 13.8336 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4518 -2.7336 1.7386 2.7271 6.0123 9.8145 12.2097 13.3318 13.8486 k = 0.0000 0.4868 0.1409 band energies (ev): -5.1961 -2.4122 2.5376 4.7506 5.7444 9.3594 10.9476 11.8535 13.5020 k = 0.5622 0.0000-0.2348 band energies (ev): -4.7060 -2.2338 1.8912 3.3313 4.0689 9.3471 12.7752 14.3077 14.6496 k = 0.4216-0.2434-0.1409 band energies (ev): -5.1961 -2.4122 2.5376 4.7506 5.7444 9.3594 10.9476 11.8535 13.5020 k = 0.2811 0.0000-0.0470 band energies (ev): -6.7154 -0.0516 4.4865 5.0862 6.4098 9.3229 9.7822 11.3031 13.3626 k = 0.2811 0.0000 0.2348 band energies (ev): -6.3175 -0.9915 3.7193 5.2526 7.8553 8.1038 9.1677 11.6339 13.6705 k = 0.1405-0.2434 0.3287 band energies (ev): -5.9895 -0.7656 2.6800 3.8758 5.3827 9.7902 11.7240 11.8336 13.8336 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4518 -2.7336 1.7386 2.7271 6.0123 9.8145 12.2097 13.3318 13.8486 k = 0.4216 0.2434 0.1409 band energies (ev): -5.1961 -2.4122 2.5376 4.7506 5.7444 9.3594 10.9476 11.8535 13.5020 k = 0.0000 0.0000 0.4226 band energies (ev): -6.2628 -1.5395 5.5027 5.5027 6.7127 8.4796 8.4796 9.5900 15.3928 k = 0.4216 0.7303 0.1409 band energies (ev): -5.3149 -2.0318 1.9274 4.3881 5.9227 10.0242 10.0864 12.8553 15.0918 k = 0.2811 0.4868 0.2348 band energies (ev): -4.7060 -2.2338 1.8912 3.3313 4.0689 9.3471 12.7752 14.3077 14.6496 k = 0.8432 0.0000-0.1409 band energies (ev): -5.3149 -2.0318 1.9274 4.3881 5.9227 10.0242 10.0864 12.8553 15.0918 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4518 -2.7336 1.7386 2.7271 6.0123 9.8145 12.2097 13.3318 13.8486 k = 0.5622 0.0000 0.0470 band energies (ev): -4.8062 -3.3455 4.3349 4.3991 6.1120 8.9701 9.7171 10.2019 15.3007 the Fermi energy is 8.0464 ev total energy = -25.49842000 Ry Harris-Foulkes estimate = -25.49842599 Ry estimated scf accuracy < 0.00001061 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-07, avg # of iterations = 2.4 total cpu time spent up to now is 25.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.1409 ( 531 PWs) bands (ev): -7.3138 1.5518 5.3655 5.3655 6.3267 9.4808 10.2682 10.2682 14.5238 k =-0.1405-0.2434 0.2348 ( 522 PWs) bands (ev): -6.3248 -0.9982 3.7151 5.2442 7.8496 8.0999 9.1648 11.6282 13.6684 k = 0.2811 0.4868-0.0470 ( 520 PWs) bands (ev): -4.8141 -3.3522 4.3315 4.3915 6.1082 8.9650 9.7143 10.1988 15.3003 k = 0.1405 0.2434 0.0470 ( 525 PWs) bands (ev): -6.7223 -0.0596 4.4795 5.0818 6.4057 9.3190 9.7759 11.2981 13.3617 k =-0.2811 0.0000 0.3287 ( 519 PWs) bands (ev): -5.9972 -0.7719 2.6746 3.8695 5.3808 9.7853 11.7166 11.8272 13.8321 k = 0.1405 0.7303 0.0470 ( 510 PWs) bands (ev): -4.4602 -2.7409 1.7348 2.7241 6.0082 9.8090 12.2053 13.3253 13.8452 k = 0.0000 0.4868 0.1409 ( 521 PWs) bands (ev): -5.2034 -2.4200 2.5320 4.7485 5.7396 9.3565 10.9414 11.8475 13.4998 k = 0.5622 0.0000-0.2348 ( 510 PWs) bands (ev): -4.7139 -2.2423 1.8897 3.3251 4.0662 9.3434 12.7694 14.3049 14.6428 k = 0.4216-0.2434-0.1409 ( 521 PWs) bands (ev): -5.2034 -2.4200 2.5320 4.7485 5.7396 9.3565 10.9414 11.8475 13.4998 k = 0.2811 0.0000-0.0470 ( 525 PWs) bands (ev): -6.7223 -0.0596 4.4795 5.0818 6.4057 9.3190 9.7759 11.2981 13.3617 k = 0.2811 0.0000 0.2348 ( 522 PWs) bands (ev): -6.3248 -0.9982 3.7151 5.2442 7.8496 8.0999 9.1648 11.6282 13.6684 k = 0.1405-0.2434 0.3287 ( 519 PWs) bands (ev): -5.9972 -0.7719 2.6746 3.8695 5.3808 9.7853 11.7166 11.8271 13.8321 k = 0.5622 0.4868 0.0470 ( 510 PWs) bands (ev): -4.4602 -2.7409 1.7348 2.7241 6.0082 9.8090 12.2053 13.3253 13.8452 k = 0.4216 0.2434 0.1409 ( 521 PWs) bands (ev): -5.2034 -2.4200 2.5320 4.7485 5.7396 9.3565 10.9414 11.8475 13.4998 k = 0.0000 0.0000 0.4226 ( 522 PWs) bands (ev): -6.2711 -1.5425 5.4947 5.4947 6.7047 8.4756 8.4756 9.5879 15.3912 k = 0.4216 0.7303 0.1409 ( 520 PWs) bands (ev): -5.3239 -2.0359 1.9228 4.3812 5.9195 10.0193 10.0796 12.8482 15.0911 k = 0.2811 0.4868 0.2348 ( 510 PWs) bands (ev): -4.7139 -2.2423 1.8897 3.3251 4.0662 9.3434 12.7694 14.3049 14.6428 k = 0.8432 0.0000-0.1409 ( 520 PWs) bands (ev): -5.3239 -2.0359 1.9228 4.3812 5.9195 10.0193 10.0796 12.8482 15.0911 k = 0.7027-0.2434-0.0470 ( 510 PWs) bands (ev): -4.4602 -2.7409 1.7348 2.7241 6.0082 9.8090 12.2053 13.3253 13.8452 k = 0.5622 0.0000 0.0470 ( 520 PWs) bands (ev): -4.8141 -3.3522 4.3315 4.3915 6.1082 8.9650 9.7143 10.1988 15.3003 the Fermi energy is 8.0425 ev ! total energy = -25.49842244 Ry Harris-Foulkes estimate = -25.49842248 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.01590016 atom 2 type 1 force = 0.00000000 0.00000000 0.01590016 Total force = 0.022486 Total SCF correction = 0.000131 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 5.37 0.00006817 0.00000000 0.00000000 10.03 0.00 0.00 0.00000000 0.00006817 0.00000000 0.00 10.03 0.00 0.00000000 0.00000000 -0.00002686 0.00 0.00 -3.95 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.595532912 0.000000000 0.885695658 -0.297766326 0.515746623 0.885695790 -0.297766326 -0.515746623 0.885695790 new unit-cell volume = 281.1671 (a.u.)^3 new positions in cryst coord As 0.274712327 0.274712343 0.274712343 As -0.274712327 -0.274712343 -0.274712343 new positions in cart coord (alat unit) As 0.000000062 0.000000000 0.729934647 As -0.000000062 0.000000000 -0.729934647 Ekin = 0.00213098 Ry T = 642.7 K Etot = -25.49629146 CELL_PARAMETERS (alat) 0.595532912 0.000000000 0.885695658 -0.297766326 0.515746623 0.885695790 -0.297766326 -0.515746623 0.885695790 ATOMIC_POSITIONS (crystal) As 0.274712327 0.274712343 0.274712343 As -0.274712327 -0.274712343 -0.274712343 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1411320), wk = 0.0625000 k( 2) = ( -0.1399307 -0.2423671 0.2352200), wk = 0.1250000 k( 3) = ( 0.2798614 0.4847341 -0.0470440), wk = 0.1250000 k( 4) = ( 0.1399307 0.2423671 0.0470440), wk = 0.1250000 k( 5) = ( -0.2798614 0.0000000 0.3293080), wk = 0.0625000 k( 6) = ( 0.1399307 0.7271012 0.0470440), wk = 0.1250000 k( 7) = ( 0.0000000 0.4847341 0.1411320), wk = 0.1250000 k( 8) = ( 0.5597228 0.0000000 -0.2352200), wk = 0.0625000 k( 9) = ( 0.4197921 -0.2423671 -0.1411320), wk = 0.1250000 k( 10) = ( 0.2798614 0.0000000 -0.0470440), wk = 0.0625000 k( 11) = ( 0.2798615 0.0000000 0.2352199), wk = 0.0625000 k( 12) = ( 0.1399308 -0.2423671 0.3293080), wk = 0.1250000 k( 13) = ( 0.5597229 0.4847341 0.0470439), wk = 0.1250000 k( 14) = ( 0.4197922 0.2423671 0.1411319), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4233960), wk = 0.0625000 k( 16) = ( 0.4197922 0.7271012 0.1411319), wk = 0.1250000 k( 17) = ( 0.2798615 0.4847341 0.2352199), wk = 0.1250000 k( 18) = ( 0.8395843 0.0000000 -0.1411321), wk = 0.0625000 k( 19) = ( 0.6996536 -0.2423671 -0.0470441), wk = 0.1250000 k( 20) = ( 0.5597229 0.0000000 0.0470439), wk = 0.0625000 extrapolated charge 10.06728, renormalised to 10.00000 total cpu time spent up to now is 26.14 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 26.74 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3000 1.4417 5.3245 5.3245 6.2303 9.4622 10.1859 10.1859 14.3526 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3118 -1.0790 3.6923 5.2573 7.7422 7.9862 8.9776 11.5111 13.5713 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8144 -3.3929 4.2892 4.3948 5.9999 8.8929 9.5381 10.0851 15.2075 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7183 -0.1281 4.4507 5.0241 6.3519 9.1816 9.7344 11.1682 13.2147 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9759 -0.8611 2.6661 3.8239 5.2381 9.7473 11.5820 11.7083 13.6178 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4472 -2.7895 1.6926 2.6683 5.9267 9.6630 12.1175 13.2399 13.7013 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2101 -2.4573 2.5271 4.6384 5.7140 9.2046 10.8155 11.7670 13.3870 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7183 -2.2479 1.7856 3.2882 3.9734 9.3290 12.6310 14.0968 14.4993 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2101 -2.4573 2.5271 4.6384 5.7140 9.2046 10.8155 11.7670 13.3870 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7183 -0.1281 4.4507 5.0241 6.3519 9.1816 9.7344 11.1682 13.2147 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3118 -1.0790 3.6923 5.2573 7.7422 7.9862 8.9776 11.5111 13.5713 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9759 -0.8611 2.6661 3.8239 5.2381 9.7473 11.5820 11.7083 13.6178 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4472 -2.7895 1.6926 2.6683 5.9267 9.6630 12.1175 13.2399 13.7013 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2101 -2.4573 2.5271 4.6384 5.7140 9.2046 10.8155 11.7670 13.3870 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2243 -1.6547 5.4671 5.4671 6.6122 8.3366 8.3366 9.4085 15.2829 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2713 -2.1540 1.8977 4.3524 5.7836 9.8671 9.9780 12.7495 14.9375 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7183 -2.2479 1.7856 3.2882 3.9734 9.3290 12.6310 14.0968 14.4993 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2713 -2.1540 1.8977 4.3524 5.7836 9.8671 9.9780 12.7495 14.9375 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4472 -2.7895 1.6926 2.6683 5.9267 9.6630 12.1175 13.2399 13.7013 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8144 -3.3929 4.2892 4.3948 5.9999 8.8929 9.5381 10.0851 15.2075 the Fermi energy is 7.9288 ev total energy = -25.49889744 Ry Harris-Foulkes estimate = -25.53695571 Ry estimated scf accuracy < 0.00004241 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.24E-07, avg # of iterations = 2.9 total cpu time spent up to now is 27.16 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3162 1.4173 5.3036 5.3036 6.2197 9.4506 10.1762 10.1762 14.3750 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3301 -1.1007 3.6895 5.2351 7.7370 7.9756 8.9771 11.4992 13.5897 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8361 -3.4108 4.2881 4.3778 5.9981 8.8849 9.5379 10.0847 15.2329 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7348 -0.1560 4.4345 5.0173 6.3436 9.1779 9.7281 11.1583 13.2380 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9963 -0.8830 2.6614 3.8118 5.2421 9.7500 11.5611 11.6919 13.6282 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4723 -2.8118 1.6952 2.6715 5.9195 9.6527 12.1211 13.2236 13.7024 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2294 -2.4819 2.5220 4.6422 5.7034 9.2068 10.8010 11.7573 13.4016 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7416 -2.2741 1.7939 3.2775 3.9749 9.3409 12.6142 14.0995 14.4756 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2294 -2.4819 2.5220 4.6422 5.7034 9.2068 10.8010 11.7573 13.4016 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7348 -0.1560 4.4345 5.0173 6.3436 9.1779 9.7281 11.1583 13.2380 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3301 -1.1007 3.6895 5.2351 7.7370 7.9756 8.9771 11.4992 13.5897 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9963 -0.8830 2.6614 3.8118 5.2421 9.7500 11.5611 11.6919 13.6282 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4723 -2.8118 1.6952 2.6715 5.9195 9.6527 12.1211 13.2236 13.7024 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2294 -2.4819 2.5220 4.6422 5.7034 9.2068 10.8010 11.7573 13.4016 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2466 -1.6613 5.4464 5.4464 6.5991 8.3342 8.3342 9.4061 15.3070 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2976 -2.1652 1.8973 4.3385 5.7851 9.8565 9.9604 12.7308 14.9605 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7416 -2.2741 1.7939 3.2775 3.9749 9.3409 12.6142 14.0995 14.4756 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2976 -2.1652 1.8973 4.3385 5.7851 9.8565 9.9604 12.7308 14.9605 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4723 -2.8118 1.6952 2.6715 5.9195 9.6527 12.1211 13.2236 13.7024 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8361 -3.4108 4.2881 4.3778 5.9981 8.8849 9.5379 10.0847 15.2329 the Fermi energy is 7.7945 ev total energy = -25.49893902 Ry Harris-Foulkes estimate = -25.49894683 Ry estimated scf accuracy < 0.00001681 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-07, avg # of iterations = 1.0 total cpu time spent up to now is 27.46 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3106 1.4210 5.3099 5.3099 6.2234 9.4563 10.1808 10.1808 14.3749 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3242 -1.0960 3.6926 5.2423 7.7423 7.9772 8.9782 11.5037 13.5916 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8297 -3.4058 4.2902 4.3842 6.0006 8.8890 9.5389 10.0865 15.2330 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7293 -0.1499 4.4403 5.0202 6.3460 9.1803 9.7342 11.1616 13.2384 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9899 -0.8790 2.6661 3.8170 5.2423 9.7549 11.5669 11.6967 13.6283 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4653 -2.8063 1.6982 2.6733 5.9219 9.6569 12.1252 13.2287 13.7043 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2235 -2.4757 2.5269 4.6427 5.7067 9.2085 10.8058 11.7623 13.4030 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7352 -2.2670 1.7940 3.2825 3.9762 9.3448 12.6180 14.1007 14.4805 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2235 -2.4757 2.5269 4.6427 5.7067 9.2085 10.8058 11.7623 13.4030 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7293 -0.1499 4.4403 5.0202 6.3460 9.1803 9.7342 11.1616 13.2384 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3242 -1.0960 3.6926 5.2423 7.7422 7.9772 8.9782 11.5037 13.5916 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9899 -0.8790 2.6661 3.8170 5.2422 9.7549 11.5669 11.6967 13.6283 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4653 -2.8063 1.6982 2.6733 5.9219 9.6569 12.1252 13.2287 13.7043 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2235 -2.4757 2.5269 4.6427 5.7067 9.2085 10.8058 11.7623 13.4030 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2395 -1.6604 5.4530 5.4530 6.6069 8.3368 8.3368 9.4057 15.3089 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2898 -2.1635 1.9013 4.3442 5.7870 9.8598 9.9658 12.7365 14.9607 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7352 -2.2670 1.7940 3.2825 3.9762 9.3448 12.6180 14.1007 14.4805 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2898 -2.1635 1.9013 4.3442 5.7870 9.8598 9.9658 12.7365 14.9607 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4653 -2.8063 1.6982 2.6733 5.9219 9.6569 12.1252 13.2287 13.7043 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8297 -3.4058 4.2902 4.3842 6.0006 8.8889 9.5389 10.0865 15.2330 the Fermi energy is 7.7997 ev total energy = -25.49893969 Ry Harris-Foulkes estimate = -25.49894043 Ry estimated scf accuracy < 0.00000177 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-08, avg # of iterations = 1.4 total cpu time spent up to now is 27.78 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3087 1.4233 5.3119 5.3119 6.2251 9.4580 10.1824 10.1824 14.3752 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3222 -1.0938 3.6939 5.2444 7.7437 7.9788 8.9794 11.5054 13.5922 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8276 -3.4038 4.2914 4.3861 6.0019 8.8905 9.5401 10.0878 15.2333 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7274 -0.1475 4.4421 5.0217 6.3476 9.1817 9.7357 11.1632 13.2387 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9878 -0.8768 2.6675 3.8186 5.2433 9.7560 11.5690 11.6986 13.6291 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4630 -2.8041 1.6993 2.6744 5.9233 9.6586 12.1263 13.2306 13.7056 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2215 -2.4735 2.5283 4.6437 5.7083 9.2097 10.8077 11.7640 13.4037 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7330 -2.2647 1.7948 3.2841 3.9774 9.3456 12.6199 14.1020 14.4828 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2215 -2.4735 2.5283 4.6437 5.7083 9.2097 10.8077 11.7640 13.4037 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7274 -0.1475 4.4421 5.0217 6.3476 9.1817 9.7356 11.1632 13.2387 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3222 -1.0938 3.6939 5.2444 7.7437 7.9788 8.9794 11.5054 13.5922 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9878 -0.8768 2.6675 3.8186 5.2433 9.7560 11.5690 11.6986 13.6291 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4630 -2.8041 1.6993 2.6744 5.9233 9.6586 12.1263 13.2306 13.7056 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2215 -2.4735 2.5283 4.6437 5.7083 9.2097 10.8077 11.7640 13.4037 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2374 -1.6589 5.4550 5.4550 6.6088 8.3381 8.3381 9.4070 15.3092 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2874 -2.1618 1.9025 4.3459 5.7882 9.8614 9.9678 12.7385 14.9611 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7330 -2.2647 1.7948 3.2841 3.9774 9.3456 12.6199 14.1020 14.4828 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2874 -2.1618 1.9025 4.3459 5.7882 9.8614 9.9678 12.7385 14.9611 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4630 -2.8041 1.6993 2.6744 5.9233 9.6585 12.1263 13.2306 13.7056 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8276 -3.4038 4.2914 4.3861 6.0019 8.8905 9.5401 10.0878 15.2333 the Fermi energy is 7.8012 ev total energy = -25.49893973 Ry Harris-Foulkes estimate = -25.49893985 Ry estimated scf accuracy < 0.00000022 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-09, avg # of iterations = 2.9 total cpu time spent up to now is 28.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.1411 ( 531 PWs) bands (ev): -7.3077 1.4244 5.3130 5.3130 6.2259 9.4590 10.1833 10.1833 14.3753 k =-0.1399-0.2424 0.2352 ( 522 PWs) bands (ev): -6.3211 -1.0928 3.6946 5.2456 7.7446 7.9795 8.9799 11.5063 13.5925 k = 0.2799 0.4847-0.0470 ( 520 PWs) bands (ev): -4.8264 -3.4028 4.2920 4.3872 6.0026 8.8914 9.5406 10.0883 15.2334 k = 0.1399 0.2424 0.0470 ( 525 PWs) bands (ev): -6.7263 -0.1462 4.4432 5.0224 6.3483 9.1824 9.7366 11.1640 13.2389 k =-0.2799 0.0000 0.3293 ( 519 PWs) bands (ev): -5.9867 -0.8758 2.6683 3.8195 5.2436 9.7568 11.5701 11.6996 13.6294 k = 0.1399 0.7271 0.0470 ( 510 PWs) bands (ev): -4.4617 -2.8030 1.6998 2.6749 5.9240 9.6594 12.1270 13.2317 13.7061 k = 0.0000 0.4847 0.1411 ( 521 PWs) bands (ev): -5.2204 -2.4723 2.5291 4.6441 5.7091 9.2102 10.8087 11.7649 13.4041 k = 0.5597 0.0000-0.2352 ( 510 PWs) bands (ev): -4.7318 -2.2634 1.7951 3.2850 3.9779 9.3461 12.6209 14.1025 14.4839 k = 0.4198-0.2424-0.1411 ( 521 PWs) bands (ev): -5.2204 -2.4723 2.5291 4.6441 5.7091 9.2102 10.8087 11.7649 13.4041 k = 0.2799 0.0000-0.0470 ( 525 PWs) bands (ev): -6.7263 -0.1462 4.4432 5.0224 6.3483 9.1824 9.7366 11.1640 13.2389 k = 0.2799 0.0000 0.2352 ( 522 PWs) bands (ev): -6.3211 -1.0928 3.6946 5.2456 7.7446 7.9795 8.9799 11.5063 13.5925 k = 0.1399-0.2424 0.3293 ( 519 PWs) bands (ev): -5.9867 -0.8758 2.6683 3.8195 5.2436 9.7568 11.5701 11.6996 13.6294 k = 0.5597 0.4847 0.0470 ( 510 PWs) bands (ev): -4.4617 -2.8030 1.6998 2.6749 5.9240 9.6594 12.1270 13.2317 13.7061 k = 0.4198 0.2424 0.1411 ( 521 PWs) bands (ev): -5.2204 -2.4723 2.5291 4.6441 5.7091 9.2102 10.8087 11.7649 13.4041 k = 0.0000 0.0000 0.4234 ( 522 PWs) bands (ev): -6.2361 -1.6583 5.4562 5.4562 6.6100 8.3387 8.3387 9.4075 15.3095 k = 0.4198 0.7271 0.1411 ( 520 PWs) bands (ev): -5.2861 -2.1611 1.9032 4.3469 5.7887 9.8622 9.9689 12.7396 14.9612 k = 0.2799 0.4847 0.2352 ( 510 PWs) bands (ev): -4.7318 -2.2634 1.7951 3.2850 3.9778 9.3461 12.6209 14.1025 14.4839 k = 0.8396 0.0000-0.1411 ( 520 PWs) bands (ev): -5.2861 -2.1611 1.9032 4.3469 5.7887 9.8622 9.9689 12.7396 14.9612 k = 0.6997-0.2424-0.0470 ( 510 PWs) bands (ev): -4.4617 -2.8030 1.6998 2.6749 5.9240 9.6594 12.1270 13.2317 13.7061 k = 0.5597 0.0000 0.0470 ( 520 PWs) bands (ev): -4.8264 -3.4028 4.2920 4.3872 6.0026 8.8914 9.5406 10.0883 15.2334 the Fermi energy is 7.8021 ev ! total energy = -25.49893983 Ry Harris-Foulkes estimate = -25.49893983 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000003 0.00000000 -0.00848406 atom 2 type 1 force = -0.00000003 0.00000000 0.00848406 Total force = 0.011998 Total SCF correction = 0.000065 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -6.16 -0.00002765 0.00000000 0.00000000 -4.07 0.00 0.00 0.00000000 -0.00002765 0.00000000 0.00 -4.07 0.00 0.00000000 0.00000000 -0.00007039 0.00 0.00 -10.35 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.595329124 0.000000000 0.883272615 -0.297664431 0.515570137 0.883272736 -0.297664431 -0.515570137 0.883272736 new unit-cell volume = 280.2060 (a.u.)^3 new positions in cryst coord As 0.273581335 0.273581344 0.273581344 As -0.273581335 -0.273581344 -0.273581344 new positions in cart coord (alat unit) As 0.000000066 0.000000000 0.724940786 As -0.000000066 0.000000000 -0.724940786 Ekin = 0.00127385 Ry T = 576.3 K Etot = -25.49766597 CELL_PARAMETERS (alat) 0.595329124 0.000000000 0.883272615 -0.297664431 0.515570137 0.883272736 -0.297664431 -0.515570137 0.883272736 ATOMIC_POSITIONS (crystal) As 0.273581335 0.273581344 0.273581344 As -0.273581335 -0.273581344 -0.273581344 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1415191), wk = 0.0625000 k( 2) = ( -0.1399786 -0.2424500 0.2358653), wk = 0.1250000 k( 3) = ( 0.2799572 0.4849001 -0.0471731), wk = 0.1250000 k( 4) = ( 0.1399786 0.2424500 0.0471730), wk = 0.1250000 k( 5) = ( -0.2799572 0.0000000 0.3302114), wk = 0.0625000 k( 6) = ( 0.1399786 0.7273501 0.0471730), wk = 0.1250000 k( 7) = ( 0.0000000 0.4849001 0.1415191), wk = 0.1250000 k( 8) = ( 0.5599144 0.0000000 -0.2358653), wk = 0.0625000 k( 9) = ( 0.4199358 -0.2424500 -0.1415192), wk = 0.1250000 k( 10) = ( 0.2799572 0.0000000 -0.0471731), wk = 0.0625000 k( 11) = ( 0.2799573 0.0000000 0.2358652), wk = 0.0625000 k( 12) = ( 0.1399787 -0.2424500 0.3302113), wk = 0.1250000 k( 13) = ( 0.5599145 0.4849001 0.0471730), wk = 0.1250000 k( 14) = ( 0.4199359 0.2424500 0.1415191), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4245574), wk = 0.0625000 k( 16) = ( 0.4199359 0.7273501 0.1415191), wk = 0.1250000 k( 17) = ( 0.2799573 0.4849001 0.2358652), wk = 0.1250000 k( 18) = ( 0.8398717 0.0000000 -0.1415192), wk = 0.0625000 k( 19) = ( 0.6998931 -0.2424500 -0.0471731), wk = 0.1250000 k( 20) = ( 0.5599145 0.0000000 0.0471730), wk = 0.0625000 extrapolated charge 9.96570, renormalised to 10.00000 total cpu time spent up to now is 28.46 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 29.05 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2587 1.4503 5.3878 5.3878 6.2538 9.5917 10.2504 10.2504 14.3872 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2649 -1.0640 3.7506 5.3635 7.8009 8.0195 8.9418 11.5478 13.6764 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7641 -3.3659 4.3406 4.4884 6.0333 8.9731 9.5093 10.0987 15.2881 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6794 -0.0927 4.5198 5.0636 6.4072 9.1775 9.8569 11.1862 13.2590 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9215 -0.8552 2.7447 3.8804 5.2253 9.8801 11.6255 11.7490 13.6035 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3871 -2.7619 1.7403 2.7037 5.9619 9.6818 12.2139 13.3151 13.7267 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1683 -2.4183 2.6059 4.6480 5.7830 9.1939 10.8501 11.8543 13.4589 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6726 -2.1847 1.7862 3.3478 3.9842 9.4720 12.6449 14.0768 14.5191 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1683 -2.4183 2.6059 4.6480 5.7830 9.1939 10.8501 11.8543 13.4589 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6794 -0.0927 4.5198 5.0636 6.4072 9.1775 9.8569 11.1862 13.2590 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2649 -1.0640 3.7506 5.3635 7.8009 8.0195 8.9418 11.5478 13.6764 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9215 -0.8552 2.7447 3.8804 5.2253 9.8801 11.6255 11.7490 13.6035 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3871 -2.7619 1.7403 2.7037 5.9619 9.6818 12.2139 13.3151 13.7267 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1683 -2.4183 2.6059 4.6480 5.7830 9.1939 10.8501 11.8543 13.4589 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1543 -1.6835 5.5463 5.5463 6.7062 8.3487 8.3487 9.4196 15.3874 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1892 -2.1844 1.9633 4.4245 5.8002 9.8694 10.0537 12.8272 14.9870 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6726 -2.1847 1.7862 3.3478 3.9842 9.4720 12.6449 14.0768 14.5191 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1892 -2.1844 1.9633 4.4245 5.8002 9.8694 10.0537 12.8272 14.9870 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3871 -2.7619 1.7403 2.7037 5.9619 9.6818 12.2139 13.3151 13.7267 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7641 -3.3659 4.3406 4.4884 6.0333 8.9731 9.5093 10.0987 15.2881 the Fermi energy is 7.9616 ev total energy = -25.49922722 Ry Harris-Foulkes estimate = -25.47971009 Ry estimated scf accuracy < 0.00002123 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-07, avg # of iterations = 2.0 total cpu time spent up to now is 29.41 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2522 1.4520 5.3969 5.3969 6.2549 9.5991 10.2538 10.2538 14.3726 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2571 -1.0597 3.7487 5.3762 7.8053 8.0141 8.9333 11.5505 13.6679 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7545 -3.3611 4.3354 4.4978 6.0295 8.9744 9.5008 10.0928 15.2733 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6731 -0.0836 4.5272 5.0615 6.4042 9.1736 9.8645 11.1852 13.2445 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9123 -0.8530 2.7483 3.8852 5.2135 9.8829 11.6333 11.7533 13.5904 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3753 -2.7553 1.7371 2.6974 5.9582 9.6839 12.2138 13.3204 13.7206 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1606 -2.4093 2.6096 4.6370 5.7826 9.1872 10.8543 11.8592 13.4491 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6630 -2.1727 1.7738 3.3523 3.9768 9.4704 12.6464 14.0682 14.5247 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1606 -2.4093 2.6096 4.6370 5.7826 9.1872 10.8543 11.8592 13.4491 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6731 -0.0836 4.5272 5.0615 6.4042 9.1736 9.8645 11.1852 13.2445 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2571 -1.0597 3.7487 5.3762 7.8053 8.0141 8.9333 11.5505 13.6679 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9123 -0.8530 2.7483 3.8852 5.2135 9.8829 11.6333 11.7533 13.5904 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3753 -2.7553 1.7371 2.6974 5.9582 9.6839 12.2138 13.3204 13.7206 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1606 -2.4093 2.6096 4.6370 5.7826 9.1872 10.8543 11.8592 13.4491 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1426 -1.6921 5.5565 5.5565 6.7198 8.3455 8.3456 9.4063 15.3787 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1744 -2.1905 1.9638 4.4311 5.7941 9.8687 10.0603 12.8346 14.9733 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6630 -2.1727 1.7738 3.3523 3.9768 9.4704 12.6464 14.0682 14.5247 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1744 -2.1905 1.9638 4.4311 5.7941 9.8687 10.0603 12.8346 14.9733 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3753 -2.7553 1.7371 2.6974 5.9582 9.6839 12.2138 13.3204 13.7206 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7545 -3.3611 4.3354 4.4978 6.0295 8.9744 9.5008 10.0928 15.2733 the Fermi energy is 7.9556 ev total energy = -25.49924082 Ry Harris-Foulkes estimate = -25.49924583 Ry estimated scf accuracy < 0.00001070 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-07, avg # of iterations = 1.1 total cpu time spent up to now is 29.70 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2560 1.4502 5.3925 5.3925 6.2527 9.5949 10.2506 10.2506 14.3729 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2612 -1.0624 3.7467 5.3707 7.8017 8.0138 8.9333 11.5477 13.6664 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7590 -3.3643 4.3343 4.4930 6.0282 8.9719 9.5007 10.0919 15.2733 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6768 -0.0875 4.5231 5.0599 6.4030 9.1724 9.8599 11.1834 13.2445 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9167 -0.8551 2.7447 3.8816 5.2144 9.8791 11.6295 11.7502 13.5911 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3802 -2.7587 1.7352 2.6964 5.9571 9.6813 12.2108 13.3170 13.7196 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1646 -2.4133 2.6061 4.6375 5.7807 9.1865 10.8512 11.8556 13.4483 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6673 -2.1776 1.7744 3.3487 3.9764 9.4673 12.6441 14.0680 14.5217 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1646 -2.4133 2.6061 4.6375 5.7807 9.1865 10.8512 11.8556 13.4483 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6768 -0.0875 4.5231 5.0599 6.4030 9.1724 9.8599 11.1834 13.2445 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2612 -1.0624 3.7467 5.3707 7.8017 8.0138 8.9333 11.5477 13.6664 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9167 -0.8551 2.7447 3.8816 5.2144 9.8791 11.6295 11.7502 13.5911 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3802 -2.7587 1.7352 2.6964 5.9571 9.6813 12.2108 13.3170 13.7196 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1646 -2.4133 2.6061 4.6375 5.7807 9.1865 10.8512 11.8556 13.4483 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1477 -1.6917 5.5517 5.5517 6.7138 8.3440 8.3440 9.4080 15.3773 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1801 -2.1906 1.9609 4.4271 5.7933 9.8669 10.0567 12.8308 14.9733 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6673 -2.1776 1.7744 3.3487 3.9764 9.4673 12.6441 14.0680 14.5217 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1801 -2.1906 1.9609 4.4271 5.7933 9.8669 10.0567 12.8308 14.9733 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3802 -2.7587 1.7352 2.6964 5.9571 9.6813 12.2108 13.3170 13.7196 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7590 -3.3643 4.3343 4.4930 6.0282 8.9719 9.5007 10.0919 15.2733 the Fermi energy is 7.9555 ev total energy = -25.49924128 Ry Harris-Foulkes estimate = -25.49924185 Ry estimated scf accuracy < 0.00000098 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.81E-09, avg # of iterations = 2.4 total cpu time spent up to now is 30.10 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2588 1.4477 5.3893 5.3893 6.2507 9.5922 10.2483 10.2483 14.3727 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2641 -1.0651 3.7450 5.3672 7.7994 8.0122 8.9322 11.5454 13.6655 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7622 -3.3669 4.3329 4.4899 6.0267 8.9698 9.4996 10.0906 15.2731 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6796 -0.0908 4.5202 5.0582 6.4012 9.1708 9.8573 11.1814 13.2443 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9198 -0.8576 2.7424 3.8790 5.2137 9.8770 11.6265 11.7476 13.5907 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3837 -2.7617 1.7337 2.6952 5.9554 9.6791 12.2090 13.3143 13.7183 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1676 -2.4165 2.6038 4.6367 5.7787 9.1853 10.8487 11.8531 13.4475 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6705 -2.1811 1.7738 3.3462 3.9754 9.4658 12.6417 14.0670 14.5189 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1676 -2.4165 2.6038 4.6367 5.7787 9.1853 10.8487 11.8531 13.4475 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6796 -0.0908 4.5202 5.0582 6.4012 9.1708 9.8573 11.1814 13.2443 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2641 -1.0651 3.7450 5.3672 7.7994 8.0122 8.9322 11.5454 13.6655 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9198 -0.8576 2.7424 3.8790 5.2137 9.8770 11.6265 11.7476 13.5907 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3837 -2.7617 1.7337 2.6952 5.9554 9.6791 12.2090 13.3143 13.7183 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1676 -2.4165 2.6038 4.6367 5.7787 9.1853 10.8487 11.8531 13.4475 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1510 -1.6929 5.5484 5.5484 6.7104 8.3424 8.3424 9.4074 15.3768 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1839 -2.1921 1.9589 4.4243 5.7921 9.8648 10.0539 12.8279 14.9731 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6705 -2.1811 1.7738 3.3462 3.9754 9.4658 12.6417 14.0670 14.5189 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1839 -2.1921 1.9589 4.4243 5.7921 9.8648 10.0539 12.8279 14.9731 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3837 -2.7617 1.7337 2.6952 5.9554 9.6791 12.2090 13.3143 13.7183 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7622 -3.3669 4.3329 4.4899 6.0267 8.9698 9.4996 10.0906 15.2731 the Fermi energy is 7.9540 ev total energy = -25.49924152 Ry Harris-Foulkes estimate = -25.49924163 Ry estimated scf accuracy < 0.00000021 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 1.4 total cpu time spent up to now is 30.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.1415 ( 531 PWs) bands (ev): -7.2581 1.4483 5.3901 5.3901 6.2512 9.5930 10.2489 10.2489 14.3728 k =-0.1400-0.2425 0.2359 ( 522 PWs) bands (ev): -6.2634 -1.0645 3.7454 5.3681 7.8000 8.0126 8.9324 11.5460 13.6658 k = 0.2800 0.4849-0.0472 ( 520 PWs) bands (ev): -4.7613 -3.3662 4.3333 4.4908 6.0270 8.9703 9.4998 10.0909 15.2732 k = 0.1400 0.2425 0.0472 ( 525 PWs) bands (ev): -6.6789 -0.0899 4.5209 5.0586 6.4016 9.1711 9.8581 11.1819 13.2443 k =-0.2800 0.0000 0.3302 ( 519 PWs) bands (ev): -5.9190 -0.8570 2.7430 3.8797 5.2138 9.8776 11.6273 11.7482 13.5907 k = 0.1400 0.7274 0.0472 ( 510 PWs) bands (ev): -4.3827 -2.7609 1.7341 2.6955 5.9558 9.6796 12.2095 13.3150 13.7186 k = 0.0000 0.4849 0.1415 ( 521 PWs) bands (ev): -5.1668 -2.4157 2.6044 4.6368 5.7791 9.1856 10.8493 11.8537 13.4477 k = 0.5599 0.0000-0.2359 ( 510 PWs) bands (ev): -4.6697 -2.1802 1.7739 3.3469 3.9756 9.4663 12.6423 14.0672 14.5196 k = 0.4199-0.2425-0.1415 ( 521 PWs) bands (ev): -5.1668 -2.4157 2.6044 4.6368 5.7791 9.1856 10.8493 11.8537 13.4477 k = 0.2800 0.0000-0.0472 ( 525 PWs) bands (ev): -6.6789 -0.0899 4.5209 5.0586 6.4016 9.1711 9.8581 11.1819 13.2443 k = 0.2800 0.0000 0.2359 ( 522 PWs) bands (ev): -6.2634 -1.0645 3.7454 5.3681 7.8000 8.0126 8.9324 11.5460 13.6658 k = 0.1400-0.2425 0.3302 ( 519 PWs) bands (ev): -5.9190 -0.8570 2.7430 3.8797 5.2138 9.8776 11.6273 11.7482 13.5907 k = 0.5599 0.4849 0.0472 ( 510 PWs) bands (ev): -4.3827 -2.7609 1.7341 2.6955 5.9558 9.6796 12.2095 13.3150 13.7186 k = 0.4199 0.2425 0.1415 ( 521 PWs) bands (ev): -5.1668 -2.4157 2.6044 4.6368 5.7791 9.1856 10.8493 11.8537 13.4477 k = 0.0000 0.0000 0.4246 ( 522 PWs) bands (ev): -6.1501 -1.6927 5.5493 5.5493 6.7114 8.3428 8.3428 9.4074 15.3769 k = 0.4199 0.7274 0.1415 ( 520 PWs) bands (ev): -5.1829 -2.1918 1.9595 4.4250 5.7923 9.8653 10.0547 12.8286 14.9732 k = 0.2800 0.4849 0.2359 ( 510 PWs) bands (ev): -4.6697 -2.1802 1.7739 3.3469 3.9756 9.4663 12.6423 14.0672 14.5196 k = 0.8399 0.0000-0.1415 ( 520 PWs) bands (ev): -5.1829 -2.1918 1.9595 4.4250 5.7923 9.8653 10.0547 12.8286 14.9732 k = 0.6999-0.2425-0.0472 ( 510 PWs) bands (ev): -4.3827 -2.7609 1.7341 2.6955 5.9558 9.6796 12.2095 13.3150 13.7186 k = 0.5599 0.0000 0.0472 ( 520 PWs) bands (ev): -4.7613 -3.3662 4.3333 4.4908 6.0270 8.9703 9.4998 10.0909 15.2732 the Fermi energy is 7.9543 ev ! total energy = -25.49924154 Ry Harris-Foulkes estimate = -25.49924154 Ry estimated scf accuracy < 8.0E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00271483 atom 2 type 1 force = 0.00000000 0.00000000 0.00271483 Total force = 0.003839 Total SCF correction = 0.000083 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -8.75 -0.00004661 0.00000000 0.00000000 -6.86 0.00 0.00 0.00000000 -0.00004661 0.00000000 0.00 -6.86 0.00 0.00000000 0.00000000 -0.00008514 0.00 0.00 -12.52 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 0.594779713 0.000000000 0.880011813 -0.297389726 0.515094328 0.880011923 -0.297389726 -0.515094328 0.880011923 new unit-cell volume = 278.6565 (a.u.)^3 new positions in cryst coord As 0.272394679 0.272394680 0.272394680 As -0.272394679 -0.272394680 -0.272394680 new positions in cart coord (alat unit) As 0.000000070 0.000000000 0.719131668 As -0.000000070 0.000000000 -0.719131668 Ekin = 0.00156746 Ry T = 524.1 K Etot = -25.49767408 CELL_PARAMETERS (alat) 0.594779713 0.000000000 0.880011813 -0.297389726 0.515094328 0.880011923 -0.297389726 -0.515094328 0.880011923 ATOMIC_POSITIONS (crystal) As 0.272394679 0.272394680 0.272394680 As -0.272394679 -0.272394680 -0.272394680 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1420435), wk = 0.0625000 k( 2) = ( -0.1401079 -0.2426740 0.2367392), wk = 0.1250000 k( 3) = ( 0.2802158 0.4853480 -0.0473479), wk = 0.1250000 k( 4) = ( 0.1401079 0.2426740 0.0473478), wk = 0.1250000 k( 5) = ( -0.2802158 0.0000000 0.3314349), wk = 0.0625000 k( 6) = ( 0.1401079 0.7280220 0.0473478), wk = 0.1250000 k( 7) = ( 0.0000000 0.4853480 0.1420435), wk = 0.1250000 k( 8) = ( 0.5604316 0.0000000 -0.2367393), wk = 0.0625000 k( 9) = ( 0.4203237 -0.2426740 -0.1420436), wk = 0.1250000 k( 10) = ( 0.2802158 0.0000000 -0.0473479), wk = 0.0625000 k( 11) = ( 0.2802159 0.0000000 0.2367392), wk = 0.0625000 k( 12) = ( 0.1401080 -0.2426740 0.3314349), wk = 0.1250000 k( 13) = ( 0.5604317 0.4853480 0.0473478), wk = 0.1250000 k( 14) = ( 0.4203238 0.2426740 0.1420435), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4261306), wk = 0.0625000 k( 16) = ( 0.4203238 0.7280220 0.1420435), wk = 0.1250000 k( 17) = ( 0.2802159 0.4853480 0.2367392), wk = 0.1250000 k( 18) = ( 0.8406475 0.0000000 -0.1420436), wk = 0.0625000 k( 19) = ( 0.7005396 -0.2426740 -0.0473479), wk = 0.1250000 k( 20) = ( 0.5604317 0.0000000 0.0473478), wk = 0.0625000 extrapolated charge 9.94440, renormalised to 10.00000 total cpu time spent up to now is 30.69 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 31.29 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1991 1.5078 5.4860 5.4860 6.3091 9.7625 10.3480 10.3480 14.4172 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1952 -1.0131 3.8247 5.5118 7.8858 8.0873 8.9189 11.6238 13.7856 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6843 -3.3131 4.4080 4.6143 6.0854 9.0868 9.4972 10.1391 15.3692 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6212 -0.0105 4.6178 5.1244 6.4940 9.1959 10.0171 11.2383 13.2946 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8407 -0.8117 2.8423 3.9588 5.2182 10.0354 11.7194 11.8318 13.5977 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2910 -2.7018 1.7911 2.7452 6.0220 9.7331 12.3320 13.4370 13.7793 k = 0.0000 0.4853 0.1420 band energies (ev): -5.1011 -2.3421 2.7009 4.6636 5.8844 9.2008 10.9269 11.9795 13.5379 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5949 -2.0797 1.7841 3.4274 4.0055 9.6258 12.7044 14.0771 14.6005 k = 0.4203-0.2427-0.1420 band energies (ev): -5.1011 -2.3421 2.7009 4.6636 5.8844 9.2008 10.9269 11.9795 13.5379 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6212 -0.0105 4.6178 5.1244 6.4940 9.1959 10.0171 11.2383 13.2946 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1952 -1.0131 3.8247 5.5118 7.8858 8.0873 8.9189 11.6238 13.7856 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8407 -0.8117 2.8422 3.9588 5.2182 10.0354 11.7194 11.8318 13.5977 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2910 -2.7018 1.7911 2.7452 6.0220 9.7331 12.3320 13.4370 13.7793 k = 0.4203 0.2427 0.1420 band energies (ev): -5.1011 -2.3421 2.7009 4.6636 5.8844 9.2008 10.9269 11.9795 13.5379 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0541 -1.6966 5.6618 5.6618 6.8399 8.3776 8.3776 9.4531 15.4972 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0679 -2.1974 2.0379 4.5226 5.8296 9.9015 10.1755 12.9533 15.0387 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5949 -2.0797 1.7841 3.4274 4.0055 9.6258 12.7044 14.0771 14.6005 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0679 -2.1974 2.0379 4.5226 5.8296 9.9015 10.1755 12.9533 15.0387 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2910 -2.7018 1.7911 2.7452 6.0220 9.7331 12.3320 13.4370 13.7793 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6843 -3.3131 4.4080 4.6143 6.0854 9.0868 9.4972 10.1391 15.3692 the Fermi energy is 8.0281 ev total energy = -25.49933242 Ry Harris-Foulkes estimate = -25.46735417 Ry estimated scf accuracy < 0.00002623 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-07, avg # of iterations = 2.5 total cpu time spent up to now is 31.71 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1901 1.5145 5.4988 5.4988 6.3121 9.7723 10.3525 10.3525 14.3949 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1844 -1.0046 3.8222 5.5290 7.8897 8.0839 8.9086 11.6280 13.7708 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6705 -3.3052 4.4017 4.6264 6.0807 9.0889 9.4874 10.1325 15.3462 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6122 0.0044 4.6276 5.1226 6.4920 9.1920 10.0252 11.2383 13.2717 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8277 -0.8054 2.8465 3.9650 5.2035 10.0358 11.7318 11.8389 13.5805 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2740 -2.6910 1.7854 2.7366 6.0189 9.7365 12.3293 13.4449 13.7727 k = 0.0000 0.4853 0.1420 band energies (ev): -5.0901 -2.3282 2.7044 4.6498 5.8856 9.1923 10.9335 11.9862 13.5222 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5808 -2.0620 1.7677 3.4327 3.9965 9.6190 12.7089 14.0668 14.6116 k = 0.4203-0.2427-0.1420 band energies (ev): -5.0901 -2.3282 2.7044 4.6498 5.8856 9.1923 10.9335 11.9862 13.5222 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6122 0.0044 4.6276 5.1226 6.4920 9.1920 10.0252 11.2383 13.2717 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1844 -1.0046 3.8222 5.5290 7.8897 8.0839 8.9086 11.6280 13.7708 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8277 -0.8054 2.8465 3.9650 5.2035 10.0358 11.7318 11.8389 13.5805 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2740 -2.6910 1.7854 2.7366 6.0189 9.7365 12.3293 13.4449 13.7727 k = 0.4203 0.2427 0.1420 band energies (ev): -5.0901 -2.3282 2.7044 4.6498 5.8856 9.1923 10.9335 11.9862 13.5222 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0380 -1.7049 5.6757 5.6757 6.8564 8.3734 8.3734 9.4382 15.4811 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0472 -2.2028 2.0373 4.5310 5.8217 9.9022 10.1855 12.9645 15.0172 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5808 -2.0620 1.7677 3.4327 3.9965 9.6190 12.7089 14.0668 14.6116 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0472 -2.2028 2.0373 4.5310 5.8217 9.9022 10.1855 12.9645 15.0172 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2740 -2.6910 1.7854 2.7366 6.0189 9.7365 12.3293 13.4449 13.7727 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6705 -3.3052 4.4017 4.6264 6.0807 9.0889 9.4874 10.1325 15.3462 the Fermi energy is 8.0236 ev total energy = -25.49936052 Ry Harris-Foulkes estimate = -25.49936996 Ry estimated scf accuracy < 0.00002228 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-07, avg # of iterations = 1.0 total cpu time spent up to now is 32.01 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1948 1.5122 5.4933 5.4933 6.3094 9.7670 10.3485 10.3485 14.3953 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1894 -1.0081 3.8197 5.5222 7.8854 8.0831 8.9086 11.6246 13.7690 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6760 -3.3092 4.4004 4.6205 6.0790 9.0857 9.4872 10.1313 15.3462 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6169 -0.0005 4.6225 5.1206 6.4903 9.1903 10.0195 11.2359 13.2719 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8332 -0.8081 2.8419 3.9605 5.2045 10.0312 11.7269 11.8349 13.5813 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2801 -2.6953 1.7830 2.7354 6.0174 9.7332 12.3256 13.4408 13.7711 k = 0.0000 0.4853 0.1420 band energies (ev): -5.0950 -2.3333 2.6999 4.6503 5.8831 9.1914 10.9297 11.9816 13.5212 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5862 -2.0682 1.7684 3.4284 3.9960 9.6153 12.7060 14.0664 14.6078 k = 0.4203-0.2427-0.1420 band energies (ev): -5.0950 -2.3333 2.6999 4.6503 5.8831 9.1914 10.9297 11.9816 13.5212 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6169 -0.0005 4.6225 5.1206 6.4903 9.1903 10.0195 11.2359 13.2719 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1894 -1.0081 3.8197 5.5222 7.8854 8.0831 8.9086 11.6246 13.7690 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8332 -0.8081 2.8419 3.9605 5.2045 10.0312 11.7269 11.8349 13.5813 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2801 -2.6953 1.7830 2.7354 6.0174 9.7332 12.3256 13.4408 13.7711 k = 0.4203 0.2427 0.1420 band energies (ev): -5.0950 -2.3333 2.6999 4.6503 5.8831 9.1914 10.9297 11.9816 13.5212 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0443 -1.7045 5.6698 5.6698 6.8489 8.3715 8.3715 9.4402 15.4793 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0545 -2.2029 2.0337 4.5260 5.8206 9.8998 10.1810 12.9597 15.0171 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5862 -2.0682 1.7684 3.4284 3.9960 9.6153 12.7060 14.0664 14.6078 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0545 -2.2029 2.0337 4.5260 5.8206 9.8998 10.1810 12.9597 15.0171 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2801 -2.6953 1.7830 2.7354 6.0174 9.7332 12.3256 13.4408 13.7711 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6760 -3.3092 4.4004 4.6205 6.0790 9.0857 9.4872 10.1313 15.3462 the Fermi energy is 8.0235 ev total energy = -25.49936028 Ry Harris-Foulkes estimate = -25.49936221 Ry estimated scf accuracy < 0.00000319 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.19E-08, avg # of iterations = 2.1 total cpu time spent up to now is 32.39 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1994 1.5079 5.4882 5.4882 6.3059 9.7625 10.3446 10.3446 14.3951 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1943 -1.0126 3.8168 5.5163 7.8816 8.0804 8.9068 11.6208 13.7675 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6813 -3.3136 4.3980 4.6154 6.0765 9.0822 9.4854 10.1290 15.3459 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6215 -0.0059 4.6178 5.1177 6.4874 9.1876 10.0152 11.2326 13.2716 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8383 -0.8123 2.8380 3.9563 5.2034 10.0277 11.7219 11.8306 13.5805 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2859 -2.7001 1.7806 2.7333 6.0146 9.7296 12.3226 13.4363 13.7687 k = 0.0000 0.4853 0.1420 band energies (ev): -5.0999 -2.3386 2.6961 4.6491 5.8797 9.1894 10.9255 11.9774 13.5199 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5915 -2.0740 1.7675 3.4243 3.9941 9.6129 12.7020 14.0646 14.6029 k = 0.4203-0.2427-0.1420 band energies (ev): -5.0999 -2.3386 2.6961 4.6491 5.8797 9.1894 10.9255 11.9774 13.5199 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6215 -0.0059 4.6178 5.1177 6.4874 9.1876 10.0152 11.2326 13.2716 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1943 -1.0126 3.8168 5.5163 7.8816 8.0804 8.9068 11.6208 13.7675 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8383 -0.8123 2.8380 3.9563 5.2034 10.0277 11.7219 11.8306 13.5805 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2859 -2.7001 1.7806 2.7333 6.0146 9.7296 12.3226 13.4363 13.7687 k = 0.4203 0.2427 0.1420 band energies (ev): -5.0999 -2.3386 2.6961 4.6491 5.8797 9.1894 10.9255 11.9774 13.5199 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0499 -1.7066 5.6644 5.6644 6.8433 8.3689 8.3689 9.4392 15.4782 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0608 -2.2054 2.0304 4.5215 5.8186 9.8965 10.1763 12.9549 15.0168 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5915 -2.0740 1.7675 3.4243 3.9941 9.6129 12.7020 14.0646 14.6029 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0608 -2.2054 2.0304 4.5214 5.8186 9.8965 10.1763 12.9549 15.0168 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2859 -2.7001 1.7806 2.7333 6.0146 9.7296 12.3226 13.4363 13.7687 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6813 -3.3136 4.3980 4.6154 6.0765 9.0822 9.4854 10.1290 15.3459 the Fermi energy is 8.0209 ev total energy = -25.49936102 Ry Harris-Foulkes estimate = -25.49936121 Ry estimated scf accuracy < 0.00000037 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-09, avg # of iterations = 1.6 total cpu time spent up to now is 32.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.1420 ( 531 PWs) bands (ev): -7.1984 1.5088 5.4893 5.4893 6.3067 9.7635 10.3454 10.3454 14.3951 k =-0.1401-0.2427 0.2367 ( 522 PWs) bands (ev): -6.1932 -1.0117 3.8174 5.5176 7.8825 8.0809 8.9071 11.6216 13.7678 k = 0.2802 0.4853-0.0473 ( 520 PWs) bands (ev): -4.6802 -3.3126 4.3985 4.6166 6.0770 9.0829 9.4857 10.1294 15.3459 k = 0.1401 0.2427 0.0473 ( 525 PWs) bands (ev): -6.6205 -0.0048 4.6188 5.1183 6.4879 9.1882 10.0161 11.2333 13.2717 k =-0.2802 0.0000 0.3314 ( 519 PWs) bands (ev): -5.8372 -0.8114 2.8388 3.9572 5.2036 10.0285 11.7230 11.8315 13.5806 k = 0.1401 0.7280 0.0473 ( 510 PWs) bands (ev): -4.2846 -2.6991 1.7811 2.7337 6.0151 9.7303 12.3233 13.4373 13.7692 k = 0.0000 0.4853 0.1420 ( 521 PWs) bands (ev): -5.0988 -2.3374 2.6970 4.6493 5.8804 9.1898 10.9264 11.9783 13.5202 k = 0.5604 0.0000-0.2367 ( 510 PWs) bands (ev): -4.5904 -2.0727 1.7676 3.4252 3.9945 9.6134 12.7028 14.0650 14.6039 k = 0.4203-0.2427-0.1420 ( 521 PWs) bands (ev): -5.0988 -2.3374 2.6970 4.6493 5.8804 9.1898 10.9264 11.9783 13.5201 k = 0.2802 0.0000-0.0473 ( 525 PWs) bands (ev): -6.6205 -0.0048 4.6188 5.1183 6.4879 9.1882 10.0161 11.2333 13.2717 k = 0.2802 0.0000 0.2367 ( 522 PWs) bands (ev): -6.1932 -1.0117 3.8174 5.5176 7.8825 8.0809 8.9071 11.6216 13.7678 k = 0.1401-0.2427 0.3314 ( 519 PWs) bands (ev): -5.8372 -0.8114 2.8388 3.9572 5.2036 10.0285 11.7230 11.8315 13.5806 k = 0.5604 0.4853 0.0473 ( 510 PWs) bands (ev): -4.2846 -2.6991 1.7811 2.7337 6.0151 9.7303 12.3233 13.4373 13.7692 k = 0.4203 0.2427 0.1420 ( 521 PWs) bands (ev): -5.0988 -2.3374 2.6970 4.6493 5.8804 9.1898 10.9264 11.9783 13.5201 k = 0.0000 0.0000 0.4261 ( 522 PWs) bands (ev): -6.0487 -1.7062 5.6656 5.6656 6.8446 8.3694 8.3694 9.4393 15.4785 k = 0.4203 0.7280 0.1420 ( 520 PWs) bands (ev): -5.0594 -2.2050 2.0311 4.5224 5.8190 9.8971 10.1773 12.9559 15.0168 k = 0.2802 0.4853 0.2367 ( 510 PWs) bands (ev): -4.5904 -2.0727 1.7676 3.4252 3.9945 9.6134 12.7028 14.0650 14.6039 k = 0.8406 0.0000-0.1420 ( 520 PWs) bands (ev): -5.0594 -2.2050 2.0311 4.5224 5.8190 9.8971 10.1773 12.9559 15.0168 k = 0.7005-0.2427-0.0473 ( 510 PWs) bands (ev): -4.2846 -2.6991 1.7811 2.7337 6.0151 9.7303 12.3233 13.4373 13.7692 k = 0.5604 0.0000 0.0473 ( 520 PWs) bands (ev): -4.6802 -3.3126 4.3985 4.6166 6.0770 9.0829 9.4857 10.1294 15.3459 the Fermi energy is 8.0214 ev ! total energy = -25.49936105 Ry Harris-Foulkes estimate = -25.49936106 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00263554 atom 2 type 1 force = 0.00000001 0.00000000 -0.00263554 Total force = 0.003727 Total SCF correction = 0.000096 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -9.89 -0.00005457 0.00000000 0.00000000 -8.03 0.00 0.00 0.00000000 -0.00005457 0.00000000 0.00 -8.03 0.00 0.00000000 0.00000000 -0.00009260 0.00 0.00 -13.62 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 0.593822912 0.000000000 0.875820278 -0.296911328 0.514265705 0.875820379 -0.296911328 -0.514265705 0.875820379 new unit-cell volume = 276.4377 (a.u.)^3 new positions in cryst coord As 0.272868133 0.272868139 0.272868139 As -0.272868133 -0.272868139 -0.272868139 new positions in cart coord (alat unit) As 0.000000067 0.000000000 0.716950398 As -0.000000067 0.000000000 -0.716950398 Ekin = 0.00168605 Ry T = 481.9 K Etot = -25.49767500 CELL_PARAMETERS (alat) 0.593822912 0.000000000 0.875820278 -0.296911328 0.514265705 0.875820379 -0.296911328 -0.514265705 0.875820379 ATOMIC_POSITIONS (crystal) As 0.272868133 0.272868139 0.272868139 As -0.272868133 -0.272868139 -0.272868139 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1427233), wk = 0.0625000 k( 2) = ( -0.1403336 -0.2430650 0.2378722), wk = 0.1250000 k( 3) = ( 0.2806673 0.4861300 -0.0475745), wk = 0.1250000 k( 4) = ( 0.1403337 0.2430650 0.0475744), wk = 0.1250000 k( 5) = ( -0.2806673 0.0000000 0.3330211), wk = 0.0625000 k( 6) = ( 0.1403337 0.7291950 0.0475744), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861300 0.1427233), wk = 0.1250000 k( 8) = ( 0.5613346 0.0000000 -0.2378723), wk = 0.0625000 k( 9) = ( 0.4210010 -0.2430650 -0.1427234), wk = 0.1250000 k( 10) = ( 0.2806673 0.0000000 -0.0475745), wk = 0.0625000 k( 11) = ( 0.2806674 0.0000000 0.2378722), wk = 0.0625000 k( 12) = ( 0.1403337 -0.2430650 0.3330211), wk = 0.1250000 k( 13) = ( 0.5613347 0.4861300 0.0475744), wk = 0.1250000 k( 14) = ( 0.4210010 0.2430650 0.1427233), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4281700), wk = 0.0625000 k( 16) = ( 0.4210010 0.7291950 0.1427233), wk = 0.1250000 k( 17) = ( 0.2806674 0.4861300 0.2378722), wk = 0.1250000 k( 18) = ( 0.8420020 0.0000000 -0.1427234), wk = 0.0625000 k( 19) = ( 0.7016683 -0.2430650 -0.0475745), wk = 0.1250000 k( 20) = ( 0.5613347 0.0000000 0.0475744), wk = 0.0625000 extrapolated charge 9.91974, renormalised to 10.00000 total cpu time spent up to now is 33.00 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.4 total cpu time spent up to now is 33.57 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1732 1.6522 5.5391 5.5391 6.4380 9.8466 10.4547 10.4547 14.5251 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1632 -0.9256 3.9066 5.5581 7.9849 8.2121 9.0449 11.7744 13.8753 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6455 -3.2551 4.5023 4.6593 6.1868 9.2014 9.6325 10.3129 15.5373 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5927 0.0818 4.6659 5.2309 6.5978 9.3537 10.1039 11.3817 13.4323 k =-0.2807 0.0000 0.3330 band energies (ev): -5.8050 -0.7037 2.8920 4.0015 5.3245 10.1019 11.8528 11.9549 13.7502 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2439 -2.6358 1.8389 2.8186 6.1225 9.8554 12.4276 13.5806 13.9382 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0627 -2.2770 2.7467 4.7599 5.9869 9.3561 11.0705 12.0896 13.6544 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5478 -2.0156 1.8637 3.4675 4.1019 9.6962 12.8639 14.2590 14.7903 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0627 -2.2770 2.7467 4.7599 5.9869 9.3561 11.0705 12.0896 13.6544 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5927 0.0818 4.6659 5.2309 6.5978 9.3537 10.1039 11.3817 13.4323 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1632 -0.9256 3.9066 5.5581 7.9849 8.2121 9.0449 11.7744 13.8753 k = 0.1403-0.2431 0.3330 band energies (ev): -5.8050 -0.7037 2.8920 4.0015 5.3245 10.1019 11.8528 11.9549 13.7502 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2439 -2.6358 1.8389 2.8186 6.1225 9.8554 12.4276 13.5806 13.9382 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0627 -2.2770 2.7467 4.7599 5.9869 9.3561 11.0705 12.0896 13.6544 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0203 -1.5882 5.7070 5.7070 6.9193 8.4723 8.4723 9.5781 15.6338 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0291 -2.0980 2.0785 4.5668 5.9229 10.0150 10.2823 13.0721 15.1845 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5478 -2.0156 1.8637 3.4675 4.1019 9.6962 12.8639 14.2590 14.7903 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0291 -2.0980 2.0785 4.5668 5.9229 10.0150 10.2823 13.0721 15.1845 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2439 -2.6358 1.8389 2.8186 6.1225 9.8554 12.4276 13.5806 13.9382 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6455 -3.2551 4.5023 4.6593 6.1868 9.2014 9.6325 10.3129 15.5373 the Fermi energy is 8.1545 ev total energy = -25.49942539 Ry Harris-Foulkes estimate = -25.45302994 Ry estimated scf accuracy < 0.00002989 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.99E-07, avg # of iterations = 3.0 total cpu time spent up to now is 33.99 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1601 1.6741 5.5571 5.5571 6.4471 9.8565 10.4613 10.4613 14.4967 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1479 -0.9066 3.9060 5.5782 7.9867 8.2199 9.0408 11.7835 13.8516 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6263 -3.2402 4.4995 4.6733 6.1851 9.2064 9.6289 10.3108 15.5066 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5793 0.1076 4.6789 5.2342 6.6029 9.3553 10.1075 11.3880 13.4032 k =-0.2807 0.0000 0.3330 band energies (ev): -5.7874 -0.6848 2.8945 4.0099 5.3155 10.0949 11.8722 11.9684 13.7356 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2208 -2.6163 1.8317 2.8113 6.1264 9.8632 12.4186 13.5948 13.9354 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0462 -2.2548 2.7484 4.7512 5.9948 9.3507 11.0828 12.0969 13.6343 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5269 -1.9910 1.8502 3.4745 4.0968 9.6788 12.8780 14.2534 14.8134 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0462 -2.2548 2.7484 4.7512 5.9948 9.3507 11.0828 12.0969 13.6343 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5793 0.1076 4.6789 5.2342 6.6029 9.3553 10.1075 11.3880 13.4032 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1479 -0.9066 3.9060 5.5782 7.9867 8.2199 9.0408 11.7835 13.8516 k = 0.1403-0.2431 0.3330 band energies (ev): -5.7874 -0.6848 2.8945 4.0099 5.3155 10.0949 11.8722 11.9684 13.7356 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2208 -2.6163 1.8317 2.8113 6.1264 9.8632 12.4186 13.5948 13.9354 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0462 -2.2548 2.7484 4.7512 5.9948 9.3507 11.0827 12.0969 13.6343 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0004 -1.5854 5.7249 5.7249 6.9316 8.4708 8.4708 9.5746 15.6055 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0042 -2.0913 2.0757 4.5771 5.9175 10.0225 10.2978 13.0891 15.1552 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5269 -1.9910 1.8502 3.4745 4.0968 9.6788 12.8780 14.2534 14.8134 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0042 -2.0913 2.0757 4.5771 5.9175 10.0225 10.2978 13.0891 15.1552 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2208 -2.6163 1.8317 2.8113 6.1264 9.8632 12.4186 13.5948 13.9354 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6263 -3.2402 4.4995 4.6733 6.1851 9.2064 9.6289 10.3108 15.5066 the Fermi energy is 8.0442 ev total energy = -25.49947293 Ry Harris-Foulkes estimate = -25.49948249 Ry estimated scf accuracy < 0.00002309 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.31E-07, avg # of iterations = 1.0 total cpu time spent up to now is 34.29 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1654 1.6704 5.5511 5.5512 6.4434 9.8509 10.4568 10.4568 14.4968 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1536 -0.9111 3.9030 5.5710 7.9820 8.2180 9.0399 11.7793 13.8497 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6324 -3.2450 4.4974 4.6671 6.1826 9.2025 9.6279 10.3088 15.5064 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5845 0.1017 4.6733 5.2315 6.6004 9.3528 10.1017 11.3849 13.4031 k =-0.2807 0.0000 0.3330 band energies (ev): -5.7934 -0.6886 2.8897 4.0050 5.3156 10.0902 11.8665 11.9637 13.7355 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2276 -2.6215 1.8290 2.8095 6.1241 9.8592 12.4149 13.5899 13.9332 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0518 -2.2606 2.7437 4.7509 5.9915 9.3490 11.0781 12.0920 13.6330 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5330 -1.9979 1.8502 3.4697 4.0955 9.6752 12.8741 14.2521 14.8085 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0518 -2.2606 2.7437 4.7509 5.9915 9.3490 11.0781 12.0920 13.6330 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5845 0.1017 4.6733 5.2315 6.6004 9.3528 10.1017 11.3849 13.4031 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1536 -0.9111 3.9030 5.5710 7.9820 8.2180 9.0399 11.7793 13.8497 k = 0.1403-0.2431 0.3330 band energies (ev): -5.7934 -0.6886 2.8897 4.0050 5.3156 10.0902 11.8665 11.9637 13.7355 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2276 -2.6215 1.8290 2.8095 6.1241 9.8592 12.4149 13.5899 13.9332 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0518 -2.2606 2.7437 4.7509 5.9915 9.3490 11.0781 12.0920 13.6330 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0072 -1.5862 5.7185 5.7185 6.9239 8.4683 8.4683 9.5754 15.6036 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0119 -2.0927 2.0718 4.5717 5.9157 10.0193 10.2925 13.0836 15.1549 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5330 -1.9979 1.8502 3.4697 4.0955 9.6752 12.8741 14.2521 14.8085 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0119 -2.0927 2.0718 4.5717 5.9157 10.0193 10.2925 13.0836 15.1549 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2276 -2.6215 1.8290 2.8095 6.1241 9.8592 12.4149 13.5899 13.9332 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6324 -3.2450 4.4974 4.6671 6.1826 9.2025 9.6279 10.3088 15.5064 the Fermi energy is 8.0395 ev total energy = -25.49947292 Ry Harris-Foulkes estimate = -25.49947441 Ry estimated scf accuracy < 0.00000393 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 34.60 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1678 1.6677 5.5486 5.5486 6.4413 9.8487 10.4548 10.4548 14.4965 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1560 -0.9138 3.9014 5.5683 7.9801 8.2160 9.0385 11.7771 13.8490 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6351 -3.2474 4.4959 4.6647 6.1810 9.2005 9.6264 10.3072 15.5060 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5869 0.0987 4.6710 5.2297 6.5985 9.3511 10.0998 11.3829 13.4027 k =-0.2807 0.0000 0.3330 band energies (ev): -5.7960 -0.6912 2.8878 4.0029 5.3144 10.0888 11.8638 11.9614 13.7345 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2304 -2.6241 1.8276 2.8082 6.1222 9.8571 12.4135 13.5874 13.9316 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0543 -2.2635 2.7419 4.7497 5.9895 9.3476 11.0758 12.0899 13.6322 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5358 -2.0009 1.8492 3.4677 4.0941 9.6743 12.8718 14.2506 14.8056 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0543 -2.2635 2.7419 4.7497 5.9895 9.3476 11.0758 12.0899 13.6322 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5869 0.0987 4.6710 5.2297 6.5985 9.3511 10.0998 11.3829 13.4027 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1560 -0.9138 3.9014 5.5683 7.9801 8.2160 9.0385 11.7771 13.8490 k = 0.1403-0.2431 0.3330 band energies (ev): -5.7960 -0.6912 2.8878 4.0029 5.3144 10.0888 11.8638 11.9614 13.7345 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2304 -2.6241 1.8276 2.8082 6.1222 9.8571 12.4135 13.5874 13.9316 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0543 -2.2635 2.7419 4.7497 5.9895 9.3476 11.0758 12.0899 13.6322 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0099 -1.5880 5.7159 5.7159 6.9215 8.4668 8.4668 9.5739 15.6030 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0149 -2.0947 2.0702 4.5695 5.9143 10.0173 10.2901 13.0811 15.1545 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5358 -2.0009 1.8492 3.4677 4.0941 9.6743 12.8718 14.2506 14.8056 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0149 -2.0947 2.0702 4.5695 5.9143 10.0173 10.2901 13.0811 15.1545 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2304 -2.6241 1.8276 2.8082 6.1222 9.8571 12.4135 13.5874 13.9316 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6351 -3.2474 4.4959 4.6647 6.1810 9.2005 9.6264 10.3072 15.5060 the Fermi energy is 8.0376 ev total energy = -25.49947264 Ry Harris-Foulkes estimate = -25.49947313 Ry estimated scf accuracy < 0.00000083 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-09, avg # of iterations = 3.0 total cpu time spent up to now is 35.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.1427 ( 531 PWs) bands (ev): -7.1700 1.6655 5.5461 5.5461 6.4396 9.8465 10.4529 10.4529 14.4963 k =-0.1403-0.2431 0.2379 ( 522 PWs) bands (ev): -6.1584 -0.9160 3.9000 5.5655 7.9783 8.2145 9.0376 11.7752 13.8483 k = 0.2807 0.4861-0.0476 ( 520 PWs) bands (ev): -4.6377 -3.2496 4.4947 4.6623 6.1797 9.1988 9.6254 10.3060 15.5058 k = 0.1403 0.2431 0.0476 ( 525 PWs) bands (ev): -6.5891 0.0961 4.6687 5.2282 6.5970 9.3496 10.0977 11.3812 13.4024 k =-0.2807 0.0000 0.3330 ( 519 PWs) bands (ev): -5.7985 -0.6934 2.8860 4.0009 5.3137 10.0872 11.8614 11.9592 13.7339 k = 0.1403 0.7292 0.0476 ( 510 PWs) bands (ev): -4.2332 -2.6265 1.8264 2.8071 6.1208 9.8553 12.4121 13.5852 13.9303 k = 0.0000 0.4861 0.1427 ( 521 PWs) bands (ev): -5.0567 -2.2660 2.7401 4.7490 5.9878 9.3465 11.0737 12.0879 13.6315 k = 0.5613 0.0000-0.2379 ( 510 PWs) bands (ev): -4.5384 -2.0037 1.8486 3.4658 4.0931 9.6731 12.8698 14.2495 14.8031 k = 0.4210-0.2431-0.1427 ( 521 PWs) bands (ev): -5.0567 -2.2660 2.7401 4.7490 5.9878 9.3465 11.0737 12.0879 13.6315 k = 0.2807 0.0000-0.0476 ( 525 PWs) bands (ev): -6.5891 0.0961 4.6687 5.2282 6.5970 9.3496 10.0977 11.3812 13.4024 k = 0.2807 0.0000 0.2379 ( 522 PWs) bands (ev): -6.1584 -0.9160 3.9000 5.5655 7.9783 8.2145 9.0376 11.7752 13.8483 k = 0.1403-0.2431 0.3330 ( 519 PWs) bands (ev): -5.7985 -0.6934 2.8860 4.0009 5.3137 10.0872 11.8614 11.9592 13.7339 k = 0.5613 0.4861 0.0476 ( 510 PWs) bands (ev): -4.2332 -2.6265 1.8264 2.8071 6.1208 9.8553 12.4121 13.5852 13.9303 k = 0.4210 0.2431 0.1427 ( 521 PWs) bands (ev): -5.0567 -2.2660 2.7401 4.7490 5.9878 9.3465 11.0737 12.0879 13.6315 k = 0.0000 0.0000 0.4282 ( 522 PWs) bands (ev): -6.0126 -1.5892 5.7134 5.7134 6.9189 8.4654 8.4654 9.5731 15.6024 k = 0.4210 0.7292 0.1427 ( 520 PWs) bands (ev): -5.0179 -2.0961 2.0687 4.5674 5.9132 10.0156 10.2878 13.0787 15.1542 k = 0.2807 0.4861 0.2379 ( 510 PWs) bands (ev): -4.5384 -2.0037 1.8486 3.4658 4.0931 9.6731 12.8698 14.2495 14.8031 k = 0.8420 0.0000-0.1427 ( 520 PWs) bands (ev): -5.0179 -2.0961 2.0687 4.5674 5.9132 10.0156 10.2878 13.0787 15.1542 k = 0.7017-0.2431-0.0476 ( 510 PWs) bands (ev): -4.2332 -2.6265 1.8264 2.8071 6.1208 9.8553 12.4121 13.5852 13.9303 k = 0.5613 0.0000 0.0476 ( 520 PWs) bands (ev): -4.6377 -3.2496 4.4947 4.6623 6.1797 9.1988 9.6254 10.3060 15.5058 the Fermi energy is 8.0358 ev ! total energy = -25.49947289 Ry Harris-Foulkes estimate = -25.49947293 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00194002 atom 2 type 1 force = 0.00000000 0.00000000 0.00194002 Total force = 0.002744 Total SCF correction = 0.000191 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.48 -0.00000229 0.00000000 0.00000000 -0.34 0.00 0.00 0.00000000 -0.00000229 0.00000000 0.00 -0.34 0.00 0.00000000 0.00000000 -0.00002554 0.00 0.00 -3.76 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 0.592851832 0.000000000 0.871317786 -0.296425787 0.513424716 0.871317875 -0.296425787 -0.513424716 0.871317875 new unit-cell volume = 274.1178 (a.u.)^3 new positions in cryst coord As 0.272833301 0.272833307 0.272833307 As -0.272833301 -0.272833307 -0.272833307 new positions in cart coord (alat unit) As 0.000000067 0.000000000 0.713173583 As -0.000000067 0.000000000 -0.713173583 Ekin = 0.00034501 Ry T = 442.7 K Etot = -25.49912788 CELL_PARAMETERS (alat) 0.592851832 0.000000000 0.871317786 -0.296425787 0.513424716 0.871317875 -0.296425787 -0.513424716 0.871317875 ATOMIC_POSITIONS (crystal) As 0.272833301 0.272833307 0.272833307 As -0.272833301 -0.272833307 -0.272833307 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434609), wk = 0.0625000 k( 2) = ( -0.1405635 -0.2434632 0.2391014), wk = 0.1250000 k( 3) = ( 0.2811271 0.4869263 -0.0478203), wk = 0.1250000 k( 4) = ( 0.1405635 0.2434632 0.0478203), wk = 0.1250000 k( 5) = ( -0.2811270 0.0000000 0.3347420), wk = 0.0625000 k( 6) = ( 0.1405635 0.7303895 0.0478203), wk = 0.1250000 k( 7) = ( 0.0000000 0.4869263 0.1434609), wk = 0.1250000 k( 8) = ( 0.5622541 0.0000000 -0.2391015), wk = 0.0625000 k( 9) = ( 0.4216906 -0.2434632 -0.1434609), wk = 0.1250000 k( 10) = ( 0.2811271 0.0000000 -0.0478203), wk = 0.0625000 k( 11) = ( 0.2811271 0.0000000 0.2391014), wk = 0.0625000 k( 12) = ( 0.1405636 -0.2434632 0.3347420), wk = 0.1250000 k( 13) = ( 0.5622541 0.4869263 0.0478202), wk = 0.1250000 k( 14) = ( 0.4216906 0.2434632 0.1434608), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4303826), wk = 0.0625000 k( 16) = ( 0.4216906 0.7303895 0.1434608), wk = 0.1250000 k( 17) = ( 0.2811271 0.4869263 0.2391014), wk = 0.1250000 k( 18) = ( 0.8433812 0.0000000 -0.1434609), wk = 0.0625000 k( 19) = ( 0.7028176 -0.2434632 -0.0478204), wk = 0.1250000 k( 20) = ( 0.5622541 0.0000000 0.0478202), wk = 0.0625000 extrapolated charge 9.91537, renormalised to 10.00000 total cpu time spent up to now is 35.34 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 35.82 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1277 1.8050 5.6217 5.6217 6.5685 9.9758 10.5781 10.5781 14.6184 k =-0.1406-0.2435 0.2391 band energies (ev): -6.1090 -0.8269 4.0021 5.6509 8.0929 8.3493 9.1456 11.9285 13.9792 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5812 -3.1830 4.6068 4.7420 6.2907 9.3379 9.7451 10.4744 15.6965 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5452 0.1956 4.7423 5.3442 6.7208 9.4944 10.2275 11.5234 13.5512 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7436 -0.5883 2.9657 4.0657 5.4143 10.2038 12.0008 12.0903 13.8751 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1663 -2.5532 1.8942 2.8949 6.2330 9.9769 12.5403 13.7464 14.0918 k = 0.0000 0.4869 0.1435 band energies (ev): -5.0031 -2.1897 2.8157 4.8493 6.1134 9.4885 11.2197 12.2241 13.7737 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4761 -1.9204 1.9313 3.5296 4.1922 9.7978 13.0243 14.4120 14.9851 k = 0.4217-0.2435-0.1435 band energies (ev): -5.0031 -2.1897 2.8157 4.8493 6.1134 9.4885 11.2197 12.2241 13.7737 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5452 0.1956 4.7423 5.3442 6.7208 9.4944 10.2275 11.5234 13.5512 k = 0.2811 0.0000 0.2391 band energies (ev): -6.1090 -0.8269 4.0021 5.6509 8.0929 8.3493 9.1456 11.9285 13.9792 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7436 -0.5883 2.9657 4.0657 5.4143 10.2038 12.0008 12.0903 13.8751 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1663 -2.5532 1.8942 2.8949 6.2330 9.9769 12.5403 13.7464 14.0918 k = 0.4217 0.2435 0.1435 band energies (ev): -5.0031 -2.1897 2.8157 4.8493 6.1134 9.4885 11.2197 12.2241 13.7737 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9542 -1.4933 5.7881 5.7881 7.0265 8.5623 8.5623 9.7030 15.7724 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9509 -2.0102 2.1358 4.6389 6.0118 10.1253 10.4172 13.2186 15.3146 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4761 -1.9204 1.9313 3.5296 4.1922 9.7978 13.0243 14.4120 14.9851 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9509 -2.0102 2.1358 4.6389 6.0118 10.1253 10.4172 13.2186 15.3146 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1663 -2.5532 1.8942 2.8949 6.2330 9.9769 12.5403 13.7464 14.0918 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5812 -3.1830 4.6068 4.7420 6.2907 9.3379 9.7451 10.4744 15.6965 the Fermi energy is 8.1502 ev total energy = -25.49941083 Ry Harris-Foulkes estimate = -25.45011155 Ry estimated scf accuracy < 0.00002685 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-07, avg # of iterations = 3.0 total cpu time spent up to now is 36.25 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1148 1.8241 5.6401 5.6401 6.5764 9.9864 10.5843 10.5843 14.5873 k =-0.1406-0.2435 0.2391 band energies (ev): -6.0936 -0.8095 4.0001 5.6726 8.0949 8.3537 9.1380 11.9368 13.9543 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5618 -3.1691 4.6017 4.7569 6.2869 9.3419 9.7381 10.4699 15.6636 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5321 0.2208 4.7556 5.3456 6.7233 9.4942 10.2323 11.5278 13.5198 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7256 -0.5717 2.9687 4.0741 5.4013 10.1972 12.0201 12.1028 13.8571 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1425 -2.5345 1.8859 2.8854 6.2344 9.9837 12.5302 13.7602 14.0878 k = 0.0000 0.4869 0.1435 band energies (ev): -4.9868 -2.1678 2.8178 4.8366 6.1196 9.4808 11.2314 12.2310 13.7521 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4552 -1.8951 1.9140 3.5364 4.1843 9.7806 13.0366 14.4037 15.0071 k = 0.4217-0.2435-0.1435 band energies (ev): -4.9868 -2.1678 2.8178 4.8366 6.1196 9.4808 11.2314 12.2310 13.7521 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5321 0.2208 4.7556 5.3456 6.7233 9.4942 10.2323 11.5278 13.5198 k = 0.2811 0.0000 0.2391 band energies (ev): -6.0936 -0.8095 4.0001 5.6726 8.0949 8.3537 9.1380 11.9368 13.9543 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7256 -0.5717 2.9687 4.0741 5.4013 10.1972 12.0201 12.1028 13.8571 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1425 -2.5345 1.8859 2.8854 6.2344 9.9837 12.5302 13.7602 14.0878 k = 0.4217 0.2435 0.1435 band energies (ev): -4.9868 -2.1678 2.8178 4.8366 6.1196 9.4808 11.2314 12.2310 13.7521 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9333 -1.4948 5.8067 5.8067 7.0416 8.5589 8.5589 9.6937 15.7438 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9244 -2.0076 2.1327 4.6496 6.0039 10.1310 10.4324 13.2353 15.2832 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4552 -1.8951 1.9140 3.5364 4.1843 9.7806 13.0366 14.4037 15.0071 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9244 -2.0076 2.1327 4.6496 6.0039 10.1310 10.4324 13.2353 15.2832 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1425 -2.5345 1.8859 2.8854 6.2344 9.9837 12.5302 13.7602 14.0878 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5618 -3.1691 4.6017 4.7569 6.2869 9.3419 9.7381 10.4699 15.6636 the Fermi energy is 8.2964 ev total energy = -25.49946381 Ry Harris-Foulkes estimate = -25.49947519 Ry estimated scf accuracy < 0.00002908 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-07, avg # of iterations = 1.0 total cpu time spent up to now is 36.55 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1201 1.8207 5.6341 5.6341 6.5729 9.9808 10.5798 10.5798 14.5875 k =-0.1406-0.2435 0.2391 band energies (ev): -6.0993 -0.8139 3.9972 5.6652 8.0902 8.3521 9.1373 11.9326 13.9524 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5680 -3.1738 4.5998 4.7506 6.2846 9.3381 9.7373 10.4681 15.6635 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5373 0.2150 4.7500 5.3430 6.7210 9.4918 10.2264 11.5248 13.5197 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7317 -0.5753 2.9637 4.0691 5.4016 10.1924 12.0144 12.0982 13.8573 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1494 -2.5396 1.8831 2.8837 6.2322 9.9798 12.5264 13.7553 14.0856 k = 0.0000 0.4869 0.1435 band energies (ev): -4.9924 -2.1737 2.8129 4.8366 6.1164 9.4792 11.2268 12.2260 13.7508 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4613 -1.9021 1.9142 3.5316 4.1832 9.7769 13.0329 14.4026 15.0023 k = 0.4217-0.2435-0.1435 band energies (ev): -4.9924 -2.1737 2.8129 4.8366 6.1164 9.4792 11.2268 12.2260 13.7508 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5373 0.2150 4.7500 5.3430 6.7210 9.4918 10.2264 11.5248 13.5197 k = 0.2811 0.0000 0.2391 band energies (ev): -6.0993 -0.8139 3.9972 5.6652 8.0902 8.3521 9.1373 11.9326 13.9524 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7317 -0.5753 2.9637 4.0691 5.4016 10.1924 12.0144 12.0982 13.8573 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1494 -2.5396 1.8831 2.8837 6.2322 9.9798 12.5264 13.7553 14.0856 k = 0.4217 0.2435 0.1435 band energies (ev): -4.9924 -2.1737 2.8129 4.8366 6.1164 9.4792 11.2268 12.2260 13.7508 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9402 -1.4953 5.8002 5.8002 7.0336 8.5565 8.5565 9.6949 15.7418 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9323 -2.0087 2.1287 4.6441 6.0023 10.1279 10.4272 13.2299 15.2830 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4613 -1.9021 1.9142 3.5316 4.1832 9.7769 13.0329 14.4026 15.0023 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9323 -2.0087 2.1287 4.6441 6.0023 10.1279 10.4272 13.2299 15.2830 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1494 -2.5396 1.8831 2.8837 6.2322 9.9798 12.5264 13.7553 14.0856 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5680 -3.1738 4.5998 4.7506 6.2846 9.3381 9.7373 10.4681 15.6635 the Fermi energy is 8.2948 ev total energy = -25.49946341 Ry Harris-Foulkes estimate = -25.49946543 Ry estimated scf accuracy < 0.00000593 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 36.85 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1226 1.8181 5.6314 5.6314 6.5708 9.9784 10.5777 10.5777 14.5873 k =-0.1406-0.2435 0.2391 band energies (ev): -6.1019 -0.8165 3.9956 5.6622 8.0883 8.3503 9.1361 11.9304 13.9517 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5708 -3.1762 4.5983 4.7480 6.2831 9.3361 9.7360 10.4666 15.6632 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5398 0.2120 4.7475 5.3412 6.7192 9.4901 10.2243 11.5229 13.5193 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7344 -0.5778 2.9617 4.0669 5.4007 10.1908 12.0117 12.0958 13.8565 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1524 -2.5423 1.8818 2.8824 6.2305 9.9777 12.5250 13.7528 14.0840 k = 0.0000 0.4869 0.1435 band energies (ev): -4.9950 -2.1766 2.8110 4.8356 6.1144 9.4779 11.2244 12.2238 13.7500 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4642 -1.9052 1.9134 3.5295 4.1820 9.7758 13.0306 14.4013 14.9995 k = 0.4217-0.2435-0.1435 band energies (ev): -4.9950 -2.1766 2.8110 4.8356 6.1144 9.4779 11.2244 12.2238 13.7500 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5398 0.2120 4.7475 5.3412 6.7192 9.4901 10.2243 11.5229 13.5193 k = 0.2811 0.0000 0.2391 band energies (ev): -6.1019 -0.8165 3.9955 5.6622 8.0883 8.3503 9.1361 11.9304 13.9517 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7344 -0.5778 2.9617 4.0669 5.4007 10.1908 12.0117 12.0958 13.8565 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1524 -2.5423 1.8818 2.8824 6.2305 9.9777 12.5250 13.7528 14.0840 k = 0.4217 0.2435 0.1435 band energies (ev): -4.9950 -2.1766 2.8110 4.8356 6.1144 9.4779 11.2244 12.2238 13.7500 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9431 -1.4968 5.7974 5.7974 7.0309 8.5550 8.5550 9.6939 15.7412 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9355 -2.0104 2.1271 4.6418 6.0010 10.1259 10.4247 13.2272 15.2827 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4642 -1.9052 1.9134 3.5295 4.1820 9.7758 13.0306 14.4013 14.9995 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9355 -2.0104 2.1271 4.6418 6.0010 10.1259 10.4247 13.2272 15.2827 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1524 -2.5423 1.8818 2.8824 6.2305 9.9777 12.5250 13.7528 14.0840 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5708 -3.1762 4.5983 4.7480 6.2831 9.3361 9.7360 10.4666 15.6632 the Fermi energy is 8.2930 ev total energy = -25.49946266 Ry Harris-Foulkes estimate = -25.49946365 Ry estimated scf accuracy < 0.00000168 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-08, avg # of iterations = 2.6 total cpu time spent up to now is 37.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1255 1.8152 5.6281 5.6281 6.5685 9.9756 10.5752 10.5752 14.5871 k =-0.1406-0.2435 0.2391 ( 522 PWs) bands (ev): -6.1050 -0.8195 3.9937 5.6586 8.0859 8.3484 9.1349 11.9279 13.9508 k = 0.2811 0.4869-0.0478 ( 520 PWs) bands (ev): -4.5741 -3.1791 4.5968 4.7448 6.2814 9.3338 9.7347 10.4650 15.6629 k = 0.1406 0.2435 0.0478 ( 525 PWs) bands (ev): -6.5427 0.2084 4.7445 5.3393 6.7173 9.4882 10.2216 11.5207 13.5190 k =-0.2811 0.0000 0.3347 ( 519 PWs) bands (ev): -5.7377 -0.5806 2.9593 4.0643 5.3999 10.1888 12.0084 12.0930 13.8557 k = 0.1406 0.7304 0.0478 ( 510 PWs) bands (ev): -4.1560 -2.5454 1.8802 2.8811 6.2286 9.9753 12.5232 13.7499 14.0823 k = 0.0000 0.4869 0.1435 ( 521 PWs) bands (ev): -4.9981 -2.1799 2.8086 4.8347 6.1122 9.4765 11.2217 12.2212 13.7491 k = 0.5623 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4675 -1.9089 1.9127 3.5269 4.1807 9.7743 13.0280 14.3999 14.9962 k = 0.4217-0.2435-0.1435 ( 521 PWs) bands (ev): -4.9981 -2.1800 2.8086 4.8347 6.1122 9.4765 11.2217 12.2212 13.7491 k = 0.2811 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5427 0.2084 4.7445 5.3393 6.7173 9.4882 10.2216 11.5207 13.5190 k = 0.2811 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1050 -0.8195 3.9937 5.6586 8.0859 8.3484 9.1349 11.9279 13.9508 k = 0.1406-0.2435 0.3347 ( 519 PWs) bands (ev): -5.7377 -0.5806 2.9593 4.0643 5.3999 10.1888 12.0084 12.0930 13.8557 k = 0.5623 0.4869 0.0478 ( 510 PWs) bands (ev): -4.1560 -2.5454 1.8802 2.8811 6.2286 9.9753 12.5233 13.7499 14.0823 k = 0.4217 0.2435 0.1435 ( 521 PWs) bands (ev): -4.9981 -2.1799 2.8086 4.8347 6.1122 9.4765 11.2217 12.2212 13.7491 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9467 -1.4983 5.7941 5.7941 7.0275 8.5532 8.5532 9.6930 15.7404 k = 0.4217 0.7304 0.1435 ( 520 PWs) bands (ev): -4.9394 -2.0121 2.1250 4.6389 5.9996 10.1237 10.4217 13.2241 15.2823 k = 0.2811 0.4869 0.2391 ( 510 PWs) bands (ev): -4.4675 -1.9089 1.9127 3.5269 4.1807 9.7743 13.0280 14.3999 14.9962 k = 0.8434 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9394 -2.0121 2.1250 4.6389 5.9996 10.1237 10.4217 13.2241 15.2823 k = 0.7028-0.2435-0.0478 ( 510 PWs) bands (ev): -4.1560 -2.5454 1.8802 2.8811 6.2286 9.9753 12.5233 13.7499 14.0823 k = 0.5623 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5741 -3.1791 4.5968 4.7448 6.2814 9.3338 9.7347 10.4650 15.6629 the Fermi energy is 8.2911 ev ! total energy = -25.49946308 Ry Harris-Foulkes estimate = -25.49946312 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 -0.00374700 atom 2 type 1 force = 0.00000002 0.00000000 0.00374700 Total force = 0.005299 Total SCF correction = 0.000162 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 5.08 0.00003874 0.00000000 0.00000000 5.70 0.00 0.00 0.00000000 0.00003874 0.00000000 0.00 5.70 0.00 0.00000000 0.00000000 0.00002616 0.00 0.00 3.85 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 0.593778898 0.000000000 0.873414827 -0.296889313 0.514227590 0.873414929 -0.296889313 -0.514227590 0.873414929 new unit-cell volume = 275.6376 (a.u.)^3 new positions in cryst coord As 0.272730426 0.272730434 0.272730434 As -0.272730426 -0.272730434 -0.272730434 new positions in cart coord (alat unit) As 0.000000069 0.000000000 0.714620463 As -0.000000069 0.000000000 -0.714620463 Ekin = 0.00032993 Ry T = 409.6 K Etot = -25.49913315 CELL_PARAMETERS (alat) 0.593778898 0.000000000 0.873414827 -0.296889313 0.514227590 0.873414929 -0.296889313 -0.514227590 0.873414929 ATOMIC_POSITIONS (crystal) As 0.272730426 0.272730434 0.272730434 As -0.272730426 -0.272730434 -0.272730434 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1431164), wk = 0.0625000 k( 2) = ( -0.1403440 -0.2430830 0.2385274), wk = 0.1250000 k( 3) = ( 0.2806881 0.4861661 -0.0477055), wk = 0.1250000 k( 4) = ( 0.1403441 0.2430830 0.0477055), wk = 0.1250000 k( 5) = ( -0.2806881 0.0000000 0.3339383), wk = 0.0625000 k( 6) = ( 0.1403441 0.7292491 0.0477055), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861661 0.1431164), wk = 0.1250000 k( 8) = ( 0.5613762 0.0000000 -0.2385274), wk = 0.0625000 k( 9) = ( 0.4210322 -0.2430830 -0.1431164), wk = 0.1250000 k( 10) = ( 0.2806881 0.0000000 -0.0477055), wk = 0.0625000 k( 11) = ( 0.2806882 0.0000000 0.2385273), wk = 0.0625000 k( 12) = ( 0.1403441 -0.2430830 0.3339383), wk = 0.1250000 k( 13) = ( 0.5613763 0.4861661 0.0477054), wk = 0.1250000 k( 14) = ( 0.4210322 0.2430830 0.1431164), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4293492), wk = 0.0625000 k( 16) = ( 0.4210322 0.7292491 0.1431164), wk = 0.1250000 k( 17) = ( 0.2806882 0.4861661 0.2385273), wk = 0.1250000 k( 18) = ( 0.8420644 0.0000000 -0.1431165), wk = 0.0625000 k( 19) = ( 0.7017203 -0.2430830 -0.0477055), wk = 0.1250000 k( 20) = ( 0.5613763 0.0000000 0.0477054), wk = 0.0625000 extrapolated charge 10.05513, renormalised to 10.00000 total cpu time spent up to now is 37.51 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 37.95 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1469 1.7257 5.5795 5.5795 6.4863 9.9017 10.4955 10.4955 14.4966 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1304 -0.8789 3.9359 5.6132 8.0077 8.2593 9.0504 11.8297 13.8646 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6054 -3.2212 4.5313 4.7006 6.2059 9.2476 9.6467 10.3609 15.5490 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5664 0.1445 4.6989 5.2688 6.6441 9.3900 10.1470 11.4266 13.4172 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7649 -0.6492 2.9149 4.0210 5.3258 10.1190 11.9133 12.0051 13.7487 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1908 -2.5925 1.8368 2.8264 6.1571 9.8889 12.4407 13.6502 13.9755 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0286 -2.2271 2.7662 4.7653 6.0419 9.3803 11.1254 12.1355 13.6552 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5024 -1.9551 1.8541 3.4854 4.1152 9.7040 12.9263 14.2833 14.8794 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0286 -2.2271 2.7662 4.7653 6.0419 9.3803 11.1254 12.1355 13.6552 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5664 0.1445 4.6989 5.2688 6.6441 9.3900 10.1470 11.4266 13.4172 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1304 -0.8789 3.9359 5.6131 8.0077 8.2593 9.0504 11.8297 13.8646 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7649 -0.6492 2.9149 4.0210 5.3258 10.1190 11.9133 12.0051 13.7487 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1908 -2.5925 1.8368 2.8264 6.1571 9.8889 12.4407 13.6502 13.9755 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0286 -2.2271 2.7662 4.7653 6.0419 9.3803 11.1254 12.1355 13.6552 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9719 -1.5638 5.7478 5.7478 6.9541 8.4805 8.4805 9.5959 15.6335 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9681 -2.0744 2.0844 4.5943 5.9266 10.0430 10.3354 13.1330 15.1755 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5024 -1.9551 1.8541 3.4854 4.1152 9.7040 12.9263 14.2833 14.8794 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9681 -2.0744 2.0844 4.5943 5.9266 10.0430 10.3354 13.1330 15.1755 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1908 -2.5925 1.8368 2.8264 6.1571 9.8889 12.4407 13.6502 13.9755 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6054 -3.2212 4.5313 4.7006 6.2059 9.2476 9.6467 10.3609 15.5490 the Fermi energy is 8.0650 ev total energy = -25.49947214 Ry Harris-Foulkes estimate = -25.53155393 Ry estimated scf accuracy < 0.00001365 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.37E-07, avg # of iterations = 3.0 total cpu time spent up to now is 38.41 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1562 1.7118 5.5666 5.5666 6.4803 9.8940 10.4906 10.4906 14.5165 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1413 -0.8914 3.9365 5.5981 8.0057 8.2554 9.0545 11.8235 13.8806 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6190 -3.2313 4.5339 4.6902 6.2076 9.2442 9.6504 10.3631 15.5702 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5759 0.1269 4.6894 5.2670 6.6415 9.3894 10.1433 11.4228 13.4375 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7776 -0.6613 2.9124 4.0148 5.3335 10.1229 11.8997 11.9958 13.7598 k = 0.1403 0.7292 0.0477 band energies (ev): -4.2074 -2.6058 1.8417 2.8320 6.1552 9.8836 12.4467 13.6403 13.9774 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0402 -2.2424 2.7643 4.7728 6.0369 9.3846 11.1169 12.1301 13.6690 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5171 -1.9727 1.8647 3.4802 4.1196 9.7150 12.9171 14.2879 14.8638 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0402 -2.2424 2.7643 4.7728 6.0369 9.3846 11.1169 12.1301 13.6690 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5759 0.1269 4.6894 5.2670 6.6415 9.3894 10.1433 11.4228 13.4375 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1413 -0.8914 3.9365 5.5981 8.0057 8.2554 9.0545 11.8235 13.8806 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7776 -0.6613 2.9124 4.0148 5.3335 10.1229 11.8997 11.9958 13.7598 k = 0.5614 0.4862 0.0477 band energies (ev): -4.2074 -2.6058 1.8417 2.8320 6.1552 9.8836 12.4467 13.6403 13.9774 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0402 -2.2424 2.7643 4.7728 6.0369 9.3846 11.1169 12.1301 13.6690 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9864 -1.5640 5.7348 5.7348 6.9438 8.4819 8.4819 9.6009 15.6520 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9864 -2.0772 2.0859 4.5866 5.9311 10.0383 10.3246 13.1211 15.1957 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5171 -1.9727 1.8647 3.4802 4.1196 9.7150 12.9171 14.2879 14.8638 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9864 -2.0772 2.0859 4.5866 5.9311 10.0383 10.3246 13.1211 15.1957 k = 0.7017-0.2431-0.0477 band energies (ev): -4.2074 -2.6058 1.8417 2.8320 6.1552 9.8836 12.4467 13.6403 13.9774 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6190 -3.2313 4.5339 4.6902 6.2076 9.2442 9.6504 10.3631 15.5702 the Fermi energy is 8.0630 ev total energy = -25.49949642 Ry Harris-Foulkes estimate = -25.49950141 Ry estimated scf accuracy < 0.00001231 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-07, avg # of iterations = 1.0 total cpu time spent up to now is 38.70 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1525 1.7142 5.5708 5.5708 6.4828 9.8979 10.4937 10.4937 14.5164 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1374 -0.8883 3.9385 5.6032 8.0090 8.2565 9.0550 11.8264 13.8819 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6148 -3.2280 4.5352 4.6945 6.2092 9.2468 9.6510 10.3644 15.5703 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5722 0.1309 4.6933 5.2689 6.6432 9.3911 10.1474 11.4249 13.4375 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7734 -0.6587 2.9158 4.0181 5.3334 10.1262 11.9036 11.9990 13.7597 k = 0.1403 0.7292 0.0477 band energies (ev): -4.2027 -2.6022 1.8436 2.8332 6.1568 9.8864 12.4493 13.6437 13.9789 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0364 -2.2384 2.7676 4.7729 6.0391 9.3857 11.1201 12.1335 13.6698 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5129 -1.9679 1.8646 3.4835 4.1205 9.7175 12.9197 14.2887 14.8672 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0364 -2.2384 2.7676 4.7729 6.0391 9.3857 11.1201 12.1335 13.6698 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5722 0.1309 4.6933 5.2689 6.6432 9.3911 10.1474 11.4249 13.4375 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1374 -0.8883 3.9385 5.6032 8.0090 8.2565 9.0550 11.8264 13.8819 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7734 -0.6587 2.9158 4.0181 5.3334 10.1262 11.9036 11.9990 13.7597 k = 0.5614 0.4862 0.0477 band energies (ev): -4.2027 -2.6022 1.8436 2.8332 6.1568 9.8864 12.4493 13.6437 13.9789 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0364 -2.2384 2.7676 4.7729 6.0391 9.3857 11.1201 12.1335 13.6698 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9817 -1.5635 5.7392 5.7392 6.9492 8.4836 8.4836 9.6002 15.6533 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9810 -2.0764 2.0886 4.5903 5.9322 10.0405 10.3282 13.1249 15.1959 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5129 -1.9679 1.8646 3.4835 4.1205 9.7175 12.9197 14.2887 14.8672 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9810 -2.0764 2.0886 4.5903 5.9322 10.0405 10.3282 13.1249 15.1959 k = 0.7017-0.2431-0.0477 band energies (ev): -4.2027 -2.6022 1.8436 2.8332 6.1568 9.8864 12.4493 13.6437 13.9789 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6148 -3.2280 4.5352 4.6945 6.2092 9.2468 9.6510 10.3644 15.5703 the Fermi energy is 8.0663 ev total energy = -25.49949637 Ry Harris-Foulkes estimate = -25.49949716 Ry estimated scf accuracy < 0.00000228 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-08, avg # of iterations = 1.0 total cpu time spent up to now is 39.00 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1509 1.7160 5.5725 5.5725 6.4841 9.8994 10.4950 10.4950 14.5166 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1357 -0.8867 3.9395 5.6050 8.0102 8.2578 9.0558 11.8278 13.8823 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6130 -3.2265 4.5362 4.6961 6.2102 9.2481 9.6518 10.3653 15.5705 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5707 0.1328 4.6948 5.2700 6.6443 9.3922 10.1487 11.4262 13.4377 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7716 -0.6571 2.9170 4.0195 5.3340 10.1272 11.9053 12.0006 13.7603 k = 0.1403 0.7292 0.0477 band energies (ev): -4.2008 -2.6005 1.8444 2.8340 6.1579 9.8877 12.4502 13.6453 13.9799 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0347 -2.2366 2.7688 4.7735 6.0404 9.3866 11.1216 12.1349 13.6703 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5111 -1.9660 1.8652 3.4848 4.1213 9.7182 12.9212 14.2896 14.8690 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0347 -2.2366 2.7688 4.7735 6.0404 9.3866 11.1216 12.1349 13.6703 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5707 0.1328 4.6948 5.2700 6.6443 9.3922 10.1487 11.4262 13.4377 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1357 -0.8867 3.9395 5.6050 8.0102 8.2578 9.0558 11.8278 13.8823 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7716 -0.6571 2.9170 4.0195 5.3340 10.1272 11.9053 12.0006 13.7603 k = 0.5614 0.4862 0.0477 band energies (ev): -4.2008 -2.6005 1.8444 2.8340 6.1579 9.8877 12.4502 13.6453 13.9799 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0347 -2.2366 2.7688 4.7735 6.0404 9.3866 11.1216 12.1349 13.6703 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9798 -1.5625 5.7409 5.7409 6.9509 8.4846 8.4846 9.6010 15.6537 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9790 -2.0752 2.0896 4.5918 5.9331 10.0417 10.3298 13.1266 15.1961 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5111 -1.9660 1.8652 3.4848 4.1213 9.7182 12.9212 14.2896 14.8690 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9790 -2.0752 2.0896 4.5918 5.9331 10.0417 10.3298 13.1266 15.1961 k = 0.7017-0.2431-0.0477 band energies (ev): -4.2008 -2.6005 1.8444 2.8340 6.1579 9.8877 12.4502 13.6453 13.9799 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6130 -3.2265 4.5362 4.6961 6.2102 9.2481 9.6518 10.3653 15.5705 the Fermi energy is 8.0676 ev total energy = -25.49949611 Ry Harris-Foulkes estimate = -25.49949647 Ry estimated scf accuracy < 0.00000063 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.25E-09, avg # of iterations = 2.6 total cpu time spent up to now is 39.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.1431 ( 531 PWs) bands (ev): -7.1492 1.7177 5.5744 5.5744 6.4855 9.9010 10.4965 10.4965 14.5167 k =-0.1403-0.2431 0.2385 ( 522 PWs) bands (ev): -6.1339 -0.8849 3.9406 5.6071 8.0116 8.2589 9.0566 11.8293 13.8828 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.6111 -3.2248 4.5371 4.6979 6.2112 9.2494 9.6526 10.3663 15.5706 k = 0.1403 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5690 0.1349 4.6965 5.2711 6.6455 9.3933 10.1503 11.4275 13.4379 k =-0.2807 0.0000 0.3339 ( 519 PWs) bands (ev): -5.7697 -0.6554 2.9184 4.0211 5.3345 10.1283 11.9072 12.0022 13.7607 k = 0.1403 0.7292 0.0477 ( 510 PWs) bands (ev): -4.1986 -2.5987 1.8454 2.8348 6.1590 9.8891 12.4512 13.6470 13.9809 k = 0.0000 0.4862 0.1431 ( 521 PWs) bands (ev): -5.0329 -2.2346 2.7702 4.7741 6.0417 9.3875 11.1232 12.1364 13.6709 k = 0.5614 0.0000-0.2385 ( 510 PWs) bands (ev): -4.5091 -1.9638 1.8656 3.4863 4.1221 9.7190 12.9228 14.2904 14.8709 k = 0.4210-0.2431-0.1431 ( 521 PWs) bands (ev): -5.0329 -2.2346 2.7702 4.7741 6.0417 9.3875 11.1232 12.1364 13.6709 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5690 0.1349 4.6965 5.2711 6.6455 9.3933 10.1503 11.4275 13.4379 k = 0.2807 0.0000 0.2385 ( 522 PWs) bands (ev): -6.1339 -0.8849 3.9406 5.6071 8.0116 8.2589 9.0566 11.8293 13.8828 k = 0.1403-0.2431 0.3339 ( 519 PWs) bands (ev): -5.7697 -0.6554 2.9184 4.0211 5.3345 10.1283 11.9072 12.0022 13.7607 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1986 -2.5987 1.8454 2.8348 6.1590 9.8891 12.4512 13.6470 13.9809 k = 0.4210 0.2431 0.1431 ( 521 PWs) bands (ev): -5.0329 -2.2346 2.7702 4.7741 6.0417 9.3875 11.1232 12.1364 13.6709 k = 0.0000 0.0000 0.4293 ( 522 PWs) bands (ev): -5.9778 -1.5616 5.7429 5.7429 6.9529 8.4856 8.4856 9.6016 15.6541 k = 0.4210 0.7292 0.1431 ( 520 PWs) bands (ev): -4.9767 -2.0742 2.0908 4.5934 5.9339 10.0430 10.3316 13.1284 15.1963 k = 0.2807 0.4862 0.2385 ( 510 PWs) bands (ev): -4.5091 -1.9638 1.8656 3.4863 4.1221 9.7190 12.9228 14.2904 14.8709 k = 0.8421 0.0000-0.1431 ( 520 PWs) bands (ev): -4.9767 -2.0742 2.0908 4.5934 5.9339 10.0430 10.3316 13.1284 15.1963 k = 0.7017-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1986 -2.5987 1.8454 2.8348 6.1590 9.8891 12.4512 13.6470 13.9809 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.6111 -3.2248 4.5371 4.6979 6.2112 9.2494 9.6526 10.3663 15.5706 the Fermi energy is 8.0689 ev ! total energy = -25.49949626 Ry Harris-Foulkes estimate = -25.49949627 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00190669 atom 2 type 1 force = -0.00000002 0.00000000 0.00190669 Total force = 0.002696 Total SCF correction = 0.000074 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.25 0.00000205 0.00000000 0.00000000 0.30 0.00 0.00 0.00000000 0.00000205 0.00000000 0.00 0.30 0.00 0.00000000 0.00000000 -0.00000922 0.00 0.00 -1.36 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 0.593794437 0.000000000 0.873313149 -0.296897083 0.514241047 0.873313251 -0.296897083 -0.514241047 0.873313251 new unit-cell volume = 275.6199 (a.u.)^3 new positions in cryst coord As 0.272593331 0.272593339 0.272593339 As -0.272593331 -0.272593339 -0.272593339 new positions in cart coord (alat unit) As 0.000000069 0.000000000 0.714178090 As -0.000000069 0.000000000 -0.714178090 Ekin = 0.00001617 Ry T = 380.3 K Etot = -25.49948009 CELL_PARAMETERS (alat) 0.593794437 0.000000000 0.873313149 -0.296897083 0.514241047 0.873313251 -0.296897083 -0.514241047 0.873313251 ATOMIC_POSITIONS (crystal) As 0.272593331 0.272593339 0.272593339 As -0.272593331 -0.272593339 -0.272593339 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1431331), wk = 0.0625000 k( 2) = ( -0.1403404 -0.2430767 0.2385551), wk = 0.1250000 k( 3) = ( 0.2806808 0.4861533 -0.0477111), wk = 0.1250000 k( 4) = ( 0.1403404 0.2430767 0.0477110), wk = 0.1250000 k( 5) = ( -0.2806808 0.0000000 0.3339772), wk = 0.0625000 k( 6) = ( 0.1403404 0.7292300 0.0477110), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861533 0.1431331), wk = 0.1250000 k( 8) = ( 0.5613616 0.0000000 -0.2385552), wk = 0.0625000 k( 9) = ( 0.4210212 -0.2430767 -0.1431331), wk = 0.1250000 k( 10) = ( 0.2806808 0.0000000 -0.0477111), wk = 0.0625000 k( 11) = ( 0.2806808 0.0000000 0.2385551), wk = 0.0625000 k( 12) = ( 0.1403404 -0.2430767 0.3339771), wk = 0.1250000 k( 13) = ( 0.5613616 0.4861533 0.0477110), wk = 0.1250000 k( 14) = ( 0.4210212 0.2430767 0.1431330), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4293992), wk = 0.0625000 k( 16) = ( 0.4210212 0.7292300 0.1431330), wk = 0.1250000 k( 17) = ( 0.2806808 0.4861533 0.2385551), wk = 0.1250000 k( 18) = ( 0.8420424 0.0000000 -0.1431332), wk = 0.0625000 k( 19) = ( 0.7017020 -0.2430767 -0.0477111), wk = 0.1250000 k( 20) = ( 0.5613616 0.0000000 0.0477110), wk = 0.0625000 extrapolated charge 9.99936, renormalised to 10.00000 total cpu time spent up to now is 39.65 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-09, avg # of iterations = 2.8 total cpu time spent up to now is 40.39 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1454 1.7152 5.5799 5.5799 6.4837 9.9119 10.4994 10.4994 14.5132 k =-0.1403-0.2431 0.2386 band energies (ev): -6.1296 -0.8852 3.9431 5.6179 8.0133 8.2585 9.0472 11.8281 13.8875 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6062 -3.2234 4.5385 4.7066 6.2103 9.2535 9.6441 10.3611 15.5696 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5655 0.1371 4.7023 5.2709 6.6482 9.3863 10.1602 11.4244 13.4335 k =-0.2807 0.0000 0.3340 band energies (ev): -5.7645 -0.6573 2.9246 4.0253 5.3280 10.1386 11.9081 12.0027 13.7516 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1927 -2.5971 1.8472 2.8347 6.1591 9.8867 12.4565 13.6502 13.9771 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0292 -2.2315 2.7761 4.7703 6.0458 9.3797 11.1223 12.1418 13.6713 k = 0.5614 0.0000-0.2386 band energies (ev): -4.5049 -1.9578 1.8610 3.4909 4.1189 9.7291 12.9195 14.2804 14.8681 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0292 -2.2315 2.7761 4.7703 6.0458 9.3797 11.1223 12.1418 13.6713 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5655 0.1371 4.7023 5.2709 6.6482 9.3863 10.1602 11.4244 13.4335 k = 0.2807 0.0000 0.2386 band energies (ev): -6.1296 -0.8852 3.9431 5.6179 8.0133 8.2585 9.0472 11.8281 13.8875 k = 0.1403-0.2431 0.3340 band energies (ev): -5.7645 -0.6573 2.9246 4.0253 5.3280 10.1386 11.9081 12.0027 13.7516 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1927 -2.5971 1.8472 2.8347 6.1591 9.8867 12.4565 13.6502 13.9771 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0292 -2.2315 2.7761 4.7703 6.0458 9.3797 11.1223 12.1418 13.6713 k = 0.0000 0.0000 0.4294 band energies (ev): -5.9706 -1.5684 5.7504 5.7504 6.9599 8.4826 8.4826 9.5975 15.6568 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9678 -2.0809 2.0952 4.5995 5.9312 10.0394 10.3364 13.1331 15.1932 k = 0.2807 0.4862 0.2386 band energies (ev): -4.5049 -1.9578 1.8610 3.4909 4.1189 9.7291 12.9195 14.2804 14.8681 k = 0.8420 0.0000-0.1431 band energies (ev): -4.9678 -2.0809 2.0952 4.5995 5.9312 10.0394 10.3364 13.1331 15.1932 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1927 -2.5971 1.8472 2.8347 6.1591 9.8867 12.4565 13.6502 13.9771 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6062 -3.2234 4.5385 4.7066 6.2103 9.2535 9.6441 10.3611 15.5696 the Fermi energy is 8.0707 ev total energy = -25.49950426 Ry Harris-Foulkes estimate = -25.49913170 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.13E-09, avg # of iterations = 2.0 total cpu time spent up to now is 40.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.1431 ( 531 PWs) bands (ev): -7.1453 1.7146 5.5801 5.5801 6.4835 9.9123 10.4995 10.4995 14.5127 k =-0.1403-0.2431 0.2386 ( 522 PWs) bands (ev): -6.1294 -0.8854 3.9430 5.6184 8.0135 8.2578 9.0465 11.8280 13.8874 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.6060 -3.2234 4.5381 4.7070 6.2100 9.2534 9.6434 10.3607 15.5692 k = 0.1403 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5654 0.1371 4.7026 5.2706 6.6477 9.3859 10.1607 11.4240 13.4330 k =-0.2807 0.0000 0.3340 ( 519 PWs) bands (ev): -5.7642 -0.6577 2.9248 4.0255 5.3272 10.1390 11.9082 12.0027 13.7508 k = 0.1403 0.7292 0.0477 ( 510 PWs) bands (ev): -4.1923 -2.5971 1.8471 2.8343 6.1587 9.8867 12.4567 13.6502 13.9767 k = 0.0000 0.4862 0.1431 ( 521 PWs) bands (ev): -5.0290 -2.2314 2.7764 4.7695 6.0455 9.3793 11.1223 12.1419 13.6710 k = 0.5614 0.0000-0.2386 ( 510 PWs) bands (ev): -4.5047 -1.9575 1.8603 3.4910 4.1184 9.7295 12.9192 14.2798 14.8679 k = 0.4210-0.2431-0.1431 ( 521 PWs) bands (ev): -5.0290 -2.2314 2.7764 4.7695 6.0455 9.3793 11.1223 12.1419 13.6710 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5654 0.1371 4.7026 5.2706 6.6477 9.3859 10.1607 11.4240 13.4330 k = 0.2807 0.0000 0.2386 ( 522 PWs) bands (ev): -6.1294 -0.8854 3.9430 5.6184 8.0135 8.2578 9.0465 11.8280 13.8874 k = 0.1403-0.2431 0.3340 ( 519 PWs) bands (ev): -5.7642 -0.6577 2.9248 4.0255 5.3272 10.1390 11.9082 12.0027 13.7508 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1923 -2.5971 1.8471 2.8343 6.1587 9.8867 12.4567 13.6502 13.9767 k = 0.4210 0.2431 0.1431 ( 521 PWs) bands (ev): -5.0290 -2.2314 2.7764 4.7695 6.0455 9.3793 11.1223 12.1419 13.6710 k = 0.0000 0.0000 0.4294 ( 522 PWs) bands (ev): -5.9702 -1.5693 5.7507 5.7507 6.9608 8.4823 8.4823 9.5963 15.6569 k = 0.4210 0.7292 0.1431 ( 520 PWs) bands (ev): -4.9672 -2.0817 2.0953 4.5997 5.9308 10.0391 10.3365 13.1332 15.1928 k = 0.2807 0.4862 0.2386 ( 510 PWs) bands (ev): -4.5047 -1.9575 1.8603 3.4910 4.1184 9.7295 12.9192 14.2798 14.8679 k = 0.8420 0.0000-0.1431 ( 520 PWs) bands (ev): -4.9672 -2.0817 2.0953 4.5997 5.9308 10.0391 10.3365 13.1332 15.1928 k = 0.7017-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1923 -2.5971 1.8471 2.8343 6.1587 9.8867 12.4567 13.6502 13.9767 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.6060 -3.2234 4.5381 4.7070 6.2100 9.2534 9.6434 10.3607 15.5692 the Fermi energy is 8.0709 ev ! total energy = -25.49950430 Ry Harris-Foulkes estimate = -25.49950432 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00115401 atom 2 type 1 force = -0.00000002 0.00000000 0.00115401 Total force = 0.001632 Total SCF correction = 0.000197 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.81 -0.00000164 0.00000000 0.00000000 -0.24 0.00 0.00 0.00000000 -0.00000164 0.00000000 0.00 -0.24 0.00 0.00000000 0.00000000 -0.00001317 0.00 0.00 -1.94 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 0.593787525 0.000000000 0.873066206 -0.296893627 0.514235062 0.873066308 -0.296893627 -0.514235062 0.873066308 new unit-cell volume = 275.5356 (a.u.)^3 new positions in cryst coord As 0.272435471 0.272435478 0.272435478 As -0.272435471 -0.272435478 -0.272435478 new positions in cart coord (alat unit) As 0.000000070 0.000000000 0.713562676 As -0.000000070 0.000000000 -0.713562676 Ekin = 0.00002335 Ry T = 355.0 K Etot = -25.49948095 CELL_PARAMETERS (alat) 0.593787525 0.000000000 0.873066206 -0.296893627 0.514235062 0.873066308 -0.296893627 -0.514235062 0.873066308 ATOMIC_POSITIONS (crystal) As 0.272435471 0.272435478 0.272435478 As -0.272435471 -0.272435478 -0.272435478 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1431736), wk = 0.0625000 k( 2) = ( -0.1403420 -0.2430795 0.2386226), wk = 0.1250000 k( 3) = ( 0.2806841 0.4861590 -0.0477245), wk = 0.1250000 k( 4) = ( 0.1403420 0.2430795 0.0477245), wk = 0.1250000 k( 5) = ( -0.2806840 0.0000000 0.3340717), wk = 0.0625000 k( 6) = ( 0.1403420 0.7292385 0.0477245), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861590 0.1431736), wk = 0.1250000 k( 8) = ( 0.5613681 0.0000000 -0.2386226), wk = 0.0625000 k( 9) = ( 0.4210261 -0.2430795 -0.1431736), wk = 0.1250000 k( 10) = ( 0.2806841 0.0000000 -0.0477245), wk = 0.0625000 k( 11) = ( 0.2806841 0.0000000 0.2386226), wk = 0.0625000 k( 12) = ( 0.1403421 -0.2430795 0.3340716), wk = 0.1250000 k( 13) = ( 0.5613681 0.4861590 0.0477245), wk = 0.1250000 k( 14) = ( 0.4210261 0.2430795 0.1431735), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4295207), wk = 0.0625000 k( 16) = ( 0.4210261 0.7292385 0.1431735), wk = 0.1250000 k( 17) = ( 0.2806841 0.4861590 0.2386226), wk = 0.1250000 k( 18) = ( 0.8420522 0.0000000 -0.1431736), wk = 0.0625000 k( 19) = ( 0.7017101 -0.2430795 -0.0477246), wk = 0.1250000 k( 20) = ( 0.5613681 0.0000000 0.0477245), wk = 0.0625000 extrapolated charge 9.99694, renormalised to 10.00000 total cpu time spent up to now is 41.03 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.87E-09, avg # of iterations = 2.0 total cpu time spent up to now is 41.71 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1399 1.7160 5.5883 5.5883 6.4851 9.9281 10.5062 10.5062 14.5121 k =-0.1403-0.2431 0.2386 band energies (ev): -6.1231 -0.8832 3.9487 5.6328 8.0185 8.2613 9.0389 11.8309 13.8963 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5990 -3.2200 4.5429 4.7189 6.2120 9.2619 9.6371 10.3597 15.5735 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5602 0.1424 4.7111 5.2737 6.6544 9.3820 10.1755 11.4246 13.4321 k =-0.2807 0.0000 0.3341 band energies (ev): -5.7568 -0.6569 2.9340 4.0320 5.3227 10.1537 11.9130 12.0069 13.7444 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1837 -2.5933 1.8510 2.8367 6.1621 9.8873 12.4662 13.6584 13.9769 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0233 -2.2258 2.7852 4.7682 6.0539 9.3745 11.1253 12.1517 13.6755 k = 0.5614 0.0000-0.2386 band energies (ev): -4.4982 -1.9485 1.8576 3.4978 4.1178 9.7443 12.9199 14.2730 14.8699 k = 0.4210-0.2431-0.1432 band energies (ev): -5.0233 -2.2258 2.7852 4.7682 6.0539 9.3745 11.1253 12.1517 13.6755 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5602 0.1424 4.7111 5.2737 6.6544 9.3820 10.1755 11.4246 13.4321 k = 0.2807 0.0000 0.2386 band energies (ev): -6.1231 -0.8832 3.9487 5.6328 8.0185 8.2613 9.0389 11.8309 13.8963 k = 0.1403-0.2431 0.3341 band energies (ev): -5.7568 -0.6569 2.9340 4.0320 5.3227 10.1537 11.9130 12.0069 13.7444 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1837 -2.5933 1.8510 2.8367 6.1621 9.8873 12.4662 13.6584 13.9769 k = 0.4210 0.2431 0.1432 band energies (ev): -5.0233 -2.2258 2.7852 4.7682 6.0539 9.3745 11.1253 12.1517 13.6755 k = 0.0000 0.0000 0.4295 band energies (ev): -5.9605 -1.5740 5.7612 5.7612 6.9713 8.4815 8.4815 9.5956 15.6647 k = 0.4210 0.7292 0.1432 band energies (ev): -4.9553 -2.0867 2.1020 4.6084 5.9305 10.0380 10.3454 13.1423 15.1938 k = 0.2807 0.4862 0.2386 band energies (ev): -4.4982 -1.9485 1.8576 3.4978 4.1178 9.7443 12.9199 14.2730 14.8699 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9553 -2.0867 2.1020 4.6084 5.9305 10.0380 10.3454 13.1423 15.1938 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1837 -2.5933 1.8510 2.8367 6.1621 9.8873 12.4662 13.6584 13.9769 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5990 -3.2200 4.5429 4.7189 6.2120 9.2619 9.6371 10.3597 15.5735 the Fermi energy is 8.0759 ev total energy = -25.49950960 Ry Harris-Foulkes estimate = -25.49772794 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-09, avg # of iterations = 2.1 total cpu time spent up to now is 42.08 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1393 1.7158 5.5891 5.5891 6.4851 9.9289 10.5065 10.5065 14.5106 k =-0.1403-0.2431 0.2386 band energies (ev): -6.1224 -0.8830 3.9485 5.6342 8.0189 8.2605 9.0378 11.8311 13.8956 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5981 -3.2196 4.5422 4.7199 6.2115 9.2620 9.6360 10.3590 15.5721 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5597 0.1431 4.7118 5.2733 6.6539 9.3815 10.1764 11.4243 13.4307 k =-0.2807 0.0000 0.3341 band energies (ev): -5.7560 -0.6569 2.9345 4.0324 5.3213 10.1541 11.9138 12.0072 13.7429 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1826 -2.5928 1.8507 2.8360 6.1615 9.8874 12.4662 13.6588 13.9763 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0227 -2.2251 2.7857 4.7668 6.0537 9.3738 11.1256 12.1522 13.6746 k = 0.5614 0.0000-0.2386 band energies (ev): -4.4973 -1.9473 1.8561 3.4983 4.1169 9.7443 12.9198 14.2720 14.8703 k = 0.4210-0.2431-0.1432 band energies (ev): -5.0227 -2.2251 2.7857 4.7668 6.0537 9.3738 11.1256 12.1522 13.6746 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5597 0.1431 4.7118 5.2733 6.6539 9.3815 10.1764 11.4243 13.4306 k = 0.2807 0.0000 0.2386 band energies (ev): -6.1224 -0.8830 3.9485 5.6342 8.0189 8.2605 9.0378 11.8311 13.8956 k = 0.1403-0.2431 0.3341 band energies (ev): -5.7560 -0.6569 2.9345 4.0324 5.3213 10.1541 11.9137 12.0072 13.7429 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1826 -2.5928 1.8507 2.8360 6.1615 9.8874 12.4662 13.6588 13.9763 k = 0.4210 0.2431 0.1432 band energies (ev): -5.0227 -2.2251 2.7857 4.7668 6.0537 9.3738 11.1256 12.1522 13.6746 k = 0.0000 0.0000 0.4295 band energies (ev): -5.9593 -1.5752 5.7622 5.7622 6.9730 8.4811 8.4811 9.5938 15.6641 k = 0.4210 0.7292 0.1432 band energies (ev): -4.9538 -2.0877 2.1022 4.6090 5.9298 10.0378 10.3460 13.1430 15.1925 k = 0.2807 0.4862 0.2386 band energies (ev): -4.4973 -1.9473 1.8561 3.4983 4.1169 9.7443 12.9198 14.2720 14.8703 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9538 -2.0877 2.1022 4.6090 5.9298 10.0378 10.3460 13.1430 15.1925 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1826 -2.5928 1.8507 2.8360 6.1615 9.8874 12.4662 13.6588 13.9763 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5981 -3.2196 4.5422 4.7199 6.2115 9.2620 9.6360 10.3590 15.5721 the Fermi energy is 8.0763 ev total energy = -25.49950977 Ry Harris-Foulkes estimate = -25.49950984 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-09, avg # of iterations = 1.5 total cpu time spent up to now is 42.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.1432 ( 531 PWs) bands (ev): -7.1397 1.7156 5.5886 5.5886 6.4849 9.9285 10.5061 10.5061 14.5107 k =-0.1403-0.2431 0.2386 ( 522 PWs) bands (ev): -6.1228 -0.8833 3.9483 5.6335 8.0185 8.2605 9.0379 11.8308 13.8954 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.5986 -3.2200 4.5422 4.7193 6.2114 9.2617 9.6361 10.3590 15.5721 k = 0.1403 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5601 0.1427 4.7113 5.2732 6.6539 9.3814 10.1759 11.4241 13.4307 k =-0.2807 0.0000 0.3341 ( 519 PWs) bands (ev): -5.7565 -0.6571 2.9341 4.0320 5.3215 10.1537 11.9133 12.0069 13.7430 k = 0.1403 0.7292 0.0477 ( 510 PWs) bands (ev): -4.1832 -2.5932 1.8505 2.8359 6.1614 9.8872 12.4659 13.6585 13.9762 k = 0.0000 0.4862 0.1432 ( 521 PWs) bands (ev): -5.0231 -2.2255 2.7852 4.7670 6.0535 9.3737 11.1253 12.1518 13.6745 k = 0.5614 0.0000-0.2386 ( 510 PWs) bands (ev): -4.4978 -1.9479 1.8563 3.4979 4.1169 9.7440 12.9196 14.2720 14.8700 k = 0.4210-0.2431-0.1432 ( 521 PWs) bands (ev): -5.0231 -2.2255 2.7852 4.7670 6.0535 9.3737 11.1253 12.1518 13.6745 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5601 0.1427 4.7113 5.2732 6.6539 9.3814 10.1759 11.4241 13.4307 k = 0.2807 0.0000 0.2386 ( 522 PWs) bands (ev): -6.1228 -0.8833 3.9483 5.6335 8.0185 8.2605 9.0379 11.8308 13.8954 k = 0.1403-0.2431 0.3341 ( 519 PWs) bands (ev): -5.7565 -0.6571 2.9341 4.0320 5.3215 10.1537 11.9133 12.0069 13.7430 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1832 -2.5932 1.8505 2.8359 6.1614 9.8872 12.4659 13.6585 13.9762 k = 0.4210 0.2431 0.1432 ( 521 PWs) bands (ev): -5.0231 -2.2255 2.7852 4.7670 6.0535 9.3737 11.1253 12.1518 13.6745 k = 0.0000 0.0000 0.4295 ( 522 PWs) bands (ev): -5.9599 -1.5751 5.7616 5.7616 6.9722 8.4809 8.4809 9.5941 15.6639 k = 0.4210 0.7292 0.1432 ( 520 PWs) bands (ev): -4.9544 -2.0876 2.1018 4.6086 5.9298 10.0376 10.3456 13.1426 15.1926 k = 0.2807 0.4862 0.2386 ( 510 PWs) bands (ev): -4.4978 -1.9479 1.8563 3.4979 4.1169 9.7440 12.9196 14.2720 14.8700 k = 0.8421 0.0000-0.1432 ( 520 PWs) bands (ev): -4.9544 -2.0876 2.1018 4.6086 5.9298 10.0376 10.3456 13.1426 15.1926 k = 0.7017-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1832 -2.5932 1.8505 2.8359 6.1614 9.8871 12.4659 13.6585 13.9762 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.5986 -3.2200 4.5422 4.7193 6.2114 9.2617 9.6361 10.3590 15.5721 the Fermi energy is 8.0759 ev ! total energy = -25.49950978 Ry Harris-Foulkes estimate = -25.49950979 Ry estimated scf accuracy < 6.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00034745 atom 2 type 1 force = -0.00000002 0.00000000 0.00034745 Total force = 0.000491 Total SCF correction = 0.000053 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.25 -0.00000499 0.00000000 0.00000000 -0.73 0.00 0.00 0.00000000 -0.00000499 0.00000000 0.00 -0.73 0.00 0.00000000 0.00000000 -0.00001560 0.00 0.00 -2.30 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 0.593749652 0.000000000 0.872647096 -0.296874689 0.514202263 0.872647198 -0.296874689 -0.514202263 0.872647198 new unit-cell volume = 275.3682 (a.u.)^3 new positions in cryst coord As 0.272271252 0.272271256 0.272271256 As -0.272271252 -0.272271256 -0.272271256 new positions in cart coord (alat unit) As 0.000000072 0.000000000 0.712790215 As -0.000000072 0.000000000 -0.712790215 Ekin = 0.00002886 Ry T = 332.9 K Etot = -25.49948092 CELL_PARAMETERS (alat) 0.593749652 0.000000000 0.872647096 -0.296874689 0.514202263 0.872647198 -0.296874689 -0.514202263 0.872647198 ATOMIC_POSITIONS (crystal) As 0.272271252 0.272271256 0.272271256 As -0.272271252 -0.272271256 -0.272271256 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1432423), wk = 0.0625000 k( 2) = ( -0.1403510 -0.2430950 0.2387372), wk = 0.1250000 k( 3) = ( 0.2807020 0.4861900 -0.0477475), wk = 0.1250000 k( 4) = ( 0.1403510 0.2430950 0.0477474), wk = 0.1250000 k( 5) = ( -0.2807019 0.0000000 0.3342321), wk = 0.0625000 k( 6) = ( 0.1403510 0.7292850 0.0477474), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861900 0.1432423), wk = 0.1250000 k( 8) = ( 0.5614039 0.0000000 -0.2387373), wk = 0.0625000 k( 9) = ( 0.4210529 -0.2430950 -0.1432424), wk = 0.1250000 k( 10) = ( 0.2807020 0.0000000 -0.0477475), wk = 0.0625000 k( 11) = ( 0.2807020 0.0000000 0.2387372), wk = 0.0625000 k( 12) = ( 0.1403510 -0.2430950 0.3342321), wk = 0.1250000 k( 13) = ( 0.5614039 0.4861900 0.0477474), wk = 0.1250000 k( 14) = ( 0.4210530 0.2430950 0.1432423), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4297269), wk = 0.0625000 k( 16) = ( 0.4210530 0.7292850 0.1432423), wk = 0.1250000 k( 17) = ( 0.2807020 0.4861900 0.2387372), wk = 0.1250000 k( 18) = ( 0.8421059 0.0000000 -0.1432424), wk = 0.0625000 k( 19) = ( 0.7017549 -0.2430950 -0.0477475), wk = 0.1250000 k( 20) = ( 0.5614039 0.0000000 0.0477474), wk = 0.0625000 extrapolated charge 9.99392, renormalised to 10.00000 total cpu time spent up to now is 42.70 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.52E-09, avg # of iterations = 1.9 total cpu time spent up to now is 43.46 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1325 1.7217 5.5998 5.5998 6.4911 9.9495 10.5175 10.5175 14.5141 k =-0.1404-0.2431 0.2387 band energies (ev): -6.1145 -0.8780 3.9578 5.6518 8.0277 8.2686 9.0335 11.8393 13.9091 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5893 -3.2141 4.5510 4.7346 6.2173 9.2754 9.6336 10.3639 15.5832 k = 0.1404 0.2431 0.0477 band energies (ev): -6.5531 0.1516 4.7228 5.2804 6.6651 9.3824 10.1960 11.4296 13.4347 k =-0.2807 0.0000 0.3342 band energies (ev): -5.7467 -0.6526 2.9465 4.0411 5.3200 10.1731 11.9232 12.0158 13.7410 k = 0.1404 0.7293 0.0477 band energies (ev): -4.1717 -2.5867 1.8569 2.8414 6.1688 9.8920 12.4802 13.6726 13.9821 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0153 -2.2170 2.7972 4.7688 6.0666 9.3737 11.1335 12.1667 13.6840 k = 0.5614 0.0000-0.2387 band energies (ev): -4.4888 -1.9354 1.8561 3.5072 4.1196 9.7639 12.9257 14.2704 14.8785 k = 0.4211-0.2431-0.1432 band energies (ev): -5.0153 -2.2170 2.7972 4.7688 6.0666 9.3737 11.1335 12.1667 13.6840 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5531 0.1516 4.7228 5.2804 6.6651 9.3824 10.1960 11.4296 13.4347 k = 0.2807 0.0000 0.2387 band energies (ev): -6.1145 -0.8780 3.9578 5.6518 8.0277 8.2686 9.0335 11.8393 13.9091 k = 0.1404-0.2431 0.3342 band energies (ev): -5.7467 -0.6526 2.9465 4.0411 5.3200 10.1731 11.9232 12.0158 13.7410 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1717 -2.5867 1.8569 2.8414 6.1688 9.8920 12.4802 13.6726 13.9821 k = 0.4211 0.2431 0.1432 band energies (ev): -5.0153 -2.2170 2.7972 4.7688 6.0666 9.3737 11.1335 12.1667 13.6840 k = 0.0000 0.0000 0.4297 band energies (ev): -5.9476 -1.5769 5.7752 5.7752 6.9872 8.4834 8.4834 9.5973 15.6779 k = 0.4211 0.7293 0.1432 band energies (ev): -4.9394 -2.0901 2.1112 4.6202 5.9327 10.0402 10.3594 13.1569 15.1992 k = 0.2807 0.4862 0.2387 band energies (ev): -4.4888 -1.9354 1.8561 3.5072 4.1196 9.7639 12.9257 14.2704 14.8785 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9394 -2.0901 2.1112 4.6202 5.9327 10.0402 10.3594 13.1569 15.1992 k = 0.7018-0.2431-0.0477 band energies (ev): -4.1717 -2.5867 1.8569 2.8414 6.1688 9.8920 12.4802 13.6726 13.9821 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5893 -3.2141 4.5510 4.7346 6.2173 9.2754 9.6336 10.3639 15.5832 the Fermi energy is 8.2112 ev total energy = -25.49951158 Ry Harris-Foulkes estimate = -25.49596894 Ry estimated scf accuracy < 0.00000040 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.02E-09, avg # of iterations = 2.5 total cpu time spent up to now is 43.86 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1316 1.7223 5.6012 5.6012 6.4913 9.9506 10.5180 10.5180 14.5116 k =-0.1404-0.2431 0.2387 band energies (ev): -6.1134 -0.8772 3.9575 5.6536 8.0280 8.2681 9.0322 11.8397 13.9075 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5878 -3.2133 4.5502 4.7359 6.2167 9.2755 9.6324 10.3631 15.5807 k = 0.1404 0.2431 0.0477 band energies (ev): -6.5522 0.1531 4.7238 5.2801 6.6647 9.3819 10.1969 11.4294 13.4322 k =-0.2807 0.0000 0.3342 band energies (ev): -5.7454 -0.6521 2.9470 4.0417 5.3182 10.1731 11.9244 12.0165 13.7390 k = 0.1404 0.7293 0.0477 band energies (ev): -4.1699 -2.5856 1.8562 2.8404 6.1683 9.8923 12.4798 13.6734 13.9814 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0142 -2.2156 2.7975 4.7671 6.0666 9.3727 11.1342 12.1673 13.6823 k = 0.5614 0.0000-0.2387 band energies (ev): -4.4873 -1.9335 1.8541 3.5077 4.1185 9.7631 12.9261 14.2692 14.8796 k = 0.4211-0.2431-0.1432 band energies (ev): -5.0142 -2.2156 2.7975 4.7671 6.0666 9.3727 11.1342 12.1673 13.6823 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5522 0.1531 4.7238 5.2801 6.6647 9.3819 10.1969 11.4294 13.4322 k = 0.2807 0.0000 0.2387 band energies (ev): -6.1134 -0.8772 3.9575 5.6536 8.0280 8.2681 9.0322 11.8397 13.9075 k = 0.1404-0.2431 0.3342 band energies (ev): -5.7454 -0.6521 2.9470 4.0417 5.3182 10.1731 11.9244 12.0165 13.7390 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1699 -2.5856 1.8562 2.8404 6.1683 9.8923 12.4798 13.6734 13.9814 k = 0.4211 0.2431 0.1432 band energies (ev): -5.0142 -2.2156 2.7975 4.7671 6.0666 9.3727 11.1342 12.1673 13.6823 k = 0.0000 0.0000 0.4297 band energies (ev): -5.9459 -1.5780 5.7766 5.7766 6.9891 8.4828 8.4828 9.5954 15.6762 k = 0.4211 0.7293 0.1432 band energies (ev): -4.9372 -2.0909 2.1111 4.6210 5.9317 10.0402 10.3604 13.1580 15.1968 k = 0.2807 0.4862 0.2387 band energies (ev): -4.4873 -1.9335 1.8541 3.5077 4.1185 9.7631 12.9261 14.2692 14.8796 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9372 -2.0909 2.1111 4.6210 5.9317 10.0402 10.3604 13.1580 15.1968 k = 0.7018-0.2431-0.0477 band energies (ev): -4.1699 -2.5856 1.8562 2.8404 6.1683 9.8923 12.4798 13.6734 13.9814 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5878 -3.2133 4.5502 4.7359 6.2167 9.2755 9.6324 10.3631 15.5807 the Fermi energy is 8.2107 ev total energy = -25.49951193 Ry Harris-Foulkes estimate = -25.49951205 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 44.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.1432 ( 531 PWs) bands (ev): -7.1321 1.7220 5.6005 5.6005 6.4910 9.9500 10.5175 10.5175 14.5117 k =-0.1404-0.2431 0.2387 ( 522 PWs) bands (ev): -6.1140 -0.8776 3.9572 5.6528 8.0275 8.2680 9.0322 11.8393 13.9073 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.5885 -3.2138 4.5501 4.7352 6.2165 9.2751 9.6324 10.3629 15.5807 k = 0.1404 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5528 0.1526 4.7232 5.2799 6.6645 9.3817 10.1962 11.4292 13.4322 k =-0.2807 0.0000 0.3342 ( 519 PWs) bands (ev): -5.7460 -0.6524 2.9464 4.0412 5.3184 10.1726 11.9239 12.0160 13.7391 k = 0.1404 0.7293 0.0477 ( 510 PWs) bands (ev): -4.1707 -2.5861 1.8559 2.8402 6.1681 9.8919 12.4794 13.6729 13.9812 k = 0.0000 0.4862 0.1432 ( 521 PWs) bands (ev): -5.0147 -2.2162 2.7970 4.7672 6.0663 9.3726 11.1337 12.1668 13.6822 k = 0.5614 0.0000-0.2387 ( 510 PWs) bands (ev): -4.4880 -1.9342 1.8542 3.5072 4.1184 9.7627 12.9257 14.2691 14.8791 k = 0.4211-0.2431-0.1432 ( 521 PWs) bands (ev): -5.0147 -2.2162 2.7970 4.7672 6.0663 9.3726 11.1337 12.1668 13.6822 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5528 0.1526 4.7232 5.2799 6.6645 9.3817 10.1962 11.4292 13.4322 k = 0.2807 0.0000 0.2387 ( 522 PWs) bands (ev): -6.1140 -0.8776 3.9572 5.6528 8.0275 8.2680 9.0322 11.8393 13.9073 k = 0.1404-0.2431 0.3342 ( 519 PWs) bands (ev): -5.7460 -0.6524 2.9464 4.0412 5.3184 10.1726 11.9239 12.0160 13.7391 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1707 -2.5861 1.8559 2.8402 6.1681 9.8919 12.4794 13.6729 13.9812 k = 0.4211 0.2431 0.1432 ( 521 PWs) bands (ev): -5.0147 -2.2162 2.7970 4.7672 6.0663 9.3726 11.1337 12.1668 13.6822 k = 0.0000 0.0000 0.4297 ( 522 PWs) bands (ev): -5.9466 -1.5780 5.7760 5.7760 6.9882 8.4826 8.4826 9.5957 15.6760 k = 0.4211 0.7293 0.1432 ( 520 PWs) bands (ev): -4.9380 -2.0909 2.1107 4.6204 5.9316 10.0399 10.3599 13.1575 15.1968 k = 0.2807 0.4862 0.2387 ( 510 PWs) bands (ev): -4.4880 -1.9342 1.8542 3.5072 4.1184 9.7627 12.9257 14.2691 14.8791 k = 0.8421 0.0000-0.1432 ( 520 PWs) bands (ev): -4.9380 -2.0909 2.1107 4.6204 5.9316 10.0399 10.3599 13.1575 15.1968 k = 0.7018-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1707 -2.5861 1.8559 2.8402 6.1681 9.8919 12.4794 13.6729 13.9812 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.5885 -3.2138 4.5501 4.7352 6.2165 9.2751 9.6324 10.3629 15.5807 the Fermi energy is 8.2106 ev ! total energy = -25.49951193 Ry Harris-Foulkes estimate = -25.49951195 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00041160 atom 2 type 1 force = 0.00000000 0.00000000 -0.00041160 Total force = 0.000582 Total SCF correction = 0.000142 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.57 -0.00000734 0.00000000 0.00000000 -1.08 0.00 0.00 0.00000000 -0.00000734 0.00000000 0.00 -1.08 0.00 0.00000000 0.00000000 -0.00001740 0.00 0.00 -2.56 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 0.593656092 0.000000000 0.872035570 -0.296827907 0.514121234 0.872035671 -0.296827907 -0.514121234 0.872035671 new unit-cell volume = 275.0885 (a.u.)^3 new positions in cryst coord As 0.272358459 0.272358456 0.272358456 As -0.272358459 -0.272358456 -0.272358456 new positions in cart coord (alat unit) As 0.000000078 0.000000000 0.712518841 As -0.000000078 0.000000000 -0.712518841 Ekin = 0.00003105 Ry T = 313.4 K Etot = -25.49948088 CELL_PARAMETERS (alat) 0.593656092 0.000000000 0.872035570 -0.296827907 0.514121234 0.872035671 -0.296827907 -0.514121234 0.872035671 ATOMIC_POSITIONS (crystal) As 0.272358459 0.272358456 0.272358456 As -0.272358459 -0.272358456 -0.272358456 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1433428), wk = 0.0625000 k( 2) = ( -0.1403731 -0.2431333 0.2389046), wk = 0.1250000 k( 3) = ( 0.2807462 0.4862666 -0.0477810), wk = 0.1250000 k( 4) = ( 0.1403731 0.2431333 0.0477809), wk = 0.1250000 k( 5) = ( -0.2807462 0.0000000 0.3344665), wk = 0.0625000 k( 6) = ( 0.1403731 0.7293999 0.0477809), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862666 0.1433428), wk = 0.1250000 k( 8) = ( 0.5614924 0.0000000 -0.2389047), wk = 0.0625000 k( 9) = ( 0.4211193 -0.2431333 -0.1433428), wk = 0.1250000 k( 10) = ( 0.2807462 0.0000000 -0.0477810), wk = 0.0625000 k( 11) = ( 0.2807462 0.0000000 0.2389046), wk = 0.0625000 k( 12) = ( 0.1403731 -0.2431333 0.3344664), wk = 0.1250000 k( 13) = ( 0.5614924 0.4862666 0.0477809), wk = 0.1250000 k( 14) = ( 0.4211193 0.2431333 0.1433427), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4300283), wk = 0.0625000 k( 16) = ( 0.4211193 0.7293999 0.1433427), wk = 0.1250000 k( 17) = ( 0.2807462 0.4862666 0.2389046), wk = 0.1250000 k( 18) = ( 0.8422386 0.0000000 -0.1433429), wk = 0.0625000 k( 19) = ( 0.7018655 -0.2431333 -0.0477810), wk = 0.1250000 k( 20) = ( 0.5614924 0.0000000 0.0477809), wk = 0.0625000 extrapolated charge 9.98983, renormalised to 10.00000 total cpu time spent up to now is 44.46 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.03E-09, avg # of iterations = 2.1 total cpu time spent up to now is 45.17 secs k = 0.0000 0.0000 0.1433 band energies (ev): -7.1298 1.7411 5.6048 5.6048 6.5085 9.9582 10.5306 10.5306 14.5284 k =-0.1404-0.2431 0.2389 band energies (ev): -6.1112 -0.8671 3.9689 5.6553 8.0394 8.2848 9.0512 11.8593 13.9197 k = 0.2807 0.4863-0.0478 band energies (ev): -4.5855 -3.2071 4.5639 4.7385 6.2304 9.2895 9.6527 10.3889 15.6073 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5502 0.1625 4.7273 5.2950 6.6786 9.4047 10.2054 11.4489 13.4541 k =-0.2807 0.0000 0.3345 band energies (ev): -5.7430 -0.6383 2.9518 4.0450 5.3351 10.1794 11.9393 12.0310 13.7621 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1669 -2.5789 1.8627 2.8515 6.1820 9.9075 12.4908 13.6908 14.0040 k = 0.0000 0.4863 0.1433 band energies (ev): -5.0113 -2.2096 2.8020 4.7823 6.0800 9.3959 11.1520 12.1794 13.6994 k = 0.5615 0.0000-0.2389 band energies (ev): -4.4837 -1.9285 1.8676 3.5108 4.1331 9.7715 12.9471 14.2960 14.9037 k = 0.4211-0.2431-0.1433 band energies (ev): -5.0113 -2.2096 2.8020 4.7823 6.0800 9.3959 11.1520 12.1794 13.6994 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5502 0.1625 4.7273 5.2950 6.6786 9.4047 10.2053 11.4489 13.4541 k = 0.2807 0.0000 0.2389 band energies (ev): -6.1112 -0.8671 3.9689 5.6553 8.0394 8.2848 9.0512 11.8593 13.9197 k = 0.1404-0.2431 0.3345 band energies (ev): -5.7430 -0.6383 2.9518 4.0450 5.3351 10.1794 11.9393 12.0310 13.7621 k = 0.5615 0.4863 0.0478 band energies (ev): -4.1669 -2.5789 1.8627 2.8515 6.1820 9.9075 12.4908 13.6908 14.0040 k = 0.4211 0.2431 0.1433 band energies (ev): -5.0113 -2.2096 2.8020 4.7823 6.0800 9.3959 11.1520 12.1794 13.6994 k = 0.0000 0.0000 0.4300 band energies (ev): -5.9443 -1.5611 5.7787 5.7787 6.9945 8.4954 8.4954 9.6136 15.6958 k = 0.4211 0.7294 0.1433 band energies (ev): -4.9359 -2.0759 2.1155 4.6240 5.9447 10.0547 10.3713 13.1706 15.2193 k = 0.2807 0.4863 0.2389 band energies (ev): -4.4837 -1.9285 1.8676 3.5108 4.1331 9.7715 12.9471 14.2960 14.9037 k = 0.8422 0.0000-0.1433 band energies (ev): -4.9359 -2.0759 2.1155 4.6240 5.9447 10.0547 10.3713 13.1706 15.2193 k = 0.7019-0.2431-0.0478 band energies (ev): -4.1669 -2.5789 1.8627 2.8515 6.1820 9.9075 12.4908 13.6908 14.0040 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5855 -3.2071 4.5639 4.7385 6.2304 9.2895 9.6527 10.3889 15.6073 the Fermi energy is 8.2275 ev total energy = -25.49951375 Ry Harris-Foulkes estimate = -25.49358557 Ry estimated scf accuracy < 0.00000059 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.87E-09, avg # of iterations = 3.0 total cpu time spent up to now is 45.62 secs k = 0.0000 0.0000 0.1433 band energies (ev): -7.1281 1.7440 5.6072 5.6072 6.5097 9.9596 10.5315 10.5315 14.5247 k =-0.1404-0.2431 0.2389 band energies (ev): -6.1091 -0.8646 3.9689 5.6580 8.0398 8.2858 9.0506 11.8605 13.9167 k = 0.2807 0.4863-0.0478 band energies (ev): -4.5829 -3.2051 4.5636 4.7404 6.2302 9.2902 9.6522 10.3887 15.6034 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5484 0.1659 4.7290 5.2954 6.6793 9.4050 10.2059 11.4498 13.4504 k =-0.2807 0.0000 0.3345 band energies (ev): -5.7407 -0.6358 2.9523 4.0461 5.3339 10.1785 11.9419 12.0328 13.7603 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1638 -2.5763 1.8618 2.8506 6.1825 9.9086 12.4897 13.6927 14.0039 k = 0.0000 0.4863 0.1433 band energies (ev): -5.0091 -2.2067 2.8024 4.7811 6.0811 9.3953 11.1537 12.1805 13.6969 k = 0.5615 0.0000-0.2389 band energies (ev): -4.4809 -1.9252 1.8658 3.5118 4.1324 9.7693 12.9489 14.2953 14.9068 k = 0.4211-0.2431-0.1433 band energies (ev): -5.0091 -2.2067 2.8024 4.7811 6.0811 9.3953 11.1537 12.1805 13.6969 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5484 0.1659 4.7290 5.2954 6.6793 9.4050 10.2059 11.4498 13.4504 k = 0.2807 0.0000 0.2389 band energies (ev): -6.1091 -0.8646 3.9689 5.6580 8.0398 8.2858 9.0506 11.8605 13.9167 k = 0.1404-0.2431 0.3345 band energies (ev): -5.7407 -0.6358 2.9523 4.0461 5.3339 10.1785 11.9419 12.0328 13.7603 k = 0.5615 0.4863 0.0478 band energies (ev): -4.1638 -2.5763 1.8618 2.8506 6.1825 9.9086 12.4897 13.6927 14.0039 k = 0.4211 0.2431 0.1433 band energies (ev): -5.0091 -2.2067 2.8024 4.7811 6.0811 9.3953 11.1537 12.1805 13.6969 k = 0.0000 0.0000 0.4300 band energies (ev): -5.9416 -1.5607 5.7811 5.7811 6.9963 8.4953 8.4953 9.6129 15.6923 k = 0.4211 0.7294 0.1433 band energies (ev): -4.9325 -2.0751 2.1152 4.6255 5.9440 10.0558 10.3733 13.1729 15.2156 k = 0.2807 0.4863 0.2389 band energies (ev): -4.4809 -1.9252 1.8658 3.5118 4.1324 9.7693 12.9489 14.2953 14.9068 k = 0.8422 0.0000-0.1433 band energies (ev): -4.9325 -2.0751 2.1152 4.6255 5.9440 10.0558 10.3733 13.1729 15.2156 k = 0.7019-0.2431-0.0478 band energies (ev): -4.1638 -2.5763 1.8618 2.8506 6.1825 9.9086 12.4897 13.6927 14.0039 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5829 -3.2051 4.5636 4.7404 6.2302 9.2902 9.6522 10.3887 15.6034 the Fermi energy is 8.0972 ev total energy = -25.49951457 Ry Harris-Foulkes estimate = -25.49951473 Ry estimated scf accuracy < 0.00000038 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.75E-09, avg # of iterations = 1.0 total cpu time spent up to now is 45.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.1433 ( 531 PWs) bands (ev): -7.1288 1.7435 5.6064 5.6064 6.5093 9.9589 10.5309 10.5309 14.5248 k =-0.1404-0.2431 0.2389 ( 522 PWs) bands (ev): -6.1099 -0.8652 3.9685 5.6571 8.0392 8.2856 9.0505 11.8600 13.9164 k = 0.2807 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5837 -3.2058 4.5633 4.7396 6.2299 9.2897 9.6521 10.3884 15.6034 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5491 0.1652 4.7283 5.2951 6.6790 9.4046 10.2052 11.4494 13.4503 k =-0.2807 0.0000 0.3345 ( 519 PWs) bands (ev): -5.7415 -0.6363 2.9517 4.0455 5.3339 10.1779 11.9411 12.0322 13.7603 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1647 -2.5770 1.8615 2.8503 6.1822 9.9081 12.4892 13.6921 14.0036 k = 0.0000 0.4863 0.1433 ( 521 PWs) bands (ev): -5.0098 -2.2075 2.8017 4.7811 6.0807 9.3951 11.1531 12.1798 13.6967 k = 0.5615 0.0000-0.2389 ( 510 PWs) bands (ev): -4.4817 -1.9261 1.8658 3.5112 4.1323 9.7689 12.9484 14.2952 14.9062 k = 0.4211-0.2431-0.1433 ( 521 PWs) bands (ev): -5.0098 -2.2075 2.8017 4.7811 6.0807 9.3951 11.1531 12.1798 13.6967 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5491 0.1652 4.7283 5.2951 6.6790 9.4046 10.2052 11.4494 13.4503 k = 0.2807 0.0000 0.2389 ( 522 PWs) bands (ev): -6.1099 -0.8652 3.9685 5.6571 8.0392 8.2856 9.0505 11.8600 13.9164 k = 0.1404-0.2431 0.3345 ( 519 PWs) bands (ev): -5.7415 -0.6363 2.9517 4.0455 5.3339 10.1779 11.9411 12.0322 13.7603 k = 0.5615 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1647 -2.5770 1.8615 2.8503 6.1822 9.9081 12.4892 13.6921 14.0036 k = 0.4211 0.2431 0.1433 ( 521 PWs) bands (ev): -5.0098 -2.2075 2.8017 4.7811 6.0807 9.3951 11.1531 12.1798 13.6967 k = 0.0000 0.0000 0.4300 ( 522 PWs) bands (ev): -5.9425 -1.5608 5.7802 5.7802 6.9953 8.4949 8.4949 9.6131 15.6920 k = 0.4211 0.7294 0.1433 ( 520 PWs) bands (ev): -4.9335 -2.0753 2.1147 4.6248 5.9438 10.0554 10.3726 13.1721 15.2155 k = 0.2807 0.4863 0.2389 ( 510 PWs) bands (ev): -4.4817 -1.9261 1.8658 3.5112 4.1323 9.7689 12.9484 14.2952 14.9062 k = 0.8422 0.0000-0.1433 ( 520 PWs) bands (ev): -4.9335 -2.0753 2.1147 4.6248 5.9438 10.0554 10.3726 13.1721 15.2155 k = 0.7019-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1647 -2.5770 1.8615 2.8503 6.1822 9.9081 12.4892 13.6921 14.0036 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5837 -3.2058 4.5633 4.7396 6.2299 9.2897 9.6521 10.3884 15.6034 the Fermi energy is 8.0965 ev ! total energy = -25.49951456 Ry Harris-Foulkes estimate = -25.49951459 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00031937 atom 2 type 1 force = -0.00000002 0.00000000 0.00031937 Total force = 0.000452 Total SCF correction = 0.000129 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.45 -0.00000063 0.00000000 0.00000000 -0.09 0.00 0.00 0.00000000 -0.00000063 0.00000000 0.00 -0.09 0.00 0.00000000 0.00000000 -0.00000794 0.00 0.00 -1.17 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 0.593557928 0.000000000 0.871334818 -0.296778822 0.514036218 0.871334916 -0.296778822 -0.514036218 0.871334916 new unit-cell volume = 274.7765 (a.u.)^3 new positions in cryst coord As 0.272352718 0.272352713 0.272352713 As -0.272352718 -0.272352713 -0.272352713 new positions in cart coord (alat unit) As 0.000000081 0.000000000 0.711931262 As -0.000000081 0.000000000 -0.711931262 Ekin = 0.00000706 Ry T = 296.0 K Etot = -25.49950749 CELL_PARAMETERS (alat) 0.593557928 0.000000000 0.871334818 -0.296778822 0.514036218 0.871334916 -0.296778822 -0.514036218 0.871334916 ATOMIC_POSITIONS (crystal) As 0.272352718 0.272352713 0.272352713 As -0.272352718 -0.272352713 -0.272352713 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434580), wk = 0.0625000 k( 2) = ( -0.1403963 -0.2431735 0.2390968), wk = 0.1250000 k( 3) = ( 0.2807926 0.4863471 -0.0478194), wk = 0.1250000 k( 4) = ( 0.1403963 0.2431735 0.0478193), wk = 0.1250000 k( 5) = ( -0.2807926 0.0000000 0.3347355), wk = 0.0625000 k( 6) = ( 0.1403963 0.7295206 0.0478193), wk = 0.1250000 k( 7) = ( 0.0000000 0.4863471 0.1434580), wk = 0.1250000 k( 8) = ( 0.5615852 0.0000000 -0.2390968), wk = 0.0625000 k( 9) = ( 0.4211889 -0.2431735 -0.1434581), wk = 0.1250000 k( 10) = ( 0.2807926 0.0000000 -0.0478194), wk = 0.0625000 k( 11) = ( 0.2807927 0.0000000 0.2390967), wk = 0.0625000 k( 12) = ( 0.1403964 -0.2431735 0.3347354), wk = 0.1250000 k( 13) = ( 0.5615853 0.4863471 0.0478193), wk = 0.1250000 k( 14) = ( 0.4211890 0.2431735 0.1434580), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4303741), wk = 0.0625000 k( 16) = ( 0.4211890 0.7295206 0.1434580), wk = 0.1250000 k( 17) = ( 0.2807927 0.4863471 0.2390967), wk = 0.1250000 k( 18) = ( 0.8423779 0.0000000 -0.1434581), wk = 0.0625000 k( 19) = ( 0.7019816 -0.2431735 -0.0478194), wk = 0.1250000 k( 20) = ( 0.5615853 0.0000000 0.0478193), wk = 0.0625000 extrapolated charge 9.98865, renormalised to 10.00000 total cpu time spent up to now is 46.22 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.54E-09, avg # of iterations = 3.0 total cpu time spent up to now is 46.95 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1236 1.7621 5.6152 5.6152 6.5265 9.9757 10.5471 10.5471 14.5403 k =-0.1404-0.2432 0.2391 band energies (ev): -6.1038 -0.8541 3.9826 5.6677 8.0534 8.3032 9.0641 11.8804 13.9333 k = 0.2808 0.4863-0.0478 band energies (ev): -4.5770 -3.1976 4.5789 4.7495 6.2441 9.3081 9.6677 10.4122 15.6307 k = 0.1404 0.2432 0.0478 band energies (ev): -6.5438 0.1775 4.7371 5.3109 6.6958 9.4240 10.2223 11.4682 13.4704 k =-0.2808 0.0000 0.3347 band energies (ev): -5.7345 -0.6227 2.9620 4.0529 5.3470 10.1928 11.9584 12.0488 13.7784 k = 0.1404 0.7295 0.0478 band energies (ev): -4.1563 -2.5680 1.8701 2.8622 6.1971 9.9232 12.5055 13.7135 14.0252 k = 0.0000 0.4863 0.1435 band energies (ev): -5.0034 -2.1981 2.8115 4.7943 6.0981 9.4143 11.1721 12.1973 13.7156 k = 0.5616 0.0000-0.2391 band energies (ev): -4.4741 -1.9155 1.8767 3.5186 4.1456 9.7856 12.9689 14.3165 14.9304 k = 0.4212-0.2432-0.1435 band energies (ev): -5.0034 -2.1981 2.8115 4.7943 6.0981 9.4143 11.1721 12.1973 13.7156 k = 0.2808 0.0000-0.0478 band energies (ev): -6.5438 0.1775 4.7371 5.3109 6.6958 9.4240 10.2223 11.4682 13.4704 k = 0.2808 0.0000 0.2391 band energies (ev): -6.1038 -0.8541 3.9826 5.6677 8.0534 8.3032 9.0641 11.8804 13.9333 k = 0.1404-0.2432 0.3347 band energies (ev): -5.7345 -0.6227 2.9620 4.0529 5.3470 10.1928 11.9584 12.0488 13.7784 k = 0.5616 0.4863 0.0478 band energies (ev): -4.1563 -2.5680 1.8701 2.8622 6.1971 9.9232 12.5055 13.7135 14.0252 k = 0.4212 0.2432 0.1435 band energies (ev): -5.0034 -2.1981 2.8115 4.7943 6.0981 9.4143 11.1721 12.1973 13.7156 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9349 -1.5479 5.7889 5.7889 7.0077 8.5067 8.5067 9.6293 15.7150 k = 0.4212 0.7295 0.1435 band energies (ev): -4.9248 -2.0642 2.1231 4.6332 5.9559 10.0688 10.3885 13.1897 15.2373 k = 0.2808 0.4863 0.2391 band energies (ev): -4.4741 -1.9155 1.8767 3.5186 4.1456 9.7856 12.9689 14.3165 14.9304 k = 0.8424 0.0000-0.1435 band energies (ev): -4.9248 -2.0642 2.1231 4.6332 5.9559 10.0688 10.3885 13.1897 15.2373 k = 0.7020-0.2432-0.0478 band energies (ev): -4.1563 -2.5680 1.8701 2.8622 6.1971 9.9232 12.5055 13.7135 14.0252 k = 0.5616 0.0000 0.0478 band energies (ev): -4.5770 -3.1976 4.5789 4.7495 6.2441 9.3081 9.6677 10.4122 15.6307 the Fermi energy is 8.1107 ev total energy = -25.49951399 Ry Harris-Foulkes estimate = -25.49288747 Ry estimated scf accuracy < 0.00000064 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-09, avg # of iterations = 3.0 total cpu time spent up to now is 47.39 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1217 1.7647 5.6179 5.6179 6.5277 9.9773 10.5481 10.5481 14.5361 k =-0.1404-0.2432 0.2391 band energies (ev): -6.1015 -0.8516 3.9825 5.6709 8.0538 8.3038 9.0630 11.8817 13.9300 k = 0.2808 0.4863-0.0478 band energies (ev): -4.5741 -3.1956 4.5782 4.7517 6.2437 9.3087 9.6667 10.4116 15.6263 k = 0.1404 0.2432 0.0478 band energies (ev): -6.5419 0.1811 4.7391 5.3111 6.6962 9.4241 10.2232 11.4689 13.4661 k =-0.2808 0.0000 0.3347 band energies (ev): -5.7319 -0.6203 2.9626 4.0542 5.3452 10.1921 11.9612 12.0506 13.7759 k = 0.1404 0.7295 0.0478 band energies (ev): -4.1528 -2.5654 1.8691 2.8609 6.1974 9.9243 12.5043 13.7155 14.0248 k = 0.0000 0.4863 0.1435 band energies (ev): -5.0010 -2.1950 2.8120 4.7926 6.0990 9.4134 11.1739 12.1985 13.7127 k = 0.5616 0.0000-0.2391 band energies (ev): -4.4710 -1.9118 1.8743 3.5197 4.1446 9.7835 12.9707 14.3155 14.9336 k = 0.4212-0.2432-0.1435 band energies (ev): -5.0010 -2.1950 2.8120 4.7926 6.0990 9.4134 11.1739 12.1985 13.7127 k = 0.2808 0.0000-0.0478 band energies (ev): -6.5419 0.1811 4.7391 5.3111 6.6962 9.4241 10.2232 11.4689 13.4661 k = 0.2808 0.0000 0.2391 band energies (ev): -6.1015 -0.8516 3.9825 5.6709 8.0538 8.3038 9.0630 11.8817 13.9300 k = 0.1404-0.2432 0.3347 band energies (ev): -5.7319 -0.6203 2.9626 4.0542 5.3452 10.1921 11.9612 12.0506 13.7759 k = 0.5616 0.4863 0.0478 band energies (ev): -4.1528 -2.5654 1.8691 2.8609 6.1974 9.9243 12.5043 13.7155 14.0248 k = 0.4212 0.2432 0.1435 band energies (ev): -5.0010 -2.1950 2.8120 4.7926 6.0990 9.4134 11.1739 12.1985 13.7127 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9318 -1.5481 5.7916 5.7916 7.0101 8.5063 8.5063 9.6279 15.7113 k = 0.4212 0.7295 0.1435 band energies (ev): -4.9209 -2.0639 2.1229 4.6348 5.9549 10.0697 10.3908 13.1922 15.2331 k = 0.2808 0.4863 0.2391 band energies (ev): -4.4711 -1.9118 1.8743 3.5197 4.1446 9.7835 12.9707 14.3155 14.9336 k = 0.8424 0.0000-0.1435 band energies (ev): -4.9209 -2.0639 2.1229 4.6348 5.9549 10.0697 10.3908 13.1922 15.2331 k = 0.7020-0.2432-0.0478 band energies (ev): -4.1528 -2.5654 1.8691 2.8609 6.1974 9.9243 12.5043 13.7155 14.0248 k = 0.5616 0.0000 0.0478 band energies (ev): -4.5741 -3.1956 4.5782 4.7517 6.2437 9.3087 9.6667 10.4116 15.6263 the Fermi energy is 8.1112 ev total energy = -25.49951503 Ry Harris-Foulkes estimate = -25.49951527 Ry estimated scf accuracy < 0.00000057 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-09, avg # of iterations = 1.0 total cpu time spent up to now is 47.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1224 1.7643 5.6170 5.6170 6.5272 9.9765 10.5475 10.5475 14.5361 k =-0.1404-0.2432 0.2391 ( 522 PWs) bands (ev): -6.1023 -0.8523 3.9821 5.6698 8.0531 8.3036 9.0630 11.8811 13.9298 k = 0.2808 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5750 -3.1962 4.5780 4.7508 6.2434 9.3082 9.6666 10.4114 15.6263 k = 0.1404 0.2432 0.0478 ( 525 PWs) bands (ev): -6.5426 0.1803 4.7382 5.3108 6.6959 9.4237 10.2223 11.4685 13.4661 k =-0.2808 0.0000 0.3347 ( 519 PWs) bands (ev): -5.7328 -0.6208 2.9619 4.0535 5.3452 10.1914 11.9604 12.0500 13.7760 k = 0.1404 0.7295 0.0478 ( 510 PWs) bands (ev): -4.1538 -2.5661 1.8687 2.8607 6.1971 9.9238 12.5038 13.7148 14.0245 k = 0.0000 0.4863 0.1435 ( 521 PWs) bands (ev): -5.0018 -2.1958 2.8112 4.7926 6.0986 9.4132 11.1732 12.1978 13.7125 k = 0.5616 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4719 -1.9129 1.8744 3.5190 4.1444 9.7829 12.9702 14.3153 14.9329 k = 0.4212-0.2432-0.1435 ( 521 PWs) bands (ev): -5.0018 -2.1958 2.8112 4.7926 6.0986 9.4132 11.1732 12.1978 13.7125 k = 0.2808 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5426 0.1803 4.7382 5.3108 6.6959 9.4237 10.2223 11.4685 13.4661 k = 0.2808 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1023 -0.8523 3.9821 5.6698 8.0531 8.3036 9.0630 11.8811 13.9298 k = 0.1404-0.2432 0.3347 ( 519 PWs) bands (ev): -5.7328 -0.6208 2.9619 4.0535 5.3452 10.1914 11.9604 12.0500 13.7760 k = 0.5616 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1538 -2.5661 1.8687 2.8607 6.1971 9.9238 12.5038 13.7148 14.0245 k = 0.4212 0.2432 0.1435 ( 521 PWs) bands (ev): -5.0018 -2.1958 2.8112 4.7926 6.0986 9.4132 11.1732 12.1978 13.7125 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9328 -1.5481 5.7906 5.7906 7.0089 8.5060 8.5060 9.6281 15.7110 k = 0.4212 0.7295 0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0640 2.1223 4.6340 5.9547 10.0693 10.3900 13.1914 15.2331 k = 0.2808 0.4863 0.2391 ( 510 PWs) bands (ev): -4.4719 -1.9129 1.8744 3.5190 4.1444 9.7829 12.9702 14.3153 14.9329 k = 0.8424 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0640 2.1223 4.6340 5.9547 10.0693 10.3900 13.1914 15.2331 k = 0.7020-0.2432-0.0478 ( 510 PWs) bands (ev): -4.1538 -2.5661 1.8687 2.8607 6.1971 9.9238 12.5038 13.7148 14.0245 k = 0.5616 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5750 -3.1962 4.5780 4.7508 6.2434 9.3082 9.6666 10.4114 15.6263 the Fermi energy is 8.1105 ev ! total energy = -25.49951501 Ry Harris-Foulkes estimate = -25.49951507 Ry estimated scf accuracy < 0.00000010 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000003 0.00000000 -0.00055393 atom 2 type 1 force = -0.00000003 0.00000000 0.00055393 Total force = 0.000783 Total SCF correction = 0.000214 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.37 0.00000416 0.00000000 0.00000000 0.61 0.00 0.00 0.00000000 0.00000416 0.00000000 0.00 0.61 0.00 0.00000000 0.00000000 -0.00000080 0.00 0.00 -0.12 Entering Dynamics; it = 20 time = 0.13794 pico-seconds new lattice vectors (alat unit) : 0.593643729 0.000000000 0.870624761 -0.296821722 0.514110528 0.870624858 -0.296821722 -0.514110528 0.870624858 new unit-cell volume = 274.6320 (a.u.)^3 new positions in cryst coord As 0.272336999 0.272336989 0.272336989 As -0.272336999 -0.272336989 -0.272336989 new positions in cart coord (alat unit) As 0.000000083 0.000000000 0.711310040 As -0.000000083 0.000000000 -0.711310040 Ekin = 0.00000786 Ry T = 280.4 K Etot = -25.49950715 CELL_PARAMETERS (alat) 0.593643729 0.000000000 0.870624761 -0.296821722 0.514110528 0.870624858 -0.296821722 -0.514110528 0.870624858 ATOMIC_POSITIONS (crystal) As 0.272336999 0.272336989 0.272336989 As -0.272336999 -0.272336989 -0.272336989 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1435750), wk = 0.0625000 k( 2) = ( -0.1403760 -0.2431384 0.2392918), wk = 0.1250000 k( 3) = ( 0.2807520 0.4862768 -0.0478584), wk = 0.1250000 k( 4) = ( 0.1403760 0.2431384 0.0478583), wk = 0.1250000 k( 5) = ( -0.2807520 0.0000000 0.3350085), wk = 0.0625000 k( 6) = ( 0.1403760 0.7294151 0.0478583), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862768 0.1435750), wk = 0.1250000 k( 8) = ( 0.5615041 0.0000000 -0.2392918), wk = 0.0625000 k( 9) = ( 0.4211281 -0.2431384 -0.1435751), wk = 0.1250000 k( 10) = ( 0.2807520 0.0000000 -0.0478584), wk = 0.0625000 k( 11) = ( 0.2807521 0.0000000 0.2392917), wk = 0.0625000 k( 12) = ( 0.1403761 -0.2431384 0.3350084), wk = 0.1250000 k( 13) = ( 0.5615041 0.4862768 0.0478583), wk = 0.1250000 k( 14) = ( 0.4211281 0.2431384 0.1435750), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4307251), wk = 0.0625000 k( 16) = ( 0.4211281 0.7294151 0.1435750), wk = 0.1250000 k( 17) = ( 0.2807521 0.4862768 0.2392917), wk = 0.1250000 k( 18) = ( 0.8422561 0.0000000 -0.1435751), wk = 0.0625000 k( 19) = ( 0.7018801 -0.2431384 -0.0478584), wk = 0.1250000 k( 20) = ( 0.5615041 0.0000000 0.0478583), wk = 0.0625000 extrapolated charge 9.99474, renormalised to 10.00000 total cpu time spent up to now is 47.99 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.4 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.66E-09, avg # of iterations = 3.3 total cpu time spent up to now is 48.73 secs k = 0.0000 0.0000 0.1436 band energies (ev): -7.1194 1.7741 5.6185 5.6185 6.5366 9.9848 10.5544 10.5544 14.5398 k =-0.1404-0.2431 0.2393 band energies (ev): -6.0988 -0.8484 3.9918 5.6747 8.0569 8.3114 9.0659 11.8917 13.9357 k = 0.2808 0.4863-0.0479 band energies (ev): -4.5721 -3.1931 4.5884 4.7551 6.2487 9.3172 9.6722 10.4273 15.6452 k = 0.1404 0.2431 0.0479 band energies (ev): -6.5401 0.1848 4.7405 5.3205 6.7064 9.4333 10.2312 11.4776 13.4753 k =-0.2808 0.0000 0.3350 band energies (ev): -5.7284 -0.6143 2.9675 4.0540 5.3499 10.1973 11.9654 12.0557 13.7808 k = 0.1404 0.7294 0.0479 band energies (ev): -4.1490 -2.5631 1.8721 2.8674 6.2046 9.9278 12.5096 13.7258 14.0354 k = 0.0000 0.4863 0.1436 band energies (ev): -4.9990 -2.1924 2.8163 4.7984 6.1106 9.4233 11.1814 12.2049 13.7209 k = 0.5615 0.0000-0.2393 band energies (ev): -4.4682 -1.9073 1.8790 3.5200 4.1514 9.7923 12.9801 14.3240 14.9455 k = 0.4211-0.2431-0.1436 band energies (ev): -4.9990 -2.1924 2.8163 4.7984 6.1106 9.4233 11.1814 12.2049 13.7209 k = 0.2808 0.0000-0.0479 band energies (ev): -6.5401 0.1848 4.7405 5.3205 6.7064 9.4333 10.2312 11.4776 13.4753 k = 0.2808 0.0000 0.2393 band energies (ev): -6.0988 -0.8484 3.9918 5.6747 8.0569 8.3114 9.0659 11.8917 13.9357 k = 0.1404-0.2431 0.3350 band energies (ev): -5.7284 -0.6143 2.9675 4.0540 5.3499 10.1973 11.9654 12.0557 13.7808 k = 0.5615 0.4863 0.0479 band energies (ev): -4.1490 -2.5631 1.8721 2.8674 6.2046 9.9278 12.5096 13.7258 14.0354 k = 0.4211 0.2431 0.1436 band energies (ev): -4.9990 -2.1924 2.8163 4.7984 6.1106 9.4233 11.1814 12.2049 13.7209 k = 0.0000 0.0000 0.4307 band energies (ev): -5.9268 -1.5411 5.7921 5.7921 7.0096 8.5076 8.5076 9.6316 15.7231 k = 0.4211 0.7294 0.1436 band energies (ev): -4.9152 -2.0596 2.1256 4.6359 5.9571 10.0720 10.3942 13.1973 15.2439 k = 0.2808 0.4863 0.2393 band energies (ev): -4.4682 -1.9073 1.8790 3.5200 4.1514 9.7923 12.9801 14.3240 14.9455 k = 0.8423 0.0000-0.1436 band energies (ev): -4.9152 -2.0596 2.1256 4.6359 5.9571 10.0720 10.3942 13.1973 15.2439 k = 0.7019-0.2431-0.0479 band energies (ev): -4.1490 -2.5631 1.8721 2.8674 6.2046 9.9278 12.5096 13.7258 14.0354 k = 0.5615 0.0000 0.0479 band energies (ev): -4.5721 -3.1931 4.5884 4.7551 6.2487 9.3172 9.6722 10.4273 15.6452 the Fermi energy is 8.2541 ev total energy = -25.49951464 Ry Harris-Foulkes estimate = -25.49644029 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-09, avg # of iterations = 3.0 total cpu time spent up to now is 49.15 secs k = 0.0000 0.0000 0.1436 band energies (ev): -7.1185 1.7752 5.6199 5.6199 6.5371 9.9858 10.5549 10.5549 14.5378 k =-0.1404-0.2431 0.2393 band energies (ev): -6.0977 -0.8473 3.9917 5.6764 8.0573 8.3115 9.0652 11.8923 13.9343 k = 0.2808 0.4863-0.0479 band energies (ev): -4.5707 -3.1922 4.5880 4.7563 6.2484 9.3175 9.6716 10.4270 15.6431 k = 0.1404 0.2431 0.0479 band energies (ev): -6.5391 0.1864 4.7415 5.3205 6.7065 9.4333 10.2318 11.4778 13.4733 k =-0.2808 0.0000 0.3350 band energies (ev): -5.7270 -0.6133 2.9679 4.0547 5.3488 10.1972 11.9668 12.0566 13.7795 k = 0.1404 0.7294 0.0479 band energies (ev): -4.1473 -2.5618 1.8716 2.8668 6.2046 9.9283 12.5091 13.7268 14.0351 k = 0.0000 0.4863 0.1436 band energies (ev): -4.9979 -2.1909 2.8166 4.7974 6.1110 9.4228 11.1823 12.2056 13.7195 k = 0.5615 0.0000-0.2393 band energies (ev): -4.4668 -1.9055 1.8777 3.5206 4.1508 9.7915 12.9809 14.3233 14.9470 k = 0.4211-0.2431-0.1436 band energies (ev): -4.9979 -2.1909 2.8166 4.7974 6.1110 9.4228 11.1823 12.2056 13.7195 k = 0.2808 0.0000-0.0479 band energies (ev): -6.5391 0.1864 4.7415 5.3205 6.7065 9.4333 10.2318 11.4778 13.4733 k = 0.2808 0.0000 0.2393 band energies (ev): -6.0977 -0.8473 3.9917 5.6764 8.0573 8.3115 9.0652 11.8923 13.9343 k = 0.1404-0.2431 0.3350 band energies (ev): -5.7270 -0.6133 2.9679 4.0547 5.3488 10.1972 11.9668 12.0566 13.7795 k = 0.5615 0.4863 0.0479 band energies (ev): -4.1473 -2.5618 1.8716 2.8668 6.2046 9.9283 12.5091 13.7268 14.0351 k = 0.4211 0.2431 0.1436 band energies (ev): -4.9979 -2.1909 2.8166 4.7974 6.1110 9.4228 11.1823 12.2056 13.7195 k = 0.0000 0.0000 0.4307 band energies (ev): -5.9253 -1.5414 5.7935 5.7935 7.0111 8.5074 8.5074 9.6306 15.7215 k = 0.4211 0.7294 0.1436 band energies (ev): -4.9132 -2.0597 2.1255 4.6368 5.9565 10.0724 10.3953 13.1985 15.2419 k = 0.2808 0.4863 0.2393 band energies (ev): -4.4668 -1.9055 1.8777 3.5206 4.1508 9.7915 12.9809 14.3233 14.9470 k = 0.8423 0.0000-0.1436 band energies (ev): -4.9132 -2.0597 2.1255 4.6368 5.9565 10.0724 10.3953 13.1985 15.2419 k = 0.7019-0.2431-0.0479 band energies (ev): -4.1473 -2.5618 1.8716 2.8668 6.2046 9.9283 12.5091 13.7268 14.0351 k = 0.5615 0.0000 0.0479 band energies (ev): -4.5707 -3.1922 4.5880 4.7563 6.2484 9.3175 9.6716 10.4270 15.6431 the Fermi energy is 8.1146 ev total energy = -25.49951489 Ry Harris-Foulkes estimate = -25.49951496 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 1.0 total cpu time spent up to now is 49.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.1436 ( 531 PWs) bands (ev): -7.1189 1.7750 5.6194 5.6194 6.5369 9.9853 10.5546 10.5546 14.5378 k =-0.1404-0.2431 0.2393 ( 522 PWs) bands (ev): -6.0981 -0.8476 3.9915 5.6758 8.0569 8.3114 9.0652 11.8920 13.9341 k = 0.2808 0.4863-0.0479 ( 520 PWs) bands (ev): -4.5711 -3.1925 4.5879 4.7558 6.2483 9.3172 9.6716 10.4269 15.6431 k = 0.1404 0.2431 0.0479 ( 525 PWs) bands (ev): -6.5395 0.1860 4.7410 5.3203 6.7063 9.4331 10.2314 11.4776 13.4733 k =-0.2808 0.0000 0.3350 ( 519 PWs) bands (ev): -5.7275 -0.6136 2.9675 4.0543 5.3488 10.1968 11.9664 12.0562 13.7796 k = 0.1404 0.7294 0.0479 ( 510 PWs) bands (ev): -4.1478 -2.5622 1.8714 2.8667 6.2045 9.9281 12.5088 13.7265 14.0350 k = 0.0000 0.4863 0.1436 ( 521 PWs) bands (ev): -4.9983 -2.1913 2.8163 4.7975 6.1107 9.4227 11.1819 12.2052 13.7194 k = 0.5615 0.0000-0.2393 ( 510 PWs) bands (ev): -4.4672 -1.9061 1.8778 3.5202 4.1507 9.7912 12.9806 14.3233 14.9466 k = 0.4211-0.2431-0.1436 ( 521 PWs) bands (ev): -4.9983 -2.1913 2.8163 4.7975 6.1107 9.4227 11.1819 12.2052 13.7194 k = 0.2808 0.0000-0.0479 ( 525 PWs) bands (ev): -6.5395 0.1860 4.7410 5.3203 6.7063 9.4331 10.2314 11.4776 13.4733 k = 0.2808 0.0000 0.2393 ( 522 PWs) bands (ev): -6.0981 -0.8476 3.9915 5.6758 8.0569 8.3114 9.0652 11.8920 13.9341 k = 0.1404-0.2431 0.3350 ( 519 PWs) bands (ev): -5.7275 -0.6136 2.9675 4.0543 5.3488 10.1968 11.9664 12.0562 13.7796 k = 0.5615 0.4863 0.0479 ( 510 PWs) bands (ev): -4.1478 -2.5622 1.8714 2.8667 6.2045 9.9281 12.5088 13.7265 14.0350 k = 0.4211 0.2431 0.1436 ( 521 PWs) bands (ev): -4.9983 -2.1913 2.8163 4.7975 6.1107 9.4227 11.1819 12.2052 13.7194 k = 0.0000 0.0000 0.4307 ( 522 PWs) bands (ev): -5.9258 -1.5414 5.7930 5.7930 7.0104 8.5072 8.5072 9.6308 15.7213 k = 0.4211 0.7294 0.1436 ( 520 PWs) bands (ev): -4.9138 -2.0597 2.1252 4.6363 5.9564 10.0722 10.3949 13.1981 15.2419 k = 0.2808 0.4863 0.2393 ( 510 PWs) bands (ev): -4.4672 -1.9061 1.8778 3.5202 4.1507 9.7912 12.9806 14.3233 14.9466 k = 0.8423 0.0000-0.1436 ( 520 PWs) bands (ev): -4.9138 -2.0597 2.1252 4.6363 5.9564 10.0722 10.3949 13.1981 15.2419 k = 0.7019-0.2431-0.0479 ( 510 PWs) bands (ev): -4.1478 -2.5622 1.8714 2.8667 6.2045 9.9281 12.5088 13.7265 14.0350 k = 0.5615 0.0000 0.0479 ( 520 PWs) bands (ev): -4.5711 -3.1925 4.5879 4.7558 6.2483 9.3172 9.6716 10.4269 15.6431 the Fermi energy is 8.1142 ev ! total energy = -25.49951489 Ry Harris-Foulkes estimate = -25.49951490 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00061380 atom 2 type 1 force = -0.00000002 0.00000000 0.00061380 Total force = 0.000868 Total SCF correction = 0.000105 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.72 0.00000442 0.00000000 0.00000000 0.65 0.00 0.00 0.00000000 0.00000442 0.00000000 0.00 0.65 0.00 0.00000000 0.00000000 0.00000575 0.00 0.00 0.85 Entering Dynamics; it = 21 time = 0.14520 pico-seconds new lattice vectors (alat unit) : 0.593677832 0.000000000 0.871245160 -0.296838771 0.514140063 0.871245258 -0.296838771 -0.514140063 0.871245258 new unit-cell volume = 274.8593 (a.u.)^3 new positions in cryst coord As 0.272310200 0.272310184 0.272310184 As -0.272310200 -0.272310184 -0.272310184 new positions in cart coord (alat unit) As 0.000000088 0.000000000 0.711746856 As -0.000000088 0.000000000 -0.711746856 Ekin = 0.00000718 Ry T = 266.4 K Etot = -25.49950771 CELL_PARAMETERS (alat) 0.593677832 0.000000000 0.871245160 -0.296838771 0.514140063 0.871245258 -0.296838771 -0.514140063 0.871245258 ATOMIC_POSITIONS (crystal) As 0.272310200 0.272310184 0.272310184 As -0.272310200 -0.272310184 -0.272310184 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434728), wk = 0.0625000 k( 2) = ( -0.1403679 -0.2431244 0.2391214), wk = 0.1250000 k( 3) = ( 0.2807359 0.4862488 -0.0478243), wk = 0.1250000 k( 4) = ( 0.1403680 0.2431244 0.0478243), wk = 0.1250000 k( 5) = ( -0.2807359 0.0000000 0.3347699), wk = 0.0625000 k( 6) = ( 0.1403680 0.7293732 0.0478243), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862488 0.1434728), wk = 0.1250000 k( 8) = ( 0.5614718 0.0000000 -0.2391214), wk = 0.0625000 k( 9) = ( 0.4211039 -0.2431244 -0.1434729), wk = 0.1250000 k( 10) = ( 0.2807359 0.0000000 -0.0478243), wk = 0.0625000 k( 11) = ( 0.2807359 0.0000000 0.2391213), wk = 0.0625000 k( 12) = ( 0.1403680 -0.2431244 0.3347699), wk = 0.1250000 k( 13) = ( 0.5614719 0.4862488 0.0478242), wk = 0.1250000 k( 14) = ( 0.4211039 0.2431244 0.1434728), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304184), wk = 0.0625000 k( 16) = ( 0.4211039 0.7293732 0.1434728), wk = 0.1250000 k( 17) = ( 0.2807359 0.4862488 0.2391213), wk = 0.1250000 k( 18) = ( 0.8422078 0.0000000 -0.1434729), wk = 0.0625000 k( 19) = ( 0.7018398 -0.2431244 -0.0478243), wk = 0.1250000 k( 20) = ( 0.5614719 0.0000000 0.0478242), wk = 0.0625000 extrapolated charge 10.00827, renormalised to 10.00000 total cpu time spent up to now is 49.73 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.63E-09, avg # of iterations = 3.1 total cpu time spent up to now is 50.47 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1230 1.7592 5.6139 5.6139 6.5223 9.9744 10.5425 10.5425 14.5265 k =-0.1404-0.2431 0.2391 band energies (ev): -6.1029 -0.8565 3.9799 5.6693 8.0468 8.2977 9.0534 11.8752 13.9230 k = 0.2807 0.4862-0.0478 band energies (ev): -4.5761 -3.1991 4.5751 4.7495 6.2373 9.3036 9.6580 10.4058 15.6204 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5436 0.1765 4.7355 5.3071 6.6930 9.4161 10.2198 11.4619 13.4571 k =-0.2807 0.0000 0.3348 band energies (ev): -5.7329 -0.6252 2.9602 4.0499 5.3377 10.1879 11.9535 12.0437 13.7647 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1542 -2.5692 1.8651 2.8570 6.1926 9.9163 12.4980 13.7099 14.0170 k = 0.0000 0.4862 0.1435 band energies (ev): -5.0032 -2.1984 2.8094 4.7865 6.0968 9.4055 11.1668 12.1929 13.7053 k = 0.5615 0.0000-0.2391 band energies (ev): -4.4731 -1.9140 1.8685 3.5157 4.1393 9.7802 12.9635 14.3048 14.9263 k = 0.4211-0.2431-0.1435 band energies (ev): -5.0032 -2.1984 2.8094 4.7865 6.0968 9.4055 11.1668 12.1929 13.7053 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5436 0.1765 4.7355 5.3071 6.6930 9.4161 10.2198 11.4619 13.4571 k = 0.2807 0.0000 0.2391 band energies (ev): -6.1029 -0.8565 3.9799 5.6693 8.0468 8.2977 9.0534 11.8752 13.9230 k = 0.1404-0.2431 0.3348 band energies (ev): -5.7329 -0.6252 2.9602 4.0499 5.3377 10.1879 11.9535 12.0437 13.7647 k = 0.5615 0.4862 0.0478 band energies (ev): -4.1542 -2.5692 1.8651 2.8570 6.1926 9.9163 12.4980 13.7099 14.0170 k = 0.4211 0.2431 0.1435 band energies (ev): -5.0032 -2.1984 2.8094 4.7865 6.0968 9.4055 11.1668 12.1929 13.7053 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9318 -1.5536 5.7881 5.7881 7.0033 8.4984 8.4984 9.6188 15.7041 k = 0.4211 0.7294 0.1435 band energies (ev): -4.9205 -2.0700 2.1195 4.6312 5.9473 10.0616 10.3843 13.1858 15.2245 k = 0.2807 0.4862 0.2391 band energies (ev): -4.4731 -1.9140 1.8685 3.5157 4.1393 9.7802 12.9635 14.3048 14.9263 k = 0.8422 0.0000-0.1435 band energies (ev): -4.9205 -2.0700 2.1195 4.6312 5.9473 10.0616 10.3843 13.1858 15.2245 k = 0.7018-0.2431-0.0478 band energies (ev): -4.1542 -2.5692 1.8651 2.8570 6.1926 9.9163 12.4980 13.7099 14.0170 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5761 -3.1991 4.5751 4.7495 6.2373 9.3036 9.6580 10.4058 15.6204 the Fermi energy is 8.1041 ev total energy = -25.49951556 Ry Harris-Foulkes estimate = -25.50434406 Ry estimated scf accuracy < 0.00000020 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-09, avg # of iterations = 3.0 total cpu time spent up to now is 50.92 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1241 1.7572 5.6124 5.6124 6.5216 9.9736 10.5421 10.5421 14.5295 k =-0.1404-0.2431 0.2391 band energies (ev): -6.1042 -0.8582 3.9802 5.6676 8.0468 8.2972 9.0540 11.8745 13.9255 k = 0.2807 0.4862-0.0478 band energies (ev): -4.5777 -3.2003 4.5756 4.7484 6.2377 9.3034 9.6585 10.4061 15.6236 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5447 0.1743 4.7345 5.3069 6.6927 9.4161 10.2197 11.4615 13.4602 k =-0.2807 0.0000 0.3348 band energies (ev): -5.7344 -0.6269 2.9602 4.0493 5.3388 10.1889 11.9518 12.0426 13.7663 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1562 -2.5709 1.8660 2.8579 6.1924 9.9157 12.4992 13.7087 14.0173 k = 0.0000 0.4862 0.1435 band energies (ev): -5.0045 -2.2003 2.8095 4.7875 6.0962 9.4062 11.1658 12.1924 13.7074 k = 0.5615 0.0000-0.2391 band energies (ev): -4.4749 -1.9161 1.8700 3.5153 4.1400 9.7821 12.9623 14.3054 14.9242 k = 0.4211-0.2431-0.1435 band energies (ev): -5.0045 -2.2003 2.8095 4.7875 6.0962 9.4062 11.1658 12.1924 13.7074 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5447 0.1743 4.7345 5.3069 6.6927 9.4161 10.2197 11.4615 13.4602 k = 0.2807 0.0000 0.2391 band energies (ev): -6.1042 -0.8582 3.9802 5.6676 8.0468 8.2972 9.0540 11.8745 13.9255 k = 0.1404-0.2431 0.3348 band energies (ev): -5.7344 -0.6269 2.9602 4.0493 5.3388 10.1889 11.9518 12.0426 13.7663 k = 0.5615 0.4862 0.0478 band energies (ev): -4.1562 -2.5709 1.8660 2.8579 6.1924 9.9157 12.4992 13.7087 14.0173 k = 0.4211 0.2431 0.1435 band energies (ev): -5.0045 -2.2003 2.8095 4.7875 6.0962 9.4062 11.1658 12.1924 13.7074 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9334 -1.5537 5.7866 5.7866 7.0023 8.4987 8.4987 9.6193 15.7070 k = 0.4211 0.7294 0.1435 band energies (ev): -4.9226 -2.0704 2.1200 4.6304 5.9480 10.0610 10.3830 13.1844 15.2276 k = 0.2807 0.4862 0.2391 band energies (ev): -4.4749 -1.9161 1.8700 3.5153 4.1400 9.7821 12.9623 14.3054 14.9242 k = 0.8422 0.0000-0.1435 band energies (ev): -4.9226 -2.0704 2.1200 4.6304 5.9480 10.0610 10.3830 13.1844 15.2276 k = 0.7018-0.2431-0.0478 band energies (ev): -4.1562 -2.5709 1.8660 2.8579 6.1924 9.9157 12.4992 13.7087 14.0173 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5777 -3.2003 4.5756 4.7484 6.2377 9.3034 9.6585 10.4061 15.6236 the Fermi energy is 8.2398 ev total energy = -25.49951601 Ry Harris-Foulkes estimate = -25.49951610 Ry estimated scf accuracy < 0.00000023 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-09, avg # of iterations = 1.0 total cpu time spent up to now is 51.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1236 1.7576 5.6129 5.6129 6.5219 9.9741 10.5425 10.5425 14.5294 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1037 -0.8577 3.9804 5.6682 8.0472 8.2974 9.0541 11.8749 13.9257 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5772 -3.1998 4.5758 4.7490 6.2379 9.3037 9.6586 10.4063 15.6236 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5442 0.1748 4.7350 5.3072 6.6929 9.4163 10.2202 11.4618 13.4602 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7339 -0.6265 2.9606 4.0497 5.3388 10.1893 11.9524 12.0430 13.7663 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1556 -2.5704 1.8662 2.8581 6.1926 9.9161 12.4995 13.7092 14.0176 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0040 -2.1998 2.8099 4.7876 6.0965 9.4063 11.1662 12.1928 13.7076 k = 0.5615 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4744 -1.9155 1.8700 3.5157 4.1402 9.7824 12.9627 14.3056 14.9247 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0040 -2.1998 2.8099 4.7876 6.0965 9.4063 11.1662 12.1928 13.7076 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5442 0.1748 4.7350 5.3072 6.6929 9.4163 10.2202 11.4618 13.4602 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1037 -0.8577 3.9804 5.6682 8.0472 8.2974 9.0541 11.8749 13.9257 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7339 -0.6265 2.9606 4.0497 5.3388 10.1893 11.9523 12.0430 13.7663 k = 0.5615 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1556 -2.5704 1.8662 2.8581 6.1926 9.9161 12.4995 13.7092 14.0176 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0040 -2.1998 2.8099 4.7876 6.0965 9.4063 11.1662 12.1928 13.7076 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9328 -1.5536 5.7871 5.7871 7.0030 8.4989 8.4989 9.6193 15.7072 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0703 2.1204 4.6309 5.9482 10.0613 10.3834 13.1849 15.2276 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4744 -1.9155 1.8700 3.5157 4.1402 9.7824 12.9627 14.3056 14.9247 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0703 2.1204 4.6309 5.9482 10.0613 10.3834 13.1849 15.2276 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1556 -2.5704 1.8662 2.8581 6.1926 9.9161 12.4995 13.7092 14.0176 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5772 -3.1998 4.5758 4.7490 6.2379 9.3037 9.6586 10.4063 15.6236 the Fermi energy is 8.2400 ev ! total energy = -25.49951599 Ry Harris-Foulkes estimate = -25.49951602 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 -0.00026879 atom 2 type 1 force = 0.00000002 0.00000000 0.00026879 Total force = 0.000380 Total SCF correction = 0.000141 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.21 0.00000172 0.00000000 0.00000000 0.25 0.00 0.00 0.00000000 0.00000172 0.00000000 0.00 0.25 0.00 0.00000000 0.00000000 0.00000078 0.00 0.00 0.12 Entering Dynamics; it = 22 time = 0.15246 pico-seconds new lattice vectors (alat unit) : 0.593725020 0.000000000 0.871254012 -0.296862363 0.514180926 0.871254112 -0.296862363 -0.514180926 0.871254112 new unit-cell volume = 274.9058 (a.u.)^3 new positions in cryst coord As 0.272278564 0.272278544 0.272278544 As -0.272278564 -0.272278544 -0.272278544 new positions in cart coord (alat unit) As 0.000000092 0.000000000 0.711671393 As -0.000000092 0.000000000 -0.711671393 Ekin = 0.00000105 Ry T = 253.7 K Etot = -25.49951494 CELL_PARAMETERS (alat) 0.593725020 0.000000000 0.871254012 -0.296862363 0.514180926 0.871254112 -0.296862363 -0.514180926 0.871254112 ATOMIC_POSITIONS (crystal) As 0.272278564 0.272278544 0.272278544 As -0.272278564 -0.272278544 -0.272278544 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434714), wk = 0.0625000 k( 2) = ( -0.1403568 -0.2431051 0.2391189), wk = 0.1250000 k( 3) = ( 0.2807136 0.4862102 -0.0478238), wk = 0.1250000 k( 4) = ( 0.1403568 0.2431051 0.0478238), wk = 0.1250000 k( 5) = ( -0.2807136 0.0000000 0.3347665), wk = 0.0625000 k( 6) = ( 0.1403568 0.7293153 0.0478238), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862102 0.1434714), wk = 0.1250000 k( 8) = ( 0.5614272 0.0000000 -0.2391190), wk = 0.0625000 k( 9) = ( 0.4210704 -0.2431051 -0.1434714), wk = 0.1250000 k( 10) = ( 0.2807136 0.0000000 -0.0478238), wk = 0.0625000 k( 11) = ( 0.2807136 0.0000000 0.2391189), wk = 0.0625000 k( 12) = ( 0.1403568 -0.2431051 0.3347665), wk = 0.1250000 k( 13) = ( 0.5614272 0.4862102 0.0478237), wk = 0.1250000 k( 14) = ( 0.4210704 0.2431051 0.1434713), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304141), wk = 0.0625000 k( 16) = ( 0.4210704 0.7293153 0.1434713), wk = 0.1250000 k( 17) = ( 0.2807136 0.4862102 0.2391189), wk = 0.1250000 k( 18) = ( 0.8421408 0.0000000 -0.1434714), wk = 0.0625000 k( 19) = ( 0.7017840 -0.2431051 -0.0478239), wk = 0.1250000 k( 20) = ( 0.5614272 0.0000000 0.0478237), wk = 0.0625000 extrapolated charge 10.00169, renormalised to 10.00000 total cpu time spent up to now is 51.51 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.84E-10, avg # of iterations = 3.6 total cpu time spent up to now is 52.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1227 1.7550 5.6130 5.6130 6.5196 9.9747 10.5411 10.5411 14.5255 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1028 -0.8591 3.9798 5.6698 8.0453 8.2948 9.0494 11.8722 13.9238 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5764 -3.2003 4.5746 4.7500 6.2355 9.3023 9.6542 10.4028 15.6204 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5435 0.1739 4.7352 5.3056 6.6918 9.4122 10.2206 11.4587 13.4560 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7327 -0.6284 2.9612 4.0495 5.3351 10.1895 11.9500 12.0408 13.7607 k = 0.1404 0.7293 0.0478 ( 510 PWs) bands (ev): -4.1545 -2.5709 1.8655 2.8567 6.1909 9.9131 12.4981 13.7074 14.0139 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0035 -2.1999 2.8104 4.7847 6.0960 9.4022 11.1635 12.1917 13.7047 k = 0.5614 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4738 -1.9148 1.8673 3.5157 4.1378 9.7827 12.9595 14.3000 14.9213 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0035 -2.1999 2.8104 4.7847 6.0960 9.4022 11.1635 12.1917 13.7047 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5435 0.1739 4.7352 5.3056 6.6918 9.4122 10.2206 11.4587 13.4560 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1028 -0.8591 3.9798 5.6698 8.0453 8.2948 9.0494 11.8722 13.9238 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7327 -0.6284 2.9612 4.0495 5.3351 10.1895 11.9500 12.0408 13.7607 k = 0.5614 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1545 -2.5709 1.8655 2.8567 6.1909 9.9131 12.4981 13.7074 14.0139 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0035 -2.1999 2.8104 4.7847 6.0960 9.4022 11.1635 12.1917 13.7047 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9311 -1.5566 5.7877 5.7877 7.0024 8.4960 8.4960 9.6150 15.7046 k = 0.4211 0.7293 0.1435 ( 520 PWs) bands (ev): -4.9198 -2.0733 2.1204 4.6312 5.9453 10.0582 10.3820 13.1834 15.2237 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4738 -1.9148 1.8673 3.5157 4.1378 9.7827 12.9595 14.3000 14.9213 k = 0.8421 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9198 -2.0733 2.1204 4.6312 5.9453 10.0582 10.3820 13.1834 15.2237 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1545 -2.5709 1.8655 2.8567 6.1909 9.9131 12.4981 13.7074 14.0139 k = 0.5614 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5764 -3.2003 4.5746 4.7500 6.2355 9.3023 9.6542 10.4028 15.6204 the Fermi energy is 8.2374 ev ! total energy = -25.49951614 Ry Harris-Foulkes estimate = -25.50050348 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 -0.00006639 atom 2 type 1 force = 0.00000002 0.00000000 0.00006639 Total force = 0.000094 Total SCF correction = 0.000210 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.55 -0.00000305 0.00000000 0.00000000 -0.45 0.00 0.00 0.00000000 -0.00000305 0.00000000 0.00 -0.45 0.00 0.00000000 0.00000000 -0.00000511 0.00 0.00 -0.75 Entering Dynamics; it = 23 time = 0.15972 pico-seconds new lattice vectors (alat unit) : 0.593694833 0.000000000 0.871246351 -0.296847273 0.514154781 0.871246449 -0.296847273 -0.514154781 0.871246449 new unit-cell volume = 274.8754 (a.u.)^3 new positions in cryst coord As 0.272245733 0.272245710 0.272245710 As -0.272245733 -0.272245710 -0.272245710 new positions in cart coord (alat unit) As 0.000000092 0.000000000 0.711579317 As -0.000000092 0.000000000 -0.711579317 Ekin = 0.00000121 Ry T = 242.2 K Etot = -25.49951493 CELL_PARAMETERS (alat) 0.593694833 0.000000000 0.871246351 -0.296847273 0.514154781 0.871246449 -0.296847273 -0.514154781 0.871246449 ATOMIC_POSITIONS (crystal) As 0.272245733 0.272245710 0.272245710 As -0.272245733 -0.272245710 -0.272245710 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434726), wk = 0.0625000 k( 2) = ( -0.1403639 -0.2431175 0.2391210), wk = 0.1250000 k( 3) = ( 0.2807279 0.4862349 -0.0478242), wk = 0.1250000 k( 4) = ( 0.1403639 0.2431175 0.0478242), wk = 0.1250000 k( 5) = ( -0.2807278 0.0000000 0.3347695), wk = 0.0625000 k( 6) = ( 0.1403639 0.7293524 0.0478242), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862349 0.1434726), wk = 0.1250000 k( 8) = ( 0.5614557 0.0000000 -0.2391211), wk = 0.0625000 k( 9) = ( 0.4210918 -0.2431175 -0.1434727), wk = 0.1250000 k( 10) = ( 0.2807279 0.0000000 -0.0478242), wk = 0.0625000 k( 11) = ( 0.2807279 0.0000000 0.2391210), wk = 0.0625000 k( 12) = ( 0.1403640 -0.2431175 0.3347694), wk = 0.1250000 k( 13) = ( 0.5614558 0.4862349 0.0478241), wk = 0.1250000 k( 14) = ( 0.4210918 0.2431175 0.1434726), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304178), wk = 0.0625000 k( 16) = ( 0.4210918 0.7293524 0.1434726), wk = 0.1250000 k( 17) = ( 0.2807279 0.4862349 0.2391210), wk = 0.1250000 k( 18) = ( 0.8421836 0.0000000 -0.1434727), wk = 0.0625000 k( 19) = ( 0.7018197 -0.2431175 -0.0478243), wk = 0.1250000 k( 20) = ( 0.5614558 0.0000000 0.0478241), wk = 0.0625000 extrapolated charge 9.99890, renormalised to 10.00000 total cpu time spent up to now is 52.52 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 3.1 total cpu time spent up to now is 53.21 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1222 1.7548 5.6147 5.6147 6.5198 9.9780 10.5427 10.5427 14.5271 k =-0.1404-0.2431 0.2391 band energies (ev): -6.1021 -0.8589 3.9808 5.6724 8.0471 8.2958 9.0488 11.8729 13.9271 k = 0.2807 0.4862-0.0478 band energies (ev): -4.5755 -3.1999 4.5755 4.7523 6.2365 9.3043 9.6536 10.4023 15.6217 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5430 0.1746 4.7370 5.3060 6.6930 9.4116 10.2239 11.4590 13.4571 k =-0.2807 0.0000 0.3348 band energies (ev): -5.7320 -0.6286 2.9630 4.0512 5.3349 10.1933 11.9513 12.0420 13.7608 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1535 -2.5705 1.8667 2.8574 6.1916 9.9138 12.5011 13.7090 14.0143 k = 0.0000 0.4862 0.1435 band energies (ev): -5.0028 -2.1992 2.8122 4.7850 6.0972 9.4015 11.1643 12.1941 13.7068 k = 0.5615 0.0000-0.2391 band energies (ev): -4.4731 -1.9137 1.8673 3.5173 4.1379 9.7865 12.9596 14.2994 14.9214 k = 0.4211-0.2431-0.1435 band energies (ev): -5.0028 -2.1992 2.8122 4.7850 6.0972 9.4015 11.1643 12.1941 13.7068 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5430 0.1746 4.7370 5.3060 6.6930 9.4116 10.2239 11.4590 13.4571 k = 0.2807 0.0000 0.2391 band energies (ev): -6.1021 -0.8589 3.9808 5.6724 8.0471 8.2958 9.0488 11.8729 13.9271 k = 0.1404-0.2431 0.3348 band energies (ev): -5.7320 -0.6286 2.9630 4.0512 5.3349 10.1933 11.9513 12.0420 13.7608 k = 0.5615 0.4862 0.0478 band energies (ev): -4.1535 -2.5705 1.8667 2.8574 6.1916 9.9138 12.5011 13.7090 14.0143 k = 0.4211 0.2431 0.1435 band energies (ev): -5.0028 -2.1992 2.8122 4.7850 6.0972 9.4015 11.1643 12.1941 13.7068 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9301 -1.5577 5.7899 5.7899 7.0053 8.4967 8.4967 9.6162 15.7074 k = 0.4211 0.7294 0.1435 band energies (ev): -4.9185 -2.0743 2.1220 4.6331 5.9462 10.0586 10.3844 13.1856 15.2252 k = 0.2807 0.4862 0.2391 band energies (ev): -4.4731 -1.9137 1.8673 3.5173 4.1379 9.7865 12.9596 14.2994 14.9214 k = 0.8422 0.0000-0.1435 band energies (ev): -4.9185 -2.0743 2.1220 4.6331 5.9462 10.0586 10.3844 13.1856 15.2252 k = 0.7018-0.2431-0.0478 band energies (ev): -4.1535 -2.5705 1.8667 2.8574 6.1916 9.9138 12.5011 13.7090 14.0143 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5755 -3.1999 4.5755 4.7523 6.2365 9.3043 9.6536 10.4023 15.6217 the Fermi energy is 8.2385 ev total energy = -25.49951615 Ry Harris-Foulkes estimate = -25.49887099 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 53.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1216 1.7552 5.6154 5.6154 6.5201 9.9787 10.5432 10.5432 14.5267 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1014 -0.8584 3.9809 5.6734 8.0475 8.2959 9.0486 11.8733 13.9270 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5747 -3.1993 4.5755 4.7530 6.2366 9.3047 9.6534 10.4024 15.6213 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5424 0.1754 4.7376 5.3062 6.6932 9.4117 10.2245 11.4592 13.4566 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7312 -0.6282 2.9635 4.0517 5.3345 10.1937 11.9520 12.0425 13.7604 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1526 -2.5699 1.8668 2.8573 6.1918 9.9142 12.5013 13.7096 14.0144 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0022 -2.1985 2.8127 4.7847 6.0975 9.4014 11.1648 12.1946 13.7066 k = 0.5615 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4723 -1.9127 1.8670 3.5178 4.1378 9.7866 12.9599 14.2993 14.9220 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0022 -2.1985 2.8127 4.7847 6.0975 9.4014 11.1648 12.1946 13.7066 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5424 0.1754 4.7376 5.3062 6.6932 9.4117 10.2245 11.4592 13.4566 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1014 -0.8584 3.9809 5.6734 8.0475 8.2959 9.0486 11.8733 13.9270 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7312 -0.6282 2.9635 4.0517 5.3345 10.1937 11.9520 12.0425 13.7604 k = 0.5615 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1526 -2.5699 1.8668 2.8573 6.1918 9.9142 12.5013 13.7096 14.0144 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0022 -2.1985 2.8127 4.7847 6.0975 9.4014 11.1648 12.1946 13.7066 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9292 -1.5578 5.7907 5.7907 7.0063 8.4968 8.4968 9.6158 15.7072 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9174 -2.0744 2.1223 4.6337 5.9461 10.0588 10.3850 13.1863 15.2248 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4723 -1.9127 1.8670 3.5178 4.1378 9.7866 12.9599 14.2993 14.9220 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9174 -2.0744 2.1223 4.6337 5.9461 10.0588 10.3850 13.1863 15.2248 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1526 -2.5699 1.8668 2.8573 6.1918 9.9142 12.5013 13.7096 14.0144 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5747 -3.1993 4.5755 4.7530 6.2366 9.3047 9.6534 10.4024 15.6213 the Fermi energy is 8.2385 ev ! total energy = -25.49951619 Ry Harris-Foulkes estimate = -25.49951621 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 0.00010236 atom 2 type 1 force = 0.00000002 0.00000000 -0.00010236 Total force = 0.000145 Total SCF correction = 0.000169 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.32 -0.00000141 0.00000000 0.00000000 -0.21 0.00 0.00 0.00000000 -0.00000141 0.00000000 0.00 -0.21 0.00 0.00000000 0.00000000 -0.00000374 0.00 0.00 -0.55 Entering Dynamics; it = 24 time = 0.16698 pico-seconds new lattice vectors (alat unit) : 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 new unit-cell volume = 274.8523 (a.u.)^3 new positions in cryst coord As 0.272265630 0.272265624 0.272265624 As -0.272265630 -0.272265624 -0.272265624 new positions in cart coord (alat unit) As 0.000000081 0.000000000 0.711597258 As -0.000000081 0.000000000 -0.711597258 Ekin = 0.00000107 Ry T = 231.7 K Etot = -25.49951512 CELL_PARAMETERS (alat) 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 ATOMIC_POSITIONS (crystal) As 0.272265630 0.272265624 0.272265624 As -0.272265630 -0.272265624 -0.272265624 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434795), wk = 0.0625000 k( 2) = ( -0.1403664 -0.2431218 0.2391325), wk = 0.1250000 k( 3) = ( 0.2807329 0.4862437 -0.0478265), wk = 0.1250000 k( 4) = ( 0.1403665 0.2431218 0.0478265), wk = 0.1250000 k( 5) = ( -0.2807329 0.0000000 0.3347855), wk = 0.0625000 k( 6) = ( 0.1403665 0.7293655 0.0478265), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862437 0.1434795), wk = 0.1250000 k( 8) = ( 0.5614659 0.0000000 -0.2391325), wk = 0.0625000 k( 9) = ( 0.4210994 -0.2431218 -0.1434795), wk = 0.1250000 k( 10) = ( 0.2807329 0.0000000 -0.0478265), wk = 0.0625000 k( 11) = ( 0.2807330 0.0000000 0.2391324), wk = 0.0625000 k( 12) = ( 0.1403665 -0.2431218 0.3347855), wk = 0.1250000 k( 13) = ( 0.5614659 0.4862437 0.0478264), wk = 0.1250000 k( 14) = ( 0.4210994 0.2431218 0.1434794), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304385), wk = 0.0625000 k( 16) = ( 0.4210994 0.7293655 0.1434794), wk = 0.1250000 k( 17) = ( 0.2807330 0.4862437 0.2391324), wk = 0.1250000 k( 18) = ( 0.8421988 0.0000000 -0.1434796), wk = 0.0625000 k( 19) = ( 0.7018324 -0.2431218 -0.0478266), wk = 0.1250000 k( 20) = ( 0.5614659 0.0000000 0.0478264), wk = 0.0625000 extrapolated charge 9.99916, renormalised to 10.00000 total cpu time spent up to now is 53.88 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.52E-10, avg # of iterations = 4.0 total cpu time spent up to now is 54.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1220 1.7571 5.6150 5.6150 6.5217 9.9781 10.5438 10.5438 14.5286 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1019 -0.8575 3.9816 5.6721 8.0482 8.2975 9.0513 11.8749 13.9276 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5753 -3.1991 4.5765 4.7521 6.2379 9.3054 9.6561 10.4051 15.6237 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5428 0.1758 4.7372 5.3075 6.6941 9.4144 10.2240 11.4612 13.4590 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7318 -0.6269 2.9631 4.0514 5.3368 10.1930 11.9530 12.0435 13.7635 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1532 -2.5696 1.8671 2.8583 6.1930 9.9156 12.5016 13.7106 14.0167 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0025 -2.1985 2.8123 4.7865 6.0982 9.4042 11.1663 12.1950 13.7080 k = 0.5615 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4726 -1.9132 1.8687 3.5175 4.1394 9.7862 12.9620 14.3026 14.9242 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0025 -2.1985 2.8123 4.7865 6.0982 9.4042 11.1663 12.1950 13.7080 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5428 0.1758 4.7372 5.3075 6.6941 9.4144 10.2240 11.4612 13.4590 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1019 -0.8575 3.9816 5.6721 8.0482 8.2975 9.0513 11.8749 13.9276 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7318 -0.6269 2.9631 4.0514 5.3368 10.1930 11.9530 12.0435 13.7635 k = 0.5615 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1532 -2.5696 1.8671 2.8583 6.1930 9.9156 12.5016 13.7106 14.0167 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0025 -2.1985 2.8123 4.7865 6.0982 9.4042 11.1663 12.1950 13.7080 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9301 -1.5555 5.7899 5.7899 7.0057 8.4982 8.4982 9.6181 15.7086 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9186 -2.0723 2.1221 4.6332 5.9476 10.0604 10.3853 13.1868 15.2270 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4726 -1.9132 1.8687 3.5175 4.1394 9.7862 12.9620 14.3026 14.9242 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9186 -2.0723 2.1221 4.6332 5.9476 10.0604 10.3853 13.1868 15.2270 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1532 -2.5696 1.8671 2.8583 6.1930 9.9156 12.5016 13.7106 14.0167 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5753 -3.1991 4.5765 4.7521 6.2379 9.3054 9.6561 10.4051 15.6237 the Fermi energy is 8.2401 ev ! total energy = -25.49951625 Ry Harris-Foulkes estimate = -25.49902573 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 -0.00003029 atom 2 type 1 force = 0.00000001 0.00000000 0.00003029 Total force = 0.000043 Total SCF correction = 0.000183 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.04 0.00000053 0.00000000 0.00000000 0.08 0.00 0.00 0.00000000 0.00000053 0.00000000 0.00 0.08 0.00 0.00000000 0.00000000 -0.00000026 0.00 0.00 -0.04 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.49951625 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 final unit-cell volume = 274.8523 (a.u.)^3 input alat = 7.0103 (a.u.) CELL_PARAMETERS (alat) 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 ATOMIC_POSITIONS (crystal) As 0.272265630 0.272265624 0.272265624 As -0.272265630 -0.272265624 -0.272265624 Writing output data file pwscf.save PWSCF : 0m54.81s CPU time, 1m 5.76s wall time init_run : 0.21s CPU electrons : 47.59s CPU ( 25 calls, 1.904 s avg) update_pot : 2.09s CPU ( 24 calls, 0.087 s avg) forces : 0.99s CPU ( 25 calls, 0.040 s avg) stress : 2.57s CPU ( 25 calls, 0.103 s avg) Called by init_run: wfcinit : 0.11s CPU potinit : 0.03s CPU Called by electrons: c_bands : 40.34s CPU ( 121 calls, 0.333 s avg) sum_band : 6.70s CPU ( 121 calls, 0.055 s avg) v_of_rho : 0.28s CPU ( 135 calls, 0.002 s avg) mix_rho : 0.12s CPU ( 121 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.87s CPU ( 5860 calls, 0.000 s avg) cegterg : 39.62s CPU ( 2420 calls, 0.016 s avg) Called by *egterg: h_psi : 33.11s CPU ( 7813 calls, 0.004 s avg) g_psi : 0.78s CPU ( 5373 calls, 0.000 s avg) cdiaghg : 1.95s CPU ( 7093 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.50s CPU ( 7813 calls, 0.000 s avg) General routines calbec : 0.93s CPU ( 8813 calls, 0.000 s avg) cft3 : 0.23s CPU ( 565 calls, 0.000 s avg) cft3s : 33.24s CPU ( 136840 calls, 0.000 s avg) davcio : 0.07s CPU ( 8280 calls, 0.000 s avg) espresso-5.0.2/PW/examples/VCSexample/reference/As.bfgs500.out0000644000700200004540000034400712053145630022741 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 4:20 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.24 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.10 secs total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.41 secs total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.74 secs total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.18 secs total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810616 Ry hartree contribution = 1.22165533 Ry xc contribution = -6.50439941 Ry ewald contribution = -27.88552965 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -24.6061247590 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.542580008 0.000000000 0.738666394 -0.271289902 0.469888589 0.738666448 -0.271289902 -0.469888589 0.738666448 ATOMIC_POSITIONS (crystal) As 0.278372774 0.278373036 0.278373036 As -0.278372774 -0.278373036 -0.278373036 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1692239), wk = 0.0625000 k( 2) = ( -0.1535872 -0.2660205 0.2820398), wk = 0.1250000 k( 3) = ( 0.3071744 0.5320410 -0.0564080), wk = 0.1250000 k( 4) = ( 0.1535872 0.2660205 0.0564079), wk = 0.1250000 k( 5) = ( -0.3071744 0.0000000 0.3948558), wk = 0.0625000 k( 6) = ( 0.1535872 0.7980615 0.0564079), wk = 0.1250000 k( 7) = ( 0.0000000 0.5320410 0.1692239), wk = 0.1250000 k( 8) = ( 0.6143488 0.0000000 -0.2820399), wk = 0.0625000 k( 9) = ( 0.4607616 -0.2660205 -0.1692239), wk = 0.1250000 k( 10) = ( 0.3071744 0.0000000 -0.0564080), wk = 0.0625000 k( 11) = ( 0.3071744 0.0000000 0.2820398), wk = 0.0625000 k( 12) = ( 0.1535872 -0.2660205 0.3948557), wk = 0.1250000 k( 13) = ( 0.6143488 0.5320410 0.0564079), wk = 0.1250000 k( 14) = ( 0.4607616 0.2660205 0.1692238), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.5076716), wk = 0.0625000 k( 16) = ( 0.4607616 0.7980615 0.1692238), wk = 0.1250000 k( 17) = ( 0.3071744 0.5320410 0.2820398), wk = 0.1250000 k( 18) = ( 0.9215232 0.0000000 -0.1692240), wk = 0.0625000 k( 19) = ( 0.7679360 -0.2660205 -0.0564080), wk = 0.1250000 k( 20) = ( 0.6143488 0.0000000 0.0564079), wk = 0.0625000 extrapolated charge 7.39410, renormalised to 10.00000 total cpu time spent up to now is 2.78 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.8 total cpu time spent up to now is 3.58 secs total energy = -25.32239145 Ry Harris-Foulkes estimate = -23.50736702 Ry estimated scf accuracy < 0.07308315 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.31E-04, avg # of iterations = 2.0 total cpu time spent up to now is 4.03 secs total energy = -25.36132626 Ry Harris-Foulkes estimate = -25.36545193 Ry estimated scf accuracy < 0.00822318 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.22E-05, avg # of iterations = 1.6 total cpu time spent up to now is 4.34 secs total energy = -25.36186114 Ry Harris-Foulkes estimate = -25.36211872 Ry estimated scf accuracy < 0.00054232 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.42E-06, avg # of iterations = 2.5 total cpu time spent up to now is 4.73 secs total energy = -25.36196152 Ry Harris-Foulkes estimate = -25.36196697 Ry estimated scf accuracy < 0.00001148 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-07, avg # of iterations = 1.9 total cpu time spent up to now is 5.06 secs total energy = -25.36196244 Ry Harris-Foulkes estimate = -25.36196308 Ry estimated scf accuracy < 0.00000115 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-08, avg # of iterations = 2.1 total cpu time spent up to now is 5.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.1692 ( 531 PWs) bands (ev): -5.3096 8.6338 9.5863 9.5863 13.1031 15.6793 15.9890 15.9890 19.5890 k =-0.1536-0.2660 0.2820 ( 522 PWs) bands (ev): -3.9293 3.3318 8.4131 9.6761 13.4121 14.4735 14.9162 18.3070 19.8271 k = 0.3072 0.5320-0.0564 ( 520 PWs) bands (ev): -1.9704 -0.0804 8.3700 9.1423 11.3157 15.4333 15.6195 18.0217 22.7124 k = 0.1536 0.2660 0.0564 ( 525 PWs) bands (ev): -4.6125 4.9942 8.3193 10.6100 12.0715 15.5274 16.9344 18.2066 19.6915 k =-0.3072 0.0000 0.3949 ( 519 PWs) bands (ev): -3.2904 4.6802 6.2159 7.1755 9.9447 14.4415 18.2397 19.0978 20.6172 k = 0.1536 0.7981 0.0564 ( 510 PWs) bands (ev): -0.9509 0.9684 4.4624 6.5368 11.4409 15.8139 17.1801 20.9560 22.2141 k = 0.0000 0.5320 0.1692 ( 521 PWs) bands (ev): -2.5439 1.5428 5.8752 9.1542 11.6523 16.0026 17.5048 18.2796 20.2842 k = 0.6143 0.0000-0.2820 ( 510 PWs) bands (ev): -1.4491 1.7892 5.5881 6.4847 8.5424 14.0124 20.5199 22.3817 23.9669 k = 0.4608-0.2660-0.1692 ( 521 PWs) bands (ev): -2.5439 1.5427 5.8752 9.1542 11.6523 16.0026 17.5048 18.2796 20.2842 k = 0.3072 0.0000-0.0564 ( 525 PWs) bands (ev): -4.6125 4.9942 8.3193 10.6100 12.0715 15.5274 16.9344 18.2066 19.6915 k = 0.3072 0.0000 0.2820 ( 522 PWs) bands (ev): -3.9293 3.3318 8.4131 9.6761 13.4121 14.4735 14.9161 18.3070 19.8271 k = 0.1536-0.2660 0.3949 ( 519 PWs) bands (ev): -3.2904 4.6802 6.2159 7.1755 9.9447 14.4415 18.2397 19.0978 20.6172 k = 0.6143 0.5320 0.0564 ( 510 PWs) bands (ev): -0.9509 0.9685 4.4624 6.5368 11.4409 15.8139 17.1801 20.9560 22.2141 k = 0.4608 0.2660 0.1692 ( 521 PWs) bands (ev): -2.5439 1.5427 5.8752 9.1542 11.6523 16.0026 17.5048 18.2795 20.2842 k = 0.0000 0.0000 0.5077 ( 522 PWs) bands (ev): -3.4093 2.7346 9.5225 9.5225 12.4409 13.1169 13.1169 15.7667 22.4011 k = 0.4608 0.7981 0.1692 ( 520 PWs) bands (ev): -1.8910 2.1041 4.6836 7.9789 10.4987 15.5814 16.7366 19.8027 21.5815 k = 0.3072 0.5320 0.2820 ( 510 PWs) bands (ev): -1.4491 1.7892 5.5881 6.4847 8.5424 14.0124 20.5199 22.3817 23.9669 k = 0.9215 0.0000-0.1692 ( 520 PWs) bands (ev): -1.8910 2.1041 4.6836 7.9788 10.4986 15.5814 16.7366 19.8027 21.5815 k = 0.7679-0.2660-0.0564 ( 510 PWs) bands (ev): -0.9509 0.9684 4.4624 6.5368 11.4409 15.8139 17.1801 20.9560 22.2141 k = 0.6143 0.0000 0.0564 ( 520 PWs) bands (ev): -1.9704 -0.0804 8.3699 9.1423 11.3157 15.4333 15.6195 18.0217 22.7124 the Fermi energy is 13.3984 ev ! total energy = -25.36196264 Ry Harris-Foulkes estimate = -25.36196264 Ry estimated scf accuracy < 1.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.18972841 Ry hartree contribution = 0.74734969 Ry xc contribution = -6.80210095 Ry ewald contribution = -30.49682311 Ry smearing contrib. (-TS) = -0.00011667 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000251 0.00000000 -0.14407081 atom 2 type 1 force = -0.00000251 0.00000000 0.14407081 Total force = 0.203747 Total SCF correction = 0.000020 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 625.27 0.00462341 0.00000000 0.00000000 680.13 0.00 0.00 0.00000000 0.00462344 0.00000000 0.00 680.13 0.00 0.00000000 0.00000000 0.00350466 0.00 0.00 515.55 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -24.6061247590 Ry enthalpy new = -24.7003752735 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.3169523405 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.543842814 0.000000000 0.709842886 -0.271921438 0.470982808 0.709843034 -0.271921438 -0.470982808 0.709843034 ATOMIC_POSITIONS (crystal) As 0.265092998 0.265092713 0.265092713 As -0.265092998 -0.265092713 -0.265092713 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1760953), wk = 0.0625000 k( 2) = ( -0.1532305 -0.2654025 0.2934921), wk = 0.1250000 k( 3) = ( 0.3064611 0.5308049 -0.0586984), wk = 0.1250000 k( 4) = ( 0.1532306 0.2654025 0.0586984), wk = 0.1250000 k( 5) = ( -0.3064610 0.0000000 0.4108890), wk = 0.0625000 k( 6) = ( 0.1532306 0.7962074 0.0586984), wk = 0.1250000 k( 7) = ( 0.0000000 0.5308049 0.1760953), wk = 0.1250000 k( 8) = ( 0.6129221 0.0000000 -0.2934921), wk = 0.0625000 k( 9) = ( 0.4596916 -0.2654025 -0.1760953), wk = 0.1250000 k( 10) = ( 0.3064611 0.0000000 -0.0586984), wk = 0.0625000 k( 11) = ( 0.3064611 0.0000000 0.2934921), wk = 0.0625000 k( 12) = ( 0.1532306 -0.2654025 0.4108890), wk = 0.1250000 k( 13) = ( 0.6129222 0.5308049 0.0586984), wk = 0.1250000 k( 14) = ( 0.4596917 0.2654025 0.1760953), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.5282858), wk = 0.0625000 k( 16) = ( 0.4596917 0.7962074 0.1760953), wk = 0.1250000 k( 17) = ( 0.3064611 0.5308049 0.2934921), wk = 0.1250000 k( 18) = ( 0.9193832 0.0000000 -0.1760953), wk = 0.0625000 k( 19) = ( 0.7661527 -0.2654025 -0.0586984), wk = 0.1250000 k( 20) = ( 0.6129222 0.0000000 0.0586984), wk = 0.0625000 extrapolated charge 9.64225, renormalised to 10.00000 total cpu time spent up to now is 5.68 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.7 total cpu time spent up to now is 6.51 secs total energy = -25.37320769 Ry Harris-Foulkes estimate = -25.09906244 Ry estimated scf accuracy < 0.00141917 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-05, avg # of iterations = 2.0 total cpu time spent up to now is 6.91 secs total energy = -25.37353897 Ry Harris-Foulkes estimate = -25.37365167 Ry estimated scf accuracy < 0.00026902 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-06, avg # of iterations = 1.2 total cpu time spent up to now is 7.23 secs total energy = -25.37356065 Ry Harris-Foulkes estimate = -25.37356463 Ry estimated scf accuracy < 0.00001544 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-07, avg # of iterations = 2.0 total cpu time spent up to now is 7.56 secs total energy = -25.37356242 Ry Harris-Foulkes estimate = -25.37356282 Ry estimated scf accuracy < 0.00000093 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.25E-09, avg # of iterations = 1.2 total cpu time spent up to now is 7.87 secs total energy = -25.37356241 Ry Harris-Foulkes estimate = -25.37356248 Ry estimated scf accuracy < 0.00000013 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-09, avg # of iterations = 2.1 total cpu time spent up to now is 8.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.1761 ( 531 PWs) bands (ev): -4.8003 9.3466 10.3721 10.3721 13.7137 17.1285 17.1286 17.3485 19.3747 k =-0.1532-0.2654 0.2935 ( 522 PWs) bands (ev): -3.3285 3.7568 9.3692 11.3391 13.8267 13.8573 15.7045 19.2302 20.5071 k = 0.3065 0.5308-0.0587 ( 520 PWs) bands (ev): -1.3418 0.4089 9.5421 10.0228 11.5263 15.2874 16.8830 18.9837 24.1398 k = 0.1532 0.2654 0.0587 ( 525 PWs) bands (ev): -4.1337 5.8066 9.1123 10.9621 12.9053 17.0834 17.8066 18.7455 20.0206 k =-0.3065 0.0000 0.4109 ( 519 PWs) bands (ev): -2.5515 5.2340 7.3216 7.6951 9.6374 15.7067 18.9153 19.7667 20.2958 k = 0.1532 0.7962 0.0587 ( 510 PWs) bands (ev): 0.0463 1.4655 4.8588 6.9740 12.0990 16.1410 17.8476 22.4447 22.8795 k = 0.0000 0.5308 0.1761 ( 521 PWs) bands (ev): -1.9931 2.1876 6.9063 9.1588 12.9030 16.1193 18.6757 19.2201 20.7051 k = 0.6129 0.0000-0.2935 ( 510 PWs) bands (ev): -0.7559 3.2214 5.2005 7.0349 8.7309 15.4881 21.0888 22.2197 24.7791 k = 0.4597-0.2654-0.1761 ( 521 PWs) bands (ev): -1.9930 2.1876 6.9063 9.1589 12.9030 16.1193 18.6757 19.2201 20.7051 k = 0.3065 0.0000-0.0587 ( 525 PWs) bands (ev): -4.1337 5.8066 9.1123 10.9621 12.9053 17.0834 17.8067 18.7454 20.0206 k = 0.3065 0.0000 0.2935 ( 522 PWs) bands (ev): -3.3285 3.7568 9.3692 11.3391 13.8267 13.8573 15.7045 19.2302 20.5071 k = 0.1532-0.2654 0.4109 ( 519 PWs) bands (ev): -2.5515 5.2340 7.3215 7.6952 9.6374 15.7067 18.9153 19.7666 20.2957 k = 0.6129 0.5308 0.0587 ( 510 PWs) bands (ev): 0.0463 1.4656 4.8588 6.9740 12.0990 16.1411 17.8477 22.4447 22.8795 k = 0.4597 0.2654 0.1761 ( 521 PWs) bands (ev): -1.9930 2.1876 6.9063 9.1588 12.9030 16.1193 18.6757 19.2201 20.7051 k = 0.0000 0.0000 0.5283 ( 522 PWs) bands (ev): -2.4335 2.9198 10.4561 10.4562 13.1368 13.1369 13.3392 15.4636 23.7474 k = 0.4597 0.7962 0.1761 ( 520 PWs) bands (ev): -0.4700 1.8454 5.3459 8.7220 10.5442 15.6975 17.5831 20.9383 22.2546 k = 0.3065 0.5308 0.2935 ( 510 PWs) bands (ev): -0.7559 3.2214 5.2005 7.0349 8.7309 15.4881 21.0888 22.2197 24.7791 k = 0.9194 0.0000-0.1761 ( 520 PWs) bands (ev): -0.4700 1.8454 5.3459 8.7220 10.5441 15.6975 17.5831 20.9383 22.2546 k = 0.7662-0.2654-0.0587 ( 510 PWs) bands (ev): 0.0463 1.4656 4.8588 6.9740 12.0990 16.1410 17.8476 22.4447 22.8795 k = 0.6129 0.0000 0.0587 ( 520 PWs) bands (ev): -1.3418 0.4089 9.5420 10.0228 11.5263 15.2873 16.8830 18.9837 24.1398 the Fermi energy is 13.8089 ev ! total energy = -25.37356243 Ry Harris-Foulkes estimate = -25.37356244 Ry estimated scf accuracy < 4.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.98983773 Ry hartree contribution = 0.59410414 Ry xc contribution = -6.82630188 Ry ewald contribution = -31.13111498 Ry smearing contrib. (-TS) = -0.00008743 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000154 0.00000000 -0.05324824 atom 2 type 1 force = 0.00000154 0.00000000 0.05324824 Total force = 0.075304 Total SCF correction = 0.000052 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 626.99 0.00423057 0.00000000 0.00000003 622.34 0.00 0.01 0.00000000 0.00423073 0.00000000 0.00 622.36 0.00 0.00000003 0.00000000 0.00432525 0.01 0.00 636.27 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -24.7003752735 Ry enthalpy new = -24.7348270574 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.1338241529 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.551231525 0.000000000 0.720727362 -0.275614604 0.477383106 0.720726724 -0.275614604 -0.477383106 0.720726724 ATOMIC_POSITIONS (crystal) As 0.259933113 0.259933336 0.259933336 As -0.259933113 -0.259933336 -0.259933336 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1734360), wk = 0.0625000 k( 2) = ( -0.1511771 -0.2618442 0.2890602), wk = 0.1250000 k( 3) = ( 0.3023538 0.5236884 -0.0578123), wk = 0.1250000 k( 4) = ( 0.1511768 0.2618442 0.0578118), wk = 0.1250000 k( 5) = ( -0.3023540 0.0000000 0.4046843), wk = 0.0625000 k( 6) = ( 0.1511768 0.7855326 0.0578118), wk = 0.1250000 k( 7) = ( -0.0000001 0.5236884 0.1734360), wk = 0.1250000 k( 8) = ( 0.6047077 0.0000000 -0.2890607), wk = 0.0625000 k( 9) = ( 0.4535307 -0.2618442 -0.1734365), wk = 0.1250000 k( 10) = ( 0.3023538 0.0000000 -0.0578123), wk = 0.0625000 k( 11) = ( 0.3023535 0.0000000 0.2890597), wk = 0.0625000 k( 12) = ( 0.1511765 -0.2618442 0.4046838), wk = 0.1250000 k( 13) = ( 0.6047074 0.5236884 0.0578114), wk = 0.1250000 k( 14) = ( 0.4535304 0.2618442 0.1734355), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5203080), wk = 0.0625000 k( 16) = ( 0.4535304 0.7855326 0.1734355), wk = 0.1250000 k( 17) = ( 0.3023535 0.5236884 0.2890597), wk = 0.1250000 k( 18) = ( 0.9070613 0.0000000 -0.1734370), wk = 0.0625000 k( 19) = ( 0.7558843 -0.2618442 -0.0578128), wk = 0.1250000 k( 20) = ( 0.6047074 0.0000000 0.0578114), wk = 0.0625000 extrapolated charge 10.41327, renormalised to 10.00000 total cpu time spent up to now is 8.56 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.3 total cpu time spent up to now is 9.29 secs total energy = -25.40851601 Ry Harris-Foulkes estimate = -25.72432234 Ry estimated scf accuracy < 0.00091462 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.15E-06, avg # of iterations = 2.0 total cpu time spent up to now is 9.72 secs total energy = -25.40915098 Ry Harris-Foulkes estimate = -25.40932670 Ry estimated scf accuracy < 0.00040596 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.04 secs total energy = -25.40918660 Ry Harris-Foulkes estimate = -25.40919715 Ry estimated scf accuracy < 0.00002890 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-07, avg # of iterations = 1.1 total cpu time spent up to now is 10.34 secs total energy = -25.40918611 Ry Harris-Foulkes estimate = -25.40918838 Ry estimated scf accuracy < 0.00000478 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-08, avg # of iterations = 2.4 total cpu time spent up to now is 10.72 secs total energy = -25.40918734 Ry Harris-Foulkes estimate = -25.40918739 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 1.6 total cpu time spent up to now is 11.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.1734 ( 531 PWs) bands (ev): -5.0150 8.3679 9.8319 9.8319 12.6842 16.4655 16.4656 16.7868 18.5032 k =-0.1512-0.2618 0.2891 ( 522 PWs) bands (ev): -3.5816 3.2024 8.7387 11.0829 12.7019 13.0597 14.7070 18.6281 19.3662 k = 0.3024 0.5237-0.0578 ( 520 PWs) bands (ev): -1.6401 -0.0143 9.1401 9.4204 10.7317 14.3146 16.0288 17.8228 23.2168 k = 0.1512 0.2618 0.0578 ( 525 PWs) bands (ev): -4.3682 5.1890 8.6398 10.1889 12.1993 16.0006 17.2009 17.7474 18.7593 k =-0.3024 0.0000 0.4047 ( 519 PWs) bands (ev): -2.8261 4.4508 7.0112 7.2622 8.7846 15.3081 18.0585 18.7288 19.0673 k = 0.1512 0.7855 0.0578 ( 510 PWs) bands (ev): -0.3089 0.9891 4.4826 6.4128 11.3356 15.2584 17.2433 21.4396 21.7361 k = 0.0000 0.5237 0.1734 ( 521 PWs) bands (ev): -2.2917 1.7093 6.5543 8.4263 12.2170 15.0233 17.9719 18.3305 19.6129 k = 0.6047 0.0000-0.2891 ( 510 PWs) bands (ev): -1.1265 2.9596 4.4087 6.6306 8.0493 15.0509 19.9904 20.8235 23.4921 k = 0.4535-0.2618-0.1734 ( 521 PWs) bands (ev): -2.2916 1.7093 6.5544 8.4264 12.2170 15.0233 17.9719 18.3304 19.6128 k = 0.3024 0.0000-0.0578 ( 525 PWs) bands (ev): -4.3681 5.1890 8.6397 10.1889 12.1994 16.0006 17.2009 17.7473 18.7592 k = 0.3024 0.0000 0.2891 ( 522 PWs) bands (ev): -3.5816 3.2025 8.7387 11.0829 12.7018 13.0596 14.7070 18.6281 19.3664 k = 0.1512-0.2618 0.4047 ( 519 PWs) bands (ev): -2.8262 4.4509 7.0111 7.2623 8.7846 15.3080 18.0585 18.7288 19.0673 k = 0.6047 0.5237 0.0578 ( 510 PWs) bands (ev): -0.3090 0.9891 4.4826 6.4128 11.3357 15.2585 17.2434 21.4395 21.7360 k = 0.4535 0.2618 0.1734 ( 521 PWs) bands (ev): -2.2916 1.7093 6.5543 8.4263 12.2170 15.0234 17.9718 18.3304 19.6128 k = 0.0000 0.0000 0.5203 ( 522 PWs) bands (ev): -2.6794 2.2428 10.0157 10.0157 12.3757 12.3758 12.6670 14.4148 22.8070 k = 0.4535 0.7855 0.1734 ( 520 PWs) bands (ev): -0.6695 1.0677 5.0283 8.2917 9.8150 14.8439 16.7302 19.9631 21.5308 k = 0.3024 0.5237 0.2891 ( 510 PWs) bands (ev): -1.1265 2.9597 4.4088 6.6306 8.0493 15.0509 19.9904 20.8235 23.4919 k = 0.9071 0.0000-0.1734 ( 520 PWs) bands (ev): -0.6695 1.0677 5.0283 8.2916 9.8149 14.8439 16.7302 19.9633 21.5308 k = 0.7559-0.2618-0.0578 ( 510 PWs) bands (ev): -0.3090 0.9892 4.4825 6.4128 11.3357 15.2583 17.2434 21.4396 21.7360 k = 0.6047 0.0000 0.0578 ( 520 PWs) bands (ev): -1.6401 -0.0143 9.1401 9.4205 10.7316 14.3145 16.0287 17.8228 23.2169 the Fermi energy is 12.7003 ev ! total energy = -25.40918734 Ry Harris-Foulkes estimate = -25.40918736 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 11.47484681 Ry hartree contribution = 0.61189611 Ry xc contribution = -6.75098457 Ry ewald contribution = -30.74475857 Ry smearing contrib. (-TS) = -0.00018711 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000296 0.00000000 -0.02162663 atom 2 type 1 force = 0.00000296 0.00000000 0.02162663 Total force = 0.030585 Total SCF correction = 0.000087 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 468.69 0.00307625 0.00000000 -0.00000007 452.53 0.00 -0.01 0.00000000 0.00307623 0.00000000 0.00 452.53 0.00 -0.00000007 0.00000000 0.00340582 -0.01 0.00 501.01 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -24.7348270574 Ry enthalpy new = -24.7429155134 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.1044697269 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.548158990 0.000000000 0.719738657 -0.274080057 0.474723890 0.719739165 -0.274080057 -0.474723890 0.719739165 ATOMIC_POSITIONS (crystal) As 0.255203879 0.255205062 0.255205062 As -0.255203879 -0.255205062 -0.255205062 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1736741), wk = 0.0625000 k( 2) = ( -0.1520237 -0.2633110 0.2894567), wk = 0.1250000 k( 3) = ( 0.3040478 0.5266219 -0.0578912), wk = 0.1250000 k( 4) = ( 0.1520240 0.2633110 0.0578914), wk = 0.1250000 k( 5) = ( -0.3040476 0.0000000 0.4052393), wk = 0.0625000 k( 6) = ( 0.1520240 0.7899329 0.0578914), wk = 0.1250000 k( 7) = ( 0.0000001 0.5266219 0.1736741), wk = 0.1250000 k( 8) = ( 0.6080955 0.0000000 -0.2894565), wk = 0.0625000 k( 9) = ( 0.4560716 -0.2633110 -0.1736738), wk = 0.1250000 k( 10) = ( 0.3040478 0.0000000 -0.0578912), wk = 0.0625000 k( 11) = ( 0.3040480 0.0000000 0.2894569), wk = 0.0625000 k( 12) = ( 0.1520242 -0.2633110 0.4052396), wk = 0.1250000 k( 13) = ( 0.6080957 0.5266219 0.0578917), wk = 0.1250000 k( 14) = ( 0.4560719 0.2633110 0.1736743), wk = 0.1250000 k( 15) = ( 0.0000003 0.0000000 0.5210222), wk = 0.0625000 k( 16) = ( 0.4560719 0.7899329 0.1736743), wk = 0.1250000 k( 17) = ( 0.3040480 0.5266219 0.2894569), wk = 0.1250000 k( 18) = ( 0.9121434 0.0000000 -0.1736736), wk = 0.0625000 k( 19) = ( 0.7601195 -0.2633110 -0.0578910), wk = 0.1250000 k( 20) = ( 0.6080957 0.0000000 0.0578917), wk = 0.0625000 extrapolated charge 9.87376, renormalised to 10.00000 total cpu time spent up to now is 11.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.2 total cpu time spent up to now is 12.05 secs total energy = -25.40610167 Ry Harris-Foulkes estimate = -25.30988025 Ry estimated scf accuracy < 0.00069007 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-06, avg # of iterations = 1.2 total cpu time spent up to now is 12.35 secs total energy = -25.40616864 Ry Harris-Foulkes estimate = -25.40618102 Ry estimated scf accuracy < 0.00004245 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.24E-07, avg # of iterations = 1.6 total cpu time spent up to now is 12.66 secs total energy = -25.40617242 Ry Harris-Foulkes estimate = -25.40617272 Ry estimated scf accuracy < 0.00000157 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-08, avg # of iterations = 2.2 total cpu time spent up to now is 13.02 secs End of self-consistent calculation k = 0.0000 0.0000 0.1737 ( 531 PWs) bands (ev): -4.9132 8.5481 10.1081 10.1082 12.9486 16.8052 16.8052 17.3097 18.6275 k =-0.1520-0.2633 0.2895 ( 522 PWs) bands (ev): -3.4606 3.3909 8.8701 11.6658 12.5560 13.2881 15.0366 19.0114 19.5063 k = 0.3040 0.5266-0.0579 ( 520 PWs) bands (ev): -1.4768 0.1252 9.4317 9.5833 10.8959 14.4208 16.3633 17.9858 23.4355 k = 0.1520 0.2633 0.0579 ( 525 PWs) bands (ev): -4.2572 5.4388 8.8912 10.3327 12.4092 16.2372 17.7305 17.9420 18.6971 k =-0.3040 0.0000 0.4052 ( 519 PWs) bands (ev): -2.6914 4.6054 7.3225 7.4857 8.7958 15.6222 18.3677 19.0237 19.3357 k = 0.1520 0.7899 0.0579 ( 510 PWs) bands (ev): -0.1044 1.1546 4.6151 6.5063 11.5600 15.5100 17.4921 21.7416 22.1897 k = 0.0000 0.5266 0.1737 ( 521 PWs) bands (ev): -2.1506 1.9045 6.7855 8.4931 12.5007 15.0903 18.2539 18.6852 19.8567 k = 0.6081 0.0000-0.2895 ( 510 PWs) bands (ev): -0.9595 3.3541 4.3052 6.8443 8.1724 15.3110 20.2502 20.9951 23.8595 k = 0.4561-0.2633-0.1737 ( 521 PWs) bands (ev): -2.1505 1.9044 6.7856 8.4931 12.5006 15.0903 18.2539 18.6851 19.8567 k = 0.3040 0.0000-0.0579 ( 525 PWs) bands (ev): -4.2572 5.4388 8.8912 10.3326 12.4093 16.2372 17.7306 17.9419 18.6970 k = 0.3040 0.0000 0.2895 ( 522 PWs) bands (ev): -3.4606 3.3910 8.8701 11.6658 12.5559 13.2880 15.0365 19.0113 19.5064 k = 0.1520-0.2633 0.4052 ( 519 PWs) bands (ev): -2.6914 4.6055 7.3225 7.4857 8.7958 15.6221 18.3677 19.0237 19.3356 k = 0.6081 0.5266 0.0579 ( 510 PWs) bands (ev): -0.1045 1.1547 4.6151 6.5063 11.5600 15.5100 17.4922 21.7415 22.1897 k = 0.4561 0.2633 0.1737 ( 521 PWs) bands (ev): -2.1505 1.9045 6.7856 8.4930 12.5007 15.0903 18.2538 18.6851 19.8565 k = 0.0000 0.0000 0.5210 ( 522 PWs) bands (ev): -2.5306 2.2896 10.3366 10.3366 12.5485 12.5485 13.0849 14.5993 23.1466 k = 0.4561 0.7899 0.1737 ( 520 PWs) bands (ev): -0.3814 1.0223 5.2119 8.5398 10.0045 15.0781 17.1385 20.2972 21.9261 k = 0.3040 0.5266 0.2895 ( 510 PWs) bands (ev): -0.9595 3.3541 4.3052 6.8444 8.1724 15.3110 20.2502 20.9952 23.8594 k = 0.9121 0.0000-0.1737 ( 520 PWs) bands (ev): -0.3814 1.0223 5.2119 8.5397 10.0044 15.0781 17.1385 20.2974 21.9263 k = 0.7601-0.2633-0.0579 ( 510 PWs) bands (ev): -0.1044 1.1547 4.6151 6.5063 11.5600 15.5098 17.4921 21.7416 22.1896 k = 0.6081 0.0000 0.0579 ( 520 PWs) bands (ev): -1.4768 0.1253 9.4316 9.5833 10.8958 14.4207 16.3632 17.9858 23.4356 the Fermi energy is 12.6021 ev ! total energy = -25.40617294 Ry Harris-Foulkes estimate = -25.40617295 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 11.67336189 Ry hartree contribution = 0.58940487 Ry xc contribution = -6.76885446 Ry ewald contribution = -30.90018954 Ry smearing contrib. (-TS) = 0.00010430 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000367 0.00000000 -0.02064349 atom 2 type 1 force = 0.00000367 0.00000000 0.02064349 Total force = 0.029194 Total SCF correction = 0.000046 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 465.88 0.00296057 0.00000000 -0.00000003 435.52 0.00 0.00 0.00000000 0.00296058 0.00000000 0.00 435.52 0.00 -0.00000003 0.00000000 0.00357978 0.00 0.00 526.60 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -24.7429155134 Ry enthalpy new = -24.7482073682 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.3131057647 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.539891749 0.000000000 0.713964666 -0.269952506 0.467569597 0.713969224 -0.269952506 -0.467569597 0.713969224 ATOMIC_POSITIONS (crystal) As 0.240967695 0.240971625 0.240971625 As -0.240967695 -0.240971625 -0.240971625 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000010 0.0000000 0.1750779), wk = 0.0625000 k( 2) = ( -0.1543490 -0.2673399 0.2917956), wk = 0.1250000 k( 3) = ( 0.3087010 0.5346798 -0.0583574), wk = 0.1250000 k( 4) = ( 0.1543510 0.2673399 0.0583603), wk = 0.1250000 k( 5) = ( -0.3086990 0.0000000 0.4085133), wk = 0.0625000 k( 6) = ( 0.1543510 0.8020196 0.0583603), wk = 0.1250000 k( 7) = ( 0.0000010 0.5346798 0.1750779), wk = 0.1250000 k( 8) = ( 0.6174010 0.0000000 -0.2917928), wk = 0.0625000 k( 9) = ( 0.4630510 -0.2673399 -0.1750751), wk = 0.1250000 k( 10) = ( 0.3087010 0.0000000 -0.0583574), wk = 0.0625000 k( 11) = ( 0.3087030 0.0000000 0.2917985), wk = 0.0625000 k( 12) = ( 0.1543530 -0.2673399 0.4085162), wk = 0.1250000 k( 13) = ( 0.6174030 0.5346798 0.0583631), wk = 0.1250000 k( 14) = ( 0.4630530 0.2673399 0.1750808), wk = 0.1250000 k( 15) = ( 0.0000030 0.0000000 0.5252338), wk = 0.0625000 k( 16) = ( 0.4630530 0.8020196 0.1750808), wk = 0.1250000 k( 17) = ( 0.3087030 0.5346798 0.2917985), wk = 0.1250000 k( 18) = ( 0.9261030 0.0000000 -0.1750722), wk = 0.0625000 k( 19) = ( 0.7717530 -0.2673399 -0.0583545), wk = 0.1250000 k( 20) = ( 0.6174030 0.0000000 0.0583631), wk = 0.0625000 extrapolated charge 9.60829, renormalised to 10.00000 total cpu time spent up to now is 13.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 14.22 secs total energy = -25.37627333 Ry Harris-Foulkes estimate = -25.07329992 Ry estimated scf accuracy < 0.00265924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-05, avg # of iterations = 2.0 total cpu time spent up to now is 14.60 secs total energy = -25.37661541 Ry Harris-Foulkes estimate = -25.37666313 Ry estimated scf accuracy < 0.00021641 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.98 secs total energy = -25.37662833 Ry Harris-Foulkes estimate = -25.37662908 Ry estimated scf accuracy < 0.00000523 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-08, avg # of iterations = 3.0 total cpu time spent up to now is 15.38 secs End of self-consistent calculation k = 0.0000 0.0000 0.1751 ( 531 PWs) bands (ev): -4.7027 9.3154 10.7038 10.7041 13.9183 17.4907 17.4909 17.9518 19.3888 k =-0.1543-0.2673 0.2918 ( 522 PWs) bands (ev): -3.2124 3.9356 9.3414 11.9774 13.5517 14.0425 16.0021 19.6760 20.4355 k = 0.3087 0.5347-0.0584 ( 520 PWs) bands (ev): -1.1563 0.5223 9.8982 10.0666 11.6125 15.2098 17.1768 18.8600 24.1759 k = 0.1544 0.2673 0.0584 ( 525 PWs) bands (ev): -4.0208 6.0549 9.4122 10.9845 13.0253 17.2087 18.2063 18.7682 19.7838 k =-0.3087 0.0000 0.4085 ( 519 PWs) bands (ev): -2.4277 5.2481 7.6787 7.9757 9.5075 16.0604 19.2213 20.0584 20.4850 k = 0.1544 0.8020 0.0584 ( 510 PWs) bands (ev): 0.2543 1.6278 4.9820 6.9410 12.2483 16.3657 18.1024 22.7470 23.1276 k = 0.0000 0.5347 0.1751 ( 521 PWs) bands (ev): -1.8447 2.3836 7.1559 9.0840 13.1171 15.9234 18.9088 19.5771 20.8476 k = 0.6174 0.0000-0.2918 ( 510 PWs) bands (ev): -0.5895 3.6420 4.9417 7.3014 8.7573 15.7182 21.2091 22.1743 25.0540 k = 0.4631-0.2673-0.1751 ( 521 PWs) bands (ev): -1.8447 2.3836 7.1561 9.0838 13.1171 15.9232 18.9086 19.5768 20.8478 k = 0.3087 0.0000-0.0584 ( 525 PWs) bands (ev): -4.0208 6.0552 9.4120 10.9844 13.0252 17.2085 18.2063 18.7682 19.7839 k = 0.3087 0.0000 0.2918 ( 522 PWs) bands (ev): -3.2123 3.9358 9.3413 11.9772 13.5516 14.0423 16.0018 19.6759 20.4353 k = 0.1544-0.2673 0.4085 ( 519 PWs) bands (ev): -2.4277 5.2481 7.6787 7.9759 9.5075 16.0602 19.2211 20.0582 20.4848 k = 0.6174 0.5347 0.0584 ( 510 PWs) bands (ev): 0.2543 1.6278 4.9821 6.9409 12.2482 16.3656 18.1025 22.7469 23.1277 k = 0.4631 0.2673 0.1751 ( 521 PWs) bands (ev): -1.8446 2.3838 7.1558 9.0838 13.1170 15.9231 18.9086 19.5767 20.8475 k = 0.0000 0.0000 0.5252 ( 522 PWs) bands (ev): -2.2994 2.7787 10.8797 10.8799 13.2697 13.2697 13.8656 15.6065 24.0243 k = 0.4631 0.8020 0.1751 ( 520 PWs) bands (ev): -0.1757 1.6251 5.5655 9.0319 10.7108 15.8995 18.0833 21.2949 22.5144 k = 0.3087 0.5347 0.2918 ( 510 PWs) bands (ev): -0.5895 3.6419 4.9418 7.3016 8.7573 15.7181 21.2091 22.1744 25.0540 k = 0.9261 0.0000-0.1751 ( 520 PWs) bands (ev): -0.1757 1.6251 5.5657 9.0317 10.7106 15.8995 18.0833 21.2951 22.5147 k = 0.7718-0.2673-0.0584 ( 510 PWs) bands (ev): 0.2544 1.6279 4.9820 6.9409 12.2482 16.3655 18.1025 22.7468 23.1276 k = 0.6174 0.0000 0.0584 ( 520 PWs) bands (ev): -1.1562 0.5225 9.8980 10.0665 11.6123 15.2096 17.1765 18.8597 24.1762 the Fermi energy is 13.6089 ev ! total energy = -25.37663034 Ry Harris-Foulkes estimate = -25.37663034 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 12.16644566 Ry hartree contribution = 0.56553068 Ry xc contribution = -6.83572484 Ry ewald contribution = -31.27290902 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000500 0.00000000 0.04839807 atom 2 type 1 force = -0.00000500 0.00000000 -0.04839807 Total force = 0.068445 Total SCF correction = 0.000080 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 590.09 0.00384843 0.00000000 0.00000002 566.12 0.00 0.00 0.00000000 0.00384835 0.00000000 0.00 566.11 0.00 0.00000002 0.00000000 0.00433726 0.00 0.00 638.03 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -24.7482073682 Ry enthalpy new = -24.7434676926 Ry CASE: enthalpy_new > enthalpy_old new trust radius = 0.1373648328 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.544507107 0.000000000 0.717188116 -0.272256796 0.471563629 0.717190413 -0.272256796 -0.471563629 0.717190413 ATOMIC_POSITIONS (crystal) As 0.248915339 0.248917735 0.248917735 As -0.248915339 -0.248917735 -0.248917735 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000005 0.0000000 0.1742914), wk = 0.0625000 k( 2) = ( -0.1530422 -0.2650756 0.2904852), wk = 0.1250000 k( 3) = ( 0.3060858 0.5301511 -0.0580962), wk = 0.1250000 k( 4) = ( 0.1530432 0.2650756 0.0580976), wk = 0.1250000 k( 5) = ( -0.3060849 0.0000000 0.4066791), wk = 0.0625000 k( 6) = ( 0.1530432 0.7952267 0.0580976), wk = 0.1250000 k( 7) = ( 0.0000005 0.5301511 0.1742914), wk = 0.1250000 k( 8) = ( 0.6121712 0.0000000 -0.2904839), wk = 0.0625000 k( 9) = ( 0.4591285 -0.2650756 -0.1742900), wk = 0.1250000 k( 10) = ( 0.3060858 0.0000000 -0.0580962), wk = 0.0625000 k( 11) = ( 0.3060868 0.0000000 0.2904866), wk = 0.0625000 k( 12) = ( 0.1530441 -0.2650756 0.4066804), wk = 0.1250000 k( 13) = ( 0.6121722 0.5301511 0.0580990), wk = 0.1250000 k( 14) = ( 0.4591295 0.2650756 0.1742928), wk = 0.1250000 k( 15) = ( 0.0000015 0.0000000 0.5228743), wk = 0.0625000 k( 16) = ( 0.4591295 0.7952267 0.1742928), wk = 0.1250000 k( 17) = ( 0.3060868 0.5301511 0.2904866), wk = 0.1250000 k( 18) = ( 0.9182575 0.0000000 -0.1742886), wk = 0.0625000 k( 19) = ( 0.7652148 -0.2650756 -0.0580948), wk = 0.1250000 k( 20) = ( 0.6121722 0.0000000 0.0580990), wk = 0.0625000 extrapolated charge 10.21286, renormalised to 10.00000 total cpu time spent up to now is 15.67 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.2 total cpu time spent up to now is 16.43 secs total energy = -25.39727484 Ry Harris-Foulkes estimate = -25.56240487 Ry estimated scf accuracy < 0.00076467 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.65E-06, avg # of iterations = 2.0 total cpu time spent up to now is 16.77 secs total energy = -25.39738327 Ry Harris-Foulkes estimate = -25.39739840 Ry estimated scf accuracy < 0.00006676 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.68E-07, avg # of iterations = 1.4 total cpu time spent up to now is 17.08 secs total energy = -25.39738643 Ry Harris-Foulkes estimate = -25.39738666 Ry estimated scf accuracy < 0.00000166 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 3.0 total cpu time spent up to now is 17.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.1743 ( 531 PWs) bands (ev): -4.7998 8.8494 10.4101 10.4103 13.3521 17.1789 17.1789 17.8298 18.8725 k =-0.1530-0.2651 0.2905 ( 522 PWs) bands (ev): -3.3261 3.6327 9.0763 12.2924 12.4982 13.6073 15.4683 19.4010 19.8229 k = 0.3061 0.5302-0.0581 ( 520 PWs) bands (ev): -1.3014 0.3049 9.7168 9.8097 11.1660 14.6733 16.7679 18.3129 23.7528 k = 0.1530 0.2651 0.0581 ( 525 PWs) bands (ev): -4.1331 5.7379 9.1615 10.5829 12.6844 16.6311 18.2185 18.2602 18.8781 k =-0.3061 0.0000 0.4067 ( 519 PWs) bands (ev): -2.5434 4.8556 7.6172 7.7289 8.9577 15.9139 18.7523 19.4331 19.7880 k = 0.1530 0.7952 0.0581 ( 510 PWs) bands (ev): 0.1114 1.3649 4.7818 6.6720 11.8621 15.8622 17.7854 22.1712 22.7465 k = 0.0000 0.5302 0.1743 ( 521 PWs) bands (ev): -1.9919 2.1365 7.0213 8.6714 12.8310 15.3373 18.5917 19.1068 20.2429 k = 0.6122 0.0000-0.2905 ( 510 PWs) bands (ev): -0.7684 3.7507 4.3110 7.0747 8.3911 15.5710 20.6369 21.3924 24.3706 k = 0.4591-0.2651-0.1743 ( 521 PWs) bands (ev): -1.9919 2.1365 7.0214 8.6713 12.8309 15.3372 18.5916 19.1066 20.2430 k = 0.3061 0.0000-0.0581 ( 525 PWs) bands (ev): -4.1331 5.7380 9.1614 10.5828 12.6844 16.6310 18.2186 18.2602 18.8780 k = 0.3061 0.0000 0.2905 ( 522 PWs) bands (ev): -3.3261 3.6328 9.0763 12.2922 12.4981 13.6071 15.4681 19.4009 19.8229 k = 0.1530-0.2651 0.4067 ( 519 PWs) bands (ev): -2.5434 4.8556 7.6172 7.7291 8.9576 15.9138 18.7522 19.4331 19.7878 k = 0.6122 0.5302 0.0581 ( 510 PWs) bands (ev): 0.1114 1.3649 4.7818 6.6720 11.8621 15.8622 17.7855 22.1712 22.7465 k = 0.4591 0.2651 0.1743 ( 521 PWs) bands (ev): -1.9919 2.1366 7.0212 8.6713 12.8309 15.3372 18.5916 19.1066 20.2428 k = 0.0000 0.0000 0.5229 ( 522 PWs) bands (ev): -2.3787 2.4433 10.6539 10.6540 12.8143 12.8144 13.5366 14.9318 23.5746 k = 0.4591 0.7952 0.1743 ( 520 PWs) bands (ev): -0.1320 1.1229 5.4074 8.8000 10.2840 15.4071 17.6100 20.7137 22.3729 k = 0.3061 0.5302 0.2905 ( 510 PWs) bands (ev): -0.7684 3.7507 4.3110 7.0748 8.3912 15.5709 20.6369 21.3924 24.3706 k = 0.9183 0.0000-0.1743 ( 520 PWs) bands (ev): -0.1319 1.1229 5.4075 8.7999 10.2838 15.4070 17.6099 20.7139 22.3732 k = 0.7652-0.2651-0.0581 ( 510 PWs) bands (ev): 0.1115 1.3650 4.7817 6.6720 11.8620 15.8620 17.7854 22.1712 22.7464 k = 0.6122 0.0000 0.0581 ( 520 PWs) bands (ev): -1.3014 0.3050 9.7167 9.8096 11.1658 14.6732 16.7677 18.3128 23.7530 the Fermi energy is 12.8854 ev ! total energy = -25.39738718 Ry Harris-Foulkes estimate = -25.39738719 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 11.91278932 Ry hartree contribution = 0.56917624 Ry xc contribution = -6.79509071 Ry ewald contribution = -31.08433669 Ry smearing contrib. (-TS) = 0.00007466 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000296 0.00000000 0.00487096 atom 2 type 1 force = -0.00000296 0.00000000 -0.00487096 Total force = 0.006889 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 508.50 0.00327944 0.00000000 0.00000004 482.42 0.00 0.01 0.00000000 0.00327947 0.00000000 0.00 482.43 0.00 0.00000004 0.00000000 0.00381127 0.01 0.00 560.66 number of scf cycles = 7 number of bfgs steps = 5 enthalpy old = -24.7482073682 Ry enthalpy new = -24.7504534451 Ry CASE: enthalpy_new < enthalpy_old uphill step: resetting bfgs history new trust radius = 0.0276914854 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.543269290 0.000000000 0.722817178 -0.271637056 0.470491431 0.722818867 -0.271637056 -0.470491431 0.722818867 ATOMIC_POSITIONS (crystal) As 0.249238798 0.249240415 0.249240415 As -0.249238798 -0.249240415 -0.249240415 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000004 0.0000000 0.1729342), wk = 0.0625000 k( 2) = ( -0.1533913 -0.2656797 0.2882233), wk = 0.1250000 k( 3) = ( 0.3067836 0.5313593 -0.0576440), wk = 0.1250000 k( 4) = ( 0.1533920 0.2656797 0.0576451), wk = 0.1250000 k( 5) = ( -0.3067829 0.0000000 0.4035124), wk = 0.0625000 k( 6) = ( 0.1533920 0.7970390 0.0576451), wk = 0.1250000 k( 7) = ( 0.0000004 0.5313593 0.1729342), wk = 0.1250000 k( 8) = ( 0.6135668 0.0000000 -0.2882223), wk = 0.0625000 k( 9) = ( 0.4601752 -0.2656797 -0.1729332), wk = 0.1250000 k( 10) = ( 0.3067836 0.0000000 -0.0576440), wk = 0.0625000 k( 11) = ( 0.3067843 0.0000000 0.2882243), wk = 0.0625000 k( 12) = ( 0.1533927 -0.2656797 0.4035135), wk = 0.1250000 k( 13) = ( 0.6135676 0.5313593 0.0576461), wk = 0.1250000 k( 14) = ( 0.4601759 0.2656797 0.1729352), wk = 0.1250000 k( 15) = ( 0.0000011 0.0000000 0.5188026), wk = 0.0625000 k( 16) = ( 0.4601759 0.7970390 0.1729352), wk = 0.1250000 k( 17) = ( 0.3067843 0.5313593 0.2882243), wk = 0.1250000 k( 18) = ( 0.9203508 0.0000000 -0.1729321), wk = 0.0625000 k( 19) = ( 0.7669592 -0.2656797 -0.0576430), wk = 0.1250000 k( 20) = ( 0.6135676 0.0000000 0.0576461), wk = 0.0625000 extrapolated charge 10.03259, renormalised to 10.00000 total cpu time spent up to now is 17.74 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.5 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-08, avg # of iterations = 1.4 total cpu time spent up to now is 18.65 secs total energy = -25.40028206 Ry Harris-Foulkes estimate = -25.42542970 Ry estimated scf accuracy < 0.00000255 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 2.5 total cpu time spent up to now is 19.05 secs total energy = -25.40028416 Ry Harris-Foulkes estimate = -25.40028438 Ry estimated scf accuracy < 0.00000072 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.20E-09, avg # of iterations = 1.0 total cpu time spent up to now is 19.35 secs total energy = -25.40028414 Ry Harris-Foulkes estimate = -25.40028418 Ry estimated scf accuracy < 0.00000010 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 1.8 total cpu time spent up to now is 19.67 secs End of self-consistent calculation k = 0.0000 0.0000 0.1729 ( 531 PWs) bands (ev): -4.8258 8.6909 10.4230 10.4231 13.3019 17.1167 17.1168 17.8153 18.8690 k =-0.1534-0.2657 0.2882 ( 522 PWs) bands (ev): -3.3567 3.6188 8.9179 12.2862 12.4376 13.5870 15.4276 19.4224 19.6534 k = 0.3068 0.5314-0.0576 ( 520 PWs) bands (ev): -1.3106 0.2725 9.6689 9.6990 11.1415 14.5888 16.6784 18.0863 23.4571 k = 0.1534 0.2657 0.0576 ( 525 PWs) bands (ev): -4.1515 5.7112 9.1653 10.4951 12.5897 16.5206 18.0454 18.1357 18.7791 k =-0.3068 0.0000 0.4035 ( 519 PWs) bands (ev): -2.5864 4.7433 7.5957 7.7572 8.9021 15.8574 18.7372 19.4443 19.8091 k = 0.1534 0.7970 0.0576 ( 510 PWs) bands (ev): 0.0623 1.3513 4.7646 6.5703 11.7842 15.8504 17.7793 22.0463 22.7019 k = 0.0000 0.5314 0.1729 ( 521 PWs) bands (ev): -2.0082 2.1181 6.9767 8.5949 12.7082 15.1810 18.5056 19.0855 20.1844 k = 0.6136 0.0000-0.2882 ( 510 PWs) bands (ev): -0.7969 3.6868 4.2521 7.0961 8.3284 15.4518 20.5345 21.3280 24.2812 k = 0.4602-0.2657-0.1729 ( 521 PWs) bands (ev): -2.0082 2.1180 6.9768 8.5948 12.7081 15.1809 18.5055 19.0853 20.1845 k = 0.3068 0.0000-0.0576 ( 525 PWs) bands (ev): -4.1515 5.7113 9.1651 10.4950 12.5897 16.5205 18.0455 18.1356 18.7790 k = 0.3068 0.0000 0.2882 ( 522 PWs) bands (ev): -3.3567 3.6190 8.9178 12.2861 12.4376 13.5868 15.4274 19.4223 19.6534 k = 0.1534-0.2657 0.4035 ( 519 PWs) bands (ev): -2.5865 4.7434 7.5956 7.7573 8.9021 15.8573 18.7372 19.4443 19.8089 k = 0.6136 0.5314 0.0576 ( 510 PWs) bands (ev): 0.0622 1.3513 4.7646 6.5703 11.7842 15.8504 17.7794 22.0462 22.7019 k = 0.4602 0.2657 0.1729 ( 521 PWs) bands (ev): -2.0082 2.1181 6.9767 8.5948 12.7081 15.1809 18.5055 19.0853 20.1842 k = 0.0000 0.0000 0.5188 ( 522 PWs) bands (ev): -2.4413 2.3125 10.6845 10.6847 12.8201 12.8202 13.5899 14.9759 23.4584 k = 0.4602 0.7970 0.1729 ( 520 PWs) bands (ev): -0.2080 1.0348 5.4023 8.8146 10.2981 15.4102 17.6629 20.7171 22.2035 k = 0.3068 0.5314 0.2882 ( 510 PWs) bands (ev): -0.7969 3.6868 4.2521 7.0963 8.3285 15.4518 20.5345 21.3281 24.2811 k = 0.9204 0.0000-0.1729 ( 520 PWs) bands (ev): -0.2080 1.0348 5.4023 8.8145 10.2979 15.4102 17.6628 20.7174 22.2038 k = 0.7670-0.2657-0.0576 ( 510 PWs) bands (ev): 0.0623 1.3514 4.7645 6.5703 11.7842 15.8502 17.7794 22.0463 22.7018 k = 0.6136 0.0000 0.0576 ( 520 PWs) bands (ev): -1.3106 0.2726 9.6688 9.6989 11.1413 14.5887 16.6782 18.0863 23.4572 the Fermi energy is 12.8762 ev ! total energy = -25.40028415 Ry Harris-Foulkes estimate = -25.40028415 Ry estimated scf accuracy < 1.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86368503 Ry hartree contribution = 0.57397476 Ry xc contribution = -6.79037813 Ry ewald contribution = -31.04758849 Ry smearing contrib. (-TS) = 0.00002267 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000178 0.00000000 0.00332673 atom 2 type 1 force = -0.00000178 0.00000000 -0.00332673 Total force = 0.004705 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.48 0.00323107 0.00000000 0.00000001 475.31 0.00 0.00 0.00000000 0.00323094 0.00000000 0.00 475.29 0.00 0.00000001 0.00000000 0.00372415 0.00 0.00 547.84 number of scf cycles = 8 number of bfgs steps = 6 enthalpy old = -24.7504534451 Ry enthalpy new = -24.7512351147 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0826216887 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.537966424 0.000000000 0.738341290 -0.268984361 0.465895587 0.738342105 -0.268984361 -0.465895587 0.738342105 ATOMIC_POSITIONS (crystal) As 0.250054671 0.250054486 0.250054486 As -0.250054671 -0.250054486 -0.250054486 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000002 0.0000000 0.1692983), wk = 0.0625000 k( 2) = ( -0.1549038 -0.2683005 0.2821636), wk = 0.1250000 k( 3) = ( 0.3098082 0.5366009 -0.0564324), wk = 0.1250000 k( 4) = ( 0.1549042 0.2683005 0.0564329), wk = 0.1250000 k( 5) = ( -0.3098078 0.0000000 0.3950290), wk = 0.0625000 k( 6) = ( 0.1549042 0.8049014 0.0564329), wk = 0.1250000 k( 7) = ( 0.0000002 0.5366009 0.1692983), wk = 0.1250000 k( 8) = ( 0.6196162 0.0000000 -0.2821632), wk = 0.0625000 k( 9) = ( 0.4647122 -0.2683005 -0.1692978), wk = 0.1250000 k( 10) = ( 0.3098082 0.0000000 -0.0564324), wk = 0.0625000 k( 11) = ( 0.3098085 0.0000000 0.2821641), wk = 0.0625000 k( 12) = ( 0.1549045 -0.2683005 0.3950295), wk = 0.1250000 k( 13) = ( 0.6196165 0.5366009 0.0564334), wk = 0.1250000 k( 14) = ( 0.4647125 0.2683005 0.1692988), wk = 0.1250000 k( 15) = ( 0.0000005 0.0000000 0.5078948), wk = 0.0625000 k( 16) = ( 0.4647125 0.8049014 0.1692988), wk = 0.1250000 k( 17) = ( 0.3098085 0.5366009 0.2821641), wk = 0.1250000 k( 18) = ( 0.9294245 0.0000000 -0.1692973), wk = 0.0625000 k( 19) = ( 0.7745205 -0.2683005 -0.0564320), wk = 0.1250000 k( 20) = ( 0.6196165 0.0000000 0.0564334), wk = 0.0625000 extrapolated charge 10.01621, renormalised to 10.00000 total cpu time spent up to now is 19.95 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 total cpu time spent up to now is 20.62 secs total energy = -25.40280625 Ry Harris-Foulkes estimate = -25.41529220 Ry estimated scf accuracy < 0.00001553 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-07, avg # of iterations = 1.0 total cpu time spent up to now is 20.94 secs total energy = -25.40280711 Ry Harris-Foulkes estimate = -25.40280704 Ry estimated scf accuracy < 0.00000138 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 1.1 total cpu time spent up to now is 21.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.1693 ( 531 PWs) bands (ev): -4.8525 8.3463 10.6011 10.6012 13.3633 17.1014 17.1014 17.9638 19.0056 k =-0.1549-0.2683 0.2822 ( 522 PWs) bands (ev): -3.3869 3.6871 8.5644 12.3923 12.4204 13.6857 15.4917 19.3298 19.6670 k = 0.3098 0.5366-0.0564 ( 520 PWs) bands (ev): -1.2617 0.2656 9.3683 9.7683 11.2047 14.4936 16.5991 17.5840 22.7484 k = 0.1549 0.2683 0.0564 ( 525 PWs) bands (ev): -4.1504 5.7715 9.3011 10.3362 12.4496 16.3481 17.6597 17.9435 18.6933 k =-0.3098 0.0000 0.3950 ( 519 PWs) bands (ev): -2.6477 4.5265 7.6388 7.9535 8.8795 15.8152 18.8714 19.6773 20.0872 k = 0.1549 0.8049 0.0564 ( 510 PWs) bands (ev): 0.0094 1.4099 4.7961 6.3683 11.6894 15.9727 17.9206 21.8398 22.7801 k = 0.0000 0.5366 0.1693 ( 521 PWs) bands (ev): -1.9850 2.1714 6.9433 8.4848 12.4608 14.8727 18.4309 19.2055 20.2156 k = 0.6196 0.0000-0.2822 ( 510 PWs) bands (ev): -0.7943 3.6111 4.1655 7.2659 8.2527 15.2318 20.4054 21.3273 24.1948 k = 0.4647-0.2683-0.1693 ( 521 PWs) bands (ev): -1.9850 2.1713 6.9433 8.4848 12.4608 14.8727 18.4309 19.2054 20.2156 k = 0.3098 0.0000-0.0564 ( 525 PWs) bands (ev): -4.1503 5.7716 9.3011 10.3362 12.4497 16.3481 17.6598 17.9435 18.6932 k = 0.3098 0.0000 0.2822 ( 522 PWs) bands (ev): -3.3869 3.6872 8.5644 12.3922 12.4204 13.6856 15.4916 19.3298 19.6670 k = 0.1549-0.2683 0.3950 ( 519 PWs) bands (ev): -2.6477 4.5265 7.6388 7.9535 8.8795 15.8151 18.8714 19.6773 20.0871 k = 0.6196 0.5366 0.0564 ( 510 PWs) bands (ev): 0.0094 1.4099 4.7961 6.3683 11.6894 15.9727 17.9206 21.8398 22.7801 k = 0.4647 0.2683 0.1693 ( 521 PWs) bands (ev): -1.9850 2.1714 6.9433 8.4848 12.4608 14.8727 18.4309 19.2054 20.2155 k = 0.0000 0.0000 0.5079 ( 522 PWs) bands (ev): -2.5623 2.0236 10.9082 10.9083 12.9829 12.9829 13.9315 15.2955 23.2993 k = 0.4647 0.8049 0.1693 ( 520 PWs) bands (ev): -0.3542 0.8724 5.4795 8.9749 10.4795 15.5786 18.0180 20.8556 21.9380 k = 0.3098 0.5366 0.2822 ( 510 PWs) bands (ev): -0.7943 3.6111 4.1656 7.2660 8.2527 15.2318 20.4054 21.3274 24.1948 k = 0.9294 0.0000-0.1693 ( 520 PWs) bands (ev): -0.3542 0.8724 5.4795 8.9748 10.4794 15.5786 18.0179 20.8557 21.9381 k = 0.7745-0.2683-0.0564 ( 510 PWs) bands (ev): 0.0094 1.4100 4.7961 6.3683 11.6894 15.9726 17.9206 21.8398 22.7801 k = 0.6196 0.0000 0.0564 ( 520 PWs) bands (ev): -1.2617 0.2656 9.3683 9.7682 11.2046 14.4936 16.5990 17.5840 22.7484 the Fermi energy is 13.0402 ev ! total energy = -25.40280717 Ry Harris-Foulkes estimate = -25.40280716 Ry estimated scf accuracy < 5.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.83164725 Ry hartree contribution = 0.57864485 Ry xc contribution = -6.78882922 Ry ewald contribution = -31.02428816 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000025 0.00000000 -0.00020164 atom 2 type 1 force = 0.00000025 0.00000000 0.00020164 Total force = 0.000285 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 493.60 0.00328225 0.00000000 0.00000000 482.84 0.00 0.00 0.00000000 0.00328219 0.00000000 0.00 482.83 0.00 0.00000000 0.00000000 0.00350182 0.00 0.00 515.13 number of scf cycles = 9 number of bfgs steps = 7 enthalpy old = -24.7512351147 Ry enthalpy new = -24.7527043124 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0604954210 bohr new conv_thr = 0.0000000202 Ry CELL_PARAMETERS (alat) 0.533460765 0.000000000 0.749195756 -0.266730401 0.461991457 0.749195777 -0.266730401 -0.461991457 0.749195777 ATOMIC_POSITIONS (crystal) As 0.250498591 0.250497438 0.250497438 As -0.250498591 -0.250497438 -0.250497438 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1668456), wk = 0.0625000 k( 2) = ( -0.1562127 -0.2705678 0.2780760), wk = 0.1250000 k( 3) = ( 0.3124253 0.5411355 -0.0556152), wk = 0.1250000 k( 4) = ( 0.1562127 0.2705678 0.0556152), wk = 0.1250000 k( 5) = ( -0.3124253 0.0000000 0.3893063), wk = 0.0625000 k( 6) = ( 0.1562127 0.8117033 0.0556152), wk = 0.1250000 k( 7) = ( 0.0000000 0.5411355 0.1668456), wk = 0.1250000 k( 8) = ( 0.6248507 0.0000000 -0.2780760), wk = 0.0625000 k( 9) = ( 0.4686380 -0.2705678 -0.1668456), wk = 0.1250000 k( 10) = ( 0.3124253 0.0000000 -0.0556152), wk = 0.0625000 k( 11) = ( 0.3124254 0.0000000 0.2780760), wk = 0.0625000 k( 12) = ( 0.1562127 -0.2705678 0.3893063), wk = 0.1250000 k( 13) = ( 0.6248507 0.5411355 0.0556152), wk = 0.1250000 k( 14) = ( 0.4686380 0.2705678 0.1668456), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.5005367), wk = 0.0625000 k( 16) = ( 0.4686380 0.8117033 0.1668456), wk = 0.1250000 k( 17) = ( 0.3124254 0.5411355 0.2780760), wk = 0.1250000 k( 18) = ( 0.9372760 0.0000000 -0.1668456), wk = 0.0625000 k( 19) = ( 0.7810634 -0.2705678 -0.0556152), wk = 0.1250000 k( 20) = ( 0.6248507 0.0000000 0.0556152), wk = 0.0625000 extrapolated charge 9.97764, renormalised to 10.00000 total cpu time spent up to now is 21.55 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.09E-08, avg # of iterations = 1.0 total cpu time spent up to now is 22.54 secs total energy = -25.40161465 Ry Harris-Foulkes estimate = -25.38438059 Ry estimated scf accuracy < 0.00000611 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.11E-08, avg # of iterations = 2.0 total cpu time spent up to now is 22.88 secs total energy = -25.40161552 Ry Harris-Foulkes estimate = -25.40161560 Ry estimated scf accuracy < 0.00000083 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.28E-09, avg # of iterations = 1.0 total cpu time spent up to now is 23.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.1668 ( 531 PWs) bands (ev): -4.8492 8.1331 10.7959 10.7959 13.5013 17.1674 17.1674 18.1539 18.8605 k =-0.1562-0.2706 0.2781 ( 522 PWs) bands (ev): -3.3816 3.7813 8.3640 12.4581 12.5504 13.8285 15.6051 19.1699 19.9387 k = 0.3124 0.5411-0.0556 ( 520 PWs) bands (ev): -1.1918 0.3011 9.2038 9.8753 11.3064 14.4956 16.6218 17.2880 22.3118 k = 0.1562 0.2706 0.0556 ( 525 PWs) bands (ev): -4.1246 5.8777 9.4581 10.2492 12.4125 16.2578 17.4384 17.8851 18.7229 k =-0.3124 0.0000 0.3893 ( 519 PWs) bands (ev): -2.6621 4.4108 7.7182 8.1483 8.9368 15.8447 19.0453 19.9299 20.3718 k = 0.1562 0.8117 0.0556 ( 510 PWs) bands (ev): 0.0129 1.4959 4.8570 6.2689 11.6740 16.1197 18.1051 21.7362 22.7352 k = 0.0000 0.5411 0.1668 ( 521 PWs) bands (ev): -1.9356 2.2592 6.9631 8.4592 12.3184 14.7163 18.4624 19.3654 20.3274 k = 0.6249 0.0000-0.2781 ( 510 PWs) bands (ev): -0.7528 3.6025 4.1444 7.4386 8.2434 15.1422 20.3770 21.3927 24.1634 k = 0.4686-0.2706-0.1668 ( 521 PWs) bands (ev): -1.9356 2.2591 6.9631 8.4592 12.3184 14.7163 18.4624 19.3654 20.3274 k = 0.3124 0.0000-0.0556 ( 525 PWs) bands (ev): -4.1246 5.8777 9.4581 10.2492 12.4125 16.2578 17.4384 17.8851 18.7229 k = 0.3124 0.0000 0.2781 ( 522 PWs) bands (ev): -3.3815 3.7813 8.3640 12.4581 12.5504 13.8285 15.6051 19.1699 19.9387 k = 0.1562-0.2706 0.3893 ( 519 PWs) bands (ev): -2.6621 4.4108 7.7182 8.1483 8.9368 15.8446 19.0453 19.9299 20.3717 k = 0.6249 0.5411 0.0556 ( 510 PWs) bands (ev): 0.0129 1.4959 4.8570 6.2689 11.6740 16.1197 18.1051 21.7362 22.7352 k = 0.4686 0.2706 0.1668 ( 521 PWs) bands (ev): -1.9356 2.2592 6.9631 8.4592 12.3184 14.7163 18.4624 19.3654 20.3274 k = 0.0000 0.0000 0.5005 ( 522 PWs) bands (ev): -2.6209 1.8577 11.1314 11.1314 13.1680 13.1680 14.2630 15.6115 23.2536 k = 0.4686 0.8117 0.1668 ( 520 PWs) bands (ev): -0.4255 0.7974 5.5811 9.1454 10.6726 15.7676 18.3569 20.9254 21.9305 k = 0.3124 0.5411 0.2781 ( 510 PWs) bands (ev): -0.7528 3.6025 4.1444 7.4386 8.2434 15.1422 20.3770 21.3927 24.1634 k = 0.9373 0.0000-0.1668 ( 520 PWs) bands (ev): -0.4255 0.7974 5.5811 9.1453 10.6726 15.7676 18.3569 20.9254 21.9305 k = 0.7811-0.2706-0.0556 ( 510 PWs) bands (ev): 0.0129 1.4959 4.8570 6.2689 11.6740 16.1197 18.1051 21.7362 22.7352 k = 0.6249 0.0000 0.0556 ( 520 PWs) bands (ev): -1.1918 0.3012 9.2038 9.8752 11.3064 14.4956 16.6217 17.2880 22.3118 the Fermi energy is 13.2253 ev ! total energy = -25.40161556 Ry Harris-Foulkes estimate = -25.40161556 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 11.85910167 Ry hartree contribution = 0.57721582 Ry xc contribution = -6.79272717 Ry ewald contribution = -31.04522400 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000132 0.00000000 -0.00216290 atom 2 type 1 force = 0.00000132 0.00000000 0.00216290 Total force = 0.003059 Total SCF correction = 0.000021 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.11 0.00340909 0.00000000 -0.00000001 501.49 0.00 0.00 0.00000000 0.00340906 0.00000000 0.00 501.49 0.00 -0.00000001 0.00000000 0.00336050 0.00 0.00 494.35 number of scf cycles = 10 number of bfgs steps = 8 enthalpy old = -24.7527043124 Ry enthalpy new = -24.7529632574 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0126565280 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.534272633 0.000000000 0.746915246 -0.267136636 0.462694851 0.746915489 -0.267136636 -0.462694851 0.746915489 ATOMIC_POSITIONS (crystal) As 0.250291699 0.250291009 0.250291009 As -0.250291699 -0.250291009 -0.250291009 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1673550), wk = 0.0625000 k( 2) = ( -0.1559752 -0.2701565 0.2789249), wk = 0.1250000 k( 3) = ( 0.3119505 0.5403129 -0.0557849), wk = 0.1250000 k( 4) = ( 0.1559753 0.2701565 0.0557850), wk = 0.1250000 k( 5) = ( -0.3119504 0.0000000 0.3904948), wk = 0.0625000 k( 6) = ( 0.1559753 0.8104694 0.0557850), wk = 0.1250000 k( 7) = ( 0.0000001 0.5403129 0.1673550), wk = 0.1250000 k( 8) = ( 0.6239009 0.0000000 -0.2789248), wk = 0.0625000 k( 9) = ( 0.4679257 -0.2701565 -0.1673548), wk = 0.1250000 k( 10) = ( 0.3119505 0.0000000 -0.0557849), wk = 0.0625000 k( 11) = ( 0.3119506 0.0000000 0.2789250), wk = 0.0625000 k( 12) = ( 0.1559754 -0.2701565 0.3904950), wk = 0.1250000 k( 13) = ( 0.6239010 0.5403129 0.0557852), wk = 0.1250000 k( 14) = ( 0.4679258 0.2701565 0.1673551), wk = 0.1250000 k( 15) = ( 0.0000002 0.0000000 0.5020649), wk = 0.0625000 k( 16) = ( 0.4679258 0.8104694 0.1673551), wk = 0.1250000 k( 17) = ( 0.3119506 0.5403129 0.2789250), wk = 0.1250000 k( 18) = ( 0.9358514 0.0000000 -0.1673547), wk = 0.0625000 k( 19) = ( 0.7798762 -0.2701565 -0.0557848), wk = 0.1250000 k( 20) = ( 0.6239010 0.0000000 0.0557852), wk = 0.0625000 extrapolated charge 9.99994, renormalised to 10.00000 total cpu time spent up to now is 23.49 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.5 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.14E-09, avg # of iterations = 1.6 total cpu time spent up to now is 24.33 secs total energy = -25.40164316 Ry Harris-Foulkes estimate = -25.40159762 Ry estimated scf accuracy < 0.00000072 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.1674 ( 531 PWs) bands (ev): -4.8471 8.1853 10.7638 10.7639 13.4857 17.1629 17.1629 18.1278 18.8989 k =-0.1560-0.2702 0.2789 ( 522 PWs) bands (ev): -3.3795 3.7693 8.4088 12.4650 12.5185 13.8082 15.5949 19.2121 19.8915 k = 0.3120 0.5403-0.0558 ( 520 PWs) bands (ev): -1.2017 0.2985 9.2423 9.8600 11.2941 14.5026 16.6273 17.3570 22.4070 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1268 5.8638 9.4328 10.2755 12.4268 16.2906 17.4894 17.9053 18.7263 k =-0.3120 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6558 4.4415 7.7083 8.1149 8.9306 15.8444 19.0208 19.8908 20.3291 k = 0.1560 0.8105 0.0558 ( 510 PWs) bands (ev): 0.0171 1.4843 4.8489 6.2929 11.6855 16.1010 18.0742 21.7709 22.7837 k = 0.0000 0.5403 0.1674 ( 521 PWs) bands (ev): -1.9417 2.2473 6.9643 8.4696 12.3564 14.7555 18.4642 19.3446 20.3159 k = 0.6239 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7565 3.6120 4.1512 7.4093 8.2521 15.1645 20.3943 21.3932 24.1883 k = 0.4679-0.2702-0.1674 ( 521 PWs) bands (ev): -1.9417 2.2473 6.9643 8.4696 12.3564 14.7554 18.4642 19.3445 20.3159 k = 0.3120 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1268 5.8638 9.4328 10.2755 12.4268 16.2905 17.4894 17.9053 18.7262 k = 0.3120 0.0000 0.2789 ( 522 PWs) bands (ev): -3.3795 3.7693 8.4088 12.4650 12.5185 13.8081 15.5949 19.2121 19.8915 k = 0.1560-0.2702 0.3905 ( 519 PWs) bands (ev): -2.6558 4.4415 7.7082 8.1149 8.9306 15.8444 19.0208 19.8908 20.3291 k = 0.6239 0.5403 0.0558 ( 510 PWs) bands (ev): 0.0171 1.4843 4.8489 6.2929 11.6855 16.1010 18.0742 21.7708 22.7838 k = 0.4679 0.2702 0.1674 ( 521 PWs) bands (ev): -1.9417 2.2473 6.9643 8.4695 12.3564 14.7555 18.4642 19.3445 20.3158 k = 0.0000 0.0000 0.5021 ( 522 PWs) bands (ev): -2.6059 1.8956 11.0938 11.0938 13.1381 13.1381 14.2068 15.5580 23.2748 k = 0.4679 0.8105 0.1674 ( 520 PWs) bands (ev): -0.4066 0.8170 5.5650 9.1172 10.6416 15.7391 18.3016 20.9301 21.9344 k = 0.3120 0.5403 0.2789 ( 510 PWs) bands (ev): -0.7565 3.6120 4.1512 7.4093 8.2521 15.1645 20.3943 21.3932 24.1883 k = 0.9359 0.0000-0.1674 ( 520 PWs) bands (ev): -0.4066 0.8170 5.5650 9.1171 10.6416 15.7391 18.3016 20.9301 21.9344 k = 0.7799-0.2702-0.0558 ( 510 PWs) bands (ev): 0.0171 1.4843 4.8489 6.2929 11.6855 16.1010 18.0742 21.7709 22.7838 k = 0.6239 0.0000 0.0558 ( 520 PWs) bands (ev): -1.2017 0.2985 9.2423 9.8600 11.2940 14.5025 16.6272 17.3570 22.4070 the Fermi energy is 13.4284 ev ! total energy = -25.40164317 Ry Harris-Foulkes estimate = -25.40164317 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = 11.85945783 Ry hartree contribution = 0.57720005 Ry xc contribution = -6.79273368 Ry ewald contribution = -31.04557643 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000082 0.00000000 -0.00127492 atom 2 type 1 force = 0.00000082 0.00000000 0.00127492 Total force = 0.001803 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.37 0.00339142 0.00000000 -0.00000001 498.90 0.00 0.00 0.00000000 0.00339139 0.00000000 0.00 498.89 0.00 -0.00000001 0.00000000 0.00340115 0.00 0.00 500.33 number of scf cycles = 11 number of bfgs steps = 9 enthalpy old = -24.7529632574 Ry enthalpy new = -24.7529946975 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0023787842 bohr new conv_thr = 0.0000000314 Ry CELL_PARAMETERS (alat) 0.534236597 0.000000000 0.746906599 -0.267118730 0.462663388 0.746906933 -0.267118730 -0.462663388 0.746906933 ATOMIC_POSITIONS (crystal) As 0.250185334 0.250184895 0.250184895 As -0.250185334 -0.250184895 -0.250184895 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1673569), wk = 0.0625000 k( 2) = ( -0.1559856 -0.2701748 0.2789281), wk = 0.1250000 k( 3) = ( 0.3119714 0.5403497 -0.0557855), wk = 0.1250000 k( 4) = ( 0.1559858 0.2701748 0.0557857), wk = 0.1250000 k( 5) = ( -0.3119713 0.0000000 0.3904993), wk = 0.0625000 k( 6) = ( 0.1559858 0.8105245 0.0557857), wk = 0.1250000 k( 7) = ( 0.0000001 0.5403497 0.1673569), wk = 0.1250000 k( 8) = ( 0.6239428 0.0000000 -0.2789279), wk = 0.0625000 k( 9) = ( 0.4679571 -0.2701748 -0.1673567), wk = 0.1250000 k( 10) = ( 0.3119714 0.0000000 -0.0557855), wk = 0.0625000 k( 11) = ( 0.3119716 0.0000000 0.2789283), wk = 0.0625000 k( 12) = ( 0.1559859 -0.2701748 0.3904995), wk = 0.1250000 k( 13) = ( 0.6239430 0.5403497 0.0557859), wk = 0.1250000 k( 14) = ( 0.4679573 0.2701748 0.1673571), wk = 0.1250000 k( 15) = ( 0.0000002 0.0000000 0.5020707), wk = 0.0625000 k( 16) = ( 0.4679573 0.8105245 0.1673571), wk = 0.1250000 k( 17) = ( 0.3119716 0.5403497 0.2789283), wk = 0.1250000 k( 18) = ( 0.9359143 0.0000000 -0.1673565), wk = 0.0625000 k( 19) = ( 0.7799287 -0.2701748 -0.0557853), wk = 0.1250000 k( 20) = ( 0.6239430 0.0000000 0.0557859), wk = 0.0625000 extrapolated charge 9.99853, renormalised to 10.00000 total cpu time spent up to now is 24.92 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.42E-09, avg # of iterations = 2.8 total cpu time spent up to now is 25.65 secs total energy = -25.40155156 Ry Harris-Foulkes estimate = -25.40041966 Ry estimated scf accuracy < 0.00000014 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-09, avg # of iterations = 1.0 total cpu time spent up to now is 25.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.1674 ( 531 PWs) bands (ev): -4.8462 8.1874 10.7667 10.7667 13.4899 17.1660 17.1660 18.1324 18.9001 k =-0.1560-0.2702 0.2789 ( 522 PWs) bands (ev): -3.3783 3.7716 8.4103 12.4774 12.5115 13.8112 15.5988 19.2151 19.8949 k = 0.3120 0.5403-0.0558 ( 520 PWs) bands (ev): -1.2001 0.3001 9.2439 9.8624 11.2967 14.5051 16.6306 17.3595 22.4089 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1257 5.8665 9.4353 10.2777 12.4291 16.2939 17.4916 17.9081 18.7294 k =-0.3120 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6546 4.4435 7.7105 8.1173 8.9328 15.8465 19.0244 19.8949 20.3339 k = 0.1560 0.8105 0.0558 ( 510 PWs) bands (ev): 0.0188 1.4863 4.8505 6.2943 11.6881 16.1044 18.0770 21.7743 22.7886 k = 0.0000 0.5403 0.1674 ( 521 PWs) bands (ev): -1.9403 2.2494 6.9662 8.4714 12.3587 14.7577 18.4671 19.3483 20.3197 k = 0.6239 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7548 3.6147 4.1520 7.4115 8.2542 15.1663 20.3977 21.3971 24.1925 k = 0.4680-0.2702-0.1674 ( 521 PWs) bands (ev): -1.9403 2.2494 6.9662 8.4713 12.3587 14.7577 18.4671 19.3483 20.3197 k = 0.3120 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1257 5.8666 9.4353 10.2777 12.4291 16.2938 17.4916 17.9081 18.7294 k = 0.3120 0.0000 0.2789 ( 522 PWs) bands (ev): -3.3783 3.7716 8.4102 12.4774 12.5115 13.8112 15.5987 19.2151 19.8949 k = 0.1560-0.2702 0.3905 ( 519 PWs) bands (ev): -2.6546 4.4435 7.7105 8.1173 8.9327 15.8465 19.0244 19.8949 20.3338 k = 0.6239 0.5403 0.0558 ( 510 PWs) bands (ev): 0.0188 1.4863 4.8505 6.2943 11.6881 16.1044 18.0770 21.7743 22.7886 k = 0.4680 0.2702 0.1674 ( 521 PWs) bands (ev): -1.9403 2.2494 6.9662 8.4713 12.3587 14.7577 18.4671 19.3483 20.3196 k = 0.0000 0.0000 0.5021 ( 522 PWs) bands (ev): -2.6047 1.8969 11.0967 11.0967 13.1409 13.1409 14.2109 15.5618 23.2783 k = 0.4680 0.8105 0.1674 ( 520 PWs) bands (ev): -0.4051 0.8183 5.5668 9.1196 10.6445 15.7424 18.3061 20.9331 21.9384 k = 0.3120 0.5403 0.2789 ( 510 PWs) bands (ev): -0.7548 3.6147 4.1520 7.4115 8.2542 15.1663 20.3977 21.3971 24.1925 k = 0.9359 0.0000-0.1674 ( 520 PWs) bands (ev): -0.4051 0.8183 5.5668 9.1196 10.6445 15.7424 18.3061 20.9331 21.9384 k = 0.7799-0.2702-0.0558 ( 510 PWs) bands (ev): 0.0188 1.4863 4.8505 6.2943 11.6881 16.1044 18.0770 21.7743 22.7886 k = 0.6239 0.0000 0.0558 ( 520 PWs) bands (ev): -1.2001 0.3002 9.2439 9.8624 11.2967 14.5051 16.6306 17.3595 22.4089 the Fermi energy is 13.4326 ev ! total energy = -25.40155156 Ry Harris-Foulkes estimate = -25.40155156 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86148274 Ry hartree contribution = 0.57704287 Ry xc contribution = -6.79296702 Ry ewald contribution = -31.04711921 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000051 0.00000000 -0.00080815 atom 2 type 1 force = 0.00000051 0.00000000 0.00080815 Total force = 0.001143 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.76 0.00339423 0.00000000 0.00000000 499.31 0.00 0.00 0.00000000 0.00339421 0.00000000 0.00 499.31 0.00 0.00000000 0.00000000 0.00340341 0.00 0.00 500.66 number of scf cycles = 12 number of bfgs steps = 10 enthalpy old = -24.7529946975 Ry enthalpy new = -24.7529983135 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0026166359 bohr new conv_thr = 0.0000000100 Ry CELL_PARAMETERS (alat) 0.534148581 0.000000000 0.747084300 -0.267074642 0.462586802 0.747084572 -0.267074642 -0.462586802 0.747084572 ATOMIC_POSITIONS (crystal) As 0.250077362 0.250077175 0.250077175 As -0.250077362 -0.250077175 -0.250077175 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1673171), wk = 0.0625000 k( 2) = ( -0.1560114 -0.2702196 0.2788618), wk = 0.1250000 k( 3) = ( 0.3120229 0.5404391 -0.0557723), wk = 0.1250000 k( 4) = ( 0.1560115 0.2702196 0.0557724), wk = 0.1250000 k( 5) = ( -0.3120228 0.0000000 0.3904064), wk = 0.0625000 k( 6) = ( 0.1560115 0.8106587 0.0557724), wk = 0.1250000 k( 7) = ( 0.0000001 0.5404391 0.1673171), wk = 0.1250000 k( 8) = ( 0.6240457 0.0000000 -0.2788616), wk = 0.0625000 k( 9) = ( 0.4680343 -0.2702196 -0.1673169), wk = 0.1250000 k( 10) = ( 0.3120229 0.0000000 -0.0557723), wk = 0.0625000 k( 11) = ( 0.3120230 0.0000000 0.2788619), wk = 0.0625000 k( 12) = ( 0.1560116 -0.2702196 0.3904066), wk = 0.1250000 k( 13) = ( 0.6240458 0.5404391 0.0557726), wk = 0.1250000 k( 14) = ( 0.4680344 0.2702196 0.1673172), wk = 0.1250000 k( 15) = ( 0.0000002 0.0000000 0.5019513), wk = 0.0625000 k( 16) = ( 0.4680344 0.8106587 0.1673172), wk = 0.1250000 k( 17) = ( 0.3120230 0.5404391 0.2788619), wk = 0.1250000 k( 18) = ( 0.9360687 0.0000000 -0.1673168), wk = 0.0625000 k( 19) = ( 0.7800573 -0.2702196 -0.0557721), wk = 0.1250000 k( 20) = ( 0.6240458 0.0000000 0.0557726), wk = 0.0625000 extrapolated charge 9.99907, renormalised to 10.00000 total cpu time spent up to now is 26.23 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.50E-09, avg # of iterations = 2.6 total cpu time spent up to now is 26.96 secs total energy = -25.40149382 Ry Harris-Foulkes estimate = -25.40078004 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 1.0 total cpu time spent up to now is 27.25 secs total energy = -25.40149382 Ry Harris-Foulkes estimate = -25.40149382 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-10, avg # of iterations = 1.2 total cpu time spent up to now is 27.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8458 8.1845 10.7710 10.7710 13.4936 17.1683 17.1683 18.1374 18.8977 k =-0.1560-0.2702 0.2789 ( 522 PWs) bands (ev): -3.3778 3.7739 8.4075 12.4896 12.5045 13.8147 15.6019 19.2134 19.9009 k = 0.3120 0.5404-0.0558 ( 520 PWs) bands (ev): -1.1984 0.3013 9.2418 9.8651 11.2993 14.5060 16.6323 17.3554 22.4024 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1249 5.8693 9.4389 10.2769 12.4293 16.2932 17.4889 17.9082 18.7309 k =-0.3120 0.0000 0.3904 ( 519 PWs) bands (ev): -2.6544 4.4421 7.7127 8.1214 8.9345 15.8479 19.0286 19.9005 20.3402 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0195 1.4884 4.8521 6.2931 11.6887 16.1079 18.0812 21.7736 22.7886 k = 0.0000 0.5404 0.1673 ( 521 PWs) bands (ev): -1.9390 2.2516 6.9672 8.4716 12.3571 14.7559 18.4688 19.3523 20.3229 k = 0.6240 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7535 3.6156 4.1518 7.4152 8.2548 15.1656 20.3983 21.3994 24.1931 k = 0.4680-0.2702-0.1673 ( 521 PWs) bands (ev): -1.9390 2.2516 6.9672 8.4715 12.3571 14.7559 18.4688 19.3523 20.3229 k = 0.3120 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1249 5.8693 9.4389 10.2769 12.4293 16.2932 17.4889 17.9082 18.7309 k = 0.3120 0.0000 0.2789 ( 522 PWs) bands (ev): -3.3778 3.7739 8.4075 12.4896 12.5045 13.8147 15.6019 19.2134 19.9009 k = 0.1560-0.2702 0.3904 ( 519 PWs) bands (ev): -2.6544 4.4421 7.7127 8.1214 8.9345 15.8479 19.0286 19.9005 20.3401 k = 0.6240 0.5404 0.0558 ( 510 PWs) bands (ev): 0.0195 1.4884 4.8521 6.2931 11.6887 16.1079 18.0812 21.7736 22.7886 k = 0.4680 0.2702 0.1673 ( 521 PWs) bands (ev): -1.9390 2.2517 6.9672 8.4715 12.3571 14.7559 18.4688 19.3523 20.3229 k = 0.0000 0.0000 0.5020 ( 522 PWs) bands (ev): -2.6053 1.8945 11.1015 11.1015 13.1450 13.1450 14.2180 15.5684 23.2787 k = 0.4680 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4057 0.8174 5.5691 9.1233 10.6487 15.7467 18.3134 20.9347 21.9404 k = 0.3120 0.5404 0.2789 ( 510 PWs) bands (ev): -0.7535 3.6156 4.1518 7.4152 8.2548 15.1656 20.3983 21.3994 24.1931 k = 0.9361 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4057 0.8174 5.5692 9.1233 10.6487 15.7467 18.3134 20.9347 21.9404 k = 0.7801-0.2702-0.0558 ( 510 PWs) bands (ev): 0.0195 1.4884 4.8521 6.2931 11.6887 16.1079 18.0812 21.7736 22.7886 k = 0.6240 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1984 0.3013 9.2418 9.8651 11.2993 14.5060 16.6323 17.3554 22.4024 the Fermi energy is 13.4364 ev ! total energy = -25.40149382 Ry Harris-Foulkes estimate = -25.40149382 Ry estimated scf accuracy < 1.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86273039 Ry hartree contribution = 0.57695731 Ry xc contribution = -6.79312027 Ry ewald contribution = -31.04807031 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000016 0.00000000 -0.00033963 atom 2 type 1 force = 0.00000016 0.00000000 0.00033963 Total force = 0.000480 Total SCF correction = 0.000002 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.02 0.00339767 0.00000000 0.00000000 499.81 0.00 0.00 0.00000000 0.00339766 0.00000000 0.00 499.81 0.00 0.00000000 0.00000000 0.00340187 0.00 0.00 500.43 number of scf cycles = 13 number of bfgs steps = 11 enthalpy old = -24.7529983135 Ry enthalpy new = -24.7530006085 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0019362713 bohr new conv_thr = 0.0000000100 Ry CELL_PARAMETERS (alat) 0.534088400 0.000000001 0.747246856 -0.267044370 0.462534354 0.747246986 -0.267044371 -0.462534354 0.747246985 ATOMIC_POSITIONS (crystal) As 0.249999043 0.249999015 0.249999015 As -0.249999043 -0.249999015 -0.249999015 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672807), wk = 0.0625000 k( 2) = ( -0.1560290 -0.2702502 0.2788012), wk = 0.1250000 k( 3) = ( 0.3120581 0.5405004 -0.0557602), wk = 0.1250000 k( 4) = ( 0.1560291 0.2702502 0.0557603), wk = 0.1250000 k( 5) = ( -0.3120581 0.0000000 0.3903216), wk = 0.0625000 k( 6) = ( 0.1560291 0.8107506 0.0557603), wk = 0.1250000 k( 7) = ( 0.0000000 0.5405004 0.1672807), wk = 0.1250000 k( 8) = ( 0.6241162 0.0000000 -0.2788011), wk = 0.0625000 k( 9) = ( 0.4680872 -0.2702502 -0.1672806), wk = 0.1250000 k( 10) = ( 0.3120581 0.0000000 -0.0557602), wk = 0.0625000 k( 11) = ( 0.3120582 0.0000000 0.2788012), wk = 0.0625000 k( 12) = ( 0.1560291 -0.2702502 0.3903217), wk = 0.1250000 k( 13) = ( 0.6241163 0.5405004 0.0557603), wk = 0.1250000 k( 14) = ( 0.4680872 0.2702502 0.1672808), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.5018421), wk = 0.0625000 k( 16) = ( 0.4680872 0.8107506 0.1672808), wk = 0.1250000 k( 17) = ( 0.3120582 0.5405004 0.2788012), wk = 0.1250000 k( 18) = ( 0.9361744 0.0000000 -0.1672806), wk = 0.0625000 k( 19) = ( 0.7801453 -0.2702502 -0.0557601), wk = 0.1250000 k( 20) = ( 0.6241163 0.0000000 0.0557603), wk = 0.0625000 extrapolated charge 9.99991, renormalised to 10.00000 total cpu time spent up to now is 27.81 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.59E-10, avg # of iterations = 3.3 total cpu time spent up to now is 28.53 secs total energy = -25.40148858 Ry Harris-Foulkes estimate = -25.40142035 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.77E-10, avg # of iterations = 1.0 total cpu time spent up to now is 28.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8459 8.1809 10.7735 10.7735 13.4950 17.1689 17.1689 18.1398 18.8948 k =-0.1560-0.2703 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7749 8.4044 12.4955 12.5006 13.8163 15.6029 19.2106 19.9045 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1976 0.3016 9.2392 9.8664 11.3004 14.5056 16.6321 17.3506 22.3957 k = 0.1560 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1246 5.8705 9.4409 10.2751 12.4285 16.2911 17.4854 17.9069 18.7308 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6548 4.4401 7.7137 8.1239 8.9350 15.8481 19.0306 19.9036 20.3435 k = 0.1560 0.8108 0.0558 ( 510 PWs) bands (ev): 0.0193 1.4894 4.8528 6.2915 11.6881 16.1095 18.0836 21.7714 22.7868 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9384 2.2526 6.9672 8.4709 12.3546 14.7532 18.4689 19.3540 20.3239 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7531 3.6153 4.1512 7.4175 8.2543 15.1641 20.3973 21.3996 24.1917 k = 0.4681-0.2703-0.1673 ( 521 PWs) bands (ev): -1.9384 2.2526 6.9672 8.4709 12.3546 14.7532 18.4689 19.3540 20.3239 k = 0.3121 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1246 5.8705 9.4409 10.2751 12.4285 16.2911 17.4854 17.9069 18.7308 k = 0.3121 0.0000 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7749 8.4043 12.4955 12.5006 13.8163 15.6029 19.2106 19.9045 k = 0.1560-0.2703 0.3903 ( 519 PWs) bands (ev): -2.6548 4.4400 7.7137 8.1239 8.9350 15.8481 19.0306 19.9036 20.3435 k = 0.6241 0.5405 0.0558 ( 510 PWs) bands (ev): 0.0193 1.4894 4.8528 6.2915 11.6880 16.1095 18.0836 21.7714 22.7868 k = 0.4681 0.2703 0.1673 ( 521 PWs) bands (ev): -1.9384 2.2526 6.9672 8.4709 12.3546 14.7532 18.4689 19.3540 20.3239 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6063 1.8919 11.1044 11.1044 13.1473 13.1473 14.2223 15.5724 23.2774 k = 0.4681 0.8108 0.1673 ( 520 PWs) bands (ev): -0.4069 0.8160 5.5704 9.1255 10.6511 15.7489 18.3177 20.9347 21.9403 k = 0.3121 0.5405 0.2788 ( 510 PWs) bands (ev): -0.7531 3.6153 4.1512 7.4175 8.2543 15.1641 20.3973 21.3996 24.1917 k = 0.9362 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4069 0.8160 5.5704 9.1255 10.6511 15.7489 18.3177 20.9347 21.9403 k = 0.7801-0.2703-0.0558 ( 510 PWs) bands (ev): 0.0193 1.4894 4.8528 6.2915 11.6880 16.1095 18.0836 21.7714 22.7868 k = 0.6241 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1976 0.3016 9.2391 9.8664 11.3004 14.5056 16.6321 17.3506 22.3957 the Fermi energy is 13.4377 ev ! total energy = -25.40148858 Ry Harris-Foulkes estimate = -25.40148858 Ry estimated scf accuracy < 6.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86283824 Ry hartree contribution = 0.57694553 Ry xc contribution = -6.79313371 Ry ewald contribution = -31.04814770 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000007 0.00000000 0.00000426 atom 2 type 1 force = 0.00000007 0.00000000 -0.00000426 Total force = 0.000006 Total SCF correction = 0.000001 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.02 0.00339902 0.00000000 0.00000000 500.01 0.00 0.00 0.00000000 0.00339902 0.00000000 0.00 500.01 0.00 0.00000000 0.00000000 0.00339907 0.00 0.00 500.02 bfgs converged in 14 scf cycles and 12 bfgs steps End of BFGS Geometry Optimization Final enthalpy = -24.7530011065 Ry CELL_PARAMETERS (alat) 0.534088400 0.000000001 0.747246856 -0.267044370 0.462534354 0.747246986 -0.267044371 -0.462534354 0.747246985 ATOMIC_POSITIONS (crystal) As 0.249999043 0.249999015 0.249999015 As -0.249999043 -0.249999015 -0.249999015 Writing output data file pwscf.save PWSCF : 29.01s CPU time, 33.44s wall time init_run : 0.22s CPU electrons : 24.87s CPU ( 14 calls, 1.776 s avg) update_pot : 1.13s CPU ( 13 calls, 0.087 s avg) forces : 0.56s CPU ( 14 calls, 0.040 s avg) stress : 1.44s CPU ( 14 calls, 0.103 s avg) Called by init_run: wfcinit : 0.11s CPU potinit : 0.04s CPU Called by electrons: c_bands : 21.09s CPU ( 61 calls, 0.346 s avg) sum_band : 3.52s CPU ( 61 calls, 0.058 s avg) v_of_rho : 0.15s CPU ( 68 calls, 0.002 s avg) mix_rho : 0.05s CPU ( 61 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.48s CPU ( 3020 calls, 0.000 s avg) cegterg : 20.73s CPU ( 1220 calls, 0.017 s avg) Called by *egterg: h_psi : 17.34s CPU ( 4245 calls, 0.004 s avg) g_psi : 0.41s CPU ( 3005 calls, 0.000 s avg) cdiaghg : 1.05s CPU ( 3825 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.25s CPU ( 4245 calls, 0.000 s avg) General routines calbec : 0.49s CPU ( 4805 calls, 0.000 s avg) cft3 : 0.13s CPU ( 294 calls, 0.000 s avg) cft3s : 17.43s CPU ( 70680 calls, 0.000 s avg) davcio : 0.04s CPU ( 4240 calls, 0.000 s avg) espresso-5.0.2/PW/examples/VCSexample/reference/As.vcs500.out0000644000700200004540000127520712053145630022621 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 3: 0 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 55 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 0.08218 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.24 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.07 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.1053 4.3672 5.8103 5.8103 8.3763 10.9345 11.7163 11.7165 16.4778 k =-0.1436-0.2488 0.2558 band energies (ev): -6.0372 0.2617 5.2399 5.5079 9.2633 10.3987 11.6102 13.5119 15.6363 k = 0.2873 0.4976-0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4772 13.7300 17.6631 k = 0.1436 0.2488 0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4284 10.7697 12.3697 13.8790 15.2983 k =-0.2873 0.0000 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6880 16.8165 k = 0.1436 0.7464 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2402 k = 0.0000 0.4976 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.5746 0.0000-0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7916 17.6328 18.3764 k = 0.4309-0.2488-0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9988 13.3681 15.9865 k = 0.2873 0.0000-0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4285 10.7694 12.3698 13.8792 15.2974 k = 0.2873 0.0000 0.2558 band energies (ev): -6.0372 0.2618 5.2399 5.5079 9.2633 10.3987 11.6090 13.5148 15.6552 k = 0.1436-0.2488 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6879 16.8166 k = 0.5746 0.4976 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2400 k = 0.4309 0.2488 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.0000 0.0000 0.4604 band energies (ev): -5.9719 0.7085 5.7288 5.7288 7.3744 10.0048 10.0050 11.9991 17.4416 k = 0.4309 0.7464 0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5757 11.9681 14.4003 17.7560 k = 0.2873 0.4976 0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7915 17.6328 18.3766 k = 0.8619 0.0000-0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5756 11.9686 14.4003 17.7392 k = 0.7182-0.2488-0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5629 13.2833 15.6264 17.2398 k = 0.5746 0.0000 0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4771 13.7300 17.6616 the Fermi energy is 9.6597 ev total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.36 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.0137 4.5096 5.9380 5.9381 8.4241 11.0300 11.7524 11.7528 16.5509 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6223 9.2928 10.5195 11.6919 13.5528 15.7069 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3682 -2.4877 4.7630 6.1415 7.8721 10.8059 12.5735 13.8146 17.7136 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1599 8.5304 10.7972 12.4587 13.9539 15.3382 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5614 1.1092 3.5498 4.2737 7.5078 10.4114 13.6941 13.7628 16.8964 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7309 -1.4913 2.9825 6.6809 7.7627 12.2948 13.0567 13.4189 16.0825 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0732 -1.5260 3.6852 3.7197 6.0134 10.0511 15.9001 17.7087 18.4680 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7308 -1.4913 2.9825 6.6810 7.7627 12.2949 13.0567 13.4189 16.0825 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1600 8.5304 10.7971 12.4587 13.9540 15.3373 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6224 9.2928 10.5195 11.6916 13.5551 15.7227 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5614 1.1093 3.5498 4.2736 7.5078 10.4114 13.6942 13.7628 16.8965 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7308 -1.4913 2.9826 6.6809 7.7627 12.2948 13.0568 13.4188 16.0825 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8778 0.8254 5.8543 5.8544 7.4017 10.0552 10.0553 12.1125 17.4008 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8693 -0.0639 2.4169 4.7578 7.5018 11.6692 12.0524 14.4661 17.7785 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0733 -1.5258 3.6852 3.7196 6.0134 10.0510 15.9001 17.7086 18.4681 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8693 -0.0638 2.4168 4.7579 7.5019 11.6692 12.0526 14.4660 17.7666 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7102 17.3371 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3682 -2.4878 4.7631 6.1415 7.8722 10.8059 12.5735 13.8146 17.7129 the Fermi energy is 9.9953 ev total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.67 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9927 4.5235 5.9705 5.9706 8.4388 11.0429 11.7623 11.7624 16.5663 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9214 0.3953 5.3529 5.6540 9.3021 10.5326 11.7025 13.5665 15.7205 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3451 -2.4672 4.7917 6.1569 7.8811 10.8174 12.5862 13.8272 17.7277 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5451 10.8073 12.4730 13.9643 15.3517 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5389 1.1307 3.5672 4.3006 7.5166 10.4234 13.7111 13.7777 16.9052 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8351 -1.8061 2.3285 4.2477 8.0558 11.6231 13.3241 15.7232 17.3514 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7088 -1.4682 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0501 -1.5020 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4808 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7088 -1.4681 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5452 10.8073 12.4730 13.9646 15.3517 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9214 0.3953 5.3530 5.6539 9.3020 10.5326 11.7023 13.5658 15.7172 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5389 1.1306 3.5672 4.3007 7.5166 10.4235 13.7111 13.7777 16.9053 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8350 -1.8061 2.3285 4.2477 8.0558 11.6232 13.3242 15.7233 17.3514 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7088 -1.4681 3.0037 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8546 0.8376 5.8877 5.8878 7.4151 10.0643 10.0644 12.1201 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5100 11.6863 12.0666 14.4791 17.7694 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0501 -1.5021 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4807 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5099 11.6863 12.0667 14.4792 17.7697 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8351 -1.8060 2.3285 4.2477 8.0558 11.6232 13.3241 15.7235 17.3514 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3452 -2.4671 4.7917 6.1569 7.8810 10.8174 12.5862 13.8273 17.7278 the Fermi energy is 10.0046 ev total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.11 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9952 4.5217 5.9677 5.9678 8.4362 11.0416 11.7604 11.7604 16.5651 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2998 10.5320 11.7016 13.5634 15.7173 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5861 13.8270 17.7266 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9622 15.3512 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7083 13.7754 16.9056 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9621 15.3512 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2997 10.5320 11.7016 13.5634 15.7174 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7082 13.7754 16.9055 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8578 0.8377 5.8849 5.8849 7.4114 10.0632 10.0632 12.1209 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7702 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7703 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7212 17.3501 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5860 13.8271 17.7266 the Fermi energy is 10.0034 ev total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-04 EPSF = 0.10E-03 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.570817497 0.000000000 0.795711934 -0.285408580 0.494342547 0.795711948 -0.285408580 -0.494342547 0.795711948 new unit-cell volume = 232.0699 (a.u.)^3 new positions in cryst coord As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 new positions in cart coord (alat unit) As 0.000000076 0.000000000 0.688416920 As -0.000000076 0.000000000 -0.688416920 Ekin = 0.00000000 Ry T = 0.0 K Etot = -24.60612476 CELL_PARAMETERS (alat) 0.570817497 0.000000000 0.795711934 -0.285408580 0.494342547 0.795711948 -0.285408580 -0.494342547 0.795711948 ATOMIC_POSITIONS (crystal) As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1570920), wk = 0.0625000 k( 2) = ( -0.1459895 -0.2528611 0.2618201), wk = 0.1250000 k( 3) = ( 0.2919790 0.5057222 -0.0523640), wk = 0.1250000 k( 4) = ( 0.1459895 0.2528611 0.0523640), wk = 0.1250000 k( 5) = ( -0.2919790 0.0000000 0.3665481), wk = 0.0625000 k( 6) = ( 0.1459895 0.7585833 0.0523640), wk = 0.1250000 k( 7) = ( 0.0000000 0.5057222 0.1570920), wk = 0.1250000 k( 8) = ( 0.5839579 0.0000000 -0.2618201), wk = 0.0625000 k( 9) = ( 0.4379684 -0.2528611 -0.1570921), wk = 0.1250000 k( 10) = ( 0.2919790 0.0000000 -0.0523640), wk = 0.0625000 k( 11) = ( 0.2919790 0.0000000 0.2618200), wk = 0.0625000 k( 12) = ( 0.1459895 -0.2528611 0.3665480), wk = 0.1250000 k( 13) = ( 0.5839579 0.5057222 0.0523639), wk = 0.1250000 k( 14) = ( 0.4379684 0.2528611 0.1570920), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4712761), wk = 0.0625000 k( 16) = ( 0.4379684 0.7585833 0.1570920), wk = 0.1250000 k( 17) = ( 0.2919790 0.5057222 0.2618200), wk = 0.1250000 k( 18) = ( 0.8759369 0.0000000 -0.1570921), wk = 0.0625000 k( 19) = ( 0.7299474 -0.2528611 -0.0523641), wk = 0.1250000 k( 20) = ( 0.5839579 0.0000000 0.0523639), wk = 0.0625000 extrapolated charge 9.42690, renormalised to 10.00000 total cpu time spent up to now is 2.72 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 3.39 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6558 5.5284 6.6402 6.6402 9.4213 12.0609 12.7037 12.7037 17.5234 k =-0.1460-0.2529 0.2618 band energies (ev): -5.5327 1.0317 6.1147 6.3538 10.2918 11.5499 12.5320 14.6236 16.8122 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8918 -1.9560 5.4519 6.9294 8.7842 11.8906 13.4426 14.9083 18.9511 k = 0.1460 0.2529 0.0524 band energies (ev): -6.0108 2.0290 5.6297 8.0781 9.3945 11.8371 13.5275 14.9819 16.4535 k =-0.2920 0.0000 0.3665 band energies (ev): -5.1172 1.8754 4.2084 4.8897 8.2877 11.3820 14.7640 14.8374 17.9807 k = 0.1460 0.7586 0.0524 band energies (ev): -3.3227 -1.2472 2.8707 4.9167 8.8918 12.6023 14.3193 16.8804 18.5095 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2796 -0.8790 3.6017 7.4644 8.6524 13.2929 14.1681 14.4688 17.1778 k = 0.5840 0.0000-0.2618 band energies (ev): -3.5617 -0.9081 4.2835 4.3923 6.7504 11.0211 16.9882 18.9473 19.6794 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2796 -0.8790 3.6017 7.4644 8.6524 13.2929 14.1681 14.4688 17.1778 k = 0.2920 0.0000-0.0524 band energies (ev): -6.0108 2.0290 5.6297 8.0781 9.3945 11.8371 13.5275 14.9820 16.4535 k = 0.2920 0.0000 0.2618 band energies (ev): -5.5327 1.0317 6.1147 6.3538 10.2918 11.5499 12.5320 14.6237 16.8122 k = 0.1460-0.2529 0.3665 band energies (ev): -5.1172 1.8754 4.2084 4.8897 8.2877 11.3820 14.7640 14.8374 17.9807 k = 0.5840 0.5057 0.0524 band energies (ev): -3.3227 -1.2472 2.8707 4.9167 8.8918 12.6023 14.3193 16.8804 18.5095 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2796 -0.8790 3.6017 7.4644 8.6524 13.2929 14.1680 14.4688 17.1778 k = 0.0000 0.0000 0.4713 band energies (ev): -5.4239 1.4627 6.5532 6.5532 8.4553 10.8648 10.8648 13.1788 18.6554 k = 0.4380 0.7586 0.1571 band energies (ev): -4.3554 0.5760 2.9882 5.4130 8.3313 12.7616 12.9279 15.6086 18.9036 k = 0.2920 0.5057 0.2618 band energies (ev): -3.5617 -0.9081 4.2836 4.3923 6.7504 11.0211 16.9882 18.9473 19.6794 k = 0.8759 0.0000-0.1571 band energies (ev): -4.3554 0.5760 2.9882 5.4130 8.3313 12.7616 12.9279 15.6086 18.9036 k = 0.7299-0.2529-0.0524 band energies (ev): -3.3227 -1.2472 2.8707 4.9167 8.8918 12.6023 14.3193 16.8804 18.5095 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8918 -1.9560 5.4518 6.9294 8.7842 11.8906 13.4426 14.9083 18.9511 the Fermi energy is 10.8076 ev total energy = -25.42251788 Ry Harris-Foulkes estimate = -25.06268604 Ry estimated scf accuracy < 0.00179453 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-05, avg # of iterations = 3.1 total cpu time spent up to now is 3.89 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.5676 5.5397 6.8118 6.8119 9.4993 12.0441 12.7151 12.7151 17.2952 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4252 1.1215 6.0502 6.5420 10.3083 11.4784 12.4325 14.6632 16.6494 k = 0.2920 0.5057-0.0524 band energies (ev): -3.7603 -1.8754 5.5977 6.8341 8.7043 11.8809 13.3033 14.7839 18.8576 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9237 2.1895 5.7607 8.0324 9.3093 11.8588 13.5326 14.9970 16.3297 k =-0.2920 0.0000 0.3665 band energies (ev): -4.9873 1.9978 4.1385 4.9781 8.1261 11.3336 14.8203 14.9509 17.7921 k = 0.1460 0.7586 0.0524 band energies (ev): -3.1518 -1.1234 2.8361 4.7809 8.8242 12.6314 14.2258 16.8961 18.4931 k = 0.0000 0.5057 0.1571 band energies (ev): -4.1709 -0.7349 3.6465 7.2997 8.6320 13.2472 14.2410 14.3494 17.0655 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4155 -0.7422 4.1998 4.3623 6.6166 10.9345 17.0253 18.9202 19.7287 k = 0.4380-0.2529-0.1571 band energies (ev): -4.1709 -0.7349 3.6465 7.2997 8.6320 13.2472 14.2410 14.3494 17.0655 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9237 2.1895 5.7607 8.0324 9.3093 11.8588 13.5326 14.9970 16.3297 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4252 1.1215 6.0502 6.5420 10.3083 11.4784 12.4325 14.6632 16.6494 k = 0.1460-0.2529 0.3665 band energies (ev): -4.9873 1.9978 4.1385 4.9781 8.1261 11.3336 14.8203 14.9509 17.7921 k = 0.5840 0.5057 0.0524 band energies (ev): -3.1518 -1.1234 2.8361 4.7809 8.8242 12.6314 14.2258 16.8961 18.4931 k = 0.4380 0.2529 0.1571 band energies (ev): -4.1709 -0.7349 3.6465 7.2997 8.6320 13.2472 14.2410 14.3494 17.0655 k = 0.0000 0.0000 0.4713 band energies (ev): -5.2671 1.3133 6.7219 6.7219 8.5847 10.8032 10.8032 12.9836 18.4646 k = 0.4380 0.7586 0.1571 band energies (ev): -4.1631 0.5574 2.9170 5.5267 8.2249 12.8344 12.9158 15.6643 18.6672 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4155 -0.7422 4.1998 4.3623 6.6166 10.9345 17.0253 18.9202 19.7287 k = 0.8759 0.0000-0.1571 band energies (ev): -4.1631 0.5574 2.9170 5.5267 8.2249 12.8344 12.9158 15.6643 18.6673 k = 0.7299-0.2529-0.0524 band energies (ev): -3.1518 -1.1234 2.8361 4.7809 8.8242 12.6314 14.2258 16.8961 18.4931 k = 0.5840 0.0000 0.0524 band energies (ev): -3.7603 -1.8755 5.5977 6.8341 8.7043 11.8809 13.3033 14.7839 18.8576 the Fermi energy is 10.7461 ev total energy = -25.42512921 Ry Harris-Foulkes estimate = -25.42560308 Ry estimated scf accuracy < 0.00109859 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 total cpu time spent up to now is 4.18 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6070 5.5252 6.7615 6.7615 9.4566 12.0250 12.6837 12.6837 17.2982 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4673 1.0861 6.0349 6.4872 10.2753 11.4717 12.4250 14.6243 16.6440 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8058 -1.9116 5.5486 6.8236 8.6900 11.8575 13.3015 14.7773 18.8375 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9628 2.1431 5.7150 8.0183 9.3005 11.8235 13.5090 14.9717 16.3098 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0326 1.9607 4.1197 4.9381 8.1270 11.3066 14.7863 14.9059 17.7969 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2026 -1.1657 2.8118 4.7760 8.8143 12.5981 14.2041 16.8689 18.4730 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2128 -0.7798 3.6094 7.3021 8.6148 13.2273 14.2031 14.3311 17.0588 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4618 -0.7941 4.2071 4.3232 6.6117 10.9109 16.9999 18.9014 19.6971 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2128 -0.7798 3.6094 7.3021 8.6148 13.2273 14.2031 14.3311 17.0588 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9628 2.1431 5.7150 8.0183 9.3005 11.8235 13.5090 14.9717 16.3098 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4673 1.0861 6.0349 6.4872 10.2753 11.4717 12.4250 14.6243 16.6440 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0326 1.9607 4.1197 4.9381 8.1270 11.3066 14.7863 14.9059 17.7969 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2026 -1.1657 2.8118 4.7760 8.8143 12.5982 14.2041 16.8689 18.4730 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2128 -0.7798 3.6094 7.3021 8.6148 13.2273 14.2031 14.3311 17.0588 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3171 1.3169 6.6706 6.6706 8.5293 10.7855 10.7855 12.9982 18.4512 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2184 0.5436 2.8947 5.4826 8.2133 12.7994 12.8939 15.6293 18.6700 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4618 -0.7941 4.2071 4.3232 6.6117 10.9109 16.9999 18.9014 19.6971 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2184 0.5436 2.8947 5.4826 8.2133 12.7994 12.8939 15.6293 18.6701 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2026 -1.1657 2.8118 4.7760 8.8143 12.5981 14.2041 16.8689 18.4730 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8058 -1.9116 5.5486 6.8236 8.6899 11.8575 13.3015 14.7773 18.8375 the Fermi energy is 10.7284 ev total energy = -25.42510288 Ry Harris-Foulkes estimate = -25.42518715 Ry estimated scf accuracy < 0.00020011 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.47 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6247 5.5136 6.7391 6.7391 9.4394 12.0145 12.6703 12.6703 17.2976 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4861 1.0688 6.0262 6.4636 10.2615 11.4645 12.4187 14.6087 16.6397 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8259 -1.9286 5.5275 6.8167 8.6820 11.8459 13.2971 14.7717 18.8288 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9804 2.1217 5.6948 8.0092 9.2935 11.8095 13.4964 14.9587 16.3022 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0527 1.9420 4.1106 4.9203 8.1242 11.2960 14.7706 14.8865 17.7951 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2248 -1.1852 2.8009 4.7712 8.8063 12.5839 14.1954 16.8556 18.4615 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2316 -0.8004 3.5938 7.2993 8.6042 13.2175 14.1868 14.3231 17.0527 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4825 -0.8164 4.2060 4.3059 6.6070 10.9021 16.9857 18.8910 19.6813 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2315 -0.8004 3.5938 7.2994 8.6042 13.2175 14.1868 14.3231 17.0527 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9804 2.1217 5.6948 8.0092 9.2935 11.8095 13.4964 14.9587 16.3022 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4861 1.0688 6.0262 6.4636 10.2615 11.4645 12.4186 14.6087 16.6397 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0527 1.9420 4.1106 4.9203 8.1242 11.2960 14.7706 14.8865 17.7951 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2248 -1.1852 2.8009 4.7712 8.8063 12.5839 14.1954 16.8556 18.4615 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2315 -0.8004 3.5938 7.2993 8.6042 13.2175 14.1868 14.3231 17.0527 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3387 1.3136 6.6481 6.6481 8.5083 10.7766 10.7766 12.9984 18.4470 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2420 0.5334 2.8851 5.4634 8.2067 12.7831 12.8822 15.6138 18.6696 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4825 -0.8164 4.2060 4.3059 6.6070 10.9021 16.9857 18.8910 19.6813 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2420 0.5334 2.8851 5.4634 8.2067 12.7831 12.8822 15.6138 18.6696 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2248 -1.1852 2.8009 4.7712 8.8063 12.5839 14.1954 16.8556 18.4615 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8259 -1.9286 5.5275 6.8167 8.6820 11.8459 13.2971 14.7717 18.8288 the Fermi energy is 10.7195 ev total energy = -25.42509438 Ry Harris-Foulkes estimate = -25.42511586 Ry estimated scf accuracy < 0.00003627 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 3.0 total cpu time spent up to now is 4.89 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6379 5.5046 6.7225 6.7225 9.4268 12.0066 12.6603 12.6603 17.2971 k =-0.1460-0.2529 0.2618 band energies (ev): -5.5000 1.0559 6.0197 6.4461 10.2513 11.4589 12.4137 14.5971 16.6364 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8408 -1.9412 5.5119 6.8116 8.6761 11.8373 13.2937 14.7674 18.8221 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9935 2.1058 5.6798 8.0022 9.2882 11.7992 13.4869 14.9488 16.2966 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0675 1.9279 4.1039 4.9071 8.1219 11.2883 14.7588 14.8721 17.7936 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2414 -1.1996 2.7928 4.7675 8.8002 12.5733 14.1891 16.8456 18.4528 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2455 -0.8156 3.5823 7.2972 8.5963 13.2101 14.1745 14.3174 17.0479 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4979 -0.8328 4.2050 4.2931 6.6034 10.8958 16.9750 18.8831 19.6695 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2455 -0.8156 3.5823 7.2972 8.5963 13.2101 14.1745 14.3174 17.0479 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9935 2.1058 5.6798 8.0022 9.2882 11.7992 13.4869 14.9488 16.2966 k = 0.2920 0.0000 0.2618 band energies (ev): -5.5000 1.0559 6.0197 6.4461 10.2513 11.4589 12.4137 14.5971 16.6364 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0675 1.9279 4.1039 4.9071 8.1219 11.2883 14.7588 14.8721 17.7936 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2414 -1.1996 2.7928 4.7675 8.8002 12.5733 14.1891 16.8456 18.4527 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2455 -0.8156 3.5823 7.2972 8.5963 13.2101 14.1745 14.3174 17.0479 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3548 1.3110 6.6314 6.6314 8.4931 10.7698 10.7698 12.9982 18.4441 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2596 0.5255 2.8781 5.4490 8.2018 12.7710 12.8735 15.6023 18.6692 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4979 -0.8328 4.2050 4.2931 6.6034 10.8958 16.9750 18.8831 19.6695 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2596 0.5255 2.8781 5.4490 8.2018 12.7710 12.8735 15.6023 18.6692 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2414 -1.1996 2.7928 4.7675 8.8002 12.5733 14.1891 16.8456 18.4528 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8408 -1.9412 5.5119 6.8116 8.6761 11.8373 13.2937 14.7674 18.8221 the Fermi energy is 10.7128 ev total energy = -25.42510747 Ry Harris-Foulkes estimate = -25.42510767 Ry estimated scf accuracy < 0.00000105 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-08, avg # of iterations = 1.1 total cpu time spent up to now is 5.18 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6375 5.5047 6.7230 6.7230 9.4272 12.0067 12.6607 12.6607 17.2970 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4996 1.0563 6.0198 6.4468 10.2517 11.4589 12.4138 14.5975 16.6363 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8403 -1.9408 5.5124 6.8116 8.6762 11.8374 13.2937 14.7674 18.8223 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9931 2.1063 5.6804 8.0023 9.2882 11.7996 13.4871 14.9491 16.2968 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0670 1.9283 4.1040 4.9075 8.1218 11.2885 14.7592 14.8726 17.7934 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2408 -1.1992 2.7930 4.7675 8.8002 12.5736 14.1893 16.8459 18.4529 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2451 -0.8152 3.5827 7.2970 8.5963 13.2103 14.1750 14.3176 17.0479 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4975 -0.8322 4.2048 4.2936 6.6034 10.8960 16.9753 18.8832 19.6698 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2451 -0.8152 3.5827 7.2970 8.5963 13.2103 14.1750 14.3176 17.0479 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9931 2.1063 5.6804 8.0023 9.2882 11.7996 13.4871 14.9491 16.2968 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4996 1.0563 6.0198 6.4468 10.2517 11.4589 12.4138 14.5975 16.6364 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0670 1.9283 4.1040 4.9075 8.1218 11.2885 14.7592 14.8726 17.7934 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2408 -1.1992 2.7930 4.7675 8.8002 12.5737 14.1893 16.8459 18.4529 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2451 -0.8152 3.5827 7.2970 8.5963 13.2103 14.1750 14.3176 17.0479 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3542 1.3108 6.6320 6.6320 8.4937 10.7700 10.7700 12.9979 18.4442 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2590 0.5255 2.8783 5.4495 8.2019 12.7713 12.8737 15.6026 18.6691 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4975 -0.8322 4.2048 4.2936 6.6034 10.8960 16.9753 18.8832 19.6698 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2590 0.5255 2.8783 5.4495 8.2018 12.7713 12.8737 15.6026 18.6691 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2408 -1.1992 2.7930 4.7675 8.8002 12.5736 14.1893 16.8459 18.4529 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8403 -1.9408 5.5124 6.8116 8.6762 11.8374 13.2937 14.7674 18.8223 the Fermi energy is 10.7130 ev total energy = -25.42510719 Ry Harris-Foulkes estimate = -25.42510748 Ry estimated scf accuracy < 0.00000055 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.47E-09, avg # of iterations = 2.0 total cpu time spent up to now is 5.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.1571 ( 531 PWs) bands (ev): -6.6362 5.5053 6.7247 6.7247 9.4284 12.0072 12.6618 12.6618 17.2969 k =-0.1460-0.2529 0.2618 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.2920 0.5057-0.0524 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1460 0.2529 0.0524 ( 525 PWs) bands (ev): -5.9918 2.1079 5.6819 8.0028 9.2885 11.8007 13.4880 14.9501 16.2973 k =-0.2920 0.0000 0.3665 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1046 4.9089 8.1218 11.2893 14.7604 14.8740 17.7933 k = 0.1460 0.7586 0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7677 8.8006 12.5747 14.1899 16.8468 18.4537 k = 0.0000 0.5057 0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8136 3.5839 7.2970 8.5969 13.2110 14.1763 14.3181 17.0482 k = 0.5840 0.0000-0.2618 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8967 16.9763 18.8839 19.6708 k = 0.4380-0.2529-0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8136 3.5839 7.2970 8.5969 13.2110 14.1763 14.3181 17.0482 k = 0.2920 0.0000-0.0524 ( 525 PWs) bands (ev): -5.9918 2.1079 5.6819 8.0028 9.2885 11.8007 13.4880 14.9501 16.2973 k = 0.2920 0.0000 0.2618 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.1460-0.2529 0.3665 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1046 4.9089 8.1218 11.2893 14.7604 14.8740 17.7933 k = 0.5840 0.5057 0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7677 8.8006 12.5747 14.1899 16.8468 18.4537 k = 0.4380 0.2529 0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8136 3.5839 7.2970 8.5969 13.2110 14.1763 14.3181 17.0482 k = 0.0000 0.0000 0.4713 ( 522 PWs) bands (ev): -5.3526 1.3108 6.6337 6.6337 8.4953 10.7707 10.7707 12.9974 18.4444 k = 0.4380 0.7586 0.1571 ( 520 PWs) bands (ev): -4.2571 0.5261 2.8789 5.4510 8.2022 12.7724 12.8746 15.6037 18.6690 k = 0.2920 0.5057 0.2618 ( 510 PWs) bands (ev): -3.4959 -0.8305 4.2046 4.2949 6.6035 10.8967 16.9763 18.8839 19.6708 k = 0.8759 0.0000-0.1571 ( 520 PWs) bands (ev): -4.2571 0.5261 2.8789 5.4510 8.2022 12.7724 12.8746 15.6037 18.6690 k = 0.7299-0.2529-0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7677 8.8006 12.5747 14.1899 16.8468 18.4537 k = 0.5840 0.0000 0.0524 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 the Fermi energy is 10.7136 ev ! total energy = -25.42510726 Ry Harris-Foulkes estimate = -25.42510726 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000014 0.00000000 -0.13714979 atom 2 type 1 force = -0.00000014 0.00000000 0.13714979 Total force = 0.193959 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 299.80 0.00234213 0.00000000 0.00000000 344.54 0.00 0.00 0.00000000 0.00234213 0.00000000 0.00 344.54 0.00 0.00000000 0.00000000 0.00142965 0.00 0.00 210.31 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.551670563 0.000000000 0.751638469 -0.275835161 0.477760959 0.751638512 -0.275835161 -0.477760959 0.751638512 new unit-cell volume = 204.7563 (a.u.)^3 new positions in cryst coord As 0.283819437 0.283819500 0.283819500 As -0.283819437 -0.283819500 -0.283819500 new positions in cart coord (alat unit) As 0.000000034 0.000000000 0.639988941 As -0.000000034 0.000000000 -0.639988941 Ekin = 0.03043283 Ry T = 1067.8 K Etot = -24.60588466 CELL_PARAMETERS (alat) 0.551670563 0.000000000 0.751638469 -0.275835161 0.477760959 0.751638512 -0.275835161 -0.477760959 0.751638512 ATOMIC_POSITIONS (crystal) As 0.283819437 0.283819500 0.283819500 As -0.283819437 -0.283819500 -0.283819500 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1663033), wk = 0.0625000 k( 2) = ( -0.1510563 -0.2616371 0.2771723), wk = 0.1250000 k( 3) = ( 0.3021127 0.5232742 -0.0554345), wk = 0.1250000 k( 4) = ( 0.1510564 0.2616371 0.0554344), wk = 0.1250000 k( 5) = ( -0.3021127 0.0000000 0.3880412), wk = 0.0625000 k( 6) = ( 0.1510564 0.7849114 0.0554344), wk = 0.1250000 k( 7) = ( 0.0000000 0.5232742 0.1663033), wk = 0.1250000 k( 8) = ( 0.6042254 0.0000000 -0.2771723), wk = 0.0625000 k( 9) = ( 0.4531691 -0.2616371 -0.1663034), wk = 0.1250000 k( 10) = ( 0.3021127 0.0000000 -0.0554345), wk = 0.0625000 k( 11) = ( 0.3021127 0.0000000 0.2771722), wk = 0.0625000 k( 12) = ( 0.1510564 -0.2616371 0.3880411), wk = 0.1250000 k( 13) = ( 0.6042254 0.5232742 0.0554344), wk = 0.1250000 k( 14) = ( 0.4531691 0.2616371 0.1663033), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4989100), wk = 0.0625000 k( 16) = ( 0.4531691 0.7849114 0.1663033), wk = 0.1250000 k( 17) = ( 0.3021127 0.5232742 0.2771722), wk = 0.1250000 k( 18) = ( 0.9063381 0.0000000 -0.1663034), wk = 0.0625000 k( 19) = ( 0.7552818 -0.2616371 -0.0554345), wk = 0.1250000 k( 20) = ( 0.6042254 0.0000000 0.0554344), wk = 0.0625000 extrapolated charge 8.66609, renormalised to 10.00000 total cpu time spent up to now is 5.81 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 total cpu time spent up to now is 6.53 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.6692 8.0158 8.5086 8.5086 11.9857 14.6678 15.0647 15.0647 19.5487 k =-0.1511-0.2616 0.2772 band energies (ev): -4.3983 2.6793 8.0236 8.3741 12.6928 14.0795 14.3839 17.2351 19.3730 k = 0.3021 0.5233-0.0554 band energies (ev): -2.5945 -0.5776 7.3161 8.7949 10.9074 14.6171 15.3460 17.5415 21.8793 k = 0.1511 0.2616 0.0554 band energies (ev): -4.9904 3.9869 7.3934 10.2297 11.5242 14.4895 16.1566 17.5094 19.0453 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8646 3.8773 5.7795 6.4531 9.9797 13.7037 17.2297 17.7018 20.3542 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7969 0.2786 4.2086 6.4696 10.9275 14.9611 16.6326 19.8116 21.3477 k = 0.0000 0.5233 0.1663 band energies (ev): -3.0641 0.7552 5.2052 9.1719 10.9000 15.6127 16.8861 17.0181 19.7275 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1456 0.8032 5.8043 5.8198 8.4109 13.3675 19.6481 21.8298 22.6389 k = 0.4532-0.2616-0.1663 band energies (ev): -3.0641 0.7552 5.2052 9.1719 10.9000 15.6127 16.8861 17.0181 19.7275 k = 0.3021 0.0000-0.0554 band energies (ev): -4.9904 3.9869 7.3934 10.2297 11.5242 14.4895 16.1566 17.5094 19.0453 k = 0.3021 0.0000 0.2772 band energies (ev): -4.3983 2.6793 8.0236 8.3741 12.6928 14.0795 14.3838 17.2351 19.3730 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8646 3.8773 5.7795 6.4531 9.9797 13.7037 17.2297 17.7018 20.3542 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7969 0.2786 4.2086 6.4696 10.9275 14.9611 16.6326 19.8116 21.3477 k = 0.4532 0.2616 0.1663 band energies (ev): -3.0641 0.7552 5.2052 9.1719 10.9000 15.6127 16.8861 17.0181 19.7275 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0945 2.8646 8.4070 8.4070 11.0901 12.7219 12.7219 15.5476 21.5981 k = 0.4532 0.7849 0.1663 band energies (ev): -2.8254 2.0724 4.3125 7.1161 10.1920 14.9717 15.4814 18.5000 21.3795 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1456 0.8032 5.8043 5.8198 8.4109 13.3675 19.6481 21.8298 22.6389 k = 0.9063 0.0000-0.1663 band energies (ev): -2.8254 2.0724 4.3125 7.1161 10.1919 14.9717 15.4814 18.5000 21.3795 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7969 0.2786 4.2086 6.4696 10.9275 14.9611 16.6326 19.8116 21.3477 k = 0.6042 0.0000 0.0554 band energies (ev): -2.5945 -0.5776 7.3161 8.7949 10.9074 14.6170 15.3460 17.5415 21.8794 the Fermi energy is 12.7130 ev total energy = -25.36408969 Ry Harris-Foulkes estimate = -24.44605457 Ry estimated scf accuracy < 0.00992653 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-05, avg # of iterations = 2.9 total cpu time spent up to now is 7.00 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.6431 7.8744 8.7329 8.7329 12.0608 14.5192 14.9599 14.9601 18.9781 k =-0.1511-0.2616 0.2772 band energies (ev): -4.3349 2.7123 7.7937 8.6577 12.5321 13.8481 14.0302 17.1367 19.0155 k = 0.3021 0.5233-0.0554 band energies (ev): -2.4800 -0.5693 7.4889 8.5088 10.5910 14.4696 14.9589 17.2291 21.5804 k = 0.1511 0.2616 0.0554 band energies (ev): -4.9665 4.1807 7.5276 9.9707 11.2529 14.3817 16.0654 17.3806 18.7532 k =-0.3021 0.0000 0.3880 band energies (ev): -3.7537 3.9723 5.5781 6.4929 9.5057 13.4201 17.2203 17.8409 19.8717 k = 0.1511 0.7849 0.0554 band energies (ev): -1.5813 0.3765 3.9832 6.0863 10.7016 14.8685 16.2760 19.7487 21.2656 k = 0.0000 0.5233 0.1663 band energies (ev): -2.9973 0.8979 5.1815 8.6912 10.7821 15.3701 16.5157 17.0744 19.4104 k = 0.6042 0.0000-0.2772 band energies (ev): -1.9975 1.0212 5.2893 5.8248 8.0407 13.0252 19.6108 21.5899 22.7689 k = 0.4532-0.2616-0.1663 band energies (ev): -2.9973 0.8979 5.1815 8.6912 10.7821 15.3701 16.5157 17.0744 19.4104 k = 0.3021 0.0000-0.0554 band energies (ev): -4.9665 4.1807 7.5276 9.9707 11.2529 14.3816 16.0654 17.3806 18.7532 k = 0.3021 0.0000 0.2772 band energies (ev): -4.3349 2.7123 7.7937 8.6577 12.5321 13.8481 14.0302 17.1367 19.0155 k = 0.1511-0.2616 0.3880 band energies (ev): -3.7537 3.9723 5.5781 6.4929 9.5057 13.4201 17.2203 17.8409 19.8717 k = 0.6042 0.5233 0.0554 band energies (ev): -1.5813 0.3765 3.9832 6.0863 10.7016 14.8685 16.2760 19.7487 21.2656 k = 0.4532 0.2616 0.1663 band energies (ev): -2.9973 0.8979 5.1815 8.6912 10.7821 15.3701 16.5157 17.0744 19.4104 k = 0.0000 0.0000 0.4989 band energies (ev): -3.9204 2.4446 8.6257 8.6257 11.2151 12.4608 12.4608 14.9430 21.1677 k = 0.4532 0.7849 0.1663 band energies (ev): -2.5501 1.8049 4.1127 7.2079 9.8382 14.8350 15.5011 18.4784 20.7898 k = 0.3021 0.5233 0.2772 band energies (ev): -1.9975 1.0212 5.2893 5.8248 8.0407 13.0252 19.6108 21.5899 22.7689 k = 0.9063 0.0000-0.1663 band energies (ev): -2.5501 1.8049 4.1127 7.2079 9.8382 14.8350 15.5011 18.4784 20.7898 k = 0.7553-0.2616-0.0554 band energies (ev): -1.5813 0.3765 3.9832 6.0863 10.7016 14.8685 16.2760 19.7487 21.2656 k = 0.6042 0.0000 0.0554 band energies (ev): -2.4800 -0.5693 7.4889 8.5089 10.5910 14.4696 14.9589 17.2291 21.5804 the Fermi energy is 12.5184 ev total energy = -25.37482416 Ry Harris-Foulkes estimate = -25.37663921 Ry estimated scf accuracy < 0.00396947 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.31 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7110 7.8596 8.6415 8.6415 11.9754 14.4786 14.9061 14.9062 18.9892 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4081 2.6526 7.7648 8.5512 12.4885 13.8304 14.0332 17.0689 19.0004 k = 0.3021 0.5233-0.0554 band energies (ev): -2.5614 -0.6287 7.3987 8.4860 10.5776 14.4275 14.9636 17.2161 21.5423 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0338 4.0959 7.4462 9.9537 11.2396 14.3191 16.0300 17.3484 18.7027 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8338 3.9157 5.5292 6.4238 9.5232 13.3741 17.1621 17.7480 19.8929 k = 0.1511 0.7849 0.0554 band energies (ev): -1.6762 0.3032 3.9480 6.0811 10.6847 14.8118 16.2449 19.6954 21.2274 k = 0.0000 0.5233 0.1663 band energies (ev): -3.0704 0.8190 5.1128 8.7066 10.7481 15.3445 16.4876 16.9943 19.4055 k = 0.6042 0.0000-0.2772 band energies (ev): -2.0796 0.9188 5.3182 5.7575 8.0346 12.9863 19.5701 21.5650 22.6959 k = 0.4532-0.2616-0.1663 band energies (ev): -3.0704 0.8190 5.1128 8.7066 10.7481 15.3445 16.4876 16.9943 19.4055 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0338 4.0959 7.4462 9.9537 11.2396 14.3191 16.0300 17.3484 18.7027 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4081 2.6526 7.7648 8.5512 12.4885 13.8304 14.0332 17.0689 19.0004 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8338 3.9157 5.5292 6.4238 9.5232 13.3741 17.1621 17.7480 19.8929 k = 0.6042 0.5233 0.0554 band energies (ev): -1.6762 0.3032 3.9480 6.0811 10.6847 14.8118 16.2449 19.6954 21.2274 k = 0.4532 0.2616 0.1663 band energies (ev): -3.0704 0.8190 5.1128 8.7066 10.7481 15.3445 16.4876 16.9943 19.4055 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0116 2.4582 8.5301 8.5301 11.1005 12.4391 12.4392 14.9948 21.1382 k = 0.4532 0.7849 0.1663 band energies (ev): -2.6581 1.8080 4.0580 7.1301 9.8259 14.8010 15.4334 18.4156 20.8043 k = 0.3021 0.5233 0.2772 band energies (ev): -2.0796 0.9188 5.3182 5.7575 8.0346 12.9863 19.5701 21.5650 22.6959 k = 0.9063 0.0000-0.1663 band energies (ev): -2.6581 1.8080 4.0580 7.1301 9.8259 14.8010 15.4334 18.4156 20.8043 k = 0.7553-0.2616-0.0554 band energies (ev): -1.6762 0.3032 3.9480 6.0811 10.6847 14.8118 16.2449 19.6954 21.2274 k = 0.6042 0.0000 0.0554 band energies (ev): -2.5614 -0.6287 7.3987 8.4860 10.5775 14.4274 14.9636 17.2161 21.5423 the Fermi energy is 12.4795 ev total energy = -25.37481229 Ry Harris-Foulkes estimate = -25.37508178 Ry estimated scf accuracy < 0.00054793 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-06, avg # of iterations = 1.6 total cpu time spent up to now is 7.65 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7438 7.8404 8.5978 8.5978 11.9380 14.4567 14.8817 14.8817 18.9898 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4431 2.6208 7.7472 8.5031 12.4673 13.8144 14.0258 17.0415 18.9883 k = 0.3021 0.5233-0.0554 band energies (ev): -2.5995 -0.6593 7.3575 8.4712 10.5661 14.4054 14.9570 17.2036 21.5253 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0664 4.0543 7.4077 9.9393 11.2257 14.2937 16.0062 17.3274 18.6832 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8715 3.8820 5.5072 6.3907 9.5221 13.3569 17.1326 17.7071 19.8915 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7202 0.2669 3.9303 6.0727 10.6685 14.7860 16.2321 19.6684 21.2023 k = 0.0000 0.5233 0.1663 band energies (ev): -3.1054 0.7803 5.0825 8.7048 10.7254 15.3287 16.4759 16.9585 19.3942 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1191 0.8739 5.3201 5.7255 8.0258 12.9724 19.5435 21.5479 22.6579 k = 0.4532-0.2616-0.1663 band energies (ev): -3.1054 0.7803 5.0825 8.7048 10.7254 15.3287 16.4759 16.9585 19.3942 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0664 4.0542 7.4077 9.9393 11.2257 14.2937 16.0062 17.3274 18.6832 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4431 2.6208 7.7472 8.5031 12.4673 13.8144 14.0258 17.0415 18.9883 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8715 3.8820 5.5072 6.3907 9.5221 13.3569 17.1326 17.7071 19.8915 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7202 0.2669 3.9303 6.0727 10.6685 14.7860 16.2321 19.6684 21.2023 k = 0.4532 0.2616 0.1663 band energies (ev): -3.1054 0.7803 5.0825 8.7048 10.7254 15.3287 16.4759 16.9585 19.3942 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0532 2.4536 8.4858 8.4858 11.0572 12.4250 12.4250 15.0033 21.1280 k = 0.4532 0.7849 0.1663 band energies (ev): -2.7061 1.7969 4.0350 7.0938 9.8160 14.7796 15.4007 18.3859 20.8065 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1191 0.8739 5.3201 5.7255 8.0258 12.9724 19.5435 21.5479 22.6579 k = 0.9063 0.0000-0.1663 band energies (ev): -2.7061 1.7969 4.0350 7.0938 9.8160 14.7796 15.4007 18.3859 20.8065 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7202 0.2669 3.9303 6.0727 10.6685 14.7860 16.2321 19.6684 21.2023 k = 0.6042 0.0000 0.0554 band energies (ev): -2.5995 -0.6593 7.3575 8.4712 10.5660 14.4054 14.9570 17.2036 21.5253 the Fermi energy is 12.4603 ev total energy = -25.37485514 Ry Harris-Foulkes estimate = -25.37487202 Ry estimated scf accuracy < 0.00003006 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 3.0 total cpu time spent up to now is 8.09 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7544 7.8329 8.5835 8.5835 11.9263 14.4492 14.8739 14.8739 18.9895 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4544 2.6101 7.7411 8.4877 12.4604 13.8084 14.0226 17.0331 18.9839 k = 0.3021 0.5233-0.0554 band energies (ev): -2.6119 -0.6695 7.3443 8.4660 10.5619 14.3980 14.9540 17.1989 21.5198 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0771 4.0406 7.3952 9.9340 11.2204 14.2859 15.9977 17.3200 18.6771 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8837 3.8704 5.5001 6.3799 9.5209 13.3518 17.1228 17.6941 19.8900 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7343 0.2549 3.9245 6.0693 10.6623 14.7777 16.2281 19.6593 21.1935 k = 0.0000 0.5233 0.1663 band energies (ev): -3.1168 0.7676 5.0729 8.7033 10.7174 15.3233 16.4723 16.9471 19.3897 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1320 0.8596 5.3196 5.7151 8.0224 12.9684 19.5341 21.5418 22.6452 k = 0.4532-0.2616-0.1663 band energies (ev): -3.1168 0.7676 5.0729 8.7033 10.7174 15.3233 16.4723 16.9471 19.3897 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0771 4.0406 7.3952 9.9340 11.2204 14.2859 15.9977 17.3200 18.6771 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4544 2.6101 7.7411 8.4877 12.4604 13.8084 14.0226 17.0331 18.9839 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8837 3.8704 5.5001 6.3800 9.5209 13.3518 17.1228 17.6941 19.8900 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7343 0.2549 3.9245 6.0693 10.6623 14.7777 16.2281 19.6593 21.1934 k = 0.4532 0.2616 0.1663 band energies (ev): -3.1168 0.7676 5.0729 8.7033 10.7174 15.3233 16.4723 16.9471 19.3897 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0666 2.4509 8.4715 8.4715 11.0442 12.4201 12.4201 15.0045 21.1253 k = 0.4532 0.7849 0.1663 band energies (ev): -2.7214 1.7922 4.0278 7.0820 9.8124 14.7722 15.3900 18.3762 20.8069 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1320 0.8596 5.3196 5.7151 8.0224 12.9684 19.5341 21.5418 22.6452 k = 0.9063 0.0000-0.1663 band energies (ev): -2.7214 1.7922 4.0278 7.0820 9.8124 14.7722 15.3900 18.3762 20.8069 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7343 0.2549 3.9245 6.0693 10.6623 14.7777 16.2281 19.6593 21.1935 k = 0.6042 0.0000 0.0554 band energies (ev): -2.6119 -0.6695 7.3443 8.4660 10.5619 14.3980 14.9540 17.1989 21.5198 the Fermi energy is 12.4540 ev total energy = -25.37487527 Ry Harris-Foulkes estimate = -25.37487571 Ry estimated scf accuracy < 0.00000244 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.1 total cpu time spent up to now is 8.40 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7540 7.8330 8.5842 8.5842 11.9268 14.4493 14.8744 14.8744 18.9893 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4539 2.6106 7.7412 8.4885 12.4607 13.8084 14.0225 17.0335 18.9840 k = 0.3021 0.5233-0.0554 band energies (ev): -2.6113 -0.6691 7.3450 8.4660 10.5619 14.3982 14.9539 17.1989 21.5200 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0766 4.0412 7.3958 9.9340 11.2204 14.2863 15.9980 17.3203 18.6774 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8831 3.8708 5.5003 6.3805 9.5207 13.3521 17.1233 17.6947 19.8897 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7336 0.2555 3.9247 6.0693 10.6624 14.7781 16.2283 19.6597 21.1937 k = 0.0000 0.5233 0.1663 band energies (ev): -3.1163 0.7681 5.0734 8.7031 10.7175 15.3235 16.4725 16.9477 19.3896 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1314 0.8604 5.3193 5.7156 8.0223 12.9686 19.5345 21.5418 22.6457 k = 0.4532-0.2616-0.1663 band energies (ev): -3.1163 0.7681 5.0734 8.7031 10.7175 15.3235 16.4725 16.9477 19.3896 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0766 4.0412 7.3958 9.9340 11.2204 14.2863 15.9980 17.3203 18.6774 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4539 2.6106 7.7412 8.4885 12.4607 13.8084 14.0225 17.0335 18.9840 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8831 3.8708 5.5003 6.3805 9.5207 13.3521 17.1233 17.6947 19.8898 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7336 0.2555 3.9247 6.0693 10.6624 14.7781 16.2283 19.6597 21.1937 k = 0.4532 0.2616 0.1663 band energies (ev): -3.1163 0.7681 5.0734 8.7031 10.7175 15.3235 16.4725 16.9477 19.3896 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0659 2.4507 8.4722 8.4722 11.0450 12.4203 12.4203 15.0039 21.1254 k = 0.4532 0.7849 0.1663 band energies (ev): -2.7206 1.7921 4.0281 7.0826 9.8124 14.7724 15.3904 18.3766 20.8067 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1314 0.8604 5.3193 5.7156 8.0223 12.9686 19.5345 21.5418 22.6457 k = 0.9063 0.0000-0.1663 band energies (ev): -2.7206 1.7921 4.0281 7.0826 9.8124 14.7724 15.3904 18.3766 20.8067 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7336 0.2555 3.9247 6.0693 10.6624 14.7781 16.2283 19.6597 21.1937 k = 0.6042 0.0000 0.0554 band energies (ev): -2.6113 -0.6691 7.3450 8.4660 10.5619 14.3982 14.9539 17.1990 21.5200 the Fermi energy is 12.4543 ev total energy = -25.37487451 Ry Harris-Foulkes estimate = -25.37487530 Ry estimated scf accuracy < 0.00000142 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-08, avg # of iterations = 1.9 total cpu time spent up to now is 8.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -5.7521 7.8338 8.5868 8.5868 11.9288 14.4502 14.8759 14.8759 18.9892 k =-0.1511-0.2616 0.2772 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7420 8.4914 12.4618 13.8090 14.0228 17.0351 18.9846 k = 0.3021 0.5233-0.0554 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5624 14.3994 14.9542 17.1995 21.5210 k = 0.1511 0.2616 0.0554 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2209 14.2878 15.9992 17.3216 18.6785 k =-0.3021 0.0000 0.3880 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3531 17.1251 17.6971 19.8894 k = 0.1511 0.7849 0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2291 19.6612 21.1951 k = 0.0000 0.5233 0.1663 ( 521 PWs) bands (ev): -3.1143 0.7704 5.0752 8.7028 10.7186 15.3243 16.4731 16.9499 19.3900 k = 0.6042 0.0000-0.2772 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5426 22.6478 k = 0.4532-0.2616-0.1663 ( 521 PWs) bands (ev): -3.1143 0.7704 5.0752 8.7028 10.7186 15.3243 16.4731 16.9499 19.3900 k = 0.3021 0.0000-0.0554 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2209 14.2878 15.9992 17.3216 18.6785 k = 0.3021 0.0000 0.2772 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7420 8.4914 12.4618 13.8090 14.0228 17.0351 18.9846 k = 0.1511-0.2616 0.3880 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3531 17.1251 17.6971 19.8894 k = 0.6042 0.5233 0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2291 19.6612 21.1951 k = 0.4532 0.2616 0.1663 ( 521 PWs) bands (ev): -3.1143 0.7704 5.0752 8.7028 10.7186 15.3243 16.4731 16.9499 19.3900 k = 0.0000 0.0000 0.4989 ( 522 PWs) bands (ev): -4.0635 2.4507 8.4749 8.4749 11.0475 12.4211 12.4211 15.0027 21.1259 k = 0.4532 0.7849 0.1663 ( 520 PWs) bands (ev): -2.7177 1.7925 4.0294 7.0848 9.8128 14.7736 15.3922 18.3782 20.8064 k = 0.3021 0.5233 0.2772 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5426 22.6478 k = 0.9063 0.0000-0.1663 ( 520 PWs) bands (ev): -2.7177 1.7925 4.0294 7.0848 9.8128 14.7737 15.3922 18.3782 20.8064 k = 0.7553-0.2616-0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2291 19.6612 21.1951 k = 0.6042 0.0000 0.0554 ( 520 PWs) bands (ev): -2.6091 -0.6673 7.3475 8.4666 10.5623 14.3994 14.9541 17.1995 21.5210 the Fermi energy is 12.4553 ev ! total energy = -25.37487470 Ry Harris-Foulkes estimate = -25.37487470 Ry estimated scf accuracy < 6.5E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000178 0.00000000 -0.15968947 atom 2 type 1 force = -0.00000178 0.00000000 0.15968947 Total force = 0.225835 Total SCF correction = 0.000011 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 521.23 0.00397352 0.00000000 0.00000001 584.53 0.00 0.00 0.00000000 0.00397359 0.00000000 0.00 584.53 0.00 0.00000001 0.00000000 0.00268273 0.00 0.00 394.64 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.557921988 0.000000000 0.696904420 -0.278960715 0.483175236 0.696904369 -0.278960715 -0.483175236 0.696904369 new unit-cell volume = 194.1731 (a.u.)^3 new positions in cryst coord As 0.275031746 0.275031680 0.275031680 As -0.275031746 -0.275031680 -0.275031680 new positions in cart coord (alat unit) As 0.000000190 0.000000000 0.575012399 As -0.000000190 0.000000000 -0.575012399 Ekin = 0.07434760 Ry T = 1838.2 K Etot = -24.60457455 CELL_PARAMETERS (alat) 0.557921988 0.000000000 0.696904420 -0.278960715 0.483175236 0.696904369 -0.278960715 -0.483175236 0.696904369 ATOMIC_POSITIONS (crystal) As 0.275031746 0.275031680 0.275031680 As -0.275031746 -0.275031680 -0.275031680 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1793646), wk = 0.0625000 k( 2) = ( -0.1493638 -0.2587053 0.2989411), wk = 0.1250000 k( 3) = ( 0.2987276 0.5174106 -0.0597883), wk = 0.1250000 k( 4) = ( 0.1493638 0.2587053 0.0597882), wk = 0.1250000 k( 5) = ( -0.2987277 0.0000000 0.4185176), wk = 0.0625000 k( 6) = ( 0.1493638 0.7761159 0.0597882), wk = 0.1250000 k( 7) = ( 0.0000000 0.5174106 0.1793646), wk = 0.1250000 k( 8) = ( 0.5974553 0.0000000 -0.2989412), wk = 0.0625000 k( 9) = ( 0.4480915 -0.2587053 -0.1793648), wk = 0.1250000 k( 10) = ( 0.2987276 0.0000000 -0.0597883), wk = 0.0625000 k( 11) = ( 0.2987276 0.0000000 0.2989410), wk = 0.0625000 k( 12) = ( 0.1493638 -0.2587053 0.4185174), wk = 0.1250000 k( 13) = ( 0.5974553 0.5174106 0.0597881), wk = 0.1250000 k( 14) = ( 0.4480915 0.2587053 0.1793645), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.5380939), wk = 0.0625000 k( 16) = ( 0.4480915 0.7761159 0.1793645), wk = 0.1250000 k( 17) = ( 0.2987276 0.5174106 0.2989410), wk = 0.1250000 k( 18) = ( 0.8961829 0.0000000 -0.1793649), wk = 0.0625000 k( 19) = ( 0.7468191 -0.2587053 -0.0597884), wk = 0.1250000 k( 20) = ( 0.5974553 0.0000000 0.0597881), wk = 0.0625000 extrapolated charge 9.45498, renormalised to 10.00000 total cpu time spent up to now is 8.99 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.4 total cpu time spent up to now is 9.79 secs k = 0.0000 0.0000 0.1794 band energies (ev): -4.9749 9.2320 9.4682 9.4682 13.0720 16.1687 16.2684 16.2685 19.2932 k =-0.1494-0.2587 0.2989 band energies (ev): -3.5639 3.2409 9.5445 10.0992 13.2754 14.0796 14.8467 18.0759 19.4516 k = 0.2987 0.5174-0.0598 band energies (ev): -1.7975 0.1438 8.6895 9.9489 11.3051 15.4529 16.1406 19.3052 22.9594 k = 0.1494 0.2587 0.0598 band energies (ev): -4.3617 5.1020 8.3401 10.8007 12.6710 16.4341 17.1965 18.6266 20.2164 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8051 4.9500 6.7915 6.9658 9.8945 14.8355 18.0298 18.4468 20.0066 k = 0.1494 0.7761 0.0598 band energies (ev): -0.4491 0.9900 4.6351 7.1669 11.7482 15.2521 17.3187 21.4544 22.3646 k = 0.0000 0.5174 0.1794 band energies (ev): -2.3422 1.6634 6.3836 9.3530 12.4738 16.2263 18.1234 18.4167 20.3671 k = 0.5975 0.0000-0.2989 band energies (ev): -1.1654 2.4039 5.6827 6.3630 8.6806 15.0629 20.5963 22.0607 23.5963 k = 0.4481-0.2587-0.1794 band energies (ev): -2.3422 1.6634 6.3837 9.3530 12.4738 16.2263 18.1234 18.4167 20.3671 k = 0.2987 0.0000-0.0598 band energies (ev): -4.3617 5.1020 8.3401 10.8007 12.6710 16.4341 17.1965 18.6266 20.2164 k = 0.2987 0.0000 0.2989 band energies (ev): -3.5639 3.2409 9.5445 10.0992 13.2754 14.0795 14.8467 18.0759 19.4516 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8051 4.9500 6.7914 6.9658 9.8945 14.8355 18.0298 18.4467 20.0066 k = 0.5975 0.5174 0.0598 band energies (ev): -0.4491 0.9900 4.6351 7.1669 11.7482 15.2522 17.3187 21.4543 22.3645 k = 0.4481 0.2587 0.1794 band energies (ev): -2.3422 1.6634 6.3837 9.3529 12.4738 16.2263 18.1234 18.4167 20.3671 k = 0.0000 0.0000 0.5381 band energies (ev): -2.6885 3.3809 9.3588 9.3588 11.6950 12.7267 12.7267 15.0622 23.0584 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0169 2.2445 4.8905 7.9242 10.0718 15.0606 16.1294 19.7449 22.0683 k = 0.2987 0.5174 0.2989 band energies (ev): -1.1654 2.4039 5.6827 6.3630 8.6807 15.0628 20.5963 22.0607 23.5963 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0169 2.2445 4.8905 7.9242 10.0718 15.0606 16.1294 19.7449 22.0683 k = 0.7468-0.2587-0.0598 band energies (ev): -0.4491 0.9900 4.6351 7.1669 11.7482 15.2521 17.3187 21.4543 22.3646 k = 0.5975 0.0000 0.0598 band energies (ev): -1.7975 0.1438 8.6895 9.9489 11.3051 15.4528 16.1406 19.3052 22.9594 the Fermi energy is 13.2617 ev total energy = -25.37635614 Ry Harris-Foulkes estimate = -24.96966413 Ry estimated scf accuracy < 0.00119038 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 2.5 total cpu time spent up to now is 10.23 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0550 9.1493 9.4407 9.4407 13.0156 16.0521 16.1699 16.1699 19.0572 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6348 3.1662 9.4335 10.1139 13.1443 13.8981 14.7244 17.9258 19.2440 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8555 0.0615 8.6507 9.8274 11.1256 15.2969 16.0288 19.1951 22.8355 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4419 5.0742 8.2879 10.6498 12.5259 16.3899 17.0910 18.5188 20.0569 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8636 4.9021 6.6883 6.8858 9.6825 14.6806 17.9484 18.4094 19.7795 k = 0.1494 0.7761 0.0598 band energies (ev): -0.4687 0.9252 4.4814 7.0051 11.6336 15.1534 17.1121 21.4052 22.2945 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4114 1.6124 6.3060 9.1486 12.3904 16.1071 18.0730 18.2320 20.1968 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2141 2.4100 5.4531 6.2782 8.5085 14.8907 20.5294 21.9317 23.5972 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4114 1.6124 6.3060 9.1487 12.3904 16.1071 18.0730 18.2320 20.1968 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4419 5.0742 8.2879 10.6498 12.5259 16.3899 17.0910 18.5188 20.0569 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6348 3.1662 9.4335 10.1139 13.1443 13.8981 14.7244 17.9257 19.2440 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8637 4.9021 6.6883 6.8858 9.6825 14.6806 17.9484 18.4094 19.7795 k = 0.5975 0.5174 0.0598 band energies (ev): -0.4687 0.9253 4.4814 7.0051 11.6337 15.1534 17.1121 21.4052 22.2945 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4114 1.6124 6.3060 9.1486 12.3904 16.1072 18.0729 18.2320 20.1968 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7282 3.2203 9.3291 9.3291 11.6627 12.5771 12.5771 14.7756 22.8778 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0049 2.0819 4.7638 7.8566 9.8939 14.9540 16.0532 19.6445 21.8508 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2141 2.4100 5.4531 6.2782 8.5086 14.8907 20.5294 21.9317 23.5972 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0049 2.0819 4.7638 7.8565 9.8939 14.9540 16.0532 19.6445 21.8508 k = 0.7468-0.2587-0.0598 band energies (ev): -0.4687 0.9253 4.4814 7.0051 11.6336 15.1533 17.1121 21.4052 22.2945 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8555 0.0615 8.6507 9.8274 11.1256 15.2969 16.0288 19.1951 22.8355 the Fermi energy is 13.1300 ev total energy = -25.37727051 Ry Harris-Foulkes estimate = -25.37745388 Ry estimated scf accuracy < 0.00043015 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.53 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0745 9.1340 9.4140 9.4140 12.9939 16.0375 16.1540 16.1540 19.0578 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6555 3.1470 9.4195 10.0800 13.1332 13.8962 14.7126 17.9130 19.2400 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8784 0.0434 8.6252 9.8133 11.1229 15.2900 16.0145 19.1810 22.8183 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4613 5.0484 8.2647 10.6418 12.5172 16.3658 17.0770 18.5051 20.0457 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8861 4.8802 6.6707 6.8663 9.6849 14.6683 17.9300 18.3827 19.7839 k = 0.1494 0.7761 0.0598 band energies (ev): -0.4966 0.9043 4.4723 6.9981 11.6210 15.1369 17.1077 21.3825 22.2747 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4323 1.5897 6.2858 9.1481 12.3734 16.0948 18.0499 18.2241 20.1914 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2376 2.3771 5.4576 6.2594 8.5033 14.8815 20.5097 21.9206 23.5671 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4323 1.5896 6.2858 9.1481 12.3734 16.0948 18.0498 18.2241 20.1914 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4613 5.0484 8.2647 10.6418 12.5172 16.3658 17.0770 18.5051 20.0457 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6555 3.1471 9.4195 10.0800 13.1332 13.8962 14.7126 17.9130 19.2400 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8861 4.8803 6.6707 6.8664 9.6848 14.6683 17.9300 18.3827 19.7839 k = 0.5975 0.5174 0.0598 band energies (ev): -0.4966 0.9043 4.4723 6.9981 11.6210 15.1369 17.1077 21.3825 22.2747 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4323 1.5897 6.2858 9.1481 12.3734 16.0948 18.0498 18.2241 20.1914 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7535 3.2147 9.3014 9.3014 11.6320 12.5697 12.5697 14.7897 22.8707 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0380 2.0777 4.7488 7.8350 9.8894 14.9401 16.0326 19.6299 21.8494 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2376 2.3771 5.4576 6.2594 8.5033 14.8815 20.5097 21.9206 23.5671 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0380 2.0777 4.7488 7.8350 9.8894 14.9401 16.0326 19.6300 21.8494 k = 0.7468-0.2587-0.0598 band energies (ev): -0.4966 0.9043 4.4723 6.9981 11.6210 15.1369 17.1077 21.3825 22.2747 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8783 0.0434 8.6252 9.8133 11.1229 15.2900 16.0145 19.1810 22.8183 the Fermi energy is 13.1192 ev total energy = -25.37726208 Ry Harris-Foulkes estimate = -25.37729307 Ry estimated scf accuracy < 0.00006045 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-07, avg # of iterations = 2.1 total cpu time spent up to now is 10.90 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0882 9.1192 9.3953 9.3953 12.9801 16.0271 16.1436 16.1436 19.0561 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6700 3.1325 9.4083 10.0580 13.1252 13.8906 14.7020 17.9066 19.2382 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8940 0.0298 8.6081 9.8032 11.1182 15.2816 16.0040 19.1685 22.8080 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4751 5.0299 8.2485 10.6349 12.5084 16.3513 17.0643 18.4934 20.0381 k =-0.2987 0.0000 0.4185 band energies (ev): -2.9015 4.8629 6.6592 6.8526 9.6826 14.6622 17.9165 18.3659 19.7818 k = 0.1494 0.7761 0.0598 band energies (ev): -0.5155 0.8891 4.4655 6.9911 11.6094 15.1260 17.1054 21.3661 22.2585 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4470 1.5733 6.2729 9.1441 12.3595 16.0854 18.0348 18.2186 20.1839 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2541 2.3566 5.4555 6.2462 8.4980 14.8769 20.4934 21.9105 23.5461 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4470 1.5733 6.2729 9.1441 12.3595 16.0854 18.0348 18.2186 20.1839 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4751 5.0299 8.2485 10.6349 12.5084 16.3513 17.0643 18.4934 20.0381 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6700 3.1326 9.4083 10.0580 13.1252 13.8906 14.7020 17.9066 19.2382 k = 0.1494-0.2587 0.4185 band energies (ev): -2.9015 4.8629 6.6592 6.8526 9.6826 14.6622 17.9165 18.3659 19.7818 k = 0.5975 0.5174 0.0598 band energies (ev): -0.5155 0.8891 4.4655 6.9911 11.6094 15.1260 17.1054 21.3660 22.2585 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4470 1.5733 6.2729 9.1441 12.3595 16.0855 18.0348 18.2186 20.1838 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7703 3.2066 9.2828 9.2828 11.6165 12.5627 12.5627 14.7928 22.8670 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0591 2.0697 4.7394 7.8202 9.8848 14.9284 16.0190 19.6178 21.8485 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2541 2.3567 5.4554 6.2462 8.4980 14.8769 20.4934 21.9105 23.5461 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0591 2.0697 4.7394 7.8202 9.8847 14.9284 16.0190 19.6178 21.8485 k = 0.7468-0.2587-0.0598 band energies (ev): -0.5155 0.8891 4.4655 6.9911 11.6094 15.1260 17.1054 21.3660 22.2586 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8939 0.0298 8.6081 9.8032 11.1182 15.2816 16.0040 19.1686 22.8080 the Fermi energy is 13.1112 ev total energy = -25.37727257 Ry Harris-Foulkes estimate = -25.37727440 Ry estimated scf accuracy < 0.00000362 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-08, avg # of iterations = 1.3 total cpu time spent up to now is 11.20 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0860 9.1211 9.3983 9.3983 12.9824 16.0287 16.1454 16.1455 19.0561 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6677 3.1348 9.4099 10.0617 13.1265 13.8911 14.7034 17.9079 19.2385 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8914 0.0319 8.6110 9.8047 11.1186 15.2826 16.0057 19.1703 22.8098 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4729 5.0329 8.2511 10.6358 12.5094 16.3539 17.0660 18.4951 20.0393 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8990 4.8655 6.6611 6.8548 9.6825 14.6634 17.9186 18.3688 19.7815 k = 0.1494 0.7761 0.0598 band energies (ev): -0.5123 0.8915 4.4665 6.9919 11.6109 15.1278 17.1058 21.3687 22.2609 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4447 1.5759 6.2751 9.1443 12.3615 16.0869 18.0374 18.2194 20.1846 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2514 2.3602 5.4552 6.2483 8.4987 14.8778 20.4958 21.9118 23.5496 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4447 1.5759 6.2751 9.1443 12.3615 16.0869 18.0374 18.2194 20.1846 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4729 5.0329 8.2511 10.6358 12.5095 16.3539 17.0660 18.4951 20.0393 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6677 3.1348 9.4099 10.0617 13.1265 13.8911 14.7034 17.9079 19.2385 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8990 4.8655 6.6611 6.8548 9.6825 14.6634 17.9186 18.3688 19.7815 k = 0.5975 0.5174 0.0598 band energies (ev): -0.5123 0.8915 4.4665 6.9919 11.6109 15.1279 17.1058 21.3686 22.2609 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4447 1.5759 6.2751 9.1443 12.3615 16.0869 18.0374 18.2194 20.1846 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7675 3.2074 9.2859 9.2859 11.6196 12.5636 12.5637 14.7915 22.8677 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0555 2.0704 4.7410 7.8226 9.8853 14.9301 16.0212 19.6195 21.8486 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2515 2.3602 5.4552 6.2483 8.4987 14.8778 20.4958 21.9118 23.5495 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0555 2.0704 4.7410 7.8226 9.8853 14.9301 16.0212 19.6196 21.8486 k = 0.7468-0.2587-0.0598 band energies (ev): -0.5123 0.8915 4.4665 6.9919 11.6109 15.1278 17.1058 21.3686 22.2609 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8914 0.0319 8.6109 9.8047 11.1186 15.2826 16.0056 19.1703 22.8098 the Fermi energy is 13.1125 ev total energy = -25.37727276 Ry Harris-Foulkes estimate = -25.37727288 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-09, avg # of iterations = 2.9 total cpu time spent up to now is 11.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.1794 ( 531 PWs) bands (ev): -5.0852 9.1217 9.3993 9.3993 12.9832 16.0292 16.1461 16.1461 19.0560 k =-0.1494-0.2587 0.2989 ( 522 PWs) bands (ev): -3.6669 3.1355 9.4105 10.0630 13.1269 13.8912 14.7039 17.9083 19.2387 k = 0.2987 0.5174-0.0598 ( 520 PWs) bands (ev): -1.8905 0.0326 8.6120 9.8052 11.1187 15.2829 16.0062 19.1708 22.8104 k = 0.1494 0.2587 0.0598 ( 525 PWs) bands (ev): -4.4721 5.0339 8.2520 10.6361 12.5098 16.3549 17.0666 18.4957 20.0397 k =-0.2987 0.0000 0.4185 ( 519 PWs) bands (ev): -2.8981 4.8664 6.6617 6.8556 9.6824 14.6638 17.9194 18.3699 19.7813 k = 0.1494 0.7761 0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3696 22.2617 k = 0.0000 0.5174 0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1849 k = 0.5975 0.0000-0.2989 ( 510 PWs) bands (ev): -1.2505 2.3615 5.4550 6.2490 8.4988 14.8781 20.4966 21.9122 23.5508 k = 0.4481-0.2587-0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1848 k = 0.2987 0.0000-0.0598 ( 525 PWs) bands (ev): -4.4721 5.0339 8.2520 10.6361 12.5098 16.3548 17.0666 18.4957 20.0397 k = 0.2987 0.0000 0.2989 ( 522 PWs) bands (ev): -3.6669 3.1355 9.4105 10.0630 13.1269 13.8912 14.7038 17.9083 19.2387 k = 0.1494-0.2587 0.4185 ( 519 PWs) bands (ev): -2.8981 4.8664 6.6617 6.8556 9.6824 14.6638 17.9194 18.3698 19.7813 k = 0.5975 0.5174 0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3695 22.2617 k = 0.4481 0.2587 0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1848 k = 0.0000 0.0000 0.5381 ( 522 PWs) bands (ev): -2.7665 3.2077 9.2870 9.2870 11.6207 12.5640 12.5640 14.7909 22.8680 k = 0.4481 0.7761 0.1794 ( 520 PWs) bands (ev): -1.0541 2.0706 4.7416 7.8235 9.8855 14.9307 16.0220 19.6201 21.8487 k = 0.2987 0.5174 0.2989 ( 510 PWs) bands (ev): -1.2505 2.3615 5.4550 6.2491 8.4988 14.8781 20.4966 21.9122 23.5508 k = 0.8962 0.0000-0.1794 ( 520 PWs) bands (ev): -1.0541 2.0706 4.7416 7.8235 9.8855 14.9307 16.0220 19.6201 21.8487 k = 0.7468-0.2587-0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3695 22.2617 k = 0.5975 0.0000 0.0598 ( 520 PWs) bands (ev): -1.8905 0.0326 8.6120 9.8052 11.1187 15.2829 16.0062 19.1708 22.8104 the Fermi energy is 13.1129 ev ! total energy = -25.37727282 Ry Harris-Foulkes estimate = -25.37727283 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000226 0.00000000 -0.09622747 atom 2 type 1 force = -0.00000226 0.00000000 0.09622747 Total force = 0.136086 Total SCF correction = 0.000088 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 558.35 0.00376439 0.00000000 0.00000001 553.76 0.00 0.00 0.00000000 0.00376451 0.00000000 0.00 553.78 0.00 0.00000001 0.00000000 0.00385785 0.00 0.00 567.51 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.564948185 0.000000000 0.730143337 -0.282473626 0.489261090 0.730143088 -0.282473626 -0.489261090 0.730143088 new unit-cell volume = 208.5907 (a.u.)^3 new positions in cryst coord As 0.262508384 0.262507986 0.262507986 As -0.262508384 -0.262507986 -0.262507986 new positions in cart coord (alat unit) As 0.000000470 0.000000000 0.575005530 As -0.000000470 0.000000000 -0.575005530 Ekin = 0.10396637 Ry T = 2441.4 K Etot = -24.61332549 CELL_PARAMETERS (alat) 0.564948185 0.000000000 0.730143337 -0.282473626 0.489261090 0.730143088 -0.282473626 -0.489261090 0.730143088 ATOMIC_POSITIONS (crystal) As 0.262508384 0.262507986 0.262507986 As -0.262508384 -0.262507986 -0.262507986 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1711993), wk = 0.0625000 k( 2) = ( -0.1475063 -0.2554873 0.2853322), wk = 0.1250000 k( 3) = ( 0.2950125 0.5109746 -0.0570666), wk = 0.1250000 k( 4) = ( 0.1475062 0.2554873 0.0570664), wk = 0.1250000 k( 5) = ( -0.2950126 0.0000000 0.3994652), wk = 0.0625000 k( 6) = ( 0.1475062 0.7664619 0.0570664), wk = 0.1250000 k( 7) = ( -0.0000001 0.5109746 0.1711993), wk = 0.1250000 k( 8) = ( 0.5900250 0.0000000 -0.2853324), wk = 0.0625000 k( 9) = ( 0.4425188 -0.2554873 -0.1711995), wk = 0.1250000 k( 10) = ( 0.2950125 0.0000000 -0.0570666), wk = 0.0625000 k( 11) = ( 0.2950124 0.0000000 0.2853320), wk = 0.0625000 k( 12) = ( 0.1475061 -0.2554873 0.3994650), wk = 0.1250000 k( 13) = ( 0.5900249 0.5109746 0.0570662), wk = 0.1250000 k( 14) = ( 0.4425187 0.2554873 0.1711991), wk = 0.1250000 k( 15) = ( -0.0000002 0.0000000 0.5135979), wk = 0.0625000 k( 16) = ( 0.4425187 0.7664619 0.1711991), wk = 0.1250000 k( 17) = ( 0.2950124 0.5109746 0.2853320), wk = 0.1250000 k( 18) = ( 0.8850375 0.0000000 -0.1711997), wk = 0.0625000 k( 19) = ( 0.7375312 -0.2554873 -0.0570667), wk = 0.1250000 k( 20) = ( 0.5900249 0.0000000 0.0570662), wk = 0.0625000 extrapolated charge 10.69116, renormalised to 10.00000 total cpu time spent up to now is 11.89 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.6 total cpu time spent up to now is 12.74 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.5091 7.1463 8.7498 8.7498 11.2924 15.1113 15.1113 15.2148 17.2730 k =-0.1475-0.2555 0.2853 band energies (ev): -4.1419 2.2663 7.8820 9.8725 11.7151 11.7670 13.1224 17.1116 18.0370 k = 0.2950 0.5110-0.0571 band energies (ev): -2.3252 -0.7470 8.1141 8.4993 9.5743 13.2217 14.5193 16.5088 21.7425 k = 0.1475 0.2555 0.0571 band energies (ev): -4.8995 4.1022 7.6362 9.1469 11.0837 14.5131 15.7537 16.4644 17.5244 k =-0.2950 0.0000 0.3995 band energies (ev): -3.4218 3.4477 6.0453 6.3171 7.8838 14.0453 16.6193 17.0489 17.5001 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0796 0.1596 3.7206 5.6368 10.1902 13.8823 15.9376 19.8119 20.0477 k = 0.0000 0.5110 0.1712 band energies (ev): -2.9326 0.8339 5.6646 7.5387 11.0529 13.8859 16.4869 16.8671 18.1221 k = 0.5900 0.0000-0.2853 band energies (ev): -1.8526 1.9785 3.7123 5.7247 7.1162 13.8893 18.5317 19.2647 21.6786 k = 0.4425-0.2555-0.1712 band energies (ev): -2.9326 0.8339 5.6646 7.5387 11.0528 13.8859 16.4869 16.8671 18.1221 k = 0.2950 0.0000-0.0571 band energies (ev): -4.8995 4.1022 7.6362 9.1469 11.0837 14.5131 15.7537 16.4644 17.5243 k = 0.2950 0.0000 0.2853 band energies (ev): -4.1419 2.2664 7.8820 9.8724 11.7151 11.7669 13.1224 17.1116 18.0371 k = 0.1475-0.2555 0.3995 band energies (ev): -3.4218 3.4477 6.0453 6.3171 7.8838 14.0453 16.6193 17.0489 17.5001 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0797 0.1596 3.7206 5.6368 10.1903 13.8823 15.9376 19.8119 20.0477 k = 0.4425 0.2555 0.1712 band energies (ev): -2.9326 0.8339 5.6646 7.5387 11.0529 13.8859 16.4868 16.8671 18.1220 k = 0.0000 0.0000 0.5136 band energies (ev): -3.2692 1.5255 8.9001 8.9001 11.0812 11.2468 11.2469 12.9309 21.1286 k = 0.4425 0.7665 0.1712 band energies (ev): -1.4173 0.3799 4.2188 7.3006 8.6454 13.5734 15.0451 18.3092 20.0819 k = 0.2950 0.5110 0.2853 band energies (ev): -1.8527 1.9785 3.7123 5.7247 7.1163 13.8893 18.5317 19.2647 21.6785 k = 0.8850 0.0000-0.1712 band energies (ev): -1.4173 0.3799 4.2189 7.3006 8.6453 13.5734 15.0451 18.3093 20.0819 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0797 0.1596 3.7205 5.6368 10.1903 13.8822 15.9376 19.8119 20.0477 k = 0.5900 0.0000 0.0571 band energies (ev): -2.3252 -0.7470 8.1140 8.4993 9.5743 13.2217 14.5192 16.5088 21.7425 the Fermi energy is 11.7029 ev total energy = -25.43947922 Ry Harris-Foulkes estimate = -25.95110680 Ry estimated scf accuracy < 0.00169029 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-05, avg # of iterations = 3.0 total cpu time spent up to now is 13.18 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.4292 7.1378 8.7810 8.7810 11.3314 15.2090 15.2092 15.2937 17.5421 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0702 2.3110 7.9755 9.8662 11.8633 11.9019 13.1933 17.3160 18.1758 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2665 -0.6827 8.1829 8.6096 9.7277 13.3196 14.6279 16.5710 21.9248 k = 0.1475 0.2555 0.0571 band energies (ev): -4.8210 4.1062 7.7018 9.2574 11.1996 14.5183 15.8912 16.5444 17.7188 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3610 3.4565 6.1431 6.4118 8.0532 14.3138 16.6851 17.0634 17.6410 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0618 0.2066 3.8954 5.7828 10.2592 13.9622 16.2344 19.8260 20.0424 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8666 0.8669 5.7794 7.7022 11.0951 13.9844 16.5571 17.0845 18.2405 k = 0.5900 0.0000-0.2853 band energies (ev): -1.8148 1.9640 3.9135 5.8271 7.2562 14.1735 18.5472 19.3099 21.6204 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8666 0.8668 5.7794 7.7022 11.0950 13.9844 16.5571 17.0845 18.2405 k = 0.2950 0.0000-0.0571 band energies (ev): -4.8210 4.1062 7.7018 9.2574 11.1997 14.5182 15.8912 16.5444 17.7188 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0702 2.3110 7.9755 9.8662 11.8633 11.9018 13.1933 17.3160 18.1758 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3610 3.4566 6.1431 6.4118 8.0532 14.3138 16.6851 17.0633 17.6410 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0618 0.2066 3.8954 5.7828 10.2592 13.9622 16.2344 19.8259 20.0423 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8666 0.8668 5.7794 7.7022 11.0950 13.9844 16.5571 17.0845 18.2404 k = 0.0000 0.0000 0.5136 band energies (ev): -3.2168 1.6052 8.9496 8.9496 11.1644 11.3761 11.3761 13.1536 21.3567 k = 0.4425 0.7665 0.1712 band energies (ev): -1.4195 0.4790 4.3709 7.3928 8.8064 13.6385 15.1183 18.3752 20.3272 k = 0.2950 0.5110 0.2853 band energies (ev): -1.8148 1.9640 3.9135 5.8271 7.2562 14.1735 18.5472 19.3100 21.6204 k = 0.8850 0.0000-0.1712 band energies (ev): -1.4195 0.4790 4.3709 7.3928 8.8063 13.6385 15.1183 18.3753 20.3272 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0618 0.2067 3.8954 5.7828 10.2592 13.9621 16.2344 19.8260 20.0424 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2665 -0.6827 8.1829 8.6096 9.7276 13.3196 14.6278 16.5710 21.9248 the Fermi energy is 11.8484 ev total energy = -25.44104355 Ry Harris-Foulkes estimate = -25.44125369 Ry estimated scf accuracy < 0.00052919 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.29E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.47 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.4088 7.1612 8.8059 8.8059 11.3538 15.2296 15.2298 15.3138 17.5405 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0488 2.3328 7.9916 9.9005 11.8683 11.9159 13.2107 17.3319 18.1853 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2434 -0.6622 8.2062 8.6245 9.7372 13.3330 14.6451 16.5900 21.9377 k = 0.1475 0.2555 0.0571 band energies (ev): -4.8006 4.1333 7.7237 9.2709 11.2120 14.5445 15.9097 16.5625 17.7246 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3381 3.4795 6.1656 6.4305 8.0562 14.3218 16.7065 17.0959 17.6429 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0338 0.2287 3.9057 5.7932 10.2762 13.9821 16.2367 19.8518 20.0695 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8448 0.8912 5.7990 7.7073 11.1153 14.0002 16.5806 17.0962 18.2506 k = 0.5900 0.0000-0.2853 band energies (ev): -1.7903 1.9991 3.9123 5.8451 7.2668 14.1783 18.5716 19.3287 21.6539 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8448 0.8912 5.7990 7.7073 11.1152 14.0002 16.5806 17.0961 18.2505 k = 0.2950 0.0000-0.0571 band energies (ev): -4.8006 4.1333 7.7237 9.2709 11.2120 14.5445 15.9096 16.5625 17.7246 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0488 2.3329 7.9916 9.9004 11.8683 11.9158 13.2106 17.3319 18.1853 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3381 3.4796 6.1656 6.4305 8.0561 14.3218 16.7065 17.0958 17.6429 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0338 0.2287 3.9057 5.7932 10.2762 13.9821 16.2368 19.8517 20.0695 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8448 0.8912 5.7990 7.7073 11.1153 14.0003 16.5805 17.0962 18.2505 k = 0.0000 0.0000 0.5136 band energies (ev): -3.1918 1.6186 8.9743 8.9744 11.1948 11.3889 11.3889 13.1469 21.3663 k = 0.4425 0.7665 0.1712 band energies (ev): -1.3850 0.4870 4.3853 7.4125 8.8162 13.6575 15.1399 18.3938 20.3346 k = 0.2950 0.5110 0.2853 band energies (ev): -1.7903 1.9991 3.9123 5.8452 7.2669 14.1783 18.5716 19.3288 21.6538 k = 0.8850 0.0000-0.1712 band energies (ev): -1.3850 0.4871 4.3853 7.4125 8.8161 13.6575 15.1399 18.3939 20.3346 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0338 0.2287 3.9057 5.7932 10.2762 13.9820 16.2367 19.8518 20.0695 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2434 -0.6622 8.2061 8.6245 9.7372 13.3329 14.6450 16.5900 21.9377 the Fermi energy is 11.8554 ev total energy = -25.44103753 Ry Harris-Foulkes estimate = -25.44107132 Ry estimated scf accuracy < 0.00007798 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.80E-07, avg # of iterations = 2.0 total cpu time spent up to now is 13.80 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.3952 7.1804 8.8223 8.8223 11.3682 15.2431 15.2432 15.3249 17.5419 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0348 2.3487 8.0035 9.9181 11.8795 11.9255 13.2245 17.3391 18.1948 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2287 -0.6476 8.2200 8.6351 9.7461 13.3464 14.6570 16.6054 21.9448 k = 0.1475 0.2555 0.0571 band energies (ev): -4.7869 4.1515 7.7380 9.2816 11.2228 14.5631 15.9200 16.5774 17.7308 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3235 3.4978 6.1768 6.4429 8.0645 14.3235 16.7218 17.1130 17.6532 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0167 0.2443 3.9132 5.8023 10.2901 13.9957 16.2373 19.8698 20.0892 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8305 0.9076 5.8099 7.7155 11.1302 14.0133 16.5964 17.1007 18.2622 k = 0.5900 0.0000-0.2853 band energies (ev): -1.7742 2.0177 3.9189 5.8571 7.2760 14.1794 18.5905 19.3442 21.6772 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8305 0.9076 5.8099 7.7155 11.1301 14.0133 16.5964 17.1007 18.2622 k = 0.2950 0.0000-0.0571 band energies (ev): -4.7869 4.1515 7.7380 9.2816 11.2228 14.5631 15.9200 16.5773 17.7308 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0348 2.3487 8.0034 9.9181 11.8795 11.9255 13.2244 17.3391 18.1949 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3235 3.4978 6.1768 6.4430 8.0645 14.3235 16.7218 17.1129 17.6532 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0167 0.2443 3.9132 5.8023 10.2901 13.9957 16.2373 19.8698 20.0891 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8305 0.9076 5.8099 7.7155 11.1302 14.0133 16.5963 17.1007 18.2622 k = 0.0000 0.0000 0.5136 band energies (ev): -3.1768 1.6325 8.9891 8.9891 11.2062 11.4004 11.4004 13.1518 21.3721 k = 0.4425 0.7665 0.1712 band energies (ev): -1.3671 0.5003 4.3937 7.4251 8.8247 13.6728 15.1530 18.4086 20.3390 k = 0.2950 0.5110 0.2853 band energies (ev): -1.7743 2.0177 3.9189 5.8571 7.2760 14.1794 18.5905 19.3442 21.6772 k = 0.8850 0.0000-0.1712 band energies (ev): -1.3671 0.5003 4.3937 7.4250 8.8246 13.6728 15.1529 18.4087 20.3390 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0167 0.2444 3.9132 5.8023 10.2901 13.9956 16.2373 19.8698 20.0892 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2287 -0.6476 8.2200 8.6351 9.7460 13.3463 14.6570 16.6054 21.9448 the Fermi energy is 11.8663 ev total energy = -25.44104683 Ry Harris-Foulkes estimate = -25.44104707 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-09, avg # of iterations = 2.8 total cpu time spent up to now is 14.20 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.3957 7.1795 8.8217 8.8217 11.3679 15.2426 15.2427 15.3249 17.5417 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0352 2.3480 8.0030 9.9178 11.8786 11.9253 13.2238 17.3392 18.1943 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2292 -0.6482 8.2196 8.6347 9.7457 13.3456 14.6566 16.6046 21.9447 k = 0.1475 0.2555 0.0571 band energies (ev): -4.7874 4.1508 7.7375 9.2812 11.2222 14.5624 15.9198 16.5766 17.7305 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3240 3.4969 6.1767 6.4425 8.0638 14.3239 16.7212 17.1128 17.6522 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0172 0.2437 3.9129 5.8019 10.2894 13.9952 16.2374 19.8691 20.0883 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8310 0.9070 5.8097 7.7149 11.1296 14.0127 16.5958 17.1009 18.2615 k = 0.5900 0.0000-0.2853 band energies (ev): -1.7748 2.0174 3.9182 5.8567 7.2756 14.1796 18.5896 19.3435 21.6763 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8310 0.9070 5.8097 7.7150 11.1295 14.0127 16.5958 17.1009 18.2614 k = 0.2950 0.0000-0.0571 band energies (ev): -4.7874 4.1508 7.7375 9.2812 11.2223 14.5624 15.9198 16.5766 17.7305 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0352 2.3480 8.0030 9.9177 11.8786 11.9252 13.2238 17.3392 18.1943 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3240 3.4969 6.1767 6.4425 8.0638 14.3239 16.7212 17.1127 17.6522 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0172 0.2437 3.9129 5.8019 10.2894 13.9953 16.2375 19.8691 20.0883 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8310 0.9070 5.8097 7.7149 11.1295 14.0127 16.5957 17.1009 18.2614 k = 0.0000 0.0000 0.5136 band energies (ev): -3.1772 1.6317 8.9887 8.9887 11.2067 11.3998 11.3998 13.1510 21.3722 k = 0.4425 0.7665 0.1712 band energies (ev): -1.3674 0.4992 4.3936 7.4246 8.8243 13.6720 15.1527 18.4079 20.3390 k = 0.2950 0.5110 0.2853 band energies (ev): -1.7748 2.0174 3.9182 5.8567 7.2756 14.1796 18.5896 19.3435 21.6762 k = 0.8850 0.0000-0.1712 band energies (ev): -1.3674 0.4993 4.3936 7.4246 8.8243 13.6720 15.1526 18.4080 20.3390 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0172 0.2437 3.9129 5.8019 10.2894 13.9952 16.2374 19.8691 20.0883 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2292 -0.6482 8.2196 8.6348 9.7456 13.3455 14.6566 16.6046 21.9447 the Fermi energy is 11.8655 ev total energy = -25.44104733 Ry Harris-Foulkes estimate = -25.44104744 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-09, avg # of iterations = 2.0 total cpu time spent up to now is 14.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.1712 ( 531 PWs) bands (ev): -5.3964 7.1786 8.8207 8.8207 11.3672 15.2418 15.2419 15.3242 17.5418 k =-0.1475-0.2555 0.2853 ( 522 PWs) bands (ev): -4.0360 2.3472 8.0024 9.9165 11.8784 11.9249 13.2232 17.3388 18.1939 k = 0.2950 0.5110-0.0571 ( 520 PWs) bands (ev): -2.2300 -0.6489 8.2187 8.6342 9.7454 13.3450 14.6560 16.6038 21.9442 k = 0.1475 0.2555 0.0571 ( 525 PWs) bands (ev): -4.7882 4.1498 7.7366 9.2808 11.2218 14.5614 15.9192 16.5758 17.7303 k =-0.2950 0.0000 0.3995 ( 519 PWs) bands (ev): -3.3248 3.4960 6.1760 6.4418 8.0637 14.3237 16.7203 17.1116 17.6521 k = 0.1475 0.7665 0.0571 ( 510 PWs) bands (ev): -1.0182 0.2429 3.9126 5.8016 10.2888 13.9945 16.2375 19.8681 20.0872 k = 0.0000 0.5110 0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8090 7.7148 11.1288 14.0121 16.5949 17.1006 18.2610 k = 0.5900 0.0000-0.2853 ( 510 PWs) bands (ev): -1.7757 2.0161 3.9183 5.8560 7.2753 14.1796 18.5886 19.3428 21.6750 k = 0.4425-0.2555-0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8091 7.7148 11.1288 14.0121 16.5949 17.1005 18.2610 k = 0.2950 0.0000-0.0571 ( 525 PWs) bands (ev): -4.7882 4.1498 7.7366 9.2808 11.2219 14.5614 15.9192 16.5758 17.7303 k = 0.2950 0.0000 0.2853 ( 522 PWs) bands (ev): -4.0360 2.3472 8.0024 9.9164 11.8784 11.9248 13.2232 17.3388 18.1940 k = 0.1475-0.2555 0.3995 ( 519 PWs) bands (ev): -3.3248 3.4960 6.1759 6.4418 8.0637 14.3237 16.7203 17.1116 17.6521 k = 0.5900 0.5110 0.0571 ( 510 PWs) bands (ev): -1.0183 0.2429 3.9126 5.8016 10.2888 13.9946 16.2375 19.8681 20.0872 k = 0.4425 0.2555 0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8090 7.7148 11.1288 14.0121 16.5948 17.1006 18.2610 k = 0.0000 0.0000 0.5136 ( 522 PWs) bands (ev): -3.1781 1.6312 8.9877 8.9877 11.2057 11.3993 11.3993 13.1514 21.3720 k = 0.4425 0.7665 0.1712 ( 520 PWs) bands (ev): -1.3686 0.4989 4.3931 7.4239 8.8241 13.6713 15.1519 18.4072 20.3389 k = 0.2950 0.5110 0.2853 ( 510 PWs) bands (ev): -1.7757 2.0161 3.9183 5.8560 7.2753 14.1796 18.5886 19.3428 21.6749 k = 0.8850 0.0000-0.1712 ( 520 PWs) bands (ev): -1.3686 0.4989 4.3931 7.4238 8.8240 13.6713 15.1519 18.4073 20.3389 k = 0.7375-0.2555-0.0571 ( 510 PWs) bands (ev): -1.0183 0.2429 3.9126 5.8016 10.2888 13.9945 16.2375 19.8681 20.0872 k = 0.5900 0.0000 0.0571 ( 520 PWs) bands (ev): -2.2300 -0.6489 8.2187 8.6343 9.7454 13.3450 14.6560 16.6039 21.9442 the Fermi energy is 11.8653 ev ! total energy = -25.44104735 Ry Harris-Foulkes estimate = -25.44104737 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000339 0.00000000 -0.02044824 atom 2 type 1 force = 0.00000339 0.00000000 0.02044824 Total force = 0.028918 Total SCF correction = 0.000106 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 325.27 0.00204475 0.00000000 0.00000006 300.79 0.00 0.01 0.00000000 0.00204490 0.00000000 0.00 300.81 0.00 0.00000006 0.00000000 0.00254381 0.01 0.00 374.21 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.560390401 0.000000000 0.734538215 -0.280194694 0.485313584 0.734537277 -0.280194694 -0.485313584 0.734537277 new unit-cell volume = 206.4737 (a.u.)^3 new positions in cryst coord As 0.249599228 0.249598744 0.249598744 As -0.249599228 -0.249598744 -0.249598744 new positions in cart coord (alat unit) As 0.000000524 0.000000000 0.550019335 As -0.000000524 0.000000000 -0.550019335 Ekin = 0.12667691 Ry T = 2942.2 K Etot = -24.60538504 CELL_PARAMETERS (alat) 0.560390401 0.000000000 0.734538215 -0.280194694 0.485313584 0.734537277 -0.280194694 -0.485313584 0.734537277 ATOMIC_POSITIONS (crystal) As 0.249599228 0.249598744 0.249598744 As -0.249599228 -0.249598744 -0.249598744 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000002 0.0000000 0.1701751), wk = 0.0625000 k( 2) = ( -0.1487063 -0.2575654 0.2836252), wk = 0.1250000 k( 3) = ( 0.2974120 0.5151309 -0.0567252), wk = 0.1250000 k( 4) = ( 0.1487059 0.2575654 0.0567250), wk = 0.1250000 k( 5) = ( -0.2974123 0.0000000 0.3970753), wk = 0.0625000 k( 6) = ( 0.1487059 0.7726963 0.0567250), wk = 0.1250000 k( 7) = ( -0.0000002 0.5151309 0.1701751), wk = 0.1250000 k( 8) = ( 0.5948241 0.0000000 -0.2836254), wk = 0.0625000 k( 9) = ( 0.4461180 -0.2575654 -0.1701753), wk = 0.1250000 k( 10) = ( 0.2974120 0.0000000 -0.0567252), wk = 0.0625000 k( 11) = ( 0.2974116 0.0000000 0.2836250), wk = 0.0625000 k( 12) = ( 0.1487055 -0.2575654 0.3970751), wk = 0.1250000 k( 13) = ( 0.5948237 0.5151309 0.0567248), wk = 0.1250000 k( 14) = ( 0.4461176 0.2575654 0.1701749), wk = 0.1250000 k( 15) = ( -0.0000006 0.0000000 0.5105253), wk = 0.0625000 k( 16) = ( 0.4461176 0.7726963 0.1701749), wk = 0.1250000 k( 17) = ( 0.2974116 0.5151309 0.2836250), wk = 0.1250000 k( 18) = ( 0.8922359 0.0000000 -0.1701755), wk = 0.0625000 k( 19) = ( 0.7435298 -0.2575654 -0.0567254), wk = 0.1250000 k( 20) = ( 0.5948237 0.0000000 0.0567248), wk = 0.0625000 extrapolated charge 9.89747, renormalised to 10.00000 total cpu time spent up to now is 14.89 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 15.77 secs k = 0.0000 0.0000 0.1702 band energies (ev): -5.2677 7.2290 9.1695 9.1696 11.5323 15.6075 15.6076 16.0659 17.6032 k =-0.1487-0.2576 0.2836 band energies (ev): -3.8857 2.5366 8.0229 10.9776 11.2056 12.1610 13.5417 17.9711 18.0259 k = 0.2974 0.5151-0.0567 band energies (ev): -2.0069 -0.5158 8.6211 8.7222 9.8619 13.2467 14.9977 16.4982 22.0713 k = 0.1487 0.2576 0.0567 band energies (ev): -4.6451 4.4210 8.0597 9.3348 11.4004 14.6283 16.6119 16.8959 17.0607 k =-0.2974 0.0000 0.3971 band energies (ev): -3.1623 3.5485 6.6380 6.7435 7.8490 14.8504 17.0339 17.5288 17.6572 k = 0.1487 0.7727 0.0567 band energies (ev): -0.7633 0.4138 4.0608 5.8038 10.4553 14.2374 16.5682 20.0559 20.5332 k = 0.0000 0.5151 0.1702 band energies (ev): -2.6524 1.1275 6.1194 7.6355 11.3956 13.8223 16.8778 17.5644 18.3284 k = 0.5948 0.0000-0.2836 band energies (ev): -1.5802 2.5383 3.6190 6.1451 7.3093 14.5364 18.7210 19.2819 21.9673 k = 0.4461-0.2576-0.1702 band energies (ev): -2.6524 1.1274 6.1195 7.6355 11.3956 13.8223 16.8778 17.5644 18.3284 k = 0.2974 0.0000-0.0567 band energies (ev): -4.6451 4.4210 8.0597 9.3348 11.4004 14.6283 16.6119 16.8959 17.0607 k = 0.2974 0.0000 0.2836 band energies (ev): -3.8857 2.5367 8.0229 10.9776 11.2055 12.1609 13.5417 17.9712 18.0259 k = 0.1487-0.2576 0.3971 band energies (ev): -3.1623 3.5486 6.6379 6.7435 7.8490 14.8504 17.0339 17.5289 17.6571 k = 0.5948 0.5151 0.0567 band energies (ev): -0.7633 0.4139 4.0608 5.8038 10.4553 14.2374 16.5683 20.0559 20.5331 k = 0.4461 0.2576 0.1702 band energies (ev): -2.6524 1.1275 6.1195 7.6354 11.3956 13.8223 16.8778 17.5645 18.3283 k = 0.0000 0.0000 0.5105 band energies (ev): -2.9891 1.4843 9.4554 9.4554 11.5171 11.5172 11.8828 13.2517 21.7069 k = 0.4461 0.7727 0.1702 band energies (ev): -0.9131 0.1767 4.6477 7.7635 9.0070 13.8661 15.7018 18.8043 20.7538 k = 0.2974 0.5151 0.2836 band energies (ev): -1.5803 2.5384 3.6190 6.1452 7.3093 14.5364 18.7210 19.2819 21.9672 k = 0.8922 0.0000-0.1702 band energies (ev): -0.9132 0.1768 4.6477 7.7635 9.0069 13.8661 15.7018 18.8044 20.7538 k = 0.7435-0.2576-0.0567 band energies (ev): -0.7633 0.4139 4.0608 5.8038 10.4553 14.2373 16.5682 20.0560 20.5331 k = 0.5948 0.0000 0.0567 band energies (ev): -2.0069 -0.5158 8.6210 8.7222 9.8618 13.2467 14.9977 16.4982 22.0713 the Fermi energy is 11.5341 ev total energy = -25.44089318 Ry Harris-Foulkes estimate = -25.36551848 Ry estimated scf accuracy < 0.00214388 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-05, avg # of iterations = 1.0 total cpu time spent up to now is 16.08 secs k = 0.0000 0.0000 0.1702 band energies (ev): -5.2836 7.2237 9.1647 9.1647 11.5131 15.5976 15.5977 16.0351 17.5665 k =-0.1487-0.2576 0.2836 band energies (ev): -3.9008 2.5268 8.0047 10.9833 11.1835 12.1330 13.5241 17.9590 17.9817 k = 0.2974 0.5151-0.0567 band energies (ev): -2.0207 -0.5286 8.6094 8.7015 9.8339 13.2389 14.9750 16.4879 22.0436 k = 0.1487 0.2576 0.0567 band energies (ev): -4.6607 4.4148 8.0503 9.3119 11.3797 14.6241 16.6043 16.8616 17.0380 k =-0.2974 0.0000 0.3971 band energies (ev): -3.1765 3.5426 6.6168 6.7307 7.8269 14.8035 17.0267 17.5094 17.6448 k = 0.1487 0.7727 0.0567 band energies (ev): -0.7731 0.4033 4.0348 5.7813 10.4438 14.2228 16.5233 20.0515 20.5282 k = 0.0000 0.5151 0.1702 band energies (ev): -2.6666 1.1178 6.0981 7.6133 11.3839 13.8075 16.8660 17.5240 18.3163 k = 0.5948 0.0000-0.2836 band energies (ev): -1.5911 2.5334 3.5910 6.1313 7.2852 14.4903 18.7214 19.2677 21.9689 k = 0.4461-0.2576-0.1702 band energies (ev): -2.6666 1.1177 6.0981 7.6133 11.3839 13.8075 16.8660 17.5239 18.3163 k = 0.2974 0.0000-0.0567 band energies (ev): -4.6607 4.4148 8.0503 9.3119 11.3798 14.6241 16.6043 16.8616 17.0380 k = 0.2974 0.0000 0.2836 band energies (ev): -3.9008 2.5269 8.0047 10.9833 11.1835 12.1330 13.5241 17.9590 17.9817 k = 0.1487-0.2576 0.3971 band energies (ev): -3.1765 3.5426 6.6167 6.7307 7.8269 14.8035 17.0268 17.5095 17.6447 k = 0.5948 0.5151 0.0567 band energies (ev): -0.7732 0.4033 4.0348 5.7814 10.4439 14.2228 16.5234 20.0515 20.5281 k = 0.4461 0.2576 0.1702 band energies (ev): -2.6666 1.1178 6.0981 7.6133 11.3839 13.8075 16.8660 17.5240 18.3162 k = 0.0000 0.0000 0.5105 band energies (ev): -3.0035 1.4727 9.4459 9.4459 11.5045 11.5046 11.8492 13.2144 21.6677 k = 0.4461 0.7727 0.1702 band energies (ev): -0.9244 0.1657 4.6230 7.7500 8.9801 13.8610 15.6784 18.7898 20.7198 k = 0.2974 0.5151 0.2836 band energies (ev): -1.5911 2.5334 3.5910 6.1313 7.2852 14.4903 18.7214 19.2677 21.9689 k = 0.8922 0.0000-0.1702 band energies (ev): -0.9245 0.1658 4.6230 7.7500 8.9801 13.8610 15.6784 18.7899 20.7198 k = 0.7435-0.2576-0.0567 band energies (ev): -0.7732 0.4033 4.0348 5.7813 10.4439 14.2227 16.5233 20.0516 20.5281 k = 0.5948 0.0000 0.0567 band energies (ev): -2.0207 -0.5286 8.6094 8.7015 9.8338 13.2389 14.9750 16.4880 22.0436 the Fermi energy is 11.5192 ev total energy = -25.44092767 Ry Harris-Foulkes estimate = -25.44095364 Ry estimated scf accuracy < 0.00014660 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.39 secs k = 0.0000 0.0000 0.1702 band energies (ev): -5.2866 7.2176 9.1623 9.1623 11.5065 15.5955 15.5955 16.0287 17.5680 k =-0.1487-0.2576 0.2836 band energies (ev): -3.9039 2.5229 8.0017 10.9803 11.1823 12.1294 13.5192 17.9537 17.9838 k = 0.2974 0.5151-0.0567 band energies (ev): -2.0240 -0.5321 8.6079 8.6987 9.8303 13.2367 14.9714 16.4843 22.0432 k = 0.1487 0.2576 0.0567 band energies (ev): -4.6638 4.4102 8.0485 9.3077 11.3771 14.6188 16.6019 16.8619 17.0341 k =-0.2974 0.0000 0.3971 band energies (ev): -3.1798 3.5374 6.6150 6.7293 7.8239 14.8053 17.0242 17.5036 17.6398 k = 0.1487 0.7727 0.0567 band energies (ev): -0.7772 0.3994 4.0337 5.7794 10.4406 14.2190 16.5248 20.0461 20.5221 k = 0.0000 0.5151 0.1702 band energies (ev): -2.6698 1.1138 6.0962 7.6112 11.3799 13.8041 16.8630 17.5241 18.3126 k = 0.5948 0.0000-0.2836 band energies (ev): -1.5949 2.5284 3.5901 6.1300 7.2820 14.4921 18.7177 19.2608 21.9618 k = 0.4461-0.2576-0.1702 band energies (ev): -2.6698 1.1138 6.0963 7.6113 11.3799 13.8041 16.8630 17.5240 18.3126 k = 0.2974 0.0000-0.0567 band energies (ev): -4.6638 4.4102 8.0485 9.3077 11.3771 14.6188 16.6018 16.8620 17.0340 k = 0.2974 0.0000 0.2836 band energies (ev): -3.9039 2.5229 8.0017 10.9803 11.1823 12.1293 13.5192 17.9538 17.9838 k = 0.1487-0.2576 0.3971 band energies (ev): -3.1798 3.5375 6.6149 6.7294 7.8239 14.8053 17.0242 17.5037 17.6397 k = 0.5948 0.5151 0.0567 band energies (ev): -0.7772 0.3995 4.0337 5.7794 10.4406 14.2190 16.5248 20.0460 20.5220 k = 0.4461 0.2576 0.1702 band energies (ev): -2.6698 1.1138 6.0963 7.6112 11.3799 13.8042 16.8629 17.5241 18.3125 k = 0.0000 0.0000 0.5105 band energies (ev): -3.0068 1.4687 9.4441 9.4442 11.5029 11.5029 11.8445 13.2102 21.6656 k = 0.4461 0.7727 0.1702 band energies (ev): -0.9282 0.1617 4.6219 7.7487 8.9772 13.8584 15.6734 18.7858 20.7186 k = 0.2974 0.5151 0.2836 band energies (ev): -1.5950 2.5284 3.5901 6.1301 7.2820 14.4921 18.7177 19.2608 21.9618 k = 0.8922 0.0000-0.1702 band energies (ev): -0.9283 0.1617 4.6219 7.7487 8.9771 13.8584 15.6734 18.7859 20.7186 k = 0.7435-0.2576-0.0567 band energies (ev): -0.7772 0.3995 4.0337 5.7794 10.4406 14.2189 16.5248 20.0461 20.5220 k = 0.5948 0.0000 0.0567 band energies (ev): -2.0240 -0.5321 8.6078 8.6988 9.8302 13.2367 14.9714 16.4843 22.0432 the Fermi energy is 11.5159 ev total energy = -25.44093227 Ry Harris-Foulkes estimate = -25.44093253 Ry estimated scf accuracy < 0.00000110 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 3.0 total cpu time spent up to now is 16.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.1702 ( 531 PWs) bands (ev): -5.2862 7.2183 9.1627 9.1627 11.5072 15.5958 15.5958 16.0294 17.5680 k =-0.1487-0.2576 0.2836 ( 522 PWs) bands (ev): -3.9035 2.5234 8.0021 10.9810 11.1823 12.1298 13.5198 17.9542 17.9838 k = 0.2974 0.5151-0.0567 ( 520 PWs) bands (ev): -2.0236 -0.5316 8.6082 8.6991 9.8308 13.2370 14.9719 16.4847 22.0434 k = 0.1487 0.2576 0.0567 ( 525 PWs) bands (ev): -4.6634 4.4108 8.0488 9.3082 11.3774 14.6194 16.6022 16.8621 17.0345 k =-0.2974 0.0000 0.3971 ( 519 PWs) bands (ev): -3.1794 3.5380 6.6153 6.7296 7.8243 14.8054 17.0245 17.5043 17.6403 k = 0.1487 0.7727 0.0567 ( 510 PWs) bands (ev): -0.7767 0.3999 4.0340 5.7797 10.4410 14.2194 16.5248 20.0466 20.5227 k = 0.0000 0.5151 0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8634 17.5242 18.3130 k = 0.5948 0.0000-0.2836 ( 510 PWs) bands (ev): -1.5944 2.5290 3.5903 6.1303 7.2824 14.4921 18.7182 19.2615 21.9625 k = 0.4461-0.2576-0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8634 17.5242 18.3130 k = 0.2974 0.0000-0.0567 ( 525 PWs) bands (ev): -4.6634 4.4107 8.0488 9.3082 11.3775 14.6194 16.6021 16.8622 17.0344 k = 0.2974 0.0000 0.2836 ( 522 PWs) bands (ev): -3.9035 2.5234 8.0021 10.9810 11.1823 12.1298 13.5198 17.9543 17.9838 k = 0.1487-0.2576 0.3971 ( 519 PWs) bands (ev): -3.1794 3.5380 6.6153 6.7296 7.8243 14.8053 17.0245 17.5043 17.6402 k = 0.5948 0.5151 0.0567 ( 510 PWs) bands (ev): -0.7767 0.3999 4.0340 5.7798 10.4411 14.2195 16.5249 20.0466 20.5226 k = 0.4461 0.2576 0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8633 17.5242 18.3129 k = 0.0000 0.0000 0.5105 ( 522 PWs) bands (ev): -3.0064 1.4691 9.4445 9.4445 11.5032 11.5032 11.8450 13.2107 21.6660 k = 0.4461 0.7727 0.1702 ( 520 PWs) bands (ev): -0.9277 0.1621 4.6222 7.7490 8.9776 13.8587 15.6740 18.7863 20.7189 k = 0.2974 0.5151 0.2836 ( 510 PWs) bands (ev): -1.5945 2.5290 3.5903 6.1303 7.2825 14.4921 18.7182 19.2615 21.9625 k = 0.8922 0.0000-0.1702 ( 520 PWs) bands (ev): -0.9278 0.1622 4.6222 7.7490 8.9776 13.8587 15.6740 18.7864 20.7189 k = 0.7435-0.2576-0.0567 ( 510 PWs) bands (ev): -0.7767 0.4000 4.0340 5.7797 10.4411 14.2194 16.5249 20.0467 20.5226 k = 0.5948 0.0000 0.0567 ( 520 PWs) bands (ev): -2.0235 -0.5316 8.6081 8.6991 9.8307 13.2370 14.9718 16.4848 22.0434 the Fermi energy is 11.5163 ev ! total energy = -25.44093308 Ry Harris-Foulkes estimate = -25.44093311 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000003 0.00000000 0.00123362 atom 2 type 1 force = 0.00000003 0.00000000 -0.00123362 Total force = 0.001745 Total SCF correction = 0.000128 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 312.45 0.00189639 0.00000000 -0.00000001 278.97 0.00 0.00 0.00000000 0.00189637 0.00000000 0.00 278.97 0.00 -0.00000001 0.00000000 0.00257925 0.00 0.00 379.42 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.546101163 0.000000000 0.743594908 -0.273050333 0.472938684 0.743593460 -0.273050333 -0.472938684 0.743593460 new unit-cell volume = 198.4959 (a.u.)^3 new positions in cryst coord As 0.254805571 0.254806644 0.254806644 As -0.254805571 -0.254806644 -0.254806644 new positions in cart coord (alat unit) As -0.000000459 0.000000000 0.568417233 As 0.000000459 0.000000000 -0.568417233 Ekin = 0.12161431 Ry T = 3207.1 K Etot = -24.61752888 CELL_PARAMETERS (alat) 0.546101163 0.000000000 0.743594908 -0.273050333 0.472938684 0.743593460 -0.273050333 -0.472938684 0.743593460 ATOMIC_POSITIONS (crystal) As 0.254805571 0.254806644 0.254806644 As -0.254805571 -0.254806644 -0.254806644 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000003 0.0000000 0.1681025), wk = 0.0625000 k( 2) = ( -0.1525974 -0.2643049 0.2801709), wk = 0.1250000 k( 3) = ( 0.3051940 0.5286098 -0.0560342), wk = 0.1250000 k( 4) = ( 0.1525968 0.2643049 0.0560341), wk = 0.1250000 k( 5) = ( -0.3051945 0.0000000 0.3922392), wk = 0.0625000 k( 6) = ( 0.1525968 0.7929146 0.0560341), wk = 0.1250000 k( 7) = ( -0.0000003 0.5286098 0.1681025), wk = 0.1250000 k( 8) = ( 0.6103882 0.0000000 -0.2801710), wk = 0.0625000 k( 9) = ( 0.4577911 -0.2643049 -0.1681026), wk = 0.1250000 k( 10) = ( 0.3051940 0.0000000 -0.0560342), wk = 0.0625000 k( 11) = ( 0.3051934 0.0000000 0.2801708), wk = 0.0625000 k( 12) = ( 0.1525962 -0.2643049 0.3922391), wk = 0.1250000 k( 13) = ( 0.6103876 0.5286098 0.0560340), wk = 0.1250000 k( 14) = ( 0.4577905 0.2643049 0.1681024), wk = 0.1250000 k( 15) = ( -0.0000009 0.0000000 0.5043075), wk = 0.0625000 k( 16) = ( 0.4577905 0.7929146 0.1681024), wk = 0.1250000 k( 17) = ( 0.3051934 0.5286098 0.2801708), wk = 0.1250000 k( 18) = ( 0.9155819 0.0000000 -0.1681027), wk = 0.0625000 k( 19) = ( 0.7629847 -0.2643049 -0.0560343), wk = 0.1250000 k( 20) = ( 0.6103876 0.0000000 0.0560340), wk = 0.0625000 extrapolated charge 9.59810, renormalised to 10.00000 total cpu time spent up to now is 17.13 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.5 total cpu time spent up to now is 17.92 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0086 7.7616 10.0023 10.0023 12.4799 16.4052 16.4053 17.0287 18.5646 k =-0.1526-0.2643 0.2802 band energies (ev): -3.5892 3.2041 8.2308 11.4155 12.2723 13.0747 14.6363 18.6041 19.0911 k = 0.3052 0.5286-0.0560 band energies (ev): -1.5593 -0.0594 9.0014 9.2656 10.6768 13.9544 15.8517 16.9547 22.2724 k = 0.1526 0.2643 0.0560 band energies (ev): -4.3336 5.1692 8.7933 9.8631 11.9494 15.5364 17.0915 17.2985 18.1193 k =-0.3052 0.0000 0.3922 band energies (ev): -2.8769 4.0377 7.1751 7.5039 8.4969 15.4519 18.0827 18.8194 19.0661 k = 0.1526 0.7929 0.0560 band energies (ev): -0.3665 0.9988 4.5466 6.1117 11.1111 15.2528 17.4559 20.9750 21.6435 k = 0.0000 0.5286 0.1681 band energies (ev): -2.2489 1.7231 6.5780 8.1514 11.8687 14.3666 17.7895 18.4600 19.3948 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1397 2.9945 4.0797 6.8515 7.8386 14.9319 19.5964 20.4417 23.1215 k = 0.4578-0.2643-0.1681 band energies (ev): -2.2488 1.7230 6.5781 8.1515 11.8686 14.3666 17.7895 18.4600 19.3947 k = 0.3052 0.0000-0.0560 band energies (ev): -4.3336 5.1691 8.7933 9.8631 11.9495 15.5364 17.0915 17.2984 18.1193 k = 0.3052 0.0000 0.2802 band energies (ev): -3.5892 3.2042 8.2307 11.4155 12.2722 13.0747 14.6363 18.6042 19.0910 k = 0.1526-0.2643 0.3922 band energies (ev): -2.8769 4.0378 7.1751 7.5039 8.4969 15.4519 18.0827 18.8195 19.0661 k = 0.6104 0.5286 0.0560 band energies (ev): -0.3666 0.9988 4.5466 6.1117 11.1111 15.2528 17.4559 20.9749 21.6434 k = 0.4578 0.2643 0.1681 band energies (ev): -2.2489 1.7230 6.5781 8.1514 11.8687 14.3667 17.7895 18.4600 19.3947 k = 0.0000 0.0000 0.5043 band energies (ev): -2.7834 1.7349 10.3143 10.3143 12.4342 12.4343 13.1076 14.5782 22.5590 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7198 0.6181 5.1775 8.5037 9.9351 14.8782 17.0690 20.0716 21.2042 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1397 2.9946 4.0797 6.8515 7.8387 14.9319 19.5964 20.4417 23.1214 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7199 0.6181 5.1775 8.5037 9.9351 14.8782 17.0690 20.0717 21.2042 k = 0.7630-0.2643-0.0560 band energies (ev): -0.3666 0.9988 4.5466 6.1117 11.1111 15.2527 17.4559 20.9750 21.6434 k = 0.6104 0.0000 0.0560 band energies (ev): -1.5593 -0.0594 9.0014 9.2655 10.6767 13.9543 15.8517 16.9548 22.2724 the Fermi energy is 12.4648 ev total energy = -25.42247156 Ry Harris-Foulkes estimate = -25.12116838 Ry estimated scf accuracy < 0.00062568 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-06, avg # of iterations = 2.5 total cpu time spent up to now is 18.35 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0721 7.7496 9.9672 9.9672 12.4555 16.3456 16.3457 16.9524 18.4022 k =-0.1526-0.2643 0.2802 band energies (ev): -3.6499 3.1681 8.1586 11.3734 12.2151 12.9890 14.5850 18.5498 18.9233 k = 0.3052 0.5286-0.0560 band energies (ev): -1.6148 -0.1100 8.9220 9.2007 10.5947 13.9051 15.7711 16.8985 22.1399 k = 0.1526 0.2643 0.0560 band energies (ev): -4.3959 5.1461 8.7381 9.8056 11.8730 15.5167 16.9433 17.2480 18.0378 k =-0.3052 0.0000 0.3922 band energies (ev): -2.9339 4.0182 7.0854 7.4357 8.4283 15.2530 18.0399 18.7636 19.0525 k = 0.1526 0.7929 0.0560 band energies (ev): -0.4056 0.9597 4.4392 6.0199 11.0635 15.2063 17.2721 20.9564 21.6181 k = 0.0000 0.5286 0.1681 band energies (ev): -2.3054 1.6861 6.4887 8.0652 11.8283 14.3046 17.6940 18.3421 19.3477 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1812 2.9637 3.9781 6.7785 7.7663 14.7323 19.5812 20.4201 23.1425 k = 0.4578-0.2643-0.1681 band energies (ev): -2.3054 1.6861 6.4887 8.0652 11.8282 14.3046 17.6940 18.3420 19.3476 k = 0.3052 0.0000-0.0560 band energies (ev): -4.3959 5.1461 8.7381 9.8055 11.8730 15.5167 16.9433 17.2480 18.0378 k = 0.3052 0.0000 0.2802 band energies (ev): -3.6499 3.1682 8.1585 11.3734 12.2151 12.9889 14.5850 18.5499 18.9233 k = 0.1526-0.2643 0.3922 band energies (ev): -2.9340 4.0183 7.0853 7.4357 8.4283 15.2530 18.0399 18.7636 19.0524 k = 0.6104 0.5286 0.0560 band energies (ev): -0.4056 0.9597 4.4392 6.0199 11.0636 15.2063 17.2722 20.9564 21.6180 k = 0.4578 0.2643 0.1681 band energies (ev): -2.3054 1.6861 6.4887 8.0652 11.8283 14.3047 17.6940 18.3420 19.3476 k = 0.0000 0.0000 0.5043 band energies (ev): -2.8418 1.6902 10.2601 10.2601 12.3689 12.3690 13.0082 14.4802 22.4268 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7685 0.5794 5.0737 8.4326 9.8477 14.8457 17.0088 20.0112 21.0787 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1813 2.9638 3.9781 6.7786 7.7663 14.7323 19.5812 20.4201 23.1424 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7685 0.5794 5.0737 8.4325 9.8476 14.8457 17.0088 20.0113 21.0787 k = 0.7630-0.2643-0.0560 band energies (ev): -0.4056 0.9597 4.4392 6.0199 11.0636 15.2062 17.2722 20.9564 21.6181 k = 0.6104 0.0000 0.0560 band energies (ev): -1.6148 -0.1100 8.9220 9.2007 10.5947 13.9051 15.7711 16.8986 22.1399 the Fermi energy is 12.4158 ev total energy = -25.42289405 Ry Harris-Foulkes estimate = -25.42293811 Ry estimated scf accuracy < 0.00012125 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-06, avg # of iterations = 1.0 total cpu time spent up to now is 18.64 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0817 7.7357 9.9565 9.9565 12.4410 16.3365 16.3366 16.9409 18.4026 k =-0.1526-0.2643 0.2802 band energies (ev): -3.6597 3.1565 8.1503 11.3616 12.2081 12.9808 14.5738 18.5391 18.9223 k = 0.3052 0.5286-0.0560 band energies (ev): -1.6250 -0.1203 8.9143 9.1923 10.5865 13.8960 15.7623 16.8887 22.1366 k = 0.1526 0.2643 0.0560 band energies (ev): -4.4055 5.1331 8.7291 9.7954 11.8652 15.5032 16.9404 17.2385 18.0296 k =-0.3052 0.0000 0.3922 band energies (ev): -2.9441 4.0052 7.0774 7.4279 8.4208 15.2546 18.0294 18.7505 19.0399 k = 0.1526 0.7929 0.0560 band energies (ev): -0.4175 0.9483 4.4342 6.0136 11.0535 15.1953 17.2728 20.9427 21.6039 k = 0.0000 0.5286 0.1681 band energies (ev): -2.3155 1.6744 6.4815 8.0589 11.8173 14.2954 17.6880 18.3354 19.3373 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1927 2.9498 3.9743 6.7711 7.7578 14.7341 19.5684 20.4058 23.1244 k = 0.4578-0.2643-0.1681 band energies (ev): -2.3155 1.6743 6.4815 8.0589 11.8172 14.2955 17.6881 18.3354 19.3373 k = 0.3052 0.0000-0.0560 band energies (ev): -4.4055 5.1331 8.7291 9.7954 11.8653 15.5032 16.9404 17.2385 18.0296 k = 0.3052 0.0000 0.2802 band energies (ev): -3.6597 3.1566 8.1503 11.3616 12.2081 12.9807 14.5738 18.5392 18.9223 k = 0.1526-0.2643 0.3922 band energies (ev): -2.9441 4.0053 7.0773 7.4279 8.4209 15.2546 18.0295 18.7505 19.0399 k = 0.6104 0.5286 0.0560 band energies (ev): -0.4176 0.9483 4.4342 6.0137 11.0536 15.1953 17.2729 20.9427 21.6039 k = 0.4578 0.2643 0.1681 band energies (ev): -2.3155 1.6744 6.4816 8.0589 11.8173 14.2955 17.6880 18.3354 19.3372 k = 0.0000 0.0000 0.5043 band energies (ev): -2.8520 1.6798 10.2508 10.2508 12.3610 12.3611 12.9979 14.4741 22.4213 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7805 0.5694 5.0681 8.4249 9.8401 14.8348 16.9974 20.0018 21.0732 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1927 2.9498 3.9742 6.7712 7.7578 14.7341 19.5684 20.4058 23.1243 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7805 0.5694 5.0681 8.4249 9.8401 14.8348 16.9974 20.0019 21.0732 k = 0.7630-0.2643-0.0560 band energies (ev): -0.4176 0.9484 4.4342 6.0136 11.0536 15.1952 17.2728 20.9427 21.6039 k = 0.6104 0.0000 0.0560 band energies (ev): -1.6250 -0.1203 8.9143 9.1923 10.5865 13.8960 15.7623 16.8887 22.1365 the Fermi energy is 12.4053 ev total energy = -25.42289323 Ry Harris-Foulkes estimate = -25.42289872 Ry estimated scf accuracy < 0.00001403 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-07, avg # of iterations = 1.9 total cpu time spent up to now is 18.95 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0864 7.7286 9.9512 9.9512 12.4337 16.3319 16.3320 16.9356 18.4026 k =-0.1526-0.2643 0.2802 band energies (ev): -3.6645 3.1507 8.1462 11.3568 12.2034 12.9766 14.5681 18.5337 18.9219 k = 0.3052 0.5286-0.0560 band energies (ev): -1.6301 -0.1256 8.9104 9.1883 10.5823 13.8911 15.7579 16.8836 22.1348 k = 0.1526 0.2643 0.0560 band energies (ev): -4.4103 5.1266 8.7247 9.7903 11.8612 15.4964 16.9393 17.2335 18.0252 k =-0.3052 0.0000 0.3922 band energies (ev): -2.9491 3.9985 7.0739 7.4240 8.4164 15.2556 18.0241 18.7445 19.0329 k = 0.1526 0.7929 0.0560 band energies (ev): -0.4234 0.9425 4.4316 6.0104 11.0483 15.1897 17.2733 20.9357 21.5971 k = 0.0000 0.5286 0.1681 band energies (ev): -2.3205 1.6685 6.4782 8.0553 11.8117 14.2906 17.6850 18.3324 19.3318 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1984 2.9436 3.9714 6.7674 7.7534 14.7352 19.5617 20.3984 23.1152 k = 0.4578-0.2643-0.1681 band energies (ev): -2.3205 1.6685 6.4782 8.0554 11.8117 14.2907 17.6850 18.3324 19.3318 k = 0.3052 0.0000-0.0560 band energies (ev): -4.4103 5.1266 8.7247 9.7902 11.8613 15.4964 16.9394 17.2335 18.0252 k = 0.3052 0.0000 0.2802 band energies (ev): -3.6645 3.1507 8.1461 11.3568 12.2033 12.9766 14.5681 18.5338 18.9219 k = 0.1526-0.2643 0.3922 band energies (ev): -2.9491 3.9985 7.0739 7.4240 8.4165 15.2556 18.0241 18.7445 19.0328 k = 0.6104 0.5286 0.0560 band energies (ev): -0.4234 0.9426 4.4316 6.0104 11.0484 15.1897 17.2733 20.9356 21.5970 k = 0.4578 0.2643 0.1681 band energies (ev): -2.3205 1.6685 6.4782 8.0553 11.8117 14.2907 17.6850 18.3324 19.3317 k = 0.0000 0.0000 0.5043 band energies (ev): -2.8569 1.6743 10.2463 10.2463 12.3568 12.3569 12.9935 14.4703 22.4187 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7859 0.5636 5.0654 8.4211 9.8362 14.8292 16.9918 19.9968 21.0707 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1984 2.9436 3.9714 6.7675 7.7534 14.7352 19.5617 20.3984 23.1152 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7859 0.5637 5.0654 8.4211 9.8362 14.8292 16.9918 19.9969 21.0707 k = 0.7630-0.2643-0.0560 band energies (ev): -0.4234 0.9426 4.4316 6.0104 11.0484 15.1897 17.2733 20.9357 21.5970 k = 0.6104 0.0000 0.0560 band energies (ev): -1.6301 -0.1256 8.9104 9.1883 10.5823 13.8911 15.7579 16.8836 22.1348 the Fermi energy is 12.3999 ev total energy = -25.42289479 Ry Harris-Foulkes estimate = -25.42289483 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.20E-09, avg # of iterations = 3.0 total cpu time spent up to now is 19.35 secs End of self-consistent calculation k = 0.0000 0.0000 0.1681 ( 531 PWs) bands (ev): -5.0861 7.7290 9.9515 9.9515 12.4342 16.3322 16.3322 16.9360 18.4025 k =-0.1526-0.2643 0.2802 ( 522 PWs) bands (ev): -3.6642 3.1510 8.1464 11.3571 12.2037 12.9769 14.5685 18.5340 18.9219 k = 0.3052 0.5286-0.0560 ( 520 PWs) bands (ev): -1.6298 -0.1252 8.9106 9.1885 10.5826 13.8914 15.7582 16.8839 22.1350 k = 0.1526 0.2643 0.0560 ( 525 PWs) bands (ev): -4.4100 5.1271 8.7250 9.7906 11.8615 15.4968 16.9394 17.2338 18.0255 k =-0.3052 0.0000 0.3922 ( 519 PWs) bands (ev): -2.9488 3.9989 7.0741 7.4242 8.4167 15.2555 18.0244 18.7448 19.0334 k = 0.1526 0.7929 0.0560 ( 510 PWs) bands (ev): -0.4230 0.9429 4.4318 6.0106 11.0487 15.1901 17.2732 20.9361 21.5975 k = 0.0000 0.5286 0.1681 ( 521 PWs) bands (ev): -2.3202 1.6689 6.4784 8.0556 11.8121 14.2909 17.6852 18.3326 19.3322 k = 0.6104 0.0000-0.2802 ( 510 PWs) bands (ev): -1.1980 2.9439 3.9716 6.7677 7.7537 14.7351 19.5622 20.3989 23.1158 k = 0.4578-0.2643-0.1681 ( 521 PWs) bands (ev): -2.3202 1.6689 6.4784 8.0556 11.8120 14.2910 17.6852 18.3326 19.3321 k = 0.3052 0.0000-0.0560 ( 525 PWs) bands (ev): -4.4100 5.1270 8.7249 9.7906 11.8615 15.4968 16.9394 17.2338 18.0255 k = 0.3052 0.0000 0.2802 ( 522 PWs) bands (ev): -3.6642 3.1511 8.1464 11.3571 12.2036 12.9768 14.5685 18.5341 18.9219 k = 0.1526-0.2643 0.3922 ( 519 PWs) bands (ev): -2.9488 3.9990 7.0741 7.4242 8.4168 15.2555 18.0245 18.7449 19.0333 k = 0.6104 0.5286 0.0560 ( 510 PWs) bands (ev): -0.4230 0.9429 4.4318 6.0106 11.0487 15.1901 17.2733 20.9361 21.5974 k = 0.4578 0.2643 0.1681 ( 521 PWs) bands (ev): -2.3202 1.6689 6.4784 8.0556 11.8121 14.2910 17.6852 18.3326 19.3321 k = 0.0000 0.0000 0.5043 ( 522 PWs) bands (ev): -2.8566 1.6746 10.2466 10.2466 12.3571 12.3571 12.9937 14.4706 22.4189 k = 0.4578 0.7929 0.1681 ( 520 PWs) bands (ev): -0.7856 0.5640 5.0655 8.4213 9.8365 14.8296 16.9922 19.9972 21.0709 k = 0.3052 0.5286 0.2802 ( 510 PWs) bands (ev): -1.1981 2.9440 3.9716 6.7677 7.7537 14.7351 19.5622 20.3989 23.1157 k = 0.9156 0.0000-0.1681 ( 520 PWs) bands (ev): -0.7856 0.5641 5.0655 8.4213 9.8364 14.8296 16.9922 19.9972 21.0709 k = 0.7630-0.2643-0.0560 ( 510 PWs) bands (ev): -0.4230 0.9430 4.4318 6.0106 11.0487 15.1900 17.2733 20.9362 21.5975 k = 0.6104 0.0000 0.0560 ( 520 PWs) bands (ev): -1.6298 -0.1252 8.9107 9.1885 10.5826 13.8914 15.7582 16.8840 22.1349 the Fermi energy is 12.4002 ev ! total energy = -25.42289492 Ry Harris-Foulkes estimate = -25.42289493 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000028 0.00000000 -0.01856199 atom 2 type 1 force = 0.00000028 0.00000000 0.01856199 Total force = 0.026251 Total SCF correction = 0.000033 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 400.46 0.00262567 0.00000000 -0.00000001 386.25 0.00 0.00 0.00000000 0.00262567 0.00000000 0.00 386.25 0.00 -0.00000001 0.00000000 0.00291550 0.00 0.00 428.88 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.524159274 0.000000000 0.739831978 -0.262079892 0.453936495 0.739830942 -0.262079892 -0.453936495 0.739830942 new unit-cell volume = 181.9403 (a.u.)^3 new positions in cryst coord As 0.254417392 0.254418489 0.254418489 As -0.254417392 -0.254418489 -0.254418489 new positions in cart coord (alat unit) As -0.000000705 0.000000000 0.564679463 As 0.000000705 0.000000000 -0.564679463 Ekin = 0.01462353 Ry T = 2758.1 K Etot = -24.73359756 CELL_PARAMETERS (alat) 0.524159274 0.000000000 0.739831978 -0.262079892 0.453936495 0.739830942 -0.262079892 -0.453936495 0.739830942 ATOMIC_POSITIONS (crystal) As 0.254417392 0.254418489 0.254418489 As -0.254417392 -0.254418489 -0.254418489 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000002 0.0000000 0.1689574), wk = 0.0625000 k( 2) = ( -0.1589851 -0.2753689 0.2815957), wk = 0.1250000 k( 3) = ( 0.3179695 0.5507378 -0.0563191), wk = 0.1250000 k( 4) = ( 0.1589846 0.2753689 0.0563192), wk = 0.1250000 k( 5) = ( -0.3179699 0.0000000 0.3942340), wk = 0.0625000 k( 6) = ( 0.1589846 0.8261067 0.0563192), wk = 0.1250000 k( 7) = ( -0.0000002 0.5507378 0.1689574), wk = 0.1250000 k( 8) = ( 0.6359392 0.0000000 -0.2815956), wk = 0.0625000 k( 9) = ( 0.4769543 -0.2753689 -0.1689573), wk = 0.1250000 k( 10) = ( 0.3179695 0.0000000 -0.0563191), wk = 0.0625000 k( 11) = ( 0.3179690 0.0000000 0.2815958), wk = 0.0625000 k( 12) = ( 0.1589842 -0.2753689 0.3942341), wk = 0.1250000 k( 13) = ( 0.6359387 0.5507378 0.0563193), wk = 0.1250000 k( 14) = ( 0.4769539 0.2753689 0.1689575), wk = 0.1250000 k( 15) = ( -0.0000007 0.0000000 0.5068723), wk = 0.0625000 k( 16) = ( 0.4769539 0.8261067 0.1689575), wk = 0.1250000 k( 17) = ( 0.3179690 0.5507378 0.2815958), wk = 0.1250000 k( 18) = ( 0.9539084 0.0000000 -0.1689572), wk = 0.0625000 k( 19) = ( 0.7949236 -0.2753689 -0.0563190), wk = 0.1250000 k( 20) = ( 0.6359387 0.0000000 0.0563193), wk = 0.0625000 extrapolated charge 9.09009, renormalised to 10.00000 total cpu time spent up to now is 19.62 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.5 total cpu time spent up to now is 20.35 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.3530 9.1097 11.7412 11.7412 14.9519 18.3243 18.3244 19.2050 20.3598 k =-0.1590-0.2754 0.2816 band energies (ev): -2.8384 4.6414 9.1828 13.0697 13.9584 15.0062 16.9989 20.4664 21.2913 k = 0.3180 0.5507-0.0563 band energies (ev): -0.5605 0.9979 10.0796 10.7488 12.3966 15.6015 17.9309 18.5530 23.5985 k = 0.1590 0.2754 0.0563 band energies (ev): -3.5989 6.8181 10.3474 11.2201 13.4331 17.6178 18.4945 19.0905 20.1610 k =-0.3180 0.0000 0.3942 band energies (ev): -2.0992 5.2930 8.5199 9.0074 9.9900 16.9486 20.3118 21.3740 21.9000 k = 0.1590 0.8261 0.0563 band energies (ev): 0.6824 2.2730 5.6166 7.0568 12.7144 17.3481 19.3360 23.1224 23.8784 k = 0.0000 0.5507 0.1690 band energies (ev): -1.3284 3.0503 7.7427 9.3964 13.2982 15.8780 19.7171 20.7447 21.7159 k = 0.6359 0.0000-0.2816 band energies (ev): -0.0851 4.2617 5.0686 8.2666 9.1896 16.2069 21.6677 22.8653 25.6668 k = 0.4770-0.2754-0.1690 band energies (ev): -1.3284 3.0503 7.7427 9.3964 13.2982 15.8780 19.7171 20.7447 21.7158 k = 0.3180 0.0000-0.0563 band energies (ev): -3.5989 6.8181 10.3473 11.2201 13.4332 17.6178 18.4945 19.0904 20.1610 k = 0.3180 0.0000 0.2816 band energies (ev): -2.8384 4.6415 9.1828 13.0697 13.9583 15.0061 16.9988 20.4665 21.2913 k = 0.1590-0.2754 0.3942 band energies (ev): -2.0992 5.2931 8.5199 9.0074 9.9900 16.9486 20.3118 21.3741 21.8999 k = 0.6359 0.5507 0.0563 band energies (ev): 0.6823 2.2730 5.6166 7.0569 12.7144 17.3481 19.3361 23.1224 23.8784 k = 0.4770 0.2754 0.1690 band energies (ev): -1.3284 3.0503 7.7427 9.3964 13.2982 15.8780 19.7171 20.7447 21.7158 k = 0.0000 0.0000 0.5069 band energies (ev): -2.0811 2.6053 12.0742 12.0742 14.2491 14.2491 15.6214 17.0583 24.7195 k = 0.4770 0.8261 0.1690 band energies (ev): 0.1282 1.6099 6.3573 10.0282 11.7870 16.9252 19.7910 22.2814 23.2227 k = 0.3180 0.5507 0.2816 band energies (ev): -0.0851 4.2617 5.0686 8.2666 9.1897 16.2069 21.6677 22.8654 25.6667 k = 0.9539 0.0000-0.1690 band energies (ev): 0.1282 1.6099 6.3573 10.0282 11.7870 16.9252 19.7910 22.2814 23.2228 k = 0.7949-0.2754-0.0563 band energies (ev): 0.6823 2.2730 5.6166 7.0568 12.7144 17.3480 19.3361 23.1224 23.8784 k = 0.6359 0.0000 0.0563 band energies (ev): -0.5604 0.9979 10.0796 10.7488 12.3966 15.6015 17.9309 18.5530 23.5985 the Fermi energy is 14.3064 ev total energy = -25.36345709 Ry Harris-Foulkes estimate = -24.65535387 Ry estimated scf accuracy < 0.00144093 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-05, avg # of iterations = 3.2 total cpu time spent up to now is 20.84 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5364 9.0051 11.6270 11.6271 14.8821 18.1519 18.1519 18.9856 19.9910 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0167 4.5125 8.9756 12.9530 13.7712 14.7855 16.8241 20.2987 20.9228 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7268 0.8356 9.8632 10.5699 12.1901 15.4400 17.7051 18.3500 23.2660 k = 0.1590 0.2754 0.0563 band energies (ev): -3.7803 6.7121 10.1874 11.0729 13.2212 17.4406 18.1597 18.9258 19.9636 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2706 5.1771 8.3046 8.8205 9.8029 16.4889 20.1766 21.2223 21.8318 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5491 2.1374 5.3494 6.8113 12.5593 17.2168 18.9227 22.9742 23.6262 k = 0.0000 0.5507 0.1690 band energies (ev): -1.4987 2.9197 7.5174 9.1605 13.1583 15.6875 19.3808 20.5584 21.5639 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2233 4.1365 4.8037 8.0696 9.0112 15.7395 21.5765 22.7655 25.6516 k = 0.4770-0.2754-0.1690 band energies (ev): -1.4987 2.9196 7.5174 9.1605 13.1583 15.6875 19.3808 20.5584 21.5638 k = 0.3180 0.0000-0.0563 band energies (ev): -3.7803 6.7121 10.1874 11.0728 13.2212 17.4406 18.1597 18.9257 19.9635 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0167 4.5125 8.9755 12.9530 13.7711 14.7854 16.8240 20.2988 20.9227 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2706 5.1771 8.3046 8.8205 9.8030 16.4889 20.1766 21.2223 21.8317 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5491 2.1374 5.3494 6.8113 12.5593 17.2169 18.9228 22.9742 23.6262 k = 0.4770 0.2754 0.1690 band energies (ev): -1.4987 2.9196 7.5174 9.1605 13.1583 15.6875 19.3808 20.5583 21.5638 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2534 2.4422 11.9215 11.9215 14.0637 14.0638 15.3870 16.7876 24.4308 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0158 1.4497 6.1031 9.8358 11.5648 16.8147 19.6290 21.9700 23.0508 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2234 4.1365 4.8037 8.0696 9.0112 15.7395 21.5765 22.7655 25.6515 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0158 1.4497 6.1031 9.8357 11.5647 16.8147 19.6290 21.9700 23.0509 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5491 2.1374 5.3494 6.8113 12.5593 17.2168 18.9227 22.9742 23.6262 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7268 0.8356 9.8632 10.5698 12.1901 15.4400 17.7051 18.3500 23.2660 the Fermi energy is 14.1210 ev total energy = -25.36524880 Ry Harris-Foulkes estimate = -25.36537593 Ry estimated scf accuracy < 0.00033556 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.36E-06, avg # of iterations = 1.0 total cpu time spent up to now is 21.14 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5507 8.9872 11.6088 11.6088 14.8605 18.1365 18.1366 18.9715 19.9911 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0313 4.4953 8.9640 12.9297 13.7637 14.7745 16.8093 20.2834 20.9192 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7423 0.8205 9.8522 10.5553 12.1786 15.4263 17.6931 18.3373 23.2614 k = 0.1590 0.2754 0.0563 band energies (ev): -3.7947 6.6929 10.1721 11.0579 13.2102 17.4273 18.1526 18.9112 19.9507 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2857 5.1598 8.2905 8.8072 9.7924 16.4914 20.1593 21.2056 21.8106 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5311 2.1206 5.3412 6.8025 12.5444 17.2000 18.9225 22.9584 23.6145 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5137 2.9021 7.5054 9.1522 13.1421 15.6749 19.3764 20.5425 21.5481 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2406 4.1134 4.8013 8.0569 8.9980 15.7425 21.5567 22.7462 25.6255 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5137 2.9021 7.5054 9.1522 13.1421 15.6749 19.3764 20.5425 21.5480 k = 0.3180 0.0000-0.0563 band energies (ev): -3.7947 6.6929 10.1721 11.0579 13.2102 17.4273 18.1526 18.9112 19.9507 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0313 4.4954 8.9640 12.9297 13.7636 14.7744 16.8093 20.2834 20.9192 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2858 5.1599 8.2905 8.8072 9.7924 16.4914 20.1594 21.2056 21.8105 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5310 2.1206 5.3412 6.8025 12.5444 17.2000 18.9225 22.9584 23.6145 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5137 2.9021 7.5054 9.1522 13.1421 15.6750 19.3764 20.5424 21.5480 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2689 2.4284 11.9051 11.9051 14.0511 14.0511 15.3732 16.7818 24.4216 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0351 1.4377 6.0936 9.8225 11.5539 16.7968 19.6127 21.9651 23.0337 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2406 4.1134 4.8013 8.0569 8.9981 15.7425 21.5567 22.7462 25.6255 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0351 1.4377 6.0936 9.8225 11.5538 16.7969 19.6127 21.9651 23.0338 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5310 2.1206 5.3412 6.8025 12.5444 17.2000 18.9225 22.9584 23.6145 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7423 0.8205 9.8522 10.5553 12.1786 15.4263 17.6930 18.3373 23.2614 the Fermi energy is 14.1084 ev total energy = -25.36523540 Ry Harris-Foulkes estimate = -25.36526122 Ry estimated scf accuracy < 0.00005716 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-07, avg # of iterations = 1.1 total cpu time spent up to now is 21.43 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5597 8.9753 11.5973 11.5973 14.8466 18.1271 18.1271 18.9644 19.9895 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0405 4.4842 8.9565 12.9179 13.7555 14.7672 16.7998 20.2734 20.9173 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7519 0.8107 9.8449 10.5464 12.1709 15.4167 17.6855 18.3288 23.2582 k = 0.1590 0.2754 0.0563 band energies (ev): -3.8037 6.6808 10.1625 11.0479 13.2027 17.4188 18.1486 18.9014 19.9421 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2952 5.1482 8.2829 8.7987 9.7840 16.4934 20.1483 21.1952 21.7965 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5200 2.1097 5.3360 6.7965 12.5344 17.1891 18.9225 22.9481 23.6079 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5232 2.8911 7.4984 9.1458 13.1317 15.6664 19.3738 20.5329 21.5375 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2514 4.1020 4.7960 8.0489 8.9892 15.7447 21.5437 22.7335 25.6087 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5232 2.8910 7.4984 9.1458 13.1316 15.6664 19.3738 20.5329 21.5374 k = 0.3180 0.0000-0.0563 band energies (ev): -3.8037 6.6808 10.1625 11.0479 13.2027 17.4188 18.1487 18.9014 19.9420 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0405 4.4843 8.9564 12.9179 13.7554 14.7672 16.7997 20.2735 20.9172 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2952 5.1483 8.2829 8.7987 9.7840 16.4934 20.1483 21.1953 21.7964 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5200 2.1097 5.3360 6.7965 12.5344 17.1891 18.9226 22.9481 23.6079 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5232 2.8910 7.4984 9.1458 13.1316 15.6665 19.3738 20.5328 21.5374 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2783 2.4188 11.8952 11.8952 14.0425 14.0426 15.3661 16.7763 24.4160 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0457 1.4279 6.0877 9.8142 11.5466 16.7851 19.6027 21.9613 23.0237 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2514 4.1020 4.7960 8.0489 8.9892 15.7447 21.5437 22.7335 25.6087 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0457 1.4280 6.0877 9.8142 11.5466 16.7851 19.6027 21.9613 23.0237 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5200 2.1097 5.3360 6.7965 12.5344 17.1890 18.9226 22.9481 23.6079 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7519 0.8107 9.8450 10.5464 12.1709 15.4167 17.6855 18.3288 23.2582 the Fermi energy is 14.0998 ev total energy = -25.36523961 Ry Harris-Foulkes estimate = -25.36523996 Ry estimated scf accuracy < 0.00000082 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.16E-09, avg # of iterations = 3.0 total cpu time spent up to now is 21.86 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5613 8.9733 11.5953 11.5953 14.8443 18.1254 18.1255 18.9631 19.9894 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0421 4.4824 8.9552 12.9158 13.7543 14.7660 16.7982 20.2718 20.9169 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7536 0.8091 9.8437 10.5449 12.1696 15.4151 17.6843 18.3274 23.2577 k = 0.1590 0.2754 0.0563 band energies (ev): -3.8053 6.6788 10.1609 11.0463 13.2014 17.4173 18.1480 18.8998 19.9407 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2968 5.1463 8.2816 8.7973 9.7827 16.4937 20.1464 21.1935 21.7942 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5181 2.1079 5.3351 6.7955 12.5327 17.1873 18.9225 22.9463 23.6067 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5248 2.8892 7.4972 9.1447 13.1299 15.6650 19.3733 20.5312 21.5357 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2532 4.0999 4.7953 8.0475 8.9877 15.7450 21.5416 22.7314 25.6060 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5248 2.8892 7.4972 9.1448 13.1299 15.6650 19.3733 20.5312 21.5357 k = 0.3180 0.0000-0.0563 band energies (ev): -3.8053 6.6788 10.1609 11.0463 13.2015 17.4173 18.1480 18.8998 19.9406 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0421 4.4824 8.9552 12.9158 13.7542 14.7660 16.7982 20.2718 20.9169 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2968 5.1463 8.2815 8.7973 9.7827 16.4937 20.1464 21.1935 21.7941 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5181 2.1079 5.3351 6.7955 12.5328 17.1873 18.9226 22.9463 23.6067 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5248 2.8892 7.4972 9.1447 13.1299 15.6650 19.3733 20.5312 21.5357 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2799 2.4172 11.8934 11.8935 14.0411 14.0411 15.3648 16.7755 24.4151 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0476 1.4264 6.0867 9.8128 11.5454 16.7831 19.6010 21.9607 23.0220 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2533 4.0999 4.7953 8.0475 8.9878 15.7450 21.5416 22.7315 25.6059 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0476 1.4265 6.0867 9.8128 11.5454 16.7831 19.6010 21.9607 23.0220 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5181 2.1079 5.3351 6.7955 12.5328 17.1872 18.9225 22.9464 23.6067 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7535 0.8091 9.8437 10.5449 12.1696 15.4151 17.6842 18.3274 23.2577 the Fermi energy is 14.0984 ev total energy = -25.36524052 Ry Harris-Foulkes estimate = -25.36524055 Ry estimated scf accuracy < 0.00000022 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 1.0 total cpu time spent up to now is 22.14 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5612 8.9734 11.5954 11.5954 14.8444 18.1255 18.1256 18.9632 19.9893 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0420 4.4825 8.9552 12.9159 13.7543 14.7661 16.7983 20.2719 20.9169 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7535 0.8092 9.8438 10.5450 12.1697 15.4152 17.6843 18.3274 23.2577 k = 0.1590 0.2754 0.0563 band energies (ev): -3.8052 6.6789 10.1610 11.0464 13.2015 17.4174 18.1480 18.8999 19.9408 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2967 5.1464 8.2816 8.7973 9.7827 16.4937 20.1465 21.1936 21.7943 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5182 2.1080 5.3351 6.7955 12.5328 17.1874 18.9225 22.9464 23.6067 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5247 2.8893 7.4973 9.1448 13.1300 15.6651 19.3733 20.5313 21.5358 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2531 4.1000 4.7953 8.0475 8.9878 15.7450 21.5417 22.7316 25.6061 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5247 2.8893 7.4973 9.1448 13.1300 15.6651 19.3733 20.5313 21.5358 k = 0.3180 0.0000-0.0563 band energies (ev): -3.8052 6.6789 10.1610 11.0464 13.2015 17.4174 18.1480 18.8999 19.9407 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0420 4.4825 8.9552 12.9159 13.7543 14.7660 16.7982 20.2719 20.9169 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2967 5.1464 8.2816 8.7974 9.7827 16.4937 20.1465 21.1936 21.7942 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5182 2.1080 5.3351 6.7955 12.5329 17.1874 18.9225 22.9464 23.6067 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5247 2.8893 7.4973 9.1448 13.1300 15.6651 19.3733 20.5313 21.5358 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2798 2.4173 11.8935 11.8935 14.0412 14.0412 15.3649 16.7756 24.4152 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0475 1.4265 6.0868 9.8129 11.5455 16.7832 19.6011 21.9607 23.0221 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2532 4.1000 4.7953 8.0476 8.9878 15.7450 21.5417 22.7316 25.6061 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0475 1.4265 6.0868 9.8129 11.5454 16.7832 19.6010 21.9607 23.0221 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5182 2.1080 5.3351 6.7955 12.5329 17.1873 18.9225 22.9465 23.6067 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7535 0.8092 9.8438 10.5449 12.1697 15.4152 17.6843 18.3275 23.2577 the Fermi energy is 14.0985 ev total energy = -25.36524045 Ry Harris-Foulkes estimate = -25.36524052 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 1.0 total cpu time spent up to now is 22.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.1690 ( 531 PWs) bands (ev): -4.5607 8.9740 11.5960 11.5960 14.8452 18.1260 18.1261 18.9636 19.9893 k =-0.1590-0.2754 0.2816 ( 522 PWs) bands (ev): -3.0415 4.4830 8.9556 12.9166 13.7547 14.7664 16.7988 20.2724 20.9170 k = 0.3180 0.5507-0.0563 ( 520 PWs) bands (ev): -0.7530 0.8097 9.8441 10.5454 12.1701 15.4157 17.6847 18.3279 23.2578 k = 0.1590 0.2754 0.0563 ( 525 PWs) bands (ev): -3.8047 6.6795 10.1615 11.0469 13.2018 17.4179 18.1482 18.9004 19.9412 k =-0.3180 0.0000 0.3942 ( 519 PWs) bands (ev): -2.2962 5.1470 8.2820 8.7978 9.7831 16.4935 20.1471 21.1941 21.7950 k = 0.1590 0.8261 0.0563 ( 510 PWs) bands (ev): 0.5188 2.1085 5.3353 6.7958 12.5333 17.1879 18.9224 22.9470 23.6070 k = 0.0000 0.5507 0.1690 ( 521 PWs) bands (ev): -1.5243 2.8899 7.4976 9.1450 13.1305 15.6655 19.3734 20.5319 21.5364 k = 0.6359 0.0000-0.2816 ( 510 PWs) bands (ev): -0.2526 4.1007 4.7955 8.0479 8.9882 15.7448 21.5424 22.7322 25.6071 k = 0.4770-0.2754-0.1690 ( 521 PWs) bands (ev): -1.5242 2.8898 7.4976 9.1451 13.1305 15.6655 19.3734 20.5318 21.5363 k = 0.3180 0.0000-0.0563 ( 525 PWs) bands (ev): -3.8047 6.6795 10.1614 11.0468 13.2019 17.4179 18.1482 18.9004 19.9411 k = 0.3180 0.0000 0.2816 ( 522 PWs) bands (ev): -3.0415 4.4831 8.9556 12.9166 13.7546 14.7664 16.7987 20.2725 20.9169 k = 0.1590-0.2754 0.3942 ( 519 PWs) bands (ev): -2.2963 5.1470 8.2820 8.7978 9.7831 16.4935 20.1471 21.1942 21.7950 k = 0.6359 0.5507 0.0563 ( 510 PWs) bands (ev): 0.5188 2.1086 5.3353 6.7958 12.5334 17.1880 18.9225 22.9470 23.6071 k = 0.4770 0.2754 0.1690 ( 521 PWs) bands (ev): -1.5243 2.8899 7.4976 9.1450 13.1305 15.6655 19.3734 20.5318 21.5363 k = 0.0000 0.0000 0.5069 ( 522 PWs) bands (ev): -2.2794 2.4178 11.8941 11.8941 14.0416 14.0416 15.3652 16.7758 24.4154 k = 0.4770 0.8261 0.1690 ( 520 PWs) bands (ev): -0.0469 1.4270 6.0870 9.8133 11.5458 16.7838 19.6016 21.9609 23.0226 k = 0.3180 0.5507 0.2816 ( 510 PWs) bands (ev): -0.2526 4.1007 4.7954 8.0480 8.9883 15.7448 21.5424 22.7323 25.6070 k = 0.9539 0.0000-0.1690 ( 520 PWs) bands (ev): -0.0469 1.4270 6.0870 9.8133 11.5458 16.7838 19.6016 21.9609 23.0227 k = 0.7949-0.2754-0.0563 ( 510 PWs) bands (ev): 0.5188 2.1086 5.3353 6.7958 12.5334 17.1879 18.9224 22.9470 23.6071 k = 0.6359 0.0000 0.0563 ( 520 PWs) bands (ev): -0.7530 0.8097 9.8441 10.5454 12.1700 15.4157 17.6847 18.3279 23.2578 the Fermi energy is 14.0989 ev ! total energy = -25.36524046 Ry Harris-Foulkes estimate = -25.36524046 Ry estimated scf accuracy < 5.6E-11 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000120 0.00000000 -0.02489591 atom 2 type 1 force = -0.00000120 0.00000000 0.02489591 Total force = 0.035208 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 657.98 0.00450974 0.00000000 -0.00000003 663.41 0.00 0.00 0.00000000 0.00450970 0.00000000 0.00 663.40 0.00 -0.00000003 0.00000000 0.00439909 0.00 0.00 647.13 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.537046064 0.000000000 0.757148462 -0.268523455 0.465096832 0.757147856 -0.268523455 -0.465096832 0.757147856 new unit-cell volume = 195.4671 (a.u.)^3 new positions in cryst coord As 0.253511684 0.253512700 0.253512700 As -0.253511684 -0.253512700 -0.253512700 new positions in cart coord (alat unit) As -0.000000760 0.000000000 0.575839176 As 0.000000760 0.000000000 -0.575839176 Ekin = 0.01367989 Ry T = 2432.7 K Etot = -24.73315780 CELL_PARAMETERS (alat) 0.537046064 0.000000000 0.757148462 -0.268523455 0.465096832 0.757147856 -0.268523455 -0.465096832 0.757147856 ATOMIC_POSITIONS (crystal) As 0.253511684 0.253512700 0.253512700 As -0.253511684 -0.253512700 -0.253512700 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1650932), wk = 0.0625000 k( 2) = ( -0.1551699 -0.2687612 0.2751553), wk = 0.1250000 k( 3) = ( 0.3103395 0.5375225 -0.0550310), wk = 0.1250000 k( 4) = ( 0.1551697 0.2687612 0.0550311), wk = 0.1250000 k( 5) = ( -0.3103397 0.0000000 0.3852174), wk = 0.0625000 k( 6) = ( 0.1551697 0.8062837 0.0550311), wk = 0.1250000 k( 7) = ( -0.0000001 0.5375225 0.1650932), wk = 0.1250000 k( 8) = ( 0.6206791 0.0000000 -0.2751551), wk = 0.0625000 k( 9) = ( 0.4655093 -0.2687612 -0.1650930), wk = 0.1250000 k( 10) = ( 0.3103395 0.0000000 -0.0550310), wk = 0.0625000 k( 11) = ( 0.3103392 0.0000000 0.2751555), wk = 0.0625000 k( 12) = ( 0.1551694 -0.2687612 0.3852175), wk = 0.1250000 k( 13) = ( 0.6206789 0.5375225 0.0550313), wk = 0.1250000 k( 14) = ( 0.4655090 0.2687612 0.1650934), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.4952796), wk = 0.0625000 k( 16) = ( 0.4655090 0.8062837 0.1650934), wk = 0.1250000 k( 17) = ( 0.3103392 0.5375225 0.2751555), wk = 0.1250000 k( 18) = ( 0.9310185 0.0000000 -0.1650929), wk = 0.0625000 k( 19) = ( 0.7758487 -0.2687612 -0.0550308), wk = 0.1250000 k( 20) = ( 0.6206789 0.0000000 0.0550313), wk = 0.0625000 extrapolated charge 10.69200, renormalised to 10.00000 total cpu time spent up to now is 22.73 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 total cpu time spent up to now is 23.44 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.1456 7.5782 10.3313 10.3313 12.8251 16.5415 16.5415 17.3351 18.2884 k =-0.1552-0.2688 0.2752 band energies (ev): -3.7023 3.3511 7.8567 11.6919 12.3000 13.2365 14.9000 18.4617 19.2354 k = 0.3103 0.5375-0.0550 band energies (ev): -1.5417 -0.0725 8.6736 9.3860 10.7635 13.9607 15.8997 16.5607 21.4991 k = 0.1552 0.2688 0.0550 band energies (ev): -4.4285 5.3989 9.0008 9.7267 11.8427 15.5536 16.6484 17.2556 18.0948 k =-0.3103 0.0000 0.3852 band energies (ev): -3.0008 3.9343 7.2012 7.7185 8.4851 15.1600 18.4247 19.2771 19.6793 k = 0.1552 0.8063 0.0550 band energies (ev): -0.3803 1.1049 4.4338 5.8110 11.1158 15.5366 17.4350 20.9996 21.8176 k = 0.0000 0.5375 0.1651 band energies (ev): -2.2734 1.8493 6.4885 7.9833 11.7220 14.1182 17.7609 18.6552 19.6451 k = 0.6207 0.0000-0.2752 band energies (ev): -1.1189 3.0673 3.8011 7.0151 7.7521 14.4499 19.7183 20.7015 23.3996 k = 0.4655-0.2688-0.1651 band energies (ev): -2.2734 1.8493 6.4885 7.9833 11.7220 14.1182 17.7609 18.6552 19.6451 k = 0.3103 0.0000-0.0550 band energies (ev): -4.4285 5.3989 9.0008 9.7266 11.8427 15.5536 16.6484 17.2556 18.0947 k = 0.3103 0.0000 0.2752 band energies (ev): -3.7023 3.3511 7.8567 11.6919 12.3000 13.2365 14.8999 18.4617 19.2354 k = 0.1552-0.2688 0.3852 band energies (ev): -3.0008 3.9343 7.2012 7.7185 8.4851 15.1600 18.4247 19.2771 19.6792 k = 0.6207 0.5375 0.0550 band energies (ev): -0.3803 1.1049 4.4338 5.8110 11.1158 15.5366 17.4351 20.9996 21.8176 k = 0.4655 0.2688 0.1651 band energies (ev): -2.2734 1.8493 6.4885 7.9833 11.7220 14.1182 17.7609 18.6552 19.6451 k = 0.0000 0.0000 0.4953 band energies (ev): -2.9717 1.4409 10.6453 10.6453 12.6685 12.6686 13.5807 14.9690 22.4194 k = 0.4655 0.8063 0.1651 band energies (ev): -0.8506 0.4417 5.1470 8.6872 10.1376 15.2337 17.6570 20.2329 21.1339 k = 0.3103 0.5375 0.2752 band energies (ev): -1.1190 3.0673 3.8011 7.0151 7.7521 14.4499 19.7183 20.7015 23.3995 k = 0.9310 0.0000-0.1651 band energies (ev): -0.8506 0.4417 5.1470 8.6872 10.1376 15.2337 17.6570 20.2329 21.1340 k = 0.7758-0.2688-0.0550 band energies (ev): -0.3803 1.1049 4.4338 5.8110 11.1158 15.5366 17.4350 20.9996 21.8176 k = 0.6207 0.0000 0.0550 band energies (ev): -1.5417 -0.0725 8.6736 9.3859 10.7635 13.9606 15.8996 16.5607 21.4991 the Fermi energy is 12.7319 ev total energy = -25.41437059 Ry Harris-Foulkes estimate = -25.94627852 Ry estimated scf accuracy < 0.00038581 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.86E-06, avg # of iterations = 3.3 total cpu time spent up to now is 23.97 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.0287 7.6256 10.4006 10.4006 12.8576 16.6509 16.6509 17.4646 18.5738 k =-0.1552-0.2688 0.2752 band energies (ev): -3.5899 3.4219 7.9945 11.7642 12.4203 13.3836 15.0018 18.5654 19.5082 k = 0.3103 0.5375-0.0550 band energies (ev): -1.4391 0.0253 8.8184 9.5044 10.9001 14.0614 16.0464 16.6857 21.7377 k = 0.1552 0.2688 0.0550 band energies (ev): -4.3136 5.4514 9.1041 9.8202 11.9832 15.6178 16.9325 17.3584 18.2221 k =-0.3103 0.0000 0.3852 band energies (ev): -2.8940 3.9917 7.3508 7.8419 8.6066 15.4948 18.5062 19.3669 19.7085 k = 0.1552 0.8063 0.0550 band energies (ev): -0.3030 1.1813 4.6187 5.9779 11.2138 15.6160 17.7349 21.0645 21.9742 k = 0.0000 0.5375 0.1651 band energies (ev): -2.1680 1.9227 6.6428 8.1409 11.8091 14.2406 17.9539 18.8210 19.7356 k = 0.6207 0.0000-0.2752 band energies (ev): -1.0384 3.1230 3.9941 7.1462 7.8712 14.7901 19.7662 20.7531 23.3890 k = 0.4655-0.2688-0.1651 band energies (ev): -2.1680 1.9226 6.6429 8.1409 11.8091 14.2406 17.9539 18.8209 19.7356 k = 0.3103 0.0000-0.0550 band energies (ev): -4.3136 5.4514 9.1041 9.8202 11.9832 15.6178 16.9326 17.3584 18.2220 k = 0.3103 0.0000 0.2752 band energies (ev): -3.5899 3.4219 7.9945 11.7642 12.4202 13.3835 15.0018 18.5655 19.5082 k = 0.1552-0.2688 0.3852 band energies (ev): -2.8940 3.9917 7.3508 7.8419 8.6066 15.4948 18.5062 19.3670 19.7085 k = 0.6207 0.5375 0.0550 band energies (ev): -0.3031 1.1814 4.6187 5.9779 11.2138 15.6160 17.7349 21.0645 21.9742 k = 0.4655 0.2688 0.1651 band energies (ev): -2.1680 1.9227 6.6429 8.1409 11.8091 14.2407 17.9538 18.8209 19.7355 k = 0.0000 0.0000 0.4953 band energies (ev): -2.8634 1.5364 10.7441 10.7441 12.7882 12.7882 13.7337 15.1466 22.6318 k = 0.4655 0.8063 0.1651 band energies (ev): -0.7621 0.5324 5.3229 8.8152 10.2857 15.2979 17.7545 20.4287 21.2598 k = 0.3103 0.5375 0.2752 band energies (ev): -1.0384 3.1230 3.9941 7.1463 7.8712 14.7901 19.7662 20.7531 23.3890 k = 0.9310 0.0000-0.1651 band energies (ev): -0.7621 0.5324 5.3229 8.8152 10.2856 15.2979 17.7545 20.4287 21.2598 k = 0.7758-0.2688-0.0550 band energies (ev): -0.3030 1.1814 4.6187 5.9779 11.2138 15.6159 17.7349 21.0646 21.9742 k = 0.6207 0.0000 0.0550 band energies (ev): -1.4391 0.0253 8.8184 9.5044 10.9000 14.0614 16.0464 16.6857 21.7378 the Fermi energy is 12.8283 ev total energy = -25.41545382 Ry Harris-Foulkes estimate = -25.41555974 Ry estimated scf accuracy < 0.00032448 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-06, avg # of iterations = 1.0 total cpu time spent up to now is 24.26 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.0173 7.6412 10.4142 10.4142 12.8753 16.6624 16.6625 17.4774 18.5727 k =-0.1552-0.2688 0.2752 band energies (ev): -3.5782 3.4360 8.0037 11.7803 12.4276 13.3930 15.0147 18.5779 19.5100 k = 0.3103 0.5375-0.0550 band energies (ev): -1.4268 0.0376 8.8272 9.5150 10.9099 14.0725 16.0565 16.6965 21.7409 k = 0.1552 0.2688 0.0550 band energies (ev): -4.3021 5.4670 9.1155 9.8324 11.9923 15.6331 16.9335 17.3700 18.2325 k =-0.3103 0.0000 0.3852 band energies (ev): -2.8819 4.0065 7.3607 7.8518 8.6158 15.4923 18.5196 19.3816 19.7253 k = 0.1552 0.8063 0.0550 band energies (ev): -0.2888 1.1951 4.6249 5.9850 11.2257 15.6294 17.7344 21.0801 21.9863 k = 0.0000 0.5375 0.1651 band energies (ev): -2.1559 1.9368 6.6515 8.1482 11.8218 14.2510 17.9613 18.8290 19.7486 k = 0.6207 0.0000-0.2752 band energies (ev): -1.0246 3.1401 3.9979 7.1556 7.8816 14.7872 19.7817 20.7694 23.4099 k = 0.4655-0.2688-0.1651 band energies (ev): -2.1559 1.9368 6.6516 8.1482 11.8218 14.2510 17.9613 18.8290 19.7486 k = 0.3103 0.0000-0.0550 band energies (ev): -4.3021 5.4670 9.1154 9.8323 11.9923 15.6331 16.9335 17.3700 18.2325 k = 0.3103 0.0000 0.2752 band energies (ev): -3.5782 3.4360 8.0037 11.7803 12.4276 13.3929 15.0147 18.5779 19.5100 k = 0.1552-0.2688 0.3852 band energies (ev): -2.8819 4.0066 7.3606 7.8518 8.6158 15.4922 18.5196 19.3816 19.7252 k = 0.6207 0.5375 0.0550 band energies (ev): -0.2888 1.1952 4.6249 5.9850 11.2257 15.6294 17.7344 21.0801 21.9863 k = 0.4655 0.2688 0.1651 band energies (ev): -2.1559 1.9368 6.6515 8.1482 11.8218 14.2511 17.9613 18.8290 19.7485 k = 0.0000 0.0000 0.4953 band energies (ev): -2.8512 1.5483 10.7561 10.7561 12.7981 12.7981 13.7452 15.1535 22.6383 k = 0.4655 0.8063 0.1651 band energies (ev): -0.7477 0.5438 5.3300 8.8249 10.2948 15.3117 17.7682 20.4352 21.2711 k = 0.3103 0.5375 0.2752 band energies (ev): -1.0246 3.1402 3.9979 7.1557 7.8817 14.7872 19.7817 20.7694 23.4099 k = 0.9310 0.0000-0.1651 band energies (ev): -0.7477 0.5438 5.3300 8.8249 10.2947 15.3117 17.7682 20.4352 21.2711 k = 0.7758-0.2688-0.0550 band energies (ev): -0.2888 1.1952 4.6249 5.9850 11.2257 15.6294 17.7344 21.0801 21.9863 k = 0.6207 0.0000 0.0550 band energies (ev): -1.4268 0.0376 8.8272 9.5149 10.9098 14.0725 16.0565 16.6966 21.7409 the Fermi energy is 12.8413 ev total energy = -25.41541953 Ry Harris-Foulkes estimate = -25.41546050 Ry estimated scf accuracy < 0.00009407 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.41E-07, avg # of iterations = 1.0 total cpu time spent up to now is 24.56 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.0077 7.6546 10.4258 10.4258 12.8902 16.6724 16.6724 17.4870 18.5727 k =-0.1552-0.2688 0.2752 band energies (ev): -3.5683 3.4482 8.0116 11.7923 12.4360 13.4010 15.0258 18.5887 19.5114 k = 0.3103 0.5375-0.0550 band energies (ev): -1.4164 0.0483 8.8348 9.5239 10.9183 14.0825 16.0651 16.7061 21.7438 k = 0.1552 0.2688 0.0550 band energies (ev): -4.2924 5.4803 9.1252 9.8428 12.0002 15.6463 16.9338 17.3803 18.2419 k =-0.3103 0.0000 0.3852 band energies (ev): -2.8716 4.0195 7.3683 7.8604 8.6245 15.4899 18.5312 19.3935 19.7402 k = 0.1552 0.8063 0.0550 band energies (ev): -0.2768 1.2070 4.6303 5.9913 11.2360 15.6410 17.7339 21.0935 21.9958 k = 0.0000 0.5375 0.1651 band energies (ev): -2.1457 1.9489 6.6586 8.1551 11.8327 14.2602 17.9677 18.8356 19.7601 k = 0.6207 0.0000-0.2752 band energies (ev): -1.0129 3.1535 4.0025 7.1638 7.8907 14.7846 19.7953 20.7834 23.4279 k = 0.4655-0.2688-0.1651 band energies (ev): -2.1456 1.9489 6.6586 8.1551 11.8327 14.2602 17.9677 18.8355 19.7601 k = 0.3103 0.0000-0.0550 band energies (ev): -4.2924 5.4803 9.1252 9.8428 12.0003 15.6463 16.9339 17.3802 18.2418 k = 0.3103 0.0000 0.2752 band energies (ev): -3.5683 3.4482 8.0116 11.7923 12.4360 13.4009 15.0257 18.5887 19.5114 k = 0.1552-0.2688 0.3852 band energies (ev): -2.8717 4.0195 7.3683 7.8604 8.6245 15.4899 18.5312 19.3935 19.7402 k = 0.6207 0.5375 0.0550 band energies (ev): -0.2769 1.2070 4.6303 5.9913 11.2360 15.6410 17.7340 21.0935 21.9958 k = 0.4655 0.2688 0.1651 band energies (ev): -2.1456 1.9489 6.6586 8.1550 11.8327 14.2602 17.9677 18.8356 19.7601 k = 0.0000 0.0000 0.4953 band energies (ev): -2.8411 1.5590 10.7661 10.7661 12.8070 12.8070 13.7538 15.1603 22.6438 k = 0.4655 0.8063 0.1651 band energies (ev): -0.7363 0.5546 5.3359 8.8333 10.3027 15.3239 17.7795 20.4411 21.2803 k = 0.3103 0.5375 0.2752 band energies (ev): -1.0129 3.1536 4.0025 7.1638 7.8908 14.7846 19.7953 20.7834 23.4279 k = 0.9310 0.0000-0.1651 band energies (ev): -0.7363 0.5547 5.3359 8.8333 10.3026 15.3239 17.7795 20.4412 21.2804 k = 0.7758-0.2688-0.0550 band energies (ev): -0.2769 1.2070 4.6303 5.9913 11.2360 15.6410 17.7339 21.0935 21.9958 k = 0.6207 0.0000 0.0550 band energies (ev): -1.4163 0.0483 8.8348 9.5239 10.9182 14.0824 16.0650 16.7061 21.7439 the Fermi energy is 12.8526 ev total energy = -25.41542151 Ry Harris-Foulkes estimate = -25.41542509 Ry estimated scf accuracy < 0.00000693 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.93E-08, avg # of iterations = 2.0 total cpu time spent up to now is 24.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.1651 ( 531 PWs) bands (ev): -5.0038 7.6599 10.4305 10.4305 12.8961 16.6764 16.6764 17.4910 18.5726 k =-0.1552-0.2688 0.2752 ( 522 PWs) bands (ev): -3.5643 3.4530 8.0148 11.7973 12.4392 13.4041 15.0302 18.5930 19.5121 k = 0.3103 0.5375-0.0550 ( 520 PWs) bands (ev): -1.4122 0.0525 8.8379 9.5276 10.9216 14.0864 16.0685 16.7099 21.7451 k = 0.1552 0.2688 0.0550 ( 525 PWs) bands (ev): -4.2885 5.4856 9.1291 9.8469 12.0034 15.6515 16.9341 17.3844 18.2455 k =-0.3103 0.0000 0.3852 ( 519 PWs) bands (ev): -2.8675 4.0246 7.3715 7.8638 8.6279 15.4892 18.5358 19.3982 19.7461 k = 0.1552 0.8063 0.0550 ( 510 PWs) bands (ev): -0.2721 1.2117 4.6325 5.9938 11.2401 15.6456 17.7339 21.0988 21.9996 k = 0.0000 0.5375 0.1651 ( 521 PWs) bands (ev): -2.1415 1.9537 6.6615 8.1578 11.8371 14.2638 17.9703 18.8383 19.7647 k = 0.6207 0.0000-0.2752 ( 510 PWs) bands (ev): -1.0082 3.1590 4.0043 7.1670 7.8944 14.7837 19.8007 20.7889 23.4350 k = 0.4655-0.2688-0.1651 ( 521 PWs) bands (ev): -2.1415 1.9537 6.6616 8.1578 11.8371 14.2638 17.9703 18.8383 19.7647 k = 0.3103 0.0000-0.0550 ( 525 PWs) bands (ev): -4.2885 5.4856 9.1291 9.8469 12.0034 15.6515 16.9341 17.3843 18.2455 k = 0.3103 0.0000 0.2752 ( 522 PWs) bands (ev): -3.5643 3.4531 8.0147 11.7973 12.4392 13.4041 15.0301 18.5930 19.5120 k = 0.1552-0.2688 0.3852 ( 519 PWs) bands (ev): -2.8675 4.0247 7.3715 7.8639 8.6280 15.4891 18.5358 19.3983 19.7461 k = 0.6207 0.5375 0.0550 ( 510 PWs) bands (ev): -0.2721 1.2118 4.6325 5.9938 11.2401 15.6456 17.7339 21.0988 21.9996 k = 0.4655 0.2688 0.1651 ( 521 PWs) bands (ev): -2.1415 1.9537 6.6616 8.1577 11.8371 14.2639 17.9703 18.8383 19.7646 k = 0.0000 0.0000 0.4953 ( 522 PWs) bands (ev): -2.8370 1.5632 10.7702 10.7702 12.8106 12.8106 13.7573 15.1628 22.6460 k = 0.4655 0.8063 0.1651 ( 520 PWs) bands (ev): -0.7316 0.5589 5.3383 8.8367 10.3058 15.3287 17.7841 20.4435 21.2841 k = 0.3103 0.5375 0.2752 ( 510 PWs) bands (ev): -1.0082 3.1591 4.0043 7.1671 7.8944 14.7837 19.8007 20.7889 23.4350 k = 0.9310 0.0000-0.1651 ( 520 PWs) bands (ev): -0.7316 0.5589 5.3383 8.8367 10.3058 15.3287 17.7841 20.4435 21.2842 k = 0.7758-0.2688-0.0550 ( 510 PWs) bands (ev): -0.2721 1.2118 4.6325 5.9938 11.2401 15.6456 17.7339 21.0988 21.9996 k = 0.6207 0.0000 0.0550 ( 520 PWs) bands (ev): -1.4122 0.0525 8.8379 9.5275 10.9216 14.0864 16.0685 16.7099 21.7451 the Fermi energy is 12.8571 ev ! total energy = -25.41542254 Ry Harris-Foulkes estimate = -25.41542257 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000055 0.00000000 -0.01403576 atom 2 type 1 force = -0.00000055 0.00000000 0.01403576 Total force = 0.019850 Total SCF correction = 0.000057 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 436.67 0.00300248 0.00000000 0.00000000 441.68 0.00 0.00 0.00000000 0.00300247 0.00000000 0.00 441.68 0.00 0.00000000 0.00000000 0.00290030 0.00 0.00 426.65 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.533561923 0.000000000 0.752409243 -0.266781461 0.462079435 0.752408633 -0.266781461 -0.462079435 0.752408633 new unit-cell volume = 191.7315 (a.u.)^3 new positions in cryst coord As 0.252366535 0.252367425 0.252367425 As -0.252366535 -0.252367425 -0.252367425 new positions in cart coord (alat unit) As -0.000000727 0.000000000 0.569649773 As 0.000000727 0.000000000 -0.569649773 Ekin = 0.00400561 Ry T = 2146.2 K Etot = -24.74703752 CELL_PARAMETERS (alat) 0.533561923 0.000000000 0.752409243 -0.266781461 0.462079435 0.752408633 -0.266781461 -0.462079435 0.752408633 ATOMIC_POSITIONS (crystal) As 0.252366535 0.252367425 0.252367425 As -0.252366535 -0.252367425 -0.252367425 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1661331), wk = 0.0625000 k( 2) = ( -0.1561832 -0.2705163 0.2768884), wk = 0.1250000 k( 3) = ( 0.3123660 0.5410325 -0.0553776), wk = 0.1250000 k( 4) = ( 0.1561829 0.2705163 0.0553778), wk = 0.1250000 k( 5) = ( -0.3123662 0.0000000 0.3876437), wk = 0.0625000 k( 6) = ( 0.1561829 0.8115488 0.0553778), wk = 0.1250000 k( 7) = ( -0.0000001 0.5410325 0.1661331), wk = 0.1250000 k( 8) = ( 0.6247321 0.0000000 -0.2768882), wk = 0.0625000 k( 9) = ( 0.4685490 -0.2705163 -0.1661329), wk = 0.1250000 k( 10) = ( 0.3123660 0.0000000 -0.0553776), wk = 0.0625000 k( 11) = ( 0.3123657 0.0000000 0.2768886), wk = 0.0625000 k( 12) = ( 0.1561827 -0.2705163 0.3876439), wk = 0.1250000 k( 13) = ( 0.6247318 0.5410325 0.0553780), wk = 0.1250000 k( 14) = ( 0.4685488 0.2705163 0.1661333), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.4983993), wk = 0.0625000 k( 16) = ( 0.4685488 0.8115488 0.1661333), wk = 0.1250000 k( 17) = ( 0.3123657 0.5410325 0.2768886), wk = 0.1250000 k( 18) = ( 0.9370979 0.0000000 -0.1661327), wk = 0.0625000 k( 19) = ( 0.7809149 -0.2705163 -0.0553773), wk = 0.1250000 k( 20) = ( 0.6247318 0.0000000 0.0553780), wk = 0.0625000 extrapolated charge 9.80517, renormalised to 10.00000 total cpu time spent up to now is 25.17 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.5 total cpu time spent up to now is 25.74 secs k = 0.0000 0.0000 0.1661 band energies (ev): -4.8411 8.0294 10.7738 10.7738 13.4145 17.1097 17.1098 18.0357 18.9113 k =-0.1562-0.2705 0.2769 band energies (ev): -3.3803 3.7558 8.3090 12.2527 12.6939 13.8094 15.5363 19.0665 19.9667 k = 0.3124 0.5410-0.0554 band energies (ev): -1.1922 0.2908 9.1515 9.8540 11.2879 14.4530 16.5547 17.1711 22.2056 k = 0.1562 0.2705 0.0554 band energies (ev): -4.1156 5.8352 9.4466 10.1877 12.3680 16.1468 17.3697 17.8129 18.6854 k =-0.3124 0.0000 0.3876 band energies (ev): -2.6702 4.3421 7.6956 8.1572 8.9334 15.8657 18.9949 19.8937 20.2989 k = 0.1562 0.8115 0.0554 band energies (ev): -0.0180 1.4802 4.8759 6.2523 11.6160 16.0741 18.1397 21.6165 22.5713 k = 0.0000 0.5410 0.1661 band energies (ev): -1.9345 2.2374 6.9481 8.4489 12.2247 14.6497 18.4259 19.3253 20.2612 k = 0.6247 0.0000-0.2769 band energies (ev): -0.7695 3.5084 4.1987 7.4488 8.2117 15.1485 20.2772 21.3052 24.0123 k = 0.4685-0.2705-0.1661 band energies (ev): -1.9345 2.2373 6.9481 8.4489 12.2247 14.6496 18.4259 19.3252 20.2612 k = 0.3124 0.0000-0.0554 band energies (ev): -4.1156 5.8352 9.4466 10.1877 12.3680 16.1468 17.3697 17.8128 18.6853 k = 0.3124 0.0000 0.2769 band energies (ev): -3.3803 3.7558 8.3090 12.2527 12.6939 13.8093 15.5363 19.0666 19.9667 k = 0.1562-0.2705 0.3876 band energies (ev): -2.6702 4.3421 7.6956 8.1572 8.9334 15.8657 18.9949 19.8937 20.2988 k = 0.6247 0.5410 0.0554 band energies (ev): -0.0180 1.4803 4.8759 6.2523 11.6160 16.0741 18.1397 21.6165 22.5713 k = 0.4685 0.2705 0.1661 band energies (ev): -1.9345 2.2374 6.9481 8.4489 12.2247 14.6497 18.4259 19.3252 20.2612 k = 0.0000 0.0000 0.4984 band energies (ev): -2.6383 1.8125 11.1190 11.1190 13.1642 13.1643 14.2504 15.6245 23.1804 k = 0.4685 0.8115 0.1661 band energies (ev): -0.4763 0.7833 5.5982 9.1460 10.6737 15.7317 18.3160 20.8936 21.8262 k = 0.3124 0.5410 0.2769 band energies (ev): -0.7695 3.5084 4.1987 7.4488 8.2117 15.1485 20.2772 21.3053 24.0123 k = 0.9371 0.0000-0.1661 band energies (ev): -0.4763 0.7833 5.5982 9.1460 10.6736 15.7317 18.3160 20.8937 21.8263 k = 0.7809-0.2705-0.0554 band energies (ev): -0.0180 1.4803 4.8759 6.2522 11.6160 16.0741 18.1397 21.6166 22.5713 k = 0.6247 0.0000 0.0554 band energies (ev): -1.1922 0.2908 9.1515 9.8540 11.2878 14.4530 16.5547 17.1711 22.2057 the Fermi energy is 13.2216 ev total energy = -25.40411190 Ry Harris-Foulkes estimate = -25.25475144 Ry estimated scf accuracy < 0.00005683 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-07, avg # of iterations = 3.3 total cpu time spent up to now is 26.21 secs k = 0.0000 0.0000 0.1661 band energies (ev): -4.8765 8.0134 10.7521 10.7521 13.4034 17.0770 17.0770 17.9975 18.8281 k =-0.1562-0.2705 0.2769 band energies (ev): -3.4146 3.7333 8.2680 12.2273 12.6613 13.7657 15.5051 19.0353 19.8877 k = 0.3124 0.5410-0.0554 band energies (ev): -1.2238 0.2608 9.1086 9.8181 11.2474 14.4235 16.5108 17.1338 22.1368 k = 0.1562 0.2705 0.0554 band energies (ev): -4.1505 5.8175 9.4152 10.1595 12.3263 16.1262 17.2861 17.7822 18.6497 k =-0.3124 0.0000 0.3876 band energies (ev): -2.7029 4.3236 7.6498 8.1202 8.8990 15.7687 18.9700 19.8656 20.2893 k = 0.1562 0.8115 0.0554 band energies (ev): -0.0427 1.4563 4.8217 6.2034 11.5865 16.0499 18.0528 21.5961 22.5164 k = 0.0000 0.5410 0.1661 band energies (ev): -1.9668 2.2140 6.9018 8.4033 12.1980 14.6137 18.3676 19.2775 20.2343 k = 0.6247 0.0000-0.2769 band energies (ev): -0.7948 3.4893 4.1431 7.4097 8.1765 15.0501 20.2621 21.2888 24.0136 k = 0.4685-0.2705-0.1661 band energies (ev): -1.9668 2.2140 6.9019 8.4033 12.1979 14.6137 18.3676 19.2775 20.2343 k = 0.3124 0.0000-0.0554 band energies (ev): -4.1505 5.8175 9.4152 10.1595 12.3264 16.1262 17.2861 17.7822 18.6496 k = 0.3124 0.0000 0.2769 band energies (ev): -3.4146 3.7334 8.2680 12.2273 12.6613 13.7657 15.5051 19.0354 19.8877 k = 0.1562-0.2705 0.3876 band energies (ev): -2.7029 4.3236 7.6498 8.1203 8.8990 15.7687 18.9700 19.8656 20.2893 k = 0.6247 0.5410 0.0554 band energies (ev): -0.0427 1.4563 4.8217 6.2034 11.5865 16.0500 18.0529 21.5961 22.5164 k = 0.4685 0.2705 0.1661 band energies (ev): -1.9668 2.2140 6.9018 8.4033 12.1980 14.6137 18.3675 19.2775 20.2342 k = 0.0000 0.0000 0.4984 band energies (ev): -2.6717 1.7838 11.0886 11.0886 13.1292 13.1292 14.2034 15.5728 23.1189 k = 0.4685 0.8115 0.1661 band energies (ev): -0.5055 0.7571 5.5463 9.1076 10.6300 15.7121 18.2857 20.8356 21.7902 k = 0.3124 0.5410 0.2769 band energies (ev): -0.7949 3.4894 4.1431 7.4097 8.1765 15.0501 20.2621 21.2888 24.0136 k = 0.9371 0.0000-0.1661 band energies (ev): -0.5055 0.7572 5.5463 9.1076 10.6300 15.7121 18.2857 20.8356 21.7903 k = 0.7809-0.2705-0.0554 band energies (ev): -0.0427 1.4563 4.8217 6.2034 11.5865 16.0499 18.0528 21.5961 22.5164 k = 0.6247 0.0000 0.0554 band energies (ev): -1.2238 0.2608 9.1086 9.8180 11.2474 14.4235 16.5108 17.1338 22.1368 the Fermi energy is 13.1865 ev total energy = -25.40419417 Ry Harris-Foulkes estimate = -25.40420144 Ry estimated scf accuracy < 0.00002069 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-07, avg # of iterations = 1.0 total cpu time spent up to now is 26.50 secs k = 0.0000 0.0000 0.1661 band energies (ev): -4.8799 8.0087 10.7479 10.7479 13.3981 17.0735 17.0735 17.9940 18.8282 k =-0.1562-0.2705 0.2769 band energies (ev): -3.4180 3.7291 8.2652 12.2227 12.6587 13.7629 15.5013 19.0315 19.8871 k = 0.3124 0.5410-0.0554 band energies (ev): -1.2275 0.2571 9.1059 9.8149 11.2445 14.4199 16.5078 17.1305 22.1357 k = 0.1562 0.2705 0.0554 band energies (ev): -4.1539 5.8129 9.4118 10.1558 12.3235 16.1217 17.2859 17.7786 18.6462 k =-0.3124 0.0000 0.3876 band energies (ev): -2.7065 4.3191 7.6471 8.1172 8.8958 15.7695 18.9659 19.8615 20.2840 k = 0.1562 0.8115 0.0554 band energies (ev): -0.0469 1.4521 4.8198 6.2012 11.5829 16.0458 18.0529 21.5915 22.5141 k = 0.0000 0.5410 0.1661 band energies (ev): -1.9704 2.2098 6.8993 8.4009 12.1941 14.6104 18.3657 19.2748 20.2302 k = 0.6247 0.0000-0.2769 band energies (ev): -0.7990 3.4844 4.1416 7.4068 8.1732 15.0510 20.2573 21.2839 24.0072 k = 0.4685-0.2705-0.1661 band energies (ev): -1.9704 2.2098 6.8993 8.4009 12.1941 14.6104 18.3657 19.2747 20.2302 k = 0.3124 0.0000-0.0554 band energies (ev): -4.1539 5.8129 9.4118 10.1557 12.3236 16.1217 17.2860 17.7785 18.6462 k = 0.3124 0.0000 0.2769 band energies (ev): -3.4180 3.7291 8.2652 12.2227 12.6586 13.7629 15.5012 19.0316 19.8871 k = 0.1562-0.2705 0.3876 band energies (ev): -2.7065 4.3191 7.6470 8.1172 8.8958 15.7695 18.9659 19.8615 20.2839 k = 0.6247 0.5410 0.0554 band energies (ev): -0.0469 1.4521 4.8198 6.2012 11.5829 16.0459 18.0530 21.5915 22.5141 k = 0.4685 0.2705 0.1661 band energies (ev): -1.9704 2.2098 6.8993 8.4009 12.1941 14.6105 18.3657 19.2747 20.2301 k = 0.0000 0.0000 0.4984 band energies (ev): -2.6753 1.7801 11.0850 11.0850 13.1260 13.1260 14.2004 15.5704 23.1169 k = 0.4685 0.8115 0.1661 band energies (ev): -0.5095 0.7534 5.5442 9.1047 10.6273 15.7078 18.2817 20.8338 21.7866 k = 0.3124 0.5410 0.2769 band energies (ev): -0.7990 3.4845 4.1416 7.4068 8.1732 15.0510 20.2573 21.2839 24.0072 k = 0.9371 0.0000-0.1661 band energies (ev): -0.5095 0.7534 5.5442 9.1046 10.6272 15.7078 18.2817 20.8338 21.7866 k = 0.7809-0.2705-0.0554 band energies (ev): -0.0469 1.4521 4.8198 6.2012 11.5829 16.0458 18.0530 21.5915 22.5141 k = 0.6247 0.0000 0.0554 band energies (ev): -1.2275 0.2571 9.1059 9.8149 11.2444 14.4199 16.5078 17.1305 22.1358 the Fermi energy is 13.1833 ev total energy = -25.40419268 Ry Harris-Foulkes estimate = -25.40419471 Ry estimated scf accuracy < 0.00000427 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-08, avg # of iterations = 2.0 total cpu time spent up to now is 26.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.1661 ( 531 PWs) bands (ev): -4.8829 8.0045 10.7443 10.7443 13.3934 17.0704 17.0704 17.9912 18.8281 k =-0.1562-0.2705 0.2769 ( 522 PWs) bands (ev): -3.4211 3.7253 8.2628 12.2192 12.6559 13.7605 15.4979 19.0282 19.8866 k = 0.3124 0.5410-0.0554 ( 520 PWs) bands (ev): -1.2307 0.2538 9.1035 9.8121 11.2418 14.4168 16.5052 17.1276 22.1348 k = 0.1562 0.2705 0.0554 ( 525 PWs) bands (ev): -4.1569 5.8088 9.4088 10.1525 12.3210 16.1177 17.2859 17.7754 18.6432 k =-0.3124 0.0000 0.3876 ( 519 PWs) bands (ev): -2.7096 4.3151 7.6448 8.1145 8.8929 15.7703 18.9623 19.8579 20.2792 k = 0.1562 0.8115 0.0554 ( 510 PWs) bands (ev): -0.0505 1.4484 4.8181 6.1992 11.5796 16.0423 18.0531 21.5874 22.5123 k = 0.0000 0.5410 0.1661 ( 521 PWs) bands (ev): -1.9736 2.2061 6.8971 8.3987 12.1907 14.6076 18.3641 19.2724 20.2266 k = 0.6247 0.0000-0.2769 ( 510 PWs) bands (ev): -0.8026 3.4804 4.1400 7.4043 8.1703 15.0518 20.2531 21.2795 24.0016 k = 0.4685-0.2705-0.1661 ( 521 PWs) bands (ev): -1.9735 2.2061 6.8972 8.3987 12.1906 14.6076 18.3641 19.2724 20.2265 k = 0.3124 0.0000-0.0554 ( 525 PWs) bands (ev): -4.1569 5.8088 9.4087 10.1525 12.3211 16.1177 17.2859 17.7753 18.6431 k = 0.3124 0.0000 0.2769 ( 522 PWs) bands (ev): -3.4211 3.7253 8.2628 12.2192 12.6558 13.7604 15.4978 19.0283 19.8866 k = 0.1562-0.2705 0.3876 ( 519 PWs) bands (ev): -2.7097 4.3151 7.6448 8.1145 8.8929 15.7703 18.9623 19.8579 20.2792 k = 0.6247 0.5410 0.0554 ( 510 PWs) bands (ev): -0.0505 1.4484 4.8181 6.1992 11.5796 16.0423 18.0531 21.5874 22.5123 k = 0.4685 0.2705 0.1661 ( 521 PWs) bands (ev): -1.9735 2.2061 6.8971 8.3987 12.1906 14.6076 18.3641 19.2724 20.2265 k = 0.0000 0.0000 0.4984 ( 522 PWs) bands (ev): -2.6784 1.7767 11.0819 11.0819 13.1232 13.1232 14.1980 15.5682 23.1152 k = 0.4685 0.8115 0.1661 ( 520 PWs) bands (ev): -0.5128 0.7498 5.5424 9.1021 10.6248 15.7040 18.2783 20.8321 21.7835 k = 0.3124 0.5410 0.2769 ( 510 PWs) bands (ev): -0.8026 3.4805 4.1400 7.4043 8.1703 15.0518 20.2531 21.2796 24.0016 k = 0.9371 0.0000-0.1661 ( 520 PWs) bands (ev): -0.5128 0.7498 5.5424 9.1020 10.6247 15.7040 18.2782 20.8322 21.7835 k = 0.7809-0.2705-0.0554 ( 510 PWs) bands (ev): -0.0505 1.4485 4.8181 6.1992 11.5796 16.0422 18.0531 21.5874 22.5123 k = 0.6247 0.0000 0.0554 ( 520 PWs) bands (ev): -1.2306 0.2538 9.1035 9.8121 11.2418 14.4167 16.5052 17.1276 22.1348 the Fermi energy is 13.1805 ev ! total energy = -25.40419314 Ry Harris-Foulkes estimate = -25.40419317 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000084 0.00000000 -0.01026056 atom 2 type 1 force = -0.00000084 0.00000000 0.01026056 Total force = 0.014511 Total SCF correction = 0.000006 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 486.54 0.00334332 0.00000000 -0.00000001 491.82 0.00 0.00 0.00000000 0.00334329 0.00000000 0.00 491.82 0.00 -0.00000001 0.00000000 0.00323574 0.00 0.00 475.99 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.529490649 0.000000000 0.750398501 -0.264746144 0.458553470 0.750398063 -0.264746144 -0.458553470 0.750398063 new unit-cell volume = 188.3121 (a.u.)^3 new positions in cryst coord As 0.251005485 0.251006174 0.251006174 As -0.251005485 -0.251006174 -0.251006174 new positions in cart coord (alat unit) As -0.000000776 0.000000000 0.565063234 As 0.000000776 0.000000000 -0.565063234 Ekin = 0.00186943 Ry T = 1915.0 K Etot = -24.75064155 CELL_PARAMETERS (alat) 0.529490649 0.000000000 0.750398501 -0.264746144 0.458553470 0.750398063 -0.264746144 -0.458553470 0.750398063 ATOMIC_POSITIONS (crystal) As 0.251005485 0.251006174 0.251006174 As -0.251005485 -0.251006174 -0.251006174 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1665782), wk = 0.0625000 k( 2) = ( -0.1573839 -0.2725963 0.2776303), wk = 0.1250000 k( 3) = ( 0.3147676 0.5451927 -0.0555258), wk = 0.1250000 k( 4) = ( 0.1573838 0.2725963 0.0555262), wk = 0.1250000 k( 5) = ( -0.3147678 0.0000000 0.3886823), wk = 0.0625000 k( 6) = ( 0.1573838 0.8177890 0.0555262), wk = 0.1250000 k( 7) = ( -0.0000001 0.5451927 0.1665782), wk = 0.1250000 k( 8) = ( 0.6295353 0.0000000 -0.2776299), wk = 0.0625000 k( 9) = ( 0.4721515 -0.2725963 -0.1665779), wk = 0.1250000 k( 10) = ( 0.3147676 0.0000000 -0.0555258), wk = 0.0625000 k( 11) = ( 0.3147674 0.0000000 0.2776306), wk = 0.0625000 k( 12) = ( 0.1573836 -0.2725963 0.3886826), wk = 0.1250000 k( 13) = ( 0.6295351 0.5451927 0.0555265), wk = 0.1250000 k( 14) = ( 0.4721513 0.2725963 0.1665786), wk = 0.1250000 k( 15) = ( -0.0000003 0.0000000 0.4997347), wk = 0.0625000 k( 16) = ( 0.4721513 0.8177890 0.1665786), wk = 0.1250000 k( 17) = ( 0.3147674 0.5451927 0.2776306), wk = 0.1250000 k( 18) = ( 0.9443029 0.0000000 -0.1665775), wk = 0.0625000 k( 19) = ( 0.7869190 -0.2725963 -0.0555255), wk = 0.1250000 k( 20) = ( 0.6295351 0.0000000 0.0555265), wk = 0.0625000 extrapolated charge 9.81843, renormalised to 10.00000 total cpu time spent up to now is 27.12 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.4 total cpu time spent up to now is 27.75 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.7303 8.2971 11.1049 11.1049 13.9117 17.4862 17.4862 18.5394 19.1042 k =-0.1574-0.2726 0.2776 band energies (ev): -3.2486 4.0254 8.4964 12.6941 12.8847 14.1670 15.9887 19.4349 20.3686 k = 0.3148 0.5452-0.0555 band energies (ev): -1.0120 0.4833 9.3616 10.1365 11.6035 14.7622 16.9600 17.4949 22.4734 k = 0.1574 0.2726 0.0555 band energies (ev): -3.9903 6.1543 9.7370 10.4495 12.6519 16.5518 17.6381 18.1633 19.0693 k =-0.3148 0.0000 0.3887 band energies (ev): -2.5293 4.5840 7.9582 8.4285 9.1995 16.1230 19.4241 20.3711 20.8523 k = 0.1574 0.8178 0.0555 band energies (ev): 0.1852 1.7163 5.0583 6.4210 11.9253 16.4697 18.4693 22.0408 22.9844 k = 0.0000 0.5452 0.1666 band energies (ev): -1.7706 2.4878 7.1661 8.6680 12.5165 14.9376 18.7861 19.7622 20.7127 k = 0.6295 0.0000-0.2776 band energies (ev): -0.5719 3.8058 4.3142 7.7027 8.4663 15.3712 20.6880 21.7724 24.5205 k = 0.4722-0.2726-0.1666 band energies (ev): -1.7706 2.4878 7.1661 8.6680 12.5165 14.9376 18.7861 19.7622 20.7127 k = 0.3148 0.0000-0.0555 band energies (ev): -3.9903 6.1543 9.7370 10.4495 12.6519 16.5518 17.6381 18.1633 19.0692 k = 0.3148 0.0000 0.2776 band energies (ev): -3.2486 4.0254 8.4964 12.6941 12.8847 14.1670 15.9887 19.4349 20.3686 k = 0.1574-0.2726 0.3887 band energies (ev): -2.5293 4.5840 7.9582 8.4285 9.1995 16.1230 19.4241 20.3711 20.8522 k = 0.6295 0.5452 0.0555 band energies (ev): 0.1852 1.7163 5.0583 6.4210 11.9253 16.4697 18.4693 22.0408 22.9844 k = 0.4722 0.2726 0.1666 band energies (ev): -1.7706 2.4878 7.1661 8.6680 12.5165 14.9376 18.7861 19.7622 20.7126 k = 0.0000 0.0000 0.4997 band energies (ev): -2.5068 1.9764 11.4512 11.4512 13.4935 13.4935 14.7232 16.0658 23.5990 k = 0.4722 0.8178 0.1666 band energies (ev): -0.2959 0.9492 5.8061 9.4250 11.0086 16.1188 18.8399 21.2417 22.3061 k = 0.3148 0.5452 0.2776 band energies (ev): -0.5719 3.8058 4.3142 7.7028 8.4663 15.3712 20.6880 21.7724 24.5205 k = 0.9443 0.0000-0.1666 band energies (ev): -0.2959 0.9492 5.8061 9.4250 11.0086 16.1188 18.8399 21.2417 22.3061 k = 0.7869-0.2726-0.0555 band energies (ev): 0.1852 1.7163 5.0583 6.4210 11.9253 16.4697 18.4693 22.0408 22.9844 k = 0.6295 0.0000 0.0555 band energies (ev): -1.0120 0.4833 9.3616 10.1365 11.6035 14.7622 16.9600 17.4949 22.4734 the Fermi energy is 13.5507 ev total energy = -25.39245498 Ry Harris-Foulkes estimate = -25.25189566 Ry estimated scf accuracy < 0.00005863 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.86E-07, avg # of iterations = 3.0 total cpu time spent up to now is 28.15 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.7648 8.2800 11.0831 11.0831 13.9009 17.4541 17.4542 18.5043 19.0263 k =-0.1574-0.2726 0.2776 band energies (ev): -3.2821 4.0028 8.4569 12.6654 12.8566 14.1257 15.9577 19.4038 20.2957 k = 0.3148 0.5452-0.0555 band energies (ev): -1.0432 0.4537 9.3206 10.1014 11.5655 14.7335 16.9174 17.4580 22.4087 k = 0.1574 0.2726 0.0555 band energies (ev): -4.0243 6.1357 9.7063 10.4229 12.6121 16.5283 17.5594 18.1331 19.0363 k =-0.3148 0.0000 0.3887 band energies (ev): -2.5615 4.5648 7.9135 8.3927 9.1681 16.0319 19.3995 20.3439 20.8427 k = 0.1574 0.8178 0.0555 band energies (ev): 0.1602 1.6923 5.0070 6.3746 11.8965 16.4463 18.3882 22.0181 22.9196 k = 0.0000 0.5452 0.1666 band energies (ev): -1.8024 2.4642 7.1217 8.6249 12.4901 14.9028 18.7273 19.7201 20.6865 k = 0.6295 0.0000-0.2776 band energies (ev): -0.5973 3.7861 4.2614 7.6649 8.4334 15.2787 20.6721 21.7559 24.5196 k = 0.4722-0.2726-0.1666 band energies (ev): -1.8024 2.4642 7.1218 8.6249 12.4901 14.9028 18.7272 19.7201 20.6865 k = 0.3148 0.0000-0.0555 band energies (ev): -4.0243 6.1357 9.7063 10.4229 12.6121 16.5283 17.5595 18.1331 19.0362 k = 0.3148 0.0000 0.2776 band energies (ev): -3.2821 4.0028 8.4569 12.6654 12.8565 14.1257 15.9576 19.4039 20.2957 k = 0.1574-0.2726 0.3887 band energies (ev): -2.5615 4.5648 7.9135 8.3927 9.1681 16.0319 19.3995 20.3439 20.8427 k = 0.6295 0.5452 0.0555 band energies (ev): 0.1602 1.6923 5.0070 6.3746 11.8965 16.4463 18.3882 22.0181 22.9196 k = 0.4722 0.2726 0.1666 band energies (ev): -1.8024 2.4642 7.1217 8.6249 12.4901 14.9028 18.7272 19.7201 20.6864 k = 0.0000 0.0000 0.4997 band energies (ev): -2.5398 1.9482 11.4212 11.4212 13.4598 13.4598 14.6775 16.0176 23.5424 k = 0.4722 0.8178 0.1666 band energies (ev): -0.3258 0.9242 5.7567 9.3879 10.9674 16.0994 18.8104 21.1828 22.2759 k = 0.3148 0.5452 0.2776 band energies (ev): -0.5973 3.7861 4.2614 7.6650 8.4334 15.2787 20.6722 21.7559 24.5196 k = 0.9443 0.0000-0.1666 band energies (ev): -0.3258 0.9242 5.7567 9.3879 10.9674 16.0994 18.8104 21.1828 22.2759 k = 0.7869-0.2726-0.0555 band energies (ev): 0.1602 1.6923 5.0070 6.3745 11.8965 16.4463 18.3882 22.0181 22.9196 k = 0.6295 0.0000 0.0555 band energies (ev): -1.0432 0.4537 9.3206 10.1013 11.5655 14.7335 16.9174 17.4580 22.4087 the Fermi energy is 13.5170 ev total energy = -25.39252374 Ry Harris-Foulkes estimate = -25.39252979 Ry estimated scf accuracy < 0.00001738 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-07, avg # of iterations = 1.0 total cpu time spent up to now is 28.45 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.7680 8.2756 11.0792 11.0792 13.8957 17.4508 17.4508 18.5011 19.0264 k =-0.1574-0.2726 0.2776 band energies (ev): -3.2854 3.9988 8.4543 12.6616 12.8534 14.1230 15.9540 19.4003 20.2952 k = 0.3148 0.5452-0.0555 band energies (ev): -1.0466 0.4502 9.3181 10.0984 11.5627 14.7301 16.9147 17.4548 22.4076 k = 0.1574 0.2726 0.0555 band energies (ev): -4.0275 6.1313 9.7030 10.4193 12.6094 16.5242 17.5594 18.1296 19.0329 k =-0.3148 0.0000 0.3887 band energies (ev): -2.5649 4.5605 7.9112 8.3898 9.1649 16.0328 19.3955 20.3400 20.8374 k = 0.1574 0.8178 0.0555 band energies (ev): 0.1563 1.6884 5.0051 6.3724 11.8930 16.4424 18.3884 22.0139 22.9184 k = 0.0000 0.5452 0.1666 band energies (ev): -1.8058 2.4602 7.1194 8.6225 12.4864 14.8996 18.7258 19.7173 20.6825 k = 0.6295 0.0000-0.2776 band energies (ev): -0.6012 3.7817 4.2598 7.6622 8.4302 15.2796 20.6675 21.7512 24.5136 k = 0.4722-0.2726-0.1666 band energies (ev): -1.8057 2.4602 7.1194 8.6225 12.4864 14.8996 18.7258 19.7173 20.6825 k = 0.3148 0.0000-0.0555 band energies (ev): -4.0275 6.1313 9.7030 10.4193 12.6094 16.5242 17.5594 18.1296 19.0328 k = 0.3148 0.0000 0.2776 band energies (ev): -3.2854 3.9988 8.4543 12.6616 12.8534 14.1230 15.9540 19.4003 20.2951 k = 0.1574-0.2726 0.3887 band energies (ev): -2.5649 4.5605 7.9111 8.3898 9.1649 16.0327 19.3955 20.3400 20.8374 k = 0.6295 0.5452 0.0555 band energies (ev): 0.1563 1.6884 5.0051 6.3724 11.8930 16.4424 18.3884 22.0139 22.9184 k = 0.4722 0.2726 0.1666 band energies (ev): -1.8057 2.4602 7.1194 8.6225 12.4864 14.8996 18.7258 19.7173 20.6825 k = 0.0000 0.0000 0.4997 band energies (ev): -2.5431 1.9446 11.4178 11.4179 13.4567 13.4567 14.6750 16.0153 23.5405 k = 0.4722 0.8178 0.1666 band energies (ev): -0.3294 0.9203 5.7547 9.3851 10.9647 16.0952 18.8067 21.1813 22.2721 k = 0.3148 0.5452 0.2776 band energies (ev): -0.6012 3.7818 4.2598 7.6622 8.4302 15.2796 20.6675 21.7512 24.5135 k = 0.9443 0.0000-0.1666 band energies (ev): -0.3294 0.9203 5.7547 9.3850 10.9647 16.0952 18.8067 21.1813 22.2722 k = 0.7869-0.2726-0.0555 band energies (ev): 0.1563 1.6884 5.0051 6.3724 11.8930 16.4424 18.3884 22.0139 22.9184 k = 0.6295 0.0000 0.0555 band energies (ev): -1.0466 0.4502 9.3181 10.0984 11.5626 14.7300 16.9146 17.4548 22.4076 the Fermi energy is 13.5139 ev total energy = -25.39252281 Ry Harris-Foulkes estimate = -25.39252421 Ry estimated scf accuracy < 0.00000316 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-08, avg # of iterations = 2.0 total cpu time spent up to now is 28.78 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.7705 8.2722 11.0761 11.0761 13.8918 17.4482 17.4482 18.4988 19.0263 k =-0.1574-0.2726 0.2776 ( 522 PWs) bands (ev): -3.2879 3.9956 8.4522 12.6587 12.8508 14.1210 15.9513 19.3975 20.2947 k = 0.3148 0.5452-0.0555 ( 520 PWs) bands (ev): -1.0493 0.4474 9.3160 10.0960 11.5605 14.7273 16.9125 17.4524 22.4068 k = 0.1574 0.2726 0.0555 ( 525 PWs) bands (ev): -4.0300 6.1280 9.7004 10.4165 12.6073 16.5210 17.5593 18.1269 19.0302 k =-0.3148 0.0000 0.3887 ( 519 PWs) bands (ev): -2.5675 4.5571 7.9093 8.3875 9.1623 16.0334 19.3924 20.3370 20.8334 k = 0.1574 0.8178 0.0555 ( 510 PWs) bands (ev): 0.1533 1.6853 5.0037 6.3707 11.8902 16.4393 18.3884 22.0106 22.9175 k = 0.0000 0.5452 0.1666 ( 521 PWs) bands (ev): -1.8084 2.4571 7.1176 8.6206 12.4835 14.8972 18.7246 19.7151 20.6794 k = 0.6295 0.0000-0.2776 ( 510 PWs) bands (ev): -0.6042 3.7784 4.2584 7.6600 8.4277 15.2803 20.6639 21.7476 24.5089 k = 0.4722-0.2726-0.1666 ( 521 PWs) bands (ev): -1.8084 2.4571 7.1176 8.6206 12.4835 14.8972 18.7246 19.7151 20.6794 k = 0.3148 0.0000-0.0555 ( 525 PWs) bands (ev): -4.0300 6.1280 9.7004 10.4165 12.6073 16.5210 17.5593 18.1269 19.0302 k = 0.3148 0.0000 0.2776 ( 522 PWs) bands (ev): -3.2879 3.9956 8.4522 12.6587 12.8508 14.1210 15.9512 19.3975 20.2947 k = 0.1574-0.2726 0.3887 ( 519 PWs) bands (ev): -2.5675 4.5571 7.9093 8.3876 9.1623 16.0334 19.3924 20.3371 20.8334 k = 0.6295 0.5452 0.0555 ( 510 PWs) bands (ev): 0.1532 1.6853 5.0037 6.3707 11.8902 16.4393 18.3885 22.0106 22.9175 k = 0.4722 0.2726 0.1666 ( 521 PWs) bands (ev): -1.8084 2.4571 7.1176 8.6206 12.4835 14.8972 18.7246 19.7151 20.6794 k = 0.0000 0.0000 0.4997 ( 522 PWs) bands (ev): -2.5456 1.9417 11.4152 11.4152 13.4542 13.4542 14.6731 16.0135 23.5390 k = 0.4722 0.8178 0.1666 ( 520 PWs) bands (ev): -0.3321 0.9173 5.7532 9.3829 10.9626 16.0919 18.8039 21.1801 22.2692 k = 0.3148 0.5452 0.2776 ( 510 PWs) bands (ev): -0.6042 3.7784 4.2584 7.6600 8.4278 15.2803 20.6639 21.7476 24.5089 k = 0.9443 0.0000-0.1666 ( 520 PWs) bands (ev): -0.3321 0.9173 5.7532 9.3828 10.9626 16.0919 18.8039 21.1801 22.2693 k = 0.7869-0.2726-0.0555 ( 510 PWs) bands (ev): 0.1533 1.6853 5.0037 6.3707 11.8902 16.4393 18.3885 22.0106 22.9175 k = 0.6295 0.0000 0.0555 ( 520 PWs) bands (ev): -1.0492 0.4474 9.3160 10.0960 11.5604 14.7273 16.9125 17.4524 22.4068 the Fermi energy is 13.5115 ev ! total energy = -25.39252314 Ry Harris-Foulkes estimate = -25.39252316 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000080 0.00000000 -0.00469933 atom 2 type 1 force = -0.00000080 0.00000000 0.00469933 Total force = 0.006646 Total SCF correction = 0.000005 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 539.16 0.00372031 0.00000000 0.00000000 547.28 0.00 0.00 0.00000000 0.00372029 0.00000000 0.00 547.27 0.00 0.00000000 0.00000000 0.00355483 0.00 0.00 522.93 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 0.532923634 0.000000000 0.751500417 -0.266462605 0.461526534 0.751499941 -0.266462605 -0.461526534 0.751499941 new unit-cell volume = 191.0420 (a.u.)^3 new positions in cryst coord As 0.249540489 0.249540908 0.249540908 As -0.249540489 -0.249540908 -0.249540908 new positions in cart coord (alat unit) As -0.000000617 0.000000000 0.562589737 As 0.000000617 0.000000000 -0.562589737 Ekin = 0.00191859 Ry T = 1730.2 K Etot = -24.75054449 CELL_PARAMETERS (alat) 0.532923634 0.000000000 0.751500417 -0.266462605 0.461526534 0.751499941 -0.266462605 -0.461526534 0.751499941 ATOMIC_POSITIONS (crystal) As 0.249540489 0.249540908 0.249540908 As -0.249540489 -0.249540908 -0.249540908 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1663340), wk = 0.0625000 k( 2) = ( -0.1563701 -0.2708403 0.2772232), wk = 0.1250000 k( 3) = ( 0.3127400 0.5416807 -0.0554444), wk = 0.1250000 k( 4) = ( 0.1563699 0.2708403 0.0554448), wk = 0.1250000 k( 5) = ( -0.3127402 0.0000000 0.3881124), wk = 0.0625000 k( 6) = ( 0.1563699 0.8125210 0.0554448), wk = 0.1250000 k( 7) = ( -0.0000001 0.5416807 0.1663340), wk = 0.1250000 k( 8) = ( 0.6254800 0.0000000 -0.2772229), wk = 0.0625000 k( 9) = ( 0.4691100 -0.2708403 -0.1663336), wk = 0.1250000 k( 10) = ( 0.3127400 0.0000000 -0.0554444), wk = 0.0625000 k( 11) = ( 0.3127398 0.0000000 0.2772235), wk = 0.0625000 k( 12) = ( 0.1563697 -0.2708403 0.3881127), wk = 0.1250000 k( 13) = ( 0.6254798 0.5416807 0.0554451), wk = 0.1250000 k( 14) = ( 0.4691098 0.2708403 0.1663343), wk = 0.1250000 k( 15) = ( -0.0000003 0.0000000 0.4990019), wk = 0.0625000 k( 16) = ( 0.4691098 0.8125210 0.1663343), wk = 0.1250000 k( 17) = ( 0.3127398 0.5416807 0.2772235), wk = 0.1250000 k( 18) = ( 0.9382199 0.0000000 -0.1663333), wk = 0.0625000 k( 19) = ( 0.7818499 -0.2708403 -0.0554441), wk = 0.1250000 k( 20) = ( 0.6254798 0.0000000 0.0554451), wk = 0.0625000 extrapolated charge 10.14289, renormalised to 10.00000 total cpu time spent up to now is 29.05 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.5 total cpu time spent up to now is 29.69 secs k = 0.0000 0.0000 0.1663 band energies (ev): -4.8878 8.0489 10.7866 10.7866 13.4719 17.1219 17.1220 18.1256 18.7439 k =-0.1564-0.2708 0.2772 band energies (ev): -3.4206 3.7548 8.2773 12.4250 12.5189 13.7918 15.5599 19.0797 19.9034 k = 0.3127 0.5417-0.0554 band energies (ev): -1.2205 0.2657 9.1203 9.8438 11.2660 14.4441 16.5574 17.1708 22.1537 k = 0.1564 0.2708 0.0554 band energies (ev): -4.1596 5.8537 9.4385 10.1822 12.3487 16.1784 17.3159 17.8181 18.6654 k =-0.3127 0.0000 0.3881 band energies (ev): -2.7047 4.3473 7.6767 8.1337 8.8974 15.7610 19.0201 19.9127 20.3657 k = 0.1564 0.8125 0.0554 band energies (ev): -0.0259 1.4702 4.8122 6.1977 11.6185 16.0906 18.0530 21.6553 22.6190 k = 0.0000 0.5417 0.1663 band energies (ev): -1.9674 2.2335 6.9129 8.3996 12.2407 14.6304 18.3935 19.3226 20.2871 k = 0.6255 0.0000-0.2772 band energies (ev): -0.7843 3.5600 4.0844 7.4197 8.1900 15.0385 20.3183 21.3451 24.0998 k = 0.4691-0.2708-0.1663 band energies (ev): -1.9674 2.2335 6.9129 8.3996 12.2407 14.6304 18.3935 19.3226 20.2871 k = 0.3127 0.0000-0.0554 band energies (ev): -4.1596 5.8537 9.4385 10.1822 12.3487 16.1784 17.3160 17.8181 18.6654 k = 0.3127 0.0000 0.2772 band energies (ev): -3.4206 3.7548 8.2773 12.4250 12.5189 13.7918 15.5599 19.0797 19.9034 k = 0.1564-0.2708 0.3881 band energies (ev): -2.7047 4.3473 7.6767 8.1337 8.8974 15.7610 19.0201 19.9128 20.3657 k = 0.6255 0.5417 0.0554 band energies (ev): -0.0259 1.4702 4.8122 6.1977 11.6185 16.0906 18.0530 21.6553 22.6191 k = 0.4691 0.2708 0.1663 band energies (ev): -1.9674 2.2335 6.9129 8.3995 12.2407 14.6304 18.3935 19.3226 20.2871 k = 0.0000 0.0000 0.4990 band energies (ev): -2.6717 1.7857 11.1218 11.1218 13.1473 13.1474 14.2516 15.5959 23.1616 k = 0.4691 0.8125 0.1663 band energies (ev): -0.4791 0.7434 5.5443 9.1246 10.6471 15.7519 18.3524 20.8501 21.8758 k = 0.3127 0.5417 0.2772 band energies (ev): -0.7843 3.5600 4.0844 7.4197 8.1900 15.0385 20.3183 21.3451 24.0998 k = 0.9382 0.0000-0.1663 band energies (ev): -0.4791 0.7434 5.5443 9.1246 10.6471 15.7519 18.3524 20.8501 21.8758 k = 0.7818-0.2708-0.0554 band energies (ev): -0.0259 1.4702 4.8122 6.1977 11.6185 16.0905 18.0530 21.6553 22.6191 k = 0.6255 0.0000 0.0554 band energies (ev): -1.2205 0.2657 9.1203 9.8438 11.2660 14.4441 16.5574 17.1708 22.1537 the Fermi energy is 13.2046 ev total energy = -25.40221829 Ry Harris-Foulkes estimate = -25.51255467 Ry estimated scf accuracy < 0.00004890 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.89E-07, avg # of iterations = 2.8 total cpu time spent up to now is 30.06 secs k = 0.0000 0.0000 0.1663 band energies (ev): -4.8618 8.0604 10.8027 10.8027 13.4798 17.1460 17.1461 18.1518 18.8056 k =-0.1564-0.2708 0.2772 band energies (ev): -3.3954 3.7712 8.3071 12.4503 12.5360 13.8235 15.5829 19.1026 19.9609 k = 0.3127 0.5417-0.0554 band energies (ev): -1.1971 0.2877 9.1514 9.8705 11.2952 14.4654 16.5897 17.1981 22.2036 k = 0.1564 0.2708 0.0554 band energies (ev): -4.1340 5.8669 9.4616 10.2024 12.3789 16.1943 17.3777 17.8404 18.6899 k =-0.3127 0.0000 0.3881 band energies (ev): -2.6805 4.3606 7.7113 8.1609 8.9212 15.8321 19.0385 19.9332 20.3722 k = 0.1564 0.8125 0.0554 band energies (ev): -0.0074 1.4877 4.8517 6.2331 11.6398 16.1081 18.1164 21.6708 22.6714 k = 0.0000 0.5417 0.1663 band energies (ev): -1.9437 2.2508 6.9470 8.4323 12.2601 14.6565 18.4378 19.3563 20.3065 k = 0.6255 0.0000-0.2772 band energies (ev): -0.7656 3.5741 4.1249 7.4485 8.2153 15.1106 20.3293 21.3566 24.0988 k = 0.4691-0.2708-0.1663 band energies (ev): -1.9437 2.2508 6.9470 8.4323 12.2601 14.6564 18.4378 19.3563 20.3065 k = 0.3127 0.0000-0.0554 band energies (ev): -4.1340 5.8669 9.4616 10.2024 12.3789 16.1942 17.3777 17.8404 18.6899 k = 0.3127 0.0000 0.2772 band energies (ev): -3.3954 3.7712 8.3071 12.4503 12.5360 13.8234 15.5829 19.1026 19.9609 k = 0.1564-0.2708 0.3881 band energies (ev): -2.6805 4.3606 7.7113 8.1609 8.9212 15.8321 19.0385 19.9333 20.3722 k = 0.6255 0.5417 0.0554 band energies (ev): -0.0074 1.4877 4.8517 6.2331 11.6398 16.1081 18.1165 21.6708 22.6714 k = 0.4691 0.2708 0.1663 band energies (ev): -1.9437 2.2508 6.9470 8.4323 12.2601 14.6565 18.4378 19.3563 20.3064 k = 0.0000 0.0000 0.4990 band energies (ev): -2.6469 1.8063 11.1445 11.1445 13.1728 13.1728 14.2868 15.6326 23.2060 k = 0.4691 0.8125 0.1663 band energies (ev): -0.4565 0.7613 5.5824 9.1529 10.6787 15.7661 18.3747 20.8930 21.9006 k = 0.3127 0.5417 0.2772 band energies (ev): -0.7656 3.5741 4.1249 7.4485 8.2153 15.1105 20.3293 21.3566 24.0988 k = 0.9382 0.0000-0.1663 band energies (ev): -0.4565 0.7613 5.5824 9.1529 10.6787 15.7661 18.3747 20.8931 21.9006 k = 0.7818-0.2708-0.0554 band energies (ev): -0.0074 1.4877 4.8517 6.2331 11.6398 16.1081 18.1165 21.6708 22.6714 k = 0.6255 0.0000 0.0554 band energies (ev): -1.1971 0.2877 9.1514 9.8705 11.2952 14.4654 16.5897 17.1981 22.2036 the Fermi energy is 13.2301 ev total energy = -25.40226181 Ry Harris-Foulkes estimate = -25.40226612 Ry estimated scf accuracy < 0.00001236 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-07, avg # of iterations = 1.0 total cpu time spent up to now is 30.33 secs k = 0.0000 0.0000 0.1663 band energies (ev): -4.8590 8.0643 10.8061 10.8061 13.4843 17.1490 17.1490 18.1546 18.8055 k =-0.1564-0.2708 0.2772 band energies (ev): -3.3925 3.7748 8.3095 12.4532 12.5393 13.8258 15.5861 19.1058 19.9613 k = 0.3127 0.5417-0.0554 band energies (ev): -1.1941 0.2909 9.1537 9.8731 11.2977 14.4685 16.5922 17.2009 22.2045 k = 0.1564 0.2708 0.0554 band energies (ev): -4.1312 5.8708 9.4645 10.2056 12.3813 16.1981 17.3776 17.8435 18.6930 k =-0.3127 0.0000 0.3881 band energies (ev): -2.6776 4.3645 7.7133 8.1634 8.9241 15.8313 19.0419 19.9366 20.3768 k = 0.1564 0.8125 0.0554 band energies (ev): -0.0040 1.4912 4.8533 6.2350 11.6430 16.1116 18.1163 21.6747 22.6722 k = 0.0000 0.5417 0.1663 band energies (ev): -1.9407 2.2543 6.9490 8.4345 12.2634 14.6592 18.4393 19.3586 20.3100 k = 0.6255 0.0000-0.2772 band energies (ev): -0.7622 3.5779 4.1264 7.4509 8.2181 15.1097 20.3334 21.3608 24.1042 k = 0.4691-0.2708-0.1663 band energies (ev): -1.9407 2.2543 6.9490 8.4345 12.2634 14.6592 18.4393 19.3586 20.3100 k = 0.3127 0.0000-0.0554 band energies (ev): -4.1312 5.8708 9.4645 10.2056 12.3813 16.1981 17.3776 17.8435 18.6930 k = 0.3127 0.0000 0.2772 band energies (ev): -3.3925 3.7748 8.3095 12.4532 12.5393 13.8258 15.5861 19.1058 19.9613 k = 0.1564-0.2708 0.3881 band energies (ev): -2.6776 4.3645 7.7133 8.1634 8.9241 15.8313 19.0419 19.9366 20.3768 k = 0.6255 0.5417 0.0554 band energies (ev): -0.0040 1.4912 4.8533 6.2350 11.6430 16.1116 18.1163 21.6747 22.6722 k = 0.4691 0.2708 0.1663 band energies (ev): -1.9407 2.2543 6.9490 8.4344 12.2634 14.6592 18.4393 19.3586 20.3099 k = 0.0000 0.0000 0.4990 band energies (ev): -2.6440 1.8095 11.1474 11.1474 13.1755 13.1755 14.2890 15.6347 23.2076 k = 0.4691 0.8125 0.1663 band energies (ev): -0.4535 0.7648 5.5841 9.1554 10.6811 15.7698 18.3780 20.8946 21.9036 k = 0.3127 0.5417 0.2772 band energies (ev): -0.7622 3.5779 4.1264 7.4509 8.2181 15.1097 20.3334 21.3608 24.1042 k = 0.9382 0.0000-0.1663 band energies (ev): -0.4535 0.7648 5.5841 9.1553 10.6810 15.7698 18.3779 20.8946 21.9036 k = 0.7818-0.2708-0.0554 band energies (ev): -0.0040 1.4913 4.8533 6.2350 11.6430 16.1115 18.1163 21.6747 22.6722 k = 0.6255 0.0000 0.0554 band energies (ev): -1.1941 0.2909 9.1537 9.8731 11.2977 14.4685 16.5921 17.2009 22.2045 the Fermi energy is 13.2328 ev total energy = -25.40226141 Ry Harris-Foulkes estimate = -25.40226218 Ry estimated scf accuracy < 0.00000185 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-08, avg # of iterations = 2.0 total cpu time spent up to now is 30.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -4.8571 8.0669 10.8084 10.8084 13.4872 17.1509 17.1509 18.1564 18.8055 k =-0.1564-0.2708 0.2772 ( 522 PWs) bands (ev): -3.3906 3.7771 8.3110 12.4552 12.5413 13.8273 15.5882 19.1079 19.9616 k = 0.3127 0.5417-0.0554 ( 520 PWs) bands (ev): -1.1921 0.2929 9.1552 9.8748 11.2993 14.4705 16.5938 17.2028 22.2051 k = 0.1564 0.2708 0.0554 ( 525 PWs) bands (ev): -4.1293 5.8733 9.4664 10.2076 12.3829 16.2005 17.3776 17.8455 18.6950 k =-0.3127 0.0000 0.3881 ( 519 PWs) bands (ev): -2.6756 4.3670 7.7147 8.1651 8.9259 15.8309 19.0442 19.9388 20.3798 k = 0.1564 0.8125 0.0554 ( 510 PWs) bands (ev): -0.0017 1.4935 4.8544 6.2363 11.6450 16.1138 18.1162 21.6772 22.6727 k = 0.0000 0.5417 0.1663 ( 521 PWs) bands (ev): -1.9387 2.2566 6.9503 8.4359 12.2655 14.6610 18.4403 19.3600 20.3123 k = 0.6255 0.0000-0.2772 ( 510 PWs) bands (ev): -0.7599 3.5804 4.1274 7.4525 8.2199 15.1092 20.3361 21.3635 24.1077 k = 0.4691-0.2708-0.1663 ( 521 PWs) bands (ev): -1.9387 2.2566 6.9503 8.4359 12.2655 14.6610 18.4403 19.3600 20.3123 k = 0.3127 0.0000-0.0554 ( 525 PWs) bands (ev): -4.1293 5.8733 9.4664 10.2076 12.3829 16.2005 17.3776 17.8455 18.6949 k = 0.3127 0.0000 0.2772 ( 522 PWs) bands (ev): -3.3906 3.7771 8.3110 12.4552 12.5413 13.8273 15.5882 19.1079 19.9616 k = 0.1564-0.2708 0.3881 ( 519 PWs) bands (ev): -2.6756 4.3670 7.7147 8.1651 8.9259 15.8308 19.0442 19.9388 20.3798 k = 0.6255 0.5417 0.0554 ( 510 PWs) bands (ev): -0.0018 1.4935 4.8544 6.2363 11.6450 16.1138 18.1162 21.6772 22.6727 k = 0.4691 0.2708 0.1663 ( 521 PWs) bands (ev): -1.9387 2.2566 6.9503 8.4359 12.2655 14.6610 18.4403 19.3600 20.3122 k = 0.0000 0.0000 0.4990 ( 522 PWs) bands (ev): -2.6421 1.8116 11.1493 11.1494 13.1773 13.1773 14.2905 15.6360 23.2087 k = 0.4691 0.8125 0.1663 ( 520 PWs) bands (ev): -0.4514 0.7671 5.5853 9.1570 10.6826 15.7722 18.3801 20.8956 21.9056 k = 0.3127 0.5417 0.2772 ( 510 PWs) bands (ev): -0.7599 3.5804 4.1274 7.4525 8.2199 15.1092 20.3361 21.3635 24.1077 k = 0.9382 0.0000-0.1663 ( 520 PWs) bands (ev): -0.4514 0.7671 5.5853 9.1570 10.6826 15.7722 18.3801 20.8956 21.9056 k = 0.7818-0.2708-0.0554 ( 510 PWs) bands (ev): -0.0018 1.4935 4.8544 6.2363 11.6450 16.1138 18.1162 21.6772 22.6727 k = 0.6255 0.0000 0.0554 ( 520 PWs) bands (ev): -1.1921 0.2929 9.1552 9.8748 11.2993 14.4705 16.5937 17.2028 22.2051 the Fermi energy is 13.2346 ev ! total energy = -25.40226160 Ry Harris-Foulkes estimate = -25.40226161 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000048 0.00000000 0.00199339 atom 2 type 1 force = -0.00000048 0.00000000 -0.00199339 Total force = 0.002819 Total SCF correction = 0.000006 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 495.66 0.00340392 0.00000000 0.00000000 500.73 0.00 0.00 0.00000000 0.00340390 0.00000000 0.00 500.73 0.00 0.00000000 0.00000000 0.00330052 0.00 0.00 485.52 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 0.532972813 0.000000000 0.750372794 -0.266487316 0.461569025 0.750372405 -0.266487316 -0.461569025 0.750372405 new unit-cell volume = 190.7906 (a.u.)^3 new positions in cryst coord As 0.249948525 0.249948513 0.249948513 As -0.249948525 -0.249948513 -0.249948513 new positions in cart coord (alat unit) As -0.000000449 0.000000000 0.562663507 As 0.000000449 0.000000000 -0.562663507 Ekin = 0.00163712 Ry T = 1578.1 K Etot = -24.75128570 CELL_PARAMETERS (alat) 0.532972813 0.000000000 0.750372794 -0.266487316 0.461569025 0.750372405 -0.266487316 -0.461569025 0.750372405 ATOMIC_POSITIONS (crystal) As 0.249948525 0.249948513 0.249948513 As -0.249948525 -0.249948513 -0.249948513 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1665839), wk = 0.0625000 k( 2) = ( -0.1563556 -0.2708154 0.2776397), wk = 0.1250000 k( 3) = ( 0.3127111 0.5416308 -0.0555277), wk = 0.1250000 k( 4) = ( 0.1563555 0.2708154 0.0555281), wk = 0.1250000 k( 5) = ( -0.3127112 0.0000000 0.3886956), wk = 0.0625000 k( 6) = ( 0.1563555 0.8124462 0.0555281), wk = 0.1250000 k( 7) = ( -0.0000001 0.5416308 0.1665839), wk = 0.1250000 k( 8) = ( 0.6254222 0.0000000 -0.2776394), wk = 0.0625000 k( 9) = ( 0.4690666 -0.2708154 -0.1665835), wk = 0.1250000 k( 10) = ( 0.3127111 0.0000000 -0.0555277), wk = 0.0625000 k( 11) = ( 0.3127109 0.0000000 0.2776401), wk = 0.0625000 k( 12) = ( 0.1563553 -0.2708154 0.3886959), wk = 0.1250000 k( 13) = ( 0.6254220 0.5416308 0.0555285), wk = 0.1250000 k( 14) = ( 0.4690665 0.2708154 0.1665843), wk = 0.1250000 k( 15) = ( -0.0000002 0.0000000 0.4997518), wk = 0.0625000 k( 16) = ( 0.4690665 0.8124462 0.1665843), wk = 0.1250000 k( 17) = ( 0.3127109 0.5416308 0.2776401), wk = 0.1250000 k( 18) = ( 0.9381332 0.0000000 -0.1665832), wk = 0.0625000 k( 19) = ( 0.7817776 -0.2708154 -0.0555273), wk = 0.1250000 k( 20) = ( 0.6254220 0.0000000 0.0555285), wk = 0.0625000 extrapolated charge 9.98682, renormalised to 10.00000 total cpu time spent up to now is 30.89 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.45E-08, avg # of iterations = 1.1 total cpu time spent up to now is 31.61 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.8457 8.1106 10.8199 10.8199 13.5176 17.1785 17.1785 18.1825 18.8443 k =-0.1564-0.2708 0.2776 band energies (ev): -3.3779 3.7934 8.3465 12.5102 12.5256 13.8477 15.6193 19.1552 19.9756 k = 0.3127 0.5416-0.0555 band energies (ev): -1.1812 0.3078 9.1899 9.8909 11.3202 14.4984 16.6285 17.2588 22.2703 k = 0.1564 0.2708 0.0555 band energies (ev): -4.1187 5.8916 9.4786 10.2407 12.4124 16.2470 17.4233 17.8819 18.7279 k =-0.3127 0.0000 0.3887 band energies (ev): -2.6605 4.3995 7.7319 8.1729 8.9456 15.8558 19.0667 19.9593 20.4030 k = 0.1564 0.8124 0.0555 band energies (ev): 0.0163 1.5075 4.8680 6.2623 11.6747 16.1369 18.1326 21.7252 22.7252 k = 0.0000 0.5416 0.1666 band energies (ev): -1.9272 2.2713 6.9696 8.4598 12.3050 14.7019 18.4713 19.3863 20.3422 k = 0.6254 0.0000-0.2776 band energies (ev): -0.7455 3.6062 4.1440 7.4610 8.2449 15.1412 20.3749 21.3998 24.1570 k = 0.4691-0.2708-0.1666 band energies (ev): -1.9272 2.2713 6.9696 8.4598 12.3050 14.7019 18.4713 19.3862 20.3422 k = 0.3127 0.0000-0.0555 band energies (ev): -4.1187 5.8916 9.4786 10.2407 12.4124 16.2470 17.4233 17.8819 18.7279 k = 0.3127 0.0000 0.2776 band energies (ev): -3.3778 3.7934 8.3465 12.5102 12.5256 13.8477 15.6193 19.1552 19.9755 k = 0.1564-0.2708 0.3887 band energies (ev): -2.6605 4.3995 7.7319 8.1729 8.9456 15.8558 19.0667 19.9593 20.4030 k = 0.6254 0.5416 0.0555 band energies (ev): 0.0162 1.5075 4.8680 6.2623 11.6747 16.1369 18.1326 21.7252 22.7252 k = 0.4691 0.2708 0.1666 band energies (ev): -1.9272 2.2713 6.9696 8.4598 12.3050 14.7019 18.4713 19.3862 20.3422 k = 0.0000 0.0000 0.4998 band energies (ev): -2.6239 1.8421 11.1591 11.1591 13.1911 13.1911 14.3036 15.6493 23.2529 k = 0.4691 0.8124 0.1666 band energies (ev): -0.4290 0.7903 5.5968 9.1676 10.6969 15.7898 18.3965 20.9300 21.9413 k = 0.3127 0.5416 0.2776 band energies (ev): -0.7455 3.6062 4.1440 7.4610 8.2449 15.1412 20.3749 21.3998 24.1570 k = 0.9381 0.0000-0.1666 band energies (ev): -0.4290 0.7903 5.5968 9.1676 10.6969 15.7898 18.3965 20.9300 21.9413 k = 0.7818-0.2708-0.0555 band energies (ev): 0.0163 1.5075 4.8680 6.2623 11.6747 16.1369 18.1326 21.7252 22.7252 k = 0.6254 0.0000 0.0555 band energies (ev): -1.1812 0.3079 9.1899 9.8908 11.3202 14.4983 16.6284 17.2588 22.2703 the Fermi energy is 13.2483 ev total energy = -25.40144357 Ry Harris-Foulkes estimate = -25.39128436 Ry estimated scf accuracy < 0.00000243 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.43E-08, avg # of iterations = 2.0 total cpu time spent up to now is 31.97 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.8481 8.1097 10.8185 10.8186 13.5170 17.1763 17.1763 18.1802 18.8385 k =-0.1564-0.2708 0.2776 band energies (ev): -3.3801 3.7920 8.3438 12.5075 12.5245 13.8449 15.6173 19.1532 19.9702 k = 0.3127 0.5416-0.0555 band energies (ev): -1.1833 0.3059 9.1871 9.8885 11.3176 14.4965 16.6256 17.2564 22.2657 k = 0.1564 0.2708 0.0555 band energies (ev): -4.1210 5.8905 9.4765 10.2390 12.4097 16.2457 17.4176 17.8799 18.7258 k =-0.3127 0.0000 0.3887 band energies (ev): -2.6627 4.3984 7.7288 8.1705 8.9434 15.8492 19.0651 19.9575 20.4025 k = 0.1564 0.8124 0.0555 band energies (ev): 0.0147 1.5060 4.8644 6.2591 11.6728 16.1354 18.1267 21.7240 22.7203 k = 0.0000 0.5416 0.1666 band energies (ev): -1.9293 2.2698 6.9665 8.4568 12.3033 14.6996 18.4672 19.3832 20.3405 k = 0.6254 0.0000-0.2776 band energies (ev): -0.7472 3.6051 4.1402 7.4584 8.2427 15.1345 20.3740 21.3989 24.1572 k = 0.4691-0.2708-0.1666 band energies (ev): -1.9293 2.2698 6.9665 8.4568 12.3033 14.6996 18.4672 19.3832 20.3405 k = 0.3127 0.0000-0.0555 band energies (ev): -4.1210 5.8905 9.4765 10.2390 12.4097 16.2457 17.4176 17.8799 18.7257 k = 0.3127 0.0000 0.2776 band energies (ev): -3.3801 3.7920 8.3438 12.5075 12.5245 13.8449 15.6173 19.1532 19.9702 k = 0.1564-0.2708 0.3887 band energies (ev): -2.6627 4.3984 7.7288 8.1705 8.9434 15.8492 19.0651 19.9575 20.4025 k = 0.6254 0.5416 0.0555 band energies (ev): 0.0147 1.5060 4.8644 6.2591 11.6728 16.1354 18.1267 21.7240 22.7203 k = 0.4691 0.2708 0.1666 band energies (ev): -1.9293 2.2698 6.9665 8.4568 12.3033 14.6996 18.4672 19.3832 20.3405 k = 0.0000 0.0000 0.4998 band energies (ev): -2.6261 1.8403 11.1571 11.1571 13.1888 13.1888 14.3005 15.6459 23.2488 k = 0.4691 0.8124 0.1666 band energies (ev): -0.4310 0.7887 5.5934 9.1651 10.6941 15.7886 18.3946 20.9261 21.9390 k = 0.3127 0.5416 0.2776 band energies (ev): -0.7472 3.6051 4.1402 7.4584 8.2427 15.1345 20.3740 21.3989 24.1572 k = 0.9381 0.0000-0.1666 band energies (ev): -0.4310 0.7887 5.5934 9.1651 10.6941 15.7886 18.3945 20.9262 21.9391 k = 0.7818-0.2708-0.0555 band energies (ev): 0.0147 1.5060 4.8644 6.2591 11.6728 16.1354 18.1267 21.7240 22.7203 k = 0.6254 0.0000 0.0555 band energies (ev): -1.1832 0.3059 9.1871 9.8885 11.3176 14.4965 16.6255 17.2564 22.2657 the Fermi energy is 13.2461 ev total energy = -25.40144396 Ry Harris-Foulkes estimate = -25.40144402 Ry estimated scf accuracy < 0.00000024 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 1.0 total cpu time spent up to now is 32.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.8484 8.1091 10.8181 10.8181 13.5165 17.1759 17.1759 18.1798 18.8385 k =-0.1564-0.2708 0.2776 ( 522 PWs) bands (ev): -3.3805 3.7915 8.3435 12.5072 12.5240 13.8446 15.6169 19.1528 19.9702 k = 0.3127 0.5416-0.0555 ( 520 PWs) bands (ev): -1.1836 0.3055 9.1868 9.8881 11.3173 14.4961 16.6252 17.2561 22.2656 k = 0.1564 0.2708 0.0555 ( 525 PWs) bands (ev): -4.1214 5.8900 9.4762 10.2386 12.4094 16.2452 17.4175 17.8795 18.7254 k =-0.3127 0.0000 0.3887 ( 519 PWs) bands (ev): -2.6630 4.3979 7.7285 8.1702 8.9431 15.8493 19.0646 19.9571 20.4020 k = 0.1564 0.8124 0.0555 ( 510 PWs) bands (ev): 0.0142 1.5055 4.8642 6.2588 11.6724 16.1349 18.1267 21.7235 22.7202 k = 0.0000 0.5416 0.1666 ( 521 PWs) bands (ev): -1.9297 2.2693 6.9662 8.4566 12.3029 14.6992 18.4670 19.3829 20.3401 k = 0.6254 0.0000-0.2776 ( 510 PWs) bands (ev): -0.7476 3.6046 4.1400 7.4581 8.2423 15.1346 20.3735 21.3984 24.1565 k = 0.4691-0.2708-0.1666 ( 521 PWs) bands (ev): -1.9297 2.2693 6.9663 8.4565 12.3029 14.6992 18.4670 19.3829 20.3401 k = 0.3127 0.0000-0.0555 ( 525 PWs) bands (ev): -4.1214 5.8900 9.4762 10.2386 12.4094 16.2452 17.4176 17.8795 18.7253 k = 0.3127 0.0000 0.2776 ( 522 PWs) bands (ev): -3.3805 3.7915 8.3435 12.5072 12.5240 13.8446 15.6169 19.1528 19.9702 k = 0.1564-0.2708 0.3887 ( 519 PWs) bands (ev): -2.6630 4.3979 7.7285 8.1702 8.9431 15.8493 19.0646 19.9571 20.4019 k = 0.6254 0.5416 0.0555 ( 510 PWs) bands (ev): 0.0142 1.5055 4.8642 6.2588 11.6724 16.1349 18.1268 21.7235 22.7202 k = 0.4691 0.2708 0.1666 ( 521 PWs) bands (ev): -1.9297 2.2693 6.9662 8.4565 12.3029 14.6992 18.4670 19.3829 20.3400 k = 0.0000 0.0000 0.4998 ( 522 PWs) bands (ev): -2.6265 1.8399 11.1567 11.1567 13.1884 13.1884 14.3002 15.6457 23.2486 k = 0.4691 0.8124 0.1666 ( 520 PWs) bands (ev): -0.4314 0.7883 5.5931 9.1648 10.6938 15.7881 18.3941 20.9259 21.9387 k = 0.3127 0.5416 0.2776 ( 510 PWs) bands (ev): -0.7476 3.6046 4.1400 7.4581 8.2423 15.1346 20.3735 21.3984 24.1565 k = 0.9381 0.0000-0.1666 ( 520 PWs) bands (ev): -0.4314 0.7883 5.5931 9.1647 10.6938 15.7881 18.3941 20.9260 21.9387 k = 0.7818-0.2708-0.0555 ( 510 PWs) bands (ev): 0.0142 1.5055 4.8642 6.2588 11.6724 16.1349 18.1268 21.7235 22.7202 k = 0.6254 0.0000 0.0555 ( 520 PWs) bands (ev): -1.1836 0.3055 9.1868 9.8881 11.3173 14.4961 16.6252 17.2561 22.2656 the Fermi energy is 13.2457 ev ! total energy = -25.40144397 Ry Harris-Foulkes estimate = -25.40144397 Ry estimated scf accuracy < 6.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00022991 atom 2 type 1 force = 0.00000000 0.00000000 -0.00022991 Total force = 0.000325 Total SCF correction = 0.000011 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.65 0.00342362 0.00000000 0.00000000 503.63 0.00 0.00 0.00000000 0.00342361 0.00000000 0.00 503.63 0.00 0.00000000 0.00000000 0.00334242 0.00 0.00 491.69 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 0.533268088 0.000000000 0.748463070 -0.266635081 0.461824536 0.748462772 -0.266635081 -0.461824536 0.748462772 new unit-cell volume = 190.5159 (a.u.)^3 new positions in cryst coord As 0.249953333 0.249953322 0.249953322 As -0.249953333 -0.249953322 -0.249953322 new positions in cart coord (alat unit) As -0.000000512 0.000000000 0.561242351 As 0.000000512 0.000000000 -0.561242351 Ekin = 0.00002348 Ry T = 1446.7 K Etot = -24.75293637 CELL_PARAMETERS (alat) 0.533268088 0.000000000 0.748463070 -0.266635081 0.461824536 0.748462772 -0.266635081 -0.461824536 0.748462772 ATOMIC_POSITIONS (crystal) As 0.249953333 0.249953322 0.249953322 As -0.249953333 -0.249953322 -0.249953322 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1670090), wk = 0.0625000 k( 2) = ( -0.1562690 -0.2706656 0.2783481), wk = 0.1250000 k( 3) = ( 0.3125379 0.5413311 -0.0556694), wk = 0.1250000 k( 4) = ( 0.1562689 0.2706656 0.0556698), wk = 0.1250000 k( 5) = ( -0.3125380 0.0000000 0.3896873), wk = 0.0625000 k( 6) = ( 0.1562689 0.8119967 0.0556698), wk = 0.1250000 k( 7) = ( -0.0000001 0.5413311 0.1670090), wk = 0.1250000 k( 8) = ( 0.6250758 0.0000000 -0.2783477), wk = 0.0625000 k( 9) = ( 0.4688068 -0.2706656 -0.1670085), wk = 0.1250000 k( 10) = ( 0.3125379 0.0000000 -0.0556694), wk = 0.0625000 k( 11) = ( 0.3125377 0.0000000 0.2783485), wk = 0.0625000 k( 12) = ( 0.1562688 -0.2706656 0.3896877), wk = 0.1250000 k( 13) = ( 0.6250756 0.5413311 0.0556702), wk = 0.1250000 k( 14) = ( 0.4688067 0.2706656 0.1670094), wk = 0.1250000 k( 15) = ( -0.0000002 0.0000000 0.5010269), wk = 0.0625000 k( 16) = ( 0.4688067 0.8119967 0.1670094), wk = 0.1250000 k( 17) = ( 0.3125377 0.5413311 0.2783485), wk = 0.1250000 k( 18) = ( 0.9376136 0.0000000 -0.1670081), wk = 0.0625000 k( 19) = ( 0.7813446 -0.2706656 -0.0556689), wk = 0.1250000 k( 20) = ( 0.6250756 0.0000000 0.0556702), wk = 0.0625000 extrapolated charge 9.98558, renormalised to 10.00000 total cpu time spent up to now is 32.52 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.38E-09, avg # of iterations = 2.0 total cpu time spent up to now is 33.25 secs k = 0.0000 0.0000 0.1670 band energies (ev): -4.8353 8.1731 10.8211 10.8211 13.5454 17.2043 17.2043 18.1958 18.8976 k =-0.1563-0.2707 0.2783 band energies (ev): -3.3658 3.8059 8.3958 12.5268 12.5403 13.8610 15.6482 19.2177 19.9710 k = 0.3125 0.5413-0.0557 band energies (ev): -1.1747 0.3213 9.2364 9.9008 11.3368 14.5295 16.6647 17.3385 22.3657 k = 0.1563 0.2707 0.0557 band energies (ev): -4.1104 5.9060 9.4818 10.2831 12.4461 16.3065 17.4813 17.9258 18.7643 k =-0.3125 0.0000 0.3897 band energies (ev): -2.6446 4.4432 7.7434 8.1687 8.9640 15.8760 19.0821 19.9684 20.4149 k = 0.1563 0.8120 0.0557 band energies (ev): 0.0350 1.5175 4.8766 6.2947 11.7086 16.1551 18.1352 21.7869 22.7872 k = 0.0000 0.5413 0.1670 band energies (ev): -1.9189 2.2819 6.9873 8.4866 12.3572 14.7566 18.5012 19.4054 20.3697 k = 0.6251 0.0000-0.2783 band energies (ev): -0.7329 3.6334 4.1629 7.4586 8.2727 15.1757 20.4218 21.4393 24.2185 k = 0.4688-0.2707-0.1670 band energies (ev): -1.9189 2.2819 6.9873 8.4866 12.3572 14.7566 18.5012 19.4054 20.3698 k = 0.3125 0.0000-0.0557 band energies (ev): -4.1104 5.9060 9.4818 10.2831 12.4460 16.3065 17.4813 17.9258 18.7643 k = 0.3125 0.0000 0.2783 band energies (ev): -3.3658 3.8059 8.3958 12.5268 12.5403 13.8610 15.6481 19.2177 19.9710 k = 0.1563-0.2707 0.3897 band energies (ev): -2.6446 4.4432 7.7434 8.1688 8.9640 15.8759 19.0821 19.9684 20.4149 k = 0.6251 0.5413 0.0557 band energies (ev): 0.0350 1.5176 4.8766 6.2947 11.7086 16.1551 18.1352 21.7869 22.7871 k = 0.4688 0.2707 0.1670 band energies (ev): -1.9189 2.2819 6.9873 8.4866 12.3572 14.7566 18.5012 19.4054 20.3697 k = 0.0000 0.0000 0.5010 band energies (ev): -2.6023 1.8852 11.1558 11.1558 13.1951 13.1951 14.2973 15.6449 23.3032 k = 0.4688 0.8120 0.1670 band energies (ev): -0.4024 0.8212 5.6008 9.1678 10.7005 15.7993 18.3952 20.9661 21.9770 k = 0.3125 0.5413 0.2783 band energies (ev): -0.7329 3.6334 4.1629 7.4586 8.2727 15.1757 20.4218 21.4393 24.2185 k = 0.9376 0.0000-0.1670 band energies (ev): -0.4023 0.8212 5.6008 9.1678 10.7005 15.7993 18.3952 20.9661 21.9770 k = 0.7813-0.2707-0.0557 band energies (ev): 0.0350 1.5176 4.8766 6.2947 11.7086 16.1551 18.1352 21.7869 22.7872 k = 0.6251 0.0000 0.0557 band energies (ev): -1.1747 0.3213 9.2364 9.9008 11.3368 14.5295 16.6647 17.3385 22.3657 the Fermi energy is 13.2524 ev total energy = -25.40053013 Ry Harris-Foulkes estimate = -25.38940776 Ry estimated scf accuracy < 0.00000041 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.13E-09, avg # of iterations = 2.9 total cpu time spent up to now is 33.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.1670 ( 531 PWs) bands (ev): -4.8378 8.1721 10.8196 10.8196 13.5448 17.2019 17.2019 18.1933 18.8912 k =-0.1563-0.2707 0.2783 ( 522 PWs) bands (ev): -3.3682 3.8044 8.3929 12.5243 12.5387 13.8579 15.6460 19.2155 19.9652 k = 0.3125 0.5413-0.0557 ( 520 PWs) bands (ev): -1.1769 0.3192 9.2333 9.8982 11.3340 14.5275 16.6615 17.3359 22.3606 k = 0.1563 0.2707 0.0557 ( 525 PWs) bands (ev): -4.1128 5.9049 9.4796 10.2812 12.4431 16.3051 17.4752 17.9237 18.7620 k =-0.3125 0.0000 0.3897 ( 519 PWs) bands (ev): -2.6470 4.4420 7.7400 8.1661 8.9617 15.8687 19.0803 19.9665 20.4145 k = 0.1563 0.8120 0.0557 ( 510 PWs) bands (ev): 0.0333 1.5159 4.8727 6.2912 11.7066 16.1535 18.1287 21.7856 22.7818 k = 0.0000 0.5413 0.1670 ( 521 PWs) bands (ev): -1.9212 2.2803 6.9840 8.4833 12.3554 14.7541 18.4967 19.4022 20.3679 k = 0.6251 0.0000-0.2783 ( 510 PWs) bands (ev): -0.7347 3.6322 4.1588 7.4557 8.2703 15.1684 20.4208 21.4384 24.2189 k = 0.4688-0.2707-0.1670 ( 521 PWs) bands (ev): -1.9212 2.2803 6.9840 8.4833 12.3554 14.7541 18.4967 19.4022 20.3679 k = 0.3125 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1128 5.9049 9.4796 10.2812 12.4431 16.3050 17.4752 17.9237 18.7619 k = 0.3125 0.0000 0.2783 ( 522 PWs) bands (ev): -3.3682 3.8044 8.3929 12.5243 12.5387 13.8579 15.6460 19.2155 19.9652 k = 0.1563-0.2707 0.3897 ( 519 PWs) bands (ev): -2.6469 4.4420 7.7400 8.1661 8.9617 15.8687 19.0803 19.9665 20.4144 k = 0.6251 0.5413 0.0557 ( 510 PWs) bands (ev): 0.0333 1.5159 4.8727 6.2912 11.7065 16.1535 18.1287 21.7856 22.7818 k = 0.4688 0.2707 0.1670 ( 521 PWs) bands (ev): -1.9212 2.2803 6.9840 8.4833 12.3554 14.7541 18.4967 19.4022 20.3679 k = 0.0000 0.0000 0.5010 ( 522 PWs) bands (ev): -2.6047 1.8833 11.1536 11.1536 13.1926 13.1926 14.2939 15.6413 23.2987 k = 0.4688 0.8120 0.1670 ( 520 PWs) bands (ev): -0.4045 0.8195 5.5970 9.1651 10.6974 15.7980 18.3931 20.9619 21.9745 k = 0.3125 0.5413 0.2783 ( 510 PWs) bands (ev): -0.7347 3.6322 4.1588 7.4557 8.2703 15.1684 20.4208 21.4384 24.2189 k = 0.9376 0.0000-0.1670 ( 520 PWs) bands (ev): -0.4045 0.8195 5.5970 9.1650 10.6974 15.7980 18.3931 20.9619 21.9745 k = 0.7813-0.2707-0.0557 ( 510 PWs) bands (ev): 0.0333 1.5159 4.8727 6.2912 11.7065 16.1535 18.1287 21.7856 22.7818 k = 0.6251 0.0000 0.0557 ( 520 PWs) bands (ev): -1.1769 0.3192 9.2333 9.8982 11.3340 14.5275 16.6615 17.3359 22.3607 the Fermi energy is 13.2499 ev ! total energy = -25.40053062 Ry Harris-Foulkes estimate = -25.40053067 Ry estimated scf accuracy < 0.00000010 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00020484 atom 2 type 1 force = 0.00000001 0.00000000 -0.00020484 Total force = 0.000290 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 503.89 0.00343856 0.00000000 0.00000001 505.83 0.00 0.00 0.00000000 0.00343856 0.00000000 0.00 505.83 0.00 0.00000001 0.00000000 0.00339898 0.00 0.00 500.01 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 0.533960731 0.000000000 0.748484898 -0.266981416 0.462424094 0.748484406 -0.266981416 -0.462424094 0.748484406 new unit-cell volume = 191.0165 (a.u.)^3 new positions in cryst coord As 0.249962468 0.249962458 0.249962458 As -0.249962468 -0.249962458 -0.249962458 new positions in cart coord (alat unit) As -0.000000520 0.000000000 0.561279136 As 0.000000520 0.000000000 -0.561279136 Ekin = 0.00004610 Ry T = 1335.5 K Etot = -24.75293403 CELL_PARAMETERS (alat) 0.533960731 0.000000000 0.748484898 -0.266981416 0.462424094 0.748484406 -0.266981416 -0.462424094 0.748484406 ATOMIC_POSITIONS (crystal) As 0.249962468 0.249962458 0.249962458 As -0.249962468 -0.249962458 -0.249962458 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1670041), wk = 0.0625000 k( 2) = ( -0.1560664 -0.2703146 0.2783400), wk = 0.1250000 k( 3) = ( 0.3121324 0.5406293 -0.0556677), wk = 0.1250000 k( 4) = ( 0.1560662 0.2703146 0.0556682), wk = 0.1250000 k( 5) = ( -0.3121326 0.0000000 0.3896760), wk = 0.0625000 k( 6) = ( 0.1560662 0.8109439 0.0556682), wk = 0.1250000 k( 7) = ( -0.0000001 0.5406293 0.1670041), wk = 0.1250000 k( 8) = ( 0.6242650 0.0000000 -0.2783396), wk = 0.0625000 k( 9) = ( 0.4681987 -0.2703146 -0.1670037), wk = 0.1250000 k( 10) = ( 0.3121324 0.0000000 -0.0556677), wk = 0.0625000 k( 11) = ( 0.3121322 0.0000000 0.2783405), wk = 0.0625000 k( 12) = ( 0.1560660 -0.2703146 0.3896764), wk = 0.1250000 k( 13) = ( 0.6242648 0.5406293 0.0556686), wk = 0.1250000 k( 14) = ( 0.4681985 0.2703146 0.1670045), wk = 0.1250000 k( 15) = ( -0.0000003 0.0000000 0.5010123), wk = 0.0625000 k( 16) = ( 0.4681985 0.8109439 0.1670045), wk = 0.1250000 k( 17) = ( 0.3121322 0.5406293 0.2783405), wk = 0.1250000 k( 18) = ( 0.9363973 0.0000000 -0.1670032), wk = 0.0625000 k( 19) = ( 0.7803311 -0.2703146 -0.0556673), wk = 0.1250000 k( 20) = ( 0.6242648 0.0000000 0.0556686), wk = 0.0625000 extrapolated charge 10.02621, renormalised to 10.00000 total cpu time spent up to now is 33.94 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.19E-09, avg # of iterations = 2.2 total cpu time spent up to now is 34.66 secs k = 0.0000 0.0000 0.1670 band energies (ev): -4.8597 8.1340 10.7639 10.7639 13.4674 17.1416 17.1417 18.1192 18.8463 k =-0.1561-0.2703 0.2783 band energies (ev): -3.3929 3.7590 8.3640 12.4734 12.4840 13.7961 15.5731 19.1604 19.8908 k = 0.3121 0.5406-0.0557 band energies (ev): -1.2095 0.2853 9.2002 9.8505 11.2791 14.4763 16.5967 17.2895 22.3218 k = 0.1561 0.2703 0.0557 band energies (ev): -4.1372 5.8531 9.4295 10.2399 12.3967 16.2441 17.4337 17.8687 18.6962 k =-0.3121 0.0000 0.3897 band energies (ev): -2.6722 4.4051 7.6959 8.1170 8.9137 15.8190 19.0102 19.8860 20.3255 k = 0.1561 0.8109 0.0557 band energies (ev): 0.0001 1.4753 4.8370 6.2613 11.6573 16.0880 18.0656 21.7224 22.7299 k = 0.0000 0.5406 0.1670 band energies (ev): -1.9513 2.2380 6.9461 8.4439 12.3130 14.7085 18.4362 19.3289 20.2952 k = 0.6243 0.0000-0.2783 band energies (ev): -0.7685 3.5905 4.1291 7.4094 8.2275 15.1261 20.3584 21.3645 24.1445 k = 0.4682-0.2703-0.1670 band energies (ev): -1.9513 2.2380 6.9461 8.4439 12.3130 14.7084 18.4362 19.3289 20.2952 k = 0.3121 0.0000-0.0557 band energies (ev): -4.1372 5.8531 9.4295 10.2399 12.3967 16.2441 17.4337 17.8687 18.6962 k = 0.3121 0.0000 0.2783 band energies (ev): -3.3929 3.7590 8.3640 12.4734 12.4840 13.7961 15.5731 19.1604 19.8908 k = 0.1561-0.2703 0.3897 band energies (ev): -2.6722 4.4051 7.6960 8.1170 8.9137 15.8190 19.0102 19.8860 20.3255 k = 0.6243 0.5406 0.0557 band energies (ev): 0.0001 1.4753 4.8370 6.2613 11.6573 16.0880 18.0656 21.7224 22.7299 k = 0.4682 0.2703 0.1670 band energies (ev): -1.9513 2.2380 6.9461 8.4439 12.3130 14.7084 18.4362 19.3289 20.2952 k = 0.0000 0.0000 0.5010 band energies (ev): -2.6273 1.8572 11.0967 11.0967 13.1344 13.1344 14.2125 15.5613 23.2311 k = 0.4682 0.8109 0.1670 band energies (ev): -0.4312 0.7893 5.5575 9.1154 10.6375 15.7335 18.3060 20.8998 21.9041 k = 0.3121 0.5406 0.2783 band energies (ev): -0.7685 3.5905 4.1291 7.4094 8.2275 15.1261 20.3584 21.3645 24.1445 k = 0.9364 0.0000-0.1670 band energies (ev): -0.4312 0.7893 5.5575 9.1154 10.6375 15.7335 18.3060 20.8998 21.9041 k = 0.7803-0.2703-0.0557 band energies (ev): 0.0001 1.4753 4.8370 6.2613 11.6573 16.0880 18.0656 21.7224 22.7299 k = 0.6243 0.0000 0.0557 band energies (ev): -1.2095 0.2853 9.2002 9.8505 11.2791 14.4763 16.5967 17.2895 22.3218 the Fermi energy is 13.1916 ev total energy = -25.40223699 Ry Harris-Foulkes estimate = -25.42244061 Ry estimated scf accuracy < 0.00000060 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.04E-09, avg # of iterations = 3.0 total cpu time spent up to now is 35.11 secs k = 0.0000 0.0000 0.1670 band energies (ev): -4.8548 8.1362 10.7670 10.7670 13.4691 17.1462 17.1462 18.1240 18.8577 k =-0.1561-0.2703 0.2783 band energies (ev): -3.3882 3.7622 8.3695 12.4781 12.4872 13.8021 15.5774 19.1647 19.9015 k = 0.3121 0.5406-0.0557 band energies (ev): -1.2051 0.2894 9.2060 9.8554 11.2846 14.4803 16.6027 17.2945 22.3309 k = 0.1561 0.2703 0.0557 band energies (ev): -4.1325 5.8556 9.4338 10.2438 12.4023 16.2471 17.4448 17.8729 18.7008 k =-0.3121 0.0000 0.3897 band energies (ev): -2.6677 4.4077 7.7023 8.1220 8.9183 15.8321 19.0137 19.8899 20.3269 k = 0.1561 0.8109 0.0557 band energies (ev): 0.0036 1.4786 4.8443 6.2678 11.6613 16.0914 18.0773 21.7252 22.7396 k = 0.0000 0.5406 0.1670 band energies (ev): -1.9468 2.2413 6.9524 8.4500 12.3166 14.7133 18.4445 19.3351 20.2989 k = 0.6243 0.0000-0.2783 band energies (ev): -0.7649 3.5931 4.1367 7.4147 8.2323 15.1393 20.3605 21.3667 24.1444 k = 0.4682-0.2703-0.1670 band energies (ev): -1.9468 2.2413 6.9524 8.4500 12.3166 14.7133 18.4445 19.3351 20.2989 k = 0.3121 0.0000-0.0557 band energies (ev): -4.1325 5.8556 9.4338 10.2438 12.4023 16.2471 17.4448 17.8729 18.7008 k = 0.3121 0.0000 0.2783 band energies (ev): -3.3882 3.7622 8.3695 12.4781 12.4872 13.8021 15.5774 19.1646 19.9015 k = 0.1561-0.2703 0.3897 band energies (ev): -2.6677 4.4077 7.7023 8.1220 8.9183 15.8321 19.0137 19.8899 20.3269 k = 0.6243 0.5406 0.0557 band energies (ev): 0.0036 1.4786 4.8443 6.2678 11.6613 16.0914 18.0773 21.7252 22.7396 k = 0.4682 0.2703 0.1670 band energies (ev): -1.9468 2.2413 6.9524 8.4500 12.3166 14.7133 18.4445 19.3351 20.2989 k = 0.0000 0.0000 0.5010 band energies (ev): -2.6227 1.8611 11.1010 11.1010 13.1391 13.1391 14.2191 15.5682 23.2394 k = 0.4682 0.8109 0.1670 band energies (ev): -0.4270 0.7927 5.5646 9.1207 10.6434 15.7362 18.3103 20.9074 21.9091 k = 0.3121 0.5406 0.2783 band energies (ev): -0.7649 3.5931 4.1367 7.4147 8.2323 15.1393 20.3605 21.3667 24.1444 k = 0.9364 0.0000-0.1670 band energies (ev): -0.4270 0.7927 5.5646 9.1207 10.6434 15.7362 18.3103 20.9074 21.9091 k = 0.7803-0.2703-0.0557 band energies (ev): 0.0036 1.4786 4.8443 6.2678 11.6613 16.0914 18.0773 21.7252 22.7396 k = 0.6243 0.0000 0.0557 band energies (ev): -1.2051 0.2894 9.2060 9.8554 11.2846 14.4803 16.6027 17.2945 22.3309 the Fermi energy is 13.1964 ev total energy = -25.40223846 Ry Harris-Foulkes estimate = -25.40223858 Ry estimated scf accuracy < 0.00000036 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.58E-09, avg # of iterations = 1.0 total cpu time spent up to now is 35.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.1670 ( 531 PWs) bands (ev): -4.8544 8.1368 10.7675 10.7675 13.4697 17.1466 17.1466 18.1244 18.8577 k =-0.1561-0.2703 0.2783 ( 522 PWs) bands (ev): -3.3878 3.7627 8.3698 12.4785 12.4877 13.8024 15.5779 19.1651 19.9016 k = 0.3121 0.5406-0.0557 ( 520 PWs) bands (ev): -1.2047 0.2899 9.2063 9.8558 11.2850 14.4808 16.6030 17.2949 22.3310 k = 0.1561 0.2703 0.0557 ( 525 PWs) bands (ev): -4.1321 5.8561 9.4342 10.2442 12.4027 16.2476 17.4448 17.8733 18.7012 k =-0.3121 0.0000 0.3897 ( 519 PWs) bands (ev): -2.6672 4.4082 7.7026 8.1224 8.9187 15.8320 19.0142 19.8904 20.3275 k = 0.1561 0.8109 0.0557 ( 510 PWs) bands (ev): 0.0041 1.4791 4.8445 6.2681 11.6617 16.0919 18.0773 21.7258 22.7397 k = 0.0000 0.5406 0.1670 ( 521 PWs) bands (ev): -1.9464 2.2418 6.9527 8.4503 12.3171 14.7137 18.4447 19.3354 20.2993 k = 0.6243 0.0000-0.2783 ( 510 PWs) bands (ev): -0.7644 3.5936 4.1369 7.4151 8.2327 15.1392 20.3611 21.3673 24.1451 k = 0.4682-0.2703-0.1670 ( 521 PWs) bands (ev): -1.9464 2.2418 6.9527 8.4503 12.3171 14.7137 18.4447 19.3354 20.2994 k = 0.3121 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1321 5.8561 9.4342 10.2442 12.4027 16.2476 17.4448 17.8733 18.7012 k = 0.3121 0.0000 0.2783 ( 522 PWs) bands (ev): -3.3878 3.7627 8.3698 12.4785 12.4877 13.8024 15.5779 19.1651 19.9016 k = 0.1561-0.2703 0.3897 ( 519 PWs) bands (ev): -2.6672 4.4082 7.7026 8.1224 8.9187 15.8320 19.0142 19.8904 20.3275 k = 0.6243 0.5406 0.0557 ( 510 PWs) bands (ev): 0.0041 1.4791 4.8445 6.2681 11.6617 16.0919 18.0773 21.7258 22.7397 k = 0.4682 0.2703 0.1670 ( 521 PWs) bands (ev): -1.9464 2.2418 6.9527 8.4503 12.3171 14.7137 18.4447 19.3354 20.2994 k = 0.0000 0.0000 0.5010 ( 522 PWs) bands (ev): -2.6223 1.8615 11.1014 11.1014 13.1395 13.1395 14.2194 15.5684 23.2396 k = 0.4682 0.8109 0.1670 ( 520 PWs) bands (ev): -0.4265 0.7932 5.5648 9.1211 10.6437 15.7368 18.3108 20.9076 21.9096 k = 0.3121 0.5406 0.2783 ( 510 PWs) bands (ev): -0.7644 3.5936 4.1369 7.4151 8.2327 15.1392 20.3611 21.3673 24.1451 k = 0.9364 0.0000-0.1670 ( 520 PWs) bands (ev): -0.4265 0.7932 5.5648 9.1211 10.6437 15.7368 18.3108 20.9076 21.9096 k = 0.7803-0.2703-0.0557 ( 510 PWs) bands (ev): 0.0041 1.4791 4.8445 6.2681 11.6617 16.0919 18.0773 21.7258 22.7397 k = 0.6243 0.0000 0.0557 ( 520 PWs) bands (ev): -1.2047 0.2899 9.2063 9.8558 11.2850 14.4808 16.6030 17.2949 22.3310 the Fermi energy is 13.1968 ev ! total energy = -25.40223841 Ry Harris-Foulkes estimate = -25.40223846 Ry estimated scf accuracy < 0.00000010 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00016293 atom 2 type 1 force = 0.00000001 0.00000000 -0.00016293 Total force = 0.000230 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 496.67 0.00338455 0.00000000 0.00000000 497.88 0.00 0.00 0.00000000 0.00338455 0.00000000 0.00 497.88 0.00 0.00000000 0.00000000 0.00335980 0.00 0.00 494.24 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 0.533778091 0.000000000 0.747947824 -0.266889957 0.462265952 0.747947259 -0.266889957 -0.462265952 0.747947259 new unit-cell volume = 190.7489 (a.u.)^3 new positions in cryst coord As 0.249975019 0.249975011 0.249975011 As -0.249975019 -0.249975011 -0.249975011 new positions in cart coord (alat unit) As -0.000000452 0.000000000 0.560904521 As 0.000000452 0.000000000 -0.560904521 Ekin = 0.00001874 Ry T = 1240.2 K Etot = -24.75296751 CELL_PARAMETERS (alat) 0.533778091 0.000000000 0.747947824 -0.266889957 0.462265952 0.747947259 -0.266889957 -0.462265952 0.747947259 ATOMIC_POSITIONS (crystal) As 0.249975019 0.249975011 0.249975011 As -0.249975019 -0.249975011 -0.249975011 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1671240), wk = 0.0625000 k( 2) = ( -0.1561198 -0.2704071 0.2785399), wk = 0.1250000 k( 3) = ( 0.3122393 0.5408142 -0.0557078), wk = 0.1250000 k( 4) = ( 0.1561196 0.2704071 0.0557081), wk = 0.1250000 k( 5) = ( -0.3122395 0.0000000 0.3899558), wk = 0.0625000 k( 6) = ( 0.1561196 0.8112213 0.0557081), wk = 0.1250000 k( 7) = ( -0.0000001 0.5408142 0.1671240), wk = 0.1250000 k( 8) = ( 0.6244787 0.0000000 -0.2785396), wk = 0.0625000 k( 9) = ( 0.4683590 -0.2704071 -0.1671237), wk = 0.1250000 k( 10) = ( 0.3122393 0.0000000 -0.0557078), wk = 0.0625000 k( 11) = ( 0.3122391 0.0000000 0.2785403), wk = 0.0625000 k( 12) = ( 0.1561194 -0.2704071 0.3899562), wk = 0.1250000 k( 13) = ( 0.6244785 0.5408142 0.0557085), wk = 0.1250000 k( 14) = ( 0.4683588 0.2704071 0.1671244), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5013721), wk = 0.0625000 k( 16) = ( 0.4683588 0.8112213 0.1671244), wk = 0.1250000 k( 17) = ( 0.3122391 0.5408142 0.2785403), wk = 0.1250000 k( 18) = ( 0.9367179 0.0000000 -0.1671233), wk = 0.0625000 k( 19) = ( 0.7805982 -0.2704071 -0.0557074), wk = 0.1250000 k( 20) = ( 0.6244785 0.0000000 0.0557085), wk = 0.0625000 extrapolated charge 9.98597, renormalised to 10.00000 total cpu time spent up to now is 35.70 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.37E-09, avg # of iterations = 3.1 total cpu time spent up to now is 36.46 secs k = 0.0000 0.0000 0.1671 band energies (ev): -4.8421 8.1695 10.7900 10.7900 13.5077 17.1779 17.1779 18.1576 18.8912 k =-0.1561-0.2704 0.2785 band energies (ev): -3.3739 3.7844 8.3958 12.5047 12.5126 13.8308 15.6147 19.2046 19.9303 k = 0.3122 0.5408-0.0557 band energies (ev): -1.1894 0.3076 9.2330 9.8778 11.3116 14.5099 16.6390 17.3359 22.3738 k = 0.1561 0.2704 0.0557 band energies (ev): -4.1193 5.8808 9.4553 10.2727 12.4309 16.2881 17.4785 17.9076 18.7375 k =-0.3122 0.0000 0.3900 band energies (ev): -2.6521 4.4353 7.7238 8.1411 8.9432 15.8583 19.0462 19.9246 20.3655 k = 0.1561 0.8112 0.0557 band energies (ev): 0.0229 1.4984 4.8618 6.2898 11.6909 16.1228 18.1038 21.7679 22.7784 k = 0.0000 0.5408 0.1671 band energies (ev): -1.9316 2.2619 6.9733 8.4740 12.3487 14.7474 18.4775 19.3699 20.3358 k = 0.6245 0.0000-0.2785 band energies (ev): -0.7470 3.6180 4.1548 7.4332 8.2577 15.1668 20.3988 21.4073 24.1911 k = 0.4684-0.2704-0.1671 band energies (ev): -1.9316 2.2619 6.9733 8.4740 12.3487 14.7474 18.4775 19.3699 20.3358 k = 0.3122 0.0000-0.0557 band energies (ev): -4.1193 5.8808 9.4553 10.2727 12.4309 16.2881 17.4785 17.9076 18.7375 k = 0.3122 0.0000 0.2785 band energies (ev): -3.3739 3.7844 8.3958 12.5047 12.5126 13.8308 15.6147 19.2046 19.9303 k = 0.1561-0.2704 0.3900 band energies (ev): -2.6521 4.4353 7.7238 8.1411 8.9432 15.8583 19.0462 19.9246 20.3655 k = 0.6245 0.5408 0.0557 band energies (ev): 0.0229 1.4984 4.8618 6.2898 11.6909 16.1228 18.1038 21.7679 22.7784 k = 0.4684 0.2704 0.1671 band energies (ev): -1.9316 2.2619 6.9733 8.4740 12.3487 14.7474 18.4775 19.3699 20.3358 k = 0.0000 0.0000 0.5014 band energies (ev): -2.6065 1.8845 11.1232 11.1232 13.1640 13.1640 14.2499 15.5990 23.2807 k = 0.4684 0.8112 0.1671 band energies (ev): -0.4079 0.8143 5.5822 9.1412 10.6687 15.7649 18.3446 20.9423 21.9478 k = 0.3122 0.5408 0.2785 band energies (ev): -0.7470 3.6180 4.1548 7.4332 8.2577 15.1668 20.3988 21.4073 24.1911 k = 0.9367 0.0000-0.1671 band energies (ev): -0.4079 0.8143 5.5822 9.1412 10.6687 15.7649 18.3446 20.9423 21.9478 k = 0.7806-0.2704-0.0557 band energies (ev): 0.0229 1.4984 4.8618 6.2898 11.6909 16.1228 18.1038 21.7679 22.7784 k = 0.6245 0.0000 0.0557 band energies (ev): -1.1894 0.3076 9.2330 9.8778 11.3116 14.5099 16.6390 17.3359 22.3738 the Fermi energy is 13.2212 ev total energy = -25.40133211 Ry Harris-Foulkes estimate = -25.39051448 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 3.0 total cpu time spent up to now is 36.90 secs k = 0.0000 0.0000 0.1671 band energies (ev): -4.8447 8.1683 10.7884 10.7884 13.5068 17.1754 17.1754 18.1549 18.8850 k =-0.1561-0.2704 0.2785 band energies (ev): -3.3765 3.7827 8.3928 12.5020 12.5110 13.8277 15.6124 19.2023 19.9246 k = 0.3122 0.5408-0.0557 band energies (ev): -1.1917 0.3053 9.2299 9.8752 11.3087 14.5078 16.6358 17.3332 22.3689 k = 0.1561 0.2704 0.0557 band energies (ev): -4.1219 5.8795 9.4530 10.2706 12.4279 16.2865 17.4726 17.9053 18.7350 k =-0.3122 0.0000 0.3900 band energies (ev): -2.6546 4.4340 7.7204 8.1383 8.9407 15.8513 19.0443 19.9225 20.3648 k = 0.1561 0.8112 0.0557 band energies (ev): 0.0210 1.4966 4.8579 6.2863 11.6888 16.1210 18.0975 21.7664 22.7731 k = 0.0000 0.5408 0.1671 band energies (ev): -1.9340 2.2601 6.9699 8.4707 12.3467 14.7448 18.4730 19.3665 20.3338 k = 0.6245 0.0000-0.2785 band energies (ev): -0.7490 3.6166 4.1507 7.4303 8.2552 15.1597 20.3976 21.4060 24.1912 k = 0.4684-0.2704-0.1671 band energies (ev): -1.9340 2.2601 6.9699 8.4707 12.3467 14.7448 18.4730 19.3665 20.3338 k = 0.3122 0.0000-0.0557 band energies (ev): -4.1219 5.8795 9.4530 10.2706 12.4279 16.2865 17.4726 17.9053 18.7350 k = 0.3122 0.0000 0.2785 band energies (ev): -3.3765 3.7827 8.3928 12.5020 12.5110 13.8277 15.6124 19.2023 19.9246 k = 0.1561-0.2704 0.3900 band energies (ev): -2.6546 4.4340 7.7204 8.1383 8.9407 15.8513 19.0443 19.9225 20.3648 k = 0.6245 0.5408 0.0557 band energies (ev): 0.0210 1.4966 4.8579 6.2863 11.6888 16.1210 18.0975 21.7664 22.7731 k = 0.4684 0.2704 0.1671 band energies (ev): -1.9340 2.2601 6.9699 8.4707 12.3467 14.7448 18.4730 19.3665 20.3338 k = 0.0000 0.0000 0.5014 band energies (ev): -2.6090 1.8824 11.1209 11.1209 13.1614 13.1614 14.2464 15.5953 23.2763 k = 0.4684 0.8112 0.1671 band energies (ev): -0.4101 0.8124 5.5784 9.1383 10.6656 15.7634 18.3423 20.9382 21.9450 k = 0.3122 0.5408 0.2785 band energies (ev): -0.7490 3.6166 4.1507 7.4303 8.2552 15.1597 20.3976 21.4061 24.1912 k = 0.9367 0.0000-0.1671 band energies (ev): -0.4101 0.8124 5.5784 9.1383 10.6656 15.7634 18.3423 20.9382 21.9450 k = 0.7806-0.2704-0.0557 band energies (ev): 0.0210 1.4966 4.8579 6.2863 11.6888 16.1210 18.0975 21.7664 22.7731 k = 0.6245 0.0000 0.0557 band energies (ev): -1.1917 0.3053 9.2299 9.8752 11.3087 14.5078 16.6358 17.3332 22.3689 the Fermi energy is 13.2187 ev total energy = -25.40133252 Ry Harris-Foulkes estimate = -25.40133255 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 1.0 total cpu time spent up to now is 37.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.1671 ( 531 PWs) bands (ev): -4.8449 8.1680 10.7881 10.7881 13.5065 17.1752 17.1752 18.1547 18.8850 k =-0.1561-0.2704 0.2785 ( 522 PWs) bands (ev): -3.3767 3.7824 8.3926 12.5018 12.5107 13.8275 15.6121 19.2020 19.9245 k = 0.3122 0.5408-0.0557 ( 520 PWs) bands (ev): -1.1920 0.3051 9.2297 9.8750 11.3085 14.5076 16.6356 17.3329 22.3689 k = 0.1561 0.2704 0.0557 ( 525 PWs) bands (ev): -4.1221 5.8792 9.4528 10.2703 12.4277 16.2862 17.4726 17.9051 18.7348 k =-0.3122 0.0000 0.3900 ( 519 PWs) bands (ev): -2.6548 4.4337 7.7202 8.1381 8.9405 15.8514 19.0441 19.9223 20.3644 k = 0.1561 0.8112 0.0557 ( 510 PWs) bands (ev): 0.0208 1.4963 4.8578 6.2861 11.6885 16.1207 18.0975 21.7661 22.7731 k = 0.0000 0.5408 0.1671 ( 521 PWs) bands (ev): -1.9342 2.2598 6.9697 8.4705 12.3465 14.7446 18.4729 19.3664 20.3335 k = 0.6245 0.0000-0.2785 ( 510 PWs) bands (ev): -0.7492 3.6163 4.1506 7.4301 8.2549 15.1598 20.3973 21.4057 24.1907 k = 0.4684-0.2704-0.1671 ( 521 PWs) bands (ev): -1.9342 2.2598 6.9697 8.4705 12.3465 14.7446 18.4729 19.3664 20.3335 k = 0.3122 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1221 5.8792 9.4528 10.2703 12.4277 16.2862 17.4726 17.9051 18.7348 k = 0.3122 0.0000 0.2785 ( 522 PWs) bands (ev): -3.3767 3.7824 8.3926 12.5018 12.5107 13.8275 15.6121 19.2020 19.9245 k = 0.1561-0.2704 0.3900 ( 519 PWs) bands (ev): -2.6548 4.4337 7.7202 8.1381 8.9405 15.8514 19.0441 19.9223 20.3644 k = 0.6245 0.5408 0.0557 ( 510 PWs) bands (ev): 0.0208 1.4963 4.8578 6.2861 11.6885 16.1207 18.0975 21.7661 22.7731 k = 0.4684 0.2704 0.1671 ( 521 PWs) bands (ev): -1.9342 2.2598 6.9697 8.4705 12.3465 14.7446 18.4729 19.3664 20.3335 k = 0.0000 0.0000 0.5014 ( 522 PWs) bands (ev): -2.6093 1.8821 11.1207 11.1207 13.1612 13.1612 14.2462 15.5952 23.2761 k = 0.4684 0.8112 0.1671 ( 520 PWs) bands (ev): -0.4104 0.8122 5.5783 9.1381 10.6654 15.7631 18.3421 20.9381 21.9448 k = 0.3122 0.5408 0.2785 ( 510 PWs) bands (ev): -0.7492 3.6163 4.1506 7.4301 8.2549 15.1598 20.3973 21.4057 24.1907 k = 0.9367 0.0000-0.1671 ( 520 PWs) bands (ev): -0.4104 0.8122 5.5783 9.1381 10.6654 15.7631 18.3421 20.9381 21.9448 k = 0.7806-0.2704-0.0557 ( 510 PWs) bands (ev): 0.0208 1.4963 4.8578 6.2861 11.6885 16.1207 18.0975 21.7661 22.7731 k = 0.6245 0.0000 0.0557 ( 520 PWs) bands (ev): -1.1920 0.3051 9.2297 9.8750 11.3085 14.5076 16.6356 17.3329 22.3689 the Fermi energy is 13.2184 ev ! total energy = -25.40133251 Ry Harris-Foulkes estimate = -25.40133252 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00010942 atom 2 type 1 force = 0.00000001 0.00000000 -0.00010942 Total force = 0.000155 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.46 0.00340839 0.00000000 0.00000000 501.39 0.00 0.00 0.00000000 0.00340839 0.00000000 0.00 501.39 0.00 0.00000000 0.00000000 0.00338931 0.00 0.00 498.58 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 0.533871889 0.000000000 0.747277900 -0.266936833 0.462347168 0.747277245 -0.266936833 -0.462347168 0.747277245 new unit-cell volume = 190.6450 (a.u.)^3 new positions in cryst coord As 0.249989887 0.249989882 0.249989882 As -0.249989887 -0.249989882 -0.249989882 new positions in cart coord (alat unit) As -0.000000442 0.000000000 0.560435419 As 0.000000442 0.000000000 -0.560435419 Ekin = 0.00000433 Ry T = 1157.5 K Etot = -24.75298575 CELL_PARAMETERS (alat) 0.533871889 0.000000000 0.747277900 -0.266936833 0.462347168 0.747277245 -0.266936833 -0.462347168 0.747277245 ATOMIC_POSITIONS (crystal) As 0.249989887 0.249989882 0.249989882 As -0.249989887 -0.249989882 -0.249989882 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672739), wk = 0.0625000 k( 2) = ( -0.1560924 -0.2703596 0.2787897), wk = 0.1250000 k( 3) = ( 0.3121845 0.5407192 -0.0557577), wk = 0.1250000 k( 4) = ( 0.1560922 0.2703596 0.0557581), wk = 0.1250000 k( 5) = ( -0.3121847 0.0000000 0.3903055), wk = 0.0625000 k( 6) = ( 0.1560922 0.8110788 0.0557581), wk = 0.1250000 k( 7) = ( -0.0000001 0.5407192 0.1672739), wk = 0.1250000 k( 8) = ( 0.6243691 0.0000000 -0.2787893), wk = 0.0625000 k( 9) = ( 0.4682768 -0.2703596 -0.1672735), wk = 0.1250000 k( 10) = ( 0.3121845 0.0000000 -0.0557577), wk = 0.0625000 k( 11) = ( 0.3121842 0.0000000 0.2787900), wk = 0.0625000 k( 12) = ( 0.1560919 -0.2703596 0.3903058), wk = 0.1250000 k( 13) = ( 0.6243688 0.5407192 0.0557585), wk = 0.1250000 k( 14) = ( 0.4682765 0.2703596 0.1672743), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5018216), wk = 0.0625000 k( 16) = ( 0.4682765 0.8110788 0.1672743), wk = 0.1250000 k( 17) = ( 0.3121842 0.5407192 0.2787900), wk = 0.1250000 k( 18) = ( 0.9365534 0.0000000 -0.1672731), wk = 0.0625000 k( 19) = ( 0.7804611 -0.2703596 -0.0557573), wk = 0.1250000 k( 20) = ( 0.6243688 0.0000000 0.0557585), wk = 0.0625000 extrapolated charge 9.99455, renormalised to 10.00000 total cpu time spent up to now is 37.50 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.09E-09, avg # of iterations = 3.4 total cpu time spent up to now is 38.27 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8402 8.1906 10.7897 10.7897 13.5172 17.1858 17.1858 18.1612 18.9064 k =-0.1561-0.2704 0.2788 ( 522 PWs) bands (ev): -3.3714 3.7878 8.4114 12.5098 12.5163 13.8340 15.6237 19.2253 19.9260 k = 0.3122 0.5407-0.0558 ( 520 PWs) bands (ev): -1.1886 0.3109 9.2475 9.8799 11.3159 14.5198 16.6502 17.3624 22.4047 k = 0.1561 0.2704 0.0558 ( 525 PWs) bands (ev): -4.1182 5.8852 9.4552 10.2861 12.4411 16.3079 17.4959 17.9219 18.7492 k =-0.3122 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6482 4.4497 7.7259 8.1382 8.9484 15.8616 19.0508 19.9271 20.3696 k = 0.1561 0.8111 0.0558 ( 510 PWs) bands (ev): 0.0283 1.5008 4.8626 6.2991 11.7016 16.1283 18.1016 21.7887 22.7975 k = 0.0000 0.5407 0.1673 ( 521 PWs) bands (ev): -1.9302 2.2645 6.9775 8.4815 12.3658 14.7652 18.4857 19.3751 20.3447 k = 0.6244 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7439 3.6267 4.1590 7.4308 8.2660 15.1751 20.4147 21.4206 24.2126 k = 0.4683-0.2704-0.1673 ( 521 PWs) bands (ev): -1.9302 2.2645 6.9775 8.4815 12.3658 14.7652 18.4857 19.3751 20.3447 k = 0.3122 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1182 5.8852 9.4552 10.2861 12.4411 16.3079 17.4959 17.9219 18.7492 k = 0.3122 0.0000 0.2788 ( 522 PWs) bands (ev): -3.3714 3.7878 8.4114 12.5098 12.5163 13.8340 15.6237 19.2253 19.9260 k = 0.1561-0.2704 0.3903 ( 519 PWs) bands (ev): -2.6482 4.4497 7.7259 8.1382 8.9484 15.8616 19.0508 19.9271 20.3696 k = 0.6244 0.5407 0.0558 ( 510 PWs) bands (ev): 0.0283 1.5008 4.8626 6.2991 11.7016 16.1283 18.1016 21.7887 22.7975 k = 0.4683 0.2704 0.1673 ( 521 PWs) bands (ev): -1.9302 2.2645 6.9775 8.4815 12.3658 14.7652 18.4857 19.3751 20.3447 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6007 1.8982 11.1209 11.1209 13.1641 13.1641 14.2462 15.5959 23.2961 k = 0.4683 0.8111 0.1673 ( 520 PWs) bands (ev): -0.4000 0.8239 5.5814 9.1397 10.6684 15.7676 18.3433 20.9522 21.9598 k = 0.3122 0.5407 0.2788 ( 510 PWs) bands (ev): -0.7439 3.6267 4.1590 7.4308 8.2660 15.1751 20.4147 21.4206 24.2126 k = 0.9366 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4000 0.8239 5.5815 9.1397 10.6684 15.7676 18.3433 20.9522 21.9598 k = 0.7805-0.2704-0.0558 ( 510 PWs) bands (ev): 0.0283 1.5008 4.8626 6.2991 11.7016 16.1283 18.1016 21.7887 22.7975 k = 0.6244 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1886 0.3109 9.2475 9.8799 11.3159 14.5198 16.6502 17.3624 22.4047 the Fermi energy is 13.4600 ev ! total energy = -25.40098904 Ry Harris-Foulkes estimate = -25.39678604 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00004548 atom 2 type 1 force = 0.00000001 0.00000000 -0.00004548 Total force = 0.000064 Total SCF correction = 0.000010 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 502.87 0.00342020 0.00000000 0.00000000 503.13 0.00 0.00 0.00000000 0.00342020 0.00000000 0.00 503.13 0.00 0.00000000 0.00000000 0.00341496 0.00 0.00 502.36 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 0.534176344 0.000000000 0.747697447 -0.267089055 0.462610812 0.747696838 -0.267089055 -0.462610812 0.747696838 new unit-cell volume = 190.9697 (a.u.)^3 new positions in cryst coord As 0.250005735 0.250005733 0.250005733 As -0.250005735 -0.250005733 -0.250005733 new positions in cart coord (alat unit) As -0.000000441 0.000000000 0.560785641 As 0.000000441 0.000000000 -0.560785641 Ekin = 0.00000487 Ry T = 1085.2 K Etot = -24.75299487 CELL_PARAMETERS (alat) 0.534176344 0.000000000 0.747697447 -0.267089055 0.462610812 0.747696838 -0.267089055 -0.462610812 0.747696838 ATOMIC_POSITIONS (crystal) As 0.250005735 0.250005733 0.250005733 As -0.250005735 -0.250005733 -0.250005733 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1671800), wk = 0.0625000 k( 2) = ( -0.1560035 -0.2702055 0.2786332), wk = 0.1250000 k( 3) = ( 0.3120065 0.5404111 -0.0557264), wk = 0.1250000 k( 4) = ( 0.1560032 0.2702055 0.0557268), wk = 0.1250000 k( 5) = ( -0.3120068 0.0000000 0.3900864), wk = 0.0625000 k( 6) = ( 0.1560032 0.8106166 0.0557268), wk = 0.1250000 k( 7) = ( -0.0000001 0.5404111 0.1671800), wk = 0.1250000 k( 8) = ( 0.6240132 0.0000000 -0.2786329), wk = 0.0625000 k( 9) = ( 0.4680099 -0.2702055 -0.1671796), wk = 0.1250000 k( 10) = ( 0.3120065 0.0000000 -0.0557264), wk = 0.0625000 k( 11) = ( 0.3120063 0.0000000 0.2786336), wk = 0.0625000 k( 12) = ( 0.1560029 -0.2702055 0.3900868), wk = 0.1250000 k( 13) = ( 0.6240129 0.5404111 0.0557272), wk = 0.1250000 k( 14) = ( 0.4680096 0.2702055 0.1671804), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5015400), wk = 0.0625000 k( 16) = ( 0.4680096 0.8106166 0.1671804), wk = 0.1250000 k( 17) = ( 0.3120063 0.5404111 0.2786336), wk = 0.1250000 k( 18) = ( 0.9360196 0.0000000 -0.1671793), wk = 0.0625000 k( 19) = ( 0.7800163 -0.2702055 -0.0557261), wk = 0.1250000 k( 20) = ( 0.6240129 0.0000000 0.0557272), wk = 0.0625000 extrapolated charge 10.01700, renormalised to 10.00000 total cpu time spent up to now is 38.56 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.96E-09, avg # of iterations = 2.6 total cpu time spent up to now is 39.26 secs k = 0.0000 0.0000 0.1672 band energies (ev): -4.8552 8.1569 10.7594 10.7594 13.4706 17.1473 17.1473 18.1179 18.8675 k =-0.1560-0.2702 0.2786 band energies (ev): -3.3881 3.7606 8.3840 12.4779 12.4839 13.7968 15.5781 19.1818 19.8842 k = 0.3120 0.5404-0.0557 band energies (ev): -1.2082 0.2892 9.2184 9.8513 11.2819 14.4852 16.6065 17.3194 22.3607 k = 0.1560 0.2702 0.0557 band energies (ev): -4.1340 5.8544 9.4270 10.2545 12.4078 16.2626 17.4577 17.8825 18.7056 k =-0.3120 0.0000 0.3901 band energies (ev): -2.6660 4.4206 7.6984 8.1118 8.9180 15.8267 19.0098 19.8817 20.3203 k = 0.1560 0.8106 0.0557 band energies (ev): 0.0061 1.4766 4.8397 6.2744 11.6675 16.0892 18.0638 21.7417 22.7537 k = 0.0000 0.5404 0.1672 band energies (ev): -1.9489 2.2393 6.9520 8.4532 12.3315 14.7281 18.4448 19.3305 20.2996 k = 0.6240 0.0000-0.2786 band energies (ev): -0.7651 3.5985 4.1370 7.4054 8.2363 15.1409 20.3716 21.3730 24.1610 k = 0.4680-0.2702-0.1672 band energies (ev): -1.9489 2.2393 6.9520 8.4532 12.3315 14.7281 18.4448 19.3305 20.2996 k = 0.3120 0.0000-0.0557 band energies (ev): -4.1340 5.8544 9.4270 10.2545 12.4078 16.2626 17.4577 17.8825 18.7056 k = 0.3120 0.0000 0.2786 band energies (ev): -3.3881 3.7606 8.3840 12.4779 12.4839 13.7968 15.5781 19.1818 19.8842 k = 0.1560-0.2702 0.3901 band energies (ev): -2.6660 4.4206 7.6984 8.1118 8.9180 15.8267 19.0098 19.8817 20.3203 k = 0.6240 0.5404 0.0557 band energies (ev): 0.0061 1.4766 4.8397 6.2744 11.6675 16.0892 18.0638 21.7417 22.7537 k = 0.4680 0.2702 0.1672 band energies (ev): -1.9489 2.2393 6.9520 8.4532 12.3315 14.7281 18.4448 19.3305 20.2996 k = 0.0000 0.0000 0.5015 band energies (ev): -2.6183 1.8744 11.0906 11.0906 13.1313 13.1313 14.2027 15.5526 23.2471 k = 0.4680 0.8106 0.1672 band energies (ev): -0.4208 0.8007 5.5577 9.1121 10.6344 15.7311 18.2967 20.9095 21.9135 k = 0.3120 0.5404 0.2786 band energies (ev): -0.7651 3.5985 4.1370 7.4054 8.2363 15.1409 20.3716 21.3730 24.1610 k = 0.9360 0.0000-0.1672 band energies (ev): -0.4208 0.8007 5.5577 9.1121 10.6344 15.7311 18.2967 20.9095 21.9135 k = 0.7800-0.2702-0.0557 band energies (ev): 0.0061 1.4766 4.8397 6.2744 11.6675 16.0892 18.0638 21.7417 22.7537 k = 0.6240 0.0000 0.0557 band energies (ev): -1.2082 0.2892 9.2184 9.8513 11.2819 14.4852 16.6065 17.3194 22.3607 the Fermi energy is 13.4133 ev total energy = -25.40209133 Ry Harris-Foulkes estimate = -25.41519579 Ry estimated scf accuracy < 0.00000060 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-09, avg # of iterations = 3.0 total cpu time spent up to now is 39.67 secs k = 0.0000 0.0000 0.1672 band energies (ev): -4.8523 8.1578 10.7611 10.7611 13.4712 17.1499 17.1499 18.1208 18.8749 k =-0.1560-0.2702 0.2786 band energies (ev): -3.3854 3.7622 8.3873 12.4809 12.4854 13.8004 15.5805 19.1842 19.8911 k = 0.3120 0.5404-0.0557 band energies (ev): -1.2057 0.2915 9.2219 9.8542 11.2852 14.4874 16.6101 17.3224 22.3666 k = 0.1560 0.2702 0.0557 band energies (ev): -4.1312 5.8556 9.4295 10.2566 12.4112 16.2641 17.4649 17.8849 18.7082 k =-0.3120 0.0000 0.3901 band energies (ev): -2.6634 4.4218 7.7023 8.1148 8.9206 15.8352 19.0117 19.8839 20.3207 k = 0.1560 0.8106 0.0557 band energies (ev): 0.0079 1.4784 4.8443 6.2785 11.6697 16.0910 18.0714 21.7431 22.7599 k = 0.0000 0.5404 0.1672 band energies (ev): -1.9464 2.2411 6.9558 8.4569 12.3334 14.7309 18.4501 19.3343 20.3016 k = 0.6240 0.0000-0.2786 band energies (ev): -0.7632 3.5998 4.1417 7.4086 8.2391 15.1495 20.3725 21.3739 24.1603 k = 0.4680-0.2702-0.1672 band energies (ev): -1.9464 2.2411 6.9558 8.4569 12.3334 14.7309 18.4501 19.3343 20.3016 k = 0.3120 0.0000-0.0557 band energies (ev): -4.1312 5.8556 9.4295 10.2566 12.4112 16.2641 17.4649 17.8849 18.7082 k = 0.3120 0.0000 0.2786 band energies (ev): -3.3854 3.7622 8.3873 12.4809 12.4854 13.8004 15.5805 19.1842 19.8911 k = 0.1560-0.2702 0.3901 band energies (ev): -2.6634 4.4218 7.7023 8.1148 8.9206 15.8352 19.0117 19.8839 20.3207 k = 0.6240 0.5404 0.0557 band energies (ev): 0.0079 1.4784 4.8443 6.2785 11.6697 16.0910 18.0714 21.7431 22.7599 k = 0.4680 0.2702 0.1672 band energies (ev): -1.9464 2.2411 6.9558 8.4569 12.3334 14.7309 18.4501 19.3343 20.3016 k = 0.0000 0.0000 0.5015 band energies (ev): -2.6157 1.8765 11.0930 11.0930 13.1341 13.1341 14.2068 15.5568 23.2523 k = 0.4680 0.8106 0.1672 band energies (ev): -0.4184 0.8025 5.5621 9.1152 10.6379 15.7325 18.2991 20.9142 21.9166 k = 0.3120 0.5404 0.2786 band energies (ev): -0.7632 3.5998 4.1417 7.4086 8.2391 15.1495 20.3725 21.3739 24.1603 k = 0.9360 0.0000-0.1672 band energies (ev): -0.4184 0.8025 5.5621 9.1152 10.6379 15.7325 18.2991 20.9142 21.9166 k = 0.7800-0.2702-0.0557 band energies (ev): 0.0079 1.4784 4.8443 6.2785 11.6697 16.0910 18.0714 21.7431 22.7599 k = 0.6240 0.0000 0.0557 band energies (ev): -1.2057 0.2915 9.2219 9.8542 11.2852 14.4874 16.6101 17.3224 22.3666 the Fermi energy is 13.4139 ev total energy = -25.40209206 Ry Harris-Foulkes estimate = -25.40209211 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-09, avg # of iterations = 1.0 total cpu time spent up to now is 39.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8520 8.1582 10.7614 10.7614 13.4716 17.1502 17.1502 18.1211 18.8749 k =-0.1560-0.2702 0.2786 ( 522 PWs) bands (ev): -3.3851 3.7626 8.3875 12.4812 12.4857 13.8007 15.5808 19.1845 19.8912 k = 0.3120 0.5404-0.0557 ( 520 PWs) bands (ev): -1.2054 0.2918 9.2222 9.8545 11.2855 14.4878 16.6104 17.3227 22.3667 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1309 5.8560 9.4298 10.2569 12.4114 16.2645 17.4649 17.8852 18.7085 k =-0.3120 0.0000 0.3901 ( 519 PWs) bands (ev): -2.6631 4.4222 7.7025 8.1150 8.9209 15.8352 19.0121 19.8842 20.3212 k = 0.1560 0.8106 0.0557 ( 510 PWs) bands (ev): 0.0083 1.4787 4.8444 6.2786 11.6700 16.0914 18.0714 21.7435 22.7600 k = 0.0000 0.5404 0.1672 ( 521 PWs) bands (ev): -1.9461 2.2414 6.9560 8.4571 12.3338 14.7312 18.4502 19.3345 20.3019 k = 0.6240 0.0000-0.2786 ( 510 PWs) bands (ev): -0.7628 3.6002 4.1419 7.4088 8.2393 15.1495 20.3729 21.3744 24.1608 k = 0.4680-0.2702-0.1672 ( 521 PWs) bands (ev): -1.9461 2.2414 6.9560 8.4571 12.3338 14.7312 18.4502 19.3345 20.3019 k = 0.3120 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1309 5.8560 9.4298 10.2569 12.4114 16.2645 17.4649 17.8852 18.7085 k = 0.3120 0.0000 0.2786 ( 522 PWs) bands (ev): -3.3851 3.7626 8.3875 12.4812 12.4857 13.8007 15.5808 19.1845 19.8912 k = 0.1560-0.2702 0.3901 ( 519 PWs) bands (ev): -2.6631 4.4222 7.7025 8.1150 8.9209 15.8352 19.0121 19.8842 20.3212 k = 0.6240 0.5404 0.0557 ( 510 PWs) bands (ev): 0.0083 1.4787 4.8444 6.2786 11.6700 16.0914 18.0714 21.7435 22.7600 k = 0.4680 0.2702 0.1672 ( 521 PWs) bands (ev): -1.9461 2.2414 6.9560 8.4571 12.3338 14.7312 18.4502 19.3345 20.3019 k = 0.0000 0.0000 0.5015 ( 522 PWs) bands (ev): -2.6154 1.8768 11.0933 11.0933 13.1344 13.1344 14.2070 15.5570 23.2524 k = 0.4680 0.8106 0.1672 ( 520 PWs) bands (ev): -0.4181 0.8028 5.5623 9.1155 10.6382 15.7328 18.2994 20.9143 21.9169 k = 0.3120 0.5404 0.2786 ( 510 PWs) bands (ev): -0.7628 3.6001 4.1419 7.4088 8.2393 15.1495 20.3729 21.3744 24.1608 k = 0.9360 0.0000-0.1672 ( 520 PWs) bands (ev): -0.4181 0.8028 5.5623 9.1155 10.6382 15.7328 18.2994 20.9143 21.9169 k = 0.7800-0.2702-0.0557 ( 510 PWs) bands (ev): 0.0083 1.4787 4.8444 6.2786 11.6700 16.0914 18.0714 21.7435 22.7600 k = 0.6240 0.0000 0.0557 ( 520 PWs) bands (ev): -1.2054 0.2918 9.2222 9.8545 11.2855 14.4878 16.6104 17.3226 22.3667 the Fermi energy is 13.4143 ev ! total energy = -25.40209206 Ry Harris-Foulkes estimate = -25.40209207 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00002475 atom 2 type 1 force = 0.00000000 0.00000000 0.00002475 Total force = 0.000035 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 497.35 0.00338292 0.00000000 0.00000000 497.64 0.00 0.00 0.00000000 0.00338292 0.00000000 0.00 497.64 0.00 0.00000000 0.00000000 0.00337690 0.00 0.00 496.76 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 0.534045845 0.000000000 0.747393861 -0.267023813 0.462497801 0.747393250 -0.267023813 -0.462497801 0.747393250 new unit-cell volume = 190.7989 (a.u.)^3 new positions in cryst coord As 0.250000276 0.250000276 0.250000276 As -0.250000276 -0.250000276 -0.250000276 new positions in cart coord (alat unit) As -0.000000445 0.000000000 0.560545709 As 0.000000445 0.000000000 -0.560545709 Ekin = 0.00000327 Ry T = 1021.4 K Etot = -24.75299601 CELL_PARAMETERS (alat) 0.534045845 0.000000000 0.747393861 -0.267023813 0.462497801 0.747393250 -0.267023813 -0.462497801 0.747393250 ATOMIC_POSITIONS (crystal) As 0.250000276 0.250000276 0.250000276 As -0.250000276 -0.250000276 -0.250000276 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672479), wk = 0.0625000 k( 2) = ( -0.1560416 -0.2702716 0.2787464), wk = 0.1250000 k( 3) = ( 0.3120828 0.5405431 -0.0557491), wk = 0.1250000 k( 4) = ( 0.1560413 0.2702716 0.0557494), wk = 0.1250000 k( 5) = ( -0.3120830 0.0000000 0.3902449), wk = 0.0625000 k( 6) = ( 0.1560413 0.8108147 0.0557494), wk = 0.1250000 k( 7) = ( -0.0000001 0.5405431 0.1672479), wk = 0.1250000 k( 8) = ( 0.6241657 0.0000000 -0.2787460), wk = 0.0625000 k( 9) = ( 0.4681242 -0.2702716 -0.1672475), wk = 0.1250000 k( 10) = ( 0.3120828 0.0000000 -0.0557491), wk = 0.0625000 k( 11) = ( 0.3120825 0.0000000 0.2787468), wk = 0.0625000 k( 12) = ( 0.1560411 -0.2702716 0.3902453), wk = 0.1250000 k( 13) = ( 0.6241654 0.5405431 0.0557498), wk = 0.1250000 k( 14) = ( 0.4681240 0.2702716 0.1672483), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5017438), wk = 0.0625000 k( 16) = ( 0.4681240 0.8108147 0.1672483), wk = 0.1250000 k( 17) = ( 0.3120825 0.5405431 0.2787468), wk = 0.1250000 k( 18) = ( 0.9362483 0.0000000 -0.1672472), wk = 0.0625000 k( 19) = ( 0.7802068 -0.2702716 -0.0557487), wk = 0.1250000 k( 20) = ( 0.6241654 0.0000000 0.0557498), wk = 0.0625000 extrapolated charge 9.99105, renormalised to 10.00000 total cpu time spent up to now is 40.26 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 3.0 total cpu time spent up to now is 41.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8443 8.1782 10.7762 10.7762 13.4960 17.1702 17.1702 18.1426 18.8956 k =-0.1560-0.2703 0.2787 ( 522 PWs) bands (ev): -3.3764 3.7766 8.4032 12.4975 12.5023 13.8191 15.6044 19.2089 19.9103 k = 0.3121 0.5405-0.0557 ( 520 PWs) bands (ev): -1.1956 0.3031 9.2385 9.8688 11.3026 14.5062 16.6332 17.3476 22.3924 k = 0.1560 0.2703 0.0557 ( 525 PWs) bands (ev): -4.1228 5.8719 9.4436 10.2745 12.4291 16.2896 17.4856 17.9066 18.7315 k =-0.3121 0.0000 0.3902 ( 519 PWs) bands (ev): -2.6536 4.4388 7.7162 8.1275 8.9366 15.8520 19.0328 19.9067 20.3460 k = 0.1560 0.8108 0.0557 ( 510 PWs) bands (ev): 0.0202 1.4911 4.8556 6.2920 11.6883 16.1113 18.0888 21.7697 22.7838 k = 0.0000 0.5405 0.1672 ( 521 PWs) bands (ev): -1.9366 2.2543 6.9691 8.4720 12.3532 14.7520 18.4710 19.3568 20.3253 k = 0.6242 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7518 3.6155 4.1531 7.4208 8.2551 15.1667 20.3965 21.3997 24.1896 k = 0.4681-0.2703-0.1672 ( 521 PWs) bands (ev): -1.9366 2.2543 6.9691 8.4720 12.3532 14.7520 18.4710 19.3568 20.3253 k = 0.3121 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1228 5.8719 9.4436 10.2745 12.4291 16.2896 17.4856 17.9066 18.7315 k = 0.3121 0.0000 0.2787 ( 522 PWs) bands (ev): -3.3764 3.7766 8.4032 12.4975 12.5023 13.8191 15.6044 19.2089 19.9103 k = 0.1560-0.2703 0.3902 ( 519 PWs) bands (ev): -2.6536 4.4388 7.7162 8.1275 8.9366 15.8520 19.0328 19.9067 20.3460 k = 0.6242 0.5405 0.0557 ( 510 PWs) bands (ev): 0.0202 1.4911 4.8556 6.2920 11.6883 16.1113 18.0888 21.7697 22.7838 k = 0.4681 0.2703 0.1672 ( 521 PWs) bands (ev): -1.9366 2.2543 6.9691 8.4720 12.3532 14.7520 18.4710 19.3568 20.3253 k = 0.0000 0.0000 0.5017 ( 522 PWs) bands (ev): -2.6057 1.8907 11.1078 11.1078 13.1504 13.1504 14.2273 15.5774 23.2782 k = 0.4681 0.8108 0.1672 ( 520 PWs) bands (ev): -0.4066 0.8158 5.5736 9.1287 10.6546 15.7512 18.3219 20.9363 21.9411 k = 0.3121 0.5405 0.2787 ( 510 PWs) bands (ev): -0.7518 3.6155 4.1531 7.4209 8.2551 15.1667 20.3965 21.3997 24.1896 k = 0.9362 0.0000-0.1672 ( 520 PWs) bands (ev): -0.4066 0.8158 5.5736 9.1287 10.6546 15.7512 18.3219 20.9363 21.9411 k = 0.7802-0.2703-0.0557 ( 510 PWs) bands (ev): 0.0202 1.4911 4.8556 6.2920 11.6883 16.1113 18.0888 21.7697 22.7838 k = 0.6242 0.0000 0.0557 ( 520 PWs) bands (ev): -1.1956 0.3031 9.2385 9.8688 11.3026 14.5062 16.6332 17.3476 22.3924 the Fermi energy is 13.4387 ev ! total energy = -25.40151314 Ry Harris-Foulkes estimate = -25.39461251 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000146 atom 2 type 1 force = 0.00000000 0.00000000 0.00000146 Total force = 0.000002 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.76 0.00340530 0.00000000 0.00000000 500.94 0.00 0.00 0.00000000 0.00340530 0.00000000 0.00 500.94 0.00 0.00000000 0.00000000 0.00340174 0.00 0.00 500.41 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 0.534108852 0.000000000 0.747428295 -0.267055312 0.462552361 0.747427682 -0.267055312 -0.462552361 0.747427682 new unit-cell volume = 190.8527 (a.u.)^3 new positions in cryst coord As 0.250000245 0.250000246 0.250000246 As -0.250000245 -0.250000246 -0.250000246 new positions in cart coord (alat unit) As -0.000000443 0.000000000 0.560571465 As 0.000000443 0.000000000 -0.560571465 Ekin = 0.00000109 Ry T = 964.6 K Etot = -24.75299979 CELL_PARAMETERS (alat) 0.534108852 0.000000000 0.747428295 -0.267055312 0.462552361 0.747427682 -0.267055312 -0.462552361 0.747427682 ATOMIC_POSITIONS (crystal) As 0.250000245 0.250000246 0.250000246 As -0.250000245 -0.250000246 -0.250000246 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672402), wk = 0.0625000 k( 2) = ( -0.1560232 -0.2702397 0.2787336), wk = 0.1250000 k( 3) = ( 0.3120460 0.5404794 -0.0557465), wk = 0.1250000 k( 4) = ( 0.1560229 0.2702397 0.0557469), wk = 0.1250000 k( 5) = ( -0.3120462 0.0000000 0.3902269), wk = 0.0625000 k( 6) = ( 0.1560229 0.8107190 0.0557469), wk = 0.1250000 k( 7) = ( -0.0000001 0.5404794 0.1672402), wk = 0.1250000 k( 8) = ( 0.6240920 0.0000000 -0.2787332), wk = 0.0625000 k( 9) = ( 0.4680690 -0.2702397 -0.1672398), wk = 0.1250000 k( 10) = ( 0.3120460 0.0000000 -0.0557465), wk = 0.0625000 k( 11) = ( 0.3120457 0.0000000 0.2787339), wk = 0.0625000 k( 12) = ( 0.1560227 -0.2702397 0.3902273), wk = 0.1250000 k( 13) = ( 0.6240918 0.5404794 0.0557472), wk = 0.1250000 k( 14) = ( 0.4680687 0.2702397 0.1672406), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5017206), wk = 0.0625000 k( 16) = ( 0.4680687 0.8107190 0.1672406), wk = 0.1250000 k( 17) = ( 0.3120457 0.5404794 0.2787339), wk = 0.1250000 k( 18) = ( 0.9361379 0.0000000 -0.1672395), wk = 0.0625000 k( 19) = ( 0.7801148 -0.2702397 -0.0557461), wk = 0.1250000 k( 20) = ( 0.6240918 0.0000000 0.0557472), wk = 0.0625000 extrapolated charge 10.00282, renormalised to 10.00000 total cpu time spent up to now is 41.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 2.2 total cpu time spent up to now is 41.97 secs k = 0.0000 0.0000 0.1672 band energies (ev): -4.8481 8.1728 10.7699 10.7699 13.4876 17.1624 17.1624 18.1336 18.8862 k =-0.1560-0.2702 0.2787 band energies (ev): -3.3805 3.7710 8.3978 12.4906 12.4959 13.8109 15.5954 19.2012 19.8994 k = 0.3120 0.5405-0.0557 band energies (ev): -1.2002 0.2983 9.2326 9.8623 11.2952 14.4994 16.6243 17.3401 22.3838 k = 0.1560 0.2702 0.0557 band energies (ev): -4.1269 5.8659 9.4373 10.2686 12.4222 16.2818 17.4766 17.8992 18.7230 k =-0.3120 0.0000 0.3902 band energies (ev): -2.6578 4.4338 7.7096 8.1211 8.9301 15.8422 19.0246 19.8975 20.3368 k = 0.1560 0.8107 0.0557 band energies (ev): 0.0156 1.4860 4.8494 6.2864 11.6817 16.1036 18.0785 21.7617 22.7743 k = 0.0000 0.5405 0.1672 band energies (ev): -1.9410 2.2491 6.9630 8.4657 12.3471 14.7450 18.4617 19.3472 20.3166 k = 0.6241 0.0000-0.2787 band energies (ev): -0.7563 3.6102 4.1473 7.4146 8.2489 15.1573 20.3891 21.3913 24.1816 k = 0.4681-0.2702-0.1672 band energies (ev): -1.9410 2.2491 6.9630 8.4657 12.3471 14.7450 18.4617 19.3472 20.3166 k = 0.3120 0.0000-0.0557 band energies (ev): -4.1269 5.8660 9.4373 10.2686 12.4222 16.2818 17.4766 17.8992 18.7230 k = 0.3120 0.0000 0.2787 band energies (ev): -3.3805 3.7710 8.3978 12.4906 12.4959 13.8109 15.5954 19.2012 19.8994 k = 0.1560-0.2702 0.3902 band energies (ev): -2.6578 4.4338 7.7096 8.1211 8.9301 15.8422 19.0246 19.8975 20.3368 k = 0.6241 0.5405 0.0557 band energies (ev): 0.0156 1.4860 4.8494 6.2864 11.6817 16.1036 18.0785 21.7617 22.7743 k = 0.4681 0.2702 0.1672 band energies (ev): -1.9410 2.2491 6.9630 8.4657 12.3471 14.7450 18.4617 19.3472 20.3166 k = 0.0000 0.0000 0.5017 band energies (ev): -2.6097 1.8863 11.1010 11.1010 13.1431 13.1431 14.2173 15.5673 23.2680 k = 0.4681 0.8107 0.1672 band energies (ev): -0.4109 0.8114 5.5673 9.1222 10.6467 15.7439 18.3121 20.9271 21.9320 k = 0.3120 0.5405 0.2787 band energies (ev): -0.7563 3.6102 4.1473 7.4146 8.2489 15.1573 20.3891 21.3913 24.1816 k = 0.9361 0.0000-0.1672 band energies (ev): -0.4109 0.8114 5.5673 9.1222 10.6467 15.7439 18.3121 20.9271 21.9320 k = 0.7801-0.2702-0.0557 band energies (ev): 0.0156 1.4860 4.8494 6.2864 11.6817 16.1036 18.0785 21.7617 22.7743 k = 0.6241 0.0000 0.0557 band energies (ev): -1.2002 0.2983 9.2326 9.8623 11.2952 14.4994 16.6243 17.3401 22.3838 the Fermi energy is 13.4303 ev total energy = -25.40169601 Ry Harris-Foulkes estimate = -25.40386970 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-09, avg # of iterations = 2.0 total cpu time spent up to now is 42.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8480 8.1725 10.7698 10.7698 13.4872 17.1625 17.1625 18.1337 18.8875 k =-0.1560-0.2702 0.2787 ( 522 PWs) bands (ev): -3.3804 3.7709 8.3981 12.4908 12.4957 13.8112 15.5955 19.2012 19.9005 k = 0.3120 0.5405-0.0557 ( 520 PWs) bands (ev): -1.2001 0.2983 9.2329 9.8625 11.2954 14.4995 16.6246 17.3402 22.3846 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1267 5.8657 9.4374 10.2686 12.4225 16.2817 17.4778 17.8992 18.7231 k =-0.3120 0.0000 0.3902 ( 519 PWs) bands (ev): -2.6576 4.4336 7.7100 8.1213 8.9303 15.8437 19.0246 19.8974 20.3364 k = 0.1560 0.8107 0.0557 ( 510 PWs) bands (ev): 0.0155 1.4859 4.8500 6.2868 11.6818 16.1035 18.0798 21.7615 22.7752 k = 0.0000 0.5405 0.1672 ( 521 PWs) bands (ev): -1.9409 2.2490 6.9634 8.4661 12.3471 14.7452 18.4625 19.3476 20.3166 k = 0.6241 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7564 3.6100 4.1480 7.4149 8.2491 15.1588 20.3888 21.3910 24.1809 k = 0.4681-0.2702-0.1672 ( 521 PWs) bands (ev): -1.9409 2.2490 6.9634 8.4661 12.3471 14.7452 18.4625 19.3476 20.3166 k = 0.3120 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1267 5.8657 9.4374 10.2686 12.4225 16.2817 17.4778 17.8992 18.7231 k = 0.3120 0.0000 0.2787 ( 522 PWs) bands (ev): -3.3804 3.7709 8.3981 12.4908 12.4957 13.8112 15.5955 19.2012 19.9005 k = 0.1560-0.2702 0.3902 ( 519 PWs) bands (ev): -2.6576 4.4336 7.7100 8.1213 8.9303 15.8437 19.0246 19.8974 20.3364 k = 0.6241 0.5405 0.0557 ( 510 PWs) bands (ev): 0.0155 1.4859 4.8500 6.2868 11.6818 16.1035 18.0798 21.7615 22.7752 k = 0.4681 0.2702 0.1672 ( 521 PWs) bands (ev): -1.9409 2.2490 6.9634 8.4661 12.3471 14.7452 18.4625 19.3476 20.3166 k = 0.0000 0.0000 0.5017 ( 522 PWs) bands (ev): -2.6096 1.8863 11.1010 11.1010 13.1432 13.1432 14.2177 15.5678 23.2686 k = 0.4681 0.8107 0.1672 ( 520 PWs) bands (ev): -0.4109 0.8113 5.5678 9.1224 10.6471 15.7438 18.3121 20.9277 21.9322 k = 0.3120 0.5405 0.2787 ( 510 PWs) bands (ev): -0.7564 3.6100 4.1480 7.4149 8.2491 15.1588 20.3888 21.3910 24.1809 k = 0.9361 0.0000-0.1672 ( 520 PWs) bands (ev): -0.4109 0.8113 5.5678 9.1224 10.6471 15.7438 18.3121 20.9277 21.9322 k = 0.7801-0.2702-0.0557 ( 510 PWs) bands (ev): 0.0155 1.4859 4.8500 6.2868 11.6818 16.1035 18.0798 21.7615 22.7752 k = 0.6241 0.0000 0.0557 ( 520 PWs) bands (ev): -1.2001 0.2983 9.2329 9.8625 11.2954 14.4995 16.6246 17.3402 22.3846 the Fermi energy is 13.4299 ev ! total energy = -25.40169605 Ry Harris-Foulkes estimate = -25.40169605 Ry estimated scf accuracy < 4.3E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000106 atom 2 type 1 force = 0.00000000 0.00000000 0.00000106 Total force = 0.000001 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.07 0.00339349 0.00000000 0.00000000 499.20 0.00 0.00 0.00000000 0.00339349 0.00000000 0.00 499.20 0.00 0.00000000 0.00000000 0.00339080 0.00 0.00 498.80 Entering Dynamics; it = 20 time = 0.13794 pico-seconds new lattice vectors (alat unit) : 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 new unit-cell volume = 190.8033 (a.u.)^3 new positions in cryst coord As 0.250000193 0.250000193 0.250000193 As -0.250000193 -0.250000193 -0.250000193 new positions in cart coord (alat unit) As -0.000000443 0.000000000 0.560487189 As 0.000000443 0.000000000 -0.560487189 Ekin = 0.00000012 Ry T = 913.9 K Etot = -24.75300076 CELL_PARAMETERS (alat) 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 ATOMIC_POSITIONS (crystal) As 0.250000193 0.250000193 0.250000193 As -0.250000193 -0.250000193 -0.250000193 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672653), wk = 0.0625000 k( 2) = ( -0.1560316 -0.2702543 0.2787754), wk = 0.1250000 k( 3) = ( 0.3120629 0.5405087 -0.0557549), wk = 0.1250000 k( 4) = ( 0.1560314 0.2702543 0.0557552), wk = 0.1250000 k( 5) = ( -0.3120631 0.0000000 0.3902855), wk = 0.0625000 k( 6) = ( 0.1560314 0.8107630 0.0557552), wk = 0.1250000 k( 7) = ( -0.0000001 0.5405087 0.1672653), wk = 0.1250000 k( 8) = ( 0.6241259 0.0000000 -0.2787750), wk = 0.0625000 k( 9) = ( 0.4680944 -0.2702543 -0.1672650), wk = 0.1250000 k( 10) = ( 0.3120629 0.0000000 -0.0557549), wk = 0.0625000 k( 11) = ( 0.3120626 0.0000000 0.2787758), wk = 0.0625000 k( 12) = ( 0.1560311 -0.2702543 0.3902859), wk = 0.1250000 k( 13) = ( 0.6241256 0.5405087 0.0557556), wk = 0.1250000 k( 14) = ( 0.4680941 0.2702543 0.1672657), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5017960), wk = 0.0625000 k( 16) = ( 0.4680941 0.8107630 0.1672657), wk = 0.1250000 k( 17) = ( 0.3120626 0.5405087 0.2787758), wk = 0.1250000 k( 18) = ( 0.9361887 0.0000000 -0.1672646), wk = 0.0625000 k( 19) = ( 0.7801571 -0.2702543 -0.0557545), wk = 0.1250000 k( 20) = ( 0.6241256 0.0000000 0.0557556), wk = 0.0625000 extrapolated charge 9.99741, renormalised to 10.00000 total cpu time spent up to now is 42.63 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 43.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8457 8.1788 10.7737 10.7737 13.4940 17.1682 17.1682 18.1396 18.8939 k =-0.1560-0.2703 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7747 8.4031 12.4953 12.5003 13.8163 15.6021 19.2087 19.9055 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1974 0.3015 9.2380 9.8664 11.3002 14.5048 16.6312 17.3481 22.3931 k = 0.1560 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1245 5.8701 9.4411 10.2739 12.4277 16.2892 17.4843 17.9056 18.7298 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6549 4.4387 7.7138 8.1245 8.9347 15.8485 19.0302 19.9035 20.3431 k = 0.1560 0.8108 0.0558 ( 510 PWs) bands (ev): 0.0190 1.4893 4.8531 6.2909 11.6871 16.1090 18.0845 21.7693 22.7826 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9383 2.2525 6.9672 8.4705 12.3530 14.7516 18.4685 19.3538 20.3231 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7533 3.6145 4.1513 7.4180 8.2537 15.1641 20.3957 21.3983 24.1894 k = 0.4681-0.2703-0.1673 ( 521 PWs) bands (ev): -1.9383 2.2525 6.9672 8.4705 12.3530 14.7516 18.4685 19.3538 20.3231 k = 0.3121 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1245 5.8701 9.4411 10.2739 12.4277 16.2892 17.4843 17.9056 18.7298 k = 0.3121 0.0000 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7747 8.4031 12.4953 12.5003 13.8163 15.6021 19.2087 19.9055 k = 0.1560-0.2703 0.3903 ( 519 PWs) bands (ev): -2.6549 4.4387 7.7138 8.1245 8.9347 15.8485 19.0302 19.9035 20.3431 k = 0.6241 0.5405 0.0558 ( 510 PWs) bands (ev): 0.0190 1.4893 4.8531 6.2909 11.6871 16.1090 18.0845 21.7693 22.7826 k = 0.4681 0.2703 0.1673 ( 521 PWs) bands (ev): -1.9383 2.2525 6.9672 8.4705 12.3530 14.7516 18.4685 19.3538 20.3231 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6066 1.8907 11.1048 11.1048 13.1475 13.1475 14.2230 15.5731 23.2763 k = 0.4681 0.8108 0.1673 ( 520 PWs) bands (ev): -0.4074 0.8152 5.5709 9.1259 10.6514 15.7487 18.3179 20.9340 21.9392 k = 0.3121 0.5405 0.2788 ( 510 PWs) bands (ev): -0.7533 3.6145 4.1513 7.4180 8.2537 15.1641 20.3957 21.3983 24.1894 k = 0.9362 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4074 0.8152 5.5709 9.1259 10.6514 15.7487 18.3179 20.9340 21.9392 k = 0.7802-0.2703-0.0558 ( 510 PWs) bands (ev): 0.0190 1.4893 4.8531 6.2909 11.6871 16.1090 18.0845 21.7693 22.7826 k = 0.6241 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1974 0.3015 9.2380 9.8664 11.3002 14.5048 16.6312 17.3481 22.3931 the Fermi energy is 13.4368 ev ! total energy = -25.40152848 Ry Harris-Foulkes estimate = -25.39953401 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000085 atom 2 type 1 force = 0.00000000 0.00000000 0.00000085 Total force = 0.000001 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.09 0.00339999 0.00000000 0.00000000 500.16 0.00 0.00 0.00000000 0.00339999 0.00000000 0.00 500.16 0.00 0.00000000 0.00000000 0.00339861 0.00 0.00 499.95 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.40152848 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 final unit-cell volume = 190.8033 (a.u.)^3 input alat = 7.0103 (a.u.) CELL_PARAMETERS (alat) 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 ATOMIC_POSITIONS (crystal) As 0.250000193 0.250000193 0.250000193 As -0.250000193 -0.250000193 -0.250000193 Writing output data file pwscf.save PWSCF : 43.56s CPU time, 50.21s wall time init_run : 0.22s CPU electrons : 37.45s CPU ( 21 calls, 1.783 s avg) update_pot : 1.75s CPU ( 20 calls, 0.088 s avg) forces : 0.83s CPU ( 21 calls, 0.039 s avg) stress : 2.16s CPU ( 21 calls, 0.103 s avg) Called by init_run: wfcinit : 0.11s CPU potinit : 0.03s CPU Called by electrons: c_bands : 31.81s CPU ( 93 calls, 0.342 s avg) sum_band : 5.23s CPU ( 93 calls, 0.056 s avg) v_of_rho : 0.21s CPU ( 104 calls, 0.002 s avg) mix_rho : 0.08s CPU ( 93 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.64s CPU ( 4580 calls, 0.000 s avg) cegterg : 31.29s CPU ( 1860 calls, 0.017 s avg) Called by *egterg: h_psi : 26.03s CPU ( 6486 calls, 0.004 s avg) g_psi : 0.63s CPU ( 4606 calls, 0.000 s avg) cdiaghg : 1.60s CPU ( 5866 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.39s CPU ( 6486 calls, 0.000 s avg) General routines calbec : 0.71s CPU ( 7326 calls, 0.000 s avg) cft3 : 0.18s CPU ( 447 calls, 0.000 s avg) cft3s : 26.03s CPU ( 108988 calls, 0.000 s avg) davcio : 0.06s CPU ( 6440 calls, 0.000 s avg) espresso-5.0.2/PW/examples/VCSexample/run_example0000755000700200004540000002027012053145630021000 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to relax a 2-atom cell of As" $ECHO "at 2 different pressures, 0 kbar and 500 kbar. At those pressures" $ECHO "As relax to different structures, sc and A7." $ECHO "Two strategies are used: Wentzcovitch damped dynamics and bfgs." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="As.pz-bhs.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # VCS-MD calculation cat > As.vcs00.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , disk_io = 'default' , verbosity = 'default' , tstress = .true. , tprnfor = .true. , nstep = 55 , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , iprint = 1 , max_seconds = 6000 , dt = 150 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , nspin = 1 , lda_plus_u = .false. , / &ELECTRONS electron_maxstep = 70 , conv_thr = 1.0d-7 , diagonalization = 'david' , / &IONS / &CELL cell_dynamics = 'damp-w' , press = 0.00 , wmass = 0.00700000 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the VCS-MD calculation for As at 0 kbar. \c" $PW_COMMAND < As.vcs00.in > As.vcs00.out $ECHO " done" # VCS-MD calculation cat > As.vcs500.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , disk_io = 'default' , verbosity = 'default' , tstress = .true. , tprnfor = .true. , nstep = 55 , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , iprint = 1 , max_seconds = 6000 , dt = 150 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , nspin = 1 , lda_plus_u = .false. , / &ELECTRONS electron_maxstep = 70 , conv_thr = 1.0d-7 , diagonalization = 'david' , / &IONS / &CELL cell_dynamics = 'damp-w' , press = 500.00 , wmass = 0.00700000 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the VCS-MD calculation for As at 500 kbar. \c" $PW_COMMAND < As.vcs500.in > As.vcs500.out $ECHO " done" # bfgs vc-relax calculation cat > As.bfgs00.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , / &ELECTRONS conv_thr = 1.0d-7 , / &IONS / &CELL cell_dynamics = 'bfgs' , press = 0.00 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the bfgs vc-relax calculation for As at 0 kbar. \c" $PW_COMMAND < As.bfgs00.in > As.bfgs00.out $ECHO " done" # bfgs vc-relax calculation cat > As.bfgs500.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , / &ELECTRONS conv_thr = 1.0d-7 , / &IONS / &CELL cell_dynamics = 'bfgs' , press = 500.00 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the bfgs vc-relax calculation for As at 500 kbar. \c" $PW_COMMAND < As.bfgs500.in > As.bfgs500.out $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/VCSexample/README0000644000700200004540000000251012053145630017410 0ustar marsamoscm This example shows how to use pw.x to optimize crystal structures at two pressures for As. Arsenic is well known to undergo a phase transition from A7 structure to imple cubic at about 30 GPa. (See da Silva CR, Wentzcovitch RM, COMPUTATIONAL MATERIALS SCIENCE 8 (3): 219-227 JUL 1997). 1) make a vc-relax calculation with external (target) pressure = 0 kbar, using Wentzcovitch dynamics (cell_dynamics = 'damp-w' in CELL namelist), (input=As.vcs00.in, output=As.vcs00.out). In this case, the angle between cell vectors at the end of the calculation is 58 degrees and the internal coordinate is 0.2723, typical of A7 structure. 2) make a vc-relax calculation with external (target) pressure = 500 kbar, also using Wentzcovitch dynamics. (input=As.vcs500.in, output=As.vcs500.out). In this case, the angle between cell vectors at the end of the calculation is 60 degrees and the internal coordinate is 0.25, typical of sc structure. Both calculations start from the same initial structure with an angle of 60 degrees between vectors and internal coordinate 0.290010 . PLEASE NOTE: the structure has "ibrav=-0", that is, it is read from cards "CELL_PARAMETERS". Only the lattice parametr "A" is used; the other cell parameters B, C, COSAB COSAC, COSBC are reported for convenience, but thay are neither read nor used espresso-5.0.2/PW/examples/example06/0000755000700200004540000000000012053440301016315 5ustar marsamoscmespresso-5.0.2/PW/examples/example06/reference/0000755000700200004540000000000012053440303020255 5ustar marsamoscmespresso-5.0.2/PW/examples/example06/reference/o2.relax.out0000644000700200004540000021677712053145630022471 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:11:57 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 36 npp = 36 ncplane = 1296 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 36 885 20005 24 437 7123 109 895 Generating pointlists ... new r_m : 0.1429 bravais-lattice index = 1 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 421.8750 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 12.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) nstep = 50 Noncollinear calculation without spin-orbit celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 55.84700 O ( 1.00) O2 6.00 55.84700 O ( 1.00) 2 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 O2 tau( 2) = ( 0.2000000 0.2000000 0.2000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0500 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 284.9658 ( 20005 G-vectors) FFT grid: ( 36, 36, 36) G cutoff = 142.4829 ( 7123 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.55 Mb ( 1790, 20) NL pseudopotentials 0.22 Mb ( 895, 16) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 20005) G-vector shells 0.00 Mb ( 239) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.19 Mb ( 1790, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.01 Mb ( 16, 2, 20) Arrays for rho mixing 5.70 Mb ( 46656, 8) Initial potential from superposition of free atoms starting charge 12.00000, renormalised to 12.00000 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.441447 magnetization : 1.720724 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.720724 90.000000 0.000000 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.435534 magnetization : 1.717767 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.717767 90.000000 0.000000 ============================================================================== Starting wfc are 16 atomic + 4 random wfc total cpu time spent up to now is 1.65 secs per-process dynamical memory: 33.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.446256 magnetization : 1.518266 0.000009 0.000009 magnetization/charge: 0.440555 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 1.518266 89.999661 0.000339 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.440353 magnetization : 1.515743 -0.000003 -0.000003 magnetization/charge: 0.440578 -0.000001 -0.000001 polar coord.: r, theta, phi [deg] : 1.515743 90.000105 -0.000105 ============================================================================== total cpu time spent up to now is 2.34 secs total energy = -63.26179953 Ry Harris-Foulkes estimate = -63.17438164 Ry estimated scf accuracy < 0.17749789 Ry total magnetization = 2.00 0.00 0.00 Bohr mag/cell absolute magnetization = 2.09 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.48E-03, avg # of iterations = 1.0 negative rho (up, down): 0.620E-04 0.397E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.462775 magnetization : 0.738243 0.000017 0.000017 magnetization/charge: 0.213194 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.738243 89.998682 0.001318 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.457113 magnetization : 0.737523 -0.000009 -0.000009 magnetization/charge: 0.213335 -0.000003 -0.000003 polar coord.: r, theta, phi [deg] : 0.737523 90.000676 -0.000676 ============================================================================== total cpu time spent up to now is 2.95 secs total energy = -63.41641544 Ry Harris-Foulkes estimate = -63.26300220 Ry estimated scf accuracy < 0.11287031 Ry total magnetization = 2.00 0.00 0.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.41E-04, avg # of iterations = 1.0 negative rho (up, down): 0.330E-04 0.278E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.456902 magnetization : 0.665855 0.000018 0.000018 magnetization/charge: 0.192616 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.665855 89.998490 0.001510 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.450557 magnetization : 0.665637 0.000008 0.000008 magnetization/charge: 0.192907 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.665637 89.999312 0.000688 ============================================================================== total cpu time spent up to now is 3.56 secs total energy = -63.42542505 Ry Harris-Foulkes estimate = -63.42523711 Ry estimated scf accuracy < 0.00335927 Ry total magnetization = 1.98 0.00 0.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.80E-05, avg # of iterations = 9.0 negative rho (up, down): 0.106E-04 0.194E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.455274 magnetization : 0.639825 0.000014 0.000014 magnetization/charge: 0.185173 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.639825 89.998704 0.001296 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449544 magnetization : 0.639356 0.000009 0.000009 magnetization/charge: 0.185345 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.639356 89.999202 0.000798 ============================================================================== total cpu time spent up to now is 4.23 secs total energy = -63.42608374 Ry Harris-Foulkes estimate = -63.42588015 Ry estimated scf accuracy < 0.00020034 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.67E-06, avg # of iterations = 15.0 negative rho (up, down): 0.158E-05 0.137E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.455352 magnetization : 0.635383 0.000014 0.000014 magnetization/charge: 0.183884 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.635383 89.998710 0.001290 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449362 magnetization : 0.635062 0.000009 0.000009 magnetization/charge: 0.184110 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.635062 89.999175 0.000825 ============================================================================== total cpu time spent up to now is 4.99 secs total energy = -63.42627237 Ry Harris-Foulkes estimate = -63.42612478 Ry estimated scf accuracy < 0.00005124 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.27E-07, avg # of iterations = 2.0 negative rho (up, down): 0.290E-07 0.924E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.454927 magnetization : 0.626883 0.000013 0.000013 magnetization/charge: 0.181446 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.626883 89.998790 0.001210 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449087 magnetization : 0.626504 0.000011 0.000011 magnetization/charge: 0.181644 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.626504 89.999004 0.000996 ============================================================================== total cpu time spent up to now is 5.61 secs total energy = -63.42645377 Ry Harris-Foulkes estimate = -63.42627464 Ry estimated scf accuracy < 0.00002906 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.42E-07, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.624E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.454871 magnetization : 0.628769 0.000013 0.000013 magnetization/charge: 0.181995 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.628769 89.998854 0.001146 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.448999 magnetization : 0.628400 0.000011 0.000011 magnetization/charge: 0.182198 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.628400 89.998991 0.001009 ============================================================================== total cpu time spent up to now is 6.28 secs total energy = -63.42646723 Ry Harris-Foulkes estimate = -63.42646490 Ry estimated scf accuracy < 0.00000152 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.26E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.455074 magnetization : 0.627743 -0.000001 -0.000001 magnetization/charge: 0.181687 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.627743 90.000049 -0.000049 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449274 magnetization : 0.627333 0.000016 0.000016 magnetization/charge: 0.181874 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.627333 89.998515 0.001485 ============================================================================== total cpu time spent up to now is 6.88 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -26.9504 -25.6424 -18.6067 -16.8086 -10.0791 -9.3248 -8.9658 -8.9658 -7.0546 -7.0546 -4.9072 -4.9072 -2.6804 -2.6804 1.9337 2.1978 2.2464 3.1239 9.6851 9.6851 the Fermi energy is -3.7938 ev ! total energy = -63.42646629 Ry Harris-Foulkes estimate = -63.42646810 Ry estimated scf accuracy < 0.00000078 Ry The total energy is the sum of the following terms: one-electron contribution = -57.22381755 Ry hartree contribution = 31.82036556 Ry xc contribution = -13.40059233 Ry ewald contribution = -24.61854905 Ry smearing contrib. (-TS) = -0.00387293 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.17165010 0.17164940 0.17164940 atom 2 type 2 force = -0.17165010 -0.17164940 -0.17164940 Total force = 0.420454 Total SCF correction = 0.002548 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -63.4264662924 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.027216627 0.027216516 0.027216516 O2 0.172783373 0.172783484 0.172783484 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 7.54 secs per-process dynamical memory: 50.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.000E+00 0.286E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.357987 magnetization : 0.585008 0.000005 0.000005 magnetization/charge: 0.174214 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.585008 89.999492 0.000508 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.349132 magnetization : 0.584533 0.000016 0.000016 magnetization/charge: 0.174533 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.584533 89.998432 0.001568 ============================================================================== total cpu time spent up to now is 8.38 secs total energy = -63.22114871 Ry Harris-Foulkes estimate = -63.23702336 Ry estimated scf accuracy < 0.09327087 Ry total magnetization = 1.93 0.00 0.00 Bohr mag/cell absolute magnetization = 1.96 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.77E-04, avg # of iterations = 1.0 negative rho (up, down): 0.729E-04 0.595E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.430951 magnetization : 0.602012 0.000011 0.000011 magnetization/charge: 0.175465 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.602012 89.998945 0.001055 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.421968 magnetization : 0.601221 0.000014 0.000014 magnetization/charge: 0.175695 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.601221 89.998672 0.001328 ============================================================================== total cpu time spent up to now is 8.99 secs total energy = -63.21081552 Ry Harris-Foulkes estimate = -63.22305125 Ry estimated scf accuracy < 0.04194080 Ry total magnetization = 1.94 0.00 0.00 Bohr mag/cell absolute magnetization = 1.97 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.50E-04, avg # of iterations = 2.0 negative rho (up, down): 0.227E-03 0.711E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.413620 magnetization : 0.598926 0.000006 0.000006 magnetization/charge: 0.175452 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.598926 89.999422 0.000578 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.404696 magnetization : 0.597937 0.000013 0.000013 magnetization/charge: 0.175621 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.597937 89.998738 0.001262 ============================================================================== total cpu time spent up to now is 9.63 secs total energy = -63.21839816 Ry Harris-Foulkes estimate = -63.21761413 Ry estimated scf accuracy < 0.00296716 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 1.98 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-05, avg # of iterations = 2.0 negative rho (up, down): 0.125E-03 0.571E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.427634 magnetization : 0.602262 0.000008 0.000008 magnetization/charge: 0.175708 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.602262 89.999280 0.000720 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.418665 magnetization : 0.601261 0.000014 0.000014 magnetization/charge: 0.175876 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.601261 89.998699 0.001301 ============================================================================== total cpu time spent up to now is 10.29 secs total energy = -63.21877607 Ry Harris-Foulkes estimate = -63.21939744 Ry estimated scf accuracy < 0.00139576 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 1.99 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.16E-05, avg # of iterations = 2.0 negative rho (up, down): 0.715E-04 0.460E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.423590 magnetization : 0.602169 0.000012 0.000012 magnetization/charge: 0.175888 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.602169 89.998882 0.001118 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.414597 magnetization : 0.601152 0.000011 0.000011 magnetization/charge: 0.176054 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.601152 89.998948 0.001052 ============================================================================== total cpu time spent up to now is 10.94 secs total energy = -63.21919140 Ry Harris-Foulkes estimate = -63.21907758 Ry estimated scf accuracy < 0.00005455 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 1.99 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.55E-07, avg # of iterations = 2.0 negative rho (up, down): 0.333E-04 0.333E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.424821 magnetization : 0.602493 0.000012 0.000012 magnetization/charge: 0.175919 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.602493 89.998900 0.001100 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.415838 magnetization : 0.601458 0.000014 0.000014 magnetization/charge: 0.176079 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.601458 89.998657 0.001343 ============================================================================== total cpu time spent up to now is 11.60 secs total energy = -63.21933645 Ry Harris-Foulkes estimate = -63.21921486 Ry estimated scf accuracy < 0.00002500 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.08E-07, avg # of iterations = 2.0 negative rho (up, down): 0.136E-04 0.248E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.425389 magnetization : 0.602762 0.000015 0.000015 magnetization/charge: 0.175969 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.602762 89.998550 0.001450 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.416420 magnetization : 0.601703 0.000017 0.000017 magnetization/charge: 0.176121 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.601703 89.998408 0.001592 ============================================================================== total cpu time spent up to now is 12.25 secs total energy = -63.21945471 Ry Harris-Foulkes estimate = -63.21933986 Ry estimated scf accuracy < 0.00000419 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.49E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.425861 magnetization : 0.602970 0.000016 0.000016 magnetization/charge: 0.176006 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.602970 89.998504 0.001496 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.416843 magnetization : 0.601909 0.000020 0.000020 magnetization/charge: 0.176159 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.601909 89.998061 0.001939 ============================================================================== total cpu time spent up to now is 12.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -36.0698 -35.0031 -15.8966 -14.1397 -13.2915 -13.2915 -11.4158 -11.4158 -11.4131 -10.4075 -2.1492 -2.1492 0.1329 0.1329 1.8481 2.1423 9.4718 9.4718 10.5740 10.9053 the Fermi energy is -1.0082 ev ! total energy = -63.21966505 Ry Harris-Foulkes estimate = -63.21945656 Ry estimated scf accuracy < 0.00000028 Ry The total energy is the sum of the following terms: one-electron contribution = -73.18661984 Ry hartree contribution = 39.23761751 Ry xc contribution = -14.06727038 Ry ewald contribution = -15.20000740 Ry smearing contrib. (-TS) = -0.00338493 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.96090217 -0.96090348 -0.96090348 atom 2 type 2 force = 0.96090217 0.96090348 0.96090348 Total force = 2.353722 Total SCF correction = 0.000929 number of scf cycles = 2 number of bfgs steps = 1 energy old = -63.4264662924 Ry energy new = -63.2196650452 Ry CASE: energy _new > energy _old new trust radius = 0.1675769171 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.009121757 0.009121720 0.009121720 O2 0.190878243 0.190878280 0.190878280 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 13.51 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.000E+00 0.774E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.526958 magnetization : 0.609116 0.000015 0.000015 magnetization/charge: 0.172703 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.609116 89.998581 0.001419 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.520222 magnetization : 0.608343 0.000017 0.000017 magnetization/charge: 0.172814 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.608343 89.998357 0.001643 ============================================================================== total cpu time spent up to now is 14.33 secs total energy = -63.47792625 Ry Harris-Foulkes estimate = -63.48916937 Ry estimated scf accuracy < 0.05607030 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 1.99 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.67E-04, avg # of iterations = 1.0 negative rho (up, down): 0.112E-05 0.158E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.474859 magnetization : 0.609128 0.000018 0.000018 magnetization/charge: 0.175296 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.609128 89.998328 0.001672 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.468223 magnetization : 0.608413 0.000014 0.000014 magnetization/charge: 0.175425 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.608413 89.998726 0.001274 ============================================================================== total cpu time spent up to now is 14.94 secs total energy = -63.47150425 Ry Harris-Foulkes estimate = -63.47938673 Ry estimated scf accuracy < 0.02371961 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 2.0 negative rho (up, down): 0.393E-04 0.335E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.473866 magnetization : 0.622663 0.000017 0.000017 magnetization/charge: 0.179242 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.622663 89.998433 0.001567 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.467253 magnetization : 0.622007 0.000021 0.000021 magnetization/charge: 0.179395 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.622007 89.998059 0.001941 ============================================================================== total cpu time spent up to now is 15.59 secs total energy = -63.47574727 Ry Harris-Foulkes estimate = -63.47510143 Ry estimated scf accuracy < 0.00198534 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.65E-05, avg # of iterations = 2.0 negative rho (up, down): 0.215E-04 0.271E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476222 magnetization : 0.626261 0.000022 0.000022 magnetization/charge: 0.180156 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.626261 89.997972 0.002028 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469608 magnetization : 0.625607 0.000018 0.000018 magnetization/charge: 0.180311 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.625607 89.998381 0.001619 ============================================================================== total cpu time spent up to now is 16.22 secs total energy = -63.47609036 Ry Harris-Foulkes estimate = -63.47590526 Ry estimated scf accuracy < 0.00005569 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.64E-07, avg # of iterations = 2.0 negative rho (up, down): 0.716E-05 0.203E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476551 magnetization : 0.631364 0.000003 0.000003 magnetization/charge: 0.181607 0.000001 0.000001 polar coord.: r, theta, phi [deg] : 0.631364 89.999772 0.000228 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469949 magnetization : 0.630707 0.000048 0.000048 magnetization/charge: 0.181763 0.000014 0.000014 polar coord.: r, theta, phi [deg] : 0.630707 89.995671 0.004329 ============================================================================== total cpu time spent up to now is 16.88 secs total energy = -63.47626236 Ry Harris-Foulkes estimate = -63.47610476 Ry estimated scf accuracy < 0.00001359 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.13E-07, avg # of iterations = 2.0 negative rho (up, down): 0.157E-05 0.146E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476286 magnetization : 0.631821 0.000021 0.000021 magnetization/charge: 0.181752 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631821 89.998127 0.001873 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469678 magnetization : 0.631178 0.000020 0.000020 magnetization/charge: 0.181912 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631178 89.998178 0.001822 ============================================================================== total cpu time spent up to now is 17.53 secs total energy = -63.47635367 Ry Harris-Foulkes estimate = -63.47626637 Ry estimated scf accuracy < 0.00000108 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.01E-09, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476065 magnetization : 0.632711 0.000014 0.000014 magnetization/charge: 0.182019 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.632711 89.998695 0.001305 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469447 magnetization : 0.632057 0.000026 0.000026 magnetization/charge: 0.182178 0.000007 0.000007 polar coord.: r, theta, phi [deg] : 0.632057 89.997674 0.002326 ============================================================================== total cpu time spent up to now is 18.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -29.2446 -28.0110 -17.7671 -15.9637 -10.5485 -9.9981 -9.9981 -9.7185 -8.0931 -8.0931 -4.2571 -4.2571 -1.9861 -1.9861 1.8789 2.1310 5.3163 6.2698 9.5649 9.5649 the Fermi energy is -3.1216 ev ! total energy = -63.47642784 Ry Harris-Foulkes estimate = -63.47635485 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -61.61153326 Ry hartree contribution = 33.87381538 Ry xc contribution = -13.56109242 Ry ewald contribution = -22.17413817 Ry smearing contrib. (-TS) = -0.00347937 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.05351510 0.05351511 0.05351511 atom 2 type 2 force = -0.05351510 -0.05351511 -0.05351511 Total force = 0.131085 Total SCF correction = 0.001070 number of scf cycles = 3 number of bfgs steps = 1 energy old = -63.4264662924 Ry energy new = -63.4764278416 Ry CASE: energy _new < energy _old new trust radius = 0.0759125776 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.013253895 0.013253886 0.013253886 O2 0.186746105 0.186746114 0.186746114 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 18.79 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.000E+00 0.129E-03 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.465672 magnetization : 0.630438 0.000015 0.000015 magnetization/charge: 0.181909 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.630438 89.998664 0.001336 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.458640 magnetization : 0.629736 0.000027 0.000027 magnetization/charge: 0.182076 0.000008 0.000008 polar coord.: r, theta, phi [deg] : 0.629736 89.997503 0.002497 ============================================================================== total cpu time spent up to now is 19.57 secs total energy = -63.47734261 Ry Harris-Foulkes estimate = -63.47762298 Ry estimated scf accuracy < 0.00195781 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.63E-05, avg # of iterations = 1.0 negative rho (up, down): 0.000E+00 0.315E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.476044 magnetization : 0.632534 0.000020 0.000020 magnetization/charge: 0.181969 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632534 89.998190 0.001810 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.469009 magnetization : 0.631802 0.000015 0.000015 magnetization/charge: 0.182127 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.631802 89.998649 0.001351 ============================================================================== total cpu time spent up to now is 20.18 secs total energy = -63.47724224 Ry Harris-Foulkes estimate = -63.47738358 Ry estimated scf accuracy < 0.00088987 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.42E-06, avg # of iterations = 2.0 negative rho (up, down): 0.121E-05 0.806E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.474318 magnetization : 0.631755 0.000021 0.000021 magnetization/charge: 0.181836 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631755 89.998091 0.001909 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.467264 magnetization : 0.631020 0.000013 0.000013 magnetization/charge: 0.181994 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.631020 89.998827 0.001173 ============================================================================== total cpu time spent up to now is 20.83 secs total energy = -63.47739162 Ry Harris-Foulkes estimate = -63.47738111 Ry estimated scf accuracy < 0.00006977 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.81E-07, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.502E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.475442 magnetization : 0.631938 0.000021 0.000021 magnetization/charge: 0.181829 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631938 89.998112 0.001888 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.468409 magnetization : 0.631192 0.000013 0.000013 magnetization/charge: 0.181983 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.631192 89.998783 0.001217 ============================================================================== total cpu time spent up to now is 21.47 secs total energy = -63.47741922 Ry Harris-Foulkes estimate = -63.47740339 Ry estimated scf accuracy < 0.00000558 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.65E-08, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.315E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.474778 magnetization : 0.631572 0.000020 0.000020 magnetization/charge: 0.181759 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631572 89.998214 0.001786 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.467744 magnetization : 0.630829 0.000016 0.000016 magnetization/charge: 0.181913 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.630829 89.998503 0.001497 ============================================================================== total cpu time spent up to now is 22.12 secs total energy = -63.47744028 Ry Harris-Foulkes estimate = -63.47742115 Ry estimated scf accuracy < 0.00000195 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.63E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.475136 magnetization : 0.631478 0.000020 0.000020 magnetization/charge: 0.181713 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631478 89.998230 0.001770 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.468094 magnetization : 0.630736 0.000018 0.000018 magnetization/charge: 0.181868 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.630736 89.998353 0.001647 ============================================================================== total cpu time spent up to now is 22.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -30.5228 -29.3222 -17.3466 -15.5440 -10.7503 -10.5793 -10.5793 -9.8782 -8.6745 -8.6745 -3.8806 -3.8806 -1.5883 -1.5883 1.9652 2.2542 6.9583 7.8752 9.6078 9.6078 the Fermi energy is -2.7345 ev ! total energy = -63.47745740 Ry Harris-Foulkes estimate = -63.47744106 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -63.89588152 Ry hartree contribution = 34.94404931 Ry xc contribution = -13.65434197 Ry ewald contribution = -20.86798242 Ry smearing contrib. (-TS) = -0.00330080 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.05016312 -0.05016312 -0.05016312 atom 2 type 2 force = 0.05016312 0.05016312 0.05016312 Total force = 0.122874 Total SCF correction = 0.000318 number of scf cycles = 4 number of bfgs steps = 2 energy old = -63.4764278416 Ry energy new = -63.4774574012 Ry CASE: energy _new < energy _old new trust radius = 0.0367291379 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.011254623 0.011254601 0.011254601 O2 0.188745377 0.188745399 0.188745399 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 23.37 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.481128 magnetization : 0.632285 0.000020 0.000020 magnetization/charge: 0.181632 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632285 89.998232 0.001768 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.474299 magnetization : 0.631568 0.000018 0.000018 magnetization/charge: 0.181783 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.631568 89.998343 0.001657 ============================================================================== total cpu time spent up to now is 24.11 secs total energy = -63.47934439 Ry Harris-Foulkes estimate = -63.47941610 Ry estimated scf accuracy < 0.00049144 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.10E-06, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.475994 magnetization : 0.631524 0.000019 0.000019 magnetization/charge: 0.181682 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631524 89.998235 0.001765 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.469169 magnetization : 0.630808 0.000019 0.000019 magnetization/charge: 0.181833 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.630808 89.998310 0.001690 ============================================================================== total cpu time spent up to now is 24.72 secs total energy = -63.47929343 Ry Harris-Foulkes estimate = -63.47935533 Ry estimated scf accuracy < 0.00021952 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.83E-06, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.178E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.476592 magnetization : 0.632157 0.000019 0.000019 magnetization/charge: 0.181832 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632157 89.998242 0.001758 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.469770 magnetization : 0.631439 0.000019 0.000019 magnetization/charge: 0.181983 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.631439 89.998288 0.001712 ============================================================================== total cpu time spent up to now is 25.36 secs total energy = -63.47933669 Ry Harris-Foulkes estimate = -63.47932751 Ry estimated scf accuracy < 0.00001743 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.45E-07, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.476233 magnetization : 0.632334 0.000022 0.000022 magnetization/charge: 0.181902 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632334 89.997986 0.002014 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.469394 magnetization : 0.631629 0.000010 0.000010 magnetization/charge: 0.182057 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631629 89.999074 0.000926 ============================================================================== total cpu time spent up to now is 25.96 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -29.8768 -28.6562 -17.5451 -15.7435 -10.6446 -10.2813 -10.2813 -9.7964 -8.3744 -8.3744 -4.0635 -4.0635 -1.7784 -1.7784 1.9709 2.2567 6.1627 7.1090 9.6254 9.6254 the Fermi energy is -2.9210 ev ! total energy = -63.47936981 Ry Harris-Foulkes estimate = -63.47933932 Ry estimated scf accuracy < 0.00000068 Ry The total energy is the sum of the following terms: one-electron contribution = -62.76461806 Ry hartree contribution = 34.41329186 Ry xc contribution = -13.60731958 Ry ewald contribution = -21.51736401 Ry smearing contrib. (-TS) = -0.00336003 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00622024 0.00622024 0.00622024 atom 2 type 2 force = -0.00622024 -0.00622024 -0.00622024 Total force = 0.015236 Total SCF correction = 0.002909 SCF correction compared to forces is too large, reduce conv_thr number of scf cycles = 5 number of bfgs steps = 3 energy old = -63.4774574012 Ry energy new = -63.4793698103 Ry CASE: energy _new < energy _old new trust radius = 0.0040519750 bohr new conv_thr = 0.0000006220 Ry ATOMIC_POSITIONS (alat) O1 0.011475184 0.011475163 0.011475163 O2 0.188524816 0.188524837 0.188524837 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 26.63 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.91E-08, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0115 0.0115 0.0115 charge : 3.475736 magnetization : 0.632280 0.000022 0.000022 magnetization/charge: 0.181912 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632280 89.997999 0.002001 ============================================================================== ============================================================================== atom number 2 relative position : 0.1885 0.1885 0.1885 charge : 3.468886 magnetization : 0.631566 0.000010 0.000010 magnetization/charge: 0.182066 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631566 89.999061 0.000939 ============================================================================== total cpu time spent up to now is 27.61 secs total energy = -63.47940020 Ry Harris-Foulkes estimate = -63.47940163 Ry estimated scf accuracy < 0.00000809 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.74E-08, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0115 0.0115 0.0115 charge : 3.476383 magnetization : 0.632439 0.000022 0.000022 magnetization/charge: 0.181924 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632439 89.998019 0.001981 ============================================================================== ============================================================================== atom number 2 relative position : 0.1885 0.1885 0.1885 charge : 3.469536 magnetization : 0.631723 0.000011 0.000011 magnetization/charge: 0.182077 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631723 89.999046 0.000954 ============================================================================== total cpu time spent up to now is 28.22 secs total energy = -63.47939937 Ry Harris-Foulkes estimate = -63.47940041 Ry estimated scf accuracy < 0.00000338 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.81E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0115 0.0115 0.0115 charge : 3.476325 magnetization : 0.632421 0.000022 0.000022 magnetization/charge: 0.181922 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632421 89.998029 0.001971 ============================================================================== ============================================================================== atom number 2 relative position : 0.1885 0.1885 0.1885 charge : 3.469469 magnetization : 0.631709 0.000011 0.000011 magnetization/charge: 0.182077 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631709 89.999034 0.000966 ============================================================================== total cpu time spent up to now is 28.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -29.9477 -28.7328 -17.5254 -15.7209 -10.6588 -10.3145 -10.3145 -9.8040 -8.4088 -8.4088 -4.0453 -4.0453 -1.7593 -1.7593 2.0067 2.2907 6.2474 7.1896 9.6257 9.6257 the Fermi energy is -2.9023 ev ! total energy = -63.47940026 Ry Harris-Foulkes estimate = -63.47939993 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -62.88911461 Ry hartree contribution = 34.47324504 Ry xc contribution = -13.61280932 Ry ewald contribution = -21.44736844 Ry smearing contrib. (-TS) = -0.00335293 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00004116 0.00004116 0.00004116 atom 2 type 2 force = -0.00004116 -0.00004116 -0.00004116 Total force = 0.000101 Total SCF correction = 0.000338 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 6 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -63.4794002598 Ry ATOMIC_POSITIONS (alat) O1 0.011475184 0.011475163 0.011475163 O2 0.188524816 0.188524837 0.188524837 Writing output data file o2.save PWSCF : 29.14s CPU time, 30.93s wall time init_run : 1.56s CPU electrons : 23.85s CPU ( 6 calls, 3.975 s avg) update_pot : 1.21s CPU ( 5 calls, 0.241 s avg) forces : 1.30s CPU ( 6 calls, 0.217 s avg) Called by init_run: wfcinit : 0.05s CPU potinit : 0.23s CPU Called by electrons: c_bands : 5.84s CPU ( 37 calls, 0.158 s avg) sum_band : 6.59s CPU ( 37 calls, 0.178 s avg) v_of_rho : 7.57s CPU ( 42 calls, 0.180 s avg) newd : 2.67s CPU ( 42 calls, 0.064 s avg) mix_rho : 0.93s CPU ( 37 calls, 0.025 s avg) Called by c_bands: init_us_2 : 0.06s CPU ( 75 calls, 0.001 s avg) cegterg : 5.75s CPU ( 37 calls, 0.155 s avg) Called by *egterg: h_psi : 4.25s CPU ( 137 calls, 0.031 s avg) s_psi : 0.08s CPU ( 137 calls, 0.001 s avg) g_psi : 0.13s CPU ( 99 calls, 0.001 s avg) cdiaghg : 0.26s CPU ( 130 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.09s CPU ( 137 calls, 0.001 s avg) General routines calbec : 0.16s CPU ( 180 calls, 0.001 s avg) cft3s : 9.02s CPU ( 11582 calls, 0.001 s avg) interpolate : 1.24s CPU ( 316 calls, 0.004 s avg) davcio : 0.00s CPU ( 36 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/cu.scf.out0000644000700200004540000010230112053145630022171 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:10:19 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 59 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0156250 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0156250 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0156250 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0078125 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0078125 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0312500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0312500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0312500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0156250 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0078125 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0312500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0312500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0078125 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0312500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0156250 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0039062 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0156250 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.0312500 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0156250 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0156250 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.0312500 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0156250 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0078125 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0039062 k( 30) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0039062 k( 31) = ( 0.3750000 -0.1250000 -0.1250000), wk = 0.0156250 k( 32) = ( 0.5000000 -0.2500000 -0.2500000), wk = 0.0156250 k( 33) = ( -0.3750000 0.6250000 0.6250000), wk = 0.0156250 k( 34) = ( -0.2500000 0.5000000 0.5000000), wk = 0.0156250 k( 35) = ( -0.1250000 0.3750000 0.3750000), wk = 0.0156250 k( 36) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0078125 k( 37) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0039062 k( 38) = ( 0.6250000 -0.1250000 -0.1250000), wk = 0.0156250 k( 39) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0156250 k( 40) = ( -0.1250000 0.6250000 0.6250000), wk = 0.0156250 k( 41) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0078125 k( 42) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0039062 k( 43) = ( -0.1250000 0.8750000 0.8750000), wk = 0.0156250 k( 44) = ( 0.0000000 0.7500000 0.7500000), wk = 0.0078125 k( 45) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 46) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0156250 k( 47) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0156250 k( 48) = ( -0.3750000 0.8750000 0.6250000), wk = 0.0312500 k( 49) = ( 0.8750000 0.6250000 -0.3750000), wk = 0.0312500 k( 50) = ( -0.2500000 0.7500000 0.5000000), wk = 0.0312500 k( 51) = ( -0.2500000 1.0000000 0.7500000), wk = 0.0156250 k( 52) = ( 1.0000000 0.7500000 -0.2500000), wk = 0.0156250 k( 53) = ( -0.1250000 0.8750000 0.6250000), wk = 0.0312500 k( 54) = ( 0.8750000 0.6250000 -0.1250000), wk = 0.0312500 k( 55) = ( 0.0000000 0.7500000 0.5000000), wk = 0.0156250 k( 56) = ( 0.7500000 0.5000000 0.0000000), wk = 0.0156250 k( 57) = ( -1.0000000 0.0000000 -0.2500000), wk = 0.0078125 k( 58) = ( 0.0000000 -0.2500000 -1.0000000), wk = 0.0078125 k( 59) = ( -1.0000000 0.0000000 -0.5000000), wk = 0.0078125 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 338, 20) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.41 Mb ( 338, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.01 Mb ( 13, 2, 20) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.993053 magnetization : 4.996526 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 4.996526 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 8 random wfc total cpu time spent up to now is 1.42 secs per-process dynamical memory: 14.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.534975 magnetization : 2.371907 0.000000 0.000000 magnetization/charge: 0.248759 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.371907 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.34 secs total energy = -87.34572418 Ry Harris-Foulkes estimate = -87.48173415 Ry estimated scf accuracy < 0.86901444 Ry total magnetization = 1.18 0.00 0.00 Bohr mag/cell absolute magnetization = 1.35 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.90E-03, avg # of iterations = 2.2 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.751793 magnetization : 1.566642 0.000000 0.000000 magnetization/charge: 0.160652 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.566642 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 7.49 secs total energy = -87.71580467 Ry Harris-Foulkes estimate = -87.94173032 Ry estimated scf accuracy < 0.77410779 Ry total magnetization = 0.15 0.00 0.00 Bohr mag/cell absolute magnetization = 0.22 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-03, avg # of iterations = 1.1 negative rho (up, down): 0.000E+00 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.858987 magnetization : -0.072052 0.000000 0.000000 magnetization/charge: -0.007308 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.072052 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 9.33 secs total energy = -87.82273457 Ry Harris-Foulkes estimate = -87.79539852 Ry estimated scf accuracy < 0.06710278 Ry total magnetization = 0.22 0.00 0.00 Bohr mag/cell absolute magnetization = 0.31 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.10E-04, avg # of iterations = 2.0 negative rho (up, down): 0.334E-05 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.811401 magnetization : -0.112193 0.000000 0.000000 magnetization/charge: -0.011435 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.112193 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 11.45 secs total energy = -87.83585878 Ry Harris-Foulkes estimate = -87.84568066 Ry estimated scf accuracy < 0.01986698 Ry total magnetization = -0.03 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-04, avg # of iterations = 1.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.812740 magnetization : 0.014861 0.000000 0.000000 magnetization/charge: 0.001514 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.014861 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 13.31 secs total energy = -87.84026454 Ry Harris-Foulkes estimate = -87.84018616 Ry estimated scf accuracy < 0.00018702 Ry total magnetization = -0.03 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-06, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813299 magnetization : 0.006938 0.000000 0.000000 magnetization/charge: 0.000707 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.006938 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 15.47 secs total energy = -87.84038532 Ry Harris-Foulkes estimate = -87.84037686 Ry estimated scf accuracy < 0.00000928 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.44E-08, avg # of iterations = 1.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813850 magnetization : -0.000412 0.000000 0.000000 magnetization/charge: -0.000042 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000412 90.000000 180.000000 ============================================================================== total cpu time spent up to now is 17.34 secs total energy = -87.84038822 Ry Harris-Foulkes estimate = -87.84038779 Ry estimated scf accuracy < 0.00000166 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-08, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813855 magnetization : -0.000103 0.000000 0.000000 magnetization/charge: -0.000010 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000103 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 19.38 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9899 4.9909 11.2119 11.2119 11.2119 11.2122 11.2122 11.2122 12.1015 12.1015 12.1018 12.1018 38.8589 38.8601 41.0132 41.0132 41.0132 41.0142 41.0142 41.0142 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5706 5.5717 11.0970 11.0973 11.3137 11.3137 11.3140 11.3140 12.0711 12.0711 12.0714 12.0714 34.2721 34.2731 39.2711 39.2723 39.7092 39.7092 39.7101 39.7101 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1555 7.1565 10.9621 10.9625 11.3820 11.3820 11.3823 11.3823 12.1937 12.1937 12.1940 12.1940 27.5296 27.5305 38.3745 38.3745 38.3754 38.3754 38.4648 38.4661 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7622 8.7629 11.2521 11.2521 11.2524 11.2524 11.7761 11.7768 12.5424 12.5424 12.5426 12.5426 21.8073 21.8081 37.4521 37.4534 37.7379 37.7379 37.7387 37.7387 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1193 9.1199 11.1773 11.1773 11.1776 11.1776 12.7172 12.7172 12.7175 12.7175 13.4635 13.4646 18.6469 18.6476 37.0195 37.0208 37.6118 37.6118 37.6127 37.6127 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7617 5.7627 10.9830 10.9833 11.4051 11.4051 11.4054 11.4054 11.9006 11.9009 12.1874 12.1877 36.7465 36.7465 36.7475 36.7475 36.7674 36.7685 38.6737 38.6747 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0143 7.0153 10.7592 10.7596 11.4423 11.4426 11.5633 11.5636 11.9840 11.9843 12.3196 12.3199 30.0795 30.0805 34.8366 34.8375 36.4459 36.4470 38.9421 38.9431 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7312 8.7321 10.8358 10.8363 11.1912 11.1915 11.4997 11.5000 12.6050 12.6053 12.8155 12.8159 23.9451 23.9460 34.0870 34.0879 34.9382 34.9393 36.6381 36.6390 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3901 9.3907 10.9732 10.9736 11.3805 11.3808 11.6282 11.6287 12.7293 12.7296 14.6434 14.6442 19.3254 19.3261 32.8144 32.8154 34.6299 34.6309 36.4062 36.4072 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3178 9.3184 11.0467 11.0471 11.3797 11.3800 11.4897 11.4903 12.4960 12.4963 14.0604 14.0610 20.5869 20.5877 31.5898 31.5908 36.5326 36.5335 37.3108 37.3119 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2145 8.2154 10.8164 10.8168 11.2661 11.2665 11.5179 11.5183 12.0425 12.0428 12.8330 12.8334 25.8884 25.8893 31.4959 31.4969 39.3191 39.3202 39.7098 39.7107 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4953 6.4963 10.9085 10.9089 11.4022 11.4025 11.4844 11.4847 11.8805 11.8809 12.2899 12.2903 32.0426 32.0435 32.7831 32.7841 41.5259 41.5271 42.4821 43.1470 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7947 7.7957 10.4446 10.4450 11.6422 11.6427 11.9304 11.9304 11.9307 11.9307 12.3966 12.3969 32.3403 32.3403 32.3412 32.3412 33.7605 33.7616 34.5459 34.5470 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0258 9.0266 10.2437 10.2441 11.4595 11.4599 12.0304 12.0307 12.6335 12.6338 12.9942 12.9946 26.9796 26.9805 30.3547 30.3556 31.0989 31.0999 35.0382 35.0392 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7741 9.7746 10.3372 10.3377 11.2737 11.2741 11.9055 11.9058 12.7610 12.7613 15.5345 15.5352 21.6028 21.6037 27.6763 27.6772 31.3024 31.3033 35.1339 35.1349 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0262 10.0267 10.5347 10.5352 11.0775 11.0779 11.8007 11.8010 12.5181 12.5184 16.7780 16.7788 20.0957 20.0965 26.0436 26.0445 32.9722 32.9731 35.8425 35.8435 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6303 9.6310 10.6867 10.6872 10.9041 10.9045 11.7536 11.7539 12.1034 12.1037 14.2122 14.2127 24.5985 24.5994 26.0264 26.0273 35.8998 35.9007 37.3879 37.3890 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2115 9.2121 9.9259 9.9263 12.5651 12.5651 12.5653 12.5653 12.6088 12.6091 13.2897 13.2906 26.4724 26.4733 29.3001 29.3001 29.3010 29.3010 33.3091 33.3101 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4573 9.4579 9.8804 9.8809 12.2120 12.2124 12.4812 12.4815 12.8063 12.8065 15.9154 15.9163 23.7244 23.7252 25.2531 25.2540 29.0133 29.0143 34.1901 34.1910 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8690 9.8695 10.1175 10.1180 11.5170 11.5175 12.2489 12.2492 12.6607 12.6610 19.0080 19.0089 20.5166 20.5175 22.9156 22.9164 30.3249 30.3258 34.7843 34.7852 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2659 9.2664 9.7169 9.7174 12.6975 12.6978 12.8721 12.8721 12.8723 12.8723 16.0642 16.0652 22.1120 22.1127 28.1798 28.1798 28.1807 28.1807 32.9248 32.9258 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3848 8.3857 10.5343 10.5347 11.2125 11.2129 11.9396 11.9399 11.9924 11.9927 12.8708 12.8711 28.3801 28.3810 29.1683 29.1693 34.7034 34.7044 39.7252 39.7262 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6573 9.6580 10.6135 10.6140 10.9350 10.9353 11.8099 11.8102 12.4702 12.4705 14.3853 14.3859 22.9175 22.9183 28.5926 28.5935 31.6517 31.6526 39.6660 39.6670 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8975 9.8980 10.5965 10.5970 11.1684 11.1689 11.6977 11.6981 12.6585 12.6588 16.6932 16.6941 19.1456 19.1463 29.3157 29.3167 29.7922 29.7931 39.3670 39.3680 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6203 9.6210 10.1239 10.1243 11.4255 11.4259 12.4031 12.4034 12.5612 12.5615 14.7941 14.7948 25.8719 25.8729 26.6518 26.6528 27.2677 27.2685 37.8998 37.9009 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 10.0009 10.0014 10.2738 10.2742 11.1333 11.1337 12.1349 12.1352 12.7444 12.7447 18.0200 18.0208 21.2274 21.2283 24.7958 24.7967 27.1031 27.1040 39.0192 39.0202 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2798 10.2803 10.4647 10.4651 10.7104 10.7108 12.0136 12.0140 12.5653 12.5656 17.1293 17.1300 21.9670 21.9679 24.2086 24.2095 28.8756 28.8765 40.2133 40.2143 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.6008 9.6013 9.9541 9.9545 11.8938 11.8942 12.4337 12.4340 12.8723 12.8726 17.7247 17.7257 22.3938 22.3946 24.9307 24.9316 26.0249 26.0258 37.2961 37.2971 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0366 10.0372 10.6870 10.6870 10.6874 10.6874 12.0681 12.0684 12.8727 12.8730 20.9532 20.9532 20.9541 20.9541 23.1352 23.1361 24.0560 24.0568 44.6548 44.6548 k = 0.2500 0.0000 0.0000 ( 165 PWs) bands (ev): 5.7617 5.7627 10.9830 10.9833 11.4051 11.4051 11.4054 11.4054 11.9006 11.9009 12.1874 12.1877 36.7465 36.7465 36.7475 36.7475 36.7674 36.7685 38.6737 38.6747 k = 0.3750-0.1250-0.1250 ( 160 PWs) bands (ev): 7.0143 7.0153 10.7592 10.7596 11.4423 11.4426 11.5633 11.5636 11.9840 11.9843 12.3196 12.3199 30.0795 30.0805 34.8366 34.8375 36.4459 36.4470 38.9421 38.9431 k = 0.5000-0.2500-0.2500 ( 158 PWs) bands (ev): 8.7312 8.7321 10.8358 10.8363 11.1912 11.1915 11.4997 11.5000 12.6050 12.6053 12.8155 12.8159 23.9451 23.9460 34.0870 34.0879 34.9382 34.9393 36.6381 36.6390 k =-0.3750 0.6250 0.6250 ( 163 PWs) bands (ev): 9.3901 9.3907 10.9732 10.9736 11.3805 11.3808 11.6282 11.6287 12.7293 12.7296 14.6434 14.6442 19.3254 19.3261 32.8144 32.8154 34.6299 34.6309 36.4062 36.4072 k =-0.2500 0.5000 0.5000 ( 161 PWs) bands (ev): 9.3178 9.3184 11.0467 11.0471 11.3797 11.3800 11.4897 11.4903 12.4960 12.4963 14.0604 14.0610 20.5869 20.5877 31.5898 31.5908 36.5326 36.5335 37.3108 37.3119 k =-0.1250 0.3750 0.3750 ( 159 PWs) bands (ev): 8.2145 8.2154 10.8164 10.8168 11.2661 11.2665 11.5179 11.5183 12.0425 12.0428 12.8330 12.8334 25.8884 25.8893 31.4959 31.4969 39.3191 39.3202 39.7098 39.7107 k = 0.0000 0.2500 0.2500 ( 160 PWs) bands (ev): 6.4953 6.4963 10.9085 10.9089 11.4022 11.4025 11.4844 11.4847 11.8805 11.8809 12.2899 12.2903 32.0426 32.0435 32.7831 32.7841 41.5259 41.5271 42.4821 43.1469 k = 0.5000 0.0000 0.0000 ( 165 PWs) bands (ev): 7.7947 7.7957 10.4446 10.4450 11.6422 11.6427 11.9304 11.9304 11.9307 11.9307 12.3966 12.3969 32.3403 32.3403 32.3412 32.3412 33.7605 33.7616 34.5459 34.5470 k = 0.6250-0.1250-0.1250 ( 162 PWs) bands (ev): 9.0258 9.0266 10.2437 10.2441 11.4595 11.4599 12.0304 12.0307 12.6335 12.6338 12.9942 12.9946 26.9796 26.9805 30.3547 30.3556 31.0989 31.0999 35.0382 35.0392 k =-0.2500 0.7500 0.7500 ( 158 PWs) bands (ev): 9.7741 9.7746 10.3372 10.3377 11.2737 11.2741 11.9055 11.9058 12.7610 12.7613 15.5345 15.5352 21.6028 21.6037 27.6763 27.6772 31.3024 31.3033 35.1339 35.1349 k =-0.1250 0.6250 0.6250 ( 162 PWs) bands (ev): 10.0262 10.0267 10.5347 10.5352 11.0775 11.0779 11.8007 11.8010 12.5181 12.5184 16.7780 16.7788 20.0957 20.0965 26.0436 26.0445 32.9722 32.9731 35.8425 35.8435 k = 0.0000 0.5000 0.5000 ( 164 PWs) bands (ev): 9.6303 9.6310 10.6867 10.6872 10.9041 10.9045 11.7536 11.7539 12.1034 12.1037 14.2122 14.2127 24.5985 24.5994 26.0264 26.0273 35.8998 35.9007 37.3879 37.3890 k = 0.7500 0.0000 0.0000 ( 162 PWs) bands (ev): 9.2115 9.2121 9.9259 9.9263 12.5651 12.5651 12.5653 12.5653 12.6088 12.6091 13.2897 13.2906 26.4724 26.4733 29.3001 29.3001 29.3010 29.3010 33.3091 33.3101 k =-0.1250 0.8750 0.8750 ( 164 PWs) bands (ev): 9.4573 9.4579 9.8804 9.8809 12.2120 12.2124 12.4812 12.4815 12.8063 12.8065 15.9154 15.9163 23.7244 23.7252 25.2531 25.2540 29.0133 29.0143 34.1901 34.1910 k = 0.0000 0.7500 0.7500 ( 168 PWs) bands (ev): 9.8690 9.8695 10.1175 10.1180 11.5170 11.5175 12.2489 12.2492 12.6607 12.6610 19.0080 19.0089 20.5166 20.5175 22.9156 22.9164 30.3249 30.3258 34.7843 34.7852 k =-1.0000 0.0000 0.0000 ( 150 PWs) bands (ev): 9.2659 9.2664 9.7169 9.7174 12.6975 12.6978 12.8721 12.8721 12.8723 12.8723 16.0642 16.0652 22.1120 22.1127 28.1798 28.1798 28.1807 28.1807 32.9248 32.9258 k = 0.5000 0.0000-0.2500 ( 156 PWs) bands (ev): 8.3848 8.3857 10.5343 10.5347 11.2125 11.2129 11.9396 11.9399 11.9924 11.9927 12.8708 12.8711 28.3801 28.3810 29.1683 29.1693 34.7034 34.7044 39.7252 39.7262 k = 0.0000-0.2500 0.5000 ( 156 PWs) bands (ev): 8.3848 8.3857 10.5343 10.5347 11.2125 11.2129 11.9396 11.9399 11.9924 11.9927 12.8708 12.8711 28.3801 28.3810 29.1683 29.1693 34.7034 34.7044 39.7252 39.7262 k =-0.3750 0.8750 0.6250 ( 161 PWs) bands (ev): 9.6573 9.6580 10.6135 10.6140 10.9350 10.9353 11.8099 11.8102 12.4702 12.4705 14.3853 14.3859 22.9175 22.9183 28.5926 28.5935 31.6517 31.6526 39.6660 39.6670 k = 0.8750 0.6250-0.3750 ( 161 PWs) bands (ev): 9.6573 9.6580 10.6135 10.6140 10.9350 10.9353 11.8099 11.8102 12.4702 12.4705 14.3853 14.3859 22.9175 22.9183 28.5926 28.5935 31.6517 31.6526 39.6660 39.6670 k =-0.2500 0.7500 0.5000 ( 164 PWs) bands (ev): 9.8975 9.8980 10.5965 10.5970 11.1684 11.1688 11.6977 11.6981 12.6585 12.6588 16.6932 16.6941 19.1456 19.1463 29.3157 29.3167 29.7922 29.7931 39.3670 39.3680 k =-0.2500 1.0000 0.7500 ( 166 PWs) bands (ev): 9.6203 9.6210 10.1239 10.1243 11.4255 11.4259 12.4031 12.4034 12.5612 12.5615 14.7941 14.7948 25.8719 25.8729 26.6518 26.6528 27.2677 27.2685 37.8998 37.9009 k = 1.0000 0.7500-0.2500 ( 166 PWs) bands (ev): 9.6203 9.6210 10.1239 10.1243 11.4255 11.4259 12.4031 12.4034 12.5612 12.5615 14.7941 14.7948 25.8719 25.8729 26.6518 26.6528 27.2677 27.2685 37.8998 37.9009 k =-0.1250 0.8750 0.6250 ( 161 PWs) bands (ev): 10.0009 10.0014 10.2738 10.2742 11.1333 11.1337 12.1349 12.1352 12.7444 12.7447 18.0200 18.0208 21.2274 21.2283 24.7958 24.7967 27.1031 27.1040 39.0192 39.0202 k = 0.8750 0.6250-0.1250 ( 161 PWs) bands (ev): 10.0009 10.0014 10.2738 10.2742 11.1333 11.1337 12.1349 12.1352 12.7444 12.7447 18.0200 18.0208 21.2274 21.2283 24.7958 24.7967 27.1031 27.1040 39.0192 39.0202 k = 0.0000 0.7500 0.5000 ( 158 PWs) bands (ev): 10.2798 10.2803 10.4647 10.4651 10.7104 10.7108 12.0136 12.0140 12.5653 12.5656 17.1293 17.1300 21.9670 21.9679 24.2086 24.2095 28.8756 28.8765 40.2133 40.2143 k = 0.7500 0.5000 0.0000 ( 158 PWs) bands (ev): 10.2798 10.2803 10.4647 10.4651 10.7104 10.7108 12.0136 12.0140 12.5653 12.5656 17.1293 17.1300 21.9670 21.9679 24.2086 24.2095 28.8756 28.8765 40.2133 40.2143 k =-1.0000 0.0000-0.2500 ( 164 PWs) bands (ev): 9.6008 9.6013 9.9541 9.9545 11.8938 11.8942 12.4337 12.4340 12.8723 12.8726 17.7247 17.7257 22.3938 22.3946 24.9307 24.9316 26.0249 26.0258 37.2961 37.2971 k = 0.0000-0.2500-1.0000 ( 164 PWs) bands (ev): 9.6008 9.6013 9.9541 9.9545 11.8938 11.8942 12.4337 12.4340 12.8723 12.8726 17.7247 17.7257 22.3938 22.3946 24.9307 24.9316 26.0249 26.0258 37.2961 37.2971 k =-1.0000 0.0000-0.5000 ( 156 PWs) bands (ev): 10.0366 10.0372 10.6870 10.6870 10.6874 10.6874 12.0681 12.0684 12.8727 12.8730 20.9532 20.9532 20.9541 20.9541 23.1352 23.1361 24.0560 24.0568 44.6548 44.6548 the Fermi energy is 14.4913 ev ! total energy = -87.84038898 Ry Harris-Foulkes estimate = -87.84038896 Ry estimated scf accuracy < 3.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24914238 Ry hartree contribution = 18.89883846 Ry xc contribution = -14.05780514 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00013861 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file cu.save PWSCF : 19.60s CPU time, 20.30s wall time init_run : 1.37s CPU electrons : 17.96s CPU Called by init_run: wfcinit : 0.60s CPU potinit : 0.03s CPU Called by electrons: c_bands : 14.35s CPU ( 8 calls, 1.794 s avg) sum_band : 3.00s CPU ( 8 calls, 0.375 s avg) v_of_rho : 0.11s CPU ( 9 calls, 0.012 s avg) newd : 0.28s CPU ( 9 calls, 0.032 s avg) mix_rho : 0.08s CPU ( 8 calls, 0.010 s avg) Called by c_bands: init_us_2 : 0.10s CPU ( 1003 calls, 0.000 s avg) cegterg : 14.10s CPU ( 472 calls, 0.030 s avg) Called by *egterg: h_psi : 10.08s CPU ( 1554 calls, 0.006 s avg) s_psi : 0.18s CPU ( 1554 calls, 0.000 s avg) g_psi : 0.26s CPU ( 1023 calls, 0.000 s avg) cdiaghg : 2.41s CPU ( 1495 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 1554 calls, 0.000 s avg) General routines calbec : 0.28s CPU ( 2026 calls, 0.000 s avg) cft3s : 8.80s CPU ( 111330 calls, 0.000 s avg) interpolate : 0.10s CPU ( 68 calls, 0.001 s avg) davcio : 0.01s CPU ( 1475 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/fe.angl.out0000644000700200004540000006164512053145630022341 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 9:35 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 1.03 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.95 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 2.54 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.21 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 4.07 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 4.79 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 5.59 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 6.19 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 6.85 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412400 magnetization : 3.062430 0.000000 0.000000 magnetization/charge: 0.477579 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.062430 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 7.54 secs total energy = -55.69968321 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.77E-09, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412612 magnetization : 3.063216 0.000000 0.000000 magnetization/charge: 0.477686 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063216 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 8.19 secs total energy = -55.69968367 Ry Harris-Foulkes estimate = -55.69968335 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.14E-10, avg # of iterations = 3.6 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412621 magnetization : 3.063235 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063235 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 9.06 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6774 11.6774 11.9042 13.4681 13.4681 14.6641 14.6641 14.9256 16.5280 16.5281 38.7457 38.7457 39.4535 39.4535 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1627 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6212 12.6638 13.8659 14.4963 14.5192 15.5613 15.7135 16.9736 33.8662 35.0496 35.4791 36.6426 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4085 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5753 13.2445 13.6127 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4095 12.7227 13.1739 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5655 9.5729 11.6859 11.7777 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5119 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2750 9.2750 11.4415 11.4416 14.0747 14.4154 14.4155 17.3223 17.7665 17.7665 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2539 13.5301 14.2181 14.4049 15.7704 16.2903 16.6104 33.9647 35.1499 36.7273 37.6011 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1626 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6211 12.6638 13.8660 14.4963 14.5192 15.5613 15.7135 16.9736 33.8661 35.0496 35.4791 36.6426 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4086 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5754 13.2445 13.6126 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4094 12.7227 13.1740 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5729 11.6859 11.7776 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5120 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2538 13.5301 14.2181 14.4049 15.7704 16.2902 16.6105 33.9647 35.1499 36.7272 37.6011 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9222 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3637 28.6266 30.1620 32.6051 33.8030 the Fermi energy is 14.6622 ev ! total energy = -55.69968434 Ry Harris-Foulkes estimate = -55.69968370 Ry estimated scf accuracy < 7.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92935697 Ry hartree contribution = 6.13358532 Ry xc contribution = -26.12190369 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388912 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 11 iterations Writing output data file fe.save PWSCF : 9.19s CPU time, 9.52s wall time init_run : 0.91s CPU electrons : 8.03s CPU Called by init_run: wfcinit : 0.17s CPU potinit : 0.02s CPU Called by electrons: c_bands : 5.75s CPU ( 11 calls, 0.523 s avg) sum_band : 1.70s CPU ( 11 calls, 0.154 s avg) v_of_rho : 0.10s CPU ( 12 calls, 0.009 s avg) newd : 0.29s CPU ( 12 calls, 0.024 s avg) mix_rho : 0.07s CPU ( 11 calls, 0.006 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 506 calls, 0.000 s avg) cegterg : 5.53s CPU ( 242 calls, 0.023 s avg) Called by *egterg: h_psi : 3.99s CPU ( 871 calls, 0.005 s avg) s_psi : 0.13s CPU ( 871 calls, 0.000 s avg) g_psi : 0.10s CPU ( 607 calls, 0.000 s avg) cdiaghg : 0.86s CPU ( 849 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 871 calls, 0.000 s avg) General routines calbec : 0.12s CPU ( 1113 calls, 0.000 s avg) cft3s : 3.71s CPU ( 47026 calls, 0.000 s avg) interpolate : 0.08s CPU ( 92 calls, 0.001 s avg) davcio : 0.00s CPU ( 748 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/fe.scf.out0000644000700200004540000005653412053145630022174 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 8:44 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 0.97 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.90 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.49 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.15 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.01 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.74 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.52 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 6.12 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 6.78 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412400 magnetization : 3.062430 0.000000 0.000000 magnetization/charge: 0.477579 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.062430 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 7.46 secs total energy = -55.69968321 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.77E-09, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412612 magnetization : 3.063216 0.000000 0.000000 magnetization/charge: 0.477686 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063216 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.09 secs total energy = -55.69968367 Ry Harris-Foulkes estimate = -55.69968335 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.14E-10, avg # of iterations = 3.6 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412621 magnetization : 3.063235 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063235 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.95 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6774 11.6774 11.9042 13.4681 13.4681 14.6641 14.6641 14.9256 16.5280 16.5281 38.7457 38.7457 39.4535 39.4535 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1627 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6212 12.6638 13.8659 14.4963 14.5192 15.5613 15.7135 16.9736 33.8662 35.0496 35.4791 36.6426 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4085 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5753 13.2445 13.6127 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4095 12.7227 13.1739 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5655 9.5729 11.6859 11.7777 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5119 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2750 9.2750 11.4415 11.4416 14.0747 14.4154 14.4155 17.3223 17.7665 17.7665 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2539 13.5301 14.2181 14.4049 15.7704 16.2903 16.6104 33.9647 35.1499 36.7273 37.6011 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1626 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6211 12.6638 13.8660 14.4963 14.5192 15.5613 15.7135 16.9736 33.8661 35.0496 35.4791 36.6426 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4086 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5754 13.2445 13.6126 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4094 12.7227 13.1740 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5729 11.6859 11.7776 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5120 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2538 13.5301 14.2181 14.4049 15.7704 16.2902 16.6105 33.9647 35.1499 36.7272 37.6011 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9222 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3637 28.6266 30.1620 32.6051 33.8030 the Fermi energy is 14.6622 ev ! total energy = -55.69968434 Ry Harris-Foulkes estimate = -55.69968370 Ry estimated scf accuracy < 7.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92935697 Ry hartree contribution = 6.13358532 Ry xc contribution = -26.12190369 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388912 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell convergence has been achieved in 11 iterations Writing output data file fe.save PWSCF : 9.09s CPU time, 9.73s wall time init_run : 0.91s CPU electrons : 7.97s CPU Called by init_run: wfcinit : 0.17s CPU potinit : 0.02s CPU Called by electrons: c_bands : 5.69s CPU ( 11 calls, 0.517 s avg) sum_band : 1.69s CPU ( 11 calls, 0.154 s avg) v_of_rho : 0.10s CPU ( 12 calls, 0.008 s avg) newd : 0.29s CPU ( 12 calls, 0.024 s avg) mix_rho : 0.07s CPU ( 11 calls, 0.006 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 506 calls, 0.000 s avg) cegterg : 5.48s CPU ( 242 calls, 0.023 s avg) Called by *egterg: h_psi : 4.01s CPU ( 871 calls, 0.005 s avg) s_psi : 0.10s CPU ( 871 calls, 0.000 s avg) g_psi : 0.08s CPU ( 607 calls, 0.000 s avg) cdiaghg : 0.86s CPU ( 849 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 871 calls, 0.000 s avg) General routines calbec : 0.13s CPU ( 1113 calls, 0.000 s avg) cft3s : 3.69s CPU ( 47026 calls, 0.000 s avg) interpolate : 0.09s CPU ( 92 calls, 0.001 s avg) davcio : 0.00s CPU ( 748 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/fe.band.out0000644000700200004540000003174212053145630022317 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:54:40 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0238095 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0238095 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0238095 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0238095 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0238095 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0238095 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0238095 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0238095 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0238095 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0119048 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0119048 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0119048 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0119048 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0119048 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0119048 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0119048 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0119048 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0119048 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 328, 16) NL pseudopotentials 0.05 Mb ( 164, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 328, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 The potential is recalculated from file : fe.save/charge-density.dat Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 0.56 secs per-process dynamical memory: 7.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-10, avg # of iterations = 25.4 total cpu time spent up to now is 3.99 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.0000 0.0000 0.1000 band energies (ev): 5.6602 6.4330 11.7301 11.7301 11.7949 13.3923 13.5454 14.7243 14.7243 14.8071 16.4310 16.6247 38.6083 39.2626 39.6021 39.6021 k = 0.0000 0.0000 0.2000 band energies (ev): 6.3036 7.0832 11.7408 11.7408 11.9805 13.0723 13.6680 14.7087 14.7087 15.0153 16.0266 16.7720 36.7280 37.5581 38.8514 38.8514 k = 0.0000 0.0000 0.3000 band energies (ev): 7.2917 8.0975 11.8007 11.8008 12.2726 12.5742 13.8672 14.7379 14.7379 15.3439 15.4030 16.9803 35.0348 36.0466 37.0956 37.0956 k = 0.0000 0.0000 0.4000 band energies (ev): 8.4528 9.3487 11.9503 11.9547 11.9547 12.6461 14.2042 14.6327 14.8704 14.8704 15.7655 17.2410 33.6942 34.8196 34.8196 34.8893 k = 0.0000 0.0000 0.5000 band energies (ev): 9.4491 10.5968 11.2675 12.2382 12.2382 13.0673 13.8033 14.9150 15.1545 15.1545 16.2430 17.6649 32.4507 32.4507 32.7002 33.8748 k = 0.0000 0.0000 0.6000 band energies (ev): 9.9021 10.5972 11.4731 12.6640 12.6640 13.0026 13.4960 15.6143 15.6143 16.3273 16.7313 18.5592 30.1682 30.1682 31.5541 31.5541 k = 0.0000 0.0000 0.7000 band energies (ev): 9.8286 10.0054 11.7507 12.3058 13.2094 13.2094 13.8893 16.2375 16.2375 17.1814 18.4379 20.1749 28.1105 28.1105 29.4064 29.4064 k = 0.0000 0.0000 0.8000 band energies (ev): 9.5311 9.5450 11.6225 11.7698 13.7986 13.7986 14.2058 16.9533 16.9533 17.5451 20.9600 22.3494 26.4056 26.4056 27.5640 27.5640 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2540 9.2598 11.4110 11.4335 14.2865 14.2865 14.4113 17.5911 17.5911 17.7818 23.4739 24.5843 25.2367 25.2367 26.2379 26.2379 k = 0.0000 0.0000 1.0000 band energies (ev): 9.1545 9.1545 11.3190 11.3191 14.4822 14.4822 14.4822 17.8639 17.8639 17.8639 24.8114 24.8114 24.8114 25.7333 25.7333 25.7333 k = 0.0000 0.0000 0.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.0000 0.1000 0.1000 band energies (ev): 5.8775 6.6526 11.6056 11.7188 11.9804 13.3798 13.5132 14.5797 14.6935 15.0110 16.4186 16.5842 37.6143 38.4547 39.1854 39.5875 k = 0.0000 0.2000 0.2000 band energies (ev): 7.0756 7.8896 11.2861 11.6486 12.6666 13.2221 13.5515 14.1866 14.4460 15.7751 16.2583 16.6346 33.3778 34.6114 37.3445 38.0461 k = 0.0000 0.3000 0.3000 band energies (ev): 8.4475 9.5456 10.9091 11.9262 13.2784 13.5985 13.6206 13.7290 14.1830 16.3720 16.7301 16.8299 28.7065 30.2415 35.2436 35.9136 k = 0.0000 0.4000 0.4000 band energies (ev): 8.9394 10.6171 10.6916 13.2987 13.3787 13.6559 13.6954 14.4418 14.7945 16.5518 16.8368 17.8073 24.5234 26.4015 33.7640 34.3764 k = 0.0000 0.5000 0.5000 band energies (ev): 8.9470 10.5084 10.9319 13.2493 13.4555 13.7287 14.7913 14.9239 15.6592 16.5746 16.8853 18.2206 22.4227 24.6178 33.2384 33.8247 k = 0.0000 0.6000 0.6000 band energies (ev): 8.9394 10.6171 10.6916 13.2987 13.3787 13.6559 13.6954 14.4418 14.7945 16.5518 16.8368 17.8073 24.5234 26.4015 33.7640 34.3764 k = 0.0000 0.7000 0.7000 band energies (ev): 8.4475 9.5456 10.9091 11.9262 13.2784 13.5985 13.6206 13.7290 14.1830 16.3720 16.7301 16.8299 28.7065 30.2415 35.2436 35.9136 k = 0.0000 0.8000 0.8000 band energies (ev): 7.0756 7.8896 11.2861 11.6486 12.6666 13.2221 13.5515 14.1866 14.4460 15.7751 16.2583 16.6346 33.3778 34.6114 37.3445 38.0461 k = 0.0000 0.9000 0.9000 band energies (ev): 5.8775 6.6526 11.6056 11.7188 11.9804 13.3798 13.5132 14.5797 14.6935 15.0110 16.4186 16.5842 37.6143 38.4547 39.1854 39.5875 k = 0.0000 1.0000 1.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.0000 0.0000 0.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.1000 0.1000 0.1000 band energies (ev): 6.0909 6.8690 11.5880 11.5881 12.1717 13.4320 13.4320 14.5431 14.5431 15.2165 16.4859 16.4859 37.4580 37.4580 38.3294 38.3294 k = 0.2000 0.2000 0.2000 band energies (ev): 7.8190 8.6657 11.1532 11.1533 13.4255 13.4255 13.4647 13.9488 13.9488 16.5034 16.5034 16.5699 33.3007 33.3007 34.4831 34.4831 k = 0.3000 0.3000 0.3000 band energies (ev): 9.8521 10.6938 10.6938 11.0280 13.3028 13.3028 13.5679 13.5680 15.6667 16.6972 16.6972 18.6042 29.3738 29.3738 30.7749 30.7749 k = 0.4000 0.4000 0.4000 band energies (ev): 10.5408 10.5409 10.9578 12.8247 12.9945 12.9945 13.7144 13.7144 16.8757 16.8757 19.1006 21.4172 26.0966 26.0966 27.6929 27.6966 k = 0.5000 0.5000 0.5000 band energies (ev): 10.7358 10.7358 10.7358 13.0632 13.0632 13.0632 13.7714 13.7714 16.9399 16.9400 23.5806 23.5806 23.5806 25.3544 25.3544 25.3544 Writing output data file fe.save PWSCF : 4.07s CPU time, 4.17s wall time init_run : 0.52s CPU electrons : 3.42s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 3.42s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 3.27s CPU ( 49 calls, 0.067 s avg) Called by *egterg: h_psi : 1.77s CPU ( 789 calls, 0.002 s avg) s_psi : 0.07s CPU ( 789 calls, 0.000 s avg) g_psi : 0.06s CPU ( 712 calls, 0.000 s avg) cdiaghg : 0.86s CPU ( 740 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.08s CPU ( 789 calls, 0.000 s avg) General routines calbec : 0.06s CPU ( 789 calls, 0.000 s avg) cft3 : 0.01s CPU ( 15 calls, 0.000 s avg) cft3s : 1.09s CPU ( 27456 calls, 0.000 s avg) interpolate : 0.00s CPU ( 4 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example06/reference/cu.cg.out0000644000700200004540000010405112053145630022013 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:10:42 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 59 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0156250 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0156250 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0156250 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0078125 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0078125 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0312500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0312500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0312500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0156250 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0078125 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0312500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0312500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0078125 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0312500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0156250 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0039062 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0156250 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.0312500 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0156250 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0156250 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.0312500 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0156250 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0078125 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0039062 k( 30) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0039062 k( 31) = ( 0.3750000 -0.1250000 -0.1250000), wk = 0.0156250 k( 32) = ( 0.5000000 -0.2500000 -0.2500000), wk = 0.0156250 k( 33) = ( -0.3750000 0.6250000 0.6250000), wk = 0.0156250 k( 34) = ( -0.2500000 0.5000000 0.5000000), wk = 0.0156250 k( 35) = ( -0.1250000 0.3750000 0.3750000), wk = 0.0156250 k( 36) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0078125 k( 37) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0039062 k( 38) = ( 0.6250000 -0.1250000 -0.1250000), wk = 0.0156250 k( 39) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0156250 k( 40) = ( -0.1250000 0.6250000 0.6250000), wk = 0.0156250 k( 41) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0078125 k( 42) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0039062 k( 43) = ( -0.1250000 0.8750000 0.8750000), wk = 0.0156250 k( 44) = ( 0.0000000 0.7500000 0.7500000), wk = 0.0078125 k( 45) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 46) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0156250 k( 47) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0156250 k( 48) = ( -0.3750000 0.8750000 0.6250000), wk = 0.0312500 k( 49) = ( 0.8750000 0.6250000 -0.3750000), wk = 0.0312500 k( 50) = ( -0.2500000 0.7500000 0.5000000), wk = 0.0312500 k( 51) = ( -0.2500000 1.0000000 0.7500000), wk = 0.0156250 k( 52) = ( 1.0000000 0.7500000 -0.2500000), wk = 0.0156250 k( 53) = ( -0.1250000 0.8750000 0.6250000), wk = 0.0312500 k( 54) = ( 0.8750000 0.6250000 -0.1250000), wk = 0.0312500 k( 55) = ( 0.0000000 0.7500000 0.5000000), wk = 0.0156250 k( 56) = ( 0.7500000 0.5000000 0.0000000), wk = 0.0156250 k( 57) = ( -1.0000000 0.0000000 -0.2500000), wk = 0.0078125 k( 58) = ( 0.0000000 -0.2500000 -1.0000000), wk = 0.0078125 k( 59) = ( -1.0000000 0.0000000 -0.5000000), wk = 0.0078125 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 338, 20) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.01 Mb ( 20, 20) Each matrix 0.01 Mb ( 13, 2, 20) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.993053 magnetization : 4.996526 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 4.996526 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 8 random wfc total cpu time spent up to now is 1.41 secs per-process dynamical memory: 14.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 5.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.542384 magnetization : 2.366295 0.000000 0.000000 magnetization/charge: 0.247977 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.366295 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.67 secs total energy = -87.34485445 Ry Harris-Foulkes estimate = -87.47068783 Ry estimated scf accuracy < 0.85800813 Ry total magnetization = 1.18 0.00 0.00 Bohr mag/cell absolute magnetization = 1.33 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 7.80E-03, avg # of iterations = 3.3 negative rho (up, down): 0.000E+00 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.756650 magnetization : 1.558800 0.000000 0.000000 magnetization/charge: 0.159768 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.558800 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.17 secs total energy = -87.71853690 Ry Harris-Foulkes estimate = -87.93344505 Ry estimated scf accuracy < 0.74810492 Ry total magnetization = 0.15 0.00 0.00 Bohr mag/cell absolute magnetization = 0.22 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 6.80E-03, avg # of iterations = 3.0 negative rho (up, down): 0.000E+00 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.851601 magnetization : -0.056325 0.000000 0.000000 magnetization/charge: -0.005717 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.056325 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 10.52 secs total energy = -87.82074505 Ry Harris-Foulkes estimate = -87.79459400 Ry estimated scf accuracy < 0.06651541 Ry total magnetization = 0.22 0.00 0.00 Bohr mag/cell absolute magnetization = 0.31 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 6.05E-04, avg # of iterations = 3.4 negative rho (up, down): 0.234E-05 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.801370 magnetization : -0.130199 0.000000 0.000000 magnetization/charge: -0.013284 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.130199 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 13.14 secs total energy = -87.83375792 Ry Harris-Foulkes estimate = -87.84636875 Ry estimated scf accuracy < 0.02270823 Ry total magnetization = -0.02 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 2.06E-04, avg # of iterations = 3.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.811522 magnetization : 0.011723 0.000000 0.000000 magnetization/charge: 0.001195 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.011723 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 15.53 secs total energy = -87.84011411 Ry Harris-Foulkes estimate = -87.84037213 Ry estimated scf accuracy < 0.00117760 Ry total magnetization = -0.03 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.70 CG style diagonalization c_bands: 1 eigenvalues not converged ethr = 1.07E-05, avg # of iterations = 3.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.814629 magnetization : 0.010018 0.000000 0.000000 magnetization/charge: 0.001021 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.010018 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 18.22 secs total energy = -87.84036482 Ry Harris-Foulkes estimate = -87.84038918 Ry estimated scf accuracy < 0.00006198 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 5.63E-07, avg # of iterations = 3.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813623 magnetization : -0.000848 0.000000 0.000000 magnetization/charge: -0.000086 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000848 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 20.85 secs total energy = -87.84038575 Ry Harris-Foulkes estimate = -87.84038794 Ry estimated scf accuracy < 0.00000740 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 6.73E-08, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813907 magnetization : 0.000050 0.000000 0.000000 magnetization/charge: 0.000005 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000050 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 23.30 secs total energy = -87.84038875 Ry Harris-Foulkes estimate = -87.84038924 Ry estimated scf accuracy < 0.00000099 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 8.97E-09, avg # of iterations = 3.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813845 magnetization : 0.000028 0.000000 0.000000 magnetization/charge: 0.000003 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000028 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 25.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9903 4.9906 11.2121 11.2121 11.2121 11.2123 11.2123 11.2123 12.1017 12.1017 12.1019 12.1019 38.8594 38.8598 41.0136 41.0137 41.0138 41.0139 41.0139 41.0140 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5710 5.5713 11.0972 11.0974 11.3139 11.3139 11.3141 11.3141 12.0713 12.0713 12.0715 12.0715 34.2726 34.2728 39.2716 39.2719 39.7096 39.7096 39.7098 39.7098 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1559 7.1562 10.9623 10.9625 11.3822 11.3822 11.3824 11.3824 12.1939 12.1939 12.1941 12.1941 27.5300 27.5302 38.3749 38.3750 38.3751 38.3751 38.4653 38.4657 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7626 8.7627 11.2523 11.2523 11.2525 11.2525 11.7765 11.7766 12.5425 12.5425 12.5428 12.5428 21.8077 21.8079 37.4527 37.4530 37.7382 37.7383 37.7385 37.7386 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1197 9.1197 11.1775 11.1775 11.1777 11.1777 12.7174 12.7174 12.7176 12.7176 13.4639 13.4642 18.6473 18.6474 37.0201 37.0203 37.6123 37.6124 37.6125 37.6125 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7621 5.7624 10.9832 10.9834 11.4053 11.4053 11.4055 11.4055 11.9008 11.9010 12.1876 12.1878 36.7469 36.7470 36.7472 36.7472 36.7679 36.7682 38.6741 38.6744 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0147 7.0150 10.7594 10.7596 11.4425 11.4427 11.5635 11.5637 11.9842 11.9844 12.3198 12.3200 30.0799 30.0801 34.8371 34.8372 36.4463 36.4466 38.9426 38.9428 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7316 8.7318 10.8361 10.8362 11.1914 11.1916 11.4999 11.5001 12.6052 12.6054 12.8158 12.8159 23.9455 23.9457 34.0874 34.0876 34.9386 34.9389 36.6385 36.6387 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3905 9.3905 10.9735 10.9736 11.3807 11.3809 11.6285 11.6286 12.7295 12.7297 14.6438 14.6439 19.3258 19.3259 32.8149 32.8151 34.6303 34.6306 36.4067 36.4069 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3182 9.3182 11.0470 11.0471 11.3799 11.3801 11.4901 11.4901 12.4962 12.4964 14.0608 14.0608 20.5873 20.5874 31.5903 31.5905 36.5331 36.5333 37.3113 37.3115 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2149 8.2151 10.8167 10.8168 11.2664 11.2665 11.5182 11.5183 12.0427 12.0429 12.8332 12.8334 25.8888 25.8890 31.4964 31.4966 39.3195 39.3198 39.7103 39.7105 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4957 6.4960 10.9088 10.9089 11.4024 11.4026 11.4846 11.4848 11.8808 11.8809 12.2902 12.2904 32.0430 32.0432 32.7835 32.7838 41.5266 41.5268 42.4816 42.4821 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7951 7.7954 10.4449 10.4450 11.6425 11.6427 11.9306 11.9306 11.9308 11.9308 12.3968 12.3970 32.3407 32.3407 32.3409 32.3410 33.7609 33.7612 34.5464 34.5467 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0262 9.0263 10.2440 10.2441 11.4597 11.4599 12.0306 12.0308 12.6337 12.6339 12.9945 12.9946 26.9800 26.9802 30.3551 30.3553 31.0993 31.0996 35.0386 35.0388 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7744 9.7745 10.3375 10.3376 11.2740 11.2741 11.9057 11.9059 12.7612 12.7614 15.5349 15.5349 21.6032 21.6034 27.6767 27.6769 31.3028 31.3030 35.1343 35.1346 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0265 10.0266 10.5350 10.5351 11.0777 11.0779 11.8009 11.8011 12.5183 12.5185 16.7784 16.7785 20.0961 20.0963 26.0440 26.0442 32.9725 32.9728 35.8429 35.8432 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6306 9.6308 10.6870 10.6871 10.9044 10.9045 11.7538 11.7540 12.1036 12.1038 14.2125 14.2126 24.5989 24.5991 26.0268 26.0270 35.9002 35.9005 37.3884 37.3886 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2119 9.2119 9.9262 9.9263 12.5652 12.5652 12.5655 12.5655 12.6090 12.6093 13.2901 13.2903 26.4728 26.4730 29.3005 29.3005 29.3007 29.3007 33.3096 33.3098 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4577 9.4577 9.8807 9.8808 12.2123 12.2124 12.4814 12.4817 12.8064 12.8067 15.9158 15.9160 23.7248 23.7249 25.2535 25.2537 29.0137 29.0140 34.1905 34.1907 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8693 9.8694 10.1178 10.1179 11.5173 11.5174 12.2491 12.2493 12.6609 12.6611 19.0084 19.0086 20.5170 20.5172 22.9160 22.9162 30.3253 30.3255 34.7847 34.7849 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2662 9.2663 9.7172 9.7173 12.6977 12.6979 12.8722 12.8722 12.8725 12.8725 16.0646 16.0649 22.1124 22.1125 28.1802 28.1802 28.1804 28.1805 32.9253 32.9254 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3852 8.3854 10.5346 10.5347 11.2128 11.2129 11.9398 11.9400 11.9926 11.9928 12.8710 12.8712 28.3805 28.3807 29.1687 29.1690 34.7038 34.7041 39.7261 39.7266 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6577 9.6578 10.6138 10.6139 10.9352 10.9354 11.8101 11.8103 12.4704 12.4706 14.3857 14.3857 22.9179 22.9180 28.5930 28.5932 31.6521 31.6523 39.6666 39.6667 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8978 9.8979 10.5968 10.5969 11.1687 11.1688 11.6980 11.6982 12.6587 12.6589 16.6937 16.6938 19.1460 19.1461 29.3161 29.3164 29.7926 29.7928 39.3676 39.3676 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6207 9.6208 10.1242 10.1243 11.4258 11.4259 12.4033 12.4035 12.5614 12.5616 14.7945 14.7945 25.8723 25.8726 26.6522 26.6524 27.2680 27.2682 37.9004 37.9006 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 10.0012 10.0013 10.2741 10.2742 11.1336 11.1337 12.1351 12.1353 12.7446 12.7449 18.0204 18.0205 21.2278 21.2280 24.7962 24.7964 27.1035 27.1037 39.0197 39.0199 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2801 10.2802 10.4650 10.4651 10.7106 10.7108 12.0139 12.0140 12.5655 12.5657 17.1297 17.1298 21.9674 21.9676 24.2090 24.2092 28.8760 28.8762 40.2138 40.2140 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.6011 9.6012 9.9544 9.9545 11.8940 11.8942 12.4339 12.4341 12.8725 12.8727 17.7251 17.7254 22.3942 22.3943 24.9311 24.9313 26.0252 26.0255 37.2967 37.2968 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0370 10.0371 10.6872 10.6872 10.6874 10.6874 12.0683 12.0685 12.8729 12.8731 20.9536 20.9536 20.9538 20.9538 23.1356 23.1358 24.0563 24.0565 44.6545 44.6567 k = 0.2500 0.0000 0.0000 ( 165 PWs) bands (ev): 5.7621 5.7624 10.9832 10.9834 11.4053 11.4053 11.4055 11.4055 11.9008 11.9010 12.1876 12.1878 36.7469 36.7469 36.7472 36.7472 36.7679 36.7682 38.6741 38.6743 k = 0.3750-0.1250-0.1250 ( 160 PWs) bands (ev): 7.0147 7.0150 10.7594 10.7596 11.4425 11.4427 11.5635 11.5637 11.9842 11.9844 12.3198 12.3200 30.0799 30.0801 34.8370 34.8373 36.4463 36.4466 38.9428 38.9428 k = 0.5000-0.2500-0.2500 ( 158 PWs) bands (ev): 8.7316 8.7318 10.8361 10.8362 11.1914 11.1916 11.4999 11.5001 12.6052 12.6054 12.8158 12.8159 23.9455 23.9457 34.0874 34.0876 34.9386 34.9389 36.6385 36.6387 k =-0.3750 0.6250 0.6250 ( 163 PWs) bands (ev): 9.3905 9.3905 10.9735 10.9736 11.3807 11.3809 11.6285 11.6286 12.7295 12.7297 14.6438 14.6439 19.3258 19.3259 32.8149 32.8151 34.6303 34.6306 36.4066 36.4069 k =-0.2500 0.5000 0.5000 ( 161 PWs) bands (ev): 9.3182 9.3182 11.0470 11.0471 11.3799 11.3801 11.4901 11.4901 12.4962 12.4964 14.0608 14.0608 20.5873 20.5874 31.5903 31.5905 36.5330 36.5333 37.3113 37.3116 k =-0.1250 0.3750 0.3750 ( 159 PWs) bands (ev): 8.2149 8.2151 10.8167 10.8168 11.2664 11.2665 11.5181 11.5183 12.0427 12.0429 12.8332 12.8334 25.8888 25.8890 31.4964 31.4966 39.3196 39.3198 39.7102 39.7105 k = 0.0000 0.2500 0.2500 ( 160 PWs) bands (ev): 6.4957 6.4960 10.9088 10.9089 11.4024 11.4026 11.4846 11.4848 11.8808 11.8809 12.2902 12.2904 32.0430 32.0432 32.7835 32.7838 41.5267 41.5270 42.4816 42.4837 k = 0.5000 0.0000 0.0000 ( 165 PWs) bands (ev): 7.7951 7.7954 10.4449 10.4450 11.6425 11.6427 11.9306 11.9306 11.9308 11.9308 12.3968 12.3970 32.3407 32.3407 32.3409 32.3409 33.7610 33.7612 34.5464 34.5466 k = 0.6250-0.1250-0.1250 ( 162 PWs) bands (ev): 9.0262 9.0263 10.2440 10.2441 11.4598 11.4599 12.0306 12.0308 12.6337 12.6339 12.9945 12.9946 26.9800 26.9802 30.3551 30.3553 31.0993 31.0996 35.0386 35.0388 k =-0.2500 0.7500 0.7500 ( 158 PWs) bands (ev): 9.7744 9.7745 10.3375 10.3376 11.2740 11.2741 11.9057 11.9059 12.7612 12.7614 15.5349 15.5349 21.6032 21.6034 27.6767 27.6769 31.3028 31.3030 35.1343 35.1345 k =-0.1250 0.6250 0.6250 ( 162 PWs) bands (ev): 10.0265 10.0266 10.5350 10.5351 11.0777 11.0779 11.8009 11.8011 12.5183 12.5185 16.7784 16.7785 20.0961 20.0963 26.0440 26.0442 32.9725 32.9728 35.8429 35.8432 k = 0.0000 0.5000 0.5000 ( 164 PWs) bands (ev): 9.6306 9.6308 10.6870 10.6871 10.9044 10.9045 11.7538 11.7540 12.1036 12.1038 14.2125 14.2126 24.5989 24.5991 26.0268 26.0270 35.9002 35.9005 37.3884 37.3886 k = 0.7500 0.0000 0.0000 ( 162 PWs) bands (ev): 9.2119 9.2119 9.9262 9.9263 12.5652 12.5652 12.5655 12.5655 12.6090 12.6093 13.2901 13.2903 26.4728 26.4730 29.3005 29.3005 29.3007 29.3008 33.3097 33.3098 k =-0.1250 0.8750 0.8750 ( 164 PWs) bands (ev): 9.4577 9.4577 9.8807 9.8808 12.2123 12.2124 12.4814 12.4817 12.8065 12.8067 15.9158 15.9160 23.7248 23.7249 25.2535 25.2537 29.0137 29.0140 34.1905 34.1907 k = 0.0000 0.7500 0.7500 ( 168 PWs) bands (ev): 9.8693 9.8694 10.1178 10.1179 11.5173 11.5174 12.2491 12.2493 12.6609 12.6611 19.0084 19.0086 20.5170 20.5172 22.9160 22.9162 30.3253 30.3255 34.7847 34.7849 k =-1.0000 0.0000 0.0000 ( 150 PWs) bands (ev): 9.2662 9.2663 9.7172 9.7173 12.6977 12.6979 12.8722 12.8722 12.8725 12.8725 16.0646 16.0649 22.1124 22.1125 28.1801 28.1802 28.1804 28.1804 32.9253 32.9259 k = 0.5000 0.0000-0.2500 ( 156 PWs) bands (ev): 8.3852 8.3854 10.5346 10.5347 11.2128 11.2129 11.9398 11.9400 11.9926 11.9928 12.8710 12.8712 28.3805 28.3807 29.1688 29.1690 34.7038 34.7041 39.7259 39.7262 k = 0.0000-0.2500 0.5000 ( 156 PWs) bands (ev): 8.3852 8.3854 10.5346 10.5347 11.2128 11.2129 11.9398 11.9400 11.9926 11.9928 12.8710 12.8712 28.3805 28.3807 29.1687 29.1690 34.7038 34.7041 39.7256 39.7264 k =-0.3750 0.8750 0.6250 ( 161 PWs) bands (ev): 9.6577 9.6578 10.6138 10.6139 10.9352 10.9354 11.8101 11.8103 12.4704 12.4706 14.3857 14.3857 22.9179 22.9180 28.5930 28.5932 31.6521 31.6523 39.6665 39.6669 k = 0.8750 0.6250-0.3750 ( 161 PWs) bands (ev): 9.6577 9.6578 10.6138 10.6139 10.9352 10.9354 11.8101 11.8103 12.4704 12.4706 14.3857 14.3857 22.9179 22.9180 28.5930 28.5932 31.6521 31.6523 39.6665 39.6668 k =-0.2500 0.7500 0.5000 ( 164 PWs) bands (ev): 9.8978 9.8979 10.5968 10.5969 11.1687 11.1688 11.6980 11.6982 12.6587 12.6589 16.6937 16.6938 19.1460 19.1461 29.3161 29.3164 29.7926 29.7928 39.3675 39.3677 k =-0.2500 1.0000 0.7500 ( 166 PWs) bands (ev): 9.6207 9.6208 10.1242 10.1243 11.4258 11.4259 12.4033 12.4035 12.5614 12.5616 14.7945 14.7945 25.8723 25.8726 26.6522 26.6524 27.2680 27.2682 37.9004 37.9005 k = 1.0000 0.7500-0.2500 ( 166 PWs) bands (ev): 9.6207 9.6208 10.1242 10.1243 11.4258 11.4259 12.4033 12.4035 12.5614 12.5616 14.7945 14.7945 25.8724 25.8726 26.6522 26.6524 27.2680 27.2682 37.9003 37.9007 k =-0.1250 0.8750 0.6250 ( 161 PWs) bands (ev): 10.0012 10.0013 10.2741 10.2742 11.1336 11.1337 12.1351 12.1353 12.7446 12.7449 18.0204 18.0205 21.2278 21.2280 24.7962 24.7964 27.1035 27.1037 39.0197 39.0199 k = 0.8750 0.6250-0.1250 ( 161 PWs) bands (ev): 10.0012 10.0013 10.2741 10.2742 11.1335 11.1337 12.1351 12.1353 12.7446 12.7449 18.0204 18.0205 21.2278 21.2280 24.7962 24.7964 27.1035 27.1037 39.0197 39.0199 k = 0.0000 0.7500 0.5000 ( 158 PWs) bands (ev): 10.2801 10.2802 10.4650 10.4651 10.7106 10.7108 12.0139 12.0140 12.5655 12.5657 17.1297 17.1298 21.9674 21.9676 24.2090 24.2092 28.8760 28.8762 40.2138 40.2140 k = 0.7500 0.5000 0.0000 ( 158 PWs) bands (ev): 10.2801 10.2802 10.4650 10.4651 10.7106 10.7108 12.0139 12.0140 12.5655 12.5657 17.1297 17.1298 21.9674 21.9676 24.2090 24.2092 28.8760 28.8762 40.2137 40.2140 k =-1.0000 0.0000-0.2500 ( 164 PWs) bands (ev): 9.6012 9.6012 9.9544 9.9545 11.8940 11.8942 12.4339 12.4341 12.8725 12.8727 17.7251 17.7254 22.3942 22.3943 24.9311 24.9313 26.0253 26.0255 37.2965 37.2969 k = 0.0000-0.2500-1.0000 ( 164 PWs) bands (ev): 9.6011 9.6012 9.9544 9.9545 11.8940 11.8942 12.4339 12.4341 12.8725 12.8727 17.7251 17.7254 22.3942 22.3943 24.9311 24.9313 26.0253 26.0255 37.2966 37.2969 k =-1.0000 0.0000-0.5000 ( 156 PWs) bands (ev): 10.0370 10.0371 10.6872 10.6872 10.6874 10.6874 12.0683 12.0685 12.8729 12.8731 20.9536 20.9536 20.9538 20.9538 23.1356 23.1358 24.0563 24.0565 44.6544 44.6547 the Fermi energy is 14.4914 ev ! total energy = -87.84038898 Ry Harris-Foulkes estimate = -87.84038898 Ry estimated scf accuracy < 3.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24909628 Ry hartree contribution = 18.89878157 Ry xc contribution = -14.05779427 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00013869 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file cu.save PWSCF : 25.85s CPU time, 28.28s wall time init_run : 1.37s CPU electrons : 24.22s CPU Called by init_run: wfcinit : 0.60s CPU potinit : 0.03s CPU Called by electrons: c_bands : 20.14s CPU ( 9 calls, 2.238 s avg) sum_band : 3.40s CPU ( 9 calls, 0.378 s avg) v_of_rho : 0.12s CPU ( 10 calls, 0.012 s avg) newd : 0.31s CPU ( 10 calls, 0.031 s avg) mix_rho : 0.09s CPU ( 9 calls, 0.010 s avg) Called by c_bands: init_us_2 : 0.09s CPU ( 1121 calls, 0.000 s avg) ccgdiagg : 15.47s CPU ( 531 calls, 0.029 s avg) wfcrot : 5.19s CPU ( 531 calls, 0.010 s avg) Called by *cgdiagg: h_psi : 17.16s CPU ( 28015 calls, 0.001 s avg) s_psi : 0.91s CPU ( 55499 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 531 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.55s CPU ( 28015 calls, 0.000 s avg) General routines calbec : 1.08s CPU ( 56030 calls, 0.000 s avg) cft3s : 13.75s CPU ( 174003 calls, 0.000 s avg) interpolate : 0.11s CPU ( 76 calls, 0.002 s avg) davcio : 0.01s CPU ( 1652 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/fe.pen.out0000644000700200004540000012613512053145630022176 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 9: 0 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 70 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0135135 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0135135 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0135135 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0135135 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0135135 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0135135 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0135135 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0405405 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0135135 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0135135 k( 12) = ( 0.0625000 0.0625000 -0.0625000), wk = 0.0135135 k( 13) = ( 0.0625000 0.0625000 -0.1875000), wk = 0.0135135 k( 14) = ( 0.1875000 -0.0625000 0.0625000), wk = 0.0135135 k( 15) = ( 0.1875000 0.0625000 -0.0625000), wk = 0.0135135 k( 16) = ( -0.0625000 0.1875000 0.0625000), wk = 0.0135135 k( 17) = ( -0.0625000 -0.1875000 -0.0625000), wk = 0.0135135 k( 18) = ( 0.0625000 0.0625000 -0.3125000), wk = 0.0135135 k( 19) = ( 0.3125000 -0.0625000 0.0625000), wk = 0.0135135 k( 20) = ( 0.3125000 0.0625000 -0.0625000), wk = 0.0135135 k( 21) = ( -0.0625000 0.3125000 0.0625000), wk = 0.0135135 k( 22) = ( -0.0625000 -0.3125000 -0.0625000), wk = 0.0135135 k( 23) = ( 0.0625000 0.0625000 -0.4375000), wk = 0.0135135 k( 24) = ( 0.4375000 -0.0625000 0.0625000), wk = 0.0135135 k( 25) = ( 0.4375000 0.0625000 -0.0625000), wk = 0.0135135 k( 26) = ( -0.0625000 0.4375000 0.0625000), wk = 0.0135135 k( 27) = ( -0.0625000 -0.4375000 -0.0625000), wk = 0.0135135 k( 28) = ( 0.0625000 0.0625000 -0.5625000), wk = 0.0135135 k( 29) = ( 0.5625000 -0.0625000 0.0625000), wk = 0.0135135 k( 30) = ( 0.5625000 0.0625000 -0.0625000), wk = 0.0135135 k( 31) = ( -0.0625000 0.5625000 0.0625000), wk = 0.0135135 k( 32) = ( -0.0625000 -0.5625000 -0.0625000), wk = 0.0135135 k( 33) = ( 0.0625000 0.0625000 -0.6875000), wk = 0.0135135 k( 34) = ( 0.6875000 -0.0625000 0.0625000), wk = 0.0135135 k( 35) = ( 0.6875000 0.0625000 -0.0625000), wk = 0.0135135 k( 36) = ( -0.0625000 0.6875000 0.0625000), wk = 0.0135135 k( 37) = ( -0.0625000 -0.6875000 -0.0625000), wk = 0.0135135 k( 38) = ( 0.0625000 0.0625000 -0.8125000), wk = 0.0135135 k( 39) = ( 0.8125000 -0.0625000 0.0625000), wk = 0.0135135 k( 40) = ( 0.8125000 0.0625000 -0.0625000), wk = 0.0135135 k( 41) = ( -0.0625000 0.8125000 0.0625000), wk = 0.0135135 k( 42) = ( -0.0625000 -0.8125000 -0.0625000), wk = 0.0135135 k( 43) = ( 0.0625000 0.0625000 -0.9375000), wk = 0.0405405 k( 44) = ( 0.1875000 0.0625000 -0.1875000), wk = 0.0135135 k( 45) = ( -0.1875000 -0.0625000 -0.1875000), wk = 0.0135135 k( 46) = ( 0.1875000 -0.1875000 0.0625000), wk = 0.0135135 k( 47) = ( 0.1875000 0.1875000 -0.0625000), wk = 0.0135135 k( 48) = ( -0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 49) = ( 0.1875000 0.0625000 -0.3125000), wk = 0.0135135 k( 50) = ( -0.1875000 -0.0625000 -0.3125000), wk = 0.0135135 k( 51) = ( 0.3125000 -0.1875000 0.0625000), wk = 0.0135135 k( 52) = ( 0.3125000 0.1875000 -0.0625000), wk = 0.0135135 k( 53) = ( -0.0625000 0.3125000 0.1875000), wk = 0.0135135 k( 54) = ( -0.0625000 -0.3125000 -0.1875000), wk = 0.0135135 k( 55) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0135135 k( 56) = ( 0.1875000 -0.3125000 -0.0625000), wk = 0.0135135 k( 57) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0135135 k( 58) = ( 0.3125000 -0.0625000 -0.1875000), wk = 0.0135135 k( 59) = ( -0.0625000 -0.1875000 0.3125000), wk = 0.0135135 k( 60) = ( 0.1875000 0.0625000 -0.4375000), wk = 0.0135135 k( 61) = ( -0.1875000 -0.0625000 -0.4375000), wk = 0.0135135 k( 62) = ( 0.4375000 -0.1875000 0.0625000), wk = 0.0135135 k( 63) = ( 0.4375000 0.1875000 -0.0625000), wk = 0.0135135 k( 64) = ( -0.0625000 0.4375000 0.1875000), wk = 0.0135135 k( 65) = ( -0.0625000 -0.4375000 -0.1875000), wk = 0.0135135 k( 66) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0135135 k( 67) = ( 0.1875000 -0.4375000 -0.0625000), wk = 0.0135135 k( 68) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0135135 k( 69) = ( 0.4375000 -0.0625000 -0.1875000), wk = 0.0135135 k( 70) = ( -0.0625000 -0.1875000 0.4375000), wk = 0.0135135 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 8.02202247 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.319637 0.000000 0.290431 magnetization/charge: 0.498097 0.000000 0.043578 polar coord.: r, theta, phi [deg] : 3.332318 85.000000 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 1.35 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 constraint energy (Ryd) = 6.78548616 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.568754 magnetization : 3.093081 0.000000 0.270612 magnetization/charge: 0.470878 0.000000 0.041197 polar coord.: r, theta, phi [deg] : 3.104897 84.999951 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 4.07 secs total energy = -55.70589717 Ry Harris-Foulkes estimate = -55.76528052 Ry estimated scf accuracy < 0.24768119 Ry total magnetization = 2.35 0.00 0.21 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.10E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 4.85666317 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.433700 magnetization : 2.693495 0.000000 0.235650 magnetization/charge: 0.418654 0.000000 0.036627 polar coord.: r, theta, phi [deg] : 2.703784 85.000014 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 5.70 secs total energy = -55.68123633 Ry Harris-Foulkes estimate = -55.71643791 Ry estimated scf accuracy < 0.08260566 Ry total magnetization = 2.36 0.00 0.21 Bohr mag/cell absolute magnetization = 2.37 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.03E-03, avg # of iterations = 2.1 constraint energy (Ryd) = 3.67711779 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.423122 magnetization : 2.408381 0.000000 0.210711 magnetization/charge: 0.374955 0.000000 0.032805 polar coord.: r, theta, phi [deg] : 2.417581 84.999892 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 7.58 secs total energy = -55.69771277 Ry Harris-Foulkes estimate = -55.69837985 Ry estimated scf accuracy < 0.00391033 Ry total magnetization = 2.32 0.00 0.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.89E-05, avg # of iterations = 3.3 constraint energy (Ryd) = 2.12026596 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.374334 magnetization : 1.948669 0.000000 0.170498 magnetization/charge: 0.305705 0.000000 0.026748 polar coord.: r, theta, phi [deg] : 1.956113 84.999652 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 9.96 secs total energy = -55.69208638 Ry Harris-Foulkes estimate = -55.69901161 Ry estimated scf accuracy < 0.00267815 Ry total magnetization = 2.14 0.00 0.19 Bohr mag/cell absolute magnetization = 2.15 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.35E-05, avg # of iterations = 2.2 constraint energy (Ryd) = 1.60507184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404330 magnetization : 1.760190 0.000000 0.154009 magnetization/charge: 0.274844 0.000000 0.024048 polar coord.: r, theta, phi [deg] : 1.766914 84.999595 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 11.96 secs total energy = -55.69104534 Ry Harris-Foulkes estimate = -55.69395753 Ry estimated scf accuracy < 0.00164749 Ry total magnetization = 1.93 0.00 0.17 Bohr mag/cell absolute magnetization = 1.94 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.06E-05, avg # of iterations = 2.0 constraint energy (Ryd) = 1.33846190 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405728 magnetization : 1.650613 0.000000 0.144422 magnetization/charge: 0.257678 0.000000 0.022546 polar coord.: r, theta, phi [deg] : 1.656919 84.999572 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 13.86 secs total energy = -55.69055241 Ry Harris-Foulkes estimate = -55.69189654 Ry estimated scf accuracy < 0.00021596 Ry total magnetization = 1.77 0.00 0.15 Bohr mag/cell absolute magnetization = 1.78 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.70E-06, avg # of iterations = 3.0 constraint energy (Ryd) = 1.30472546 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405565 magnetization : 1.635995 0.000000 0.143144 magnetization/charge: 0.255402 0.000000 0.022347 polar coord.: r, theta, phi [deg] : 1.642246 84.999559 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 16.04 secs total energy = -55.69060113 Ry Harris-Foulkes estimate = -55.69076532 Ry estimated scf accuracy < 0.00007448 Ry total magnetization = 1.69 0.00 0.15 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.31E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 1.80164427 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403151 magnetization : 1.835242 0.000000 0.160571 magnetization/charge: 0.286616 0.000000 0.025077 polar coord.: r, theta, phi [deg] : 1.842253 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 17.74 secs total energy = -55.69247279 Ry Harris-Foulkes estimate = -55.69060457 Ry estimated scf accuracy < 0.00006081 Ry total magnetization = 1.68 0.00 0.15 Bohr mag/cell absolute magnetization = 1.69 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.3 constraint energy (Ryd) = 1.20745661 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403688 magnetization : 1.592759 0.000000 0.139356 magnetization/charge: 0.248725 0.000000 0.021762 polar coord.: r, theta, phi [deg] : 1.598843 84.999732 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 19.90 secs total energy = -55.68942023 Ry Harris-Foulkes estimate = -55.69290431 Ry estimated scf accuracy < 0.00023638 Ry total magnetization = 1.82 0.00 0.16 Bohr mag/cell absolute magnetization = 1.83 Bohr mag/cell lambda = 1.00 Ry iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.5 constraint energy (Ryd) = 1.25334470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403376 magnetization : 1.613365 0.000000 0.141159 magnetization/charge: 0.251955 0.000000 0.022044 polar coord.: r, theta, phi [deg] : 1.619529 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 22.17 secs total energy = -55.69035001 Ry Harris-Foulkes estimate = -55.69011365 Ry estimated scf accuracy < 0.00000417 Ry total magnetization = 1.64 0.00 0.14 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell lambda = 1.00 Ry iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.21E-08, avg # of iterations = 2.1 constraint energy (Ryd) = 1.23918046 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403171 magnetization : 1.607045 0.000000 0.140608 magnetization/charge: 0.250976 0.000000 0.021959 polar coord.: r, theta, phi [deg] : 1.613185 84.999662 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 24.07 secs total energy = -55.69028379 Ry Harris-Foulkes estimate = -55.69035527 Ry estimated scf accuracy < 0.00000124 Ry total magnetization = 1.66 0.00 0.15 Bohr mag/cell absolute magnetization = 1.67 Bohr mag/cell lambda = 1.00 Ry iteration # 12 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 2.0 constraint energy (Ryd) = 1.24057066 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403057 magnetization : 1.607667 0.000000 0.140664 magnetization/charge: 0.251078 0.000000 0.021968 polar coord.: r, theta, phi [deg] : 1.613809 84.999581 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 25.88 secs total energy = -55.69029283 Ry Harris-Foulkes estimate = -55.69028429 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry iteration # 13 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.71E-09, avg # of iterations = 1.5 constraint energy (Ryd) = 1.24281349 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402921 magnetization : 1.608670 0.000000 0.140753 magnetization/charge: 0.251240 0.000000 0.021983 polar coord.: r, theta, phi [deg] : 1.614815 84.999562 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 27.60 secs total energy = -55.69030523 Ry Harris-Foulkes estimate = -55.69029289 Ry estimated scf accuracy < 0.00000016 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry iteration # 14 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 2.2 constraint energy (Ryd) = 1.24140062 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402912 magnetization : 1.608038 0.000000 0.140698 magnetization/charge: 0.251142 0.000000 0.021974 polar coord.: r, theta, phi [deg] : 1.614182 84.999559 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 29.53 secs total energy = -55.69029852 Ry Harris-Foulkes estimate = -55.69030527 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 1.66 0.00 0.15 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry iteration # 15 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.90E-10, avg # of iterations = 3.3 constraint energy (Ryd) = 1.24069337 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402963 magnetization : 1.607722 0.000000 0.140670 magnetization/charge: 0.251090 0.000000 0.021969 polar coord.: r, theta, phi [deg] : 1.613864 84.999569 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 31.76 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.9510 6.1972 12.2410 12.2410 12.4711 13.4416 13.4416 13.6871 13.8573 13.8573 15.3269 15.3269 38.9719 38.9719 39.2158 39.2158 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.6135 9.6135 10.6335 10.6335 14.6561 15.0049 15.0049 15.9865 16.3800 16.3800 24.7320 24.7321 25.0940 25.0940 25.1259 25.4523 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5444 32.8941 33.3460 k = 0.0625 0.0625-0.0625 ( 141 PWs) bands (ev): 5.9510 6.1972 12.2410 12.2410 12.4711 13.4416 13.4416 13.6871 13.8573 13.8573 15.3269 15.3269 38.9719 38.9719 39.2158 39.2158 k = 0.0625 0.0625-0.1875 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.1875-0.0625 0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.1875 0.0625-0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k =-0.0625 0.1875 0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k =-0.0625-0.1875-0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.0625 0.0625-0.3125 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.3125-0.0625 0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.3125 0.0625-0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k =-0.0625 0.3125 0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k =-0.0625-0.3125-0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4237 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.0625 0.0625-0.4375 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k = 0.4375-0.0625 0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5958 33.0368 33.4999 k = 0.4375 0.0625-0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5958 33.0368 33.4999 k =-0.0625 0.4375 0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k =-0.0625-0.4375-0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k = 0.0625 0.0625-0.5625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k = 0.5625-0.0625 0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2484 29.9417 30.4398 30.5390 30.9215 k = 0.5625 0.0625-0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2484 29.9417 30.4398 30.5391 30.9215 k =-0.0625 0.5625 0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k =-0.0625-0.5625-0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k = 0.0625 0.0625-0.6875 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.6875-0.0625 0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9687 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.6875 0.0625-0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k =-0.0625 0.6875 0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k =-0.0625-0.6875-0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.0625 0.0625-0.8125 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.8125-0.0625 0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.8125 0.0625-0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k =-0.0625 0.8125 0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k =-0.0625-0.8125-0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.0625 0.0625-0.9375 ( 143 PWs) bands (ev): 9.6135 9.6135 10.6335 10.6335 14.6561 15.0049 15.0049 15.9865 16.3800 16.3800 24.7321 24.7321 25.0940 25.0940 25.1259 25.4523 k = 0.1875 0.0625-0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3996 34.2314 34.6951 36.9587 37.2924 k =-0.1875-0.0625-0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3996 34.2314 34.6951 36.9587 37.2923 k = 0.1875-0.1875 0.0625 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k = 0.1875 0.1875-0.0625 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k =-0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0364 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k = 0.1875 0.0625-0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k =-0.1875-0.0625-0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k = 0.3125-0.1875 0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k = 0.3125 0.1875-0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k =-0.0625 0.3125 0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k =-0.0625-0.3125-0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.1875-0.3125-0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0878 15.6249 31.4686 32.0117 35.1676 35.5461 k = 0.3125-0.0625-0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k =-0.0625-0.1875 0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.1875 0.0625-0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5445 32.8941 33.3460 k =-0.1875-0.0625-0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.4375-0.1875 0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5444 32.8941 33.3460 k = 0.4375 0.1875-0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5444 32.8941 33.3460 k =-0.0625 0.4375 0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6023 16.1888 28.9406 29.5445 32.8941 33.3460 k =-0.0625-0.4375-0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.1875-0.4375-0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6023 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5445 32.8941 33.3460 k = 0.4375-0.0625-0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5445 32.8941 33.3460 k =-0.0625-0.1875 0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5444 32.8941 33.3460 the Fermi energy is 14.3661 ev ! total energy = -55.69029582 Ry Harris-Foulkes estimate = -55.69029853 Ry estimated scf accuracy < 9.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 8.87153447 Ry hartree contribution = 6.00691782 Ry xc contribution = -25.92672805 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00259201 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 15 iterations Writing output data file fe.save PWSCF : 32.01s CPU time, 35.22s wall time init_run : 1.29s CPU electrons : 30.41s CPU Called by init_run: wfcinit : 0.53s CPU potinit : 0.02s CPU Called by electrons: c_bands : 23.99s CPU ( 15 calls, 1.599 s avg) sum_band : 5.61s CPU ( 15 calls, 0.374 s avg) v_of_rho : 0.14s CPU ( 16 calls, 0.009 s avg) newd : 0.39s CPU ( 16 calls, 0.024 s avg) mix_rho : 0.10s CPU ( 15 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 2170 calls, 0.000 s avg) cegterg : 23.08s CPU ( 1050 calls, 0.022 s avg) Called by *egterg: h_psi : 16.80s CPU ( 3570 calls, 0.005 s avg) s_psi : 0.49s CPU ( 3570 calls, 0.000 s avg) g_psi : 0.43s CPU ( 2450 calls, 0.000 s avg) cdiaghg : 3.34s CPU ( 3500 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.48s CPU ( 3570 calls, 0.000 s avg) General routines calbec : 0.48s CPU ( 4620 calls, 0.000 s avg) cft3s : 14.98s CPU ( 197254 calls, 0.000 s avg) interpolate : 0.12s CPU ( 124 calls, 0.001 s avg) davcio : 0.03s CPU ( 3220 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/cu.band.out0000644000700200004540000002537012053145630022334 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:56: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0238095 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0238095 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0238095 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0238095 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0238095 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0238095 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0238095 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0238095 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0238095 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0238095 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0119048 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0119048 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0119048 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0119048 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0119048 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0119048 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0119048 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0119048 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0119048 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0119048 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 340, 8) NL pseudopotentials 0.03 Mb ( 170, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.17 Mb ( 340, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 13, 2, 8) Arrays for rho mixing 2.40 Mb ( 19683, 8) The potential is recalculated from file : cu.save/charge-density.dat Starting wfc are 12 atomic wfcs total cpu time spent up to now is 0.53 secs per-process dynamical memory: 9.6 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 9.09E-09, avg # of iterations = 7.0 total cpu time spent up to now is 1.18 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9903 4.9906 11.2116 11.2116 11.2116 11.2117 11.2117 11.2117 k = 0.0000 0.0000 0.1000 band energies (ev): 5.1159 5.1161 11.1731 11.1732 11.2431 11.2431 11.2431 11.2431 k = 0.0000 0.0000 0.2000 band energies (ev): 5.4880 5.4882 11.0620 11.0621 11.3362 11.3362 11.3363 11.3363 k = 0.0000 0.0000 0.3000 band energies (ev): 6.0906 6.0909 10.8906 10.8907 11.4875 11.4875 11.4876 11.4876 k = 0.0000 0.0000 0.4000 band energies (ev): 6.8876 6.8878 10.6773 10.6774 11.6895 11.6895 11.6896 11.6896 k = 0.0000 0.0000 0.5000 band energies (ev): 7.7951 7.7953 10.4445 10.4445 11.6421 11.6422 11.9302 11.9302 k = 0.0000 0.0000 0.6000 band energies (ev): 8.6221 8.6223 10.2154 10.2155 11.8915 11.8916 12.1917 12.1917 k = 0.0000 0.0000 0.7000 band energies (ev): 9.1075 9.1077 10.0120 10.0121 12.4481 12.4481 12.4481 12.4481 k = 0.0000 0.0000 0.8000 band energies (ev): 9.2577 9.2579 9.8526 9.8527 12.6393 12.6394 12.6681 12.6681 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2714 9.2715 9.7513 9.7514 12.6823 12.6824 12.8181 12.8181 k = 0.0000 0.0000 1.0000 band energies (ev): 9.2658 9.2660 9.7168 9.7169 12.6972 12.6973 12.8718 12.8718 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9903 4.9906 11.2116 11.2116 11.2116 11.2117 11.2117 11.2117 k = 0.0000 0.1000 0.1000 band energies (ev): 5.2406 5.2408 11.1525 11.1526 11.2578 11.2579 11.2699 11.2700 k = 0.0000 0.2000 0.2000 band energies (ev): 5.9707 5.9710 11.0003 11.0004 11.3808 11.3809 11.3903 11.3904 k = 0.0000 0.3000 0.3000 band energies (ev): 7.1065 7.1067 10.8191 10.8191 11.3769 11.3769 11.5926 11.5927 k = 0.0000 0.4000 0.4000 band energies (ev): 8.4632 8.4634 10.6900 10.6901 11.1997 11.1998 11.7385 11.7386 k = 0.0000 0.5000 0.5000 band energies (ev): 9.6304 9.6306 10.6866 10.6867 10.9039 10.9040 11.7533 11.7534 k = 0.0000 0.6000 0.6000 band energies (ev): 10.1588 10.1589 10.5468 10.5469 10.8641 10.8642 11.8838 11.8839 k = 0.0000 0.7000 0.7000 band energies (ev): 10.0490 10.0491 10.2430 10.2431 11.2485 11.2486 12.1132 12.1132 k = 0.0000 0.8000 0.8000 band energies (ev): 9.6834 9.6835 9.9909 9.9910 11.8276 11.8277 12.3845 12.3846 k = 0.0000 0.9000 0.9000 band energies (ev): 9.3815 9.3816 9.7902 9.7903 12.4981 12.4982 12.6092 12.6093 k = 0.0000 1.0000 1.0000 band energies (ev): 9.2658 9.2660 9.7168 9.7169 12.6972 12.6973 12.8718 12.8718 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9903 4.9906 11.2116 11.2116 11.2116 11.2117 11.2117 11.2117 k = 0.1000 0.1000 0.1000 band energies (ev): 5.3643 5.3645 11.1345 11.1345 11.2816 11.2816 11.2817 11.2817 k = 0.2000 0.2000 0.2000 band energies (ev): 6.4308 6.4310 10.9837 10.9838 11.3861 11.3861 11.3862 11.3862 k = 0.3000 0.3000 0.3000 band energies (ev): 7.9098 7.9101 11.0742 11.0743 11.3385 11.3385 11.3386 11.3386 k = 0.4000 0.4000 0.4000 band energies (ev): 8.9173 8.9174 11.2266 11.2266 11.2266 11.2266 12.1743 12.1745 k = 0.5000 0.5000 0.5000 band energies (ev): 9.1193 9.1195 11.1770 11.1770 11.1771 11.1771 12.7169 12.7169 Writing output data file cu.save PWSCF : 1.26s CPU time, 1.29s wall time init_run : 0.50s CPU electrons : 0.65s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 0.65s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.53s CPU ( 28 calls, 0.019 s avg) Called by *egterg: h_psi : 0.46s CPU ( 251 calls, 0.002 s avg) s_psi : 0.01s CPU ( 251 calls, 0.000 s avg) g_psi : 0.01s CPU ( 195 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 223 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 251 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 251 calls, 0.000 s avg) cft3 : 0.01s CPU ( 14 calls, 0.001 s avg) cft3s : 0.26s CPU ( 6852 calls, 0.000 s avg) interpolate : 0.00s CPU ( 4 calls, 0.001 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example06/reference/ni.scf.out0000644000700200004540000016537612053145630022215 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:11:10 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Noncollinear calculation without spin-orbit celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pbe-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 144 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0078125 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0078125 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0078125 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0078125 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0078125 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0078125 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0078125 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0039062 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0078125 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0078125 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0078125 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0078125 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0078125 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0078125 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0039062 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0078125 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0078125 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0078125 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0078125 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0078125 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0039062 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0078125 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0078125 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0078125 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0078125 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0039062 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0078125 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0078125 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0039062 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0078125 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0039062 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0078125 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0078125 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0078125 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0078125 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0078125 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0039062 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0078125 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0078125 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0078125 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0078125 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0039062 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0078125 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0078125 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0078125 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0039062 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0078125 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0039062 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0078125 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0078125 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0078125 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0039062 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0078125 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0078125 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0039062 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0078125 k( 61) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0039062 k( 63) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0039062 k( 64) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0039062 k( 65) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0039062 k( 66) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0039062 k( 67) = ( 0.9375000 0.0625000 0.0625000), wk = 0.0039062 k( 68) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0078125 k( 69) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0078125 k( 70) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0078125 k( 71) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0078125 k( 72) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0078125 k( 73) = ( 0.1875000 0.5625000 0.0625000), wk = 0.0078125 k( 74) = ( 0.5625000 0.0625000 0.1875000), wk = 0.0078125 k( 75) = ( 0.1875000 0.6875000 0.0625000), wk = 0.0078125 k( 76) = ( 0.6875000 0.0625000 0.1875000), wk = 0.0078125 k( 77) = ( 0.1875000 0.8125000 0.0625000), wk = 0.0078125 k( 78) = ( 0.8125000 0.0625000 0.1875000), wk = 0.0078125 k( 79) = ( 0.1875000 0.9375000 0.0625000), wk = 0.0078125 k( 80) = ( 0.9375000 0.0625000 0.1875000), wk = 0.0078125 k( 81) = ( 0.3125000 0.3125000 0.0625000), wk = 0.0078125 k( 82) = ( 0.3125000 0.4375000 0.0625000), wk = 0.0078125 k( 83) = ( 0.4375000 0.0625000 0.3125000), wk = 0.0078125 k( 84) = ( 0.3125000 0.5625000 0.0625000), wk = 0.0078125 k( 85) = ( 0.5625000 0.0625000 0.3125000), wk = 0.0078125 k( 86) = ( 0.3125000 0.6875000 0.0625000), wk = 0.0078125 k( 87) = ( 0.6875000 0.0625000 0.3125000), wk = 0.0078125 k( 88) = ( 0.3125000 0.8125000 0.0625000), wk = 0.0078125 k( 89) = ( 0.8125000 0.0625000 0.3125000), wk = 0.0078125 k( 90) = ( 0.3125000 0.9375000 0.0625000), wk = 0.0078125 k( 91) = ( 0.9375000 0.0625000 0.3125000), wk = 0.0078125 k( 92) = ( 0.4375000 0.4375000 0.0625000), wk = 0.0078125 k( 93) = ( 0.4375000 0.5625000 0.0625000), wk = 0.0078125 k( 94) = ( 0.5625000 0.0625000 0.4375000), wk = 0.0078125 k( 95) = ( 0.4375000 0.6875000 0.0625000), wk = 0.0078125 k( 96) = ( 0.6875000 0.0625000 0.4375000), wk = 0.0078125 k( 97) = ( 0.4375000 0.8125000 0.0625000), wk = 0.0078125 k( 98) = ( 0.8125000 0.0625000 0.4375000), wk = 0.0078125 k( 99) = ( 0.4375000 0.9375000 0.0625000), wk = 0.0078125 k( 100) = ( 0.9375000 0.0625000 0.4375000), wk = 0.0078125 k( 101) = ( 0.5625000 0.5625000 0.0625000), wk = 0.0078125 k( 102) = ( 0.5625000 0.6875000 0.0625000), wk = 0.0078125 k( 103) = ( 0.6875000 0.0625000 0.5625000), wk = 0.0078125 k( 104) = ( 0.5625000 0.8125000 0.0625000), wk = 0.0078125 k( 105) = ( 0.8125000 0.0625000 0.5625000), wk = 0.0078125 k( 106) = ( 0.6875000 0.6875000 0.0625000), wk = 0.0078125 k( 107) = ( 0.6875000 0.8125000 0.0625000), wk = 0.0078125 k( 108) = ( 0.8125000 0.0625000 0.6875000), wk = 0.0078125 k( 109) = ( 0.8125000 0.8125000 0.0625000), wk = 0.0078125 k( 110) = ( 0.3125000 0.1875000 0.1875000), wk = 0.0039062 k( 111) = ( 0.4375000 0.1875000 0.1875000), wk = 0.0039062 k( 112) = ( 0.5625000 0.1875000 0.1875000), wk = 0.0039062 k( 113) = ( 0.6875000 0.1875000 0.1875000), wk = 0.0039062 k( 114) = ( 0.8125000 0.1875000 0.1875000), wk = 0.0039062 k( 115) = ( 0.3125000 0.3125000 0.1875000), wk = 0.0078125 k( 116) = ( 0.3125000 0.4375000 0.1875000), wk = 0.0078125 k( 117) = ( 0.4375000 0.1875000 0.3125000), wk = 0.0078125 k( 118) = ( 0.3125000 0.5625000 0.1875000), wk = 0.0078125 k( 119) = ( 0.5625000 0.1875000 0.3125000), wk = 0.0078125 k( 120) = ( 0.3125000 0.6875000 0.1875000), wk = 0.0078125 k( 121) = ( 0.6875000 0.1875000 0.3125000), wk = 0.0078125 k( 122) = ( 0.3125000 0.8125000 0.1875000), wk = 0.0078125 k( 123) = ( 0.8125000 0.1875000 0.3125000), wk = 0.0078125 k( 124) = ( 0.4375000 0.4375000 0.1875000), wk = 0.0078125 k( 125) = ( 0.4375000 0.5625000 0.1875000), wk = 0.0078125 k( 126) = ( 0.5625000 0.1875000 0.4375000), wk = 0.0078125 k( 127) = ( 0.4375000 0.6875000 0.1875000), wk = 0.0078125 k( 128) = ( 0.6875000 0.1875000 0.4375000), wk = 0.0078125 k( 129) = ( 0.4375000 0.8125000 0.1875000), wk = 0.0078125 k( 130) = ( 0.8125000 0.1875000 0.4375000), wk = 0.0078125 k( 131) = ( 0.5625000 0.5625000 0.1875000), wk = 0.0078125 k( 132) = ( 0.5625000 0.6875000 0.1875000), wk = 0.0078125 k( 133) = ( 0.6875000 0.1875000 0.5625000), wk = 0.0078125 k( 134) = ( 0.6875000 0.6875000 0.1875000), wk = 0.0078125 k( 135) = ( 0.4375000 0.3125000 0.3125000), wk = 0.0039062 k( 136) = ( 0.5625000 0.3125000 0.3125000), wk = 0.0039062 k( 137) = ( 0.6875000 0.3125000 0.3125000), wk = 0.0039062 k( 138) = ( 0.4375000 0.4375000 0.3125000), wk = 0.0078125 k( 139) = ( 0.4375000 0.5625000 0.3125000), wk = 0.0078125 k( 140) = ( 0.5625000 0.3125000 0.4375000), wk = 0.0078125 k( 141) = ( 0.4375000 0.6875000 0.3125000), wk = 0.0078125 k( 142) = ( 0.6875000 0.3125000 0.4375000), wk = 0.0078125 k( 143) = ( 0.5625000 0.5625000 0.3125000), wk = 0.0078125 k( 144) = ( 0.5625000 0.4375000 0.4375000), wk = 0.0039062 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 288, 18) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 288, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 18, 2, 18) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000016 0.000000 Initial potential from superposition of free atoms starting charge 9.99954, renormalised to 10.00000 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.865022 magnetization : 0.886502 0.000000 0.000000 magnetization/charge: 0.100000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.886502 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 6 random wfc total cpu time spent up to now is 2.56 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.527554 magnetization : 0.836594 0.000000 0.000000 magnetization/charge: 0.098105 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.836594 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 9.11 secs total energy = -85.73527911 Ry Harris-Foulkes estimate = -85.96913418 Ry estimated scf accuracy < 0.31642419 Ry total magnetization = 0.81 0.00 0.00 Bohr mag/cell absolute magnetization = 0.82 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-03, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.692938 magnetization : 0.732919 0.000000 0.000000 magnetization/charge: 0.084312 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.732919 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 13.89 secs total energy = -85.80724228 Ry Harris-Foulkes estimate = -86.01741192 Ry estimated scf accuracy < 0.47172457 Ry total magnetization = 0.49 0.00 0.00 Bohr mag/cell absolute magnetization = 0.54 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-03, avg # of iterations = 1.2 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.681815 magnetization : 0.615476 0.000000 0.000000 magnetization/charge: 0.070893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.615476 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 17.69 secs total energy = -85.89138030 Ry Harris-Foulkes estimate = -85.89085666 Ry estimated scf accuracy < 0.00025534 Ry total magnetization = 0.60 0.00 0.00 Bohr mag/cell absolute magnetization = 0.67 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-06, avg # of iterations = 3.4 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.684178 magnetization : 0.623332 0.000000 0.000000 magnetization/charge: 0.071778 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623332 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 24.48 secs total energy = -85.89189535 Ry Harris-Foulkes estimate = -85.89188963 Ry estimated scf accuracy < 0.00003526 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.67 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.53E-07, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.686254 magnetization : 0.621455 0.000000 0.000000 magnetization/charge: 0.071545 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.621455 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 28.21 secs total energy = -85.89190143 Ry Harris-Foulkes estimate = -85.89189967 Ry estimated scf accuracy < 0.00000294 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.67 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.94E-08, avg # of iterations = 1.8 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.685532 magnetization : 0.623372 0.000000 0.000000 magnetization/charge: 0.071771 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623372 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 32.23 secs total energy = -85.89190272 Ry Harris-Foulkes estimate = -85.89190224 Ry estimated scf accuracy < 0.00000017 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 1.8 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.686000 magnetization : 0.623514 0.000000 0.000000 magnetization/charge: 0.071784 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623514 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 36.17 secs total energy = -85.89190272 Ry Harris-Foulkes estimate = -85.89190275 Ry estimated scf accuracy < 0.00000019 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 1.1 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.685985 magnetization : 0.623543 0.000000 0.000000 magnetization/charge: 0.071787 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623543 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 39.91 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 6.3570 6.4122 13.0638 13.1462 13.1462 13.8218 13.9114 13.9114 14.4210 14.4210 15.0228 15.0228 39.7945 39.9295 42.8959 42.9424 44.5638 44.5638 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.7846 6.8393 12.9192 13.2577 13.2626 13.6638 14.0250 14.0297 14.2814 14.4864 14.8758 15.0924 38.7314 38.7720 41.2331 41.3052 42.3907 42.4165 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.6070 7.6586 12.6393 13.3608 13.4741 13.4895 14.0680 14.2299 14.2604 14.6074 14.6613 15.2220 37.1037 37.1348 39.7722 39.8356 39.8820 39.9318 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.7357 8.7710 12.2824 12.9760 13.5956 13.8124 14.0771 14.2100 14.5891 14.7660 14.7834 15.3939 35.3109 35.3706 37.4908 37.5433 38.3056 38.3454 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.9140 9.9459 11.9082 12.5741 13.6561 14.1721 14.2012 14.5315 14.9385 14.9822 15.2555 15.5874 33.5751 33.6361 35.3700 35.4113 35.5129 35.5332 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.5993 10.7837 11.5731 12.2154 14.1693 14.6052 14.6664 15.0985 15.3575 15.3757 15.7875 15.9313 31.6704 31.7352 32.3903 32.4562 33.6319 33.6531 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.7399 11.0399 11.3232 11.9488 14.7461 14.9511 15.2207 15.4335 15.6664 15.9931 16.8602 17.0976 28.5248 28.6641 31.1011 31.1343 32.3809 32.3822 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.7120 11.0524 11.1903 11.8073 15.0355 15.1563 15.2846 15.7967 15.8195 16.1500 18.4448 18.4897 26.1390 26.3536 30.4888 30.5051 31.7064 31.7229 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 7.2006 7.2535 12.8465 13.3143 13.3211 13.5763 14.0734 14.0850 14.2594 14.4931 14.8546 15.1115 36.7719 36.8013 39.5792 39.6067 43.3170 43.3852 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.9990 8.0453 12.6337 13.3415 13.4070 13.5015 14.1199 14.1391 14.2688 14.6566 14.7471 15.3016 34.7598 34.8286 37.6193 37.6341 42.3768 42.4265 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 9.0904 9.1141 12.3291 13.0108 13.3597 13.7843 13.9925 14.2508 14.5333 14.9097 14.9101 15.5847 32.9216 33.0138 35.7430 35.7848 39.8396 39.8599 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 10.2077 10.2573 11.9981 12.6531 13.2690 13.8453 14.1356 14.6644 14.8653 15.3039 15.3321 15.9831 31.2988 31.3994 34.0092 34.0586 36.2156 36.2507 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.8602 11.0620 11.6950 12.3281 13.5131 14.0608 14.5208 15.0074 15.2287 15.7246 16.2192 16.7570 29.9297 30.0244 32.0387 32.1055 33.0119 33.0714 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.9747 11.2887 11.4658 12.0850 13.9925 14.5988 14.8447 15.1715 15.5084 15.9790 17.8153 18.1311 28.5535 28.6662 29.2294 29.3300 31.7247 31.7573 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.9314 11.2823 11.3440 11.9564 14.3240 14.9868 14.9944 15.2639 15.6077 16.1366 19.4789 19.6337 26.2485 26.4476 28.5011 28.5727 31.1408 31.1606 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.7452 8.7759 12.5628 13.2473 13.3426 13.5931 14.0150 14.0849 14.3392 14.7083 14.9193 15.6010 32.6357 32.7361 35.5471 35.5896 43.6390 43.7096 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.7411 9.7503 12.3967 13.0552 13.1833 13.7806 13.8047 14.1749 14.4678 14.8659 15.3507 16.0400 30.7740 30.8988 33.7247 33.7878 40.8551 40.8698 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.7085 10.8084 12.1741 12.8043 12.9336 13.5240 14.0692 14.5092 14.7234 15.2371 16.0289 16.6640 29.1779 29.3166 32.1712 32.2444 36.8932 36.9256 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.2957 11.5400 11.9397 12.5484 12.9046 13.4753 14.4036 14.8450 15.0349 15.6271 17.2347 17.7194 27.8676 28.0076 30.8865 30.9605 33.0735 33.1456 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.3696 11.7104 11.7475 12.3536 13.2034 13.7884 14.6284 15.0919 15.2362 15.9385 19.0417 19.3575 26.8878 27.0192 29.2129 29.3228 30.3727 30.4481 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2948 11.6495 11.6627 12.2549 13.4765 14.0990 14.6808 15.2555 15.2773 16.1319 20.9472 21.1410 26.1151 26.2573 26.9024 27.0571 29.7600 29.8232 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.5145 10.5986 12.4369 13.0164 13.0651 13.5997 13.7885 14.1940 14.4044 14.9608 15.9871 16.6425 28.9029 29.0564 31.9635 32.0444 41.5448 41.5952 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 11.2288 11.4390 12.4102 12.7128 12.9954 13.2787 13.9515 14.4445 14.5477 15.2386 16.9246 17.4823 27.3061 27.4797 30.5208 30.6133 37.8526 37.8804 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.7090 12.0358 12.2445 12.4935 12.7806 13.0948 14.2082 14.7701 14.7986 15.5936 18.3854 18.7945 25.9956 26.1766 29.4149 29.5137 33.9396 34.0002 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.7595 12.1089 12.1243 12.5712 12.6990 13.1612 14.3662 14.9517 15.0634 15.9208 20.3953 20.6736 25.0218 25.1980 28.5993 28.7031 30.4237 30.5173 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.6193 11.9982 12.0977 12.7003 12.7200 13.3276 14.4007 14.9795 15.2534 16.1304 22.5953 22.7861 24.4439 24.6102 27.1378 27.2793 28.5983 28.6993 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.5893 11.9526 12.4831 12.6118 12.9327 13.2282 13.9627 14.5507 14.5610 15.3801 18.1187 18.5599 25.6869 25.8865 29.2082 29.3170 38.5013 38.5481 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8101 12.1489 12.2979 12.5573 12.7091 13.3209 14.1539 14.7421 14.7985 15.6348 19.7651 20.0804 24.3377 24.5491 28.2595 28.3828 35.0838 35.1324 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.8041 11.9957 12.2004 12.5494 12.7319 13.3439 14.3255 14.9097 15.0643 15.9238 21.8334 22.0503 23.3781 23.5881 27.6376 27.7725 31.5114 31.5840 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6399 11.9436 12.1647 12.3551 13.0615 13.6728 14.3240 14.9168 14.9221 15.7597 21.4064 21.6282 22.9984 23.2255 27.4699 27.6164 35.3479 35.3777 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4421 11.7380 11.8559 12.2858 13.3410 13.9565 14.5417 15.0967 15.1428 15.9544 21.5562 21.7616 23.8556 24.0254 27.0036 27.1674 32.7493 32.7908 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.1201 11.4825 11.4947 12.0716 13.9549 14.5910 14.7914 15.1741 15.4153 16.0286 20.2951 20.4868 25.7264 25.8628 26.8181 26.9812 33.0048 33.0093 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.6009 7.6492 12.8131 13.3397 13.3397 13.5204 14.0883 14.0883 14.3955 14.3955 15.0189 15.0189 34.4497 34.5198 40.9210 41.0612 43.4311 43.4311 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 8.3653 8.3997 12.6743 13.3515 13.3857 13.4247 14.0894 14.1504 14.3272 14.6163 14.9817 15.2744 32.3245 32.4272 39.9224 40.0243 40.8551 40.9108 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 9.3978 9.4007 12.4374 13.0808 13.2940 13.5955 13.9280 14.3052 14.5971 14.8607 15.2792 15.5523 30.4599 30.5866 38.4696 38.5099 38.5254 38.5774 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.4009 10.4974 12.1502 12.7562 13.1563 13.7493 13.8536 14.5524 15.0748 15.3566 15.7988 15.9833 28.8588 28.9976 36.0254 36.0267 36.4105 36.4558 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 11.0145 11.2673 11.8520 12.4335 13.2982 13.8614 14.1754 14.8637 15.2130 15.9705 16.6526 17.1393 27.5389 27.6761 32.5137 32.5806 34.7616 34.7913 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.1506 11.5015 11.6084 12.1907 13.6801 14.2718 14.5145 15.1834 15.2437 16.0410 18.4634 18.7832 26.5365 26.6621 29.1461 29.2680 33.6037 33.6180 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 9.0539 9.0562 12.7056 13.3303 13.3382 13.4139 14.0166 14.1056 14.3847 14.8155 15.0679 15.5061 30.1635 30.2999 38.4234 38.4431 42.1840 42.2309 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.8900 9.9596 12.6549 13.1982 13.2212 13.4980 13.8326 14.1694 14.5782 15.2189 15.2856 15.9125 28.3023 28.4675 36.7166 36.7315 40.4913 40.5239 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.6893 10.8885 12.4740 12.9808 12.9971 13.6168 13.7049 14.3668 14.9418 15.6726 15.9862 16.5864 26.7327 26.9174 35.1173 35.1463 37.1941 37.2264 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.2249 11.5756 12.1590 12.6433 12.9913 13.5896 13.9980 14.6524 15.1340 15.9057 17.4387 17.8764 25.4603 25.6511 32.9657 33.0163 34.3356 34.3972 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.4302 11.8535 11.8723 12.3787 13.1715 13.7686 14.3101 14.9470 15.1581 15.9696 19.4441 19.7430 24.5101 24.6946 29.6692 29.7762 33.2448 33.2919 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.4533 10.6410 12.8864 13.0797 13.3633 13.4731 13.6954 14.1118 14.5682 15.3159 15.8374 16.4839 26.4728 26.6755 35.0195 35.0568 41.0816 41.1426 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.9662 11.2950 12.7868 12.9521 13.2167 13.5615 13.6186 14.2473 14.7972 15.5607 16.8301 17.3488 24.9652 25.1987 33.5837 33.6359 38.1085 38.1301 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3939 11.8370 12.3909 12.8111 12.8953 13.5003 13.8755 14.5009 15.0053 15.7957 18.4123 18.7729 23.7843 24.0375 32.4084 32.4678 34.3626 34.4251 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7257 12.0563 12.2234 12.4793 12.8060 13.4168 14.1444 14.7539 15.0725 15.8983 20.4301 20.6747 23.0201 23.2802 30.4575 30.5448 32.0010 32.0766 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.2159 11.6493 12.6387 13.0855 13.0983 13.6522 13.6546 14.2766 14.8474 15.6328 17.9821 18.3717 23.5672 23.8462 32.2410 32.3087 38.8935 38.9393 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4719 11.9742 12.3381 12.7367 13.0070 13.6041 13.8644 14.4861 14.9984 15.7988 19.4532 19.7188 22.6521 22.9620 31.2151 31.2944 35.4731 35.5209 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4708 11.9819 12.1267 12.5234 13.0883 13.6981 14.0260 14.6603 15.0994 15.9010 19.8876 20.1383 22.7899 23.0672 30.2823 30.3770 35.8535 35.8867 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.5480 9.6138 12.9795 13.3074 13.3074 13.4880 13.9772 13.9772 14.7137 14.7137 15.4290 15.4290 28.0020 28.1789 39.7053 39.8519 42.5482 42.5483 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 10.1280 10.3089 13.1778 13.2066 13.3211 13.5853 13.8475 13.9791 14.9903 15.0038 15.6896 15.7307 26.1785 26.3947 38.7747 38.8933 40.2369 40.2941 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.6775 10.9960 12.8770 13.2028 13.3142 13.4602 13.7878 14.1117 15.1635 15.9249 16.0919 16.6157 24.6848 24.9336 36.9196 36.9618 38.3236 38.3720 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.1364 11.5720 12.4713 12.8847 13.1422 13.7086 13.7444 14.3549 15.2010 15.9807 17.8164 18.1797 23.5282 23.7981 33.6947 33.7366 36.8529 36.8927 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.4051 10.7096 13.1457 13.2506 13.7351 13.7589 13.8867 14.0476 14.8923 15.5225 15.6488 16.1691 24.4534 24.7247 37.8912 37.9525 40.8341 40.8485 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.7190 11.1211 12.9554 13.3409 13.4956 13.6751 13.9721 14.1127 15.0757 15.8427 16.5971 17.0356 23.1488 23.4710 36.6166 36.6435 38.8116 38.8463 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0798 11.5464 12.6492 13.0993 13.3446 13.5680 13.8950 14.1986 15.1218 15.9053 18.1783 18.4665 22.3706 22.7244 34.4993 34.5202 36.3837 36.4405 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8493 11.2978 12.8677 13.3746 13.3920 13.7181 14.0035 14.1806 15.0778 15.8558 17.4194 17.7366 22.2590 22.6374 35.5451 35.5511 39.6702 39.7157 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.4369 10.8225 13.1549 13.1549 13.7871 13.7871 14.8288 14.8519 15.1065 15.1065 15.8735 15.8735 22.9747 23.3218 38.7229 38.8810 42.0949 42.0949 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5820 11.0131 13.0613 13.1984 13.6619 13.8286 14.3820 14.7406 15.1721 15.9462 16.2684 16.6262 22.1540 22.5551 38.0022 38.1163 40.7938 40.8417 k = 0.1875 0.0625 0.0625 ( 137 PWs) bands (ev): 6.7846 6.8393 12.9192 13.2577 13.2626 13.6638 14.0250 14.0297 14.2814 14.4864 14.8758 15.0924 38.7314 38.7720 41.2331 41.3052 42.3907 42.4165 k = 0.3125 0.0625 0.0625 ( 136 PWs) bands (ev): 7.6070 7.6586 12.6393 13.3608 13.4741 13.4895 14.0680 14.2299 14.2604 14.6074 14.6613 15.2220 37.1037 37.1348 39.7722 39.8356 39.8820 39.9318 k = 0.4375 0.0625 0.0625 ( 135 PWs) bands (ev): 8.7357 8.7710 12.2824 12.9760 13.5956 13.8124 14.0771 14.2100 14.5891 14.7660 14.7834 15.3939 35.3109 35.3706 37.4908 37.5433 38.3056 38.3454 k = 0.5625 0.0625 0.0625 ( 135 PWs) bands (ev): 9.9140 9.9459 11.9082 12.5741 13.6561 14.1721 14.2012 14.5315 14.9385 14.9822 15.2555 15.5874 33.5751 33.6361 35.3700 35.4113 35.5129 35.5332 k = 0.6875 0.0625 0.0625 ( 131 PWs) bands (ev): 10.5993 10.7837 11.5731 12.2154 14.1693 14.6052 14.6664 15.0985 15.3575 15.3757 15.7875 15.9313 31.6704 31.7352 32.3903 32.4562 33.6319 33.6531 k = 0.8125 0.0625 0.0625 ( 131 PWs) bands (ev): 10.7399 11.0399 11.3232 11.9488 14.7461 14.9511 15.2207 15.4335 15.6664 15.9931 16.8602 17.0976 28.5248 28.6641 31.1011 31.1343 32.3809 32.3822 k = 0.9375 0.0625 0.0625 ( 131 PWs) bands (ev): 10.7120 11.0524 11.1903 11.8073 15.0355 15.1563 15.2846 15.7967 15.8195 16.1500 18.4448 18.4897 26.1390 26.3536 30.4888 30.5051 31.7064 31.7229 k = 0.1875 0.1875 0.0625 ( 140 PWs) bands (ev): 7.2006 7.2535 12.8465 13.3143 13.3211 13.5763 14.0734 14.0850 14.2594 14.4931 14.8546 15.1115 36.7719 36.8013 39.5792 39.6067 43.3170 43.3852 k = 0.1875 0.3125 0.0625 ( 138 PWs) bands (ev): 7.9990 8.0453 12.6337 13.3415 13.4070 13.5015 14.1199 14.1391 14.2688 14.6566 14.7471 15.3016 34.7598 34.8286 37.6193 37.6341 42.3768 42.4265 k = 0.3125 0.0625 0.1875 ( 138 PWs) bands (ev): 7.9990 8.0453 12.6337 13.3415 13.4070 13.5015 14.1199 14.1391 14.2688 14.6566 14.7471 15.3016 34.7598 34.8286 37.6193 37.6341 42.3768 42.4265 k = 0.1875 0.4375 0.0625 ( 138 PWs) bands (ev): 9.0904 9.1141 12.3291 13.0108 13.3597 13.7843 13.9925 14.2508 14.5333 14.9097 14.9101 15.5847 32.9216 33.0138 35.7430 35.7848 39.8396 39.8599 k = 0.4375 0.0625 0.1875 ( 138 PWs) bands (ev): 9.0904 9.1141 12.3291 13.0108 13.3597 13.7843 13.9925 14.2508 14.5333 14.9097 14.9101 15.5847 32.9216 33.0138 35.7430 35.7848 39.8396 39.8599 k = 0.1875 0.5625 0.0625 ( 138 PWs) bands (ev): 10.2077 10.2573 11.9981 12.6531 13.2690 13.8453 14.1356 14.6644 14.8653 15.3039 15.3321 15.9831 31.2988 31.3994 34.0092 34.0586 36.2156 36.2507 k = 0.5625 0.0625 0.1875 ( 138 PWs) bands (ev): 10.2077 10.2573 11.9981 12.6531 13.2690 13.8453 14.1356 14.6644 14.8653 15.3039 15.3321 15.9831 31.2988 31.3994 34.0092 34.0586 36.2156 36.2507 k = 0.1875 0.6875 0.0625 ( 135 PWs) bands (ev): 10.8602 11.0620 11.6950 12.3281 13.5131 14.0608 14.5208 15.0074 15.2287 15.7246 16.2192 16.7570 29.9297 30.0244 32.0387 32.1055 33.0119 33.0714 k = 0.6875 0.0625 0.1875 ( 135 PWs) bands (ev): 10.8602 11.0620 11.6950 12.3281 13.5131 14.0608 14.5208 15.0074 15.2287 15.7246 16.2192 16.7570 29.9297 30.0244 32.0387 32.1055 33.0119 33.0714 k = 0.1875 0.8125 0.0625 ( 131 PWs) bands (ev): 10.9747 11.2887 11.4658 12.0850 13.9925 14.5988 14.8447 15.1715 15.5084 15.9790 17.8153 18.1311 28.5535 28.6662 29.2294 29.3300 31.7247 31.7573 k = 0.8125 0.0625 0.1875 ( 131 PWs) bands (ev): 10.9747 11.2887 11.4658 12.0850 13.9925 14.5988 14.8447 15.1715 15.5084 15.9790 17.8153 18.1311 28.5535 28.6662 29.2294 29.3300 31.7247 31.7573 k = 0.1875 0.9375 0.0625 ( 129 PWs) bands (ev): 10.9314 11.2823 11.3440 11.9564 14.3240 14.9868 14.9944 15.2639 15.6077 16.1366 19.4789 19.6337 26.2485 26.4476 28.5011 28.5727 31.1408 31.1606 k = 0.9375 0.0625 0.1875 ( 129 PWs) bands (ev): 10.9314 11.2823 11.3440 11.9564 14.3240 14.9868 14.9944 15.2639 15.6077 16.1366 19.4789 19.6337 26.2485 26.4476 28.5011 28.5727 31.1408 31.1606 k = 0.3125 0.3125 0.0625 ( 140 PWs) bands (ev): 8.7452 8.7759 12.5628 13.2473 13.3426 13.5931 14.0150 14.0849 14.3392 14.7083 14.9193 15.6010 32.6357 32.7361 35.5471 35.5896 43.6390 43.7096 k = 0.3125 0.4375 0.0625 ( 140 PWs) bands (ev): 9.7411 9.7503 12.3967 13.0552 13.1833 13.7806 13.8047 14.1749 14.4678 14.8659 15.3507 16.0400 30.7740 30.8988 33.7247 33.7878 40.8551 40.8698 k = 0.4375 0.0625 0.3125 ( 140 PWs) bands (ev): 9.7411 9.7503 12.3967 13.0552 13.1833 13.7806 13.8047 14.1749 14.4678 14.8659 15.3507 16.0400 30.7740 30.8988 33.7247 33.7878 40.8551 40.8698 k = 0.3125 0.5625 0.0625 ( 138 PWs) bands (ev): 10.7085 10.8084 12.1741 12.8043 12.9336 13.5240 14.0692 14.5092 14.7234 15.2371 16.0289 16.6640 29.1779 29.3166 32.1712 32.2444 36.8932 36.9256 k = 0.5625 0.0625 0.3125 ( 138 PWs) bands (ev): 10.7085 10.8084 12.1741 12.8043 12.9336 13.5240 14.0692 14.5092 14.7234 15.2371 16.0289 16.6640 29.1779 29.3166 32.1712 32.2444 36.8932 36.9256 k = 0.3125 0.6875 0.0625 ( 133 PWs) bands (ev): 11.2957 11.5400 11.9397 12.5484 12.9046 13.4753 14.4036 14.8450 15.0349 15.6271 17.2347 17.7194 27.8676 28.0076 30.8865 30.9605 33.0735 33.1456 k = 0.6875 0.0625 0.3125 ( 133 PWs) bands (ev): 11.2957 11.5400 11.9397 12.5484 12.9046 13.4753 14.4036 14.8450 15.0349 15.6271 17.2347 17.7194 27.8676 28.0076 30.8865 30.9605 33.0735 33.1456 k = 0.3125 0.8125 0.0625 ( 130 PWs) bands (ev): 11.3696 11.7104 11.7475 12.3536 13.2034 13.7884 14.6284 15.0919 15.2362 15.9385 19.0417 19.3575 26.8878 27.0192 29.2129 29.3228 30.3727 30.4481 k = 0.8125 0.0625 0.3125 ( 130 PWs) bands (ev): 11.3696 11.7104 11.7475 12.3536 13.2034 13.7884 14.6284 15.0919 15.2362 15.9385 19.0417 19.3575 26.8878 27.0192 29.2129 29.3228 30.3727 30.4481 k = 0.3125 0.9375 0.0625 ( 131 PWs) bands (ev): 11.2948 11.6495 11.6627 12.2549 13.4765 14.0990 14.6808 15.2555 15.2773 16.1319 20.9472 21.1410 26.1151 26.2573 26.9024 27.0571 29.7600 29.8232 k = 0.9375 0.0625 0.3125 ( 131 PWs) bands (ev): 11.2948 11.6495 11.6627 12.2549 13.4765 14.0990 14.6808 15.2555 15.2773 16.1319 20.9472 21.1410 26.1151 26.2573 26.9024 27.0571 29.7600 29.8232 k = 0.4375 0.4375 0.0625 ( 137 PWs) bands (ev): 10.5145 10.5986 12.4369 13.0164 13.0651 13.5997 13.7885 14.1940 14.4044 14.9608 15.9871 16.6425 28.9029 29.0564 31.9635 32.0444 41.5448 41.5952 k = 0.4375 0.5625 0.0625 ( 137 PWs) bands (ev): 11.2288 11.4390 12.4102 12.7128 12.9954 13.2787 13.9515 14.4445 14.5477 15.2386 16.9246 17.4823 27.3061 27.4797 30.5208 30.6133 37.8526 37.8804 k = 0.5625 0.0625 0.4375 ( 137 PWs) bands (ev): 11.2288 11.4390 12.4102 12.7128 12.9954 13.2787 13.9515 14.4445 14.5477 15.2386 16.9246 17.4823 27.3061 27.4797 30.5208 30.6133 37.8526 37.8804 k = 0.4375 0.6875 0.0625 ( 133 PWs) bands (ev): 11.7090 12.0358 12.2445 12.4935 12.7806 13.0948 14.2082 14.7701 14.7986 15.5936 18.3854 18.7945 25.9956 26.1766 29.4149 29.5137 33.9396 34.0002 k = 0.6875 0.0625 0.4375 ( 133 PWs) bands (ev): 11.7090 12.0358 12.2445 12.4935 12.7806 13.0948 14.2082 14.7701 14.7986 15.5936 18.3854 18.7945 25.9956 26.1766 29.4149 29.5137 33.9396 34.0002 k = 0.4375 0.8125 0.0625 ( 134 PWs) bands (ev): 11.7595 12.1089 12.1243 12.5712 12.6990 13.1612 14.3662 14.9517 15.0634 15.9208 20.3953 20.6736 25.0218 25.1980 28.5993 28.7031 30.4237 30.5173 k = 0.8125 0.0625 0.4375 ( 134 PWs) bands (ev): 11.7595 12.1089 12.1243 12.5712 12.6990 13.1612 14.3662 14.9517 15.0634 15.9208 20.3953 20.6736 25.0218 25.1980 28.5993 28.7031 30.4237 30.5173 k = 0.4375 0.9375 0.0625 ( 134 PWs) bands (ev): 11.6193 11.9982 12.0977 12.7003 12.7200 13.3276 14.4007 14.9795 15.2534 16.1304 22.5953 22.7861 24.4439 24.6102 27.1378 27.2793 28.5983 28.6993 k = 0.9375 0.0625 0.4375 ( 134 PWs) bands (ev): 11.6193 11.9982 12.0977 12.7003 12.7200 13.3276 14.4007 14.9795 15.2534 16.1304 22.5953 22.7861 24.4439 24.6102 27.1378 27.2793 28.5983 28.6993 k = 0.5625 0.5625 0.0625 ( 135 PWs) bands (ev): 11.5893 11.9526 12.4831 12.6118 12.9327 13.2282 13.9627 14.5507 14.5610 15.3801 18.1187 18.5599 25.6869 25.8865 29.2082 29.3170 38.5013 38.5481 k = 0.5625 0.6875 0.0625 ( 132 PWs) bands (ev): 11.8101 12.1489 12.2979 12.5573 12.7091 13.3209 14.1539 14.7421 14.7985 15.6348 19.7651 20.0804 24.3377 24.5491 28.2595 28.3828 35.0838 35.1324 k = 0.6875 0.0625 0.5625 ( 132 PWs) bands (ev): 11.8101 12.1489 12.2979 12.5573 12.7091 13.3209 14.1539 14.7421 14.7985 15.6348 19.7651 20.0804 24.3377 24.5491 28.2595 28.3828 35.0838 35.1324 k = 0.5625 0.8125 0.0625 ( 132 PWs) bands (ev): 11.8041 11.9957 12.2004 12.5494 12.7319 13.3439 14.3255 14.9097 15.0643 15.9238 21.8334 22.0503 23.3781 23.5881 27.6376 27.7725 31.5114 31.5840 k = 0.8125 0.0625 0.5625 ( 132 PWs) bands (ev): 11.8041 11.9957 12.2004 12.5494 12.7319 13.3439 14.3255 14.9097 15.0643 15.9238 21.8334 22.0503 23.3781 23.5881 27.6376 27.7725 31.5114 31.5840 k = 0.6875 0.6875 0.0625 ( 133 PWs) bands (ev): 11.6399 11.9436 12.1647 12.3551 13.0615 13.6728 14.3240 14.9168 14.9221 15.7597 21.4064 21.6282 22.9984 23.2255 27.4699 27.6164 35.3479 35.3777 k = 0.6875 0.8125 0.0625 ( 133 PWs) bands (ev): 11.4421 11.7380 11.8559 12.2858 13.3410 13.9565 14.5417 15.0967 15.1428 15.9544 21.5562 21.7616 23.8556 24.0254 27.0036 27.1674 32.7493 32.7908 k = 0.8125 0.0625 0.6875 ( 133 PWs) bands (ev): 11.4421 11.7380 11.8559 12.2858 13.3410 13.9565 14.5417 15.0967 15.1428 15.9544 21.5562 21.7616 23.8556 24.0254 27.0036 27.1674 32.7493 32.7908 k = 0.8125 0.8125 0.0625 ( 131 PWs) bands (ev): 11.1201 11.4825 11.4947 12.0716 13.9549 14.5910 14.7914 15.1741 15.4153 16.0286 20.2951 20.4868 25.7264 25.8628 26.8181 26.9812 33.0048 33.0093 k = 0.3125 0.1875 0.1875 ( 141 PWs) bands (ev): 8.3653 8.3997 12.6743 13.3515 13.3857 13.4247 14.0894 14.1504 14.3272 14.6163 14.9817 15.2744 32.3245 32.4272 39.9224 40.0243 40.8551 40.9108 k = 0.4375 0.1875 0.1875 ( 140 PWs) bands (ev): 9.3978 9.4007 12.4374 13.0808 13.2940 13.5955 13.9280 14.3052 14.5971 14.8607 15.2792 15.5523 30.4599 30.5866 38.4696 38.5099 38.5254 38.5774 k = 0.5625 0.1875 0.1875 ( 136 PWs) bands (ev): 10.4009 10.4974 12.1502 12.7562 13.1563 13.7493 13.8536 14.5524 15.0748 15.3566 15.7988 15.9833 28.8588 28.9976 36.0254 36.0267 36.4105 36.4558 k = 0.6875 0.1875 0.1875 ( 136 PWs) bands (ev): 11.0145 11.2673 11.8520 12.4335 13.2982 13.8614 14.1754 14.8637 15.2130 15.9705 16.6526 17.1393 27.5389 27.6761 32.5137 32.5806 34.7616 34.7913 k = 0.8125 0.1875 0.1875 ( 133 PWs) bands (ev): 11.1506 11.5015 11.6084 12.1907 13.6801 14.2718 14.5145 15.1834 15.2437 16.0410 18.4634 18.7832 26.5365 26.6621 29.1461 29.2680 33.6037 33.6180 k = 0.3125 0.3125 0.1875 ( 141 PWs) bands (ev): 9.0539 9.0562 12.7056 13.3303 13.3382 13.4139 14.0166 14.1056 14.3847 14.8155 15.0679 15.5061 30.1635 30.2999 38.4234 38.4431 42.1840 42.2309 k = 0.3125 0.4375 0.1875 ( 140 PWs) bands (ev): 9.8900 9.9596 12.6549 13.1982 13.2212 13.4980 13.8326 14.1694 14.5782 15.2189 15.2856 15.9125 28.3023 28.4675 36.7166 36.7315 40.4913 40.5239 k = 0.4375 0.1875 0.3125 ( 140 PWs) bands (ev): 9.8900 9.9596 12.6549 13.1982 13.2212 13.4980 13.8326 14.1694 14.5782 15.2189 15.2856 15.9125 28.3023 28.4675 36.7166 36.7315 40.4913 40.5239 k = 0.3125 0.5625 0.1875 ( 139 PWs) bands (ev): 10.6893 10.8885 12.4740 12.9808 12.9971 13.6168 13.7049 14.3668 14.9418 15.6726 15.9862 16.5864 26.7327 26.9174 35.1173 35.1463 37.1941 37.2264 k = 0.5625 0.1875 0.3125 ( 139 PWs) bands (ev): 10.6893 10.8885 12.4740 12.9808 12.9971 13.6168 13.7049 14.3668 14.9418 15.6726 15.9862 16.5864 26.7327 26.9174 35.1173 35.1463 37.1941 37.2264 k = 0.3125 0.6875 0.1875 ( 136 PWs) bands (ev): 11.2249 11.5756 12.1590 12.6433 12.9913 13.5896 13.9980 14.6524 15.1340 15.9057 17.4387 17.8764 25.4603 25.6511 32.9657 33.0163 34.3356 34.3972 k = 0.6875 0.1875 0.3125 ( 136 PWs) bands (ev): 11.2249 11.5756 12.1590 12.6433 12.9913 13.5896 13.9980 14.6524 15.1340 15.9057 17.4387 17.8764 25.4603 25.6511 32.9657 33.0163 34.3356 34.3972 k = 0.3125 0.8125 0.1875 ( 132 PWs) bands (ev): 11.4302 11.8535 11.8723 12.3787 13.1715 13.7686 14.3101 14.9470 15.1581 15.9696 19.4441 19.7430 24.5101 24.6946 29.6692 29.7762 33.2448 33.2919 k = 0.8125 0.1875 0.3125 ( 132 PWs) bands (ev): 11.4302 11.8535 11.8723 12.3787 13.1715 13.7686 14.3101 14.9470 15.1581 15.9696 19.4441 19.7430 24.5101 24.6946 29.6692 29.7762 33.2448 33.2919 k = 0.4375 0.4375 0.1875 ( 137 PWs) bands (ev): 10.4533 10.6410 12.8864 13.0797 13.3633 13.4731 13.6954 14.1118 14.5682 15.3159 15.8374 16.4839 26.4728 26.6755 35.0195 35.0568 41.0816 41.1426 k = 0.4375 0.5625 0.1875 ( 135 PWs) bands (ev): 10.9662 11.2950 12.7868 12.9521 13.2167 13.5615 13.6186 14.2473 14.7972 15.5607 16.8301 17.3488 24.9652 25.1987 33.5837 33.6359 38.1085 38.1301 k = 0.5625 0.1875 0.4375 ( 135 PWs) bands (ev): 10.9662 11.2950 12.7868 12.9521 13.2167 13.5615 13.6186 14.2473 14.7972 15.5607 16.8301 17.3488 24.9652 25.1987 33.5837 33.6359 38.1085 38.1301 k = 0.4375 0.6875 0.1875 ( 135 PWs) bands (ev): 11.3939 11.8370 12.3909 12.8111 12.8953 13.5003 13.8755 14.5009 15.0053 15.7957 18.4123 18.7729 23.7843 24.0375 32.4084 32.4678 34.3626 34.4251 k = 0.6875 0.1875 0.4375 ( 135 PWs) bands (ev): 11.3939 11.8370 12.3909 12.8111 12.8953 13.5003 13.8755 14.5009 15.0053 15.7957 18.4123 18.7729 23.7843 24.0375 32.4084 32.4678 34.3626 34.4251 k = 0.4375 0.8125 0.1875 ( 135 PWs) bands (ev): 11.7257 12.0563 12.2234 12.4793 12.8060 13.4168 14.1444 14.7539 15.0725 15.8983 20.4301 20.6747 23.0201 23.2802 30.4575 30.5448 32.0010 32.0766 k = 0.8125 0.1875 0.4375 ( 135 PWs) bands (ev): 11.7257 12.0563 12.2234 12.4793 12.8060 13.4168 14.1444 14.7539 15.0725 15.8983 20.4301 20.6747 23.0201 23.2802 30.4575 30.5448 32.0010 32.0766 k = 0.5625 0.5625 0.1875 ( 131 PWs) bands (ev): 11.2159 11.6493 12.6387 13.0855 13.0983 13.6522 13.6546 14.2766 14.8474 15.6328 17.9821 18.3717 23.5672 23.8462 32.2410 32.3087 38.8935 38.9393 k = 0.5625 0.6875 0.1875 ( 129 PWs) bands (ev): 11.4719 11.9742 12.3381 12.7367 13.0070 13.6041 13.8644 14.4861 14.9984 15.7988 19.4532 19.7188 22.6521 22.9620 31.2151 31.2944 35.4731 35.5209 k = 0.6875 0.1875 0.5625 ( 129 PWs) bands (ev): 11.4719 11.9742 12.3381 12.7367 13.0070 13.6041 13.8644 14.4861 14.9984 15.7988 19.4532 19.7188 22.6521 22.9620 31.2151 31.2944 35.4731 35.5209 k = 0.6875 0.6875 0.1875 ( 132 PWs) bands (ev): 11.4708 11.9819 12.1267 12.5234 13.0883 13.6981 14.0260 14.6603 15.0994 15.9010 19.8876 20.1383 22.7899 23.0672 30.2823 30.3770 35.8535 35.8867 k = 0.4375 0.3125 0.3125 ( 141 PWs) bands (ev): 10.1280 10.3089 13.1778 13.2066 13.3211 13.5853 13.8475 13.9791 14.9903 15.0038 15.6896 15.7307 26.1785 26.3947 38.7747 38.8933 40.2369 40.2941 k = 0.5625 0.3125 0.3125 ( 140 PWs) bands (ev): 10.6775 10.9960 12.8770 13.2028 13.3142 13.4602 13.7878 14.1117 15.1635 15.9249 16.0919 16.6157 24.6848 24.9336 36.9196 36.9618 38.3236 38.3720 k = 0.6875 0.3125 0.3125 ( 134 PWs) bands (ev): 11.1364 11.5720 12.4713 12.8847 13.1422 13.7086 13.7444 14.3549 15.2010 15.9807 17.8164 18.1797 23.5282 23.7981 33.6947 33.7366 36.8529 36.8927 k = 0.4375 0.4375 0.3125 ( 140 PWs) bands (ev): 10.4051 10.7096 13.1457 13.2506 13.7351 13.7589 13.8867 14.0476 14.8923 15.5225 15.6488 16.1691 24.4534 24.7247 37.8912 37.9525 40.8341 40.8485 k = 0.4375 0.5625 0.3125 ( 136 PWs) bands (ev): 10.7190 11.1211 12.9554 13.3409 13.4956 13.6751 13.9721 14.1127 15.0757 15.8427 16.5971 17.0356 23.1488 23.4710 36.6166 36.6435 38.8116 38.8463 k = 0.5625 0.3125 0.4375 ( 136 PWs) bands (ev): 10.7190 11.1211 12.9554 13.3409 13.4956 13.6751 13.9721 14.1127 15.0757 15.8427 16.5971 17.0356 23.1488 23.4710 36.6166 36.6435 38.8116 38.8463 k = 0.4375 0.6875 0.3125 ( 134 PWs) bands (ev): 11.0798 11.5464 12.6492 13.0993 13.3446 13.5680 13.8950 14.1986 15.1218 15.9053 18.1783 18.4665 22.3706 22.7244 34.4993 34.5202 36.3837 36.4405 k = 0.6875 0.3125 0.4375 ( 134 PWs) bands (ev): 11.0798 11.5464 12.6492 13.0993 13.3446 13.5680 13.8950 14.1986 15.1218 15.9053 18.1783 18.4665 22.3706 22.7244 34.4993 34.5202 36.3837 36.4405 k = 0.5625 0.5625 0.3125 ( 131 PWs) bands (ev): 10.8493 11.2978 12.8677 13.3746 13.3920 13.7181 14.0035 14.1806 15.0778 15.8558 17.4194 17.7366 22.2590 22.6374 35.5451 35.5511 39.6702 39.7157 k = 0.5625 0.4375 0.4375 ( 135 PWs) bands (ev): 10.5820 11.0131 13.0613 13.1984 13.6619 13.8286 14.3820 14.7406 15.1721 15.9462 16.2684 16.6262 22.1540 22.5551 38.0022 38.1163 40.7938 40.9391 the Fermi energy is 15.7818 ev ! total energy = -85.89190276 Ry Harris-Foulkes estimate = -85.89190274 Ry estimated scf accuracy < 2.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 0.62074269 Ry hartree contribution = 14.41281173 Ry xc contribution = -30.17117280 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00024003 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file ni.save PWSCF : 40.39s CPU time, 43.21s wall time init_run : 2.49s CPU electrons : 37.35s CPU Called by init_run: wfcinit : 1.24s CPU potinit : 0.08s CPU Called by electrons: c_bands : 30.52s CPU ( 8 calls, 3.815 s avg) sum_band : 5.82s CPU ( 8 calls, 0.728 s avg) v_of_rho : 0.55s CPU ( 9 calls, 0.061 s avg) newd : 0.35s CPU ( 9 calls, 0.039 s avg) mix_rho : 0.06s CPU ( 8 calls, 0.008 s avg) Called by c_bands: init_us_2 : 0.25s CPU ( 2448 calls, 0.000 s avg) cegterg : 29.62s CPU ( 1152 calls, 0.026 s avg) Called by *egterg: h_psi : 21.97s CPU ( 3665 calls, 0.006 s avg) s_psi : 0.52s CPU ( 3665 calls, 0.000 s avg) g_psi : 0.48s CPU ( 2369 calls, 0.000 s avg) cdiaghg : 4.64s CPU ( 3521 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.53s CPU ( 3665 calls, 0.000 s avg) General routines calbec : 0.59s CPU ( 4817 calls, 0.000 s avg) cft3s : 19.33s CPU ( 253595 calls, 0.000 s avg) interpolate : 0.09s CPU ( 68 calls, 0.001 s avg) davcio : 0.02s CPU ( 3600 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/fe.total.out0000644000700200004540000014756712053145630022553 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 9:45 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 2 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 32 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0312500 k( 2) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 4) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.2500000), wk = 0.0312500 k( 6) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0312500 k( 7) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0312500 k( 8) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500 k( 9) = ( 0.0000000 -0.2500000 -0.5000000), wk = 0.0312500 k( 10) = ( -0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 11) = ( 0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 12) = ( 0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 13) = ( -0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 14) = ( 0.0000000 0.5000000 -0.2500000), wk = 0.0312500 k( 15) = ( 0.0000000 0.5000000 0.2500000), wk = 0.0312500 k( 16) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 17) = ( 0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 18) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0312500 k( 19) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0312500 k( 20) = ( 0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 21) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.0312500 k( 22) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 23) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500 k( 24) = ( -0.2500000 -0.7500000 0.2500000), wk = 0.0312500 k( 25) = ( 0.7500000 -0.2500000 0.2500000), wk = 0.0312500 k( 26) = ( -0.5000000 -0.5000000 -0.2500000), wk = 0.0312500 k( 27) = ( 0.2500000 0.5000000 0.5000000), wk = 0.0312500 k( 28) = ( -0.2500000 0.5000000 -0.5000000), wk = 0.0312500 k( 29) = ( -0.5000000 0.2500000 -0.5000000), wk = 0.0312500 k( 30) = ( -0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 31) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0312500 k( 32) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0312500 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 318, 16) NL pseudopotentials 0.04 Mb ( 159, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.31 Mb ( 318, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 External magnetic field: -1.40219 -1.85888 -2.32843 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 1.418059 1.881828 2.356304 magnetization/charge: 0.212774 0.282360 0.353553 polar coord.: r, theta, phi [deg] : 3.332318 45.000000 53.000000 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 1.06 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 13.8 External magnetic field: 0.13056 0.17370 0.21696 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.446359 magnetization : 0.234110 0.311683 0.390180 magnetization/charge: 0.036317 0.048350 0.060527 polar coord.: r, theta, phi [deg] : 0.551538 44.972956 53.089266 ============================================================================== total cpu time spent up to now is 3.88 secs total energy = -49.81719842 Ry Harris-Foulkes estimate = -91.11127859 Ry estimated scf accuracy < 2.17499733 Ry total magnetization = -3.41 -4.52 -5.66 Bohr mag/cell absolute magnetization = 8.00 Bohr mag/cell Magnetic field = 0.1305631 0.1736956 0.2169555 Ry lambda = 0.50 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.4 External magnetic field: -0.20589 -0.27371 -0.34184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.429165 magnetization : 0.514219 0.684341 0.855520 magnetization/charge: 0.079982 0.106443 0.133069 polar coord.: r, theta, phi [deg] : 1.210230 45.016233 53.078564 ============================================================================== total cpu time spent up to now is 5.77 secs total energy = -54.06914925 Ry Harris-Foulkes estimate = -56.28645457 Ry estimated scf accuracy < 0.19951793 Ry total magnetization = 1.60 2.13 2.66 Bohr mag/cell absolute magnetization = 3.77 Bohr mag/cell Magnetic field = -0.2058912 -0.2737109 -0.3418413 Ry lambda = 0.50 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 4.6 External magnetic field: 0.07343 0.09771 0.12206 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407114 magnetization : 0.264599 0.352501 0.440964 magnetization/charge: 0.041298 0.055017 0.068824 polar coord.: r, theta, phi [deg] : 0.623473 44.986775 53.106828 ============================================================================== total cpu time spent up to now is 6.90 secs total energy = -53.83961407 Ry Harris-Foulkes estimate = -57.46785425 Ry estimated scf accuracy < 0.65781043 Ry total magnetization = -1.99 -2.64 -3.30 Bohr mag/cell absolute magnetization = 4.67 Bohr mag/cell Magnetic field = 0.0734254 0.0977135 0.1220605 Ry lambda = 0.50 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 1.1 External magnetic field: -0.00170 -0.00227 -0.00286 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412627 magnetization : 0.330583 0.440363 0.550686 magnetization/charge: 0.051552 0.068671 0.085875 polar coord.: r, theta, phi [deg] : 0.778756 44.997596 53.104226 ============================================================================== total cpu time spent up to now is 7.73 secs total energy = -55.41631842 Ry Harris-Foulkes estimate = -55.87270614 Ry estimated scf accuracy < 0.14273868 Ry total magnetization = 1.36 1.81 2.26 Bohr mag/cell absolute magnetization = 3.19 Bohr mag/cell Magnetic field = -0.0017029 -0.0022734 -0.0028561 Ry lambda = 0.50 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.78E-03, avg # of iterations = 1.0 External magnetic field: 0.00018 0.00025 0.00030 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411859 magnetization : 0.328654 0.437792 0.547462 magnetization/charge: 0.051257 0.068278 0.085383 polar coord.: r, theta, phi [deg] : 0.774203 44.998111 53.104084 ============================================================================== total cpu time spent up to now is 8.55 secs total energy = -55.54600526 Ry Harris-Foulkes estimate = -55.54495957 Ry estimated scf accuracy < 0.00269714 Ry total magnetization = 0.41 0.54 0.68 Bohr mag/cell absolute magnetization = 0.99 Bohr mag/cell Magnetic field = 0.0001828 0.0002494 0.0003005 Ry lambda = 0.50 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 4.4 External magnetic field: -0.03679 -0.04793 -0.05955 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417589 magnetization : 0.353383 0.469731 0.587068 magnetization/charge: 0.055065 0.073194 0.091478 polar coord.: r, theta, phi [deg] : 0.830768 45.036438 53.045463 ============================================================================== total cpu time spent up to now is 9.73 secs total energy = -55.52131512 Ry Harris-Foulkes estimate = -55.54670384 Ry estimated scf accuracy < 0.00468207 Ry total magnetization = 0.47 0.62 0.77 Bohr mag/cell absolute magnetization = 1.12 Bohr mag/cell Magnetic field = -0.0367887 -0.0479304 -0.0595532 Ry lambda = 0.50 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.6 External magnetic field: -0.03764 -0.04948 -0.06163 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417726 magnetization : 0.352726 0.469270 0.586622 magnetization/charge: 0.054961 0.073121 0.091407 polar coord.: r, theta, phi [deg] : 0.829913 45.020994 53.069705 ============================================================================== total cpu time spent up to now is 10.60 secs total energy = -55.65322494 Ry Harris-Foulkes estimate = -55.64638115 Ry estimated scf accuracy < 0.15316408 Ry total magnetization = -0.72 -0.93 -1.16 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell Magnetic field = -0.0376400 -0.0494799 -0.0616256 Ry lambda = 0.50 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.5 External magnetic field: -0.03952 -0.04999 -0.06161 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417781 magnetization : 0.353514 0.468445 0.584973 magnetization/charge: 0.055084 0.072992 0.091149 polar coord.: r, theta, phi [deg] : 0.828617 45.092595 52.959759 ============================================================================== total cpu time spent up to now is 11.46 secs total energy = -55.65613461 Ry Harris-Foulkes estimate = -55.65329192 Ry estimated scf accuracy < 0.15844683 Ry total magnetization = -0.73 -0.96 -1.19 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell Magnetic field = -0.0395191 -0.0499928 -0.0616137 Ry lambda = 0.50 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 2.0 External magnetic field: -0.07154 -0.09400 -0.11704 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.424346 magnetization : 0.332309 0.441753 0.552006 magnetization/charge: 0.051727 0.068762 0.085924 polar coord.: r, theta, phi [deg] : 0.781208 45.040569 53.047634 ============================================================================== total cpu time spent up to now is 12.38 secs total energy = -55.86918235 Ry Harris-Foulkes estimate = -55.65618287 Ry estimated scf accuracy < 0.16055203 Ry total magnetization = -0.78 -0.96 -1.18 Bohr mag/cell absolute magnetization = 1.71 Bohr mag/cell Magnetic field = -0.0715409 -0.0940001 -0.1170410 Ry lambda = 0.50 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.7 External magnetic field: -0.00267 -0.00356 -0.00447 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.416069 magnetization : 0.309664 0.412615 0.516018 magnetization/charge: 0.048264 0.064310 0.080426 polar coord.: r, theta, phi [deg] : 0.729669 44.992898 53.112121 ============================================================================== total cpu time spent up to now is 13.25 secs total energy = -55.27821099 Ry Harris-Foulkes estimate = -55.92610569 Ry estimated scf accuracy < 0.34895371 Ry total magnetization = -1.39 -1.82 -2.26 Bohr mag/cell absolute magnetization = 3.22 Bohr mag/cell Magnetic field = -0.0026686 -0.0035650 -0.0044662 Ry lambda = 0.50 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.2 External magnetic field: 0.02313 0.03101 0.03870 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.420424 magnetization : 0.234181 0.312007 0.390228 magnetization/charge: 0.036474 0.048596 0.060779 polar coord.: r, theta, phi [deg] : 0.551785 44.991664 53.109498 ============================================================================== total cpu time spent up to now is 14.09 secs total energy = -55.55076122 Ry Harris-Foulkes estimate = -55.54455976 Ry estimated scf accuracy < 0.00238256 Ry total magnetization = 0.34 0.45 0.57 Bohr mag/cell absolute magnetization = 0.83 Bohr mag/cell Magnetic field = 0.0231299 0.0310069 0.0387022 Ry lambda = 0.50 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.4 External magnetic field: 0.02685 0.03558 0.04472 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.421618 magnetization : 0.238092 0.317519 0.396847 magnetization/charge: 0.037077 0.049445 0.061799 polar coord.: r, theta, phi [deg] : 0.561244 45.001701 53.135540 ============================================================================== total cpu time spent up to now is 14.95 secs total energy = -55.59907053 Ry Harris-Foulkes estimate = -55.58730238 Ry estimated scf accuracy < 0.05335082 Ry total magnetization = 0.82 1.09 1.36 Bohr mag/cell absolute magnetization = 1.93 Bohr mag/cell Magnetic field = 0.0268471 0.0355772 0.0447198 Ry lambda = 0.50 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: -0.00483 -0.01315 -0.00769 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.398695 magnetization : 0.299340 0.405420 0.498605 magnetization/charge: 0.046781 0.063360 0.077923 polar coord.: r, theta, phi [deg] : 0.708926 45.305641 53.559882 ============================================================================== total cpu time spent up to now is 15.77 secs total energy = -55.50151595 Ry Harris-Foulkes estimate = -55.59960381 Ry estimated scf accuracy < 0.06121387 Ry total magnetization = 0.87 1.16 1.45 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell Magnetic field = -0.0048328 -0.0131529 -0.0076870 Ry lambda = 0.50 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 4.5 External magnetic field: -0.01355 -0.00193 -0.02473 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.388987 magnetization : 0.327511 0.421315 0.548138 magnetization/charge: 0.051262 0.065944 0.085794 polar coord.: r, theta, phi [deg] : 0.765000 44.232080 52.140171 ============================================================================== total cpu time spent up to now is 16.94 secs total energy = -55.54402034 Ry Harris-Foulkes estimate = -55.54629533 Ry estimated scf accuracy < 0.00348325 Ry total magnetization = 0.28 0.12 0.48 Bohr mag/cell absolute magnetization = 0.62 Bohr mag/cell Magnetic field = -0.0135492 -0.0019297 -0.0247304 Ry lambda = 0.50 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.5 External magnetic field: -0.00845 -0.01090 -0.01381 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402992 magnetization : 0.308075 0.410611 0.513295 magnetization/charge: 0.048114 0.064128 0.080165 polar coord.: r, theta, phi [deg] : 0.725936 45.002169 53.119680 ============================================================================== total cpu time spent up to now is 17.96 secs total energy = -55.54203379 Ry Harris-Foulkes estimate = -55.55253376 Ry estimated scf accuracy < 0.02036945 Ry total magnetization = 0.01 0.62 -0.06 Bohr mag/cell absolute magnetization = 0.71 Bohr mag/cell Magnetic field = -0.0084466 -0.0108951 -0.0138116 Ry lambda = 0.50 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.9 External magnetic field: 0.00089 0.00115 0.00147 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407166 magnetization : 0.295224 0.393804 0.492153 magnetization/charge: 0.046077 0.061463 0.076813 polar coord.: r, theta, phi [deg] : 0.696028 45.001448 53.142113 ============================================================================== total cpu time spent up to now is 19.07 secs total energy = -55.53935261 Ry Harris-Foulkes estimate = -55.54667235 Ry estimated scf accuracy < 0.00334793 Ry total magnetization = 0.15 0.22 0.26 Bohr mag/cell absolute magnetization = 0.44 Bohr mag/cell Magnetic field = 0.0008882 0.0011456 0.0014738 Ry lambda = 0.50 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00110 -0.00206 -0.00389 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405905 magnetization : 0.297714 0.400363 0.501687 magnetization/charge: 0.046475 0.062499 0.078316 polar coord.: r, theta, phi [deg] : 0.707541 44.841702 53.365121 ============================================================================== total cpu time spent up to now is 19.88 secs total energy = -55.54493687 Ry Harris-Foulkes estimate = -55.54664927 Ry estimated scf accuracy < 0.00457259 Ry total magnetization = 0.46 0.61 0.76 Bohr mag/cell absolute magnetization = 1.09 Bohr mag/cell Magnetic field = 0.0011015 -0.0020617 -0.0038891 Ry lambda = 0.50 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00570 0.00759 0.00958 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409892 magnetization : 0.292112 0.389338 0.486565 magnetization/charge: 0.045572 0.060740 0.075908 polar coord.: r, theta, phi [deg] : 0.688229 45.010210 53.119868 ============================================================================== total cpu time spent up to now is 20.70 secs total energy = -55.54826949 Ry Harris-Foulkes estimate = -55.54547869 Ry estimated scf accuracy < 0.00206181 Ry total magnetization = 0.48 0.51 0.60 Bohr mag/cell absolute magnetization = 0.94 Bohr mag/cell Magnetic field = 0.0057047 0.0075894 0.0095835 Ry lambda = 0.50 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: 0.00585 0.00740 0.00994 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411506 magnetization : 0.290732 0.387886 0.484242 magnetization/charge: 0.045345 0.060498 0.075527 polar coord.: r, theta, phi [deg] : 0.685179 45.029953 53.147364 ============================================================================== total cpu time spent up to now is 21.52 secs total energy = -55.55235635 Ry Harris-Foulkes estimate = -55.55229075 Ry estimated scf accuracy < 0.01362194 Ry total magnetization = 0.58 0.78 0.97 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = 0.0058541 0.0074037 0.0099359 Ry lambda = 0.50 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00400 -0.00517 -0.00646 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409331 magnetization : 0.311213 0.414589 0.518106 magnetization/charge: 0.048556 0.064685 0.080836 polar coord.: r, theta, phi [deg] : 0.732920 45.016154 53.106127 ============================================================================== total cpu time spent up to now is 22.33 secs total energy = -55.53888241 Ry Harris-Foulkes estimate = -55.55236436 Ry estimated scf accuracy < 0.01371205 Ry total magnetization = 0.59 0.77 0.98 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = -0.0040007 -0.0051708 -0.0064627 Ry lambda = 0.50 Ry iteration # 21 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00296 -0.00379 -0.00470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409511 magnetization : 0.308289 0.410728 0.513276 magnetization/charge: 0.048099 0.064081 0.080080 polar coord.: r, theta, phi [deg] : 0.726080 45.015607 53.108389 ============================================================================== total cpu time spent up to now is 23.15 secs total energy = -55.54492450 Ry Harris-Foulkes estimate = -55.54483130 Ry estimated scf accuracy < 0.00019795 Ry total magnetization = 0.32 0.43 0.54 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell Magnetic field = -0.0029579 -0.0037879 -0.0047030 Ry lambda = 0.50 Ry iteration # 22 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00293 -0.00371 -0.00470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409629 magnetization : 0.309369 0.412143 0.515130 magnetization/charge: 0.048266 0.064301 0.080368 polar coord.: r, theta, phi [deg] : 0.728649 45.011463 53.106846 ============================================================================== total cpu time spent up to now is 23.96 secs total energy = -55.54500424 Ry Harris-Foulkes estimate = -55.54500779 Ry estimated scf accuracy < 0.00058524 Ry total magnetization = 0.35 0.48 0.60 Bohr mag/cell absolute magnetization = 0.87 Bohr mag/cell Magnetic field = -0.0029320 -0.0037090 -0.0047039 Ry lambda = 0.50 Ry iteration # 23 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00563 -0.00754 -0.00921 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411389 magnetization : 0.314560 0.419368 0.523848 magnetization/charge: 0.049063 0.065410 0.081706 polar coord.: r, theta, phi [deg] : 0.741104 45.020934 53.127123 ============================================================================== total cpu time spent up to now is 24.77 secs total energy = -55.54429286 Ry Harris-Foulkes estimate = -55.54500646 Ry estimated scf accuracy < 0.00052461 Ry total magnetization = 0.36 0.48 0.60 Bohr mag/cell absolute magnetization = 0.88 Bohr mag/cell Magnetic field = -0.0056337 -0.0075434 -0.0092126 Ry lambda = 0.50 Ry iteration # 24 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00648 -0.00850 -0.01072 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412476 magnetization : 0.316421 0.421768 0.527153 magnetization/charge: 0.049345 0.065773 0.082207 polar coord.: r, theta, phi [deg] : 0.745588 45.006175 53.121779 ============================================================================== total cpu time spent up to now is 25.59 secs total energy = -55.54506596 Ry Harris-Foulkes estimate = -55.54489799 Ry estimated scf accuracy < 0.00019844 Ry total magnetization = 0.27 0.36 0.46 Bohr mag/cell absolute magnetization = 0.69 Bohr mag/cell Magnetic field = -0.0064840 -0.0085032 -0.0107224 Ry lambda = 0.50 Ry iteration # 25 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00476 -0.00674 -0.00778 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412103 magnetization : 0.312689 0.417276 0.520893 magnetization/charge: 0.048765 0.065076 0.081236 polar coord.: r, theta, phi [deg] : 0.737037 45.029746 53.153724 ============================================================================== total cpu time spent up to now is 26.40 secs total energy = -55.54458686 Ry Harris-Foulkes estimate = -55.54512274 Ry estimated scf accuracy < 0.00062387 Ry total magnetization = 0.24 0.33 0.41 Bohr mag/cell absolute magnetization = 0.64 Bohr mag/cell Magnetic field = -0.0047560 -0.0067376 -0.0077844 Ry lambda = 0.50 Ry iteration # 26 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00429 -0.00595 -0.00748 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412276 magnetization : 0.312249 0.416552 0.520673 magnetization/charge: 0.048695 0.064962 0.081199 polar coord.: r, theta, phi [deg] : 0.736285 44.995474 53.144649 ============================================================================== total cpu time spent up to now is 27.21 secs total energy = -55.54476851 Ry Harris-Foulkes estimate = -55.54479900 Ry estimated scf accuracy < 0.00001940 Ry total magnetization = 0.30 0.38 0.50 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell Magnetic field = -0.0042892 -0.0059546 -0.0074779 Ry lambda = 0.50 Ry iteration # 27 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.43E-07, avg # of iterations = 1.0 External magnetic field: -0.00456 -0.00602 -0.00746 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412277 magnetization : 0.312510 0.416626 0.520661 magnetization/charge: 0.048736 0.064973 0.081198 polar coord.: r, theta, phi [deg] : 0.736429 45.008028 53.126525 ============================================================================== total cpu time spent up to now is 28.02 secs total energy = -55.54478186 Ry Harris-Foulkes estimate = -55.54478302 Ry estimated scf accuracy < 0.00000361 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell Magnetic field = -0.0045559 -0.0060233 -0.0074571 Ry lambda = 0.50 Ry iteration # 28 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.51E-08, avg # of iterations = 1.0 External magnetic field: -0.00504 -0.00673 -0.00840 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412419 magnetization : 0.313450 0.417967 0.522412 magnetization/charge: 0.048882 0.065181 0.081469 polar coord.: r, theta, phi [deg] : 0.738825 45.001707 53.132352 ============================================================================== total cpu time spent up to now is 28.84 secs total energy = -55.54479331 Ry Harris-Foulkes estimate = -55.54478317 Ry estimated scf accuracy < 0.00000105 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0050369 -0.0067347 -0.0083993 Ry lambda = 0.50 Ry iteration # 29 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.1 External magnetic field: -0.00450 -0.00600 -0.00750 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412180 magnetization : 0.312242 0.416335 0.520412 magnetization/charge: 0.048695 0.064929 0.081160 polar coord.: r, theta, phi [deg] : 0.735974 45.000040 53.130943 ============================================================================== total cpu time spent up to now is 29.66 secs total energy = -55.54475926 Ry Harris-Foulkes estimate = -55.54481715 Ry estimated scf accuracy < 0.00004232 Ry total magnetization = 0.29 0.38 0.48 Bohr mag/cell absolute magnetization = 0.73 Bohr mag/cell Magnetic field = -0.0044952 -0.0059989 -0.0074956 Ry lambda = 0.50 Ry iteration # 30 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.2 External magnetic field: -0.00454 -0.00606 -0.00757 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412160 magnetization : 0.312303 0.416412 0.520505 magnetization/charge: 0.048705 0.064941 0.081175 polar coord.: r, theta, phi [deg] : 0.736109 45.000351 53.130648 ============================================================================== total cpu time spent up to now is 30.48 secs total energy = -55.54478368 Ry Harris-Foulkes estimate = -55.54478295 Ry estimated scf accuracy < 0.00000047 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045394 -0.0060571 -0.0075659 Ry lambda = 0.50 Ry iteration # 31 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.93E-09, avg # of iterations = 1.0 External magnetic field: -0.00455 -0.00607 -0.00758 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412137 magnetization : 0.312332 0.416446 0.520550 magnetization/charge: 0.048709 0.064946 0.081182 polar coord.: r, theta, phi [deg] : 0.736173 45.000319 53.130302 ============================================================================== total cpu time spent up to now is 31.30 secs total energy = -55.54478407 Ry Harris-Foulkes estimate = -55.54478383 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045503 -0.0060687 -0.0075822 Ry lambda = 0.50 Ry iteration # 32 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 3.7 External magnetic field: -0.00452 -0.00597 -0.00758 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412140 magnetization : 0.312301 0.416347 0.520551 magnetization/charge: 0.048705 0.064931 0.081182 polar coord.: r, theta, phi [deg] : 0.736105 44.994875 53.126531 ============================================================================== total cpu time spent up to now is 32.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 148 PWs) bands (ev): 7.0426 7.2421 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1707 36.3037 38.5017 38.5020 k = 0.0000-0.2500 0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9091 34.1124 k =-0.2500 0.2500 0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.7500-0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.5000-0.5000 0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k = 0.0000 0.0000 0.7500 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8951 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.2500 0.0000 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2421 12.7594 12.7594 13.0874 13.0874 13.1316 13.4838 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5016 38.5017 k = 0.0000 0.2500 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2421 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1707 36.3037 38.5016 38.5016 k = 0.0000-0.2500-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k =-0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k =-0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9091 34.1123 k = 0.0000 0.5000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9091 34.1124 k = 0.0000 0.5000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k =-0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.5000 0.0000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.5000 0.0000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2499 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9862 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500-0.2500-0.2500 ( 159 PWs) bands (ev): 9.2499 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9862 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2499 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9862 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k = 0.2500 0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8007 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.2500-0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8007 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.7500-0.2500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.5000-0.5000-0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k = 0.2500 0.5000 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5330 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k =-0.2500 0.5000-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5330 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k =-0.5000 0.2500-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k =-0.5000-0.2500 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k = 0.7500 0.0000 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.0000 0.7500 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8951 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 the Fermi energy is 14.8546 ev ! total energy = -55.54478331 Ry Harris-Foulkes estimate = -55.54478408 Ry estimated scf accuracy < 8.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.97517963 Ry hartree contribution = 6.02996769 Ry xc contribution = -25.89291721 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = -0.01240136 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045179 -0.0059660 -0.0075829 Ry lambda = 0.50 Ry convergence has been achieved in 32 iterations Writing output data file fe.save PWSCF : 32.56s CPU time, 33.61s wall time init_run : 1.00s CPU electrons : 31.34s CPU Called by init_run: wfcinit : 0.24s CPU potinit : 0.02s CPU Called by electrons: c_bands : 23.20s CPU ( 32 calls, 0.725 s avg) sum_band : 6.39s CPU ( 32 calls, 0.200 s avg) v_of_rho : 0.28s CPU ( 33 calls, 0.008 s avg) newd : 0.79s CPU ( 33 calls, 0.024 s avg) mix_rho : 0.24s CPU ( 32 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 2080 calls, 0.000 s avg) cegterg : 22.30s CPU ( 1024 calls, 0.022 s avg) Called by *egterg: h_psi : 15.89s CPU ( 3376 calls, 0.005 s avg) s_psi : 0.44s CPU ( 3376 calls, 0.000 s avg) g_psi : 0.41s CPU ( 2320 calls, 0.000 s avg) cdiaghg : 3.35s CPU ( 3344 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.44s CPU ( 3376 calls, 0.000 s avg) General routines calbec : 0.54s CPU ( 4400 calls, 0.000 s avg) cft3s : 14.65s CPU ( 187911 calls, 0.000 s avg) interpolate : 0.24s CPU ( 260 calls, 0.001 s avg) davcio : 0.01s CPU ( 3104 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example06/reference/ni.band.out0000644000700200004540000002606612053145630022336 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:56:48 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Noncollinear calculation without spin-orbit celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pbe-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0238095 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0238095 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0238095 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0238095 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0238095 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0238095 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0238095 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0238095 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0238095 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0238095 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0119048 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0119048 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0119048 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0119048 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0119048 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0119048 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0119048 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0119048 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0119048 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0119048 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 288, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.14 Mb ( 288, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 2, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000016 0.000000 The potential is recalculated from file : ni.save/charge-density.dat it, count: 1 0 0 1.000000 2.000000 3.000000 Starting wfc are 12 atomic wfcs total cpu time spent up to now is 1.00 secs per-process dynamical memory: 10.2 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 6.6 total cpu time spent up to now is 1.62 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 6.1941 6.2493 13.1079 13.1079 13.1079 13.8717 13.8717 13.8717 k = 0.0000 0.0000 0.1000 band energies (ev): 6.3333 6.3884 13.0550 13.1487 13.1487 13.8143 13.9139 13.9139 k = 0.0000 0.0000 0.2000 band energies (ev): 6.7447 6.7997 12.9031 13.2699 13.2699 13.6496 14.0391 14.0391 k = 0.0000 0.0000 0.3000 band energies (ev): 7.4081 7.4613 12.6704 13.3979 13.4668 13.4668 14.0513 14.2430 k = 0.0000 0.0000 0.4000 band energies (ev): 8.2799 8.3248 12.3850 13.0900 13.7312 13.7312 13.8524 14.3989 k = 0.0000 0.0000 0.5000 band energies (ev): 9.2675 9.2829 12.0765 12.7582 13.7748 14.0479 14.0479 14.2671 k = 0.0000 0.0000 0.6000 band energies (ev): 10.1125 10.1802 11.7765 12.4367 14.0515 14.3940 14.3940 14.4314 k = 0.0000 0.0000 0.7000 band energies (ev): 10.5626 10.7589 11.5128 12.1547 14.7367 14.7367 14.9254 15.0650 k = 0.0000 0.0000 0.8000 band energies (ev): 10.6754 10.9648 11.3080 11.9362 15.0332 15.0332 15.1551 15.7830 k = 0.0000 0.0000 0.9000 band energies (ev): 10.6623 10.9933 11.1786 11.7983 15.2133 15.2372 15.2372 15.8433 k = 0.0000 0.0000 1.0000 band energies (ev): 10.6467 10.9889 11.1345 11.7514 15.2334 15.3102 15.3102 15.8641 k = 0.0000 0.0000 0.0000 band energies (ev): 6.1941 6.2493 13.1079 13.1079 13.1079 13.8717 13.8717 13.8717 k = 0.0000 0.1000 0.1000 band energies (ev): 6.4713 6.5264 13.0260 13.1675 13.1842 13.7804 13.9345 13.9491 k = 0.0000 0.2000 0.2000 band energies (ev): 7.2772 7.3300 12.8171 13.3378 13.3392 13.5465 14.0848 14.1152 k = 0.0000 0.3000 0.3000 band energies (ev): 8.5257 8.5637 12.5728 13.2690 13.3575 13.6029 14.0383 14.0406 k = 0.0000 0.4000 0.4000 band energies (ev): 10.0093 10.0305 12.4029 13.0655 13.1376 13.7438 13.9277 13.9278 k = 0.0000 0.5000 0.5000 band energies (ev): 11.2358 11.4195 12.4023 12.7496 13.0367 13.2790 13.9448 14.2768 k = 0.0000 0.6000 0.6000 band energies (ev): 11.7784 12.2100 12.2871 12.6364 12.7154 13.2522 14.1187 14.6130 k = 0.0000 0.7000 0.7000 band energies (ev): 11.6108 11.8759 12.1023 12.3306 13.1351 13.7473 14.4285 14.9039 k = 0.0000 0.8000 0.8000 band energies (ev): 11.1661 11.5091 11.5495 12.0920 13.8844 14.5209 14.7995 15.1257 k = 0.0000 0.9000 0.9000 band energies (ev): 10.7915 11.1405 11.2330 11.8466 14.7760 15.1105 15.2636 15.7332 k = 0.0000 1.0000 1.0000 band energies (ev): 10.6467 10.9889 11.1345 11.7514 15.2334 15.3102 15.3102 15.8641 k = 0.0000 0.0000 0.0000 band energies (ev): 6.1941 6.2493 13.1079 13.1079 13.1079 13.8717 13.8717 13.8717 k = 0.1000 0.1000 0.1000 band energies (ev): 6.6081 6.6630 13.0004 13.1995 13.1995 13.7493 13.9657 13.9657 k = 0.2000 0.2000 0.2000 band energies (ev): 7.7827 7.8283 12.7912 13.3520 13.3520 13.4894 14.0939 14.0939 k = 0.3000 0.3000 0.3000 band energies (ev): 9.3740 9.4143 12.9000 13.3227 13.3227 13.4450 13.9991 13.9991 k = 0.4000 0.4000 0.4000 band energies (ev): 10.3194 10.6302 13.1912 13.1912 13.8300 13.8300 14.1531 14.3129 k = 0.5000 0.5000 0.5000 band energies (ev): 10.4930 10.9230 13.1297 13.1297 13.7579 13.7579 15.1679 15.1679 Writing output data file ni.save PWSCF : 1.70s CPU time, 2.09s wall time init_run : 0.91s CPU electrons : 0.62s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.05s CPU Called by electrons: c_bands : 0.62s CPU v_of_rho : 0.04s CPU newd : 0.03s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.50s CPU ( 28 calls, 0.018 s avg) Called by *egterg: h_psi : 0.44s CPU ( 241 calls, 0.002 s avg) s_psi : 0.01s CPU ( 241 calls, 0.000 s avg) g_psi : 0.01s CPU ( 185 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 213 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 241 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 241 calls, 0.000 s avg) cft3 : 0.01s CPU ( 31 calls, 0.000 s avg) cft3s : 0.26s CPU ( 6644 calls, 0.000 s avg) interpolate : 0.00s CPU ( 4 calls, 0.001 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example06/run_example0000755000700200004540000004263112053145630020577 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems in the non-collinear case:" $ECHO "Fe, Cu, Ni, O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Cu.pz-d-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF Fe.pz-nd-rrkjus.UPF \ O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > fe.scf.in << EOF Fe Iron &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe...\c" $PW_COMMAND < fe.scf.in > fe.scf.out check_failure $? $ECHO " done" # band structure calculation cat > fe.band.in << EOF Fe Iron &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, nbnd = 16 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running band structure calculation for Fe...\c" $PW_COMMAND < fe.band.in > fe.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with penalty functional cat > fe.pen.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 85.0 angle2(1) = 0.0 constrained_magnetization='atomic' lambda = 1 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running scf calculation for Fe with penalty functional...\c" $PW_COMMAND < fe.pen.in > fe.pen.out check_failure $? $ECHO " done" # scf calculation with penalty functional (angle with z-axis constrained) cat > fe.angl.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 constrained_magnetization='atomic direction' lambda = 1 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe with constrained angle...\c" $PW_COMMAND < fe.angl.in > fe.angl.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # scf calculation with penalty functional (total magnetization constrained) cat > fe.total.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 45.0 angle2(1) = 53.0 constrained_magnetization='total' fixed_magnetization(1)=0.3, fixed_magnetization(2)=0.4, fixed_magnetization(3)=0.5, lambda = 0.5 / &electrons conv_thr = 1.0e-9 mixing_beta = 0.3 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Fe with constrained magnetization...\c" $PW_COMMAND < fe.total.in > fe.total.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > cu.scf.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.in > cu.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0, nbnd = 8 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.in > cu.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with cg diagonalization cat > cu.cg.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 diagonalization = 'cg' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu with cg diagonalization...\c" $PW_COMMAND < cu.cg.in > cu.cg.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with diis diagonalization cat > cu.diis.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 diagonalization = 'diis' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF # $ECHO " running the scf calculation for Cu with diis diagonalization...\c" # $PW_COMMAND < cu.diis.in > cu.diis.out # check_failure $? # $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.1 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.in > ni.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, nbnd = 8 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.in > ni.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation + relaxation of atoms cat > o2.relax.in << EOF &control calculation='relax' restart_mode='from_scratch',!'restart', ! pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='o2' / &system ibrav = 1, celldm(1) =7.50, nat= 2, ntyp= 2, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='gaussian', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 starting_magnetization(2) = 0.5 angle1(2) = 90.0 angle2(2) = 0.0 / &electrons mixing_beta = 0.2 / &ions / ATOMIC_SPECIES O1 16.0 O.pbe-rrkjus.UPF O2 16.0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O1 0.0 0.0 0.0 O2 0.20 0.20 0.20 K_POINTS 1 0.0 0.0 0.0 1.00 EOF $ECHO " running scf calculation with relax for oxygen molecule...\c" $PW_COMMAND < o2.relax.in > o2.relax.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example06/run_xml_example0000755000700200004540000010727412053145630021464 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems in the non-collinear case:" $ECHO "Fe, Cu, Ni, O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Cu.pz-d-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF Fe.pz-nd-rrkjus.UPF \ O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > fe.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 smearing marzari-vanderbilt 0.05 true 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe...\c" $PW_COMMAND < fe.scf.xml > fe.scf.out check_failure $? $ECHO " done" # band structure calculation cat > fe.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 16 true 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running band structure calculation for Fe...\c" $PW_COMMAND < fe.band.xml > fe.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with penalty functional cat > fe.pen.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 85.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 smearing marzari-vanderbilt 0.05 true 1.0 atomic 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running scf calculation for Fe with penalty functional...\c" $PW_COMMAND < fe.pen.xml > fe.pen.out check_failure $? $ECHO " done" # scf calculation with penalty functional (angle with z-axis constrained) cat > fe.angl.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 smearing marzari-vanderbilt 0.05 true 1.0 atomic direction 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe with constrained angle...\c" $PW_COMMAND < fe.angl.xml > fe.angl.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # scf calculation with penalty functional (total magnetization constrained) cat > fe.total.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 45.0 53.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.3 1.0e-9 smearing marzari-vanderbilt 0.05 true 0.3 0.4 0.5 0.5 total 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Fe with constrained magnetization...\c" $PW_COMMAND < fe.total.xml > fe.total.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > cu.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 0.7 1.0e-8 smearing methfessel-paxton 0.02 true 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.xml > cu.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 8 true 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.xml > cu.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with cg diagonalization cat > cu.cg.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 0.7 1.0e-8 cg smearing methfessel-paxton 0.02 true 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu with cg diagonalization...\c" $PW_COMMAND < cu.cg.xml > cu.cg.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with diis diagonalization cat > cu.diis.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 0.7 1.0e-8 diis smearing methfessel-paxton 0.02 true 8 8 8 0 0 0 EOF #$ECHO " running the scf calculation for Cu with diis diagonalization...\c" #$PW_COMMAND < cu.diis.xml > cu.diis.out #check_failure $? #$ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pbe-nd-rrkjus.UPF 0.1 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-8 smearing methfessel-paxton 0.02 true 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.xml > ni.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pbe-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 8 true 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.xml > ni.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation + relaxation of atoms cat > o2.relax.xml << EOF 0.0 0.0 0.0 0.0 0.0 16.0 O.pbe-rrkjus.UPF 0.5 90.0 0.0 16.0 O.pbe-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 0.20 0.20 0.20 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 smearing gaussian 0.05 true 0.0 0.0 0.0 1.00 EOF $ECHO " running scf calculation with relax for oxygen molecule...\c" $PW_COMMAND < o2.relax.xml > o2.relax.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example06/README0000644000700200004540000000550112053145630017205 0ustar marsamoscm This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems (Fe, Al, Cu, Ni, Fe) in the non collinear case. The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation for Fe (input=fe.scf.in, output=fe.scf.out). The number of computed bands is internally computed as equal to the number of electrons in the unit cell (16 in this case). 2) make a band structure calculation for Fe (input=fe.band.in, output=fe.band.out). The variable nbnd is explicitly set = 16. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 3) make a self-consistent calculation for Fe with penalty functional where each component of the magnetization of the two atoms is constrained (input=fe.pen.in, output=fe.pen.out). Iron is a metal : the smearing technique is used for the calculation of the Fermi energy (a value for the broadening degauss is provided). 4) make a self-consistent calculation for Fe with penalty functional where the angle between the direction of the magnetization of each atom and the z axis is constrained; mcons(1) = cosine of this angle. (input=fe.angl.in, output=fe.angl.out). 5) make a self-consistent calculation for Fe with penalty functional where each component of the total magnetization is constrained; fixed_magnetization(ipol) = value of the magnetization. (input=fe.total.in, output=fe.total.out). 6) make a self-consistent calculation for Cu (input=cu.scf.in, output=cu.scf.out). Copper is also a metal. In this case the tetrahedron method is used for the calculation of the Fermi energy. K-points are automatically generated. 7) make a band structure calculation for Cu (input=cu.band.in, output=cu.band.out). The variable nbnd is explicitly set = 8. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 8) make a self-consistent calculation for Cu (input=cu.cg.in, output=cu.cg.out) with cg diagonalization. 9) make a self-consistent calculation for Cu (input=cu.diis.in, output=cu.diis.out) with diis diagonalization. 10) make a self-consistent calculation for Ni (input=ni.scf.in, output=ni.scf.out). Nickel is a magnetic metal. A local-spin-density calculation is performed by specifying nspin=2 and an initial guess for the magnetization of each atomic species. This initial guess is used to build spin-up and spin-down starting charges from superposition of atomic charges. 11) make a band structure calculation for Ni (input=ni.band.in, output=ni.band.out). 12) make a scf calculation of molecular oxygen relaxing the atoms. espresso-5.0.2/PW/examples/example02/0000755000700200004540000000000012053440301016311 5ustar marsamoscmespresso-5.0.2/PW/examples/example02/reference/0000755000700200004540000000000012053440303020251 5ustar marsamoscmespresso-5.0.2/PW/examples/example02/reference/al001.mm.out0000644000700200004540000016304512053145630022245 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:18 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Message from routine setup: Dynamics, you should have no symmetries bravais-lattice index = 6 lattice parameter (a_0) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 gaussian broad. (Ry)= 0.0500 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 G cutoff = 34.1959 ( 6689 G-vectors) FFT grid: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 63 atomic wfcs total cpu time spent up to now is 0.16 secs per-process dynamical memory: 12.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.186E-03 0.000E+00 total cpu time spent up to now is 0.26 secs total energy = -28.81800044 Ry Harris-Foulkes estimate = -29.29242665 Ry estimated scf accuracy < 0.99707290 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 4.3 total cpu time spent up to now is 0.43 secs total energy = -27.55975725 Ry Harris-Foulkes estimate = -30.64244044 Ry estimated scf accuracy < 42.47180210 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 3.7 total cpu time spent up to now is 0.59 secs total energy = -29.21236680 Ry Harris-Foulkes estimate = -29.23827251 Ry estimated scf accuracy < 0.25038981 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.3 total cpu time spent up to now is 0.69 secs total energy = -29.21649581 Ry Harris-Foulkes estimate = -29.22410750 Ry estimated scf accuracy < 0.04585932 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.18E-04, avg # of iterations = 2.7 total cpu time spent up to now is 0.79 secs total energy = -29.21973500 Ry Harris-Foulkes estimate = -29.22006263 Ry estimated scf accuracy < 0.00336979 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-05, avg # of iterations = 4.7 total cpu time spent up to now is 0.93 secs total energy = -29.21993710 Ry Harris-Foulkes estimate = -29.21994846 Ry estimated scf accuracy < 0.00071042 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 total cpu time spent up to now is 1.03 secs total energy = -29.21995305 Ry Harris-Foulkes estimate = -29.21996870 Ry estimated scf accuracy < 0.00004258 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.7 total cpu time spent up to now is 1.15 secs total energy = -29.21995565 Ry Harris-Foulkes estimate = -29.21996337 Ry estimated scf accuracy < 0.00004475 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.25 secs total energy = -29.21995946 Ry Harris-Foulkes estimate = -29.21996144 Ry estimated scf accuracy < 0.00000791 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.77E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.35 secs total energy = -29.21996037 Ry Harris-Foulkes estimate = -29.21996051 Ry estimated scf accuracy < 0.00000043 Ry iteration # 11 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.06E-09, avg # of iterations = 2.3 total cpu time spent up to now is 1.46 secs total energy = -29.21996046 Ry Harris-Foulkes estimate = -29.21996053 Ry estimated scf accuracy < 0.00000028 Ry iteration # 12 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.56 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0787 -6.5548 -5.7170 -4.5660 -3.1469 -1.4536 0.5132 1.7886 4.3699 5.5247 5.9957 6.2184 6.7550 7.2259 7.4994 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7552 -4.2388 -3.4157 -2.2854 -0.8944 -0.2548 0.2241 0.8006 1.0427 2.1355 2.7203 3.5259 3.8936 5.1679 6.5174 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4876 -1.9829 -1.1747 -0.0654 1.2964 1.3319 1.7996 2.5508 2.7204 2.8087 3.4484 3.5990 4.1264 4.9123 4.9358 the Fermi energy is 3.4734 ev ! total energy = -29.21996045 Ry Harris-Foulkes estimate = -29.21996051 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 12 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01012519 atom 2 type 1 force = 0.00000000 0.00000000 -0.00111751 atom 3 type 1 force = 0.00000000 0.00000000 0.00254857 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00254857 atom 6 type 1 force = 0.00000000 0.00000000 0.00111751 atom 7 type 1 force = 0.00000000 0.00000000 -0.01012519 Total force = 0.014850 Total SCF correction = 0.000424 Damped Dynamics Calculation Entering Dynamics: iteration = 1 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.119434747 Al 0.000000000 0.000000000 -1.414421073 Al 0.500000000 0.500000000 -0.706632472 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.706632472 Al 0.000000000 0.000000000 1.414421073 Al 0.500000000 0.500000000 2.119434747 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000280 negative rho (up, down): 0.169E-05 0.000E+00 total cpu time spent up to now is 1.62 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.271E-06 0.000E+00 total cpu time spent up to now is 1.76 secs total energy = -29.22015925 Ry Harris-Foulkes estimate = -29.22017426 Ry estimated scf accuracy < 0.00003315 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 3.0 negative rho (up, down): 0.220E-06 0.000E+00 total cpu time spent up to now is 1.87 secs total energy = -29.22013537 Ry Harris-Foulkes estimate = -29.22020243 Ry estimated scf accuracy < 0.00082005 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 2.7 negative rho (up, down): 0.324E-07 0.000E+00 total cpu time spent up to now is 1.98 secs total energy = -29.22016969 Ry Harris-Foulkes estimate = -29.22017109 Ry estimated scf accuracy < 0.00000921 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.38E-08, avg # of iterations = 1.7 total cpu time spent up to now is 2.07 secs total energy = -29.22017041 Ry Harris-Foulkes estimate = -29.22017067 Ry estimated scf accuracy < 0.00000136 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.7 total cpu time spent up to now is 2.17 secs total energy = -29.22017057 Ry Harris-Foulkes estimate = -29.22017055 Ry estimated scf accuracy < 0.00000011 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.43E-10, avg # of iterations = 2.3 total cpu time spent up to now is 2.28 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0836 -6.5610 -5.7283 -4.5716 -3.1454 -1.4514 0.5172 1.7927 4.3755 5.5196 5.9890 6.2244 6.7420 7.2243 7.5028 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7601 -4.2450 -3.4270 -2.2911 -0.8932 -0.2597 0.2179 0.8027 1.0312 2.1294 2.7241 3.5271 3.8968 5.1705 6.5228 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4925 -1.9891 -1.1862 -0.0713 1.2973 1.3270 1.7931 2.5383 2.7154 2.8078 3.4451 3.5922 4.1163 4.9140 4.9393 the Fermi energy is 3.4724 ev ! total energy = -29.22017058 Ry Harris-Foulkes estimate = -29.22017059 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00948627 atom 2 type 1 force = 0.00000000 0.00000000 -0.00040427 atom 3 type 1 force = 0.00000000 0.00000000 0.00224066 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00224066 atom 6 type 1 force = 0.00000000 0.00000000 0.00040427 atom 7 type 1 force = 0.00000000 0.00000000 -0.00948627 Total force = 0.013797 Total SCF correction = 0.000192 Entering Dynamics: iteration = 2 = 0.99795493 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.092288527 Al 0.000000000 0.000000000 -1.415655076 Al 0.500000000 0.500000000 -0.700202873 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700202873 Al 0.000000000 0.000000000 1.415655076 Al 0.500000000 0.500000000 2.092288527 Writing output data file pwscf.save first order wave-functions extrapolation Check: negative starting charge= -0.000280 first order charge density extrapolation Check: negative starting charge= -0.000282 negative rho (up, down): 0.330E-03 0.000E+00 total cpu time spent up to now is 2.35 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.3 negative rho (up, down): 0.187E-03 0.000E+00 total cpu time spent up to now is 2.59 secs total energy = -29.22104678 Ry Harris-Foulkes estimate = -29.22197582 Ry estimated scf accuracy < 0.00231061 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 3.0 negative rho (up, down): 0.156E-03 0.000E+00 total cpu time spent up to now is 2.71 secs total energy = -29.22080186 Ry Harris-Foulkes estimate = -29.22174266 Ry estimated scf accuracy < 0.00478112 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 2.7 negative rho (up, down): 0.115E-03 0.000E+00 total cpu time spent up to now is 2.82 secs total energy = -29.22095595 Ry Harris-Foulkes estimate = -29.22196871 Ry estimated scf accuracy < 0.01215569 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 2.3 negative rho (up, down): 0.675E-04 0.000E+00 total cpu time spent up to now is 2.92 secs total energy = -29.22146608 Ry Harris-Foulkes estimate = -29.22150797 Ry estimated scf accuracy < 0.00024306 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-06, avg # of iterations = 2.7 negative rho (up, down): 0.832E-05 0.000E+00 total cpu time spent up to now is 3.02 secs total energy = -29.22148989 Ry Harris-Foulkes estimate = -29.22148823 Ry estimated scf accuracy < 0.00002016 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.60E-08, avg # of iterations = 2.0 negative rho (up, down): 0.265E-07 0.000E+00 total cpu time spent up to now is 3.12 secs total energy = -29.22149305 Ry Harris-Foulkes estimate = -29.22149216 Ry estimated scf accuracy < 0.00000187 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.92E-09, avg # of iterations = 2.3 total cpu time spent up to now is 3.23 secs total energy = -29.22149337 Ry Harris-Foulkes estimate = -29.22149332 Ry estimated scf accuracy < 0.00000052 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 1.7 total cpu time spent up to now is 3.32 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1605 -6.6625 -5.8828 -4.6463 -3.1298 -1.4220 0.5732 1.8520 4.4542 5.4382 5.8749 6.2957 6.5613 7.1820 7.5285 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8369 -4.3467 -3.5825 -2.3682 -0.8817 -0.3376 0.1136 0.8292 0.8729 2.0471 2.7761 3.5385 3.9439 5.2041 6.5972 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5698 -2.0921 -1.3446 -0.1516 1.2472 1.3038 1.6832 2.3643 2.6368 2.7789 3.3981 3.4997 3.9770 4.9329 4.9892 the Fermi energy is 3.4542 ev ! total energy = -29.22149342 Ry Harris-Foulkes estimate = -29.22149342 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00036642 atom 2 type 1 force = 0.00000000 0.00000000 0.00988404 atom 3 type 1 force = 0.00000000 0.00000000 -0.00171811 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00171811 atom 6 type 1 force = 0.00000000 0.00000000 -0.00988404 atom 7 type 1 force = 0.00000000 0.00000000 0.00036642 Total force = 0.014197 Total SCF correction = 0.000036 Entering Dynamics: iteration = 3 = -0.70866661 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.093694501 Al 0.000000000 0.000000000 -1.414040610 Al 0.500000000 0.500000000 -0.700786686 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700786686 Al 0.000000000 0.000000000 1.414040610 Al 0.500000000 0.500000000 2.093694501 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000282 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.905E-04 0.000E+00 total cpu time spent up to now is 3.39 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 negative rho (up, down): 0.526E-04 0.000E+00 total cpu time spent up to now is 3.55 secs total energy = -29.22033499 Ry Harris-Foulkes estimate = -29.22177338 Ry estimated scf accuracy < 0.00288144 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.37E-05, avg # of iterations = 3.3 negative rho (up, down): 0.493E-04 0.000E+00 total cpu time spent up to now is 3.69 secs total energy = -29.21694728 Ry Harris-Foulkes estimate = -29.22642825 Ry estimated scf accuracy < 0.12508696 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.37E-05, avg # of iterations = 3.3 negative rho (up, down): 0.362E-04 0.000E+00 total cpu time spent up to now is 3.82 secs total energy = -29.22164759 Ry Harris-Foulkes estimate = -29.22165361 Ry estimated scf accuracy < 0.00002735 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 2.7 negative rho (up, down): 0.199E-04 0.000E+00 total cpu time spent up to now is 3.94 secs total energy = -29.22165435 Ry Harris-Foulkes estimate = -29.22165425 Ry estimated scf accuracy < 0.00000268 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 1.7 negative rho (up, down): 0.988E-06 0.000E+00 total cpu time spent up to now is 4.03 secs total energy = -29.22165523 Ry Harris-Foulkes estimate = -29.22165457 Ry estimated scf accuracy < 0.00000032 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.7 total cpu time spent up to now is 4.15 secs total energy = -29.22165535 Ry Harris-Foulkes estimate = -29.22165530 Ry estimated scf accuracy < 0.00000019 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.89E-10, avg # of iterations = 2.0 total cpu time spent up to now is 4.25 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1587 -6.6576 -5.8675 -4.6403 -3.1340 -1.4238 0.5701 1.8483 4.4520 5.4403 5.8811 6.2932 6.5797 7.1825 7.5291 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8352 -4.3418 -3.5671 -2.3620 -0.8857 -0.3357 0.1187 0.8276 0.8886 2.0536 2.7729 3.5348 3.9415 5.2016 6.5951 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5680 -2.0872 -1.3290 -0.1453 1.2492 1.3000 1.6890 2.3818 2.6386 2.7801 3.4000 3.5071 3.9905 4.9266 4.9863 the Fermi energy is 3.4548 ev ! total energy = -29.22165534 Ry Harris-Foulkes estimate = -29.22165540 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00070233 atom 2 type 1 force = 0.00000000 0.00000000 0.00834052 atom 3 type 1 force = 0.00000000 0.00000000 -0.00102362 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00102362 atom 6 type 1 force = 0.00000000 0.00000000 -0.00834052 atom 7 type 1 force = 0.00000000 0.00000000 -0.00070233 Total force = 0.011925 Total SCF correction = 0.000428 Entering Dynamics: iteration = 4 = 0.55176359 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.090634908 Al 0.000000000 0.000000000 -1.402978686 Al 0.500000000 0.500000000 -0.701713079 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701713079 Al 0.000000000 0.000000000 1.402978686 Al 0.500000000 0.500000000 2.090634908 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000289 negative rho (up, down): 0.261E-04 0.000E+00 total cpu time spent up to now is 4.32 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.141E-04 0.000E+00 total cpu time spent up to now is 4.46 secs total energy = -29.22225444 Ry Harris-Foulkes estimate = -29.22237649 Ry estimated scf accuracy < 0.00025188 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 3.3 negative rho (up, down): 0.127E-04 0.000E+00 total cpu time spent up to now is 4.60 secs total energy = -29.22211321 Ry Harris-Foulkes estimate = -29.22254445 Ry estimated scf accuracy < 0.00441835 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 3.0 negative rho (up, down): 0.946E-05 0.000E+00 total cpu time spent up to now is 4.72 secs total energy = -29.22233264 Ry Harris-Foulkes estimate = -29.22237396 Ry estimated scf accuracy < 0.00037448 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 1.7 negative rho (up, down): 0.251E-05 0.000E+00 total cpu time spent up to now is 4.82 secs total energy = -29.22235238 Ry Harris-Foulkes estimate = -29.22235219 Ry estimated scf accuracy < 0.00000044 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 4.0 negative rho (up, down): 0.788E-07 0.000E+00 total cpu time spent up to now is 4.95 secs total energy = -29.22235302 Ry Harris-Foulkes estimate = -29.22235289 Ry estimated scf accuracy < 0.00000043 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.07E-09, avg # of iterations = 1.0 total cpu time spent up to now is 5.04 secs total energy = -29.22235305 Ry Harris-Foulkes estimate = -29.22235302 Ry estimated scf accuracy < 0.00000028 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.35E-09, avg # of iterations = 1.7 total cpu time spent up to now is 5.13 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1873 -6.6801 -5.8348 -4.6323 -3.1573 -1.4241 0.5740 1.8518 4.4724 5.4107 5.8588 6.3034 6.6199 7.1595 7.5438 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8637 -4.3643 -3.5347 -2.3543 -0.9096 -0.3642 0.0961 0.8273 0.9221 2.0620 2.7739 3.5135 3.9474 5.1978 6.6141 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5967 -2.1100 -1.2962 -0.1377 1.2203 1.2756 1.6668 2.4195 2.6094 2.7666 3.3898 3.5169 4.0178 4.8909 4.9899 the Fermi energy is 3.4482 ev ! total energy = -29.22235307 Ry Harris-Foulkes estimate = -29.22235307 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00308452 atom 2 type 1 force = 0.00000000 0.00000000 0.00253059 atom 3 type 1 force = 0.00000000 0.00000000 0.00204291 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00204291 atom 6 type 1 force = 0.00000000 0.00000000 -0.00253059 atom 7 type 1 force = 0.00000000 0.00000000 -0.00308452 Total force = 0.006339 Total SCF correction = 0.000104 Entering Dynamics: iteration = 5 = 0.98977444 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.083520427 Al 0.000000000 0.000000000 -1.385112345 Al 0.500000000 0.500000000 -0.701478333 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701478333 Al 0.000000000 0.000000000 1.385112345 Al 0.500000000 0.500000000 2.083520427 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000289 second order charge density extrapolation Check: negative starting charge= -0.000295 negative rho (up, down): 0.113E-04 0.000E+00 total cpu time spent up to now is 5.20 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.582E-05 0.000E+00 total cpu time spent up to now is 5.36 secs total energy = -29.22229439 Ry Harris-Foulkes estimate = -29.22237029 Ry estimated scf accuracy < 0.00015970 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 3.0 negative rho (up, down): 0.506E-05 0.000E+00 total cpu time spent up to now is 5.48 secs total energy = -29.22224089 Ry Harris-Foulkes estimate = -29.22242761 Ry estimated scf accuracy < 0.00154561 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 3.0 negative rho (up, down): 0.378E-05 0.000E+00 total cpu time spent up to now is 5.60 secs total energy = -29.22233032 Ry Harris-Foulkes estimate = -29.22237652 Ry estimated scf accuracy < 0.00049660 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.0 negative rho (up, down): 0.989E-06 0.000E+00 total cpu time spent up to now is 5.70 secs total energy = -29.22235288 Ry Harris-Foulkes estimate = -29.22235251 Ry estimated scf accuracy < 0.00000034 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.63E-09, avg # of iterations = 4.0 negative rho (up, down): 0.347E-06 0.000E+00 total cpu time spent up to now is 5.83 secs total energy = -29.22235323 Ry Harris-Foulkes estimate = -29.22235313 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.18E-10, avg # of iterations = 1.0 total cpu time spent up to now is 5.92 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2448 -6.7264 -5.7976 -4.6223 -3.1881 -1.4220 0.5848 1.8647 4.5111 5.3491 5.8077 6.3212 6.6656 7.1136 7.5707 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9210 -4.4109 -3.4981 -2.3449 -0.9419 -0.4220 0.0482 0.8292 0.9601 2.0725 2.7798 3.4855 3.9629 5.1943 6.6496 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6547 -2.1576 -1.2595 -0.1287 1.1603 1.2418 1.6169 2.4618 2.5509 2.7391 3.3719 3.5296 4.0477 4.8421 5.0000 the Fermi energy is 3.4389 ev ! total energy = -29.22235330 Ry Harris-Foulkes estimate = -29.22235323 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00581585 atom 2 type 1 force = 0.00000000 0.00000000 -0.00633688 atom 3 type 1 force = 0.00000000 0.00000000 0.00679919 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00679919 atom 6 type 1 force = 0.00000000 0.00000000 0.00633688 atom 7 type 1 force = 0.00000000 0.00000000 -0.00581585 Total force = 0.015505 Total SCF correction = 0.000249 Entering Dynamics: iteration = 6 = -0.99021369 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.085836359 Al 0.000000000 0.000000000 -1.393266902 Al 0.500000000 0.500000000 -0.700768263 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700768263 Al 0.000000000 0.000000000 1.393266902 Al 0.500000000 0.500000000 2.085836359 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000295 second order charge density extrapolation Check: negative starting charge= -0.000293 negative rho (up, down): 0.511E-05 0.000E+00 total cpu time spent up to now is 5.99 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.7 negative rho (up, down): 0.272E-05 0.000E+00 total cpu time spent up to now is 6.21 secs total energy = -29.22261106 Ry Harris-Foulkes estimate = -29.22261569 Ry estimated scf accuracy < 0.00001053 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.01E-08, avg # of iterations = 3.0 negative rho (up, down): 0.248E-05 0.000E+00 total cpu time spent up to now is 6.32 secs total energy = -29.22260496 Ry Harris-Foulkes estimate = -29.22262301 Ry estimated scf accuracy < 0.00018992 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.01E-08, avg # of iterations = 2.7 negative rho (up, down): 0.184E-05 0.000E+00 total cpu time spent up to now is 6.43 secs total energy = -29.22261433 Ry Harris-Foulkes estimate = -29.22261567 Ry estimated scf accuracy < 0.00001231 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.01E-08, avg # of iterations = 1.3 negative rho (up, down): 0.318E-06 0.000E+00 total cpu time spent up to now is 6.52 secs total energy = -29.22261519 Ry Harris-Foulkes estimate = -29.22261502 Ry estimated scf accuracy < 0.00000011 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 6.63 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2219 -6.7056 -5.8213 -4.6307 -3.1731 -1.4228 0.5816 1.8602 4.4968 5.3740 5.8313 6.3161 6.6371 7.1320 7.5605 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8982 -4.3899 -3.5215 -2.3531 -0.9265 -0.3988 0.0698 0.8284 0.9360 2.0635 2.7789 3.4990 3.9567 5.1961 6.6368 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6316 -2.1361 -1.2830 -0.1369 1.1845 1.2577 1.6399 2.4351 2.5743 2.7515 3.3796 3.5190 4.0281 4.8659 4.9971 the Fermi energy is 3.4424 ev ! total energy = -29.22261525 Ry Harris-Foulkes estimate = -29.22261522 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00429369 atom 2 type 1 force = 0.00000000 0.00000000 -0.00170937 atom 3 type 1 force = 0.00000000 0.00000000 0.00400056 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00400056 atom 6 type 1 force = 0.00000000 0.00000000 0.00170937 atom 7 type 1 force = 0.00000000 0.00000000 -0.00429369 Total force = 0.008644 Total SCF correction = 0.000304 Entering Dynamics: iteration = 7 = 0.16128250 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.083835071 Al 0.000000000 0.000000000 -1.394159219 Al 0.500000000 0.500000000 -0.698809017 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.698809017 Al 0.000000000 0.000000000 1.394159219 Al 0.500000000 0.500000000 2.083835071 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000293 second order charge density extrapolation Check: negative starting charge= -0.000294 negative rho (up, down): 0.232E-05 0.000E+00 total cpu time spent up to now is 6.71 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 negative rho (up, down): 0.100E-05 0.000E+00 total cpu time spent up to now is 6.84 secs total energy = -29.22273247 Ry Harris-Foulkes estimate = -29.22277572 Ry estimated scf accuracy < 0.00008664 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.13E-07, avg # of iterations = 3.3 negative rho (up, down): 0.927E-06 0.000E+00 total cpu time spent up to now is 6.96 secs total energy = -29.22263681 Ry Harris-Foulkes estimate = -29.22290923 Ry estimated scf accuracy < 0.00345620 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.13E-07, avg # of iterations = 3.0 negative rho (up, down): 0.586E-06 0.000E+00 total cpu time spent up to now is 7.08 secs total energy = -29.22277195 Ry Harris-Foulkes estimate = -29.22277197 Ry estimated scf accuracy < 0.00000066 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.15E-09, avg # of iterations = 2.7 negative rho (up, down): 0.357E-07 0.000E+00 total cpu time spent up to now is 7.19 secs total energy = -29.22277212 Ry Harris-Foulkes estimate = -29.22277206 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-10, avg # of iterations = 2.3 negative rho (up, down): 0.161E-07 0.000E+00 total cpu time spent up to now is 7.29 secs total energy = -29.22277214 Ry Harris-Foulkes estimate = -29.22277214 Ry estimated scf accuracy < 0.00000013 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-10, avg # of iterations = 1.7 total cpu time spent up to now is 7.39 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2287 -6.7070 -5.8399 -4.6392 -3.1681 -1.4218 0.5856 1.8644 4.5026 5.3670 5.8301 6.3213 6.6152 7.1267 7.5634 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9050 -4.3913 -3.5402 -2.3618 -0.9221 -0.4054 0.0683 0.8293 0.9170 2.0544 2.7833 3.5032 3.9593 5.1976 6.6426 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6384 -2.1374 -1.3020 -0.1458 1.1776 1.2617 1.6386 2.4142 2.5676 2.7509 3.3793 3.5085 4.0117 4.8733 5.0010 the Fermi energy is 3.4420 ev ! total energy = -29.22277215 Ry Harris-Foulkes estimate = -29.22277214 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00331654 atom 2 type 1 force = 0.00000000 0.00000000 -0.00003348 atom 3 type 1 force = 0.00000000 0.00000000 0.00253703 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00253703 atom 6 type 1 force = 0.00000000 0.00000000 0.00003348 atom 7 type 1 force = 0.00000000 0.00000000 -0.00331654 Total force = 0.005905 Total SCF correction = 0.000016 Entering Dynamics: iteration = 8 = 0.77736052 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.072779749 Al 0.000000000 0.000000000 -1.389268229 Al 0.500000000 0.500000000 -0.691239648 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.691239648 Al 0.000000000 0.000000000 1.389268229 Al 0.500000000 0.500000000 2.072779749 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000294 second order charge density extrapolation Check: negative starting charge= -0.000294 negative rho (up, down): 0.387E-05 0.000E+00 total cpu time spent up to now is 7.46 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.138E-05 0.000E+00 total cpu time spent up to now is 7.60 secs total energy = -29.22303289 Ry Harris-Foulkes estimate = -29.22314673 Ry estimated scf accuracy < 0.00022758 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-06, avg # of iterations = 3.3 negative rho (up, down): 0.119E-05 0.000E+00 total cpu time spent up to now is 7.73 secs total energy = -29.22279241 Ry Harris-Foulkes estimate = -29.22349330 Ry estimated scf accuracy < 0.00875082 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-06, avg # of iterations = 3.0 negative rho (up, down): 0.602E-06 0.000E+00 total cpu time spent up to now is 7.85 secs total energy = -29.22313701 Ry Harris-Foulkes estimate = -29.22313705 Ry estimated scf accuracy < 0.00000063 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.00E-09, avg # of iterations = 4.0 total cpu time spent up to now is 7.97 secs total energy = -29.22313735 Ry Harris-Foulkes estimate = -29.22313728 Ry estimated scf accuracy < 0.00000013 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.06 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2830 -6.7351 -5.8946 -4.6679 -3.1638 -1.4170 0.6057 1.8866 4.5421 5.3097 5.7999 6.3487 6.5518 7.0840 7.5870 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9592 -4.4196 -3.5953 -2.3915 -0.9212 -0.4588 0.0393 0.8333 0.8613 2.0234 2.8022 3.5059 3.9763 5.2015 6.6803 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6931 -2.1660 -1.3581 -0.1769 1.1216 1.2606 1.6091 2.3530 2.5136 2.7345 3.3698 3.4729 3.9619 4.8785 5.0204 the Fermi energy is 3.4352 ev ! total energy = -29.22313737 Ry Harris-Foulkes estimate = -29.22313737 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00079513 atom 2 type 1 force = 0.00000000 0.00000000 0.00229518 atom 3 type 1 force = 0.00000000 0.00000000 -0.00095214 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00095214 atom 6 type 1 force = 0.00000000 0.00000000 -0.00229518 atom 7 type 1 force = 0.00000000 0.00000000 -0.00079513 Total force = 0.003690 Total SCF correction = 0.000373 Entering Dynamics: iteration = 9 = 0.92889055 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.057469703 Al 0.000000000 0.000000000 -1.374624577 Al 0.500000000 0.500000000 -0.683705543 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.683705543 Al 0.000000000 0.000000000 1.374624577 Al 0.500000000 0.500000000 2.057469703 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000294 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.147E-04 0.000E+00 total cpu time spent up to now is 8.14 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.47E-09, avg # of iterations = 3.0 negative rho (up, down): 0.670E-05 0.000E+00 total cpu time spent up to now is 8.39 secs total energy = -29.22321960 Ry Harris-Foulkes estimate = -29.22321931 Ry estimated scf accuracy < 0.00000138 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-09, avg # of iterations = 3.0 negative rho (up, down): 0.595E-05 0.000E+00 total cpu time spent up to now is 8.50 secs total energy = -29.22321914 Ry Harris-Foulkes estimate = -29.22322048 Ry estimated scf accuracy < 0.00001478 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-09, avg # of iterations = 2.7 negative rho (up, down): 0.196E-05 0.000E+00 total cpu time spent up to now is 8.60 secs total energy = -29.22322029 Ry Harris-Foulkes estimate = -29.22321997 Ry estimated scf accuracy < 0.00000081 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.86E-09, avg # of iterations = 1.0 negative rho (up, down): 0.429E-06 0.000E+00 total cpu time spent up to now is 8.69 secs total energy = -29.22322055 Ry Harris-Foulkes estimate = -29.22322032 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.64E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.79 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3713 -6.7904 -5.9303 -4.6927 -3.1771 -1.4098 0.6320 1.9171 4.6016 5.2161 5.7407 6.3847 6.5121 7.0160 7.6256 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0473 -4.4752 -3.6316 -2.4178 -0.9402 -0.5454 -0.0175 0.8251 0.8395 1.9963 2.8246 3.4928 4.0030 5.2047 6.7350 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7821 -2.2223 -1.3955 -0.2049 1.0304 1.2392 1.5510 2.3137 2.4251 2.7000 3.3534 3.4422 3.9273 4.8554 5.0456 the Fermi energy is 3.4234 ev ! total energy = -29.22322067 Ry Harris-Foulkes estimate = -29.22322056 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00029367 atom 2 type 1 force = 0.00000000 0.00000000 -0.00026748 atom 3 type 1 force = 0.00000000 0.00000000 -0.00202837 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00202837 atom 6 type 1 force = 0.00000000 0.00000000 0.00026748 atom 7 type 1 force = 0.00000000 0.00000000 0.00029367 Total force = 0.002923 Total SCF correction = 0.000163 Entering Dynamics: iteration = 10 = -0.99092751 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063750500 Al 0.000000000 0.000000000 -1.379517587 Al 0.500000000 0.500000000 -0.687440590 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.687440590 Al 0.000000000 0.000000000 1.379517587 Al 0.500000000 0.500000000 2.063750500 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000292 negative rho (up, down): 0.184E-05 0.000E+00 total cpu time spent up to now is 8.86 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.64E-09, avg # of iterations = 2.3 negative rho (up, down): 0.434E-06 0.000E+00 total cpu time spent up to now is 9.10 secs total energy = -29.22327779 Ry Harris-Foulkes estimate = -29.22327919 Ry estimated scf accuracy < 0.00000313 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.49E-08, avg # of iterations = 3.0 negative rho (up, down): 0.322E-06 0.000E+00 total cpu time spent up to now is 9.21 secs total energy = -29.22327537 Ry Harris-Foulkes estimate = -29.22328256 Ry estimated scf accuracy < 0.00008284 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.49E-08, avg # of iterations = 2.7 negative rho (up, down): 0.119E-06 0.000E+00 total cpu time spent up to now is 9.32 secs total energy = -29.22327904 Ry Harris-Foulkes estimate = -29.22327917 Ry estimated scf accuracy < 0.00000103 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.91E-09, avg # of iterations = 1.3 total cpu time spent up to now is 9.41 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3356 -6.7706 -5.9094 -4.6801 -3.1747 -1.4125 0.6213 1.9045 4.5785 5.2541 5.7619 6.3703 6.5359 7.0438 7.6119 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0116 -4.4553 -3.6105 -2.4046 -0.9351 -0.5107 0.0028 0.8372 0.8463 2.0100 2.8151 3.4955 3.9925 5.2032 6.7138 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7460 -2.2022 -1.3739 -0.1909 1.0674 1.2451 1.5718 2.3370 2.4606 2.7128 3.3587 3.4579 3.9468 4.8601 5.0352 the Fermi energy is 3.4278 ev ! total energy = -29.22327922 Ry Harris-Foulkes estimate = -29.22327912 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00050780 atom 2 type 1 force = 0.00000000 0.00000000 -0.00007679 atom 3 type 1 force = 0.00000000 0.00000000 -0.00085574 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00085574 atom 6 type 1 force = 0.00000000 0.00000000 0.00007679 atom 7 type 1 force = 0.00000000 0.00000000 -0.00050780 Total force = 0.001411 Total SCF correction = 0.000087 Damped Dynamics: convergence achieved in 11 steps End of damped dynamics calculation Final energy = -29.2232792188 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 8.000000000 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063750500 Al 0.000000000 0.000000000 -1.379517587 Al 0.500000000 0.500000000 -0.687440590 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.687440590 Al 0.000000000 0.000000000 1.379517587 Al 0.500000000 0.500000000 2.063750500 Writing output data file pwscf.save PWSCF : 9.45s CPU time, 10.08s wall time init_run : 0.16s CPU electrons : 8.54s CPU ( 11 calls, 0.776 s avg) update_pot : 0.23s CPU ( 10 calls, 0.023 s avg) forces : 0.14s CPU ( 11 calls, 0.013 s avg) Called by init_run: wfcinit : 0.14s CPU potinit : 0.00s CPU Called by electrons: c_bands : 6.95s CPU ( 74 calls, 0.094 s avg) sum_band : 1.06s CPU ( 74 calls, 0.014 s avg) v_of_rho : 0.17s CPU ( 82 calls, 0.002 s avg) mix_rho : 0.13s CPU ( 74 calls, 0.002 s avg) Called by c_bands: init_us_2 : 0.18s CPU ( 480 calls, 0.000 s avg) cegterg : 6.75s CPU ( 222 calls, 0.030 s avg) Called by *egterg: h_psi : 4.91s CPU ( 809 calls, 0.006 s avg) g_psi : 0.18s CPU ( 584 calls, 0.000 s avg) cdiaghg : 0.53s CPU ( 767 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.26s CPU ( 809 calls, 0.000 s avg) General routines calbec : 0.34s CPU ( 869 calls, 0.000 s avg) cft3 : 0.06s CPU ( 281 calls, 0.000 s avg) cft3s : 4.46s CPU ( 20378 calls, 0.000 s avg) davcio : 0.01s CPU ( 867 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example02/reference/co.rx.out0000644000700200004540000006557712053145630022064 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:38:56 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file C.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 525.2490 ( 25271 G-vectors) FFT grid: ( 48, 48, 48) G cutoff = 350.1660 ( 13805 G-vectors) smooth grid: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.69 Mb ( 110592) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 13.50 Mb ( 110592, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003991 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.399E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 1.03 secs per-process dynamical memory: 18.8 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.600E-02 0.000E+00 total cpu time spent up to now is 1.24 secs total energy = -43.00811268 Ry Harris-Foulkes estimate = -43.14060715 Ry estimated scf accuracy < 0.20026192 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 1.47 secs total energy = -42.97497349 Ry Harris-Foulkes estimate = -43.21695642 Ry estimated scf accuracy < 0.66789131 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 3.0 negative rho (up, down): 0.522E-02 0.000E+00 total cpu time spent up to now is 1.69 secs total energy = -43.09485892 Ry Harris-Foulkes estimate = -43.09784087 Ry estimated scf accuracy < 0.00901545 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 1.91 secs total energy = -43.09564663 Ry Harris-Foulkes estimate = -43.09615369 Ry estimated scf accuracy < 0.00127296 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 4.0 negative rho (up, down): 0.499E-02 0.000E+00 total cpu time spent up to now is 2.14 secs total energy = -43.09623471 Ry Harris-Foulkes estimate = -43.09644052 Ry estimated scf accuracy < 0.00075978 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.60E-06, avg # of iterations = 1.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 2.35 secs total energy = -43.09621832 Ry Harris-Foulkes estimate = -43.09627579 Ry estimated scf accuracy < 0.00017925 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-06, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 2.55 secs total energy = -43.09627392 Ry Harris-Foulkes estimate = -43.09627493 Ry estimated scf accuracy < 0.00000651 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 2.79 secs total energy = -43.09627626 Ry Harris-Foulkes estimate = -43.09627629 Ry estimated scf accuracy < 0.00000486 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-08, avg # of iterations = 1.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 3.01 secs total energy = -43.09627587 Ry Harris-Foulkes estimate = -43.09627649 Ry estimated scf accuracy < 0.00000148 Ry iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 3.24 secs total energy = -43.09627643 Ry Harris-Foulkes estimate = -43.09627656 Ry estimated scf accuracy < 0.00000049 Ry iteration # 11 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.94E-09, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 3.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8990 -13.4020 -10.8551 -10.8551 -8.5052 ! total energy = -43.09627640 Ry Harris-Foulkes estimate = -43.09627647 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = -64.82200681 Ry hartree contribution = 33.55150751 Ry xc contribution = -9.76997738 Ry ewald contribution = -2.05579972 Ry convergence has been achieved in 11 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21577078 0.00000000 0.00000000 atom 2 type 1 force = 0.21577078 0.00000000 0.00000000 Total force = 0.215771 Total SCF correction = 0.000298 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.0962763989 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 1.756000000 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save Check: negative starting charge= -0.003991 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004101 negative rho (up, down): 0.524E-02 0.000E+00 total cpu time spent up to now is 3.74 secs per-process dynamical memory: 28.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 negative rho (up, down): 0.715E-02 0.000E+00 total cpu time spent up to now is 4.02 secs total energy = -42.78473741 Ry Harris-Foulkes estimate = -42.89200540 Ry estimated scf accuracy < 0.17132913 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-03, avg # of iterations = 2.0 negative rho (up, down): 0.635E-02 0.000E+00 total cpu time spent up to now is 4.24 secs total energy = -42.81873670 Ry Harris-Foulkes estimate = -42.82551583 Ry estimated scf accuracy < 0.01212104 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-04, avg # of iterations = 2.0 negative rho (up, down): 0.622E-02 0.000E+00 total cpu time spent up to now is 4.46 secs total energy = -42.82122104 Ry Harris-Foulkes estimate = -42.82222045 Ry estimated scf accuracy < 0.00188240 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-05, avg # of iterations = 2.0 negative rho (up, down): 0.606E-02 0.000E+00 total cpu time spent up to now is 4.70 secs total energy = -42.82168258 Ry Harris-Foulkes estimate = -42.82179765 Ry estimated scf accuracy < 0.00027193 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-06, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 4.92 secs total energy = -42.82172910 Ry Harris-Foulkes estimate = -42.82173482 Ry estimated scf accuracy < 0.00001091 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-07, avg # of iterations = 3.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 5.14 secs total energy = -42.82173556 Ry Harris-Foulkes estimate = -42.82173886 Ry estimated scf accuracy < 0.00000719 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-08, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 5.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -32.0594 -13.6139 -13.6139 -13.4515 -7.8455 ! total energy = -42.82173666 Ry Harris-Foulkes estimate = -42.82173673 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -74.40958890 Ry hartree contribution = 38.06601514 Ry xc contribution = -10.35398822 Ry ewald contribution = 3.87582532 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 1.92934184 0.00000000 0.00000000 atom 2 type 1 force = -1.92934184 0.00000000 0.00000000 Total force = 1.929342 Total SCF correction = 0.000476 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.0962763989 Ry energy new = -42.8217366607 Ry CASE: energy _new > energy _old new trust radius = 0.1100174131 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 2.145982587 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save first order wave-functions extrapolation Check: negative starting charge= -0.004101 first order charge density extrapolation Check: negative starting charge= -0.004012 negative rho (up, down): 0.862E-02 0.000E+00 total cpu time spent up to now is 5.67 secs per-process dynamical memory: 36.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 negative rho (up, down): 0.260E-02 0.000E+00 total cpu time spent up to now is 5.96 secs total energy = -42.93671760 Ry Harris-Foulkes estimate = -43.35618211 Ry estimated scf accuracy < 0.64233864 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-03, avg # of iterations = 2.0 negative rho (up, down): 0.437E-02 0.000E+00 total cpu time spent up to now is 6.18 secs total energy = -43.08393547 Ry Harris-Foulkes estimate = -43.14700069 Ry estimated scf accuracy < 0.10547028 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-03, avg # of iterations = 2.0 negative rho (up, down): 0.460E-02 0.000E+00 total cpu time spent up to now is 6.39 secs total energy = -43.10668697 Ry Harris-Foulkes estimate = -43.11281426 Ry estimated scf accuracy < 0.01208475 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-04, avg # of iterations = 2.0 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 6.62 secs total energy = -43.10950995 Ry Harris-Foulkes estimate = -43.10956591 Ry estimated scf accuracy < 0.00028454 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-06, avg # of iterations = 4.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 6.84 secs total energy = -43.10951793 Ry Harris-Foulkes estimate = -43.10970137 Ry estimated scf accuracy < 0.00040876 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-06, avg # of iterations = 3.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 7.05 secs total energy = -43.10960419 Ry Harris-Foulkes estimate = -43.10960718 Ry estimated scf accuracy < 0.00001108 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-07, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 7.28 secs total energy = -43.10960627 Ry Harris-Foulkes estimate = -43.10960721 Ry estimated scf accuracy < 0.00000236 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 7.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7709 -13.3833 -11.3623 -11.3623 -8.3843 ! total energy = -43.10960691 Ry Harris-Foulkes estimate = -43.10960697 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -66.64151631 Ry hartree contribution = 34.40190931 Ry xc contribution = -9.87395744 Ry ewald contribution = -0.99604248 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01332520 0.00000000 0.00000000 atom 2 type 1 force = 0.01332520 0.00000000 0.00000000 Total force = 0.013325 Total SCF correction = 0.000179 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.0962763989 Ry energy new = -43.1096069078 Ry CASE: energy _new < energy _old new trust radius = 0.0072414737 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 2.138741113 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save second order wave-functions extrapolation Check: negative starting charge= -0.004012 second order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 7.81 secs per-process dynamical memory: 36.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-08, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 8.14 secs total energy = -43.10964007 Ry Harris-Foulkes estimate = -43.10964696 Ry estimated scf accuracy < 0.00001184 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-07, avg # of iterations = 4.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 8.37 secs total energy = -43.10964022 Ry Harris-Foulkes estimate = -43.10965167 Ry estimated scf accuracy < 0.00002897 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-07, avg # of iterations = 3.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 8.59 secs total energy = -43.10964551 Ry Harris-Foulkes estimate = -43.10964547 Ry estimated scf accuracy < 0.00000016 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 8.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8303 -13.3829 -11.3978 -11.3978 -8.3771 ! total energy = -43.10964555 Ry Harris-Foulkes estimate = -43.10964556 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -66.76634220 Ry hartree contribution = 34.46020278 Ry xc contribution = -9.88121864 Ry ewald contribution = -0.92228748 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00307019 0.00000000 0.00000000 atom 2 type 1 force = -0.00307019 0.00000000 0.00000000 Total force = 0.003070 Total SCF correction = 0.000115 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1096069078 Ry energy new = -43.1096455485 Ry CASE: energy _new < energy _old new trust radius = 0.0013560339 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) C 2.140097147 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save second order wave-functions extrapolation Check: negative starting charge= -0.004013 second order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.14 secs per-process dynamical memory: 36.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.45E-10, avg # of iterations = 4.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.46 secs total energy = -43.10964747 Ry Harris-Foulkes estimate = -43.10964752 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.38E-10, avg # of iterations = 4.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.70 secs total energy = -43.10964748 Ry Harris-Foulkes estimate = -43.10964754 Ry estimated scf accuracy < 0.00000017 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.38E-10, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8190 -13.3828 -11.3910 -11.3910 -8.3784 ! total energy = -43.10964750 Ry Harris-Foulkes estimate = -43.10964750 Ry estimated scf accuracy < 5.4E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -66.74312046 Ry hartree contribution = 34.44950552 Ry xc contribution = -9.87989416 Ry ewald contribution = -0.93613840 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00001610 0.00000000 0.00000000 atom 2 type 1 force = 0.00001610 0.00000000 0.00000000 Total force = 0.000016 Total SCF correction = 0.000001 bfgs converged in 5 scf cycles and 3 bfgs steps End of BFGS Geometry Optimization Final energy = -43.1096475045 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 ATOMIC_POSITIONS (bohr) C 2.140097147 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save PWSCF : 10.09s CPU time, 10.65s wall time init_run : 0.99s CPU electrons : 7.52s CPU ( 5 calls, 1.504 s avg) update_pot : 0.43s CPU ( 4 calls, 0.107 s avg) forces : 0.58s CPU ( 5 calls, 0.117 s avg) Called by init_run: wfcinit : 0.01s CPU potinit : 0.06s CPU Called by electrons: c_bands : 1.54s CPU ( 35 calls, 0.044 s avg) sum_band : 2.60s CPU ( 35 calls, 0.074 s avg) v_of_rho : 0.73s CPU ( 38 calls, 0.019 s avg) newd : 1.76s CPU ( 38 calls, 0.046 s avg) mix_rho : 0.51s CPU ( 35 calls, 0.014 s avg) Called by c_bands: init_us_2 : 0.07s CPU ( 74 calls, 0.001 s avg) regterg : 1.46s CPU ( 35 calls, 0.042 s avg) Called by *egterg: h_psi : 1.30s CPU ( 138 calls, 0.009 s avg) s_psi : 0.02s CPU ( 141 calls, 0.000 s avg) g_psi : 0.02s CPU ( 102 calls, 0.000 s avg) rdiaghg : 0.02s CPU ( 131 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 138 calls, 0.000 s avg) General routines calbec : 0.06s CPU ( 199 calls, 0.000 s avg) cft3 : 1.47s CPU ( 309 calls, 0.005 s avg) cft3s : 1.30s CPU ( 856 calls, 0.002 s avg) interpolate : 0.69s CPU ( 73 calls, 0.009 s avg) davcio : 0.00s CPU ( 52 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example02/reference/al001.rx.out0000644000700200004540000020705612053145630022266 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39: 7 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 6 lattice parameter (a_0) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 gaussian broad. (Ry)= 0.0500 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 G cutoff = 34.1959 ( 6689 G-vectors) FFT grid: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 63 atomic wfcs total cpu time spent up to now is 0.16 secs per-process dynamical memory: 12.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.186E-03 0.000E+00 total cpu time spent up to now is 0.27 secs total energy = -28.81800044 Ry Harris-Foulkes estimate = -29.29242665 Ry estimated scf accuracy < 0.99707290 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 4.3 total cpu time spent up to now is 0.44 secs total energy = -27.55975725 Ry Harris-Foulkes estimate = -30.64244044 Ry estimated scf accuracy < 42.47180210 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 3.7 total cpu time spent up to now is 0.59 secs total energy = -29.21236680 Ry Harris-Foulkes estimate = -29.23827251 Ry estimated scf accuracy < 0.25038981 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.3 total cpu time spent up to now is 0.70 secs total energy = -29.21649581 Ry Harris-Foulkes estimate = -29.22410750 Ry estimated scf accuracy < 0.04585932 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.18E-04, avg # of iterations = 2.7 total cpu time spent up to now is 0.80 secs total energy = -29.21973500 Ry Harris-Foulkes estimate = -29.22006263 Ry estimated scf accuracy < 0.00336979 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-05, avg # of iterations = 4.7 total cpu time spent up to now is 0.93 secs total energy = -29.21993710 Ry Harris-Foulkes estimate = -29.21994846 Ry estimated scf accuracy < 0.00071042 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 total cpu time spent up to now is 1.04 secs total energy = -29.21995305 Ry Harris-Foulkes estimate = -29.21996870 Ry estimated scf accuracy < 0.00004258 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.7 total cpu time spent up to now is 1.16 secs total energy = -29.21995565 Ry Harris-Foulkes estimate = -29.21996337 Ry estimated scf accuracy < 0.00004475 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.26 secs total energy = -29.21995946 Ry Harris-Foulkes estimate = -29.21996144 Ry estimated scf accuracy < 0.00000791 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.77E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.36 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0790 -6.5548 -5.7171 -4.5664 -3.1473 -1.4539 0.5128 1.7883 4.3696 5.5244 5.9957 6.2180 6.7549 7.2249 7.4957 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7555 -4.2388 -3.4158 -2.2857 -0.8948 -0.2551 0.2241 0.8003 1.0426 2.1352 2.7199 3.5255 3.8932 5.1676 6.5171 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4879 -1.9828 -1.1748 -0.0657 1.2960 1.3317 1.7996 2.5507 2.7201 2.8085 3.4483 3.5987 4.1264 4.9118 4.9355 the Fermi energy is 3.4731 ev ! total energy = -29.21996018 Ry Harris-Foulkes estimate = -29.21996051 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -182.00588640 Ry hartree contribution = 97.74163219 Ry xc contribution = -11.20672435 Ry ewald contribution = 66.25386160 Ry smearing contrib. (-TS) = -0.00284321 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01010485 atom 2 type 1 force = 0.00000000 0.00000000 -0.00112292 atom 3 type 1 force = 0.00000000 0.00000000 0.00257324 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00257324 atom 6 type 1 force = 0.00000000 0.00000000 0.00112292 atom 7 type 1 force = 0.00000000 0.00000000 -0.01010485 Total force = 0.014832 Total SCF correction = 0.000908 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -29.2199601767 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.057086571 Al 0.000000000 0.000000000 -1.421351051 Al 0.500000000 0.500000000 -0.690749715 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.690749715 Al 0.000000000 0.000000000 1.421351051 Al 0.500000000 0.500000000 2.057086571 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000305 negative rho (up, down): 0.140E-02 0.000E+00 total cpu time spent up to now is 1.42 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 11.0 negative rho (up, down): 0.765E-03 0.000E+00 total cpu time spent up to now is 1.72 secs total energy = -29.21369832 Ry Harris-Foulkes estimate = -29.22047303 Ry estimated scf accuracy < 0.01694986 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.07E-05, avg # of iterations = 2.7 negative rho (up, down): 0.559E-03 0.000E+00 total cpu time spent up to now is 1.83 secs total energy = -29.21396119 Ry Harris-Foulkes estimate = -29.21716231 Ry estimated scf accuracy < 0.01057540 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 3.3 negative rho (up, down): 0.431E-03 0.000E+00 total cpu time spent up to now is 1.95 secs total energy = -29.21219326 Ry Harris-Foulkes estimate = -29.22042943 Ry estimated scf accuracy < 0.10034717 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.7 negative rho (up, down): 0.278E-03 0.000E+00 total cpu time spent up to now is 2.06 secs total energy = -29.21635983 Ry Harris-Foulkes estimate = -29.21661492 Ry estimated scf accuracy < 0.00157492 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.50E-06, avg # of iterations = 1.7 negative rho (up, down): 0.506E-04 0.000E+00 total cpu time spent up to now is 2.16 secs total energy = -29.21649737 Ry Harris-Foulkes estimate = -29.21649620 Ry estimated scf accuracy < 0.00014654 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.98E-07, avg # of iterations = 3.3 negative rho (up, down): 0.498E-05 0.000E+00 total cpu time spent up to now is 2.27 secs total energy = -29.21651792 Ry Harris-Foulkes estimate = -29.21651291 Ry estimated scf accuracy < 0.00001224 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.83E-08, avg # of iterations = 2.3 negative rho (up, down): 0.127E-07 0.000E+00 total cpu time spent up to now is 2.38 secs total energy = -29.21652020 Ry Harris-Foulkes estimate = -29.21651972 Ry estimated scf accuracy < 0.00000245 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.17E-08, avg # of iterations = 1.3 total cpu time spent up to now is 2.47 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2616 -6.8126 -6.1032 -4.7346 -3.0946 -1.3829 0.6504 1.9425 4.5518 5.3226 5.6887 6.2958 6.3518 7.1137 7.5324 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9382 -4.4979 -3.8042 -2.4593 -0.8534 -0.4430 -0.0460 0.6468 0.8647 1.9498 2.8499 3.5675 4.0162 5.2509 6.6859 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6727 -2.2468 -1.5716 -0.2466 1.1359 1.3246 1.5069 2.1104 2.5324 2.7087 3.3560 3.3909 3.7816 4.9803 5.0434 the Fermi energy is 3.4326 ev ! total energy = -29.21652045 Ry Harris-Foulkes estimate = -29.21652048 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = -194.42311488 Ry hartree contribution = 103.89820916 Ry xc contribution = -11.30254024 Ry ewald contribution = 72.61641525 Ry smearing contrib. (-TS) = -0.00548974 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.01837281 atom 2 type 1 force = 0.00000000 0.00000000 0.02891919 atom 3 type 1 force = 0.00000000 0.00000000 -0.00768632 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00768632 atom 6 type 1 force = 0.00000000 0.00000000 -0.02891919 atom 7 type 1 force = 0.00000000 0.00000000 0.01837281 Total force = 0.049658 Total SCF correction = 0.000202 number of scf cycles = 2 number of bfgs steps = 1 energy old = -29.2199601767 Ry energy new = -29.2165204483 Ry CASE: energy _new > energy _old new trust radius = 0.2029358442 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.095249470 Al 0.000000000 0.000000000 -1.417110133 Al 0.500000000 0.500000000 -0.700468041 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700468041 Al 0.000000000 0.000000000 1.417110133 Al 0.500000000 0.500000000 2.095249470 Writing output data file pwscf.save first order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000305 first order charge density extrapolation Check: negative starting charge= -0.000283 negative rho (up, down): 0.840E-03 0.000E+00 total cpu time spent up to now is 2.54 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.525E-03 0.000E+00 total cpu time spent up to now is 2.86 secs total energy = -29.21460485 Ry Harris-Foulkes estimate = -29.23118237 Ry estimated scf accuracy < 0.04170169 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.99E-04, avg # of iterations = 2.7 negative rho (up, down): 0.389E-03 0.000E+00 total cpu time spent up to now is 2.97 secs total energy = -29.21866199 Ry Harris-Foulkes estimate = -29.22276709 Ry estimated scf accuracy < 0.01251181 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.96E-05, avg # of iterations = 3.0 negative rho (up, down): 0.337E-03 0.000E+00 total cpu time spent up to now is 3.08 secs total energy = -29.21744002 Ry Harris-Foulkes estimate = -29.22365591 Ry estimated scf accuracy < 0.04964846 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.96E-05, avg # of iterations = 2.7 negative rho (up, down): 0.244E-03 0.000E+00 total cpu time spent up to now is 3.20 secs total energy = -29.22010373 Ry Harris-Foulkes estimate = -29.22247945 Ry estimated scf accuracy < 0.02539194 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.96E-05, avg # of iterations = 2.0 negative rho (up, down): 0.640E-04 0.000E+00 total cpu time spent up to now is 3.30 secs total energy = -29.22128448 Ry Harris-Foulkes estimate = -29.22129622 Ry estimated scf accuracy < 0.00039696 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 3.0 negative rho (up, down): 0.132E-05 0.000E+00 total cpu time spent up to now is 3.42 secs total energy = -29.22134427 Ry Harris-Foulkes estimate = -29.22133007 Ry estimated scf accuracy < 0.00002406 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.15E-07, avg # of iterations = 2.7 negative rho (up, down): 0.235E-06 0.000E+00 total cpu time spent up to now is 3.53 secs total energy = -29.22134778 Ry Harris-Foulkes estimate = -29.22134931 Ry estimated scf accuracy < 0.00000655 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.12E-08, avg # of iterations = 1.3 total cpu time spent up to now is 3.63 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1494 -6.6488 -5.8739 -4.6404 -3.1272 -1.4245 0.5674 1.8458 4.4441 5.4498 5.8900 6.2879 6.5717 7.1891 7.5227 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8259 -4.3329 -3.5734 -2.3620 -0.8787 -0.3265 0.1277 0.8270 0.8820 2.0537 2.7711 3.5412 3.9385 5.2017 6.5877 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5587 -2.0782 -1.3353 -0.1451 1.2586 1.3074 1.6978 2.3744 2.6481 2.7847 3.4040 3.5071 3.9853 4.9371 4.9839 the Fermi energy is 3.4573 ev ! total energy = -29.22134809 Ry Harris-Foulkes estimate = -29.22134838 Ry estimated scf accuracy < 0.00000085 Ry The total energy is the sum of the following terms: one-electron contribution = -186.99097444 Ry hartree contribution = 100.21282297 Ry xc contribution = -11.24375692 Ry ewald contribution = 68.80429356 Ry smearing contrib. (-TS) = -0.00373326 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00036240 atom 2 type 1 force = 0.00000000 0.00000000 0.00962076 atom 3 type 1 force = 0.00000000 0.00000000 -0.00181164 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00181164 atom 6 type 1 force = 0.00000000 0.00000000 -0.00962076 atom 7 type 1 force = 0.00000000 0.00000000 -0.00036240 Total force = 0.013854 Total SCF correction = 0.000871 number of scf cycles = 3 number of bfgs steps = 1 energy old = -29.2199601767 Ry energy new = -29.2213480852 Ry CASE: energy _new < energy _old new trust radius = 0.0154940607 bohr new conv_thr = 0.0000009621 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.096191597 Al 0.000000000 0.000000000 -1.415360278 Al 0.500000000 0.500000000 -0.701032173 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701032173 Al 0.000000000 0.000000000 1.415360278 Al 0.500000000 0.500000000 2.096191597 Writing output data file pwscf.save second order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000283 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.945E-06 0.000E+00 total cpu time spent up to now is 3.70 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 negative rho (up, down): 0.461E-06 0.000E+00 total cpu time spent up to now is 3.83 secs total energy = -29.22144035 Ry Harris-Foulkes estimate = -29.22153047 Ry estimated scf accuracy < 0.00018419 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.77E-07, avg # of iterations = 3.3 negative rho (up, down): 0.416E-06 0.000E+00 total cpu time spent up to now is 3.95 secs total energy = -29.22126784 Ry Harris-Foulkes estimate = -29.22175638 Ry estimated scf accuracy < 0.00611575 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.77E-07, avg # of iterations = 3.0 negative rho (up, down): 0.242E-06 0.000E+00 total cpu time spent up to now is 4.06 secs total energy = -29.22151360 Ry Harris-Foulkes estimate = -29.22151861 Ry estimated scf accuracy < 0.00002676 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.27E-07, avg # of iterations = 1.7 negative rho (up, down): 0.984E-07 0.000E+00 total cpu time spent up to now is 4.15 secs total energy = -29.22151635 Ry Harris-Foulkes estimate = -29.22151659 Ry estimated scf accuracy < 0.00000117 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.57E-09, avg # of iterations = 2.0 total cpu time spent up to now is 4.26 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1499 -6.6473 -5.8607 -4.6363 -3.1327 -1.4267 0.5646 1.8427 4.4428 5.4496 5.8925 6.2865 6.5875 7.1883 7.5253 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8264 -4.3314 -3.5602 -2.3578 -0.8840 -0.3268 0.1294 0.8249 0.8955 2.0582 2.7681 3.5362 3.9364 5.1987 6.5865 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5592 -2.0766 -1.3219 -0.1408 1.2583 1.3023 1.7001 2.3895 2.6476 2.7840 3.4040 3.5123 3.9968 4.9294 4.9813 the Fermi energy is 3.4565 ev ! total energy = -29.22151653 Ry Harris-Foulkes estimate = -29.22151652 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -187.00879708 Ry hartree contribution = 100.22504438 Ry xc contribution = -11.24228483 Ry ewald contribution = 68.80811139 Ry smearing contrib. (-TS) = -0.00359039 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00122564 atom 2 type 1 force = 0.00000000 0.00000000 0.00824388 atom 3 type 1 force = 0.00000000 0.00000000 -0.00119821 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00119821 atom 6 type 1 force = 0.00000000 0.00000000 -0.00824388 atom 7 type 1 force = 0.00000000 0.00000000 -0.00122564 Total force = 0.011908 Total SCF correction = 0.000201 number of scf cycles = 4 number of bfgs steps = 2 energy old = -29.2213480852 Ry energy new = -29.2215165284 Ry CASE: energy _new < energy _old new trust radius = 0.0464821820 bohr new conv_thr = 0.0000001684 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.091657991 Al 0.000000000 0.000000000 -1.411145469 Al 0.500000000 0.500000000 -0.700728244 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700728244 Al 0.000000000 0.000000000 1.411145469 Al 0.500000000 0.500000000 2.091657991 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.117E-04 0.000E+00 total cpu time spent up to now is 4.33 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.548E-05 0.000E+00 total cpu time spent up to now is 4.47 secs total energy = -29.22175878 Ry Harris-Foulkes estimate = -29.22193604 Ry estimated scf accuracy < 0.00036000 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.71E-06, avg # of iterations = 3.7 negative rho (up, down): 0.492E-05 0.000E+00 total cpu time spent up to now is 4.60 secs total energy = -29.22143499 Ry Harris-Foulkes estimate = -29.22237311 Ry estimated scf accuracy < 0.01146048 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.71E-06, avg # of iterations = 3.0 negative rho (up, down): 0.333E-05 0.000E+00 total cpu time spent up to now is 4.72 secs total energy = -29.22190459 Ry Harris-Foulkes estimate = -29.22191970 Ry estimated scf accuracy < 0.00008846 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.21E-07, avg # of iterations = 1.3 negative rho (up, down): 0.926E-06 0.000E+00 total cpu time spent up to now is 4.82 secs total energy = -29.22191220 Ry Harris-Foulkes estimate = -29.22191210 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.55E-10, avg # of iterations = 3.7 total cpu time spent up to now is 4.95 secs total energy = -29.22191255 Ry Harris-Foulkes estimate = -29.22191246 Ry estimated scf accuracy < 0.00000018 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.45E-10, avg # of iterations = 2.3 total cpu time spent up to now is 5.07 secs total energy = -29.22191261 Ry Harris-Foulkes estimate = -29.22191260 Ry estimated scf accuracy < 0.00000019 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.45E-10, avg # of iterations = 1.3 total cpu time spent up to now is 5.17 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1699 -6.6682 -5.8660 -4.6418 -3.1398 -1.4228 0.5736 1.8518 4.4609 5.4287 5.8701 6.2989 6.5820 7.1742 7.5340 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8463 -4.3524 -3.5657 -2.3637 -0.8919 -0.3469 0.1080 0.8285 0.8902 2.0518 2.7754 3.5293 3.9450 5.2018 6.6035 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5793 -2.0979 -1.3276 -0.1472 1.2379 1.2935 1.6782 2.3838 2.6271 2.7748 3.3953 3.5052 3.9914 4.9176 4.9895 the Fermi energy is 3.4519 ev ! total energy = -29.22191262 Ry Harris-Foulkes estimate = -29.22191263 Ry estimated scf accuracy < 3.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -188.44826678 Ry hartree contribution = 100.94146686 Ry xc contribution = -11.24854286 Ry ewald contribution = 69.53693799 Ry smearing contrib. (-TS) = -0.00350783 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00088006 atom 2 type 1 force = 0.00000000 0.00000000 0.00731434 atom 3 type 1 force = 0.00000000 0.00000000 -0.00044475 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00044475 atom 6 type 1 force = 0.00000000 0.00000000 -0.00731434 atom 7 type 1 force = 0.00000000 0.00000000 -0.00088006 Total force = 0.010438 Total SCF correction = 0.000096 number of scf cycles = 5 number of bfgs steps = 3 energy old = -29.2215165284 Ry energy new = -29.2219126227 Ry CASE: energy _new < energy _old new trust radius = 0.1394465460 bohr new conv_thr = 0.0000003961 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.078348118 Al 0.000000000 0.000000000 -1.398220493 Al 0.500000000 0.500000000 -0.699508709 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.699508709 Al 0.000000000 0.000000000 1.398220493 Al 0.500000000 0.500000000 2.078348118 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000293 negative rho (up, down): 0.116E-04 0.000E+00 total cpu time spent up to now is 5.25 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 negative rho (up, down): 0.560E-05 0.000E+00 total cpu time spent up to now is 5.41 secs total energy = -29.22274384 Ry Harris-Foulkes estimate = -29.22276902 Ry estimated scf accuracy < 0.00005143 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.45E-07, avg # of iterations = 3.3 negative rho (up, down): 0.510E-05 0.000E+00 total cpu time spent up to now is 5.55 secs total energy = -29.22268829 Ry Harris-Foulkes estimate = -29.22284873 Ry estimated scf accuracy < 0.00202838 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.45E-07, avg # of iterations = 2.7 negative rho (up, down): 0.363E-05 0.000E+00 total cpu time spent up to now is 5.67 secs total energy = -29.22276777 Ry Harris-Foulkes estimate = -29.22276774 Ry estimated scf accuracy < 0.00000068 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.25E-09, avg # of iterations = 2.7 total cpu time spent up to now is 5.79 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2327 -6.7323 -5.8818 -4.6586 -3.1622 -1.4128 0.5983 1.8779 4.5129 5.3627 5.8015 6.3317 6.5658 7.1289 7.5618 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9090 -4.4166 -3.5821 -2.3817 -0.9166 -0.4101 0.0425 0.8375 0.8742 2.0328 2.7950 3.5082 3.9697 5.2090 6.6520 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6424 -2.1630 -1.3447 -0.1664 1.1734 1.2660 1.6112 2.3669 2.5628 2.7424 3.3711 3.4840 3.9745 4.8812 5.0117 the Fermi energy is 3.4379 ev ! total energy = -29.22276813 Ry Harris-Foulkes estimate = -29.22276783 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -192.79277743 Ry hartree contribution = 103.10074431 Ry xc contribution = -11.26720066 Ry ewald contribution = 71.73982259 Ry smearing contrib. (-TS) = -0.00335694 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000804 atom 2 type 1 force = 0.00000000 0.00000000 0.00402009 atom 3 type 1 force = 0.00000000 0.00000000 0.00194294 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00194294 atom 6 type 1 force = 0.00000000 0.00000000 -0.00402009 atom 7 type 1 force = 0.00000000 0.00000000 0.00000804 Total force = 0.006314 Total SCF correction = 0.000559 number of scf cycles = 6 number of bfgs steps = 4 energy old = -29.2219126227 Ry energy new = -29.2227681268 Ry CASE: energy _new < energy _old new trust radius = 0.4183396379 bohr new conv_thr = 0.0000004020 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.038627516 Al 0.000000000 0.000000000 -1.359479803 Al 0.500000000 0.500000000 -0.693791358 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693791358 Al 0.000000000 0.000000000 1.359479803 Al 0.500000000 0.500000000 2.038627516 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000293 second order charge density extrapolation Check: negative starting charge= -0.000270 negative rho (up, down): 0.231E-03 0.000E+00 total cpu time spent up to now is 5.87 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.136E-03 0.000E+00 total cpu time spent up to now is 6.09 secs total energy = -29.21953644 Ry Harris-Foulkes estimate = -29.22204497 Ry estimated scf accuracy < 0.00504935 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.40E-05, avg # of iterations = 3.3 negative rho (up, down): 0.127E-03 0.000E+00 total cpu time spent up to now is 6.24 secs total energy = -29.21434613 Ry Harris-Foulkes estimate = -29.22943516 Ry estimated scf accuracy < 0.18662122 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.40E-05, avg # of iterations = 3.0 negative rho (up, down): 0.963E-04 0.000E+00 total cpu time spent up to now is 6.36 secs total energy = -29.22181680 Ry Harris-Foulkes estimate = -29.22183420 Ry estimated scf accuracy < 0.00009192 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.38E-07, avg # of iterations = 5.3 negative rho (up, down): 0.190E-04 0.000E+00 total cpu time spent up to now is 6.49 secs total energy = -29.22183625 Ry Harris-Foulkes estimate = -29.22182908 Ry estimated scf accuracy < 0.00000440 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-08, avg # of iterations = 2.3 negative rho (up, down): 0.999E-06 0.000E+00 total cpu time spent up to now is 6.58 secs total energy = -29.22183849 Ry Harris-Foulkes estimate = -29.22183673 Ry estimated scf accuracy < 0.00000083 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.94E-09, avg # of iterations = 1.3 total cpu time spent up to now is 6.67 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.4376 -6.9335 -5.9373 -4.7091 -3.2199 -1.3835 0.6699 1.9617 4.6592 5.1444 5.5819 6.3991 6.5076 6.9815 7.6531 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.1134 -4.6188 -3.6397 -2.4361 -0.9837 -0.6158 -0.1634 0.8177 0.8642 1.9758 2.8492 3.4559 4.0477 5.2292 6.7851 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.8488 -2.3678 -1.4050 -0.2251 0.9608 1.1910 1.3975 2.3068 2.3531 2.6144 3.3228 3.4211 3.9148 4.7817 5.0313 the Fermi energy is 3.4039 ev ! total energy = -29.22183870 Ry Harris-Foulkes estimate = -29.22183853 Ry estimated scf accuracy < 0.00000007 Ry The total energy is the sum of the following terms: one-electron contribution = -206.21164512 Ry hartree contribution = 109.77832264 Ry xc contribution = -11.32535539 Ry ewald contribution = 78.54070364 Ry smearing contrib. (-TS) = -0.00386447 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00300657 atom 2 type 1 force = 0.00000000 0.00000000 -0.00799649 atom 3 type 1 force = 0.00000000 0.00000000 0.01033950 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.01033950 atom 6 type 1 force = 0.00000000 0.00000000 0.00799649 atom 7 type 1 force = 0.00000000 0.00000000 0.00300657 Total force = 0.018968 Total SCF correction = 0.000270 number of scf cycles = 7 number of bfgs steps = 5 energy old = -29.2227681268 Ry energy new = -29.2218387025 Ry CASE: energy _new > energy _old new trust radius = 0.1714327972 bohr new conv_thr = 0.0000004020 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062070880 Al 0.000000000 0.000000000 -1.382344816 Al 0.500000000 0.500000000 -0.697165777 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.697165777 Al 0.000000000 0.000000000 1.382344816 Al 0.500000000 0.500000000 2.062070880 Writing output data file pwscf.save second order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000270 second order charge density extrapolation Check: negative starting charge= -0.000299 negative rho (up, down): 0.253E-04 0.000E+00 total cpu time spent up to now is 6.74 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.74E-08, avg # of iterations = 1.3 negative rho (up, down): 0.125E-04 0.000E+00 total cpu time spent up to now is 6.99 secs total energy = -29.22306458 Ry Harris-Foulkes estimate = -29.22306847 Ry estimated scf accuracy < 0.00001045 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 3.0 negative rho (up, down): 0.113E-04 0.000E+00 total cpu time spent up to now is 7.11 secs total energy = -29.22305670 Ry Harris-Foulkes estimate = -29.22307985 Ry estimated scf accuracy < 0.00026957 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 2.7 negative rho (up, down): 0.784E-05 0.000E+00 total cpu time spent up to now is 7.21 secs total energy = -29.22306875 Ry Harris-Foulkes estimate = -29.22306899 Ry estimated scf accuracy < 0.00000357 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 1.3 total cpu time spent up to now is 7.30 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3139 -6.8113 -5.9035 -4.6791 -3.1863 -1.4006 0.6285 1.9116 4.5755 5.2768 5.7160 6.3660 6.5431 7.0699 7.5993 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9900 -4.4959 -3.6047 -2.4037 -0.9442 -0.4917 -0.0383 0.8486 0.8522 2.0095 2.8186 3.4857 4.0012 5.2176 6.7098 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7241 -2.2433 -1.3683 -0.1901 1.0895 1.2351 1.5279 2.3435 2.4797 2.6964 3.3478 3.4583 3.9514 4.8402 5.0391 the Fermi energy is 3.4231 ev ! total energy = -29.22306977 Ry Harris-Foulkes estimate = -29.22306902 Ry estimated scf accuracy < 0.00000019 Ry The total energy is the sum of the following terms: one-electron contribution = -198.24495322 Ry hartree contribution = 105.81579429 Ry xc contribution = -11.29061748 Ry ewald contribution = 74.50013137 Ry smearing contrib. (-TS) = -0.00342473 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00113973 atom 2 type 1 force = 0.00000000 0.00000000 -0.00040661 atom 3 type 1 force = 0.00000000 0.00000000 0.00489238 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00489238 atom 6 type 1 force = 0.00000000 0.00000000 0.00040661 atom 7 type 1 force = 0.00000000 0.00000000 0.00113973 Total force = 0.007127 Total SCF correction = 0.000171 number of scf cycles = 8 number of bfgs steps = 5 energy old = -29.2227681268 Ry energy new = -29.2230697651 Ry CASE: energy _new < energy _old new trust radius = 0.2571491958 bohr new conv_thr = 0.0000003016 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.086040031 Al 0.000000000 0.000000000 -1.404741650 Al 0.500000000 0.500000000 -0.687194308 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.687194308 Al 0.000000000 0.000000000 1.404741650 Al 0.500000000 0.500000000 2.086040031 Writing output data file pwscf.save second order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000299 second order charge density extrapolation Check: negative starting charge= -0.000287 negative rho (up, down): 0.131E-03 0.000E+00 total cpu time spent up to now is 7.37 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 9.0 negative rho (up, down): 0.742E-04 0.000E+00 total cpu time spent up to now is 7.61 secs total energy = -29.22057202 Ry Harris-Foulkes estimate = -29.22240702 Ry estimated scf accuracy < 0.00389525 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.85E-05, avg # of iterations = 3.7 negative rho (up, down): 0.670E-04 0.000E+00 total cpu time spent up to now is 7.74 secs total energy = -29.21906970 Ry Harris-Foulkes estimate = -29.22393468 Ry estimated scf accuracy < 0.04249448 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.85E-05, avg # of iterations = 3.0 negative rho (up, down): 0.536E-04 0.000E+00 total cpu time spent up to now is 7.86 secs total energy = -29.22146307 Ry Harris-Foulkes estimate = -29.22248285 Ry estimated scf accuracy < 0.01063660 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.85E-05, avg # of iterations = 2.0 negative rho (up, down): 0.242E-04 0.000E+00 total cpu time spent up to now is 7.95 secs total energy = -29.22195795 Ry Harris-Foulkes estimate = -29.22195710 Ry estimated scf accuracy < 0.00002430 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 3.7 negative rho (up, down): 0.283E-05 0.000E+00 total cpu time spent up to now is 8.09 secs total energy = -29.22196538 Ry Harris-Foulkes estimate = -29.22196275 Ry estimated scf accuracy < 0.00000653 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.11E-08, avg # of iterations = 1.3 negative rho (up, down): 0.409E-07 0.000E+00 total cpu time spent up to now is 8.19 secs total energy = -29.22196636 Ry Harris-Foulkes estimate = -29.22196579 Ry estimated scf accuracy < 0.00000056 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 2.7 total cpu time spent up to now is 8.29 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2283 -6.6524 -5.9019 -4.6596 -3.1266 -1.4306 0.5801 1.8604 4.4898 5.3655 5.8880 6.3159 6.5408 7.1163 7.5616 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9046 -4.3368 -3.6018 -2.3822 -0.8825 -0.4034 0.1231 0.8206 0.8539 2.0336 2.7837 3.5406 3.9492 5.1915 6.6335 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6383 -2.0822 -1.3641 -0.1666 1.1764 1.3021 1.6951 2.3442 2.5712 2.7731 3.4019 3.4830 3.9586 4.9382 4.9984 the Fermi energy is 3.4524 ev ! total energy = -29.22196638 Ry Harris-Foulkes estimate = -29.22196642 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = -191.26764715 Ry hartree contribution = 102.34617067 Ry xc contribution = -11.25705839 Ry ewald contribution = 70.96058153 Ry smearing contrib. (-TS) = -0.00401304 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00086437 atom 2 type 1 force = 0.00000000 0.00000000 0.00823997 atom 3 type 1 force = 0.00000000 0.00000000 -0.00699724 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00699724 atom 6 type 1 force = 0.00000000 0.00000000 -0.00823997 atom 7 type 1 force = 0.00000000 0.00000000 -0.00086437 Total force = 0.015337 Total SCF correction = 0.000493 number of scf cycles = 9 number of bfgs steps = 6 energy old = -29.2230697651 Ry energy new = -29.2219663841 Ry CASE: energy _new > energy _old new trust radius = 0.0978542293 bohr new conv_thr = 0.0000003016 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.071191977 Al 0.000000000 0.000000000 -1.390867592 Al 0.500000000 0.500000000 -0.693371285 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693371285 Al 0.000000000 0.000000000 1.390867592 Al 0.500000000 0.500000000 2.071191977 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000287 second order charge density extrapolation Check: negative starting charge= -0.000297 negative rho (up, down): 0.292E-05 0.000E+00 total cpu time spent up to now is 8.37 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.08E-08, avg # of iterations = 1.3 negative rho (up, down): 0.960E-06 0.000E+00 total cpu time spent up to now is 8.58 secs total energy = -29.22310026 Ry Harris-Foulkes estimate = -29.22310499 Ry estimated scf accuracy < 0.00000987 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.70E-08, avg # of iterations = 3.0 negative rho (up, down): 0.840E-06 0.000E+00 total cpu time spent up to now is 8.69 secs total energy = -29.22309008 Ry Harris-Foulkes estimate = -29.22311940 Ry estimated scf accuracy < 0.00036301 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.70E-08, avg # of iterations = 2.7 negative rho (up, down): 0.468E-06 0.000E+00 total cpu time spent up to now is 8.80 secs total energy = -29.22310475 Ry Harris-Foulkes estimate = -29.22310474 Ry estimated scf accuracy < 0.00000034 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 2.3 total cpu time spent up to now is 8.90 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2785 -6.7487 -5.9034 -4.6720 -3.1644 -1.4122 0.6103 1.8913 4.5441 5.3146 5.7845 6.3506 6.5413 7.0911 7.5848 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9546 -4.4332 -3.6041 -2.3957 -0.9214 -0.4549 0.0254 0.8378 0.8522 2.0185 2.8060 3.5054 3.9806 5.2074 6.6818 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6885 -2.1798 -1.3672 -0.1813 1.1263 1.2599 1.5943 2.3429 2.5174 2.7299 3.3658 3.4676 3.9540 4.8768 5.0239 the Fermi energy is 3.4334 ev ! total energy = -29.22310489 Ry Harris-Foulkes estimate = -29.22310478 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = -195.57046556 Ry hartree contribution = 104.48418092 Ry xc contribution = -11.27740951 Ry ewald contribution = 73.14419954 Ry smearing contrib. (-TS) = -0.00361028 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00032581 atom 2 type 1 force = 0.00000000 0.00000000 0.00325952 atom 3 type 1 force = 0.00000000 0.00000000 0.00001332 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00001332 atom 6 type 1 force = 0.00000000 0.00000000 -0.00325952 atom 7 type 1 force = 0.00000000 0.00000000 0.00032581 Total force = 0.004633 Total SCF correction = 0.000283 number of scf cycles = 10 number of bfgs steps = 6 energy old = -29.2230697651 Ry energy new = -29.2231048916 Ry CASE: energy _new < energy _old new trust radius = 0.0931600571 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063603727 Al 0.000000000 0.000000000 -1.381533453 Al 0.500000000 0.500000000 -0.690275792 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.690275792 Al 0.000000000 0.000000000 1.381533453 Al 0.500000000 0.500000000 2.063603727 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000297 second order charge density extrapolation Check: negative starting charge= -0.000295 negative rho (up, down): 0.822E-05 0.000E+00 total cpu time spent up to now is 8.97 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 negative rho (up, down): 0.311E-05 0.000E+00 total cpu time spent up to now is 9.15 secs total energy = -29.22274584 Ry Harris-Foulkes estimate = -29.22336666 Ry estimated scf accuracy < 0.00126829 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.04E-06, avg # of iterations = 3.7 negative rho (up, down): 0.270E-05 0.000E+00 total cpu time spent up to now is 9.28 secs total energy = -29.22169753 Ry Harris-Foulkes estimate = -29.22475463 Ry estimated scf accuracy < 0.03569892 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.04E-06, avg # of iterations = 3.0 negative rho (up, down): 0.170E-05 0.000E+00 total cpu time spent up to now is 9.40 secs total energy = -29.22324752 Ry Harris-Foulkes estimate = -29.22331249 Ry estimated scf accuracy < 0.00042544 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-06, avg # of iterations = 1.3 negative rho (up, down): 0.177E-06 0.000E+00 total cpu time spent up to now is 9.49 secs total energy = -29.22327829 Ry Harris-Foulkes estimate = -29.22327817 Ry estimated scf accuracy < 0.00000484 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.31E-08, avg # of iterations = 3.0 total cpu time spent up to now is 9.61 secs total energy = -29.22327961 Ry Harris-Foulkes estimate = -29.22327952 Ry estimated scf accuracy < 0.00000199 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.46E-09, avg # of iterations = 1.3 total cpu time spent up to now is 9.70 secs total energy = -29.22327971 Ry Harris-Foulkes estimate = -29.22327972 Ry estimated scf accuracy < 0.00000016 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.63E-10, avg # of iterations = 3.0 total cpu time spent up to now is 9.81 secs total energy = -29.22327974 Ry Harris-Foulkes estimate = -29.22327975 Ry estimated scf accuracy < 0.00000014 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.54E-10, avg # of iterations = 1.3 total cpu time spent up to now is 9.90 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3252 -6.7800 -5.9114 -4.6809 -3.1762 -1.4093 0.6228 1.9057 4.5756 5.2653 5.7512 6.3682 6.5334 7.0549 7.6050 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0012 -4.4647 -3.6124 -2.4054 -0.9356 -0.5011 -0.0066 0.8403 0.8442 2.0087 2.8159 3.4943 3.9940 5.2076 6.7108 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7355 -2.2116 -1.3759 -0.1917 1.0782 1.2443 1.5616 2.3346 2.4703 2.7099 3.3560 3.4566 3.9451 4.8574 5.0358 the Fermi energy is 3.4266 ev ! total energy = -29.22327974 Ry Harris-Foulkes estimate = -29.22327974 Ry estimated scf accuracy < 3.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.51580216 Ry hartree contribution = 105.95149663 Ry xc contribution = -11.28830043 Ry ewald contribution = 74.63299575 Ry smearing contrib. (-TS) = -0.00366952 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00021770 atom 2 type 1 force = 0.00000000 0.00000000 0.00051688 atom 3 type 1 force = 0.00000000 0.00000000 0.00051141 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00051141 atom 6 type 1 force = 0.00000000 0.00000000 -0.00051688 atom 7 type 1 force = 0.00000000 0.00000000 0.00021770 Total force = 0.001073 Total SCF correction = 0.000094 number of scf cycles = 11 number of bfgs steps = 7 energy old = -29.2231048916 Ry energy new = -29.2232797404 Ry CASE: energy _new < energy _old new trust radius = 0.0223752438 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062338821 Al 0.000000000 0.000000000 -1.379394352 Al 0.500000000 0.500000000 -0.688625115 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688625115 Al 0.000000000 0.000000000 1.379394352 Al 0.500000000 0.500000000 2.062338821 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000295 second order charge density extrapolation Check: negative starting charge= -0.000293 total cpu time spent up to now is 9.97 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.43E-08, avg # of iterations = 1.0 total cpu time spent up to now is 10.18 secs total energy = -29.22328391 Ry Harris-Foulkes estimate = -29.22328872 Ry estimated scf accuracy < 0.00000961 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.58E-08, avg # of iterations = 3.0 total cpu time spent up to now is 10.29 secs total energy = -29.22327388 Ry Harris-Foulkes estimate = -29.22330310 Ry estimated scf accuracy < 0.00036138 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.58E-08, avg # of iterations = 2.7 total cpu time spent up to now is 10.38 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3368 -6.7817 -5.9132 -4.6826 -3.1772 -1.4100 0.6244 1.9078 4.5818 5.2530 5.7497 6.3719 6.5315 7.0449 7.6104 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0128 -4.4664 -3.6143 -2.4072 -0.9374 -0.5123 -0.0084 0.8395 0.8424 2.0070 2.8173 3.4933 3.9956 5.2061 6.7166 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7472 -2.2134 -1.3779 -0.1937 1.0662 1.2424 1.5600 2.3326 2.4589 2.7077 3.3555 3.4547 3.9432 4.8558 5.0376 the Fermi energy is 3.4259 ev ! total energy = -29.22328827 Ry Harris-Foulkes estimate = -29.22328828 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -199.16115632 Ry hartree contribution = 106.27155632 Ry xc contribution = -11.29012195 Ry ewald contribution = 74.96014591 Ry smearing contrib. (-TS) = -0.00371223 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00001182 atom 2 type 1 force = 0.00000000 0.00000000 -0.00002992 atom 3 type 1 force = 0.00000000 0.00000000 -0.00000357 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00000357 atom 6 type 1 force = 0.00000000 0.00000000 0.00002992 atom 7 type 1 force = 0.00000000 0.00000000 0.00001182 Total force = 0.000046 Total SCF correction = 0.000258 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 12 scf cycles and 8 bfgs steps End of BFGS Geometry Optimization Final energy = -29.2232882653 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 8.000000000 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062338821 Al 0.000000000 0.000000000 -1.379394352 Al 0.500000000 0.500000000 -0.688625115 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688625115 Al 0.000000000 0.000000000 1.379394352 Al 0.500000000 0.500000000 2.062338821 Writing output data file pwscf.save PWSCF : 10.43s CPU time, 10.99s wall time init_run : 0.16s CPU electrons : 9.41s CPU ( 12 calls, 0.784 s avg) update_pot : 0.28s CPU ( 11 calls, 0.025 s avg) forces : 0.16s CPU ( 12 calls, 0.013 s avg) Called by init_run: wfcinit : 0.14s CPU potinit : 0.01s CPU Called by electrons: c_bands : 7.75s CPU ( 77 calls, 0.101 s avg) sum_band : 1.13s CPU ( 77 calls, 0.015 s avg) v_of_rho : 0.18s CPU ( 86 calls, 0.002 s avg) mix_rho : 0.13s CPU ( 77 calls, 0.002 s avg) Called by c_bands: init_us_2 : 0.19s CPU ( 501 calls, 0.000 s avg) cegterg : 7.52s CPU ( 231 calls, 0.033 s avg) Called by *egterg: h_psi : 5.27s CPU ( 926 calls, 0.006 s avg) g_psi : 0.18s CPU ( 692 calls, 0.000 s avg) cdiaghg : 0.64s CPU ( 881 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.30s CPU ( 926 calls, 0.000 s avg) General routines calbec : 0.40s CPU ( 992 calls, 0.000 s avg) cft3 : 0.07s CPU ( 296 calls, 0.000 s avg) cft3s : 4.62s CPU ( 22083 calls, 0.000 s avg) davcio : 0.01s CPU ( 915 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example02/run_example0000755000700200004540000001234212053145630020567 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to compute the equilibrium geometry" $ECHO "of a simple molecule, CO, and of an Al (001) slab." $ECHO "In the latter case the relaxation is performed in two ways:" $ECHO "1) using the quasi-Newton BFGS algorithm" $ECHO "2) using a damped dynamics algorithm." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" O.pz-rrkjus.UPF C.pz-rrkjus.UPF Al.pz-vbc.UPF " $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > co.rx.in << EOF &CONTROL calculation = "relax", prefix = "CO", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 0, nat = 2, ntyp = 2, ecutwfc = 24.D0, ecutrho = 144.D0, / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / CELL_PARAMETERS bohr 12.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 12.0 ATOMIC_SPECIES O 1.00 O.pz-rrkjus.UPF C 1.00 C.pz-rrkjus.UPF ATOMIC_POSITIONS {bohr} C 2.256 0.0 0.0 O 0.000 0.0 0.0 0 0 0 K_POINTS {Gamma} EOF $ECHO " running the geometry relaxation for CO...\c" $PW_COMMAND < co.rx.in > co.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > al001.rx.in << EOF &CONTROL calculation = "relax", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS conv_thr = 1.D-6, mixing_beta = 0.3D0, / &IONS bfgs_ndim = 3, / ATOMIC_SPECIES Al 1.0 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using BFGS...\c" $PW_COMMAND < al001.rx.in > al001.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation rm -f e eal ave p avec tv cat > al001.mm.in << EOF &CONTROL calculation = "relax", dt = 30.D0, pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.3D0, / &IONS ion_dynamics = "damp", pot_extrapolation = "second_order", wfc_extrapolation = "second_order", / ATOMIC_SPECIES Al 1.D0 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using damped MD...\c" $PW_COMMAND < al001.mm.in > al001.mm.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example02/run_xml_example0000755000700200004540000002444612053145630021457 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to compute the equilibrium geometry" $ECHO "of a simple molecule, CO, and of an Al (001) slab." $ECHO "In the latter case the relaxation is performed in two ways:" $ECHO "1) using the quasi-Newton BFGS algorithm" $ECHO "2) using a damped dynamics algorithm." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" O.pz-rrkjus.UPF C.pz-rrkjus.UPF Al.pz-vbc.UPF " $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > co.rx.xml << EOF 12.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 12.0 1.00 O.pz-rrkjus.UPF 1.00 C.pz-rrkjus.UPF 2.256 0.0 0.0 0.000 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.D0 144.D0 1.D-7 0.7D0 EOF $ECHO " running the geometry relaxation for CO...\c" $PW_COMMAND < co.rx.xml > co.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > al001.rx.xml << EOF 0.0 8.D0 0.0 0.0 0.0 1.0 Al.pz-vbc.UPF 0.5000000 0.5000000 -2.121320 0.0000000 0.0000000 -1.414213 0.5000000 0.5000000 -0.707107 0.0000000 0.0000000 0.000000 0.5000000 0.5000000 0.707107 0.0000000 0.0000000 1.414213 0.5000000 0.5000000 2.121320 $PSEUDO_DIR $TMP_DIR 12.D0 1.D-6 0.3D0 smearing methfessel-paxton 0.05D0 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using BFGS...\c" $PW_COMMAND < al001.rx.xml > al001.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation rm -f e eal ave p avec tv cat > al001.mm.xml << EOF 0.0 8.D0 0.0 0.0 0.0 1.D0 Al.pz-vbc.UPF 0.5000000 0.5000000 -2.121320 0.0000000 0.0000000 -1.414213 0.5000000 0.5000000 -0.707107 0.0000000 0.0000000 0.000000 0.5000000 0.5000000 0.707107 0.0000000 0.0000000 1.414213 0.5000000 0.5000000 2.121320 $PSEUDO_DIR/ $TMP_DIR/ 12.D0 1.D-7 0.3D0 smearing methfessel-paxton 0.05D0 damp second_order second_order 30.D0 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using damped MD...\c" $PW_COMMAND < al001.mm.xml > al001.mm.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example02/README0000644000700200004540000000475612053145630017214 0ustar marsamoscm This example illustrates how to use pw.x to compute the equilibrium geometry of a simple molecule, CO, and of an Al (001) slab. The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a geometry relaxation for CO molecule performing a series of self-consistent calculations and computing the forces on atoms (input=co.rx.in, output=co.rx.out). The molecule is put in a cubic box of side 12 Bohr. Note that ibrav=0 therefore the Bravais lattice fundamental vectors are read after cards 'CELL_PARAMETERS' (where we also specify the type of symmetry, cubic or hexagonal). The cell parameter is not specified in celldm(1), but deduced from Bravais lattice vectors. Calculation is set to 'relax', so specifying that a structural relaxation is performed. While approaching the minimum, the scf threshold (initially conv_thr=1.0d-8) will automatically become smaller (stricter convergence) because of the need to evaluate correctly forces and the tiny energy differences involved in the relaxation. This tightening of the scf threshold is however limited by the upscale=10 statement that specifies that conv_thr ccannot become smaller than its starting value / upscale**2 (=1.0d-10 in the present example). 2) make a geometry relaxation for a Al (001) slab performing a series of self-consistent calculations and computing the forces on atoms (input=al001.rx.in, output=al001.rx.out). This is a 7-atomic-layer slab separated by about 4 vacuum layers. The unit cell in tetragonal (ibrav=6) with celldm(1)=alat_fcc/sqrt(2). Calculation is set to 'relax'. While approaching the minimum, the scf threshold (initially conv_thr=1.0d-6) will automatically become smaller (stricter convergence) because of the need to evaluate correctly forces and the tiny energy differences involved in the relaxation. This tightening of the scf threshold is however limited by the upscale=10 statement that specifies that conv_thr ccannot become smaller than its starting value / upscale**2 (=1.0d-8 in the present example). 3) make a geometry relaxation for the same Al (001) slab used in step 2 performing a series of self-consistent calculations, computing the forces on atoms and evolving the atomic positions according to Newton equation. Whenever a velocity component is opposite to the corresponding force component, the velocity is stopped. (input=al001.mm.in, output=al001.mm.out). espresso-5.0.2/PW/examples/example04/0000755000700200004540000000000012053440301016313 5ustar marsamoscmespresso-5.0.2/PW/examples/example04/reference/0000755000700200004540000000000012053440303020253 5ustar marsamoscmespresso-5.0.2/PW/examples/example04/reference/BP.out0000644000700200004540000004242212053145630021316 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:52:38 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 1 lattice parameter (a_0) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 22 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-05 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file Pb.vdb.UPF Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file Ti.vdb.UPF Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 5 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file O.vdb.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 21 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 -0.5000000), wk = 0.0714286 k( 2) = ( 0.1250000 0.1250000 -0.3333333), wk = 0.0714286 k( 3) = ( 0.1250000 0.1250000 -0.1666667), wk = 0.0714286 k( 4) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0714286 k( 5) = ( 0.1250000 0.1250000 0.1666667), wk = 0.0714286 k( 6) = ( 0.1250000 0.1250000 0.3333333), wk = 0.0714286 k( 7) = ( 0.1250000 0.1250000 0.5000000), wk = 0.0714286 k( 8) = ( 0.1250000 0.3750000 -0.5000000), wk = 0.1428571 k( 9) = ( 0.1250000 0.3750000 -0.3333333), wk = 0.1428571 k( 10) = ( 0.1250000 0.3750000 -0.1666667), wk = 0.1428571 k( 11) = ( 0.1250000 0.3750000 0.0000000), wk = 0.1428571 k( 12) = ( 0.1250000 0.3750000 0.1666667), wk = 0.1428571 k( 13) = ( 0.1250000 0.3750000 0.3333333), wk = 0.1428571 k( 14) = ( 0.1250000 0.3750000 0.5000000), wk = 0.1428571 k( 15) = ( 0.3750000 0.3750000 -0.5000000), wk = 0.0714286 k( 16) = ( 0.3750000 0.3750000 -0.3333333), wk = 0.0714286 k( 17) = ( 0.3750000 0.3750000 -0.1666667), wk = 0.0714286 k( 18) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0714286 k( 19) = ( 0.3750000 0.3750000 0.1666667), wk = 0.0714286 k( 20) = ( 0.3750000 0.3750000 0.3333333), wk = 0.0714286 k( 21) = ( 0.3750000 0.3750000 0.5000000), wk = 0.0714286 G cutoff = 165.0991 ( 8925 G-vectors) FFT grid: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.38 Mb ( 1121, 22) NL pseudopotentials 1.03 Mb ( 1121, 60) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.07 Mb ( 8925) G-vector shells 0.00 Mb ( 140) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.51 Mb ( 1121, 88) Each subspace H/S matrix 0.12 Mb ( 88, 88) Each matrix 0.02 Mb ( 60, 22) Arrays for rho mixing 2.40 Mb ( 19683, 8) The potential is recalculated from file : pwscf.save/charge-density.dat Starting wfc are 31 atomic wfcs total cpu time spent up to now is 1.37 secs per-process dynamical memory: 11.8 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 2.27E-08, avg # of iterations = 9.2 total cpu time spent up to now is 8.67 secs End of band structure calculation k = 0.1250 0.1250-0.5000 band energies (ev): -45.0393 -21.6916 -21.6260 -21.6258 -6.1087 -5.4016 -5.3411 -4.3730 -4.2970 -4.2848 -4.2477 -4.1040 3.5390 6.3033 7.1127 7.7144 8.0841 8.3261 9.1196 9.6679 9.8620 10.7347 k = 0.1250 0.1250-0.3333 band energies (ev): -45.0397 -21.6730 -21.6268 -21.6265 -6.2509 -5.4463 -5.4033 -4.3557 -4.3043 -4.2907 -4.2075 -4.1043 3.7312 6.7712 7.1051 7.5467 8.2514 8.5528 9.1323 9.6899 9.8170 10.3877 k = 0.1250 0.1250-0.1667 band energies (ev): -45.0404 -21.6352 -21.6280 -21.6274 -6.5293 -5.5273 -5.5165 -4.3154 -4.3079 -4.2932 -4.1412 -4.1242 4.2253 7.0425 7.0673 7.8160 8.7352 8.7686 9.5703 9.6606 9.7271 9.8312 k = 0.1250 0.1250 0.0000 band energies (ev): -45.0408 -21.6289 -21.6282 -21.6165 -6.6644 -5.5699 -5.5646 -4.3032 -4.2931 -4.2921 -4.1422 -4.1135 4.5355 7.0413 7.1549 7.5673 9.0029 9.2217 9.4761 9.6450 9.8867 9.9502 k = 0.1250 0.1250 0.1667 band energies (ev): -45.0404 -21.6352 -21.6280 -21.6274 -6.5293 -5.5273 -5.5165 -4.3154 -4.3079 -4.2932 -4.1412 -4.1242 4.2253 7.0425 7.0673 7.8160 8.7352 8.7686 9.5703 9.6606 9.7271 9.8312 k = 0.1250 0.1250 0.3333 band energies (ev): -45.0397 -21.6730 -21.6268 -21.6265 -6.2509 -5.4463 -5.4033 -4.3557 -4.3043 -4.2907 -4.2075 -4.1043 3.7312 6.7712 7.1051 7.5467 8.2514 8.5528 9.1323 9.6899 9.8170 10.3877 k = 0.1250 0.1250 0.5000 band energies (ev): -45.0393 -21.6916 -21.6260 -21.6258 -6.1087 -5.4016 -5.3411 -4.3730 -4.2970 -4.2848 -4.2477 -4.1040 3.5390 6.3033 7.1127 7.7144 8.0841 8.3261 9.1196 9.6679 9.8620 10.7347 k = 0.1250 0.3750-0.5000 band energies (ev): -45.0381 -21.6884 -21.6777 -21.6238 -5.9694 -5.2534 -5.2018 -4.3352 -4.2806 -4.2424 -4.1756 -3.9782 3.2267 6.3078 6.6176 6.8798 7.1927 8.4570 8.9953 9.3019 9.4519 10.5719 k = 0.1250 0.3750-0.3333 band energies (ev): -45.0386 -21.6789 -21.6702 -21.6245 -5.9985 -5.3436 -5.2648 -4.3402 -4.3045 -4.2502 -4.1509 -4.0408 3.3556 6.5784 6.7422 6.9451 7.3915 8.3666 9.1352 9.3144 9.8636 10.3596 k = 0.1250 0.3750-0.1667 band energies (ev): -45.0394 -21.6811 -21.6336 -21.6262 -6.1466 -5.4256 -5.3645 -4.3596 -4.3051 -4.2797 -4.1938 -4.1064 3.5996 6.5888 7.0083 7.4755 8.0899 8.5312 8.9541 9.7618 9.8092 10.4447 k = 0.1250 0.3750 0.0000 band energies (ev): -45.0398 -21.6819 -21.6269 -21.6144 -6.2562 -5.4253 -5.4009 -4.3612 -4.3280 -4.2899 -4.2546 -4.0974 3.7060 6.5862 7.4747 7.5730 8.1543 8.4540 9.4632 9.5794 9.8299 10.6648 k = 0.1250 0.3750 0.1667 band energies (ev): -45.0394 -21.6811 -21.6336 -21.6262 -6.1466 -5.4256 -5.3645 -4.3596 -4.3051 -4.2797 -4.1938 -4.1064 3.5996 6.5888 7.0083 7.4755 8.0899 8.5312 8.9541 9.7618 9.8092 10.4447 k = 0.1250 0.3750 0.3333 band energies (ev): -45.0386 -21.6789 -21.6702 -21.6245 -5.9985 -5.3436 -5.2648 -4.3402 -4.3045 -4.2502 -4.1509 -4.0408 3.3556 6.5784 6.7422 6.9451 7.3915 8.3666 9.1352 9.3144 9.8636 10.3596 k = 0.1250 0.3750 0.5000 band energies (ev): -45.0381 -21.6884 -21.6777 -21.6238 -5.9694 -5.2534 -5.2018 -4.3352 -4.2806 -4.2424 -4.1756 -3.9782 3.2267 6.3078 6.6176 6.8798 7.1927 8.4570 8.9953 9.3019 9.4519 10.5719 k = 0.3750 0.3750-0.5000 band energies (ev): -45.0369 -21.6853 -21.6759 -21.6750 -5.5730 -5.4648 -5.3942 -4.2528 -4.2381 -3.9095 -3.8992 -3.8612 4.0523 5.5671 5.7034 6.2329 6.6784 6.7853 7.1796 10.4301 10.4973 10.5739 k = 0.3750 0.3750-0.3333 band energies (ev): -45.0374 -21.6765 -21.6764 -21.6678 -5.6399 -5.4311 -5.4100 -4.2687 -4.2589 -4.0137 -3.9469 -3.9286 3.8087 5.8267 5.8802 6.5086 6.7963 6.9645 7.9866 10.3183 10.3245 10.4562 k = 0.3750 0.3750-0.1667 band energies (ev): -45.0382 -21.6783 -21.6778 -21.6312 -5.9182 -5.3382 -5.2783 -4.3280 -4.2837 -4.1986 -4.1252 -4.0032 3.3764 6.5335 6.5380 6.6723 7.0365 8.1556 9.1897 9.5144 9.6726 10.4469 k = 0.3750 0.3750 0.0000 band energies (ev): -45.0386 -21.6792 -21.6783 -21.6124 -6.0639 -5.2666 -5.1937 -4.3407 -4.3287 -4.3224 -4.1994 -4.0310 3.1945 6.5555 6.6509 7.8810 7.9842 8.0305 8.3887 9.1582 10.0287 10.4483 k = 0.3750 0.3750 0.1667 band energies (ev): -45.0382 -21.6783 -21.6778 -21.6312 -5.9182 -5.3382 -5.2783 -4.3280 -4.2837 -4.1986 -4.1252 -4.0032 3.3764 6.5335 6.5380 6.6723 7.0365 8.1556 9.1897 9.5144 9.6726 10.4469 k = 0.3750 0.3750 0.3333 band energies (ev): -45.0374 -21.6765 -21.6764 -21.6678 -5.6399 -5.4311 -5.4100 -4.2687 -4.2589 -4.0137 -3.9469 -3.9286 3.8087 5.8267 5.8802 6.5086 6.7963 6.9645 7.9866 10.3183 10.3245 10.4562 k = 0.3750 0.3750 0.5000 band energies (ev): -45.0369 -21.6853 -21.6759 -21.6750 -5.5730 -5.4648 -5.3942 -4.2528 -4.2381 -3.9095 -3.8992 -3.8612 4.0523 5.5671 5.7034 6.2329 6.6784 6.7853 7.1796 10.4301 10.4973 10.5739 ================================================== POLARIZATION CALCULATION !!! NOT THOROUGHLY TESTED !!! -------------------------------------------------- K-POINTS STRINGS USED IN CALCULATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G-vector along string (2 pi/a): 0.00000 0.00000 1.00000 Modulus of the vector (1/bohr): 0.85255 Number of k-points per string: 7 Number of different strings : 3 IONIC POLARIZATION ~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Ion Species Charge Position Phase ---------------------------------------------------------------------------- 1 Pb 14.000 0.0000 0.0000 0.0100 0.14000 (mod 2) 2 Ti 12.000 0.5000 0.5000 0.5000 0.00000 (mod 2) 3 O 6.000 0.0000 0.5000 0.5000 -1.00000 (mod 2) 4 O 6.000 0.5000 0.5000 0.0000 0.00000 (mod 2) 5 O 6.000 0.5000 0.0000 0.5000 -1.00000 (mod 2) ---------------------------------------------------------------------------- IONIC PHASE: 0.14000 (mod 2) ============================================================================ ELECTRONIC POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Spin String Weight First k-point in string Phase ---------------------------------------------------------------------------- up 1 0.250000 0.1250 0.1250 -0.5000 -0.05427 (mod 1) up 2 0.500000 0.1250 0.3750 -0.5000 -0.04876 (mod 1) up 3 0.250000 0.3750 0.3750 -0.5000 -0.05048 (mod 1) ---------------------------------------------------------------------------- down 1 0.250000 0.1250 0.1250 -0.5000 -0.05427 (mod 1) down 2 0.500000 0.1250 0.3750 -0.5000 -0.04876 (mod 1) down 3 0.250000 0.3750 0.3750 -0.5000 -0.05048 (mod 1) ---------------------------------------------------------------------------- Average phase (up): -0.05057 (mod 1) Average phase (down): -0.05057 (mod 1) ELECTRONIC PHASE: -0.10114 (mod 2) ============================================================================ SUMMARY OF PHASES ~~~~~~~~~~~~~~~~~ Ionic Phase: 0.14000 (mod 2) Electronic Phase: -0.10114 (mod 2) TOTAL PHASE: 0.03886 (mod 2) VALUES OF POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~ The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell): P = 0.2864184 (mod 14.7398000) (e/Omega).bohr P = 0.0007155 (mod 0.0368220) e/bohr^2 P = 0.0409070 (mod 2.1051744) C/m^2 The polarization direction is: ( 0.00000 , 0.00000 , 1.00000 ) ================================================== Writing output data file pwscf.save PWSCF : 9.38s CPU time, 9.60s wall time init_run : 1.29s CPU electrons : 7.91s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 7.31s CPU v_of_rho : 0.00s CPU newd : 0.07s CPU Called by c_bands: init_us_2 : 0.09s CPU ( 57 calls, 0.002 s avg) cegterg : 6.28s CPU ( 21 calls, 0.299 s avg) Called by *egterg: h_psi : 4.55s CPU ( 235 calls, 0.019 s avg) s_psi : 0.42s CPU ( 235 calls, 0.002 s avg) g_psi : 0.13s CPU ( 193 calls, 0.001 s avg) cdiaghg : 0.49s CPU ( 214 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.39s CPU ( 235 calls, 0.002 s avg) General routines calbec : 0.39s CPU ( 271 calls, 0.001 s avg) cft3 : 0.00s CPU ( 4 calls, 0.000 s avg) cft3s : 3.41s CPU ( 8030 calls, 0.000 s avg) davcio : 0.00s CPU ( 57 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example04/reference/chg.out0000644000700200004540000003760312053145630021563 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:36:33 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 517 8925 27 517 8925 161 1503 bravais-lattice index = 1 lattice parameter (a_0) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 25 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-12 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file Pb.pz-d-van.UPF Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file Ti.pz-sp-van_ak.UPF Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 5 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file O.pz-van_ak.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 6 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.2500000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.2500000 k( 3) = ( 0.1250000 0.3750000 0.3750000), wk = 0.5000000 k( 4) = ( 0.3750000 0.3750000 0.3750000), wk = 0.2500000 k( 5) = ( 0.3750000 -0.1250000 0.1250000), wk = 0.5000000 k( 6) = ( 0.3750000 -0.3750000 0.1250000), wk = 0.2500000 G cutoff = 165.0991 ( 8925 G-vectors) FFT grid: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.43 Mb ( 1115, 25) NL pseudopotentials 1.02 Mb ( 1115, 60) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.07 Mb ( 8925) G-vector shells 0.00 Mb ( 140) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.70 Mb ( 1115, 100) Each subspace H/S matrix 0.15 Mb ( 100, 100) Each matrix 0.02 Mb ( 60, 25) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 42.99817, renormalised to 44.00000 Starting wfc are 31 atomic wfcs total cpu time spent up to now is 2.44 secs per-process dynamical memory: 20.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 3.62 secs total energy = -333.60310727 Ry Harris-Foulkes estimate = -334.05567223 Ry estimated scf accuracy < 1.00232089 Ry iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.28E-03, avg # of iterations = 2.8 total cpu time spent up to now is 4.93 secs total energy = -333.71642362 Ry Harris-Foulkes estimate = -333.79859205 Ry estimated scf accuracy < 0.21464383 Ry iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.88E-04, avg # of iterations = 2.8 total cpu time spent up to now is 6.15 secs total energy = -333.73363431 Ry Harris-Foulkes estimate = -333.75386069 Ry estimated scf accuracy < 0.04480561 Ry iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.02E-04, avg # of iterations = 3.2 total cpu time spent up to now is 7.54 secs total energy = -333.73785977 Ry Harris-Foulkes estimate = -333.74125294 Ry estimated scf accuracy < 0.00703076 Ry iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-05, avg # of iterations = 3.5 total cpu time spent up to now is 9.13 secs total energy = -333.73878643 Ry Harris-Foulkes estimate = -333.73979108 Ry estimated scf accuracy < 0.00234075 Ry iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.32E-06, avg # of iterations = 2.8 total cpu time spent up to now is 10.44 secs total energy = -333.73904533 Ry Harris-Foulkes estimate = -333.73910870 Ry estimated scf accuracy < 0.00017258 Ry iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.92E-07, avg # of iterations = 3.7 total cpu time spent up to now is 12.01 secs total energy = -333.73909513 Ry Harris-Foulkes estimate = -333.73914541 Ry estimated scf accuracy < 0.00016946 Ry iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.85E-07, avg # of iterations = 2.7 total cpu time spent up to now is 13.19 secs total energy = -333.73910816 Ry Harris-Foulkes estimate = -333.73911359 Ry estimated scf accuracy < 0.00001006 Ry iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.29E-08, avg # of iterations = 3.8 total cpu time spent up to now is 14.71 secs total energy = -333.73911276 Ry Harris-Foulkes estimate = -333.73911337 Ry estimated scf accuracy < 0.00000481 Ry iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.09E-08, avg # of iterations = 1.0 total cpu time spent up to now is 15.82 secs total energy = -333.73911194 Ry Harris-Foulkes estimate = -333.73911285 Ry estimated scf accuracy < 0.00000253 Ry iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.76E-09, avg # of iterations = 3.0 total cpu time spent up to now is 17.12 secs total energy = -333.73911244 Ry Harris-Foulkes estimate = -333.73911249 Ry estimated scf accuracy < 0.00000011 Ry iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.54E-10, avg # of iterations = 2.5 total cpu time spent up to now is 18.46 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 1.5E-09 Ry iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.48E-12, avg # of iterations = 3.8 total cpu time spent up to now is 20.11 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 2.5E-10 Ry iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.80E-13, avg # of iterations = 2.2 total cpu time spent up to now is 21.43 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 6.5E-11 Ry iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.48E-13, avg # of iterations = 3.0 total cpu time spent up to now is 22.75 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 1.7E-11 Ry iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.97E-14, avg # of iterations = 2.8 total cpu time spent up to now is 24.13 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 6.9E-12 Ry iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.56E-14, avg # of iterations = 1.8 total cpu time spent up to now is 25.28 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 2.2E-12 Ry iteration # 18 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.05E-15, avg # of iterations = 2.8 total cpu time spent up to now is 26.47 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 1102 PWs) bands (ev): -45.0406 -21.6284 -21.6276 -21.6271 -6.5856 -5.5430 -5.5388 -4.3063 -4.3063 -4.2932 -4.1309 -4.1293 4.3479 7.0570 7.0579 7.7803 8.8840 8.8845 9.6357 9.6907 9.6921 9.8097 13.2793 13.2953 13.2957 k = 0.1250 0.1250 0.3750 ( 1115 PWs) bands (ev): -45.0395 -21.6807 -21.6264 -21.6262 -6.1922 -5.4281 -5.3782 -4.3632 -4.3013 -4.2892 -4.2234 -4.1032 3.6472 6.5924 7.1095 7.5853 8.1776 8.4885 9.1073 9.6831 9.8347 10.5293 13.2135 14.3810 14.3907 k = 0.1250 0.3750 0.3750 ( 1103 PWs) bands (ev): -45.0383 -21.6785 -21.6774 -21.6240 -5.9830 -5.3082 -5.2414 -4.3384 -4.2973 -4.2447 -4.1609 -4.0142 3.3024 6.5509 6.6067 6.9512 7.2592 8.3894 9.1676 9.2198 9.7172 10.4504 14.1858 14.3216 14.8324 k = 0.3750 0.3750 0.3750 ( 1106 PWs) bands (ev): -45.0373 -21.6765 -21.6760 -21.6754 -5.5987 -5.4334 -5.4300 -4.2562 -4.2560 -3.9763 -3.9115 -3.9110 3.9094 5.7430 5.7462 6.4419 6.7901 6.7917 7.6797 10.4019 10.4046 10.4821 14.3585 14.6751 14.6762 k = 0.3750-0.1250 0.1250 ( 1115 PWs) bands (ev): -45.0395 -21.6814 -21.6263 -21.6256 -6.1900 -5.4257 -5.3830 -4.3637 -4.3013 -4.2891 -4.2230 -4.1025 3.6454 6.5892 7.1081 7.5877 8.1784 8.4867 9.1093 9.6819 9.8375 10.5303 13.2149 14.3793 14.3902 k = 0.3750-0.3750 0.1250 ( 1103 PWs) bands (ev): -45.0383 -21.6787 -21.6779 -21.6233 -5.9786 -5.3104 -5.2454 -4.3385 -4.2966 -4.2430 -4.1597 -4.0154 3.2986 6.5508 6.6055 6.9526 7.2604 8.3923 9.1702 9.2195 9.7176 10.4474 14.1862 14.3219 14.8306 highest occupied, lowest unoccupied level (ev): 10.5303 13.2135 ! total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 7.4E-13 Ry The total energy is the sum of the following terms: one-electron contribution = -80.06099058 Ry hartree contribution = 67.51226530 Ry xc contribution = -49.64774350 Ry ewald contribution = -271.54264368 Ry convergence has been achieved in 18 iterations Writing output data file pwscf.save PWSCF : 26.61s CPU time, 27.74s wall time init_run : 2.32s CPU electrons : 24.04s CPU Called by init_run: wfcinit : 0.41s CPU potinit : 0.02s CPU Called by electrons: c_bands : 17.44s CPU ( 18 calls, 0.969 s avg) sum_band : 4.42s CPU ( 18 calls, 0.246 s avg) v_of_rho : 0.09s CPU ( 19 calls, 0.005 s avg) newd : 1.99s CPU ( 19 calls, 0.105 s avg) mix_rho : 0.12s CPU ( 18 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.39s CPU ( 222 calls, 0.002 s avg) cegterg : 16.47s CPU ( 108 calls, 0.153 s avg) Called by *egterg: h_psi : 12.37s CPU ( 416 calls, 0.030 s avg) s_psi : 0.63s CPU ( 416 calls, 0.002 s avg) g_psi : 0.26s CPU ( 302 calls, 0.001 s avg) cdiaghg : 1.17s CPU ( 410 calls, 0.003 s avg) Called by h_psi: add_vuspsi : 0.66s CPU ( 416 calls, 0.002 s avg) General routines calbec : 0.97s CPU ( 524 calls, 0.002 s avg) cft3s : 12.22s CPU ( 16488 calls, 0.001 s avg) davcio : 0.00s CPU ( 330 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example04/run_example0000755000700200004540000000745512053145630020602 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the polarization via Berry Phase" $ECHO "in PbTiO3 (contributed by the Vanderbilt Group in Rutgers University)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pb.pz-d-van.UPF Ti.pz-sp-van_ak.UPF O.pz-van_ak.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > chg.in << EOF &control calculation = 'scf' restart_mode = 'from_scratch' pseudo_dir = '$PSEUDO_DIR/' outdir = '$TMP_DIR/' / &system ibrav=1 celldm(1)=7.3699, nat=5 ntyp=3 nbnd=25 ecutwfc=30.0 occupations = 'fixed' degauss=0.00 / &electrons conv_thr = 1e-12, mixing_beta=0.3, / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 4 1 1 1 EOF $ECHO " running self-consistent calculation in PbTiO3...\c" $PW_COMMAND < chg.in > chg.out check_failure $? $ECHO " done" # Berry Phase calculation cat > BP.in << EOF &control calculation = 'nscf' pseudo_dir = '$PSEUDO_DIR/' outdir = '$TMP_DIR/' lberry = .true. gdir = 3 nppstr = 7 / &system ibrav = 1 celldm(1) = 7.3699 nat = 5 ntyp = 3 nbnd = 22 ecutwfc = 30.0 occupations = 'fixed' degauss = 0.00 / &electrons conv_thr = 1e-5 mixing_beta = 0.3 / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 7 1 1 1 EOF $ECHO " running Berry Phase calculation for PbTiO3...\c" $PW_COMMAND < BP.in > BP.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example04/run_xml_example0000755000700200004540000001677312053145630021465 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the polarization via Berry Phase" $ECHO "in PbTiO3 (contributed by the Vanderbilt Group in Rutgers University)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pb.pz-d-van.UPF Ti.pz-sp-van_ak.UPF O.pz-van_ak.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > chg.xml << EOF 0.0 0.0 0.0 0.0 0.0 207.2 Pb.pz-d-van.UPF 47.867 Ti.pz-sp-van_ak.UPF 15.9994 O.pz-van_ak.UPF 0.000 0.000 0.010 0.500 0.500 0.500 0.000 0.500 0.500 0.500 0.500 0.000 0.500 0.000 0.500 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 30.0 0.3 1.0e-12 fixed 0.00 25 4 4 4 1 1 1 EOF $ECHO " running self-consistent calculation in PbTiO3...\c" $PW_COMMAND < chg.xml > chg.out check_failure $? $ECHO " done" # Berry Phase calculation cat > BP.xml << EOF 0.0 0.0 0.0 0.0 0.0 207.2 Pb.pz-d-van.UPF 47.867 Ti.pz-sp-van_ak.UPF 15.9994 O.pz-van_ak.UPF 0.000 0.000 0.010 0.500 0.500 0.500 0.000 0.500 0.500 0.500 0.500 0.000 0.500 0.000 0.500 $PSEUDO_DIR/ $TMP_DIR/ 30.0 0.3 1.0e-5 fixed 0.00 22 true 3 7 4 4 7 1 1 1 EOF $ECHO " running Berry Phase calculation for PbTiO3...\c" $PW_COMMAND < BP.xml > BP.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example04/README0000644000700200004540000000224712053145630017207 0ustar marsamoscmThis is an example in which the Born effective charge for Pb in perovskite PbTiO3 is calculated. 1) make a self-consistent calculation for a cubic structure of PbTiO3 in which the Pb atom has been displaced a small distance 0.01*a0 in the z axis (a0 is the lattice constant, 7.3699 bohr). (input=chg.in, output=chg.out) 2) make a non-self-consistent calculation to compute the polarization (lberry=.true. in the input file 'BP.in'). In the ouput file 'BP.out' we find that the polarization (P) multiplied by the volume of the unit cell (Omega) is: Omega * P = 0.2884752 e.bohr while the distance the Pb atom has been displaced from the perfect cubic cell structure is r - r0 = 0.01 * 7.3699 bohr = 0.073699 bohr. Given that the Born effective charge is defined as dP z* = Omega ---- dr we can use a finite differences approximation to get 0.2884752 e.bohr z* = ------------------ = 3.91 e 0.073699 bohr in good agreement with published results. For example, in Zhong, King-Smith and Vanderbilt, PRL 72, 3618 (1994) the value found is 3.90 e. espresso-5.0.2/PW/examples/example05/0000755000700200004540000000000012053440301016314 5ustar marsamoscmespresso-5.0.2/PW/examples/example05/reference/0000755000700200004540000000000012053440303020254 5ustar marsamoscmespresso-5.0.2/PW/examples/example05/reference/O.out0000644000700200004540000002723012053145630021214 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:28:30 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 72 npp = 72 ncplane = 5184 Planes per process (smooth): nr3s= 48 npps= 48 ncplanes= 2304 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 72 3365 146989 48 1685 52035 421 6619 bravais-lattice index = 1 lattice parameter (a_0) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 216.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.500 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1072.3834 ( 146989 G-vectors) FFT grid: ( 72, 72, 72) G cutoff = 536.1917 ( 52035 G-vectors) smooth grid: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.61 Mb ( 6619, 6) NL pseudopotentials 0.81 Mb ( 6619, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 1.12 Mb ( 146989) G-vector shells 0.01 Mb ( 896) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.42 Mb ( 6619, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 45.56 Mb ( 373248, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.232E-04 0.773E-05 Starting wfc are 4 atomic + 2 random wfc total cpu time spent up to now is 3.17 secs per-process dynamical memory: 109.6 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.5 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.22E-04, avg # of iterations = 2.0 negative rho (up, down): 0.325E-04 0.145E-04 total cpu time spent up to now is 7.50 secs total energy = -31.48807720 Ry Harris-Foulkes estimate = -31.47571399 Ry estimated scf accuracy < 0.01336683 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.23E-04, avg # of iterations = 1.0 negative rho (up, down): 0.992E-03 0.110E-02 total cpu time spent up to now is 10.44 secs total energy = -31.50377441 Ry Harris-Foulkes estimate = -31.48813721 Ry estimated scf accuracy < 0.00756555 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.26E-04, avg # of iterations = 1.0 negative rho (up, down): 0.606E-03 0.928E-03 total cpu time spent up to now is 13.39 secs total energy = -31.50422839 Ry Harris-Foulkes estimate = -31.50426631 Ry estimated scf accuracy < 0.00023974 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.00E-06, avg # of iterations = 8.0 negative rho (up, down): 0.420E-03 0.575E-03 total cpu time spent up to now is 16.69 secs total energy = -31.50433501 Ry Harris-Foulkes estimate = -31.50430298 Ry estimated scf accuracy < 0.00001207 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.01E-07, avg # of iterations = 1.5 negative rho (up, down): 0.189E-03 0.324E-03 total cpu time spent up to now is 19.75 secs total energy = -31.50434159 Ry Harris-Foulkes estimate = -31.50433749 Ry estimated scf accuracy < 0.00000665 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.11E-07, avg # of iterations = 2.0 negative rho (up, down): 0.123E-03 0.221E-03 total cpu time spent up to now is 22.90 secs total energy = -31.50434256 Ry Harris-Foulkes estimate = -31.50434419 Ry estimated scf accuracy < 0.00000094 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.57E-08, avg # of iterations = 1.5 negative rho (up, down): 0.102E-03 0.159E-03 total cpu time spent up to now is 26.02 secs total energy = -31.50434198 Ry Harris-Foulkes estimate = -31.50434286 Ry estimated scf accuracy < 0.00000006 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.5 negative rho (up, down): 0.900E-04 0.115E-03 total cpu time spent up to now is 29.14 secs total energy = -31.50434185 Ry Harris-Foulkes estimate = -31.50434199 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.68E-10, avg # of iterations = 2.0 negative rho (up, down): 0.802E-04 0.439E-04 total cpu time spent up to now is 31.99 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 6619 PWs) bands (ev): -25.0598 -10.0346 -10.0346 -10.0346 -0.5794 2.1165 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 6619 PWs) bands (ev): -21.6730 -6.8529 -6.8529 -6.8529 -0.4733 2.2767 highest occupied, lowest unoccupied level (ev): -6.8529 -0.5794 ! total energy = -31.50434356 Ry Harris-Foulkes estimate = -31.50434186 Ry estimated scf accuracy < 1.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -37.61413855 Ry hartree contribution = 20.01366120 Ry xc contribution = -6.60795837 Ry ewald contribution = -7.29590784 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save PWSCF : 32.16s CPU time, 35.19s wall time init_run : 3.11s CPU electrons : 28.82s CPU Called by init_run: wfcinit : 0.16s CPU potinit : 1.52s CPU Called by electrons: c_bands : 4.33s CPU ( 10 calls, 0.433 s avg) sum_band : 6.81s CPU ( 10 calls, 0.681 s avg) v_of_rho : 11.95s CPU ( 10 calls, 1.195 s avg) newd : 3.64s CPU ( 10 calls, 0.364 s avg) mix_rho : 1.80s CPU ( 10 calls, 0.180 s avg) Called by c_bands: init_us_2 : 0.14s CPU ( 42 calls, 0.003 s avg) cegterg : 4.20s CPU ( 20 calls, 0.210 s avg) Called by *egterg: h_psi : 3.84s CPU ( 74 calls, 0.052 s avg) s_psi : 0.05s CPU ( 74 calls, 0.001 s avg) g_psi : 0.07s CPU ( 52 calls, 0.001 s avg) cdiaghg : 0.02s CPU ( 70 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.05s CPU ( 74 calls, 0.001 s avg) General routines calbec : 0.10s CPU ( 94 calls, 0.001 s avg) cft3s : 12.39s CPU ( 1083 calls, 0.011 s avg) interpolate : 1.80s CPU ( 40 calls, 0.045 s avg) davcio : 0.00s CPU ( 62 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example05/reference/O_gamma.out0000644000700200004540000002731012053145630022355 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:29: 5 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 72 npp = 72 ncplane = 5184 Planes per process (smooth): nr3s= 48 npps= 48 ncplanes= 2304 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 72 3365 146989 48 1685 52035 421 6619 bravais-lattice index = 1 lattice parameter (a_0) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 216.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.500 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1072.3834 ( 73495 G-vectors) FFT grid: ( 72, 72, 72) G cutoff = 536.1917 ( 26018 G-vectors) smooth grid: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.30 Mb ( 3310, 6) NL pseudopotentials 0.40 Mb ( 3310, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.56 Mb ( 73495) G-vector shells 0.01 Mb ( 896) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.61 Mb ( 3310, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 45.56 Mb ( 373248, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.232E-04 0.773E-05 Starting wfc are 4 atomic + 2 random wfc total cpu time spent up to now is 2.83 secs per-process dynamical memory: 72.7 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.22E-04, avg # of iterations = 1.5 negative rho (up, down): 0.325E-04 0.145E-04 total cpu time spent up to now is 6.04 secs total energy = -31.48807321 Ry Harris-Foulkes estimate = -31.47571463 Ry estimated scf accuracy < 0.01335518 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.23E-04, avg # of iterations = 1.0 negative rho (up, down): 0.991E-03 0.111E-02 total cpu time spent up to now is 8.30 secs total energy = -31.50377476 Ry Harris-Foulkes estimate = -31.48813504 Ry estimated scf accuracy < 0.00756534 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.26E-04, avg # of iterations = 1.0 negative rho (up, down): 0.610E-03 0.925E-03 total cpu time spent up to now is 10.62 secs total energy = -31.50423456 Ry Harris-Foulkes estimate = -31.50426736 Ry estimated scf accuracy < 0.00023636 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.94E-06, avg # of iterations = 4.5 negative rho (up, down): 0.418E-03 0.576E-03 total cpu time spent up to now is 13.06 secs total energy = -31.50433578 Ry Harris-Foulkes estimate = -31.50430521 Ry estimated scf accuracy < 0.00001060 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.77E-07, avg # of iterations = 2.0 negative rho (up, down): 0.178E-03 0.319E-03 total cpu time spent up to now is 15.46 secs total energy = -31.50434170 Ry Harris-Foulkes estimate = -31.50433793 Ry estimated scf accuracy < 0.00000631 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.05E-07, avg # of iterations = 2.0 negative rho (up, down): 0.127E-03 0.222E-03 total cpu time spent up to now is 17.88 secs total energy = -31.50434276 Ry Harris-Foulkes estimate = -31.50434438 Ry estimated scf accuracy < 0.00000048 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.00E-09, avg # of iterations = 1.5 negative rho (up, down): 0.104E-03 0.159E-03 total cpu time spent up to now is 20.28 secs total energy = -31.50434199 Ry Harris-Foulkes estimate = -31.50434286 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 2.0 negative rho (up, down): 0.904E-04 0.115E-03 total cpu time spent up to now is 22.72 secs total energy = -31.50434186 Ry Harris-Foulkes estimate = -31.50434199 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.98E-10, avg # of iterations = 2.0 negative rho (up, down): 0.802E-04 0.439E-04 total cpu time spent up to now is 24.91 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -25.0597 -10.0345 -10.0345 -10.0345 -0.5793 2.1170 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -21.6728 -6.8528 -6.8528 -6.8528 -0.4732 2.2733 highest occupied, lowest unoccupied level (ev): -6.8528 -0.5793 ! total energy = -31.50434356 Ry Harris-Foulkes estimate = -31.50434187 Ry estimated scf accuracy < 2.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -37.61408024 Ry hartree contribution = 20.01358690 Ry xc contribution = -6.60794237 Ry ewald contribution = -7.29590784 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save PWSCF : 25.05s CPU time, 27.10s wall time init_run : 2.76s CPU electrons : 22.08s CPU Called by init_run: wfcinit : 0.09s CPU potinit : 1.50s CPU Called by electrons: c_bands : 2.19s CPU ( 10 calls, 0.219 s avg) sum_band : 4.39s CPU ( 10 calls, 0.439 s avg) v_of_rho : 11.72s CPU ( 10 calls, 1.172 s avg) newd : 1.97s CPU ( 10 calls, 0.197 s avg) mix_rho : 1.41s CPU ( 10 calls, 0.141 s avg) Called by c_bands: init_us_2 : 0.07s CPU ( 42 calls, 0.002 s avg) regterg : 2.13s CPU ( 20 calls, 0.106 s avg) Called by *egterg: h_psi : 1.98s CPU ( 69 calls, 0.029 s avg) s_psi : 0.01s CPU ( 69 calls, 0.000 s avg) g_psi : 0.04s CPU ( 47 calls, 0.001 s avg) rdiaghg : 0.01s CPU ( 65 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 69 calls, 0.000 s avg) General routines calbec : 0.04s CPU ( 89 calls, 0.000 s avg) cft3s : 10.72s CPU ( 713 calls, 0.015 s avg) interpolate : 1.79s CPU ( 40 calls, 0.045 s avg) davcio : 0.00s CPU ( 62 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example05/reference/al.out0000644000700200004540000002232112053145630021406 0ustar marsamoscm Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:28:26 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 50 npp = 50 ncplane = 2500 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 50 1901 62669 50 1901 62669 481 7809 bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.3500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Al read from file Al.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 607.9271 ( 62669 G-vectors) FFT grid: ( 50, 50, 50) Occupations read from input 2.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.71 Mb ( 7809, 6) NL pseudopotentials 0.48 Mb ( 7809, 4) Each V/rho on FFT grid 1.91 Mb ( 125000) Each G-vector array 0.48 Mb ( 62669) G-vector shells 0.00 Mb ( 508) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.86 Mb ( 7809, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 15.26 Mb ( 125000, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.005717 starting charge 2.99794, renormalised to 3.00000 negative rho (up, down): 0.572E-02 0.000E+00 Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.30 secs per-process dynamical memory: 66.1 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.88E-07, avg # of iterations = 8.0 negative rho (up, down): 0.291E-02 0.000E+00 total cpu time spent up to now is 1.26 secs total energy = -3.87516231 Ry Harris-Foulkes estimate = -3.87508901 Ry estimated scf accuracy < 0.00000733 Ry iteration # 2 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.44E-07, avg # of iterations = 3.0 negative rho (up, down): 0.360E-04 0.000E+00 total cpu time spent up to now is 1.58 secs total energy = -3.87524726 Ry Harris-Foulkes estimate = -3.87516251 Ry estimated scf accuracy < 0.00000287 Ry iteration # 3 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 9.57E-08, avg # of iterations = 4.0 negative rho (up, down): 0.355E-04 0.000E+00 total cpu time spent up to now is 2.02 secs total energy = -3.87524789 Ry Harris-Foulkes estimate = -3.87524787 Ry estimated scf accuracy < 0.00000007 Ry iteration # 4 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 1.0 negative rho (up, down): 0.315E-04 0.000E+00 total cpu time spent up to now is 2.31 secs total energy = -3.87524805 Ry Harris-Foulkes estimate = -3.87524789 Ry estimated scf accuracy < 0.00000007 Ry iteration # 5 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 1.0 negative rho (up, down): 0.155E-07 0.000E+00 total cpu time spent up to now is 2.60 secs total energy = -3.87524908 Ry Harris-Foulkes estimate = -3.87524806 Ry estimated scf accuracy < 0.00000013 Ry iteration # 6 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.99 secs total energy = -3.87524912 Ry Harris-Foulkes estimate = -3.87524912 Ry estimated scf accuracy < 0.00000005 Ry iteration # 7 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 1.0 total cpu time spent up to now is 3.30 secs total energy = -3.87524911 Ry Harris-Foulkes estimate = -3.87524912 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 7.75E-10, avg # of iterations = 2.0 total cpu time spent up to now is 3.58 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 7809 PWs) bands (ev): -7.5786 -2.5530 -2.5530 -2.5530 -0.4274 0.7015 highest occupied, lowest unoccupied level (ev): -2.5530 -0.4274 ! total energy = -3.87524912 Ry Harris-Foulkes estimate = -3.87524912 Ry estimated scf accuracy < 1.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -3.07453176 Ry hartree contribution = 1.65113128 Ry xc contribution = -1.17506469 Ry ewald contribution = -1.27678394 Ry convergence has been achieved in 8 iterations Writing output data file pwscf.save PWSCF : 3.65s CPU time, 3.78s wall time init_run : 0.27s CPU electrons : 3.28s CPU Called by init_run: wfcinit : 0.11s CPU potinit : 0.06s CPU Called by electrons: c_bands : 2.13s CPU ( 9 calls, 0.236 s avg) sum_band : 0.44s CPU ( 9 calls, 0.049 s avg) v_of_rho : 0.30s CPU ( 9 calls, 0.034 s avg) mix_rho : 0.29s CPU ( 9 calls, 0.033 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 19 calls, 0.003 s avg) cegterg : 2.09s CPU ( 9 calls, 0.232 s avg) Called by *egterg: h_psi : 1.90s CPU ( 37 calls, 0.051 s avg) g_psi : 0.05s CPU ( 27 calls, 0.002 s avg) cdiaghg : 0.00s CPU ( 35 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 37 calls, 0.001 s avg) General routines calbec : 0.03s CPU ( 37 calls, 0.001 s avg) cft3s : 2.16s CPU ( 440 calls, 0.005 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) Parallel routines espresso-5.0.2/PW/examples/example05/reference/Ni_gamma_d8s2.out0000644000700200004540000003436212053145630023372 0ustar marsamoscm Program PWSCF v.5.0.1 starts on 29Aug2012 at 9:29:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 4 processors R & G space division: proc/bgrp = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1168 420 104 60164 12984 1648 Max 1173 422 106 60165 13027 1658 Sum 4677 1685 421 240657 52035 6619 Tot 2339 843 211 bravais-lattice index = 1 lattice parameter (alat) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Ni read from file: /scratch/dalcorso_sissa/espresso_my_best_version_aug_2012/pseudo/Ni.pbe-nd-rrkjus.UPF MD5 check sum: 8081f0a005c9a5470caab1a58e82ecb2 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69340 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.500 No symmetry found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 120329 G-vectors FFT dimensions: ( 80, 80, 80) Smooth grid: 26018 G-vectors FFT dimensions: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Spin-down 1.0000 0.6000 0.6000 0.6000 0.6000 0.6000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 828, 6) NL pseudopotentials 0.23 Mb ( 828, 18) Each V/rho on FFT grid 3.91 Mb ( 128000, 2) Each G-vector array 0.23 Mb ( 30083) G-vector shells 0.01 Mb ( 1237) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.15 Mb ( 828, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 18, 6) Arrays for rho mixing 15.63 Mb ( 128000, 8) Check: negative/imaginary core charge= -0.000019 0.000000 Initial potential from superposition of free atoms starting charge 9.99954, renormalised to 10.00000 negative rho (up, down): 0.875E-05 0.292E-05 Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 6 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 40.7 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.304E-05 0.109E-06 total cpu time spent up to now is 2.8 secs total energy = -85.37721426 Ry Harris-Foulkes estimate = -85.46968121 Ry estimated scf accuracy < 0.47018231 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.15 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.70E-03, avg # of iterations = 1.5 negative rho (up, down): 0.111E-02 0.505E-03 total cpu time spent up to now is 4.1 secs total energy = -85.42457500 Ry Harris-Foulkes estimate = -85.41228493 Ry estimated scf accuracy < 0.11346828 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.18 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.644E-02 0.390E-02 total cpu time spent up to now is 5.4 secs total energy = -85.45594924 Ry Harris-Foulkes estimate = -85.43683488 Ry estimated scf accuracy < 0.02490119 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.12 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.49E-04, avg # of iterations = 1.5 negative rho (up, down): 0.601E-02 0.392E-02 total cpu time spent up to now is 6.7 secs total energy = -85.45718111 Ry Harris-Foulkes estimate = -85.45663504 Ry estimated scf accuracy < 0.00161096 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.61E-05, avg # of iterations = 1.5 negative rho (up, down): 0.382E-02 0.271E-02 total cpu time spent up to now is 8.0 secs total energy = -85.45780081 Ry Harris-Foulkes estimate = -85.45736320 Ry estimated scf accuracy < 0.00002514 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.51E-07, avg # of iterations = 3.0 negative rho (up, down): 0.233E-02 0.172E-02 total cpu time spent up to now is 9.3 secs total energy = -85.45819333 Ry Harris-Foulkes estimate = -85.45781485 Ry estimated scf accuracy < 0.00002265 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.27E-07, avg # of iterations = 2.5 negative rho (up, down): 0.139E-02 0.962E-03 total cpu time spent up to now is 10.6 secs total energy = -85.45846822 Ry Harris-Foulkes estimate = -85.45819814 Ry estimated scf accuracy < 0.00000040 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.5 negative rho (up, down): 0.800E-03 0.518E-03 total cpu time spent up to now is 12.0 secs total energy = -85.45863826 Ry Harris-Foulkes estimate = -85.45846870 Ry estimated scf accuracy < 0.00000048 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 negative rho (up, down): 0.443E-03 0.275E-03 total cpu time spent up to now is 13.3 secs total energy = -85.45874594 Ry Harris-Foulkes estimate = -85.45863849 Ry estimated scf accuracy < 0.00000050 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 10 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.5 negative rho (up, down): 0.235E-03 0.139E-03 total cpu time spent up to now is 14.6 secs total energy = -85.45880825 Ry Harris-Foulkes estimate = -85.45874623 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 11 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.21E-10, avg # of iterations = 2.5 negative rho (up, down): 0.121E-03 0.661E-04 total cpu time spent up to now is 16.0 secs total energy = -85.45884488 Ry Harris-Foulkes estimate = -85.45880832 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 12 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.43E-10, avg # of iterations = 3.0 total cpu time spent up to now is 17.2 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -5.3501 -9.5812 -9.5808 -9.5808 -9.5812 -9.5808 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -5.0094 -7.4616 -7.4611 -7.4611 -7.4616 -7.4611 ! total energy = -85.45889608 Ry Harris-Foulkes estimate = -85.45884491 Ry estimated scf accuracy < 3.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -84.30683944 Ry hartree contribution = 48.60496026 Ry xc contribution = -29.49060633 Ry ewald contribution = -20.26641057 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file pwscf.save init_run : 1.42s CPU 1.43s WALL ( 1 calls) electrons : 15.34s CPU 15.71s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.03s WALL ( 1 calls) potinit : 0.61s CPU 0.62s WALL ( 1 calls) Called by electrons: c_bands : 0.71s CPU 0.73s WALL ( 12 calls) sum_band : 3.63s CPU 3.69s WALL ( 12 calls) v_of_rho : 6.55s CPU 6.67s WALL ( 13 calls) newd : 3.78s CPU 3.82s WALL ( 13 calls) mix_rho : 0.56s CPU 0.57s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.03s CPU 0.03s WALL ( 52 calls) regterg : 0.67s CPU 0.68s WALL ( 24 calls) Called by *egterg: h_psi : 0.63s CPU 0.63s WALL ( 77 calls) s_psi : 0.01s CPU 0.01s WALL ( 79 calls) g_psi : 0.00s CPU 0.00s WALL ( 51 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 75 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 77 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 103 calls) fft : 3.57s CPU 3.61s WALL ( 393 calls) ffts : 0.07s CPU 0.07s WALL ( 50 calls) fftw : 0.47s CPU 0.48s WALL ( 486 calls) interpolate : 0.61s CPU 0.63s WALL ( 50 calls) davcio : 0.00s CPU 0.01s WALL ( 150 calls) Parallel routines fft_scatter : 2.04s CPU 2.05s WALL ( 929 calls) PWSCF : 16.90s CPU 17.31s WALL This run was terminated on: 9:30: 7 29Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/example05/reference/Ni_gamma_d9s1.out0000644000700200004540000004056612053145630023375 0ustar marsamoscm Program PWSCF v.5.0.1 starts on 29Aug2012 at 9:30: 7 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 4 processors R & G space division: proc/bgrp = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1168 420 104 60164 12984 1648 Max 1173 422 106 60165 13027 1658 Sum 4677 1685 421 240657 52035 6619 Tot 2339 843 211 bravais-lattice index = 1 lattice parameter (alat) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Ni read from file: /scratch/dalcorso_sissa/espresso_my_best_version_aug_2012/pseudo/Ni.pbe-nd-rrkjus.UPF MD5 check sum: 8081f0a005c9a5470caab1a58e82ecb2 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69340 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.500 No symmetry found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 120329 G-vectors FFT dimensions: ( 80, 80, 80) Smooth grid: 26018 G-vectors FFT dimensions: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Spin-down 0.0000 0.8000 0.8000 0.8000 0.8000 0.8000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 828, 6) NL pseudopotentials 0.23 Mb ( 828, 18) Each V/rho on FFT grid 3.91 Mb ( 128000, 2) Each G-vector array 0.23 Mb ( 30083) G-vector shells 0.01 Mb ( 1237) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.15 Mb ( 828, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 18, 6) Arrays for rho mixing 15.63 Mb ( 128000, 8) Check: negative/imaginary core charge= -0.000019 0.000000 Initial potential from superposition of free atoms starting charge 9.99954, renormalised to 10.00000 negative rho (up, down): 0.875E-05 0.292E-05 Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 6 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.304E-05 0.369E-05 total cpu time spent up to now is 2.8 secs total energy = -85.43445501 Ry Harris-Foulkes estimate = -85.35918088 Ry estimated scf accuracy < 0.24439240 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.44E-03, avg # of iterations = 1.0 negative rho (up, down): 0.195E-01 0.380E-01 total cpu time spent up to now is 4.0 secs total energy = -85.53217082 Ry Harris-Foulkes estimate = -85.43632703 Ry estimated scf accuracy < 0.14520811 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.45E-03, avg # of iterations = 1.0 negative rho (up, down): 0.132E-01 0.287E-01 total cpu time spent up to now is 5.2 secs total energy = -85.53994589 Ry Harris-Foulkes estimate = -85.53885002 Ry estimated scf accuracy < 0.00029035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.90E-06, avg # of iterations = 3.5 negative rho (up, down): 0.801E-02 0.224E-01 total cpu time spent up to now is 6.5 secs total energy = -85.54142181 Ry Harris-Foulkes estimate = -85.54057770 Ry estimated scf accuracy < 0.00007027 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 7.03E-07, avg # of iterations = 2.5 negative rho (up, down): 0.462E-02 0.165E-01 total cpu time spent up to now is 7.8 secs total energy = -85.54224626 Ry Harris-Foulkes estimate = -85.54146128 Ry estimated scf accuracy < 0.00001709 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.71E-07, avg # of iterations = 3.5 negative rho (up, down): 0.276E-02 0.121E-01 total cpu time spent up to now is 9.1 secs total energy = -85.54287042 Ry Harris-Foulkes estimate = -85.54226098 Ry estimated scf accuracy < 0.00000845 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.45E-08, avg # of iterations = 2.0 negative rho (up, down): 0.149E-02 0.845E-02 total cpu time spent up to now is 10.3 secs total energy = -85.54322467 Ry Harris-Foulkes estimate = -85.54287765 Ry estimated scf accuracy < 0.00000292 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.92E-08, avg # of iterations = 3.5 negative rho (up, down): 0.785E-03 0.580E-02 total cpu time spent up to now is 11.6 secs total energy = -85.54339382 Ry Harris-Foulkes estimate = -85.54322700 Ry estimated scf accuracy < 0.00000014 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 4.0 negative rho (up, down): 0.389E-03 0.398E-02 total cpu time spent up to now is 12.9 secs total energy = -85.54350743 Ry Harris-Foulkes estimate = -85.54339460 Ry estimated scf accuracy < 0.00000046 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 10 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.183E-03 0.272E-02 total cpu time spent up to now is 14.2 secs total energy = -85.54356721 Ry Harris-Foulkes estimate = -85.54350782 Ry estimated scf accuracy < 0.00000090 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 11 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.836E-04 0.182E-02 total cpu time spent up to now is 15.5 secs total energy = -85.54360595 Ry Harris-Foulkes estimate = -85.54356741 Ry estimated scf accuracy < 0.00000114 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 12 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.374E-04 0.125E-02 total cpu time spent up to now is 16.8 secs total energy = -85.54362832 Ry Harris-Foulkes estimate = -85.54360607 Ry estimated scf accuracy < 0.00000215 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 13 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.145E-04 0.858E-03 total cpu time spent up to now is 18.1 secs total energy = -85.54364560 Ry Harris-Foulkes estimate = -85.54362849 Ry estimated scf accuracy < 0.00000056 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 14 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.493E-05 0.580E-03 total cpu time spent up to now is 19.4 secs total energy = -85.54365398 Ry Harris-Foulkes estimate = -85.54364568 Ry estimated scf accuracy < 0.00000008 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 15 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.33E-10, avg # of iterations = 2.5 negative rho (up, down): 0.159E-05 0.395E-03 total cpu time spent up to now is 20.6 secs total energy = -85.54365921 Ry Harris-Foulkes estimate = -85.54365400 Ry estimated scf accuracy < 0.00000005 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 16 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.46E-10, avg # of iterations = 3.0 negative rho (up, down): 0.000E+00 0.162E-04 total cpu time spent up to now is 21.8 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -4.5581 -4.7343 -4.7298 -4.7301 -4.7340 -4.7298 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -3.5731 -3.5991 -3.5948 -3.5949 -3.5990 -3.5948 ! total energy = -85.54366452 Ry Harris-Foulkes estimate = -85.54365924 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -86.77835900 Ry hartree contribution = 51.54364869 Ry xc contribution = -30.04254364 Ry ewald contribution = -20.26641057 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 16 iterations Writing output data file pwscf.save init_run : 1.42s CPU 1.43s WALL ( 1 calls) electrons : 19.79s CPU 20.30s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.61s CPU 0.61s WALL ( 1 calls) Called by electrons: c_bands : 1.08s CPU 1.10s WALL ( 16 calls) sum_band : 4.79s CPU 4.87s WALL ( 16 calls) v_of_rho : 7.91s CPU 8.08s WALL ( 17 calls) newd : 4.90s CPU 4.95s WALL ( 17 calls) mix_rho : 0.77s CPU 0.77s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 68 calls) regterg : 1.02s CPU 1.05s WALL ( 32 calls) Called by *egterg: h_psi : 0.93s CPU 0.95s WALL ( 124 calls) s_psi : 0.02s CPU 0.02s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 90 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 122 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.02s WALL ( 124 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 158 calls) fft : 4.63s CPU 4.68s WALL ( 517 calls) ffts : 0.09s CPU 0.10s WALL ( 66 calls) fftw : 0.70s CPU 0.71s WALL ( 728 calls) interpolate : 0.81s CPU 0.83s WALL ( 66 calls) davcio : 0.00s CPU 0.01s WALL ( 198 calls) Parallel routines fft_scatter : 2.64s CPU 2.68s WALL ( 1311 calls) PWSCF : 21.36s CPU 21.90s WALL This run was terminated on: 9:30:29 29Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/example05/run_example0000755000700200004540000001373412053145630020600 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the total energy of an isolated" $ECHO "atom in a supercell with fixed occupations." $ECHO "Three examples: LDA energy of Al, sigma-GGA energy of O," $ECHO "and sigma-GGA energy of Ni in two configurations" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" Al.pz-vbc.UPF O.pbe-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for isolated Al atom cat > al.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=20.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=15.0, occupations='from_input', / &electrons mixing_beta=0.35, conv_thr=1.0E-8, / ATOMIC_SPECIES Al 26.98154 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.0000000000 0.0000000000 0.000 K_POINTS AUTOMATIC 1 1 1 0 0 0 OCCUPATIONS 2.0 0.3333333333333 0.333333333333 0.3333333333333 0.0 0.0 EOF $ECHO " running self-consistent calculation for Al atom...\c" $PW_COMMAND < al.in > al.out check_failure $? $ECHO " done" # self consistent calculation for the spin polarized O atom cat > O.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=216.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, / &electrons mixing_beta=0.25, conv_thr=1.0E-8, / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS AUTOMATIC 1 1 1 0 0 0 OCCUPATIONS 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom...\c" $PW_COMMAND < O.in > O.out check_failure $? $ECHO " done" # cat > O_gamma.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=216.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, / &electrons mixing_beta=0.25, conv_thr=1.0E-8, / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS (gamma) OCCUPATIONS 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom, Gamma-only...\c" $PW_COMMAND < O_gamma.in > O_gamma.out check_failure $? $ECHO " done" cat > Ni_gamma_d8s2.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=300.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, one_atom_occupations=.true., / &electrons mixing_beta=0.25, conv_thr=1.0E-8, startingwfc='atomic' / ATOMIC_SPECIES Ni 0.0 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.000000000 0.000000000 0.000000000 K_POINTS (gamma) OCCUPATIONS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.6 0.6 0.6 0.6 EOF $ECHO " running calculation for Ni atom d8 s2, Gamma-only...\c" $PW_COMMAND < Ni_gamma_d8s2.in > Ni_gamma_d8s2.out check_failure $? $ECHO " done" cat > Ni_gamma_d9s1.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=300.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, one_atom_occupations=.true., / &electrons mixing_beta=0.25, conv_thr=1.0E-8, startingwfc='atomic' / ATOMIC_SPECIES Ni 0.0 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.000000000 0.000000000 0.000000000 K_POINTS (gamma) OCCUPATIONS 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.8 0.8 0.8 0.8 0.8 EOF $ECHO " running calculation for Ni atom d9 s1, Gamma-only...\c" $PW_COMMAND < Ni_gamma_d9s1.in > Ni_gamma_d9s1.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example05/run_xml_example0000755000700200004540000002071012053145630021450 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the total energy of an isolated" $ECHO "atom in a supercell with fixed occupations." $ECHO "Two examples: LDA energy of Al and sigma-GGA energy of O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" Al.pz-vbc.UPF O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for isolated Al atom cat > al.xml << EOF 0.0 0.0 0.0 0.0 0.0 26.98154 Al.pz-vbc.UPF 0.0000000000 0.0000000000 0.000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 15.0 0.35 1.0E-8 true from_input 6 1 1 1 0 0 0 2.0 0.3333333333333 0.333333333333 0.3333333333333 0.0 0.0 EOF $ECHO " running self-consistent calculation for Al atom...\c" $PW_COMMAND < al.xml > al.out check_failure $? $ECHO " done" # self consistent calculation for the spin polarized O atom cat > O.xml << EOF 0.0 0.0 0.0 0.0 0.0 15.99994 O.pbe-rrkjus.UPF 0.5d0 0.000000000 0.000000000 0.000000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 27.0 216.0 0.25 1.0E-8 true from_input 6 2 1 1 1 0 0 0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom...\c" $PW_COMMAND < O.xml > O.out check_failure $? $ECHO " done" # cat > O_gamma.xml << EOF 0.0 0.0 0.0 0.0 0.0 15.99994 O.pbe-rrkjus.UPF 0.5d0 0.000000000 0.000000000 0.000000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 27.0 216.0 0.25 1.0E-8 true from_input 6 2 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom, Gamma-only...\c" $PW_COMMAND < O_gamma.xml > O_gamma.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/example05/README0000644000700200004540000000143212053145630017203 0ustar marsamoscmThis example illustrates the use of the option occupations='from_input'. 1) make an LDA self-consistent calculation for an isolated Al atom by specifying the occupancy of each band in the input file. There are 6 bands (nbnd=6) whose occupancies are: 2.0 0.3333333333333 0.333333333333 0.3333333333333 0.0 0.0 (input=al.in, ouput=al.out) 2) make a sigma-GGA spin-polarized (nspin=2) self-consistent calculation for an isolated O atom by specifying the occupancies of each band in each spin channel (for each k-point: only gamma in this example): 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 (input=O.in, output=O.out) 3) the sama as in point 2), but with the gamma version of the code. (input=O_gamma.in, output=O_gamma.out) espresso-5.0.2/PW/examples/run_all_examples0000755000700200004540000000074212053145630020006 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname echo echo "run_all_examples: starting" # run all examples for dir in example* VCSexample EXX_example vdwDF_example ESM_example cluster_example ; do if test -f $dir/run_example then sh $dir/run_example fi done if test -f vdwDF_example/run_example_delta_scf; then sh vdwDF_example/run_example_delta_scf fi echo echo "run_all_examples: done" espresso-5.0.2/PW/examples/cluster_example/0000755000700200004540000000000012053440301017710 5ustar marsamoscmespresso-5.0.2/PW/examples/cluster_example/reference/0000755000700200004540000000000012053440303021650 5ustar marsamoscmespresso-5.0.2/PW/examples/cluster_example/reference/h2o.in0000644000700200004540000000114212053145630022673 0ustar marsamoscm&CONTROL calculation = 'relax' prefix = "H2O", pseudo_dir = "/home/degironc/QE/espresso/pseudo", outdir = "/home/degironc/tmp", / &SYSTEM ibrav = 1, celldm(1) = 24.0 nat = 3, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, do_ee = .true. nelec = 8.0 nbnd = 8 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / &EE which_compensation='martyna-tuckerman' / ATOMIC_SPECIES O 1.00 O.pbe-paw_kj.UPF H 1.00 H.pbe-paw_kj.UPF ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 K_POINTS Gamma espresso-5.0.2/PW/examples/cluster_example/reference/n.out-240000644000700200004540000002405412053145630023073 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13:19:25 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 24.0000 a.u. unit-cell volume = 13824.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 24.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1750.8301 ( 153598 G-vectors) FFT grid: ( 90, 90, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.17 Mb ( 19201, 4) NL pseudopotentials 2.34 Mb ( 19201, 8) Each V/rho on FFT grid 22.25 Mb ( 729000, 2) Each G-vector array 1.17 Mb ( 153598) G-vector shells 0.01 Mb ( 1463) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.34 Mb ( 19201, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 88.99 Mb ( 729000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000104 Check: negative starting charge=(component2): -0.000104 starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.104E-03 0.104E-03 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 14.68 secs per-process dynamical memory: 107.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.991E-03 0.998E-03 total cpu time spent up to now is 29.40 secs total energy = -27.79997740 Ry Harris-Foulkes estimate = -27.59903586 Ry estimated scf accuracy < 0.10983416 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-03, avg # of iterations = 1.0 negative rho (up, down): 0.162E-02 0.189E-02 total cpu time spent up to now is 44.05 secs total energy = -27.82660772 Ry Harris-Foulkes estimate = -27.80402650 Ry estimated scf accuracy < 0.01614537 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-04, avg # of iterations = 1.5 negative rho (up, down): 0.160E-02 0.181E-02 total cpu time spent up to now is 59.60 secs total energy = -27.82760583 Ry Harris-Foulkes estimate = -27.82790384 Ry estimated scf accuracy < 0.00051988 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.175E-02 total cpu time spent up to now is 75.98 secs total energy = -27.82769904 Ry Harris-Foulkes estimate = -27.82769447 Ry estimated scf accuracy < 0.00000454 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.08E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.174E-02 total cpu time spent up to now is 92.00 secs total energy = -27.82770091 Ry Harris-Foulkes estimate = -27.82770137 Ry estimated scf accuracy < 0.00000074 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.174E-02 total cpu time spent up to now is 106.94 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -19.9137 -8.2856 -8.2856 -8.2856 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -15.3296 -4.1277 -4.1277 -4.1277 ! total energy = -27.82770111 Ry Harris-Foulkes estimate = -27.82770111 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -109.126502 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96024177 Ry hartree contribution = 16.56887212 Ry xc contribution = -5.12131221 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31501922 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 1m47.39s CPU time, 1m51.74s wall time init_run : 14.13s CPU electrons : 92.26s CPU Called by init_run: wfcinit : 1.16s CPU potinit : 7.23s CPU Called by electrons: c_bands : 24.86s CPU ( 6 calls, 4.143 s avg) sum_band : 17.26s CPU ( 6 calls, 2.877 s avg) v_of_rho : 38.74s CPU ( 7 calls, 5.535 s avg) newd : 9.21s CPU ( 7 calls, 1.315 s avg) mix_rho : 3.81s CPU ( 6 calls, 0.635 s avg) Called by c_bands: init_us_2 : 0.58s CPU ( 26 calls, 0.022 s avg) regterg : 24.30s CPU ( 12 calls, 2.025 s avg) Called by *egterg: h_psi : 24.53s CPU ( 33 calls, 0.743 s avg) s_psi : 0.14s CPU ( 33 calls, 0.004 s avg) g_psi : 0.16s CPU ( 19 calls, 0.009 s avg) rdiaghg : 0.01s CPU ( 31 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 33 calls, 0.004 s avg) General routines calbec : 0.18s CPU ( 45 calls, 0.004 s avg) cft3 : 32.89s CPU ( 160 calls, 0.206 s avg) cft3s : 25.39s CPU ( 152 calls, 0.167 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.62s CPU ( 7 calls, 0.518 s avg) PAW_ddot : 0.13s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 7 calls, 0.001 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/n.out-200000644000700200004540000002365612053145630023076 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13: 9:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1215.8542 ( 88755 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 11060, 4) NL pseudopotentials 1.35 Mb ( 11060, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.68 Mb ( 88755) G-vector shells 0.01 Mb ( 1015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.35 Mb ( 11060, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000002 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.647E-04 0.647E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 8.48 secs per-process dynamical memory: 58.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.729E-03 0.781E-03 total cpu time spent up to now is 15.28 secs total energy = -27.79964581 Ry Harris-Foulkes estimate = -27.59875290 Ry estimated scf accuracy < 0.10978686 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-03, avg # of iterations = 1.0 negative rho (up, down): 0.121E-02 0.159E-02 total cpu time spent up to now is 22.08 secs total energy = -27.82629184 Ry Harris-Foulkes estimate = -27.80370108 Ry estimated scf accuracy < 0.01611006 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-04, avg # of iterations = 1.5 negative rho (up, down): 0.120E-02 0.151E-02 total cpu time spent up to now is 29.13 secs total energy = -27.82729422 Ry Harris-Foulkes estimate = -27.82759101 Ry estimated scf accuracy < 0.00051434 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.145E-02 total cpu time spent up to now is 36.53 secs total energy = -27.82738934 Ry Harris-Foulkes estimate = -27.82738535 Ry estimated scf accuracy < 0.00000384 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-08, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.145E-02 total cpu time spent up to now is 43.80 secs total energy = -27.82739116 Ry Harris-Foulkes estimate = -27.82739139 Ry estimated scf accuracy < 0.00000057 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.145E-02 total cpu time spent up to now is 50.52 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -19.9158 -8.2866 -8.2866 -8.2866 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -15.3321 -4.1285 -4.1285 -4.1285 ! total energy = -27.82739133 Ry Harris-Foulkes estimate = -27.82739132 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -109.126193 Ry The total energy is the sum of the following terms: one-electron contribution = -30.95952652 Ry hartree contribution = 16.56807538 Ry xc contribution = -5.12102236 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31491780 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 50.84s CPU time, 53.15s wall time init_run : 7.93s CPU electrons : 42.03s CPU Called by init_run: wfcinit : 0.47s CPU potinit : 3.66s CPU Called by electrons: c_bands : 7.59s CPU ( 6 calls, 1.264 s avg) sum_band : 8.65s CPU ( 6 calls, 1.441 s avg) v_of_rho : 18.34s CPU ( 7 calls, 2.620 s avg) newd : 4.83s CPU ( 7 calls, 0.690 s avg) mix_rho : 1.73s CPU ( 6 calls, 0.288 s avg) Called by c_bands: init_us_2 : 0.32s CPU ( 26 calls, 0.012 s avg) regterg : 7.27s CPU ( 12 calls, 0.606 s avg) Called by *egterg: h_psi : 7.27s CPU ( 33 calls, 0.220 s avg) s_psi : 0.05s CPU ( 33 calls, 0.001 s avg) g_psi : 0.10s CPU ( 19 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 31 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.04s CPU ( 33 calls, 0.001 s avg) General routines calbec : 0.09s CPU ( 45 calls, 0.002 s avg) cft3 : 13.63s CPU ( 160 calls, 0.085 s avg) cft3s : 7.62s CPU ( 152 calls, 0.050 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.60s CPU ( 7 calls, 0.515 s avg) PAW_ddot : 0.13s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 7 calls, 0.001 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/n.eigenvalues0000644000700200004540000000052012053145630024340 0ustar marsamoscm12 -19.8776 -8.2463 -8.2463 -8.2463 12 -15.2899 -4.0718 -4.0718 -4.0718 16 -19.9135 -8.2852 -8.2852 -8.2852 16 -15.3289 -4.1256 -4.1256 -4.1256 20 -19.9158 -8.2866 -8.2866 -8.2866 20 -15.3321 -4.1285 -4.1285 -4.1285 24 -19.9137 -8.2856 -8.2856 -8.2856 24 -15.3296 -4.1277 -4.1277 -4.1277 espresso-5.0.2/PW/examples/cluster_example/reference/h2o.eigenvalues0000644000700200004540000000047012053145630024577 0ustar marsamoscm12 -25.1842 -13.0227 -9.1992 -7.1566 -1.4272 1.7263 2.0010 2.6525 16 -25.2332 -13.0742 -9.2511 -7.2158 -1.3149 0.5215 0.7057 1.2127 20 -25.2351 -13.0758 -9.2534 -7.2189 -1.2138 -0.0461 0.2741 0.5740 24 -25.2357 -13.0766 -9.2538 -7.2191 -1.1574 -0.2771 0.0529 0.2466 espresso-5.0.2/PW/examples/cluster_example/reference/nh4+.out-120000644000700200004540000007101012053145630023371 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13: 0:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) 4 H tau( 4) = ( -0.0833333 0.0833333 -0.0833333 ) 5 H tau( 5) = ( 0.0833333 -0.0833333 -0.0833333 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 437.7075 ( 19201 G-vectors) FFT grid: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.59 Mb ( 2401, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000542 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.482E-03 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 3.82 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.310E-02 0.000E+00 total cpu time spent up to now is 5.35 secs total energy = -31.58206331 Ry Harris-Foulkes estimate = -33.30200371 Ry estimated scf accuracy < 2.27208689 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.580E-02 0.000E+00 total cpu time spent up to now is 6.80 secs total energy = -32.20646497 Ry Harris-Foulkes estimate = -32.59234171 Ry estimated scf accuracy < 0.68171557 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-03, avg # of iterations = 2.0 negative rho (up, down): 0.125E-01 0.000E+00 total cpu time spent up to now is 8.22 secs total energy = -32.33989299 Ry Harris-Foulkes estimate = -32.34663808 Ry estimated scf accuracy < 0.01270933 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-04, avg # of iterations = 5.0 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 9.94 secs total energy = -32.34426567 Ry Harris-Foulkes estimate = -32.34495066 Ry estimated scf accuracy < 0.00148415 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-05, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 11.46 secs total energy = -32.34433067 Ry Harris-Foulkes estimate = -32.34434514 Ry estimated scf accuracy < 0.00003079 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-07, avg # of iterations = 4.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 13.19 secs total energy = -32.34434239 Ry Harris-Foulkes estimate = -32.34435583 Ry estimated scf accuracy < 0.00003060 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-07, avg # of iterations = 1.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 14.66 secs total energy = -32.34434546 Ry Harris-Foulkes estimate = -32.34434556 Ry estimated scf accuracy < 0.00000035 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-09, avg # of iterations = 3.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 16.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -33.6495 -22.3917 -22.3917 -22.3917 -7.0409 -3.7176 -3.7176 -3.7176 highest occupied, lowest unoccupied level (ev): -22.3917 -7.0409 ! total energy = -32.34434571 Ry Harris-Foulkes estimate = -32.34434573 Ry estimated scf accuracy < 0.00000005 Ry total all-electron energy = -113.643147 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06710299 Ry hartree contribution = 38.91733313 Ry xc contribution = -8.21270071 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31852658 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.109E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15456333 0.15456333 0.15456333 atom 3 type 2 force = -0.15456333 -0.15456333 0.15456333 atom 4 type 2 force = -0.15456333 0.15456333 -0.15456333 atom 5 type 2 force = 0.15456333 -0.15456333 -0.15456333 Total force = 0.535423 Total SCF correction = 0.000098 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3443457065 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.000542 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000597 negative rho (up, down): 0.481E-02 0.000E+00 total cpu time spent up to now is 18.24 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.593E-02 0.000E+00 total cpu time spent up to now is 20.73 secs total energy = -32.41532573 Ry Harris-Foulkes estimate = -32.47233648 Ry estimated scf accuracy < 0.08622993 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-03, avg # of iterations = 2.0 negative rho (up, down): 0.631E-02 0.000E+00 total cpu time spent up to now is 22.14 secs total energy = -32.43834114 Ry Harris-Foulkes estimate = -32.46666709 Ry estimated scf accuracy < 0.05446391 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.81E-04, avg # of iterations = 1.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 23.51 secs total energy = -32.44942103 Ry Harris-Foulkes estimate = -32.44935352 Ry estimated scf accuracy < 0.00027428 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.43E-06, avg # of iterations = 3.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 25.10 secs total energy = -32.44967080 Ry Harris-Foulkes estimate = -32.44967866 Ry estimated scf accuracy < 0.00004705 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.88E-07, avg # of iterations = 1.0 negative rho (up, down): 0.747E-02 0.000E+00 total cpu time spent up to now is 26.50 secs total energy = -32.44966437 Ry Harris-Foulkes estimate = -32.44967296 Ry estimated scf accuracy < 0.00002045 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.56E-07, avg # of iterations = 2.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 28.02 secs total energy = -32.44966890 Ry Harris-Foulkes estimate = -32.44966997 Ry estimated scf accuracy < 0.00000229 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-08, avg # of iterations = 1.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 29.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.3749 -20.6783 -20.6783 -20.6783 -7.4711 -4.6579 -4.6579 -4.6579 highest occupied, lowest unoccupied level (ev): -20.6783 -7.4711 ! total energy = -32.44966920 Ry Harris-Foulkes estimate = -32.44966924 Ry estimated scf accuracy < 0.00000006 Ry total all-electron energy = -113.748470 Ry The total energy is the sum of the following terms: one-electron contribution = -76.79843485 Ry hartree contribution = 36.53847150 Ry xc contribution = -7.77529757 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30303365 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.745E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01178168 -0.01178168 -0.01178168 atom 3 type 2 force = 0.01178168 0.01178168 -0.01178168 atom 4 type 2 force = 0.01178168 -0.01178168 0.01178168 atom 5 type 2 force = -0.01178168 0.01178168 0.01178168 Total force = 0.040813 Total SCF correction = 0.000112 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3443457065 Ry energy new = -32.4496691962 Ry CASE: energy _new < energy _old new trust radius = 0.0354133791 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134114605 1.134114605 1.134114605 H -1.134114605 -1.134114605 1.134114605 H -1.134114605 1.134114605 -1.134114605 H 1.134114605 -1.134114605 -1.134114605 Writing output data file NH4+.save Check: negative starting charge= -0.000597 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000601 negative rho (up, down): 0.800E-02 0.000E+00 total cpu time spent up to now is 31.40 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.781E-02 0.000E+00 total cpu time spent up to now is 33.10 secs total energy = -32.45052843 Ry Harris-Foulkes estimate = -32.45068395 Ry estimated scf accuracy < 0.00025416 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.18E-06, avg # of iterations = 2.0 negative rho (up, down): 0.777E-02 0.000E+00 total cpu time spent up to now is 34.51 secs total energy = -32.45059260 Ry Harris-Foulkes estimate = -32.45066669 Ry estimated scf accuracy < 0.00014057 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-06, avg # of iterations = 2.0 negative rho (up, down): 0.773E-02 0.000E+00 total cpu time spent up to now is 35.93 secs total energy = -32.45062307 Ry Harris-Foulkes estimate = -32.45062276 Ry estimated scf accuracy < 0.00000136 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 2.0 negative rho (up, down): 0.773E-02 0.000E+00 total cpu time spent up to now is 37.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5229 -20.7909 -20.7909 -20.7909 -7.4308 -4.5818 -4.5818 -4.5818 highest occupied, lowest unoccupied level (ev): -20.7909 -7.4308 ! total energy = -32.45062338 Ry Harris-Foulkes estimate = -32.45062338 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -113.749425 Ry The total energy is the sum of the following terms: one-electron contribution = -77.13837433 Ry hartree contribution = 36.69058617 Ry xc contribution = -7.80300253 Ry ewald contribution = 24.10395855 Ry one-center paw contrib. = -8.30379125 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.773E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00373688 -0.00373688 -0.00373688 atom 3 type 2 force = 0.00373688 0.00373688 -0.00373688 atom 4 type 2 force = 0.00373688 -0.00373688 0.00373688 atom 5 type 2 force = -0.00373688 0.00373688 0.00373688 Total force = 0.012945 Total SCF correction = 0.000046 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4496691962 Ry energy new = -32.4506233782 Ry CASE: energy _new < energy _old new trust radius = 0.0164498045 bohr new conv_thr = 0.0000000374 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129365956 1.129365956 1.129365956 H -1.129365956 -1.129365956 1.129365956 H -1.129365956 1.129365956 -1.129365956 H 1.129365956 -1.129365956 -1.129365956 Writing output data file NH4+.save Check: negative starting charge= -0.000601 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.798E-02 0.000E+00 total cpu time spent up to now is 39.35 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.791E-02 0.000E+00 total cpu time spent up to now is 41.01 secs total energy = -32.45070342 Ry Harris-Foulkes estimate = -32.45073891 Ry estimated scf accuracy < 0.00005767 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-07, avg # of iterations = 2.0 negative rho (up, down): 0.789E-02 0.000E+00 total cpu time spent up to now is 42.42 secs total energy = -32.45071821 Ry Harris-Foulkes estimate = -32.45073472 Ry estimated scf accuracy < 0.00003120 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.90E-07, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 43.84 secs total energy = -32.45072498 Ry Harris-Foulkes estimate = -32.45072490 Ry estimated scf accuracy < 0.00000029 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-09, avg # of iterations = 3.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 45.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5927 -20.8442 -20.8442 -20.8442 -7.4133 -4.5470 -4.5470 -4.5470 highest occupied, lowest unoccupied level (ev): -20.8442 -7.4133 ! total energy = -32.45072505 Ry Harris-Foulkes estimate = -32.45072505 Ry estimated scf accuracy < 5.8E-09 Ry total all-electron energy = -113.749526 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29790125 Ry hartree contribution = 36.76204844 Ry xc contribution = -7.81601599 Ry ewald contribution = 24.20530856 Ry one-center paw contrib. = -8.30416481 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.787E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015941 0.00015941 0.00015941 atom 3 type 2 force = -0.00015941 -0.00015941 0.00015941 atom 4 type 2 force = -0.00015941 0.00015941 -0.00015941 atom 5 type 2 force = 0.00015941 -0.00015941 -0.00015941 Total force = 0.000552 Total SCF correction = 0.000026 number of scf cycles = 4 number of bfgs steps = 3 energy old = -32.4506233782 Ry energy new = -32.4507250531 Ry CASE: energy _new < energy _old new trust radius = 0.0006730166 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129560239 1.129560239 1.129560239 H -1.129560239 -1.129560239 1.129560239 H -1.129560239 1.129560239 -1.129560239 H 1.129560239 -1.129560239 -1.129560239 Writing output data file NH4+.save Check: negative starting charge= -0.000602 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 47.32 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 1.0 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 49.33 secs total energy = -32.45072519 Ry Harris-Foulkes estimate = -32.45072530 Ry estimated scf accuracy < 0.00000016 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-09, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 50.74 secs total energy = -32.45072524 Ry Harris-Foulkes estimate = -32.45072528 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 52.09 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5900 -20.8421 -20.8421 -20.8421 -7.4141 -4.5486 -4.5486 -4.5486 highest occupied, lowest unoccupied level (ev): -20.8421 -7.4141 ! total energy = -32.45072526 Ry Harris-Foulkes estimate = -32.45072526 Ry estimated scf accuracy < 5.2E-10 Ry total all-electron energy = -113.749527 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29112160 Ry hartree contribution = 36.75881511 Ry xc contribution = -7.81542154 Ry ewald contribution = 24.20114528 Ry one-center paw contrib. = -8.30414251 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.787E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000874 0.00000874 0.00000874 atom 3 type 2 force = -0.00000874 -0.00000874 0.00000874 atom 4 type 2 force = -0.00000874 0.00000874 -0.00000874 atom 5 type 2 force = 0.00000874 -0.00000874 -0.00000874 Total force = 0.000030 Total SCF correction = 0.000007 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 5 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4507252569 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129560239 1.129560239 1.129560239 H -1.129560239 -1.129560239 1.129560239 H -1.129560239 1.129560239 -1.129560239 H 1.129560239 -1.129560239 -1.129560239 Writing output data file NH4+.save PWSCF : 53.10s CPU time, 59.89s wall time init_run : 3.04s CPU electrons : 39.75s CPU ( 5 calls, 7.950 s avg) update_pot : 3.88s CPU ( 4 calls, 0.970 s avg) forces : 4.01s CPU ( 5 calls, 0.802 s avg) Called by init_run: wfcinit : 0.13s CPU potinit : 0.73s CPU Called by electrons: c_bands : 10.02s CPU ( 27 calls, 0.371 s avg) sum_band : 6.93s CPU ( 27 calls, 0.257 s avg) v_of_rho : 12.41s CPU ( 31 calls, 0.400 s avg) newd : 4.59s CPU ( 31 calls, 0.148 s avg) mix_rho : 1.60s CPU ( 27 calls, 0.059 s avg) Called by c_bands: init_us_2 : 0.21s CPU ( 55 calls, 0.004 s avg) regterg : 9.82s CPU ( 27 calls, 0.364 s avg) Called by *egterg: h_psi : 9.22s CPU ( 100 calls, 0.092 s avg) s_psi : 0.09s CPU ( 100 calls, 0.001 s avg) g_psi : 0.13s CPU ( 72 calls, 0.002 s avg) rdiaghg : 0.05s CPU ( 94 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.09s CPU ( 100 calls, 0.001 s avg) General routines calbec : 0.16s CPU ( 147 calls, 0.001 s avg) cft3 : 12.07s CPU ( 438 calls, 0.028 s avg) cft3s : 9.55s CPU ( 780 calls, 0.012 s avg) davcio : 0.00s CPU ( 26 calls, 0.000 s avg) PAW routines PAW_pot : 7.05s CPU ( 31 calls, 0.227 s avg) PAW_ddot : 0.79s CPU ( 170 calls, 0.005 s avg) PAW_symme : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/n.out-120000644000700200004540000002365612053145630023077 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 12:59:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 437.7075 ( 19201 G-vectors) FFT grid: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.15 Mb ( 2401, 4) NL pseudopotentials 0.29 Mb ( 2401, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 2401, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.126E-05 0.126E-05 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 4.00 secs per-process dynamical memory: 15.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.854E-04 0.158E-03 total cpu time spent up to now is 6.16 secs total energy = -27.79894186 Ry Harris-Foulkes estimate = -27.59737527 Ry estimated scf accuracy < 0.11031304 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-03, avg # of iterations = 1.0 negative rho (up, down): 0.200E-03 0.659E-03 total cpu time spent up to now is 8.29 secs total energy = -27.82554173 Ry Harris-Foulkes estimate = -27.80281123 Ry estimated scf accuracy < 0.01571479 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.14E-04, avg # of iterations = 1.5 negative rho (up, down): 0.202E-03 0.578E-03 total cpu time spent up to now is 10.52 secs total energy = -27.82653907 Ry Harris-Foulkes estimate = -27.82678537 Ry estimated scf accuracy < 0.00042203 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.44E-06, avg # of iterations = 2.0 negative rho (up, down): 0.241E-03 0.520E-03 total cpu time spent up to now is 12.81 secs total energy = -27.82662058 Ry Harris-Foulkes estimate = -27.82661478 Ry estimated scf accuracy < 0.00000312 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.24E-08, avg # of iterations = 2.5 negative rho (up, down): 0.241E-03 0.522E-03 total cpu time spent up to now is 15.11 secs total energy = -27.82662305 Ry Harris-Foulkes estimate = -27.82662346 Ry estimated scf accuracy < 0.00000076 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-08, avg # of iterations = 2.0 negative rho (up, down): 0.242E-03 0.521E-03 total cpu time spent up to now is 17.22 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -19.8776 -8.2463 -8.2463 -8.2463 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -15.2899 -4.0718 -4.0718 -4.0718 ! total energy = -27.82662328 Ry Harris-Foulkes estimate = -27.82662328 Ry estimated scf accuracy < 0.00000006 Ry total all-electron energy = -109.125425 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96977215 Ry hartree contribution = 16.58300952 Ry xc contribution = -5.12489959 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31496102 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 17.44s CPU time, 19.64s wall time init_run : 3.44s CPU electrons : 13.22s CPU Called by init_run: wfcinit : 0.12s CPU potinit : 1.49s CPU Called by electrons: c_bands : 1.76s CPU ( 6 calls, 0.293 s avg) sum_band : 2.03s CPU ( 6 calls, 0.339 s avg) v_of_rho : 5.32s CPU ( 7 calls, 0.759 s avg) newd : 1.10s CPU ( 7 calls, 0.157 s avg) mix_rho : 0.50s CPU ( 6 calls, 0.083 s avg) Called by c_bands: init_us_2 : 0.08s CPU ( 26 calls, 0.003 s avg) regterg : 1.69s CPU ( 12 calls, 0.141 s avg) Called by *egterg: h_psi : 1.71s CPU ( 34 calls, 0.050 s avg) s_psi : 0.01s CPU ( 34 calls, 0.000 s avg) g_psi : 0.02s CPU ( 20 calls, 0.001 s avg) rdiaghg : 0.01s CPU ( 32 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 34 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 46 calls, 0.000 s avg) cft3 : 3.90s CPU ( 160 calls, 0.024 s avg) cft3s : 1.88s CPU ( 154 calls, 0.012 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.65s CPU ( 7 calls, 0.521 s avg) PAW_ddot : 0.13s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 7 calls, 0.001 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/h2o.out-240000644000700200004540000013616012053145630023330 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13:26:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 24.0000 a.u. unit-cell volume = 13824.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 24.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0416667 0.0416667 0.0416667 ) 3 H tau( 3) = ( -0.0416667 -0.0416667 0.0416667 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1750.8301 ( 153598 G-vectors) FFT grid: ( 90, 90, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 2.34 Mb ( 19201, 8) NL pseudopotentials 3.52 Mb ( 19201, 12) Each V/rho on FFT grid 11.12 Mb ( 729000) Each G-vector array 1.17 Mb ( 153598) G-vector shells 0.01 Mb ( 1463) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 4.69 Mb ( 19201, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 88.99 Mb ( 729000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.010725 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.107E-01 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 12.02 secs per-process dynamical memory: 84.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 negative rho (up, down): 0.190E-01 0.000E+00 total cpu time spent up to now is 24.81 secs total energy = -43.77144546 Ry Harris-Foulkes estimate = -44.16200212 Ry estimated scf accuracy < 0.55409225 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.93E-03, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 34.82 secs total energy = -43.87793698 Ry Harris-Foulkes estimate = -44.12617416 Ry estimated scf accuracy < 0.53130329 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-03, avg # of iterations = 2.0 negative rho (up, down): 0.259E-01 0.000E+00 total cpu time spent up to now is 44.67 secs total energy = -43.98671595 Ry Harris-Foulkes estimate = -43.98987893 Ry estimated scf accuracy < 0.00674668 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.43E-05, avg # of iterations = 9.0 negative rho (up, down): 0.250E-01 0.000E+00 total cpu time spent up to now is 58.39 secs total energy = -43.98879556 Ry Harris-Foulkes estimate = -43.98911588 Ry estimated scf accuracy < 0.00081763 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-05, avg # of iterations = 7.0 negative rho (up, down): 0.248E-01 0.000E+00 total cpu time spent up to now is 69.73 secs total energy = -43.98882465 Ry Harris-Foulkes estimate = -43.98884940 Ry estimated scf accuracy < 0.00005811 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.26E-07, avg # of iterations = 4.0 negative rho (up, down): 0.248E-01 0.000E+00 total cpu time spent up to now is 80.57 secs total energy = -43.98883513 Ry Harris-Foulkes estimate = -43.98883623 Ry estimated scf accuracy < 0.00000252 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-08, avg # of iterations = 2.0 negative rho (up, down): 0.249E-01 0.000E+00 total cpu time spent up to now is 89.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.8229 -13.8729 -9.1115 -7.3308 -1.0511 -0.2415 0.0678 0.2276 highest occupied, lowest unoccupied level (ev): -7.3308 -1.0511 ! total energy = -43.98883568 Ry Harris-Foulkes estimate = -43.98883568 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.749582 Ry The total energy is the sum of the following terms: one-electron contribution = -83.29381169 Ry hartree contribution = 43.17017673 Ry xc contribution = -8.51453545 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91417845 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.249E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15917886 atom 2 type 2 force = 0.07230562 0.07230562 0.07958943 atom 3 type 2 force = -0.07230562 -0.07230562 0.07958943 Total force = 0.183252 Total SCF correction = 0.000016 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9888356752 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197284460 1.197284460 1.217158199 H -1.197284460 -1.197284460 1.217158199 Writing output data file H2O.save Check: negative starting charge= -0.010725 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010870 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 102.25 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 12.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 119.67 secs total energy = -43.91525480 Ry Harris-Foulkes estimate = -43.97553312 Ry estimated scf accuracy < 0.09076132 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 129.34 secs total energy = -43.92958033 Ry Harris-Foulkes estimate = -43.99320443 Ry estimated scf accuracy < 0.15083893 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.172E-01 0.000E+00 total cpu time spent up to now is 139.01 secs total energy = -43.95582652 Ry Harris-Foulkes estimate = -43.95579147 Ry estimated scf accuracy < 0.00037987 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.75E-06, avg # of iterations = 3.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 149.67 secs total energy = -43.95597660 Ry Harris-Foulkes estimate = -43.95599150 Ry estimated scf accuracy < 0.00004401 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.50E-07, avg # of iterations = 2.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 159.22 secs total energy = -43.95598247 Ry Harris-Foulkes estimate = -43.95598232 Ry estimated scf accuracy < 0.00000056 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.94E-09, avg # of iterations = 3.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 169.48 secs total energy = -43.95598278 Ry Harris-Foulkes estimate = -43.95598292 Ry estimated scf accuracy < 0.00000035 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.32E-09, avg # of iterations = 2.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 178.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -23.9466 -12.1447 -8.8966 -6.9488 -1.5707 -0.3444 -0.1110 0.2923 highest occupied, lowest unoccupied level (ev): -6.9488 -1.5707 ! total energy = -43.95598284 Ry Harris-Foulkes estimate = -43.95598284 Ry estimated scf accuracy < 9.7E-10 Ry total all-electron energy = -152.716729 Ry The total energy is the sum of the following terms: one-electron contribution = -79.14614716 Ry hartree contribution = 41.22164457 Ry xc contribution = -8.19697842 Ry ewald contribution = 12.09975638 Ry one-center paw contrib. = -9.93425822 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.173E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15141918 atom 2 type 2 force = -0.10016814 -0.10016814 -0.07570959 atom 3 type 2 force = 0.10016814 0.10016814 -0.07570959 Total force = 0.227153 Total SCF correction = 0.000013 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9888356752 Ry energy new = -43.9559828429 Ry CASE: energy _new > energy _old new trust radius = 0.2119943662 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083646388 1.083646388 1.092072630 H -1.083646388 -1.083646388 1.092072630 Writing output data file H2O.save Check: negative starting charge= -0.010870 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010793 negative rho (up, down): 0.170E-01 0.000E+00 total cpu time spent up to now is 190.87 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 11.0 negative rho (up, down): 0.195E-01 0.000E+00 total cpu time spent up to now is 207.69 secs total energy = -43.99217171 Ry Harris-Foulkes estimate = -44.00408047 Ry estimated scf accuracy < 0.01892832 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-04, avg # of iterations = 2.0 negative rho (up, down): 0.201E-01 0.000E+00 total cpu time spent up to now is 217.45 secs total energy = -43.99531296 Ry Harris-Foulkes estimate = -44.00527840 Ry estimated scf accuracy < 0.02188729 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-04, avg # of iterations = 2.0 negative rho (up, down): 0.212E-01 0.000E+00 total cpu time spent up to now is 227.20 secs total energy = -43.99966666 Ry Harris-Foulkes estimate = -43.99968478 Ry estimated scf accuracy < 0.00015728 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 3.0 negative rho (up, down): 0.212E-01 0.000E+00 total cpu time spent up to now is 237.60 secs total energy = -43.99971680 Ry Harris-Foulkes estimate = -43.99971806 Ry estimated scf accuracy < 0.00000465 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.81E-08, avg # of iterations = 2.0 negative rho (up, down): 0.213E-01 0.000E+00 total cpu time spent up to now is 247.25 secs total energy = -43.99971755 Ry Harris-Foulkes estimate = -43.99971748 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 2.0 negative rho (up, down): 0.213E-01 0.000E+00 total cpu time spent up to now is 256.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -24.9212 -13.0734 -9.0082 -7.1488 -1.1960 -0.2850 0.0359 0.2582 highest occupied, lowest unoccupied level (ev): -7.1488 -1.1960 ! total energy = -43.99971759 Ry Harris-Foulkes estimate = -43.99971759 Ry estimated scf accuracy < 7.8E-09 Ry total all-electron energy = -152.760464 Ry The total energy is the sum of the following terms: one-electron contribution = -81.40044182 Ry hartree contribution = 42.28328527 Ry xc contribution = -8.36608789 Ry ewald contribution = 13.40621705 Ry one-center paw contrib. = -9.92269019 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.213E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02459123 atom 2 type 2 force = -0.02973106 -0.02973106 -0.01229561 atom 3 type 2 force = 0.02973106 0.02973106 -0.01229561 Total force = 0.061952 Total SCF correction = 0.000021 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9888356752 Ry energy new = -43.9997175873 Ry CASE: energy _new < energy _old new trust radius = 0.0520359931 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058961581 1.058961581 1.080445384 H -1.058961581 -1.058961581 1.080445384 Writing output data file H2O.save Check: negative starting charge= -0.010793 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010798 negative rho (up, down): 0.214E-01 0.000E+00 total cpu time spent up to now is 268.86 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.220E-01 0.000E+00 total cpu time spent up to now is 281.38 secs total energy = -44.00149020 Ry Harris-Foulkes estimate = -44.00195990 Ry estimated scf accuracy < 0.00074487 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.31E-06, avg # of iterations = 2.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 291.19 secs total energy = -44.00162311 Ry Harris-Foulkes estimate = -44.00198646 Ry estimated scf accuracy < 0.00078376 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.31E-06, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 300.98 secs total energy = -44.00177971 Ry Harris-Foulkes estimate = -44.00178036 Ry estimated scf accuracy < 0.00000576 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-08, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 310.86 secs total energy = -44.00178147 Ry Harris-Foulkes estimate = -44.00178151 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-09, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 320.29 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.1320 -13.2178 -9.0676 -7.1929 -1.1554 -0.2752 0.0444 0.2507 highest occupied, lowest unoccupied level (ev): -7.1929 -1.1554 ! total energy = -44.00178150 Ry Harris-Foulkes estimate = -44.00178150 Ry estimated scf accuracy < 5.5E-09 Ry total all-electron energy = -152.762528 Ry The total energy is the sum of the following terms: one-electron contribution = -81.82938542 Ry hartree contribution = 42.48374786 Ry xc contribution = -8.39922170 Ry ewald contribution = 13.66415690 Ry one-center paw contrib. = -9.92107914 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.222E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00702496 atom 2 type 2 force = -0.00949971 -0.00949971 0.00351248 atom 3 type 2 force = 0.00949971 0.00949971 0.00351248 Total force = 0.019638 Total SCF correction = 0.000014 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9997175873 Ry energy new = -44.0017815033 Ry CASE: energy _new < energy _old new trust radius = 0.0258949922 bohr new conv_thr = 0.0000000950 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.046479430 1.046479430 1.085310274 H -1.046479430 -1.046479430 1.085310274 Writing output data file H2O.save Check: negative starting charge= -0.010798 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010774 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 332.67 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 344.20 secs total energy = -44.00208186 Ry Harris-Foulkes estimate = -44.00212164 Ry estimated scf accuracy < 0.00007543 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.43E-07, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 354.00 secs total energy = -44.00209371 Ry Harris-Foulkes estimate = -44.00212313 Ry estimated scf accuracy < 0.00006147 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-07, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 363.77 secs total energy = -44.00210720 Ry Harris-Foulkes estimate = -44.00210739 Ry estimated scf accuracy < 0.00000142 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 373.09 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2152 -13.2346 -9.1198 -7.2110 -1.1446 -0.2724 0.0482 0.2478 highest occupied, lowest unoccupied level (ev): -7.2110 -1.1446 ! total energy = -44.00210750 Ry Harris-Foulkes estimate = -44.00210749 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762854 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97479278 Ry hartree contribution = 42.55112690 Ry xc contribution = -8.41049232 Ry ewald contribution = 13.75294920 Ry one-center paw contrib. = -9.92089849 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.225E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01634325 atom 2 type 2 force = -0.00125118 -0.00125118 0.00817163 atom 3 type 2 force = 0.00125118 0.00125118 0.00817163 Total force = 0.011824 Total SCF correction = 0.000036 number of scf cycles = 5 number of bfgs steps = 3 energy old = -44.0017815033 Ry energy new = -44.0021074952 Ry CASE: energy _new < energy _old new trust radius = 0.0241229080 bohr new conv_thr = 0.0000000326 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038547231 1.038547231 1.098160090 H -1.038547231 -1.038547231 1.098160090 Writing output data file H2O.save Check: negative starting charge= -0.010774 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010748 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 385.47 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 397.06 secs total energy = -44.00230274 Ry Harris-Foulkes estimate = -44.00229890 Ry estimated scf accuracy < 0.00001042 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 1.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 406.26 secs total energy = -44.00230368 Ry Harris-Foulkes estimate = -44.00230322 Ry estimated scf accuracy < 0.00000101 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-08, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 416.01 secs total energy = -44.00230372 Ry Harris-Foulkes estimate = -44.00230382 Ry estimated scf accuracy < 0.00000020 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-09, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 425.49 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2441 -13.1934 -9.1736 -7.2187 -1.1456 -0.2732 0.0507 0.2466 highest occupied, lowest unoccupied level (ev): -7.2187 -1.1456 ! total energy = -44.00230375 Ry Harris-Foulkes estimate = -44.00230378 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.763050 Ry The total energy is the sum of the following terms: one-electron contribution = -81.99731918 Ry hartree contribution = 42.56071601 Ry xc contribution = -8.41219537 Ry ewald contribution = 13.76786735 Ry one-center paw contrib. = -9.92137257 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.225E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01451664 atom 2 type 2 force = 0.00139934 0.00139934 0.00725832 atom 3 type 2 force = -0.00139934 -0.00139934 0.00725832 Total force = 0.010640 Total SCF correction = 0.000058 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0021074952 Ry energy new = -44.0023037544 Ry CASE: energy _new < energy _old new trust radius = 0.0723687241 bohr new conv_thr = 0.0000000196 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.021821327 1.021821327 1.143537446 H -1.021821327 -1.021821327 1.143537446 Writing output data file H2O.save Check: negative starting charge= -0.010748 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010679 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 437.76 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 450.53 secs total energy = -44.00234723 Ry Harris-Foulkes estimate = -44.00239660 Ry estimated scf accuracy < 0.00020863 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.61E-06, avg # of iterations = 2.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 460.28 secs total energy = -44.00237055 Ry Harris-Foulkes estimate = -44.00244438 Ry estimated scf accuracy < 0.00016048 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-06, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 470.05 secs total energy = -44.00240790 Ry Harris-Foulkes estimate = -44.00240760 Ry estimated scf accuracy < 0.00000719 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.99E-08, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 479.90 secs total energy = -44.00240892 Ry Harris-Foulkes estimate = -44.00240893 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.37E-10, avg # of iterations = 3.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 489.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2513 -13.0013 -9.3212 -7.2240 -1.1630 -0.2791 0.0561 0.2462 highest occupied, lowest unoccupied level (ev): -7.2240 -1.1630 ! total energy = -44.00240893 Ry Harris-Foulkes estimate = -44.00240893 Ry estimated scf accuracy < 3.1E-09 Ry total all-electron energy = -152.763155 Ry The total energy is the sum of the following terms: one-electron contribution = -81.90253794 Ry hartree contribution = 42.51223523 Ry xc contribution = -8.40433226 Ry ewald contribution = 13.71565880 Ry one-center paw contrib. = -9.92343275 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.222E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00536688 atom 2 type 2 force = 0.00189574 0.00189574 -0.00268344 atom 3 type 2 force = -0.00189574 -0.00189574 -0.00268344 Total force = 0.005364 Total SCF correction = 0.000010 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0023037544 Ry energy new = -44.0024089305 Ry CASE: energy _new < energy _old new trust radius = 0.1592111930 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.065306960 1.065306960 1.049239506 H -1.065306960 -1.065306960 1.049239506 Writing output data file H2O.save Check: negative starting charge= -0.010679 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010808 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 501.84 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.218E-01 0.000E+00 total cpu time spent up to now is 515.54 secs total energy = -44.00095832 Ry Harris-Foulkes estimate = -44.00093357 Ry estimated scf accuracy < 0.00061796 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.72E-06, avg # of iterations = 2.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 525.25 secs total energy = -44.00100246 Ry Harris-Foulkes estimate = -44.00113136 Ry estimated scf accuracy < 0.00029449 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-06, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 535.07 secs total energy = -44.00108196 Ry Harris-Foulkes estimate = -44.00108908 Ry estimated scf accuracy < 0.00004502 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.63E-07, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 544.88 secs total energy = -44.00108825 Ry Harris-Foulkes estimate = -44.00108827 Ry estimated scf accuracy < 0.00000011 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 3.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 554.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.1599 -13.3566 -8.9840 -7.1958 -1.1404 -0.2707 0.0443 0.2499 highest occupied, lowest unoccupied level (ev): -7.1958 -1.1404 ! total energy = -44.00108833 Ry Harris-Foulkes estimate = -44.00108834 Ry estimated scf accuracy < 8.8E-09 Ry total all-electron energy = -152.761835 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95218039 Ry hartree contribution = 42.54329969 Ry xc contribution = -8.40884935 Ry ewald contribution = 13.73610903 Ry one-center paw contrib. = -9.91946731 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.224E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02443422 atom 2 type 2 force = -0.00622997 -0.00622997 0.01221711 atom 3 type 2 force = 0.00622997 0.00622997 0.01221711 Total force = 0.021302 Total SCF correction = 0.000030 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0024089305 Ry energy new = -44.0010883343 Ry CASE: energy _new > energy _old new trust radius = 0.0636056374 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.039194047 1.039194047 1.105864965 H -1.039194047 -1.039194047 1.105864965 Writing output data file H2O.save Check: negative starting charge= -0.010808 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010749 negative rho (up, down): 0.220E-01 0.000E+00 total cpu time spent up to now is 567.01 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 580.17 secs total energy = -44.00234913 Ry Harris-Foulkes estimate = -44.00232572 Ry estimated scf accuracy < 0.00020938 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-06, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 589.96 secs total energy = -44.00236286 Ry Harris-Foulkes estimate = -44.00239955 Ry estimated scf accuracy < 0.00008673 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-06, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 599.77 secs total energy = -44.00238656 Ry Harris-Foulkes estimate = -44.00239047 Ry estimated scf accuracy < 0.00001856 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 609.61 secs total energy = -44.00238941 Ry Harris-Foulkes estimate = -44.00238940 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-10, avg # of iterations = 3.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 619.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2185 -13.1501 -9.1861 -7.2138 -1.1521 -0.2752 0.0498 0.2471 highest occupied, lowest unoccupied level (ev): -7.2138 -1.1521 ! total energy = -44.00238945 Ry Harris-Foulkes estimate = -44.00238945 Ry estimated scf accuracy < 6.1E-09 Ry total all-electron energy = -152.763136 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93242020 Ry hartree contribution = 42.52958733 Ry xc contribution = -8.40704925 Ry ewald contribution = 13.72934021 Ry one-center paw contrib. = -9.92184754 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.224E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00747119 atom 2 type 2 force = -0.00118401 -0.00118401 0.00373560 atom 3 type 2 force = 0.00118401 0.00118401 0.00373560 Total force = 0.005789 Total SCF correction = 0.000021 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0024089305 Ry energy new = -44.0023894454 Ry CASE: energy _new > energy _old new trust radius = 0.0316852176 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030475566 1.030475566 1.124770858 H -1.030475566 -1.030475566 1.124770858 Writing output data file H2O.save Check: negative starting charge= -0.010749 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010715 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 631.95 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 643.54 secs total energy = -44.00248146 Ry Harris-Foulkes estimate = -44.00248045 Ry estimated scf accuracy < 0.00002564 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-07, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 653.27 secs total energy = -44.00248336 Ry Harris-Foulkes estimate = -44.00248849 Ry estimated scf accuracy < 0.00001173 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-07, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 663.04 secs total energy = -44.00248653 Ry Harris-Foulkes estimate = -44.00248686 Ry estimated scf accuracy < 0.00000190 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.38E-08, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 672.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2357 -13.0766 -9.2538 -7.2191 -1.1574 -0.2771 0.0529 0.2466 highest occupied, lowest unoccupied level (ev): -7.2191 -1.1574 ! total energy = -44.00248682 Ry Harris-Foulkes estimate = -44.00248682 Ry estimated scf accuracy < 3.3E-09 Ry total all-electron energy = -152.763233 Ry The total energy is the sum of the following terms: one-electron contribution = -81.91887239 Ry hartree contribution = 42.52145061 Ry xc contribution = -8.40580305 Ry ewald contribution = 13.72337973 Ry one-center paw contrib. = -9.92264172 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.223E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00114573 atom 2 type 2 force = 0.00038749 0.00038749 0.00057287 atom 3 type 2 force = -0.00038749 -0.00038749 0.00057287 Total force = 0.001121 Total SCF correction = 0.000012 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0024868234 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030475566 1.030475566 1.124770858 H -1.030475566 -1.030475566 1.124770858 Writing output data file H2O.save PWSCF : 11m18.22s CPU time, 11m48.13s wall time init_run : 11.26s CPU electrons : 549.35s CPU ( 10 calls, 54.935 s avg) update_pot : 45.52s CPU ( 9 calls, 5.057 s avg) forces : 56.19s CPU ( 10 calls, 5.619 s avg) Called by init_run: wfcinit : 1.11s CPU potinit : 3.89s CPU Called by electrons: c_bands : 181.70s CPU ( 52 calls, 3.494 s avg) sum_band : 105.75s CPU ( 52 calls, 2.034 s avg) v_of_rho : 191.63s CPU ( 62 calls, 3.091 s avg) newd : 68.30s CPU ( 62 calls, 1.102 s avg) mix_rho : 15.62s CPU ( 52 calls, 0.300 s avg) Called by c_bands: init_us_2 : 3.13s CPU ( 105 calls, 0.030 s avg) regterg : 178.74s CPU ( 52 calls, 3.437 s avg) Called by *egterg: h_psi : 167.88s CPU ( 212 calls, 0.792 s avg) s_psi : 1.28s CPU ( 212 calls, 0.006 s avg) g_psi : 1.97s CPU ( 159 calls, 0.012 s avg) rdiaghg : 0.11s CPU ( 202 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 1.24s CPU ( 212 calls, 0.006 s avg) General routines calbec : 1.78s CPU ( 304 calls, 0.006 s avg) cft3 : 181.30s CPU ( 873 calls, 0.208 s avg) cft3s : 173.80s CPU ( 1500 calls, 0.116 s avg) davcio : 0.00s CPU ( 52 calls, 0.000 s avg) PAW routines PAW_pot : 13.34s CPU ( 62 calls, 0.215 s avg) PAW_ddot : 1.14s CPU ( 267 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 53 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/nh4+.out-200000644000700200004540000006220312053145630023374 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13:10:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0500000 0.0500000 0.0500000 ) 3 H tau( 3) = ( -0.0500000 -0.0500000 0.0500000 ) 4 H tau( 4) = ( -0.0500000 0.0500000 -0.0500000 ) 5 H tau( 5) = ( 0.0500000 -0.0500000 -0.0500000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1215.8542 ( 88755 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.35 Mb ( 11060, 8) NL pseudopotentials 2.70 Mb ( 11060, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.68 Mb ( 88755) G-vector shells 0.01 Mb ( 1015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.70 Mb ( 11060, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000002 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.009166 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.815E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 7.62 secs per-process dynamical memory: 48.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.176E-01 0.000E+00 total cpu time spent up to now is 14.12 secs total energy = -31.58597287 Ry Harris-Foulkes estimate = -33.29662532 Ry estimated scf accuracy < 2.26924556 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.236E-01 0.000E+00 total cpu time spent up to now is 20.64 secs total energy = -32.20544099 Ry Harris-Foulkes estimate = -32.59163474 Ry estimated scf accuracy < 0.68298022 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.54E-03, avg # of iterations = 2.0 negative rho (up, down): 0.337E-01 0.000E+00 total cpu time spent up to now is 26.39 secs total energy = -32.33949808 Ry Harris-Foulkes estimate = -32.34702446 Ry estimated scf accuracy < 0.01425146 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-04, avg # of iterations = 5.0 negative rho (up, down): 0.301E-01 0.000E+00 total cpu time spent up to now is 34.05 secs total energy = -32.34399961 Ry Harris-Foulkes estimate = -32.34523519 Ry estimated scf accuracy < 0.00252042 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-05, avg # of iterations = 3.0 negative rho (up, down): 0.304E-01 0.000E+00 total cpu time spent up to now is 40.25 secs total energy = -32.34411626 Ry Harris-Foulkes estimate = -32.34412846 Ry estimated scf accuracy < 0.00003984 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-07, avg # of iterations = 3.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 47.30 secs total energy = -32.34412482 Ry Harris-Foulkes estimate = -32.34415344 Ry estimated scf accuracy < 0.00006558 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-07, avg # of iterations = 2.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 53.17 secs total energy = -32.34413037 Ry Harris-Foulkes estimate = -32.34413073 Ry estimated scf accuracy < 0.00000111 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 2.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 58.94 secs total energy = -32.34413048 Ry Harris-Foulkes estimate = -32.34413051 Ry estimated scf accuracy < 0.00000018 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-09, avg # of iterations = 1.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 63.96 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -33.6592 -22.4000 -22.4000 -22.4000 -6.5559 -4.3446 -4.3446 -4.3446 highest occupied, lowest unoccupied level (ev): -22.4000 -6.5559 ! total energy = -32.34413042 Ry Harris-Foulkes estimate = -32.34413049 Ry estimated scf accuracy < 0.00000010 Ry total all-electron energy = -113.642932 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06198095 Ry hartree contribution = 38.91091808 Ry xc contribution = -8.21142029 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31829869 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.306E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15468875 0.15468875 0.15468875 atom 3 type 2 force = -0.15468875 -0.15468875 0.15468875 atom 4 type 2 force = -0.15468875 0.15468875 -0.15468875 atom 5 type 2 force = 0.15468875 -0.15468875 -0.15468875 Total force = 0.535858 Total SCF correction = 0.000204 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3441304189 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.009166 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000002 0.000000 Check: negative starting charge= -0.008918 negative rho (up, down): 0.206E-01 0.000E+00 total cpu time spent up to now is 71.19 secs per-process dynamical memory: 48.1 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 14.0 negative rho (up, down): 0.209E-01 0.000E+00 total cpu time spent up to now is 83.84 secs total energy = -32.41499247 Ry Harris-Foulkes estimate = -32.47269877 Ry estimated scf accuracy < 0.08695611 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-03, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 89.53 secs total energy = -32.43829848 Ry Harris-Foulkes estimate = -32.46711671 Ry estimated scf accuracy < 0.05563791 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.95E-04, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 95.21 secs total energy = -32.44971623 Ry Harris-Foulkes estimate = -32.44963197 Ry estimated scf accuracy < 0.00033393 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.17E-06, avg # of iterations = 4.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 101.96 secs total energy = -32.44979302 Ry Harris-Foulkes estimate = -32.44979646 Ry estimated scf accuracy < 0.00001515 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-07, avg # of iterations = 1.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 107.33 secs total energy = -32.44979165 Ry Harris-Foulkes estimate = -32.44979415 Ry estimated scf accuracy < 0.00000583 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-08, avg # of iterations = 1.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 112.76 secs total energy = -32.44979228 Ry Harris-Foulkes estimate = -32.44979231 Ry estimated scf accuracy < 0.00000011 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 118.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -31.3916 -20.6946 -20.6946 -20.6946 -7.1017 -4.9631 -4.9631 -4.9631 highest occupied, lowest unoccupied level (ev): -20.6946 -7.1017 ! total energy = -32.44979231 Ry Harris-Foulkes estimate = -32.44979231 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -113.748594 Ry The total energy is the sum of the following terms: one-electron contribution = -76.78996575 Ry hartree contribution = 36.52742817 Ry xc contribution = -7.77307453 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30280556 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.224E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01147641 -0.01147641 -0.01147641 atom 3 type 2 force = 0.01147641 0.01147641 -0.01147641 atom 4 type 2 force = 0.01147641 -0.01147641 0.01147641 atom 5 type 2 force = -0.01147641 0.01147641 0.01147641 Total force = 0.039755 Total SCF correction = 0.000052 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3441304189 Ry energy new = -32.4497923064 Ry CASE: energy _new < energy _old new trust radius = 0.0345331430 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134368708 1.134368708 1.134368708 H -1.134368708 -1.134368708 1.134368708 H -1.134368708 1.134368708 -1.134368708 H 1.134368708 -1.134368708 -1.134368708 Writing output data file NH4+.save Check: negative starting charge= -0.008918 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000002 0.000000 Check: negative starting charge= -0.009057 negative rho (up, down): 0.230E-01 0.000E+00 total cpu time spent up to now is 125.43 secs per-process dynamical memory: 48.1 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.230E-01 0.000E+00 total cpu time spent up to now is 132.75 secs total energy = -32.45060155 Ry Harris-Foulkes estimate = -32.45076275 Ry estimated scf accuracy < 0.00025909 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.231E-01 0.000E+00 total cpu time spent up to now is 138.84 secs total energy = -32.45066795 Ry Harris-Foulkes estimate = -32.45074713 Ry estimated scf accuracy < 0.00015182 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-06, avg # of iterations = 2.0 negative rho (up, down): 0.231E-01 0.000E+00 total cpu time spent up to now is 144.55 secs total energy = -32.45070017 Ry Harris-Foulkes estimate = -32.45069984 Ry estimated scf accuracy < 0.00000139 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-08, avg # of iterations = 2.0 negative rho (up, down): 0.231E-01 0.000E+00 total cpu time spent up to now is 149.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -31.5351 -20.8036 -20.8036 -20.8036 -7.0521 -4.9024 -4.9024 -4.9024 highest occupied, lowest unoccupied level (ev): -20.8036 -7.0521 ! total energy = -32.45070046 Ry Harris-Foulkes estimate = -32.45070048 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -113.749502 Ry The total energy is the sum of the following terms: one-electron contribution = -77.12214729 Ry hartree contribution = 36.67672504 Ry xc contribution = -7.80027067 Ry ewald contribution = 24.09855919 Ry one-center paw contrib. = -8.30356672 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.231E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00366803 -0.00366803 -0.00366803 atom 3 type 2 force = 0.00366803 0.00366803 -0.00366803 atom 4 type 2 force = 0.00366803 -0.00366803 0.00366803 atom 5 type 2 force = -0.00366803 0.00366803 0.00366803 Total force = 0.012706 Total SCF correction = 0.000025 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4497923064 Ry energy new = -32.4507004613 Ry CASE: energy _new < energy _old new trust radius = 0.0162221491 bohr new conv_thr = 0.0000000367 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129685777 1.129685777 1.129685777 H -1.129685777 -1.129685777 1.129685777 H -1.129685777 1.129685777 -1.129685777 H 1.129685777 -1.129685777 -1.129685777 Writing output data file NH4+.save Check: negative starting charge= -0.009057 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000002 0.000000 Check: negative starting charge= -0.009127 negative rho (up, down): 0.234E-01 0.000E+00 total cpu time spent up to now is 157.00 secs per-process dynamical memory: 48.1 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.234E-01 0.000E+00 total cpu time spent up to now is 163.92 secs total energy = -32.45077680 Ry Harris-Foulkes estimate = -32.45081258 Ry estimated scf accuracy < 0.00005757 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.20E-07, avg # of iterations = 2.0 negative rho (up, down): 0.234E-01 0.000E+00 total cpu time spent up to now is 169.59 secs total energy = -32.45079152 Ry Harris-Foulkes estimate = -32.45080855 Ry estimated scf accuracy < 0.00003244 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-07, avg # of iterations = 2.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 175.30 secs total energy = -32.45079840 Ry Harris-Foulkes estimate = -32.45079839 Ry estimated scf accuracy < 0.00000032 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-09, avg # of iterations = 2.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 180.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -31.6039 -20.8560 -20.8560 -20.8560 -7.0299 -4.8754 -4.8754 -4.8754 highest occupied, lowest unoccupied level (ev): -20.8560 -7.0299 ! total energy = -32.45079847 Ry Harris-Foulkes estimate = -32.45079847 Ry estimated scf accuracy < 9.8E-09 Ry total all-electron energy = -113.749600 Ry The total energy is the sum of the following terms: one-electron contribution = -77.27949226 Ry hartree contribution = 36.74729472 Ry xc contribution = -7.81312805 Ry ewald contribution = 24.19845590 Ry one-center paw contrib. = -8.30392878 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.235E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015775 0.00015775 0.00015775 atom 3 type 2 force = -0.00015775 -0.00015775 0.00015775 atom 4 type 2 force = -0.00015775 0.00015775 -0.00015775 atom 5 type 2 force = 0.00015775 -0.00015775 -0.00015775 Total force = 0.000546 Total SCF correction = 0.000006 bfgs converged in 4 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4507984669 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129685777 1.129685777 1.129685777 H -1.129685777 -1.129685777 1.129685777 H -1.129685777 1.129685777 -1.129685777 H 1.129685777 -1.129685777 -1.129685777 Writing output data file NH4+.save PWSCF : 3m 4.36s CPU time, 3m11.78s wall time init_run : 6.86s CPU electrons : 151.12s CPU ( 4 calls, 37.781 s avg) update_pot : 7.92s CPU ( 3 calls, 2.639 s avg) forces : 14.49s CPU ( 4 calls, 3.622 s avg) Called by init_run: wfcinit : 0.51s CPU potinit : 2.06s CPU Called by electrons: c_bands : 61.35s CPU ( 24 calls, 2.556 s avg) sum_band : 25.01s CPU ( 24 calls, 1.042 s avg) v_of_rho : 40.87s CPU ( 28 calls, 1.460 s avg) newd : 17.55s CPU ( 28 calls, 0.627 s avg) mix_rho : 5.83s CPU ( 24 calls, 0.243 s avg) Called by c_bands: init_us_2 : 0.85s CPU ( 49 calls, 0.017 s avg) regterg : 60.54s CPU ( 24 calls, 2.523 s avg) Called by *egterg: h_psi : 57.90s CPU ( 93 calls, 0.623 s avg) s_psi : 0.41s CPU ( 93 calls, 0.004 s avg) g_psi : 0.55s CPU ( 68 calls, 0.008 s avg) rdiaghg : 0.04s CPU ( 89 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.40s CPU ( 93 calls, 0.004 s avg) General routines calbec : 0.59s CPU ( 133 calls, 0.004 s avg) cft3 : 37.28s CPU ( 387 calls, 0.096 s avg) cft3s : 57.87s CPU ( 714 calls, 0.081 s avg) davcio : 0.00s CPU ( 24 calls, 0.000 s avg) PAW routines PAW_pot : 6.15s CPU ( 28 calls, 0.220 s avg) PAW_ddot : 0.92s CPU ( 200 calls, 0.005 s avg) PAW_symme : 0.01s CPU ( 25 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/nh4+.out-160000644000700200004540000007165212053145630023411 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13: 3:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 16.0000 a.u. unit-cell volume = 4096.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 16.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0625000 0.0625000 0.0625000 ) 3 H tau( 3) = ( -0.0625000 -0.0625000 0.0625000 ) 4 H tau( 4) = ( -0.0625000 0.0625000 -0.0625000 ) 5 H tau( 5) = ( 0.0625000 -0.0625000 -0.0625000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 778.1467 ( 45524 G-vectors) FFT grid: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.69 Mb ( 5682, 8) NL pseudopotentials 1.39 Mb ( 5682, 16) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.35 Mb ( 45524) G-vector shells 0.00 Mb ( 651) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.39 Mb ( 5682, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 26.37 Mb ( 216000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.004479 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.398E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 5.62 secs per-process dynamical memory: 27.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 8.87 secs total energy = -31.58547908 Ry Harris-Foulkes estimate = -33.29782484 Ry estimated scf accuracy < 2.27054122 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.150E-01 0.000E+00 total cpu time spent up to now is 12.15 secs total energy = -32.20636983 Ry Harris-Foulkes estimate = -32.59301295 Ry estimated scf accuracy < 0.68344410 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.54E-03, avg # of iterations = 2.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 15.15 secs total energy = -32.34045444 Ry Harris-Foulkes estimate = -32.34776346 Ry estimated scf accuracy < 0.01388353 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-04, avg # of iterations = 5.0 negative rho (up, down): 0.204E-01 0.000E+00 total cpu time spent up to now is 18.79 secs total energy = -32.34495715 Ry Harris-Foulkes estimate = -32.34603996 Ry estimated scf accuracy < 0.00224647 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-05, avg # of iterations = 3.0 negative rho (up, down): 0.208E-01 0.000E+00 total cpu time spent up to now is 21.93 secs total energy = -32.34506389 Ry Harris-Foulkes estimate = -32.34507348 Ry estimated scf accuracy < 0.00003698 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.62E-07, avg # of iterations = 3.0 negative rho (up, down): 0.209E-01 0.000E+00 total cpu time spent up to now is 25.27 secs total energy = -32.34507114 Ry Harris-Foulkes estimate = -32.34509827 Ry estimated scf accuracy < 0.00006265 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.62E-07, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 28.35 secs total energy = -32.34507628 Ry Harris-Foulkes estimate = -32.34507646 Ry estimated scf accuracy < 0.00000063 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.82E-09, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 31.41 secs total energy = -32.34507632 Ry Harris-Foulkes estimate = -32.34507638 Ry estimated scf accuracy < 0.00000011 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 34.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -33.6592 -22.4019 -22.4019 -22.4019 -6.6387 -4.2201 -4.2201 -4.2201 highest occupied, lowest unoccupied level (ev): -22.4019 -6.6387 ! total energy = -32.34507636 Ry Harris-Foulkes estimate = -32.34507636 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -113.643878 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06448164 Ry hartree contribution = 38.91329294 Ry xc contribution = -8.21197988 Ry ewald contribution = 27.33665145 Ry one-center paw contrib. = -8.31855921 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.210E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15441767 0.15441767 0.15441767 atom 3 type 2 force = -0.15441767 -0.15441767 0.15441767 atom 4 type 2 force = -0.15441767 0.15441767 -0.15441767 atom 5 type 2 force = 0.15441767 -0.15441767 -0.15441767 Total force = 0.534918 Total SCF correction = 0.000006 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3450763577 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.004479 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004284 negative rho (up, down): 0.130E-01 0.000E+00 total cpu time spent up to now is 38.32 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.137E-01 0.000E+00 total cpu time spent up to now is 43.91 secs total energy = -32.41533186 Ry Harris-Foulkes estimate = -32.47329135 Ry estimated scf accuracy < 0.08729498 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-03, avg # of iterations = 2.0 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 46.84 secs total energy = -32.43874285 Ry Harris-Foulkes estimate = -32.46767821 Ry estimated scf accuracy < 0.05584261 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-04, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 49.82 secs total energy = -32.45021191 Ry Harris-Foulkes estimate = -32.45012888 Ry estimated scf accuracy < 0.00032563 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-06, avg # of iterations = 3.0 negative rho (up, down): 0.152E-01 0.000E+00 total cpu time spent up to now is 53.01 secs total energy = -32.45028690 Ry Harris-Foulkes estimate = -32.45028982 Ry estimated scf accuracy < 0.00001261 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 55.99 secs total energy = -32.45028605 Ry Harris-Foulkes estimate = -32.45028838 Ry estimated scf accuracy < 0.00000532 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-08, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 58.98 secs total energy = -32.45028670 Ry Harris-Foulkes estimate = -32.45028685 Ry estimated scf accuracy < 0.00000046 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.70E-09, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 61.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.3897 -20.6946 -20.6946 -20.6946 -7.1570 -4.9201 -4.9201 -4.9201 highest occupied, lowest unoccupied level (ev): -20.6946 -7.1570 ! total energy = -32.45028675 Ry Harris-Foulkes estimate = -32.45028676 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -113.749088 Ry The total energy is the sum of the following terms: one-electron contribution = -76.79088075 Ry hartree contribution = 36.52816205 Ry xc contribution = -7.77329867 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30289474 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.153E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01178044 -0.01178044 -0.01178044 atom 3 type 2 force = 0.01178044 0.01178044 -0.01178044 atom 4 type 2 force = 0.01178044 -0.01178044 0.01178044 atom 5 type 2 force = -0.01178044 0.01178044 0.01178044 Total force = 0.040809 Total SCF correction = 0.000046 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3450763577 Ry energy new = -32.4502867481 Ry CASE: energy _new < energy _old new trust radius = 0.0354409466 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134106647 1.134106647 1.134106647 H -1.134106647 -1.134106647 1.134106647 H -1.134106647 1.134106647 -1.134106647 H 1.134106647 -1.134106647 -1.134106647 Writing output data file NH4+.save Check: negative starting charge= -0.004284 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004351 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 65.90 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 69.46 secs total energy = -32.45113890 Ry Harris-Foulkes estimate = -32.45130617 Ry estimated scf accuracy < 0.00026995 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-06, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 72.51 secs total energy = -32.45120796 Ry Harris-Foulkes estimate = -32.45128931 Ry estimated scf accuracy < 0.00015559 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-06, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 75.44 secs total energy = -32.45124117 Ry Harris-Foulkes estimate = -32.45124086 Ry estimated scf accuracy < 0.00000142 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 78.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.5374 -20.8069 -20.8069 -20.8069 -7.1085 -4.8549 -4.8549 -4.8549 highest occupied, lowest unoccupied level (ev): -20.8069 -7.1085 ! total energy = -32.45124147 Ry Harris-Foulkes estimate = -32.45124148 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -113.750043 Ry The total energy is the sum of the following terms: one-electron contribution = -77.13191100 Ry hartree contribution = 36.68144988 Ry xc contribution = -7.80122829 Ry ewald contribution = 24.10412770 Ry one-center paw contrib. = -8.30367975 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.157E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00373548 -0.00373548 -0.00373548 atom 3 type 2 force = 0.00373548 0.00373548 -0.00373548 atom 4 type 2 force = 0.00373548 -0.00373548 0.00373548 atom 5 type 2 force = -0.00373548 0.00373548 0.00373548 Total force = 0.012940 Total SCF correction = 0.000031 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4502867481 Ry energy new = -32.4512414689 Ry CASE: energy _new < energy _old new trust radius = 0.0164561236 bohr new conv_thr = 0.0000000374 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129356174 1.129356174 1.129356174 H -1.129356174 -1.129356174 1.129356174 H -1.129356174 1.129356174 -1.129356174 H 1.129356174 -1.129356174 -1.129356174 Writing output data file NH4+.save Check: negative starting charge= -0.004351 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004387 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 82.29 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 85.78 secs total energy = -32.45132102 Ry Harris-Foulkes estimate = -32.45135756 Ry estimated scf accuracy < 0.00005880 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.35E-07, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 88.67 secs total energy = -32.45133603 Ry Harris-Foulkes estimate = -32.45135323 Ry estimated scf accuracy < 0.00003258 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-07, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 91.60 secs total energy = -32.45134303 Ry Harris-Foulkes estimate = -32.45134299 Ry estimated scf accuracy < 0.00000032 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 94.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.6070 -20.8599 -20.8599 -20.8599 -7.0862 -4.8245 -4.8245 -4.8245 highest occupied, lowest unoccupied level (ev): -20.8599 -7.0862 ! total energy = -32.45134310 Ry Harris-Foulkes estimate = -32.45134310 Ry estimated scf accuracy < 7.0E-09 Ry total all-electron energy = -113.750144 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29164883 Ry hartree contribution = 36.75312744 Ry xc contribution = -7.81428840 Ry ewald contribution = 24.20551823 Ry one-center paw contrib. = -8.30405155 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.159E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015911 0.00015911 0.00015911 atom 3 type 2 force = -0.00015911 -0.00015911 0.00015911 atom 4 type 2 force = -0.00015911 0.00015911 -0.00015911 atom 5 type 2 force = 0.00015911 -0.00015911 -0.00015911 Total force = 0.000551 Total SCF correction = 0.000009 number of scf cycles = 4 number of bfgs steps = 3 energy old = -32.4512414689 Ry energy new = -32.4513431026 Ry CASE: energy _new < energy _old new trust radius = 0.0006723178 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129550255 1.129550255 1.129550255 H -1.129550255 -1.129550255 1.129550255 H -1.129550255 1.129550255 -1.129550255 H 1.129550255 -1.129550255 -1.129550255 Writing output data file NH4+.save Check: negative starting charge= -0.004387 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004386 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 98.40 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.62E-09, avg # of iterations = 1.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 102.78 secs total energy = -32.45134326 Ry Harris-Foulkes estimate = -32.45134335 Ry estimated scf accuracy < 0.00000014 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 105.69 secs total energy = -32.45134330 Ry Harris-Foulkes estimate = -32.45134334 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.57E-10, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 108.49 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.6045 -20.8581 -20.8581 -20.8581 -7.0873 -4.8260 -4.8260 -4.8260 highest occupied, lowest unoccupied level (ev): -20.8581 -7.0873 ! total energy = -32.45134332 Ry Harris-Foulkes estimate = -32.45134331 Ry estimated scf accuracy < 5.6E-10 Ry total all-electron energy = -113.750145 Ry The total energy is the sum of the following terms: one-electron contribution = -77.28492886 Ry hartree contribution = 36.74996583 Ry xc contribution = -7.81370620 Ry ewald contribution = 24.20135919 Ry one-center paw contrib. = -8.30403328 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.159E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000818 0.00000818 0.00000818 atom 3 type 2 force = -0.00000818 -0.00000818 0.00000818 atom 4 type 2 force = -0.00000818 0.00000818 -0.00000818 atom 5 type 2 force = 0.00000818 -0.00000818 -0.00000818 Total force = 0.000028 Total SCF correction = 0.000008 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 5 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4513433160 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129550255 1.129550255 1.129550255 H -1.129550255 -1.129550255 1.129550255 H -1.129550255 1.129550255 -1.129550255 H 1.129550255 -1.129550255 -1.129550255 Writing output data file NH4+.save PWSCF : 1m50.52s CPU time, 1m56.09s wall time init_run : 4.86s CPU electrons : 86.40s CPU ( 5 calls, 17.281 s avg) update_pot : 6.77s CPU ( 4 calls, 1.692 s avg) forces : 8.97s CPU ( 5 calls, 1.795 s avg) Called by init_run: wfcinit : 0.30s CPU potinit : 1.42s CPU Called by electrons: c_bands : 25.46s CPU ( 28 calls, 0.909 s avg) sum_band : 16.34s CPU ( 28 calls, 0.584 s avg) v_of_rho : 28.72s CPU ( 32 calls, 0.897 s avg) newd : 10.45s CPU ( 32 calls, 0.327 s avg) mix_rho : 3.13s CPU ( 28 calls, 0.112 s avg) Called by c_bands: init_us_2 : 0.50s CPU ( 57 calls, 0.009 s avg) regterg : 24.98s CPU ( 28 calls, 0.892 s avg) Called by *egterg: h_psi : 23.55s CPU ( 105 calls, 0.224 s avg) s_psi : 0.21s CPU ( 105 calls, 0.002 s avg) g_psi : 0.31s CPU ( 76 calls, 0.004 s avg) rdiaghg : 0.04s CPU ( 99 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.19s CPU ( 105 calls, 0.002 s avg) General routines calbec : 0.38s CPU ( 153 calls, 0.003 s avg) cft3 : 25.67s CPU ( 450 calls, 0.057 s avg) cft3s : 23.96s CPU ( 806 calls, 0.030 s avg) davcio : 0.00s CPU ( 27 calls, 0.000 s avg) PAW routines PAW_pot : 7.07s CPU ( 32 calls, 0.221 s avg) PAW_ddot : 0.96s CPU ( 206 calls, 0.005 s avg) PAW_symme : 0.01s CPU ( 29 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/nh4+.in0000644000700200004540000000120512053145630022747 0ustar marsamoscm&CONTROL calculation = 'relax' prefix = "NH4+", pseudo_dir = "/home/degironc/QE/espresso/pseudo", outdir = "/home/degironc/tmp", / &SYSTEM ibrav = 1, celldm(1) = 24.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, do_ee = .true. nelec = 8.0 nbnd = 8 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / &EE which_compensation='martyna-tuckerman' / ATOMIC_SPECIES N 1.00 N.pbe-paw_kj.UPF H 1.00 H.pbe-paw_kj.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma espresso-5.0.2/PW/examples/cluster_example/reference/nh4+.eigenvalues0000644000700200004540000000047012053145630024653 0ustar marsamoscm12 -31.5900 -20.8421 -20.8421 -20.8421 -7.4141 -4.5486 -4.5486 -4.5486 16 -31.6045 -20.8581 -20.8581 -20.8581 -7.0873 -4.8260 -4.8260 -4.8260 20 -31.6039 -20.8560 -20.8560 -20.8560 -7.0299 -4.8754 -4.8754 -4.8754 24 -31.6055 -20.8589 -20.8589 -20.8589 -7.0239 -4.8854 -4.8854 -4.8854 espresso-5.0.2/PW/examples/cluster_example/reference/nh4+.out-240000644000700200004540000006134112053145630023402 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13:21:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 24.0000 a.u. unit-cell volume = 13824.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 24.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0416667 0.0416667 0.0416667 ) 3 H tau( 3) = ( -0.0416667 -0.0416667 0.0416667 ) 4 H tau( 4) = ( -0.0416667 0.0416667 -0.0416667 ) 5 H tau( 5) = ( 0.0416667 -0.0416667 -0.0416667 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1750.8301 ( 153598 G-vectors) FFT grid: ( 90, 90, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 2.34 Mb ( 19201, 8) NL pseudopotentials 4.69 Mb ( 19201, 16) Each V/rho on FFT grid 11.12 Mb ( 729000) Each G-vector array 1.17 Mb ( 153598) G-vector shells 0.01 Mb ( 1463) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 4.69 Mb ( 19201, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 88.99 Mb ( 729000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.013517 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.120E-01 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 13.99 secs per-process dynamical memory: 85.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.242E-01 0.000E+00 total cpu time spent up to now is 25.00 secs total energy = -31.58658958 Ry Harris-Foulkes estimate = -33.29799156 Ry estimated scf accuracy < 2.27024507 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.317E-01 0.000E+00 total cpu time spent up to now is 36.11 secs total energy = -32.20625908 Ry Harris-Foulkes estimate = -32.59290460 Ry estimated scf accuracy < 0.68378121 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.55E-03, avg # of iterations = 2.0 negative rho (up, down): 0.432E-01 0.000E+00 total cpu time spent up to now is 46.10 secs total energy = -32.34045239 Ry Harris-Foulkes estimate = -32.34810252 Ry estimated scf accuracy < 0.01446679 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-04, avg # of iterations = 5.0 negative rho (up, down): 0.392E-01 0.000E+00 total cpu time spent up to now is 58.52 secs total energy = -32.34493369 Ry Harris-Foulkes estimate = -32.34625240 Ry estimated scf accuracy < 0.00269466 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 3.0 negative rho (up, down): 0.395E-01 0.000E+00 total cpu time spent up to now is 69.20 secs total energy = -32.34507132 Ry Harris-Foulkes estimate = -32.34508632 Ry estimated scf accuracy < 0.00004629 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.79E-07, avg # of iterations = 3.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 80.50 secs total energy = -32.34507818 Ry Harris-Foulkes estimate = -32.34511103 Ry estimated scf accuracy < 0.00007321 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.79E-07, avg # of iterations = 2.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 90.74 secs total energy = -32.34508465 Ry Harris-Foulkes estimate = -32.34508499 Ry estimated scf accuracy < 0.00000104 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 2.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 101.09 secs total energy = -32.34508482 Ry Harris-Foulkes estimate = -32.34508488 Ry estimated scf accuracy < 0.00000020 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 1.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 109.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -33.6586 -22.4014 -22.4014 -22.4014 -6.5453 -4.3761 -4.3761 -4.3761 highest occupied, lowest unoccupied level (ev): -22.4014 -6.5453 ! total energy = -32.34508482 Ry Harris-Foulkes estimate = -32.34508483 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -113.643886 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06407715 Ry hartree contribution = 38.91280825 Ry xc contribution = -8.21188522 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31858215 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.397E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15451646 0.15451646 0.15451646 atom 3 type 2 force = -0.15451646 -0.15451646 0.15451646 atom 4 type 2 force = -0.15451646 0.15451646 -0.15451646 atom 5 type 2 force = 0.15451646 -0.15451646 -0.15451646 Total force = 0.535261 Total SCF correction = 0.000070 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3450848239 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.013517 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000001 0.000000 Check: negative starting charge= -0.013280 negative rho (up, down): 0.280E-01 0.000E+00 total cpu time spent up to now is 123.18 secs per-process dynamical memory: 86.8 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.279E-01 0.000E+00 total cpu time spent up to now is 142.45 secs total energy = -32.41550390 Ry Harris-Foulkes estimate = -32.47340633 Ry estimated scf accuracy < 0.08721285 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-03, avg # of iterations = 2.0 negative rho (up, down): 0.279E-01 0.000E+00 total cpu time spent up to now is 152.38 secs total energy = -32.43890747 Ry Harris-Foulkes estimate = -32.46782239 Ry estimated scf accuracy < 0.05582351 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-04, avg # of iterations = 2.0 negative rho (up, down): 0.294E-01 0.000E+00 total cpu time spent up to now is 162.30 secs total energy = -32.45035267 Ry Harris-Foulkes estimate = -32.45027140 Ry estimated scf accuracy < 0.00033716 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-06, avg # of iterations = 4.0 negative rho (up, down): 0.294E-01 0.000E+00 total cpu time spent up to now is 173.73 secs total energy = -32.45042841 Ry Harris-Foulkes estimate = -32.45043218 Ry estimated scf accuracy < 0.00001656 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-07, avg # of iterations = 1.0 negative rho (up, down): 0.295E-01 0.000E+00 total cpu time spent up to now is 183.19 secs total energy = -32.45042688 Ry Harris-Foulkes estimate = -32.45042949 Ry estimated scf accuracy < 0.00000609 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.61E-08, avg # of iterations = 1.0 negative rho (up, down): 0.295E-01 0.000E+00 total cpu time spent up to now is 192.12 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -31.3910 -20.6959 -20.6959 -20.6959 -7.0968 -4.9716 -4.9716 -4.9716 highest occupied, lowest unoccupied level (ev): -20.6959 -7.0968 ! total energy = -32.45042745 Ry Harris-Foulkes estimate = -32.45042749 Ry estimated scf accuracy < 0.00000008 Ry total all-electron energy = -113.749229 Ry The total energy is the sum of the following terms: one-electron contribution = -76.79128151 Ry hartree contribution = 36.52863066 Ry xc contribution = -7.77342486 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30297711 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.295E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01169506 -0.01169506 -0.01169506 atom 3 type 2 force = 0.01169506 0.01169506 -0.01169506 atom 4 type 2 force = 0.01169506 -0.01169506 0.01169506 atom 5 type 2 force = -0.01169506 0.01169506 0.01169506 Total force = 0.040513 Total SCF correction = 0.000135 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3450848239 Ry energy new = -32.4504274520 Ry CASE: energy _new < energy _old new trust radius = 0.0351812428 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134181617 1.134181617 1.134181617 H -1.134181617 -1.134181617 1.134181617 H -1.134181617 1.134181617 -1.134181617 H 1.134181617 -1.134181617 -1.134181617 Writing output data file NH4+.save Check: negative starting charge= -0.013280 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000001 0.000000 Check: negative starting charge= -0.013463 negative rho (up, down): 0.301E-01 0.000E+00 total cpu time spent up to now is 205.52 secs per-process dynamical memory: 86.8 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.302E-01 0.000E+00 total cpu time spent up to now is 217.93 secs total energy = -32.45126524 Ry Harris-Foulkes estimate = -32.45142936 Ry estimated scf accuracy < 0.00026569 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.32E-06, avg # of iterations = 2.0 negative rho (up, down): 0.303E-01 0.000E+00 total cpu time spent up to now is 228.50 secs total energy = -32.45133362 Ry Harris-Foulkes estimate = -32.45141499 Ry estimated scf accuracy < 0.00015635 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-06, avg # of iterations = 2.0 negative rho (up, down): 0.304E-01 0.000E+00 total cpu time spent up to now is 238.46 secs total energy = -32.45136662 Ry Harris-Foulkes estimate = -32.45136635 Ry estimated scf accuracy < 0.00000143 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-08, avg # of iterations = 2.0 negative rho (up, down): 0.304E-01 0.000E+00 total cpu time spent up to now is 247.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -31.5365 -20.8064 -20.8064 -20.8064 -7.0465 -4.9120 -4.9120 -4.9120 highest occupied, lowest unoccupied level (ev): -20.8064 -7.0465 ! total energy = -32.45136691 Ry Harris-Foulkes estimate = -32.45136692 Ry estimated scf accuracy < 0.00000005 Ry total all-electron energy = -113.750168 Ry The total energy is the sum of the following terms: one-electron contribution = -77.12932859 Ry hartree contribution = 36.68017456 Ry xc contribution = -7.80100063 Ry ewald contribution = 24.10253440 Ry one-center paw contrib. = -8.30374664 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.304E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00369958 -0.00369958 -0.00369958 atom 3 type 2 force = 0.00369958 0.00369958 -0.00369958 atom 4 type 2 force = 0.00369958 -0.00369958 0.00369958 atom 5 type 2 force = -0.00369958 0.00369958 0.00369958 Total force = 0.012816 Total SCF correction = 0.000024 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4504274520 Ry energy new = -32.4513669090 Ry CASE: energy _new < energy _old new trust radius = 0.0162786778 bohr new conv_thr = 0.0000000370 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129482368 1.129482368 1.129482368 H -1.129482368 -1.129482368 1.129482368 H -1.129482368 1.129482368 -1.129482368 H 1.129482368 -1.129482368 -1.129482368 Writing output data file NH4+.save Check: negative starting charge= -0.013463 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000001 0.000000 Check: negative starting charge= -0.013561 negative rho (up, down): 0.307E-01 0.000E+00 total cpu time spent up to now is 261.04 secs per-process dynamical memory: 86.8 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 272.98 secs total energy = -32.45144428 Ry Harris-Foulkes estimate = -32.45148063 Ry estimated scf accuracy < 0.00005836 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-07, avg # of iterations = 2.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 283.55 secs total energy = -32.45145920 Ry Harris-Foulkes estimate = -32.45147661 Ry estimated scf accuracy < 0.00003311 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.14E-07, avg # of iterations = 2.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 293.55 secs total energy = -32.45146623 Ry Harris-Foulkes estimate = -32.45146619 Ry estimated scf accuracy < 0.00000032 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.94E-09, avg # of iterations = 2.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 302.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -31.6055 -20.8589 -20.8589 -20.8589 -7.0239 -4.8854 -4.8854 -4.8854 highest occupied, lowest unoccupied level (ev): -20.8589 -7.0239 ! total energy = -32.45146630 Ry Harris-Foulkes estimate = -32.45146630 Ry estimated scf accuracy < 9.6E-09 Ry total all-electron energy = -113.750268 Ry The total energy is the sum of the following terms: one-electron contribution = -77.28731555 Ry hartree contribution = 36.75106388 Ry xc contribution = -7.81391635 Ry ewald contribution = 24.20281381 Ry one-center paw contrib. = -8.30411209 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.308E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015247 0.00015247 0.00015247 atom 3 type 2 force = -0.00015247 -0.00015247 0.00015247 atom 4 type 2 force = -0.00015247 0.00015247 -0.00015247 atom 5 type 2 force = 0.00015247 -0.00015247 -0.00015247 Total force = 0.000528 Total SCF correction = 0.000007 bfgs converged in 4 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4514662999 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129482368 1.129482368 1.129482368 H -1.129482368 -1.129482368 1.129482368 H -1.129482368 1.129482368 -1.129482368 H 1.129482368 -1.129482368 -1.129482368 Writing output data file NH4+.save PWSCF : 5m 9.02s CPU time, 5m21.71s wall time init_run : 13.22s CPU electrons : 248.74s CPU ( 4 calls, 62.186 s avg) update_pot : 16.92s CPU ( 3 calls, 5.639 s avg) forces : 23.91s CPU ( 4 calls, 5.976 s avg) Called by init_run: wfcinit : 1.13s CPU potinit : 5.25s CPU Called by electrons: c_bands : 83.72s CPU ( 23 calls, 3.640 s avg) sum_band : 48.35s CPU ( 23 calls, 2.102 s avg) v_of_rho : 84.41s CPU ( 27 calls, 3.126 s avg) newd : 31.14s CPU ( 27 calls, 1.153 s avg) mix_rho : 8.18s CPU ( 23 calls, 0.356 s avg) Called by c_bands: init_us_2 : 1.45s CPU ( 47 calls, 0.031 s avg) regterg : 82.35s CPU ( 23 calls, 3.581 s avg) Called by *egterg: h_psi : 78.10s CPU ( 89 calls, 0.878 s avg) s_psi : 0.72s CPU ( 89 calls, 0.008 s avg) g_psi : 0.91s CPU ( 65 calls, 0.014 s avg) rdiaghg : 0.04s CPU ( 85 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.70s CPU ( 89 calls, 0.008 s avg) General routines calbec : 0.93s CPU ( 128 calls, 0.007 s avg) cft3 : 80.58s CPU ( 375 calls, 0.215 s avg) cft3s : 80.17s CPU ( 686 calls, 0.117 s avg) davcio : 0.00s CPU ( 23 calls, 0.000 s avg) PAW routines PAW_pot : 6.01s CPU ( 27 calls, 0.222 s avg) PAW_ddot : 0.83s CPU ( 179 calls, 0.005 s avg) PAW_symme : 0.00s CPU ( 24 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/n.out-160000644000700200004540000002365612053145630023103 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13: 3: 5 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 16.0000 a.u. unit-cell volume = 4096.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 16.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 778.1467 ( 45524 G-vectors) FFT grid: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.35 Mb ( 5682, 4) NL pseudopotentials 0.69 Mb ( 5682, 8) Each V/rho on FFT grid 6.59 Mb ( 216000, 2) Each G-vector array 0.35 Mb ( 45524) G-vector shells 0.00 Mb ( 651) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.69 Mb ( 5682, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 26.37 Mb ( 216000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.266E-04 0.266E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 6.35 secs per-process dynamical memory: 32.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.401E-03 0.478E-03 total cpu time spent up to now is 11.10 secs total energy = -27.79981940 Ry Harris-Foulkes estimate = -27.59888052 Ry estimated scf accuracy < 0.10982618 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-03, avg # of iterations = 1.0 negative rho (up, down): 0.702E-03 0.116E-02 total cpu time spent up to now is 15.80 secs total energy = -27.82645854 Ry Harris-Foulkes estimate = -27.80385243 Ry estimated scf accuracy < 0.01603257 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-04, avg # of iterations = 1.5 negative rho (up, down): 0.696E-03 0.108E-02 total cpu time spent up to now is 20.71 secs total energy = -27.82747516 Ry Harris-Foulkes estimate = -27.82775843 Ry estimated scf accuracy < 0.00049466 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.89E-06, avg # of iterations = 2.0 negative rho (up, down): 0.746E-03 0.103E-02 total cpu time spent up to now is 25.80 secs total energy = -27.82757196 Ry Harris-Foulkes estimate = -27.82756621 Ry estimated scf accuracy < 0.00000354 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.09E-08, avg # of iterations = 2.5 negative rho (up, down): 0.745E-03 0.103E-02 total cpu time spent up to now is 30.93 secs total energy = -27.82757449 Ry Harris-Foulkes estimate = -27.82757481 Ry estimated scf accuracy < 0.00000065 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-08, avg # of iterations = 2.0 negative rho (up, down): 0.747E-03 0.103E-02 total cpu time spent up to now is 35.33 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -19.9135 -8.2852 -8.2852 -8.2852 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -15.3289 -4.1256 -4.1256 -4.1256 ! total energy = -27.82757465 Ry Harris-Foulkes estimate = -27.82757468 Ry estimated scf accuracy < 0.00000005 Ry total all-electron energy = -109.126376 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96014282 Ry hartree contribution = 16.56878979 Ry xc contribution = -5.12124474 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31497685 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 35.61s CPU time, 38.26s wall time init_run : 5.80s CPU electrons : 28.98s CPU Called by init_run: wfcinit : 0.32s CPU potinit : 2.68s CPU Called by electrons: c_bands : 5.04s CPU ( 6 calls, 0.840 s avg) sum_band : 4.92s CPU ( 6 calls, 0.820 s avg) v_of_rho : 12.04s CPU ( 7 calls, 1.720 s avg) newd : 2.68s CPU ( 7 calls, 0.384 s avg) mix_rho : 2.75s CPU ( 6 calls, 0.458 s avg) Called by c_bands: init_us_2 : 0.16s CPU ( 26 calls, 0.006 s avg) regterg : 4.88s CPU ( 12 calls, 0.407 s avg) Called by *egterg: h_psi : 4.98s CPU ( 34 calls, 0.146 s avg) s_psi : 0.02s CPU ( 34 calls, 0.001 s avg) g_psi : 0.05s CPU ( 20 calls, 0.002 s avg) rdiaghg : 0.01s CPU ( 32 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 34 calls, 0.000 s avg) General routines calbec : 0.05s CPU ( 46 calls, 0.001 s avg) cft3 : 11.19s CPU ( 160 calls, 0.070 s avg) cft3s : 5.26s CPU ( 154 calls, 0.034 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.60s CPU ( 7 calls, 0.514 s avg) PAW_ddot : 0.14s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.01s CPU ( 7 calls, 0.001 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/h2o.out-200000644000700200004540000013702212053145630023322 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13:13:28 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0500000 0.0500000 0.0500000 ) 3 H tau( 3) = ( -0.0500000 -0.0500000 0.0500000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1215.8542 ( 88755 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.35 Mb ( 11060, 8) NL pseudopotentials 2.03 Mb ( 11060, 12) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.68 Mb ( 88755) G-vector shells 0.01 Mb ( 1015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.70 Mb ( 11060, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.007494 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.749E-02 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 7.76 secs per-process dynamical memory: 47.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 14.03 secs total energy = -43.77183796 Ry Harris-Foulkes estimate = -44.16130074 Ry estimated scf accuracy < 0.55218310 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-03, avg # of iterations = 2.0 negative rho (up, down): 0.152E-01 0.000E+00 total cpu time spent up to now is 18.91 secs total energy = -43.87762810 Ry Harris-Foulkes estimate = -44.12512294 Ry estimated scf accuracy < 0.52970858 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 2.0 negative rho (up, down): 0.194E-01 0.000E+00 total cpu time spent up to now is 23.71 secs total energy = -43.98633561 Ry Harris-Foulkes estimate = -43.98954781 Ry estimated scf accuracy < 0.00682303 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.53E-05, avg # of iterations = 5.0 negative rho (up, down): 0.186E-01 0.000E+00 total cpu time spent up to now is 29.48 secs total energy = -43.98854397 Ry Harris-Foulkes estimate = -43.98886397 Ry estimated scf accuracy < 0.00083509 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-05, avg # of iterations = 6.0 negative rho (up, down): 0.184E-01 0.000E+00 total cpu time spent up to now is 34.98 secs total energy = -43.98856355 Ry Harris-Foulkes estimate = -43.98859723 Ry estimated scf accuracy < 0.00007672 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.59E-07, avg # of iterations = 3.0 negative rho (up, down): 0.185E-01 0.000E+00 total cpu time spent up to now is 40.18 secs total energy = -43.98857718 Ry Harris-Foulkes estimate = -43.98857907 Ry estimated scf accuracy < 0.00000425 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.31E-08, avg # of iterations = 2.0 negative rho (up, down): 0.185E-01 0.000E+00 total cpu time spent up to now is 44.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.8237 -13.8733 -9.1119 -7.3314 -1.1163 0.0196 0.3098 0.5578 highest occupied, lowest unoccupied level (ev): -7.3314 -1.1163 ! total energy = -43.98857803 Ry Harris-Foulkes estimate = -43.98857802 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -152.749324 Ry The total energy is the sum of the following terms: one-electron contribution = -83.29336437 Ry hartree contribution = 43.16999296 Ry xc contribution = -8.51451429 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91420551 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.185E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15930293 atom 2 type 2 force = 0.07235099 0.07235099 0.07965147 atom 3 type 2 force = -0.07235099 -0.07235099 0.07965147 Total force = 0.183378 Total SCF correction = 0.000011 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9885780254 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197273161 1.197273161 1.217178728 H -1.197273161 -1.197273161 1.217178728 Writing output data file H2O.save Check: negative starting charge= -0.007494 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007560 negative rho (up, down): 0.114E-01 0.000E+00 total cpu time spent up to now is 51.12 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 12.0 negative rho (up, down): 0.114E-01 0.000E+00 total cpu time spent up to now is 59.58 secs total energy = -43.91509242 Ry Harris-Foulkes estimate = -43.97534353 Ry estimated scf accuracy < 0.09071527 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.115E-01 0.000E+00 total cpu time spent up to now is 64.36 secs total energy = -43.92944085 Ry Harris-Foulkes estimate = -43.99297931 Ry estimated scf accuracy < 0.15060295 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.126E-01 0.000E+00 total cpu time spent up to now is 69.12 secs total energy = -43.95565214 Ry Harris-Foulkes estimate = -43.95561964 Ry estimated scf accuracy < 0.00037693 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.71E-06, avg # of iterations = 3.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 74.35 secs total energy = -43.95580126 Ry Harris-Foulkes estimate = -43.95581600 Ry estimated scf accuracy < 0.00004372 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.46E-07, avg # of iterations = 2.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 79.08 secs total energy = -43.95580726 Ry Harris-Foulkes estimate = -43.95580713 Ry estimated scf accuracy < 0.00000049 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.16E-09, avg # of iterations = 3.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 84.17 secs total energy = -43.95580754 Ry Harris-Foulkes estimate = -43.95580771 Ry estimated scf accuracy < 0.00000040 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-09, avg # of iterations = 2.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 88.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -23.9468 -12.1445 -8.8965 -6.9487 -1.6012 -0.1869 0.0133 0.6200 highest occupied, lowest unoccupied level (ev): -6.9487 -1.6012 ! total energy = -43.95580761 Ry Harris-Foulkes estimate = -43.95580761 Ry estimated scf accuracy < 3.4E-09 Ry total all-electron energy = -152.716554 Ry The total energy is the sum of the following terms: one-electron contribution = -79.14576078 Ry hartree contribution = 41.22139527 Ry xc contribution = -8.19692330 Ry ewald contribution = 12.09976742 Ry one-center paw contrib. = -9.93428622 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.127E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15115905 atom 2 type 2 force = -0.10001412 -0.10001412 -0.07557953 atom 3 type 2 force = 0.10001412 0.10001412 -0.07557953 Total force = 0.226795 Total SCF correction = 0.000023 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9885780254 Ry energy new = -43.9558076110 Ry CASE: energy _new > energy _old new trust radius = 0.2120972682 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083682197 1.083682197 1.092126030 H -1.083682197 -1.083682197 1.092126030 Writing output data file H2O.save Check: negative starting charge= -0.007560 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007546 negative rho (up, down): 0.130E-01 0.000E+00 total cpu time spent up to now is 94.99 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.0 negative rho (up, down): 0.145E-01 0.000E+00 total cpu time spent up to now is 102.79 secs total energy = -43.99194614 Ry Harris-Foulkes estimate = -44.00383140 Ry estimated scf accuracy < 0.01889484 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.149E-01 0.000E+00 total cpu time spent up to now is 107.55 secs total energy = -43.99508964 Ry Harris-Foulkes estimate = -44.00500768 Ry estimated scf accuracy < 0.02177878 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 112.33 secs total energy = -43.99942091 Ry Harris-Foulkes estimate = -43.99943795 Ry estimated scf accuracy < 0.00015443 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 117.52 secs total energy = -43.99947299 Ry Harris-Foulkes estimate = -43.99947424 Ry estimated scf accuracy < 0.00000452 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.66E-08, avg # of iterations = 2.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 122.40 secs total energy = -43.99947376 Ry Harris-Foulkes estimate = -43.99947370 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 2.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 126.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -24.9214 -13.0727 -9.0083 -7.1490 -1.2495 -0.0620 0.2443 0.5862 highest occupied, lowest unoccupied level (ev): -7.1490 -1.2495 ! total energy = -43.99947379 Ry Harris-Foulkes estimate = -43.99947379 Ry estimated scf accuracy < 4.8E-09 Ry total all-electron energy = -152.760220 Ry The total energy is the sum of the following terms: one-electron contribution = -81.39943459 Ry hartree contribution = 42.28303207 Ry xc contribution = -8.36605004 Ry ewald contribution = 13.40570597 Ry one-center paw contrib. = -9.92272719 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.158E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02451052 atom 2 type 2 force = -0.02973694 -0.02973694 -0.01225526 atom 3 type 2 force = 0.02973694 0.02973694 -0.01225526 Total force = 0.061948 Total SCF correction = 0.000010 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9885780254 Ry energy new = -43.9994737936 Ry CASE: energy _new < energy _old new trust radius = 0.0520254293 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058994413 1.058994413 1.080535114 H -1.058994413 -1.058994413 1.080535114 Writing output data file H2O.save Check: negative starting charge= -0.007546 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007554 negative rho (up, down): 0.160E-01 0.000E+00 total cpu time spent up to now is 133.27 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.163E-01 0.000E+00 total cpu time spent up to now is 139.44 secs total energy = -44.00125126 Ry Harris-Foulkes estimate = -44.00171702 Ry estimated scf accuracy < 0.00073878 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.23E-06, avg # of iterations = 3.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 144.49 secs total energy = -44.00138268 Ry Harris-Foulkes estimate = -44.00174242 Ry estimated scf accuracy < 0.00077579 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.23E-06, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 149.28 secs total energy = -44.00153773 Ry Harris-Foulkes estimate = -44.00153841 Ry estimated scf accuracy < 0.00000575 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 154.13 secs total energy = -44.00153960 Ry Harris-Foulkes estimate = -44.00153964 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 158.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.1318 -13.2167 -9.0675 -7.1928 -1.2121 -0.0431 0.2644 0.5782 highest occupied, lowest unoccupied level (ev): -7.1928 -1.2121 ! total energy = -44.00153964 Ry Harris-Foulkes estimate = -44.00153963 Ry estimated scf accuracy < 6.8E-09 Ry total all-electron energy = -152.762286 Ry The total energy is the sum of the following terms: one-electron contribution = -81.82793047 Ry hartree contribution = 42.48313376 Ry xc contribution = -8.39912787 Ry ewald contribution = 13.66350173 Ry one-center paw contrib. = -9.92111678 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.165E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00704819 atom 2 type 2 force = -0.00952823 -0.00952823 0.00352410 atom 3 type 2 force = 0.00952823 0.00952823 0.00352410 Total force = 0.019697 Total SCF correction = 0.000014 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9994737936 Ry energy new = -44.0015396364 Ry CASE: energy _new < energy _old new trust radius = 0.0260107950 bohr new conv_thr = 0.0000000953 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.046456691 1.046456691 1.085423033 H -1.046456691 -1.046456691 1.085423033 Writing output data file H2O.save Check: negative starting charge= -0.007554 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007538 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 165.12 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 170.71 secs total energy = -44.00184198 Ry Harris-Foulkes estimate = -44.00188174 Ry estimated scf accuracy < 0.00007537 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.42E-07, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 175.47 secs total energy = -44.00185379 Ry Harris-Foulkes estimate = -44.00188283 Ry estimated scf accuracy < 0.00006063 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.58E-07, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 180.26 secs total energy = -44.00186716 Ry Harris-Foulkes estimate = -44.00186735 Ry estimated scf accuracy < 0.00000145 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-08, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 184.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2154 -13.2338 -9.1201 -7.2111 -1.2022 -0.0380 0.2719 0.5750 highest occupied, lowest unoccupied level (ev): -7.2111 -1.2022 ! total energy = -44.00186747 Ry Harris-Foulkes estimate = -44.00186746 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762614 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97397078 Ry hartree contribution = 42.55081988 Ry xc contribution = -8.41045401 Ry ewald contribution = 13.75267349 Ry one-center paw contrib. = -9.92093605 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.167E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01639525 atom 2 type 2 force = -0.00123582 -0.00123582 0.00819763 atom 3 type 2 force = 0.00123582 0.00123582 0.00819763 Total force = 0.011854 Total SCF correction = 0.000038 number of scf cycles = 5 number of bfgs steps = 3 energy old = -44.0015396364 Ry energy new = -44.0018674736 Ry CASE: energy _new < energy _old new trust radius = 0.0240968495 bohr new conv_thr = 0.0000000328 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038549376 1.038549376 1.098279075 H -1.038549376 -1.038549376 1.098279075 Writing output data file H2O.save Check: negative starting charge= -0.007538 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007520 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 191.23 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 196.84 secs total energy = -44.00206151 Ry Harris-Foulkes estimate = -44.00205772 Ry estimated scf accuracy < 0.00001036 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 1.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 201.38 secs total energy = -44.00206249 Ry Harris-Foulkes estimate = -44.00206200 Ry estimated scf accuracy < 0.00000101 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 206.16 secs total energy = -44.00206258 Ry Harris-Foulkes estimate = -44.00206264 Ry estimated scf accuracy < 0.00000020 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-09, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 210.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2440 -13.1924 -9.1736 -7.2187 -1.2029 -0.0391 0.2743 0.5743 highest occupied, lowest unoccupied level (ev): -7.2187 -1.2029 ! total energy = -44.00206262 Ry Harris-Foulkes estimate = -44.00206263 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762809 Ry The total energy is the sum of the following terms: one-electron contribution = -81.99608909 Ry hartree contribution = 42.56022334 Ry xc contribution = -8.41212603 Ry ewald contribution = 13.76734015 Ry one-center paw contrib. = -9.92141099 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.167E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01451053 atom 2 type 2 force = 0.00141961 0.00141961 0.00725527 atom 3 type 2 force = -0.00141961 -0.00141961 0.00725527 Total force = 0.010646 Total SCF correction = 0.000057 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0018674736 Ry energy new = -44.0020626173 Ry CASE: energy _new < energy _old new trust radius = 0.0722905484 bohr new conv_thr = 0.0000000195 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.021970129 1.021970129 1.143701744 H -1.021970129 -1.021970129 1.143701744 Writing output data file H2O.save Check: negative starting charge= -0.007520 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007457 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 217.13 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 223.41 secs total energy = -44.00209788 Ry Harris-Foulkes estimate = -44.00214747 Ry estimated scf accuracy < 0.00020913 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.61E-06, avg # of iterations = 2.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 228.21 secs total energy = -44.00212120 Ry Harris-Foulkes estimate = -44.00219479 Ry estimated scf accuracy < 0.00015981 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 232.99 secs total energy = -44.00215843 Ry Harris-Foulkes estimate = -44.00215814 Ry estimated scf accuracy < 0.00000721 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.01E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 237.82 secs total energy = -44.00215945 Ry Harris-Foulkes estimate = -44.00215947 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-10, avg # of iterations = 3.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 242.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2503 -13.0000 -9.3211 -7.2241 -1.2188 -0.0494 0.2765 0.5737 highest occupied, lowest unoccupied level (ev): -7.2241 -1.2188 ! total energy = -44.00215947 Ry Harris-Foulkes estimate = -44.00215948 Ry estimated scf accuracy < 6.7E-09 Ry total all-electron energy = -152.762906 Ry The total energy is the sum of the following terms: one-electron contribution = -81.89907178 Ry hartree contribution = 42.51082369 Ry xc contribution = -8.40410290 Ry ewald contribution = 13.71367152 Ry one-center paw contrib. = -9.92348000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.165E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00552444 atom 2 type 2 force = 0.00184515 0.00184515 -0.00276222 atom 3 type 2 force = -0.00184515 -0.00184515 -0.00276222 Total force = 0.005374 Total SCF correction = 0.000028 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0020626173 Ry energy new = -44.0021594749 Ry CASE: energy _new < energy _old new trust radius = 0.1590392064 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.065043620 1.065043620 1.049170885 H -1.065043620 -1.065043620 1.049170885 Writing output data file H2O.save Check: negative starting charge= -0.007457 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007564 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 248.95 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.162E-01 0.000E+00 total cpu time spent up to now is 255.49 secs total energy = -44.00071615 Ry Harris-Foulkes estimate = -44.00069920 Ry estimated scf accuracy < 0.00062511 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.81E-06, avg # of iterations = 2.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 260.27 secs total energy = -44.00076191 Ry Harris-Foulkes estimate = -44.00089520 Ry estimated scf accuracy < 0.00030399 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.80E-06, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 265.05 secs total energy = -44.00084398 Ry Harris-Foulkes estimate = -44.00085033 Ry estimated scf accuracy < 0.00004406 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.51E-07, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 269.88 secs total energy = -44.00085009 Ry Harris-Foulkes estimate = -44.00085011 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-09, avg # of iterations = 3.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 275.03 secs total energy = -44.00085018 Ry Harris-Foulkes estimate = -44.00085019 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-10, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 279.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.1625 -13.3577 -8.9850 -7.1966 -1.1978 -0.0347 0.2665 0.5779 highest occupied, lowest unoccupied level (ev): -7.1966 -1.1978 ! total energy = -44.00085019 Ry Harris-Foulkes estimate = -44.00085019 Ry estimated scf accuracy < 4.5E-10 Ry total all-electron energy = -152.761596 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95632439 Ry hartree contribution = 42.54544732 Ry xc contribution = -8.40921719 Ry ewald contribution = 13.73872881 Ry one-center paw contrib. = -9.91948474 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.167E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02490111 atom 2 type 2 force = -0.00597669 -0.00597669 0.01245056 atom 3 type 2 force = 0.00597669 0.00597669 0.01245056 Total force = 0.021282 Total SCF correction = 0.000007 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0021594749 Ry energy new = -44.0008501867 Ry CASE: energy _new > energy _old new trust radius = 0.0637252952 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.039229212 1.039229212 1.105824248 H -1.039229212 -1.039229212 1.105824248 Writing output data file H2O.save Check: negative starting charge= -0.007564 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007520 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 285.85 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 292.16 secs total energy = -44.00210384 Ry Harris-Foulkes estimate = -44.00208454 Ry estimated scf accuracy < 0.00021309 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-06, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 296.95 secs total energy = -44.00211815 Ry Harris-Foulkes estimate = -44.00215751 Ry estimated scf accuracy < 0.00009177 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-06, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 301.77 secs total energy = -44.00214334 Ry Harris-Foulkes estimate = -44.00214656 Ry estimated scf accuracy < 0.00001727 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 306.60 secs total energy = -44.00214592 Ry Harris-Foulkes estimate = -44.00214592 Ry estimated scf accuracy < 0.00000003 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.33E-10, avg # of iterations = 3.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 311.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2188 -13.1500 -9.1859 -7.2139 -1.2088 -0.0428 0.2722 0.5747 highest occupied, lowest unoccupied level (ev): -7.2139 -1.2088 ! total energy = -44.00214596 Ry Harris-Foulkes estimate = -44.00214597 Ry estimated scf accuracy < 7.0E-09 Ry total all-electron energy = -152.762892 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93195248 Ry hartree contribution = 42.52952555 Ry xc contribution = -8.40705077 Ry ewald contribution = 13.72920893 Ry one-center paw contrib. = -9.92187719 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.166E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00755498 atom 2 type 2 force = -0.00115086 -0.00115086 0.00377749 atom 3 type 2 force = 0.00115086 0.00115086 0.00377749 Total force = 0.005817 Total SCF correction = 0.000029 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0021594749 Ry energy new = -44.0021459598 Ry CASE: energy _new > energy _old new trust radius = 0.0317813376 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030577649 1.030577649 1.124811326 H -1.030577649 -1.030577649 1.124811326 Writing output data file H2O.save Check: negative starting charge= -0.007520 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007492 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 317.84 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 323.43 secs total energy = -44.00223509 Ry Harris-Foulkes estimate = -44.00223436 Ry estimated scf accuracy < 0.00002610 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.26E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 328.21 secs total energy = -44.00223706 Ry Harris-Foulkes estimate = -44.00224237 Ry estimated scf accuracy < 0.00001203 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 333.02 secs total energy = -44.00224033 Ry Harris-Foulkes estimate = -44.00224061 Ry estimated scf accuracy < 0.00000186 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-08, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 337.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2351 -13.0758 -9.2534 -7.2189 -1.2138 -0.0461 0.2741 0.5740 highest occupied, lowest unoccupied level (ev): -7.2189 -1.2138 ! total energy = -44.00224062 Ry Harris-Foulkes estimate = -44.00224061 Ry estimated scf accuracy < 3.0E-09 Ry total all-electron energy = -152.762987 Ry The total energy is the sum of the following terms: one-electron contribution = -81.91673979 Ry hartree contribution = 42.52050202 Ry xc contribution = -8.40565075 Ry ewald contribution = 13.72232735 Ry one-center paw contrib. = -9.92267944 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.166E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00109464 atom 2 type 2 force = 0.00039551 0.00039551 0.00054732 atom 3 type 2 force = -0.00039551 -0.00039551 0.00054732 Total force = 0.001107 Total SCF correction = 0.000011 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0022406163 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030577649 1.030577649 1.124811326 H -1.030577649 -1.030577649 1.124811326 Writing output data file H2O.save PWSCF : 5m40.63s CPU time, 5m57.02s wall time init_run : 6.99s CPU electrons : 272.30s CPU ( 10 calls, 27.230 s avg) update_pot : 23.48s CPU ( 9 calls, 2.609 s avg) forces : 28.36s CPU ( 10 calls, 2.836 s avg) Called by init_run: wfcinit : 0.76s CPU potinit : 1.98s CPU Called by electrons: c_bands : 83.02s CPU ( 53 calls, 1.566 s avg) sum_band : 54.06s CPU ( 53 calls, 1.020 s avg) v_of_rho : 89.51s CPU ( 63 calls, 1.421 s avg) newd : 37.81s CPU ( 63 calls, 0.600 s avg) mix_rho : 8.06s CPU ( 53 calls, 0.152 s avg) Called by c_bands: init_us_2 : 1.75s CPU ( 107 calls, 0.016 s avg) regterg : 81.37s CPU ( 53 calls, 1.535 s avg) Called by *egterg: h_psi : 75.50s CPU ( 211 calls, 0.358 s avg) s_psi : 0.63s CPU ( 211 calls, 0.003 s avg) g_psi : 1.15s CPU ( 157 calls, 0.007 s avg) rdiaghg : 0.12s CPU ( 201 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.60s CPU ( 211 calls, 0.003 s avg) General routines calbec : 1.08s CPU ( 304 calls, 0.004 s avg) cft3 : 75.26s CPU ( 885 calls, 0.085 s avg) cft3s : 76.76s CPU ( 1524 calls, 0.050 s avg) davcio : 0.00s CPU ( 53 calls, 0.000 s avg) PAW routines PAW_pot : 13.50s CPU ( 63 calls, 0.214 s avg) PAW_ddot : 1.21s CPU ( 282 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 54 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/n.in0000644000700200004540000000102012053145630022433 0ustar marsamoscm&CONTROL prefix = "N", pseudo_dir = "/home/degironc/QE/espresso/pseudo", outdir = "/home/degironc/tmp", / &SYSTEM ibrav = 1, celldm(1) = 24.0 nat = 1, ntyp = 1, ecutwfc = 30.D0, ecutrho = 120.D0, do_ee = .true. nspin = 2, nelec = 5, nelup = 4, neldw = 1 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &EE which_compensation='martyna-tuckerman' / ATOMIC_SPECIES N 1.00 N.pbe-paw_kj.UPF ATOMIC_POSITIONS {bohr} N 0.000 0.0 0.0 0 0 0 K_POINTS Gamma espresso-5.0.2/PW/examples/cluster_example/reference/h2o.out-120000644000700200004540000014052612053145630023326 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13: 1:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 437.7075 ( 19201 G-vectors) FFT grid: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.44 Mb ( 2401, 12) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000894 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.894E-03 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 3.86 secs per-process dynamical memory: 13.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 negative rho (up, down): 0.338E-02 0.000E+00 total cpu time spent up to now is 5.52 secs total energy = -43.77218253 Ry Harris-Foulkes estimate = -44.16045811 Ry estimated scf accuracy < 0.54657832 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.83E-03, avg # of iterations = 2.0 negative rho (up, down): 0.359E-02 0.000E+00 total cpu time spent up to now is 6.91 secs total energy = -43.88191645 Ry Harris-Foulkes estimate = -44.11806658 Ry estimated scf accuracy < 0.50237397 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-03, avg # of iterations = 2.0 negative rho (up, down): 0.633E-02 0.000E+00 total cpu time spent up to now is 8.28 secs total energy = -43.98499459 Ry Harris-Foulkes estimate = -43.98782715 Ry estimated scf accuracy < 0.00620382 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.75E-05, avg # of iterations = 6.0 negative rho (up, down): 0.586E-02 0.000E+00 total cpu time spent up to now is 9.95 secs total energy = -43.98708588 Ry Harris-Foulkes estimate = -43.98733576 Ry estimated scf accuracy < 0.00065672 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-06, avg # of iterations = 19.0 negative rho (up, down): 0.575E-02 0.000E+00 total cpu time spent up to now is 11.97 secs total energy = -43.98709727 Ry Harris-Foulkes estimate = -43.98712857 Ry estimated scf accuracy < 0.00007298 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.12E-07, avg # of iterations = 3.0 negative rho (up, down): 0.576E-02 0.000E+00 total cpu time spent up to now is 13.46 secs total energy = -43.98710728 Ry Harris-Foulkes estimate = -43.98710790 Ry estimated scf accuracy < 0.00000106 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-08, avg # of iterations = 3.0 negative rho (up, down): 0.577E-02 0.000E+00 total cpu time spent up to now is 14.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.7672 -13.8205 -9.0550 -7.2703 -1.3179 1.9475 2.1709 2.6837 highest occupied, lowest unoccupied level (ev): -7.2703 -1.3179 ! total energy = -43.98710793 Ry Harris-Foulkes estimate = -43.98710793 Ry estimated scf accuracy < 0.00000010 Ry total all-electron energy = -152.747854 Ry The total energy is the sum of the following terms: one-electron contribution = -83.31896434 Ry hartree contribution = 43.20191025 Ry xc contribution = -8.51957682 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91399021 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.577E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15846254 atom 2 type 2 force = 0.07173599 0.07173599 0.07923127 atom 3 type 2 force = -0.07173599 -0.07173599 0.07923127 Total force = 0.182042 Total SCF correction = 0.000057 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9871079269 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197031102 1.197031102 1.217617761 H -1.197031102 -1.197031102 1.217617761 Writing output data file H2O.save Check: negative starting charge= -0.000894 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000881 negative rho (up, down): 0.259E-02 0.000E+00 total cpu time spent up to now is 16.69 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 16.0 negative rho (up, down): 0.264E-02 0.000E+00 total cpu time spent up to now is 19.26 secs total energy = -43.91438547 Ry Harris-Foulkes estimate = -43.97289526 Ry estimated scf accuracy < 0.08852763 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 2.0 negative rho (up, down): 0.279E-02 0.000E+00 total cpu time spent up to now is 20.64 secs total energy = -43.92838243 Ry Harris-Foulkes estimate = -43.98898873 Ry estimated scf accuracy < 0.14246404 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 2.0 negative rho (up, down): 0.341E-02 0.000E+00 total cpu time spent up to now is 22.01 secs total energy = -43.95349605 Ry Harris-Foulkes estimate = -43.95347814 Ry estimated scf accuracy < 0.00039450 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 23.52 secs total energy = -43.95369745 Ry Harris-Foulkes estimate = -43.95371853 Ry estimated scf accuracy < 0.00005790 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.24E-07, avg # of iterations = 2.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 24.89 secs total energy = -43.95370791 Ry Harris-Foulkes estimate = -43.95370756 Ry estimated scf accuracy < 0.00000061 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.61E-09, avg # of iterations = 3.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 26.37 secs total energy = -43.95370819 Ry Harris-Foulkes estimate = -43.95370841 Ry estimated scf accuracy < 0.00000047 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.87E-09, avg # of iterations = 2.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 27.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -23.8796 -12.0801 -8.8297 -6.8742 -1.8143 0.9126 1.5218 2.5163 highest occupied, lowest unoccupied level (ev): -6.8742 -1.8143 ! total energy = -43.95370828 Ry Harris-Foulkes estimate = -43.95370828 Ry estimated scf accuracy < 2.4E-09 Ry total all-electron energy = -152.714454 Ry The total energy is the sum of the following terms: one-electron contribution = -79.17754475 Ry hartree contribution = 41.26150033 Ry xc contribution = -8.20358627 Ry ewald contribution = 12.10000619 Ry one-center paw contrib. = -9.93408378 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.340E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15227201 atom 2 type 2 force = -0.10069537 -0.10069537 -0.07613600 atom 3 type 2 force = 0.10069537 0.10069537 -0.07613600 Total force = 0.228367 Total SCF correction = 0.000019 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9871079269 Ry energy new = -43.9537082764 Ry CASE: energy _new > energy _old new trust radius = 0.2112428639 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083242828 1.083242828 1.091940398 H -1.083242828 -1.083242828 1.091940398 Writing output data file H2O.save Check: negative starting charge= -0.000881 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000867 negative rho (up, down): 0.541E-02 0.000E+00 total cpu time spent up to now is 29.58 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 9.0 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 31.80 secs total energy = -43.99045027 Ry Harris-Foulkes estimate = -44.00211356 Ry estimated scf accuracy < 0.01865026 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-04, avg # of iterations = 2.0 negative rho (up, down): 0.457E-02 0.000E+00 total cpu time spent up to now is 33.20 secs total energy = -43.99363596 Ry Harris-Foulkes estimate = -44.00308280 Ry estimated scf accuracy < 0.02055556 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-04, avg # of iterations = 2.0 negative rho (up, down): 0.460E-02 0.000E+00 total cpu time spent up to now is 34.57 secs total energy = -43.99774309 Ry Harris-Foulkes estimate = -43.99775106 Ry estimated scf accuracy < 0.00014011 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-06, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 36.07 secs total energy = -43.99780416 Ry Harris-Foulkes estimate = -43.99780646 Ry estimated scf accuracy < 0.00000687 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 37.47 secs total energy = -43.99780510 Ry Harris-Foulkes estimate = -43.99780507 Ry estimated scf accuracy < 0.00000041 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.11E-09, avg # of iterations = 3.0 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 38.96 secs total energy = -43.99780529 Ry Harris-Foulkes estimate = -43.99780538 Ry estimated scf accuracy < 0.00000022 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-09, avg # of iterations = 2.0 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 40.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -24.8656 -13.0201 -8.9482 -7.0836 -1.4732 1.6178 1.9526 2.6002 highest occupied, lowest unoccupied level (ev): -7.0836 -1.4732 ! total energy = -43.99780532 Ry Harris-Foulkes estimate = -43.99780532 Ry estimated scf accuracy < 1.5E-09 Ry total all-electron energy = -152.758552 Ry The total energy is the sum of the following terms: one-electron contribution = -81.43489896 Ry hartree contribution = 42.32176855 Ry xc contribution = -8.37232574 Ry ewald contribution = 13.41013119 Ry one-center paw contrib. = -9.92248036 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.464E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02471904 atom 2 type 2 force = -0.02999501 -0.02999501 -0.01235952 atom 3 type 2 force = 0.02999501 0.02999501 -0.01235952 Total force = 0.062485 Total SCF correction = 0.000013 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9871079269 Ry energy new = -43.9978053203 Ry CASE: energy _new < energy _old new trust radius = 0.0524016675 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058384186 1.058384186 1.080233000 H -1.058384186 -1.058384186 1.080233000 Writing output data file H2O.save Check: negative starting charge= -0.000867 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000866 negative rho (up, down): 0.492E-02 0.000E+00 total cpu time spent up to now is 42.21 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 44.02 secs total energy = -43.99962207 Ry Harris-Foulkes estimate = -44.00007631 Ry estimated scf accuracy < 0.00072762 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.10E-06, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 45.42 secs total energy = -43.99975251 Ry Harris-Foulkes estimate = -44.00008799 Ry estimated scf accuracy < 0.00071465 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.93E-06, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 46.80 secs total energy = -43.99989773 Ry Harris-Foulkes estimate = -43.99989830 Ry estimated scf accuracy < 0.00000577 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-08, avg # of iterations = 3.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 48.25 secs total energy = -43.99989997 Ry Harris-Foulkes estimate = -43.99990005 Ry estimated scf accuracy < 0.00000027 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.43E-09, avg # of iterations = 2.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 49.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.0792 -13.1668 -9.0093 -7.1296 -1.4317 1.7099 2.0116 2.6199 highest occupied, lowest unoccupied level (ev): -7.1296 -1.4317 ! total energy = -43.99990003 Ry Harris-Foulkes estimate = -43.99990002 Ry estimated scf accuracy < 5.9E-09 Ry total all-electron energy = -152.760646 Ry The total energy is the sum of the following terms: one-electron contribution = -81.86649040 Ry hartree contribution = 42.52295324 Ry xc contribution = -8.40556219 Ry ewald contribution = 13.67005837 Ry one-center paw contrib. = -9.92085905 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.494E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00719291 atom 2 type 2 force = -0.00957301 -0.00957301 0.00359645 atom 3 type 2 force = 0.00957301 0.00957301 0.00359645 Total force = 0.019810 Total SCF correction = 0.000023 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9978053203 Ry energy new = -43.9999000278 Ry CASE: energy _new < energy _old new trust radius = 0.0260997366 bohr new conv_thr = 0.0000000957 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.045817889 1.045817889 1.085210397 H -1.045817889 -1.045817889 1.085210397 Writing output data file H2O.save Check: negative starting charge= -0.000866 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000862 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 51.45 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 53.17 secs total energy = -44.00020963 Ry Harris-Foulkes estimate = -44.00024532 Ry estimated scf accuracy < 0.00007040 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.80E-07, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 54.57 secs total energy = -44.00022061 Ry Harris-Foulkes estimate = -44.00024520 Ry estimated scf accuracy < 0.00005053 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.32E-07, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 55.94 secs total energy = -44.00023210 Ry Harris-Foulkes estimate = -44.00023233 Ry estimated scf accuracy < 0.00000151 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-08, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 57.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1637 -13.1841 -9.0630 -7.1487 -1.4193 1.7389 2.0259 2.6321 highest occupied, lowest unoccupied level (ev): -7.1487 -1.4193 ! total energy = -44.00023243 Ry Harris-Foulkes estimate = -44.00023242 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.760979 Ry The total energy is the sum of the following terms: one-electron contribution = -82.01198072 Ry hartree contribution = 42.59005175 Ry xc contribution = -8.41679242 Ry ewald contribution = 13.75917544 Ry one-center paw contrib. = -9.92068648 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.502E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01654402 atom 2 type 2 force = -0.00126626 -0.00126626 0.00827201 atom 3 type 2 force = 0.00126626 0.00126626 0.00827201 Total force = 0.011969 Total SCF correction = 0.000051 number of scf cycles = 5 number of bfgs steps = 3 energy old = -43.9999000278 Ry energy new = -44.0002324316 Ry CASE: energy _new < energy _old new trust radius = 0.0246025681 bohr new conv_thr = 0.0000000332 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.037733756 1.037733756 1.098322863 H -1.037733756 -1.037733756 1.098322863 Writing output data file H2O.save Check: negative starting charge= -0.000862 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000857 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 59.18 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 60.78 secs total energy = -44.00043366 Ry Harris-Foulkes estimate = -44.00042963 Ry estimated scf accuracy < 0.00001091 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-07, avg # of iterations = 1.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 62.07 secs total energy = -44.00043481 Ry Harris-Foulkes estimate = -44.00043431 Ry estimated scf accuracy < 0.00000104 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 63.42 secs total energy = -44.00043494 Ry Harris-Foulkes estimate = -44.00043498 Ry estimated scf accuracy < 0.00000015 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 64.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1927 -13.1415 -9.1175 -7.1562 -1.4184 1.7427 2.0218 2.6413 highest occupied, lowest unoccupied level (ev): -7.1562 -1.4184 ! total energy = -44.00043497 Ry Harris-Foulkes estimate = -44.00043498 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.761181 Ry The total energy is the sum of the following terms: one-electron contribution = -82.03439403 Ry hartree contribution = 42.59928336 Ry xc contribution = -8.41843196 Ry ewald contribution = 13.77428188 Ry one-center paw contrib. = -9.92117422 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.501E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01464789 atom 2 type 2 force = 0.00143989 0.00143989 0.00732394 atom 3 type 2 force = -0.00143989 -0.00143989 0.00732394 Total force = 0.010751 Total SCF correction = 0.000041 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0002324316 Ry energy new = -44.0004349672 Ry CASE: energy _new < energy _old new trust radius = 0.0738077042 bohr new conv_thr = 0.0000000203 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.020733627 1.020733627 1.144645425 H -1.020733627 -1.020733627 1.144645425 Writing output data file H2O.save Check: negative starting charge= -0.000857 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000847 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 66.67 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.488E-02 0.000E+00 total cpu time spent up to now is 68.49 secs total energy = -44.00047329 Ry Harris-Foulkes estimate = -44.00052194 Ry estimated scf accuracy < 0.00021511 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-06, avg # of iterations = 2.0 negative rho (up, down): 0.489E-02 0.000E+00 total cpu time spent up to now is 69.89 secs total energy = -44.00049803 Ry Harris-Foulkes estimate = -44.00056979 Ry estimated scf accuracy < 0.00015472 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 2.0 negative rho (up, down): 0.490E-02 0.000E+00 total cpu time spent up to now is 71.25 secs total energy = -44.00053468 Ry Harris-Foulkes estimate = -44.00053421 Ry estimated scf accuracy < 0.00000719 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.98E-08, avg # of iterations = 2.0 negative rho (up, down): 0.490E-02 0.000E+00 total cpu time spent up to now is 72.61 secs total energy = -44.00053565 Ry Harris-Foulkes estimate = -44.00053570 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-09, avg # of iterations = 3.0 negative rho (up, down): 0.490E-02 0.000E+00 total cpu time spent up to now is 73.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.2000 -12.9452 -9.2688 -7.1622 -1.4310 1.7217 1.9876 2.6627 highest occupied, lowest unoccupied level (ev): -7.1622 -1.4310 ! total energy = -44.00053573 Ry Harris-Foulkes estimate = -44.00053574 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.761282 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93646438 Ry hartree contribution = 42.54953424 Ry xc contribution = -8.41037892 Ry ewald contribution = 13.72005664 Ry one-center paw contrib. = -9.92328331 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.490E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00581085 atom 2 type 2 force = 0.00189347 0.00189347 -0.00290542 atom 3 type 2 force = -0.00189347 -0.00189347 -0.00290542 Total force = 0.005588 Total SCF correction = 0.000035 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0004349672 Ry energy new = -44.0005357253 Ry CASE: energy _new < energy _old new trust radius = 0.1623769493 bohr new conv_thr = 0.0000000101 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.064698978 1.064698978 1.048119612 H -1.064698978 -1.064698978 1.048119612 Writing output data file H2O.save Check: negative starting charge= -0.000847 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000871 negative rho (up, down): 0.466E-02 0.000E+00 total cpu time spent up to now is 75.90 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.0 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 77.95 secs total energy = -43.99903021 Ry Harris-Foulkes estimate = -43.99901617 Ry estimated scf accuracy < 0.00066353 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.29E-06, avg # of iterations = 2.0 negative rho (up, down): 0.491E-02 0.000E+00 total cpu time spent up to now is 79.32 secs total energy = -43.99908232 Ry Harris-Foulkes estimate = -43.99922567 Ry estimated scf accuracy < 0.00032383 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.05E-06, avg # of iterations = 2.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 80.69 secs total energy = -43.99916988 Ry Harris-Foulkes estimate = -43.99917463 Ry estimated scf accuracy < 0.00004252 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.32E-07, avg # of iterations = 3.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 82.12 secs total energy = -43.99917539 Ry Harris-Foulkes estimate = -43.99917552 Ry estimated scf accuracy < 0.00000040 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-09, avg # of iterations = 3.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 83.58 secs total energy = -43.99917574 Ry Harris-Foulkes estimate = -43.99917577 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 2.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 84.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1094 -13.3105 -8.9239 -7.1329 -1.4184 1.7360 2.0382 2.6102 highest occupied, lowest unoccupied level (ev): -7.1329 -1.4184 ! total energy = -43.99917575 Ry Harris-Foulkes estimate = -43.99917575 Ry estimated scf accuracy < 3.2E-09 Ry total all-electron energy = -152.759922 Ry The total energy is the sum of the following terms: one-electron contribution = -81.99595285 Ry hartree contribution = 42.58557766 Ry xc contribution = -8.41568557 Ry ewald contribution = 13.74607567 Ry one-center paw contrib. = -9.91919066 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.503E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02539217 atom 2 type 2 force = -0.00600984 -0.00600984 0.01269609 atom 3 type 2 force = 0.00600984 0.00600984 0.01269609 Total force = 0.021607 Total SCF correction = 0.000020 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0005357253 Ry energy new = -43.9991757541 Ry CASE: energy _new > energy _old new trust radius = 0.0651047832 bohr new conv_thr = 0.0000000101 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038361465 1.038361465 1.105943552 H -1.038361465 -1.038361465 1.105943552 Writing output data file H2O.save Check: negative starting charge= -0.000871 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000856 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 86.80 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 88.64 secs total energy = -44.00047713 Ry Harris-Foulkes estimate = -44.00045727 Ry estimated scf accuracy < 0.00022281 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-06, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 90.01 secs total energy = -44.00049319 Ry Harris-Foulkes estimate = -44.00053244 Ry estimated scf accuracy < 0.00009191 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-06, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 91.38 secs total energy = -44.00051881 Ry Harris-Foulkes estimate = -44.00052164 Ry estimated scf accuracy < 0.00001692 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-07, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 92.78 secs total energy = -44.00052128 Ry Harris-Foulkes estimate = -44.00052129 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-10, avg # of iterations = 3.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 94.27 secs total energy = -44.00052134 Ry Harris-Foulkes estimate = -44.00052135 Ry estimated scf accuracy < 0.00000002 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-10, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 95.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1676 -13.0988 -9.1299 -7.1513 -1.4245 1.7297 2.0124 2.6411 highest occupied, lowest unoccupied level (ev): -7.1513 -1.4245 ! total energy = -44.00052134 Ry Harris-Foulkes estimate = -44.00052134 Ry estimated scf accuracy < 2.5E-10 Ry total all-electron energy = -152.761268 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97035798 Ry hartree contribution = 42.56861924 Ry xc contribution = -8.41336500 Ry ewald contribution = 13.73622752 Ry one-center paw contrib. = -9.92164512 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.497E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00768545 atom 2 type 2 force = -0.00111697 -0.00111697 0.00384273 atom 3 type 2 force = 0.00111697 0.00111697 0.00384273 Total force = 0.005876 Total SCF correction = 0.000005 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0005357253 Ry energy new = -44.0005213407 Ry CASE: energy _new > energy _old new trust radius = 0.0324675536 bohr new conv_thr = 0.0000000101 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029524575 1.029524575 1.125344921 H -1.029524575 -1.029524575 1.125344921 Writing output data file H2O.save Check: negative starting charge= -0.000856 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000850 negative rho (up, down): 0.496E-02 0.000E+00 total cpu time spent up to now is 97.54 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 99.26 secs total energy = -44.00061498 Ry Harris-Foulkes estimate = -44.00061384 Ry estimated scf accuracy < 0.00002692 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-07, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 100.62 secs total energy = -44.00061739 Ry Harris-Foulkes estimate = -44.00062238 Ry estimated scf accuracy < 0.00001147 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-07, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 101.98 secs total energy = -44.00062057 Ry Harris-Foulkes estimate = -44.00062079 Ry estimated scf accuracy < 0.00000179 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-08, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 103.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1842 -13.0227 -9.1992 -7.1566 -1.4272 1.7263 2.0010 2.6525 highest occupied, lowest unoccupied level (ev): -7.1566 -1.4272 ! total energy = -44.00062082 Ry Harris-Foulkes estimate = -44.00062082 Ry estimated scf accuracy < 7.6E-09 Ry total all-electron energy = -152.761367 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95441903 Ry hartree contribution = 42.55908179 Ry xc contribution = -8.41188651 Ry ewald contribution = 13.72906843 Ry one-center paw contrib. = -9.92246550 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.493E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00101081 atom 2 type 2 force = 0.00044166 0.00044166 0.00050541 atom 3 type 2 force = -0.00044166 -0.00044166 0.00050541 Total force = 0.001136 Total SCF correction = 0.000036 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0006208221 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029524575 1.029524575 1.125344921 H -1.029524575 -1.029524575 1.125344921 Writing output data file H2O.save PWSCF : 1m44.16s CPU time, 1m55.41s wall time init_run : 3.08s CPU electrons : 81.83s CPU ( 10 calls, 8.183 s avg) update_pot : 8.00s CPU ( 9 calls, 0.889 s avg) forces : 7.18s CPU ( 10 calls, 0.718 s avg) Called by init_run: wfcinit : 0.14s CPU potinit : 0.75s CPU Called by electrons: c_bands : 24.40s CPU ( 55 calls, 0.444 s avg) sum_band : 13.01s CPU ( 55 calls, 0.237 s avg) v_of_rho : 23.64s CPU ( 65 calls, 0.364 s avg) newd : 8.29s CPU ( 65 calls, 0.128 s avg) mix_rho : 3.14s CPU ( 55 calls, 0.057 s avg) Called by c_bands: init_us_2 : 0.40s CPU ( 111 calls, 0.004 s avg) regterg : 24.03s CPU ( 55 calls, 0.437 s avg) Called by *egterg: h_psi : 22.55s CPU ( 249 calls, 0.091 s avg) s_psi : 0.13s CPU ( 249 calls, 0.001 s avg) g_psi : 0.28s CPU ( 193 calls, 0.001 s avg) rdiaghg : 0.14s CPU ( 239 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.13s CPU ( 249 calls, 0.001 s avg) General routines calbec : 0.29s CPU ( 344 calls, 0.001 s avg) cft3 : 20.46s CPU ( 909 calls, 0.023 s avg) cft3s : 23.31s CPU ( 1664 calls, 0.014 s avg) davcio : 0.00s CPU ( 55 calls, 0.000 s avg) PAW routines PAW_pot : 14.25s CPU ( 65 calls, 0.219 s avg) PAW_ddot : 1.37s CPU ( 318 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/reference/h2o.out-160000644000700200004540000014065712053145630023337 0ustar marsamoscm Program PWSCF v.4.1 starts on 9Sep2009 at 13: 5:39 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 16.0000 a.u. unit-cell volume = 4096.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 16.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0625000 0.0625000 0.0625000 ) 3 H tau( 3) = ( -0.0625000 -0.0625000 0.0625000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 778.1467 ( 45524 G-vectors) FFT grid: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.69 Mb ( 5682, 8) NL pseudopotentials 1.04 Mb ( 5682, 12) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.35 Mb ( 45524) G-vector shells 0.00 Mb ( 651) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.39 Mb ( 5682, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 26.37 Mb ( 216000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.004116 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.412E-02 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 5.81 secs per-process dynamical memory: 27.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.886E-02 0.000E+00 total cpu time spent up to now is 9.42 secs total energy = -43.77309023 Ry Harris-Foulkes estimate = -44.16101502 Ry estimated scf accuracy < 0.54935519 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.87E-03, avg # of iterations = 2.0 negative rho (up, down): 0.936E-02 0.000E+00 total cpu time spent up to now is 12.35 secs total energy = -43.87895819 Ry Harris-Foulkes estimate = -44.12354519 Ry estimated scf accuracy < 0.52257435 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-03, avg # of iterations = 2.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 15.23 secs total energy = -43.98648950 Ry Harris-Foulkes estimate = -43.98957365 Ry estimated scf accuracy < 0.00667608 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.35E-05, avg # of iterations = 5.0 negative rho (up, down): 0.122E-01 0.000E+00 total cpu time spent up to now is 18.68 secs total energy = -43.98873796 Ry Harris-Foulkes estimate = -43.98902622 Ry estimated scf accuracy < 0.00077548 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.69E-06, avg # of iterations = 10.0 negative rho (up, down): 0.120E-01 0.000E+00 total cpu time spent up to now is 22.17 secs total energy = -43.98875056 Ry Harris-Foulkes estimate = -43.98878479 Ry estimated scf accuracy < 0.00008247 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-06, avg # of iterations = 3.0 negative rho (up, down): 0.121E-01 0.000E+00 total cpu time spent up to now is 25.21 secs total energy = -43.98876250 Ry Harris-Foulkes estimate = -43.98876320 Ry estimated scf accuracy < 0.00000162 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 2.0 negative rho (up, down): 0.121E-01 0.000E+00 total cpu time spent up to now is 27.92 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.8195 -13.8698 -9.1084 -7.3272 -1.2194 0.6250 0.7896 1.2202 highest occupied, lowest unoccupied level (ev): -7.3272 -1.2194 ! total energy = -43.98876305 Ry Harris-Foulkes estimate = -43.98876304 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -152.749509 Ry The total energy is the sum of the following terms: one-electron contribution = -83.29490080 Ry hartree contribution = 43.17151695 Ry xc contribution = -8.51475036 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91414204 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.121E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15906429 atom 2 type 2 force = 0.07222201 0.07222201 0.07953214 atom 3 type 2 force = -0.07222201 -0.07222201 0.07953214 Total force = 0.183070 Total SCF correction = 0.000037 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9887630531 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197251936 1.197251936 1.217217281 H -1.197251936 -1.197251936 1.217217281 Writing output data file H2O.save Check: negative starting charge= -0.004116 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004063 negative rho (up, down): 0.698E-02 0.000E+00 total cpu time spent up to now is 31.91 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap WARNING: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.00E-06, avg # of iterations = 20.0 negative rho (up, down): 0.692E-02 0.000E+00 total cpu time spent up to now is 37.73 secs total energy = -43.91521124 Ry Harris-Foulkes estimate = -43.97534487 Ry estimated scf accuracy < 0.09056764 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.702E-02 0.000E+00 total cpu time spent up to now is 40.65 secs total energy = -43.92952578 Ry Harris-Foulkes estimate = -43.99279675 Ry estimated scf accuracy < 0.14986831 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.794E-02 0.000E+00 total cpu time spent up to now is 43.51 secs total energy = -43.95564058 Ry Harris-Foulkes estimate = -43.95561488 Ry estimated scf accuracy < 0.00038046 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.76E-06, avg # of iterations = 3.0 negative rho (up, down): 0.794E-02 0.000E+00 total cpu time spent up to now is 46.66 secs total energy = -43.95582967 Ry Harris-Foulkes estimate = -43.95584932 Ry estimated scf accuracy < 0.00005748 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-07, avg # of iterations = 2.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 49.52 secs total energy = -43.95583843 Ry Harris-Foulkes estimate = -43.95583824 Ry estimated scf accuracy < 0.00000073 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.13E-09, avg # of iterations = 3.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 52.56 secs total energy = -43.95583896 Ry Harris-Foulkes estimate = -43.95583920 Ry estimated scf accuracy < 0.00000084 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.13E-09, avg # of iterations = 1.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 55.44 secs total energy = -43.95583897 Ry Harris-Foulkes estimate = -43.95583902 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-09, avg # of iterations = 2.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 58.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -23.9430 -12.1414 -8.8935 -6.9450 -1.6794 0.2586 0.2640 1.1885 highest occupied, lowest unoccupied level (ev): -6.9450 -1.6794 ! total energy = -43.95583898 Ry Harris-Foulkes estimate = -43.95583899 Ry estimated scf accuracy < 1.1E-09 Ry total all-electron energy = -152.716585 Ry The total energy is the sum of the following terms: one-electron contribution = -79.14804797 Ry hartree contribution = 41.22403225 Ry xc contribution = -8.19737292 Ry ewald contribution = 12.09978821 Ry one-center paw contrib. = -9.93423855 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.795E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15153331 atom 2 type 2 force = -0.10020665 -0.10020665 -0.07576665 atom 3 type 2 force = 0.10020665 0.10020665 -0.07576665 Total force = 0.227259 Total SCF correction = 0.000006 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9887630531 Ry energy new = -43.9558389844 Ry CASE: energy _new > energy _old new trust radius = 0.2118924775 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083592403 1.083592403 1.092053416 H -1.083592403 -1.083592403 1.092053416 Writing output data file H2O.save Check: negative starting charge= -0.004063 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004112 negative rho (up, down): 0.900E-02 0.000E+00 total cpu time spent up to now is 62.17 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 11.0 negative rho (up, down): 0.949E-02 0.000E+00 total cpu time spent up to now is 66.92 secs total energy = -43.99212250 Ry Harris-Foulkes estimate = -44.00397094 Ry estimated scf accuracy < 0.01884682 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.970E-02 0.000E+00 total cpu time spent up to now is 69.76 secs total energy = -43.99528207 Ry Harris-Foulkes estimate = -44.00508077 Ry estimated scf accuracy < 0.02147092 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.101E-01 0.000E+00 total cpu time spent up to now is 72.63 secs total energy = -43.99955574 Ry Harris-Foulkes estimate = -43.99956736 Ry estimated scf accuracy < 0.00014507 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 2.0 negative rho (up, down): 0.101E-01 0.000E+00 total cpu time spent up to now is 75.70 secs total energy = -43.99961369 Ry Harris-Foulkes estimate = -43.99961506 Ry estimated scf accuracy < 0.00000505 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.31E-08, avg # of iterations = 2.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 78.66 secs total energy = -43.99961461 Ry Harris-Foulkes estimate = -43.99961453 Ry estimated scf accuracy < 0.00000023 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-09, avg # of iterations = 2.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 81.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -24.9188 -13.0711 -9.0056 -7.1457 -1.3518 0.4920 0.6488 1.1996 highest occupied, lowest unoccupied level (ev): -7.1457 -1.3518 ! total energy = -43.99961466 Ry Harris-Foulkes estimate = -43.99961465 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.760361 Ry The total energy is the sum of the following terms: one-electron contribution = -81.40272519 Ry hartree contribution = 42.28546099 Ry xc contribution = -8.36643824 Ry ewald contribution = 13.40674653 Ry one-center paw contrib. = -9.92265877 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.102E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02459931 atom 2 type 2 force = -0.02975283 -0.02975283 -0.01229966 atom 3 type 2 force = 0.02975283 0.02975283 -0.01229966 Total force = 0.061996 Total SCF correction = 0.000013 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9887630531 Ry energy new = -43.9996146644 Ry CASE: energy _new < energy _old new trust radius = 0.0520714467 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058891200 1.058891200 1.080416451 H -1.058891200 -1.058891200 1.080416451 Writing output data file H2O.save Check: negative starting charge= -0.004112 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004120 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 85.35 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 89.15 secs total energy = -44.00139699 Ry Harris-Foulkes estimate = -44.00186213 Ry estimated scf accuracy < 0.00073931 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 92.02 secs total energy = -44.00152915 Ry Harris-Foulkes estimate = -44.00188255 Ry estimated scf accuracy < 0.00075952 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 94.91 secs total energy = -44.00168170 Ry Harris-Foulkes estimate = -44.00168225 Ry estimated scf accuracy < 0.00000558 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 97.84 secs total energy = -44.00168383 Ry Harris-Foulkes estimate = -44.00168388 Ry estimated scf accuracy < 0.00000022 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-09, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 100.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.1300 -13.2159 -9.0653 -7.1901 -1.3153 0.5258 0.6899 1.2029 highest occupied, lowest unoccupied level (ev): -7.1901 -1.3153 ! total energy = -44.00168387 Ry Harris-Foulkes estimate = -44.00168387 Ry estimated scf accuracy < 6.8E-09 Ry total all-electron energy = -152.762430 Ry The total energy is the sum of the following terms: one-electron contribution = -81.83217407 Ry hartree contribution = 42.48628444 Ry xc contribution = -8.39963803 Ry ewald contribution = 13.66488853 Ry one-center paw contrib. = -9.92104475 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00703555 atom 2 type 2 force = -0.00953838 -0.00953838 0.00351777 atom 3 type 2 force = 0.00953838 0.00953838 0.00351777 Total force = 0.019715 Total SCF correction = 0.000028 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9996146644 Ry energy new = -44.0016838701 Ry CASE: energy _new < energy _old new trust radius = 0.0260314782 bohr new conv_thr = 0.0000000954 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.046340474 1.046340474 1.085292668 H -1.046340474 -1.046340474 1.085292668 Writing output data file H2O.save Check: negative starting charge= -0.004120 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004111 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 104.54 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 107.87 secs total energy = -44.00198842 Ry Harris-Foulkes estimate = -44.00202582 Ry estimated scf accuracy < 0.00007238 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.05E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 110.74 secs total energy = -44.00199957 Ry Harris-Foulkes estimate = -44.00202592 Ry estimated scf accuracy < 0.00005447 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.81E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 113.62 secs total energy = -44.00201184 Ry Harris-Foulkes estimate = -44.00201204 Ry estimated scf accuracy < 0.00000150 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-08, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 116.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2137 -13.2329 -9.1178 -7.2083 -1.3049 0.5345 0.7048 1.2064 highest occupied, lowest unoccupied level (ev): -7.2083 -1.3049 ! total energy = -44.00201216 Ry Harris-Foulkes estimate = -44.00201216 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762758 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97835296 Ry hartree contribution = 42.55391490 Ry xc contribution = -8.41095317 Ry ewald contribution = 13.75424240 Ry one-center paw contrib. = -9.92086332 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.108E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01642981 atom 2 type 2 force = -0.00122861 -0.00122861 0.00821491 atom 3 type 2 force = 0.00122861 0.00122861 0.00821491 Total force = 0.011875 Total SCF correction = 0.000049 number of scf cycles = 5 number of bfgs steps = 3 energy old = -44.0016838701 Ry energy new = -44.0020121572 Ry CASE: energy _new < energy _old new trust radius = 0.0240846370 bohr new conv_thr = 0.0000000328 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038441452 1.038441452 1.098147463 H -1.038441452 -1.038441452 1.098147463 Writing output data file H2O.save Check: negative starting charge= -0.004111 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004098 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 120.33 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 123.67 secs total energy = -44.00220761 Ry Harris-Foulkes estimate = -44.00220406 Ry estimated scf accuracy < 0.00001042 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 1.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 126.37 secs total energy = -44.00220860 Ry Harris-Foulkes estimate = -44.00220816 Ry estimated scf accuracy < 0.00000105 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 129.25 secs total energy = -44.00220868 Ry Harris-Foulkes estimate = -44.00220876 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-09, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 131.98 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2419 -13.1911 -9.1711 -7.2156 -1.3049 0.5331 0.7089 1.2095 highest occupied, lowest unoccupied level (ev): -7.2156 -1.3049 ! total energy = -44.00220873 Ry Harris-Foulkes estimate = -44.00220874 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762955 Ry The total energy is the sum of the following terms: one-electron contribution = -82.00029297 Ry hartree contribution = 42.56317789 Ry xc contribution = -8.41260049 Ry ewald contribution = 13.76884569 Ry one-center paw contrib. = -9.92133884 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.108E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01454631 atom 2 type 2 force = 0.00140934 0.00140934 0.00727315 atom 3 type 2 force = -0.00140934 -0.00140934 0.00727315 Total force = 0.010665 Total SCF correction = 0.000057 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0020121572 Ry energy new = -44.0022087270 Ry CASE: energy _new < energy _old new trust radius = 0.0722539109 bohr new conv_thr = 0.0000000197 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.021827249 1.021827249 1.143515407 H -1.021827249 -1.021827249 1.143515407 Writing output data file H2O.save Check: negative starting charge= -0.004098 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004064 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 135.97 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 139.78 secs total energy = -44.00225386 Ry Harris-Foulkes estimate = -44.00230116 Ry estimated scf accuracy < 0.00020633 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 142.64 secs total energy = -44.00227683 Ry Harris-Foulkes estimate = -44.00234724 Ry estimated scf accuracy < 0.00015248 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-06, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 145.53 secs total energy = -44.00231276 Ry Harris-Foulkes estimate = -44.00231243 Ry estimated scf accuracy < 0.00000714 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.92E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 148.44 secs total energy = -44.00231382 Ry Harris-Foulkes estimate = -44.00231384 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.95E-10, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 151.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2484 -12.9988 -9.3183 -7.2207 -1.3196 0.5141 0.7073 1.2158 highest occupied, lowest unoccupied level (ev): -7.2207 -1.3196 ! total energy = -44.00231383 Ry Harris-Foulkes estimate = -44.00231384 Ry estimated scf accuracy < 3.1E-09 Ry total all-electron energy = -152.763060 Ry The total energy is the sum of the following terms: one-electron contribution = -81.90396205 Ry hartree contribution = 42.51396066 Ry xc contribution = -8.40461155 Ry ewald contribution = 13.71570502 Ry one-center paw contrib. = -9.92340591 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00544382 atom 2 type 2 force = 0.00182013 0.00182013 -0.00272191 atom 3 type 2 force = -0.00182013 -0.00182013 -0.00272191 Total force = 0.005298 Total SCF correction = 0.000009 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0022087270 Ry energy new = -44.0023138345 Ry CASE: energy _new < energy _old new trust radius = 0.1589586039 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.064967131 1.064967131 1.049112970 H -1.064967131 -1.064967131 1.049112970 Writing output data file H2O.save Check: negative starting charge= -0.004064 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004126 negative rho (up, down): 0.101E-01 0.000E+00 total cpu time spent up to now is 155.16 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 159.18 secs total energy = -44.00086241 Ry Harris-Foulkes estimate = -44.00084362 Ry estimated scf accuracy < 0.00062330 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.79E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 162.03 secs total energy = -44.00090784 Ry Harris-Foulkes estimate = -44.00103801 Ry estimated scf accuracy < 0.00029607 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.70E-06, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 164.90 secs total energy = -44.00098790 Ry Harris-Foulkes estimate = -44.00099412 Ry estimated scf accuracy < 0.00004310 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.39E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 167.81 secs total energy = -44.00099394 Ry Harris-Foulkes estimate = -44.00099397 Ry estimated scf accuracy < 0.00000018 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-09, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 170.90 secs total energy = -44.00099408 Ry Harris-Foulkes estimate = -44.00099409 Ry estimated scf accuracy < 0.00000003 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-10, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 173.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.1599 -13.3560 -8.9824 -7.1933 -1.3026 0.5406 0.6970 1.1983 highest occupied, lowest unoccupied level (ev): -7.1933 -1.3026 ! total energy = -44.00099408 Ry Harris-Foulkes estimate = -44.00099409 Ry estimated scf accuracy < 4.8E-10 Ry total all-electron energy = -152.761740 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95956972 Ry hartree contribution = 42.54796769 Ry xc contribution = -8.40961999 Ry ewald contribution = 13.73964457 Ry one-center paw contrib. = -9.91941663 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.108E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02480213 atom 2 type 2 force = -0.00601806 -0.00601806 0.01240107 atom 3 type 2 force = 0.00601806 0.00601806 0.01240107 Total force = 0.021271 Total SCF correction = 0.000008 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0023138345 Ry energy new = -44.0009940836 Ry CASE: energy _new > energy _old new trust radius = 0.0634126298 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.039036845 1.039036845 1.105855874 H -1.039036845 -1.039036845 1.105855874 Writing output data file H2O.save Check: negative starting charge= -0.004126 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004095 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 177.64 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 181.44 secs total energy = -44.00225341 Ry Harris-Foulkes estimate = -44.00223259 Ry estimated scf accuracy < 0.00021263 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-06, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 184.35 secs total energy = -44.00226756 Ry Harris-Foulkes estimate = -44.00230546 Ry estimated scf accuracy < 0.00008859 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-06, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 187.25 secs total energy = -44.00229204 Ry Harris-Foulkes estimate = -44.00229523 Ry estimated scf accuracy < 0.00001710 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-07, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 190.17 secs total energy = -44.00229462 Ry Harris-Foulkes estimate = -44.00229461 Ry estimated scf accuracy < 0.00000004 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-10, avg # of iterations = 3.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 193.27 secs total energy = -44.00229467 Ry Harris-Foulkes estimate = -44.00229468 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 196.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2168 -13.1481 -9.1837 -7.2106 -1.3106 0.5274 0.7040 1.2096 highest occupied, lowest unoccupied level (ev): -7.2106 -1.3106 ! total energy = -44.00229467 Ry Harris-Foulkes estimate = -44.00229467 Ry estimated scf accuracy < 4.1E-10 Ry total all-electron energy = -152.763041 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93595882 Ry hartree contribution = 42.53221495 Ry xc contribution = -8.40747955 Ry ewald contribution = 13.73074236 Ry one-center paw contrib. = -9.92181359 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00754271 atom 2 type 2 force = -0.00113646 -0.00113646 0.00377135 atom 3 type 2 force = 0.00113646 0.00113646 0.00377135 Total force = 0.005798 Total SCF correction = 0.000007 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0023138345 Ry energy new = -44.0022946662 Ry CASE: energy _new > energy _old new trust radius = 0.0315900649 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030400498 1.030400498 1.124754680 H -1.030400498 -1.030400498 1.124754680 Writing output data file H2O.save Check: negative starting charge= -0.004095 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004079 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 200.02 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 203.44 secs total energy = -44.00238586 Ry Harris-Foulkes estimate = -44.00238449 Ry estimated scf accuracy < 0.00002502 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.13E-07, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 206.30 secs total energy = -44.00238779 Ry Harris-Foulkes estimate = -44.00239237 Ry estimated scf accuracy < 0.00001060 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-07, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 209.21 secs total energy = -44.00239074 Ry Harris-Foulkes estimate = -44.00239101 Ry estimated scf accuracy < 0.00000184 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 211.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2332 -13.0742 -9.2511 -7.2158 -1.3149 0.5215 0.7057 1.2127 highest occupied, lowest unoccupied level (ev): -7.2158 -1.3149 ! total energy = -44.00239103 Ry Harris-Foulkes estimate = -44.00239103 Ry estimated scf accuracy < 3.4E-09 Ry total all-electron energy = -152.763137 Ry The total energy is the sum of the following terms: one-electron contribution = -81.92121859 Ry hartree contribution = 42.52347024 Ry xc contribution = -8.40612890 Ry ewald contribution = 13.72409495 Ry one-center paw contrib. = -9.92260872 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00111643 atom 2 type 2 force = 0.00038748 0.00038748 0.00055822 atom 3 type 2 force = -0.00038748 -0.00038748 0.00055822 Total force = 0.001106 Total SCF correction = 0.000020 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0023910262 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030400498 1.030400498 1.124754680 H -1.030400498 -1.030400498 1.124754680 Writing output data file H2O.save PWSCF : 3m33.86s CPU time, 3m43.45s wall time init_run : 5.03s CPU electrons : 170.38s CPU ( 10 calls, 17.038 s avg) update_pot : 15.13s CPU ( 9 calls, 1.681 s avg) forces : 17.08s CPU ( 10 calls, 1.708 s avg) Called by init_run: wfcinit : 0.30s CPU potinit : 1.60s CPU Called by electrons: c_bands : 51.03s CPU ( 55 calls, 0.928 s avg) sum_band : 30.95s CPU ( 55 calls, 0.563 s avg) v_of_rho : 57.60s CPU ( 65 calls, 0.886 s avg) newd : 20.35s CPU ( 65 calls, 0.313 s avg) mix_rho : 5.70s CPU ( 55 calls, 0.104 s avg) Called by c_bands: init_us_2 : 0.94s CPU ( 111 calls, 0.008 s avg) regterg : 50.14s CPU ( 55 calls, 0.912 s avg) Called by *egterg: h_psi : 47.02s CPU ( 226 calls, 0.208 s avg) s_psi : 0.30s CPU ( 226 calls, 0.001 s avg) g_psi : 0.64s CPU ( 170 calls, 0.004 s avg) rdiaghg : 0.12s CPU ( 216 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.28s CPU ( 226 calls, 0.001 s avg) General routines calbec : 0.62s CPU ( 321 calls, 0.002 s avg) cft3 : 51.92s CPU ( 909 calls, 0.057 s avg) cft3s : 47.87s CPU ( 1606 calls, 0.030 s avg) davcio : 0.00s CPU ( 55 calls, 0.000 s avg) PAW routines PAW_pot : 13.90s CPU ( 65 calls, 0.214 s avg) PAW_ddot : 1.42s CPU ( 325 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.0.2/PW/examples/cluster_example/run_example0000755000700200004540000001336512053145630022174 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate propeties of " $ECHO "isolated systems decoupling periodic images by using " $ECHO "Martyna-Tuckerman approach with truncated coulomb interaction." $ECHO $ECHO "Three simple systems are considered:" $ECHO "1) a N atom. " $ECHO "2) a NH4+ ion." $ECHO "3) a water molecule." $ECHO $ECHO "The calculations are performed in a SC cell of dimension 16 bohr" $ECHO "It is possible to explore convergence of the results w.r.t. box size" $ECHO "by editing the script and addind/modifying the variable called BOX_SIZE_LIST" #list of BOX dimesions used in the calculation: modify this list if you wish BOX_SIZE_LIST=" 16 " $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" H.pbe-kjpaw.UPF N.pbe-kjpaw.UPF O.pbe-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO rm -f n.eigenvalues nh4+.eigenvalues h2o.eigenvalues for a in $BOX_SIZE_LIST ; do $ECHO " running tests for a box size = $a bohr " $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > n.in << EOF &CONTROL prefix = "N", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = $a.0 nat = 1, ntyp = 1, ecutwfc = 30.D0, ecutrho = 120.D0, nspin = 2, tot_magnetization = 3, assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.000 0.0 0.0 0 0 0 K_POINTS Gamma EOF $ECHO " running scf calculation for N atom...\c" $PW_COMMAND < n.in > n.out-$a check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" grep -e bands --after=3 n.out-$a| grep -e " -"| tail -2| awk -v a=$a '{print a, $0}' >> n.eigenvalues # self-consistent calculation cat > nh4+.in << EOF &CONTROL calculation = 'relax' prefix = "NH4+", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = $a.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, tot_charge = +1.0 nbnd = 8 assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma EOF $ECHO " running relax calculation for NH4+ ion...\c" $PW_COMMAND < nh4+.in > nh4+.out-$a check_failure $? $ECHO " done" grep -e bands --after=3 nh4+.out-$a| grep -e " -"| tail -1| awk -v a=$a '{print a, $0}' >> nh4+.eigenvalues # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > h2o.in << EOF &CONTROL calculation = 'relax' prefix = "H2O", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = $a.0 nat = 3, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, nbnd = 8 assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES O 1.00 O.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 K_POINTS Gamma EOF $ECHO " running relax calculation for H2O molecule...\c" $PW_COMMAND < h2o.in > h2o.out-$a check_failure $? $ECHO " done" grep -e bands --after=3 h2o.out-$a| grep -e " -"| tail -1| awk -v a=$a '{print a, $0}' >> h2o.eigenvalues # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" $ECHO done $ECHO " eigenvalues of N atom" cat n.eigenvalues $ECHO $ECHO " to be compared with the reference values" cat ../reference/n.eigenvalues $ECHO $ECHO $ECHO " eigenvalues of NH4+ ions" cat nh4+.eigenvalues $ECHO $ECHO " to be compared with the reference values" cat ../reference/nh4+.eigenvalues $ECHO $ECHO $ECHO " eigenvalues of H2O molecule" cat h2o.eigenvalues $ECHO $ECHO " to be compared with the reference values" cat ../reference/h2o.eigenvalues $ECHO $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.0.2/PW/examples/cluster_example/README0000644000700200004540000000115712053145630020603 0ustar marsamoscmThis example shows how to use pw.x to calculate propeties of isolated systems decoupling periodic images by using Martyna-Tuckerman approach with truncated coulomb interaction. Three simple systems are considered: 1) a N atom. 2) a NH4+ ion. 3) a water molecule. The calculations are performed in a SC cell of dimension 16 bohr It is possible to explore convergence of the results w.r.t. box size by editing the script and addind/modifying the variable called BOX_SIZE_LIST. Values for BOX_SIZE_LIST = " 12 16 20 24" are provided in the reference Relevant variables in pw.x input is assume_isolated in namelist SYSTEM espresso-5.0.2/PW/examples/example10/0000755000700200004540000000000012053440301016310 5ustar marsamoscmespresso-5.0.2/PW/examples/example10/reference/0000755000700200004540000000000012053440303020250 5ustar marsamoscmespresso-5.0.2/PW/examples/example10/reference/si.scf.efield.out0000644000700200004540000010255312053145630023430 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 18Jun2008 at 14:57:55 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fractionary translation: -0.5000 -0.5000 0.0000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: -0.5000 0.0000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: 0.0000 -0.5000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: bravais-lattice index = 1 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Using Berry phase electric field In a.u. carthesian system of reference 0.0000000000 0.0000000000 0.0000000000 In a.u. crystal system of reference 0.0000000000 0.0000000000 0.0000000000 Number of iterative cycles: 1 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file Si.pbe-rrkj.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1250000 -0.1250000 -0.1250000 ) 2 Si tau( 2) = ( 0.3750000 0.3750000 -0.1250000 ) 3 Si tau( 3) = ( 0.3750000 -0.1250000 0.3750000 ) 4 Si tau( 4) = ( -0.1250000 0.3750000 0.3750000 ) 5 Si tau( 5) = ( 0.1250000 0.1250000 0.1250000 ) 6 Si tau( 6) = ( 0.6250000 0.6250000 0.1250000 ) 7 Si tau( 7) = ( 0.6250000 0.1250000 0.6250000 ) 8 Si tau( 8) = ( 0.1250000 0.6250000 0.6250000 ) number of k points= 63 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 G cutoff = 210.0031 ( 12893 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 31.99557, renormalised to 32.00000 Starting wfc are random total cpu time spent up to now is 4.34 secs per-process dynamical memory: 8.5 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.62E-04, avg # of iterations = 1.8 Expectation value of exp(iGx): (9.813085135077290E-002,2.612627128835834E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.220067173793751E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.822638798543799E-002,-5.572348576373509E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -2.599670737805116E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.348308055440632,1.578067866756662E-003) 1.00000000000000 Electronic Dipole per cell (a.u.) 2.076213877591985E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 1.220067173793751E-002 2 -2.599670737805116E-002 3 2.076213877591985E-002 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 52.70 secs total energy = -62.94986939 Ry Harris-Foulkes estimate = -62.99987099 Ry estimated scf accuracy < 0.24597310 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.69E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.538754115044600E-002,1.791635188824983E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 8.607367027990340E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.544783276207391E-002,-3.669308285322549E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.761687583841131E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.345509857141989,1.218550004030006E-003) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.616195956803134E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 8.607367027990340E-003 2 -1.761687583841131E-002 3 1.616195956803134E-002 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 69.89 secs total energy = -62.94855087 Ry Harris-Foulkes estimate = -62.95600793 Ry estimated scf accuracy < 0.04560732 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.43E-04, avg # of iterations = 2.0 Expectation value of exp(iGx): (9.099961263797272E-002,1.239650095653754E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 6.242696322699717E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.104442976244238E-002,-2.149447895032605E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.081896305929122E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.338840014129039,5.267881893640398E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 7.124491809651888E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 6.242696322699717E-003 2 -1.081896305929122E-002 3 7.124491809651888E-003 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 87.90 secs total energy = -62.95265044 Ry Harris-Foulkes estimate = -62.95284167 Ry estimated scf accuracy < 0.00084774 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.65E-06, avg # of iterations = 4.0 Expectation value of exp(iGx): (9.005734040960452E-002,5.128626073085807E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 2.609725453695711E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.006107054735606E-002,-7.360284812698424E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -3.745160352619726E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.337065365230539,2.785959294960712E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) 3.787682256839025E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 2.609725453695711E-004 2 -3.745160352619726E-004 3 3.787682256839025E-004 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 113.33 secs total energy = -62.95344586 Ry Harris-Foulkes estimate = -62.95348638 Ry estimated scf accuracy < 0.00010239 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.20E-07, avg # of iterations = 2.1 Expectation value of exp(iGx): (8.976051455598838E-002,1.089492413025846E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 5.562266331643198E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.976267394647724E-002,-2.880840509741451E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.470741465827657E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.336520826513676,-7.958655330616569E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.083778804050826E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 5.562266331643198E-005 2 -1.470741465827657E-004 3 -1.083778804050826E-004 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 133.33 secs total energy = -62.95346048 Ry Harris-Foulkes estimate = -62.95346069 Ry estimated scf accuracy < 0.00000233 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.27E-09, avg # of iterations = 3.3 Expectation value of exp(iGx): (8.975141406435735E-002,6.590427645621681E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) 3.365001016631759E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.975072337910603E-002,9.921591562749453E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) 5.065896238630178E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.336464147922662,9.249917080633773E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.259830006239190E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 3.365001016631759E-005 2 5.065896238630178E-005 3 1.259830006239190E-004 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 156.24 secs total energy = -62.95346153 Ry Harris-Foulkes estimate = -62.95346145 Ry estimated scf accuracy < 0.00000014 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.46E-10, avg # of iterations = 2.7 Expectation value of exp(iGx): (8.975056548664458E-002,-5.535376693102096E-009) 1.00000000000000 Electronic Dipole per cell (a.u.) -2.826330143169000E-007 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.975052129986164E-002,-9.153459249787021E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) -4.673703699527140E-006 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.336457197004045,4.583088194854452E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 6.242251972615764E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -2.826330143169000E-007 2 -4.673703699527140E-006 3 6.242251972615764E-005 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 175.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5814 -1.3521 -1.3521 -1.3521 -1.3521 -1.3521 -1.3520 3.5785 3.5785 3.5785 3.5786 3.5786 3.5786 6.4862 6.4865 6.4865 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4903 -2.4217 -1.3214 -1.3214 -1.3213 -1.3213 -0.1751 3.3331 3.3331 3.3331 3.3331 3.6605 3.6606 5.9836 6.1467 6.1467 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2180 -3.3588 -1.2479 -1.2479 -1.2478 -1.2478 1.0778 2.8850 2.8850 2.8850 2.8850 3.9045 3.9046 4.9087 5.4913 5.4913 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7677 -4.1452 -1.1839 -1.1839 -1.1839 -1.1838 2.3698 2.5822 2.5822 2.5822 2.5822 3.6632 4.3033 4.3033 4.8438 4.8438 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7677 -4.1452 -1.1839 -1.1839 -1.1839 -1.1838 2.3698 2.5822 2.5822 2.5822 2.5822 3.6632 4.3033 4.3033 4.8438 4.8438 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2180 -3.3588 -1.2479 -1.2479 -1.2478 -1.2478 1.0778 2.8850 2.8850 2.8850 2.8850 3.9045 3.9046 4.9087 5.4913 5.4913 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4903 -2.4217 -1.3214 -1.3214 -1.3213 -1.3213 -0.1751 3.3331 3.3331 3.3331 3.3331 3.6605 3.6606 5.9836 6.1467 6.1467 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2222 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9256 4.0204 4.9207 5.6970 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0712 3.8605 4.0920 4.2016 4.2507 5.9687 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2235 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0764 -0.4416 0.5748 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1370 -1.6219 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2222 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1370 -1.6219 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0764 -0.4416 0.5748 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2235 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0712 3.8605 4.0920 4.2016 4.2507 5.9687 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9256 4.0204 4.9207 5.6970 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2223 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9688 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2236 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4416 0.5747 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6970 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1432 4.3344 5.9165 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5300 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2878 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6431 3.8274 3.8274 4.4022 4.7876 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6430 3.8274 3.8274 4.4021 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0169 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5299 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3852 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1433 4.3344 5.9164 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0168 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5703 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3443 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2223 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6970 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4416 0.5747 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2236 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9688 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1433 4.3344 5.9164 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3443 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5703 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0168 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1432 4.3344 5.9165 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5299 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3852 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0169 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6430 3.8274 3.8274 4.4021 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6431 3.8274 3.8274 4.4022 4.7876 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2878 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5300 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 ! total energy = -62.95346155 Ry Harris-Foulkes estimate = -62.95346155 Ry estimated scf accuracy < 4.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.83118141 Ry hartree contribution = 4.30387411 Ry xc contribution = -19.35667486 Ry ewald contribution = -67.73184220 Ry convergence has been achieved in 7 iterations Writing output data file silicon.save PWSCF : 2m55.87s CPU time, 3m 6.93s wall time init_run : 4.33s CPU electrons : 171.26s CPU Called by init_run: wfcinit : 4.05s CPU potinit : 0.06s CPU Called by electrons: c_bands : 107.03s CPU ( 8 calls, 13.379 s avg) sum_band : 13.33s CPU ( 8 calls, 1.666 s avg) v_of_rho : 0.36s CPU ( 8 calls, 0.045 s avg) mix_rho : 0.04s CPU ( 8 calls, 0.005 s avg) Called by c_bands: init_us_2 : 1.49s CPU ( 1071 calls, 0.001 s avg) cegterg : 104.31s CPU ( 504 calls, 0.207 s avg) Called by *egterg: h_psi : 89.11s CPU ( 2118 calls, 0.042 s avg) g_psi : 1.52s CPU ( 1551 calls, 0.001 s avg) cdiaghg : 3.66s CPU ( 1992 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 3.73s CPU ( 2118 calls, 0.002 s avg) General routines calbec : 4.44s CPU ( 2118 calls, 0.002 s avg) cft3 : 0.17s CPU ( 81 calls, 0.002 s avg) cft3s : 86.14s CPU ( 61062 calls, 0.001 s avg) davcio : 0.05s CPU ( 4221 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example10/reference/si.scf.efield2.out0000644000700200004540000010551512053145630023513 0ustar marsamoscm Program PWSCF v.4.0 starts ... Today is 18Jun2008 at 15: 1: 2 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fractionary translation: -0.5000 -0.5000 0.0000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: -0.5000 0.0000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: 0.0000 -0.5000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: bravais-lattice index = 1 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Using Berry phase electric field In a.u. carthesian system of reference 0.0000000000 0.0000000000 0.0010000000 In a.u. crystal system of reference 0.0000000000 0.0000000000 0.0010000000 Number of iterative cycles: 3 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file Si.pbe-rrkj.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1250000 -0.1250000 -0.1250000 ) 2 Si tau( 2) = ( 0.3750000 0.3750000 -0.1250000 ) 3 Si tau( 3) = ( 0.3750000 -0.1250000 0.3750000 ) 4 Si tau( 4) = ( -0.1250000 0.3750000 0.3750000 ) 5 Si tau( 5) = ( 0.1250000 0.1250000 0.1250000 ) 6 Si tau( 6) = ( 0.6250000 0.6250000 0.1250000 ) 7 Si tau( 7) = ( 0.6250000 0.1250000 0.6250000 ) 8 Si tau( 8) = ( 0.1250000 0.6250000 0.6250000 ) number of k points= 63 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 G cutoff = 210.0031 ( 12893 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 31.99557, renormalised to 32.00000 Starting wfc are random total cpu time spent up to now is 4.34 secs per-process dynamical memory: 8.5 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.7 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.61E-04, avg # of iterations = 1.5 Davidson diagonalization with overlap ethr = 7.61E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 7.61E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.846580054630472E-002,-2.758280299918536E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.283703569008579E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.866406775570338E-002,5.958192561892954E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 2.767343961196250E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.345104629130683,5.909234794026798E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.777144660112236 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -1.283703569008579E-002 2 2.767343961196250E-002 3 0.777144660112236 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 138.60 secs total energy = -63.06626373 Ry Harris-Foulkes estimate = -63.00070328 Ry estimated scf accuracy < 0.24732935 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.73E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 7.73E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 7.73E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.349178551733472E-002,-7.493240220955030E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) -3.672899217304521E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.354845826647028E-002,2.848944924513999E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.395593633627084E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.337134129241638,6.347466078728202E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.852817418355932 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -3.672899217304521E-003 2 1.395593633627084E-002 3 0.852817418355932 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 194.51 secs total energy = -63.06658720 Ry Harris-Foulkes estimate = -62.95690874 Ry estimated scf accuracy < 0.04209916 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.32E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.32E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.32E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.003732100867866E-002,-4.541463420692502E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) -2.311458616472792E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.004820086355478E-002,1.502882460642592E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 7.648257051537932E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.330565885164325,6.512999603927223E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.891473869186882 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -2.311458616472792E-003 2 7.648257051537932E-003 3 0.891473869186882 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 250.35 secs total energy = -63.06898945 Ry Harris-Foulkes estimate = -62.95290653 Ry estimated scf accuracy < 0.00068128 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.13E-06, avg # of iterations = 3.4 Davidson diagonalization with overlap ethr = 2.13E-06, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.13E-06, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.966059258821137E-002,-5.889410125019951E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -3.010115057810071E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.966393254224050E-002,-1.150534967425624E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) -5.880238491999361E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329302623191886,6.717211656984547E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.922123600349487 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -3.010115057810071E-004 2 -5.880238491999361E-004 3 0.922123600349487 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 308.49 secs total energy = -63.06909581 Ry Harris-Foulkes estimate = -62.95300099 Ry estimated scf accuracy < 0.00000465 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 4.0 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 1.1 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.962889414088730E-002,-1.951518499691881E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) -9.977863024737818E-007 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.962847405004415E-002,-2.910604378864389E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.488161548800962E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329111459445600,6.749672356229089E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.926983152796620 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -9.977863024737818E-007 2 -1.488161548800962E-005 3 0.926983152796620 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 372.03 secs total energy = -63.06909802 Ry Harris-Foulkes estimate = -62.95299706 Ry estimated scf accuracy < 0.00000044 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 2.2 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.964263034703646E-002,-1.825690700752899E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) -9.333091320137365E-006 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.964254287090781E-002,1.890386063266431E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) 9.663829129593618E-007 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329142548643606,6.746596736482731E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.926487021997254 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -9.333091320137365E-006 2 9.663829129593618E-007 3 0.926487021997254 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 430.64 secs total energy = -63.06909802 Ry Harris-Foulkes estimate = -62.95299792 Ry estimated scf accuracy < 0.00000005 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 2.1 Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.964538342142926E-002,-2.363345217613312E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.208125742863772E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.964534073840011E-002,-9.417603414440097E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) -4.814216075399945E-006 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329149677364304,6.746060422482718E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.926395840102385 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -1.208125742863772E-005 2 -4.814216075399945E-006 3 0.926395840102385 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 490.06 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5816 -1.3524 -1.3524 -1.3523 -1.3523 -1.3523 -1.3523 3.5784 3.5784 3.5796 3.5796 3.5796 3.5796 6.4873 6.4889 6.4889 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4905 -2.4220 -1.3216 -1.3216 -1.3216 -1.3215 -0.1753 3.3336 3.3336 3.3336 3.3336 3.6603 3.6604 5.9839 6.1476 6.1476 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2182 -3.3590 -1.2481 -1.2481 -1.2481 -1.2481 1.0776 2.8850 2.8850 2.8850 2.8850 3.9043 3.9044 4.9086 5.4913 5.4913 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7679 -4.1454 -1.1842 -1.1842 -1.1841 -1.1841 2.3696 2.5820 2.5820 2.5821 2.5821 3.6630 4.3031 4.3031 4.8436 4.8437 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7679 -4.1454 -1.1842 -1.1842 -1.1841 -1.1841 2.3696 2.5820 2.5820 2.5821 2.5821 3.6630 4.3031 4.3031 4.8436 4.8437 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2182 -3.3590 -1.2481 -1.2481 -1.2481 -1.2481 1.0776 2.8850 2.8850 2.8850 2.8850 3.9043 3.9044 4.9086 5.4913 5.4913 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4905 -2.4220 -1.3216 -1.3216 -1.3216 -1.3215 -0.1753 3.3336 3.3336 3.3336 3.3336 3.6603 3.6604 5.9839 6.1476 6.1476 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9698 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9697 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9698 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2949 0.8540 0.8540 1.9698 2.7853 2.8409 2.8409 4.0238 4.1432 4.1432 4.3342 5.9167 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5321 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2359 5.2934 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2360 5.2934 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3444 0.5322 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2950 0.8541 0.8541 1.9699 2.7853 2.8409 2.8409 4.0238 4.1432 4.1433 4.3342 5.9167 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6293 5.8277 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6292 5.8277 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9698 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2950 0.8541 0.8541 1.9699 2.7853 2.8409 2.8409 4.0238 4.1432 4.1433 4.3342 5.9167 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6292 5.8277 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6293 5.8277 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2949 0.8540 0.8540 1.9698 2.7853 2.8409 2.8409 4.0238 4.1432 4.1432 4.3342 5.9167 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3444 0.5322 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2360 5.2934 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2359 5.2934 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5321 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 ! total energy = -63.06909807 Ry Harris-Foulkes estimate = -62.95299811 Ry estimated scf accuracy < 3.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.83196098 Ry hartree contribution = 4.30330495 Ry xc contribution = -19.35642184 Ry ewald contribution = -67.73184220 Ry convergence has been achieved in 7 iterations Writing output data file silicon.save PWSCF : 8m10.34s CPU time, 9m 4.03s wall time init_run : 4.29s CPU electrons : 485.72s CPU Called by init_run: wfcinit : 4.01s CPU potinit : 0.06s CPU Called by electrons: c_bands : 286.38s CPU ( 24 calls, 11.932 s avg) sum_band : 13.16s CPU ( 8 calls, 1.645 s avg) v_of_rho : 0.35s CPU ( 8 calls, 0.044 s avg) mix_rho : 0.04s CPU ( 8 calls, 0.005 s avg) Called by c_bands: init_us_2 : 2.86s CPU ( 2079 calls, 0.001 s avg) cegterg : 278.07s CPU ( 1512 calls, 0.184 s avg) Called by *egterg: h_psi : 250.45s CPU ( 4096 calls, 0.061 s avg) g_psi : 2.76s CPU ( 2521 calls, 0.001 s avg) cdiaghg : 4.94s CPU ( 3718 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 7.93s CPU ( 4096 calls, 0.002 s avg) General routines calbec : 9.18s CPU ( 4096 calls, 0.002 s avg) cft3 : 0.17s CPU ( 81 calls, 0.002 s avg) cft3s : 172.67s CPU ( 122112 calls, 0.001 s avg) davcio : 0.18s CPU ( 16821 calls, 0.000 s avg) espresso-5.0.2/PW/examples/example10/run_example0000755000700200004540000000775012053145630020575 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform electronic structure" $ECHO "calculations in the presence of a finite homogeneous electric field " $ECHO "described through the modern theory of the polarization. The example" $ECHO "shows how to calculate high-frequency dielectric constant of bulk Silicon" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pbe-rrkj.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > si.scf.efield.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='silicon', lelfield=.true., nberrycyc=1 pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0 / &electrons diagonalization='david', conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='random', efield_cart(1)=0.d0,efield_cart(2)=0.d0,efield_cart(3)=0.d0 / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.125 -0.125 -0.125 Si 0.375 0.375 -0.125 Si 0.375 -0.125 0.375 Si -0.125 0.375 0.375 Si 0.125 0.125 0.125 Si 0.625 0.625 0.125 Si 0.625 0.125 0.625 Si 0.125 0.625 0.625 K_POINTS {automatic} 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.0 a.u. ...\c" $PW_COMMAND < si.scf.efield.in > si.scf.efield.out check_failure $? $ECHO " done" cat > si.scf.efield2.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='silicon', lelfield=.true., nberrycyc=3 pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0 / &electrons diagonalization='david', conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='random', efield_cart(1)=0.d0,efield_cart(2)=0.d0,efield_cart(3)=0.001d0 / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.125 -0.125 -0.125 Si 0.375 0.375 -0.125 Si 0.375 -0.125 0.375 Si -0.125 0.375 0.375 Si 0.125 0.125 0.125 Si 0.625 0.625 0.125 Si 0.625 0.125 0.625 Si 0.125 0.625 0.625 K_POINTS {automatic} 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.001 a.u. ...\c" $PW_COMMAND < si.scf.efield2.in > si.scf.efield2.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example10/run_xml_example0000755000700200004540000001756712053145630021464 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform electronic structure" $ECHO "calculations in the presence of a finite homogeneous electric field " $ECHO "described through the modern theory of the polarization. The example" $ECHO "shows how to calculate high-frequency dielectric constant of bulk Silicon" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pbe-rrkj.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > si.scf.efield.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pbe-rrkj.UPF -0.125 -0.125 -0.125 0.375 0.375 -0.125 0.375 -0.125 0.375 -0.125 0.375 0.375 0.125 0.125 0.125 0.625 0.625 0.125 0.625 0.125 0.625 0.125 0.625 0.625 from_scratch $PSEUDO_DIR/ $TMP_DIR/ random 20.0 david 0.5 1.0d-8 true 1 0.d0 0.d0 0.d0 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.0 a.u. ...\c" $PW_COMMAND < si.scf.efield.xml > si.scf.efield.out check_failure $? $ECHO " done" cat > si.scf.efield2.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pbe-rrkj.UPF -0.125 -0.125 -0.125 0.375 0.375 -0.125 0.375 -0.125 0.375 -0.125 0.375 0.375 0.125 0.125 0.125 0.625 0.625 0.125 0.625 0.125 0.625 0.125 0.625 0.625 from_scratch $PSEUDO_DIR/ $TMP_DIR/ random 20.0 david 0.5 1.0d-8 true 3 0.d0 0.d0 0.001d0 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.001 a.u. ...\c" $PW_COMMAND < si.scf.efield2.xml > si.scf.efield2.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/example10/README0000644000700200004540000001241712053145630017204 0ustar marsamoscmThis example shows how to perform electronic structure calculations using pw.x for a system undergoing the presence of a static homogeneous finite electric field. The method is explained in: P. Umari and A. Pasquarello, PRL 89,157602 (2002) I. Souza, J.Iniguez, and D.Vanderbilt, PRL 89, 117602 (2002) T The concerned parameters are: In namelist &CONTROL lelfield LOGICAL ( default = .FALSE. ) If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. gdir INTEGER For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.), gdir is the direction of the field This is NOT USED if K_POINTS {automatic} IS PRESENT nppstr INTEGER For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield==.true.) This is NOT USED if K_POINTS {automatic} IS PRESENT nberrycyc INTEGER ( default = 1 ) In the case of a finite electric field (lelfield==.true.) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density In namelist &ELECTRONS efield REAL ( default = 0.D0 ) For finite electric field calculations (lelfield == .true.), it defines the intensity of the field in a.u. This is NOT USED if K_POINTS {automatic} IS PRESENT in the case of K_POINTS {automatic} the electric field is given in Cartesian coordinates through: efield_cart(1) 1st component of the electric field in (Rydberg-type) atomic units efield_cart(2) 2st component of the electric field in (Rydberg-type) atomic units efield_cart(3) 3rd component of the electric field in (Rydberg-type) atomic units To perform a calculations with an electric field, an estimate of the optimized wavefunctions is needed to build the electric field operator (See: I. Souza, J.Iniguez and D. Vanderbilt, PRB 69, 085106, 2004). Therefore when lelfield ==.true. a copy of the wavefunctions is read from disk (i.e. startingwfc should be 'file'). When K_POINTS {automatic} IS NOT present The parameters GDIR defines the direction of the electric field. The k_points must be given as a series of k-points-strings. A k-points-string is a series of NPPSTR uniform spaced k-points along the direction gdir. All the k-points in a string must have the same weight. PAY ATTENTION: in pw.x the default units for k-points coordinates is 2pi/alat and NOT crystalline units. Example of k-strings: nppstr=4 gdir=1 0.0 KY KZ 1. 0.25 KY KZ 1. 0.50 KY KZ 1. 0.75 KY KZ 1. nppstr=4 gdir=3 KX KY 0.0 1. KX KY 0.25 1. KX KY 0.50 1. KX KY 0.75 1. When K_POINTS {automatic} IS present the string are calculated directly by pw.x and the electric field must be given in Cartesian coordinates, also the Polarization (electronic and ionic) is then reported in Cartesian coordinates For every usual iteration of pw.x when the Hartree and exchange-correlation potentials are kept fixed, when lelfield==.true. there are NBERRYCYC iterations. During each of these iterations, the electric field operator (which depends on the wave-functions) is kept fixed; then the new electric field operator is built from the eigen-wavefunctions, and a new iteration starts. This has been introduced because the electric field Hamiltonian depends self consistently on the wavefunctions. For every iteration on the charge (usual pw.x iterations), the code reports the Electronic and Ionic Dipole in a.u. per unit cell and the expectations values of the operator e^{+iGz}. The letter is given for the corresponding supercell containing N_kx*N_ky*N_kz unit cells (N_kx,N_ky,N_kz are the number of k-points along x,y,z) Example: With this example, we show how to calculate the dielectric constant of bulk silicon. The system is described by a 8-atom cubic unit cell. We use a regular mesh of 3X3X7 k-points, where we have 7 k-points along the directions of the electric field: gdir=3,nppstr=7 The first calculation just calculates the electronic structure without electric field. The second calculation turns on the field but with 0 a.u. intensity. The third calculation applies a field of 0.001 a.u.. The electronic dipole D[0.a.u.] at 0 field is a small number in the order of 1.0d-4. After the third calculation the electronic dipole D[0.001 a.u.] at 0.001 a.u. field is 0.9265. The high-frequency dielectric constant eps_inf is then given by eps_inf=4*pi*(D[0.001 a.u.]-D[0.0 a.u.])/(0.001 a.u. * Omega) + 1 where Omega is the volume of the unit cell (1054.9778 (a.u.)^3). We obtain: eps_inf=12.04 (Compare: other DFT calculations, 12.7-13.1 , exp. 11.4 ) The result 12.14 is not fully converged with respect to the k-points grid P.Umari and A. Pasquarello, PRB 68, 085114 (2003). espresso-5.0.2/PW/examples/vdwDF_example/0000755000700200004540000000000012053440301017241 5ustar marsamoscmespresso-5.0.2/PW/examples/vdwDF_example/reference/0000755000700200004540000000000012053440303021201 5ustar marsamoscmespresso-5.0.2/PW/examples/vdwDF_example/reference/water.scf.out0000644000700200004540000005143312053145630023641 0ustar marsamoscm Program PWSCF v.> 4.2 starts on 25Jan2011 at 15:38:33 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 1539, nstw = 258, nsts = 1025 n.st n.stw n.sts n.g n.gw n.gs min 768 127 512 40311 2739 21932 max 770 130 513 40318 2746 21968 3077 515 2049 161263 10971 87777 bravais-lattice index = 8 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3953.7707 (a.u.)^3 number of atoms/cell = 6 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 15.000000 celldm(2)= 0.954545 celldm(3)= 1.227273 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 0.954545 0.000000 ) a(3) = ( 0.000000 0.000000 1.227273 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.047619 0.000000 ) b(3) = ( 0.000000 0.000000 0.814815 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) 2 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_s (m) there are 2 classes the character table: E s A' 1.00 1.00 A'' 1.00 -1.00 the symmetry operations in each class: E 1 s 2 Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 ) 2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 ) 3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 ) 4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 ) 5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 ) 6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 ) 2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673461 ) 3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 ) 4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 ) 5 H tau( 5) = ( -0.0975766 0.0688239 0.3367766 ) 6 H tau( 6) = ( 0.0975766 0.0688239 0.3367766 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1025.8770 ( 80632 G-vectors) FFT grid: ( 72, 64, 80) G cutoff = 683.9180 ( 43889 G-vectors) smooth grid: ( 54, 50, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.17 Mb ( 1373, 8) NL pseudopotentials 0.50 Mb ( 1373, 24) Each V/rho on FFT grid 1.41 Mb ( 92160) Each G-vector array 0.15 Mb ( 20158) G-vector shells 0.07 Mb ( 9015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.34 Mb ( 1373, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 24, 8) Arrays for rho mixing 11.25 Mb ( 92160, 8) Initial potential from superposition of free atoms starting charge 15.61518, renormalised to 16.00000 negative rho (up, down): 0.281E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.274904696116047 ---------------------------------------------------------------- Starting wfc are 12 atomic wfcs total cpu time spent up to now is 3.83 secs per-process dynamical memory: 43.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.249E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.301859606238180 ---------------------------------------------------------------- total cpu time spent up to now is 6.04 secs total energy = -68.62054345 Ry Harris-Foulkes estimate = -69.74338030 Ry estimated scf accuracy < 1.46176767 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-03, avg # of iterations = 2.0 negative rho (up, down): 0.806E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.299176558067486 ---------------------------------------------------------------- total cpu time spent up to now is 8.21 secs total energy = -68.83477871 Ry Harris-Foulkes estimate = -69.33634384 Ry estimated scf accuracy < 0.97176223 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.07E-03, avg # of iterations = 2.0 negative rho (up, down): 0.687E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304378686108314 ---------------------------------------------------------------- total cpu time spent up to now is 10.30 secs total energy = -69.04855398 Ry Harris-Foulkes estimate = -69.06844693 Ry estimated scf accuracy < 0.03452251 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-04, avg # of iterations = 2.0 negative rho (up, down): 0.639E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.303938430184660 ---------------------------------------------------------------- total cpu time spent up to now is 12.39 secs total energy = -69.05564659 Ry Harris-Foulkes estimate = -69.05601332 Ry estimated scf accuracy < 0.00065530 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.10E-06, avg # of iterations = 2.0 negative rho (up, down): 0.177E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304125165708814 ---------------------------------------------------------------- total cpu time spent up to now is 14.47 secs total energy = -69.05584470 Ry Harris-Foulkes estimate = -69.05582135 Ry estimated scf accuracy < 0.00002804 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-07, avg # of iterations = 2.0 negative rho (up, down): 0.187E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109872827670 ---------------------------------------------------------------- total cpu time spent up to now is 16.53 secs total energy = -69.05584769 Ry Harris-Foulkes estimate = -69.05584984 Ry estimated scf accuracy < 0.00000254 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304110383940431 ---------------------------------------------------------------- total cpu time spent up to now is 18.59 secs total energy = -69.05584799 Ry Harris-Foulkes estimate = -69.05584814 Ry estimated scf accuracy < 0.00000005 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.93E-10, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109884755319 ---------------------------------------------------------------- total cpu time spent up to now is 20.65 secs total energy = -69.05584798 Ry Harris-Foulkes estimate = -69.05584800 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.39E-11, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109294756646 ---------------------------------------------------------------- total cpu time spent up to now is 22.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev): -25.6442 -24.2676 -13.5673 -12.2979 -9.7601 -8.3492 -7.6831 -6.4201 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -69.05584800 Ry Harris-Foulkes estimate = -69.05584798 Ry estimated scf accuracy < 7.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -122.46795392 Ry hartree contribution = 64.43483108 Ry xc contribution = -17.37518989 Ry ewald contribution = 6.35246473 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00094057 -0.00216126 atom 2 type 2 force = 0.00000000 0.00013998 0.00068311 atom 3 type 2 force = 0.00000000 -0.00035102 0.00014004 atom 4 type 1 force = 0.00000000 0.00088157 0.00119056 atom 5 type 2 force = 0.00002030 -0.00080555 0.00007378 atom 6 type 2 force = -0.00002030 -0.00080555 0.00007378 Total force = 0.003113 Total SCF correction = 0.000038 entering subroutine stress ... VDW GRADIENT stress 0.00000366 0.00000000 0.00000000 0.00000000 0.00000346 0.00000000 0.00000000 -0.00000002 0.00000315 VDW KERNEL stress -0.00002787 0.00000000 0.00000000 0.00000000 -0.00002821 0.00000000 0.00000000 -0.00000003 -0.00002322 VDW ALL stress 0.00002421 0.00000000 0.00000000 0.00000000 0.00002475 0.00000004 0.00000000 0.00000004 0.00002007 total stress (Ry/bohr**3) (kbar) P= -1.07 -0.00000740 0.00000000 0.00000000 -1.09 0.00 0.00 0.00000000 -0.00000655 -0.00000048 0.00 -0.96 -0.07 0.00000000 -0.00000048 -0.00000784 0.00 -0.07 -1.15 kinetic stress (kbar) 773.91 0.00 0.00 0.00 795.27 35.09 0.00 35.09 748.19 local stress (kbar) -1260.29 0.00 0.00 0.00 -1418.75 -162.43 0.00 -162.43 -2492.38 nonloc. stress (kbar) 278.33 0.00 0.00 0.00 280.61 11.21 0.00 11.21 269.14 hartree stress (kbar) 584.70 0.00 0.00 0.00 685.80 102.02 0.00 102.02 1126.88 exc-cor stress (kbar) -207.39 0.00 0.00 0.00 -207.96 -1.03 0.00 -1.03 -205.77 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -173.91 0.00 0.00 0.00 -139.58 15.06 0.00 15.06 549.84 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 3.56 0.00 0.00 0.00 3.64 0.01 0.00 0.01 2.95 Writing output data file water_vdw.save init_run : 3.38s CPU 3.47s WALL ( 1 calls) electrons : 18.42s CPU 18.77s WALL ( 1 calls) forces : 0.92s CPU 0.92s WALL ( 1 calls) stress : 3.55s CPU 3.60s WALL ( 1 calls) Called by init_run: wfcinit : 0.06s CPU 0.07s WALL ( 1 calls) potinit : 2.29s CPU 2.36s WALL ( 1 calls) Called by electrons: c_bands : 1.09s CPU 1.09s WALL ( 9 calls) sum_band : 1.57s CPU 1.58s WALL ( 9 calls) v_of_rho : 15.52s CPU 15.68s WALL ( 10 calls) v_h : 0.20s CPU 0.20s WALL ( 10 calls) v_xc : 15.32s CPU 15.47s WALL ( 10 calls) newd : 0.98s CPU 0.99s WALL ( 10 calls) mix_rho : 0.37s CPU 0.37s WALL ( 9 calls) vdW_energy : 1.76s CPU 1.76s WALL ( 10 calls) vdW_ffts : 7.28s CPU 7.32s WALL ( 22 calls) vdW_v : 2.87s CPU 2.88s WALL ( 10 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 19 calls) regterg : 1.06s CPU 1.06s WALL ( 9 calls) Called by sum_band: sum_band:bec : 0.00s CPU 0.00s WALL ( 9 calls) addusdens : 0.74s CPU 0.74s WALL ( 9 calls) Called by *egterg: h_psi : 1.02s CPU 1.02s WALL ( 28 calls) s_psi : 0.01s CPU 0.02s WALL ( 28 calls) g_psi : 0.00s CPU 0.01s WALL ( 18 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 27 calls) regterg:over : 0.02s CPU 0.02s WALL ( 18 calls) regterg:upda : 0.02s CPU 0.01s WALL ( 18 calls) regterg:last : 0.00s CPU 0.01s WALL ( 9 calls) Called by h_psi: h_psi:vloc : 0.97s CPU 0.97s WALL ( 28 calls) h_psi:vnl : 0.04s CPU 0.05s WALL ( 28 calls) add_vuspsi : 0.02s CPU 0.02s WALL ( 28 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 42 calls) fft : 9.98s CPU 10.05s WALL ( 605 calls) ffts : 0.14s CPU 0.15s WALL ( 19 calls) fftw : 0.97s CPU 0.98s WALL ( 254 calls) interpolate : 0.50s CPU 0.51s WALL ( 19 calls) davcio : 0.00s CPU 0.01s WALL ( 9 calls) Parallel routines fft_scatter : 3.23s CPU 3.27s WALL ( 878 calls) PWSCF : 26.67s CPU 27.31s WALL This run was terminated on: 15:39: 1 25Jan2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/reference/Ar.scf.out0000644000700200004540000005515312053145630023064 0ustar marsamoscm Program PWSCF v.> 4.2 starts on 25Jan2011 at 15:42: 5 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Warning: card &IONS ignored Warning: card ION_DYNAMICS = 'BFGS' ignored Warning: card / ignored XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used warning: symmetry operation # 3 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates Stick Mesh ---------- nst = 4597, nstw = 1153, nsts = 4597 n.st n.stw n.sts n.g n.gw n.gs min 2298 575 2298 244238 30529 244238 max 2299 578 2299 244242 30534 244242 9193 2305 9193 976959 122127 976959 bravais-lattice index = 8 lattice parameter (a_0) = 19.0000 a.u. unit-cell volume = 10108.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-11 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 19.000000 celldm(2)= 1.000000 celldm(3)= 1.473684 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.473684 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.678571 ) PseudoPot. # 1 for Ar read from file Ar.pz-rrkj.UPF MD5 check sum: d89ce2692885da7fe9b9d8f94428612f Pseudo is Norm-conserving, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 967 points, 2 beta functions with: l(1) = 0 l(2) = 1 vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential Ar 8.00 36.00000 Ar( 1.00) 8 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 180 deg rotation - cart. axis [0,0,1] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 -1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 3 90 deg rotation - cart. axis [0,0,-1] cryst. s( 3) = ( 0 -1 0 ) f =( 0.0000000 ) ( 1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 3) = ( 0.0000000 1.0000000 0.0000000 ) f =( 0.0000000 ) ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 4 90 deg rotation - cart. axis [0,0,1] cryst. s( 4) = ( 0 1 0 ) f =( 0.0000000 ) ( -1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 4) = ( 0.0000000 -1.0000000 0.0000000 ) f =( 0.0000000 ) ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 5 inv. 180 deg rotation - cart. axis [0,1,0] cryst. s( 5) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 -1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 6 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 6) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 6) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 7 inv. 180 deg rotation - cart. axis [1,1,0] cryst. s( 7) = ( 0 -1 0 ) f =( 0.0000000 ) ( -1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 7) = ( 0.0000000 -1.0000000 0.0000000 ) f =( 0.0000000 ) ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 8 inv. 180 deg rotation - cart. axis [1,-1,0] cryst. s( 8) = ( 0 1 0 ) f =( 0.0000000 ) ( 1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 8) = ( 0.0000000 1.0000000 0.0000000 ) f =( 0.0000000 ) ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Cartesian axes site n. atom positions (a_0 units) 1 Ar tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ar tau( 2) = ( 0.0000000 0.0000000 0.4475667 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 Ar tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ar tau( 2) = ( 0.0000000 0.0000000 0.3037060 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 2926.1558 ( 488480 G-vectors) FFT grid: (120,120,160) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.86 Mb ( 15266, 8) NL pseudopotentials 1.86 Mb ( 15266, 8) Each V/rho on FFT grid 8.79 Mb ( 576000) Each G-vector array 0.93 Mb ( 122119) G-vector shells 0.27 Mb ( 35242) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 3.73 Mb ( 15266, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 70.31 Mb ( 576000, 8) Initial potential from superposition of free atoms starting charge 16.00000, renormalised to 16.00000 negative rho (up, down): 0.514E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.294217152047509 ---------------------------------------------------------------- Starting wfc are 8 atomic wfcs total cpu time spent up to now is 14.30 secs per-process dynamical memory: 142.3 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.90E-05, avg # of iterations = 2.0 negative rho (up, down): 0.124E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.294842335497814 ---------------------------------------------------------------- total cpu time spent up to now is 29.07 secs total energy = -85.03068417 Ry Harris-Foulkes estimate = -85.03481126 Ry estimated scf accuracy < 0.00672415 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.20E-05, avg # of iterations = 2.0 negative rho (up, down): 0.469E-05 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.294519959562233 ---------------------------------------------------------------- total cpu time spent up to now is 42.76 secs total energy = -85.03232781 Ry Harris-Foulkes estimate = -85.03267407 Ry estimated scf accuracy < 0.00061882 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.87E-06, avg # of iterations = 2.0 negative rho (up, down): 0.156E-06 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.294460488587944 ---------------------------------------------------------------- total cpu time spent up to now is 56.56 secs total energy = -85.03247841 Ry Harris-Foulkes estimate = -85.03246759 Ry estimated scf accuracy < 0.00001389 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.68E-08, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458333949507 ---------------------------------------------------------------- total cpu time spent up to now is 70.35 secs total energy = -85.03247988 Ry Harris-Foulkes estimate = -85.03248007 Ry estimated scf accuracy < 0.00000033 Ry iteration # 5 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458909809619 ---------------------------------------------------------------- total cpu time spent up to now is 84.13 secs total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247997 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.59E-11, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458920738928 ---------------------------------------------------------------- total cpu time spent up to now is 97.98 secs total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247999 Ry estimated scf accuracy < 5.6E-11 Ry iteration # 7 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-13, avg # of iterations = 3.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458902517531 ---------------------------------------------------------------- total cpu time spent up to now is 112.36 secs total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247999 Ry estimated scf accuracy < 1.3E-11 Ry iteration # 8 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.27E-14, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458871916206 ---------------------------------------------------------------- total cpu time spent up to now is 125.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 61064 PWs) bands (ev): -24.2551 -24.2507 -10.2716 -10.2311 -10.2311 -10.2191 -10.2191 -10.1802 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247999 Ry estimated scf accuracy < 3.3E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -110.00116009 Ry hartree contribution = 56.57257683 Ry xc contribution = -15.05845253 Ry ewald contribution = -16.54544419 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00061300 atom 2 type 1 force = 0.00000000 0.00000000 -0.00061300 Total force = 0.000867 Total SCF correction = 0.000001 entering subroutine stress ... VDW GRADIENT stress 0.00000142 0.00000000 0.00000000 0.00000000 0.00000142 0.00000000 0.00000000 0.00000000 0.00000139 VDW KERNEL stress -0.00000961 0.00000000 0.00000000 0.00000000 -0.00000961 0.00000000 0.00000000 0.00000000 -0.00000923 VDW ALL stress 0.00000819 0.00000000 0.00000000 0.00000000 0.00000819 0.00000000 0.00000000 0.00000000 0.00000784 total stress (Ry/bohr**3) (kbar) P= 0.19 0.00000147 0.00000000 0.00000000 0.22 0.00 0.00 0.00000000 0.00000147 0.00000000 0.00 0.22 0.00 0.00000000 0.00000000 0.00000096 0.00 0.00 0.14 kinetic stress (kbar) 304.99 0.00 0.00 0.00 304.99 0.00 0.00 0.00 304.97 local stress (kbar) -751.45 0.00 0.00 0.00 -751.45 0.00 0.00 0.00 -947.57 nonloc. stress (kbar) 386.64 0.00 0.00 0.00 386.64 0.00 0.00 0.00 386.63 hartree stress (kbar) 244.43 0.00 0.00 0.00 244.43 0.00 0.00 0.00 334.46 exc-cor stress (kbar) -69.97 0.00 0.00 0.00 -69.97 0.00 0.00 0.00 -69.97 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -115.63 0.00 0.00 0.00 -115.63 0.00 0.00 0.00 -9.53 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 1.20 0.00 0.00 0.00 1.20 0.00 0.00 0.00 1.15 Writing output data file Ar_vdw.save init_run : 13.56s CPU 13.95s WALL ( 1 calls) electrons : 107.43s CPU 110.86s WALL ( 1 calls) forces : 1.38s CPU 1.38s WALL ( 1 calls) stress : 15.40s CPU 15.88s WALL ( 1 calls) Called by init_run: wfcinit : 0.57s CPU 0.58s WALL ( 1 calls) potinit : 11.38s CPU 11.70s WALL ( 1 calls) Called by electrons: c_bands : 15.27s CPU 15.33s WALL ( 9 calls) sum_band : 5.56s CPU 5.57s WALL ( 9 calls) v_of_rho : 92.66s CPU 95.19s WALL ( 9 calls) v_h : 1.39s CPU 1.48s WALL ( 9 calls) v_xc : 91.28s CPU 93.71s WALL ( 9 calls) mix_rho : 2.05s CPU 2.06s WALL ( 9 calls) vdW_energy : 9.04s CPU 9.04s WALL ( 9 calls) vdW_ffts : 49.33s CPU 49.40s WALL ( 20 calls) vdW_v : 18.15s CPU 18.17s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.15s CPU 0.15s WALL ( 19 calls) regterg : 15.14s CPU 15.19s WALL ( 9 calls) Called by sum_band: Called by *egterg: h_psi : 14.87s CPU 14.93s WALL ( 28 calls) g_psi : 0.06s CPU 0.06s WALL ( 18 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 26 calls) regterg:over : 0.23s CPU 0.23s WALL ( 18 calls) regterg:upda : 0.23s CPU 0.23s WALL ( 18 calls) regterg:last : 0.08s CPU 0.08s WALL ( 9 calls) Called by h_psi: h_psi:vloc : 14.56s CPU 14.61s WALL ( 28 calls) h_psi:vnl : 0.23s CPU 0.23s WALL ( 28 calls) add_vuspsi : 0.10s CPU 0.10s WALL ( 28 calls) General routines calbec : 0.15s CPU 0.15s WALL ( 33 calls) fft : 62.81s CPU 63.08s WALL ( 509 calls) fftw : 15.06s CPU 15.12s WALL ( 242 calls) davcio : 0.00s CPU 0.03s WALL ( 8 calls) Parallel routines fft_scatter : 19.36s CPU 19.51s WALL ( 751 calls) PWSCF : 2m18.38s CPU 2m22.91s WALL This run was terminated on: 15:44:28 25Jan2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/reference/graphite.scf.out0000644000700200004540000022663212053145630024327 0ustar marsamoscm Program PWSCF v.> 4.2 starts on 25Jan2011 at 15:38: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 64 15 46 2392 275 1299 max 67 16 47 2397 278 1307 265 61 187 9583 1107 5211 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 G cutoff = 98.2127 ( 9583 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5211 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 163, 8) NL pseudopotentials 0.08 Mb ( 163, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2397) G-vector shells 0.02 Mb ( 2397) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 163, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 --------------------------------------------------------------------------------- Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.86 secs per-process dynamical memory: 23.0 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 1.18 secs total energy = -45.81465546 Ry Harris-Foulkes estimate = -46.06058052 Ry estimated scf accuracy < 0.43927239 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.48 secs total energy = -45.88011201 Ry Harris-Foulkes estimate = -45.87885162 Ry estimated scf accuracy < 0.00557033 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.76 secs total energy = -45.88094023 Ry Harris-Foulkes estimate = -45.88073512 Ry estimated scf accuracy < 0.00041540 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 1.9 total cpu time spent up to now is 2.03 secs total energy = -45.88099093 Ry Harris-Foulkes estimate = -45.88098783 Ry estimated scf accuracy < 0.00000300 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-08, avg # of iterations = 3.5 total cpu time spent up to now is 2.38 secs total energy = -45.88099389 Ry Harris-Foulkes estimate = -45.88099383 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 3.2 total cpu time spent up to now is 2.72 secs total energy = -45.88099390 Ry Harris-Foulkes estimate = -45.88099393 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-10, avg # of iterations = 2.6 total cpu time spent up to now is 3.03 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5262 -11.2690 -0.0600 0.6953 0.7346 1.6559 1.7758 1.8032 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4539 -11.3474 0.3855 0.7067 0.7240 1.0880 1.7832 1.7945 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0011 -7.8096 -5.0818 -4.9385 -0.5091 -0.4371 3.9426 5.0423 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9464 -7.8672 -5.0411 -4.9817 -0.4884 -0.4585 4.2592 4.7176 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0762 -9.8436 -2.0908 -1.9919 0.2606 0.3205 1.6678 3.2325 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0104 -9.9142 -2.0622 -2.0213 0.2777 0.3025 2.0794 2.7207 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2632 -11.9935 -0.9540 0.8225 2.4767 2.5195 3.1453 3.1764 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.1874 -12.0758 -0.4940 0.2317 2.4892 2.5069 3.1544 3.1673 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3959 -6.3024 -5.4646 -5.4275 -2.7777 -2.6878 5.6598 6.2661 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3654 -6.3263 -5.4590 -5.4433 -2.7528 -2.7155 5.8915 6.1556 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3649 -9.1448 -3.7802 -3.6453 0.8446 0.8926 2.4635 3.8970 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3026 -9.2114 -3.7416 -3.6858 0.8586 0.8785 2.8477 3.4373 ! total energy = -45.88099388 Ry Harris-Foulkes estimate = -45.88099392 Ry estimated scf accuracy < 9.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.17916943 Ry hartree contribution = 13.63716887 Ry xc contribution = -14.42985937 Ry ewald contribution = -33.90913395 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001970 0.00000000 0.00000000 0.00000001 0.00001971 0.00000000 0.00000000 0.00000000 -0.00000611 VDW KERNEL stress -0.00006656 0.00000000 0.00000000 0.00000000 -0.00006656 0.00000000 0.00000000 0.00000000 -0.00054458 VDW ALL stress 0.00004686 -0.00000001 0.00000000 -0.00000001 0.00004685 0.00000000 0.00000000 0.00000000 0.00055069 total stress (Ry/bohr**3) (kbar) P= 36.00 0.00028267 0.00000000 0.00000000 41.58 0.00 0.00 0.00000000 0.00028267 0.00000000 0.00 41.58 0.00 0.00000000 0.00000000 0.00016876 0.00 0.00 24.83 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.8809938808 Ry new trust radius = 0.0125973069 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 236.98958 a.u.^3 ( 35.11823 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.737260937 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.368630468 C 0.500000000 0.288675135 1.368630468 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0456661), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1369983), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0456661), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1369983), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0456661), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1369983), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0456661), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1369983), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0456661), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1369983), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0456661), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1369983), wk = 0.1250000 extrapolated charge 16.06348, renormalised to 16.00000 total cpu time spent up to now is 3.74 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 4.05 secs total energy = -45.88097289 Ry Harris-Foulkes estimate = -45.84571985 Ry estimated scf accuracy < 0.00006511 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-07, avg # of iterations = 3.2 total cpu time spent up to now is 4.38 secs total energy = -45.88114675 Ry Harris-Foulkes estimate = -45.88118145 Ry estimated scf accuracy < 0.00009658 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-07, avg # of iterations = 1.9 total cpu time spent up to now is 4.65 secs total energy = -45.88113394 Ry Harris-Foulkes estimate = -45.88115029 Ry estimated scf accuracy < 0.00002723 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-07, avg # of iterations = 2.0 total cpu time spent up to now is 4.96 secs total energy = -45.88113907 Ry Harris-Foulkes estimate = -45.88114012 Ry estimated scf accuracy < 0.00000108 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.76E-09, avg # of iterations = 2.4 total cpu time spent up to now is 5.26 secs End of self-consistent calculation k = 0.1250 0.2165 0.0457 ( 646 PWs) bands (ev): -11.5678 -11.3183 -0.0906 0.6502 0.6881 1.5918 1.7304 1.7568 k = 0.1250 0.2165 0.1370 ( 654 PWs) bands (ev): -11.4975 -11.3943 0.3466 0.6611 0.6779 1.0356 1.7375 1.7484 k = 0.1250 0.5052 0.0457 ( 662 PWs) bands (ev): -8.0436 -7.8581 -5.1251 -4.9864 -0.5537 -0.4842 3.9090 4.9866 k = 0.1250 0.5052 0.1370 ( 662 PWs) bands (ev): -7.9906 -7.9139 -5.0857 -5.0282 -0.5336 -0.5049 4.2190 4.6680 k = 0.1250-0.3608 0.0457 ( 661 PWs) bands (ev): -10.1181 -9.8926 -2.1349 -2.0393 0.2158 0.2736 1.6364 3.1701 k = 0.1250-0.3608 0.1370 ( 657 PWs) bands (ev): -10.0543 -9.9610 -2.1072 -2.0676 0.2323 0.2563 2.0403 2.6690 k = 0.1250-0.0722 0.0457 ( 639 PWs) bands (ev): -12.3046 -12.0429 -0.9843 0.7577 2.4316 2.4727 3.1000 3.1298 k = 0.1250-0.0722 0.1370 ( 635 PWs) bands (ev): -12.2310 -12.1227 -0.5328 0.1790 2.4436 2.4606 3.1087 3.1211 k = 0.3750 0.6495 0.0457 ( 647 PWs) bands (ev): -6.4396 -6.3492 -5.5100 -5.4739 -2.8219 -2.7350 5.6245 6.2184 k = 0.3750 0.6495 0.1370 ( 662 PWs) bands (ev): -6.4102 -6.3725 -5.5043 -5.4891 -2.7978 -2.7617 5.8503 6.1084 k = 0.3750-0.2165 0.0457 ( 658 PWs) bands (ev): -9.4070 -9.1936 -3.8237 -3.6932 0.7996 0.8458 2.4316 3.8365 k = 0.3750-0.2165 0.1370 ( 656 PWs) bands (ev): -9.3465 -9.2582 -3.7863 -3.7323 0.8131 0.8322 2.8083 3.3862 ! total energy = -45.88113930 Ry Harris-Foulkes estimate = -45.88113931 Ry estimated scf accuracy < 3.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.48899678 Ry hartree contribution = 13.76491106 Ry xc contribution = -14.42909984 Ry ewald contribution = -33.72795374 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001971 0.00000000 0.00000000 0.00000001 0.00001972 0.00000000 0.00000000 0.00000000 -0.00000604 VDW KERNEL stress -0.00006630 0.00000000 0.00000000 0.00000000 -0.00006629 0.00000000 0.00000000 0.00000000 -0.00054496 VDW ALL stress 0.00004658 -0.00000001 0.00000000 -0.00000001 0.00004657 0.00000000 0.00000000 0.00000000 0.00055100 total stress (Ry/bohr**3) (kbar) P= 35.34 0.00028271 0.00000000 0.00000000 41.59 0.00 0.00 0.00000000 0.00028271 0.00000000 0.00 41.59 0.00 0.00000000 0.00000000 0.00015530 0.00 0.00 22.85 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.8809938808 Ry enthalpy new = -45.8811392992 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0188209847 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 238.40008 a.u.^3 ( 35.32725 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.753552342 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.376776171 C 0.500000000 0.288675135 1.376776171 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0453959), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1361877), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0453959), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1361877), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0453959), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1361877), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0453959), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1361877), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0453959), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1361877), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0453959), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1361877), wk = 0.1250000 extrapolated charge 16.09466, renormalised to 16.00000 total cpu time spent up to now is 5.96 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 6.29 secs total energy = -45.88095698 Ry Harris-Foulkes estimate = -45.82620101 Ry estimated scf accuracy < 0.00014861 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-07, avg # of iterations = 3.2 total cpu time spent up to now is 6.62 secs total energy = -45.88135136 Ry Harris-Foulkes estimate = -45.88143183 Ry estimated scf accuracy < 0.00022059 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-07, avg # of iterations = 1.9 total cpu time spent up to now is 6.89 secs total energy = -45.88132069 Ry Harris-Foulkes estimate = -45.88135954 Ry estimated scf accuracy < 0.00006210 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 7.20 secs total energy = -45.88133270 Ry Harris-Foulkes estimate = -45.88133464 Ry estimated scf accuracy < 0.00000223 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-08, avg # of iterations = 2.4 total cpu time spent up to now is 7.51 secs total energy = -45.88133315 Ry Harris-Foulkes estimate = -45.88133317 Ry estimated scf accuracy < 4.7E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-11, avg # of iterations = 3.2 total cpu time spent up to now is 7.85 secs total energy = -45.88133316 Ry Harris-Foulkes estimate = -45.88133316 Ry estimated scf accuracy < 3.8E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.39E-11, avg # of iterations = 1.8 total cpu time spent up to now is 8.11 secs total energy = -45.88133316 Ry Harris-Foulkes estimate = -45.88133316 Ry estimated scf accuracy < 1.1E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-12, avg # of iterations = 2.6 total cpu time spent up to now is 8.42 secs End of self-consistent calculation k = 0.1250 0.2165 0.0454 ( 646 PWs) bands (ev): -11.6293 -11.3910 -0.1361 0.5836 0.6194 1.4973 1.6633 1.6882 k = 0.1250 0.2165 0.1362 ( 654 PWs) bands (ev): -11.5621 -11.4635 0.2890 0.5939 0.6097 0.9581 1.6700 1.6804 k = 0.1250 0.5052 0.0454 ( 662 PWs) bands (ev): -8.1065 -7.9297 -5.1892 -5.0572 -0.6195 -0.5537 3.8590 4.9044 k = 0.1250 0.5052 0.1362 ( 662 PWs) bands (ev): -8.0560 -7.9828 -5.1516 -5.0969 -0.6005 -0.5732 4.1593 4.5947 k = 0.1250-0.3608 0.0454 ( 661 PWs) bands (ev): -10.1801 -9.9649 -2.2000 -2.1092 0.1496 0.2043 1.5899 3.0782 k = 0.1250-0.3608 0.1362 ( 657 PWs) bands (ev): -10.1192 -10.0301 -2.1737 -2.1361 0.1653 0.1880 1.9823 2.5926 k = 0.1250-0.0722 0.0454 ( 639 PWs) bands (ev): -12.3658 -12.1158 -1.0295 0.6621 2.3649 2.4038 3.0329 3.0611 k = 0.1250-0.0722 0.1362 ( 635 PWs) bands (ev): -12.2954 -12.1920 -0.5904 0.1011 2.3762 2.3924 3.0412 3.0529 k = 0.3750 0.6495 0.0454 ( 647 PWs) bands (ev): -6.5044 -6.4182 -5.5770 -5.5425 -2.8872 -2.8046 5.5719 6.1478 k = 0.3750 0.6495 0.1362 ( 662 PWs) bands (ev): -6.4765 -6.4406 -5.5713 -5.5568 -2.8643 -2.8300 5.7890 6.0387 k = 0.3750-0.2165 0.0454 ( 658 PWs) bands (ev): -9.4693 -9.2658 -3.8879 -3.7638 0.7331 0.7767 2.3840 3.7472 k = 0.3750-0.2165 0.1362 ( 656 PWs) bands (ev): -9.4115 -9.3272 -3.8523 -3.8010 0.7458 0.7639 2.7498 3.3107 ! total energy = -45.88133316 Ry Harris-Foulkes estimate = -45.88133316 Ry estimated scf accuracy < 3.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -11.95431490 Ry hartree contribution = 13.95713190 Ry xc contribution = -14.42796098 Ry ewald contribution = -33.45618918 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001972 0.00000000 0.00000000 0.00000001 0.00001973 0.00000000 0.00000000 0.00000000 -0.00000593 VDW KERNEL stress -0.00006590 0.00000000 0.00000000 0.00000000 -0.00006590 0.00000000 0.00000000 0.00000000 -0.00054548 VDW ALL stress 0.00004618 -0.00000001 0.00000000 -0.00000001 0.00004617 0.00000000 0.00000000 0.00000000 0.00055141 total stress (Ry/bohr**3) (kbar) P= 34.29 0.00028247 0.00000000 0.00000000 41.55 0.00 0.00 0.00000000 0.00028247 0.00000000 0.00 41.55 0.00 0.00000000 0.00000000 0.00013444 0.00 0.00 19.78 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.8811392992 Ry enthalpy new = -45.8813331607 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0280644454 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 240.51582 a.u.^3 ( 35.64077 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.777989449 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.388994725 C 0.500000000 0.288675135 1.388994725 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0449966), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1349897), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0449966), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1349897), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0449966), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1349897), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0449966), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1349897), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0449966), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1349897), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0449966), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1349897), wk = 0.1250000 extrapolated charge 16.14075, renormalised to 16.00000 total cpu time spent up to now is 9.12 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 9.46 secs total energy = -45.88071766 Ry Harris-Foulkes estimate = -45.79440270 Ry estimated scf accuracy < 0.00033800 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-06, avg # of iterations = 3.2 total cpu time spent up to now is 9.79 secs total energy = -45.88161521 Ry Harris-Foulkes estimate = -45.88180163 Ry estimated scf accuracy < 0.00050599 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-06, avg # of iterations = 2.0 total cpu time spent up to now is 10.06 secs total energy = -45.88154304 Ry Harris-Foulkes estimate = -45.88163434 Ry estimated scf accuracy < 0.00014232 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.89E-07, avg # of iterations = 2.0 total cpu time spent up to now is 10.37 secs total energy = -45.88157084 Ry Harris-Foulkes estimate = -45.88157433 Ry estimated scf accuracy < 0.00000433 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-08, avg # of iterations = 2.4 total cpu time spent up to now is 10.69 secs total energy = -45.88157179 Ry Harris-Foulkes estimate = -45.88157182 Ry estimated scf accuracy < 0.00000004 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-10, avg # of iterations = 2.1 total cpu time spent up to now is 10.96 secs total energy = -45.88157178 Ry Harris-Foulkes estimate = -45.88157180 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-10, avg # of iterations = 2.8 total cpu time spent up to now is 11.28 secs total energy = -45.88157179 Ry Harris-Foulkes estimate = -45.88157179 Ry estimated scf accuracy < 1.0E-08 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.23E-11, avg # of iterations = 1.0 total cpu time spent up to now is 11.54 secs total energy = -45.88157180 Ry Harris-Foulkes estimate = -45.88157179 Ry estimated scf accuracy < 7.3E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.56E-11, avg # of iterations = 2.7 total cpu time spent up to now is 11.85 secs End of self-consistent calculation k = 0.1250 0.2165 0.0450 ( 646 PWs) bands (ev): -11.7207 -11.4984 -0.2040 0.4849 0.5179 1.3585 1.5639 1.5868 k = 0.1250 0.2165 0.1350 ( 654 PWs) bands (ev): -11.6579 -11.5658 0.2035 0.4943 0.5089 0.8439 1.5701 1.5796 k = 0.1250 0.5052 0.0450 ( 662 PWs) bands (ev): -8.2000 -8.0354 -5.2842 -5.1616 -0.7171 -0.6564 3.7844 4.7831 k = 0.1250 0.5052 0.1350 ( 662 PWs) bands (ev): -8.1529 -8.0848 -5.2493 -5.1985 -0.6996 -0.6744 4.0709 4.4866 k = 0.1250-0.3608 0.0450 ( 661 PWs) bands (ev): -10.2723 -10.0717 -2.2966 -2.2126 0.0516 0.1020 1.5204 2.9432 k = 0.1250-0.3608 0.1350 ( 657 PWs) bands (ev): -10.2154 -10.1323 -2.2723 -2.2374 0.0660 0.0869 1.8963 2.4800 k = 0.1250-0.0722 0.0450 ( 639 PWs) bands (ev): -12.4569 -12.2235 -1.0968 0.5219 2.2661 2.3018 2.9336 2.9594 k = 0.1250-0.0722 0.1350 ( 635 PWs) bands (ev): -12.3910 -12.2944 -0.6758 -0.0136 2.2765 2.2913 2.9412 2.9519 k = 0.3750 0.6495 0.0450 ( 647 PWs) bands (ev): -6.6004 -6.5204 -5.6761 -5.6439 -2.9841 -2.9076 5.4934 6.0431 k = 0.3750 0.6495 0.1350 ( 662 PWs) bands (ev): -6.5747 -6.5414 -5.6706 -5.6570 -2.9628 -2.9310 5.6982 5.9356 k = 0.3750-0.2165 0.0450 ( 658 PWs) bands (ev): -9.5619 -9.3722 -3.9833 -3.8682 0.6346 0.6745 2.3131 3.6159 k = 0.3750-0.2165 0.1350 ( 656 PWs) bands (ev): -9.5079 -9.4294 -3.9502 -3.9026 0.6462 0.6628 2.6632 3.1993 ! total energy = -45.88157179 Ry Harris-Foulkes estimate = -45.88157180 Ry estimated scf accuracy < 2.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -12.65387533 Ry hartree contribution = 14.24720227 Ry xc contribution = -14.42634418 Ry ewald contribution = -33.04855456 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001973 0.00000000 0.00000000 0.00000001 0.00001974 0.00000000 0.00000000 0.00000000 -0.00000576 VDW KERNEL stress -0.00006532 0.00000000 0.00000000 0.00000000 -0.00006532 0.00000000 0.00000000 0.00000000 -0.00054614 VDW ALL stress 0.00004559 -0.00000001 0.00000000 -0.00000001 0.00004558 0.00000000 0.00000000 0.00000000 0.00055189 total stress (Ry/bohr**3) (kbar) P= 32.80 0.00028186 0.00000000 0.00000000 41.46 0.00 0.00 0.00000000 0.00028186 0.00000000 0.00 41.46 0.00 0.00000000 0.00000000 0.00010521 0.00 0.00 15.48 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.8813331607 Ry enthalpy new = -45.8815717929 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0417263568 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 243.68944 a.u.^3 ( 36.11105 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.814645111 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.407322555 C 0.500000000 0.288675135 1.407322555 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0444106), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1332317), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0444106), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1332317), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0444106), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1332317), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0444106), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1332317), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0444106), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1332317), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0444106), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1332317), wk = 0.1250000 extrapolated charge 16.20837, renormalised to 16.00000 total cpu time spent up to now is 12.54 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 total cpu time spent up to now is 12.91 secs total energy = -45.87986902 Ry Harris-Foulkes estimate = -45.74112664 Ry estimated scf accuracy < 0.00077263 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.83E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.24 secs total energy = -45.88192273 Ry Harris-Foulkes estimate = -45.88235632 Ry estimated scf accuracy < 0.00116714 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.83E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.51 secs total energy = -45.88175298 Ry Harris-Foulkes estimate = -45.88196723 Ry estimated scf accuracy < 0.00032811 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.82 secs total energy = -45.88181767 Ry Harris-Foulkes estimate = -45.88182405 Ry estimated scf accuracy < 0.00000865 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.40E-08, avg # of iterations = 2.5 total cpu time spent up to now is 14.13 secs total energy = -45.88181953 Ry Harris-Foulkes estimate = -45.88181961 Ry estimated scf accuracy < 0.00000007 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.41E-10, avg # of iterations = 2.3 total cpu time spent up to now is 14.42 secs total energy = -45.88181950 Ry Harris-Foulkes estimate = -45.88181954 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-10, avg # of iterations = 2.8 total cpu time spent up to now is 14.74 secs total energy = -45.88181952 Ry Harris-Foulkes estimate = -45.88181951 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 1.0 total cpu time spent up to now is 15.00 secs total energy = -45.88181952 Ry Harris-Foulkes estimate = -45.88181952 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-11, avg # of iterations = 2.5 total cpu time spent up to now is 15.30 secs End of self-consistent calculation k = 0.1250 0.2165 0.0444 ( 646 PWs) bands (ev): -11.8559 -11.6555 -0.3049 0.3396 0.3687 1.1569 1.4177 1.4379 k = 0.1250 0.2165 0.1332 ( 654 PWs) bands (ev): -11.7991 -11.7161 0.0777 0.3479 0.3607 0.6772 1.4233 1.4316 k = 0.1250 0.5052 0.0444 ( 662 PWs) bands (ev): -8.3379 -8.1902 -5.4244 -5.3147 -0.8608 -0.8071 3.6737 4.6059 k = 0.1250 0.5052 0.1332 ( 662 PWs) bands (ev): -8.2956 -8.2344 -5.3930 -5.3476 -0.8453 -0.8230 3.9407 4.3283 k = 0.1250-0.3608 0.0444 ( 661 PWs) bands (ev): -10.4085 -10.2280 -2.4389 -2.3641 -0.0928 -0.0482 1.4172 2.7469 k = 0.1250-0.3608 0.1332 ( 657 PWs) bands (ev): -10.3571 -10.2824 -2.4172 -2.3862 -0.0800 -0.0615 1.7695 2.3154 k = 0.1250-0.0722 0.0444 ( 639 PWs) bands (ev): -12.5915 -12.3810 -1.1969 0.3183 2.1207 2.1522 2.7876 2.8101 k = 0.1250-0.0722 0.1332 ( 635 PWs) bands (ev): -12.5319 -12.4447 -0.8016 -0.1811 2.1299 2.1429 2.7942 2.8036 k = 0.3750 0.6495 0.0444 ( 647 PWs) bands (ev): -6.7420 -6.6705 -5.8218 -5.7928 -3.1268 -3.0585 5.3767 5.8889 k = 0.3750 0.6495 0.1332 ( 662 PWs) bands (ev): -6.7192 -6.6895 -5.8164 -5.8043 -3.1077 -3.0794 5.5643 5.7844 k = 0.3750-0.2165 0.0444 ( 658 PWs) bands (ev): -9.6986 -9.5280 -4.1239 -4.0211 0.4895 0.5246 2.2078 3.4248 k = 0.3750-0.2165 0.1332 ( 656 PWs) bands (ev): -9.6500 -9.5793 -4.0943 -4.0517 0.4998 0.5143 2.5355 3.0365 ! total energy = -45.88181953 Ry Harris-Foulkes estimate = -45.88181953 Ry estimated scf accuracy < 3.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -13.70668193 Ry hartree contribution = 14.68609942 Ry xc contribution = -14.42410936 Ry ewald contribution = -32.43712766 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001975 0.00000000 0.00000000 0.00000000 -0.00000549 VDW KERNEL stress -0.00006447 0.00000000 0.00000000 0.00000000 -0.00006446 0.00000000 0.00000000 0.00000000 -0.00054686 VDW ALL stress 0.00004472 -0.00000001 0.00000000 -0.00000001 0.00004471 0.00000000 0.00000000 0.00000000 0.00055234 total stress (Ry/bohr**3) (kbar) P= 30.70 0.00028049 0.00000000 0.00000000 41.26 0.00 0.00 0.00000000 0.00028049 0.00000000 0.00 41.26 0.00 0.00000000 0.00000000 0.00006510 0.00 0.00 9.58 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.8815717929 Ry enthalpy new = -45.8818195337 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0617744197 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 248.44986 a.u.^3 ( 36.81647 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.869628602 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.434814301 C 0.500000000 0.288675135 1.434814301 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0435596), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1306789), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0435596), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1306789), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0435596), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1306789), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0435596), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1306789), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0435596), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1306789), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0435596), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1306789), wk = 0.1250000 extrapolated charge 16.30656, renormalised to 16.00000 total cpu time spent up to now is 16.00 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.5 total cpu time spent up to now is 16.38 secs total energy = -45.87748160 Ry Harris-Foulkes estimate = -45.64895652 Ry estimated scf accuracy < 0.00177666 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 3.2 total cpu time spent up to now is 16.71 secs total energy = -45.88220842 Ry Harris-Foulkes estimate = -45.88322377 Ry estimated scf accuracy < 0.00271228 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 2.0 total cpu time spent up to now is 16.98 secs total energy = -45.88180813 Ry Harris-Foulkes estimate = -45.88231199 Ry estimated scf accuracy < 0.00076281 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.77E-06, avg # of iterations = 2.0 total cpu time spent up to now is 17.29 secs total energy = -45.88195852 Ry Harris-Foulkes estimate = -45.88197024 Ry estimated scf accuracy < 0.00001613 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-07, avg # of iterations = 2.6 total cpu time spent up to now is 17.61 secs total energy = -45.88196257 Ry Harris-Foulkes estimate = -45.88196265 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 17.89 secs total energy = -45.88196253 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 0.00000017 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.53E-10, avg # of iterations = 2.5 total cpu time spent up to now is 18.21 secs total energy = -45.88196258 Ry Harris-Foulkes estimate = -45.88196256 Ry estimated scf accuracy < 0.00000006 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.45E-10, avg # of iterations = 2.3 total cpu time spent up to now is 18.49 secs total energy = -45.88196259 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 4.2E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.61E-11, avg # of iterations = 3.1 total cpu time spent up to now is 18.82 secs total energy = -45.88196259 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 1.7E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-11, avg # of iterations = 1.4 total cpu time spent up to now is 19.07 secs End of self-consistent calculation k = 0.1250 0.2165 0.0436 ( 646 PWs) bands (ev): -12.0536 -11.8821 -0.4540 0.1284 0.1527 0.8688 1.2055 1.2223 k = 0.1250 0.2165 0.1307 ( 654 PWs) bands (ev): -12.0047 -11.9337 -0.1059 0.1353 0.1459 0.4370 1.2101 1.2171 k = 0.1250 0.5052 0.0436 ( 662 PWs) bands (ev): -8.5394 -8.4137 -5.6289 -5.5360 -1.0699 -1.0251 3.5106 4.3506 k = 0.1250 0.5052 0.1307 ( 662 PWs) bands (ev): -8.5033 -8.4513 -5.6022 -5.5637 -1.0570 -1.0383 3.7506 4.0996 k = 0.1250-0.3608 0.0436 ( 661 PWs) bands (ev): -10.6076 -10.4535 -2.6462 -2.5833 -0.3027 -0.2656 1.2648 2.4661 k = 0.1250-0.3608 0.1307 ( 657 PWs) bands (ev): -10.5636 -10.4997 -2.6279 -2.6019 -0.2920 -0.2766 1.5846 2.0781 k = 0.1250-0.0722 0.0436 ( 639 PWs) bands (ev): -12.7885 -12.6081 -1.3447 0.0274 1.9095 1.9355 2.5755 2.5939 k = 0.1250-0.0722 0.1307 ( 635 PWs) bands (ev): -12.7372 -12.6625 -0.9851 -0.4223 1.9170 1.9278 2.5810 2.5887 k = 0.3750 0.6495 0.0436 ( 647 PWs) bands (ev): -6.9485 -6.8879 -6.0333 -6.0085 -3.3345 -3.2770 5.2044 5.6644 k = 0.3750 0.6495 0.1307 ( 662 PWs) bands (ev): -6.9294 -6.9043 -6.0283 -6.0179 -3.3184 -3.2945 5.3690 5.5654 k = 0.3750-0.2165 0.0436 ( 658 PWs) bands (ev): -9.8985 -9.7530 -4.3289 -4.2420 0.2787 0.3076 2.0525 3.1509 k = 0.3750-0.2165 0.1307 ( 656 PWs) bands (ev): -9.8568 -9.7966 -4.3038 -4.2679 0.2872 0.2991 2.3492 2.8017 ! total energy = -45.88196259 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 4.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -15.29318089 Ry hartree contribution = 15.35232578 Ry xc contribution = -14.42107109 Ry ewald contribution = -31.52003638 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001975 0.00000000 0.00000000 0.00000000 -0.00000506 VDW KERNEL stress -0.00006323 0.00000000 0.00000000 0.00000000 -0.00006322 0.00000000 0.00000000 0.00000000 -0.00054736 VDW ALL stress 0.00004349 -0.00000001 0.00000000 -0.00000001 0.00004348 0.00000000 0.00000000 0.00000000 0.00055242 total stress (Ry/bohr**3) (kbar) P= 27.63 0.00027725 0.00000000 0.00000000 40.79 0.00 0.00 0.00000000 0.00027725 0.00000000 0.00 40.79 0.00 0.00000000 0.00000000 0.00000892 0.00 0.00 1.31 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.8818195337 Ry enthalpy new = -45.8819625865 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0096254661 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 249.20610 a.u.^3 ( 36.92853 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.878363292 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.439181646 C 0.500000000 0.288675135 1.439181646 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0434275), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1302824), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0434275), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1302824), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0434275), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1302824), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0434275), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1302824), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0434275), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1302824), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0434275), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1302824), wk = 0.1250000 extrapolated charge 16.04855, renormalised to 16.00000 total cpu time spent up to now is 19.77 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 20.07 secs total energy = -45.88184840 Ry Harris-Foulkes estimate = -45.84455984 Ry estimated scf accuracy < 0.00004542 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-07, avg # of iterations = 3.2 total cpu time spent up to now is 20.40 secs total energy = -45.88196610 Ry Harris-Foulkes estimate = -45.88199016 Ry estimated scf accuracy < 0.00006617 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-07, avg # of iterations = 2.0 total cpu time spent up to now is 20.67 secs total energy = -45.88195796 Ry Harris-Foulkes estimate = -45.88196865 Ry estimated scf accuracy < 0.00001811 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-07, avg # of iterations = 2.0 total cpu time spent up to now is 20.98 secs total energy = -45.88196141 Ry Harris-Foulkes estimate = -45.88196204 Ry estimated scf accuracy < 0.00000059 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-09, avg # of iterations = 2.3 total cpu time spent up to now is 21.30 secs total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196154 Ry estimated scf accuracy < 5.0E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-11, avg # of iterations = 2.4 total cpu time spent up to now is 21.59 secs total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196152 Ry estimated scf accuracy < 5.2E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-11, avg # of iterations = 2.6 total cpu time spent up to now is 21.92 secs total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196152 Ry estimated scf accuracy < 1.4E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.82E-12, avg # of iterations = 1.0 total cpu time spent up to now is 22.17 secs total energy = -45.88196153 Ry Harris-Foulkes estimate = -45.88196152 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-12, avg # of iterations = 2.5 total cpu time spent up to now is 22.49 secs End of self-consistent calculation k = 0.1250 0.2165 0.0434 ( 646 PWs) bands (ev): -12.0845 -11.9172 -0.4775 0.0955 0.1190 0.8245 1.1724 1.1887 k = 0.1250 0.2165 0.1303 ( 654 PWs) bands (ev): -12.0369 -11.9676 -0.1346 0.1022 0.1125 0.3998 1.1769 1.1837 k = 0.1250 0.5052 0.0434 ( 662 PWs) bands (ev): -8.5710 -8.4484 -5.6608 -5.5704 -1.1025 -1.0590 3.4849 4.3111 k = 0.1250 0.5052 0.1303 ( 662 PWs) bands (ev): -8.5357 -8.4850 -5.6348 -5.5974 -1.0900 -1.0719 3.7209 4.0641 k = 0.1250-0.3608 0.0434 ( 661 PWs) bands (ev): -10.6388 -10.4884 -2.6786 -2.6174 -0.3355 -0.2994 1.2408 2.4228 k = 0.1250-0.3608 0.1303 ( 657 PWs) bands (ev): -10.5958 -10.5335 -2.6608 -2.6355 -0.3251 -0.3101 1.5557 2.0414 k = 0.1250-0.0722 0.0434 ( 639 PWs) bands (ev): -12.8194 -12.6433 -1.3680 -0.0174 1.8765 1.9018 2.5424 2.5603 k = 0.1250-0.0722 0.1303 ( 635 PWs) bands (ev): -12.7692 -12.6964 -1.0137 -0.4596 1.8838 1.8943 2.5477 2.5552 k = 0.3750 0.6495 0.0434 ( 647 PWs) bands (ev): -6.9807 -6.9218 -6.0663 -6.0420 -3.3669 -3.3109 5.1773 5.6294 k = 0.3750 0.6495 0.1303 ( 662 PWs) bands (ev): -6.9622 -6.9377 -6.0613 -6.0512 -3.3512 -3.3279 5.3385 5.5314 k = 0.3750-0.2165 0.0434 ( 658 PWs) bands (ev): -9.9297 -9.7879 -4.3609 -4.2764 0.2459 0.2739 2.0280 3.1087 k = 0.3750-0.2165 0.1303 ( 656 PWs) bands (ev): -9.8891 -9.8303 -4.3364 -4.3016 0.2540 0.2656 2.3201 2.7653 ! total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196153 Ry estimated scf accuracy < 3.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -15.54603110 Ry hartree contribution = 15.45905275 Ry xc contribution = -14.42063131 Ry ewald contribution = -31.37435187 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001974 0.00000000 0.00000000 0.00000000 -0.00000499 VDW KERNEL stress -0.00006303 0.00000000 0.00000000 0.00000000 -0.00006303 0.00000000 0.00000000 0.00000000 -0.00054739 VDW ALL stress 0.00004330 -0.00000001 0.00000000 -0.00000001 0.00004329 0.00000000 0.00000000 0.00000000 0.00055237 total stress (Ry/bohr**3) (kbar) P= 27.17 0.00027666 0.00000000 0.00000000 40.70 0.00 0.00 0.00000000 0.00027666 0.00000000 0.00 40.70 0.00 0.00000000 0.00000000 0.00000071 0.00 0.00 0.10 Begin final coordinates new unit-cell volume = 249.20610 a.u.^3 ( 36.92853 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.878363292 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.439181646 C 0.500000000 0.288675135 1.439181646 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated. Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 65 15 46 2526 285 1383 max 67 16 47 2529 288 1385 265 61 187 10113 1143 5537 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 249.2061 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.878363 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.347420 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.4391816 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.4391816 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0434275), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1302824), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0434275), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1302824), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0434275), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1302824), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0434275), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1302824), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0434275), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1302824), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0434275), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1302824), wk = 0.1250000 G cutoff = 98.2127 ( 10113 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5537 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 188, 8) NL pseudopotentials 0.09 Mb ( 188, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2529) G-vector shells 0.00 Mb ( 553) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 188, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 atomic wfcs Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 23.37 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 23.89 secs total energy = -45.81421653 Ry Harris-Foulkes estimate = -46.06596300 Ry estimated scf accuracy < 0.44690049 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-03, avg # of iterations = 2.0 total cpu time spent up to now is 24.19 secs total energy = -45.88129902 Ry Harris-Foulkes estimate = -45.88023226 Ry estimated scf accuracy < 0.00577855 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-05, avg # of iterations = 2.1 total cpu time spent up to now is 24.47 secs total energy = -45.88221329 Ry Harris-Foulkes estimate = -45.88201535 Ry estimated scf accuracy < 0.00038775 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.42E-06, avg # of iterations = 2.0 total cpu time spent up to now is 24.73 secs total energy = -45.88225842 Ry Harris-Foulkes estimate = -45.88225443 Ry estimated scf accuracy < 0.00000397 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 2.8 total cpu time spent up to now is 25.06 secs total energy = -45.88226039 Ry Harris-Foulkes estimate = -45.88226043 Ry estimated scf accuracy < 0.00000011 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.15E-10, avg # of iterations = 3.4 total cpu time spent up to now is 25.40 secs total energy = -45.88226042 Ry Harris-Foulkes estimate = -45.88226044 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-10, avg # of iterations = 2.5 total cpu time spent up to now is 25.69 secs total energy = -45.88226040 Ry Harris-Foulkes estimate = -45.88226043 Ry estimated scf accuracy < 1.9E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-11, avg # of iterations = 2.0 total cpu time spent up to now is 25.98 secs End of self-consistent calculation k = 0.1250 0.2165 0.0434 ( 688 PWs) bands (ev): -12.0840 -11.9167 -0.4778 0.0959 0.1194 0.8240 1.1728 1.1890 k = 0.1250 0.2165 0.1303 ( 684 PWs) bands (ev): -12.0363 -11.9670 -0.1352 0.1027 0.1130 0.3995 1.1773 1.1841 k = 0.1250 0.5052 0.0434 ( 697 PWs) bands (ev): -8.5704 -8.4479 -5.6603 -5.5699 -1.1021 -1.0587 3.4844 4.3109 k = 0.1250 0.5052 0.1303 ( 701 PWs) bands (ev): -8.5352 -8.4845 -5.6344 -5.5969 -1.0895 -1.0715 3.7205 4.0638 k = 0.1250-0.3608 0.0434 ( 700 PWs) bands (ev): -10.6382 -10.4879 -2.6781 -2.6169 -0.3351 -0.2991 1.2404 2.4224 k = 0.1250-0.3608 0.1303 ( 694 PWs) bands (ev): -10.5952 -10.5330 -2.6603 -2.6350 -0.3247 -0.3098 1.5552 2.0411 k = 0.1250-0.0722 0.0434 ( 676 PWs) bands (ev): -12.8188 -12.6428 -1.3684 -0.0179 1.8769 1.9021 2.5428 2.5606 k = 0.1250-0.0722 0.1303 ( 670 PWs) bands (ev): -12.7687 -12.6958 -1.0139 -0.4603 1.8843 1.8947 2.5480 2.5554 k = 0.3750 0.6495 0.0434 ( 694 PWs) bands (ev): -6.9802 -6.9212 -6.0658 -6.0416 -3.3666 -3.3106 5.1767 5.6290 k = 0.3750 0.6495 0.1303 ( 688 PWs) bands (ev): -6.9616 -6.9371 -6.0608 -6.0507 -3.3507 -3.3276 5.3382 5.5311 k = 0.3750-0.2165 0.0434 ( 695 PWs) bands (ev): -9.9291 -9.7874 -4.3604 -4.2760 0.2462 0.2742 2.0275 3.1083 k = 0.3750-0.2165 0.1303 ( 693 PWs) bands (ev): -9.8885 -9.8298 -4.3360 -4.3010 0.2544 0.2660 2.3196 2.7650 ! total energy = -45.88226040 Ry Harris-Foulkes estimate = -45.88226040 Ry estimated scf accuracy < 3.2E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -15.54690303 Ry hartree contribution = 15.45969561 Ry xc contribution = -14.42070114 Ry ewald contribution = -31.37435184 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001974 0.00000000 0.00000000 0.00000000 -0.00000500 VDW KERNEL stress -0.00006304 0.00000000 0.00000000 0.00000000 -0.00006303 0.00000000 0.00000000 0.00000000 -0.00054741 VDW ALL stress 0.00004330 -0.00000001 0.00000000 -0.00000001 0.00004329 0.00000000 0.00000000 0.00000000 0.00055241 total stress (Ry/bohr**3) (kbar) P= 29.25 0.00028197 0.00000000 0.00000000 41.48 0.00 0.00 0.00000000 0.00028197 0.00000000 0.00 41.48 0.00 0.00000000 0.00000000 0.00003256 0.00 0.00 4.79 Writing output data file graphite.save init_run : 0.62s CPU 0.74s WALL ( 2 calls) electrons : 19.01s CPU 20.05s WALL ( 8 calls) update_pot : 1.32s CPU 1.35s WALL ( 7 calls) forces : 0.51s CPU 0.51s WALL ( 8 calls) stress : 2.15s CPU 2.19s WALL ( 8 calls) Called by init_run: wfcinit : 0.19s CPU 0.25s WALL ( 2 calls) potinit : 0.21s CPU 0.22s WALL ( 2 calls) Called by electrons: c_bands : 10.65s CPU 11.29s WALL ( 65 calls) sum_band : 2.31s CPU 2.41s WALL ( 65 calls) v_of_rho : 5.66s CPU 5.73s WALL ( 74 calls) newd : 0.65s CPU 0.66s WALL ( 74 calls) mix_rho : 0.10s CPU 0.10s WALL ( 65 calls) vdW_energy : 1.19s CPU 1.19s WALL ( 74 calls) vdW_ffts : 1.87s CPU 1.90s WALL ( 164 calls) vdW_v : 1.41s CPU 1.42s WALL ( 74 calls) Called by c_bands: init_us_2 : 0.20s CPU 0.21s WALL ( 1776 calls) cegterg : 10.23s CPU 10.70s WALL ( 780 calls) Called by *egterg: h_psi : 8.15s CPU 8.58s WALL ( 2713 calls) s_psi : 0.32s CPU 0.32s WALL ( 2713 calls) g_psi : 0.07s CPU 0.06s WALL ( 1909 calls) cdiaghg : 0.86s CPU 0.89s WALL ( 2617 calls) Called by h_psi: add_vuspsi : 0.34s CPU 0.36s WALL ( 2713 calls) General routines calbec : 0.65s CPU 0.68s WALL ( 3685 calls) fft : 2.55s CPU 2.60s WALL ( 4508 calls) ffts : 0.04s CPU 0.04s WALL ( 139 calls) fftw : 7.84s CPU 8.18s WALL ( 42906 calls) interpolate : 0.13s CPU 0.14s WALL ( 139 calls) davcio : 0.03s CPU 0.18s WALL ( 2556 calls) Parallel routines fft_scatter : 2.29s CPU 2.41s WALL ( 47553 calls) PWSCF : 24.77s CPU 26.42s WALL This run was terminated on: 15:38:32 25Jan2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/run_example0000755000700200004540000001445612053145630021527 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x with vdw-DF functional. In the" $ECHO "first part a cell relaxation of graphite will be calculated and" $ECHO "then the energy of two water molecules far apart will be computed." $ECHO "Optionally, at the end, you can see how to set up a force relaxation" $ECHO "of an Argon dimer, not activated by default in the distribution." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x generate_vdW_kernel_table.x" PSEUDO_LIST="C.pbe-rrkjus.UPF O.pbe-rrkjus.UPF H.pbe-rrkjus.UPF" VDW_TABLE="vdW_kernel_table" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" GEN_COMMAND="$PARA_PREFIX $BIN_DIR/generate_vdW_kernel_table.x $PARA_POSTFIX" # check for vdw kernel table if test ! -r $PSEUDO_DIR/$VDW_TABLE ; then $ECHO " " $ECHO " " $ECHO " WARNING: $PSEUDO_DIR/$VDW_TABLE not existent or not readable" $ECHO " WARNING: a new table will be generated, this process will" $ECHO " WARNING: probably take about 20 mins (depending on your cpu" $ECHO " WARNING: power and configuration)." $ECHO $ECHO " Generating $VDW_TABLE...\c" if $GEN_COMMAND ; then if test ! -r $VDW_TABLE ; then $ECHO " ERROR: cannot generate vdW_kernel_table !!" exit 1 fi $ECHO "done ! Table moved to $PSEUDO_DIR" mv $VDW_TABLE $PSEUDO_DIR fi fi $ECHO " done" # Print how we run executables $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # # Graphite cell relaxation # cat > graphite.scf.in << EOF &control calculation = 'vc-relax' restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.in > graphite.scf.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {angstrom} O -0.000000 0.013129 -0.057535 H -0.000000 0.779069 -0.656064 H 0.000000 0.389646 0.845802 O 0.000000 0.887109 2.818248 H -0.774530 0.521469 3.280767 H 0.774530 0.521469 3.280767 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.in > water.scf.out check_failure $? $ECHO " done" # # self-consistent calculation # for Argon dimer # cat > Ar.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='Ar_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' forc_conv_thr = 1.0d-4 / &system ibrav = 8 celldm(1) = 19 celldm(2) = 1 celldm(3) = 1.47368421052632 nat = 2 ntyp = 1 occupations = 'fixed' ecutwfc = 80.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-11 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES Ar 36.00 Ar.pz-rrkj.UPF ATOMIC_POSITIONS {angstrom} Ar 0.000000 0.000000 0.000000 Ar 0.000000 0.000000 4.500000 K_POINTS gamma EOF $ECHO " running the scf calculation for argon dimer...\c" #$PW_COMMAND < Ar.scf.in > Ar.scf.out #check_failure $? #$ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.0.2/PW/examples/vdwDF_example/reference_G/0000755000700200004540000000000012053440303021447 5ustar marsamoscmespresso-5.0.2/PW/examples/vdwDF_example/reference_G/water.scf.in0000644000700200004540000000171212053145630023701 0ustar marsamoscm&control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {angstrom} O -0.000000 0.013129 -0.057535 H -0.000000 0.779069 -0.656064 H 0.000000 0.389646 0.845802 O 0.000000 0.887109 2.818248 H -0.774530 0.521469 3.280767 H 0.774530 0.521469 3.280767 K_POINTS gamma espresso-5.0.2/PW/examples/vdwDF_example/reference_G/water.scf.out0000644000700200004540000005104512053145630024106 0ustar marsamoscm Program PWSCF v.4.3a starts on 2Feb2011 at 16: 4:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 1539, nstw = 258, nsts = 1025 n.st n.stw n.sts n.g n.gw n.gs min 768 127 512 40311 2739 21932 max 770 130 513 40318 2746 21968 3077 515 2049 161263 10971 87777 bravais-lattice index = 8 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3953.7707 (a.u.)^3 number of atoms/cell = 6 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 15.000000 celldm(2)= 0.954545 celldm(3)= 1.227273 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 0.954545 0.000000 ) a(3) = ( 0.000000 0.000000 1.227273 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.047619 0.000000 ) b(3) = ( 0.000000 0.000000 0.814815 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) 2 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_s (m) there are 2 classes the character table: E s A' 1.00 1.00 A'' 1.00 -1.00 the symmetry operations in each class: E 1 s 2 Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 ) 2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 ) 3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 ) 4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 ) 5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 ) 6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 ) 2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673461 ) 3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 ) 4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 ) 5 H tau( 5) = ( -0.0975766 0.0688239 0.3367766 ) 6 H tau( 6) = ( 0.0975766 0.0688239 0.3367766 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1025.8770 ( 80632 G-vectors) FFT grid: ( 72, 64, 80) G cutoff = 683.9180 ( 43889 G-vectors) smooth grid: ( 54, 50, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.17 Mb ( 1373, 8) NL pseudopotentials 0.50 Mb ( 1373, 24) Each V/rho on FFT grid 1.41 Mb ( 92160) Each G-vector array 0.15 Mb ( 20158) G-vector shells 0.07 Mb ( 9015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.34 Mb ( 1373, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 24, 8) Arrays for rho mixing 11.25 Mb ( 92160, 8) Initial potential from superposition of free atoms starting charge 15.61518, renormalised to 16.00000 negative rho (up, down): 0.281E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.275009460339709 ---------------------------------------------------------------- Starting wfc are 12 atomic wfcs total cpu time spent up to now is 2.80 secs per-process dynamical memory: 41.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.249E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.302276450030018 ---------------------------------------------------------------- total cpu time spent up to now is 4.82 secs total energy = -68.62046199 Ry Harris-Foulkes estimate = -69.74417524 Ry estimated scf accuracy < 1.46163505 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-03, avg # of iterations = 2.0 negative rho (up, down): 0.805E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.299196910640524 ---------------------------------------------------------------- total cpu time spent up to now is 6.84 secs total energy = -68.83438749 Ry Harris-Foulkes estimate = -69.33614872 Ry estimated scf accuracy < 0.97202716 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-03, avg # of iterations = 2.0 negative rho (up, down): 0.692E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304349640963476 ---------------------------------------------------------------- total cpu time spent up to now is 8.85 secs total energy = -69.04855722 Ry Harris-Foulkes estimate = -69.06837907 Ry estimated scf accuracy < 0.03465141 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-04, avg # of iterations = 2.0 negative rho (up, down): 0.640E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.303911572658221 ---------------------------------------------------------------- total cpu time spent up to now is 10.85 secs total energy = -69.05568379 Ry Harris-Foulkes estimate = -69.05605206 Ry estimated scf accuracy < 0.00065872 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.12E-06, avg # of iterations = 2.0 negative rho (up, down): 0.177E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304090528590329 ---------------------------------------------------------------- total cpu time spent up to now is 12.85 secs total energy = -69.05588069 Ry Harris-Foulkes estimate = -69.05585932 Ry estimated scf accuracy < 0.00002808 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-07, avg # of iterations = 2.0 negative rho (up, down): 0.188E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304074751530176 ---------------------------------------------------------------- total cpu time spent up to now is 14.85 secs total energy = -69.05588362 Ry Harris-Foulkes estimate = -69.05588579 Ry estimated scf accuracy < 0.00000258 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-08, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304075141784446 ---------------------------------------------------------------- total cpu time spent up to now is 16.85 secs total energy = -69.05588392 Ry Harris-Foulkes estimate = -69.05588407 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304074026428808 ---------------------------------------------------------------- total cpu time spent up to now is 18.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev): -25.6440 -24.2669 -13.5672 -12.2975 -9.7601 -8.3488 -7.6831 -6.4197 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -69.05588394 Ry Harris-Foulkes estimate = -69.05588393 Ry estimated scf accuracy < 6.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -122.46810922 Ry hartree contribution = 64.43500836 Ry xc contribution = -17.37524781 Ry ewald contribution = 6.35246473 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00096384 -0.00216571 atom 2 type 2 force = 0.00000000 0.00013476 0.00067594 atom 3 type 2 force = 0.00000000 -0.00035936 0.00014577 atom 4 type 1 force = 0.00000000 0.00088056 0.00121702 atom 5 type 2 force = 0.00003080 -0.00080990 0.00006350 atom 6 type 2 force = -0.00003080 -0.00080990 0.00006350 Total force = 0.003134 Total SCF correction = 0.000096 entering subroutine stress ... VDW GRADIENT stress 0.00000779 0.00000000 0.00000000 0.00000000 0.00000799 0.00000000 0.00000000 0.00000032 0.00000724 VDW KERNEL stress -0.00002786 0.00000000 0.00000000 0.00000000 -0.00002820 0.00000000 0.00000000 -0.00000002 -0.00002322 VDW ALL stress 0.00002008 0.00000000 0.00000000 0.00000000 0.00002022 -0.00000030 0.00000000 -0.00000030 0.00001598 total stress (Ry/bohr**3) (kbar) P= -1.70 -0.00001158 0.00000000 0.00000000 -1.70 0.00 0.00 0.00000000 -0.00001113 -0.00000082 0.00 -1.64 -0.12 0.00000000 -0.00000082 -0.00001193 0.00 -0.12 -1.76 kinetic stress (kbar) 773.91 0.00 0.00 0.00 795.27 35.09 0.00 35.09 748.19 local stress (kbar) -1260.29 0.00 0.00 0.00 -1418.75 -162.43 0.00 -162.43 -2492.38 nonloc. stress (kbar) 278.32 0.00 0.00 0.00 280.60 11.20 0.00 11.20 269.13 hartree stress (kbar) 584.70 0.00 0.00 0.00 685.81 102.02 0.00 102.02 1126.88 exc-cor stress (kbar) -207.38 0.00 0.00 0.00 -207.95 -1.03 0.00 -1.03 -205.76 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -173.91 0.00 0.00 0.00 -139.58 15.06 0.00 15.06 549.84 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 2.95 0.00 0.00 0.00 2.97 -0.04 0.00 -0.04 2.35 EXX stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Writing output data file water_vdw.save init_run : 2.43s CPU 2.54s WALL ( 1 calls) electrons : 14.83s CPU 15.91s WALL ( 1 calls) forces : 0.61s CPU 0.61s WALL ( 1 calls) stress : 2.86s CPU 2.93s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.07s WALL ( 1 calls) potinit : 1.73s CPU 1.82s WALL ( 1 calls) Called by electrons: c_bands : 1.12s CPU 1.12s WALL ( 8 calls) sum_band : 1.29s CPU 1.30s WALL ( 8 calls) v_of_rho : 12.26s CPU 12.96s WALL ( 9 calls) v_h : 0.15s CPU 0.18s WALL ( 9 calls) v_xc : 12.11s CPU 12.77s WALL ( 9 calls) newd : 0.84s CPU 0.84s WALL ( 9 calls) mix_rho : 0.33s CPU 0.33s WALL ( 8 calls) vdW_energy : 1.83s CPU 2.12s WALL ( 9 calls) vdW_ffts : 6.14s CPU 6.16s WALL ( 20 calls) vdW_v : 1.45s CPU 1.46s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 17 calls) regterg : 1.10s CPU 1.10s WALL ( 8 calls) Called by sum_band: sum_band:bec : 0.00s CPU 0.00s WALL ( 8 calls) addusdens : 0.53s CPU 0.53s WALL ( 8 calls) Called by *egterg: h_psi : 1.07s CPU 1.07s WALL ( 25 calls) s_psi : 0.02s CPU 0.02s WALL ( 25 calls) g_psi : 0.01s CPU 0.00s WALL ( 16 calls) rdiaghg : 0.01s CPU 0.00s WALL ( 24 calls) regterg:over : 0.02s CPU 0.02s WALL ( 16 calls) regterg:upda : 0.01s CPU 0.01s WALL ( 16 calls) regterg:last : 0.00s CPU 0.01s WALL ( 8 calls) Called by h_psi: h_psi:vloc : 1.01s CPU 1.02s WALL ( 25 calls) h_psi:vnl : 0.05s CPU 0.05s WALL ( 25 calls) add_vuspsi : 0.01s CPU 0.02s WALL ( 25 calls) General routines calbec : 0.05s CPU 0.04s WALL ( 38 calls) fft : 9.75s CPU 9.84s WALL ( 642 calls) ffts : 0.12s CPU 0.12s WALL ( 17 calls) fftw : 0.94s CPU 0.95s WALL ( 228 calls) interpolate : 0.42s CPU 0.43s WALL ( 17 calls) davcio : 0.00s CPU 0.01s WALL ( 8 calls) Parallel routines fft_scatter : 4.45s CPU 4.47s WALL ( 887 calls) EXX routines PWSCF : 21.02s CPU 22.51s WALL This run was terminated on: 16: 5: 0 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/reference_G/Ar.scf.in0000644000700200004540000000142112053145630023116 0ustar marsamoscm&control calculation = 'scf' restart_mode='from_scratch', prefix='Ar_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' forc_conv_thr = 1.0d-4 / &system ibrav = 8 celldm(1) = 19 celldm(2) = 1 celldm(3) = 1.47368421052632 nat = 2 ntyp = 1 occupations = 'fixed' ecutwfc = 80.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-11 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES Ar 36.00 Ar.pz-rrkj.UPF ATOMIC_POSITIONS {angstrom} Ar 0.000000 0.000000 0.000000 Ar 0.000000 0.000000 4.500000 K_POINTS gamma espresso-5.0.2/PW/examples/vdwDF_example/reference_G/graphite.scf.out0000644000700200004540000022535312053145630024574 0ustar marsamoscm Program PWSCF v.4.3a starts on 2Feb2011 at 16: 4:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 64 15 46 2392 275 1299 max 67 16 47 2397 278 1307 265 61 187 9583 1107 5211 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 G cutoff = 98.2127 ( 9583 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5211 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 163, 8) NL pseudopotentials 0.08 Mb ( 163, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2397) G-vector shells 0.02 Mb ( 2397) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 163, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.49 secs per-process dynamical memory: 25.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.73 secs total energy = -45.81473656 Ry Harris-Foulkes estimate = -46.06090438 Ry estimated scf accuracy < 0.43944013 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.96 secs total energy = -45.88019914 Ry Harris-Foulkes estimate = -45.87894594 Ry estimated scf accuracy < 0.00557291 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.18 secs total energy = -45.88102271 Ry Harris-Foulkes estimate = -45.88082389 Ry estimated scf accuracy < 0.00041601 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 1.9 total cpu time spent up to now is 1.38 secs total energy = -45.88107381 Ry Harris-Foulkes estimate = -45.88107139 Ry estimated scf accuracy < 0.00000299 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-08, avg # of iterations = 3.5 total cpu time spent up to now is 1.65 secs total energy = -45.88107685 Ry Harris-Foulkes estimate = -45.88107680 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 3.2 total cpu time spent up to now is 1.91 secs total energy = -45.88107688 Ry Harris-Foulkes estimate = -45.88107692 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.00E-10, avg # of iterations = 2.6 total cpu time spent up to now is 2.14 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5264 -11.2692 -0.0598 0.6943 0.7336 1.6561 1.7746 1.8020 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4541 -11.3476 0.3857 0.7057 0.7230 1.0882 1.7820 1.7933 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0012 -7.8097 -5.0824 -4.9391 -0.5106 -0.4386 3.9428 5.0425 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9466 -7.8673 -5.0417 -4.9823 -0.4898 -0.4600 4.2594 4.7178 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0764 -9.8438 -2.0915 -1.9926 0.2592 0.3191 1.6680 3.2327 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0106 -9.9143 -2.0629 -2.0219 0.2763 0.3012 2.0797 2.7209 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2634 -11.9936 -0.9538 0.8227 2.4753 2.5180 3.1443 3.1754 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.1876 -12.0760 -0.4938 0.2319 2.4877 2.5054 3.1534 3.1663 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3966 -6.3032 -5.4650 -5.4278 -2.7781 -2.6882 5.6601 6.2663 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3661 -6.3271 -5.4594 -5.4436 -2.7532 -2.7160 5.8918 6.1558 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3653 -9.1451 -3.7809 -3.6460 0.8438 0.8919 2.4638 3.8973 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3029 -9.2118 -3.7423 -3.6864 0.8578 0.8777 2.8479 3.4375 ! total energy = -45.88107689 Ry Harris-Foulkes estimate = -45.88107690 Ry estimated scf accuracy < 9.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.17967884 Ry hartree contribution = 13.63787800 Ry xc contribution = -14.43014210 Ry ewald contribution = -33.90913395 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001734 0.00000000 0.00000000 0.00000000 0.00001734 0.00000000 0.00000000 0.00000000 0.00001734 VDW KERNEL stress -0.00006649 0.00000000 0.00000000 0.00000000 -0.00006649 0.00000000 0.00000000 0.00000000 -0.00054437 VDW ALL stress 0.00004915 0.00000000 0.00000000 0.00000000 0.00004915 0.00000000 0.00000000 0.00000000 0.00052703 total stress (Ry/bohr**3) (kbar) P= 34.82 0.00028282 0.00000000 0.00000000 41.60 0.00 0.00 0.00000000 0.00028282 0.00000000 0.00 41.60 0.00 0.00000000 0.00000000 0.00014440 0.00 0.00 21.24 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.8810768948 Ry new trust radius = 0.0107785035 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 236.85382 a.u.^3 ( 35.09811 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.735692831 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.367846416 C 0.500000000 0.288675135 1.367846416 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0456923), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1370768), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0456923), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1370768), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0456923), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1370768), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0456923), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1370768), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0456923), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1370768), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0456923), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1370768), wk = 0.1250000 extrapolated charge 16.05435, renormalised to 16.00000 total cpu time spent up to now is 3.01 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.25 secs total energy = -45.88106888 Ry Harris-Foulkes estimate = -45.85099422 Ry estimated scf accuracy < 0.00004756 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.97E-07, avg # of iterations = 3.2 total cpu time spent up to now is 3.52 secs total energy = -45.88119494 Ry Harris-Foulkes estimate = -45.88122128 Ry estimated scf accuracy < 0.00007042 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.97E-07, avg # of iterations = 1.9 total cpu time spent up to now is 3.72 secs total energy = -45.88118413 Ry Harris-Foulkes estimate = -45.88119754 Ry estimated scf accuracy < 0.00001985 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-07, avg # of iterations = 2.0 total cpu time spent up to now is 3.96 secs total energy = -45.88118817 Ry Harris-Foulkes estimate = -45.88118867 Ry estimated scf accuracy < 0.00000078 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-09, avg # of iterations = 2.4 total cpu time spent up to now is 4.19 secs End of self-consistent calculation k = 0.1250 0.2165 0.0457 ( 646 PWs) bands (ev): -11.5620 -11.3114 -0.0860 0.6557 0.6938 1.6012 1.7357 1.7622 k = 0.1250 0.2165 0.1371 ( 654 PWs) bands (ev): -11.4914 -11.3878 0.3524 0.6667 0.6835 1.0433 1.7429 1.7539 k = 0.1250 0.5052 0.0457 ( 662 PWs) bands (ev): -8.0376 -7.8512 -5.1195 -4.9801 -0.5487 -0.4789 3.9141 4.9948 k = 0.1250 0.5052 0.1371 ( 662 PWs) bands (ev): -7.9844 -7.9073 -5.0799 -5.0222 -0.5286 -0.4997 4.2250 4.6754 k = 0.1250-0.3608 0.0457 ( 661 PWs) bands (ev): -10.1122 -9.8858 -2.1292 -2.0332 0.2209 0.2789 1.6412 3.1793 k = 0.1250-0.3608 0.1371 ( 657 PWs) bands (ev): -10.0482 -9.9544 -2.1014 -2.0617 0.2375 0.2615 2.0462 2.6766 k = 0.1250-0.0722 0.0457 ( 639 PWs) bands (ev): -12.2988 -12.0360 -0.9798 0.7671 2.4366 2.4780 3.1055 3.1355 k = 0.1250-0.0722 0.1371 ( 635 PWs) bands (ev): -12.2249 -12.1162 -0.5270 0.1867 2.4487 2.4658 3.1143 3.1267 k = 0.3750 0.6495 0.0457 ( 647 PWs) bands (ev): -6.4341 -6.3432 -5.5038 -5.4676 -2.8160 -2.7287 5.6299 6.2254 k = 0.3750 0.6495 0.1371 ( 662 PWs) bands (ev): -6.4045 -6.3666 -5.4982 -5.4829 -2.7918 -2.7556 5.8565 6.1154 k = 0.3750-0.2165 0.0457 ( 658 PWs) bands (ev): -9.4013 -9.1870 -3.8181 -3.6870 0.8053 0.8518 2.4364 3.8454 k = 0.3750-0.2165 0.1371 ( 656 PWs) bands (ev): -9.3406 -9.2518 -3.7805 -3.7263 0.8189 0.8381 2.8142 3.3937 ! total energy = -45.88118833 Ry Harris-Foulkes estimate = -45.88118833 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.44475812 Ry hartree contribution = 13.74716008 Ry xc contribution = -14.42947789 Ry ewald contribution = -33.75411240 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001735 0.00000000 0.00000000 0.00000000 0.00001735 0.00000000 0.00000000 0.00000000 0.00001739 VDW KERNEL stress -0.00006626 0.00000000 0.00000000 0.00000000 -0.00006626 0.00000000 0.00000000 0.00000000 -0.00054474 VDW ALL stress 0.00004891 0.00000000 0.00000000 0.00000000 0.00004891 0.00000000 0.00000000 0.00000000 0.00052736 total stress (Ry/bohr**3) (kbar) P= 34.24 0.00028282 0.00000000 0.00000000 41.60 0.00 0.00 0.00000000 0.00028282 0.00000000 0.00 41.60 0.00 0.00000000 0.00000000 0.00013273 0.00 0.00 19.53 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.8810768948 Ry enthalpy new = -45.8811883311 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0161128353 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 238.06067 a.u.^3 ( 35.27695 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.749632078 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.374816039 C 0.500000000 0.288675135 1.374816039 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0454606), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1363819), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0454606), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1363819), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0454606), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1363819), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0454606), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1363819), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0454606), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1363819), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0454606), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1363819), wk = 0.1250000 extrapolated charge 16.08111, renormalised to 16.00000 total cpu time spent up to now is 4.91 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.4 total cpu time spent up to now is 5.16 secs total energy = -45.88106610 Ry Harris-Foulkes estimate = -45.83457815 Ry estimated scf accuracy < 0.00010843 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.78E-07, avg # of iterations = 3.2 total cpu time spent up to now is 5.43 secs total energy = -45.88135225 Ry Harris-Foulkes estimate = -45.88141239 Ry estimated scf accuracy < 0.00016059 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.78E-07, avg # of iterations = 1.9 total cpu time spent up to now is 5.64 secs total energy = -45.88132775 Ry Harris-Foulkes estimate = -45.88135825 Ry estimated scf accuracy < 0.00004518 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.88 secs total energy = -45.88133692 Ry Harris-Foulkes estimate = -45.88133798 Ry estimated scf accuracy < 0.00000166 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-08, avg # of iterations = 2.4 total cpu time spent up to now is 6.12 secs total energy = -45.88133726 Ry Harris-Foulkes estimate = -45.88133726 Ry estimated scf accuracy < 3.7E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.31E-11, avg # of iterations = 3.3 total cpu time spent up to now is 6.39 secs total energy = -45.88133726 Ry Harris-Foulkes estimate = -45.88133727 Ry estimated scf accuracy < 3.1E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-11, avg # of iterations = 1.8 total cpu time spent up to now is 6.58 secs End of self-consistent calculation k = 0.1250 0.2165 0.0455 ( 646 PWs) bands (ev): -11.6148 -11.3739 -0.1250 0.5986 0.6349 1.5200 1.6782 1.7034 k = 0.1250 0.2165 0.1364 ( 654 PWs) bands (ev): -11.5468 -11.4472 0.3030 0.6090 0.6250 0.9767 1.6850 1.6955 k = 0.1250 0.5052 0.0455 ( 662 PWs) bands (ev): -8.0915 -7.9127 -5.1744 -5.0408 -0.6052 -0.5386 3.8712 4.9242 k = 0.1250 0.5052 0.1364 ( 662 PWs) bands (ev): -8.0404 -7.9664 -5.1364 -5.0811 -0.5860 -0.5583 4.1739 4.6125 k = 0.1250-0.3608 0.0455 ( 661 PWs) bands (ev): -10.1654 -9.9479 -2.1851 -2.0932 0.1641 0.2195 1.6013 3.1003 k = 0.1250-0.3608 0.1364 ( 657 PWs) bands (ev): -10.1038 -10.0138 -2.1585 -2.1204 0.1800 0.2029 1.9964 2.6110 k = 0.1250-0.0722 0.0455 ( 639 PWs) bands (ev): -12.3513 -12.0986 -1.0184 0.6850 2.3794 2.4188 3.0480 3.0765 k = 0.1250-0.0722 0.1364 ( 635 PWs) bands (ev): -12.2802 -12.1756 -0.5764 0.1198 2.3909 2.4073 3.0564 3.0682 k = 0.3750 0.6495 0.0455 ( 647 PWs) bands (ev): -6.4896 -6.4025 -5.5613 -5.5265 -2.8721 -2.7884 5.5848 6.1649 k = 0.3750 0.6495 0.1364 ( 662 PWs) bands (ev): -6.4614 -6.4250 -5.5557 -5.5410 -2.8488 -2.8141 5.8040 6.0556 k = 0.3750-0.2165 0.0455 ( 658 PWs) bands (ev): -9.4548 -9.2489 -3.8732 -3.7476 0.7483 0.7925 2.3957 3.7687 k = 0.3750-0.2165 0.1364 ( 656 PWs) bands (ev): -9.3963 -9.3111 -3.8372 -3.7852 0.7612 0.7795 2.7640 3.3289 ! total energy = -45.88133726 Ry Harris-Foulkes estimate = -45.88133726 Ry estimated scf accuracy < 9.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -11.84280210 Ry hartree contribution = 13.91153098 Ry xc contribution = -14.42848181 Ry ewald contribution = -33.52158433 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001737 0.00000000 0.00000000 0.00000000 0.00001737 0.00000000 0.00000000 0.00000000 0.00001747 VDW KERNEL stress -0.00006593 0.00000000 0.00000000 0.00000000 -0.00006593 0.00000000 0.00000000 0.00000000 -0.00054526 VDW ALL stress 0.00004856 0.00000000 0.00000000 0.00000000 0.00004856 0.00000000 0.00000000 0.00000000 0.00052779 total stress (Ry/bohr**3) (kbar) P= 33.34 0.00028254 0.00000000 0.00000000 41.56 0.00 0.00 0.00000000 0.00028254 0.00000000 0.00 41.56 0.00 0.00000000 0.00000000 0.00011476 0.00 0.00 16.88 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.8811883311 Ry enthalpy new = -45.8813372639 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0240467270 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 239.87094 a.u.^3 ( 35.54521 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.770540947 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.385270474 C 0.500000000 0.288675135 1.385270474 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0451175), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1353526), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0451175), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1353526), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0451175), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1353526), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0451175), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1353526), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0451175), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1353526), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0451175), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1353526), wk = 0.1250000 extrapolated charge 16.12075, renormalised to 16.00000 total cpu time spent up to now is 7.32 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 7.57 secs total energy = -45.88090439 Ry Harris-Foulkes estimate = -45.80810192 Ry estimated scf accuracy < 0.00024658 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-06, avg # of iterations = 3.2 total cpu time spent up to now is 7.83 secs total energy = -45.88155534 Ry Harris-Foulkes estimate = -45.88169298 Ry estimated scf accuracy < 0.00036722 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-06, avg # of iterations = 2.0 total cpu time spent up to now is 8.03 secs total energy = -45.88149963 Ry Harris-Foulkes estimate = -45.88156920 Ry estimated scf accuracy < 0.00010317 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-07, avg # of iterations = 2.0 total cpu time spent up to now is 8.27 secs total energy = -45.88152043 Ry Harris-Foulkes estimate = -45.88152260 Ry estimated scf accuracy < 0.00000336 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.10E-08, avg # of iterations = 2.4 total cpu time spent up to now is 8.52 secs total energy = -45.88152120 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 0.00000004 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-10, avg # of iterations = 1.8 total cpu time spent up to now is 8.74 secs total energy = -45.88152118 Ry Harris-Foulkes estimate = -45.88152120 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-10, avg # of iterations = 2.6 total cpu time spent up to now is 8.98 secs total energy = -45.88152119 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 5.7E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-11, avg # of iterations = 1.0 total cpu time spent up to now is 9.19 secs total energy = -45.88152119 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 3.9E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.47E-11, avg # of iterations = 2.5 total cpu time spent up to now is 9.42 secs End of self-consistent calculation k = 0.1250 0.2165 0.0451 ( 646 PWs) bands (ev): -11.6932 -11.4661 -0.1831 0.5139 0.5477 1.4004 1.5929 1.6164 k = 0.1250 0.2165 0.1354 ( 654 PWs) bands (ev): -11.6290 -11.5351 0.2297 0.5236 0.5385 0.8785 1.5993 1.6090 k = 0.1250 0.5052 0.0451 ( 662 PWs) bands (ev): -8.1717 -8.0035 -5.2560 -5.1306 -0.6889 -0.6267 3.8074 4.8199 k = 0.1250 0.5052 0.1354 ( 662 PWs) bands (ev): -8.1236 -8.0540 -5.2202 -5.1683 -0.6709 -0.6452 4.0980 4.5195 k = 0.1250-0.3608 0.0451 ( 661 PWs) bands (ev): -10.2445 -10.0396 -2.2679 -2.1819 0.0800 0.1317 1.5418 2.9841 k = 0.1250-0.3608 0.1354 ( 657 PWs) bands (ev): -10.1864 -10.1015 -2.2430 -2.2074 0.0948 0.1162 1.9226 2.5142 k = 0.1250-0.0722 0.0451 ( 639 PWs) bands (ev): -12.4294 -12.1911 -1.0761 0.5642 2.2947 2.3314 2.9628 2.9893 k = 0.1250-0.0722 0.1354 ( 635 PWs) bands (ev): -12.3622 -12.2636 -0.6497 0.0211 2.3054 2.3206 2.9706 2.9816 k = 0.3750 0.6495 0.0451 ( 647 PWs) bands (ev): -6.5720 -6.4902 -5.6464 -5.6135 -2.9552 -2.8769 5.5176 6.0750 k = 0.3750 0.6495 0.1354 ( 662 PWs) bands (ev): -6.5456 -6.5116 -5.6408 -5.6270 -2.9334 -2.9009 5.7260 5.9670 k = 0.3750-0.2165 0.0451 ( 658 PWs) bands (ev): -9.5342 -9.3404 -3.9550 -3.8372 0.6638 0.7048 2.3350 3.6556 k = 0.3750-0.2165 0.1354 ( 656 PWs) bands (ev): -9.4791 -9.3988 -3.9211 -3.8724 0.6757 0.6927 2.6897 3.2331 ! total energy = -45.88152119 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 3.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -12.44095516 Ry hartree contribution = 14.15926495 Ry xc contribution = -14.42702969 Ry ewald contribution = -33.17280129 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001739 0.00000000 0.00000000 0.00000000 0.00001739 0.00000000 0.00000000 0.00000000 0.00001758 VDW KERNEL stress -0.00006543 0.00000000 0.00000000 0.00000000 -0.00006543 0.00000000 0.00000000 0.00000000 -0.00054595 VDW ALL stress 0.00004804 0.00000000 0.00000000 0.00000000 0.00004804 0.00000000 0.00000000 0.00000000 0.00052836 total stress (Ry/bohr**3) (kbar) P= 31.98 0.00028190 0.00000000 0.00000000 41.47 0.00 0.00 0.00000000 0.00028190 0.00000000 0.00 41.47 0.00 0.00000000 0.00000000 0.00008846 0.00 0.00 13.01 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.8813372639 Ry enthalpy new = -45.8815211906 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0357978748 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 242.58634 a.u.^3 ( 35.94759 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.801904252 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.400952126 C 0.500000000 0.288675135 1.400952126 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0446125), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1338375), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0446125), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1338375), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0446125), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1338375), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0446125), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1338375), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0446125), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1338375), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0446125), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1338375), wk = 0.1250000 extrapolated charge 16.17909, renormalised to 16.00000 total cpu time spent up to now is 10.19 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 total cpu time spent up to now is 10.47 secs total energy = -45.88029976 Ry Harris-Foulkes estimate = -45.76427883 Ry estimated scf accuracy < 0.00056331 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-06, avg # of iterations = 3.2 total cpu time spent up to now is 10.73 secs total energy = -45.88179155 Ry Harris-Foulkes estimate = -45.88210958 Ry estimated scf accuracy < 0.00084730 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-06, avg # of iterations = 2.0 total cpu time spent up to now is 10.93 secs total energy = -45.88166355 Ry Harris-Foulkes estimate = -45.88182396 Ry estimated scf accuracy < 0.00023801 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.18 secs total energy = -45.88171144 Ry Harris-Foulkes estimate = -45.88171562 Ry estimated scf accuracy < 0.00000674 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-08, avg # of iterations = 2.5 total cpu time spent up to now is 11.43 secs total energy = -45.88171288 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 0.00000005 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.33E-10, avg # of iterations = 2.3 total cpu time spent up to now is 11.65 secs total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-10, avg # of iterations = 2.8 total cpu time spent up to now is 11.92 secs total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171290 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-10, avg # of iterations = 1.0 total cpu time spent up to now is 12.12 secs total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.87E-11, avg # of iterations = 2.5 total cpu time spent up to now is 12.33 secs End of self-consistent calculation k = 0.1250 0.2165 0.0446 ( 646 PWs) bands (ev): -11.8095 -11.6017 -0.2697 0.3888 0.4192 1.2259 1.4670 1.4881 k = 0.1250 0.2165 0.1338 ( 654 PWs) bands (ev): -11.7506 -11.6646 0.1213 0.3975 0.4109 0.7345 1.4728 1.4815 k = 0.1250 0.5052 0.0446 ( 662 PWs) bands (ev): -8.2904 -8.1370 -5.3767 -5.2627 -0.8126 -0.7566 3.7123 4.6668 k = 0.1250 0.5052 0.1338 ( 662 PWs) bands (ev): -8.2465 -8.1830 -5.3441 -5.2969 -0.7965 -0.7732 3.9858 4.3828 k = 0.1250-0.3608 0.0446 ( 661 PWs) bands (ev): -10.3617 -10.1744 -2.3905 -2.3126 -0.0443 0.0022 1.4532 2.8142 k = 0.1250-0.3608 0.1338 ( 657 PWs) bands (ev): -10.3084 -10.2309 -2.3679 -2.3356 -0.0310 -0.0117 1.8134 2.3720 k = 0.1250-0.0722 0.0446 ( 639 PWs) bands (ev): -12.5453 -12.3271 -1.1619 0.3879 2.1695 2.2024 2.8370 2.8606 k = 0.1250-0.0722 0.1338 ( 635 PWs) bands (ev): -12.4835 -12.3932 -0.7580 -0.1236 2.1791 2.1927 2.8440 2.8538 k = 0.3750 0.6495 0.0446 ( 647 PWs) bands (ev): -6.6939 -6.6196 -5.7720 -5.7419 -3.0781 -3.0071 5.4174 5.9421 k = 0.3750 0.6495 0.1338 ( 662 PWs) bands (ev): -6.6702 -6.6392 -5.7665 -5.7539 -3.0582 -3.0288 5.6108 5.8366 k = 0.3750-0.2165 0.0446 ( 658 PWs) bands (ev): -9.6518 -9.4749 -4.0760 -3.9691 0.5389 0.5756 2.2446 3.4903 k = 0.3750-0.2165 0.1338 ( 656 PWs) bands (ev): -9.6014 -9.5281 -4.0452 -4.0010 0.5496 0.5648 2.5797 3.0925 ! total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 1.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -13.34082228 Ry hartree contribution = 14.53377199 Ry xc contribution = -14.42501700 Ry ewald contribution = -32.64964560 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001742 0.00000000 0.00000000 0.00000000 0.00001742 0.00000000 0.00000000 0.00000000 0.00001776 VDW KERNEL stress -0.00006470 0.00000000 0.00000000 0.00000000 -0.00006470 0.00000000 0.00000000 0.00000000 -0.00054679 VDW ALL stress 0.00004728 0.00000000 0.00000000 0.00000000 0.00004728 0.00000000 0.00000000 0.00000000 0.00052903 total stress (Ry/bohr**3) (kbar) P= 30.11 0.00028065 0.00000000 0.00000000 41.28 0.00 0.00 0.00000000 0.00028065 0.00000000 0.00 41.28 0.00 0.00000000 0.00000000 0.00005283 0.00 0.00 7.77 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.8815211906 Ry enthalpy new = -45.8817128919 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0524851391 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 246.61261 a.u.^3 ( 36.54422 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.848408181 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.424204090 C 0.500000000 0.288675135 1.424204090 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438842), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1316525), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438842), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1316525), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438842), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1316525), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438842), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1316525), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438842), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1316525), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438842), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1316525), wk = 0.1250000 extrapolated charge 16.26122, renormalised to 16.00000 total cpu time spent up to now is 13.16 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.45 secs total energy = -45.87865933 Ry Harris-Foulkes estimate = -45.69188433 Ry estimated scf accuracy < 0.00126113 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.70 secs total energy = -45.88200215 Ry Harris-Foulkes estimate = -45.88272256 Ry estimated scf accuracy < 0.00191335 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.91 secs total energy = -45.88171356 Ry Harris-Foulkes estimate = -45.88207548 Ry estimated scf accuracy < 0.00053733 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.36E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.14 secs total energy = -45.88182092 Ry Harris-Foulkes estimate = -45.88182880 Ry estimated scf accuracy < 0.00001244 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.77E-08, avg # of iterations = 2.6 total cpu time spent up to now is 14.39 secs total energy = -45.88182395 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 0.00000010 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.55E-10, avg # of iterations = 2.3 total cpu time spent up to now is 14.62 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182396 Ry estimated scf accuracy < 0.00000010 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.29E-10, avg # of iterations = 2.5 total cpu time spent up to now is 14.86 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182396 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-10, avg # of iterations = 2.3 total cpu time spent up to now is 15.09 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 3.8E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-11, avg # of iterations = 2.9 total cpu time spent up to now is 15.34 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 1.0E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-12, avg # of iterations = 1.3 total cpu time spent up to now is 15.52 secs End of self-consistent calculation k = 0.1250 0.2165 0.0439 ( 646 PWs) bands (ev): -11.9782 -11.7961 -0.3964 0.2083 0.2343 0.9776 1.2855 1.3035 k = 0.1250 0.2165 0.1317 ( 654 PWs) bands (ev): -11.9264 -11.8510 -0.0356 0.2157 0.2271 0.5282 1.2905 1.2979 k = 0.1250 0.5052 0.0439 ( 662 PWs) bands (ev): -8.4624 -8.3287 -5.5513 -5.4523 -0.9913 -0.9433 3.5735 4.4476 k = 0.1250 0.5052 0.1317 ( 662 PWs) bands (ev): -8.4240 -8.3687 -5.5229 -5.4819 -0.9775 -0.9575 3.8234 4.1867 k = 0.1250-0.3608 0.0439 ( 661 PWs) bands (ev): -10.5316 -10.3678 -2.5676 -2.5004 -0.2238 -0.1839 1.3237 2.5723 k = 0.1250-0.3608 0.1317 ( 657 PWs) bands (ev): -10.4849 -10.4171 -2.5480 -2.5202 -0.2123 -0.1958 1.6554 2.1683 k = 0.1250-0.0722 0.0439 ( 639 PWs) bands (ev): -12.7134 -12.5219 -1.2876 0.1372 1.9889 2.0169 2.6557 2.6756 k = 0.1250-0.0722 0.1317 ( 635 PWs) bands (ev): -12.6590 -12.5798 -0.9148 -0.3308 1.9970 2.0087 2.6616 2.6699 k = 0.3750 0.6495 0.0439 ( 647 PWs) bands (ev): -6.8703 -6.8057 -5.9529 -5.9265 -3.2556 -3.1942 5.2709 5.7500 k = 0.3750 0.6495 0.1317 ( 662 PWs) bands (ev): -6.8499 -6.8230 -5.9477 -5.9367 -3.2384 -3.2129 5.4438 5.6489 k = 0.3750-0.2165 0.0439 ( 658 PWs) bands (ev): -9.8224 -9.6678 -4.2511 -4.1585 0.3587 0.3898 2.1124 3.2546 k = 0.3750-0.2165 0.1317 ( 656 PWs) bands (ev): -9.7782 -9.7141 -4.2244 -4.1861 0.3678 0.3806 2.4205 2.8909 ! total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 4.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.68036820 Ry hartree contribution = 15.09476824 Ry xc contribution = -14.42225024 Ry ewald contribution = -31.87397374 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001745 0.00000000 0.00000000 0.00000000 0.00001745 0.00000000 0.00000000 0.00000000 0.00001803 VDW KERNEL stress -0.00006364 0.00000000 0.00000000 0.00000000 -0.00006364 0.00000000 0.00000000 0.00000000 -0.00054765 VDW ALL stress 0.00004619 0.00000000 0.00000000 0.00000000 0.00004619 0.00000000 0.00000000 0.00000000 0.00052962 total stress (Ry/bohr**3) (kbar) P= 27.39 0.00027790 0.00000000 0.00000000 40.88 0.00 0.00 0.00000000 0.00027790 0.00000000 0.00 40.88 0.00 0.00000000 0.00000000 0.00000280 0.00 0.00 0.41 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.8817128919 Ry enthalpy new = -45.8818239426 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0028917254 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 246.83813 a.u.^3 ( 36.57764 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.851012890 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.425506445 C 0.500000000 0.288675135 1.425506445 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438441), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1315322), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438441), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1315322), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438441), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1315322), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438441), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1315322), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438441), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1315322), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438441), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1315322), wk = 0.1250000 extrapolated charge 16.01462, renormalised to 16.00000 total cpu time spent up to now is 16.26 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 16.61 secs total energy = -45.88181452 Ry Harris-Foulkes estimate = -45.87118089 Ry estimated scf accuracy < 0.00000403 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 3.2 total cpu time spent up to now is 16.90 secs total energy = -45.88182487 Ry Harris-Foulkes estimate = -45.88182709 Ry estimated scf accuracy < 0.00000585 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.10 secs total energy = -45.88182401 Ry Harris-Foulkes estimate = -45.88182510 Ry estimated scf accuracy < 0.00000160 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.33 secs total energy = -45.88182434 Ry Harris-Foulkes estimate = -45.88182437 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 2.5 total cpu time spent up to now is 17.55 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 646 PWs) bands (ev): -11.9875 -11.8068 -0.4035 0.1983 0.2241 0.9641 1.2755 1.2934 k = 0.1250 0.2165 0.1315 ( 654 PWs) bands (ev): -11.9361 -11.8613 -0.0442 0.2057 0.2170 0.5169 1.2805 1.2878 k = 0.1250 0.5052 0.0438 ( 662 PWs) bands (ev): -8.4719 -8.3392 -5.5609 -5.4627 -1.0012 -0.9536 3.5658 4.4355 k = 0.1250 0.5052 0.1315 ( 662 PWs) bands (ev): -8.4338 -8.3789 -5.5327 -5.4921 -0.9875 -0.9677 3.8145 4.1759 k = 0.1250-0.3608 0.0438 ( 661 PWs) bands (ev): -10.5410 -10.3784 -2.5773 -2.5107 -0.2336 -0.1942 1.3165 2.5591 k = 0.1250-0.3608 0.1315 ( 657 PWs) bands (ev): -10.4946 -10.4273 -2.5580 -2.5304 -0.2223 -0.2059 1.6467 2.1571 k = 0.1250-0.0722 0.0438 ( 639 PWs) bands (ev): -12.7227 -12.5326 -1.2946 0.1235 1.9790 2.0067 2.6457 2.6654 k = 0.1250-0.0722 0.1315 ( 635 PWs) bands (ev): -12.6687 -12.5900 -0.9234 -0.3421 1.9870 1.9985 2.6516 2.6598 k = 0.3750 0.6495 0.0438 ( 647 PWs) bands (ev): -6.8800 -6.8159 -5.9629 -5.9367 -3.2654 -3.2045 5.2627 5.7394 k = 0.3750 0.6495 0.1315 ( 662 PWs) bands (ev): -6.8598 -6.8332 -5.9577 -5.9468 -3.2483 -3.2230 5.4346 5.6386 k = 0.3750-0.2165 0.0438 ( 658 PWs) bands (ev): -9.8318 -9.6783 -4.2608 -4.1689 0.3488 0.3796 2.1051 3.2417 k = 0.3750-0.2165 0.1315 ( 656 PWs) bands (ev): -9.7879 -9.7244 -4.2342 -4.1963 0.3578 0.3705 2.4118 2.8799 ! total energy = -45.88182435 Ry Harris-Foulkes estimate = -45.88182435 Ry estimated scf accuracy < 6.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.75557476 Ry hartree contribution = 15.12638023 Ry xc contribution = -14.42210068 Ry ewald contribution = -31.83052914 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001745 0.00000000 0.00000000 0.00000000 0.00001745 0.00000000 0.00000000 0.00000000 0.00001804 VDW KERNEL stress -0.00006358 0.00000000 0.00000000 0.00000000 -0.00006358 0.00000000 0.00000000 0.00000000 -0.00054768 VDW ALL stress 0.00004613 0.00000000 0.00000000 0.00000000 0.00004613 0.00000000 0.00000000 0.00000000 0.00052964 total stress (Ry/bohr**3) (kbar) P= 27.24 0.00027770 0.00000000 0.00000000 40.85 0.00 0.00 0.00000000 0.00027770 0.00000000 0.00 40.85 0.00 0.00000000 0.00000000 0.00000003 0.00 0.00 0.00 Begin final coordinates new unit-cell volume = 246.83813 a.u.^3 ( 36.57764 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.851012890 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.425506445 C 0.500000000 0.288675135 1.425506445 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated. Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 65 15 46 2500 285 1368 max 67 16 47 2503 288 1379 265 61 187 10005 1143 5489 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 246.8381 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.851013 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.350753 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.4255064 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.4255064 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0438441), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1315322), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438441), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1315322), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438441), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1315322), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438441), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1315322), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438441), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1315322), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438441), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1315322), wk = 0.1250000 G cutoff = 98.2127 ( 10005 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5489 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 184, 8) NL pseudopotentials 0.09 Mb ( 184, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2500) G-vector shells 0.00 Mb ( 524) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 184, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 atomic wfcs Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 18.48 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 18.86 secs total energy = -45.81443797 Ry Harris-Foulkes estimate = -46.06544304 Ry estimated scf accuracy < 0.44605070 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-03, avg # of iterations = 2.0 total cpu time spent up to now is 19.08 secs total energy = -45.88108357 Ry Harris-Foulkes estimate = -45.87999763 Ry estimated scf accuracy < 0.00571718 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-05, avg # of iterations = 2.1 total cpu time spent up to now is 19.30 secs total energy = -45.88198904 Ry Harris-Foulkes estimate = -45.88179881 Ry estimated scf accuracy < 0.00038579 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 19.50 secs total energy = -45.88203505 Ry Harris-Foulkes estimate = -45.88203214 Ry estimated scf accuracy < 0.00000398 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.8 total cpu time spent up to now is 19.76 secs total energy = -45.88203720 Ry Harris-Foulkes estimate = -45.88203719 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.62E-10, avg # of iterations = 3.2 total cpu time spent up to now is 20.01 secs total energy = -45.88203724 Ry Harris-Foulkes estimate = -45.88203727 Ry estimated scf accuracy < 0.00000009 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.76E-10, avg # of iterations = 2.5 total cpu time spent up to now is 20.25 secs total energy = -45.88203725 Ry Harris-Foulkes estimate = -45.88203725 Ry estimated scf accuracy < 2.1E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-11, avg # of iterations = 2.0 total cpu time spent up to now is 20.46 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 676 PWs) bands (ev): -11.9871 -11.8064 -0.4037 0.1986 0.2243 0.9637 1.2758 1.2935 k = 0.1250 0.2165 0.1315 ( 681 PWs) bands (ev): -11.9357 -11.8609 -0.0447 0.2060 0.2173 0.5166 1.2807 1.2881 k = 0.1250 0.5052 0.0438 ( 688 PWs) bands (ev): -8.4715 -8.3389 -5.5606 -5.4624 -1.0009 -0.9534 3.5654 4.4353 k = 0.1250 0.5052 0.1315 ( 693 PWs) bands (ev): -8.4335 -8.3785 -5.5325 -5.4918 -0.9872 -0.9675 3.8142 4.1757 k = 0.1250-0.3608 0.0438 ( 689 PWs) bands (ev): -10.5407 -10.3781 -2.5770 -2.5104 -0.2334 -0.1940 1.3162 2.5587 k = 0.1250-0.3608 0.1315 ( 687 PWs) bands (ev): -10.4942 -10.4270 -2.5577 -2.5301 -0.2221 -0.2057 1.6464 2.1569 k = 0.1250-0.0722 0.0438 ( 670 PWs) bands (ev): -12.7223 -12.5323 -1.2948 0.1231 1.9792 2.0069 2.6459 2.6657 k = 0.1250-0.0722 0.1315 ( 662 PWs) bands (ev): -12.6683 -12.5896 -0.9236 -0.3426 1.9873 1.9988 2.6517 2.6599 k = 0.3750 0.6495 0.0438 ( 689 PWs) bands (ev): -6.8797 -6.8156 -5.9626 -5.9364 -3.2652 -3.2043 5.2622 5.7391 k = 0.3750 0.6495 0.1315 ( 685 PWs) bands (ev): -6.8594 -6.8328 -5.9574 -5.9464 -3.2480 -3.2228 5.4344 5.6384 k = 0.3750-0.2165 0.0438 ( 688 PWs) bands (ev): -9.8314 -9.6780 -4.2605 -4.1686 0.3490 0.3798 2.1047 3.2413 k = 0.3750-0.2165 0.1315 ( 685 PWs) bands (ev): -9.7876 -9.7240 -4.2340 -4.1959 0.3580 0.3707 2.4115 2.8797 ! total energy = -45.88203725 Ry Harris-Foulkes estimate = -45.88203725 Ry estimated scf accuracy < 3.6E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -14.75624386 Ry hartree contribution = 15.12691366 Ry xc contribution = -14.42217793 Ry ewald contribution = -31.83052913 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001745 0.00000000 0.00000000 0.00000000 0.00001745 0.00000000 0.00000000 0.00000000 0.00001804 VDW KERNEL stress -0.00006359 0.00000000 0.00000000 0.00000000 -0.00006359 0.00000000 0.00000000 0.00000000 -0.00054770 VDW ALL stress 0.00004614 0.00000000 0.00000000 0.00000000 0.00004614 0.00000000 0.00000000 0.00000000 0.00052967 total stress (Ry/bohr**3) (kbar) P= 28.81 0.00028164 0.00000000 0.00000000 41.43 0.00 0.00 0.00000000 0.00028164 0.00000000 0.00 41.43 0.00 0.00000000 0.00000000 0.00002434 0.00 0.00 3.58 Writing output data file graphite.save init_run : 0.43s CPU 0.47s WALL ( 2 calls) electrons : 13.26s CPU 14.38s WALL ( 8 calls) update_pot : 0.74s CPU 0.85s WALL ( 7 calls) forces : 0.37s CPU 0.37s WALL ( 8 calls) stress : 1.51s CPU 1.52s WALL ( 8 calls) Called by init_run: wfcinit : 0.17s CPU 0.17s WALL ( 2 calls) potinit : 0.12s CPU 0.13s WALL ( 2 calls) Called by electrons: c_bands : 8.02s CPU 8.18s WALL ( 61 calls) sum_band : 1.65s CPU 1.67s WALL ( 61 calls) v_of_rho : 3.35s CPU 3.37s WALL ( 69 calls) newd : 0.42s CPU 0.42s WALL ( 69 calls) mix_rho : 0.05s CPU 0.06s WALL ( 61 calls) vdW_energy : 1.29s CPU 1.30s WALL ( 69 calls) vdW_ffts : 0.90s CPU 0.92s WALL ( 154 calls) vdW_v : 0.36s CPU 0.36s WALL ( 69 calls) Called by c_bands: init_us_2 : 0.12s CPU 0.13s WALL ( 1680 calls) cegterg : 7.76s CPU 7.81s WALL ( 732 calls) Called by *egterg: h_psi : 6.26s CPU 6.31s WALL ( 2526 calls) s_psi : 0.24s CPU 0.25s WALL ( 2526 calls) g_psi : 0.04s CPU 0.04s WALL ( 1770 calls) cdiaghg : 0.53s CPU 0.51s WALL ( 2418 calls) Called by h_psi: add_vuspsi : 0.27s CPU 0.26s WALL ( 2526 calls) General routines calbec : 0.55s CPU 0.54s WALL ( 3450 calls) fft : 1.40s CPU 1.43s WALL ( 4946 calls) ffts : 0.03s CPU 0.03s WALL ( 130 calls) fftw : 6.06s CPU 6.10s WALL ( 40050 calls) interpolate : 0.07s CPU 0.08s WALL ( 130 calls) davcio : 0.01s CPU 0.13s WALL ( 2412 calls) Parallel routines fft_scatter : 1.60s CPU 1.65s WALL ( 45126 calls) EXX routines PWSCF : 17.03s CPU 20.97s WALL This run was terminated on: 16: 4:36 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/reference_G/graphite.scf.in0000644000700200004540000000203112053145630024355 0ustar marsamoscm&control calculation = 'vc-relax' restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo', outdir='/u/cm/degironc/tmp' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/examples/vdwDF_example/reference_R/0000755000700200004540000000000012053440303021462 5ustar marsamoscmespresso-5.0.2/PW/examples/vdwDF_example/reference_R/water.scf.in0000644000700200004540000000171212053145630023714 0ustar marsamoscm&control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {angstrom} O -0.000000 0.013129 -0.057535 H -0.000000 0.779069 -0.656064 H 0.000000 0.389646 0.845802 O 0.000000 0.887109 2.818248 H -0.774530 0.521469 3.280767 H 0.774530 0.521469 3.280767 K_POINTS gamma espresso-5.0.2/PW/examples/vdwDF_example/reference_R/water.scf.out0000644000700200004540000005103712053145630024122 0ustar marsamoscm Program PWSCF v.4.3a starts on 2Feb2011 at 15:58:49 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 1539, nstw = 258, nsts = 1025 n.st n.stw n.sts n.g n.gw n.gs min 768 127 512 40311 2739 21932 max 770 130 513 40318 2746 21968 3077 515 2049 161263 10971 87777 bravais-lattice index = 8 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3953.7707 (a.u.)^3 number of atoms/cell = 6 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 15.000000 celldm(2)= 0.954545 celldm(3)= 1.227273 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 0.954545 0.000000 ) a(3) = ( 0.000000 0.000000 1.227273 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.047619 0.000000 ) b(3) = ( 0.000000 0.000000 0.814815 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) 2 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_s (m) there are 2 classes the character table: E s A' 1.00 1.00 A'' 1.00 -1.00 the symmetry operations in each class: E 1 s 2 Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 ) 2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 ) 3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 ) 4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 ) 5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 ) 6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 ) 2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673461 ) 3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 ) 4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 ) 5 H tau( 5) = ( -0.0975766 0.0688239 0.3367766 ) 6 H tau( 6) = ( 0.0975766 0.0688239 0.3367766 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1025.8770 ( 80632 G-vectors) FFT grid: ( 72, 64, 80) G cutoff = 683.9180 ( 43889 G-vectors) smooth grid: ( 54, 50, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.17 Mb ( 1373, 8) NL pseudopotentials 0.50 Mb ( 1373, 24) Each V/rho on FFT grid 1.41 Mb ( 92160) Each G-vector array 0.15 Mb ( 20158) G-vector shells 0.07 Mb ( 9015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.34 Mb ( 1373, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 24, 8) Arrays for rho mixing 11.25 Mb ( 92160, 8) Initial potential from superposition of free atoms starting charge 15.61518, renormalised to 16.00000 negative rho (up, down): 0.281E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Real space --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.274973507423529 ---------------------------------------------------------------- Starting wfc are 12 atomic wfcs total cpu time spent up to now is 2.86 secs per-process dynamical memory: 42.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.249E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.301890299788559 ---------------------------------------------------------------- total cpu time spent up to now is 4.90 secs total energy = -68.62070992 Ry Harris-Foulkes estimate = -69.74340768 Ry estimated scf accuracy < 1.46175692 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-03, avg # of iterations = 2.0 negative rho (up, down): 0.806E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.299177491790602 ---------------------------------------------------------------- total cpu time spent up to now is 6.93 secs total energy = -68.83475351 Ry Harris-Foulkes estimate = -69.33653310 Ry estimated scf accuracy < 0.97182025 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.07E-03, avg # of iterations = 2.0 negative rho (up, down): 0.687E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304378750277082 ---------------------------------------------------------------- total cpu time spent up to now is 8.90 secs total energy = -69.04855188 Ry Harris-Foulkes estimate = -69.06845914 Ry estimated scf accuracy < 0.03453207 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-04, avg # of iterations = 2.0 negative rho (up, down): 0.639E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.303938420004694 ---------------------------------------------------------------- total cpu time spent up to now is 10.86 secs total energy = -69.05564654 Ry Harris-Foulkes estimate = -69.05601345 Ry estimated scf accuracy < 0.00065550 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.10E-06, avg # of iterations = 2.0 negative rho (up, down): 0.177E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304125146283984 ---------------------------------------------------------------- total cpu time spent up to now is 12.82 secs total energy = -69.05584470 Ry Harris-Foulkes estimate = -69.05582135 Ry estimated scf accuracy < 0.00002805 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-07, avg # of iterations = 2.0 negative rho (up, down): 0.187E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109894804392 ---------------------------------------------------------------- total cpu time spent up to now is 14.76 secs total energy = -69.05584769 Ry Harris-Foulkes estimate = -69.05584984 Ry estimated scf accuracy < 0.00000254 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304110375053225 ---------------------------------------------------------------- total cpu time spent up to now is 16.71 secs total energy = -69.05584799 Ry Harris-Foulkes estimate = -69.05584813 Ry estimated scf accuracy < 0.00000005 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-10, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109197735172 ---------------------------------------------------------------- total cpu time spent up to now is 18.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev): -25.6443 -24.2672 -13.5674 -12.2976 -9.7603 -8.3490 -7.6832 -6.4198 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -69.05584800 Ry Harris-Foulkes estimate = -69.05584800 Ry estimated scf accuracy < 8.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -122.46794354 Ry hartree contribution = 64.43481249 Ry xc contribution = -17.37518168 Ry ewald contribution = 6.35246473 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00095098 -0.00215297 atom 2 type 2 force = 0.00000000 0.00014163 0.00067659 atom 3 type 2 force = 0.00000000 -0.00035563 0.00015670 atom 4 type 1 force = 0.00000000 0.00088192 0.00118093 atom 5 type 2 force = 0.00003045 -0.00080945 0.00006938 atom 6 type 2 force = -0.00003045 -0.00080945 0.00006938 Total force = 0.003109 Total SCF correction = 0.000102 entering subroutine stress ... VDW GRADIENT stress 0.00000778 0.00000000 0.00000000 0.00000000 0.00000797 0.00000000 0.00000000 0.00000032 0.00000722 VDW KERNEL stress -0.00002787 0.00000000 0.00000000 0.00000000 -0.00002821 0.00000000 0.00000000 -0.00000003 -0.00002322 VDW ALL stress 0.00002009 0.00000000 0.00000000 0.00000000 0.00002024 -0.00000029 0.00000000 -0.00000029 0.00001600 total stress (Ry/bohr**3) (kbar) P= -1.69 -0.00001153 0.00000000 0.00000000 -1.70 0.00 0.00 0.00000000 -0.00001107 -0.00000082 0.00 -1.63 -0.12 0.00000000 -0.00000082 -0.00001190 0.00 -0.12 -1.75 kinetic stress (kbar) 773.91 0.00 0.00 0.00 795.27 35.09 0.00 35.09 748.19 local stress (kbar) -1260.29 0.00 0.00 0.00 -1418.75 -162.43 0.00 -162.43 -2492.38 nonloc. stress (kbar) 278.33 0.00 0.00 0.00 280.61 11.21 0.00 11.21 269.13 hartree stress (kbar) 584.70 0.00 0.00 0.00 685.80 102.02 0.00 102.02 1126.87 exc-cor stress (kbar) -207.39 0.00 0.00 0.00 -207.96 -1.03 0.00 -1.03 -205.77 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -173.91 0.00 0.00 0.00 -139.58 15.06 0.00 15.06 549.84 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 2.96 0.00 0.00 0.00 2.98 -0.04 0.00 -0.04 2.35 EXX stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Writing output data file water_vdw.save init_run : 2.46s CPU 2.60s WALL ( 1 calls) electrons : 14.62s CPU 15.66s WALL ( 1 calls) forces : 0.75s CPU 0.75s WALL ( 1 calls) stress : 2.81s CPU 2.88s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.07s WALL ( 1 calls) potinit : 1.76s CPU 1.85s WALL ( 1 calls) Called by electrons: c_bands : 1.09s CPU 1.11s WALL ( 8 calls) sum_band : 1.30s CPU 1.30s WALL ( 8 calls) v_of_rho : 12.10s CPU 12.78s WALL ( 9 calls) v_h : 0.19s CPU 0.18s WALL ( 9 calls) v_xc : 11.91s CPU 12.59s WALL ( 9 calls) newd : 0.83s CPU 0.83s WALL ( 9 calls) mix_rho : 0.32s CPU 0.33s WALL ( 8 calls) vdW_energy : 1.80s CPU 2.10s WALL ( 9 calls) vdW_ffts : 6.15s CPU 6.17s WALL ( 20 calls) vdW_v : 1.80s CPU 1.81s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 17 calls) regterg : 1.08s CPU 1.09s WALL ( 8 calls) Called by sum_band: sum_band:bec : 0.00s CPU 0.00s WALL ( 8 calls) addusdens : 0.53s CPU 0.53s WALL ( 8 calls) Called by *egterg: h_psi : 1.05s CPU 1.06s WALL ( 25 calls) s_psi : 0.02s CPU 0.02s WALL ( 25 calls) g_psi : 0.00s CPU 0.00s WALL ( 16 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) regterg:over : 0.02s CPU 0.02s WALL ( 16 calls) regterg:upda : 0.01s CPU 0.01s WALL ( 16 calls) regterg:last : 0.00s CPU 0.01s WALL ( 8 calls) Called by h_psi: h_psi:vloc : 1.00s CPU 1.00s WALL ( 25 calls) h_psi:vnl : 0.05s CPU 0.05s WALL ( 25 calls) add_vuspsi : 0.02s CPU 0.02s WALL ( 25 calls) General routines calbec : 0.04s CPU 0.05s WALL ( 38 calls) fft : 8.34s CPU 8.40s WALL ( 548 calls) ffts : 0.11s CPU 0.12s WALL ( 17 calls) fftw : 0.92s CPU 0.93s WALL ( 228 calls) interpolate : 0.43s CPU 0.43s WALL ( 17 calls) davcio : 0.00s CPU 0.01s WALL ( 8 calls) Parallel routines fft_scatter : 3.86s CPU 3.88s WALL ( 793 calls) EXX routines PWSCF : 20.94s CPU 22.44s WALL This run was terminated on: 15:59:11 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/reference_R/Ar.scf.in0000644000700200004540000000142112053145630023131 0ustar marsamoscm&control calculation = 'scf' restart_mode='from_scratch', prefix='Ar_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' forc_conv_thr = 1.0d-4 / &system ibrav = 8 celldm(1) = 19 celldm(2) = 1 celldm(3) = 1.47368421052632 nat = 2 ntyp = 1 occupations = 'fixed' ecutwfc = 80.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-11 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES Ar 36.00 Ar.pz-rrkj.UPF ATOMIC_POSITIONS {angstrom} Ar 0.000000 0.000000 0.000000 Ar 0.000000 0.000000 4.500000 K_POINTS gamma espresso-5.0.2/PW/examples/vdwDF_example/reference_R/graphite.scf.out0000644000700200004540000022612312053145630024603 0ustar marsamoscm Program PWSCF v.4.3a starts on 2Feb2011 at 15:58:26 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 64 15 46 2392 275 1299 max 67 16 47 2397 278 1307 265 61 187 9583 1107 5211 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 G cutoff = 98.2127 ( 9583 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5211 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 163, 8) NL pseudopotentials 0.08 Mb ( 163, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2397) G-vector shells 0.02 Mb ( 2397) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 163, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Real space --------------------------------------------------------------------------------- Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.49 secs per-process dynamical memory: 25.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.74 secs total energy = -45.81465557 Ry Harris-Foulkes estimate = -46.06058025 Ry estimated scf accuracy < 0.43927225 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.98 secs total energy = -45.88011201 Ry Harris-Foulkes estimate = -45.87885161 Ry estimated scf accuracy < 0.00557033 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.20 secs total energy = -45.88094023 Ry Harris-Foulkes estimate = -45.88073512 Ry estimated scf accuracy < 0.00041540 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 1.9 total cpu time spent up to now is 1.42 secs total energy = -45.88099092 Ry Harris-Foulkes estimate = -45.88098783 Ry estimated scf accuracy < 0.00000300 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-08, avg # of iterations = 3.5 total cpu time spent up to now is 1.69 secs total energy = -45.88099389 Ry Harris-Foulkes estimate = -45.88099383 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 3.2 total cpu time spent up to now is 1.96 secs total energy = -45.88099390 Ry Harris-Foulkes estimate = -45.88099393 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-10, avg # of iterations = 2.6 total cpu time spent up to now is 2.19 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5262 -11.2690 -0.0600 0.6953 0.7346 1.6559 1.7758 1.8032 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4539 -11.3474 0.3855 0.7067 0.7240 1.0880 1.7832 1.7945 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0011 -7.8096 -5.0818 -4.9385 -0.5091 -0.4371 3.9426 5.0423 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9464 -7.8672 -5.0411 -4.9817 -0.4884 -0.4585 4.2592 4.7176 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0762 -9.8436 -2.0908 -1.9919 0.2606 0.3205 1.6678 3.2325 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0104 -9.9142 -2.0622 -2.0213 0.2777 0.3025 2.0794 2.7207 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2632 -11.9935 -0.9540 0.8225 2.4767 2.5195 3.1453 3.1764 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.1874 -12.0758 -0.4940 0.2317 2.4892 2.5069 3.1544 3.1673 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3959 -6.3024 -5.4646 -5.4275 -2.7777 -2.6878 5.6598 6.2661 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3654 -6.3263 -5.4590 -5.4433 -2.7528 -2.7155 5.8915 6.1556 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3649 -9.1448 -3.7802 -3.6453 0.8446 0.8926 2.4635 3.8970 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3026 -9.2114 -3.7416 -3.6858 0.8586 0.8785 2.8477 3.4373 ! total energy = -45.88099388 Ry Harris-Foulkes estimate = -45.88099392 Ry estimated scf accuracy < 9.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.17916966 Ry hartree contribution = 13.63716917 Ry xc contribution = -14.42985943 Ry ewald contribution = -33.90913395 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001726 0.00000000 0.00000000 0.00000001 0.00001726 0.00000000 0.00000000 0.00000000 0.00001732 VDW KERNEL stress -0.00006656 0.00000000 0.00000000 0.00000000 -0.00006656 0.00000000 0.00000000 0.00000000 -0.00054458 VDW ALL stress 0.00004930 -0.00000001 0.00000000 -0.00000001 0.00004929 0.00000000 0.00000000 0.00000000 0.00052725 total stress (Ry/bohr**3) (kbar) P= 35.09 0.00028511 0.00000000 0.00000000 41.94 0.00 0.00 0.00000000 0.00028511 0.00000000 0.00 41.94 0.00 0.00000000 0.00000000 0.00014533 0.00 0.00 21.38 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.8809938796 Ry new trust radius = 0.0108481490 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 236.85902 a.u.^3 ( 35.09888 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.735752877 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.367876438 C 0.500000000 0.288675135 1.367876438 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0456913), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1370738), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0456913), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1370738), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0456913), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1370738), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0456913), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1370738), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0456913), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1370738), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0456913), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1370738), wk = 0.1250000 extrapolated charge 16.05470, renormalised to 16.00000 total cpu time spent up to now is 2.99 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.23 secs total energy = -45.88099635 Ry Harris-Foulkes estimate = -45.85072868 Ry estimated scf accuracy < 0.00004816 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 3.2 total cpu time spent up to now is 3.49 secs total energy = -45.88112521 Ry Harris-Foulkes estimate = -45.88115068 Ry estimated scf accuracy < 0.00007134 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 1.9 total cpu time spent up to now is 3.70 secs total energy = -45.88111599 Ry Harris-Foulkes estimate = -45.88112781 Ry estimated scf accuracy < 0.00002011 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-07, avg # of iterations = 2.0 total cpu time spent up to now is 3.95 secs total energy = -45.88111973 Ry Harris-Foulkes estimate = -45.88112054 Ry estimated scf accuracy < 0.00000079 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-09, avg # of iterations = 2.4 total cpu time spent up to now is 4.18 secs End of self-consistent calculation k = 0.1250 0.2165 0.0457 ( 646 PWs) bands (ev): -11.5620 -11.3115 -0.0864 0.6565 0.6945 1.6007 1.7367 1.7632 k = 0.1250 0.2165 0.1371 ( 654 PWs) bands (ev): -11.4915 -11.3878 0.3520 0.6674 0.6842 1.0428 1.7438 1.7548 k = 0.1250 0.5052 0.0457 ( 662 PWs) bands (ev): -8.0377 -7.8514 -5.1191 -4.9798 -0.5475 -0.4777 3.9136 4.9943 k = 0.1250 0.5052 0.1371 ( 662 PWs) bands (ev): -7.9845 -7.9074 -5.0795 -5.0218 -0.5274 -0.4985 4.2245 4.6748 k = 0.1250-0.3608 0.0457 ( 661 PWs) bands (ev): -10.1123 -9.8858 -2.1288 -2.0328 0.2220 0.2800 1.6408 3.1787 k = 0.1250-0.3608 0.1371 ( 657 PWs) bands (ev): -10.0482 -9.9545 -2.1010 -2.0612 0.2386 0.2627 2.0457 2.6762 k = 0.1250-0.0722 0.0457 ( 639 PWs) bands (ev): -12.2988 -12.0361 -0.9801 0.7666 2.4378 2.4792 3.1062 3.1363 k = 0.1250-0.0722 0.1371 ( 635 PWs) bands (ev): -12.2249 -12.1162 -0.5274 0.1862 2.4499 2.4670 3.1150 3.1275 k = 0.3750 0.6495 0.0457 ( 647 PWs) bands (ev): -6.4336 -6.3427 -5.5037 -5.4675 -2.8158 -2.7284 5.6294 6.2250 k = 0.3750 0.6495 0.1371 ( 662 PWs) bands (ev): -6.4040 -6.3661 -5.4981 -5.4828 -2.7915 -2.7553 5.8560 6.1149 k = 0.3750-0.2165 0.0457 ( 658 PWs) bands (ev): -9.4012 -9.1869 -3.8177 -3.6866 0.8058 0.8523 2.4360 3.8449 k = 0.3750-0.2165 0.1371 ( 656 PWs) bands (ev): -9.3404 -9.2517 -3.7801 -3.7259 0.8194 0.8386 2.8137 3.3933 ! total energy = -45.88111989 Ry Harris-Foulkes estimate = -45.88111990 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.44595725 Ry hartree contribution = 13.74715338 Ry xc contribution = -14.42920528 Ry ewald contribution = -33.75311074 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001727 0.00000000 0.00000000 0.00000001 0.00001728 0.00000000 0.00000000 0.00000000 0.00001746 VDW KERNEL stress -0.00006633 0.00000000 0.00000000 0.00000000 -0.00006633 0.00000000 0.00000000 0.00000000 -0.00054491 VDW ALL stress 0.00004906 -0.00000001 0.00000000 -0.00000001 0.00004905 0.00000000 0.00000000 0.00000000 0.00052745 total stress (Ry/bohr**3) (kbar) P= 34.52 0.00028517 0.00000000 0.00000000 41.95 0.00 0.00 0.00000000 0.00028517 0.00000000 0.00 41.95 0.00 0.00000000 0.00000000 0.00013366 0.00 0.00 19.66 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.8809938796 Ry enthalpy new = -45.8811198949 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0162165926 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 238.07366 a.u.^3 ( 35.27888 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.749782192 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.374891096 C 0.500000000 0.288675135 1.374891096 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0454581), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1363744), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0454581), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1363744), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0454581), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1363744), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0454581), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1363744), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0454581), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1363744), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0454581), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1363744), wk = 0.1250000 extrapolated charge 16.08163, renormalised to 16.00000 total cpu time spent up to now is 4.90 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.4 total cpu time spent up to now is 5.15 secs total energy = -45.88101232 Ry Harris-Foulkes estimate = -45.83421713 Ry estimated scf accuracy < 0.00010979 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.86E-07, avg # of iterations = 3.2 total cpu time spent up to now is 5.41 secs total energy = -45.88130394 Ry Harris-Foulkes estimate = -45.88136304 Ry estimated scf accuracy < 0.00016272 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.86E-07, avg # of iterations = 1.9 total cpu time spent up to now is 5.63 secs total energy = -45.88128170 Ry Harris-Foulkes estimate = -45.88130997 Ry estimated scf accuracy < 0.00004579 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.89 secs total energy = -45.88129048 Ry Harris-Foulkes estimate = -45.88129200 Ry estimated scf accuracy < 0.00000168 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-08, avg # of iterations = 2.4 total cpu time spent up to now is 6.14 secs total energy = -45.88129082 Ry Harris-Foulkes estimate = -45.88129084 Ry estimated scf accuracy < 3.6E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-11, avg # of iterations = 3.4 total cpu time spent up to now is 6.41 secs total energy = -45.88129083 Ry Harris-Foulkes estimate = -45.88129083 Ry estimated scf accuracy < 3.0E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-11, avg # of iterations = 1.8 total cpu time spent up to now is 6.60 secs End of self-consistent calculation k = 0.1250 0.2165 0.0455 ( 646 PWs) bands (ev): -11.6151 -11.3743 -0.1256 0.5989 0.6352 1.5190 1.6787 1.7040 k = 0.1250 0.2165 0.1364 ( 654 PWs) bands (ev): -11.5472 -11.4476 0.3022 0.6094 0.6254 0.9759 1.6855 1.6960 k = 0.1250 0.5052 0.0455 ( 662 PWs) bands (ev): -8.0920 -7.9132 -5.1744 -5.0409 -0.6043 -0.5377 3.8705 4.9233 k = 0.1250 0.5052 0.1364 ( 662 PWs) bands (ev): -8.0409 -7.9670 -5.1364 -5.0811 -0.5851 -0.5575 4.1731 4.6116 k = 0.1250-0.3608 0.0455 ( 661 PWs) bands (ev): -10.1658 -9.9483 -2.1850 -2.0932 0.1648 0.2202 1.6006 3.0994 k = 0.1250-0.3608 0.1364 ( 657 PWs) bands (ev): -10.1042 -10.0142 -2.1584 -2.1204 0.1807 0.2037 1.9957 2.6102 k = 0.1250-0.0722 0.0455 ( 639 PWs) bands (ev): -12.3517 -12.0991 -1.0191 0.6841 2.3802 2.4196 3.0483 3.0769 k = 0.1250-0.0722 0.1364 ( 635 PWs) bands (ev): -12.2806 -12.1760 -0.5772 0.1190 2.3917 2.4081 3.0567 3.0686 k = 0.3750 0.6495 0.0455 ( 647 PWs) bands (ev): -6.4895 -6.4024 -5.5616 -5.5268 -2.8722 -2.7886 5.5840 6.1641 k = 0.3750 0.6495 0.1364 ( 662 PWs) bands (ev): -6.4612 -6.4249 -5.5559 -5.5412 -2.8490 -2.8143 5.8031 6.0548 k = 0.3750-0.2165 0.0455 ( 658 PWs) bands (ev): -9.4550 -9.2492 -3.8731 -3.7476 0.7484 0.7926 2.3950 3.7677 k = 0.3750-0.2165 0.1364 ( 656 PWs) bands (ev): -9.3966 -9.3114 -3.8371 -3.7852 0.7613 0.7796 2.7633 3.3280 ! total energy = -45.88129083 Ry Harris-Foulkes estimate = -45.88129083 Ry estimated scf accuracy < 9.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -11.84657955 Ry hartree contribution = 13.91259698 Ry xc contribution = -14.42822804 Ry ewald contribution = -33.51908022 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001729 0.00000000 0.00000000 0.00000001 0.00001730 0.00000000 0.00000000 0.00000000 0.00001767 VDW KERNEL stress -0.00006599 0.00000000 0.00000000 0.00000000 -0.00006599 0.00000000 0.00000000 0.00000000 -0.00054537 VDW ALL stress 0.00004871 -0.00000001 0.00000000 -0.00000001 0.00004869 0.00000000 0.00000000 0.00000000 0.00052770 total stress (Ry/bohr**3) (kbar) P= 33.63 0.00028498 0.00000000 0.00000000 41.92 0.00 0.00 0.00000000 0.00028498 0.00000000 0.00 41.92 0.00 0.00000000 0.00000000 0.00011581 0.00 0.00 17.04 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.8811198949 Ry enthalpy new = -45.8812908343 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0242007840 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 239.89563 a.u.^3 ( 35.54886 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.770826165 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.385413082 C 0.500000000 0.288675135 1.385413082 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0451129), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1353387), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0451129), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1353387), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0451129), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1353387), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0451129), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1353387), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0451129), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1353387), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0451129), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1353387), wk = 0.1250000 extrapolated charge 16.12152, renormalised to 16.00000 total cpu time spent up to now is 7.34 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 7.60 secs total energy = -45.88087740 Ry Harris-Foulkes estimate = -45.80757480 Ry estimated scf accuracy < 0.00024979 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-06, avg # of iterations = 3.2 total cpu time spent up to now is 7.87 secs total energy = -45.88153962 Ry Harris-Foulkes estimate = -45.88167639 Ry estimated scf accuracy < 0.00037219 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-06, avg # of iterations = 2.0 total cpu time spent up to now is 8.08 secs total energy = -45.88148702 Ry Harris-Foulkes estimate = -45.88155360 Ry estimated scf accuracy < 0.00010458 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-07, avg # of iterations = 2.0 total cpu time spent up to now is 8.32 secs total energy = -45.88150737 Ry Harris-Foulkes estimate = -45.88151021 Ry estimated scf accuracy < 0.00000340 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-08, avg # of iterations = 2.4 total cpu time spent up to now is 8.58 secs total energy = -45.88150814 Ry Harris-Foulkes estimate = -45.88150815 Ry estimated scf accuracy < 0.00000004 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 1.8 total cpu time spent up to now is 8.79 secs total energy = -45.88150813 Ry Harris-Foulkes estimate = -45.88150814 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.6 total cpu time spent up to now is 9.06 secs total energy = -45.88150814 Ry Harris-Foulkes estimate = -45.88150814 Ry estimated scf accuracy < 5.9E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.66E-11, avg # of iterations = 1.0 total cpu time spent up to now is 9.26 secs total energy = -45.88150815 Ry Harris-Foulkes estimate = -45.88150814 Ry estimated scf accuracy < 4.1E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-11, avg # of iterations = 2.5 total cpu time spent up to now is 9.49 secs End of self-consistent calculation k = 0.1250 0.2165 0.0451 ( 646 PWs) bands (ev): -11.6940 -11.4671 -0.1842 0.5137 0.5475 1.3988 1.5929 1.6164 k = 0.1250 0.2165 0.1353 ( 654 PWs) bands (ev): -11.6299 -11.5360 0.2285 0.5234 0.5383 0.8771 1.5993 1.6090 k = 0.1250 0.5052 0.0451 ( 662 PWs) bands (ev): -8.1727 -8.0046 -5.2565 -5.1312 -0.6886 -0.6265 3.8062 4.8184 k = 0.1250 0.5052 0.1353 ( 662 PWs) bands (ev): -8.1246 -8.0550 -5.2208 -5.1689 -0.6707 -0.6449 4.0967 4.5181 k = 0.1250-0.3608 0.0451 ( 661 PWs) bands (ev): -10.2454 -10.0406 -2.2684 -2.1825 0.0802 0.1318 1.5407 2.9825 k = 0.1250-0.3608 0.1353 ( 657 PWs) bands (ev): -10.1873 -10.1025 -2.2435 -2.2079 0.0950 0.1164 1.9214 2.5127 k = 0.1250-0.0722 0.0451 ( 639 PWs) bands (ev): -12.4303 -12.1921 -1.0771 0.5627 2.2949 2.3316 2.9626 2.9890 k = 0.1250-0.0722 0.1353 ( 635 PWs) bands (ev): -12.3631 -12.2645 -0.6509 0.0197 2.3056 2.3208 2.9704 2.9814 k = 0.3750 0.6495 0.0451 ( 647 PWs) bands (ev): -6.5724 -6.4906 -5.6472 -5.6144 -2.9558 -2.8776 5.5164 6.0736 k = 0.3750 0.6495 0.1353 ( 662 PWs) bands (ev): -6.5460 -6.5120 -5.6416 -5.6278 -2.9340 -2.9016 5.7247 5.9657 k = 0.3750-0.2165 0.0451 ( 658 PWs) bands (ev): -9.5349 -9.3412 -3.9554 -3.8378 0.6633 0.7043 2.3339 3.6541 k = 0.3750-0.2165 0.1353 ( 656 PWs) bands (ev): -9.4798 -9.3996 -3.9216 -3.8730 0.6753 0.6923 2.6885 3.2317 ! total energy = -45.88150814 Ry Harris-Foulkes estimate = -45.88150815 Ry estimated scf accuracy < 3.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -12.44861032 Ry hartree contribution = 14.16195060 Ry xc contribution = -14.42680480 Ry ewald contribution = -33.16804363 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001731 0.00000000 0.00000000 0.00000001 0.00001732 0.00000000 0.00000000 0.00000000 0.00001799 VDW KERNEL stress -0.00006549 0.00000000 0.00000000 0.00000000 -0.00006549 0.00000000 0.00000000 0.00000000 -0.00054596 VDW ALL stress 0.00004818 -0.00000001 0.00000000 -0.00000001 0.00004817 0.00000000 0.00000000 0.00000000 0.00052797 total stress (Ry/bohr**3) (kbar) P= 32.30 0.00028448 0.00000000 0.00000000 41.85 0.00 0.00 0.00000000 0.00028448 0.00000000 0.00 41.85 0.00 0.00000000 0.00000000 0.00008966 0.00 0.00 13.19 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.8812908343 Ry enthalpy new = -45.8815081417 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0360254745 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 242.62858 a.u.^3 ( 35.95385 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.802392124 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.401196062 C 0.500000000 0.288675135 1.401196062 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0446047), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1338142), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0446047), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1338142), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0446047), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1338142), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0446047), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1338142), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0446047), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1338142), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0446047), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1338142), wk = 0.1250000 extrapolated charge 16.18022, renormalised to 16.00000 total cpu time spent up to now is 10.20 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 total cpu time spent up to now is 10.48 secs total energy = -45.88031000 Ry Harris-Foulkes estimate = -45.76345235 Ry estimated scf accuracy < 0.00057085 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-06, avg # of iterations = 3.2 total cpu time spent up to now is 10.75 secs total energy = -45.88182592 Ry Harris-Foulkes estimate = -45.88214429 Ry estimated scf accuracy < 0.00085910 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-06, avg # of iterations = 2.0 total cpu time spent up to now is 10.96 secs total energy = -45.88170189 Ry Harris-Foulkes estimate = -45.88185869 Ry estimated scf accuracy < 0.00024133 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.20 secs total energy = -45.88174946 Ry Harris-Foulkes estimate = -45.88175458 Ry estimated scf accuracy < 0.00000684 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-08, avg # of iterations = 2.5 total cpu time spent up to now is 11.45 secs total energy = -45.88175089 Ry Harris-Foulkes estimate = -45.88175096 Ry estimated scf accuracy < 0.00000005 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.43E-10, avg # of iterations = 2.2 total cpu time spent up to now is 11.67 secs total energy = -45.88175085 Ry Harris-Foulkes estimate = -45.88175090 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-10, avg # of iterations = 2.9 total cpu time spent up to now is 11.93 secs total energy = -45.88175087 Ry Harris-Foulkes estimate = -45.88175086 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-10, avg # of iterations = 1.0 total cpu time spent up to now is 12.13 secs total energy = -45.88175087 Ry Harris-Foulkes estimate = -45.88175087 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-11, avg # of iterations = 2.5 total cpu time spent up to now is 12.35 secs End of self-consistent calculation k = 0.1250 0.2165 0.0446 ( 646 PWs) bands (ev): -11.8110 -11.6035 -0.2713 0.3877 0.4181 1.2234 1.4661 1.4872 k = 0.1250 0.2165 0.1338 ( 654 PWs) bands (ev): -11.7523 -11.6663 0.1194 0.3964 0.4098 0.7323 1.4719 1.4806 k = 0.1250 0.5052 0.0446 ( 662 PWs) bands (ev): -8.2922 -8.1390 -5.3780 -5.2641 -0.8132 -0.7572 3.7106 4.6645 k = 0.1250 0.5052 0.1338 ( 662 PWs) bands (ev): -8.2483 -8.1849 -5.3454 -5.2983 -0.7970 -0.7738 3.9839 4.3806 k = 0.1250-0.3608 0.0446 ( 661 PWs) bands (ev): -10.3633 -10.1763 -2.3918 -2.3140 -0.0450 0.0015 1.4516 2.8117 k = 0.1250-0.3608 0.1338 ( 657 PWs) bands (ev): -10.3101 -10.2327 -2.3692 -2.3370 -0.0316 -0.0124 1.8116 2.3698 k = 0.1250-0.0722 0.0446 ( 639 PWs) bands (ev): -12.5468 -12.3289 -1.1636 0.3854 2.1689 2.2017 2.8360 2.8595 k = 0.1250-0.0722 0.1338 ( 635 PWs) bands (ev): -12.4852 -12.3950 -0.7599 -0.1258 2.1784 2.1920 2.8429 2.8527 k = 0.3750 0.6495 0.0446 ( 647 PWs) bands (ev): -6.6951 -6.6208 -5.7736 -5.7435 -3.0795 -3.0086 5.4155 5.9400 k = 0.3750 0.6495 0.1338 ( 662 PWs) bands (ev): -6.6714 -6.6404 -5.7681 -5.7555 -3.0597 -3.0303 5.6087 5.8345 k = 0.3750-0.2165 0.0446 ( 658 PWs) bands (ev): -9.6533 -9.4765 -4.0773 -3.9705 0.5376 0.5742 2.2429 3.4879 k = 0.3750-0.2165 0.1338 ( 656 PWs) bands (ev): -9.6029 -9.5297 -4.0465 -4.0024 0.5483 0.5635 2.5778 3.0903 ! total energy = -45.88175088 Ry Harris-Foulkes estimate = -45.88175088 Ry estimated scf accuracy < 2.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -13.35432891 Ry hartree contribution = 14.53892632 Ry xc contribution = -14.42484046 Ry ewald contribution = -32.64150783 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001734 0.00000000 0.00000000 0.00000001 0.00001735 0.00000000 0.00000000 0.00000000 0.00001847 VDW KERNEL stress -0.00006475 0.00000000 0.00000000 0.00000000 -0.00006475 0.00000000 0.00000000 0.00000000 -0.00054665 VDW ALL stress 0.00004741 -0.00000001 0.00000000 -0.00000001 0.00004740 0.00000000 0.00000000 0.00000000 0.00052818 total stress (Ry/bohr**3) (kbar) P= 30.46 0.00028343 0.00000000 0.00000000 41.69 0.00 0.00 0.00000000 0.00028343 0.00000000 0.00 41.69 0.00 0.00000000 0.00000000 0.00005432 0.00 0.00 7.99 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.8815081417 Ry enthalpy new = -45.8817508846 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0534295289 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 246.72801 a.u.^3 ( 36.56132 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.849741063 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.424870531 C 0.500000000 0.288675135 1.424870531 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438636), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1315909), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438636), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1315909), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438636), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1315909), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438636), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1315909), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438636), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1315909), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438636), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1315909), wk = 0.1250000 extrapolated charge 16.26584, renormalised to 16.00000 total cpu time spent up to now is 13.08 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.38 secs total energy = -45.87864336 Ry Harris-Foulkes estimate = -45.68809977 Ry estimated scf accuracy < 0.00130865 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.18E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.65 secs total energy = -45.88211925 Ry Harris-Foulkes estimate = -45.88286160 Ry estimated scf accuracy < 0.00198755 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.18E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.86 secs total energy = -45.88182786 Ry Harris-Foulkes estimate = -45.88219530 Ry estimated scf accuracy < 0.00055826 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.10 secs total energy = -45.88193801 Ry Harris-Foulkes estimate = -45.88194736 Ry estimated scf accuracy < 0.00001285 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.03E-08, avg # of iterations = 2.6 total cpu time spent up to now is 14.35 secs total energy = -45.88194107 Ry Harris-Foulkes estimate = -45.88194116 Ry estimated scf accuracy < 0.00000011 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.78E-10, avg # of iterations = 2.3 total cpu time spent up to now is 14.57 secs total energy = -45.88194104 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 0.00000010 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.27E-10, avg # of iterations = 2.5 total cpu time spent up to now is 14.82 secs total energy = -45.88194108 Ry Harris-Foulkes estimate = -45.88194106 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-10, avg # of iterations = 2.3 total cpu time spent up to now is 15.04 secs total energy = -45.88194109 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 4.1E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-11, avg # of iterations = 2.8 total cpu time spent up to now is 15.31 secs total energy = -45.88194109 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 1.0E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.41E-12, avg # of iterations = 1.3 total cpu time spent up to now is 15.49 secs End of self-consistent calculation k = 0.1250 0.2165 0.0439 ( 646 PWs) bands (ev): -11.9827 -11.8012 -0.4004 0.2040 0.2299 0.9712 1.2814 1.2993 k = 0.1250 0.2165 0.1316 ( 654 PWs) bands (ev): -11.9311 -11.8560 -0.0402 0.2114 0.2227 0.5226 1.2863 1.2938 k = 0.1250 0.5052 0.0439 ( 662 PWs) bands (ev): -8.4672 -8.3340 -5.5557 -5.4570 -0.9951 -0.9472 3.5692 4.4416 k = 0.1250 0.5052 0.1316 ( 662 PWs) bands (ev): -8.4290 -8.3738 -5.5274 -5.4865 -0.9813 -0.9614 3.8187 4.1812 k = 0.1250-0.3608 0.0439 ( 661 PWs) bands (ev): -10.5363 -10.3730 -2.5720 -2.5050 -0.2276 -0.1879 1.3196 2.5659 k = 0.1250-0.3608 0.1316 ( 657 PWs) bands (ev): -10.4897 -10.4221 -2.5526 -2.5248 -0.2162 -0.1998 1.6508 2.1627 k = 0.1250-0.0722 0.0439 ( 639 PWs) bands (ev): -12.7179 -12.5271 -1.2915 0.1307 1.9850 2.0129 2.6513 2.6712 k = 0.1250-0.0722 0.1316 ( 635 PWs) bands (ev): -12.6637 -12.5847 -0.9194 -0.3364 1.9931 2.0047 2.6572 2.6655 k = 0.3750 0.6495 0.0439 ( 647 PWs) bands (ev): -6.8746 -6.8102 -5.9577 -5.9314 -3.2601 -3.1990 5.2664 5.7447 k = 0.3750 0.6495 0.1316 ( 662 PWs) bands (ev): -6.8542 -6.8275 -5.9526 -5.9416 -3.2430 -3.2176 5.4389 5.6436 k = 0.3750-0.2165 0.0439 ( 658 PWs) bands (ev): -9.8269 -9.6727 -4.2555 -4.1632 0.3541 0.3851 2.1083 3.2483 k = 0.3750-0.2165 0.1316 ( 656 PWs) bands (ev): -9.7828 -9.7189 -4.2288 -4.1907 0.3632 0.3760 2.4159 2.8854 ! total energy = -45.88194109 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 4.7E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.71832564 Ry hartree contribution = 15.11024700 Ry xc contribution = -14.42212019 Ry ewald contribution = -31.85174225 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001737 0.00000000 0.00000000 0.00000001 0.00001738 0.00000000 0.00000000 0.00000000 0.00001920 VDW KERNEL stress -0.00006367 0.00000000 0.00000000 0.00000000 -0.00006366 0.00000000 0.00000000 0.00000000 -0.00054726 VDW ALL stress 0.00004630 -0.00000001 0.00000000 -0.00000001 0.00004628 0.00000000 0.00000000 0.00000000 0.00052805 total stress (Ry/bohr**3) (kbar) P= 27.75 0.00028091 0.00000000 0.00000000 41.32 0.00 0.00 0.00000000 0.00028091 0.00000000 0.00 41.32 0.00 0.00000000 0.00000000 0.00000407 0.00 0.00 0.60 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.8817508846 Ry enthalpy new = -45.8819410873 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0042575895 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 247.06020 a.u.^3 ( 36.61054 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.853577863 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.426788931 C 0.500000000 0.288675135 1.426788931 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438047), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1314140), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438047), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1314140), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438047), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1314140), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438047), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1314140), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438047), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1314140), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438047), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1314140), wk = 0.1250000 extrapolated charge 16.02151, renormalised to 16.00000 total cpu time spent up to now is 16.25 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 16.61 secs total energy = -45.88192539 Ry Harris-Foulkes estimate = -45.86619890 Ry estimated scf accuracy < 0.00000877 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-08, avg # of iterations = 3.2 total cpu time spent up to now is 16.87 secs total energy = -45.88194840 Ry Harris-Foulkes estimate = -45.88195273 Ry estimated scf accuracy < 0.00001274 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.08 secs total energy = -45.88194724 Ry Harris-Foulkes estimate = -45.88194889 Ry estimated scf accuracy < 0.00000348 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.32 secs total energy = -45.88194783 Ry Harris-Foulkes estimate = -45.88194802 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.67E-10, avg # of iterations = 2.5 total cpu time spent up to now is 17.56 secs total energy = -45.88194784 Ry Harris-Foulkes estimate = -45.88194786 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.56E-12, avg # of iterations = 2.2 total cpu time spent up to now is 17.79 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 646 PWs) bands (ev): -11.9966 -11.8171 -0.4108 0.1892 0.2147 0.9512 1.2665 1.2842 k = 0.1250 0.2165 0.1314 ( 654 PWs) bands (ev): -11.9455 -11.8712 -0.0530 0.1965 0.2077 0.5059 1.2714 1.2787 k = 0.1250 0.5052 0.0438 ( 662 PWs) bands (ev): -8.4814 -8.3496 -5.5700 -5.4725 -1.0097 -0.9625 3.5578 4.4238 k = 0.1250 0.5052 0.1314 ( 662 PWs) bands (ev): -8.4435 -8.3890 -5.5420 -5.5016 -0.9961 -0.9765 3.8054 4.1652 k = 0.1250-0.3608 0.0438 ( 661 PWs) bands (ev): -10.5502 -10.3888 -2.5865 -2.5204 -0.2423 -0.2032 1.3090 2.5464 k = 0.1250-0.3608 0.1314 ( 657 PWs) bands (ev): -10.5041 -10.4373 -2.5673 -2.5399 -0.2311 -0.2148 1.6379 2.1462 k = 0.1250-0.0722 0.0438 ( 639 PWs) bands (ev): -12.7317 -12.5430 -1.3019 0.1105 1.9702 1.9978 2.6364 2.6560 k = 0.1250-0.0722 0.1314 ( 635 PWs) bands (ev): -12.6780 -12.5999 -0.9322 -0.3532 1.9782 1.9896 2.6423 2.6504 k = 0.3750 0.6495 0.0438 ( 647 PWs) bands (ev): -6.8890 -6.8254 -5.9725 -5.9465 -3.2747 -3.2143 5.2543 5.7290 k = 0.3750 0.6495 0.1314 ( 662 PWs) bands (ev): -6.8690 -6.8425 -5.9674 -5.9565 -3.2578 -3.2327 5.4253 5.6284 k = 0.3750-0.2165 0.0438 ( 658 PWs) bands (ev): -9.8409 -9.6884 -4.2699 -4.1786 0.3394 0.3699 2.0975 3.2293 k = 0.3750-0.2165 0.1314 ( 656 PWs) bands (ev): -9.7973 -9.7341 -4.2435 -4.2058 0.3483 0.3609 2.4029 2.8691 ! total energy = -45.88194785 Ry Harris-Foulkes estimate = -45.88194784 Ry estimated scf accuracy < 3.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.82920128 Ry hartree contribution = 15.15693171 Ry xc contribution = -14.42193085 Ry ewald contribution = -31.78774743 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001738 0.00000000 0.00000000 0.00000001 0.00001738 0.00000000 0.00000000 0.00000000 0.00001926 VDW KERNEL stress -0.00006358 0.00000000 0.00000000 0.00000000 -0.00006358 0.00000000 0.00000000 0.00000000 -0.00054729 VDW ALL stress 0.00004621 -0.00000001 0.00000000 -0.00000001 0.00004619 0.00000000 0.00000000 0.00000000 0.00052802 total stress (Ry/bohr**3) (kbar) P= 27.57 0.00028070 0.00000000 0.00000000 41.29 0.00 0.00 0.00000000 0.00028070 0.00000000 0.00 41.29 0.00 0.00000000 0.00000000 0.00000088 0.00 0.00 0.13 Begin final coordinates new unit-cell volume = 247.06020 a.u.^3 ( 36.61054 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.853577863 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.426788931 C 0.500000000 0.288675135 1.426788931 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated. Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 65 15 46 2502 285 1367 max 67 16 47 2505 288 1383 265 61 187 10017 1143 5489 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 247.0602 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.853578 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.350437 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.4267889 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.4267889 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0438047), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1314140), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438047), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1314140), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438047), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1314140), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438047), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1314140), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438047), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1314140), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438047), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1314140), wk = 0.1250000 G cutoff = 98.2127 ( 10017 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5489 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 185, 8) NL pseudopotentials 0.09 Mb ( 185, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2505) G-vector shells 0.00 Mb ( 548) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 185, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 atomic wfcs Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 18.73 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 19.12 secs total energy = -45.81450952 Ry Harris-Foulkes estimate = -46.06540011 Ry estimated scf accuracy < 0.44605658 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-03, avg # of iterations = 2.0 total cpu time spent up to now is 19.35 secs total energy = -45.88120827 Ry Harris-Foulkes estimate = -45.88012080 Ry estimated scf accuracy < 0.00572581 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.58E-05, avg # of iterations = 2.1 total cpu time spent up to now is 19.57 secs total energy = -45.88211907 Ry Harris-Foulkes estimate = -45.88192235 Ry estimated scf accuracy < 0.00038570 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 19.79 secs total energy = -45.88216487 Ry Harris-Foulkes estimate = -45.88216093 Ry estimated scf accuracy < 0.00000398 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.8 total cpu time spent up to now is 20.05 secs total energy = -45.88216685 Ry Harris-Foulkes estimate = -45.88216689 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.54E-10, avg # of iterations = 3.4 total cpu time spent up to now is 20.31 secs total energy = -45.88216688 Ry Harris-Foulkes estimate = -45.88216690 Ry estimated scf accuracy < 0.00000009 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.54E-10, avg # of iterations = 2.5 total cpu time spent up to now is 20.54 secs total energy = -45.88216686 Ry Harris-Foulkes estimate = -45.88216689 Ry estimated scf accuracy < 2.1E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-11, avg # of iterations = 2.0 total cpu time spent up to now is 20.76 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 678 PWs) bands (ev): -11.9961 -11.8166 -0.4110 0.1896 0.2151 0.9509 1.2669 1.2845 k = 0.1250 0.2165 0.1314 ( 681 PWs) bands (ev): -11.9450 -11.8707 -0.0534 0.1969 0.2081 0.5057 1.2718 1.2791 k = 0.1250 0.5052 0.0438 ( 689 PWs) bands (ev): -8.4808 -8.3491 -5.5695 -5.4720 -1.0093 -0.9622 3.5575 4.4237 k = 0.1250 0.5052 0.1314 ( 693 PWs) bands (ev): -8.4430 -8.3884 -5.5416 -5.5012 -0.9957 -0.9761 3.8052 4.1651 k = 0.1250-0.3608 0.0438 ( 689 PWs) bands (ev): -10.5497 -10.3883 -2.5861 -2.5199 -0.2419 -0.2028 1.3087 2.5461 k = 0.1250-0.3608 0.1314 ( 688 PWs) bands (ev): -10.5036 -10.4368 -2.5669 -2.5395 -0.2307 -0.2144 1.6376 2.1461 k = 0.1250-0.0722 0.0438 ( 670 PWs) bands (ev): -12.7312 -12.5424 -1.3021 0.1102 1.9706 1.9981 2.6369 2.6564 k = 0.1250-0.0722 0.1314 ( 662 PWs) bands (ev): -12.6776 -12.5994 -0.9323 -0.3536 1.9787 1.9900 2.6426 2.6507 k = 0.3750 0.6495 0.0438 ( 690 PWs) bands (ev): -6.8885 -6.8249 -5.9721 -5.9461 -3.2744 -3.2140 5.2539 5.7287 k = 0.3750 0.6495 0.1314 ( 685 PWs) bands (ev): -6.8684 -6.8420 -5.9669 -5.9560 -3.2573 -3.2323 5.4251 5.6282 k = 0.3750-0.2165 0.0438 ( 688 PWs) bands (ev): -9.8403 -9.6880 -4.2694 -4.1782 0.3398 0.3703 2.0971 3.2290 k = 0.3750-0.2165 0.1314 ( 685 PWs) bands (ev): -9.7967 -9.7337 -4.2431 -4.2053 0.3487 0.3613 2.4027 2.8689 ! total energy = -45.88216686 Ry Harris-Foulkes estimate = -45.88216686 Ry estimated scf accuracy < 3.7E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -14.82981884 Ry hartree contribution = 15.15738744 Ry xc contribution = -14.42198804 Ry ewald contribution = -31.78774742 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001737 0.00000000 0.00000000 0.00000001 0.00001738 0.00000000 0.00000000 0.00000000 0.00001925 VDW KERNEL stress -0.00006359 0.00000000 0.00000000 0.00000000 -0.00006358 0.00000000 0.00000000 0.00000000 -0.00054730 VDW ALL stress 0.00004621 -0.00000001 0.00000000 -0.00000001 0.00004620 0.00000000 0.00000000 0.00000000 0.00052805 total stress (Ry/bohr**3) (kbar) P= 29.15 0.00028469 0.00000000 0.00000000 41.88 0.00 0.00 0.00000000 0.00028469 0.00000000 0.00 41.88 0.00 0.00000000 0.00000000 0.00002500 0.00 0.00 3.68 Writing output data file graphite.save init_run : 0.43s CPU 0.47s WALL ( 2 calls) electrons : 13.83s CPU 14.89s WALL ( 8 calls) update_pot : 0.79s CPU 0.89s WALL ( 7 calls) forces : 0.31s CPU 0.31s WALL ( 8 calls) stress : 1.51s CPU 1.51s WALL ( 8 calls) Called by init_run: wfcinit : 0.16s CPU 0.17s WALL ( 2 calls) potinit : 0.14s CPU 0.14s WALL ( 2 calls) Called by electrons: c_bands : 8.09s CPU 8.25s WALL ( 62 calls) sum_band : 1.67s CPU 1.71s WALL ( 62 calls) v_of_rho : 3.86s CPU 3.88s WALL ( 70 calls) newd : 0.42s CPU 0.42s WALL ( 70 calls) mix_rho : 0.06s CPU 0.06s WALL ( 62 calls) vdW_energy : 1.31s CPU 1.31s WALL ( 70 calls) vdW_ffts : 0.93s CPU 0.94s WALL ( 156 calls) vdW_v : 0.83s CPU 0.84s WALL ( 70 calls) Called by c_bands: init_us_2 : 0.14s CPU 0.13s WALL ( 1704 calls) cegterg : 7.81s CPU 7.88s WALL ( 744 calls) Called by *egterg: h_psi : 6.32s CPU 6.38s WALL ( 2567 calls) s_psi : 0.26s CPU 0.25s WALL ( 2567 calls) g_psi : 0.03s CPU 0.04s WALL ( 1799 calls) cdiaghg : 0.53s CPU 0.52s WALL ( 2459 calls) Called by h_psi: add_vuspsi : 0.24s CPU 0.26s WALL ( 2567 calls) General routines calbec : 0.57s CPU 0.55s WALL ( 3503 calls) fft : 1.25s CPU 1.27s WALL ( 4280 calls) ffts : 0.04s CPU 0.03s WALL ( 132 calls) fftw : 6.15s CPU 6.20s WALL ( 40716 calls) interpolate : 0.09s CPU 0.08s WALL ( 132 calls) davcio : 0.02s CPU 0.13s WALL ( 2448 calls) Parallel routines fft_scatter : 1.57s CPU 1.61s WALL ( 45128 calls) EXX routines PWSCF : 17.61s CPU 21.33s WALL This run was terminated on: 15:58:48 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/examples/vdwDF_example/reference_R/graphite.scf.in0000644000700200004540000000203112053145630024370 0ustar marsamoscm&control calculation = 'vc-relax' restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo', outdir='/u/cm/degironc/tmp' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/examples/vdwDF_example/run_example_delta_scf0000755000700200004540000002337012053145630023526 0ustar marsamoscm#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x with vdw-DF functional. In the" $ECHO "first part a cell relaxation of graphite will be calculated and" $ECHO "then the energy of two water molecules far apart will be computed." $ECHO "Optionally, at the end, you can see how to set up a force relaxation" $ECHO "of an Argon dimer, not activated by default in the distribution." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x generate_vdW_kernel_table.x" PSEUDO_LIST="C.pbe-rrkjus.UPF O.pbe-rrkjus.UPF H.pbe-rrkjus.UPF" VDW_TABLE="vdW_kernel_table" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results_dscf" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results_dscf # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" wget http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE \ -O $PSEUDO_DIR/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" GEN_COMMAND="$PARA_PREFIX $BIN_DIR/generate_vdW_kernel_table.x $PARA_POSTFIX" # check for vdw kernel table if test ! -r $PSEUDO_DIR/$VDW_TABLE ; then $ECHO " " $ECHO " " $ECHO " WARNING: $PSEUDO_DIR/$VDW_TABLE not existent or not readable" $ECHO " WARNING: a new table will be generated, this process will" $ECHO " WARNING: probably take about 20 mins (depending on your cpu" $ECHO " WARNING: power and configuration)." $ECHO $ECHO " Generating $VDW_TABLE...\c" if $GEN_COMMAND ; then if test ! -r $VDW_TABLE ; then $ECHO " ERROR: cannot generate vdW_kernel_table !!" exit 1 fi $ECHO "done ! Table moved to $PSEUDO_DIR" mv $VDW_TABLE $PSEUDO_DIR fi fi $ECHO " done" # Print how we run executables $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # # Graphite cell relaxation # # cat > graphite.scf.0.in << EOF &control calculation = "scf" restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' verbosity = 'high' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.0.in > graphite.scf.0.out check_failure $? $ECHO " done" # cat > graphite.scf.+1.in << EOF &control calculation = "scf" restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' verbosity = 'high' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6511700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 29.87113860 ecutrho = 179.22683160 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.+1.in > graphite.scf.+1.out check_failure $? $ECHO " done" cat > graphite.scf.-1.in << EOF &control calculation = "scf" restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' verbosity = 'high' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6311700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.12969660 ecutrho = 180.77817960 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.-1.in > graphite.scf.-1.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.0.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15.0 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} O 0.0000000 0.0016540 -0.0072484 H 0.0000000 0.0981485 -0.0826521 H 0.0000000 0.0490883 0.1065556 O 0.0000000 0.1117595 0.3550478 H -0.0975766 0.0656956 0.4133167 H 0.0975766 0.0656956 0.4133167 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.0.in > water.scf.0.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.+1.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15.05 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 29.80099530 ecutrho = 178.80597180 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} O 0.0000000 0.0016540 -0.0072484 H 0.0000000 0.0981485 -0.0826521 H 0.0000000 0.0490883 0.1065556 O 0.0000000 0.1117595 0.3550478 H -0.0975766 0.0656956 0.4133167 H 0.0975766 0.0656956 0.4133167 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.+1.in > water.scf.+1.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.-1.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 14.95 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.20100420 ecutrho = 181.20602520 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} O 0.0000000 0.0016540 -0.0072484 H 0.0000000 0.0981485 -0.0826521 H 0.0000000 0.0490883 0.1065556 O 0.0000000 0.1117595 0.3550478 H -0.0975766 0.0656956 0.4133167 H 0.0975766 0.0656956 0.4133167 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.-1.in > water.scf.-1.out check_failure $? $ECHO " done" espresso-5.0.2/PW/examples/vdwDF_example/README0000644000700200004540000000506312053145630020134 0ustar marsamoscm This example shows how to use the vdw-DF functional in pw.x, a method based on the one proposed by Guillermo Roman-Perez and Jose M. Soler in: G. Roman-Perez and J. M. Soler, PRL 103, 096102 (2009) henceforth referred to as SOLER. That method is a new implementation of the method found in: M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). henceforth referred to as DION. Further information about the functional and its corresponding potential can be found in: T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D.C. Langreth, Phys. Rev. B 76, 125112 (2007). A review article that shows many of the applications vdW-DF has been applied to so far can be found at: D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). --------------------------------------------------------------------- The example will first check if all the necessary files are present, and then run the simulations. As for this particular kind of implementation, the vdw-DF need a so called "vdW_kernel_table", a universal file that has to be generated once and used for all other calculations. This table, stored in ASCII format, usually ships with the QE distribution, in case the file is not present the example will launch the routine needed to generate it. It can be a long process, up to 30 mins in basic single CPU machine, but once generated can be used in any other machine and for any other calculation. After the check, and the possible generation, the example will proceed with two simulations, in particular 1) A variable cell relaxation of a simple 1x1 graphite. The parameters used (such as k-point mesh and energy cutoffs) are not converged, use them only for test runs, increase them accordingly for production runs. Here the stress will be used to converge the cell at 0 pressure. 2) A self-consistent energy calculation of a water dimer in the equilibrium configuration. Check the energies and forces against those in the reference file. bonus) If you have the Ar.pz-rrkj.UPF in the PP_dir, you can activate the last example by removing the comments from the execution lines (277-280). In this example it is shown how to run a BFGS relaxation of the forces for the Argon dimer. Check that the energies and forces agree with those in the reference file, and that the final positions are correct. --- IMPORTANT NOTE: This feature works the most accurately when Revised-PBE (RPB of short-name "revPBE" (Zhang-Yang)) is used as the gradient correction on the exchange part of the XC functional. espresso-5.0.2/PW/examples/README0000644000700200004540000001406512053145630015411 0ustar marsamoscmThese are instructions on how to run the examples for PW package. These examples try to exercise all the programs and features of the PW package. If you find that any relevant feature isn't being tested, please contact us (or even better, write and send us a new example). To run the examples, you should follow this procedure: 1) Edit the "environment_variables" file from the main ESPRESSO directory, setting the following variables as needed: BIN_DIR = directory where ESPRESSO executables reside PSEUDO_DIR = directory where pseudopotential files reside TMP_DIR = directory to be used as temporary storage area If you have downloaded the full ESPRESSO distribution, you may set BIN_DIR=$TOPDIR/bin and PSEUDO_DIR=$TOPDIR/pseudo, where $TOPDIR is the root of the ESPRESSO source tree. TMP_DIR must be a directory you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). 2) If you want to test the parallel version of ESPRESSO, you will usually have to specify a driver program (such as "poe" or "mpirun") and the number of processors. This can be done by editing PARA_PREFIX and PARA_POSTFIX variables (in the "environment_variables" file). Parallel executables will be run by a command like this: $PARA_PREFIX pw.x $PARA_POSTFIX < file.in > file.out For example, if the command line is like this (as for an IBM SP): poe pw.x -procs 4 < file.in > file.out you should set PARA_PREFIX="poe", PARA_POSTFIX="-procs 4". See section "Running on parallel machines" of the user guide for details. Furthermore, if your machine does not support interactive use, you must run the commands specified below through the batch queueing system installed on that machine. Ask your system administrator for instructions. 3) To run a single example, go to the corresponding directory (for instance, "example/example01") and execute: ./run_example This will create a subdirectory "results", containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system. 4) In each example's directory, the "reference" subdirectory contains verified output files, that you can check your results against. The reference results were generated on a Linux PC with Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain "diff" of your results against the reference data doesn't work, or at least, it requires human inspection of the results. ----------------------------------------------------------------------- LIST AND CONTENT OF THE EXAMPLES example01: This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems: Si, Al, Cu, Ni. example02: This example shows how to use pw.x to compute the equilibrium geometry of a simple molecule, CO, and of an Al (001) slab. In the latter case the relaxation is performed in two ways: 1) using the quasi-Newton BFGS algorithm 2) using a damped dynamics algorithm. example03: This example shows how to use pw.x to perform molecular dynamics for 2- and 8-atom cells of Si starting with compressed bonds along (111). example05: This example shows how to use pw.x and postprocessing codes to make a contour plot in the [110] plane of the charge density for Si, and to plot the band structure of Si. example04: This example shows how to calculate the polarization via Berry Phase in PBTiO3 (contributed by the Vanderbilt Group in Rutgers University). example05: This example shows how to calculate the total energy of an isolated atom in a supercell with fixed occupations. Two examples: LDA energy of Al and sigma-GGA energy of O. example06: This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems in the non-collinear case: Fe, Cu, Ni, O. example07: This example shows how to use pw.x to calculate the total energy and the band structure of fcc-Pt with a fully relativistic US-PP which includes spin-orbit effects. example08: This example shows how to use pw.x to calculate the total energy of FeO using LDA+U approximation. Read file README for more details. example09: This example shows how to use pw.x to perform TPSS metaGGA calculations for C4H6 example10: This example shows how to use pw.x to perform electronic structure calculations in the presence of a finite electric field described through the modern theory of the polarization. The example shows how to calculate the dielectric constant of silicon. example11: This example tests pw.x with PAW in the noncollinear, spin-orbit case. It calculates the band structure of ferromagnetic bcc-Fe. Additional feature-specific examples: EXX_example: Use experimental implementation of Hybrid Functional to compute total energy of Silicon using different values for nq and for calculation of binding energy of o2,co,n2 from calculations in a 12 au cubic box and gamma sampling. ESM_example: This example shows how to use the Effective Screening Medium Method (ESM) in pw.x to calculate the total energy, charge density, force, and potential of a polarized or charged medium. Calculations are for a water molecule and an Al(111) electrode. VCSexample: This example shows how to use pw.x to optimize crystal structures at two pressures for As. cluster_example: This example shows how to use pw.x to calculate propeties of isolated systems decoupling periodic images by using Martyna-Tuckerman approach with truncated coulomb interaction. vdwDF_example: This example shows how to use the vdw-DF functional in pw.x. Read file README for more details. espresso-5.0.2/PW/Makefile0000644000700200004540000000172412053145630014351 0ustar marsamoscm# Makefile for PW default: all all: pw pwtools pw: if test -d src ; then \ ( cd src ; if test "$(MAKE)" = "" ; then make $(MFLAGS) $@; \ else $(MAKE) $(MFLAGS) ; fi ) ; fi ; \ pwtools: if test -d tools ; then \ ( cd tools ; if test "$(MAKE)" = "" ; then make $(MFLAGS) $@; \ else $(MAKE) $(MFLAGS) ; fi ) ; fi ; \ doc: if test -d Doc ; then \ (cd Doc ; if test "$(MAKE)" = "" ; then make $(MFLAGS) all ; \ else $(MAKE) $(MFLAGS) all ; fi ) ; fi doc_clean: if test -d Doc ; then \ (cd Doc ; if test "$(MAKE)" = "" ; then make $(MFLAGS) clean ; \ else $(MAKE) $(MFLAGS) clean ; fi ) ; fi clean : examples_clean if test -d src ; then \ ( cd src ; if test "$(MAKE)" = "" ; then make clean ; \ else $(MAKE) clean ; fi ) ; fi ;\ if test -d tools ; then \ ( cd tools ; if test "$(MAKE)" = "" ; then make clean ; \ else $(MAKE) clean ; fi ) ; fi ;\ examples_clean: if test -d examples ; then \ ( cd examples ; ./clean_all ) ; fi distclean: clean doc_clean espresso-5.0.2/PW/tests/0000755000700200004540000000000012053440276014053 5ustar marsamoscmespresso-5.0.2/PW/tests/vc-md1.in0000755000700200004540000000151412053145627015500 0ustar marsamoscm &CONTROL calculation = "vc-md", dt = 150 nstep=10 / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'w' , press = 0.00 , wmass = 0.00700000 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/tests/scf-k0.in0000644000700200004540000000043512053145627015472 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {tpiba} 1 0.0 0.0 0.0 1.0 espresso-5.0.2/PW/tests/scf-allfrac.in0000644000700200004540000000055412053145627016566 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 use_all_frac=.true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/paw-atom_tqr.in0000644000700200004540000000057212053145627017024 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 2, celldm(1) =26.0, nat= 1, ntyp= 1, ecutwfc=25 nbnd=9 occupations='from_input' / &electrons conv_thr = 1.0d-6 tqr=.true. / ATOMIC_SPECIES Cu 1.000 Cu.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2.0 2.0 2.0 2.0 2.0 1.0 0.0 0.0 0.0 espresso-5.0.2/PW/tests/atom-pbe.in0000755000700200004540000000066712053145627016125 0ustar marsamoscm &control calculation='scf', tstress=.true. / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', / &electrons mixing_beta=0.25, conv_thr=1.0e-8 / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 2.0 1.3333333333 1.3333333333 1.3333333333 0.0 0.0 espresso-5.0.2/PW/tests/md.in0000755000700200004540000000055412053145627015014 0ustar marsamoscm &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.0.2/PW/tests/scf-disk_io.in20000644000700200004540000000126712053145627016667 0ustar marsamoscm &control calculation = 'nscf' disk_io='none' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav-12-kauto.in0000644000700200004540000000053512053145627020477 0ustar marsamoscm &control calculation='scf', / &system ibrav =-12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(5) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/noncolin-cg.ref0000644000700200004540000006136212053145627016771 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:53 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-cg.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.571256 magnetization : 3.220299 0.000000 0.000000 magnetization/charge: 0.490058 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.220299 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.2 secs total energy = -55.68101049 Ry Harris-Foulkes estimate = -55.73563902 Ry estimated scf accuracy < 0.22538471 Ry total magnetization = 2.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.95 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 2.82E-03, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.476288 magnetization : 3.097420 0.000000 0.000000 magnetization/charge: 0.478271 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.097420 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.6 secs total energy = -55.68593489 Ry Harris-Foulkes estimate = -55.69968318 Ry estimated scf accuracy < 0.05128399 Ry total magnetization = 3.06 0.00 0.00 Bohr mag/cell absolute magnetization = 3.06 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 6.41E-04, avg # of iterations = 3.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.398048 magnetization : 2.988652 0.000000 0.000000 magnetization/charge: 0.467119 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.988652 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.0 secs total energy = -55.69768615 Ry Harris-Foulkes estimate = -55.69253312 Ry estimated scf accuracy < 0.00416205 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 5.20E-05, avg # of iterations = 4.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415729 magnetization : 3.004454 0.000000 0.000000 magnetization/charge: 0.468295 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.004454 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.6 secs total energy = -55.69801655 Ry Harris-Foulkes estimate = -55.70004879 Ry estimated scf accuracy < 0.00456696 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 5.20E-05, avg # of iterations = 3.6 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412843 magnetization : 3.003461 0.000000 0.000000 magnetization/charge: 0.468351 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.003461 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.0 secs total energy = -55.69955475 Ry Harris-Foulkes estimate = -55.69964716 Ry estimated scf accuracy < 0.00050071 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 6.26E-06, avg # of iterations = 3.9 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415999 magnetization : 3.015082 0.000000 0.000000 magnetization/charge: 0.469932 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.015082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.5 secs total energy = -55.69966549 Ry Harris-Foulkes estimate = -55.69968499 Ry estimated scf accuracy < 0.00016647 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 2.08E-06, avg # of iterations = 3.8 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.416732 magnetization : 3.027234 0.000000 0.000000 magnetization/charge: 0.471772 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027234 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.9 secs total energy = -55.69967276 Ry Harris-Foulkes estimate = -55.69969592 Ry estimated scf accuracy < 0.00011350 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 1.42E-06, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415509 magnetization : 3.028128 0.000000 0.000000 magnetization/charge: 0.472001 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.028128 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.3 secs total energy = -55.69968029 Ry Harris-Foulkes estimate = -55.69968319 Ry estimated scf accuracy < 0.00004243 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 5.30E-07, avg # of iterations = 3.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413849 magnetization : 3.054723 0.000000 0.000000 magnetization/charge: 0.476270 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.054723 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.7 secs total energy = -55.69966422 Ry Harris-Foulkes estimate = -55.69968217 Ry estimated scf accuracy < 0.00003425 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 4.28E-07, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413427 magnetization : 3.052431 0.000000 0.000000 magnetization/charge: 0.475944 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.052431 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.1 secs total energy = -55.69968199 Ry Harris-Foulkes estimate = -55.69968103 Ry estimated scf accuracy < 0.00000348 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 4.35E-08, avg # of iterations = 3.9 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412600 magnetization : 3.063243 0.000000 0.000000 magnetization/charge: 0.477691 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063243 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.6 secs total energy = -55.69967936 Ry Harris-Foulkes estimate = -55.69968447 Ry estimated scf accuracy < 0.00000693 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 12 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 4.35E-08, avg # of iterations = 3.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412721 magnetization : 3.063284 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063284 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 6.0 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6772 11.6773 11.9040 13.4680 13.4680 14.6640 14.6640 14.9255 16.5279 16.5279 38.7458 38.7460 39.4535 39.4545 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5807 11.6588 12.2026 13.1726 13.6070 14.5299 14.6021 15.2521 16.1625 16.7003 36.2587 37.2023 37.8446 38.7810 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6162 11.6486 12.6210 12.6637 13.8659 14.4962 14.5191 15.5611 15.7134 16.9734 33.8663 35.0496 35.4792 36.6429 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9394 9.9420 11.4570 11.8360 12.3100 13.1162 14.0828 14.4085 14.7053 15.2276 16.2730 17.3566 31.7404 32.7147 33.1542 34.0017 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8063 11.2897 12.1933 12.5752 13.2444 13.6125 15.0877 15.5267 15.8163 16.8412 18.2392 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1060 11.8334 12.4093 12.7225 13.1738 14.0663 15.6754 16.2009 17.3611 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5654 9.5728 11.6858 11.7775 13.4303 13.8865 14.3759 16.5071 17.0645 17.7256 21.5119 22.9168 25.5707 25.8420 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2749 9.2749 11.4414 11.4415 14.0746 14.4153 14.4153 17.3223 17.7664 17.7664 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3179 11.5670 12.6777 13.2537 13.5300 14.2180 14.4048 15.7704 16.2901 16.6103 33.9647 35.1499 36.7273 37.6012 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1743 11.5494 13.0279 13.2371 13.7501 14.0191 14.1911 16.0452 16.3837 16.8488 31.1771 32.5566 34.9138 35.9059 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1040 10.3061 11.1873 11.5425 12.8521 13.6983 13.7934 14.1434 14.4648 15.8364 16.9221 17.3635 28.6266 30.1620 32.6053 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5807 11.6588 12.2027 13.1726 13.6069 14.5299 14.6021 15.2521 16.1625 16.7003 36.2588 37.2024 37.8446 38.7814 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6162 11.6486 12.6210 12.6638 13.8658 14.4962 14.5191 15.5612 15.7134 16.9734 33.8662 35.0497 35.4791 36.6428 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4570 11.8360 12.3100 13.1163 14.0829 14.4084 14.7053 15.2276 16.2730 17.3566 31.7406 32.7148 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8063 11.2897 12.1933 12.5752 13.2444 13.6125 15.0877 15.5268 15.8162 16.8412 18.2391 29.6281 30.1011 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1060 11.8333 12.4094 12.7225 13.1738 14.0664 15.6754 16.2009 17.3611 18.3362 20.1533 27.4633 27.7466 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5728 11.6858 11.7776 13.4303 13.8864 14.3759 16.5071 17.0645 17.7256 21.5120 22.9168 25.5707 25.8421 26.8447 27.0461 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7800 11.3180 11.5669 12.6777 13.2538 13.5300 14.2180 14.4048 15.7704 16.2901 16.6103 33.9647 35.1500 36.7275 37.6014 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1743 11.5494 13.0279 13.2371 13.7501 14.0191 14.1911 16.0452 16.3837 16.8488 31.1771 32.5566 34.9137 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1743 11.5494 13.0279 13.2371 13.7501 14.0191 14.1911 16.0452 16.3837 16.8488 31.1773 32.5567 34.9137 35.9060 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1040 10.3061 11.1873 11.5425 12.8521 13.6983 13.7934 14.1434 14.4648 15.8364 16.9221 17.3635 28.6265 30.1620 32.6051 33.8032 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1040 10.3061 11.1873 11.5425 12.8521 13.6984 13.7934 14.1434 14.4648 15.8364 16.9221 17.3635 28.6265 30.1620 32.6051 33.8030 the Fermi energy is 14.6621 ev ! total energy = -55.69968393 Ry Harris-Foulkes estimate = -55.69968337 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92896465 Ry hartree contribution = 6.13431464 Ry xc contribution = -26.12224022 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388906 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file pwscf.save init_run : 0.56s CPU 0.56s WALL ( 1 calls) electrons : 5.13s CPU 5.27s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.08s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 3.94s CPU 4.01s WALL ( 12 calls) sum_band : 0.85s CPU 0.88s WALL ( 12 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 13 calls) newd : 0.17s CPU 0.17s WALL ( 13 calls) mix_rho : 0.04s CPU 0.03s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 550 calls) ccgdiagg : 3.08s CPU 3.14s WALL ( 264 calls) wfcrot : 0.91s CPU 0.91s WALL ( 264 calls) Called by *cgdiagg: h_psi : 2.98s CPU 3.05s WALL ( 11466 calls) s_psi : 0.38s CPU 0.37s WALL ( 22668 calls) cdiaghg : 0.04s CPU 0.03s WALL ( 264 calls) Called by h_psi: add_vuspsi : 0.23s CPU 0.21s WALL ( 11466 calls) General routines calbec : 0.32s CPU 0.37s WALL ( 22932 calls) fft : 0.07s CPU 0.08s WALL ( 407 calls) ffts : 0.00s CPU 0.01s WALL ( 100 calls) fftw : 2.09s CPU 2.08s WALL ( 70152 calls) interpolate : 0.02s CPU 0.03s WALL ( 100 calls) davcio : 0.00s CPU 0.02s WALL ( 814 calls) PWSCF : 5.90s CPU 6.07s WALL This run was terminated on: 10:24:59 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U.in0000755000700200004540000000143212053145627015350 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.0.2/PW/tests/uspp-mixing_ndim.ref0000644000700200004540000002530712053145627020051 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-mixing_ndim.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 4 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 0.84 Mb ( 13824, 4) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.71295693 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -87.79914610 Ry Harris-Foulkes estimate = -87.89634579 Ry estimated scf accuracy < 0.19465293 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -87.83029076 Ry Harris-Foulkes estimate = -87.83088945 Ry estimated scf accuracy < 0.00113514 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -87.83069561 Ry Harris-Foulkes estimate = -87.83070040 Ry estimated scf accuracy < 0.00002849 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.7 secs total energy = -87.83069538 Ry Harris-Foulkes estimate = -87.83069727 Ry estimated scf accuracy < 0.00000453 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.12E-08, avg # of iterations = 1.1 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9887 11.1862 11.1862 11.1862 12.0758 12.0758 38.8576 41.0127 41.0127 41.0128 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1533 10.9393 11.3566 11.3566 12.1676 12.1676 27.5237 38.3701 38.3701 38.4663 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1021 11.1529 11.1529 12.6897 12.6897 13.4641 18.6326 37.0229 37.6066 37.6066 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7921 10.4207 11.6202 11.9038 11.9038 12.3705 32.3367 32.3367 33.7588 34.5392 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7564 10.3175 11.2516 11.8800 12.7333 15.5218 21.5952 27.6708 31.2988 35.1293 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6203 10.6639 10.8823 11.7290 12.0762 14.1925 24.5909 26.0217 35.8950 37.3860 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2493 9.6945 12.6709 12.8436 12.8436 16.0622 22.1019 28.1778 28.1778 32.9158 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0184 10.6646 10.6646 12.0433 12.8442 20.9460 20.9460 23.1293 24.0490 44.6510 the Fermi energy is 15.2769 ev ! total energy = -87.83069604 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22171427 Ry hartree contribution = 18.87793500 Ry xc contribution = -14.05404896 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072647 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.36s CPU 0.36s WALL ( 1 calls) electrons : 0.33s CPU 0.34s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.18s WALL ( 6 calls) sum_band : 0.08s CPU 0.08s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 7 calls) newd : 0.05s CPU 0.05s WALL ( 7 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 104 calls) cegterg : 0.16s CPU 0.17s WALL ( 48 calls) Called by *egterg: h_psi : 0.08s CPU 0.11s WALL ( 164 calls) s_psi : 0.00s CPU 0.00s WALL ( 164 calls) g_psi : 0.00s CPU 0.00s WALL ( 108 calls) cdiaghg : 0.06s CPU 0.04s WALL ( 156 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 164 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 212 calls) fft : 0.00s CPU 0.01s WALL ( 58 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.06s CPU 0.09s WALL ( 2972 calls) interpolate : 0.00s CPU 0.00s WALL ( 13 calls) davcio : 0.00s CPU 0.00s WALL ( 152 calls) PWSCF : 0.78s CPU 0.80s WALL This run was terminated on: 11:28:47 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-mixing_beta.ref0000644000700200004540000002174712053145627017625 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_beta.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79488919 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79349341 Ry Harris-Foulkes estimate = -15.79658476 Ry estimated scf accuracy < 0.01075533 Ry iteration # 3 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.34E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79439181 Ry Harris-Foulkes estimate = -15.79448464 Ry estimated scf accuracy < 0.00024732 Ry iteration # 4 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.09E-06, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs total energy = -15.79448711 Ry Harris-Foulkes estimate = -15.79451387 Ry estimated scf accuracy < 0.00005140 Ry iteration # 5 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.42E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449564 Ry Harris-Foulkes estimate = -15.79449658 Ry estimated scf accuracy < 0.00000223 Ry iteration # 6 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8703 2.3790 5.5368 5.5368 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9167 -0.0655 2.6794 4.0353 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449594 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83375085 Ry hartree contribution = 1.08434395 Ry xc contribution = -4.81283216 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.03s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 7 calls) sum_band : 0.01s CPU 0.01s WALL ( 7 calls) v_of_rho : 0.01s CPU 0.00s WALL ( 7 calls) mix_rho : 0.00s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 30 calls) cegterg : 0.01s CPU 0.02s WALL ( 14 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 41 calls) g_psi : 0.00s CPU 0.00s WALL ( 25 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 37 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 41 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 41 calls) fft : 0.00s CPU 0.00s WALL ( 29 calls) fftw : 0.00s CPU 0.01s WALL ( 378 calls) davcio : 0.00s CPU 0.00s WALL ( 44 calls) PWSCF : 0.11s CPU 0.12s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lsda.ref0000644000700200004540000004274512053145627015512 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.30555924 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.9 total cpu time spent up to now is 1.1 secs total energy = -85.52433182 Ry Harris-Foulkes estimate = -85.85735982 Ry estimated scf accuracy < 1.00824645 Ry total magnetization = 0.70 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.70688770 Ry Harris-Foulkes estimate = -85.67488439 Ry estimated scf accuracy < 0.04598695 Ry total magnetization = 1.01 Bohr mag/cell absolute magnetization = 1.11 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 1.1 total cpu time spent up to now is 1.4 secs total energy = -85.72318398 Ry Harris-Foulkes estimate = -85.72298378 Ry estimated scf accuracy < 0.00053474 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-06, avg # of iterations = 2.8 total cpu time spent up to now is 1.5 secs total energy = -85.72334924 Ry Harris-Foulkes estimate = -85.72327578 Ry estimated scf accuracy < 0.00008053 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.5 total cpu time spent up to now is 1.6 secs total energy = -85.72339412 Ry Harris-Foulkes estimate = -85.72337220 Ry estimated scf accuracy < 0.00008976 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.3 total cpu time spent up to now is 1.7 secs total energy = -85.72339802 Ry Harris-Foulkes estimate = -85.72339154 Ry estimated scf accuracy < 0.00001881 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-07, avg # of iterations = 1.2 total cpu time spent up to now is 1.9 secs total energy = -85.72339966 Ry Harris-Foulkes estimate = -85.72339429 Ry estimated scf accuracy < 0.00001099 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.0 secs total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 5.7E-09 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.1 secs total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 3.0E-09 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 11 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.02E-11, avg # of iterations = 1.0 total cpu time spent up to now is 2.2 secs total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 6.6E-10 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 12 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.58E-12, avg # of iterations = 1.0 total cpu time spent up to now is 2.3 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3750 12.4373 12.7323 12.7323 13.8399 13.8399 37.2307 41.0671 43.4115 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2056 12.0604 12.6971 13.0396 13.7423 14.7847 28.9044 34.6221 41.7709 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3034 12.3170 12.8643 13.0985 14.6704 16.6317 22.1064 35.6778 38.1890 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9449 11.9811 12.9286 13.0719 13.6677 14.1614 33.2111 38.4341 38.7924 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0138 11.3041 12.9384 13.7119 14.5662 14.8881 29.9536 33.4465 34.2670 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0404 11.3661 12.4804 13.8999 14.6521 20.4137 23.8800 27.7788 30.1429 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6940 11.8161 12.2431 13.4380 14.3024 16.5378 25.7641 31.6195 34.9275 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3601 10.8355 13.8885 14.3644 14.7570 17.9868 26.7277 28.0811 31.8606 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6583 12.6903 12.6903 13.2183 14.4200 14.4200 24.6748 38.8452 41.6264 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0757 11.7367 12.4051 13.4403 14.3578 19.0764 22.8045 29.0405 36.4042 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4364 13.2116 13.5315 13.5315 14.5913 14.5913 37.3665 41.0787 43.5295 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3441 12.7277 13.4194 13.7986 14.5378 15.5713 29.1564 34.7856 41.8195 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8026 12.9459 13.6008 13.6527 15.5249 17.0816 22.5346 35.7966 38.3366 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0203 12.7149 13.6860 13.8687 14.4269 14.9404 33.4085 38.5933 38.8734 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2529 11.9895 13.5740 14.5147 15.3865 15.5736 30.1593 33.6290 34.4024 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5593 11.9928 13.1363 14.6385 15.5435 20.7580 24.1571 28.0298 30.3200 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0651 12.4041 12.9293 14.1815 15.1346 17.1408 26.0486 31.8050 35.0927 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8293 11.4957 14.5941 15.1562 15.6354 18.3038 27.0260 28.2535 31.9595 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9862 13.4283 13.4283 13.5643 15.2537 15.2537 25.0151 38.8318 41.7803 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6416 12.2608 13.0594 14.1780 15.2198 19.4773 23.1585 29.2607 36.5524 the Fermi energy is 15.3088 ev ! total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 6.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30223721 Ry hartree contribution = 14.33673853 Ry xc contribution = -29.60837116 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00004076 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 12 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.96 -0.00010170 0.00000000 0.00000000 -14.96 0.00 0.00 0.00000000 -0.00010170 0.00000000 0.00 -14.96 0.00 0.00000000 0.00000000 -0.00010170 0.00 0.00 -14.96 Writing output data file pwscf.save init_run : 0.78s CPU 0.77s WALL ( 1 calls) electrons : 1.47s CPU 1.51s WALL ( 1 calls) stress : 0.26s CPU 0.27s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.69s CPU 0.71s WALL ( 12 calls) sum_band : 0.42s CPU 0.43s WALL ( 12 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 13 calls) newd : 0.23s CPU 0.24s WALL ( 13 calls) mix_rho : 0.02s CPU 0.02s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.03s WALL ( 520 calls) cegterg : 0.64s CPU 0.64s WALL ( 240 calls) Called by *egterg: h_psi : 0.42s CPU 0.44s WALL ( 675 calls) s_psi : 0.02s CPU 0.02s WALL ( 675 calls) g_psi : 0.00s CPU 0.02s WALL ( 415 calls) cdiaghg : 0.16s CPU 0.12s WALL ( 655 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 675 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 935 calls) fft : 0.05s CPU 0.06s WALL ( 216 calls) ffts : 0.00s CPU 0.00s WALL ( 50 calls) fftw : 0.38s CPU 0.35s WALL ( 12160 calls) interpolate : 0.00s CPU 0.02s WALL ( 50 calls) davcio : 0.00s CPU 0.01s WALL ( 760 calls) PWSCF : 2.66s CPU 2.72s WALL This run was terminated on: 10:24:30 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-atom_lda.ref0000644000700200004540000002124112053145627017120 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:21:54 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_lda.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-kjpaw.UPF MD5 check sum: bb913733245261b4623cea235e432065 Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.50 Mb ( 5425, 6) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.99 Mb ( 5425, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.015596 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.156E-01 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.1 secs per-process dynamical memory: 35.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.56E-07, avg # of iterations = 19.0 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 2.2 secs total energy = -40.13459252 Ry Harris-Foulkes estimate = -40.13458585 Ry estimated scf accuracy < 0.00000993 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-07, avg # of iterations = 2.0 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -40.13459647 Ry Harris-Foulkes estimate = -40.13459691 Ry estimated scf accuracy < 0.00000279 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.65E-08, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 2.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -23.5476 -9.0387 -9.0387 -9.0387 -0.7522 1.7757 highest occupied, lowest unoccupied level (ev): -9.0387 -0.7522 ! total energy = -40.13459742 Ry Harris-Foulkes estimate = -40.13459701 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -148.934751 Ry The total energy is the sum of the following terms: one-electron contribution = -38.76818298 Ry hartree contribution = 20.83222753 Ry xc contribution = -6.33200302 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.26443752 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.90s CPU 0.92s WALL ( 1 calls) electrons : 1.75s CPU 1.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.08s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.98s CPU 0.98s WALL ( 4 calls) sum_band : 0.40s CPU 0.40s WALL ( 4 calls) v_of_rho : 0.15s CPU 0.16s WALL ( 4 calls) newd : 0.18s CPU 0.18s WALL ( 4 calls) mix_rho : 0.04s CPU 0.05s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 9 calls) regterg : 0.96s CPU 0.96s WALL ( 4 calls) Called by *egterg: h_psi : 0.92s CPU 0.93s WALL ( 33 calls) s_psi : 0.00s CPU 0.00s WALL ( 33 calls) g_psi : 0.01s CPU 0.01s WALL ( 28 calls) rdiaghg : 0.02s CPU 0.01s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 33 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 37 calls) fft : 0.21s CPU 0.20s WALL ( 26 calls) fftw : 0.82s CPU 0.82s WALL ( 118 calls) davcio : 0.00s CPU 0.00s WALL ( 3 calls) PAW routines PAW_pot : 0.03s CPU 0.03s WALL ( 4 calls) PAW_ddot : 0.01s CPU 0.01s WALL ( 6 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 2.94s CPU 3.03s WALL This run was terminated on: 11:21:57 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/cluster4.ref0000644000700200004540000003013612053145627016323 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:56:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/cluster4.in Warning: card &IONS ignored Warning: card / ignored file N.pbe-kjpaw.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file: /home/giannozz/trunk/espresso/pseudo/N.pbe-kjpaw.UPF MD5 check sum: 784def1e20c8513c628b118ec611e520 Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) 4 H tau( 4) = ( -0.0833333 0.0833333 -0.0833333 ) 5 H tau( 5) = ( 0.0833333 -0.0833333 -0.0833333 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.59 Mb ( 2401, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000542 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.482E-03 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 24.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.312E-02 0.000E+00 total cpu time spent up to now is 1.2 secs total energy = -31.86813420 Ry Harris-Foulkes estimate = -33.54242447 Ry estimated scf accuracy < 2.25184510 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.570E-02 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -32.47093387 Ry Harris-Foulkes estimate = -32.84533000 Ry estimated scf accuracy < 0.68443685 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.0 negative rho (up, down): 0.120E-01 0.000E+00 total cpu time spent up to now is 1.6 secs total energy = -32.60333820 Ry Harris-Foulkes estimate = -32.60998174 Ry estimated scf accuracy < 0.01218066 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-04, avg # of iterations = 4.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -32.60523471 Ry Harris-Foulkes estimate = -32.60592292 Ry estimated scf accuracy < 0.00130095 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.63E-05, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 2.1 secs total energy = -32.60537769 Ry Harris-Foulkes estimate = -32.60539848 Ry estimated scf accuracy < 0.00004197 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.25E-07, avg # of iterations = 4.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 2.4 secs total energy = -32.60538246 Ry Harris-Foulkes estimate = -32.60538349 Ry estimated scf accuracy < 0.00000294 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-08, avg # of iterations = 1.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 2.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -27.0637 -15.8168 -15.8168 -15.8168 -1.2004 2.3349 2.3349 2.3349 highest occupied, lowest unoccupied level (ev): -15.8168 -1.2004 ! total energy = -32.60538255 Ry Harris-Foulkes estimate = -32.60538256 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -113.904184 Ry The total energy is the sum of the following terms: one-electron contribution = -48.67523560 Ry hartree contribution = 24.14782425 Ry xc contribution = -8.20120604 Ry ewald contribution = 8.44118561 Ry one-center paw contrib. = -8.31795077 Ry charge density inside the Wigner-Seitz cell: 8.00000000 reference position (x0): 0.00000000 0.00000000 0.00000000 bohr Dipole moments (with respect to x0): Elect 0.0000 0.0000 0.0000 au (Ha), 0.0000 0.0000 0.0000 Debye Ionic 0.0000 0.0000 0.0000 au (Ha), 0.0000 0.0000 0.0000 Debye Total 0.0000 0.0000 0.0000 au (Ha), 0.0000 0.0000 0.0000 Debye Electrons quadrupole moment -21.94545268 a.u. (Ha) Ions quadrupole moment 12.00000000 a.u. (Ha) Total quadrupole moment -9.94545268 a.u. (Ha) ********* MAKOV-PAYNE CORRECTION ********* Makov-Payne correction with Madelung constant = 2.8373 Makov-Payne correction 0.23644167 Ry = 3.217 eV (1st order, 1/a0) 0.02410846 Ry = 0.328 eV (2nd order, 1/a0^3) 0.26055012 Ry = 3.545 eV (total) ! Total+Makov-Payne energy = -32.34483243 Ry Corrected vacuum level = 5.58709016 eV convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.66s CPU 0.67s WALL ( 1 calls) electrons : 1.64s CPU 1.71s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.15s CPU 0.16s WALL ( 1 calls) Called by electrons: c_bands : 0.23s CPU 0.25s WALL ( 7 calls) sum_band : 0.21s CPU 0.21s WALL ( 7 calls) v_of_rho : 0.55s CPU 0.59s WALL ( 8 calls) newd : 0.14s CPU 0.14s WALL ( 8 calls) mix_rho : 0.10s CPU 0.11s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 15 calls) regterg : 0.23s CPU 0.23s WALL ( 7 calls) Called by *egterg: h_psi : 0.18s CPU 0.19s WALL ( 25 calls) s_psi : 0.01s CPU 0.00s WALL ( 25 calls) g_psi : 0.01s CPU 0.01s WALL ( 17 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 25 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 32 calls) fft : 0.17s CPU 0.16s WALL ( 103 calls) fftw : 0.17s CPU 0.16s WALL ( 200 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PAW routines PAW_pot : 0.49s CPU 0.49s WALL ( 8 calls) PAW_ddot : 0.07s CPU 0.07s WALL ( 57 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 15 calls) PWSCF : 2.60s CPU 2.72s WALL This run was terminated on: 22:56:30 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/metal.ref20000644000700200004540000002507612053145627015751 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 55 869 869 259 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( -0.0833333 0.0833333 0.0833333), wk = 0.0185185 k( 2) = ( -0.2500000 0.2500000 -0.0833333), wk = 0.0555556 k( 3) = ( -0.4166667 0.4166667 -0.2500000), wk = 0.0555556 k( 4) = ( 0.4166667 -0.4166667 0.5833333), wk = 0.0555556 k( 5) = ( 0.2500000 -0.2500000 0.4166667), wk = 0.0555556 k( 6) = ( 0.0833333 -0.0833333 0.2500000), wk = 0.0555556 k( 7) = ( -0.0833333 0.4166667 0.0833333), wk = 0.0555556 k( 8) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.1111111 k( 9) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.1111111 k( 10) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.1111111 k( 11) = ( 0.2500000 0.0833333 0.4166667), wk = 0.1111111 k( 12) = ( -0.0833333 0.7500000 0.0833333), wk = 0.0555556 k( 13) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.1111111 k( 14) = ( 0.5833333 0.0833333 0.7500000), wk = 0.1111111 k( 15) = ( 0.4166667 0.2500000 0.5833333), wk = 0.1111111 k( 16) = ( -0.0833333 -0.9166667 0.0833333), wk = 0.0555556 k( 17) = ( -0.2500000 -0.7500000 -0.0833333), wk = 0.1111111 k( 18) = ( -0.0833333 -0.5833333 0.0833333), wk = 0.0555556 k( 19) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0185185 k( 20) = ( -0.4166667 0.4166667 0.0833333), wk = 0.0555556 k( 21) = ( 0.4166667 -0.4166667 0.9166667), wk = 0.0555556 k( 22) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.0555556 k( 23) = ( -0.2500000 0.5833333 0.2500000), wk = 0.0555556 k( 24) = ( 0.5833333 -0.2500000 1.0833333), wk = 0.1111111 k( 25) = ( 0.4166667 -0.0833333 0.9166667), wk = 0.1111111 k( 26) = ( -0.2500000 -1.0833333 0.2500000), wk = 0.0555556 k( 27) = ( -0.4166667 0.4166667 0.4166667), wk = 0.0185185 k( 28) = ( 0.4166667 -0.4166667 1.2500000), wk = 0.0555556 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 4, 4) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 3.33E-08, avg # of iterations = 10.4 total cpu time spent up to now is 0.3 secs End of band structure calculation k =-0.0833 0.0833 0.0833 band energies (ev): -2.9919 18.4611 20.5664 20.5664 k =-0.2500 0.2500-0.0833 band energies (ev): -1.9384 14.0224 17.0321 21.4887 k =-0.4167 0.4167-0.2500 band energies (ev): 0.6357 8.0207 16.5640 19.8674 k = 0.4167-0.4167 0.5833 band energies (ev): 3.1421 4.6441 17.4635 18.1210 k = 0.2500-0.2500 0.4167 band energies (ev): -0.3863 9.9152 17.6642 19.2617 k = 0.0833-0.0833 0.2500 band energies (ev): -2.4637 16.2599 18.4965 19.8042 k =-0.0833 0.4167 0.0833 band energies (ev): -1.4192 14.4151 16.7823 18.0723 k =-0.2500 0.5833-0.0833 band energies (ev): 0.6373 10.7422 13.9071 15.3647 k = 0.5833-0.2500 0.7500 band energies (ev): 4.1174 5.6168 12.9263 14.4322 k = 0.4167-0.0833 0.5833 band energies (ev): 1.6480 8.8630 12.1516 16.2069 k = 0.2500 0.0833 0.4167 band energies (ev): -0.9000 12.1574 15.3049 19.3347 k =-0.0833 0.7500 0.0833 band energies (ev): 2.1458 11.0180 12.1106 14.6431 k = 0.7500-0.0833 0.9167 band energies (ev): 5.0320 8.2172 9.3932 12.6530 k = 0.5833 0.0833 0.7500 band energies (ev): 5.0886 6.4961 9.7756 13.9434 k = 0.4167 0.2500 0.5833 band energies (ev): 2.1486 6.5771 15.2206 16.6576 k =-0.0833-0.9167 0.0833 band energies (ev): 4.5527 7.7741 11.6176 14.2189 k =-0.2500-0.7500-0.0833 band energies (ev): 2.6448 9.7777 11.5101 13.1551 k =-0.0833-0.5833 0.0833 band energies (ev): 0.1275 13.0051 14.7972 15.4989 k =-0.2500 0.2500 0.2500 band energies (ev): -1.4187 11.7930 19.3981 19.3981 k =-0.4167 0.4167 0.0833 band energies (ev): 0.1277 10.2826 13.5498 19.4284 k = 0.4167-0.4167 0.9167 band energies (ev): 3.1446 7.4409 10.7445 16.8140 k = 0.2500-0.2500 0.7500 band energies (ev): 3.1403 7.5229 12.0337 15.5085 k =-0.2500 0.5833 0.2500 band energies (ev): 1.1427 8.4840 15.7136 16.3677 k = 0.5833-0.2500 1.0833 band energies (ev): 3.6331 7.9101 11.1271 12.6579 k = 0.4167-0.0833 0.9167 band energies (ev): 5.9794 7.4187 9.2073 10.9213 k =-0.2500-1.0833 0.2500 band energies (ev): 5.5040 7.0195 8.8395 15.0804 k =-0.4167 0.4167 0.4167 band energies (ev): 1.6472 6.1009 19.4348 19.4348 k = 0.4167-0.4167 1.2500 band energies (ev): 3.6336 5.1285 13.8981 17.2487 the Fermi energy is 8.2521 ev Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.12s CPU 0.12s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.12s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.12s CPU 0.11s WALL ( 28 calls) Called by *egterg: h_psi : 0.08s CPU 0.08s WALL ( 348 calls) g_psi : 0.01s CPU 0.00s WALL ( 292 calls) cdiaghg : 0.03s CPU 0.02s WALL ( 320 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 348 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 348 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.06s CPU 0.06s WALL ( 2082 calls) davcio : 0.00s CPU 0.00s WALL ( 28 calls) PWSCF : 0.32s CPU 0.33s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-vcbfgs.in0000644000700200004540000000126712053145627016452 0ustar marsamoscm &control calculation = 'vc-relax' / &system ibrav= 0, celldm(1) = 1.889725989 !Ang to a.u. conv. nat= 2, ntyp= 1, ecutwfc=20 occupations = 'smearing' smearing='mp' degauss=0.01 nspin = 1 starting_magnetization(1) = +.5 / &electrons conv_thr = 1.0d-6 / &ions ion_dynamics='bfgs' / &cell cell_dynamics='bfgs' / CELL_PARAMETERS {alat} 0.000000000 2.893335939 2.893335939 2.893335939 0.000000000 2.893335939 2.893335939 2.893335939 0.000000000 ATOMIC_SPECIES Ge 72.610 Ge.pbe-kjpaw.UPF ATOMIC_POSITIONS {crystal} Ge 0.00 0.00 0.00 Ge 0.25 0.25 0.25 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/vdw1.ref0000644000700200004540000003011012053145627015427 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:30:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vdw1.in IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF ( 1 4 4 0 1) EXX-fraction = 0.00 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = VDW-DF ( 1 4 4 0 1) EXX-fraction = 0.00 celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 vdW kernel table read from file vdW_kernel_table MD5 check sum: 2a73cc23e28154503cc02d2bc612f0de atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 total cpu time spent up to now is 0.9 secs total energy = -44.45696809 Ry Harris-Foulkes estimate = -44.69576610 Ry estimated scf accuracy < 0.71123638 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.45E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -44.46599905 Ry Harris-Foulkes estimate = -44.49235092 Ry estimated scf accuracy < 0.10305667 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.44E-04, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -44.47719945 Ry Harris-Foulkes estimate = -44.47620498 Ry estimated scf accuracy < 0.00382417 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.39E-05, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -44.47742467 Ry Harris-Foulkes estimate = -44.47739004 Ry estimated scf accuracy < 0.00004220 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.64E-07, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs total energy = -44.47744794 Ry Harris-Foulkes estimate = -44.47743314 Ry estimated scf accuracy < 0.00000138 Ry iteration # 6 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.63E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7188 -11.2671 -0.7862 1.7467 5.4241 5.4246 5.5816 5.5820 12.3744 16.8406 16.8411 16.8790 the Fermi energy is 10.0017 ev ! total energy = -44.47745305 Ry Harris-Foulkes estimate = -44.47744839 Ry estimated scf accuracy < 0.00000011 Ry The total energy is the sum of the following terms: one-electron contribution = -6.80578691 Ry hartree contribution = 12.83432259 Ry xc contribution = -14.63353891 Ry ewald contribution = -35.87244982 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00005330 -0.00003077 0.00000000 atom 2 type 1 force = -0.00005407 0.00003122 0.00000000 atom 3 type 1 force = -0.00005330 0.00003077 0.00000000 atom 4 type 1 force = 0.00005407 -0.00003122 0.00000000 Total force = 0.000124 Total SCF correction = 0.000051 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... VDW GRADIENT stress 0.00001858 0.00000000 0.00000000 0.00000000 0.00001858 0.00000000 0.00000000 0.00000000 0.00001899 VDW KERNEL stress -0.00008857 0.00000000 0.00000000 0.00000000 -0.00008857 0.00000000 0.00000000 0.00000000 -0.00051183 VDW ALL stress 0.00006998 0.00000000 0.00000000 0.00000000 0.00006998 0.00000000 0.00000000 0.00000000 0.00049284 total stress (Ry/bohr**3) (kbar) P= -376.81 -0.00293411 -0.00000019 0.00000000 -431.62 -0.03 0.00 -0.00000019 -0.00293433 0.00000000 -0.03 -431.65 0.00 0.00000000 0.00000000 -0.00181608 0.00 0.00 -267.15 Writing output data file pwscf.save init_run : 0.30s CPU 0.31s WALL ( 1 calls) electrons : 0.99s CPU 1.07s WALL ( 1 calls) forces : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.33s CPU 0.34s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.14s CPU 0.15s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 6 calls) sum_band : 0.08s CPU 0.09s WALL ( 6 calls) v_of_rho : 0.91s CPU 0.99s WALL ( 7 calls) newd : 0.07s CPU 0.07s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) vdW_energy : 0.18s CPU 0.22s WALL ( 7 calls) vdW_ffts : 0.19s CPU 0.19s WALL ( 16 calls) vdW_v : 0.19s CPU 0.19s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.02s CPU 0.03s WALL ( 6 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 21 calls) s_psi : 0.00s CPU 0.00s WALL ( 21 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 20 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 21 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 32 calls) fft : 0.29s CPU 0.29s WALL ( 510 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.00s CPU 0.02s WALL ( 230 calls) interpolate : 0.01s CPU 0.01s WALL ( 13 calls) davcio : 0.00s CPU 0.00s WALL ( 6 calls) PWSCF : 2.07s CPU 2.58s WALL This run was terminated on: 11:30:29 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav-5.in0000644000700200004540000000044212053145627017275 0ustar marsamoscm &control calculation='scf', / &system ibrav =-5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav2.ref0000644000700200004540000001721112053145627017365 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav2.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 85 4279 4279 531 Tot 175 175 43 bravais-lattice index = 2 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 250.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 2140 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 266, 1) NL pseudopotentials 0.00 Mb ( 266, 0) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.02 Mb ( 2140) G-vector shells 0.00 Mb ( 86) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 266, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 9.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.31891495 Ry Harris-Foulkes estimate = -2.35513160 Ry estimated scf accuracy < 0.07406758 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.70E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.32783365 Ry Harris-Foulkes estimate = -2.32773350 Ry estimated scf accuracy < 0.00022630 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -2.32784761 Ry Harris-Foulkes estimate = -2.32783697 Ry estimated scf accuracy < 0.00002370 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 266 PWs) bands (ev): -11.0137 ! total energy = -2.32784807 Ry Harris-Foulkes estimate = -2.32784810 Ry estimated scf accuracy < 0.00000007 Ry The total energy is the sum of the following terms: one-electron contribution = -1.59974768 Ry hartree contribution = 0.78967829 Ry xc contribution = -1.22459939 Ry ewald contribution = -0.29317930 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.00s WALL ( 4 calls) sum_band : 0.00s CPU 0.00s WALL ( 4 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: regterg : 0.00s CPU 0.00s WALL ( 4 calls) Called by *egterg: h_psi : 0.00s CPU 0.00s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.00s CPU 0.00s WALL ( 19 calls) fftw : 0.00s CPU 0.00s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.08s CPU 0.08s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav13.ref0000644000700200004540000001761412053145627017456 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav13.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1329 1329 327 25161 25161 3133 Tot 665 665 164 bravais-lattice index = 13 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1492.4812 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 -1.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.500000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 -0.500000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 1.000000 -0.100504 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 12581 G-vectors FFT dimensions: ( 36, 48, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1567, 1) NL pseudopotentials 0.00 Mb ( 1567, 0) Each V/rho on FFT grid 0.95 Mb ( 62208) Each G-vector array 0.10 Mb ( 12581) G-vector shells 0.04 Mb ( 5219) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1567, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.59 Mb ( 62208, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001481 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.148E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 15.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.399E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22070774 Ry Harris-Foulkes estimate = -2.29004082 Ry estimated scf accuracy < 0.13180581 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.59E-03, avg # of iterations = 1.0 negative rho (up, down): 0.750E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23195293 Ry Harris-Foulkes estimate = -2.23234772 Ry estimated scf accuracy < 0.00089305 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.47E-05, avg # of iterations = 2.0 negative rho (up, down): 0.974E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23236081 Ry Harris-Foulkes estimate = -2.23236178 Ry estimated scf accuracy < 0.00001785 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.92E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1567 PWs) bands (ev): -10.2849 ! total energy = -2.23236272 Ry Harris-Foulkes estimate = -2.23236223 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.19987212 Ry hartree contribution = 1.69887259 Ry xc contribution = -1.30944162 Ry ewald contribution = 0.57807843 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 0.09s CPU 0.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:22:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav-12-kauto.ref0000644000700200004540000001773012053145627020652 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-12-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 325 50377 50377 7161 bravais-lattice index = -12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.100000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.200000 0.000000 1.989975 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 -0.100504 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.502519 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1666667 0.1005038), wk = 1.0000000 k( 2) = ( 0.2500000 0.1666667 -0.1507557), wk = 1.0000000 Dense grid: 50377 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 6316, 1) NL pseudopotentials 0.00 Mb ( 6316, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.38 Mb ( 50377) G-vector shells 0.04 Mb ( 4655) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.39 Mb ( 6316, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004315 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.431E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22009512 Ry Harris-Foulkes estimate = -2.29032340 Ry estimated scf accuracy < 0.13322371 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.269E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23108287 Ry Harris-Foulkes estimate = -2.23153742 Ry estimated scf accuracy < 0.00100787 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.350E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23138628 Ry Harris-Foulkes estimate = -2.23138778 Ry estimated scf accuracy < 0.00001214 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.07E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.2500 0.1667 0.1005 ( 6294 PWs) bands (ev): -10.2876 k = 0.2500 0.1667-0.1508 ( 6316 PWs) bands (ev): -10.2890 ! total energy = -2.23138749 Ry Harris-Foulkes estimate = -2.23138744 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69392621 Ry hartree contribution = 1.94936322 Ry xc contribution = -1.31441103 Ry ewald contribution = 0.82758653 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.08s CPU 0.09s WALL ( 1 calls) electrons : 0.24s CPU 0.26s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.01s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.05s CPU 0.05s WALL ( 4 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 5 calls) mix_rho : 0.03s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.06s CPU 0.06s WALL ( 8 calls) Called by *egterg: h_psi : 0.06s CPU 0.06s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.05s CPU 0.05s WALL ( 56 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.36s CPU 0.38s WALL This run was terminated on: 10:22:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/metaGGA.in0000755000700200004540000000137112053145627015657 0ustar marsamoscm &control calculation='scf', tprnfor=.true. tstress=.true. / &system ibrav=1, celldm(1)=8.00, nat=10, ntyp=2, nbnd=11, ecutwfc=30.0, / &electrons / ATOMIC_SPECIES H 1.007825035 H.tpss-mt.UPF C 12.00 C.tpss-mt.UPF ATOMIC_POSITIONS bohr H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 K_POINTS Gamma espresso-5.0.2/PW/tests/metal.in20000755000700200004540000000050612053145627015575 0ustar marsamoscm &control calculation='nscf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 nbnd=4 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.0.2/PW/tests/spinorbit.in0000755000700200004540000000067312053145627016427 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons / ATOMIC_SPECIES Pt 79.90 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 espresso-5.0.2/PW/tests/noncolin-constrain_total.in0000755000700200004540000000116112053145627021427 0ustar marsamoscm &control calculation='scf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 45.0 angle2(1) = 53.0 constrained_magnetization='total' fixed_magnetization(1)=0.3, fixed_magnetization(2)=0.4, fixed_magnetization(3)=0.5, lambda = 0.5 / &electrons conv_thr = 1.0e-9 mixing_beta = 0.3 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 espresso-5.0.2/PW/tests/uspp-singlegrid.in0000755000700200004540000000053412053145627017526 0ustar marsamoscm &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.0e-9 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.0.2/PW/tests/scf-disk_io.in0000644000700200004540000000052312053145627016577 0ustar marsamoscm &control calculation = 'scf' disk_io='low' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav7.in0000644000700200004540000000044212053145627017222 0ustar marsamoscm &control calculation='scf', / &system ibrav = 7, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lsda-nelup+neldw.in0000755000700200004540000000056212053145627017564 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02, tot_magnetization=2.0 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/electric1.ref0000644000700200004540000006301112053145627016427 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:14:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/electric1.in Found symmetry operation: I + ( -0.5000 -0.5000 0.0000) This is a supercell, fractional translations are disabled G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 665 665 225 12893 12893 2553 bravais-lattice index = 1 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Using Berry phase electric field Direction : 3 Intensity (Ry a.u.) : 0.0000000000 Strings composed by: 7 k-points Number of iterative cycles: 1 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pbe-rrkj.UPF MD5 check sum: cf7ab5690cd9a85b22c4813f7e365554 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 63 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 Dense grid: 12893 G-vectors FFT dimensions: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) The initial density is read from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc from file total cpu time spent up to now is 0.1 secs per-process dynamical memory: 8.4 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.31E-12, avg # of iterations = 3.6 Expectation value of exp(iGx): (0.335972157281994,-2.660528399052841E-008) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) -3.628921002389412E-007 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5830 -1.4243 -1.4243 -1.4241 -1.2843 -1.2841 -1.2841 3.5437 3.5437 3.5439 3.6151 3.6151 3.6151 6.2761 6.5935 6.5935 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4919 -2.4256 -1.3945 -1.3945 -1.2524 -1.2523 -0.1757 3.2963 3.2963 3.3714 3.3714 3.6254 3.6977 5.8815 6.1638 6.2318 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2197 -3.3614 -1.3237 -1.3237 -1.1763 -1.1763 1.0750 2.8448 2.8448 2.9264 2.9264 3.8681 3.9437 4.8825 5.4538 5.5537 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7696 -4.1473 -1.2623 -1.2622 -1.1098 -1.1097 2.3644 2.5394 2.5394 2.6260 2.6260 3.6527 4.2648 4.3464 4.8031 4.8938 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7696 -4.1473 -1.2623 -1.2622 -1.1098 -1.1097 2.3644 2.5394 2.5394 2.6260 2.6260 3.6527 4.2648 4.3464 4.8031 4.8938 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2197 -3.3614 -1.3237 -1.3237 -1.1763 -1.1763 1.0750 2.8448 2.8448 2.9264 2.9264 3.8681 3.9437 4.8825 5.4538 5.5537 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4919 -2.4256 -1.3945 -1.3945 -1.2524 -1.2523 -0.1757 3.2963 3.2963 3.3714 3.3714 3.6254 3.6977 5.8815 6.1638 6.2318 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5142 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8900 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7784 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7784 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8900 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5142 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5141 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8899 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7783 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6084 -3.2586 -3.2586 -2.2016 -0.3645 0.9167 0.9167 1.9569 2.7083 2.8313 2.8313 4.0394 4.0933 4.0933 4.3808 6.0006 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5203 -3.2122 -3.2122 -2.4136 -0.3130 0.6023 0.6023 2.1009 2.3095 3.0595 3.0595 4.2858 4.2859 4.4535 4.6759 5.8904 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2703 -3.0945 -3.0945 -2.8714 -0.1999 0.0452 0.0452 1.2653 3.2206 3.4648 3.4648 4.6449 4.6449 4.6531 5.4169 5.6263 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8707 -3.4154 -2.9829 -2.9829 -0.3326 -0.3326 0.1383 0.5271 3.7372 3.7373 4.2881 4.8503 4.8503 4.9585 5.2746 5.3370 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9127 -3.3507 -2.9816 -2.9815 -0.3404 -0.3404 -0.0486 0.6869 3.7976 3.7977 4.4499 4.7969 4.7969 4.9193 5.1643 5.3260 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2954 -3.0921 -3.0921 -2.7818 -0.4135 0.0232 0.0232 1.4044 3.3693 3.6145 3.6145 4.5126 4.5126 4.6276 5.2566 5.6806 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5320 -3.2106 -3.2106 -2.3301 -0.4977 0.5733 0.5733 2.2164 2.4227 3.1951 3.1951 4.1746 4.1746 4.4411 4.5528 5.9274 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6192 -3.2298 -3.2298 -2.2784 -0.2263 0.7895 0.7895 1.9830 2.8473 2.8474 2.8586 4.0037 4.1981 4.1981 4.2903 5.8394 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7783 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8899 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5141 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6192 -3.2298 -3.2298 -2.2784 -0.2263 0.7895 0.7895 1.9830 2.8473 2.8474 2.8586 4.0037 4.1981 4.1981 4.2903 5.8394 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6084 -3.2586 -3.2586 -2.2016 -0.3645 0.9167 0.9167 1.9569 2.7083 2.8313 2.8313 4.0394 4.0933 4.0933 4.3808 6.0006 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5320 -3.2106 -3.2106 -2.3301 -0.4977 0.5733 0.5733 2.2164 2.4227 3.1951 3.1951 4.1746 4.1746 4.4411 4.5528 5.9274 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2954 -3.0921 -3.0921 -2.7818 -0.4135 0.0232 0.0232 1.4044 3.3693 3.6145 3.6145 4.5126 4.5126 4.6276 5.2566 5.6806 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9127 -3.3507 -2.9816 -2.9815 -0.3404 -0.3404 -0.0486 0.6869 3.7976 3.7977 4.4499 4.7969 4.7969 4.9193 5.1643 5.3260 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8707 -3.4154 -2.9829 -2.9829 -0.3326 -0.3326 0.1383 0.5271 3.7372 3.7373 4.2881 4.8503 4.8503 4.9585 5.2746 5.3370 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2703 -3.0945 -3.0945 -2.8714 -0.1999 0.0452 0.0452 1.2653 3.2206 3.4648 3.4648 4.6449 4.6449 4.6531 5.4169 5.6263 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5203 -3.2122 -3.2122 -2.4136 -0.3130 0.6023 0.6023 2.1009 2.3095 3.0595 3.0595 4.2858 4.2859 4.4535 4.6759 5.8904 ! total energy = -62.95044808 Ry Harris-Foulkes estimate = -62.95044808 Ry estimated scf accuracy < 1.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.82836980 Ry hartree contribution = 4.30446435 Ry xc contribution = -19.35674535 Ry ewald contribution = -67.72653689 Ry convergence has been achieved in 1 iterations Writing output data file pwscf.save init_run : 0.11s CPU 0.11s WALL ( 1 calls) electrons : 7.75s CPU 7.92s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 6.30s CPU 6.45s WALL ( 2 calls) sum_band : 0.70s CPU 0.71s WALL ( 2 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 2 calls) mix_rho : 0.00s CPU 0.00s WALL ( 2 calls) Called by c_bands: init_us_2 : 0.15s CPU 0.18s WALL ( 252 calls) cegterg : 6.02s CPU 6.10s WALL ( 126 calls) Called by *egterg: h_psi : 3.94s CPU 3.99s WALL ( 416 calls) g_psi : 0.23s CPU 0.24s WALL ( 290 calls) cdiaghg : 0.35s CPU 0.36s WALL ( 290 calls) Called by h_psi: add_vuspsi : 0.45s CPU 0.43s WALL ( 416 calls) General routines calbec : 0.35s CPU 0.42s WALL ( 416 calls) fft : 0.01s CPU 0.01s WALL ( 22 calls) fftw : 3.06s CPU 3.04s WALL ( 13346 calls) davcio : 0.00s CPU 0.08s WALL ( 504 calls) PWSCF : 8.00s CPU 8.18s WALL This run was terminated on: 12:14:26 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax.in0000755000700200004540000000051312053145627015522 0ustar marsamoscm&CONTROL calculation = "relax" / &SYSTEM ibrav = 1, celldm(1) =12.0, nat = 2, ntyp = 2, ecutwfc = 24.D0, ecutrho = 144.D0, / &ELECTRONS / &IONS / ATOMIC_SPECIES O 1.00 O.pz-rrkjus.UPF C 1.00 C.pz-rrkjus.UPF ATOMIC_POSITIONS {bohr} C 2.256 0.0 0.0 O 0.000 0.0 0.0 0 0 0 K_POINTS {Gamma} espresso-5.0.2/PW/tests/scf.ref20000644000700200004540000001770512053145627015422 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.1 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 13.0 total cpu time spent up to now is 0.3 secs End of band structure calculation k = 0.1250 0.1250 0.1250 band energies (ev): -5.4706 4.7382 6.0279 6.0279 8.8974 9.3395 9.3395 11.1523 k = 0.1250 0.1250 0.3750 band energies (ev): -4.9390 3.1208 4.9509 5.0618 8.4665 10.1046 10.8682 11.1190 k = 0.1250 0.1250 0.6250 band energies (ev): -3.8735 1.4228 3.5622 4.0290 7.6390 9.1995 12.3955 12.7019 k = 0.1250 0.1250 0.8750 band energies (ev): -2.3492 -0.4822 2.7535 3.5416 7.1512 8.2502 14.7060 14.7522 k = 0.1250 0.3750 0.3750 band energies (ev): -4.4237 1.6761 3.9439 5.5190 9.0810 10.0402 10.2089 12.6374 k = 0.1250 0.3750 0.6250 band energies (ev): -3.4357 0.4677 2.9038 4.3187 9.2003 9.9002 11.3756 12.3445 k = 0.1250 0.3750 0.8750 band energies (ev): -2.1560 -0.5888 2.1105 3.2455 8.6854 10.6099 11.6524 13.8332 k = 0.1250 0.6250 0.6250 band energies (ev): -2.6862 -0.3462 2.2032 4.3656 8.1405 11.8301 11.8827 13.3481 k = 0.3750 0.3750 0.3750 band energies (ev): -3.9543 0.3153 5.1954 5.1954 8.0460 9.8187 9.8187 14.0525 k = 0.3750 0.3750 0.6250 band energies (ev): -3.1964 -0.5070 3.9935 4.6986 8.5444 9.8721 10.4853 13.7251 highest occupied, lowest unoccupied level (ev): 6.0279 7.1512 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.13s CPU 0.13s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.13s CPU 0.13s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 10 calls) cegterg : 0.12s CPU 0.12s WALL ( 10 calls) Called by *egterg: h_psi : 0.06s CPU 0.06s WALL ( 150 calls) g_psi : 0.00s CPU 0.01s WALL ( 130 calls) cdiaghg : 0.04s CPU 0.04s WALL ( 140 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 150 calls) General routines calbec : 0.01s CPU 0.00s WALL ( 150 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.05s CPU 0.05s WALL ( 1618 calls) PWSCF : 0.32s CPU 0.33s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/noncolin-constrain_atomic.ref0000644000700200004540000012101112053145627021720 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:25: 3 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-constrain_atomic.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 70 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0135135 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0135135 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0135135 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0135135 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0135135 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0135135 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0135135 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0405405 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0135135 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0135135 k( 12) = ( 0.0625000 0.0625000 -0.0625000), wk = 0.0135135 k( 13) = ( 0.0625000 0.0625000 -0.1875000), wk = 0.0135135 k( 14) = ( 0.1875000 -0.0625000 0.0625000), wk = 0.0135135 k( 15) = ( 0.1875000 0.0625000 -0.0625000), wk = 0.0135135 k( 16) = ( -0.0625000 0.1875000 0.0625000), wk = 0.0135135 k( 17) = ( -0.0625000 -0.1875000 -0.0625000), wk = 0.0135135 k( 18) = ( 0.0625000 0.0625000 -0.3125000), wk = 0.0135135 k( 19) = ( 0.3125000 -0.0625000 0.0625000), wk = 0.0135135 k( 20) = ( 0.3125000 0.0625000 -0.0625000), wk = 0.0135135 k( 21) = ( -0.0625000 0.3125000 0.0625000), wk = 0.0135135 k( 22) = ( -0.0625000 -0.3125000 -0.0625000), wk = 0.0135135 k( 23) = ( 0.0625000 0.0625000 -0.4375000), wk = 0.0135135 k( 24) = ( 0.4375000 -0.0625000 0.0625000), wk = 0.0135135 k( 25) = ( 0.4375000 0.0625000 -0.0625000), wk = 0.0135135 k( 26) = ( -0.0625000 0.4375000 0.0625000), wk = 0.0135135 k( 27) = ( -0.0625000 -0.4375000 -0.0625000), wk = 0.0135135 k( 28) = ( 0.0625000 0.0625000 -0.5625000), wk = 0.0135135 k( 29) = ( 0.5625000 -0.0625000 0.0625000), wk = 0.0135135 k( 30) = ( 0.5625000 0.0625000 -0.0625000), wk = 0.0135135 k( 31) = ( -0.0625000 0.5625000 0.0625000), wk = 0.0135135 k( 32) = ( -0.0625000 -0.5625000 -0.0625000), wk = 0.0135135 k( 33) = ( 0.0625000 0.0625000 -0.6875000), wk = 0.0135135 k( 34) = ( 0.6875000 -0.0625000 0.0625000), wk = 0.0135135 k( 35) = ( 0.6875000 0.0625000 -0.0625000), wk = 0.0135135 k( 36) = ( -0.0625000 0.6875000 0.0625000), wk = 0.0135135 k( 37) = ( -0.0625000 -0.6875000 -0.0625000), wk = 0.0135135 k( 38) = ( 0.0625000 0.0625000 -0.8125000), wk = 0.0135135 k( 39) = ( 0.8125000 -0.0625000 0.0625000), wk = 0.0135135 k( 40) = ( 0.8125000 0.0625000 -0.0625000), wk = 0.0135135 k( 41) = ( -0.0625000 0.8125000 0.0625000), wk = 0.0135135 k( 42) = ( -0.0625000 -0.8125000 -0.0625000), wk = 0.0135135 k( 43) = ( 0.0625000 0.0625000 -0.9375000), wk = 0.0405405 k( 44) = ( 0.1875000 0.0625000 -0.1875000), wk = 0.0135135 k( 45) = ( -0.1875000 -0.0625000 -0.1875000), wk = 0.0135135 k( 46) = ( 0.1875000 -0.1875000 0.0625000), wk = 0.0135135 k( 47) = ( 0.1875000 0.1875000 -0.0625000), wk = 0.0135135 k( 48) = ( -0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 49) = ( 0.1875000 0.0625000 -0.3125000), wk = 0.0135135 k( 50) = ( -0.1875000 -0.0625000 -0.3125000), wk = 0.0135135 k( 51) = ( 0.3125000 -0.1875000 0.0625000), wk = 0.0135135 k( 52) = ( 0.3125000 0.1875000 -0.0625000), wk = 0.0135135 k( 53) = ( -0.0625000 0.3125000 0.1875000), wk = 0.0135135 k( 54) = ( -0.0625000 -0.3125000 -0.1875000), wk = 0.0135135 k( 55) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0135135 k( 56) = ( 0.1875000 -0.3125000 -0.0625000), wk = 0.0135135 k( 57) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0135135 k( 58) = ( 0.3125000 -0.0625000 -0.1875000), wk = 0.0135135 k( 59) = ( -0.0625000 -0.1875000 0.3125000), wk = 0.0135135 k( 60) = ( 0.1875000 0.0625000 -0.4375000), wk = 0.0135135 k( 61) = ( -0.1875000 -0.0625000 -0.4375000), wk = 0.0135135 k( 62) = ( 0.4375000 -0.1875000 0.0625000), wk = 0.0135135 k( 63) = ( 0.4375000 0.1875000 -0.0625000), wk = 0.0135135 k( 64) = ( -0.0625000 0.4375000 0.1875000), wk = 0.0135135 k( 65) = ( -0.0625000 -0.4375000 -0.1875000), wk = 0.0135135 k( 66) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0135135 k( 67) = ( 0.1875000 -0.4375000 -0.0625000), wk = 0.0135135 k( 68) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0135135 k( 69) = ( 0.4375000 -0.0625000 -0.1875000), wk = 0.0135135 k( 70) = ( -0.0625000 -0.1875000 0.4375000), wk = 0.0135135 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 8.02202247 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.319637 0.000000 0.290431 magnetization/charge: 0.498097 0.000000 0.043578 polar coord.: r, theta, phi [deg] : 3.332318 85.000000 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 constraint energy (Ryd) = 6.78548616 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.568754 magnetization : 3.093081 0.000000 0.270612 magnetization/charge: 0.470878 0.000000 0.041197 polar coord.: r, theta, phi [deg] : 3.104897 84.999951 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 2.4 secs total energy = -55.70589717 Ry Harris-Foulkes estimate = -55.76528052 Ry estimated scf accuracy < 0.24768119 Ry total magnetization = 2.35 0.00 0.21 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.10E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 4.85666317 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.433700 magnetization : 2.693495 0.000000 0.235650 magnetization/charge: 0.418654 0.000000 0.036627 polar coord.: r, theta, phi [deg] : 2.703784 85.000014 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 3.2 secs total energy = -55.68123633 Ry Harris-Foulkes estimate = -55.71643791 Ry estimated scf accuracy < 0.08260566 Ry total magnetization = 2.36 0.00 0.21 Bohr mag/cell absolute magnetization = 2.37 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.03E-03, avg # of iterations = 2.1 constraint energy (Ryd) = 3.67711779 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.423122 magnetization : 2.408381 0.000000 0.210711 magnetization/charge: 0.374955 0.000000 0.032805 polar coord.: r, theta, phi [deg] : 2.417581 84.999892 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 4.1 secs total energy = -55.69771277 Ry Harris-Foulkes estimate = -55.69837985 Ry estimated scf accuracy < 0.00391033 Ry total magnetization = 2.32 0.00 0.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.89E-05, avg # of iterations = 3.3 constraint energy (Ryd) = 2.12026596 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.374334 magnetization : 1.948669 0.000000 0.170498 magnetization/charge: 0.305705 0.000000 0.026748 polar coord.: r, theta, phi [deg] : 1.956113 84.999652 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 5.4 secs total energy = -55.69208638 Ry Harris-Foulkes estimate = -55.69901161 Ry estimated scf accuracy < 0.00267815 Ry total magnetization = 2.14 0.00 0.19 Bohr mag/cell absolute magnetization = 2.15 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.35E-05, avg # of iterations = 2.2 constraint energy (Ryd) = 1.60507184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404330 magnetization : 1.760190 0.000000 0.154009 magnetization/charge: 0.274844 0.000000 0.024048 polar coord.: r, theta, phi [deg] : 1.766914 84.999595 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 6.4 secs total energy = -55.69104534 Ry Harris-Foulkes estimate = -55.69395753 Ry estimated scf accuracy < 0.00164749 Ry total magnetization = 1.93 0.00 0.17 Bohr mag/cell absolute magnetization = 1.94 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.06E-05, avg # of iterations = 2.0 constraint energy (Ryd) = 1.33846190 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405728 magnetization : 1.650613 0.000000 0.144422 magnetization/charge: 0.257678 0.000000 0.022546 polar coord.: r, theta, phi [deg] : 1.656919 84.999572 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 7.4 secs total energy = -55.69055241 Ry Harris-Foulkes estimate = -55.69189654 Ry estimated scf accuracy < 0.00021596 Ry total magnetization = 1.77 0.00 0.15 Bohr mag/cell absolute magnetization = 1.78 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.70E-06, avg # of iterations = 3.0 constraint energy (Ryd) = 1.30472548 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405565 magnetization : 1.635995 0.000000 0.143144 magnetization/charge: 0.255402 0.000000 0.022347 polar coord.: r, theta, phi [deg] : 1.642246 84.999559 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 8.5 secs total energy = -55.69060113 Ry Harris-Foulkes estimate = -55.69076532 Ry estimated scf accuracy < 0.00007448 Ry total magnetization = 1.69 0.00 0.15 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.31E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 1.80164424 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403151 magnetization : 1.835242 0.000000 0.160571 magnetization/charge: 0.286616 0.000000 0.025077 polar coord.: r, theta, phi [deg] : 1.842253 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 9.3 secs total energy = -55.69247279 Ry Harris-Foulkes estimate = -55.69060457 Ry estimated scf accuracy < 0.00006081 Ry total magnetization = 1.68 0.00 0.15 Bohr mag/cell absolute magnetization = 1.69 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.3 constraint energy (Ryd) = 1.20745658 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403688 magnetization : 1.592759 0.000000 0.139356 magnetization/charge: 0.248725 0.000000 0.021762 polar coord.: r, theta, phi [deg] : 1.598843 84.999732 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 10.4 secs total energy = -55.68942023 Ry Harris-Foulkes estimate = -55.69290431 Ry estimated scf accuracy < 0.00023638 Ry total magnetization = 1.82 0.00 0.16 Bohr mag/cell absolute magnetization = 1.83 Bohr mag/cell lambda = 1.00 Ry iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.5 constraint energy (Ryd) = 1.25334470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403376 magnetization : 1.613365 0.000000 0.141159 magnetization/charge: 0.251955 0.000000 0.022044 polar coord.: r, theta, phi [deg] : 1.619529 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 11.6 secs total energy = -55.69035001 Ry Harris-Foulkes estimate = -55.69011365 Ry estimated scf accuracy < 0.00000417 Ry total magnetization = 1.64 0.00 0.14 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell lambda = 1.00 Ry iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.21E-08, avg # of iterations = 2.1 constraint energy (Ryd) = 1.23918045 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403171 magnetization : 1.607045 0.000000 0.140608 magnetization/charge: 0.250976 0.000000 0.021959 polar coord.: r, theta, phi [deg] : 1.613185 84.999662 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 12.5 secs total energy = -55.69028379 Ry Harris-Foulkes estimate = -55.69035527 Ry estimated scf accuracy < 0.00000124 Ry total magnetization = 1.66 0.00 0.15 Bohr mag/cell absolute magnetization = 1.67 Bohr mag/cell lambda = 1.00 Ry iteration # 12 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 2.0 constraint energy (Ryd) = 1.23839212 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403178 magnetization : 1.606692 0.000000 0.140581 magnetization/charge: 0.250921 0.000000 0.021955 polar coord.: r, theta, phi [deg] : 1.612831 84.999500 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 13.4 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.9518 6.1966 12.2402 12.2402 12.4702 13.4388 13.4388 13.6842 13.8552 13.8552 15.3247 15.3248 38.9728 38.9729 39.2151 39.2151 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1911 13.3330 13.3466 14.2572 14.4215 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0373 33.4989 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3161 12.7373 13.1198 13.9110 14.1890 14.3264 15.5077 16.1726 17.2466 29.9419 30.4402 30.5376 30.9204 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9488 13.9962 14.4598 14.9641 15.2496 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.6124 9.6124 10.6321 10.6322 14.6551 15.0038 15.0038 15.9831 16.3765 16.3766 24.7326 24.7326 25.0935 25.0936 25.1266 25.4518 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2914 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.0625 0.0625-0.0625 ( 141 PWs) bands (ev): 5.9518 6.1966 12.2401 12.2402 12.4703 13.4387 13.4388 13.6842 13.8552 13.8552 15.3247 15.3248 38.9729 38.9729 39.2151 39.2151 k = 0.0625 0.0625-0.1875 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k = 0.1875-0.0625 0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k = 0.1875 0.0625-0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k =-0.0625 0.1875 0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4813 36.4905 36.8581 38.1015 38.4408 k =-0.0625-0.1875-0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4813 36.4905 36.8581 38.1015 38.4408 k = 0.0625 0.0625-0.3125 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4215 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k = 0.3125-0.0625 0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1911 13.3330 13.3466 14.2572 14.4215 14.4398 15.7437 34.1134 34.5963 35.7767 36.1995 k = 0.3125 0.0625-0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4215 14.4398 15.7437 34.1134 34.5963 35.7767 36.1995 k =-0.0625 0.3125 0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4216 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k =-0.0625-0.3125-0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4216 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k = 0.0625 0.0625-0.4375 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0372 33.4989 k = 0.4375-0.0625 0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0373 33.4989 k = 0.4375 0.0625-0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0373 33.4989 k =-0.0625 0.4375 0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0612 13.5350 13.6886 14.0517 14.7921 14.9710 16.1756 32.0179 32.5944 33.0373 33.4989 k =-0.0625-0.4375-0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0612 13.5350 13.6886 14.0517 14.7921 14.9710 16.1756 32.0179 32.5944 33.0372 33.4989 k = 0.0625 0.0625-0.5625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3162 12.7373 13.1198 13.9110 14.1890 14.3263 15.5077 16.1726 17.2466 29.9419 30.4402 30.5377 30.9204 k = 0.5625-0.0625 0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3161 12.7373 13.1198 13.9110 14.1890 14.3264 15.5077 16.1726 17.2466 29.9419 30.4402 30.5376 30.9204 k = 0.5625 0.0625-0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3161 12.7373 13.1198 13.9110 14.1890 14.3264 15.5077 16.1726 17.2467 29.9419 30.4402 30.5376 30.9204 k =-0.0625 0.5625 0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3162 12.7373 13.1198 13.9110 14.1890 14.3263 15.5078 16.1725 17.2466 29.9419 30.4402 30.5377 30.9204 k =-0.0625-0.5625-0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3162 12.7373 13.1198 13.9110 14.1890 14.3263 15.5078 16.1725 17.2466 29.9419 30.4402 30.5377 30.9204 k = 0.0625 0.0625-0.6875 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.6875-0.0625 0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.6875 0.0625-0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k =-0.0625 0.6875 0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5413 13.2753 13.7318 14.4742 14.6498 14.9656 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k =-0.0625-0.6875-0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5413 13.2753 13.7319 14.4742 14.6497 14.9656 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.0625 0.0625-0.8125 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9488 13.9962 14.4598 14.9641 15.2495 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k = 0.8125-0.0625 0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9026 10.9488 13.9963 14.4598 14.9641 15.2496 15.7593 16.3360 21.8273 22.3660 25.8990 26.1780 26.3459 26.5732 k = 0.8125 0.0625-0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9026 10.9488 13.9962 14.4598 14.9641 15.2495 15.7593 16.3360 21.8273 22.3660 25.8990 26.1780 26.3459 26.5732 k =-0.0625 0.8125 0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9489 13.9962 14.4598 14.9641 15.2495 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k =-0.0625-0.8125-0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9489 13.9962 14.4598 14.9641 15.2495 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k = 0.0625 0.0625-0.9375 ( 143 PWs) bands (ev): 9.6124 9.6124 10.6321 10.6322 14.6551 15.0038 15.0038 15.9831 16.3765 16.3766 24.7326 24.7327 25.0935 25.0935 25.1266 25.4518 k = 0.1875 0.0625-0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0988 13.0336 13.2472 13.2538 13.6576 13.9205 14.4963 15.0906 15.3974 34.2319 34.6939 36.9595 37.2915 k =-0.1875-0.0625-0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9205 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2915 k = 0.1875-0.1875 0.0625 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9596 37.2915 k = 0.1875 0.1875-0.0625 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2914 k =-0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2537 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2915 k = 0.1875 0.0625-0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k =-0.1875-0.0625-0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.3125-0.1875 0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.3125 0.1875-0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k =-0.0625 0.3125 0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5451 k =-0.0625-0.3125-0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4589 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5452 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4589 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5451 k = 0.1875-0.3125-0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5452 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.3125-0.0625-0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k =-0.0625-0.1875 0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.1875 0.0625-0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k =-0.1875-0.0625-0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.4375-0.1875 0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.4375 0.1875-0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k =-0.0625 0.4375 0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k =-0.0625-0.4375-0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7930 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k = 0.1875-0.4375-0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.4375-0.0625-0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3308 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k =-0.0625-0.1875 0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7930 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 the Fermi energy is 14.3641 ev ! total energy = -55.69028379 Ry Harris-Foulkes estimate = -55.69028429 Ry estimated scf accuracy < 0.00000054 Ry The total energy is the sum of the following terms: one-electron contribution = 8.87078424 Ry hartree contribution = 6.00817142 Ry xc contribution = -25.92721507 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00258769 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 12 iterations Writing output data file pwscf.save init_run : 0.73s CPU 0.73s WALL ( 1 calls) electrons : 12.33s CPU 12.65s WALL ( 1 calls) Called by init_run: wfcinit : 0.25s CPU 0.25s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 9.78s CPU 10.02s WALL ( 12 calls) sum_band : 2.21s CPU 2.25s WALL ( 12 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 13 calls) newd : 0.16s CPU 0.17s WALL ( 13 calls) mix_rho : 0.03s CPU 0.03s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.15s CPU 0.13s WALL ( 1750 calls) cegterg : 9.30s CPU 9.37s WALL ( 840 calls) Called by *egterg: h_psi : 5.91s CPU 6.03s WALL ( 2869 calls) s_psi : 0.30s CPU 0.25s WALL ( 2869 calls) g_psi : 0.19s CPU 0.24s WALL ( 1959 calls) cdiaghg : 1.79s CPU 1.80s WALL ( 2799 calls) Called by h_psi: add_vuspsi : 0.26s CPU 0.27s WALL ( 2869 calls) General routines calbec : 0.24s CPU 0.26s WALL ( 3709 calls) fft : 0.08s CPU 0.08s WALL ( 407 calls) ffts : 0.00s CPU 0.01s WALL ( 100 calls) fftw : 4.44s CPU 4.61s WALL ( 159540 calls) interpolate : 0.02s CPU 0.03s WALL ( 100 calls) davcio : 0.01s CPU 0.21s WALL ( 2590 calls) PWSCF : 13.25s CPU 13.59s WALL This run was terminated on: 10:25:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/noncolin.in10000755000700200004540000000053512053145627016313 0ustar marsamoscm &control calculation='nscf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='tetrahedra', noncolin = .true., nbnd=16 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.0.2/PW/tests/noncolin-constrain_angle.in0000755000700200004540000000174112053145627021376 0ustar marsamoscm &control calculation='scf' restart_mode='from_scratch', / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 constrained_magnetization='atomic direction' lambda = 1 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.0.2/PW/tests/atom-lsda.in0000755000700200004540000000071612053145627016275 0ustar marsamoscm &control calculation='scf', / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', nspin=2 / &electrons mixing_beta=0.25, / ATOMIC_SPECIES O 15.99994 O.pz-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 1.0 1.0000000000 1.0000000000 1.0000000000 0.0 0.0 1.0 0.3333333333 0.3333333333 0.3333333333 0.0 0.0 espresso-5.0.2/PW/tests/scf-mixing_ndim.in0000644000700200004540000000052312053145627017460 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_ndim=4 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters-ang.ref0000644000700200004540000001763712053145627023302 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters-ang.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4277 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 23672) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055184 Ry Harris-Foulkes estimate = -2.29035899 Ry estimated scf accuracy < 0.13253963 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23168709 Ry Harris-Foulkes estimate = -2.23211029 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203745 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203908 Ry Harris-Foulkes estimate = -2.23203881 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125628 Ry hartree contribution = 1.92424371 Ry xc contribution = -1.31190432 Ry ewald contribution = 0.80687781 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.15s CPU 0.15s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.04s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.03s CPU 0.02s WALL ( 19 calls) fftw : 0.03s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.32s CPU 0.35s WALL This run was terminated on: 10:22:15 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vc-relax4.in0000755000700200004540000000153112053145627016215 0ustar marsamoscm &CONTROL calculation = "vc-relax" / &SYSTEM ibrav = 0 , A = 3.70971016 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS ion_dynamics = 'bfgs' , / &CELL cell_dynamics = 'bfgs' , press = 500.00 / CELL_PARAMETERS alat 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/tests/atom-lsda.ref0000644000700200004540000002622612053145627016444 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44: 9 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom-lsda.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.521E-05 0.521E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 24.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.5 negative rho (up, down): 0.510E-05 0.358E-05 total cpu time spent up to now is 0.7 secs total energy = -31.33922025 Ry Harris-Foulkes estimate = -31.29443486 Ry estimated scf accuracy < 0.07324477 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.22E-03, avg # of iterations = 1.0 negative rho (up, down): 0.537E-02 0.822E-02 total cpu time spent up to now is 0.9 secs total energy = -31.39998947 Ry Harris-Foulkes estimate = -31.33960662 Ry estimated scf accuracy < 0.04369024 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 7.28E-04, avg # of iterations = 1.5 negative rho (up, down): 0.407E-02 0.585E-02 total cpu time spent up to now is 1.0 secs total energy = -31.40417466 Ry Harris-Foulkes estimate = -31.40393928 Ry estimated scf accuracy < 0.00032025 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.34E-06, avg # of iterations = 7.0 negative rho (up, down): 0.313E-02 0.386E-02 total cpu time spent up to now is 1.2 secs total energy = -31.40453862 Ry Harris-Foulkes estimate = -31.40429094 Ry estimated scf accuracy < 0.00005384 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.97E-07, avg # of iterations = 1.5 negative rho (up, down): 0.227E-02 0.250E-02 total cpu time spent up to now is 1.3 secs total energy = -31.40462010 Ry Harris-Foulkes estimate = -31.40455441 Ry estimated scf accuracy < 0.00001083 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.81E-07, avg # of iterations = 2.0 negative rho (up, down): 0.152E-02 0.170E-02 total cpu time spent up to now is 1.5 secs total energy = -31.40464505 Ry Harris-Foulkes estimate = -31.40462256 Ry estimated scf accuracy < 0.00000267 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.45E-08, avg # of iterations = 2.0 negative rho (up, down): 0.147E-04 0.231E-06 total cpu time spent up to now is 1.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -24.3321 -9.6433 -9.6432 -9.6432 -0.4597 4.4805 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -21.1127 -6.6334 -6.6334 -6.6334 -0.3151 4.5500 highest occupied, lowest unoccupied level (ev): -6.6334 -0.4597 ! total energy = -31.40468356 Ry Harris-Foulkes estimate = -31.40464559 Ry estimated scf accuracy < 4.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -32.01483433 Ry hartree contribution = 17.23601599 Ry xc contribution = -6.41159421 Ry ewald contribution = -10.21427100 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.50s CPU 0.51s WALL ( 1 calls) electrons : 1.01s CPU 1.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.16s CPU 0.15s WALL ( 7 calls) sum_band : 0.29s CPU 0.30s WALL ( 7 calls) v_of_rho : 0.23s CPU 0.24s WALL ( 8 calls) newd : 0.17s CPU 0.19s WALL ( 8 calls) mix_rho : 0.08s CPU 0.08s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 30 calls) regterg : 0.14s CPU 0.14s WALL ( 14 calls) Called by *egterg: h_psi : 0.10s CPU 0.11s WALL ( 59 calls) s_psi : 0.00s CPU 0.00s WALL ( 59 calls) g_psi : 0.01s CPU 0.01s WALL ( 43 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 57 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 59 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 73 calls) fft : 0.18s CPU 0.19s WALL ( 125 calls) ffts : 0.00s CPU 0.01s WALL ( 30 calls) fftw : 0.10s CPU 0.09s WALL ( 300 calls) interpolate : 0.07s CPU 0.08s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 44 calls) PWSCF : 1.62s CPU 1.71s WALL This run was terminated on: 22:44:10 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vdw1.in0000644000700200004540000000102712053145627015266 0ustar marsamoscm&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' input_dft='vdw-DF' / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.0.2/PW/tests/scf-cg.ref0000644000700200004540000002073612053145627015725 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-cg.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold CG style diagonalization ethr = 7.97E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79101134 Ry Harris-Foulkes estimate = -15.81239619 Ry estimated scf accuracy < 0.06381026 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 7.98E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -15.79405035 Ry Harris-Foulkes estimate = -15.79438669 Ry estimated scf accuracy < 0.00232668 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 2.91E-05, avg # of iterations = 3.8 total cpu time spent up to now is 0.1 secs total energy = -15.79447689 Ry Harris-Foulkes estimate = -15.79450490 Ry estimated scf accuracy < 0.00007073 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 8.84E-07, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449478 Ry Harris-Foulkes estimate = -15.79449785 Ry estimated scf accuracy < 0.00000723 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 9.04E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8700 2.3793 5.5373 5.5373 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9163 -0.0652 2.6796 4.0356 ! total energy = -15.79449590 Ry Harris-Foulkes estimate = -15.79449594 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83380433 Ry hartree contribution = 1.08426481 Ry xc contribution = -4.81280647 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) ccgdiagg : 0.00s CPU 0.01s WALL ( 12 calls) wfcrot : 0.01s CPU 0.00s WALL ( 10 calls) Called by *cgdiagg: h_psi : 0.01s CPU 0.01s WALL ( 136 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 136 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 262 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.02s CPU 0.01s WALL ( 396 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp-singlegrid.ref0000644000700200004540000003016012053145627017667 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-singlegrid.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 151 151 55 1243 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1243) G-vector shells 0.00 Mb ( 39) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.005369 starting charge 10.99968, renormalised to 11.00000 negative rho (up, down): 0.537E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 9.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 0.4 secs total energy = -87.73003204 Ry Harris-Foulkes estimate = -87.90531065 Ry estimated scf accuracy < 0.23870458 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-03, avg # of iterations = 2.0 negative rho (up, down): 0.530E-02 0.000E+00 total cpu time spent up to now is 0.4 secs total energy = -87.81134828 Ry Harris-Foulkes estimate = -87.90261407 Ry estimated scf accuracy < 0.18261468 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.534E-02 0.000E+00 total cpu time spent up to now is 0.5 secs total energy = -87.84089473 Ry Harris-Foulkes estimate = -87.84140835 Ry estimated scf accuracy < 0.00093197 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.47E-06, avg # of iterations = 3.0 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.5 secs total energy = -87.84124411 Ry Harris-Foulkes estimate = -87.84125231 Ry estimated scf accuracy < 0.00002927 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-07, avg # of iterations = 1.5 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.5 secs total energy = -87.84124415 Ry Harris-Foulkes estimate = -87.84124597 Ry estimated scf accuracy < 0.00000406 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.69E-08, avg # of iterations = 1.1 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.84124473 Ry Harris-Foulkes estimate = -87.84124476 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.25E-10, avg # of iterations = 1.5 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.84124474 Ry Harris-Foulkes estimate = -87.84124474 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-11, avg # of iterations = 1.4 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 5.0030 11.1909 11.1909 11.1909 12.0776 12.0776 38.8742 41.0269 41.0269 41.0269 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1674 10.9454 11.3607 11.3607 12.1696 12.1696 27.5336 38.3814 38.3814 38.4800 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1119 11.1570 11.1570 12.6911 12.6911 13.4785 18.6388 37.0368 37.6202 37.6202 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.8059 10.4270 11.6242 11.9074 11.9074 12.3717 32.3488 32.3488 33.7681 34.5476 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7647 10.3244 11.2576 11.8828 12.7347 15.5293 21.6049 27.6803 31.3115 35.1390 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6318 10.6704 10.8872 11.7317 12.0794 14.1967 24.6002 26.0320 35.9062 37.3977 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2570 9.7021 12.6715 12.8453 12.8453 16.0772 22.1077 28.1922 28.1922 32.9215 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0250 10.6713 10.6713 12.0454 12.8459 20.9565 20.9565 23.1356 24.0608 44.6629 the Fermi energy is 15.2844 ev ! total energy = -87.84124474 Ry Harris-Foulkes estimate = -87.84124474 Ry estimated scf accuracy < 4.6E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24324886 Ry hartree contribution = 18.89755948 Ry xc contribution = -14.06268744 Ry ewald contribution = -82.43214143 Ry smearing contrib. (-TS) = -0.00072649 Ry convergence has been achieved in 8 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 93.36 0.00063468 0.00000000 0.00000000 93.36 0.00 0.00 0.00000000 0.00063468 0.00000000 0.00 93.36 0.00 0.00000000 0.00000000 0.00063468 0.00 0.00 93.36 Writing output data file pwscf.save init_run : 0.29s CPU 0.29s WALL ( 1 calls) electrons : 0.28s CPU 0.30s WALL ( 1 calls) stress : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.21s WALL ( 8 calls) sum_band : 0.06s CPU 0.06s WALL ( 8 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 9 calls) newd : 0.02s CPU 0.02s WALL ( 9 calls) mix_rho : 0.00s CPU 0.00s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 144 calls) cegterg : 0.18s CPU 0.19s WALL ( 64 calls) Called by *egterg: h_psi : 0.11s CPU 0.12s WALL ( 203 calls) s_psi : 0.00s CPU 0.00s WALL ( 203 calls) g_psi : 0.02s CPU 0.01s WALL ( 131 calls) cdiaghg : 0.04s CPU 0.05s WALL ( 195 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 203 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 275 calls) fft : 0.01s CPU 0.00s WALL ( 55 calls) fftw : 0.10s CPU 0.11s WALL ( 3796 calls) davcio : 0.00s CPU 0.00s WALL ( 208 calls) PWSCF : 0.70s CPU 0.72s WALL This run was terminated on: 11:28:48 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp2.ref0000644000700200004540000002775412053145627015643 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp2.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 12.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.54724632 Ry Harris-Foulkes estimate = -85.80469052 Ry estimated scf accuracy < 0.33391620 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -85.61343414 Ry Harris-Foulkes estimate = -85.86500330 Ry estimated scf accuracy < 0.56551284 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-03, avg # of iterations = 1.5 total cpu time spent up to now is 1.1 secs total energy = -85.71786786 Ry Harris-Foulkes estimate = -85.71785192 Ry estimated scf accuracy < 0.00004857 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-07, avg # of iterations = 3.8 total cpu time spent up to now is 1.2 secs total energy = -85.71843218 Ry Harris-Foulkes estimate = -85.71843759 Ry estimated scf accuracy < 0.00002380 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.38E-07, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.71843183 Ry Harris-Foulkes estimate = -85.71843353 Ry estimated scf accuracy < 0.00000409 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -85.71843215 Ry Harris-Foulkes estimate = -85.71843215 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.11E-10, avg # of iterations = 2.9 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4061 12.8548 13.1633 13.1633 14.2549 14.2549 37.3013 41.0705 43.4737 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2813 12.4200 13.0907 13.4548 14.1750 15.2123 29.0372 34.7079 41.7940 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.5753 12.6694 13.2674 13.3994 15.1348 16.8652 22.3331 35.7400 38.2667 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9841 12.3769 13.3418 13.5032 14.0813 14.5899 33.3149 38.5178 38.8334 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.1484 11.6739 13.2872 14.1490 15.0146 15.2530 30.0618 33.5439 34.3376 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.3294 11.7046 12.8368 14.3079 15.1329 20.5943 24.0261 27.9135 30.2369 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.9020 12.1341 12.6171 13.8463 14.7533 16.8586 25.9141 31.7175 35.0154 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.6211 11.1917 14.2753 14.8006 15.2316 18.1491 26.8887 28.1719 31.9117 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.8400 13.0936 13.0936 13.3992 14.8738 14.8738 24.8544 38.8343 41.7071 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.3844 12.0286 12.7588 13.8465 14.8238 19.2878 22.9910 29.1580 36.4825 the Fermi energy is 15.1618 ev ! total energy = -85.71843217 Ry Harris-Foulkes estimate = -85.71843217 Ry estimated scf accuracy < 5.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.27707634 Ry hartree contribution = 14.36237069 Ry xc contribution = -29.60314924 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00068561 Ry convergence has been achieved in 7 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.68 -0.00020856 0.00000000 0.00000000 -30.68 0.00 0.00 0.00000000 -0.00020856 0.00000000 0.00 -30.68 0.00 0.00000000 0.00000000 -0.00020856 0.00 0.00 -30.68 Writing output data file pwscf.save init_run : 0.80s CPU 0.81s WALL ( 1 calls) electrons : 0.60s CPU 0.60s WALL ( 1 calls) stress : 0.18s CPU 0.19s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.24s CPU 0.26s WALL ( 7 calls) sum_band : 0.19s CPU 0.19s WALL ( 7 calls) v_of_rho : 0.03s CPU 0.02s WALL ( 8 calls) newd : 0.14s CPU 0.14s WALL ( 8 calls) mix_rho : 0.00s CPU 0.01s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 160 calls) cegterg : 0.22s CPU 0.23s WALL ( 70 calls) Called by *egterg: h_psi : 0.12s CPU 0.15s WALL ( 247 calls) s_psi : 0.00s CPU 0.01s WALL ( 247 calls) g_psi : 0.01s CPU 0.01s WALL ( 167 calls) cdiaghg : 0.06s CPU 0.06s WALL ( 237 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 247 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 327 calls) fft : 0.01s CPU 0.02s WALL ( 72 calls) ffts : 0.00s CPU 0.00s WALL ( 15 calls) fftw : 0.10s CPU 0.12s WALL ( 4070 calls) interpolate : 0.00s CPU 0.01s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 230 calls) PWSCF : 1.70s CPU 1.74s WALL This run was terminated on: 11:28:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav2.in0000644000700200004540000000041412053145627017214 0ustar marsamoscm &control calculation='scf', / &system ibrav = 2, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/spinorbit.in20000755000700200004540000000062712053145627016510 0ustar marsamoscm &control calculation = 'nscf' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, nbnd = 16 / &electrons / ATOMIC_SPECIES Pt 79.90 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 0 0 0 espresso-5.0.2/PW/tests/noncolin.ref10000644000700200004540000002470012053145627016456 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:39 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin.in1 file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 14 (tetrahedron method) cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1666667), wk = 0.0277778 k( 2) = ( 0.0000000 -0.1666667 0.3333333), wk = 0.1111111 k( 3) = ( 0.0000000 -0.3333333 0.5000000), wk = 0.1111111 k( 4) = ( -0.1666667 0.1666667 0.1666667), wk = 0.0370370 k( 5) = ( -0.1666667 -0.1666667 0.5000000), wk = 0.1111111 k( 6) = ( -0.1666667 0.6666667 -0.3333333), wk = 0.1111111 k( 7) = ( -0.3333333 0.3333333 0.1666667), wk = 0.1111111 k( 8) = ( 0.5000000 -0.5000000 0.1666667), wk = 0.0555556 k( 9) = ( 0.5000000 -0.6666667 0.3333333), wk = 0.1111111 k( 10) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0277778 k( 11) = ( 0.0000000 -0.1666667 0.6666667), wk = 0.1111111 k( 12) = ( -0.1666667 0.8333333 -0.1666667), wk = 0.0370370 k( 13) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0092593 k( 14) = ( 0.0000000 0.0000000 0.8333333), wk = 0.0277778 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Check: negative/imaginary core charge= -0.000013 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 13.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 15.7 total cpu time spent up to now is 1.6 secs End of band structure calculation k = 0.0000 0.0000 0.1667 band energies (ev): 6.0457 6.8219 11.7338 11.7338 11.9057 13.2007 13.6189 14.7118 14.7118 14.9315 16.1886 16.7144 37.3534 38.1243 39.2166 39.2166 k = 0.0000-0.1667 0.3333 band energies (ev): 8.0596 8.9643 11.2683 11.6432 12.8902 13.0762 13.8441 14.1393 14.2679 15.8741 16.2341 16.9394 31.2369 32.6216 35.7738 36.5906 k = 0.0000-0.3333 0.5000 band energies (ev): 9.1488 10.7823 10.9967 12.4584 13.2931 13.5545 14.3812 14.5189 15.2101 16.3458 17.5700 17.8981 24.0802 25.9915 33.4202 34.1613 k =-0.1667 0.1667 0.1667 band energies (ev): 7.1579 7.9665 11.3212 11.3212 12.9407 13.4066 13.4066 14.1787 14.1787 16.0339 16.4702 16.4702 34.7073 34.7073 35.8036 35.8036 k =-0.1667-0.1667 0.5000 band energies (ev): 9.7109 10.8528 11.1835 11.5367 12.9078 13.3065 13.8856 14.1537 15.6525 15.9338 17.0689 18.3430 27.9458 28.7616 29.5508 30.1080 k =-0.1667 0.6667-0.3333 band energies (ev): 9.9371 10.9342 11.3543 12.0842 13.2769 13.4303 13.5784 14.1756 16.3458 17.3843 19.2158 21.1692 22.6606 24.6363 27.1612 28.5666 k =-0.3333 0.3333 0.1667 band energies (ev): 9.2305 10.5624 10.7147 11.4718 13.4050 13.4384 13.6463 13.7267 15.0013 16.5155 16.7770 18.0180 27.5107 29.0808 31.9483 33.0642 k = 0.5000-0.5000 0.1667 band energies (ev): 9.3521 10.4640 11.3980 12.8941 13.1391 13.5283 13.7392 14.7332 16.6628 16.8989 17.3446 19.6643 22.4934 24.6105 30.8465 31.9171 k = 0.5000-0.6667 0.3333 band energies (ev): 10.1172 10.6778 11.3083 12.3541 13.0356 13.4526 13.5852 13.7680 16.7322 16.9301 18.7833 21.0985 24.7460 25.9552 26.4675 27.4037 k = 0.0000 0.0000 0.5000 band energies (ev): 9.4491 10.5968 11.2674 12.2381 12.2381 13.0672 13.8033 14.9150 15.1545 15.1545 16.2430 17.6649 32.4507 32.4507 32.7002 33.8749 k = 0.0000-0.1667 0.6667 band energies (ev): 9.9232 10.4676 11.9055 12.2093 12.6597 12.8780 14.3590 15.1258 15.8127 17.7102 18.1918 20.0794 25.2051 26.8352 29.4434 30.7570 k =-0.1667 0.8333-0.1667 band energies (ev): 9.9257 9.9257 12.0969 12.0969 12.2839 14.0811 14.0812 15.1109 17.3070 17.3070 22.9816 22.9816 24.5480 24.5480 24.6954 26.1135 k = 0.5000-0.5000 0.5000 band energies (ev): 10.7357 10.7357 10.7357 13.0633 13.0633 13.0633 13.7713 13.7714 16.9400 16.9400 23.5806 23.5806 23.5806 25.3545 25.3545 25.3545 k = 0.0000 0.0000 0.8333 band energies (ev): 9.4277 9.4287 11.5483 11.6342 13.9816 13.9816 14.2879 17.1870 17.1870 17.6398 21.8296 23.1234 25.9461 25.9461 27.0511 27.0511 the Fermi energy is 14.8214 ev Writing output data file pwscf.save init_run : 0.48s CPU 0.48s WALL ( 1 calls) electrons : 0.98s CPU 0.99s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.96s CPU 0.96s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 1 calls) newd : 0.01s CPU 0.01s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 14 calls) cegterg : 0.90s CPU 0.90s WALL ( 15 calls) Called by *egterg: h_psi : 0.50s CPU 0.45s WALL ( 249 calls) s_psi : 0.01s CPU 0.02s WALL ( 249 calls) g_psi : 0.03s CPU 0.03s WALL ( 220 calls) cdiaghg : 0.25s CPU 0.29s WALL ( 234 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 249 calls) General routines calbec : 0.03s CPU 0.01s WALL ( 249 calls) fft : 0.00s CPU 0.00s WALL ( 15 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.31s CPU 0.29s WALL ( 9904 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 14 calls) PWSCF : 1.84s CPU 1.89s WALL This run was terminated on: 10:25:41 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav7-kauto.ref0000644000700200004540000002007212053145627020512 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav7-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 885 885 267 16959 16959 2793 bravais-lattice index = 7 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.500000 1.000000 ) a(2) = ( 0.500000 0.500000 1.000000 ) a(3) = ( -0.500000 -0.500000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -1.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.500000 ) b(3) = ( -1.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.5000000 k( 2) = ( 0.5000000 0.0000000 0.0000000), wk = 1.0000000 k( 3) = ( 0.5000000 -0.5000000 -0.2500000), wk = 0.5000000 Dense grid: 16959 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 2112, 1) NL pseudopotentials 0.00 Mb ( 2112, 0) Each V/rho on FFT grid 0.98 Mb ( 64000) Each G-vector array 0.13 Mb ( 16959) G-vector shells 0.00 Mb ( 340) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.13 Mb ( 2112, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.81 Mb ( 64000, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000116 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.116E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 9.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.259E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.21987681 Ry Harris-Foulkes estimate = -2.29001969 Ry estimated scf accuracy < 0.13315394 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.151E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23087003 Ry Harris-Foulkes estimate = -2.23131829 Ry estimated scf accuracy < 0.00100488 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -2.23117387 Ry Harris-Foulkes estimate = -2.23117512 Ry estimated scf accuracy < 0.00001202 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.01E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 2096 PWs) bands (ev): -10.1390 k = 0.5000 0.0000 0.0000 ( 2100 PWs) bands (ev): -10.1270 k = 0.5000-0.5000-0.2500 ( 2112 PWs) bands (ev): -10.1192 ! total energy = -2.23117494 Ry Harris-Foulkes estimate = -2.23117492 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -2.80264487 Ry hartree contribution = 1.51537527 Ry xc contribution = -1.31429478 Ry ewald contribution = 0.37038944 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 0.14s CPU 0.15s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.05s CPU 0.05s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.05s CPU 0.05s WALL ( 12 calls) Called by *egterg: h_psi : 0.05s CPU 0.05s WALL ( 33 calls) g_psi : 0.00s CPU 0.00s WALL ( 18 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 30 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.06s CPU 0.05s WALL ( 84 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.23s CPU 0.24s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-atom_spin.ref0000644000700200004540000002450012053145627017332 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:21:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_spin.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 7 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) Starting magnetic structure atomic species magnetization O 0.000 No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 Spin-down 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.58 Mb ( 5425, 7) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 8.00 Mb ( 262144, 2) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.16 Mb ( 5425, 28) Each subspace H/S matrix 0.01 Mb ( 28, 28) Each matrix 0.00 Mb ( 8, 7) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000870 Check: negative starting charge=(component2): -0.000870 starting charge 6.00001, renormalised to 6.00000 negative rho (up, down): 0.870E-03 0.870E-03 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.8 secs per-process dynamical memory: 59.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.5 negative rho (up, down): 0.133E-02 0.138E-02 total cpu time spent up to now is 3.4 secs total energy = -41.23972817 Ry Harris-Foulkes estimate = -41.12659484 Ry estimated scf accuracy < 0.13264910 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-03, avg # of iterations = 1.0 negative rho (up, down): 0.165E-02 0.207E-02 total cpu time spent up to now is 4.7 secs total energy = -41.26326404 Ry Harris-Foulkes estimate = -41.24460665 Ry estimated scf accuracy < 0.01327977 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-04, avg # of iterations = 5.5 negative rho (up, down): 0.168E-02 0.200E-02 total cpu time spent up to now is 6.2 secs total energy = -41.26485237 Ry Harris-Foulkes estimate = -41.26488891 Ry estimated scf accuracy < 0.00039000 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.50E-06, avg # of iterations = 15.5 negative rho (up, down): 0.173E-02 0.195E-02 total cpu time spent up to now is 8.1 secs total energy = -41.26499927 Ry Harris-Foulkes estimate = -41.26497531 Ry estimated scf accuracy < 0.00005784 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.64E-07, avg # of iterations = 9.5 negative rho (up, down): 0.173E-02 0.193E-02 total cpu time spent up to now is 9.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -24.9956 -10.7285 -10.7284 -8.6396 -0.6272 1.7930 1.7943 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -21.3870 -7.4232 -6.3289 -6.3255 -0.5091 1.9391 2.0640 highest occupied, lowest unoccupied level (ev): -7.4232 -6.3289 ! total energy = -41.26501001 Ry Harris-Foulkes estimate = -41.26500949 Ry estimated scf accuracy < 0.00000049 Ry total all-electron energy = -150.025756 Ry The total energy is the sum of the following terms: one-electron contribution = -38.87639260 Ry hartree contribution = 20.87866631 Ry xc contribution = -6.69553199 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.96955029 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 1.56s CPU 1.60s WALL ( 1 calls) electrons : 7.64s CPU 7.83s WALL ( 1 calls) Called by init_run: wfcinit : 0.15s CPU 0.15s WALL ( 1 calls) potinit : 0.64s CPU 0.66s WALL ( 1 calls) Called by electrons: c_bands : 3.02s CPU 3.04s WALL ( 5 calls) sum_band : 0.95s CPU 0.96s WALL ( 5 calls) v_of_rho : 2.54s CPU 2.62s WALL ( 6 calls) newd : 0.38s CPU 0.38s WALL ( 6 calls) mix_rho : 0.22s CPU 0.23s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.04s WALL ( 22 calls) regterg : 2.98s CPU 2.99s WALL ( 10 calls) Called by *egterg: h_psi : 2.85s CPU 2.84s WALL ( 86 calls) s_psi : 0.02s CPU 0.01s WALL ( 86 calls) g_psi : 0.06s CPU 0.04s WALL ( 74 calls) rdiaghg : 0.00s CPU 0.02s WALL ( 84 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 86 calls) General routines calbec : 0.06s CPU 0.04s WALL ( 96 calls) fft : 1.00s CPU 1.02s WALL ( 146 calls) fftw : 2.51s CPU 2.53s WALL ( 374 calls) davcio : 0.00s CPU 0.01s WALL ( 32 calls) PAW routines PAW_pot : 0.89s CPU 0.89s WALL ( 6 calls) PAW_ddot : 0.04s CPU 0.03s WALL ( 21 calls) PWSCF : 9.45s CPU 9.71s WALL This run was terminated on: 11:22: 7 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp-cg.ref0000644000700200004540000002431312053145627016134 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-cg.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 10, 10) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 5.0 total cpu time spent up to now is 0.6 secs total energy = -87.73383525 Ry Harris-Foulkes estimate = -87.88894098 Ry estimated scf accuracy < 0.21043854 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.91E-03, avg # of iterations = 3.5 total cpu time spent up to now is 0.7 secs total energy = -87.80512523 Ry Harris-Foulkes estimate = -87.87701722 Ry estimated scf accuracy < 0.14002542 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.27E-03, avg # of iterations = 3.1 total cpu time spent up to now is 0.8 secs total energy = -87.83048558 Ry Harris-Foulkes estimate = -87.83054982 Ry estimated scf accuracy < 0.00013913 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.26E-06, avg # of iterations = 5.7 total cpu time spent up to now is 0.8 secs total energy = -87.83068764 Ry Harris-Foulkes estimate = -87.83070438 Ry estimated scf accuracy < 0.00003556 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 3.23E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9885 11.1832 11.1832 11.1832 12.0727 12.0727 38.8576 41.0125 41.0126 41.0127 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1529 10.9366 11.3536 11.3536 12.1644 12.1644 27.5230 38.3696 38.3696 38.4664 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1001 11.1500 11.1500 12.6864 12.6864 13.4640 18.6309 37.0231 37.6062 37.6062 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7918 10.4179 11.6175 11.9007 11.9007 12.3673 32.3362 32.3362 33.7584 34.5384 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7543 10.3151 11.2490 11.8770 12.7300 15.5203 21.5943 27.6700 31.2983 35.1288 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6191 10.6612 10.8796 11.7261 12.0730 14.1901 24.5899 26.0210 35.8944 37.3857 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2472 9.6920 12.6677 12.8403 12.8403 16.0620 22.1007 28.1775 28.1775 32.9147 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0161 10.6620 10.6620 12.0402 12.8409 20.9451 20.9451 23.1284 24.0481 44.6517 the Fermi energy is 15.2754 ev ! total energy = -87.83069594 Ry Harris-Foulkes estimate = -87.83069595 Ry estimated scf accuracy < 0.00000013 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22416214 Ry hartree contribution = 18.88100792 Ry xc contribution = -14.05467389 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.38s CPU 0.40s WALL ( 1 calls) electrons : 0.32s CPU 0.32s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.20s WALL ( 5 calls) sum_band : 0.06s CPU 0.07s WALL ( 5 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 6 calls) newd : 0.04s CPU 0.04s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 88 calls) ccgdiagg : 0.18s CPU 0.16s WALL ( 40 calls) wfcrot : 0.02s CPU 0.04s WALL ( 40 calls) Called by *cgdiagg: h_psi : 0.17s CPU 0.16s WALL ( 1338 calls) s_psi : 0.00s CPU 0.01s WALL ( 2636 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 40 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 1338 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 2676 calls) fft : 0.00s CPU 0.01s WALL ( 49 calls) ffts : 0.00s CPU 0.00s WALL ( 11 calls) fftw : 0.13s CPU 0.12s WALL ( 3796 calls) interpolate : 0.00s CPU 0.00s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 128 calls) PWSCF : 0.83s CPU 0.96s WALL This run was terminated on: 11:28:43 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav8.ref0000644000700200004540000001761312053145627017401 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav8.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 293 50615 50615 6327 Tot 593 593 147 bravais-lattice index = 8 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 3000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25308 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3164, 1) NL pseudopotentials 0.00 Mb ( 3164, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.19 Mb ( 25308) G-vector shells 0.01 Mb ( 1676) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 3164, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004385 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.439E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.127E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22050162 Ry Harris-Foulkes estimate = -2.29028481 Ry estimated scf accuracy < 0.13248956 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.274E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23163346 Ry Harris-Foulkes estimate = -2.23205365 Ry estimated scf accuracy < 0.00094355 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.461E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23197996 Ry Harris-Foulkes estimate = -2.23198149 Ry estimated scf accuracy < 0.00001463 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.32E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3164 PWs) bands (ev): -10.3215 ! total energy = -2.23198155 Ry Harris-Foulkes estimate = -2.23198129 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69716667 Ry hartree contribution = 1.94675741 Ry xc contribution = -1.31190777 Ry ewald contribution = 0.83033548 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.05s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.04s CPU 0.02s WALL ( 19 calls) fftw : 0.03s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.24s CPU 0.25s WALL This run was terminated on: 10:22:24 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/md.ref0000644000700200004540000037454712053145627015177 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.30E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803678 Ry Harris-Foulkes estimate = -14.44803678 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.84E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 6.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244051 -0.02244048 -0.02244055 atom 2 type 1 force = 0.02244051 0.02244048 0.02244055 Total force = 0.054968 Total SCF correction = 0.000014 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158948 -0.123158948 -0.123158949 Si 0.123158948 0.123158948 0.123158949 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41900607 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.52E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815427 Ry Harris-Foulkes estimate = -14.44815426 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.65E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815428 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139523 -0.02139524 -0.02139522 atom 2 type 1 force = 0.02139523 0.02139524 0.02139522 Total force = 0.052407 Total SCF correction = 0.000005 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279545 -0.123279544 -0.123279546 Si 0.123279545 0.123279544 0.123279546 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72853561 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.75E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830656 Ry Harris-Foulkes estimate = -14.44830655 Ry estimated scf accuracy < 0.00000041 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.07E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830660 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.23E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995830 -0.01995831 -0.01995829 atom 2 type 1 force = 0.01995830 0.01995831 0.01995829 Total force = 0.048888 Total SCF correction = 0.000006 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430776 -0.123430775 -0.123430777 Si 0.123430776 0.123430775 0.123430777 kinetic energy (Ekin) = 0.00036754 Ry temperature = 38.68668352 K Ekin + Etot (const) = -14.44793907 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.05E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848262 Ry Harris-Foulkes estimate = -14.44848261 Ry estimated scf accuracy < 0.00000064 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848268 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816349 -0.01816350 -0.01816348 atom 2 type 1 force = 0.01816349 0.01816350 0.01816348 Total force = 0.044491 Total SCF correction = 0.000008 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609887 -0.123609887 -0.123609889 Si 0.123609887 0.123609887 0.123609889 kinetic energy (Ekin) = 0.00054281 Ry temperature = 57.13505928 K Ekin + Etot (const) = -14.44793989 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866976 Ry Harris-Foulkes estimate = -14.44866974 Ry estimated scf accuracy < 0.00000090 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866984 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4770 7.4770 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604808 -0.01604809 -0.01604806 atom 2 type 1 force = 0.01604808 0.01604809 0.01604806 Total force = 0.039310 Total SCF correction = 0.000010 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813632 -0.123813631 -0.123813633 Si 0.123813632 0.123813631 0.123813633 kinetic energy (Ekin) = 0.00072910 Ry temperature = 76.74374411 K Ekin + Etot (const) = -14.44794077 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885459 Ry Harris-Foulkes estimate = -14.44885457 Ry estimated scf accuracy < 0.00000116 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885469 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.20E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2559 7.4649 7.4649 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365506 -0.01365506 -0.01365503 atom 2 type 1 force = 0.01365506 0.01365506 0.01365503 Total force = 0.033448 Total SCF correction = 0.000011 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038336 -0.124038335 -0.124038338 Si 0.124038336 0.124038335 0.124038338 kinetic energy (Ekin) = 0.00091309 Ry temperature = 96.11022966 K Ekin + Etot (const) = -14.44794164 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.82E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902401 Ry Harris-Foulkes estimate = -14.44902400 Ry estimated scf accuracy < 0.00000142 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902414 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902420 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103242 -0.01103243 -0.01103239 atom 2 type 1 force = 0.01103242 0.01103243 0.01103239 Total force = 0.027024 Total SCF correction = 0.000012 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279974 -0.124279973 -0.124279976 Si 0.124279974 0.124279973 0.124279976 kinetic energy (Ekin) = 0.00108175 Ry temperature = 113.86286550 K Ekin + Etot (const) = -14.44794245 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.11E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44916618 Ry Harris-Foulkes estimate = -14.44916618 Ry estimated scf accuracy < 0.00000165 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916633 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916640 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00823045 -0.00823046 -0.00823042 atom 2 type 1 force = 0.00823045 0.00823046 0.00823042 Total force = 0.020160 Total SCF correction = 0.000013 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534245 -0.124534244 -0.124534247 Si 0.124534245 0.124534244 0.124534247 kinetic energy (Ekin) = 0.00122327 Ry temperature = 128.75902696 K Ekin + Etot (const) = -14.44794313 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927131 Ry Harris-Foulkes estimate = -14.44927130 Ry estimated scf accuracy < 0.00000183 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927147 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927155 Ry Harris-Foulkes estimate = -14.44927154 Ry estimated scf accuracy < 4.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530258 -0.00530259 -0.00530255 atom 2 type 1 force = 0.00530258 0.00530259 0.00530255 Total force = 0.012989 Total SCF correction = 0.000014 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796655 -0.124796654 -0.124796658 Si 0.124796655 0.124796654 0.124796658 kinetic energy (Ekin) = 0.00132789 Ry temperature = 139.77173091 K Ekin + Etot (const) = -14.44794365 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933230 Ry Harris-Foulkes estimate = -14.44933231 Ry estimated scf accuracy < 0.00000196 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933255 Ry Harris-Foulkes estimate = -14.44933248 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3710 7.4068 7.4068 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933256 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230281 -0.00230282 -0.00230278 atom 2 type 1 force = 0.00230281 0.00230282 0.00230278 Total force = 0.005641 Total SCF correction = 0.000015 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062601 -0.125062600 -0.125062603 Si 0.125062601 0.125062600 0.125062603 kinetic energy (Ekin) = 0.00138858 Ry temperature = 146.15904026 K Ekin + Etot (const) = -14.44794398 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934526 Ry Harris-Foulkes estimate = -14.44934527 Ry estimated scf accuracy < 0.00000201 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934551 Ry Harris-Foulkes estimate = -14.44934544 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4023 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071509 0.00071508 0.00071512 atom 2 type 1 force = -0.00071509 -0.00071508 -0.00071512 Total force = 0.001752 Total SCF correction = 0.000015 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327448 -0.125327447 -0.125327451 Si 0.125327448 0.125327447 0.125327451 kinetic energy (Ekin) = 0.00140142 Ry temperature = 147.51046507 K Ekin + Etot (const) = -14.44794411 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930963 Ry Harris-Foulkes estimate = -14.44930964 Ry estimated scf accuracy < 0.00000200 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930988 Ry Harris-Foulkes estimate = -14.44930981 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930989 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369858 0.00369857 0.00369861 atom 2 type 1 force = -0.00369858 -0.00369857 -0.00369861 Total force = 0.009060 Total SCF correction = 0.000015 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586619 -0.125586618 -0.125586621 Si 0.125586619 0.125586618 0.125586621 kinetic energy (Ekin) = 0.00136587 Ry temperature = 143.76900289 K Ekin + Etot (const) = -14.44794402 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922821 Ry Harris-Foulkes estimate = -14.44922823 Ry estimated scf accuracy < 0.00000192 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922846 Ry Harris-Foulkes estimate = -14.44922839 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922847 Ry Harris-Foulkes estimate = -14.44922846 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659721 0.00659720 0.00659724 atom 2 type 1 force = -0.00659721 -0.00659720 -0.00659724 Total force = 0.016160 Total SCF correction = 0.000015 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835663 -0.125835662 -0.125835665 Si 0.125835663 0.125835662 0.125835665 kinetic energy (Ekin) = 0.00128473 Ry temperature = 135.22811469 K Ekin + Etot (const) = -14.44794374 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910691 Ry Harris-Foulkes estimate = -14.44910693 Ry estimated scf accuracy < 0.00000178 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910714 Ry Harris-Foulkes estimate = -14.44910707 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4936 ! total energy = -14.44910714 Ry Harris-Foulkes estimate = -14.44910714 Ry estimated scf accuracy < 4.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936336 0.00936335 0.00936339 atom 2 type 1 force = -0.00936336 -0.00936335 -0.00936339 Total force = 0.022935 Total SCF correction = 0.000015 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070335 -0.126070334 -0.126070337 Si 0.126070335 0.126070334 0.126070337 kinetic energy (Ekin) = 0.00116385 Ry temperature = 122.50495140 K Ekin + Etot (const) = -14.44794329 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.01E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895422 Ry Harris-Foulkes estimate = -14.44895425 Ry estimated scf accuracy < 0.00000158 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895443 Ry Harris-Foulkes estimate = -14.44895437 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895443 Ry Harris-Foulkes estimate = -14.44895443 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195285 0.01195284 0.01195288 atom 2 type 1 force = -0.01195285 -0.01195284 -0.01195288 Total force = 0.029278 Total SCF correction = 0.000014 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286660 -0.126286659 -0.126286662 Si 0.126286660 0.126286659 0.126286662 kinetic energy (Ekin) = 0.00101173 Ry temperature = 106.49266031 K Ekin + Etot (const) = -14.44794271 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.71E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878070 Ry Harris-Foulkes estimate = -14.44878073 Ry estimated scf accuracy < 0.00000135 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878088 Ry Harris-Foulkes estimate = -14.44878083 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878088 Ry Harris-Foulkes estimate = -14.44878088 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432542 0.01432541 0.01432544 atom 2 type 1 force = -0.01432542 -0.01432541 -0.01432544 Total force = 0.035090 Total SCF correction = 0.000013 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126480996 -0.126480995 -0.126480998 Si 0.126480996 0.126480995 0.126480998 kinetic energy (Ekin) = 0.00083885 Ry temperature = 88.29578400 K Ekin + Etot (const) = -14.44794203 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859817 Ry Harris-Foulkes estimate = -14.44859818 Ry estimated scf accuracy < 0.00000108 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859830 Ry Harris-Foulkes estimate = -14.44859826 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859831 Ry Harris-Foulkes estimate = -14.44859830 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644543 0.01644542 0.01644545 atom 2 type 1 force = -0.01644543 -0.01644542 -0.01644545 Total force = 0.040283 Total SCF correction = 0.000012 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650089 -0.126650088 -0.126650091 Si 0.126650089 0.126650088 0.126650091 kinetic energy (Ekin) = 0.00065699 Ry temperature = 69.15337878 K Ekin + Etot (const) = -14.44794132 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.15E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44841891 Ry Harris-Foulkes estimate = -14.44841893 Ry estimated scf accuracy < 0.00000082 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841902 Ry Harris-Foulkes estimate = -14.44841899 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.84E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841902 Ry Harris-Foulkes estimate = -14.44841902 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01828073 0.01828072 0.01828075 atom 2 type 1 force = -0.01828073 -0.01828072 -0.01828075 Total force = 0.044778 Total SCF correction = 0.000010 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791123 -0.126791122 -0.126791124 Si 0.126791123 0.126791122 0.126791124 kinetic energy (Ekin) = 0.00047841 Ry temperature = 50.35605953 K Ekin + Etot (const) = -14.44794061 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.00E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825493 Ry Harris-Foulkes estimate = -14.44825495 Ry estimated scf accuracy < 0.00000057 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.15E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825501 Ry Harris-Foulkes estimate = -14.44825499 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.44E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2902 7.2902 7.6069 ! total energy = -14.44825501 Ry Harris-Foulkes estimate = -14.44825501 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980505 0.01980504 0.01980506 atom 2 type 1 force = -0.01980505 -0.01980504 -0.01980506 Total force = 0.048512 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126901757 -0.126901756 -0.126901758 Si 0.126901757 0.126901756 0.126901758 kinetic energy (Ekin) = 0.00031504 Ry temperature = 33.16093782 K Ekin + Etot (const) = -14.44793996 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.94E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811712 Ry Harris-Foulkes estimate = -14.44811713 Ry estimated scf accuracy < 0.00000035 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.43E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811717 Ry Harris-Foulkes estimate = -14.44811716 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.39E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811717 Ry Harris-Foulkes estimate = -14.44811717 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099671 0.02099671 0.02099673 atom 2 type 1 force = -0.02099671 -0.02099671 -0.02099673 Total force = 0.051431 Total SCF correction = 0.000007 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980162 -0.126980162 -0.126980163 Si 0.126980162 0.126980162 0.126980163 kinetic energy (Ekin) = 0.00017775 Ry temperature = 18.71008724 K Ekin + Etot (const) = -14.44793942 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801459 Ry Harris-Foulkes estimate = -14.44801459 Ry estimated scf accuracy < 0.00000018 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801461 Ry Harris-Foulkes estimate = -14.44801461 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801461 Ry Harris-Foulkes estimate = -14.44801461 Ry estimated scf accuracy < 4.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183879 0.02183878 0.02183880 atom 2 type 1 force = -0.02183879 -0.02183878 -0.02183880 Total force = 0.053494 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127025046 -0.127025046 -0.127025046 Si 0.127025046 0.127025046 0.127025046 kinetic energy (Ekin) = 0.00007561 Ry temperature = 7.95831966 K Ekin + Etot (const) = -14.44793900 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.23E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795408 Ry Harris-Foulkes estimate = -14.44795408 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795409 Ry Harris-Foulkes estimate = -14.44795408 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232278 0.02232277 0.02232278 atom 2 type 1 force = -0.02232278 -0.02232277 -0.02232278 Total force = 0.054679 Total SCF correction = 0.000011 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127035666 -0.127035666 -0.127035666 Si 0.127035666 0.127035666 0.127035666 kinetic energy (Ekin) = 0.00001532 Ry temperature = 1.61292322 K Ekin + Etot (const) = -14.44793876 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.03E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2761 7.2761 7.6358 ! total energy = -14.44793957 Ry Harris-Foulkes estimate = -14.44793957 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243314 0.02243313 0.02243314 atom 2 type 1 force = -0.02243314 -0.02243313 -0.02243314 Total force = 0.054950 Total SCF correction = 0.000017 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127011852 -0.127011852 -0.127011852 Si 0.127011852 0.127011852 0.127011852 kinetic energy (Ekin) = 0.00000087 Ry temperature = 0.09114712 K Ekin + Etot (const) = -14.44793871 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797201 Ry Harris-Foulkes estimate = -14.44797202 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797202 Ry Harris-Foulkes estimate = -14.44797202 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02217461 0.02217461 0.02217461 atom 2 type 1 force = -0.02217461 -0.02217461 -0.02217461 Total force = 0.054316 Total SCF correction = 0.000005 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126954001 -0.126954001 -0.126954001 Si 0.126954001 0.126954001 0.126954001 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49172918 K Ekin + Etot (const) = -14.44793884 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44804927 Ry Harris-Foulkes estimate = -14.44804927 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6261 ! total energy = -14.44804928 Ry Harris-Foulkes estimate = -14.44804928 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02154993 0.02154993 0.02154993 atom 2 type 1 force = -0.02154993 -0.02154993 -0.02154993 Total force = 0.052786 Total SCF correction = 0.000014 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126863073 -0.126863073 -0.126863072 Si 0.126863073 0.126863073 0.126863072 kinetic energy (Ekin) = 0.00011010 Ry temperature = 11.58931351 K Ekin + Etot (const) = -14.44793918 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.78E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816625 Ry Harris-Foulkes estimate = -14.44816626 Ry estimated scf accuracy < 0.00000024 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.95E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816628 Ry Harris-Foulkes estimate = -14.44816627 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2861 7.2861 7.6153 ! total energy = -14.44816628 Ry Harris-Foulkes estimate = -14.44816628 Ry estimated scf accuracy < 5.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02057466 0.02057466 0.02057465 atom 2 type 1 force = -0.02057466 -0.02057466 -0.02057465 Total force = 0.050397 Total SCF correction = 0.000006 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126740563 -0.126740564 -0.126740562 Si 0.126740563 0.126740564 0.126740562 kinetic energy (Ekin) = 0.00022660 Ry temperature = 23.85155907 K Ekin + Etot (const) = -14.44793968 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.06E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831526 Ry Harris-Foulkes estimate = -14.44831527 Ry estimated scf accuracy < 0.00000044 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.44E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831531 Ry Harris-Foulkes estimate = -14.44831530 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.16E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2932 7.2932 7.6008 ! total energy = -14.44831532 Ry Harris-Foulkes estimate = -14.44831531 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01925189 0.01925190 0.01925188 atom 2 type 1 force = -0.01925189 -0.01925190 -0.01925188 Total force = 0.047157 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126588503 -0.126588504 -0.126588502 Si 0.126588503 0.126588504 0.126588502 kinetic energy (Ekin) = 0.00037499 Ry temperature = 39.47096106 K Ekin + Etot (const) = -14.44794032 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.32E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848643 Ry Harris-Foulkes estimate = -14.44848644 Ry estimated scf accuracy < 0.00000067 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.33E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848651 Ry Harris-Foulkes estimate = -14.44848649 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.32E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3020 7.3020 7.5827 ! total energy = -14.44848651 Ry Harris-Foulkes estimate = -14.44848651 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01760453 0.01760453 0.01760451 atom 2 type 1 force = -0.01760453 -0.01760453 -0.01760451 Total force = 0.043122 Total SCF correction = 0.000009 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126409421 -0.126409422 -0.126409419 Si 0.126409421 0.126409422 0.126409419 kinetic energy (Ekin) = 0.00054544 Ry temperature = 57.41185484 K Ekin + Etot (const) = -14.44794107 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.29E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866836 Ry Harris-Foulkes estimate = -14.44866838 Ry estimated scf accuracy < 0.00000092 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866847 Ry Harris-Foulkes estimate = -14.44866844 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.80E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5614 ! total energy = -14.44866848 Ry Harris-Foulkes estimate = -14.44866847 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01565606 0.01565607 0.01565604 atom 2 type 1 force = -0.01565606 -0.01565607 -0.01565604 Total force = 0.038349 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206308 -0.126206309 -0.126206306 Si 0.126206308 0.126206309 0.126206306 kinetic energy (Ekin) = 0.00072659 Ry temperature = 76.47917902 K Ekin + Etot (const) = -14.44794189 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884885 Ry Harris-Foulkes estimate = -14.44884887 Ry estimated scf accuracy < 0.00000118 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884900 Ry Harris-Foulkes estimate = -14.44884896 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3243 7.3243 7.5373 ! total energy = -14.44884900 Ry Harris-Foulkes estimate = -14.44884900 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01343510 0.01343511 0.01343508 atom 2 type 1 force = -0.01343510 -0.01343511 -0.01343508 Total force = 0.032909 Total SCF correction = 0.000012 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125982573 -0.125982574 -0.125982571 Si 0.125982573 0.125982574 0.125982571 kinetic energy (Ekin) = 0.00090628 Ry temperature = 95.39381211 K Ekin + Etot (const) = -14.44794272 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.83E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901570 Ry Harris-Foulkes estimate = -14.44901572 Ry estimated scf accuracy < 0.00000144 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.80E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901588 Ry Harris-Foulkes estimate = -14.44901583 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3373 7.3373 7.5108 ! total energy = -14.44901589 Ry Harris-Foulkes estimate = -14.44901588 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01097528 0.01097529 0.01097525 atom 2 type 1 force = -0.01097528 -0.01097529 -0.01097525 Total force = 0.026884 Total SCF correction = 0.000013 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125741991 -0.125741992 -0.125741989 Si 0.125741991 0.125741992 0.125741989 kinetic energy (Ekin) = 0.00107237 Ry temperature = 112.87607759 K Ekin + Etot (const) = -14.44794351 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.11E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915749 Ry Harris-Foulkes estimate = -14.44915752 Ry estimated scf accuracy < 0.00000166 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915765 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.62E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3514 7.3514 7.4823 ! total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915771 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00831348 0.00831349 0.00831345 atom 2 type 1 force = -0.00831348 -0.00831349 -0.00831345 Total force = 0.020364 Total SCF correction = 0.000014 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488649 -0.125488650 -0.125488646 Si 0.125488649 0.125488650 0.125488646 kinetic energy (Ekin) = 0.00121349 Ry temperature = 127.73009028 K Ekin + Etot (const) = -14.44794422 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926440 Ry Harris-Foulkes estimate = -14.44926442 Ry estimated scf accuracy < 0.00000184 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926463 Ry Harris-Foulkes estimate = -14.44926457 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.80E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4524 ! total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926464 Ry estimated scf accuracy < 5.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549190 0.00549191 0.00549187 atom 2 type 1 force = -0.00549190 -0.00549191 -0.00549187 Total force = 0.013452 Total SCF correction = 0.000015 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226877 -0.125226878 -0.125226874 Si 0.125226877 0.125226878 0.125226874 kinetic energy (Ekin) = 0.00131985 Ry temperature = 138.92500635 K Ekin + Etot (const) = -14.44794479 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932884 Ry Harris-Foulkes estimate = -14.44932886 Ry estimated scf accuracy < 0.00000196 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932902 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3816 7.3816 7.4215 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932910 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00255608 0.00255610 0.00255606 atom 2 type 1 force = -0.00255608 -0.00255610 -0.00255606 Total force = 0.006261 Total SCF correction = 0.000015 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961181 -0.124961182 -0.124961179 Si 0.124961181 0.124961182 0.124961179 kinetic energy (Ekin) = 0.00138391 Ry temperature = 145.66814242 K Ekin + Etot (const) = -14.44794519 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934609 Ry Harris-Foulkes estimate = -14.44934611 Ry estimated scf accuracy < 0.00000201 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934628 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934636 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044521 -0.00044519 -0.00044523 atom 2 type 1 force = 0.00044521 0.00044519 0.00044523 Total force = 0.001091 Total SCF correction = 0.000015 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696169 -0.124696170 -0.124696166 Si 0.124696169 0.124696170 0.124696166 kinetic energy (Ekin) = 0.00140097 Ry temperature = 147.46322299 K Ekin + Etot (const) = -14.44794539 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931461 Ry Harris-Foulkes estimate = -14.44931462 Ry estimated scf accuracy < 0.00000200 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931487 Ry Harris-Foulkes estimate = -14.44931479 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931487 Ry Harris-Foulkes estimate = -14.44931487 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00346066 -0.00346064 -0.00346069 atom 2 type 1 force = 0.00346066 0.00346064 0.00346069 Total force = 0.008477 Total SCF correction = 0.000015 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436469 -0.124436470 -0.124436466 Si 0.124436469 0.124436470 0.124436466 kinetic energy (Ekin) = 0.00136949 Ry temperature = 144.15032124 K Ekin + Etot (const) = -14.44794538 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923624 Ry Harris-Foulkes estimate = -14.44923624 Ry estimated scf accuracy < 0.00000191 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.39E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923649 Ry Harris-Foulkes estimate = -14.44923642 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923649 Ry Harris-Foulkes estimate = -14.44923649 Ry estimated scf accuracy < 5.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643719 -0.00643717 -0.00643721 atom 2 type 1 force = 0.00643719 0.00643717 0.00643721 Total force = 0.015768 Total SCF correction = 0.000015 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186649 -0.124186650 -0.124186647 Si 0.124186649 0.124186650 0.124186647 kinetic energy (Ekin) = 0.00129134 Ry temperature = 135.92364935 K Ekin + Etot (const) = -14.44794516 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911615 Ry Harris-Foulkes estimate = -14.44911614 Ry estimated scf accuracy < 0.00000177 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911637 Ry Harris-Foulkes estimate = -14.44911631 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911638 Ry Harris-Foulkes estimate = -14.44911638 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932087 -0.00932085 -0.00932089 atom 2 type 1 force = 0.00932087 0.00932085 0.00932089 Total force = 0.022831 Total SCF correction = 0.000014 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951136 -0.123951138 -0.123951134 Si 0.123951136 0.123951138 0.123951134 kinetic energy (Ekin) = 0.00117164 Ry temperature = 123.32493168 K Ekin + Etot (const) = -14.44794474 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896250 Ry Harris-Foulkes estimate = -14.44896249 Ry estimated scf accuracy < 0.00000157 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896270 Ry Harris-Foulkes estimate = -14.44896265 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2718 7.4569 7.4569 ! total energy = -14.44896271 Ry Harris-Foulkes estimate = -14.44896270 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205797 -0.01205796 -0.01205800 atom 2 type 1 force = 0.01205797 0.01205796 0.01205800 Total force = 0.029536 Total SCF correction = 0.000013 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123734132 -0.123734133 -0.123734130 Si 0.123734132 0.123734133 0.123734130 kinetic energy (Ekin) = 0.00101856 Ry temperature = 107.21171690 K Ekin + Etot (const) = -14.44794415 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878597 Ry Harris-Foulkes estimate = -14.44878596 Ry estimated scf accuracy < 0.00000133 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878614 Ry Harris-Foulkes estimate = -14.44878609 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878614 Ry Harris-Foulkes estimate = -14.44878614 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459613 -0.01459612 -0.01459615 atom 2 type 1 force = 0.01459613 0.01459612 0.01459615 Total force = 0.035753 Total SCF correction = 0.000012 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539532 -0.123539533 -0.123539530 Si 0.123539532 0.123539533 0.123539530 kinetic energy (Ekin) = 0.00084271 Ry temperature = 88.70183041 K Ekin + Etot (const) = -14.44794344 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.50E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859898 Ry Harris-Foulkes estimate = -14.44859896 Ry estimated scf accuracy < 0.00000106 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859911 Ry Harris-Foulkes estimate = -14.44859907 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859911 Ry Harris-Foulkes estimate = -14.44859911 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688587 -0.01688586 -0.01688589 atom 2 type 1 force = 0.01688587 0.01688586 0.01688589 Total force = 0.041362 Total SCF correction = 0.000011 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370851 -0.123370852 -0.123370849 Si 0.123370851 0.123370852 0.123370849 kinetic energy (Ekin) = 0.00065645 Ry temperature = 69.09691857 K Ekin + Etot (const) = -14.44794266 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841481 Ry Harris-Foulkes estimate = -14.44841479 Ry estimated scf accuracy < 0.00000079 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841491 Ry Harris-Foulkes estimate = -14.44841488 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.25E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841491 Ry Harris-Foulkes estimate = -14.44841491 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01888058 -0.01888057 -0.01888060 atom 2 type 1 force = 0.01888058 0.01888057 0.01888060 Total force = 0.046248 Total SCF correction = 0.000009 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123231150 -0.123231151 -0.123231149 Si 0.123231150 0.123231151 0.123231149 kinetic energy (Ekin) = 0.00047304 Ry temperature = 49.79091724 K Ekin + Etot (const) = -14.44794187 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.71E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824669 Ry Harris-Foulkes estimate = -14.44824668 Ry estimated scf accuracy < 0.00000054 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824676 Ry Harris-Foulkes estimate = -14.44824674 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1879 7.4996 7.4996 ! total energy = -14.44824676 Ry Harris-Foulkes estimate = -14.44824676 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02053982 -0.02053981 -0.02053983 atom 2 type 1 force = 0.02053982 0.02053981 0.02053983 Total force = 0.050312 Total SCF correction = 0.000008 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123122977 -0.123122978 -0.123122976 Si 0.123122977 0.123122978 0.123122976 kinetic energy (Ekin) = 0.00030562 Ry temperature = 32.16870845 K Ekin + Etot (const) = -14.44794114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.62E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810677 Ry Harris-Foulkes estimate = -14.44810676 Ry estimated scf accuracy < 0.00000033 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810681 Ry Harris-Foulkes estimate = -14.44810680 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.46E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1753 7.5061 7.5061 ! total energy = -14.44810681 Ry Harris-Foulkes estimate = -14.44810681 Ry estimated scf accuracy < 8.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02182911 -0.02182910 -0.02182912 atom 2 type 1 force = 0.02182911 0.02182910 0.02182912 Total force = 0.053470 Total SCF correction = 0.000006 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123048310 -0.123048311 -0.123048310 Si 0.123048310 0.123048311 0.123048310 kinetic energy (Ekin) = 0.00016629 Ry temperature = 17.50307071 K Ekin + Etot (const) = -14.44794052 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800521 Ry Harris-Foulkes estimate = -14.44800521 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800523 Ry Harris-Foulkes estimate = -14.44800522 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1666 7.5105 7.5105 ! total energy = -14.44800523 Ry Harris-Foulkes estimate = -14.44800523 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02272115 -0.02272115 -0.02272116 atom 2 type 1 force = 0.02272115 0.02272115 0.02272116 Total force = 0.055655 Total SCF correction = 0.000004 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123008519 -0.123008520 -0.123008519 Si 0.123008519 0.123008520 0.123008519 kinetic energy (Ekin) = 0.00006516 Ry temperature = 6.85903027 K Ekin + Etot (const) = -14.44794007 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.25E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794943 Ry Harris-Foulkes estimate = -14.44794943 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.45E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1620 7.5129 7.5129 ! total energy = -14.44794943 Ry Harris-Foulkes estimate = -14.44794943 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02319985 -0.02319985 -0.02319985 atom 2 type 1 force = 0.02319985 0.02319985 0.02319985 Total force = 0.056828 Total SCF correction = 0.000011 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123004339 -0.123004339 -0.123004339 Si 0.123004339 0.123004339 0.123004339 kinetic energy (Ekin) = 0.00000962 Ry temperature = 1.01231748 K Ekin + Etot (const) = -14.44793981 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.65E-12, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794350 Ry Harris-Foulkes estimate = -14.44794350 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02324661 -0.02324661 -0.02324661 atom 2 type 1 force = 0.02324661 0.02324661 0.02324661 Total force = 0.056942 Total SCF correction = 0.000006 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123035840 -0.123035840 -0.123035841 Si 0.123035840 0.123035840 0.123035841 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39081302 K Ekin + Etot (const) = -14.44793979 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.68E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798786 Ry Harris-Foulkes estimate = -14.44798786 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1652 7.5112 7.5112 ! total energy = -14.44798787 Ry Harris-Foulkes estimate = -14.44798787 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286566 -0.02286566 -0.02286566 atom 2 type 1 force = 0.02286566 0.02286566 0.02286566 Total force = 0.056009 Total SCF correction = 0.000008 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123102439 -0.123102439 -0.123102440 Si 0.123102439 0.123102439 0.123102440 kinetic energy (Ekin) = 0.00004787 Ry temperature = 5.03869306 K Ekin + Etot (const) = -14.44794000 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807926 Ry Harris-Foulkes estimate = -14.44807926 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807927 Ry Harris-Foulkes estimate = -14.44807927 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1730 7.5073 7.5073 ! total energy = -14.44807927 Ry Harris-Foulkes estimate = -14.44807927 Ry estimated scf accuracy < 2.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02207048 -0.02207048 -0.02207048 atom 2 type 1 force = 0.02207048 0.02207048 0.02207048 Total force = 0.054061 Total SCF correction = 0.000004 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123202915 -0.123202915 -0.123202916 Si 0.123202915 0.123202915 0.123202916 kinetic energy (Ekin) = 0.00013885 Ry temperature = 14.61493356 K Ekin + Etot (const) = -14.44794043 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.39s CPU 0.43s WALL ( 51 calls) update_pot : 0.10s CPU 0.11s WALL ( 50 calls) forces : 0.04s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.19s WALL ( 200 calls) sum_band : 0.06s CPU 0.06s WALL ( 200 calls) v_of_rho : 0.10s CPU 0.09s WALL ( 201 calls) mix_rho : 0.01s CPU 0.02s WALL ( 200 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 401 calls) cegterg : 0.17s CPU 0.18s WALL ( 200 calls) Called by *egterg: h_psi : 0.12s CPU 0.13s WALL ( 533 calls) g_psi : 0.01s CPU 0.01s WALL ( 332 calls) cdiaghg : 0.03s CPU 0.02s WALL ( 432 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 533 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 584 calls) fft : 0.05s CPU 0.06s WALL ( 1005 calls) fftw : 0.12s CPU 0.12s WALL ( 4572 calls) davcio : 0.00s CPU 0.00s WALL ( 150 calls) PWSCF : 1.34s CPU 1.57s WALL This run was terminated on: 10:24:43 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav-5-kauto.ref0000644000700200004540000001772512053145627020600 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-5-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 199 11935 11935 1837 bravais-lattice index = -5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 0.707107 0.707107 ) a(2) = ( 0.707107 0.000000 0.707107 ) a(3) = ( 0.707107 0.707107 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.707107 0.707107 0.707107 ) b(2) = ( 0.707107 -0.707107 0.707107 ) b(3) = ( 0.707107 0.707107 -0.707107 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.1767767 0.1767767 0.1767767), wk = 0.5000000 k( 2) = ( -0.1767767 -0.1767767 0.5303301), wk = 0.5000000 k( 3) = ( -0.1767767 0.5303301 -0.1767767), wk = 1.0000000 Dense grid: 11935 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1491, 1) NL pseudopotentials 0.00 Mb ( 1491, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.09 Mb ( 11935) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 1491, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.361E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 5.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.454E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.21992371 Ry Harris-Foulkes estimate = -2.28985690 Ry estimated scf accuracy < 0.13300077 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23093310 Ry Harris-Foulkes estimate = -2.23137073 Ry estimated scf accuracy < 0.00100480 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23123841 Ry Harris-Foulkes estimate = -2.23124051 Ry estimated scf accuracy < 0.00001252 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-07, avg # of iterations = 1.7 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1768 0.1768 0.1768 ( 1477 PWs) bands (ev): -10.0521 k =-0.1768-0.1768 0.5303 ( 1491 PWs) bands (ev): -10.0232 k =-0.1768 0.5303-0.1768 ( 1491 PWs) bands (ev): -10.0281 ! total energy = -2.23123967 Ry Harris-Foulkes estimate = -2.23123971 Ry estimated scf accuracy < 0.00000046 Ry The total energy is the sum of the following terms: one-electron contribution = -2.52698877 Ry hartree contribution = 1.38450768 Ry xc contribution = -1.31418037 Ry ewald contribution = 0.22542178 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.08s CPU 0.09s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.03s CPU 0.03s WALL ( 12 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.03s CPU 0.03s WALL ( 88 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.14s CPU 0.16s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters.ref0000644000700200004540000001763312053145627022533 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4279 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 22997) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055170 Ry Harris-Foulkes estimate = -2.29035895 Ry estimated scf accuracy < 0.13253986 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23168705 Ry Harris-Foulkes estimate = -2.23211025 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203744 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203908 Ry Harris-Foulkes estimate = -2.23203880 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125627 Ry hartree contribution = 1.92424365 Ry xc contribution = -1.31190429 Ry ewald contribution = 0.80687783 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.12s CPU 0.13s WALL ( 1 calls) electrons : 0.14s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.07s CPU 0.08s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.03s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.30s CPU 0.33s WALL This run was terminated on: 10:22:16 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/noncolin.ref0000644000700200004540000006064612053145627016406 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.1 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.4 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.7 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.2 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.5 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.9 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.2 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.6 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412400 magnetization : 3.062430 0.000000 0.000000 magnetization/charge: 0.477579 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.062430 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.9 secs total energy = -55.69968321 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.77E-09, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412612 magnetization : 3.063216 0.000000 0.000000 magnetization/charge: 0.477686 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063216 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.2 secs total energy = -55.69968367 Ry Harris-Foulkes estimate = -55.69968335 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.14E-10, avg # of iterations = 3.6 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412621 magnetization : 3.063235 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063235 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6774 11.6774 11.9042 13.4681 13.4681 14.6641 14.6641 14.9256 16.5280 16.5281 38.7457 38.7457 39.4535 39.4535 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1627 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6212 12.6638 13.8659 14.4963 14.5192 15.5613 15.7135 16.9736 33.8662 35.0496 35.4791 36.6426 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4085 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5753 13.2445 13.6127 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4095 12.7227 13.1739 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5655 9.5729 11.6859 11.7777 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5119 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2750 9.2750 11.4415 11.4416 14.0747 14.4154 14.4155 17.3223 17.7665 17.7665 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2539 13.5301 14.2181 14.4049 15.7704 16.2903 16.6104 33.9647 35.1499 36.7273 37.6011 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1626 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6211 12.6638 13.8660 14.4963 14.5192 15.5613 15.7135 16.9736 33.8661 35.0496 35.4791 36.6426 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4086 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5754 13.2445 13.6126 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4094 12.7227 13.1740 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5729 11.6859 11.7776 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5120 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2538 13.5301 14.2181 14.4049 15.7704 16.2902 16.6105 33.9647 35.1499 36.7272 37.6011 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9222 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3637 28.6266 30.1620 32.6051 33.8030 the Fermi energy is 14.6622 ev ! total energy = -55.69968434 Ry Harris-Foulkes estimate = -55.69968370 Ry estimated scf accuracy < 7.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92935697 Ry hartree contribution = 6.13358532 Ry xc contribution = -26.12190369 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388912 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell convergence has been achieved in 11 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 193.21 0.00131325 0.00000000 0.00000000 193.19 0.00 0.00 0.00000000 0.00131351 0.00000000 0.00 193.22 0.00 0.00000000 0.00000000 0.00131351 0.00 0.00 193.22 Writing output data file pwscf.save init_run : 0.56s CPU 0.56s WALL ( 1 calls) electrons : 3.99s CPU 4.07s WALL ( 1 calls) stress : 0.26s CPU 0.27s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.08s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 2.90s CPU 2.93s WALL ( 11 calls) sum_band : 0.79s CPU 0.80s WALL ( 11 calls) v_of_rho : 0.07s CPU 0.06s WALL ( 12 calls) newd : 0.16s CPU 0.16s WALL ( 12 calls) mix_rho : 0.02s CPU 0.03s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 528 calls) cegterg : 2.75s CPU 2.78s WALL ( 242 calls) Called by *egterg: h_psi : 1.76s CPU 1.75s WALL ( 871 calls) s_psi : 0.08s CPU 0.07s WALL ( 871 calls) g_psi : 0.05s CPU 0.07s WALL ( 607 calls) cdiaghg : 0.56s CPU 0.57s WALL ( 849 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.08s WALL ( 871 calls) General routines calbec : 0.06s CPU 0.08s WALL ( 1135 calls) fft : 0.06s CPU 0.07s WALL ( 381 calls) ffts : 0.01s CPU 0.01s WALL ( 92 calls) fftw : 1.32s CPU 1.33s WALL ( 46604 calls) interpolate : 0.03s CPU 0.03s WALL ( 92 calls) davcio : 0.00s CPU 0.02s WALL ( 770 calls) PWSCF : 4.93s CPU 5.06s WALL This run was terminated on: 10:25:39 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/noncolin.in0000755000700200004540000000164712053145627016237 0ustar marsamoscm &control calculation='scf' tstress=.true. / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons mixing_beta = 0.2 conv_thr=1.0e-8 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.0.2/PW/tests/lsda-mixing_ndim.ref0000644000700200004540000003633012053145627020003 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-mixing_ndim.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 4 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 0.95 Mb ( 15625, 4) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.30555924 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.9 total cpu time spent up to now is 1.2 secs total energy = -85.52433182 Ry Harris-Foulkes estimate = -85.85735982 Ry estimated scf accuracy < 1.00824645 Ry total magnetization = 0.70 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.70688770 Ry Harris-Foulkes estimate = -85.67488439 Ry estimated scf accuracy < 0.04598695 Ry total magnetization = 1.01 Bohr mag/cell absolute magnetization = 1.11 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 1.1 total cpu time spent up to now is 1.4 secs total energy = -85.72318398 Ry Harris-Foulkes estimate = -85.72298378 Ry estimated scf accuracy < 0.00053474 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-06, avg # of iterations = 2.8 total cpu time spent up to now is 1.5 secs total energy = -85.72334924 Ry Harris-Foulkes estimate = -85.72327578 Ry estimated scf accuracy < 0.00008053 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.5 total cpu time spent up to now is 1.7 secs total energy = -85.72339524 Ry Harris-Foulkes estimate = -85.72337220 Ry estimated scf accuracy < 0.00008976 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.3 total cpu time spent up to now is 1.8 secs total energy = -85.72340016 Ry Harris-Foulkes estimate = -85.72339263 Ry estimated scf accuracy < 0.00001533 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-07, avg # of iterations = 1.0 total cpu time spent up to now is 1.9 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3757 12.4372 12.7322 12.7322 13.8398 13.8398 37.2313 41.0678 43.4121 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2062 12.0604 12.6971 13.0395 13.7422 14.7846 28.9049 34.6227 41.7716 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3036 12.3170 12.8642 13.0987 14.6702 16.6320 22.1066 35.6784 38.1896 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9456 11.9810 12.9285 13.0718 13.6676 14.1613 33.2116 38.4346 38.7930 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0143 11.3041 12.9384 13.7118 14.5661 14.8881 29.9541 33.4470 34.2675 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0405 11.3661 12.4804 13.8999 14.6518 20.4141 23.8804 27.7793 30.1434 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6943 11.8162 12.2431 13.4379 14.3022 16.5379 25.7645 31.6201 34.9280 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3603 10.8355 13.8884 14.3642 14.7568 17.9872 26.7281 28.0816 31.8612 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6587 12.6902 12.6902 13.2187 14.4199 14.4199 24.6752 38.8460 41.6269 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0758 11.7368 12.4051 13.4402 14.3576 19.0767 22.8049 29.0410 36.4047 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4358 13.2127 13.5326 13.5326 14.5925 14.5925 37.3660 41.0779 43.5290 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3436 12.7285 13.4204 13.7997 14.5390 15.5725 29.1562 34.7852 41.8188 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8029 12.9466 13.6018 13.6532 15.5262 17.0821 22.5348 35.7961 38.3362 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0197 12.7158 13.6870 13.8699 14.4280 14.9416 33.4082 38.5929 38.8728 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2527 11.9903 13.5748 14.5159 15.3878 15.5745 30.1590 33.6287 34.4020 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5598 11.9935 13.1371 14.6396 15.5448 20.7580 24.1570 28.0297 30.3197 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0651 12.4047 12.9302 14.1826 15.1358 17.1416 26.0486 31.8047 35.0923 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8297 11.4964 14.5949 15.1575 15.6367 18.3039 27.0260 28.2531 31.9590 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9861 13.4294 13.4294 13.5644 15.2549 15.2549 25.0151 38.8309 41.7799 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6421 12.2613 13.0601 14.1790 15.2211 19.4775 23.1586 29.2605 36.5520 the Fermi energy is 15.3102 ev ! total energy = -85.72339899 Ry Harris-Foulkes estimate = -85.72339894 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30275565 Ry hartree contribution = 14.33600006 Ry xc contribution = -29.60814224 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00003190 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file pwscf.save init_run : 0.78s CPU 0.78s WALL ( 1 calls) electrons : 0.98s CPU 1.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.47s CPU 0.50s WALL ( 8 calls) sum_band : 0.28s CPU 0.28s WALL ( 8 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 9 calls) newd : 0.17s CPU 0.17s WALL ( 9 calls) mix_rho : 0.02s CPU 0.01s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 340 calls) cegterg : 0.44s CPU 0.45s WALL ( 160 calls) Called by *egterg: h_psi : 0.28s CPU 0.30s WALL ( 481 calls) s_psi : 0.02s CPU 0.01s WALL ( 481 calls) g_psi : 0.00s CPU 0.01s WALL ( 301 calls) cdiaghg : 0.11s CPU 0.09s WALL ( 461 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 481 calls) General routines calbec : 0.01s CPU 0.02s WALL ( 641 calls) fft : 0.05s CPU 0.04s WALL ( 143 calls) ffts : 0.00s CPU 0.00s WALL ( 34 calls) fftw : 0.25s CPU 0.24s WALL ( 8370 calls) interpolate : 0.00s CPU 0.01s WALL ( 34 calls) davcio : 0.00s CPU 0.01s WALL ( 500 calls) PWSCF : 1.90s CPU 1.98s WALL This run was terminated on: 10:24:36 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp-mixing_ndim.in0000755000700200004540000000053112053145627017676 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_ndim = 4 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.0.2/PW/tests/lattice-ibrav8-kauto.in0000644000700200004540000000051112053145627020341 0ustar marsamoscm &control calculation='scf', / &system ibrav = 8, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/scf-kcrys.ref0000644000700200004540000002201312053145627016455 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-kcrys.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 331 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.7500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79103206 Ry Harris-Foulkes estimate = -15.81239448 Ry estimated scf accuracy < 0.06375573 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409374 Ry Harris-Foulkes estimate = -15.79442009 Ry estimated scf accuracy < 0.00230336 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447792 Ry Harris-Foulkes estimate = -15.79450037 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449677 Ry estimated scf accuracy < 0.00000446 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.57E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.7500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378666 Ry hartree contribution = 1.08429043 Ry xc contribution = -4.81281444 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.12s CPU 0.12s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-atom.in0000644000700200004540000000062212053145627016132 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nbnd = 6 / &electrons conv_thr = 1.0d-6 startingwfc='atomic' / ATOMIC_SPECIES O 1.000 O.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2. 1.333333333333 1.333333333333 1.333333333333 0. 0. espresso-5.0.2/PW/tests/relax2-bfgs_ndim3.ref0000644000700200004540000020117312053145627017765 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax2-bfgs_ndim3.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 109 109 37 6689 6689 1411 bravais-lattice index = 6 lattice parameter (alat) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 Dense grid: 6689 G-vectors FFT dimensions: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.187E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -28.85221141 Ry Harris-Foulkes estimate = -29.29340698 Ry estimated scf accuracy < 0.92873941 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.0 total cpu time spent up to now is 0.4 secs total energy = -27.68024365 Ry Harris-Foulkes estimate = -30.53400996 Ry estimated scf accuracy < 39.10561646 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.7 total cpu time spent up to now is 0.5 secs total energy = -29.21379581 Ry Harris-Foulkes estimate = -29.23657710 Ry estimated scf accuracy < 0.23755208 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 1.3 total cpu time spent up to now is 0.6 secs total energy = -29.21561639 Ry Harris-Foulkes estimate = -29.22399168 Ry estimated scf accuracy < 0.04594646 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -29.21943300 Ry Harris-Foulkes estimate = -29.22031634 Ry estimated scf accuracy < 0.00650836 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.10E-05, avg # of iterations = 2.3 total cpu time spent up to now is 0.8 secs total energy = -29.21991273 Ry Harris-Foulkes estimate = -29.21994391 Ry estimated scf accuracy < 0.00082029 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.91E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -29.21995477 Ry Harris-Foulkes estimate = -29.21996819 Ry estimated scf accuracy < 0.00009068 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.32E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.9 secs total energy = -29.21995746 Ry Harris-Foulkes estimate = -29.21996109 Ry estimated scf accuracy < 0.00002386 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.14E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -29.21995993 Ry Harris-Foulkes estimate = -29.21996102 Ry estimated scf accuracy < 0.00000885 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.21E-08, avg # of iterations = 1.3 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0790 -6.5552 -5.7174 -4.5663 -3.1472 -1.4538 0.5130 1.7884 4.3697 5.5244 5.9953 6.2181 6.7546 7.2250 7.4961 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7555 -4.2392 -3.4161 -2.2857 -0.8947 -0.2551 0.2238 0.8005 1.0422 2.1352 2.7201 3.5256 3.8934 5.1677 6.5172 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4879 -1.9832 -1.1752 -0.0657 1.2961 1.3317 1.7993 2.5504 2.7201 2.8086 3.4481 3.5987 4.1260 4.9120 4.9357 the Fermi energy is 3.4732 ev ! total energy = -29.21996046 Ry Harris-Foulkes estimate = -29.21996045 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = -182.01447362 Ry hartree contribution = 97.75031136 Ry xc contribution = -11.20681610 Ry ewald contribution = 66.25386160 Ry smearing contrib. (-TS) = -0.00284369 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01016766 atom 2 type 1 force = 0.00000000 0.00000000 -0.00112981 atom 3 type 1 force = 0.00000000 0.00000000 0.00255994 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00255994 atom 6 type 1 force = 0.00000000 0.00000000 0.00112981 atom 7 type 1 force = 0.00000000 0.00000000 -0.01016766 Total force = 0.014914 Total SCF correction = 0.000168 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -29.2199604576 Ry new trust radius = 0.0101676599 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.119402767 Al 0.000000000 0.000000000 -1.414426039 Al 0.500000000 0.500000000 -0.706624293 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.706624293 Al 0.000000000 0.000000000 1.414426039 Al 0.500000000 0.500000000 2.119402767 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000280 negative rho (up, down): 0.180E-05 0.000E+00 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.91E-08, avg # of iterations = 1.7 negative rho (up, down): 0.294E-06 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -29.22016915 Ry Harris-Foulkes estimate = -29.22017685 Ry estimated scf accuracy < 0.00001795 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 3.0 negative rho (up, down): 0.234E-06 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -29.22015873 Ry Harris-Foulkes estimate = -29.22018648 Ry estimated scf accuracy < 0.00032230 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 2.7 negative rho (up, down): 0.175E-07 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017434 Ry estimated scf accuracy < 0.00000820 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0832 -6.5613 -5.7280 -4.5713 -3.1447 -1.4506 0.5179 1.7934 4.3762 5.5200 5.9886 6.2250 6.7423 7.2250 7.5044 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7597 -4.2453 -3.4267 -2.2908 -0.8925 -0.2593 0.2175 0.8035 1.0315 2.1297 2.7248 3.5278 3.8975 5.1712 6.5234 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4921 -1.9894 -1.1859 -0.0711 1.2980 1.3273 1.7928 2.5386 2.7158 2.8082 3.4451 3.5925 4.1166 4.9148 4.9401 the Fermi energy is 3.4729 ev ! total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017405 Ry estimated scf accuracy < 0.00000088 Ry The total energy is the sum of the following terms: one-electron contribution = -182.38014433 Ry hartree contribution = 97.93262331 Ry xc contribution = -11.20947569 Ry ewald contribution = 66.43971617 Ry smearing contrib. (-TS) = -0.00289294 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00950897 atom 2 type 1 force = 0.00000000 0.00000000 -0.00037957 atom 3 type 1 force = 0.00000000 0.00000000 0.00216631 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00216631 atom 6 type 1 force = 0.00000000 0.00000000 0.00037957 atom 7 type 1 force = 0.00000000 0.00000000 -0.00950897 Total force = 0.013803 Total SCF correction = 0.001183 number of scf cycles = 2 number of bfgs steps = 1 energy old = -29.2199604576 Ry energy new = -29.2201734801 Ry CASE: energy _new < energy _old WARNING: bfgs curvature condition failed, Theta= 0.867 new trust radius = 0.0152514898 bohr new conv_thr = 0.0000000213 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.116526918 Al 0.000000000 0.000000000 -1.414548585 Al 0.500000000 0.500000000 -0.705966515 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.705966515 Al 0.000000000 0.000000000 1.414548585 Al 0.500000000 0.500000000 2.116526918 Writing output data file pwscf.save Check: negative starting charge= -0.000280 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000285 negative rho (up, down): 0.602E-05 0.000E+00 total cpu time spent up to now is 1.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.186E-05 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -29.22045714 Ry Harris-Foulkes estimate = -29.22046758 Ry estimated scf accuracy < 0.00002601 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.24E-07, avg # of iterations = 2.3 negative rho (up, down): 0.819E-06 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -29.22045959 Ry Harris-Foulkes estimate = -29.22046448 Ry estimated scf accuracy < 0.00001768 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.42E-08, avg # of iterations = 2.0 negative rho (up, down): 0.427E-06 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -29.22045887 Ry Harris-Foulkes estimate = -29.22046547 Ry estimated scf accuracy < 0.00006475 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.42E-08, avg # of iterations = 2.0 negative rho (up, down): 0.418E-07 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -29.22046239 Ry Harris-Foulkes estimate = -29.22046345 Ry estimated scf accuracy < 0.00001155 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.50E-08, avg # of iterations = 1.0 total cpu time spent up to now is 2.1 secs total energy = -29.22046300 Ry Harris-Foulkes estimate = -29.22046292 Ry estimated scf accuracy < 0.00000025 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.2 secs total energy = -29.22046304 Ry Harris-Foulkes estimate = -29.22046307 Ry estimated scf accuracy < 0.00000022 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.2 secs total energy = -29.22046306 Ry Harris-Foulkes estimate = -29.22046309 Ry estimated scf accuracy < 0.00000022 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.3 total cpu time spent up to now is 2.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0917 -6.5716 -5.7448 -4.5801 -3.1440 -1.4483 0.5229 1.7986 4.3839 5.5112 5.9775 6.2328 6.7230 7.2205 7.5053 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7682 -4.2556 -3.4436 -2.2998 -0.8922 -0.2679 0.2072 0.8054 1.0143 2.1201 2.7294 3.5280 3.9014 5.1740 6.5307 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5007 -1.9998 -1.2031 -0.0804 1.2978 1.3187 1.7820 2.5199 2.7071 2.8055 3.4395 3.5817 4.1014 4.9157 4.9443 the Fermi energy is 3.4704 ev ! total energy = -29.22046307 Ry Harris-Foulkes estimate = -29.22046307 Ry estimated scf accuracy < 6.3E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -182.94359375 Ry hartree contribution = 98.20987152 Ry xc contribution = -11.21340341 Ry ewald contribution = 66.72962259 Ry smearing contrib. (-TS) = -0.00296002 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00854263 atom 2 type 1 force = 0.00000000 0.00000000 0.00060838 atom 3 type 1 force = 0.00000000 0.00000000 0.00181471 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00181471 atom 6 type 1 force = 0.00000000 0.00000000 -0.00060838 atom 7 type 1 force = 0.00000000 0.00000000 -0.00854263 Total force = 0.012381 Total SCF correction = 0.000035 number of scf cycles = 3 number of bfgs steps = 2 energy old = -29.2201734801 Ry energy new = -29.2204630734 Ry CASE: energy _new < energy _old new trust radius = 0.0228772348 bohr new conv_thr = 0.0000000290 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.112213145 Al 0.000000000 0.000000000 -1.414067743 Al 0.500000000 0.500000000 -0.705067256 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.705067256 Al 0.000000000 0.000000000 1.414067743 Al 0.500000000 0.500000000 2.112213145 Writing output data file pwscf.save Check: negative starting charge= -0.000285 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000290 negative rho (up, down): 0.150E-04 0.000E+00 total cpu time spent up to now is 2.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.631E-05 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -29.22083418 Ry Harris-Foulkes estimate = -29.22085537 Ry estimated scf accuracy < 0.00005317 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.53E-07, avg # of iterations = 2.3 negative rho (up, down): 0.473E-05 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -29.22082984 Ry Harris-Foulkes estimate = -29.22085355 Ry estimated scf accuracy < 0.00012503 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.53E-07, avg # of iterations = 2.0 negative rho (up, down): 0.301E-05 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22083432 Ry Harris-Foulkes estimate = -29.22085672 Ry estimated scf accuracy < 0.00026611 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.53E-07, avg # of iterations = 2.0 negative rho (up, down): 0.404E-06 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22084588 Ry Harris-Foulkes estimate = -29.22084654 Ry estimated scf accuracy < 0.00000522 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.7 total cpu time spent up to now is 2.8 secs total energy = -29.22084644 Ry Harris-Foulkes estimate = -29.22084626 Ry estimated scf accuracy < 0.00000048 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.30E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.9 secs total energy = -29.22084651 Ry Harris-Foulkes estimate = -29.22084650 Ry estimated scf accuracy < 0.00000009 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.29E-10, avg # of iterations = 2.3 total cpu time spent up to now is 3.0 secs total energy = -29.22084652 Ry Harris-Foulkes estimate = -29.22084654 Ry estimated scf accuracy < 0.00000009 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.08E-10, avg # of iterations = 1.7 total cpu time spent up to now is 3.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1048 -6.5877 -5.7661 -4.5911 -3.1431 -1.4438 0.5317 1.8076 4.3972 5.4975 5.9598 6.2453 6.6984 7.2136 7.5101 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7813 -4.2717 -3.4650 -2.3112 -0.8919 -0.2811 0.1907 0.8095 0.9925 2.1080 2.7374 3.5284 3.9088 5.1790 6.5434 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5138 -2.0161 -1.2249 -0.0923 1.2974 1.3052 1.7649 2.4961 2.6938 2.8014 3.4313 3.5681 4.0821 4.9163 4.9520 the Fermi energy is 3.4673 ev ! total energy = -29.22084653 Ry Harris-Foulkes estimate = -29.22084654 Ry estimated scf accuracy < 4.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -183.87785839 Ry hartree contribution = 98.67346182 Ry xc contribution = -11.21940214 Ry ewald contribution = 67.20598207 Ry smearing contrib. (-TS) = -0.00302990 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00727192 atom 2 type 1 force = 0.00000000 0.00000000 0.00175513 atom 3 type 1 force = 0.00000000 0.00000000 0.00140493 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00140493 atom 6 type 1 force = 0.00000000 0.00000000 -0.00175513 atom 7 type 1 force = 0.00000000 0.00000000 -0.00727192 Total force = 0.010764 Total SCF correction = 0.000101 number of scf cycles = 4 number of bfgs steps = 3 energy old = -29.2204630734 Ry energy new = -29.2208465313 Ry CASE: energy _new < energy _old new trust radius = 0.0343158522 bohr new conv_thr = 0.0000000383 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.105742485 Al 0.000000000 0.000000000 -1.409634469 Al 0.500000000 0.500000000 -0.704163986 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.704163986 Al 0.000000000 0.000000000 1.409634469 Al 0.500000000 0.500000000 2.105742485 Writing output data file pwscf.save Check: negative starting charge= -0.000290 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000294 negative rho (up, down): 0.334E-04 0.000E+00 total cpu time spent up to now is 3.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.159E-04 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -29.22128394 Ry Harris-Foulkes estimate = -29.22142669 Ry estimated scf accuracy < 0.00030871 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 3.3 negative rho (up, down): 0.143E-04 0.000E+00 total cpu time spent up to now is 3.4 secs total energy = -29.22107352 Ry Harris-Foulkes estimate = -29.22168201 Ry estimated scf accuracy < 0.00679771 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 3.0 negative rho (up, down): 0.999E-05 0.000E+00 total cpu time spent up to now is 3.5 secs total energy = -29.22138516 Ry Harris-Foulkes estimate = -29.22142132 Ry estimated scf accuracy < 0.00030465 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.45E-06, avg # of iterations = 1.0 negative rho (up, down): 0.136E-06 0.000E+00 total cpu time spent up to now is 3.6 secs total energy = -29.22140260 Ry Harris-Foulkes estimate = -29.22140196 Ry estimated scf accuracy < 0.00000518 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 3.0 negative rho (up, down): 0.324E-07 0.000E+00 total cpu time spent up to now is 3.6 secs total energy = -29.22140379 Ry Harris-Foulkes estimate = -29.22140408 Ry estimated scf accuracy < 0.00000609 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 1.0 total cpu time spent up to now is 3.7 secs total energy = -29.22140387 Ry Harris-Foulkes estimate = -29.22140392 Ry estimated scf accuracy < 0.00000108 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.15E-09, avg # of iterations = 2.3 total cpu time spent up to now is 3.8 secs total energy = -29.22140396 Ry Harris-Foulkes estimate = -29.22140404 Ry estimated scf accuracy < 0.00000052 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-09, avg # of iterations = 2.0 total cpu time spent up to now is 3.9 secs total energy = -29.22140402 Ry Harris-Foulkes estimate = -29.22140403 Ry estimated scf accuracy < 0.00000016 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.77E-10, avg # of iterations = 1.3 total cpu time spent up to now is 4.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1311 -6.6160 -5.7817 -4.6015 -3.1495 -1.4381 0.5443 1.8205 4.4212 5.4698 5.9289 6.2638 6.6808 7.1963 7.5209 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8076 -4.3001 -3.4810 -2.3222 -0.8993 -0.3076 0.1617 0.8147 0.9765 2.0963 2.7480 3.5220 3.9204 5.1840 6.5660 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5403 -2.0449 -1.2413 -0.1039 1.2781 1.2887 1.7348 2.4788 2.6669 2.7915 3.4174 3.5552 4.0671 4.9055 4.9633 the Fermi energy is 3.4612 ev ! total energy = -29.22140399 Ry Harris-Foulkes estimate = -29.22140402 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = -185.73990940 Ry hartree contribution = 99.59867781 Ry xc contribution = -11.22843118 Ry ewald contribution = 68.15119651 Ry smearing contrib. (-TS) = -0.00293772 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00639011 atom 2 type 1 force = 0.00000000 0.00000000 0.00132232 atom 3 type 1 force = 0.00000000 0.00000000 0.00188853 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00188853 atom 6 type 1 force = 0.00000000 0.00000000 -0.00132232 atom 7 type 1 force = 0.00000000 0.00000000 -0.00639011 Total force = 0.009607 Total SCF correction = 0.000308 number of scf cycles = 5 number of bfgs steps = 4 energy old = -29.2208465313 Ry energy new = -29.2214039917 Ry CASE: energy _new < energy _old WARNING: bfgs curvature condition failed, Theta= 0.887 new trust radius = 0.0514737782 bohr new conv_thr = 0.0000000557 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.096036494 Al 0.000000000 0.000000000 -1.403756700 Al 0.500000000 0.500000000 -0.702540296 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.702540296 Al 0.000000000 0.000000000 1.403756700 Al 0.500000000 0.500000000 2.096036494 Writing output data file pwscf.save Check: negative starting charge= -0.000294 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000291 negative rho (up, down): 0.678E-04 0.000E+00 total cpu time spent up to now is 4.0 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 negative rho (up, down): 0.362E-04 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -29.22179909 Ry Harris-Foulkes estimate = -29.22214027 Ry estimated scf accuracy < 0.00072890 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.47E-06, avg # of iterations = 3.3 negative rho (up, down): 0.331E-04 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -29.22120380 Ry Harris-Foulkes estimate = -29.22290287 Ry estimated scf accuracy < 0.02021443 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.47E-06, avg # of iterations = 3.0 negative rho (up, down): 0.241E-04 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -29.22206713 Ry Harris-Foulkes estimate = -29.22211530 Ry estimated scf accuracy < 0.00034258 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.63E-06, avg # of iterations = 1.0 negative rho (up, down): 0.180E-05 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -29.22209108 Ry Harris-Foulkes estimate = -29.22208990 Ry estimated scf accuracy < 0.00000991 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.72E-08, avg # of iterations = 2.7 negative rho (up, down): 0.266E-07 0.000E+00 total cpu time spent up to now is 4.5 secs total energy = -29.22209284 Ry Harris-Foulkes estimate = -29.22209302 Ry estimated scf accuracy < 0.00000624 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.97E-08, avg # of iterations = 1.0 total cpu time spent up to now is 4.6 secs total energy = -29.22209307 Ry Harris-Foulkes estimate = -29.22209304 Ry estimated scf accuracy < 0.00000079 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.78E-09, avg # of iterations = 2.7 total cpu time spent up to now is 4.7 secs total energy = -29.22209314 Ry Harris-Foulkes estimate = -29.22209325 Ry estimated scf accuracy < 0.00000078 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.72E-09, avg # of iterations = 1.7 total cpu time spent up to now is 4.8 secs total energy = -29.22209321 Ry Harris-Foulkes estimate = -29.22209323 Ry estimated scf accuracy < 0.00000015 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.28E-10, avg # of iterations = 1.3 total cpu time spent up to now is 4.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1704 -6.6578 -5.8093 -4.6188 -3.1573 -1.4297 0.5631 1.8402 4.4560 5.4285 5.8834 6.2901 6.6495 7.1698 7.5374 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8468 -4.3419 -3.5090 -2.3403 -0.9087 -0.3471 0.1189 0.8223 0.9482 2.0769 2.7641 3.5140 3.9378 5.1917 6.5988 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5797 -2.0874 -1.2700 -0.1231 1.2377 1.2775 1.6906 2.4481 2.6268 2.7751 3.3988 3.5337 4.0411 4.8920 4.9802 the Fermi energy is 3.4525 ev ! total energy = -29.22209320 Ry Harris-Foulkes estimate = -29.22209322 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -188.46713595 Ry hartree contribution = 100.95468925 Ry xc contribution = -11.24206052 Ry ewald contribution = 69.53533358 Ry smearing contrib. (-TS) = -0.00291957 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00477449 atom 2 type 1 force = 0.00000000 0.00000000 0.00114967 atom 3 type 1 force = 0.00000000 0.00000000 0.00234413 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00234413 atom 6 type 1 force = 0.00000000 0.00000000 -0.00114967 atom 7 type 1 force = 0.00000000 0.00000000 -0.00477449 Total force = 0.007696 Total SCF correction = 0.000234 number of scf cycles = 6 number of bfgs steps = 5 energy old = -29.2214039917 Ry energy new = -29.2220932029 Ry CASE: energy _new < energy _old new trust radius = 0.0772106673 bohr new conv_thr = 0.0000000477 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.081477509 Al 0.000000000 0.000000000 -1.394810291 Al 0.500000000 0.500000000 -0.699791402 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.699791402 Al 0.000000000 0.000000000 1.394810291 Al 0.500000000 0.500000000 2.081477509 Writing output data file pwscf.save Check: negative starting charge= -0.000291 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000294 negative rho (up, down): 0.143E-03 0.000E+00 total cpu time spent up to now is 4.9 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 negative rho (up, down): 0.817E-04 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -29.22219844 Ry Harris-Foulkes estimate = -29.22290827 Ry estimated scf accuracy < 0.00152268 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.25E-06, avg # of iterations = 3.3 negative rho (up, down): 0.754E-04 0.000E+00 total cpu time spent up to now is 5.2 secs total energy = -29.22097478 Ry Harris-Foulkes estimate = -29.22449581 Ry estimated scf accuracy < 0.04169825 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.25E-06, avg # of iterations = 3.0 negative rho (up, down): 0.569E-04 0.000E+00 total cpu time spent up to now is 5.3 secs total energy = -29.22276050 Ry Harris-Foulkes estimate = -29.22285174 Ry estimated scf accuracy < 0.00062223 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.96E-06, avg # of iterations = 1.3 negative rho (up, down): 0.555E-05 0.000E+00 total cpu time spent up to now is 5.4 secs total energy = -29.22280670 Ry Harris-Foulkes estimate = -29.22280434 Ry estimated scf accuracy < 0.00002084 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.92E-08, avg # of iterations = 3.0 negative rho (up, down): 0.696E-06 0.000E+00 total cpu time spent up to now is 5.5 secs total energy = -29.22280973 Ry Harris-Foulkes estimate = -29.22280983 Ry estimated scf accuracy < 0.00000757 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.60E-08, avg # of iterations = 1.3 total cpu time spent up to now is 5.5 secs total energy = -29.22281035 Ry Harris-Foulkes estimate = -29.22281013 Ry estimated scf accuracy < 0.00000044 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 2.7 total cpu time spent up to now is 5.6 secs total energy = -29.22281038 Ry Harris-Foulkes estimate = -29.22281049 Ry estimated scf accuracy < 0.00000074 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 2.3 total cpu time spent up to now is 5.7 secs total energy = -29.22281046 Ry Harris-Foulkes estimate = -29.22281048 Ry estimated scf accuracy < 0.00000021 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.79E-10, avg # of iterations = 1.0 total cpu time spent up to now is 5.8 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2314 -6.7208 -5.8516 -4.6453 -3.1687 -1.4176 0.5911 1.8701 4.5079 5.3642 5.8147 6.3260 6.6016 7.1273 7.5636 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9077 -4.4051 -3.5519 -2.3681 -0.9227 -0.4084 0.0543 0.8332 0.9051 2.0474 2.7878 3.5026 3.9642 5.2025 6.6473 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6411 -2.1514 -1.3140 -0.1524 1.1748 1.2605 1.6238 2.4011 2.5645 2.7459 3.3745 3.5007 4.0011 4.8718 5.0054 the Fermi energy is 3.4397 ev ! total energy = -29.22281046 Ry Harris-Foulkes estimate = -29.22281047 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -192.62867499 Ry hartree contribution = 103.02331595 Ry xc contribution = -11.26269572 Ry ewald contribution = 71.64829695 Ry smearing contrib. (-TS) = -0.00305265 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00226637 atom 2 type 1 force = 0.00000000 0.00000000 0.00081897 atom 3 type 1 force = 0.00000000 0.00000000 0.00297998 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00297998 atom 6 type 1 force = 0.00000000 0.00000000 -0.00081897 atom 7 type 1 force = 0.00000000 0.00000000 -0.00226637 Total force = 0.005420 Total SCF correction = 0.000224 number of scf cycles = 7 number of bfgs steps = 6 energy old = -29.2220932029 Ry energy new = -29.2228104552 Ry CASE: energy _new < energy _old new trust radius = 0.0790055952 bohr new conv_thr = 0.0000000298 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.066580069 Al 0.000000000 0.000000000 -1.385111561 Al 0.500000000 0.500000000 -0.694678237 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.694678237 Al 0.000000000 0.000000000 1.385111561 Al 0.500000000 0.500000000 2.066580069 Writing output data file pwscf.save Check: negative starting charge= -0.000294 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000297 negative rho (up, down): 0.155E-03 0.000E+00 total cpu time spent up to now is 5.8 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 negative rho (up, down): 0.884E-04 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -29.22241869 Ry Harris-Foulkes estimate = -29.22328742 Ry estimated scf accuracy < 0.00184345 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.78E-06, avg # of iterations = 3.3 negative rho (up, down): 0.824E-04 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -29.22067753 Ry Harris-Foulkes estimate = -29.22567420 Ry estimated scf accuracy < 0.06173557 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.78E-06, avg # of iterations = 3.0 negative rho (up, down): 0.599E-04 0.000E+00 total cpu time spent up to now is 6.2 secs total energy = -29.22317112 Ry Harris-Foulkes estimate = -29.22320547 Ry estimated scf accuracy < 0.00019663 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.36E-07, avg # of iterations = 1.7 negative rho (up, down): 0.864E-05 0.000E+00 total cpu time spent up to now is 6.3 secs total energy = -29.22319221 Ry Harris-Foulkes estimate = -29.22319023 Ry estimated scf accuracy < 0.00002428 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.3 negative rho (up, down): 0.242E-06 0.000E+00 total cpu time spent up to now is 6.4 secs total energy = -29.22319480 Ry Harris-Foulkes estimate = -29.22319410 Ry estimated scf accuracy < 0.00000258 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.23E-08, avg # of iterations = 2.3 total cpu time spent up to now is 6.5 secs total energy = -29.22319528 Ry Harris-Foulkes estimate = -29.22319509 Ry estimated scf accuracy < 0.00000037 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.74E-09, avg # of iterations = 2.3 total cpu time spent up to now is 6.6 secs total energy = -29.22319534 Ry Harris-Foulkes estimate = -29.22319534 Ry estimated scf accuracy < 0.00000015 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.15E-10, avg # of iterations = 2.0 total cpu time spent up to now is 6.7 secs total energy = -29.22319535 Ry Harris-Foulkes estimate = -29.22319536 Ry estimated scf accuracy < 0.00000006 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.73E-10, avg # of iterations = 1.3 total cpu time spent up to now is 6.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3006 -6.7791 -5.8995 -4.6743 -3.1774 -1.4077 0.6188 1.9007 4.5618 5.2912 5.7516 6.3595 6.5469 7.0764 7.5936 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9767 -4.4636 -3.6005 -2.3985 -0.9350 -0.4775 -0.0055 0.8420 0.8562 2.0155 2.8116 3.4937 3.9904 5.2105 6.6976 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7107 -2.2106 -1.3638 -0.1844 1.1035 1.2453 1.5623 2.3477 2.4943 2.7133 3.3562 3.4647 3.9561 4.8557 5.0311 the Fermi energy is 3.4278 ev ! total energy = -29.22319535 Ry Harris-Foulkes estimate = -29.22319535 Ry estimated scf accuracy < 8.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -197.15652078 Ry hartree contribution = 105.27454844 Ry xc contribution = -11.28401892 Ry ewald contribution = 73.94626615 Ry smearing contrib. (-TS) = -0.00347024 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00026096 atom 2 type 1 force = 0.00000000 0.00000000 0.00068763 atom 3 type 1 force = 0.00000000 0.00000000 0.00242796 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00242796 atom 6 type 1 force = 0.00000000 0.00000000 -0.00068763 atom 7 type 1 force = 0.00000000 0.00000000 0.00026096 Total force = 0.003588 Total SCF correction = 0.000030 number of scf cycles = 8 number of bfgs steps = 7 energy old = -29.2228104552 Ry energy new = -29.2231953519 Ry CASE: energy _new < energy _old new trust radius = 0.0251679362 bohr new conv_thr = 0.0000000243 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.061834356 Al 0.000000000 0.000000000 -1.380978163 Al 0.500000000 0.500000000 -0.691543794 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.691543794 Al 0.000000000 0.000000000 1.380978163 Al 0.500000000 0.500000000 2.061834356 Writing output data file pwscf.save Check: negative starting charge= -0.000297 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000296 negative rho (up, down): 0.231E-04 0.000E+00 total cpu time spent up to now is 6.8 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.116E-04 0.000E+00 total cpu time spent up to now is 6.9 secs total energy = -29.22309126 Ry Harris-Foulkes estimate = -29.22327430 Ry estimated scf accuracy < 0.00037952 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 3.7 negative rho (up, down): 0.107E-04 0.000E+00 total cpu time spent up to now is 7.0 secs total energy = -29.22270159 Ry Harris-Foulkes estimate = -29.22383383 Ry estimated scf accuracy < 0.01419639 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 3.0 negative rho (up, down): 0.114E-06 0.000E+00 total cpu time spent up to now is 7.1 secs total energy = -29.22325863 Ry Harris-Foulkes estimate = -29.22325853 Ry estimated scf accuracy < 0.00000565 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.69E-08, avg # of iterations = 2.7 total cpu time spent up to now is 7.2 secs total energy = -29.22325947 Ry Harris-Foulkes estimate = -29.22325938 Ry estimated scf accuracy < 0.00000053 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.52E-09, avg # of iterations = 2.0 total cpu time spent up to now is 7.3 secs total energy = -29.22325960 Ry Harris-Foulkes estimate = -29.22325955 Ry estimated scf accuracy < 0.00000018 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.34E-10, avg # of iterations = 1.3 total cpu time spent up to now is 7.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3283 -6.7934 -5.9148 -4.6835 -3.1795 -1.4062 0.6268 1.9100 4.5804 5.2620 5.7364 6.3706 6.5296 7.0546 7.6063 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0044 -4.4781 -3.6159 -2.4082 -0.9389 -0.5047 -0.0202 0.8407 0.8431 2.0055 2.8187 3.4914 3.9981 5.2108 6.7149 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7386 -2.2252 -1.3796 -0.1947 1.0750 1.2406 1.5473 2.3307 2.4666 2.7033 3.3523 3.4533 3.9417 4.8518 5.0389 the Fermi energy is 3.4245 ev ! total energy = -29.22325963 Ry Harris-Foulkes estimate = -29.22325962 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -198.85097666 Ry hartree contribution = 106.11747779 Ry xc contribution = -11.29086058 Ry ewald contribution = 74.80476696 Ry smearing contrib. (-TS) = -0.00366715 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00074375 atom 2 type 1 force = 0.00000000 0.00000000 0.00036241 atom 3 type 1 force = 0.00000000 0.00000000 0.00153072 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00153072 atom 6 type 1 force = 0.00000000 0.00000000 -0.00036241 atom 7 type 1 force = 0.00000000 0.00000000 0.00074375 Total force = 0.002461 Total SCF correction = 0.000099 number of scf cycles = 9 number of bfgs steps = 8 energy old = -29.2231953519 Ry energy new = -29.2232596304 Ry CASE: energy _new < energy _old new trust radius = 0.0140357708 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062757890 Al 0.000000000 0.000000000 -1.379770643 Al 0.500000000 0.500000000 -0.688897183 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688897183 Al 0.000000000 0.000000000 1.379770643 Al 0.500000000 0.500000000 2.062757890 Writing output data file pwscf.save Check: negative starting charge= -0.000296 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000293 negative rho (up, down): 0.774E-06 0.000E+00 total cpu time spent up to now is 7.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 negative rho (up, down): 0.165E-06 0.000E+00 total cpu time spent up to now is 7.5 secs total energy = -29.22320993 Ry Harris-Foulkes estimate = -29.22330371 Ry estimated scf accuracy < 0.00019368 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.22E-07, avg # of iterations = 3.3 negative rho (up, down): 0.124E-06 0.000E+00 total cpu time spent up to now is 7.6 secs total energy = -29.22308093 Ry Harris-Foulkes estimate = -29.22346759 Ry estimated scf accuracy < 0.00418957 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.22E-07, avg # of iterations = 3.0 negative rho (up, down): 0.348E-07 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -29.22327924 Ry Harris-Foulkes estimate = -29.22329761 Ry estimated scf accuracy < 0.00014433 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.87E-07, avg # of iterations = 1.3 total cpu time spent up to now is 7.8 secs total energy = -29.22328772 Ry Harris-Foulkes estimate = -29.22328773 Ry estimated scf accuracy < 0.00000120 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.70E-09, avg # of iterations = 3.3 total cpu time spent up to now is 7.9 secs total energy = -29.22328817 Ry Harris-Foulkes estimate = -29.22328827 Ry estimated scf accuracy < 0.00000219 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.70E-09, avg # of iterations = 1.0 total cpu time spent up to now is 8.0 secs total energy = -29.22328808 Ry Harris-Foulkes estimate = -29.22328820 Ry estimated scf accuracy < 0.00000086 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.07E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.1 secs total energy = -29.22328815 Ry Harris-Foulkes estimate = -29.22328816 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3342 -6.7803 -5.9119 -4.6818 -3.1769 -1.4101 0.6237 1.9070 4.5803 5.2557 5.7511 6.3710 6.5330 7.0468 7.6093 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0103 -4.4650 -3.6131 -2.4063 -0.9370 -0.5098 -0.0070 0.8395 0.8437 2.0079 2.8167 3.4936 3.9950 5.2061 6.7151 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7446 -2.2120 -1.3766 -0.1928 1.0688 1.2429 1.5614 2.3340 2.4614 2.7086 3.3559 3.4557 3.9444 4.8563 5.0370 the Fermi energy is 3.4263 ev ! total energy = -29.22328815 Ry Harris-Foulkes estimate = -29.22328816 Ry estimated scf accuracy < 5.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -199.01101925 Ry hartree contribution = 106.19744580 Ry xc contribution = -11.28952355 Ry ewald contribution = 74.88350515 Ry smearing contrib. (-TS) = -0.00369631 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00003344 atom 2 type 1 force = 0.00000000 0.00000000 0.00000737 atom 3 type 1 force = 0.00000000 0.00000000 0.00007547 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00007547 atom 6 type 1 force = 0.00000000 0.00000000 -0.00000737 atom 7 type 1 force = 0.00000000 0.00000000 -0.00003344 Total force = 0.000117 Total SCF correction = 0.000122 SCF correction compared to forces is large: reduce conv_thr to get better values bfgs converged in 10 scf cycles and 9 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -29.2232881513 Ry Begin final coordinates ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062757890 Al 0.000000000 0.000000000 -1.379770643 Al 0.500000000 0.500000000 -0.688897183 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688897183 Al 0.000000000 0.000000000 1.379770643 Al 0.500000000 0.500000000 2.062757890 End final coordinates Writing output data file pwscf.save init_run : 0.08s CPU 0.09s WALL ( 1 calls) electrons : 7.36s CPU 7.51s WALL ( 10 calls) update_pot : 0.09s CPU 0.10s WALL ( 9 calls) forces : 0.12s CPU 0.12s WALL ( 10 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.00s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 5.87s CPU 5.92s WALL ( 81 calls) sum_band : 0.94s CPU 0.96s WALL ( 81 calls) v_of_rho : 0.14s CPU 0.18s WALL ( 90 calls) mix_rho : 0.16s CPU 0.14s WALL ( 81 calls) Called by c_bands: init_us_2 : 0.10s CPU 0.16s WALL ( 519 calls) cegterg : 5.70s CPU 5.68s WALL ( 243 calls) Called by *egterg: h_psi : 3.94s CPU 3.98s WALL ( 845 calls) g_psi : 0.21s CPU 0.19s WALL ( 599 calls) cdiaghg : 0.56s CPU 0.52s WALL ( 812 calls) Called by h_psi: add_vuspsi : 0.23s CPU 0.22s WALL ( 845 calls) General routines calbec : 0.26s CPU 0.26s WALL ( 875 calls) fft : 0.11s CPU 0.11s WALL ( 381 calls) fftw : 3.63s CPU 3.68s WALL ( 21831 calls) davcio : 0.00s CPU 0.07s WALL ( 762 calls) PWSCF : 8.00s CPU 8.19s WALL This run was terminated on: 11:27:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/metal.ref0000644000700200004540000002346012053145627015662 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18547331 Ry Harris-Foulkes estimate = -4.18624121 Ry estimated scf accuracy < 0.00592574 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549534 Ry estimated scf accuracy < 0.00046554 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2683 24.1724 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8472 20.1257 22.7030 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7420 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2924 22.3024 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4591 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3593 24.5664 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3754 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3018 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3126 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546962 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161248 Ry hartree contribution = 0.01022685 Ry xc contribution = -1.63496633 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.54 -0.00009884 0.00000000 0.00000000 -14.54 0.00 0.00 0.00000000 -0.00009884 0.00000000 0.00 -14.54 0.00 0.00000000 0.00000000 -0.00009884 0.00 0.00 -14.54 Writing output data file pwscf.save init_run : 0.01s CPU 0.02s WALL ( 1 calls) electrons : 0.08s CPU 0.08s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 100 calls) cegterg : 0.06s CPU 0.06s WALL ( 40 calls) Called by *egterg: h_psi : 0.05s CPU 0.05s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 76 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 106 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 126 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 136 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.04s CPU 0.04s WALL ( 1576 calls) davcio : 0.00s CPU 0.00s WALL ( 140 calls) PWSCF : 0.17s CPU 0.18s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf.in20000644000700200004540000000124412053145627015243 0ustar marsamoscm &control calculation = 'nscf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.0.2/PW/tests/paw-atom_spin_lda.in0000644000700200004540000000062112053145627020002 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nspin = 2 nbnd = 7 nosym = .true. / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES O 1.000 O.pz-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. espresso-5.0.2/PW/tests/lattice-ibrav13-kauto.in0000644000700200004540000000053512053145627020423 0ustar marsamoscm &control calculation='scf', / &system ibrav = 13, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/scf-occ.in0000644000700200004540000000063612053145627015727 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8, occupations='from_input' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 OCCUPATIONS 2. 2. 2. 2. 0. 0. 0. 0. espresso-5.0.2/PW/tests/paw-vcbfgs.ref0000644000700200004540000006540312053145627016622 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 17:55:14 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/paw-vcbfgs.in file Ge.pbe-kjpaw.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 313 109 3839 3839 749 bravais-lattice index = 0 lattice parameter (alat) = 1.8897 a.u. unit-cell volume = 326.9061 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 1.889726 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 2.893336 2.893336 ) a(2) = ( 2.893336 0.000000 2.893336 ) a(3) = ( 2.893336 2.893336 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.172811 0.172811 0.172811 ) b(2) = ( 0.172811 -0.172811 0.172811 ) b(3) = ( 0.172811 0.172811 -0.172811 ) PseudoPot. # 1 for Ge read from file: /home/giannozz/trunk/espresso/pseudo/Ge.pbe-kjpaw.UPF MD5 check sum: 1b4ce88ea9c19894198ac08649d0ed76 Pseudo is Projector augmented-wave + core cor, Zval = 4.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1207 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ge 4.00 72.61000 Ge( 1.00) 48 Sym. Ops., with inversion, found (24 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 Ge tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ge tau( 2) = ( 1.4466680 1.4466680 1.4466680 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0216014 0.0216014 0.0216014), wk = 0.0625000 k( 2) = ( 0.0648041 0.0648041 -0.0216014), wk = 0.1875000 k( 3) = ( -0.0648041 -0.0648041 0.1080068), wk = 0.1875000 k( 4) = ( -0.0216014 -0.0216014 0.0648041), wk = 0.1875000 k( 5) = ( 0.1080068 0.0216014 0.0216014), wk = 0.1875000 k( 6) = ( -0.0216014 -0.1080068 0.1512095), wk = 0.3750000 k( 7) = ( 0.0216014 -0.0648041 0.1080068), wk = 0.3750000 k( 8) = ( -0.1512095 0.0216014 0.0216014), wk = 0.1875000 k( 9) = ( 0.0648041 0.0648041 0.0648041), wk = 0.0625000 k( 10) = ( -0.0648041 -0.0648041 0.1944123), wk = 0.1875000 Dense grid: 3839 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 513, 8) NL pseudopotentials 0.13 Mb ( 513, 16) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3839) G-vector shells 0.03 Mb ( 3839) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.25 Mb ( 513, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000010 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.021245 starting charge 7.99847, renormalised to 8.00000 negative rho (up, down): 0.212E-01 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 11.9 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.81E-04, avg # of iterations = 1.8 negative rho (up, down): 0.395E-01 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -328.23132086 Ry Harris-Foulkes estimate = -328.23718998 Ry estimated scf accuracy < 0.02973300 Ry iteration # 2 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-04, avg # of iterations = 1.0 negative rho (up, down): 0.462E-01 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -328.23183503 Ry Harris-Foulkes estimate = -328.23201008 Ry estimated scf accuracy < 0.00174057 Ry iteration # 3 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-05, avg # of iterations = 2.0 negative rho (up, down): 0.458E-01 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -328.23190203 Ry Harris-Foulkes estimate = -328.23189868 Ry estimated scf accuracy < 0.00001198 Ry iteration # 4 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 3.0 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 2.1 secs End of self-consistent calculation k = 0.0216 0.0216 0.0216 ( 513 PWs) bands (ev): -6.8762 2.7542 4.9215 4.9215 6.0125 8.2132 8.2132 8.5859 k = 0.0648 0.0648-0.0216 ( 501 PWs) bands (ev): -5.9805 -0.2092 2.8444 4.3685 6.6694 8.9758 9.1526 10.7856 k =-0.0648-0.0648 0.1080 ( 492 PWs) bands (ev): -5.0472 -2.0032 2.7175 3.6023 6.4777 8.7824 9.6777 12.3241 k =-0.0216-0.0216 0.0648 ( 498 PWs) bands (ev): -6.4115 1.0178 3.8036 3.9041 7.0577 7.6964 9.7152 10.0130 k = 0.1080 0.0216 0.0216 ( 490 PWs) bands (ev): -5.5029 -0.7997 2.5791 3.0188 6.5570 7.8588 10.8642 11.5350 k =-0.0216-0.1080 0.1512 ( 494 PWs) bands (ev): -4.1071 -2.6352 1.3967 2.3769 7.5093 9.3290 10.2822 12.0931 k = 0.0216-0.0648 0.1080 ( 494 PWs) bands (ev): -5.1637 -1.4673 1.9259 3.2883 7.5389 8.6175 10.1160 11.2503 k =-0.1512 0.0216 0.0216 ( 486 PWs) bands (ev): -4.2034 -2.5746 1.9318 2.5450 6.2053 7.2026 12.8217 13.2751 k = 0.0648 0.0648 0.0648 ( 492 PWs) bands (ev): -5.6244 -1.2493 4.0527 4.0527 5.3610 9.0089 9.0089 12.4684 k =-0.0648-0.0648 0.1944 ( 495 PWs) bands (ev): -4.6005 -2.1914 1.3709 3.3003 6.8247 10.0929 10.8039 11.8078 the Fermi energy is 5.0366 ev ! total energy = -328.23190976 Ry Harris-Foulkes estimate = -328.23190988 Ry estimated scf accuracy < 0.00000035 Ry total all-electron energy = -8395.996669 Ry The total energy is the sum of the following terms: one-electron contribution = 4.98590198 Ry hartree contribution = 1.21038795 Ry xc contribution = -32.27008063 Ry ewald contribution = -15.76351191 Ry one-center paw contrib. = -286.39464751 Ry smearing contrib. (-TS) = 0.00004036 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.452E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... negative rho (up, down): 0.452E-01 0.000E+00 total stress (Ry/bohr**3) (kbar) P= -0.76 -0.00000520 0.00000000 0.00000000 -0.76 0.00 0.00 0.00000000 -0.00000520 0.00000000 0.00 -0.76 0.00 0.00000000 0.00000000 -0.00000520 0.00 0.00 -0.76 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -328.2319097611 Ry new trust radius = 0.0004697838 bohr new conv_thr = 0.0000010000 Ry new unit-cell volume = 326.77876 a.u.^3 ( 48.42361 Ang^3 ) CELL_PARAMETERS (alat= 1.88972599) 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 ATOMIC_POSITIONS (crystal) Ge 0.000000000 0.000000000 0.000000000 Ge 0.250000000 0.250000000 0.250000000 Writing output data file pwscf.save Check: negative starting charge= -0.021245 NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0216042 0.0216042 0.0216042), wk = 0.0625000 k( 2) = ( 0.0648125 0.0648125 -0.0216042), wk = 0.1875000 k( 3) = ( -0.0648125 -0.0648125 0.1080208), wk = 0.1875000 k( 4) = ( -0.0216042 -0.0216042 0.0648125), wk = 0.1875000 k( 5) = ( 0.1080208 0.0216042 0.0216042), wk = 0.1875000 k( 6) = ( -0.0216042 -0.1080208 0.1512292), wk = 0.3750000 k( 7) = ( 0.0216042 -0.0648125 0.1080208), wk = 0.3750000 k( 8) = ( -0.1512292 0.0216042 0.0216042), wk = 0.1875000 k( 9) = ( 0.0648125 0.0648125 0.0648125), wk = 0.0625000 k( 10) = ( -0.0648125 -0.0648125 0.1944375), wk = 0.1875000 Check: negative/imaginary core charge= -0.000010 0.000000 Check: negative starting charge= -0.021243 negative rho (up, down): 0.452E-01 0.000E+00 extrapolated charge 7.99688, renormalised to 8.00000 total cpu time spent up to now is 3.6 secs per-process dynamical memory: 20.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.86E-11, avg # of iterations = 2.3 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 3.9 secs End of self-consistent calculation k = 0.0216 0.0216 0.0216 ( 513 PWs) bands (ev): -6.8737 2.7601 4.9263 4.9263 6.0195 8.2188 8.2188 8.5925 k = 0.0648 0.0648-0.0216 ( 501 PWs) bands (ev): -5.9777 -0.2045 2.8487 4.3731 6.6762 8.9816 9.1590 10.7931 k =-0.0648-0.0648 0.1080 ( 492 PWs) bands (ev): -5.0440 -1.9993 2.7219 3.6066 6.4843 8.7884 9.6837 12.3319 k =-0.0216-0.0216 0.0648 ( 498 PWs) bands (ev): -6.4088 1.0231 3.8082 3.9085 7.0642 7.7028 9.7214 10.0198 k = 0.1080 0.0216 0.0216 ( 490 PWs) bands (ev): -5.5000 -0.7950 2.5832 3.0229 6.5629 7.8653 10.8713 11.5419 k =-0.0216-0.1080 0.1512 ( 494 PWs) bands (ev): -4.1036 -2.6312 1.4003 2.3808 7.5156 9.3358 10.2891 12.1006 k = 0.0216-0.0648 0.1080 ( 494 PWs) bands (ev): -5.1606 -1.4630 1.9299 3.2925 7.5455 8.6238 10.1227 11.2573 k =-0.1512 0.0216 0.0216 ( 486 PWs) bands (ev): -4.2000 -2.5705 1.9356 2.5489 6.2111 7.2087 12.8298 13.2828 k = 0.0648 0.0648 0.0648 ( 492 PWs) bands (ev): -5.6215 -1.2452 4.0571 4.0571 5.3678 9.0146 9.0146 12.4765 k =-0.0648-0.0648 0.1944 ( 495 PWs) bands (ev): -4.5971 -2.1873 1.3746 3.3045 6.8309 10.1001 10.8103 11.8155 the Fermi energy is 5.0414 ev ! total energy = -328.23191046 Ry Harris-Foulkes estimate = -328.23002316 Ry estimated scf accuracy < 1.9E-09 Ry total all-electron energy = -8395.996669 Ry The total energy is the sum of the following terms: one-electron contribution = 4.98873779 Ry hartree contribution = 1.21013413 Ry xc contribution = -32.27049751 Ry ewald contribution = -15.76556008 Ry one-center paw contrib. = -286.39476491 Ry smearing contrib. (-TS) = 0.00004012 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.452E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... negative rho (up, down): 0.452E-01 0.000E+00 total stress (Ry/bohr**3) (kbar) P= -0.49 -0.00000334 0.00000000 0.00000000 -0.49 0.00 0.00 0.00000000 -0.00000334 0.00000000 0.00 -0.49 0.00 0.00000000 0.00000000 -0.00000334 0.00 0.00 -0.49 bfgs converged in 2 scf cycles and 1 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02, cell < 0.50E+00) End of BFGS Geometry Optimization Final enthalpy = -328.2319104611 Ry Begin final coordinates new unit-cell volume = 326.77876 a.u.^3 ( 48.42361 Ang^3 ) CELL_PARAMETERS (alat= 1.88972599) 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 ATOMIC_POSITIONS (crystal) Ge 0.000000000 0.000000000 0.000000000 Ge 0.250000000 0.250000000 0.250000000 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 313 109 3839 3839 749 bravais-lattice index = 0 lattice parameter (alat) = 1.8897 a.u. unit-cell volume = 326.7788 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 1.889726 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 2.892960 2.892960 ) a(2) = ( 2.892960 0.000000 2.892960 ) a(3) = ( 2.892960 2.892960 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.172833 0.172833 0.172833 ) b(2) = ( 0.172833 -0.172833 0.172833 ) b(3) = ( 0.172833 0.172833 -0.172833 ) PseudoPot. # 1 for Ge read from file: /home/giannozz/trunk/espresso/pseudo/Ge.pbe-kjpaw.UPF MD5 check sum: 1b4ce88ea9c19894198ac08649d0ed76 Pseudo is Projector augmented-wave + core cor, Zval = 4.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1207 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ge 4.00 72.61000 Ge( 1.00) 48 Sym. Ops., with inversion, found (24 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 Ge tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ge tau( 2) = ( 1.4464800 1.4464800 1.4464800 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0216042 0.0216042 0.0216042), wk = 0.0625000 k( 2) = ( 0.0648125 0.0648125 -0.0216042), wk = 0.1875000 k( 3) = ( -0.0648125 -0.0648125 0.1080208), wk = 0.1875000 k( 4) = ( -0.0216042 -0.0216042 0.0648125), wk = 0.1875000 k( 5) = ( 0.1080208 0.0216042 0.0216042), wk = 0.1875000 k( 6) = ( -0.0216042 -0.1080208 0.1512292), wk = 0.3750000 k( 7) = ( 0.0216042 -0.0648125 0.1080208), wk = 0.3750000 k( 8) = ( -0.1512292 0.0216042 0.0216042), wk = 0.1875000 k( 9) = ( 0.0648125 0.0648125 0.0648125), wk = 0.0625000 k( 10) = ( -0.0648125 -0.0648125 0.1944375), wk = 0.1875000 Dense grid: 3839 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 513, 8) NL pseudopotentials 0.13 Mb ( 513, 16) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3839) G-vector shells 0.00 Mb ( 82) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.25 Mb ( 513, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000010 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.021243 starting charge 7.99847, renormalised to 8.00000 negative rho (up, down): 0.212E-01 0.000E+00 Starting wfc are 8 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 5.1 secs per-process dynamical memory: 22.4 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.9 negative rho (up, down): 0.393E-01 0.000E+00 total cpu time spent up to now is 5.5 secs total energy = -328.23131368 Ry Harris-Foulkes estimate = -328.23770269 Ry estimated scf accuracy < 0.03069976 Ry iteration # 2 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.84E-04, avg # of iterations = 1.0 negative rho (up, down): 0.460E-01 0.000E+00 total cpu time spent up to now is 5.8 secs total energy = -328.23184533 Ry Harris-Foulkes estimate = -328.23203742 Ry estimated scf accuracy < 0.00167529 Ry iteration # 3 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-05, avg # of iterations = 1.0 negative rho (up, down): 0.458E-01 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -328.23190413 Ry Harris-Foulkes estimate = -328.23189910 Ry estimated scf accuracy < 0.00001395 Ry iteration # 4 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-07, avg # of iterations = 2.3 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 6.3 secs End of self-consistent calculation k = 0.0216 0.0216 0.0216 ( 513 PWs) bands (ev): -6.8748 2.7592 4.9255 4.9255 6.0183 8.2177 8.2177 8.5910 k = 0.0648 0.0648-0.0216 ( 501 PWs) bands (ev): -5.9787 -0.2055 2.8475 4.3722 6.6749 8.9804 9.1573 10.7912 k =-0.0648-0.0648 0.1080 ( 492 PWs) bands (ev): -5.0449 -2.0004 2.7207 3.6057 6.4828 8.7867 9.6823 12.3296 k =-0.0216-0.0216 0.0648 ( 498 PWs) bands (ev): -6.4098 1.0222 3.8072 3.9076 7.0627 7.7015 9.7203 10.0182 k = 0.1080 0.0216 0.0216 ( 490 PWs) bands (ev): -5.5009 -0.7959 2.5820 3.0219 6.5608 7.8636 10.8696 11.5407 k =-0.0216-0.1080 0.1512 ( 494 PWs) bands (ev): -4.1045 -2.6320 1.3989 2.3796 7.5137 9.3343 10.2870 12.0991 k = 0.0216-0.0648 0.1080 ( 494 PWs) bands (ev): -5.1615 -1.4639 1.9285 3.2915 7.5441 8.6221 10.1207 11.2559 k =-0.1512 0.0216 0.0216 ( 486 PWs) bands (ev): -4.2009 -2.5714 1.9343 2.5479 6.2089 7.2067 12.8283 13.2816 k = 0.0648 0.0648 0.0648 ( 492 PWs) bands (ev): -5.6224 -1.2463 4.0563 4.0563 5.3662 9.0133 9.0133 12.4736 k =-0.0648-0.0648 0.1944 ( 495 PWs) bands (ev): -4.5980 -2.1883 1.3732 3.3035 6.8291 10.0984 10.8091 11.8139 the Fermi energy is 5.0406 ev ! total energy = -328.23191044 Ry Harris-Foulkes estimate = -328.23191051 Ry estimated scf accuracy < 0.00000029 Ry total all-electron energy = -8395.996669 Ry The total energy is the sum of the following terms: one-electron contribution = 4.98881513 Ry hartree contribution = 1.21000489 Ry xc contribution = -32.27043923 Ry ewald contribution = -15.76556008 Ry one-center paw contrib. = -286.39477136 Ry smearing contrib. (-TS) = 0.00004021 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.452E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... negative rho (up, down): 0.452E-01 0.000E+00 total stress (Ry/bohr**3) (kbar) P= -0.52 -0.00000353 0.00000000 0.00000000 -0.52 0.00 0.00 0.00000000 -0.00000353 0.00000000 0.00 -0.52 0.00 0.00000000 0.00000000 -0.00000353 0.00 0.00 -0.52 Writing output data file pwscf.save init_run : 1.08s CPU 1.09s WALL ( 2 calls) electrons : 2.65s CPU 2.70s WALL ( 3 calls) update_pot : 0.56s CPU 0.58s WALL ( 1 calls) forces : 0.55s CPU 0.55s WALL ( 3 calls) stress : 0.93s CPU 0.93s WALL ( 3 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 2 calls) potinit : 0.40s CPU 0.41s WALL ( 2 calls) Called by electrons: c_bands : 0.99s CPU 1.01s WALL ( 11 calls) sum_band : 0.22s CPU 0.22s WALL ( 11 calls) v_of_rho : 0.11s CPU 0.12s WALL ( 12 calls) newd : 0.05s CPU 0.05s WALL ( 12 calls) mix_rho : 0.06s CPU 0.05s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.05s WALL ( 310 calls) cegterg : 0.94s CPU 0.95s WALL ( 110 calls) Called by *egterg: h_psi : 0.74s CPU 0.74s WALL ( 413 calls) s_psi : 0.02s CPU 0.02s WALL ( 413 calls) g_psi : 0.01s CPU 0.03s WALL ( 283 calls) cdiaghg : 0.08s CPU 0.07s WALL ( 363 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.03s WALL ( 413 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 593 calls) fft : 0.05s CPU 0.05s WALL ( 235 calls) fftw : 0.60s CPU 0.67s WALL ( 6126 calls) davcio : 0.00s CPU 0.01s WALL ( 420 calls) PAW routines PAW_pot : 1.80s CPU 1.84s WALL ( 13 calls) PAW_ddot : 0.06s CPU 0.05s WALL ( 25 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 24 calls) PWSCF : 6.32s CPU 6.51s WALL This run was terminated on: 17:55:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-atom_spin.in0000644000700200004540000000062212053145627017163 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nspin = 2 nbnd = 7 nosym = .true. / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES O 1.000 O.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. espresso-5.0.2/PW/tests/pbeq2d.ref0000644000700200004540000011223012053145627015727 0ustar marsamoscm Program PWSCF v.5.0.2 (svn rev. 9400) starts on 13Sep2012 at 12:40:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/pbeq2d.in IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA+PW+Q2DX+Q2DC ( 1 41912 0) EXX-fraction = 0.00 Any further DFT definition will be discarded Please, verify this is what you really want file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 451 211 85 6423 2085 459 bravais-lattice index = 2 lattice parameter (alat) = 6.6730 a.u. unit-cell volume = 74.2843 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 50 kinetic-energy cutoff = 35.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA+PW+Q2DX+Q2DC ( 1 41912 0) EXX-fraction = 0.00 celldm(1)= 6.672968 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 103.10000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 47 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0020000 k( 2) = ( -0.1000000 0.1000000 -0.1000000), wk = 0.0160000 k( 3) = ( -0.2000000 0.2000000 -0.2000000), wk = 0.0160000 k( 4) = ( -0.3000000 0.3000000 -0.3000000), wk = 0.0160000 k( 5) = ( -0.4000000 0.4000000 -0.4000000), wk = 0.0160000 k( 6) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0080000 k( 7) = ( 0.0000000 0.2000000 0.0000000), wk = 0.0120000 k( 8) = ( -0.1000000 0.3000000 -0.1000000), wk = 0.0480000 k( 9) = ( -0.2000000 0.4000000 -0.2000000), wk = 0.0480000 k( 10) = ( -0.3000000 0.5000000 -0.3000000), wk = 0.0480000 k( 11) = ( 0.6000000 -0.4000000 0.6000000), wk = 0.0480000 k( 12) = ( 0.5000000 -0.3000000 0.5000000), wk = 0.0480000 k( 13) = ( 0.4000000 -0.2000000 0.4000000), wk = 0.0480000 k( 14) = ( 0.3000000 -0.1000000 0.3000000), wk = 0.0480000 k( 15) = ( 0.2000000 0.0000000 0.2000000), wk = 0.0240000 k( 16) = ( 0.0000000 0.4000000 0.0000000), wk = 0.0120000 k( 17) = ( -0.1000000 0.5000000 -0.1000000), wk = 0.0480000 k( 18) = ( -0.2000000 0.6000000 -0.2000000), wk = 0.0480000 k( 19) = ( 0.7000000 -0.3000000 0.7000000), wk = 0.0480000 k( 20) = ( 0.6000000 -0.2000000 0.6000000), wk = 0.0480000 k( 21) = ( 0.5000000 -0.1000000 0.5000000), wk = 0.0480000 k( 22) = ( 0.4000000 0.0000000 0.4000000), wk = 0.0240000 k( 23) = ( 0.0000000 0.6000000 0.0000000), wk = 0.0120000 k( 24) = ( -0.1000000 0.7000000 -0.1000000), wk = 0.0480000 k( 25) = ( 0.8000000 -0.2000000 0.8000000), wk = 0.0480000 k( 26) = ( 0.7000000 -0.1000000 0.7000000), wk = 0.0480000 k( 27) = ( 0.6000000 0.0000000 0.6000000), wk = 0.0240000 k( 28) = ( 0.0000000 0.8000000 0.0000000), wk = 0.0120000 k( 29) = ( 0.9000000 -0.1000000 0.9000000), wk = 0.0480000 k( 30) = ( 0.8000000 0.0000000 0.8000000), wk = 0.0240000 k( 31) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0060000 k( 32) = ( -0.2000000 0.4000000 0.0000000), wk = 0.0480000 k( 33) = ( -0.3000000 0.5000000 -0.1000000), wk = 0.0960000 k( 34) = ( 0.6000000 -0.4000000 0.8000000), wk = 0.0960000 k( 35) = ( 0.5000000 -0.3000000 0.7000000), wk = 0.0480000 k( 36) = ( -0.2000000 0.6000000 0.0000000), wk = 0.0480000 k( 37) = ( 0.7000000 -0.3000000 0.9000000), wk = 0.0960000 k( 38) = ( 0.6000000 -0.2000000 0.8000000), wk = 0.0960000 k( 39) = ( 0.5000000 -0.1000000 0.7000000), wk = 0.0960000 k( 40) = ( 0.4000000 0.0000000 0.6000000), wk = 0.0480000 k( 41) = ( 0.8000000 -0.2000000 1.0000000), wk = 0.0480000 k( 42) = ( 0.7000000 -0.1000000 0.9000000), wk = 0.0960000 k( 43) = ( 0.6000000 0.0000000 0.8000000), wk = 0.0480000 k( 44) = ( -0.2000000 -1.0000000 0.0000000), wk = 0.0240000 k( 45) = ( 0.6000000 -0.2000000 1.0000000), wk = 0.0480000 k( 46) = ( 0.5000000 -0.1000000 0.9000000), wk = 0.0480000 k( 47) = ( -0.4000000 -1.0000000 0.0000000), wk = 0.0240000 Dense grid: 6423 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 2085 G-vectors FFT dimensions: ( 18, 18, 18) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.21 Mb ( 274, 50) NL pseudopotentials 0.05 Mb ( 274, 13) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.05 Mb ( 6423) G-vector shells 0.00 Mb ( 115) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.84 Mb ( 274, 200) Each subspace H/S matrix 0.61 Mb ( 200, 200) Each matrix 0.01 Mb ( 13, 50) Arrays for rho mixing 1.91 Mb ( 15625, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.1 secs per-process dynamical memory: 12.1 Mb Self-consistent Calculation iteration # 1 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 total cpu time spent up to now is 6.8 secs total energy = -87.78064296 Ry Harris-Foulkes estimate = -87.87225711 Ry estimated scf accuracy < 0.22558050 Ry iteration # 2 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.05E-03, avg # of iterations = 1.0 total cpu time spent up to now is 8.7 secs total energy = -87.80837971 Ry Harris-Foulkes estimate = -87.81078694 Ry estimated scf accuracy < 0.00581768 Ry iteration # 3 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.29E-05, avg # of iterations = 1.1 total cpu time spent up to now is 10.6 secs total energy = -87.80925898 Ry Harris-Foulkes estimate = -87.80929439 Ry estimated scf accuracy < 0.00020429 Ry iteration # 4 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.86E-06, avg # of iterations = 2.7 total cpu time spent up to now is 13.2 secs total energy = -87.80925828 Ry Harris-Foulkes estimate = -87.80926252 Ry estimated scf accuracy < 0.00000783 Ry iteration # 5 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.12E-08, avg # of iterations = 1.2 total cpu time spent up to now is 15.1 secs total energy = -87.80926019 Ry Harris-Foulkes estimate = -87.80926039 Ry estimated scf accuracy < 0.00000044 Ry iteration # 6 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 17.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 259 PWs) bands (ev): 5.3441 11.6770 11.6770 11.6770 12.5956 12.5956 39.5699 42.0828 42.0828 42.0828 45.0263 45.0263 45.0263 47.6866 54.2319 54.2319 54.2319 58.2378 58.2378 67.6443 99.6241 99.6241 99.6241 104.1500 104.1500 105.8783 105.8783 105.8783 109.8416 109.8416 109.8416 111.5600 135.0824 135.0824 135.2365 135.2365 135.2365 135.5240 135.5240 135.5240 136.3917 136.3917 136.3917 137.0142 137.0142 137.0142 137.5439 143.5362 143.5362 143.5362 k =-0.1000 0.1000-0.1000 ( 271 PWs) bands (ev): 5.7249 11.5962 11.7491 11.7491 12.5704 12.5704 36.5313 40.1905 41.0866 41.0866 46.5713 46.6092 46.6092 51.3208 51.4008 51.4008 54.6695 61.8398 61.8398 69.3026 94.3369 94.3369 98.2095 99.9855 104.2234 104.2234 107.1460 107.1460 110.6832 114.8595 114.8595 118.6600 125.2543 125.2543 128.9152 129.1819 130.8185 130.8185 132.4421 135.1180 135.1180 138.2277 140.5292 140.5292 141.3438 142.8921 142.8921 143.4327 145.6572 146.8112 k =-0.2000 0.2000-0.2000 ( 271 PWs) bands (ev): 6.8098 11.4375 11.8564 11.8564 12.5951 12.5951 30.9419 39.5911 39.8611 39.8611 46.5355 47.1886 47.1886 50.4667 50.4667 55.4695 59.2275 67.4660 67.4660 73.6503 86.6126 86.6126 89.5404 101.0701 105.9115 105.9115 107.5761 107.5761 110.6182 115.4121 115.4121 117.6802 122.7779 123.5919 123.5919 125.6904 126.5300 126.5300 129.3813 132.9039 132.9039 137.4008 141.7226 142.0581 142.0581 144.3105 147.0445 147.0445 151.6605 151.6605 k =-0.3000 0.3000-0.3000 ( 262 PWs) bands (ev): 8.3101 11.5237 11.8064 11.8064 12.8279 12.8279 25.8363 38.7212 39.0894 39.0894 44.5167 44.5167 46.8328 54.3058 54.3058 57.7841 67.4572 73.3552 73.3552 77.7653 79.6080 79.6080 83.9767 102.8772 105.6172 105.6172 106.4164 108.2369 108.2369 109.6531 109.6531 110.5241 117.3570 121.9990 123.0841 123.0841 126.2677 126.2677 128.6928 135.7241 136.3409 136.3409 142.4047 143.3715 143.3715 146.0103 146.0103 146.3511 156.4495 156.4495 k =-0.4000 0.4000-0.4000 ( 257 PWs) bands (ev): 9.3261 11.6903 11.6903 12.6300 13.1090 13.1090 21.5612 37.9609 38.7731 38.7731 42.5841 42.5841 47.1982 58.9488 58.9488 61.1283 71.6794 71.6794 73.2333 76.3124 81.2312 81.2312 89.1941 95.7560 97.9312 97.9312 105.4044 108.8758 108.8758 110.2187 112.6609 112.9792 112.9792 115.9937 120.6671 120.6671 122.9055 122.9055 123.3597 134.6001 140.3294 140.3294 144.2573 144.2573 146.0228 150.6992 150.6992 155.2229 160.9670 160.9670 k = 0.5000-0.5000 0.5000 ( 266 PWs) bands (ev): 9.5285 11.6388 11.6388 13.2277 13.2277 13.9086 19.3569 37.6699 38.7295 38.7295 41.8579 41.8579 47.3437 62.5760 62.5760 63.9366 67.5228 67.5228 69.4323 85.4902 85.8686 85.8686 85.9354 92.6851 92.6851 93.7640 108.4027 108.8999 108.9364 109.1060 109.1060 112.2794 116.5337 116.5337 118.5025 118.5025 120.6415 120.6415 122.0299 134.1884 139.0968 139.0968 147.1980 147.1980 147.9179 158.0036 158.0036 159.1375 161.9257 161.9257 k = 0.0000 0.2000 0.0000 ( 267 PWs) bands (ev): 5.8508 11.5214 11.8053 11.8053 12.4569 12.6531 38.0465 38.7417 38.7417 40.2269 46.7211 47.6717 48.7466 48.7466 51.4914 55.2697 55.2697 58.4942 63.4166 70.5737 93.3666 96.0998 96.0998 96.8510 103.3361 103.3361 107.3009 109.7994 111.4100 116.4908 116.4908 118.5745 122.0157 125.0647 125.0647 130.8166 131.7702 131.7702 135.2690 135.7246 136.1450 136.1450 137.0112 137.9832 140.4671 141.3593 141.5594 141.5594 148.0030 148.0030 k =-0.1000 0.3000-0.1000 ( 267 PWs) bands (ev): 6.6998 11.3452 11.9210 11.9439 12.3912 12.7220 33.0283 37.0324 37.9965 41.5011 43.5587 47.5993 50.5518 50.6318 54.0144 56.3242 56.9416 62.6796 66.9175 75.0006 86.5851 88.1302 95.7152 96.3113 98.0721 104.1970 108.5637 113.2565 113.4948 115.1961 117.9666 118.7893 120.3832 121.7274 123.7525 124.7993 127.8361 128.5300 131.0762 134.4259 135.7715 137.3100 137.5542 138.5036 141.6218 143.2495 143.9976 148.4515 149.0380 151.9535 k =-0.2000 0.4000-0.2000 ( 269 PWs) bands (ev): 8.0895 11.2424 11.8039 11.9648 12.7279 12.9134 27.7217 36.0250 37.1742 39.7170 45.0908 47.0334 48.7178 51.3262 56.5438 58.8773 64.5131 68.4768 72.5612 78.0896 79.3261 83.3591 88.8063 96.8703 99.3865 104.1057 106.1248 109.2360 111.8687 112.1108 113.0493 115.9320 117.6249 118.5194 123.1867 124.9789 126.6866 129.0726 132.4543 134.0480 134.9750 136.7455 139.4620 141.7795 142.6749 143.3561 147.6287 148.3211 151.1176 155.2671 k =-0.3000 0.5000-0.3000 ( 265 PWs) bands (ev): 9.3369 11.5496 11.7036 11.8633 13.1527 13.5035 23.0932 35.7798 36.1266 37.9122 45.3944 46.4317 48.5948 53.1436 60.7654 62.3311 70.3290 71.8432 72.8453 77.2489 79.5406 82.2121 88.6067 95.7062 98.1499 100.6547 103.2991 104.0967 108.5797 109.7492 110.1693 112.1469 118.0211 118.5513 120.7372 121.5236 121.8743 129.6912 130.8920 135.0637 135.5045 137.6581 140.4127 144.4865 145.7006 149.5956 151.7987 155.1907 156.4079 158.4946 k = 0.6000-0.4000 0.6000 ( 259 PWs) bands (ev): 9.7109 11.5006 11.7747 12.3218 13.2359 14.8877 19.7769 34.7408 36.3677 37.5661 44.7486 45.1182 49.6057 57.3501 62.7958 63.6808 67.8728 69.2193 74.6749 81.4825 83.3137 85.4491 88.4078 90.9226 95.2465 97.8817 101.1551 105.3989 106.3271 108.4549 110.0918 111.3189 113.4079 115.8108 119.5648 121.3709 124.8311 126.6178 127.1119 134.0933 135.6064 136.4702 146.1281 149.4328 151.3091 152.6986 158.7072 158.7292 158.9554 160.8676 k = 0.5000-0.3000 0.5000 ( 258 PWs) bands (ev): 9.6626 11.5438 11.7753 12.2286 13.0781 14.4876 20.6295 33.7971 37.8267 38.1268 43.7397 45.0778 50.1489 57.9289 59.3878 62.6265 69.2941 72.9788 73.6947 77.8036 82.2389 85.6924 90.5207 92.9306 93.3978 98.8131 100.1005 105.7388 107.1746 109.3338 110.1018 111.6956 113.1904 117.1424 119.6711 121.6946 123.3700 126.6771 129.6574 133.1289 136.2048 136.2584 146.8542 148.0663 149.4725 151.7739 152.5044 158.7907 161.0997 161.5529 k = 0.4000-0.2000 0.4000 ( 259 PWs) bands (ev): 9.0214 11.4817 11.6921 11.8740 12.7411 13.4514 24.5503 33.5459 39.4193 40.1238 43.3865 44.8707 50.8228 52.8948 55.6708 63.1151 68.4144 71.1972 73.3610 78.4105 80.8470 81.4917 86.2836 98.0499 99.8102 100.6130 101.9327 108.1429 108.3395 109.4027 110.2359 114.0415 118.7091 119.0055 121.4765 121.7097 123.7215 130.2228 131.3686 134.1644 137.2197 137.6171 138.1161 142.2316 144.3910 148.1132 150.6635 153.5753 156.4032 156.4857 k = 0.3000-0.1000 0.3000 ( 266 PWs) bands (ev): 7.5943 11.2963 11.8425 11.9809 12.4212 12.9457 29.4323 33.9853 41.2594 43.0329 43.7645 44.0673 48.5255 51.4918 53.7458 59.6047 61.4159 66.1683 73.0040 75.5805 81.1349 87.0313 89.4398 96.4710 99.0163 105.1705 108.7088 109.0797 110.8241 113.4828 115.8863 118.3024 118.9146 120.1740 123.2931 123.5052 126.1112 127.9987 131.1610 132.7746 135.7426 137.6800 140.1293 140.2928 141.7238 146.4436 147.4192 150.2620 150.3879 151.0147 k = 0.2000 0.0000 0.2000 ( 271 PWs) bands (ev): 6.3420 11.4563 11.8506 11.8611 12.4335 12.6783 34.5765 35.4168 41.8021 43.5061 44.4256 45.6536 47.0887 51.5054 52.2757 54.9551 56.6866 61.6444 67.0808 72.1755 86.9846 93.8223 96.0881 97.6862 97.8770 103.3996 108.1736 114.4938 114.5605 115.6679 117.0670 118.2713 121.2794 122.4047 123.6939 127.4895 127.5189 128.9791 129.4229 130.2099 137.7083 137.9522 139.3708 140.9961 143.7052 144.0922 146.7644 147.2727 147.4660 148.3046 k = 0.0000 0.4000 0.0000 ( 274 PWs) bands (ev): 7.2723 11.1215 12.1660 12.1688 12.1688 12.8047 34.9052 34.9052 36.0561 37.0364 40.3874 52.9498 53.2763 53.2763 56.0965 58.8190 58.8190 59.2683 66.5360 79.7483 86.3708 88.3547 88.3547 89.0385 104.7752 104.7752 107.7393 107.9792 111.5279 112.5087 112.5087 121.3936 124.1503 127.3059 127.3059 127.4397 128.4174 128.4174 130.2554 130.4989 131.0927 131.0927 136.6920 138.8389 143.2656 144.7661 146.7387 147.7814 147.7814 151.2647 k =-0.1000 0.5000-0.1000 ( 267 PWs) bands (ev): 8.3862 10.9150 11.8926 12.3100 12.7170 12.9607 30.1366 33.5470 34.7521 36.7583 40.7015 52.1474 53.3054 55.3612 59.4110 61.3893 61.9785 64.5792 70.0769 79.6627 80.1363 86.3299 88.5419 89.7103 98.6900 101.2650 106.3762 107.7403 108.5532 109.8578 117.0874 118.0973 118.8985 121.3097 124.3155 125.6118 128.3273 129.0237 131.8689 132.1418 134.9242 136.7964 139.6168 141.4094 143.5645 143.7415 144.7054 147.8069 148.9946 154.5102 k =-0.2000 0.6000-0.2000 ( 260 PWs) bands (ev): 9.5702 10.8857 11.6583 12.2552 13.1871 13.8313 25.2750 32.3726 33.0404 36.4228 44.5716 50.8102 51.1316 55.6767 63.2258 64.9467 68.4524 69.3553 71.2964 75.0074 79.0384 89.2791 90.0545 90.2671 93.2971 95.7214 103.2701 104.4172 108.8515 109.4245 110.3000 111.0195 117.4377 120.3455 122.7923 124.3430 127.6557 129.0092 132.6343 134.0103 136.4222 138.9253 142.5558 142.6892 144.9542 147.1622 148.2361 152.0982 152.6574 155.1250 k = 0.7000-0.3000 0.7000 ( 259 PWs) bands (ev): 10.1056 11.0452 11.6814 12.1470 13.2582 15.8112 21.1957 30.4184 33.4584 36.4563 48.7332 49.2559 50.4997 55.9226 63.4258 64.2595 68.8356 70.6526 77.5600 79.5750 82.4567 83.8481 87.3965 91.4937 94.9180 96.6192 98.9061 99.9612 102.9490 106.2885 110.8105 113.1178 114.0148 116.1484 119.0383 121.3057 128.3566 132.3415 133.1845 133.6476 136.7665 140.6246 142.3621 146.4336 148.3493 150.6637 154.7928 154.8980 160.3671 161.3684 k = 0.6000-0.2000 0.6000 ( 259 PWs) bands (ev): 10.2107 11.1509 11.7025 12.0865 13.0802 16.6033 20.2021 29.1169 34.8054 37.0216 48.0124 48.3892 55.4849 56.4443 57.7429 59.4377 73.5200 74.4432 77.3744 77.9166 85.7037 86.0945 86.6933 91.0581 95.3724 95.5373 96.0087 99.0121 100.8403 106.4602 110.9632 113.6320 114.4526 115.9783 117.5701 120.4002 128.2261 130.6377 134.5022 135.2640 136.9946 137.2188 145.4706 150.1804 150.7829 152.6841 155.1722 155.8260 158.4358 160.7827 k = 0.5000-0.1000 0.5000 ( 259 PWs) bands (ev): 9.9714 11.2838 11.3797 12.1161 12.7159 14.7404 23.8197 28.5594 36.9996 38.2191 47.1125 47.4513 52.3557 54.6654 58.1329 62.1670 67.0852 72.4177 77.1565 80.6980 83.0825 85.4455 90.6491 91.6644 93.1472 95.8802 96.6946 102.8657 103.4689 110.3412 110.7650 110.7816 117.5209 119.4902 120.8337 122.8274 127.1823 131.3503 131.6666 135.6462 136.7517 138.5580 139.9392 143.3444 146.9897 151.3867 154.1564 156.7616 157.5263 160.0727 k = 0.4000 0.0000 0.4000 ( 265 PWs) bands (ev): 8.8712 11.1319 11.6582 12.2179 12.3241 13.5959 28.1034 29.1264 39.9075 40.0374 45.1041 47.5094 47.6567 52.7763 58.1396 61.7752 66.7951 68.1114 70.7138 79.0925 85.3291 86.3619 89.3095 90.9179 92.4525 102.4256 104.2147 106.7576 108.6950 109.1114 110.1227 117.5100 120.8989 121.6855 122.5147 127.0545 127.1355 127.4390 128.2917 131.4951 135.9797 137.1669 141.3303 143.6375 144.5196 145.4902 148.9978 152.3123 155.2485 155.2719 k = 0.0000 0.6000 0.0000 ( 258 PWs) bands (ev): 9.0179 10.6420 12.3816 12.6861 12.6861 12.9940 31.5150 31.8144 31.8144 34.6750 37.6801 57.3650 57.3650 59.5932 60.4992 60.7858 64.8452 64.8452 70.2901 80.5305 80.7036 80.7036 82.2947 91.5322 96.8920 102.2111 102.2111 108.1514 108.1514 109.1577 111.0723 114.7405 125.0274 125.4258 125.8442 125.8442 125.9763 126.1233 126.1233 131.8969 137.1317 137.1317 141.8598 141.9731 145.2415 145.2415 146.1627 147.2412 153.9768 155.0058 k =-0.1000 0.7000-0.1000 ( 259 PWs) bands (ev): 9.6476 10.4914 12.3187 12.7507 13.1930 13.9535 27.9218 28.8827 30.9659 35.3311 39.2067 56.3369 56.4972 61.7928 64.1752 66.1445 68.2096 68.4999 71.4598 74.5422 77.8831 82.1496 83.3197 90.1976 95.3244 97.6638 99.1220 102.9560 109.9902 110.5042 111.1370 114.7589 117.0968 119.0454 121.2036 123.6716 127.8667 131.4477 132.8107 133.3491 135.0872 137.1450 139.9624 145.2012 145.9947 148.0318 149.2259 151.6434 151.9105 158.8065 k = 0.8000-0.2000 0.8000 ( 256 PWs) bands (ev): 10.0944 10.5314 12.0371 12.6446 13.2894 16.2939 23.6302 26.7025 31.1120 35.5690 43.5365 54.2884 54.7431 62.5972 64.3941 65.1418 69.9076 72.8701 74.4077 76.7579 79.9383 84.3067 85.2530 87.1205 92.1801 94.0654 95.3842 102.5816 106.8589 109.0903 109.7556 112.1396 113.9236 116.8030 121.2555 121.5872 128.1177 129.8978 132.9917 136.3276 139.5186 140.6645 141.2999 145.6484 146.4722 148.2704 152.6581 158.2522 160.0498 163.2793 k = 0.7000-0.1000 0.7000 ( 261 PWs) bands (ev): 10.4416 10.6941 11.6984 12.5175 13.1316 18.9699 20.3256 25.2792 32.2553 36.0096 48.9115 52.7337 52.9703 58.5520 59.7728 63.6099 72.5999 75.7693 78.3531 81.3001 82.1182 85.8631 87.3095 89.5825 90.2215 91.5127 91.9989 97.8447 102.1795 107.3302 110.7498 113.1981 116.1009 117.3346 117.8052 118.2252 124.2732 130.4220 133.4671 141.2418 144.2314 144.8428 144.8944 148.3869 149.0710 150.3131 152.4761 155.1409 157.3725 158.6034 k = 0.6000 0.0000 0.6000 ( 258 PWs) bands (ev): 10.5883 10.9697 11.3098 12.3675 12.8548 16.7848 22.8156 25.1286 34.2756 36.8909 50.3505 51.3078 53.5811 54.7340 56.8318 64.5371 65.5093 79.9463 80.6859 83.1251 83.4882 84.3765 88.3501 90.2570 90.3819 91.7358 93.4132 98.9852 100.4198 108.3969 110.5136 112.0260 114.3068 116.0595 120.4305 124.8356 124.8410 126.6849 135.7787 139.3092 141.2496 143.4363 144.4612 146.5616 149.3472 151.7428 152.5003 156.1248 157.0060 160.3816 k = 0.0000 0.8000 0.0000 ( 254 PWs) bands (ev): 9.6437 10.2656 13.1487 13.1771 13.1771 14.5038 25.9310 29.7496 29.7496 33.9027 36.8256 61.8674 61.8674 61.9068 64.0144 67.3707 71.3669 71.3669 73.9758 74.4197 74.4197 76.2951 80.5319 86.1367 92.8159 92.8159 98.5041 108.4145 111.4994 111.7449 112.5247 112.5247 120.1001 121.9034 122.2800 122.2800 123.5791 124.5844 124.5844 135.1834 135.5178 135.5178 139.8288 148.6267 148.6317 151.6318 151.6318 151.7175 162.1800 163.2031 k = 0.9000-0.1000 0.9000 ( 256 PWs) bands (ev): 9.7768 10.2347 12.9198 13.0706 13.3330 16.5224 23.9017 26.8109 29.5602 34.7754 38.5751 59.4529 60.4274 65.5767 66.2498 69.1434 69.4710 71.3810 75.9089 76.1406 76.8225 78.4992 80.4115 83.9779 89.1620 89.7620 96.9909 105.6738 109.7032 111.8998 113.6107 115.1948 116.2333 117.9150 120.4183 122.4861 125.8347 127.6366 129.6554 130.1717 132.3258 132.4961 144.9869 150.5989 151.1321 152.8672 158.6885 159.4739 160.7896 164.4192 k = 0.8000 0.0000 0.8000 ( 252 PWs) bands (ev): 10.0796 10.4062 12.3042 12.8851 13.2466 18.7207 22.6270 23.6662 30.4389 35.3294 43.2001 56.8133 57.3680 61.2310 61.8493 70.5465 71.5509 74.4311 77.0951 77.2440 80.7897 81.3612 83.7490 84.1342 87.9064 93.2686 95.9316 100.4244 101.6250 108.7258 113.1516 114.4510 118.0925 118.2354 119.2443 119.5887 124.6112 126.9482 130.0233 135.1844 139.0283 139.4890 151.1002 151.3746 152.3583 152.9969 154.1719 154.6378 156.6792 159.1927 k = 0.0000-1.0000 0.0000 ( 254 PWs) bands (ev): 9.6470 10.1245 13.2081 13.3869 13.3869 16.6059 22.8353 29.0103 29.0103 33.6571 36.6063 62.6389 65.3969 66.7698 66.7698 67.5397 67.5397 73.3240 74.6092 75.4635 77.0460 77.6407 77.6407 84.9220 86.9626 86.9626 93.3536 112.1758 112.1812 116.5360 116.5360 116.7308 117.1155 118.8933 118.8933 120.5088 123.0966 124.0993 124.0993 125.4505 133.0834 133.0834 141.9418 151.6080 154.0508 159.9688 161.3513 162.5153 162.5153 165.0218 k =-0.2000 0.4000 0.0000 ( 266 PWs) bands (ev): 7.7101 11.1462 11.8527 12.1807 12.3727 12.9655 31.3943 32.1334 38.6214 40.3353 42.5642 47.9116 49.7155 54.4226 55.7422 59.4614 61.2857 63.8750 70.5986 77.9046 82.0324 87.7241 88.7972 97.0531 98.2444 98.4512 106.3021 111.1189 114.3998 115.3748 115.8534 116.7499 119.0154 120.4949 123.4146 124.1244 127.2597 127.4269 132.1576 134.1484 134.4172 137.1383 139.5429 141.5548 142.0338 144.6016 145.4065 147.1430 149.5018 150.3740 k =-0.3000 0.5000-0.1000 ( 261 PWs) bands (ev): 9.0719 11.0678 11.6095 12.1860 12.6948 13.5693 26.6014 31.1611 35.9447 40.4098 44.4837 46.8924 50.5678 55.2577 57.2136 64.7227 65.4242 70.1594 70.3690 78.3297 80.5741 87.6246 88.2297 91.6787 98.2779 99.4046 99.9078 105.9508 107.2141 111.5887 113.5823 116.1188 117.6240 118.8099 124.1249 125.1452 127.2090 127.6692 131.3310 132.4566 136.0399 138.3103 142.8490 143.7321 144.2096 145.0735 147.3293 149.5161 152.8786 158.0552 k = 0.6000-0.4000 0.8000 ( 257 PWs) bands (ev): 9.9300 11.2752 11.5518 12.0700 13.0602 14.8658 22.2179 31.2070 33.7394 39.8317 44.3599 49.5806 51.3335 54.8065 60.8808 62.6308 70.0390 71.7897 74.4433 79.2027 82.4735 85.1443 88.3620 92.2479 95.8195 97.0286 100.8165 101.1194 103.9390 106.3384 110.0862 111.0582 116.3752 119.5383 120.3626 124.3595 126.5796 127.6348 131.5285 132.7415 139.4409 140.7440 141.1276 144.4045 147.7027 150.5528 153.4640 155.1112 158.6310 160.7992 k = 0.5000-0.3000 0.7000 ( 254 PWs) bands (ev): 10.0765 11.2251 11.8465 12.0005 13.1808 16.3924 19.6500 31.7357 32.4741 39.5922 44.0720 50.1116 53.4531 56.3200 57.4280 64.4235 68.3903 75.5315 76.6215 80.3500 80.9077 86.6669 89.6365 90.5199 93.5585 95.4921 99.1923 102.3399 105.7184 106.4465 107.3164 108.4608 110.7353 121.1251 122.0139 123.4341 124.5724 126.0082 131.7293 133.3377 138.8028 139.5954 146.3751 148.0466 148.9991 152.2640 155.1268 159.2161 160.8585 161.9725 k =-0.2000 0.6000 0.0000 ( 259 PWs) bands (ev): 9.3605 10.7350 11.7647 12.6847 12.7565 13.6098 28.8670 29.5709 32.1325 38.4048 40.5865 50.8927 55.7973 59.7511 59.7800 63.1655 67.8559 67.8628 69.7861 77.0947 81.0831 81.5396 90.5401 91.6573 95.0112 99.2876 99.9352 102.7518 106.1460 112.7771 114.3780 117.1299 117.1877 119.1911 120.8598 124.5663 127.9012 131.1279 132.3121 134.7552 137.0533 139.1114 139.6593 141.8818 143.0495 144.5020 149.8950 150.7543 151.7199 155.5025 k = 0.7000-0.3000 0.9000 ( 258 PWs) bands (ev): 10.1223 10.7391 11.5704 12.5660 13.1016 15.2175 24.5508 29.0012 29.8232 39.0040 43.9557 49.0895 56.1906 59.7949 63.1688 63.7610 67.5867 72.8533 73.7885 76.6165 82.5191 83.3209 87.4658 91.7367 93.1407 94.3715 100.3309 101.7893 103.2865 106.6476 109.2470 113.0217 114.8165 118.4957 121.4731 125.1784 129.6918 129.8459 133.0792 134.7184 138.5516 140.4361 141.1392 144.8712 147.3725 147.8661 150.7370 152.5787 155.1376 161.9468 k = 0.6000-0.2000 0.8000 ( 260 PWs) bands (ev): 10.4626 10.8101 11.5151 12.4012 13.1943 17.7081 20.7535 27.8189 29.8639 39.3766 46.6326 50.0327 55.3842 57.0118 60.0283 65.8813 69.1787 75.8198 78.1812 78.3784 83.5444 84.7314 87.1950 90.9753 91.4135 93.9696 96.2655 99.1184 101.1034 106.4946 109.9596 110.8145 113.1399 114.0064 118.8668 125.0298 127.2296 132.0296 135.8953 136.8532 138.4413 141.8754 144.4454 146.9054 149.9853 151.0739 154.2952 155.9664 157.0916 161.2235 k = 0.5000-0.1000 0.7000 ( 257 PWs) bands (ev): 10.5666 10.9185 11.3215 12.3644 13.0273 16.9841 21.8174 26.7874 31.2521 40.3152 45.8272 51.3165 54.4660 55.9477 60.4068 61.6444 69.5770 75.5173 79.2402 82.0816 82.9549 85.0581 87.9863 90.7252 91.6224 92.9862 95.6879 99.4264 101.7170 106.8612 107.6121 109.9194 113.8141 118.0452 119.2368 123.9227 127.4332 131.7082 133.0717 138.3197 140.2830 141.6386 143.2037 147.9777 150.5484 151.7209 152.7076 155.1249 157.6107 161.1527 k = 0.4000 0.0000 0.6000 ( 260 PWs) bands (ev): 10.1326 10.9917 11.2827 12.4287 12.7095 14.8554 25.5286 26.9448 33.3238 41.8165 44.0919 47.9638 53.0712 57.4163 61.5072 62.2706 64.0114 73.5734 75.4824 81.7048 82.1763 84.4016 91.3533 92.3861 92.6282 93.3409 99.7814 100.8552 101.5695 107.4533 110.9174 114.1365 116.7071 117.7175 123.5309 125.7186 127.6100 128.2549 132.3011 134.5735 139.9572 140.3614 140.9149 144.1353 145.0294 149.6170 152.5151 154.9873 155.3114 158.1975 k = 0.8000-0.2000 1.0000 ( 256 PWs) bands (ev): 9.9044 10.4055 12.3036 13.0211 13.1750 15.6139 26.2295 27.1497 28.0698 37.2494 39.6237 54.1302 61.7250 63.0298 64.6403 65.7958 69.0605 72.7113 73.6809 75.5125 77.0688 81.2731 84.8969 85.2962 90.7785 94.6155 101.4642 103.9438 104.8561 108.5254 110.6842 112.1586 115.1286 120.6992 121.8730 123.7953 128.2127 129.2381 130.6069 133.3772 136.2458 137.2748 140.7060 146.8250 147.8527 150.0800 152.1843 157.3186 158.9166 163.4920 k = 0.7000-0.1000 0.9000 ( 257 PWs) bands (ev): 10.1843 10.5223 11.9740 12.7929 13.2973 18.1827 23.3097 24.6155 28.1171 38.3317 43.4881 52.0204 58.2658 60.6940 66.2323 67.4152 70.3579 73.3887 76.7370 78.1469 79.1468 81.4127 84.8795 87.6535 91.7414 92.3303 96.7939 100.8705 103.8354 105.0073 107.7050 111.7837 114.1823 118.2786 120.1143 125.7422 127.8403 129.7665 131.7394 134.9631 137.8901 142.3886 143.7191 147.4185 150.1398 153.2720 155.0731 155.7012 159.5738 162.5055 k = 0.6000 0.0000 0.8000 ( 260 PWs) bands (ev): 10.5291 10.7236 11.5177 12.5770 13.1781 19.8016 20.9095 24.1277 29.3373 39.1746 48.8688 49.5134 53.8646 58.3366 62.9187 67.8113 68.5060 75.6932 77.3289 80.9432 83.7656 84.9364 88.1478 88.6032 90.6989 91.8139 92.7725 98.2264 102.9122 104.2387 108.8902 108.9161 112.9916 117.2174 120.1082 124.4945 127.2910 127.3177 135.6644 141.9153 142.7060 144.7328 145.3056 147.8573 148.1228 152.9629 153.0814 153.8479 155.9615 158.5254 k =-0.2000-1.0000 0.0000 ( 260 PWs) bands (ev): 9.8774 10.2810 12.6534 13.0277 13.3871 17.7825 23.0025 26.5236 27.4273 36.8733 39.3459 56.6240 61.0629 64.4874 66.7701 68.1823 72.7789 73.5414 74.8502 75.2008 77.2964 80.0040 81.9043 83.0008 88.0063 92.6950 94.8315 106.6972 107.4518 107.7991 108.3113 114.2383 116.1170 121.3058 124.2492 125.0856 125.2854 126.7168 127.8436 128.6786 131.7685 136.6446 145.5110 152.9082 153.2902 153.8829 157.9164 158.4799 162.6782 163.2073 k = 0.6000-0.2000 1.0000 ( 256 PWs) bands (ev): 10.4610 10.8288 11.3313 12.6426 13.1712 17.4628 23.7913 25.5627 27.5311 42.8564 43.8151 47.9805 56.6452 60.2283 63.9948 66.1128 66.9189 74.9108 76.9768 79.7645 81.1367 83.7597 85.9374 90.6100 94.4416 94.9246 95.2331 97.8518 102.7130 104.2022 109.4471 109.9120 110.9414 113.0427 124.2311 126.1664 131.5478 132.9239 133.5998 137.7352 137.9545 138.0701 141.9956 148.6430 151.1593 151.9699 152.3393 155.6917 156.4745 160.3737 k = 0.5000-0.1000 0.9000 ( 260 PWs) bands (ev): 10.5389 10.9676 11.2092 12.5393 13.2865 20.1044 20.9515 25.5491 26.3130 43.3142 45.3400 49.0260 52.2602 61.4021 64.9268 68.7724 69.7181 71.8509 76.6031 78.0459 81.9419 86.8602 89.7262 89.7413 90.7391 95.0530 96.0196 98.0279 98.5072 103.2067 106.2746 109.4891 110.6681 116.8153 117.4672 129.2982 130.4055 135.1612 135.2764 135.6684 138.9229 143.5565 145.6743 146.7506 148.0252 151.1041 152.3219 156.5672 159.2265 161.4107 k =-0.4000-1.0000 0.0000 ( 258 PWs) bands (ev): 10.3408 10.7607 11.5749 12.6436 13.3876 20.1798 23.1550 23.5290 25.3882 42.4361 44.5963 49.0768 53.4843 65.9839 66.7713 68.2761 71.2617 72.9735 74.5279 74.8216 78.1168 85.6091 89.4878 90.0758 90.4981 95.8902 96.7297 99.4275 100.2037 102.4125 102.6895 107.8667 111.9157 118.9740 123.5091 124.2347 128.1464 134.8612 136.0547 136.4479 138.4025 144.4821 144.9591 145.2527 146.2116 150.9223 152.1787 158.6713 162.4434 162.4725 the Fermi energy is 14.9252 ev ! total energy = -87.80926026 Ry Harris-Foulkes estimate = -87.80926027 Ry estimated scf accuracy < 1.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -9.19222349 Ry hartree contribution = 18.56632682 Ry xc contribution = -14.04658885 Ry ewald contribution = -83.13666761 Ry smearing contrib. (-TS) = -0.00010713 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.99s CPU 0.99s WALL ( 1 calls) electrons : 15.75s CPU 16.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.54s CPU 0.55s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 14.19s CPU 14.50s WALL ( 6 calls) sum_band : 1.32s CPU 1.34s WALL ( 6 calls) v_of_rho : 0.19s CPU 0.19s WALL ( 7 calls) newd : 0.08s CPU 0.08s WALL ( 7 calls) mix_rho : 0.00s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 611 calls) cegterg : 14.10s CPU 14.10s WALL ( 282 calls) Called by *egterg: h_psi : 5.29s CPU 5.35s WALL ( 846 calls) s_psi : 0.12s CPU 0.13s WALL ( 846 calls) g_psi : 0.16s CPU 0.21s WALL ( 517 calls) cdiaghg : 5.76s CPU 5.76s WALL ( 799 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.13s WALL ( 846 calls) General routines calbec : 0.24s CPU 0.21s WALL ( 1128 calls) fft : 0.02s CPU 0.03s WALL ( 107 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 4.83s CPU 4.85s WALL ( 85170 calls) interpolate : 0.00s CPU 0.01s WALL ( 13 calls) davcio : 0.01s CPU 0.32s WALL ( 893 calls) PWSCF : 16.91s CPU 17.30s WALL This run was terminated on: 12:41:16 13Sep2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/cluster2.ref0000644000700200004540000007701212053145627016325 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 17:57:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/cluster2.in file N.pbe-kjpaw.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file: /home/giannozz/trunk/espresso/pseudo/N.pbe-kjpaw.UPF MD5 check sum: 784def1e20c8513c628b118ec611e520 Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) 4 H tau( 4) = ( -0.0833333 0.0833333 -0.0833333 ) 5 H tau( 5) = ( 0.0833333 -0.0833333 -0.0833333 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.59 Mb ( 2401, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000542 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.482E-03 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 24.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.311E-02 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -31.57693410 Ry Harris-Foulkes estimate = -33.30281331 Ry estimated scf accuracy < 2.31136652 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.579E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -32.20616276 Ry Harris-Foulkes estimate = -32.59487617 Ry estimated scf accuracy < 0.71035648 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.88E-03, avg # of iterations = 2.0 negative rho (up, down): 0.126E-01 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -32.33996074 Ry Harris-Foulkes estimate = -32.34672159 Ry estimated scf accuracy < 0.01293117 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.62E-04, avg # of iterations = 5.0 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -32.34425816 Ry Harris-Foulkes estimate = -32.34500253 Ry estimated scf accuracy < 0.00160554 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-05, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 2.3 secs total energy = -32.34433061 Ry Harris-Foulkes estimate = -32.34434344 Ry estimated scf accuracy < 0.00002980 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-07, avg # of iterations = 4.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -32.34434206 Ry Harris-Foulkes estimate = -32.34435763 Ry estimated scf accuracy < 0.00003577 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-07, avg # of iterations = 1.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -32.34434542 Ry Harris-Foulkes estimate = -32.34434552 Ry estimated scf accuracy < 0.00000040 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-09, avg # of iterations = 3.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 3.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -33.6496 -22.3919 -22.3919 -22.3919 -7.0410 -3.7177 -3.7177 -3.7177 highest occupied, lowest unoccupied level (ev): -22.3919 -7.0410 ! total energy = -32.34434570 Ry Harris-Foulkes estimate = -32.34434572 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -113.643147 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06699876 Ry hartree contribution = 38.91720460 Ry xc contribution = -8.21268147 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31852152 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.109E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15456838 0.15456838 0.15456838 atom 3 type 2 force = -0.15456838 -0.15456838 0.15456838 atom 4 type 2 force = -0.15456838 0.15456838 -0.15456838 atom 5 type 2 force = 0.15456838 -0.15456838 -0.15456838 Total force = 0.535441 Total SCF correction = 0.000113 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3443457021 Ry new trust radius = 0.2677202850 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.154568379 1.154568379 1.154568379 H -1.154568379 -1.154568379 1.154568379 H -1.154568379 1.154568379 -1.154568379 H 1.154568379 -1.154568379 -1.154568379 Writing output data file pwscf.save Check: negative starting charge= -0.000542 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000592 negative rho (up, down): 0.447E-02 0.000E+00 total cpu time spent up to now is 3.5 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.560E-02 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -32.40854253 Ry Harris-Foulkes estimate = -32.47320436 Ry estimated scf accuracy < 0.09907666 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-03, avg # of iterations = 2.0 negative rho (up, down): 0.601E-02 0.000E+00 total cpu time spent up to now is 4.1 secs total energy = -32.43444361 Ry Harris-Foulkes estimate = -32.46768213 Ry estimated scf accuracy < 0.06565467 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-04, avg # of iterations = 1.0 negative rho (up, down): 0.721E-02 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -32.44747339 Ry Harris-Foulkes estimate = -32.44738955 Ry estimated scf accuracy < 0.00030814 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-06, avg # of iterations = 3.0 negative rho (up, down): 0.721E-02 0.000E+00 total cpu time spent up to now is 4.6 secs total energy = -32.44775463 Ry Harris-Foulkes estimate = -32.44776397 Ry estimated scf accuracy < 0.00005311 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-07, avg # of iterations = 1.0 negative rho (up, down): 0.722E-02 0.000E+00 total cpu time spent up to now is 4.9 secs total energy = -32.44774777 Ry Harris-Foulkes estimate = -32.44775718 Ry estimated scf accuracy < 0.00002164 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-07, avg # of iterations = 2.0 negative rho (up, down): 0.721E-02 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -32.44775285 Ry Harris-Foulkes estimate = -32.44775460 Ry estimated scf accuracy < 0.00000397 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-08, avg # of iterations = 1.0 negative rho (up, down): 0.720E-02 0.000E+00 total cpu time spent up to now is 5.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.2282 -20.5661 -20.5661 -20.5661 -7.5141 -4.7343 -4.7343 -4.7343 highest occupied, lowest unoccupied level (ev): -20.5661 -7.5141 ! total energy = -32.44775335 Ry Harris-Foulkes estimate = -32.44775341 Ry estimated scf accuracy < 0.00000009 Ry total all-electron energy = -113.746555 Ry The total energy is the sum of the following terms: one-electron contribution = -76.46242278 Ry hartree contribution = 36.38797051 Ry xc contribution = -7.74795013 Ry ewald contribution = 23.67694452 Ry one-center paw contrib. = -8.30229546 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.720E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01940375 -0.01940375 -0.01940375 atom 3 type 2 force = 0.01940375 0.01940375 -0.01940375 atom 4 type 2 force = 0.01940375 -0.01940375 0.01940375 atom 5 type 2 force = -0.01940375 0.01940375 0.01940375 Total force = 0.067217 Total SCF correction = 0.000133 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3443457021 Ry energy new = -32.4477533491 Ry CASE: energy _new < energy _old new trust radius = 0.0298598240 bohr new conv_thr = 0.0000000194 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.137328801 1.137328801 1.137328801 H -1.137328801 -1.137328801 1.137328801 H -1.137328801 1.137328801 -1.137328801 H 1.137328801 -1.137328801 -1.137328801 Writing output data file pwscf.save Check: negative starting charge= -0.000592 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000600 negative rho (up, down): 0.812E-02 0.000E+00 total cpu time spent up to now is 5.9 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.776E-02 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -32.45015870 Ry Harris-Foulkes estimate = -32.45059353 Ry estimated scf accuracy < 0.00073145 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-06, avg # of iterations = 2.0 negative rho (up, down): 0.771E-02 0.000E+00 total cpu time spent up to now is 6.4 secs total energy = -32.45034041 Ry Harris-Foulkes estimate = -32.45055735 Ry estimated scf accuracy < 0.00042317 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.29E-06, avg # of iterations = 2.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 6.6 secs total energy = -32.45042926 Ry Harris-Foulkes estimate = -32.45042825 Ry estimated scf accuracy < 0.00000373 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.66E-08, avg # of iterations = 2.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 6.9 secs total energy = -32.45043007 Ry Harris-Foulkes estimate = -32.45043009 Ry estimated scf accuracy < 0.00000008 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.44E-10, avg # of iterations = 2.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 7.1 secs total energy = -32.45043011 Ry Harris-Foulkes estimate = -32.45043011 Ry estimated scf accuracy < 0.00000003 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 1.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 7.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.4764 -20.7556 -20.7556 -20.7556 -7.4429 -4.6058 -4.6058 -4.6058 highest occupied, lowest unoccupied level (ev): -20.7556 -7.4429 ! total energy = -32.45043011 Ry Harris-Foulkes estimate = -32.45043011 Ry estimated scf accuracy < 2.8E-09 Ry total all-electron energy = -113.749231 Ry The total energy is the sum of the following terms: one-electron contribution = -77.03063287 Ry hartree contribution = 36.64205444 Ry xc contribution = -7.79415221 Ry ewald contribution = 24.03583855 Ry one-center paw contrib. = -8.30353801 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.764E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00629846 -0.00629846 -0.00629846 atom 3 type 2 force = 0.00629846 0.00629846 -0.00629846 atom 4 type 2 force = 0.00629846 -0.00629846 0.00629846 atom 5 type 2 force = -0.00629846 0.00629846 0.00629846 Total force = 0.021819 Total SCF correction = 0.000027 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4477533491 Ry energy new = -32.4504301087 Ry CASE: energy _new < energy _old new trust radius = 0.0143507752 bohr new conv_thr = 0.0000000063 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129043377 1.129043377 1.129043377 H -1.129043377 -1.129043377 1.129043377 H -1.129043377 1.129043377 -1.129043377 H 1.129043377 -1.129043377 -1.129043377 Writing output data file pwscf.save Check: negative starting charge= -0.000600 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.809E-02 0.000E+00 total cpu time spent up to now is 7.8 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.794E-02 0.000E+00 total cpu time spent up to now is 8.1 secs total energy = -32.45065676 Ry Harris-Foulkes estimate = -32.45076521 Ry estimated scf accuracy < 0.00018211 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-06, avg # of iterations = 2.0 negative rho (up, down): 0.792E-02 0.000E+00 total cpu time spent up to now is 8.3 secs total energy = -32.45070258 Ry Harris-Foulkes estimate = -32.45075402 Ry estimated scf accuracy < 0.00009944 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -32.45072367 Ry Harris-Foulkes estimate = -32.45072343 Ry estimated scf accuracy < 0.00000088 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 2.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 8.8 secs total energy = -32.45072388 Ry Harris-Foulkes estimate = -32.45072388 Ry estimated scf accuracy < 0.00000001 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-10, avg # of iterations = 3.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 9.1 secs total energy = -32.45072389 Ry Harris-Foulkes estimate = -32.45072389 Ry estimated scf accuracy < 6.4E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.94E-11, avg # of iterations = 1.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 9.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5978 -20.8481 -20.8481 -20.8481 -7.4123 -4.5449 -4.5449 -4.5449 highest occupied, lowest unoccupied level (ev): -20.8481 -7.4123 ! total energy = -32.45072389 Ry Harris-Foulkes estimate = -32.45072390 Ry estimated scf accuracy < 1.8E-09 Ry total all-electron energy = -113.749525 Ry The total energy is the sum of the following terms: one-electron contribution = -77.30859533 Ry hartree contribution = 36.76669030 Ry xc contribution = -7.81685994 Ry ewald contribution = 24.21222425 Ry one-center paw contrib. = -8.30418317 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.788E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00043746 0.00043746 0.00043746 atom 3 type 2 force = -0.00043746 -0.00043746 0.00043746 atom 4 type 2 force = -0.00043746 0.00043746 -0.00043746 atom 5 type 2 force = 0.00043746 -0.00043746 -0.00043746 Total force = 0.001515 Total SCF correction = 0.000004 number of scf cycles = 4 number of bfgs steps = 3 energy old = -32.4504301087 Ry energy new = -32.4507238938 Ry CASE: energy _new < energy _old new trust radius = 0.0009320037 bohr new conv_thr = 0.0000000010 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129581470 1.129581470 1.129581470 H -1.129581470 -1.129581470 1.129581470 H -1.129581470 1.129581470 -1.129581470 H 1.129581470 -1.129581470 -1.129581470 Writing output data file pwscf.save Check: negative starting charge= -0.000602 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.785E-02 0.000E+00 total cpu time spent up to now is 9.8 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.11E-09, avg # of iterations = 1.0 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 10.1 secs total energy = -32.45072497 Ry Harris-Foulkes estimate = -32.45072563 Ry estimated scf accuracy < 0.00000078 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.70E-09, avg # of iterations = 2.0 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 10.3 secs total energy = -32.45072517 Ry Harris-Foulkes estimate = -32.45072538 Ry estimated scf accuracy < 0.00000041 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-09, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 10.6 secs total energy = -32.45072526 Ry Harris-Foulkes estimate = -32.45072525 Ry estimated scf accuracy < 4.0E-09 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-11, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 10.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5897 -20.8419 -20.8419 -20.8419 -7.4142 -4.5488 -4.5488 -4.5488 highest occupied, lowest unoccupied level (ev): -20.8419 -7.4142 ! total energy = -32.45072526 Ry Harris-Foulkes estimate = -32.45072526 Ry estimated scf accuracy < 5.7E-11 Ry total all-electron energy = -113.749527 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29042132 Ry hartree contribution = 36.75851303 Ry xc contribution = -7.81536708 Ry ewald contribution = 24.20069041 Ry one-center paw contrib. = -8.30414030 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.787E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00000933 -0.00000933 -0.00000933 atom 3 type 2 force = 0.00000933 0.00000933 -0.00000933 atom 4 type 2 force = 0.00000933 -0.00000933 0.00000933 atom 5 type 2 force = -0.00000933 0.00000933 0.00000933 Total force = 0.000032 Total SCF correction = 0.000002 bfgs converged in 5 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4507252560 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129581470 1.129581470 1.129581470 H -1.129581470 -1.129581470 1.129581470 H -1.129581470 1.129581470 -1.129581470 H 1.129581470 -1.129581470 -1.129581470 End final coordinates Writing output data file pwscf.save init_run : 0.69s CPU 0.70s WALL ( 1 calls) electrons : 7.55s CPU 7.75s WALL ( 5 calls) update_pot : 0.77s CPU 0.78s WALL ( 4 calls) forces : 0.69s CPU 0.69s WALL ( 5 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.16s CPU 0.16s WALL ( 1 calls) Called by electrons: c_bands : 1.16s CPU 1.17s WALL ( 32 calls) sum_band : 0.93s CPU 0.94s WALL ( 32 calls) v_of_rho : 2.62s CPU 2.67s WALL ( 36 calls) newd : 0.62s CPU 0.63s WALL ( 36 calls) mix_rho : 0.45s CPU 0.45s WALL ( 32 calls) Called by c_bands: init_us_2 : 0.07s CPU 0.07s WALL ( 69 calls) regterg : 1.09s CPU 1.11s WALL ( 32 calls) Called by *egterg: h_psi : 0.84s CPU 0.85s WALL ( 114 calls) s_psi : 0.02s CPU 0.02s WALL ( 114 calls) g_psi : 0.04s CPU 0.05s WALL ( 81 calls) rdiaghg : 0.02s CPU 0.02s WALL ( 108 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 114 calls) General routines calbec : 0.05s CPU 0.05s WALL ( 170 calls) fft : 0.82s CPU 0.82s WALL ( 530 calls) fftw : 0.74s CPU 0.73s WALL ( 910 calls) davcio : 0.00s CPU 0.01s WALL ( 31 calls) PAW routines PAW_pot : 2.43s CPU 2.44s WALL ( 40 calls) PAW_ddot : 0.28s CPU 0.27s WALL ( 226 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 72 calls) PWSCF : 10.62s CPU 11.03s WALL This run was terminated on: 17:57:38 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/cluster3.ref0000644000700200004540000012013712053145627016323 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:56:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/cluster3.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.44 Mb ( 2401, 12) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000894 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.894E-03 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 24.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.333E-02 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -43.77713393 Ry Harris-Foulkes estimate = -44.16053204 Ry estimated scf accuracy < 0.51450938 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-03, avg # of iterations = 2.0 negative rho (up, down): 0.408E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -43.88828070 Ry Harris-Foulkes estimate = -44.11204889 Ry estimated scf accuracy < 0.45125200 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.64E-03, avg # of iterations = 2.0 negative rho (up, down): 0.585E-02 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -43.98511006 Ry Harris-Foulkes estimate = -43.98700539 Ry estimated scf accuracy < 0.00473738 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.92E-05, avg # of iterations = 14.0 negative rho (up, down): 0.567E-02 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -43.98709949 Ry Harris-Foulkes estimate = -43.98719509 Ry estimated scf accuracy < 0.00032106 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-06, avg # of iterations = 3.0 negative rho (up, down): 0.574E-02 0.000E+00 total cpu time spent up to now is 2.3 secs total energy = -43.98710307 Ry Harris-Foulkes estimate = -43.98711856 Ry estimated scf accuracy < 0.00005642 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-07, avg # of iterations = 2.0 negative rho (up, down): 0.576E-02 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -43.98710725 Ry Harris-Foulkes estimate = -43.98710787 Ry estimated scf accuracy < 0.00000356 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.46E-08, avg # of iterations = 2.0 negative rho (up, down): 0.577E-02 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -43.98710791 Ry Harris-Foulkes estimate = -43.98710793 Ry estimated scf accuracy < 0.00000011 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 2.0 negative rho (up, down): 0.577E-02 0.000E+00 total cpu time spent up to now is 3.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.7691 -13.8224 -9.0557 -7.2713 -1.3179 1.9474 2.1708 2.6722 highest occupied, lowest unoccupied level (ev): -7.2713 -1.3179 ! total energy = -43.98710795 Ry Harris-Foulkes estimate = -43.98710795 Ry estimated scf accuracy < 2.9E-09 Ry total all-electron energy = -152.747854 Ry The total energy is the sum of the following terms: one-electron contribution = -83.31927219 Ry hartree contribution = 43.20230450 Ry xc contribution = -8.51965934 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91399411 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.577E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15864462 atom 2 type 2 force = 0.07172818 0.07172818 0.07932231 atom 3 type 2 force = -0.07172818 -0.07172818 0.07932231 Total force = 0.182109 Total SCF correction = 0.000020 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9871079452 Ry new trust radius = 0.1287707028 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.071728184 1.071728184 1.079322312 H -1.071728184 -1.071728184 1.079322312 Writing output data file pwscf.save Check: negative starting charge= -0.000894 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000868 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 3.5 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.0 negative rho (up, down): 0.457E-02 0.000E+00 total cpu time spent up to now is 3.8 secs total energy = -43.99751144 Ry Harris-Foulkes estimate = -43.93877091 Ry estimated scf accuracy < 0.00870795 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-04, avg # of iterations = 2.0 negative rho (up, down): 0.467E-02 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -43.99791481 Ry Harris-Foulkes estimate = -44.00042245 Ry estimated scf accuracy < 0.00435529 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.44E-05, avg # of iterations = 2.0 negative rho (up, down): 0.481E-02 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -43.99904835 Ry Harris-Foulkes estimate = -43.99927719 Ry estimated scf accuracy < 0.00053161 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-06, avg # of iterations = 2.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 4.5 secs total energy = -43.99912650 Ry Harris-Foulkes estimate = -43.99912777 Ry estimated scf accuracy < 0.00000387 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.84E-08, avg # of iterations = 3.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 4.7 secs total energy = -43.99913002 Ry Harris-Foulkes estimate = -43.99913061 Ry estimated scf accuracy < 0.00000124 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 2.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -24.9804 -13.1244 -8.9618 -7.1077 -1.4482 1.6726 1.9893 2.6090 highest occupied, lowest unoccupied level (ev): -7.1077 -1.4482 ! total energy = -43.99913029 Ry Harris-Foulkes estimate = -43.99913029 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.759877 Ry The total energy is the sum of the following terms: one-electron contribution = -81.68212826 Ry hartree contribution = 42.43735096 Ry xc contribution = -8.39131947 Ry ewald contribution = 13.55827488 Ry one-center paw contrib. = -9.92130839 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.482E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00526201 atom 2 type 2 force = -0.01916462 -0.01916462 -0.00263100 atom 3 type 2 force = 0.01916462 0.01916462 -0.00263100 Total force = 0.038509 Total SCF correction = 0.000032 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9871079452 Ry energy new = -43.9991302934 Ry CASE: energy _new < energy _old new trust radius = 0.0221086609 bohr new conv_thr = 0.0000000192 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.056130835 1.056130835 1.077826210 H -1.056130835 -1.056130835 1.077826210 Writing output data file pwscf.save Check: negative starting charge= -0.000868 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000866 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 5.5 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -43.99861742 Ry Harris-Foulkes estimate = -43.94595568 Ry estimated scf accuracy < 0.00644568 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.06E-05, avg # of iterations = 2.0 negative rho (up, down): 0.498E-02 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -43.99901561 Ry Harris-Foulkes estimate = -44.00116394 Ry estimated scf accuracy < 0.00403917 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-05, avg # of iterations = 2.0 negative rho (up, down): 0.496E-02 0.000E+00 total cpu time spent up to now is 6.2 secs total energy = -43.99990940 Ry Harris-Foulkes estimate = -44.00005462 Ry estimated scf accuracy < 0.00026165 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.27E-06, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.4 secs total energy = -43.99995052 Ry Harris-Foulkes estimate = -43.99995166 Ry estimated scf accuracy < 0.00000273 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-08, avg # of iterations = 3.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.7 secs total energy = -43.99995321 Ry Harris-Foulkes estimate = -43.99995328 Ry estimated scf accuracy < 0.00000023 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-09, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1028 -13.1875 -9.0128 -7.1352 -1.4274 1.7194 2.0181 2.6216 highest occupied, lowest unoccupied level (ev): -7.1352 -1.4274 ! total energy = -43.99995329 Ry Harris-Foulkes estimate = -43.99995327 Ry estimated scf accuracy < 5.0E-09 Ry total all-electron energy = -152.760700 Ry The total energy is the sum of the following terms: one-electron contribution = -81.91560932 Ry hartree contribution = 42.54600215 Ry xc contribution = -8.40938892 Ry ewald contribution = 13.69966731 Ry one-center paw contrib. = -9.92062450 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.497E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01140113 atom 2 type 2 force = -0.00725022 -0.00725022 0.00570056 atom 3 type 2 force = 0.00725022 0.00725022 0.00570056 Total force = 0.016591 Total SCF correction = 0.000038 number of scf cycles = 3 number of bfgs steps = 2 energy old = -43.9991302934 Ry energy new = -43.9999532884 Ry CASE: energy _new < energy _old new trust radius = 0.0202271411 bohr new conv_thr = 0.0000000073 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.043593567 1.043593567 1.087561252 H -1.043593567 -1.043593567 1.087561252 Writing output data file pwscf.save Check: negative starting charge= -0.000866 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000860 negative rho (up, down): 0.505E-02 0.000E+00 total cpu time spent up to now is 7.4 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.506E-02 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -43.99943799 Ry Harris-Foulkes estimate = -43.93833915 Ry estimated scf accuracy < 0.00463009 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.79E-05, avg # of iterations = 2.0 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 7.9 secs total energy = -43.99965332 Ry Harris-Foulkes estimate = -44.00108380 Ry estimated scf accuracy < 0.00263486 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-05, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.1 secs total energy = -44.00024315 Ry Harris-Foulkes estimate = -44.00036326 Ry estimated scf accuracy < 0.00021893 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-06, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.4 secs total energy = -44.00027652 Ry Harris-Foulkes estimate = -44.00027741 Ry estimated scf accuracy < 0.00000203 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -44.00027835 Ry Harris-Foulkes estimate = -44.00027847 Ry estimated scf accuracy < 0.00000028 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.55E-09, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1747 -13.1790 -9.0752 -7.1513 -1.4182 1.7414 2.0264 2.6348 highest occupied, lowest unoccupied level (ev): -7.1513 -1.4182 ! total energy = -44.00027842 Ry Harris-Foulkes estimate = -44.00027841 Ry estimated scf accuracy < 6.3E-10 Ry total all-electron energy = -152.761025 Ry The total energy is the sum of the following terms: one-electron contribution = -82.02683813 Ry hartree contribution = 42.59641351 Ry xc contribution = -8.41787316 Ry ewald contribution = 13.76876360 Ry one-center paw contrib. = -9.92074425 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.502E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01704668 atom 2 type 2 force = -0.00016733 -0.00016733 0.00852334 atom 3 type 2 force = 0.00016733 0.00016733 0.00852334 Total force = 0.012058 Total SCF correction = 0.000006 number of scf cycles = 4 number of bfgs steps = 3 energy old = -43.9999532884 Ry energy new = -44.0002784226 Ry CASE: energy _new < energy _old new trust radius = 0.0223935898 bohr new conv_thr = 0.0000000033 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.033909439 1.033909439 1.105278707 H -1.033909439 -1.033909439 1.105278707 Writing output data file pwscf.save Check: negative starting charge= -0.000860 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000854 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 9.3 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 9.6 secs total energy = -43.99992008 Ry Harris-Foulkes estimate = -43.95299126 Ry estimated scf accuracy < 0.00443049 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.54E-05, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 9.8 secs total energy = -43.99999618 Ry Harris-Foulkes estimate = -44.00111492 Ry estimated scf accuracy < 0.00196962 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 2.0 negative rho (up, down): 0.500E-02 0.000E+00 total cpu time spent up to now is 10.1 secs total energy = -44.00044771 Ry Harris-Foulkes estimate = -44.00060577 Ry estimated scf accuracy < 0.00030571 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-06, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 10.3 secs total energy = -44.00050028 Ry Harris-Foulkes estimate = -44.00050064 Ry estimated scf accuracy < 0.00000106 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-08, avg # of iterations = 3.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 10.6 secs total energy = -44.00050188 Ry Harris-Foulkes estimate = -44.00050191 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 2.0 negative rho (up, down): 0.500E-02 0.000E+00 total cpu time spent up to now is 10.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.2034 -13.1161 -9.1439 -7.1589 -1.4184 1.7437 2.0194 2.6459 highest occupied, lowest unoccupied level (ev): -7.1589 -1.4184 ! total energy = -44.00050192 Ry Harris-Foulkes estimate = -44.00050190 Ry estimated scf accuracy < 1.0E-10 Ry total all-electron energy = -152.761248 Ry The total energy is the sum of the following terms: one-electron contribution = -82.03829179 Ry hartree contribution = 42.60000765 Ry xc contribution = -8.41858888 Ry ewald contribution = 13.77781031 Ry one-center paw contrib. = -9.92143921 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.500E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01311142 atom 2 type 2 force = 0.00251585 0.00251585 0.00655571 atom 3 type 2 force = -0.00251585 -0.00251585 0.00655571 Total force = 0.010549 Total SCF correction = 0.000014 number of scf cycles = 5 number of bfgs steps = 4 energy old = -44.0002784226 Ry energy new = -44.0005019224 Ry CASE: energy _new < energy _old new trust radius = 0.0205527051 bohr new conv_thr = 0.0000000022 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.028296563 1.028296563 1.124236685 H -1.028296563 -1.028296563 1.124236685 Writing output data file pwscf.save Check: negative starting charge= -0.000854 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000850 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 11.3 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 11.5 secs total energy = -44.00015528 Ry Harris-Foulkes estimate = -43.93961023 Ry estimated scf accuracy < 0.00486021 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-05, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 11.8 secs total energy = -44.00012905 Ry Harris-Foulkes estimate = -44.00116967 Ry estimated scf accuracy < 0.00178898 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-05, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 12.0 secs total energy = -44.00053613 Ry Harris-Foulkes estimate = -44.00075552 Ry estimated scf accuracy < 0.00044902 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-06, avg # of iterations = 2.0 negative rho (up, down): 0.496E-02 0.000E+00 total cpu time spent up to now is 12.2 secs total energy = -44.00061178 Ry Harris-Foulkes estimate = -44.00061210 Ry estimated scf accuracy < 0.00000081 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-08, avg # of iterations = 4.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 12.5 secs total energy = -44.00061315 Ry Harris-Foulkes estimate = -44.00061334 Ry estimated scf accuracy < 0.00000055 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.85E-09, avg # of iterations = 1.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 12.7 secs total energy = -44.00061318 Ry Harris-Foulkes estimate = -44.00061320 Ry estimated scf accuracy < 0.00000007 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.89E-10, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 13.0 secs total energy = -44.00061318 Ry Harris-Foulkes estimate = -44.00061319 Ry estimated scf accuracy < 0.00000001 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-10, avg # of iterations = 3.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 13.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1967 -13.0323 -9.2013 -7.1594 -1.4249 1.7315 2.0040 2.6539 highest occupied, lowest unoccupied level (ev): -7.1594 -1.4249 ! total energy = -44.00061318 Ry Harris-Foulkes estimate = -44.00061319 Ry estimated scf accuracy < 1.5E-10 Ry total all-electron energy = -152.761359 Ry The total energy is the sum of the following terms: one-electron contribution = -81.98019189 Ry hartree contribution = 42.57142169 Ry xc contribution = -8.41393245 Ry ewald contribution = 13.74444702 Ry one-center paw contrib. = -9.92235755 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.495E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00334397 atom 2 type 2 force = 0.00165860 0.00165860 0.00167199 atom 3 type 2 force = -0.00165860 -0.00165860 0.00167199 Total force = 0.004074 Total SCF correction = 0.000003 number of scf cycles = 6 number of bfgs steps = 5 energy old = -44.0005019224 Ry energy new = -44.0006131847 Ry CASE: energy _new < energy _old new trust radius = 0.0026539448 bohr new conv_thr = 0.0000000011 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029107768 1.029107768 1.126629866 H -1.029107768 -1.029107768 1.126629866 Writing output data file pwscf.save Check: negative starting charge= -0.000850 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000850 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 13.7 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 14.0 secs total energy = -43.99995798 Ry Harris-Foulkes estimate = -43.94429579 Ry estimated scf accuracy < 0.00509579 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.37E-05, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 14.2 secs total energy = -44.00002390 Ry Harris-Foulkes estimate = -44.00135397 Ry estimated scf accuracy < 0.00234743 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.93E-05, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 14.4 secs total energy = -44.00056018 Ry Harris-Foulkes estimate = -44.00074496 Ry estimated scf accuracy < 0.00035513 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.44E-06, avg # of iterations = 2.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 14.7 secs total energy = -44.00061955 Ry Harris-Foulkes estimate = -44.00062007 Ry estimated scf accuracy < 0.00000134 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-08, avg # of iterations = 3.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 14.9 secs total energy = -44.00062119 Ry Harris-Foulkes estimate = -44.00062123 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-09, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 15.2 secs total energy = -44.00062123 Ry Harris-Foulkes estimate = -44.00062122 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-11, avg # of iterations = 3.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 15.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1839 -13.0171 -9.2030 -7.1570 -1.4276 1.7255 2.0000 2.6532 highest occupied, lowest unoccupied level (ev): -7.1570 -1.4276 ! total energy = -44.00062123 Ry Harris-Foulkes estimate = -44.00062123 Ry estimated scf accuracy < 2.0E-10 Ry total all-electron energy = -152.761367 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95131883 Ry hartree contribution = 42.55782764 Ry xc contribution = -8.41168464 Ry ewald contribution = 13.72707950 Ry one-center paw contrib. = -9.92252491 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.493E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00046242 atom 2 type 2 force = 0.00039485 0.00039485 0.00023121 atom 3 type 2 force = -0.00039485 -0.00039485 0.00023121 Total force = 0.000855 Total SCF correction = 0.000005 bfgs converged in 7 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0006212345 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029107768 1.029107768 1.126629866 H -1.029107768 -1.029107768 1.126629866 End final coordinates Writing output data file pwscf.save init_run : 0.70s CPU 0.71s WALL ( 1 calls) electrons : 11.19s CPU 11.42s WALL ( 7 calls) update_pot : 1.16s CPU 1.16s WALL ( 6 calls) forces : 0.95s CPU 0.95s WALL ( 7 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.15s CPU 0.16s WALL ( 1 calls) Called by electrons: c_bands : 1.66s CPU 1.66s WALL ( 47 calls) sum_band : 1.30s CPU 1.30s WALL ( 47 calls) v_of_rho : 3.90s CPU 4.00s WALL ( 54 calls) newd : 0.92s CPU 0.90s WALL ( 54 calls) mix_rho : 0.69s CPU 0.69s WALL ( 47 calls) Called by c_bands: init_us_2 : 0.10s CPU 0.09s WALL ( 95 calls) regterg : 1.58s CPU 1.57s WALL ( 47 calls) Called by *egterg: h_psi : 1.17s CPU 1.20s WALL ( 187 calls) s_psi : 0.02s CPU 0.02s WALL ( 187 calls) g_psi : 0.04s CPU 0.07s WALL ( 139 calls) rdiaghg : 0.04s CPU 0.04s WALL ( 180 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.02s WALL ( 187 calls) General routines calbec : 0.03s CPU 0.05s WALL ( 262 calls) fft : 1.26s CPU 1.22s WALL ( 785 calls) fftw : 0.97s CPU 1.04s WALL ( 1314 calls) davcio : 0.00s CPU 0.01s WALL ( 47 calls) PAW routines PAW_pot : 3.60s CPU 3.61s WALL ( 60 calls) PAW_ddot : 0.44s CPU 0.42s WALL ( 371 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 107 calls) PWSCF : 15.14s CPU 15.62s WALL This run was terminated on: 22:56:27 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vc-md2.ref0000644000700200004540000035247012053145627015656 0ustar marsamoscm Program PWSCF v.5.0.2 (svn rev. 9400) starts on 2Oct2012 at 21:55:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/vc-md2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 10 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.0 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.9 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.979275245 -0.002715711 -0.001925011 0.482552933 0.852132527 -0.001924849 0.482552881 0.280394619 0.804681633 new unit-cell volume = 232.0702 (a.u.)^3 new positions in cryst coord As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 new positions in cart coord (alat unit) As 0.560732574 0.325821982 0.230948804 As -0.560732574 -0.325821982 -0.230948804 Ekin = 0.00000000 Ry T = 0.0 K Etot = -24.60612472 new unit-cell volume = 232.07021 a.u.^3 ( 34.38926 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.979275245 -0.002715711 -0.001925011 0.482552933 0.852132527 -0.001924849 0.482552881 0.280394619 0.804681633 ATOMIC_POSITIONS (crystal) As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1279552 0.0743503 0.0527009), wk = 0.0625000 k( 2) = ( 0.1285659 0.0747051 0.3628929), wk = 0.0625000 k( 3) = ( 0.1267337 0.0736406 -0.5676831), wk = 0.0625000 k( 4) = ( 0.1273445 0.0739954 -0.2574911), wk = 0.0625000 k( 5) = ( 0.1285659 0.3671547 -0.0496943), wk = 0.0625000 k( 6) = ( 0.1291767 0.3675095 0.2604977), wk = 0.0625000 k( 7) = ( 0.1273444 0.3664451 -0.6700782), wk = 0.0625000 k( 8) = ( 0.1279552 0.3667999 -0.3598863), wk = 0.0625000 k( 9) = ( 0.1267338 -0.5112586 0.2574912), wk = 0.0625000 k( 10) = ( 0.1273445 -0.5109038 0.5676832), wk = 0.0625000 k( 11) = ( 0.1255123 -0.5119683 -0.3628928), wk = 0.0625000 k( 12) = ( 0.1261230 -0.5116135 -0.0527008), wk = 0.0625000 k( 13) = ( 0.1273445 -0.2184542 0.1550960), wk = 0.0625000 k( 14) = ( 0.1279552 -0.2180994 0.4652880), wk = 0.0625000 k( 15) = ( 0.1261230 -0.2191638 -0.4652879), wk = 0.0625000 k( 16) = ( 0.1267337 -0.2188090 -0.1550960), wk = 0.0625000 k( 17) = ( 0.3826442 -0.0701085 -0.0496942), wk = 0.0625000 k( 18) = ( 0.3832549 -0.0697537 0.2604978), wk = 0.0625000 k( 19) = ( 0.3814227 -0.0708181 -0.6700782), wk = 0.0625000 k( 20) = ( 0.3820334 -0.0704633 -0.3598862), wk = 0.0625000 k( 21) = ( 0.3832549 0.2226960 -0.1520893), wk = 0.0625000 k( 22) = ( 0.3838656 0.2230508 0.1581026), wk = 0.0625000 k( 23) = ( 0.3820334 0.2219863 -0.7724733), wk = 0.0625000 k( 24) = ( 0.3826441 0.2223412 -0.4622813), wk = 0.0625000 k( 25) = ( 0.3814227 -0.6557174 0.1550961), wk = 0.0625000 k( 26) = ( 0.3820335 -0.6553626 0.4652881), wk = 0.0625000 k( 27) = ( 0.3802012 -0.6564270 -0.4652879), wk = 0.0625000 k( 28) = ( 0.3808120 -0.6560722 -0.1550959), wk = 0.0625000 k( 29) = ( 0.3820334 -0.3629129 0.0527010), wk = 0.0625000 k( 30) = ( 0.3826442 -0.3625581 0.3628930), wk = 0.0625000 k( 31) = ( 0.3808119 -0.3636226 -0.5676830), wk = 0.0625000 k( 32) = ( 0.3814227 -0.3632678 -0.2574910), wk = 0.0625000 extrapolated charge 9.42691, renormalised to 10.00000 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 3.1 secs total energy = -25.42251869 Ry Harris-Foulkes estimate = -25.06269473 Ry estimated scf accuracy < 0.00179425 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-05, avg # of iterations = 3.1 total cpu time spent up to now is 3.6 secs total energy = -25.42512977 Ry Harris-Foulkes estimate = -25.42560359 Ry estimated scf accuracy < 0.00109850 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 total cpu time spent up to now is 3.8 secs total energy = -25.42510343 Ry Harris-Foulkes estimate = -25.42518770 Ry estimated scf accuracy < 0.00020010 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.1 secs total energy = -25.42509493 Ry Harris-Foulkes estimate = -25.42511641 Ry estimated scf accuracy < 0.00003627 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 3.0 total cpu time spent up to now is 4.4 secs total energy = -25.42510802 Ry Harris-Foulkes estimate = -25.42510823 Ry estimated scf accuracy < 0.00000106 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-08, avg # of iterations = 1.1 total cpu time spent up to now is 4.7 secs total energy = -25.42510774 Ry Harris-Foulkes estimate = -25.42510803 Ry estimated scf accuracy < 0.00000055 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 2.0 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.1280 0.0744 0.0527 ( 531 PWs) bands (ev): -6.6362 5.5053 6.7247 6.7247 9.4283 12.0072 12.6618 12.6618 17.2969 k = 0.1286 0.0747 0.3629 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6366 k = 0.1267 0.0736-0.5677 ( 520 PWs) bands (ev): -3.8389 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1273 0.0740-0.2575 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k = 0.1286 0.3672-0.0497 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.1292 0.3675 0.2605 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.1273 0.3664-0.6701 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.1280 0.3668-0.3599 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1267-0.5113 0.2575 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1273-0.5109 0.5677 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.1255-0.5120-0.3629 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.1261-0.5116-0.0527 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1273-0.2185 0.1551 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k = 0.1280-0.2181 0.4653 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1261-0.2192-0.4653 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1267-0.2188-0.1551 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k = 0.3826-0.0701-0.0497 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.3833-0.0698 0.2605 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.3814-0.0708-0.6701 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3820-0.0705-0.3599 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.3833 0.2227-0.1521 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.3839 0.2231 0.1581 ( 522 PWs) bands (ev): -5.3526 1.3108 6.6337 6.6337 8.4952 10.7707 10.7707 12.9974 18.4444 k = 0.3820 0.2220-0.7725 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 k = 0.3826 0.2223-0.4623 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.3814-0.6557 0.1551 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3820-0.6554 0.4653 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 k = 0.3802-0.6564-0.4653 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 k = 0.3808-0.6561-0.1551 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3820-0.3629 0.0527 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.3826-0.3626 0.3629 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.3808-0.3636-0.5677 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3814-0.3633-0.2575 ( 520 PWs) bands (ev): -3.8389 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 the Fermi energy is 10.7136 ev ! total energy = -25.42510781 Ry Harris-Foulkes estimate = -25.42510781 Ry estimated scf accuracy < 4.1E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.11171128 -0.06491152 -0.04601045 atom 2 type 1 force = 0.11171128 0.06491152 0.04601045 Total force = 0.193958 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 299.79 0.00173673 -0.00035176 -0.00024934 255.48 -51.75 -36.68 -0.00035176 0.00213771 -0.00014488 -51.75 314.47 -21.31 -0.00024934 -0.00014488 0.00223942 -36.68 -21.31 329.43 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.932269060 -0.010851768 -0.007692089 0.452208108 0.815322480 -0.007691761 0.452207985 0.262762373 0.771858885 new unit-cell volume = 204.7567 (a.u.)^3 new positions in cryst coord As 0.283819478 0.283819506 0.283819525 As -0.283819478 -0.283819506 -0.283819525 new positions in cart coord (alat unit) As 0.521287055 0.302901572 0.214702385 As -0.521287055 -0.302901572 -0.214702385 Ekin = 0.03043221 Ry T = 1067.7 K Etot = -24.60588486 new unit-cell volume = 204.75667 a.u.^3 ( 30.34181 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.932269060 -0.010851768 -0.007692089 0.452208108 0.815322480 -0.007691761 0.452207985 0.262762373 0.771858885 ATOMIC_POSITIONS (crystal) As 0.283819478 0.283819506 0.283819525 As -0.283819478 -0.283819506 -0.283819525 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1354580 0.0787099 0.0557911), wk = 0.0625000 k( 2) = ( 0.1381312 0.0802631 0.3775896), wk = 0.0625000 k( 3) = ( 0.1301116 0.0756035 -0.5878059), wk = 0.0625000 k( 4) = ( 0.1327848 0.0771567 -0.2660074), wk = 0.0625000 k( 5) = ( 0.1381311 0.3828628 -0.0493172), wk = 0.0625000 k( 6) = ( 0.1408044 0.3844160 0.2724813), wk = 0.0625000 k( 7) = ( 0.1327847 0.3797564 -0.6929142), wk = 0.0625000 k( 8) = ( 0.1354579 0.3813096 -0.3711157), wk = 0.0625000 k( 9) = ( 0.1301117 -0.5295960 0.2660076), wk = 0.0625000 k( 10) = ( 0.1327849 -0.5280428 0.5878061), wk = 0.0625000 k( 11) = ( 0.1247653 -0.5327023 -0.3775894), wk = 0.0625000 k( 12) = ( 0.1274385 -0.5311491 -0.0557909), wk = 0.0625000 k( 13) = ( 0.1327848 -0.2254430 0.1608993), wk = 0.0625000 k( 14) = ( 0.1354581 -0.2238899 0.4826978), wk = 0.0625000 k( 15) = ( 0.1274384 -0.2285494 -0.4826977), wk = 0.0625000 k( 16) = ( 0.1301116 -0.2269962 -0.1608992), wk = 0.0625000 k( 17) = ( 0.4010276 -0.0695765 -0.0493170), wk = 0.0625000 k( 18) = ( 0.4037008 -0.0680233 0.2724815), wk = 0.0625000 k( 19) = ( 0.3956812 -0.0726828 -0.6929140), wk = 0.0625000 k( 20) = ( 0.3983544 -0.0711297 -0.3711155), wk = 0.0625000 k( 21) = ( 0.4037007 0.2345764 -0.1544253), wk = 0.0625000 k( 22) = ( 0.4063740 0.2361296 0.1673732), wk = 0.0625000 k( 23) = ( 0.3983543 0.2314701 -0.7980223), wk = 0.0625000 k( 24) = ( 0.4010275 0.2330233 -0.4762238), wk = 0.0625000 k( 25) = ( 0.3956813 -0.6778823 0.1608995), wk = 0.0625000 k( 26) = ( 0.3983545 -0.6763291 0.4826980), wk = 0.0625000 k( 27) = ( 0.3903349 -0.6809887 -0.4826975), wk = 0.0625000 k( 28) = ( 0.3930081 -0.6794355 -0.1608990), wk = 0.0625000 k( 29) = ( 0.3983544 -0.3737294 0.0557912), wk = 0.0625000 k( 30) = ( 0.4010277 -0.3721762 0.3775897), wk = 0.0625000 k( 31) = ( 0.3930080 -0.3768358 -0.5878058), wk = 0.0625000 k( 32) = ( 0.3956812 -0.3752826 -0.2660073), wk = 0.0625000 extrapolated charge 8.66610, renormalised to 10.00000 total cpu time spent up to now is 5.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 total cpu time spent up to now is 6.0 secs total energy = -25.36409091 Ry Harris-Foulkes estimate = -24.44606232 Ry estimated scf accuracy < 0.00992644 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-05, avg # of iterations = 2.8 total cpu time spent up to now is 6.4 secs total energy = -25.37482535 Ry Harris-Foulkes estimate = -25.37664041 Ry estimated scf accuracy < 0.00396951 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 6.7 secs total energy = -25.37481348 Ry Harris-Foulkes estimate = -25.37508297 Ry estimated scf accuracy < 0.00054793 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-06, avg # of iterations = 1.6 total cpu time spent up to now is 7.0 secs total energy = -25.37485632 Ry Harris-Foulkes estimate = -25.37487321 Ry estimated scf accuracy < 0.00003007 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 3.0 total cpu time spent up to now is 7.3 secs total energy = -25.37487646 Ry Harris-Foulkes estimate = -25.37487689 Ry estimated scf accuracy < 0.00000244 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 7.6 secs total energy = -25.37487570 Ry Harris-Foulkes estimate = -25.37487648 Ry estimated scf accuracy < 0.00000142 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-08, avg # of iterations = 1.8 total cpu time spent up to now is 7.9 secs End of self-consistent calculation k = 0.1355 0.0787 0.0558 ( 531 PWs) bands (ev): -5.7521 7.8337 8.5868 8.5868 11.9288 14.4502 14.8759 14.8759 18.9891 k = 0.1381 0.0803 0.3776 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9841 k = 0.1301 0.0756-0.5878 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 k = 0.1328 0.0772-0.2660 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6785 k = 0.1381 0.3829-0.0493 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9845 k = 0.1408 0.3844 0.2725 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.1328 0.3798-0.6929 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.1355 0.3813-0.3711 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1301-0.5296 0.2660 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 k = 0.1328-0.5280 0.5878 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.1248-0.5327-0.3776 ( 510 PWs) bands (ev): -2.1291 0.8630 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.1274-0.5311-0.0558 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1328-0.2254 0.1609 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6785 k = 0.1355-0.2239 0.4827 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1274-0.2285-0.4827 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1301-0.2270-0.1609 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6784 k = 0.4010-0.0696-0.0493 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9845 k = 0.4037-0.0680 0.2725 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.3957-0.0727-0.6929 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3984-0.0711-0.3711 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9499 19.3900 k = 0.4037 0.2346-0.1544 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.4064 0.2361 0.1674 ( 522 PWs) bands (ev): -4.0635 2.4506 8.4748 8.4748 11.0475 12.4211 12.4211 15.0027 21.1259 k = 0.3984 0.2315-0.7980 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 k = 0.4010 0.2330-0.4762 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.3957-0.6779 0.1609 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3984-0.6763 0.4827 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 k = 0.3903-0.6810-0.4827 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 k = 0.3930-0.6794-0.1609 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3984-0.3737 0.0558 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9499 19.3900 k = 0.4010-0.3722 0.3776 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.3930-0.3768-0.5878 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3957-0.3753-0.2660 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 the Fermi energy is 12.4553 ev ! total energy = -25.37487589 Ry Harris-Foulkes estimate = -25.37487589 Ry estimated scf accuracy < 7.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.13007185 -0.07557807 -0.05357005 atom 2 type 1 force = 0.13007185 0.07557807 0.05357005 Total force = 0.225834 Total SCF correction = 0.000014 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 521.23 0.00311714 -0.00049762 -0.00035274 458.55 -73.20 -51.89 -0.00049762 0.00368438 -0.00020492 -73.20 541.99 -30.14 -0.00035274 -0.00020492 0.00382825 -51.89 -30.14 563.16 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.879345305 -0.027201701 -0.019281615 0.411796889 0.777438474 -0.019280427 0.411796452 0.239281376 0.739950985 new unit-cell volume = 180.0788 (a.u.)^3 new positions in cryst coord As 0.275031585 0.275031812 0.275031933 As -0.275031585 -0.275031812 -0.275031933 new positions in cart coord (alat unit) As 0.468362152 0.272149005 0.192904366 As -0.468362152 -0.272149005 -0.192904366 Ekin = 0.07434724 Ry T = 1838.1 K Etot = -24.60457477 new unit-cell volume = 180.07879 a.u.^3 ( 26.68492 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.879345305 -0.027201701 -0.019281615 0.411796889 0.777438474 -0.019280427 0.411796452 0.239281376 0.739950985 ATOMIC_POSITIONS (crystal) As 0.275031585 0.275031812 0.275031933 As -0.275031585 -0.275031812 -0.275031933 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1460967 0.0848916 0.0601728), wk = 0.0625000 k( 2) = ( 0.1535173 0.0892030 0.3925091), wk = 0.0625000 k( 3) = ( 0.1312555 0.0762689 -0.6044999), wk = 0.0625000 k( 4) = ( 0.1386761 0.0805803 -0.2721635), wk = 0.0625000 k( 5) = ( 0.1535170 0.3999013 -0.0458229), wk = 0.0625000 k( 6) = ( 0.1609376 0.4042127 0.2865134), wk = 0.0625000 k( 7) = ( 0.1386758 0.3912786 -0.7104956), wk = 0.0625000 k( 8) = ( 0.1460964 0.3955900 -0.3781592), wk = 0.0625000 k( 9) = ( 0.1312560 -0.5451279 0.2721642), wk = 0.0625000 k( 10) = ( 0.1386766 -0.5408165 0.6045006), wk = 0.0625000 k( 11) = ( 0.1164148 -0.5537506 -0.3925085), wk = 0.0625000 k( 12) = ( 0.1238354 -0.5494392 -0.0601721), wk = 0.0625000 k( 13) = ( 0.1386763 -0.2301181 0.1661685), wk = 0.0625000 k( 14) = ( 0.1460969 -0.2258068 0.4985049), wk = 0.0625000 k( 15) = ( 0.1238352 -0.2387408 -0.4985042), wk = 0.0625000 k( 16) = ( 0.1312558 -0.2344295 -0.1661678), wk = 0.0625000 k( 17) = ( 0.4234491 -0.0646463 -0.0458222), wk = 0.0625000 k( 18) = ( 0.4308697 -0.0603349 0.2865141), wk = 0.0625000 k( 19) = ( 0.4086079 -0.0732690 -0.7104949), wk = 0.0625000 k( 20) = ( 0.4160285 -0.0689576 -0.3781586), wk = 0.0625000 k( 21) = ( 0.4308694 0.2503635 -0.1518179), wk = 0.0625000 k( 22) = ( 0.4382900 0.2546748 0.1805184), wk = 0.0625000 k( 23) = ( 0.4160283 0.2417408 -0.8164906), wk = 0.0625000 k( 24) = ( 0.4234489 0.2460521 -0.4841543), wk = 0.0625000 k( 25) = ( 0.4086084 -0.6946657 0.1661692), wk = 0.0625000 k( 26) = ( 0.4160290 -0.6903544 0.4985055), wk = 0.0625000 k( 27) = ( 0.3937673 -0.7032884 -0.4985035), wk = 0.0625000 k( 28) = ( 0.4011879 -0.6989771 -0.1661671), wk = 0.0625000 k( 29) = ( 0.4160288 -0.3796560 0.0601735), wk = 0.0625000 k( 30) = ( 0.4234494 -0.3753447 0.3925098), wk = 0.0625000 k( 31) = ( 0.4011876 -0.3882787 -0.6044992), wk = 0.0625000 k( 32) = ( 0.4086082 -0.3839674 -0.2721628), wk = 0.0625000 extrapolated charge 8.62966, renormalised to 10.00000 total cpu time spent up to now is 8.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.9 total cpu time spent up to now is 9.0 secs total energy = -25.30239889 Ry Harris-Foulkes estimate = -24.25923695 Ry estimated scf accuracy < 0.00874531 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.75E-05, avg # of iterations = 2.5 total cpu time spent up to now is 9.4 secs total energy = -25.30980277 Ry Harris-Foulkes estimate = -25.31092519 Ry estimated scf accuracy < 0.00246105 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 1.0 total cpu time spent up to now is 9.6 secs total energy = -25.30977167 Ry Harris-Foulkes estimate = -25.30995505 Ry estimated scf accuracy < 0.00032283 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-06, avg # of iterations = 2.4 total cpu time spent up to now is 10.0 secs total energy = -25.30983351 Ry Harris-Foulkes estimate = -25.30984427 Ry estimated scf accuracy < 0.00001929 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-07, avg # of iterations = 1.5 total cpu time spent up to now is 10.2 secs total energy = -25.30983565 Ry Harris-Foulkes estimate = -25.30983581 Ry estimated scf accuracy < 0.00000032 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-09, avg # of iterations = 3.0 total cpu time spent up to now is 10.6 secs End of self-consistent calculation k = 0.1461 0.0849 0.0602 ( 531 PWs) bands (ev): -4.6704 10.5386 10.7212 10.7212 14.7865 17.5539 17.5540 17.6062 20.5639 k = 0.1535 0.0892 0.3925 ( 522 PWs) bands (ev): -3.1757 4.2504 10.0971 11.2196 14.7106 15.3596 16.6589 19.6035 20.7628 k = 0.1313 0.0763-0.6045 ( 520 PWs) bands (ev): -1.1874 0.7889 9.6637 10.6490 12.4869 16.6351 17.6016 20.4462 24.8602 k = 0.1387 0.0806-0.2722 ( 525 PWs) bands (ev): -3.9875 6.2785 9.4000 11.8962 13.6720 17.6215 18.9914 19.9687 21.4730 k = 0.1535 0.3999-0.0458 ( 522 PWs) bands (ev): -3.1757 4.2504 10.0971 11.2196 14.7105 15.3596 16.6589 19.6035 20.7627 k = 0.1609 0.4042 0.2865 ( 519 PWs) bands (ev): -2.3931 6.1095 7.4451 7.9813 10.8076 15.8470 19.7005 20.7018 21.8444 k = 0.1387 0.3913-0.7105 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.1461 0.3956-0.3782 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5351 17.5701 19.2280 20.0867 21.9687 k = 0.1313-0.5451 0.2722 ( 520 PWs) bands (ev): -1.1874 0.7889 9.6637 10.6490 12.4869 16.6351 17.6016 20.4462 24.8602 k = 0.1387-0.5408 0.6045 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.1164-0.5538-0.3925 ( 510 PWs) bands (ev): -0.5058 3.1558 6.3677 7.2913 9.5809 15.7266 22.3640 24.0997 26.0208 k = 0.1238-0.5494-0.0602 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5352 17.5701 19.2281 20.0868 21.9687 k = 0.1387-0.2301 0.1662 ( 525 PWs) bands (ev): -3.9875 6.2785 9.4000 11.8962 13.6721 17.6215 18.9914 19.9687 21.4730 k = 0.1461-0.2258 0.4985 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5351 17.5701 19.2280 20.0868 21.9687 k = 0.1238-0.2387-0.4985 ( 521 PWs) bands (ev): -1.8042 2.5587 7.0648 10.1443 13.5352 17.5701 19.2281 20.0868 21.9687 k = 0.1313-0.2344-0.1662 ( 525 PWs) bands (ev): -3.9875 6.2785 9.4001 11.8962 13.6720 17.6215 18.9914 19.9688 21.4730 k = 0.4234-0.0646-0.0458 ( 522 PWs) bands (ev): -3.1757 4.2503 10.0971 11.2196 14.7106 15.3596 16.6589 19.6035 20.7628 k = 0.4309-0.0603 0.2865 ( 519 PWs) bands (ev): -2.3931 6.1095 7.4451 7.9813 10.8076 15.8470 19.7005 20.7019 21.8444 k = 0.4086-0.0733-0.7105 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.4160-0.0690-0.3782 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5352 17.5701 19.2280 20.0868 21.9687 k = 0.4309 0.2504-0.1518 ( 519 PWs) bands (ev): -2.3931 6.1095 7.4451 7.9813 10.8076 15.8470 19.7005 20.7019 21.8444 k = 0.4383 0.2547 0.1805 ( 522 PWs) bands (ev): -2.3376 3.8466 10.6090 10.6090 13.7251 14.0112 14.0112 16.7442 24.5892 k = 0.4160 0.2417-0.8165 ( 520 PWs) bands (ev): -0.5167 2.9306 5.4995 8.9534 11.3665 16.6441 18.2087 21.6895 23.1759 k = 0.4234 0.2461-0.4842 ( 510 PWs) bands (ev): -0.5058 3.1558 6.3677 7.2913 9.5809 15.7266 22.3640 24.0997 26.0209 k = 0.4086-0.6947 0.1662 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3481 k = 0.4160-0.6904 0.4985 ( 520 PWs) bands (ev): -0.5167 2.9306 5.4995 8.9534 11.3665 16.6441 18.2087 21.6895 23.1760 k = 0.3938-0.7033-0.4985 ( 520 PWs) bands (ev): -0.5167 2.9306 5.4995 8.9535 11.3666 16.6441 18.2087 21.6894 23.1759 k = 0.4012-0.6990-0.1662 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.4160-0.3797 0.0602 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5351 17.5701 19.2280 20.0868 21.9687 k = 0.4234-0.3753 0.3925 ( 510 PWs) bands (ev): -0.5058 3.1558 6.3677 7.2913 9.5809 15.7266 22.3640 24.0997 26.0209 k = 0.4012-0.3883-0.6045 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.4086-0.3840-0.2722 ( 520 PWs) bands (ev): -1.1874 0.7889 9.6637 10.6490 12.4869 16.6352 17.6016 20.4462 24.8602 the Fermi energy is 14.7246 ev ! total energy = -25.30983584 Ry Harris-Foulkes estimate = -25.30983584 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10660001 -0.06193776 -0.04390568 atom 2 type 1 force = 0.10660001 0.06193776 0.04390568 Total force = 0.185081 Total SCF correction = 0.000033 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 822.22 0.00534301 -0.00028766 -0.00020395 785.98 -42.32 -30.00 -0.00028766 0.00567090 -0.00011836 -42.32 834.22 -17.41 -0.00020395 -0.00011836 0.00575406 -30.00 -17.41 846.45 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.869580582 -0.045836028 -0.032491529 0.390772264 0.778181309 -0.032486776 0.390770557 0.227067038 0.745026421 new unit-cell volume = 183.1103 (a.u.)^3 new positions in cryst coord As 0.261876352 0.261877160 0.261877110 As -0.261876352 -0.261877160 -0.261877110 new positions in cart coord (alat unit) As 0.432390786 0.251248199 0.178089058 As -0.432390786 -0.251248199 -0.178089058 Ekin = 0.09820051 Ry T = 2373.9 K Etot = -24.59955987 new unit-cell volume = 183.11026 a.u.^3 ( 27.13414 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.869580582 -0.045836028 -0.032491529 0.390772264 0.778181309 -0.032486776 0.390770557 0.227067038 0.745026421 ATOMIC_POSITIONS (crystal) As 0.261876352 0.261877160 0.261877110 As -0.261876352 -0.261877160 -0.261877110 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1506814 0.0875555 0.0620611), wk = 0.0625000 k( 2) = ( 0.1632750 0.0948713 0.3887846), wk = 0.0625000 k( 3) = ( 0.1254944 0.0729239 -0.5913859), wk = 0.0625000 k( 4) = ( 0.1380879 0.0802397 -0.2646624), wk = 0.0625000 k( 5) = ( 0.1632740 0.3982648 -0.0392409), wk = 0.0625000 k( 6) = ( 0.1758675 0.4055806 0.2874827), wk = 0.0625000 k( 7) = ( 0.1380870 0.3836333 -0.6926879), wk = 0.0625000 k( 8) = ( 0.1506805 0.3909491 -0.3659644), wk = 0.0625000 k( 9) = ( 0.1254964 -0.5338632 0.2646651), wk = 0.0625000 k( 10) = ( 0.1380899 -0.5265475 0.5913886), wk = 0.0625000 k( 11) = ( 0.1003093 -0.5484948 -0.3887820), wk = 0.0625000 k( 12) = ( 0.1129029 -0.5411790 -0.0620585), wk = 0.0625000 k( 13) = ( 0.1380889 -0.2231539 0.1633631), wk = 0.0625000 k( 14) = ( 0.1506824 -0.2158381 0.4900866), wk = 0.0625000 k( 15) = ( 0.1129019 -0.2377854 -0.4900840), wk = 0.0625000 k( 16) = ( 0.1254954 -0.2304696 -0.1633604), wk = 0.0625000 k( 17) = ( 0.4268583 -0.0553587 -0.0392382), wk = 0.0625000 k( 18) = ( 0.4394518 -0.0480429 0.2874853), wk = 0.0625000 k( 19) = ( 0.4016713 -0.0699902 -0.6926853), wk = 0.0625000 k( 20) = ( 0.4142648 -0.0626745 -0.3659617), wk = 0.0625000 k( 21) = ( 0.4394508 0.2553507 -0.1405402), wk = 0.0625000 k( 22) = ( 0.4520443 0.2626664 0.1861833), wk = 0.0625000 k( 23) = ( 0.4142638 0.2407191 -0.7939872), wk = 0.0625000 k( 24) = ( 0.4268573 0.2480349 -0.4672637), wk = 0.0625000 k( 25) = ( 0.4016732 -0.6767774 0.1633657), wk = 0.0625000 k( 26) = ( 0.4142667 -0.6694616 0.4900892), wk = 0.0625000 k( 27) = ( 0.3764862 -0.6914089 -0.4900813), wk = 0.0625000 k( 28) = ( 0.3890797 -0.6840932 -0.1633578), wk = 0.0625000 k( 29) = ( 0.4142657 -0.3660680 0.0620637), wk = 0.0625000 k( 30) = ( 0.4268592 -0.3587523 0.3887873), wk = 0.0625000 k( 31) = ( 0.3890787 -0.3806996 -0.5913833), wk = 0.0625000 k( 32) = ( 0.4016722 -0.3733838 -0.2646598), wk = 0.0625000 extrapolated charge 10.16555, renormalised to 10.00000 total cpu time spent up to now is 11.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 total cpu time spent up to now is 11.7 secs total energy = -25.35567682 Ry Harris-Foulkes estimate = -25.48702428 Ry estimated scf accuracy < 0.00181959 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-05, avg # of iterations = 1.3 total cpu time spent up to now is 12.0 secs total energy = -25.35586881 Ry Harris-Foulkes estimate = -25.35588758 Ry estimated scf accuracy < 0.00010534 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-06, avg # of iterations = 1.9 total cpu time spent up to now is 12.3 secs total energy = -25.35588114 Ry Harris-Foulkes estimate = -25.35588136 Ry estimated scf accuracy < 0.00000306 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.06E-08, avg # of iterations = 2.3 total cpu time spent up to now is 12.6 secs End of self-consistent calculation k = 0.1507 0.0876 0.0621 ( 531 PWs) bands (ev): -4.5512 10.2551 10.5070 10.5070 14.1892 17.7434 17.7436 18.0128 19.4420 k = 0.1633 0.0949 0.3888 ( 522 PWs) bands (ev): -3.0313 3.9054 10.5075 11.9981 13.8474 14.1060 16.0792 19.4558 20.3142 k = 0.1255 0.0729-0.5914 ( 520 PWs) bands (ev): -1.1575 0.7081 9.9343 10.9839 11.7671 15.7881 17.6998 20.4010 24.4687 k = 0.1381 0.0802-0.2647 ( 525 PWs) bands (ev): -3.9322 6.1526 9.2988 11.3976 13.6652 17.7145 19.0866 19.6149 20.6991 k = 0.1633 0.3983-0.0392 ( 522 PWs) bands (ev): -3.0313 3.9054 10.5075 11.9981 13.8474 14.1059 16.0791 19.4558 20.3141 k = 0.1759 0.4056 0.2875 ( 519 PWs) bands (ev): -2.1523 5.8950 7.6785 7.8095 9.9215 16.3402 19.1567 19.7977 20.1954 k = 0.1381 0.3836-0.6927 ( 510 PWs) bands (ev): 0.5507 1.6248 5.0588 7.6986 12.6539 16.2099 18.1834 23.1475 23.5083 k = 0.1507 0.3909-0.3660 ( 521 PWs) bands (ev): -1.7842 2.4357 7.4226 9.6166 13.7600 16.9442 19.5280 19.6599 21.1800 k = 0.1255-0.5339 0.2647 ( 520 PWs) bands (ev): -1.1574 0.7081 9.9342 10.9839 11.7670 15.7881 17.6997 20.4010 24.4687 k = 0.1381-0.5265 0.5914 ( 510 PWs) bands (ev): 0.5507 1.6248 5.0588 7.6986 12.6539 16.2098 18.1834 23.1475 23.5084 k = 0.1003-0.5485-0.3888 ( 510 PWs) bands (ev): -0.4478 3.9502 5.4305 7.0614 9.0965 16.5844 21.6910 22.4413 25.2293 k = 0.1129-0.5412-0.0621 ( 521 PWs) bands (ev): -1.7842 2.4358 7.4226 9.6166 13.7601 16.9442 19.5280 19.6598 21.1801 k = 0.1381-0.2232 0.1634 ( 525 PWs) bands (ev): -3.9322 6.1526 9.2988 11.3975 13.6652 17.7145 19.0866 19.6149 20.6991 k = 0.1507-0.2158 0.4901 ( 521 PWs) bands (ev): -1.7842 2.4357 7.4226 9.6167 13.7599 16.9441 19.5280 19.6599 21.1801 k = 0.1129-0.2378-0.4901 ( 521 PWs) bands (ev): -1.7842 2.4358 7.4226 9.6166 13.7601 16.9441 19.5280 19.6599 21.1803 k = 0.1255-0.2305-0.1634 ( 525 PWs) bands (ev): -3.9322 6.1526 9.2989 11.3976 13.6651 17.7145 19.0866 19.6150 20.6991 k = 0.4269-0.0554-0.0392 ( 522 PWs) bands (ev): -3.0313 3.9053 10.5075 11.9981 13.8474 14.1062 16.0793 19.4559 20.3142 k = 0.4395-0.0480 0.2875 ( 519 PWs) bands (ev): -2.1522 5.8948 7.6784 7.8096 9.9215 16.3402 19.1567 19.7979 20.1955 k = 0.4017-0.0700-0.6927 ( 510 PWs) bands (ev): 0.5508 1.6247 5.0588 7.6986 12.6538 16.2098 18.1833 23.1477 23.5085 k = 0.4143-0.0627-0.3660 ( 521 PWs) bands (ev): -1.7842 2.4358 7.4226 9.6167 13.7601 16.9441 19.5280 19.6600 21.1804 k = 0.4395 0.2554-0.1405 ( 519 PWs) bands (ev): -2.1522 5.8949 7.6784 7.8095 9.9215 16.3402 19.1567 19.7978 20.1954 k = 0.4520 0.2627 0.1862 ( 522 PWs) bands (ev): -1.8715 3.7282 10.5226 10.5227 13.1442 13.1443 13.2548 15.2158 24.6901 k = 0.4143 0.2407-0.7940 ( 520 PWs) bands (ev): 0.3299 2.2295 5.5605 8.8270 10.4996 15.7105 17.4736 20.9533 23.6039 k = 0.4269 0.2480-0.4673 ( 510 PWs) bands (ev): -0.4477 3.9502 5.4305 7.0613 9.0965 16.5844 21.6910 22.4413 25.2294 k = 0.4017-0.6768 0.1634 ( 510 PWs) bands (ev): 0.5507 1.6248 5.0587 7.6986 12.6538 16.2097 18.1833 23.1476 23.5086 k = 0.4143-0.6695 0.4901 ( 520 PWs) bands (ev): 0.3299 2.2295 5.5605 8.8270 10.4995 15.7105 17.4735 20.9535 23.6038 k = 0.3765-0.6914-0.4901 ( 520 PWs) bands (ev): 0.3299 2.2294 5.5605 8.8271 10.4997 15.7105 17.4736 20.9531 23.6039 k = 0.3891-0.6841-0.1634 ( 510 PWs) bands (ev): 0.5507 1.6247 5.0588 7.6986 12.6538 16.2100 18.1834 23.1475 23.5083 k = 0.4143-0.3661 0.0621 ( 521 PWs) bands (ev): -1.7842 2.4357 7.4226 9.6167 13.7600 16.9441 19.5280 19.6600 21.1803 k = 0.4269-0.3588 0.3888 ( 510 PWs) bands (ev): -0.4477 3.9501 5.4305 7.0613 9.0964 16.5844 21.6910 22.4413 25.2295 k = 0.3891-0.3807-0.5914 ( 510 PWs) bands (ev): 0.5508 1.6247 5.0588 7.6986 12.6538 16.2100 18.1834 23.1476 23.5084 k = 0.4017-0.3734-0.2647 ( 520 PWs) bands (ev): -1.1575 0.7080 9.9343 10.9839 11.7672 15.7882 17.6999 20.4009 24.4687 the Fermi energy is 13.8558 ev ! total energy = -25.35588195 Ry Harris-Foulkes estimate = -25.35588196 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.03556826 -0.02067346 -0.01465083 atom 2 type 1 force = 0.03556826 0.02067346 0.01465083 Total force = 0.061760 Total SCF correction = 0.000084 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 657.10 0.00459309 0.00014734 0.00010449 675.67 21.67 15.37 0.00014734 0.00442507 0.00006060 21.67 650.95 8.91 0.00010449 0.00006060 0.00438250 15.37 8.91 644.69 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.895661181 -0.053057730 -0.037610900 0.397412550 0.804413872 -0.037604648 0.397410440 0.230925961 0.771474605 new unit-cell volume = 203.0072 (a.u.)^3 new positions in cryst coord As 0.247574298 0.247575210 0.247575190 As -0.247574298 -0.247575210 -0.247575190 new positions in cart coord (alat unit) As 0.418521149 0.243188741 0.172376501 As -0.418521149 -0.243188741 -0.172376501 Ekin = 0.13814828 Ry T = 2992.2 K Etot = -24.59535443 new unit-cell volume = 203.00718 a.u.^3 ( 30.08256 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.895661181 -0.053057730 -0.037610900 0.397412550 0.804413872 -0.037604648 0.397410440 0.230925961 0.771474605 ATOMIC_POSITIONS (crystal) As 0.247574298 0.247575210 0.247575190 As -0.247574298 -0.247575210 -0.247575190 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1471730 0.0855170 0.0606161), wk = 0.0625000 k( 2) = ( 0.1608558 0.0934653 0.3752433), wk = 0.0625000 k( 3) = ( 0.1198075 0.0696203 -0.5686381), wk = 0.0625000 k( 4) = ( 0.1334902 0.0775687 -0.2540110), wk = 0.0625000 k( 5) = ( 0.1608547 0.3850225 -0.0360829), wk = 0.0625000 k( 6) = ( 0.1745375 0.3929708 0.2785443), wk = 0.0625000 k( 7) = ( 0.1334892 0.3691259 -0.6653372), wk = 0.0625000 k( 8) = ( 0.1471719 0.3770742 -0.3507100), wk = 0.0625000 k( 9) = ( 0.1198097 -0.5134941 0.2540142), wk = 0.0625000 k( 10) = ( 0.1334924 -0.5055458 0.5686413), wk = 0.0625000 k( 11) = ( 0.0924441 -0.5293907 -0.3752401), wk = 0.0625000 k( 12) = ( 0.1061269 -0.5214424 -0.0606130), wk = 0.0625000 k( 13) = ( 0.1334913 -0.2139885 0.1573152), wk = 0.0625000 k( 14) = ( 0.1471741 -0.2060402 0.4719423), wk = 0.0625000 k( 15) = ( 0.1061258 -0.2298852 -0.4719391), wk = 0.0625000 k( 16) = ( 0.1198086 -0.2219369 -0.1573120), wk = 0.0625000 k( 17) = ( 0.4141546 -0.0509029 -0.0360797), wk = 0.0625000 k( 18) = ( 0.4278374 -0.0429546 0.2785474), wk = 0.0625000 k( 19) = ( 0.3867891 -0.0667995 -0.6653340), wk = 0.0625000 k( 20) = ( 0.4004718 -0.0588512 -0.3507068), wk = 0.0625000 k( 21) = ( 0.4278363 0.2486026 -0.1327787), wk = 0.0625000 k( 22) = ( 0.4415191 0.2565509 0.1818484), wk = 0.0625000 k( 23) = ( 0.4004707 0.2327060 -0.7620330), wk = 0.0625000 k( 24) = ( 0.4141535 0.2406543 -0.4474059), wk = 0.0625000 k( 25) = ( 0.3867913 -0.6499140 0.1573184), wk = 0.0625000 k( 26) = ( 0.4004740 -0.6419656 0.4719455), wk = 0.0625000 k( 27) = ( 0.3594257 -0.6658106 -0.4719359), wk = 0.0625000 k( 28) = ( 0.3731085 -0.6578623 -0.1573088), wk = 0.0625000 k( 29) = ( 0.4004729 -0.3504084 0.0606193), wk = 0.0625000 k( 30) = ( 0.4141557 -0.3424601 0.3752465), wk = 0.0625000 k( 31) = ( 0.3731074 -0.3663051 -0.5686350), wk = 0.0625000 k( 32) = ( 0.3867902 -0.3583568 -0.2540078), wk = 0.0625000 extrapolated charge 10.98007, renormalised to 10.00000 total cpu time spent up to now is 13.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.3 total cpu time spent up to now is 13.7 secs total energy = -25.42523253 Ry Harris-Foulkes estimate = -26.17451112 Ry estimated scf accuracy < 0.00376204 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-05, avg # of iterations = 2.0 total cpu time spent up to now is 14.1 secs total energy = -25.42775411 Ry Harris-Foulkes estimate = -25.42809937 Ry estimated scf accuracy < 0.00092643 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.26E-06, avg # of iterations = 1.0 total cpu time spent up to now is 14.3 secs total energy = -25.42773877 Ry Harris-Foulkes estimate = -25.42778899 Ry estimated scf accuracy < 0.00011607 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.6 secs total energy = -25.42775308 Ry Harris-Foulkes estimate = -25.42775408 Ry estimated scf accuracy < 0.00000255 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 2.9 total cpu time spent up to now is 15.0 secs total energy = -25.42775357 Ry Harris-Foulkes estimate = -25.42775385 Ry estimated scf accuracy < 0.00000054 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.39E-09, avg # of iterations = 1.8 total cpu time spent up to now is 15.3 secs End of self-consistent calculation k = 0.1472 0.0855 0.0606 ( 531 PWs) bands (ev): -5.1341 7.8604 8.9769 8.9770 11.9856 15.9535 15.9537 15.9915 17.4932 k = 0.1609 0.0935 0.3752 ( 522 PWs) bands (ev): -3.7204 2.5151 9.0814 10.9812 11.4721 12.1450 13.5090 17.8948 18.5843 k = 0.1198 0.0696-0.5686 ( 520 PWs) bands (ev): -2.0162 -0.3522 8.6677 9.6737 9.8682 13.7512 15.4384 17.7858 22.1346 k = 0.1335 0.0776-0.2540 ( 525 PWs) bands (ev): -4.5737 4.4989 7.9445 9.7001 12.0024 14.9506 17.4132 17.5106 18.0998 k = 0.1609 0.3850-0.0361 ( 522 PWs) bands (ev): -3.7204 2.5152 9.0814 10.9812 11.4720 12.1449 13.5089 17.8948 18.5843 k = 0.1745 0.3930 0.2785 ( 519 PWs) bands (ev): -2.9026 4.0741 6.4386 6.7026 8.3253 15.1760 16.9714 17.1861 17.2711 k = 0.1335 0.3691-0.6653 ( 510 PWs) bands (ev): -0.4787 0.4150 4.1107 6.4821 10.7891 14.0811 16.6293 20.4281 20.5258 k = 0.1472 0.3771-0.3507 ( 521 PWs) bands (ev): -2.6031 1.1740 6.3527 8.1148 11.9484 14.7746 17.0393 18.0397 18.5838 k = 0.1198-0.5135 0.2540 ( 520 PWs) bands (ev): -2.0161 -0.3522 8.6677 9.6737 9.8681 13.7511 15.4383 17.7859 22.1346 k = 0.1335-0.5055 0.5686 ( 510 PWs) bands (ev): -0.4787 0.4151 4.1107 6.4821 10.7891 14.0809 16.6292 20.4283 20.5259 k = 0.0924-0.5294-0.3752 ( 510 PWs) bands (ev): -1.4429 2.8647 3.9635 5.8966 7.6618 15.4158 19.1276 19.3169 22.0728 k = 0.1061-0.5214-0.0606 ( 521 PWs) bands (ev): -2.6031 1.1740 6.3527 8.1148 11.9485 14.7746 17.0394 18.0397 18.5838 k = 0.1335-0.2140 0.1573 ( 525 PWs) bands (ev): -4.5737 4.4989 7.9445 9.7000 12.0025 14.9506 17.4131 17.5105 18.0998 k = 0.1472-0.2060 0.4719 ( 521 PWs) bands (ev): -2.6031 1.1739 6.3528 8.1149 11.9483 14.7746 17.0395 18.0396 18.5839 k = 0.1061-0.2299-0.4719 ( 521 PWs) bands (ev): -2.6032 1.1740 6.3527 8.1148 11.9486 14.7745 17.0395 18.0396 18.5840 k = 0.1198-0.2219-0.1573 ( 525 PWs) bands (ev): -4.5737 4.4989 7.9446 9.7001 12.0023 14.9506 17.4132 17.5107 18.0997 k = 0.4142-0.0509-0.0361 ( 522 PWs) bands (ev): -3.7205 2.5150 9.0815 10.9812 11.4721 12.1452 13.5090 17.8949 18.5844 k = 0.4278-0.0430 0.2785 ( 519 PWs) bands (ev): -2.9025 4.0739 6.4385 6.7027 8.3254 15.1761 16.9714 17.1861 17.2712 k = 0.3868-0.0668-0.6653 ( 510 PWs) bands (ev): -0.4786 0.4149 4.1107 6.4821 10.7890 14.0811 16.6291 20.4284 20.5261 k = 0.4005-0.0589-0.3507 ( 521 PWs) bands (ev): -2.6032 1.1740 6.3527 8.1149 11.9485 14.7745 17.0396 18.0396 18.5841 k = 0.4278 0.2486-0.1328 ( 519 PWs) bands (ev): -2.9026 4.0740 6.4385 6.7027 8.3253 15.1761 16.9714 17.1861 17.2712 k = 0.4415 0.2566 0.1818 ( 522 PWs) bands (ev): -2.5776 2.3473 9.1115 9.1116 11.3383 11.3545 11.3546 12.7042 22.2993 k = 0.4005 0.2327-0.7620 ( 520 PWs) bands (ev): -0.4175 0.6935 4.6624 7.5581 8.7433 13.6536 15.0704 18.3650 22.0384 k = 0.4142 0.2407-0.4474 ( 510 PWs) bands (ev): -1.4428 2.8646 3.9635 5.8966 7.6618 15.4158 19.1277 19.3169 22.0729 k = 0.3868-0.6499 0.1573 ( 510 PWs) bands (ev): -0.4787 0.4150 4.1107 6.4821 10.7890 14.0809 16.6291 20.4284 20.5260 k = 0.4005-0.6420 0.4719 ( 520 PWs) bands (ev): -0.4175 0.6936 4.6624 7.5580 8.7432 13.6536 15.0704 18.3652 22.0384 k = 0.3594-0.6658-0.4719 ( 520 PWs) bands (ev): -0.4175 0.6934 4.6624 7.5582 8.7434 13.6536 15.0705 18.3648 22.0383 k = 0.3731-0.6579-0.1573 ( 510 PWs) bands (ev): -0.4787 0.4149 4.1107 6.4822 10.7890 14.0813 16.6293 20.4281 20.5260 k = 0.4005-0.3504 0.0606 ( 521 PWs) bands (ev): -2.6031 1.1739 6.3528 8.1149 11.9484 14.7745 17.0396 18.0396 18.5840 k = 0.4142-0.3425 0.3752 ( 510 PWs) bands (ev): -1.4427 2.8645 3.9635 5.8965 7.6618 15.4159 19.1277 19.3169 22.0730 k = 0.3731-0.3663-0.5686 ( 510 PWs) bands (ev): -0.4786 0.4149 4.1107 6.4821 10.7890 14.0812 16.6292 20.4282 20.5261 k = 0.3868-0.3584-0.2540 ( 520 PWs) bands (ev): -2.0162 -0.3523 8.6678 9.6737 9.8683 13.7512 15.4385 17.7858 22.1346 the Fermi energy is 12.0008 ev ! total energy = -25.42775362 Ry Harris-Foulkes estimate = -25.42775362 Ry estimated scf accuracy < 6.1E-10 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00641936 0.00372949 0.00264384 atom 2 type 1 force = -0.00641936 -0.00372949 -0.00264384 Total force = 0.011145 Total SCF correction = 0.000009 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 345.16 0.00249149 0.00017008 0.00012010 366.51 25.02 17.67 0.00017008 0.00229848 0.00007048 25.02 338.12 10.37 0.00012010 0.00007048 0.00224904 17.67 10.37 330.85 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.917617985 -0.049391277 -0.035019595 0.411470394 0.821683745 -0.035002464 0.411462097 0.239104290 0.786904993 new unit-cell volume = 215.7042 (a.u.)^3 new positions in cryst coord As 0.234421031 0.234422270 0.234422139 As -0.234421031 -0.234422270 -0.234422139 new positions in cart coord (alat unit) As 0.408022603 0.237093954 0.168053265 As -0.408022603 -0.237093954 -0.168053265 Ekin = 0.14832005 Ry T = 3434.6 K Etot = -24.58942607 new unit-cell volume = 215.70425 a.u.^3 ( 31.96407 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.917617985 -0.049391277 -0.035019595 0.411470394 0.821683745 -0.035002464 0.411462097 0.239104290 0.786904993 ATOMIC_POSITIONS (crystal) As 0.234421031 0.234422270 0.234422139 As -0.234421031 -0.234422270 -0.234422139 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1429395 0.0830554 0.0588723), wk = 0.0625000 k( 2) = ( 0.1551197 0.0901267 0.3680552), wk = 0.0625000 k( 3) = ( 0.1185793 0.0689128 -0.5594935), wk = 0.0625000 k( 4) = ( 0.1307594 0.0759841 -0.2503106), wk = 0.0625000 k( 5) = ( 0.1551153 0.3771339 -0.0368512), wk = 0.0625000 k( 6) = ( 0.1672955 0.3842052 0.2723317), wk = 0.0625000 k( 7) = ( 0.1307550 0.3629912 -0.6552170), wk = 0.0625000 k( 8) = ( 0.1429352 0.3700625 -0.3460341), wk = 0.0625000 k( 9) = ( 0.1185880 -0.5051015 0.2503192), wk = 0.0625000 k( 10) = ( 0.1307681 -0.4980301 0.5595021), wk = 0.0625000 k( 11) = ( 0.0942277 -0.5192441 -0.3680465), wk = 0.0625000 k( 12) = ( 0.1064078 -0.5121728 -0.0588636), wk = 0.0625000 k( 13) = ( 0.1307638 -0.2110230 0.1545958), wk = 0.0625000 k( 14) = ( 0.1429439 -0.2039517 0.4637786), wk = 0.0625000 k( 15) = ( 0.1064035 -0.2251657 -0.4637700), wk = 0.0625000 k( 16) = ( 0.1185836 -0.2180943 -0.1545871), wk = 0.0625000 k( 17) = ( 0.4044627 -0.0519835 -0.0368426), wk = 0.0625000 k( 18) = ( 0.4166429 -0.0449122 0.2723403), wk = 0.0625000 k( 19) = ( 0.3801024 -0.0661262 -0.6552083), wk = 0.0625000 k( 20) = ( 0.3922826 -0.0590548 -0.3460254), wk = 0.0625000 k( 21) = ( 0.4166385 0.2420949 -0.1325660), wk = 0.0625000 k( 22) = ( 0.4288186 0.2491662 0.1766168), wk = 0.0625000 k( 23) = ( 0.3922782 0.2279523 -0.7509318), wk = 0.0625000 k( 24) = ( 0.4044583 0.2350236 -0.4417489), wk = 0.0625000 k( 25) = ( 0.3801112 -0.6401404 0.1546044), wk = 0.0625000 k( 26) = ( 0.3922913 -0.6330691 0.4637873), wk = 0.0625000 k( 27) = ( 0.3557509 -0.6542830 -0.4637613), wk = 0.0625000 k( 28) = ( 0.3679310 -0.6472117 -0.1545785), wk = 0.0625000 k( 29) = ( 0.3922869 -0.3460620 0.0588809), wk = 0.0625000 k( 30) = ( 0.4044671 -0.3389906 0.3680638), wk = 0.0625000 k( 31) = ( 0.3679266 -0.3602046 -0.5594848), wk = 0.0625000 k( 32) = ( 0.3801068 -0.3531333 -0.2503019), wk = 0.0625000 extrapolated charge 10.58861, renormalised to 10.00000 total cpu time spent up to now is 15.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 total cpu time spent up to now is 16.3 secs total energy = -25.44782661 Ry Harris-Foulkes estimate = -25.87646341 Ry estimated scf accuracy < 0.00269612 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-05, avg # of iterations = 2.2 total cpu time spent up to now is 16.7 secs total energy = -25.44858315 Ry Harris-Foulkes estimate = -25.44876741 Ry estimated scf accuracy < 0.00048253 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.83E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.9 secs total energy = -25.44860182 Ry Harris-Foulkes estimate = -25.44860717 Ry estimated scf accuracy < 0.00001887 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-07, avg # of iterations = 2.9 total cpu time spent up to now is 17.3 secs total energy = -25.44860561 Ry Harris-Foulkes estimate = -25.44860593 Ry estimated scf accuracy < 0.00000069 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 17.5 secs End of self-consistent calculation k = 0.1429 0.0831 0.0589 ( 531 PWs) bands (ev): -5.5675 6.6221 8.0644 8.0646 10.8939 14.3881 14.5886 14.5893 16.9088 k = 0.1551 0.0901 0.3681 ( 522 PWs) bands (ev): -4.2407 1.7759 8.0720 9.1997 11.1689 11.4514 12.2715 16.4613 17.6364 k = 0.1186 0.0689-0.5595 ( 520 PWs) bands (ev): -2.6174 -0.9751 7.6425 8.5400 9.2084 12.9978 13.9746 16.4868 20.7714 k = 0.1308 0.0760-0.2503 ( 525 PWs) bands (ev): -5.0186 3.5020 7.0916 8.8878 10.9011 13.7706 15.4545 16.2231 17.6046 k = 0.1551 0.3771-0.0369 ( 522 PWs) bands (ev): -4.2407 1.7761 8.0719 9.1997 11.1686 11.4513 12.2714 16.4614 17.6363 k = 0.1673 0.3842 0.2723 ( 519 PWs) bands (ev): -3.5096 3.0833 5.7510 5.7515 7.8668 13.6866 15.8157 15.8611 16.7386 k = 0.1308 0.3630-0.6552 ( 510 PWs) bands (ev): -1.3369 -0.2426 3.5873 5.7626 9.8032 13.0487 15.6298 18.8703 19.2300 k = 0.1429 0.3701-0.3460 ( 521 PWs) bands (ev): -3.1558 0.4097 5.4535 7.5078 10.7383 13.7821 15.6417 16.6707 17.6225 k = 0.1186-0.5051 0.2503 ( 520 PWs) bands (ev): -2.6173 -0.9752 7.6424 8.5401 9.2082 12.9977 13.9744 16.4871 20.7714 k = 0.1308-0.4980 0.5595 ( 510 PWs) bands (ev): -1.3368 -0.2425 3.5873 5.7626 9.8033 13.0482 15.6296 18.8705 19.2306 k = 0.0942-0.5192-0.3680 ( 510 PWs) bands (ev): -2.1212 1.5397 3.8082 5.2258 7.0012 13.9835 17.8688 18.5030 20.4876 k = 0.1064-0.5122-0.0589 ( 521 PWs) bands (ev): -3.1559 0.4099 5.4534 7.5076 10.7386 13.7820 15.6416 16.6708 17.6227 k = 0.1308-0.2110 0.1546 ( 525 PWs) bands (ev): -5.0185 3.5019 7.0916 8.8878 10.9014 13.7706 15.4544 16.2229 17.6045 k = 0.1429-0.2040 0.4638 ( 521 PWs) bands (ev): -3.1557 0.4096 5.4535 7.5080 10.7382 13.7818 15.6420 16.6706 17.6226 k = 0.1064-0.2252-0.4638 ( 521 PWs) bands (ev): -3.1560 0.4101 5.4533 7.5077 10.7387 13.7817 15.6417 16.6708 17.6231 k = 0.1186-0.2181-0.1546 ( 525 PWs) bands (ev): -5.0186 3.5021 7.0916 8.8879 10.9008 13.7706 15.4546 16.2233 17.6046 k = 0.4045-0.0520-0.0368 ( 522 PWs) bands (ev): -4.2407 1.7758 8.0721 9.1997 11.1691 11.4515 12.2715 16.4613 17.6366 k = 0.4166-0.0449 0.2723 ( 519 PWs) bands (ev): -3.5094 3.0827 5.7508 5.7519 7.8669 13.6867 15.8155 15.8615 16.7384 k = 0.3801-0.0661-0.6552 ( 510 PWs) bands (ev): -1.3365 -0.2428 3.5873 5.7624 9.8028 13.0482 15.6294 18.8712 19.2305 k = 0.3923-0.0591-0.3460 ( 521 PWs) bands (ev): -3.1559 0.4100 5.4533 7.5078 10.7385 13.7814 15.6420 16.6708 17.6231 k = 0.4166 0.2421-0.1326 ( 519 PWs) bands (ev): -3.5095 3.0830 5.7508 5.7517 7.8668 13.6867 15.8156 15.8613 16.7385 k = 0.4288 0.2492 0.1766 ( 522 PWs) bands (ev): -3.2830 1.6786 8.1348 8.1348 9.9163 10.6912 10.6917 12.1403 20.7486 k = 0.3923 0.2280-0.7509 ( 520 PWs) bands (ev): -1.5685 0.3795 4.0084 6.7495 8.0712 12.8042 13.8052 17.1710 20.1149 k = 0.4045 0.2350-0.4417 ( 510 PWs) bands (ev): -2.1209 1.5394 3.8082 5.2256 7.0011 13.9835 17.8688 18.5029 20.4880 k = 0.3801-0.6401 0.1546 ( 510 PWs) bands (ev): -1.3366 -0.2426 3.5873 5.7625 9.8031 13.0480 15.6294 18.8709 19.2308 k = 0.3923-0.6331 0.4638 ( 520 PWs) bands (ev): -1.5685 0.3797 4.0083 6.7494 8.0710 12.8042 13.8051 17.1716 20.1148 k = 0.3558-0.6543-0.4638 ( 520 PWs) bands (ev): -1.5685 0.3794 4.0084 6.7497 8.0715 12.8042 13.8053 17.1705 20.1150 k = 0.3679-0.6472-0.1546 ( 510 PWs) bands (ev): -1.3367 -0.2427 3.5874 5.7626 9.8030 13.0489 15.6298 18.8706 19.2298 k = 0.3923-0.3461 0.0589 ( 521 PWs) bands (ev): -3.1558 0.4098 5.4534 7.5080 10.7382 13.7815 15.6422 16.6707 17.6228 k = 0.4045-0.3390 0.3681 ( 510 PWs) bands (ev): -2.1207 1.5391 3.8082 5.2255 7.0010 13.9834 17.8688 18.5028 20.4884 k = 0.3679-0.3602-0.5595 ( 510 PWs) bands (ev): -1.3365 -0.2428 3.5873 5.7625 9.8028 13.0487 15.6296 18.8710 19.2301 k = 0.3801-0.3531-0.2503 ( 520 PWs) bands (ev): -2.6175 -0.9750 7.6426 8.5400 9.2085 12.9979 13.9748 16.4866 20.7713 the Fermi energy is 11.1551 ev ! total energy = -25.44860564 Ry Harris-Foulkes estimate = -25.44860565 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01556542 0.00901506 0.00640581 atom 2 type 1 force = -0.01556542 -0.00901506 -0.00640581 Total force = 0.027003 Total SCF correction = 0.000050 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 256.08 0.00201975 0.00032550 0.00023027 297.12 47.88 33.87 0.00032550 0.00164832 0.00013494 47.88 242.48 19.85 0.00023027 0.00013494 0.00155437 33.87 19.85 228.66 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.928119557 -0.034353678 -0.024374839 0.429735074 0.823365326 -0.024332084 0.429715153 0.249736042 0.784960046 new unit-cell volume = 214.7912 (a.u.)^3 new positions in cryst coord As 0.222423303 0.222423613 0.222423973 As -0.222423303 -0.222423613 -0.222423973 new positions in cart coord (alat unit) As 0.397597597 0.231042114 0.163760370 As -0.397597597 -0.231042114 -0.163760370 Ekin = 0.11335712 Ry T = 3525.0 K Etot = -24.60208455 new unit-cell volume = 214.79117 a.u.^3 ( 31.82877 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.928119557 -0.034353678 -0.024374839 0.429735074 0.823365326 -0.024332084 0.429715153 0.249736042 0.784960046 ATOMIC_POSITIONS (crystal) As 0.222423303 0.222423613 0.222423973 As -0.222423303 -0.222423613 -0.222423973 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1391797 0.0808686 0.0573234), wk = 0.0625000 k( 2) = ( 0.1475626 0.0857240 0.3696771), wk = 0.0625000 k( 3) = ( 0.1224138 0.0711578 -0.5673839), wk = 0.0625000 k( 4) = ( 0.1307967 0.0760132 -0.2550303), wk = 0.0625000 k( 5) = ( 0.1475521 0.3772091 -0.0415411), wk = 0.0625000 k( 6) = ( 0.1559350 0.3820645 0.2708126), wk = 0.0625000 k( 7) = ( 0.1307862 0.3674983 -0.6662484), wk = 0.0625000 k( 8) = ( 0.1391691 0.3723537 -0.3538947), wk = 0.0625000 k( 9) = ( 0.1224349 -0.5118124 0.2550523), wk = 0.0625000 k( 10) = ( 0.1308178 -0.5069570 0.5674060), wk = 0.0625000 k( 11) = ( 0.1056690 -0.5215232 -0.3696550), wk = 0.0625000 k( 12) = ( 0.1140520 -0.5166678 -0.0573014), wk = 0.0625000 k( 13) = ( 0.1308073 -0.2154719 0.1561879), wk = 0.0625000 k( 14) = ( 0.1391902 -0.2106165 0.4685415), wk = 0.0625000 k( 15) = ( 0.1140414 -0.2251827 -0.4685195), wk = 0.0625000 k( 16) = ( 0.1224243 -0.2203273 -0.1561658), wk = 0.0625000 k( 17) = ( 0.4007837 -0.0585901 -0.0415190), wk = 0.0625000 k( 18) = ( 0.4091666 -0.0537347 0.2708347), wk = 0.0625000 k( 19) = ( 0.3840178 -0.0683009 -0.6662264), wk = 0.0625000 k( 20) = ( 0.3924008 -0.0634455 -0.3538727), wk = 0.0625000 k( 21) = ( 0.4091561 0.2377504 -0.1403835), wk = 0.0625000 k( 22) = ( 0.4175390 0.2426058 0.1719702), wk = 0.0625000 k( 23) = ( 0.3923902 0.2280396 -0.7650908), wk = 0.0625000 k( 24) = ( 0.4007732 0.2328950 -0.4527372), wk = 0.0625000 k( 25) = ( 0.3840389 -0.6512711 0.1562099), wk = 0.0625000 k( 26) = ( 0.3924219 -0.6464157 0.4685636), wk = 0.0625000 k( 27) = ( 0.3672730 -0.6609820 -0.4684974), wk = 0.0625000 k( 28) = ( 0.3756560 -0.6561266 -0.1561438), wk = 0.0625000 k( 29) = ( 0.3924113 -0.3549306 0.0573454), wk = 0.0625000 k( 30) = ( 0.4007943 -0.3500752 0.3696991), wk = 0.0625000 k( 31) = ( 0.3756454 -0.3646414 -0.5673619), wk = 0.0625000 k( 32) = ( 0.3840284 -0.3597860 -0.2550082), wk = 0.0625000 extrapolated charge 9.95749, renormalised to 10.00000 total cpu time spent up to now is 17.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 18.6 secs total energy = -25.43121420 Ry Harris-Foulkes estimate = -25.40166381 Ry estimated scf accuracy < 0.00124537 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-05, avg # of iterations = 1.0 total cpu time spent up to now is 18.9 secs total energy = -25.43132582 Ry Harris-Foulkes estimate = -25.43132873 Ry estimated scf accuracy < 0.00003486 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-07, avg # of iterations = 2.2 total cpu time spent up to now is 19.2 secs total energy = -25.43133119 Ry Harris-Foulkes estimate = -25.43133114 Ry estimated scf accuracy < 0.00000134 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.8 total cpu time spent up to now is 19.4 secs End of self-consistent calculation k = 0.1392 0.0809 0.0573 ( 531 PWs) bands (ev): -5.7640 6.9376 7.9653 7.9656 10.9373 13.9000 14.2795 14.2812 17.6071 k = 0.1476 0.0857 0.3697 ( 522 PWs) bands (ev): -4.4764 1.9031 7.7393 8.3689 11.3768 12.5223 12.5922 16.0639 17.7277 k = 0.1224 0.0712-0.5674 ( 520 PWs) bands (ev): -2.8126 -1.0053 7.1624 8.2446 9.5610 13.6907 13.7566 16.6969 20.6668 k = 0.1308 0.0760-0.2550 ( 525 PWs) bands (ev): -5.1716 3.4462 6.9299 9.1171 10.7228 14.1486 14.7167 16.3841 18.0072 k = 0.1476 0.3772-0.0415 ( 522 PWs) bands (ev): -4.4764 1.9034 7.7392 8.3688 11.3761 12.5219 12.5919 16.0640 17.7273 k = 0.1559 0.3821 0.2708 ( 519 PWs) bands (ev): -3.8325 3.1772 5.3720 5.7629 8.4643 12.9549 15.9987 16.1310 18.0051 k = 0.1308 0.3675-0.6662 ( 510 PWs) bands (ev): -1.7520 -0.2303 3.5798 5.7325 9.9250 13.3779 15.4909 18.8898 19.8063 k = 0.1392 0.3724-0.3539 ( 521 PWs) bands (ev): -3.3088 0.3340 5.0138 7.8826 10.4473 14.1809 15.7458 16.2229 18.1731 k = 0.1224-0.5118 0.2551 ( 520 PWs) bands (ev): -2.8121 -1.0057 7.1621 8.2448 9.5606 13.6903 13.7560 16.6974 20.6670 k = 0.1308-0.5070 0.5674 ( 510 PWs) bands (ev): -1.7518 -0.2304 3.5798 5.7324 9.9248 13.3767 15.4905 18.8898 19.8077 k = 0.1057-0.5215-0.3697 ( 510 PWs) bands (ev): -2.3217 0.8886 4.4432 5.1918 7.2441 13.0525 18.2564 19.7341 20.8816 k = 0.1141-0.5167-0.0573 ( 521 PWs) bands (ev): -3.3090 0.3346 5.0136 7.8823 10.4477 14.1810 15.7457 16.2231 18.1736 k = 0.1308-0.2155 0.1562 ( 525 PWs) bands (ev): -5.1715 3.4459 6.9298 9.1169 10.7237 14.1484 14.7168 16.3835 18.0071 k = 0.1392-0.2106 0.4685 ( 521 PWs) bands (ev): -3.3087 0.3339 5.0137 7.8832 10.4467 14.1802 15.7465 16.2227 18.1734 k = 0.1140-0.2252-0.4685 ( 521 PWs) bands (ev): -3.3092 0.3350 5.0133 7.8825 10.4477 14.1804 15.7464 16.2230 18.1744 k = 0.1224-0.2203-0.1562 ( 525 PWs) bands (ev): -5.1717 3.4465 6.9300 9.1172 10.7221 14.1487 14.7166 16.3846 18.0073 k = 0.4008-0.0586-0.0415 ( 522 PWs) bands (ev): -4.4765 1.9028 7.7395 8.3690 11.3774 12.5227 12.5925 16.0638 17.7281 k = 0.4092-0.0537 0.2708 ( 519 PWs) bands (ev): -3.8321 3.1759 5.3728 5.7624 8.4644 12.9550 15.9980 16.1321 18.0046 k = 0.3840-0.0683-0.6662 ( 510 PWs) bands (ev): -1.7511 -0.2310 3.5799 5.7322 9.9241 13.3765 15.4901 18.8913 19.8075 k = 0.3924-0.0634-0.3539 ( 521 PWs) bands (ev): -3.3092 0.3348 5.0132 7.8830 10.4472 14.1798 15.7471 16.2229 18.1747 k = 0.4092 0.2378-0.1404 ( 519 PWs) bands (ev): -3.8324 3.1765 5.3724 5.7627 8.4644 12.9549 15.9984 16.1316 18.0048 k = 0.4175 0.2426 0.1720 ( 522 PWs) bands (ev): -3.8082 1.9610 7.8983 7.8983 9.6992 11.2311 11.2325 13.2058 20.4459 k = 0.3924 0.2280-0.7651 ( 520 PWs) bands (ev): -2.3897 0.9661 3.7865 6.5946 8.5803 13.3660 13.9927 17.4103 19.7900 k = 0.4008 0.2329-0.4527 ( 510 PWs) bands (ev): -2.3210 0.8879 4.4433 5.1914 7.2438 13.0524 18.2563 19.7339 20.8824 k = 0.3840-0.6513 0.1562 ( 510 PWs) bands (ev): -1.7514 -0.2308 3.5799 5.7323 9.9244 13.3761 15.4901 18.8905 19.8082 k = 0.3924-0.6464 0.4686 ( 520 PWs) bands (ev): -2.3896 0.9664 3.7865 6.5942 8.5797 13.3659 13.9926 17.4112 19.7900 k = 0.3673-0.6610-0.4685 ( 520 PWs) bands (ev): -2.3898 0.9659 3.7866 6.5949 8.5808 13.3662 13.9928 17.4094 19.7901 k = 0.3757-0.6561-0.1561 ( 510 PWs) bands (ev): -1.7519 -0.2305 3.5799 5.7324 9.9247 13.3782 15.4909 18.8904 19.8057 k = 0.3924-0.3549 0.0573 ( 521 PWs) bands (ev): -3.3089 0.3343 5.0134 7.8834 10.4467 14.1797 15.7472 16.2227 18.1742 k = 0.4008-0.3501 0.3697 ( 510 PWs) bands (ev): -2.3204 0.8872 4.4434 5.1910 7.2435 13.0524 18.2562 19.7337 20.8832 k = 0.3756-0.3646-0.5674 ( 510 PWs) bands (ev): -1.7514 -0.2308 3.5799 5.7322 9.9242 13.3775 15.4905 18.8912 19.8062 k = 0.3840-0.3598-0.2550 ( 520 PWs) bands (ev): -2.8130 -1.0050 7.1627 8.2444 9.5614 13.6910 13.7571 16.6964 20.6666 the Fermi energy is 11.3625 ev ! total energy = -25.43133136 Ry Harris-Foulkes estimate = -25.43133136 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.07280848 0.04216663 0.02996436 atom 2 type 1 force = -0.07280848 -0.04216663 -0.02996436 Total force = 0.126309 Total SCF correction = 0.000012 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 324.50 0.00228247 0.00008833 0.00006214 335.76 12.99 9.14 0.00008833 0.00218012 0.00003771 12.99 320.71 5.55 0.00006214 0.00003771 0.00215520 9.14 5.55 317.04 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.932462129 -0.011731864 -0.008362691 0.451539089 0.815921685 -0.008271625 0.451500623 0.262435532 0.772633129 new unit-cell volume = 205.3633 (a.u.)^3 new positions in cryst coord As 0.212919382 0.212907837 0.212914273 As -0.212919382 -0.212907837 -0.212914273 new positions in cart coord (alat unit) As 0.390806398 0.227094450 0.160962948 As -0.390806398 -0.227094450 -0.160962948 Ekin = 0.10076567 Ry T = 3526.5 K Etot = -24.60050523 new unit-cell volume = 205.36329 a.u.^3 ( 30.43170 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.932462129 -0.011731864 -0.008362691 0.451539089 0.815921685 -0.008271625 0.451500623 0.262435532 0.772633129 ATOMIC_POSITIONS (crystal) As 0.212919382 0.212907837 0.212914273 As -0.212919382 -0.212907837 -0.212914273 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1355452 0.0787549 0.0558262), wk = 0.0625000 k( 2) = ( 0.1384477 0.0804060 0.3771381), wk = 0.0625000 k( 3) = ( 0.1297404 0.0754526 -0.5867976), wk = 0.0625000 k( 4) = ( 0.1326428 0.0771037 -0.2654857), wk = 0.0625000 k( 5) = ( 0.1384264 0.3824993 -0.0490285), wk = 0.0625000 k( 6) = ( 0.1413289 0.3841505 0.2722834), wk = 0.0625000 k( 7) = ( 0.1326216 0.3791970 -0.6916523), wk = 0.0625000 k( 8) = ( 0.1355240 0.3808482 -0.3703404), wk = 0.0625000 k( 9) = ( 0.1297828 -0.5287341 0.2655356), wk = 0.0625000 k( 10) = ( 0.1326852 -0.5270829 0.5868475), wk = 0.0625000 k( 11) = ( 0.1239780 -0.5320364 -0.3770882), wk = 0.0625000 k( 12) = ( 0.1268804 -0.5303852 -0.0557763), wk = 0.0625000 k( 13) = ( 0.1326640 -0.2249896 0.1606809), wk = 0.0625000 k( 14) = ( 0.1355664 -0.2233385 0.4819928), wk = 0.0625000 k( 15) = ( 0.1268592 -0.2282919 -0.4819429), wk = 0.0625000 k( 16) = ( 0.1297616 -0.2266408 -0.1606310), wk = 0.0625000 k( 17) = ( 0.4008521 -0.0691310 -0.0489786), wk = 0.0625000 k( 18) = ( 0.4037545 -0.0674799 0.2723333), wk = 0.0625000 k( 19) = ( 0.3950472 -0.0724333 -0.6916025), wk = 0.0625000 k( 20) = ( 0.3979496 -0.0707822 -0.3702906), wk = 0.0625000 k( 21) = ( 0.4037333 0.2346134 -0.1538333), wk = 0.0625000 k( 22) = ( 0.4066357 0.2362646 0.1674786), wk = 0.0625000 k( 23) = ( 0.3979284 0.2313111 -0.7964572), wk = 0.0625000 k( 24) = ( 0.4008309 0.2329623 -0.4751452), wk = 0.0625000 k( 25) = ( 0.3950896 -0.6766200 0.1607308), wk = 0.0625000 k( 26) = ( 0.3979921 -0.6749688 0.4820427), wk = 0.0625000 k( 27) = ( 0.3892848 -0.6799223 -0.4818931), wk = 0.0625000 k( 28) = ( 0.3921872 -0.6782711 -0.1605812), wk = 0.0625000 k( 29) = ( 0.3979709 -0.3728755 0.0558761), wk = 0.0625000 k( 30) = ( 0.4008733 -0.3712244 0.3771880), wk = 0.0625000 k( 31) = ( 0.3921660 -0.3761778 -0.5867478), wk = 0.0625000 k( 32) = ( 0.3950684 -0.3745267 -0.2654359), wk = 0.0625000 extrapolated charge 9.54094, renormalised to 10.00000 total cpu time spent up to now is 19.8 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.8 total cpu time spent up to now is 20.5 secs total energy = -25.35910533 Ry Harris-Foulkes estimate = -25.04025876 Ry estimated scf accuracy < 0.00170458 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-05, avg # of iterations = 2.6 total cpu time spent up to now is 20.9 secs total energy = -25.36036239 Ry Harris-Foulkes estimate = -25.36055828 Ry estimated scf accuracy < 0.00039554 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.96E-06, avg # of iterations = 1.2 total cpu time spent up to now is 21.2 secs total energy = -25.36038295 Ry Harris-Foulkes estimate = -25.36039726 Ry estimated scf accuracy < 0.00003221 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-07, avg # of iterations = 2.0 total cpu time spent up to now is 21.5 secs total energy = -25.36038730 Ry Harris-Foulkes estimate = -25.36038778 Ry estimated scf accuracy < 0.00000119 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-08, avg # of iterations = 2.5 total cpu time spent up to now is 21.8 secs End of self-consistent calculation k = 0.1355 0.0788 0.0558 ( 531 PWs) bands (ev): -5.8460 7.9036 8.3856 8.3857 11.8348 14.3276 14.6957 14.6987 19.0795 k = 0.1384 0.0804 0.3771 ( 522 PWs) bands (ev): -4.5611 2.5268 7.7399 8.2109 12.3819 13.7604 14.1826 16.8013 18.5480 k = 0.1297 0.0755-0.5868 ( 520 PWs) bands (ev): -2.7450 -0.7487 7.1083 8.4590 10.5579 14.2551 15.1397 17.3422 21.3696 k = 0.1326 0.0771-0.2655 ( 525 PWs) bands (ev): -5.1705 3.8952 7.2048 9.9749 11.1915 14.0736 16.1047 17.3405 18.6127 k = 0.1384 0.3825-0.0490 ( 522 PWs) bands (ev): -4.5610 2.5276 7.7398 8.2103 12.3801 13.7592 14.1819 16.8014 18.5469 k = 0.1413 0.3842 0.2723 ( 519 PWs) bands (ev): -4.0049 3.7971 5.4472 6.2203 9.6327 13.1281 17.0053 17.5286 20.0462 k = 0.1326 0.3792-0.6917 ( 510 PWs) bands (ev): -1.8898 0.1378 3.8405 6.1126 10.6757 14.6636 16.1057 19.5526 21.3055 k = 0.1355 0.3808-0.3703 ( 521 PWs) bands (ev): -3.2279 0.6432 4.9057 8.7848 10.6729 15.3957 16.3780 16.7959 19.4761 k = 0.1298-0.5287 0.2655 ( 520 PWs) bands (ev): -2.7440 -0.7493 7.1072 8.4598 10.5563 14.2536 15.1387 17.3431 21.3696 k = 0.1327-0.5271 0.5868 ( 510 PWs) bands (ev): -1.8892 0.1375 3.8405 6.1128 10.6751 14.6615 16.1042 19.5524 21.3082 k = 0.1240-0.5320-0.3771 ( 510 PWs) bands (ev): -2.2564 0.6571 5.4595 5.5561 8.0924 12.7610 19.5933 21.6967 22.6527 k = 0.1269-0.5304-0.0558 ( 521 PWs) bands (ev): -3.2285 0.6443 4.9053 8.7841 10.6736 15.3970 16.3783 16.7962 19.4769 k = 0.1327-0.2250 0.1607 ( 525 PWs) bands (ev): -5.1703 3.8951 7.2041 9.9741 11.1931 14.0731 16.1051 17.3395 18.6131 k = 0.1356-0.2233 0.4820 ( 521 PWs) bands (ev): -3.2278 0.6428 4.9058 8.7861 10.6718 15.3940 16.3771 16.7980 19.4772 k = 0.1269-0.2283-0.4819 ( 521 PWs) bands (ev): -3.2291 0.6450 4.9049 8.7848 10.6732 15.3966 16.3779 16.7986 19.4787 k = 0.1298-0.2266-0.1606 ( 525 PWs) bands (ev): -5.1707 3.8954 7.2054 9.9756 11.1900 14.0740 16.1044 17.3414 18.6123 k = 0.4009-0.0691-0.0490 ( 522 PWs) bands (ev): -4.5612 2.5260 7.7400 8.2115 12.3834 13.7615 14.1832 16.8012 18.5490 k = 0.4038-0.0675 0.2723 ( 519 PWs) bands (ev): -4.0042 3.7954 5.4482 6.2186 9.6327 13.1287 17.0043 17.5312 20.0455 k = 0.3950-0.0724-0.6916 ( 510 PWs) bands (ev): -1.8882 0.1365 3.8406 6.1126 10.6743 14.6598 16.1041 19.5534 21.3084 k = 0.3979-0.0708-0.3703 ( 521 PWs) bands (ev): -3.2289 0.6447 4.9050 8.7860 10.6722 15.3950 16.3772 16.8005 19.4797 k = 0.4037 0.2346-0.1538 ( 519 PWs) bands (ev): -4.0046 3.7963 5.4477 6.2194 9.6327 13.1284 17.0048 17.5298 20.0459 k = 0.4066 0.2363 0.1675 ( 522 PWs) bands (ev): -4.2096 2.5926 8.2351 8.2358 10.7943 12.4042 12.4069 15.0687 20.9999 k = 0.3979 0.2313-0.7965 ( 520 PWs) bands (ev): -2.9026 1.8935 3.9098 6.8866 9.8088 14.7720 15.2049 18.1547 20.8843 k = 0.4008 0.2330-0.4751 ( 510 PWs) bands (ev): -2.2551 0.6562 5.4596 5.5550 8.0916 12.7609 19.5932 21.6961 22.6536 k = 0.3951-0.6766 0.1607 ( 510 PWs) bands (ev): -1.8885 0.1368 3.8405 6.1128 10.6744 14.6596 16.1034 19.5528 21.3095 k = 0.3980-0.6750 0.4820 ( 520 PWs) bands (ev): -2.9024 1.8942 3.9098 6.8857 9.8073 14.7718 15.2049 18.1554 20.8852 k = 0.3893-0.6799-0.4819 ( 520 PWs) bands (ev): -2.9028 1.8929 3.9098 6.8875 9.8102 14.7722 15.2050 18.1541 20.8833 k = 0.3922-0.6783-0.1606 ( 510 PWs) bands (ev): -1.8896 0.1375 3.8406 6.1125 10.6756 14.6638 16.1063 19.5532 21.3045 k = 0.3980-0.3729 0.0559 ( 521 PWs) bands (ev): -3.2283 0.6435 4.9054 8.7867 10.6715 15.3937 16.3768 16.8002 19.4789 k = 0.4009-0.3712 0.3772 ( 510 PWs) bands (ev): -2.2537 0.6552 5.4597 5.5539 8.0908 12.7607 19.5931 21.6955 22.6546 k = 0.3922-0.3762-0.5867 ( 510 PWs) bands (ev): -1.8888 0.1369 3.8407 6.1124 10.6748 14.6618 16.1055 19.5536 21.3060 k = 0.3951-0.3745-0.2654 ( 520 PWs) bands (ev): -2.7460 -0.7482 7.1092 8.4582 10.5594 14.2566 15.1406 17.3413 21.3695 the Fermi energy is 12.3998 ev ! total energy = -25.36038786 Ry Harris-Foulkes estimate = -25.36038787 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.14010646 0.08149090 0.05771694 atom 2 type 1 force = -0.14010646 -0.08149090 -0.05771694 Total force = 0.243318 Total SCF correction = 0.000116 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 546.87 0.00320224 -0.00060282 -0.00043237 471.07 -88.68 -63.60 -0.00060282 0.00388764 -0.00023926 -88.68 571.89 -35.20 -0.00043237 -0.00023926 0.00406280 -63.60 -35.20 597.66 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.942629687 0.005534946 0.003767339 0.471575097 0.816170953 0.004081286 0.471447266 0.274224818 0.768832789 new unit-cell volume = 202.4015 (a.u.)^3 new positions in cryst coord As 0.207414474 0.207398427 0.207407025 As -0.207414474 -0.207398427 -0.207407025 new positions in cart coord (alat unit) As 0.391100449 0.227296754 0.161089175 As -0.391100449 -0.227296754 -0.161089175 Ekin = 0.06401739 Ry T = 3366.5 K Etot = -24.59835471 new unit-cell volume = 202.40154 a.u.^3 ( 29.99281 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.942629687 0.005534946 0.003767339 0.471575097 0.816170953 0.004081286 0.471447266 0.274224818 0.768832789 ATOMIC_POSITIONS (crystal) As 0.207414474 0.207398427 0.207407025 As -0.207414474 -0.207398427 -0.207407025 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1319405 0.0766486 0.0543396), wk = 0.0625000 k( 2) = ( 0.1306417 0.0757675 0.3806185), wk = 0.0625000 k( 3) = ( 0.1345382 0.0784108 -0.5982183), wk = 0.0625000 k( 4) = ( 0.1332393 0.0775297 -0.2719394), wk = 0.0625000 k( 5) = ( 0.1305693 0.3842938 -0.0545495), wk = 0.0625000 k( 6) = ( 0.1292704 0.3834127 0.2717295), wk = 0.0625000 k( 7) = ( 0.1331669 0.3860560 -0.7071074), wk = 0.0625000 k( 8) = ( 0.1318681 0.3851749 -0.3808284), wk = 0.0625000 k( 9) = ( 0.1346830 -0.5386417 0.2721177), wk = 0.0625000 k( 10) = ( 0.1333842 -0.5395228 0.5983966), wk = 0.0625000 k( 11) = ( 0.1372807 -0.5368795 -0.3804402), wk = 0.0625000 k( 12) = ( 0.1359818 -0.5377606 -0.0541613), wk = 0.0625000 k( 13) = ( 0.1333118 -0.2309966 0.1632286), wk = 0.0625000 k( 14) = ( 0.1320129 -0.2318777 0.4895076), wk = 0.0625000 k( 15) = ( 0.1359094 -0.2292343 -0.4893293), wk = 0.0625000 k( 16) = ( 0.1346106 -0.2301155 -0.1630503), wk = 0.0625000 k( 17) = ( 0.3984916 -0.0768182 -0.0543711), wk = 0.0625000 k( 18) = ( 0.3971928 -0.0776993 0.2719078), wk = 0.0625000 k( 19) = ( 0.4010893 -0.0750560 -0.7069290), wk = 0.0625000 k( 20) = ( 0.3997904 -0.0759371 -0.3806501), wk = 0.0625000 k( 21) = ( 0.3971204 0.2308269 -0.1632602), wk = 0.0625000 k( 22) = ( 0.3958215 0.2299458 0.1630188), wk = 0.0625000 k( 23) = ( 0.3997180 0.2325892 -0.8158181), wk = 0.0625000 k( 24) = ( 0.3984192 0.2317080 -0.4895391), wk = 0.0625000 k( 25) = ( 0.4012341 -0.6921086 0.1634070), wk = 0.0625000 k( 26) = ( 0.3999353 -0.6929897 0.4896859), wk = 0.0625000 k( 27) = ( 0.4038318 -0.6903464 -0.4891509), wk = 0.0625000 k( 28) = ( 0.4025329 -0.6912275 -0.1628720), wk = 0.0625000 k( 29) = ( 0.3998629 -0.3844634 0.0545179), wk = 0.0625000 k( 30) = ( 0.3985640 -0.3853445 0.3807969), wk = 0.0625000 k( 31) = ( 0.4024605 -0.3827012 -0.5980400), wk = 0.0625000 k( 32) = ( 0.4011617 -0.3835823 -0.2717610), wk = 0.0625000 extrapolated charge 9.85368, renormalised to 10.00000 total cpu time spent up to now is 22.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.6 total cpu time spent up to now is 22.9 secs total energy = -25.30234368 Ry Harris-Foulkes estimate = -25.20223608 Ry estimated scf accuracy < 0.00057442 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.74E-06, avg # of iterations = 2.4 total cpu time spent up to now is 23.2 secs total energy = -25.30254706 Ry Harris-Foulkes estimate = -25.30258857 Ry estimated scf accuracy < 0.00008707 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.71E-07, avg # of iterations = 1.4 total cpu time spent up to now is 23.5 secs total energy = -25.30255469 Ry Harris-Foulkes estimate = -25.30255586 Ry estimated scf accuracy < 0.00000469 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.69E-08, avg # of iterations = 2.4 total cpu time spent up to now is 23.8 secs total energy = -25.30255551 Ry Harris-Foulkes estimate = -25.30255561 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.1 secs End of self-consistent calculation k = 0.1319 0.0766 0.0543 ( 531 PWs) bands (ev): -6.0767 7.9390 8.4094 8.4105 12.3385 14.3701 14.7179 14.7289 19.8733 k = 0.1306 0.0758 0.3806 ( 522 PWs) bands (ev): -4.8120 2.7004 7.4706 7.9010 12.7390 14.1628 15.0188 17.2536 18.9132 k = 0.1345 0.0784-0.5982 ( 520 PWs) bands (ev): -2.8932 -0.8198 6.8387 8.4074 10.9517 14.1904 15.8735 17.2487 21.2856 k = 0.1332 0.0775-0.2719 ( 525 PWs) bands (ev): -5.3434 3.8758 7.1422 10.1772 11.2910 13.6760 16.6679 17.6542 18.6561 k = 0.1306 0.3843-0.0545 ( 522 PWs) bands (ev): -4.8116 2.7032 7.4709 7.8983 12.7327 14.1578 15.0161 17.2545 18.9092 k = 0.1293 0.3834 0.2717 ( 519 PWs) bands (ev): -4.3374 3.8453 5.3589 6.3200 10.2173 13.1568 17.3656 18.1766 20.9935 k = 0.1332 0.3861-0.7071 ( 510 PWs) bands (ev): -2.2272 0.1422 3.8030 6.2042 10.9163 15.2989 16.3527 19.4393 21.7526 k = 0.1319 0.3852-0.3808 ( 521 PWs) bands (ev): -3.3639 0.5850 4.6209 9.1808 10.5098 15.9154 16.2326 17.1355 19.8503 k = 0.1347-0.5386 0.2721 ( 520 PWs) bands (ev): -2.8895 -0.8216 6.8347 8.4107 10.9452 14.1850 15.8693 17.2518 21.2849 k = 0.1334-0.5395 0.5984 ( 510 PWs) bands (ev): -2.2250 0.1407 3.8029 6.2054 10.9137 15.2919 16.3460 19.4385 21.7604 k = 0.1373-0.5369-0.3804 ( 510 PWs) bands (ev): -2.4505 0.2765 5.5927 5.9175 8.5012 12.4216 20.1082 22.2010 23.6070 k = 0.1360-0.5378-0.0542 ( 521 PWs) bands (ev): -3.3660 0.5885 4.6196 9.1786 10.5115 15.9212 16.2343 17.1376 19.8519 k = 0.1333-0.2310 0.1632 ( 525 PWs) bands (ev): -5.3427 3.8759 7.1394 10.1743 11.2958 13.6740 16.6695 17.6512 18.6587 k = 0.1320-0.2319 0.4895 ( 521 PWs) bands (ev): -3.3636 0.5838 4.6213 9.1855 10.5062 15.9084 16.2293 17.1435 19.8536 k = 0.1359-0.2292-0.4893 ( 521 PWs) bands (ev): -3.3679 0.5910 4.6186 9.1810 10.5097 15.9204 16.2329 17.1478 19.8568 k = 0.1346-0.2301-0.1631 ( 525 PWs) bands (ev): -5.3441 3.8756 7.1448 10.1798 11.2866 13.6779 16.6664 17.6570 18.6536 k = 0.3985-0.0768-0.0544 ( 522 PWs) bands (ev): -4.8124 2.6978 7.4704 7.9036 12.7449 14.1675 15.0213 17.2527 18.9168 k = 0.3972-0.0777 0.2719 ( 519 PWs) bands (ev): -4.3352 3.8426 5.3609 6.3133 10.2158 13.1593 17.3624 18.1861 20.9908 k = 0.4011-0.0751-0.7069 ( 510 PWs) bands (ev): -2.2221 0.1374 3.8037 6.2051 10.9129 15.2814 16.3475 19.4391 21.7600 k = 0.3998-0.0759-0.3807 ( 521 PWs) bands (ev): -3.3677 0.5899 4.6189 9.1854 10.5064 15.9139 16.2299 17.1552 19.8598 k = 0.3971 0.2308-0.1633 ( 519 PWs) bands (ev): -4.3363 3.8440 5.3598 6.3168 10.2165 13.1580 17.3640 18.1812 20.9922 k = 0.3958 0.2299 0.1630 ( 522 PWs) bands (ev): -4.7007 2.7676 8.2476 8.2503 11.4722 12.9170 12.9271 15.9815 21.0644 k = 0.3997 0.2326-0.8158 ( 520 PWs) bands (ev): -3.4616 2.2493 3.8753 6.8631 10.4193 15.4622 15.6760 18.2216 21.5420 k = 0.3984 0.2317-0.4895 ( 510 PWs) bands (ev): -2.4461 0.2738 5.5886 5.9183 8.4981 12.4206 20.1071 22.1975 23.6098 k = 0.4012-0.6921 0.1634 ( 510 PWs) bands (ev): -2.2226 0.1384 3.8032 6.2058 10.9121 15.2835 16.3435 19.4384 21.7639 k = 0.3999-0.6930 0.4897 ( 520 PWs) bands (ev): -3.4608 2.2516 3.8756 6.8595 10.4135 15.4614 15.6759 18.2227 21.5456 k = 0.4038-0.6903-0.4892 ( 520 PWs) bands (ev): -3.4623 2.2472 3.8750 6.8665 10.4246 15.4635 15.6755 18.2207 21.5388 k = 0.4025-0.6912-0.1629 ( 510 PWs) bands (ev): -2.2268 0.1414 3.8035 6.2035 10.9170 15.2970 16.3564 19.4400 21.7490 k = 0.3999-0.3845 0.0545 ( 521 PWs) bands (ev): -3.3654 0.5862 4.6203 9.1878 10.5046 15.9077 16.2280 17.1530 19.8581 k = 0.3986-0.3853 0.3808 ( 510 PWs) bands (ev): -2.4414 0.2708 5.5842 5.9190 8.4947 12.4195 20.1060 22.1937 23.6129 k = 0.4025-0.3827-0.5980 ( 510 PWs) bands (ev): -2.2242 0.1389 3.8038 6.2040 10.9153 15.2879 16.3537 19.4399 21.7528 k = 0.4012-0.3836-0.2718 ( 520 PWs) bands (ev): -2.8967 -0.8181 6.8424 8.4043 10.9578 14.1953 15.8774 17.2457 21.2862 the Fermi energy is 12.4771 ev ! total energy = -25.30255553 Ry Harris-Foulkes estimate = -25.30255553 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.16721857 0.09625489 0.06872709 atom 2 type 1 force = -0.16721857 -0.09625489 -0.06872709 Total force = 0.289657 Total SCF correction = 0.000018 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 648.68 0.00360355 -0.00094755 -0.00066509 530.10 -139.39 -97.84 -0.00094755 0.00467433 -0.00039767 -139.39 687.62 -58.50 -0.00066509 -0.00039767 0.00495103 -97.84 -58.50 728.32 NEW FEATURE: constraints with variable cell ------------------------------------------- Variable-cell Dynamics: 10 iterations completed, stopping Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.957807615 0.007901765 0.005439787 0.481147100 0.828022992 0.005822234 0.481015008 0.279795128 0.779531264 new unit-cell volume = 210.9505 (a.u.)^3 new positions in cryst coord As 0.206271703 0.206170848 0.206223281 As -0.206271703 -0.206170848 -0.206223281 new positions in cart coord (alat unit) As 0.395963607 0.230044383 0.163079944 As -0.395963607 -0.230044383 -0.163079944 Ekin = 0.01321730 Ry T = 3043.9 K Etot = -24.60138926 new unit-cell volume = 210.95052 a.u.^3 ( 31.25964 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.957807615 0.007901765 0.005439787 0.481147100 0.828022992 0.005822234 0.481015008 0.279795128 0.779531264 ATOMIC_POSITIONS (crystal) As 0.206271703 0.206170848 0.206223281 As -0.206271703 -0.206170848 -0.206223281 Writing output data file pwscf.save init_run : 0.22s CPU 0.23s WALL ( 1 calls) electrons : 20.06s CPU 20.53s WALL ( 10 calls) update_pot : 1.03s CPU 1.03s WALL ( 9 calls) forces : 0.62s CPU 0.62s WALL ( 10 calls) stress : 1.26s CPU 1.27s WALL ( 10 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 17.24s CPU 17.62s WALL ( 55 calls) sum_band : 2.60s CPU 2.66s WALL ( 55 calls) v_of_rho : 0.13s CPU 0.12s WALL ( 64 calls) mix_rho : 0.04s CPU 0.04s WALL ( 55 calls) Called by c_bands: init_us_2 : 0.51s CPU 0.51s WALL ( 4192 calls) cegterg : 16.85s CPU 17.14s WALL ( 1760 calls) Called by *egterg: h_psi : 12.21s CPU 12.36s WALL ( 6510 calls) g_psi : 0.67s CPU 0.65s WALL ( 4718 calls) cdiaghg : 1.62s CPU 1.49s WALL ( 6158 calls) Called by h_psi: add_vuspsi : 0.26s CPU 0.25s WALL ( 6510 calls) General routines calbec : 0.37s CPU 0.37s WALL ( 7150 calls) fft : 0.06s CPU 0.06s WALL ( 307 calls) fftw : 11.52s CPU 11.62s WALL ( 107984 calls) davcio : 0.02s CPU 0.16s WALL ( 5952 calls) PWSCF : 23.78s CPU 24.37s WALL This run was terminated on: 21:55:51 2Oct2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-occ.ref0000644000700200004540000002163712053145627016101 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-occ.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Occupations read from input 2.0000 2.0000 2.0000 2.0000 0.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 186, 8) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 186, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.13E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79061218 Ry Harris-Foulkes estimate = -15.81245070 Ry estimated scf accuracy < 0.06478474 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.10E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79439479 Ry Harris-Foulkes estimate = -15.79462332 Ry estimated scf accuracy < 0.00199658 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79448810 Ry Harris-Foulkes estimate = -15.79449054 Ry estimated scf accuracy < 0.00005531 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.91E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8695 2.3799 5.5379 5.5379 8.3832 9.8755 9.8755 13.2658 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9158 -0.0646 2.6800 4.0362 7.8014 10.7870 12.1284 12.3531 highest occupied, lowest unoccupied level (ev): 5.5379 7.8014 ! total energy = -15.79449575 Ry Harris-Foulkes estimate = -15.79449585 Ry estimated scf accuracy < 0.00000028 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83385442 Ry hartree contribution = 1.08418278 Ry xc contribution = -4.81277438 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 4 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.42 -0.00020681 0.00000000 0.00000000 -30.42 0.00 0.00 0.00000000 -0.00020681 0.00000000 0.00 -30.42 0.00 0.00000000 0.00000000 -0.00020681 0.00 0.00 -30.42 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.04s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 5 calls) sum_band : 0.00s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.01s CPU 0.00s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 24 calls) cegterg : 0.02s CPU 0.02s WALL ( 10 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 32 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.01s WALL ( 28 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 32 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 34 calls) fft : 0.01s CPU 0.00s WALL ( 24 calls) fftw : 0.02s CPU 0.01s WALL ( 498 calls) davcio : 0.00s CPU 0.00s WALL ( 34 calls) PWSCF : 0.12s CPU 0.13s WALL This run was terminated on: 11:28:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-disk_io.ref20000644000700200004540000002002112053145627017022 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:24:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-disk_io.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 13.0 total cpu time spent up to now is 0.3 secs End of band structure calculation k = 0.1250 0.1250 0.1250 band energies (ev): -5.4706 4.7382 6.0279 6.0279 8.8974 9.3395 9.3395 11.1523 k = 0.1250 0.1250 0.3750 band energies (ev): -4.9390 3.1208 4.9509 5.0618 8.4665 10.1046 10.8682 11.1190 k = 0.1250 0.1250 0.6250 band energies (ev): -3.8735 1.4228 3.5622 4.0290 7.6390 9.1995 12.3955 12.7019 k = 0.1250 0.1250 0.8750 band energies (ev): -2.3492 -0.4822 2.7535 3.5416 7.1512 8.2502 14.7060 14.7522 k = 0.1250 0.3750 0.3750 band energies (ev): -4.4237 1.6761 3.9439 5.5190 9.0810 10.0402 10.2089 12.6374 k = 0.1250 0.3750 0.6250 band energies (ev): -3.4357 0.4677 2.9038 4.3187 9.2003 9.9002 11.3756 12.3445 k = 0.1250 0.3750 0.8750 band energies (ev): -2.1560 -0.5888 2.1105 3.2455 8.6854 10.6099 11.6524 13.8332 k = 0.1250 0.6250 0.6250 band energies (ev): -2.6862 -0.3462 2.2032 4.3656 8.1405 11.8301 11.8827 13.3481 k = 0.3750 0.3750 0.3750 band energies (ev): -3.9543 0.3153 5.1954 5.1954 8.0460 9.8187 9.8187 14.0525 k = 0.3750 0.3750 0.6250 band energies (ev): -3.1964 -0.5070 3.9935 4.6986 8.5444 9.8721 10.4853 13.7251 highest occupied, lowest unoccupied level (ev): 6.0279 7.1512 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.13s CPU 0.13s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.13s CPU 0.13s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 10 calls) cegterg : 0.12s CPU 0.12s WALL ( 10 calls) Called by *egterg: h_psi : 0.05s CPU 0.06s WALL ( 150 calls) g_psi : 0.01s CPU 0.01s WALL ( 130 calls) cdiaghg : 0.04s CPU 0.04s WALL ( 140 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 150 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 150 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.04s CPU 0.05s WALL ( 1618 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) PWSCF : 0.34s CPU 0.35s WALL This run was terminated on: 12:24:58 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp-mixing_TF.ref0000644000700200004540000002615012053145627017430 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-mixing_TF.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.76243369 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 1.1 total cpu time spent up to now is 0.5 secs total energy = -87.82862582 Ry Harris-Foulkes estimate = -87.83350664 Ry estimated scf accuracy < 0.01160685 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-04, avg # of iterations = 1.6 negative rho (up, down): 0.650E-05 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.83068897 Ry Harris-Foulkes estimate = -87.83067630 Ry estimated scf accuracy < 0.00028544 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -87.83068480 Ry Harris-Foulkes estimate = -87.83070501 Ry estimated scf accuracy < 0.00003566 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -87.83069573 Ry Harris-Foulkes estimate = -87.83069882 Ry estimated scf accuracy < 0.00001040 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.45E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -87.83069580 Ry Harris-Foulkes estimate = -87.83069647 Ry estimated scf accuracy < 0.00000150 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-08, avg # of iterations = 1.2 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9886 11.1850 11.1850 11.1850 12.0746 12.0746 38.8575 41.0126 41.0126 41.0126 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1531 10.9382 11.3554 11.3554 12.1663 12.1663 27.5234 38.3699 38.3699 38.4662 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1013 11.1517 11.1517 12.6884 12.6884 13.4640 18.6319 37.0229 37.6064 37.6064 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7919 10.4196 11.6191 11.9026 11.9026 12.3692 32.3364 32.3364 33.7585 34.5388 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7555 10.3166 11.2505 11.8788 12.7320 15.5212 21.5948 27.6704 31.2986 35.1290 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6198 10.6628 10.8812 11.7278 12.0750 14.1915 24.5905 26.0214 35.8947 37.3859 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2484 9.6935 12.6696 12.8423 12.8423 16.0621 22.1014 28.1776 28.1776 32.9153 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0175 10.6636 10.6636 12.0421 12.8429 20.9456 20.9456 23.1289 24.0486 44.6507 the Fermi energy is 15.2763 ev ! total energy = -87.83069607 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 3.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22275284 Ry hartree contribution = 18.87923799 Ry xc contribution = -14.05431340 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.37s CPU 0.37s WALL ( 1 calls) electrons : 0.36s CPU 0.38s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.19s CPU 0.20s WALL ( 7 calls) sum_band : 0.10s CPU 0.10s WALL ( 7 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 8 calls) newd : 0.06s CPU 0.06s WALL ( 8 calls) mix_rho : 0.00s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 120 calls) cegterg : 0.18s CPU 0.18s WALL ( 56 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 183 calls) s_psi : 0.00s CPU 0.00s WALL ( 183 calls) g_psi : 0.01s CPU 0.01s WALL ( 119 calls) cdiaghg : 0.07s CPU 0.04s WALL ( 175 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 183 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 239 calls) fft : 0.02s CPU 0.01s WALL ( 67 calls) ffts : 0.00s CPU 0.00s WALL ( 15 calls) fftw : 0.10s CPU 0.10s WALL ( 3302 calls) interpolate : 0.00s CPU 0.00s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 176 calls) PWSCF : 0.80s CPU 0.85s WALL This run was terminated on: 11:28:48 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav3.ref0000644000700200004540000001721112053145627017366 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav3.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 557 557 137 8391 8391 1055 Tot 279 279 69 bravais-lattice index = 3 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 4196 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 528, 1) NL pseudopotentials 0.00 Mb ( 528, 0) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.03 Mb ( 4196) G-vector shells 0.00 Mb ( 117) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 528, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 10.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.23761250 Ry Harris-Foulkes estimate = -2.29963774 Ry estimated scf accuracy < 0.11961166 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.98E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.25008503 Ry Harris-Foulkes estimate = -2.25010412 Ry estimated scf accuracy < 0.00020326 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.25011797 Ry Harris-Foulkes estimate = -2.25011297 Ry estimated scf accuracy < 0.00000702 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.51E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 528 PWs) bands (ev): -10.3795 ! total energy = -2.25011823 Ry Harris-Foulkes estimate = -2.25011827 Ry estimated scf accuracy < 0.00000007 Ry The total energy is the sum of the following terms: one-electron contribution = -2.22590540 Ry hartree contribution = 1.18719738 Ry xc contribution = -1.28212670 Ry ewald contribution = 0.07071649 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 4 calls) sum_band : 0.00s CPU 0.00s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 12 calls) g_psi : 0.00s CPU 0.00s WALL ( 7 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 11 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.01s CPU 0.01s WALL ( 28 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.09s CPU 0.09s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-atom_l=2.ref0000644000700200004540000002324212053145627016775 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:21:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_l=2.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2335 2335 583 74249 74249 9377 Tot 1168 1168 292 bravais-lattice index = 2 lattice parameter (alat) = 26.0000 a.u. unit-cell volume = 4394.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 26.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pbe-kjpaw.UPF MD5 check sum: 92cd914fcb04cfd737edc2091ad11b5d Pseudo is Projector augmented-wave + core cor, Zval = 11.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1199 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 0 l(4) = 0 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 1.00000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 37125 G-vectors FFT dimensions: ( 60, 60, 60) Occupations read from input 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 4689, 9) NL pseudopotentials 1.29 Mb ( 4689, 18) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.28 Mb ( 37125) G-vector shells 0.00 Mb ( 574) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.29 Mb ( 4689, 36) Each subspace H/S matrix 0.01 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 26.37 Mb ( 216000, 8) Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.011950 starting charge 10.99972, renormalised to 11.00000 negative rho (up, down): 0.120E-01 0.000E+00 Starting wfc are 9 randomized atomic wfcs total cpu time spent up to now is 2.6 secs per-process dynamical memory: 45.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.19E-06, avg # of iterations = 4.0 negative rho (up, down): 0.105E-01 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -212.94062363 Ry Harris-Foulkes estimate = -212.94268197 Ry estimated scf accuracy < 0.00247537 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-05, avg # of iterations = 3.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 4.8 secs total energy = -212.94096603 Ry Harris-Foulkes estimate = -212.94294036 Ry estimated scf accuracy < 0.00415467 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-05, avg # of iterations = 2.0 negative rho (up, down): 0.987E-02 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -212.94180928 Ry Harris-Foulkes estimate = -212.94180760 Ry estimated scf accuracy < 0.00000430 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-08, avg # of iterations = 4.0 negative rho (up, down): 0.980E-02 0.000E+00 total cpu time spent up to now is 6.7 secs total energy = -212.94184070 Ry Harris-Foulkes estimate = -212.94184533 Ry estimated scf accuracy < 0.00000976 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-08, avg # of iterations = 2.0 negative rho (up, down): 0.983E-02 0.000E+00 total cpu time spent up to now is 7.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4689 PWs) bands (ev): -4.6484 -4.6484 -4.6484 -4.6483 -4.6483 -4.2670 -0.2024 -0.2020 -0.2020 highest occupied, lowest unoccupied level (ev): -4.2670 -0.2024 ! total energy = -212.94184141 Ry Harris-Foulkes estimate = -212.94184169 Ry estimated scf accuracy < 0.00000042 Ry total all-electron energy = -3309.698859 Ry The total energy is the sum of the following terms: one-electron contribution = -135.99349050 Ry hartree contribution = 59.89356955 Ry xc contribution = -19.40053602 Ry ewald contribution = -21.33724282 Ry one-center paw contrib. = -96.10414162 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 2.13s CPU 2.16s WALL ( 1 calls) electrons : 4.92s CPU 5.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.48s CPU 0.48s WALL ( 1 calls) Called by electrons: c_bands : 0.85s CPU 0.87s WALL ( 6 calls) sum_band : 1.03s CPU 1.04s WALL ( 6 calls) v_of_rho : 1.09s CPU 1.14s WALL ( 6 calls) newd : 0.75s CPU 0.77s WALL ( 6 calls) mix_rho : 0.11s CPU 0.12s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.03s CPU 0.03s WALL ( 13 calls) regterg : 0.80s CPU 0.81s WALL ( 6 calls) Called by *egterg: h_psi : 0.71s CPU 0.71s WALL ( 24 calls) s_psi : 0.02s CPU 0.01s WALL ( 24 calls) g_psi : 0.01s CPU 0.02s WALL ( 17 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 22 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 24 calls) General routines calbec : 0.04s CPU 0.03s WALL ( 30 calls) fft : 0.30s CPU 0.30s WALL ( 80 calls) fftw : 0.52s CPU 0.54s WALL ( 230 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PAW routines PAW_pot : 1.54s CPU 1.55s WALL ( 6 calls) PAW_ddot : 0.06s CPU 0.06s WALL ( 22 calls) PAW_symme : 0.00s CPU 0.01s WALL ( 12 calls) PWSCF : 7.53s CPU 7.72s WALL This run was terminated on: 11:21:54 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/eval_infix.in0000644000700200004540000000053612053145627016535 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 1-1 0/2 (1+1)*0 Si 1/4 2*(1/8) 1/(2/(1/2)) K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters+a.ref0000644000700200004540000001763512053145627022751 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters+a.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4246 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 22997) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055176 Ry Harris-Foulkes estimate = -2.29035902 Ry estimated scf accuracy < 0.13253988 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23168711 Ry Harris-Foulkes estimate = -2.23211031 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203750 Ry Harris-Foulkes estimate = -2.23203922 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203913 Ry Harris-Foulkes estimate = -2.23203886 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125580 Ry hartree contribution = 1.92424341 Ry xc contribution = -1.31190430 Ry ewald contribution = 0.80687755 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.12s CPU 0.15s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.08s CPU 0.08s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.03s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.31s CPU 0.37s WALL This run was terminated on: 10:22:15 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp.in20000755000700200004540000000052112053145627015457 0ustar marsamoscm &control calculation='nscf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 nbnd=8 / &electrons / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 8 8 8 0 0 0 espresso-5.0.2/PW/tests/lsda-mixing_localTF.ref0000644000700200004540000003545712053145627020411 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:32 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-mixing_localTF.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 local-TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.43798053 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.1 total cpu time spent up to now is 1.2 secs total energy = -85.68728704 Ry Harris-Foulkes estimate = -85.63182716 Ry estimated scf accuracy < 0.14325367 Ry total magnetization = 1.13 Bohr mag/cell absolute magnetization = 1.21 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.000E+00 0.750E-04 total cpu time spent up to now is 1.3 secs total energy = -85.71486528 Ry Harris-Foulkes estimate = -85.70014117 Ry estimated scf accuracy < 0.03872169 Ry total magnetization = 0.70 Bohr mag/cell absolute magnetization = 0.88 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.87E-04, avg # of iterations = 1.4 total cpu time spent up to now is 1.4 secs total energy = -85.71856129 Ry Harris-Foulkes estimate = -85.72065420 Ry estimated scf accuracy < 0.00935707 Ry total magnetization = 0.56 Bohr mag/cell absolute magnetization = 0.62 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.36E-05, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -85.72321988 Ry Harris-Foulkes estimate = -85.72364817 Ry estimated scf accuracy < 0.00107189 Ry total magnetization = 0.74 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-05, avg # of iterations = 1.4 total cpu time spent up to now is 1.7 secs total energy = -85.72339828 Ry Harris-Foulkes estimate = -85.72339573 Ry estimated scf accuracy < 0.00000813 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.8 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3748 12.4378 12.7328 12.7328 13.8391 13.8391 37.2306 41.0668 43.4113 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2055 12.0607 12.6970 13.0395 13.7422 14.7845 28.9043 34.6219 41.7707 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3037 12.3166 12.8640 13.0987 14.6703 16.6315 22.1065 35.6775 38.1888 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9447 11.9815 12.9286 13.0723 13.6674 14.1608 33.2110 38.4339 38.7921 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0135 11.3045 12.9383 13.7120 14.5658 14.8881 29.9534 33.4462 34.2668 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0399 11.3663 12.4808 13.8992 14.6525 20.4136 23.8799 27.7785 30.1427 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6940 11.8160 12.2431 13.4377 14.3024 16.5377 25.7640 31.6193 34.9272 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3596 10.8359 13.8889 14.3639 14.7572 17.9867 26.7272 28.0810 31.8604 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6584 12.6902 12.6902 13.2183 14.4199 14.4199 24.6748 38.8449 41.6262 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0760 11.7361 12.4054 13.4398 14.3580 19.0762 22.8046 29.0403 36.4039 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4365 13.2089 13.5287 13.5287 14.5893 14.5893 37.3662 41.0789 43.5294 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3439 12.7254 13.4172 13.7963 14.5353 15.5688 29.1557 34.7853 41.8196 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8009 12.9443 13.5986 13.6509 15.5221 17.0802 22.5331 35.7965 38.3363 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0204 12.7123 13.6836 13.8660 14.4245 14.9382 33.4080 38.5930 38.8735 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2525 11.9871 13.5721 14.5121 15.3840 15.5712 30.1588 33.6287 34.4022 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5581 11.9906 13.1341 14.6365 15.5403 20.7569 24.1563 28.0293 30.3197 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0641 12.4022 12.9271 14.1793 15.1318 17.1389 26.0478 31.8046 35.0924 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8282 11.4934 14.5917 15.1540 15.6324 18.3028 27.0254 28.2531 31.9595 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9853 13.4261 13.4261 13.5632 15.2510 15.2510 25.0140 38.8322 41.7800 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6398 12.2595 13.0571 14.1759 15.2169 19.4761 23.1574 29.2602 36.5522 the Fermi energy is 15.3058 ev ! total energy = -85.72339896 Ry Harris-Foulkes estimate = -85.72339881 Ry estimated scf accuracy < 0.00000050 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30105820 Ry hartree contribution = 14.33842308 Ry xc contribution = -29.60889390 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00005802 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.79s WALL ( 1 calls) electrons : 0.88s CPU 0.91s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.42s CPU 0.43s WALL ( 7 calls) sum_band : 0.24s CPU 0.25s WALL ( 7 calls) v_of_rho : 0.05s CPU 0.04s WALL ( 8 calls) newd : 0.15s CPU 0.15s WALL ( 8 calls) mix_rho : 0.02s CPU 0.02s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.02s WALL ( 300 calls) cegterg : 0.39s CPU 0.39s WALL ( 140 calls) Called by *egterg: h_psi : 0.25s CPU 0.27s WALL ( 423 calls) s_psi : 0.02s CPU 0.01s WALL ( 423 calls) g_psi : 0.01s CPU 0.01s WALL ( 263 calls) cdiaghg : 0.08s CPU 0.08s WALL ( 403 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 423 calls) General routines calbec : 0.02s CPU 0.02s WALL ( 563 calls) fft : 0.03s CPU 0.03s WALL ( 126 calls) ffts : 0.01s CPU 0.01s WALL ( 130 calls) fftw : 0.19s CPU 0.21s WALL ( 7338 calls) interpolate : 0.00s CPU 0.01s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 440 calls) PWSCF : 1.82s CPU 1.88s WALL This run was terminated on: 10:24:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav9-kauto.ref0000644000700200004540000001772612053145627020530 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav9-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 597 597 173 25351 25351 3829 bravais-lattice index = 9 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 0.000000 ) a(2) = ( -0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.666667 0.000000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.3333333 0.1250000), wk = 1.0000000 k( 2) = ( 0.5000000 0.0000000 0.1250000), wk = 1.0000000 Dense grid: 25351 G-vectors FFT dimensions: ( 30, 30, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3167, 1) NL pseudopotentials 0.00 Mb ( 3167, 0) Each V/rho on FFT grid 0.88 Mb ( 57600) Each G-vector array 0.19 Mb ( 25351) G-vector shells 0.01 Mb ( 1384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 3167, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.03 Mb ( 57600, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002141 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.214E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 11.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.621E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.21985591 Ry Harris-Foulkes estimate = -2.28988876 Ry estimated scf accuracy < 0.13309428 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 negative rho (up, down): 0.131E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23089127 Ry Harris-Foulkes estimate = -2.23133660 Ry estimated scf accuracy < 0.00100284 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.01E-05, avg # of iterations = 2.0 negative rho (up, down): 0.160E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23119987 Ry Harris-Foulkes estimate = -2.23120209 Ry estimated scf accuracy < 0.00001280 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.3333 0.1250 ( 3167 PWs) bands (ev): -10.1855 k = 0.5000 0.0000 0.1250 ( 3162 PWs) bands (ev): -10.1724 ! total energy = -2.23120122 Ry Harris-Foulkes estimate = -2.23120125 Ry estimated scf accuracy < 0.00000051 Ry The total energy is the sum of the following terms: one-electron contribution = -3.67603038 Ry hartree contribution = 1.94839170 Ry xc contribution = -1.31417411 Ry ewald contribution = 0.81061156 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 0.13s CPU 0.14s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.04s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.04s CPU 0.03s WALL ( 8 calls) Called by *egterg: h_psi : 0.04s CPU 0.04s WALL ( 24 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 22 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.04s CPU 0.03s WALL ( 60 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.21s CPU 0.22s WALL This run was terminated on: 10:22:25 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-kauto.ref0000644000700200004540000002116212053145627016451 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-kauto.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79103087 Ry Harris-Foulkes estimate = -15.81239584 Ry estimated scf accuracy < 0.06376279 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409443 Ry Harris-Foulkes estimate = -15.79442040 Ry estimated scf accuracy < 0.00230236 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447811 Ry Harris-Foulkes estimate = -15.79450046 Ry estimated scf accuracy < 0.00006290 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.86E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449511 Ry Harris-Foulkes estimate = -15.79449675 Ry estimated scf accuracy < 0.00000442 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500-0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378649 Ry hartree contribution = 1.08429069 Ry xc contribution = -4.81281453 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.11s CPU 0.11s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-atom.ref0000644000700200004540000002124212053145627016301 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 17:58:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/paw-atom.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.50 Mb ( 5425, 6) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.99 Mb ( 5425, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001740 starting charge 6.00001, renormalised to 6.00000 negative rho (up, down): 0.174E-02 0.000E+00 Starting wfc are 4 atomic + 2 random wfc total cpu time spent up to now is 1.3 secs per-process dynamical memory: 43.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.12E-07, avg # of iterations = 19.0 negative rho (up, down): 0.167E-02 0.000E+00 total cpu time spent up to now is 2.2 secs total energy = -41.12628421 Ry Harris-Foulkes estimate = -41.12628356 Ry estimated scf accuracy < 0.00001951 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.25E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-02 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -41.12628892 Ry Harris-Foulkes estimate = -41.12629004 Ry estimated scf accuracy < 0.00000401 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.68E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.000E+00 total cpu time spent up to now is 3.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -23.7516 -8.8679 -8.8679 -8.8679 -0.5478 1.9246 highest occupied, lowest unoccupied level (ev): -8.8679 -0.5478 ! total energy = -41.12628989 Ry Harris-Foulkes estimate = -41.12628978 Ry estimated scf accuracy < 0.00000021 Ry total all-electron energy = -149.887036 Ry The total energy is the sum of the following terms: one-electron contribution = -38.80296655 Ry hartree contribution = 20.73967149 Ry xc contribution = -6.48343875 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.97735465 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 1.06s CPU 1.09s WALL ( 1 calls) electrons : 1.90s CPU 1.95s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.27s CPU 0.29s WALL ( 1 calls) Called by electrons: c_bands : 0.62s CPU 0.62s WALL ( 4 calls) sum_band : 0.32s CPU 0.31s WALL ( 4 calls) v_of_rho : 0.75s CPU 0.80s WALL ( 4 calls) newd : 0.16s CPU 0.16s WALL ( 4 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 9 calls) regterg : 0.60s CPU 0.60s WALL ( 4 calls) Called by *egterg: h_psi : 0.55s CPU 0.55s WALL ( 34 calls) s_psi : 0.00s CPU 0.00s WALL ( 34 calls) g_psi : 0.02s CPU 0.01s WALL ( 29 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 34 calls) General routines calbec : 0.02s CPU 0.01s WALL ( 38 calls) fft : 0.32s CPU 0.31s WALL ( 54 calls) fftw : 0.42s CPU 0.42s WALL ( 120 calls) davcio : 0.00s CPU 0.00s WALL ( 3 calls) PAW routines PAW_pot : 0.23s CPU 0.23s WALL ( 4 calls) PAW_ddot : 0.01s CPU 0.01s WALL ( 6 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 3.21s CPU 3.32s WALL This run was terminated on: 17:58:37 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U-user_ns.ref0000644000700200004540000006364012053145627017200 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lda+U-user_ns.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 2.4 secs per-process dynamical memory: 35.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.4 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.1236738 atom 3 spin 1 eigenvalues: 0.9970989 0.9970989 1.0025910 1.0025910 1.0030644 eigenvectors 1 -0.3789127 -0.2579907 0.4910036 0.7031973 0.2330128 2 -0.7031973 0.4180111 0.0144210 -0.3789127 0.4324321 3 -0.4388606 -0.6242316 0.1484642 -0.4115095 -0.4757673 4 0.4115095 -0.1889685 0.6350847 -0.4388606 0.4461161 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1554230 0.1554230 0.2572383 0.2765727 0.2765727 eigenvectors 1 0.2412029 -0.0515430 0.0688967 -0.9664971 0.0173537 2 -0.9664971 -0.0497967 -0.0197392 -0.2412029 -0.0695359 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0636250 0.1904648 -0.7800244 -0.0604686 -0.5895596 5 -0.0604686 0.7907297 -0.2304175 -0.0636250 0.5603122 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.270 -0.006 -0.007 0.006 -0.004 -0.006 0.270 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.270 atom 4 Tr[ns(na)]= 6.1234246 atom 4 spin 1 eigenvalues: 0.1554052 0.1554052 0.2569412 0.2766731 0.2766731 eigenvectors 1 0.0647646 -0.0595231 0.0641761 -0.9940434 0.0046531 2 -0.9940434 -0.0397385 -0.0316792 -0.0647646 -0.0714178 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0775556 -0.0315929 -0.6880571 -0.0408453 -0.7196500 5 0.0408453 -0.8127401 0.4337303 0.0775556 -0.3790098 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.007 0.006 -0.004 -0.006 0.269 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 spin 2 eigenvalues: 0.9970655 0.9970655 1.0025690 1.0025690 1.0030580 eigenvectors 1 -0.3563734 -0.2705816 0.4884999 0.7167029 0.2179184 2 -0.7167029 0.4078508 0.0304051 -0.3563734 0.4382559 3 -0.4526410 -0.6178044 0.1243193 -0.3930027 -0.4934850 4 -0.3930027 0.2131379 -0.6416032 0.4526410 -0.4284653 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 12.2470983 exit write_ns Modify starting ns matrices according to input values enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.8664354 atom 3 spin 1 eigenvalues: 0.9970989 0.9970989 1.0025910 1.0025910 1.0030644 eigenvectors 1 -0.4223040 -0.2312442 0.4909406 0.6780270 0.2596964 2 -0.6780270 0.4333805 -0.0164269 -0.4223040 0.4169536 3 -0.4933685 -0.5906553 0.0557962 -0.3442764 -0.5348592 4 -0.3442764 0.2765872 -0.6498161 0.4933685 -0.3732289 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1554230 0.1554230 0.2765727 0.2765727 1.0000000 eigenvectors 1 0.3118757 -0.0477273 0.0701656 -0.9460597 0.0224383 2 -0.9460597 -0.0534649 -0.0146006 -0.3118757 -0.0680655 3 0.0565833 0.2763353 -0.8006454 -0.0671038 -0.5243102 4 0.0671038 -0.7649635 0.1431684 0.0565833 -0.6217951 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.007 -0.241 -0.004 0.241 0.517 0.007 -0.241 0.000 -0.007 0.007 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atom 4 Tr[ns(na)]= 6.8664834 atom 4 spin 1 eigenvalues: 0.1554052 0.1554052 0.2766731 0.2766731 1.0000000 eigenvectors 1 0.1281670 -0.0568614 0.0660697 -0.9878715 0.0092082 2 -0.9878715 -0.0434617 -0.0275126 -0.1281670 -0.0709743 3 -0.0862909 0.2766136 0.5240919 0.0153982 0.8007055 4 -0.0153982 0.7648722 -0.6219905 -0.0862909 0.1428817 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.007 -0.241 -0.004 0.241 0.517 0.007 -0.241 0.000 -0.007 0.007 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atom 4 spin 2 eigenvalues: 0.9970655 0.9970655 1.0025690 1.0025690 1.0030580 eigenvectors 1 -0.3709244 -0.2622025 0.4890187 0.7092814 0.2268162 2 -0.7092814 0.4132874 0.0204303 -0.3709244 0.4337177 3 -0.4503659 -0.6190239 0.1280192 -0.3956078 -0.4910046 4 -0.3956078 0.2095697 -0.6408753 0.4503659 -0.4313055 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 13.7329189 exit write_ns total cpu time spent up to now is 3.5 secs total energy = -174.07153699 Ry Harris-Foulkes estimate = -174.93549708 Ry estimated scf accuracy < 2.39735328 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.53 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.2 total cpu time spent up to now is 4.6 secs total energy = -174.49892747 Ry Harris-Foulkes estimate = -174.52899663 Ry estimated scf accuracy < 0.27207227 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.16 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.72E-04, avg # of iterations = 2.5 total cpu time spent up to now is 5.6 secs total energy = -174.52701987 Ry Harris-Foulkes estimate = -174.51778970 Ry estimated scf accuracy < 0.09636570 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.44E-04, avg # of iterations = 2.0 total cpu time spent up to now is 6.6 secs total energy = -174.53642354 Ry Harris-Foulkes estimate = -174.53660911 Ry estimated scf accuracy < 0.00264565 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.34 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.45E-06, avg # of iterations = 3.0 total cpu time spent up to now is 7.7 secs total energy = -174.53718200 Ry Harris-Foulkes estimate = -174.53699672 Ry estimated scf accuracy < 0.00100954 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.61E-06, avg # of iterations = 2.0 total cpu time spent up to now is 8.8 secs total energy = -174.53736480 Ry Harris-Foulkes estimate = -174.53736447 Ry estimated scf accuracy < 0.00010845 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.87E-07, avg # of iterations = 3.6 total cpu time spent up to now is 9.9 secs total energy = -174.53740628 Ry Harris-Foulkes estimate = -174.53739490 Ry estimated scf accuracy < 0.00001496 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.34E-08, avg # of iterations = 3.1 total cpu time spent up to now is 11.1 secs total energy = -174.53741373 Ry Harris-Foulkes estimate = -174.53741007 Ry estimated scf accuracy < 0.00000276 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.86E-09, avg # of iterations = 2.4 total cpu time spent up to now is 12.1 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.7660345 atom 3 spin 1 eigenvalues: 0.9940263 0.9940263 1.0012167 1.0012167 1.0019649 eigenvectors 1 0.3177347 0.1597430 -0.2416336 -0.8991295 -0.0818906 2 -0.8991295 0.1867868 0.0449481 -0.3177347 0.2317349 3 0.2618435 0.6712802 0.0060203 0.1484880 0.6773005 4 -0.1484880 0.3945154 -0.7786034 0.2618435 -0.3840880 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1022322 0.1022322 0.2925567 0.2925567 0.9840056 eigenvectors 1 0.0664896 0.1879152 -0.7790371 -0.0627944 -0.5911219 2 0.0627944 -0.7910617 0.2327915 0.0664896 -0.5582702 3 0.0344421 0.0659210 -0.0633383 0.9952134 0.0025827 4 0.9952134 0.0350773 0.0395507 -0.0344421 0.0746279 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atom 4 Tr[ns(na)]= 6.7660241 atom 4 spin 1 eigenvalues: 0.1022320 0.1022320 0.2925523 0.2925523 0.9840044 eigenvectors 1 0.0912926 -0.3639449 -0.4476910 -0.0054385 -0.8116360 2 -0.0054385 0.7270728 -0.6787219 -0.0912926 0.0483508 3 0.1522612 0.0696164 -0.0581989 0.9840999 0.0114175 4 -0.9840999 -0.0270092 -0.0467850 0.1522612 -0.0737942 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atom 4 spin 2 eigenvalues: 0.9940260 0.9940260 1.0012169 1.0012169 1.0019653 eigenvectors 1 -0.2423836 -0.1746195 0.2370874 0.9223045 0.0624678 2 -0.9223045 0.1729483 0.0647508 -0.2423836 0.2376991 3 0.2472042 0.7044604 -0.0650032 0.1717402 0.6394572 4 0.1717402 -0.3316612 0.7759112 -0.2472042 0.4442500 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 nsum = 13.5320585 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7181 -7.4674 1.4537 3.6647 3.6647 5.4888 5.4888 6.8732 7.8284 7.8808 7.8808 8.4602 8.4602 9.8920 11.5965 12.5866 12.5866 13.4555 13.4555 15.5164 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0104 -7.3302 2.4599 3.6248 4.1630 4.2257 5.5886 5.6547 6.2710 6.5401 7.3465 8.7895 9.2131 9.4788 12.5151 12.7502 13.3334 13.6655 17.3710 17.6645 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8301 -7.4830 1.8599 4.1300 4.1640 4.2158 5.6545 5.6827 6.6626 6.6856 7.2422 8.6735 8.8899 9.7821 12.5728 12.8532 13.7801 13.8685 15.3276 16.7000 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2020 -8.1490 3.4508 3.7652 3.7652 4.2985 5.5345 5.5345 6.9751 6.9751 7.8691 9.4393 9.4393 9.5137 12.5355 12.5355 13.1783 13.1783 14.1108 14.3872 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7181 -7.4674 1.4537 3.6648 3.6648 5.4889 5.4889 6.8733 7.8284 7.8808 7.8808 8.4603 8.4603 9.8919 11.5965 12.5865 12.5865 13.4554 13.4554 15.5164 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0104 -7.3302 2.4599 3.6249 4.1631 4.2256 5.5886 5.6549 6.2712 6.5401 7.3467 8.7896 9.2132 9.4786 12.5150 12.7501 13.3333 13.6654 17.3710 17.6645 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8301 -7.4830 1.8599 4.1301 4.1641 4.2158 5.6546 5.6828 6.6625 6.6855 7.2424 8.6735 8.8900 9.7820 12.5727 12.8531 13.7800 13.8683 15.3276 16.7000 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2020 -8.1490 3.4508 3.7653 3.7653 4.2985 5.5347 5.5347 6.9751 6.9751 7.8692 9.4393 9.4393 9.5136 12.5354 12.5354 13.1782 13.1782 14.1108 14.3873 the Fermi energy is 10.7842 ev ! total energy = -174.53741678 Ry Harris-Foulkes estimate = -174.53741447 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 0.54107788 Ry hartree contribution = 28.09015047 Ry xc contribution = -65.85551973 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.19616994 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 2.32s CPU 2.34s WALL ( 1 calls) electrons : 9.50s CPU 9.66s WALL ( 1 calls) Called by init_run: wfcinit : 0.23s CPU 0.24s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 5.06s CPU 5.11s WALL ( 9 calls) sum_band : 2.51s CPU 2.56s WALL ( 9 calls) v_of_rho : 0.42s CPU 0.43s WALL ( 10 calls) newd : 1.25s CPU 1.29s WALL ( 10 calls) mix_rho : 0.12s CPU 0.12s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.12s CPU 0.12s WALL ( 160 calls) cegterg : 4.78s CPU 4.82s WALL ( 72 calls) Called by *egterg: h_psi : 4.04s CPU 4.07s WALL ( 266 calls) s_psi : 0.15s CPU 0.14s WALL ( 274 calls) g_psi : 0.04s CPU 0.06s WALL ( 186 calls) cdiaghg : 0.32s CPU 0.27s WALL ( 258 calls) Called by h_psi: add_vuspsi : 0.14s CPU 0.16s WALL ( 266 calls) General routines calbec : 0.31s CPU 0.33s WALL ( 684 calls) fft : 0.37s CPU 0.35s WALL ( 160 calls) ffts : 0.02s CPU 0.03s WALL ( 38 calls) fftw : 3.10s CPU 3.19s WALL ( 8400 calls) interpolate : 0.15s CPU 0.16s WALL ( 38 calls) davcio : 0.00s CPU 0.05s WALL ( 464 calls) PWSCF : 11.98s CPU 12.23s WALL This run was terminated on: 10:24:25 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/md-wfc_extrap2.ref0000644000700200004540000040046312053145627017404 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-wfc_extrap2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.17E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803678 Ry Harris-Foulkes estimate = -14.44803678 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 6.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244079 -0.02244031 -0.02244020 atom 2 type 1 force = 0.02244079 0.02244031 0.02244020 Total force = 0.054968 Total SCF correction = 0.000018 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158948 -0.123158947 -0.123158948 Si 0.123158948 0.123158947 0.123158948 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41898756 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.59E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815427 Ry Harris-Foulkes estimate = -14.44815426 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.63E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815428 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 4.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139499 -0.02139630 -0.02139624 atom 2 type 1 force = 0.02139499 0.02139630 0.02139624 Total force = 0.052409 Total SCF correction = 0.000004 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279545 -0.123279545 -0.123279546 Si 0.123279545 0.123279545 0.123279546 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72868605 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830657 Ry Harris-Foulkes estimate = -14.44830655 Ry estimated scf accuracy < 0.00000040 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830660 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.86E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 6.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995791 -0.01995791 -0.01995792 atom 2 type 1 force = 0.01995791 0.01995791 0.01995792 Total force = 0.048887 Total SCF correction = 0.000007 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430776 -0.123430777 -0.123430778 Si 0.123430776 0.123430777 0.123430778 kinetic energy (Ekin) = 0.00036754 Ry temperature = 38.68698010 K Ekin + Etot (const) = -14.44793907 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.63E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848264 Ry Harris-Foulkes estimate = -14.44848261 Ry estimated scf accuracy < 0.00000062 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.79E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848268 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 9.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816304 -0.01816307 -0.01816306 atom 2 type 1 force = 0.01816304 0.01816307 0.01816306 Total force = 0.044490 Total SCF correction = 0.000009 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609886 -0.123609889 -0.123609890 Si 0.123609886 0.123609889 0.123609890 kinetic energy (Ekin) = 0.00054281 Ry temperature = 57.13498562 K Ekin + Etot (const) = -14.44793990 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866979 Ry Harris-Foulkes estimate = -14.44866974 Ry estimated scf accuracy < 0.00000088 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866984 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.47E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4770 7.4770 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604755 -0.01604755 -0.01604753 atom 2 type 1 force = 0.01604755 0.01604755 0.01604753 Total force = 0.039308 Total SCF correction = 0.000011 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813628 -0.123813632 -0.123813633 Si 0.123813628 0.123813632 0.123813633 kinetic energy (Ekin) = 0.00072909 Ry temperature = 76.74306239 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885461 Ry Harris-Foulkes estimate = -14.44885457 Ry estimated scf accuracy < 0.00000115 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885469 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2559 7.4649 7.4649 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365477 -0.01365473 -0.01365472 atom 2 type 1 force = 0.01365477 0.01365473 0.01365472 Total force = 0.033447 Total SCF correction = 0.000011 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038330 -0.124038335 -0.124038336 Si 0.124038330 0.124038335 0.124038336 kinetic energy (Ekin) = 0.00091308 Ry temperature = 96.10888253 K Ekin + Etot (const) = -14.44794166 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902404 Ry Harris-Foulkes estimate = -14.44902400 Ry estimated scf accuracy < 0.00000140 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902414 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902420 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103177 -0.01103172 -0.01103170 atom 2 type 1 force = 0.01103177 0.01103172 0.01103170 Total force = 0.027022 Total SCF correction = 0.000013 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279964 -0.124279970 -0.124279972 Si 0.124279964 0.124279970 0.124279972 kinetic energy (Ekin) = 0.00108173 Ry temperature = 113.86065119 K Ekin + Etot (const) = -14.44794247 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916621 Ry Harris-Foulkes estimate = -14.44916618 Ry estimated scf accuracy < 0.00000163 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916639 Ry Harris-Foulkes estimate = -14.44916633 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916640 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00822980 -0.00822974 -0.00822973 atom 2 type 1 force = 0.00822980 0.00822974 0.00822973 Total force = 0.020159 Total SCF correction = 0.000014 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534231 -0.124534238 -0.124534239 Si 0.124534231 0.124534238 0.124534239 kinetic energy (Ekin) = 0.00122324 Ry temperature = 128.75558076 K Ekin + Etot (const) = -14.44794316 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927134 Ry Harris-Foulkes estimate = -14.44927131 Ry estimated scf accuracy < 0.00000180 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927147 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927154 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530197 -0.00530189 -0.00530188 atom 2 type 1 force = 0.00530197 0.00530189 0.00530188 Total force = 0.012987 Total SCF correction = 0.000015 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796636 -0.124796644 -0.124796645 Si 0.124796636 0.124796644 0.124796645 kinetic energy (Ekin) = 0.00132785 Ry temperature = 139.76701949 K Ekin + Etot (const) = -14.44794369 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933234 Ry Harris-Foulkes estimate = -14.44933231 Ry estimated scf accuracy < 0.00000193 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933255 Ry Harris-Foulkes estimate = -14.44933248 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3711 7.4068 7.4068 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933255 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230225 -0.00230217 -0.00230215 atom 2 type 1 force = 0.00230225 0.00230217 0.00230215 Total force = 0.005639 Total SCF correction = 0.000015 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062575 -0.125062584 -0.125062585 Si 0.125062575 0.125062584 0.125062585 kinetic energy (Ekin) = 0.00138852 Ry temperature = 146.15313673 K Ekin + Etot (const) = -14.44794404 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934529 Ry Harris-Foulkes estimate = -14.44934527 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934544 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4023 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071558 0.00071572 0.00071574 atom 2 type 1 force = -0.00071558 -0.00071572 -0.00071574 Total force = 0.001753 Total SCF correction = 0.000016 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327416 -0.125327425 -0.125327426 Si 0.125327416 0.125327425 0.125327426 kinetic energy (Ekin) = 0.00140135 Ry temperature = 147.50351673 K Ekin + Etot (const) = -14.44794417 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930967 Ry Harris-Foulkes estimate = -14.44930965 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930989 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930990 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369895 0.00369906 0.00369907 atom 2 type 1 force = -0.00369895 -0.00369906 -0.00369907 Total force = 0.009061 Total SCF correction = 0.000016 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586579 -0.125586588 -0.125586589 Si 0.125586579 0.125586588 0.125586589 kinetic energy (Ekin) = 0.00136580 Ry temperature = 143.76128843 K Ekin + Etot (const) = -14.44794410 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922826 Ry Harris-Foulkes estimate = -14.44922825 Ry estimated scf accuracy < 0.00000189 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922841 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922848 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659746 0.00659757 0.00659758 atom 2 type 1 force = -0.00659746 -0.00659757 -0.00659758 Total force = 0.016161 Total SCF correction = 0.000016 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835615 -0.125835624 -0.125835625 Si 0.125835615 0.125835624 0.125835625 kinetic energy (Ekin) = 0.00128465 Ry temperature = 135.22001850 K Ekin + Etot (const) = -14.44794383 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.19E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910696 Ry Harris-Foulkes estimate = -14.44910696 Ry estimated scf accuracy < 0.00000175 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910716 Ry Harris-Foulkes estimate = -14.44910710 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4936 ! total energy = -14.44910716 Ry Harris-Foulkes estimate = -14.44910716 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936347 0.00936358 0.00936359 atom 2 type 1 force = -0.00936347 -0.00936358 -0.00936359 Total force = 0.022936 Total SCF correction = 0.000015 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070279 -0.126070288 -0.126070289 Si 0.126070279 0.126070288 0.126070289 kinetic energy (Ekin) = 0.00116377 Ry temperature = 122.49685815 K Ekin + Etot (const) = -14.44794339 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.95E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 0.00000156 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895441 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895447 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195282 0.01195293 0.01195294 atom 2 type 1 force = -0.01195282 -0.01195293 -0.01195294 Total force = 0.029278 Total SCF correction = 0.000014 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286595 -0.126286605 -0.126286606 Si 0.126286595 0.126286605 0.126286606 kinetic energy (Ekin) = 0.00101165 Ry temperature = 106.48495479 K Ekin + Etot (const) = -14.44794281 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878077 Ry Harris-Foulkes estimate = -14.44878078 Ry estimated scf accuracy < 0.00000133 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878088 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878093 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432524 0.01432534 0.01432535 atom 2 type 1 force = -0.01432524 -0.01432534 -0.01432535 Total force = 0.035090 Total SCF correction = 0.000013 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126480924 -0.126480933 -0.126480934 Si 0.126480924 0.126480933 0.126480934 kinetic energy (Ekin) = 0.00083878 Ry temperature = 88.28881635 K Ekin + Etot (const) = -14.44794215 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859824 Ry Harris-Foulkes estimate = -14.44859825 Ry estimated scf accuracy < 0.00000107 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859833 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859837 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644470 0.01644480 0.01644481 atom 2 type 1 force = -0.01644470 -0.01644480 -0.01644481 Total force = 0.040281 Total SCF correction = 0.000012 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650011 -0.126650019 -0.126650020 Si 0.126650011 0.126650019 0.126650020 kinetic energy (Ekin) = 0.00065693 Ry temperature = 69.14766530 K Ekin + Etot (const) = -14.44794144 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.02E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841900 Ry Harris-Foulkes estimate = -14.44841901 Ry estimated scf accuracy < 0.00000082 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841907 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.63E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841910 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01827991 0.01828001 0.01828001 atom 2 type 1 force = -0.01827991 -0.01828001 -0.01828001 Total force = 0.044777 Total SCF correction = 0.000011 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791039 -0.126791047 -0.126791047 Si 0.126791039 0.126791047 0.126791047 kinetic energy (Ekin) = 0.00047837 Ry temperature = 50.35189056 K Ekin + Etot (const) = -14.44794073 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825504 Ry Harris-Foulkes estimate = -14.44825504 Ry estimated scf accuracy < 0.00000056 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825508 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.08E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2902 7.2902 7.6069 ! total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825510 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980430 0.01980439 0.01980439 atom 2 type 1 force = -0.01980430 -0.01980439 -0.01980439 Total force = 0.048511 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126901669 -0.126901676 -0.126901676 Si 0.126901669 0.126901676 0.126901676 kinetic energy (Ekin) = 0.00031502 Ry temperature = 33.15813850 K Ekin + Etot (const) = -14.44794009 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.21E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811724 Ry Harris-Foulkes estimate = -14.44811724 Ry estimated scf accuracy < 0.00000034 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811728 Ry Harris-Foulkes estimate = -14.44811726 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811728 Ry Harris-Foulkes estimate = -14.44811728 Ry estimated scf accuracy < 6.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099579 0.02099588 0.02099588 atom 2 type 1 force = -0.02099579 -0.02099588 -0.02099588 Total force = 0.051429 Total SCF correction = 0.000007 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980071 -0.126980077 -0.126980077 Si 0.126980071 0.126980077 0.126980077 kinetic energy (Ekin) = 0.00017774 Ry temperature = 18.70845754 K Ekin + Etot (const) = -14.44793954 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.11E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801471 Ry Harris-Foulkes estimate = -14.44801471 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801473 Ry Harris-Foulkes estimate = -14.44801472 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801473 Ry Harris-Foulkes estimate = -14.44801473 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183782 0.02183789 0.02183789 atom 2 type 1 force = -0.02183782 -0.02183789 -0.02183789 Total force = 0.053492 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127024953 -0.127024959 -0.127024958 Si 0.127024953 0.127024959 0.127024958 kinetic energy (Ekin) = 0.00007560 Ry temperature = 7.95761082 K Ekin + Etot (const) = -14.44793913 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.92E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795420 Ry Harris-Foulkes estimate = -14.44795420 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.08E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795421 Ry Harris-Foulkes estimate = -14.44795421 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232178 0.02232185 0.02232184 atom 2 type 1 force = -0.02232178 -0.02232185 -0.02232184 Total force = 0.054677 Total SCF correction = 0.000008 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127035573 -0.127035577 -0.127035577 Si 0.127035573 0.127035577 0.127035577 kinetic energy (Ekin) = 0.00001532 Ry temperature = 1.61277100 K Ekin + Etot (const) = -14.44793889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.66E-11, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2761 7.2761 7.6358 ! total energy = -14.44793970 Ry Harris-Foulkes estimate = -14.44793970 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243226 0.02243231 0.02243230 atom 2 type 1 force = -0.02243226 -0.02243231 -0.02243230 Total force = 0.054948 Total SCF correction = 0.000016 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127011761 -0.127011764 -0.127011763 Si 0.127011761 0.127011764 0.127011763 kinetic energy (Ekin) = 0.00000087 Ry temperature = 0.09114515 K Ekin + Etot (const) = -14.44793883 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.22E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797213 Ry Harris-Foulkes estimate = -14.44797214 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797214 Ry Harris-Foulkes estimate = -14.44797214 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02217351 0.02217355 0.02217354 atom 2 type 1 force = -0.02217351 -0.02217355 -0.02217354 Total force = 0.054314 Total SCF correction = 0.000004 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126953914 -0.126953915 -0.126953914 Si 0.126953914 0.126953915 0.126953914 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49146425 K Ekin + Etot (const) = -14.44793897 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.15E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44804938 Ry Harris-Foulkes estimate = -14.44804938 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6261 ! total energy = -14.44804939 Ry Harris-Foulkes estimate = -14.44804939 Ry estimated scf accuracy < 7.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02154878 0.02154880 0.02154879 atom 2 type 1 force = -0.02154878 -0.02154880 -0.02154879 Total force = 0.052784 Total SCF correction = 0.000012 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126862990 -0.126862990 -0.126862989 Si 0.126862990 0.126862990 0.126862989 kinetic energy (Ekin) = 0.00011009 Ry temperature = 11.58830087 K Ekin + Etot (const) = -14.44793930 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816636 Ry Harris-Foulkes estimate = -14.44816636 Ry estimated scf accuracy < 0.00000023 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.90E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816639 Ry Harris-Foulkes estimate = -14.44816638 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2861 7.2861 7.6153 ! total energy = -14.44816639 Ry Harris-Foulkes estimate = -14.44816639 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02057376 0.02057376 0.02057375 atom 2 type 1 force = -0.02057376 -0.02057376 -0.02057375 Total force = 0.050395 Total SCF correction = 0.000006 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126740487 -0.126740486 -0.126740485 Si 0.126740487 0.126740486 0.126740485 kinetic energy (Ekin) = 0.00022658 Ry temperature = 23.84940630 K Ekin + Etot (const) = -14.44793981 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831536 Ry Harris-Foulkes estimate = -14.44831536 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831540 Ry Harris-Foulkes estimate = -14.44831539 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.83E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2932 7.2932 7.6007 ! total energy = -14.44831541 Ry Harris-Foulkes estimate = -14.44831541 Ry estimated scf accuracy < 8.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01925101 0.01925100 0.01925099 atom 2 type 1 force = -0.01925101 -0.01925100 -0.01925099 Total force = 0.047155 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126588435 -0.126588432 -0.126588431 Si 0.126588435 0.126588432 0.126588431 kinetic energy (Ekin) = 0.00037496 Ry temperature = 39.46740121 K Ekin + Etot (const) = -14.44794045 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.95E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848652 Ry Harris-Foulkes estimate = -14.44848652 Ry estimated scf accuracy < 0.00000065 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.12E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848659 Ry Harris-Foulkes estimate = -14.44848656 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.91E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3020 7.3020 7.5827 ! total energy = -14.44848659 Ry Harris-Foulkes estimate = -14.44848659 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01760361 0.01760358 0.01760357 atom 2 type 1 force = -0.01760361 -0.01760358 -0.01760357 Total force = 0.043120 Total SCF correction = 0.000010 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126409362 -0.126409358 -0.126409357 Si 0.126409362 0.126409358 0.126409357 kinetic energy (Ekin) = 0.00054539 Ry temperature = 57.40658979 K Ekin + Etot (const) = -14.44794120 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866843 Ry Harris-Foulkes estimate = -14.44866844 Ry estimated scf accuracy < 0.00000092 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866853 Ry Harris-Foulkes estimate = -14.44866850 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.57E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5614 ! total energy = -14.44866854 Ry Harris-Foulkes estimate = -14.44866853 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01565539 0.01565535 0.01565533 atom 2 type 1 force = -0.01565539 -0.01565535 -0.01565533 Total force = 0.038348 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206259 -0.126206254 -0.126206253 Si 0.126206259 0.126206254 0.126206253 kinetic energy (Ekin) = 0.00072652 Ry temperature = 76.47209727 K Ekin + Etot (const) = -14.44794202 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.47E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884891 Ry Harris-Foulkes estimate = -14.44884892 Ry estimated scf accuracy < 0.00000118 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884904 Ry Harris-Foulkes estimate = -14.44884900 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7621 7.3243 7.3243 7.5373 ! total energy = -14.44884905 Ry Harris-Foulkes estimate = -14.44884905 Ry estimated scf accuracy < 2.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01343452 0.01343446 0.01343445 atom 2 type 1 force = -0.01343452 -0.01343446 -0.01343445 Total force = 0.032908 Total SCF correction = 0.000013 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125982534 -0.125982529 -0.125982528 Si 0.125982534 0.125982529 0.125982528 kinetic energy (Ekin) = 0.00090620 Ry temperature = 95.38499590 K Ekin + Etot (const) = -14.44794285 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901575 Ry Harris-Foulkes estimate = -14.44901576 Ry estimated scf accuracy < 0.00000142 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901591 Ry Harris-Foulkes estimate = -14.44901586 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3373 7.3373 7.5108 ! total energy = -14.44901592 Ry Harris-Foulkes estimate = -14.44901591 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01097432 0.01097425 0.01097424 atom 2 type 1 force = -0.01097432 -0.01097425 -0.01097424 Total force = 0.026881 Total SCF correction = 0.000014 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125741965 -0.125741959 -0.125741957 Si 0.125741965 0.125741959 0.125741957 kinetic energy (Ekin) = 0.00107227 Ry temperature = 112.86527401 K Ekin + Etot (const) = -14.44794364 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.05E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915753 Ry Harris-Foulkes estimate = -14.44915754 Ry estimated scf accuracy < 0.00000164 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915772 Ry Harris-Foulkes estimate = -14.44915766 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3514 7.3514 7.4823 ! total energy = -14.44915773 Ry Harris-Foulkes estimate = -14.44915772 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00831260 0.00831252 0.00831251 atom 2 type 1 force = -0.00831260 -0.00831252 -0.00831251 Total force = 0.020361 Total SCF correction = 0.000015 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488637 -0.125488629 -0.125488628 Si 0.125488637 0.125488629 0.125488628 kinetic energy (Ekin) = 0.00121337 Ry temperature = 127.71706222 K Ekin + Etot (const) = -14.44794436 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.27E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926443 Ry Harris-Foulkes estimate = -14.44926443 Ry estimated scf accuracy < 0.00000181 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926457 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4524 ! total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926464 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549112 0.00549103 0.00549102 atom 2 type 1 force = -0.00549112 -0.00549103 -0.00549102 Total force = 0.013450 Total SCF correction = 0.000015 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226880 -0.125226872 -0.125226870 Si 0.125226880 0.125226872 0.125226870 kinetic energy (Ekin) = 0.00131971 Ry temperature = 138.90995549 K Ekin + Etot (const) = -14.44794494 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932888 Ry Harris-Foulkes estimate = -14.44932887 Ry estimated scf accuracy < 0.00000193 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.42E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932903 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3816 7.3816 7.4215 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932910 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00255543 0.00255534 0.00255532 atom 2 type 1 force = -0.00255543 -0.00255534 -0.00255532 Total force = 0.006259 Total SCF correction = 0.000016 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961200 -0.124961192 -0.124961190 Si 0.124961200 0.124961192 0.124961190 kinetic energy (Ekin) = 0.00138375 Ry temperature = 145.65141171 K Ekin + Etot (const) = -14.44794535 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934613 Ry Harris-Foulkes estimate = -14.44934611 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934628 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934636 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044573 -0.00044589 -0.00044591 atom 2 type 1 force = 0.00044573 0.00044589 0.00044591 Total force = 0.001092 Total SCF correction = 0.000016 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696205 -0.124696196 -0.124696195 Si 0.124696205 0.124696196 0.124696195 kinetic energy (Ekin) = 0.00140080 Ry temperature = 147.44523663 K Ekin + Etot (const) = -14.44794556 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931465 Ry Harris-Foulkes estimate = -14.44931463 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931487 Ry Harris-Foulkes estimate = -14.44931480 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931488 Ry Harris-Foulkes estimate = -14.44931488 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00346099 -0.00346110 -0.00346111 atom 2 type 1 force = 0.00346099 0.00346110 0.00346111 Total force = 0.008478 Total SCF correction = 0.000016 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436522 -0.124436513 -0.124436512 Si 0.124436522 0.124436513 0.124436512 kinetic energy (Ekin) = 0.00136932 Ry temperature = 144.13166244 K Ekin + Etot (const) = -14.44794556 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923630 Ry Harris-Foulkes estimate = -14.44923627 Ry estimated scf accuracy < 0.00000189 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923651 Ry Harris-Foulkes estimate = -14.44923644 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923651 Ry Harris-Foulkes estimate = -14.44923651 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643733 -0.00643743 -0.00643744 atom 2 type 1 force = 0.00643733 0.00643743 0.00643744 Total force = 0.015768 Total SCF correction = 0.000015 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186720 -0.124186711 -0.124186710 Si 0.124186720 0.124186711 0.124186710 kinetic energy (Ekin) = 0.00129116 Ry temperature = 135.90502754 K Ekin + Etot (const) = -14.44794535 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911622 Ry Harris-Foulkes estimate = -14.44911618 Ry estimated scf accuracy < 0.00000174 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911641 Ry Harris-Foulkes estimate = -14.44911635 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911641 Ry Harris-Foulkes estimate = -14.44911641 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932079 -0.00932090 -0.00932091 atom 2 type 1 force = 0.00932079 0.00932090 0.00932091 Total force = 0.022831 Total SCF correction = 0.000014 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951225 -0.123951216 -0.123951215 Si 0.123951225 0.123951216 0.123951215 kinetic energy (Ekin) = 0.00117147 Ry temperature = 123.30703569 K Ekin + Etot (const) = -14.44794494 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896259 Ry Harris-Foulkes estimate = -14.44896256 Ry estimated scf accuracy < 0.00000154 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896276 Ry Harris-Foulkes estimate = -14.44896271 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2718 7.4569 7.4569 ! total energy = -14.44896277 Ry Harris-Foulkes estimate = -14.44896277 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205766 -0.01205776 -0.01205777 atom 2 type 1 force = 0.01205766 0.01205776 0.01205777 Total force = 0.029535 Total SCF correction = 0.000013 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123734238 -0.123734229 -0.123734228 Si 0.123734238 0.123734229 0.123734228 kinetic energy (Ekin) = 0.00101840 Ry temperature = 107.19521140 K Ekin + Etot (const) = -14.44794437 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.63E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878609 Ry Harris-Foulkes estimate = -14.44878605 Ry estimated scf accuracy < 0.00000131 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.63E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878623 Ry Harris-Foulkes estimate = -14.44878618 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878623 Ry Harris-Foulkes estimate = -14.44878623 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459557 -0.01459567 -0.01459568 atom 2 type 1 force = 0.01459557 0.01459567 0.01459568 Total force = 0.035752 Total SCF correction = 0.000012 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539654 -0.123539645 -0.123539645 Si 0.123539654 0.123539645 0.123539645 kinetic energy (Ekin) = 0.00084257 Ry temperature = 88.68730196 K Ekin + Etot (const) = -14.44794366 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859911 Ry Harris-Foulkes estimate = -14.44859908 Ry estimated scf accuracy < 0.00000105 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859923 Ry Harris-Foulkes estimate = -14.44859919 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859923 Ry Harris-Foulkes estimate = -14.44859923 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688474 -0.01688484 -0.01688484 atom 2 type 1 force = 0.01688474 0.01688484 0.01688484 Total force = 0.041359 Total SCF correction = 0.000011 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370987 -0.123370979 -0.123370979 Si 0.123370987 0.123370979 0.123370979 kinetic energy (Ekin) = 0.00065634 Ry temperature = 69.08500421 K Ekin + Etot (const) = -14.44794289 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841497 Ry Harris-Foulkes estimate = -14.44841495 Ry estimated scf accuracy < 0.00000079 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.83E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841503 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.87E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841506 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01887921 -0.01887929 -0.01887930 atom 2 type 1 force = 0.01887921 0.01887929 0.01887930 Total force = 0.046245 Total SCF correction = 0.000009 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123231299 -0.123231292 -0.123231292 Si 0.123231299 0.123231292 0.123231292 kinetic energy (Ekin) = 0.00047295 Ry temperature = 49.78198515 K Ekin + Etot (const) = -14.44794211 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.50E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824689 Ry Harris-Foulkes estimate = -14.44824686 Ry estimated scf accuracy < 0.00000053 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824692 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1879 7.4996 7.4996 ! total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824694 Ry estimated scf accuracy < 8.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02053853 -0.02053861 -0.02053861 atom 2 type 1 force = 0.02053853 0.02053861 0.02053861 Total force = 0.050309 Total SCF correction = 0.000009 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123123136 -0.123123130 -0.123123130 Si 0.123123136 0.123123130 0.123123130 kinetic energy (Ekin) = 0.00030556 Ry temperature = 32.16254593 K Ekin + Etot (const) = -14.44794138 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.89E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810698 Ry Harris-Foulkes estimate = -14.44810697 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810700 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.10E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1753 7.5061 7.5061 ! total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810701 Ry estimated scf accuracy < 4.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02182751 -0.02182758 -0.02182758 atom 2 type 1 force = 0.02182751 0.02182758 0.02182758 Total force = 0.053466 Total SCF correction = 0.000007 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123048477 -0.123048472 -0.123048472 Si 0.123048477 0.123048472 0.123048472 kinetic energy (Ekin) = 0.00016625 Ry temperature = 17.49934446 K Ekin + Etot (const) = -14.44794076 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800544 Ry Harris-Foulkes estimate = -14.44800543 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800546 Ry Harris-Foulkes estimate = -14.44800545 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1666 7.5105 7.5105 ! total energy = -14.44800546 Ry Harris-Foulkes estimate = -14.44800546 Ry estimated scf accuracy < 2.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02271931 -0.02271937 -0.02271936 atom 2 type 1 force = 0.02271931 0.02271937 0.02271936 Total force = 0.055651 Total SCF correction = 0.000005 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123008691 -0.123008687 -0.123008687 Si 0.123008691 0.123008687 0.123008687 kinetic energy (Ekin) = 0.00006515 Ry temperature = 6.85731602 K Ekin + Etot (const) = -14.44794031 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.26E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794967 Ry Harris-Foulkes estimate = -14.44794967 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.36E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1620 7.5129 7.5129 ! total energy = -14.44794967 Ry Harris-Foulkes estimate = -14.44794967 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02319758 -0.02319762 -0.02319762 atom 2 type 1 force = 0.02319758 0.02319762 0.02319762 Total force = 0.056822 Total SCF correction = 0.000007 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123004512 -0.123004509 -0.123004509 Si 0.123004512 0.123004509 0.123004509 kinetic energy (Ekin) = 0.00000961 Ry temperature = 1.01194500 K Ekin + Etot (const) = -14.44794006 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.38E-12, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794375 Ry Harris-Foulkes estimate = -14.44794375 Ry estimated scf accuracy < 4.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02324470 -0.02324474 -0.02324473 atom 2 type 1 force = 0.02324470 0.02324474 0.02324473 Total force = 0.056938 Total SCF correction = 0.000004 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123036012 -0.123036010 -0.123036011 Si 0.123036012 0.123036010 0.123036011 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39086322 K Ekin + Etot (const) = -14.44794003 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.40E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798810 Ry Harris-Foulkes estimate = -14.44798810 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1653 7.5112 7.5112 ! total energy = -14.44798811 Ry Harris-Foulkes estimate = -14.44798811 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286340 -0.02286343 -0.02286342 atom 2 type 1 force = 0.02286340 0.02286343 0.02286342 Total force = 0.056004 Total SCF correction = 0.000008 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123102607 -0.123102606 -0.123102607 Si 0.123102607 0.123102606 0.123102607 kinetic energy (Ekin) = 0.00004787 Ry temperature = 5.03822194 K Ekin + Etot (const) = -14.44794024 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807949 Ry Harris-Foulkes estimate = -14.44807948 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1730 7.5072 7.5072 ! total energy = -14.44807950 Ry Harris-Foulkes estimate = -14.44807949 Ry estimated scf accuracy < 9.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02206378 -0.02206378 -0.02206377 atom 2 type 1 force = 0.02206378 0.02206378 0.02206377 Total force = 0.054045 Total SCF correction = 0.000012 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123203068 -0.123203068 -0.123203069 Si 0.123203068 0.123203068 0.123203069 kinetic energy (Ekin) = 0.00013882 Ry temperature = 14.61172861 K Ekin + Etot (const) = -14.44794068 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 0.37s CPU 0.43s WALL ( 51 calls) update_pot : 0.10s CPU 0.12s WALL ( 50 calls) forces : 0.02s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.16s CPU 0.18s WALL ( 199 calls) sum_band : 0.06s CPU 0.06s WALL ( 199 calls) v_of_rho : 0.10s CPU 0.09s WALL ( 200 calls) mix_rho : 0.01s CPU 0.02s WALL ( 199 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 399 calls) cegterg : 0.14s CPU 0.16s WALL ( 199 calls) Called by *egterg: h_psi : 0.13s CPU 0.12s WALL ( 495 calls) g_psi : 0.00s CPU 0.00s WALL ( 295 calls) cdiaghg : 0.01s CPU 0.02s WALL ( 394 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 495 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 595 calls) fft : 0.06s CPU 0.06s WALL ( 1001 calls) fftw : 0.11s CPU 0.11s WALL ( 4298 calls) davcio : 0.00s CPU 0.00s WALL ( 444 calls) PWSCF : 1.35s CPU 1.57s WALL This run was terminated on: 10:24:50 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-allfrac.ref0000644000700200004540000002165012053145627016734 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:35:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-allfrac.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym. Ops., with inversion, found (24 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102868 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376295 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441847 Ry estimated scf accuracy < 0.00230222 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450062 Ry estimated scf accuracy < 0.00006304 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000448 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.60E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378670 Ry hartree contribution = 1.08429043 Ry xc contribution = -4.81281448 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.01s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.02s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.15s CPU 0.16s WALL This run was terminated on: 12:35:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf.in10000644000700200004540000000056112053145627015243 0ustar marsamoscm &control calculation = 'bands' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS tpiba_b 5 0.00 0.00 0.00 5 1.00 0.00 0.00 5 1.00 0.25 0.25 5 0.50 0.50 0.50 5 0.00 0.00 0.00 1 espresso-5.0.2/PW/tests/lattice-ibrav4-kauto.in0000644000700200004540000000047612053145627020347 0ustar marsamoscm#!/bin/sh &control calculation='scf', / &system ibrav = 4, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/relax-el.ref0000644000700200004540000010110212053145627016257 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax-el.in Presently no symmetry can be used with electric field file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2385 793 193 87655 16879 2103 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) C 4.00 12.01070 C ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 -0.1100000 ) 2 C tau( 2) = ( 0.0000000 0.0000000 0.1100000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 87655 G-vectors FFT dimensions: ( 60, 60, 60) Smooth grid: 16879 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 2103, 5) NL pseudopotentials 0.51 Mb ( 2103, 16) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.67 Mb ( 87655) G-vector shells 0.00 Mb ( 635) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 2103, 20) Each subspace H/S matrix 0.01 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 26.37 Mb ( 216000, 8) Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr Initial potential from superposition of free atoms starting charge 9.99996, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.3 secs per-process dynamical memory: 43.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 1.8 secs total energy = -43.05880401 Ry Harris-Foulkes estimate = -43.17209775 Ry estimated scf accuracy < 0.20682944 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.07E-03, avg # of iterations = 4.0 negative rho (up, down): 0.259E-03 0.000E+00 total cpu time spent up to now is 2.3 secs total energy = -43.08760496 Ry Harris-Foulkes estimate = -43.16506846 Ry estimated scf accuracy < 0.20572372 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.06E-03, avg # of iterations = 2.0 negative rho (up, down): 0.106E-04 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -43.11976114 Ry Harris-Foulkes estimate = -43.12236322 Ry estimated scf accuracy < 0.00594316 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.94E-05, avg # of iterations = 3.0 negative rho (up, down): 0.456E-05 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -43.12352614 Ry Harris-Foulkes estimate = -43.12406769 Ry estimated scf accuracy < 0.00308951 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.09E-05, avg # of iterations = 1.0 total cpu time spent up to now is 3.7 secs total energy = -43.12242224 Ry Harris-Foulkes estimate = -43.12359281 Ry estimated scf accuracy < 0.00209224 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.09E-05, avg # of iterations = 2.0 total cpu time spent up to now is 4.1 secs total energy = -43.12296464 Ry Harris-Foulkes estimate = -43.12317487 Ry estimated scf accuracy < 0.00070633 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.06E-06, avg # of iterations = 2.0 negative rho (up, down): 0.109E-07 0.000E+00 total cpu time spent up to now is 4.6 secs total energy = -43.12297547 Ry Harris-Foulkes estimate = -43.12302115 Ry estimated scf accuracy < 0.00016452 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.65E-06, avg # of iterations = 3.0 total cpu time spent up to now is 5.1 secs total energy = -43.12301712 Ry Harris-Foulkes estimate = -43.12301807 Ry estimated scf accuracy < 0.00000300 Ry iteration # 9 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.00E-08, avg # of iterations = 2.0 total cpu time spent up to now is 5.5 secs total energy = -43.12301761 Ry Harris-Foulkes estimate = -43.12301786 Ry estimated scf accuracy < 0.00000091 Ry iteration # 10 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.15E-09, avg # of iterations = 3.0 total cpu time spent up to now is 6.0 secs total energy = -43.12301773 Ry Harris-Foulkes estimate = -43.12301775 Ry estimated scf accuracy < 0.00000011 Ry iteration # 11 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 4.0 total cpu time spent up to now is 6.5 secs total energy = -43.12301774 Ry Harris-Foulkes estimate = -43.12301780 Ry estimated scf accuracy < 0.00000043 Ry iteration # 12 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.0 total cpu time spent up to now is 6.9 secs total energy = -43.12301773 Ry Harris-Foulkes estimate = -43.12301775 Ry estimated scf accuracy < 0.00000024 Ry iteration # 13 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.4 secs total energy = -43.12301771 Ry Harris-Foulkes estimate = -43.12301773 Ry estimated scf accuracy < 0.00000018 Ry iteration # 14 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.9 secs total energy = -43.12301768 Ry Harris-Foulkes estimate = -43.12301772 Ry estimated scf accuracy < 0.00000011 Ry iteration # 15 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.07E-09, avg # of iterations = 3.0 total cpu time spent up to now is 8.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -27.8000 -12.8530 -10.5718 -10.5718 -8.0073 ! total energy = -43.12301771 Ry Harris-Foulkes estimate = -43.12301772 Ry estimated scf accuracy < 7.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -57.17358204 Ry hartree contribution = 29.88182871 Ry xc contribution = -9.81279041 Ry ewald contribution = -6.03287397 Ry electric field correction = 0.01440000 Ry convergence has been achieved in 15 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000006 -0.00000007 0.11753844 atom 2 type 2 force = -0.00000006 0.00000007 -0.11753844 Total force = 0.166224 Total SCF correction = 0.000195 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.1230177103 Ry new trust radius = 0.1175384425 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000063 -0.000000070 -0.982461558 C -0.000000063 0.000000070 0.982461558 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 9.2 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 total cpu time spent up to now is 9.7 secs total energy = -43.07677514 Ry Harris-Foulkes estimate = -43.09327416 Ry estimated scf accuracy < 0.02933153 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.93E-04, avg # of iterations = 2.0 total cpu time spent up to now is 10.2 secs total energy = -43.08043707 Ry Harris-Foulkes estimate = -43.08087293 Ry estimated scf accuracy < 0.00117402 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.17E-05, avg # of iterations = 3.0 total cpu time spent up to now is 10.6 secs total energy = -43.08060035 Ry Harris-Foulkes estimate = -43.08081405 Ry estimated scf accuracy < 0.00060094 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.1 secs total energy = -43.08066536 Ry Harris-Foulkes estimate = -43.08067685 Ry estimated scf accuracy < 0.00005978 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.98E-07, avg # of iterations = 3.0 total cpu time spent up to now is 11.6 secs total energy = -43.08065886 Ry Harris-Foulkes estimate = -43.08069780 Ry estimated scf accuracy < 0.00008943 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.98E-07, avg # of iterations = 3.0 total cpu time spent up to now is 12.0 secs total energy = -43.08067565 Ry Harris-Foulkes estimate = -43.08067568 Ry estimated scf accuracy < 0.00000050 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.04E-09, avg # of iterations = 2.0 total cpu time spent up to now is 12.5 secs total energy = -43.08067584 Ry Harris-Foulkes estimate = -43.08067585 Ry estimated scf accuracy < 0.00000010 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.78E-10, avg # of iterations = 2.0 total cpu time spent up to now is 13.0 secs total energy = -43.08067584 Ry Harris-Foulkes estimate = -43.08067584 Ry estimated scf accuracy < 0.00000003 Ry iteration # 9 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.72E-10, avg # of iterations = 2.0 total cpu time spent up to now is 13.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -29.7633 -12.8684 -11.7911 -11.7911 -7.7260 ! total energy = -43.08067584 Ry Harris-Foulkes estimate = -43.08067584 Ry estimated scf accuracy < 1.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -61.30746481 Ry hartree contribution = 31.81086010 Ry xc contribution = -10.06403890 Ry ewald contribution = -3.53396208 Ry electric field correction = 0.01392985 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000004 -0.00000004 -0.57554674 atom 2 type 2 force = -0.00000004 0.00000004 0.57554674 Total force = 0.813946 Total SCF correction = 0.000123 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.1230177103 Ry energy new = -43.0806758410 Ry CASE: energy _new > energy _old new trust radius = 0.0232066672 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000012 -0.000000014 -1.076793333 C -0.000000012 0.000000014 1.076793333 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 14.3 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 14.8 secs total energy = -43.12350353 Ry Harris-Foulkes estimate = -43.13471658 Ry estimated scf accuracy < 0.01996795 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.00E-04, avg # of iterations = 2.0 total cpu time spent up to now is 15.3 secs total energy = -43.12620086 Ry Harris-Foulkes estimate = -43.12646599 Ry estimated scf accuracy < 0.00083041 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.30E-06, avg # of iterations = 3.0 total cpu time spent up to now is 15.8 secs total energy = -43.12627892 Ry Harris-Foulkes estimate = -43.12648916 Ry estimated scf accuracy < 0.00069209 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.92E-06, avg # of iterations = 2.0 total cpu time spent up to now is 16.2 secs total energy = -43.12631976 Ry Harris-Foulkes estimate = -43.12634949 Ry estimated scf accuracy < 0.00007920 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.92E-07, avg # of iterations = 3.0 total cpu time spent up to now is 16.7 secs total energy = -43.12634298 Ry Harris-Foulkes estimate = -43.12639473 Ry estimated scf accuracy < 0.00020473 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.92E-07, avg # of iterations = 2.0 total cpu time spent up to now is 17.2 secs total energy = -43.12634159 Ry Harris-Foulkes estimate = -43.12635549 Ry estimated scf accuracy < 0.00003311 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.31E-07, avg # of iterations = 3.0 total cpu time spent up to now is 17.6 secs total energy = -43.12635022 Ry Harris-Foulkes estimate = -43.12635064 Ry estimated scf accuracy < 0.00000180 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.80E-08, avg # of iterations = 2.0 total cpu time spent up to now is 18.1 secs total energy = -43.12635015 Ry Harris-Foulkes estimate = -43.12635032 Ry estimated scf accuracy < 0.00000062 Ry iteration # 9 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.22E-09, avg # of iterations = 3.0 total cpu time spent up to now is 18.6 secs total energy = -43.12635025 Ry Harris-Foulkes estimate = -43.12635026 Ry estimated scf accuracy < 0.00000002 Ry iteration # 10 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.87E-10, avg # of iterations = 3.0 total cpu time spent up to now is 19.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -28.1761 -12.8496 -10.7935 -10.7935 -7.9565 ! total energy = -43.12635026 Ry Harris-Foulkes estimate = -43.12635026 Ry estimated scf accuracy < 1.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -57.93151161 Ry hartree contribution = 30.23439301 Ry xc contribution = -9.85766028 Ry ewald contribution = -5.58587854 Ry electric field correction = 0.01430717 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.02344701 atom 2 type 2 force = 0.00000000 0.00000000 -0.02344701 Total force = 0.033159 Total SCF correction = 0.000068 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.1230177103 Ry energy new = -43.1263502600 Ry CASE: energy _new < energy _old new trust radius = 0.0057829600 bohr new conv_thr = 0.0000000023 Ry ATOMIC_POSITIONS (bohr) O -0.000000001 0.000000001 -1.071010373 C 0.000000001 -0.000000001 1.071010373 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 19.9 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 20.3 secs total energy = -43.12646412 Ry Harris-Foulkes estimate = -43.12649566 Ry estimated scf accuracy < 0.00005710 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.71E-07, avg # of iterations = 2.0 total cpu time spent up to now is 20.8 secs total energy = -43.12647078 Ry Harris-Foulkes estimate = -43.12647336 Ry estimated scf accuracy < 0.00000423 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.23E-08, avg # of iterations = 2.0 total cpu time spent up to now is 21.3 secs total energy = -43.12647134 Ry Harris-Foulkes estimate = -43.12647163 Ry estimated scf accuracy < 0.00000081 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-09, avg # of iterations = 2.0 total cpu time spent up to now is 21.7 secs total energy = -43.12647144 Ry Harris-Foulkes estimate = -43.12647147 Ry estimated scf accuracy < 0.00000010 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 2.0 total cpu time spent up to now is 22.2 secs total energy = -43.12647144 Ry Harris-Foulkes estimate = -43.12647149 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 2.0 total cpu time spent up to now is 22.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -28.2708 -12.8491 -10.8500 -10.8500 -7.9437 ! total energy = -43.12647146 Ry Harris-Foulkes estimate = -43.12647146 Ry estimated scf accuracy < 8.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -58.12453872 Ry hartree contribution = 30.32417392 Ry xc contribution = -9.86916882 Ry ewald contribution = -5.47122188 Ry electric field correction = 0.01428404 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00265915 atom 2 type 2 force = 0.00000000 0.00000000 0.00265915 Total force = 0.003761 Total SCF correction = 0.000032 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1263502600 Ry energy new = -43.1264714603 Ry CASE: energy _new < energy _old new trust radius = 0.0005890469 bohr new conv_thr = 0.0000000001 Ry ATOMIC_POSITIONS (bohr) O 0.000000001 -0.000000001 -1.071599420 C -0.000000001 0.000000001 1.071599420 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 23.5 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.09E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.2 secs total energy = -43.12647347 Ry Harris-Foulkes estimate = -43.12647383 Ry estimated scf accuracy < 0.00000065 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.49E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.6 secs total energy = -43.12647355 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.30E-10, avg # of iterations = 3.0 total cpu time spent up to now is 25.1 secs total energy = -43.12647355 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.69E-10, avg # of iterations = 2.0 total cpu time spent up to now is 25.6 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 1.5E-09 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.45E-11, avg # of iterations = 3.0 total cpu time spent up to now is 26.0 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.23E-11, avg # of iterations = 1.0 total cpu time spent up to now is 26.5 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 3.4E-10 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.44E-12, avg # of iterations = 3.0 total cpu time spent up to now is 27.0 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 2.0E-10 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.96E-12, avg # of iterations = 1.0 total cpu time spent up to now is 27.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -28.2611 -12.8491 -10.8442 -10.8442 -7.9450 ! total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 7.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -58.10474695 Ry hartree contribution = 30.31492284 Ry xc contribution = -9.86797398 Ry ewald contribution = -5.48296186 Ry electric field correction = 0.01428640 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00005899 atom 2 type 2 force = 0.00000000 0.00000000 -0.00005899 Total force = 0.000083 Total SCF correction = 0.000019 SCF correction compared to forces is large: reduce conv_thr to get better values bfgs converged in 5 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -43.1264735566 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) O 0.000000001 -0.000000001 -1.071599420 C -0.000000001 0.000000001 1.071599420 End final coordinates Writing output data file pwscf.save init_run : 1.23s CPU 1.24s WALL ( 1 calls) electrons : 21.85s CPU 22.59s WALL ( 5 calls) update_pot : 0.61s CPU 0.62s WALL ( 4 calls) forces : 2.09s CPU 2.12s WALL ( 5 calls) Called by init_run: wfcinit : 0.02s CPU 0.01s WALL ( 1 calls) potinit : 0.09s CPU 0.10s WALL ( 1 calls) Called by electrons: c_bands : 1.50s CPU 1.52s WALL ( 49 calls) sum_band : 8.47s CPU 8.75s WALL ( 49 calls) v_of_rho : 1.70s CPU 1.73s WALL ( 53 calls) newd : 9.01s CPU 9.29s WALL ( 53 calls) mix_rho : 0.87s CPU 0.88s WALL ( 49 calls) Called by c_bands: init_us_2 : 0.12s CPU 0.11s WALL ( 99 calls) cegterg : 1.38s CPU 1.40s WALL ( 49 calls) Called by *egterg: h_psi : 1.11s CPU 1.10s WALL ( 173 calls) s_psi : 0.06s CPU 0.04s WALL ( 173 calls) g_psi : 0.04s CPU 0.04s WALL ( 123 calls) cdiaghg : 0.01s CPU 0.02s WALL ( 167 calls) Called by h_psi: add_vuspsi : 0.06s CPU 0.07s WALL ( 173 calls) General routines calbec : 0.10s CPU 0.10s WALL ( 227 calls) fft : 1.73s CPU 1.74s WALL ( 475 calls) ffts : 0.04s CPU 0.04s WALL ( 102 calls) fftw : 0.46s CPU 0.52s WALL ( 1693 calls) interpolate : 0.66s CPU 0.68s WALL ( 102 calls) davcio : 0.00s CPU 0.01s WALL ( 48 calls) PWSCF : 26.86s CPU 27.89s WALL This run was terminated on: 11:28:10 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters+celldm.ref0000644000700200004540000001764212053145627023767 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters+celldm.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4279 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 22997) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055170 Ry Harris-Foulkes estimate = -2.29035895 Ry estimated scf accuracy < 0.13253986 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23168705 Ry Harris-Foulkes estimate = -2.23211025 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203744 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203908 Ry Harris-Foulkes estimate = -2.23203880 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125627 Ry hartree contribution = 1.92424365 Ry xc contribution = -1.31190429 Ry ewald contribution = 0.80687783 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.13s CPU 0.14s WALL ( 1 calls) electrons : 0.16s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.10s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.03s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.32s CPU 0.34s WALL This run was terminated on: 10:22:16 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U_force.in0000755000700200004540000000151012053145627016523 0ustar marsamoscm &control calculation = 'scf' tstress=.true. tprnfor=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.05 0.05 0.05 Fe2 0.45 0.45 0.45 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.0.2/PW/tests/scf.ref0000644000700200004540000002170112053145627015327 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) stress : 0.01s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.02s CPU 0.01s WALL ( 332 calls) PWSCF : 0.10s CPU 0.12s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav11.in0000644000700200004540000000046712053145627017304 0ustar marsamoscm &control calculation='scf', / &system ibrav = 11, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/scf-mixing_TF.ref0000644000700200004540000002116612053145627017216 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_TF.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79822294 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79288059 Ry Harris-Foulkes estimate = -15.79906957 Ry estimated scf accuracy < 0.01618395 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79440204 Ry Harris-Foulkes estimate = -15.79427569 Ry estimated scf accuracy < 0.00035270 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.41E-06, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs total energy = -15.79449058 Ry Harris-Foulkes estimate = -15.79450266 Ry estimated scf accuracy < 0.00004519 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.65E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8713 2.3779 5.5355 5.5355 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9178 -0.0667 2.6785 4.0342 ! total energy = -15.79449555 Ry Harris-Foulkes estimate = -15.79449533 Ry estimated scf accuracy < 0.00000053 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83344814 Ry hartree contribution = 1.08483632 Ry xc contribution = -4.81302143 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.01s CPU 0.01s WALL ( 314 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-bfgs.in0000644000700200004540000000114612053145627016115 0ustar marsamoscm &control calculation = 'relax' / &system ibrav= 2, celldm(1) =25.0, nat= 3, ntyp= 2, ecutwfc=25 occupations = 'smearing' smearing='gauss' degauss = 0.005 starting_magnetization(1) = +0.1 starting_magnetization(2) = -0.1 nspin = 2 / &electrons conv_thr = 1.0d-6 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES O 16.00 O.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} H 1.116339788 -1.457719099 0.000000000 H 1.116339788 1.457719099 0.000000000 O -0.012679577 0.000000000 0.000000000 K_POINTS {gamma} espresso-5.0.2/PW/tests/berry.ref0000644000700200004540000003465212053145627015710 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/berry.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 869 437 121 19213 6763 1021 bravais-lattice index = 1 lattice parameter (alat) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 25 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-12 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file: /home/giannozz/trunk/espresso/pseudo/Pb.pz-d-van.UPF MD5 check sum: 4e1e5920686a026ae26139ac417581ff Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file: /home/giannozz/trunk/espresso/pseudo/Ti.pz-sp-van_ak.UPF MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-van_ak.UPF MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) 8 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 2.0000000 Dense grid: 19213 G-vectors FFT dimensions: ( 36, 36, 36) Smooth grid: 6763 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.32 Mb ( 847, 25) NL pseudopotentials 0.78 Mb ( 847, 60) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 19213) G-vector shells 0.00 Mb ( 232) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.29 Mb ( 847, 100) Each subspace H/S matrix 0.15 Mb ( 100, 100) Each matrix 0.02 Mb ( 60, 25) Arrays for rho mixing 5.70 Mb ( 46656, 8) Initial potential from superposition of free atoms starting charge 42.99817, renormalised to 44.00000 Starting wfc are 31 randomized atomic wfcs total cpu time spent up to now is 1.7 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 1.8 secs total energy = -333.60165923 Ry Harris-Foulkes estimate = -334.03100336 Ry estimated scf accuracy < 0.95019300 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.16E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs total energy = -333.69030452 Ry Harris-Foulkes estimate = -333.76295780 Ry estimated scf accuracy < 0.17840650 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.05E-04, avg # of iterations = 4.0 total cpu time spent up to now is 2.0 secs total energy = -333.70247721 Ry Harris-Foulkes estimate = -333.71880879 Ry estimated scf accuracy < 0.03656802 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.31E-05, avg # of iterations = 3.0 total cpu time spent up to now is 2.1 secs total energy = -333.70371991 Ry Harris-Foulkes estimate = -333.70695468 Ry estimated scf accuracy < 0.00678026 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.54E-05, avg # of iterations = 4.0 total cpu time spent up to now is 2.2 secs total energy = -333.70455724 Ry Harris-Foulkes estimate = -333.70511971 Ry estimated scf accuracy < 0.00186009 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.23E-06, avg # of iterations = 4.0 total cpu time spent up to now is 2.3 secs total energy = -333.70468509 Ry Harris-Foulkes estimate = -333.70473733 Ry estimated scf accuracy < 0.00017395 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.95E-07, avg # of iterations = 3.0 total cpu time spent up to now is 2.4 secs total energy = -333.70472414 Ry Harris-Foulkes estimate = -333.70472624 Ry estimated scf accuracy < 0.00001770 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.02E-08, avg # of iterations = 2.0 total cpu time spent up to now is 2.4 secs total energy = -333.70472163 Ry Harris-Foulkes estimate = -333.70472422 Ry estimated scf accuracy < 0.00001196 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.72E-08, avg # of iterations = 2.0 total cpu time spent up to now is 2.5 secs total energy = -333.70472004 Ry Harris-Foulkes estimate = -333.70472160 Ry estimated scf accuracy < 0.00000432 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.82E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.6 secs total energy = -333.70472050 Ry Harris-Foulkes estimate = -333.70472043 Ry estimated scf accuracy < 0.00000007 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.7 secs total energy = -333.70472029 Ry Harris-Foulkes estimate = -333.70472024 Ry estimated scf accuracy < 6.3E-09 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.43E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.8 secs total energy = -333.70472011 Ry Harris-Foulkes estimate = -333.70472009 Ry estimated scf accuracy < 3.3E-09 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.61E-12, avg # of iterations = 3.0 total cpu time spent up to now is 2.9 secs total energy = -333.70471998 Ry Harris-Foulkes estimate = -333.70471997 Ry estimated scf accuracy < 7.4E-11 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.68E-13, avg # of iterations = 3.0 total cpu time spent up to now is 3.0 secs total energy = -333.70471989 Ry Harris-Foulkes estimate = -333.70471988 Ry estimated scf accuracy < 2.1E-11 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-14, avg # of iterations = 3.0 total cpu time spent up to now is 3.1 secs total energy = -333.70471982 Ry Harris-Foulkes estimate = -333.70471982 Ry estimated scf accuracy < 8.9E-12 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-14, avg # of iterations = 3.0 total cpu time spent up to now is 3.2 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 847 PWs) bands (ev): -44.7169 -21.3445 -21.3438 -21.3433 -5.9779 -5.3822 -5.3756 -4.4764 -4.4702 -4.3687 -4.2002 -4.1896 3.6050 6.7163 6.7183 7.5247 7.7689 7.7697 9.7733 9.9290 9.9324 10.1485 13.9190 14.4126 14.4137 highest occupied, lowest unoccupied level (ev): 10.1485 13.9190 ! total energy = -333.70471978 Ry Harris-Foulkes estimate = -333.70471977 Ry estimated scf accuracy < 9.4E-13 Ry The total energy is the sum of the following terms: one-electron contribution = -80.21382706 Ry hartree contribution = 67.70832093 Ry xc contribution = -49.65657063 Ry ewald contribution = -271.54264303 Ry convergence has been achieved in 16 iterations Writing output data file pwscf.save init_run : 1.63s CPU 1.65s WALL ( 1 calls) electrons : 1.40s CPU 1.43s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) realus : 0.28s CPU 0.28s WALL ( 1 calls) Called by electrons: c_bands : 0.81s CPU 0.83s WALL ( 16 calls) sum_band : 0.26s CPU 0.26s WALL ( 16 calls) v_of_rho : 0.12s CPU 0.11s WALL ( 17 calls) newd : 0.05s CPU 0.06s WALL ( 17 calls) mix_rho : 0.06s CPU 0.07s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.03s WALL ( 33 calls) cegterg : 0.74s CPU 0.76s WALL ( 16 calls) Called by *egterg: h_psi : 0.43s CPU 0.42s WALL ( 64 calls) s_psi : 0.04s CPU 0.05s WALL ( 64 calls) g_psi : 0.00s CPU 0.02s WALL ( 47 calls) cdiaghg : 0.10s CPU 0.11s WALL ( 63 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.06s WALL ( 64 calls) General routines calbec : 0.08s CPU 0.08s WALL ( 80 calls) fft : 0.06s CPU 0.08s WALL ( 115 calls) ffts : 0.01s CPU 0.01s WALL ( 33 calls) fftw : 0.26s CPU 0.26s WALL ( 2382 calls) interpolate : 0.04s CPU 0.04s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 16 calls) PWSCF : 3.18s CPU 3.27s WALL This run was terminated on: 22:44:20 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U-noU.ref0000644000700200004540000005652612053145627016270 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24: 1 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lda+U-noU.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.000000 0.000000 Fe2 2 0.000000 0.000000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 2.5 secs per-process dynamical memory: 35.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.2 enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4234379 atom 3 spin 1 eigenvalues: 0.9873652 0.9873652 0.9968516 0.9968516 0.9982779 eigenvectors 1 0.1636344 0.1798256 -0.2198262 -0.9439083 -0.0400005 2 0.9439083 -0.1500110 -0.0807281 0.1636344 -0.2307391 3 0.2462822 0.6829945 -0.0113330 0.1469895 0.6716615 4 -0.1469895 0.3812409 -0.7821110 0.2462822 -0.4008702 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 atom 3 spin 2 eigenvalues: 0.2001800 0.2001800 0.3348590 0.3348590 0.3866486 eigenvectors 1 -0.0584915 -0.0526183 0.0491661 -0.9956811 -0.0034522 2 -0.9956811 -0.0263930 -0.0323723 0.0584915 -0.0587653 3 0.0616402 0.0176798 -0.7139403 -0.0373953 -0.6962605 4 0.0373953 -0.8141798 0.3917787 0.0616402 -0.4224011 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.352 0.017 -0.007 -0.017 -0.004 0.017 0.352 0.007 -0.017 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.017 -0.017 0.000 0.352 atom 4 Tr[ns(na)]= 6.4235424 atom 4 spin 1 eigenvalues: 0.2000973 0.2000973 0.3350629 0.3350629 0.3866895 eigenvectors 1 -0.0663072 -0.0526383 0.0487387 -0.9952095 -0.0038996 2 -0.9952095 -0.0258878 -0.0326422 0.0663072 -0.0585301 3 0.0643967 -0.0523036 -0.6776717 -0.0318516 -0.7299753 4 0.0318516 -0.8127054 0.4516490 0.0643967 -0.3610564 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.352 0.017 -0.007 -0.017 -0.004 0.017 0.352 0.007 -0.017 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.017 -0.017 0.000 0.352 atom 4 spin 2 eigenvalues: 0.9872762 0.9872762 0.9968505 0.9968505 0.9982793 eigenvectors 1 -0.0575488 -0.1939588 0.2079128 0.9568938 0.0139540 2 0.9568938 -0.1280949 -0.1039258 0.0575488 -0.2320207 3 0.2457462 0.6800097 -0.0043430 0.1437056 0.6756667 4 0.1437056 -0.3875889 0.7827001 -0.2457462 0.3951112 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 nsum = 12.8469803 exit write_ns total cpu time spent up to now is 3.5 secs total energy = -174.40657174 Ry Harris-Foulkes estimate = -175.24220324 Ry estimated scf accuracy < 1.85501351 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.81 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 2.1 total cpu time spent up to now is 4.6 secs total energy = -174.79966555 Ry Harris-Foulkes estimate = -174.82972373 Ry estimated scf accuracy < 0.11307297 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.80 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-04, avg # of iterations = 3.0 total cpu time spent up to now is 5.6 secs total energy = -174.82183181 Ry Harris-Foulkes estimate = -174.81950450 Ry estimated scf accuracy < 0.01949884 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.96E-05, avg # of iterations = 2.5 total cpu time spent up to now is 6.6 secs total energy = -174.82053471 Ry Harris-Foulkes estimate = -174.82655002 Ry estimated scf accuracy < 0.07598372 Ry total magnetization = 0.45 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.96E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.6 secs total energy = -174.82361011 Ry Harris-Foulkes estimate = -174.82487248 Ry estimated scf accuracy < 0.01660723 Ry total magnetization = -0.21 Bohr mag/cell absolute magnetization = 7.05 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.93E-05, avg # of iterations = 1.0 total cpu time spent up to now is 8.5 secs total energy = -174.82453028 Ry Harris-Foulkes estimate = -174.82438221 Ry estimated scf accuracy < 0.00045167 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 7.07 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.61E-06, avg # of iterations = 2.8 total cpu time spent up to now is 9.6 secs total energy = -174.82463916 Ry Harris-Foulkes estimate = -174.82462430 Ry estimated scf accuracy < 0.00006089 Ry total magnetization = -0.01 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.17E-07, avg # of iterations = 3.2 total cpu time spent up to now is 10.8 secs total energy = -174.82465390 Ry Harris-Foulkes estimate = -174.82465845 Ry estimated scf accuracy < 0.00007695 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.17E-07, avg # of iterations = 1.0 total cpu time spent up to now is 11.7 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.9389816 atom 3 spin 1 eigenvalues: 0.9856325 0.9856325 0.9994991 0.9994991 0.9999714 eigenvectors 1 -0.1634563 -0.0896907 0.1088872 0.9762237 0.0191965 2 -0.9762237 0.0739492 0.0406998 -0.1634563 0.1146490 3 -0.1421243 -0.4445361 -0.3622455 -0.0083695 -0.8067816 4 -0.0083695 0.6749381 -0.7224486 0.1421243 -0.0475105 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 atom 3 spin 2 eigenvalues: 0.3299638 0.3299638 0.4308514 0.4389840 0.4389840 eigenvectors 1 -0.1507797 -0.2798658 0.2313931 -0.9181766 -0.0484727 2 -0.9181766 -0.1056092 -0.1895663 0.1507797 -0.2951755 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.2329128 -0.2663616 0.7493626 0.2827877 0.4830010 5 -0.2827877 0.7115054 -0.1250768 -0.2329128 0.5864287 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.427 0.002 -0.026 -0.002 -0.015 0.002 0.427 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.427 atom 4 Tr[ns(na)]= 6.9387263 atom 4 spin 1 eigenvalues: 0.3299606 0.3299606 0.4307469 0.4389129 0.4389129 eigenvectors 1 -0.1615957 -0.2810668 0.2291222 -0.9163477 -0.0519445 2 -0.9163477 -0.1022936 -0.1922642 0.1615957 -0.2945577 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.2193863 0.2994142 -0.7544107 -0.2933656 -0.4549966 5 -0.2933656 0.6982516 -0.0898256 -0.2193863 0.6084261 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 spin 2 eigenvalues: 0.9856310 0.9856310 0.9995003 0.9995003 0.9999698 eigenvectors 1 0.0812262 0.0955814 -0.1051227 -0.9864708 -0.0095413 2 0.9864708 -0.0662013 -0.0496753 0.0812262 -0.1158766 3 -0.1423674 -0.3891332 -0.4188604 0.0030241 -0.8079936 4 -0.0030241 -0.7083245 0.6911615 -0.1423674 -0.0171630 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 nsum = 13.8777079 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9542 -7.7480 2.7536 5.1275 5.1275 7.5751 7.5985 7.5985 7.7789 7.7789 8.0645 8.9388 8.9388 11.0564 11.0564 11.2568 11.5022 12.8926 12.8926 15.3687 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7720 -7.7526 3.6502 3.9122 4.7743 5.3275 5.3830 6.0694 7.7221 8.2487 8.6482 9.6399 9.8405 10.4286 11.7000 11.8240 12.6006 12.6274 17.2950 17.6034 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7632 -7.7516 2.7891 4.0514 5.1677 5.1901 6.4310 6.4436 7.1586 8.2371 8.5577 9.3830 9.6069 10.7260 11.7102 11.8177 13.0234 13.0936 15.3293 16.7014 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4157 -8.3818 4.4370 4.8295 5.5353 5.5353 6.5033 6.5033 7.8494 7.8494 8.2979 9.9325 9.9325 10.9592 10.9720 10.9720 12.4952 12.4952 13.9938 14.2623 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9542 -7.7480 2.7536 5.1275 5.1275 7.5751 7.5984 7.5984 7.7789 7.7789 8.0650 8.9390 8.9390 11.0563 11.0563 11.2567 11.5021 12.8924 12.8924 15.3687 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7720 -7.7526 3.6501 3.9123 4.7743 5.3275 5.3831 6.0693 7.7224 8.2487 8.6484 9.6401 9.8408 10.4285 11.6999 11.8239 12.6004 12.6272 17.2951 17.6032 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7632 -7.7516 2.7891 4.0514 5.1678 5.1901 6.4310 6.4436 7.1588 8.2371 8.5580 9.3832 9.6070 10.7259 11.7101 11.8175 13.0232 13.0934 15.3293 16.7014 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4158 -8.3817 4.4369 4.8296 5.5352 5.5352 6.5034 6.5034 7.8495 7.8495 8.2984 9.9326 9.9326 10.9590 10.9719 10.9719 12.4950 12.4950 13.9935 14.2627 the Fermi energy is 10.9763 ev ! total energy = -174.82465698 Ry Harris-Foulkes estimate = -174.82465696 Ry estimated scf accuracy < 0.00000084 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56010501 Ry hartree contribution = 27.86327621 Ry xc contribution = -65.73556056 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.00000000 Ry smearing contrib. (-TS) = -0.00318230 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 2.36s CPU 2.38s WALL ( 1 calls) electrons : 9.04s CPU 9.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.22s CPU 0.23s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 4.71s CPU 4.77s WALL ( 9 calls) sum_band : 2.44s CPU 2.50s WALL ( 9 calls) v_of_rho : 0.41s CPU 0.42s WALL ( 10 calls) newd : 1.25s CPU 1.29s WALL ( 10 calls) mix_rho : 0.12s CPU 0.12s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.14s CPU 0.12s WALL ( 160 calls) cegterg : 4.46s CPU 4.48s WALL ( 72 calls) Called by *egterg: h_psi : 3.81s CPU 3.82s WALL ( 231 calls) s_psi : 0.15s CPU 0.14s WALL ( 239 calls) g_psi : 0.03s CPU 0.06s WALL ( 151 calls) cdiaghg : 0.18s CPU 0.22s WALL ( 223 calls) Called by h_psi: add_vuspsi : 0.16s CPU 0.15s WALL ( 231 calls) General routines calbec : 0.29s CPU 0.31s WALL ( 614 calls) fft : 0.32s CPU 0.34s WALL ( 160 calls) ffts : 0.04s CPU 0.03s WALL ( 38 calls) fftw : 3.10s CPU 3.08s WALL ( 8220 calls) interpolate : 0.16s CPU 0.16s WALL ( 38 calls) davcio : 0.00s CPU 0.05s WALL ( 464 calls) PWSCF : 11.56s CPU 11.85s WALL This run was terminated on: 10:24:12 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/metal-tetrahedra.ref20000644000700200004540000002505412053145627020066 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-tetrahedra.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 55 869 869 259 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 (tetrahedron method) cart. coord. in units 2pi/alat k( 1) = ( -0.0833333 0.0833333 0.0833333), wk = 0.0185185 k( 2) = ( -0.2500000 0.2500000 -0.0833333), wk = 0.0555556 k( 3) = ( -0.4166667 0.4166667 -0.2500000), wk = 0.0555556 k( 4) = ( 0.4166667 -0.4166667 0.5833333), wk = 0.0555556 k( 5) = ( 0.2500000 -0.2500000 0.4166667), wk = 0.0555556 k( 6) = ( 0.0833333 -0.0833333 0.2500000), wk = 0.0555556 k( 7) = ( -0.0833333 0.4166667 0.0833333), wk = 0.0555556 k( 8) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.1111111 k( 9) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.1111111 k( 10) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.1111111 k( 11) = ( 0.2500000 0.0833333 0.4166667), wk = 0.1111111 k( 12) = ( -0.0833333 0.7500000 0.0833333), wk = 0.0555556 k( 13) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.1111111 k( 14) = ( 0.5833333 0.0833333 0.7500000), wk = 0.1111111 k( 15) = ( 0.4166667 0.2500000 0.5833333), wk = 0.1111111 k( 16) = ( -0.0833333 -0.9166667 0.0833333), wk = 0.0555556 k( 17) = ( -0.2500000 -0.7500000 -0.0833333), wk = 0.1111111 k( 18) = ( -0.0833333 -0.5833333 0.0833333), wk = 0.0555556 k( 19) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0185185 k( 20) = ( -0.4166667 0.4166667 0.0833333), wk = 0.0555556 k( 21) = ( 0.4166667 -0.4166667 0.9166667), wk = 0.0555556 k( 22) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.0555556 k( 23) = ( -0.2500000 0.5833333 0.2500000), wk = 0.0555556 k( 24) = ( 0.5833333 -0.2500000 1.0833333), wk = 0.1111111 k( 25) = ( 0.4166667 -0.0833333 0.9166667), wk = 0.1111111 k( 26) = ( -0.2500000 -1.0833333 0.2500000), wk = 0.0555556 k( 27) = ( -0.4166667 0.4166667 0.4166667), wk = 0.0185185 k( 28) = ( 0.4166667 -0.4166667 1.2500000), wk = 0.0555556 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 4, 4) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 3.33E-08, avg # of iterations = 10.4 total cpu time spent up to now is 0.3 secs End of band structure calculation k =-0.0833 0.0833 0.0833 band energies (ev): -2.9917 18.4616 20.5668 20.5668 k =-0.2500 0.2500-0.0833 band energies (ev): -1.9382 14.0228 17.0324 21.4892 k =-0.4167 0.4167-0.2500 band energies (ev): 0.6359 8.0210 16.5644 19.8678 k = 0.4167-0.4167 0.5833 band energies (ev): 3.1424 4.6444 17.4638 18.1214 k = 0.2500-0.2500 0.4167 band energies (ev): -0.3860 9.9155 17.6646 19.2619 k = 0.0833-0.0833 0.2500 band energies (ev): -2.4635 16.2604 18.4970 19.8047 k =-0.0833 0.4167 0.0833 band energies (ev): -1.4189 14.4156 16.7827 18.0726 k =-0.2500 0.5833-0.0833 band energies (ev): 0.6376 10.7427 13.9074 15.3651 k = 0.5833-0.2500 0.7500 band energies (ev): 4.1176 5.6172 12.9265 14.4326 k = 0.4167-0.0833 0.5833 band energies (ev): 1.6482 8.8634 12.1518 16.2073 k = 0.2500 0.0833 0.4167 band energies (ev): -0.8998 12.1579 15.3053 19.3351 k =-0.0833 0.7500 0.0833 band energies (ev): 2.1461 11.0181 12.1111 14.6434 k = 0.7500-0.0833 0.9167 band energies (ev): 5.0323 8.2173 9.3936 12.6533 k = 0.5833 0.0833 0.7500 band energies (ev): 5.0888 6.4965 9.7758 13.9438 k = 0.4167 0.2500 0.5833 band energies (ev): 2.1489 6.5775 15.2209 16.6580 k =-0.0833-0.9167 0.0833 band energies (ev): 4.5530 7.7742 11.6180 14.2193 k =-0.2500-0.7500-0.0833 band energies (ev): 2.6451 9.7781 11.5103 13.1555 k =-0.0833-0.5833 0.0833 band energies (ev): 0.1278 13.0055 14.7974 15.4993 k =-0.2500 0.2500 0.2500 band energies (ev): -1.4184 11.7934 19.3985 19.3985 k =-0.4167 0.4167 0.0833 band energies (ev): 0.1280 10.2830 13.5501 19.4288 k = 0.4167-0.4167 0.9167 band energies (ev): 3.1449 7.4413 10.7448 16.8144 k = 0.2500-0.2500 0.7500 band energies (ev): 3.1406 7.5233 12.0340 15.5089 k =-0.2500 0.5833 0.2500 band energies (ev): 1.1430 8.4844 15.7138 16.3681 k = 0.5833-0.2500 1.0833 band energies (ev): 3.6334 7.9105 11.1273 12.6583 k = 0.4167-0.0833 0.9167 band energies (ev): 5.9797 7.4190 9.2075 10.9218 k =-0.2500-1.0833 0.2500 band energies (ev): 5.5043 7.0198 8.8398 15.0808 k =-0.4167 0.4167 0.4167 band energies (ev): 1.6475 6.1012 19.4352 19.4352 k = 0.4167-0.4167 1.2500 band energies (ev): 3.6339 5.1288 13.8983 17.2491 the Fermi energy is 8.3068 ev Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.13s CPU 0.13s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.12s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.12s CPU 0.11s WALL ( 28 calls) Called by *egterg: h_psi : 0.09s CPU 0.08s WALL ( 348 calls) g_psi : 0.00s CPU 0.00s WALL ( 292 calls) cdiaghg : 0.02s CPU 0.02s WALL ( 320 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 348 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 348 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.06s CPU 0.06s WALL ( 2082 calls) davcio : 0.00s CPU 0.00s WALL ( 28 calls) PWSCF : 0.50s CPU 0.53s WALL This run was terminated on: 10:24:53 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax.ref0000644000700200004540000006633512053145627015703 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1649 1101 277 50541 27609 3407 Tot 825 551 139 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25271 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 13805 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003742 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.374E-02 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 30.4 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.548E-02 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -43.00560028 Ry Harris-Foulkes estimate = -43.13946473 Ry estimated scf accuracy < 0.20142084 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 4.0 negative rho (up, down): 0.113E-01 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -42.97192905 Ry Harris-Foulkes estimate = -43.22189611 Ry estimated scf accuracy < 0.69794621 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 3.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -43.09499395 Ry Harris-Foulkes estimate = -43.09749186 Ry estimated scf accuracy < 0.00768862 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.69E-05, avg # of iterations = 2.0 negative rho (up, down): 0.458E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -43.09571104 Ry Harris-Foulkes estimate = -43.09617585 Ry estimated scf accuracy < 0.00118904 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 3.0 negative rho (up, down): 0.461E-02 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -43.09622618 Ry Harris-Foulkes estimate = -43.09637952 Ry estimated scf accuracy < 0.00054718 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.47E-06, avg # of iterations = 1.0 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -43.09619459 Ry Harris-Foulkes estimate = -43.09625737 Ry estimated scf accuracy < 0.00019300 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -43.09625490 Ry Harris-Foulkes estimate = -43.09626006 Ry estimated scf accuracy < 0.00001788 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-07, avg # of iterations = 2.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.1 secs total energy = -43.09625733 Ry Harris-Foulkes estimate = -43.09625777 Ry estimated scf accuracy < 0.00000256 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8990 -13.4027 -10.8557 -10.8557 -8.5036 ! total energy = -43.09625738 Ry Harris-Foulkes estimate = -43.09625770 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -64.82452638 Ry hartree contribution = 33.55448961 Ry xc contribution = -9.77042089 Ry ewald contribution = -2.05579972 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21576369 0.00000000 0.00000000 atom 2 type 1 force = 0.21576369 0.00000000 0.00000000 Total force = 0.215764 Total SCF correction = 0.000570 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.0962573845 Ry new trust radius = 0.2157636867 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.040236313 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003742 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003805 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.519E-02 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -43.09141135 Ry Harris-Foulkes estimate = -43.10570457 Ry estimated scf accuracy < 0.02450099 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-04, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -43.09630706 Ry Harris-Foulkes estimate = -43.09720161 Ry estimated scf accuracy < 0.00178486 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-05, avg # of iterations = 2.0 negative rho (up, down): 0.488E-02 0.000E+00 total cpu time spent up to now is 2.9 secs total energy = -43.09661885 Ry Harris-Foulkes estimate = -43.09674573 Ry estimated scf accuracy < 0.00022392 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-06, avg # of iterations = 3.0 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 3.1 secs total energy = -43.09664778 Ry Harris-Foulkes estimate = -43.09675067 Ry estimated scf accuracy < 0.00024403 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.486E-02 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -43.09668898 Ry Harris-Foulkes estimate = -43.09668949 Ry estimated scf accuracy < 0.00000124 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 4.0 negative rho (up, down): 0.486E-02 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -43.09669227 Ry Harris-Foulkes estimate = -43.09669412 Ry estimated scf accuracy < 0.00000476 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 3.0 negative rho (up, down): 0.485E-02 0.000E+00 total cpu time spent up to now is 3.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.6418 -13.3815 -11.8945 -11.8945 -8.2531 ! total energy = -43.09669286 Ry Harris-Foulkes estimate = -43.09669292 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -68.53625446 Ry hartree contribution = 35.29035116 Ry xc contribution = -9.98595197 Ry ewald contribution = 0.13516241 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.27789836 0.00000000 0.00000000 atom 2 type 1 force = -0.27789836 0.00000000 0.00000000 Total force = 0.277898 Total SCF correction = 0.000159 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.0962573845 Ry energy new = -43.0966928607 Ry CASE: energy _new > energy _old new trust radius = 0.1089005231 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.147099477 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003805 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003773 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 3.8 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.452E-02 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -43.10822701 Ry Harris-Foulkes estimate = -43.11217514 Ry estimated scf accuracy < 0.00673031 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.73E-05, avg # of iterations = 2.0 negative rho (up, down): 0.466E-02 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -43.10959314 Ry Harris-Foulkes estimate = -43.10983938 Ry estimated scf accuracy < 0.00049914 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.99E-06, avg # of iterations = 2.0 negative rho (up, down): 0.468E-02 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -43.10966909 Ry Harris-Foulkes estimate = -43.10974284 Ry estimated scf accuracy < 0.00013250 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-06, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -43.10970218 Ry Harris-Foulkes estimate = -43.10971933 Ry estimated scf accuracy < 0.00004392 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.39E-07, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 4.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7622 -13.3827 -11.3565 -11.3565 -8.3885 ! total energy = -43.10970947 Ry Harris-Foulkes estimate = -43.10970957 Ry estimated scf accuracy < 0.00000025 Ry The total energy is the sum of the following terms: one-electron contribution = -66.62199211 Ry hartree contribution = 34.39252108 Ry xc contribution = -9.87286653 Ry ewald contribution = -1.00737192 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01574650 0.00000000 0.00000000 atom 2 type 1 force = 0.01574650 0.00000000 0.00000000 Total force = 0.015747 Total SCF correction = 0.000229 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.0962573845 Ry energy new = -43.1097094714 Ry CASE: energy _new < energy _old new trust radius = 0.0085732739 bohr new conv_thr = 0.0000001575 Ry ATOMIC_POSITIONS (bohr) C 2.138526203 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003773 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 4.7 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.474E-02 0.000E+00 total cpu time spent up to now is 4.9 secs total energy = -43.10975406 Ry Harris-Foulkes estimate = -43.10978279 Ry estimated scf accuracy < 0.00004742 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.74E-07, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 5.0 secs total energy = -43.10976422 Ry Harris-Foulkes estimate = -43.10976717 Ry estimated scf accuracy < 0.00000538 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.38E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -43.10976529 Ry Harris-Foulkes estimate = -43.10976538 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.3 secs total energy = -43.10976536 Ry Harris-Foulkes estimate = -43.10976565 Ry estimated scf accuracy < 0.00000114 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8307 -13.3815 -11.3975 -11.3975 -8.3772 ! total energy = -43.10976531 Ry Harris-Foulkes estimate = -43.10976544 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = -66.76958990 Ry hartree contribution = 34.46140802 Ry xc contribution = -9.88149278 Ry ewald contribution = -0.92009065 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00338484 0.00000000 0.00000000 atom 2 type 1 force = -0.00338484 0.00000000 0.00000000 Total force = 0.003385 Total SCF correction = 0.000432 SCF correction compared to forces is large: reduce conv_thr to get better values number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1097094714 Ry energy new = -43.1097653111 Ry CASE: energy _new < energy _old new trust radius = 0.0015168383 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) C 2.140043041 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003775 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.7 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.96E-08, avg # of iterations = 1.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.9 secs total energy = -43.10976725 Ry Harris-Foulkes estimate = -43.10976877 Ry estimated scf accuracy < 0.00000225 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -43.10976734 Ry Harris-Foulkes estimate = -43.10976856 Ry estimated scf accuracy < 0.00000256 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.2 secs total energy = -43.10976795 Ry Harris-Foulkes estimate = -43.10976806 Ry estimated scf accuracy < 0.00000029 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-09, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8190 -13.3823 -11.3907 -11.3907 -8.3784 ! total energy = -43.10976799 Ry Harris-Foulkes estimate = -43.10976799 Ry estimated scf accuracy < 8.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -66.74427692 Ry hartree contribution = 34.45022354 Ry xc contribution = -9.88012852 Ry ewald contribution = -0.93558609 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00002275 0.00000000 0.00000000 atom 2 type 1 force = -0.00002275 0.00000000 0.00000000 Total force = 0.000023 Total SCF correction = 0.000054 SCF correction compared to forces is large: reduce conv_thr to get better values bfgs converged in 5 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -43.1097679883 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) C 2.140043041 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 End final coordinates Writing output data file pwscf.save init_run : 0.91s CPU 0.92s WALL ( 1 calls) electrons : 3.97s CPU 4.15s WALL ( 5 calls) update_pot : 0.32s CPU 0.32s WALL ( 4 calls) forces : 0.42s CPU 0.42s WALL ( 5 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.04s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 0.62s CPU 0.64s WALL ( 31 calls) sum_band : 1.46s CPU 1.49s WALL ( 31 calls) v_of_rho : 0.45s CPU 0.48s WALL ( 35 calls) newd : 1.12s CPU 1.15s WALL ( 35 calls) mix_rho : 0.19s CPU 0.20s WALL ( 31 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 63 calls) regterg : 0.56s CPU 0.58s WALL ( 31 calls) Called by *egterg: h_psi : 0.45s CPU 0.46s WALL ( 116 calls) s_psi : 0.00s CPU 0.01s WALL ( 116 calls) g_psi : 0.03s CPU 0.02s WALL ( 84 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 110 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 116 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 167 calls) fft : 0.47s CPU 0.48s WALL ( 313 calls) ffts : 0.08s CPU 0.07s WALL ( 66 calls) fftw : 0.37s CPU 0.38s WALL ( 679 calls) interpolate : 0.24s CPU 0.26s WALL ( 66 calls) davcio : 0.00s CPU 0.00s WALL ( 30 calls) PWSCF : 6.10s CPU 6.45s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav12-kauto.ref0000644000700200004540000001772712053145627020603 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav12-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1177 1177 327 50347 50347 7175 bravais-lattice index = 12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 0.000000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1423804 0.1250000), wk = 1.0000000 k( 2) = ( 0.2500000 -0.1926322 0.1250000), wk = 1.0000000 Dense grid: 50347 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 6314, 1) NL pseudopotentials 0.00 Mb ( 6314, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.38 Mb ( 50347) G-vector shells 0.07 Mb ( 9783) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.39 Mb ( 6314, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004355 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.435E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.127E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22012426 Ry Harris-Foulkes estimate = -2.29037129 Ry estimated scf accuracy < 0.13325589 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.272E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23112487 Ry Harris-Foulkes estimate = -2.23157802 Ry estimated scf accuracy < 0.00100706 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.355E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23142854 Ry Harris-Foulkes estimate = -2.23143006 Ry estimated scf accuracy < 0.00001221 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.10E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.2500 0.1424 0.1250 ( 6314 PWs) bands (ev): -10.2890 k = 0.2500-0.1926 0.1250 ( 6310 PWs) bands (ev): -10.2877 ! total energy = -2.23142974 Ry Harris-Foulkes estimate = -2.23142970 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69694977 Ry hartree contribution = 1.95088698 Ry xc contribution = -1.31442612 Ry ewald contribution = 0.82905917 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.10s CPU 0.11s WALL ( 1 calls) electrons : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.05s CPU 0.05s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.06s CPU 0.06s WALL ( 8 calls) Called by *egterg: h_psi : 0.06s CPU 0.06s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.06s CPU 0.05s WALL ( 56 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.38s CPU 0.40s WALL This run was terminated on: 10:22:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/metal-gaussian.ref0000644000700200004540000002263712053145627017477 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-gaussian.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18500816 Ry Harris-Foulkes estimate = -4.18577249 Ry estimated scf accuracy < 0.00592434 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18500187 Ry Harris-Foulkes estimate = -4.18503004 Ry estimated scf accuracy < 0.00046596 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7433 20.1797 20.1797 23.2684 24.1726 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6752 17.3100 18.8473 20.1258 22.7031 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5558 13.9823 15.3804 16.8439 20.9948 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0829 8.6646 10.5473 14.4195 15.7422 20.0605 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5638 15.0576 20.2795 22.2925 22.3025 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8827 8.4274 12.9758 15.1048 21.3124 23.4593 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1682 7.3419 9.7864 12.0729 20.3594 24.5666 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1110 6.2843 10.9034 16.3673 18.2374 26.3756 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7476 7.4154 19.3071 19.3071 21.3018 21.3019 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0034 5.2362 16.0324 17.3400 19.1722 23.3128 the Fermi energy is 8.3445 ev ! total energy = -4.18500453 Ry Harris-Foulkes estimate = -4.18500445 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94325124 Ry hartree contribution = 0.01025286 Ry xc contribution = -1.63498935 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00168476 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.07s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.05s CPU 0.06s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 90 calls) cegterg : 0.05s CPU 0.06s WALL ( 40 calls) Called by *egterg: h_psi : 0.02s CPU 0.04s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 76 calls) cdiaghg : 0.02s CPU 0.01s WALL ( 106 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 126 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 126 calls) fft : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.04s CPU 0.04s WALL ( 1576 calls) davcio : 0.00s CPU 0.00s WALL ( 130 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/cluster4.in0000644000700200004540000000075212053145627016156 0ustar marsamoscm&CONTROL calculation = 'scf' / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, assume_isolated = 'makov-payne' tot_charge = +1.0 nbnd = 8 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma espresso-5.0.2/PW/tests/noncolin-constrain_total.ref0000644000700200004540000015111512053145627021577 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-constrain_total.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 32 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0312500 k( 2) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 4) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.2500000), wk = 0.0312500 k( 6) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0312500 k( 7) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0312500 k( 8) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500 k( 9) = ( 0.0000000 -0.2500000 -0.5000000), wk = 0.0312500 k( 10) = ( -0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 11) = ( 0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 12) = ( 0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 13) = ( -0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 14) = ( 0.0000000 0.5000000 -0.2500000), wk = 0.0312500 k( 15) = ( 0.0000000 0.5000000 0.2500000), wk = 0.0312500 k( 16) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 17) = ( 0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 18) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0312500 k( 19) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0312500 k( 20) = ( 0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 21) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.0312500 k( 22) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 23) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500 k( 24) = ( -0.2500000 -0.7500000 0.2500000), wk = 0.0312500 k( 25) = ( 0.7500000 -0.2500000 0.2500000), wk = 0.0312500 k( 26) = ( -0.5000000 -0.5000000 -0.2500000), wk = 0.0312500 k( 27) = ( 0.2500000 0.5000000 0.5000000), wk = 0.0312500 k( 28) = ( -0.2500000 0.5000000 -0.5000000), wk = 0.0312500 k( 29) = ( -0.5000000 0.2500000 -0.5000000), wk = 0.0312500 k( 30) = ( -0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 31) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0312500 k( 32) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0312500 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 318, 16) NL pseudopotentials 0.04 Mb ( 159, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.31 Mb ( 318, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 External magnetic field: -1.40219 -1.85888 -2.32843 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 1.418059 1.881828 2.356304 magnetization/charge: 0.212774 0.282360 0.353553 polar coord.: r, theta, phi [deg] : 3.332318 45.000000 53.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 13.8 External magnetic field: 0.13056 0.17370 0.21696 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.446359 magnetization : 0.234110 0.311683 0.390180 magnetization/charge: 0.036317 0.048350 0.060527 polar coord.: r, theta, phi [deg] : 0.551538 44.972956 53.089266 ============================================================================== total cpu time spent up to now is 2.2 secs total energy = -49.81719842 Ry Harris-Foulkes estimate = -91.11127859 Ry estimated scf accuracy < 2.17499733 Ry total magnetization = -3.41 -4.52 -5.66 Bohr mag/cell absolute magnetization = 8.00 Bohr mag/cell Magnetic field = 0.1305631 0.1736956 0.2169555 Ry lambda = 0.50 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.4 External magnetic field: -0.20589 -0.27371 -0.34184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.429165 magnetization : 0.514219 0.684341 0.855520 magnetization/charge: 0.079982 0.106443 0.133069 polar coord.: r, theta, phi [deg] : 1.210230 45.016233 53.078564 ============================================================================== total cpu time spent up to now is 3.2 secs total energy = -54.06914925 Ry Harris-Foulkes estimate = -56.28645457 Ry estimated scf accuracy < 0.19951793 Ry total magnetization = 1.60 2.13 2.66 Bohr mag/cell absolute magnetization = 3.77 Bohr mag/cell Magnetic field = -0.2058912 -0.2737109 -0.3418413 Ry lambda = 0.50 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 4.6 External magnetic field: 0.07343 0.09771 0.12206 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407114 magnetization : 0.264599 0.352501 0.440964 magnetization/charge: 0.041298 0.055017 0.068824 polar coord.: r, theta, phi [deg] : 0.623473 44.986775 53.106828 ============================================================================== total cpu time spent up to now is 3.8 secs total energy = -53.83961407 Ry Harris-Foulkes estimate = -57.46785425 Ry estimated scf accuracy < 0.65781043 Ry total magnetization = -1.99 -2.64 -3.30 Bohr mag/cell absolute magnetization = 4.67 Bohr mag/cell Magnetic field = 0.0734254 0.0977135 0.1220605 Ry lambda = 0.50 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 1.1 External magnetic field: -0.00170 -0.00227 -0.00286 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412627 magnetization : 0.330583 0.440363 0.550686 magnetization/charge: 0.051552 0.068671 0.085875 polar coord.: r, theta, phi [deg] : 0.778756 44.997596 53.104226 ============================================================================== total cpu time spent up to now is 4.2 secs total energy = -55.41631842 Ry Harris-Foulkes estimate = -55.87270614 Ry estimated scf accuracy < 0.14273868 Ry total magnetization = 1.36 1.81 2.26 Bohr mag/cell absolute magnetization = 3.19 Bohr mag/cell Magnetic field = -0.0017029 -0.0022734 -0.0028561 Ry lambda = 0.50 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.78E-03, avg # of iterations = 1.0 External magnetic field: 0.00018 0.00025 0.00030 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411859 magnetization : 0.328654 0.437792 0.547462 magnetization/charge: 0.051257 0.068278 0.085383 polar coord.: r, theta, phi [deg] : 0.774203 44.998111 53.104084 ============================================================================== total cpu time spent up to now is 4.6 secs total energy = -55.54600526 Ry Harris-Foulkes estimate = -55.54495957 Ry estimated scf accuracy < 0.00269714 Ry total magnetization = 0.41 0.54 0.68 Bohr mag/cell absolute magnetization = 0.99 Bohr mag/cell Magnetic field = 0.0001828 0.0002494 0.0003005 Ry lambda = 0.50 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 4.4 External magnetic field: -0.03679 -0.04793 -0.05955 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417589 magnetization : 0.353383 0.469731 0.587068 magnetization/charge: 0.055065 0.073194 0.091478 polar coord.: r, theta, phi [deg] : 0.830768 45.036438 53.045463 ============================================================================== total cpu time spent up to now is 5.2 secs total energy = -55.52131512 Ry Harris-Foulkes estimate = -55.54670384 Ry estimated scf accuracy < 0.00468207 Ry total magnetization = 0.47 0.62 0.77 Bohr mag/cell absolute magnetization = 1.12 Bohr mag/cell Magnetic field = -0.0367887 -0.0479304 -0.0595532 Ry lambda = 0.50 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.6 External magnetic field: -0.03764 -0.04948 -0.06163 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417726 magnetization : 0.352726 0.469270 0.586622 magnetization/charge: 0.054961 0.073121 0.091407 polar coord.: r, theta, phi [deg] : 0.829913 45.020994 53.069705 ============================================================================== total cpu time spent up to now is 5.6 secs total energy = -55.65322494 Ry Harris-Foulkes estimate = -55.64638115 Ry estimated scf accuracy < 0.15316408 Ry total magnetization = -0.72 -0.93 -1.16 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell Magnetic field = -0.0376400 -0.0494799 -0.0616256 Ry lambda = 0.50 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.5 External magnetic field: -0.03952 -0.04999 -0.06161 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417781 magnetization : 0.353514 0.468445 0.584973 magnetization/charge: 0.055084 0.072992 0.091149 polar coord.: r, theta, phi [deg] : 0.828617 45.092595 52.959759 ============================================================================== total cpu time spent up to now is 6.1 secs total energy = -55.65613461 Ry Harris-Foulkes estimate = -55.65329192 Ry estimated scf accuracy < 0.15844683 Ry total magnetization = -0.73 -0.96 -1.19 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell Magnetic field = -0.0395191 -0.0499928 -0.0616137 Ry lambda = 0.50 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 2.0 External magnetic field: -0.07154 -0.09400 -0.11704 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.424346 magnetization : 0.332309 0.441753 0.552006 magnetization/charge: 0.051727 0.068762 0.085924 polar coord.: r, theta, phi [deg] : 0.781208 45.040569 53.047634 ============================================================================== total cpu time spent up to now is 6.5 secs total energy = -55.86918236 Ry Harris-Foulkes estimate = -55.65618287 Ry estimated scf accuracy < 0.16055203 Ry total magnetization = -0.78 -0.96 -1.18 Bohr mag/cell absolute magnetization = 1.71 Bohr mag/cell Magnetic field = -0.0715409 -0.0940001 -0.1170410 Ry lambda = 0.50 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.7 External magnetic field: -0.00267 -0.00356 -0.00447 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.416069 magnetization : 0.309664 0.412615 0.516018 magnetization/charge: 0.048264 0.064310 0.080426 polar coord.: r, theta, phi [deg] : 0.729669 44.992898 53.112121 ============================================================================== total cpu time spent up to now is 7.0 secs total energy = -55.27821083 Ry Harris-Foulkes estimate = -55.92610570 Ry estimated scf accuracy < 0.34895372 Ry total magnetization = -1.39 -1.82 -2.26 Bohr mag/cell absolute magnetization = 3.22 Bohr mag/cell Magnetic field = -0.0026686 -0.0035649 -0.0044662 Ry lambda = 0.50 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.2 External magnetic field: 0.02313 0.03101 0.03870 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.420424 magnetization : 0.234181 0.312007 0.390228 magnetization/charge: 0.036474 0.048596 0.060779 polar coord.: r, theta, phi [deg] : 0.551785 44.991664 53.109498 ============================================================================== total cpu time spent up to now is 7.4 secs total energy = -55.55076130 Ry Harris-Foulkes estimate = -55.54455977 Ry estimated scf accuracy < 0.00238257 Ry total magnetization = 0.34 0.45 0.57 Bohr mag/cell absolute magnetization = 0.83 Bohr mag/cell Magnetic field = 0.0231300 0.0310070 0.0387022 Ry lambda = 0.50 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.4 External magnetic field: 0.02685 0.03558 0.04472 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.421618 magnetization : 0.238092 0.317519 0.396847 magnetization/charge: 0.037077 0.049445 0.061799 polar coord.: r, theta, phi [deg] : 0.561244 45.001701 53.135540 ============================================================================== total cpu time spent up to now is 7.8 secs total energy = -55.59907054 Ry Harris-Foulkes estimate = -55.58730250 Ry estimated scf accuracy < 0.05335092 Ry total magnetization = 0.82 1.09 1.36 Bohr mag/cell absolute magnetization = 1.93 Bohr mag/cell Magnetic field = 0.0268471 0.0355772 0.0447198 Ry lambda = 0.50 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: -0.00483 -0.01315 -0.00769 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.398695 magnetization : 0.299340 0.405421 0.498606 magnetization/charge: 0.046781 0.063360 0.077923 polar coord.: r, theta, phi [deg] : 0.708928 45.305654 53.559900 ============================================================================== total cpu time spent up to now is 8.2 secs total energy = -55.50151529 Ry Harris-Foulkes estimate = -55.59960381 Ry estimated scf accuracy < 0.06121387 Ry total magnetization = 0.87 1.16 1.45 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell Magnetic field = -0.0048329 -0.0131535 -0.0076873 Ry lambda = 0.50 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 4.5 External magnetic field: -0.01355 -0.00193 -0.02473 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.388987 magnetization : 0.327511 0.421316 0.548139 magnetization/charge: 0.051262 0.065944 0.085794 polar coord.: r, theta, phi [deg] : 0.765001 44.232096 52.140194 ============================================================================== total cpu time spent up to now is 8.8 secs total energy = -55.54402043 Ry Harris-Foulkes estimate = -55.54629552 Ry estimated scf accuracy < 0.00348363 Ry total magnetization = 0.28 0.12 0.48 Bohr mag/cell absolute magnetization = 0.62 Bohr mag/cell Magnetic field = -0.0135494 -0.0019303 -0.0247306 Ry lambda = 0.50 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.5 External magnetic field: -0.00845 -0.01089 -0.01381 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402992 magnetization : 0.308075 0.410611 0.513295 magnetization/charge: 0.048114 0.064128 0.080165 polar coord.: r, theta, phi [deg] : 0.725936 45.002168 53.119679 ============================================================================== total cpu time spent up to now is 9.3 secs total energy = -55.54203370 Ry Harris-Foulkes estimate = -55.55253382 Ry estimated scf accuracy < 0.02036982 Ry total magnetization = 0.01 0.62 -0.06 Bohr mag/cell absolute magnetization = 0.71 Bohr mag/cell Magnetic field = -0.0084465 -0.0108949 -0.0138114 Ry lambda = 0.50 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.9 External magnetic field: 0.00089 0.00115 0.00147 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407166 magnetization : 0.295224 0.393805 0.492154 magnetization/charge: 0.046077 0.061463 0.076813 polar coord.: r, theta, phi [deg] : 0.696028 45.001448 53.142112 ============================================================================== total cpu time spent up to now is 9.9 secs total energy = -55.53935290 Ry Harris-Foulkes estimate = -55.54667222 Ry estimated scf accuracy < 0.00334769 Ry total magnetization = 0.15 0.22 0.26 Bohr mag/cell absolute magnetization = 0.44 Bohr mag/cell Magnetic field = 0.0008882 0.0011455 0.0014738 Ry lambda = 0.50 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00110 -0.00206 -0.00389 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405905 magnetization : 0.297714 0.400363 0.501688 magnetization/charge: 0.046475 0.062499 0.078316 polar coord.: r, theta, phi [deg] : 0.707541 44.841705 53.365115 ============================================================================== total cpu time spent up to now is 10.3 secs total energy = -55.54493682 Ry Harris-Foulkes estimate = -55.54664923 Ry estimated scf accuracy < 0.00457252 Ry total magnetization = 0.46 0.61 0.76 Bohr mag/cell absolute magnetization = 1.09 Bohr mag/cell Magnetic field = 0.0011014 -0.0020618 -0.0038892 Ry lambda = 0.50 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00570 0.00759 0.00958 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409891 magnetization : 0.292113 0.389339 0.486566 magnetization/charge: 0.045572 0.060740 0.075909 polar coord.: r, theta, phi [deg] : 0.688231 45.010207 53.119864 ============================================================================== total cpu time spent up to now is 10.7 secs total energy = -55.54826924 Ry Harris-Foulkes estimate = -55.54547865 Ry estimated scf accuracy < 0.00206171 Ry total magnetization = 0.48 0.51 0.60 Bohr mag/cell absolute magnetization = 0.94 Bohr mag/cell Magnetic field = 0.0057043 0.0075889 0.0095829 Ry lambda = 0.50 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: 0.00585 0.00740 0.00993 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411505 magnetization : 0.290734 0.387889 0.484245 magnetization/charge: 0.045346 0.060499 0.075528 polar coord.: r, theta, phi [deg] : 0.685184 45.029952 53.147355 ============================================================================== total cpu time spent up to now is 11.1 secs total energy = -55.55235504 Ry Harris-Foulkes estimate = -55.55229023 Ry estimated scf accuracy < 0.01362109 Ry total magnetization = 0.58 0.78 0.97 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = 0.0058531 0.0074025 0.0099343 Ry lambda = 0.50 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00401 -0.00518 -0.00647 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409328 magnetization : 0.311225 0.414604 0.518126 magnetization/charge: 0.048558 0.064688 0.080839 polar coord.: r, theta, phi [deg] : 0.732947 45.016166 53.106108 ============================================================================== total cpu time spent up to now is 11.5 secs total energy = -55.53887523 Ry Harris-Foulkes estimate = -55.55236304 Ry estimated scf accuracy < 0.01370998 Ry total magnetization = 0.59 0.77 0.98 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = -0.0040067 -0.0051787 -0.0064726 Ry lambda = 0.50 Ry iteration # 21 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00296 -0.00379 -0.00470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409510 magnetization : 0.308289 0.410727 0.513276 magnetization/charge: 0.048099 0.064081 0.080080 polar coord.: r, theta, phi [deg] : 0.726079 45.015606 53.108379 ============================================================================== total cpu time spent up to now is 11.9 secs total energy = -55.54492349 Ry Harris-Foulkes estimate = -55.54483083 Ry estimated scf accuracy < 0.00019683 Ry total magnetization = 0.32 0.43 0.54 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell Magnetic field = -0.0029587 -0.0037888 -0.0047043 Ry lambda = 0.50 Ry iteration # 22 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00294 -0.00371 -0.00471 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409630 magnetization : 0.309376 0.412152 0.515141 magnetization/charge: 0.048267 0.064302 0.080370 polar coord.: r, theta, phi [deg] : 0.728665 45.011468 53.106848 ============================================================================== total cpu time spent up to now is 12.4 secs total energy = -55.54500340 Ry Harris-Foulkes estimate = -55.54500759 Ry estimated scf accuracy < 0.00058487 Ry total magnetization = 0.35 0.48 0.60 Bohr mag/cell absolute magnetization = 0.87 Bohr mag/cell Magnetic field = -0.0029352 -0.0037132 -0.0047091 Ry lambda = 0.50 Ry iteration # 23 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00563 -0.00754 -0.00921 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411391 magnetization : 0.314560 0.419367 0.523848 magnetization/charge: 0.049063 0.065410 0.081706 polar coord.: r, theta, phi [deg] : 0.741102 45.020869 53.127069 ============================================================================== total cpu time spent up to now is 12.8 secs total energy = -55.54429458 Ry Harris-Foulkes estimate = -55.54500560 Ry estimated scf accuracy < 0.00052277 Ry total magnetization = 0.36 0.48 0.60 Bohr mag/cell absolute magnetization = 0.88 Bohr mag/cell Magnetic field = -0.0056322 -0.0075406 -0.0092105 Ry lambda = 0.50 Ry iteration # 24 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00647 -0.00849 -0.01071 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412476 magnetization : 0.316404 0.421747 0.527123 magnetization/charge: 0.049342 0.065770 0.082203 polar coord.: r, theta, phi [deg] : 0.745547 45.006307 53.121967 ============================================================================== total cpu time spent up to now is 13.2 secs total energy = -55.54506390 Ry Harris-Foulkes estimate = -55.54489766 Ry estimated scf accuracy < 0.00019776 Ry total magnetization = 0.27 0.36 0.46 Bohr mag/cell absolute magnetization = 0.69 Bohr mag/cell Magnetic field = -0.0064743 -0.0084935 -0.0107059 Ry lambda = 0.50 Ry iteration # 25 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00476 -0.00674 -0.00779 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412104 magnetization : 0.312697 0.417285 0.520908 magnetization/charge: 0.048767 0.065078 0.081238 polar coord.: r, theta, phi [deg] : 0.737056 45.029580 53.153581 ============================================================================== total cpu time spent up to now is 13.6 secs total energy = -55.54458908 Ry Harris-Foulkes estimate = -55.54511966 Ry estimated scf accuracy < 0.00061776 Ry total magnetization = 0.24 0.33 0.41 Bohr mag/cell absolute magnetization = 0.64 Bohr mag/cell Magnetic field = -0.0047559 -0.0067353 -0.0077851 Ry lambda = 0.50 Ry iteration # 26 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00429 -0.00596 -0.00748 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412274 magnetization : 0.312259 0.416564 0.520688 magnetization/charge: 0.048697 0.064964 0.081202 polar coord.: r, theta, phi [deg] : 0.736307 44.995513 53.144531 ============================================================================== total cpu time spent up to now is 14.0 secs total energy = -55.54476880 Ry Harris-Foulkes estimate = -55.54479893 Ry estimated scf accuracy < 0.00001927 Ry total magnetization = 0.30 0.38 0.50 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell Magnetic field = -0.0042936 -0.0059587 -0.0074832 Ry lambda = 0.50 Ry iteration # 27 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.41E-07, avg # of iterations = 1.0 External magnetic field: -0.00456 -0.00603 -0.00746 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412275 magnetization : 0.312520 0.416640 0.520679 magnetization/charge: 0.048738 0.064975 0.081200 polar coord.: r, theta, phi [deg] : 0.736454 45.007986 53.126539 ============================================================================== total cpu time spent up to now is 14.4 secs total energy = -55.54478193 Ry Harris-Foulkes estimate = -55.54478304 Ry estimated scf accuracy < 0.00000348 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell Magnetic field = -0.0045593 -0.0060283 -0.0074640 Ry lambda = 0.50 Ry iteration # 28 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.35E-08, avg # of iterations = 1.0 External magnetic field: -0.00504 -0.00673 -0.00840 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412420 magnetization : 0.313448 0.417965 0.522410 magnetization/charge: 0.048881 0.065180 0.081468 polar coord.: r, theta, phi [deg] : 0.738821 45.001679 53.132356 ============================================================================== total cpu time spent up to now is 14.8 secs total energy = -55.54479361 Ry Harris-Foulkes estimate = -55.54478323 Ry estimated scf accuracy < 0.00000099 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0050356 -0.0067330 -0.0083974 Ry lambda = 0.50 Ry iteration # 29 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 1.1 External magnetic field: -0.00449 -0.00600 -0.00749 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412180 magnetization : 0.312240 0.416333 0.520410 magnetization/charge: 0.048695 0.064928 0.081160 polar coord.: r, theta, phi [deg] : 0.735971 45.000025 53.130945 ============================================================================== total cpu time spent up to now is 15.2 secs total energy = -55.54475930 Ry Harris-Foulkes estimate = -55.54481702 Ry estimated scf accuracy < 0.00004211 Ry total magnetization = 0.29 0.38 0.48 Bohr mag/cell absolute magnetization = 0.73 Bohr mag/cell Magnetic field = -0.0044944 -0.0059979 -0.0074944 Ry lambda = 0.50 Ry iteration # 30 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 1.3 External magnetic field: -0.00454 -0.00606 -0.00757 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412158 magnetization : 0.312303 0.416412 0.520505 magnetization/charge: 0.048705 0.064941 0.081175 polar coord.: r, theta, phi [deg] : 0.736110 45.000349 53.130640 ============================================================================== total cpu time spent up to now is 15.6 secs total energy = -55.54478369 Ry Harris-Foulkes estimate = -55.54478294 Ry estimated scf accuracy < 0.00000049 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045400 -0.0060579 -0.0075668 Ry lambda = 0.50 Ry iteration # 31 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.09E-09, avg # of iterations = 1.0 External magnetic field: -0.00455 -0.00607 -0.00758 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412138 magnetization : 0.312330 0.416443 0.520547 magnetization/charge: 0.048709 0.064946 0.081181 polar coord.: r, theta, phi [deg] : 0.736168 45.000312 53.130310 ============================================================================== total cpu time spent up to now is 16.0 secs total energy = -55.54478405 Ry Harris-Foulkes estimate = -55.54478385 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045496 -0.0060679 -0.0075812 Ry lambda = 0.50 Ry iteration # 32 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 3.8 External magnetic field: -0.00454 -0.00599 -0.00761 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412140 magnetization : 0.312318 0.416369 0.520578 magnetization/charge: 0.048707 0.064935 0.081186 polar coord.: r, theta, phi [deg] : 0.736144 44.994950 53.126457 ============================================================================== total cpu time spent up to now is 16.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 148 PWs) bands (ev): 7.0426 7.2420 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5018 38.5021 k = 0.0000-0.2500 0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.2500 0.2500 0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.7500-0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.5000-0.5000 0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k = 0.0000 0.0000 0.7500 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2841 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.2500 0.0000 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2420 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5017 38.5017 k = 0.0000 0.2500 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2420 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5016 38.5017 k = 0.0000-0.2500-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9090 34.1124 k = 0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.0000 0.5000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.0000 0.5000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.5000 0.0000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.5000 0.0000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500-0.2500-0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k = 0.2500 0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.2500-0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.7500-0.2500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.5000-0.5000-0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5952 k = 0.2500 0.5000 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6519 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k =-0.2500 0.5000-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6519 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k =-0.5000 0.2500-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5952 k =-0.5000-0.2500 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k = 0.7500 0.0000 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.0000 0.7500 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2841 20.3238 27.6811 27.6811 27.7979 27.7979 the Fermi energy is 14.8545 ev ! total energy = -55.54478377 Ry Harris-Foulkes estimate = -55.54478406 Ry estimated scf accuracy < 5.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.97517778 Ry hartree contribution = 6.02997182 Ry xc contribution = -25.89292023 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = -0.01240107 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045369 -0.0059902 -0.0076122 Ry lambda = 0.50 Ry convergence has been achieved in 32 iterations Writing output data file pwscf.save init_run : 0.59s CPU 0.60s WALL ( 1 calls) electrons : 15.64s CPU 15.95s WALL ( 1 calls) Called by init_run: wfcinit : 0.11s CPU 0.12s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 11.64s CPU 11.82s WALL ( 32 calls) sum_band : 3.07s CPU 3.10s WALL ( 32 calls) v_of_rho : 0.18s CPU 0.17s WALL ( 33 calls) newd : 0.42s CPU 0.44s WALL ( 33 calls) mix_rho : 0.11s CPU 0.10s WALL ( 32 calls) Called by c_bands: init_us_2 : 0.16s CPU 0.15s WALL ( 2080 calls) cegterg : 11.09s CPU 11.19s WALL ( 1024 calls) Called by *egterg: h_psi : 6.80s CPU 6.94s WALL ( 3383 calls) s_psi : 0.26s CPU 0.29s WALL ( 3383 calls) g_psi : 0.22s CPU 0.27s WALL ( 2327 calls) cdiaghg : 2.22s CPU 2.21s WALL ( 3351 calls) Called by h_psi: add_vuspsi : 0.30s CPU 0.32s WALL ( 3383 calls) General routines calbec : 0.34s CPU 0.31s WALL ( 4407 calls) fft : 0.20s CPU 0.21s WALL ( 1067 calls) ffts : 0.02s CPU 0.02s WALL ( 260 calls) fftw : 5.20s CPU 5.36s WALL ( 186856 calls) interpolate : 0.07s CPU 0.08s WALL ( 260 calls) davcio : 0.00s CPU 0.09s WALL ( 3104 calls) PWSCF : 16.38s CPU 16.73s WALL This run was terminated on: 10:25:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-mixing_ndim.ref0000644000700200004540000002117012053145627017627 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_ndim.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 4 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.21 Mb ( 3375, 4) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.02s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-disk_io.ref0000644000700200004540000002106012053145627016744 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-disk_io.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav-5-kauto.in0000644000700200004540000000046312053145627020421 0ustar marsamoscm &control calculation='scf', / &system ibrav =-5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/lsda-nelup+neldw.ref0000644000700200004540000003477712053145627017746 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-nelup+neldw.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 (up: 6.00, down: 4.00) number of Kohn-Sham states= 10 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 10) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 144, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 18, 10) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 total cpu time spent up to now is 1.1 secs total energy = -85.36100764 Ry Harris-Foulkes estimate = -85.65775224 Ry estimated scf accuracy < 0.56238269 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -85.50364204 Ry Harris-Foulkes estimate = -85.68883154 Ry estimated scf accuracy < 0.34556341 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.46E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.57763781 Ry Harris-Foulkes estimate = -85.57534556 Ry estimated scf accuracy < 0.00434602 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.5 secs total energy = -85.57808381 Ry Harris-Foulkes estimate = -85.57822591 Ry estimated scf accuracy < 0.00031552 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-06, avg # of iterations = 1.5 total cpu time spent up to now is 1.6 secs total energy = -85.57814925 Ry Harris-Foulkes estimate = -85.57814691 Ry estimated scf accuracy < 0.00000214 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-08, avg # of iterations = 2.6 total cpu time spent up to now is 1.7 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.0167 11.1480 11.4082 11.4082 12.3588 12.3588 36.7679 40.7678 42.9798 42.9798 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 8.7014 10.9123 11.3766 11.6633 12.3143 13.3895 28.3060 34.1286 41.4433 43.2812 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 9.3338 11.0224 11.4988 12.0071 13.1797 15.8523 21.2957 35.2284 37.7277 38.9300 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.5591 10.7423 11.5734 11.7226 12.2779 12.6680 32.6773 37.9601 38.3906 41.8248 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 9.2819 10.1243 11.7369 12.3061 13.0617 13.7471 29.4136 32.8973 33.8298 37.8183 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 9.9132 10.2367 11.3079 12.4470 13.1949 19.7157 23.2541 27.1404 29.6279 41.8520 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 9.8077 10.6890 11.0124 12.0476 12.8589 15.5033 25.1284 31.0941 34.4152 42.4200 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 9.2993 9.6872 12.6181 12.8734 13.2744 17.3590 26.0074 27.5864 31.4714 37.0212 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 8.8766 11.3378 11.3378 12.5461 12.9435 12.9435 23.9740 38.5918 41.1692 41.1692 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 10.0081 10.5813 11.2531 12.0227 12.9080 18.3031 22.0905 28.4560 35.9344 38.3825 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.7870 12.8645 13.1573 13.1573 14.1691 14.1691 37.6532 41.4991 43.8297 43.8298 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.6215 12.4876 13.0790 13.4199 14.1200 15.1588 29.3155 35.0366 42.2020 44.1830 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.7274 12.6811 13.2371 13.5202 15.0534 17.0351 22.5062 36.0965 38.6012 39.7587 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.3577 12.4089 13.3177 13.4851 14.0383 14.5007 33.6268 38.8505 39.2201 42.6862 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.4104 11.7315 13.3283 14.1042 14.9240 15.2873 30.3673 33.8485 34.6841 38.7838 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.4108 11.7877 12.9054 14.2367 15.0707 20.8231 24.2887 28.1675 30.5412 42.7301 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.1075 12.2166 12.6428 13.8038 14.6944 16.9324 26.1722 32.0289 35.3272 43.2425 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.7292 11.2641 14.3126 14.7129 15.1569 18.3991 27.1089 28.4883 32.2782 38.0436 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 10.0791 13.0694 13.0694 13.6443 14.7976 14.7976 25.0805 39.2907 42.0414 42.0414 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.5005 12.0984 12.8329 13.7914 14.7630 19.4795 23.2102 29.4363 36.8134 39.2537 the spin up/dw Fermi energies are 19.9663 14.2955 ev ! total energy = -85.57815014 Ry Harris-Foulkes estimate = -85.57815074 Ry estimated scf accuracy < 0.00000072 Ry The total energy is the sum of the following terms: one-electron contribution = 0.88807288 Ry hartree contribution = 13.78337126 Ry xc contribution = -29.49556562 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00001569 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.80s WALL ( 1 calls) electrons : 0.83s CPU 0.86s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.45s CPU 0.46s WALL ( 6 calls) sum_band : 0.21s CPU 0.22s WALL ( 6 calls) v_of_rho : 0.03s CPU 0.04s WALL ( 7 calls) newd : 0.12s CPU 0.13s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 260 calls) cegterg : 0.43s CPU 0.42s WALL ( 120 calls) Called by *egterg: h_psi : 0.30s CPU 0.27s WALL ( 409 calls) s_psi : 0.01s CPU 0.01s WALL ( 409 calls) g_psi : 0.00s CPU 0.01s WALL ( 269 calls) cdiaghg : 0.10s CPU 0.10s WALL ( 389 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.01s WALL ( 409 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 529 calls) fft : 0.04s CPU 0.03s WALL ( 109 calls) ffts : 0.00s CPU 0.00s WALL ( 26 calls) fftw : 0.23s CPU 0.21s WALL ( 7440 calls) interpolate : 0.01s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 380 calls) PWSCF : 1.76s CPU 1.82s WALL This run was terminated on: 10:24:40 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav11-kauto.in0000644000700200004540000000051012053145627020412 0ustar marsamoscm &control calculation='scf', / &system ibrav = 11, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/noncolin-constrain_angle.ref0000644000700200004540000005672012053145627021550 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-constrain_angle.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.1 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.4 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.8 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 2.2 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 2.6 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.0 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.3 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.6 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412949 magnetization : 3.064514 0.000000 0.000000 magnetization/charge: 0.477863 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064514 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.9 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6980 6.4704 11.6738 11.6739 11.9006 13.4640 13.4641 14.6616 14.6616 14.9231 16.5261 16.5262 38.7461 38.7462 39.4530 39.4531 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3628 7.1442 11.5774 11.6554 12.1991 13.1688 13.6030 14.5276 14.5998 15.2496 16.1608 16.6985 36.2587 37.2017 37.8446 38.7802 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5617 8.3872 11.6130 11.6453 12.6174 12.6601 13.8619 14.4941 14.5168 15.5594 15.7109 16.9717 33.8658 35.0487 35.4789 36.6418 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9392 9.9414 11.4539 11.8328 12.3066 13.1125 14.0812 14.4049 14.7031 15.2255 16.2704 17.3549 31.7397 32.7143 33.1531 34.0007 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8478 10.8034 11.2890 12.1900 12.5718 13.2431 13.6087 15.0854 15.5244 15.8139 16.8385 18.2376 29.6272 30.1006 31.1476 31.4620 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9276 10.1034 11.8324 12.4081 12.7191 13.1703 14.0624 15.6731 16.1985 17.3584 18.3349 20.1521 27.4626 27.7460 28.9128 29.0784 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5629 9.5705 11.6847 11.7764 13.4267 13.8827 14.3718 16.5047 17.0620 17.7229 21.5113 22.9158 25.5703 25.8418 26.8438 27.0450 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2725 9.2726 11.4403 11.4404 14.0707 14.4112 14.4113 17.3196 17.7636 17.7637 24.4156 24.4156 24.8001 25.4994 25.4994 25.8530 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9747 7.7794 11.3147 11.5638 12.6741 13.2499 13.5261 14.2157 14.4027 15.7678 16.2882 16.6085 33.9643 35.1490 36.7275 37.6005 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9271 11.1711 11.5466 13.0241 13.2334 13.7462 14.0169 14.1892 16.0432 16.3811 16.8470 31.1765 32.5555 34.9136 35.9052 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1033 10.3054 11.1842 11.5399 12.8485 13.6944 13.7918 14.1412 14.4615 15.8343 16.9197 17.3616 28.6257 30.1608 32.6048 33.8021 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3628 7.1442 11.5774 11.6554 12.1992 13.1688 13.6029 14.5276 14.5997 15.2496 16.1608 16.6985 36.2587 37.2017 37.8446 38.7803 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5617 8.3872 11.6130 11.6453 12.6174 12.6602 13.8618 14.4941 14.5168 15.5594 15.7110 16.9716 33.8658 35.0487 35.4789 36.6418 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9392 9.9414 11.4539 11.8328 12.3066 13.1126 14.0813 14.4048 14.7031 15.2255 16.2705 17.3548 31.7397 32.7142 33.1531 34.0006 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8478 10.8035 11.2890 12.1900 12.5718 13.2431 13.6087 15.0854 15.5244 15.8138 16.8386 18.2375 29.6272 30.1006 31.1477 31.4620 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9275 10.1034 11.8324 12.4082 12.7191 13.1702 14.0624 15.6731 16.1985 17.3584 18.3348 20.1521 27.4626 27.7460 28.9128 29.0784 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5630 9.5705 11.6847 11.7764 13.4267 13.8826 14.3719 16.5047 17.0619 17.7229 21.5113 22.9158 25.5703 25.8418 26.8438 27.0450 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9747 7.7794 11.3147 11.5638 12.6741 13.2499 13.5260 14.2157 14.4026 15.7679 16.2883 16.6085 33.9643 35.1490 36.7274 37.6005 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9271 11.1711 11.5465 13.0241 13.2334 13.7462 14.0169 14.1891 16.0432 16.3811 16.8470 31.1765 32.5555 34.9137 35.9052 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9271 11.1711 11.5465 13.0242 13.2334 13.7461 14.0169 14.1892 16.0433 16.3811 16.8469 31.1765 32.5555 34.9136 35.9052 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1033 10.3054 11.1842 11.5398 12.8485 13.6945 13.7918 14.1412 14.4615 15.8343 16.9197 17.3616 28.6257 30.1608 32.6048 33.8021 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1033 10.3054 11.1842 11.5399 12.8485 13.6945 13.7918 14.1412 14.4614 15.8343 16.9197 17.3616 28.6257 30.1608 32.6048 33.8021 the Fermi energy is 14.6594 ev ! total energy = -55.69968407 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92839923 Ry hartree contribution = 6.13558485 Ry xc contribution = -26.12293982 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388373 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 0.58s CPU 0.59s WALL ( 1 calls) electrons : 3.22s CPU 3.30s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.08s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 2.32s CPU 2.36s WALL ( 9 calls) sum_band : 0.65s CPU 0.66s WALL ( 9 calls) v_of_rho : 0.06s CPU 0.05s WALL ( 10 calls) newd : 0.13s CPU 0.13s WALL ( 10 calls) mix_rho : 0.02s CPU 0.02s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.03s WALL ( 418 calls) cegterg : 2.20s CPU 2.24s WALL ( 198 calls) Called by *egterg: h_psi : 1.49s CPU 1.43s WALL ( 705 calls) s_psi : 0.04s CPU 0.06s WALL ( 705 calls) g_psi : 0.06s CPU 0.06s WALL ( 485 calls) cdiaghg : 0.39s CPU 0.46s WALL ( 683 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.07s WALL ( 705 calls) General routines calbec : 0.09s CPU 0.06s WALL ( 903 calls) fft : 0.06s CPU 0.06s WALL ( 308 calls) ffts : 0.00s CPU 0.00s WALL ( 76 calls) fftw : 1.18s CPU 1.09s WALL ( 38112 calls) interpolate : 0.02s CPU 0.02s WALL ( 76 calls) davcio : 0.00s CPU 0.02s WALL ( 616 calls) PWSCF : 3.92s CPU 4.04s WALL This run was terminated on: 10:25: 3 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-nofrac.ref0000644000700200004540000002160412053145627016577 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:36: 3 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-nofrac.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.12s CPU 0.13s WALL This run was terminated on: 12:36: 3 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-disk_io.ref10000644000700200004540000002434212053145627017033 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:24:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-disk_io.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 331 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 2) = ( 0.2000000 0.0000000 0.0000000), wk = 2.0000000 k( 3) = ( 0.4000000 0.0000000 0.0000000), wk = 2.0000000 k( 4) = ( 0.6000000 0.0000000 0.0000000), wk = 2.0000000 k( 5) = ( 0.8000000 0.0000000 0.0000000), wk = 2.0000000 k( 6) = ( 1.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 7) = ( 1.0000000 0.0500000 0.0500000), wk = 2.0000000 k( 8) = ( 1.0000000 0.1000000 0.1000000), wk = 2.0000000 k( 9) = ( 1.0000000 0.1500000 0.1500000), wk = 2.0000000 k( 10) = ( 1.0000000 0.2000000 0.2000000), wk = 2.0000000 k( 11) = ( 1.0000000 0.2500000 0.2500000), wk = 2.0000000 k( 12) = ( 0.9000000 0.3000000 0.3000000), wk = 2.0000000 k( 13) = ( 0.8000000 0.3500000 0.3500000), wk = 2.0000000 k( 14) = ( 0.7000000 0.4000000 0.4000000), wk = 2.0000000 k( 15) = ( 0.6000000 0.4500000 0.4500000), wk = 2.0000000 k( 16) = ( 0.5000000 0.5000000 0.5000000), wk = 2.0000000 k( 17) = ( 0.4000000 0.4000000 0.4000000), wk = 2.0000000 k( 18) = ( 0.3000000 0.3000000 0.3000000), wk = 2.0000000 k( 19) = ( 0.2000000 0.2000000 0.2000000), wk = 2.0000000 k( 20) = ( 0.1000000 0.1000000 0.1000000), wk = 2.0000000 k( 21) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 194, 8) NL pseudopotentials 0.02 Mb ( 194, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 194, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 12.2 total cpu time spent up to now is 0.4 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 k = 0.2000 0.0000 0.0000 band energies (ev): -5.5035 5.4454 5.7234 5.7234 8.5043 9.7229 9.7229 10.6608 k = 0.4000 0.0000 0.0000 band energies (ev): -4.9866 3.7828 4.7737 4.7737 7.7521 10.2158 11.2953 11.2953 k = 0.6000 0.0000 0.0000 band energies (ev): -4.1136 1.9721 4.0067 4.0067 7.1390 8.7032 13.0662 13.0662 k = 0.8000 0.0000 0.0000 band energies (ev): -2.9485 0.1736 3.5278 3.5278 6.8246 7.5723 14.9321 14.9321 k = 1.0000 0.0000 0.0000 band energies (ev): -1.4850 -1.4850 3.3662 3.3662 6.9634 6.9634 16.4944 16.4944 k = 1.0000 0.0500 0.0500 band energies (ev): -1.4923 -1.4612 3.2169 3.3843 6.9843 7.1849 16.2778 16.3621 k = 1.0000 0.1000 0.1000 band energies (ev): -1.5207 -1.3958 2.8622 3.4386 7.0440 7.7574 15.7717 16.0203 k = 1.0000 0.1500 0.1500 band energies (ev): -1.5798 -1.2602 2.4549 3.5283 7.1511 8.5465 15.1579 15.5735 k = 1.0000 0.2000 0.2000 band energies (ev): -1.6804 -1.1105 2.0973 3.6521 7.2847 9.4656 14.5296 15.0768 k = 1.0000 0.2500 0.2500 band energies (ev): -1.8691 -0.8929 1.8512 3.8081 7.4704 10.4622 13.8961 14.4265 k = 0.9000 0.3000 0.3000 band energies (ev): -2.2719 -0.5830 1.9303 4.0284 7.7398 11.5404 12.8398 12.9952 k = 0.8000 0.3500 0.3500 band energies (ev): -2.6934 -0.5107 2.5730 4.3285 8.1281 11.4263 11.6625 12.8909 k = 0.7000 0.4000 0.4000 band energies (ev): -3.0177 -0.6089 3.5481 4.6665 8.5204 10.1860 10.6575 14.0689 k = 0.6000 0.4500 0.4500 band energies (ev): -3.2069 -0.7161 4.5528 4.9555 8.3606 9.6341 9.9523 14.1718 k = 0.5000 0.5000 0.5000 band energies (ev): -3.2602 -0.7570 5.0794 5.0794 7.9254 9.6978 9.6978 13.8859 k = 0.4000 0.4000 0.4000 band energies (ev): -3.7594 -0.0186 5.1539 5.1539 8.0020 9.7831 9.7831 14.0013 k = 0.3000 0.3000 0.3000 band energies (ev): -4.5385 1.4884 5.3733 5.3733 8.2161 9.9000 9.9000 13.9086 k = 0.2000 0.2000 0.2000 band energies (ev): -5.1604 3.3112 5.7239 5.7239 8.5984 9.7278 9.7278 12.4378 k = 0.1000 0.1000 0.1000 band energies (ev): -5.5450 5.1930 6.1230 6.1230 8.9569 9.2022 9.2022 10.7501 k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.24s CPU 0.25s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 21 calls) cegterg : 0.21s CPU 0.23s WALL ( 21 calls) Called by *egterg: h_psi : 0.11s CPU 0.12s WALL ( 299 calls) g_psi : 0.02s CPU 0.01s WALL ( 257 calls) cdiaghg : 0.08s CPU 0.07s WALL ( 278 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 299 calls) General routines calbec : 0.01s CPU 0.00s WALL ( 299 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.06s CPU 0.10s WALL ( 3250 calls) davcio : 0.00s CPU 0.00s WALL ( 21 calls) PWSCF : 0.40s CPU 0.43s WALL This run was terminated on: 12:24:57 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/electric0.ref0000644000700200004540000006716712053145627016446 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:13:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/electric0.in Found symmetry operation: I + ( -0.5000 -0.5000 0.0000) This is a supercell, fractional translations are disabled G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 665 665 225 12893 12893 2553 bravais-lattice index = 1 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pbe-rrkj.UPF MD5 check sum: cf7ab5690cd9a85b22c4813f7e365554 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 63 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 Dense grid: 12893 G-vectors FFT dimensions: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 31.99557, renormalised to 32.00000 Starting wfc are random total cpu time spent up to now is 1.1 secs per-process dynamical memory: 8.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.64E-04, avg # of iterations = 1.6 total cpu time spent up to now is 12.6 secs total energy = -62.94681397 Ry Harris-Foulkes estimate = -62.99688781 Ry estimated scf accuracy < 0.24611989 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.69E-04, avg # of iterations = 1.0 total cpu time spent up to now is 15.6 secs total energy = -62.94551395 Ry Harris-Foulkes estimate = -62.95297288 Ry estimated scf accuracy < 0.04560140 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.43E-04, avg # of iterations = 2.0 total cpu time spent up to now is 18.5 secs total energy = -62.94963409 Ry Harris-Foulkes estimate = -62.94982715 Ry estimated scf accuracy < 0.00085261 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.66E-06, avg # of iterations = 4.0 total cpu time spent up to now is 23.7 secs total energy = -62.95043192 Ry Harris-Foulkes estimate = -62.95047428 Ry estimated scf accuracy < 0.00010665 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.33E-07, avg # of iterations = 2.1 total cpu time spent up to now is 27.1 secs total energy = -62.95044691 Ry Harris-Foulkes estimate = -62.95044676 Ry estimated scf accuracy < 0.00000158 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.94E-09, avg # of iterations = 3.6 total cpu time spent up to now is 31.8 secs total energy = -62.95044806 Ry Harris-Foulkes estimate = -62.95044799 Ry estimated scf accuracy < 0.00000012 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 34.9 secs total energy = -62.95044808 Ry Harris-Foulkes estimate = -62.95044808 Ry estimated scf accuracy < 0.00000003 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.48E-11, avg # of iterations = 1.8 total cpu time spent up to now is 37.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5829 -1.4242 -1.4242 -1.4240 -1.2842 -1.2840 -1.2840 3.5438 3.5438 3.5440 3.6152 3.6152 3.6152 6.2762 6.5936 6.5936 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4919 -2.4255 -1.3944 -1.3944 -1.2523 -1.2523 -0.1755 3.2964 3.2964 3.3715 3.3715 3.6255 3.6978 5.8817 6.1639 6.2319 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2196 -3.3613 -1.3236 -1.3235 -1.1762 -1.1762 1.0751 2.8449 2.8449 2.9265 2.9265 3.8682 3.9438 4.8826 5.4540 5.5538 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7695 -4.1472 -1.2621 -1.2621 -1.1097 -1.1097 2.3645 2.5395 2.5395 2.6261 2.6261 3.6528 4.2649 4.3465 4.8033 4.8939 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7695 -4.1472 -1.2621 -1.2621 -1.1097 -1.1097 2.3645 2.5395 2.5395 2.6261 2.6261 3.6528 4.2649 4.3465 4.8033 4.8939 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2196 -3.3613 -1.3236 -1.3235 -1.1762 -1.1762 1.0751 2.8449 2.8449 2.9265 2.9265 3.8682 3.9438 4.8826 5.4540 5.5538 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4919 -2.4255 -1.3944 -1.3944 -1.2523 -1.2523 -0.1755 3.2964 3.2964 3.3715 3.3715 3.6255 3.6978 5.8817 6.1639 6.2319 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0370 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0370 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0371 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6083 -3.2585 -3.2585 -2.2015 -0.3644 0.9168 0.9168 1.9569 2.7084 2.8313 2.8313 4.0395 4.0934 4.0934 4.3809 6.0007 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5202 -3.2121 -3.2121 -2.4135 -0.3129 0.6024 0.6024 2.1010 2.3096 3.0596 3.0596 4.2859 4.2859 4.4535 4.6760 5.8905 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2702 -3.0944 -3.0944 -2.8713 -0.1998 0.0452 0.0452 1.2654 3.2207 3.4649 3.4649 4.6449 4.6449 4.6532 5.4170 5.6264 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8706 -3.4153 -2.9828 -2.9828 -0.3325 -0.3325 0.1383 0.5272 3.7374 3.7374 4.2883 4.8504 4.8504 4.9586 5.2747 5.3371 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9126 -3.3506 -2.9814 -2.9814 -0.3403 -0.3403 -0.0485 0.6869 3.7977 3.7978 4.4499 4.7970 4.7970 4.9194 5.1644 5.3261 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2953 -3.0920 -3.0920 -2.7817 -0.4134 0.0233 0.0233 1.4045 3.3694 3.6146 3.6146 4.5127 4.5127 4.6277 5.2567 5.6807 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5319 -3.2105 -3.2105 -2.3301 -0.4976 0.5734 0.5734 2.2165 2.4228 3.1952 3.1952 4.1747 4.1747 4.4412 4.5529 5.9275 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6191 -3.2297 -3.2297 -2.2783 -0.2262 0.7897 0.7897 1.9830 2.8474 2.8474 2.8586 4.0038 4.1981 4.1981 4.2904 5.8395 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0371 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6191 -3.2297 -3.2297 -2.2783 -0.2262 0.7897 0.7897 1.9830 2.8474 2.8474 2.8586 4.0038 4.1981 4.1981 4.2904 5.8395 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6083 -3.2585 -3.2585 -2.2015 -0.3644 0.9168 0.9168 1.9569 2.7084 2.8313 2.8313 4.0395 4.0934 4.0934 4.3809 6.0007 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5319 -3.2105 -3.2105 -2.3301 -0.4976 0.5734 0.5734 2.2165 2.4228 3.1952 3.1952 4.1747 4.1747 4.4412 4.5529 5.9275 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2953 -3.0920 -3.0920 -2.7817 -0.4134 0.0233 0.0233 1.4045 3.3694 3.6146 3.6146 4.5127 4.5127 4.6277 5.2567 5.6807 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9126 -3.3506 -2.9814 -2.9814 -0.3403 -0.3403 -0.0485 0.6869 3.7977 3.7978 4.4499 4.7970 4.7970 4.9194 5.1644 5.3261 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8706 -3.4153 -2.9828 -2.9828 -0.3325 -0.3325 0.1383 0.5272 3.7374 3.7374 4.2883 4.8504 4.8504 4.9586 5.2747 5.3371 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2702 -3.0944 -3.0944 -2.8713 -0.1998 0.0452 0.0452 1.2654 3.2207 3.4649 3.4649 4.6449 4.6449 4.6532 5.4170 5.6264 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5202 -3.2121 -3.2121 -2.4135 -0.3129 0.6024 0.6024 2.1010 2.3096 3.0596 3.0596 4.2859 4.2859 4.4535 4.6760 5.8905 ! total energy = -62.95044808 Ry Harris-Foulkes estimate = -62.95044808 Ry estimated scf accuracy < 5.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.82842516 Ry hartree contribution = 4.30437144 Ry xc contribution = -19.35670779 Ry ewald contribution = -67.72653689 Ry convergence has been achieved in 8 iterations Writing output data file pwscf.save init_run : 1.07s CPU 1.11s WALL ( 1 calls) electrons : 34.65s CPU 36.51s WALL ( 1 calls) Called by init_run: wfcinit : 0.94s CPU 0.97s WALL ( 1 calls) potinit : 0.02s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 31.38s CPU 32.70s WALL ( 9 calls) sum_band : 3.06s CPU 3.14s WALL ( 9 calls) v_of_rho : 0.18s CPU 0.18s WALL ( 9 calls) mix_rho : 0.03s CPU 0.03s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.84s CPU 0.86s WALL ( 1197 calls) cegterg : 30.08s CPU 30.94s WALL ( 567 calls) Called by *egterg: h_psi : 20.61s CPU 20.67s WALL ( 2267 calls) g_psi : 1.17s CPU 1.23s WALL ( 1637 calls) cdiaghg : 2.14s CPU 2.01s WALL ( 2141 calls) Called by h_psi: add_vuspsi : 2.23s CPU 2.25s WALL ( 2267 calls) General routines calbec : 2.11s CPU 2.15s WALL ( 2267 calls) fft : 0.03s CPU 0.04s WALL ( 100 calls) fftw : 15.51s CPU 15.50s WALL ( 66038 calls) davcio : 0.02s CPU 0.55s WALL ( 1764 calls) PWSCF : 35.85s CPU 37.78s WALL This run was terminated on: 12:14:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/metal-tetrahedra.in20000755000700200004540000000043312053145627017715 0ustar marsamoscm &control calculation='nscf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='tetrahedra' nbnd=4 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.0.2/PW/tests/uspp-mixing_localTF.in0000755000700200004540000000054212053145627020275 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'local-TF' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.0.2/PW/tests/cluster1.in0000755000700200004540000000057012053145627016154 0ustar marsamoscm&CONTROL / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 1, ntyp = 1, ecutwfc = 30.D0, ecutrho = 120.D0, nspin = 2, tot_magnetization = 3.0, assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.000 0.0 0.0 0 0 0 K_POINTS Gamma espresso-5.0.2/PW/tests/berry.ref20000644000700200004540000004651112053145627015767 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:26 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/berry.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 869 437 137 19213 6763 1213 bravais-lattice index = 1 lattice parameter (alat) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file: /home/giannozz/trunk/espresso/pseudo/Pb.pz-d-van.UPF MD5 check sum: 4e1e5920686a026ae26139ac417581ff Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file: /home/giannozz/trunk/espresso/pseudo/Ti.pz-sp-van_ak.UPF MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-van_ak.UPF MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 -0.5000000), wk = 0.0714286 k( 2) = ( 0.1250000 0.1250000 -0.3333333), wk = 0.0714286 k( 3) = ( 0.1250000 0.1250000 -0.1666667), wk = 0.0714286 k( 4) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0714286 k( 5) = ( 0.1250000 0.1250000 0.1666667), wk = 0.0714286 k( 6) = ( 0.1250000 0.1250000 0.3333333), wk = 0.0714286 k( 7) = ( 0.1250000 0.1250000 0.5000000), wk = 0.0714286 k( 8) = ( 0.1250000 0.3750000 -0.5000000), wk = 0.1428571 k( 9) = ( 0.1250000 0.3750000 -0.3333333), wk = 0.1428571 k( 10) = ( 0.1250000 0.3750000 -0.1666667), wk = 0.1428571 k( 11) = ( 0.1250000 0.3750000 0.0000000), wk = 0.1428571 k( 12) = ( 0.1250000 0.3750000 0.1666667), wk = 0.1428571 k( 13) = ( 0.1250000 0.3750000 0.3333333), wk = 0.1428571 k( 14) = ( 0.1250000 0.3750000 0.5000000), wk = 0.1428571 k( 15) = ( 0.3750000 0.3750000 -0.5000000), wk = 0.0714286 k( 16) = ( 0.3750000 0.3750000 -0.3333333), wk = 0.0714286 k( 17) = ( 0.3750000 0.3750000 -0.1666667), wk = 0.0714286 k( 18) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0714286 k( 19) = ( 0.3750000 0.3750000 0.1666667), wk = 0.0714286 k( 20) = ( 0.3750000 0.3750000 0.3333333), wk = 0.0714286 k( 21) = ( 0.3750000 0.3750000 0.5000000), wk = 0.0714286 Dense grid: 19213 G-vectors FFT dimensions: ( 36, 36, 36) Smooth grid: 6763 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.31 Mb ( 858, 24) NL pseudopotentials 0.79 Mb ( 858, 60) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 19213) G-vector shells 0.00 Mb ( 232) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.26 Mb ( 858, 96) Each subspace H/S matrix 0.14 Mb ( 96, 96) Each matrix 0.02 Mb ( 60, 24) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 31 randomized atomic wfcs total cpu time spent up to now is 1.8 secs per-process dynamical memory: 22.5 Mb Band Structure Calculation Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 2.27E-09, avg # of iterations = 29.3 total cpu time spent up to now is 8.4 secs End of band structure calculation k = 0.1250 0.1250-0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 13.3764 14.6451 k = 0.1250 0.1250-0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 13.4729 14.4721 k = 0.1250 0.1250-0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 13.5291 13.7025 k = 0.1250 0.1250 0.0000 band energies (ev): -44.7046 -21.3178 -21.3172 -21.3047 -6.6056 -5.5354 -5.5325 -4.4531 -4.4413 -4.4402 -4.2554 -4.2273 4.4674 7.1283 7.2347 7.6339 9.1136 9.3302 9.5923 9.7708 10.0123 10.0578 13.2686 13.3128 k = 0.1250 0.1250 0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 13.5291 13.7025 k = 0.1250 0.1250 0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 13.4729 14.4721 k = 0.1250 0.1250 0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 13.3764 14.6451 k = 0.1250 0.3750-0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 14.4668 14.7310 k = 0.1250 0.3750-0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 14.2604 14.5296 k = 0.1250 0.3750-0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 13.5668 14.5951 k = 0.1250 0.3750 0.0000 band energies (ev): -44.7036 -21.3737 -21.3152 -21.3025 -6.1942 -5.3809 -5.3567 -4.5076 -4.4747 -4.4380 -4.3885 -4.2156 3.6491 6.7215 7.5633 7.6678 8.2608 8.5651 9.5673 9.6887 9.9519 10.7306 13.2946 14.5544 k = 0.1250 0.3750 0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 13.5668 14.5951 k = 0.1250 0.3750 0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 14.2604 14.5296 k = 0.1250 0.3750 0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 14.4668 14.7310 k = 0.3750 0.3750-0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 14.7790 14.8705 k = 0.3750 0.3750-0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 14.4353 14.8150 k = 0.3750 0.3750-0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 14.3190 14.5638 k = 0.3750 0.3750 0.0000 band energies (ev): -44.7022 -21.3710 -21.3706 -21.3001 -6.0230 -5.2107 -5.1379 -4.4867 -4.4756 -4.4665 -4.3379 -4.1452 3.1509 6.6820 6.8041 7.9517 8.0865 8.1061 8.5101 9.2796 10.0820 10.5693 14.5481 14.5908 k = 0.3750 0.3750 0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 14.3190 14.5638 k = 0.3750 0.3750 0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 14.4353 14.8150 k = 0.3750 0.3750 0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 14.7790 14.8705 highest occupied, lowest unoccupied level (ev): 10.7887 13.2686 ================================================== POLARIZATION CALCULATION !!! NOT THOROUGHLY TESTED !!! -------------------------------------------------- K-POINTS STRINGS USED IN CALCULATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G-vector along string (2 pi/a): 0.00000 0.00000 1.00000 Modulus of the vector (1/bohr): 0.85255 Number of k-points per string: 7 Number of different strings : 3 IONIC POLARIZATION ~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Ion Species Charge Position Phase ---------------------------------------------------------------------------- 1 Pb 14.000 0.0000 0.0000 0.0100 0.14000 (mod 2) 2 Ti 12.000 0.5000 0.5000 0.5000 0.00000 (mod 2) 3 O 6.000 0.0000 0.5000 0.5000 -1.00000 (mod 2) 4 O 6.000 0.5000 0.5000 0.0000 0.00000 (mod 2) 5 O 6.000 0.5000 0.0000 0.5000 -1.00000 (mod 2) ---------------------------------------------------------------------------- IONIC PHASE: 0.14000 (mod 2) ============================================================================ ELECTRONIC POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Spin String Weight First k-point in string Phase ---------------------------------------------------------------------------- up 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) up 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) up 3 0.250000 0.3750 0.3750 -0.5000 -0.05008 (mod 1) ---------------------------------------------------------------------------- down 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) down 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) down 3 0.250000 0.3750 0.3750 -0.5000 -0.05008 (mod 1) ---------------------------------------------------------------------------- Average phase (up): -0.05009 (mod 1) Average phase (down): -0.05009 (mod 1) ELECTRONIC PHASE: -0.10017 (mod 2) ============================================================================ SUMMARY OF PHASES ~~~~~~~~~~~~~~~~~ Ionic Phase: 0.14000 (mod 2) Electronic Phase: -0.10017 (mod 2) TOTAL PHASE: 0.03983 (mod 2) VALUES OF POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~ The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell): P = 0.2935155 (mod 14.7398000) (e/Omega).bohr P = 0.0007332 (mod 0.0368220) e/bohr^2 P = 0.0419206 (mod 2.1051744) C/m^2 The polarization direction is: ( 0.00000 , 0.00000 , 1.00000 ) ================================================== Writing output data file pwscf.save init_run : 1.50s CPU 1.50s WALL ( 1 calls) electrons : 7.28s CPU 7.29s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 6.61s CPU 6.63s WALL ( 1 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 1 calls) newd : 0.13s CPU 0.13s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 57 calls) cegterg : 6.12s CPU 6.13s WALL ( 42 calls) Called by *egterg: h_psi : 2.71s CPU 2.70s WALL ( 679 calls) s_psi : 0.33s CPU 0.32s WALL ( 679 calls) g_psi : 0.16s CPU 0.17s WALL ( 616 calls) cdiaghg : 1.68s CPU 1.65s WALL ( 637 calls) Called by h_psi: add_vuspsi : 0.40s CPU 0.37s WALL ( 679 calls) General routines calbec : 0.43s CPU 0.41s WALL ( 715 calls) fft : 0.01s CPU 0.00s WALL ( 5 calls) ffts : 0.00s CPU 0.00s WALL ( 1 calls) fftw : 1.38s CPU 1.41s WALL ( 12824 calls) interpolate : 0.00s CPU 0.00s WALL ( 1 calls) davcio : 0.00s CPU 0.01s WALL ( 57 calls) PWSCF : 8.96s CPU 9.19s WALL This run was terminated on: 22:44:36 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vc-relax1.ref0000644000700200004540000067107212053145627016372 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax1.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.0 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.6 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 2.0 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.3 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-03 EPSF = 0.10E-02 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 new unit-cell volume = 255.9441 (a.u.)^3 new positions in cryst coord As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 new positions in cart coord (alat unit) As 0.579425915 0.336684025 0.238648027 As -0.579425915 -0.336684025 -0.238648027 Ekin = 0.00000000 Ry T = 0.0 K Etot = -25.44012218 new unit-cell volume = 255.94411 a.u.^3 ( 37.92700 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 ATOMIC_POSITIONS (crystal) As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1238271 0.0719516 0.0510007), wk = 0.0625000 k( 2) = ( 0.1243992 0.0722840 0.3512468), wk = 0.0625000 k( 3) = ( 0.1226829 0.0712868 -0.5494916), wk = 0.0625000 k( 4) = ( 0.1232550 0.0716192 -0.2492455), wk = 0.0625000 k( 5) = ( 0.1243992 0.3553640 -0.0481218), wk = 0.0625000 k( 6) = ( 0.1249713 0.3556964 0.2521243), wk = 0.0625000 k( 7) = ( 0.1232550 0.3546993 -0.6486140), wk = 0.0625000 k( 8) = ( 0.1238271 0.3550316 -0.3483679), wk = 0.0625000 k( 9) = ( 0.1226830 -0.4948733 0.2492455), wk = 0.0625000 k( 10) = ( 0.1232551 -0.4945409 0.5494917), wk = 0.0625000 k( 11) = ( 0.1215388 -0.4955380 -0.3512467), wk = 0.0625000 k( 12) = ( 0.1221109 -0.4952056 -0.0510006), wk = 0.0625000 k( 13) = ( 0.1232551 -0.2114608 0.1501231), wk = 0.0625000 k( 14) = ( 0.1238272 -0.2111285 0.4503692), wk = 0.0625000 k( 15) = ( 0.1221108 -0.2121256 -0.4503691), wk = 0.0625000 k( 16) = ( 0.1226830 -0.2117932 -0.1501230), wk = 0.0625000 k( 17) = ( 0.3703372 -0.0678900 -0.0481217), wk = 0.0625000 k( 18) = ( 0.3709093 -0.0675577 0.2521244), wk = 0.0625000 k( 19) = ( 0.3691930 -0.0685548 -0.6486139), wk = 0.0625000 k( 20) = ( 0.3697651 -0.0682224 -0.3483678), wk = 0.0625000 k( 21) = ( 0.3709093 0.2155224 -0.1472442), wk = 0.0625000 k( 22) = ( 0.3714814 0.2158548 0.1530020), wk = 0.0625000 k( 23) = ( 0.3697651 0.2148577 -0.7477364), wk = 0.0625000 k( 24) = ( 0.3703372 0.2151900 -0.4474903), wk = 0.0625000 k( 25) = ( 0.3691931 -0.6347149 0.1501232), wk = 0.0625000 k( 26) = ( 0.3697652 -0.6343825 0.4503693), wk = 0.0625000 k( 27) = ( 0.3680489 -0.6353796 -0.4503691), wk = 0.0625000 k( 28) = ( 0.3686210 -0.6350473 -0.1501229), wk = 0.0625000 k( 29) = ( 0.3697651 -0.3513025 0.0510007), wk = 0.0625000 k( 30) = ( 0.3703372 -0.3509701 0.3512469), wk = 0.0625000 k( 31) = ( 0.3686209 -0.3519672 -0.5494915), wk = 0.0625000 k( 32) = ( 0.3691930 -0.3516348 -0.2492454), wk = 0.0625000 extrapolated charge 10.41311, renormalised to 10.00000 total cpu time spent up to now is 2.6 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 3.3 secs total energy = -25.45860856 Ry Harris-Foulkes estimate = -25.70449924 Ry estimated scf accuracy < 0.00082346 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 3.7 secs total energy = -25.46012355 Ry Harris-Foulkes estimate = -25.46039810 Ry estimated scf accuracy < 0.00067885 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.0 secs total energy = -25.46010233 Ry Harris-Foulkes estimate = -25.46015331 Ry estimated scf accuracy < 0.00014945 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.3 secs total energy = -25.46008422 Ry Harris-Foulkes estimate = -25.46010844 Ry estimated scf accuracy < 0.00004698 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-07, avg # of iterations = 2.4 total cpu time spent up to now is 4.6 secs total energy = -25.46009200 Ry Harris-Foulkes estimate = -25.46009259 Ry estimated scf accuracy < 0.00000113 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.2 total cpu time spent up to now is 4.9 secs total energy = -25.46009237 Ry Harris-Foulkes estimate = -25.46009245 Ry estimated scf accuracy < 0.00000020 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.0 total cpu time spent up to now is 5.2 secs End of self-consistent calculation k = 0.1238 0.0720 0.0510 ( 531 PWs) bands (ev): -7.1390 3.6957 5.5400 5.5400 7.8026 10.3999 11.1877 11.1877 15.8506 k = 0.1244 0.0723 0.3512 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.1227 0.0713-0.5495 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233 0.0716-0.2492 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1244 0.3554-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.1250 0.3557 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.1233 0.3547-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1238 0.3550-0.3484 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.4949 0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233-0.4945 0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1215-0.4955-0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.1221-0.4952-0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1233-0.2115 0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1238-0.2111 0.4504 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1221-0.2121-0.4504 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.2118-0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.3703-0.0679-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.3709-0.0676 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3692-0.0686-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.0682-0.3484 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3709 0.2155-0.1472 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3715 0.2159 0.1530 ( 522 PWs) bands (ev): -6.0213 0.3365 5.4803 5.4803 6.7061 9.4594 9.4594 11.2681 16.7047 k = 0.3698 0.2149-0.7477 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3703 0.2152-0.4475 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3692-0.6347 0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.6344 0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3680-0.6354-0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3686-0.6350-0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.3513 0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3703-0.3510 0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3686-0.3520-0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3692-0.3516-0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 the Fermi energy is 8.9906 ev ! total energy = -25.46009238 Ry Harris-Foulkes estimate = -25.46009238 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.08520934 -0.04951205 -0.03509532 atom 2 type 1 force = 0.08520934 0.04951205 0.03509532 Total force = 0.147944 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 143.05 0.00086728 -0.00012280 -0.00008704 127.58 -18.06 -12.80 -0.00012280 0.00100726 -0.00005058 -18.06 148.17 -7.44 -0.00008704 -0.00005058 0.00104277 -12.80 -7.44 153.40 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 new unit-cell volume = 277.0123 (a.u.)^3 new positions in cryst coord As 0.284850348 0.284850374 0.284850340 As -0.284850348 -0.284850374 -0.284850340 new positions in cart coord (alat unit) As 0.583917463 0.339293889 0.240497933 As -0.583917463 -0.339293889 -0.240497933 Ekin = 0.02014338 Ry T = 706.8 K Etot = -25.43994899 new unit-cell volume = 277.01233 a.u.^3 ( 41.04899 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 ATOMIC_POSITIONS (crystal) As 0.284850348 0.284850374 0.284850340 As -0.284850348 -0.284850374 -0.284850340 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1213681 0.0705228 0.0499879), wk = 0.0625000 k( 2) = ( 0.1226857 0.0712883 0.3418135), wk = 0.0625000 k( 3) = ( 0.1187329 0.0689917 -0.5336634), wk = 0.0625000 k( 4) = ( 0.1200505 0.0697572 -0.2418378), wk = 0.0625000 k( 5) = ( 0.1226857 0.3461334 -0.0459371), wk = 0.0625000 k( 6) = ( 0.1240033 0.3468989 0.2458885), wk = 0.0625000 k( 7) = ( 0.1200505 0.3446023 -0.6295884), wk = 0.0625000 k( 8) = ( 0.1213681 0.3453678 -0.3377628), wk = 0.0625000 k( 9) = ( 0.1187329 -0.4806985 0.2418379), wk = 0.0625000 k( 10) = ( 0.1200506 -0.4799329 0.5336635), wk = 0.0625000 k( 11) = ( 0.1160977 -0.4822295 -0.3418134), wk = 0.0625000 k( 12) = ( 0.1174153 -0.4814640 -0.0499877), wk = 0.0625000 k( 13) = ( 0.1200505 -0.2050879 0.1459129), wk = 0.0625000 k( 14) = ( 0.1213682 -0.2043223 0.4377385), wk = 0.0625000 k( 15) = ( 0.1174153 -0.2066189 -0.4377384), wk = 0.0625000 k( 16) = ( 0.1187329 -0.2058534 -0.1459128), wk = 0.0625000 k( 17) = ( 0.3614692 -0.0648079 -0.0459370), wk = 0.0625000 k( 18) = ( 0.3627868 -0.0640424 0.2458886), wk = 0.0625000 k( 19) = ( 0.3588339 -0.0663390 -0.6295883), wk = 0.0625000 k( 20) = ( 0.3601515 -0.0655734 -0.3377626), wk = 0.0625000 k( 21) = ( 0.3627867 0.2108027 -0.1418620), wk = 0.0625000 k( 22) = ( 0.3641044 0.2115683 0.1499636), wk = 0.0625000 k( 23) = ( 0.3601515 0.2092716 -0.7255133), wk = 0.0625000 k( 24) = ( 0.3614691 0.2100372 -0.4336877), wk = 0.0625000 k( 25) = ( 0.3588340 -0.6160291 0.1459130), wk = 0.0625000 k( 26) = ( 0.3601516 -0.6152636 0.4377386), wk = 0.0625000 k( 27) = ( 0.3561987 -0.6175602 -0.4377383), wk = 0.0625000 k( 28) = ( 0.3575164 -0.6167947 -0.1459126), wk = 0.0625000 k( 29) = ( 0.3601516 -0.3404185 0.0499880), wk = 0.0625000 k( 30) = ( 0.3614692 -0.3396530 0.3418136), wk = 0.0625000 k( 31) = ( 0.3575163 -0.3419496 -0.5336633), wk = 0.0625000 k( 32) = ( 0.3588339 -0.3411840 -0.2418376), wk = 0.0625000 extrapolated charge 10.76052, renormalised to 10.00000 total cpu time spent up to now is 5.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 6.2 secs total energy = -25.47744718 Ry Harris-Foulkes estimate = -25.91217889 Ry estimated scf accuracy < 0.00269230 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-05, avg # of iterations = 3.1 total cpu time spent up to now is 6.7 secs total energy = -25.48275706 Ry Harris-Foulkes estimate = -25.48371130 Ry estimated scf accuracy < 0.00243509 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.0 secs total energy = -25.48267040 Ry Harris-Foulkes estimate = -25.48285639 Ry estimated scf accuracy < 0.00056797 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.2 secs total energy = -25.48259700 Ry Harris-Foulkes estimate = -25.48269156 Ry estimated scf accuracy < 0.00018863 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 2.1 total cpu time spent up to now is 7.5 secs total energy = -25.48262218 Ry Harris-Foulkes estimate = -25.48262563 Ry estimated scf accuracy < 0.00000652 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 7.9 secs total energy = -25.48262557 Ry Harris-Foulkes estimate = -25.48262569 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-09, avg # of iterations = 1.8 total cpu time spent up to now is 8.2 secs End of self-consistent calculation k = 0.1214 0.0705 0.0500 ( 531 PWs) bands (ev): -7.3958 2.1406 4.8134 4.8134 6.7360 9.2815 10.1558 10.1558 14.5877 k = 0.1227 0.0713 0.3418 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1187 0.0690-0.5337 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201 0.0698-0.2418 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1227 0.3461-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1240 0.3469 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.1201 0.3446-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1214 0.3454-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.4807 0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201-0.4799 0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1161-0.4822-0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.1174-0.4815-0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1201-0.2051 0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1214-0.2043 0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1174-0.2066-0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.2059-0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.3615-0.0648-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.3628-0.0640 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3588-0.0663-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.0656-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3628 0.2108-0.1419 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3641 0.2116 0.1500 ( 522 PWs) bands (ev): -6.3150 -0.6759 4.8048 4.8048 5.6084 8.3786 8.3786 9.7421 15.4921 k = 0.3602 0.2093-0.7255 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3615 0.2100-0.4337 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3588-0.6160 0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.6153 0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3562-0.6176-0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3575-0.6168-0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.3404 0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3615-0.3397 0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3575-0.3419-0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3588-0.3412-0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 the Fermi energy is 7.8950 ev ! total energy = -25.48262559 Ry Harris-Foulkes estimate = -25.48262562 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.05293481 -0.03075850 -0.02180223 atom 2 type 1 force = 0.05293481 0.03075850 0.02180223 Total force = 0.091908 Total SCF correction = 0.000170 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 33.16 0.00030132 0.00008863 0.00006282 44.33 13.04 9.24 0.00008863 0.00020029 0.00003650 13.04 29.46 5.37 0.00006282 0.00003650 0.00017467 9.24 5.37 25.69 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 1.063153112 -0.004058968 -0.002877112 0.519240751 0.927767028 -0.002876984 0.519240667 0.301712654 0.877357447 new unit-cell volume = 299.4245 (a.u.)^3 new positions in cryst coord As 0.280296970 0.280297003 0.280296982 As -0.280296970 -0.280297003 -0.280296982 new positions in cart coord (alat unit) As 0.589081814 0.343481748 0.244307788 As -0.589081814 -0.343481748 -0.244307788 Ekin = 0.04390948 Ry T = 1123.7 K Etot = -25.43871611 new unit-cell volume = 299.42453 a.u.^3 ( 44.37014 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.063153112 -0.004058968 -0.002877112 0.519240751 0.927767028 -0.002876984 0.519240667 0.301712654 0.877357447 ATOMIC_POSITIONS (crystal) As 0.280296970 0.280297003 0.280296982 As -0.280296970 -0.280297003 -0.280296982 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1179702 0.0688599 0.0489757), wk = 0.0625000 k( 2) = ( 0.1187414 0.0693100 0.3333110), wk = 0.0625000 k( 3) = ( 0.1164278 0.0679597 -0.5196951), wk = 0.0625000 k( 4) = ( 0.1171990 0.0684098 -0.2353597), wk = 0.0625000 k( 5) = ( 0.1187449 0.3376025 -0.0439002), wk = 0.0625000 k( 6) = ( 0.1195161 0.3380527 0.2404352), wk = 0.0625000 k( 7) = ( 0.1172025 0.3367023 -0.6125709), wk = 0.0625000 k( 8) = ( 0.1179737 0.3371524 -0.3282356), wk = 0.0625000 k( 9) = ( 0.1164209 -0.4686254 0.2347273), wk = 0.0625000 k( 10) = ( 0.1171921 -0.4681752 0.5190627), wk = 0.0625000 k( 11) = ( 0.1148785 -0.4695256 -0.3339435), wk = 0.0625000 k( 12) = ( 0.1156497 -0.4690755 -0.0496081), wk = 0.0625000 k( 13) = ( 0.1171955 -0.1998827 0.1418515), wk = 0.0625000 k( 14) = ( 0.1179667 -0.1994326 0.4261869), wk = 0.0625000 k( 15) = ( 0.1156532 -0.2007829 -0.4268193), wk = 0.0625000 k( 16) = ( 0.1164244 -0.2003328 -0.1424839), wk = 0.0625000 k( 17) = ( 0.3523648 -0.0626130 -0.0445326), wk = 0.0625000 k( 18) = ( 0.3531360 -0.0621629 0.2398028), wk = 0.0625000 k( 19) = ( 0.3508224 -0.0635132 -0.6132033), wk = 0.0625000 k( 20) = ( 0.3515936 -0.0630631 -0.3288680), wk = 0.0625000 k( 21) = ( 0.3531395 0.2061296 -0.1374084), wk = 0.0625000 k( 22) = ( 0.3539107 0.2065797 0.1469270), wk = 0.0625000 k( 23) = ( 0.3515971 0.2052294 -0.7060792), wk = 0.0625000 k( 24) = ( 0.3523683 0.2056795 -0.4217438), wk = 0.0625000 k( 25) = ( 0.3508154 -0.6000983 0.1412191), wk = 0.0625000 k( 26) = ( 0.3515866 -0.5996482 0.4255544), wk = 0.0625000 k( 27) = ( 0.3492731 -0.6009985 -0.4274517), wk = 0.0625000 k( 28) = ( 0.3500442 -0.6005484 -0.1431163), wk = 0.0625000 k( 29) = ( 0.3515901 -0.3313556 0.0483432), wk = 0.0625000 k( 30) = ( 0.3523613 -0.3309055 0.3326786), wk = 0.0625000 k( 31) = ( 0.3500477 -0.3322559 -0.5203275), wk = 0.0625000 k( 32) = ( 0.3508189 -0.3318057 -0.2359921), wk = 0.0625000 extrapolated charge 10.74848, renormalised to 10.00000 total cpu time spent up to now is 8.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 9.2 secs total energy = -25.48340597 Ry Harris-Foulkes estimate = -25.88980743 Ry estimated scf accuracy < 0.00271788 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-05, avg # of iterations = 3.1 total cpu time spent up to now is 9.7 secs total energy = -25.48874007 Ry Harris-Foulkes estimate = -25.48968004 Ry estimated scf accuracy < 0.00242578 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.43E-05, avg # of iterations = 1.0 total cpu time spent up to now is 10.0 secs total energy = -25.48862777 Ry Harris-Foulkes estimate = -25.48883854 Ry estimated scf accuracy < 0.00056399 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.64E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.2 secs total energy = -25.48859156 Ry Harris-Foulkes estimate = -25.48865494 Ry estimated scf accuracy < 0.00013559 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-06, avg # of iterations = 2.5 total cpu time spent up to now is 10.5 secs total energy = -25.48860985 Ry Harris-Foulkes estimate = -25.48861373 Ry estimated scf accuracy < 0.00000735 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.35E-08, avg # of iterations = 2.3 total cpu time spent up to now is 10.9 secs total energy = -25.48861227 Ry Harris-Foulkes estimate = -25.48861236 Ry estimated scf accuracy < 0.00000030 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-09, avg # of iterations = 1.7 total cpu time spent up to now is 11.2 secs End of self-consistent calculation k = 0.1180 0.0689 0.0490 ( 531 PWs) bands (ev): -7.6349 0.6493 4.2081 4.2110 5.7401 8.3137 9.1783 9.1966 13.4580 k = 0.1187 0.0693 0.3333 ( 522 PWs) bands (ev): -6.7271 -1.8794 3.4754 4.2082 6.4762 7.1951 8.3135 10.5233 12.7041 k = 0.1164 0.0680-0.5197 ( 520 PWs) bands (ev): -5.4463 -3.9915 3.4647 4.0758 5.2013 7.9216 9.0431 10.0223 14.8032 k = 0.1172 0.0684-0.2354 ( 525 PWs) bands (ev): -7.1262 -1.1202 3.4693 4.6004 5.9311 8.4558 8.7497 10.4549 12.6471 k = 0.1187 0.3376-0.0439 ( 522 PWs) bands (ev): -6.7271 -1.8793 3.4754 4.2082 6.4761 7.1951 8.3135 10.5232 12.7040 k = 0.1195 0.3381 0.2404 ( 519 PWs) bands (ev): -6.3979 -1.5520 2.1532 2.8367 4.8356 8.3386 10.1762 10.5374 12.8428 k = 0.1172 0.3367-0.6126 ( 510 PWs) bands (ev): -5.0460 -3.5394 1.1976 2.4204 5.3792 8.4359 10.8756 12.1370 13.1272 k = 0.1180 0.3372-0.3282 ( 521 PWs) bands (ev): -5.7687 -3.2430 1.9105 4.2426 5.3501 8.7946 9.6221 10.7204 12.6986 k = 0.1164-0.4686 0.2347 ( 520 PWs) bands (ev): -5.4462 -3.9914 3.4646 4.0757 5.2012 7.9215 9.0431 10.0221 14.8033 k = 0.1172-0.4682 0.5191 ( 510 PWs) bands (ev): -5.0460 -3.5394 1.1975 2.4204 5.3792 8.4359 10.8756 12.1370 13.1271 k = 0.1149-0.4695-0.3339 ( 510 PWs) bands (ev): -5.3009 -3.0404 1.5630 2.3727 3.7174 8.3759 11.8074 13.2715 13.5962 k = 0.1156-0.4691-0.0496 ( 521 PWs) bands (ev): -5.7614 -3.2542 1.9154 4.2478 5.3440 8.7894 9.6205 10.7097 12.6929 k = 0.1172-0.1999 0.1419 ( 525 PWs) bands (ev): -7.1262 -1.1201 3.4692 4.6005 5.9310 8.4558 8.7497 10.4550 12.6472 k = 0.1180-0.1994 0.4262 ( 521 PWs) bands (ev): -5.7687 -3.2430 1.9106 4.2426 5.3502 8.7947 9.6221 10.7204 12.6986 k = 0.1157-0.2008-0.4268 ( 521 PWs) bands (ev): -5.7614 -3.2543 1.9154 4.2479 5.3440 8.7895 9.6207 10.7097 12.6929 k = 0.1164-0.2003-0.1425 ( 525 PWs) bands (ev): -7.1237 -1.1251 3.4653 4.6016 5.9409 8.4536 8.7476 10.4450 12.6473 k = 0.3524-0.0626-0.0445 ( 522 PWs) bands (ev): -6.7265 -1.8728 3.4701 4.2043 6.4652 7.1844 8.3066 10.5385 12.7107 k = 0.3531-0.0622 0.2398 ( 519 PWs) bands (ev): -6.4025 -1.5415 2.1477 2.8433 4.8321 8.3387 10.1649 10.5422 12.8489 k = 0.3508-0.0635-0.6132 ( 510 PWs) bands (ev): -5.0546 -3.5320 1.1992 2.4227 5.3832 8.4498 10.8812 12.1237 13.1204 k = 0.3516-0.0631-0.3289 ( 521 PWs) bands (ev): -5.7635 -3.2502 1.9166 4.2386 5.3499 8.8039 9.6023 10.7093 12.6937 k = 0.3531 0.2061-0.1374 ( 519 PWs) bands (ev): -6.4025 -1.5415 2.1477 2.8434 4.8321 8.3386 10.1648 10.5421 12.8488 k = 0.3539 0.2066 0.1469 ( 522 PWs) bands (ev): -6.5921 -1.7765 4.2690 4.2697 4.8357 7.3762 7.3910 8.3319 14.3964 k = 0.3516 0.2052-0.7061 ( 520 PWs) bands (ev): -5.7545 -2.5524 1.3349 3.3520 4.9033 8.4167 8.8460 11.2794 14.3242 k = 0.3524 0.2057-0.4217 ( 510 PWs) bands (ev): -5.3152 -3.0255 1.5633 2.3821 3.7195 8.3790 11.8087 13.2632 13.5946 k = 0.3508-0.6001 0.1412 ( 510 PWs) bands (ev): -5.0546 -3.5320 1.1992 2.4227 5.3831 8.4498 10.8812 12.1238 13.1203 k = 0.3516-0.5996 0.4256 ( 520 PWs) bands (ev): -5.7545 -2.5524 1.3349 3.3520 4.9033 8.4167 8.8460 11.2794 14.3243 k = 0.3493-0.6010-0.4275 ( 520 PWs) bands (ev): -5.7524 -2.5492 1.3331 3.3444 4.8912 8.4162 8.8441 11.2950 14.3266 k = 0.3500-0.6005-0.1431 ( 510 PWs) bands (ev): -5.0498 -3.5340 1.1982 2.4197 5.3814 8.4256 10.8802 12.1255 13.1366 k = 0.3516-0.3314 0.0483 ( 521 PWs) bands (ev): -5.7635 -3.2501 1.9165 4.2385 5.3499 8.8038 9.6022 10.7093 12.6938 k = 0.3524-0.3309 0.3327 ( 510 PWs) bands (ev): -5.3152 -3.0255 1.5633 2.3821 3.7196 8.3791 11.8088 13.2631 13.5946 k = 0.3500-0.3323-0.5203 ( 510 PWs) bands (ev): -5.0498 -3.5340 1.1982 2.4198 5.3815 8.4257 10.8802 12.1254 13.1366 k = 0.3508-0.3318-0.2360 ( 520 PWs) bands (ev): -5.4356 -3.9990 3.4567 4.0823 5.1874 7.9079 9.0356 10.0311 14.8077 the Fermi energy is 6.5305 ev ! total energy = -25.48861230 Ry Harris-Foulkes estimate = -25.48861231 Ry estimated scf accuracy < 8.0E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02088795 -0.01249704 -0.00888702 atom 2 type 1 force = 0.02088795 0.01249704 0.00888702 Total force = 0.036646 Total SCF correction = 0.000073 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -45.69 -0.00015350 0.00018739 0.00013324 -22.58 27.57 19.60 0.00018739 -0.00036071 0.00008175 27.57 -53.06 12.03 0.00013324 0.00008175 -0.00041752 19.60 12.03 -61.42 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 1.053193482 -0.000998547 -0.000703577 0.532984101 0.912802237 -0.000632356 0.532987490 0.309788206 0.860343585 new unit-cell volume = 285.2599 (a.u.)^3 new positions in cryst coord As 0.275909823 0.275332662 0.275337639 As -0.275909823 -0.275332662 -0.275337639 new positions in cart coord (alat unit) As 0.584085876 0.336345114 0.236516739 As -0.584085876 -0.336345114 -0.236516739 Ekin = 0.04765317 Ry T = 1306.4 K Etot = -25.44095914 new unit-cell volume = 285.25992 a.u.^3 ( 42.27116 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053193482 -0.000998547 -0.000703577 0.532984101 0.912802237 -0.000632356 0.532987490 0.309788206 0.860343585 ATOMIC_POSITIONS (crystal) As 0.275909823 0.275332662 0.275337639 As -0.275909823 -0.275332662 -0.275337639 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1187824 0.0676169 0.0473573), wk = 0.0625000 k( 2) = ( 0.1189765 0.0677047 0.3377870), wk = 0.0625000 k( 3) = ( 0.1183942 0.0674411 -0.5335021), wk = 0.0625000 k( 4) = ( 0.1185883 0.0675290 -0.2430724), wk = 0.0625000 k( 5) = ( 0.1189760 0.3413174 -0.0513153), wk = 0.0625000 k( 6) = ( 0.1191701 0.3414052 0.2391144), wk = 0.0625000 k( 7) = ( 0.1185878 0.3411416 -0.6321747), wk = 0.0625000 k( 8) = ( 0.1187819 0.3412295 -0.3417450), wk = 0.0625000 k( 9) = ( 0.1183952 -0.4797841 0.2447026), wk = 0.0625000 k( 10) = ( 0.1185893 -0.4796963 0.5351323), wk = 0.0625000 k( 11) = ( 0.1180070 -0.4799599 -0.3361568), wk = 0.0625000 k( 12) = ( 0.1182011 -0.4798720 -0.0457271), wk = 0.0625000 k( 13) = ( 0.1185888 -0.2060836 0.1460299), wk = 0.0625000 k( 14) = ( 0.1187829 -0.2059958 0.4364596), wk = 0.0625000 k( 15) = ( 0.1182006 -0.2062594 -0.4348294), wk = 0.0625000 k( 16) = ( 0.1183947 -0.2061715 -0.1443997), wk = 0.0625000 k( 17) = ( 0.3559595 -0.0709378 -0.0496851), wk = 0.0625000 k( 18) = ( 0.3561536 -0.0708499 0.2407446), wk = 0.0625000 k( 19) = ( 0.3555713 -0.0711135 -0.6305445), wk = 0.0625000 k( 20) = ( 0.3557654 -0.0710256 -0.3401148), wk = 0.0625000 k( 21) = ( 0.3561531 0.2027627 -0.1483577), wk = 0.0625000 k( 22) = ( 0.3563472 0.2028506 0.1420720), wk = 0.0625000 k( 23) = ( 0.3557649 0.2025870 -0.7292171), wk = 0.0625000 k( 24) = ( 0.3559590 0.2026749 -0.4387874), wk = 0.0625000 k( 25) = ( 0.3555723 -0.6183388 0.1476601), wk = 0.0625000 k( 26) = ( 0.3557664 -0.6182509 0.4380898), wk = 0.0625000 k( 27) = ( 0.3551841 -0.6185145 -0.4331992), wk = 0.0625000 k( 28) = ( 0.3553782 -0.6184266 -0.1427695), wk = 0.0625000 k( 29) = ( 0.3557659 -0.3446383 0.0489875), wk = 0.0625000 k( 30) = ( 0.3559600 -0.3445504 0.3394172), wk = 0.0625000 k( 31) = ( 0.3553777 -0.3448140 -0.5318719), wk = 0.0625000 k( 32) = ( 0.3555718 -0.3447261 -0.2414422), wk = 0.0625000 extrapolated charge 9.50347, renormalised to 10.00000 total cpu time spent up to now is 11.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 12.2 secs total energy = -25.49454181 Ry Harris-Foulkes estimate = -25.21952532 Ry estimated scf accuracy < 0.00268019 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-05, avg # of iterations = 2.8 total cpu time spent up to now is 12.6 secs total energy = -25.49723057 Ry Harris-Foulkes estimate = -25.49778036 Ry estimated scf accuracy < 0.00121551 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.22E-05, avg # of iterations = 1.0 total cpu time spent up to now is 12.9 secs total energy = -25.49723393 Ry Harris-Foulkes estimate = -25.49731779 Ry estimated scf accuracy < 0.00015832 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.2 secs total energy = -25.49725832 Ry Harris-Foulkes estimate = -25.49725880 Ry estimated scf accuracy < 0.00000103 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-08, avg # of iterations = 3.1 total cpu time spent up to now is 13.6 secs total energy = -25.49725992 Ry Harris-Foulkes estimate = -25.49726010 Ry estimated scf accuracy < 0.00000034 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-09, avg # of iterations = 1.4 total cpu time spent up to now is 13.8 secs End of self-consistent calculation k = 0.1188 0.0676 0.0474 ( 531 PWs) bands (ev): -7.3392 1.3000 4.9288 5.0147 6.1801 9.2175 9.8901 9.9926 14.0218 k = 0.1190 0.0677 0.3378 ( 522 PWs) bands (ev): -6.3722 -1.3152 3.7763 5.0344 7.3580 7.7804 8.7005 11.3748 13.3237 k = 0.1184 0.0674-0.5335 ( 520 PWs) bands (ev): -4.9514 -3.5737 4.1913 4.3964 5.7724 8.6944 9.3692 10.3042 15.4017 k = 0.1186 0.0675-0.2431 ( 525 PWs) bands (ev): -6.7929 -0.4260 4.1816 5.0300 6.3757 9.0852 9.5247 11.0060 13.1000 k = 0.1190 0.3413-0.0513 ( 522 PWs) bands (ev): -6.3688 -1.3051 3.7714 5.0212 7.3397 7.7691 8.6903 11.3737 13.3163 k = 0.1192 0.3414 0.2391 ( 519 PWs) bands (ev): -6.0302 -0.9755 2.5839 3.4808 5.0899 9.4066 11.1213 11.3997 13.3401 k = 0.1186 0.3411-0.6322 ( 510 PWs) bands (ev): -4.5689 -2.9828 1.5750 2.6832 5.8565 9.2921 11.7899 12.9721 13.6369 k = 0.1188 0.3412-0.3417 ( 521 PWs) bands (ev): -5.3238 -2.7015 2.4404 4.5551 5.7789 9.2227 10.5274 11.4422 13.2257 k = 0.1184-0.4798 0.2447 ( 520 PWs) bands (ev): -4.9424 -3.5685 4.1749 4.3891 5.7571 8.6740 9.3578 10.2937 15.4193 k = 0.1186-0.4797 0.5351 ( 510 PWs) bands (ev): -4.5640 -2.9832 1.5702 2.6821 5.8560 9.2768 11.7854 12.9668 13.6326 k = 0.1180-0.4800-0.3362 ( 510 PWs) bands (ev): -4.8832 -2.3438 1.7235 2.9888 3.9768 9.2041 12.4722 13.9130 14.2463 k = 0.1182-0.4799-0.0457 ( 521 PWs) bands (ev): -5.3495 -2.6441 2.4208 4.5140 5.8066 9.1817 10.4697 11.5057 13.2350 k = 0.1186-0.2061 0.1460 ( 525 PWs) bands (ev): -6.7915 -0.4192 4.1649 5.0346 6.3707 9.0843 9.5138 11.0049 13.1002 k = 0.1188-0.2060 0.4365 ( 521 PWs) bands (ev): -5.3258 -2.7067 2.4449 4.5615 5.7869 9.2204 10.5438 11.4462 13.2249 k = 0.1182-0.2063-0.4348 ( 521 PWs) bands (ev): -5.3551 -2.6481 2.4223 4.5239 5.8165 9.1936 10.5005 11.5152 13.2401 k = 0.1184-0.2062-0.1444 ( 525 PWs) bands (ev): -6.8004 -0.3721 4.1352 5.0388 6.3112 9.0495 9.5336 11.0610 13.1256 k = 0.3560-0.0709-0.0497 ( 522 PWs) bands (ev): -6.3623 -1.3154 3.7927 4.9995 7.3537 7.7859 8.7047 11.2613 13.2962 k = 0.3562-0.0708 0.2407 ( 519 PWs) bands (ev): -6.0049 -1.0309 2.5909 3.4937 5.0962 9.3951 11.1455 11.3495 13.2922 k = 0.3556-0.0711-0.6305 ( 510 PWs) bands (ev): -4.5244 -3.0126 1.5750 2.6573 5.8131 9.2301 11.7828 13.0481 13.6529 k = 0.3558-0.0710-0.3401 ( 521 PWs) bands (ev): -5.3358 -2.6512 2.3986 4.5491 5.7613 9.1269 10.5326 11.5100 13.2227 k = 0.3562 0.2028-0.1484 ( 519 PWs) bands (ev): -6.0047 -1.0297 2.5826 3.5096 5.0916 9.3892 11.1337 11.3417 13.2912 k = 0.3563 0.2029 0.1421 ( 522 PWs) bands (ev): -6.1986 -1.6437 5.0719 5.1200 6.0166 7.9391 8.0051 8.9895 15.1497 k = 0.3558 0.2026-0.7292 ( 520 PWs) bands (ev): -5.2662 -2.2677 1.7446 4.0597 5.4534 9.4538 9.5276 12.3396 14.8029 k = 0.3560 0.2027-0.4388 ( 510 PWs) bands (ev): -4.8198 -2.4263 1.7265 3.0076 3.9350 9.1934 12.4485 13.8956 14.3369 k = 0.3556-0.6183 0.1477 ( 510 PWs) bands (ev): -4.5215 -3.0081 1.5731 2.6515 5.8020 9.2174 11.7876 13.0465 13.6483 k = 0.3558-0.6183 0.4381 ( 520 PWs) bands (ev): -5.2635 -2.2657 1.7488 4.0467 5.4422 9.4588 9.5177 12.3474 14.8256 k = 0.3552-0.6185-0.4332 ( 520 PWs) bands (ev): -5.2676 -2.2774 1.7721 4.0469 5.4717 9.4824 9.4981 12.2804 14.8875 k = 0.3554-0.6184-0.1428 ( 510 PWs) bands (ev): -4.5346 -2.9998 1.5644 2.6697 5.8023 9.3040 11.7677 13.0259 13.5710 k = 0.3558-0.3446 0.0490 ( 521 PWs) bands (ev): -5.3322 -2.6526 2.4019 4.5455 5.7595 9.1127 10.5179 11.5039 13.2175 k = 0.3560-0.3446 0.3394 ( 510 PWs) bands (ev): -4.8160 -2.4266 1.7268 2.9901 3.9424 9.1938 12.4497 13.8881 14.3351 k = 0.3554-0.3448-0.5319 ( 510 PWs) bands (ev): -4.5325 -3.0048 1.5614 2.6745 5.8127 9.3012 11.7593 13.0225 13.5708 k = 0.3556-0.3447-0.2414 ( 520 PWs) bands (ev): -4.9768 -3.5119 4.1685 4.3408 5.7829 8.6971 9.3608 10.2137 15.4652 the Fermi energy is 7.7198 ev ! total energy = -25.49725996 Ry Harris-Foulkes estimate = -25.49725996 Ry estimated scf accuracy < 5.0E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00964441 -0.00424655 -0.00282757 atom 2 type 1 force = 0.00964441 0.00424655 0.00282757 Total force = 0.015430 Total SCF correction = 0.000049 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.01 -0.00003831 0.00009976 0.00006956 -5.64 14.67 10.23 0.00009976 -0.00019333 0.00002371 14.67 -28.44 3.49 0.00006956 0.00002371 -0.00021732 10.23 3.49 -31.97 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 1.055084685 0.004362977 0.003068063 0.549663110 0.912576131 0.002895041 0.549642951 0.319014654 0.859496477 new unit-cell volume = 283.7247 (a.u.)^3 new positions in cryst coord As 0.266718781 0.275329663 0.277246332 As -0.266718781 -0.275329663 -0.277246332 new positions in cart coord (alat unit) As 0.585135952 0.340868609 0.239907646 As -0.585135952 -0.340868609 -0.239907646 Ekin = 0.02805434 Ry T = 1225.9 K Etot = -25.46920561 new unit-cell volume = 283.72474 a.u.^3 ( 42.04367 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.055084685 0.004362977 0.003068063 0.549663110 0.912576131 0.002895041 0.549642951 0.319014654 0.859496477 ATOMIC_POSITIONS (crystal) As 0.266718781 0.275329663 0.277246332 As -0.266718781 -0.275329663 -0.277246332 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1180697 0.0657146 0.0455381), wk = 0.0625000 k( 2) = ( 0.1172236 0.0652993 0.3371014), wk = 0.0625000 k( 3) = ( 0.1197620 0.0665452 -0.5375883), wk = 0.0625000 k( 4) = ( 0.1189159 0.0661299 -0.2460251), wk = 0.0625000 k( 5) = ( 0.1172285 0.3404929 -0.0559118), wk = 0.0625000 k( 6) = ( 0.1163824 0.3400776 0.2356514), wk = 0.0625000 k( 7) = ( 0.1189207 0.3413235 -0.6390383), wk = 0.0625000 k( 8) = ( 0.1180746 0.3409082 -0.3474751), wk = 0.0625000 k( 9) = ( 0.1197523 -0.4838420 0.2484381), wk = 0.0625000 k( 10) = ( 0.1189061 -0.4842573 0.5400013), wk = 0.0625000 k( 11) = ( 0.1214445 -0.4830113 -0.3346883), wk = 0.0625000 k( 12) = ( 0.1205984 -0.4834267 -0.0431251), wk = 0.0625000 k( 13) = ( 0.1189110 -0.2090637 0.1469881), wk = 0.0625000 k( 14) = ( 0.1180649 -0.2094790 0.4385513), wk = 0.0625000 k( 15) = ( 0.1206032 -0.2082330 -0.4361383), wk = 0.0625000 k( 16) = ( 0.1197571 -0.2086484 -0.1445751), wk = 0.0625000 k( 17) = ( 0.3558966 -0.0772191 -0.0534988), wk = 0.0625000 k( 18) = ( 0.3550505 -0.0776345 0.2380644), wk = 0.0625000 k( 19) = ( 0.3575888 -0.0763885 -0.6366252), wk = 0.0625000 k( 20) = ( 0.3567427 -0.0768038 -0.3450620), wk = 0.0625000 k( 21) = ( 0.3550553 0.1975591 -0.1549488), wk = 0.0625000 k( 22) = ( 0.3542092 0.1971438 0.1366144), wk = 0.0625000 k( 23) = ( 0.3567476 0.1983898 -0.7380752), wk = 0.0625000 k( 24) = ( 0.3559014 0.1979745 -0.4465120), wk = 0.0625000 k( 25) = ( 0.3575791 -0.6267757 0.1494012), wk = 0.0625000 k( 26) = ( 0.3567330 -0.6271910 0.4409644), wk = 0.0625000 k( 27) = ( 0.3592713 -0.6259451 -0.4337252), wk = 0.0625000 k( 28) = ( 0.3584252 -0.6263604 -0.1421620), wk = 0.0625000 k( 29) = ( 0.3567378 -0.3519974 0.0479512), wk = 0.0625000 k( 30) = ( 0.3558917 -0.3524128 0.3395144), wk = 0.0625000 k( 31) = ( 0.3584301 -0.3511668 -0.5351752), wk = 0.0625000 k( 32) = ( 0.3575840 -0.3515821 -0.2436120), wk = 0.0625000 extrapolated charge 9.94589, renormalised to 10.00000 total cpu time spent up to now is 14.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 14.9 secs total energy = -25.49848261 Ry Harris-Foulkes estimate = -25.46794358 Ry estimated scf accuracy < 0.00022798 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-06, avg # of iterations = 2.0 total cpu time spent up to now is 15.2 secs total energy = -25.49855274 Ry Harris-Foulkes estimate = -25.49857050 Ry estimated scf accuracy < 0.00003627 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 1.6 total cpu time spent up to now is 15.5 secs total energy = -25.49855723 Ry Harris-Foulkes estimate = -25.49855752 Ry estimated scf accuracy < 0.00000153 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-08, avg # of iterations = 2.3 total cpu time spent up to now is 15.8 secs End of self-consistent calculation k = 0.1181 0.0657 0.0455 ( 531 PWs) bands (ev): -7.2855 1.2708 5.1889 5.2268 6.1206 9.4453 9.9943 10.1336 14.0760 k = 0.1172 0.0653 0.3371 ( 522 PWs) bands (ev): -6.3209 -1.2255 3.7661 5.2232 7.5363 7.8392 8.7530 11.3631 13.5774 k = 0.1198 0.0665-0.5376 ( 520 PWs) bands (ev): -4.9194 -3.4137 4.3178 4.4313 5.8328 8.8060 9.3310 10.0708 15.1592 k = 0.1189 0.0661-0.2460 ( 525 PWs) bands (ev): -6.7301 -0.2826 4.3791 4.9357 6.4398 8.9681 9.6765 10.9976 13.1441 k = 0.1172 0.3405-0.0559 ( 522 PWs) bands (ev): -6.3082 -1.2128 3.7353 5.2168 7.5084 7.8169 8.7029 11.3937 13.5214 k = 0.1164 0.3401 0.2357 ( 519 PWs) bands (ev): -5.9658 -1.0152 2.6967 3.7267 5.0372 9.8624 11.3316 11.5167 13.2109 k = 0.1189 0.3413-0.6390 ( 510 PWs) bands (ev): -4.4779 -2.9124 1.6492 2.6746 5.9441 9.4269 12.0604 13.1212 13.5116 k = 0.1181 0.3409-0.3475 ( 521 PWs) bands (ev): -5.2581 -2.5384 2.4855 4.5508 5.7931 9.0649 10.6286 11.6881 13.1837 k = 0.1198-0.4838 0.2484 ( 520 PWs) bands (ev): -4.8613 -3.4499 4.2798 4.4134 5.8086 8.7685 9.2897 10.0567 15.2054 k = 0.1189-0.4843 0.5400 ( 510 PWs) bands (ev): -4.4439 -2.9457 1.6479 2.6649 5.9596 9.3661 12.1090 13.1209 13.4597 k = 0.1214-0.4830-0.3347 ( 510 PWs) bands (ev): -4.7398 -2.3711 1.7555 3.2095 3.9053 9.5258 12.4375 13.6954 14.2476 k = 0.1206-0.4834-0.0431 ( 521 PWs) bands (ev): -5.2453 -2.5539 2.5724 4.4365 5.7986 9.0237 10.5527 11.6686 13.2872 k = 0.1189-0.2091 0.1470 ( 525 PWs) bands (ev): -6.7235 -0.2818 4.3499 4.9683 6.3976 8.9866 9.6726 10.9729 13.1038 k = 0.1181-0.2095 0.4386 ( 521 PWs) bands (ev): -5.2647 -2.5476 2.4863 4.5755 5.8278 9.0363 10.6627 11.7326 13.1501 k = 0.1206-0.2082-0.4361 ( 521 PWs) bands (ev): -5.2712 -2.5376 2.5444 4.4708 5.8492 9.0164 10.6130 11.7509 13.2559 k = 0.1198-0.2086-0.1446 ( 525 PWs) bands (ev): -6.7262 -0.2634 4.3728 5.0508 6.1339 9.0018 9.8330 10.9868 12.9796 k = 0.3559-0.0772-0.0535 ( 522 PWs) bands (ev): -6.2742 -1.2684 3.6584 5.3267 7.6389 7.8101 8.5781 11.3203 13.3210 k = 0.3551-0.0776 0.2381 ( 519 PWs) bands (ev): -5.9368 -1.0228 2.6847 3.6966 5.0418 9.6535 11.3314 11.5172 13.3256 k = 0.3576-0.0764-0.6366 ( 510 PWs) bands (ev): -4.4894 -2.8107 1.6332 2.6223 5.7300 9.4571 11.8128 13.1005 13.7300 k = 0.3567-0.0768-0.3451 ( 521 PWs) bands (ev): -5.2268 -2.5406 2.5616 4.4654 5.6114 9.0281 10.6567 11.5435 13.3900 k = 0.3551 0.1976-0.1549 ( 519 PWs) bands (ev): -5.9405 -1.0049 2.6656 3.7185 5.0313 9.6114 11.3036 11.5144 13.3653 k = 0.3542 0.1971 0.1366 ( 522 PWs) bands (ev): -6.1408 -1.8048 5.2624 5.4817 6.4167 7.9847 8.2116 9.1018 15.2185 k = 0.3567 0.1984-0.7381 ( 520 PWs) bands (ev): -5.2011 -2.3149 1.8889 4.2568 5.5328 9.6391 9.7518 12.5580 14.7734 k = 0.3559 0.1980-0.4465 ( 510 PWs) bands (ev): -4.7720 -2.2035 1.6019 3.2132 3.8593 9.2994 12.4219 13.8972 14.3161 k = 0.3576-0.6268 0.1494 ( 510 PWs) bands (ev): -4.4790 -2.8045 1.6324 2.6055 5.6976 9.4275 11.8421 13.0865 13.7224 k = 0.3567-0.6272 0.4410 ( 520 PWs) bands (ev): -5.1862 -2.3237 1.8834 4.2454 5.5160 9.6250 9.7527 12.5863 14.8025 k = 0.3593-0.6259-0.4337 ( 520 PWs) bands (ev): -5.1521 -2.4099 1.8469 4.3276 5.6373 9.5348 9.8316 12.5333 14.8318 k = 0.3584-0.6264-0.1422 ( 510 PWs) bands (ev): -4.3992 -2.9437 1.6522 2.6146 5.7893 9.4307 12.0903 13.0848 13.4587 k = 0.3567-0.3520 0.0480 ( 521 PWs) bands (ev): -5.2071 -2.5667 2.5914 4.4555 5.5944 9.0083 10.6327 11.4977 13.3907 k = 0.3559-0.3524 0.3395 ( 510 PWs) bands (ev): -4.7378 -2.2560 1.6287 3.1834 3.8653 9.3273 12.4138 13.8449 14.3244 k = 0.3584-0.3512-0.5352 ( 510 PWs) bands (ev): -4.3737 -2.9846 1.6515 2.6216 5.8357 9.3965 12.1133 13.0834 13.4361 k = 0.3576-0.3516-0.2436 ( 520 PWs) bands (ev): -4.7482 -3.5638 4.1620 4.4169 5.9096 8.8056 9.2327 9.9592 15.3688 the Fermi energy is 7.7586 ev ! total energy = -25.49855749 Ry Harris-Foulkes estimate = -25.49855755 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00391065 -0.00201351 -0.00189884 atom 2 type 1 force = -0.00391065 0.00201351 0.00189884 Total force = 0.006775 Total SCF correction = 0.000275 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.05 -0.00011072 0.00003272 0.00002803 -16.29 4.81 4.12 0.00003272 -0.00016059 0.00000165 4.81 -23.62 0.24 0.00002803 0.00000165 -0.00017830 4.12 0.24 -26.23 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 1.057860757 0.010286603 0.007120510 0.567268634 0.911287964 0.006486662 0.567128507 0.317443653 0.857281494 new unit-cell volume = 281.4371 (a.u.)^3 new positions in cryst coord As 0.266827854 0.275382610 0.277283069 As -0.266827854 -0.275382610 -0.277283069 new positions in cart coord (alat unit) As 0.595737766 0.341719360 0.241395908 As -0.595737766 -0.341719360 -0.241395908 Ekin = 0.01813955 Ry T = 1108.0 K Etot = -25.48041793 new unit-cell volume = 281.43706 a.u.^3 ( 41.70467 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.057860757 0.010286603 0.007120510 0.567268634 0.911287964 0.006486662 0.567128507 0.317443653 0.857281494 ATOMIC_POSITIONS (crystal) As 0.266827854 0.275382610 0.277283069 As -0.266827854 -0.275382610 -0.277283069 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1172417 0.0638691 0.0445992), wk = 0.0625000 k( 2) = ( 0.1152763 0.0630052 0.3378387), wk = 0.0625000 k( 3) = ( 0.1211726 0.0655968 -0.5418800), wk = 0.0625000 k( 4) = ( 0.1192071 0.0647330 -0.2486404), wk = 0.0625000 k( 5) = ( 0.1152347 0.3401743 -0.0563864), wk = 0.0625000 k( 6) = ( 0.1132693 0.3393104 0.2368531), wk = 0.0625000 k( 7) = ( 0.1191655 0.3419020 -0.6428656), wk = 0.0625000 k( 8) = ( 0.1172001 0.3410382 -0.3496260), wk = 0.0625000 k( 9) = ( 0.1212558 -0.4887413 0.2465703), wk = 0.0625000 k( 10) = ( 0.1192904 -0.4896051 0.5398099), wk = 0.0625000 k( 11) = ( 0.1251866 -0.4870135 -0.3399088), wk = 0.0625000 k( 12) = ( 0.1232212 -0.4878774 -0.0466693), wk = 0.0625000 k( 13) = ( 0.1192488 -0.2124361 0.1455847), wk = 0.0625000 k( 14) = ( 0.1172834 -0.2133000 0.4388243), wk = 0.0625000 k( 15) = ( 0.1231796 -0.2107084 -0.4408944), wk = 0.0625000 k( 16) = ( 0.1212142 -0.2115722 -0.1476548), wk = 0.0625000 k( 17) = ( 0.3556977 -0.0838340 -0.0584565), wk = 0.0625000 k( 18) = ( 0.3537323 -0.0846979 0.2347830), wk = 0.0625000 k( 19) = ( 0.3596285 -0.0821063 -0.6449357), wk = 0.0625000 k( 20) = ( 0.3576631 -0.0829702 -0.3516961), wk = 0.0625000 k( 21) = ( 0.3536906 0.1924712 -0.1594421), wk = 0.0625000 k( 22) = ( 0.3517252 0.1916073 0.1337975), wk = 0.0625000 k( 23) = ( 0.3576214 0.1941989 -0.7459213), wk = 0.0625000 k( 24) = ( 0.3556560 0.1933350 -0.4526817), wk = 0.0625000 k( 25) = ( 0.3597118 -0.6364444 0.1435146), wk = 0.0625000 k( 26) = ( 0.3577463 -0.6373083 0.4367542), wk = 0.0625000 k( 27) = ( 0.3636426 -0.6347167 -0.4429645), wk = 0.0625000 k( 28) = ( 0.3616772 -0.6355805 -0.1497249), wk = 0.0625000 k( 29) = ( 0.3577047 -0.3601392 0.0425291), wk = 0.0625000 k( 30) = ( 0.3557393 -0.3610031 0.3357686), wk = 0.0625000 k( 31) = ( 0.3616355 -0.3584115 -0.5439501), wk = 0.0625000 k( 32) = ( 0.3596701 -0.3592754 -0.2507105), wk = 0.0625000 extrapolated charge 9.91872, renormalised to 10.00000 total cpu time spent up to now is 16.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 total cpu time spent up to now is 16.8 secs total energy = -25.49871971 Ry Harris-Foulkes estimate = -25.45267738 Ry estimated scf accuracy < 0.00007297 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-07, avg # of iterations = 2.8 total cpu time spent up to now is 17.2 secs total energy = -25.49878831 Ry Harris-Foulkes estimate = -25.49880557 Ry estimated scf accuracy < 0.00003763 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-07, avg # of iterations = 1.1 total cpu time spent up to now is 17.5 secs total energy = -25.49879089 Ry Harris-Foulkes estimate = -25.49879215 Ry estimated scf accuracy < 0.00000340 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.7 secs total energy = -25.49879078 Ry Harris-Foulkes estimate = -25.49879113 Ry estimated scf accuracy < 0.00000066 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.58E-09, avg # of iterations = 2.9 total cpu time spent up to now is 18.1 secs End of self-consistent calculation k = 0.1172 0.0639 0.0446 ( 531 PWs) bands (ev): -7.2765 1.3456 5.3674 5.3926 6.1617 9.5573 10.0902 10.3014 14.2950 k = 0.1153 0.0630 0.3378 ( 522 PWs) bands (ev): -6.3081 -1.1218 3.7355 5.3410 7.7763 7.9787 8.9620 11.4332 13.7448 k = 0.1212 0.0656-0.5419 ( 520 PWs) bands (ev): -4.8816 -3.3276 4.3101 4.5157 6.0010 8.9462 9.4928 10.0017 15.0555 k = 0.1192 0.0647-0.2486 ( 525 PWs) bands (ev): -6.7052 -0.1435 4.5279 4.9411 6.4255 9.0528 9.7883 11.1193 13.2549 k = 0.1152 0.3402-0.0564 ( 522 PWs) bands (ev): -6.2982 -1.1158 3.7074 5.3441 7.7593 7.9657 8.9201 11.4687 13.6964 k = 0.1133 0.3393 0.2369 ( 519 PWs) bands (ev): -5.9497 -0.9545 2.7694 3.8302 5.1755 10.0253 11.6083 11.7030 13.4024 k = 0.1192 0.3419-0.6429 ( 510 PWs) bands (ev): -4.4292 -2.8329 1.7166 2.6982 6.0282 9.6397 12.1757 13.2656 13.5631 k = 0.1172 0.3410-0.3496 ( 521 PWs) bands (ev): -5.2317 -2.4163 2.5179 4.6412 5.7705 9.1416 10.8444 11.9185 13.3493 k = 0.1213-0.4887 0.2466 ( 520 PWs) bands (ev): -4.8282 -3.3707 4.2860 4.5045 5.9867 8.9246 9.4572 9.9992 15.0811 k = 0.1193-0.4896 0.5398 ( 510 PWs) bands (ev): -4.3973 -2.8675 1.7197 2.6885 6.0438 9.5871 12.2284 13.2629 13.5253 k = 0.1252-0.4870-0.3399 ( 510 PWs) bands (ev): -4.6384 -2.3420 1.8196 3.2807 3.9534 9.5562 12.5258 13.7863 14.3614 k = 0.1232-0.4879-0.0467 ( 521 PWs) bands (ev): -5.1759 -2.4831 2.6353 4.5464 5.7548 9.0395 10.7279 11.7906 13.3672 k = 0.1192-0.2124 0.1456 ( 525 PWs) bands (ev): -6.6991 -0.1495 4.5074 4.9750 6.3910 9.0683 9.7932 11.0957 13.2126 k = 0.1173-0.2133 0.4388 ( 521 PWs) bands (ev): -5.2358 -2.4221 2.5147 4.6630 5.7963 9.1135 10.8699 11.9523 13.3162 k = 0.1232-0.2107-0.4409 ( 521 PWs) bands (ev): -5.1988 -2.4606 2.6044 4.5727 5.7959 9.0220 10.7640 11.8701 13.3305 k = 0.1212-0.2116-0.1477 ( 525 PWs) bands (ev): -6.6861 -0.1168 4.4552 5.0705 6.1583 9.0589 9.8918 11.0512 13.0589 k = 0.3557-0.0838-0.0585 ( 522 PWs) bands (ev): -6.2498 -1.0976 3.5992 5.3680 7.7608 7.8783 8.7284 11.4451 13.4974 k = 0.3537-0.0847 0.2348 ( 519 PWs) bands (ev): -5.9398 -0.9279 2.6998 3.9039 5.1439 9.8003 11.5530 11.6917 13.5450 k = 0.3596-0.0821-0.6449 ( 510 PWs) bands (ev): -4.4826 -2.6903 1.7169 2.6388 5.7852 9.7176 12.0301 13.2281 13.7949 k = 0.3577-0.0830-0.3517 ( 521 PWs) bands (ev): -5.1601 -2.4248 2.6057 4.5044 5.5594 9.0768 10.7046 11.6744 13.4961 k = 0.3537 0.1925-0.1594 ( 519 PWs) bands (ev): -5.9450 -0.9095 2.6883 3.9135 5.1354 9.7658 11.5340 11.6956 13.5902 k = 0.3517 0.1916 0.1338 ( 522 PWs) bands (ev): -6.1788 -1.7781 5.4718 5.6275 6.7014 8.1615 8.4791 9.3463 15.2940 k = 0.3576 0.1942-0.7459 ( 520 PWs) bands (ev): -5.2394 -2.2360 1.9600 4.4314 5.7512 9.8624 9.9979 12.7416 14.8349 k = 0.3557 0.1933-0.4527 ( 510 PWs) bands (ev): -4.7463 -2.1244 1.6616 3.3936 3.8889 9.3658 12.5414 14.0663 14.3987 k = 0.3597-0.6364 0.1435 ( 510 PWs) bands (ev): -4.4763 -2.6863 1.7175 2.6275 5.7616 9.6993 12.0592 13.2107 13.7932 k = 0.3577-0.6373 0.4368 ( 520 PWs) bands (ev): -5.2266 -2.2448 1.9499 4.4291 5.7417 9.8331 10.0182 12.7678 14.8410 k = 0.3636-0.6347-0.4430 ( 520 PWs) bands (ev): -5.1771 -2.3012 1.9345 4.4114 5.7691 9.7382 10.0580 12.8197 14.9740 k = 0.3617-0.6356-0.1497 ( 510 PWs) bands (ev): -4.3671 -2.8157 1.7063 2.6194 5.8421 9.5697 12.2767 13.1398 13.5795 k = 0.3577-0.3601 0.0425 ( 521 PWs) bands (ev): -5.1410 -2.4535 2.6338 4.5002 5.5440 9.0660 10.6941 11.6286 13.4985 k = 0.3557-0.3610 0.3358 ( 510 PWs) bands (ev): -4.7109 -2.1811 1.6892 3.3751 3.8891 9.3902 12.5319 14.0181 14.4074 k = 0.3616-0.3584-0.5440 ( 510 PWs) bands (ev): -4.3406 -2.8550 1.7082 2.6219 5.8801 9.5351 12.3020 13.1417 13.5581 k = 0.3597-0.3593-0.2507 ( 520 PWs) bands (ev): -4.6405 -3.4791 4.1318 4.4385 5.9651 8.8157 9.3146 9.8968 15.2988 the Fermi energy is 7.8242 ev ! total energy = -25.49879101 Ry Harris-Foulkes estimate = -25.49879102 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00319110 -0.00281932 -0.00293349 atom 2 type 1 force = -0.00319110 0.00281932 0.00293349 Total force = 0.007313 Total SCF correction = 0.000105 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -12.06 -0.00008557 -0.00004643 -0.00003211 -12.59 -6.83 -4.72 -0.00004643 -0.00007551 0.00001107 -6.83 -11.11 1.63 -0.00003211 0.00001107 -0.00008492 -4.72 1.63 -12.49 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 1.060764688 0.007355942 0.004859131 0.561823496 0.909144634 0.003818901 0.561581405 0.316968820 0.854328069 new unit-cell volume = 281.6429 (a.u.)^3 new positions in cryst coord As 0.267150922 0.275253315 0.277070148 As -0.267150922 -0.275253315 -0.277070148 new positions in cart coord (alat unit) As 0.593625487 0.340032818 0.239058091 As -0.593625487 -0.340032818 -0.239058091 Ekin = 0.00762309 Ry T = 967.9 K Etot = -25.49116792 new unit-cell volume = 281.64290 a.u.^3 ( 41.73517 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.060764688 0.007355942 0.004859131 0.561823496 0.909144634 0.003818901 0.561581405 0.316968820 0.854328069 ATOMIC_POSITIONS (crystal) As 0.267150922 0.275253315 0.277070148 As -0.267150922 -0.275253315 -0.277070148 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1171825 0.0648868 0.0452115), wk = 0.0625000 k( 2) = ( 0.1158401 0.0644828 0.3388714), wk = 0.0625000 k( 3) = ( 0.1198672 0.0656948 -0.5421084), wk = 0.0625000 k( 4) = ( 0.1185248 0.0652908 -0.2484485), wk = 0.0625000 k( 5) = ( 0.1157316 0.3411937 -0.0563490), wk = 0.0625000 k( 6) = ( 0.1143892 0.3407898 0.2373110), wk = 0.0625000 k( 7) = ( 0.1184164 0.3420017 -0.6436688), wk = 0.0625000 k( 8) = ( 0.1170740 0.3415977 -0.3500089), wk = 0.0625000 k( 9) = ( 0.1200841 -0.4877271 0.2483323), wk = 0.0625000 k( 10) = ( 0.1187417 -0.4881310 0.5419922), wk = 0.0625000 k( 11) = ( 0.1227689 -0.4869191 -0.3389875), wk = 0.0625000 k( 12) = ( 0.1214265 -0.4873231 -0.0453276), wk = 0.0625000 k( 13) = ( 0.1186333 -0.2114201 0.1467719), wk = 0.0625000 k( 14) = ( 0.1172909 -0.2118241 0.4404318), wk = 0.0625000 k( 15) = ( 0.1213181 -0.2106122 -0.4405480), wk = 0.0625000 k( 16) = ( 0.1199757 -0.2110162 -0.1468880), wk = 0.0625000 k( 17) = ( 0.3543406 -0.0812426 -0.0564651), wk = 0.0625000 k( 18) = ( 0.3529982 -0.0816465 0.2371948), wk = 0.0625000 k( 19) = ( 0.3570254 -0.0804346 -0.6437849), wk = 0.0625000 k( 20) = ( 0.3556830 -0.0808386 -0.3501250), wk = 0.0625000 k( 21) = ( 0.3528897 0.1950644 -0.1580255), wk = 0.0625000 k( 22) = ( 0.3515474 0.1946604 0.1356344), wk = 0.0625000 k( 23) = ( 0.3555745 0.1958723 -0.7453454), wk = 0.0625000 k( 24) = ( 0.3542321 0.1954684 -0.4516854), wk = 0.0625000 k( 25) = ( 0.3572423 -0.6338564 0.1466557), wk = 0.0625000 k( 26) = ( 0.3558999 -0.6342604 0.4403156), wk = 0.0625000 k( 27) = ( 0.3599271 -0.6330485 -0.4406641), wk = 0.0625000 k( 28) = ( 0.3585847 -0.6334525 -0.1470042), wk = 0.0625000 k( 29) = ( 0.3557914 -0.3575495 0.0450953), wk = 0.0625000 k( 30) = ( 0.3544490 -0.3579535 0.3387552), wk = 0.0625000 k( 31) = ( 0.3584762 -0.3567415 -0.5422245), wk = 0.0625000 k( 32) = ( 0.3571338 -0.3571455 -0.2485646), wk = 0.0625000 extrapolated charge 10.00731, renormalised to 10.00000 total cpu time spent up to now is 18.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.09E-08, avg # of iterations = 1.1 total cpu time spent up to now is 19.3 secs total energy = -25.49894385 Ry Harris-Foulkes estimate = -25.50309984 Ry estimated scf accuracy < 0.00000508 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 19.6 secs total energy = -25.49894507 Ry Harris-Foulkes estimate = -25.49894534 Ry estimated scf accuracy < 0.00000059 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.89E-09, avg # of iterations = 1.9 total cpu time spent up to now is 19.9 secs End of self-consistent calculation k = 0.1172 0.0649 0.0452 ( 531 PWs) bands (ev): -7.2720 1.3527 5.3058 5.3882 6.1725 9.5473 10.0654 10.2950 14.2703 k = 0.1158 0.0645 0.3389 ( 522 PWs) bands (ev): -6.2965 -1.1264 3.7554 5.3088 7.7120 7.9505 8.9093 11.4099 13.6993 k = 0.1199 0.0657-0.5421 ( 520 PWs) bands (ev): -4.8719 -3.3279 4.3150 4.4788 5.9592 8.9180 9.4443 10.0130 15.1441 k = 0.1185 0.0653-0.2484 ( 525 PWs) bands (ev): -6.7043 -0.1440 4.4767 4.9668 6.4227 9.0460 9.7689 11.1230 13.2352 k = 0.1157 0.3412-0.0563 ( 522 PWs) bands (ev): -6.2886 -1.1224 3.7290 5.3185 7.6991 7.9381 8.8747 11.4488 13.6560 k = 0.1144 0.3408 0.2373 ( 519 PWs) bands (ev): -5.9350 -0.9693 2.7451 3.8462 5.1439 9.9738 11.5526 11.6458 13.3630 k = 0.1184 0.3420-0.6437 ( 510 PWs) bands (ev): -4.4142 -2.8403 1.7046 2.6837 5.9770 9.5904 12.1697 13.2729 13.5736 k = 0.1171 0.3416-0.3500 ( 521 PWs) bands (ev): -5.2272 -2.4165 2.5172 4.6062 5.7894 9.0959 10.7678 11.8922 13.3055 k = 0.1201-0.4877 0.2483 ( 520 PWs) bands (ev): -4.8241 -3.3708 4.2957 4.4756 5.9464 8.9002 9.4166 10.0174 15.1626 k = 0.1187-0.4881 0.5420 ( 510 PWs) bands (ev): -4.3859 -2.8721 1.7090 2.6745 5.9911 9.5390 12.2220 13.2760 13.5448 k = 0.1228-0.4869-0.3390 ( 510 PWs) bands (ev): -4.6407 -2.3555 1.8033 3.3051 3.9237 9.5516 12.5260 13.8116 14.4156 k = 0.1214-0.4873-0.0453 ( 521 PWs) bands (ev): -5.1804 -2.4948 2.6222 4.5434 5.7630 9.0686 10.7423 11.7644 13.3744 k = 0.1186-0.2114 0.1468 ( 525 PWs) bands (ev): -6.6987 -0.1540 4.4663 4.9938 6.3952 9.0639 9.7740 11.1012 13.1952 k = 0.1173-0.2118 0.4404 ( 521 PWs) bands (ev): -5.2297 -2.4214 2.5116 4.6263 5.8094 9.0656 10.7924 11.9241 13.2755 k = 0.1213-0.2106-0.4405 ( 521 PWs) bands (ev): -5.2004 -2.4715 2.5911 4.5654 5.7978 9.0444 10.7699 11.8391 13.3388 k = 0.1200-0.2110-0.1469 ( 525 PWs) bands (ev): -6.6896 -0.1675 4.4876 5.0622 6.2142 9.0942 9.8936 11.0428 13.0575 k = 0.3543-0.0812-0.0565 ( 522 PWs) bands (ev): -6.2589 -1.1383 3.6333 5.3988 7.7675 7.8999 8.7273 11.4934 13.4796 k = 0.3530-0.0816 0.2372 ( 519 PWs) bands (ev): -5.9340 -0.9259 2.7100 3.8475 5.1308 9.7849 11.5200 11.6839 13.5092 k = 0.3570-0.0804-0.6438 ( 510 PWs) bands (ev): -4.4698 -2.7155 1.6940 2.6565 5.8095 9.6775 11.9832 13.1983 13.7583 k = 0.3557-0.0808-0.3501 ( 521 PWs) bands (ev): -5.1784 -2.4573 2.6185 4.5211 5.6300 9.1252 10.7347 11.6672 13.4826 k = 0.3529 0.1951-0.1580 ( 519 PWs) bands (ev): -5.9399 -0.9055 2.7015 3.8503 5.1247 9.7530 11.5042 11.6891 13.5526 k = 0.3515 0.1947 0.1356 ( 522 PWs) bands (ev): -6.1587 -1.7695 5.4078 5.6207 6.6450 8.1291 8.4132 9.3013 15.3015 k = 0.3556 0.1959-0.7453 ( 520 PWs) bands (ev): -5.2133 -2.2455 1.9581 4.3801 5.7030 9.8185 9.9479 12.7139 14.8826 k = 0.3542 0.1955-0.4517 ( 510 PWs) bands (ev): -4.7485 -2.1189 1.6606 3.3303 3.9130 9.3673 12.5492 14.0270 14.3873 k = 0.3572-0.6339 0.1467 ( 510 PWs) bands (ev): -4.4662 -2.7114 1.6961 2.6468 5.7934 9.6607 12.0079 13.1796 13.7607 k = 0.3559-0.6343 0.4403 ( 520 PWs) bands (ev): -5.2021 -2.2537 1.9464 4.3820 5.6946 9.7941 9.9665 12.7403 14.8797 k = 0.3599-0.6330-0.4407 ( 520 PWs) bands (ev): -5.1649 -2.3107 1.9033 4.4214 5.7506 9.7144 10.0259 12.7770 14.8874 k = 0.3586-0.6335-0.1470 ( 510 PWs) bands (ev): -4.3792 -2.8343 1.7096 2.6345 5.8723 9.5541 12.2417 13.1852 13.5831 k = 0.3558-0.3575 0.0451 ( 521 PWs) bands (ev): -5.1608 -2.4857 2.6441 4.5194 5.6149 9.1196 10.7326 11.6229 13.4877 k = 0.3544-0.3580 0.3388 ( 510 PWs) bands (ev): -4.7146 -2.1753 1.6861 3.3183 3.9093 9.3910 12.5432 13.9820 14.4045 k = 0.3585-0.3567-0.5422 ( 510 PWs) bands (ev): -4.3539 -2.8706 1.7115 2.6352 5.9019 9.5188 12.2697 13.1987 13.5635 k = 0.3571-0.3571-0.2486 ( 520 PWs) bands (ev): -4.6717 -3.5142 4.1949 4.4769 5.9785 8.8710 9.3382 9.9884 15.2794 the Fermi energy is 7.8458 ev ! total energy = -25.49894517 Ry Harris-Foulkes estimate = -25.49894518 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00323053 -0.00298253 -0.00284251 atom 2 type 1 force = -0.00323053 0.00298253 0.00284251 Total force = 0.007404 Total SCF correction = 0.000098 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.26 -0.00010559 -0.00001886 -0.00000710 -15.53 -2.77 -1.04 -0.00001886 -0.00008825 -0.00000124 -2.77 -12.98 -0.18 -0.00000710 -0.00000124 -0.00009699 -1.04 -0.18 -14.27 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 1.058114838 0.007077124 0.004744584 0.560920968 0.905867499 0.003733982 0.560746987 0.315999545 0.850283893 new unit-cell volume = 278.6591 (a.u.)^3 new positions in cryst coord As 0.267766558 0.275028022 0.276720458 As -0.267766558 -0.275028022 -0.276720458 new positions in cart coord (alat unit) As 0.592766915 0.338477502 0.237588339 As -0.592766915 -0.338477502 -0.237588339 Ekin = 0.00042244 Ry T = 831.8 K Etot = -25.49852273 new unit-cell volume = 278.65913 a.u.^3 ( 41.29302 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.058114838 0.007077124 0.004744584 0.560920968 0.905867499 0.003733982 0.560746987 0.315999545 0.850283893 ATOMIC_POSITIONS (crystal) As 0.267766558 0.275028022 0.276720458 As -0.267766558 -0.275028022 -0.276720458 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1174962 0.0650477 0.0453488), wk = 0.0625000 k( 2) = ( 0.1161759 0.0646491 0.3403870), wk = 0.0625000 k( 3) = ( 0.1201368 0.0658449 -0.5447278), wk = 0.0625000 k( 4) = ( 0.1188165 0.0654463 -0.2496895), wk = 0.0625000 k( 5) = ( 0.1160997 0.3423119 -0.0567727), wk = 0.0625000 k( 6) = ( 0.1147794 0.3419133 0.2382655), wk = 0.0625000 k( 7) = ( 0.1187402 0.3431092 -0.6468493), wk = 0.0625000 k( 8) = ( 0.1174200 0.3427105 -0.3518110), wk = 0.0625000 k( 9) = ( 0.1202893 -0.4894808 0.2495918), wk = 0.0625000 k( 10) = ( 0.1189690 -0.4898794 0.5446300), wk = 0.0625000 k( 11) = ( 0.1229299 -0.4886836 -0.3404848), wk = 0.0625000 k( 12) = ( 0.1216096 -0.4890822 -0.0454465), wk = 0.0625000 k( 13) = ( 0.1188928 -0.2122166 0.1474703), wk = 0.0625000 k( 14) = ( 0.1175725 -0.2126152 0.4425085), wk = 0.0625000 k( 15) = ( 0.1215333 -0.2114193 -0.4426063), wk = 0.0625000 k( 16) = ( 0.1202130 -0.2118180 -0.1475680), wk = 0.0625000 k( 17) = ( 0.3552055 -0.0817226 -0.0568705), wk = 0.0625000 k( 18) = ( 0.3538852 -0.0821212 0.2381678), wk = 0.0625000 k( 19) = ( 0.3578460 -0.0809254 -0.6469471), wk = 0.0625000 k( 20) = ( 0.3565258 -0.0813240 -0.3519088), wk = 0.0625000 k( 21) = ( 0.3538089 0.1955417 -0.1589920), wk = 0.0625000 k( 22) = ( 0.3524886 0.1951430 0.1360463), wk = 0.0625000 k( 23) = ( 0.3564495 0.1963389 -0.7490686), wk = 0.0625000 k( 24) = ( 0.3551292 0.1959403 -0.4540303), wk = 0.0625000 k( 25) = ( 0.3579986 -0.6362511 0.1473725), wk = 0.0625000 k( 26) = ( 0.3566783 -0.6366497 0.4424108), wk = 0.0625000 k( 27) = ( 0.3606391 -0.6354539 -0.4427041), wk = 0.0625000 k( 28) = ( 0.3593189 -0.6358525 -0.1476658), wk = 0.0625000 k( 29) = ( 0.3566020 -0.3589869 0.0452510), wk = 0.0625000 k( 30) = ( 0.3552817 -0.3593855 0.3402893), wk = 0.0625000 k( 31) = ( 0.3592426 -0.3581896 -0.5448256), wk = 0.0625000 k( 32) = ( 0.3579223 -0.3585882 -0.2497873), wk = 0.0625000 extrapolated charge 9.89293, renormalised to 10.00000 total cpu time spent up to now is 20.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 20.7 secs total energy = -25.49908279 Ry Harris-Foulkes estimate = -25.43784473 Ry estimated scf accuracy < 0.00005602 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.60E-07, avg # of iterations = 3.0 total cpu time spent up to now is 21.2 secs total energy = -25.49917704 Ry Harris-Foulkes estimate = -25.49919880 Ry estimated scf accuracy < 0.00005351 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-07, avg # of iterations = 1.0 total cpu time spent up to now is 21.4 secs total energy = -25.49917708 Ry Harris-Foulkes estimate = -25.49918044 Ry estimated scf accuracy < 0.00000937 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.37E-08, avg # of iterations = 1.0 total cpu time spent up to now is 21.7 secs total energy = -25.49917619 Ry Harris-Foulkes estimate = -25.49917754 Ry estimated scf accuracy < 0.00000236 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 2.6 total cpu time spent up to now is 22.0 secs End of self-consistent calculation k = 0.1175 0.0650 0.0453 ( 531 PWs) bands (ev): -7.2243 1.5249 5.4303 5.5069 6.3157 9.7024 10.2318 10.4387 14.4157 k = 0.1162 0.0646 0.3404 ( 522 PWs) bands (ev): -6.2359 -0.9959 3.8378 5.4229 7.8643 8.1105 9.0448 11.5926 13.8337 k = 0.1201 0.0658-0.5447 ( 520 PWs) bands (ev): -4.7830 -3.2433 4.4124 4.5748 6.0890 9.0729 9.5832 10.1610 15.2933 k = 0.1188 0.0654-0.2497 ( 525 PWs) bands (ev): -6.6486 0.0034 4.5821 5.0847 6.5407 9.2094 9.9160 11.2857 13.3715 k = 0.1161 0.3423-0.0568 ( 522 PWs) bands (ev): -6.2301 -0.9967 3.8150 5.4387 7.8621 8.1037 9.0177 11.6276 13.7959 k = 0.1148 0.3419 0.2383 ( 519 PWs) bands (ev): -5.8727 -0.8288 2.8235 3.9479 5.2611 10.0978 11.7516 11.8274 13.5511 k = 0.1187 0.3431-0.6468 ( 510 PWs) bands (ev): -4.3279 -2.7290 1.7744 2.7602 6.0958 9.7575 12.3225 13.4568 13.7511 k = 0.1174 0.3427-0.3518 ( 521 PWs) bands (ev): -5.1508 -2.3113 2.6038 4.7125 5.9029 9.2425 10.9526 12.0557 13.4561 k = 0.1203-0.4895 0.2496 ( 520 PWs) bands (ev): -4.7431 -3.2851 4.3972 4.5795 6.0843 9.0654 9.5641 10.1685 15.3039 k = 0.1190-0.4899 0.5446 ( 510 PWs) bands (ev): -4.3043 -2.7583 1.7807 2.7523 6.1095 9.7165 12.3721 13.4639 13.7285 k = 0.1229-0.4887-0.3405 ( 510 PWs) bands (ev): -4.5636 -2.2321 1.8778 3.4014 4.0225 9.6545 12.7156 14.0168 14.6323 k = 0.1216-0.4891-0.0454 ( 521 PWs) bands (ev): -5.1104 -2.3807 2.6978 4.6557 5.8809 9.2204 10.9323 11.9410 13.5242 k = 0.1189-0.2122 0.1475 ( 525 PWs) bands (ev): -6.6444 -0.0087 4.5816 5.1059 6.5165 9.2257 9.9279 11.2669 13.3358 k = 0.1176-0.2126 0.4425 ( 521 PWs) bands (ev): -5.1524 -2.3134 2.5964 4.7274 5.9189 9.2162 10.9696 12.0830 13.4304 k = 0.1215-0.2114-0.4426 ( 521 PWs) bands (ev): -5.1259 -2.3581 2.6685 4.6717 5.9096 9.1939 10.9452 12.0055 13.4873 k = 0.1202-0.2118-0.1476 ( 525 PWs) bands (ev): -6.6361 -0.0187 4.5960 5.1705 6.3517 9.2491 10.0362 11.2159 13.2106 k = 0.3552-0.0817-0.0569 ( 522 PWs) bands (ev): -6.2026 -1.0103 3.7289 5.5082 7.9208 8.0698 8.8846 11.6636 13.6358 k = 0.3539-0.0821 0.2382 ( 519 PWs) bands (ev): -5.8711 -0.7912 2.7924 3.9506 5.2480 9.9277 11.7220 11.8597 13.6821 k = 0.3578-0.0809-0.6469 ( 510 PWs) bands (ev): -4.3774 -2.6159 1.7643 2.7348 5.9414 9.8349 12.1585 13.3939 13.9154 k = 0.3565-0.0813-0.3519 ( 521 PWs) bands (ev): -5.1057 -2.3476 2.6942 4.6354 5.7573 9.2640 10.9187 11.8505 13.6181 k = 0.3538 0.1955-0.1590 ( 519 PWs) bands (ev): -5.8761 -0.7728 2.7883 3.9458 5.2447 9.8981 11.7141 11.8661 13.7215 k = 0.3525 0.1951 0.1360 ( 522 PWs) bands (ev): -6.1001 -1.6667 5.5368 5.7314 6.8202 8.2819 8.5364 9.4849 15.4610 k = 0.3564 0.1963-0.7491 ( 520 PWs) bands (ev): -5.1390 -2.1379 2.0312 4.4816 5.8343 9.9750 10.1378 12.9181 15.0415 k = 0.3551 0.1959-0.4540 ( 510 PWs) bands (ev): -4.6580 -2.0177 1.7468 3.4179 4.0142 9.4881 12.7356 14.2087 14.6079 k = 0.3580-0.6363 0.1474 ( 510 PWs) bands (ev): -4.3749 -2.6142 1.7674 2.7282 5.9311 9.8248 12.1764 13.3789 13.9182 k = 0.3567-0.6366 0.4424 ( 520 PWs) bands (ev): -5.1300 -2.1466 2.0180 4.4899 5.8324 9.9562 10.1552 12.9377 15.0289 k = 0.3606-0.6355-0.4427 ( 520 PWs) bands (ev): -5.0960 -2.1980 1.9800 4.5240 5.8820 9.8814 10.2132 12.9686 15.0393 k = 0.3593-0.6359-0.1477 ( 510 PWs) bands (ev): -4.2951 -2.7266 1.7794 2.7172 6.0022 9.7295 12.3830 13.3800 13.7627 k = 0.3566-0.3590 0.0453 ( 521 PWs) bands (ev): -5.0917 -2.3725 2.7161 4.6346 5.7446 9.2639 10.9233 11.8136 13.6278 k = 0.3553-0.3594 0.3403 ( 510 PWs) bands (ev): -4.6292 -2.0702 1.7707 3.4153 4.0076 9.5119 12.7309 14.1713 14.6258 k = 0.3592-0.3582-0.5448 ( 510 PWs) bands (ev): -4.2736 -2.7580 1.7824 2.7164 6.0255 9.6986 12.4150 13.3945 13.7466 k = 0.3579-0.3586-0.2498 ( 520 PWs) bands (ev): -4.6049 -3.4128 4.3017 4.5801 6.1129 9.0379 9.4919 10.1372 15.4120 the Fermi energy is 8.0214 ev ! total energy = -25.49917682 Ry Harris-Foulkes estimate = -25.49917684 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00115013 -0.00383627 -0.00359303 atom 2 type 1 force = -0.00115013 0.00383627 0.00359303 Total force = 0.007609 Total SCF correction = 0.000140 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -5.43 -0.00005401 -0.00002553 -0.00001359 -7.94 -3.76 -2.00 -0.00002553 -0.00002961 -0.00000772 -3.76 -4.36 -1.14 -0.00001359 -0.00000772 -0.00002716 -2.00 -1.14 -4.00 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 1.057433776 0.006432953 0.004431447 0.559363779 0.902049560 0.003454045 0.559307405 0.314638941 0.845794051 new unit-cell volume = 276.0070 (a.u.)^3 new positions in cryst coord As 0.268414294 0.274641940 0.276128640 As -0.268414294 -0.274641940 -0.276128640 new positions in cart coord (alat unit) As 0.591895887 0.336348160 0.235686050 As -0.591895887 -0.336348160 -0.235686050 Ekin = 0.00056790 Ry T = 730.3 K Etot = -25.49860892 new unit-cell volume = 276.00701 a.u.^3 ( 40.90002 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.057433776 0.006432953 0.004431447 0.559363779 0.902049560 0.003454045 0.559307405 0.314638941 0.845794051 ATOMIC_POSITIONS (crystal) As 0.268414294 0.274641940 0.276128640 As -0.268414294 -0.274641940 -0.276128640 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1176211 0.0654613 0.0456577), wk = 0.0625000 k( 2) = ( 0.1163807 0.0650950 0.3421944), wk = 0.0625000 k( 3) = ( 0.1201021 0.0661937 -0.5474159), wk = 0.0625000 k( 4) = ( 0.1188616 0.0658275 -0.2508791), wk = 0.0625000 k( 5) = ( 0.1163583 0.3437842 -0.0570446), wk = 0.0625000 k( 6) = ( 0.1151179 0.3434180 0.2394922), wk = 0.0625000 k( 7) = ( 0.1188393 0.3445167 -0.6501182), wk = 0.0625000 k( 8) = ( 0.1175988 0.3441504 -0.3535814), wk = 0.0625000 k( 9) = ( 0.1201467 -0.4911847 0.2510621), wk = 0.0625000 k( 10) = ( 0.1189062 -0.4915509 0.5475989), wk = 0.0625000 k( 11) = ( 0.1226277 -0.4904522 -0.3420114), wk = 0.0625000 k( 12) = ( 0.1213872 -0.4908184 -0.0454746), wk = 0.0625000 k( 13) = ( 0.1188839 -0.2128617 0.1483599), wk = 0.0625000 k( 14) = ( 0.1176434 -0.2132279 0.4448967), wk = 0.0625000 k( 15) = ( 0.1213649 -0.2121292 -0.4447137), wk = 0.0625000 k( 16) = ( 0.1201244 -0.2124955 -0.1481769), wk = 0.0625000 k( 17) = ( 0.3553667 -0.0815730 -0.0568616), wk = 0.0625000 k( 18) = ( 0.3541262 -0.0819392 0.2396752), wk = 0.0625000 k( 19) = ( 0.3578477 -0.0808405 -0.6499351), wk = 0.0625000 k( 20) = ( 0.3566072 -0.0812067 -0.3533984), wk = 0.0625000 k( 21) = ( 0.3541039 0.1967500 -0.1595638), wk = 0.0625000 k( 22) = ( 0.3528634 0.1963838 0.1369730), wk = 0.0625000 k( 23) = ( 0.3565849 0.1974825 -0.7526374), wk = 0.0625000 k( 24) = ( 0.3553444 0.1971162 -0.4561006), wk = 0.0625000 k( 25) = ( 0.3578923 -0.6382189 0.1485429), wk = 0.0625000 k( 26) = ( 0.3566518 -0.6385851 0.4450797), wk = 0.0625000 k( 27) = ( 0.3603732 -0.6374864 -0.4445307), wk = 0.0625000 k( 28) = ( 0.3591328 -0.6378526 -0.1479939), wk = 0.0625000 k( 29) = ( 0.3566295 -0.3598959 0.0458407), wk = 0.0625000 k( 30) = ( 0.3553890 -0.3602622 0.3423774), wk = 0.0625000 k( 31) = ( 0.3591104 -0.3591634 -0.5472329), wk = 0.0625000 k( 32) = ( 0.3578700 -0.3595297 -0.2506961), wk = 0.0625000 extrapolated charge 9.90392, renormalised to 10.00000 total cpu time spent up to now is 22.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 22.9 secs total energy = -25.49918745 Ry Harris-Foulkes estimate = -25.44374920 Ry estimated scf accuracy < 0.00004215 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-07, avg # of iterations = 3.0 total cpu time spent up to now is 23.3 secs total energy = -25.49926005 Ry Harris-Foulkes estimate = -25.49927680 Ry estimated scf accuracy < 0.00004153 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.15E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.6 secs total energy = -25.49926002 Ry Harris-Foulkes estimate = -25.49926268 Ry estimated scf accuracy < 0.00000742 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.42E-08, avg # of iterations = 1.0 total cpu time spent up to now is 23.9 secs total energy = -25.49925929 Ry Harris-Foulkes estimate = -25.49926037 Ry estimated scf accuracy < 0.00000186 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-08, avg # of iterations = 2.6 total cpu time spent up to now is 24.2 secs End of self-consistent calculation k = 0.1176 0.0655 0.0457 ( 531 PWs) bands (ev): -7.1772 1.6777 5.5295 5.6351 6.4459 9.8515 10.3798 10.5753 14.5247 k = 0.1164 0.0651 0.3422 ( 522 PWs) bands (ev): -6.1739 -0.8767 3.9136 5.5312 7.9950 8.2490 9.1504 11.7482 13.9512 k = 0.1201 0.0662-0.5474 ( 520 PWs) bands (ev): -4.6925 -3.1643 4.4962 4.6615 6.1994 9.2088 9.6923 10.2808 15.4437 k = 0.1189 0.0658-0.2509 ( 525 PWs) bands (ev): -6.5946 0.1432 4.6732 5.1972 6.6409 9.3470 10.0560 11.4330 13.4865 k = 0.1164 0.3438-0.0570 ( 522 PWs) bands (ev): -6.1704 -0.8828 3.8959 5.5526 8.0041 8.2482 9.1328 11.7756 13.9207 k = 0.1151 0.3434 0.2395 ( 519 PWs) bands (ev): -5.8070 -0.7103 2.8932 4.0567 5.3560 10.2048 11.9259 11.9798 13.7098 k = 0.1188 0.3445-0.6501 ( 510 PWs) bands (ev): -4.2376 -2.6264 1.8384 2.8208 6.1822 9.8973 12.4674 13.6317 13.9130 k = 0.1176 0.3442-0.3536 ( 521 PWs) bands (ev): -5.0759 -2.2074 2.6874 4.7944 6.0051 9.3467 11.0975 12.2076 13.5897 k = 0.1201-0.4912 0.2511 ( 520 PWs) bands (ev): -4.6632 -3.2022 4.4848 4.6744 6.2039 9.2116 9.6844 10.2900 15.4467 k = 0.1189-0.4916 0.5476 ( 510 PWs) bands (ev): -4.2201 -2.6518 1.8462 2.8151 6.1947 9.8704 12.5126 13.6405 13.8976 k = 0.1226-0.4905-0.3420 ( 510 PWs) bands (ev): -4.4860 -2.1206 1.9351 3.5064 4.0966 9.7503 12.8828 14.2042 14.8457 k = 0.1214-0.4908-0.0455 ( 521 PWs) bands (ev): -5.0421 -2.2757 2.7669 4.7579 5.9818 9.3527 11.1148 12.1009 13.6640 k = 0.1189-0.2129 0.1484 ( 525 PWs) bands (ev): -6.5920 0.1299 4.6826 5.2117 6.6202 9.3607 10.0737 11.4197 13.4576 k = 0.1176-0.2132 0.4449 ( 521 PWs) bands (ev): -5.0768 -2.2064 2.6787 4.8027 6.0172 9.3264 11.1050 12.2298 13.5689 k = 0.1214-0.2121-0.4447 ( 521 PWs) bands (ev): -5.0521 -2.2558 2.7415 4.7672 6.0032 9.3266 11.1118 12.1500 13.6280 k = 0.1201-0.2125-0.1482 ( 525 PWs) bands (ev): -6.5847 0.1038 4.7166 5.2598 6.4991 9.3938 10.1729 11.3648 13.3478 k = 0.3554-0.0816-0.0569 ( 522 PWs) bands (ev): -6.1521 -0.9014 3.8229 5.6280 8.0656 8.2331 9.0277 11.8380 13.7892 k = 0.3541-0.0819 0.2397 ( 519 PWs) bands (ev): -5.8109 -0.6676 2.8754 4.0396 5.3481 10.0684 11.9016 12.0281 13.8302 k = 0.3578-0.0808-0.6499 ( 510 PWs) bands (ev): -4.2862 -2.5295 1.8261 2.8108 6.0731 9.9746 12.3179 13.5629 14.0369 k = 0.3566-0.0812-0.3534 ( 521 PWs) bands (ev): -5.0409 -2.2538 2.7739 4.7421 5.8950 9.3997 11.0938 12.0242 13.7382 k = 0.3541 0.1967-0.1596 ( 519 PWs) bands (ev): -5.8145 -0.6529 2.8762 4.0273 5.3478 10.0428 11.9038 12.0334 13.8628 k = 0.3529 0.1964 0.1370 ( 522 PWs) bands (ev): -6.0391 -1.5804 5.6523 5.8435 6.9832 8.4186 8.6367 9.6442 15.6086 k = 0.3566 0.1975-0.7526 ( 520 PWs) bands (ev): -5.0602 -2.0492 2.1034 4.5727 5.9467 10.1056 10.3133 13.1055 15.1968 k = 0.3553 0.1971-0.4561 ( 510 PWs) bands (ev): -4.5725 -1.9204 1.8236 3.4911 4.1093 9.6092 12.9035 14.3541 14.7975 k = 0.3579-0.6382 0.1485 ( 510 PWs) bands (ev): -4.2846 -2.5308 1.8299 2.8074 6.0688 9.9722 12.3276 13.5525 14.0394 k = 0.3567-0.6386 0.4451 ( 520 PWs) bands (ev): -5.0539 -2.0582 2.0896 4.5872 5.9523 10.0925 10.3292 13.1166 15.1759 k = 0.3604-0.6375-0.4445 ( 520 PWs) bands (ev): -5.0273 -2.1007 2.0471 4.6303 5.9972 10.0330 10.3850 13.1469 15.1444 k = 0.3591-0.6379-0.1480 ( 510 PWs) bands (ev): -4.2195 -2.6275 1.8477 2.7948 6.1292 9.8842 12.5102 13.5722 13.9308 k = 0.3566-0.3599 0.0458 ( 521 PWs) bands (ev): -5.0318 -2.2728 2.7906 4.7414 5.8857 9.4052 11.1045 11.9982 13.7524 k = 0.3554-0.3603 0.3424 ( 510 PWs) bands (ev): -4.5515 -1.9651 1.8447 3.4982 4.1009 9.6320 12.9009 14.3271 14.8137 k = 0.3591-0.3592-0.5472 ( 510 PWs) bands (ev): -4.2035 -2.6518 1.8516 2.7928 6.1457 9.8600 12.5455 13.5880 13.9168 k = 0.3579-0.3595-0.2507 ( 520 PWs) bands (ev): -4.5481 -3.3282 4.4186 4.6950 6.2378 9.2077 9.6345 10.2908 15.5059 the Fermi energy is 8.1824 ev ! total energy = -25.49925979 Ry Harris-Foulkes estimate = -25.49925983 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00035549 -0.00427916 -0.00394839 atom 2 type 1 force = 0.00035549 0.00427916 0.00394839 Total force = 0.008250 Total SCF correction = 0.000179 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 2.10 -0.00001448 -0.00002809 -0.00001750 -2.13 -4.13 -2.57 -0.00002809 0.00002303 -0.00001175 -4.13 3.39 -1.73 -0.00001750 -0.00001175 0.00003435 -2.57 -1.73 5.05 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 1.056589272 0.005394202 0.003872636 0.557382850 0.902352918 0.002915228 0.557471963 0.313033636 0.847067653 new unit-cell volume = 276.5936 (a.u.)^3 new positions in cryst coord As 0.269047334 0.274108944 0.275325555 As -0.269047334 -0.274108944 -0.275325555 new positions in cart coord (alat unit) As 0.590542429 0.334980460 0.235060384 As -0.590542429 -0.334980460 -0.235060384 Ekin = 0.00063993 Ry T = 651.6 K Etot = -25.49861986 new unit-cell volume = 276.59356 a.u.^3 ( 40.98694 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.056589272 0.005394202 0.003872636 0.557382850 0.902352918 0.002915228 0.557471963 0.313033636 0.847067653 ATOMIC_POSITIONS (crystal) As 0.269047334 0.274108944 0.275325555 As -0.269047334 -0.274108944 -0.275325555 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1178024 0.0656123 0.0457928), wk = 0.0625000 k( 2) = ( 0.1167191 0.0653253 0.3417476), wk = 0.0625000 k( 3) = ( 0.1199689 0.0661863 -0.5461168), wk = 0.0625000 k( 4) = ( 0.1188857 0.0658993 -0.2501620), wk = 0.0625000 k( 5) = ( 0.1167570 0.3436412 -0.0562647), wk = 0.0625000 k( 6) = ( 0.1156738 0.3433542 0.2396901), wk = 0.0625000 k( 7) = ( 0.1189236 0.3442152 -0.6481743), wk = 0.0625000 k( 8) = ( 0.1178403 0.3439282 -0.3522195), wk = 0.0625000 k( 9) = ( 0.1198931 -0.4904455 0.2499079), wk = 0.0625000 k( 10) = ( 0.1188098 -0.4907325 0.5458627), wk = 0.0625000 k( 11) = ( 0.1220596 -0.4898715 -0.3420017), wk = 0.0625000 k( 12) = ( 0.1209764 -0.4901585 -0.0460469), wk = 0.0625000 k( 13) = ( 0.1188477 -0.2124166 0.1478503), wk = 0.0625000 k( 14) = ( 0.1177645 -0.2127036 0.4438051), wk = 0.0625000 k( 15) = ( 0.1210143 -0.2118426 -0.4440592), wk = 0.0625000 k( 16) = ( 0.1199310 -0.2121296 -0.1481045), wk = 0.0625000 k( 17) = ( 0.3555358 -0.0809049 -0.0565188), wk = 0.0625000 k( 18) = ( 0.3544525 -0.0811919 0.2394360), wk = 0.0625000 k( 19) = ( 0.3577023 -0.0803309 -0.6484284), wk = 0.0625000 k( 20) = ( 0.3566191 -0.0806179 -0.3524736), wk = 0.0625000 k( 21) = ( 0.3544904 0.1971240 -0.1585764), wk = 0.0625000 k( 22) = ( 0.3534072 0.1968370 0.1373784), wk = 0.0625000 k( 23) = ( 0.3566570 0.1976980 -0.7504860), wk = 0.0625000 k( 24) = ( 0.3555737 0.1974110 -0.4545312), wk = 0.0625000 k( 25) = ( 0.3576265 -0.6369627 0.1475962), wk = 0.0625000 k( 26) = ( 0.3565432 -0.6372497 0.4435510), wk = 0.0625000 k( 27) = ( 0.3597930 -0.6363887 -0.4443134), wk = 0.0625000 k( 28) = ( 0.3587098 -0.6366757 -0.1483586), wk = 0.0625000 k( 29) = ( 0.3565811 -0.3589338 0.0455387), wk = 0.0625000 k( 30) = ( 0.3554979 -0.3592208 0.3414935), wk = 0.0625000 k( 31) = ( 0.3587477 -0.3583598 -0.5463709), wk = 0.0625000 k( 32) = ( 0.3576644 -0.3586468 -0.2504161), wk = 0.0625000 extrapolated charge 10.02121, renormalised to 10.00000 total cpu time spent up to now is 24.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.98E-08, avg # of iterations = 1.0 total cpu time spent up to now is 25.3 secs total energy = -25.49937038 Ry Harris-Foulkes estimate = -25.51164246 Ry estimated scf accuracy < 0.00000696 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.96E-08, avg # of iterations = 2.0 total cpu time spent up to now is 25.6 secs total energy = -25.49937474 Ry Harris-Foulkes estimate = -25.49937566 Ry estimated scf accuracy < 0.00000185 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-08, avg # of iterations = 1.3 total cpu time spent up to now is 25.9 secs total energy = -25.49937491 Ry Harris-Foulkes estimate = -25.49937496 Ry estimated scf accuracy < 0.00000011 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 1.8 total cpu time spent up to now is 26.2 secs End of self-consistent calculation k = 0.1178 0.0656 0.0458 ( 531 PWs) bands (ev): -7.1758 1.6464 5.5196 5.5876 6.4216 9.8394 10.3690 10.5266 14.4881 k = 0.1167 0.0653 0.3417 ( 522 PWs) bands (ev): -6.1732 -0.9139 3.9096 5.5372 7.9659 8.2152 9.0840 11.7275 13.9072 k = 0.1200 0.0662-0.5461 ( 520 PWs) bands (ev): -4.6911 -3.1998 4.4952 4.6593 6.1716 9.1928 9.6422 10.2727 15.4404 k = 0.1189 0.0659-0.2502 ( 525 PWs) bands (ev): -6.5970 0.1041 4.6631 5.1887 6.6246 9.3142 10.0577 11.3902 13.4388 k = 0.1168 0.3436-0.0563 ( 522 PWs) bands (ev): -6.1694 -0.9178 3.8953 5.5515 7.9723 8.2130 9.0670 11.7443 13.8807 k = 0.1157 0.3434 0.2397 ( 519 PWs) bands (ev): -5.8042 -0.7322 2.8932 4.0159 5.3156 10.1699 11.8775 11.9424 13.6597 k = 0.1189 0.3442-0.6482 ( 510 PWs) bands (ev): -4.2396 -2.6480 1.8249 2.8096 6.1551 9.8493 12.4249 13.5988 13.8851 k = 0.1178 0.3439-0.3522 ( 521 PWs) bands (ev): -5.0813 -2.2365 2.6923 4.7644 5.9982 9.3198 11.0708 12.1624 13.5765 k = 0.1199-0.4904 0.2499 ( 520 PWs) bands (ev): -4.6667 -3.2275 4.4821 4.6663 6.1748 9.1930 9.6328 10.2745 15.4490 k = 0.1188-0.4907 0.5459 ( 510 PWs) bands (ev): -4.2247 -2.6688 1.8298 2.8058 6.1657 9.8290 12.4607 13.6027 13.8676 k = 0.1221-0.4899-0.3420 ( 510 PWs) bands (ev): -4.5013 -2.1052 1.8965 3.4706 4.0799 9.7317 12.8444 14.1557 14.8002 k = 0.1210-0.4902-0.0460 ( 521 PWs) bands (ev): -5.0511 -2.2916 2.7591 4.7316 5.9785 9.3128 11.0696 12.0715 13.6261 k = 0.1188-0.2124 0.1479 ( 525 PWs) bands (ev): -6.5951 0.0969 4.6668 5.2016 6.6034 9.3238 10.0716 11.3805 13.4159 k = 0.1178-0.2127 0.4438 ( 521 PWs) bands (ev): -5.0832 -2.2363 2.6869 4.7706 6.0126 9.3061 11.0760 12.1820 13.5593 k = 0.1210-0.2118-0.4441 ( 521 PWs) bands (ev): -5.0597 -2.2785 2.7403 4.7414 5.9991 9.2976 11.0716 12.1105 13.5977 k = 0.1199-0.2121-0.1481 ( 525 PWs) bands (ev): -6.5878 0.0806 4.6809 5.2438 6.5050 9.3531 10.1386 11.3343 13.3236 k = 0.3555-0.0809-0.0565 ( 522 PWs) bands (ev): -6.1523 -0.9244 3.8338 5.6027 8.0040 8.1904 8.9748 11.7978 13.7712 k = 0.3545-0.0812 0.2394 ( 519 PWs) bands (ev): -5.8081 -0.6965 2.8728 4.0137 5.3063 10.0587 11.8525 11.9721 13.7584 k = 0.3577-0.0803-0.6484 ( 510 PWs) bands (ev): -4.2817 -2.5667 1.8171 2.7991 6.0617 9.9151 12.3147 13.5459 13.9870 k = 0.3566-0.0806-0.3525 ( 521 PWs) bands (ev): -5.0485 -2.2720 2.7614 4.7148 5.9038 9.3583 11.0468 12.0035 13.6892 k = 0.3545 0.1971-0.1586 ( 519 PWs) bands (ev): -5.8098 -0.6869 2.8716 4.0076 5.3054 10.0358 11.8515 11.9759 13.7833 k = 0.3534 0.1968 0.1374 ( 522 PWs) bands (ev): -6.0257 -1.6057 5.6509 5.7940 6.9340 8.3846 8.5667 9.5787 15.5866 k = 0.3567 0.1977-0.7505 ( 520 PWs) bands (ev): -5.0441 -2.0884 2.0853 4.5603 5.9068 10.0450 10.2741 13.0630 15.1486 k = 0.3556 0.1974-0.4545 ( 510 PWs) bands (ev): -4.5732 -1.9471 1.8061 3.4753 4.0835 9.6194 12.8612 14.2886 14.7650 k = 0.3576-0.6370 0.1476 ( 510 PWs) bands (ev): -4.2785 -2.5679 1.8192 2.7952 6.0540 9.9125 12.3229 13.5387 13.9865 k = 0.3565-0.6372 0.4436 ( 520 PWs) bands (ev): -5.0384 -2.0963 2.0760 4.5697 5.9115 10.0335 10.2862 13.0705 15.1389 k = 0.3598-0.6364-0.4443 ( 520 PWs) bands (ev): -5.0147 -2.1283 2.0457 4.5938 5.9361 9.9840 10.3258 13.1042 15.1293 k = 0.3587-0.6367-0.1484 ( 510 PWs) bands (ev): -4.2217 -2.6453 1.8297 2.7839 6.1010 9.8286 12.4674 13.5482 13.8959 k = 0.3566-0.3589 0.0455 ( 521 PWs) bands (ev): -5.0418 -2.2850 2.7748 4.7113 5.8977 9.3597 11.0500 11.9846 13.7000 k = 0.3555-0.3592 0.3415 ( 510 PWs) bands (ev): -4.5582 -1.9800 1.8236 3.4777 4.0797 9.6391 12.8589 14.2652 14.7735 k = 0.3587-0.3584-0.5464 ( 510 PWs) bands (ev): -4.2101 -2.6649 1.8325 2.7841 6.1192 9.8111 12.4949 13.5583 13.8801 k = 0.3577-0.3586-0.2504 ( 520 PWs) bands (ev): -4.5670 -3.3249 4.4246 4.6717 6.1881 9.1737 9.5826 10.2696 15.5079 the Fermi energy is 8.0481 ev ! total energy = -25.49937492 Ry Harris-Foulkes estimate = -25.49937493 Ry estimated scf accuracy < 9.1E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00025256 -0.00244866 -0.00242498 atom 2 type 1 force = -0.00025256 0.00244866 0.00242498 Total force = 0.004887 Total SCF correction = 0.000065 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.50 -0.00002130 -0.00002520 -0.00001617 -3.13 -3.71 -2.38 -0.00002520 -0.00000129 0.00000901 -3.71 -0.19 1.33 -0.00001617 0.00000901 -0.00000806 -2.38 1.33 -1.19 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 1.055473536 0.004017424 0.003094039 0.554973939 0.902179295 0.002370310 0.555224783 0.311355815 0.846916361 new unit-cell volume = 276.5748 (a.u.)^3 new positions in cryst coord As 0.269917559 0.273532581 0.274363417 As -0.269917559 -0.273532581 -0.274363417 new positions in cart coord (alat unit) As 0.589027663 0.333284449 0.233846359 As -0.589027663 -0.333284449 -0.233846359 Ekin = 0.00028681 Ry T = 587.5 K Etot = -25.49908811 new unit-cell volume = 276.57475 a.u.^3 ( 40.98415 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.055473536 0.004017424 0.003094039 0.554973939 0.902179295 0.002370310 0.555224783 0.311355815 0.846916361 ATOMIC_POSITIONS (crystal) As 0.269917559 0.273532581 0.274363417 As -0.269917559 -0.273532581 -0.274363417 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1180449 0.0658174 0.0460092), wk = 0.0625000 k( 2) = ( 0.1171785 0.0655731 0.3418555), wk = 0.0625000 k( 3) = ( 0.1197775 0.0663062 -0.5456835), wk = 0.0625000 k( 4) = ( 0.1189112 0.0660618 -0.2498371), wk = 0.0625000 k( 5) = ( 0.1172853 0.3436585 -0.0556369), wk = 0.0625000 k( 6) = ( 0.1164190 0.3434141 0.2402094), wk = 0.0625000 k( 7) = ( 0.1190179 0.3441472 -0.6473295), wk = 0.0625000 k( 8) = ( 0.1181516 0.3439029 -0.3514832), wk = 0.0625000 k( 9) = ( 0.1195640 -0.4898647 0.2493013), wk = 0.0625000 k( 10) = ( 0.1186977 -0.4901091 0.5451476), wk = 0.0625000 k( 11) = ( 0.1212966 -0.4893760 -0.3423914), wk = 0.0625000 k( 12) = ( 0.1204303 -0.4896204 -0.0465450), wk = 0.0625000 k( 13) = ( 0.1188044 -0.2120237 0.1476552), wk = 0.0625000 k( 14) = ( 0.1179381 -0.2122680 0.4435016), wk = 0.0625000 k( 15) = ( 0.1205371 -0.2115349 -0.4440374), wk = 0.0625000 k( 16) = ( 0.1196708 -0.2117793 -0.1481911), wk = 0.0625000 k( 17) = ( 0.3557605 -0.0801444 -0.0561727), wk = 0.0625000 k( 18) = ( 0.3548942 -0.0803888 0.2396736), wk = 0.0625000 k( 19) = ( 0.3574931 -0.0796557 -0.6478654), wk = 0.0625000 k( 20) = ( 0.3566268 -0.0799001 -0.3520190), wk = 0.0625000 k( 21) = ( 0.3550009 0.1976967 -0.1578188), wk = 0.0625000 k( 22) = ( 0.3541346 0.1974523 0.1380275), wk = 0.0625000 k( 23) = ( 0.3567336 0.1981854 -0.7495114), wk = 0.0625000 k( 24) = ( 0.3558672 0.1979410 -0.4536651), wk = 0.0625000 k( 25) = ( 0.3572796 -0.6358266 0.1471194), wk = 0.0625000 k( 26) = ( 0.3564133 -0.6360710 0.4429657), wk = 0.0625000 k( 27) = ( 0.3590123 -0.6353379 -0.4445733), wk = 0.0625000 k( 28) = ( 0.3581459 -0.6355822 -0.1487269), wk = 0.0625000 k( 29) = ( 0.3565201 -0.3579855 0.0454733), wk = 0.0625000 k( 30) = ( 0.3556537 -0.3582299 0.3413196), wk = 0.0625000 k( 31) = ( 0.3582527 -0.3574968 -0.5462193), wk = 0.0625000 k( 32) = ( 0.3573864 -0.3577412 -0.2503730), wk = 0.0625000 extrapolated charge 9.99932, renormalised to 10.00000 total cpu time spent up to now is 26.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.08E-08, avg # of iterations = 1.1 total cpu time spent up to now is 27.3 secs total energy = -25.49944347 Ry Harris-Foulkes estimate = -25.49904982 Ry estimated scf accuracy < 0.00000207 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-08, avg # of iterations = 1.0 total cpu time spent up to now is 27.6 secs total energy = -25.49944353 Ry Harris-Foulkes estimate = -25.49944354 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.20E-09, avg # of iterations = 1.0 total cpu time spent up to now is 27.8 secs End of self-consistent calculation k = 0.1180 0.0658 0.0460 ( 531 PWs) bands (ev): -7.1650 1.6514 5.5302 5.5671 6.4286 9.8586 10.3955 10.5037 14.4716 k = 0.1172 0.0656 0.3419 ( 522 PWs) bands (ev): -6.1590 -0.9202 3.9212 5.5615 7.9590 8.2101 9.0400 11.7480 13.8868 k = 0.1198 0.0663-0.5457 ( 520 PWs) bands (ev): -4.6668 -3.2177 4.5120 4.6706 6.1642 9.1999 9.6155 10.2958 15.4772 k = 0.1189 0.0661-0.2498 ( 525 PWs) bands (ev): -6.5877 0.0971 4.6673 5.2078 6.6320 9.3166 10.0858 11.3794 13.4171 k = 0.1173 0.3437-0.0556 ( 522 PWs) bands (ev): -6.1571 -0.9272 3.9140 5.5751 7.9721 8.2125 9.0321 11.7524 13.8699 k = 0.1164 0.3434 0.2402 ( 519 PWs) bands (ev): -5.7895 -0.7233 2.9060 4.0000 5.2988 10.1576 11.8633 11.9419 13.6520 k = 0.1190 0.3441-0.6473 ( 510 PWs) bands (ev): -4.2236 -2.6457 1.8245 2.8135 6.1505 9.8313 12.4172 13.6003 13.8947 k = 0.1182 0.3439-0.3515 ( 521 PWs) bands (ev): -5.0699 -2.2468 2.7171 4.7566 6.0166 9.3223 11.0783 12.1446 13.5906 k = 0.1196-0.4899 0.2493 ( 520 PWs) bands (ev): -4.6550 -3.2354 4.5018 4.6809 6.1736 9.2079 9.6141 10.2954 15.4815 k = 0.1187-0.4901 0.5451 ( 510 PWs) bands (ev): -4.2159 -2.6596 1.8290 2.8124 6.1584 9.8269 12.4429 13.6044 13.8800 k = 0.1213-0.4894-0.3424 ( 510 PWs) bands (ev): -4.5046 -2.0627 1.8730 3.4598 4.0839 9.7347 12.8469 14.1577 14.7981 k = 0.1204-0.4896-0.0465 ( 521 PWs) bands (ev): -5.0489 -2.2826 2.7646 4.7294 6.0038 9.3116 11.0683 12.0841 13.6234 k = 0.1188-0.2120 0.1477 ( 525 PWs) bands (ev): -6.5874 0.0928 4.6748 5.2144 6.6144 9.3224 10.1005 11.3766 13.4041 k = 0.1179-0.2123 0.4435 ( 521 PWs) bands (ev): -5.0717 -2.2443 2.7128 4.7563 6.0276 9.3174 11.0744 12.1571 13.5808 k = 0.1205-0.2115-0.4440 ( 521 PWs) bands (ev): -5.0520 -2.2757 2.7537 4.7334 6.0167 9.3029 11.0603 12.1028 13.6014 k = 0.1197-0.2118-0.1482 ( 525 PWs) bands (ev): -6.5812 0.0860 4.6716 5.2497 6.5410 9.3429 10.1392 11.3430 13.3359 k = 0.3558-0.0801-0.0562 ( 522 PWs) bands (ev): -6.1425 -0.9253 3.8675 5.6027 7.9816 8.1884 8.9596 11.7890 13.7875 k = 0.3549-0.0804 0.2397 ( 519 PWs) bands (ev): -5.7923 -0.6975 2.8862 4.0089 5.2889 10.0756 11.8402 11.9561 13.7224 k = 0.3575-0.0797-0.6479 ( 510 PWs) bands (ev): -4.2557 -2.5842 1.8206 2.8032 6.0769 9.8787 12.3470 13.5669 13.9696 k = 0.3566-0.0799-0.3520 ( 521 PWs) bands (ev): -5.0422 -2.2701 2.7659 4.7141 5.9430 9.3424 11.0428 12.0233 13.6663 k = 0.3550 0.1977-0.1578 ( 519 PWs) bands (ev): -5.7918 -0.6945 2.8883 4.0002 5.2904 10.0598 11.8444 11.9584 13.7363 k = 0.3541 0.1975 0.1380 ( 522 PWs) bands (ev): -6.0002 -1.6085 5.6726 5.7676 6.9196 8.3857 8.5163 9.5508 15.5982 k = 0.3567 0.1982-0.7495 ( 520 PWs) bands (ev): -5.0111 -2.1043 2.0831 4.5624 5.8885 10.0148 10.2709 13.0666 15.1424 k = 0.3559 0.1979-0.4537 ( 510 PWs) bands (ev): -4.5524 -1.9558 1.8085 3.4692 4.0817 9.6541 12.8574 14.2543 14.7800 k = 0.3573-0.6358 0.1471 ( 510 PWs) bands (ev): -4.2522 -2.5881 1.8223 2.8019 6.0727 9.8826 12.3480 13.5657 13.9667 k = 0.3564-0.6361 0.4430 ( 520 PWs) bands (ev): -5.0082 -2.1115 2.0764 4.5737 5.8978 10.0087 10.2796 13.0647 15.1323 k = 0.3590-0.6353-0.4446 ( 520 PWs) bands (ev): -4.9891 -2.1333 2.0582 4.5819 5.9074 9.9704 10.3057 13.0942 15.1416 k = 0.3581-0.6356-0.1487 ( 510 PWs) bands (ev): -4.2074 -2.6442 1.8266 2.7929 6.1052 9.8144 12.4480 13.5657 13.8984 k = 0.3565-0.3580 0.0455 ( 521 PWs) bands (ev): -5.0409 -2.2744 2.7725 4.7099 5.9412 9.3460 11.0467 12.0179 13.6781 k = 0.3557-0.3582 0.3413 ( 510 PWs) bands (ev): -4.5478 -1.9736 1.8203 3.4770 4.0789 9.6695 12.8571 14.2433 14.7818 k = 0.3583-0.3575-0.5462 ( 510 PWs) bands (ev): -4.2032 -2.6543 1.8293 2.7933 6.1174 9.8066 12.4725 13.5711 13.8857 k = 0.3574-0.3577-0.2504 ( 520 PWs) bands (ev): -4.5776 -3.3013 4.4550 4.6744 6.1729 9.1816 9.5690 10.2838 15.5359 the Fermi energy is 8.0310 ev ! total energy = -25.49944354 Ry Harris-Foulkes estimate = -25.49944354 Ry estimated scf accuracy < 4.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00073695 -0.00141745 -0.00140033 atom 2 type 1 force = -0.00073695 0.00141745 0.00140033 Total force = 0.003004 Total SCF correction = 0.000064 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -3.21 -0.00002346 -0.00001391 -0.00000849 -3.45 -2.05 -1.25 -0.00001391 -0.00001812 0.00000695 -2.05 -2.67 1.02 -0.00000849 0.00000695 -0.00002386 -1.25 1.02 -3.51 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 1.054062693 0.002449449 0.002195598 0.552252786 0.901720248 0.002803041 0.552678216 0.309598348 0.846492617 new unit-cell volume = 276.2343 (a.u.)^3 new positions in cryst coord As 0.271086968 0.272953275 0.273396336 As -0.271086968 -0.272953275 -0.273396336 new positions in cart coord (alat unit) As 0.587582065 0.331434563 0.232788277 As -0.587582065 -0.331434563 -0.232788277 Ekin = 0.00035076 Ry T = 535.2 K Etot = -25.49909278 new unit-cell volume = 276.23429 a.u.^3 ( 40.93370 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.054062693 0.002449449 0.002195598 0.552252786 0.901720248 0.002803041 0.552678216 0.309598348 0.846492617 ATOMIC_POSITIONS (crystal) As 0.271086968 0.272953275 0.273396336 As -0.271086968 -0.272953275 -0.273396336 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1183390 0.0660041 0.0462636), wk = 0.0625000 k( 2) = ( 0.1177239 0.0654610 0.3422003), wk = 0.0625000 k( 3) = ( 0.1195694 0.0670905 -0.5456096), wk = 0.0625000 k( 4) = ( 0.1189542 0.0665473 -0.2496730), wk = 0.0625000 k( 5) = ( 0.1179045 0.3438331 -0.0550665), wk = 0.0625000 k( 6) = ( 0.1172893 0.3432899 0.2408701), wk = 0.0625000 k( 7) = ( 0.1191348 0.3449195 -0.6469397), wk = 0.0625000 k( 8) = ( 0.1185196 0.3443763 -0.3510031), wk = 0.0625000 k( 9) = ( 0.1192081 -0.4896538 0.2489239), wk = 0.0625000 k( 10) = ( 0.1185930 -0.4901970 0.5448606), wk = 0.0625000 k( 11) = ( 0.1204385 -0.4885675 -0.3429493), wk = 0.0625000 k( 12) = ( 0.1198233 -0.4891106 -0.0470127), wk = 0.0625000 k( 13) = ( 0.1187736 -0.2118248 0.1475938), wk = 0.0625000 k( 14) = ( 0.1181584 -0.2123680 0.4435304), wk = 0.0625000 k( 15) = ( 0.1200039 -0.2107385 -0.4442794), wk = 0.0625000 k( 16) = ( 0.1193887 -0.2112817 -0.1483428), wk = 0.0625000 k( 17) = ( 0.3560668 -0.0792734 -0.0558155), wk = 0.0625000 k( 18) = ( 0.3554516 -0.0798166 0.2401211), wk = 0.0625000 k( 19) = ( 0.3572971 -0.0781870 -0.6476888), wk = 0.0625000 k( 20) = ( 0.3566820 -0.0787302 -0.3517522), wk = 0.0625000 k( 21) = ( 0.3556322 0.1985556 -0.1571457), wk = 0.0625000 k( 22) = ( 0.3550171 0.1980124 0.1387909), wk = 0.0625000 k( 23) = ( 0.3568626 0.1996419 -0.7490189), wk = 0.0625000 k( 24) = ( 0.3562474 0.1990988 -0.4530823), wk = 0.0625000 k( 25) = ( 0.3569359 -0.6349314 0.1468448), wk = 0.0625000 k( 26) = ( 0.3563207 -0.6354745 0.4427814), wk = 0.0625000 k( 27) = ( 0.3581662 -0.6338450 -0.4450285), wk = 0.0625000 k( 28) = ( 0.3575511 -0.6343882 -0.1490919), wk = 0.0625000 k( 29) = ( 0.3565013 -0.3571024 0.0455146), wk = 0.0625000 k( 30) = ( 0.3558862 -0.3576456 0.3414512), wk = 0.0625000 k( 31) = ( 0.3577317 -0.3560160 -0.5463586), wk = 0.0625000 k( 32) = ( 0.3571165 -0.3565592 -0.2504220), wk = 0.0625000 extrapolated charge 9.98768, renormalised to 10.00000 total cpu time spent up to now is 28.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.65E-08, avg # of iterations = 1.1 total cpu time spent up to now is 29.0 secs total energy = -25.49948598 Ry Harris-Foulkes estimate = -25.49232820 Ry estimated scf accuracy < 0.00000265 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 29.3 secs total energy = -25.49948677 Ry Harris-Foulkes estimate = -25.49948716 Ry estimated scf accuracy < 0.00000086 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.60E-09, avg # of iterations = 1.5 total cpu time spent up to now is 29.6 secs End of self-consistent calculation k = 0.1183 0.0660 0.0463 ( 531 PWs) bands (ev): -7.1512 1.6788 5.5483 5.5585 6.4542 9.8876 10.4497 10.4851 14.4678 k = 0.1177 0.0655 0.3422 ( 522 PWs) bands (ev): -6.1408 -0.9086 3.9397 5.5909 7.9629 8.2221 9.0160 11.7987 13.8776 k = 0.1196 0.0671-0.5456 ( 520 PWs) bands (ev): -4.6327 -3.2288 4.5406 4.6858 6.1687 9.2174 9.6095 10.3456 15.5333 k = 0.1190 0.0665-0.2497 ( 525 PWs) bands (ev): -6.5738 0.1040 4.6784 5.2413 6.6551 9.3460 10.1214 11.3865 13.4122 k = 0.1179 0.3438-0.0551 ( 522 PWs) bands (ev): -6.1407 -0.9193 3.9395 5.6040 7.9834 8.2296 9.0175 11.7902 13.8699 k = 0.1173 0.3433 0.2409 ( 519 PWs) bands (ev): -5.7742 -0.6892 2.9198 3.9964 5.2983 10.1501 11.8642 11.9658 13.6795 k = 0.1191 0.3449-0.6469 ( 510 PWs) bands (ev): -4.2072 -2.6258 1.8311 2.8275 6.1614 9.8346 12.4272 13.6149 13.9316 k = 0.1185 0.3444-0.3510 ( 521 PWs) bands (ev): -5.0481 -2.2534 2.7526 4.7635 6.0436 9.3518 11.1040 12.1272 13.6203 k = 0.1192-0.4897 0.2489 ( 520 PWs) bands (ev): -4.6331 -3.2373 4.5331 4.6997 6.1847 9.2337 9.6161 10.3425 15.5331 k = 0.1186-0.4902 0.5449 ( 510 PWs) bands (ev): -4.2061 -2.6338 1.8355 2.8293 6.1667 9.8470 12.4431 13.6194 13.9184 k = 0.1204-0.4886-0.3429 ( 510 PWs) bands (ev): -4.5117 -1.9991 1.8600 3.4623 4.1048 9.7431 12.8771 14.1995 14.8126 k = 0.1198-0.4891-0.0470 ( 521 PWs) bands (ev): -5.0443 -2.2574 2.7733 4.7378 6.0446 9.3394 11.0830 12.1179 13.6423 k = 0.1188-0.2118 0.1476 ( 525 PWs) bands (ev): -6.5752 0.1023 4.6892 5.2429 6.6406 9.3471 10.1376 11.3910 13.4091 k = 0.1182-0.2124 0.4435 ( 521 PWs) bands (ev): -5.0499 -2.2482 2.7492 4.7569 6.0512 9.3564 11.0902 12.1326 13.6179 k = 0.1200-0.2107-0.4443 ( 521 PWs) bands (ev): -5.0422 -2.2561 2.7698 4.7360 6.0498 9.3376 11.0644 12.1162 13.6263 k = 0.1194-0.2113-0.1483 ( 525 PWs) bands (ev): -6.5725 0.1104 4.6725 5.2680 6.5870 9.3504 10.1555 11.3828 13.3759 k = 0.3561-0.0793-0.0558 ( 522 PWs) bands (ev): -6.1297 -0.9162 3.9160 5.6090 7.9841 8.2118 8.9759 11.7857 13.8216 k = 0.3555-0.0798 0.2401 ( 519 PWs) bands (ev): -5.7712 -0.6846 2.9069 4.0107 5.2913 10.1019 11.8520 11.9600 13.7091 k = 0.3573-0.0782-0.6477 ( 510 PWs) bands (ev): -4.2182 -2.5948 1.8304 2.8152 6.1077 9.8500 12.3943 13.6118 13.9775 k = 0.3567-0.0787-0.3518 ( 521 PWs) bands (ev): -5.0318 -2.2560 2.7719 4.7341 5.9955 9.3394 11.0715 12.0704 13.6571 k = 0.3556 0.1986-0.1571 ( 519 PWs) bands (ev): -5.7685 -0.6883 2.9127 3.9987 5.2952 10.0931 11.8625 11.9605 13.7121 k = 0.3550 0.1980 0.1388 ( 522 PWs) bands (ev): -5.9727 -1.5937 5.7047 5.7469 6.9193 8.4150 8.4731 9.5466 15.6265 k = 0.3569 0.1996-0.7490 ( 520 PWs) bands (ev): -4.9747 -2.1015 2.0858 4.5696 5.8830 10.0054 10.2840 13.0955 15.1568 k = 0.3562 0.1991-0.4531 ( 510 PWs) bands (ev): -4.5198 -1.9616 1.8251 3.4673 4.0934 9.6951 12.8769 14.2443 14.8293 k = 0.3569-0.6349 0.1468 ( 510 PWs) bands (ev): -4.2143 -2.6018 1.8318 2.8165 6.1066 9.8608 12.3882 13.6166 13.9725 k = 0.3563-0.6355 0.4428 ( 520 PWs) bands (ev): -4.9745 -2.1084 2.0813 4.5832 5.8976 10.0035 10.2911 13.0836 15.1459 k = 0.3582-0.6338-0.4450 ( 520 PWs) bands (ev): -4.9630 -2.1221 2.0775 4.5816 5.9031 9.9800 10.3044 13.0911 15.1749 k = 0.3576-0.6344-0.1491 ( 510 PWs) bands (ev): -4.1884 -2.6327 1.8306 2.8141 6.1240 9.8338 12.4362 13.6049 13.9221 k = 0.3565-0.3571 0.0455 ( 521 PWs) bands (ev): -5.0357 -2.2521 2.7719 4.7293 5.9980 9.3456 11.0761 12.0785 13.6701 k = 0.3559-0.3576 0.3415 ( 510 PWs) bands (ev): -4.5253 -1.9649 1.8316 3.4807 4.0916 9.7062 12.8785 14.2462 14.8233 k = 0.3577-0.3560-0.5464 ( 510 PWs) bands (ev): -4.1914 -2.6337 1.8335 2.8148 6.1306 9.8357 12.4581 13.6048 13.9132 k = 0.3571-0.3566-0.2504 ( 520 PWs) bands (ev): -4.5921 -3.2613 4.4948 4.6878 6.1825 9.2142 9.5858 10.3155 15.5824 the Fermi energy is 8.1622 ev ! total energy = -25.49948686 Ry Harris-Foulkes estimate = -25.49948687 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00051992 -0.00060001 -0.00073592 atom 2 type 1 force = -0.00051992 0.00060001 0.00073592 Total force = 0.001531 Total SCF correction = 0.000047 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -3.41 -0.00001777 0.00000140 -0.00000257 -2.61 0.21 -0.38 0.00000140 -0.00002928 -0.00000137 0.21 -4.31 -0.20 -0.00000257 -0.00000137 -0.00002252 -0.38 -0.20 -3.31 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 1.052436056 0.002510377 0.001251178 0.549431494 0.900951997 0.002770842 0.549989325 0.307732140 0.845817063 new unit-cell volume = 275.4555 (a.u.)^3 new positions in cryst coord As 0.272357975 0.272547777 0.272337095 As -0.272357975 -0.272547777 -0.272337095 new positions in cart coord (alat unit) As 0.586168180 0.330043062 0.231443317 As -0.586168180 -0.330043062 -0.231443317 Ekin = 0.00038515 Ry T = 491.7 K Etot = -25.49910171 new unit-cell volume = 275.45554 a.u.^3 ( 40.81830 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052436056 0.002510377 0.001251178 0.549431494 0.900951997 0.002770842 0.549989325 0.307732140 0.845817063 ATOMIC_POSITIONS (crystal) As 0.272357975 0.272547777 0.272337095 As -0.272357975 -0.272547777 -0.272337095 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185586 0.0662978 0.0465728), wk = 0.0625000 k( 2) = ( 0.1182083 0.0656009 0.3426263), wk = 0.0625000 k( 3) = ( 0.1192591 0.0676916 -0.5455342), wk = 0.0625000 k( 4) = ( 0.1189089 0.0669947 -0.2494807), wk = 0.0625000 k( 5) = ( 0.1180150 0.3444237 -0.0542638), wk = 0.0625000 k( 6) = ( 0.1176647 0.3437268 0.2417897), wk = 0.0625000 k( 7) = ( 0.1187156 0.3458174 -0.6463708), wk = 0.0625000 k( 8) = ( 0.1183653 0.3451205 -0.3503173), wk = 0.0625000 k( 9) = ( 0.1196456 -0.4899539 0.2482460), wk = 0.0625000 k( 10) = ( 0.1192953 -0.4906508 0.5442996), wk = 0.0625000 k( 11) = ( 0.1203462 -0.4885601 -0.3438610), wk = 0.0625000 k( 12) = ( 0.1199959 -0.4892570 -0.0478075), wk = 0.0625000 k( 13) = ( 0.1191021 -0.2118280 0.1474094), wk = 0.0625000 k( 14) = ( 0.1187518 -0.2125249 0.4434629), wk = 0.0625000 k( 15) = ( 0.1198027 -0.2104343 -0.4446976), wk = 0.0625000 k( 16) = ( 0.1194524 -0.2111312 -0.1486441), wk = 0.0625000 k( 17) = ( 0.3565695 -0.0785355 -0.0554984), wk = 0.0625000 k( 18) = ( 0.3562192 -0.0792324 0.2405551), wk = 0.0625000 k( 19) = ( 0.3572701 -0.0771418 -0.6476054), wk = 0.0625000 k( 20) = ( 0.3569198 -0.0778386 -0.3515519), wk = 0.0625000 k( 21) = ( 0.3560260 0.1995903 -0.1563350), wk = 0.0625000 k( 22) = ( 0.3556757 0.1988935 0.1397185), wk = 0.0625000 k( 23) = ( 0.3567266 0.2009841 -0.7484421), wk = 0.0625000 k( 24) = ( 0.3563763 0.2002872 -0.4523885), wk = 0.0625000 k( 25) = ( 0.3576566 -0.6347872 0.1461748), wk = 0.0625000 k( 26) = ( 0.3573063 -0.6354841 0.4422283), wk = 0.0625000 k( 27) = ( 0.3583572 -0.6333935 -0.4459322), wk = 0.0625000 k( 28) = ( 0.3580069 -0.6340903 -0.1498787), wk = 0.0625000 k( 29) = ( 0.3571130 -0.3566614 0.0453382), wk = 0.0625000 k( 30) = ( 0.3567627 -0.3573582 0.3413917), wk = 0.0625000 k( 31) = ( 0.3578136 -0.3552676 -0.5467688), wk = 0.0625000 k( 32) = ( 0.3574633 -0.3559645 -0.2507153), wk = 0.0625000 extrapolated charge 9.97173, renormalised to 10.00000 total cpu time spent up to now is 30.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.05E-08, avg # of iterations = 1.0 total cpu time spent up to now is 30.7 secs total energy = -25.49949887 Ry Harris-Foulkes estimate = -25.48303192 Ry estimated scf accuracy < 0.00000504 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-08, avg # of iterations = 3.0 total cpu time spent up to now is 31.1 secs total energy = -25.49950449 Ry Harris-Foulkes estimate = -25.49950592 Ry estimated scf accuracy < 0.00000341 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 31.3 secs total energy = -25.49950449 Ry Harris-Foulkes estimate = -25.49950473 Ry estimated scf accuracy < 0.00000052 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.21E-09, avg # of iterations = 1.4 total cpu time spent up to now is 31.6 secs End of self-consistent calculation k = 0.1186 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1331 1.7319 5.5567 5.5950 6.5013 9.9349 10.4995 10.5166 14.4777 k = 0.1182 0.0656 0.3426 ( 522 PWs) bands (ev): -6.1170 -0.8864 3.9710 5.6411 8.0084 8.2667 9.0259 11.8586 13.8873 k = 0.1193 0.0677-0.5455 ( 520 PWs) bands (ev): -4.5954 -3.2266 4.5724 4.7245 6.2100 9.2719 9.6380 10.4094 15.6093 k = 0.1189 0.0670-0.2495 ( 525 PWs) bands (ev): -6.5560 0.1349 4.7097 5.2921 6.6813 9.3991 10.1863 11.4299 13.4340 k = 0.1180 0.3444-0.0543 ( 522 PWs) bands (ev): -6.1187 -0.8904 3.9756 5.6434 8.0150 8.2719 9.0338 11.8526 13.8935 k = 0.1177 0.3437 0.2418 ( 519 PWs) bands (ev): -5.7493 -0.6426 2.9483 4.0013 5.3224 10.1572 11.9080 12.0136 13.7337 k = 0.1187 0.3458-0.6464 ( 510 PWs) bands (ev): -4.1767 -2.5982 1.8493 2.8537 6.1893 9.8762 12.4551 13.6652 13.9882 k = 0.1184 0.3451-0.3503 ( 521 PWs) bands (ev): -5.0236 -2.2348 2.7929 4.7823 6.0900 9.4075 11.1559 12.1521 13.6799 k = 0.1196-0.4900 0.2482 ( 520 PWs) bands (ev): -4.6036 -3.2231 4.5755 4.7301 6.2159 9.2803 9.6451 10.4106 15.6028 k = 0.1193-0.4907 0.5443 ( 510 PWs) bands (ev): -4.1812 -2.5951 1.8504 2.8554 6.1879 9.8872 12.4509 13.6667 13.9914 k = 0.1203-0.4886-0.3439 ( 510 PWs) bands (ev): -4.4973 -1.9311 1.8601 3.4696 4.1393 9.7587 12.9334 14.2668 14.8734 k = 0.1200-0.4893-0.0478 ( 521 PWs) bands (ev): -5.0254 -2.2241 2.7934 4.7691 6.0955 9.3868 11.1257 12.1633 13.6727 k = 0.1191-0.2118 0.1474 ( 525 PWs) bands (ev): -6.5571 0.1346 4.7148 5.2885 6.6843 9.3974 10.1884 11.4346 13.4397 k = 0.1188-0.2125 0.4435 ( 521 PWs) bands (ev): -5.0232 -2.2322 2.7922 4.7779 6.0860 9.4122 11.1489 12.1470 13.6844 k = 0.1198-0.2104-0.4447 ( 521 PWs) bands (ev): -5.0216 -2.2259 2.7970 4.7639 6.0893 9.3876 11.1147 12.1503 13.6747 k = 0.1195-0.2111-0.1486 ( 525 PWs) bands (ev): -6.5562 0.1536 4.6837 5.3013 6.6598 9.3877 10.1802 11.4394 13.4362 k = 0.3566-0.0785-0.0555 ( 522 PWs) bands (ev): -6.1113 -0.8788 3.9704 5.6225 7.9955 8.2543 9.0150 11.8273 13.8786 k = 0.3562-0.0792 0.2406 ( 519 PWs) bands (ev): -5.7446 -0.6504 2.9363 4.0274 5.3152 10.1422 11.8956 11.9964 13.7304 k = 0.3573-0.0771-0.6476 ( 510 PWs) bands (ev): -4.1743 -2.5917 1.8526 2.8416 6.1591 9.8705 12.4661 13.6833 14.0035 k = 0.3569-0.0778-0.3516 ( 521 PWs) bands (ev): -5.0153 -2.2217 2.7873 4.7633 6.0679 9.3728 11.1144 12.1430 13.6746 k = 0.3560 0.1996-0.1563 ( 519 PWs) bands (ev): -5.7436 -0.6540 2.9404 4.0221 5.3176 10.1475 11.9009 11.9966 13.7248 k = 0.3557 0.1989 0.1397 ( 522 PWs) bands (ev): -5.9418 -1.5617 5.7385 5.7582 6.9453 8.4579 8.4677 9.5741 15.6770 k = 0.3567 0.2010-0.7484 ( 520 PWs) bands (ev): -4.9347 -2.0850 2.0967 4.6018 5.9144 10.0234 10.3318 13.1387 15.1915 k = 0.3564 0.2003-0.4524 ( 510 PWs) bands (ev): -4.4878 -1.9476 1.8586 3.4902 4.1222 9.7551 12.9300 14.2743 14.8996 k = 0.3577-0.6348 0.1462 ( 510 PWs) bands (ev): -4.1747 -2.5945 1.8531 2.8442 6.1634 9.8764 12.4610 13.6872 14.0027 k = 0.3573-0.6355 0.4422 ( 520 PWs) bands (ev): -4.9367 -2.0851 2.0969 4.6059 5.9187 10.0267 10.3315 13.1319 15.1857 k = 0.3584-0.6334-0.4459 ( 520 PWs) bands (ev): -4.9317 -2.0869 2.1068 4.5875 5.9103 10.0178 10.3287 13.1327 15.2335 k = 0.3580-0.6341-0.1499 ( 510 PWs) bands (ev): -4.1655 -2.5988 1.8447 2.8457 6.1650 9.8700 12.4585 13.6668 13.9771 k = 0.3571-0.3567 0.0453 ( 521 PWs) bands (ev): -5.0187 -2.2174 2.7830 4.7641 6.0700 9.3768 11.1184 12.1509 13.6770 k = 0.3568-0.3574 0.3414 ( 510 PWs) bands (ev): -4.4939 -1.9401 1.8555 3.4970 4.1209 9.7523 12.9315 14.2834 14.8966 k = 0.3578-0.3553-0.5468 ( 510 PWs) bands (ev): -4.1697 -2.5929 1.8454 2.8447 6.1593 9.8751 12.4592 13.6647 13.9810 k = 0.3575-0.3560-0.2507 ( 520 PWs) bands (ev): -4.5907 -3.2102 4.5526 4.7048 6.2005 9.2551 9.6223 10.3785 15.6437 the Fermi energy is 8.2054 ev ! total energy = -25.49950454 Ry Harris-Foulkes estimate = -25.49950454 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00050696 -0.00017353 -0.00003880 atom 2 type 1 force = 0.00050696 0.00017353 0.00003880 Total force = 0.000760 Total SCF correction = 0.000091 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.84 -0.00000015 0.00000496 0.00000219 -0.02 0.73 0.32 0.00000496 -0.00001935 0.00000242 0.73 -2.85 0.36 0.00000219 0.00000242 -0.00001807 0.32 0.36 -2.66 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 1.052559704 0.002569851 0.001520783 0.550493631 0.900004847 0.002788390 0.550590260 0.305854186 0.844981846 new unit-cell volume = 274.8842 (a.u.)^3 new positions in cryst coord As 0.272337814 0.272543988 0.272342018 As -0.272337814 -0.272543988 -0.272342018 new positions in cart coord (alat unit) As 0.586634401 0.329287724 0.231298186 As -0.586634401 -0.329287724 -0.231298186 Ekin = 0.00038357 Ry T = 454.9 K Etot = -25.49912097 new unit-cell volume = 274.88424 a.u.^3 ( 40.73364 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052559704 0.002569851 0.001520783 0.550493631 0.900004847 0.002788390 0.550590260 0.305854186 0.844981846 ATOMIC_POSITIONS (crystal) As 0.272337814 0.272543988 0.272342018 As -0.272337814 -0.272543988 -0.272342018 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185289 0.0662445 0.0467205), wk = 0.0625000 k( 2) = ( 0.1181022 0.0655872 0.3431008), wk = 0.0625000 k( 3) = ( 0.1193821 0.0675591 -0.5460400), wk = 0.0625000 k( 4) = ( 0.1189555 0.0669018 -0.2496597), wk = 0.0625000 k( 5) = ( 0.1179942 0.3446589 -0.0537075), wk = 0.0625000 k( 6) = ( 0.1175676 0.3440016 0.2426728), wk = 0.0625000 k( 7) = ( 0.1188474 0.3459735 -0.6464680), wk = 0.0625000 k( 8) = ( 0.1184208 0.3453162 -0.3500877), wk = 0.0625000 k( 9) = ( 0.1195982 -0.4905844 0.2475766), wk = 0.0625000 k( 10) = ( 0.1191716 -0.4912417 0.5439568), wk = 0.0625000 k( 11) = ( 0.1204514 -0.4892698 -0.3451839), wk = 0.0625000 k( 12) = ( 0.1200248 -0.4899271 -0.0488037), wk = 0.0625000 k( 13) = ( 0.1190635 -0.2121700 0.1471486), wk = 0.0625000 k( 14) = ( 0.1186369 -0.2128273 0.4435288), wk = 0.0625000 k( 15) = ( 0.1199168 -0.2108554 -0.4456119), wk = 0.0625000 k( 16) = ( 0.1194901 -0.2115127 -0.1492317), wk = 0.0625000 k( 17) = ( 0.3565479 -0.0790238 -0.0557906), wk = 0.0625000 k( 18) = ( 0.3561213 -0.0796811 0.2405897), wk = 0.0625000 k( 19) = ( 0.3574011 -0.0777092 -0.6485511), wk = 0.0625000 k( 20) = ( 0.3569745 -0.0783665 -0.3521708), wk = 0.0625000 k( 21) = ( 0.3560132 0.1993907 -0.1562186), wk = 0.0625000 k( 22) = ( 0.3555866 0.1987334 0.1401616), wk = 0.0625000 k( 23) = ( 0.3568665 0.2007053 -0.7489791), wk = 0.0625000 k( 24) = ( 0.3564398 0.2000480 -0.4525989), wk = 0.0625000 k( 25) = ( 0.3576172 -0.6358527 0.1450654), wk = 0.0625000 k( 26) = ( 0.3571906 -0.6365100 0.4414457), wk = 0.0625000 k( 27) = ( 0.3584704 -0.6345381 -0.4476951), wk = 0.0625000 k( 28) = ( 0.3580438 -0.6351954 -0.1513148), wk = 0.0625000 k( 29) = ( 0.3570825 -0.3574382 0.0446374), wk = 0.0625000 k( 30) = ( 0.3566559 -0.3580955 0.3410177), wk = 0.0625000 k( 31) = ( 0.3579358 -0.3561236 -0.5481231), wk = 0.0625000 k( 32) = ( 0.3575091 -0.3567809 -0.2517428), wk = 0.0625000 extrapolated charge 9.97922, renormalised to 10.00000 total cpu time spent up to now is 32.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.73E-08, avg # of iterations = 1.2 total cpu time spent up to now is 32.6 secs total energy = -25.49950483 Ry Harris-Foulkes estimate = -25.48737925 Ry estimated scf accuracy < 0.00000272 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-08, avg # of iterations = 3.0 total cpu time spent up to now is 33.0 secs total energy = -25.49950845 Ry Harris-Foulkes estimate = -25.49950925 Ry estimated scf accuracy < 0.00000188 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-08, avg # of iterations = 1.0 total cpu time spent up to now is 33.3 secs total energy = -25.49950848 Ry Harris-Foulkes estimate = -25.49950858 Ry estimated scf accuracy < 0.00000027 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-09, avg # of iterations = 1.0 total cpu time spent up to now is 33.5 secs End of self-consistent calculation k = 0.1185 0.0662 0.0467 ( 531 PWs) bands (ev): -7.1241 1.7638 5.5900 5.6174 6.5277 9.9659 10.5298 10.5504 14.4992 k = 0.1181 0.0656 0.3431 ( 522 PWs) bands (ev): -6.1047 -0.8631 3.9877 5.6639 8.0484 8.3010 9.0582 11.8733 13.9168 k = 0.1194 0.0676-0.5460 ( 520 PWs) bands (ev): -4.5830 -3.2017 4.5802 4.7469 6.2435 9.3086 9.6673 10.4203 15.6380 k = 0.1190 0.0669-0.2497 ( 525 PWs) bands (ev): -6.5464 0.1721 4.7302 5.3140 6.6925 9.4239 10.2195 11.4700 13.4652 k = 0.1180 0.3447-0.0537 ( 522 PWs) bands (ev): -6.1079 -0.8696 3.9927 5.6718 8.0596 8.3101 9.0696 11.8748 13.9254 k = 0.1176 0.3440 0.2427 ( 519 PWs) bands (ev): -5.7315 -0.6299 2.9699 4.0205 5.3493 10.1839 11.9627 12.0429 13.7612 k = 0.1188 0.3460-0.6465 ( 510 PWs) bands (ev): -4.1499 -2.5838 1.8619 2.8661 6.2051 9.9122 12.4773 13.7109 14.0171 k = 0.1184 0.3453-0.3501 ( 521 PWs) bands (ev): -5.0157 -2.2004 2.8034 4.7998 6.1147 9.4258 11.1959 12.2108 13.7155 k = 0.1196-0.4906 0.2476 ( 520 PWs) bands (ev): -4.5929 -3.2025 4.5883 4.7586 6.2527 9.3230 9.6788 10.4296 15.6222 k = 0.1192-0.4912 0.5440 ( 510 PWs) bands (ev): -4.1560 -2.5804 1.8652 2.8670 6.2039 9.9230 12.4752 13.7178 14.0260 k = 0.1205-0.4893-0.3452 ( 510 PWs) bands (ev): -4.4633 -1.9261 1.8749 3.4839 4.1516 9.7756 12.9644 14.2947 14.9365 k = 0.1200-0.4899-0.0488 ( 521 PWs) bands (ev): -5.0051 -2.2124 2.8125 4.8016 6.1080 9.4094 11.1802 12.1875 13.6975 k = 0.1191-0.2122 0.1471 ( 525 PWs) bands (ev): -6.5476 0.1667 4.7430 5.3077 6.7008 9.4252 10.2241 11.4726 13.4706 k = 0.1186-0.2128 0.4435 ( 521 PWs) bands (ev): -5.0137 -2.1964 2.8000 4.7947 6.1051 9.4271 11.1881 12.2038 13.7203 k = 0.1199-0.2109-0.4456 ( 521 PWs) bands (ev): -4.9998 -2.2103 2.8137 4.7924 6.0975 9.4008 11.1600 12.1745 13.6973 k = 0.1195-0.2115-0.1492 ( 525 PWs) bands (ev): -6.5426 0.1762 4.7072 5.3202 6.6981 9.4251 10.1990 11.4566 13.4569 k = 0.3565-0.0790-0.0558 ( 522 PWs) bands (ev): -6.1009 -0.8436 3.9781 5.6443 8.0134 8.2818 9.0398 11.8903 13.9106 k = 0.3561-0.0797 0.2406 ( 519 PWs) bands (ev): -5.7355 -0.6192 2.9488 4.0569 5.3363 10.1720 11.9318 12.0371 13.7722 k = 0.3574-0.0777-0.6486 ( 510 PWs) bands (ev): -4.1635 -2.5663 1.8680 2.8596 6.1852 9.9261 12.5055 13.7117 14.0239 k = 0.3570-0.0784-0.3522 ( 521 PWs) bands (ev): -5.0002 -2.1995 2.8081 4.7766 6.0946 9.4135 11.1316 12.1697 13.7028 k = 0.3560 0.1994-0.1562 ( 519 PWs) bands (ev): -5.7358 -0.6200 2.9553 4.0454 5.3403 10.1796 11.9384 12.0430 13.7685 k = 0.3556 0.1987 0.1402 ( 522 PWs) bands (ev): -5.9322 -1.5442 5.7670 5.7855 6.9864 8.4807 8.5080 9.6144 15.7074 k = 0.3569 0.2007-0.7490 ( 520 PWs) bands (ev): -4.9226 -2.0671 2.1154 4.6273 5.9500 10.0563 10.3762 13.1707 15.2288 k = 0.3564 0.2000-0.4526 ( 510 PWs) bands (ev): -4.4805 -1.9154 1.8750 3.5130 4.1455 9.7799 12.9688 14.3152 14.9270 k = 0.3576-0.6359 0.1451 ( 510 PWs) bands (ev): -4.1667 -2.5692 1.8698 2.8644 6.1962 9.9342 12.4989 13.7156 14.0258 k = 0.3572-0.6365 0.4414 ( 520 PWs) bands (ev): -4.9256 -2.0669 2.1126 4.6359 5.9562 10.0619 10.3766 13.1645 15.2114 k = 0.3585-0.6345-0.4477 ( 520 PWs) bands (ev): -4.9182 -2.0604 2.1203 4.6040 5.9261 10.0528 10.3685 13.1951 15.2557 k = 0.3580-0.6352-0.1513 ( 510 PWs) bands (ev): -4.1521 -2.5712 1.8592 2.8585 6.1953 9.8886 12.4935 13.6997 14.0211 k = 0.3571-0.3574 0.0446 ( 521 PWs) bands (ev): -5.0034 -2.1975 2.8035 4.7807 6.0955 9.4233 11.1439 12.1753 13.7080 k = 0.3567-0.3581 0.3410 ( 510 PWs) bands (ev): -4.4846 -1.9120 1.8714 3.5260 4.1396 9.7766 12.9698 14.3270 14.9306 k = 0.3579-0.3561-0.5481 ( 510 PWs) bands (ev): -4.1549 -2.5649 1.8606 2.8546 6.1830 9.8912 12.4981 13.7027 14.0282 k = 0.3575-0.3568-0.2517 ( 520 PWs) bands (ev): -4.5651 -3.1992 4.5790 4.7202 6.2141 9.2739 9.6445 10.4177 15.6555 the Fermi energy is 8.2361 ev ! total energy = -25.49950846 Ry Harris-Foulkes estimate = -25.49950850 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00078465 -0.00034505 -0.00021634 atom 2 type 1 force = 0.00078465 0.00034505 0.00021634 Total force = 0.001250 Total SCF correction = 0.000167 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.00 0.00000499 -0.00000006 -0.00000079 0.73 -0.01 -0.12 -0.00000006 -0.00000263 0.00000913 -0.01 -0.39 1.34 -0.00000079 0.00000913 -0.00000236 -0.12 1.34 -0.35 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 1.052633204 0.002629924 0.001511388 0.550530545 0.899032675 0.002886566 0.550619127 0.307513046 0.845000101 new unit-cell volume = 274.5911 (a.u.)^3 new positions in cryst coord As 0.272307616 0.272524129 0.272324032 As -0.272307616 -0.272524129 -0.272324032 new positions in cart coord (alat unit) As 0.586619717 0.329467438 0.231312056 As -0.586619717 -0.329467438 -0.231312056 Ekin = 0.00008169 Ry T = 422.6 K Etot = -25.49942677 new unit-cell volume = 274.59111 a.u.^3 ( 40.69020 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052633204 0.002629924 0.001511388 0.550530545 0.899032675 0.002886566 0.550619127 0.307513046 0.845000101 ATOMIC_POSITIONS (crystal) As 0.272307616 0.272524129 0.272324032 As -0.272307616 -0.272524129 -0.272324032 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185173 0.0663137 0.0465678), wk = 0.0625000 k( 2) = ( 0.1180934 0.0656216 0.3429538), wk = 0.0625000 k( 3) = ( 0.1193649 0.0676979 -0.5462042), wk = 0.0625000 k( 4) = ( 0.1189411 0.0670058 -0.2498182), wk = 0.0625000 k( 5) = ( 0.1179660 0.3450525 -0.0545118), wk = 0.0625000 k( 6) = ( 0.1175422 0.3443604 0.2418742), wk = 0.0625000 k( 7) = ( 0.1188137 0.3464367 -0.6472838), wk = 0.0625000 k( 8) = ( 0.1183898 0.3457446 -0.3508978), wk = 0.0625000 k( 9) = ( 0.1196198 -0.4911638 0.2487270), wk = 0.0625000 k( 10) = ( 0.1191960 -0.4918559 0.5451130), wk = 0.0625000 k( 11) = ( 0.1204675 -0.4897797 -0.3440450), wk = 0.0625000 k( 12) = ( 0.1200437 -0.4904717 -0.0476590), wk = 0.0625000 k( 13) = ( 0.1190685 -0.2124251 0.1476474), wk = 0.0625000 k( 14) = ( 0.1186447 -0.2131171 0.4440334), wk = 0.0625000 k( 15) = ( 0.1199162 -0.2110409 -0.4451246), wk = 0.0625000 k( 16) = ( 0.1194924 -0.2117330 -0.1487386), wk = 0.0625000 k( 17) = ( 0.3565269 -0.0791055 -0.0556030), wk = 0.0625000 k( 18) = ( 0.3561031 -0.0797976 0.2407830), wk = 0.0625000 k( 19) = ( 0.3573746 -0.0777214 -0.6483750), wk = 0.0625000 k( 20) = ( 0.3569508 -0.0784134 -0.3519890), wk = 0.0625000 k( 21) = ( 0.3559756 0.1996332 -0.1566826), wk = 0.0625000 k( 22) = ( 0.3555518 0.1989412 0.1397034), wk = 0.0625000 k( 23) = ( 0.3568233 0.2010174 -0.7494546), wk = 0.0625000 k( 24) = ( 0.3563995 0.2003253 -0.4530686), wk = 0.0625000 k( 25) = ( 0.3576295 -0.6365831 0.1465562), wk = 0.0625000 k( 26) = ( 0.3572056 -0.6372752 0.4429422), wk = 0.0625000 k( 27) = ( 0.3584771 -0.6351989 -0.4462158), wk = 0.0625000 k( 28) = ( 0.3580533 -0.6358910 -0.1498298), wk = 0.0625000 k( 29) = ( 0.3570782 -0.3578443 0.0454766), wk = 0.0625000 k( 30) = ( 0.3566544 -0.3585364 0.3418626), wk = 0.0625000 k( 31) = ( 0.3579259 -0.3564601 -0.5472954), wk = 0.0625000 k( 32) = ( 0.3575020 -0.3571522 -0.2509094), wk = 0.0625000 extrapolated charge 9.98933, renormalised to 10.00000 total cpu time spent up to now is 33.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-08, avg # of iterations = 2.0 total cpu time spent up to now is 34.6 secs total energy = -25.49951125 Ry Harris-Foulkes estimate = -25.49327706 Ry estimated scf accuracy < 0.00000138 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 2.3 total cpu time spent up to now is 34.9 secs total energy = -25.49951238 Ry Harris-Foulkes estimate = -25.49951266 Ry estimated scf accuracy < 0.00000059 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.86E-09, avg # of iterations = 1.2 total cpu time spent up to now is 35.2 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1193 1.7788 5.6081 5.6315 6.5399 9.9841 10.5549 10.5576 14.5313 k = 0.1181 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1003 -0.8506 3.9935 5.6819 8.0687 8.3209 9.0766 11.8978 13.9368 k = 0.1194 0.0677-0.5462 ( 520 PWs) bands (ev): -4.5753 -3.1954 4.5920 4.7639 6.2590 9.3287 9.6846 10.4369 15.6363 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5404 0.1836 4.7507 5.3196 6.7089 9.4407 10.2360 11.4825 13.4779 k = 0.1180 0.3451-0.0545 ( 522 PWs) bands (ev): -6.1000 -0.8464 3.9940 5.6756 8.0610 8.3175 9.0758 11.8974 13.9396 k = 0.1175 0.3444 0.2419 ( 519 PWs) bands (ev): -5.7289 -0.6101 2.9731 4.0426 5.3573 10.2016 11.9769 12.0650 13.7853 k = 0.1188 0.3464-0.6473 ( 510 PWs) bands (ev): -4.1491 -2.5660 1.8734 2.8726 6.2187 9.9370 12.5069 13.7293 14.0361 k = 0.1184 0.3457-0.3509 ( 521 PWs) bands (ev): -5.0019 -2.1907 2.8131 4.8061 6.1165 9.4384 11.2000 12.2135 13.7257 k = 0.1196-0.4912 0.2487 ( 520 PWs) bands (ev): -4.5754 -3.1907 4.5934 4.7576 6.2529 9.3220 9.6817 10.4353 15.6388 k = 0.1192-0.4919 0.5451 ( 510 PWs) bands (ev): -4.1495 -2.5629 1.8713 2.8724 6.2165 9.9342 12.4998 13.7262 14.0392 k = 0.1205-0.4898-0.3440 ( 510 PWs) bands (ev): -4.4648 -1.9065 1.8832 3.5070 4.1602 9.7911 12.9844 14.3210 14.9457 k = 0.1200-0.4905-0.0477 ( 521 PWs) bands (ev): -4.9976 -2.1917 2.8181 4.8005 6.1159 9.4210 11.1781 12.2076 13.7141 k = 0.1191-0.2124 0.1476 ( 525 PWs) bands (ev): -6.5400 0.1858 4.7449 5.3196 6.7129 9.4388 10.2299 11.4819 13.4800 k = 0.1186-0.2131 0.4440 ( 521 PWs) bands (ev): -5.0017 -2.1927 2.8151 4.8083 6.1149 9.4387 11.2042 12.2114 13.7272 k = 0.1199-0.2110-0.4451 ( 521 PWs) bands (ev): -4.9984 -2.1935 2.8204 4.8019 6.1147 9.4250 11.1864 12.2065 13.7210 k = 0.1195-0.2117-0.1487 ( 525 PWs) bands (ev): -6.5387 0.1943 4.7275 5.3278 6.7006 9.4354 10.2247 11.4803 13.4743 k = 0.3565-0.0791-0.0556 ( 522 PWs) bands (ev): -6.0956 -0.8383 3.9884 5.6645 8.0477 8.3056 9.0618 11.8908 13.9289 k = 0.3561-0.0798 0.2408 ( 519 PWs) bands (ev): -5.7277 -0.6107 2.9648 4.0582 5.3523 10.1912 11.9668 12.0583 13.7880 k = 0.3574-0.0777-0.6484 ( 510 PWs) bands (ev): -4.1513 -2.5586 1.8752 2.8667 6.2017 9.9383 12.5128 13.7352 14.0458 k = 0.3570-0.0784-0.3520 ( 521 PWs) bands (ev): -4.9954 -2.1865 2.8133 4.7939 6.1027 9.4237 11.1738 12.1998 13.7245 k = 0.3560 0.1996-0.1567 ( 519 PWs) bands (ev): -5.7282 -0.6106 2.9623 4.0639 5.3507 10.1940 11.9639 12.0559 13.7853 k = 0.3556 0.1989 0.1397 ( 522 PWs) bands (ev): -5.9274 -1.5372 5.7858 5.7995 7.0111 8.5056 8.5166 9.6359 15.7227 k = 0.3568 0.2010-0.7495 ( 520 PWs) bands (ev): -4.9172 -2.0565 2.1219 4.6440 5.9658 10.0782 10.3991 13.1960 15.2322 k = 0.3564 0.2003-0.4531 ( 510 PWs) bands (ev): -4.4688 -1.9078 1.8811 3.5304 4.1493 9.7906 12.9853 14.3349 14.9542 k = 0.3576-0.6366 0.1466 ( 510 PWs) bands (ev): -4.1519 -2.5564 1.8743 2.8658 6.2004 9.9344 12.5148 13.7343 14.0461 k = 0.3572-0.6373 0.4429 ( 520 PWs) bands (ev): -4.9172 -2.0542 2.1244 4.6381 5.9606 10.0786 10.3963 13.1992 15.2395 k = 0.3585-0.6352-0.4462 ( 520 PWs) bands (ev): -4.9135 -2.0550 2.1288 4.6267 5.9536 10.0724 10.3949 13.2048 15.2646 k = 0.3581-0.6359-0.1498 ( 510 PWs) bands (ev): -4.1445 -2.5606 1.8698 2.8654 6.2018 9.9235 12.5165 13.7239 14.0332 k = 0.3571-0.3578 0.0455 ( 521 PWs) bands (ev): -4.9944 -2.1867 2.8131 4.7947 6.1023 9.4200 11.1697 12.1987 13.7192 k = 0.3567-0.3585 0.3419 ( 510 PWs) bands (ev): -4.4680 -1.9046 1.8787 3.5242 4.1513 9.7866 12.9850 14.3349 14.9536 k = 0.3579-0.3565-0.5473 ( 510 PWs) bands (ev): -4.1443 -2.5598 1.8686 2.8660 6.2009 9.9245 12.5074 13.7218 14.0358 k = 0.3575-0.3572-0.2509 ( 520 PWs) bands (ev): -4.5636 -3.1879 4.5816 4.7422 6.2416 9.3044 9.6664 10.4206 15.6613 the Fermi energy is 8.1185 ev ! total energy = -25.49951241 Ry Harris-Foulkes estimate = -25.49951244 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00068038 -0.00050291 -0.00033279 atom 2 type 1 force = 0.00068038 0.00050291 0.00033279 Total force = 0.001286 Total SCF correction = 0.000131 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.02 0.00001100 -0.00000027 -0.00000219 1.62 -0.04 -0.32 -0.00000027 0.00000356 -0.00000107 -0.04 0.52 -0.16 -0.00000219 -0.00000107 0.00000632 -0.32 -0.16 0.93 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 1.052857150 0.002590956 0.001474373 0.550640998 0.899636245 0.002866227 0.550699530 0.307514950 0.845051320 new unit-cell volume = 274.8637 (a.u.)^3 new positions in cryst coord As 0.272285429 0.272476104 0.272279767 As -0.272285429 -0.272476104 -0.272279767 new positions in cart coord (alat unit) As 0.586658514 0.329564957 0.231272805 As -0.586658514 -0.329564957 -0.231272805 Ekin = 0.00001827 Ry T = 394.5 K Etot = -25.49949413 new unit-cell volume = 274.86371 a.u.^3 ( 40.73060 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052857150 0.002590956 0.001474373 0.550640998 0.899636245 0.002866227 0.550699530 0.307514950 0.845051320 ATOMIC_POSITIONS (crystal) As 0.272285429 0.272476104 0.272279767 As -0.272285429 -0.272476104 -0.272279767 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184962 0.0662686 0.0465837), wk = 0.0625000 k( 2) = ( 0.1180829 0.0655773 0.3429446), wk = 0.0625000 k( 3) = ( 0.1193229 0.0676510 -0.5461381), wk = 0.0625000 k( 4) = ( 0.1189096 0.0669598 -0.2497772), wk = 0.0625000 k( 5) = ( 0.1179522 0.3448134 -0.0544245), wk = 0.0625000 k( 6) = ( 0.1175389 0.3441222 0.2419364), wk = 0.0625000 k( 7) = ( 0.1187788 0.3461959 -0.6471463), wk = 0.0625000 k( 8) = ( 0.1183655 0.3455047 -0.3507854), wk = 0.0625000 k( 9) = ( 0.1195843 -0.4908212 0.2486001), wk = 0.0625000 k( 10) = ( 0.1191710 -0.4915124 0.5449610), wk = 0.0625000 k( 11) = ( 0.1204109 -0.4894388 -0.3441217), wk = 0.0625000 k( 12) = ( 0.1199976 -0.4901300 -0.0477608), wk = 0.0625000 k( 13) = ( 0.1190403 -0.2122763 0.1475919), wk = 0.0625000 k( 14) = ( 0.1186270 -0.2129676 0.4439528), wk = 0.0625000 k( 15) = ( 0.1198669 -0.2108939 -0.4451299), wk = 0.0625000 k( 16) = ( 0.1194536 -0.2115851 -0.1487690), wk = 0.0625000 k( 17) = ( 0.3564461 -0.0790480 -0.0556016), wk = 0.0625000 k( 18) = ( 0.3560328 -0.0797392 0.2407593), wk = 0.0625000 k( 19) = ( 0.3572727 -0.0776656 -0.6483234), wk = 0.0625000 k( 20) = ( 0.3568594 -0.0783568 -0.3519625), wk = 0.0625000 k( 21) = ( 0.3559020 0.1994969 -0.1566099), wk = 0.0625000 k( 22) = ( 0.3554887 0.1988057 0.1397511), wk = 0.0625000 k( 23) = ( 0.3567287 0.2008793 -0.7493317), wk = 0.0625000 k( 24) = ( 0.3563154 0.2001881 -0.4529708), wk = 0.0625000 k( 25) = ( 0.3575341 -0.6361378 0.1464148), wk = 0.0625000 k( 26) = ( 0.3571208 -0.6368290 0.4427757), wk = 0.0625000 k( 27) = ( 0.3583607 -0.6347553 -0.4463070), wk = 0.0625000 k( 28) = ( 0.3579474 -0.6354465 -0.1499461), wk = 0.0625000 k( 29) = ( 0.3569901 -0.3575929 0.0454066), wk = 0.0625000 k( 30) = ( 0.3565768 -0.3582841 0.3417675), wk = 0.0625000 k( 31) = ( 0.3578167 -0.3562104 -0.5473152), wk = 0.0625000 k( 32) = ( 0.3574034 -0.3569017 -0.2509543), wk = 0.0625000 extrapolated charge 10.00992, renormalised to 10.00000 total cpu time spent up to now is 35.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.44E-09, avg # of iterations = 2.9 total cpu time spent up to now is 36.2 secs total energy = -25.49951353 Ry Harris-Foulkes estimate = -25.50530481 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.19E-09, avg # of iterations = 3.0 total cpu time spent up to now is 36.6 secs total energy = -25.49951388 Ry Harris-Foulkes estimate = -25.49951407 Ry estimated scf accuracy < 0.00000051 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.19E-09, avg # of iterations = 1.0 total cpu time spent up to now is 36.9 secs total energy = -25.49951386 Ry Harris-Foulkes estimate = -25.49951390 Ry estimated scf accuracy < 0.00000012 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-09, avg # of iterations = 1.0 total cpu time spent up to now is 37.1 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1235 1.7607 5.5964 5.6214 6.5248 9.9715 10.5402 10.5429 14.5143 k = 0.1181 0.0656 0.3429 ( 522 PWs) bands (ev): -6.1048 -0.8620 3.9842 5.6710 8.0512 8.3019 9.0574 11.8797 13.9229 k = 0.1193 0.0677-0.5461 ( 520 PWs) bands (ev): -4.5802 -3.2041 4.5812 4.7528 6.2430 9.3101 9.6655 10.4185 15.6250 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5450 0.1703 4.7384 5.3090 6.6961 9.4220 10.2228 11.4642 13.4618 k = 0.1180 0.3448-0.0544 ( 522 PWs) bands (ev): -6.1058 -0.8613 3.9862 5.6696 8.0493 8.3027 9.0608 11.8813 13.9277 k = 0.1175 0.3441 0.2419 ( 519 PWs) bands (ev): -5.7346 -0.6235 2.9663 4.0328 5.3439 10.1908 11.9568 12.0480 13.7663 k = 0.1188 0.3462-0.6471 ( 510 PWs) bands (ev): -4.1561 -2.5763 1.8657 2.8647 6.2064 9.9180 12.4923 13.7080 14.0163 k = 0.1184 0.3455-0.3508 ( 521 PWs) bands (ev): -5.0087 -2.2033 2.8081 4.7957 6.1069 9.4230 11.1839 12.1975 13.7112 k = 0.1196-0.4908 0.2486 ( 520 PWs) bands (ev): -4.5836 -3.2015 4.5855 4.7526 6.2416 9.3104 9.6673 10.4215 15.6206 k = 0.1192-0.4915 0.5450 ( 510 PWs) bands (ev): -4.1584 -2.5729 1.8654 2.8646 6.2045 9.9189 12.4869 13.7086 14.0222 k = 0.1204-0.4894-0.3441 ( 510 PWs) bands (ev): -4.4734 -1.9145 1.8732 3.4982 4.1500 9.7824 12.9650 14.2996 14.9214 k = 0.1200-0.4901-0.0478 ( 521 PWs) bands (ev): -5.0055 -2.2027 2.8118 4.7901 6.1071 9.4070 11.1634 12.1941 13.7008 k = 0.1190-0.2123 0.1476 ( 525 PWs) bands (ev): -6.5451 0.1695 4.7391 5.3067 6.7023 9.4217 10.2198 11.4643 13.4648 k = 0.1186-0.2130 0.4440 ( 521 PWs) bands (ev): -5.0077 -2.2033 2.8082 4.7957 6.1021 9.4229 11.1847 12.1935 13.7138 k = 0.1199-0.2109-0.4451 ( 521 PWs) bands (ev): -5.0043 -2.2029 2.8136 4.7877 6.1024 9.4058 11.1622 12.1896 13.7055 k = 0.1195-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5437 0.1809 4.7172 5.3160 6.6878 9.4168 10.2122 11.4637 13.4596 k = 0.3564-0.0790-0.0556 ( 522 PWs) bands (ev): -6.1006 -0.8511 3.9804 5.6548 8.0322 8.2886 9.0451 11.8710 13.9164 k = 0.3560-0.0797 0.2408 ( 519 PWs) bands (ev): -5.7329 -0.6255 2.9564 4.0523 5.3379 10.1797 11.9451 12.0387 13.7675 k = 0.3573-0.0777-0.6483 ( 510 PWs) bands (ev): -4.1576 -2.5691 1.8683 2.8572 6.1863 9.9179 12.5014 13.7171 14.0268 k = 0.3569-0.0784-0.3520 ( 521 PWs) bands (ev): -5.0014 -2.1968 2.8068 4.7815 6.0910 9.4033 11.1517 12.1841 13.7078 k = 0.3559 0.1995-0.1566 ( 519 PWs) bands (ev): -5.7335 -0.6253 2.9570 4.0521 5.3382 10.1845 11.9453 12.0392 13.7649 k = 0.3555 0.1988 0.1398 ( 522 PWs) bands (ev): -5.9319 -1.5494 5.7754 5.7895 6.9957 8.4917 8.5014 9.6168 15.7078 k = 0.3567 0.2009-0.7493 ( 520 PWs) bands (ev): -4.9220 -2.0691 2.1162 4.6328 5.9503 10.0603 10.3809 13.1792 15.2204 k = 0.3563 0.2002-0.4530 ( 510 PWs) bands (ev): -4.4754 -1.9183 1.8723 3.5190 4.1395 9.7823 12.9652 14.3111 14.9306 k = 0.3575-0.6361 0.1464 ( 510 PWs) bands (ev): -4.1594 -2.5683 1.8684 2.8583 6.1897 9.9178 12.5007 13.7176 14.0280 k = 0.3571-0.6368 0.4428 ( 520 PWs) bands (ev): -4.9230 -2.0673 2.1168 4.6317 5.9484 10.0624 10.3791 13.1799 15.2186 k = 0.3584-0.6348-0.4463 ( 520 PWs) bands (ev): -4.9189 -2.0676 2.1229 4.6172 5.9396 10.0556 10.3769 13.1855 15.2506 k = 0.3579-0.6354-0.1499 ( 510 PWs) bands (ev): -4.1515 -2.5719 1.8624 2.8580 6.1909 9.9064 12.5002 13.7042 14.0128 k = 0.3570-0.3576 0.0454 ( 521 PWs) bands (ev): -5.0016 -2.1967 2.8051 4.7838 6.0908 9.4045 11.1538 12.1846 13.7058 k = 0.3566-0.3583 0.3418 ( 510 PWs) bands (ev): -4.4758 -1.9154 1.8693 3.5194 4.1385 9.7782 12.9652 14.3147 14.9325 k = 0.3578-0.3562-0.5473 ( 510 PWs) bands (ev): -4.1520 -2.5693 1.8621 2.8568 6.1856 9.9073 12.4955 13.7045 14.0174 k = 0.3574-0.3569-0.2510 ( 520 PWs) bands (ev): -4.5712 -3.1954 4.5713 4.7333 6.2277 9.2889 9.6495 10.4026 15.6481 the Fermi energy is 8.2392 ev ! total energy = -25.49951386 Ry Harris-Foulkes estimate = -25.49951386 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044223 -0.00019594 -0.00003275 atom 2 type 1 force = 0.00044223 0.00019594 0.00003275 Total force = 0.000686 Total SCF correction = 0.000097 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.18 0.00000592 -0.00000083 0.00000006 0.87 -0.12 0.01 -0.00000083 -0.00000053 0.00000191 -0.12 -0.08 0.28 0.00000006 0.00000191 -0.00000167 0.01 0.28 -0.25 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 1.053161150 0.002581156 0.001476619 0.550782578 0.899625101 0.002888928 0.550818217 0.307530504 0.845043149 new unit-cell volume = 274.9358 (a.u.)^3 new positions in cryst coord As 0.272212965 0.272427734 0.272273337 As -0.272212965 -0.272427734 -0.272273337 new positions in cart coord (alat unit) As 0.586705683 0.329517809 0.231271697 As -0.586705683 -0.329517809 -0.231271697 Ekin = 0.00000312 Ry T = 369.9 K Etot = -25.49951074 new unit-cell volume = 274.93580 a.u.^3 ( 40.74128 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053161150 0.002581156 0.001476619 0.550782578 0.899625101 0.002888928 0.550818217 0.307530504 0.845043149 ATOMIC_POSITIONS (crystal) As 0.272212965 0.272427734 0.272273337 As -0.272212965 -0.272427734 -0.272273337 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184625 0.0662702 0.0465876), wk = 0.0625000 k( 2) = ( 0.1180487 0.0655718 0.3429544), wk = 0.0625000 k( 3) = ( 0.1192902 0.0676669 -0.5461459), wk = 0.0625000 k( 4) = ( 0.1188764 0.0669685 -0.2497791), wk = 0.0625000 k( 5) = ( 0.1179215 0.3448193 -0.0544301), wk = 0.0625000 k( 6) = ( 0.1175077 0.3441210 0.2419367), wk = 0.0625000 k( 7) = ( 0.1187491 0.3462161 -0.6471636), wk = 0.0625000 k( 8) = ( 0.1183353 0.3455177 -0.3507969), wk = 0.0625000 k( 9) = ( 0.1195447 -0.4908282 0.2486231), wk = 0.0625000 k( 10) = ( 0.1191308 -0.4915266 0.5449899), wk = 0.0625000 k( 11) = ( 0.1203723 -0.4894315 -0.3441104), wk = 0.0625000 k( 12) = ( 0.1199585 -0.4901298 -0.0477436), wk = 0.0625000 k( 13) = ( 0.1190036 -0.2122790 0.1476054), wk = 0.0625000 k( 14) = ( 0.1185898 -0.2129774 0.4439722), wk = 0.0625000 k( 15) = ( 0.1198312 -0.2108823 -0.4451281), wk = 0.0625000 k( 16) = ( 0.1194174 -0.2115807 -0.1487614), wk = 0.0625000 k( 17) = ( 0.3563425 -0.0790403 -0.0555861), wk = 0.0625000 k( 18) = ( 0.3559287 -0.0797387 0.2407807), wk = 0.0625000 k( 19) = ( 0.3571702 -0.0776436 -0.6483196), wk = 0.0625000 k( 20) = ( 0.3567563 -0.0783420 -0.3519528), wk = 0.0625000 k( 21) = ( 0.3558015 0.1995088 -0.1566038), wk = 0.0625000 k( 22) = ( 0.3553876 0.1988105 0.1397629), wk = 0.0625000 k( 23) = ( 0.3566291 0.2009056 -0.7493374), wk = 0.0625000 k( 24) = ( 0.3562153 0.2002072 -0.4529706), wk = 0.0625000 k( 25) = ( 0.3574246 -0.6361387 0.1464494), wk = 0.0625000 k( 26) = ( 0.3570108 -0.6368370 0.4428162), wk = 0.0625000 k( 27) = ( 0.3582523 -0.6347420 -0.4462841), wk = 0.0625000 k( 28) = ( 0.3578384 -0.6354403 -0.1499174), wk = 0.0625000 k( 29) = ( 0.3568836 -0.3575895 0.0454317), wk = 0.0625000 k( 30) = ( 0.3564697 -0.3582879 0.3417984), wk = 0.0625000 k( 31) = ( 0.3577112 -0.3561928 -0.5473019), wk = 0.0625000 k( 32) = ( 0.3572974 -0.3568912 -0.2509351), wk = 0.0625000 extrapolated charge 10.00262, renormalised to 10.00000 total cpu time spent up to now is 37.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.43E-10, avg # of iterations = 3.8 total cpu time spent up to now is 38.2 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1235 1.7554 5.5987 5.6189 6.5200 9.9710 10.5377 10.5396 14.5108 k = 0.1180 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1046 -0.8643 3.9819 5.6709 8.0478 8.2970 9.0512 11.8725 13.9206 k = 0.1193 0.0677-0.5461 ( 520 PWs) bands (ev): -4.5806 -3.2041 4.5773 4.7524 6.2388 9.3064 9.6585 10.4095 15.6188 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5451 0.1692 4.7371 5.3051 6.6925 9.4142 10.2213 11.4593 13.4560 k = 0.1179 0.3448-0.0544 ( 522 PWs) bands (ev): -6.1055 -0.8637 3.9833 5.6701 8.0461 8.2978 9.0540 11.8752 13.9247 k = 0.1175 0.3441 0.2419 ( 519 PWs) bands (ev): -5.7340 -0.6284 2.9652 4.0343 5.3382 10.1904 11.9527 12.0429 13.7579 k = 0.1187 0.3462-0.6472 ( 510 PWs) bands (ev): -4.1556 -2.5777 1.8640 2.8612 6.2011 9.9135 12.4903 13.7045 14.0098 k = 0.1183 0.3455-0.3508 ( 521 PWs) bands (ev): -5.0089 -2.2032 2.8072 4.7902 6.1037 9.4139 11.1767 12.1957 13.7060 k = 0.1195-0.4908 0.2486 ( 520 PWs) bands (ev): -4.5831 -3.2026 4.5813 4.7525 6.2375 9.3067 9.6601 10.4129 15.6144 k = 0.1191-0.4915 0.5450 ( 510 PWs) bands (ev): -4.1575 -2.5749 1.8639 2.8609 6.1996 9.9134 12.4861 13.7057 14.0153 k = 0.1204-0.4894-0.3441 ( 510 PWs) bands (ev): -4.4729 -1.9168 1.8691 3.4996 4.1445 9.7818 12.9587 14.2912 14.9167 k = 0.1200-0.4901-0.0477 ( 521 PWs) bands (ev): -5.0053 -2.2044 2.8116 4.7858 6.1030 9.4004 11.1598 12.1903 13.6970 k = 0.1190-0.2123 0.1476 ( 525 PWs) bands (ev): -6.5451 0.1679 4.7382 5.3030 6.6983 9.4144 10.2188 11.4588 13.4582 k = 0.1186-0.2130 0.4440 ( 521 PWs) bands (ev): -5.0079 -2.2033 2.8070 4.7905 6.0991 9.4130 11.1778 12.1924 13.7079 k = 0.1198-0.2109-0.4451 ( 521 PWs) bands (ev): -5.0043 -2.2040 2.8126 4.7836 6.0988 9.3981 11.1584 12.1874 13.7007 k = 0.1194-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5437 0.1772 4.7192 5.3115 6.6855 9.4109 10.2122 11.4572 13.4526 k = 0.3563-0.0790-0.0556 ( 522 PWs) bands (ev): -6.1009 -0.8544 3.9773 5.6576 8.0306 8.2851 9.0393 11.8682 13.9138 k = 0.3559-0.0797 0.2408 ( 519 PWs) bands (ev): -5.7329 -0.6292 2.9563 4.0514 5.3328 10.1799 11.9419 12.0353 13.7602 k = 0.3572-0.0776-0.6483 ( 510 PWs) bands (ev): -4.1578 -2.5704 1.8664 2.8549 6.1831 9.9146 12.4978 13.7115 14.0193 k = 0.3568-0.0783-0.3520 ( 521 PWs) bands (ev): -5.0021 -2.1984 2.8072 4.7774 6.0890 9.3980 11.1479 12.1817 13.7038 k = 0.3558 0.1995-0.1566 ( 519 PWs) bands (ev): -5.7336 -0.6284 2.9568 4.0509 5.3330 10.1841 11.9419 12.0363 13.7586 k = 0.3554 0.1988 0.1398 ( 522 PWs) bands (ev): -5.9314 -1.5548 5.7778 5.7883 6.9953 8.4876 8.4981 9.6115 15.7030 k = 0.3566 0.2009-0.7493 ( 520 PWs) bands (ev): -4.9212 -2.0739 2.1164 4.6320 5.9463 10.0560 10.3783 13.1761 15.2159 k = 0.3562 0.2002-0.4530 ( 510 PWs) bands (ev): -4.4766 -1.9172 1.8678 3.5179 4.1360 9.7810 12.9595 14.3029 14.9224 k = 0.3574-0.6361 0.1464 ( 510 PWs) bands (ev): -4.1597 -2.5695 1.8666 2.8559 6.1866 9.9143 12.4974 13.7117 14.0207 k = 0.3570-0.6368 0.4428 ( 520 PWs) bands (ev): -4.9220 -2.0723 2.1166 4.6313 5.9445 10.0579 10.3770 13.1773 15.2134 k = 0.3583-0.6347-0.4463 ( 520 PWs) bands (ev): -4.9181 -2.0725 2.1214 4.6186 5.9363 10.0516 10.3753 13.1834 15.2409 k = 0.3578-0.6354-0.1499 ( 510 PWs) bands (ev): -4.1522 -2.5732 1.8615 2.8551 6.1882 9.9024 12.4981 13.7004 14.0074 k = 0.3569-0.3576 0.0454 ( 521 PWs) bands (ev): -5.0020 -2.1989 2.8060 4.7798 6.0885 9.3994 11.1504 12.1813 13.7022 k = 0.3565-0.3583 0.3418 ( 510 PWs) bands (ev): -4.4762 -1.9157 1.8653 3.5185 4.1346 9.7775 12.9593 14.3057 14.9251 k = 0.3577-0.3562-0.5473 ( 510 PWs) bands (ev): -4.1522 -2.5713 1.8612 2.8538 6.1831 9.9025 12.4943 13.7014 14.0115 k = 0.3573-0.3569-0.2509 ( 520 PWs) bands (ev): -4.5710 -3.1985 4.5689 4.7355 6.2248 9.2872 9.6440 10.3972 15.6384 the Fermi energy is 8.2350 ev ! total energy = -25.49951471 Ry Harris-Foulkes estimate = -25.50104564 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00019498 -0.00010605 0.00000490 atom 2 type 1 force = 0.00019498 0.00010605 -0.00000490 Total force = 0.000314 Total SCF correction = 0.000198 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.69 -0.00000118 -0.00000158 -0.00000032 -0.17 -0.23 -0.05 -0.00000158 -0.00000607 0.00000164 -0.23 -0.89 0.24 -0.00000032 0.00000164 -0.00000691 -0.05 0.24 -1.02 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 1.053111053 0.002549993 0.001472074 0.550717629 0.899532990 0.002927497 0.550780701 0.307521924 0.844972337 new unit-cell volume = 274.8727 (a.u.)^3 new positions in cryst coord As 0.272142378 0.272359129 0.272277368 As -0.272142378 -0.272359129 -0.272277368 new positions in cart coord (alat unit) As 0.586554240 0.329421243 0.231264789 As -0.586554240 -0.329421243 -0.231264789 Ekin = 0.00000371 Ry T = 348.1 K Etot = -25.49951100 new unit-cell volume = 274.87267 a.u.^3 ( 40.73193 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053111053 0.002549993 0.001472074 0.550717629 0.899532990 0.002927497 0.550780701 0.307521924 0.844972337 ATOMIC_POSITIONS (crystal) As 0.272142378 0.272359129 0.272277368 As -0.272142378 -0.272359129 -0.272277368 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184703 0.0662787 0.0465893), wk = 0.0625000 k( 2) = ( 0.1180577 0.0655667 0.3429850), wk = 0.0625000 k( 3) = ( 0.1192955 0.0677028 -0.5462022), wk = 0.0625000 k( 4) = ( 0.1188829 0.0669908 -0.2498064), wk = 0.0625000 k( 5) = ( 0.1179370 0.3448561 -0.0544494), wk = 0.0625000 k( 6) = ( 0.1175244 0.3441441 0.2419464), wk = 0.0625000 k( 7) = ( 0.1187622 0.3462801 -0.6472409), wk = 0.0625000 k( 8) = ( 0.1183496 0.3455681 -0.3508451), wk = 0.0625000 k( 9) = ( 0.1195369 -0.4908759 0.2486667), wk = 0.0625000 k( 10) = ( 0.1191244 -0.4915879 0.5450624), wk = 0.0625000 k( 11) = ( 0.1203621 -0.4894519 -0.3441248), wk = 0.0625000 k( 12) = ( 0.1199495 -0.4901639 -0.0477291), wk = 0.0625000 k( 13) = ( 0.1190036 -0.2122986 0.1476280), wk = 0.0625000 k( 14) = ( 0.1185910 -0.2130106 0.4440237), wk = 0.0625000 k( 15) = ( 0.1198288 -0.2108746 -0.4451635), wk = 0.0625000 k( 16) = ( 0.1194162 -0.2115866 -0.1487678), wk = 0.0625000 k( 17) = ( 0.3563569 -0.0790291 -0.0555892), wk = 0.0625000 k( 18) = ( 0.3559443 -0.0797411 0.2408066), wk = 0.0625000 k( 19) = ( 0.3571820 -0.0776051 -0.6483807), wk = 0.0625000 k( 20) = ( 0.3567695 -0.0783171 -0.3519849), wk = 0.0625000 k( 21) = ( 0.3558236 0.1995482 -0.1566279), wk = 0.0625000 k( 22) = ( 0.3554110 0.1988362 0.1397679), wk = 0.0625000 k( 23) = ( 0.3566487 0.2009723 -0.7494193), wk = 0.0625000 k( 24) = ( 0.3562361 0.2002602 -0.4530236), wk = 0.0625000 k( 25) = ( 0.3574235 -0.6361837 0.1464882), wk = 0.0625000 k( 26) = ( 0.3570109 -0.6368957 0.4428840), wk = 0.0625000 k( 27) = ( 0.3582487 -0.6347597 -0.4463033), wk = 0.0625000 k( 28) = ( 0.3578361 -0.6354717 -0.1499075), wk = 0.0625000 k( 29) = ( 0.3568902 -0.3576064 0.0454495), wk = 0.0625000 k( 30) = ( 0.3564776 -0.3583184 0.3418453), wk = 0.0625000 k( 31) = ( 0.3577154 -0.3561824 -0.5473420), wk = 0.0625000 k( 32) = ( 0.3573028 -0.3568944 -0.2509462), wk = 0.0625000 extrapolated charge 9.99770, renormalised to 10.00000 total cpu time spent up to now is 38.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.77E-09, avg # of iterations = 3.2 total cpu time spent up to now is 39.2 secs total energy = -25.49951509 Ry Harris-Foulkes estimate = -25.49817396 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 2.0 total cpu time spent up to now is 39.5 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1212 1.7574 5.6037 5.6225 6.5222 9.9780 10.5418 10.5440 14.5141 k = 0.1181 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1020 -0.8616 3.9850 5.6760 8.0508 8.2996 9.0514 11.8755 13.9270 k = 0.1193 0.0677-0.5462 ( 520 PWs) bands (ev): -4.5780 -3.2008 4.5803 4.7568 6.2405 9.3104 9.6585 10.4107 15.6219 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5428 0.1729 4.7407 5.3070 6.6968 9.4147 10.2271 11.4617 13.4589 k = 0.1179 0.3449-0.0544 ( 522 PWs) bands (ev): -6.1028 -0.8614 3.9856 5.6763 8.0502 8.3005 9.0533 11.8786 13.9295 k = 0.1175 0.3441 0.2419 ( 519 PWs) bands (ev): -5.7311 -0.6268 2.9691 4.0389 5.3382 10.1977 11.9566 12.0464 13.7582 k = 0.1188 0.3463-0.6472 ( 510 PWs) bands (ev): -4.1524 -2.5745 1.8664 2.8629 6.2032 9.9162 12.4956 13.7094 14.0126 k = 0.1183 0.3456-0.3508 ( 521 PWs) bands (ev): -5.0060 -2.2001 2.8113 4.7911 6.1067 9.4140 11.1793 12.2006 13.7094 k = 0.1195-0.4909 0.2487 ( 520 PWs) bands (ev): -4.5794 -3.2008 4.5834 4.7576 6.2400 9.3112 9.6598 10.4140 15.6180 k = 0.1191-0.4916 0.5451 ( 510 PWs) bands (ev): -4.1535 -2.5729 1.8666 2.8625 6.2023 9.9155 12.4936 13.7109 14.0167 k = 0.1204-0.4895-0.3441 ( 510 PWs) bands (ev): -4.4700 -1.9132 1.8699 3.5042 4.1452 9.7889 12.9612 14.2918 14.9199 k = 0.1199-0.4902-0.0477 ( 521 PWs) bands (ev): -5.0025 -2.2014 2.8159 4.7863 6.1060 9.4014 11.1634 12.1952 13.7019 k = 0.1190-0.2123 0.1476 ( 525 PWs) bands (ev): -6.5428 0.1713 4.7424 5.3055 6.7010 9.4154 10.2259 11.4609 13.4599 k = 0.1186-0.2130 0.4440 ( 521 PWs) bands (ev): -5.0052 -2.2000 2.8107 4.7914 6.1032 9.4127 11.1802 12.1985 13.7104 k = 0.1198-0.2109-0.4452 ( 521 PWs) bands (ev): -5.0019 -2.2004 2.8160 4.7846 6.1031 9.3985 11.1616 12.1941 13.7037 k = 0.1194-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5415 0.1803 4.7243 5.3137 6.6883 9.4120 10.2200 11.4596 13.4544 k = 0.3564-0.0790-0.0556 ( 522 PWs) bands (ev): -6.0983 -0.8529 3.9801 5.6646 8.0360 8.2885 9.0392 11.8714 13.9189 k = 0.3559-0.0797 0.2408 ( 519 PWs) bands (ev): -5.7299 -0.6277 2.9606 4.0550 5.3330 10.1874 11.9466 12.0389 13.7606 k = 0.3572-0.0776-0.6484 ( 510 PWs) bands (ev): -4.1543 -2.5674 1.8685 2.8567 6.1857 9.9171 12.5022 13.7161 14.0222 k = 0.3568-0.0783-0.3520 ( 521 PWs) bands (ev): -4.9995 -2.1954 2.8112 4.7787 6.0925 9.3987 11.1522 12.1873 13.7077 k = 0.3558 0.1995-0.1566 ( 519 PWs) bands (ev): -5.7306 -0.6267 2.9611 4.0539 5.3333 10.1901 11.9467 12.0403 13.7602 k = 0.3554 0.1988 0.1398 ( 522 PWs) bands (ev): -5.9278 -1.5554 5.7839 5.7924 7.0019 8.4895 8.5002 9.6135 15.7082 k = 0.3566 0.2010-0.7494 ( 520 PWs) bands (ev): -4.9169 -2.0739 2.1203 4.6356 5.9475 10.0585 10.3833 13.1819 15.2197 k = 0.3562 0.2003-0.4530 ( 510 PWs) bands (ev): -4.4737 -1.9121 1.8673 3.5209 4.1373 9.7866 12.9619 14.3041 14.9254 k = 0.3574-0.6362 0.1465 ( 510 PWs) bands (ev): -4.1559 -2.5669 1.8688 2.8576 6.1887 9.9170 12.5019 13.7161 14.0235 k = 0.3570-0.6369 0.4429 ( 520 PWs) bands (ev): -4.9175 -2.0729 2.1199 4.6357 5.9466 10.0597 10.3827 13.1830 15.2165 k = 0.3582-0.6348-0.4463 ( 520 PWs) bands (ev): -4.9137 -2.0734 2.1245 4.6238 5.9392 10.0535 10.3812 13.1885 15.2427 k = 0.3578-0.6355-0.1499 ( 510 PWs) bands (ev): -4.1487 -2.5706 1.8640 2.8570 6.1902 9.9061 12.5030 13.7051 14.0103 k = 0.3569-0.3576 0.0454 ( 521 PWs) bands (ev): -4.9993 -2.1963 2.8106 4.7807 6.0919 9.4003 11.1549 12.1863 13.7070 k = 0.3565-0.3583 0.3418 ( 510 PWs) bands (ev): -4.4730 -1.9122 1.8659 3.5220 4.1357 9.7846 12.9617 14.3058 14.9282 k = 0.3577-0.3562-0.5473 ( 510 PWs) bands (ev): -4.1483 -2.5697 1.8640 2.8558 6.1864 9.9055 12.5014 13.7067 14.0131 k = 0.3573-0.3569-0.2509 ( 520 PWs) bands (ev): -4.5678 -3.1970 4.5712 4.7416 6.2283 9.2929 9.6445 10.3987 15.6412 the Fermi energy is 8.2380 ev ! total energy = -25.49951518 Ry Harris-Foulkes estimate = -25.49951521 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000123 -0.00000357 0.00003170 atom 2 type 1 force = -0.00000123 0.00000357 -0.00003170 Total force = 0.000045 Total SCF correction = 0.000234 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.37 0.00000053 -0.00000151 -0.00000043 0.08 -0.22 -0.06 -0.00000151 -0.00000381 0.00000148 -0.22 -0.56 0.22 -0.00000043 0.00000148 -0.00000434 -0.06 0.22 -0.64 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 new unit-cell volume = 274.7958 (a.u.)^3 new positions in cryst coord As 0.272140923 0.272355677 0.272286899 As -0.272140923 -0.272355677 -0.272286899 new positions in cart coord (alat unit) As 0.586552442 0.329364744 0.231252871 As -0.586552442 -0.329364744 -0.231252871 Ekin = 0.00000294 Ry T = 328.8 K Etot = -25.49951224 new unit-cell volume = 274.79579 a.u.^3 ( 40.72053 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 ATOMIC_POSITIONS (crystal) As 0.272140923 0.272355677 0.272286899 As -0.272140923 -0.272355677 -0.272286899 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184732 0.0662869 0.0465925), wk = 0.0625000 k( 2) = ( 0.1180634 0.0655557 0.3430338), wk = 0.0625000 k( 3) = ( 0.1192926 0.0677493 -0.5462900), wk = 0.0625000 k( 4) = ( 0.1188829 0.0670181 -0.2498488), wk = 0.0625000 k( 5) = ( 0.1179524 0.3449079 -0.0544810), wk = 0.0625000 k( 6) = ( 0.1175426 0.3441767 0.2419603), wk = 0.0625000 k( 7) = ( 0.1187718 0.3463703 -0.6473635), wk = 0.0625000 k( 8) = ( 0.1183621 0.3456391 -0.3509223), wk = 0.0625000 k( 9) = ( 0.1195147 -0.4909551 0.2487395), wk = 0.0625000 k( 10) = ( 0.1191050 -0.4916863 0.5451808), wk = 0.0625000 k( 11) = ( 0.1203342 -0.4894926 -0.3441430), wk = 0.0625000 k( 12) = ( 0.1199245 -0.4902239 -0.0477017), wk = 0.0625000 k( 13) = ( 0.1189939 -0.2123341 0.1476660), wk = 0.0625000 k( 14) = ( 0.1185842 -0.2130653 0.4441073), wk = 0.0625000 k( 15) = ( 0.1198134 -0.2108716 -0.4452165), wk = 0.0625000 k( 16) = ( 0.1194037 -0.2116029 -0.1487753), wk = 0.0625000 k( 17) = ( 0.3563500 -0.0790290 -0.0555902), wk = 0.0625000 k( 18) = ( 0.3559402 -0.0797603 0.2408510), wk = 0.0625000 k( 19) = ( 0.3571695 -0.0775666 -0.6484728), wk = 0.0625000 k( 20) = ( 0.3567597 -0.0782978 -0.3520315), wk = 0.0625000 k( 21) = ( 0.3558292 0.1995919 -0.1566637), wk = 0.0625000 k( 22) = ( 0.3554195 0.1988607 0.1397775), wk = 0.0625000 k( 23) = ( 0.3566487 0.2010544 -0.7495463), wk = 0.0625000 k( 24) = ( 0.3562389 0.2003232 -0.4531050), wk = 0.0625000 k( 25) = ( 0.3573916 -0.6362710 0.1465568), wk = 0.0625000 k( 26) = ( 0.3569818 -0.6370022 0.4429980), wk = 0.0625000 k( 27) = ( 0.3582110 -0.6348086 -0.4463258), wk = 0.0625000 k( 28) = ( 0.3578013 -0.6355398 -0.1498845), wk = 0.0625000 k( 29) = ( 0.3568708 -0.3576500 0.0454833), wk = 0.0625000 k( 30) = ( 0.3564610 -0.3583813 0.3419245), wk = 0.0625000 k( 31) = ( 0.3576903 -0.3561876 -0.5473993), wk = 0.0625000 k( 32) = ( 0.3572805 -0.3569188 -0.2509580), wk = 0.0625000 extrapolated charge 9.99720, renormalised to 10.00000 total cpu time spent up to now is 39.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.10E-09, avg # of iterations = 3.1 total cpu time spent up to now is 40.6 secs total energy = -25.49951538 Ry Harris-Foulkes estimate = -25.49788123 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-09, avg # of iterations = 2.2 total cpu time spent up to now is 40.9 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1199 1.7620 5.6081 5.6249 6.5261 9.9821 10.5462 10.5481 14.5193 k = 0.1181 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1004 -0.8576 3.9871 5.6785 8.0543 8.3038 9.0553 11.8804 13.9309 k = 0.1193 0.0677-0.5463 ( 520 PWs) bands (ev): -4.5757 -3.1981 4.5828 4.7590 6.2436 9.3141 9.6621 10.4145 15.6257 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5413 0.1770 4.7431 5.3101 6.7003 9.4191 10.2304 11.4660 13.4628 k = 0.1180 0.3449-0.0545 ( 522 PWs) bands (ev): -6.1011 -0.8575 3.9877 5.6789 8.0539 8.3046 9.0569 11.8832 13.9331 k = 0.1175 0.3442 0.2420 ( 519 PWs) bands (ev): -5.7295 -0.6230 2.9706 4.0429 5.3411 10.2011 11.9615 12.0509 13.7633 k = 0.1188 0.3464-0.6474 ( 510 PWs) bands (ev): -4.1503 -2.5710 1.8684 2.8646 6.2059 9.9205 12.5004 13.7146 14.0177 k = 0.1184 0.3456-0.3509 ( 521 PWs) bands (ev): -5.0036 -2.1970 2.8135 4.7937 6.1092 9.4171 11.1829 12.2045 13.7128 k = 0.1195-0.4910 0.2487 ( 520 PWs) bands (ev): -4.5769 -3.1981 4.5855 4.7597 6.2432 9.3148 9.6632 10.4175 15.6223 k = 0.1191-0.4917 0.5452 ( 510 PWs) bands (ev): -4.1512 -2.5697 1.8686 2.8644 6.2052 9.9200 12.4987 13.7159 14.0213 k = 0.1203-0.4895-0.3441 ( 510 PWs) bands (ev): -4.4681 -1.9102 1.8721 3.5082 4.1474 9.7920 12.9664 14.2979 14.9260 k = 0.1199-0.4902-0.0477 ( 521 PWs) bands (ev): -5.0006 -2.1980 2.8177 4.7889 6.1088 9.4057 11.1684 12.2000 13.7066 k = 0.1190-0.2123 0.1477 ( 525 PWs) bands (ev): -6.5412 0.1757 4.7446 5.3088 6.7039 9.4197 10.2294 11.4653 13.4636 k = 0.1186-0.2131 0.4441 ( 521 PWs) bands (ev): -5.0029 -2.1970 2.8130 4.7939 6.1062 9.4160 11.1836 12.2027 13.7136 k = 0.1198-0.2109-0.4452 ( 521 PWs) bands (ev): -5.0001 -2.1971 2.8177 4.7874 6.1063 9.4032 11.1668 12.1990 13.7080 k = 0.1194-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5401 0.1839 4.7286 5.3164 6.6917 9.4166 10.2247 11.4644 13.4585 k = 0.3563-0.0790-0.0556 ( 522 PWs) bands (ev): -6.0970 -0.8502 3.9826 5.6687 8.0417 8.2939 9.0441 11.8761 13.9231 k = 0.3559-0.0798 0.2409 ( 519 PWs) bands (ev): -5.7283 -0.6240 2.9632 4.0572 5.3365 10.1914 11.9528 12.0440 13.7655 k = 0.3572-0.0776-0.6485 ( 510 PWs) bands (ev): -4.1519 -2.5646 1.8702 2.8590 6.1896 9.9212 12.5056 13.7208 14.0269 k = 0.3568-0.0783-0.3520 ( 521 PWs) bands (ev): -4.9978 -2.1927 2.8135 4.7824 6.0960 9.4030 11.1589 12.1924 13.7118 k = 0.3558 0.1996-0.1567 ( 519 PWs) bands (ev): -5.7289 -0.6231 2.9636 4.0562 5.3368 10.1936 11.9529 12.0453 13.7652 k = 0.3554 0.1989 0.1398 ( 522 PWs) bands (ev): -5.9263 -1.5526 5.7879 5.7950 7.0068 8.4939 8.5037 9.6187 15.7124 k = 0.3566 0.2011-0.7495 ( 520 PWs) bands (ev): -4.9150 -2.0707 2.1225 4.6379 5.9508 10.0630 10.3884 13.1877 15.2243 k = 0.3562 0.2003-0.4531 ( 510 PWs) bands (ev): -4.4712 -1.9091 1.8694 3.5229 4.1401 9.7893 12.9670 14.3092 14.9315 k = 0.3574-0.6363 0.1466 ( 510 PWs) bands (ev): -4.1533 -2.5641 1.8705 2.8597 6.1922 9.9212 12.5053 13.7208 14.0280 k = 0.3570-0.6370 0.4430 ( 520 PWs) bands (ev): -4.9155 -2.0698 2.1221 4.6381 5.9500 10.0640 10.3879 13.1887 15.2215 k = 0.3582-0.6348-0.4463 ( 520 PWs) bands (ev): -4.9121 -2.0706 2.1262 4.6277 5.9438 10.0583 10.3868 13.1933 15.2451 k = 0.3578-0.6355-0.1499 ( 510 PWs) bands (ev): -4.1466 -2.5679 1.8662 2.8593 6.1938 9.9118 12.5070 13.7108 14.0154 k = 0.3569-0.3577 0.0455 ( 521 PWs) bands (ev): -4.9976 -2.1935 2.8130 4.7841 6.0955 9.4044 11.1612 12.1916 13.7113 k = 0.3565-0.3584 0.3419 ( 510 PWs) bands (ev): -4.4705 -1.9092 1.8683 3.5239 4.1388 9.7876 12.9667 14.3106 14.9339 k = 0.3577-0.3562-0.5474 ( 510 PWs) bands (ev): -4.1462 -2.5670 1.8662 2.8582 6.1905 9.9113 12.5056 13.7122 14.0178 k = 0.3573-0.3569-0.2510 ( 520 PWs) bands (ev): -4.5663 -3.1949 4.5740 4.7456 6.2332 9.2987 9.6495 10.4033 15.6435 the Fermi energy is 8.2427 ev ! total energy = -25.49951546 Ry Harris-Foulkes estimate = -25.49951550 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00004854 -0.00004247 -0.00000152 atom 2 type 1 force = 0.00004854 0.00004247 0.00000152 Total force = 0.000091 Total SCF correction = 0.000238 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.14 0.00000164 -0.00000163 -0.00000059 0.24 -0.24 -0.09 -0.00000163 -0.00000206 0.00000104 -0.24 -0.30 0.15 -0.00000059 0.00000104 -0.00000234 -0.09 0.15 -0.34 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.49951546 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 final unit-cell volume = 274.7958 (a.u.)^3 input alat = 7.0103 (a.u.) Begin final coordinates new unit-cell volume = 274.79579 a.u.^3 ( 40.72053 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 ATOMIC_POSITIONS (crystal) As 0.272140923 0.272355677 0.272286899 As -0.272140923 -0.272355677 -0.272286899 End final coordinates Writing output data file pwscf.save init_run : 0.24s CPU 0.25s WALL ( 1 calls) electrons : 32.52s CPU 33.33s WALL ( 20 calls) update_pot : 2.23s CPU 2.24s WALL ( 19 calls) forces : 1.44s CPU 1.45s WALL ( 20 calls) stress : 2.54s CPU 2.56s WALL ( 20 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 27.82s CPU 28.50s WALL ( 96 calls) sum_band : 4.40s CPU 4.45s WALL ( 96 calls) v_of_rho : 0.20s CPU 0.19s WALL ( 104 calls) mix_rho : 0.05s CPU 0.06s WALL ( 96 calls) Called by c_bands: init_us_2 : 0.82s CPU 0.91s WALL ( 7456 calls) cegterg : 27.19s CPU 27.64s WALL ( 3072 calls) Called by *egterg: h_psi : 20.65s CPU 20.63s WALL ( 9734 calls) g_psi : 0.98s CPU 0.97s WALL ( 6630 calls) cdiaghg : 2.08s CPU 2.04s WALL ( 8710 calls) Called by h_psi: add_vuspsi : 0.37s CPU 0.39s WALL ( 9734 calls) General routines calbec : 0.57s CPU 0.60s WALL ( 11014 calls) fft : 0.13s CPU 0.11s WALL ( 539 calls) fftw : 19.72s CPU 19.59s WALL ( 172990 calls) davcio : 0.02s CPU 0.30s WALL ( 10528 calls) PWSCF : 40.09s CPU 41.19s WALL This run was terminated on: 11:29:30 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav13.in0000644000700200004540000000051412053145627017277 0ustar marsamoscm &control calculation='scf', / &system ibrav = 13, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav11-kauto.ref0000644000700200004540000002040712053145627020567 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav11-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 993 993 289 25319 25319 4025 bravais-lattice index = 11 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 1.000000 ) a(2) = ( -0.500000 0.750000 1.000000 ) a(3) = ( -0.500000 -0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.500000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 -0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 4 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.5000000 k( 2) = ( 0.0000000 0.3333333 0.0000000), wk = 0.5000000 k( 3) = ( 0.5000000 -0.3333333 0.2500000), wk = 0.5000000 k( 4) = ( 0.5000000 0.0000000 0.0000000), wk = 0.5000000 Dense grid: 25319 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3196, 1) NL pseudopotentials 0.00 Mb ( 3196, 0) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.19 Mb ( 25319) G-vector shells 0.01 Mb ( 1383) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.20 Mb ( 3196, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001236 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.124E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 13.6 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.337E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.21992045 Ry Harris-Foulkes estimate = -2.29010360 Ry estimated scf accuracy < 0.13316714 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.536E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23090410 Ry Harris-Foulkes estimate = -2.23135519 Ry estimated scf accuracy < 0.00100648 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.170E-05 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23120974 Ry Harris-Foulkes estimate = -2.23120866 Ry estimated scf accuracy < 0.00001198 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.99E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 3140 PWs) bands (ev): -10.2167 k = 0.0000 0.3333 0.0000 ( 3140 PWs) bands (ev): -10.2177 k = 0.5000-0.3333 0.2500 ( 3196 PWs) bands (ev): -10.2108 k = 0.5000 0.0000 0.0000 ( 3172 PWs) bands (ev): -10.2063 ! total energy = -2.23121089 Ry Harris-Foulkes estimate = -2.23121079 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -3.11195081 Ry hartree contribution = 1.66384329 Ry xc contribution = -1.31435332 Ry ewald contribution = 0.53124995 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.07s CPU 0.07s WALL ( 1 calls) electrons : 0.25s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.10s CPU 0.10s WALL ( 4 calls) sum_band : 0.05s CPU 0.05s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.10s CPU 0.10s WALL ( 16 calls) Called by *egterg: h_psi : 0.11s CPU 0.10s WALL ( 44 calls) g_psi : 0.00s CPU 0.00s WALL ( 24 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 40 calls) Called by h_psi: General routines fft : 0.04s CPU 0.03s WALL ( 19 calls) fftw : 0.10s CPU 0.10s WALL ( 112 calls) davcio : 0.00s CPU 0.00s WALL ( 52 calls) PWSCF : 0.35s CPU 0.37s WALL This run was terminated on: 10:22:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/md-pot_extrap2.in0000755000700200004540000000062112053145627017254 0ustar marsamoscm &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions pot_extrapolation='second_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.0.2/PW/tests/lattice-ibrav7-kauto.in0000644000700200004540000000046412053145627020347 0ustar marsamoscm &control calculation='scf', / &system ibrav = 7, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/eval_infix.in20000755000700200004540000000057712053145627016627 0ustar marsamoscm &control calculation='scf', / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', / &electrons mixing_beta=0.25, / ATOMIC_SPECIES O 15.99994 O.pz-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 2 4/3 1+1/3 (1+2/2*3)/3 3*0 1-1 espresso-5.0.2/PW/tests/dipole.in0000644000700200004540000000151212053145627015660 0ustar marsamoscm &control calculation='scf', tefield=.true., dipfield=.true., / &system nat=5, ntyp=3, ibrav=0, celldm(1)=4.70366666, ecutwfc = 30.0 occupations='smearing', smearing='m-v', degauss=0.03 edir=3, emaxpos=0.55, eopreg=0.06, eamp=0, / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / ATOMIC_SPECIES C 1.0 C.pz-rrkjus.UPF O 1.0 O.pz-rrkjus.UPF Ni 1.0 Ni.pz-nd-rrkjus.UPF CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421356 0.00000000 0.00000000 0.00000000 9.10000001 ATOMIC_POSITIONS (alat) C -0.00364039 0.02119538 1.54673745 O -0.00634860 0.04192428 2.02021975 Ni 0.48527378 0.00197332 0.97713547 Ni -0.00049546 0.70236680 0.45417840 Ni 0.50000000 0.00000000 0.00000000 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav10.in0000644000700200004540000000046712053145627017303 0ustar marsamoscm &control calculation='scf', / &system ibrav = 10, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lsda-tot_magnetization.in0000755000700200004540000000056012053145627021071 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02, tot_magnetization=2 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/uspp.ref0000644000700200004540000002746212053145627015555 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.71295693 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -87.79914610 Ry Harris-Foulkes estimate = -87.89634579 Ry estimated scf accuracy < 0.19465293 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -87.83029076 Ry Harris-Foulkes estimate = -87.83088945 Ry estimated scf accuracy < 0.00113514 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -87.83069561 Ry Harris-Foulkes estimate = -87.83070040 Ry estimated scf accuracy < 0.00002849 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.7 secs total energy = -87.83069538 Ry Harris-Foulkes estimate = -87.83069727 Ry estimated scf accuracy < 0.00000453 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.12E-08, avg # of iterations = 1.1 total cpu time spent up to now is 0.7 secs total energy = -87.83069606 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.32E-10, avg # of iterations = 1.5 total cpu time spent up to now is 0.8 secs total energy = -87.83069607 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 1.8E-09 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-11, avg # of iterations = 1.1 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9886 11.1850 11.1850 11.1850 12.0746 12.0746 38.8575 41.0126 41.0126 41.0126 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1531 10.9382 11.3554 11.3554 12.1663 12.1663 27.5234 38.3699 38.3699 38.4662 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1013 11.1517 11.1517 12.6884 12.6884 13.4640 18.6319 37.0229 37.6064 37.6064 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7919 10.4196 11.6191 11.9025 11.9025 12.3692 32.3364 32.3364 33.7585 34.5388 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7555 10.3165 11.2505 11.8788 12.7320 15.5212 21.5948 27.6704 31.2986 35.1290 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6198 10.6628 10.8812 11.7278 12.0749 14.1915 24.5904 26.0214 35.8947 37.3859 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2484 9.6935 12.6696 12.8423 12.8423 16.0621 22.1014 28.1776 28.1776 32.9153 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0175 10.6636 10.6636 12.0420 12.8429 20.9456 20.9456 23.1289 24.0486 44.6507 the Fermi energy is 15.2762 ev ! total energy = -87.83069607 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 4.2E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22276681 Ry hartree contribution = 18.87925648 Ry xc contribution = -14.05431792 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 8 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.60 0.00000408 0.00000000 0.00000000 0.60 0.00 0.00 0.00000000 0.00000408 0.00000000 0.00 0.60 0.00 0.00000000 0.00000000 0.00000408 0.00 0.00 0.60 Writing output data file pwscf.save init_run : 0.36s CPU 0.37s WALL ( 1 calls) electrons : 0.42s CPU 0.43s WALL ( 1 calls) stress : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.23s CPU 0.23s WALL ( 8 calls) sum_band : 0.11s CPU 0.11s WALL ( 8 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 9 calls) newd : 0.06s CPU 0.06s WALL ( 9 calls) mix_rho : 0.00s CPU 0.01s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 144 calls) cegterg : 0.22s CPU 0.21s WALL ( 64 calls) Called by *egterg: h_psi : 0.15s CPU 0.14s WALL ( 201 calls) s_psi : 0.00s CPU 0.00s WALL ( 201 calls) g_psi : 0.00s CPU 0.01s WALL ( 129 calls) cdiaghg : 0.05s CPU 0.05s WALL ( 193 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 201 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 273 calls) fft : 0.00s CPU 0.02s WALL ( 79 calls) ffts : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.12s CPU 0.11s WALL ( 3790 calls) interpolate : 0.00s CPU 0.01s WALL ( 17 calls) davcio : 0.00s CPU 0.00s WALL ( 208 calls) PWSCF : 0.95s CPU 0.98s WALL This run was terminated on: 11:28:44 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters+celldm.in0000644000700200004540000000057712053145627023620 0ustar marsamoscm &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 celldm(1)=10.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS alat 1.000000 .000000 .000000 .450000 1.430909 .000000 .400000 .083863 1.957796 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav4.ref0000644000700200004540000001761312053145627017375 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav4.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 163 29199 29199 3589 Tot 343 343 82 bravais-lattice index = 4 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1732.0508 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 24 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 14600 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 1795, 1) NL pseudopotentials 0.00 Mb ( 1795, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.11 Mb ( 14600) G-vector shells 0.00 Mb ( 476) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1795, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002293 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.229E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 15.6 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.659E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22120172 Ry Harris-Foulkes estimate = -2.28993507 Ry estimated scf accuracy < 0.13080440 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-03, avg # of iterations = 1.0 negative rho (up, down): 0.144E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23251756 Ry Harris-Foulkes estimate = -2.23287911 Ry estimated scf accuracy < 0.00082964 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.15E-05, avg # of iterations = 2.0 negative rho (up, down): 0.334E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23294182 Ry Harris-Foulkes estimate = -2.23294235 Ry estimated scf accuracy < 0.00002035 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1795 PWs) bands (ev): -10.3005 ! total energy = -2.23294383 Ry Harris-Foulkes estimate = -2.23294305 Ry estimated scf accuracy < 0.00000071 Ry The total energy is the sum of the following terms: one-electron contribution = -3.61887167 Ry hartree contribution = 1.90532680 Ry xc contribution = -1.30686812 Ry ewald contribution = 0.78746916 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.08s CPU 0.11s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.00s CPU 0.02s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp1.ref0000644000700200004540000003272012053145627015627 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp1.in ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 1) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ ============================================================ | pseudopotential report for atomic species: 2 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | hydrogen PBE exchange-corr | | z = 1. zv( 2) = 1. exfact = 5.00000 | | ifpcor = 0 atomic energy = -0.91772 Ry | | index orbital occupation energy | | 1 100 1.00 -0.48 | | rinner = 0.5000 | | new generation scheme: | | nbeta = 1 kkbeta = 271 rcloc = 0.6000 | | ibeta l epsilon rcut | | 1 0 -0.48 0.80 | ============================================================ gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3181 3181 793 135043 135043 16879 Tot 1591 1591 397 bravais-lattice index = 1 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for ox read from file: /home/giannozz/trunk/espresso/pseudo/O_US.van MD5 check sum: 7e325307d184e51bd80757047dcf04f9 Pseudo is Ultrasoft, Zval = 6.0 Generated by Vanderbilt code, v. 7.3.2 Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 PseudoPot. # 2 for hy read from file: /home/giannozz/trunk/espresso/pseudo/H_US.van MD5 check sum: a9a9bfe98ff56cf4de197d71fc46bb44 Pseudo is Ultrasoft, Zval = 1.0 Generated by Vanderbilt code, v. 7.3.2 Using radial grid of 399 points, 1 beta functions with: l(1) = 0 Q(r) pseudized with 8 coefficients, rinner = 0.500 atomic species valence mass pseudopotential O 6.00 16.00000 ox( 1.00) H 1.00 2.00000 hy( 1.00) 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 H tau( 2) = ( 0.5866250 0.4837850 0.5000000 ) 3 H tau( 3) = ( 0.4837850 0.5866250 0.5000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 67522 G-vectors FFT dimensions: ( 64, 64, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.52 Mb ( 8440, 4) NL pseudopotentials 1.29 Mb ( 8440, 10) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.52 Mb ( 67522) G-vector shells 0.01 Mb ( 847) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.03 Mb ( 8440, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 10, 4) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.058528 starting charge 7.99998, renormalised to 8.00000 negative rho (up, down): 0.585E-01 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 49.6 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.651E-01 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -34.18235473 Ry Harris-Foulkes estimate = -34.55121209 Ry estimated scf accuracy < 0.50436560 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.30E-03, avg # of iterations = 3.0 negative rho (up, down): 0.586E-01 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -34.28123507 Ry Harris-Foulkes estimate = -34.53370488 Ry estimated scf accuracy < 0.53041398 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.30E-03, avg # of iterations = 2.0 negative rho (up, down): 0.677E-01 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -34.39197022 Ry Harris-Foulkes estimate = -34.39516113 Ry estimated scf accuracy < 0.00666611 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.33E-05, avg # of iterations = 2.0 negative rho (up, down): 0.661E-01 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -34.39412487 Ry Harris-Foulkes estimate = -34.39449671 Ry estimated scf accuracy < 0.00103523 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-05, avg # of iterations = 1.0 negative rho (up, down): 0.661E-01 0.000E+00 total cpu time spent up to now is 3.7 secs total energy = -34.39412559 Ry Harris-Foulkes estimate = -34.39417508 Ry estimated scf accuracy < 0.00013719 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-06, avg # of iterations = 2.0 negative rho (up, down): 0.663E-01 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -34.39414359 Ry Harris-Foulkes estimate = -34.39414410 Ry estimated scf accuracy < 0.00000321 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-08, avg # of iterations = 2.0 negative rho (up, down): 0.663E-01 0.000E+00 total cpu time spent up to now is 4.8 secs total energy = -34.39414355 Ry Harris-Foulkes estimate = -34.39414426 Ry estimated scf accuracy < 0.00000179 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-08, avg # of iterations = 1.0 negative rho (up, down): 0.663E-01 0.000E+00 total cpu time spent up to now is 5.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 8440 PWs) bands (ev): -25.5020 -13.6158 -8.8896 -7.2055 ! total energy = -34.39414368 Ry Harris-Foulkes estimate = -34.39414367 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = -65.21451547 Ry hartree contribution = 34.05199259 Ry xc contribution = -8.48027029 Ry ewald contribution = 5.24864950 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10329479 -0.10329479 0.00000000 atom 2 type 2 force = 0.11198097 -0.00868618 0.00000000 atom 3 type 2 force = -0.00868618 0.11198097 0.00000000 Total force = 0.215801 Total SCF correction = 0.000148 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.84 0.00001429 -0.00000699 0.00000000 2.10 -1.03 0.00 -0.00000699 0.00001429 0.00000000 -1.03 2.10 0.00 0.00000000 0.00000000 -0.00001139 0.00 0.00 -1.68 Writing output data file pwscf.save init_run : 0.80s CPU 0.83s WALL ( 1 calls) electrons : 4.34s CPU 4.45s WALL ( 1 calls) forces : 0.20s CPU 0.20s WALL ( 1 calls) stress : 0.73s CPU 0.76s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.28s CPU 0.30s WALL ( 1 calls) Called by electrons: c_bands : 0.64s CPU 0.64s WALL ( 8 calls) sum_band : 0.79s CPU 0.80s WALL ( 8 calls) v_of_rho : 2.19s CPU 2.24s WALL ( 9 calls) newd : 0.62s CPU 0.64s WALL ( 9 calls) mix_rho : 0.22s CPU 0.24s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 17 calls) regterg : 0.58s CPU 0.59s WALL ( 8 calls) Called by *egterg: h_psi : 0.52s CPU 0.52s WALL ( 24 calls) s_psi : 0.02s CPU 0.01s WALL ( 24 calls) g_psi : 0.02s CPU 0.02s WALL ( 15 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 23 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 24 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 37 calls) fft : 0.67s CPU 0.70s WALL ( 124 calls) fftw : 0.39s CPU 0.39s WALL ( 112 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 6.15s CPU 6.35s WALL This run was terminated on: 11:28:40 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax-damped.in0000755000700200004540000000054112053145627016753 0ustar marsamoscm&CONTROL calculation = "relax" / &SYSTEM ibrav = 1, celldm(1) =12.0, nat = 2, ntyp = 2, ecutwfc = 24.D0, ecutrho = 144.D0, / &ELECTRONS / &IONS ion_dynamics='damp' / ATOMIC_SPECIES O 1.00 O.pz-rrkjus.UPF C 1.00 C.pz-rrkjus.UPF ATOMIC_POSITIONS {bohr} C 2.256 0.0 0.0 O 0.000 0.0 0.0 0 0 0 K_POINTS {Gamma} espresso-5.0.2/PW/tests/lattice-ibrav1.in0000644000700200004540000000041312053145627017212 0ustar marsamoscm &control calculation='scf' / &system ibrav = 1, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav1-kauto.ref0000644000700200004540000001747612053145627020522 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav1-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 221 16879 16879 2517 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 2.0000000 Dense grid: 16879 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 2118, 1) NL pseudopotentials 0.00 Mb ( 2118, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.13 Mb ( 16879) G-vector shells 0.00 Mb ( 213) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.13 Mb ( 2118, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000288 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.288E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 6.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.727E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22029946 Ry Harris-Foulkes estimate = -2.29051436 Ry estimated scf accuracy < 0.13331630 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.67E-03, avg # of iterations = 1.0 negative rho (up, down): 0.881E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23134075 Ry Harris-Foulkes estimate = -2.23178524 Ry estimated scf accuracy < 0.00100420 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.116E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23164493 Ry Harris-Foulkes estimate = -2.23164652 Ry estimated scf accuracy < 0.00001256 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 2118 PWs) bands (ev): -10.1383 ! total energy = -2.23164631 Ry Harris-Foulkes estimate = -2.23164635 Ry estimated scf accuracy < 0.00000052 Ry The total energy is the sum of the following terms: one-electron contribution = -2.83047918 Ry hartree contribution = 1.52876421 Ry xc contribution = -1.31446785 Ry ewald contribution = 0.38453652 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.03s WALL ( 5 calls) mix_rho : 0.02s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.01s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 12 calls) g_psi : 0.00s CPU 0.00s WALL ( 7 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 11 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.01s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.17s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp1.in0000755000700200004540000000055512053145627015465 0ustar marsamoscm&CONTROL calculation = 'scf' tstress=.true. tprnfor=.true. / &SYSTEM ibrav = 1, celldm(1) = 20.0, nat = 3, ntyp = 2, ecutwfc = 25.D0 / &ELECTRONS / ATOMIC_SPECIES O 16.D0 O_US.van H 2.D0 H_US.van ATOMIC_POSITIONS (bohr) O 10.0000 10.0000 10.000 H 11.7325 9.6757 10.000 H 9.6757 11.7325 10.000 espresso-5.0.2/PW/tests/relax2-bfgs_ndim3.in0000755000700200004540000000137712053145627017626 0ustar marsamoscm&CONTROL calculation = "relax", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS mixing_beta = 0.3D0 / &IONS bfgs_ndim=3 / ATOMIC_SPECIES Al 1.0 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters.in0000644000700200004540000000055412053145627022357 0ustar marsamoscm &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS bohr 10.00000 0.00000 0.00000 4.50000 14.30909 0.00000 4.00000 0.83863 19.57796 K_POINTS {gamma} espresso-5.0.2/PW/tests/metaGGA.ref0000644000700200004540000002772512053145627016035 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metaGGA.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 609 609 145 11363 11363 1365 Tot 305 305 73 bravais-lattice index = 1 lattice parameter (alat) = 8.0000 a.u. unit-cell volume = 512.0000 (a.u.)^3 number of atoms/cell = 10 number of atomic types = 2 number of electrons = 22.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW TPSS TPSS ( 1 4 7 6 0) EXX-fraction = 0.00 celldm(1)= 8.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.tpss-mt.UPF MD5 check sum: 126d4c867e8dfb95b317e81eb842cc09 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1263 points, 0 beta functions with: PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.tpss-mt.UPF MD5 check sum: afa8afd3b77fc14b1decc40375b211d1 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1983 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential H 1.00 1.00783 H ( 1.00) C 4.00 12.00000 C ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( -0.3396188 -0.3072775 0.2952175 ) 2 H tau( 2) = ( -0.3641150 0.3114112 0.1191170 ) 3 H tau( 3) = ( 0.2545363 -0.3380175 -0.1311087 ) 4 H tau( 4) = ( 0.3886387 -0.2037337 0.2366638 ) 5 H tau( 5) = ( 0.3060188 0.3298075 0.0415838 ) 6 H tau( 6) = ( 0.1176044 0.2002337 -0.3229712 ) 7 C tau( 7) = ( -0.1518812 -0.1636275 0.1645763 ) 8 C tau( 8) = ( -0.1701575 0.1457675 0.1031486 ) 9 C tau( 9) = ( 0.1935900 -0.1791975 0.0638284 ) 10 C tau( 10) = ( 0.1368550 0.1713513 -0.0621193 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5682 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 683, 11) NL pseudopotentials 0.04 Mb ( 683, 4) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.04 Mb ( 5682) G-vector shells 0.00 Mb ( 164) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 683, 44) Each subspace H/S matrix 0.01 Mb ( 44, 44) Each matrix 0.00 Mb ( 4, 11) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 21.99977, renormalised to 22.00000 Starting wfc are 22 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.4 secs total energy = -51.78327659 Ry Harris-Foulkes estimate = -51.88536746 Ry estimated scf accuracy < 3.09846245 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.5 secs total energy = -51.91530703 Ry Harris-Foulkes estimate = -51.93140024 Ry estimated scf accuracy < 0.30608019 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-03, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.5 secs total energy = -51.94414571 Ry Harris-Foulkes estimate = -51.95247299 Ry estimated scf accuracy < 0.03653116 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-04, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.6 secs total energy = -51.94910297 Ry Harris-Foulkes estimate = -51.94925459 Ry estimated scf accuracy < 0.00073391 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-06, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.7 secs total energy = -51.94928488 Ry Harris-Foulkes estimate = -51.94930201 Ry estimated scf accuracy < 0.00013769 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.8 secs total energy = -51.94929520 Ry Harris-Foulkes estimate = -51.94932341 Ry estimated scf accuracy < 0.00011404 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.18E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.9 secs total energy = -51.94930468 Ry Harris-Foulkes estimate = -51.94930543 Ry estimated scf accuracy < 0.00000409 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 683 PWs) bands (ev): -16.0440 -10.0087 -9.5472 -7.9882 -4.9922 -4.1293 -3.5490 -2.6539 -1.4002 -1.1570 0.4467 ! total energy = -51.94930567 Ry Harris-Foulkes estimate = -51.94930575 Ry estimated scf accuracy < 0.00000040 Ry The total energy is the sum of the following terms: one-electron contribution = -33.02828828 Ry hartree contribution = 24.10127838 Ry xc contribution = -18.36756624 Ry ewald contribution = -24.65472953 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.09773215 0.00997201 -0.03192900 atom 2 type 1 force = 0.00979559 -0.00720359 0.00183585 atom 3 type 1 force = -0.01837612 0.01530761 -0.01865903 atom 4 type 1 force = -0.06650508 0.02283810 0.00474818 atom 5 type 1 force = -0.00012369 0.00810160 0.00195039 atom 6 type 1 force = -0.00261900 -0.01223500 -0.01484035 atom 7 type 2 force = -0.04220541 -0.08868419 0.11745589 atom 8 type 2 force = -0.01092821 0.09328774 0.00994636 atom 9 type 2 force = 0.02733031 -0.02730928 -0.06138952 atom 10 type 2 force = 0.00589945 -0.01407501 -0.00911875 Total force = 0.234725 Total SCF correction = 0.000606 entering subroutine stress ... Message from routine stress: Meta-GGA and stress not implemented Writing output data file pwscf.save Warning: cannot save meta-gga kinetic terms: not implemented. init_run : 0.23s CPU 0.23s WALL ( 1 calls) electrons : 0.68s CPU 0.70s WALL ( 1 calls) forces : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.25s CPU 0.24s WALL ( 8 calls) sum_band : 0.06s CPU 0.06s WALL ( 8 calls) v_of_rho : 0.37s CPU 0.39s WALL ( 9 calls) mix_rho : 0.02s CPU 0.02s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.00s WALL ( 17 calls) regterg : 0.25s CPU 0.24s WALL ( 8 calls) Called by *egterg: h_psi : 0.26s CPU 0.24s WALL ( 28 calls) g_psi : 0.00s CPU 0.00s WALL ( 19 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 28 calls) h_psi_meta : 0.18s CPU 0.18s WALL ( 28 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 32 calls) fft : 0.04s CPU 0.04s WALL ( 124 calls) fftw : 0.26s CPU 0.23s WALL ( 1312 calls) interpolate : 0.00s CPU 0.00s WALL ( 9 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 1.00s CPU 1.06s WALL This run was terminated on: 10:24:51 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav11.ref0000644000700200004540000001761412053145627017454 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav11.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 993 993 245 25319 25319 3151 Tot 497 497 123 bravais-lattice index = 11 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 1.000000 ) a(2) = ( -0.500000 0.750000 1.000000 ) a(3) = ( -0.500000 -0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.500000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 -0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 12660 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1576, 1) NL pseudopotentials 0.00 Mb ( 1576, 0) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.10 Mb ( 12660) G-vector shells 0.01 Mb ( 1383) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1576, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001236 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.124E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 17.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.313E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22028319 Ry Harris-Foulkes estimate = -2.28998067 Ry estimated scf accuracy < 0.13240981 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.453E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23150947 Ry Harris-Foulkes estimate = -2.23191956 Ry estimated scf accuracy < 0.00093119 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.66E-05, avg # of iterations = 2.0 negative rho (up, down): 0.231E-05 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23189114 Ry Harris-Foulkes estimate = -2.23189150 Ry estimated scf accuracy < 0.00001714 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.57E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1576 PWs) bands (ev): -10.2547 ! total energy = -2.23189311 Ry Harris-Foulkes estimate = -2.23189279 Ry estimated scf accuracy < 0.00000046 Ry The total energy is the sum of the following terms: one-electron contribution = -3.10906629 Ry hartree contribution = 1.65708095 Ry xc contribution = -1.31115771 Ry ewald contribution = 0.53124995 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 0.14s CPU 0.14s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.06s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.03s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.20s CPU 0.22s WALL This run was terminated on: 10:22:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav5.ref0000644000700200004540000002014012053145627017363 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav5.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 163 11935 11935 1459 Tot 343 343 82 bravais-lattice index = 5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.288675 0.816497 ) a(2) = ( 0.000000 0.577350 0.816497 ) a(3) = ( -0.500000 -0.288675 0.816497 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.577350 0.408248 ) b(2) = ( 0.000000 1.154701 0.408248 ) b(3) = ( -1.000000 -0.577350 0.408248 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5968 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 730, 1) NL pseudopotentials 0.00 Mb ( 730, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.05 Mb ( 5968) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 730, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.556E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.351E-06 0.000E+00 total cpu time spent up to now is 0.0 secs total energy = -2.22425996 Ry Harris-Foulkes estimate = -2.29125426 Ry estimated scf accuracy < 0.12801830 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23591074 Ry Harris-Foulkes estimate = -2.23617759 Ry estimated scf accuracy < 0.00063987 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23646866 Ry Harris-Foulkes estimate = -2.23646835 Ry estimated scf accuracy < 0.00003311 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23647137 Ry Harris-Foulkes estimate = -2.23646985 Ry estimated scf accuracy < 0.00000333 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 730 PWs) bands (ev): -10.2484 ! total energy = -2.23647187 Ry Harris-Foulkes estimate = -2.23647214 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -2.51662686 Ry hartree contribution = 1.35365217 Ry xc contribution = -1.29905274 Ry ewald contribution = 0.22555555 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.06s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 5 calls) sum_band : 0.01s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.00s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 23 calls) fftw : 0.01s CPU 0.01s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.12s CPU 0.12s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav1.ref0000644000700200004540000001761312053145627017372 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav1.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 193 16879 16879 2103 Tot 397 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1052, 1) NL pseudopotentials 0.00 Mb ( 1052, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.06 Mb ( 8440) G-vector shells 0.00 Mb ( 213) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 1052, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000288 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.288E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.579E-04 0.000E+00 total cpu time spent up to now is 0.0 secs total energy = -2.22236352 Ry Harris-Foulkes estimate = -2.29105276 Ry estimated scf accuracy < 0.13075141 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-03, avg # of iterations = 1.0 negative rho (up, down): 0.443E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23377840 Ry Harris-Foulkes estimate = -2.23412533 Ry estimated scf accuracy < 0.00079816 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.99E-05, avg # of iterations = 2.0 negative rho (up, down): 0.148E-07 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23423490 Ry Harris-Foulkes estimate = -2.23423709 Ry estimated scf accuracy < 0.00002120 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -10.2460 ! total energy = -2.23423691 Ry Harris-Foulkes estimate = -2.23423618 Ry estimated scf accuracy < 0.00000074 Ry The total energy is the sum of the following terms: one-electron contribution = -2.82372282 Ry hartree contribution = 1.51096136 Ry xc contribution = -1.30601197 Ry ewald contribution = 0.38453652 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.01s WALL ( 1 calls) electrons : 0.04s CPU 0.05s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 4 calls) sum_band : 0.00s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.01s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 10:22:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lsda-cg.in0000755000700200004540000000061612053145627015725 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons diagonalization='cg' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/uspp1-coulomb.ref0000644000700200004540000003007512053145627017266 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:28 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp1-coulomb.in ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 1) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3181 3181 793 135043 135043 16879 Tot 1591 1591 397 bravais-lattice index = 1 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for ox read from file: /home/giannozz/trunk/espresso/pseudo/O_US.van MD5 check sum: 7e325307d184e51bd80757047dcf04f9 Pseudo is Ultrasoft, Zval = 6.0 Generated by Vanderbilt code, v. 7.3.2 Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.coulomb-ae.UPF MD5 check sum: 77822c82c66c143e367914000e4b9459 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1451 points, 0 beta functions with: atomic species valence mass pseudopotential O 6.00 16.00000 ox( 1.00) H 1.00 2.00000 H ( 1.00) 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 H tau( 2) = ( 0.5866250 0.4837850 0.5000000 ) 3 H tau( 3) = ( 0.4837850 0.5866250 0.5000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 67522 G-vectors FFT dimensions: ( 64, 64, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.52 Mb ( 8440, 4) NL pseudopotentials 1.03 Mb ( 8440, 8) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.52 Mb ( 67522) G-vector shells 0.01 Mb ( 847) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.03 Mb ( 8440, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.065614 starting charge 7.99998, renormalised to 8.00000 negative rho (up, down): 0.656E-01 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 41.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.600E-01 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -34.11644164 Ry Harris-Foulkes estimate = -34.52231059 Ry estimated scf accuracy < 0.55238346 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-03, avg # of iterations = 3.0 negative rho (up, down): 0.516E-01 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -34.22924946 Ry Harris-Foulkes estimate = -34.52745303 Ry estimated scf accuracy < 0.63709829 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-03, avg # of iterations = 2.0 negative rho (up, down): 0.624E-01 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -34.35966286 Ry Harris-Foulkes estimate = -34.36267609 Ry estimated scf accuracy < 0.00664153 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.30E-05, avg # of iterations = 2.0 negative rho (up, down): 0.600E-01 0.000E+00 total cpu time spent up to now is 3.1 secs total energy = -34.36202743 Ry Harris-Foulkes estimate = -34.36246066 Ry estimated scf accuracy < 0.00121369 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-05, avg # of iterations = 1.0 negative rho (up, down): 0.600E-01 0.000E+00 total cpu time spent up to now is 3.6 secs total energy = -34.36203971 Ry Harris-Foulkes estimate = -34.36208268 Ry estimated scf accuracy < 0.00012691 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-06, avg # of iterations = 2.0 negative rho (up, down): 0.602E-01 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -34.36205214 Ry Harris-Foulkes estimate = -34.36205234 Ry estimated scf accuracy < 0.00000126 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 3.0 negative rho (up, down): 0.602E-01 0.000E+00 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 8440 PWs) bands (ev): -25.4732 -13.5022 -8.8356 -7.1781 ! total energy = -34.36205223 Ry Harris-Foulkes estimate = -34.36205257 Ry estimated scf accuracy < 0.00000089 Ry The total energy is the sum of the following terms: one-electron contribution = -65.19442244 Ry hartree contribution = 34.05257341 Ry xc contribution = -8.46885269 Ry ewald contribution = 5.24864950 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.09645927 -0.09645927 0.00000000 atom 2 type 2 force = 0.10483315 -0.00837388 0.00000000 atom 3 type 2 force = -0.00837388 0.10483315 0.00000000 Total force = 0.201814 Total SCF correction = 0.000494 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.33 0.00000523 -0.00000613 0.00000000 0.77 -0.90 0.00 -0.00000613 0.00000523 0.00000000 -0.90 0.77 0.00 0.00000000 0.00000000 -0.00001714 0.00 0.00 -2.52 Writing output data file pwscf.save init_run : 0.77s CPU 0.80s WALL ( 1 calls) electrons : 3.74s CPU 3.85s WALL ( 1 calls) forces : 0.20s CPU 0.21s WALL ( 1 calls) stress : 0.71s CPU 0.73s WALL ( 1 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.30s CPU 0.32s WALL ( 1 calls) Called by electrons: c_bands : 0.57s CPU 0.59s WALL ( 7 calls) sum_band : 0.70s CPU 0.70s WALL ( 7 calls) v_of_rho : 1.88s CPU 1.96s WALL ( 8 calls) newd : 0.56s CPU 0.57s WALL ( 8 calls) mix_rho : 0.19s CPU 0.19s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 15 calls) regterg : 0.54s CPU 0.55s WALL ( 7 calls) Called by *egterg: h_psi : 0.49s CPU 0.48s WALL ( 23 calls) s_psi : 0.00s CPU 0.01s WALL ( 23 calls) g_psi : 0.02s CPU 0.02s WALL ( 15 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 22 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 23 calls) General routines calbec : 0.04s CPU 0.02s WALL ( 35 calls) fft : 0.62s CPU 0.63s WALL ( 111 calls) fftw : 0.35s CPU 0.36s WALL ( 100 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PWSCF : 5.54s CPU 5.73s WALL This run was terminated on: 11:28:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp.ref20000644000700200004540000003035112053145627015626 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp.in2 file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 61 3695 1243 307 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 169, 8) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 169, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 13, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.5 secs per-process dynamical memory: 10.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 9.09E-09, avg # of iterations = 12.1 total cpu time spent up to now is 0.8 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9886 11.1850 11.1850 11.1850 12.0746 12.0746 38.8575 41.0126 k =-0.1250 0.1250-0.1250 band energies (ev): 5.5693 11.0706 11.2866 11.2866 12.0442 12.0442 34.2679 39.2709 k =-0.2500 0.2500-0.2500 band energies (ev): 7.1531 10.9382 11.3554 11.3554 12.1663 12.1663 27.5234 38.3699 k =-0.3750 0.3750-0.3750 band energies (ev): 8.7504 11.2263 11.2263 11.7646 12.5139 12.5139 21.7980 37.4550 k = 0.5000-0.5000 0.5000 band energies (ev): 9.1013 11.1517 11.1517 12.6883 12.6883 13.4640 18.6319 37.0229 k = 0.0000 0.2500 0.0000 band energies (ev): 5.7604 10.9566 11.3780 11.3780 11.8743 12.1603 36.7427 36.7427 k =-0.1250 0.3750-0.1250 band energies (ev): 7.0124 10.7339 11.4161 11.5363 11.9575 12.2921 30.0742 34.8324 k =-0.2500 0.5000-0.2500 band energies (ev): 8.7233 10.8149 11.1658 11.4733 12.5765 12.7915 23.9376 34.0826 k = 0.6250-0.3750 0.6250 band energies (ev): 9.3719 10.9497 11.3547 11.6077 12.7004 14.6320 19.3129 32.8107 k = 0.5000-0.2500 0.5000 band energies (ev): 9.3016 11.0225 11.3539 11.4712 12.4675 14.0433 20.5765 31.5856 k = 0.3750-0.1250 0.3750 band energies (ev): 8.2102 10.7930 11.2409 11.4916 12.0150 12.8063 25.8816 31.4915 k = 0.2500 0.0000 0.2500 band energies (ev): 6.4937 10.8827 11.3758 11.4570 11.8542 12.2626 32.0366 32.7802 k = 0.0000 0.5000 0.0000 band energies (ev): 7.7919 10.4196 11.6191 11.9025 11.9025 12.3692 32.3364 32.3364 k =-0.1250 0.6250-0.1250 band energies (ev): 9.0173 10.2197 11.4365 12.0029 12.6051 12.9720 26.9741 30.3497 k = 0.7500-0.2500 0.7500 band energies (ev): 9.7555 10.3165 11.2505 11.8788 12.7320 15.5211 21.5948 27.6704 k = 0.6250-0.1250 0.6250 band energies (ev): 10.0056 10.5150 11.0543 11.7745 12.4892 16.7670 20.0856 26.0376 k = 0.5000 0.0000 0.5000 band energies (ev): 9.6198 10.6628 10.8812 11.7278 12.0749 14.1915 24.5904 26.0214 k = 0.0000 0.7500 0.0000 band energies (ev): 9.1975 9.9020 12.5360 12.5360 12.5811 13.2803 26.4657 29.2972 k = 0.8750-0.1250 0.8750 band energies (ev): 9.4400 9.8571 12.1865 12.4536 12.7769 15.9068 23.7162 25.2480 k = 0.7500 0.0000 0.7500 band energies (ev): 9.8488 10.0961 11.4931 12.2222 12.6313 19.0000 20.5093 22.9069 k = 0.0000-1.0000 0.0000 band energies (ev): 9.2484 9.6935 12.6696 12.8423 12.8423 16.0621 22.1014 28.1776 k =-0.2500 0.5000 0.0000 band energies (ev): 8.3808 10.5096 11.1875 11.9116 11.9668 12.8444 28.3732 29.1646 k = 0.6250-0.3750 0.8750 band energies (ev): 9.6434 10.5924 10.9107 11.7838 12.4420 14.3669 22.9096 28.5877 k = 0.5000-0.2500 0.7500 band energies (ev): 9.8772 10.5758 11.1458 11.6717 12.6295 16.6841 19.1333 29.3116 k = 0.7500-0.2500 1.0000 band energies (ev): 9.6052 10.1002 11.4024 12.3765 12.5321 14.7792 25.8655 26.6479 k = 0.6250-0.1250 0.8750 band energies (ev): 9.9816 10.2514 11.1098 12.1085 12.7150 18.0104 21.2197 24.7890 k = 0.5000 0.0000 0.7500 band energies (ev): 10.2619 10.4420 10.6868 11.9876 12.5361 17.1178 21.9589 24.2023 k =-0.2500-1.0000 0.0000 band energies (ev): 9.5826 9.9307 11.8688 12.4065 12.8425 17.7180 22.3844 24.9247 k =-0.5000-1.0000 0.0000 band energies (ev): 10.0175 10.6636 10.6636 12.0420 12.8429 20.9456 20.9456 23.1289 the Fermi energy is 14.4886 ev Writing output data file pwscf.save init_run : 0.36s CPU 0.36s WALL ( 1 calls) electrons : 0.34s CPU 0.34s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.34s CPU 0.34s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.01s CPU 0.01s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 29 calls) cegterg : 0.31s CPU 0.31s WALL ( 31 calls) Called by *egterg: h_psi : 0.18s CPU 0.17s WALL ( 411 calls) s_psi : 0.01s CPU 0.01s WALL ( 411 calls) g_psi : 0.01s CPU 0.01s WALL ( 351 calls) cdiaghg : 0.10s CPU 0.10s WALL ( 380 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 411 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 411 calls) fft : 0.00s CPU 0.00s WALL ( 5 calls) ffts : 0.00s CPU 0.00s WALL ( 1 calls) fftw : 0.11s CPU 0.11s WALL ( 3786 calls) interpolate : 0.00s CPU 0.00s WALL ( 1 calls) davcio : 0.00s CPU 0.00s WALL ( 29 calls) PWSCF : 0.88s CPU 0.91s WALL This run was terminated on: 11:28:45 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax2.ref0000644000700200004540000026721212053145627015762 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 109 109 37 6689 6689 1411 bravais-lattice index = 6 lattice parameter (alat) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 Dense grid: 6689 G-vectors FFT dimensions: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.187E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -28.85221141 Ry Harris-Foulkes estimate = -29.29340698 Ry estimated scf accuracy < 0.92873941 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.0 total cpu time spent up to now is 0.4 secs total energy = -27.68024365 Ry Harris-Foulkes estimate = -30.53400996 Ry estimated scf accuracy < 39.10561646 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.7 total cpu time spent up to now is 0.5 secs total energy = -29.21379581 Ry Harris-Foulkes estimate = -29.23657710 Ry estimated scf accuracy < 0.23755208 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 1.3 total cpu time spent up to now is 0.6 secs total energy = -29.21561639 Ry Harris-Foulkes estimate = -29.22399168 Ry estimated scf accuracy < 0.04594646 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -29.21943300 Ry Harris-Foulkes estimate = -29.22031634 Ry estimated scf accuracy < 0.00650836 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.10E-05, avg # of iterations = 2.3 total cpu time spent up to now is 0.7 secs total energy = -29.21991273 Ry Harris-Foulkes estimate = -29.21994391 Ry estimated scf accuracy < 0.00082029 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.91E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -29.21995477 Ry Harris-Foulkes estimate = -29.21996819 Ry estimated scf accuracy < 0.00009068 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.32E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.9 secs total energy = -29.21995746 Ry Harris-Foulkes estimate = -29.21996109 Ry estimated scf accuracy < 0.00002386 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.14E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -29.21995993 Ry Harris-Foulkes estimate = -29.21996102 Ry estimated scf accuracy < 0.00000885 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.21E-08, avg # of iterations = 1.3 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0790 -6.5552 -5.7174 -4.5663 -3.1472 -1.4538 0.5130 1.7884 4.3697 5.5244 5.9953 6.2181 6.7546 7.2250 7.4961 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7555 -4.2392 -3.4161 -2.2857 -0.8947 -0.2551 0.2238 0.8005 1.0422 2.1352 2.7201 3.5256 3.8934 5.1677 6.5172 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4879 -1.9832 -1.1752 -0.0657 1.2961 1.3317 1.7993 2.5504 2.7201 2.8086 3.4481 3.5987 4.1260 4.9120 4.9357 the Fermi energy is 3.4732 ev ! total energy = -29.21996046 Ry Harris-Foulkes estimate = -29.21996045 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = -182.01447362 Ry hartree contribution = 97.75031136 Ry xc contribution = -11.20681610 Ry ewald contribution = 66.25386160 Ry smearing contrib. (-TS) = -0.00284369 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01016766 atom 2 type 1 force = 0.00000000 0.00000000 -0.00112981 atom 3 type 1 force = 0.00000000 0.00000000 0.00255994 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00255994 atom 6 type 1 force = 0.00000000 0.00000000 0.00112981 atom 7 type 1 force = 0.00000000 0.00000000 -0.01016766 Total force = 0.014914 Total SCF correction = 0.000168 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -29.2199604576 Ry new trust radius = 0.0101676599 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.119402767 Al 0.000000000 0.000000000 -1.414426039 Al 0.500000000 0.500000000 -0.706624293 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.706624293 Al 0.000000000 0.000000000 1.414426039 Al 0.500000000 0.500000000 2.119402767 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000280 negative rho (up, down): 0.180E-05 0.000E+00 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.91E-08, avg # of iterations = 1.7 negative rho (up, down): 0.294E-06 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -29.22016915 Ry Harris-Foulkes estimate = -29.22017685 Ry estimated scf accuracy < 0.00001795 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 3.0 negative rho (up, down): 0.234E-06 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -29.22015873 Ry Harris-Foulkes estimate = -29.22018648 Ry estimated scf accuracy < 0.00032230 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 2.7 negative rho (up, down): 0.175E-07 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017434 Ry estimated scf accuracy < 0.00000820 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0832 -6.5613 -5.7280 -4.5713 -3.1447 -1.4506 0.5179 1.7934 4.3762 5.5200 5.9886 6.2250 6.7423 7.2250 7.5044 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7597 -4.2453 -3.4267 -2.2908 -0.8925 -0.2593 0.2175 0.8035 1.0315 2.1297 2.7248 3.5278 3.8975 5.1712 6.5234 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4921 -1.9894 -1.1859 -0.0711 1.2980 1.3273 1.7928 2.5386 2.7158 2.8082 3.4451 3.5925 4.1166 4.9148 4.9401 the Fermi energy is 3.4729 ev ! total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017405 Ry estimated scf accuracy < 0.00000088 Ry The total energy is the sum of the following terms: one-electron contribution = -182.38014433 Ry hartree contribution = 97.93262331 Ry xc contribution = -11.20947569 Ry ewald contribution = 66.43971617 Ry smearing contrib. (-TS) = -0.00289294 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00950897 atom 2 type 1 force = 0.00000000 0.00000000 -0.00037957 atom 3 type 1 force = 0.00000000 0.00000000 0.00216631 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00216631 atom 6 type 1 force = 0.00000000 0.00000000 0.00037957 atom 7 type 1 force = 0.00000000 0.00000000 -0.00950897 Total force = 0.013803 Total SCF correction = 0.001183 number of scf cycles = 2 number of bfgs steps = 1 energy old = -29.2199604576 Ry energy new = -29.2201734801 Ry CASE: energy _new < energy _old WARNING: bfgs curvature condition failed, Theta= 0.867 new trust radius = 0.0152514898 bohr new conv_thr = 0.0000000213 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.116526918 Al 0.000000000 0.000000000 -1.414600770 Al 0.500000000 0.500000000 -0.705948958 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.705948958 Al 0.000000000 0.000000000 1.414600770 Al 0.500000000 0.500000000 2.116526918 Writing output data file pwscf.save Check: negative starting charge= -0.000280 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000285 negative rho (up, down): 0.606E-05 0.000E+00 total cpu time spent up to now is 1.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.189E-05 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -29.22045670 Ry Harris-Foulkes estimate = -29.22046792 Ry estimated scf accuracy < 0.00002776 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.32E-07, avg # of iterations = 2.3 negative rho (up, down): 0.915E-06 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -29.22045843 Ry Harris-Foulkes estimate = -29.22046482 Ry estimated scf accuracy < 0.00002434 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.0 negative rho (up, down): 0.472E-06 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -29.22045743 Ry Harris-Foulkes estimate = -29.22046684 Ry estimated scf accuracy < 0.00010150 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.0 negative rho (up, down): 0.488E-07 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -29.22046250 Ry Harris-Foulkes estimate = -29.22046332 Ry estimated scf accuracy < 0.00000810 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.86E-08, avg # of iterations = 1.0 total cpu time spent up to now is 2.0 secs total energy = -29.22046300 Ry Harris-Foulkes estimate = -29.22046292 Ry estimated scf accuracy < 0.00000025 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.1 secs total energy = -29.22046303 Ry Harris-Foulkes estimate = -29.22046306 Ry estimated scf accuracy < 0.00000018 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.44E-10, avg # of iterations = 2.3 total cpu time spent up to now is 2.2 secs total energy = -29.22046305 Ry Harris-Foulkes estimate = -29.22046308 Ry estimated scf accuracy < 0.00000020 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.44E-10, avg # of iterations = 1.3 total cpu time spent up to now is 2.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0916 -6.5715 -5.7450 -4.5802 -3.1439 -1.4483 0.5229 1.7986 4.3838 5.5113 5.9775 6.2328 6.7226 7.2206 7.5053 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7681 -4.2555 -3.4439 -2.2999 -0.8921 -0.2678 0.2072 0.8054 1.0140 2.1200 2.7294 3.5281 3.9014 5.1740 6.5307 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5006 -1.9997 -1.2034 -0.0805 1.2979 1.3187 1.7820 2.5196 2.7072 2.8055 3.4395 3.5816 4.1012 4.9159 4.9443 the Fermi energy is 3.4704 ev ! total energy = -29.22046306 Ry Harris-Foulkes estimate = -29.22046307 Ry estimated scf accuracy < 3.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -182.93758449 Ry hartree contribution = 98.20669237 Ry xc contribution = -11.21340415 Ry ewald contribution = 66.72679687 Ry smearing contrib. (-TS) = -0.00296366 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00852934 atom 2 type 1 force = 0.00000000 0.00000000 0.00063989 atom 3 type 1 force = 0.00000000 0.00000000 0.00178979 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00178979 atom 6 type 1 force = 0.00000000 0.00000000 -0.00063989 atom 7 type 1 force = 0.00000000 0.00000000 -0.00852934 Total force = 0.012358 Total SCF correction = 0.000104 number of scf cycles = 3 number of bfgs steps = 2 energy old = -29.2201734801 Ry energy new = -29.2204630616 Ry CASE: energy _new < energy _old new trust radius = 0.0228772348 bohr new conv_thr = 0.0000000290 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.112213145 Al 0.000000000 0.000000000 -1.414579742 Al 0.500000000 0.500000000 -0.704978479 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.704978479 Al 0.000000000 0.000000000 1.414579742 Al 0.500000000 0.500000000 2.112213145 Writing output data file pwscf.save Check: negative starting charge= -0.000285 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000289 negative rho (up, down): 0.153E-04 0.000E+00 total cpu time spent up to now is 2.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.651E-05 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -29.22082607 Ry Harris-Foulkes estimate = -29.22084888 Ry estimated scf accuracy < 0.00005792 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.76E-07, avg # of iterations = 2.0 negative rho (up, down): 0.420E-05 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -29.22082659 Ry Harris-Foulkes estimate = -29.22084098 Ry estimated scf accuracy < 0.00005612 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.67E-07, avg # of iterations = 2.0 negative rho (up, down): 0.273E-05 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22082398 Ry Harris-Foulkes estimate = -29.22084816 Ry estimated scf accuracy < 0.00028355 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.67E-07, avg # of iterations = 2.0 negative rho (up, down): 0.539E-06 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22083647 Ry Harris-Foulkes estimate = -29.22083779 Ry estimated scf accuracy < 0.00000999 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.76E-08, avg # of iterations = 1.3 total cpu time spent up to now is 2.8 secs total energy = -29.22083730 Ry Harris-Foulkes estimate = -29.22083714 Ry estimated scf accuracy < 0.00000056 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.66E-09, avg # of iterations = 2.7 total cpu time spent up to now is 2.9 secs total energy = -29.22083740 Ry Harris-Foulkes estimate = -29.22083739 Ry estimated scf accuracy < 0.00000013 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.30E-10, avg # of iterations = 2.3 total cpu time spent up to now is 3.0 secs total energy = -29.22083741 Ry Harris-Foulkes estimate = -29.22083744 Ry estimated scf accuracy < 0.00000015 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.30E-10, avg # of iterations = 1.7 total cpu time spent up to now is 3.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1040 -6.5871 -5.7684 -4.5920 -3.1420 -1.4437 0.5318 1.8077 4.3966 5.4984 5.9604 6.2452 6.6956 7.2144 7.5097 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7804 -4.2711 -3.4674 -2.3121 -0.8908 -0.2802 0.1913 0.8096 0.9901 2.1070 2.7375 3.5294 3.9087 5.1792 6.5428 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5129 -2.0155 -1.2273 -0.0932 1.2985 1.3061 1.7654 2.4934 2.6947 2.8018 3.4316 3.5670 4.0801 4.9180 4.9520 the Fermi energy is 3.4675 ev ! total energy = -29.22083742 Ry Harris-Foulkes estimate = -29.22083743 Ry estimated scf accuracy < 6.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -183.81707704 Ry hartree contribution = 98.64320412 Ry xc contribution = -11.21941111 Ry ewald contribution = 67.17550863 Ry smearing contrib. (-TS) = -0.00306202 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00712605 atom 2 type 1 force = 0.00000000 0.00000000 0.00205750 atom 3 type 1 force = 0.00000000 0.00000000 0.00123996 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00123996 atom 6 type 1 force = 0.00000000 0.00000000 -0.00205750 atom 7 type 1 force = 0.00000000 0.00000000 -0.00712605 Total force = 0.010635 Total SCF correction = 0.000130 number of scf cycles = 4 number of bfgs steps = 3 energy old = -29.2204630616 Ry energy new = -29.2208374219 Ry CASE: energy _new < energy _old new trust radius = 0.0343158522 bohr new conv_thr = 0.0000000374 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.105742485 Al 0.000000000 0.000000000 -1.414105119 Al 0.500000000 0.500000000 -0.703594750 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.703594750 Al 0.000000000 0.000000000 1.414105119 Al 0.500000000 0.500000000 2.105742485 Writing output data file pwscf.save Check: negative starting charge= -0.000289 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000290 negative rho (up, down): 0.348E-04 0.000E+00 total cpu time spent up to now is 3.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 negative rho (up, down): 0.169E-04 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -29.22125876 Ry Harris-Foulkes estimate = -29.22130852 Ry estimated scf accuracy < 0.00012480 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.94E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-04 0.000E+00 total cpu time spent up to now is 3.4 secs total energy = -29.22127390 Ry Harris-Foulkes estimate = -29.22129274 Ry estimated scf accuracy < 0.00006699 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.19E-07, avg # of iterations = 1.7 negative rho (up, down): 0.382E-05 0.000E+00 total cpu time spent up to now is 3.4 secs total energy = -29.22128315 Ry Harris-Foulkes estimate = -29.22128535 Ry estimated scf accuracy < 0.00001134 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.40E-08, avg # of iterations = 2.0 negative rho (up, down): 0.283E-05 0.000E+00 total cpu time spent up to now is 3.5 secs total energy = -29.22128214 Ry Harris-Foulkes estimate = -29.22128615 Ry estimated scf accuracy < 0.00004361 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.40E-08, avg # of iterations = 2.0 total cpu time spent up to now is 3.6 secs total energy = -29.22128471 Ry Harris-Foulkes estimate = -29.22128464 Ry estimated scf accuracy < 0.00000368 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 1.3 total cpu time spent up to now is 3.7 secs total energy = -29.22128500 Ry Harris-Foulkes estimate = -29.22128491 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.74E-10, avg # of iterations = 3.3 total cpu time spent up to now is 3.8 secs total energy = -29.22128501 Ry Harris-Foulkes estimate = -29.22128502 Ry estimated scf accuracy < 0.00000006 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.03E-10, avg # of iterations = 1.0 total cpu time spent up to now is 3.8 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1234 -6.6117 -5.8017 -4.6088 -3.1401 -1.4368 0.5449 1.8214 4.4162 5.4779 5.9331 6.2629 6.6569 7.2036 7.5168 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7998 -4.2958 -3.5009 -2.3295 -0.8899 -0.2998 0.1661 0.8158 0.9560 2.0885 2.7496 3.5305 3.9198 5.1868 6.5614 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5325 -2.0405 -1.2614 -0.1113 1.2861 1.2982 1.7390 2.4561 2.6748 2.7949 3.4196 3.5462 4.0499 4.9197 4.9637 the Fermi energy is 3.4628 ev ! total energy = -29.22128501 Ry Harris-Foulkes estimate = -29.22128501 Ry estimated scf accuracy < 1.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -185.19231287 Ry hartree contribution = 99.32526027 Ry xc contribution = -11.22851501 Ry ewald contribution = 67.87748772 Ry smearing contrib. (-TS) = -0.00320512 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00507011 atom 2 type 1 force = 0.00000000 0.00000000 0.00399105 atom 3 type 1 force = 0.00000000 0.00000000 0.00054032 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00054032 atom 6 type 1 force = 0.00000000 0.00000000 -0.00399105 atom 7 type 1 force = 0.00000000 0.00000000 -0.00507011 Total force = 0.009157 Total SCF correction = 0.000029 number of scf cycles = 5 number of bfgs steps = 4 energy old = -29.2208374219 Ry energy new = -29.2212850137 Ry CASE: energy _new < energy _old new trust radius = 0.0514737782 bohr new conv_thr = 0.0000000448 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.096036494 Al 0.000000000 0.000000000 -1.412614261 Al 0.500000000 0.500000000 -0.701616371 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701616371 Al 0.000000000 0.000000000 1.412614261 Al 0.500000000 0.500000000 2.096036494 Writing output data file pwscf.save Check: negative starting charge= -0.000290 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000285 negative rho (up, down): 0.710E-04 0.000E+00 total cpu time spent up to now is 3.9 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.376E-04 0.000E+00 total cpu time spent up to now is 4.1 secs total energy = -29.22167684 Ry Harris-Foulkes estimate = -29.22178610 Ry estimated scf accuracy < 0.00027081 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-06, avg # of iterations = 3.0 negative rho (up, down): 0.311E-04 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -29.22164155 Ry Harris-Foulkes estimate = -29.22178535 Ry estimated scf accuracy < 0.00084090 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-06, avg # of iterations = 2.7 negative rho (up, down): 0.232E-04 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -29.22168306 Ry Harris-Foulkes estimate = -29.22178870 Ry estimated scf accuracy < 0.00123013 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-06, avg # of iterations = 2.7 negative rho (up, down): 0.880E-05 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -29.22173696 Ry Harris-Foulkes estimate = -29.22173984 Ry estimated scf accuracy < 0.00002159 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.03E-07, avg # of iterations = 1.7 negative rho (up, down): 0.317E-07 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -29.22173914 Ry Harris-Foulkes estimate = -29.22173858 Ry estimated scf accuracy < 0.00000227 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 4.5 secs total energy = -29.22173952 Ry Harris-Foulkes estimate = -29.22173940 Ry estimated scf accuracy < 0.00000035 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.65E-09, avg # of iterations = 2.3 total cpu time spent up to now is 4.6 secs total energy = -29.22173956 Ry Harris-Foulkes estimate = -29.22173961 Ry estimated scf accuracy < 0.00000029 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 1.7 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1542 -6.6502 -5.8482 -4.6323 -3.1388 -1.4269 0.5648 1.8425 4.4464 5.4453 5.8902 6.2880 6.6027 7.1847 7.5281 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8306 -4.3343 -3.5477 -2.3538 -0.8901 -0.3310 0.1266 0.8248 0.9084 2.0624 2.7676 3.5307 3.9371 5.1977 6.5899 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5635 -2.0795 -1.3092 -0.1368 1.2541 1.2961 1.6976 2.4038 2.6432 2.7820 3.4027 3.5170 4.0077 4.9200 4.9815 the Fermi energy is 3.4556 ev ! total energy = -29.22173959 Ry Harris-Foulkes estimate = -29.22173959 Ry estimated scf accuracy < 4.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -187.36082749 Ry hartree contribution = 100.40116570 Ry xc contribution = -11.24230082 Ry ewald contribution = 68.98365014 Ry smearing contrib. (-TS) = -0.00342711 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00204563 atom 2 type 1 force = 0.00000000 0.00000000 0.00657039 atom 3 type 1 force = 0.00000000 0.00000000 -0.00026269 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00026269 atom 6 type 1 force = 0.00000000 0.00000000 -0.00657039 atom 7 type 1 force = 0.00000000 0.00000000 -0.00204563 Total force = 0.009739 Total SCF correction = 0.000091 number of scf cycles = 6 number of bfgs steps = 5 energy old = -29.2212850137 Ry energy new = -29.2217395873 Ry CASE: energy _new < energy _old new trust radius = 0.0628552402 bohr new conv_thr = 0.0000000455 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.084184395 Al 0.000000000 0.000000000 -1.409293614 Al 0.500000000 0.500000000 -0.699313344 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.699313344 Al 0.000000000 0.000000000 1.409293614 Al 0.500000000 0.500000000 2.084184395 Writing output data file pwscf.save Check: negative starting charge= -0.000285 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000286 negative rho (up, down): 0.102E-03 0.000E+00 total cpu time spent up to now is 4.7 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 negative rho (up, down): 0.553E-04 0.000E+00 total cpu time spent up to now is 4.9 secs total energy = -29.22191059 Ry Harris-Foulkes estimate = -29.22210482 Ry estimated scf accuracy < 0.00046037 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-06, avg # of iterations = 3.7 negative rho (up, down): 0.491E-04 0.000E+00 total cpu time spent up to now is 5.0 secs total energy = -29.22175399 Ry Harris-Foulkes estimate = -29.22222809 Ry estimated scf accuracy < 0.00409655 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-06, avg # of iterations = 3.0 negative rho (up, down): 0.362E-04 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -29.22198547 Ry Harris-Foulkes estimate = -29.22209511 Ry estimated scf accuracy < 0.00114565 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-06, avg # of iterations = 2.7 negative rho (up, down): 0.138E-04 0.000E+00 total cpu time spent up to now is 5.2 secs total energy = -29.22204087 Ry Harris-Foulkes estimate = -29.22204232 Ry estimated scf accuracy < 0.00001791 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.53E-08, avg # of iterations = 1.7 negative rho (up, down): 0.420E-06 0.000E+00 total cpu time spent up to now is 5.2 secs total energy = -29.22204298 Ry Harris-Foulkes estimate = -29.22204215 Ry estimated scf accuracy < 0.00000317 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.51E-08, avg # of iterations = 2.0 total cpu time spent up to now is 5.3 secs total energy = -29.22204343 Ry Harris-Foulkes estimate = -29.22204335 Ry estimated scf accuracy < 0.00000042 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 2.3 total cpu time spent up to now is 5.4 secs total energy = -29.22204347 Ry Harris-Foulkes estimate = -29.22204359 Ry estimated scf accuracy < 0.00000047 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 1.7 total cpu time spent up to now is 5.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1953 -6.6993 -5.8987 -4.6587 -3.1404 -1.4154 0.5889 1.8683 4.4848 5.4017 5.8353 6.3162 6.5438 7.1574 7.5432 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8717 -4.3836 -3.5987 -2.3812 -0.8938 -0.3726 0.0759 0.8352 0.8567 2.0332 2.7892 3.5282 3.9589 5.2096 6.6258 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6048 -2.1295 -1.3614 -0.1654 1.2115 1.2901 1.6446 2.3468 2.6011 2.7616 3.3837 3.4842 3.9615 4.9154 5.0034 the Fermi energy is 3.4461 ev ! total energy = -29.22204353 Ry Harris-Foulkes estimate = -29.22204355 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = -190.21572533 Ry hartree contribution = 101.81821902 Ry xc contribution = -11.25927594 Ry ewald contribution = 70.43844453 Ry smearing contrib. (-TS) = -0.00370581 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00140426 atom 2 type 1 force = 0.00000000 0.00000000 0.00899680 atom 3 type 1 force = 0.00000000 0.00000000 -0.00082819 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00082819 atom 6 type 1 force = 0.00000000 0.00000000 -0.00899680 atom 7 type 1 force = 0.00000000 0.00000000 0.00140426 Total force = 0.012931 Total SCF correction = 0.000224 number of scf cycles = 7 number of bfgs steps = 6 energy old = -29.2217395873 Ry energy new = -29.2220435309 Ry CASE: energy _new < energy _old new trust radius = 0.0288623787 bohr new conv_thr = 0.0000000304 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.078742052 Al 0.000000000 0.000000000 -1.405989835 Al 0.500000000 0.500000000 -0.698313945 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.698313945 Al 0.000000000 0.000000000 1.405989835 Al 0.500000000 0.500000000 2.078742052 Writing output data file pwscf.save Check: negative starting charge= -0.000286 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000289 negative rho (up, down): 0.281E-04 0.000E+00 total cpu time spent up to now is 5.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.139E-04 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -29.22216628 Ry Harris-Foulkes estimate = -29.22225718 Ry estimated scf accuracy < 0.00019778 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.42E-07, avg # of iterations = 3.3 negative rho (up, down): 0.125E-04 0.000E+00 total cpu time spent up to now is 5.8 secs total energy = -29.22203792 Ry Harris-Foulkes estimate = -29.22241223 Ry estimated scf accuracy < 0.00410069 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.42E-07, avg # of iterations = 3.0 negative rho (up, down): 0.911E-05 0.000E+00 total cpu time spent up to now is 5.9 secs total energy = -29.22223022 Ry Harris-Foulkes estimate = -29.22225200 Ry estimated scf accuracy < 0.00018252 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.69E-07, avg # of iterations = 1.0 negative rho (up, down): 0.653E-06 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -29.22224060 Ry Harris-Foulkes estimate = -29.22224042 Ry estimated scf accuracy < 0.00000365 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.74E-08, avg # of iterations = 3.0 negative rho (up, down): 0.100E-07 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -29.22224142 Ry Harris-Foulkes estimate = -29.22224145 Ry estimated scf accuracy < 0.00000291 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 1.0 total cpu time spent up to now is 6.1 secs total energy = -29.22224149 Ry Harris-Foulkes estimate = -29.22224149 Ry estimated scf accuracy < 0.00000045 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 2.7 total cpu time spent up to now is 6.2 secs total energy = -29.22224154 Ry Harris-Foulkes estimate = -29.22224157 Ry estimated scf accuracy < 0.00000030 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 1.7 total cpu time spent up to now is 6.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2178 -6.7231 -5.9147 -4.6686 -3.1449 -1.4110 0.5995 1.8796 4.5043 5.3780 5.8094 6.3288 6.5255 7.1414 7.5524 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8942 -4.4074 -3.6149 -2.3916 -0.8993 -0.3953 0.0515 0.8392 0.8405 2.0221 2.7982 3.5237 3.9688 5.2137 6.6439 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6275 -2.1536 -1.3780 -0.1764 1.1883 1.2835 1.6194 2.3290 2.5780 2.7498 3.3753 3.4717 3.9465 4.9076 5.0130 the Fermi energy is 3.4410 ev ! total energy = -29.22224155 Ry Harris-Foulkes estimate = -29.22224156 Ry estimated scf accuracy < 8.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -191.76531694 Ry hartree contribution = 102.58827284 Ry xc contribution = -11.26702458 Ry ewald contribution = 71.22560887 Ry smearing contrib. (-TS) = -0.00378174 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00243596 atom 2 type 1 force = 0.00000000 0.00000000 0.00904643 atom 3 type 1 force = 0.00000000 0.00000000 -0.00065760 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00065760 atom 6 type 1 force = 0.00000000 0.00000000 -0.00904643 atom 7 type 1 force = 0.00000000 0.00000000 0.00243596 Total force = 0.013282 Total SCF correction = 0.000163 number of scf cycles = 8 number of bfgs steps = 7 energy old = -29.2220435309 Ry energy new = -29.2222415544 Ry CASE: energy _new < energy _old new trust radius = 0.0317486166 bohr new conv_thr = 0.0000000198 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.072755474 Al 0.000000000 0.000000000 -1.400585583 Al 0.500000000 0.500000000 -0.697192863 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.697192863 Al 0.000000000 0.000000000 1.400585583 Al 0.500000000 0.500000000 2.072755474 Writing output data file pwscf.save Check: negative starting charge= -0.000289 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000296 negative rho (up, down): 0.354E-04 0.000E+00 total cpu time spent up to now is 6.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 negative rho (up, down): 0.188E-04 0.000E+00 total cpu time spent up to now is 6.5 secs total energy = -29.22234309 Ry Harris-Foulkes estimate = -29.22258607 Ry estimated scf accuracy < 0.00050972 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.43E-06, avg # of iterations = 3.3 negative rho (up, down): 0.173E-04 0.000E+00 total cpu time spent up to now is 6.6 secs total energy = -29.22190470 Ry Harris-Foulkes estimate = -29.22316420 Ry estimated scf accuracy < 0.01512362 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.43E-06, avg # of iterations = 3.0 negative rho (up, down): 0.128E-04 0.000E+00 total cpu time spent up to now is 6.7 secs total energy = -29.22254117 Ry Harris-Foulkes estimate = -29.22256380 Ry estimated scf accuracy < 0.00014612 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.96E-07, avg # of iterations = 1.3 negative rho (up, down): 0.161E-05 0.000E+00 total cpu time spent up to now is 6.8 secs total energy = -29.22255268 Ry Harris-Foulkes estimate = -29.22255219 Ry estimated scf accuracy < 0.00000470 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.24E-08, avg # of iterations = 2.7 total cpu time spent up to now is 6.9 secs total energy = -29.22255343 Ry Harris-Foulkes estimate = -29.22255339 Ry estimated scf accuracy < 0.00000186 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.88E-09, avg # of iterations = 2.0 total cpu time spent up to now is 7.0 secs total energy = -29.22255370 Ry Harris-Foulkes estimate = -29.22255382 Ry estimated scf accuracy < 0.00000147 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.0 secs total energy = -29.22255366 Ry Harris-Foulkes estimate = -29.22255373 Ry estimated scf accuracy < 0.00000042 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 2.3 total cpu time spent up to now is 7.1 secs total energy = -29.22255372 Ry Harris-Foulkes estimate = -29.22255373 Ry estimated scf accuracy < 0.00000014 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.89E-10, avg # of iterations = 1.0 total cpu time spent up to now is 7.2 secs total energy = -29.22255372 Ry Harris-Foulkes estimate = -29.22255372 Ry estimated scf accuracy < 0.00000002 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.18E-10, avg # of iterations = 1.7 total cpu time spent up to now is 7.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2465 -6.7498 -5.9251 -4.6775 -3.1532 -1.4068 0.6107 1.8916 4.5274 5.3479 5.7809 6.3426 6.5143 7.1203 7.5650 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9228 -4.4342 -3.6256 -2.4010 -0.9088 -0.4241 0.0242 0.8299 0.8429 2.0121 2.8073 3.5158 3.9798 5.2166 6.6656 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6563 -2.1808 -1.3890 -0.1865 1.1589 1.2727 1.5915 2.3176 2.5487 2.7349 3.3664 3.4605 3.9361 4.8939 5.0232 the Fermi energy is 3.4352 ev ! total energy = -29.22255372 Ry Harris-Foulkes estimate = -29.22255372 Ry estimated scf accuracy < 1.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -193.71540726 Ry hartree contribution = 103.55896778 Ry xc contribution = -11.27547042 Ry ewald contribution = 72.21316893 Ry smearing contrib. (-TS) = -0.00381274 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00298342 atom 2 type 1 force = 0.00000000 0.00000000 0.00797276 atom 3 type 1 force = 0.00000000 0.00000000 -0.00003111 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00003111 atom 6 type 1 force = 0.00000000 0.00000000 -0.00797276 atom 7 type 1 force = 0.00000000 0.00000000 0.00298342 Total force = 0.012039 Total SCF correction = 0.000016 number of scf cycles = 9 number of bfgs steps = 8 energy old = -29.2222415544 Ry energy new = -29.2225537207 Ry CASE: energy _new < energy _old new trust radius = 0.0476229248 bohr new conv_thr = 0.0000000312 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.065482962 Al 0.000000000 0.000000000 -1.391605717 Al 0.500000000 0.500000000 -0.695637577 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.695637577 Al 0.000000000 0.000000000 1.391605717 Al 0.500000000 0.500000000 2.065482962 Writing output data file pwscf.save Check: negative starting charge= -0.000296 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000301 negative rho (up, down): 0.521E-04 0.000E+00 total cpu time spent up to now is 7.3 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.283E-04 0.000E+00 total cpu time spent up to now is 7.5 secs total energy = -29.22246024 Ry Harris-Foulkes estimate = -29.22304128 Ry estimated scf accuracy < 0.00121338 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-06, avg # of iterations = 3.3 negative rho (up, down): 0.263E-04 0.000E+00 total cpu time spent up to now is 7.6 secs total energy = -29.22139306 Ry Harris-Foulkes estimate = -29.22446721 Ry estimated scf accuracy < 0.03732675 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-06, avg # of iterations = 3.0 negative rho (up, down): 0.192E-04 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -29.22293863 Ry Harris-Foulkes estimate = -29.22297563 Ry estimated scf accuracy < 0.00021009 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.7 negative rho (up, down): 0.714E-05 0.000E+00 total cpu time spent up to now is 7.8 secs total energy = -29.22295916 Ry Harris-Foulkes estimate = -29.22295869 Ry estimated scf accuracy < 0.00000989 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.71E-08, avg # of iterations = 2.0 negative rho (up, down): 0.153E-07 0.000E+00 total cpu time spent up to now is 7.9 secs total energy = -29.22296089 Ry Harris-Foulkes estimate = -29.22296010 Ry estimated scf accuracy < 0.00000251 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-08, avg # of iterations = 1.7 total cpu time spent up to now is 8.0 secs total energy = -29.22296105 Ry Harris-Foulkes estimate = -29.22296115 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.0 secs total energy = -29.22296114 Ry Harris-Foulkes estimate = -29.22296113 Ry estimated scf accuracy < 0.00000007 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2873 -6.7834 -5.9287 -4.6853 -3.1672 -1.4029 0.6234 1.9054 4.5578 5.3051 5.7456 6.3592 6.5117 7.0896 7.5846 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9635 -4.4679 -3.6295 -2.4095 -0.9245 -0.4648 -0.0100 0.8264 0.8464 2.0033 2.8168 3.5027 3.9930 5.2181 6.6938 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6973 -2.2149 -1.3933 -0.1957 1.1171 1.2554 1.5569 2.3143 2.5072 2.7142 3.3560 3.4507 3.9311 4.8709 5.0348 the Fermi energy is 3.4278 ev ! total energy = -29.22296116 Ry Harris-Foulkes estimate = -29.22296115 Ry estimated scf accuracy < 3.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -196.43227568 Ry hartree contribution = 104.91145807 Ry xc contribution = -11.28571684 Ry ewald contribution = 73.58736193 Ry smearing contrib. (-TS) = -0.00378863 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00284379 atom 2 type 1 force = 0.00000000 0.00000000 0.00504524 atom 3 type 1 force = 0.00000000 0.00000000 0.00130754 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00130754 atom 6 type 1 force = 0.00000000 0.00000000 -0.00504524 atom 7 type 1 force = 0.00000000 0.00000000 0.00284379 Total force = 0.008397 Total SCF correction = 0.000042 number of scf cycles = 10 number of bfgs steps = 9 energy old = -29.2225537207 Ry energy new = -29.2229611560 Ry CASE: energy _new < energy _old new trust radius = 0.0539035537 bohr new conv_thr = 0.0000000407 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.060159624 Al 0.000000000 0.000000000 -1.381441563 Al 0.500000000 0.500000000 -0.693878543 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693878543 Al 0.000000000 0.000000000 1.381441563 Al 0.500000000 0.500000000 2.060159624 Writing output data file pwscf.save Check: negative starting charge= -0.000301 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000298 negative rho (up, down): 0.355E-04 0.000E+00 total cpu time spent up to now is 8.2 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 negative rho (up, down): 0.185E-04 0.000E+00 total cpu time spent up to now is 8.3 secs total energy = -29.22254850 Ry Harris-Foulkes estimate = -29.22328892 Ry estimated scf accuracy < 0.00153909 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.33E-06, avg # of iterations = 3.3 negative rho (up, down): 0.171E-04 0.000E+00 total cpu time spent up to now is 8.4 secs total energy = -29.22115944 Ry Harris-Foulkes estimate = -29.22515493 Ry estimated scf accuracy < 0.04885379 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.33E-06, avg # of iterations = 3.0 negative rho (up, down): 0.112E-04 0.000E+00 total cpu time spent up to now is 8.5 secs total energy = -29.22316372 Ry Harris-Foulkes estimate = -29.22318759 Ry estimated scf accuracy < 0.00012463 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.93E-07, avg # of iterations = 1.7 negative rho (up, down): 0.449E-05 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -29.22317817 Ry Harris-Foulkes estimate = -29.22318012 Ry estimated scf accuracy < 0.00001630 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.76E-08, avg # of iterations = 1.7 negative rho (up, down): 0.131E-06 0.000E+00 total cpu time spent up to now is 8.7 secs total energy = -29.22318063 Ry Harris-Foulkes estimate = -29.22317972 Ry estimated scf accuracy < 0.00000275 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.7 total cpu time spent up to now is 8.8 secs total energy = -29.22318086 Ry Harris-Foulkes estimate = -29.22318082 Ry estimated scf accuracy < 0.00000032 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3270 -6.8094 -5.9187 -4.6863 -3.1827 -1.4019 0.6312 1.9146 4.5833 5.2633 5.7185 6.3714 6.5252 7.0585 7.6046 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0031 -4.4941 -3.6199 -2.4111 -0.9416 -0.5041 -0.0365 0.8367 0.8472 2.0020 2.8218 3.4886 4.0027 5.2158 6.7172 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7373 -2.2414 -1.3837 -0.1978 1.0762 1.2373 1.5301 2.3263 2.4670 2.6960 3.3482 3.4496 3.9379 4.8461 5.0422 the Fermi energy is 3.4223 ev ! total energy = -29.22318091 Ry Harris-Foulkes estimate = -29.22318092 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = -198.95941635 Ry hartree contribution = 106.17061275 Ry xc contribution = -11.29331534 Ry ewald contribution = 74.86259316 Ry smearing contrib. (-TS) = -0.00365512 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00156047 atom 2 type 1 force = 0.00000000 0.00000000 0.00055154 atom 3 type 1 force = 0.00000000 0.00000000 0.00298455 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00298455 atom 6 type 1 force = 0.00000000 0.00000000 -0.00055154 atom 7 type 1 force = 0.00000000 0.00000000 0.00156047 Total force = 0.004826 Total SCF correction = 0.000215 number of scf cycles = 11 number of bfgs steps = 10 energy old = -29.2229611560 Ry energy new = -29.2231809057 Ry CASE: energy _new < energy _old new trust radius = 0.0081527617 bohr new conv_thr = 0.0000000220 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.061696924 Al 0.000000000 0.000000000 -1.381179555 Al 0.500000000 0.500000000 -0.693520008 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693520008 Al 0.000000000 0.000000000 1.381179555 Al 0.500000000 0.500000000 2.061696924 Writing output data file pwscf.save Check: negative starting charge= -0.000298 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000297 negative rho (up, down): 0.108E-05 0.000E+00 total cpu time spent up to now is 8.9 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.266E-06 0.000E+00 total cpu time spent up to now is 9.0 secs total energy = -29.22320293 Ry Harris-Foulkes estimate = -29.22321547 Ry estimated scf accuracy < 0.00002708 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 3.0 negative rho (up, down): 0.212E-06 0.000E+00 total cpu time spent up to now is 9.1 secs total energy = -29.22319024 Ry Harris-Foulkes estimate = -29.22322888 Ry estimated scf accuracy < 0.00037518 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 2.7 negative rho (up, down): 0.775E-07 0.000E+00 total cpu time spent up to now is 9.2 secs total energy = -29.22321038 Ry Harris-Foulkes estimate = -29.22321442 Ry estimated scf accuracy < 0.00003791 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 1.7 total cpu time spent up to now is 9.3 secs total energy = -29.22321241 Ry Harris-Foulkes estimate = -29.22321244 Ry estimated scf accuracy < 0.00000039 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.86E-09, avg # of iterations = 3.0 total cpu time spent up to now is 9.4 secs total energy = -29.22321249 Ry Harris-Foulkes estimate = -29.22321247 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.81E-10, avg # of iterations = 2.3 total cpu time spent up to now is 9.4 secs total energy = -29.22321250 Ry Harris-Foulkes estimate = -29.22321250 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 1.7 total cpu time spent up to now is 9.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3243 -6.8010 -5.9109 -4.6823 -3.1824 -1.4042 0.6277 1.9109 4.5795 5.2662 5.7279 6.3692 6.5342 7.0592 7.6036 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0004 -4.4856 -3.6121 -2.4069 -0.9413 -0.5012 -0.0279 0.8446 0.8451 2.0067 2.8189 3.4889 3.9995 5.2131 6.7138 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7346 -2.2329 -1.3758 -0.1934 1.0791 1.2381 1.5392 2.3350 2.4701 2.7002 3.3502 3.4548 3.9449 4.8468 5.0392 the Fermi energy is 3.4237 ev ! total energy = -29.22321250 Ry Harris-Foulkes estimate = -29.22321250 Ry estimated scf accuracy < 1.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.71790571 Ry hartree contribution = 106.05094321 Ry xc contribution = -11.29106850 Ry ewald contribution = 74.73839917 Ry smearing contrib. (-TS) = -0.00358067 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00086784 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001341 atom 3 type 1 force = 0.00000000 0.00000000 0.00280930 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00280930 atom 6 type 1 force = 0.00000000 0.00000000 0.00001341 atom 7 type 1 force = 0.00000000 0.00000000 0.00086784 Total force = 0.004158 Total SCF correction = 0.000017 number of scf cycles = 12 number of bfgs steps = 11 energy old = -29.2231809057 Ry energy new = -29.2232125039 Ry CASE: energy _new < energy _old new trust radius = 0.0089680379 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063387953 Al 0.000000000 0.000000000 -1.381077305 Al 0.500000000 0.500000000 -0.692682374 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.692682374 Al 0.000000000 0.000000000 1.381077305 Al 0.500000000 0.500000000 2.063387953 Writing output data file pwscf.save Check: negative starting charge= -0.000297 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000296 negative rho (up, down): 0.153E-05 0.000E+00 total cpu time spent up to now is 9.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.333E-06 0.000E+00 total cpu time spent up to now is 9.7 secs total energy = -29.22323168 Ry Harris-Foulkes estimate = -29.22324796 Ry estimated scf accuracy < 0.00003497 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-07, avg # of iterations = 3.0 negative rho (up, down): 0.262E-06 0.000E+00 total cpu time spent up to now is 9.8 secs total energy = -29.22321877 Ry Harris-Foulkes estimate = -29.22326124 Ry estimated scf accuracy < 0.00036743 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-07, avg # of iterations = 2.7 negative rho (up, down): 0.143E-06 0.000E+00 total cpu time spent up to now is 9.9 secs total energy = -29.22324013 Ry Harris-Foulkes estimate = -29.22324819 Ry estimated scf accuracy < 0.00008318 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-07, avg # of iterations = 2.0 total cpu time spent up to now is 9.9 secs total energy = -29.22324412 Ry Harris-Foulkes estimate = -29.22324409 Ry estimated scf accuracy < 0.00000033 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.59E-09, avg # of iterations = 3.0 total cpu time spent up to now is 10.0 secs total energy = -29.22324420 Ry Harris-Foulkes estimate = -29.22324418 Ry estimated scf accuracy < 0.00000009 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.10E-10, avg # of iterations = 2.3 total cpu time spent up to now is 10.1 secs total energy = -29.22324421 Ry Harris-Foulkes estimate = -29.22324421 Ry estimated scf accuracy < 0.00000002 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 1.7 total cpu time spent up to now is 10.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3218 -6.7901 -5.9043 -4.6785 -3.1811 -1.4071 0.6238 1.9067 4.5754 5.2688 5.7399 6.3670 6.5419 7.0595 7.6032 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9979 -4.4747 -3.6055 -2.4030 -0.9400 -0.4983 -0.0168 0.8424 0.8514 2.0110 2.8158 3.4901 3.9957 5.2099 6.7102 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7320 -2.2218 -1.3689 -0.1892 1.0817 1.2398 1.5508 2.3425 2.4730 2.7054 3.3530 3.4596 3.9510 4.8494 5.0360 the Fermi energy is 3.4254 ev ! total energy = -29.22324421 Ry Harris-Foulkes estimate = -29.22324421 Ry estimated scf accuracy < 2.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.45715172 Ry hartree contribution = 105.92176056 Ry xc contribution = -11.28861682 Ry ewald contribution = 74.60429646 Ry smearing contrib. (-TS) = -0.00353270 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00017597 atom 2 type 1 force = 0.00000000 0.00000000 -0.00038434 atom 3 type 1 force = 0.00000000 0.00000000 0.00225803 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00225803 atom 6 type 1 force = 0.00000000 0.00000000 0.00038434 atom 7 type 1 force = 0.00000000 0.00000000 0.00017597 Total force = 0.003249 Total SCF correction = 0.000073 number of scf cycles = 13 number of bfgs steps = 12 energy old = -29.2232125039 Ry energy new = -29.2232442070 Ry CASE: energy _new < energy _old new trust radius = 0.0098538613 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.064769928 Al 0.000000000 0.000000000 -1.380621066 Al 0.500000000 0.500000000 -0.690824312 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.690824312 Al 0.000000000 0.000000000 1.380621066 Al 0.500000000 0.500000000 2.064769928 Writing output data file pwscf.save Check: negative starting charge= -0.000296 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000294 negative rho (up, down): 0.116E-05 0.000E+00 total cpu time spent up to now is 10.2 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.254E-06 0.000E+00 total cpu time spent up to now is 10.4 secs total energy = -29.22323133 Ry Harris-Foulkes estimate = -29.22328239 Ry estimated scf accuracy < 0.00010629 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.06E-07, avg # of iterations = 3.3 negative rho (up, down): 0.201E-06 0.000E+00 total cpu time spent up to now is 10.5 secs total energy = -29.22317159 Ry Harris-Foulkes estimate = -29.22335423 Ry estimated scf accuracy < 0.00185899 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.06E-07, avg # of iterations = 3.0 negative rho (up, down): 0.868E-07 0.000E+00 total cpu time spent up to now is 10.5 secs total energy = -29.22326563 Ry Harris-Foulkes estimate = -29.22328020 Ry estimated scf accuracy < 0.00012805 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.06E-07, avg # of iterations = 1.3 total cpu time spent up to now is 10.6 secs total energy = -29.22327252 Ry Harris-Foulkes estimate = -29.22327248 Ry estimated scf accuracy < 0.00000064 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.06E-09, avg # of iterations = 3.7 total cpu time spent up to now is 10.7 secs total energy = -29.22327277 Ry Harris-Foulkes estimate = -29.22327281 Ry estimated scf accuracy < 0.00000105 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.06E-09, avg # of iterations = 1.0 total cpu time spent up to now is 10.8 secs total energy = -29.22327273 Ry Harris-Foulkes estimate = -29.22327278 Ry estimated scf accuracy < 0.00000040 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 2.0 total cpu time spent up to now is 10.9 secs total energy = -29.22327276 Ry Harris-Foulkes estimate = -29.22327277 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 11.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3231 -6.7773 -5.9004 -4.6760 -3.1787 -1.4106 0.6202 1.9029 4.5730 5.2674 5.7542 6.3659 6.5464 7.0559 7.6047 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9992 -4.4619 -3.6015 -2.4003 -0.9379 -0.4991 -0.0038 0.8391 0.8554 2.0141 2.8132 3.4922 3.9921 5.2057 6.7083 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7334 -2.2089 -1.3648 -0.1865 1.0803 1.2423 1.5645 2.3469 2.4724 2.7110 3.3566 3.4629 3.9547 4.8537 5.0334 the Fermi energy is 3.4272 ev ! total energy = -29.22327276 Ry Harris-Foulkes estimate = -29.22327276 Ry estimated scf accuracy < 3.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.37361479 Ry hartree contribution = 105.88086776 Ry xc contribution = -11.28662373 Ry ewald contribution = 74.55963538 Ry smearing contrib. (-TS) = -0.00353738 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00050775 atom 2 type 1 force = 0.00000000 0.00000000 -0.00060016 atom 3 type 1 force = 0.00000000 0.00000000 0.00112374 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00112374 atom 6 type 1 force = 0.00000000 0.00000000 0.00060016 atom 7 type 1 force = 0.00000000 0.00000000 -0.00050775 Total force = 0.001939 Total SCF correction = 0.000095 number of scf cycles = 14 number of bfgs steps = 13 energy old = -29.2232442070 Ry energy new = -29.2232727619 Ry CASE: energy _new < energy _old new trust radius = 0.0063331060 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.064260097 Al 0.000000000 0.000000000 -1.380127634 Al 0.500000000 0.500000000 -0.689630129 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.689630129 Al 0.000000000 0.000000000 1.380127634 Al 0.500000000 0.500000000 2.064260097 Writing output data file pwscf.save Check: negative starting charge= -0.000294 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000293 negative rho (up, down): 0.258E-07 0.000E+00 total cpu time spent up to now is 11.0 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.123E-07 0.000E+00 total cpu time spent up to now is 11.1 secs total energy = -29.22327137 Ry Harris-Foulkes estimate = -29.22328467 Ry estimated scf accuracy < 0.00002756 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-07, avg # of iterations = 3.0 negative rho (up, down): 0.109E-07 0.000E+00 total cpu time spent up to now is 11.2 secs total energy = -29.22324934 Ry Harris-Foulkes estimate = -29.22331326 Ry estimated scf accuracy < 0.00073288 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-07, avg # of iterations = 2.7 total cpu time spent up to now is 11.3 secs total energy = -29.22328214 Ry Harris-Foulkes estimate = -29.22328338 Ry estimated scf accuracy < 0.00000918 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.37E-08, avg # of iterations = 1.3 total cpu time spent up to now is 11.4 secs total energy = -29.22328272 Ry Harris-Foulkes estimate = -29.22328274 Ry estimated scf accuracy < 0.00000034 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.63E-09, avg # of iterations = 2.7 total cpu time spent up to now is 11.5 secs total energy = -29.22328276 Ry Harris-Foulkes estimate = -29.22328276 Ry estimated scf accuracy < 0.00000009 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.47E-10, avg # of iterations = 1.3 total cpu time spent up to now is 11.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3282 -6.7758 -5.9040 -4.6777 -3.1776 -1.4113 0.6208 1.9037 4.5754 5.2620 5.7560 6.3677 6.5422 7.0512 7.6071 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0042 -4.4605 -3.6051 -2.4022 -0.9372 -0.5039 -0.0024 0.8384 0.8517 2.0123 2.8140 3.4930 3.9924 5.2049 6.7106 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7385 -2.2075 -1.3685 -0.1884 1.0751 1.2429 1.5661 2.3429 2.4675 2.7111 3.3570 3.4608 3.9515 4.8555 5.0342 the Fermi energy is 3.4272 ev ! total energy = -29.22328277 Ry Harris-Foulkes estimate = -29.22328277 Ry estimated scf accuracy < 4.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.62083356 Ry hartree contribution = 106.00420258 Ry xc contribution = -11.28736754 Ry ewald contribution = 74.68431537 Ry smearing contrib. (-TS) = -0.00359962 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00047889 atom 2 type 1 force = 0.00000000 0.00000000 -0.00042944 atom 3 type 1 force = 0.00000000 0.00000000 0.00045192 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00045192 atom 6 type 1 force = 0.00000000 0.00000000 0.00042944 atom 7 type 1 force = 0.00000000 0.00000000 -0.00047889 Total force = 0.001112 Total SCF correction = 0.000055 bfgs converged in 15 scf cycles and 14 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -29.2232827668 Ry Begin final coordinates ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.064260097 Al 0.000000000 0.000000000 -1.380127634 Al 0.500000000 0.500000000 -0.689630129 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.689630129 Al 0.000000000 0.000000000 1.380127634 Al 0.500000000 0.500000000 2.064260097 End final coordinates Writing output data file pwscf.save init_run : 0.09s CPU 0.09s WALL ( 1 calls) electrons : 10.36s CPU 10.62s WALL ( 15 calls) update_pot : 0.15s CPU 0.16s WALL ( 14 calls) forces : 0.18s CPU 0.19s WALL ( 15 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 8.24s CPU 8.33s WALL ( 116 calls) sum_band : 1.38s CPU 1.40s WALL ( 116 calls) v_of_rho : 0.24s CPU 0.26s WALL ( 130 calls) mix_rho : 0.18s CPU 0.19s WALL ( 116 calls) Called by c_bands: init_us_2 : 0.28s CPU 0.22s WALL ( 744 calls) cegterg : 7.95s CPU 7.99s WALL ( 348 calls) Called by *egterg: h_psi : 5.70s CPU 5.60s WALL ( 1202 calls) g_psi : 0.24s CPU 0.27s WALL ( 851 calls) cdiaghg : 0.76s CPU 0.73s WALL ( 1154 calls) Called by h_psi: add_vuspsi : 0.29s CPU 0.31s WALL ( 1202 calls) General routines calbec : 0.32s CPU 0.37s WALL ( 1247 calls) fft : 0.12s CPU 0.15s WALL ( 551 calls) fftw : 5.31s CPU 5.19s WALL ( 30952 calls) davcio : 0.00s CPU 0.09s WALL ( 1092 calls) PWSCF : 11.24s CPU 11.57s WALL This run was terminated on: 11:27:30 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/berry.ref10000644000700200004540000004553112053145627015767 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/berry.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 869 437 137 19213 6763 1213 bravais-lattice index = 1 lattice parameter (alat) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 22 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file: /home/giannozz/trunk/espresso/pseudo/Pb.pz-d-van.UPF MD5 check sum: 4e1e5920686a026ae26139ac417581ff Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file: /home/giannozz/trunk/espresso/pseudo/Ti.pz-sp-van_ak.UPF MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-van_ak.UPF MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 -0.5000000), wk = 0.0714286 k( 2) = ( 0.1250000 0.1250000 -0.3333333), wk = 0.0714286 k( 3) = ( 0.1250000 0.1250000 -0.1666667), wk = 0.0714286 k( 4) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0714286 k( 5) = ( 0.1250000 0.1250000 0.1666667), wk = 0.0714286 k( 6) = ( 0.1250000 0.1250000 0.3333333), wk = 0.0714286 k( 7) = ( 0.1250000 0.1250000 0.5000000), wk = 0.0714286 k( 8) = ( 0.1250000 0.3750000 -0.5000000), wk = 0.1428571 k( 9) = ( 0.1250000 0.3750000 -0.3333333), wk = 0.1428571 k( 10) = ( 0.1250000 0.3750000 -0.1666667), wk = 0.1428571 k( 11) = ( 0.1250000 0.3750000 0.0000000), wk = 0.1428571 k( 12) = ( 0.1250000 0.3750000 0.1666667), wk = 0.1428571 k( 13) = ( 0.1250000 0.3750000 0.3333333), wk = 0.1428571 k( 14) = ( 0.1250000 0.3750000 0.5000000), wk = 0.1428571 k( 15) = ( 0.3750000 0.3750000 -0.5000000), wk = 0.0714286 k( 16) = ( 0.3750000 0.3750000 -0.3333333), wk = 0.0714286 k( 17) = ( 0.3750000 0.3750000 -0.1666667), wk = 0.0714286 k( 18) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0714286 k( 19) = ( 0.3750000 0.3750000 0.1666667), wk = 0.0714286 k( 20) = ( 0.3750000 0.3750000 0.3333333), wk = 0.0714286 k( 21) = ( 0.3750000 0.3750000 0.5000000), wk = 0.0714286 Dense grid: 19213 G-vectors FFT dimensions: ( 36, 36, 36) Smooth grid: 6763 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 858, 22) NL pseudopotentials 0.79 Mb ( 858, 60) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 19213) G-vector shells 0.00 Mb ( 232) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.15 Mb ( 858, 88) Each subspace H/S matrix 0.12 Mb ( 88, 88) Each matrix 0.02 Mb ( 60, 22) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 31 randomized atomic wfcs total cpu time spent up to now is 1.6 secs per-process dynamical memory: 22.4 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 2.27E-09, avg # of iterations = 11.3 total cpu time spent up to now is 5.8 secs End of band structure calculation k = 0.1250 0.1250-0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 k = 0.1250 0.1250-0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 k = 0.1250 0.1250-0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 k = 0.1250 0.1250 0.0000 band energies (ev): -44.7046 -21.3178 -21.3172 -21.3047 -6.6056 -5.5354 -5.5325 -4.4531 -4.4413 -4.4402 -4.2554 -4.2273 4.4674 7.1283 7.2347 7.6339 9.1136 9.3302 9.5923 9.7708 10.0123 10.0578 k = 0.1250 0.1250 0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 k = 0.1250 0.1250 0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 k = 0.1250 0.1250 0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 k = 0.1250 0.3750-0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 k = 0.1250 0.3750-0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 k = 0.1250 0.3750-0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 k = 0.1250 0.3750 0.0000 band energies (ev): -44.7036 -21.3737 -21.3152 -21.3025 -6.1942 -5.3809 -5.3567 -4.5076 -4.4747 -4.4380 -4.3885 -4.2156 3.6491 6.7215 7.5633 7.6678 8.2608 8.5651 9.5673 9.6887 9.9519 10.7306 k = 0.1250 0.3750 0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 k = 0.1250 0.3750 0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 k = 0.1250 0.3750 0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 k = 0.3750 0.3750-0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 k = 0.3750 0.3750-0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 k = 0.3750 0.3750-0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 k = 0.3750 0.3750 0.0000 band energies (ev): -44.7022 -21.3710 -21.3706 -21.3001 -6.0230 -5.2107 -5.1379 -4.4867 -4.4756 -4.4665 -4.3379 -4.1452 3.1509 6.6820 6.8041 7.9517 8.0865 8.1061 8.5101 9.2796 10.0820 10.5693 k = 0.3750 0.3750 0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 k = 0.3750 0.3750 0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 k = 0.3750 0.3750 0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 ================================================== POLARIZATION CALCULATION !!! NOT THOROUGHLY TESTED !!! -------------------------------------------------- K-POINTS STRINGS USED IN CALCULATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G-vector along string (2 pi/a): 0.00000 0.00000 1.00000 Modulus of the vector (1/bohr): 0.85255 Number of k-points per string: 7 Number of different strings : 3 IONIC POLARIZATION ~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Ion Species Charge Position Phase ---------------------------------------------------------------------------- 1 Pb 14.000 0.0000 0.0000 0.0100 0.14000 (mod 2) 2 Ti 12.000 0.5000 0.5000 0.5000 0.00000 (mod 2) 3 O 6.000 0.0000 0.5000 0.5000 -1.00000 (mod 2) 4 O 6.000 0.5000 0.5000 0.0000 0.00000 (mod 2) 5 O 6.000 0.5000 0.0000 0.5000 -1.00000 (mod 2) ---------------------------------------------------------------------------- IONIC PHASE: 0.14000 (mod 2) ============================================================================ ELECTRONIC POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Spin String Weight First k-point in string Phase ---------------------------------------------------------------------------- up 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) up 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) up 3 0.250000 0.3750 0.3750 -0.5000 -0.05007 (mod 1) ---------------------------------------------------------------------------- down 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) down 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) down 3 0.250000 0.3750 0.3750 -0.5000 -0.05007 (mod 1) ---------------------------------------------------------------------------- Average phase (up): -0.05008 (mod 1) Average phase (down): -0.05008 (mod 1) ELECTRONIC PHASE: -0.10017 (mod 2) ============================================================================ SUMMARY OF PHASES ~~~~~~~~~~~~~~~~~ Ionic Phase: 0.14000 (mod 2) Electronic Phase: -0.10017 (mod 2) TOTAL PHASE: 0.03983 (mod 2) VALUES OF POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~ The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell): P = 0.2935522 (mod 14.7398000) (e/Omega).bohr P = 0.0007333 (mod 0.0368220) e/bohr^2 P = 0.0419258 (mod 2.1051744) C/m^2 The polarization direction is: ( 0.00000 , 0.00000 , 1.00000 ) ================================================== Writing output data file pwscf.save init_run : 1.48s CPU 1.49s WALL ( 1 calls) electrons : 4.78s CPU 4.80s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 4.12s CPU 4.14s WALL ( 1 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 1 calls) newd : 0.13s CPU 0.13s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.05s WALL ( 57 calls) cegterg : 3.64s CPU 3.66s WALL ( 21 calls) Called by *egterg: h_psi : 1.96s CPU 1.95s WALL ( 279 calls) s_psi : 0.22s CPU 0.23s WALL ( 279 calls) g_psi : 0.10s CPU 0.13s WALL ( 237 calls) cdiaghg : 0.60s CPU 0.60s WALL ( 258 calls) Called by h_psi: add_vuspsi : 0.29s CPU 0.26s WALL ( 279 calls) General routines calbec : 0.28s CPU 0.29s WALL ( 315 calls) fft : 0.00s CPU 0.00s WALL ( 5 calls) ffts : 0.00s CPU 0.00s WALL ( 1 calls) fftw : 1.04s CPU 1.05s WALL ( 9538 calls) interpolate : 0.00s CPU 0.00s WALL ( 1 calls) davcio : 0.00s CPU 0.01s WALL ( 57 calls) PWSCF : 6.49s CPU 6.56s WALL This run was terminated on: 22:44:26 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf.in0000644000700200004540000000052412053145627015161 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/cluster3.in0000755000700200004540000000067212053145627016161 0ustar marsamoscm&CONTROL calculation = 'relax' / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 3, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, nbnd = 8 assume_isolated='martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES O 1.00 O.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 K_POINTS Gamma espresso-5.0.2/PW/tests/check-pw.x.j0000755000700200004540000002370412053145627016210 0ustar marsamoscm#!/bin/sh # Automated checks for pw.x - PG 2007-2012 # . ../../environment_variables # # You shouldn't need to modify anything below this line. # # Some specific quantities are checked against a reference output # Checks are implemented for the following calculations: # 'scf', 'relax', 'md', 'vc-relax', 'nscf' # (see below for the latter) # # Input data: *.in, reference results: *.res, output: *.out # ./check-pw.x.j checks all *.in files # ./check-pw.x.j "some file(s)" checks the specified files # Example: # ./check-pw.x.j atom*.in lsda* # If you want to save a copy in file "logfile": # ./check-pw.x.j atom*.in lsda* | tee logfile # # For 'nscf' case, the data is in file $name.in2, where $name.in is the # data for the scf calculation that must be executed before the nscf one. # Output is written to $name.out2 and checked vs reference data $name.res2 # The quantities that are compared with reference ones are: # the Fermi energy, or # the HOMO and LUMO # the total polarization (for the Berry's phase calculation) # # For all other cases, the quantites that are verified are: # the converged total energy # the number of scf iterations # the module of the force ( sqrt(\sum_i f_i^2)) if calculated; # the pressure P if calculated # taken from examples - not sure it is really needed if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi ESPRESSO_ROOT=`cd ../../ ; pwd` ESPRESSO_TMPDIR=$ESPRESSO_ROOT/tmp/ ESPRESSO_PSEUDO=$ESPRESSO_ROOT/pseudo/ # no need to specify outdir and pseudo_dir in all *.in files export ESPRESSO_TMPDIR ESPRESSO_PSEUDO if test ! -d $ESPRESSO_TMPDIR then mkdir $ESPRESSO_TMPDIR fi # this is the current directory, where the test is executed TESTDIR=`pwd` # With no arguments, checks all *.in files # With an argument, checks files (ending with .in) matching the argument if test $# = 0 then files=`/bin/ls *.in` else files=`/bin/ls $*| grep "\.in$"` fi ######################################################################## # function generating kernel table for nonlocal functionals if missing ######################################################################## get_kernel () { if test "$1" = "vdw1" || test "$1" = "vdw2" ; then if ! test -f $ESPRESSO_PSEUDO/vdW_kernel_table ; then $ECHO "Generating kernel table - May take several minutes...\c" $PARA_PREFIX $ESPRESSO_ROOT/PW/src/generate_vdW_kernel_table.x $PARA_POSTFIX mv vdW_kernel_table $ESPRESSO_PSEUDO/ $ECHO "kernel table generated in $ESPRESSO_PSEUDO/vdW_kernel_table" fi fi } ######################################################################## # function to get pseudopotentials from the web if missing ######################################################################## get_pp () { ppfiles=`grep UPF $1.in | awk '{print $3}'` for ppfile in $ppfiles do if ! test -f $ESPRESSO_PSEUDO/$ppfile ; then $ECHO "Downloading $ppfile to $ESPRESSO_PSEUDO...\c" $WGET $ESPRESSO_PSEUDO/$ppfile $NETWORK_PSEUDO/$ppfile 2> /dev/null if test $? != 0; then $ECHO "failed!" $ECHO "test $1 will not be executed" # status=1 else $ECHO "success" # status=0 fi fi done } ######################################################################## # function to test scf calculations - usage: check_scf "file prefix" ######################################################################## check_scf () { # get reference total energy (cut to 6 significant digits) e0=`grep ! $1.ref | tail -1 | awk '{printf "%12.6f\n", $5}'` # get reference number of scf iterations n0=`grep 'convergence has' $1.ref | tail -1 | awk '{print $6}'` # get reference initial force (cut to 4 significant digits) f0=`grep "Total force" $1.ref | head -1 | awk '{printf "%8.4f\n", $4}'` # get reference pressure p0=`grep "P= " $1.ref | tail -1 | awk '{print $6}'` # # note that only the final energy, pressure, number of iterations, # and only the initial force are tested - hopefully this should # cover the various MD and optimization cases as well as simple scf # e1=`grep ! $1.out | tail -1 | awk '{printf "%12.6f\n", $5}'` n1=`grep 'convergence has' $1.out | tail -1 | awk '{print $6}'` f1=`grep "Total force" $1.out | head -1 | awk '{printf "%8.4f\n", $4}'` p1=`grep "P= " $1.out | tail -1 | awk '{print $6}'` # if test "$e1" = "$e0" then if test "$n1" = "$n0" then if test "$f1" = "$f0" then if test "$p1" = "$p0" then $ECHO "passed" fi fi fi fi if test "$e1" != "$e0" then $ECHO "discrepancy in total energy detected" $ECHO "Reference: $e0, You got: $e1" fi if test "$n1" != "$n0" then $ECHO "discrepancy in number of scf iterations detected" $ECHO "Reference: $n0, You got: $n1" fi if test "$f1" != "$f0" then $ECHO "discrepancy in force detected" $ECHO "Reference: $f0, You got: $f1" fi if test "$p1" != "$p0" then $ECHO "discrepancy in pressure detected" $ECHO "Reference: $p0, You got: $p1" fi } ######################################################################## # function to test nscf calculations - usage: check_nscf "file prefix" "number" ######################################################################## check_nscf () { # get reference Fermi energy ef0=`grep Fermi $1.ref$2 | awk '{print $5}'` # get reference HOMO and LUMO eh0=`grep "highest occupied" $1.ref$2 | awk '{print $7}'` el0=`grep "highest occupied" $1.ref$2 | awk '{print $8}'` # get total polarization (for Berry's phase calculation) tf0=`grep " P = " $1.ref$2 | head -1 | awk '{printf "%7.5f", $3}'` # ef1=`grep Fermi $name.out$n | awk '{print $5}'` eh1=`grep "highest occupied" $1.out$2 | awk '{print $7}'` el1=`grep "highest occupied" $1.out$2 | awk '{print $8}'` tf1=`grep " P = " $1.out$2 | head -1 | awk '{printf "%7.5f", $3}'` # if test "$ef1" = "$ef0" then if test "$eh1" = "$eh0" then if test "$el1" = "$el0" then if test "$tf1" = "$tf0" then $ECHO "passed" fi fi fi fi if test "$ef1" != "$ef0" then $ECHO "discrepancy in Fermi energy detected" $ECHO "Reference: $ef0, You got: $ef1" fi if test "$eh1" != "$eh0" then $ECHO "discrepancy in HOMO detected" $ECHO "Reference: $eh0, You got: $eh1" fi if test "$el1" != "$el0" then $ECHO "discrepancy in LUMO detected" $ECHO "Reference: $el0, You got: $el1" fi if test "$tf1" != "$tf0" then $ECHO "discrepancy in polarization detected" $ECHO "Reference: $tf0, You got: $tf1" fi } ######################################################################## # function to get wall times - usage: get_times "file prefix" ######################################################################## get_times () { # convert from "1h23m45.6s" to seconds # the following line prevents cases such as "2m 7.5s" grep 'WALL$' $1.ref | sed 's/m /m0/' > $1.tmp # in order to get cpu instead of wall time, replace $3 to $5 tref=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` # as above for file *.out grep 'WALL$' $1.out | sed 's/m /m0/' > $1.tmp tout=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` /bin/rm $1.tmp # accumulate data totref=`echo $totref $tref | awk '{print $1+$2}'` totout=`echo $totout $tout | awk '{print $1+$2}'` } ######################################################################## # Perform here required checks ######################################################################## for file in $files do name=`basename $file .in` get_pp $name get_kernel $name $ECHO "Checking $name...\c" ### # run the code in the scratch directory # cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/PW/src/pw.x $PARA_POSTFIX \ -inp $TESTDIR/$name.in > $TESTDIR/$name.out if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in, Output: $name.out, Reference: $name.ref" $ECHO "Aborting" exit 1 fi # cd $TESTDIR ### if test -f $name.ref ; then # reference file exists # Test for scf/relax/md/vc-relax # check_scf $name # # extract wall time statistics # get_times $name # else $ECHO "not checked, reference file not available " fi # # now check subsequent non-scf step if required # look for $name.in2 for n in 1 2; do if test -f $name.in$n; then $ECHO "Checking $name, step $n ...\c" ### # run the code in the scratch directory # cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/PW/src/pw.x $PARA_POSTFIX \ -inp $TESTDIR/$name.in$n > $TESTDIR/$name.out$n if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in$n, Output: $name.out$n, Reference: $name.ref$n" $ECHO "Aborting" exit 1 fi # cd $TESTDIR ### if test -f $name.ref$n ; then # reference file exists if test $n = 1; then # this should actually be "check_bands", but it has to be written! check_nscf $name $n else check_nscf $name $n fi # extract wall time statistics get_times $name else $ECHO "not checked, reference file not available " fi fi done done $ECHO "Total wall time (s) spent in this run: " $totout $ECHO "Reference : " $totref espresso-5.0.2/PW/tests/noncolin-cg.in0000755000700200004540000000163112053145627016617 0ustar marsamoscm &control calculation='scf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons diagonalization='cg' mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.0.2/PW/tests/lda+U_force.ref0000644000700200004540000011442312053145627016676 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:48:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lda+U_force.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.1000000 0.1000000 0.1000000 ) 4 Fe2 tau( 4) = ( 0.9000000 0.9000000 0.9000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000006 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 2.5 secs per-process dynamical memory: 35.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.9 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.3952210 atom 3 spin 1 eigenvalues: 0.9360329 0.9360329 0.9574186 0.9755905 0.9755905 eigenvectors 1 -0.1433579 -0.0467044 -0.6734218 0.0720318 -0.7201262 2 -0.0720318 -0.8045653 0.4427299 -0.1433579 -0.3618354 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.2864300 0.0895577 -0.1275714 -0.9445728 -0.0380137 5 0.9445728 -0.0956006 -0.0297589 0.2864300 -0.1253595 occupations 0.975 -0.003 -0.003 0.000 -0.005 -0.003 0.944 0.007 -0.004 -0.007 -0.003 0.007 0.944 0.004 -0.007 0.000 -0.004 0.004 0.975 0.000 -0.005 -0.007 -0.007 0.000 0.944 atom 3 spin 2 eigenvalues: 0.1773055 0.1773055 0.3154787 0.4722330 0.4722330 eigenvectors 1 -0.3489026 -0.1800646 0.2891927 0.8662000 0.1091281 2 -0.8662000 0.2299706 0.0409552 -0.3489026 0.2709258 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 -0.1447446 -0.7581050 0.4495881 -0.3271293 -0.3085169 5 0.3271293 0.0814475 0.6158145 -0.1447446 0.6972620 occupations 0.215 0.040 0.040 0.000 0.080 0.040 0.395 -0.040 0.070 0.040 0.040 -0.040 0.395 -0.070 0.040 0.000 0.070 -0.070 0.215 0.000 0.080 0.040 0.040 0.000 0.395 atom 4 Tr[ns(na)]= 6.3956068 atom 4 spin 1 eigenvalues: 0.1773615 0.1773615 0.3153169 0.4724000 0.4724000 eigenvectors 1 -0.4303610 -0.1570736 0.2915600 0.8288688 0.1344864 2 -0.8288688 0.2459780 0.0130407 -0.4303610 0.2590188 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.2144998 0.7570689 -0.2994645 0.2859297 0.4576044 5 0.2859297 -0.0913021 0.7012919 -0.2144998 0.6099898 occupations 0.215 0.040 0.040 0.000 0.080 0.040 0.395 -0.040 0.070 0.040 0.040 -0.040 0.395 -0.070 0.040 0.000 0.070 -0.070 0.215 0.000 0.080 0.040 0.040 0.000 0.395 atom 4 spin 2 eigenvalues: 0.9361382 0.9361382 0.9573624 0.9755640 0.9755640 eigenvectors 1 -0.0584650 -0.7963753 0.5045382 -0.1504676 -0.2918371 2 -0.1504676 -0.1228030 -0.6282797 0.0584650 -0.7510828 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.1991984 0.0984946 -0.1250988 -0.9665719 -0.0266042 5 0.9665719 -0.0875857 -0.0415059 0.1991984 -0.1290917 occupations 0.975 -0.003 -0.003 0.000 -0.005 -0.003 0.944 0.007 -0.004 -0.007 -0.003 0.007 0.944 0.004 -0.007 0.000 -0.004 0.004 0.975 0.000 -0.005 -0.007 -0.007 0.000 0.944 nsum = 12.7908277 exit write_ns total cpu time spent up to now is 3.6 secs total energy = -173.03759244 Ry Harris-Foulkes estimate = -174.32586802 Ry estimated scf accuracy < 2.88590383 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.80 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 4.6 secs total energy = -172.45347306 Ry Harris-Foulkes estimate = -174.73251958 Ry estimated scf accuracy < 15.72015071 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 2.76 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 5.6 secs total energy = -173.89983828 Ry Harris-Foulkes estimate = -174.00605665 Ry estimated scf accuracy < 0.93167614 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.83 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.33E-03, avg # of iterations = 1.0 total cpu time spent up to now is 6.5 secs total energy = -173.81683919 Ry Harris-Foulkes estimate = -173.91898385 Ry estimated scf accuracy < 0.46718743 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 5.65 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-03, avg # of iterations = 1.2 total cpu time spent up to now is 7.5 secs total energy = -173.91254812 Ry Harris-Foulkes estimate = -173.96767627 Ry estimated scf accuracy < 2.09923882 Ry total magnetization = -0.06 Bohr mag/cell absolute magnetization = 4.26 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-03, avg # of iterations = 1.0 total cpu time spent up to now is 8.4 secs total energy = -173.94401201 Ry Harris-Foulkes estimate = -173.92349509 Ry estimated scf accuracy < 0.81177683 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.54 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-03, avg # of iterations = 1.0 total cpu time spent up to now is 9.5 secs total energy = -173.97153156 Ry Harris-Foulkes estimate = -173.94905218 Ry estimated scf accuracy < 1.33361065 Ry total magnetization = -0.24 Bohr mag/cell absolute magnetization = 4.36 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-03, avg # of iterations = 1.0 total cpu time spent up to now is 10.4 secs total energy = -173.90390029 Ry Harris-Foulkes estimate = -173.97685721 Ry estimated scf accuracy < 1.83100906 Ry total magnetization = 0.08 Bohr mag/cell absolute magnetization = 4.15 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-03, avg # of iterations = 1.0 total cpu time spent up to now is 11.4 secs total energy = -173.91552846 Ry Harris-Foulkes estimate = -173.92632383 Ry estimated scf accuracy < 0.31367461 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.44 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.12E-03, avg # of iterations = 1.0 total cpu time spent up to now is 12.3 secs total energy = -173.92102951 Ry Harris-Foulkes estimate = -173.91843155 Ry estimated scf accuracy < 0.09223970 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.52 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.29E-04, avg # of iterations = 1.0 total cpu time spent up to now is 13.3 secs total energy = -173.91291626 Ry Harris-Foulkes estimate = -173.92139227 Ry estimated scf accuracy < 0.14127389 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.45 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.29E-04, avg # of iterations = 1.0 total cpu time spent up to now is 14.3 secs total energy = -173.91800007 Ry Harris-Foulkes estimate = -173.91800347 Ry estimated scf accuracy < 0.00126365 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 4.47 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.51E-06, avg # of iterations = 2.5 total cpu time spent up to now is 15.3 secs total energy = -173.91821736 Ry Harris-Foulkes estimate = -173.91816377 Ry estimated scf accuracy < 0.00177889 Ry total magnetization = 0.04 Bohr mag/cell absolute magnetization = 4.47 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.51E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.2 secs total energy = -173.91832970 Ry Harris-Foulkes estimate = -173.91827732 Ry estimated scf accuracy < 0.00063136 Ry total magnetization = 0.05 Bohr mag/cell absolute magnetization = 4.45 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.25E-06, avg # of iterations = 1.0 total cpu time spent up to now is 17.2 secs total energy = -173.91830667 Ry Harris-Foulkes estimate = -173.91834716 Ry estimated scf accuracy < 0.00055166 Ry total magnetization = 0.06 Bohr mag/cell absolute magnetization = 4.44 Bohr mag/cell iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 1.1 total cpu time spent up to now is 18.2 secs total energy = -173.91854892 Ry Harris-Foulkes estimate = -173.91845392 Ry estimated scf accuracy < 0.00569807 Ry total magnetization = 0.05 Bohr mag/cell absolute magnetization = 4.43 Bohr mag/cell iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 1.0 total cpu time spent up to now is 19.1 secs total energy = -173.91875316 Ry Harris-Foulkes estimate = -173.91857121 Ry estimated scf accuracy < 0.00708771 Ry total magnetization = 0.06 Bohr mag/cell absolute magnetization = 4.42 Bohr mag/cell iteration # 18 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 1.0 total cpu time spent up to now is 20.1 secs total energy = -173.91873144 Ry Harris-Foulkes estimate = -173.91883214 Ry estimated scf accuracy < 0.00943685 Ry total magnetization = 0.07 Bohr mag/cell absolute magnetization = 4.45 Bohr mag/cell iteration # 19 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 1.0 total cpu time spent up to now is 21.0 secs total energy = -173.91879863 Ry Harris-Foulkes estimate = -173.91882823 Ry estimated scf accuracy < 0.00275598 Ry total magnetization = 0.07 Bohr mag/cell absolute magnetization = 4.43 Bohr mag/cell iteration # 20 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 1.1 total cpu time spent up to now is 22.0 secs total energy = -173.91887123 Ry Harris-Foulkes estimate = -173.91888278 Ry estimated scf accuracy < 0.00133917 Ry total magnetization = 0.03 Bohr mag/cell absolute magnetization = 4.41 Bohr mag/cell iteration # 21 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 1.0 total cpu time spent up to now is 23.0 secs total energy = -173.91892870 Ry Harris-Foulkes estimate = -173.91888727 Ry estimated scf accuracy < 0.00027131 Ry total magnetization = 0.04 Bohr mag/cell absolute magnetization = 4.39 Bohr mag/cell iteration # 22 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.69E-07, avg # of iterations = 1.1 total cpu time spent up to now is 23.9 secs total energy = -173.91898708 Ry Harris-Foulkes estimate = -173.91900289 Ry estimated scf accuracy < 0.00032822 Ry total magnetization = 0.10 Bohr mag/cell absolute magnetization = 4.39 Bohr mag/cell iteration # 23 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.69E-07, avg # of iterations = 1.0 total cpu time spent up to now is 24.9 secs total energy = -173.91897026 Ry Harris-Foulkes estimate = -173.91899024 Ry estimated scf accuracy < 0.00026848 Ry total magnetization = 0.09 Bohr mag/cell absolute magnetization = 4.38 Bohr mag/cell iteration # 24 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.59E-07, avg # of iterations = 1.0 total cpu time spent up to now is 25.8 secs total energy = -173.91898082 Ry Harris-Foulkes estimate = -173.91897579 Ry estimated scf accuracy < 0.00011317 Ry total magnetization = 0.09 Bohr mag/cell absolute magnetization = 4.39 Bohr mag/cell iteration # 25 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-07, avg # of iterations = 1.0 total cpu time spent up to now is 26.8 secs total energy = -173.91897330 Ry Harris-Foulkes estimate = -173.91898566 Ry estimated scf accuracy < 0.00008435 Ry total magnetization = 0.07 Bohr mag/cell absolute magnetization = 4.38 Bohr mag/cell iteration # 26 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 1.0 total cpu time spent up to now is 27.7 secs total energy = -173.91897123 Ry Harris-Foulkes estimate = -173.91898274 Ry estimated scf accuracy < 0.00004608 Ry total magnetization = 0.05 Bohr mag/cell absolute magnetization = 4.38 Bohr mag/cell iteration # 27 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.65E-07, avg # of iterations = 1.0 total cpu time spent up to now is 28.7 secs total energy = -173.91895418 Ry Harris-Foulkes estimate = -173.91898052 Ry estimated scf accuracy < 0.00004701 Ry total magnetization = 0.04 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 28 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.65E-07, avg # of iterations = 1.1 total cpu time spent up to now is 29.7 secs total energy = -173.91898893 Ry Harris-Foulkes estimate = -173.91899146 Ry estimated scf accuracy < 0.00001687 Ry total magnetization = 0.03 Bohr mag/cell absolute magnetization = 4.36 Bohr mag/cell iteration # 29 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.02E-08, avg # of iterations = 1.4 total cpu time spent up to now is 30.7 secs total energy = -173.91898816 Ry Harris-Foulkes estimate = -173.91899041 Ry estimated scf accuracy < 0.00001232 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 30 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 31.7 secs total energy = -173.91898879 Ry Harris-Foulkes estimate = -173.91898979 Ry estimated scf accuracy < 0.00002685 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 31 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 32.6 secs total energy = -173.91898935 Ry Harris-Foulkes estimate = -173.91898968 Ry estimated scf accuracy < 0.00001186 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 32 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.24E-08, avg # of iterations = 1.0 total cpu time spent up to now is 33.6 secs total energy = -173.91898894 Ry Harris-Foulkes estimate = -173.91898958 Ry estimated scf accuracy < 0.00001122 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 33 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.01E-08, avg # of iterations = 1.0 total cpu time spent up to now is 34.5 secs total energy = -173.91899174 Ry Harris-Foulkes estimate = -173.91899121 Ry estimated scf accuracy < 0.00001067 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 34 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 35.5 secs total energy = -173.91899377 Ry Harris-Foulkes estimate = -173.91899288 Ry estimated scf accuracy < 0.00001883 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 35 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 36.5 secs total energy = -173.91899240 Ry Harris-Foulkes estimate = -173.91899421 Ry estimated scf accuracy < 0.00001223 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 36 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 37.4 secs total energy = -173.91899177 Ry Harris-Foulkes estimate = -173.91899348 Ry estimated scf accuracy < 0.00000918 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 37 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.28E-08, avg # of iterations = 1.0 total cpu time spent up to now is 38.4 secs total energy = -173.91899209 Ry Harris-Foulkes estimate = -173.91899250 Ry estimated scf accuracy < 0.00000686 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 38 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.45E-08, avg # of iterations = 1.0 total cpu time spent up to now is 39.3 secs total energy = -173.91899053 Ry Harris-Foulkes estimate = -173.91899247 Ry estimated scf accuracy < 0.00000719 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell iteration # 39 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.45E-08, avg # of iterations = 1.0 total cpu time spent up to now is 40.3 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 7.4054794 atom 3 spin 1 eigenvalues: 0.8887194 0.8887194 0.9300527 0.9742321 0.9742321 eigenvectors 1 -0.1881431 -0.7500791 0.1598246 -0.1674495 -0.5902544 2 0.1674495 -0.2485088 0.7738419 -0.1881431 0.5253331 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 -0.2207850 -0.1499421 0.1968588 0.9422403 0.0469167 5 -0.9422403 0.1407438 0.0594817 -0.2207850 0.2002256 occupations 0.969 -0.009 -0.009 0.000 -0.017 -0.009 0.906 0.012 -0.015 -0.012 -0.009 0.012 0.906 0.015 -0.012 0.000 -0.015 0.015 0.969 0.000 -0.017 -0.012 -0.012 0.000 0.906 atom 3 spin 2 eigenvalues: 0.2809494 0.2809494 0.7286297 0.7286297 0.7303654 eigenvectors 1 -0.2779074 -0.1285257 0.1819192 0.9329004 0.0533935 2 -0.9329004 0.1358579 0.0433775 -0.2779074 0.1792354 3 -0.1281693 -0.7928284 0.3480902 -0.1898339 -0.4447382 4 0.1898339 -0.0557997 0.7145094 -0.1281693 0.6587097 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.304 0.041 0.041 0.000 0.081 0.041 0.714 0.008 0.071 -0.008 0.041 0.008 0.714 -0.071 -0.008 0.000 0.071 -0.071 0.304 0.000 0.081 -0.008 -0.008 0.000 0.714 atom 4 Tr[ns(na)]= 7.4069164 atom 4 spin 1 eigenvalues: 0.2809227 0.2809227 0.7291236 0.7308730 0.7308730 eigenvectors 1 0.3222824 0.1210517 -0.1825227 -0.9189055 -0.0614710 2 0.9189055 -0.1408698 -0.0343989 0.3222824 -0.1752687 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 -0.0479020 -0.7568431 0.5894146 -0.2223783 -0.1674284 5 -0.2223783 -0.2436338 -0.5336284 0.0479020 -0.7772622 occupations 0.304 0.041 0.041 0.000 0.081 0.041 0.715 0.007 0.070 -0.007 0.041 0.007 0.715 -0.070 -0.007 0.000 0.070 -0.070 0.304 0.000 0.081 -0.007 -0.007 0.000 0.715 atom 4 spin 2 eigenvalues: 0.8880118 0.8880118 0.9300043 0.9740867 0.9740867 eigenvectors 1 -0.0302911 -0.7278183 0.6316552 -0.2472392 -0.0961631 2 0.2472392 0.3091665 0.4757259 -0.0302911 0.7848924 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 -0.3010089 -0.1358029 0.1990143 0.9205155 0.0632114 5 0.9205155 -0.1513960 -0.0419107 0.3010089 -0.1933068 occupations 0.969 -0.008 -0.008 0.000 -0.017 -0.008 0.906 0.012 -0.015 -0.012 -0.008 0.012 0.906 0.015 -0.012 0.000 -0.015 0.015 0.969 0.000 -0.017 -0.012 -0.012 0.000 0.906 nsum = 14.8123958 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -13.6441 -6.5264 -1.7839 -1.7839 -0.2922 3.6720 3.6720 6.5194 7.3536 7.3536 7.6457 8.9478 9.4000 9.4000 10.8297 10.8297 11.1748 12.1065 12.1065 17.5264 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -13.2680 -6.0065 -1.3694 -0.0994 1.6854 3.6987 4.3523 4.9118 5.3569 6.2006 6.7615 8.1544 8.4325 8.7049 9.6560 9.9326 10.8940 11.5373 17.0438 17.3997 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -13.2631 -5.9631 -1.4353 -0.0969 1.4902 4.1777 4.3484 4.7564 5.0034 6.2575 6.7797 8.1771 8.8217 8.9784 9.3459 10.0979 10.9554 11.6542 15.6539 16.6276 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -13.6890 -6.5104 -1.7799 -1.7799 0.0756 3.6772 3.6772 5.6391 7.0914 7.3095 7.3095 9.4194 9.4194 9.8251 10.8384 10.8384 12.0808 12.0808 13.0993 14.1959 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -13.6439 -6.5258 -1.7821 -1.7821 -0.2928 3.6792 3.6792 6.5196 7.3573 7.3573 7.6461 8.9455 9.4009 9.4009 10.8344 10.8344 11.1745 12.1056 12.1056 17.5268 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -13.2672 -6.0059 -1.3670 -0.0984 1.6869 3.6996 4.3592 4.9185 5.3586 6.2041 6.7623 8.1544 8.4321 8.7079 9.6593 9.9348 10.8930 11.5366 17.0449 17.4004 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -13.2624 -5.9624 -1.4328 -0.0960 1.4917 4.1796 4.3554 4.7574 5.0097 6.2611 6.7795 8.1773 8.8223 8.9797 9.3514 10.0990 10.9547 11.6534 15.6545 16.6282 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -13.6889 -6.5097 -1.7781 -1.7781 0.0750 3.6844 3.6844 5.6392 7.0917 7.3131 7.3131 9.4205 9.4205 9.8223 10.8430 10.8430 12.0799 12.0799 13.0998 14.1962 the Fermi energy is 9.4398 ev ! total energy = -173.91899251 Ry Harris-Foulkes estimate = -173.91899233 Ry estimated scf accuracy < 0.00000053 Ry The total energy is the sum of the following terms: one-electron contribution = -41.23758942 Ry hartree contribution = 47.34877168 Ry xc contribution = -66.06535376 Ry ewald contribution = -114.37446642 Ry Hubbard energy = 0.41383789 Ry smearing contrib. (-TS) = -0.00419248 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 4.37 Bohr mag/cell convergence has been achieved in 39 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00005938 0.00005938 0.00005938 atom 2 type 1 force = 0.00007868 0.00007868 0.00007868 atom 3 type 2 force = -0.22255559 -0.22255559 -0.22255559 atom 4 type 3 force = 0.22241753 0.22241753 0.22241753 Total force = 0.544979 Total SCF correction = 0.001008 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 360.07 0.00244769 -0.00138988 -0.00138988 360.07 -204.46 -204.46 -0.00138988 0.00244769 -0.00138988 -204.46 360.07 -204.46 -0.00138988 -0.00138988 0.00244769 -204.46 -204.46 360.07 Writing output data file pwscf.save init_run : 2.32s CPU 2.34s WALL ( 1 calls) electrons : 37.04s CPU 37.78s WALL ( 1 calls) forces : 0.53s CPU 0.53s WALL ( 1 calls) stress : 2.72s CPU 2.75s WALL ( 1 calls) Called by init_run: wfcinit : 0.23s CPU 0.23s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 17.75s CPU 17.96s WALL ( 39 calls) sum_band : 10.66s CPU 10.84s WALL ( 39 calls) v_of_rho : 1.68s CPU 1.72s WALL ( 40 calls) newd : 5.13s CPU 5.20s WALL ( 40 calls) mix_rho : 0.65s CPU 0.65s WALL ( 39 calls) Called by c_bands: init_us_2 : 0.54s CPU 0.56s WALL ( 736 calls) cegterg : 16.62s CPU 16.70s WALL ( 312 calls) Called by *egterg: h_psi : 14.06s CPU 14.12s WALL ( 684 calls) s_psi : 0.54s CPU 0.56s WALL ( 772 calls) g_psi : 0.26s CPU 0.20s WALL ( 364 calls) cdiaghg : 0.47s CPU 0.51s WALL ( 676 calls) Called by h_psi: add_vuspsi : 0.54s CPU 0.56s WALL ( 684 calls) General routines calbec : 1.34s CPU 1.38s WALL ( 2536 calls) fft : 1.47s CPU 1.46s WALL ( 680 calls) ffts : 0.13s CPU 0.12s WALL ( 158 calls) fftw : 11.84s CPU 11.67s WALL ( 31804 calls) interpolate : 0.62s CPU 0.66s WALL ( 158 calls) davcio : 0.02s CPU 0.25s WALL ( 2160 calls) PWSCF : 42.80s CPU 43.67s WALL This run was terminated on: 10:49:40 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav9.ref0000644000700200004540000002037212053145627017376 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav9.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 597 597 149 25351 25351 3159 Tot 299 299 75 bravais-lattice index = 9 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 0.000000 ) a(2) = ( -0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.666667 0.000000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 12676 G-vectors FFT dimensions: ( 30, 30, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1580, 1) NL pseudopotentials 0.00 Mb ( 1580, 0) Each V/rho on FFT grid 0.88 Mb ( 57600) Each G-vector array 0.10 Mb ( 12676) G-vector shells 0.01 Mb ( 1384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1580, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.03 Mb ( 57600, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002141 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.214E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 14.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.612E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22516182 Ry Harris-Foulkes estimate = -2.29280140 Ry estimated scf accuracy < 0.12896461 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-03, avg # of iterations = 1.0 negative rho (up, down): 0.134E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23664389 Ry Harris-Foulkes estimate = -2.23694577 Ry estimated scf accuracy < 0.00070920 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 2.0 negative rho (up, down): 0.365E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23708078 Ry Harris-Foulkes estimate = -2.23707894 Ry estimated scf accuracy < 0.00002428 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23708309 Ry Harris-Foulkes estimate = -2.23708186 Ry estimated scf accuracy < 0.00000144 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1580 PWs) bands (ev): -10.3544 ! total energy = -2.23708325 Ry Harris-Foulkes estimate = -2.23708333 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = -3.66947929 Ry hartree contribution = 1.92433257 Ry xc contribution = -1.30254809 Ry ewald contribution = 0.81061156 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.11s CPU 0.12s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 5 calls) sum_band : 0.02s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.05s CPU 0.05s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 5 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 23 calls) fftw : 0.02s CPU 0.02s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.18s CPU 0.19s WALL This run was terminated on: 10:22:24 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vdw.in0000644000700200004540000000106712053145627015211 0ustar marsamoscm&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' london=.true. london_rcut = 150 london_s6 = 0.75 / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.0.2/PW/tests/lattice-ibrav1-kauto.in0000644000700200004540000000043512053145627020337 0ustar marsamoscm &control calculation='scf', / &system ibrav = 1, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/lattice-ibrav2-kauto.in0000644000700200004540000000043612053145627020341 0ustar marsamoscm &control calculation='scf', / &system ibrav = 2, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/vc-relax1.in0000755000700200004540000000151612053145627016215 0ustar marsamoscm &CONTROL calculation = "vc-relax" , dt = 150 / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'damp-w' , press = 0.00 , wmass = 0.00700000 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/tests/noncolin.in20000755000700200004540000000060612053145627016313 0ustar marsamoscm &control calculation='nscf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. nbnd=16 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.0.2/PW/tests/metal-tetrahedra.ref0000644000700200004540000002263012053145627020001 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-tetrahedra.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 43 869 869 181 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 gaussian smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18482321 Ry Harris-Foulkes estimate = -4.18558103 Ry estimated scf accuracy < 0.00593336 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18481649 Ry Harris-Foulkes estimate = -4.18484450 Ry estimated scf accuracy < 0.00046799 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7426 16.7436 20.1800 20.1800 23.2688 24.1730 k =-0.3750 0.3750-0.1250 ( 100 PWs) bands (ev): -0.4002 10.5640 15.0578 20.2798 22.2925 22.3029 k = 0.3750-0.3750 0.6250 ( 103 PWs) bands (ev): 3.0036 5.2364 16.0326 17.3403 19.1725 23.3131 k = 0.1250-0.1250 0.3750 ( 105 PWs) bands (ev): -1.5640 13.6755 17.3103 18.8475 20.1261 22.7033 k =-0.1250 0.6250 0.1250 ( 102 PWs) bands (ev): 0.7490 11.5561 13.9825 15.3806 16.8442 20.9950 k = 0.6250-0.1250 0.8750 ( 104 PWs) bands (ev): 5.1684 7.3421 9.7866 12.0732 20.3597 24.5670 k = 0.3750 0.1250 0.6250 ( 103 PWs) bands (ev): 1.8829 8.4277 12.9760 15.1051 21.3127 23.4596 k =-0.1250-0.8750 0.1250 ( 104 PWs) bands (ev): 4.0831 8.6647 10.5476 14.4198 15.7425 20.0607 k =-0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7478 7.4156 19.3074 19.3074 21.3021 21.3022 k = 0.3750-0.3750 1.1250 ( 101 PWs) bands (ev): 4.1112 6.2846 10.9035 16.3676 18.2377 26.3758 the Fermi energy is 8.4061 ev ! total energy = -4.18481911 Ry Harris-Foulkes estimate = -4.18481903 Ry estimated scf accuracy < 0.00000025 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94427291 Ry hartree contribution = 0.01031882 Ry xc contribution = -1.63504532 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00253098 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.07s CPU 0.07s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 90 calls) cegterg : 0.06s CPU 0.07s WALL ( 40 calls) Called by *egterg: h_psi : 0.05s CPU 0.05s WALL ( 127 calls) g_psi : 0.00s CPU 0.00s WALL ( 77 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 107 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 127 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 127 calls) fft : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.04s CPU 0.05s WALL ( 1582 calls) davcio : 0.00s CPU 0.00s WALL ( 130 calls) PWSCF : 0.18s CPU 0.19s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lsda.in20000755000700200004540000000060112053145627015412 0ustar marsamoscm &control calculation='nscf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 nbnd=8 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 8 8 8 1 1 1 espresso-5.0.2/PW/tests/noncolin-constrain_atomic.in0000755000700200004540000000166612053145627021572 0ustar marsamoscm &control calculation='scf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 85.0 angle2(1) = 0.0 constrained_magnetization='atomic' lambda = 1 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.0.2/PW/tests/scf-ncpp.in0000644000700200004540000000051512053145627016117 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.bhs ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/vc-md2.in0000755000700200004540000000151612053145627015503 0ustar marsamoscm &CONTROL calculation = "vc-md", dt = 150 nstep=10 / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'w' , press = 500.00 , wmass = 0.00700000 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/tests/electric2.in0000755000700200004540000000535512053145627016274 0ustar marsamoscm &control calculation='scf' gdir=3, nppstr=7, lelfield=.true., nberrycyc=3 / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='file', startingpot='file', efield=0.001 / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS 63 0. 0. 0. 1 0. 0. 0.142857143 1 0. 0. 0.285714286 1 0. 0. 0.428571429 1 0. 0. 0.571428571 1 0. 0. 0.714285714 1 0. 0. 0.857142857 1 0. 0.333333333 0. 1 0. 0.333333333 0.142857143 1 0. 0.333333333 0.285714286 1 0. 0.333333333 0.428571429 1 0. 0.333333333 0.571428571 1 0. 0.333333333 0.714285714 1 0. 0.333333333 0.857142857 1 0. 0.666666667 0. 1 0. 0.666666667 0.142857143 1 0. 0.666666667 0.285714286 1 0. 0.666666667 0.428571429 1 0. 0.666666667 0.571428571 1 0. 0.666666667 0.714285714 1 0. 0.666666667 0.857142857 1 0.333333333 0. 0. 1 0.333333333 0. 0.142857143 1 0.333333333 0. 0.285714286 1 0.333333333 0. 0.428571429 1 0.333333333 0. 0.571428571 1 0.333333333 0. 0.714285714 1 0.333333333 0. 0.857142857 1 0.333333333 0.333333333 0. 1 0.333333333 0.333333333 0.142857143 1 0.333333333 0.333333333 0.285714286 1 0.333333333 0.333333333 0.428571429 1 0.333333333 0.333333333 0.571428571 1 0.333333333 0.333333333 0.714285714 1 0.333333333 0.333333333 0.857142857 1 0.333333333 0.666666667 0. 1 0.333333333 0.666666667 0.142857143 1 0.333333333 0.666666667 0.285714286 1 0.333333333 0.666666667 0.428571429 1 0.333333333 0.666666667 0.571428571 1 0.333333333 0.666666667 0.714285714 1 0.333333333 0.666666667 0.857142857 1 0.666666667 0. 0. 1 0.666666667 0. 0.142857143 1 0.666666667 0. 0.285714286 1 0.666666667 0. 0.428571429 1 0.666666667 0. 0.571428571 1 0.666666667 0. 0.714285714 1 0.666666667 0. 0.857142857 1 0.666666667 0.333333333 0. 1 0.666666667 0.333333333 0.142857143 1 0.666666667 0.333333333 0.285714286 1 0.666666667 0.333333333 0.428571429 1 0.666666667 0.333333333 0.571428571 1 0.666666667 0.333333333 0.714285714 1 0.666666667 0.333333333 0.857142857 1 0.666666667 0.666666667 0. 1 0.666666667 0.666666667 0.142857143 1 0.666666667 0.666666667 0.285714286 1 0.666666667 0.666666667 0.428571429 1 0.666666667 0.666666667 0.571428571 1 0.666666667 0.666666667 0.714285714 1 0.666666667 0.666666667 0.857142857 1 espresso-5.0.2/PW/tests/atom-pbe.ref0000644000700200004540000002501712053145627016264 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom-pbe.in file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.758E-05 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 18.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.67E-06, avg # of iterations = 8.0 negative rho (up, down): 0.610E-05 0.000E+00 total cpu time spent up to now is 0.8 secs total energy = -31.37474557 Ry Harris-Foulkes estimate = -31.37473796 Ry estimated scf accuracy < 0.00028243 Ry iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.71E-06, avg # of iterations = 1.0 negative rho (up, down): 0.124E-03 0.000E+00 total cpu time spent up to now is 0.9 secs total energy = -31.37478810 Ry Harris-Foulkes estimate = -31.37475011 Ry estimated scf accuracy < 0.00012973 Ry iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.16E-06, avg # of iterations = 2.0 negative rho (up, down): 0.208E-03 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -31.37480812 Ry Harris-Foulkes estimate = -31.37479818 Ry estimated scf accuracy < 0.00001220 Ry iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.0 negative rho (up, down): 0.117E-03 0.000E+00 total cpu time spent up to now is 1.2 secs total energy = -31.37480596 Ry Harris-Foulkes estimate = -31.37480894 Ry estimated scf accuracy < 0.00000001 Ry iteration # 5 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.32E-10, avg # of iterations = 3.0 negative rho (up, down): 0.687E-04 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -31.37480488 Ry Harris-Foulkes estimate = -31.37480601 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.0 negative rho (up, down): 0.448E-04 0.000E+00 total cpu time spent up to now is 1.6 secs total energy = -31.37480484 Ry Harris-Foulkes estimate = -31.37480488 Ry estimated scf accuracy < 0.00000002 Ry iteration # 7 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.0 negative rho (up, down): 0.482E-05 0.000E+00 total cpu time spent up to now is 1.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -23.2953 -8.2857 -8.2857 -8.2857 -0.5478 4.3552 highest occupied, lowest unoccupied level (ev): -8.2857 -0.5478 ! total energy = -31.37480299 Ry Harris-Foulkes estimate = -31.37480484 Ry estimated scf accuracy < 2.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -31.90040182 Ry hartree contribution = 17.20543716 Ry xc contribution = -6.46556732 Ry ewald contribution = -10.21427100 Ry convergence has been achieved in 7 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.46 -0.00009827 0.00000000 0.00000000 -14.46 0.00 0.00 0.00000000 -0.00009827 0.00000000 0.00 -14.46 0.00 0.00000000 0.00000000 -0.00009827 0.00 0.00 -14.46 Writing output data file pwscf.save init_run : 0.52s CPU 0.53s WALL ( 1 calls) electrons : 1.04s CPU 1.10s WALL ( 1 calls) stress : 0.22s CPU 0.22s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.08s CPU 0.09s WALL ( 8 calls) sum_band : 0.24s CPU 0.24s WALL ( 8 calls) v_of_rho : 0.54s CPU 0.58s WALL ( 8 calls) newd : 0.15s CPU 0.16s WALL ( 8 calls) mix_rho : 0.04s CPU 0.04s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 17 calls) regterg : 0.08s CPU 0.08s WALL ( 8 calls) Called by *egterg: h_psi : 0.06s CPU 0.07s WALL ( 36 calls) s_psi : 0.00s CPU 0.00s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 27 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 34 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 45 calls) fft : 0.17s CPU 0.21s WALL ( 133 calls) ffts : 0.00s CPU 0.01s WALL ( 16 calls) fftw : 0.04s CPU 0.05s WALL ( 172 calls) interpolate : 0.04s CPU 0.04s WALL ( 16 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PWSCF : 1.88s CPU 1.98s WALL This run was terminated on: 22:44:12 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/paw-bfgs.ref0000644000700200004540000003233512053145627016267 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:21: 0 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-bfgs.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2161 2161 547 65955 65955 8291 Tot 1081 1081 274 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 16.00000 O( 1.00) H 1.00 1.00000 H( 1.00) Starting magnetic structure atomic species magnetization O 0.100 H -0.100 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0446536 -0.0583088 0.0000000 ) 2 H tau( 2) = ( 0.0446536 0.0583088 0.0000000 ) 3 O tau( 3) = ( -0.0005072 0.0000000 0.0000000 ) number of k points= 2 gaussian smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 32978 G-vectors FFT dimensions: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.51 Mb ( 4146, 8) NL pseudopotentials 0.76 Mb ( 4146, 12) Each V/rho on FFT grid 6.59 Mb ( 216000, 2) Each G-vector array 0.25 Mb ( 32978) G-vector shells 0.00 Mb ( 530) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.01 Mb ( 4146, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 26.37 Mb ( 216000, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.007358 Check: negative starting charge=(component2): -0.006806 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.736E-02 0.681E-02 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.8 secs per-process dynamical memory: 52.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.120E-01 0.116E-01 total cpu time spent up to now is 2.8 secs total energy = -43.79412762 Ry Harris-Foulkes estimate = -44.11329505 Ry estimated scf accuracy < 0.44982362 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.12 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 negative rho (up, down): 0.115E-01 0.112E-01 total cpu time spent up to now is 3.7 secs total energy = -43.87263242 Ry Harris-Foulkes estimate = -44.10508875 Ry estimated scf accuracy < 0.48922010 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.09 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 negative rho (up, down): 0.134E-01 0.133E-01 total cpu time spent up to now is 4.7 secs total energy = -43.97646787 Ry Harris-Foulkes estimate = -43.97927672 Ry estimated scf accuracy < 0.00727435 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.06 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.09E-05, avg # of iterations = 5.0 negative rho (up, down): 0.131E-01 0.131E-01 total cpu time spent up to now is 5.7 secs total energy = -43.97825940 Ry Harris-Foulkes estimate = -43.97850199 Ry estimated scf accuracy < 0.00065616 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap WARNING: 1 eigenvalues not converged in regterg c_bands: 1 eigenvalues not converged WARNING: 1 eigenvalues not converged in regterg c_bands: 1 eigenvalues not converged ethr = 8.20E-06, avg # of iterations = 20.0 negative rho (up, down): 0.130E-01 0.130E-01 total cpu time spent up to now is 6.9 secs total energy = -43.97828148 Ry Harris-Foulkes estimate = -43.97829755 Ry estimated scf accuracy < 0.00007798 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.75E-07, avg # of iterations = 15.5 negative rho (up, down): 0.130E-01 0.130E-01 total cpu time spent up to now is 8.1 secs total energy = -43.97829542 Ry Harris-Foulkes estimate = -43.97829297 Ry estimated scf accuracy < 0.00000161 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-08, avg # of iterations = 2.0 negative rho (up, down): 0.130E-01 0.130E-01 total cpu time spent up to now is 9.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 4146 PWs) bands (ev): -25.0564 -12.8494 -9.0710 -7.0272 -1.3048 0.6344 0.9065 1.4937 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 4146 PWs) bands (ev): -25.0557 -12.8494 -9.0707 -7.0271 -1.3048 0.6342 0.9064 1.4941 the Fermi energy is -5.0755 ev ! total energy = -43.97829666 Ry Harris-Foulkes estimate = -43.97829708 Ry estimated scf accuracy < 0.00000090 Ry total all-electron energy = -152.739043 Ry The total energy is the sum of the following terms: one-electron contribution = -58.59533286 Ry hartree contribution = 30.92282828 Ry xc contribution = -8.39923742 Ry ewald contribution = 2.01807976 Ry one-center paw contrib. = -9.92463442 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.130E-01 0.130E-01 atom 1 type 2 force = 0.00004132 0.00016234 0.00000000 atom 2 type 2 force = 0.00004132 -0.00016234 0.00000000 atom 3 type 1 force = -0.00008265 0.00000000 0.00000000 Total force = 0.000251 Total SCF correction = 0.001211 SCF correction compared to forces is large: reduce conv_thr to get better values BFGS Geometry Optimization bfgs converged in 1 scf cycles and 0 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -43.9782966568 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) H 1.116339788 -1.457719099 0.000000000 H 1.116339788 1.457719099 0.000000000 O -0.012679577 0.000000000 0.000000000 End final coordinates Writing output data file pwscf.save init_run : 1.44s CPU 1.49s WALL ( 1 calls) electrons : 7.03s CPU 7.22s WALL ( 1 calls) forces : 0.49s CPU 0.50s WALL ( 1 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.57s CPU 0.59s WALL ( 1 calls) Called by electrons: c_bands : 1.97s CPU 1.98s WALL ( 7 calls) sum_band : 0.73s CPU 0.75s WALL ( 7 calls) v_of_rho : 2.80s CPU 2.90s WALL ( 8 calls) newd : 0.32s CPU 0.33s WALL ( 8 calls) mix_rho : 0.28s CPU 0.29s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.06s WALL ( 32 calls) regterg : 1.92s CPU 1.93s WALL ( 14 calls) Called by *egterg: h_psi : 1.62s CPU 1.60s WALL ( 121 calls) s_psi : 0.02s CPU 0.02s WALL ( 121 calls) g_psi : 0.04s CPU 0.05s WALL ( 105 calls) rdiaghg : 0.03s CPU 0.03s WALL ( 119 calls) Called by h_psi: add_vuspsi : 0.04s CPU 0.02s WALL ( 121 calls) General routines calbec : 0.06s CPU 0.06s WALL ( 143 calls) fft : 0.80s CPU 0.82s WALL ( 215 calls) fftw : 1.13s CPU 1.17s WALL ( 540 calls) davcio : 0.00s CPU 0.01s WALL ( 46 calls) PAW routines PAW_pot : 1.21s CPU 1.21s WALL ( 8 calls) PAW_ddot : 0.08s CPU 0.08s WALL ( 57 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 15 calls) PWSCF : 9.31s CPU 9.59s WALL This run was terminated on: 11:21:10 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U-user_ns.in0000755000700200004540000000155412053145627017031 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true., Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.0.2/PW/tests/vc-relax2.in0000755000700200004540000000155212053145627016216 0ustar marsamoscm &CONTROL calculation = "vc-relax" , dt = 150 / &SYSTEM ibrav = 0 , A = 3.70971016 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'damp-w' , press = 500.00 , wmass = 0.00700000 / CELL_PARAMETERS alat 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/tests/noncolin.ref20000644000700200004540000002473512053145627016467 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin.in2 file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 14 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1666667), wk = 0.0277778 k( 2) = ( 0.0000000 -0.1666667 0.3333333), wk = 0.1111111 k( 3) = ( 0.0000000 -0.3333333 0.5000000), wk = 0.1111111 k( 4) = ( -0.1666667 0.1666667 0.1666667), wk = 0.0370370 k( 5) = ( -0.1666667 -0.1666667 0.5000000), wk = 0.1111111 k( 6) = ( -0.1666667 0.6666667 -0.3333333), wk = 0.1111111 k( 7) = ( -0.3333333 0.3333333 0.1666667), wk = 0.1111111 k( 8) = ( 0.5000000 -0.5000000 0.1666667), wk = 0.0555556 k( 9) = ( 0.5000000 -0.6666667 0.3333333), wk = 0.1111111 k( 10) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0277778 k( 11) = ( 0.0000000 -0.1666667 0.6666667), wk = 0.1111111 k( 12) = ( -0.1666667 0.8333333 -0.1666667), wk = 0.0370370 k( 13) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0092593 k( 14) = ( 0.0000000 0.0000000 0.8333333), wk = 0.0277778 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Check: negative/imaginary core charge= -0.000013 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 13.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 15.7 total cpu time spent up to now is 2.1 secs End of band structure calculation k = 0.0000 0.0000 0.1667 band energies (ev): 6.0457 6.8219 11.7338 11.7338 11.9057 13.2007 13.6189 14.7118 14.7118 14.9315 16.1886 16.7144 37.3534 38.1243 39.2166 39.2166 k = 0.0000-0.1667 0.3333 band energies (ev): 8.0596 8.9643 11.2683 11.6432 12.8902 13.0762 13.8441 14.1393 14.2679 15.8741 16.2341 16.9394 31.2369 32.6216 35.7738 36.5906 k = 0.0000-0.3333 0.5000 band energies (ev): 9.1488 10.7823 10.9967 12.4584 13.2931 13.5545 14.3812 14.5189 15.2101 16.3458 17.5700 17.8981 24.0802 25.9915 33.4202 34.1613 k =-0.1667 0.1667 0.1667 band energies (ev): 7.1579 7.9665 11.3212 11.3212 12.9407 13.4066 13.4066 14.1787 14.1787 16.0339 16.4702 16.4702 34.7073 34.7073 35.8036 35.8036 k =-0.1667-0.1667 0.5000 band energies (ev): 9.7109 10.8528 11.1835 11.5367 12.9078 13.3065 13.8856 14.1537 15.6525 15.9338 17.0689 18.3430 27.9458 28.7616 29.5508 30.1080 k =-0.1667 0.6667-0.3333 band energies (ev): 9.9371 10.9342 11.3543 12.0842 13.2769 13.4303 13.5784 14.1756 16.3458 17.3843 19.2158 21.1692 22.6606 24.6363 27.1612 28.5666 k =-0.3333 0.3333 0.1667 band energies (ev): 9.2305 10.5624 10.7147 11.4718 13.4050 13.4384 13.6463 13.7267 15.0013 16.5155 16.7770 18.0180 27.5107 29.0808 31.9483 33.0642 k = 0.5000-0.5000 0.1667 band energies (ev): 9.3521 10.4640 11.3980 12.8941 13.1391 13.5283 13.7392 14.7332 16.6628 16.8989 17.3446 19.6643 22.4934 24.6105 30.8465 31.9171 k = 0.5000-0.6667 0.3333 band energies (ev): 10.1172 10.6778 11.3083 12.3541 13.0356 13.4526 13.5852 13.7680 16.7322 16.9301 18.7833 21.0985 24.7460 25.9552 26.4675 27.4037 k = 0.0000 0.0000 0.5000 band energies (ev): 9.4491 10.5968 11.2674 12.2381 12.2381 13.0672 13.8033 14.9150 15.1545 15.1545 16.2430 17.6649 32.4507 32.4507 32.7002 33.8749 k = 0.0000-0.1667 0.6667 band energies (ev): 9.9232 10.4676 11.9055 12.2093 12.6597 12.8780 14.3590 15.1258 15.8127 17.7102 18.1918 20.0794 25.2051 26.8352 29.4434 30.7570 k =-0.1667 0.8333-0.1667 band energies (ev): 9.9257 9.9257 12.0969 12.0969 12.2839 14.0811 14.0812 15.1109 17.3070 17.3070 22.9816 22.9816 24.5480 24.5480 24.6954 26.1135 k = 0.5000-0.5000 0.5000 band energies (ev): 10.7357 10.7357 10.7357 13.0633 13.0633 13.0633 13.7713 13.7714 16.9400 16.9400 23.5806 23.5806 23.5806 25.3545 25.3545 25.3545 k = 0.0000 0.0000 0.8333 band energies (ev): 9.4277 9.4287 11.5483 11.6342 13.9816 13.9816 14.2879 17.1870 17.1870 17.6398 21.8296 23.1234 25.9461 25.9461 27.0511 27.0511 the Fermi energy is 14.7516 ev Writing output data file pwscf.save init_run : 0.50s CPU 0.50s WALL ( 1 calls) electrons : 0.96s CPU 0.96s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.96s CPU 0.96s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 1 calls) newd : 0.02s CPU 0.01s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 14 calls) cegterg : 0.90s CPU 0.90s WALL ( 15 calls) Called by *egterg: h_psi : 0.47s CPU 0.45s WALL ( 249 calls) s_psi : 0.02s CPU 0.02s WALL ( 249 calls) g_psi : 0.03s CPU 0.03s WALL ( 220 calls) cdiaghg : 0.28s CPU 0.29s WALL ( 234 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 249 calls) General routines calbec : 0.02s CPU 0.01s WALL ( 249 calls) fft : 0.00s CPU 0.00s WALL ( 15 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.32s CPU 0.29s WALL ( 9904 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 14 calls) PWSCF : 2.17s CPU 2.20s WALL This run was terminated on: 10:25:43 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/berry.in10000644000700200004540000000117612053145627015616 0ustar marsamoscm &control calculation = 'nscf' lberry = .true. gdir = 3 nppstr = 7 / &system ibrav = 1 celldm(1) = 7.3699 nat = 5 ntyp = 3 nbnd = 22 ecutwfc = 25.0 ecutrho =200.0 / &electrons / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 7 1 1 1 espresso-5.0.2/PW/tests/paw-atom_spin_lda.ref0000644000700200004540000002760012053145627020156 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:22: 7 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_spin_lda.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 7 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-kjpaw.UPF MD5 check sum: bb913733245261b4623cea235e432065 Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) Starting magnetic structure atomic species magnetization O 0.000 No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 Spin-down 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.58 Mb ( 5425, 7) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 8.00 Mb ( 262144, 2) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.16 Mb ( 5425, 28) Each subspace H/S matrix 0.01 Mb ( 28, 28) Each matrix 0.00 Mb ( 8, 7) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.007798 Check: negative starting charge=(component2): -0.007798 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.780E-02 0.780E-02 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.3 secs per-process dynamical memory: 46.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.5 negative rho (up, down): 0.122E-01 0.699E-02 total cpu time spent up to now is 2.3 secs total energy = -40.22330107 Ry Harris-Foulkes estimate = -40.13405336 Ry estimated scf accuracy < 0.13985138 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-03, avg # of iterations = 1.0 negative rho (up, down): 0.131E-01 0.454E-02 total cpu time spent up to now is 3.0 secs total energy = -40.23102143 Ry Harris-Foulkes estimate = -40.23172131 Ry estimated scf accuracy < 0.15436360 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-03, avg # of iterations = 1.0 negative rho (up, down): 0.150E-01 0.515E-02 total cpu time spent up to now is 4.0 secs total energy = -40.24139872 Ry Harris-Foulkes estimate = -40.23503410 Ry estimated scf accuracy < 0.04036026 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.73E-04, avg # of iterations = 1.0 negative rho (up, down): 0.151E-01 0.553E-02 total cpu time spent up to now is 4.8 secs total energy = -40.24253135 Ry Harris-Foulkes estimate = -40.24214211 Ry estimated scf accuracy < 0.01790046 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-04, avg # of iterations = 2.5 negative rho (up, down): 0.152E-01 0.629E-02 total cpu time spent up to now is 5.6 secs total energy = -40.24323882 Ry Harris-Foulkes estimate = -40.24264311 Ry estimated scf accuracy < 0.01106397 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-04, avg # of iterations = 2.5 negative rho (up, down): 0.153E-01 0.740E-02 total cpu time spent up to now is 6.5 secs total energy = -40.24381253 Ry Harris-Foulkes estimate = -40.24332835 Ry estimated scf accuracy < 0.00473871 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.90E-05, avg # of iterations = 1.0 negative rho (up, down): 0.153E-01 0.842E-02 total cpu time spent up to now is 7.3 secs total energy = -40.24402483 Ry Harris-Foulkes estimate = -40.24392178 Ry estimated scf accuracy < 0.00090112 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-05, avg # of iterations = 5.0 negative rho (up, down): 0.152E-01 0.843E-02 total cpu time spent up to now is 8.1 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -24.7097 -10.7423 -10.7416 -8.9572 -0.7764 1.7329 1.7527 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -21.5493 -7.3107 -7.0688 -7.0684 -0.7276 1.8591 1.8777 highest occupied, lowest unoccupied level (ev): -7.3107 -7.0688 ! total energy = -40.24409105 Ry Harris-Foulkes estimate = -40.24409121 Ry estimated scf accuracy < 0.00000048 Ry total all-electron energy = -149.044245 Ry The total energy is the sum of the following terms: one-electron contribution = -38.82076126 Ry hartree contribution = 20.94857887 Ry xc contribution = -6.51406707 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.25564016 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file pwscf.save init_run : 1.09s CPU 1.10s WALL ( 1 calls) electrons : 6.53s CPU 6.84s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.14s WALL ( 1 calls) potinit : 0.18s CPU 0.18s WALL ( 1 calls) Called by electrons: c_bands : 2.77s CPU 2.80s WALL ( 8 calls) sum_band : 1.46s CPU 1.47s WALL ( 8 calls) v_of_rho : 0.81s CPU 0.81s WALL ( 9 calls) newd : 0.54s CPU 0.55s WALL ( 9 calls) mix_rho : 0.52s CPU 0.53s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 34 calls) regterg : 2.72s CPU 2.73s WALL ( 16 calls) Called by *egterg: h_psi : 2.62s CPU 2.62s WALL ( 57 calls) s_psi : 0.01s CPU 0.01s WALL ( 57 calls) g_psi : 0.04s CPU 0.04s WALL ( 39 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 55 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 57 calls) General routines calbec : 0.05s CPU 0.04s WALL ( 73 calls) fft : 0.72s CPU 0.72s WALL ( 95 calls) fftw : 2.49s CPU 2.47s WALL ( 398 calls) davcio : 0.00s CPU 0.02s WALL ( 50 calls) PAW routines PAW_pot : 0.19s CPU 0.20s WALL ( 9 calls) PAW_ddot : 0.13s CPU 0.13s WALL ( 85 calls) PWSCF : 7.85s CPU 8.21s WALL This run was terminated on: 11:22:15 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/berry.in0000644000700200004540000000105312053145627015527 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=1 celldm(1)=7.3699, nat=5 ntyp=3 nbnd=25 ecutwfc=25.0 ecutrho=200. / &electrons conv_thr = 1e-12, mixing_beta=0.3 tqr=.true. / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/lattice-ibrav10.ref0000644000700200004540000002135112053145627017444 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav10.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used warning: symmetry operation # 2 not compatible with FFT grid. 0 -1 1 0 -1 0 1 -1 0 warning: symmetry operation # 3 not compatible with FFT grid. -1 0 0 -1 0 1 -1 1 0 warning: symmetry operation # 4 not compatible with FFT grid. 0 1 -1 1 0 -1 0 0 -1 warning: symmetry operation # 6 not compatible with FFT grid. 0 1 -1 0 1 0 -1 1 0 warning: symmetry operation # 7 not compatible with FFT grid. 1 0 0 1 0 -1 1 -1 0 warning: symmetry operation # 8 not compatible with FFT grid. 0 -1 1 -1 0 1 0 0 1 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 777 777 191 12719 12719 1575 Tot 389 389 96 bravais-lattice index = 10 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 750.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 1.000000 ) a(2) = ( 0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.666667 0.500000 ) b(2) = ( 1.000000 0.666667 -0.500000 ) b(3) = ( -1.000000 0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 6360 G-vectors FFT dimensions: ( 36, 30, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 788, 1) NL pseudopotentials 0.00 Mb ( 788, 0) Each V/rho on FFT grid 0.66 Mb ( 43200) Each G-vector array 0.05 Mb ( 6360) G-vector shells 0.01 Mb ( 816) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 788, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 5.27 Mb ( 43200, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.411E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 12.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.144E-07 0.000E+00 total cpu time spent up to now is 0.0 secs total energy = -2.22577718 Ry Harris-Foulkes estimate = -2.29299353 Ry estimated scf accuracy < 0.12836257 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23746014 Ry Harris-Foulkes estimate = -2.23772885 Ry estimated scf accuracy < 0.00065057 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.25E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23798757 Ry Harris-Foulkes estimate = -2.23798666 Ry estimated scf accuracy < 0.00003211 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23799015 Ry Harris-Foulkes estimate = -2.23798872 Ry estimated scf accuracy < 0.00000270 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 788 PWs) bands (ev): -10.2560 ! total energy = -2.23799053 Ry Harris-Foulkes estimate = -2.23799071 Ry estimated scf accuracy < 0.00000030 Ry The total energy is the sum of the following terms: one-electron contribution = -2.59656377 Ry hartree contribution = 1.39337782 Ry xc contribution = -1.29969771 Ry ewald contribution = 0.26489313 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.07s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 5 calls) sum_band : 0.01s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.02s CPU 0.01s WALL ( 5 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.02s CPU 0.01s WALL ( 23 calls) fftw : 0.02s CPU 0.01s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 10:22:16 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav6.ref0000644000700200004540000001761312053145627017377 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav6.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 193 33775 33775 4207 Tot 397 397 97 bravais-lattice index = 6 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 16888 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 2104, 1) NL pseudopotentials 0.00 Mb ( 2104, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.13 Mb ( 16888) G-vector shells 0.00 Mb ( 467) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.06 Mb ( 2104, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002648 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.265E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 16.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.758E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22126888 Ry Harris-Foulkes estimate = -2.29060282 Ry estimated scf accuracy < 0.13177841 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.59E-03, avg # of iterations = 1.0 negative rho (up, down): 0.161E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23251391 Ry Harris-Foulkes estimate = -2.23290380 Ry estimated scf accuracy < 0.00088439 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.42E-05, avg # of iterations = 2.0 negative rho (up, down): 0.321E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23290671 Ry Harris-Foulkes estimate = -2.23290820 Ry estimated scf accuracy < 0.00001751 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.76E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2104 PWs) bands (ev): -10.3006 ! total energy = -2.23290854 Ry Harris-Foulkes estimate = -2.23290804 Ry estimated scf accuracy < 0.00000048 Ry The total energy is the sum of the following terms: one-electron contribution = -3.61242018 Ry hartree contribution = 1.90403705 Ry xc contribution = -1.30942826 Ry ewald contribution = 0.78490285 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.10s CPU 0.11s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-mixing_localTF.in0000644000700200004540000000053612053145627020061 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_mode = 'local-TF' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav14.in0000644000700200004540000000056612053145627017307 0ustar marsamoscm &control calculation='scf', / &system ibrav = 14, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, celldm(5) = 0.2, celldm(6) = 0.3, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/metal.in0000755000700200004540000000133612053145627015515 0ustar marsamoscm &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.0.2/PW/tests/metal-fermi_dirac.ref0000644000700200004540000002263412053145627020126 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-fermi_dirac.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Fermi-Dirac smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.90E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.20868278 Ry Harris-Foulkes estimate = -4.20945992 Ry estimated scf accuracy < 0.00569006 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.20867864 Ry Harris-Foulkes estimate = -4.20870674 Ry estimated scf accuracy < 0.00044105 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7443 16.7411 20.1776 20.1776 23.2660 24.1701 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5658 13.6731 17.3081 18.8453 20.1238 22.7017 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7472 11.5538 13.9809 15.3785 16.8416 20.9935 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0812 8.6635 10.5450 14.4177 15.7400 20.0593 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4020 10.5617 15.0559 20.2774 22.2908 22.3006 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8811 8.4255 12.9744 15.1029 21.3103 23.4573 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1664 7.3400 9.7851 12.0710 20.3573 24.5649 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1094 6.2824 10.9020 16.3654 18.2355 26.3735 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7460 7.4135 19.3051 19.3051 21.2999 21.3000 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0018 5.2344 16.0308 17.3381 19.1703 23.3108 the Fermi energy is 8.2800 ev ! total energy = -4.20868148 Ry Harris-Foulkes estimate = -4.20868139 Ry estimated scf accuracy < 0.00000030 Ry The total energy is the sum of the following terms: one-electron contribution = 2.96284101 Ry hartree contribution = 0.00975533 Ry xc contribution = -1.63459930 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.04484398 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.07s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 90 calls) cegterg : 0.06s CPU 0.06s WALL ( 40 calls) Called by *egterg: h_psi : 0.04s CPU 0.04s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 76 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 106 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 126 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 126 calls) fft : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.04s CPU 0.04s WALL ( 1576 calls) davcio : 0.00s CPU 0.00s WALL ( 130 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:24:51 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav-12.ref0000644000700200004540000001761512053145627017533 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-12.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 293 50377 50377 6275 Tot 593 593 147 bravais-lattice index = -12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.100000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.200000 0.000000 1.989975 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 -0.100504 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.502519 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25189 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3138, 1) NL pseudopotentials 0.00 Mb ( 3138, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.19 Mb ( 25189) G-vector shells 0.04 Mb ( 4655) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 3138, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004315 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.431E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.125E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22038279 Ry Harris-Foulkes estimate = -2.29015186 Ry estimated scf accuracy < 0.13247844 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.269E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23151436 Ry Harris-Foulkes estimate = -2.23193603 Ry estimated scf accuracy < 0.00094574 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.73E-05, avg # of iterations = 2.0 negative rho (up, down): 0.452E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23186191 Ry Harris-Foulkes estimate = -2.23186359 Ry estimated scf accuracy < 0.00001484 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.42E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3138 PWs) bands (ev): -10.3207 ! total energy = -2.23186353 Ry Harris-Foulkes estimate = -2.23186327 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69157146 Ry hartree contribution = 1.94398907 Ry xc contribution = -1.31186766 Ry ewald contribution = 0.82758653 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.06s CPU 0.06s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.04s CPU 0.04s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 4 calls) sum_band : 0.03s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.24s CPU 0.27s WALL This run was terminated on: 10:22:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U_gamma.in0000755000700200004540000000146612053145627016521 0ustar marsamoscm &control calculation = 'scf' tstress=.true. tprnfor=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.02, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.05 0.05 0.05 Fe2 0.45 0.45 0.45 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav13-kauto.ref0000644000700200004540000002015712053145627020573 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav13-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1329 1329 383 25161 25161 3853 bravais-lattice index = 13 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1492.4812 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 -1.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.500000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 -0.500000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 1.000000 -0.100504 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.5000000 0.1172544 0.0000000), wk = 0.5000000 k( 2) = ( 0.0000000 0.1675063 -0.2500000), wk = 1.0000000 k( 3) = ( 0.5000000 -0.2177582 0.0000000), wk = 0.5000000 Dense grid: 25161 G-vectors FFT dimensions: ( 36, 48, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3175, 1) NL pseudopotentials 0.00 Mb ( 3175, 0) Each V/rho on FFT grid 0.95 Mb ( 62208) Each G-vector array 0.19 Mb ( 25161) G-vector shells 0.04 Mb ( 5219) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 3175, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.59 Mb ( 62208, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001481 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.148E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 11.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.418E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22002442 Ry Harris-Foulkes estimate = -2.29020326 Ry estimated scf accuracy < 0.13318357 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.798E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23101315 Ry Harris-Foulkes estimate = -2.23146508 Ry estimated scf accuracy < 0.00100904 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-05, avg # of iterations = 2.0 negative rho (up, down): 0.618E-05 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23131862 Ry Harris-Foulkes estimate = -2.23131865 Ry estimated scf accuracy < 0.00001226 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.13E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.5000 0.1173 0.0000 ( 3175 PWs) bands (ev): -10.2190 k = 0.0000 0.1675-0.2500 ( 3139 PWs) bands (ev): -10.2286 k = 0.5000-0.2178 0.0000 ( 3141 PWs) bands (ev): -10.2176 ! total energy = -2.23131983 Ry Harris-Foulkes estimate = -2.23131977 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -3.20429437 Ry hartree contribution = 1.70926122 Ry xc contribution = -1.31436511 Ry ewald contribution = 0.57807843 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.06s CPU 0.06s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.05s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.01s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.05s CPU 0.05s WALL ( 12 calls) Called by *egterg: h_psi : 0.06s CPU 0.05s WALL ( 33 calls) g_psi : 0.00s CPU 0.00s WALL ( 18 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 30 calls) Called by h_psi: General routines fft : 0.03s CPU 0.02s WALL ( 19 calls) fftw : 0.05s CPU 0.05s WALL ( 84 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.24s CPU 0.26s WALL This run was terminated on: 10:22:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav10-kauto.in0000644000700200004540000000051012053145627020411 0ustar marsamoscm &control calculation='scf', / &system ibrav = 10, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/md-pot_extrap1.ref0000644000700200004540000033302112053145627017421 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-pot_extrap1.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244208 -0.02244171 -0.02244166 atom 2 type 1 force = 0.02244208 0.02244171 0.02244166 Total force = 0.054971 Total SCF correction = 0.000013 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158950 -0.123158950 -0.123158950 Si 0.123158950 0.123158950 0.123158950 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41930179 K Ekin + Etot (const) = -14.44793780 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.23E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1796 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139343 -0.02139346 -0.02139325 atom 2 type 1 force = 0.02139343 0.02139346 0.02139325 Total force = 0.052403 Total SCF correction = 0.000009 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279547 -0.123279545 -0.123279546 Si 0.123279547 0.123279545 0.123279546 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72878920 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.48E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995760 -0.01995763 -0.01995734 atom 2 type 1 force = 0.01995760 0.01995763 0.01995734 Total force = 0.048886 Total SCF correction = 0.000009 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430777 -0.123430775 -0.123430775 Si 0.123430777 0.123430775 0.123430775 kinetic energy (Ekin) = 0.00036753 Ry temperature = 38.68586710 K Ekin + Etot (const) = -14.44793908 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816352 -0.01816356 -0.01816351 atom 2 type 1 force = 0.01816352 0.01816356 0.01816351 Total force = 0.044491 Total SCF correction = 0.000008 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609887 -0.123609884 -0.123609884 Si 0.123609887 0.123609884 0.123609884 kinetic energy (Ekin) = 0.00054280 Ry temperature = 57.13367687 K Ekin + Etot (const) = -14.44793991 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.62E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4771 7.4771 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604904 -0.01604908 -0.01604906 atom 2 type 1 force = 0.01604904 0.01604908 0.01604906 Total force = 0.039312 Total SCF correction = 0.000007 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813631 -0.123813628 -0.123813627 Si 0.123813631 0.123813628 0.123813627 kinetic energy (Ekin) = 0.00072909 Ry temperature = 76.74277112 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.63E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2558 7.4650 7.4650 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365683 -0.01365687 -0.01365687 atom 2 type 1 force = 0.01365683 0.01365687 0.01365687 Total force = 0.033452 Total SCF correction = 0.000007 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038338 -0.124038334 -0.124038333 Si 0.124038338 0.124038334 0.124038333 kinetic energy (Ekin) = 0.00091310 Ry temperature = 96.11106140 K Ekin + Etot (const) = -14.44794163 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.22E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902420 Ry Harris-Foulkes estimate = -14.44902420 Ry estimated scf accuracy < 9.8E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103470 -0.01103474 -0.01103474 atom 2 type 1 force = 0.01103470 0.01103474 0.01103474 Total force = 0.027029 Total SCF correction = 0.000007 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279982 -0.124279978 -0.124279976 Si 0.124279982 0.124279978 0.124279976 kinetic energy (Ekin) = 0.00108179 Ry temperature = 113.86685842 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3102 7.4374 7.4374 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916640 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00823362 -0.00823366 -0.00823368 atom 2 type 1 force = 0.00823362 0.00823366 0.00823368 Total force = 0.020168 Total SCF correction = 0.000033 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534265 -0.124534260 -0.124534258 Si 0.124534265 0.124534260 0.124534258 kinetic energy (Ekin) = 0.00122335 Ry temperature = 128.76767476 K Ekin + Etot (const) = -14.44794305 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927155 Ry Harris-Foulkes estimate = -14.44927155 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530260 -0.00530265 -0.00530267 atom 2 type 1 force = 0.00530260 0.00530265 0.00530267 Total force = 0.012989 Total SCF correction = 0.000016 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796686 -0.124796682 -0.124796679 Si 0.124796686 0.124796682 0.124796679 kinetic energy (Ekin) = 0.00132801 Ry temperature = 139.78346035 K Ekin + Etot (const) = -14.44794355 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.80E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3708 7.4069 7.4069 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933256 Ry estimated scf accuracy < 5.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230966 -0.00230971 -0.00230970 atom 2 type 1 force = 0.00230966 0.00230971 0.00230970 Total force = 0.005658 Total SCF correction = 0.000042 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062653 -0.125062649 -0.125062645 Si 0.125062653 0.125062649 0.125062645 kinetic energy (Ekin) = 0.00138875 Ry temperature = 146.17693808 K Ekin + Etot (const) = -14.44794382 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.93E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4024 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071286 0.00071276 0.00071286 atom 2 type 1 force = -0.00071286 -0.00071276 -0.00071286 Total force = 0.001746 Total SCF correction = 0.000034 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327526 -0.125327522 -0.125327518 Si 0.125327526 0.125327522 0.125327518 kinetic energy (Ekin) = 0.00140166 Ry temperature = 147.53625838 K Ekin + Etot (const) = -14.44794386 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930986 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.77E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930987 Ry Harris-Foulkes estimate = -14.44930988 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.74E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930987 Ry Harris-Foulkes estimate = -14.44930987 Ry estimated scf accuracy < 5.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369334 0.00369242 0.00369334 atom 2 type 1 force = -0.00369334 -0.00369242 -0.00369334 Total force = 0.009046 Total SCF correction = 0.000008 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586730 -0.125586727 -0.125586721 Si 0.125586730 0.125586727 0.125586721 kinetic energy (Ekin) = 0.00136617 Ry temperature = 143.80106149 K Ekin + Etot (const) = -14.44794370 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.53E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922842 Ry Harris-Foulkes estimate = -14.44922843 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922842 Ry Harris-Foulkes estimate = -14.44922842 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659189 0.00659154 0.00659141 atom 2 type 1 force = -0.00659189 -0.00659154 -0.00659141 Total force = 0.016146 Total SCF correction = 0.000023 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835815 -0.125835814 -0.125835806 Si 0.125835815 0.125835814 0.125835806 kinetic energy (Ekin) = 0.00128511 Ry temperature = 135.26832589 K Ekin + Etot (const) = -14.44794331 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.43E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910705 Ry Harris-Foulkes estimate = -14.44910706 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910705 Ry Harris-Foulkes estimate = -14.44910706 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3459 7.4935 ! total energy = -14.44910706 Ry Harris-Foulkes estimate = -14.44910706 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00935857 0.00935832 0.00935839 atom 2 type 1 force = -0.00935857 -0.00935832 -0.00935839 Total force = 0.022923 Total SCF correction = 0.000006 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070536 -0.126070537 -0.126070527 Si 0.126070536 0.126070537 0.126070527 kinetic energy (Ekin) = 0.00116429 Ry temperature = 122.55142302 K Ekin + Etot (const) = -14.44794276 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.72E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01194845 0.01194844 0.01194810 atom 2 type 1 force = -0.01194845 -0.01194844 -0.01194810 Total force = 0.029267 Total SCF correction = 0.000023 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286916 -0.126286920 -0.126286908 Si 0.126286916 0.126286920 0.126286908 kinetic energy (Ekin) = 0.00101220 Ry temperature = 106.54285108 K Ekin + Etot (const) = -14.44794208 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.39E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878065 Ry Harris-Foulkes estimate = -14.44878066 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5469 ! total energy = -14.44878066 Ry Harris-Foulkes estimate = -14.44878066 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432127 0.01432128 0.01432107 atom 2 type 1 force = -0.01432127 -0.01432128 -0.01432107 Total force = 0.035080 Total SCF correction = 0.000023 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126481314 -0.126481320 -0.126481308 Si 0.126481314 0.126481320 0.126481308 kinetic energy (Ekin) = 0.00083934 Ry temperature = 88.34725917 K Ekin + Etot (const) = -14.44794132 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.16E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859798 Ry Harris-Foulkes estimate = -14.44859799 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859799 Ry Harris-Foulkes estimate = -14.44859799 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644116 0.01644144 0.01644149 atom 2 type 1 force = -0.01644116 -0.01644144 -0.01644149 Total force = 0.040273 Total SCF correction = 0.000016 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650476 -0.126650484 -0.126650470 Si 0.126650476 0.126650484 0.126650470 kinetic energy (Ekin) = 0.00065747 Ry temperature = 69.20377849 K Ekin + Etot (const) = -14.44794052 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.56E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44841858 Ry Harris-Foulkes estimate = -14.44841858 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2984 7.2984 7.5901 ! total energy = -14.44841859 Ry Harris-Foulkes estimate = -14.44841859 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01827774 0.01827774 0.01827760 atom 2 type 1 force = -0.01827774 -0.01827774 -0.01827760 Total force = 0.044771 Total SCF correction = 0.000010 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791583 -0.126791593 -0.126791578 Si 0.126791583 0.126791593 0.126791578 kinetic energy (Ekin) = 0.00047885 Ry temperature = 50.40261567 K Ekin + Etot (const) = -14.44793974 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825445 Ry Harris-Foulkes estimate = -14.44825445 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2902 7.2902 7.6068 ! total energy = -14.44825445 Ry Harris-Foulkes estimate = -14.44825445 Ry estimated scf accuracy < 1.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980305 0.01980319 0.01980296 atom 2 type 1 force = -0.01980305 -0.01980319 -0.01980296 Total force = 0.048507 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126902293 -0.126902304 -0.126902289 Si 0.126902293 0.126902304 0.126902289 kinetic energy (Ekin) = 0.00031542 Ry temperature = 33.20075314 K Ekin + Etot (const) = -14.44793903 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.89E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811648 Ry Harris-Foulkes estimate = -14.44811648 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811648 Ry Harris-Foulkes estimate = -14.44811648 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099604 0.02099619 0.02099598 atom 2 type 1 force = -0.02099604 -0.02099619 -0.02099598 Total force = 0.051430 Total SCF correction = 0.000010 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980775 -0.126980788 -0.126980772 Si 0.126980775 0.126980788 0.126980772 kinetic energy (Ekin) = 0.00017805 Ry temperature = 18.74079681 K Ekin + Etot (const) = -14.44793843 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.73E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801379 Ry Harris-Foulkes estimate = -14.44801379 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.75E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801379 Ry Harris-Foulkes estimate = -14.44801379 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183968 0.02183984 0.02183965 atom 2 type 1 force = -0.02183968 -0.02183984 -0.02183965 Total force = 0.053496 Total SCF correction = 0.000009 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127025735 -0.127025749 -0.127025733 Si 0.127025735 0.127025749 0.127025733 kinetic energy (Ekin) = 0.00007580 Ry temperature = 7.97829515 K Ekin + Etot (const) = -14.44793799 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795314 Ry Harris-Foulkes estimate = -14.44795314 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.04E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795314 Ry Harris-Foulkes estimate = -14.44795314 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232211 0.02232228 0.02232209 atom 2 type 1 force = -0.02232211 -0.02232228 -0.02232209 Total force = 0.054678 Total SCF correction = 0.000009 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127036431 -0.127036446 -0.127036431 Si 0.127036431 0.127036446 0.127036431 kinetic energy (Ekin) = 0.00001541 Ry temperature = 1.62189447 K Ekin + Etot (const) = -14.44793773 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.81E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44793851 Ry Harris-Foulkes estimate = -14.44793851 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2760 7.2760 7.6360 ! total energy = -14.44793852 Ry Harris-Foulkes estimate = -14.44793852 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243667 0.02243684 0.02243666 atom 2 type 1 force = -0.02243667 -0.02243684 -0.02243666 Total force = 0.054959 Total SCF correction = 0.000008 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127012689 -0.127012704 -0.127012689 Si 0.127012689 0.127012704 0.127012689 kinetic energy (Ekin) = 0.00000085 Ry temperature = 0.08909212 K Ekin + Etot (const) = -14.44793767 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.87E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797087 Ry Harris-Foulkes estimate = -14.44797087 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.31E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2774 7.2774 7.6331 ! total energy = -14.44797087 Ry Harris-Foulkes estimate = -14.44797087 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02218198 0.02218217 0.02218199 atom 2 type 1 force = -0.02218198 -0.02218217 -0.02218199 Total force = 0.054335 Total SCF correction = 0.000011 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126954898 -0.126954914 -0.126954900 Si 0.126954898 0.126954914 0.126954900 kinetic energy (Ekin) = 0.00003307 Ry temperature = 3.48039355 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.75E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -14.44804809 Ry Harris-Foulkes estimate = -14.44804809 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.19E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6263 ! total energy = -14.44804809 Ry Harris-Foulkes estimate = -14.44804809 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02156129 0.02156148 0.02156131 atom 2 type 1 force = -0.02156129 -0.02156148 -0.02156131 Total force = 0.052814 Total SCF correction = 0.000009 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126864012 -0.126864028 -0.126864015 Si 0.126864012 0.126864028 0.126864015 kinetic energy (Ekin) = 0.00010995 Ry temperature = 11.57316222 K Ekin + Etot (const) = -14.44793814 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.97E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816509 Ry Harris-Foulkes estimate = -14.44816509 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.84E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2860 7.2860 7.6154 ! total energy = -14.44816509 Ry Harris-Foulkes estimate = -14.44816509 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02058337 0.02058356 0.02058341 atom 2 type 1 force = -0.02058337 -0.02058356 -0.02058341 Total force = 0.050419 Total SCF correction = 0.000008 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126741532 -0.126741548 -0.126741536 Si 0.126741532 0.126741548 0.126741536 kinetic energy (Ekin) = 0.00022645 Ry temperature = 23.83531989 K Ekin + Etot (const) = -14.44793865 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831416 Ry Harris-Foulkes estimate = -14.44831416 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2931 7.2931 7.6009 ! total energy = -14.44831417 Ry Harris-Foulkes estimate = -14.44831417 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01926214 0.01926233 0.01926219 atom 2 type 1 force = -0.01926214 -0.01926233 -0.01926219 Total force = 0.047183 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126589485 -0.126589501 -0.126589491 Si 0.126589485 0.126589501 0.126589491 kinetic energy (Ekin) = 0.00037487 Ry temperature = 39.45850563 K Ekin + Etot (const) = -14.44793929 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.68E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848545 Ry Harris-Foulkes estimate = -14.44848545 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3019 7.3019 7.5828 ! total energy = -14.44848545 Ry Harris-Foulkes estimate = -14.44848545 Ry estimated scf accuracy < 1.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01761586 0.01761605 0.01761593 atom 2 type 1 force = -0.01761586 -0.01761605 -0.01761593 Total force = 0.043150 Total SCF correction = 0.000008 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126410399 -0.126410414 -0.126410406 Si 0.126410399 0.126410414 0.126410406 kinetic energy (Ekin) = 0.00054541 Ry temperature = 57.40840792 K Ekin + Etot (const) = -14.44794004 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866753 Ry Harris-Foulkes estimate = -14.44866753 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5615 ! total energy = -14.44866753 Ry Harris-Foulkes estimate = -14.44866753 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01566837 0.01566854 0.01566844 atom 2 type 1 force = -0.01566837 -0.01566854 -0.01566844 Total force = 0.038380 Total SCF correction = 0.000007 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126207264 -0.126207278 -0.126207271 Si 0.126207264 0.126207278 0.126207271 kinetic energy (Ekin) = 0.00072669 Ry temperature = 76.48983239 K Ekin + Etot (const) = -14.44794085 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.23E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884821 Ry Harris-Foulkes estimate = -14.44884821 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3242 7.3242 7.5375 ! total energy = -14.44884821 Ry Harris-Foulkes estimate = -14.44884821 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01344804 0.01344820 0.01344813 atom 2 type 1 force = -0.01344804 -0.01344820 -0.01344813 Total force = 0.032941 Total SCF correction = 0.000008 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125983486 -0.125983498 -0.125983494 Si 0.125983486 0.125983498 0.125983494 kinetic energy (Ekin) = 0.00090656 Ry temperature = 95.42315334 K Ekin + Etot (const) = -14.44794165 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901527 Ry Harris-Foulkes estimate = -14.44901527 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3372 7.3372 7.5110 ! total energy = -14.44901527 Ry Harris-Foulkes estimate = -14.44901527 Ry estimated scf accuracy < 9.6E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01098838 0.01098852 0.01098847 atom 2 type 1 force = -0.01098838 -0.01098852 -0.01098847 Total force = 0.026916 Total SCF correction = 0.000006 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125742841 -0.125742852 -0.125742850 Si 0.125742841 0.125742852 0.125742850 kinetic energy (Ekin) = 0.00107286 Ry temperature = 112.92755961 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.34E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3512 7.3512 7.4826 ! total energy = -14.44915727 Ry Harris-Foulkes estimate = -14.44915727 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00832645 0.00832657 0.00832654 atom 2 type 1 force = -0.00832645 -0.00832657 -0.00832654 Total force = 0.020396 Total SCF correction = 0.000027 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125489416 -0.125489426 -0.125489425 Si 0.125489416 0.125489426 0.125489425 kinetic energy (Ekin) = 0.00121421 Ry temperature = 127.80568513 K Ekin + Etot (const) = -14.44794306 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4525 ! total energy = -14.44926438 Ry Harris-Foulkes estimate = -14.44926438 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00550096 0.00550107 0.00550107 atom 2 type 1 force = -0.00550096 -0.00550107 -0.00550107 Total force = 0.013475 Total SCF correction = 0.000018 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125227547 -0.125227555 -0.125227557 Si 0.125227547 0.125227555 0.125227557 kinetic energy (Ekin) = 0.00132077 Ry temperature = 139.02221766 K Ekin + Etot (const) = -14.44794361 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3814 7.3814 7.4218 ! total energy = -14.44932900 Ry Harris-Foulkes estimate = -14.44932900 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00257022 0.00257030 0.00257033 atom 2 type 1 force = -0.00257022 -0.00257030 -0.00257033 Total force = 0.006296 Total SCF correction = 0.000033 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961734 -0.124961739 -0.124961743 Si 0.124961734 0.124961739 0.124961743 kinetic energy (Ekin) = 0.00138505 Ry temperature = 145.78748254 K Ekin + Etot (const) = -14.44794395 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.24E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3902 7.3972 7.3972 ! total energy = -14.44934637 Ry Harris-Foulkes estimate = -14.44934637 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00043715 -0.00043711 -0.00043705 atom 2 type 1 force = 0.00043715 0.00043711 0.00043705 Total force = 0.001071 Total SCF correction = 0.000034 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696591 -0.124696594 -0.124696600 Si 0.124696591 0.124696594 0.124696600 kinetic energy (Ekin) = 0.00140229 Ry temperature = 147.60233550 K Ekin + Etot (const) = -14.44794409 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3594 7.4126 7.4126 ! total energy = -14.44931496 Ry Harris-Foulkes estimate = -14.44931497 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00344621 -0.00344630 -0.00344612 atom 2 type 1 force = 0.00344621 0.00344630 0.00344612 Total force = 0.008441 Total SCF correction = 0.000037 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436738 -0.124436739 -0.124436747 Si 0.124436738 0.124436739 0.124436747 kinetic energy (Ekin) = 0.00137098 Ry temperature = 144.30689643 K Ekin + Etot (const) = -14.44794398 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.81E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923660 Ry Harris-Foulkes estimate = -14.44923660 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3287 7.4281 7.4281 ! total energy = -14.44923660 Ry Harris-Foulkes estimate = -14.44923660 Ry estimated scf accuracy < 2.3E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00642795 -0.00642803 -0.00642783 atom 2 type 1 force = 0.00642795 0.00642803 0.00642783 Total force = 0.015745 Total SCF correction = 0.000005 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186751 -0.124186751 -0.124186760 Si 0.124186751 0.124186751 0.124186760 kinetic energy (Ekin) = 0.00129296 Ry temperature = 136.09511712 K Ekin + Etot (const) = -14.44794364 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911644 Ry Harris-Foulkes estimate = -14.44911644 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00931197 -0.00931160 -0.00931192 atom 2 type 1 force = 0.00931197 0.00931160 0.00931192 Total force = 0.022809 Total SCF correction = 0.000012 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951058 -0.123951056 -0.123951066 Si 0.123951058 0.123951056 0.123951066 kinetic energy (Ekin) = 0.00117333 Ry temperature = 123.50254650 K Ekin + Etot (const) = -14.44794311 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896265 Ry Harris-Foulkes estimate = -14.44896265 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2719 7.4568 7.4568 ! total energy = -14.44896265 Ry Harris-Foulkes estimate = -14.44896265 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205127 -0.01205251 -0.01205115 atom 2 type 1 force = 0.01205127 0.01205251 0.01205115 Total force = 0.029520 Total SCF correction = 0.000020 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123733863 -0.123733860 -0.123733870 Si 0.123733863 0.123733860 0.123733870 kinetic energy (Ekin) = 0.00102024 Ry temperature = 107.38851961 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.26E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878586 Ry Harris-Foulkes estimate = -14.44878593 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878588 Ry Harris-Foulkes estimate = -14.44878594 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878590 Ry Harris-Foulkes estimate = -14.44878590 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459489 -0.01459390 -0.01459441 atom 2 type 1 force = 0.01459489 0.01459390 0.01459441 Total force = 0.035749 Total SCF correction = 0.000008 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539070 -0.123539065 -0.123539076 Si 0.123539070 0.123539065 0.123539076 kinetic energy (Ekin) = 0.00084429 Ry temperature = 88.86799340 K Ekin + Etot (const) = -14.44794162 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859862 Ry Harris-Foulkes estimate = -14.44859864 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.02E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859863 Ry Harris-Foulkes estimate = -14.44859864 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859863 Ry Harris-Foulkes estimate = -14.44859863 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688519 -0.01688511 -0.01688556 atom 2 type 1 force = 0.01688519 0.01688511 0.01688556 Total force = 0.041360 Total SCF correction = 0.000009 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370194 -0.123370188 -0.123370200 Si 0.123370194 0.123370188 0.123370200 kinetic energy (Ekin) = 0.00065786 Ry temperature = 69.24493576 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841415 Ry Harris-Foulkes estimate = -14.44841415 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841415 Ry Harris-Foulkes estimate = -14.44841415 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01888239 -0.01888251 -0.01888178 atom 2 type 1 force = 0.01888239 0.01888251 0.01888178 Total force = 0.046252 Total SCF correction = 0.000016 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123230303 -0.123230294 -0.123230306 Si 0.123230303 0.123230294 0.123230306 kinetic energy (Ekin) = 0.00047422 Ry temperature = 49.91605224 K Ekin + Etot (const) = -14.44793993 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824569 Ry Harris-Foulkes estimate = -14.44824569 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1878 7.4996 7.4996 ! total energy = -14.44824569 Ry Harris-Foulkes estimate = -14.44824569 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02054396 -0.02054375 -0.02054417 atom 2 type 1 force = 0.02054396 0.02054375 0.02054417 Total force = 0.050322 Total SCF correction = 0.000010 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123121945 -0.123121934 -0.123121947 Si 0.123121945 0.123121934 0.123121947 kinetic energy (Ekin) = 0.00030655 Ry temperature = 32.26699714 K Ekin + Etot (const) = -14.44793914 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.83E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810542 Ry Harris-Foulkes estimate = -14.44810542 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1752 7.5061 7.5061 ! total energy = -14.44810543 Ry Harris-Foulkes estimate = -14.44810543 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02183578 -0.02183574 -0.02183570 atom 2 type 1 force = 0.02183578 0.02183574 0.02183570 Total force = 0.053486 Total SCF correction = 0.000009 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123047104 -0.123047091 -0.123047104 Si 0.123047104 0.123047091 0.123047104 kinetic energy (Ekin) = 0.00016695 Ry temperature = 17.57241922 K Ekin + Etot (const) = -14.44793848 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.67E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44800355 Ry Harris-Foulkes estimate = -14.44800354 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1665 7.5106 7.5106 ! total energy = -14.44800355 Ry Harris-Foulkes estimate = -14.44800355 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02273040 -0.02273057 -0.02273039 atom 2 type 1 force = 0.02273040 0.02273057 0.02273039 Total force = 0.055678 Total SCF correction = 0.000009 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123007152 -0.123007137 -0.123007151 Si 0.123007152 0.123007137 0.123007151 kinetic energy (Ekin) = 0.00006555 Ry temperature = 6.89952822 K Ekin + Etot (const) = -14.44793800 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.84E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794748 Ry Harris-Foulkes estimate = -14.44794748 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1619 7.5129 7.5129 ! total energy = -14.44794749 Ry Harris-Foulkes estimate = -14.44794749 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02320878 -0.02320893 -0.02320879 atom 2 type 1 force = 0.02320878 0.02320893 0.02320879 Total force = 0.056850 Total SCF correction = 0.000009 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123002825 -0.123002808 -0.123002822 Si 0.123002825 0.123002808 0.123002822 kinetic energy (Ekin) = 0.00000975 Ry temperature = 1.02661054 K Ekin + Etot (const) = -14.44793773 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794134 Ry Harris-Foulkes estimate = -14.44794134 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1614 7.5132 7.5132 ! total energy = -14.44794134 Ry Harris-Foulkes estimate = -14.44794134 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02326128 -0.02326146 -0.02326131 atom 2 type 1 force = 0.02326128 0.02326146 0.02326131 Total force = 0.056978 Total SCF correction = 0.000005 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123034203 -0.123034184 -0.123034198 Si 0.123034203 0.123034184 0.123034198 kinetic energy (Ekin) = 0.00000364 Ry temperature = 0.38304414 K Ekin + Etot (const) = -14.44793770 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.43E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798557 Ry Harris-Foulkes estimate = -14.44798556 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1651 7.5113 7.5113 ! total energy = -14.44798557 Ry Harris-Foulkes estimate = -14.44798557 Ry estimated scf accuracy < 2.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02288478 -0.02288498 -0.02288483 atom 2 type 1 force = 0.02288478 0.02288498 0.02288483 Total force = 0.056056 Total SCF correction = 0.000010 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123100707 -0.123100687 -0.123100701 Si 0.123100707 0.123100687 0.123100701 kinetic energy (Ekin) = 0.00004765 Ry temperature = 5.01603511 K Ekin + Etot (const) = -14.44793791 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.13E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807692 Ry Harris-Foulkes estimate = -14.44807692 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1728 7.5074 7.5074 ! total energy = -14.44807693 Ry Harris-Foulkes estimate = -14.44807692 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02208876 -0.02208897 -0.02208882 atom 2 type 1 force = 0.02208876 0.02208897 0.02208882 Total force = 0.054106 Total SCF correction = 0.000009 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123201116 -0.123201096 -0.123201109 Si 0.123201116 0.123201096 0.123201109 kinetic energy (Ekin) = 0.00013858 Ry temperature = 14.58640515 K Ekin + Etot (const) = -14.44793835 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.34s CPU 0.36s WALL ( 51 calls) update_pot : 0.15s CPU 0.19s WALL ( 50 calls) forces : 0.02s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.19s WALL ( 155 calls) sum_band : 0.04s CPU 0.05s WALL ( 155 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 156 calls) mix_rho : 0.00s CPU 0.01s WALL ( 155 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 311 calls) cegterg : 0.18s CPU 0.18s WALL ( 155 calls) Called by *egterg: h_psi : 0.11s CPU 0.12s WALL ( 513 calls) g_psi : 0.01s CPU 0.01s WALL ( 357 calls) cdiaghg : 0.02s CPU 0.03s WALL ( 412 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 513 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 564 calls) fft : 0.05s CPU 0.05s WALL ( 825 calls) fftw : 0.10s CPU 0.11s WALL ( 4156 calls) davcio : 0.00s CPU 0.00s WALL ( 105 calls) PWSCF : 1.36s CPU 1.57s WALL This run was terminated on: 10:24:45 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp.in0000755000700200004540000000055312053145627015402 0ustar marsamoscm &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.e-9 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.0.2/PW/tests/vdw.ref0000644000700200004540000002443012053145627015356 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:30:32 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vdw.in ------------------------------------- Parameters for Dispersion Correction: ------------------------------------- atom VdW radius C_6 C 2.744 60.710 gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 24.5 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -44.19114704 Ry Harris-Foulkes estimate = -44.45936134 Ry estimated scf accuracy < 0.67592667 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.22E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -44.18909044 Ry Harris-Foulkes estimate = -44.22325934 Ry estimated scf accuracy < 0.09638600 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.02E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -44.19767142 Ry Harris-Foulkes estimate = -44.19757279 Ry estimated scf accuracy < 0.00295108 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.84E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -44.19780375 Ry Harris-Foulkes estimate = -44.19778832 Ry estimated scf accuracy < 0.00001563 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.77E-08, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7021 -11.2390 -0.8842 1.6711 5.7087 5.7092 5.8640 5.8644 12.1734 16.7937 16.7942 16.8275 the Fermi energy is 9.9672 ev ! total energy = -44.19781649 Ry Harris-Foulkes estimate = -44.19780837 Ry estimated scf accuracy < 0.00000051 Ry The total energy is the sum of the following terms: one-electron contribution = -6.74572088 Ry hartree contribution = 12.73926407 Ry xc contribution = -14.27893611 Ry ewald contribution = -35.87244982 Ry Dispersion Correction = -0.03997375 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00011222 -0.00006479 0.00000000 atom 2 type 1 force = -0.00010251 0.00005918 0.00000000 atom 3 type 1 force = -0.00011222 0.00006479 0.00000000 atom 4 type 1 force = 0.00010251 -0.00005918 0.00000000 Total force = 0.000248 Total SCF correction = 0.000113 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -382.73 -0.00277805 -0.00000055 0.00000000 -408.66 -0.08 0.00 -0.00000055 -0.00277868 0.00000000 -0.08 -408.76 0.00 0.00000000 0.00000000 -0.00224860 0.00 0.00 -330.78 Writing output data file pwscf.save init_run : 0.19s CPU 0.19s WALL ( 1 calls) electrons : 0.52s CPU 0.53s WALL ( 1 calls) forces : 0.22s CPU 0.22s WALL ( 1 calls) stress : 0.38s CPU 0.38s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.04s CPU 0.04s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 5 calls) sum_band : 0.08s CPU 0.07s WALL ( 5 calls) v_of_rho : 0.16s CPU 0.16s WALL ( 6 calls) newd : 0.06s CPU 0.06s WALL ( 6 calls) mix_rho : 0.00s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.02s CPU 0.02s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 17 calls) s_psi : 0.00s CPU 0.00s WALL ( 17 calls) g_psi : 0.00s CPU 0.00s WALL ( 11 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 16 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 17 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 27 calls) fft : 0.04s CPU 0.05s WALL ( 100 calls) ffts : 0.00s CPU 0.00s WALL ( 11 calls) fftw : 0.02s CPU 0.01s WALL ( 196 calls) interpolate : 0.01s CPU 0.01s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 1.36s CPU 1.65s WALL This run was terminated on: 11:30:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U_gamma.ref0000644000700200004540000010506012053145627016657 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:50:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lda+U_gamma.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 133 17255 6111 731 Tot 531 270 67 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.1000000 0.1000000 0.1000000 ) 4 Fe2 tau( 4) = ( 0.9000000 0.9000000 0.9000000 ) number of k points= 2 gaussian smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 8628 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 3056 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 366, 20) Atomic wavefunctions 0.11 Mb ( 366, 20) NL pseudopotentials 0.29 Mb ( 366, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.07 Mb ( 8628) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.22 Mb ( 366, 80) Each subspace H/S matrix 0.05 Mb ( 80, 80) Each matrix 0.01 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000006 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 2.2 secs per-process dynamical memory: 28.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 5.9246113 atom 3 spin 1 eigenvalues: 0.8585533 0.8585533 0.9534741 0.9534741 1.0762819 eigenvectors 1 -0.2213961 -0.1528072 0.7390285 0.1944611 0.5862213 2 -0.1944611 0.7651333 -0.2502317 -0.2213961 0.5149016 3 0.1233404 -0.1910942 0.2221486 -0.9476053 0.0310544 4 -0.9476053 -0.1461868 -0.0923990 -0.1233404 -0.2385858 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.945 0.011 0.011 0.000 0.022 0.011 0.937 0.070 0.019 -0.070 0.011 0.070 0.937 -0.019 -0.070 0.000 0.019 -0.019 0.945 0.000 0.022 -0.070 -0.070 0.000 0.937 atom 3 spin 2 eigenvalues: 0.1160482 0.1160482 0.3291099 0.3291099 0.3339585 eigenvectors 1 -0.2120629 -0.2267712 0.2982073 0.8997630 0.0714361 2 -0.8997630 0.2134137 0.0896828 -0.2120629 0.3030965 3 0.1477548 0.7488201 -0.4564065 0.3516026 0.2924136 4 -0.3516026 -0.0946813 -0.6011566 0.1477548 -0.6958379 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.147 0.031 0.031 0.000 0.061 0.031 0.310 0.012 0.053 -0.012 0.031 0.012 0.310 -0.053 -0.012 0.000 0.053 -0.053 0.147 0.000 0.061 -0.012 -0.012 0.000 0.310 atom 4 Tr[ns(na)]= 5.9232158 atom 4 spin 1 eigenvalues: 0.1159839 0.1159839 0.3287836 0.3287836 0.3338196 eigenvectors 1 -0.2908319 -0.2074328 0.3056584 0.8771050 0.0982256 2 -0.8771050 0.2331825 0.0630509 -0.2908319 0.2962334 3 0.2302799 0.7487980 -0.2942473 0.3050817 0.4545508 4 -0.3050817 0.0925513 -0.6947537 0.2302799 -0.6022025 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.147 0.031 0.031 0.000 0.061 0.031 0.310 0.012 0.053 -0.012 0.031 0.012 0.310 -0.053 -0.012 0.000 0.053 -0.053 0.147 0.000 0.061 -0.012 -0.012 0.000 0.310 atom 4 spin 2 eigenvalues: 0.8583474 0.8583474 0.9533712 0.9533712 1.0764239 eigenvectors 1 -0.1372136 -0.4137142 0.7803882 0.2579871 0.3666740 2 -0.2579871 0.6622567 0.0271587 -0.1372136 0.6894154 3 0.0583959 -0.1989518 0.2135201 -0.9545706 0.0145683 4 -0.9545706 -0.1316869 -0.1064539 -0.0583959 -0.2381408 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.945 0.011 0.011 0.000 0.022 0.011 0.936 0.070 0.019 -0.070 0.011 0.070 0.936 -0.019 -0.070 0.000 0.019 -0.019 0.945 0.000 0.022 -0.070 -0.070 0.000 0.936 nsum = 11.8478271 exit write_ns total cpu time spent up to now is 2.5 secs total energy = -172.19201514 Ry Harris-Foulkes estimate = -174.24602877 Ry estimated scf accuracy < 4.49333738 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.64 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 2.9 secs total energy = -171.69274964 Ry Harris-Foulkes estimate = -175.34581421 Ry estimated scf accuracy < 25.17599864 Ry total magnetization = -0.01 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 3.2 secs total energy = -173.52663837 Ry Harris-Foulkes estimate = -173.70804650 Ry estimated scf accuracy < 1.86206640 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.41 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 total cpu time spent up to now is 3.5 secs total energy = -173.43248764 Ry Harris-Foulkes estimate = -173.55068011 Ry estimated scf accuracy < 0.99216799 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.13 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.54E-03, avg # of iterations = 1.0 total cpu time spent up to now is 3.8 secs total energy = -173.42294171 Ry Harris-Foulkes estimate = -173.64270036 Ry estimated scf accuracy < 7.32187510 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 3.90 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.54E-03, avg # of iterations = 1.0 total cpu time spent up to now is 4.2 secs total energy = -173.57741921 Ry Harris-Foulkes estimate = -173.53032177 Ry estimated scf accuracy < 0.09776993 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.44 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.49E-04, avg # of iterations = 2.0 total cpu time spent up to now is 4.5 secs total energy = -173.57950620 Ry Harris-Foulkes estimate = -173.64357177 Ry estimated scf accuracy < 1.08015952 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.52 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.49E-04, avg # of iterations = 2.0 total cpu time spent up to now is 4.8 secs total energy = -173.59358685 Ry Harris-Foulkes estimate = -173.59098291 Ry estimated scf accuracy < 0.42203284 Ry total magnetization = -0.01 Bohr mag/cell absolute magnetization = 5.14 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 5.2 secs total energy = -173.59711520 Ry Harris-Foulkes estimate = -173.59523964 Ry estimated scf accuracy < 0.49821368 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 5.11 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 5.5 secs total energy = -173.57521507 Ry Harris-Foulkes estimate = -173.59807665 Ry estimated scf accuracy < 0.50902790 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.06 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 5.8 secs total energy = -173.58765497 Ry Harris-Foulkes estimate = -173.58884467 Ry estimated scf accuracy < 0.02880302 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 4.70 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.03E-04, avg # of iterations = 1.0 total cpu time spent up to now is 6.2 secs total energy = -173.58864609 Ry Harris-Foulkes estimate = -173.58990873 Ry estimated scf accuracy < 0.08287674 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 4.73 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.03E-04, avg # of iterations = 1.0 total cpu time spent up to now is 6.5 secs total energy = -173.58946941 Ry Harris-Foulkes estimate = -173.58971220 Ry estimated scf accuracy < 0.01809299 Ry total magnetization = 0.05 Bohr mag/cell absolute magnetization = 4.63 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.46E-05, avg # of iterations = 1.0 total cpu time spent up to now is 6.8 secs total energy = -173.58938797 Ry Harris-Foulkes estimate = -173.58960085 Ry estimated scf accuracy < 0.00927738 Ry total magnetization = 0.05 Bohr mag/cell absolute magnetization = 4.62 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.31E-05, avg # of iterations = 1.5 total cpu time spent up to now is 7.1 secs total energy = -173.59072453 Ry Harris-Foulkes estimate = -173.59994255 Ry estimated scf accuracy < 0.73264387 Ry total magnetization = 0.22 Bohr mag/cell absolute magnetization = 4.45 Bohr mag/cell iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.31E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.5 secs total energy = -173.58771132 Ry Harris-Foulkes estimate = -173.59306852 Ry estimated scf accuracy < 0.18080756 Ry total magnetization = 0.21 Bohr mag/cell absolute magnetization = 4.56 Bohr mag/cell iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.31E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.8 secs total energy = -173.59056960 Ry Harris-Foulkes estimate = -173.59075351 Ry estimated scf accuracy < 0.00215480 Ry total magnetization = 0.23 Bohr mag/cell absolute magnetization = 4.72 Bohr mag/cell iteration # 18 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.70E-06, avg # of iterations = 1.0 total cpu time spent up to now is 8.1 secs total energy = -173.58963842 Ry Harris-Foulkes estimate = -173.59086907 Ry estimated scf accuracy < 0.00531379 Ry total magnetization = 0.33 Bohr mag/cell absolute magnetization = 4.85 Bohr mag/cell iteration # 19 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.70E-06, avg # of iterations = 1.0 total cpu time spent up to now is 8.4 secs total energy = -173.59112090 Ry Harris-Foulkes estimate = -173.59096017 Ry estimated scf accuracy < 0.01967439 Ry total magnetization = 0.04 Bohr mag/cell absolute magnetization = 4.49 Bohr mag/cell iteration # 20 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.70E-06, avg # of iterations = 1.0 total cpu time spent up to now is 8.8 secs total energy = -173.59160431 Ry Harris-Foulkes estimate = -173.59153118 Ry estimated scf accuracy < 0.00456853 Ry total magnetization = -0.01 Bohr mag/cell absolute magnetization = 4.51 Bohr mag/cell iteration # 21 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.70E-06, avg # of iterations = 1.0 total cpu time spent up to now is 9.1 secs total energy = -173.59204430 Ry Harris-Foulkes estimate = -173.59207621 Ry estimated scf accuracy < 0.00068765 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.54 Bohr mag/cell iteration # 22 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 3.0 total cpu time spent up to now is 9.4 secs total energy = -173.59220787 Ry Harris-Foulkes estimate = -173.59227292 Ry estimated scf accuracy < 0.00015856 Ry total magnetization = -0.09 Bohr mag/cell absolute magnetization = 4.57 Bohr mag/cell iteration # 23 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.66E-07, avg # of iterations = 2.0 total cpu time spent up to now is 9.8 secs total energy = -173.59225041 Ry Harris-Foulkes estimate = -173.59229639 Ry estimated scf accuracy < 0.00085028 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 24 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.66E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.1 secs total energy = -173.59227944 Ry Harris-Foulkes estimate = -173.59227176 Ry estimated scf accuracy < 0.00006997 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 25 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.50E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.4 secs total energy = -173.59228823 Ry Harris-Foulkes estimate = -173.59228491 Ry estimated scf accuracy < 0.00003707 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.56 Bohr mag/cell iteration # 26 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.32E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.8 secs total energy = -173.59229128 Ry Harris-Foulkes estimate = -173.59228902 Ry estimated scf accuracy < 0.00003496 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.56 Bohr mag/cell iteration # 27 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.25E-07, avg # of iterations = 1.0 total cpu time spent up to now is 11.1 secs total energy = -173.59228591 Ry Harris-Foulkes estimate = -173.59229313 Ry estimated scf accuracy < 0.00002583 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.56 Bohr mag/cell iteration # 28 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.22E-08, avg # of iterations = 1.0 total cpu time spent up to now is 11.4 secs total energy = -173.59229493 Ry Harris-Foulkes estimate = -173.59229486 Ry estimated scf accuracy < 0.00000570 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 29 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 3.0 total cpu time spent up to now is 11.8 secs total energy = -173.59229694 Ry Harris-Foulkes estimate = -173.59229659 Ry estimated scf accuracy < 0.00001319 Ry total magnetization = -0.03 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 30 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 1.0 total cpu time spent up to now is 12.1 secs total energy = -173.59229926 Ry Harris-Foulkes estimate = -173.59229866 Ry estimated scf accuracy < 0.00000133 Ry total magnetization = -0.04 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 31 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.74E-09, avg # of iterations = 2.0 total cpu time spent up to now is 12.4 secs total energy = -173.59230044 Ry Harris-Foulkes estimate = -173.59230019 Ry estimated scf accuracy < 0.00000140 Ry total magnetization = -0.04 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 32 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 12.8 secs total energy = -173.59230034 Ry Harris-Foulkes estimate = -173.59230052 Ry estimated scf accuracy < 0.00000138 Ry total magnetization = -0.05 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 33 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 13.1 secs total energy = -173.59230015 Ry Harris-Foulkes estimate = -173.59230045 Ry estimated scf accuracy < 0.00000214 Ry total magnetization = -0.05 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 34 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 13.4 secs total energy = -173.59230070 Ry Harris-Foulkes estimate = -173.59230032 Ry estimated scf accuracy < 0.00000101 Ry total magnetization = -0.04 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell iteration # 35 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.59E-09, avg # of iterations = 1.0 total cpu time spent up to now is 13.7 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 7.2938101 atom 3 spin 1 eigenvalues: 0.8194571 0.8194571 0.9359118 0.9359118 1.0948105 eigenvectors 1 0.0001877 -0.3599006 0.8146578 -0.0002799 0.4547572 2 0.0002799 0.7328971 -0.0547655 0.0001877 0.6781316 3 -0.1671756 -0.0002119 0.0002579 0.9859271 0.0000460 4 -0.9859271 0.0001755 0.0000958 -0.1671756 0.0002713 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.936 0.000 0.000 0.000 0.000 0.000 0.911 0.092 0.000 -0.092 0.000 0.092 0.911 0.000 -0.092 0.000 0.000 0.000 0.936 0.000 0.000 -0.092 -0.092 0.000 0.911 atom 3 spin 2 eigenvalues: 0.1745731 0.1745731 0.6309865 0.6309865 1.0771427 eigenvectors 1 -0.4457758 -0.1913608 0.3878328 0.7587157 0.1964720 2 0.7587157 -0.3373485 0.0029509 0.4457758 -0.3343976 3 0.1888080 0.7137694 -0.4281781 0.4358738 0.2855913 4 0.4358738 0.0823225 0.5769812 -0.1888080 0.6593037 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.278 0.078 0.078 0.000 0.156 0.078 0.711 0.183 0.135 -0.183 0.078 0.183 0.711 -0.135 -0.183 0.000 0.135 -0.135 0.278 0.000 0.156 -0.183 -0.183 0.000 0.711 atom 4 Tr[ns(na)]= 7.2900071 atom 4 spin 1 eigenvalues: 0.1730869 0.1730869 0.6287539 0.6287539 1.0758550 eigenvectors 1 0.2876470 0.2566637 -0.3853691 -0.8284374 -0.1287054 2 0.8284374 -0.2968010 -0.0738768 0.2876470 -0.3706778 3 0.2100026 0.7142083 -0.4013147 0.4322610 0.3128935 4 0.4322610 0.0510500 0.5929975 -0.2100026 0.6440475 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.278 0.078 0.078 0.000 0.157 0.078 0.708 0.184 0.136 -0.184 0.078 0.184 0.708 -0.136 -0.184 0.000 0.136 -0.136 0.278 0.000 0.157 -0.184 -0.184 0.000 0.708 atom 4 spin 2 eigenvalues: 0.8214047 0.8214047 0.9360057 0.9360057 1.0956497 eigenvectors 1 -0.0007225 -0.5360952 0.8013852 0.0021030 0.2652900 2 -0.0021030 0.6158452 0.1563494 -0.0007225 0.7721946 3 0.1982210 -0.0013612 0.0017211 -0.9801548 0.0003599 4 0.9801548 0.0012015 0.0005781 0.1982210 0.0017796 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.936 0.000 0.000 0.000 0.000 0.000 0.913 0.091 0.000 -0.091 0.000 0.091 0.913 0.000 -0.091 0.000 0.000 0.000 0.936 0.000 0.000 -0.091 -0.091 0.000 0.913 nsum = 14.5838172 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 366 PWs) bands (ev): -14.1669 -5.5648 -2.3425 -2.3424 -1.0797 3.4822 3.4822 6.6711 7.1056 7.1056 8.1819 8.3931 10.4218 10.4220 10.7173 10.9503 10.9503 11.7621 11.7621 17.7641 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 366 PWs) bands (ev): -14.1801 -5.5654 -2.3560 -2.3560 -1.0929 3.4521 3.4521 6.6546 7.0874 7.0874 8.1781 8.3883 10.4218 10.4221 10.7038 10.9276 10.9276 11.7635 11.7636 17.7592 the Fermi energy is 10.5987 ev ! total energy = -173.59230148 Ry Harris-Foulkes estimate = -173.59230106 Ry estimated scf accuracy < 0.00000062 Ry The total energy is the sum of the following terms: one-electron contribution = -40.61288649 Ry hartree contribution = 47.36889281 Ry xc contribution = -66.25493013 Ry ewald contribution = -114.37446642 Ry Hubbard energy = 0.31015498 Ry smearing contrib. (-TS) = -0.02906623 Ry total magnetization = -0.04 Bohr mag/cell absolute magnetization = 4.55 Bohr mag/cell convergence has been achieved in 35 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00001282 0.00001282 0.00001282 atom 2 type 1 force = 0.00011428 0.00011428 0.00011428 atom 3 type 2 force = -0.18819744 -0.18819744 -0.18819744 atom 4 type 3 force = 0.18807034 0.18807034 0.18807034 Total force = 0.460832 Total SCF correction = 0.000997 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 587.36 0.00399282 -0.00093648 -0.00093648 587.36 -137.76 -137.76 -0.00093648 0.00399282 -0.00093648 -137.76 587.36 -137.76 -0.00093648 -0.00093648 0.00399282 -137.76 -137.76 587.36 Writing output data file pwscf.save init_run : 2.04s CPU 2.06s WALL ( 1 calls) electrons : 11.20s CPU 11.52s WALL ( 1 calls) forces : 0.26s CPU 0.26s WALL ( 1 calls) stress : 1.00s CPU 1.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.03s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 1.87s CPU 1.90s WALL ( 35 calls) sum_band : 3.87s CPU 3.94s WALL ( 35 calls) v_of_rho : 1.49s CPU 1.54s WALL ( 36 calls) newd : 2.44s CPU 2.46s WALL ( 36 calls) mix_rho : 0.49s CPU 0.48s WALL ( 35 calls) Called by c_bands: init_us_2 : 0.08s CPU 0.06s WALL ( 168 calls) regterg : 1.74s CPU 1.76s WALL ( 70 calls) Called by *egterg: h_psi : 1.52s CPU 1.52s WALL ( 165 calls) s_psi : 0.03s CPU 0.03s WALL ( 187 calls) g_psi : 0.02s CPU 0.02s WALL ( 93 calls) rdiaghg : 0.10s CPU 0.10s WALL ( 163 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.03s WALL ( 165 calls) General routines calbec : 0.10s CPU 0.09s WALL ( 612 calls) fft : 1.29s CPU 1.33s WALL ( 612 calls) ffts : 0.11s CPU 0.10s WALL ( 142 calls) fftw : 1.32s CPU 1.28s WALL ( 3616 calls) interpolate : 0.56s CPU 0.61s WALL ( 142 calls) davcio : 0.00s CPU 0.03s WALL ( 492 calls) PWSCF : 14.69s CPU 15.10s WALL This run was terminated on: 10:51: 3 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav4.in0000644000700200004540000000045512053145627017223 0ustar marsamoscm#!/bin/sh &control calculation='scf', / &system ibrav = 4, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/electric2.ref0000644000700200004540000007027312053145627016440 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 12:14:26 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/electric2.in Found symmetry operation: I + ( -0.5000 -0.5000 0.0000) This is a supercell, fractional translations are disabled G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 665 665 225 12893 12893 2553 bravais-lattice index = 1 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Using Berry phase electric field Direction : 3 Intensity (Ry a.u.) : 0.0010000000 Strings composed by: 7 k-points Number of iterative cycles: 3 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pbe-rrkj.UPF MD5 check sum: cf7ab5690cd9a85b22c4813f7e365554 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 63 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 Dense grid: 12893 G-vectors FFT dimensions: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) The initial density is read from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc from file total cpu time spent up to now is 0.2 secs per-process dynamical memory: 8.4 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 2.5 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 1.4 Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328218648331741,7.003181518290767E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.963342905744074 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 29.8 secs total energy = -63.06608492 Ry Harris-Foulkes estimate = -62.94997673 Ry estimated scf accuracy < 0.00009390 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.4 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328453799250869,6.860623597823277E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.943631707368182 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 45.9 secs total energy = -63.06608310 Ry Harris-Foulkes estimate = -62.94996751 Ry estimated scf accuracy < 0.00001164 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.3 Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328604828559954,6.778708875914737E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.932258313593491 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 60.9 secs total energy = -63.06608446 Ry Harris-Foulkes estimate = -62.94997871 Ry estimated scf accuracy < 0.00000085 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 1.3 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328610989130208,6.771391445356574E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.931262477354322 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 75.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5832 -1.4245 -1.4245 -1.4243 -1.2845 -1.2843 -1.2843 3.5437 3.5449 3.5449 3.6149 3.6162 3.6162 6.2777 6.5951 6.5964 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4921 -2.4258 -1.3947 -1.3947 -1.2526 -1.2526 -0.1758 3.2968 3.2968 3.3719 3.3719 3.6252 3.6975 5.8820 6.1645 6.2328 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2199 -3.3616 -1.3239 -1.3239 -1.1765 -1.1765 1.0748 2.8448 2.8448 2.9264 2.9264 3.8680 3.9436 4.8824 5.4538 5.5536 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7698 -4.1475 -1.2625 -1.2624 -1.1100 -1.1100 2.3642 2.5393 2.5393 2.6259 2.6259 3.6525 4.2647 4.3463 4.8030 4.8937 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7698 -4.1475 -1.2625 -1.2624 -1.1100 -1.1100 2.3642 2.5393 2.5393 2.6259 2.6259 3.6525 4.2647 4.3463 4.8030 4.8937 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2199 -3.3616 -1.3239 -1.3239 -1.1765 -1.1765 1.0748 2.8448 2.8448 2.9264 2.9264 3.8680 3.9436 4.8824 5.4538 5.5536 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4921 -2.4258 -1.3947 -1.3947 -1.2526 -1.2526 -0.1758 3.2968 3.2968 3.3719 3.3719 3.6252 3.6975 5.8820 6.1645 6.2328 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6086 -3.2588 -3.2588 -2.2018 -0.3647 0.9165 0.9165 1.9568 2.7082 2.8312 2.8312 4.0393 4.0933 4.0933 4.3806 6.0009 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5205 -3.2124 -3.2124 -2.4138 -0.3132 0.6021 0.6021 2.1007 2.3094 3.0594 3.0594 4.2861 4.2861 4.4533 4.6761 5.8906 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2705 -3.0947 -3.0947 -2.8716 -0.2001 0.0450 0.0450 1.2651 3.2205 3.4647 3.4647 4.6456 4.6456 4.6529 5.4185 5.6264 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8709 -3.4156 -2.9831 -2.9831 -0.3328 -0.3328 0.1381 0.5269 3.7372 3.7372 4.2883 4.8511 4.8511 4.9583 5.2746 5.3385 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9129 -3.3509 -2.9818 -2.9817 -0.3406 -0.3406 -0.0488 0.6867 3.7975 3.7976 4.4500 4.7977 4.7977 4.9192 5.1656 5.3260 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2956 -3.0923 -3.0923 -2.7820 -0.4136 0.0230 0.0230 1.4042 3.3693 3.6144 3.6144 4.5134 4.5134 4.6275 5.2581 5.6807 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5322 -3.2108 -3.2108 -2.3304 -0.4978 0.5731 0.5731 2.2163 2.4226 3.1950 3.1950 4.1748 4.1748 4.4409 4.5530 5.9277 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6194 -3.2300 -3.2300 -2.2786 -0.2265 0.7894 0.7894 1.9829 2.8473 2.8473 2.8583 4.0036 4.1981 4.1981 4.2902 5.8396 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6194 -3.2300 -3.2300 -2.2786 -0.2265 0.7894 0.7894 1.9829 2.8473 2.8473 2.8583 4.0036 4.1981 4.1981 4.2902 5.8396 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6086 -3.2588 -3.2588 -2.2018 -0.3647 0.9165 0.9165 1.9568 2.7082 2.8312 2.8312 4.0393 4.0933 4.0933 4.3806 6.0009 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5322 -3.2108 -3.2108 -2.3304 -0.4978 0.5731 0.5731 2.2163 2.4226 3.1950 3.1950 4.1748 4.1748 4.4409 4.5530 5.9277 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2956 -3.0923 -3.0923 -2.7820 -0.4136 0.0230 0.0230 1.4042 3.3693 3.6144 3.6144 4.5134 4.5134 4.6275 5.2581 5.6807 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9129 -3.3509 -2.9818 -2.9817 -0.3406 -0.3406 -0.0488 0.6867 3.7975 3.7976 4.4500 4.7977 4.7977 4.9192 5.1656 5.3260 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8709 -3.4156 -2.9831 -2.9831 -0.3328 -0.3328 0.1381 0.5269 3.7372 3.7372 4.2883 4.8511 4.8511 4.9583 5.2746 5.3385 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2705 -3.0947 -3.0947 -2.8716 -0.2001 0.0450 0.0450 1.2651 3.2205 3.4647 3.4647 4.6456 4.6456 4.6529 5.4185 5.6264 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5205 -3.2124 -3.2124 -2.4138 -0.3132 0.6021 0.6021 2.1007 2.3094 3.0594 3.0594 4.2861 4.2861 4.4533 4.6761 5.8906 ! total energy = -63.06608608 Ry Harris-Foulkes estimate = -62.94998126 Ry estimated scf accuracy < 3.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.82915905 Ry hartree contribution = 4.30389001 Ry xc contribution = -19.35649344 Ry ewald contribution = -67.72653689 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.11s CPU 0.11s WALL ( 1 calls) electrons : 71.60s CPU 75.79s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 40.93s CPU 43.20s WALL ( 15 calls) sum_band : 1.68s CPU 1.74s WALL ( 5 calls) v_of_rho : 0.10s CPU 0.10s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.96s CPU 0.95s WALL ( 1260 calls) cegterg : 38.63s CPU 39.54s WALL ( 945 calls) Called by *egterg: h_psi : 30.89s CPU 30.97s WALL ( 2075 calls) g_psi : 1.09s CPU 1.04s WALL ( 1130 calls) cdiaghg : 0.86s CPU 0.96s WALL ( 1697 calls) Called by h_psi: add_vuspsi : 2.52s CPU 2.44s WALL ( 2075 calls) General routines calbec : 2.09s CPU 2.28s WALL ( 2075 calls) fft : 0.02s CPU 0.02s WALL ( 55 calls) fftw : 15.09s CPU 15.20s WALL ( 66452 calls) davcio : 0.06s CPU 2.98s WALL ( 9324 calls) PWSCF : 1m11.86s CPU 1m16.06s WALL This run was terminated on: 12:15:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-gamma.ref0000644000700200004540000002271312053145627016413 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-gamma.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 37 1459 1459 169 Tot 82 82 19 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 730 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 85, 4) NL pseudopotentials 0.01 Mb ( 85, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 730) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 85, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 8.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.50047361 Ry Harris-Foulkes estimate = -14.62968981 Ry estimated scf accuracy < 0.33414221 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.51762131 Ry Harris-Foulkes estimate = -14.51962673 Ry estimated scf accuracy < 0.01049993 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.51874543 Ry Harris-Foulkes estimate = -14.51870856 Ry estimated scf accuracy < 0.00024378 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.05E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875743 Ry Harris-Foulkes estimate = -14.51875748 Ry estimated scf accuracy < 0.00000160 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.51876006 Ry Harris-Foulkes estimate = -14.51876030 Ry estimated scf accuracy < 0.00000258 Ry iteration # 6 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875956 Ry Harris-Foulkes estimate = -14.51876008 Ry estimated scf accuracy < 0.00000184 Ry iteration # 7 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 85 PWs) bands (ev): -4.9982 7.2913 7.2913 7.2914 ! total energy = -14.51875980 Ry Harris-Foulkes estimate = -14.51875982 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 5.79467920 Ry hartree contribution = 1.63735660 Ry xc contribution = -5.05103702 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 7 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 415.09 0.00282169 0.00000000 0.00000000 415.09 0.00 0.00 0.00000000 0.00282169 0.00000000 0.00 415.09 0.00 0.00000000 0.00000000 0.00282169 0.00 0.00 415.09 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.01s CPU 0.02s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.00s WALL ( 7 calls) sum_band : 0.00s CPU 0.00s WALL ( 7 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 8 calls) mix_rho : 0.00s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 15 calls) regterg : 0.00s CPU 0.00s WALL ( 7 calls) Called by *egterg: h_psi : 0.00s CPU 0.00s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 21 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 22 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 23 calls) fft : 0.00s CPU 0.00s WALL ( 34 calls) fftw : 0.00s CPU 0.00s WALL ( 100 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PWSCF : 0.08s CPU 0.10s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/spinorbit.ref10000644000700200004540000002113412053145627016646 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:44:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/spinorbit.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 475 223 85 6855 2229 459 bravais-lattice index = 2 lattice parameter (alat) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file: /home/giannozz/trunk/espresso/pseudo/Pt.rel-pz-n-rrkjus.UPF MD5 check sum: 4baafe8ec1942611396c7a5466f52249 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 79.90000 Pt( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 (tetrahedron method) cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.1250000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0937500 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.3750000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.1875000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0468750 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0937500 Dense grid: 6855 G-vectors FFT dimensions: ( 27, 27, 27) Smooth grid: 2229 G-vectors FFT dimensions: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.14 Mb ( 580, 16) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.57 Mb ( 580, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 26, 2, 16) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 17.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 14.5 total cpu time spent up to now is 2.0 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2728 7.2728 13.2972 13.2972 13.2972 13.2972 14.2908 14.2908 16.1185 16.1185 16.1185 16.1185 34.8404 34.8404 38.3611 38.3611 k =-0.2500 0.2500-0.2500 band energies (ev): 9.3081 9.3081 13.2365 13.2365 13.4824 13.4824 14.6832 14.6832 15.9663 15.9663 16.5594 16.5594 31.1289 31.1289 35.9733 35.9733 k = 0.5000-0.5000 0.5000 band energies (ev): 10.1739 10.1739 13.1418 13.1418 14.1581 14.1581 16.9034 16.9034 17.2990 17.2990 17.9629 17.9629 23.3574 23.3574 33.8780 33.8780 k = 0.0000 0.5000 0.0000 band energies (ev): 10.0109 10.0109 12.0836 12.0836 14.0946 14.0946 15.5834 15.5834 15.6557 15.6557 16.9101 16.9101 33.7855 33.7855 35.8288 35.8288 k = 0.7500-0.2500 0.7500 band energies (ev): 11.2318 11.2318 12.3531 12.3531 13.8685 13.8685 15.4952 15.4952 17.7576 17.7576 20.5934 20.5934 24.9747 24.9747 31.5983 31.5983 k = 0.5000 0.0000 0.5000 band energies (ev): 11.6296 11.6296 12.7413 12.7413 13.2274 13.2274 15.0123 15.0123 16.0285 16.0285 19.4786 19.4786 28.3128 28.3128 30.4317 30.4317 k = 0.0000-1.0000 0.0000 band energies (ev): 10.4414 10.4414 10.8730 10.8730 17.3736 17.3736 17.6769 17.6769 18.6587 18.6587 19.1028 19.1028 26.2686 26.2686 28.7375 28.7375 k =-0.5000-1.0000 0.0000 band energies (ev): 11.8136 11.8136 12.7585 12.7585 13.0246 13.0246 15.7118 15.7118 18.0854 18.0854 24.7132 24.7132 25.1084 25.1084 26.4868 26.4868 the Fermi energy is 17.8036 ev Writing output data file pwscf.save init_run : 1.06s CPU 1.06s WALL ( 1 calls) electrons : 0.78s CPU 0.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.77s CPU 0.77s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.05s CPU 0.05s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 8 calls) cegterg : 0.68s CPU 0.69s WALL ( 8 calls) Called by *egterg: h_psi : 0.45s CPU 0.44s WALL ( 132 calls) s_psi : 0.02s CPU 0.02s WALL ( 132 calls) g_psi : 0.02s CPU 0.02s WALL ( 116 calls) cdiaghg : 0.10s CPU 0.12s WALL ( 124 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 132 calls) General routines calbec : 0.01s CPU 0.02s WALL ( 132 calls) fft : 0.00s CPU 0.00s WALL ( 12 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.28s CPU 0.29s WALL ( 4556 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 2.10s CPU 2.14s WALL This run was terminated on: 11:44:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-nofrac.in0000644000700200004540000000056012053145627016427 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 force_symmorphic=.true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/relax-el.in0000644000700200004540000000075612053145627016126 0ustar marsamoscm &control calculation='relax' tefield = .true., / &system ibrav= 1, celldm(1) =10.0, nat=2, ntyp= 2, edir=3 eamp=0.001 emaxpos=0.5 eopreg=0.1 ecutwfc =25, ecutrho =300, / &electrons mixing_beta = 0.5, conv_thr = 1.0d-8 / &ions / ATOMIC_SPECIES O 0.0 O.pz-rrkjus.UPF C 0.0 C.pz-rrkjus.UPF ATOMIC_POSITIONS BOHR O 0.000000000 0.000000000 -1.1 C 0.000000000 0.000000000 1.1 K_POINTS 1 0.0 0.0 0.0 1.0 espresso-5.0.2/PW/tests/lattice-ibrav6.in0000644000700200004540000000044212053145627017221 0ustar marsamoscm &control calculation='scf', / &system ibrav = 6, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/metal-fermi_dirac.in0000755000700200004540000000130412053145627017752 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='fermi-dirac', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.0.2/PW/tests/scf-disk_io.in10000644000700200004540000000060412053145627016660 0ustar marsamoscm &control calculation = 'bands' disk_io='none' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS tpiba_b 5 0.00 0.00 0.00 5 1.00 0.00 0.00 5 1.00 0.25 0.25 5 0.50 0.50 0.50 5 0.00 0.00 0.00 1 espresso-5.0.2/PW/tests/scf-mixing_TF.in0000644000700200004540000000053012053145627017040 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_mode = 'TF' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/scf.ref10000644000700200004540000002422612053145627015415 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 331 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 2) = ( 0.2000000 0.0000000 0.0000000), wk = 2.0000000 k( 3) = ( 0.4000000 0.0000000 0.0000000), wk = 2.0000000 k( 4) = ( 0.6000000 0.0000000 0.0000000), wk = 2.0000000 k( 5) = ( 0.8000000 0.0000000 0.0000000), wk = 2.0000000 k( 6) = ( 1.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 7) = ( 1.0000000 0.0500000 0.0500000), wk = 2.0000000 k( 8) = ( 1.0000000 0.1000000 0.1000000), wk = 2.0000000 k( 9) = ( 1.0000000 0.1500000 0.1500000), wk = 2.0000000 k( 10) = ( 1.0000000 0.2000000 0.2000000), wk = 2.0000000 k( 11) = ( 1.0000000 0.2500000 0.2500000), wk = 2.0000000 k( 12) = ( 0.9000000 0.3000000 0.3000000), wk = 2.0000000 k( 13) = ( 0.8000000 0.3500000 0.3500000), wk = 2.0000000 k( 14) = ( 0.7000000 0.4000000 0.4000000), wk = 2.0000000 k( 15) = ( 0.6000000 0.4500000 0.4500000), wk = 2.0000000 k( 16) = ( 0.5000000 0.5000000 0.5000000), wk = 2.0000000 k( 17) = ( 0.4000000 0.4000000 0.4000000), wk = 2.0000000 k( 18) = ( 0.3000000 0.3000000 0.3000000), wk = 2.0000000 k( 19) = ( 0.2000000 0.2000000 0.2000000), wk = 2.0000000 k( 20) = ( 0.1000000 0.1000000 0.1000000), wk = 2.0000000 k( 21) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 194, 8) NL pseudopotentials 0.02 Mb ( 194, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 194, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 12.2 total cpu time spent up to now is 0.4 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 k = 0.2000 0.0000 0.0000 band energies (ev): -5.5035 5.4454 5.7234 5.7234 8.5043 9.7229 9.7229 10.6608 k = 0.4000 0.0000 0.0000 band energies (ev): -4.9866 3.7828 4.7737 4.7737 7.7521 10.2158 11.2953 11.2953 k = 0.6000 0.0000 0.0000 band energies (ev): -4.1136 1.9721 4.0067 4.0067 7.1390 8.7032 13.0662 13.0662 k = 0.8000 0.0000 0.0000 band energies (ev): -2.9485 0.1736 3.5278 3.5278 6.8246 7.5723 14.9321 14.9321 k = 1.0000 0.0000 0.0000 band energies (ev): -1.4850 -1.4850 3.3662 3.3662 6.9634 6.9634 16.4944 16.4944 k = 1.0000 0.0500 0.0500 band energies (ev): -1.4923 -1.4612 3.2169 3.3843 6.9843 7.1849 16.2778 16.3621 k = 1.0000 0.1000 0.1000 band energies (ev): -1.5207 -1.3958 2.8622 3.4386 7.0440 7.7574 15.7717 16.0203 k = 1.0000 0.1500 0.1500 band energies (ev): -1.5798 -1.2602 2.4549 3.5283 7.1511 8.5465 15.1579 15.5735 k = 1.0000 0.2000 0.2000 band energies (ev): -1.6804 -1.1105 2.0973 3.6521 7.2847 9.4656 14.5296 15.0768 k = 1.0000 0.2500 0.2500 band energies (ev): -1.8691 -0.8929 1.8512 3.8081 7.4704 10.4622 13.8961 14.4265 k = 0.9000 0.3000 0.3000 band energies (ev): -2.2719 -0.5830 1.9303 4.0284 7.7398 11.5404 12.8398 12.9952 k = 0.8000 0.3500 0.3500 band energies (ev): -2.6934 -0.5107 2.5730 4.3285 8.1281 11.4263 11.6625 12.8909 k = 0.7000 0.4000 0.4000 band energies (ev): -3.0177 -0.6089 3.5481 4.6665 8.5204 10.1860 10.6575 14.0689 k = 0.6000 0.4500 0.4500 band energies (ev): -3.2069 -0.7161 4.5528 4.9555 8.3606 9.6341 9.9523 14.1718 k = 0.5000 0.5000 0.5000 band energies (ev): -3.2602 -0.7570 5.0794 5.0794 7.9254 9.6978 9.6978 13.8859 k = 0.4000 0.4000 0.4000 band energies (ev): -3.7594 -0.0186 5.1539 5.1539 8.0020 9.7831 9.7831 14.0013 k = 0.3000 0.3000 0.3000 band energies (ev): -4.5385 1.4884 5.3733 5.3733 8.2161 9.9000 9.9000 13.9086 k = 0.2000 0.2000 0.2000 band energies (ev): -5.1604 3.3112 5.7239 5.7239 8.5984 9.7278 9.7278 12.4378 k = 0.1000 0.1000 0.1000 band energies (ev): -5.5450 5.1930 6.1230 6.1230 8.9569 9.2022 9.2022 10.7501 k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.24s CPU 0.25s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 21 calls) cegterg : 0.22s CPU 0.23s WALL ( 21 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 299 calls) g_psi : 0.01s CPU 0.01s WALL ( 257 calls) cdiaghg : 0.08s CPU 0.07s WALL ( 278 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 299 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 299 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.09s CPU 0.09s WALL ( 3250 calls) PWSCF : 0.41s CPU 0.43s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp-mixing_TF.in0000755000700200004540000000053412053145627017263 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'TF' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.0.2/PW/tests/lattice-ibrav14.ref0000644000700200004540000001761412053145627017457 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav14.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 14 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4282 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.200000 celldm(6)= 0.300000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698857 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.10 Mb ( 13384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 19.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22055047 Ry Harris-Foulkes estimate = -2.29035874 Ry estimated scf accuracy < 0.13254230 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23168688 Ry Harris-Foulkes estimate = -2.23211005 Ry estimated scf accuracy < 0.00094318 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.404E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23203743 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001487 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203907 Ry Harris-Foulkes estimate = -2.23203880 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125652 Ry hartree contribution = 1.92424384 Ry xc contribution = -1.31190433 Ry ewald contribution = 0.80687794 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.09s CPU 0.09s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.01s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.01s CPU 0.02s WALL ( 19 calls) fftw : 0.04s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.27s CPU 0.29s WALL This run was terminated on: 10:22:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/atom-sigmapbe.in0000755000700200004540000000076512053145627017145 0ustar marsamoscm &control calculation='scf', tstress=.true. / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', nspin=2 / &electrons mixing_beta=0.25, conv_thr=1.0e-8 / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 1.0 1.0000000000 1.0000000000 1.0000000000 0.0 0.0 1.0 0.3333333333 0.3333333333 0.3333333333 0.0 0.0 espresso-5.0.2/PW/tests/lattice-ibrav3.in0000644000700200004540000000041412053145627017215 0ustar marsamoscm &control calculation='scf', / &system ibrav = 3, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lsda-mixing_TF.in0000755000700200004540000000061412053145627017216 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'TF' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/spinorbit.ref0000644000700200004540000002762512053145627016600 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:42:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/spinorbit.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 475 223 85 6855 2229 531 bravais-lattice index = 2 lattice parameter (alat) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file: /home/giannozz/trunk/espresso/pseudo/Pt.rel-pz-n-rrkjus.UPF MD5 check sum: 4baafe8ec1942611396c7a5466f52249 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 79.90000 Pt( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 6855 G-vectors FFT dimensions: ( 27, 27, 27) Smooth grid: 2229 G-vectors FFT dimensions: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 586, 18) NL pseudopotentials 0.12 Mb ( 293, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 586, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.3 secs per-process dynamical memory: 17.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.30E-05, avg # of iterations = 1.8 total cpu time spent up to now is 2.2 secs total energy = -69.48938193 Ry Harris-Foulkes estimate = -69.49382717 Ry estimated scf accuracy < 0.00670259 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.70E-05, avg # of iterations = 2.0 total cpu time spent up to now is 2.6 secs total energy = -69.49113570 Ry Harris-Foulkes estimate = -69.49216790 Ry estimated scf accuracy < 0.00173999 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-05, avg # of iterations = 1.9 total cpu time spent up to now is 3.1 secs total energy = -69.49152613 Ry Harris-Foulkes estimate = -69.49152600 Ry estimated scf accuracy < 0.00002105 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-07, avg # of iterations = 2.9 total cpu time spent up to now is 3.5 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 289 PWs) bands (ev): 7.8772 7.8772 13.2296 13.2296 13.4269 13.4269 14.4379 14.4379 15.9230 15.9230 16.1367 16.1367 35.3888 35.3888 36.0586 36.0586 39.4166 39.4168 k =-0.3750 0.3750-0.1250 ( 290 PWs) bands (ev): 10.2486 10.2486 12.9957 12.9957 13.5536 13.5536 14.7284 14.7284 15.8290 15.8290 17.6684 17.6684 29.6955 29.6955 34.5992 34.5992 37.2963 37.2964 k = 0.3750-0.3750 0.6250 ( 280 PWs) bands (ev): 10.6355 10.6355 13.0663 13.0663 14.2342 14.2342 15.0194 15.0194 17.6458 17.6458 19.5050 19.5050 23.6877 23.6877 34.1690 34.1691 35.7959 35.7959 k = 0.1250-0.1250 0.3750 ( 293 PWs) bands (ev): 9.3017 9.3017 12.6963 12.6963 13.7331 13.7331 14.9248 14.9248 15.6321 15.6321 16.6866 16.6866 33.0451 33.0451 36.5818 36.5819 37.3442 37.3443 k =-0.1250 0.6250 0.1250 ( 287 PWs) bands (ev): 10.8909 10.8909 11.8402 11.8402 14.0060 14.0060 15.7865 15.7865 17.0483 17.0483 17.7788 17.7788 29.8173 29.8173 33.2624 33.2625 34.5896 34.5896 k = 0.6250-0.1250 0.8750 ( 282 PWs) bands (ev): 11.6208 11.6208 12.1717 12.1717 13.7383 13.7383 15.9949 15.9949 17.6847 17.6847 22.8389 22.8389 24.6337 24.6337 28.6993 28.6993 31.3281 31.3281 k = 0.3750 0.1250 0.6250 ( 283 PWs) bands (ev): 11.4019 11.4019 12.7869 12.7869 13.1478 13.1478 15.2403 15.2403 16.8802 16.8802 19.5406 19.5406 26.7748 26.7748 31.9767 31.9767 34.7573 34.7573 k =-0.1250-0.8750 0.1250 ( 282 PWs) bands (ev): 10.7846 10.7846 11.2352 11.2352 15.8008 15.8008 16.9114 16.9114 17.9874 17.9874 20.3559 20.3559 26.3675 26.3675 29.2337 29.2337 31.0473 31.0473 k =-0.3750 0.3750 0.3750 ( 281 PWs) bands (ev): 10.1225 10.1225 13.2701 13.2701 14.3343 14.3343 14.8705 14.8705 16.9003 16.9003 17.4680 17.4680 26.2485 26.2485 34.5189 34.5189 38.0606 38.0607 k = 0.3750-0.3750 1.1250 ( 280 PWs) bands (ev): 11.5841 11.5841 12.6793 12.6793 13.7605 13.7605 15.1969 15.1969 17.0723 17.0723 21.4666 21.4666 24.6729 24.6729 29.9118 29.9118 35.7352 35.7354 the Fermi energy is 17.6826 ev ! total energy = -69.49152948 Ry Harris-Foulkes estimate = -69.49152949 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 17.06723634 Ry hartree contribution = 3.77048098 Ry xc contribution = -28.53653129 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00212152 Ry convergence has been achieved in 4 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.43 -0.00015930 0.00000000 0.00000000 -23.43 0.00 0.00 0.00000000 -0.00015930 0.00000000 0.00 -23.43 0.00 0.00000000 0.00000000 -0.00015930 0.00 0.00 -23.43 Writing output data file pwscf.save init_run : 1.17s CPU 1.18s WALL ( 1 calls) electrons : 2.19s CPU 2.20s WALL ( 1 calls) stress : 0.96s CPU 0.97s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.09s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 1.46s CPU 1.47s WALL ( 5 calls) sum_band : 0.48s CPU 0.49s WALL ( 5 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 5 calls) newd : 0.25s CPU 0.25s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 120 calls) cegterg : 1.34s CPU 1.36s WALL ( 50 calls) Called by *egterg: h_psi : 0.98s CPU 0.96s WALL ( 195 calls) s_psi : 0.03s CPU 0.05s WALL ( 195 calls) g_psi : 0.05s CPU 0.03s WALL ( 135 calls) cdiaghg : 0.17s CPU 0.17s WALL ( 175 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.05s WALL ( 195 calls) General routines calbec : 0.08s CPU 0.05s WALL ( 255 calls) fft : 0.04s CPU 0.04s WALL ( 121 calls) ffts : 0.00s CPU 0.00s WALL ( 40 calls) fftw : 0.71s CPU 0.73s WALL ( 11744 calls) interpolate : 0.03s CPU 0.02s WALL ( 40 calls) davcio : 0.00s CPU 0.01s WALL ( 170 calls) PWSCF : 4.45s CPU 4.54s WALL This run was terminated on: 11:42:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav4-kauto.ref0000644000700200004540000001772612053145627020523 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav4-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 199 29199 29199 4443 bravais-lattice index = 4 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1732.0508 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 24 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.4330127 0.1250000), wk = 1.0000000 k( 2) = ( 0.2500000 -0.1443376 0.1250000), wk = 1.0000000 Dense grid: 29199 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 3660, 1) NL pseudopotentials 0.00 Mb ( 3660, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.22 Mb ( 29199) G-vector shells 0.00 Mb ( 476) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.22 Mb ( 3660, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002293 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.229E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 12.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.667E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22000537 Ry Harris-Foulkes estimate = -2.29018226 Ry estimated scf accuracy < 0.13320880 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.143E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23101867 Ry Harris-Foulkes estimate = -2.23146768 Ry estimated scf accuracy < 0.00100569 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.174E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23132358 Ry Harris-Foulkes estimate = -2.23132543 Ry estimated scf accuracy < 0.00001232 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.16E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.2500 0.4330 0.1250 ( 3660 PWs) bands (ev): -10.2032 k = 0.2500-0.1443 0.1250 ( 3654 PWs) bands (ev): -10.2148 ! total energy = -2.23132479 Ry Harris-Foulkes estimate = -2.23132478 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.62531908 Ry hartree contribution = 1.92084077 Ry xc contribution = -1.31431564 Ry ewald contribution = 0.78746916 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.05s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.04s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.04s CPU 0.04s WALL ( 8 calls) Called by *egterg: h_psi : 0.04s CPU 0.04s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.04s CPU 0.04s WALL ( 56 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.24s CPU 0.26s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-wf_collect.ref0000644000700200004540000002116712053145627017454 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-wf_collect.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.02s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.10s CPU 0.12s WALL This run was terminated on: 11:28:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav2-kauto.ref0000644000700200004540000001755412053145627020520 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav2-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 109 4279 4279 725 bravais-lattice index = 2 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 250.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 3) = ( -0.2500000 0.7500000 0.2500000), wk = 1.0000000 Dense grid: 4279 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 531, 1) NL pseudopotentials 0.00 Mb ( 531, 0) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4279) G-vector shells 0.00 Mb ( 86) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 531, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 2.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.22346439 Ry Harris-Foulkes estimate = -2.28845452 Ry estimated scf accuracy < 0.12764875 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.38E-03, avg # of iterations = 1.3 total cpu time spent up to now is 0.0 secs total energy = -2.23380627 Ry Harris-Foulkes estimate = -2.23422020 Ry estimated scf accuracy < 0.00097936 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23402511 Ry Harris-Foulkes estimate = -2.23402540 Ry estimated scf accuracy < 0.00000987 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.94E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 531 PWs) bands (ev): -9.7931 k = 0.2500-0.2500 0.7500 ( 529 PWs) bands (ev): -9.3072 k =-0.2500 0.7500 0.2500 ( 529 PWs) bands (ev): -9.3389 ! total energy = -2.23402649 Ry Harris-Foulkes estimate = -2.23402701 Ry estimated scf accuracy < 0.00000099 Ry The total energy is the sum of the following terms: one-electron contribution = -1.58239695 Ry hartree contribution = 0.95563352 Ry xc contribution = -1.31408377 Ry ewald contribution = -0.29317930 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.00s CPU 0.01s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 37 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 34 calls) Called by h_psi: General routines fft : 0.00s CPU 0.00s WALL ( 19 calls) fftw : 0.00s CPU 0.01s WALL ( 92 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.09s CPU 0.10s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/uspp1-coulomb.in0000755000700200004540000000056512053145627017124 0ustar marsamoscm&CONTROL calculation = 'scf' tstress=.true. tprnfor=.true. / &SYSTEM ibrav = 1, celldm(1) = 20.0, nat = 3, ntyp = 2, ecutwfc = 25.D0 / &ELECTRONS / ATOMIC_SPECIES O 16.D0 O_US.van H 2.D0 H.coulomb-ae.UPF ATOMIC_POSITIONS (bohr) O 10.0000 10.0000 10.000 H 11.7325 9.6757 10.000 H 9.6757 11.7325 10.000 espresso-5.0.2/PW/tests/lattice-ibrav5.in0000644000700200004540000000044212053145627017220 0ustar marsamoscm &control calculation='scf', / &system ibrav = 5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lsda-tot_magnetization.ref0000644000700200004540000003500512053145627021236 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-tot_magnetization.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 (up: 6.00, down: 4.00) number of Kohn-Sham states= 10 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 10) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 144, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 18, 10) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 total cpu time spent up to now is 1.0 secs total energy = -85.36100764 Ry Harris-Foulkes estimate = -85.65775224 Ry estimated scf accuracy < 0.56238269 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -85.50364204 Ry Harris-Foulkes estimate = -85.68883154 Ry estimated scf accuracy < 0.34556341 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.46E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.57763781 Ry Harris-Foulkes estimate = -85.57534556 Ry estimated scf accuracy < 0.00434602 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.4 secs total energy = -85.57808381 Ry Harris-Foulkes estimate = -85.57822591 Ry estimated scf accuracy < 0.00031552 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-06, avg # of iterations = 1.5 total cpu time spent up to now is 1.6 secs total energy = -85.57814925 Ry Harris-Foulkes estimate = -85.57814691 Ry estimated scf accuracy < 0.00000214 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-08, avg # of iterations = 2.6 total cpu time spent up to now is 1.7 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.0167 11.1480 11.4082 11.4082 12.3588 12.3588 36.7679 40.7678 42.9798 42.9798 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 8.7014 10.9123 11.3766 11.6633 12.3143 13.3895 28.3060 34.1286 41.4433 43.2812 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 9.3338 11.0224 11.4988 12.0071 13.1797 15.8523 21.2957 35.2284 37.7277 38.9300 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.5591 10.7423 11.5734 11.7226 12.2779 12.6680 32.6773 37.9601 38.3906 41.8248 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 9.2819 10.1243 11.7369 12.3061 13.0617 13.7471 29.4136 32.8973 33.8298 37.8183 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 9.9132 10.2367 11.3079 12.4470 13.1949 19.7157 23.2541 27.1404 29.6279 41.8520 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 9.8077 10.6890 11.0124 12.0476 12.8589 15.5033 25.1284 31.0941 34.4152 42.4200 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 9.2993 9.6872 12.6181 12.8734 13.2744 17.3590 26.0074 27.5864 31.4714 37.0212 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 8.8766 11.3378 11.3378 12.5461 12.9435 12.9435 23.9740 38.5918 41.1692 41.1692 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 10.0081 10.5813 11.2531 12.0227 12.9080 18.3031 22.0905 28.4560 35.9344 38.3825 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.7870 12.8645 13.1573 13.1573 14.1691 14.1691 37.6532 41.4991 43.8297 43.8298 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.6215 12.4876 13.0790 13.4199 14.1200 15.1588 29.3155 35.0366 42.2020 44.1830 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.7274 12.6811 13.2371 13.5202 15.0534 17.0351 22.5062 36.0965 38.6012 39.7587 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.3577 12.4089 13.3177 13.4851 14.0383 14.5007 33.6268 38.8505 39.2201 42.6862 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.4104 11.7315 13.3283 14.1042 14.9240 15.2873 30.3673 33.8485 34.6841 38.7838 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.4108 11.7877 12.9054 14.2367 15.0707 20.8231 24.2887 28.1675 30.5412 42.7301 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.1075 12.2166 12.6428 13.8038 14.6944 16.9324 26.1722 32.0289 35.3272 43.2425 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.7292 11.2641 14.3126 14.7129 15.1569 18.3991 27.1089 28.4883 32.2782 38.0436 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 10.0791 13.0694 13.0694 13.6443 14.7976 14.7976 25.0805 39.2907 42.0414 42.0414 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.5005 12.0984 12.8329 13.7914 14.7630 19.4795 23.2102 29.4363 36.8134 39.2537 the spin up/dw Fermi energies are 19.9663 14.2955 ev ! total energy = -85.57815014 Ry Harris-Foulkes estimate = -85.57815074 Ry estimated scf accuracy < 0.00000072 Ry The total energy is the sum of the following terms: one-electron contribution = 0.88807288 Ry hartree contribution = 13.78337126 Ry xc contribution = -29.49556562 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00001569 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.79s WALL ( 1 calls) electrons : 0.84s CPU 0.86s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.45s CPU 0.46s WALL ( 6 calls) sum_band : 0.22s CPU 0.22s WALL ( 6 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 7 calls) newd : 0.13s CPU 0.13s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.02s WALL ( 260 calls) cegterg : 0.42s CPU 0.42s WALL ( 120 calls) Called by *egterg: h_psi : 0.26s CPU 0.27s WALL ( 409 calls) s_psi : 0.02s CPU 0.01s WALL ( 409 calls) g_psi : 0.01s CPU 0.01s WALL ( 269 calls) cdiaghg : 0.12s CPU 0.10s WALL ( 389 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 409 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 529 calls) fft : 0.02s CPU 0.03s WALL ( 109 calls) ffts : 0.00s CPU 0.00s WALL ( 26 calls) fftw : 0.22s CPU 0.22s WALL ( 7440 calls) interpolate : 0.01s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 380 calls) PWSCF : 1.75s CPU 1.82s WALL This run was terminated on: 10:24:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/md-wfc_extrap2.in0000755000700200004540000000062112053145627017231 0ustar marsamoscm &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions wfc_extrapolation='second_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters+a.in0000644000700200004540000000057212053145627022573 0ustar marsamoscm &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 a=5.29177 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS alat 1.000000 .000000 .000000 .450000 1.430909 .000000 .400000 .083863 1.957796 K_POINTS {gamma} espresso-5.0.2/PW/tests/pbeq2d.in0000644000700200004540000000070012053145627015557 0ustar marsamoscm &control calculation='scf' / &system ibrav= 2, celldm(1) =6.67296786, nat=1, ntyp=1 nbnd = 50 ecutwfc = 35.0, ecutrho = 300.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.01 input_dft='sla+pw+q2dx+q2dc' / &electrons conv_thr = 1.0d-7 mixing_beta = 0.3 / ATOMIC_SPECIES Cu 103.1 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS (crystal) Cu 0.00 0.00 0.00 K_POINTS {automatic} 10 10 10 0 0 0 espresso-5.0.2/PW/tests/scf-kauto.in0000644000700200004540000000040712053145627016302 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS automatic 2 2 2 1 1 1 espresso-5.0.2/PW/tests/lattice-ibrav-12.in0000644000700200004540000000051412053145627017353 0ustar marsamoscm &control calculation='scf', / &system ibrav =-12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(5) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/cluster2.in0000755000700200004540000000076012053145627016156 0ustar marsamoscm&CONTROL calculation = 'relax' / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, tot_charge = +1.0 nbnd = 8 assume_isolated='martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma espresso-5.0.2/PW/tests/lsda-mixing_TF.ref0000644000700200004540000003545212053145627017371 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:36 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-mixing_TF.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.40636136 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.2 total cpu time spent up to now is 1.1 secs total energy = -85.67131568 Ry Harris-Foulkes estimate = -85.65088092 Ry estimated scf accuracy < 0.23159807 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-03, avg # of iterations = 1.0 negative rho (up, down): 0.000E+00 0.455E-04 total cpu time spent up to now is 1.2 secs total energy = -85.71627481 Ry Harris-Foulkes estimate = -85.69366610 Ry estimated scf accuracy < 0.04090630 Ry total magnetization = 0.74 Bohr mag/cell absolute magnetization = 0.91 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-04, avg # of iterations = 1.2 total cpu time spent up to now is 1.4 secs total energy = -85.72177120 Ry Harris-Foulkes estimate = -85.72136969 Ry estimated scf accuracy < 0.00621845 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.22E-05, avg # of iterations = 1.6 total cpu time spent up to now is 1.5 secs total energy = -85.72334260 Ry Harris-Foulkes estimate = -85.72338055 Ry estimated scf accuracy < 0.00029869 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.99E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.6 secs total energy = -85.72339852 Ry Harris-Foulkes estimate = -85.72339641 Ry estimated scf accuracy < 0.00001501 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 1.4 total cpu time spent up to now is 1.7 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3755 12.4386 12.7336 12.7336 13.8412 13.8412 37.2314 41.0676 43.4121 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2062 12.0615 12.6984 13.0409 13.7437 14.7860 28.9051 34.6228 41.7714 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3044 12.3182 12.8655 13.0996 14.6718 16.6326 22.1073 35.6784 38.1896 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9455 11.9823 12.9299 13.0732 13.6690 14.1628 33.2118 38.4347 38.7929 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0145 11.3053 12.9395 13.7133 14.5676 14.8893 29.9542 33.4472 34.2675 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0415 11.3672 12.4816 13.9012 14.6535 20.4145 23.8808 27.7796 30.1435 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6949 11.8172 12.2443 13.4393 14.3037 16.5389 25.7648 31.6202 34.9281 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3611 10.8367 13.8897 14.3657 14.7584 17.9876 26.7285 28.0817 31.8612 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6591 12.6916 12.6916 13.2191 14.4214 14.4214 24.6757 38.8456 41.6270 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0768 11.7378 12.4062 13.4416 14.3592 19.0773 22.8054 29.0413 36.4048 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4359 13.2133 13.5333 13.5333 14.5933 14.5933 37.3662 41.0779 43.5292 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3437 12.7290 13.4211 13.8005 14.5398 15.5733 29.1566 34.7854 41.8189 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8033 12.9473 13.6026 13.6537 15.5270 17.0826 22.5353 35.7963 38.3363 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0199 12.7164 13.6878 13.8706 14.4288 14.9425 33.4084 38.5931 38.8730 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2530 11.9909 13.5754 14.5167 15.3887 15.5752 30.1593 33.6290 34.4022 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5604 11.9940 13.1376 14.6404 15.5456 20.7584 24.1574 28.0301 30.3199 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0654 12.4053 12.9309 14.1833 15.1366 17.1422 26.0489 31.8049 35.0925 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8302 11.4970 14.5955 15.1583 15.6376 18.3042 27.0264 28.2533 31.9592 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9864 13.4301 13.4301 13.5647 15.2558 15.2558 25.0155 38.8310 41.7801 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6426 12.2619 13.0607 14.1799 15.2219 19.4780 23.1590 29.2608 36.5522 the Fermi energy is 15.3109 ev ! total energy = -85.72339888 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 0.00000021 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30379569 Ry hartree contribution = 14.33449543 Ry xc contribution = -29.60768155 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00003590 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.78s CPU 0.78s WALL ( 1 calls) electrons : 0.87s CPU 0.89s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.42s CPU 0.42s WALL ( 7 calls) sum_band : 0.24s CPU 0.25s WALL ( 7 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 8 calls) newd : 0.15s CPU 0.15s WALL ( 8 calls) mix_rho : 0.02s CPU 0.01s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 300 calls) cegterg : 0.39s CPU 0.38s WALL ( 140 calls) Called by *egterg: h_psi : 0.32s CPU 0.26s WALL ( 413 calls) s_psi : 0.00s CPU 0.01s WALL ( 413 calls) g_psi : 0.01s CPU 0.01s WALL ( 253 calls) cdiaghg : 0.06s CPU 0.08s WALL ( 393 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 413 calls) General routines calbec : 0.00s CPU 0.02s WALL ( 553 calls) fft : 0.03s CPU 0.03s WALL ( 126 calls) ffts : 0.00s CPU 0.00s WALL ( 30 calls) fftw : 0.25s CPU 0.21s WALL ( 7230 calls) interpolate : 0.02s CPU 0.01s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 440 calls) PWSCF : 1.79s CPU 1.83s WALL This run was terminated on: 10:24:38 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/md-wfc_extrap1.ref0000644000700200004540000040116212053145627017400 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-wfc_extrap1.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.17E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803678 Ry Harris-Foulkes estimate = -14.44803678 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 6.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244079 -0.02244031 -0.02244020 atom 2 type 1 force = 0.02244079 0.02244031 0.02244020 Total force = 0.054968 Total SCF correction = 0.000018 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158948 -0.123158947 -0.123158948 Si 0.123158948 0.123158947 0.123158948 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41898756 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.89E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815426 Ry Harris-Foulkes estimate = -14.44815426 Ry estimated scf accuracy < 0.00000022 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815428 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 5.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139472 -0.02139498 -0.02139494 atom 2 type 1 force = 0.02139472 0.02139498 0.02139494 Total force = 0.052407 Total SCF correction = 0.000005 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279545 -0.123279543 -0.123279544 Si 0.123279545 0.123279543 0.123279544 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72836371 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.29E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830656 Ry Harris-Foulkes estimate = -14.44830655 Ry estimated scf accuracy < 0.00000041 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830659 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995813 -0.01995814 -0.01995814 atom 2 type 1 force = 0.01995813 0.01995814 0.01995814 Total force = 0.048887 Total SCF correction = 0.000007 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430775 -0.123430774 -0.123430775 Si 0.123430775 0.123430774 0.123430775 kinetic energy (Ekin) = 0.00036754 Ry temperature = 38.68623641 K Ekin + Etot (const) = -14.44793907 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.18E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848262 Ry Harris-Foulkes estimate = -14.44848261 Ry estimated scf accuracy < 0.00000064 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.06E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848268 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816327 -0.01816331 -0.01816330 atom 2 type 1 force = 0.01816327 0.01816331 0.01816330 Total force = 0.044491 Total SCF correction = 0.000008 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609886 -0.123609884 -0.123609885 Si 0.123609886 0.123609884 0.123609885 kinetic energy (Ekin) = 0.00054280 Ry temperature = 57.13432480 K Ekin + Etot (const) = -14.44793990 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866976 Ry Harris-Foulkes estimate = -14.44866974 Ry estimated scf accuracy < 0.00000090 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866983 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.08E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4770 7.4770 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604785 -0.01604789 -0.01604788 atom 2 type 1 force = 0.01604785 0.01604789 0.01604788 Total force = 0.039309 Total SCF correction = 0.000010 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813629 -0.123813626 -0.123813628 Si 0.123813629 0.123813626 0.123813628 kinetic energy (Ekin) = 0.00072909 Ry temperature = 76.74264341 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.47E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885459 Ry Harris-Foulkes estimate = -14.44885457 Ry estimated scf accuracy < 0.00000116 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885469 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2559 7.4649 7.4649 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365483 -0.01365486 -0.01365485 atom 2 type 1 force = 0.01365483 0.01365486 0.01365485 Total force = 0.033447 Total SCF correction = 0.000011 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038331 -0.124038328 -0.124038330 Si 0.124038331 0.124038328 0.124038330 kinetic energy (Ekin) = 0.00091308 Ry temperature = 96.10871660 K Ekin + Etot (const) = -14.44794166 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.76E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902403 Ry Harris-Foulkes estimate = -14.44902400 Ry estimated scf accuracy < 0.00000141 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902414 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103171 -0.01103174 -0.01103172 atom 2 type 1 force = 0.01103171 0.01103174 0.01103172 Total force = 0.027022 Total SCF correction = 0.000012 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279966 -0.124279963 -0.124279965 Si 0.124279966 0.124279963 0.124279965 kinetic energy (Ekin) = 0.00108173 Ry temperature = 113.86054715 K Ekin + Etot (const) = -14.44794247 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916621 Ry Harris-Foulkes estimate = -14.44916618 Ry estimated scf accuracy < 0.00000163 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.04E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916639 Ry Harris-Foulkes estimate = -14.44916633 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916639 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00822975 -0.00822978 -0.00822976 atom 2 type 1 force = 0.00822975 0.00822978 0.00822976 Total force = 0.020159 Total SCF correction = 0.000014 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534234 -0.124534231 -0.124534232 Si 0.124534234 0.124534231 0.124534232 kinetic energy (Ekin) = 0.00122323 Ry temperature = 128.75546909 K Ekin + Etot (const) = -14.44794316 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927133 Ry Harris-Foulkes estimate = -14.44927130 Ry estimated scf accuracy < 0.00000181 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927147 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927154 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530192 -0.00530195 -0.00530194 atom 2 type 1 force = 0.00530192 0.00530195 0.00530194 Total force = 0.012987 Total SCF correction = 0.000015 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796640 -0.124796636 -0.124796638 Si 0.124796640 0.124796636 0.124796638 kinetic energy (Ekin) = 0.00132785 Ry temperature = 139.76692906 K Ekin + Etot (const) = -14.44794369 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933233 Ry Harris-Foulkes estimate = -14.44933231 Ry estimated scf accuracy < 0.00000193 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933255 Ry Harris-Foulkes estimate = -14.44933248 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3711 7.4068 7.4068 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933255 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230223 -0.00230226 -0.00230225 atom 2 type 1 force = 0.00230223 0.00230226 0.00230225 Total force = 0.005639 Total SCF correction = 0.000015 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062579 -0.125062576 -0.125062577 Si 0.125062579 0.125062576 0.125062577 kinetic energy (Ekin) = 0.00138852 Ry temperature = 146.15311028 K Ekin + Etot (const) = -14.44794404 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934529 Ry Harris-Foulkes estimate = -14.44934527 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934544 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4023 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071563 0.00071555 0.00071559 atom 2 type 1 force = -0.00071563 -0.00071555 -0.00071559 Total force = 0.001753 Total SCF correction = 0.000016 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327420 -0.125327417 -0.125327418 Si 0.125327420 0.125327417 0.125327418 kinetic energy (Ekin) = 0.00140135 Ry temperature = 147.50361182 K Ekin + Etot (const) = -14.44794417 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930967 Ry Harris-Foulkes estimate = -14.44930965 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930989 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930990 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369901 0.00369897 0.00369899 atom 2 type 1 force = -0.00369901 -0.00369897 -0.00369899 Total force = 0.009061 Total SCF correction = 0.000016 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586583 -0.125586580 -0.125586582 Si 0.125586583 0.125586580 0.125586582 kinetic energy (Ekin) = 0.00136580 Ry temperature = 143.76148863 K Ekin + Etot (const) = -14.44794410 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922826 Ry Harris-Foulkes estimate = -14.44922825 Ry estimated scf accuracy < 0.00000189 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922841 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922848 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659752 0.00659748 0.00659750 atom 2 type 1 force = -0.00659752 -0.00659748 -0.00659750 Total force = 0.016161 Total SCF correction = 0.000016 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835620 -0.125835617 -0.125835618 Si 0.125835620 0.125835617 0.125835618 kinetic energy (Ekin) = 0.00128465 Ry temperature = 135.22027259 K Ekin + Etot (const) = -14.44794383 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910697 Ry Harris-Foulkes estimate = -14.44910696 Ry estimated scf accuracy < 0.00000175 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910716 Ry Harris-Foulkes estimate = -14.44910710 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4936 ! total energy = -14.44910717 Ry Harris-Foulkes estimate = -14.44910716 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936350 0.00936347 0.00936348 atom 2 type 1 force = -0.00936350 -0.00936347 -0.00936348 Total force = 0.022936 Total SCF correction = 0.000015 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070284 -0.126070281 -0.126070282 Si 0.126070284 0.126070281 0.126070282 kinetic energy (Ekin) = 0.00116378 Ry temperature = 122.49717879 K Ekin + Etot (const) = -14.44794339 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 0.00000155 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895441 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895447 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195281 0.01195277 0.01195279 atom 2 type 1 force = -0.01195281 -0.01195277 -0.01195279 Total force = 0.029278 Total SCF correction = 0.000014 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286601 -0.126286598 -0.126286599 Si 0.126286601 0.126286598 0.126286599 kinetic energy (Ekin) = 0.00101166 Ry temperature = 106.48537808 K Ekin + Etot (const) = -14.44794281 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878078 Ry Harris-Foulkes estimate = -14.44878078 Ry estimated scf accuracy < 0.00000132 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878088 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878093 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432516 0.01432513 0.01432514 atom 2 type 1 force = -0.01432516 -0.01432513 -0.01432514 Total force = 0.035089 Total SCF correction = 0.000013 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126480930 -0.126480927 -0.126480928 Si 0.126480930 0.126480927 0.126480928 kinetic energy (Ekin) = 0.00083879 Ry temperature = 88.28938199 K Ekin + Etot (const) = -14.44794215 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859825 Ry Harris-Foulkes estimate = -14.44859825 Ry estimated scf accuracy < 0.00000107 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859833 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859837 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644452 0.01644450 0.01644450 atom 2 type 1 force = -0.01644452 -0.01644450 -0.01644450 Total force = 0.040281 Total SCF correction = 0.000012 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650017 -0.126650015 -0.126650016 Si 0.126650017 0.126650015 0.126650016 kinetic energy (Ekin) = 0.00065694 Ry temperature = 69.14841871 K Ekin + Etot (const) = -14.44794143 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841901 Ry Harris-Foulkes estimate = -14.44841901 Ry estimated scf accuracy < 0.00000081 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841907 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.55E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841910 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01827963 0.01827961 0.01827962 atom 2 type 1 force = -0.01827963 -0.01827961 -0.01827962 Total force = 0.044776 Total SCF correction = 0.000011 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791046 -0.126791045 -0.126791045 Si 0.126791046 0.126791045 0.126791045 kinetic energy (Ekin) = 0.00047837 Ry temperature = 50.35284405 K Ekin + Etot (const) = -14.44794073 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.82E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825504 Ry Harris-Foulkes estimate = -14.44825504 Ry estimated scf accuracy < 0.00000056 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825508 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.24E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2902 7.2902 7.6068 ! total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825510 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980380 0.01980379 0.01980379 atom 2 type 1 force = -0.01980380 -0.01980379 -0.01980379 Total force = 0.048509 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126901678 -0.126901677 -0.126901677 Si 0.126901678 0.126901677 0.126901677 kinetic energy (Ekin) = 0.00031503 Ry temperature = 33.15928679 K Ekin + Etot (const) = -14.44794007 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.17E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811723 Ry Harris-Foulkes estimate = -14.44811723 Ry estimated scf accuracy < 0.00000035 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.31E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811727 Ry Harris-Foulkes estimate = -14.44811726 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811727 Ry Harris-Foulkes estimate = -14.44811727 Ry estimated scf accuracy < 7.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099529 0.02099528 0.02099528 atom 2 type 1 force = -0.02099529 -0.02099528 -0.02099528 Total force = 0.051428 Total SCF correction = 0.000007 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980083 -0.126980082 -0.126980082 Si 0.126980083 0.126980082 0.126980082 kinetic energy (Ekin) = 0.00017775 Ry temperature = 18.70966438 K Ekin + Etot (const) = -14.44793952 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801470 Ry Harris-Foulkes estimate = -14.44801470 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801472 Ry Harris-Foulkes estimate = -14.44801471 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801472 Ry Harris-Foulkes estimate = -14.44801472 Ry estimated scf accuracy < 4.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183737 0.02183737 0.02183737 atom 2 type 1 force = -0.02183737 -0.02183737 -0.02183737 Total force = 0.053490 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127024969 -0.127024968 -0.127024968 Si 0.127024969 0.127024968 0.127024968 kinetic energy (Ekin) = 0.00007561 Ry temperature = 7.95860890 K Ekin + Etot (const) = -14.44793911 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795419 Ry Harris-Foulkes estimate = -14.44795419 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795419 Ry Harris-Foulkes estimate = -14.44795419 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232267 0.02232267 0.02232267 atom 2 type 1 force = -0.02232267 -0.02232267 -0.02232267 Total force = 0.054679 Total SCF correction = 0.000012 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127035590 -0.127035591 -0.127035590 Si 0.127035590 0.127035591 0.127035590 kinetic energy (Ekin) = 0.00001533 Ry temperature = 1.61318956 K Ekin + Etot (const) = -14.44793887 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.20E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2761 7.2761 7.6358 ! total energy = -14.44793968 Ry Harris-Foulkes estimate = -14.44793968 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243314 0.02243314 0.02243314 atom 2 type 1 force = -0.02243314 -0.02243314 -0.02243314 Total force = 0.054950 Total SCF correction = 0.000018 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127011779 -0.127011779 -0.127011779 Si 0.127011779 0.127011779 0.127011779 kinetic energy (Ekin) = 0.00000087 Ry temperature = 0.09108164 K Ekin + Etot (const) = -14.44793881 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797211 Ry Harris-Foulkes estimate = -14.44797211 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797211 Ry Harris-Foulkes estimate = -14.44797211 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02217391 0.02217392 0.02217391 atom 2 type 1 force = -0.02217391 -0.02217392 -0.02217391 Total force = 0.054315 Total SCF correction = 0.000005 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126953931 -0.126953932 -0.126953932 Si 0.126953931 0.126953932 0.126953932 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49123315 K Ekin + Etot (const) = -14.44793895 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44804936 Ry Harris-Foulkes estimate = -14.44804936 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6261 ! total energy = -14.44804937 Ry Harris-Foulkes estimate = -14.44804937 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02154844 0.02154845 0.02154844 atom 2 type 1 force = -0.02154844 -0.02154845 -0.02154844 Total force = 0.052783 Total SCF correction = 0.000018 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126863008 -0.126863010 -0.126863009 Si 0.126863008 0.126863010 0.126863009 kinetic energy (Ekin) = 0.00011009 Ry temperature = 11.58788895 K Ekin + Etot (const) = -14.44793928 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.15E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816633 Ry Harris-Foulkes estimate = -14.44816634 Ry estimated scf accuracy < 0.00000024 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.05E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816636 Ry Harris-Foulkes estimate = -14.44816635 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2861 7.2861 7.6153 ! total energy = -14.44816636 Ry Harris-Foulkes estimate = -14.44816636 Ry estimated scf accuracy < 7.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02057383 0.02057385 0.02057384 atom 2 type 1 force = -0.02057383 -0.02057385 -0.02057384 Total force = 0.050395 Total SCF correction = 0.000006 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126740505 -0.126740507 -0.126740506 Si 0.126740505 0.126740507 0.126740506 kinetic energy (Ekin) = 0.00022657 Ry temperature = 23.84872658 K Ekin + Etot (const) = -14.44793979 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.58E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831532 Ry Harris-Foulkes estimate = -14.44831534 Ry estimated scf accuracy < 0.00000044 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831538 Ry Harris-Foulkes estimate = -14.44831537 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.03E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2932 7.2932 7.6008 ! total energy = -14.44831538 Ry Harris-Foulkes estimate = -14.44831538 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01925115 0.01925117 0.01925116 atom 2 type 1 force = -0.01925115 -0.01925117 -0.01925116 Total force = 0.047156 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126588453 -0.126588455 -0.126588454 Si 0.126588453 0.126588455 0.126588454 kinetic energy (Ekin) = 0.00037495 Ry temperature = 39.46663377 K Ekin + Etot (const) = -14.44794043 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.47E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848648 Ry Harris-Foulkes estimate = -14.44848650 Ry estimated scf accuracy < 0.00000067 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.39E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848656 Ry Harris-Foulkes estimate = -14.44848654 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3020 7.3020 7.5827 ! total energy = -14.44848656 Ry Harris-Foulkes estimate = -14.44848656 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01760379 0.01760382 0.01760380 atom 2 type 1 force = -0.01760379 -0.01760382 -0.01760380 Total force = 0.043120 Total SCF correction = 0.000010 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126409380 -0.126409383 -0.126409381 Si 0.126409380 0.126409383 0.126409381 kinetic energy (Ekin) = 0.00054538 Ry temperature = 57.40586203 K Ekin + Etot (const) = -14.44794118 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.17E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866840 Ry Harris-Foulkes estimate = -14.44866842 Ry estimated scf accuracy < 0.00000093 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866851 Ry Harris-Foulkes estimate = -14.44866848 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.62E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5614 ! total energy = -14.44866851 Ry Harris-Foulkes estimate = -14.44866851 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01565545 0.01565548 0.01565547 atom 2 type 1 force = -0.01565545 -0.01565548 -0.01565547 Total force = 0.038348 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206277 -0.126206280 -0.126206278 Si 0.126206277 0.126206280 0.126206278 kinetic energy (Ekin) = 0.00072651 Ry temperature = 76.47145830 K Ekin + Etot (const) = -14.44794200 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.50E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884888 Ry Harris-Foulkes estimate = -14.44884890 Ry estimated scf accuracy < 0.00000119 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884903 Ry Harris-Foulkes estimate = -14.44884898 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3243 7.3243 7.5373 ! total energy = -14.44884903 Ry Harris-Foulkes estimate = -14.44884903 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01343464 0.01343468 0.01343466 atom 2 type 1 force = -0.01343464 -0.01343468 -0.01343466 Total force = 0.032908 Total SCF correction = 0.000013 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125982552 -0.125982555 -0.125982554 Si 0.125982552 0.125982555 0.125982554 kinetic energy (Ekin) = 0.00090620 Ry temperature = 95.38448559 K Ekin + Etot (const) = -14.44794283 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.79E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901572 Ry Harris-Foulkes estimate = -14.44901574 Ry estimated scf accuracy < 0.00000143 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901590 Ry Harris-Foulkes estimate = -14.44901584 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3373 7.3373 7.5108 ! total energy = -14.44901590 Ry Harris-Foulkes estimate = -14.44901590 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01097444 0.01097447 0.01097445 atom 2 type 1 force = -0.01097444 -0.01097447 -0.01097445 Total force = 0.026882 Total SCF correction = 0.000014 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125741983 -0.125741986 -0.125741984 Si 0.125741983 0.125741986 0.125741984 kinetic energy (Ekin) = 0.00107227 Ry temperature = 112.86499562 K Ekin + Etot (const) = -14.44794363 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.05E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915751 Ry Harris-Foulkes estimate = -14.44915753 Ry estimated scf accuracy < 0.00000165 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915765 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3514 7.3514 7.4823 ! total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915771 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00831275 0.00831279 0.00831277 atom 2 type 1 force = -0.00831275 -0.00831279 -0.00831277 Total force = 0.020362 Total SCF correction = 0.000015 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488653 -0.125488656 -0.125488655 Si 0.125488653 0.125488656 0.125488655 kinetic energy (Ekin) = 0.00121337 Ry temperature = 127.71709544 K Ekin + Etot (const) = -14.44794434 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926442 Ry Harris-Foulkes estimate = -14.44926442 Ry estimated scf accuracy < 0.00000182 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926463 Ry Harris-Foulkes estimate = -14.44926456 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4524 ! total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926463 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549128 0.00549132 0.00549130 atom 2 type 1 force = -0.00549128 -0.00549132 -0.00549130 Total force = 0.013451 Total SCF correction = 0.000015 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226895 -0.125226898 -0.125226897 Si 0.125226895 0.125226898 0.125226897 kinetic energy (Ekin) = 0.00131971 Ry temperature = 138.91037986 K Ekin + Etot (const) = -14.44794493 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932887 Ry Harris-Foulkes estimate = -14.44932887 Ry estimated scf accuracy < 0.00000194 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.42E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932909 Ry Harris-Foulkes estimate = -14.44932902 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3816 7.3816 7.4215 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932910 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00255561 0.00255564 0.00255563 atom 2 type 1 force = -0.00255561 -0.00255564 -0.00255563 Total force = 0.006260 Total SCF correction = 0.000016 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961214 -0.124961217 -0.124961216 Si 0.124961214 0.124961217 0.124961216 kinetic energy (Ekin) = 0.00138376 Ry temperature = 145.65227577 K Ekin + Etot (const) = -14.44794534 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934613 Ry Harris-Foulkes estimate = -14.44934611 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934628 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934636 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044559 -0.00044549 -0.00044553 atom 2 type 1 force = 0.00044559 0.00044549 0.00044553 Total force = 0.001091 Total SCF correction = 0.000016 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696217 -0.124696220 -0.124696219 Si 0.124696217 0.124696220 0.124696219 kinetic energy (Ekin) = 0.00140081 Ry temperature = 147.44659556 K Ekin + Etot (const) = -14.44794555 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931466 Ry Harris-Foulkes estimate = -14.44931464 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931488 Ry Harris-Foulkes estimate = -14.44931481 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931488 Ry Harris-Foulkes estimate = -14.44931488 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00346086 -0.00346082 -0.00346084 atom 2 type 1 force = 0.00346086 0.00346082 0.00346084 Total force = 0.008477 Total SCF correction = 0.000016 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436533 -0.124436535 -0.124436534 Si 0.124436533 0.124436535 0.124436534 kinetic energy (Ekin) = 0.00136933 Ry temperature = 144.13345940 K Ekin + Etot (const) = -14.44794555 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.35E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923631 Ry Harris-Foulkes estimate = -14.44923627 Ry estimated scf accuracy < 0.00000188 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.35E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923651 Ry Harris-Foulkes estimate = -14.44923644 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923652 Ry Harris-Foulkes estimate = -14.44923652 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643721 -0.00643718 -0.00643719 atom 2 type 1 force = 0.00643721 0.00643718 0.00643719 Total force = 0.015768 Total SCF correction = 0.000015 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186729 -0.124186731 -0.124186730 Si 0.124186729 0.124186731 0.124186730 kinetic energy (Ekin) = 0.00129118 Ry temperature = 135.90713136 K Ekin + Etot (const) = -14.44794534 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.16E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911623 Ry Harris-Foulkes estimate = -14.44911619 Ry estimated scf accuracy < 0.00000173 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911642 Ry Harris-Foulkes estimate = -14.44911636 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911642 Ry Harris-Foulkes estimate = -14.44911642 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932066 -0.00932063 -0.00932064 atom 2 type 1 force = 0.00932066 0.00932063 0.00932064 Total force = 0.022831 Total SCF correction = 0.000014 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951231 -0.123951234 -0.123951233 Si 0.123951231 0.123951234 0.123951233 kinetic energy (Ekin) = 0.00117149 Ry temperature = 123.30937605 K Ekin + Etot (const) = -14.44794493 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.91E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896261 Ry Harris-Foulkes estimate = -14.44896257 Ry estimated scf accuracy < 0.00000154 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896277 Ry Harris-Foulkes estimate = -14.44896272 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2718 7.4569 7.4569 ! total energy = -14.44896278 Ry Harris-Foulkes estimate = -14.44896278 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205750 -0.01205748 -0.01205749 atom 2 type 1 force = 0.01205750 0.01205748 0.01205749 Total force = 0.029535 Total SCF correction = 0.000013 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123734242 -0.123734244 -0.123734243 Si 0.123734242 0.123734244 0.123734243 kinetic energy (Ekin) = 0.00101843 Ry temperature = 107.19773106 K Ekin + Etot (const) = -14.44794435 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878610 Ry Harris-Foulkes estimate = -14.44878606 Ry estimated scf accuracy < 0.00000130 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.62E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878624 Ry Harris-Foulkes estimate = -14.44878619 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878624 Ry Harris-Foulkes estimate = -14.44878624 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459537 -0.01459535 -0.01459536 atom 2 type 1 force = 0.01459537 0.01459535 0.01459536 Total force = 0.035751 Total SCF correction = 0.000012 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539655 -0.123539657 -0.123539656 Si 0.123539655 0.123539657 0.123539656 kinetic energy (Ekin) = 0.00084259 Ry temperature = 88.68993864 K Ekin + Etot (const) = -14.44794365 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859913 Ry Harris-Foulkes estimate = -14.44859909 Ry estimated scf accuracy < 0.00000104 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859924 Ry Harris-Foulkes estimate = -14.44859920 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859924 Ry Harris-Foulkes estimate = -14.44859924 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688441 -0.01688440 -0.01688440 atom 2 type 1 force = 0.01688441 0.01688440 0.01688440 Total force = 0.041358 Total SCF correction = 0.000011 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370985 -0.123370986 -0.123370986 Si 0.123370985 0.123370986 0.123370986 kinetic energy (Ekin) = 0.00065636 Ry temperature = 69.08772921 K Ekin + Etot (const) = -14.44794287 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.44E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841498 Ry Harris-Foulkes estimate = -14.44841495 Ry estimated scf accuracy < 0.00000078 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.75E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841503 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.78E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841506 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01887887 -0.01887886 -0.01887886 atom 2 type 1 force = 0.01887887 0.01887886 0.01887886 Total force = 0.046244 Total SCF correction = 0.000010 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123231293 -0.123231294 -0.123231294 Si 0.123231293 0.123231294 0.123231294 kinetic energy (Ekin) = 0.00047298 Ry temperature = 49.78469720 K Ekin + Etot (const) = -14.44794209 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.42E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824688 Ry Harris-Foulkes estimate = -14.44824686 Ry estimated scf accuracy < 0.00000053 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824692 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1879 7.4996 7.4996 ! total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824694 Ry estimated scf accuracy < 9.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02053788 -0.02053787 -0.02053787 atom 2 type 1 force = 0.02053788 0.02053787 0.02053787 Total force = 0.050307 Total SCF correction = 0.000008 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123123126 -0.123123126 -0.123123126 Si 0.123123126 0.123123126 0.123123126 kinetic energy (Ekin) = 0.00030558 Ry temperature = 32.16516980 K Ekin + Etot (const) = -14.44794135 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.81E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810697 Ry Harris-Foulkes estimate = -14.44810696 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810699 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1753 7.5061 7.5061 ! total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810701 Ry estimated scf accuracy < 5.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02182698 -0.02182698 -0.02182698 atom 2 type 1 force = 0.02182698 0.02182698 0.02182698 Total force = 0.053465 Total SCF correction = 0.000006 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123048461 -0.123048461 -0.123048461 Si 0.123048461 0.123048461 0.123048461 kinetic energy (Ekin) = 0.00016627 Ry temperature = 17.50165771 K Ekin + Etot (const) = -14.44794073 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800542 Ry Harris-Foulkes estimate = -14.44800542 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800544 Ry Harris-Foulkes estimate = -14.44800543 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1666 7.5105 7.5105 ! total energy = -14.44800544 Ry Harris-Foulkes estimate = -14.44800544 Ry estimated scf accuracy < 2.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02271889 -0.02271890 -0.02271889 atom 2 type 1 force = 0.02271889 0.02271890 0.02271889 Total force = 0.055650 Total SCF correction = 0.000004 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123008669 -0.123008668 -0.123008669 Si 0.123008669 0.123008668 0.123008669 kinetic energy (Ekin) = 0.00006516 Ry temperature = 6.85895277 K Ekin + Etot (const) = -14.44794028 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.59E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794964 Ry Harris-Foulkes estimate = -14.44794964 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.50E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1620 7.5129 7.5129 ! total energy = -14.44794964 Ry Harris-Foulkes estimate = -14.44794964 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02319839 -0.02319840 -0.02319840 atom 2 type 1 force = 0.02319839 0.02319840 0.02319840 Total force = 0.056824 Total SCF correction = 0.000010 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123004485 -0.123004484 -0.123004485 Si 0.123004485 0.123004484 0.123004485 kinetic energy (Ekin) = 0.00000962 Ry temperature = 1.01254993 K Ekin + Etot (const) = -14.44794002 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.72E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794371 Ry Harris-Foulkes estimate = -14.44794371 Ry estimated scf accuracy < 4.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02324560 -0.02324561 -0.02324560 atom 2 type 1 force = 0.02324560 0.02324561 0.02324560 Total force = 0.056940 Total SCF correction = 0.000006 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123035982 -0.123035980 -0.123035981 Si 0.123035982 0.123035980 0.123035981 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39056068 K Ekin + Etot (const) = -14.44794000 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798806 Ry Harris-Foulkes estimate = -14.44798806 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1653 7.5112 7.5112 ! total energy = -14.44798806 Ry Harris-Foulkes estimate = -14.44798806 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286399 -0.02286400 -0.02286399 atom 2 type 1 force = 0.02286399 0.02286400 0.02286399 Total force = 0.056005 Total SCF correction = 0.000008 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123102573 -0.123102571 -0.123102572 Si 0.123102573 0.123102571 0.123102572 kinetic energy (Ekin) = 0.00004786 Ry temperature = 5.03736538 K Ekin + Etot (const) = -14.44794021 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807944 Ry Harris-Foulkes estimate = -14.44807943 Ry estimated scf accuracy < 0.00000013 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807945 Ry Harris-Foulkes estimate = -14.44807945 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1730 7.5073 7.5073 ! total energy = -14.44807945 Ry Harris-Foulkes estimate = -14.44807945 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02206858 -0.02206861 -0.02206859 atom 2 type 1 force = 0.02206858 0.02206861 0.02206859 Total force = 0.054057 Total SCF correction = 0.000004 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123203039 -0.123203037 -0.123203038 Si 0.123203039 0.123203037 0.123203038 kinetic energy (Ekin) = 0.00013882 Ry temperature = 14.61171835 K Ekin + Etot (const) = -14.44794064 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.37s CPU 0.42s WALL ( 51 calls) update_pot : 0.10s CPU 0.14s WALL ( 50 calls) forces : 0.01s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.15s CPU 0.18s WALL ( 200 calls) sum_band : 0.07s CPU 0.06s WALL ( 200 calls) v_of_rho : 0.09s CPU 0.09s WALL ( 201 calls) mix_rho : 0.01s CPU 0.02s WALL ( 200 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 401 calls) cegterg : 0.14s CPU 0.16s WALL ( 200 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 514 calls) g_psi : 0.00s CPU 0.00s WALL ( 313 calls) cdiaghg : 0.02s CPU 0.02s WALL ( 413 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 514 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 614 calls) fft : 0.06s CPU 0.06s WALL ( 1005 calls) fftw : 0.08s CPU 0.11s WALL ( 4390 calls) davcio : 0.00s CPU 0.00s WALL ( 348 calls) PWSCF : 1.31s CPU 1.57s WALL This run was terminated on: 10:24:48 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/dipole.ref0000644000700200004540000005075412053145627016042 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:19:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/dipole.in Presently no symmetry can be used with electric field file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 303 303 75 29755 29755 3661 Tot 152 152 38 bravais-lattice index = 0 lattice parameter (alat) = 4.7037 a.u. unit-cell volume = 1339.2634 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 40.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 4.703667 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 9.100000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.109890 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential C 4.00 1.00000 C ( 1.00) O 6.00 1.00000 O ( 1.00) Ni 10.00 1.00000 Ni( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.0036404 0.0211954 1.5467374 ) 2 O tau( 2) = ( -0.0063486 0.0419243 2.0202197 ) 3 Ni tau( 3) = ( 0.4852738 0.0019733 0.9771355 ) 4 Ni tau( 4) = ( -0.0004955 0.7023668 0.4541784 ) 5 Ni tau( 5) = ( 0.5000000 0.0000000 0.0000000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0300 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 14878 G-vectors FFT dimensions: ( 18, 24, 150) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.67 Mb ( 1831, 24) NL pseudopotentials 1.96 Mb ( 1831, 70) Each V/rho on FFT grid 0.99 Mb ( 64800) Each G-vector array 0.11 Mb ( 14878) G-vector shells 0.03 Mb ( 4364) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.34 Mb ( 1831, 96) Each subspace H/S matrix 0.07 Mb ( 96, 96) Each matrix 0.01 Mb ( 70, 24) Arrays for rho mixing 7.91 Mb ( 64800, 8) Check: negative/imaginary core charge= -0.000145 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.212815 starting charge 39.99895, renormalised to 40.00000 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0015 Ry au, -0.0037 Debye Dipole field 0.0000 Ry au Potential amp. 0.0011 Ry Total length 40.2352 bohr Starting wfc are 26 randomized atomic wfcs total cpu time spent up to now is 2.1 secs per-process dynamical memory: 32.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.198E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -1.7289 Ry au, -4.3944 Debye Dipole field -0.0162 Ry au Potential amp. 1.3054 Ry Total length 40.2352 bohr total cpu time spent up to now is 2.5 secs total energy = -299.25862285 Ry Harris-Foulkes estimate = -300.99008409 Ry estimated scf accuracy < 3.73479315 Ry iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.34E-03, avg # of iterations = 7.0 negative rho (up, down): 0.169E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.8022 Ry au, 2.0390 Debye Dipole field 0.0075 Ry au Potential amp. -0.6057 Ry Total length 40.2352 bohr total cpu time spent up to now is 3.0 secs total energy = -295.45492742 Ry Harris-Foulkes estimate = -305.85915721 Ry estimated scf accuracy < 178.10420579 Ry iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.34E-03, avg # of iterations = 6.0 negative rho (up, down): 0.178E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.5722 Ry au, 1.4544 Debye Dipole field 0.0054 Ry au Potential amp. -0.4321 Ry Total length 40.2352 bohr total cpu time spent up to now is 3.6 secs total energy = -300.45852395 Ry Harris-Foulkes estimate = -300.89952102 Ry estimated scf accuracy < 1.77341491 Ry iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.43E-03, avg # of iterations = 2.0 negative rho (up, down): 0.184E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.4646 Ry au, 1.1808 Debye Dipole field 0.0044 Ry au Potential amp. -0.3508 Ry Total length 40.2352 bohr total cpu time spent up to now is 4.0 secs total energy = -300.51620038 Ry Harris-Foulkes estimate = -300.81079443 Ry estimated scf accuracy < 3.12798837 Ry iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.183E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.4508 Ry au, 1.1458 Debye Dipole field 0.0042 Ry au Potential amp. -0.3404 Ry Total length 40.2352 bohr total cpu time spent up to now is 4.4 secs total energy = -300.62307032 Ry Harris-Foulkes estimate = -300.76129288 Ry estimated scf accuracy < 2.99869337 Ry iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.189E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.3550 Ry au, 0.9023 Debye Dipole field 0.0033 Ry au Potential amp. -0.2680 Ry Total length 40.2352 bohr total cpu time spent up to now is 4.9 secs total energy = -300.63775470 Ry Harris-Foulkes estimate = -300.68855275 Ry estimated scf accuracy < 0.48288490 Ry iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-03, avg # of iterations = 7.0 negative rho (up, down): 0.192E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.3141 Ry au, 0.7984 Debye Dipole field 0.0029 Ry au Potential amp. -0.2372 Ry Total length 40.2352 bohr total cpu time spent up to now is 5.3 secs total energy = -300.64363739 Ry Harris-Foulkes estimate = -300.65986195 Ry estimated scf accuracy < 0.32887791 Ry iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.22E-04, avg # of iterations = 1.0 negative rho (up, down): 0.197E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.2424 Ry au, 0.6162 Debye Dipole field 0.0023 Ry au Potential amp. -0.1830 Ry Total length 40.2352 bohr total cpu time spent up to now is 5.8 secs total energy = -300.64465411 Ry Harris-Foulkes estimate = -300.65366739 Ry estimated scf accuracy < 0.15937790 Ry iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.98E-04, avg # of iterations = 1.0 negative rho (up, down): 0.201E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.1538 Ry au, 0.3910 Debye Dipole field 0.0014 Ry au Potential amp. -0.1162 Ry Total length 40.2352 bohr total cpu time spent up to now is 6.2 secs total energy = -300.64329559 Ry Harris-Foulkes estimate = -300.64795255 Ry estimated scf accuracy < 0.03775145 Ry iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.44E-05, avg # of iterations = 4.0 negative rho (up, down): 0.203E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.1209 Ry au, 0.3073 Debye Dipole field 0.0011 Ry au Potential amp. -0.0913 Ry Total length 40.2352 bohr total cpu time spent up to now is 6.6 secs total energy = -300.64320186 Ry Harris-Foulkes estimate = -300.64486838 Ry estimated scf accuracy < 0.01617893 Ry iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-05, avg # of iterations = 1.0 negative rho (up, down): 0.211E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0394 Ry au, -0.1001 Debye Dipole field -0.0004 Ry au Potential amp. 0.0297 Ry Total length 40.2352 bohr total cpu time spent up to now is 7.1 secs total energy = -300.64135735 Ry Harris-Foulkes estimate = -300.64426724 Ry estimated scf accuracy < 0.01957063 Ry iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-05, avg # of iterations = 8.0 negative rho (up, down): 0.211E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0295 Ry au, -0.0750 Debye Dipole field -0.0003 Ry au Potential amp. 0.0223 Ry Total length 40.2352 bohr total cpu time spent up to now is 7.5 secs total energy = -300.64229058 Ry Harris-Foulkes estimate = -300.64243049 Ry estimated scf accuracy < 0.00482626 Ry iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-05, avg # of iterations = 1.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0646 Ry au, -0.1642 Debye Dipole field -0.0006 Ry au Potential amp. 0.0488 Ry Total length 40.2352 bohr total cpu time spent up to now is 8.0 secs total energy = -300.64212292 Ry Harris-Foulkes estimate = -300.64234801 Ry estimated scf accuracy < 0.00780328 Ry iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-05, avg # of iterations = 4.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0717 Ry au, -0.1822 Debye Dipole field -0.0007 Ry au Potential amp. 0.0541 Ry Total length 40.2352 bohr total cpu time spent up to now is 8.4 secs total energy = -300.64220198 Ry Harris-Foulkes estimate = -300.64221326 Ry estimated scf accuracy < 0.00009295 Ry iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 4.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0719 Ry au, -0.1827 Debye Dipole field -0.0007 Ry au Potential amp. 0.0543 Ry Total length 40.2352 bohr total cpu time spent up to now is 8.9 secs total energy = -300.64220766 Ry Harris-Foulkes estimate = -300.64221222 Ry estimated scf accuracy < 0.00005671 Ry iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.42E-07, avg # of iterations = 1.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0734 Ry au, -0.1865 Debye Dipole field -0.0007 Ry au Potential amp. 0.0554 Ry Total length 40.2352 bohr total cpu time spent up to now is 9.3 secs total energy = -300.64220887 Ry Harris-Foulkes estimate = -300.64220858 Ry estimated scf accuracy < 0.00001126 Ry iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.81E-08, avg # of iterations = 1.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0728 Ry au, -0.1851 Debye Dipole field -0.0007 Ry au Potential amp. 0.0550 Ry Total length 40.2352 bohr total cpu time spent up to now is 9.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1831 PWs) bands (ev): -24.9034 -12.5086 -9.4026 -8.1080 -8.0491 -5.9132 -5.5687 -5.1286 -4.7134 -4.5137 -4.0974 -3.9103 -3.6301 -3.4118 -3.3229 -2.8828 -2.7637 -2.6940 -2.6224 -2.3161 -2.0378 -1.4666 0.1276 1.5532 the Fermi energy is -2.2147 ev ! total energy = -300.64220926 Ry Harris-Foulkes estimate = -300.64221034 Ry estimated scf accuracy < 0.00000048 Ry The total energy is the sum of the following terms: one-electron contribution = -2536.10250541 Ry hartree contribution = 1295.01806453 Ry xc contribution = -98.69297497 Ry ewald contribution = 1039.11537436 Ry electric field correction = 0.00004974 Ry smearing contrib. (-TS) = 0.01978249 Ry convergence has been achieved in 17 iterations Writing output data file pwscf.save init_run : 1.97s CPU 1.98s WALL ( 1 calls) electrons : 7.48s CPU 7.65s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.38s CPU 0.38s WALL ( 1 calls) Called by electrons: c_bands : 1.79s CPU 1.86s WALL ( 17 calls) sum_band : 2.83s CPU 2.88s WALL ( 17 calls) v_of_rho : 0.29s CPU 0.30s WALL ( 18 calls) newd : 2.27s CPU 2.31s WALL ( 18 calls) mix_rho : 0.26s CPU 0.26s WALL ( 17 calls) Called by c_bands: init_us_2 : 0.11s CPU 0.07s WALL ( 35 calls) regterg : 1.59s CPU 1.66s WALL ( 17 calls) Called by *egterg: h_psi : 1.21s CPU 1.23s WALL ( 71 calls) s_psi : 0.06s CPU 0.06s WALL ( 71 calls) g_psi : 0.04s CPU 0.04s WALL ( 53 calls) rdiaghg : 0.10s CPU 0.08s WALL ( 70 calls) Called by h_psi: add_vuspsi : 0.05s CPU 0.06s WALL ( 71 calls) General routines calbec : 0.09s CPU 0.11s WALL ( 88 calls) fft : 0.14s CPU 0.15s WALL ( 107 calls) fftw : 1.18s CPU 1.14s WALL ( 1210 calls) davcio : 0.00s CPU 0.01s WALL ( 17 calls) PWSCF : 9.59s CPU 9.83s WALL This run was terminated on: 10:19:55 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav12-kauto.in0000644000700200004540000000053512053145627020422 0ustar marsamoscm &control calculation='scf', / &system ibrav = 12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/metal-tetrahedra.in0000755000700200004540000000046012053145627017633 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='gaussian', degauss=0.02 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/paw-atom_l=2.in0000644000700200004540000000055312053145627016627 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 2, celldm(1) =26.0, nat= 1, ntyp= 1, ecutwfc=25 nbnd=9 occupations='from_input' / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES Cu 1.000 Cu.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2.0 2.0 2.0 2.0 2.0 1.0 0.0 0.0 0.0 espresso-5.0.2/PW/tests/atom.ref0000644000700200004540000002161012053145627015513 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44: 8 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.104E-04 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 20.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.63E-06, avg # of iterations = 8.0 negative rho (up, down): 0.861E-05 0.000E+00 total cpu time spent up to now is 0.7 secs total energy = -31.29442832 Ry Harris-Foulkes estimate = -31.29443512 Ry estimated scf accuracy < 0.00028054 Ry iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.68E-06, avg # of iterations = 1.0 negative rho (up, down): 0.119E-03 0.000E+00 total cpu time spent up to now is 0.8 secs total energy = -31.29444080 Ry Harris-Foulkes estimate = -31.29443336 Ry estimated scf accuracy < 0.00012407 Ry iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.07E-06, avg # of iterations = 2.0 negative rho (up, down): 0.208E-03 0.000E+00 total cpu time spent up to now is 0.9 secs total energy = -31.29445412 Ry Harris-Foulkes estimate = -31.29445131 Ry estimated scf accuracy < 0.00001255 Ry iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.09E-07, avg # of iterations = 2.0 negative rho (up, down): 0.708E-05 0.000E+00 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -23.0773 -8.4543 -8.4543 -8.4542 -0.4304 4.4889 highest occupied, lowest unoccupied level (ev): -8.4542 -0.4304 ! total energy = -31.29446109 Ry Harris-Foulkes estimate = -31.29445540 Ry estimated scf accuracy < 0.00000027 Ry The total energy is the sum of the following terms: one-electron contribution = -31.95314397 Ry hartree contribution = 17.14603573 Ry xc contribution = -6.27308185 Ry ewald contribution = -10.21427100 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.48s CPU 0.49s WALL ( 1 calls) electrons : 0.38s CPU 0.40s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.05s CPU 0.06s WALL ( 5 calls) sum_band : 0.15s CPU 0.15s WALL ( 5 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) newd : 0.09s CPU 0.10s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.04s CPU 0.05s WALL ( 5 calls) Called by *egterg: h_psi : 0.03s CPU 0.04s WALL ( 26 calls) s_psi : 0.00s CPU 0.00s WALL ( 26 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 26 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.06s CPU 0.07s WALL ( 44 calls) ffts : 0.01s CPU 0.00s WALL ( 10 calls) fftw : 0.04s CPU 0.03s WALL ( 111 calls) interpolate : 0.03s CPU 0.03s WALL ( 10 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.98s CPU 1.03s WALL This run was terminated on: 22:44: 9 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax-pot_extrap2.ref0000644000700200004540000007065212053145627020145 0ustar marsamoscm Program PWSCF v.4.0cvs starts ... Today is 23Nov2007 at 10:47:44 Ultrasoft (Vanderbilt) Pseudopotentials and PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file C.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 525.2490 ( 25271 G-vectors) FFT grid: ( 48, 48, 48) G cutoff = 350.1660 ( 13805 G-vectors) smooth grid: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.69 Mb ( 110592) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 13.50 Mb ( 110592, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003991 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.399E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 3.95 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.600E-02 0.000E+00 total cpu time spent up to now is 4.49 secs total energy = -43.00811268 Ry Harris-Foulkes estimate = -43.14060715 Ry estimated scf accuracy < 0.20026192 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 5.04 secs total energy = -42.97497349 Ry Harris-Foulkes estimate = -43.21695642 Ry estimated scf accuracy < 0.66789131 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 3.0 negative rho (up, down): 0.522E-02 0.000E+00 total cpu time spent up to now is 5.59 secs total energy = -43.09485892 Ry Harris-Foulkes estimate = -43.09784087 Ry estimated scf accuracy < 0.00901545 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.11 secs total energy = -43.09564663 Ry Harris-Foulkes estimate = -43.09615369 Ry estimated scf accuracy < 0.00127296 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 4.0 negative rho (up, down): 0.499E-02 0.000E+00 total cpu time spent up to now is 6.66 secs total energy = -43.09623471 Ry Harris-Foulkes estimate = -43.09644052 Ry estimated scf accuracy < 0.00075978 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.60E-06, avg # of iterations = 1.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 7.16 secs total energy = -43.09621832 Ry Harris-Foulkes estimate = -43.09627579 Ry estimated scf accuracy < 0.00017925 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-06, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 7.69 secs total energy = -43.09627392 Ry Harris-Foulkes estimate = -43.09627493 Ry estimated scf accuracy < 0.00000651 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.24 secs total energy = -43.09627626 Ry Harris-Foulkes estimate = -43.09627629 Ry estimated scf accuracy < 0.00000486 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-08, avg # of iterations = 1.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.75 secs total energy = -43.09627587 Ry Harris-Foulkes estimate = -43.09627649 Ry estimated scf accuracy < 0.00000148 Ry iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 9.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8978 -13.4009 -10.8541 -10.8541 -8.5056 ! total energy = -43.09627613 Ry Harris-Foulkes estimate = -43.09627656 Ry estimated scf accuracy < 0.00000049 Ry The total energy is the sum of the following terms: one-electron contribution = -64.82035765 Ry hartree contribution = 33.54953014 Ry xc contribution = -9.76964889 Ry ewald contribution = -2.05579972 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21578123 0.00000000 0.00000000 atom 2 type 1 force = 0.21578123 0.00000000 0.00000000 Total force = 0.215781 Total SCF correction = 0.000824 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.0962761273 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 1.756000000 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003991 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004101 negative rho (up, down): 0.524E-02 0.000E+00 total cpu time spent up to now is 10.17 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 negative rho (up, down): 0.715E-02 0.000E+00 total cpu time spent up to now is 10.83 secs total energy = -42.78463114 Ry Harris-Foulkes estimate = -42.89207640 Ry estimated scf accuracy < 0.17156681 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.72E-03, avg # of iterations = 2.0 negative rho (up, down): 0.635E-02 0.000E+00 total cpu time spent up to now is 11.36 secs total energy = -42.81869997 Ry Harris-Foulkes estimate = -42.82557580 Ry estimated scf accuracy < 0.01225516 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-04, avg # of iterations = 2.0 negative rho (up, down): 0.622E-02 0.000E+00 total cpu time spent up to now is 11.88 secs total energy = -42.82122315 Ry Harris-Foulkes estimate = -42.82221953 Ry estimated scf accuracy < 0.00188047 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-05, avg # of iterations = 2.0 negative rho (up, down): 0.606E-02 0.000E+00 total cpu time spent up to now is 12.40 secs total energy = -42.82168317 Ry Harris-Foulkes estimate = -42.82179628 Ry estimated scf accuracy < 0.00026711 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.67E-06, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 12.93 secs total energy = -42.82172937 Ry Harris-Foulkes estimate = -42.82173477 Ry estimated scf accuracy < 0.00001034 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-07, avg # of iterations = 3.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 13.46 secs total energy = -42.82173558 Ry Harris-Foulkes estimate = -42.82173882 Ry estimated scf accuracy < 0.00000705 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-08, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 13.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -32.0594 -13.6139 -13.6139 -13.4515 -7.8456 ! total energy = -42.82173666 Ry Harris-Foulkes estimate = -42.82173673 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -74.40958518 Ry hartree contribution = 38.06601109 Ry xc contribution = -10.35398789 Ry ewald contribution = 3.87582532 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 1.92934742 0.00000000 0.00000000 atom 2 type 1 force = -1.92934742 0.00000000 0.00000000 Total force = 1.929347 Total SCF correction = 0.000468 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.0962761273 Ry energy new = -42.8217366619 Ry CASE: energy_new > energy_old new trust radius = 0.1100204575 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.145979542 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.004101 first order charge density extrapolation Check: negative starting charge= -0.004012 negative rho (up, down): 0.862E-02 0.000E+00 total cpu time spent up to now is 14.91 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 negative rho (up, down): 0.260E-02 0.000E+00 total cpu time spent up to now is 15.60 secs total energy = -42.93668941 Ry Harris-Foulkes estimate = -43.35635149 Ry estimated scf accuracy < 0.64258834 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-03, avg # of iterations = 2.0 negative rho (up, down): 0.438E-02 0.000E+00 total cpu time spent up to now is 16.15 secs total energy = -43.08382469 Ry Harris-Foulkes estimate = -43.14710722 Ry estimated scf accuracy < 0.10578295 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-03, avg # of iterations = 2.0 negative rho (up, down): 0.460E-02 0.000E+00 total cpu time spent up to now is 16.68 secs total energy = -43.10668554 Ry Harris-Foulkes estimate = -43.11281805 Ry estimated scf accuracy < 0.01210529 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-04, avg # of iterations = 2.0 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 17.21 secs total energy = -43.10951032 Ry Harris-Foulkes estimate = -43.10956467 Ry estimated scf accuracy < 0.00028115 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-06, avg # of iterations = 4.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 17.76 secs total energy = -43.10951726 Ry Harris-Foulkes estimate = -43.10970235 Ry estimated scf accuracy < 0.00041313 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-06, avg # of iterations = 3.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 18.30 secs total energy = -43.10960506 Ry Harris-Foulkes estimate = -43.10960897 Ry estimated scf accuracy < 0.00001325 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-07, avg # of iterations = 2.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 18.83 secs total energy = -43.10960647 Ry Harris-Foulkes estimate = -43.10960698 Ry estimated scf accuracy < 0.00000117 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-08, avg # of iterations = 4.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 19.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7709 -13.3835 -11.3624 -11.3624 -8.3837 ! total energy = -43.10960686 Ry Harris-Foulkes estimate = -43.10960706 Ry estimated scf accuracy < 0.00000024 Ry The total energy is the sum of the following terms: one-electron contribution = -66.64215230 Ry hartree contribution = 34.40262330 Ry xc contribution = -9.87406628 Ry ewald contribution = -0.99601158 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01322150 0.00000000 0.00000000 atom 2 type 1 force = 0.01322150 0.00000000 0.00000000 Total force = 0.013221 Total SCF correction = 0.000453 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.0962761273 Ry energy new = -43.1096068604 Ry CASE: energy_new < energy_old new trust radius = 0.0071812643 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.138798278 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.004012 first order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.945E-02 0.000E+00 total cpu time spent up to now is 20.31 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.595E-02 0.000E+00 total cpu time spent up to now is 20.94 secs total energy = -43.08119124 Ry Harris-Foulkes estimate = -43.15711935 Ry estimated scf accuracy < 0.12212691 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.22E-03, avg # of iterations = 2.0 negative rho (up, down): 0.522E-02 0.000E+00 total cpu time spent up to now is 21.47 secs total energy = -43.10096569 Ry Harris-Foulkes estimate = -43.11709833 Ry estimated scf accuracy < 0.02686676 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-04, avg # of iterations = 4.0 negative rho (up, down): 0.536E-02 0.000E+00 total cpu time spent up to now is 22.02 secs total energy = -43.10671252 Ry Harris-Foulkes estimate = -43.11226793 Ry estimated scf accuracy < 0.01232331 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-04, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 22.54 secs total energy = -43.10945205 Ry Harris-Foulkes estimate = -43.10975738 Ry estimated scf accuracy < 0.00083452 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.35E-06, avg # of iterations = 2.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 23.07 secs total energy = -43.10962525 Ry Harris-Foulkes estimate = -43.10962956 Ry estimated scf accuracy < 0.00001246 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-07, avg # of iterations = 5.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 23.65 secs total energy = -43.10964460 Ry Harris-Foulkes estimate = -43.10964792 Ry estimated scf accuracy < 0.00000895 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.95E-08, avg # of iterations = 2.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 24.12 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8296 -13.3831 -11.3976 -11.3976 -8.3766 ! total energy = -43.10964553 Ry Harris-Foulkes estimate = -43.10964574 Ry estimated scf accuracy < 0.00000033 Ry The total energy is the sum of the following terms: one-electron contribution = -66.76721975 Ry hartree contribution = 34.46197995 Ry xc contribution = -9.88153398 Ry ewald contribution = -0.92287175 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00299315 0.00000000 0.00000000 atom 2 type 1 force = -0.00299315 0.00000000 0.00000000 Total force = 0.002993 Total SCF correction = 0.000384 SCF correction compared to forces is too large, reduce conv_thr number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1096068604 Ry energy new = -43.1096455319 Ry CASE: energy_new < energy_old new trust radius = 0.0013256281 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 2.140123906 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.004013 first order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 25.11 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 25.65 secs total energy = -43.10963814 Ry Harris-Foulkes estimate = -43.10966256 Ry estimated scf accuracy < 0.00004176 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-07, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 26.18 secs total energy = -43.10964654 Ry Harris-Foulkes estimate = -43.10964861 Ry estimated scf accuracy < 0.00000376 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-08, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 26.75 secs total energy = -43.10964723 Ry Harris-Foulkes estimate = -43.10964775 Ry estimated scf accuracy < 0.00000100 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 27.29 secs total energy = -43.10964747 Ry Harris-Foulkes estimate = -43.10964752 Ry estimated scf accuracy < 0.00000013 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 27.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8187 -13.3827 -11.3907 -11.3907 -8.3785 ! total energy = -43.10964750 Ry Harris-Foulkes estimate = -43.10964750 Ry estimated scf accuracy < 9.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -66.74255037 Ry hartree contribution = 34.44915395 Ry xc contribution = -9.87983954 Ry ewald contribution = -0.93641154 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00006627 0.00000000 0.00000000 atom 2 type 1 force = 0.00006627 0.00000000 0.00000000 Total force = 0.000066 Total SCF correction = 0.000004 bfgs converged in 5 scf cycles and 3 bfgs steps End of BFGS Geometry Optimization Final energy = -43.1096474986 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 ATOMIC_POSITIONS (bohr) C 2.140123906 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save PWSCF : 28.22s CPU time, 31.21s wall time init_run : 3.52s CPU electrons : 19.92s CPU ( 5 calls, 3.984 s avg) update_pot : 1.36s CPU ( 4 calls, 0.341 s avg) forces : 1.65s CPU ( 5 calls, 0.331 s avg) electrons : 19.92s CPU ( 5 calls, 3.984 s avg) c_bands : 3.97s CPU ( 37 calls, 0.107 s avg) sum_band : 6.60s CPU ( 37 calls, 0.178 s avg) v_of_rho : 2.42s CPU ( 42 calls, 0.058 s avg) v_h : 0.61s CPU ( 42 calls, 0.014 s avg) v_xc : 1.81s CPU ( 42 calls, 0.043 s avg) newd : 5.03s CPU ( 42 calls, 0.120 s avg) mix_rho : 1.09s CPU ( 37 calls, 0.029 s avg) c_bands : 3.97s CPU ( 37 calls, 0.107 s avg) init_us_2 : 0.15s CPU ( 75 calls, 0.002 s avg) cegterg : 3.79s CPU ( 37 calls, 0.102 s avg) sum_band : 6.60s CPU ( 37 calls, 0.178 s avg) becsum : 0.00s CPU ( 37 calls, 0.000 s avg) addusdens : 3.98s CPU ( 37 calls, 0.108 s avg) wfcrot : 0.04s CPU cegterg : 3.79s CPU ( 37 calls, 0.102 s avg) h_psi : 3.33s CPU ( 146 calls, 0.023 s avg) g_psi : 0.04s CPU ( 108 calls, 0.000 s avg) diaghg : 0.04s CPU ( 141 calls, 0.000 s avg) update : 0.08s CPU ( 108 calls, 0.001 s avg) last : 0.05s CPU ( 42 calls, 0.001 s avg) h_psi : 3.33s CPU ( 146 calls, 0.023 s avg) init : 0.01s CPU ( 146 calls, 0.000 s avg) add_vuspsi : 0.10s CPU ( 146 calls, 0.001 s avg) s_psi : 0.11s CPU ( 146 calls, 0.001 s avg) General routines ccalbec : 0.03s CPU ( 37 calls, 0.001 s avg) cft3 : 3.86s CPU ( 335 calls, 0.012 s avg) cft3s : 3.53s CPU ( 920 calls, 0.004 s avg) interpolate : 1.64s CPU ( 79 calls, 0.021 s avg) davcio : 0.00s CPU ( 37 calls, 0.000 s avg) espresso-5.0.2/PW/tests/lsda-cg.ref0000644000700200004540000003676712053145627016110 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:25 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-cg.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 9, 9) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.3 total cpu time spent up to now is 1.0 secs total energy = -85.31475200 Ry Harris-Foulkes estimate = -85.36277020 Ry estimated scf accuracy < 0.90659880 Ry total magnetization = 1.99 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 9.07E-03, avg # of iterations = 3.3 total cpu time spent up to now is 1.1 secs total energy = -85.53307360 Ry Harris-Foulkes estimate = -85.84527890 Ry estimated scf accuracy < 0.95698796 Ry total magnetization = 0.69 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 9.07E-03, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -85.70726735 Ry Harris-Foulkes estimate = -85.67604098 Ry estimated scf accuracy < 0.04526506 Ry total magnetization = 1.01 Bohr mag/cell absolute magnetization = 1.11 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 4.53E-04, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -85.72319948 Ry Harris-Foulkes estimate = -85.72295677 Ry estimated scf accuracy < 0.00045139 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 4.51E-06, avg # of iterations = 3.9 total cpu time spent up to now is 1.5 secs total energy = -85.72335534 Ry Harris-Foulkes estimate = -85.72327120 Ry estimated scf accuracy < 0.00006395 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 6.40E-07, avg # of iterations = 3.3 total cpu time spent up to now is 1.7 secs total energy = -85.72339292 Ry Harris-Foulkes estimate = -85.72337741 Ry estimated scf accuracy < 0.00008277 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 6.40E-07, avg # of iterations = 3.1 total cpu time spent up to now is 1.8 secs total energy = -85.72339913 Ry Harris-Foulkes estimate = -85.72339226 Ry estimated scf accuracy < 0.00001807 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.81E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.9 secs total energy = -85.72339935 Ry Harris-Foulkes estimate = -85.72339662 Ry estimated scf accuracy < 0.00000547 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 5.47E-08, avg # of iterations = 3.0 total cpu time spent up to now is 2.1 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3750 12.4373 12.7323 12.7323 13.8399 13.8399 37.2307 41.0671 43.4115 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2056 12.0604 12.6971 13.0396 13.7423 14.7847 28.9044 34.6221 41.7709 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3034 12.3170 12.8642 13.0985 14.6703 16.6317 22.1064 35.6778 38.1892 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9449 11.9811 12.9286 13.0719 13.6676 14.1614 33.2111 38.4341 38.7924 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0138 11.3041 12.9384 13.7119 14.5662 14.8881 29.9536 33.4465 34.2670 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0404 11.3661 12.4804 13.8999 14.6520 20.4137 23.8800 27.7788 30.1429 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6940 11.8161 12.2430 13.4380 14.3023 16.5378 25.7640 31.6196 34.9275 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3601 10.8355 13.8885 14.3643 14.7570 17.9868 26.7277 28.0811 31.8606 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6583 12.6903 12.6903 13.2183 14.4200 14.4200 24.6748 38.8452 41.6264 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0757 11.7367 12.4051 13.4403 14.3578 19.0764 22.8045 29.0405 36.4042 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4364 13.2114 13.5313 13.5313 14.5911 14.5911 37.3665 41.0787 43.5294 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3440 12.7275 13.4192 13.7984 14.5376 15.5710 29.1563 34.7855 41.8195 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8024 12.9457 13.6006 13.6525 15.5246 17.0815 22.5344 35.7966 38.3365 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0203 12.7147 13.6857 13.8685 14.4267 14.9402 33.4084 38.5932 38.8734 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2528 11.9893 13.5738 14.5145 15.3863 15.5734 30.1592 33.6289 34.4024 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5592 11.9926 13.1362 14.6382 15.5432 20.7579 24.1571 28.0298 30.3200 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0650 12.4039 12.9291 14.1813 15.1343 17.1407 26.0486 31.8049 35.0926 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8292 11.4955 14.5939 15.1560 15.6351 18.3037 27.0259 28.2535 31.9595 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9861 13.4281 13.4281 13.5642 15.2534 15.2534 25.0150 38.8318 41.7803 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6415 12.2606 13.0592 14.1777 15.2196 19.4772 23.1584 29.2606 36.5524 the Fermi energy is 15.3085 ev ! total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 3.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30207416 Ry hartree contribution = 14.33697666 Ry xc contribution = -29.60844760 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00004213 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 0.77s CPU 0.77s WALL ( 1 calls) electrons : 1.22s CPU 1.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.65s CPU 0.65s WALL ( 9 calls) sum_band : 0.30s CPU 0.32s WALL ( 9 calls) v_of_rho : 0.05s CPU 0.05s WALL ( 10 calls) newd : 0.18s CPU 0.19s WALL ( 10 calls) mix_rho : 0.02s CPU 0.01s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 380 calls) ccgdiagg : 0.49s CPU 0.49s WALL ( 180 calls) wfcrot : 0.16s CPU 0.17s WALL ( 180 calls) Called by *cgdiagg: h_psi : 0.54s CPU 0.52s WALL ( 4110 calls) s_psi : 0.03s CPU 0.04s WALL ( 8040 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 180 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.03s WALL ( 4110 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 8220 calls) fft : 0.04s CPU 0.04s WALL ( 160 calls) ffts : 0.00s CPU 0.00s WALL ( 38 calls) fftw : 0.44s CPU 0.38s WALL ( 12720 calls) interpolate : 0.03s CPU 0.01s WALL ( 38 calls) davcio : 0.00s CPU 0.01s WALL ( 560 calls) PWSCF : 2.11s CPU 2.18s WALL This run was terminated on: 10:24:27 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav5-kauto.in0000644000700200004540000000046312053145627020344 0ustar marsamoscm &control calculation='scf', / &system ibrav = 5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/vdw2.in0000644000700200004540000000103012053145627015261 0ustar marsamoscm&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' input_dft='vdw-DF2' / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.0.2/PW/tests/lattice-ibrav6-kauto.in0000644000700200004540000000046412053145627020346 0ustar marsamoscm &control calculation='scf', / &system ibrav = 6, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/scf-k0.ref0000644000700200004540000002200612053145627015636 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-k0.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 37 1459 1459 169 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 169, 4) NL pseudopotentials 0.02 Mb ( 169, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 169, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.50030879 Ry Harris-Foulkes estimate = -14.62966254 Ry estimated scf accuracy < 0.33442921 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51760980 Ry Harris-Foulkes estimate = -14.51959697 Ry estimated scf accuracy < 0.01046166 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.51874191 Ry Harris-Foulkes estimate = -14.51870195 Ry estimated scf accuracy < 0.00024021 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875443 Ry Harris-Foulkes estimate = -14.51875443 Ry estimated scf accuracy < 0.00000149 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-08, avg # of iterations = 5.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875979 Ry Harris-Foulkes estimate = -14.51875998 Ry estimated scf accuracy < 0.00000117 Ry iteration # 6 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): -4.9980 7.2916 7.2916 7.2916 ! total energy = -14.51875953 Ry Harris-Foulkes estimate = -14.51875981 Ry estimated scf accuracy < 0.00000055 Ry The total energy is the sum of the following terms: one-electron contribution = 5.79469692 Ry hartree contribution = 1.63732832 Ry xc contribution = -5.05102619 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 6 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 415.07 0.00282158 0.00000000 0.00000000 415.07 0.00 0.00 0.00000000 0.00282158 0.00000000 0.00 415.07 0.00 0.00000000 0.00000000 0.00282158 0.00 0.00 415.07 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 7 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) cegterg : 0.00s CPU 0.01s WALL ( 6 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 19 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 18 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 19 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 20 calls) fft : 0.00s CPU 0.00s WALL ( 30 calls) fftw : 0.00s CPU 0.00s WALL ( 170 calls) davcio : 0.00s CPU 0.00s WALL ( 6 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/berry.in20000644000700200004540000000117612053145627015617 0ustar marsamoscm &control calculation = 'nscf' lberry = .true. gdir = 3 nppstr = 7 / &system ibrav = 1 celldm(1) = 7.3699 nat = 5 ntyp = 3 nbnd = 24 ecutwfc = 25.0 ecutrho =200.0 / &electrons / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 7 1 1 1 espresso-5.0.2/PW/tests/paw-atom_lda.in0000644000700200004540000000057012053145627016754 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nbnd = 6 / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES O 1.000 O.pz-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2. 1.333333333333 1.333333333333 1.333333333333 0. 0. espresso-5.0.2/PW/tests/scf-mixing_localTF.ref0000644000700200004540000002127712053145627020234 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_localTF.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 local-TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79817013 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79291170 Ry Harris-Foulkes estimate = -15.79905128 Ry estimated scf accuracy < 0.01602833 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79439591 Ry Harris-Foulkes estimate = -15.79436196 Ry estimated scf accuracy < 0.00016444 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449403 Ry Harris-Foulkes estimate = -15.79449948 Ry estimated scf accuracy < 0.00002127 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8712 2.3780 5.5356 5.5356 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9178 -0.0666 2.6785 4.0342 ! total energy = -15.79449567 Ry Harris-Foulkes estimate = -15.79449573 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83344590 Ry hartree contribution = 1.08483968 Ry xc contribution = -4.81302267 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.04s CPU 0.04s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) ffts : 0.00s CPU 0.00s WALL ( 66 calls) fftw : 0.01s CPU 0.01s WALL ( 314 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.12s CPU 0.12s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/eval_infix.ref0000644000700200004540000002201412053145627016676 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/eval_infix.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.14s CPU 0.18s WALL This run was terminated on: 10:22:13 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax2.in0000755000700200004540000000136112053145627015606 0ustar marsamoscm&CONTROL calculation = "relax", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS mixing_beta = 0.3D0 / &IONS / ATOMIC_SPECIES Al 1.0 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 espresso-5.0.2/PW/tests/lattice-ibrav12.ref0000644000700200004540000001761412053145627017455 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav12.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1177 1177 287 50347 50347 6249 Tot 589 589 144 bravais-lattice index = 12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 0.000000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25174 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3125, 1) NL pseudopotentials 0.00 Mb ( 3125, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.19 Mb ( 25174) G-vector shells 0.07 Mb ( 9783) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 3125, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004355 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.435E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22008153 Ry Harris-Foulkes estimate = -2.28977160 Ry estimated scf accuracy < 0.13234381 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.272E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23119026 Ry Harris-Foulkes estimate = -2.23161151 Ry estimated scf accuracy < 0.00094621 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.73E-05, avg # of iterations = 2.0 negative rho (up, down): 0.462E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23153690 Ry Harris-Foulkes estimate = -2.23153849 Ry estimated scf accuracy < 0.00001475 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.38E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3125 PWs) bands (ev): -10.3196 ! total energy = -2.23153850 Ry Harris-Foulkes estimate = -2.23153824 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69410922 Ry hartree contribution = 1.94525784 Ry xc contribution = -1.31174629 Ry ewald contribution = 0.82905917 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.08s CPU 0.09s WALL ( 1 calls) electrons : 0.15s CPU 0.17s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.25s CPU 0.29s WALL This run was terminated on: 10:22:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-ncpp.ref0000644000700200004540000002200312053145627016261 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-ncpp.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PZ ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.bhs MD5 check sum: a27a73b327aba9ec6bb45d294069e23f Pseudo is Norm-conserving, Zval = 4.0 From published tables, or generated by old fitcar code (analytical format) Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99900, renormalised to 8.00000 Starting wfc are 18 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.96E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.83637767 Ry Harris-Foulkes estimate = -15.85758351 Ry estimated scf accuracy < 0.06475710 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.83927443 Ry Harris-Foulkes estimate = -15.83963130 Ry estimated scf accuracy < 0.00242740 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.03E-05, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs total energy = -15.83975392 Ry Harris-Foulkes estimate = -15.83977528 Ry estimated scf accuracy < 0.00006147 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.83976471 Ry Harris-Foulkes estimate = -15.83976620 Ry estimated scf accuracy < 0.00000391 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.89E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.9627 2.3059 5.4686 5.4686 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -3.0107 -0.1465 2.6235 3.9834 ! total energy = -15.83976536 Ry Harris-Foulkes estimate = -15.83976538 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 4.78714168 Ry hartree contribution = 1.08788645 Ry xc contribution = -4.81503490 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -54.09 -0.00036772 0.00000000 0.00000000 -54.09 0.00 0.00 0.00000000 -0.00036772 0.00000000 0.00 -54.09 0.00 0.00000000 0.00000000 -0.00036772 0.00 0.00 -54.09 Writing output data file pwscf.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 38 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.02s CPU 0.01s WALL ( 360 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav7.ref0000644000700200004540000001752712053145627017404 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav7.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 885 885 215 16959 16959 2103 Tot 443 443 108 bravais-lattice index = 7 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.500000 1.000000 ) a(2) = ( 0.500000 0.500000 1.000000 ) a(3) = ( -0.500000 -0.500000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -1.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.500000 ) b(3) = ( -1.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 8480 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1052, 1) NL pseudopotentials 0.00 Mb ( 1052, 0) Each V/rho on FFT grid 0.98 Mb ( 64000) Each G-vector array 0.06 Mb ( 8480) G-vector shells 0.00 Mb ( 340) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 1052, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.81 Mb ( 64000, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000116 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.116E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 14.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.170E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22182261 Ry Harris-Foulkes estimate = -2.29099633 Ry estimated scf accuracy < 0.13158447 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.58E-03, avg # of iterations = 1.0 negative rho (up, down): 0.229E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23321538 Ry Harris-Foulkes estimate = -2.23358275 Ry estimated scf accuracy < 0.00084278 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23368004 Ry Harris-Foulkes estimate = -2.23368237 Ry estimated scf accuracy < 0.00002200 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -10.2166 ! total energy = -2.23368207 Ry Harris-Foulkes estimate = -2.23368138 Ry estimated scf accuracy < 0.00000066 Ry The total energy is the sum of the following terms: one-electron contribution = -2.79782855 Ry hartree contribution = 1.50137653 Ry xc contribution = -1.30761948 Ry ewald contribution = 0.37038944 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.09s CPU 0.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.01s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.15s CPU 0.16s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U.ref0000644000700200004540000006524612053145627015530 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:23:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lda+U.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 2.4 secs per-process dynamical memory: 35.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.4 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.1236738 atom 3 spin 1 eigenvalues: 0.9970989 0.9970989 1.0025910 1.0025910 1.0030644 eigenvectors 1 -0.3789127 -0.2579907 0.4910036 0.7031973 0.2330128 2 -0.7031973 0.4180111 0.0144210 -0.3789127 0.4324321 3 -0.4388606 -0.6242316 0.1484642 -0.4115095 -0.4757673 4 0.4115095 -0.1889685 0.6350847 -0.4388606 0.4461161 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1554230 0.1554230 0.2572383 0.2765727 0.2765727 eigenvectors 1 0.2412029 -0.0515430 0.0688967 -0.9664971 0.0173537 2 -0.9664971 -0.0497967 -0.0197392 -0.2412029 -0.0695359 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0636250 0.1904648 -0.7800244 -0.0604686 -0.5895596 5 -0.0604686 0.7907297 -0.2304175 -0.0636250 0.5603122 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.270 -0.006 -0.007 0.006 -0.004 -0.006 0.270 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.270 atom 4 Tr[ns(na)]= 6.1234246 atom 4 spin 1 eigenvalues: 0.1554052 0.1554052 0.2569412 0.2766731 0.2766731 eigenvectors 1 0.0647646 -0.0595231 0.0641761 -0.9940434 0.0046531 2 -0.9940434 -0.0397385 -0.0316792 -0.0647646 -0.0714178 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0775556 -0.0315929 -0.6880571 -0.0408453 -0.7196500 5 0.0408453 -0.8127401 0.4337303 0.0775556 -0.3790098 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.007 0.006 -0.004 -0.006 0.269 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 spin 2 eigenvalues: 0.9970655 0.9970655 1.0025690 1.0025690 1.0030580 eigenvectors 1 -0.3563734 -0.2705816 0.4884999 0.7167029 0.2179184 2 -0.7167029 0.4078508 0.0304051 -0.3563734 0.4382559 3 -0.4526410 -0.6178044 0.1243193 -0.3930027 -0.4934850 4 -0.3930027 0.2131379 -0.6416032 0.4526410 -0.4284653 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 12.2470983 exit write_ns total cpu time spent up to now is 3.5 secs total energy = -173.87029877 Ry Harris-Foulkes estimate = -174.93549708 Ry estimated scf accuracy < 2.39735328 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.53 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.2 total cpu time spent up to now is 4.5 secs total energy = -174.41311609 Ry Harris-Foulkes estimate = -174.42300337 Ry estimated scf accuracy < 0.16428207 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 7.23 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.87E-04, avg # of iterations = 3.2 total cpu time spent up to now is 5.5 secs total energy = -174.43826806 Ry Harris-Foulkes estimate = -174.42959938 Ry estimated scf accuracy < 0.05120336 Ry total magnetization = -0.16 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.83E-04, avg # of iterations = 1.9 total cpu time spent up to now is 6.5 secs total energy = -174.44522463 Ry Harris-Foulkes estimate = -174.45883685 Ry estimated scf accuracy < 0.30468746 Ry total magnetization = 0.81 Bohr mag/cell absolute magnetization = 7.34 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.83E-04, avg # of iterations = 1.5 total cpu time spent up to now is 7.8 secs total energy = -174.45733297 Ry Harris-Foulkes estimate = -174.45515204 Ry estimated scf accuracy < 0.01249444 Ry total magnetization = 0.11 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.46E-05, avg # of iterations = 1.2 total cpu time spent up to now is 8.7 secs total energy = -174.46143722 Ry Harris-Foulkes estimate = -174.45796196 Ry estimated scf accuracy < 0.00588107 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-05, avg # of iterations = 1.8 total cpu time spent up to now is 9.7 secs total energy = -174.46339897 Ry Harris-Foulkes estimate = -174.46308242 Ry estimated scf accuracy < 0.01162989 Ry total magnetization = 0.12 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-05, avg # of iterations = 1.6 total cpu time spent up to now is 10.7 secs total energy = -174.46877812 Ry Harris-Foulkes estimate = -174.47148003 Ry estimated scf accuracy < 0.01256081 Ry total magnetization = 0.18 Bohr mag/cell absolute magnetization = 7.26 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-05, avg # of iterations = 1.0 negative rho (up, down): 0.285E-03 0.190E-03 total cpu time spent up to now is 11.6 secs total energy = -174.46630822 Ry Harris-Foulkes estimate = -174.46978170 Ry estimated scf accuracy < 0.00120764 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 7.29 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.31E-06, avg # of iterations = 2.1 total cpu time spent up to now is 12.8 secs total energy = -174.47108027 Ry Harris-Foulkes estimate = -174.47035464 Ry estimated scf accuracy < 0.00256957 Ry total magnetization = -0.05 Bohr mag/cell absolute magnetization = 7.23 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.31E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.8 secs total energy = -174.47141318 Ry Harris-Foulkes estimate = -174.47125495 Ry estimated scf accuracy < 0.00033492 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.24 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 1.1 total cpu time spent up to now is 14.7 secs total energy = -174.47151079 Ry Harris-Foulkes estimate = -174.47143566 Ry estimated scf accuracy < 0.00014909 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.32E-07, avg # of iterations = 1.0 total cpu time spent up to now is 15.7 secs total energy = -174.47154399 Ry Harris-Foulkes estimate = -174.47153055 Ry estimated scf accuracy < 0.00002944 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.05E-07, avg # of iterations = 2.5 total cpu time spent up to now is 16.7 secs total energy = -174.47155632 Ry Harris-Foulkes estimate = -174.47155719 Ry estimated scf accuracy < 0.00000303 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 4.0 total cpu time spent up to now is 18.0 secs total energy = -174.47156024 Ry Harris-Foulkes estimate = -174.47155984 Ry estimated scf accuracy < 0.00000310 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 1.0 total cpu time spent up to now is 18.9 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.8360343 atom 3 spin 1 eigenvalues: 0.9932357 0.9932357 1.0010265 1.0010265 1.0025991 eigenvectors 1 0.3061464 0.1617729 -0.2404772 -0.9033716 -0.0787043 2 -0.9033716 0.1842795 0.0479597 -0.3061464 0.2322392 3 0.2606496 0.6729983 0.0029238 0.1491842 0.6759221 4 -0.1491842 0.3919318 -0.7787995 0.2606496 -0.3868677 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.994 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1327492 0.2618794 0.2618794 0.5942015 0.5942015 eigenvectors 1 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 2 -0.2813190 -0.3144022 0.2159589 -0.8750323 -0.0984433 3 0.8750323 0.0678477 0.2383564 -0.2813190 0.3062041 4 0.2783942 0.1946378 -0.7250115 -0.2787018 -0.5303738 5 0.2787018 -0.7247971 0.1938373 0.2783942 -0.5309598 occupations 0.313 -0.049 -0.049 0.000 -0.098 -0.049 0.406 -0.137 -0.085 0.137 -0.049 -0.137 0.406 0.085 0.137 0.000 -0.085 0.085 0.313 0.000 -0.098 0.137 0.137 0.000 0.406 atom 4 Tr[ns(na)]= 6.8370729 atom 4 spin 1 eigenvalues: 0.1328165 0.2620011 0.2620011 0.5945618 0.5945618 eigenvectors 1 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 2 -0.5401704 -0.3199249 0.1308699 -0.7436365 -0.1890551 3 0.7436365 -0.0335933 0.2938598 -0.5401704 0.2602665 4 0.3028242 0.1273379 -0.7041597 -0.2520282 -0.5768218 5 0.2520282 -0.7395751 0.2595097 0.3028242 -0.4800654 occupations 0.314 -0.049 -0.049 0.000 -0.098 -0.049 0.406 -0.137 -0.085 0.137 -0.049 -0.137 0.406 0.085 0.137 0.000 -0.085 0.085 0.314 0.000 -0.098 0.137 0.137 0.000 0.406 atom 4 spin 2 eigenvalues: 0.9932418 0.9932418 1.0010250 1.0010250 1.0025970 eigenvectors 1 0.3311840 0.1567744 -0.2420379 -0.8943639 -0.0852635 2 -0.8943639 0.1889675 0.0412869 -0.3311840 0.2302544 3 0.2620385 0.6701286 0.0084187 0.1475339 0.6785473 4 -0.1475339 0.3966200 -0.7786584 0.2620385 -0.3820384 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.994 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 13.6731072 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7966 -7.5695 1.9777 3.8710 3.8710 5.8127 5.8127 6.4585 7.7601 7.7782 7.7782 8.5012 8.5012 10.5630 10.5630 11.5453 12.6362 13.4445 13.4445 15.3609 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0952 -7.4191 2.6433 3.4869 3.9693 4.1092 5.5734 5.7120 6.2469 6.3354 7.3192 8.6815 9.1439 10.3453 11.4523 12.9772 13.2288 13.3139 17.3246 17.6727 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9358 -7.5700 1.9093 3.9478 4.0328 4.1617 5.2325 6.3269 6.5889 6.5996 6.8790 8.6436 8.9526 10.5476 11.5331 12.9834 13.5077 13.6739 15.3617 16.6743 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2802 -8.1991 3.1154 3.9954 3.9954 5.2645 5.8609 5.8609 6.9312 6.9312 6.9541 9.4085 9.4085 10.4766 10.4766 12.2809 13.1935 13.1935 14.0573 14.4192 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7968 -7.5696 1.9769 3.8695 3.8695 5.8101 5.8101 6.4571 7.7599 7.7781 7.7781 8.5008 8.5008 10.5634 10.5634 11.5452 12.6379 13.4463 13.4463 15.3609 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0954 -7.4191 2.6423 3.4857 3.9691 4.1077 5.5714 5.7120 6.2470 6.3325 7.3173 8.6804 9.1428 10.3456 11.4528 12.9790 13.2310 13.3161 17.3243 17.6727 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9359 -7.5702 1.9084 3.9464 4.0315 4.1616 5.2307 6.3241 6.5887 6.5994 6.8769 8.6428 8.9518 10.5478 11.5336 12.9852 13.5097 13.6759 15.3616 16.6741 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2804 -8.1992 3.1141 3.9937 3.9937 5.2647 5.8582 5.8582 6.9315 6.9315 6.9530 9.4076 9.4076 10.4770 10.4770 12.2824 13.1956 13.1956 14.0570 14.4194 the Fermi energy is 10.5911 ev ! total energy = -174.47156021 Ry Harris-Foulkes estimate = -174.47156042 Ry estimated scf accuracy < 0.00000076 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56913720 Ry hartree contribution = 27.93986913 Ry xc contribution = -65.78098766 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.31375716 Ry smearing contrib. (-TS) = -0.00404068 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell convergence has been achieved in 16 iterations Writing output data file pwscf.save init_run : 2.33s CPU 2.33s WALL ( 1 calls) electrons : 15.85s CPU 16.47s WALL ( 1 calls) Called by init_run: wfcinit : 0.23s CPU 0.23s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 7.90s CPU 8.00s WALL ( 16 calls) sum_band : 4.40s CPU 4.49s WALL ( 16 calls) v_of_rho : 0.72s CPU 0.72s WALL ( 17 calls) newd : 2.24s CPU 2.26s WALL ( 17 calls) mix_rho : 0.25s CPU 0.25s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.21s CPU 0.20s WALL ( 272 calls) cegterg : 7.46s CPU 7.49s WALL ( 128 calls) Called by *egterg: h_psi : 6.30s CPU 6.29s WALL ( 373 calls) s_psi : 0.24s CPU 0.22s WALL ( 381 calls) g_psi : 0.06s CPU 0.09s WALL ( 237 calls) cdiaghg : 0.34s CPU 0.34s WALL ( 365 calls) Called by h_psi: add_vuspsi : 0.26s CPU 0.24s WALL ( 373 calls) General routines calbec : 0.48s CPU 0.53s WALL ( 1010 calls) fft : 0.57s CPU 0.61s WALL ( 279 calls) ffts : 0.05s CPU 0.05s WALL ( 66 calls) fftw : 5.09s CPU 5.12s WALL ( 13896 calls) interpolate : 0.26s CPU 0.28s WALL ( 66 calls) davcio : 0.00s CPU 0.09s WALL ( 800 calls) PWSCF : 18.36s CPU 19.04s WALL This run was terminated on: 10:24: 1 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav14-kauto.ref0000644000700200004540000002040712053145627020572 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav14-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 315 47345 47345 6849 bravais-lattice index = 14 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4282 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.200000 celldm(6)= 0.300000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698857 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 4 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.0960928 0.0725006), wk = 0.5000000 k( 2) = ( 0.2500000 0.0960928 -0.1828886), wk = 0.5000000 k( 3) = ( 0.2500000 -0.2533355 0.0874684), wk = 0.5000000 k( 4) = ( 0.2500000 -0.2533355 -0.1679207), wk = 0.5000000 Dense grid: 47345 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.09 Mb ( 5923, 1) NL pseudopotentials 0.00 Mb ( 5923, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.36 Mb ( 47345) G-vector shells 0.10 Mb ( 13384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.36 Mb ( 5923, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.115E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22010884 Ry Harris-Foulkes estimate = -2.29036862 Ry estimated scf accuracy < 0.13328676 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23111748 Ry Harris-Foulkes estimate = -2.23157298 Ry estimated scf accuracy < 0.00100715 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.310E-04 0.000E+00 total cpu time spent up to now is 0.4 secs total energy = -2.23142234 Ry Harris-Foulkes estimate = -2.23142397 Ry estimated scf accuracy < 0.00001234 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.17E-07, avg # of iterations = 1.2 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.2500 0.0961 0.0725 ( 5923 PWs) bands (ev): -10.2827 k = 0.2500 0.0961-0.1829 ( 5918 PWs) bands (ev): -10.2822 k = 0.2500-0.2533 0.0875 ( 5918 PWs) bands (ev): -10.2823 k = 0.2500-0.2533-0.1679 ( 5922 PWs) bands (ev): -10.2825 ! total energy = -2.23142358 Ry Harris-Foulkes estimate = -2.23142354 Ry estimated scf accuracy < 0.00000044 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65347203 Ry hartree contribution = 1.92961073 Ry xc contribution = -1.31444021 Ry ewald contribution = 0.80687794 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.12s CPU 0.13s WALL ( 1 calls) electrons : 0.31s CPU 0.32s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.03s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.12s WALL ( 4 calls) sum_band : 0.06s CPU 0.06s WALL ( 4 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 5 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.11s CPU 0.12s WALL ( 16 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 45 calls) g_psi : 0.02s CPU 0.01s WALL ( 25 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 41 calls) Called by h_psi: General routines fft : 0.01s CPU 0.02s WALL ( 19 calls) fftw : 0.10s CPU 0.11s WALL ( 114 calls) davcio : 0.00s CPU 0.00s WALL ( 52 calls) PWSCF : 0.47s CPU 0.49s WALL This run was terminated on: 10:22:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav8.in0000644000700200004540000000046712053145627017232 0ustar marsamoscm &control calculation='scf', / &system ibrav = 8, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/vc-relax3.ref0000644000700200004540000043750612053145627016376 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:29:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax3.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 0.9 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.9 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.1 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810281 Ry hartree contribution = 1.22165926 Ry xc contribution = -6.50440081 Ry ewald contribution = -27.88552884 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -25.4401221801 Ry new trust radius = 0.1298066934 bohr new conv_thr = 0.0000001000 Ry new unit-cell volume = 273.57162 a.u.^3 ( 40.53913 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.030899271 -0.007085701 -0.005022645 0.504319227 0.899146860 -0.005022223 0.504319091 0.293042380 0.850068704 ATOMIC_POSITIONS (crystal) As 0.282619597 0.282619664 0.282619694 As -0.282619597 -0.282619664 -0.282619694 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1219853 0.0708814 0.0502421), wk = 0.0625000 k( 2) = ( 0.1234184 0.0717139 0.3431988), wk = 0.0625000 k( 3) = ( 0.1191193 0.0692163 -0.5356713), wk = 0.0625000 k( 4) = ( 0.1205523 0.0700488 -0.2427146), wk = 0.0625000 k( 5) = ( 0.1234183 0.3475815 -0.0459943), wk = 0.0625000 k( 6) = ( 0.1248513 0.3484140 0.2469624), wk = 0.0625000 k( 7) = ( 0.1205522 0.3459164 -0.6319077), wk = 0.0625000 k( 8) = ( 0.1219853 0.3467489 -0.3389510), wk = 0.0625000 k( 9) = ( 0.1191194 -0.4825188 0.2427148), wk = 0.0625000 k( 10) = ( 0.1205524 -0.4816862 0.5356715), wk = 0.0625000 k( 11) = ( 0.1162533 -0.4841839 -0.3431986), wk = 0.0625000 k( 12) = ( 0.1176863 -0.4833513 -0.0502419), wk = 0.0625000 k( 13) = ( 0.1205524 -0.2058187 0.1464784), wk = 0.0625000 k( 14) = ( 0.1219854 -0.2049861 0.4394351), wk = 0.0625000 k( 15) = ( 0.1176863 -0.2074838 -0.4394349), wk = 0.0625000 k( 16) = ( 0.1191193 -0.2066512 -0.1464783), wk = 0.0625000 k( 17) = ( 0.3630900 -0.0648885 -0.0459941), wk = 0.0625000 k( 18) = ( 0.3645230 -0.0640559 0.2469626), wk = 0.0625000 k( 19) = ( 0.3602239 -0.0665536 -0.6319075), wk = 0.0625000 k( 20) = ( 0.3616570 -0.0657210 -0.3389508), wk = 0.0625000 k( 21) = ( 0.3645230 0.2118116 -0.1422305), wk = 0.0625000 k( 22) = ( 0.3659560 0.2126442 0.1507262), wk = 0.0625000 k( 23) = ( 0.3616569 0.2101465 -0.7281439), wk = 0.0625000 k( 24) = ( 0.3630899 0.2109791 -0.4351872), wk = 0.0625000 k( 25) = ( 0.3602240 -0.6182886 0.1464786), wk = 0.0625000 k( 26) = ( 0.3616571 -0.6174561 0.4394353), wk = 0.0625000 k( 27) = ( 0.3573580 -0.6199537 -0.4394348), wk = 0.0625000 k( 28) = ( 0.3587910 -0.6191212 -0.1464781), wk = 0.0625000 k( 29) = ( 0.3616570 -0.3415885 0.0502423), wk = 0.0625000 k( 30) = ( 0.3630901 -0.3407560 0.3431990), wk = 0.0625000 k( 31) = ( 0.3587909 -0.3432536 -0.5356711), wk = 0.0625000 k( 32) = ( 0.3602240 -0.3424211 -0.2427144), wk = 0.0625000 extrapolated charge 11.03081, renormalised to 10.00000 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 3.2 secs total energy = -25.47727525 Ry Harris-Foulkes estimate = -26.08205941 Ry estimated scf accuracy < 0.00507645 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.08E-05, avg # of iterations = 3.1 total cpu time spent up to now is 3.6 secs total energy = -25.48675494 Ry Harris-Foulkes estimate = -25.48847059 Ry estimated scf accuracy < 0.00433268 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.33E-05, avg # of iterations = 1.0 total cpu time spent up to now is 3.9 secs total energy = -25.48659023 Ry Harris-Foulkes estimate = -25.48693967 Ry estimated scf accuracy < 0.00097346 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.73E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.2 secs total energy = -25.48649345 Ry Harris-Foulkes estimate = -25.48663390 Ry estimated scf accuracy < 0.00026426 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.64E-06, avg # of iterations = 2.6 total cpu time spent up to now is 4.5 secs total energy = -25.48654700 Ry Harris-Foulkes estimate = -25.48654775 Ry estimated scf accuracy < 0.00000253 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-08, avg # of iterations = 2.1 total cpu time spent up to now is 4.8 secs total energy = -25.48654747 Ry Harris-Foulkes estimate = -25.48654789 Ry estimated scf accuracy < 0.00000108 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 5.1 secs total energy = -25.48654755 Ry Harris-Foulkes estimate = -25.48654760 Ry estimated scf accuracy < 0.00000011 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 2.0 total cpu time spent up to now is 5.4 secs End of self-consistent calculation k = 0.1220 0.0709 0.0502 ( 531 PWs) bands (ev): -7.2733 2.2873 5.0421 5.0421 6.9073 9.5374 10.3838 10.3838 14.6605 k = 0.1234 0.0717 0.3432 ( 522 PWs) bands (ev): -6.2826 -0.8518 4.3354 4.9762 7.6868 8.5620 9.6230 11.9332 13.9340 k = 0.1191 0.0692-0.5357 ( 520 PWs) bands (ev): -4.8740 -3.2673 4.1653 5.0067 6.3106 9.2342 10.4193 11.6361 16.1379 k = 0.1206 0.0700-0.2427 ( 525 PWs) bands (ev): -6.7202 0.0196 4.2084 5.6908 7.0524 9.6997 10.1596 11.9484 13.8704 k = 0.1234 0.3476-0.0460 ( 522 PWs) bands (ev): -6.2826 -0.8518 4.3354 4.9762 7.6868 8.5620 9.6229 11.9332 13.9340 k = 0.1249 0.3484 0.2470 ( 519 PWs) bands (ev): -5.9140 -0.3512 2.7963 3.5201 5.8880 9.3587 11.6627 11.9516 14.3967 k = 0.1206 0.3459-0.6319 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.1220 0.3467-0.3390 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1191-0.4825 0.2427 ( 520 PWs) bands (ev): -4.8740 -3.2673 4.1653 5.0067 6.3106 9.2342 10.4193 11.6361 16.1379 k = 0.1206-0.4817 0.5357 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.1163-0.4842-0.3432 ( 510 PWs) bands (ev): -4.6717 -2.2062 2.3728 3.0121 4.6420 9.2656 13.5078 15.1149 15.5051 k = 0.1177-0.4834-0.0502 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1206-0.2058 0.1465 ( 525 PWs) bands (ev): -6.7202 0.0195 4.2084 5.6908 7.0524 9.6997 10.1596 11.9484 13.8704 k = 0.1220-0.2050 0.4394 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1177-0.2075-0.4394 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1191-0.2067-0.1465 ( 525 PWs) bands (ev): -6.7202 0.0195 4.2084 5.6908 7.0524 9.6997 10.1596 11.9484 13.8704 k = 0.3631-0.0649-0.0460 ( 522 PWs) bands (ev): -6.2826 -0.8518 4.3354 4.9763 7.6868 8.5620 9.6230 11.9332 13.9340 k = 0.3645-0.0641 0.2470 ( 519 PWs) bands (ev): -5.9140 -0.3512 2.7963 3.5201 5.8880 9.3587 11.6627 11.9516 14.3967 k = 0.3602-0.0666-0.6319 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3617-0.0657-0.3390 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.3645 0.2118-0.1422 ( 519 PWs) bands (ev): -5.9140 -0.3512 2.7963 3.5201 5.8880 9.3587 11.6627 11.9516 14.3967 k = 0.3660 0.2126 0.1507 ( 522 PWs) bands (ev): -6.1284 -0.6892 5.0548 5.0548 5.9420 8.4861 8.4861 9.8240 15.7279 k = 0.3617 0.2101-0.7281 ( 520 PWs) bands (ev): -5.1973 -1.5128 1.8546 4.0502 5.9460 9.8236 10.1490 12.7571 15.7098 k = 0.3631 0.2110-0.4352 ( 510 PWs) bands (ev): -4.6717 -2.2062 2.3728 3.0121 4.6420 9.2656 13.5078 15.1149 15.5051 k = 0.3602-0.6183 0.1465 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3617-0.6175 0.4394 ( 520 PWs) bands (ev): -5.1973 -1.5128 1.8546 4.0502 5.9460 9.8236 10.1490 12.7571 15.7098 k = 0.3574-0.6200-0.4394 ( 520 PWs) bands (ev): -5.1973 -1.5128 1.8546 4.0502 5.9460 9.8236 10.1490 12.7571 15.7098 k = 0.3588-0.6191-0.1465 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3617-0.3416 0.0502 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.3631-0.3408 0.3432 ( 510 PWs) bands (ev): -4.6717 -2.2062 2.3728 3.0121 4.6420 9.2656 13.5078 15.1149 15.5051 k = 0.3588-0.3433-0.5357 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3602-0.3424-0.2427 ( 520 PWs) bands (ev): -4.8740 -3.2673 4.1653 5.0067 6.3106 9.2342 10.4193 11.6361 16.1379 the Fermi energy is 8.1328 ev ! total energy = -25.48654757 Ry Harris-Foulkes estimate = -25.48654757 Ry estimated scf accuracy < 6.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.69355017 Ry hartree contribution = 1.27336472 Ry xc contribution = -6.33967576 Ry ewald contribution = -27.11378670 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.04624038 -0.02686857 -0.01904509 atom 2 type 1 force = 0.04624038 0.02686857 0.01904509 Total force = 0.080285 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 35.32 0.00033049 0.00010557 0.00007483 48.62 15.53 11.01 0.00010557 0.00021015 0.00004348 15.53 30.91 6.40 0.00007483 0.00004348 0.00017963 11.01 6.40 26.42 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -25.4401221801 Ry enthalpy new = -25.4865475678 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0913060135 bohr new conv_thr = 0.0000000462 Ry new unit-cell volume = 282.73636 a.u.^3 ( 41.89720 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.045376594 -0.003520943 -0.002495805 0.514585070 0.909959438 -0.002495489 0.514584993 0.299007418 0.859434314 ATOMIC_POSITIONS (crystal) As 0.277418037 0.277418141 0.277418125 As -0.277418037 -0.277418141 -0.277418125 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1199268 0.0696852 0.0493942), wk = 0.0625000 k( 2) = ( 0.1206213 0.0700887 0.3397270), wk = 0.0625000 k( 3) = ( 0.1185377 0.0688783 -0.5312714), wk = 0.0625000 k( 4) = ( 0.1192322 0.0692818 -0.2409386), wk = 0.0625000 k( 5) = ( 0.1206213 0.3437674 -0.0463780), wk = 0.0625000 k( 6) = ( 0.1213158 0.3441708 0.2439548), wk = 0.0625000 k( 7) = ( 0.1192322 0.3429605 -0.6270436), wk = 0.0625000 k( 8) = ( 0.1199267 0.3433639 -0.3367108), wk = 0.0625000 k( 9) = ( 0.1185378 -0.4784790 0.2409387), wk = 0.0625000 k( 10) = ( 0.1192323 -0.4780756 0.5312715), wk = 0.0625000 k( 11) = ( 0.1171488 -0.4792860 -0.3397269), wk = 0.0625000 k( 12) = ( 0.1178433 -0.4788825 -0.0493941), wk = 0.0625000 k( 13) = ( 0.1192323 -0.2043969 0.1451665), wk = 0.0625000 k( 14) = ( 0.1199268 -0.2039934 0.4354993), wk = 0.0625000 k( 15) = ( 0.1178432 -0.2052038 -0.4354991), wk = 0.0625000 k( 16) = ( 0.1185378 -0.2048004 -0.1451663), wk = 0.0625000 k( 17) = ( 0.3583913 -0.0654299 -0.0463779), wk = 0.0625000 k( 18) = ( 0.3590858 -0.0650264 0.2439549), wk = 0.0625000 k( 19) = ( 0.3570023 -0.0662368 -0.6270435), wk = 0.0625000 k( 20) = ( 0.3576968 -0.0658334 -0.3367107), wk = 0.0625000 k( 21) = ( 0.3590858 0.2086522 -0.1421502), wk = 0.0625000 k( 22) = ( 0.3597803 0.2090557 0.1481826), wk = 0.0625000 k( 23) = ( 0.3576967 0.2078453 -0.7228158), wk = 0.0625000 k( 24) = ( 0.3583913 0.2082488 -0.4324830), wk = 0.0625000 k( 25) = ( 0.3570023 -0.6135942 0.1451666), wk = 0.0625000 k( 26) = ( 0.3576968 -0.6131907 0.4354994), wk = 0.0625000 k( 27) = ( 0.3556133 -0.6144011 -0.4354990), wk = 0.0625000 k( 28) = ( 0.3563078 -0.6139976 -0.1451662), wk = 0.0625000 k( 29) = ( 0.3576968 -0.3395120 0.0493944), wk = 0.0625000 k( 30) = ( 0.3583913 -0.3391086 0.3397272), wk = 0.0625000 k( 31) = ( 0.3563078 -0.3403190 -0.5312712), wk = 0.0625000 k( 32) = ( 0.3570023 -0.3399155 -0.2409384), wk = 0.0625000 extrapolated charge 10.32413, renormalised to 10.00000 total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.9 total cpu time spent up to now is 6.4 secs total energy = -25.49422734 Ry Harris-Foulkes estimate = -25.67905797 Ry estimated scf accuracy < 0.00063199 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.32E-06, avg # of iterations = 3.0 total cpu time spent up to now is 6.8 secs total energy = -25.49507507 Ry Harris-Foulkes estimate = -25.49521539 Ry estimated scf accuracy < 0.00033439 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.1 secs total energy = -25.49506648 Ry Harris-Foulkes estimate = -25.49509270 Ry estimated scf accuracy < 0.00005700 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.70E-07, avg # of iterations = 1.1 total cpu time spent up to now is 7.3 secs total energy = -25.49506926 Ry Harris-Foulkes estimate = -25.49507156 Ry estimated scf accuracy < 0.00000426 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.26E-08, avg # of iterations = 3.0 total cpu time spent up to now is 7.7 secs total energy = -25.49507173 Ry Harris-Foulkes estimate = -25.49507174 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.0 total cpu time spent up to now is 8.0 secs total energy = -25.49507166 Ry Harris-Foulkes estimate = -25.49507173 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 1.0 total cpu time spent up to now is 8.2 secs End of self-consistent calculation k = 0.1199 0.0697 0.0494 ( 531 PWs) bands (ev): -7.3120 1.5346 4.9268 4.9268 6.3965 9.2615 10.0277 10.0277 14.0906 k = 0.1206 0.0701 0.3397 ( 522 PWs) bands (ev): -6.3364 -1.2281 3.9735 4.9819 7.3551 7.9419 8.8711 11.4917 13.4176 k = 0.1185 0.0689-0.5313 ( 520 PWs) bands (ev): -4.9470 -3.4949 4.1515 4.5881 5.8644 8.8101 9.5949 10.6943 15.7178 k = 0.1192 0.0693-0.2409 ( 525 PWs) bands (ev): -6.7756 -0.3341 4.1248 5.2251 6.5538 9.2898 9.6077 11.2554 13.3170 k = 0.1206 0.3438-0.0464 ( 522 PWs) bands (ev): -6.3364 -1.2281 3.9735 4.9819 7.3551 7.9419 8.8711 11.4917 13.4176 k = 0.1213 0.3442 0.2440 ( 519 PWs) bands (ev): -5.9695 -0.8527 2.6375 3.4341 5.2734 9.3151 11.1840 11.4541 13.5083 k = 0.1192 0.3430-0.6270 ( 510 PWs) bands (ev): -4.4960 -2.9518 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.1199 0.3434-0.3367 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1185-0.4785 0.2409 ( 520 PWs) bands (ev): -4.9470 -3.4949 4.1515 4.5881 5.8644 8.8101 9.5949 10.6943 15.7178 k = 0.1192-0.4781 0.5313 ( 510 PWs) bands (ev): -4.4960 -2.9518 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.1171-0.4793-0.3397 ( 510 PWs) bands (ev): -4.7993 -2.3500 1.8768 2.9433 4.1365 9.2129 12.7072 14.1850 14.5602 k = 0.1178-0.4789-0.0494 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1192-0.2044 0.1452 ( 525 PWs) bands (ev): -6.7756 -0.3341 4.1248 5.2251 6.5538 9.2898 9.6077 11.2554 13.3170 k = 0.1199-0.2040 0.4355 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1178-0.2052-0.4355 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1185-0.2048-0.1452 ( 525 PWs) bands (ev): -6.7756 -0.3341 4.1248 5.2251 6.5538 9.2898 9.6078 11.2554 13.3170 k = 0.3584-0.0654-0.0464 ( 522 PWs) bands (ev): -6.3364 -1.2281 3.9735 4.9819 7.3551 7.9419 8.8711 11.4917 13.4176 k = 0.3591-0.0650 0.2440 ( 519 PWs) bands (ev): -5.9695 -0.8527 2.6375 3.4340 5.2734 9.3151 11.1840 11.4541 13.5083 k = 0.3570-0.0662-0.6270 ( 510 PWs) bands (ev): -4.4960 -2.9519 1.5958 2.8170 5.9886 9.3167 11.7777 13.1743 13.9166 k = 0.3577-0.0658-0.3367 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.3591 0.2087-0.1422 ( 519 PWs) bands (ev): -5.9695 -0.8527 2.6375 3.4340 5.2734 9.3151 11.1840 11.4541 13.5083 k = 0.3598 0.2091 0.1482 ( 522 PWs) bands (ev): -6.1415 -1.3821 5.0158 5.0158 5.8699 8.0221 8.0221 9.0996 15.2884 k = 0.3577 0.2078-0.7228 ( 520 PWs) bands (ev): -5.2103 -2.0884 1.7598 3.9968 5.5056 9.4659 9.5758 12.3593 15.0534 k = 0.3584 0.2082-0.4325 ( 510 PWs) bands (ev): -4.7992 -2.3500 1.8768 2.9432 4.1365 9.2129 12.7072 14.1850 14.5602 k = 0.3570-0.6136 0.1452 ( 510 PWs) bands (ev): -4.4960 -2.9518 1.5958 2.8170 5.9886 9.3167 11.7777 13.1743 13.9166 k = 0.3577-0.6132 0.4355 ( 520 PWs) bands (ev): -5.2103 -2.0884 1.7598 3.9968 5.5056 9.4659 9.5758 12.3593 15.0534 k = 0.3556-0.6144-0.4355 ( 520 PWs) bands (ev): -5.2103 -2.0884 1.7598 3.9968 5.5056 9.4659 9.5758 12.3593 15.0534 k = 0.3563-0.6140-0.1452 ( 510 PWs) bands (ev): -4.4960 -2.9519 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.3577-0.3395 0.0494 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.3584-0.3391 0.3397 ( 510 PWs) bands (ev): -4.7992 -2.3500 1.8768 2.9432 4.1365 9.2129 12.7072 14.1850 14.5602 k = 0.3563-0.3403-0.5313 ( 510 PWs) bands (ev): -4.4960 -2.9519 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.3570-0.3399-0.2409 ( 520 PWs) bands (ev): -4.9470 -3.4949 4.1515 4.5881 5.8644 8.8101 9.5949 10.6943 15.7178 the Fermi energy is 7.8862 ev ! total energy = -25.49507167 Ry Harris-Foulkes estimate = -25.49507167 Ry estimated scf accuracy < 4.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.44004222 Ry hartree contribution = 1.27027594 Ry xc contribution = -6.28728564 Ry ewald contribution = -26.91813856 Ry smearing contrib. (-TS) = 0.00003437 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01838108 -0.01068067 -0.00757067 atom 2 type 1 force = 0.01838108 0.01068067 0.00757067 Total force = 0.031914 Total SCF correction = 0.000037 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -12.12 0.00004415 0.00014779 0.00010476 6.49 21.74 15.41 0.00014779 -0.00012432 0.00006087 21.74 -18.29 8.95 0.00010476 0.00006087 -0.00016705 15.41 8.95 -24.57 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -25.4865475678 Ry enthalpy new = -25.4950716705 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0616000937 bohr new conv_thr = 0.0000000184 Ry new unit-cell volume = 283.67505 a.u.^3 ( 42.03631 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.051831532 0.002668113 0.001891141 0.523158405 0.912502787 0.001891418 0.523158348 0.303989058 0.860381276 ATOMIC_POSITIONS (crystal) As 0.273968016 0.273968105 0.273968080 As -0.273968016 -0.273968105 -0.273968080 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185777 0.0689014 0.0488386), wk = 0.0625000 k( 2) = ( 0.1180553 0.0685977 0.3398324), wk = 0.0625000 k( 3) = ( 0.1196226 0.0695087 -0.5331490), wk = 0.0625000 k( 4) = ( 0.1191002 0.0692050 -0.2421552), wk = 0.0625000 k( 5) = ( 0.1180553 0.3433730 -0.0478198), wk = 0.0625000 k( 6) = ( 0.1175329 0.3430694 0.2431740), wk = 0.0625000 k( 7) = ( 0.1191001 0.3439803 -0.6298074), wk = 0.0625000 k( 8) = ( 0.1185777 0.3436767 -0.3388136), wk = 0.0625000 k( 9) = ( 0.1196226 -0.4800419 0.2421553), wk = 0.0625000 k( 10) = ( 0.1191002 -0.4803456 0.5331491), wk = 0.0625000 k( 11) = ( 0.1206675 -0.4794346 -0.3398323), wk = 0.0625000 k( 12) = ( 0.1201451 -0.4797383 -0.0488385), wk = 0.0625000 k( 13) = ( 0.1191002 -0.2055703 0.1454970), wk = 0.0625000 k( 14) = ( 0.1185778 -0.2058739 0.4364908), wk = 0.0625000 k( 15) = ( 0.1201450 -0.2049630 -0.4364906), wk = 0.0625000 k( 16) = ( 0.1196226 -0.2052666 -0.1454968), wk = 0.0625000 k( 17) = ( 0.3567781 -0.0674639 -0.0478197), wk = 0.0625000 k( 18) = ( 0.3562557 -0.0677676 0.2431741), wk = 0.0625000 k( 19) = ( 0.3578229 -0.0668566 -0.6298073), wk = 0.0625000 k( 20) = ( 0.3573005 -0.0671603 -0.3388135), wk = 0.0625000 k( 21) = ( 0.3562556 0.2070077 -0.1444780), wk = 0.0625000 k( 22) = ( 0.3557332 0.2067041 0.1465158), wk = 0.0625000 k( 23) = ( 0.3573005 0.2076150 -0.7264656), wk = 0.0625000 k( 24) = ( 0.3567781 0.2073114 -0.4354718), wk = 0.0625000 k( 25) = ( 0.3578230 -0.6164072 0.1454971), wk = 0.0625000 k( 26) = ( 0.3573006 -0.6167109 0.4364909), wk = 0.0625000 k( 27) = ( 0.3588678 -0.6157999 -0.4364905), wk = 0.0625000 k( 28) = ( 0.3583454 -0.6161036 -0.1454967), wk = 0.0625000 k( 29) = ( 0.3573005 -0.3419356 0.0488387), wk = 0.0625000 k( 30) = ( 0.3567781 -0.3422392 0.3398325), wk = 0.0625000 k( 31) = ( 0.3583454 -0.3413283 -0.5331489), wk = 0.0625000 k( 32) = ( 0.3578230 -0.3416319 -0.2421551), wk = 0.0625000 extrapolated charge 10.03309, renormalised to 10.00000 total cpu time spent up to now is 8.6 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 total cpu time spent up to now is 9.2 secs total energy = -25.49754330 Ry Harris-Foulkes estimate = -25.51648988 Ry estimated scf accuracy < 0.00016874 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-06, avg # of iterations = 2.0 total cpu time spent up to now is 9.5 secs total energy = -25.49757789 Ry Harris-Foulkes estimate = -25.49757893 Ry estimated scf accuracy < 0.00000406 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-08, avg # of iterations = 2.3 total cpu time spent up to now is 9.8 secs total energy = -25.49757886 Ry Harris-Foulkes estimate = -25.49757879 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-09, avg # of iterations = 1.1 total cpu time spent up to now is 10.1 secs End of self-consistent calculation k = 0.1186 0.0689 0.0488 ( 531 PWs) bands (ev): -7.2670 1.3559 5.0694 5.0694 6.2450 9.3990 10.0422 10.0422 14.0059 k = 0.1181 0.0686 0.3398 ( 522 PWs) bands (ev): -6.2834 -1.2654 3.8748 5.1902 7.4298 7.8250 8.6357 11.4323 13.3998 k = 0.1196 0.0695-0.5331 ( 520 PWs) bands (ev): -4.8661 -3.4968 4.3212 4.4601 5.8101 8.8097 9.3169 10.3184 15.5502 k = 0.1191 0.0692-0.2422 ( 525 PWs) bands (ev): -6.7274 -0.3234 4.2614 5.1071 6.4445 9.0702 9.7237 11.0732 13.1422 k = 0.1181 0.3434-0.0478 ( 522 PWs) bands (ev): -6.2834 -1.2654 3.8748 5.1902 7.4298 7.8250 8.6357 11.4323 13.3998 k = 0.1175 0.3431 0.2432 ( 519 PWs) bands (ev): -5.9126 -0.9657 2.6926 3.5653 5.0615 9.5672 11.2146 11.4362 13.2468 k = 0.1191 0.3440-0.6298 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.1186 0.3437-0.3388 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1196-0.4800 0.2422 ( 520 PWs) bands (ev): -4.8661 -3.4968 4.3212 4.4601 5.8101 8.8097 9.3169 10.3184 15.5502 k = 0.1191-0.4803 0.5331 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.1207-0.4794-0.3398 ( 510 PWs) bands (ev): -4.7497 -2.2757 1.7064 3.0709 3.9660 9.3822 12.5107 13.8624 14.3743 k = 0.1201-0.4797-0.0488 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1191-0.2056 0.1455 ( 525 PWs) bands (ev): -6.7274 -0.3234 4.2614 5.1071 6.4445 9.0702 9.7237 11.0732 13.1422 k = 0.1186-0.2059 0.4365 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1201-0.2050-0.4365 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1196-0.2053-0.1455 ( 525 PWs) bands (ev): -6.7274 -0.3234 4.2614 5.1071 6.4445 9.0702 9.7237 11.0732 13.1422 k = 0.3568-0.0675-0.0478 ( 522 PWs) bands (ev): -6.2834 -1.2654 3.8748 5.1902 7.4298 7.8250 8.6357 11.4323 13.3998 k = 0.3563-0.0678 0.2432 ( 519 PWs) bands (ev): -5.9126 -0.9657 2.6926 3.5653 5.0615 9.5672 11.2146 11.4362 13.2468 k = 0.3578-0.0669-0.6298 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.3573-0.0672-0.3388 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.3563 0.2070-0.1445 ( 519 PWs) bands (ev): -5.9126 -0.9657 2.6926 3.5653 5.0615 9.5672 11.2146 11.4362 13.2468 k = 0.3557 0.2067 0.1465 ( 522 PWs) bands (ev): -6.0672 -1.6674 5.2136 5.2136 6.1482 7.9713 7.9713 8.9702 15.2676 k = 0.3573 0.2076-0.7265 ( 520 PWs) bands (ev): -5.1078 -2.2966 1.8303 4.1506 5.4571 9.4947 9.5940 12.4409 14.8893 k = 0.3568 0.2073-0.4355 ( 510 PWs) bands (ev): -4.7497 -2.2757 1.7064 3.0709 3.9660 9.3822 12.5107 13.8624 14.3743 k = 0.3578-0.6164 0.1455 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.3573-0.6167 0.4365 ( 520 PWs) bands (ev): -5.1078 -2.2966 1.8303 4.1506 5.4571 9.4947 9.5940 12.4409 14.8893 k = 0.3589-0.6158-0.4365 ( 520 PWs) bands (ev): -5.1078 -2.2966 1.8303 4.1506 5.4571 9.4947 9.5940 12.4409 14.8893 k = 0.3583-0.6161-0.1455 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3074 11.8964 13.1420 13.6456 k = 0.3573-0.3419 0.0488 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.3568-0.3422 0.3398 ( 510 PWs) bands (ev): -4.7497 -2.2757 1.7064 3.0709 3.9660 9.3822 12.5107 13.8624 14.3743 k = 0.3583-0.3413-0.5331 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3074 11.8964 13.1420 13.6456 k = 0.3578-0.3416-0.2422 ( 520 PWs) bands (ev): -4.8661 -3.4968 4.3212 4.4601 5.8101 8.8098 9.3169 10.3184 15.5502 the Fermi energy is 7.7678 ev ! total energy = -25.49757888 Ry Harris-Foulkes estimate = -25.49757888 Ry estimated scf accuracy < 4.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.47652864 Ry hartree contribution = 1.24412503 Ry xc contribution = -6.27585032 Ry ewald contribution = -26.94240955 Ry smearing contrib. (-TS) = 0.00002732 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00301101 -0.00174968 -0.00124018 atom 2 type 1 force = 0.00301101 0.00174968 0.00124018 Total force = 0.005228 Total SCF correction = 0.000049 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -24.62 -0.00006848 0.00011545 0.00008183 -10.07 16.98 12.04 0.00011545 -0.00020008 0.00004755 16.98 -29.43 6.99 0.00008183 0.00004755 -0.00023346 12.04 6.99 -34.34 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -25.4950716705 Ry enthalpy new = -25.4975788764 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0331156891 bohr new conv_thr = 0.0000000030 Ry new unit-cell volume = 280.14009 a.u.^3 ( 41.51248 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052821713 0.008877209 0.006292278 0.529043139 0.910288488 0.006292512 0.529043092 0.307408443 0.856834348 ATOMIC_POSITIONS (crystal) As 0.272134189 0.272134247 0.272134227 As -0.272134189 -0.272134247 -0.272134227 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1178610 0.0684849 0.0485434), wk = 0.0625000 k( 2) = ( 0.1161171 0.0674715 0.3417554), wk = 0.0625000 k( 3) = ( 0.1213487 0.0705116 -0.5378806), wk = 0.0625000 k( 4) = ( 0.1196048 0.0694983 -0.2446686), wk = 0.0625000 k( 5) = ( 0.1161171 0.3448145 -0.0495193), wk = 0.0625000 k( 6) = ( 0.1143732 0.3438011 0.2436927), wk = 0.0625000 k( 7) = ( 0.1196048 0.3468412 -0.6359433), wk = 0.0625000 k( 8) = ( 0.1178610 0.3458278 -0.3427313), wk = 0.0625000 k( 9) = ( 0.1213487 -0.4841743 0.2446687), wk = 0.0625000 k( 10) = ( 0.1196049 -0.4851877 0.5378807), wk = 0.0625000 k( 11) = ( 0.1248365 -0.4821476 -0.3417553), wk = 0.0625000 k( 12) = ( 0.1230926 -0.4831609 -0.0485433), wk = 0.0625000 k( 13) = ( 0.1196049 -0.2078447 0.1466060), wk = 0.0625000 k( 14) = ( 0.1178610 -0.2088581 0.4398180), wk = 0.0625000 k( 15) = ( 0.1230926 -0.2058180 -0.4398179), wk = 0.0625000 k( 16) = ( 0.1213487 -0.2068313 -0.1466059), wk = 0.0625000 k( 17) = ( 0.3570707 -0.0698616 -0.0495192), wk = 0.0625000 k( 18) = ( 0.3553268 -0.0708750 0.2436928), wk = 0.0625000 k( 19) = ( 0.3605584 -0.0678348 -0.6359431), wk = 0.0625000 k( 20) = ( 0.3588145 -0.0688482 -0.3427312), wk = 0.0625000 k( 21) = ( 0.3553268 0.2064680 -0.1475818), wk = 0.0625000 k( 22) = ( 0.3535829 0.2054546 0.1456301), wk = 0.0625000 k( 23) = ( 0.3588145 0.2084948 -0.7340058), wk = 0.0625000 k( 24) = ( 0.3570707 0.2074814 -0.4407938), wk = 0.0625000 k( 25) = ( 0.3605584 -0.6225208 0.1466062), wk = 0.0625000 k( 26) = ( 0.3588146 -0.6235341 0.4398181), wk = 0.0625000 k( 27) = ( 0.3640462 -0.6204940 -0.4398178), wk = 0.0625000 k( 28) = ( 0.3623023 -0.6215074 -0.1466058), wk = 0.0625000 k( 29) = ( 0.3588146 -0.3461912 0.0485435), wk = 0.0625000 k( 30) = ( 0.3570707 -0.3472046 0.3417555), wk = 0.0625000 k( 31) = ( 0.3623023 -0.3441644 -0.5378805), wk = 0.0625000 k( 32) = ( 0.3605584 -0.3451778 -0.2446685), wk = 0.0625000 extrapolated charge 9.87382, renormalised to 10.00000 total cpu time spent up to now is 10.4 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 11.0 secs total energy = -25.49862565 Ry Harris-Foulkes estimate = -25.42597387 Ry estimated scf accuracy < 0.00015851 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-06, avg # of iterations = 2.6 total cpu time spent up to now is 11.4 secs total energy = -25.49878641 Ry Harris-Foulkes estimate = -25.49882596 Ry estimated scf accuracy < 0.00008862 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-07, avg # of iterations = 1.0 total cpu time spent up to now is 11.7 secs total energy = -25.49878772 Ry Harris-Foulkes estimate = -25.49879331 Ry estimated scf accuracy < 0.00001120 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-07, avg # of iterations = 1.5 total cpu time spent up to now is 11.9 secs total energy = -25.49878892 Ry Harris-Foulkes estimate = -25.49878909 Ry estimated scf accuracy < 0.00000032 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-09, avg # of iterations = 3.0 total cpu time spent up to now is 12.3 secs total energy = -25.49878930 Ry Harris-Foulkes estimate = -25.49878932 Ry estimated scf accuracy < 0.00000007 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.38E-10, avg # of iterations = 1.0 total cpu time spent up to now is 12.6 secs total energy = -25.49878928 Ry Harris-Foulkes estimate = -25.49878930 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-10, avg # of iterations = 2.0 total cpu time spent up to now is 12.9 secs End of self-consistent calculation k = 0.1179 0.0685 0.0485 ( 531 PWs) bands (ev): -7.1845 1.4873 5.3251 5.3251 6.3242 9.7024 10.2552 10.2552 14.1776 k = 0.1161 0.0675 0.3418 ( 522 PWs) bands (ev): -6.1823 -1.1122 3.9207 5.4626 7.6927 7.9892 8.7143 11.6002 13.6197 k = 0.1213 0.0705-0.5379 ( 520 PWs) bands (ev): -4.7169 -3.3743 4.4998 4.5557 5.9650 9.0263 9.3686 10.2887 15.5607 k = 0.1196 0.0695-0.2447 ( 525 PWs) bands (ev): -6.6311 -0.1157 4.4916 5.1751 6.5460 9.1470 9.9918 11.1884 13.2158 k = 0.1161 0.3448-0.0495 ( 522 PWs) bands (ev): -6.1823 -1.1122 3.9207 5.4626 7.6927 7.9892 8.7143 11.6002 13.6197 k = 0.1144 0.3438 0.2437 ( 519 PWs) bands (ev): -5.8059 -0.8538 2.8385 3.7896 5.1025 9.9055 11.5100 11.6739 13.3598 k = 0.1196 0.3468-0.6359 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.1179 0.3458-0.3427 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1213-0.4842 0.2447 ( 520 PWs) bands (ev): -4.7169 -3.3743 4.4998 4.5557 5.9650 9.0263 9.3686 10.2887 15.5607 k = 0.1196-0.4852 0.5379 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.1248-0.4821-0.3418 ( 510 PWs) bands (ev): -4.6130 -2.0913 1.7231 3.2812 3.9966 9.6206 12.6511 13.9390 14.5677 k = 0.1231-0.4832-0.0485 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1196-0.2078 0.1466 ( 525 PWs) bands (ev): -6.6311 -0.1157 4.4916 5.1751 6.5460 9.1470 9.9918 11.1884 13.2158 k = 0.1179-0.2089 0.4398 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1231-0.2058-0.4398 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1213-0.2068-0.1466 ( 525 PWs) bands (ev): -6.6311 -0.1157 4.4916 5.1751 6.5460 9.1470 9.9918 11.1884 13.2158 k = 0.3571-0.0699-0.0495 ( 522 PWs) bands (ev): -6.1823 -1.1122 3.9207 5.4626 7.6927 7.9892 8.7143 11.6002 13.6197 k = 0.3553-0.0709 0.2437 ( 519 PWs) bands (ev): -5.8059 -0.8538 2.8385 3.7896 5.1025 9.9055 11.5100 11.6739 13.3598 k = 0.3606-0.0678-0.6359 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3588-0.0688-0.3427 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.3553 0.2065-0.1476 ( 519 PWs) bands (ev): -5.8059 -0.8538 2.8385 3.7896 5.1025 9.9055 11.5100 11.6739 13.3598 k = 0.3536 0.2055 0.1456 ( 522 PWs) bands (ev): -5.9628 -1.6927 5.4998 5.4998 6.5537 8.1499 8.1499 9.1754 15.4584 k = 0.3588 0.2085-0.7340 ( 520 PWs) bands (ev): -4.9682 -2.2713 1.9737 4.3868 5.6241 9.6843 9.9439 12.7656 14.9901 k = 0.3571 0.2075-0.4408 ( 510 PWs) bands (ev): -4.6130 -2.0913 1.7231 3.2812 3.9966 9.6206 12.6511 13.9390 14.5677 k = 0.3606-0.6225 0.1466 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3588-0.6235 0.4398 ( 520 PWs) bands (ev): -4.9682 -2.2713 1.9737 4.3868 5.6241 9.6843 9.9439 12.7656 14.9901 k = 0.3640-0.6205-0.4398 ( 520 PWs) bands (ev): -4.9682 -2.2713 1.9737 4.3868 5.6241 9.6843 9.9439 12.7656 14.9901 k = 0.3623-0.6215-0.1466 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3588-0.3462 0.0485 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.3571-0.3472 0.3418 ( 510 PWs) bands (ev): -4.6130 -2.0913 1.7231 3.2812 3.9966 9.6206 12.6511 13.9390 14.5677 k = 0.3623-0.3442-0.5379 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3606-0.3452-0.2447 ( 520 PWs) bands (ev): -4.7169 -3.3743 4.4998 4.5557 5.9650 9.0263 9.3686 10.2887 15.5607 the Fermi energy is 7.7500 ev ! total energy = -25.49878929 Ry Harris-Foulkes estimate = -25.49878929 Ry estimated scf accuracy < 1.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.65612461 Ry hartree contribution = 1.21084651 Ry xc contribution = -6.28746123 Ry ewald contribution = -27.07832637 Ry smearing contrib. (-TS) = 0.00002719 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00313406 0.00182112 0.00129082 atom 2 type 1 force = -0.00313406 -0.00182112 -0.00129082 Total force = 0.005442 Total SCF correction = 0.000012 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -19.40 -0.00007443 0.00006712 0.00004758 -10.95 9.87 7.00 0.00006712 -0.00015095 0.00002765 9.87 -22.20 4.07 0.00004758 0.00002765 -0.00017035 7.00 4.07 -25.06 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -25.4975788764 Ry enthalpy new = -25.4987892872 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0351136336 bohr new conv_thr = 0.0000000031 Ry new unit-cell volume = 274.74877 a.u.^3 ( 40.71357 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.050970095 0.014485947 0.010267843 0.532999101 0.905902539 0.010268099 0.532999041 0.309707136 0.851379258 ATOMIC_POSITIONS (crystal) As 0.271450006 0.271450067 0.271450040 As -0.271450006 -0.271450067 -0.271450040 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1175236 0.0682888 0.0484044), wk = 0.0625000 k( 2) = ( 0.1146542 0.0666215 0.3444484), wk = 0.0625000 k( 3) = ( 0.1232622 0.0716235 -0.5436836), wk = 0.0625000 k( 4) = ( 0.1203929 0.0699562 -0.2476396), wk = 0.0625000 k( 5) = ( 0.1146542 0.3470741 -0.0512133), wk = 0.0625000 k( 6) = ( 0.1117849 0.3454067 0.2448308), wk = 0.0625000 k( 7) = ( 0.1203929 0.3504088 -0.6433013), wk = 0.0625000 k( 8) = ( 0.1175235 0.3487414 -0.3472573), wk = 0.0625000 k( 9) = ( 0.1232623 -0.4892816 0.2476397), wk = 0.0625000 k( 10) = ( 0.1203930 -0.4909490 0.5436838), wk = 0.0625000 k( 11) = ( 0.1290010 -0.4859469 -0.3444483), wk = 0.0625000 k( 12) = ( 0.1261316 -0.4876143 -0.0484043), wk = 0.0625000 k( 13) = ( 0.1203929 -0.2104964 0.1480221), wk = 0.0625000 k( 14) = ( 0.1175236 -0.2121638 0.4440661), wk = 0.0625000 k( 15) = ( 0.1261316 -0.2071617 -0.4440660), wk = 0.0625000 k( 16) = ( 0.1232623 -0.2088291 -0.1480220), wk = 0.0625000 k( 17) = ( 0.3583094 -0.0722514 -0.0512131), wk = 0.0625000 k( 18) = ( 0.3554401 -0.0739188 0.2448309), wk = 0.0625000 k( 19) = ( 0.3640481 -0.0689167 -0.6433012), wk = 0.0625000 k( 20) = ( 0.3611787 -0.0705841 -0.3472572), wk = 0.0625000 k( 21) = ( 0.3554401 0.2065338 -0.1508308), wk = 0.0625000 k( 22) = ( 0.3525707 0.2048665 0.1452132), wk = 0.0625000 k( 23) = ( 0.3611787 0.2098685 -0.7429188), wk = 0.0625000 k( 24) = ( 0.3583094 0.2082012 -0.4468748), wk = 0.0625000 k( 25) = ( 0.3640481 -0.6298219 0.1480222), wk = 0.0625000 k( 26) = ( 0.3611788 -0.6314892 0.4440662), wk = 0.0625000 k( 27) = ( 0.3697868 -0.6264872 -0.4440659), wk = 0.0625000 k( 28) = ( 0.3669175 -0.6281545 -0.1480218), wk = 0.0625000 k( 29) = ( 0.3611788 -0.3510366 0.0484045), wk = 0.0625000 k( 30) = ( 0.3583094 -0.3527040 0.3444486), wk = 0.0625000 k( 31) = ( 0.3669174 -0.3477019 -0.5436835), wk = 0.0625000 k( 32) = ( 0.3640481 -0.3493693 -0.2476395), wk = 0.0625000 extrapolated charge 9.80378, renormalised to 10.00000 total cpu time spent up to now is 13.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.1 total cpu time spent up to now is 13.8 secs total energy = -25.49910937 Ry Harris-Foulkes estimate = -25.38442347 Ry estimated scf accuracy < 0.00021208 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-06, avg # of iterations = 3.0 total cpu time spent up to now is 14.2 secs total energy = -25.49942017 Ry Harris-Foulkes estimate = -25.49949037 Ry estimated scf accuracy < 0.00016670 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-06, avg # of iterations = 1.0 total cpu time spent up to now is 14.5 secs total energy = -25.49942393 Ry Harris-Foulkes estimate = -25.49943205 Ry estimated scf accuracy < 0.00002550 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-07, avg # of iterations = 1.0 total cpu time spent up to now is 14.7 secs total energy = -25.49942040 Ry Harris-Foulkes estimate = -25.49942498 Ry estimated scf accuracy < 0.00000830 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.30E-08, avg # of iterations = 2.3 total cpu time spent up to now is 15.0 secs total energy = -25.49942231 Ry Harris-Foulkes estimate = -25.49942231 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 15.4 secs total energy = -25.49942230 Ry Harris-Foulkes estimate = -25.49942232 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 15.7 secs total energy = -25.49942230 Ry Harris-Foulkes estimate = -25.49942231 Ry estimated scf accuracy < 9.8E-09 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.76E-11, avg # of iterations = 2.0 total cpu time spent up to now is 15.9 secs End of self-consistent calculation k = 0.1175 0.0683 0.0484 ( 531 PWs) bands (ev): -7.0921 1.7616 5.6182 5.6182 6.5333 10.0436 10.5567 10.5567 14.4701 k = 0.1147 0.0666 0.3444 ( 522 PWs) bands (ev): -6.0680 -0.8690 4.0319 5.7338 8.0304 8.2905 8.9660 11.8879 13.9301 k = 0.1233 0.0716-0.5437 ( 520 PWs) bands (ev): -4.5481 -3.1962 4.6206 4.7977 6.2201 9.3338 9.5963 10.4379 15.6904 k = 0.1204 0.0700-0.2476 ( 525 PWs) bands (ev): -6.5200 0.1785 4.7498 5.3342 6.7390 9.3876 10.2942 11.4537 13.4338 k = 0.1147 0.3471-0.0512 ( 522 PWs) bands (ev): -6.0680 -0.8690 4.0319 5.7338 8.0304 8.2905 8.9660 11.8879 13.9301 k = 0.1118 0.3454 0.2448 ( 519 PWs) bands (ev): -5.6872 -0.6310 3.0083 4.0441 5.2856 10.2385 11.9301 12.0293 13.6756 k = 0.1204 0.3504-0.6433 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.1175 0.3487-0.3473 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1233-0.4893 0.2476 ( 520 PWs) bands (ev): -4.5481 -3.1962 4.6206 4.7977 6.2201 9.3338 9.5963 10.4379 15.6904 k = 0.1204-0.4909 0.5437 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.1290-0.4859-0.3444 ( 510 PWs) bands (ev): -4.4446 -1.8694 1.8392 3.5168 4.1338 9.8590 12.9557 14.2383 14.9323 k = 0.1261-0.4876-0.0484 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1204-0.2105 0.1480 ( 525 PWs) bands (ev): -6.5199 0.1785 4.7498 5.3342 6.7390 9.3876 10.2942 11.4537 13.4338 k = 0.1175-0.2122 0.4441 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1261-0.2072-0.4441 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1233-0.2088-0.1480 ( 525 PWs) bands (ev): -6.5200 0.1785 4.7498 5.3342 6.7390 9.3876 10.2942 11.4537 13.4338 k = 0.3583-0.0723-0.0512 ( 522 PWs) bands (ev): -6.0680 -0.8690 4.0319 5.7338 8.0304 8.2905 8.9660 11.8879 13.9301 k = 0.3554-0.0739 0.2448 ( 519 PWs) bands (ev): -5.6872 -0.6310 3.0083 4.0441 5.2856 10.2385 11.9301 12.0293 13.6756 k = 0.3640-0.0689-0.6433 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3612-0.0706-0.3473 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.3554 0.2065-0.1508 ( 519 PWs) bands (ev): -5.6872 -0.6310 3.0083 4.0441 5.2856 10.2385 11.9301 12.0293 13.6756 k = 0.3526 0.2049 0.1452 ( 522 PWs) bands (ev): -5.8605 -1.5782 5.8044 5.8044 6.9954 8.4418 8.4418 9.5457 15.7405 k = 0.3612 0.2099-0.7429 ( 520 PWs) bands (ev): -4.8347 -2.1154 2.1401 4.6444 5.8983 10.0063 10.3773 13.1895 15.2226 k = 0.3583 0.2082-0.4469 ( 510 PWs) bands (ev): -4.4446 -1.8694 1.8392 3.5168 4.1338 9.8590 12.9557 14.2383 14.9323 k = 0.3640-0.6298 0.1480 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3612-0.6315 0.4441 ( 520 PWs) bands (ev): -4.8347 -2.1154 2.1401 4.6444 5.8983 10.0063 10.3773 13.1895 15.2226 k = 0.3698-0.6265-0.4441 ( 520 PWs) bands (ev): -4.8347 -2.1154 2.1401 4.6444 5.8983 10.0063 10.3773 13.1895 15.2226 k = 0.3669-0.6282-0.1480 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3612-0.3510 0.0484 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.3583-0.3527 0.3444 ( 510 PWs) bands (ev): -4.4446 -1.8694 1.8392 3.5168 4.1338 9.8590 12.9557 14.2383 14.9323 k = 0.3669-0.3477-0.5437 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3640-0.3494-0.2476 ( 520 PWs) bands (ev): -4.5481 -3.1962 4.6206 4.7977 6.2201 9.3338 9.5963 10.4379 15.6904 the Fermi energy is 8.0877 ev ! total energy = -25.49942230 Ry Harris-Foulkes estimate = -25.49942230 Ry estimated scf accuracy < 1.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.88810561 Ry hartree contribution = 1.18012742 Ry xc contribution = -6.31076038 Ry ewald contribution = -27.25692253 Ry smearing contrib. (-TS) = 0.00002757 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00325410 0.00189087 0.00134027 atom 2 type 1 force = -0.00325410 -0.00189087 -0.00134027 Total force = 0.005650 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -4.38 -0.00001357 0.00001892 0.00001341 -2.00 2.78 1.97 0.00001892 -0.00003514 0.00000779 2.78 -5.17 1.15 0.00001341 0.00000779 -0.00004061 1.97 1.15 -5.97 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -25.4987892872 Ry enthalpy new = -25.4994223041 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0073943511 bohr new conv_thr = 0.0000000033 Ry new unit-cell volume = 273.46953 a.u.^3 ( 40.52400 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.050204634 0.015452708 0.010953083 0.533459981 0.904758819 0.010953371 0.533459905 0.309974965 0.850073127 ATOMIC_POSITIONS (crystal) As 0.271766520 0.271766590 0.271766559 As -0.271766520 -0.271766590 -0.271766559 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1175149 0.0682838 0.0484008), wk = 0.0625000 k( 2) = ( 0.1144470 0.0665011 0.3450685), wk = 0.0625000 k( 3) = ( 0.1236506 0.0718492 -0.5449344), wk = 0.0625000 k( 4) = ( 0.1205828 0.0700665 -0.2482668), wk = 0.0625000 k( 5) = ( 0.1144470 0.3476192 -0.0515322), wk = 0.0625000 k( 6) = ( 0.1113792 0.3458365 0.2451354), wk = 0.0625000 k( 7) = ( 0.1205827 0.3511847 -0.6448675), wk = 0.0625000 k( 8) = ( 0.1175149 0.3494019 -0.3481998), wk = 0.0625000 k( 9) = ( 0.1236507 -0.4903871 0.2482669), wk = 0.0625000 k( 10) = ( 0.1205828 -0.4921698 0.5449346), wk = 0.0625000 k( 11) = ( 0.1297864 -0.4868217 -0.3450683), wk = 0.0625000 k( 12) = ( 0.1267185 -0.4886044 -0.0484007), wk = 0.0625000 k( 13) = ( 0.1205828 -0.2110517 0.1483339), wk = 0.0625000 k( 14) = ( 0.1175149 -0.2128344 0.4450015), wk = 0.0625000 k( 15) = ( 0.1267185 -0.2074862 -0.4450014), wk = 0.0625000 k( 16) = ( 0.1236506 -0.2092689 -0.1483337), wk = 0.0625000 k( 17) = ( 0.3586804 -0.0727014 -0.0515321), wk = 0.0625000 k( 18) = ( 0.3556126 -0.0744841 0.2451356), wk = 0.0625000 k( 19) = ( 0.3648162 -0.0691359 -0.6448673), wk = 0.0625000 k( 20) = ( 0.3617483 -0.0709187 -0.3481997), wk = 0.0625000 k( 21) = ( 0.3556126 0.2066341 -0.1514651), wk = 0.0625000 k( 22) = ( 0.3525447 0.2048513 0.1452025), wk = 0.0625000 k( 23) = ( 0.3617483 0.2101995 -0.7448004), wk = 0.0625000 k( 24) = ( 0.3586804 0.2084168 -0.4481327), wk = 0.0625000 k( 25) = ( 0.3648162 -0.6313723 0.1483340), wk = 0.0625000 k( 26) = ( 0.3617484 -0.6331550 0.4450016), wk = 0.0625000 k( 27) = ( 0.3709519 -0.6278068 -0.4450012), wk = 0.0625000 k( 28) = ( 0.3678841 -0.6295895 -0.1483336), wk = 0.0625000 k( 29) = ( 0.3617483 -0.3520368 0.0484010), wk = 0.0625000 k( 30) = ( 0.3586805 -0.3538195 0.3450686), wk = 0.0625000 k( 31) = ( 0.3678841 -0.3484714 -0.5449343), wk = 0.0625000 k( 32) = ( 0.3648162 -0.3502541 -0.2482667), wk = 0.0625000 extrapolated charge 9.95322, renormalised to 10.00000 total cpu time spent up to now is 16.3 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 16.8 secs total energy = -25.49946757 Ry Harris-Foulkes estimate = -25.47197713 Ry estimated scf accuracy < 0.00001273 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-07, avg # of iterations = 3.0 total cpu time spent up to now is 17.2 secs total energy = -25.49948426 Ry Harris-Foulkes estimate = -25.49948744 Ry estimated scf accuracy < 0.00000729 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.4 secs total energy = -25.49948443 Ry Harris-Foulkes estimate = -25.49948481 Ry estimated scf accuracy < 0.00000101 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.7 secs total energy = -25.49948437 Ry Harris-Foulkes estimate = -25.49948448 Ry estimated scf accuracy < 0.00000022 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-09, avg # of iterations = 3.0 total cpu time spent up to now is 18.0 secs End of self-consistent calculation k = 0.1175 0.0683 0.0484 ( 531 PWs) bands (ev): -7.0799 1.8431 5.6684 5.6684 6.5993 10.0912 10.6226 10.6226 14.5510 k = 0.1144 0.0665 0.3451 ( 522 PWs) bands (ev): -6.0523 -0.8075 4.0601 5.7629 8.1035 8.3705 9.0605 11.9678 13.9912 k = 0.1237 0.0718-0.5449 ( 520 PWs) bands (ev): -4.5224 -3.1560 4.6557 4.8275 6.2871 9.3993 9.6846 10.5071 15.7428 k = 0.1206 0.0701-0.2483 ( 525 PWs) bands (ev): -6.5029 0.2437 4.7914 5.3825 6.7852 9.4763 10.3360 11.5353 13.5104 k = 0.1144 0.3476-0.0515 ( 522 PWs) bands (ev): -6.0523 -0.8075 4.0601 5.7629 8.1035 8.3705 9.0605 11.9678 13.9912 k = 0.1114 0.3458 0.2451 ( 519 PWs) bands (ev): -5.6723 -0.5656 3.0310 4.0882 5.3571 10.2805 12.0280 12.1145 13.7859 k = 0.1206 0.3512-0.6449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.1175 0.3494-0.3482 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1237-0.4904 0.2483 ( 520 PWs) bands (ev): -4.5224 -3.1560 4.6557 4.8275 6.2871 9.3993 9.6846 10.5071 15.7428 k = 0.1206-0.4922 0.5449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.1298-0.4868-0.3451 ( 510 PWs) bands (ev): -4.4156 -1.8332 1.8875 3.5562 4.1842 9.8854 13.0473 14.3516 15.0365 k = 0.1267-0.4886-0.0484 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1206-0.2111 0.1483 ( 525 PWs) bands (ev): -6.5029 0.2437 4.7914 5.3825 6.7852 9.4763 10.3360 11.5353 13.5104 k = 0.1175-0.2128 0.4450 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1267-0.2075-0.4450 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1237-0.2093-0.1483 ( 525 PWs) bands (ev): -6.5029 0.2437 4.7914 5.3825 6.7852 9.4763 10.3360 11.5353 13.5104 k = 0.3587-0.0727-0.0515 ( 522 PWs) bands (ev): -6.0523 -0.8075 4.0601 5.7629 8.1035 8.3705 9.0605 11.9678 13.9912 k = 0.3556-0.0745 0.2451 ( 519 PWs) bands (ev): -5.6723 -0.5656 3.0310 4.0882 5.3571 10.2805 12.0281 12.1145 13.7859 k = 0.3648-0.0691-0.6449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3617-0.0709-0.3482 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.3556 0.2066-0.1515 ( 519 PWs) bands (ev): -5.6723 -0.5656 3.0310 4.0882 5.3571 10.2805 12.0281 12.1145 13.7859 k = 0.3525 0.2049 0.1452 ( 522 PWs) bands (ev): -5.8548 -1.5195 5.8493 5.8493 7.0700 8.5207 8.5207 9.6497 15.8048 k = 0.3617 0.2102-0.7448 ( 520 PWs) bands (ev): -4.8277 -2.0496 2.1663 4.6845 5.9726 10.0951 10.4628 13.2760 15.2955 k = 0.3587 0.2084-0.4481 ( 510 PWs) bands (ev): -4.4156 -1.8332 1.8875 3.5562 4.1842 9.8854 13.0473 14.3516 15.0365 k = 0.3648-0.6314 0.1483 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3617-0.6332 0.4450 ( 520 PWs) bands (ev): -4.8277 -2.0496 2.1663 4.6845 5.9726 10.0951 10.4628 13.2760 15.2955 k = 0.3710-0.6278-0.4450 ( 520 PWs) bands (ev): -4.8277 -2.0496 2.1663 4.6845 5.9726 10.0951 10.4628 13.2760 15.2955 k = 0.3679-0.6296-0.1483 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3617-0.3520 0.0484 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.3587-0.3538 0.3451 ( 510 PWs) bands (ev): -4.4156 -1.8332 1.8875 3.5562 4.1842 9.8854 13.0473 14.3516 15.0365 k = 0.3679-0.3485-0.5449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3648-0.3503-0.2483 ( 520 PWs) bands (ev): -4.5224 -3.1560 4.6557 4.8275 6.2871 9.3993 9.6846 10.5071 15.7428 the Fermi energy is 8.1608 ev ! total energy = -25.49948443 Ry Harris-Foulkes estimate = -25.49948443 Ry estimated scf accuracy < 1.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.93001828 Ry hartree contribution = 1.17889445 Ry xc contribution = -6.31784123 Ry ewald contribution = -27.29058333 Ry smearing contrib. (-TS) = 0.00002740 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00114591 0.00066588 0.00047196 atom 2 type 1 force = -0.00114591 -0.00066588 -0.00047196 Total force = 0.001990 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.28 0.00001796 0.00001081 0.00000766 2.64 1.59 1.13 0.00001081 0.00000563 0.00000445 1.59 0.83 0.66 0.00000766 0.00000445 0.00000251 1.13 0.66 0.37 number of scf cycles = 7 number of bfgs steps = 6 enthalpy old = -25.4994223041 Ry enthalpy new = -25.4994844264 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0034745083 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 273.55719 a.u.^3 ( 40.53699 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.050595244 0.015771263 0.011178864 0.533930160 0.904940450 0.011179188 0.533930069 0.310248199 0.850169721 ATOMIC_POSITIONS (crystal) As 0.271957199 0.271957279 0.271957240 As -0.271957199 -0.271957279 -0.271957240 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1174411 0.0682409 0.0483704), wk = 0.0625000 k( 2) = ( 0.1143115 0.0664223 0.3450585), wk = 0.0625000 k( 3) = ( 0.1237003 0.0718781 -0.5450057), wk = 0.0625000 k( 4) = ( 0.1205707 0.0700595 -0.2483176), wk = 0.0625000 k( 5) = ( 0.1143114 0.3475837 -0.0516033), wk = 0.0625000 k( 6) = ( 0.1111818 0.3457651 0.2450848), wk = 0.0625000 k( 7) = ( 0.1205706 0.3512210 -0.6449794), wk = 0.0625000 k( 8) = ( 0.1174410 0.3494023 -0.3482913), wk = 0.0625000 k( 9) = ( 0.1237004 -0.4904448 0.2483178), wk = 0.0625000 k( 10) = ( 0.1205708 -0.4922634 0.5450059), wk = 0.0625000 k( 11) = ( 0.1299596 -0.4868076 -0.3450583), wk = 0.0625000 k( 12) = ( 0.1268300 -0.4886262 -0.0483703), wk = 0.0625000 k( 13) = ( 0.1205707 -0.2111020 0.1483441), wk = 0.0625000 k( 14) = ( 0.1174411 -0.2129206 0.4450322), wk = 0.0625000 k( 15) = ( 0.1268299 -0.2074647 -0.4450320), wk = 0.0625000 k( 16) = ( 0.1237003 -0.2092834 -0.1483440), wk = 0.0625000 k( 17) = ( 0.3585825 -0.0728016 -0.0516031), wk = 0.0625000 k( 18) = ( 0.3554529 -0.0746202 0.2450850), wk = 0.0625000 k( 19) = ( 0.3648417 -0.0691644 -0.6449792), wk = 0.0625000 k( 20) = ( 0.3617121 -0.0709830 -0.3482912), wk = 0.0625000 k( 21) = ( 0.3554528 0.2065412 -0.1515768), wk = 0.0625000 k( 22) = ( 0.3523232 0.2047226 0.1451113), wk = 0.0625000 k( 23) = ( 0.3617120 0.2101785 -0.7449529), wk = 0.0625000 k( 24) = ( 0.3585824 0.2083599 -0.4482649), wk = 0.0625000 k( 25) = ( 0.3648418 -0.6314873 0.1483443), wk = 0.0625000 k( 26) = ( 0.3617122 -0.6333059 0.4450323), wk = 0.0625000 k( 27) = ( 0.3711010 -0.6278501 -0.4450319), wk = 0.0625000 k( 28) = ( 0.3679714 -0.6296687 -0.1483438), wk = 0.0625000 k( 29) = ( 0.3617121 -0.3521444 0.0483706), wk = 0.0625000 k( 30) = ( 0.3585825 -0.3539631 0.3450587), wk = 0.0625000 k( 31) = ( 0.3679713 -0.3485072 -0.5450056), wk = 0.0625000 k( 32) = ( 0.3648417 -0.3503258 -0.2483175), wk = 0.0625000 extrapolated charge 10.00320, renormalised to 10.00000 total cpu time spent up to now is 18.4 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.97E-09, avg # of iterations = 2.3 total cpu time spent up to now is 19.0 secs total energy = -25.49949550 Ry Harris-Foulkes estimate = -25.50137870 Ry estimated scf accuracy < 0.00000035 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 19.3 secs total energy = -25.49949561 Ry Harris-Foulkes estimate = -25.49949567 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-09, avg # of iterations = 1.4 total cpu time spent up to now is 19.6 secs total energy = -25.49949563 Ry Harris-Foulkes estimate = -25.49949563 Ry estimated scf accuracy < 5.8E-09 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.75E-11, avg # of iterations = 2.4 total cpu time spent up to now is 19.9 secs End of self-consistent calculation k = 0.1174 0.0682 0.0484 ( 531 PWs) bands (ev): -7.0867 1.8413 5.6606 5.6606 6.5967 10.0724 10.6155 10.6155 14.5562 k = 0.1143 0.0664 0.3451 ( 522 PWs) bands (ev): -6.0602 -0.8089 4.0518 5.7453 8.1001 8.3681 9.0733 11.9637 13.9839 k = 0.1237 0.0719-0.5450 ( 520 PWs) bands (ev): -4.5307 -3.1593 4.6488 4.8136 6.2867 9.3898 9.6943 10.5056 15.7351 k = 0.1206 0.0701-0.2483 ( 525 PWs) bands (ev): -6.5090 0.2383 4.7829 5.3783 6.7763 9.4814 10.3174 11.5351 13.5139 k = 0.1143 0.3476-0.0516 ( 522 PWs) bands (ev): -6.0602 -0.8089 4.0518 5.7453 8.1001 8.3681 9.0733 11.9637 13.9839 k = 0.1112 0.3458 0.2451 ( 519 PWs) bands (ev): -5.6821 -0.5663 3.0197 4.0829 5.3652 10.2643 12.0246 12.1113 13.7981 k = 0.1206 0.3512-0.6450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9040 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.1174 0.3494-0.3483 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1237-0.4904 0.2483 ( 520 PWs) bands (ev): -4.5307 -3.1593 4.6488 4.8136 6.2867 9.3898 9.6943 10.5056 15.7351 k = 0.1206-0.4923 0.5450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9040 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.1300-0.4868-0.3451 ( 510 PWs) bands (ev): -4.4236 -1.8448 1.8928 3.5502 4.1855 9.8676 13.0466 14.3620 15.0333 k = 0.1268-0.4886-0.0484 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1206-0.2111 0.1483 ( 525 PWs) bands (ev): -6.5090 0.2383 4.7829 5.3783 6.7763 9.4814 10.3174 11.5351 13.5139 k = 0.1174-0.2129 0.4450 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1268-0.2075-0.4450 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1237-0.2093-0.1483 ( 525 PWs) bands (ev): -6.5090 0.2383 4.7829 5.3783 6.7763 9.4814 10.3174 11.5351 13.5139 k = 0.3586-0.0728-0.0516 ( 522 PWs) bands (ev): -6.0602 -0.8089 4.0518 5.7453 8.1001 8.3681 9.0733 11.9637 13.9839 k = 0.3555-0.0746 0.2451 ( 519 PWs) bands (ev): -5.6821 -0.5663 3.0197 4.0829 5.3652 10.2643 12.0246 12.1113 13.7981 k = 0.3648-0.0692-0.6450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9041 6.2553 9.9664 12.5651 13.8135 14.0980 k = 0.3617-0.0710-0.3483 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.3555 0.2065-0.1516 ( 519 PWs) bands (ev): -5.6821 -0.5663 3.0197 4.0829 5.3652 10.2643 12.0246 12.1113 13.7981 k = 0.3523 0.2047 0.1451 ( 522 PWs) bands (ev): -5.8684 -1.5134 5.8388 5.8388 7.0602 8.5253 8.5253 9.6563 15.7959 k = 0.3617 0.2102-0.7450 ( 520 PWs) bands (ev): -4.8447 -2.0418 2.1593 4.6760 5.9764 10.0995 10.4550 13.2672 15.2952 k = 0.3586 0.2084-0.4483 ( 510 PWs) bands (ev): -4.4236 -1.8448 1.8928 3.5502 4.1855 9.8676 13.0466 14.3620 15.0333 k = 0.3648-0.6315 0.1483 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9040 6.2553 9.9664 12.5651 13.8135 14.0980 k = 0.3617-0.6333 0.4450 ( 520 PWs) bands (ev): -4.8447 -2.0418 2.1593 4.6760 5.9764 10.0995 10.4550 13.2672 15.2952 k = 0.3711-0.6279-0.4450 ( 520 PWs) bands (ev): -4.8447 -2.0418 2.1593 4.6760 5.9764 10.0995 10.4550 13.2672 15.2952 k = 0.3680-0.6297-0.1483 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9041 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.3617-0.3521 0.0484 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.3586-0.3540 0.3451 ( 510 PWs) bands (ev): -4.4236 -1.8448 1.8928 3.5502 4.1855 9.8676 13.0466 14.3620 15.0333 k = 0.3680-0.3485-0.5450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9041 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.3648-0.3503-0.2483 ( 520 PWs) bands (ev): -4.5307 -3.1593 4.6488 4.8137 6.2867 9.3898 9.6943 10.5056 15.7351 the Fermi energy is 8.3108 ev ! total energy = -25.49949563 Ry Harris-Foulkes estimate = -25.49949563 Ry estimated scf accuracy < 9.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.91889384 Ry hartree contribution = 1.18262465 Ry xc contribution = -6.31817944 Ry ewald contribution = -27.28286212 Ry smearing contrib. (-TS) = 0.00002744 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00038212 0.00022196 0.00015737 atom 2 type 1 force = -0.00038212 -0.00022196 -0.00015737 Total force = 0.000663 Total SCF correction = 0.000029 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.91 0.00002094 0.00000930 0.00000660 3.08 1.37 0.97 0.00000930 0.00001033 0.00000383 1.37 1.52 0.56 0.00000660 0.00000383 0.00000764 0.97 0.56 1.12 number of scf cycles = 8 number of bfgs steps = 7 enthalpy old = -25.4994844264 Ry enthalpy new = -25.4994956264 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0038243619 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 273.91448 a.u.^3 ( 40.58994 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.051577746 0.016375644 0.011607286 0.534941752 0.905494783 0.011607550 0.534941683 0.310835960 0.850550889 ATOMIC_POSITIONS (crystal) As 0.272134401 0.272134458 0.272134428 As -0.272134401 -0.272134458 -0.272134428 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1172747 0.0681442 0.0483019), wk = 0.0625000 k( 2) = ( 0.1140295 0.0662585 0.3449592), wk = 0.0625000 k( 3) = ( 0.1237649 0.0719156 -0.5450126), wk = 0.0625000 k( 4) = ( 0.1205198 0.0700299 -0.2483554), wk = 0.0625000 k( 5) = ( 0.1140295 0.3474357 -0.0517249), wk = 0.0625000 k( 6) = ( 0.1107844 0.3455500 0.2449324), wk = 0.0625000 k( 7) = ( 0.1205198 0.3512072 -0.6450394), wk = 0.0625000 k( 8) = ( 0.1172746 0.3493215 -0.3483822), wk = 0.0625000 k( 9) = ( 0.1237650 -0.4904389 0.2483555), wk = 0.0625000 k( 10) = ( 0.1205199 -0.4923246 0.5450128), wk = 0.0625000 k( 11) = ( 0.1302553 -0.4866675 -0.3449590), wk = 0.0625000 k( 12) = ( 0.1270101 -0.4885532 -0.0483018), wk = 0.0625000 k( 13) = ( 0.1205198 -0.2111474 0.1483287), wk = 0.0625000 k( 14) = ( 0.1172747 -0.2130331 0.4449860), wk = 0.0625000 k( 15) = ( 0.1270101 -0.2073759 -0.4449858), wk = 0.0625000 k( 16) = ( 0.1237650 -0.2092616 -0.1483286), wk = 0.0625000 k( 17) = ( 0.3583143 -0.0729732 -0.0517248), wk = 0.0625000 k( 18) = ( 0.3550692 -0.0748590 0.2449325), wk = 0.0625000 k( 19) = ( 0.3648046 -0.0692018 -0.6450393), wk = 0.0625000 k( 20) = ( 0.3615595 -0.0710875 -0.3483820), wk = 0.0625000 k( 21) = ( 0.3550692 0.2063183 -0.1517516), wk = 0.0625000 k( 22) = ( 0.3518240 0.2044326 0.1449057), wk = 0.0625000 k( 23) = ( 0.3615594 0.2100897 -0.7450661), wk = 0.0625000 k( 24) = ( 0.3583143 0.2082040 -0.4484089), wk = 0.0625000 k( 25) = ( 0.3648046 -0.6315563 0.1483288), wk = 0.0625000 k( 26) = ( 0.3615595 -0.6334421 0.4449861), wk = 0.0625000 k( 27) = ( 0.3712949 -0.6277849 -0.4449857), wk = 0.0625000 k( 28) = ( 0.3680498 -0.6296706 -0.1483284), wk = 0.0625000 k( 29) = ( 0.3615595 -0.3522648 0.0483020), wk = 0.0625000 k( 30) = ( 0.3583144 -0.3541505 0.3449593), wk = 0.0625000 k( 31) = ( 0.3680497 -0.3484934 -0.5450125), wk = 0.0625000 k( 32) = ( 0.3648046 -0.3503791 -0.2483552), wk = 0.0625000 extrapolated charge 10.01304, renormalised to 10.00000 total cpu time spent up to now is 20.3 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.11E-09, avg # of iterations = 1.7 total cpu time spent up to now is 20.9 secs total energy = -25.49950541 Ry Harris-Foulkes estimate = -25.50715594 Ry estimated scf accuracy < 0.00000070 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-09, avg # of iterations = 3.0 total cpu time spent up to now is 21.3 secs total energy = -25.49950664 Ry Harris-Foulkes estimate = -25.49950697 Ry estimated scf accuracy < 0.00000087 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 21.6 secs total energy = -25.49950659 Ry Harris-Foulkes estimate = -25.49950668 Ry estimated scf accuracy < 0.00000019 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-09, avg # of iterations = 1.9 total cpu time spent up to now is 21.9 secs total energy = -25.49950661 Ry Harris-Foulkes estimate = -25.49950661 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-11, avg # of iterations = 3.1 total cpu time spent up to now is 22.2 secs End of self-consistent calculation k = 0.1173 0.0681 0.0483 ( 531 PWs) bands (ev): -7.0987 1.8206 5.6449 5.6449 6.5778 10.0396 10.5943 10.5943 14.5516 k = 0.1140 0.0663 0.3450 ( 522 PWs) bands (ev): -6.0743 -0.8215 4.0312 5.7182 8.0852 8.3499 9.0745 11.9405 13.9658 k = 0.1238 0.0719-0.5450 ( 520 PWs) bands (ev): -4.5459 -3.1708 4.6285 4.7912 6.2745 9.3645 9.6902 10.4818 15.7055 k = 0.1205 0.0700-0.2484 ( 525 PWs) bands (ev): -6.5204 0.2203 4.7669 5.3596 6.7524 9.4684 10.2850 11.5174 13.5025 k = 0.1140 0.3474-0.0517 ( 522 PWs) bands (ev): -6.0743 -0.8215 4.0312 5.7182 8.0852 8.3499 9.0745 11.9405 13.9658 k = 0.1108 0.3456 0.2449 ( 519 PWs) bands (ev): -5.6990 -0.5810 3.0001 4.0719 5.3626 10.2381 12.0050 12.0930 13.7958 k = 0.1205 0.3512-0.6450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.1173 0.3493-0.3484 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1238-0.4904 0.2484 ( 520 PWs) bands (ev): -4.5458 -3.1708 4.6285 4.7912 6.2745 9.3645 9.6902 10.4818 15.7055 k = 0.1205-0.4923 0.5450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.1303-0.4867-0.3450 ( 510 PWs) bands (ev): -4.4395 -1.8674 1.8898 3.5386 4.1754 9.8386 13.0262 14.3534 15.0060 k = 0.1270-0.4886-0.0483 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1205-0.2111 0.1483 ( 525 PWs) bands (ev): -6.5204 0.2203 4.7669 5.3596 6.7524 9.4684 10.2850 11.5174 13.5025 k = 0.1173-0.2130 0.4450 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1270-0.2074-0.4450 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1238-0.2093-0.1483 ( 525 PWs) bands (ev): -6.5204 0.2203 4.7669 5.3596 6.7524 9.4684 10.2850 11.5174 13.5025 k = 0.3583-0.0730-0.0517 ( 522 PWs) bands (ev): -6.0743 -0.8215 4.0312 5.7182 8.0852 8.3499 9.0745 11.9405 13.9658 k = 0.3551-0.0749 0.2449 ( 519 PWs) bands (ev): -5.6990 -0.5810 3.0001 4.0718 5.3626 10.2381 12.0050 12.0930 13.7958 k = 0.3648-0.0692-0.6450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3616-0.0711-0.3484 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.3551 0.2063-0.1518 ( 519 PWs) bands (ev): -5.6990 -0.5810 3.0001 4.0718 5.3626 10.2381 12.0050 12.0930 13.7958 k = 0.3518 0.2044 0.1449 ( 522 PWs) bands (ev): -5.8900 -1.5198 5.8207 5.8207 7.0408 8.5206 8.5206 9.6499 15.7703 k = 0.3616 0.2101-0.7451 ( 520 PWs) bands (ev): -4.8710 -2.0449 2.1464 4.6606 5.9709 10.0919 10.4334 13.2427 15.2789 k = 0.3583 0.2082-0.4484 ( 510 PWs) bands (ev): -4.4395 -1.8674 1.8898 3.5386 4.1754 9.8386 13.0262 14.3534 15.0060 k = 0.3648-0.6316 0.1483 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3616-0.6334 0.4450 ( 520 PWs) bands (ev): -4.8710 -2.0449 2.1464 4.6606 5.9709 10.0919 10.4334 13.2427 15.2789 k = 0.3713-0.6278-0.4450 ( 520 PWs) bands (ev): -4.8710 -2.0449 2.1464 4.6606 5.9709 10.0919 10.4334 13.2427 15.2789 k = 0.3680-0.6297-0.1483 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3616-0.3523 0.0483 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.3583-0.3542 0.3450 ( 510 PWs) bands (ev): -4.4395 -1.8674 1.8898 3.5386 4.1754 9.8386 13.0262 14.3534 15.0060 k = 0.3680-0.3485-0.5450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3648-0.3504-0.2484 ( 520 PWs) bands (ev): -4.5459 -3.1708 4.6285 4.7912 6.2745 9.3645 9.6902 10.4818 15.7055 the Fermi energy is 8.2926 ev ! total energy = -25.49950661 Ry Harris-Foulkes estimate = -25.49950661 Ry estimated scf accuracy < 5.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.89545386 Ry hartree contribution = 1.18823858 Ry xc contribution = -6.31737754 Ry ewald contribution = -27.26584897 Ry smearing contrib. (-TS) = 0.00002747 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00013686 -0.00007958 -0.00005638 atom 2 type 1 force = 0.00013686 0.00007958 0.00005638 Total force = 0.000238 Total SCF correction = 0.000020 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.75 0.00001744 0.00000650 0.00000461 2.57 0.96 0.68 0.00000650 0.00001003 0.00000268 0.96 1.47 0.39 0.00000461 0.00000268 0.00000815 0.68 0.39 1.20 number of scf cycles = 9 number of bfgs steps = 8 enthalpy old = -25.4994956264 Ry enthalpy new = -25.4995066122 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0057321617 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 274.47890 a.u.^3 ( 40.67358 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053069860 0.017262071 0.012235633 0.536450731 0.906352215 0.012235823 0.536450687 0.311712730 0.851151836 ATOMIC_POSITIONS (crystal) As 0.272270891 0.272270920 0.272270901 As -0.272270891 -0.272270920 -0.272270901 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1170259 0.0679996 0.0481994), wk = 0.0625000 k( 2) = ( 0.1136122 0.0660160 0.3447970), wk = 0.0625000 k( 3) = ( 0.1238532 0.0719669 -0.5449957), wk = 0.0625000 k( 4) = ( 0.1204395 0.0699833 -0.2483982), wk = 0.0625000 k( 5) = ( 0.1136122 0.3472024 -0.0519000), wk = 0.0625000 k( 6) = ( 0.1101986 0.3452188 0.2446976), wk = 0.0625000 k( 7) = ( 0.1204395 0.3511697 -0.6450951), wk = 0.0625000 k( 8) = ( 0.1170259 0.3491860 -0.3484976), wk = 0.0625000 k( 9) = ( 0.1238532 -0.4904059 0.2483982), wk = 0.0625000 k( 10) = ( 0.1204396 -0.4923896 0.5449958), wk = 0.0625000 k( 11) = ( 0.1306805 -0.4864387 -0.3447969), wk = 0.0625000 k( 12) = ( 0.1272669 -0.4884223 -0.0481993), wk = 0.0625000 k( 13) = ( 0.1204396 -0.2112032 0.1482988), wk = 0.0625000 k( 14) = ( 0.1170259 -0.2131868 0.4448964), wk = 0.0625000 k( 15) = ( 0.1272669 -0.2072359 -0.4448963), wk = 0.0625000 k( 16) = ( 0.1238532 -0.2092195 -0.1482987), wk = 0.0625000 k( 17) = ( 0.3579050 -0.0732203 -0.0518999), wk = 0.0625000 k( 18) = ( 0.3544913 -0.0752039 0.2446977), wk = 0.0625000 k( 19) = ( 0.3647323 -0.0692530 -0.6450951), wk = 0.0625000 k( 20) = ( 0.3613186 -0.0712367 -0.3484975), wk = 0.0625000 k( 21) = ( 0.3544913 0.2059825 -0.1519993), wk = 0.0625000 k( 22) = ( 0.3510777 0.2039989 0.1445983), wk = 0.0625000 k( 23) = ( 0.3613186 0.2099498 -0.7451945), wk = 0.0625000 k( 24) = ( 0.3579050 0.2079661 -0.4485969), wk = 0.0625000 k( 25) = ( 0.3647323 -0.6316259 0.1482989), wk = 0.0625000 k( 26) = ( 0.3613187 -0.6336095 0.4448965), wk = 0.0625000 k( 27) = ( 0.3715597 -0.6276586 -0.4448962), wk = 0.0625000 k( 28) = ( 0.3681460 -0.6296422 -0.1482987), wk = 0.0625000 k( 29) = ( 0.3613187 -0.3524231 0.0481995), wk = 0.0625000 k( 30) = ( 0.3579050 -0.3544067 0.3447971), wk = 0.0625000 k( 31) = ( 0.3681460 -0.3484558 -0.5449956), wk = 0.0625000 k( 32) = ( 0.3647323 -0.3504394 -0.2483981), wk = 0.0625000 extrapolated charge 10.02056, renormalised to 10.00000 total cpu time spent up to now is 22.6 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.41E-08, avg # of iterations = 1.7 total cpu time spent up to now is 23.2 secs total energy = -25.49951178 Ry Harris-Foulkes estimate = -25.51154211 Ry estimated scf accuracy < 0.00000139 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-08, avg # of iterations = 3.0 total cpu time spent up to now is 23.6 secs total energy = -25.49951481 Ry Harris-Foulkes estimate = -25.49951553 Ry estimated scf accuracy < 0.00000193 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-08, avg # of iterations = 1.0 total cpu time spent up to now is 23.9 secs total energy = -25.49951474 Ry Harris-Foulkes estimate = -25.49951491 Ry estimated scf accuracy < 0.00000045 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.51E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.1 secs total energy = -25.49951471 Ry Harris-Foulkes estimate = -25.49951476 Ry estimated scf accuracy < 0.00000010 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.73E-10, avg # of iterations = 2.4 total cpu time spent up to now is 24.5 secs total energy = -25.49951473 Ry Harris-Foulkes estimate = -25.49951473 Ry estimated scf accuracy < 2.8E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-11, avg # of iterations = 1.8 total cpu time spent up to now is 24.7 secs End of self-consistent calculation k = 0.1170 0.0680 0.0482 ( 531 PWs) bands (ev): -7.1140 1.7841 5.6250 5.6250 6.5453 9.9984 10.5631 10.5631 14.5394 k = 0.1136 0.0660 0.3448 ( 522 PWs) bands (ev): -6.0924 -0.8426 4.0007 5.6863 8.0625 8.3192 9.0649 11.9021 13.9411 k = 0.1239 0.0720-0.5450 ( 520 PWs) bands (ev): -4.5652 -3.1880 4.5970 4.7644 6.2533 9.3277 9.6737 10.4383 15.6571 k = 0.1204 0.0700-0.2484 ( 525 PWs) bands (ev): -6.5350 0.1932 4.7469 5.3288 6.7167 9.4394 10.2443 11.4854 13.4786 k = 0.1136 0.3472-0.0519 ( 522 PWs) bands (ev): -6.0924 -0.8426 4.0006 5.6863 8.0625 8.3192 9.0649 11.9021 13.9411 k = 0.1102 0.3452 0.2447 ( 519 PWs) bands (ev): -5.7206 -0.6072 2.9754 4.0581 5.3502 10.2069 11.9739 12.0635 13.7807 k = 0.1204 0.3512-0.6451 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.1170 0.3492-0.3485 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1905 12.2152 13.7266 k = 0.1239-0.4904 0.2484 ( 520 PWs) bands (ev): -4.5652 -3.1880 4.5970 4.7644 6.2533 9.3277 9.6737 10.4383 15.6571 k = 0.1204-0.4924 0.5450 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.1307-0.4864-0.3448 ( 510 PWs) bands (ev): -4.4609 -1.8970 1.8794 3.5243 4.1554 9.8030 12.9896 14.3276 14.9587 k = 0.1273-0.4884-0.0482 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1905 12.2153 13.7266 k = 0.1204-0.2112 0.1483 ( 525 PWs) bands (ev): -6.5350 0.1932 4.7469 5.3288 6.7167 9.4394 10.2443 11.4854 13.4786 k = 0.1170-0.2132 0.4449 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2152 13.7266 k = 0.1273-0.2072-0.4449 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2153 13.7266 k = 0.1239-0.2092-0.1483 ( 525 PWs) bands (ev): -6.5350 0.1932 4.7469 5.3288 6.7167 9.4394 10.2443 11.4854 13.4786 k = 0.3579-0.0732-0.0519 ( 522 PWs) bands (ev): -6.0924 -0.8426 4.0007 5.6863 8.0625 8.3192 9.0649 11.9021 13.9411 k = 0.3545-0.0752 0.2447 ( 519 PWs) bands (ev): -5.7206 -0.6072 2.9754 4.0580 5.3502 10.2069 11.9739 12.0635 13.7807 k = 0.3647-0.0693-0.6451 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3613-0.0712-0.3485 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2153 13.7266 k = 0.3545 0.2060-0.1520 ( 519 PWs) bands (ev): -5.7206 -0.6072 2.9754 4.0580 5.3502 10.2069 11.9739 12.0635 13.7807 k = 0.3511 0.2040 0.1446 ( 522 PWs) bands (ev): -5.9168 -1.5380 5.7994 5.7994 7.0170 8.5087 8.5087 9.6331 15.7322 k = 0.3613 0.2099-0.7452 ( 520 PWs) bands (ev): -4.9031 -2.0580 2.1302 4.6419 5.9583 10.0749 10.4030 13.2076 15.2492 k = 0.3579 0.2080-0.4486 ( 510 PWs) bands (ev): -4.4609 -1.8970 1.8794 3.5243 4.1554 9.8030 12.9896 14.3276 14.9587 k = 0.3647-0.6316 0.1483 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3613-0.6336 0.4449 ( 520 PWs) bands (ev): -4.9031 -2.0580 2.1302 4.6419 5.9583 10.0749 10.4030 13.2076 15.2492 k = 0.3716-0.6277-0.4449 ( 520 PWs) bands (ev): -4.9031 -2.0580 2.1302 4.6419 5.9583 10.0749 10.4030 13.2076 15.2492 k = 0.3681-0.6296-0.1483 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3613-0.3524 0.0482 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2153 13.7266 k = 0.3579-0.3544 0.3448 ( 510 PWs) bands (ev): -4.4609 -1.8970 1.8794 3.5243 4.1554 9.8030 12.9896 14.3276 14.9587 k = 0.3681-0.3485-0.5450 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3647-0.3504-0.2484 ( 520 PWs) bands (ev): -4.5652 -3.1880 4.5970 4.7644 6.2533 9.3277 9.6737 10.4383 15.6571 the Fermi energy is 8.2618 ev ! total energy = -25.49951473 Ry Harris-Foulkes estimate = -25.49951473 Ry estimated scf accuracy < 7.7E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.86337735 Ry hartree contribution = 1.19496996 Ry xc contribution = -6.31562462 Ry ewald contribution = -27.24226512 Ry smearing contrib. (-TS) = 0.00002769 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00032703 -0.00019006 -0.00013470 atom 2 type 1 force = 0.00032703 0.00019006 0.00013470 Total force = 0.000568 Total SCF correction = 0.000022 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.86 0.00000776 0.00000221 0.00000157 1.14 0.33 0.23 0.00000221 0.00000524 0.00000091 0.33 0.77 0.13 0.00000157 0.00000091 0.00000460 0.23 0.13 0.68 number of scf cycles = 10 number of bfgs steps = 9 enthalpy old = -25.4995066122 Ry enthalpy new = -25.4995147325 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0025975239 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 274.74297 a.u.^3 ( 40.71271 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053751829 0.017658448 0.012516607 0.537132794 0.906748449 0.012516753 0.537132762 0.312109025 0.851432653 ATOMIC_POSITIONS (crystal) As 0.272273145 0.272273159 0.272273146 As -0.272273145 -0.272273159 -0.272273146 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1169134 0.0679343 0.0481531), wk = 0.0625000 k( 2) = ( 0.1134247 0.0659070 0.3447198), wk = 0.0625000 k( 3) = ( 0.1238907 0.0719887 -0.5449804), wk = 0.0625000 k( 4) = ( 0.1204021 0.0699615 -0.2484136), wk = 0.0625000 k( 5) = ( 0.1134247 0.3470935 -0.0519772), wk = 0.0625000 k( 6) = ( 0.1099360 0.3450663 0.2445895), wk = 0.0625000 k( 7) = ( 0.1204020 0.3511479 -0.6451107), wk = 0.0625000 k( 8) = ( 0.1169134 0.3491207 -0.3485440), wk = 0.0625000 k( 9) = ( 0.1238908 -0.4903842 0.2484137), wk = 0.0625000 k( 10) = ( 0.1204021 -0.4924114 0.5449804), wk = 0.0625000 k( 11) = ( 0.1308681 -0.4863298 -0.3447197), wk = 0.0625000 k( 12) = ( 0.1273795 -0.4883570 -0.0481530), wk = 0.0625000 k( 13) = ( 0.1204021 -0.2112250 0.1482834), wk = 0.0625000 k( 14) = ( 0.1169134 -0.2132522 0.4448501), wk = 0.0625000 k( 15) = ( 0.1273794 -0.2071706 -0.4448501), wk = 0.0625000 k( 16) = ( 0.1238908 -0.2091978 -0.1482833), wk = 0.0625000 k( 17) = ( 0.3577175 -0.0733293 -0.0519772), wk = 0.0625000 k( 18) = ( 0.3542288 -0.0753565 0.2445896), wk = 0.0625000 k( 19) = ( 0.3646949 -0.0692749 -0.6451106), wk = 0.0625000 k( 20) = ( 0.3612062 -0.0713021 -0.3485439), wk = 0.0625000 k( 21) = ( 0.3542288 0.2058300 -0.1521075), wk = 0.0625000 k( 22) = ( 0.3507401 0.2038028 0.1444593), wk = 0.0625000 k( 23) = ( 0.3612062 0.2098844 -0.7452409), wk = 0.0625000 k( 24) = ( 0.3577175 0.2078572 -0.4486742), wk = 0.0625000 k( 25) = ( 0.3646949 -0.6316477 0.1482835), wk = 0.0625000 k( 26) = ( 0.3612062 -0.6336750 0.4448502), wk = 0.0625000 k( 27) = ( 0.3716723 -0.6275933 -0.4448500), wk = 0.0625000 k( 28) = ( 0.3681836 -0.6296205 -0.1482833), wk = 0.0625000 k( 29) = ( 0.3612062 -0.3524885 0.0481532), wk = 0.0625000 k( 30) = ( 0.3577175 -0.3545157 0.3447199), wk = 0.0625000 k( 31) = ( 0.3681836 -0.3484341 -0.5449803), wk = 0.0625000 k( 32) = ( 0.3646949 -0.3504613 -0.2484136), wk = 0.0625000 extrapolated charge 10.00961, renormalised to 10.00000 total cpu time spent up to now is 25.1 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.58E-09, avg # of iterations = 3.1 total cpu time spent up to now is 25.8 secs total energy = -25.49951561 Ry Harris-Foulkes estimate = -25.50513184 Ry estimated scf accuracy < 0.00000028 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-09, avg # of iterations = 3.0 total cpu time spent up to now is 26.1 secs total energy = -25.49951626 Ry Harris-Foulkes estimate = -25.49951639 Ry estimated scf accuracy < 0.00000036 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-09, avg # of iterations = 1.0 total cpu time spent up to now is 26.4 secs total energy = -25.49951625 Ry Harris-Foulkes estimate = -25.49951627 Ry estimated scf accuracy < 0.00000008 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.45E-10, avg # of iterations = 1.0 total cpu time spent up to now is 26.7 secs total energy = -25.49951624 Ry Harris-Foulkes estimate = -25.49951625 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-10, avg # of iterations = 2.5 total cpu time spent up to now is 27.0 secs End of self-consistent calculation k = 0.1169 0.0679 0.0482 ( 531 PWs) bands (ev): -7.1197 1.7654 5.6179 5.6179 6.5288 9.9838 10.5495 10.5495 14.5317 k = 0.1134 0.0659 0.3447 ( 522 PWs) bands (ev): -6.0991 -0.8529 3.9871 5.6761 8.0524 8.3040 9.0557 11.8831 13.9312 k = 0.1239 0.0720-0.5450 ( 520 PWs) bands (ev): -4.5723 -3.1957 4.5825 4.7556 6.2425 9.3119 9.6616 10.4151 15.6333 k = 0.1204 0.0700-0.2484 ( 525 PWs) bands (ev): -6.5405 0.1811 4.7400 5.3138 6.7007 9.4221 10.2296 11.4685 13.4648 k = 0.1134 0.3471-0.0520 ( 522 PWs) bands (ev): -6.0991 -0.8529 3.9871 5.6761 8.0524 8.3040 9.0557 11.8831 13.9312 k = 0.1099 0.3451 0.2446 ( 519 PWs) bands (ev): -5.7285 -0.6208 2.9665 4.0533 5.3410 10.1967 11.9594 12.0496 13.7689 k = 0.1204 0.3511-0.6451 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.1169 0.3491-0.3485 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.1239-0.4904 0.2484 ( 520 PWs) bands (ev): -4.5723 -3.1957 4.5825 4.7556 6.2425 9.3119 9.6616 10.4151 15.6333 k = 0.1204-0.4924 0.5450 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.1309-0.4863-0.3447 ( 510 PWs) bands (ev): -4.4691 -1.9084 1.8719 3.5194 4.1442 9.7906 12.9704 14.3104 14.9347 k = 0.1274-0.4884-0.0482 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.1204-0.2112 0.1483 ( 525 PWs) bands (ev): -6.5405 0.1811 4.7400 5.3138 6.7007 9.4221 10.2296 11.4685 13.4648 k = 0.1169-0.2133 0.4449 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4116 11.1736 12.2008 13.7133 k = 0.1274-0.2072-0.4449 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.1239-0.2092-0.1483 ( 525 PWs) bands (ev): -6.5405 0.1811 4.7400 5.3138 6.7007 9.4221 10.2296 11.4685 13.4648 k = 0.3577-0.0733-0.0520 ( 522 PWs) bands (ev): -6.0991 -0.8529 3.9871 5.6761 8.0524 8.3040 9.0557 11.8831 13.9312 k = 0.3542-0.0754 0.2446 ( 519 PWs) bands (ev): -5.7285 -0.6208 2.9665 4.0533 5.3410 10.1967 11.9594 12.0496 13.7689 k = 0.3647-0.0693-0.6451 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3612-0.0713-0.3485 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.3542 0.2058-0.1521 ( 519 PWs) bands (ev): -5.7285 -0.6208 2.9665 4.0533 5.3410 10.1967 11.9594 12.0496 13.7689 k = 0.3507 0.2038 0.1445 ( 522 PWs) bands (ev): -5.9263 -1.5501 5.7926 5.7926 7.0090 8.5015 8.5015 9.6227 15.7152 k = 0.3612 0.2099-0.7452 ( 520 PWs) bands (ev): -4.9141 -2.0677 2.1244 4.6357 5.9508 10.0650 10.3905 13.1929 15.2335 k = 0.3577 0.2079-0.4487 ( 510 PWs) bands (ev): -4.4691 -1.9084 1.8719 3.5194 4.1442 9.7906 12.9704 14.3104 14.9347 k = 0.3647-0.6316 0.1483 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3612-0.6337 0.4449 ( 520 PWs) bands (ev): -4.9141 -2.0677 2.1244 4.6357 5.9508 10.0650 10.3905 13.1929 15.2335 k = 0.3717-0.6276-0.4448 ( 520 PWs) bands (ev): -4.9141 -2.0678 2.1244 4.6357 5.9508 10.0650 10.3905 13.1929 15.2335 k = 0.3682-0.6296-0.1483 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3612-0.3525 0.0482 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.3577-0.3545 0.3447 ( 510 PWs) bands (ev): -4.4691 -1.9084 1.8719 3.5194 4.1442 9.7906 12.9704 14.3104 14.9347 k = 0.3682-0.3484-0.5450 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3647-0.3505-0.2484 ( 520 PWs) bands (ev): -4.5723 -3.1957 4.5825 4.7556 6.2425 9.3119 9.6616 10.4151 15.6333 the Fermi energy is 8.2466 ev ! total energy = -25.49951624 Ry Harris-Foulkes estimate = -25.49951624 Ry estimated scf accuracy < 9.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.85051372 Ry hartree contribution = 1.19719730 Ry xc contribution = -6.31459582 Ry ewald contribution = -27.23265936 Ry smearing contrib. (-TS) = 0.00002793 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00014073 -0.00008180 -0.00005796 atom 2 type 1 force = 0.00014073 0.00008180 0.00005796 Total force = 0.000244 Total SCF correction = 0.000022 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.18 0.00000139 0.00000020 0.00000014 0.20 0.03 0.02 0.00000020 0.00000116 0.00000008 0.03 0.17 0.01 0.00000014 0.00000008 0.00000110 0.02 0.01 0.16 bfgs converged in 11 scf cycles and 10 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02, cell < 0.50E+00) End of BFGS Geometry Optimization Final enthalpy = -25.4995162411 Ry Begin final coordinates new unit-cell volume = 274.74297 a.u.^3 ( 40.71271 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053751829 0.017658448 0.012516607 0.537132794 0.906748449 0.012516753 0.537132762 0.312109025 0.851432653 ATOMIC_POSITIONS (crystal) As 0.272273145 0.272273159 0.272273146 As -0.272273145 -0.272273159 -0.272273146 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 371 371 121 4675 4675 893 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 274.7430 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.053752 0.017658 0.012517 ) a(2) = ( 0.537133 0.906748 0.012517 ) a(3) = ( 0.537133 0.312109 0.851433 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 0.963216 -0.565054 -0.400521 ) b(2) = ( -0.013955 1.116637 -0.400521 ) b(3) = ( -0.013955 -0.008109 1.186267 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5794020 0.3366701 0.2386382 ) 2 As tau( 2) = ( -0.5794020 -0.3366701 -0.2386382 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1169134 0.0679343 0.0481531), wk = 0.0625000 k( 2) = ( 0.1134247 0.0659070 0.3447198), wk = 0.0625000 k( 3) = ( 0.1238907 0.0719887 -0.5449804), wk = 0.0625000 k( 4) = ( 0.1204021 0.0699615 -0.2484136), wk = 0.0625000 k( 5) = ( 0.1134247 0.3470935 -0.0519772), wk = 0.0625000 k( 6) = ( 0.1099360 0.3450663 0.2445895), wk = 0.0625000 k( 7) = ( 0.1204020 0.3511479 -0.6451107), wk = 0.0625000 k( 8) = ( 0.1169134 0.3491207 -0.3485440), wk = 0.0625000 k( 9) = ( 0.1238908 -0.4903842 0.2484137), wk = 0.0625000 k( 10) = ( 0.1204021 -0.4924114 0.5449804), wk = 0.0625000 k( 11) = ( 0.1308681 -0.4863298 -0.3447197), wk = 0.0625000 k( 12) = ( 0.1273795 -0.4883570 -0.0481530), wk = 0.0625000 k( 13) = ( 0.1204021 -0.2112250 0.1482834), wk = 0.0625000 k( 14) = ( 0.1169134 -0.2132522 0.4448501), wk = 0.0625000 k( 15) = ( 0.1273794 -0.2071706 -0.4448501), wk = 0.0625000 k( 16) = ( 0.1238908 -0.2091978 -0.1482833), wk = 0.0625000 k( 17) = ( 0.3577175 -0.0733293 -0.0519772), wk = 0.0625000 k( 18) = ( 0.3542288 -0.0753565 0.2445896), wk = 0.0625000 k( 19) = ( 0.3646949 -0.0692749 -0.6451106), wk = 0.0625000 k( 20) = ( 0.3612062 -0.0713021 -0.3485439), wk = 0.0625000 k( 21) = ( 0.3542288 0.2058300 -0.1521075), wk = 0.0625000 k( 22) = ( 0.3507401 0.2038028 0.1444593), wk = 0.0625000 k( 23) = ( 0.3612062 0.2098844 -0.7452409), wk = 0.0625000 k( 24) = ( 0.3577175 0.2078572 -0.4486742), wk = 0.0625000 k( 25) = ( 0.3646949 -0.6316477 0.1482835), wk = 0.0625000 k( 26) = ( 0.3612062 -0.6336750 0.4448502), wk = 0.0625000 k( 27) = ( 0.3716723 -0.6275933 -0.4448500), wk = 0.0625000 k( 28) = ( 0.3681836 -0.6296205 -0.1482833), wk = 0.0625000 k( 29) = ( 0.3612062 -0.3524885 0.0481532), wk = 0.0625000 k( 30) = ( 0.3577175 -0.3545157 0.3447199), wk = 0.0625000 k( 31) = ( 0.3681836 -0.3484341 -0.5449803), wk = 0.0625000 k( 32) = ( 0.3646949 -0.3504613 -0.2484136), wk = 0.0625000 Dense grid: 4675 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 592, 9) NL pseudopotentials 0.07 Mb ( 592, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.04 Mb ( 4675) G-vector shells 0.02 Mb ( 2338) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.33 Mb ( 592, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 27.4 secs per-process dynamical memory: 11.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.4 total cpu time spent up to now is 28.4 secs total energy = -25.50073134 Ry Harris-Foulkes estimate = -25.50285694 Ry estimated scf accuracy < 0.01040265 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-04, avg # of iterations = 1.0 total cpu time spent up to now is 28.7 secs total energy = -25.50085477 Ry Harris-Foulkes estimate = -25.50104027 Ry estimated scf accuracy < 0.00082110 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-06, avg # of iterations = 1.0 total cpu time spent up to now is 28.9 secs total energy = -25.50089014 Ry Harris-Foulkes estimate = -25.50090923 Ry estimated scf accuracy < 0.00003619 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-07, avg # of iterations = 2.1 total cpu time spent up to now is 29.2 secs total energy = -25.50089922 Ry Harris-Foulkes estimate = -25.50089926 Ry estimated scf accuracy < 0.00000029 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-09, avg # of iterations = 2.1 total cpu time spent up to now is 29.6 secs total energy = -25.50089935 Ry Harris-Foulkes estimate = -25.50089935 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-10, avg # of iterations = 2.2 total cpu time spent up to now is 29.9 secs End of self-consistent calculation k = 0.1169 0.0679 0.0482 ( 567 PWs) bands (ev): -7.1195 1.7648 5.6176 5.6176 6.5263 9.9827 10.5489 10.5489 14.5315 k = 0.1134 0.0659 0.3447 ( 579 PWs) bands (ev): -6.0995 -0.8538 3.9862 5.6753 8.0498 8.3007 9.0551 11.8817 13.9299 k = 0.1239 0.0720-0.5450 ( 582 PWs) bands (ev): -4.5728 -3.1963 4.5808 4.7544 6.2398 9.3098 9.6605 10.4130 15.6322 k = 0.1204 0.0700-0.2484 ( 581 PWs) bands (ev): -6.5406 0.1793 4.7390 5.3123 6.6986 9.4204 10.2282 11.4674 13.4640 k = 0.1134 0.3471-0.0520 ( 579 PWs) bands (ev): -6.0995 -0.8538 3.9862 5.6753 8.0497 8.3007 9.0551 11.8817 13.9299 k = 0.1099 0.3451 0.2446 ( 579 PWs) bands (ev): -5.7290 -0.6220 2.9656 4.0522 5.3397 10.1951 11.9565 12.0472 13.7662 k = 0.1204 0.3511-0.6451 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.1169 0.3491-0.3485 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1239-0.4904 0.2484 ( 582 PWs) bands (ev): -4.5728 -3.1963 4.5808 4.7544 6.2398 9.3098 9.6605 10.4130 15.6322 k = 0.1204-0.4924 0.5450 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.1309-0.4863-0.3447 ( 585 PWs) bands (ev): -4.4700 -1.9100 1.8705 3.5181 4.1424 9.7889 12.9677 14.3061 14.9288 k = 0.1274-0.4884-0.0482 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1204-0.2112 0.1483 ( 581 PWs) bands (ev): -6.5406 0.1793 4.7390 5.3123 6.6986 9.4204 10.2282 11.4674 13.4640 k = 0.1169-0.2133 0.4449 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1274-0.2072-0.4449 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1239-0.2092-0.1483 ( 581 PWs) bands (ev): -6.5406 0.1793 4.7390 5.3123 6.6986 9.4204 10.2282 11.4674 13.4640 k = 0.3577-0.0733-0.0520 ( 579 PWs) bands (ev): -6.0995 -0.8538 3.9862 5.6753 8.0498 8.3007 9.0551 11.8817 13.9299 k = 0.3542-0.0754 0.2446 ( 579 PWs) bands (ev): -5.7290 -0.6220 2.9656 4.0522 5.3397 10.1951 11.9566 12.0472 13.7662 k = 0.3647-0.0693-0.6451 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3612-0.0713-0.3485 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.3542 0.2058-0.1521 ( 579 PWs) bands (ev): -5.7290 -0.6220 2.9656 4.0522 5.3397 10.1951 11.9565 12.0472 13.7662 k = 0.3507 0.2038 0.1445 ( 592 PWs) bands (ev): -5.9269 -1.5510 5.7910 5.7910 7.0053 8.5007 8.5007 9.6174 15.7118 k = 0.3612 0.2099-0.7452 ( 583 PWs) bands (ev): -4.9146 -2.0692 2.1232 4.6345 5.9494 10.0636 10.3876 13.1890 15.2325 k = 0.3577 0.2079-0.4487 ( 585 PWs) bands (ev): -4.4700 -1.9100 1.8705 3.5181 4.1424 9.7889 12.9677 14.3061 14.9288 k = 0.3647-0.6316 0.1483 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3612-0.6337 0.4449 ( 583 PWs) bands (ev): -4.9146 -2.0692 2.1232 4.6345 5.9494 10.0636 10.3876 13.1890 15.2325 k = 0.3717-0.6276-0.4448 ( 583 PWs) bands (ev): -4.9146 -2.0692 2.1232 4.6345 5.9494 10.0636 10.3876 13.1890 15.2325 k = 0.3682-0.6296-0.1483 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3612-0.3525 0.0482 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.3577-0.3545 0.3447 ( 585 PWs) bands (ev): -4.4700 -1.9100 1.8705 3.5181 4.1424 9.7889 12.9677 14.3061 14.9288 k = 0.3682-0.3484-0.5450 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3647-0.3505-0.2484 ( 582 PWs) bands (ev): -4.5728 -3.1963 4.5808 4.7544 6.2398 9.3098 9.6605 10.4130 15.6322 the Fermi energy is 8.2434 ev ! total energy = -25.50089935 Ry Harris-Foulkes estimate = -25.50089935 Ry estimated scf accuracy < 7.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.84879121 Ry hartree contribution = 1.19788996 Ry xc contribution = -6.31494924 Ry ewald contribution = -27.23265924 Ry smearing contrib. (-TS) = 0.00002796 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00013563 -0.00007885 -0.00005580 atom 2 type 1 force = 0.00013563 0.00007885 0.00005580 Total force = 0.000235 Total SCF correction = 0.000012 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.08 0.00000234 0.00000210 0.00000149 0.34 0.31 0.22 0.00000210 -0.00000005 0.00000086 0.31 -0.01 0.13 0.00000149 0.00000086 -0.00000066 0.22 0.13 -0.10 Writing output data file pwscf.save init_run : 0.39s CPU 0.40s WALL ( 2 calls) electrons : 24.76s CPU 25.41s WALL ( 12 calls) update_pot : 1.18s CPU 1.18s WALL ( 10 calls) forces : 0.80s CPU 0.80s WALL ( 12 calls) stress : 1.50s CPU 1.51s WALL ( 12 calls) Called by init_run: wfcinit : 0.19s CPU 0.19s WALL ( 2 calls) potinit : 0.08s CPU 0.07s WALL ( 2 calls) Called by electrons: c_bands : 21.06s CPU 21.58s WALL ( 75 calls) sum_band : 3.42s CPU 3.50s WALL ( 75 calls) v_of_rho : 0.15s CPU 0.15s WALL ( 82 calls) mix_rho : 0.06s CPU 0.06s WALL ( 75 calls) Called by c_bands: init_us_2 : 0.72s CPU 0.71s WALL ( 5632 calls) cegterg : 20.56s CPU 20.90s WALL ( 2400 calls) Called by *egterg: h_psi : 15.37s CPU 15.35s WALL ( 7912 calls) g_psi : 0.83s CPU 0.77s WALL ( 5448 calls) cdiaghg : 1.59s CPU 1.68s WALL ( 7368 calls) Called by h_psi: add_vuspsi : 0.33s CPU 0.31s WALL ( 7912 calls) General routines calbec : 0.46s CPU 0.47s WALL ( 8680 calls) fft : 0.10s CPU 0.08s WALL ( 396 calls) fftw : 14.48s CPU 14.49s WALL ( 136104 calls) davcio : 0.02s CPU 0.24s WALL ( 8032 calls) PWSCF : 29.32s CPU 30.10s WALL This run was terminated on: 11:30:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/spinorbit.ref20000644000700200004540000002117012053145627016647 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:44:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/spinorbit.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 475 223 85 6855 2229 459 bravais-lattice index = 2 lattice parameter (alat) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file: /home/giannozz/trunk/espresso/pseudo/Pt.rel-pz-n-rrkjus.UPF MD5 check sum: 4baafe8ec1942611396c7a5466f52249 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 79.90000 Pt( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Methfessel-Paxton smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.1250000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0937500 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.3750000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.1875000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0468750 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0937500 Dense grid: 6855 G-vectors FFT dimensions: ( 27, 27, 27) Smooth grid: 2229 G-vectors FFT dimensions: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.14 Mb ( 580, 16) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.57 Mb ( 580, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 26, 2, 16) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.4 secs per-process dynamical memory: 17.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 14.5 total cpu time spent up to now is 2.1 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2728 7.2728 13.2972 13.2972 13.2972 13.2972 14.2908 14.2908 16.1185 16.1185 16.1185 16.1185 34.8404 34.8404 38.3611 38.3611 k =-0.2500 0.2500-0.2500 band energies (ev): 9.3081 9.3081 13.2365 13.2365 13.4824 13.4824 14.6832 14.6832 15.9663 15.9663 16.5594 16.5594 31.1289 31.1289 35.9733 35.9733 k = 0.5000-0.5000 0.5000 band energies (ev): 10.1739 10.1739 13.1418 13.1418 14.1581 14.1581 16.9034 16.9034 17.2990 17.2990 17.9629 17.9629 23.3574 23.3574 33.8780 33.8780 k = 0.0000 0.5000 0.0000 band energies (ev): 10.0109 10.0109 12.0836 12.0836 14.0946 14.0946 15.5834 15.5834 15.6557 15.6557 16.9101 16.9101 33.7855 33.7855 35.8288 35.8288 k = 0.7500-0.2500 0.7500 band energies (ev): 11.2318 11.2318 12.3531 12.3531 13.8685 13.8685 15.4952 15.4952 17.7576 17.7576 20.5934 20.5934 24.9747 24.9747 31.5983 31.5983 k = 0.5000 0.0000 0.5000 band energies (ev): 11.6296 11.6296 12.7413 12.7413 13.2274 13.2274 15.0123 15.0123 16.0285 16.0285 19.4786 19.4786 28.3128 28.3128 30.4317 30.4317 k = 0.0000-1.0000 0.0000 band energies (ev): 10.4414 10.4414 10.8730 10.8730 17.3736 17.3736 17.6769 17.6769 18.6587 18.6587 19.1028 19.1028 26.2686 26.2686 28.7375 28.7375 k =-0.5000-1.0000 0.0000 band energies (ev): 11.8136 11.8136 12.7585 12.7585 13.0246 13.0246 15.7118 15.7118 18.0854 18.0854 24.7132 24.7132 25.1084 25.1084 26.4868 26.4868 the Fermi energy is 17.8368 ev Writing output data file pwscf.save init_run : 1.06s CPU 1.06s WALL ( 1 calls) electrons : 0.78s CPU 0.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.78s CPU 0.78s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.05s CPU 0.05s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 8 calls) cegterg : 0.70s CPU 0.70s WALL ( 8 calls) Called by *egterg: h_psi : 0.42s CPU 0.45s WALL ( 132 calls) s_psi : 0.02s CPU 0.03s WALL ( 132 calls) g_psi : 0.04s CPU 0.02s WALL ( 116 calls) cdiaghg : 0.17s CPU 0.12s WALL ( 124 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.02s WALL ( 132 calls) General routines calbec : 0.01s CPU 0.02s WALL ( 132 calls) fft : 0.00s CPU 0.00s WALL ( 12 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.29s CPU 0.29s WALL ( 4556 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 2.19s CPU 2.23s WALL This run was terminated on: 11:44:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav5-kauto.ref0000644000700200004540000001756012053145627020520 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav5-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 199 11935 11935 1837 bravais-lattice index = 5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.288675 0.816497 ) a(2) = ( 0.000000 0.577350 0.816497 ) a(3) = ( -0.500000 -0.288675 0.816497 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.577350 0.408248 ) b(2) = ( 0.000000 1.154701 0.408248 ) b(3) = ( -1.000000 -0.577350 0.408248 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.3061862), wk = 0.5000000 k( 2) = ( 0.5000000 0.2886751 0.1020621), wk = 1.5000000 Dense grid: 11935 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1491, 1) NL pseudopotentials 0.00 Mb ( 1491, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.09 Mb ( 11935) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 1491, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.556E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 5.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.137E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22012080 Ry Harris-Foulkes estimate = -2.29008077 Ry estimated scf accuracy < 0.13302889 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 negative rho (up, down): 0.400E-07 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23111893 Ry Harris-Foulkes estimate = -2.23156082 Ry estimated scf accuracy < 0.00100938 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23142741 Ry Harris-Foulkes estimate = -2.23142768 Ry estimated scf accuracy < 0.00001272 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.36E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.3062 ( 1477 PWs) bands (ev): -10.0497 k = 0.5000 0.2887 0.1021 ( 1491 PWs) bands (ev): -10.0294 ! total energy = -2.23142674 Ry Harris-Foulkes estimate = -2.23142878 Ry estimated scf accuracy < 0.00000050 Ry The total energy is the sum of the following terms: one-electron contribution = -2.52741149 Ry hartree contribution = 1.38469394 Ry xc contribution = -1.31426474 Ry ewald contribution = 0.22555555 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.06s CPU 0.07s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.02s WALL ( 8 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 24 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 22 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 60 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.12s CPU 0.14s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/electric0.in0000755000700200004540000000532512053145627016267 0ustar marsamoscm &control calculation='scf' gdir=3, nppstr=7, lelfield=.false., nberrycyc=1 / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='random', efield=0. / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS 63 0. 0. 0. 1 0. 0. 0.142857143 1 0. 0. 0.285714286 1 0. 0. 0.428571429 1 0. 0. 0.571428571 1 0. 0. 0.714285714 1 0. 0. 0.857142857 1 0. 0.333333333 0. 1 0. 0.333333333 0.142857143 1 0. 0.333333333 0.285714286 1 0. 0.333333333 0.428571429 1 0. 0.333333333 0.571428571 1 0. 0.333333333 0.714285714 1 0. 0.333333333 0.857142857 1 0. 0.666666667 0. 1 0. 0.666666667 0.142857143 1 0. 0.666666667 0.285714286 1 0. 0.666666667 0.428571429 1 0. 0.666666667 0.571428571 1 0. 0.666666667 0.714285714 1 0. 0.666666667 0.857142857 1 0.333333333 0. 0. 1 0.333333333 0. 0.142857143 1 0.333333333 0. 0.285714286 1 0.333333333 0. 0.428571429 1 0.333333333 0. 0.571428571 1 0.333333333 0. 0.714285714 1 0.333333333 0. 0.857142857 1 0.333333333 0.333333333 0. 1 0.333333333 0.333333333 0.142857143 1 0.333333333 0.333333333 0.285714286 1 0.333333333 0.333333333 0.428571429 1 0.333333333 0.333333333 0.571428571 1 0.333333333 0.333333333 0.714285714 1 0.333333333 0.333333333 0.857142857 1 0.333333333 0.666666667 0. 1 0.333333333 0.666666667 0.142857143 1 0.333333333 0.666666667 0.285714286 1 0.333333333 0.666666667 0.428571429 1 0.333333333 0.666666667 0.571428571 1 0.333333333 0.666666667 0.714285714 1 0.333333333 0.666666667 0.857142857 1 0.666666667 0. 0. 1 0.666666667 0. 0.142857143 1 0.666666667 0. 0.285714286 1 0.666666667 0. 0.428571429 1 0.666666667 0. 0.571428571 1 0.666666667 0. 0.714285714 1 0.666666667 0. 0.857142857 1 0.666666667 0.333333333 0. 1 0.666666667 0.333333333 0.142857143 1 0.666666667 0.333333333 0.285714286 1 0.666666667 0.333333333 0.428571429 1 0.666666667 0.333333333 0.571428571 1 0.666666667 0.333333333 0.714285714 1 0.666666667 0.333333333 0.857142857 1 0.666666667 0.666666667 0. 1 0.666666667 0.666666667 0.142857143 1 0.666666667 0.666666667 0.285714286 1 0.666666667 0.666666667 0.428571429 1 0.666666667 0.666666667 0.571428571 1 0.666666667 0.666666667 0.714285714 1 0.666666667 0.666666667 0.857142857 1 espresso-5.0.2/PW/tests/uspp2.in0000755000700200004540000000055712053145627015470 0ustar marsamoscm &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.0e-8 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/scf-cg.in0000644000700200004540000000053212053145627015547 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons diagonalization='cg' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav14-kauto.in0000644000700200004540000000060712053145627020424 0ustar marsamoscm &control calculation='scf', / &system ibrav = 14, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, celldm(5) = 0.2, celldm(6) = 0.3, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/uspp-mixing_localTF.ref0000644000700200004540000002470312053145627020445 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-mixing_localTF.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 local-TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.77688089 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 1.1 total cpu time spent up to now is 0.5 secs total energy = -87.83041702 Ry Harris-Foulkes estimate = -87.83060830 Ry estimated scf accuracy < 0.00117031 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-05, avg # of iterations = 3.5 negative rho (up, down): 0.244E-05 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.83069579 Ry Harris-Foulkes estimate = -87.83068595 Ry estimated scf accuracy < 0.00008942 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-07, avg # of iterations = 1.0 negative rho (up, down): 0.194E-06 0.000E+00 total cpu time spent up to now is 0.7 secs total energy = -87.83069498 Ry Harris-Foulkes estimate = -87.83069700 Ry estimated scf accuracy < 0.00000378 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.44E-08, avg # of iterations = 1.1 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9884 11.1835 11.1835 11.1835 12.0729 12.0729 38.8573 41.0124 41.0124 41.0124 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1529 10.9368 11.3539 11.3539 12.1646 12.1646 27.5229 38.3695 38.3695 38.4662 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1003 11.1502 11.1502 12.6866 12.6866 13.4638 18.6310 37.0229 37.6061 37.6061 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7917 10.4182 11.6176 11.9010 11.9010 12.3675 32.3361 32.3361 33.7582 34.5383 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7544 10.3153 11.2492 11.8772 12.7303 15.5203 21.5943 27.6700 31.2983 35.1287 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6191 10.6614 10.8798 11.7262 12.0733 14.1903 24.5899 26.0210 35.8943 37.3856 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2473 9.6922 12.6679 12.8406 12.8406 16.0618 22.1007 28.1774 28.1774 32.9146 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0163 10.6622 10.6622 12.0404 12.8412 20.9450 20.9450 23.1284 24.0482 44.6504 the Fermi energy is 15.2754 ev ! total energy = -87.83069602 Ry Harris-Foulkes estimate = -87.83069561 Ry estimated scf accuracy < 0.00000019 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22411345 Ry hartree contribution = 18.88095269 Ry xc contribution = -14.05466744 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.35s CPU 0.36s WALL ( 1 calls) electrons : 0.28s CPU 0.29s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.14s CPU 0.15s WALL ( 5 calls) sum_band : 0.07s CPU 0.07s WALL ( 5 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 6 calls) newd : 0.04s CPU 0.04s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 88 calls) cegterg : 0.14s CPU 0.14s WALL ( 40 calls) Called by *egterg: h_psi : 0.10s CPU 0.09s WALL ( 141 calls) s_psi : 0.00s CPU 0.00s WALL ( 141 calls) g_psi : 0.00s CPU 0.00s WALL ( 93 calls) cdiaghg : 0.02s CPU 0.04s WALL ( 133 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 141 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 181 calls) fft : 0.02s CPU 0.01s WALL ( 49 calls) ffts : 0.00s CPU 0.00s WALL ( 79 calls) fftw : 0.08s CPU 0.07s WALL ( 2512 calls) interpolate : 0.01s CPU 0.00s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 128 calls) PWSCF : 0.72s CPU 0.76s WALL This run was terminated on: 11:28:46 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-wf_collect.in0000644000700200004540000000052712053145627017303 0ustar marsamoscm &control calculation = 'scf' wf_collect=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/atom.in0000755000700200004540000000062012053145627015346 0ustar marsamoscm &control calculation='scf', / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', / &electrons mixing_beta=0.25, / ATOMIC_SPECIES O 15.99994 O.pz-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 2.0 1.3333333333 1.3333333333 1.3333333333 0.0 0.0 espresso-5.0.2/PW/tests/lsda.ref20000644000700200004540000005500312053145627015563 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda.in2 file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 283 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 Number of k-points >= 100: set verbosity='high' to print them. Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 144, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 12.5 total cpu time spent up to now is 2.3 secs End of band structure calculation ------ SPIN UP ------------ k =-0.0625 0.0625 0.0625 band energies (ev): 5.8965 12.5533 12.6360 12.6360 13.8713 13.8713 39.4607 42.3944 k =-0.1875 0.1875-0.0625 band energies (ev): 6.7376 12.3354 12.8050 12.8096 13.7099 13.9471 36.2505 39.0852 k =-0.3125 0.3125-0.1875 band energies (ev): 8.5377 12.1960 12.8140 12.8908 13.8528 14.2870 29.6361 37.9306 k =-0.4375 0.4375-0.3125 band energies (ev): 9.8812 12.6127 12.7170 13.2300 14.3756 15.0098 23.9281 37.4678 k = 0.4375-0.4375 0.5625 band energies (ev): 10.0577 12.5255 12.6639 13.8760 14.6586 15.7651 21.6265 37.6735 k = 0.3125-0.3125 0.4375 band energies (ev): 9.6053 12.6505 12.6948 12.7916 14.4697 14.4868 25.6530 38.4579 k = 0.1875-0.1875 0.3125 band energies (ev): 7.8826 12.1635 12.8658 12.9079 13.7910 14.0783 31.7959 39.5696 k = 0.0625-0.0625 0.1875 band energies (ev): 6.3236 12.4082 12.7482 12.7531 13.7315 13.9374 38.2733 40.7964 k =-0.0625 0.3125 0.0625 band energies (ev): 7.1425 12.1273 12.9638 12.9811 13.5205 14.0601 36.5785 39.2885 k =-0.1875 0.4375-0.0625 band energies (ev): 8.5967 11.8164 12.8289 13.2731 13.7196 14.3776 32.3884 35.2058 k =-0.3125 0.5625-0.1875 band energies (ev): 10.1676 11.9579 12.4683 13.1771 14.4228 15.4738 26.2038 34.5939 k = 0.5625-0.3125 0.6875 band energies (ev): 10.5582 12.1104 12.8392 13.0343 14.6104 17.6749 21.8395 33.9935 k = 0.4375-0.1875 0.5625 band energies (ev): 10.4450 12.2511 12.4430 13.0850 14.2832 16.3209 24.4379 33.0535 k = 0.3125-0.0625 0.4375 band energies (ev): 9.2229 11.8848 12.6522 13.2600 13.6442 14.8304 30.2443 33.1912 k = 0.1875 0.0625 0.3125 band energies (ev): 7.5289 12.1221 12.8897 12.9922 13.5940 14.1164 34.2317 37.0908 k =-0.0625 0.5625 0.0625 band energies (ev): 9.3932 11.3940 13.1199 13.6955 14.0197 14.3975 33.0294 34.7787 k =-0.1875 0.6875-0.0625 band energies (ev): 10.3310 11.1801 12.9917 14.0049 14.4818 15.7044 29.3922 31.5314 k = 0.6875-0.1875 0.8125 band energies (ev): 10.9010 11.3501 12.6603 13.7762 14.6520 18.9319 23.9784 29.1405 k = 0.5625-0.0625 0.6875 band energies (ev): 11.2934 11.6122 12.1999 13.6094 14.2994 19.2541 23.8131 27.7222 k = 0.4375 0.0625 0.5625 band energies (ev): 10.7102 11.8984 12.1776 13.4114 13.9364 16.4144 26.7785 29.9852 k = 0.3125 0.1875 0.4375 band energies (ev): 9.3699 12.1451 12.6666 12.9714 14.0548 14.6990 27.7750 36.1929 k =-0.0625 0.8125 0.0625 band energies (ev): 10.2037 10.8073 14.2461 14.4356 14.6996 16.3339 28.0136 30.5232 k = 0.8125-0.0625 0.9375 band energies (ev): 10.3930 10.8284 13.8224 14.4445 14.7721 18.9558 25.7398 27.9363 k = 0.6875 0.0625 0.8125 band energies (ev): 10.9066 11.2207 12.8342 13.9978 14.6018 21.0394 23.3333 26.4626 k = 0.5625 0.1875 0.6875 band energies (ev): 10.9528 11.8005 12.5002 13.3278 14.4907 18.9491 22.1199 30.6854 k = 0.4375 0.3125 0.5625 band energies (ev): 10.1957 12.4184 12.8072 13.1698 14.5617 16.0904 22.6218 36.1510 k =-0.0625-0.9375 0.0625 band energies (ev): 10.1733 10.6740 14.5416 14.6185 14.7886 17.9157 25.6241 29.9100 k =-0.1875-0.8125-0.0625 band energies (ev): 10.4387 10.9504 13.4833 14.3184 14.6620 17.2962 28.0565 28.6579 k =-0.3125-0.6875-0.1875 band energies (ev): 10.7010 11.6355 12.4728 13.4688 14.6203 16.9279 24.9292 32.4590 k =-0.0625-0.6875 0.0625 band energies (ev): 10.0699 11.0579 13.6510 14.0984 14.5639 14.8399 31.1724 31.8154 k =-0.1875-0.5625-0.0625 band energies (ev): 9.6869 11.4842 12.7363 13.6225 14.1356 14.7843 30.7617 33.4707 k =-0.0625-0.4375 0.0625 band energies (ev): 8.2540 11.7693 13.0636 13.3054 13.5543 14.2213 34.7713 36.8992 k =-0.1875 0.1875 0.1875 band energies (ev): 7.1329 12.3024 12.8269 12.8269 13.8510 13.8510 33.9228 40.6095 k =-0.3125 0.3125 0.0625 band energies (ev): 8.2588 12.0513 12.8194 13.0809 13.5409 14.3901 32.1066 35.0169 k =-0.4375 0.4375-0.0625 band energies (ev): 9.9959 11.9258 12.4834 13.2516 13.6786 15.4735 28.3750 31.4296 k = 0.4375-0.4375 0.8125 band energies (ev): 10.6957 12.1009 12.5919 13.1180 14.3367 17.4753 23.0390 31.7099 k = 0.3125-0.3125 0.6875 band energies (ev): 10.6143 11.9370 12.6333 13.1766 14.6883 17.3089 22.9983 33.1744 k = 0.1875-0.1875 0.5625 band energies (ev): 9.8796 11.6362 12.6246 13.3318 14.5498 14.8426 28.3268 35.5378 k =-0.1875 0.4375 0.1875 band energies (ev): 8.8793 11.9257 12.7624 13.0759 14.0759 14.3292 29.9300 37.8703 k =-0.3125 0.5625 0.0625 band energies (ev): 10.1882 11.6611 12.4002 13.5439 13.9877 15.5156 28.6466 31.6357 k = 0.5625-0.3125 0.9375 band energies (ev): 11.1883 11.7207 11.9726 13.6667 14.2687 17.8745 25.4676 28.8798 k = 0.4375-0.1875 0.8125 band energies (ev): 11.2046 11.5237 12.2965 13.6053 14.5704 19.9236 22.4856 29.9441 k = 0.3125-0.0625 0.6875 band energies (ev): 10.7686 11.4248 12.3802 13.8731 14.3334 16.7224 27.3344 30.3578 k =-0.1875 0.6875 0.1875 band energies (ev): 10.4867 11.3350 12.7776 13.6512 14.6947 16.1393 27.0043 31.9922 k = 0.6875-0.1875 1.0625 band energies (ev): 10.8346 11.2327 12.6901 14.0885 14.5947 18.5261 26.3561 28.7107 k = 0.5625-0.0625 0.9375 band energies (ev): 11.0819 11.5854 12.2102 13.8532 14.7632 22.0760 23.9186 26.6382 k = 0.4375 0.0625 0.8125 band energies (ev): 11.2249 11.5946 12.0574 13.8213 14.5693 19.8809 24.4929 28.0795 k =-0.1875-1.0625 0.1875 band energies (ev): 10.5824 10.9665 13.4513 14.2514 14.6772 19.7750 25.2256 26.2507 k =-0.3125-0.9375 0.0625 band energies (ev): 10.7569 11.1351 12.9700 14.1352 14.7651 20.4268 25.6142 26.3483 k =-0.1875-0.8125 0.1875 band energies (ev): 10.6164 11.0913 13.1708 13.9858 14.7334 17.9475 26.0046 28.6119 k =-0.3125 0.3125 0.3125 band energies (ev): 9.0273 12.4729 12.7800 12.7800 14.1882 14.1882 27.4760 39.4214 k =-0.4375 0.4375 0.1875 band energies (ev): 9.9319 12.3788 12.5461 12.9398 14.0499 15.3240 25.9462 34.4916 k = 0.4375-0.4375 1.0625 band energies (ev): 11.0723 11.9459 12.1020 13.4184 14.0581 17.6092 25.1616 28.6712 k = 0.3125-0.3125 0.9375 band energies (ev): 11.1136 11.4170 12.5536 13.7805 14.4185 20.8962 22.4722 26.9309 k =-0.3125 0.5625 0.3125 band energies (ev): 10.1544 12.3419 12.6947 12.9295 14.6471 15.5817 24.1576 36.4887 k = 0.5625-0.3125 1.1875 band energies (ev): 10.8739 11.8548 12.3859 13.3410 14.4960 17.9043 23.2542 31.8880 k = 0.4375-0.1875 1.0625 band energies (ev): 11.2667 11.4816 12.2225 13.7793 14.5705 21.3220 22.8499 27.1041 k =-0.3125-1.1875 0.3125 band energies (ev): 10.9484 11.5948 12.5798 13.4912 14.5914 19.3822 22.2555 29.7510 k =-0.4375 0.4375 0.4375 band energies (ev): 9.9122 12.6207 12.6207 14.3303 14.5917 14.5917 22.4500 38.4563 k = 0.4375-0.4375 1.3125 band energies (ev): 10.3266 12.3302 12.8397 13.2132 14.5653 16.9161 21.7300 35.0316 ------ SPIN DOWN ---------- k =-0.0625 0.0625 0.0625 band energies (ev): 5.9573 13.3435 13.4330 13.4330 14.6236 14.6236 39.4894 42.4610 k =-0.1875 0.1875-0.0625 band energies (ev): 6.8002 13.1003 13.6021 13.6089 14.4529 14.7077 36.4093 39.1848 k =-0.3125 0.3125-0.1875 band energies (ev): 8.6464 12.8663 13.5684 13.6581 14.6394 15.0830 29.8793 38.0422 k =-0.4375 0.4375-0.3125 band energies (ev): 10.2650 13.3288 13.4510 13.6222 15.2120 15.7436 24.2885 37.5434 k = 0.4375-0.4375 0.5625 band energies (ev): 10.5526 13.2321 13.3930 14.3298 15.5118 16.2183 22.1029 37.7004 k = 0.3125-0.3125 0.4375 band energies (ev): 9.8797 13.1541 13.4048 13.5379 15.2566 15.3014 25.9648 38.4821 k = 0.1875-0.1875 0.3125 band energies (ev): 7.9621 12.8811 13.6365 13.6909 14.5583 14.8607 32.0108 39.6134 k = 0.0625-0.0625 0.1875 band energies (ev): 6.3846 13.1864 13.5480 13.5528 14.4749 14.6934 38.3812 40.8511 k =-0.0625 0.3125 0.0625 band energies (ev): 7.2067 12.8845 13.7620 13.7867 14.2511 14.8230 36.7389 39.4383 k =-0.1875 0.4375-0.0625 band energies (ev): 8.6878 12.5380 13.5584 14.0749 14.4749 15.1678 32.5946 35.3652 k =-0.3125 0.5625-0.1875 band energies (ev): 10.4641 12.5386 13.1730 13.9316 15.2386 16.1600 26.4878 34.7476 k = 0.5625-0.3125 0.6875 band energies (ev): 11.0864 12.6948 13.4449 13.7697 15.4663 18.0704 22.2727 34.1467 k = 0.4375-0.1875 0.5625 band energies (ev): 10.8535 12.8046 13.1044 13.8202 15.1172 16.9308 24.7658 33.2254 k = 0.3125-0.0625 0.4375 band energies (ev): 9.3435 12.5860 13.3686 14.0325 14.4226 15.6147 30.4792 33.3687 k = 0.1875 0.0625 0.3125 band energies (ev): 7.5977 12.8671 13.6632 13.7981 14.3348 14.8918 34.4204 37.2278 k =-0.0625 0.5625 0.0625 band energies (ev): 9.5441 12.1008 13.7527 14.5221 14.7977 15.1843 33.2034 34.9207 k =-0.1875 0.6875-0.0625 band energies (ev): 10.6571 11.8584 13.6207 14.8004 15.2915 16.3260 29.5961 31.7301 k = 0.6875-0.1875 0.8125 band energies (ev): 11.4308 11.9343 13.3133 14.5327 15.5222 19.3323 24.2608 29.3715 k = 0.5625-0.0625 0.6875 band energies (ev): 11.8485 12.1488 12.8604 14.3379 15.1722 19.6690 24.1246 27.9584 k = 0.4375 0.0625 0.5625 band energies (ev): 11.0162 12.5398 12.8448 14.1373 14.7775 17.0604 27.0567 30.1886 k = 0.3125 0.1875 0.4375 band energies (ev): 9.5448 12.7656 13.3941 13.7283 14.8494 15.4860 28.0428 36.3328 k =-0.0625 0.8125 0.0625 band energies (ev): 10.6342 11.4778 14.9831 15.2542 15.5515 16.6754 28.2871 30.6570 k = 0.8125-0.0625 0.9375 band energies (ev): 10.8761 11.4875 14.5407 15.2146 15.6754 19.2149 26.0720 28.1076 k = 0.6875 0.0625 0.8125 band energies (ev): 11.4451 11.8283 13.5001 14.7436 15.4932 21.3485 23.6077 26.7434 k = 0.5625 0.1875 0.6875 band energies (ev): 11.5139 12.3370 13.1468 14.0667 15.3511 19.3233 22.5146 30.8848 k = 0.4375 0.3125 0.5625 band energies (ev): 10.6661 13.0789 13.5377 13.6779 15.4066 16.6241 23.0274 36.2594 k =-0.0625-0.9375 0.0625 band energies (ev): 10.6455 11.3368 15.3625 15.4057 15.6897 18.0742 25.9703 30.0274 k =-0.1875-0.8125-0.0625 band energies (ev): 10.8831 11.6159 14.1497 15.1016 15.5291 17.7093 28.3002 28.8625 k =-0.3125-0.6875-0.1875 band energies (ev): 11.1452 12.2085 13.1373 14.2254 15.4687 17.4582 25.2176 32.6432 k =-0.0625-0.6875 0.0625 band energies (ev): 10.3803 11.7435 14.2365 14.9323 15.3728 15.4861 31.3707 31.9884 k =-0.1875-0.5625-0.0625 band energies (ev): 9.8531 12.1820 13.4141 14.4205 14.8976 15.5552 30.9724 33.6360 k =-0.0625-0.4375 0.0625 band energies (ev): 8.3348 12.5013 13.7861 14.1205 14.3291 14.9942 34.9486 37.0540 k =-0.1875 0.1875 0.1875 band energies (ev): 7.1996 13.0471 13.6201 13.6201 14.6110 14.6110 34.1113 40.6156 k =-0.3125 0.3125 0.0625 band energies (ev): 8.3418 12.7756 13.5669 13.8808 14.2893 15.1802 32.3214 35.1771 k =-0.4375 0.4375-0.0625 band energies (ev): 10.1844 12.6005 13.1677 13.9887 14.5013 16.2175 28.6355 31.6223 k = 0.4375-0.4375 0.8125 band energies (ev): 11.1951 12.6810 13.1980 13.8533 15.1859 17.9636 23.4077 31.8961 k = 0.3125-0.3125 0.6875 band energies (ev): 11.1206 12.4765 13.2876 13.9250 15.5450 17.7720 23.3562 33.3455 k = 0.1875-0.1875 0.5625 band energies (ev): 10.0869 12.2944 13.3136 14.1101 15.3759 15.5456 28.5701 35.6808 k =-0.1875 0.4375 0.1875 band energies (ev): 8.9943 12.6139 13.4926 13.8540 14.8398 15.1341 30.1644 38.0290 k =-0.3125 0.5625 0.0625 band energies (ev): 10.3981 12.3383 13.0890 14.2999 14.7889 16.2370 28.8924 31.8216 k = 0.5625-0.3125 0.9375 band energies (ev): 11.6151 12.3386 12.6397 14.3935 15.1325 18.3779 25.7515 29.0908 k = 0.4375-0.1875 0.8125 band energies (ev): 11.7809 12.0606 12.9571 14.3428 15.4447 20.2779 22.8350 30.1583 k = 0.3125-0.0625 0.6875 band energies (ev): 11.1310 12.0846 13.0303 14.6233 15.1752 17.2963 27.5800 30.5468 k =-0.1875 0.6875 0.1875 band energies (ev): 10.8545 11.9745 13.4169 14.4323 15.5407 16.7121 27.2444 32.1903 k = 0.6875-0.1875 1.0625 band energies (ev): 11.3052 11.8883 13.3356 14.8357 15.4790 18.9402 26.5939 28.9531 k = 0.5625-0.0625 0.9375 band energies (ev): 11.5965 12.2371 12.8680 14.5802 15.6682 22.3712 24.1899 26.9105 k = 0.4375 0.0625 0.8125 band energies (ev): 11.7213 12.2383 12.7026 14.5507 15.4585 20.2611 24.7716 28.3023 k =-0.1875-1.0625 0.1875 band energies (ev): 11.0865 11.6070 14.1369 15.0177 15.5697 20.0688 25.4817 26.5221 k =-0.3125-0.9375 0.0625 band energies (ev): 11.2581 11.7888 13.6430 14.8815 15.6698 20.7227 25.8779 26.6141 k =-0.1875-0.8125 0.1875 band energies (ev): 11.0910 11.7289 13.8203 14.7667 15.5995 18.3649 26.2347 28.8577 k =-0.3125 0.3125 0.3125 band energies (ev): 9.1975 13.0378 13.5328 13.5328 14.9998 14.9998 27.7537 39.4167 k =-0.4375 0.4375 0.1875 band energies (ev): 10.2131 12.9237 13.2550 13.6807 14.8727 16.0595 26.2469 34.6498 k = 0.4375-0.4375 1.0625 band energies (ev): 11.5136 12.5196 12.7664 14.1435 14.9167 18.1432 25.4635 28.8911 k = 0.3125-0.3125 0.9375 band energies (ev): 11.7261 11.9302 13.2149 14.5196 15.2983 21.2252 22.7951 27.1925 k =-0.3125 0.5625 0.3125 band energies (ev): 10.5534 12.9018 13.3343 13.6750 15.4939 16.1935 24.4977 36.5885 k = 0.5625-0.3125 1.1875 band energies (ev): 11.3870 12.4028 13.0414 14.0795 15.3503 18.3650 23.5990 32.0710 k = 0.4375-0.1875 1.0625 band energies (ev): 11.7986 12.0888 12.8839 14.5088 15.4612 21.6469 23.1574 27.3557 k =-0.3125-1.1875 0.3125 band energies (ev): 11.5282 12.1146 13.2402 14.2412 15.4557 19.7427 22.6193 29.9670 k =-0.4375 0.4375 0.4375 band energies (ev): 10.3671 13.3502 13.3502 14.4615 15.4395 15.4395 22.8778 38.4366 k = 0.4375-0.4375 1.3125 band energies (ev): 10.8376 12.9772 13.5721 13.7457 15.4176 17.3374 22.1859 35.1668 the Fermi energy is 15.3379 ev Writing output data file pwscf.save init_run : 0.75s CPU 0.75s WALL ( 1 calls) electrons : 1.40s CPU 1.41s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 1.40s CPU 1.41s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 1 calls) newd : 0.02s CPU 0.02s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 120 calls) cegterg : 1.24s CPU 1.26s WALL ( 124 calls) Called by *egterg: h_psi : 0.74s CPU 0.73s WALL ( 1745 calls) s_psi : 0.03s CPU 0.03s WALL ( 1745 calls) g_psi : 0.05s CPU 0.04s WALL ( 1501 calls) cdiaghg : 0.39s CPU 0.39s WALL ( 1621 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.03s WALL ( 1745 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 1745 calls) fft : 0.00s CPU 0.00s WALL ( 9 calls) ffts : 0.00s CPU 0.00s WALL ( 2 calls) fftw : 0.49s CPU 0.48s WALL ( 16694 calls) interpolate : 0.00s CPU 0.00s WALL ( 2 calls) davcio : 0.00s CPU 0.00s WALL ( 120 calls) PWSCF : 2.46s CPU 2.52s WALL This run was terminated on: 10:24:32 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vc-relax4.ref0000644000700200004540000022676212053145627016377 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:30:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax4.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 0 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1875000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1875000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1875000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.1875000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.3750000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.3750000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 10) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1875000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 2.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 0.4 secs total energy = -25.43995304 Ry Harris-Foulkes estimate = -25.44370905 Ry estimated scf accuracy < 0.01555592 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -25.44007840 Ry Harris-Foulkes estimate = -25.44026102 Ry estimated scf accuracy < 0.00088841 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.88E-06, avg # of iterations = 2.3 total cpu time spent up to now is 0.6 secs total energy = -25.44011434 Ry Harris-Foulkes estimate = -25.44011580 Ry estimated scf accuracy < 0.00000523 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-08, avg # of iterations = 3.1 total cpu time spent up to now is 0.7 secs total energy = -25.44012214 Ry Harris-Foulkes estimate = -25.44012246 Ry estimated scf accuracy < 0.00000069 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.94E-09, avg # of iterations = 1.4 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7601 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 the Fermi energy is 10.0033 ev ! total energy = -25.44012222 Ry Harris-Foulkes estimate = -25.44012223 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810355 Ry hartree contribution = 1.22165969 Ry xc contribution = -6.50440122 Ry ewald contribution = -27.88552965 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.12659777 atom 2 type 1 force = 0.00000000 0.00000000 0.12659777 Total force = 0.179036 Total SCF correction = 0.000024 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00172374 0.00000000 0.00000000 253.57 0.00 0.00 0.00000000 0.00172374 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098853 0.00 0.00 145.42 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -24.6061248137 Ry new trust radius = 0.1887860850 bohr new conv_thr = 0.0000001000 Ry new unit-cell volume = 211.67521 a.u.^3 ( 31.36703 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.555833834 0.000000000 0.765441019 -0.277916743 0.481366175 0.765441024 -0.277916743 -0.481366175 0.765441024 ATOMIC_POSITIONS (crystal) As 0.282619706 0.282619701 0.282619701 As -0.282619706 -0.282619701 -0.282619701 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1633045), wk = 0.0625000 k( 2) = ( -0.1499249 -0.2596776 0.2721743), wk = 0.1875000 k( 3) = ( 0.2998499 0.5193551 -0.0544349), wk = 0.1875000 k( 4) = ( 0.1499249 0.2596776 0.0544348), wk = 0.1875000 k( 5) = ( -0.2998499 0.0000000 0.3810440), wk = 0.1875000 k( 6) = ( 0.1499249 0.7790327 0.0544348), wk = 0.3750000 k( 7) = ( 0.0000000 0.5193551 0.1633045), wk = 0.3750000 k( 8) = ( 0.5996997 0.0000000 -0.2721743), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4899136), wk = 0.0625000 k( 10) = ( 0.4497748 0.7790327 0.1633045), wk = 0.1875000 extrapolated charge 8.40823, renormalised to 10.00000 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.1 total cpu time spent up to now is 1.3 secs total energy = -25.38370667 Ry Harris-Foulkes estimate = -24.32076633 Ry estimated scf accuracy < 0.02064018 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-04, avg # of iterations = 2.6 total cpu time spent up to now is 1.4 secs total energy = -25.40138519 Ry Harris-Foulkes estimate = -25.40441072 Ry estimated scf accuracy < 0.00628332 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-05, avg # of iterations = 1.1 total cpu time spent up to now is 1.5 secs total energy = -25.40159307 Ry Harris-Foulkes estimate = -25.40189699 Ry estimated scf accuracy < 0.00065384 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs total energy = -25.40163612 Ry Harris-Foulkes estimate = -25.40166440 Ry estimated scf accuracy < 0.00005044 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-07, avg # of iterations = 2.8 total cpu time spent up to now is 1.7 secs total energy = -25.40166079 Ry Harris-Foulkes estimate = -25.40166153 Ry estimated scf accuracy < 0.00000331 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.31E-08, avg # of iterations = 1.3 total cpu time spent up to now is 1.8 secs total energy = -25.40165994 Ry Harris-Foulkes estimate = -25.40166086 Ry estimated scf accuracy < 0.00000165 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1633 ( 531 PWs) bands (ev): -5.9367 7.0817 8.2032 8.2032 11.2582 13.8350 14.3550 14.3550 18.4339 k =-0.1499-0.2597 0.2722 ( 522 PWs) bands (ev): -4.6714 2.2296 7.2109 8.1029 11.9028 13.1331 13.4310 16.5292 18.1830 k = 0.2998 0.5194-0.0544 ( 520 PWs) bands (ev): -2.8547 -0.9760 6.9923 7.9650 10.0196 13.7451 14.3129 16.3159 20.8095 k = 0.1499 0.2597 0.0544 ( 525 PWs) bands (ev): -5.2654 3.5949 7.0489 9.3439 10.6444 13.7211 15.1491 16.5920 18.0163 k =-0.2998 0.0000 0.3810 ( 519 PWs) bands (ev): -4.1322 3.3399 5.1342 6.0876 9.0188 12.9443 16.5259 17.0166 19.1509 k = 0.1499 0.7790 0.0544 ( 510 PWs) bands (ev): -2.0535 -0.0681 3.6590 5.6372 10.0896 14.2403 15.7481 18.9065 20.2716 k = 0.0000 0.5194 0.1633 ( 521 PWs) bands (ev): -3.3504 0.4109 4.7586 8.2224 10.1013 14.6107 15.9234 16.2643 18.6227 k = 0.5997 0.0000-0.2722 ( 510 PWs) bands (ev): -2.4288 0.5228 4.8732 5.4349 7.5396 12.5225 18.7270 20.6442 21.7479 k = 0.0000 0.0000 0.4899 ( 522 PWs) bands (ev): -4.3331 1.9783 8.1315 8.1315 10.5523 11.9553 11.9553 14.3778 20.4089 k = 0.4498 0.7790 0.1633 ( 520 PWs) bands (ev): -3.0367 1.3418 3.7838 6.7673 9.3545 14.2226 14.7924 17.7408 20.1087 the Fermi energy is 11.9332 ev ! total energy = -25.40166017 Ry Harris-Foulkes estimate = -25.40166018 Ry estimated scf accuracy < 3.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 9.92264769 Ry hartree contribution = 0.89911181 Ry xc contribution = -6.68612417 Ry ewald contribution = -29.53716795 Ry smearing contrib. (-TS) = -0.00012755 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.13944956 atom 2 type 1 force = 0.00000000 0.00000000 0.13944956 Total force = 0.197211 Total SCF correction = 0.000043 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 444.96 0.00333265 0.00000000 0.00000000 490.25 0.00 0.00 0.00000000 0.00333265 0.00000000 0.00 490.25 0.00 0.00000000 0.00000000 0.00240899 0.00 0.00 354.37 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -24.6061248137 Ry enthalpy new = -24.6821906498 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.3019728046 bohr new conv_thr = 0.0000001000 Ry new unit-cell volume = 183.03324 a.u.^3 ( 27.12273 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.539853984 0.000000000 0.701631417 -0.269926854 0.467527219 0.701631444 -0.269926854 -0.467527219 0.701631444 ATOMIC_POSITIONS (crystal) As 0.263861305 0.263861288 0.263861288 As -0.263861305 -0.263861288 -0.263861288 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1781562), wk = 0.0625000 k( 2) = ( -0.1543627 -0.2673641 0.2969270), wk = 0.1875000 k( 3) = ( 0.3087255 0.5347282 -0.0593854), wk = 0.1875000 k( 4) = ( 0.1543628 0.2673641 0.0593854), wk = 0.1875000 k( 5) = ( -0.3087255 0.0000000 0.4156979), wk = 0.1875000 k( 6) = ( 0.1543628 0.8020923 0.0593854), wk = 0.3750000 k( 7) = ( 0.0000000 0.5347282 0.1781562), wk = 0.3750000 k( 8) = ( 0.6174510 0.0000000 -0.2969271), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5344686), wk = 0.0625000 k( 10) = ( 0.4630883 0.8020923 0.1781562), wk = 0.1875000 extrapolated charge 8.43521, renormalised to 10.00000 total cpu time spent up to now is 2.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.1 total cpu time spent up to now is 2.4 secs total energy = -25.34462710 Ry Harris-Foulkes estimate = -24.15521729 Ry estimated scf accuracy < 0.01769026 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-04, avg # of iterations = 2.1 total cpu time spent up to now is 2.5 secs total energy = -25.35392007 Ry Harris-Foulkes estimate = -25.35521166 Ry estimated scf accuracy < 0.00290892 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-05, avg # of iterations = 1.1 total cpu time spent up to now is 2.6 secs total energy = -25.35400719 Ry Harris-Foulkes estimate = -25.35412857 Ry estimated scf accuracy < 0.00027641 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.76E-06, avg # of iterations = 2.1 total cpu time spent up to now is 2.7 secs total energy = -25.35404740 Ry Harris-Foulkes estimate = -25.35405429 Ry estimated scf accuracy < 0.00001379 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-07, avg # of iterations = 1.7 total cpu time spent up to now is 2.8 secs total energy = -25.35404840 Ry Harris-Foulkes estimate = -25.35404882 Ry estimated scf accuracy < 0.00000073 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-09, avg # of iterations = 2.5 total cpu time spent up to now is 2.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1782 ( 531 PWs) bands (ev): -4.6205 9.9126 10.7890 10.7890 14.3254 17.6816 17.6816 17.9911 19.7716 k =-0.1544-0.2674 0.2969 ( 522 PWs) bands (ev): -3.1157 4.1034 9.8092 11.8603 14.1839 14.3307 16.3499 19.7370 21.1375 k = 0.3087 0.5347-0.0594 ( 520 PWs) bands (ev): -1.0934 0.6900 9.9550 10.4615 11.9453 15.7402 17.5257 19.6590 24.8247 k = 0.1544 0.2674 0.0594 ( 525 PWs) bands (ev): -3.9458 6.2430 9.4929 11.3902 13.3914 17.6838 18.5316 19.3202 20.5552 k =-0.3087 0.0000 0.4157 ( 519 PWs) bands (ev): -2.3094 5.6935 7.7049 8.0169 9.9729 16.1618 19.4720 20.3831 20.8735 k = 0.1544 0.8021 0.0594 ( 510 PWs) bands (ev): 0.3805 1.7730 5.1132 7.3127 12.5986 16.6469 18.2783 23.1595 23.6093 k = 0.0000 0.5347 0.1782 ( 521 PWs) bands (ev): -1.7598 2.5260 7.2643 9.5065 13.4608 16.6331 19.1892 19.8717 21.3138 k = 0.6175 0.0000-0.2969 ( 510 PWs) bands (ev): -0.4673 3.6384 5.4660 7.3446 9.0994 15.9645 21.7300 22.8442 25.5616 k = 0.0000 0.0000 0.5345 ( 522 PWs) bands (ev): -2.1711 3.2605 10.8670 10.8670 13.5264 13.5264 13.8805 15.9384 24.4486 k = 0.4631 0.8021 0.1782 ( 520 PWs) bands (ev): -0.1117 2.1284 5.6222 9.0777 10.9316 16.1662 18.1827 21.5569 22.8826 the Fermi energy is 14.1988 ev ! total energy = -25.35404859 Ry Harris-Foulkes estimate = -25.35404860 Ry estimated scf accuracy < 6.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 12.37614057 Ry hartree contribution = 0.55960979 Ry xc contribution = -6.86700410 Ry ewald contribution = -31.42270908 Ry smearing contrib. (-TS) = -0.00008578 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.06408392 atom 2 type 1 force = 0.00000000 0.00000000 0.06408392 Total force = 0.090628 Total SCF correction = 0.000068 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 681.16 0.00460007 0.00000000 0.00000000 676.69 0.00 0.00 0.00000000 0.00460007 0.00000000 0.00 676.69 0.00 0.00000000 0.00000000 0.00469112 0.00 0.00 690.09 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -24.6821906498 Ry enthalpy new = -24.7319311401 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0715331011 bohr new conv_thr = 0.0000000641 Ry new unit-cell volume = 190.16871 a.u.^3 ( 28.18010 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.546565452 0.000000000 0.711191207 -0.273282598 0.473339520 0.711191243 -0.273282598 -0.473339520 0.711191243 ATOMIC_POSITIONS (crystal) As 0.259013583 0.259013562 0.259013562 As -0.259013583 -0.259013562 -0.259013562 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1757614), wk = 0.0625000 k( 2) = ( -0.1524673 -0.2640811 0.2929358), wk = 0.1875000 k( 3) = ( 0.3049346 0.5281621 -0.0585872), wk = 0.1875000 k( 4) = ( 0.1524673 0.2640811 0.0585871), wk = 0.1875000 k( 5) = ( -0.3049345 0.0000000 0.4101101), wk = 0.1875000 k( 6) = ( 0.1524673 0.7922432 0.0585871), wk = 0.3750000 k( 7) = ( 0.0000000 0.5281621 0.1757614), wk = 0.3750000 k( 8) = ( 0.6098691 0.0000000 -0.2929358), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5272843), wk = 0.0625000 k( 10) = ( 0.4574018 0.7922432 0.1757614), wk = 0.1875000 extrapolated charge 10.37520, renormalised to 10.00000 total cpu time spent up to now is 3.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.6 total cpu time spent up to now is 3.4 secs total energy = -25.38978062 Ry Harris-Foulkes estimate = -25.68123756 Ry estimated scf accuracy < 0.00086564 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.66E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.5 secs total energy = -25.39023431 Ry Harris-Foulkes estimate = -25.39031697 Ry estimated scf accuracy < 0.00017477 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-06, avg # of iterations = 1.1 total cpu time spent up to now is 3.6 secs total energy = -25.39024960 Ry Harris-Foulkes estimate = -25.39025656 Ry estimated scf accuracy < 0.00001723 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.72E-07, avg # of iterations = 1.2 total cpu time spent up to now is 3.7 secs total energy = -25.39025124 Ry Harris-Foulkes estimate = -25.39025158 Ry estimated scf accuracy < 0.00000076 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.63E-09, avg # of iterations = 3.0 total cpu time spent up to now is 3.8 secs total energy = -25.39025163 Ry Harris-Foulkes estimate = -25.39025166 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.92E-10, avg # of iterations = 1.0 total cpu time spent up to now is 3.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1758 ( 531 PWs) bands (ev): -4.8198 9.0293 10.2830 10.2830 13.3627 17.0775 17.0775 17.4618 18.9632 k =-0.1525-0.2641 0.2929 ( 522 PWs) bands (ev): -3.3507 3.6000 9.2268 11.6229 13.1494 13.5911 15.4243 19.1739 20.0847 k = 0.3049 0.5282-0.0586 ( 520 PWs) bands (ev): -1.3712 0.3037 9.5724 9.9078 11.2118 14.8603 16.7332 18.6006 23.9921 k = 0.1525 0.2641 0.0586 ( 525 PWs) bands (ev): -4.1630 5.6772 9.0495 10.6816 12.7384 16.7394 17.9220 18.4116 19.3749 k =-0.3049 0.0000 0.4101 ( 519 PWs) bands (ev): -2.5650 4.9815 7.4063 7.6119 9.1986 15.7760 18.6847 19.3937 19.7776 k = 0.1525 0.7922 0.0586 ( 510 PWs) bands (ev): 0.0485 1.3379 4.7638 6.7971 11.8955 15.8351 17.7093 22.2404 22.5660 k = 0.0000 0.5282 0.1758 ( 521 PWs) bands (ev): -2.0359 2.0865 6.9289 8.8408 12.8263 15.6358 18.5853 18.9898 20.3177 k = 0.6099 0.0000-0.2929 ( 510 PWs) bands (ev): -0.8097 3.4110 4.7274 6.9658 8.4735 15.5451 20.7289 21.5690 24.3833 k = 0.0000 0.0000 0.5273 ( 522 PWs) bands (ev): -2.4035 2.6568 10.4489 10.4489 12.8312 12.8312 13.2317 14.9817 23.5667 k = 0.4574 0.7922 0.1758 ( 520 PWs) bands (ev): -0.3055 1.4323 5.3212 8.6726 10.2600 15.3862 17.3843 20.6460 22.2409 the Fermi energy is 13.1969 ev ! total energy = -25.39025163 Ry Harris-Foulkes estimate = -25.39025163 Ry estimated scf accuracy < 8.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.89669985 Ry hartree contribution = 0.57917961 Ry xc contribution = -6.79963525 Ry ewald contribution = -31.06647876 Ry smearing contrib. (-TS) = -0.00001707 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.04260571 atom 2 type 1 force = 0.00000000 0.00000000 0.04260571 Total force = 0.060254 Total SCF correction = 0.000016 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 525.83 0.00339000 0.00000000 0.00000000 498.69 0.00 0.00 0.00000000 0.00339000 0.00000000 0.00 498.69 0.00 0.00000000 0.00000000 0.00394347 0.00 0.00 580.10 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -24.7319311401 Ry enthalpy new = -24.7438811985 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.1595170423 bohr new conv_thr = 0.0000000426 Ry new unit-cell volume = 191.30781 a.u.^3 ( 28.34889 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.545422573 0.000000000 0.718452599 -0.272711183 0.472349757 0.718452650 -0.272711183 -0.472349757 0.718452650 ATOMIC_POSITIONS (crystal) As 0.248348594 0.248348567 0.248348567 As -0.248348594 -0.248348567 -0.248348567 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1739850), wk = 0.0625000 k( 2) = ( -0.1527867 -0.2646344 0.2899751), wk = 0.1875000 k( 3) = ( 0.3055735 0.5292688 -0.0579950), wk = 0.1875000 k( 4) = ( 0.1527868 0.2646344 0.0579950), wk = 0.1875000 k( 5) = ( -0.3055735 0.0000000 0.4059651), wk = 0.1875000 k( 6) = ( 0.1527868 0.7939032 0.0579950), wk = 0.3750000 k( 7) = ( 0.0000000 0.5292688 0.1739850), wk = 0.3750000 k( 8) = ( 0.6111470 0.0000000 -0.2899751), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5219551), wk = 0.0625000 k( 10) = ( 0.4583603 0.7939032 0.1739850), wk = 0.1875000 extrapolated charge 10.05954, renormalised to 10.00000 total cpu time spent up to now is 4.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.2 total cpu time spent up to now is 4.4 secs total energy = -25.40060177 Ry Harris-Foulkes estimate = -25.44671222 Ry estimated scf accuracy < 0.00124011 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-05, avg # of iterations = 1.0 total cpu time spent up to now is 4.5 secs total energy = -25.40060421 Ry Harris-Foulkes estimate = -25.40061787 Ry estimated scf accuracy < 0.00009339 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.34E-07, avg # of iterations = 1.0 total cpu time spent up to now is 4.6 secs total energy = -25.40060605 Ry Harris-Foulkes estimate = -25.40060604 Ry estimated scf accuracy < 0.00000005 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-10, avg # of iterations = 4.0 total cpu time spent up to now is 4.7 secs total energy = -25.40060672 Ry Harris-Foulkes estimate = -25.40060673 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-10, avg # of iterations = 1.0 total cpu time spent up to now is 4.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1740 ( 531 PWs) bands (ev): -4.8323 8.7450 10.3299 10.3299 13.2295 17.0744 17.0744 17.7063 18.7930 k =-0.1528-0.2646 0.2900 ( 522 PWs) bands (ev): -3.3645 3.5628 9.0023 12.1614 12.4602 13.5133 15.3424 19.3063 19.7034 k = 0.3056 0.5293-0.0580 ( 520 PWs) bands (ev): -1.3483 0.2511 9.6430 9.7335 11.0817 14.5825 16.6495 18.1914 23.6342 k = 0.1528 0.2646 0.0580 ( 525 PWs) bands (ev): -4.1680 5.6533 9.0896 10.4995 12.5979 16.5035 18.1060 18.1527 18.7736 k =-0.3056 0.0000 0.4060 ( 519 PWs) bands (ev): -2.5861 4.7703 7.5474 7.6656 8.8881 15.8381 18.6425 19.3133 19.6537 k = 0.1528 0.7939 0.0580 ( 510 PWs) bands (ev): 0.0518 1.3039 4.7332 6.6123 11.7686 15.7585 17.7044 22.0343 22.5982 k = 0.0000 0.5293 0.1740 ( 521 PWs) bands (ev): -2.0359 2.0711 6.9582 8.6040 12.7322 15.2386 18.4923 18.9894 20.1208 k = 0.6111 0.0000-0.2900 ( 510 PWs) bands (ev): -0.8224 3.6601 4.2749 7.0146 8.3186 15.4954 20.5134 21.2593 24.2156 k = 0.0000 0.0000 0.5220 ( 522 PWs) bands (ev): -2.4222 2.3798 10.5756 10.5756 12.7333 12.7333 13.4269 14.8283 23.4466 k = 0.4584 0.7939 0.1740 ( 520 PWs) bands (ev): -0.1908 1.0657 5.3558 8.7323 10.2023 15.3102 17.4874 20.5948 22.2516 the Fermi energy is 12.7897 ev ! total energy = -25.40060672 Ry Harris-Foulkes estimate = -25.40060672 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 11.84274296 Ry hartree contribution = 0.57430078 Ry xc contribution = -6.78686844 Ry ewald contribution = -31.03085500 Ry smearing contrib. (-TS) = 0.00007299 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00724301 atom 2 type 1 force = 0.00000000 0.00000000 -0.00724301 Total force = 0.010243 Total SCF correction = 0.000021 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 494.44 0.00317558 0.00000000 0.00000000 467.14 0.00 0.00 0.00000000 0.00317558 0.00000000 0.00 467.14 0.00 0.00000000 0.00000000 0.00373220 0.00 0.00 549.02 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -24.7438811985 Ry enthalpy new = -24.7503645951 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0303454225 bohr new conv_thr = 0.0000000072 Ry new unit-cell volume = 192.20705 a.u.^3 ( 28.48215 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.543728797 0.000000000 0.726333847 -0.271864296 0.470882903 0.726333898 -0.271864296 -0.470882903 0.726333898 ATOMIC_POSITIONS (crystal) As 0.249489770 0.249489744 0.249489744 As -0.249489770 -0.249489744 -0.249489744 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1720972), wk = 0.0625000 k( 2) = ( -0.1532627 -0.2654588 0.2868286), wk = 0.1875000 k( 3) = ( 0.3065254 0.5309176 -0.0573657), wk = 0.1875000 k( 4) = ( 0.1532627 0.2654588 0.0573657), wk = 0.1875000 k( 5) = ( -0.3065254 0.0000000 0.4015601), wk = 0.1875000 k( 6) = ( 0.1532627 0.7963763 0.0573657), wk = 0.3750000 k( 7) = ( 0.0000000 0.5309176 0.1720972), wk = 0.3750000 k( 8) = ( 0.6130508 0.0000000 -0.2868287), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5162915), wk = 0.0625000 k( 10) = ( 0.4597881 0.7963763 0.1720971), wk = 0.1875000 extrapolated charge 10.04678, renormalised to 10.00000 total cpu time spent up to now is 5.1 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 5.3 secs total energy = -25.40470684 Ry Harris-Foulkes estimate = -25.44069097 Ry estimated scf accuracy < 0.00001906 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.4 secs total energy = -25.40471158 Ry Harris-Foulkes estimate = -25.40471221 Ry estimated scf accuracy < 0.00000236 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.1 total cpu time spent up to now is 5.5 secs total energy = -25.40471165 Ry Harris-Foulkes estimate = -25.40471166 Ry estimated scf accuracy < 0.00000009 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.40E-10, avg # of iterations = 2.2 total cpu time spent up to now is 5.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1721 ( 531 PWs) bands (ev): -4.8684 8.5218 10.3471 10.3471 13.1538 16.9881 16.9881 17.6923 18.7833 k =-0.1533-0.2655 0.2868 ( 522 PWs) bands (ev): -3.4069 3.5408 8.7825 12.2042 12.3208 13.4821 15.2822 19.3381 19.4614 k = 0.3065 0.5309-0.0574 ( 520 PWs) bands (ev): -1.3612 0.2051 9.5378 9.6195 11.0434 14.4602 16.5245 17.8732 23.2228 k = 0.1533 0.2655 0.0574 ( 525 PWs) bands (ev): -4.1937 5.6149 9.0944 10.3726 12.4652 16.3434 17.8815 17.9764 18.6180 k =-0.3065 0.0000 0.4016 ( 519 PWs) bands (ev): -2.6456 4.6118 7.5214 7.7041 8.8034 15.7623 18.6183 19.3228 19.6757 k = 0.1533 0.7964 0.0574 ( 510 PWs) bands (ev): -0.0156 1.2829 4.7084 6.4701 11.6582 15.7371 17.6956 21.8549 22.5381 k = 0.0000 0.5309 0.1721 ( 521 PWs) bands (ev): -2.0589 2.0442 6.8979 8.4938 12.5607 15.0159 18.3718 18.9588 20.0346 k = 0.6131 0.0000-0.2868 ( 510 PWs) bands (ev): -0.8624 3.5819 4.1804 7.0437 8.2275 15.3333 20.3662 21.1607 24.0839 k = 0.0000 0.0000 0.5163 ( 522 PWs) bands (ev): -2.5081 2.1955 10.6186 10.6186 12.7373 12.7373 13.5006 14.8818 23.2834 k = 0.4598 0.7964 0.1721 ( 520 PWs) bands (ev): -0.2908 0.9360 5.3488 8.7523 10.2179 15.3101 17.5576 20.5942 22.0236 the Fermi energy is 12.7946 ev ! total energy = -25.40471166 Ry Harris-Foulkes estimate = -25.40471166 Ry estimated scf accuracy < 2.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.77377374 Ry hartree contribution = 0.58046190 Ry xc contribution = -6.77983684 Ry ewald contribution = -30.97912861 Ry smearing contrib. (-TS) = 0.00001815 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00217846 atom 2 type 1 force = 0.00000000 0.00000000 -0.00217846 Total force = 0.003081 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 480.35 0.00311301 0.00000000 0.00000000 457.94 0.00 0.00 0.00000000 0.00311301 0.00000000 0.00 457.94 0.00 0.00000000 0.00000000 0.00356997 0.00 0.00 525.16 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -24.7503645951 Ry enthalpy new = -24.7514130786 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0451299230 bohr new conv_thr = 0.0000000022 Ry new unit-cell volume = 192.30794 a.u.^3 ( 28.49710 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.539498736 0.000000000 0.738155717 -0.269749272 0.467219562 0.738155770 -0.269749272 -0.467219562 0.738155770 ATOMIC_POSITIONS (crystal) As 0.250230244 0.250230218 0.250230218 As -0.250230244 -0.250230218 -0.250230218 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1693410), wk = 0.0625000 k( 2) = ( -0.1544644 -0.2675402 0.2822349), wk = 0.1875000 k( 3) = ( 0.3089288 0.5350803 -0.0564470), wk = 0.1875000 k( 4) = ( 0.1544644 0.2675402 0.0564470), wk = 0.1875000 k( 5) = ( -0.3089288 0.0000000 0.3951289), wk = 0.1875000 k( 6) = ( 0.1544644 0.8026205 0.0564470), wk = 0.3750000 k( 7) = ( 0.0000000 0.5350803 0.1693410), wk = 0.3750000 k( 8) = ( 0.6178575 0.0000000 -0.2822350), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5080229), wk = 0.0625000 k( 10) = ( 0.4633932 0.8026205 0.1693409), wk = 0.1875000 extrapolated charge 10.00525, renormalised to 10.00000 total cpu time spent up to now is 5.9 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 6.0 secs total energy = -25.40615028 Ry Harris-Foulkes estimate = -25.41017949 Ry estimated scf accuracy < 0.00001076 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-07, avg # of iterations = 1.0 total cpu time spent up to now is 6.1 secs total energy = -25.40615049 Ry Harris-Foulkes estimate = -25.40615045 Ry estimated scf accuracy < 0.00000091 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.06E-09, avg # of iterations = 1.0 total cpu time spent up to now is 6.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.1693 ( 531 PWs) bands (ev): -4.8845 8.2744 10.4947 10.4947 13.2148 16.9902 16.9902 17.8216 18.9005 k =-0.1545-0.2675 0.2822 ( 522 PWs) bands (ev): -3.4250 3.6024 8.5226 12.2806 12.3366 13.5717 15.3496 19.2306 19.5376 k = 0.3089 0.5351-0.0564 ( 520 PWs) bands (ev): -1.3175 0.2074 9.3179 9.6824 11.1041 14.4010 16.4804 17.5058 22.6964 k = 0.1545 0.2675 0.0564 ( 525 PWs) bands (ev): -4.1881 5.6729 9.2086 10.2617 12.3700 16.2290 17.5992 17.8446 18.5714 k =-0.3089 0.0000 0.3951 ( 519 PWs) bands (ev): -2.6869 4.4588 7.5629 7.8634 8.7963 15.7402 18.7361 19.5191 19.9072 k = 0.1545 0.8026 0.0564 ( 510 PWs) bands (ev): -0.0481 1.3360 4.7393 6.3245 11.5988 15.8452 17.8154 21.7161 22.6164 k = 0.0000 0.5351 0.1693 ( 521 PWs) bands (ev): -2.0351 2.0940 6.8807 8.4199 12.3839 14.7946 18.3278 19.0670 20.0763 k = 0.6179 0.0000-0.2822 ( 510 PWs) bands (ev): -0.8532 3.5335 4.1230 7.1823 8.1787 15.1753 20.2845 21.1800 24.0390 k = 0.0000 0.0000 0.5080 ( 522 PWs) bands (ev): -2.5952 1.9839 10.8005 10.8005 12.8741 12.8741 13.7766 15.1431 23.1789 k = 0.4634 0.8026 0.1693 ( 520 PWs) bands (ev): -0.3963 0.8217 5.4146 8.8845 10.3686 15.4528 17.8460 20.7223 21.8295 the Fermi energy is 12.9314 ev ! total energy = -25.40615051 Ry Harris-Foulkes estimate = -25.40615051 Ry estimated scf accuracy < 8.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.75888329 Ry hartree contribution = 0.58344315 Ry xc contribution = -6.77985140 Ry ewald contribution = -30.96864367 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00093854 atom 2 type 1 force = 0.00000000 0.00000000 0.00093854 Total force = 0.001327 Total SCF correction = 0.000002 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 478.07 0.00316738 0.00000000 0.00000000 465.94 0.00 0.00 0.00000000 0.00316738 0.00000000 0.00 465.94 0.00 0.00000000 0.00000000 0.00341472 0.00 0.00 502.32 number of scf cycles = 7 number of bfgs steps = 6 enthalpy old = -24.7514130786 Ry enthalpy new = -24.7525090096 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0451322680 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 191.31213 a.u.^3 ( 28.34953 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533774669 0.000000000 0.750167473 -0.266887248 0.462262374 0.750167529 -0.266887248 -0.462262374 0.750167529 ATOMIC_POSITIONS (crystal) As 0.250427008 0.250426982 0.250426982 As -0.250427008 -0.250426982 -0.250426982 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1666295), wk = 0.0625000 k( 2) = ( -0.1561208 -0.2704092 0.2777158), wk = 0.1875000 k( 3) = ( 0.3122416 0.5408184 -0.0555432), wk = 0.1875000 k( 4) = ( 0.1561208 0.2704092 0.0555431), wk = 0.1875000 k( 5) = ( -0.3122416 0.0000000 0.3888021), wk = 0.1875000 k( 6) = ( 0.1561208 0.8112276 0.0555431), wk = 0.3750000 k( 7) = ( 0.0000000 0.5408184 0.1666295), wk = 0.3750000 k( 8) = ( 0.6244833 0.0000000 -0.2777158), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4998884), wk = 0.0625000 k( 10) = ( 0.4683625 0.8112276 0.1666294), wk = 0.1875000 extrapolated charge 9.94795, renormalised to 10.00000 total cpu time spent up to now is 6.5 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 1.0 total cpu time spent up to now is 6.7 secs total energy = -25.40319975 Ry Harris-Foulkes estimate = -25.36315409 Ry estimated scf accuracy < 0.00000653 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-08, avg # of iterations = 2.3 total cpu time spent up to now is 6.9 secs total energy = -25.40320497 Ry Harris-Foulkes estimate = -25.40320548 Ry estimated scf accuracy < 0.00000197 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-08, avg # of iterations = 1.5 total cpu time spent up to now is 6.9 secs total energy = -25.40320497 Ry Harris-Foulkes estimate = -25.40320503 Ry estimated scf accuracy < 0.00000028 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-09, avg # of iterations = 1.8 total cpu time spent up to now is 7.0 secs total energy = -25.40320499 Ry Harris-Foulkes estimate = -25.40320500 Ry estimated scf accuracy < 7.1E-09 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-11, avg # of iterations = 2.5 total cpu time spent up to now is 7.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.8648 8.0791 10.7614 10.7614 13.4382 17.1183 17.1183 18.1032 18.8110 k =-0.1561-0.2704 0.2777 ( 522 PWs) bands (ev): -3.3999 3.7480 8.3246 12.4254 12.5044 13.7855 15.5462 19.1058 19.8990 k = 0.3122 0.5408-0.0555 ( 520 PWs) bands (ev): -1.2129 0.2756 9.1631 9.8428 11.2660 14.4495 16.5654 17.2214 22.2448 k = 0.1561 0.2704 0.0555 ( 525 PWs) bands (ev): -4.1408 5.8389 9.4270 10.2041 12.3694 16.1906 17.3900 17.8302 18.6646 k =-0.3122 0.0000 0.3888 ( 519 PWs) bands (ev): -2.6828 4.3672 7.6884 8.1219 8.8992 15.8104 18.9944 19.8753 20.3088 k = 0.1561 0.8112 0.0555 ( 510 PWs) bands (ev): -0.0151 1.4671 4.8345 6.2378 11.6279 16.0704 18.0698 21.6664 22.6764 k = 0.0000 0.5408 0.1666 ( 521 PWs) bands (ev): -1.9558 2.2290 6.9341 8.4242 12.2676 14.6625 18.4131 19.3123 20.2687 k = 0.6245 0.0000-0.2777 ( 510 PWs) bands (ev): -0.7781 3.5648 4.1202 7.4133 8.2051 15.1057 20.3147 21.3265 24.0848 k = 0.0000 0.0000 0.4999 ( 522 PWs) bands (ev): -2.6427 1.8223 11.0990 11.0990 13.1312 13.1312 14.2173 15.5656 23.1898 k = 0.4684 0.8112 0.1666 ( 520 PWs) bands (ev): -0.4525 0.7648 5.5583 9.1166 10.6356 15.7228 18.3036 20.8722 21.8699 the Fermi energy is 13.1885 ev ! total energy = -25.40320499 Ry Harris-Foulkes estimate = -25.40320499 Ry estimated scf accuracy < 9.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.82566107 Ry hartree contribution = 0.57945328 Ry xc contribution = -6.78865716 Ry ewald contribution = -31.01968031 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00184042 atom 2 type 1 force = 0.00000000 0.00000000 0.00184042 Total force = 0.002603 Total SCF correction = 0.000002 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 491.79 0.00336290 0.00000000 0.00000000 494.70 0.00 0.00 0.00000000 0.00336290 0.00000000 0.00 494.70 0.00 0.00000000 0.00000000 0.00330352 0.00 0.00 485.96 number of scf cycles = 8 number of bfgs steps = 7 enthalpy old = -24.7525090096 Ry enthalpy new = -24.7529481677 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0098897104 bohr new conv_thr = 0.0000000018 Ry new unit-cell volume = 190.99432 a.u.^3 ( 28.30244 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534287031 0.000000000 0.747485585 -0.267143429 0.462706093 0.747485642 -0.267143429 -0.462706093 0.747485642 ATOMIC_POSITIONS (crystal) As 0.250142892 0.250142866 0.250142866 As -0.250142892 -0.250142866 -0.250142866 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672273), wk = 0.0625000 k( 2) = ( -0.1559711 -0.2701499 0.2787122), wk = 0.1875000 k( 3) = ( 0.3119422 0.5402998 -0.0557425), wk = 0.1875000 k( 4) = ( 0.1559711 0.2701499 0.0557424), wk = 0.1875000 k( 5) = ( -0.3119422 0.0000000 0.3901970), wk = 0.1875000 k( 6) = ( 0.1559711 0.8104497 0.0557424), wk = 0.3750000 k( 7) = ( 0.0000000 0.5402998 0.1672273), wk = 0.3750000 k( 8) = ( 0.6238844 0.0000000 -0.2787122), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5016819), wk = 0.0625000 k( 10) = ( 0.4679133 0.8104497 0.1672273), wk = 0.1875000 extrapolated charge 9.98336, renormalised to 10.00000 total cpu time spent up to now is 7.4 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.4 total cpu time spent up to now is 7.6 secs total energy = -25.40217353 Ry Harris-Foulkes estimate = -25.38935431 Ry estimated scf accuracy < 0.00000165 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 7.8 secs total energy = -25.40217418 Ry Harris-Foulkes estimate = -25.40217424 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.8 secs total energy = -25.40217418 Ry Harris-Foulkes estimate = -25.40217418 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 1.4 total cpu time spent up to now is 7.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8525 8.1616 10.7561 10.7561 13.4668 17.1473 17.1473 18.1149 18.8774 k =-0.1560-0.2701 0.2787 ( 522 PWs) bands (ev): -3.3857 3.7597 8.3907 12.4669 12.4934 13.7962 15.5767 19.1863 19.8837 k = 0.3119 0.5403-0.0557 ( 520 PWs) bands (ev): -1.2075 0.2904 9.2246 9.8511 11.2821 14.4864 16.6081 17.3273 22.3742 k = 0.1560 0.2701 0.0557 ( 525 PWs) bands (ev): -4.1319 5.8526 9.4254 10.2578 12.4110 16.2650 17.4679 17.8849 18.7063 k =-0.3119 0.0000 0.3902 ( 519 PWs) bands (ev): -2.6633 4.4236 7.6998 8.1100 8.9186 15.8332 19.0068 19.8771 20.3132 k = 0.1560 0.8104 0.0557 ( 510 PWs) bands (ev): 0.0074 1.4761 4.8424 6.2799 11.6691 16.0869 18.0660 21.7441 22.7623 k = 0.0000 0.5403 0.1672 ( 521 PWs) bands (ev): -1.9477 2.2387 6.9547 8.4567 12.3356 14.7332 18.4479 19.3294 20.2978 k = 0.6239 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7644 3.5991 4.1419 7.4043 8.2385 15.1500 20.3719 21.3713 24.1598 k = 0.0000 0.0000 0.5017 ( 522 PWs) bands (ev): -2.6146 1.8796 11.0874 11.0874 13.1292 13.1292 14.1982 15.5487 23.2516 k = 0.4679 0.8104 0.1672 ( 520 PWs) bands (ev): -0.4174 0.8038 5.5593 9.1109 10.6328 15.7275 18.2904 20.9121 21.9142 the Fermi energy is 13.4095 ev ! total energy = -25.40217418 Ry Harris-Foulkes estimate = -25.40217418 Ry estimated scf accuracy < 2.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.84843316 Ry hartree contribution = 0.57791914 Ry xc contribution = -6.79138614 Ry ewald contribution = -31.03714940 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00062490 atom 2 type 1 force = 0.00000000 0.00000000 0.00062490 Total force = 0.000884 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 496.88 0.00337773 0.00000000 0.00000000 496.88 0.00 0.00 0.00000000 0.00337773 0.00000000 0.00 496.88 0.00 0.00000000 0.00000000 0.00337777 0.00 0.00 496.89 number of scf cycles = 9 number of bfgs steps = 8 enthalpy old = -24.7529481677 Ry enthalpy new = -24.7529975804 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0021564219 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 190.79974 a.u.^3 ( 28.27360 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534112779 0.000000000 0.747211384 -0.267056304 0.462555186 0.747211442 -0.267056304 -0.462555186 0.747211442 ATOMIC_POSITIONS (crystal) As 0.250005719 0.250005692 0.250005692 As -0.250005719 -0.250005692 -0.250005692 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672887), wk = 0.0625000 k( 2) = ( -0.1560220 -0.2702380 0.2788145), wk = 0.1875000 k( 3) = ( 0.3120440 0.5404761 -0.0557629), wk = 0.1875000 k( 4) = ( 0.1560220 0.2702380 0.0557629), wk = 0.1875000 k( 5) = ( -0.3120440 0.0000000 0.3903402), wk = 0.1875000 k( 6) = ( 0.1560220 0.8107141 0.0557629), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404761 0.1672887), wk = 0.3750000 k( 8) = ( 0.6240880 0.0000000 -0.2788145), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018660), wk = 0.0625000 k( 10) = ( 0.4680660 0.8107141 0.1672886), wk = 0.1875000 extrapolated charge 9.98980, renormalised to 10.00000 total cpu time spent up to now is 8.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.74E-09, avg # of iterations = 2.3 total cpu time spent up to now is 8.4 secs total energy = -25.40151612 Ry Harris-Foulkes estimate = -25.39365474 Ry estimated scf accuracy < 0.00000036 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.55E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.5 secs total energy = -25.40151634 Ry Harris-Foulkes estimate = -25.40151636 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.87E-10, avg # of iterations = 1.0 total cpu time spent up to now is 8.6 secs total energy = -25.40151634 Ry Harris-Foulkes estimate = -25.40151634 Ry estimated scf accuracy < 7.7E-09 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.70E-11, avg # of iterations = 1.8 total cpu time spent up to now is 8.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8461 8.1811 10.7721 10.7721 13.4935 17.1679 17.1679 18.1382 18.8949 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3782 3.7741 8.4047 12.4946 12.4996 13.8151 15.6016 19.2104 19.9027 k = 0.3120 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1982 0.3011 9.2393 9.8655 11.2994 14.5050 16.6312 17.3510 22.3967 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1250 5.8694 9.4397 10.2749 12.4280 16.2907 17.4857 17.9064 18.7298 k =-0.3120 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6550 4.4400 7.7129 8.1227 8.9342 15.8475 19.0291 19.9017 20.3414 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0189 1.4886 4.8522 6.2915 11.6875 16.1082 18.0823 21.7709 22.7868 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9389 2.2518 6.9667 8.4705 12.3546 14.7531 18.4681 19.3526 20.3226 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7537 3.6147 4.1510 7.4163 8.2538 15.1640 20.3966 21.3985 24.1908 k = 0.0000 0.0000 0.5019 ( 522 PWs) bands (ev): -2.6064 1.8921 11.1029 11.1029 13.1460 13.1460 14.2202 15.5704 23.2768 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4069 0.8159 5.5696 9.1243 10.6498 15.7474 18.3154 20.9338 21.9393 the Fermi energy is 13.4363 ev ! total energy = -25.40151634 Ry Harris-Foulkes estimate = -25.40151634 Ry estimated scf accuracy < 1.3E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86226070 Ry hartree contribution = 0.57698784 Ry xc contribution = -6.79306467 Ry ewald contribution = -31.04770927 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00002533 atom 2 type 1 force = 0.00000000 0.00000000 0.00002533 Total force = 0.000036 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.90 0.00339784 0.00000000 0.00000000 499.84 0.00 0.00 0.00000000 0.00339784 0.00000000 0.00 499.84 0.00 0.00000000 0.00000000 0.00339904 0.00 0.00 500.02 bfgs converged in 10 scf cycles and 9 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02, cell < 0.50E+00) End of BFGS Geometry Optimization Final enthalpy = -24.7530010969 Ry Begin final coordinates new unit-cell volume = 190.79974 a.u.^3 ( 28.27360 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534112779 0.000000000 0.747211384 -0.267056304 0.462555186 0.747211442 -0.267056304 -0.462555186 0.747211442 ATOMIC_POSITIONS (crystal) As 0.250005719 0.250005692 0.250005692 As -0.250005719 -0.250005692 -0.250005692 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 287 287 93 3221 3221 633 bravais-lattice index = 0 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 190.7997 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.534113 0.000000 0.747211 ) a(2) = ( -0.267056 0.462555 0.747211 ) a(3) = ( -0.267056 -0.462555 0.747211 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.248176 0.000000 0.446103 ) b(2) = ( -0.624088 1.080952 0.446103 ) b(3) = ( -0.624088 -1.080952 0.446103 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.5604213 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.5604213 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1672887), wk = 0.0625000 k( 2) = ( -0.1560220 -0.2702380 0.2788145), wk = 0.1875000 k( 3) = ( 0.3120440 0.5404761 -0.0557629), wk = 0.1875000 k( 4) = ( 0.1560220 0.2702380 0.0557629), wk = 0.1875000 k( 5) = ( -0.3120440 0.0000000 0.3903402), wk = 0.1875000 k( 6) = ( 0.1560220 0.8107141 0.0557629), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404761 0.1672887), wk = 0.3750000 k( 8) = ( 0.6240880 0.0000000 -0.2788145), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018660), wk = 0.0625000 k( 10) = ( 0.4680660 0.8107141 0.1672886), wk = 0.1875000 Dense grid: 3221 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 410, 9) NL pseudopotentials 0.05 Mb ( 410, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.02 Mb ( 3221) G-vector shells 0.01 Mb ( 841) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 410, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 8.9 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.9 total cpu time spent up to now is 9.2 secs total energy = -25.39786349 Ry Harris-Foulkes estimate = -25.40003088 Ry estimated scf accuracy < 0.01490712 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 9.3 secs total energy = -25.39784199 Ry Harris-Foulkes estimate = -25.39797660 Ry estimated scf accuracy < 0.00110532 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 1.0 total cpu time spent up to now is 9.4 secs total energy = -25.39785212 Ry Harris-Foulkes estimate = -25.39785260 Ry estimated scf accuracy < 0.00000171 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-08, avg # of iterations = 3.0 total cpu time spent up to now is 9.5 secs total energy = -25.39785383 Ry Harris-Foulkes estimate = -25.39785388 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-09, avg # of iterations = 1.5 total cpu time spent up to now is 9.6 secs total energy = -25.39785384 Ry Harris-Foulkes estimate = -25.39785384 Ry estimated scf accuracy < 5.7E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-11, avg # of iterations = 2.0 total cpu time spent up to now is 9.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 396 PWs) bands (ev): -4.8415 8.1940 10.7721 10.7721 13.5173 17.1701 17.1701 18.1436 18.8986 k =-0.1560-0.2702 0.2788 ( 397 PWs) bands (ev): -3.3731 3.7836 8.4063 12.4956 12.5008 13.8201 15.6150 19.2148 19.9070 k = 0.3120 0.5405-0.0558 ( 401 PWs) bands (ev): -1.1925 0.3079 9.2414 9.8659 11.3046 14.5063 16.6392 17.3575 22.4006 k = 0.1560 0.2702 0.0558 ( 396 PWs) bands (ev): -4.1203 5.8812 9.4403 10.2794 12.4305 16.3064 17.4908 17.9082 18.7352 k =-0.3120 0.0000 0.3903 ( 407 PWs) bands (ev): -2.6500 4.4492 7.7150 8.1229 8.9379 15.8499 19.0313 19.9060 20.3503 k = 0.1560 0.8107 0.0558 ( 402 PWs) bands (ev): 0.0252 1.4955 4.8533 6.2926 11.6907 16.1116 18.0851 21.7742 22.7876 k = 0.0000 0.5405 0.1673 ( 405 PWs) bands (ev): -1.9336 2.2602 6.9681 8.4725 12.3583 14.7563 18.4723 19.3595 20.3261 k = 0.6241 0.0000-0.2788 ( 410 PWs) bands (ev): -0.7483 3.6230 4.1519 7.4165 8.2564 15.1665 20.3980 21.4016 24.1952 k = 0.0000 0.0000 0.5019 ( 407 PWs) bands (ev): -2.6011 1.8994 11.1036 11.1036 13.1472 13.1472 14.2308 15.5784 23.2830 k = 0.4681 0.8107 0.1673 ( 403 PWs) bands (ev): -0.4008 0.8235 5.5709 9.1248 10.6549 15.7489 18.3234 20.9368 21.9430 the Fermi energy is 13.4600 ev ! total energy = -25.39785384 Ry Harris-Foulkes estimate = -25.39785384 Ry estimated scf accuracy < 4.1E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86640263 Ry hartree contribution = 0.57607634 Ry xc contribution = -6.79263256 Ry ewald contribution = -31.04770931 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00002481 atom 2 type 1 force = 0.00000000 0.00000000 0.00002481 Total force = 0.000035 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 501.85 0.00341036 0.00000000 0.00000000 501.68 0.00 0.00 0.00000000 0.00341036 0.00000000 0.00 501.68 0.00 0.00000000 0.00000000 0.00341382 0.00 0.00 502.19 Writing output data file pwscf.save init_run : 0.22s CPU 0.23s WALL ( 2 calls) electrons : 6.53s CPU 6.68s WALL ( 11 calls) update_pot : 1.06s CPU 1.06s WALL ( 9 calls) forces : 0.51s CPU 0.51s WALL ( 11 calls) stress : 0.77s CPU 0.78s WALL ( 11 calls) Called by init_run: wfcinit : 0.05s CPU 0.06s WALL ( 2 calls) potinit : 0.06s CPU 0.06s WALL ( 2 calls) Called by electrons: c_bands : 5.46s CPU 5.55s WALL ( 59 calls) sum_band : 0.86s CPU 0.89s WALL ( 59 calls) v_of_rho : 0.14s CPU 0.12s WALL ( 66 calls) mix_rho : 0.04s CPU 0.04s WALL ( 59 calls) Called by c_bands: init_us_2 : 0.20s CPU 0.17s WALL ( 1420 calls) cegterg : 5.31s CPU 5.39s WALL ( 590 calls) Called by *egterg: h_psi : 3.92s CPU 3.97s WALL ( 2052 calls) g_psi : 0.23s CPU 0.20s WALL ( 1442 calls) cdiaghg : 0.45s CPU 0.45s WALL ( 1902 calls) Called by h_psi: add_vuspsi : 0.06s CPU 0.08s WALL ( 2052 calls) General routines calbec : 0.10s CPU 0.12s WALL ( 2272 calls) fft : 0.08s CPU 0.06s WALL ( 325 calls) fftw : 3.70s CPU 3.73s WALL ( 34672 calls) davcio : 0.00s CPU 0.05s WALL ( 2010 calls) PWSCF : 9.48s CPU 9.73s WALL This run was terminated on: 11:30:27 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lsda-mixing_ndim.in0000755000700200004540000000061112053145627017631 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_ndim = 4 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/metal-gaussian.in0000755000700200004540000000131212053145627017317 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav0-cell_parameters-ang.in0000644000700200004540000000055712053145627023125 0ustar marsamoscm &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS angstrom 5.291772 0.00000 0.00000 2.381297 7.572044 0.00000 2.116709 0.443784 10.360210 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav9-kauto.in0000644000700200004540000000051112053145627020342 0ustar marsamoscm &control calculation='scf', / &system ibrav = 9, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/spinorbit.in10000755000700200004540000000056512053145627016510 0ustar marsamoscm &control calculation = 'nscf' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., occupations='tetrahedra', ecutwfc =30.0, ecutrho =250.0, nbnd = 16 / &electrons / ATOMIC_SPECIES Pt 79.90 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 0 0 0 espresso-5.0.2/PW/tests/md-wfc_extrap1.in0000755000700200004540000000062012053145627017227 0ustar marsamoscm &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions wfc_extrapolation='first_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.0.2/PW/tests/atom-sigmapbe.ref0000644000700200004540000003320412053145627017302 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom-sigmapbe.in file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.379E-05 0.379E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 27.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.5 negative rho (up, down): 0.360E-05 0.256E-05 total cpu time spent up to now is 1.0 secs total energy = -31.42250911 Ry Harris-Foulkes estimate = -31.37473853 Ry estimated scf accuracy < 0.07309318 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.22E-03, avg # of iterations = 1.0 negative rho (up, down): 0.497E-02 0.783E-02 total cpu time spent up to now is 1.3 secs total energy = -31.48680846 Ry Harris-Foulkes estimate = -31.42284589 Ry estimated scf accuracy < 0.04338133 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 7.23E-04, avg # of iterations = 1.5 negative rho (up, down): 0.374E-02 0.548E-02 total cpu time spent up to now is 1.5 secs total energy = -31.49065417 Ry Harris-Foulkes estimate = -31.49010164 Ry estimated scf accuracy < 0.00031459 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.24E-06, avg # of iterations = 7.0 negative rho (up, down): 0.288E-02 0.363E-02 total cpu time spent up to now is 1.8 secs total energy = -31.49116619 Ry Harris-Foulkes estimate = -31.49076335 Ry estimated scf accuracy < 0.00004008 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 6.68E-07, avg # of iterations = 2.0 negative rho (up, down): 0.208E-02 0.233E-02 total cpu time spent up to now is 2.1 secs total energy = -31.49103354 Ry Harris-Foulkes estimate = -31.49118900 Ry estimated scf accuracy < 0.00001202 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.00E-07, avg # of iterations = 2.0 negative rho (up, down): 0.139E-02 0.157E-02 total cpu time spent up to now is 2.3 secs total energy = -31.49102618 Ry Harris-Foulkes estimate = -31.49103846 Ry estimated scf accuracy < 0.00000077 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 2.0 negative rho (up, down): 0.926E-03 0.104E-02 total cpu time spent up to now is 2.6 secs total energy = -31.49107335 Ry Harris-Foulkes estimate = -31.49102707 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.01E-10, avg # of iterations = 3.0 negative rho (up, down): 0.599E-03 0.675E-03 total cpu time spent up to now is 2.9 secs total energy = -31.49103020 Ry Harris-Foulkes estimate = -31.49107377 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.37E-10, avg # of iterations = 2.0 negative rho (up, down): 0.380E-03 0.431E-03 total cpu time spent up to now is 3.2 secs total energy = -31.49100971 Ry Harris-Foulkes estimate = -31.49103029 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.85E-10, avg # of iterations = 3.0 negative rho (up, down): 0.237E-03 0.273E-03 total cpu time spent up to now is 3.5 secs total energy = -31.49100424 Ry Harris-Foulkes estimate = -31.49100980 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.63E-10, avg # of iterations = 2.5 negative rho (up, down): 0.111E-04 0.266E-06 total cpu time spent up to now is 3.7 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -24.6105 -9.5350 -9.5350 -9.5350 -0.6504 4.2820 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -21.2305 -6.3592 -6.3592 -6.3592 -0.4257 4.4441 highest occupied, lowest unoccupied level (ev): -6.3592 -0.6504 ! total energy = -31.49101032 Ry Harris-Foulkes estimate = -31.49100429 Ry estimated scf accuracy < 9.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -31.96175336 Ry hartree contribution = 17.29522001 Ry xc contribution = -6.61020597 Ry ewald contribution = -10.21427100 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 11 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.98 -0.00010182 0.00000000 0.00000000 -14.98 0.00 0.00 0.00000000 -0.00010182 0.00000000 0.00 -14.98 0.00 0.00000000 0.00000000 -0.00010182 0.00 0.00 -14.98 Writing output data file pwscf.save init_run : 0.64s CPU 0.65s WALL ( 1 calls) electrons : 2.92s CPU 3.04s WALL ( 1 calls) stress : 0.31s CPU 0.32s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.19s CPU 0.20s WALL ( 1 calls) Called by electrons: c_bands : 0.25s CPU 0.25s WALL ( 11 calls) sum_band : 0.45s CPU 0.47s WALL ( 11 calls) v_of_rho : 1.76s CPU 1.82s WALL ( 12 calls) newd : 0.28s CPU 0.28s WALL ( 12 calls) mix_rho : 0.15s CPU 0.14s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 48 calls) regterg : 0.22s CPU 0.23s WALL ( 22 calls) Called by *egterg: h_psi : 0.17s CPU 0.18s WALL ( 89 calls) s_psi : 0.00s CPU 0.00s WALL ( 89 calls) g_psi : 0.02s CPU 0.01s WALL ( 65 calls) rdiaghg : 0.02s CPU 0.01s WALL ( 87 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 89 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 113 calls) fft : 0.57s CPU 0.57s WALL ( 371 calls) ffts : 0.01s CPU 0.02s WALL ( 46 calls) fftw : 0.14s CPU 0.14s WALL ( 474 calls) interpolate : 0.10s CPU 0.13s WALL ( 46 calls) davcio : 0.00s CPU 0.00s WALL ( 70 calls) PWSCF : 3.96s CPU 4.14s WALL This run was terminated on: 22:44:17 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lsda-mixing_localTF.in0000755000700200004540000000062212053145627020230 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'local-TF' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/lattice-ibrav9.in0000644000700200004540000000046712053145627017233 0ustar marsamoscm &control calculation='scf', / &system ibrav = 9, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/uspp-cg.in0000755000700200004540000000053612053145627015772 0ustar marsamoscm &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons diagonalization='cg' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.0.2/PW/tests/vc-md1.ref0000644000700200004540000036315312053145627015655 0ustar marsamoscm Program PWSCF v.5.0.2 (svn rev. 9400) starts on 2Oct2012 at 14:16:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/vc-md.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 10 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.0 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.9 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 new unit-cell volume = 255.9441 (a.u.)^3 new positions in cryst coord As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 new positions in cart coord (alat unit) As 0.579425915 0.336684025 0.238648027 As -0.579425915 -0.336684025 -0.238648027 Ekin = 0.00000000 Ry T = 0.0 K Etot = -25.44012218 new unit-cell volume = 255.94411 a.u.^3 ( 37.92700 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 ATOMIC_POSITIONS (crystal) As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1238271 0.0719516 0.0510007), wk = 0.0625000 k( 2) = ( 0.1243992 0.0722840 0.3512468), wk = 0.0625000 k( 3) = ( 0.1226829 0.0712868 -0.5494916), wk = 0.0625000 k( 4) = ( 0.1232550 0.0716192 -0.2492455), wk = 0.0625000 k( 5) = ( 0.1243992 0.3553640 -0.0481218), wk = 0.0625000 k( 6) = ( 0.1249713 0.3556964 0.2521243), wk = 0.0625000 k( 7) = ( 0.1232550 0.3546993 -0.6486140), wk = 0.0625000 k( 8) = ( 0.1238271 0.3550316 -0.3483679), wk = 0.0625000 k( 9) = ( 0.1226830 -0.4948733 0.2492455), wk = 0.0625000 k( 10) = ( 0.1232551 -0.4945409 0.5494917), wk = 0.0625000 k( 11) = ( 0.1215388 -0.4955380 -0.3512467), wk = 0.0625000 k( 12) = ( 0.1221109 -0.4952056 -0.0510006), wk = 0.0625000 k( 13) = ( 0.1232551 -0.2114608 0.1501231), wk = 0.0625000 k( 14) = ( 0.1238272 -0.2111285 0.4503692), wk = 0.0625000 k( 15) = ( 0.1221108 -0.2121256 -0.4503691), wk = 0.0625000 k( 16) = ( 0.1226830 -0.2117932 -0.1501230), wk = 0.0625000 k( 17) = ( 0.3703372 -0.0678900 -0.0481217), wk = 0.0625000 k( 18) = ( 0.3709093 -0.0675577 0.2521244), wk = 0.0625000 k( 19) = ( 0.3691930 -0.0685548 -0.6486139), wk = 0.0625000 k( 20) = ( 0.3697651 -0.0682224 -0.3483678), wk = 0.0625000 k( 21) = ( 0.3709093 0.2155224 -0.1472442), wk = 0.0625000 k( 22) = ( 0.3714814 0.2158548 0.1530020), wk = 0.0625000 k( 23) = ( 0.3697651 0.2148577 -0.7477364), wk = 0.0625000 k( 24) = ( 0.3703372 0.2151900 -0.4474903), wk = 0.0625000 k( 25) = ( 0.3691931 -0.6347149 0.1501232), wk = 0.0625000 k( 26) = ( 0.3697652 -0.6343825 0.4503693), wk = 0.0625000 k( 27) = ( 0.3680489 -0.6353796 -0.4503691), wk = 0.0625000 k( 28) = ( 0.3686210 -0.6350473 -0.1501229), wk = 0.0625000 k( 29) = ( 0.3697651 -0.3513025 0.0510007), wk = 0.0625000 k( 30) = ( 0.3703372 -0.3509701 0.3512469), wk = 0.0625000 k( 31) = ( 0.3686209 -0.3519672 -0.5494915), wk = 0.0625000 k( 32) = ( 0.3691930 -0.3516348 -0.2492454), wk = 0.0625000 extrapolated charge 10.41311, renormalised to 10.00000 total cpu time spent up to now is 2.6 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 3.2 secs total energy = -25.45860856 Ry Harris-Foulkes estimate = -25.70449924 Ry estimated scf accuracy < 0.00082346 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 3.6 secs total energy = -25.46012355 Ry Harris-Foulkes estimate = -25.46039810 Ry estimated scf accuracy < 0.00067885 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-06, avg # of iterations = 1.0 total cpu time spent up to now is 3.9 secs total energy = -25.46010233 Ry Harris-Foulkes estimate = -25.46015331 Ry estimated scf accuracy < 0.00014945 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.2 secs total energy = -25.46008422 Ry Harris-Foulkes estimate = -25.46010844 Ry estimated scf accuracy < 0.00004698 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-07, avg # of iterations = 2.4 total cpu time spent up to now is 4.5 secs total energy = -25.46009200 Ry Harris-Foulkes estimate = -25.46009259 Ry estimated scf accuracy < 0.00000113 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.2 total cpu time spent up to now is 4.8 secs total energy = -25.46009237 Ry Harris-Foulkes estimate = -25.46009245 Ry estimated scf accuracy < 0.00000020 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.0 total cpu time spent up to now is 5.1 secs End of self-consistent calculation k = 0.1238 0.0720 0.0510 ( 531 PWs) bands (ev): -7.1390 3.6957 5.5400 5.5400 7.8026 10.3999 11.1877 11.1877 15.8506 k = 0.1244 0.0723 0.3512 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.1227 0.0713-0.5495 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233 0.0716-0.2492 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1244 0.3554-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.1250 0.3557 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.1233 0.3547-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1238 0.3550-0.3484 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.4949 0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233-0.4945 0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1215-0.4955-0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.1221-0.4952-0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1233-0.2115 0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1238-0.2111 0.4504 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1221-0.2121-0.4504 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.2118-0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.3703-0.0679-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.3709-0.0676 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3692-0.0686-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.0682-0.3484 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3709 0.2155-0.1472 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3715 0.2159 0.1530 ( 522 PWs) bands (ev): -6.0213 0.3365 5.4803 5.4803 6.7061 9.4594 9.4594 11.2681 16.7047 k = 0.3698 0.2149-0.7477 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3703 0.2152-0.4475 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3692-0.6347 0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.6344 0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3680-0.6354-0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3686-0.6350-0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.3513 0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3703-0.3510 0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3686-0.3520-0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3692-0.3516-0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 the Fermi energy is 8.9906 ev ! total energy = -25.46009238 Ry Harris-Foulkes estimate = -25.46009238 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.08520934 -0.04951205 -0.03509532 atom 2 type 1 force = 0.08520934 0.04951205 0.03509532 Total force = 0.147944 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 143.05 0.00086728 -0.00012280 -0.00008704 127.58 -18.06 -12.80 -0.00012280 0.00100726 -0.00005058 -18.06 148.17 -7.44 -0.00008704 -0.00005058 0.00104277 -12.80 -7.44 153.40 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 new unit-cell volume = 277.0123 (a.u.)^3 new positions in cryst coord As 0.284850332 0.284850368 0.284850362 As -0.284850332 -0.284850368 -0.284850362 new positions in cart coord (alat unit) As 0.583917455 0.339293890 0.240497952 As -0.583917455 -0.339293890 -0.240497952 Ekin = 0.02014338 Ry T = 706.8 K Etot = -25.43994899 new unit-cell volume = 277.01233 a.u.^3 ( 41.04899 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 ATOMIC_POSITIONS (crystal) As 0.284850332 0.284850368 0.284850362 As -0.284850332 -0.284850368 -0.284850362 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1213681 0.0705228 0.0499879), wk = 0.0625000 k( 2) = ( 0.1226857 0.0712883 0.3418135), wk = 0.0625000 k( 3) = ( 0.1187329 0.0689917 -0.5336634), wk = 0.0625000 k( 4) = ( 0.1200505 0.0697572 -0.2418378), wk = 0.0625000 k( 5) = ( 0.1226857 0.3461334 -0.0459371), wk = 0.0625000 k( 6) = ( 0.1240033 0.3468989 0.2458885), wk = 0.0625000 k( 7) = ( 0.1200505 0.3446023 -0.6295884), wk = 0.0625000 k( 8) = ( 0.1213681 0.3453678 -0.3377628), wk = 0.0625000 k( 9) = ( 0.1187329 -0.4806985 0.2418379), wk = 0.0625000 k( 10) = ( 0.1200506 -0.4799329 0.5336635), wk = 0.0625000 k( 11) = ( 0.1160977 -0.4822295 -0.3418134), wk = 0.0625000 k( 12) = ( 0.1174153 -0.4814640 -0.0499877), wk = 0.0625000 k( 13) = ( 0.1200505 -0.2050879 0.1459129), wk = 0.0625000 k( 14) = ( 0.1213682 -0.2043223 0.4377385), wk = 0.0625000 k( 15) = ( 0.1174153 -0.2066189 -0.4377384), wk = 0.0625000 k( 16) = ( 0.1187329 -0.2058534 -0.1459128), wk = 0.0625000 k( 17) = ( 0.3614692 -0.0648079 -0.0459370), wk = 0.0625000 k( 18) = ( 0.3627868 -0.0640424 0.2458886), wk = 0.0625000 k( 19) = ( 0.3588339 -0.0663390 -0.6295883), wk = 0.0625000 k( 20) = ( 0.3601515 -0.0655734 -0.3377626), wk = 0.0625000 k( 21) = ( 0.3627867 0.2108027 -0.1418620), wk = 0.0625000 k( 22) = ( 0.3641044 0.2115683 0.1499636), wk = 0.0625000 k( 23) = ( 0.3601515 0.2092716 -0.7255133), wk = 0.0625000 k( 24) = ( 0.3614691 0.2100372 -0.4336877), wk = 0.0625000 k( 25) = ( 0.3588340 -0.6160291 0.1459130), wk = 0.0625000 k( 26) = ( 0.3601516 -0.6152636 0.4377386), wk = 0.0625000 k( 27) = ( 0.3561987 -0.6175602 -0.4377383), wk = 0.0625000 k( 28) = ( 0.3575164 -0.6167947 -0.1459126), wk = 0.0625000 k( 29) = ( 0.3601516 -0.3404185 0.0499880), wk = 0.0625000 k( 30) = ( 0.3614692 -0.3396530 0.3418136), wk = 0.0625000 k( 31) = ( 0.3575163 -0.3419496 -0.5336633), wk = 0.0625000 k( 32) = ( 0.3588339 -0.3411840 -0.2418376), wk = 0.0625000 extrapolated charge 10.76052, renormalised to 10.00000 total cpu time spent up to now is 5.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 6.1 secs total energy = -25.47744718 Ry Harris-Foulkes estimate = -25.91217889 Ry estimated scf accuracy < 0.00269230 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-05, avg # of iterations = 3.1 total cpu time spent up to now is 6.6 secs total energy = -25.48275706 Ry Harris-Foulkes estimate = -25.48371130 Ry estimated scf accuracy < 0.00243509 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 1.0 total cpu time spent up to now is 6.8 secs total energy = -25.48267040 Ry Harris-Foulkes estimate = -25.48285639 Ry estimated scf accuracy < 0.00056797 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.1 secs total energy = -25.48259700 Ry Harris-Foulkes estimate = -25.48269156 Ry estimated scf accuracy < 0.00018863 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 2.1 total cpu time spent up to now is 7.4 secs total energy = -25.48262218 Ry Harris-Foulkes estimate = -25.48262563 Ry estimated scf accuracy < 0.00000652 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 7.7 secs total energy = -25.48262557 Ry Harris-Foulkes estimate = -25.48262569 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-09, avg # of iterations = 1.8 total cpu time spent up to now is 8.0 secs End of self-consistent calculation k = 0.1214 0.0705 0.0500 ( 531 PWs) bands (ev): -7.3958 2.1406 4.8134 4.8134 6.7360 9.2815 10.1558 10.1558 14.5877 k = 0.1227 0.0713 0.3418 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1187 0.0690-0.5337 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201 0.0698-0.2418 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1227 0.3461-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1240 0.3469 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.1201 0.3446-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1214 0.3454-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.4807 0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201-0.4799 0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1161-0.4822-0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.1174-0.4815-0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1201-0.2051 0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1214-0.2043 0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1174-0.2066-0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.2059-0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.3615-0.0648-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.3628-0.0640 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3588-0.0663-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.0656-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3628 0.2108-0.1419 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3641 0.2116 0.1500 ( 522 PWs) bands (ev): -6.3150 -0.6759 4.8048 4.8048 5.6084 8.3786 8.3786 9.7421 15.4921 k = 0.3602 0.2093-0.7255 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3615 0.2100-0.4337 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3588-0.6160 0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.6153 0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3562-0.6176-0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3575-0.6168-0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.3404 0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3615-0.3397 0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3575-0.3419-0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3588-0.3412-0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 the Fermi energy is 7.8950 ev ! total energy = -25.48262559 Ry Harris-Foulkes estimate = -25.48262562 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.05293479 -0.03075850 -0.02180227 atom 2 type 1 force = 0.05293479 0.03075850 0.02180227 Total force = 0.091908 Total SCF correction = 0.000170 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 33.16 0.00030132 0.00008863 0.00006282 44.33 13.04 9.24 0.00008863 0.00020029 0.00003650 13.04 29.46 5.37 0.00006282 0.00003650 0.00017467 9.24 5.37 25.69 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 1.063153113 -0.008294001 -0.005879047 0.519240750 0.927767029 -0.005878734 0.519240667 0.301712655 0.877357446 new unit-cell volume = 300.7638 (a.u.)^3 new positions in cryst coord As 0.280296953 0.280297011 0.280296991 As -0.280296953 -0.280297011 -0.280296991 new positions in cart coord (alat unit) As 0.589081805 0.342294691 0.242624981 As -0.589081805 -0.342294691 -0.242624981 Ekin = 0.04390948 Ry T = 1123.7 K Etot = -25.43871611 new unit-cell volume = 300.76378 a.u.^3 ( 44.56859 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.063153113 -0.008294001 -0.005879047 0.519240750 0.927767029 -0.005878734 0.519240667 0.301712655 0.877357446 ATOMIC_POSITIONS (crystal) As 0.280296953 0.280297011 0.280296991 As -0.280296953 -0.280297011 -0.280296991 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1183810 0.0687871 0.0487576), wk = 0.0625000 k( 2) = ( 0.1199570 0.0697027 0.3324566), wk = 0.0625000 k( 3) = ( 0.1152291 0.0669558 -0.5186405), wk = 0.0625000 k( 4) = ( 0.1168051 0.0678714 -0.2349414), wk = 0.0625000 k( 5) = ( 0.1199569 0.3367794 -0.0443344), wk = 0.0625000 k( 6) = ( 0.1215329 0.3376950 0.2393646), wk = 0.0625000 k( 7) = ( 0.1168051 0.3349481 -0.6117325), wk = 0.0625000 k( 8) = ( 0.1183810 0.3358638 -0.3280334), wk = 0.0625000 k( 9) = ( 0.1152292 -0.4671976 0.2349416), wk = 0.0625000 k( 10) = ( 0.1168052 -0.4662820 0.5186406), wk = 0.0625000 k( 11) = ( 0.1120773 -0.4690289 -0.3324565), wk = 0.0625000 k( 12) = ( 0.1136533 -0.4681132 -0.0487574), wk = 0.0625000 k( 13) = ( 0.1168051 -0.1992053 0.1418496), wk = 0.0625000 k( 14) = ( 0.1183811 -0.1982896 0.4255486), wk = 0.0625000 k( 15) = ( 0.1136532 -0.2010365 -0.4255485), wk = 0.0625000 k( 16) = ( 0.1152292 -0.2001209 -0.1418494), wk = 0.0625000 k( 17) = ( 0.3519913 -0.0625468 -0.0443343), wk = 0.0625000 k( 18) = ( 0.3535672 -0.0616311 0.2393647), wk = 0.0625000 k( 19) = ( 0.3488394 -0.0643780 -0.6117323), wk = 0.0625000 k( 20) = ( 0.3504153 -0.0634624 -0.3280333), wk = 0.0625000 k( 21) = ( 0.3535672 0.2054456 -0.1374263), wk = 0.0625000 k( 22) = ( 0.3551431 0.2063612 0.1462727), wk = 0.0625000 k( 23) = ( 0.3504153 0.2036143 -0.7048243), wk = 0.0625000 k( 24) = ( 0.3519912 0.2045299 -0.4211253), wk = 0.0625000 k( 25) = ( 0.3488394 -0.5985315 0.1418497), wk = 0.0625000 k( 26) = ( 0.3504154 -0.5976158 0.4255487), wk = 0.0625000 k( 27) = ( 0.3456875 -0.6003627 -0.4255483), wk = 0.0625000 k( 28) = ( 0.3472635 -0.5994471 -0.1418493), wk = 0.0625000 k( 29) = ( 0.3504153 -0.3305391 0.0487577), wk = 0.0625000 k( 30) = ( 0.3519913 -0.3296235 0.3324567), wk = 0.0625000 k( 31) = ( 0.3472634 -0.3323704 -0.5186403), wk = 0.0625000 k( 32) = ( 0.3488394 -0.3314547 -0.2349413), wk = 0.0625000 extrapolated charge 10.78967, renormalised to 10.00000 total cpu time spent up to now is 8.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.1 total cpu time spent up to now is 9.0 secs total energy = -25.48188640 Ry Harris-Foulkes estimate = -25.91007832 Ry estimated scf accuracy < 0.00306057 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.06E-05, avg # of iterations = 3.1 total cpu time spent up to now is 9.5 secs total energy = -25.48786395 Ry Harris-Foulkes estimate = -25.48891407 Ry estimated scf accuracy < 0.00270838 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-05, avg # of iterations = 1.0 total cpu time spent up to now is 9.8 secs total energy = -25.48777278 Ry Harris-Foulkes estimate = -25.48800085 Ry estimated scf accuracy < 0.00062876 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.29E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.0 secs total energy = -25.48771991 Ry Harris-Foulkes estimate = -25.48780134 Ry estimated scf accuracy < 0.00016334 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.63E-06, avg # of iterations = 2.5 total cpu time spent up to now is 10.3 secs total energy = -25.48774684 Ry Harris-Foulkes estimate = -25.48774883 Ry estimated scf accuracy < 0.00000426 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.26E-08, avg # of iterations = 2.2 total cpu time spent up to now is 10.7 secs total energy = -25.48774862 Ry Harris-Foulkes estimate = -25.48774862 Ry estimated scf accuracy < 0.00000033 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-09, avg # of iterations = 1.6 total cpu time spent up to now is 10.9 secs total energy = -25.48774856 Ry Harris-Foulkes estimate = -25.48774866 Ry estimated scf accuracy < 0.00000016 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 2.0 total cpu time spent up to now is 11.2 secs End of self-consistent calculation k = 0.1184 0.0688 0.0488 ( 531 PWs) bands (ev): -7.6470 0.5732 4.1562 4.1562 5.7027 8.2560 9.1278 9.1278 13.3796 k = 0.1200 0.0697 0.3325 ( 522 PWs) bands (ev): -6.7428 -1.9330 3.4572 4.1671 6.3951 7.1277 8.2413 10.4563 12.6594 k = 0.1152 0.0670-0.5186 ( 520 PWs) bands (ev): -5.4707 -4.0302 3.4258 4.0581 5.1375 7.8566 8.9781 9.9838 14.7420 k = 0.1168 0.0679-0.2349 ( 525 PWs) bands (ev): -7.1426 -1.1833 3.4229 4.5640 5.8979 8.3798 8.7052 10.3895 12.6042 k = 0.1200 0.3368-0.0443 ( 522 PWs) bands (ev): -6.7428 -1.9330 3.4572 4.1671 6.3951 7.1277 8.2413 10.4563 12.6594 k = 0.1215 0.3377 0.2394 ( 519 PWs) bands (ev): -6.4159 -1.6013 2.1268 2.7927 4.7878 8.2672 10.0809 10.4626 12.7668 k = 0.1168 0.3349-0.6117 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.1184 0.3359-0.3280 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1152-0.4672 0.2349 ( 520 PWs) bands (ev): -5.4707 -4.0302 3.4258 4.0581 5.1375 7.8566 8.9781 9.9838 14.7420 k = 0.1168-0.4663 0.5186 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.1121-0.4690-0.3325 ( 510 PWs) bands (ev): -5.3380 -3.0691 1.5316 2.3356 3.6865 8.3376 11.7329 13.1714 13.5085 k = 0.1137-0.4681-0.0488 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1168-0.1992 0.1418 ( 525 PWs) bands (ev): -7.1426 -1.1833 3.4229 4.5640 5.8979 8.3798 8.7052 10.3895 12.6042 k = 0.1184-0.1983 0.4255 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1137-0.2010-0.4255 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1152-0.2001-0.1418 ( 525 PWs) bands (ev): -7.1426 -1.1833 3.4229 4.5640 5.8979 8.3798 8.7052 10.3895 12.6042 k = 0.3520-0.0625-0.0443 ( 522 PWs) bands (ev): -6.7428 -1.9330 3.4572 4.1671 6.3951 7.1277 8.2413 10.4563 12.6594 k = 0.3536-0.0616 0.2394 ( 519 PWs) bands (ev): -6.4159 -1.6013 2.1268 2.7927 4.7878 8.2672 10.0809 10.4626 12.7668 k = 0.3488-0.0644-0.6117 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0618 k = 0.3504-0.0635-0.3280 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.3536 0.2054-0.1374 ( 519 PWs) bands (ev): -6.4159 -1.6013 2.1268 2.7927 4.7878 8.2672 10.0809 10.4626 12.7668 k = 0.3551 0.2064 0.1463 ( 522 PWs) bands (ev): -6.5995 -1.8156 4.2152 4.2152 4.7494 7.3144 7.3144 8.2446 14.3362 k = 0.3504 0.2036-0.7048 ( 520 PWs) bands (ev): -5.7658 -2.5994 1.3089 3.3037 4.8333 8.3249 8.7665 11.1988 14.2686 k = 0.3520 0.2045-0.4211 ( 510 PWs) bands (ev): -5.3380 -3.0691 1.5316 2.3355 3.6865 8.3376 11.7329 13.1714 13.5085 k = 0.3488-0.5985 0.1418 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0618 k = 0.3504-0.5976 0.4255 ( 520 PWs) bands (ev): -5.7658 -2.5994 1.3089 3.3037 4.8333 8.3249 8.7665 11.1988 14.2686 k = 0.3457-0.6004-0.4255 ( 520 PWs) bands (ev): -5.7658 -2.5994 1.3089 3.3037 4.8333 8.3249 8.7665 11.1988 14.2686 k = 0.3473-0.5994-0.1418 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.3504-0.3305 0.0488 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.3520-0.3296 0.3325 ( 510 PWs) bands (ev): -5.3380 -3.0691 1.5316 2.3355 3.6865 8.3376 11.7329 13.1714 13.5085 k = 0.3473-0.3324-0.5186 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.3488-0.3315-0.2349 ( 520 PWs) bands (ev): -5.4707 -4.0302 3.4258 4.0581 5.1375 7.8566 8.9781 9.9838 14.7420 the Fermi energy is 6.7342 ev ! total energy = -25.48774859 Ry Harris-Foulkes estimate = -25.48774859 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02031288 -0.01180314 -0.00836628 atom 2 type 1 force = 0.02031288 0.01180314 0.00836628 Total force = 0.035268 Total SCF correction = 0.000018 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -49.52 -0.00016609 0.00019913 0.00014115 -24.43 29.29 20.76 0.00019913 -0.00039308 0.00008201 29.29 -57.82 12.06 0.00014115 0.00008201 -0.00045065 20.76 12.06 -66.29 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 1.088382550 -0.006759002 -0.004791011 0.533067326 0.948926004 -0.004790676 0.533067242 0.309746779 0.896962065 new unit-cell volume = 321.3953 (a.u.)^3 new positions in cryst coord As 0.275535203 0.275535277 0.275535244 As -0.275535203 -0.275535277 -0.275535244 new positions in cart coord (alat unit) As 0.593645373 0.344946401 0.244504569 As -0.593645373 -0.344946401 -0.244504569 Ekin = 0.04836447 Ry T = 1314.8 K Etot = -25.43938411 new unit-cell volume = 321.39530 a.u.^3 ( 47.62587 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.088382550 -0.006759002 -0.004791011 0.533067326 0.948926004 -0.004790676 0.533067242 0.309746779 0.896962065 ATOMIC_POSITIONS (crystal) As 0.275535203 0.275535277 0.275535244 As -0.275535203 -0.275535277 -0.275535244 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1154754 0.0670987 0.0475608), wk = 0.0625000 k( 2) = ( 0.1167024 0.0678116 0.3253040), wk = 0.0625000 k( 3) = ( 0.1130213 0.0656729 -0.5079255), wk = 0.0625000 k( 4) = ( 0.1142483 0.0663858 -0.2301823), wk = 0.0625000 k( 5) = ( 0.1167024 0.3294042 -0.0437500), wk = 0.0625000 k( 6) = ( 0.1179294 0.3301171 0.2339932), wk = 0.0625000 k( 7) = ( 0.1142483 0.3279784 -0.5992364), wk = 0.0625000 k( 8) = ( 0.1154753 0.3286913 -0.3214932), wk = 0.0625000 k( 9) = ( 0.1130214 -0.4575122 0.2301825), wk = 0.0625000 k( 10) = ( 0.1142484 -0.4567994 0.5079257), wk = 0.0625000 k( 11) = ( 0.1105673 -0.4589380 -0.3253039), wk = 0.0625000 k( 12) = ( 0.1117943 -0.4582251 -0.0475607), wk = 0.0625000 k( 13) = ( 0.1142484 -0.1952068 0.1388717), wk = 0.0625000 k( 14) = ( 0.1154754 -0.1944939 0.4166148), wk = 0.0625000 k( 15) = ( 0.1117943 -0.1966326 -0.4166147), wk = 0.0625000 k( 16) = ( 0.1130213 -0.1959197 -0.1388715), wk = 0.0625000 k( 17) = ( 0.3439721 -0.0617223 -0.0437499), wk = 0.0625000 k( 18) = ( 0.3451991 -0.0610094 0.2339933), wk = 0.0625000 k( 19) = ( 0.3415180 -0.0631481 -0.5992362), wk = 0.0625000 k( 20) = ( 0.3427450 -0.0624352 -0.3214930), wk = 0.0625000 k( 21) = ( 0.3451991 0.2005832 -0.1350607), wk = 0.0625000 k( 22) = ( 0.3464261 0.2012961 0.1426825), wk = 0.0625000 k( 23) = ( 0.3427450 0.1991574 -0.6905470), wk = 0.0625000 k( 24) = ( 0.3439720 0.1998703 -0.4128039), wk = 0.0625000 k( 25) = ( 0.3415181 -0.5863332 0.1388718), wk = 0.0625000 k( 26) = ( 0.3427451 -0.5856203 0.4166150), wk = 0.0625000 k( 27) = ( 0.3390640 -0.5877590 -0.4166146), wk = 0.0625000 k( 28) = ( 0.3402910 -0.5870461 -0.1388714), wk = 0.0625000 k( 29) = ( 0.3427451 -0.3240277 0.0475610), wk = 0.0625000 k( 30) = ( 0.3439721 -0.3233149 0.3253041), wk = 0.0625000 k( 31) = ( 0.3402910 -0.3254535 -0.5079254), wk = 0.0625000 k( 32) = ( 0.3415180 -0.3247406 -0.2301822), wk = 0.0625000 extrapolated charge 10.64191, renormalised to 10.00000 total cpu time spent up to now is 11.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.6 total cpu time spent up to now is 12.3 secs total energy = -25.47501463 Ry Harris-Foulkes estimate = -25.80685879 Ry estimated scf accuracy < 0.00227025 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-05, avg # of iterations = 3.0 total cpu time spent up to now is 12.7 secs total energy = -25.47910017 Ry Harris-Foulkes estimate = -25.47979138 Ry estimated scf accuracy < 0.00176856 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-05, avg # of iterations = 1.0 total cpu time spent up to now is 13.0 secs total energy = -25.47901889 Ry Harris-Foulkes estimate = -25.47917462 Ry estimated scf accuracy < 0.00038838 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.88E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.2 secs total energy = -25.47900471 Ry Harris-Foulkes estimate = -25.47904119 Ry estimated scf accuracy < 0.00007167 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.17E-07, avg # of iterations = 3.0 total cpu time spent up to now is 13.6 secs total energy = -25.47902158 Ry Harris-Foulkes estimate = -25.47902180 Ry estimated scf accuracy < 0.00000075 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.49E-09, avg # of iterations = 1.9 total cpu time spent up to now is 13.9 secs total energy = -25.47902168 Ry Harris-Foulkes estimate = -25.47902170 Ry estimated scf accuracy < 0.00000018 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 1.0 total cpu time spent up to now is 14.1 secs End of self-consistent calculation k = 0.1155 0.0671 0.0476 ( 531 PWs) bands (ev): -7.8384 -0.6356 3.7038 3.7038 4.8660 7.5598 8.3195 8.3195 12.4880 k = 0.1167 0.0678 0.3253 ( 522 PWs) bands (ev): -6.9839 -2.6955 2.8820 3.8392 5.6531 6.1327 7.1504 9.4697 11.8683 k = 0.1130 0.0657-0.5079 ( 520 PWs) bands (ev): -5.7908 -4.5431 3.1112 3.3981 4.3687 6.9985 7.8169 8.6752 13.9055 k = 0.1142 0.0664-0.2302 ( 525 PWs) bands (ev): -7.3703 -1.9884 3.0353 3.8442 5.0966 7.3038 7.9973 9.2690 11.6967 k = 0.1167 0.3294-0.0438 ( 522 PWs) bands (ev): -6.9839 -2.6955 2.8820 3.8392 5.6531 6.1327 7.1504 9.4697 11.8683 k = 0.1179 0.3301 0.2340 ( 519 PWs) bands (ev): -6.6747 -2.4894 1.7609 2.4259 3.9185 7.7625 9.1056 9.4727 11.5202 k = 0.1142 0.3280-0.5992 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.1155 0.3287-0.3215 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5928 8.5226 9.7141 11.7449 k = 0.1130-0.4575 0.2302 ( 520 PWs) bands (ev): -5.7908 -4.5431 3.1112 3.3981 4.3687 6.9985 7.8169 8.6752 13.9055 k = 0.1142-0.4568 0.5079 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.1106-0.4589-0.3253 ( 510 PWs) bands (ev): -5.7216 -3.5980 0.9099 2.0028 2.9658 7.9227 10.4593 11.8022 12.0237 k = 0.1118-0.4582-0.0476 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5929 8.5226 9.7141 11.7449 k = 0.1142-0.1952 0.1389 ( 525 PWs) bands (ev): -7.3703 -1.9884 3.0353 3.8442 5.0966 7.3038 7.9973 9.2690 11.6967 k = 0.1155-0.1945 0.4166 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5928 8.5226 9.7141 11.7449 k = 0.1118-0.1966-0.4166 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5929 8.5226 9.7141 11.7449 k = 0.1130-0.1959-0.1389 ( 525 PWs) bands (ev): -7.3703 -1.9884 3.0353 3.8442 5.0966 7.3038 7.9973 9.2690 11.6967 k = 0.3440-0.0617-0.0437 ( 522 PWs) bands (ev): -6.9839 -2.6955 2.8820 3.8392 5.6531 6.1327 7.1504 9.4697 11.8683 k = 0.3452-0.0610 0.2340 ( 519 PWs) bands (ev): -6.6747 -2.4894 1.7609 2.4259 3.9185 7.7625 9.1056 9.4727 11.5202 k = 0.3415-0.0631-0.5992 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3427-0.0624-0.3215 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5929 8.5226 9.7141 11.7449 k = 0.3452 0.2006-0.1351 ( 519 PWs) bands (ev): -6.6747 -2.4894 1.7609 2.4259 3.9185 7.7625 9.1056 9.4727 11.5202 k = 0.3464 0.2013 0.1427 ( 522 PWs) bands (ev): -6.8076 -2.7919 3.8356 3.8356 4.2495 6.4891 6.4891 7.0956 13.4765 k = 0.3427 0.1992-0.6905 ( 520 PWs) bands (ev): -6.0171 -3.4663 1.0151 2.9540 4.0734 7.4671 7.7857 10.2272 13.2767 k = 0.3440 0.1999-0.4128 ( 510 PWs) bands (ev): -5.7216 -3.5980 0.9099 2.0028 2.9658 7.9227 10.4593 11.8022 12.0237 k = 0.3415-0.5863 0.1389 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3427-0.5856 0.4166 ( 520 PWs) bands (ev): -6.0171 -3.4663 1.0151 2.9540 4.0734 7.4671 7.7857 10.2272 13.2767 k = 0.3391-0.5878-0.4166 ( 520 PWs) bands (ev): -6.0171 -3.4663 1.0151 2.9540 4.0734 7.4671 7.7857 10.2272 13.2767 k = 0.3403-0.5870-0.1389 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3427-0.3240 0.0476 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5928 8.5226 9.7141 11.7449 k = 0.3440-0.3233 0.3253 ( 510 PWs) bands (ev): -5.7216 -3.5980 0.9099 2.0028 2.9658 7.9227 10.4593 11.8022 12.0237 k = 0.3403-0.3255-0.5079 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3415-0.3247-0.2302 ( 520 PWs) bands (ev): -5.7908 -4.5431 3.1112 3.3981 4.3687 6.9985 7.8169 8.6752 13.9055 the Fermi energy is 5.7104 ev ! total energy = -25.47902168 Ry Harris-Foulkes estimate = -25.47902169 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00619274 0.00359844 0.00255060 atom 2 type 1 force = -0.00619274 -0.00359844 -0.00255060 Total force = 0.010752 Total SCF correction = 0.000029 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -98.23 -0.00048477 0.00021366 0.00015145 -71.31 31.43 22.28 0.00021366 -0.00072832 0.00008800 31.43 -107.14 12.95 0.00015145 0.00008800 -0.00079010 22.28 12.95 -116.23 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 1.108024073 -0.002199323 -0.001559020 0.546754731 0.963732519 -0.001558673 0.546754650 0.317700038 0.909862667 new unit-cell volume = 335.4890 (a.u.)^3 new positions in cryst coord As 0.271130550 0.271130641 0.271130593 As -0.271130550 -0.271130641 -0.271130593 new positions in cart coord (alat unit) As 0.596903049 0.346839312 0.245846302 As -0.596903049 -0.346839312 -0.245846302 Ekin = 0.03863559 Ry T = 1325.0 K Etot = -25.44038608 new unit-cell volume = 335.48901 a.u.^3 ( 49.71434 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.108024073 -0.002199323 -0.001559020 0.546754731 0.963732519 -0.001558673 0.546754650 0.317700038 0.909862667 ATOMIC_POSITIONS (crystal) As 0.271130550 0.271130641 0.271130593 As -0.271130550 -0.271130641 -0.271130593 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1130093 0.0656657 0.0465451), wk = 0.0625000 k( 2) = ( 0.1133959 0.0658903 0.3210011), wk = 0.0625000 k( 3) = ( 0.1122360 0.0652166 -0.5023669), wk = 0.0625000 k( 4) = ( 0.1126227 0.0654412 -0.2279109), wk = 0.0625000 k( 5) = ( 0.1133958 0.3247078 -0.0441379), wk = 0.0625000 k( 6) = ( 0.1137825 0.3249324 0.2303181), wk = 0.0625000 k( 7) = ( 0.1126226 0.3242587 -0.5930499), wk = 0.0625000 k( 8) = ( 0.1130092 0.3244833 -0.3185939), wk = 0.0625000 k( 9) = ( 0.1122361 -0.4524185 0.2279110), wk = 0.0625000 k( 10) = ( 0.1126227 -0.4521939 0.5023671), wk = 0.0625000 k( 11) = ( 0.1114629 -0.4528676 -0.3210010), wk = 0.0625000 k( 12) = ( 0.1118495 -0.4526430 -0.0465450), wk = 0.0625000 k( 13) = ( 0.1126227 -0.1933764 0.1372281), wk = 0.0625000 k( 14) = ( 0.1130093 -0.1931518 0.4116841), wk = 0.0625000 k( 15) = ( 0.1118495 -0.1938255 -0.4116839), wk = 0.0625000 k( 16) = ( 0.1122361 -0.1936009 -0.1372279), wk = 0.0625000 k( 17) = ( 0.3382546 -0.0622695 -0.0441377), wk = 0.0625000 k( 18) = ( 0.3386412 -0.0620449 0.2303183), wk = 0.0625000 k( 19) = ( 0.3374814 -0.0627186 -0.5930497), wk = 0.0625000 k( 20) = ( 0.3378680 -0.0624940 -0.3185937), wk = 0.0625000 k( 21) = ( 0.3386412 0.1967726 -0.1348207), wk = 0.0625000 k( 22) = ( 0.3390278 0.1969972 0.1396353), wk = 0.0625000 k( 23) = ( 0.3378680 0.1963235 -0.6837327), wk = 0.0625000 k( 24) = ( 0.3382546 0.1965481 -0.4092767), wk = 0.0625000 k( 25) = ( 0.3374814 -0.5803536 0.1372282), wk = 0.0625000 k( 26) = ( 0.3378681 -0.5801291 0.4116842), wk = 0.0625000 k( 27) = ( 0.3367082 -0.5808027 -0.4116838), wk = 0.0625000 k( 28) = ( 0.3370948 -0.5805782 -0.1372278), wk = 0.0625000 k( 29) = ( 0.3378680 -0.3213115 0.0465452), wk = 0.0625000 k( 30) = ( 0.3382546 -0.3210870 0.3210013), wk = 0.0625000 k( 31) = ( 0.3370948 -0.3217606 -0.5023668), wk = 0.0625000 k( 32) = ( 0.3374814 -0.3215361 -0.2279108), wk = 0.0625000 extrapolated charge 10.42008, renormalised to 10.00000 total cpu time spent up to now is 14.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 15.1 secs total energy = -25.46461561 Ry Harris-Foulkes estimate = -25.67490073 Ry estimated scf accuracy < 0.00115151 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-05, avg # of iterations = 3.0 total cpu time spent up to now is 15.6 secs total energy = -25.46639632 Ry Harris-Foulkes estimate = -25.46667663 Ry estimated scf accuracy < 0.00070505 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-06, avg # of iterations = 1.0 total cpu time spent up to now is 15.9 secs total energy = -25.46636701 Ry Harris-Foulkes estimate = -25.46642750 Ry estimated scf accuracy < 0.00014131 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.1 secs total energy = -25.46636728 Ry Harris-Foulkes estimate = -25.46637698 Ry estimated scf accuracy < 0.00001786 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-07, avg # of iterations = 3.0 total cpu time spent up to now is 16.5 secs total energy = -25.46637373 Ry Harris-Foulkes estimate = -25.46637373 Ry estimated scf accuracy < 0.00000032 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-09, avg # of iterations = 1.1 total cpu time spent up to now is 16.8 secs total energy = -25.46637361 Ry Harris-Foulkes estimate = -25.46637374 Ry estimated scf accuracy < 0.00000028 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.78E-09, avg # of iterations = 1.0 total cpu time spent up to now is 17.0 secs End of self-consistent calculation k = 0.1130 0.0657 0.0465 ( 531 PWs) bands (ev): -7.9501 -1.4019 3.4749 3.4749 4.2808 7.2193 7.8022 7.8022 11.9590 k = 0.1134 0.0659 0.3210 ( 522 PWs) bands (ev): -7.1247 -3.1964 2.5191 3.7207 5.2330 5.5151 6.4056 8.7969 11.4501 k = 0.1122 0.0652-0.5024 ( 520 PWs) bands (ev): -5.9722 -4.8789 2.9658 2.9793 3.8958 6.4825 7.0275 7.7725 13.2792 k = 0.1126 0.0654-0.2279 ( 525 PWs) bands (ev): -7.5043 -2.5037 2.8438 3.3934 4.6024 6.5362 7.6443 8.5266 11.0652 k = 0.1134 0.3247-0.0441 ( 522 PWs) bands (ev): -7.1247 -3.1964 2.5191 3.7207 5.2330 5.5151 6.4056 8.7969 11.4501 k = 0.1138 0.3249 0.2303 ( 519 PWs) bands (ev): -6.8255 -3.0759 1.5759 2.2479 3.3186 7.5529 8.5176 8.8497 10.7018 k = 0.1126 0.3243-0.5930 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.1130 0.3245-0.3186 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1122-0.4524 0.2279 ( 520 PWs) bands (ev): -5.9722 -4.8789 2.9658 2.9793 3.8958 6.4825 7.0275 7.7725 13.2792 k = 0.1126-0.4522 0.5024 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.1115-0.4529-0.3210 ( 510 PWs) bands (ev): -5.9538 -3.9398 0.5230 1.8438 2.4797 7.7502 9.6331 10.9187 11.0331 k = 0.1118-0.4526-0.0465 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1126-0.1934 0.1372 ( 525 PWs) bands (ev): -7.5043 -2.5037 2.8438 3.3934 4.6024 6.5362 7.6443 8.5266 11.0652 k = 0.1130-0.1932 0.4117 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1118-0.1938-0.4117 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1122-0.1936-0.1372 ( 525 PWs) bands (ev): -7.5043 -2.5037 2.8438 3.3934 4.6024 6.5362 7.6443 8.5266 11.0652 k = 0.3383-0.0623-0.0441 ( 522 PWs) bands (ev): -7.1247 -3.1964 2.5191 3.7207 5.2330 5.5151 6.4056 8.7969 11.4501 k = 0.3386-0.0620 0.2303 ( 519 PWs) bands (ev): -6.8255 -3.0759 1.5759 2.2479 3.3186 7.5529 8.5176 8.8497 10.7018 k = 0.3375-0.0627-0.5930 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.3379-0.0625-0.3186 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.3386 0.1968-0.1348 ( 519 PWs) bands (ev): -6.8255 -3.0759 1.5759 2.2479 3.3186 7.5529 8.5176 8.8497 10.7018 k = 0.3390 0.1970 0.1396 ( 522 PWs) bands (ev): -6.9164 -3.4799 3.6764 3.6764 4.0518 5.9637 5.9637 6.3749 12.9544 k = 0.3379 0.1963-0.6837 ( 520 PWs) bands (ev): -6.1393 -4.0751 0.8613 2.7942 3.5979 7.0065 7.1637 9.6375 12.6547 k = 0.3383 0.1965-0.4093 ( 510 PWs) bands (ev): -5.9538 -3.9398 0.5230 1.8438 2.4797 7.7502 9.6331 10.9187 11.0331 k = 0.3375-0.5804 0.1372 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.3379-0.5801 0.4117 ( 520 PWs) bands (ev): -6.1393 -4.0751 0.8613 2.7942 3.5979 7.0065 7.1637 9.6375 12.6547 k = 0.3367-0.5808-0.4117 ( 520 PWs) bands (ev): -6.1393 -4.0751 0.8613 2.7942 3.5979 7.0065 7.1637 9.6375 12.6547 k = 0.3371-0.5806-0.1372 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1122 k = 0.3379-0.3213 0.0465 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.3383-0.3211 0.3210 ( 510 PWs) bands (ev): -5.9538 -3.9398 0.5230 1.8438 2.4797 7.7502 9.6331 10.9187 11.0331 k = 0.3371-0.3218-0.5024 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1122 k = 0.3375-0.3215-0.2279 ( 520 PWs) bands (ev): -5.9722 -4.8789 2.9658 2.9793 3.8958 6.4825 7.0275 7.7725 13.2792 the Fermi energy is 5.2903 ev ! total energy = -25.46637362 Ry Harris-Foulkes estimate = -25.46637363 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02461004 0.01430001 0.01013612 atom 2 type 1 force = -0.02461004 -0.01430001 -0.01013612 Total force = 0.042729 Total SCF correction = 0.000042 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -123.08 -0.00068494 0.00017724 0.00012563 -100.76 26.07 18.48 0.00017724 -0.00088697 0.00007300 26.07 -130.48 10.74 0.00012563 0.00007300 -0.00093821 18.48 10.74 -138.02 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 1.120308346 0.004725885 0.003349705 0.558854167 0.970975782 0.003350051 0.558854091 0.324730581 0.915071522 new unit-cell volume = 341.2733 (a.u.)^3 new positions in cryst coord As 0.267410508 0.267410615 0.267410553 As -0.267410508 -0.267410615 -0.267410553 new positions in cart coord (alat unit) As 0.598469241 0.347749366 0.246491367 As -0.598469241 -0.347749366 -0.246491367 Ekin = 0.02540549 Ry T = 1238.2 K Etot = -25.44096813 new unit-cell volume = 341.27328 a.u.^3 ( 50.57148 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.120308346 0.004725885 0.003349705 0.558854167 0.970975782 0.003350051 0.558854091 0.324730581 0.915071522 ATOMIC_POSITIONS (crystal) As 0.267410508 0.267410615 0.267410553 As -0.267410508 -0.267410615 -0.267410553 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1111670 0.0645953 0.0457863), wk = 0.0625000 k( 2) = ( 0.1103502 0.0641205 0.3196564), wk = 0.0625000 k( 3) = ( 0.1128008 0.0655448 -0.5019537), wk = 0.0625000 k( 4) = ( 0.1119839 0.0650700 -0.2280837), wk = 0.0625000 k( 5) = ( 0.1103501 0.3228529 -0.0453624), wk = 0.0625000 k( 6) = ( 0.1095333 0.3223781 0.2285076), wk = 0.0625000 k( 7) = ( 0.1119839 0.3238024 -0.5931025), wk = 0.0625000 k( 8) = ( 0.1111670 0.3233276 -0.3192324), wk = 0.0625000 k( 9) = ( 0.1128008 -0.4519199 0.2280838), wk = 0.0625000 k( 10) = ( 0.1119840 -0.4523947 0.5019539), wk = 0.0625000 k( 11) = ( 0.1144346 -0.4509704 -0.3196562), wk = 0.0625000 k( 12) = ( 0.1136177 -0.4514452 -0.0457862), wk = 0.0625000 k( 13) = ( 0.1119839 -0.1936623 0.1369351), wk = 0.0625000 k( 14) = ( 0.1111671 -0.1941371 0.4108051), wk = 0.0625000 k( 15) = ( 0.1136177 -0.1927128 -0.4108050), wk = 0.0625000 k( 16) = ( 0.1128008 -0.1931876 -0.1369350), wk = 0.0625000 k( 17) = ( 0.3351349 -0.0639970 -0.0453623), wk = 0.0625000 k( 18) = ( 0.3343180 -0.0644718 0.2285078), wk = 0.0625000 k( 19) = ( 0.3367686 -0.0630475 -0.5931023), wk = 0.0625000 k( 20) = ( 0.3359517 -0.0635223 -0.3192323), wk = 0.0625000 k( 21) = ( 0.3343180 0.1942606 -0.1365110), wk = 0.0625000 k( 22) = ( 0.3335011 0.1937858 0.1373590), wk = 0.0625000 k( 23) = ( 0.3359517 0.1952101 -0.6842511), wk = 0.0625000 k( 24) = ( 0.3351348 0.1947353 -0.4103810), wk = 0.0625000 k( 25) = ( 0.3367687 -0.5805122 0.1369352), wk = 0.0625000 k( 26) = ( 0.3359518 -0.5809870 0.4108053), wk = 0.0625000 k( 27) = ( 0.3384024 -0.5795627 -0.4108049), wk = 0.0625000 k( 28) = ( 0.3375855 -0.5800375 -0.1369348), wk = 0.0625000 k( 29) = ( 0.3359518 -0.3222546 0.0457865), wk = 0.0625000 k( 30) = ( 0.3351349 -0.3227294 0.3196565), wk = 0.0625000 k( 31) = ( 0.3375855 -0.3213051 -0.5019536), wk = 0.0625000 k( 32) = ( 0.3367686 -0.3217799 -0.2280836), wk = 0.0625000 extrapolated charge 10.16948, renormalised to 10.00000 total cpu time spent up to now is 17.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 18.0 secs total energy = -25.45719622 Ry Harris-Foulkes estimate = -25.54104660 Ry estimated scf accuracy < 0.00026360 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.64E-06, avg # of iterations = 3.0 total cpu time spent up to now is 18.5 secs total energy = -25.45749383 Ry Harris-Foulkes estimate = -25.45753259 Ry estimated scf accuracy < 0.00009962 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.96E-07, avg # of iterations = 1.0 total cpu time spent up to now is 18.7 secs total energy = -25.45748927 Ry Harris-Foulkes estimate = -25.45749781 Ry estimated scf accuracy < 0.00001783 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-07, avg # of iterations = 2.0 total cpu time spent up to now is 19.0 secs End of self-consistent calculation k = 0.1112 0.0646 0.0458 ( 531 PWs) bands (ev): -7.9721 -1.7361 3.4670 3.4670 3.9650 7.2120 7.6003 7.6003 11.7724 k = 0.1104 0.0641 0.3197 ( 522 PWs) bands (ev): -7.1535 -3.4062 2.3595 3.8033 5.1011 5.2795 6.0168 8.4766 11.3620 k = 0.1128 0.0655-0.5020 ( 520 PWs) bands (ev): -6.0017 -5.0109 2.7606 3.0235 3.7076 6.3050 6.6201 7.2795 12.8901 k = 0.1120 0.0651-0.2281 ( 525 PWs) bands (ev): -7.5329 -2.6985 2.8464 3.1826 4.4144 6.1318 7.5891 8.1738 10.7295 k = 0.1104 0.3229-0.0454 ( 522 PWs) bands (ev): -7.1535 -3.4062 2.3595 3.8033 5.1011 5.2795 6.0168 8.4766 11.3620 k = 0.1095 0.3224 0.2285 ( 519 PWs) bands (ev): -6.8562 -3.3419 1.5613 2.2554 2.9965 7.6295 8.3111 8.6066 10.2903 k = 0.1120 0.3238-0.5931 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8298 k = 0.1112 0.3233-0.3192 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1128-0.4519 0.2281 ( 520 PWs) bands (ev): -6.0017 -5.0109 2.7606 3.0235 3.7076 6.3050 6.6201 7.2795 12.8901 k = 0.1120-0.4524 0.5020 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8298 k = 0.1144-0.4510-0.3197 ( 510 PWs) bands (ev): -6.0196 -4.0546 0.3415 1.8553 2.2283 7.8128 9.2527 10.4349 10.5918 k = 0.1136-0.4514-0.0458 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1120-0.1937 0.1369 ( 525 PWs) bands (ev): -7.5329 -2.6985 2.8464 3.1826 4.4144 6.1318 7.5891 8.1738 10.7295 k = 0.1112-0.1941 0.4108 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1136-0.1927-0.4108 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1128-0.1932-0.1369 ( 525 PWs) bands (ev): -7.5329 -2.6985 2.8464 3.1826 4.4144 6.1318 7.5891 8.1738 10.7295 k = 0.3351-0.0640-0.0454 ( 522 PWs) bands (ev): -7.1535 -3.4062 2.3595 3.8033 5.1011 5.2795 6.0168 8.4766 11.3620 k = 0.3343-0.0645 0.2285 ( 519 PWs) bands (ev): -6.8562 -3.3419 1.5613 2.2554 2.9965 7.6295 8.3111 8.6066 10.2903 k = 0.3368-0.0630-0.5931 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3360-0.0635-0.3192 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.3343 0.1943-0.1365 ( 519 PWs) bands (ev): -6.8562 -3.3419 1.5613 2.2554 2.9965 7.6295 8.3111 8.6066 10.2903 k = 0.3335 0.1938 0.1374 ( 522 PWs) bands (ev): -6.9183 -3.8531 3.7286 3.7286 4.1090 5.7493 5.7493 6.0880 12.7562 k = 0.3360 0.1952-0.6843 ( 520 PWs) bands (ev): -6.1234 -4.4036 0.8450 2.8186 3.4060 6.9063 6.9178 9.4509 12.3690 k = 0.3351 0.1947-0.4104 ( 510 PWs) bands (ev): -6.0196 -4.0546 0.3415 1.8552 2.2283 7.8128 9.2527 10.4349 10.5918 k = 0.3368-0.5805 0.1369 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3360-0.5810 0.4108 ( 520 PWs) bands (ev): -6.1234 -4.4036 0.8450 2.8186 3.4060 6.9063 6.9178 9.4509 12.3690 k = 0.3384-0.5796-0.4108 ( 520 PWs) bands (ev): -6.1234 -4.4036 0.8450 2.8186 3.4060 6.9063 6.9178 9.4509 12.3690 k = 0.3376-0.5800-0.1369 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3360-0.3223 0.0458 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.3351-0.3227 0.3197 ( 510 PWs) bands (ev): -6.0196 -4.0546 0.3415 1.8552 2.2283 7.8128 9.2527 10.4349 10.5918 k = 0.3376-0.3213-0.5020 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3368-0.3218-0.2281 ( 520 PWs) bands (ev): -6.0017 -5.0109 2.7606 3.0235 3.7076 6.3050 6.6201 7.2795 12.8901 the Fermi energy is 5.1662 ev ! total energy = -25.45749186 Ry Harris-Foulkes estimate = -25.45749188 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.03526932 0.02049373 0.01452633 atom 2 type 1 force = -0.03526932 -0.02049373 -0.01452633 Total force = 0.061236 Total SCF correction = 0.000176 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -132.19 -0.00078925 0.00012774 0.00009055 -116.10 18.79 13.32 0.00012774 -0.00093486 0.00005261 18.79 -137.52 7.74 0.00009055 0.00005261 -0.00097179 13.32 7.74 -142.96 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 1.124363165 0.013420927 0.009512931 0.568416206 0.970193007 0.009513258 0.568416143 0.330286732 0.912291791 new unit-cell volume = 338.0766 (a.u.)^3 new positions in cryst coord As 0.264521495 0.264521616 0.264521538 As -0.264521495 -0.264521616 -0.264521538 new positions in cart coord (alat unit) As 0.598134912 0.347555101 0.246353665 As -0.598134912 -0.347555101 -0.246353665 Ekin = 0.01624929 Ry T = 1126.9 K Etot = -25.44124257 new unit-cell volume = 338.07664 a.u.^3 ( 50.09779 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.124363165 0.013420927 0.009512931 0.568416206 0.970193007 0.009513258 0.568416143 0.330286732 0.912291791 ATOMIC_POSITIONS (crystal) As 0.264521495 0.264521616 0.264521538 As -0.264521495 -0.264521616 -0.264521538 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1100275 0.0639331 0.0453170), wk = 0.0625000 k( 2) = ( 0.1077087 0.0625857 0.3212847), wk = 0.0625000 k( 3) = ( 0.1146651 0.0666281 -0.5066185), wk = 0.0625000 k( 4) = ( 0.1123463 0.0652806 -0.2306507), wk = 0.0625000 k( 5) = ( 0.1077087 0.3238810 -0.0473499), wk = 0.0625000 k( 6) = ( 0.1053899 0.3225336 0.2286178), wk = 0.0625000 k( 7) = ( 0.1123463 0.3265760 -0.5992854), wk = 0.0625000 k( 8) = ( 0.1100275 0.3252285 -0.3233177), wk = 0.0625000 k( 9) = ( 0.1146652 -0.4559626 0.2306509), wk = 0.0625000 k( 10) = ( 0.1123464 -0.4573101 0.5066186), wk = 0.0625000 k( 11) = ( 0.1193028 -0.4532677 -0.3212846), wk = 0.0625000 k( 12) = ( 0.1169840 -0.4546152 -0.0453169), wk = 0.0625000 k( 13) = ( 0.1123463 -0.1960148 0.1379839), wk = 0.0625000 k( 14) = ( 0.1100275 -0.1973622 0.4139517), wk = 0.0625000 k( 15) = ( 0.1169839 -0.1933198 -0.4139515), wk = 0.0625000 k( 16) = ( 0.1146651 -0.1946673 -0.1379838), wk = 0.0625000 k( 17) = ( 0.3347201 -0.0668010 -0.0473498), wk = 0.0625000 k( 18) = ( 0.3324013 -0.0681485 0.2286179), wk = 0.0625000 k( 19) = ( 0.3393577 -0.0641061 -0.5992853), wk = 0.0625000 k( 20) = ( 0.3370389 -0.0654536 -0.3233175), wk = 0.0625000 k( 21) = ( 0.3324013 0.1931469 -0.1400167), wk = 0.0625000 k( 22) = ( 0.3300825 0.1917994 0.1359510), wk = 0.0625000 k( 23) = ( 0.3370389 0.1958418 -0.6919522), wk = 0.0625000 k( 24) = ( 0.3347201 0.1944943 -0.4159845), wk = 0.0625000 k( 25) = ( 0.3393578 -0.5866968 0.1379841), wk = 0.0625000 k( 26) = ( 0.3370390 -0.5880443 0.4139518), wk = 0.0625000 k( 27) = ( 0.3439954 -0.5840019 -0.4139514), wk = 0.0625000 k( 28) = ( 0.3416766 -0.5853493 -0.1379837), wk = 0.0625000 k( 29) = ( 0.3370389 -0.3267489 0.0453171), wk = 0.0625000 k( 30) = ( 0.3347201 -0.3280964 0.3212849), wk = 0.0625000 k( 31) = ( 0.3416766 -0.3240540 -0.5066183), wk = 0.0625000 k( 32) = ( 0.3393577 -0.3254014 -0.2306506), wk = 0.0625000 extrapolated charge 9.90545, renormalised to 10.00000 total cpu time spent up to now is 19.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 total cpu time spent up to now is 20.0 secs total energy = -25.45625674 Ry Harris-Foulkes estimate = -25.40897341 Ry estimated scf accuracy < 0.00006804 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-07, avg # of iterations = 3.0 total cpu time spent up to now is 20.4 secs total energy = -25.45634079 Ry Harris-Foulkes estimate = -25.45635556 Ry estimated scf accuracy < 0.00003714 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.71E-07, avg # of iterations = 1.0 total cpu time spent up to now is 20.7 secs total energy = -25.45634117 Ry Harris-Foulkes estimate = -25.45634330 Ry estimated scf accuracy < 0.00000621 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-08, avg # of iterations = 1.0 total cpu time spent up to now is 20.9 secs total energy = -25.45634104 Ry Harris-Foulkes estimate = -25.45634157 Ry estimated scf accuracy < 0.00000108 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 3.0 total cpu time spent up to now is 21.3 secs End of self-consistent calculation k = 0.1100 0.0639 0.0453 ( 531 PWs) bands (ev): -7.8971 -1.6617 3.6882 3.6882 3.9225 7.5308 7.7294 7.7294 11.9080 k = 0.1077 0.0626 0.3213 ( 522 PWs) bands (ev): -7.0619 -3.3171 2.3897 4.0881 5.2518 5.4139 5.9809 8.5215 11.5815 k = 0.1147 0.0666-0.5066 ( 520 PWs) bands (ev): -5.8685 -4.9265 2.7686 3.2483 3.7963 6.4608 6.5834 7.1691 12.7885 k = 0.1123 0.0653-0.2307 ( 525 PWs) bands (ev): -7.4477 -2.5611 3.0506 3.1945 4.5105 6.0841 7.8377 8.2040 10.6888 k = 0.1077 0.3239-0.0473 ( 522 PWs) bands (ev): -7.0618 -3.3171 2.3897 4.0881 5.2518 5.4139 5.9809 8.5215 11.5815 k = 0.1054 0.3225 0.2286 ( 519 PWs) bands (ev): -6.7582 -3.2912 1.7117 2.4545 2.9469 8.0032 8.4852 8.7486 10.2585 k = 0.1123 0.3266-0.5993 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.1100 0.3252-0.3233 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1147-0.4560 0.2307 ( 520 PWs) bands (ev): -5.8685 -4.9265 2.7686 3.2483 3.7963 6.4608 6.5834 7.1691 12.7885 k = 0.1123-0.4573 0.5066 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.1193-0.4533-0.3213 ( 510 PWs) bands (ev): -5.9088 -3.9188 0.3367 2.0434 2.2008 8.1021 9.3021 10.3376 10.6745 k = 0.1170-0.4546-0.0453 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1123-0.1960 0.1380 ( 525 PWs) bands (ev): -7.4477 -2.5611 3.0505 3.1945 4.5105 6.0841 7.8377 8.2040 10.6888 k = 0.1100-0.1974 0.4140 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1170-0.1933-0.4140 ( 521 PWs) bands (ev): -6.2439 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1147-0.1947-0.1380 ( 525 PWs) bands (ev): -7.4477 -2.5611 3.0506 3.1945 4.5105 6.0841 7.8377 8.2040 10.6888 k = 0.3347-0.0668-0.0473 ( 522 PWs) bands (ev): -7.0619 -3.3171 2.3897 4.0881 5.2519 5.4139 5.9809 8.5215 11.5815 k = 0.3324-0.0681 0.2286 ( 519 PWs) bands (ev): -6.7582 -3.2912 1.7117 2.4545 2.9469 8.0032 8.4852 8.7486 10.2585 k = 0.3394-0.0641-0.5993 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3370-0.0655-0.3233 ( 521 PWs) bands (ev): -6.2439 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.3324 0.1931-0.1400 ( 519 PWs) bands (ev): -6.7582 -3.2912 1.7117 2.4545 2.9469 8.0032 8.4852 8.7486 10.2585 k = 0.3301 0.1918 0.1360 ( 522 PWs) bands (ev): -6.8086 -3.9246 3.9975 3.9975 4.4229 5.8510 5.8510 6.2274 12.8720 k = 0.3370 0.1958-0.6920 ( 520 PWs) bands (ev): -5.9650 -4.4538 0.9691 3.0332 3.4979 7.0111 7.1947 9.6803 12.3915 k = 0.3347 0.1945-0.4160 ( 510 PWs) bands (ev): -5.9088 -3.9188 0.3367 2.0434 2.2008 8.1021 9.3021 10.3376 10.6745 k = 0.3394-0.5867 0.1380 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3370-0.5880 0.4140 ( 520 PWs) bands (ev): -5.9650 -4.4538 0.9691 3.0332 3.4979 7.0111 7.1947 9.6803 12.3915 k = 0.3440-0.5840-0.4140 ( 520 PWs) bands (ev): -5.9650 -4.4538 0.9691 3.0332 3.4979 7.0111 7.1947 9.6803 12.3915 k = 0.3417-0.5853-0.1380 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3370-0.3267 0.0453 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.3347-0.3281 0.3213 ( 510 PWs) bands (ev): -5.9088 -3.9188 0.3367 2.0434 2.2008 8.1021 9.3021 10.3376 10.6745 k = 0.3417-0.3241-0.5066 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3394-0.3254-0.2307 ( 520 PWs) bands (ev): -5.8685 -4.9265 2.7686 3.2483 3.7963 6.4608 6.5834 7.1691 12.7885 the Fermi energy is 5.3329 ev ! total energy = -25.45634140 Ry Harris-Foulkes estimate = -25.45634145 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.04061480 0.02359985 0.01672803 atom 2 type 1 force = -0.04061480 -0.02359985 -0.01672803 Total force = 0.070517 Total SCF correction = 0.000118 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -130.94 -0.00082514 0.00007591 0.00005381 -121.38 11.17 7.92 0.00007591 -0.00091166 0.00003126 11.17 -134.11 4.60 0.00005381 0.00003126 -0.00093361 7.92 4.60 -137.34 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 1.119746649 0.023432901 0.016609630 0.574828562 0.961224559 0.016609919 0.574828517 0.334012708 0.901479169 new unit-cell volume = 325.9752 (a.u.)^3 new positions in cryst coord As 0.262511654 0.262511792 0.262511698 As -0.262511654 -0.262511792 -0.262511698 new positions in cart coord (alat unit) As 0.595745031 0.346166435 0.245369348 As -0.595745031 -0.346166435 -0.245369348 Ekin = 0.01496580 Ry T = 1040.9 K Etot = -25.44137560 new unit-cell volume = 325.97519 a.u.^3 ( 48.30454 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.119746649 0.023432901 0.016609630 0.574828562 0.961224559 0.016609919 0.574828517 0.334012708 0.901479169 ATOMIC_POSITIONS (crystal) As 0.262511654 0.262511792 0.262511698 As -0.262511654 -0.262511792 -0.262511698 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1096295 0.0637019 0.0451531), wk = 0.0625000 k( 2) = ( 0.1055139 0.0613103 0.3259855), wk = 0.0625000 k( 3) = ( 0.1178608 0.0684850 -0.5165118), wk = 0.0625000 k( 4) = ( 0.1137452 0.0660934 -0.2356793), wk = 0.0625000 k( 5) = ( 0.1055139 0.3278942 -0.0501101), wk = 0.0625000 k( 6) = ( 0.1013982 0.3255026 0.2307224), wk = 0.0625000 k( 7) = ( 0.1137452 0.3326773 -0.6117750), wk = 0.0625000 k( 8) = ( 0.1096295 0.3302857 -0.3309425), wk = 0.0625000 k( 9) = ( 0.1178609 -0.4646827 0.2356795), wk = 0.0625000 k( 10) = ( 0.1137452 -0.4670742 0.5165119), wk = 0.0625000 k( 11) = ( 0.1260922 -0.4598996 -0.3259854), wk = 0.0625000 k( 12) = ( 0.1219765 -0.4622911 -0.0451530), wk = 0.0625000 k( 13) = ( 0.1137452 -0.2004904 0.1404163), wk = 0.0625000 k( 14) = ( 0.1096296 -0.2028819 0.4212487), wk = 0.0625000 k( 15) = ( 0.1219765 -0.1957073 -0.4212486), wk = 0.0625000 k( 16) = ( 0.1178608 -0.1980989 -0.1404162), wk = 0.0625000 k( 17) = ( 0.3371199 -0.0706951 -0.0501100), wk = 0.0625000 k( 18) = ( 0.3330043 -0.0730866 0.2307225), wk = 0.0625000 k( 19) = ( 0.3453512 -0.0659120 -0.6117749), wk = 0.0625000 k( 20) = ( 0.3412356 -0.0683035 -0.3309424), wk = 0.0625000 k( 21) = ( 0.3330042 0.1934972 -0.1453732), wk = 0.0625000 k( 22) = ( 0.3288886 0.1911057 0.1354593), wk = 0.0625000 k( 23) = ( 0.3412355 0.1982803 -0.7070380), wk = 0.0625000 k( 24) = ( 0.3371199 0.1958888 -0.4262056), wk = 0.0625000 k( 25) = ( 0.3453513 -0.5990796 0.1404164), wk = 0.0625000 k( 26) = ( 0.3412356 -0.6014712 0.4212489), wk = 0.0625000 k( 27) = ( 0.3535825 -0.5942966 -0.4212485), wk = 0.0625000 k( 28) = ( 0.3494669 -0.5966881 -0.1404160), wk = 0.0625000 k( 29) = ( 0.3412356 -0.3348874 0.0451532), wk = 0.0625000 k( 30) = ( 0.3371199 -0.3372789 0.3259857), wk = 0.0625000 k( 31) = ( 0.3494669 -0.3301043 -0.5165117), wk = 0.0625000 k( 32) = ( 0.3453512 -0.3324958 -0.2356792), wk = 0.0625000 extrapolated charge 9.62878, renormalised to 10.00000 total cpu time spent up to now is 21.7 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 22.3 secs total energy = -25.46200448 Ry Harris-Foulkes estimate = -25.26993179 Ry estimated scf accuracy < 0.00085059 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.51E-06, avg # of iterations = 3.0 total cpu time spent up to now is 22.7 secs total energy = -25.46319672 Ry Harris-Foulkes estimate = -25.46340746 Ry estimated scf accuracy < 0.00050422 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-06, avg # of iterations = 1.0 total cpu time spent up to now is 23.0 secs total energy = -25.46321261 Ry Harris-Foulkes estimate = -25.46323453 Ry estimated scf accuracy < 0.00007861 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.86E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.3 secs total energy = -25.46319750 Ry Harris-Foulkes estimate = -25.46321530 Ry estimated scf accuracy < 0.00003231 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-07, avg # of iterations = 2.0 total cpu time spent up to now is 23.6 secs total energy = -25.46320458 Ry Harris-Foulkes estimate = -25.46320472 Ry estimated scf accuracy < 0.00000073 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.26E-09, avg # of iterations = 1.7 total cpu time spent up to now is 23.9 secs total energy = -25.46320442 Ry Harris-Foulkes estimate = -25.46320464 Ry estimated scf accuracy < 0.00000040 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.2 secs total energy = -25.46320446 Ry Harris-Foulkes estimate = -25.46320452 Ry estimated scf accuracy < 0.00000012 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.5 secs End of self-consistent calculation k = 0.1096 0.0637 0.0452 ( 531 PWs) bands (ev): -7.7162 -1.1873 4.1679 4.1686 4.1686 8.2009 8.2180 8.2180 12.3691 k = 0.1055 0.0613 0.3260 ( 522 PWs) bands (ev): -6.8391 -2.9193 2.6088 4.6004 5.7322 5.9045 6.3059 8.9473 12.1274 k = 0.1179 0.0685-0.5165 ( 520 PWs) bands (ev): -5.5563 -4.6145 2.9856 3.6801 4.1731 6.9144 6.9679 7.4235 12.9942 k = 0.1137 0.0661-0.2357 ( 525 PWs) bands (ev): -7.2387 -2.0716 3.4303 3.4832 4.8805 6.3979 8.4219 8.6242 10.9483 k = 0.1055 0.3279-0.0501 ( 522 PWs) bands (ev): -6.8391 -2.9193 2.6088 4.6004 5.7322 5.9044 6.3059 8.9473 12.1274 k = 0.1014 0.3255 0.2307 ( 519 PWs) bands (ev): -6.5200 -2.9248 2.0407 2.8698 3.1724 8.7177 9.0462 9.3002 10.6179 k = 0.1137 0.3327-0.6118 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.1096 0.3303-0.3309 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1179-0.4647 0.2357 ( 520 PWs) bands (ev): -5.5563 -4.6145 2.9856 3.6801 4.1731 6.9144 6.9678 7.4235 12.9942 k = 0.1137-0.4671 0.5165 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.1261-0.4599-0.3260 ( 510 PWs) bands (ev): -5.6055 -3.5087 0.4960 2.3947 2.4317 8.6129 9.7846 10.6952 11.2358 k = 0.1220-0.4623-0.0452 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1137-0.2005 0.1404 ( 525 PWs) bands (ev): -7.2387 -2.0716 3.4303 3.4832 4.8805 6.3979 8.4219 8.6242 10.9483 k = 0.1096-0.2029 0.4212 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1220-0.1957-0.4212 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1179-0.1981-0.1404 ( 525 PWs) bands (ev): -7.2387 -2.0716 3.4303 3.4832 4.8805 6.3979 8.4219 8.6242 10.9483 k = 0.3371-0.0707-0.0501 ( 522 PWs) bands (ev): -6.8391 -2.9193 2.6088 4.6004 5.7322 5.9045 6.3059 8.9473 12.1274 k = 0.3330-0.0731 0.2307 ( 519 PWs) bands (ev): -6.5200 -2.9248 2.0407 2.8698 3.1724 8.7177 9.0462 9.3002 10.6180 k = 0.3454-0.0659-0.6118 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3412-0.0683-0.3309 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.3330 0.1935-0.1454 ( 519 PWs) bands (ev): -6.5200 -2.9248 2.0407 2.8698 3.1724 8.7177 9.0462 9.3002 10.6180 k = 0.3289 0.1911 0.1355 ( 522 PWs) bands (ev): -6.5771 -3.7167 4.5135 4.5135 5.0512 6.2871 6.2871 6.7997 13.3146 k = 0.3412 0.1983-0.7070 ( 520 PWs) bands (ev): -5.6534 -4.2324 1.2513 3.4644 3.8898 7.4926 7.8707 10.3582 12.7243 k = 0.3371 0.1959-0.4262 ( 510 PWs) bands (ev): -5.6055 -3.5087 0.4960 2.3947 2.4317 8.6129 9.7846 10.6952 11.2358 k = 0.3454-0.5991 0.1404 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3412-0.6015 0.4212 ( 520 PWs) bands (ev): -5.6534 -4.2324 1.2513 3.4644 3.8898 7.4926 7.8707 10.3582 12.7243 k = 0.3536-0.5943-0.4212 ( 520 PWs) bands (ev): -5.6534 -4.2324 1.2513 3.4644 3.8898 7.4926 7.8707 10.3581 12.7243 k = 0.3495-0.5967-0.1404 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3412-0.3349 0.0452 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.3371-0.3373 0.3260 ( 510 PWs) bands (ev): -5.6055 -3.5087 0.4960 2.3947 2.4317 8.6129 9.7846 10.6952 11.2358 k = 0.3495-0.3301-0.5165 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3454-0.3325-0.2357 ( 520 PWs) bands (ev): -5.5563 -4.6145 2.9856 3.6801 4.1731 6.9144 6.9679 7.4235 12.9942 the Fermi energy is 5.8017 ev ! total energy = -25.46320447 Ry Harris-Foulkes estimate = -25.46320447 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.04376168 0.02542838 0.01802411 atom 2 type 1 force = -0.04376168 -0.02542838 -0.01802411 Total force = 0.075981 Total SCF correction = 0.000033 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -119.32 -0.00080187 0.00001081 0.00000767 -117.96 1.59 1.13 0.00001081 -0.00081419 0.00000445 1.59 -119.77 0.65 0.00000767 0.00000445 -0.00081732 1.13 0.65 -120.23 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 1.106299802 0.034271617 0.024292349 0.577586628 0.944175029 0.024292567 0.577586609 0.335615292 0.882847412 new unit-cell volume = 305.8032 (a.u.)^3 new positions in cryst coord As 0.261408867 0.261409025 0.261408912 As -0.261408867 -0.261409025 -0.261408912 new positions in cart coord (alat unit) As 0.591169222 0.343507606 0.243484713 As -0.591169222 -0.343507606 -0.243484713 Ekin = 0.02179534 Ry T = 1006.4 K Etot = -25.44140913 new unit-cell volume = 305.80322 a.u.^3 ( 45.31536 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.106299802 0.034271617 0.024292349 0.577586628 0.944175029 0.024292567 0.577586609 0.335615292 0.882847412 ATOMIC_POSITIONS (crystal) As 0.261408867 0.261409025 0.261408912 As -0.261408867 -0.261409025 -0.261408912 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1100140 0.0639253 0.0453114), wk = 0.0625000 k( 2) = ( 0.1037884 0.0603078 0.3339343), wk = 0.0625000 k( 3) = ( 0.1224651 0.0711603 -0.5319342), wk = 0.0625000 k( 4) = ( 0.1162396 0.0675428 -0.2433114), wk = 0.0625000 k( 5) = ( 0.1037884 0.3350623 -0.0536886), wk = 0.0625000 k( 6) = ( 0.0975628 0.3314447 0.2349342), wk = 0.0625000 k( 7) = ( 0.1162395 0.3422973 -0.6309342), wk = 0.0625000 k( 8) = ( 0.1100140 0.3386798 -0.3423114), wk = 0.0625000 k( 9) = ( 0.1224652 -0.4783487 0.2433115), wk = 0.0625000 k( 10) = ( 0.1162396 -0.4819662 0.5319343), wk = 0.0625000 k( 11) = ( 0.1349163 -0.4711136 -0.3339342), wk = 0.0625000 k( 12) = ( 0.1286907 -0.4747312 -0.0453113), wk = 0.0625000 k( 13) = ( 0.1162396 -0.2072117 0.1443115), wk = 0.0625000 k( 14) = ( 0.1100140 -0.2108292 0.4329343), wk = 0.0625000 k( 15) = ( 0.1286907 -0.1999766 -0.4329342), wk = 0.0625000 k( 16) = ( 0.1224651 -0.2035942 -0.1443114), wk = 0.0625000 k( 17) = ( 0.3424931 -0.0757436 -0.0536885), wk = 0.0625000 k( 18) = ( 0.3362676 -0.0793611 0.2349343), wk = 0.0625000 k( 19) = ( 0.3549443 -0.0685085 -0.6309341), wk = 0.0625000 k( 20) = ( 0.3487187 -0.0721261 -0.3423113), wk = 0.0625000 k( 21) = ( 0.3362675 0.1953934 -0.1526885), wk = 0.0625000 k( 22) = ( 0.3300420 0.1917759 0.1359343), wk = 0.0625000 k( 23) = ( 0.3487187 0.2026285 -0.7299341), wk = 0.0625000 k( 24) = ( 0.3424931 0.1990109 -0.4413113), wk = 0.0625000 k( 25) = ( 0.3549443 -0.6180176 0.1443116), wk = 0.0625000 k( 26) = ( 0.3487187 -0.6216351 0.4329344), wk = 0.0625000 k( 27) = ( 0.3673954 -0.6107825 -0.4329341), wk = 0.0625000 k( 28) = ( 0.3611699 -0.6144001 -0.1443113), wk = 0.0625000 k( 29) = ( 0.3487187 -0.3468806 0.0453115), wk = 0.0625000 k( 30) = ( 0.3424931 -0.3504981 0.3339344), wk = 0.0625000 k( 31) = ( 0.3611698 -0.3396455 -0.5319341), wk = 0.0625000 k( 32) = ( 0.3549443 -0.3432631 -0.2433113), wk = 0.0625000 extrapolated charge 9.34039, renormalised to 10.00000 total cpu time spent up to now is 24.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 25.5 secs total energy = -25.47151549 Ry Harris-Foulkes estimate = -25.11121572 Ry estimated scf accuracy < 0.00271542 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-05, avg # of iterations = 3.0 total cpu time spent up to now is 25.9 secs total energy = -25.47492013 Ry Harris-Foulkes estimate = -25.47555623 Ry estimated scf accuracy < 0.00147074 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-05, avg # of iterations = 1.0 total cpu time spent up to now is 26.2 secs total energy = -25.47498741 Ry Harris-Foulkes estimate = -25.47504467 Ry estimated scf accuracy < 0.00018521 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-06, avg # of iterations = 1.0 total cpu time spent up to now is 26.4 secs total energy = -25.47495948 Ry Harris-Foulkes estimate = -25.47499506 Ry estimated scf accuracy < 0.00006435 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-07, avg # of iterations = 2.1 total cpu time spent up to now is 26.7 secs total energy = -25.47497529 Ry Harris-Foulkes estimate = -25.47497578 Ry estimated scf accuracy < 0.00000220 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-08, avg # of iterations = 1.2 total cpu time spent up to now is 27.0 secs total energy = -25.47497474 Ry Harris-Foulkes estimate = -25.47497539 Ry estimated scf accuracy < 0.00000110 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 2.0 total cpu time spent up to now is 27.3 secs total energy = -25.47497492 Ry Harris-Foulkes estimate = -25.47497501 Ry estimated scf accuracy < 0.00000018 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 27.6 secs End of self-consistent calculation k = 0.1100 0.0639 0.0453 ( 531 PWs) bands (ev): -7.4188 -0.3021 4.7576 4.9584 4.9584 9.1141 9.1141 9.2634 13.1892 k = 0.1038 0.0603 0.3339 ( 522 PWs) bands (ev): -6.4727 -2.1880 3.0329 5.3773 6.6085 6.7857 7.0341 9.7885 13.0565 k = 0.1225 0.0712-0.5319 ( 520 PWs) bands (ev): -5.0445 -4.0563 3.4288 4.3587 4.8795 7.6418 7.8725 8.0534 13.5314 k = 0.1162 0.0675-0.2433 ( 525 PWs) bands (ev): -6.8928 -1.1907 3.9128 4.1878 5.5425 7.1044 9.3812 9.4693 11.5489 k = 0.1038 0.3351-0.0537 ( 522 PWs) bands (ev): -6.4727 -2.1880 3.0329 5.3773 6.6085 6.7857 7.0341 9.7885 13.0565 k = 0.0976 0.3314 0.2349 ( 519 PWs) bands (ev): -6.1287 -2.2279 2.5773 3.5428 3.7134 9.7466 10.0725 10.3146 11.4705 k = 0.1162 0.3423-0.6309 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.1100 0.3387-0.3423 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1225-0.4783 0.2433 ( 520 PWs) bands (ev): -5.0445 -4.0563 3.4288 4.3587 4.8795 7.6418 7.8725 8.0534 13.5314 k = 0.1162-0.4820 0.5319 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.1349-0.4711-0.3339 ( 510 PWs) bands (ev): -5.0865 -2.7950 0.8337 2.8344 3.0589 9.3280 10.7361 11.6002 12.2990 k = 0.1287-0.4747-0.0453 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1162-0.2072 0.1443 ( 525 PWs) bands (ev): -6.8928 -1.1907 3.9128 4.1878 5.5425 7.1044 9.3812 9.4693 11.5489 k = 0.1100-0.2108 0.4329 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1287-0.2000-0.4329 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1225-0.2036-0.1443 ( 525 PWs) bands (ev): -6.8928 -1.1907 3.9128 4.1878 5.5425 7.1044 9.3812 9.4693 11.5489 k = 0.3425-0.0757-0.0537 ( 522 PWs) bands (ev): -6.4727 -2.1880 3.0329 5.3774 6.6085 6.7857 7.0341 9.7885 13.0565 k = 0.3363-0.0794 0.2349 ( 519 PWs) bands (ev): -6.1287 -2.2279 2.5773 3.5428 3.7134 9.7466 10.0725 10.3147 11.4705 k = 0.3549-0.0685-0.6309 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3487-0.0721-0.3423 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3835 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.3363 0.1954-0.1527 ( 519 PWs) bands (ev): -6.1287 -2.2279 2.5773 3.5428 3.7134 9.7466 10.0725 10.3146 11.4705 k = 0.3300 0.1918 0.1359 ( 522 PWs) bands (ev): -6.2152 -3.2366 5.3260 5.3260 6.0914 7.1017 7.1017 7.8600 14.1199 k = 0.3487 0.2026-0.7299 ( 520 PWs) bands (ev): -5.1819 -3.7267 1.7244 4.1545 4.6311 8.3965 9.0155 11.5460 13.4039 k = 0.3425 0.1990-0.4413 ( 510 PWs) bands (ev): -5.0865 -2.7950 0.8337 2.8344 3.0589 9.3280 10.7361 11.6002 12.2990 k = 0.3549-0.6180 0.1443 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3487-0.6216 0.4329 ( 520 PWs) bands (ev): -5.1819 -3.7266 1.7244 4.1545 4.6311 8.3965 9.0155 11.5460 13.4039 k = 0.3674-0.6108-0.4329 ( 520 PWs) bands (ev): -5.1819 -3.7267 1.7244 4.1545 4.6311 8.3965 9.0155 11.5460 13.4039 k = 0.3612-0.6144-0.1443 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3487-0.3469 0.0453 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3835 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.3425-0.3505 0.3339 ( 510 PWs) bands (ev): -5.0865 -2.7949 0.8337 2.8344 3.0589 9.3280 10.7361 11.6002 12.2990 k = 0.3612-0.3396-0.5319 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3549-0.3433-0.2433 ( 520 PWs) bands (ev): -5.0445 -4.0563 3.4288 4.3587 4.8795 7.6418 7.8725 8.0534 13.5314 the Fermi energy is 6.7199 ev ! total energy = -25.47497493 Ry Harris-Foulkes estimate = -25.47497493 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.04526508 0.02630194 0.01864330 atom 2 type 1 force = -0.04526508 -0.02630194 -0.01864330 Total force = 0.078591 Total SCF correction = 0.000080 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -90.65 -0.00067385 -0.00006727 -0.00004768 -99.13 -9.90 -7.01 -0.00006727 -0.00059716 -0.00002771 -9.90 -87.85 -4.08 -0.00004768 -0.00002771 -0.00057772 -7.01 -4.08 -84.99 NEW FEATURE: constraints with variable cell ------------------------------------------- Variable-cell Dynamics: 10 iterations completed, stopping Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 1.084761303 0.045338521 0.032136805 0.576536162 0.919982576 0.032136947 0.576536163 0.335004878 0.857422241 new unit-cell volume = 279.6086 (a.u.)^3 new positions in cryst coord As 0.261238123 0.261238301 0.261238167 As -0.261238123 -0.261238301 -0.261238167 new positions in cart coord (alat unit) As 0.584607584 0.339694895 0.240782175 As -0.584607584 -0.339694895 -0.240782175 Ekin = 0.03357371 Ry T = 1025.5 K Etot = -25.44140122 new unit-cell volume = 279.60860 a.u.^3 ( 41.43372 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.084761303 0.045338521 0.032136805 0.576536162 0.919982576 0.032136947 0.576536163 0.335004878 0.857422241 ATOMIC_POSITIONS (crystal) As 0.261238123 0.261238301 0.261238167 As -0.261238123 -0.261238301 -0.261238167 Writing output data file pwscf.save init_run : 0.22s CPU 0.23s WALL ( 1 calls) electrons : 23.17s CPU 24.02s WALL ( 10 calls) update_pot : 1.02s CPU 1.04s WALL ( 9 calls) forces : 0.58s CPU 0.59s WALL ( 10 calls) stress : 1.24s CPU 1.27s WALL ( 10 calls) Called by init_run: wfcinit : 0.09s CPU 0.10s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 19.88s CPU 20.49s WALL ( 67 calls) sum_band : 3.04s CPU 3.17s WALL ( 67 calls) v_of_rho : 0.16s CPU 0.14s WALL ( 76 calls) mix_rho : 0.03s CPU 0.06s WALL ( 67 calls) Called by c_bands: init_us_2 : 0.66s CPU 0.62s WALL ( 4960 calls) cegterg : 19.33s CPU 19.85s WALL ( 2144 calls) Called by *egterg: h_psi : 14.25s CPU 14.50s WALL ( 6962 calls) g_psi : 0.84s CPU 0.74s WALL ( 4786 calls) cdiaghg : 1.49s CPU 1.55s WALL ( 6610 calls) Called by h_psi: add_vuspsi : 0.23s CPU 0.29s WALL ( 6962 calls) General routines calbec : 0.44s CPU 0.44s WALL ( 7602 calls) fft : 0.06s CPU 0.07s WALL ( 355 calls) fftw : 13.37s CPU 13.60s WALL ( 125632 calls) davcio : 0.01s CPU 0.23s WALL ( 7104 calls) PWSCF : 26.85s CPU 27.85s WALL This run was terminated on: 14:17: 6 2Oct2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/README0000644000700200004540000001003512053145627014734 0ustar marsamoscmAutomatic tests for pw.x - edit and run "check-pw.x.j" Tests are intended to verify that a specified feature works. They are NOT intended to be realistic calculations! Do not use tests as samples for realistic calculations Use the examples in the examples/ subdirectory instead. name system what is tested atom O occupancies from input, also with spin polarization PBE and spin-polarized PBE PBE and s-PBE stress berry PbTiO3 scf: Q function in real space (tqr=.true.) nscf: Berry phase calculation (with and without empty bands) cluster N,NH4,H2O Martyna-Tuckermann method for isolated systems NH4 Makov-Payne correction for isolated systems dipole CO on Ni dipole field correction electric Si finite electric field using Berry's phase approach eval_infix Si parser lattice H_2 all bravais lattices, CELL_PARAMETERS, a b c parameters Gamma and automatic k-points lda+U FeO LDA+U with standard and user-defined occupancies forces and stresses, gamma-only case lsda Ni fcc LSDA with starting magnetization and free occupancies core corrections davidson and cg diagonalizations simple, TF, local-TF mixing, ndim=4,8 constrained occupancies: tot_magnetization, nelup+neldw LSDA stress non-scf calculation md Si verlet algorithm potential extrapolation wavefunction extrapolation metaGGA C4H6 meta-GGA metal Al fcc occupancies: all smearing schemes, tetrahedra stress in metals non-scf calculation with smearing and tetrahedra noncolin Fe bcc noncollinear magnetization davidson and cg diagonalizations constraints: atomic, atomic direction, total magnetization noncollinear stress non-scf calculation, tetrahedra paw-atom O, Cu PAW paw-bfgs H2O PAW with bfgs paw-vcbfgs H2O PAW with variable-cell bfgs pbeq2d Cu Modified PBE functional PBEQ2D relax CO forces bfgs and damped dynamics energies, forces, bfgs with saw-like electric field relax2 Al forces in metals bfgs_ndim=3 scf Si fcc davidson and cg diagonalizations simple, TF, local-TF mixing, ndim=4,8 Gamma, automatic, list of k-points (tpiba, crystal, tpiba_b) wf_collect, disk_io, force_symmorphic, use_all_frac options stress with k-points and at Gamma non-scf calculation old "ncpp" format for pseudopotentials spinorbit Pt fcc spin-orbit + noncollinear magnetization spin-orbit stress non-scf calculation, tetrahedra uspp Cu fcc US PP, both single and double grid davidson and cg diagonalizations simple, TF, local-TF mixing, ndim=4,8 stress with single and double grid non-scf calculation uspp1 H2O old Vanderbilt format for pseudopotentials Fake coulombian (1/r) pseudopotential uspp2 Ni fcc core corrections stress with core corrections non-scf calculation vc-relax As Variable-cell optimization (both damped dynamics and bfgs) at zero pressure and under an external pressure vc-md As Variable-cell dynamics (Wentzcovitch dynamics) at zero pressure and under an external pressure vdw C Dispersion (van der Waals) interactions with DFT-D (Grimme) vdw1 C Dispersion (van der Waals) interactions with vdW-DF (nonlocal) vdw2 C Dispersion (van der Waals) interactions with vdW-DF2 (nonlocal) Tests are still missing for: forces with core corrections blyp, pw91 'bands' espresso-5.0.2/PW/tests/lattice-ibrav12.in0000644000700200004540000000051412053145627017276 0ustar marsamoscm &control calculation='scf', / &system ibrav = 12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.0.2/PW/tests/lattice-ibrav-5.ref0000644000700200004540000002005512053145627017445 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-5.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 163 11935 11935 1459 Tot 343 343 82 bravais-lattice index = -5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 0.707107 0.707107 ) a(2) = ( 0.707107 0.000000 0.707107 ) a(3) = ( 0.707107 0.707107 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.707107 0.707107 0.707107 ) b(2) = ( 0.707107 -0.707107 0.707107 ) b(3) = ( 0.707107 0.707107 -0.707107 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5968 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 730, 1) NL pseudopotentials 0.00 Mb ( 730, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.05 Mb ( 5968) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 730, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.361E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.22474959 Ry Harris-Foulkes estimate = -2.29186000 Ry estimated scf accuracy < 0.12823788 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.41E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23642413 Ry Harris-Foulkes estimate = -2.23669484 Ry estimated scf accuracy < 0.00063929 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23698387 Ry Harris-Foulkes estimate = -2.23698362 Ry estimated scf accuracy < 0.00003339 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23698656 Ry Harris-Foulkes estimate = -2.23698504 Ry estimated scf accuracy < 0.00000346 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 730 PWs) bands (ev): -10.2487 ! total energy = -2.23698709 Ry Harris-Foulkes estimate = -2.23698736 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -2.51719803 Ry hartree contribution = 1.35407475 Ry xc contribution = -1.29928559 Ry ewald contribution = 0.22542178 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.06s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 5 calls) sum_band : 0.01s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.02s CPU 0.01s WALL ( 23 calls) fftw : 0.01s CPU 0.01s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/scf-kcrys.in0000644000700200004540000000046612053145627016317 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {crystal} 2 0.00 0.25 0.00 1.0 0.25 0.75 0.25 3.0 espresso-5.0.2/PW/tests/cluster1.ref0000644000700200004540000002543412053145627016325 0ustar marsamoscm Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/cluster1.in file N.pbe-kjpaw.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file: /home/giannozz/trunk/espresso/pseudo/N.pbe-kjpaw.UPF MD5 check sum: 784def1e20c8513c628b118ec611e520 Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.15 Mb ( 2401, 4) NL pseudopotentials 0.29 Mb ( 2401, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 2401, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.126E-05 0.126E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 28.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.863E-04 0.157E-03 total cpu time spent up to now is 1.4 secs total energy = -27.79823834 Ry Harris-Foulkes estimate = -27.59607647 Ry estimated scf accuracy < 0.11189026 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E-03 0.657E-03 total cpu time spent up to now is 1.8 secs total energy = -27.82537996 Ry Harris-Foulkes estimate = -27.80248651 Ry estimated scf accuracy < 0.01529401 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.06E-04, avg # of iterations = 1.5 negative rho (up, down): 0.195E-03 0.579E-03 total cpu time spent up to now is 2.2 secs total energy = -27.82650391 Ry Harris-Foulkes estimate = -27.82662091 Ry estimated scf accuracy < 0.00021619 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.32E-06, avg # of iterations = 2.0 negative rho (up, down): 0.248E-03 0.518E-03 total cpu time spent up to now is 2.6 secs total energy = -27.82661704 Ry Harris-Foulkes estimate = -27.82661758 Ry estimated scf accuracy < 0.00001957 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-07, avg # of iterations = 2.0 negative rho (up, down): 0.243E-03 0.520E-03 total cpu time spent up to now is 3.1 secs total energy = -27.82662256 Ry Harris-Foulkes estimate = -27.82662442 Ry estimated scf accuracy < 0.00000504 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-07, avg # of iterations = 2.0 negative rho (up, down): 0.241E-03 0.520E-03 total cpu time spent up to now is 3.5 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -19.8778 -8.2465 -8.2465 -8.2465 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -15.2898 -4.0720 -4.0719 -4.0719 ! total energy = -27.82662328 Ry Harris-Foulkes estimate = -27.82662326 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -109.125425 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96980531 Ry hartree contribution = 16.58305829 Ry xc contribution = -5.12492313 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31495310 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.80s WALL ( 1 calls) electrons : 2.42s CPU 2.47s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.32s CPU 0.32s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.18s WALL ( 6 calls) sum_band : 0.21s CPU 0.21s WALL ( 6 calls) v_of_rho : 1.01s CPU 1.03s WALL ( 7 calls) newd : 0.12s CPU 0.13s WALL ( 7 calls) mix_rho : 0.10s CPU 0.11s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 26 calls) regterg : 0.16s CPU 0.16s WALL ( 12 calls) Called by *egterg: h_psi : 0.15s CPU 0.14s WALL ( 33 calls) s_psi : 0.01s CPU 0.00s WALL ( 33 calls) g_psi : 0.00s CPU 0.01s WALL ( 19 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 33 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 45 calls) fft : 0.29s CPU 0.27s WALL ( 172 calls) fftw : 0.13s CPU 0.12s WALL ( 154 calls) davcio : 0.01s CPU 0.00s WALL ( 38 calls) PAW routines PAW_pot : 1.01s CPU 1.02s WALL ( 7 calls) PAW_ddot : 0.04s CPU 0.04s WALL ( 36 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 13 calls) PWSCF : 3.46s CPU 3.55s WALL This run was terminated on: 22:44:55 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vc-relax3.in0000755000700200004540000000146312053145627016220 0ustar marsamoscm &CONTROL calculation = "vc-relax" / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS ion_dynamics='bfgs' / &CELL cell_dynamics='bfgs' press = 0.0 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.0.2/PW/tests/paw-atom_tqr.ref0000644000700200004540000002334612053145627017176 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_tqr.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2335 2335 583 74249 74249 9377 Tot 1168 1168 292 bravais-lattice index = 2 lattice parameter (alat) = 26.0000 a.u. unit-cell volume = 4394.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 26.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pbe-kjpaw.UPF MD5 check sum: 92cd914fcb04cfd737edc2091ad11b5d Pseudo is Projector augmented-wave + core cor, Zval = 11.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1199 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 0 l(4) = 0 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 1.00000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 37125 G-vectors FFT dimensions: ( 60, 60, 60) Occupations read from input 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 4689, 9) NL pseudopotentials 1.29 Mb ( 4689, 18) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.28 Mb ( 37125) G-vector shells 0.00 Mb ( 574) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.29 Mb ( 4689, 36) Each subspace H/S matrix 0.01 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 26.37 Mb ( 216000, 8) Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.011950 starting charge 10.99972, renormalised to 11.00000 negative rho (up, down): 0.120E-01 0.000E+00 Starting wfc are 9 randomized atomic wfcs total cpu time spent up to now is 2.4 secs per-process dynamical memory: 46.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-06, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -212.94079569 Ry Harris-Foulkes estimate = -212.94279285 Ry estimated scf accuracy < 0.00246520 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-05, avg # of iterations = 3.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -212.94102781 Ry Harris-Foulkes estimate = -212.94298732 Ry estimated scf accuracy < 0.00412787 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-05, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 4.6 secs total energy = -212.94187920 Ry Harris-Foulkes estimate = -212.94187496 Ry estimated scf accuracy < 0.00000437 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-08, avg # of iterations = 9.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 5.4 secs total energy = -212.94189395 Ry Harris-Foulkes estimate = -212.94189850 Ry estimated scf accuracy < 0.00000986 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 6.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4689 PWs) bands (ev): -4.6506 -4.6506 -4.6506 -4.6499 -4.6499 -4.2673 -0.3245 -0.2044 -0.2044 highest occupied, lowest unoccupied level (ev): -4.2673 -0.3245 ! total energy = -212.94189022 Ry Harris-Foulkes estimate = -212.94189050 Ry estimated scf accuracy < 0.00000043 Ry total all-electron energy = -3309.698908 Ry The total energy is the sum of the following terms: one-electron contribution = -135.99214869 Ry hartree contribution = 59.89117547 Ry xc contribution = -19.40012168 Ry ewald contribution = -21.33724282 Ry one-center paw contrib. = -96.10355251 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 2.07s CPU 2.10s WALL ( 1 calls) electrons : 3.52s CPU 3.59s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.46s CPU 0.49s WALL ( 1 calls) realus : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.87s CPU 0.88s WALL ( 6 calls) sum_band : 0.24s CPU 0.24s WALL ( 6 calls) v_of_rho : 1.08s CPU 1.12s WALL ( 6 calls) newd : 0.02s CPU 0.01s WALL ( 6 calls) mix_rho : 0.12s CPU 0.12s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.03s WALL ( 13 calls) regterg : 0.81s CPU 0.82s WALL ( 6 calls) Called by *egterg: h_psi : 0.70s CPU 0.70s WALL ( 29 calls) s_psi : 0.00s CPU 0.01s WALL ( 29 calls) g_psi : 0.02s CPU 0.02s WALL ( 22 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 29 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 35 calls) fft : 0.26s CPU 0.25s WALL ( 68 calls) fftw : 0.52s CPU 0.53s WALL ( 240 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PAW routines PAW_pot : 1.54s CPU 1.55s WALL ( 6 calls) PAW_ddot : 0.07s CPU 0.06s WALL ( 22 calls) PAW_symme : 0.00s CPU 0.01s WALL ( 12 calls) PWSCF : 6.01s CPU 6.16s WALL This run was terminated on: 11:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav3-kauto.in0000644000700200004540000000043612053145627020342 0ustar marsamoscm &control calculation='scf', / &system ibrav = 3, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.0.2/PW/tests/md-pot_extrap2.ref0000644000700200004540000034512312053145627017430 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-pot_extrap2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244208 -0.02244171 -0.02244166 atom 2 type 1 force = 0.02244208 0.02244171 0.02244166 Total force = 0.054971 Total SCF correction = 0.000013 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158950 -0.123158950 -0.123158950 Si 0.123158950 0.123158950 0.123158950 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41930179 K Ekin + Etot (const) = -14.44793780 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.22E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815430 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139726 -0.02139745 -0.02139871 atom 2 type 1 force = 0.02139726 0.02139745 0.02139871 Total force = 0.052414 Total SCF correction = 0.000014 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279552 -0.123279551 -0.123279554 Si 0.123279552 0.123279551 0.123279554 kinetic energy (Ekin) = 0.00021595 Ry temperature = 22.73027210 K Ekin + Etot (const) = -14.44793835 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.04E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830662 Ry Harris-Foulkes estimate = -14.44830662 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1935 7.4967 7.4967 ! total energy = -14.44830662 Ry Harris-Foulkes estimate = -14.44830662 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01996140 -0.01996124 -0.01996098 atom 2 type 1 force = 0.01996140 0.01996124 0.01996098 Total force = 0.048895 Total SCF correction = 0.000024 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430794 -0.123430792 -0.123430797 Si 0.123430794 0.123430792 0.123430797 kinetic energy (Ekin) = 0.00036759 Ry temperature = 38.69134545 K Ekin + Etot (const) = -14.44793904 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848272 Ry Harris-Foulkes estimate = -14.44848273 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848272 Ry Harris-Foulkes estimate = -14.44848273 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2111 7.4877 7.4877 ! total energy = -14.44848272 Ry Harris-Foulkes estimate = -14.44848272 Ry estimated scf accuracy < 1.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816699 -0.01816661 -0.01816687 atom 2 type 1 force = 0.01816699 0.01816661 0.01816687 Total force = 0.044499 Total SCF correction = 0.000001 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609921 -0.123609918 -0.123609925 Si 0.123609921 0.123609918 0.123609925 kinetic energy (Ekin) = 0.00054289 Ry temperature = 57.14403911 K Ekin + Etot (const) = -14.44793983 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2320 7.4771 7.4771 ! total energy = -14.44866990 Ry Harris-Foulkes estimate = -14.44866991 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01605175 -0.01605150 -0.01605295 atom 2 type 1 force = 0.01605175 0.01605150 0.01605295 Total force = 0.039319 Total SCF correction = 0.000040 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813687 -0.123813682 -0.123813694 Si 0.123813687 0.123813682 0.123813694 kinetic energy (Ekin) = 0.00072924 Ry temperature = 76.75865756 K Ekin + Etot (const) = -14.44794066 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.21E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885477 Ry Harris-Foulkes estimate = -14.44885480 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885478 Ry Harris-Foulkes estimate = -14.44885478 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2558 7.4650 7.4650 ! total energy = -14.44885478 Ry Harris-Foulkes estimate = -14.44885478 Ry estimated scf accuracy < 8.7E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365898 -0.01365923 -0.01365916 atom 2 type 1 force = 0.01365898 0.01365923 0.01365916 Total force = 0.033458 Total SCF correction = 0.000002 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038418 -0.124038412 -0.124038428 Si 0.124038418 0.124038412 0.124038428 kinetic energy (Ekin) = 0.00091330 Ry temperature = 96.13246823 K Ekin + Etot (const) = -14.44794148 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902425 Ry Harris-Foulkes estimate = -14.44902426 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902425 Ry Harris-Foulkes estimate = -14.44902425 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103647 -0.01103669 -0.01103646 atom 2 type 1 force = 0.01103647 0.01103669 0.01103646 Total force = 0.027034 Total SCF correction = 0.000028 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124280090 -0.124280083 -0.124280103 Si 0.124280090 0.124280083 0.124280103 kinetic energy (Ekin) = 0.00108204 Ry temperature = 113.89321637 K Ekin + Etot (const) = -14.44794222 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44916645 Ry Harris-Foulkes estimate = -14.44916647 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.04E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916646 Ry Harris-Foulkes estimate = -14.44916646 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00823470 -0.00823490 -0.00823475 atom 2 type 1 force = 0.00823470 0.00823490 0.00823475 Total force = 0.020171 Total SCF correction = 0.000040 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534401 -0.124534394 -0.124534417 Si 0.124534401 0.124534394 0.124534417 kinetic energy (Ekin) = 0.00122364 Ry temperature = 128.79805444 K Ekin + Etot (const) = -14.44794282 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927159 Ry Harris-Foulkes estimate = -14.44927160 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927160 Ry Harris-Foulkes estimate = -14.44927160 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530670 -0.00530673 -0.00530652 atom 2 type 1 force = 0.00530670 0.00530673 0.00530652 Total force = 0.012999 Total SCF correction = 0.000034 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796858 -0.124796850 -0.124796877 Si 0.124796858 0.124796850 0.124796877 kinetic energy (Ekin) = 0.00132835 Ry temperature = 139.81938494 K Ekin + Etot (const) = -14.44794325 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3710 7.4068 7.4068 ! total energy = -14.44933259 Ry Harris-Foulkes estimate = -14.44933259 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230722 -0.00230722 -0.00230716 atom 2 type 1 force = 0.00230722 0.00230722 0.00230716 Total force = 0.005651 Total SCF correction = 0.000034 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062856 -0.125062848 -0.125062878 Si 0.125062856 0.125062848 0.125062878 kinetic energy (Ekin) = 0.00138911 Ry temperature = 146.21496494 K Ekin + Etot (const) = -14.44794348 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.87E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934549 Ry Harris-Foulkes estimate = -14.44934553 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.85E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934550 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.38E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3912 7.3912 7.4023 ! total energy = -14.44934551 Ry Harris-Foulkes estimate = -14.44934551 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071223 0.00071200 0.00071233 atom 2 type 1 force = -0.00071223 -0.00071200 -0.00071233 Total force = 0.001744 Total SCF correction = 0.000008 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327761 -0.125327753 -0.125327786 Si 0.125327761 0.125327753 0.125327786 kinetic energy (Ekin) = 0.00140201 Ry temperature = 147.57288257 K Ekin + Etot (const) = -14.44794350 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.45E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930981 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930981 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369628 0.00369556 0.00369635 atom 2 type 1 force = -0.00369628 -0.00369556 -0.00369635 Total force = 0.009053 Total SCF correction = 0.000033 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586993 -0.125586985 -0.125587020 Si 0.125586993 0.125586985 0.125587020 kinetic energy (Ekin) = 0.00136650 Ry temperature = 143.83520752 K Ekin + Etot (const) = -14.44794332 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922829 Ry Harris-Foulkes estimate = -14.44922833 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922831 Ry Harris-Foulkes estimate = -14.44922833 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.13E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922831 Ry Harris-Foulkes estimate = -14.44922831 Ry estimated scf accuracy < 3.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659626 0.00659570 0.00659615 atom 2 type 1 force = -0.00659626 -0.00659570 -0.00659615 Total force = 0.016157 Total SCF correction = 0.000003 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125836100 -0.125836094 -0.125836130 Si 0.125836100 0.125836094 0.125836130 kinetic energy (Ekin) = 0.00128537 Ry temperature = 135.29535232 K Ekin + Etot (const) = -14.44794295 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.19E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910688 Ry Harris-Foulkes estimate = -14.44910689 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4935 ! total energy = -14.44910688 Ry Harris-Foulkes estimate = -14.44910689 Ry estimated scf accuracy < 5.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936207 0.00936220 0.00936259 atom 2 type 1 force = -0.00936207 -0.00936220 -0.00936259 Total force = 0.022933 Total SCF correction = 0.000032 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070836 -0.126070832 -0.126070868 Si 0.126070836 0.126070832 0.126070868 kinetic energy (Ekin) = 0.00116448 Ry temperature = 122.57070685 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.47E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895404 Ry Harris-Foulkes estimate = -14.44895408 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.15E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895405 Ry Harris-Foulkes estimate = -14.44895407 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.09E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895406 Ry Harris-Foulkes estimate = -14.44895406 Ry estimated scf accuracy < 5.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195320 0.01195315 0.01195358 atom 2 type 1 force = -0.01195320 -0.01195315 -0.01195358 Total force = 0.029280 Total SCF correction = 0.000002 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126287225 -0.126287222 -0.126287258 Si 0.126287225 0.126287222 0.126287258 kinetic energy (Ekin) = 0.00101231 Ry temperature = 106.55442374 K Ekin + Etot (const) = -14.44794175 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878037 Ry Harris-Foulkes estimate = -14.44878038 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878038 Ry Harris-Foulkes estimate = -14.44878038 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432616 0.01432621 0.01432662 atom 2 type 1 force = -0.01432616 -0.01432621 -0.01432662 Total force = 0.035092 Total SCF correction = 0.000028 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126481624 -0.126481623 -0.126481658 Si 0.126481624 0.126481623 0.126481658 kinetic energy (Ekin) = 0.00083938 Ry temperature = 88.35112531 K Ekin + Etot (const) = -14.44794100 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859766 Ry Harris-Foulkes estimate = -14.44859767 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859766 Ry Harris-Foulkes estimate = -14.44859767 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859766 Ry Harris-Foulkes estimate = -14.44859766 Ry estimated scf accuracy < 5.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644702 0.01644710 0.01644750 atom 2 type 1 force = -0.01644702 -0.01644710 -0.01644750 Total force = 0.040287 Total SCF correction = 0.000003 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650778 -0.126650778 -0.126650812 Si 0.126650778 0.126650778 0.126650812 kinetic energy (Ekin) = 0.00065744 Ry temperature = 69.20079045 K Ekin + Etot (const) = -14.44794023 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841824 Ry Harris-Foulkes estimate = -14.44841824 Ry estimated scf accuracy < 5.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01828246 0.01828250 0.01828288 atom 2 type 1 force = -0.01828246 -0.01828250 -0.01828288 Total force = 0.044783 Total SCF correction = 0.000035 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791869 -0.126791871 -0.126791903 Si 0.126791869 0.126791871 0.126791903 kinetic energy (Ekin) = 0.00047877 Ry temperature = 50.39469706 K Ekin + Etot (const) = -14.44793946 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.14E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825408 Ry Harris-Foulkes estimate = -14.44825410 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825409 Ry Harris-Foulkes estimate = -14.44825410 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2902 7.2902 7.6069 ! total energy = -14.44825409 Ry Harris-Foulkes estimate = -14.44825409 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980919 0.01980928 0.01980963 atom 2 type 1 force = -0.01980919 -0.01980928 -0.01980963 Total force = 0.048523 Total SCF correction = 0.000002 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126902555 -0.126902558 -0.126902586 Si 0.126902555 0.126902558 0.126902586 kinetic energy (Ekin) = 0.00031532 Ry temperature = 33.18978531 K Ekin + Etot (const) = -14.44793877 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811613 Ry Harris-Foulkes estimate = -14.44811614 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6201 ! total energy = -14.44811613 Ry Harris-Foulkes estimate = -14.44811613 Ry estimated scf accuracy < 7.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02100181 0.02100187 0.02100220 atom 2 type 1 force = -0.02100181 -0.02100187 -0.02100220 Total force = 0.051444 Total SCF correction = 0.000032 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126981003 -0.126981008 -0.126981033 Si 0.126981003 0.126981008 0.126981033 kinetic energy (Ekin) = 0.00017793 Ry temperature = 18.72885015 K Ekin + Etot (const) = -14.44793820 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.57E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.8 secs total energy = -14.44801345 Ry Harris-Foulkes estimate = -14.44801349 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -14.44801346 Ry Harris-Foulkes estimate = -14.44801349 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2792 7.2792 7.6294 ! total energy = -14.44801347 Ry Harris-Foulkes estimate = -14.44801347 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02184566 0.02184569 0.02184600 atom 2 type 1 force = -0.02184566 -0.02184569 -0.02184600 Total force = 0.053511 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127025920 -0.127025926 -0.127025948 Si 0.127025920 0.127025926 0.127025948 kinetic energy (Ekin) = 0.00007570 Ry temperature = 7.96813048 K Ekin + Etot (const) = -14.44793777 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-11, avg # of iterations = 5.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2766 7.2766 7.6348 ! total energy = -14.44795288 Ry Harris-Foulkes estimate = -14.44795288 Ry estimated scf accuracy < 6.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232642 0.02232654 0.02232679 atom 2 type 1 force = -0.02232642 -0.02232654 -0.02232679 Total force = 0.054689 Total SCF correction = 0.000011 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127036567 -0.127036574 -0.127036592 Si 0.127036567 0.127036574 0.127036592 kinetic energy (Ekin) = 0.00001536 Ry temperature = 1.61637694 K Ekin + Etot (const) = -14.44793752 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.36E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.8 secs total energy = -14.44793831 Ry Harris-Foulkes estimate = -14.44793833 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.8 secs total energy = -14.44793831 Ry Harris-Foulkes estimate = -14.44793834 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2760 7.2760 7.6360 ! total energy = -14.44793832 Ry Harris-Foulkes estimate = -14.44793832 Ry estimated scf accuracy < 4.8E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02244189 0.02244196 0.02244217 atom 2 type 1 force = -0.02244189 -0.02244196 -0.02244217 Total force = 0.054971 Total SCF correction = 0.000002 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127012767 -0.127012775 -0.127012788 Si 0.127012767 0.127012775 0.127012788 kinetic energy (Ekin) = 0.00000086 Ry temperature = 0.09059622 K Ekin + Etot (const) = -14.44793746 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.77E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.9 secs total energy = -14.44797072 Ry Harris-Foulkes estimate = -14.44797079 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.9 secs total energy = -14.44797074 Ry Harris-Foulkes estimate = -14.44797080 Ry estimated scf accuracy < 0.00000019 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-09, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2774 7.2774 7.6332 ! total energy = -14.44797076 Ry Harris-Foulkes estimate = -14.44797076 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02218650 0.02218656 0.02218672 atom 2 type 1 force = -0.02218650 -0.02218656 -0.02218672 Total force = 0.054346 Total SCF correction = 0.000003 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126954913 -0.126954921 -0.126954930 Si 0.126954913 0.126954921 0.126954930 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49105172 K Ekin + Etot (const) = -14.44793760 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2807 7.2807 7.6263 ! total energy = -14.44804807 Ry Harris-Foulkes estimate = -14.44804807 Ry estimated scf accuracy < 7.5E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02156573 0.02156581 0.02156592 atom 2 type 1 force = -0.02156573 -0.02156581 -0.02156592 Total force = 0.052825 Total SCF correction = 0.000002 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126863956 -0.126863964 -0.126863968 Si 0.126863956 0.126863964 0.126863968 kinetic energy (Ekin) = 0.00011016 Ry temperature = 11.59474463 K Ekin + Etot (const) = -14.44793791 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2860 7.2860 7.6155 ! total energy = -14.44816516 Ry Harris-Foulkes estimate = -14.44816516 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02058677 0.02058691 0.02058696 atom 2 type 1 force = -0.02058677 -0.02058691 -0.02058696 Total force = 0.050427 Total SCF correction = 0.000007 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126741399 -0.126741408 -0.126741407 Si 0.126741399 0.126741408 0.126741407 kinetic energy (Ekin) = 0.00022677 Ry temperature = 23.86899537 K Ekin + Etot (const) = -14.44793840 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.29E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2931 7.2931 7.6009 ! total energy = -14.44831432 Ry Harris-Foulkes estimate = -14.44831433 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01926534 0.01926557 0.01926552 atom 2 type 1 force = -0.01926534 -0.01926557 -0.01926552 Total force = 0.047191 Total SCF correction = 0.000022 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126589271 -0.126589280 -0.126589275 Si 0.126589271 0.126589280 0.126589275 kinetic energy (Ekin) = 0.00037531 Ry temperature = 39.50478269 K Ekin + Etot (const) = -14.44793901 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.93E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44848567 Ry Harris-Foulkes estimate = -14.44848569 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3019 7.3019 7.5828 ! total energy = -14.44848568 Ry Harris-Foulkes estimate = -14.44848568 Ry estimated scf accuracy < 9.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01761709 0.01761752 0.01761744 atom 2 type 1 force = -0.01761709 -0.01761752 -0.01761744 Total force = 0.043154 Total SCF correction = 0.000042 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126410102 -0.126410111 -0.126410101 Si 0.126410102 0.126410111 0.126410101 kinetic energy (Ekin) = 0.00054596 Ry temperature = 57.46670519 K Ekin + Etot (const) = -14.44793972 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.42E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866779 Ry Harris-Foulkes estimate = -14.44866784 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866781 Ry Harris-Foulkes estimate = -14.44866784 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5615 ! total energy = -14.44866782 Ry Harris-Foulkes estimate = -14.44866782 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01566780 0.01566802 0.01566787 atom 2 type 1 force = -0.01566780 -0.01566802 -0.01566787 Total force = 0.038378 Total SCF correction = 0.000003 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206884 -0.126206892 -0.126206877 Si 0.126206884 0.126206892 0.126206877 kinetic energy (Ekin) = 0.00072733 Ry temperature = 76.55764250 K Ekin + Etot (const) = -14.44794049 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884853 Ry Harris-Foulkes estimate = -14.44884854 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3242 7.3242 7.5375 ! total energy = -14.44884853 Ry Harris-Foulkes estimate = -14.44884853 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01344761 0.01344779 0.01344746 atom 2 type 1 force = -0.01344761 -0.01344779 -0.01344746 Total force = 0.032940 Total SCF correction = 0.000034 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125983025 -0.125983031 -0.125983013 Si 0.125983025 0.125983031 0.125983013 kinetic energy (Ekin) = 0.00090728 Ry temperature = 95.49816272 K Ekin + Etot (const) = -14.44794125 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.1 secs total energy = -14.44901556 Ry Harris-Foulkes estimate = -14.44901560 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs total energy = -14.44901558 Ry Harris-Foulkes estimate = -14.44901560 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.00E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3372 7.3372 7.5109 ! total energy = -14.44901558 Ry Harris-Foulkes estimate = -14.44901558 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01098650 0.01098612 0.01098552 atom 2 type 1 force = -0.01098650 -0.01098612 -0.01098552 Total force = 0.026910 Total SCF correction = 0.000005 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125742302 -0.125742307 -0.125742286 Si 0.125742302 0.125742307 0.125742286 kinetic energy (Ekin) = 0.00107362 Ry temperature = 113.00698143 K Ekin + Etot (const) = -14.44794197 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915755 Ry Harris-Foulkes estimate = -14.44915756 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3513 7.3513 7.4825 ! total energy = -14.44915755 Ry Harris-Foulkes estimate = -14.44915756 Ry estimated scf accuracy < 9.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00832316 0.00832299 0.00832263 atom 2 type 1 force = -0.00832316 -0.00832299 -0.00832263 Total force = 0.020387 Total SCF correction = 0.000022 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488803 -0.125488808 -0.125488784 Si 0.125488803 0.125488808 0.125488784 kinetic energy (Ekin) = 0.00121497 Ry temperature = 127.88540686 K Ekin + Etot (const) = -14.44794258 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.54E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926453 Ry Harris-Foulkes estimate = -14.44926463 Ry estimated scf accuracy < 0.00000016 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926456 Ry Harris-Foulkes estimate = -14.44926463 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3661 7.3662 7.4525 ! total energy = -14.44926458 Ry Harris-Foulkes estimate = -14.44926459 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549933 0.00549907 0.00549864 atom 2 type 1 force = -0.00549933 -0.00549907 -0.00549864 Total force = 0.013470 Total SCF correction = 0.000009 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226863 -0.125226868 -0.125226843 Si 0.125226863 0.125226868 0.125226843 kinetic energy (Ekin) = 0.00132152 Ry temperature = 139.10071400 K Ekin + Etot (const) = -14.44794307 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.94E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44932909 Ry Harris-Foulkes estimate = -14.44932912 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.81E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932911 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3815 7.3815 7.4216 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932911 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00256275 0.00256241 0.00256209 atom 2 type 1 force = -0.00256275 -0.00256241 -0.00256209 Total force = 0.006277 Total SCF correction = 0.000009 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124960990 -0.124960995 -0.124960968 Si 0.124960990 0.124960995 0.124960968 kinetic energy (Ekin) = 0.00138573 Ry temperature = 145.85947949 K Ekin + Etot (const) = -14.44794337 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934634 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.69E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934635 Ry estimated scf accuracy < 7.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044147 -0.00044145 -0.00044167 atom 2 type 1 force = 0.00044147 0.00044145 0.00044167 Total force = 0.001082 Total SCF correction = 0.000006 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124695794 -0.124695800 -0.124695772 Si 0.124695794 0.124695800 0.124695772 kinetic energy (Ekin) = 0.00140288 Ry temperature = 147.66428722 K Ekin + Etot (const) = -14.44794348 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.94E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931479 Ry Harris-Foulkes estimate = -14.44931480 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.80E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931479 Ry Harris-Foulkes estimate = -14.44931480 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931479 Ry Harris-Foulkes estimate = -14.44931479 Ry estimated scf accuracy < 1.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00345890 -0.00345859 -0.00345922 atom 2 type 1 force = 0.00345890 0.00345859 0.00345922 Total force = 0.008473 Total SCF correction = 0.000003 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124435907 -0.124435913 -0.124435885 Si 0.124435907 0.124435913 0.124435885 kinetic energy (Ekin) = 0.00137142 Ry temperature = 144.35370545 K Ekin + Etot (const) = -14.44794337 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.32E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923627 Ry Harris-Foulkes estimate = -14.44923627 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643828 -0.00643841 -0.00643792 atom 2 type 1 force = 0.00643828 0.00643841 0.00643792 Total force = 0.015770 Total SCF correction = 0.000025 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124185903 -0.124185909 -0.124185881 Si 0.124185903 0.124185909 0.124185881 kinetic energy (Ekin) = 0.00129322 Ry temperature = 136.12175879 K Ekin + Etot (const) = -14.44794305 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44911594 Ry Harris-Foulkes estimate = -14.44911596 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.83E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44911595 Ry Harris-Foulkes estimate = -14.44911596 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2993 7.4429 7.4429 ! total energy = -14.44911595 Ry Harris-Foulkes estimate = -14.44911595 Ry estimated scf accuracy < 2.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932403 -0.00932415 -0.00932414 atom 2 type 1 force = 0.00932403 0.00932415 0.00932414 Total force = 0.022839 Total SCF correction = 0.000003 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123950210 -0.123950217 -0.123950188 Si 0.123950210 0.123950217 0.123950188 kinetic energy (Ekin) = 0.00117340 Ry temperature = 123.51032521 K Ekin + Etot (const) = -14.44794255 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2717 7.4569 7.4569 ! total energy = -14.44896202 Ry Harris-Foulkes estimate = -14.44896202 Ry estimated scf accuracy < 5.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01206398 -0.01206383 -0.01206439 atom 2 type 1 force = 0.01206398 0.01206383 0.01206439 Total force = 0.029551 Total SCF correction = 0.000033 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123733035 -0.123733043 -0.123733013 Si 0.123733035 0.123733043 0.123733013 kinetic energy (Ekin) = 0.00102014 Ry temperature = 107.37779010 K Ekin + Etot (const) = -14.44794188 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.06E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44878515 Ry Harris-Foulkes estimate = -14.44878517 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.25E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44878516 Ry Harris-Foulkes estimate = -14.44878517 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2464 7.4698 7.4698 ! total energy = -14.44878516 Ry Harris-Foulkes estimate = -14.44878516 Ry estimated scf accuracy < 2.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01460426 -0.01460427 -0.01460448 atom 2 type 1 force = 0.01460426 0.01460427 0.01460448 Total force = 0.035773 Total SCF correction = 0.000002 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123538277 -0.123538285 -0.123538256 Si 0.123538277 0.123538285 0.123538256 kinetic energy (Ekin) = 0.00084405 Ry temperature = 88.84342796 K Ekin + Etot (const) = -14.44794111 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2236 7.4813 7.4813 ! total energy = -14.44859781 Ry Harris-Foulkes estimate = -14.44859781 Ry estimated scf accuracy < 5.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01689604 -0.01689629 -0.01689609 atom 2 type 1 force = 0.01689604 0.01689629 0.01689609 Total force = 0.041387 Total SCF correction = 0.000036 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123369453 -0.123369461 -0.123369433 Si 0.123369453 0.123369461 0.123369433 kinetic energy (Ekin) = 0.00065754 Ry temperature = 69.21110068 K Ekin + Etot (const) = -14.44794027 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841328 Ry Harris-Foulkes estimate = -14.44841330 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841329 Ry Harris-Foulkes estimate = -14.44841330 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2040 7.4914 7.4914 ! total energy = -14.44841329 Ry Harris-Foulkes estimate = -14.44841329 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01889345 -0.01889338 -0.01889347 atom 2 type 1 force = 0.01889345 0.01889338 0.01889347 Total force = 0.046279 Total SCF correction = 0.000003 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123229630 -0.123229639 -0.123229610 Si 0.123229630 0.123229639 0.123229610 kinetic energy (Ekin) = 0.00047385 Ry temperature = 49.87637924 K Ekin + Etot (const) = -14.44793944 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.05E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1877 7.4997 7.4997 ! total energy = -14.44824484 Ry Harris-Foulkes estimate = -14.44824485 Ry estimated scf accuracy < 8.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02055408 -0.02055396 -0.02055427 atom 2 type 1 force = 0.02055408 0.02055396 0.02055427 Total force = 0.050347 Total SCF correction = 0.000040 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123121356 -0.123121365 -0.123121337 Si 0.123121356 0.123121365 0.123121337 kinetic energy (Ekin) = 0.00030617 Ry temperature = 32.22658670 K Ekin + Etot (const) = -14.44793868 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44810462 Ry Harris-Foulkes estimate = -14.44810466 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44810464 Ry Harris-Foulkes estimate = -14.44810465 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.04E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1751 7.5061 7.5061 ! total energy = -14.44810464 Ry Harris-Foulkes estimate = -14.44810464 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02184599 -0.02184589 -0.02184613 atom 2 type 1 force = 0.02184599 0.02184589 0.02184613 Total force = 0.053512 Total SCF correction = 0.000001 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123046614 -0.123046623 -0.123046597 Si 0.123046614 0.123046623 0.123046597 kinetic energy (Ekin) = 0.00016661 Ry temperature = 17.53659766 K Ekin + Etot (const) = -14.44793804 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.95E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1664 7.5106 7.5106 ! total energy = -14.44800287 Ry Harris-Foulkes estimate = -14.44800287 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02273988 -0.02273977 -0.02274008 atom 2 type 1 force = 0.02273988 0.02273977 0.02274008 Total force = 0.055701 Total SCF correction = 0.000032 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123006777 -0.123006786 -0.123006761 Si 0.123006777 0.123006786 0.123006761 kinetic energy (Ekin) = 0.00006530 Ry temperature = 6.87345701 K Ekin + Etot (const) = -14.44793757 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44794695 Ry Harris-Foulkes estimate = -14.44794697 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1618 7.5130 7.5130 ! total energy = -14.44794696 Ry Harris-Foulkes estimate = -14.44794696 Ry estimated scf accuracy < 9.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02321678 -0.02321668 -0.02321694 atom 2 type 1 force = 0.02321678 0.02321668 0.02321694 Total force = 0.056869 Total SCF correction = 0.000038 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123002576 -0.123002585 -0.123002562 Si 0.123002576 0.123002585 0.123002562 kinetic energy (Ekin) = 0.00000965 Ry temperature = 1.01533556 K Ekin + Etot (const) = -14.44793731 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.54E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44794099 Ry Harris-Foulkes estimate = -14.44794100 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44794099 Ry Harris-Foulkes estimate = -14.44794100 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1613 7.5132 7.5132 ! total energy = -14.44794100 Ry Harris-Foulkes estimate = -14.44794100 Ry estimated scf accuracy < 3.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02326705 -0.02326697 -0.02326725 atom 2 type 1 force = 0.02326705 0.02326697 0.02326725 Total force = 0.056992 Total SCF correction = 0.000001 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123034089 -0.123034097 -0.123034077 Si 0.123034089 0.123034097 0.123034077 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39058282 K Ekin + Etot (const) = -14.44793729 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44798513 Ry Harris-Foulkes estimate = -14.44798567 Ry estimated scf accuracy < 0.00000089 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44798534 Ry Harris-Foulkes estimate = -14.44798554 Ry estimated scf accuracy < 0.00000046 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.80E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1650 7.5113 7.5113 ! total energy = -14.44798542 Ry Harris-Foulkes estimate = -14.44798542 Ry estimated scf accuracy < 8.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02288857 -0.02288851 -0.02288867 atom 2 type 1 force = 0.02288857 0.02288851 0.02288867 Total force = 0.056065 Total SCF correction = 0.000003 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123100734 -0.123100742 -0.123100724 Si 0.123100734 0.123100742 0.123100724 kinetic energy (Ekin) = 0.00004793 Ry temperature = 5.04471181 K Ekin + Etot (const) = -14.44793749 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order charge density extrapolation total cpu time spent up to now is 1.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.59E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1727 7.5074 7.5074 ! total energy = -14.44807697 Ry Harris-Foulkes estimate = -14.44807697 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02209269 -0.02209254 -0.02209276 atom 2 type 1 force = 0.02209269 0.02209254 0.02209276 Total force = 0.054116 Total SCF correction = 0.000003 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123201291 -0.123201298 -0.123201283 Si 0.123201291 0.123201298 0.123201283 kinetic energy (Ekin) = 0.00013906 Ry temperature = 14.63730321 K Ekin + Etot (const) = -14.44793791 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.38s CPU 0.41s WALL ( 51 calls) update_pot : 0.19s CPU 0.23s WALL ( 50 calls) forces : 0.02s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.22s WALL ( 169 calls) sum_band : 0.07s CPU 0.05s WALL ( 169 calls) v_of_rho : 0.08s CPU 0.08s WALL ( 170 calls) mix_rho : 0.01s CPU 0.01s WALL ( 169 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 339 calls) cegterg : 0.19s CPU 0.21s WALL ( 169 calls) Called by *egterg: h_psi : 0.14s CPU 0.14s WALL ( 597 calls) g_psi : 0.00s CPU 0.01s WALL ( 427 calls) cdiaghg : 0.04s CPU 0.03s WALL ( 496 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 597 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 648 calls) fft : 0.06s CPU 0.05s WALL ( 881 calls) fftw : 0.15s CPU 0.13s WALL ( 4860 calls) davcio : 0.00s CPU 0.00s WALL ( 119 calls) PWSCF : 1.42s CPU 1.65s WALL This run was terminated on: 10:24:47 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vdw2.ref0000644000700200004540000003011212053145627015432 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:30:29 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vdw2.in IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF2 ( 0 413 0 2) EXX-fraction = 0.00 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = VDW-DF2 ( 0 413 0 2) EXX-fraction = 0.00 celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 vdW kernel table read from file vdW_kernel_table MD5 check sum: 2a73cc23e28154503cc02d2bc612f0de atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.5 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -44.57822480 Ry Harris-Foulkes estimate = -44.81700158 Ry estimated scf accuracy < 0.73700993 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.61E-03, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -44.58813807 Ry Harris-Foulkes estimate = -44.61738765 Ry estimated scf accuracy < 0.10642129 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.65E-04, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -44.60161304 Ry Harris-Foulkes estimate = -44.60053146 Ry estimated scf accuracy < 0.00441881 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.76E-05, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -44.60105717 Ry Harris-Foulkes estimate = -44.60199085 Ry estimated scf accuracy < 0.00015636 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.77E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -44.60111329 Ry Harris-Foulkes estimate = -44.60110661 Ry estimated scf accuracy < 0.00001830 Ry iteration # 6 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.14E-07, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7293 -11.2751 -0.7621 1.8353 5.3164 5.3168 5.4750 5.4755 12.1642 16.8698 16.8704 16.9103 the Fermi energy is 10.0225 ev ! total energy = -44.60022403 Ry Harris-Foulkes estimate = -44.60111513 Ry estimated scf accuracy < 0.00000047 Ry The total energy is the sum of the following terms: one-electron contribution = -6.82162237 Ry hartree contribution = 12.86180732 Ry xc contribution = -14.76795916 Ry ewald contribution = -35.87244982 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00004448 -0.00002568 0.00000000 atom 2 type 1 force = -0.00006396 0.00003693 0.00000000 atom 3 type 1 force = -0.00004448 0.00002568 0.00000000 atom 4 type 1 force = 0.00006396 -0.00003693 0.00000000 Total force = 0.000127 Total SCF correction = 0.000106 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... VDW GRADIENT stress 0.00003533 0.00000000 0.00000000 0.00000000 0.00003533 0.00000000 0.00000000 0.00000000 0.00003801 VDW KERNEL stress -0.00008598 0.00000000 0.00000000 0.00000000 -0.00008598 0.00000000 0.00000000 0.00000000 -0.00048039 VDW ALL stress 0.00005064 0.00000000 0.00000000 0.00000000 0.00005065 0.00000000 0.00000000 0.00000000 0.00044237 total stress (Ry/bohr**3) (kbar) P= -377.68 -0.00298231 -0.00000012 0.00000000 -438.71 -0.02 0.00 -0.00000012 -0.00298245 0.00000000 -0.02 -438.73 0.00 0.00000000 0.00000000 -0.00173748 0.00 0.00 -255.59 Writing output data file pwscf.save init_run : 0.29s CPU 0.31s WALL ( 1 calls) electrons : 0.96s CPU 1.04s WALL ( 1 calls) forces : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.33s CPU 0.34s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.13s CPU 0.15s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 6 calls) sum_band : 0.09s CPU 0.09s WALL ( 6 calls) v_of_rho : 0.86s CPU 0.97s WALL ( 7 calls) newd : 0.07s CPU 0.07s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) vdW_energy : 0.18s CPU 0.21s WALL ( 7 calls) vdW_ffts : 0.19s CPU 0.18s WALL ( 16 calls) vdW_v : 0.19s CPU 0.19s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.03s CPU 0.03s WALL ( 6 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 21 calls) s_psi : 0.00s CPU 0.00s WALL ( 21 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 20 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 21 calls) General routines calbec : 0.01s CPU 0.00s WALL ( 32 calls) fft : 0.29s CPU 0.29s WALL ( 510 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.02s CPU 0.01s WALL ( 230 calls) interpolate : 0.02s CPU 0.01s WALL ( 13 calls) davcio : 0.00s CPU 0.00s WALL ( 6 calls) PWSCF : 1.98s CPU 2.35s WALL This run was terminated on: 11:30:32 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lda+U-noU.in0000755000700200004540000000143612053145627016113 0ustar marsamoscm &control calculation = 'scf' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=1.d-8, Hubbard_U(3)=1.d-8, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.0.2/PW/tests/scf-mixing_beta.in0000644000700200004540000000052512053145627017446 0ustar marsamoscm &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_beta=0.5 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.0.2/PW/tests/lattice-ibrav8-kauto.ref0000644000700200004540000001747612053145627020531 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav8-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 325 50615 50615 7161 bravais-lattice index = 8 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 3000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1666667 0.1250000), wk = 2.0000000 Dense grid: 50615 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 6340, 1) NL pseudopotentials 0.00 Mb ( 6340, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.39 Mb ( 50615) G-vector shells 0.01 Mb ( 1676) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.39 Mb ( 6340, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004385 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.439E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.128E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22012947 Ry Harris-Foulkes estimate = -2.29037207 Ry estimated scf accuracy < 0.13324730 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.274E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23112373 Ry Harris-Foulkes estimate = -2.23157673 Ry estimated scf accuracy < 0.00100653 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.361E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23142667 Ry Harris-Foulkes estimate = -2.23142810 Ry estimated scf accuracy < 0.00001209 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.04E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.2500 0.1667 0.1250 ( 6340 PWs) bands (ev): -10.2888 ! total energy = -2.23142786 Ry Harris-Foulkes estimate = -2.23142782 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69942741 Ry hartree contribution = 1.95208987 Ry xc contribution = -1.31442581 Ry ewald contribution = 0.83033548 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.07s CPU 0.07s WALL ( 1 calls) electrons : 0.20s CPU 0.22s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 4 calls) sum_band : 0.05s CPU 0.04s WALL ( 4 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 5 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 28 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.30s CPU 0.33s WALL This run was terminated on: 10:22:24 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav6-kauto.ref0000644000700200004540000001747612053145627020527 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav6-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 221 33775 33775 4885 bravais-lattice index = 6 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.1250000), wk = 2.0000000 Dense grid: 33775 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 4235, 1) NL pseudopotentials 0.00 Mb ( 4235, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.26 Mb ( 33775) G-vector shells 0.00 Mb ( 467) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 4235, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002648 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.265E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 13.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.767E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22021107 Ry Harris-Foulkes estimate = -2.29046448 Ry estimated scf accuracy < 0.13330394 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.67E-03, avg # of iterations = 1.0 negative rho (up, down): 0.162E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23123513 Ry Harris-Foulkes estimate = -2.23168469 Ry estimated scf accuracy < 0.00100471 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.195E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23153918 Ry Harris-Foulkes estimate = -2.23154077 Ry estimated scf accuracy < 0.00001233 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.17E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.2500 0.2500 0.1250 ( 4235 PWs) bands (ev): -10.2358 ! total energy = -2.23154046 Ry Harris-Foulkes estimate = -2.23154047 Ry estimated scf accuracy < 0.00000049 Ry The total energy is the sum of the following terms: one-electron contribution = -3.61668192 Ry hartree contribution = 1.91472471 Ry xc contribution = -1.31448611 Ry ewald contribution = 0.78490285 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.05s WALL ( 1 calls) electrons : 0.14s CPU 0.15s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.02s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 12 calls) g_psi : 0.00s CPU 0.00s WALL ( 7 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 11 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.22s CPU 0.24s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/relax-damped.ref0000644000700200004540000013122412053145627017121 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax-damped.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used Message from routine setup: Dynamics, you should have no symmetries G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1649 1101 277 50541 27609 3407 Tot 825 551 139 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25271 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 13805 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003742 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.374E-02 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 30.4 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.548E-02 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -43.00560028 Ry Harris-Foulkes estimate = -43.13946473 Ry estimated scf accuracy < 0.20142084 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 4.0 negative rho (up, down): 0.113E-01 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -42.97192905 Ry Harris-Foulkes estimate = -43.22189611 Ry estimated scf accuracy < 0.69794621 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 3.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -43.09499395 Ry Harris-Foulkes estimate = -43.09749186 Ry estimated scf accuracy < 0.00768862 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.69E-05, avg # of iterations = 2.0 negative rho (up, down): 0.458E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -43.09571104 Ry Harris-Foulkes estimate = -43.09617585 Ry estimated scf accuracy < 0.00118904 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 3.0 negative rho (up, down): 0.461E-02 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -43.09622618 Ry Harris-Foulkes estimate = -43.09637952 Ry estimated scf accuracy < 0.00054718 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.47E-06, avg # of iterations = 1.0 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -43.09619459 Ry Harris-Foulkes estimate = -43.09625737 Ry estimated scf accuracy < 0.00019300 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -43.09625490 Ry Harris-Foulkes estimate = -43.09626006 Ry estimated scf accuracy < 0.00001788 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-07, avg # of iterations = 2.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.1 secs total energy = -43.09625733 Ry Harris-Foulkes estimate = -43.09625777 Ry estimated scf accuracy < 0.00000256 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8990 -13.4027 -10.8557 -10.8557 -8.5036 ! total energy = -43.09625738 Ry Harris-Foulkes estimate = -43.09625770 Ry estimated scf accuracy < 0.00000039 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21576369 0.00000000 0.00000000 atom 2 type 1 force = 0.21576369 0.00000000 0.00000000 Total force = 0.215764 Total SCF correction = 0.000570 Damped Dynamics Calculation Entering Dynamics: iteration = 1 ATOMIC_POSITIONS (bohr) C 2.161309101 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003742 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003769 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -43.10825672 Ry Harris-Foulkes estimate = -43.11074971 Ry estimated scf accuracy < 0.00435174 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-05, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -43.10912901 Ry Harris-Foulkes estimate = -43.10942463 Ry estimated scf accuracy < 0.00053892 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.39E-06, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 2.9 secs total energy = -43.10924328 Ry Harris-Foulkes estimate = -43.10925158 Ry estimated scf accuracy < 0.00002323 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 4.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 3.1 secs total energy = -43.10925024 Ry Harris-Foulkes estimate = -43.10928148 Ry estimated scf accuracy < 0.00012258 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 3.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -43.10925169 Ry Harris-Foulkes estimate = -43.10925836 Ry estimated scf accuracy < 0.00001614 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-07, avg # of iterations = 3.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 3.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.6470 -13.3852 -11.2890 -11.2890 -8.4016 ! total energy = -43.10925498 Ry Harris-Foulkes estimate = -43.10925531 Ry estimated scf accuracy < 0.00000042 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.04702064 0.00000000 0.00000000 atom 2 type 1 force = 0.04702064 0.00000000 0.00000000 Total force = 0.047021 Total SCF correction = 0.000602 Entering Dynamics: iteration = 2 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.055038410 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003769 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003800 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 3.6 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.500E-02 0.000E+00 total cpu time spent up to now is 3.8 secs total energy = -43.09901792 Ry Harris-Foulkes estimate = -43.10284311 Ry estimated scf accuracy < 0.00652404 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-05, avg # of iterations = 2.0 negative rho (up, down): 0.488E-02 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -43.10034879 Ry Harris-Foulkes estimate = -43.10058877 Ry estimated scf accuracy < 0.00048248 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.82E-06, avg # of iterations = 2.0 negative rho (up, down): 0.485E-02 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -43.10043294 Ry Harris-Foulkes estimate = -43.10046987 Ry estimated scf accuracy < 0.00006432 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-07, avg # of iterations = 3.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -43.10044299 Ry Harris-Foulkes estimate = -43.10046877 Ry estimated scf accuracy < 0.00006082 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-07, avg # of iterations = 2.0 negative rho (up, down): 0.483E-02 0.000E+00 total cpu time spent up to now is 4.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.5199 -13.3829 -11.8190 -11.8190 -8.2731 ! total energy = -43.10045352 Ry Harris-Foulkes estimate = -43.10045363 Ry estimated scf accuracy < 0.00000029 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.22972886 0.00000000 0.00000000 atom 2 type 1 force = -0.22972886 0.00000000 0.00000000 Total force = 0.229729 Total SCF correction = 0.000224 Entering Dynamics: iteration = 3 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.111613831 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003800 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003782 negative rho (up, down): 0.483E-02 0.000E+00 total cpu time spent up to now is 4.6 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.465E-02 0.000E+00 total cpu time spent up to now is 4.7 secs total energy = -43.10834553 Ry Harris-Foulkes estimate = -43.10952579 Ry estimated scf accuracy < 0.00199952 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-05, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 4.8 secs total energy = -43.10876348 Ry Harris-Foulkes estimate = -43.10883933 Ry estimated scf accuracy < 0.00015055 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-06, avg # of iterations = 2.0 negative rho (up, down): 0.474E-02 0.000E+00 total cpu time spent up to now is 5.0 secs total energy = -43.10879034 Ry Harris-Foulkes estimate = -43.10880265 Ry estimated scf accuracy < 0.00002306 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.31E-07, avg # of iterations = 3.0 negative rho (up, down): 0.476E-02 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -43.10879483 Ry Harris-Foulkes estimate = -43.10880208 Ry estimated scf accuracy < 0.00001729 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-07, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 5.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.0510 -13.3798 -11.5296 -11.5296 -8.3451 ! total energy = -43.10879794 Ry Harris-Foulkes estimate = -43.10879796 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.06931723 0.00000000 0.00000000 atom 2 type 1 force = -0.06931723 0.00000000 0.00000000 Total force = 0.069317 Total SCF correction = 0.000020 Entering Dynamics: iteration = 4 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.178918345 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003782 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003764 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 5.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.458E-02 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -43.10753695 Ry Harris-Foulkes estimate = -43.10895232 Ry estimated scf accuracy < 0.00243803 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 2.0 negative rho (up, down): 0.465E-02 0.000E+00 total cpu time spent up to now is 5.8 secs total energy = -43.10804643 Ry Harris-Foulkes estimate = -43.10816059 Ry estimated scf accuracy < 0.00022290 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-06, avg # of iterations = 2.0 negative rho (up, down): 0.468E-02 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -43.10808784 Ry Harris-Foulkes estimate = -43.10809655 Ry estimated scf accuracy < 0.00001679 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-07, avg # of iterations = 4.0 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -43.10808706 Ry Harris-Foulkes estimate = -43.10810564 Ry estimated scf accuracy < 0.00005311 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-07, avg # of iterations = 3.0 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 6.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.5063 -13.3873 -11.2059 -11.2059 -8.4220 ! total energy = -43.10809419 Ry Harris-Foulkes estimate = -43.10809441 Ry estimated scf accuracy < 0.00000036 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.08322947 0.00000000 0.00000000 atom 2 type 1 force = 0.08322947 0.00000000 0.00000000 Total force = 0.083229 Total SCF correction = 0.000632 Entering Dynamics: iteration = 5 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.166035881 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003764 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003768 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 6.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.6 secs total energy = -43.10898535 Ry Harris-Foulkes estimate = -43.10903872 Ry estimated scf accuracy < 0.00009066 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.07E-07, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 6.8 secs total energy = -43.10900360 Ry Harris-Foulkes estimate = -43.10901149 Ry estimated scf accuracy < 0.00001401 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-07, avg # of iterations = 2.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 6.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.6088 -13.3830 -11.2650 -11.2650 -8.4098 ! total energy = -43.10900685 Ry Harris-Foulkes estimate = -43.10900690 Ry estimated scf accuracy < 0.00000032 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.05716575 0.00000000 0.00000000 atom 2 type 1 force = 0.05716575 0.00000000 0.00000000 Total force = 0.057166 Total SCF correction = 0.000174 Entering Dynamics: iteration = 6 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.140753228 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003768 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003774 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 7.2 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.476E-02 0.000E+00 total cpu time spent up to now is 7.3 secs total energy = -43.10969039 Ry Harris-Foulkes estimate = -43.10988487 Ry estimated scf accuracy < 0.00033653 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-06, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 7.5 secs total energy = -43.10975976 Ry Harris-Foulkes estimate = -43.10977820 Ry estimated scf accuracy < 0.00003482 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-07, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 7.6 secs total energy = -43.10976646 Ry Harris-Foulkes estimate = -43.10976749 Ry estimated scf accuracy < 0.00000217 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -43.10976648 Ry Harris-Foulkes estimate = -43.10976919 Ry estimated scf accuracy < 0.00000837 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 4.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 7.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8126 -13.3815 -11.3867 -11.3867 -8.3802 ! total energy = -43.10976719 Ry Harris-Foulkes estimate = -43.10976742 Ry estimated scf accuracy < 0.00000027 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00179638 0.00000000 0.00000000 atom 2 type 1 force = 0.00179638 0.00000000 0.00000000 Total force = 0.001796 Total SCF correction = 0.000589 SCF correction compared to forces is large: reduce conv_thr to get better values Entering Dynamics: iteration = 7 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.115110591 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003774 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003781 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 8.2 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.479E-02 0.000E+00 total cpu time spent up to now is 8.3 secs total energy = -43.10894342 Ry Harris-Foulkes estimate = -43.10915529 Ry estimated scf accuracy < 0.00036499 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.65E-06, avg # of iterations = 2.0 negative rho (up, down): 0.476E-02 0.000E+00 total cpu time spent up to now is 8.4 secs total energy = -43.10901923 Ry Harris-Foulkes estimate = -43.10903300 Ry estimated scf accuracy < 0.00002773 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-07, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -43.10902396 Ry Harris-Foulkes estimate = -43.10902655 Ry estimated scf accuracy < 0.00000442 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.42E-08, avg # of iterations = 4.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 8.7 secs total energy = -43.10902470 Ry Harris-Foulkes estimate = -43.10902628 Ry estimated scf accuracy < 0.00000382 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-08, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 8.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.0227 -13.3812 -11.5131 -11.5131 -8.3482 ! total energy = -43.10902539 Ry Harris-Foulkes estimate = -43.10902540 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.06023025 0.00000000 0.00000000 atom 2 type 1 force = -0.06023025 0.00000000 0.00000000 Total force = 0.060230 Total SCF correction = 0.000056 Entering Dynamics: iteration = 8 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.127180324 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003781 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003778 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 9.1 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 9.3 secs total energy = -43.10955328 Ry Harris-Foulkes estimate = -43.10960346 Ry estimated scf accuracy < 0.00008548 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.55E-07, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 9.4 secs total energy = -43.10957201 Ry Harris-Foulkes estimate = -43.10957598 Ry estimated scf accuracy < 0.00000768 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-08, avg # of iterations = 2.0 negative rho (up, down): 0.474E-02 0.000E+00 total cpu time spent up to now is 9.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.9220 -13.3805 -11.4526 -11.4526 -8.3634 ! total energy = -43.10957346 Ry Harris-Foulkes estimate = -43.10957364 Ry estimated scf accuracy < 0.00000042 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.03018207 0.00000000 0.00000000 atom 2 type 1 force = -0.03018207 0.00000000 0.00000000 Total force = 0.030182 Total SCF correction = 0.000531 Entering Dynamics: iteration = 9 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.144570629 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003778 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003773 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 9.8 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 10.0 secs total energy = -43.10970375 Ry Harris-Foulkes estimate = -43.10980381 Ry estimated scf accuracy < 0.00017021 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-06, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 10.1 secs total energy = -43.10973953 Ry Harris-Foulkes estimate = -43.10975061 Ry estimated scf accuracy < 0.00002032 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 10.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7792 -13.3817 -11.3676 -11.3676 -8.3830 ! total energy = -43.10974361 Ry Harris-Foulkes estimate = -43.10974402 Ry estimated scf accuracy < 0.00000096 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01076174 0.00000000 0.00000000 atom 2 type 1 force = 0.01076174 0.00000000 0.00000000 Total force = 0.010762 Total SCF correction = 0.000813 Entering Dynamics: iteration = 10 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.142564627 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003773 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003774 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 10.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.72E-08, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 10.7 secs total energy = -43.10975884 Ry Harris-Foulkes estimate = -43.10976234 Ry estimated scf accuracy < 0.00000512 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.12E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 10.8 secs total energy = -43.10975993 Ry Harris-Foulkes estimate = -43.10976118 Ry estimated scf accuracy < 0.00000218 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7994 -13.3835 -11.3791 -11.3791 -8.3809 ! total energy = -43.10976047 Ry Harris-Foulkes estimate = -43.10976049 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00582469 0.00000000 0.00000000 atom 2 type 1 force = 0.00582469 0.00000000 0.00000000 Total force = 0.005825 Total SCF correction = 0.000114 Entering Dynamics: iteration = 11 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.139519983 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003774 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.2 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.55E-08, avg # of iterations = 1.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 11.4 secs total energy = -43.10976664 Ry Harris-Foulkes estimate = -43.10976925 Ry estimated scf accuracy < 0.00000459 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8213 -13.3817 -11.3917 -11.3917 -8.3738 ! total energy = -43.10976752 Ry Harris-Foulkes estimate = -43.10976788 Ry estimated scf accuracy < 0.00000054 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00132450 0.00000000 0.00000000 atom 2 type 1 force = -0.00132450 0.00000000 0.00000000 Total force = 0.001325 Total SCF correction = 0.000172 SCF correction compared to forces is large: reduce conv_thr to get better values Entering Dynamics: iteration = 12 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.139767533 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003775 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.9 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.75E-09, avg # of iterations = 1.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 12.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8231 -13.3830 -11.3935 -11.3935 -8.3810 ! total energy = -43.10976774 Ry Harris-Foulkes estimate = -43.10976805 Ry estimated scf accuracy < 0.00000039 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00059445 0.00000000 0.00000000 atom 2 type 1 force = -0.00059445 0.00000000 0.00000000 Total force = 0.000594 Total SCF correction = 0.000409 SCF correction compared to forces is large: reduce conv_thr to get better values Damped Dynamics: convergence achieved in 13 steps End of damped dynamics calculation Final energy = -43.1097677388 Ry Begin final coordinates new unit-cell volume = 1728.00000 a.u.^3 ( 256.06318 Ang^3 ) CELL_PARAMETERS (alat= 12.00000000) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 ATOMIC_POSITIONS (bohr) C 2.139767533 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 End final coordinates Entering Dynamics: iteration = 13 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.140103544 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save init_run : 0.91s CPU 0.93s WALL ( 1 calls) electrons : 7.27s CPU 7.59s WALL ( 13 calls) update_pot : 0.91s CPU 0.95s WALL ( 12 calls) forces : 1.06s CPU 1.09s WALL ( 13 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.04s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 1.17s CPU 1.20s WALL ( 58 calls) sum_band : 2.72s CPU 2.80s WALL ( 58 calls) v_of_rho : 0.85s CPU 0.90s WALL ( 68 calls) newd : 2.14s CPU 2.24s WALL ( 68 calls) mix_rho : 0.32s CPU 0.33s WALL ( 58 calls) Called by c_bands: init_us_2 : 0.09s CPU 0.10s WALL ( 117 calls) regterg : 1.07s CPU 1.09s WALL ( 58 calls) Called by *egterg: h_psi : 0.88s CPU 0.86s WALL ( 213 calls) s_psi : 0.01s CPU 0.02s WALL ( 213 calls) g_psi : 0.04s CPU 0.04s WALL ( 154 calls) rdiaghg : 0.03s CPU 0.02s WALL ( 197 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 213 calls) General routines calbec : 0.06s CPU 0.05s WALL ( 323 calls) fft : 0.96s CPU 0.93s WALL ( 610 calls) ffts : 0.15s CPU 0.13s WALL ( 126 calls) fftw : 0.75s CPU 0.71s WALL ( 1276 calls) interpolate : 0.46s CPU 0.49s WALL ( 126 calls) davcio : 0.00s CPU 0.01s WALL ( 55 calls) PWSCF : 11.43s CPU 12.21s WALL This run was terminated on: 11:27:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/vc-relax2.ref0000644000700200004540000040616712053145627016374 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 11:29:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 0 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1875000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1875000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1875000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.1875000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.3750000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.3750000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 10) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1875000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 2.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 0.4 secs total energy = -25.43995304 Ry Harris-Foulkes estimate = -25.44370905 Ry estimated scf accuracy < 0.01555592 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -25.44007840 Ry Harris-Foulkes estimate = -25.44026102 Ry estimated scf accuracy < 0.00088841 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.88E-06, avg # of iterations = 2.3 total cpu time spent up to now is 0.6 secs total energy = -25.44011434 Ry Harris-Foulkes estimate = -25.44011580 Ry estimated scf accuracy < 0.00000523 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-08, avg # of iterations = 3.1 total cpu time spent up to now is 0.7 secs total energy = -25.44012214 Ry Harris-Foulkes estimate = -25.44012246 Ry estimated scf accuracy < 0.00000069 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.94E-09, avg # of iterations = 1.4 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7601 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 the Fermi energy is 10.0033 ev ! total energy = -25.44012222 Ry Harris-Foulkes estimate = -25.44012223 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.12659777 atom 2 type 1 force = 0.00000000 0.00000000 0.12659777 Total force = 0.179036 Total SCF correction = 0.000024 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00172374 0.00000000 0.00000000 253.57 0.00 0.00 0.00000000 0.00172374 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098853 0.00 0.00 145.42 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-03 EPSF = 0.10E-02 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.570817823 0.000000000 0.795712276 -0.285408728 0.494342690 0.795712278 -0.285408728 -0.494342690 0.795712278 new unit-cell volume = 232.0702 (a.u.)^3 new positions in cryst coord As 0.288386168 0.288386167 0.288386167 As -0.288386168 -0.288386167 -0.288386167 new positions in cart coord (alat unit) As 0.000000107 0.000000000 0.688417242 As -0.000000107 0.000000000 -0.688417242 Ekin = 0.00000000 Ry T = 0.0 K Etot = -24.60612481 new unit-cell volume = 232.07022 a.u.^3 ( 34.38926 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.570817823 0.000000000 0.795712276 -0.285408728 0.494342690 0.795712278 -0.285408728 -0.494342690 0.795712278 ATOMIC_POSITIONS (crystal) As 0.288386168 0.288386167 0.288386167 As -0.288386168 -0.288386167 -0.288386167 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1570920), wk = 0.0625000 k( 2) = ( -0.1459894 -0.2528610 0.2618200), wk = 0.1875000 k( 3) = ( 0.2919788 0.5057221 -0.0523640), wk = 0.1875000 k( 4) = ( 0.1459894 0.2528610 0.0523640), wk = 0.1875000 k( 5) = ( -0.2919788 0.0000000 0.3665479), wk = 0.1875000 k( 6) = ( 0.1459894 0.7585831 0.0523640), wk = 0.3750000 k( 7) = ( 0.0000000 0.5057221 0.1570920), wk = 0.3750000 k( 8) = ( 0.5839576 0.0000000 -0.2618200), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4712759), wk = 0.0625000 k( 10) = ( 0.4379682 0.7585831 0.1570919), wk = 0.1875000 extrapolated charge 9.42691, renormalised to 10.00000 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 1.2 secs total energy = -25.42251891 Ry Harris-Foulkes estimate = -25.06269548 Ry estimated scf accuracy < 0.00179419 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-05, avg # of iterations = 3.1 total cpu time spent up to now is 1.4 secs total energy = -25.42512981 Ry Harris-Foulkes estimate = -25.42560360 Ry estimated scf accuracy < 0.00109843 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -25.42510347 Ry Harris-Foulkes estimate = -25.42518774 Ry estimated scf accuracy < 0.00020008 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 1.6 secs total energy = -25.42509497 Ry Harris-Foulkes estimate = -25.42511645 Ry estimated scf accuracy < 0.00003626 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.7 secs total energy = -25.42510806 Ry Harris-Foulkes estimate = -25.42510827 Ry estimated scf accuracy < 0.00000106 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-08, avg # of iterations = 1.1 total cpu time spent up to now is 1.8 secs total energy = -25.42510778 Ry Harris-Foulkes estimate = -25.42510808 Ry estimated scf accuracy < 0.00000055 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.49E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1571 ( 531 PWs) bands (ev): -6.6362 5.5053 6.7247 6.7247 9.4284 12.0072 12.6618 12.6618 17.2969 k =-0.1460-0.2529 0.2618 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.2920 0.5057-0.0524 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1460 0.2529 0.0524 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k =-0.2920 0.0000 0.3665 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.1460 0.7586 0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.0000 0.5057 0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.5840 0.0000-0.2618 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.0000 0.0000 0.4713 ( 522 PWs) bands (ev): -5.3526 1.3108 6.6337 6.6337 8.4952 10.7707 10.7707 12.9974 18.4444 k = 0.4380 0.7586 0.1571 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 the Fermi energy is 10.7136 ev ! total energy = -25.42510785 Ry Harris-Foulkes estimate = -25.42510785 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.13714908 atom 2 type 1 force = 0.00000000 0.00000000 0.13714908 Total force = 0.193958 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 299.79 0.00234211 0.00000000 0.00000000 344.54 0.00 0.00 0.00000000 0.00234211 0.00000000 0.00 344.54 0.00 0.00000000 0.00000000 0.00142963 0.00 0.00 210.31 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.551671050 0.000000000 0.751639015 -0.275835358 0.477761098 0.751639025 -0.275835358 -0.477761098 0.751639025 new unit-cell volume = 204.7566 (a.u.)^3 new positions in cryst coord As 0.283819529 0.283819525 0.283819525 As -0.283819529 -0.283819525 -0.283819525 new positions in cart coord (alat unit) As 0.000000097 0.000000000 0.639989493 As -0.000000097 0.000000000 -0.639989493 Ekin = 0.03043213 Ry T = 1067.7 K Etot = -24.60588496 new unit-cell volume = 204.75665 a.u.^3 ( 30.34180 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.551671050 0.000000000 0.751639015 -0.275835358 0.477761098 0.751639025 -0.275835358 -0.477761098 0.751639025 ATOMIC_POSITIONS (crystal) As 0.283819529 0.283819525 0.283819525 As -0.283819529 -0.283819525 -0.283819525 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1663032), wk = 0.0625000 k( 2) = ( -0.1510562 -0.2616370 0.2771721), wk = 0.1875000 k( 3) = ( 0.3021125 0.5232741 -0.0554345), wk = 0.1875000 k( 4) = ( 0.1510562 0.2616370 0.0554344), wk = 0.1875000 k( 5) = ( -0.3021125 0.0000000 0.3880409), wk = 0.1875000 k( 6) = ( 0.1510562 0.7849111 0.0554344), wk = 0.3750000 k( 7) = ( 0.0000000 0.5232741 0.1663032), wk = 0.3750000 k( 8) = ( 0.6042249 0.0000000 -0.2771721), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4989097), wk = 0.0625000 k( 10) = ( 0.4531687 0.7849111 0.1663032), wk = 0.1875000 extrapolated charge 8.66610, renormalised to 10.00000 total cpu time spent up to now is 2.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 total cpu time spent up to now is 2.3 secs total energy = -25.36409080 Ry Harris-Foulkes estimate = -24.44606117 Ry estimated scf accuracy < 0.00992657 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-05, avg # of iterations = 2.9 total cpu time spent up to now is 2.5 secs total energy = -25.37482527 Ry Harris-Foulkes estimate = -25.37664034 Ry estimated scf accuracy < 0.00396951 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 2.6 secs total energy = -25.37481341 Ry Harris-Foulkes estimate = -25.37508289 Ry estimated scf accuracy < 0.00054793 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-06, avg # of iterations = 1.8 total cpu time spent up to now is 2.7 secs total energy = -25.37485625 Ry Harris-Foulkes estimate = -25.37487313 Ry estimated scf accuracy < 0.00003007 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 2.9 total cpu time spent up to now is 2.8 secs total energy = -25.37487639 Ry Harris-Foulkes estimate = -25.37487682 Ry estimated scf accuracy < 0.00000244 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.1 total cpu time spent up to now is 2.9 secs total energy = -25.37487563 Ry Harris-Foulkes estimate = -25.37487641 Ry estimated scf accuracy < 0.00000142 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-08, avg # of iterations = 1.9 total cpu time spent up to now is 3.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -5.7521 7.8337 8.5868 8.5868 11.9288 14.4502 14.8759 14.8759 18.9891 k =-0.1511-0.2616 0.2772 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9845 k = 0.3021 0.5233-0.0554 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 k = 0.1511 0.2616 0.0554 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6785 k =-0.3021 0.0000 0.3880 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.1511 0.7849 0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.0000 0.5233 0.1663 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9499 19.3900 k = 0.6042 0.0000-0.2772 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.0000 0.0000 0.4989 ( 522 PWs) bands (ev): -4.0635 2.4507 8.4748 8.4748 11.0475 12.4211 12.4211 15.0027 21.1259 k = 0.4532 0.7849 0.1663 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 the Fermi energy is 12.4553 ev ! total energy = -25.37487581 Ry Harris-Foulkes estimate = -25.37487581 Ry estimated scf accuracy < 6.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.15968889 atom 2 type 1 force = 0.00000000 0.00000000 0.15968889 Total force = 0.225834 Total SCF correction = 0.000010 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 521.23 0.00397352 0.00000000 0.00000000 584.53 0.00 0.00 0.00000000 0.00397352 0.00000000 0.00 584.53 0.00 0.00000000 0.00000000 0.00268271 0.00 0.00 394.64 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.557922242 0.000000000 0.696904761 -0.278960964 0.483174788 0.696904788 -0.278960964 -0.483174788 0.696904788 new unit-cell volume = 194.1731 (a.u.)^3 new positions in cryst coord As 0.275031810 0.275031803 0.275031803 As -0.275031810 -0.275031803 -0.275031803 new positions in cart coord (alat unit) As 0.000000090 0.000000000 0.575012938 As -0.000000090 0.000000000 -0.575012938 Ekin = 0.07434736 Ry T = 1838.2 K Etot = -24.60457464 new unit-cell volume = 194.17312 a.u.^3 ( 28.77349 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.557922242 0.000000000 0.696904761 -0.278960964 0.483174788 0.696904788 -0.278960964 -0.483174788 0.696904788 ATOMIC_POSITIONS (crystal) As 0.275031810 0.275031803 0.275031803 As -0.275031810 -0.275031803 -0.275031803 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1793645), wk = 0.0625000 k( 2) = ( -0.1493637 -0.2587056 0.2989409), wk = 0.1875000 k( 3) = ( 0.2987275 0.5174111 -0.0597882), wk = 0.1875000 k( 4) = ( 0.1493637 0.2587056 0.0597882), wk = 0.1875000 k( 5) = ( -0.2987275 0.0000000 0.4185173), wk = 0.1875000 k( 6) = ( 0.1493637 0.7761167 0.0597882), wk = 0.3750000 k( 7) = ( 0.0000000 0.5174111 0.1793645), wk = 0.3750000 k( 8) = ( 0.5974549 0.0000000 -0.2989410), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5380936), wk = 0.0625000 k( 10) = ( 0.4480912 0.7761167 0.1793645), wk = 0.1875000 extrapolated charge 9.45497, renormalised to 10.00000 total cpu time spent up to now is 3.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.3 total cpu time spent up to now is 3.5 secs total energy = -25.37635602 Ry Harris-Foulkes estimate = -24.96965185 Ry estimated scf accuracy < 0.00119043 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 2.6 total cpu time spent up to now is 3.6 secs total energy = -25.37727046 Ry Harris-Foulkes estimate = -25.37745384 Ry estimated scf accuracy < 0.00043018 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-06, avg # of iterations = 1.0 total cpu time spent up to now is 3.7 secs total energy = -25.37726202 Ry Harris-Foulkes estimate = -25.37729302 Ry estimated scf accuracy < 0.00006046 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-07, avg # of iterations = 2.2 total cpu time spent up to now is 3.8 secs total energy = -25.37727252 Ry Harris-Foulkes estimate = -25.37727434 Ry estimated scf accuracy < 0.00000362 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-08, avg # of iterations = 1.3 total cpu time spent up to now is 3.9 secs total energy = -25.37727270 Ry Harris-Foulkes estimate = -25.37727282 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.04E-09, avg # of iterations = 2.9 total cpu time spent up to now is 4.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1794 ( 531 PWs) bands (ev): -5.0853 9.1217 9.3993 9.3993 12.9832 16.0292 16.1461 16.1461 19.0560 k =-0.1494-0.2587 0.2989 ( 522 PWs) bands (ev): -3.6669 3.1355 9.4105 10.0630 13.1269 13.8912 14.7038 17.9083 19.2387 k = 0.2987 0.5174-0.0598 ( 520 PWs) bands (ev): -1.8905 0.0326 8.6120 9.8052 11.1187 15.2829 16.0062 19.1708 22.8104 k = 0.1494 0.2587 0.0598 ( 525 PWs) bands (ev): -4.4721 5.0339 8.2520 10.6361 12.5098 16.3548 17.0666 18.4957 20.0397 k =-0.2987 0.0000 0.4185 ( 519 PWs) bands (ev): -2.8981 4.8664 6.6617 6.8556 9.6824 14.6638 17.9194 18.3698 19.7814 k = 0.1494 0.7761 0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3695 22.2617 k = 0.0000 0.5174 0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1848 k = 0.5975 0.0000-0.2989 ( 510 PWs) bands (ev): -1.2505 2.3615 5.4550 6.2490 8.4988 14.8781 20.4966 21.9122 23.5508 k = 0.0000 0.0000 0.5381 ( 522 PWs) bands (ev): -2.7665 3.2077 9.2870 9.2870 11.6207 12.5640 12.5640 14.7909 22.8680 k = 0.4481 0.7761 0.1794 ( 520 PWs) bands (ev): -1.0542 2.0706 4.7416 7.8235 9.8855 14.9307 16.0220 19.6201 21.8487 the Fermi energy is 13.1129 ev ! total energy = -25.37727276 Ry Harris-Foulkes estimate = -25.37727278 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.09622820 atom 2 type 1 force = 0.00000000 0.00000000 0.09622820 Total force = 0.136087 Total SCF correction = 0.000088 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 558.35 0.00376446 0.00000000 0.00000000 553.77 0.00 0.00 0.00000000 0.00376446 0.00000000 0.00 553.77 0.00 0.00000000 0.00000000 0.00385784 0.00 0.00 567.51 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.564949004 0.000000000 0.730143077 -0.282474354 0.489260142 0.730143112 -0.282474354 -0.489260142 0.730143112 new unit-cell volume = 208.5906 (a.u.)^3 new positions in cryst coord As 0.262508269 0.262508260 0.262508260 As -0.262508269 -0.262508260 -0.262508260 new positions in cart coord (alat unit) As 0.000000083 0.000000000 0.575005790 As -0.000000083 0.000000000 -0.575005790 Ekin = 0.10396595 Ry T = 2441.4 K Etot = -24.61332569 new unit-cell volume = 208.59063 a.u.^3 ( 30.90994 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.564949004 0.000000000 0.730143077 -0.282474354 0.489260142 0.730143112 -0.282474354 -0.489260142 0.730143112 ATOMIC_POSITIONS (crystal) As 0.262508269 0.262508260 0.262508260 As -0.262508269 -0.262508260 -0.262508260 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1711993), wk = 0.0625000 k( 2) = ( -0.1475060 -0.2554878 0.2853322), wk = 0.1875000 k( 3) = ( 0.2950119 0.5109756 -0.0570665), wk = 0.1875000 k( 4) = ( 0.1475060 0.2554878 0.0570664), wk = 0.1875000 k( 5) = ( -0.2950119 0.0000000 0.3994651), wk = 0.1875000 k( 6) = ( 0.1475060 0.7664634 0.0570664), wk = 0.3750000 k( 7) = ( 0.0000000 0.5109756 0.1711993), wk = 0.3750000 k( 8) = ( 0.5900238 0.0000000 -0.2853323), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5135980), wk = 0.0625000 k( 10) = ( 0.4425179 0.7664634 0.1711993), wk = 0.1875000 extrapolated charge 10.69116, renormalised to 10.00000 total cpu time spent up to now is 4.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.5 total cpu time spent up to now is 4.5 secs total energy = -25.43947909 Ry Harris-Foulkes estimate = -25.95110354 Ry estimated scf accuracy < 0.00169024 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-05, avg # of iterations = 2.9 total cpu time spent up to now is 4.6 secs total energy = -25.44104340 Ry Harris-Foulkes estimate = -25.44125354 Ry estimated scf accuracy < 0.00052918 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.29E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.7 secs total energy = -25.44103738 Ry Harris-Foulkes estimate = -25.44107117 Ry estimated scf accuracy < 0.00007798 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.80E-07, avg # of iterations = 2.1 total cpu time spent up to now is 4.8 secs total energy = -25.44104668 Ry Harris-Foulkes estimate = -25.44104692 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-09, avg # of iterations = 2.7 total cpu time spent up to now is 4.9 secs total energy = -25.44104718 Ry Harris-Foulkes estimate = -25.44104729 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-09, avg # of iterations = 2.1 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1712 ( 531 PWs) bands (ev): -5.3964 7.1786 8.8207 8.8207 11.3672 15.2418 15.2419 15.3242 17.5418 k =-0.1475-0.2555 0.2853 ( 522 PWs) bands (ev): -4.0360 2.3472 8.0024 9.9164 11.8784 11.9249 13.2232 17.3388 18.1939 k = 0.2950 0.5110-0.0571 ( 520 PWs) bands (ev): -2.2300 -0.6489 8.2187 8.6343 9.7454 13.3450 14.6560 16.6039 21.9442 k = 0.1475 0.2555 0.0571 ( 525 PWs) bands (ev): -4.7882 4.1498 7.7366 9.2808 11.2218 14.5614 15.9192 16.5758 17.7303 k =-0.2950 0.0000 0.3995 ( 519 PWs) bands (ev): -3.3248 3.4960 6.1759 6.4418 8.0637 14.3237 16.7203 17.1116 17.6522 k = 0.1475 0.7665 0.0571 ( 510 PWs) bands (ev): -1.0183 0.2429 3.9126 5.8016 10.2888 13.9945 16.2375 19.8681 20.0872 k = 0.0000 0.5110 0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8090 7.7148 11.1288 14.0121 16.5949 17.1006 18.2610 k = 0.5900 0.0000-0.2853 ( 510 PWs) bands (ev): -1.7757 2.0161 3.9183 5.8560 7.2753 14.1796 18.5886 19.3429 21.6749 k = 0.0000 0.0000 0.5136 ( 522 PWs) bands (ev): -3.1781 1.6312 8.9877 8.9877 11.2057 11.3993 11.3993 13.1514 21.3720 k = 0.4425 0.7665 0.1712 ( 520 PWs) bands (ev): -1.3686 0.4989 4.3931 7.4239 8.8240 13.6713 15.1519 18.4072 20.3389 the Fermi energy is 11.8653 ev ! total energy = -25.44104720 Ry Harris-Foulkes estimate = -25.44104722 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.02044828 atom 2 type 1 force = 0.00000000 0.00000000 0.02044828 Total force = 0.028918 Total SCF correction = 0.000106 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 325.27 0.00204483 0.00000000 0.00000000 300.81 0.00 0.00 0.00000000 0.00204483 0.00000000 0.00 300.81 0.00 0.00000000 0.00000000 0.00254382 0.00 0.00 374.21 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.560390988 0.000000000 0.734537466 -0.280195343 0.485312785 0.734537501 -0.280195343 -0.485312785 0.734537501 new unit-cell volume = 206.4736 (a.u.)^3 new positions in cryst coord As 0.249599085 0.249599092 0.249599092 As -0.249599085 -0.249599092 -0.249599092 new positions in cart coord (alat unit) As 0.000000072 0.000000000 0.550019666 As -0.000000072 0.000000000 -0.550019666 Ekin = 0.12667617 Ry T = 2942.2 K Etot = -24.60538577 new unit-cell volume = 206.47362 a.u.^3 ( 30.59623 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.560390988 0.000000000 0.734537466 -0.280195343 0.485312785 0.734537501 -0.280195343 -0.485312785 0.734537501 ATOMIC_POSITIONS (crystal) As 0.249599085 0.249599092 0.249599092 As -0.249599085 -0.249599092 -0.249599092 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1701751), wk = 0.0625000 k( 2) = ( -0.1487057 -0.2575659 0.2836252), wk = 0.1875000 k( 3) = ( 0.2974114 0.5151317 -0.0567251), wk = 0.1875000 k( 4) = ( 0.1487057 0.2575659 0.0567250), wk = 0.1875000 k( 5) = ( -0.2974114 0.0000000 0.3970753), wk = 0.1875000 k( 6) = ( 0.1487057 0.7726976 0.0567250), wk = 0.3750000 k( 7) = ( 0.0000000 0.5151317 0.1701751), wk = 0.3750000 k( 8) = ( 0.5948229 0.0000000 -0.2836253), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5105253), wk = 0.0625000 k( 10) = ( 0.4461172 0.7726976 0.1701751), wk = 0.1875000 extrapolated charge 9.89747, renormalised to 10.00000 total cpu time spent up to now is 5.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 5.6 secs total energy = -25.44089309 Ry Harris-Foulkes estimate = -25.36551760 Ry estimated scf accuracy < 0.00214389 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-05, avg # of iterations = 1.0 total cpu time spent up to now is 5.6 secs total energy = -25.44092757 Ry Harris-Foulkes estimate = -25.44095355 Ry estimated scf accuracy < 0.00014660 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 1.0 total cpu time spent up to now is 5.7 secs total energy = -25.44093218 Ry Harris-Foulkes estimate = -25.44093244 Ry estimated scf accuracy < 0.00000110 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 3.1 total cpu time spent up to now is 5.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1702 ( 531 PWs) bands (ev): -5.2862 7.2183 9.1627 9.1627 11.5072 15.5958 15.5958 16.0294 17.5680 k =-0.1487-0.2576 0.2836 ( 522 PWs) bands (ev): -3.9035 2.5234 8.0021 10.9810 11.1823 12.1298 13.5198 17.9542 17.9838 k = 0.2974 0.5151-0.0567 ( 520 PWs) bands (ev): -2.0236 -0.5316 8.6082 8.6991 9.8307 13.2370 14.9719 16.4848 22.0434 k = 0.1487 0.2576 0.0567 ( 525 PWs) bands (ev): -4.6634 4.4108 8.0488 9.3082 11.3775 14.6194 16.6022 16.8622 17.0345 k =-0.2974 0.0000 0.3971 ( 519 PWs) bands (ev): -3.1794 3.5380 6.6153 6.7296 7.8243 14.8054 17.0245 17.5043 17.6402 k = 0.1487 0.7727 0.0567 ( 510 PWs) bands (ev): -0.7767 0.3999 4.0340 5.7798 10.4411 14.2194 16.5249 20.0466 20.5226 k = 0.0000 0.5151 0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8634 17.5242 18.3130 k = 0.5948 0.0000-0.2836 ( 510 PWs) bands (ev): -1.5945 2.5290 3.5903 6.1303 7.2824 14.4921 18.7182 19.2615 21.9625 k = 0.0000 0.0000 0.5105 ( 522 PWs) bands (ev): -3.0064 1.4691 9.4445 9.4445 11.5032 11.5032 11.8451 13.2107 21.6660 k = 0.4461 0.7727 0.1702 ( 520 PWs) bands (ev): -0.9277 0.1622 4.6222 7.7490 8.9776 13.8587 15.6740 18.7863 20.7189 the Fermi energy is 11.5163 ev ! total energy = -25.44093299 Ry Harris-Foulkes estimate = -25.44093301 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00123306 atom 2 type 1 force = 0.00000000 0.00000000 -0.00123306 Total force = 0.001744 Total SCF correction = 0.000128 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 312.45 0.00189638 0.00000000 0.00000000 278.97 0.00 0.00 0.00000000 0.00189638 0.00000000 0.00 278.97 0.00 0.00000000 0.00000000 0.00257925 0.00 0.00 379.42 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.546101824 0.000000000 0.743593724 -0.273050758 0.472938000 0.743593755 -0.273050758 -0.472938000 0.743593755 new unit-cell volume = 198.4958 (a.u.)^3 new positions in cryst coord As 0.249837169 0.249837176 0.249837176 As -0.249837169 -0.249837176 -0.249837176 new positions in cart coord (alat unit) As 0.000000073 0.000000000 0.557332079 As -0.000000073 0.000000000 -0.557332079 Ekin = 0.12161361 Ry T = 3207.1 K Etot = -24.61752970 new unit-cell volume = 198.49578 a.u.^3 ( 29.41404 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.546101824 0.000000000 0.743593724 -0.273050758 0.472938000 0.743593755 -0.273050758 -0.472938000 0.743593755 ATOMIC_POSITIONS (crystal) As 0.249837169 0.249837176 0.249837176 As -0.249837169 -0.249837176 -0.249837176 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1681025), wk = 0.0625000 k( 2) = ( -0.1525967 -0.2643053 0.2801709), wk = 0.1875000 k( 3) = ( 0.3051934 0.5286105 -0.0560342), wk = 0.1875000 k( 4) = ( 0.1525967 0.2643053 0.0560342), wk = 0.1875000 k( 5) = ( -0.3051934 0.0000000 0.3922393), wk = 0.1875000 k( 6) = ( 0.1525967 0.7929158 0.0560342), wk = 0.3750000 k( 7) = ( 0.0000000 0.5286105 0.1681025), wk = 0.3750000 k( 8) = ( 0.6103869 0.0000000 -0.2801710), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5043076), wk = 0.0625000 k( 10) = ( 0.4577902 0.7929158 0.1681025), wk = 0.1875000 extrapolated charge 9.59810, renormalised to 10.00000 total cpu time spent up to now is 6.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.4 total cpu time spent up to now is 6.3 secs total energy = -25.42385368 Ry Harris-Foulkes estimate = -25.12212697 Ry estimated scf accuracy < 0.00024045 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-06, avg # of iterations = 3.2 total cpu time spent up to now is 6.5 secs total energy = -25.42425661 Ry Harris-Foulkes estimate = -25.42429047 Ry estimated scf accuracy < 0.00009650 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.65E-07, avg # of iterations = 1.0 total cpu time spent up to now is 6.5 secs total energy = -25.42424822 Ry Harris-Foulkes estimate = -25.42425895 Ry estimated scf accuracy < 0.00002150 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-07, avg # of iterations = 2.0 total cpu time spent up to now is 6.6 secs total energy = -25.42425076 Ry Harris-Foulkes estimate = -25.42425082 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-09, avg # of iterations = 2.7 total cpu time spent up to now is 6.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1681 ( 531 PWs) bands (ev): -5.0749 7.7095 9.9734 9.9734 12.4245 16.3609 16.3609 17.0867 18.3674 k =-0.1526-0.2643 0.2802 ( 522 PWs) bands (ev): -3.6507 3.1508 8.1474 11.7358 11.8246 12.9727 14.5725 18.5393 18.9233 k = 0.3052 0.5286-0.0560 ( 520 PWs) bands (ev): -1.6113 -0.1231 8.9150 9.2315 10.5642 13.8438 15.7819 16.8563 22.1174 k = 0.1526 0.2643 0.0560 ( 525 PWs) bands (ev): -4.3993 5.1406 8.7475 9.7723 11.8682 15.4649 17.1157 17.2120 17.8532 k =-0.3052 0.0000 0.3922 ( 519 PWs) bands (ev): -2.9316 3.9806 7.1572 7.4397 8.3307 15.3061 18.0294 18.7236 19.0078 k = 0.1526 0.7929 0.0560 ( 510 PWs) bands (ev): -0.3928 0.9427 4.4355 5.9991 11.0495 15.1749 17.2906 20.9157 21.7255 k = 0.0000 0.5286 0.1681 ( 521 PWs) bands (ev): -2.3076 1.6802 6.5177 8.0130 11.8444 14.2293 17.6957 18.3678 19.3064 k = 0.6104 0.0000-0.2802 ( 510 PWs) bands (ev): -1.1830 3.0634 3.8506 6.7840 7.7352 14.7764 19.5450 20.3416 23.1049 k = 0.0000 0.0000 0.5043 ( 522 PWs) bands (ev): -2.8289 1.6408 10.2889 10.2889 12.3312 12.3312 13.0492 14.4185 22.4392 k = 0.4578 0.7929 0.1681 ( 520 PWs) bands (ev): -0.6922 0.4676 5.0867 8.4450 9.8219 14.8138 17.0239 19.9812 21.1603 the Fermi energy is 12.3808 ev ! total energy = -25.42425082 Ry Harris-Foulkes estimate = -25.42425082 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00059500 atom 2 type 1 force = 0.00000000 0.00000000 -0.00059500 Total force = 0.000841 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 394.28 0.00258680 0.00000000 0.00000000 380.53 0.00 0.00 0.00000000 0.00258680 0.00000000 0.00 380.53 0.00 0.00000000 0.00000000 0.00286718 0.00 0.00 421.78 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.523762304 0.000000000 0.739444796 -0.261881002 0.453591403 0.739444828 -0.261881002 -0.453591403 0.739444828 new unit-cell volume = 181.5693 (a.u.)^3 new positions in cryst coord As 0.250081295 0.250081303 0.250081303 As -0.250081295 -0.250081303 -0.250081303 new positions in cart coord (alat unit) As 0.000000071 0.000000000 0.554763963 As -0.000000071 0.000000000 -0.554763963 Ekin = 0.01482589 Ry T = 2759.3 K Etot = -24.73475136 new unit-cell volume = 181.56935 a.u.^3 ( 26.90580 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.523762304 0.000000000 0.739444796 -0.261881002 0.453591403 0.739444828 -0.261881002 -0.453591403 0.739444828 ATOMIC_POSITIONS (crystal) As 0.250081295 0.250081303 0.250081303 As -0.250081295 -0.250081303 -0.250081303 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1690457), wk = 0.0625000 k( 2) = ( -0.1591053 -0.2755784 0.2817429), wk = 0.1875000 k( 3) = ( 0.3182106 0.5511568 -0.0563486), wk = 0.1875000 k( 4) = ( 0.1591053 0.2755784 0.0563486), wk = 0.1875000 k( 5) = ( -0.3182105 0.0000000 0.3944401), wk = 0.1875000 k( 6) = ( 0.1591053 0.8267352 0.0563486), wk = 0.3750000 k( 7) = ( 0.0000000 0.5511568 0.1690457), wk = 0.3750000 k( 8) = ( 0.6364211 0.0000000 -0.2817430), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5071372), wk = 0.0625000 k( 10) = ( 0.4773159 0.8267352 0.1690457), wk = 0.1875000 extrapolated charge 9.06781, renormalised to 10.00000 total cpu time spent up to now is 7.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 7.2 secs total energy = -25.36345655 Ry Harris-Foulkes estimate = -24.63671633 Ry estimated scf accuracy < 0.00149567 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-05, avg # of iterations = 3.3 total cpu time spent up to now is 7.4 secs total energy = -25.36528768 Ry Harris-Foulkes estimate = -25.36539796 Ry estimated scf accuracy < 0.00030363 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.04E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.4 secs total energy = -25.36527128 Ry Harris-Foulkes estimate = -25.36529669 Ry estimated scf accuracy < 0.00005319 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.32E-07, avg # of iterations = 2.0 total cpu time spent up to now is 7.5 secs total energy = -25.36525930 Ry Harris-Foulkes estimate = -25.36525961 Ry estimated scf accuracy < 0.00000083 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.30E-09, avg # of iterations = 2.4 total cpu time spent up to now is 7.6 secs total energy = -25.36527753 Ry Harris-Foulkes estimate = -25.36527765 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 1.9 total cpu time spent up to now is 7.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1690 ( 531 PWs) bands (ev): -4.5367 8.9917 11.6538 11.6538 14.8969 18.2007 18.2007 19.3522 19.6810 k =-0.1591-0.2756 0.2817 ( 522 PWs) bands (ev): -3.0131 4.5143 8.9827 13.3296 13.4153 14.8042 16.8599 20.3012 20.9831 k = 0.3182 0.5512-0.0563 ( 520 PWs) bands (ev): -0.7153 0.8355 9.8747 10.6172 12.1907 15.4109 17.7606 18.3498 23.2769 k = 0.1591 0.2756 0.0563 ( 525 PWs) bands (ev): -3.7797 6.7306 10.2153 11.0631 13.2400 17.4483 18.2720 18.9231 19.8953 k =-0.3182 0.0000 0.3944 ( 519 PWs) bands (ev): -2.2630 5.1594 8.3877 8.8420 9.7415 16.5575 20.2016 21.2203 21.8574 k = 0.1591 0.8267 0.0563 ( 510 PWs) bands (ev): 0.5716 2.1358 5.3618 6.8063 12.5736 17.2153 18.9747 22.9916 23.7660 k = 0.0000 0.5512 0.1690 ( 521 PWs) bands (ev): -1.4933 2.9298 7.5615 9.1316 13.2001 15.6454 19.4327 20.5966 21.5841 k = 0.6364 0.0000-0.2817 ( 510 PWs) bands (ev): -0.2149 4.3519 4.5941 8.0913 9.0036 15.8031 21.5770 22.7448 25.6590 k = 0.0000 0.0000 0.5071 ( 522 PWs) bands (ev): -2.2378 2.4119 11.9695 11.9695 14.0561 14.0561 15.4576 16.7868 24.4883 k = 0.4773 0.8267 0.1690 ( 520 PWs) bands (ev): 0.0561 1.3657 6.1299 9.8658 11.5721 16.8142 19.7024 21.9540 23.2164 the Fermi energy is 14.3696 ev ! total energy = -25.36527755 Ry Harris-Foulkes estimate = -25.36527756 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00044356 atom 2 type 1 force = 0.00000000 0.00000000 0.00044356 Total force = 0.000627 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 659.96 0.00451636 0.00000000 0.00000000 664.38 0.00 0.00 0.00000000 0.00451636 0.00000000 0.00 664.38 0.00 0.00000000 0.00000000 0.00442628 0.00 0.00 651.13 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.536640417 0.000000000 0.757278280 -0.268320064 0.464744179 0.757278319 -0.268320064 -0.464744179 0.757278319 new unit-cell volume = 195.2048 (a.u.)^3 new positions in cryst coord As 0.250071440 0.250071448 0.250071448 As -0.250071440 -0.250071448 -0.250071448 new positions in cart coord (alat unit) As 0.000000068 0.000000000 0.568121042 As -0.000000068 0.000000000 -0.568121042 Ekin = 0.01401464 Ry T = 2435.4 K Etot = -24.73412114 new unit-cell volume = 195.20484 a.u.^3 ( 28.92637 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.536640417 0.000000000 0.757278280 -0.268320064 0.464744179 0.757278319 -0.268320064 -0.464744179 0.757278319 ATOMIC_POSITIONS (crystal) As 0.250071440 0.250071448 0.250071448 As -0.250071440 -0.250071448 -0.250071448 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1650648), wk = 0.0625000 k( 2) = ( -0.1552871 -0.2689652 0.2751080), wk = 0.1875000 k( 3) = ( 0.3105743 0.5379304 -0.0550216), wk = 0.1875000 k( 4) = ( 0.1552871 0.2689652 0.0550216), wk = 0.1875000 k( 5) = ( -0.3105742 0.0000000 0.3851513), wk = 0.1875000 k( 6) = ( 0.1552871 0.8068955 0.0550216), wk = 0.3750000 k( 7) = ( 0.0000000 0.5379304 0.1650648), wk = 0.3750000 k( 8) = ( 0.6211485 0.0000000 -0.2751081), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4951944), wk = 0.0625000 k( 10) = ( 0.4658614 0.8068955 0.1650648), wk = 0.1875000 extrapolated charge 10.69849, renormalised to 10.00000 total cpu time spent up to now is 8.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 8.2 secs total energy = -25.41438783 Ry Harris-Foulkes estimate = -25.95207086 Ry estimated scf accuracy < 0.00034218 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.42E-06, avg # of iterations = 3.0 total cpu time spent up to now is 8.4 secs total energy = -25.41543694 Ry Harris-Foulkes estimate = -25.41553022 Ry estimated scf accuracy < 0.00029414 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.94E-06, avg # of iterations = 1.0 total cpu time spent up to now is 8.4 secs total energy = -25.41539413 Ry Harris-Foulkes estimate = -25.41544183 Ry estimated scf accuracy < 0.00009008 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.01E-07, avg # of iterations = 2.0 total cpu time spent up to now is 8.5 secs total energy = -25.41540458 Ry Harris-Foulkes estimate = -25.41540779 Ry estimated scf accuracy < 0.00000599 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.99E-08, avg # of iterations = 2.0 total cpu time spent up to now is 8.6 secs total energy = -25.41540527 Ry Harris-Foulkes estimate = -25.41540553 Ry estimated scf accuracy < 0.00000053 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 1.5 total cpu time spent up to now is 8.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1651 ( 531 PWs) bands (ev): -4.9897 7.6625 10.4708 10.4708 12.9256 16.7191 16.7192 17.6770 18.4333 k =-0.1553-0.2690 0.2751 ( 522 PWs) bands (ev): -3.5473 3.4729 8.0242 12.1337 12.1512 13.4304 15.0669 18.6045 19.5600 k = 0.3106 0.5379-0.0550 ( 520 PWs) bands (ev): -1.3873 0.0680 8.8499 9.5747 10.9359 14.0808 16.1121 16.7107 21.7410 k = 0.1553 0.2690 0.0550 ( 525 PWs) bands (ev): -4.2731 5.5183 9.1662 9.8511 12.0267 15.6573 17.0250 17.3948 18.1977 k =-0.3106 0.0000 0.3852 ( 519 PWs) bands (ev): -2.8482 4.0271 7.4429 7.8964 8.5957 15.5332 18.5722 19.4201 19.7846 k = 0.1553 0.8069 0.0550 ( 510 PWs) bands (ev): -0.2404 1.2293 4.6494 5.9967 11.2618 15.6648 17.7725 21.1139 22.2284 k = 0.0000 0.5379 0.1651 ( 521 PWs) bands (ev): -2.1218 1.9797 6.7004 8.1471 11.8726 14.2445 18.0038 18.8865 19.7900 k = 0.6211 0.0000-0.2751 ( 510 PWs) bands (ev): -0.9849 3.2585 3.9321 7.1984 7.9004 14.8193 19.8182 20.7930 23.4604 k = 0.0000 0.0000 0.4952 ( 522 PWs) bands (ev): -2.8132 1.5512 10.8231 10.8231 12.8232 12.8232 13.8251 15.1760 22.6844 k = 0.4659 0.8069 0.1651 ( 520 PWs) bands (ev): -0.6659 0.5115 5.3673 8.8738 10.3257 15.3507 17.8501 20.4457 21.3789 the Fermi energy is 12.8762 ev ! total energy = -25.41540532 Ry Harris-Foulkes estimate = -25.41540532 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00027752 atom 2 type 1 force = 0.00000000 0.00000000 0.00027752 Total force = 0.000392 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 435.67 0.00300170 0.00000000 0.00000000 441.57 0.00 0.00 0.00000000 0.00300170 0.00000000 0.00 441.56 0.00 0.00000000 0.00000000 0.00288142 0.00 0.00 423.87 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.533163686 0.000000000 0.752296355 -0.266581704 0.461733241 0.752296395 -0.266581704 -0.461733241 0.752296395 new unit-cell volume = 191.4161 (a.u.)^3 new positions in cryst coord As 0.250056515 0.250056523 0.250056523 As -0.250056515 -0.250056523 -0.250056523 new positions in cart coord (alat unit) As 0.000000065 0.000000000 0.564349847 As -0.000000065 0.000000000 -0.564349847 Ekin = 0.00327526 Ry T = 2145.3 K Etot = -24.74864220 new unit-cell volume = 191.41607 a.u.^3 ( 28.36494 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533163686 0.000000000 0.752296355 -0.266581704 0.461733241 0.752296395 -0.266581704 -0.461733241 0.752296395 ATOMIC_POSITIONS (crystal) As 0.250056515 0.250056523 0.250056523 As -0.250056515 -0.250056523 -0.250056523 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1661579), wk = 0.0625000 k( 2) = ( -0.1562997 -0.2707191 0.2769299), wk = 0.1875000 k( 3) = ( 0.3125995 0.5414382 -0.0553860), wk = 0.1875000 k( 4) = ( 0.1562997 0.2707191 0.0553860), wk = 0.1875000 k( 5) = ( -0.3125995 0.0000000 0.3877018), wk = 0.1875000 k( 6) = ( 0.1562997 0.8121573 0.0553860), wk = 0.3750000 k( 7) = ( 0.0000000 0.5414382 0.1661579), wk = 0.3750000 k( 8) = ( 0.6251990 0.0000000 -0.2769299), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4984738), wk = 0.0625000 k( 10) = ( 0.4688992 0.8121573 0.1661579), wk = 0.1875000 extrapolated charge 9.80207, renormalised to 10.00000 total cpu time spent up to now is 9.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 9.2 secs total energy = -25.40343408 Ry Harris-Foulkes estimate = -25.25152675 Ry estimated scf accuracy < 0.00004858 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-07, avg # of iterations = 3.0 total cpu time spent up to now is 9.3 secs total energy = -25.40352164 Ry Harris-Foulkes estimate = -25.40352814 Ry estimated scf accuracy < 0.00001842 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-07, avg # of iterations = 1.0 total cpu time spent up to now is 9.4 secs total energy = -25.40351992 Ry Harris-Foulkes estimate = -25.40352206 Ry estimated scf accuracy < 0.00000420 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.20E-08, avg # of iterations = 2.0 total cpu time spent up to now is 9.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.1662 ( 531 PWs) bands (ev): -4.8699 8.0229 10.7809 10.7809 13.4362 17.1118 17.1118 18.1189 18.7630 k =-0.1563-0.2707 0.2769 ( 522 PWs) bands (ev): -3.4056 3.7501 8.2791 12.4585 12.4749 13.7930 15.5410 19.0560 19.9307 k = 0.3126 0.5414-0.0554 ( 520 PWs) bands (ev): -1.2091 0.2722 9.1223 9.8491 11.2669 14.4330 16.5489 17.1488 22.1510 k = 0.1563 0.2707 0.0554 ( 525 PWs) bands (ev): -4.1426 5.8420 9.4417 10.1708 12.3483 16.1458 17.3404 17.8012 18.6473 k =-0.3126 0.0000 0.3877 ( 519 PWs) bands (ev): -2.6925 4.3314 7.6915 8.1442 8.8950 15.8043 19.0034 19.8951 20.3293 k = 0.1563 0.8122 0.0554 ( 510 PWs) bands (ev): -0.0243 1.4701 4.8364 6.2111 11.6079 16.0740 18.0888 21.6207 22.6301 k = 0.0000 0.5414 0.1662 ( 521 PWs) bands (ev): -1.9551 2.2323 6.9274 8.4074 12.2247 14.6172 18.4009 19.3181 20.2651 k = 0.6252 0.0000-0.2769 ( 510 PWs) bands (ev): -0.7805 3.5512 4.1065 7.4325 8.1887 15.0807 20.2857 21.3098 24.0439 k = 0.0000 0.0000 0.4985 ( 522 PWs) bands (ev): -2.6598 1.7825 11.1239 11.1239 13.1478 13.1478 14.2547 15.5995 23.1578 k = 0.4689 0.8122 0.1662 ( 520 PWs) bands (ev): -0.4728 0.7397 5.5672 9.1343 10.6530 15.7361 18.3379 20.8528 21.8580 the Fermi energy is 13.2050 ev ! total energy = -25.40352041 Ry Harris-Foulkes estimate = -25.40352044 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00024311 atom 2 type 1 force = 0.00000000 0.00000000 0.00024311 Total force = 0.000344 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 490.01 0.00336856 0.00000000 0.00000000 495.53 0.00 0.00 0.00000000 0.00336856 0.00000000 0.00 495.53 0.00 0.00000000 0.00000000 0.00325594 0.00 0.00 478.97 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.529349391 0.000000000 0.750386616 -0.264674567 0.458429964 0.750386660 -0.264674567 -0.458429964 0.750386660 new unit-cell volume = 188.2081 (a.u.)^3 new positions in cryst coord As 0.250036496 0.250036504 0.250036504 As -0.250036496 -0.250036504 -0.250036504 new positions in cart coord (alat unit) As 0.000000060 0.000000000 0.562872154 As -0.000000060 0.000000000 -0.562872154 Ekin = 0.00063911 Ry T = 1909.4 K Etot = -24.75227118 new unit-cell volume = 188.20807 a.u.^3 ( 27.88956 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.529349391 0.000000000 0.750386616 -0.264674567 0.458429964 0.750386660 -0.264674567 -0.458429964 0.750386660 ATOMIC_POSITIONS (crystal) As 0.250036496 0.250036504 0.250036504 As -0.250036496 -0.250036504 -0.250036504 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1665808), wk = 0.0625000 k( 2) = ( -0.1574260 -0.2726698 0.2776347), wk = 0.1875000 k( 3) = ( 0.3148520 0.5453396 -0.0555270), wk = 0.1875000 k( 4) = ( 0.1574260 0.2726698 0.0555269), wk = 0.1875000 k( 5) = ( -0.3148519 0.0000000 0.3886885), wk = 0.1875000 k( 6) = ( 0.1574260 0.8180094 0.0555269), wk = 0.3750000 k( 7) = ( 0.0000000 0.5453396 0.1665808), wk = 0.3750000 k( 8) = ( 0.6297039 0.0000000 -0.2776347), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4997424), wk = 0.0625000 k( 10) = ( 0.4722780 0.8180094 0.1665807), wk = 0.1875000 extrapolated charge 9.82956, renormalised to 10.00000 total cpu time spent up to now is 9.8 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 9.9 secs total energy = -25.39214946 Ry Harris-Foulkes estimate = -25.26013507 Ry estimated scf accuracy < 0.00003299 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.30E-07, avg # of iterations = 3.0 total cpu time spent up to now is 10.0 secs total energy = -25.39221132 Ry Harris-Foulkes estimate = -25.39221595 Ry estimated scf accuracy < 0.00001332 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.1 secs total energy = -25.39221003 Ry Harris-Foulkes estimate = -25.39221161 Ry estimated scf accuracy < 0.00000312 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 10.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.7666 8.2783 11.0881 11.0881 13.9073 17.4612 17.4612 18.5371 19.0093 k =-0.1574-0.2727 0.2776 ( 522 PWs) bands (ev): -3.2833 4.0042 8.4571 12.7441 12.7856 14.1324 15.9657 19.4071 20.3096 k = 0.3149 0.5453-0.0555 ( 520 PWs) bands (ev): -1.0426 0.4536 9.3219 10.1070 11.5698 14.7348 16.9262 17.4598 22.4121 k = 0.1574 0.2727 0.0555 ( 525 PWs) bands (ev): -4.0256 6.1388 9.7110 10.4232 12.6161 16.5313 17.5715 18.1364 19.0373 k =-0.3149 0.0000 0.3887 ( 519 PWs) bands (ev): -2.5625 4.5629 7.9216 8.3974 9.1671 16.0432 19.4065 20.3514 20.8514 k = 0.1574 0.8180 0.0555 ( 510 PWs) bands (ev): 0.1608 1.6928 5.0099 6.3750 11.8997 16.4511 18.4004 22.0220 22.9382 k = 0.0000 0.5453 0.1666 ( 521 PWs) bands (ev): -1.8026 2.4656 7.1262 8.6253 12.4932 14.9026 18.7364 19.7301 20.6934 k = 0.6297 0.0000-0.2776 ( 510 PWs) bands (ev): -0.5973 3.7976 4.2516 7.6693 8.4348 15.2884 20.6754 21.7599 24.5232 k = 0.0000 0.0000 0.4997 ( 522 PWs) bands (ev): -2.5407 1.9446 11.4282 11.4282 13.4641 13.4641 14.6910 16.0267 23.5525 k = 0.4723 0.8180 0.1666 ( 520 PWs) bands (ev): -0.3228 0.9178 5.7610 9.3932 10.9732 16.1039 18.8233 21.1880 22.2909 the Fermi energy is 13.5214 ev ! total energy = -25.39221039 Ry Harris-Foulkes estimate = -25.39221042 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00017048 atom 2 type 1 force = 0.00000000 0.00000000 0.00017048 Total force = 0.000241 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 540.66 0.00373140 0.00000000 0.00000000 548.91 0.00 0.00 0.00000000 0.00373140 0.00000000 0.00 548.91 0.00 0.00000000 0.00000000 0.00356326 0.00 0.00 524.17 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 0.532807200 0.000000000 0.751434395 -0.266403468 0.461424515 0.751434438 -0.266403468 -0.461424515 0.751434438 new unit-cell volume = 190.9412 (a.u.)^3 new positions in cryst coord As 0.250012831 0.250012839 0.250012839 As -0.250012831 -0.250012839 -0.250012839 new positions in cart coord (alat unit) As 0.000000062 0.000000000 0.563604754 As -0.000000062 0.000000000 -0.563604754 Ekin = 0.00029609 Ry T = 1719.5 K Etot = -24.75220797 new unit-cell volume = 190.94116 a.u.^3 ( 28.29456 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.532807200 0.000000000 0.751434395 -0.266403468 0.461424515 0.751434438 -0.266403468 -0.461424515 0.751434438 ATOMIC_POSITIONS (crystal) As 0.250012831 0.250012839 0.250012839 As -0.250012831 -0.250012839 -0.250012839 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1663485), wk = 0.0625000 k( 2) = ( -0.1564043 -0.2709002 0.2772475), wk = 0.1875000 k( 3) = ( 0.3128086 0.5418004 -0.0554495), wk = 0.1875000 k( 4) = ( 0.1564043 0.2709002 0.0554495), wk = 0.1875000 k( 5) = ( -0.3128086 0.0000000 0.3881466), wk = 0.1875000 k( 6) = ( 0.1564043 0.8127006 0.0554495), wk = 0.3750000 k( 7) = ( 0.0000000 0.5418004 0.1663485), wk = 0.3750000 k( 8) = ( 0.6256173 0.0000000 -0.2772476), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4990455), wk = 0.0625000 k( 10) = ( 0.4692130 0.8127006 0.1663485), wk = 0.1875000 extrapolated charge 10.14313, renormalised to 10.00000 total cpu time spent up to now is 10.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 total cpu time spent up to now is 10.7 secs total energy = -25.40189088 Ry Harris-Foulkes estimate = -25.51244206 Ry estimated scf accuracy < 0.00001970 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-07, avg # of iterations = 3.0 total cpu time spent up to now is 10.8 secs total energy = -25.40193480 Ry Harris-Foulkes estimate = -25.40193827 Ry estimated scf accuracy < 0.00001027 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.9 secs total energy = -25.40193362 Ry Harris-Foulkes estimate = -25.40193499 Ry estimated scf accuracy < 0.00000267 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.67E-08, avg # of iterations = 2.0 total cpu time spent up to now is 11.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -4.8537 8.0750 10.8181 10.8181 13.5017 17.1621 17.1621 18.1732 18.8094 k =-0.1564-0.2709 0.2772 ( 522 PWs) bands (ev): -3.3866 3.7851 8.3167 12.4998 12.5154 13.8378 15.6015 19.1188 19.9734 k = 0.3128 0.5418-0.0554 ( 520 PWs) bands (ev): -1.1867 0.2986 9.1616 9.8832 11.3086 14.4795 16.6058 17.2125 22.2133 k = 0.1564 0.2709 0.0554 ( 525 PWs) bands (ev): -4.1255 5.8827 9.4750 10.2154 12.3914 16.2125 17.3862 17.8559 18.7059 k =-0.3128 0.0000 0.3881 ( 519 PWs) bands (ev): -2.6713 4.3742 7.7227 8.1731 8.9335 15.8386 19.0568 19.9527 20.3959 k = 0.1564 0.8127 0.0554 ( 510 PWs) bands (ev): 0.0044 1.5005 4.8598 6.2414 11.6542 16.1254 18.1259 21.6898 22.6866 k = 0.0000 0.5418 0.1663 ( 521 PWs) bands (ev): -1.9338 2.2641 6.9569 8.4423 12.2744 14.6695 18.4510 19.3729 20.3255 k = 0.6256 0.0000-0.2772 ( 510 PWs) bands (ev): -0.7540 3.5902 4.1300 7.4600 8.2274 15.1160 20.3482 21.3771 24.1228 k = 0.0000 0.0000 0.4990 ( 522 PWs) bands (ev): -2.6380 1.8166 11.1592 11.1592 13.1869 13.1869 14.3044 15.6488 23.2213 k = 0.4692 0.8127 0.1663 ( 520 PWs) bands (ev): -0.4456 0.7717 5.5915 9.1652 10.6924 15.7834 18.3955 20.9059 21.9202 the Fermi energy is 13.2441 ev ! total energy = -25.40193393 Ry Harris-Foulkes estimate = -25.40193395 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00005568 atom 2 type 1 force = 0.00000000 0.00000000 0.00005568 Total force = 0.000079 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 497.04 0.00341374 0.00000000 0.00000000 502.18 0.00 0.00 0.00000000 0.00341374 0.00000000 0.00 502.18 0.00 0.00000000 0.00000000 0.00330890 0.00 0.00 486.76 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 0.532953124 0.000000000 0.750185088 -0.266476434 0.461550889 0.750185135 -0.266476434 -0.461550889 0.750185135 new unit-cell volume = 190.7281 (a.u.)^3 new positions in cryst coord As 0.249987977 0.249987985 0.249987985 As -0.249987977 -0.249987985 -0.249987985 new positions in cart coord (alat unit) As 0.000000060 0.000000000 0.562611793 As -0.000000060 0.000000000 -0.562611793 Ekin = 0.00000213 Ry T = 1563.2 K Etot = -24.75293586 new unit-cell volume = 190.72814 a.u.^3 ( 28.26299 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.532953124 0.000000000 0.750185088 -0.266476434 0.461550889 0.750185135 -0.266476434 -0.461550889 0.750185135 ATOMIC_POSITIONS (crystal) As 0.249987977 0.249987985 0.249987985 As -0.249987977 -0.249987985 -0.249987985 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1666255), wk = 0.0625000 k( 2) = ( -0.1563615 -0.2708260 0.2777092), wk = 0.1875000 k( 3) = ( 0.3127230 0.5416521 -0.0555419), wk = 0.1875000 k( 4) = ( 0.1563615 0.2708260 0.0555418), wk = 0.1875000 k( 5) = ( -0.3127230 0.0000000 0.3887930), wk = 0.1875000 k( 6) = ( 0.1563615 0.8124781 0.0555418), wk = 0.3750000 k( 7) = ( 0.0000000 0.5416521 0.1666255), wk = 0.3750000 k( 8) = ( 0.6254460 0.0000000 -0.2777093), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4998766), wk = 0.0625000 k( 10) = ( 0.4690845 0.8124781 0.1666255), wk = 0.1875000 extrapolated charge 9.98883, renormalised to 10.00000 total cpu time spent up to now is 11.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.21E-09, avg # of iterations = 2.3 total cpu time spent up to now is 11.5 secs total energy = -25.40123371 Ry Harris-Foulkes estimate = -25.39262229 Ry estimated scf accuracy < 0.00000028 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-09, avg # of iterations = 3.0 total cpu time spent up to now is 11.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.8460 8.1180 10.8222 10.8222 13.5249 17.1825 17.1825 18.1863 18.8460 k =-0.1564-0.2708 0.2777 ( 522 PWs) bands (ev): -3.3777 3.7960 8.3501 12.5137 12.5280 13.8500 15.6248 19.1627 19.9743 k = 0.3127 0.5417-0.0555 ( 520 PWs) bands (ev): -1.1808 0.3092 9.1934 9.8923 11.3226 14.5027 16.6331 17.2669 22.2770 k = 0.1564 0.2708 0.0555 ( 525 PWs) bands (ev): -4.1190 5.8952 9.4799 10.2456 12.4157 16.2554 17.4253 17.8876 18.7334 k =-0.3127 0.0000 0.3888 ( 519 PWs) bands (ev): -2.6598 4.4048 7.7325 8.1731 8.9482 15.8538 19.0711 19.9637 20.4097 k = 0.1564 0.8125 0.0555 ( 510 PWs) bands (ev): 0.0184 1.5094 4.8671 6.2637 11.6791 16.1414 18.1306 21.7340 22.7293 k = 0.0000 0.5417 0.1666 ( 521 PWs) bands (ev): -1.9269 2.2734 6.9703 8.4617 12.3110 14.7076 18.4738 19.3897 20.3479 k = 0.6254 0.0000-0.2777 ( 510 PWs) bands (ev): -0.7440 3.6103 4.1435 7.4609 8.2479 15.1399 20.3826 21.4076 24.1682 k = 0.0000 0.0000 0.4999 ( 522 PWs) bands (ev): -2.6229 1.8459 11.1604 11.1604 13.1928 13.1928 14.3051 15.6506 23.2578 k = 0.4691 0.8125 0.1666 ( 520 PWs) bands (ev): -0.4270 0.7934 5.5959 9.1681 10.6981 15.7937 18.4002 20.9334 21.9470 the Fermi energy is 13.2501 ev ! total energy = -25.40123401 Ry Harris-Foulkes estimate = -25.40123404 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00005229 atom 2 type 1 force = 0.00000000 0.00000000 -0.00005229 Total force = 0.000074 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.46 0.00342810 0.00000000 0.00000000 504.29 0.00 0.00 0.00000000 0.00342810 0.00000000 0.00 504.29 0.00 0.00000000 0.00000000 0.00334989 0.00 0.00 492.79 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 0.533390223 0.000000000 0.748259328 -0.266694992 0.461929427 0.748259381 -0.266694992 -0.461929427 0.748259381 new unit-cell volume = 190.5507 (a.u.)^3 new positions in cryst coord As 0.249988829 0.249988837 0.249988837 As -0.249988829 -0.249988837 -0.249988837 new positions in cart coord (alat unit) As 0.000000056 0.000000000 0.561169458 As -0.000000056 0.000000000 -0.561169458 Ekin = 0.00002902 Ry T = 1433.0 K Etot = -24.75293311 new unit-cell volume = 190.55071 a.u.^3 ( 28.23670 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533390223 0.000000000 0.748259328 -0.266694992 0.461929427 0.748259381 -0.266694992 -0.461929427 0.748259381 ATOMIC_POSITIONS (crystal) As 0.249988829 0.249988837 0.249988837 As -0.249988829 -0.249988837 -0.249988837 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1670544), wk = 0.0625000 k( 2) = ( -0.1562333 -0.2706041 0.2784240), wk = 0.1875000 k( 3) = ( 0.3124667 0.5412082 -0.0556848), wk = 0.1875000 k( 4) = ( 0.1562334 0.2706041 0.0556848), wk = 0.1875000 k( 5) = ( -0.3124667 0.0000000 0.3897936), wk = 0.1875000 k( 6) = ( 0.1562334 0.8118123 0.0556848), wk = 0.3750000 k( 7) = ( 0.0000000 0.5412082 0.1670544), wk = 0.3750000 k( 8) = ( 0.6249334 0.0000000 -0.2784240), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5011631), wk = 0.0625000 k( 10) = ( 0.4687001 0.8118123 0.1670543), wk = 0.1875000 extrapolated charge 9.99069, renormalised to 10.00000 total cpu time spent up to now is 11.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.09E-09, avg # of iterations = 2.0 total cpu time spent up to now is 12.1 secs total energy = -25.40065211 Ry Harris-Foulkes estimate = -25.39346915 Ry estimated scf accuracy < 0.00000030 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-09, avg # of iterations = 2.4 total cpu time spent up to now is 12.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.1671 ( 531 PWs) bands (ev): -4.8389 8.1743 10.8129 10.8129 13.5380 17.1975 17.1975 18.1858 18.8925 k =-0.1562-0.2706 0.2784 ( 522 PWs) bands (ev): -3.3695 3.8003 8.3952 12.5215 12.5323 13.8521 15.6402 19.2157 19.9564 k = 0.3125 0.5412-0.0557 ( 520 PWs) bands (ev): -1.1799 0.3168 9.2348 9.8937 11.3294 14.5247 16.6578 17.3392 22.3671 k = 0.1562 0.2706 0.0557 ( 525 PWs) bands (ev): -4.1145 5.9000 9.4740 10.2809 12.4414 16.3039 17.4776 17.9219 18.7580 k =-0.3125 0.0000 0.3898 ( 519 PWs) bands (ev): -2.6479 4.4423 7.7363 8.1599 8.9581 15.8661 19.0734 19.9576 20.4044 k = 0.1562 0.8118 0.0557 ( 510 PWs) bands (ev): 0.0315 1.5122 4.8699 6.2917 11.7043 16.1474 18.1223 21.7844 22.7832 k = 0.0000 0.5412 0.1671 ( 521 PWs) bands (ev): -1.9237 2.2764 6.9818 8.4819 12.3560 14.7547 18.4931 19.3955 20.3620 k = 0.6249 0.0000-0.2784 ( 510 PWs) bands (ev): -0.7372 3.6301 4.1580 7.4502 8.2683 15.1683 20.4181 21.4333 24.2159 k = 0.0000 0.0000 0.5012 ( 522 PWs) bands (ev): -2.6047 1.8850 11.1464 11.1464 13.1861 13.1861 14.2835 15.6313 23.2965 k = 0.4687 0.8118 0.1671 ( 520 PWs) bands (ev): -0.4045 0.8194 5.5932 9.1593 10.6908 15.7910 18.3822 20.9587 21.9699 the Fermi energy is 13.2434 ev ! total energy = -25.40065233 Ry Harris-Foulkes estimate = -25.40065235 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00004907 atom 2 type 1 force = 0.00000000 0.00000000 -0.00004907 Total force = 0.000069 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 503.47 0.00343359 0.00000000 0.00000000 505.10 0.00 0.00 0.00000000 0.00343358 0.00000000 0.00 505.10 0.00 0.00000000 0.00000000 0.00340035 0.00 0.00 500.21 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 0.534175910 0.000000000 0.748343075 -0.267087847 0.462609852 0.748343133 -0.267087847 -0.462609852 0.748343133 new unit-cell volume = 191.1339 (a.u.)^3 new positions in cryst coord As 0.249990717 0.249990725 0.249990725 As -0.249990717 -0.249990725 -0.249990725 new positions in cart coord (alat unit) As 0.000000050 0.000000000 0.561236506 As -0.000000050 0.000000000 -0.561236506 Ekin = 0.00005093 Ry T = 1322.9 K Etot = -24.75293259 new unit-cell volume = 191.13388 a.u.^3 ( 28.32312 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534175910 0.000000000 0.748343075 -0.267087847 0.462609852 0.748343133 -0.267087847 -0.462609852 0.748343133 ATOMIC_POSITIONS (crystal) As 0.249990717 0.249990725 0.249990725 As -0.249990717 -0.249990725 -0.249990725 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1670357), wk = 0.0625000 k( 2) = ( -0.1560035 -0.2702061 0.2783928), wk = 0.1875000 k( 3) = ( 0.3120071 0.5404122 -0.0556786), wk = 0.1875000 k( 4) = ( 0.1560036 0.2702061 0.0556785), wk = 0.1875000 k( 5) = ( -0.3120071 0.0000000 0.3897499), wk = 0.1875000 k( 6) = ( 0.1560036 0.8106183 0.0556785), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404122 0.1670357), wk = 0.3750000 k( 8) = ( 0.6240142 0.0000000 -0.2783929), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5011070), wk = 0.0625000 k( 10) = ( 0.4680107 0.8106183 0.1670356), wk = 0.1875000 extrapolated charge 10.03051, renormalised to 10.00000 total cpu time spent up to now is 12.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.47E-09, avg # of iterations = 1.8 total cpu time spent up to now is 12.6 secs total energy = -25.40264245 Ry Harris-Foulkes estimate = -25.42615571 Ry estimated scf accuracy < 0.00000089 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.90E-09, avg # of iterations = 3.0 total cpu time spent up to now is 12.8 secs total energy = -25.40263541 Ry Harris-Foulkes estimate = -25.40263557 Ry estimated scf accuracy < 0.00000048 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-09, avg # of iterations = 1.0 total cpu time spent up to now is 12.9 secs total energy = -25.40263536 Ry Harris-Foulkes estimate = -25.40263542 Ry estimated scf accuracy < 0.00000013 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-09, avg # of iterations = 2.0 total cpu time spent up to now is 13.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1670 ( 531 PWs) bands (ev): -4.8575 8.1328 10.7541 10.7541 13.4523 17.1341 17.1341 18.1072 18.8524 k =-0.1560-0.2702 0.2784 ( 522 PWs) bands (ev): -3.3915 3.7530 8.3679 12.4693 12.4742 13.7887 15.5620 19.1568 19.8838 k = 0.3120 0.5404-0.0557 ( 520 PWs) bands (ev): -1.2111 0.2836 9.2030 9.8455 11.2733 14.4711 16.5903 17.2904 22.3304 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1360 5.8448 9.4227 10.2380 12.3947 16.2372 17.4410 17.8636 18.6880 k =-0.3120 0.0000 0.3897 ( 519 PWs) bands (ev): -2.6709 4.4032 7.6937 8.1106 8.9090 15.8232 18.9980 19.8709 20.3056 k = 0.1560 0.8106 0.0557 ( 510 PWs) bands (ev): -0.0017 1.4706 4.8378 6.2647 11.6527 16.0771 18.0633 21.7149 22.7332 k = 0.0000 0.5404 0.1670 ( 521 PWs) bands (ev): -1.9520 2.2329 6.9460 8.4438 12.3113 14.7074 18.4330 19.3191 20.2834 k = 0.6240 0.0000-0.2784 ( 510 PWs) bands (ev): -0.7708 3.5861 4.1327 7.4043 8.2251 15.1336 20.3493 21.3517 24.1308 k = 0.0000 0.0000 0.5011 ( 522 PWs) bands (ev): -2.6247 1.8597 11.0875 11.0875 13.1259 13.1259 14.1989 15.5485 23.2276 k = 0.4680 0.8106 0.1670 ( 520 PWs) bands (ev): -0.4298 0.7892 5.5567 9.1096 10.6298 15.7215 18.2887 20.8955 21.8954 the Fermi energy is 13.1832 ev ! total energy = -25.40263537 Ry Harris-Foulkes estimate = -25.40263537 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00003997 atom 2 type 1 force = 0.00000000 0.00000000 -0.00003997 Total force = 0.000057 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 494.62 0.00336823 0.00000000 0.00000000 495.48 0.00 0.00 0.00000000 0.00336823 0.00000000 0.00 495.48 0.00 0.00000000 0.00000000 0.00335066 0.00 0.00 492.90 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 0.533810443 0.000000000 0.747680670 -0.266905110 0.462293348 0.747680730 -0.266905110 -0.462293348 0.747680730 new unit-cell volume = 190.7035 (a.u.)^3 new positions in cryst coord As 0.249993442 0.249993450 0.249993450 As -0.249993442 -0.249993450 -0.249993450 new positions in cart coord (alat unit) As 0.000000051 0.000000000 0.560745835 As -0.000000051 0.000000000 -0.560745835 Ekin = 0.00002048 Ry T = 1228.5 K Etot = -24.75296391 new unit-cell volume = 190.70348 a.u.^3 ( 28.25934 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533810443 0.000000000 0.747680670 -0.266905110 0.462293348 0.747680730 -0.266905110 -0.462293348 0.747680730 ATOMIC_POSITIONS (crystal) As 0.249993442 0.249993450 0.249993450 As -0.249993442 -0.249993450 -0.249993450 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1671837), wk = 0.0625000 k( 2) = ( -0.1561103 -0.2703911 0.2786395), wk = 0.1875000 k( 3) = ( 0.3122207 0.5407822 -0.0557279), wk = 0.1875000 k( 4) = ( 0.1561104 0.2703911 0.0557279), wk = 0.1875000 k( 5) = ( -0.3122207 0.0000000 0.3900952), wk = 0.1875000 k( 6) = ( 0.1561104 0.8111733 0.0557279), wk = 0.3750000 k( 7) = ( 0.0000000 0.5407822 0.1671837), wk = 0.3750000 k( 8) = ( 0.6244415 0.0000000 -0.2786395), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5015510), wk = 0.0625000 k( 10) = ( 0.4683311 0.8111733 0.1671836), wk = 0.1875000 extrapolated charge 9.97743, renormalised to 10.00000 total cpu time spent up to now is 13.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.55E-09, avg # of iterations = 2.1 total cpu time spent up to now is 13.4 secs total energy = -25.40117764 Ry Harris-Foulkes estimate = -25.38377836 Ry estimated scf accuracy < 0.00000062 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.18E-09, avg # of iterations = 3.0 total cpu time spent up to now is 13.5 secs total energy = -25.40118786 Ry Harris-Foulkes estimate = -25.40118795 Ry estimated scf accuracy < 0.00000025 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-09, avg # of iterations = 1.0 total cpu time spent up to now is 13.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8431 8.1774 10.7891 10.7891 13.5115 17.1797 17.1797 18.1576 18.8928 k =-0.1561-0.2704 0.2786 ( 522 PWs) bands (ev): -3.3747 3.7848 8.3999 12.5055 12.5129 13.8302 15.6171 19.2115 19.9248 k = 0.3122 0.5408-0.0557 ( 520 PWs) bands (ev): -1.1906 0.3075 9.2367 9.8770 11.3115 14.5127 16.6416 17.3447 22.3826 k = 0.1561 0.2704 0.0557 ( 525 PWs) bands (ev): -4.1206 5.8820 9.4539 10.2768 12.4330 16.2953 17.4811 17.9120 18.7408 k =-0.3122 0.0000 0.3901 ( 519 PWs) bands (ev): -2.6522 4.4404 7.7224 8.1382 8.9438 15.8546 19.0472 19.9247 20.3674 k = 0.1561 0.8112 0.0557 ( 510 PWs) bands (ev): 0.0239 1.4983 4.8594 6.2910 11.6939 16.1242 18.0986 21.7756 22.7824 k = 0.0000 0.5408 0.1672 ( 521 PWs) bands (ev): -1.9326 2.2619 6.9727 8.4748 12.3544 14.7529 18.4778 19.3700 20.3384 k = 0.6244 0.0000-0.2786 ( 510 PWs) bands (ev): -0.7469 3.6208 4.1536 7.4304 8.2594 15.1650 20.4048 21.4123 24.2004 k = 0.0000 0.0000 0.5016 ( 522 PWs) bands (ev): -2.6059 1.8886 11.1210 11.1210 13.1625 13.1625 14.2464 15.5956 23.2840 k = 0.4683 0.8112 0.1672 ( 520 PWs) bands (ev): -0.4062 0.8170 5.5793 9.1388 10.6667 15.7654 18.3431 20.9437 21.9510 the Fermi energy is 13.4542 ev ! total energy = -25.40118783 Ry Harris-Foulkes estimate = -25.40118787 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00002859 atom 2 type 1 force = 0.00000000 0.00000000 -0.00002859 Total force = 0.000040 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 501.13 0.00341114 0.00000000 0.00000000 501.80 0.00 0.00 0.00000000 0.00341114 0.00000000 0.00 501.80 0.00 0.00000000 0.00000000 0.00339751 0.00 0.00 499.79 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 0.533931579 0.000000000 0.746998900 -0.266965680 0.462398255 0.746998962 -0.266965680 -0.462398255 0.746998962 new unit-cell volume = 190.6161 (a.u.)^3 new positions in cryst coord As 0.249996774 0.249996782 0.249996782 As -0.249996774 -0.249996782 -0.249996782 new positions in cart coord (alat unit) As 0.000000050 0.000000000 0.560241988 As -0.000000050 0.000000000 -0.560241988 Ekin = 0.00000567 Ry T = 1146.6 K Etot = -24.75299409 new unit-cell volume = 190.61607 a.u.^3 ( 28.24639 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533931579 0.000000000 0.746998900 -0.266965680 0.462398255 0.746998962 -0.266965680 -0.462398255 0.746998962 ATOMIC_POSITIONS (crystal) As 0.249996774 0.249996782 0.249996782 As -0.249996774 -0.249996782 -0.249996782 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1673362), wk = 0.0625000 k( 2) = ( -0.1560749 -0.2703297 0.2788938), wk = 0.1875000 k( 3) = ( 0.3121499 0.5406595 -0.0557788), wk = 0.1875000 k( 4) = ( 0.1560750 0.2703297 0.0557787), wk = 0.1875000 k( 5) = ( -0.3121499 0.0000000 0.3904513), wk = 0.1875000 k( 6) = ( 0.1560750 0.8109892 0.0557787), wk = 0.3750000 k( 7) = ( 0.0000000 0.5406595 0.1673362), wk = 0.3750000 k( 8) = ( 0.6242998 0.0000000 -0.2788938), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5020087), wk = 0.0625000 k( 10) = ( 0.4682249 0.8109892 0.1673362), wk = 0.1875000 extrapolated charge 9.99541, renormalised to 10.00000 total cpu time spent up to now is 13.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.35E-10, avg # of iterations = 3.4 total cpu time spent up to now is 14.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8393 8.1988 10.7885 10.7885 13.5194 17.1882 17.1882 18.1614 18.9130 k =-0.1561-0.2703 0.2789 ( 522 PWs) bands (ev): -3.3703 3.7885 8.4179 12.5112 12.5170 13.8344 15.6261 19.2332 19.9235 k = 0.3121 0.5407-0.0558 ( 520 PWs) bands (ev): -1.1885 0.3120 9.2535 9.8802 11.3170 14.5231 16.6540 17.3729 22.4177 k = 0.1561 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1176 5.8861 9.4545 10.2912 12.4449 16.3149 17.5034 17.9271 18.7530 k =-0.3121 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6465 4.4552 7.7265 8.1363 8.9499 15.8633 19.0514 19.9265 20.3692 k = 0.1561 0.8110 0.0558 ( 510 PWs) bands (ev): 0.0302 1.5013 4.8629 6.3031 11.7054 16.1293 18.1004 21.7962 22.8054 k = 0.0000 0.5407 0.1673 ( 521 PWs) bands (ev): -1.9298 2.2651 6.9792 8.4844 12.3724 14.7721 18.4885 19.3761 20.3470 k = 0.6243 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7429 3.6297 4.1610 7.4293 8.2689 15.1791 20.4200 21.4246 24.2196 k = 0.0000 0.0000 0.5020 ( 522 PWs) bands (ev): -2.5981 1.9038 11.1191 11.1191 13.1633 13.1633 14.2433 15.5933 23.3017 k = 0.4682 0.8110 0.1673 ( 520 PWs) bands (ev): -0.3968 0.8276 5.5810 9.1386 10.6674 15.7674 18.3410 20.9556 21.9637 the Fermi energy is 13.4622 ev ! total energy = -25.40089038 Ry Harris-Foulkes estimate = -25.39735340 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001418 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001418 Total force = 0.000020 Total SCF correction = 0.000002 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 503.28 0.00342091 0.00000000 0.00000000 503.23 0.00 0.00 0.00000000 0.00342091 0.00000000 0.00 503.23 0.00 0.00000000 0.00000000 0.00342188 0.00 0.00 503.38 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 0.534270426 0.000000000 0.747641565 -0.267135107 0.462691706 0.747641628 -0.267135107 -0.462691706 0.747641628 new unit-cell volume = 191.0223 (a.u.)^3 new positions in cryst coord As 0.249996875 0.249996883 0.249996883 As -0.249996875 -0.249996883 -0.249996883 new positions in cart coord (alat unit) As 0.000000049 0.000000000 0.560724208 As -0.000000049 0.000000000 -0.560724208 Ekin = 0.00000476 Ry T = 1074.9 K Etot = -24.75299465 new unit-cell volume = 191.02229 a.u.^3 ( 28.30658 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534270426 0.000000000 0.747641565 -0.267135107 0.462691706 0.747641628 -0.267135107 -0.462691706 0.747641628 ATOMIC_POSITIONS (crystal) As 0.249996875 0.249996883 0.249996883 As -0.249996875 -0.249996883 -0.249996883 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1671924), wk = 0.0625000 k( 2) = ( -0.1559759 -0.2701583 0.2786540), wk = 0.1875000 k( 3) = ( 0.3119519 0.5403166 -0.0557308), wk = 0.1875000 k( 4) = ( 0.1559760 0.2701583 0.0557308), wk = 0.1875000 k( 5) = ( -0.3119519 0.0000000 0.3901156), wk = 0.1875000 k( 6) = ( 0.1559760 0.8104749 0.0557308), wk = 0.3750000 k( 7) = ( 0.0000000 0.5403166 0.1671924), wk = 0.3750000 k( 8) = ( 0.6239038 0.0000000 -0.2786541), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5015772), wk = 0.0625000 k( 10) = ( 0.4679279 0.8104749 0.1671924), wk = 0.1875000 extrapolated charge 10.02126, renormalised to 10.00000 total cpu time spent up to now is 14.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.70E-09, avg # of iterations = 2.1 total cpu time spent up to now is 14.6 secs total energy = -25.40226887 Ry Harris-Foulkes estimate = -25.41865969 Ry estimated scf accuracy < 0.00000081 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.06E-09, avg # of iterations = 3.0 total cpu time spent up to now is 14.7 secs total energy = -25.40226999 Ry Harris-Foulkes estimate = -25.40227007 Ry estimated scf accuracy < 0.00000020 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-09, avg # of iterations = 1.0 total cpu time spent up to now is 14.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8537 8.1558 10.7552 10.7552 13.4634 17.1443 17.1443 18.1131 18.8724 k =-0.1560-0.2702 0.2787 ( 522 PWs) bands (ev): -3.3871 3.7579 8.3862 12.4762 12.4800 13.7943 15.5734 19.1803 19.8833 k = 0.3120 0.5403-0.0557 ( 520 PWs) bands (ev): -1.2086 0.2887 9.2203 9.8497 11.2800 14.4831 16.6044 17.3201 22.3660 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1330 5.8506 9.4244 10.2537 12.4076 16.2593 17.4629 17.8804 18.7023 k =-0.3120 0.0000 0.3901 ( 519 PWs) bands (ev): -2.6650 4.4194 7.6984 8.1096 8.9163 15.8313 19.0045 19.8753 20.3110 k = 0.1560 0.8105 0.0557 ( 510 PWs) bands (ev): 0.0053 1.4746 4.8413 6.2768 11.6656 16.0845 18.0652 21.7381 22.7567 k = 0.0000 0.5403 0.1672 ( 521 PWs) bands (ev): -1.9488 2.2371 6.9528 8.4540 12.3307 14.7280 18.4448 19.3270 20.2945 k = 0.6239 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7660 3.5963 4.1398 7.4039 8.2356 15.1470 20.3671 21.3669 24.1537 k = 0.0000 0.0000 0.5016 ( 522 PWs) bands (ev): -2.6168 1.8755 11.0869 11.0869 13.1281 13.1281 14.1978 15.5480 23.2468 k = 0.4679 0.8105 0.1672 ( 520 PWs) bands (ev): -0.4199 0.8006 5.5585 9.1102 10.6318 15.7257 18.2894 20.9086 21.9103 the Fermi energy is 13.4061 ev ! total energy = -25.40226998 Ry Harris-Foulkes estimate = -25.40227000 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001351 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001351 Total force = 0.000019 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 496.59 0.00337679 0.00000000 0.00000000 496.74 0.00 0.00 0.00000000 0.00337679 0.00000000 0.00 496.74 0.00 0.00000000 0.00000000 0.00337375 0.00 0.00 496.30 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 0.534100727 0.000000000 0.747294785 -0.267050257 0.462544742 0.747294848 -0.267050257 -0.462544742 0.747294848 new unit-cell volume = 190.8124 (a.u.)^3 new positions in cryst coord As 0.249997013 0.249997021 0.249997021 As -0.249997013 -0.249997021 -0.249997021 new positions in cart coord (alat unit) As 0.000000049 0.000000000 0.560464436 As -0.000000049 0.000000000 -0.560464436 Ekin = 0.00000344 Ry T = 1011.7 K Etot = -24.75299486 new unit-cell volume = 190.81242 a.u.^3 ( 28.27548 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534100727 0.000000000 0.747294785 -0.267050257 0.462544742 0.747294848 -0.267050257 -0.462544742 0.747294848 ATOMIC_POSITIONS (crystal) As 0.249997013 0.249997021 0.249997021 As -0.249997013 -0.249997021 -0.249997021 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672700), wk = 0.0625000 k( 2) = ( -0.1560255 -0.2702441 0.2787833), wk = 0.1875000 k( 3) = ( 0.3120510 0.5404883 -0.0557567), wk = 0.1875000 k( 4) = ( 0.1560255 0.2702441 0.0557566), wk = 0.1875000 k( 5) = ( -0.3120510 0.0000000 0.3902967), wk = 0.1875000 k( 6) = ( 0.1560255 0.8107324 0.0557566), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404883 0.1672700), wk = 0.3750000 k( 8) = ( 0.6241021 0.0000000 -0.2787834), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018100), wk = 0.0625000 k( 10) = ( 0.4680766 0.8107324 0.1672699), wk = 0.1875000 extrapolated charge 9.98900, renormalised to 10.00000 total cpu time spent up to now is 15.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.52E-09, avg # of iterations = 3.0 total cpu time spent up to now is 15.3 secs total energy = -25.40155918 Ry Harris-Foulkes estimate = -25.39308071 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-09, avg # of iterations = 3.0 total cpu time spent up to now is 15.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8462 8.1788 10.7725 10.7725 13.4928 17.1670 17.1670 18.1379 18.8925 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3784 3.7739 8.4028 12.4942 12.4993 13.8147 15.6007 19.2080 19.9029 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1981 0.3009 9.2375 9.8653 11.2989 14.5040 16.6299 17.3478 22.3926 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1250 5.8692 9.4399 10.2734 12.4268 16.2886 17.4831 17.9048 18.7286 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6553 4.4385 7.7126 8.1232 8.9337 15.8465 19.0288 19.9017 20.3414 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0185 1.4886 4.8520 6.2903 11.6864 16.1078 18.0821 21.7687 22.7814 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9390 2.2518 6.9662 8.4696 12.3527 14.7510 18.4669 19.3520 20.3218 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7538 3.6140 4.1504 7.4167 8.2529 15.1624 20.3950 21.3972 24.1888 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6070 1.8906 11.1034 11.1034 13.1461 13.1461 14.2207 15.5708 23.2748 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4077 0.8150 5.5697 9.1246 10.6498 15.7474 18.3158 20.9325 21.9379 the Fermi energy is 13.4355 ev ! total energy = -25.40155942 Ry Harris-Foulkes estimate = -25.40155945 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001302 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001302 Total force = 0.000018 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.51 0.00339575 0.00000000 0.00000000 499.53 0.00 0.00 0.00000000 0.00339575 0.00000000 0.00 499.53 0.00 0.00000000 0.00000000 0.00339521 0.00 0.00 499.45 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 0.534069509 0.000000000 0.746896528 -0.267034649 0.462517706 0.746896593 -0.267034649 -0.462517706 0.746896593 new unit-cell volume = 190.6884 (a.u.)^3 new positions in cryst coord As 0.249997148 0.249997156 0.249997156 As -0.249997148 -0.249997156 -0.249997156 new positions in cart coord (alat unit) As 0.000000048 0.000000000 0.560166050 As -0.000000048 0.000000000 -0.560166050 Ekin = 0.00000165 Ry T = 955.5 K Etot = -24.75299944 new unit-cell volume = 190.68844 a.u.^3 ( 28.25711 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534069509 0.000000000 0.746896528 -0.267034649 0.462517706 0.746896593 -0.267034649 -0.462517706 0.746896593 ATOMIC_POSITIONS (crystal) As 0.249997148 0.249997156 0.249997156 As -0.249997148 -0.249997156 -0.249997156 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1673592), wk = 0.0625000 k( 2) = ( -0.1560346 -0.2702599 0.2789320), wk = 0.1875000 k( 3) = ( 0.3120693 0.5405198 -0.0557864), wk = 0.1875000 k( 4) = ( 0.1560346 0.2702599 0.0557864), wk = 0.1875000 k( 5) = ( -0.3120693 0.0000000 0.3905048), wk = 0.1875000 k( 6) = ( 0.1560346 0.8107798 0.0557864), wk = 0.3750000 k( 7) = ( 0.0000000 0.5405198 0.1673592), wk = 0.3750000 k( 8) = ( 0.6241385 0.0000000 -0.2789320), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5020775), wk = 0.0625000 k( 10) = ( 0.4681039 0.8107798 0.1673591), wk = 0.1875000 extrapolated charge 9.99350, renormalised to 10.00000 total cpu time spent up to now is 15.7 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 3.0 total cpu time spent up to now is 15.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1674 ( 531 PWs) bands (ev): -4.8410 8.1965 10.7800 10.7800 13.5083 17.1805 17.1805 18.1507 18.9108 k =-0.1560-0.2703 0.2789 ( 522 PWs) bands (ev): -3.3725 3.7823 8.4172 12.5047 12.5094 13.8260 15.6163 19.2284 19.9130 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1924 0.3081 9.2519 9.8739 11.3099 14.5172 16.6464 17.3707 22.4186 k = 0.1560 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1199 5.8788 9.4473 10.2876 12.4403 16.3085 17.5021 17.9213 18.7450 k =-0.3121 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6486 4.4522 7.7212 8.1290 8.9440 15.8589 19.0412 19.9142 20.3551 k = 0.1560 0.8108 0.0558 ( 510 PWs) bands (ev): 0.0267 1.4959 4.8591 6.3015 11.6999 16.1200 18.0924 21.7895 22.8023 k = 0.0000 0.5405 0.1674 ( 521 PWs) bands (ev): -1.9332 2.2594 6.9753 8.4808 12.3690 14.7686 18.4818 19.3660 20.3371 k = 0.6241 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7468 3.6249 4.1588 7.4226 8.2644 15.1768 20.4126 21.4148 24.2104 k = 0.0000 0.0000 0.5021 ( 522 PWs) bands (ev): -2.5994 1.9030 11.1103 11.1103 13.1548 13.1548 14.2306 15.5810 23.2948 k = 0.4681 0.8108 0.1674 ( 520 PWs) bands (ev): -0.3986 0.8253 5.5763 9.1314 10.6588 15.7577 18.3271 20.9484 21.9552 the Fermi energy is 13.4510 ev ! total energy = -25.40113719 Ry Harris-Foulkes estimate = -25.39612329 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001248 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001248 Total force = 0.000018 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 502.35 0.00341303 0.00000000 0.00000000 502.07 0.00 0.00 0.00000000 0.00341303 0.00000000 0.00 502.07 0.00 0.00000000 0.00000000 0.00341874 0.00 0.00 502.91 Entering Dynamics; it = 20 time = 0.13794 pico-seconds new lattice vectors (alat unit) : 0.534095013 0.000000000 0.747231730 -0.267047400 0.462539794 0.747231794 -0.267047400 -0.462539794 0.747231794 new unit-cell volume = 190.7922 (a.u.)^3 new positions in cryst coord As 0.249997277 0.249997285 0.249997285 As -0.249997277 -0.249997285 -0.249997285 new positions in cart coord (alat unit) As 0.000000049 0.000000000 0.560417738 As -0.000000049 0.000000000 -0.560417738 Ekin = 0.00000092 Ry T = 905.2 K Etot = -24.75299934 new unit-cell volume = 190.79224 a.u.^3 ( 28.27249 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534095013 0.000000000 0.747231730 -0.267047400 0.462539794 0.747231794 -0.267047400 -0.462539794 0.747231794 ATOMIC_POSITIONS (crystal) As 0.249997277 0.249997285 0.249997285 As -0.249997277 -0.249997285 -0.249997285 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672841), wk = 0.0625000 k( 2) = ( -0.1560272 -0.2702470 0.2788069), wk = 0.1875000 k( 3) = ( 0.3120544 0.5404940 -0.0557614), wk = 0.1875000 k( 4) = ( 0.1560272 0.2702470 0.0557614), wk = 0.1875000 k( 5) = ( -0.3120543 0.0000000 0.3903296), wk = 0.1875000 k( 6) = ( 0.1560272 0.8107411 0.0557614), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404940 0.1672841), wk = 0.3750000 k( 8) = ( 0.6241087 0.0000000 -0.2788069), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018523), wk = 0.0625000 k( 10) = ( 0.4680816 0.8107411 0.1672841), wk = 0.1875000 extrapolated charge 10.00544, renormalised to 10.00000 total cpu time spent up to now is 16.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-09, avg # of iterations = 3.0 total cpu time spent up to now is 16.4 secs total energy = -25.40149075 Ry Harris-Foulkes estimate = -25.40568576 Ry estimated scf accuracy < 0.00000019 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 2.2 total cpu time spent up to now is 16.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8460 8.1810 10.7731 10.7731 13.4946 17.1686 17.1686 18.1394 18.8950 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3780 3.7746 8.4045 12.4953 12.5003 13.8160 15.6026 19.2107 19.9041 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1978 0.3014 9.2393 9.8661 11.3001 14.5055 16.6320 17.3509 22.3962 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1248 5.8701 9.4405 10.2751 12.4284 16.2911 17.4857 17.9068 18.7306 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6549 4.4400 7.7134 8.1236 8.9348 15.8481 19.0302 19.9031 20.3429 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0191 1.4891 4.8526 6.2915 11.6879 16.1091 18.0833 21.7714 22.7842 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9386 2.2524 6.9671 8.4708 12.3547 14.7533 18.4688 19.3537 20.3236 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7533 3.6151 4.1512 7.4171 8.2542 15.1643 20.3972 21.3994 24.1915 k = 0.0000 0.0000 0.5019 ( 522 PWs) bands (ev): -2.6064 1.8919 11.1039 11.1039 13.1469 13.1469 14.2218 15.5719 23.2774 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4069 0.8160 5.5702 9.1251 10.6507 15.7485 18.3171 20.9345 21.9401 the Fermi energy is 13.4373 ev ! total energy = -25.40149085 Ry Harris-Foulkes estimate = -25.40149085 Ry estimated scf accuracy < 7.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001184 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001184 Total force = 0.000017 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.07 0.00339922 0.00000000 0.00000000 500.04 0.00 0.00 0.00000000 0.00339922 0.00000000 0.00 500.04 0.00 0.00000000 0.00000000 0.00339970 0.00 0.00 500.11 Entering Dynamics; it = 21 time = 0.14520 pico-seconds new lattice vectors (alat unit) : 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 new unit-cell volume = 190.7970 (a.u.)^3 new positions in cryst coord As 0.249997399 0.249997407 0.249997407 As -0.249997399 -0.249997407 -0.249997407 new positions in cart coord (alat unit) As 0.000000048 0.000000000 0.560425972 As -0.000000048 0.000000000 -0.560425972 Ekin = 0.00000000 Ry T = 860.0 K Etot = -24.75300111 new unit-cell volume = 190.79700 a.u.^3 ( 28.27320 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 ATOMIC_POSITIONS (crystal) As 0.249997399 0.249997407 0.249997407 As -0.249997399 -0.249997407 -0.249997407 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672817), wk = 0.0625000 k( 2) = ( -0.1560263 -0.2702456 0.2788029), wk = 0.1875000 k( 3) = ( 0.3120527 0.5404911 -0.0557606), wk = 0.1875000 k( 4) = ( 0.1560264 0.2702456 0.0557606), wk = 0.1875000 k( 5) = ( -0.3120527 0.0000000 0.3903241), wk = 0.1875000 k( 6) = ( 0.1560264 0.8107367 0.0557606), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404911 0.1672817), wk = 0.3750000 k( 8) = ( 0.6241054 0.0000000 -0.2788029), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018452), wk = 0.0625000 k( 10) = ( 0.4680791 0.8107367 0.1672817), wk = 0.1875000 extrapolated charge 10.00025, renormalised to 10.00000 total cpu time spent up to now is 16.8 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.13E-12, avg # of iterations = 3.0 total cpu time spent up to now is 16.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8461 8.1806 10.7729 10.7729 13.4942 17.1682 17.1682 18.1390 18.8944 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3781 3.7745 8.4042 12.4950 12.5001 13.8156 15.6021 19.2101 19.9036 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1979 0.3013 9.2389 9.8659 11.2998 14.5051 16.6314 17.3503 22.3955 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1249 5.8699 9.4403 10.2748 12.4280 16.2906 17.4851 17.9064 18.7301 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6550 4.4398 7.7132 8.1234 8.9345 15.8476 19.0298 19.9027 20.3425 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0190 1.4890 4.8524 6.2912 11.6876 16.1088 18.0829 21.7708 22.7836 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9387 2.2522 6.9669 8.4705 12.3543 14.7528 18.4683 19.3532 20.3232 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7535 3.6149 4.1510 7.4169 8.2539 15.1637 20.3967 21.3989 24.1910 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6065 1.8917 11.1037 11.1037 13.1467 13.1467 14.2214 15.5715 23.2768 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4071 0.8158 5.5700 9.1249 10.6504 15.7482 18.3167 20.9340 21.9395 the Fermi energy is 13.4369 ev ! total energy = -25.40150703 Ry Harris-Foulkes estimate = -25.40169946 Ry estimated scf accuracy < 7.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001125 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001125 Total force = 0.000016 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.89 0.00339810 0.00000000 0.00000000 499.88 0.00 0.00 0.00000000 0.00339810 0.00000000 0.00 499.88 0.00 0.00000000 0.00000000 0.00339844 0.00 0.00 499.93 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.40150703 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 final unit-cell volume = 190.7970 (a.u.)^3 input alat = 7.0103 (a.u.) Begin final coordinates new unit-cell volume = 190.79700 a.u.^3 ( 28.27320 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 ATOMIC_POSITIONS (crystal) As 0.249997399 0.249997407 0.249997407 As -0.249997399 -0.249997407 -0.249997407 End final coordinates Writing output data file pwscf.save init_run : 0.15s CPU 0.15s WALL ( 1 calls) electrons : 10.57s CPU 10.85s WALL ( 22 calls) update_pot : 2.46s CPU 2.47s WALL ( 21 calls) forces : 1.10s CPU 1.10s WALL ( 22 calls) stress : 1.61s CPU 1.64s WALL ( 22 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 8.80s CPU 9.02s WALL ( 96 calls) sum_band : 1.46s CPU 1.46s WALL ( 96 calls) v_of_rho : 0.25s CPU 0.20s WALL ( 107 calls) mix_rho : 0.03s CPU 0.06s WALL ( 96 calls) Called by c_bands: init_us_2 : 0.31s CPU 0.29s WALL ( 2370 calls) cegterg : 8.61s CPU 8.74s WALL ( 960 calls) Called by *egterg: h_psi : 6.30s CPU 6.35s WALL ( 3286 calls) g_psi : 0.38s CPU 0.33s WALL ( 2316 calls) cdiaghg : 0.78s CPU 0.72s WALL ( 2956 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.13s WALL ( 3286 calls) General routines calbec : 0.18s CPU 0.20s WALL ( 3726 calls) fft : 0.10s CPU 0.11s WALL ( 559 calls) fftw : 5.99s CPU 5.96s WALL ( 55992 calls) davcio : 0.02s CPU 0.10s WALL ( 3330 calls) PWSCF : 16.67s CPU 17.11s WALL This run was terminated on: 11:29:47 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lsda.in0000755000700200004540000000063512053145627015337 0ustar marsamoscm &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.0e-10 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.0.2/PW/tests/eval_infix.ref20000644000700200004540000002161712053145627016770 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/eval_infix.in2 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.104E-04 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 20.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.63E-06, avg # of iterations = 8.0 negative rho (up, down): 0.861E-05 0.000E+00 total cpu time spent up to now is 0.9 secs total energy = -31.29442832 Ry Harris-Foulkes estimate = -31.29443512 Ry estimated scf accuracy < 0.00028054 Ry iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.68E-06, avg # of iterations = 1.0 negative rho (up, down): 0.119E-03 0.000E+00 total cpu time spent up to now is 1.0 secs total energy = -31.29444080 Ry Harris-Foulkes estimate = -31.29443336 Ry estimated scf accuracy < 0.00012407 Ry iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.07E-06, avg # of iterations = 2.0 negative rho (up, down): 0.208E-03 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -31.29445412 Ry Harris-Foulkes estimate = -31.29445131 Ry estimated scf accuracy < 0.00001255 Ry iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.09E-07, avg # of iterations = 2.0 negative rho (up, down): 0.708E-05 0.000E+00 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -23.0773 -8.4543 -8.4543 -8.4542 -0.4304 4.4889 highest occupied, lowest unoccupied level (ev): -8.4542 -0.4304 ! total energy = -31.29446109 Ry Harris-Foulkes estimate = -31.29445540 Ry estimated scf accuracy < 0.00000027 Ry The total energy is the sum of the following terms: one-electron contribution = -31.95314397 Ry hartree contribution = 17.14603573 Ry xc contribution = -6.27308185 Ry ewald contribution = -10.21427100 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.49s CPU 0.49s WALL ( 1 calls) electrons : 0.41s CPU 0.51s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 5 calls) sum_band : 0.15s CPU 0.16s WALL ( 5 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) newd : 0.10s CPU 0.11s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.06s CPU 0.06s WALL ( 5 calls) Called by *egterg: h_psi : 0.04s CPU 0.05s WALL ( 26 calls) s_psi : 0.00s CPU 0.00s WALL ( 26 calls) g_psi : 0.01s CPU 0.00s WALL ( 20 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 26 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.04s CPU 0.07s WALL ( 44 calls) ffts : 0.01s CPU 0.00s WALL ( 10 calls) fftw : 0.04s CPU 0.04s WALL ( 111 calls) interpolate : 0.02s CPU 0.03s WALL ( 10 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 1.00s CPU 1.24s WALL This run was terminated on: 10:22:14 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/lattice-ibrav3-kauto.ref0000644000700200004540000001755412053145627020521 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav3-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 557 557 173 8391 8391 1433 bravais-lattice index = 3 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.5000000), wk = 0.5000000 k( 2) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000 k( 3) = ( 0.0000000 0.5000000 0.0000000), wk = 1.0000000 Dense grid: 8391 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1088, 1) NL pseudopotentials 0.00 Mb ( 1088, 0) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.06 Mb ( 8391) G-vector shells 0.00 Mb ( 117) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 1088, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.22055380 Ry Harris-Foulkes estimate = -2.28993407 Ry estimated scf accuracy < 0.13257321 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23158176 Ry Harris-Foulkes estimate = -2.23200446 Ry estimated scf accuracy < 0.00099476 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.97E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23190130 Ry Harris-Foulkes estimate = -2.23190372 Ry estimated scf accuracy < 0.00001376 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.88E-07, avg # of iterations = 1.7 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.5000 ( 1052 PWs) bands (ev): -9.8997 k = 0.5000-0.5000 0.5000 ( 1088 PWs) bands (ev): -9.8847 k = 0.0000 0.5000 0.0000 ( 1052 PWs) bands (ev): -9.9044 ! total energy = -2.23190293 Ry Harris-Foulkes estimate = -2.23190301 Ry estimated scf accuracy < 0.00000056 Ry The total energy is the sum of the following terms: one-electron contribution = -2.23903308 Ry hartree contribution = 1.25020995 Ry xc contribution = -1.31379629 Ry ewald contribution = 0.07071649 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.05s CPU 0.05s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.02s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 88 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.12s CPU 0.13s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/electric1.in0000755000700200004540000000535112053145627016267 0ustar marsamoscm &control calculation='scf' gdir=3, nppstr=7, lelfield=.true., nberrycyc=1 / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='file', startingpot='file', efield=0. / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS 63 0. 0. 0. 1 0. 0. 0.142857143 1 0. 0. 0.285714286 1 0. 0. 0.428571429 1 0. 0. 0.571428571 1 0. 0. 0.714285714 1 0. 0. 0.857142857 1 0. 0.333333333 0. 1 0. 0.333333333 0.142857143 1 0. 0.333333333 0.285714286 1 0. 0.333333333 0.428571429 1 0. 0.333333333 0.571428571 1 0. 0.333333333 0.714285714 1 0. 0.333333333 0.857142857 1 0. 0.666666667 0. 1 0. 0.666666667 0.142857143 1 0. 0.666666667 0.285714286 1 0. 0.666666667 0.428571429 1 0. 0.666666667 0.571428571 1 0. 0.666666667 0.714285714 1 0. 0.666666667 0.857142857 1 0.333333333 0. 0. 1 0.333333333 0. 0.142857143 1 0.333333333 0. 0.285714286 1 0.333333333 0. 0.428571429 1 0.333333333 0. 0.571428571 1 0.333333333 0. 0.714285714 1 0.333333333 0. 0.857142857 1 0.333333333 0.333333333 0. 1 0.333333333 0.333333333 0.142857143 1 0.333333333 0.333333333 0.285714286 1 0.333333333 0.333333333 0.428571429 1 0.333333333 0.333333333 0.571428571 1 0.333333333 0.333333333 0.714285714 1 0.333333333 0.333333333 0.857142857 1 0.333333333 0.666666667 0. 1 0.333333333 0.666666667 0.142857143 1 0.333333333 0.666666667 0.285714286 1 0.333333333 0.666666667 0.428571429 1 0.333333333 0.666666667 0.571428571 1 0.333333333 0.666666667 0.714285714 1 0.333333333 0.666666667 0.857142857 1 0.666666667 0. 0. 1 0.666666667 0. 0.142857143 1 0.666666667 0. 0.285714286 1 0.666666667 0. 0.428571429 1 0.666666667 0. 0.571428571 1 0.666666667 0. 0.714285714 1 0.666666667 0. 0.857142857 1 0.666666667 0.333333333 0. 1 0.666666667 0.333333333 0.142857143 1 0.666666667 0.333333333 0.285714286 1 0.666666667 0.333333333 0.428571429 1 0.666666667 0.333333333 0.571428571 1 0.666666667 0.333333333 0.714285714 1 0.666666667 0.333333333 0.857142857 1 0.666666667 0.666666667 0. 1 0.666666667 0.666666667 0.142857143 1 0.666666667 0.666666667 0.285714286 1 0.666666667 0.666666667 0.428571429 1 0.666666667 0.666666667 0.571428571 1 0.666666667 0.666666667 0.714285714 1 0.666666667 0.666666667 0.857142857 1 espresso-5.0.2/PW/tests/scf-gamma.in0000644000700200004540000000041112053145627016234 0ustar marsamoscm &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {Gamma} espresso-5.0.2/PW/tests/lattice-ibrav10-kauto.ref0000644000700200004540000002502512053145627020567 0ustar marsamoscm Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav10-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized warning: symmetry operation # 2 not compatible with FFT grid. 0 -1 1 0 -1 0 1 -1 0 warning: symmetry operation # 3 not compatible with FFT grid. -1 0 0 -1 0 1 -1 1 0 warning: symmetry operation # 4 not compatible with FFT grid. 0 1 -1 1 0 -1 0 0 -1 warning: symmetry operation # 6 not compatible with FFT grid. 0 1 -1 0 1 0 -1 1 0 warning: symmetry operation # 7 not compatible with FFT grid. 1 0 0 1 0 -1 1 -1 0 warning: symmetry operation # 8 not compatible with FFT grid. 0 -1 1 -1 0 1 0 0 1 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 777 777 229 12719 12719 2069 bravais-lattice index = 10 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 750.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 1.000000 ) a(2) = ( 0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.666667 0.500000 ) b(2) = ( 1.000000 0.666667 -0.500000 ) b(3) = ( -1.000000 0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 16 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1666667 0.1250000), wk = 0.1250000 k( 2) = ( 0.7500000 -0.1666667 -0.1250000), wk = 0.1250000 k( 3) = ( -0.2500000 -0.1666667 0.3750000), wk = 0.1250000 k( 4) = ( 0.2500000 -0.5000000 0.1250000), wk = 0.1250000 k( 5) = ( -0.2500000 0.1666667 -0.1250000), wk = 0.1250000 k( 6) = ( 0.2500000 -0.1666667 -0.1250000), wk = 0.1250000 k( 7) = ( -0.2500000 -0.1666667 0.1250000), wk = 0.1250000 k( 8) = ( -0.7500000 -0.1666667 0.1250000), wk = 0.1250000 k( 9) = ( 0.7500000 0.1666667 0.1250000), wk = 0.1250000 k( 10) = ( -0.7500000 0.1666667 -0.1250000), wk = 0.1250000 k( 11) = ( 0.2500000 -0.1666667 -0.3750000), wk = 0.1250000 k( 12) = ( -0.2500000 0.1666667 -0.3750000), wk = 0.1250000 k( 13) = ( 0.2500000 0.1666667 0.3750000), wk = 0.1250000 k( 14) = ( -0.2500000 -0.5000000 -0.1250000), wk = 0.1250000 k( 15) = ( 0.2500000 0.5000000 -0.1250000), wk = 0.1250000 k( 16) = ( -0.2500000 0.5000000 0.1250000), wk = 0.1250000 Dense grid: 12719 G-vectors FFT dimensions: ( 36, 30, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1591, 1) NL pseudopotentials 0.00 Mb ( 1591, 0) Each V/rho on FFT grid 0.66 Mb ( 43200) Each G-vector array 0.10 Mb ( 12719) G-vector shells 0.01 Mb ( 816) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 1591, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 5.27 Mb ( 43200, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.411E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 6.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.365E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22019179 Ry Harris-Foulkes estimate = -2.29023437 Ry estimated scf accuracy < 0.13315042 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -2.23121628 Ry Harris-Foulkes estimate = -2.23165840 Ry estimated scf accuracy < 0.00100341 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -2.23152203 Ry Harris-Foulkes estimate = -2.23152359 Ry estimated scf accuracy < 0.00001243 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.2500 0.1667 0.1250 ( 1570 PWs) bands (ev): -10.0578 k = 0.7500-0.1667-0.1250 ( 1589 PWs) bands (ev): -10.0227 k =-0.2500-0.1667 0.3750 ( 1591 PWs) bands (ev): -10.0548 k = 0.2500-0.5000 0.1250 ( 1590 PWs) bands (ev): -10.0281 k =-0.2500 0.1667-0.1250 ( 1570 PWs) bands (ev): -10.0578 k = 0.2500-0.1667-0.1250 ( 1570 PWs) bands (ev): -10.0578 k =-0.2500-0.1667 0.1250 ( 1570 PWs) bands (ev): -10.0578 k =-0.7500-0.1667 0.1250 ( 1589 PWs) bands (ev): -10.0227 k = 0.7500 0.1667 0.1250 ( 1589 PWs) bands (ev): -10.0227 k =-0.7500 0.1667-0.1250 ( 1589 PWs) bands (ev): -10.0227 k = 0.2500-0.1667-0.3750 ( 1591 PWs) bands (ev): -10.0548 k =-0.2500 0.1667-0.3750 ( 1591 PWs) bands (ev): -10.0548 k = 0.2500 0.1667 0.3750 ( 1591 PWs) bands (ev): -10.0548 k =-0.2500-0.5000-0.1250 ( 1590 PWs) bands (ev): -10.0281 k = 0.2500 0.5000-0.1250 ( 1590 PWs) bands (ev): -10.0281 k =-0.2500 0.5000 0.1250 ( 1590 PWs) bands (ev): -10.0281 ! total energy = -2.23152327 Ry Harris-Foulkes estimate = -2.23152330 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -2.60528088 Ry hartree contribution = 1.42313570 Ry xc contribution = -1.31427122 Ry ewald contribution = 0.26489313 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.06s CPU 0.06s WALL ( 1 calls) electrons : 0.25s CPU 0.26s WALL ( 1 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.16s CPU 0.16s WALL ( 4 calls) sum_band : 0.05s CPU 0.04s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.03s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.16s CPU 0.16s WALL ( 64 calls) Called by *egterg: h_psi : 0.17s CPU 0.17s WALL ( 184 calls) g_psi : 0.01s CPU 0.01s WALL ( 104 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 168 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.17s CPU 0.16s WALL ( 464 calls) davcio : 0.00s CPU 0.00s WALL ( 208 calls) PWSCF : 0.35s CPU 0.37s WALL This run was terminated on: 10:22:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.0.2/PW/tests/md-pot_extrap1.in0000755000700200004540000000062012053145627017252 0ustar marsamoscm &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions pot_extrapolation='first_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.0.2/PW/src/0000755000700200004540000000000012053440276013500 5ustar marsamoscmespresso-5.0.2/PW/src/makov_payne.f900000644000700200004540000003062412053145627016340 0ustar marsamoscm! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... original code written by Giovanni Cantele and Paolo Cazzato ! ... adapted to work in the parallel case by Carlo Sbraccia ! ... code for the calculation of the vacuum level written by Carlo Sbraccia ! !#define _PRINT_ON_FILE ! !--------------------------------------------------------------------------- SUBROUTINE makov_payne( etot ) !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ions_base, ONLY : nat, tau, ityp, zv USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE scf, ONLY : rho USE lsda_mod, ONLY : nspin #ifdef __ENVIRON USE environ_base, ONLY : do_environ #endif ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: etot ! INTEGER :: ia REAL(DP) :: x0(3), zvtot, qq REAL(DP) :: e_dipole(0:3), e_quadrupole(3) ! ! ... x0 is the center of charge of the system ! zvtot = 0.D0 x0(:) = 0.D0 ! DO ia = 1, nat ! zvtot = zvtot + zv(ityp(ia)) ! x0(:) = x0(:) + tau(:,ia)*zv(ityp(ia)) ! END DO ! x0(:) = x0(:) / zvtot ! CALL compute_dipole( dfftp%nnr, nspin, rho%of_r, x0, e_dipole, e_quadrupole ) ! #ifdef __ENVIRON IF ( do_environ ) CALL environ_makov_payne( dfftp%nnr, nspin, rho%of_r, x0 ) #endif ! CALL write_dipole( etot, x0, e_dipole, e_quadrupole, qq ) ! CALL vacuum_level( x0, zvtot ) ! RETURN ! END SUBROUTINE makov_payne ! !--------------------------------------------------------------------------- SUBROUTINE write_dipole( etot, x0, dipole_el, quadrupole_el, qq ) !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : e2, pi, rytoev, au_debye USE ions_base, ONLY : nat, ityp, tau, zv USE cell_base, ONLY : at, bg, omega, alat, ibrav USE io_global, ONLY : ionode #ifdef __ENVIRON USE environ_base, ONLY : do_environ #endif ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: etot REAL(DP), INTENT(IN) :: x0(3) REAL(DP), INTENT(IN) :: dipole_el(0:3), quadrupole_el(3) REAL(DP), INTENT(OUT) :: qq ! REAL(DP) :: dipole_ion(3), quadrupole_ion(3), dipole(3), quadrupole(3) REAL(DP) :: zvia, zvtot REAL(DP) :: corr1, corr2, aa, bb INTEGER :: ia, ip ! ! ... Note that the definition of the Madelung constant used here ! ... differs from the "traditional" one found in the literature. See ! ... Lento, Mozos, Nieminen, J. Phys.: Condens. Matter 14 (2002), 2637-2645 ! REAL(DP), PARAMETER :: madelung(3) = (/ 2.8373D0, 2.8883D0, 2.885D0 /) ! ! IF ( .NOT. ionode ) RETURN ! ! ... compute ion dipole moments ! zvtot = 0.D0 dipole_ion = 0.D0 quadrupole_ion = 0.D0 ! DO ia = 1, nat ! zvia = zv(ityp(ia)) ! zvtot = zvtot + zvia ! DO ip = 1, 3 ! dipole_ion(ip) = dipole_ion(ip) + & zvia*( tau(ip,ia) - x0(ip) )*alat quadrupole_ion(ip) = quadrupole_ion(ip) + & zvia*( ( tau(ip,ia) - x0(ip) )*alat )**2 ! END DO END DO ! ! ... compute ionic+electronic total charge, dipole and quadrupole moments ! qq = -dipole_el(0) + zvtot ! dipole(:) = -dipole_el(1:3) + dipole_ion(:) quadrupole = -quadrupole_el + quadrupole_ion ! WRITE( stdout, '(/5X,"charge density inside the ", & & "Wigner-Seitz cell:",3F14.8," el.")' ) dipole_el(0) ! WRITE( stdout, & '(/5X,"reference position (x0):",5X,3F14.8," bohr")' ) x0(:)*alat ! ! ... A positive dipole goes from the - charge to the + charge. ! WRITE( stdout, '(/5X,"Dipole moments (with respect to x0):")' ) WRITE( stdout, '( 5X,"Elect",3F9.4," au (Ha),",3F9.4," Debye")' ) & (-dipole_el(ip), ip = 1, 3), (-dipole_el(ip)*au_debye, ip = 1, 3 ) WRITE( stdout, '( 5X,"Ionic",3F9.4," au (Ha),", 3F9.4," Debye")' ) & ( dipole_ion(ip),ip = 1, 3), ( dipole_ion(ip)*au_debye,ip = 1, 3 ) WRITE( stdout, '( 5X,"Total",3F9.4," au (Ha),", 3F9.4," Debye")' ) & ( dipole(ip), ip = 1, 3), ( dipole(ip)*au_debye, ip = 1, 3 ) ! ! ... print the electronic, ionic and total quadrupole moments ! WRITE( stdout, '(/5X,"Electrons quadrupole moment",F20.8," a.u. (Ha)")' ) & -SUM(quadrupole_el(:)) WRITE( stdout, '( 5X," Ions quadrupole moment",F20.8," a.u. (Ha)")' ) & SUM(quadrupole_ion(:)) WRITE( stdout, '( 5X," Total quadrupole moment",F20.8," a.u. (Ha)")' ) & SUM(quadrupole(:)) ! IF ( ibrav < 1 .OR. ibrav > 3 ) THEN call errore(' write_dipole', & 'Makov-Payne correction defined only for cubic lattices', 1) ! END IF ! ! ... Makov-Payne correction, PRB 51, 4014 (1995) ! ... Note that Eq. 15 has the wrong sign for the quadrupole term ! corr1 = - madelung(ibrav) / alat * qq**2 / 2.0D0 * e2 ! aa = SUM(quadrupole(:)) bb = dipole(1)**2 + dipole(2)**2 + dipole(3)**2 ! corr2 = ( 2.D0 / 3.D0 * pi )*( qq*aa - bb ) / alat**3 * e2 ! ! ... print the Makov-Payne correction ! WRITE( stdout, '(/,5X,"********* MAKOV-PAYNE CORRECTION *********")' ) WRITE( stdout, & '(/5X,"Makov-Payne correction with Madelung constant = ",F8.4)' ) & madelung(ibrav) ! WRITE( stdout,'(/5X,"Makov-Payne correction ",F14.8," Ry = ",F6.3, & & " eV (1st order, 1/a0)")' ) -corr1, -corr1*rytoev WRITE( stdout,'( 5X," ",F14.8," Ry = ",F6.3, & & " eV (2nd order, 1/a0^3)")' ) -corr2, -corr2*rytoev WRITE( stdout,'( 5X," ",F14.8," Ry = ",F6.3, & & " eV (total)")' ) -corr1-corr2, (-corr1-corr2)*rytoev ! WRITE( stdout,'(/"! Total+Makov-Payne energy = ",F16.8," Ry")' ) & etot - corr1 - corr2 ! #ifdef __ENVIRON IF ( do_environ ) CALL environ_write_dipole(etot, qq, dipole, quadrupole, corr1, corr2) #endif ! RETURN ! END SUBROUTINE write_dipole ! !--------------------------------------------------------------------------- SUBROUTINE vacuum_level( x0, zion ) !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode USE io_files, ONLY : prefix USE constants, ONLY : e2, pi, tpi, fpi, rytoev, eps32 USE gvect, ONLY : g, gg, ngm, gstart, igtongl USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE cell_base, ONLY : at, alat, tpiba, tpiba2 USE ions_base, ONLY : nsp USE vlocal, ONLY : strf, vloc USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE control_flags, ONLY : gamma_only USE basic_algebra_routines, ONLY : norm #ifdef __ENVIRON USE environ_base, ONLY : do_environ, env_static_permittivity, vsolvent USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : nl #endif ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: x0(3) REAL(DP), INTENT(IN) :: zion ! INTEGER :: i, ir, ig, first_point REAL(DP) :: r, dr, rmax, rg, phase, sinxx COMPLEX(DP), ALLOCATABLE :: vg(:) COMPLEX(DP) :: vgig, qgig REAL(DP) :: vsph, qsph, qqr REAL(DP) :: absg, qq, vol, fac, rgtot_re, rgtot_im INTEGER, PARAMETER :: npts = 100 REAL(DP), PARAMETER :: x(3) = (/ 0.5D0, 0.0D0, 0.0D0 /), & y(3) = (/ 0.0D0, 0.5D0, 0.0D0 /), & z(3) = (/ 0.0D0, 0.0D0, 0.5D0 /) #ifdef __ENVIRON COMPLEX(DP), ALLOCATABLE :: vaux(:) #endif ! ! IF ( .NOT.gamma_only ) RETURN ! rmax = norm( MATMUL( at(:,:), x(:) ) ) ! rmax = MIN( rmax, norm( MATMUL( at(:,:), y(:) ) ) ) rmax = MIN( rmax, norm( MATMUL( at(:,:), z(:) ) ) ) ! rmax = rmax*alat ! dr = rmax / DBLE( npts ) ! ALLOCATE( vg( ngm ) ) ! ! ... the local ionic potential ! vg(:) = ( 0.D0, 0.D0 ) ! DO i = 1, nsp DO ig = 1, ngm vg(ig) = vg(ig) + vloc(igtongl(ig),i)*strf(ig,i) END DO END DO ! ! ... add the hartree potential in G-space (NB: V(G=0)=0 ) ! DO ig = gstart, ngm ! fac = e2*fpi / ( tpiba2*gg(ig) ) ! rgtot_re = REAL( rho%of_g(ig,1) ) rgtot_im = AIMAG( rho%of_g(ig,1) ) ! IF ( nspin == 2 ) THEN ! rgtot_re = rgtot_re + REAL( rho%of_g(ig,2) ) rgtot_im = rgtot_im + AIMAG( rho%of_g(ig,2) ) ! END IF ! vg(ig) = vg(ig) + CMPLX( rgtot_re, rgtot_im ,kind=DP)*fac ! END DO ! #ifdef __ENVIRON ! IF ( do_environ .AND. env_static_permittivity .GT. 1.D0 ) THEN ! ALLOCATE( vaux( dfftp%nnr ) ) vaux = CMPLX( vsolvent( : ), 0.D0 ) CALL fwfft ('Dense', vaux, dfftp) ! DO ig = gstart, ngm ! vg(ig) = vg(ig) + vaux(nl(ig)) ! ENDDO ! DEALLOCATE( vaux ) ! END IF ! #endif ! first_point = npts ! #if defined _PRINT_ON_FILE ! first_point = 1 ! IF ( ionode ) THEN ! OPEN( UNIT = 123, FILE = TRIM( prefix ) // ".E_vac.dat" ) ! WRITE( 123, '("# estimate of the vacuum level as a function of r")' ) WRITE( 123, '("#",/,"#",8X,"r (bohr)", & &8X,"E_vac (eV)",6X,"integrated charge")' ) ! END IF ! #endif ! DO ir = first_point, npts ! ! ... r is in atomic units ! r = dr*ir ! vol = ( 4.D0 / 3.D0 )*pi*(r*r*r) ! vsph = ( 0.D0, 0.D0 ) qsph = ( 0.D0, 0.D0 ) qqr = ( 0.D0, 0.D0 ) ! DO ig = 1, ngm ! ! ... g vectors are in units of 2pi / alat : ! ... to go to atomic units g must be multiplied by 2pi / alat ! absg = tpiba*SQRT( gg(ig) ) ! rg = r*absg ! IF ( r == 0.D0 .AND. absg /= 0 ) THEN ! sinxx = 1.D0 ! ELSE IF ( absg == 0 ) THEN ! sinxx = 0.5D0 ! ELSE ! sinxx = SIN( rg ) / rg ! END IF ! vgig = vg(ig) qgig = rho%of_g(ig,1) ! IF ( nspin == 2 ) qgig = qgig + rho%of_g(ig,2) ! ! ... add the phase factor corresponding to the translation of the ! ... origin by x0 (notice that x0 is in alat units) ! phase = tpi*( g(1,ig)*x0(1) + g(2,ig)*x0(2) + g(3,ig)*x0(3) ) ! vgig = vgig*CMPLX( COS( phase ), SIN( phase ) ,kind=DP) qgig = qgig*CMPLX( COS( phase ), SIN( phase ) ,kind=DP) ! ! ... vsph is the spherical average of the periodic electrostatic ! ... potential on a sphere of radius r centered in x0 ! ... so this should be the monopole term in the potential ! vsph = vsph + 2.D0*REAL( vgig )*sinxx qsph = qsph + 2.D0*REAL( qgig )*sinxx ! IF ( absg /= 0.D0 ) THEN ! ! ... qqr is the integral of the electronic charge in the sphere ! qqr = qqr + 2.D0*REAL( qgig )* & ( fpi / absg**3 )*( SIN( rg ) - rg*COS( rg ) ) ! ELSE ! qqr = qqr + REAL( qgig )*vol ! END IF ! END DO ! CALL mp_sum( vsph, intra_bgrp_comm ) CALL mp_sum( qsph, intra_bgrp_comm ) CALL mp_sum( qqr, intra_bgrp_comm ) ! ! ... qq is therefore the total (positive) charge of the system ! qq = ( zion - qqr ) ! #ifdef __ENVIRON IF ( do_environ ) qq = qq / env_static_permittivity #endif ! ! ... that by Gauss theorem gives a monopole average potential on the ! ... sphere seen by electrons of: - qq e2 / r ! ... so (vsph + qq e2/r) should be the shift of the isolated molecule ! ... monopole wrt the periodic potential ! #if defined _PRINT_ON_FILE IF ( ionode ) & WRITE( 123, '(3(2X,F16.8))' ) r, ( vsph + e2*qq / r )*rytoev, qqr #endif ! END DO ! #if defined _PRINT_ON_FILE IF ( ionode ) CLOSE( UNIT = 123 ) #endif ! ! ... one should see (if a range of r's are computed) that this corrections ! ... should become a constant when the charge density of the molecule is decayed ! WRITE( stdout, '(5X,"Corrected vacuum level = ",F16.8," eV")' ) & ( vsph + e2*qq / rmax )*rytoev ! DEALLOCATE( vg ) ! RETURN ! END SUBROUTINE vacuum_level espresso-5.0.2/PW/src/compute_deff.f900000644000700200004540000000423412053145627016465 0ustar marsamoscm! ! Copyright (C) 2009-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- SUBROUTINE compute_deff(deff, et) ! ! This routine computes the effective value of the D-eS coefficients ! which appear often in many expressions in the US or PAW case. ! This routine is for the collinear case. ! USE kinds, ONLY : DP USE ions_base, ONLY : nsp, nat, ityp USE uspp, ONLY : deeq, qq, okvan USE uspp_param, ONLY : nhm USE lsda_mod, ONLY : current_spin IMPLICIT NONE INTEGER :: nt, na, is REAL(DP), INTENT(OUT) :: deff(nhm, nhm, nat) REAL(DP), INTENT(IN) :: et deff(:,:,:) = deeq(:,:,:,current_spin) IF (okvan) THEN DO nt = 1, nsp DO na = 1, nat IF ( ityp(na) == nt ) THEN deff(:,:,na) = deff(:,:,na) - et*qq(:,:,nt) END IF END DO END DO ENDIF RETURN END SUBROUTINE compute_deff ! SUBROUTINE compute_deff_nc(deff, et) ! ! This routine computes the effective value of the D-eS coefficients ! which appears often in many expressions. This routine is for the ! noncollinear case. ! USE kinds, ONLY : DP USE ions_base, ONLY : nsp, nat, ityp USE spin_orb, ONLY : lspinorb USE noncollin_module, ONLY : noncolin, npol USE uspp, ONLY : deeq_nc, qq, qq_so, okvan USE uspp_param, ONLY : nhm USE lsda_mod, ONLY : nspin IMPLICIT NONE INTEGER :: nt, na, is, js, ijs COMPLEX(DP), INTENT(OUT) :: deff(nhm, nhm, nat, nspin) REAL(DP), INTENT(IN) :: et deff=deeq_nc IF (okvan) THEN DO nt = 1, nsp DO na = 1, nat IF ( ityp(na) == nt ) THEN IF (lspinorb) THEN deff(:,:,na,:) = deff(:,:,na,:) - et * qq_so(:,:,:,nt) ELSE ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 IF (is==js) deff(:,:,na,ijs)=deff(:,:,na,ijs)-et*qq(:,:,nt) END DO END DO END IF END IF END DO END DO ENDIF RETURN END SUBROUTINE compute_deff_nc espresso-5.0.2/PW/src/stres_cc.f900000644000700200004540000000630412053145630015624 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine stres_cc (sigmaxcc) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : alat, omega, tpiba, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, gg, ngl, gl,igtongl USE ener, ONLY : etxc, vtxc USE lsda_mod, ONLY : nspin USE scf, ONLY : rho, rho_core, rhog_core USE vlocal, ONLY : strf USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! output real(DP) :: sigmaxcc (3, 3) ! local variables integer :: nt, ng, l, m, ir ! counters real(DP) :: fact, sigmadiag real(DP) , allocatable:: rhocg (:), vxc (:,:) sigmaxcc(:,:) = 0.d0 if ( ANY (upf(1:ntyp)%nlcc) ) goto 15 return 15 continue ! ! recalculate the exchange-correlation potential ! allocate ( vxc(dfftp%nnr,nspin) ) call v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) if (nspin.eq.1.or.nspin.eq.4) then do ir = 1, dfftp%nnr psic (ir) = vxc (ir, 1) enddo else do ir = 1, dfftp%nnr psic (ir) = 0.5d0 * (vxc (ir, 1) + vxc (ir, 2) ) enddo endif deallocate (vxc) CALL fwfft ('Dense', psic, dfftp) ! ! psic contains now Vxc(G) ! allocate(rhocg(ngl)) sigmadiag = 0.0d0 if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do nt = 1, ntyp if ( upf(nt)%nlcc ) then call drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, rgrid(nt)%r, & rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) ! diagonal term if (gstart==2) sigmadiag = sigmadiag + & CONJG(psic (nl(1) ) ) * strf (1,nt) * rhocg (igtongl (1) ) do ng = gstart, ngm sigmadiag = sigmadiag + CONJG(psic (nl (ng) ) ) * & strf (ng,nt) * rhocg (igtongl (ng) ) * fact enddo call deriv_drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, & rgrid(nt)%r, rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) ! non diagonal term (g=0 contribution missing) do ng = gstart, ngm do l = 1, 3 do m = 1, 3 sigmaxcc (l, m) = sigmaxcc (l, m) + CONJG(psic (nl (ng) ) ) & * strf (ng, nt) * rhocg (igtongl (ng) ) * tpiba * & g (l, ng) * g (m, ng) / sqrt (gg (ng) ) * fact enddo enddo enddo endif enddo do l = 1, 3 sigmaxcc (l, l) = sigmaxcc (l, l) + sigmadiag enddo call mp_sum( sigmaxcc, intra_bgrp_comm ) deallocate (rhocg) return end subroutine stres_cc espresso-5.0.2/PW/src/buffers.f900000644000700200004540000001577312053145630015465 0ustar marsamoscm! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE buffers !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! PRIVATE PUBLIC :: open_buffer, init_buffer, get_buffer, save_buffer, close_buffer ! SAVE ! ! ... global variables ! COMPLEX(DP), ALLOCATABLE :: buffer1(:,:) INTEGER :: nword_ CHARACTER(LEN=80) :: extension_ ! INTEGER, EXTERNAL :: find_free_unit ! CONTAINS !----------------------------------------------------------------------- SUBROUTINE open_buffer (unit, extension, nword, maxrec, exst) !----------------------------------------------------------------------- ! ! unit > 6 : connect unit "unit" to a file "prefix"."extension" in ! tmp_dir for direct I/O access, record length nword complex numbers; ! maxrec is ignored, exst=T(F) if the file (does not) exists ! ! unit =-1 : allocate a buffer for storing up to maxrec records ! of length nword complex numbers; extension is saved but ignored ! exst=T(F) if the buffer is already allocated ! USE io_files, ONLY : diropn ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: extension INTEGER, INTENT(IN) :: unit, nword, maxrec LOGICAL, INTENT(OUT) :: exst ! INTEGER :: ierr ! exst = .FALSE. IF ( unit == -1 ) THEN ! exst = ALLOCATED ( buffer1 ) ! IF ( exst ) THEN ! CALL infomsg ('open_buffer', 'buffer already allocated') ! ELSE ! nword_ = nword extension_ = extension ALLOCATE ( buffer1 ( nword, maxrec ) ) ! END IF ! ELSE IF ( unit > 6 ) THEN ! CALL diropn (unit, extension, 2*nword, exst) ! ELSE ! CALL errore ('open_buffer', 'incorrect unit specified', ABS(unit)) ! END IF ! RETURN ! END SUBROUTINE open_buffer ! !---------------------------------------------------------------------------- SUBROUTINE save_buffer( vect, nword, unit, nrec ) !---------------------------------------------------------------------------- ! ! ... copy vect(1:nword) into the "nrec"-th record of ! ... - a previously allocated buffer, if unit = -1 ! ... - a previously opened direct-access file with unit > 6 ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nword, unit, nrec COMPLEX(DP), INTENT(IN) :: vect(nword) ! IF ( unit == -1 ) THEN ! IF ( ALLOCATED ( buffer1 ) ) THEN ! IF ( nrec > SIZE ( buffer1, 2) ) & CALL errore ('save_buffer', 'too many records', ABS(nrec)) ! IF ( nword /= SIZE ( buffer1, 1) ) & CALL errore ('save_buffer', 'record length mismatch', ABS(nword)) ! buffer1(:,nrec) = vect(:) ! ELSE ! CALL errore ('save_buffer', 'buffer not allocated', ABS(unit)) ! END IF ! ELSE IF ( unit > 6 ) THEN ! CALL davcio ( vect, 2*nword, unit, nrec, +1 ) ! ELSE ! CALL errore ('save_buffer', 'incorrect unit specified', ABS(unit)) ! END IF ! RETURN ! END SUBROUTINE save_buffer ! !---------------------------------------------------------------------------- SUBROUTINE get_buffer( vect, nword, unit, nrec ) !---------------------------------------------------------------------------- ! ! ... copy vect(1:nword) from the "nrec"-th record of ! ... - a previously allocated buffer, if unit = -1 ! ... - a previously opened direct-access file with unit > 6 ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nword, unit, nrec COMPLEX(DP), INTENT(OUT) :: vect(nword) ! IF ( unit == -1 ) THEN ! IF ( ALLOCATED ( buffer1 ) ) THEN ! IF ( nrec > SIZE ( buffer1, 2) ) & CALL errore ('get_buffer', 'no such record', ABS(nrec)) ! IF ( nword /= SIZE ( buffer1, 1) ) & CALL errore ('get_buffer', 'record length mismatch', ABS(nword)) ! vect(:) = buffer1(:,nrec) ! ELSE ! CALL errore ('get_buffer', 'buffer not allocated', ABS(unit)) ! END IF ! ELSE IF ( unit > 6 ) THEN ! CALL davcio ( vect, 2*nword, unit, nrec, -1 ) ! ELSE ! CALL errore ('get_buffer', 'incorrect unit specified', ABS(unit)) ! END IF ! RETURN ! END SUBROUTINE get_buffer ! SUBROUTINE close_buffer ( unit, status ) ! ! unit > 6 : close unit with status "status" ('keep' or 'delete') ! unit =-1 : deallocate buffer; if "status='keep'" save to file ! (using saved value of extension) ! USE io_files, ONLY : diropn ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: unit CHARACTER(LEN=*), INTENT(IN) :: status ! INTEGER :: unit_, i LOGICAL :: exst, opnd ! IF ( unit == -1 ) THEN ! IF ( ALLOCATED ( buffer1 ) ) THEN ! IF ( TRIM(status) == 'KEEP' .OR. TRIM(status) == 'keep') THEN ! unit_ = find_free_unit () CALL diropn (unit_, extension_, 2*nword_, exst) DO i = 1, SIZE (buffer1, 2) CALL davcio ( buffer1(1,i), 2*nword_, unit_, i, +1 ) END DO CLOSE( UNIT = unit_, STATUS = status ) ! END IF ! DEALLOCATE (buffer1) ! ELSE ! CALL infomsg ('close_buffer', 'buffer not allocated') ! END IF ! ELSE IF ( unit > 6 ) THEN ! INQUIRE( UNIT = unit, OPENED = opnd ) ! IF ( opnd ) CLOSE( UNIT = unit, STATUS = status ) ! ELSE ! CALL infomsg ('get_buffer', 'incorrect unit specified') ! END IF ! END SUBROUTINE close_buffer ! SUBROUTINE init_buffer ( unit, exst, ierr ) ! ! unit > 6 : ignored ! unit =-1 : read into buffer the array previously saved to file ! when the buffer was closed (used in NEB calculations) ! exst : T if the file where to read from is present ! ierr : 0 if everything ok, 1 otherwise ! USE io_files, ONLY : diropn ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: unit INTEGER, INTENT(OUT) :: ierr LOGICAL, INTENT(OUT) :: exst ! INTEGER :: unit_, i ! ierr = 1 ! IF ( unit == -1 ) THEN ! IF ( .NOT. ALLOCATED ( buffer1 ) ) THEN CALL infomsg ('init_buffer', 'buffer not allocated') RETURN END IF ! unit_ = find_free_unit () CALL diropn (unit_, extension_, 2*nword_, exst) IF ( .NOT. exst ) THEN CLOSE (UNIT = unit_ , STATUS = 'delete') RETURN END IF ! DO i = 1, SIZE (buffer1, 2) CALL davcio ( buffer1(1,i), 2*nword_, unit_, i, -1 ) END DO CLOSE( UNIT = unit_, STATUS = 'keep' ) ierr = 0 ! ELSE ! CALL infomsg ('init_buffer', 'incorrect unit specified') ! END IF ! END SUBROUTINE init_buffer ! END MODULE buffers espresso-5.0.2/PW/src/acfdt_in_pw.f900000644000700200004540000000075412053145627016305 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! !!!! ACFDT_WILL BE UPDATE_IN_PW !!!! ! MODULE acfdt_ener ! USE kinds, ONLY : DP ! REAL(DP) :: acfdt_eband ! END MODULE acfdt_ener espresso-5.0.2/PW/src/print_clock_pw.f900000644000700200004540000001504512053145627017044 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE print_clock_pw() !--------------------------------------------------------------------------- ! ! ... this routine prints out the clocks at the end of the run ! ... it tries to construct the calling tree of the program. ! USE io_global, ONLY : stdout USE control_flags, ONLY : isolve, iverbosity, gamma_only USE paw_variables, ONLY : okpaw USE realus, ONLY : real_space USE ldaU, ONLY : lda_plus_U USE funct, ONLY : dft_is_hybrid #ifdef __ENVIRON USE environ_base, ONLY : do_environ #endif ! IMPLICIT NONE ! ! WRITE( stdout, * ) ! CALL print_clock( 'init_run' ) CALL print_clock( 'electrons' ) CALL print_clock( 'update_pot' ) CALL print_clock( 'forces' ) CALL print_clock( 'stress' ) ! WRITE( stdout, '(/5x,"Called by init_run:")' ) CALL print_clock( 'wfcinit' ) CALL print_clock( 'potinit' ) CALL print_clock( 'realus' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'realus:boxes' ) CALL print_clock( 'realus:spher' ) CALL print_clock( 'realus:qsave' ) END IF ! WRITE( stdout, '(/5x,"Called by electrons:")' ) CALL print_clock( 'c_bands' ) CALL print_clock( 'sum_band' ) CALL print_clock( 'v_of_rho' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'v_h' ) CALL print_clock( 'v_xc' ) CALL print_clock( 'v_xc_meta' ) END IF CALL print_clock( 'newd' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'newd:fftvg' ) CALL print_clock( 'newd:qvan2' ) CALL print_clock( 'newd:int1' ) CALL print_clock( 'newd:int2' ) END IF CALL print_clock( 'mix_rho' ) CALL print_clock( 'vdW_energy' ) CALL print_clock( 'vdW_ffts' ) CALL print_clock( 'vdW_v' ) ! WRITE( stdout, '(/5x,"Called by c_bands:")' ) CALL print_clock( 'init_us_2' ) IF ( isolve == 0 ) THEN IF ( gamma_only ) THEN CALL print_clock( 'regterg' ) ELSE CALL print_clock( 'cegterg' ) ENDIF ELSE IF ( gamma_only ) THEN CALL print_clock( 'rcgdiagg' ) ELSE CALL print_clock( 'ccgdiagg' ) ENDIF CALL print_clock( 'wfcrot' ) ENDIF ! IF ( iverbosity > 0) THEN WRITE( stdout, '(/5x,"Called by sum_band:")' ) CALL print_clock( 'sum_band:becsum' ) CALL print_clock( 'addusdens' ) CALL print_clock( 'addus:qvan2' ) CALL print_clock( 'addus:strf' ) CALL print_clock( 'addus:aux2' ) CALL print_clock( 'addus:aux' ) ENDIF ! IF ( isolve == 0 ) THEN WRITE( stdout, '(/5x,"Called by *egterg:")' ) ELSE WRITE( stdout, '(/5x,"Called by *cgdiagg:")' ) END IF ! IF (real_space ) THEN WRITE( stdout, '(/5x,"Called by real space routines:")' ) CALL print_clock ( 'realus' ) CALL print_clock ( 'betapointlist' ) CALL print_clock ( 'addusdens' ) CALL print_clock ( 'calbec_rs' ) CALL print_clock ( 's_psir' ) CALL print_clock ( 'add_vuspsir' ) CALL print_clock ( 'fft_orbital' ) CALL print_clock ( 'bfft_orbital' ) CALL print_clock ( 'v_loc_psir' ) ELSE CALL print_clock( 'h_psi' ) CALL print_clock( 's_psi' ) CALL print_clock( 'g_psi' ) ENDIF IF ( gamma_only ) THEN CALL print_clock( 'rdiaghg' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'regterg:overlap' ) CALL print_clock( 'regterg:update' ) CALL print_clock( 'regterg:last' ) CALL print_clock( 'rdiaghg:choldc' ) CALL print_clock( 'rdiaghg:inversion' ) CALL print_clock( 'rdiaghg:paragemm' ) ENDIF ELSE CALL print_clock( 'cdiaghg' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'cegterg:overlap' ) CALL print_clock( 'cegterg:update' ) CALL print_clock( 'cegterg:last' ) CALL print_clock( 'cdiaghg:choldc' ) CALL print_clock( 'cdiaghg:inversion' ) CALL print_clock( 'cdiaghg:paragemm' ) END IF END IF ! WRITE( stdout, '(/5x,"Called by h_psi:")' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'h_psi:init' ) CALL print_clock( 'h_psi:vloc' ) CALL print_clock( 'h_psi:vnl' ) END IF CALL print_clock( 'add_vuspsi' ) CALL print_clock( 'vhpsi' ) CALL print_clock( 'h_psi_meta' ) ! WRITE( stdout, '(/5X,"General routines")' ) ! CALL print_clock( 'calbec' ) CALL print_clock( 'fft' ) CALL print_clock( 'ffts' ) CALL print_clock( 'fftw' ) CALL print_clock( 'interpolate' ) CALL print_clock( 'davcio' ) ! WRITE( stdout, * ) ! #if defined (__MPI) WRITE( stdout, '(5X,"Parallel routines")' ) ! CALL print_clock( 'reduce' ) CALL print_clock( 'fft_scatter' ) CALL print_clock( 'ALLTOALL' ) #endif ! IF ( lda_plus_U ) THEN WRITE( stdout, '(5X,"Hubbard U routines")' ) CALL print_clock( 'new_ns' ) CALL print_clock( 'vhpsi' ) CALL print_clock( 'force_hub' ) CALL print_clock( 'stres_hub' ) ENDIF ! IF ( dft_is_hybrid() ) THEN WRITE( stdout, '(5X,"EXX routines")' ) CALL print_clock( 'exx_grid' ) CALL print_clock( 'exxinit' ) CALL print_clock( 'vexx' ) !CALL print_clock( 'vexx_ngmloop' ) CALL print_clock( 'exxenergy' ) CALL print_clock( 'exxen2' ) !CALL print_clock( 'exxen2_ngmloop' ) CALL print_clock ('cycleig') ENDIF ! IF ( okpaw ) THEN WRITE( stdout, * ) WRITE( stdout, '(5X,"PAW routines")' ) ! radial routines: CALL print_clock ('PAW_pot') CALL print_clock ('PAW_newd') CALL print_clock ('PAW_int') CALL print_clock ('PAW_ddot') CALL print_clock ('PAW_rad_init') CALL print_clock ('PAW_energy') CALL print_clock ('PAW_symme') ! second level routines: CALL print_clock ('PAW_rho_lm') CALL print_clock ('PAW_h_pot') CALL print_clock ('PAW_xc_pot') CALL print_clock ('PAW_lm2rad') CALL print_clock ('PAW_rad2lm') ! third level, or deeper: CALL print_clock ('PAW_rad2lm3') CALL print_clock ('PAW_gcxc_v') CALL print_clock ('PAW_div') CALL print_clock ('PAW_grad') END IF ! #ifdef __ENVIRON IF ( do_environ ) call environ_clock( stdout ) #endif ! RETURN ! END SUBROUTINE print_clock_pw espresso-5.0.2/PW/src/d_matrix.f900000644000700200004540000000775612053145630015642 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------- subroutine d_matrix (dy1, dy2, dy3) !--------------------------------------------------------------- ! USE kinds, only: DP USE symm_base, ONLY: nsym, sr USE random_numbers, ONLY : randy implicit none real(DP) :: dy1 (3, 3, 48), dy2 (5, 5, 48), dy3 (7, 7, 48) ! integer, parameter :: maxl = 3, maxm = 2*maxl+1, & maxlm = (maxl+1)*(maxl+1) ! maxl = max value of l allowed ! maxm = number of m components for l=maxl ! maxlm= number of l,m spherical harmonics for l <= maxl integer :: m, n, isym real(DP) :: ylm(maxm, maxlm), yl1 (3, 3), yl2(5, 5), yl3(7,7), & yl1_inv (3, 3), yl2_inv(5, 5), yl3_inv(7, 7), ylms(maxm, maxlm), & rl(3,maxm), rrl (maxm), srl(3,maxm), delta(7,7), capel real(DP), parameter :: eps = 1.0d-9 real(DP), external :: ddot ! ! randomly distributed points on a sphere ! do m = 1, maxm rl (1, m) = randy () - 0.5d0 rl (2, m) = randy () - 0.5d0 rl (3, m) = randy () - 0.5d0 rrl (m) = rl (1,m)**2 + rl (2,m)**2 + rl (3,m)**2 enddo call ylmr2 ( maxlm, 2*maxl+1, rl, rrl, ylm ) ! ! invert Yl for each block of definite l (note the transpose operation) ! ! l = 1 block ! do m = 1, 3 do n = 1, 3 yl1 (m, n) = ylm (n, 1+m) end do end do call invmat (3, yl1, yl1_inv, capel) ! ! l = 2 block ! do m = 1, 5 do n = 1, 5 yl2 (m, n) = ylm (n, 4+m) end do end do call invmat (5, yl2, yl2_inv, capel) ! ! l = 3 block ! do m = 1, 7 do n = 1, 7 yl3 (m, n) = ylm (n, 9+m) end do end do call invmat (7, yl3, yl3_inv, capel) ! ! now for each symmetry operation of the point-group ... ! do isym = 1, nsym ! ! srl(:,m) = rotated rl(:,m) vectors ! srl = matmul (sr(:,:,isym), rl) ! call ylmr2 ( maxlm, maxm, srl, rrl, ylms ) ! ! find D_S = Yl_S * Yl_inv (again, beware the transpose) ! ! l = 1 ! do m = 1, 3 do n = 1, 3 yl1 (m, n) = ylms (n, 1+m) end do end do dy1 (:, :, isym) = matmul (yl1(:,:), yl1_inv(:,:)) ! ! l = 2 block ! do m = 1, 5 do n = 1, 5 yl2 (m, n) = ylms (n, 4+m) end do end do dy2 (:, :, isym) = matmul (yl2(:,:), yl2_inv(:,:)) ! ! l = 3 block ! do m = 1, 7 do n = 1, 7 yl3 (m, n) = ylms (n, 9+m) end do end do dy3 (:, :, isym) = matmul (yl3(:,:), yl3_inv(:,:)) ! enddo ! ! check that D_S matrices are orthogonal as they should if Ylm are ! correctly defined. ! delta(:,:) = 0.d0 do m= 1, 7 delta(m,m) = 1.d0 end do do isym =1,nsym ! ! l = 1 block ! capel = 0.d0 do m = 1, 3 do n = 1, 3 capel = capel + & ( ddot(3,dy1(1,m,isym),1,dy1(1,n,isym),1) - delta(m,n) )**2 end do end do if (capel.gt.eps) call errore ('d_matrix', & 'D_S (l=1) for this symmetry operation is not orthogonal',isym) ! ! l = 2 block ! capel = 0.d0 do m = 1, 5 do n = 1, 5 capel = capel + & ( ddot(5,dy2(1,m,isym),1,dy2(1,n,isym),1) - delta(m,n) )**2 end do end do if (capel.gt.eps) call errore ('d_matrix', & 'D_S (l=2) for this symmetry operation is not orthogonal',isym) ! ! l = 3 block ! capel = 0.d0 do m = 1, 7 do n = 1, 7 capel = capel + & ( ddot(7,dy3(1,m,isym),1,dy3(1,n,isym),1) - delta(m,n) )**2 end do end do if (capel.gt.eps) call errore ('d_matrix', & 'D_S (l=3) for this symmetry operation is not orthogonal',isym) ! end do return end subroutine d_matrix espresso-5.0.2/PW/src/add_paw_to_deeq.f900000644000700200004540000000216312053145627017123 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE add_paw_to_deeq(deeq) ! Add paw contributions to deeq (computed in paw_potential) USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : upf, nh, nhm USE paw_variables, ONLY : okpaw, ddd_paw USE lsda_mod, ONLY : nspin IMPLICIT NONE integer :: na, nt, ih, jh, ijh REAL(kind=dp), intent(inout) :: deeq( nhm, nhm, nat, nspin ) if (okpaw) then do na=1,nat nt = ityp(na) IF (.not.upf(nt)%tpawp) cycle ijh=0 do ih=1,nh(nt) do jh=ih,nh(nt) ijh=ijh+1 deeq(ih,jh,na,1:nspin) = deeq(ih,jh,na,1:nspin) & + ddd_paw(ijh,na,1:nspin) deeq(jh,ih,na,1:nspin) = deeq(ih,jh,na,1:nspin) end do end do end do end IF RETURN END SUBROUTINE add_paw_to_deeq espresso-5.0.2/PW/src/gradcorr.f900000644000700200004540000004261512053145630015627 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE gradcorr( rho, rhog, rho_core, rhog_core, etxc, vtxc, v ) !---------------------------------------------------------------------------- ! USE constants, ONLY : e2 USE kinds, ONLY : DP USE gvect, ONLY : nl, ngm, g USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat USE funct, ONLY : gcxc, gcx_spin, gcc_spin, & gcc_spin_more, dft_is_gradient, get_igcc USE spin_orb, ONLY : domag USE noncollin_module, ONLY : ux USE wavefunctions_module, ONLY : psic USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin), rho_core(dfftp%nnr) COMPLEX(DP), INTENT(IN) :: rhog(ngm,nspin), rhog_core(ngm) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr,nspin) REAL(DP), INTENT(INOUT) :: vtxc, etxc ! INTEGER :: k, ipol, is, nspin0, ir, jpol ! REAL(DP), ALLOCATABLE :: grho(:,:,:), h(:,:,:), dh(:) REAL(DP), ALLOCATABLE :: rhoout(:,:), segni(:), vgg(:,:), vsave(:,:) REAL(DP), ALLOCATABLE :: gmag(:,:,:) COMPLEX(DP), ALLOCATABLE :: rhogsum(:,:) ! LOGICAL :: igcc_is_lyp REAL(DP) :: grho2(2), sx, sc, v1x, v2x, v1c, v2c, & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw , & etxcgc, vtxcgc, segno, arho, fac, zeta, rh, grh2, amag REAL(DP) :: v2cup, v2cdw, v2cud, rup, rdw, & grhoup, grhodw, grhoud, grup, grdw, seg ! REAL(DP), PARAMETER :: epsr = 1.D-6, epsg = 1.D-10 ! ! IF ( .NOT. dft_is_gradient() ) RETURN igcc_is_lyp = (get_igcc() == 3 .or. get_igcc() == 7) ! etxcgc = 0.D0 vtxcgc = 0.D0 ! nspin0=nspin if (nspin==4) nspin0=1 if (nspin==4.and.domag) nspin0=2 fac = 1.D0 / DBLE( nspin0 ) ! ALLOCATE( h( 3, dfftp%nnr, nspin0) ) ALLOCATE( grho( 3, dfftp%nnr, nspin0) ) ALLOCATE( rhoout( dfftp%nnr, nspin0) ) IF (nspin==4.AND.domag) THEN ALLOCATE( vgg( dfftp%nnr, nspin0 ) ) ALLOCATE( vsave( dfftp%nnr, nspin ) ) ALLOCATE( segni( dfftp%nnr ) ) vsave=v v=0.d0 ENDIF ! ALLOCATE( rhogsum( ngm, nspin0 ) ) ! ! ... calculate the gradient of rho + rho_core in real space ! IF ( nspin == 4 .AND. domag ) THEN ! CALL compute_rho(rho,rhoout,segni,dfftp%nnr) ! ! ... bring starting rhoout to G-space ! DO is = 1, nspin0 ! psic(:) = rhoout(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rhogsum(:,is) = psic(nl(:)) ! END DO ELSE ! rhoout(:,1:nspin0) = rho(:,1:nspin0) rhogsum(:,1:nspin0) = rhog(:,1:nspin0) ! ENDIF DO is = 1, nspin0 ! rhoout(:,is) = fac * rho_core(:) + rhoout(:,is) rhogsum(:,is) = fac * rhog_core(:) + rhogsum(:,is) ! CALL gradrho( dfftp%nnr, rhogsum(1,is), ngm, g, nl, grho(1,1,is) ) ! END DO ! DEALLOCATE( rhogsum ) ! IF ( nspin0 == 1 ) THEN ! ! ... This is the spin-unpolarised case ! DO k = 1, dfftp%nnr ! arho = ABS( rhoout(k,1) ) ! IF ( arho > epsr ) THEN ! grho2(1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 ! IF ( grho2(1) > epsg ) THEN ! segno = SIGN( 1.D0, rhoout(k,1) ) ! CALL gcxc( arho, grho2(1), sx, sc, v1x, v2x, v1c, v2c ) ! ! ... first term of the gradient correction : D(rho*Exc)/D(rho) ! v(k,1) = v(k,1) + e2 * ( v1x + v1c ) ! ! ... h contains : ! ! ... D(rho*Exc) / D(|grad rho|) * (grad rho) / |grad rho| ! h(:,k,1) = e2 * ( v2x + v2c ) * grho(:,k,1) ! vtxcgc = vtxcgc+e2*( v1x + v1c ) * ( rhoout(k,1) - rho_core(k) ) etxcgc = etxcgc+e2*( sx + sc ) * segno ! ELSE h(:,k,1)=0.D0 END IF ! ELSE ! h(:,k,1) = 0.D0 ! END IF ! END DO ! ELSE ! ! ... spin-polarised case ! !$omp parallel do private( rh, grho2, sx, v1xup, v1xdw, v2xup, v2xdw, rup, rdw, & !$omp grhoup, grhodw, grhoud, sc, v1cup, v1cdw, v2cup, v2cdw, v2cud, & !$omp zeta, grh2, v2c, grup, grdw ), & !$omp reduction(+:etxcgc,vtxcgc) DO k = 1, dfftp%nnr ! rh = rhoout(k,1) + rhoout(k,2) ! grho2(:) = grho(1,k,:)**2 + grho(2,k,:)**2 + grho(3,k,:)**2 ! CALL gcx_spin( rhoout(k,1), rhoout(k,2), grho2(1), & grho2(2), sx, v1xup, v1xdw, v2xup, v2xdw ) ! IF ( rh > epsr ) THEN ! IF ( igcc_is_lyp ) THEN ! rup = rhoout(k,1) rdw = rhoout(k,2) ! grhoup = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 grhodw = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2 ! grhoud = grho(1,k,1) * grho(1,k,2) + & grho(2,k,1) * grho(2,k,2) + & grho(3,k,1) * grho(3,k,2) ! CALL gcc_spin_more( rup, rdw, grhoup, grhodw, grhoud, & sc, v1cup, v1cdw, v2cup, v2cdw, v2cud ) ! ELSE ! zeta = ( rhoout(k,1) - rhoout(k,2) ) / rh if (nspin.eq.4.and.domag) zeta=abs(zeta)*segni(k) ! grh2 = ( grho(1,k,1) + grho(1,k,2) )**2 + & ( grho(2,k,1) + grho(2,k,2) )**2 + & ( grho(3,k,1) + grho(3,k,2) )**2 ! CALL gcc_spin( rh, zeta, grh2, sc, v1cup, v1cdw, v2c ) ! v2cup = v2c v2cdw = v2c v2cud = v2c ! END IF ! ELSE ! sc = 0.D0 v1cup = 0.D0 v1cdw = 0.D0 v2c = 0.D0 v2cup = 0.D0 v2cdw = 0.D0 v2cud = 0.D0 ! ENDIF ! ! ... first term of the gradient correction : D(rho*Exc)/D(rho) ! v(k,1) = v(k,1) + e2 * ( v1xup + v1cup ) v(k,2) = v(k,2) + e2 * ( v1xdw + v1cdw ) ! ! ... h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| ! DO ipol = 1, 3 ! grup = grho(ipol,k,1) grdw = grho(ipol,k,2) h(ipol,k,1) = e2 * ( ( v2xup + v2cup ) * grup + v2cud * grdw ) h(ipol,k,2) = e2 * ( ( v2xdw + v2cdw ) * grdw + v2cud * grup ) ! END DO ! vtxcgc = vtxcgc + & e2 * ( v1xup + v1cup ) * ( rhoout(k,1) - rho_core(k) * fac ) vtxcgc = vtxcgc + & e2 * ( v1xdw + v1cdw ) * ( rhoout(k,2) - rho_core(k) * fac ) etxcgc = etxcgc + e2 * ( sx + sc ) ! END DO !$omp end parallel do ! END IF ! DO is = 1, nspin0 ! rhoout(:,is) = rhoout(:,is) - fac * rho_core(:) ! END DO ! DEALLOCATE( grho ) ! ALLOCATE( dh( dfftp%nnr ) ) ! ! ... second term of the gradient correction : ! ... \sum_alpha (D / D r_alpha) ( D(rho*Exc)/D(grad_alpha rho) ) ! DO is = 1, nspin0 ! CALL grad_dot( dfftp%nnr, h(1,1,is), ngm, g, nl, alat, dh ) ! v(:,is) = v(:,is) - dh(:) ! vtxcgc = vtxcgc - SUM( dh(:) * rhoout(:,is) ) ! END DO ! vtxc = vtxc + omega * vtxcgc / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) etxc = etxc + omega * etxcgc / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) IF (nspin==4.AND.domag) THEN DO is=1,nspin0 vgg(:,is)=v(:,is) ENDDO v=vsave DO k=1,dfftp%nnr v(k,1)=v(k,1)+0.5d0*(vgg(k,1)+vgg(k,2)) amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2) IF (amag.GT.1.d-12) THEN v(k,2)=v(k,2)+segni(k)*0.5d0*(vgg(k,1)-vgg(k,2))*rho(k,2)/amag v(k,3)=v(k,3)+segni(k)*0.5d0*(vgg(k,1)-vgg(k,2))*rho(k,3)/amag v(k,4)=v(k,4)+segni(k)*0.5d0*(vgg(k,1)-vgg(k,2))*rho(k,4)/amag ENDIF ENDDO ENDIF ! DEALLOCATE( dh ) DEALLOCATE( h ) DEALLOCATE( rhoout ) IF (nspin==4.and.domag) THEN DEALLOCATE( vgg ) DEALLOCATE( vsave ) DEALLOCATE( segni ) ENDIF ! RETURN ! END SUBROUTINE gradcorr ! !---------------------------------------------------------------------------- SUBROUTINE gradrho( nrxx, a, ngm, g, nl, ga ) !---------------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space (a is in G-space) ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) COMPLEX(DP), INTENT(IN) :: a(ngm) REAL(DP), INTENT(IN) :: g(3,ngm) REAL(DP), INTENT(OUT) :: ga(3,nrxx) ! INTEGER :: ipol COMPLEX(DP), ALLOCATABLE :: gaux(:) ! ! ALLOCATE( gaux( nrxx ) ) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! ga(:,:) = 0.D0 ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0,kind=dp) ! gaux(nl(:)) = g(ipol,:) * CMPLX( -AIMAG( a(:) ), REAL( a(:) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = ga(ipol,:) + tpiba * REAL( gaux(:) ) ! END DO ! DEALLOCATE( gaux ) ! RETURN ! END SUBROUTINE gradrho ! !---------------------------------------------------------------------------- SUBROUTINE gradient( nrxx, a, ngm, g, nl, ga ) !---------------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space (a is also in R-space) ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(nrxx), g(3,ngm) REAL(DP), INTENT(OUT) :: ga(3,nrxx) ! INTEGER :: ipol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:) ! ! ALLOCATE( aux( nrxx ) ) ALLOCATE( gaux( nrxx ) ) ! aux = CMPLX( a(:), 0.D0 ,kind=DP) ! ! ... bring a(r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! gaux(nl(:)) = g(ipol,:) * & CMPLX( -AIMAG( aux(nl(:)) ), REAL( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = tpiba * DBLE( gaux(:) ) ! END DO ! DEALLOCATE( gaux ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE gradient ! !---------------------------------------------------------------------------- SUBROUTINE grad_dot( nrxx, a, ngm, g, nl, alat, da ) !---------------------------------------------------------------------------- ! ! ... Calculates da = \sum_i \grad_i a_i in R-space ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx, ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(3,nrxx), g(3,ngm), alat REAL(DP), INTENT(OUT) :: da(nrxx) ! INTEGER :: n, ipol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:) ! ! ALLOCATE( aux( nrxx ), gaux( nrxx ) ) ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! DO ipol = 1, 3 ! aux = CMPLX( a(ipol,:), 0.D0 ,kind=DP) ! ! ... bring a(ipol,r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! DO n = 1, ngm ! gaux(nl(n)) = gaux(nl(n)) + g(ipol,n) * & CMPLX( -AIMAG( aux(nl(n)) ), REAL( aux(nl(n)) ) ,kind=DP) ! END DO ! END DO ! IF ( gamma_only ) THEN ! DO n = 1, ngm ! gaux(nlm(n)) = CONJG( gaux(nl(n)) ) ! END DO ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ... add the factor 2\pi/a missing in the definition of G and sum ! da(:) = tpiba * REAL( gaux(:) ) ! DEALLOCATE( aux, gaux ) ! RETURN ! END SUBROUTINE grad_dot !-------------------------------------------------------------------- SUBROUTINE hessian( nrxx, a, ngm, g, nl, ga, ha ) !-------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space ! ... and ha = \hessian a in R-space (a is also in R-space) ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(nrxx), g(3,ngm) REAL(DP), INTENT(OUT) :: ga( 3, nrxx ) REAL(DP), INTENT(OUT) :: ha( 3, 3, nrxx ) ! INTEGER :: ipol, jpol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:), haux(:) ! ! ALLOCATE( aux( nrxx ) ) ALLOCATE( gaux( nrxx ) ) ALLOCATE( haux( nrxx ) ) ! aux = CMPLX( a(:), 0.D0 ,kind=DP) ! ! ... bring a(r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! gaux(nl(:)) = g(ipol,:) * & CMPLX( -AIMAG( aux(nl(:)) ), REAL( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = tpiba * DBLE( gaux(:) ) ! ! ... compute the second derivatives ! DO jpol = 1, ipol ! haux(:) = CMPLX(0.d0,0.d0, kind=dp) ! haux(nl(:)) = - g(ipol,:) * g(jpol,:) * & CMPLX( REAL( aux(nl(:)) ), AIMAG( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! haux(nlm(:)) = CMPLX( REAL( haux(nl(:)) ), -AIMAG( haux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', haux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ha(ipol, jpol, :) = tpiba * tpiba * DBLE( haux(:) ) ! ha(jpol, ipol, :) = ha(ipol, jpol, :) ! END DO ! END DO ! DEALLOCATE( haux ) DEALLOCATE( gaux ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE hessian !-------------------------------------------------------------------- SUBROUTINE external_gradient( a, grada ) !-------------------------------------------------------------------- ! ! Interface for computing gradients in real space, to be called by ! an external module ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, g ! IMPLICIT NONE ! REAL( DP ), INTENT(IN) :: a( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr ) ! A in real space, grad(A) in real space CALL gradient( dfftp%nnr, a, ngm, g, nl, grada ) RETURN END SUBROUTINE external_gradient !-------------------------------------------------------------------- SUBROUTINE external_hessian( a, grada, hessa ) !-------------------------------------------------------------------- ! ! Interface for computing hessian in real space, to be called by ! an external module ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, g ! IMPLICIT NONE ! REAL( DP ), INTENT(IN) :: a( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr ) REAL( DP ), INTENT(OUT) :: hessa( 3, 3, dfftp%nnr ) ! A in real space, grad(A) and hess(A) in real space CALL hessian( dfftp%nnr, a, ngm, g, nl, grada, hessa ) RETURN END SUBROUTINE external_hessian !---------------------------------------------------------------------------- espresso-5.0.2/PW/src/read_file.f900000644000700200004540000002452212053145627015741 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE read_file() !---------------------------------------------------------------------------- ! ! Wrapper routine, for compatibility ! USE io_files, ONLY : nwordwfc, iunwfc USE io_global, ONLY : stdout USE buffers, ONLY : open_buffer, close_buffer USE wvfct, ONLY : nbnd, npwx USE noncollin_module, ONLY : npol USE klist, ONLY : nks USE paw_variables, ONLY : okpaw, ddd_PAW USE paw_onecenter, ONLY : paw_potential USE uspp, ONLY : becsum USE scf, ONLY : rho USE realus, ONLY : qpointlist, betapointlist, & init_realspace_vars,real_space USE dfunct, ONLY : newd USE ldaU, ONLY : lda_plus_u, U_projection USE pw_restart, ONLY : pw_readfile ! IMPLICIT NONE INTEGER :: ierr LOGICAL :: exst ! ! ... Read the contents of the xml data file ! CALL read_xml_file ( ) ! ! ... Open unit iunwfc, for Kohn-Sham orbitals ! nwordwfc = nbnd*npwx*npol CALL open_buffer ( iunwfc, 'wfc', nwordwfc, nks, exst ) ! ! ... Read orbitals, write them in 'distributed' form to iunwfc ! CALL pw_readfile( 'wave', ierr ) ! ! ... Assorted initialization: pseudopotentials, PAW ! ... Not sure which ones (if any) should be done here ! CALL init_us_1() IF (lda_plus_U .AND. (U_projection == 'pseudo')) CALL init_q_aeps() ! IF (okpaw) THEN becsum = rho%bec CALL PAW_potential(rho%bec, ddd_PAW) ENDIF ! IF ( real_space ) THEN CALL betapointlist() CALL init_realspace_vars() WRITE(stdout,'(5X,"Real space initialisation completed")') ENDIF CALL newd() ! CALL close_buffer ( iunwfc, 'KEEP' ) ! END SUBROUTINE read_file ! !---------------------------------------------------------------------------- SUBROUTINE read_xml_file() !---------------------------------------------------------------------------- ! ! ... This routine allocates space for all quantities already computed ! ... in the pwscf program and reads them from the data file. ! ... All quantities that are initialized in subroutine "setup" when ! ... starting from scratch should be initialized here when restarting ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, nsp, ityp, tau, if_pos, extfor USE basis, ONLY : natomwfc USE cell_base, ONLY : tpiba2, alat,omega, at, bg, ibrav USE force_mod, ONLY : force USE klist, ONLY : nkstot, nks, xk, wk USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, nbndx, et, wg, ecutwfc USE symm_base, ONLY : irt, d1, d2, d3, checkallsym USE ktetra, ONLY : tetra, ntetra USE extfield, ONLY : forcefield, tefield USE cellmd, ONLY : cell_factor, lmovecell USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE grid_subroutines, ONLY : realspace_grids_init USE recvec_subs, ONLY : ggen USE gvect, ONLY : gg, ngm, g, gcutm, & eigts1, eigts2, eigts3, nl, gstart USE fft_base, ONLY : dfftp, dffts USE gvecs, ONLY : ngms, nls, gcutms USE spin_orb, ONLY : lspinorb, domag USE scf, ONLY : rho, rho_core, rhog_core, v USE wavefunctions_module, ONLY : psic USE vlocal, ONLY : strf USE io_files, ONLY : tmp_dir, prefix, iunpun, nwordwfc, iunwfc USE noncollin_module, ONLY : noncolin, npol, nspin_lsda, nspin_mag, nspin_gga USE pw_restart, ONLY : pw_readfile USE read_pseudo_mod, ONLY : readpp USE xml_io_base, ONLY : pp_check_file USE uspp, ONLY : becsum USE uspp_param, ONLY : upf USE paw_variables, ONLY : okpaw, ddd_PAW USE paw_init, ONLY : paw_init_onecenter, allocate_paw_internals USE ldaU, ONLY : lda_plus_u, eth, oatwfc USE control_flags, ONLY : gamma_only USE funct, ONLY : get_inlc, get_dft_name USE kernel_table, ONLY : initialize_kernel_table USE esm, ONLY : do_comp_esm, esm_ggen_2d ! INTEGER :: i, is, ik, ibnd, nb, nt, ios, isym, ierr, inlc REAL(DP) :: rdum(1,1), ehart, etxc, vtxc, etotefield, charge REAL(DP) :: sr(3,3,48) CHARACTER(LEN=20) dft_name ! ! ... first we get the version of the qexml file ! if not already read ! CALL pw_readfile( 'header', ierr ) CALL errore( 'read_xml_file ', 'unable to determine qexml version', ABS(ierr) ) ! ! ... then we check if the file can be used for post-processing ! IF ( .NOT. pp_check_file() ) CALL infomsg( 'read_xml_file', & & 'file ' // TRIM( tmp_dir ) // TRIM( prefix ) & & // '.save not guaranteed to be safe for post-processing' ) ! ! ... a reset of the internal flags is necessary because some codes call ! ... read_xml_file() more than once ! CALL pw_readfile( 'reset', ierr ) ! ! ... here we read the variables that dimension the system ! ... in parallel execution, only root proc reads the file ! ... and then broadcasts the values to all other procs ! CALL pw_readfile( 'dim', ierr ) CALL errore( 'read_xml_file ', 'problem reading file ' // & & TRIM( tmp_dir ) // TRIM( prefix ) // '.save', ierr ) ! ! ... allocate space for atomic positions, symmetries, forces, tetrahedra ! IF ( nat < 0 ) & CALL errore( 'read_xml_file', 'wrong number of atoms', 1 ) ! ! ... allocation ! ALLOCATE( ityp( nat ) ) ALLOCATE( tau( 3, nat ) ) ALLOCATE( if_pos( 3, nat ) ) ALLOCATE( force( 3, nat ) ) ALLOCATE( extfor( 3, nat ) ) ! IF ( tefield ) ALLOCATE( forcefield( 3, nat ) ) ! ALLOCATE( irt( 48, nat ) ) ALLOCATE( tetra( 4, MAX( ntetra, 1 ) ) ) ! CALL set_dimensions() CALL realspace_grids_init ( dfftp, dffts, at, bg, gcutm, gcutms ) ! ! ... check whether LSDA ! IF ( lsda ) THEN ! nspin = 2 npol = 1 ! ELSE IF ( noncolin ) THEN ! nspin = 4 npol = 2 current_spin = 1 ! ELSE ! nspin = 1 npol = 1 current_spin = 1 ! END IF ! if (cell_factor == 0.d0) cell_factor = 1.D0 ! ! ... allocate memory for eigenvalues and weights (read from file) ! nbndx = nbnd ALLOCATE( et( nbnd, nkstot ) , wg( nbnd, nkstot ) ) ! ! ... here we read all the variables defining the system ! CALL pw_readfile( 'nowave', ierr ) ! ! ... distribute across pools k-points and related variables. ! ... nks is defined by the following routine as the number ! ... of k-points in the current pool ! CALL divide_et_impera( xk, wk, isk, lsda, nkstot, nks ) ! CALL poolscatter( nbnd, nkstot, et, nks, et ) CALL poolscatter( nbnd, nkstot, wg, nks, wg ) ! ! ... check on symmetry ! IF (nat > 0) CALL checkallsym( nat, tau, ityp, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! ! Set the different spin indices ! nspin_mag = nspin nspin_lsda = nspin nspin_gga = nspin IF (nspin==4) THEN nspin_lsda=1 IF (domag) THEN nspin_gga=2 ELSE nspin_gga=1 nspin_mag=1 ENDIF ENDIF ! ! ... read pseudopotentials ! CALL pw_readfile( 'pseudo', ierr ) dft_name = get_dft_name () ! already set, should not be set again CALL readpp ( dft_name ) ! ! ... read the vdw kernel table if needed ! inlc = get_inlc() if (inlc == 1 .or. inlc ==2 ) then call initialize_kernel_table() endif ! okpaw = ANY ( upf(1:nsp)%tpawp ) ! IF ( .NOT. lspinorb ) CALL average_pp ( nsp ) ! ! ... allocate memory for G- and R-space fft arrays ! CALL pre_init() CALL allocate_fft() CALL ggen ( gamma_only, at, bg ) IF (do_comp_esm) CALL esm_ggen_2d () CALL gshells ( lmovecell ) ! ! ... allocate the potential and wavefunctions ! CALL allocate_locpot() CALL allocate_nlpot() IF (okpaw) THEN CALL allocate_paw_internals() CALL paw_init_onecenter() CALL d_matrix(d1,d2,d3) ENDIF ! IF ( lda_plus_u ) THEN ALLOCATE ( oatwfc(nat) ) CALL offset_atom_wfc ( nat, oatwfc ) ENDIF ! CALL allocate_wfc() ! ! ... read the charge density ! CALL pw_readfile( 'rho', ierr ) ! ! ... re-calculate the local part of the pseudopotential vltot ! ... and the core correction charge (if any) - This is done here ! ... for compatibility with the previous version of read_file ! CALL init_vloc() CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, dfftp%nr1, dfftp%nr2, & dfftp%nr3, strf, eigts1, eigts2, eigts3 ) CALL setlocal() CALL set_rhoc() ! ! ... bring rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,is) = psic(nl(:)) ! END DO ! ! ... read info needed for hybrid functionals ! CALL pw_readfile('exx', ierr) ! ! ... recalculate the potential ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE set_dimensions() !------------------------------------------------------------------------ ! USE constants, ONLY : pi USE cell_base, ONLY : alat, tpiba, tpiba2 USE gvect, ONLY : ecutrho, gcutm USE wvfct, ONLY : ecutwfc USE gvecs, ONLY : gcutms, dual, doublegrid ! ! ! ... Set the units in real and reciprocal space ! tpiba = 2.D0 * pi / alat tpiba2 = tpiba**2 ! ! ... Compute the cut-off of the G vectors ! gcutm = dual * ecutwfc / tpiba2 ecutrho=dual * ecutwfc ! doublegrid = ( dual > 4.D0 ) IF ( doublegrid ) THEN gcutms = 4.D0 * ecutwfc / tpiba2 ELSE gcutms = gcutm END IF ! END SUBROUTINE set_dimensions ! END SUBROUTINE read_xml_file espresso-5.0.2/PW/src/drhoc.f900000644000700200004540000000367512053145627015134 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine drhoc (ngl, gl, omega, tpiba2, mesh, r, rab, rhoc, rhocg) !----------------------------------------------------------------------- ! USE kinds USE constants, ONLY : pi, fpi implicit none ! ! first the dummy variables ! integer :: ngl, mesh ! input: the number of g shell ! input: the number of radial mesh points real(DP) :: gl (ngl), r (mesh), rab (mesh), rhoc (mesh), omega, & tpiba2, rhocg (ngl) ! input: the number of G shells ! input: the radial mesh ! input: the derivative of the radial mesh ! input: the radial core charge ! input: the volume of the unit cell ! input: 2 times pi / alat ! output: the fourier transform of the core charge ! ! here the local variables ! real(DP) :: gx, rhocg1 ! the modulus of g for a given shell ! the fourier transform real(DP), allocatable :: aux (:) ! auxiliary memory for integration integer :: ir, igl, igl0 ! counter on radial mesh points ! counter on g shells ! lower limit for loop on ngl allocate (aux( mesh)) ! ! G=0 term ! if (gl (1) < 1.0d-8) then do ir = 1, mesh aux (ir) = r (ir) **2 * rhoc (ir) enddo call simpson (mesh, aux, rab, rhocg1) rhocg (1) = fpi * rhocg1 / omega igl0 = 2 else igl0 = 1 endif ! ! G <> 0 term ! do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) call sph_bes (mesh, r, gx, 0, aux) do ir = 1, mesh aux (ir) = r (ir) **2 * rhoc (ir) * aux (ir) enddo call simpson (mesh, aux, rab, rhocg1) rhocg (igl) = fpi * rhocg1 / omega enddo deallocate(aux) ! return end subroutine drhoc espresso-5.0.2/PW/src/sumkt.f900000644000700200004540000000606412053145627015173 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- FUNCTION sumkt (et, nbnd, nks, nspin, ntetra, tetra, e, is, isk) !-------------------------------------------------------------------- ! ! ... Sum over all states with tetrahedron method ! ... At Fermi energy e=E_F, sumkt(e) == number of electrons ! ... Generalization to noncollinear case courtesy of Yurii Timrov ! USE kinds implicit none ! output variable real(DP) :: sumkt ! input variable integer, intent(in) :: nbnd, nks, nspin, ntetra, tetra (4, ntetra) real(DP), intent(in) :: et (nbnd, nks), e integer, intent(in) :: is, isk ! local variables real(DP) :: etetra (4), e1, e2, e3, e4 integer :: nt, nk, ns, ibnd, i, nspin_lsda IF ( nspin == 2 ) THEN nspin_lsda = 2 ELSE nspin_lsda = 1 END IF sumkt = 0.0d0 do ns = 1, nspin_lsda if (is /= 0) then if ( ns .ne. is) cycle end if ! ! nk is used to select k-points with up (ns=1) or down (ns=2) spin ! if (ns.eq.1) then nk = 0 else nk = nks / 2 endif do nt = 1, ntetra do ibnd = 1, nbnd ! ! etetra are the energies at the vertexes of the nt-th tetrahedron ! do i = 1, 4 etetra (i) = et (ibnd, tetra (i, nt) + nk) enddo call piksort (4, etetra) ! ! ...sort in ascending order: e1 < e2 < e3 < e4 ! e1 = etetra (1) e2 = etetra (2) e3 = etetra (3) e4 = etetra (4) ! ! calculate sum over k of the integrated charge ! if (e.ge.e4) then sumkt = sumkt + 1.d0 / ntetra elseif (e.lt.e4.and.e.ge.e3) then sumkt = sumkt + 1.d0 / ntetra * (1.0d0 - (e4 - e) **3 / (e4 - e1) & / (e4 - e2) / (e4 - e3) ) elseif (e.lt.e3.and.e.ge.e2) then sumkt = sumkt + 1.d0 / ntetra / (e3 - e1) / (e4 - e1) * & ( (e2 - e1) **2 + 3.0d0 * (e2 - e1) * (e-e2) + 3.0d0 * (e-e2) **2 - & (e3 - e1 + e4 - e2) / (e3 - e2) / (e4 - e2) * (e-e2) **3) elseif (e.lt.e2.and.e.ge.e1) then sumkt = sumkt + 1.d0 / ntetra * (e-e1) **3 / (e2 - e1) / & (e3 - e1) / (e4 - e1) endif enddo enddo enddo ! add correct spin normalization (2 for LDA, 1 for other cases) IF ( nspin == 1 ) sumkt = sumkt * 2.d0 return end function sumkt subroutine piksort (n, a) USE kinds implicit none integer :: n real(DP) :: a (n) integer :: i, j real(DP) :: temp ! do j = 2, n temp = a (j) do i = j - 1, 1, - 1 if (a (i) .le.temp) goto 10 a (i + 1) = a (i) enddo i = 0 10 a (i + 1) = temp enddo ! return end subroutine piksort espresso-5.0.2/PW/src/forces_bp_efield.f900000644000700200004540000006023712053145627017304 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE forces_ion_efield (forces_bp, pdir, e_field) !calculate ionic contribution , which is in the !a_gdir direction USE kinds, ONLY : dp USE cell_base, ONLY : at USE ions_base, ONLY : nat,zv, ityp implicit none INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated REAL(DP), INTENT(in) :: e_field!intensity of the field REAL(DP), INTENT(inout) :: forces_bp(3,nat)!atomic forces to be update INTEGER i REAL(DP) :: e!electronic charge (Ry. a.u.) REAL(DP) :: a(3),sca e=dsqrt(2.d0) ! a(:)=at(:,pdir) ! sca=dsqrt(a(1)**2.d0 + a(2)**2.d0 + a(3)**2.d0) ! a(:)=a(:)/sca do i=1,nat ! forces_bp(:,i)=forces_bp(:,i)+ e*e_field*zv(ityp(i))*a(:) !ATTENZIONE forces_bp(pdir,i)=forces_bp(pdir,i)+ e*e_field*zv(ityp(i)) enddo return END SUBROUTINE forces_ion_efield SUBROUTINE forces_us_efield(forces_bp, pdir, e_field) !----------------------------------------------------------------------! !it calculates the US correction to the atomic forces !due to Berry's phase electric field ! --- Make use of the module with common information --- USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY : at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi, tpi USE gvect, ONLY : ngm, g, gcutm, ngm_g USE fft_base, ONLY : dfftp USE uspp, ONLY : nkb, vkb, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm USE lsda_mod, ONLY : nspin USE klist, ONLY : nelec, degauss, nks, xk, wk USE wvfct, ONLY : npwx, npw, nbnd, ecutwfc USE wavefunctions_module, ONLY : evc USE bp, ONLY : nppstr_3d, mapgm_global, nx_el USE fixed_occ USE gvect, ONLY : ig_l2g USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm USE becmod, ONLY : calbec ! --- Avoid implicit definitions --- IMPLICIT NONE REAL(DP), INTENT(inout) :: forces_bp(3,nat)!atomic forces to be update INTEGER, INTENT(in) :: pdir!direction of electric field REAL(DP), INTENT(in) :: e_field!initensity of the field ! --- Internal definitions --- INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: info INTEGER :: is INTEGER :: istring INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: jv INTEGER :: kort INTEGER :: kpar INTEGER :: kpoint INTEGER :: kstart INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER , ALLOCATABLE :: mod_elec(:) INTEGER , ALLOCATABLE :: ln(:,:,:) INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: nkort INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 INTEGER :: nstring INTEGER :: nt REAL(dp) :: dk(3) REAL(dp) :: dkmod REAL(dp) :: el_loc REAL(dp) :: eps REAL(dp) :: fac REAL(dp) :: g2kin_bp(npwx) REAL(dp) :: gpar(3) REAL(dp) :: gtr(3) REAL(dp) :: gvec REAL(dp), ALLOCATABLE :: loc_k(:) REAL(dp), ALLOCATABLE :: pdl_elec(:) REAL(dp), ALLOCATABLE :: phik(:) REAL(dp) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(dp) :: weight REAL(dp) :: pola, pola_ion REAL(dp), ALLOCATABLE :: wstring(:) REAL(dp) :: ylm_dk(lmaxq*lmaxq) REAL(dp) :: zeta_mod COMPLEX(dp), ALLOCATABLE :: aux(:) COMPLEX(dp), ALLOCATABLE :: aux0(:) COMPLEX(dp) :: becp0(nkb,nbnd) COMPLEX(dp) :: becp_bp(nkb,nbnd) COMPLEX(dp) , ALLOCATABLE :: cphik(:) COMPLEX(dp) :: det COMPLEX(dp), ALLOCATABLE :: mat(:,:) COMPLEX(dp) :: cdet(2) COMPLEX(dp) :: cdwork(nbnd) COMPLEX(dp) :: pref COMPLEX(dp) :: q_dk(nhm,nhm,ntyp) COMPLEX(dp) :: struc(nat),struc_r(3,nat) COMPLEX(dp) :: zdotc COMPLEX(dp) :: zeta COMPLEX(dp), ALLOCATABLE :: psi(:,:) COMPLEX(dp), ALLOCATABLE :: psi1(:,:) COMPLEX(dp) :: zeta_loc LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for occupied/empty bands INTEGER, ALLOCATABLE :: map_g(:) REAL(dp) :: dkfact COMPLEX(dp) :: zeta_tot LOGICAL :: l_para! if true new parallel treatment COMPLEX(kind=DP) :: sca COMPLEX(kind=DP), ALLOCATABLE :: aux_g(:) COMPLEX(DP), ALLOCATABLE :: dbecp0(:,:,:), dbecp_bp(:,:,:),vkb1(:,:) INTEGER :: ipol COMPLEX(DP) :: forces_tmp(3,nat) REAL(DP) :: fact ! ------------------------------------------------------------------------- ! ! INITIALIZATIONS ! ------------------------------------------------------------------------- ! ALLOCATE (psi1(npwx,nbnd)) ALLOCATE (psi(npwx,nbnd)) ALLOCATE (aux(ngm)) ALLOCATE (aux0(ngm)) ALLOCATE (map_g(npwx)) ALLOCATE (mat(nbnd,nbnd)) ALLOCATE (dbecp0( nkb, nbnd, 3 ) ,dbecp_bp( nkb, nbnd, 3 )) ALLOCATE( vkb1( npwx, nkb ) ) ALLOCATE( l_cal(nbnd) ) if(pdir==3) then l_para=.false. else l_para=.true. endif pola=0.d0 !set to 0 electronic polarization zeta_tot=(1.d0,0.d0) ! --- Check that we are working with an insulator with no empty bands --- IF ( degauss > 0.0_dp ) CALL errore('forces_us_efield', & 'Polarization only for insulators and no empty bands',1) ! --- Define a small number --- eps=1.0E-6_dp ! --- Recalculate FFT correspondence (see ggen.f90) --- ALLOCATE (ln (-dfftp%nr1:dfftp%nr1, -dfftp%nr2:dfftp%nr2, -dfftp%nr3:dfftp%nr3) ) DO ng=1,ngm mk1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) mk2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) mk3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(mk1,mk2,mk3) = ng END DO if (okvan) then ! --- Initialize arrays --- jkb_bp=0 DO nt=1,ntyp DO na=1,nat IF (ityp(na).eq.nt) THEN DO i=1, nh(nt) jkb_bp=jkb_bp+1 nkbtona(jkb_bp) = na nkbtonh(jkb_bp) = i END DO END IF END DO END DO endif ! --- Get the number of strings --- nstring=nks/nppstr_3d(pdir) nkort=nstring/(nspin) ! --- Allocate memory for arrays --- ALLOCATE(phik(nstring)) ALLOCATE(loc_k(nstring)) ALLOCATE(cphik(nstring)) ALLOCATE(wstring(nstring)) ALLOCATE(pdl_elec(nstring)) ALLOCATE(mod_elec(nstring)) ! ------------------------------------------------------------------------- ! ! electronic polarization: set values for k-points strings ! ! ------------------------------------------------------------------------- ! ! --- Find vector along strings --- if(nppstr_3d(pdir) .ne. 1) then gpar(1)=(xk(1,nx_el(nppstr_3d(pdir),pdir))-xk(1,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(2)=(xk(2,nx_el(nppstr_3d(pdir),pdir))-xk(2,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(3)=(xk(3,nx_el(nppstr_3d(pdir),pdir))-xk(3,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gvec=dsqrt(gpar(1)**2+gpar(2)**2+gpar(3)**2)*tpiba else gpar(1)=0.d0 gpar(2)=0.d0 gpar(3)=0.d0 gpar(pdir)=1.d0/at(pdir,pdir)! gvec=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! --- Find vector between consecutive points in strings --- if(nppstr_3d(pdir).ne.1) then ! orthorhombic cell dk(1)=xk(1,nx_el(2,pdir))-xk(1,nx_el(1,pdir)) dk(2)=xk(2,nx_el(2,pdir))-xk(2,nx_el(1,pdir)) dk(3)=xk(3,nx_el(2,pdir))-xk(3,nx_el(1,pdir)) dkmod=SQRT(dk(1)**2+dk(2)**2+dk(3)**2)*tpiba else ! Gamma point case, only cubic cell for now dk(1)=0.d0 dk(2)=0.d0 dk(3)=0.d0 dk(pdir)=1.d0/at(pdir,pdir) dkmod=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: weight strings ! ! ------------------------------------------------------------------------- ! ! --- Calculate string weights, normalizing to 1 (no spin) or 1+1 (spin) --- DO is=1,nspin weight=0.0_dp DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wk(nppstr_3d(pdir)*istring) weight=weight+wstring(istring) END DO DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wstring(istring)/weight END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: structure factor ! ! ------------------------------------------------------------------------- ! ! --- Calculate structure factor e^{-i dk*R} --- DO na=1,nat fac=(dk(1)*tau(1,na)+dk(2)*tau(2,na)+dk(3)*tau(3,na))*tpi struc(na)=CMPLX(cos(fac),-sin(fac),kind=DP) END DO ! Calculate derivatives of structure factors do na=1,nat do ipol=1,3 struc_r(ipol,na)=struc(na)*CMPLX(0.d0,-1.d0, kind=dp)*dk(ipol) enddo enddo ! ------------------------------------------------------------------------- ! ! electronic polarization: form factor ! ! ------------------------------------------------------------------------- ! if(okvan) then ! --- Calculate Bessel transform of Q_ij(|r|) at dk [Q_ij^L(|r|)] --- CALL calc_btq(dkmod,qrad_dk,0) ! --- Calculate the q-space real spherical harmonics at dk [Y_LM] --- dkmod = dk(1)**2+dk(2)**2+dk(3)**2 CALL ylmr2(lmaxq*lmaxq, 1, dk, dkmod, ylm_dk) ! --- Form factor: 4 pi sum_LM c_ij^LM Y_LM(Omega) Q_ij^L(|r|) --- q_dk=(0.d0,0.d0) DO np =1, ntyp if( upf(np)%tvanp ) then DO iv = 1, nh(np) DO jv = iv, nh(np) call qvan3(iv,jv,np,pref,ylm_dk,qrad_dk) q_dk(iv,jv,np) = omega*pref q_dk(jv,iv,np) = omega*pref ENDDO ENDDO endif ENDDO endif !calculate factor call factor_a(pdir,at,dkfact) fact=dsqrt(2.d0)*e_field*dkfact if(nspin==1) fact=fact*2.d0 ! ------------------------------------------------------------------------- ! ! electronic polarization: strings phases ! ! ------------------------------------------------------------------------- ! el_loc=0.d0 kpoint=0 zeta=(1.d0,0.d0) ! --- Start loop over spin --- DO is=1,nspin ! l_cal(n) = .true./.false. if n-th state is occupied/empty DO nb = 1, nbnd IF ( nspin == 2 .AND. tfixed_occ) THEN l_cal(nb) = ( f_inp(nb,is) /= 0.0_dp ) ELSE l_cal(nb) = ( nb <= NINT ( nelec/2.0_dp ) ) ENDIF END DO ! --- Start loop over orthogonal k-points --- DO kort=1,nkort zeta_loc=(1.d0,0.d0) ! --- Index for this string --- istring=kort+(is-1)*nkort ! --- Initialize expectation value of the phase operator --- zeta_mod = 1.d0 ! --- Start loop over parallel k-points --- DO kpar = 1,nppstr_3d(pdir)+1 ! --- Set index of k-point --- kpoint = kpoint + 1 ! --- Calculate dot products between wavefunctions and betas --- IF (kpar /= 1 ) THEN ! --- Dot wavefunctions and betas for PREVIOUS k-point --- CALL gk_sort(xk(1,nx_el(kpoint-1,pdir)),ngm,g,ecutwfc/tpiba2, & npw0,igk0,g2kin_bp) CALL get_buffer (psi,nwordwfc,iunwfc,nx_el(kpoint-1,pdir)) if (okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(kpoint-1,pdir)),vkb) CALL calbec( npw0, vkb, psi, becp0) DO ipol = 1, 3 DO jkb = 1, nkb DO ig = 1, npw0 vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk0(ig)) END DO END DO IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd, npw0, ( 1.D0, 0.D0 ), & vkb1, npwx, psi, npwx, ( 0.D0, 0.D0 ), & dbecp0(1,1,ipol), nkb ) ENDDO endif ! --- Dot wavefunctions and betas for CURRENT k-point --- IF (kpar /= (nppstr_3d(pdir)+1)) THEN CALL gk_sort(xk(1,nx_el(kpoint,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kpoint,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kpoint,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) DO ipol = 1, 3 DO jkb = 1, nkb DO ig = 1, npw1 vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk1(ig)) END DO END DO IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd, npw1, ( 1.D0, 0.D0 ), & vkb1, npwx, psi1, npwx, ( 0.D0, 0.D0 ), & dbecp_bp(1,1,ipol), nkb ) ENDDO endif ELSE kstart = kpoint-(nppstr_3d(pdir)+1)+1 CALL gk_sort(xk(1,nx_el(kstart,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kstart,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kstart,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) DO ipol = 1, 3 DO jkb = 1, nkb DO ig = 1, npw1 vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk1(ig)) END DO END DO IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd, npw1, ( 1.D0, 0.D0 ), & vkb1, npwx, psi1, npwx, ( 0.D0, 0.D0 ), & dbecp_bp(1,1,ipol), nkb ) ENDDO endif ENDIF ! --- Matrix elements calculation --- IF (kpar == (nppstr_3d(pdir)+1) .and. .not.l_para) THEN map_g(:) = 0 do ig=1,npw1 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk1(ig)) - gpar(1) gtr(2)=g(2,igk1(ig)) - gpar(2) gtr(3)=g(3,igk1(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ( (ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps) ) THEN WRITE(6,*) ' error: translated G=', & gtr(1),gtr(2),gtr(3), & & ' with crystal coordinates',n1,n2,n3, & & ' corresponds to ng=',ng,' but G(ng)=', & & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng enddo ENDIF mat=(0.d0,0.d0) DO nb=1,nbnd DO mb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE aux=(0.d0,0.d0) aux0=(0.d0,0.d0) DO ig=1,npw0 aux0(igk0(ig))=psi(ig,nb) END DO IF (kpar /= (nppstr_3d(pdir)+1)) THEN do ig=1,npw1 aux(igk1(ig))=psi1(ig,mb) enddo ELSE IF( .not. l_para) THEN do ig=1,npw1 aux(map_g(ig))=psi1(ig,mb) enddo ELSE ! allocate global array allocate(aux_g(ngm_g)) aux_g=(0.d0,0.d0) ! put psi1 on global array do ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),pdir))=psi1(ig,mb) enddo call mp_sum(aux_g(:)) sca=(0.d0,0.d0) ! do scalar product do ig=1,ngm sca=sca+conjg(aux0(ig))*aux_g(ig_l2g(ig)) enddo ! do mp_sum call mp_sum(sca) mat(nb,mb)=sca deallocate(aux_g) ENDIF if(kpar /= (nppstr_3d(pdir)+1).or..not. l_para) then mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) call mp_sum( mat(nb,mb), intra_bgrp_comm ) endif ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm pref = pref+CONJG(becp0(jkb,nb))*becp_bp(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif endif !on l_cal ENDDO ENDDO ! --- Calculate matrix determinant --- ! calculate inverse CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('forces_us_efield','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) !calculate terms forces_tmp(:,:)=(0.d0,0.d0) if(okvan) then do jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb do j = 1,nhjkbm do nb=1,nbnd do mb=1,nbnd forces_tmp(:,na)= forces_tmp(:,na)+CONJG(becp0(jkb,nb))*becp_bp(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc_r(:,na)*mat(mb,nb) forces_tmp(:,na)= forces_tmp(:,na)+CONJG(dbecp0(jkb,nb,:))*becp_bp(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na)*mat(mb,nb) forces_tmp(:,na)= forces_tmp(:,na)+CONJG(becp0(jkb,nb))*dbecp_bp(jkb1+j,mb,:) & *q_dk(nhjkb,j,np)*struc(na)*mat(mb,nb) enddo enddo enddo enddo endif forces_bp(:,:)=forces_bp(:,:)+fact*aimag(forces_tmp(:,:))*wstring(istring) ! --- End of dot products between wavefunctions and betas --- ENDIF ! --- End loop over parallel k-points --- END DO kpoint=kpoint-1 ! --- End loop over orthogonal k-points --- END DO ! --- End loop over spin --- END DO ! ------------------------------------------------------------------------- ! ! --- Free memory --- DEALLOCATE(l_cal) DEALLOCATE(pdl_elec) DEALLOCATE(mod_elec) DEALLOCATE(wstring) DEALLOCATE(loc_k) DEALLOCATE(phik) DEALLOCATE(cphik) DEALLOCATE(ln) DEALLOCATE(map_g) DEALLOCATE(aux) DEALLOCATE(aux0) DEALLOCATE(psi) DEALLOCATE(psi1) DEALLOCATE(mat) !------------------------------------------------------------------------------! END SUBROUTINE forces_us_efield SUBROUTINE stress_bp_efield (sigmael ) !calculate the stress contribution due to the electric field !electronic part USE kinds, ONLY : DP USE bp, ONLY : efield_cart, el_pol, fc_pol,l3dstring USE cell_base, ONLY: at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi implicit none REAL(DP), INTENT(out) :: sigmael(3,3)!stress contribution to be calculated REAL(DP) :: phases(3) INTEGER :: i,j,ipol sigmael(:,:)=0.d0 if(.not.l3dstring ) return phases(:)=el_pol(:)/fc_pol(:) do ipol=1,3 do i=1,3 do j=1,3 sigmael(i,j)=sigmael(i,j)-efield_cart(i)*at(j,ipol)*phases(ipol) enddo enddo enddo sigmael(:,:)=sigmael(:,:)*alat*dsqrt(2.d0)/(2.d0*pi)/omega return END SUBROUTINE stress_bp_efield SUBROUTINE stress_ion_efield (sigmaion ) !calculate the stress contribution due to the electric field !ionic part USE kinds, ONLY : DP USE bp, ONLY : efield_cart, ion_pol,l3dstring USE cell_base, ONLY: at, alat, omega, bg USE constants, ONLY : pi implicit none REAL(DP), INTENT(out) :: sigmaion(3,3)!stress contribution to be calculated REAL(DP) :: pol_cry(3) INTEGER :: i,j,ipol sigmaion(:,:)=0.d0 if(.not.l3dstring ) return pol_cry(:)=ion_pol(:) call cryst_to_cart (1, pol_cry, at, -1) do ipol=1,3 do i=1,3 do j=1,3 sigmaion(i,j)=sigmaion(i,j)-efield_cart(i)*at(j,ipol)*pol_cry(ipol) enddo enddo enddo sigmaion(:,:)=sigmaion(:,:)/omega return END SUBROUTINE stress_ion_efield espresso-5.0.2/PW/src/divide_class_so.f900000644000700200004540000032305612053145627017165 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------------- SUBROUTINE divide_class_so(code_group,nrot,smat,d_spin,has_e,nclass, & nelem,elem, which_irr) !----------------------------------------------------------------------------- ! ! This subroutine receives as input a set of nrot 3x3 matrices smat, ! and nrot complex 2x2 matrices d_spin, which are assumed to be the ! operations of the point group given by code_group. Only the operations ! that do not contain the 2\pi rotation (-E) are given in input. ! smat are in cartesian coordinates. ! This routine divides the double group in classes and find: ! ! nclass the number of classes of the double group ! nelem(iclass) for each class, the number of elements of the class ! elem(i,iclass) 10) ax_save(:,which_irr(iclass))=ax(:) ELSEIF (ts==2) THEN IF (has_e(1,iclass)==-1) THEN which_irr(iclass)=7 ELSE which_irr(iclass)=6 END IF END IF END DO ! ! Otherwise choose the first free axis ! DO iclass=2,nclass IF (which_irr(iclass)==0) THEN ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==4) THEN DO i=1,3 IF (done_ax(i)) THEN which_irr(iclass)=i+2 done_ax(i)=.FALSE. GOTO 100 END IF END DO 100 CONTINUE CALL versor(smat(1,1,elem(1,iclass)),ax) ax_save(:,which_irr(iclass))=ax(:) END IF END IF END DO ! ! Finally consider the mirror planes ! DO iclass=2,nclass IF (which_irr(iclass)==0) THEN ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==5) THEN CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) DO i=3,5 IF (is_parallel(ax,ax_save(:,i))) which_irr(iclass)=i+5 END DO END IF END IF IF (which_irr(iclass)==0) CALL errore('divide_class_so',& 'something wrong D_2h',1) ENDDO ELSEIF (code_group==21) THEN ! ! D_3h ! IF (nclass /= 9) CALL errore('divide_class_so','Wrong classes for D_3h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==1) THEN which_irr(iclass)=2 ELSE IF (ts==3) THEN which_irr(iclass)=set_e(has_e(1,iclass),3) ELSE IF (ts==4) THEN which_irr(iclass)=5 ELSE IF (ts==5) THEN IF (nelem(iclass)>1) THEN which_irr(iclass)=9 ELSE which_irr(iclass)=6 END IF ELSE IF (ts==6) THEN which_irr(iclass)=set_e(has_e(1,iclass),7) END IF END DO ELSEIF (code_group==22) THEN ! ! D_4h ! ! First search the order 4 axis ! IF (nclass /= 14) CALL errore('divide_class_so','Wrong classes for D_4h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN which_irr(iclass)=set_e(has_e(1,iclass),3) CALL versor(smat(1,1,elem(1,iclass)),ax) axis=0 DO ipol=1,3 IF (is_axis(ax,ipol)) axis=ipol ENDDO IF (axis==0) call errore('divide_class_so','unknown D_4h axis ',1) ENDIF END DO DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==1) THEN which_irr(iclass)=2 ELSE IF (ts==4) THEN which_irr(iclass)=0 CALL versor(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=5 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=6 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=7 END IF ELSEIF (ts==2) THEN which_irr(iclass)=set_e(has_e(1,iclass),8) ELSEIF (ts==5) THEN which_irr(iclass)=0 CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=12 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=13 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=14 END IF ELSEIF (ts==6) THEN which_irr(iclass)=set_e(has_e(1,iclass),10) END IF END DO ELSEIF (code_group==23) THEN ! ! D_6h ! IF (nclass /= 18) CALL errore('divide_class_so','Wrong classes for D_6h',1) first=.TRUE. first1=.TRUE. DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==1) THEN which_irr(iclass)=2 ELSE IF (ts==3) THEN ars=angle_rot(smat(1,1,elem(1,iclass))) IF ((ABS(ars-60.d0) 32 ) CALL errore('is_complex', & 'code is out of range',1) is_complex_so= complex_aux(code) RETURN END FUNCTION is_complex_so ! !---------------------------------------------------------------------------- SUBROUTINE write_group_info(flag) !---------------------------------------------------------------------------- ! ! This routine writes on output the main information on the point group ! If flag is .false. writes only the character table. If flag is .true. ! writes also the elements of each class. ! ! USE rap_point_group, ONLY : code_group, nclass, nelem, elem, which_irr, & char_mat, name_rap, name_class, gname USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, & which_irr_so, char_mat_so, name_rap_so, & name_class_so, d_spin, name_class_so1 USE rap_point_group_is, ONLY : code_group_is, gname_is USE spin_orb, ONLY : domag USE noncollin_module, ONLY : noncolin USE io_global, ONLY : stdout IMPLICIT NONE INTEGER :: iclass, irot, i, idx LOGICAL :: is_complex, is_complex_so, flag IF (noncolin) THEN IF (domag) THEN WRITE(stdout,'(/,5x,"the magnetic double point group is ", & & a11," [",a11,"]")') & gname, gname_is WRITE(stdout,'(5x,"using the double point group ",a11)') & gname_is ELSE WRITE(stdout,'(/,5x,"double point group ",a11)') gname END IF WRITE(stdout,'(5x, "there are", i3," classes and",i3, & & " irreducible representations")') nclass, nrap ELSE WRITE(stdout,'(/,5x,"point group ",a11)') gname WRITE(stdout,'(5x, "there are", i3," classes")') nclass ENDIF WRITE(stdout,'(5x, "the character table:")') IF (noncolin) THEN WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=1,MIN(12,nclass)) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=1,MIN(12,nclass)) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (REAL(char_mat_so(iclass,irot)), irot=1,MIN(nclass,12)) END DO IF (nclass > 12 ) THEN WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=13,nclass) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=13,nclass) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (REAL(char_mat_so(iclass,irot)), irot=13,nclass) END DO END IF idx=code_group IF (noncolin.and.domag) idx=code_group_is IF (is_complex_so(idx)) THEN WRITE(stdout,'(/,5x,"imaginary part")') WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=1,MIN(12,nclass)) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=1,MIN(12,nclass)) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (AIMAG(char_mat_so(iclass,irot)),irot=1, MIN(nclass,12)) END DO IF (nclass > 12 ) THEN WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=13,nclass) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=13,nclass) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (AIMAG(char_mat_so(iclass,irot)),irot=13, nclass) END DO END IF END IF IF (flag) THEN WRITE(stdout,'(/5x, "the symmetry operations in each class:")') DO iclass=1,nclass WRITE(stdout,'(5x,2a5,12i5)') & name_class_so(which_irr_so(iclass)), & name_class_so1(which_irr_so(iclass)), & (elem_so(i,iclass)*has_e(i,iclass), i=1,nelem_so(iclass)) ENDDO ENDIF ELSE WRITE(stdout,'(/,7x,12(a5,1x))') (name_class(irot),irot=1,nclass) DO iclass=1,nclass WRITE(stdout,'(a5,12f6.2)') name_rap(iclass), & (REAL(char_mat(iclass,irot)),irot=1,nclass) ENDDO idx=code_group IF (noncolin.and.domag) idx=code_group_is IF (is_complex(idx)) THEN WRITE(stdout,'(5x,"imaginary part")') DO iclass=1,nclass WRITE(stdout,'(a5,12f6.2)') name_rap(iclass), & (AIMAG(char_mat(iclass,irot)),irot=1,nclass) ENDDO ENDIF IF (flag) THEN WRITE(stdout,'(/5x, "the symmetry operations in each class:")') DO iclass=1,nclass WRITE(stdout,'(5x,a5,12i5)') name_class(which_irr(iclass)), & (elem(i,iclass), i=1,nelem(iclass)) ENDDO END IF END IF RETURN END SUBROUTINE write_group_info !--------------------------------------------------------------------------- SUBROUTINE find_u(s,u) !--------------------------------------------------------------------------- ! ! This subroutine receives as input a 3x3 rotation matrix s, and gives ! as output the matrix u which represents the same rotation in the spin ! space. Only one of the two u matrices is given. See below for the ! definition of the sign. ! USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE REAL(DP) :: s(3,3) COMPLEX(DP) :: u(2,2) REAL(DP), PARAMETER :: eps=1.d-8 REAL(DP) :: det, saux(3,3), ax(3), angle, cosa, sina, angle_rot ! ! For consistency check uncomment here ! !COMPLEX(DP) :: a, as, b, bs !REAL(DP) :: r(3,3), r1(3,3), diff det = s(1,1) * ( s(2,2) * s(3,3) - s(3,2) * s(2,3) )- & s(1,2) * ( s(2,1) * s(3,3) - s(3,1) * s(2,3) )+ & s(1,3) * ( s(2,1) * s(3,2) - s(3,1) * s(2,2) ) ! ! inversion has no effect in spin space, so improper rotations are ! multiplied by inversion ! IF (ABS(det+1.d0) < eps) THEN saux=-s ELSE saux=s ENDIF ! ! Check for identity or inversion ! IF ((ABS(saux(1,1)-1.d0) < eps).AND. & (ABS(saux(2,2)-1.d0) < eps).AND. & (ABS(saux(3,3)-1.d0) < eps).AND. & (ABS(saux(1,2)) < eps).AND.(ABS(saux(2,1)) < eps) & .AND.(ABS(saux(2,3)) < eps).AND. & (ABS(saux(3,2)) < eps).AND.(ABS(saux(1,3)) < eps) & .AND.(ABS(saux(3,1)) < eps)) THEN u(1,1)=(1.d0,0.d0) u(1,2)=(0.d0,0.d0) u(2,1)=(0.d0,0.d0) u(2,2)=(1.d0,0.d0) RETURN ENDIF ! ! Find the rotation axis and the rotation angle ! CALL versor(saux,ax) angle=angle_rot(saux) !write(6,'(3f12.5,5x,f12.5)') ax(1), ax(2), ax(3), angle angle=0.5d0*angle*pi/180.d0 cosa=COS(angle) sina=SIN(angle) !write(6,'(2f12.5)') cosa, sina ! ! set the spin space rotation matrix elements ! u(1,1)=CMPLX(cosa,-ax(3)*sina,kind=DP) u(1,2)=CMPLX(-ax(2)*sina, -ax(1)*sina,kind=DP) u(2,1)=-CONJG(u(1,2)) u(2,2)=CONJG(u(1,1)) ! ! To each 3x3 rotation one can associate two 2x2 rotation matrices in spin ! space. This function returns the U matrix with positive cosa term ! IF (cosa < -eps ) u=-u IF (ABS(cosa) < eps) THEN ! ! Special case when cosa=0. For this rotation we must take the negative sign. ! IF (ax(1)*ax(3) < -eps) u=-u ENDIF ! ! Here compute the 3x3 rotation matrix starting form the axis, angle ! or from the rotation in spin space for consistency check. ! !angle=angle*2.d0 !cosa=COS(angle) !sina=SIN(angle) !r1(1,1)=1.d0+(1.d0-cosa)*(ax(1)**2-1) !r1(1,2)=-ax(3)*sina+(1.d0-cosa)*ax(1)*ax(2) !r1(1,3)=ax(2)*sina+(1.d0-cosa)*ax(1)*ax(3) !r1(2,1)=ax(3)*sina+(1.d0-cosa)*ax(1)*ax(2) !r1(2,2)=1.d0+(1.d0-cosa)*(ax(2)**2-1) !r1(2,3)=-ax(1)*sina+(1.d0-cosa)*ax(2)*ax(3) !r1(3,1)=-ax(2)*sina+(1.d0-cosa)*ax(1)*ax(3) !r1(3,2)=ax(1)*sina+(1.d0-cosa)*ax(2)*ax(3) !r1(3,3)=1.d0+(1.d0-cosa)*(ax(3)**2-1) !a=u(1,1) !as=u(2,2) !b=u(1,2) !bs=-u(2,1) !r(1,1)=0.5d0*(a**2+as**2-b**2-bs**2) !r(1,2)=0.5d0*(0.d0,1.d0)*(as**2+bs**2-a**2-b**2) !r(1,3)=-(a*b+as*bs) !r(2,1)=-0.5d0*(0.d0,1.d0)*(as**2-a**2+b**2-bs**2) !r(2,2)=0.5d0*(a**2+b**2+as**2+bs**2) !r(2,3)=(0.d0,1.d0)*(as*bs-a*b) !r(3,1)=(bs*a+as*b) !r(3,2)=(0.d0,1.d0)*(as*b-bs*a) !r(3,3)=(a*as-b*bs) !diff=ABS(r(1,1)-saux(1,1))+ & ! ABS(r(1,2)-saux(1,2))+ & ! ABS(r(1,3)-saux(1,3))+ & ! ABS(r(2,1)-saux(2,1))+ & ! ABS(r(2,2)-saux(2,2))+ & ! ABS(r(2,3)-saux(2,3))+ & ! ABS(r(3,1)-saux(3,1))+ & ! ABS(r(3,2)-saux(3,2))+ & ! ABS(r(3,3)-saux(3,3)) !write(6,*) diff !write(6,'(3f15.5)') r1(1,1),r1(1,2),r1(1,3) !write(6,'(3f15.5)') r1(2,1),r1(2,2),r1(2,3) !write(6,'(3f15.5)') r1(3,1),r1(3,2),r1(3,3) !write(6,*) !write(6,'(3f15.5)') r(1,1),r(1,2),r(1,3) !write(6,'(3f15.5)') r(2,1),r(2,2),r(2,3) !write(6,'(3f15.5)') r(3,1),r(3,2),r(3,3) !write(6,*) !write(6,'(4f15.5)') u(1,1),u(1,2) !write(6,'(4f15.5)') u(2,1),u(2,2) ! RETURN END SUBROUTINE find_u !----------------------------------------------------------------------------- FUNCTION set_e(hase,ind) !----------------------------------------------------------------------------- IMPLICIT NONE INTEGER :: set_e, hase, ind IF (hase==-1) THEN set_e=ind+1 ELSE set_e=ind ENDIF RETURN END FUNCTION set_e !----------------------------------------------------------------------------- SUBROUTINE check_tgroup(nsym,a,b) !----------------------------------------------------------------------------- ! ! This subroutine receives a set of 2x2 and 3x3 rotation matrices and ! checks if they are a group. ! USE kinds, ONLY : DP IMPLICIT NONE COMPLEX(DP) :: a(2,2,48), c(2,2), a1(2,2), a2(2,2), a3(2,2) REAL(DP) :: b(3,3,48), d(3,3), b1(3,3), b2(3,3), b3(3,3) INTEGER :: nsym, done LOGICAL :: compare_mat_so INTEGER :: i, j, k DO i=1,nsym a1(:,:)=a(:,:,i) b1(:,:)=b(:,:,i) DO j=1,nsym a2(:,:)=a(:,:,j) b2(:,:)=b(:,:,j) c=MATMUL(a1,a2) d=MATMUL(b1,b2) done=0 do k=1,nsym a3(:,:)=a(:,:,k) b3(:,:)=b(:,:,k) IF (compare_mat_so(d,c,b3,a3)) THEN done=done+1 ENDIF ENDDO IF (done.ne.1) write(6,*) 'problem, i,j',i,j END DO END DO RETURN END SUBROUTINE check_tgroup espresso-5.0.2/PW/src/addusdens.f900000644000700200004540000001014012053145630015762 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE addusdens(rho) !---------------------------------------------------------------------- ! USE realus, ONLY : addusdens_r USE control_flags, ONLY : tqr USE noncollin_module, ONLY : nspin_mag USE fft_base, ONLY : dfftp USE kinds, ONLY : DP ! IMPLICIT NONE ! ! REAL(kind=dp), intent(inout) :: rho(dfftp%nnr,nspin_mag) ! IF ( tqr ) THEN CALL addusdens_r(rho,.true.) ELSE CALL addusdens_g(rho) END IF ! RETURN ! END SUBROUTINE addusdens ! !---------------------------------------------------------------------- subroutine addusdens_g(rho) !---------------------------------------------------------------------- ! ! This routine adds to the charge density the part which is due to ! the US augmentation. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : invfft USE gvect, ONLY : ngm, nl, nlm, gg, g, & eigts1, eigts2, eigts3, mill USE noncollin_module, ONLY : noncolin, nspin_mag USE uspp, ONLY : becsum, okvan USE uspp_param, ONLY : upf, lmaxq, nh USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic ! implicit none ! REAL(kind=dp), intent(inout) :: rho(dfftp%nnr,nspin_mag) ! ! here the local variables ! integer :: ig, na, nt, ih, jh, ijh, is ! counters real(DP) :: tbecsum(nspin_mag) real(DP), allocatable :: qmod (:), ylmk0 (:,:) ! the modulus of G ! the spherical harmonics complex(DP) :: skk complex(DP), allocatable :: aux (:,:), qgm(:) ! work space for rho(G,nspin) ! Fourier transform of q if (.not.okvan) return call start_clock ('addusdens') allocate (aux ( ngm, nspin_mag)) allocate (qmod( ngm)) allocate (qgm( ngm)) allocate (ylmk0( ngm, lmaxq * lmaxq)) aux (:,:) = (0.d0, 0.d0) call ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) do ig = 1, ngm qmod (ig) = sqrt (gg (ig) ) enddo do nt = 1, ntyp if ( upf(nt)%tvanp ) then ijh = 0 do ih = 1, nh (nt) do jh = ih, nh (nt) #ifdef DEBUG_ADDUSDENS call start_clock ('addus:qvan2') #endif call qvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0) #ifdef DEBUG_ADDUSDENS call stop_clock ('addus:qvan2') #endif ijh = ijh + 1 do na = 1, nat if (ityp (na) .eq.nt) then ! ! Multiply becsum and qg with the correct structure factor tbecsum(:) = becsum(ijh,na,:) ! #ifdef DEBUG_ADDUSDENS call start_clock ('addus:aux') #endif do is = 1, nspin_mag !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(skk, ig) do ig = 1, ngm skk = eigts1 (mill (1,ig), na) * & eigts2 (mill (2,ig), na) * & eigts3 (mill (3,ig), na) aux(ig,is)=aux(ig,is) + qgm(ig)*skk*tbecsum(is) enddo !$OMP END PARALLEL DO enddo #ifdef DEBUG_ADDUSDENS call stop_clock ('addus:aux') #endif endif enddo enddo enddo endif enddo ! deallocate (ylmk0) deallocate (qgm) deallocate (qmod) ! ! convert aux to real space and add to the charge density ! do is = 1, nspin_mag psic(:) = (0.d0, 0.d0) psic( nl(:) ) = aux(:,is) if (gamma_only) psic( nlm(:) ) = CONJG(aux(:,is)) CALL invfft ('Dense', psic, dfftp) rho(:, is) = rho(:, is) + DBLE (psic (:) ) enddo deallocate (aux) call stop_clock ('addusdens') return end subroutine addusdens_g espresso-5.0.2/PW/src/update_pot.f900000644000700200004540000005730712053145630016174 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ONE (1.D0,0.D0) #define ZERO (0.D0,0.D0) ! !---------------------------------------------------------------------------- SUBROUTINE update_pot() !---------------------------------------------------------------------------- ! ! ... update the potential extrapolating the charge density and extrapolates ! ... the wave-functions ! ! ... charge density extrapolation : ! ! ... pot_order = 0 copy the old potential (nothing is done) ! ! ... pot_order = 1 subtract old atomic charge density and sum the new ! ... if dynamics is done the routine extrapolates also ! ... the difference between the the scf charge and the ! ... atomic one, ! ! ... pot_order = 2 first order extrapolation : ! ! ... rho(t+dt) = 2*rho(t) - rho(t-dt) ! ! ... pot_order = 3 second order extrapolation : ! ! ... rho(t+dt) = rho(t) + ! ... + alpha0*( rho(t) - rho(t-dt) ) ! ... + beta0* ( rho(t-dt) - rho(t-2*dt) ) ! ! ! ... wave-functions extrapolation : ! ! ... wfc_order = 0 nothing is done ! ! ... wfc_order = 2 first order extrapolation : ! ! ... |psi(t+dt)> = 2*|psi(t)> - |psi(t-dt)> ! ! ... wfc_order = 3 second order extrapolation : ! ! ... |psi(t+dt)> = |psi(t)> + ! ... + alpha0*( |psi(t)> - |psi(t-dt)> ) ! ... + beta0* ( |psi(t-dt)> - |psi(t-2*dt)> ) ! ! ! ... alpha0 and beta0 are calculated in "find_alpha_and_beta()" so that ! ... |tau'-tau(t+dt)| is minimum; ! ... tau' and tau(t+dt) are respectively the atomic positions at time ! ... t+dt and the extrapolated one: ! ! ... tau(t+dt) = tau(t) + alpha0*( tau(t) - tau(t-dt) ) ! ... + beta0*( tau(t-dt) -tau(t-2*dt) ) ! ! USE kinds, ONLY : DP USE control_flags, ONLY : pot_order, wfc_order, history, alpha0, beta0 USE io_files, ONLY : prefix, iunupdate, wfc_dir, tmp_dir, nd_nmbr, seqopn USE io_global, ONLY : ionode, ionode_id USE cell_base, ONLY : bg USE ions_base, ONLY : nat, tau, nsp, ityp USE gvect, ONLY : ngm, g USE vlocal, ONLY : strf USE mp, ONLY : mp_bcast USE mp_global, ONLY : intra_image_comm ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: tauold(:,:,:) INTEGER :: rho_extr, wfc_extr LOGICAL :: exists CHARACTER (LEN=256) :: tmp_dir_saved ! ! CALL start_clock( 'update_pot' ) ! ALLOCATE( tauold( 3, nat, 3 ) ) ! IF ( ionode ) THEN ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exists ) ! IF ( exists ) THEN ! READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold ! ! ... find the best coefficients for the extrapolation ! ... of the charge density and of the wavefunctions ! ... (see Arias et al. PRB 45, 1538 (1992) ) ! CALL find_alpha_and_beta( nat, tau, tauold, alpha0, beta0 ) ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! ELSE ! ! ... default values of extrapolation coefficients ! alpha0 = 1.D0 beta0 = 0.D0 history = 0 tauold = 0.0_dp ! CLOSE( UNIT = iunupdate, STATUS = 'DELETE' ) ! END IF ! END IF ! CALL mp_bcast( alpha0, ionode_id, intra_image_comm ) CALL mp_bcast( beta0, ionode_id, intra_image_comm ) CALL mp_bcast( tauold, ionode_id, intra_image_comm ) ! tmp_dir_saved = tmp_dir IF ( wfc_dir /= 'undefined' ) tmp_dir = wfc_dir ! IF ( wfc_order > 0 ) THEN ! ! ... determines the maximum effective order of the extrapolation on the ! ... basis of the files that are really available (for wavefunctions) ! IF ( ionode ) THEN ! wfc_extr = MIN( 1, history, wfc_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // & & TRIM( prefix ) // '.oldwfc' // nd_nmbr, EXIST = exists ) ! IF ( exists ) THEN ! wfc_extr = MIN( 2, history, wfc_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // & & TRIM( prefix ) // '.old2wfc' // nd_nmbr , EXIST = exists ) ! IF ( exists ) wfc_extr = MIN( 3, history, wfc_order ) ! END IF ! END IF ! CALL mp_bcast( wfc_extr, ionode_id, intra_image_comm ) ! ! ! ... save tau(t+dt), replace with tau(t) ! ... extrapolate_wfcs needs tau(t) to evaluate S(t) ! ... note that structure factors have not yet been updated ! tauold (:,:,2) = tau (:,:) tau (:,:) = tauold (:,:,1) ! CALL extrapolate_wfcs( wfc_extr ) ! ! ... restore tau(t+dt) ! tau (:,:) = tauold (:,:,2) ! END IF ! DEALLOCATE( tauold ) tmp_dir = tmp_dir_saved ! ! ... determines the maximum effective order of the extrapolation on the ! ... basis of the files that are really available (for the charge density) ! IF ( ionode ) THEN ! rho_extr = MIN( 1, history, pot_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old.dat', EXIST = exists ) ! IF ( .NOT. exists ) & ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old.xml', EXIST = exists ) ! IF ( exists ) THEN ! rho_extr = MIN( 2, history, pot_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old2.dat', EXIST = exists ) ! IF ( .NOT. exists ) & ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old2.xml', EXIST = exists ) ! IF ( exists ) rho_extr = MIN( 3, history, pot_order ) ! END IF ! END IF ! CALL mp_bcast( rho_extr, ionode_id, intra_image_comm ) ! CALL extrapolate_charge( rho_extr ) ! CALL stop_clock( 'update_pot' ) ! RETURN ! END SUBROUTINE update_pot ! !---------------------------------------------------------------------------- SUBROUTINE extrapolate_charge( rho_extr ) !---------------------------------------------------------------------------- ! USE constants, ONLY : eps32 USE io_global, ONLY : stdout USE kinds, ONLY : DP USE cell_base, ONLY : omega, bg USE ions_base, ONLY : nat, tau, nsp, ityp USE fft_base, ONLY : dfftp, dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ngm, g, gg, gstart, nl, eigts1, eigts2, eigts3 USE lsda_mod, ONLY : lsda, nspin USE scf, ONLY : rho, rho_core, rhog_core, v USE ldaU, ONLY : eth USE wavefunctions_module, ONLY : psic USE control_flags, ONLY : alpha0, beta0 USE ener, ONLY : ehart, etxc, vtxc, epaw USE extfield, ONLY : etotefield USE cellmd, ONLY : lmovecell, omega_old USE vlocal, ONLY : strf USE noncollin_module, ONLY : noncolin USE klist, ONLY : nelec USE io_rho_xml, ONLY : write_rho, read_rho USE paw_variables, ONLY : okpaw, ddd_paw USE paw_onecenter, ONLY : PAW_potential ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: rho_extr ! REAL(DP), ALLOCATABLE :: work(:,:), work1(:,:) ! work is the difference between rho and atomic rho at time t ! work1 is the same thing at time t-dt REAL(DP) :: charge ! INTEGER :: is ! IF ( rho_extr < 1 ) THEN ! ! ... calculate structure factors for the new positions ! IF ( lmovecell ) CALL scale_h() ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! ! ... new charge density from extrapolated wfcs ! IF ( rho_extr < 0 ) THEN ! CALL sum_band () ! WRITE( UNIT = stdout, FMT = '(5X, & & "charge density from extrapolated wavefunctions")' ) ELSE ! WRITE( UNIT = stdout, FMT = '(5X, & & "charge density from previous step")' ) ! END IF ! CALL set_rhoc() ! ELSE ! ALLOCATE( work( dfftp%nnr, 1 ) ) ! work = 0.D0 ! ! ... in the lsda case the magnetization will follow rigidly the density ! ... keeping fixed the value of zeta = mag / rho_tot. ! ... zeta is set here and put in rho%of_r(:,2) while rho%of_r(:,1) ! ... will contain the total valence charge ! IF ( lsda ) CALL rho2zeta( rho%of_r, rho_core, dfftp%nnr, nspin, 1 ) ! IF ( noncolin ) THEN ! DO is = 2, nspin ! WHERE( rho%of_r(:,1) > eps32 ) ! rho%of_r(:,is) = rho%of_r(:,is) / rho%of_r(:,1) ! ELSEWHERE ! rho%of_r(:,is) = 0.D0 ! END WHERE ! END DO ! END IF ! ! ... subtract the old atomic charge density ! CALL atomic_rho( work, 1 ) ! rho%of_r(:,1) = rho%of_r(:,1) - work(:,1) ! IF ( lmovecell ) rho%of_r(:,1) = rho%of_r(:,1) * omega_old ! ! ... extrapolate the difference between the atomic charge and ! ... the self-consistent one ! IF ( rho_extr == 1 ) THEN ! ! ... if rho_extr = 1 update the potential subtracting to the charge ! ... density the "old" atomic charge and summing the ! ... new one ! WRITE( UNIT = stdout, FMT = '(5X, & & "NEW-OLD atomic charge density approx. for the potential")' ) ! CALL write_rho( rho%of_r, 1, 'old' ) ! ELSE IF ( rho_extr == 2 ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"first order charge density extrapolation")' ) ! ! ... oldrho -> work ! CALL read_rho( work, 1, 'old' ) ! ! ... rho%of_r -> oldrho ! ... work -> oldrho2 ! CALL write_rho( rho%of_r, 1, 'old' ) CALL write_rho( work, 1, 'old2' ) ! ! ... extrapolation ! rho%of_r(:,1) = 2.D0*rho%of_r(:,1) - work(:,1) ! ELSE IF ( rho_extr == 3 ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"second order charge density extrapolation")' ) ! ALLOCATE( work1( dfftp%nnr, 1 ) ) ! work1 = 0.D0 ! ! ... oldrho2 -> work1 ! ... oldrho -> work ! CALL read_rho( work1, 1, 'old2' ) CALL read_rho( work, 1, 'old' ) ! ! ... rho%of_r -> oldrho ! ... work -> oldrho2 ! CALL write_rho( rho%of_r, 1, 'old' ) CALL write_rho( work, 1, 'old2' ) ! rho%of_r(:,1) = rho%of_r(:,1) + alpha0*( rho%of_r(:,1) - work(:,1) ) + & beta0*( work(:,1) - work1(:,1) ) ! DEALLOCATE( work1 ) ! END IF ! IF ( lmovecell ) rho%of_r(:,1) = rho%of_r(:,1) / omega ! ! ... calculate structure factors for the new positions ! IF ( lmovecell ) CALL scale_h() ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! CALL set_rhoc() ! ! ... add atomic charges in the new positions ! CALL atomic_rho( work, 1 ) ! rho%of_r(:,1) = rho%of_r(:,1) + work(:,1) ! ! ... reset up and down charge densities in the LSDA case ! IF ( lsda ) CALL rho2zeta( rho%of_r, rho_core, dfftp%nnr, nspin, -1 ) ! IF ( noncolin ) THEN ! DO is = 2, nspin ! WHERE( rho%of_r(:,1) > eps32 ) ! rho%of_r(:,is) = rho%of_r(:,is)*rho%of_r(:,1) ! ELSEWHERE ! rho%of_r(:,is) = 0.D0 ! END WHERE ! END DO ! END IF ! DEALLOCATE( work ) ! END IF ! ! ... bring extrapolated rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rho%of_g(:,is) = psic(nl(:)) ! END DO ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! IF ( ABS( charge - nelec ) / charge > 1.D-7 ) THEN ! WRITE( stdout, & '(5X,"extrapolated charge ",F10.5,", renormalised to ",F10.5)') & charge, nelec ! rho%of_r = rho%of_r / charge*nelec rho%of_g = rho%of_g / charge*nelec ! END IF ! RETURN ! END SUBROUTINE extrapolate_charge ! !----------------------------------------------------------------------- SUBROUTINE extrapolate_wfcs( wfc_extr ) !----------------------------------------------------------------------- ! ! ... This routine extrapolate the wfc's after a "parallel alignment" ! ... of the basis of the t-dt and t time steps, according to a recipe ! ... by Mead, Rev. Mod. Phys., vol 64, pag. 51 (1992), eqs. 3.20-3.29 ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE klist, ONLY : nks, ngk, xk USE lsda_mod, ONLY : lsda, current_spin, isk USE control_flags, ONLY : alpha0, beta0, wfc_order USE wvfct, ONLY : nbnd, npw, npwx, igk, current_k USE ions_base, ONLY : nat, tau USE io_files, ONLY : nwordwfc, iunigk, iunwfc, iunoldwfc, & iunoldwfc2, diropn USE buffers, ONLY : get_buffer, save_buffer USE uspp, ONLY : nkb, vkb, okvan USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : noncolin, npol USE control_flags, ONLY : gamma_only USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_barrier ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: wfc_extr ! INTEGER :: ik, zero_ew, lwork, info ! do-loop variables ! counter on k-points ! number of zero 'eigenvalues' of the s_m matrix ! used by singular value decomposition (ZGESVD) ! flag returned by ZGESVD COMPLEX(DP), ALLOCATABLE :: sp_m(:,:), u_m(:,:), w_m(:,:), work(:) ! the overlap matrix s^+ (eq. 3.24) ! left unitary matrix in the SVD of sp_m ! right unitary matrix in the SVD of sp_m ! workspace for ZGESVD COMPLEX(DP), ALLOCATABLE :: evcold(:,:), aux(:,:) ! wavefunctions at previous iteration + workspace REAL(DP), ALLOCATABLE :: ew(:), rwork(:), rp_m(:,:) ! the eigenvalues of s_m ! workspace for ZGESVD ! real version of sp_m LOGICAL :: exst ! CALL mp_barrier( intra_image_comm ) ! debug ! IF ( wfc_extr == 1 ) THEN ! CALL diropn( iunoldwfc, 'oldwfc', 2*nwordwfc, exst ) ! DO ik = 1, nks ! ! ... "now" -> "old" ! CALL get_buffer( evc, nwordwfc, iunwfc, ik ) CALL davcio( evc, 2*nwordwfc, iunoldwfc, ik, +1 ) ! END DO ! CLOSE( UNIT = iunoldwfc, STATUS = 'KEEP' ) ! ELSE ! CALL diropn( iunoldwfc, 'oldwfc', 2*nwordwfc, exst ) IF ( wfc_extr > 2 .OR. wfc_order > 2 ) & CALL diropn( iunoldwfc2, 'old2wfc', 2*nwordwfc, exst ) ! IF ( wfc_extr == 2 ) THEN ! WRITE( stdout, '(/5X,"first order wave-functions extrapolation")' ) ! ELSE ! WRITE( stdout, '(/5X,"second order wave-functions extrapolation")' ) ! END IF ! ALLOCATE( evcold( npwx*npol, nbnd ), aux( npwx*npol, nbnd ) ) ALLOCATE( sp_m( nbnd, nbnd ), u_m( nbnd, nbnd ), w_m( nbnd, nbnd ), ew( nbnd ) ) CALL allocate_bec_type ( nkb, nbnd, becp ) ! IF( SIZE( aux ) /= SIZE( evc ) ) & CALL errore('extrapolate_wfcs ', ' aux wrong size ', ABS( SIZE( aux ) - SIZE( evc ) ) ) ! ! query workspace ! lwork = 5*nbnd ! ALLOCATE( rwork( lwork ) ) ALLOCATE( work( lwork ) ) lwork = -1 CALL ZGESVD( 'A', 'A', nbnd, nbnd, sp_m, nbnd, ew, u_m, & nbnd, w_m, nbnd, work, lwork, rwork, info ) ! lwork = INT(work( 1 )) + 1 ! IF( lwork > SIZE( work ) ) THEN DEALLOCATE( work ) ALLOCATE( work( lwork ) ) END IF ! IF ( nks > 1 ) REWIND( iunigk ) ! zero_ew = 0 ! DO ik = 1, nks ! ! ... read wavefcts as (t-dt), replace with wavefcts at (t) ! CALL davcio( evcold, 2*nwordwfc, iunoldwfc, ik, -1 ) CALL get_buffer( evc, nwordwfc, iunwfc, ik ) CALL davcio( evc, 2*nwordwfc, iunoldwfc, ik, +1 ) ! IF ( okvan ) THEN ! ! ... Ultrasoft PP: calculate overlap matrix ! ... various initializations: k, spin, number of PW, indices ! current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) IF ( nks > 1 ) READ( iunigk ) igk ! call g2_kin (ik) ! ! ... Calculate nonlocal pseudopotential projectors |beta> ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! CALL calbec( npw, vkb, evc, becp ) ! CALL s_psi ( npwx, npw, nbnd, evc, aux ) ELSE ! ! ... Norm-Conserving PP: no overlap matrix ! aux = evc ! END IF ! ! ... construct s^+_m = ! IF ( gamma_only ) THEN ALLOCATE( rp_m ( nbnd, nbnd ) ) CALL calbec ( npw, aux, evcold, rp_m ) sp_m(:,:) = CMPLX(rp_m(:,:),0.0_DP,kind=DP) DEALLOCATE( rp_m ) ELSE IF ( noncolin) THEN CALL calbec ( npwx*npol, aux, evcold, sp_m ) ELSE CALL calbec ( npw, aux, evcold, sp_m ) END IF ! ! ... the unitary matrix [sp_m*s_m]^(-1/2)*sp_m (eq. 3.29) by means the ! ... singular value decomposition (SVD) of sp_m = u_m*diag(ew)*w_m ! ... becomes u_m * w_m ! CALL ZGESVD( 'A', 'A', nbnd, nbnd, sp_m, nbnd, ew, u_m, & nbnd, w_m, nbnd, work, lwork, rwork, info ) ! ! ... check on eigenvalues ! zero_ew = COUNT( ew(:) < 0.1D0 ) ! ! ... use sp_m to store u_m * w_m ! CALL ZGEMM( 'N', 'N', nbnd, nbnd, nbnd, ONE, & u_m, nbnd, w_m, nbnd, ZERO, sp_m, nbnd ) ! ! ... now use aux as workspace to calculate "aligned" wavefcts: ! ! ... aux_i = sum_j evcold_j*s_m_ji (eq.3.21) ! CALL ZGEMM( 'N', 'C', npw, nbnd, nbnd, ONE, & evcold, npwx, sp_m, nbnd, ZERO, aux, npwx ) ! ! ... alpha0 and beta0 are calculated in "move_ions" ! ... for first-order interpolation, alpha=1, beta0=0 ! IF ( wfc_extr == 3 ) THEN evc = ( 1.0_dp + alpha0 ) * evc + ( beta0 - alpha0 ) * aux ELSE evc = 2.0_dp * evc - aux END IF ! IF ( wfc_order > 2 ) THEN ! ! ... second-order interpolation: ! ... read wavefcts at (t-2dt), save aligned wavefcts at (t-dt) ! IF ( wfc_extr == 3 ) & CALL davcio( evcold, 2*nwordwfc, iunoldwfc2, ik, -1 ) ! CALL davcio( aux, 2*nwordwfc, iunoldwfc2, ik, +1 ) ! IF ( wfc_extr ==3 ) THEN ! ! ... align wfcs at (t-2dt), add to interpolation formula ! CALL ZGEMM( 'N', 'C', npw, nbnd, nbnd, ONE, & evcold, npwx, sp_m, nbnd, ZERO, aux, npwx ) ! evc = evc - beta0 * aux ! END IF ! END IF ! ! ... save interpolated wavefunctions to file iunwfc ! CALL save_buffer( evc, nwordwfc, iunwfc, ik ) ! END DO ! IF ( zero_ew > 0 ) & WRITE( stdout, '( 5X,"Message from extrapolate_wfcs: ",/, & & 5X,"the matrix has ", & & I2," small (< 0.1) eigenvalues")' ) zero_ew ! DEALLOCATE( u_m, w_m, ew, aux, evcold, sp_m ) DEALLOCATE( work, rwork ) CALL deallocate_bec_type ( becp ) ! CLOSE( UNIT = iunoldwfc, STATUS = 'KEEP' ) IF ( wfc_extr > 2 .OR. wfc_order > 2 ) & CLOSE( UNIT = iunoldwfc2, STATUS = 'KEEP' ) ! END IF ! CALL mp_barrier( intra_image_comm ) ! debug ! RETURN ! END SUBROUTINE extrapolate_wfcs ! ! ... this routine is used also by compute_scf (NEB) and compute_fes_grads ! !---------------------------------------------------------------------------- SUBROUTINE find_alpha_and_beta( nat, tau, tauold, alpha0, beta0 ) !---------------------------------------------------------------------------- ! ! ... This routine finds the best coefficients alpha0 and beta0 so that ! ! ... | tau(t+dt) - tau' | is minimum, where ! ! ... tau' = tau(t) + alpha0 * ( tau(t) - tau(t-dt) ) ! ... + beta0 * ( tau(t-dt) -tau(t-2*dt) ) ! USE constants, ONLY : eps16 USE kinds, ONLY : DP USE io_global, ONLY : stdout USE control_flags, ONLY : history ! IMPLICIT NONE ! INTEGER :: nat, na, ipol REAL(DP) :: alpha0, beta0, tau(3,nat), tauold(3,nat,3) REAL(DP) :: a11, a12, a21, a22, b1, b2, c, det ! ! IF ( history <= 2 ) RETURN ! ! ... solution of the linear system ! a11 = 0.D0 a12 = 0.D0 a21 = 0.D0 a22 = 0.D0 b1 = 0.D0 b2 = 0.D0 c = 0.D0 ! DO na = 1, nat ! DO ipol = 1, 3 ! a11 = a11 + ( tauold(ipol,na,1) - tauold(ipol,na,2) )**2 ! a12 = a12 + ( tauold(ipol,na,1) - tauold(ipol,na,2) ) * & ( tauold(ipol,na,2) - tauold(ipol,na,3) ) ! a22 = a22 + ( tauold(ipol,na,2) - tauold(ipol,na,3) )**2 ! b1 = b1 - ( tauold(ipol,na,1) - tau(ipol,na) ) * & ( tauold(ipol,na,1) - tauold(ipol,na,2) ) ! b2 = b2 - ( tauold(ipol,na,1) - tau(ipol,na) ) * & ( tauold(ipol,na,2) - tauold(ipol,na,3) ) ! c = c + ( tauold(ipol,na,1) - tau(ipol,na) )**2 ! END DO ! END DO ! a21 = a12 ! det = a11 * a22 - a12 * a21 ! IF ( det < - eps16 ) THEN ! alpha0 = 0.D0 beta0 = 0.D0 ! WRITE( UNIT = stdout, & FMT = '(5X,"WARNING: in find_alpha_and_beta det = ",F10.6)' ) det ! END IF ! ! ... case det > 0: a well defined minimum exists ! IF ( det > eps16 ) THEN ! alpha0 = ( b1 * a22 - b2 * a12 ) / det beta0 = ( a11 * b2 - a21 * b1 ) / det ! ELSE ! ! ... case det = 0 : the two increments are linearly dependent, ! ... chose solution with alpha = b1 / a11 and beta = 0 ! ... ( discard oldest configuration ) ! alpha0 = 0.D0 beta0 = 0.D0 ! IF ( a11 /= 0.D0 ) alpha0 = b1 / a11 ! END IF ! RETURN ! END SUBROUTINE find_alpha_and_beta espresso-5.0.2/PW/src/restart_in_electrons.f900000644000700200004540000000546712053145630020260 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine restart_in_electrons (iter, ik_, dr2) !----------------------------------------------------------------------- USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc, iunres, prefix, seqopn USE kinds, ONLY: DP USE klist, ONLY: nks USE control_flags, ONLY: restart, tr2, ethr USE wvfct, ONLY: nbnd, et USE noncollin_module, ONLY: noncolin USE wavefunctions_module, ONLY : evc USE exx, ONLY : exx_restart, & fock0, fock1, fock2, dexx, x_occupation implicit none character :: where * 20 ! are we in the right place? integer :: ik, ibnd, ik_, iter_, iter ! counters ! last completed kpoint ! iteration number when program crashed ! last completed iteration logical :: exst logical :: l_exx_was_active real(DP) :: dr2 call seqopn (iunres, 'restart', 'unformatted', exst) if (.not.exst) goto 10 read (iunres, err=10, end=10) where ! ! is this the right place where to restart ? ! if (where.ne.'ELECTRONS') then close (unit = iunres, status = 'keep') ! ! this is a signal for the calling routine saying we are in the wrong place ! ik_ = - 1000 return endif read (iunres) ( (et(ibnd,ik), ibnd=1,nbnd), ik=1,nks) read (iunres, err=10, end=10) iter_, ik_, dr2, tr2, ethr read (iunres, err=10, end=10) l_exx_was_active, fock0, fock1, fock2, dexx IF (l_exx_was_active) read (iunres) & ( (x_occupation(ibnd,ik), ibnd=1,nbnd), ik=1,nks) call exx_restart(l_exx_was_active) close (unit = iunres, status = 'keep') if (ik_.eq.0) then iter = iter_ WRITE( stdout, '(5x,"Calculation restarted from first kpoint ", & &" of iteration #",i3)') iter + 1 elseif (ik_.ne.nks) then iter = iter_ - 1 WRITE( stdout, '(5x,"Calculation restarted from kpoint #",i6, & &" of iteration #",i3)') ik_ + 1, iter + 1 else iter = iter_ - 1 WRITE( stdout, '(5x,"Calculation restarted from charge/pot", & &" of iteration #",i3)') iter + 1 ! ! with only one k-point wavefunctions are not read in sum_band ! if (nks.eq.1) call davcio (evc,2*nwordwfc, iunwfc, 1, - 1) endif WRITE( stdout, '(5x,"tr2 = ",1pe8.2," ethr = ",1pe8.2)') tr2, ethr ! ! restart procedure completed ! restart = .false. return ! ! in case of problems ! 10 call infomsg ('restart_e', 'problems in reading recover file') close ( unit=iunres, status='keep') restart = .false. ! return end subroutine restart_in_electrons espresso-5.0.2/PW/src/bp_strings.f900000644000700200004540000000501512053145627016175 0ustar marsamoscm! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE kp_strings ( nppstr, gdir, nrot, s, bg, npk, & k1,k2,k3, nk1,nk2,nk3, nks, xk, wk ) ! --- Usage of modules --- USE kinds, ONLY: dp ! --- No implicit definitions --- IMPLICIT NONE ! --- Input arguments --- INTEGER , INTENT(IN) :: k1 INTEGER , INTENT(IN) :: k2 INTEGER , INTENT(IN) :: k3 INTEGER , INTENT(IN) :: nk1 INTEGER , INTENT(IN) :: nk2 INTEGER , INTENT(IN) :: nk3 INTEGER , INTENT(IN) :: nppstr INTEGER , INTENT(IN) :: npk INTEGER , INTENT(IN) :: nrot INTEGER , INTENT(IN) :: gdir INTEGER , INTENT(IN) :: s(3,3,48) REAL(dp) , INTENT(IN) :: bg(3,3) ! --- Output arguments --- INTEGER , INTENT(OUT) :: nks REAL(dp), INTENT(OUT) :: xk(3,npk) REAL(dp), INTENT(OUT) :: wk(npk) ! --- Internal definitions --- INTEGER :: ipar INTEGER :: iort INTEGER :: kindex ! time reversal and no magnetic symmetries assumed INTEGER :: t_rev(48) = 0 LOGICAL :: time_reversal = .true., skip_equivalence=.FALSE. REAL(dp) :: dk(3) REAL(dp) :: xk0(3,npk) REAL(dp) :: wk0(npk) ! --- Generate a k-point grid in the two dimensions other than gdir --- IF (gdir == 1) THEN CALL kpoint_grid (nrot, time_reversal, skip_equivalence, s, t_rev, bg, & npk, k1,k2,k3, 1,nk2,nk3, nks, xk0, wk0 ) ELSE IF (gdir == 2) THEN CALL kpoint_grid (nrot, time_reversal, skip_equivalence, s, t_rev, bg, & npk, k1,k2,k3, nk1,1,nk3, nks, xk0, wk0 ) ELSE IF (gdir == 3) THEN CALL kpoint_grid (nrot, time_reversal, skip_equivalence, s, t_rev, bg, & npk, k1,k2,k3, nk1,nk2,1, nks, xk0, wk0 ) ELSE CALL errore('kp_strings','gdir different from 1, 2, or 3',1) END IF ! --- Generate a string of k-points for every k-point in the 2D grid --- kindex=0 dk(1)=bg(1,gdir)/REAL(nppstr-1,dp) dk(2)=bg(2,gdir)/REAL(nppstr-1,dp) dk(3)=bg(3,gdir)/REAL(nppstr-1,dp) DO iort=1,nks DO ipar=1,nppstr kindex=kindex+1 xk(1,kindex)=xk0(1,iort)+REAL(ipar-1,dp)*dk(1) xk(2,kindex)=xk0(2,iort)+REAL(ipar-1,dp)*dk(2) xk(3,kindex)=xk0(3,iort)+REAL(ipar-1,dp)*dk(3) wk(kindex)=wk0(iort)/REAL(nppstr,dp) END DO END DO nks=nks*nppstr END SUBROUTINE kp_strings espresso-5.0.2/PW/src/martyna_tuckerman.f900000644000700200004540000002370712053145627017557 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #undef TESTING MODULE martyna_tuckerman ! ! ... The variables needed to the Martyna-Tuckeman method for isolated ! systems ! USE kinds, ONLY: dp USE constants, ONLY : e2, pi, tpi, fpi USE ws_base ! IMPLICIT NONE ! TYPE (ws_type) :: ws REAL (DP) :: alpha, beta REAL (DP), ALLOCATABLE :: wg_corr(:) LOGICAL :: wg_corr_is_updated = .FALSE. LOGICAL :: do_comp_mt = .FALSE. LOGICAL :: gamma_only = .FALSE. integer :: gstart = 1 ! SAVE PRIVATE PUBLIC :: tag_wg_corr_as_obsolete, do_comp_mt, & wg_corr_ewald, wg_corr_loc, wg_corr_h, wg_corr_force CONTAINS !---------------------------------------------------------------------------- SUBROUTINE tag_wg_corr_as_obsolete !---------------------------------------------------------------------------- wg_corr_is_updated = .FALSE. END SUBROUTINE tag_wg_corr_as_obsolete !---------------------------------------------------------------------------- SUBROUTINE wg_corr_h( omega, ngm, rho, v, eh_corr ) !---------------------------------------------------------------------------- INTEGER, INTENT(IN) :: ngm REAL(DP), INTENT(IN) :: omega COMPLEX(DP), INTENT(IN) :: rho(ngm) COMPLEX(DP), INTENT(OUT) :: v(ngm) REAL(DP), INTENT(OUT) :: eh_corr INTEGER :: ig IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! v(:) = (0._dp,0._dp) eh_corr = 0._dp DO ig = 1,ngm v(ig) = e2 * wg_corr(ig) * rho(ig) eh_corr = eh_corr + ABS(rho(ig))**2 * wg_corr(ig) END DO iF (gamma_only) v(gstart:ngm) = 0.5_dp * v(gstart:ngm) eh_corr = 0.5_dp * e2 * eh_corr * omega RETURN END SUBROUTINE wg_corr_h !---------------------------------------------------------------------------- SUBROUTINE wg_corr_loc( omega, ntyp, ngm, zv, strf, v ) !---------------------------------------------------------------------------- INTEGER, INTENT(IN) :: ntyp, ngm REAL(DP), INTENT(IN) :: omega, zv(ntyp) COMPLEX(DP), INTENT(IN) :: strf(ngm,ntyp) COMPLEX(DP), INTENT(OUT) :: v(ngm) INTEGER :: ig IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! do ig=1,ngm v(ig) = - e2 * wg_corr(ig) * SUM(zv(1:ntyp)*strf(ig,1:ntyp)) / omega end do iF (gamma_only) v(gstart:ngm) = 0.5_dp * v(gstart:ngm) RETURN END SUBROUTINE wg_corr_loc !---------------------------------------------------------------------------- SUBROUTINE wg_corr_force( omega, nat, ntyp, ityp, ngm, g, tau, zv, strf, nspin, rho, force ) !---------------------------------------------------------------------------- USE cell_base, ONLY : tpiba USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum INTEGER, INTENT(IN) :: nat, ntyp, ityp(nat), ngm, nspin REAL(DP), INTENT(IN) :: omega, zv(ntyp), tau(3,nat), g(3,ngm) COMPLEX(DP), INTENT(IN) :: strf(ngm,ntyp), rho(ngm,nspin) REAL(DP), INTENT(OUT) :: force(3,nat) INTEGER :: ig, na REAL (DP) :: arg COMPLEX(DP), ALLOCATABLE :: v(:) COMPLEX(DP) :: rho_tot IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! allocate ( v(ngm) ) do ig=1,ngm rho_tot = rho(ig,1) - SUM(zv(1:ntyp)*strf(ig,1:ntyp)) / omega if (nspin==2) rho_tot = rho_tot + rho(ig,2) v(ig) = e2 * wg_corr(ig) * rho_tot end do force(:,:) = 0._dp do na=1,nat do ig=1,ngm arg = tpi * SUM ( g(:,ig)*tau(:, na) ) force(:,na) = force(:,na) + g(:,ig) * CMPLX(SIN(arg),-COS(ARG)) * v(ig) end do force(:,na) = - force(:,na) * zv(ityp(na)) * tpiba end do deallocate ( v ) ! call mp_sum( force, intra_bgrp_comm ) ! RETURN END SUBROUTINE wg_corr_force !---------------------------------------------------------------------------- SUBROUTINE init_wg_corr !---------------------------------------------------------------------------- USE mp_global, ONLY : me_bgrp USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft USE control_flags, ONLY : gamma_only_ => gamma_only USE gvect, ONLY : ngm, gg, gstart_ => gstart, nl, nlm, ecutrho USE cell_base, ONLY : at, alat, tpiba2, omega INTEGER :: index0, index, ir, i,j,k, ig, nt REAL(DP) :: r(3), rws, upperbound, rws2 COMPLEX (DP), ALLOCATABLE :: aux(:) REAL(DP), EXTERNAL :: qe_erfc #ifdef TESTING REAL(DP), ALLOCATABLE :: plot(:) CHARACTER (LEN=25) :: filplot LOGICAL, SAVE :: first = .TRUE. #endif IF ( ALLOCATED(wg_corr) ) DEALLOCATE(wg_corr) ALLOCATE(wg_corr(ngm)) ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! alpha = 2.9d0 upperbound = 1._dp DO WHILE ( upperbound > 1.e-7_dp) alpha = alpha - 0.1_dp if (alpha<=0._dp) call errore('init_wg_corr','optimal alpha not found',1) upperbound = e2 * sqrt (2.d0 * alpha / tpi) * & qe_erfc ( sqrt ( ecutrho / 4.d0 / alpha) ) END DO beta = 0.5_dp/alpha ! 1._dp/alpha ! write (*,*) " alpha, beta MT = ", alpha, beta ! call ws_init(at,ws) ! gstart = gstart_ gamma_only = gamma_only_ ! ! Index for parallel summation ! index0 = 0 #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! ALLOCATE (aux(dfftp%nnr)) aux = CMPLX(0._dp,0._dp) DO ir = 1, dfftp%nnr ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index r(:) = ( at(:,1)/dfftp%nr1*i + at(:,2)/dfftp%nr2*j + at(:,3)/dfftp%nr3*k ) rws = ws_dist(r,ws) #ifdef TESTING rws2 = ws_dist_stupid(r,ws) if (abs (rws-rws2) > 1.e-5 ) then write (*,'(4i8)') ir, i,j,k write (*,'(5f14.8)') r(:), rws, rws2 stop end if #endif aux(ir) = smooth_coulomb_r( rws*alat ) END DO CALL fwfft ('Dense', aux, dfftp) do ig =1, ngm wg_corr(ig) = omega * REAL(aux(nl(ig))) - smooth_coulomb_g( tpiba2*gg(ig)) end do wg_corr(:) = wg_corr(:) * exp(-tpiba2*gg(:)*beta/4._dp)**2 ! if (gamma_only) wg_corr(gstart:ngm) = 2.d0 * wg_corr(gstart:ngm) ! wg_corr_is_updated = .true. #ifdef TESTING if (first) then ALLOCATE(plot(dfftp%nnr)) filplot = 'wg_corr_r' CALL invfft ('Dense', aux, dfftp) plot(:) = REAL(aux(:)) call write_wg_on_file(filplot, plot) filplot = 'wg_corr_g' aux(:) = CMPLX(0._dp,0._dp) do ig =1, ngm aux(nl(ig)) = smooth_coulomb_g( tpiba2*gg(ig))/omega end do if (gamma_only) aux(nlm(1:ngm)) = CONJG( aux(nl(1:ngm)) ) CALL invfft ('Dense', aux, dfftp) plot(:) = REAL(aux(:)) call write_wg_on_file(filplot, plot) filplot = 'wg_corr_diff' aux(:) = CMPLX(0._dp,0._dp) aux(nl(1:ngm)) = wg_corr(1:ngm) / omega if (gamma_only) then aux(:) = 0.5_dp * aux(:) aux(nlm(1:ngm)) = aux(nlm(1:ngm)) + CONJG( aux(nl(1:ngm)) ) end if CALL invfft ('Dense', aux, dfftp) plot(:) = REAL(aux(:)) call write_wg_on_file(filplot, plot) DEALLOCATE (plot) first = .false. end if #endif DEALLOCATE (aux) RETURN END SUBROUTINE init_wg_corr !---------------------------------------------------------------------------- SUBROUTINE write_wg_on_file(filplot, plot) !---------------------------------------------------------------------------- USE fft_base, ONLY : dfftp USE gvect, ONLY : gcutm USE wvfct, ONLY : ecutwfc USE gvecs, ONLY : dual USE cell_base, ONLY : at, alat, tpiba2, omega, ibrav, celldm USE ions_base, ONLY : zv, ntyp => nsp, nat, ityp, atm, tau CHARACTER (LEN=25), INTENT(IN) :: filplot REAL(DP) :: plot(dfftp%nnr) CHARACTER (LEN=25) :: title INTEGER :: plot_num=0, iflag=+1 CALL plot_io (filplot, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, dfftp%nr1, dfftp%nr2, & dfftp%nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecutwfc, plot_num, atm, & ityp, zv, tau, plot, iflag) RETURN END SUBROUTINE write_wg_on_file !---------------------------------------------------------------------------- REAL(DP) FUNCTION wg_corr_ewald ( omega, ntyp, ngm, zv, strf ) !---------------------------------------------------------------------------- INTEGER, INTENT(IN) :: ntyp, ngm REAL(DP), INTENT(IN) :: omega, zv(ntyp) COMPLEX(DP), INTENT(IN) :: strf(ngm,ntyp) INTEGER :: ig COMPLEX(DP) :: rhoion IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! wg_corr_ewald = 0._dp DO ig=1,ngm rhoion = SUM (zv(1:ntyp)* strf(ig,1:ntyp) ) / omega wg_corr_ewald = wg_corr_ewald + ABS(rhoion)**2 * wg_corr(ig) END DO wg_corr_ewald = 0.5_dp * e2 * wg_corr_ewald * omega ! write(*,*) "ewald correction = ", wg_corr_ewald END FUNCTION wg_corr_ewald !---------------------------------------------------------------------------- REAL(DP) FUNCTION smooth_coulomb_r(r) !---------------------------------------------------------------------------- REAL(DP), INTENT(IN) :: r REAL(DP), EXTERNAL :: qe_erf ! smooth_coulomb_r = sqrt(2._dp*alpha/tpi)**3 * exp(-alpha*r*r) ! to be modified IF (r>1.e-6_dp) THEN smooth_coulomb_r = qe_erf(sqrt(alpha)*r)/r ELSE smooth_coulomb_r = 2._dp/sqrt(pi) * sqrt(alpha) END IF END FUNCTION smooth_coulomb_r !---------------------------------------------------------------------------- REAL(DP) FUNCTION smooth_coulomb_g(q2) !---------------------------------------------------------------------------- REAL(DP), INTENT(IN) :: q2 ! smooth_coulomb_g = exp(-q2/4._dp/alpha) ! to be modified IF (q2>1.e-6_dp) THEN smooth_coulomb_g = fpi * exp(-q2/4._dp/alpha)/q2 ! to be modified ELSE smooth_coulomb_g = - 1._dp * fpi * (1._dp/4._dp/alpha + 2._dp*beta/4._dp) END IF END FUNCTION smooth_coulomb_g !---------------------------------------------------------------------------- END MODULE martyna_tuckerman espresso-5.0.2/PW/src/rcgdiagg.f900000644000700200004540000002607012053145630015570 0ustar marsamoscm! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rcgdiagg( npwx, npw, nbnd, psi, e, btype, precondition, & ethr, maxter, reorder, notconv, avg_iter ) !---------------------------------------------------------------------------- ! ! ... "poor man" iterative diagonalization of a complex hermitian matrix ! ... through preconditioned conjugate gradient algorithm ! ... Band-by-band algorithm with minimal use of memory ! ... Calls h_1psi and s_1psi to calculate H|psi> and S|psi> ! ... Works for generalized eigenvalue problem (US pseudopotentials) as well ! USE constants, ONLY : pi USE kinds, ONLY : DP USE gvect, ONLY : gstart USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npwx, npw, nbnd, maxter INTEGER, INTENT(IN) :: btype(nbnd) REAL (DP), INTENT(IN) :: precondition(npw), ethr COMPLEX (DP), INTENT(INOUT) :: psi(npwx,nbnd) REAL (DP), INTENT(INOUT) :: e(nbnd) INTEGER, INTENT(OUT) :: notconv REAL (DP), INTENT(OUT) :: avg_iter ! ! ... local variables ! INTEGER :: i, j, m, iter, moved REAL (DP), ALLOCATABLE :: lagrange(:) COMPLEX (DP), ALLOCATABLE :: hpsi(:), spsi(:), g(:), cg(:), & scg(:), ppsi(:), g0(:) REAL (DP) :: psi_norm, a0, b0, gg0, gamma, gg, gg1, & cg0, e0, es(2) REAL (DP) :: theta, cost, sint, cos2t, sin2t LOGICAL :: reorder INTEGER :: npw2, npwx2 REAL (DP) :: empty_ethr ! ! ... external functions ! REAL (DP), EXTERNAL :: ddot ! ! CALL start_clock( 'rcgdiagg' ) ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! npw2 = 2 * npw npwx2 = 2 * npwx ! ALLOCATE( spsi( npwx ) ) ALLOCATE( scg( npwx ) ) ALLOCATE( hpsi( npwx ) ) ALLOCATE( g( npwx ) ) ALLOCATE( cg( npwx ) ) ALLOCATE( g0( npwx ) ) ALLOCATE( ppsi( npwx ) ) ! ALLOCATE( lagrange( nbnd ) ) ! avg_iter = 0.D0 notconv = 0 moved = 0 ! ! ... every eigenfunction is calculated separately ! DO m = 1, nbnd ! ! ... calculate S|psi> ! CALL s_1psi( npwx, npw, psi(1,m), spsi ) ! ! ... orthogonalize starting eigenfunction to those already calculated ! CALL DGEMV( 'T', npw2, m, 2.D0, psi, npwx2, spsi, 1, 0.D0, lagrange, 1 ) ! IF ( gstart == 2 ) lagrange(1:m) = lagrange(1:m) - psi(1,1:m) * spsi(1) ! CALL mp_sum( lagrange( 1:m ), intra_bgrp_comm ) ! psi_norm = lagrange(m) ! DO j = 1, m - 1 ! psi(:,m) = psi(:,m) - lagrange(j) * psi(:,j) ! psi_norm = psi_norm - lagrange(j)**2 ! END DO ! psi_norm = SQRT( psi_norm ) ! psi(:,m) = psi(:,m) / psi_norm ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,m) = CMPLX( DBLE(psi(1,m)), 0.D0 ,kind=DP) ! ! ... calculate starting gradient (|hpsi> = H|psi>) ... ! CALL h_1psi( npwx, npw, psi(1,m), hpsi, spsi ) ! ! ... and starting eigenvalue (e = = ) ! ! ... NB: ddot(2*npw,a,1,b,1) = DBLE( zdotc(npw,a,1,b,1) ) ! e(m) = 2.D0 * ddot( npw2, psi(1,m), 1, hpsi, 1 ) ! IF ( gstart == 2 ) e(m) = e(m) - psi(1,m) * hpsi(1) ! CALL mp_sum( e(m), intra_bgrp_comm ) ! ! ... start iteration for this band ! iterate: DO iter = 1, maxter ! ! ... calculate P (PHP)|y> ! ... ( P = preconditioning matrix, assumed diagonal ) ! g(1:npw) = hpsi(1:npw) / precondition(:) ppsi(1:npw) = spsi(1:npw) / precondition(:) ! ! ... ppsi is now S P(P^2)|y> = S P^2|psi>) ! es(1) = 2.D0 * ddot( npw2, spsi(1), 1, g(1), 1 ) es(2) = 2.D0 * ddot( npw2, spsi(1), 1, ppsi(1), 1 ) ! IF ( gstart == 2 ) THEN ! es(1) = es(1) - spsi(1) * g(1) es(2) = es(2) - spsi(1) * ppsi(1) ! END IF ! CALL mp_sum( es , intra_bgrp_comm ) ! es(1) = es(1) / es(2) ! g(:) = g(:) - es(1) * ppsi(:) ! ! ... e1 = / ensures that ! ... = 0 ! ! ... orthogonalize to lowest eigenfunctions (already calculated) ! ! ... scg is used as workspace ! CALL s_1psi( npwx, npw, g(1), scg(1) ) ! CALL DGEMV( 'T', npw2, ( m - 1 ), 2.D0, & psi, npwx2, scg, 1, 0.D0, lagrange, 1 ) ! IF ( gstart == 2 ) & lagrange(1:m-1) = lagrange(1:m-1) - psi(1,1:m-1) * scg(1) ! CALL mp_sum( lagrange( 1 : m-1 ), intra_bgrp_comm ) ! DO j = 1, ( m - 1 ) ! g(:) = g(:) - lagrange(j) * psi(:,j) scg(:) = scg(:) - lagrange(j) * psi(:,j) ! END DO ! IF ( iter /= 1 ) THEN ! ! ... gg1 is (used in Polak-Ribiere formula) ! gg1 = 2.D0 * ddot( npw2, g(1), 1, g0(1), 1 ) ! IF ( gstart == 2 ) gg1 = gg1 - g(1) * g0(1) ! CALL mp_sum( gg1 , intra_bgrp_comm ) ! END IF ! ! ... gg is ! g0(:) = scg(:) ! g0(1:npw) = g0(1:npw) * precondition(:) ! gg = 2.D0 * ddot( npw2, g(1), 1, g0(1), 1 ) ! IF ( gstart == 2 ) gg = gg - g(1) * g0(1) ! CALL mp_sum( gg , intra_bgrp_comm ) ! IF ( iter == 1 ) THEN ! ! ... starting iteration, the conjugate gradient |cg> = |g> ! gg0 = gg ! cg(:) = g(:) ! ELSE ! ! ... |cg(n+1)> = |g(n+1)> + gamma(n) * |cg(n)> ! ! ... Polak-Ribiere formula : ! gamma = ( gg - gg1 ) / gg0 gg0 = gg ! cg(:) = cg(:) * gamma cg(:) = g + cg(:) ! ! ... The following is needed because ! ... is not 0. In fact : ! ... = sin(theta)* ! psi_norm = gamma * cg0 * sint ! cg(:) = cg(:) - psi_norm * psi(:,m) ! END IF ! ! ... |cg> contains now the conjugate gradient ! ... set Im[ cg(G=0) ] - needed for numerical stability IF ( gstart == 2 ) cg(1) = CMPLX( DBLE(cg(1)), 0.D0 ,kind=DP) ! ! ... |scg> is S|cg> ! CALL h_1psi( npwx, npw, cg(1), ppsi(1), scg(1) ) ! cg0 = 2.D0 * ddot( npw2, cg(1), 1, scg(1), 1 ) ! IF ( gstart == 2 ) cg0 = cg0 - cg(1) * scg(1) ! CALL mp_sum( cg0 , intra_bgrp_comm ) ! cg0 = SQRT( cg0 ) ! ! ... |ppsi> contains now HP|cg> ! ... minimize , where : ! ... |y(t)> = cos(t)|y> + sin(t)/cg0 |cg> ! ... Note that = 1, = 0 , ! ... = cg0^2 ! ... so that the result is correctly normalized : ! ... = 1 ! a0 = 4.D0 * ddot( npw2, psi(1,m), 1, ppsi(1), 1 ) ! IF ( gstart == 2 ) a0 = a0 - 2.D0 * psi(1,m) * ppsi(1) ! a0 = a0 / cg0 ! CALL mp_sum( a0 , intra_bgrp_comm ) ! b0 = 2.D0 * ddot( npw2, cg(1), 1, ppsi(1), 1 ) ! IF ( gstart == 2 ) b0 = b0 - cg(1) * ppsi(1) ! b0 = b0 / cg0**2 ! CALL mp_sum( b0 , intra_bgrp_comm ) ! e0 = e(m) ! theta = 0.5D0 * ATAN( a0 / ( e0 - b0 ) ) ! cost = COS( theta ) sint = SIN( theta ) ! cos2t = cost*cost - sint*sint sin2t = 2.D0*cost*sint ! es(1) = 0.5D0 * ( ( e0 - b0 ) * cos2t + a0 * sin2t + e0 + b0 ) es(2) = 0.5D0 * ( - ( e0 - b0 ) * cos2t - a0 * sin2t + e0 + b0 ) ! ! ... there are two possible solutions, choose the minimum ! IF ( es(2) < es(1) ) THEN ! theta = theta + 0.5D0 * pi ! cost = COS( theta ) sint = SIN( theta ) ! END IF ! ! ... new estimate of the eigenvalue ! e(m) = MIN( es(1), es(2) ) ! ! ... upgrade |psi> ! psi(:,m) = cost * psi(:,m) + sint / cg0 * cg(:) ! ! ... here one could test convergence on the energy ! IF ( btype(m) == 1 ) THEN ! IF ( ABS( e(m) - e0 ) < ethr ) EXIT iterate ! ELSE ! IF ( ABS( e(m) - e0 ) < empty_ethr ) EXIT iterate ! END IF ! ! ... upgrade H|psi> and S|psi> ! spsi(:) = cost * spsi(:) + sint / cg0 * scg(:) ! hpsi(:) = cost * hpsi(:) + sint / cg0 * ppsi(:) ! END DO iterate ! IF ( iter >= maxter ) notconv = notconv + 1 ! avg_iter = avg_iter + iter + 1 ! ! ... reorder eigenvalues if they are not in the right order ! ... ( this CAN and WILL happen in not-so-special cases ) ! IF ( m > 1 .AND. reorder ) THEN ! IF ( e(m) - e(m-1) < - 2.D0 * ethr ) THEN ! ! ... if the last calculated eigenvalue is not the largest... ! DO i = m - 2, 1, - 1 ! IF ( e(m) - e(i) > 2.D0 * ethr ) EXIT ! END DO ! i = i + 1 ! moved = moved + 1 ! ! ... last calculated eigenvalue should be in the ! ... i-th position: reorder ! e0 = e(m) ! ppsi(:) = psi(:,m) ! DO j = m, i + 1, - 1 ! e(j) = e(j-1) ! psi(:,j) = psi(:,j-1) ! END DO ! e(i) = e0 ! psi(:,i) = ppsi(:) ! ! ... this procedure should be good if only a few inversions occur, ! ... extremely inefficient if eigenvectors are often in bad order ! ... ( but this should not happen ) ! END IF ! END IF ! END DO ! avg_iter = avg_iter / DBLE( nbnd ) ! DEALLOCATE( lagrange ) DEALLOCATE( ppsi ) DEALLOCATE( g0 ) DEALLOCATE( cg ) DEALLOCATE( g ) DEALLOCATE( hpsi ) DEALLOCATE( scg ) DEALLOCATE( spsi ) ! CALL stop_clock( 'rcgdiagg' ) ! RETURN ! END SUBROUTINE rcgdiagg espresso-5.0.2/PW/src/plus_u_full.f900000644000700200004540000003055212053145627016360 0ustar marsamoscm! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Set of subroutines needed for full LDA+U calculations ! after Liechtenstein and co-workers (PRB 52, R5467 (1995)). ! Works with two-component spinor WFs and with fully-relativistic ! pseudopotentials. ! In the last case the WFs are projected onto: ! real spherical harmonics * ! averaged j=l+1/2, l-1/2 radial WFs * ! up/down spinor. ! ! A. Smogunov, C. Barreteau !----------------------------------------------------------------------- subroutine hubbard_matrix (lmax, L, U, J, u_matrix) ! ! Build up the matrix of Coulomb integrals u_matrix(1,2,3,4) ! for real spherical harmonics. Implemented for s, p, d, f-shells. ! Integrals with radial WFs are parametrized by U and J parameters. ! See Liechtenstein PRB 52, R5467 (1995), for example. ! USE kinds, ONLY : DP USE constants, ONLY : rytoev, fpi ! implicit none ! integer :: lmax, L ! max and actuel l real(DP), intent(in) :: U, J(3) ! input parameters ! s: U ! p: U, J = J(1) ! d: U, J = J(1), B = J(2) ! f: U, J = J(1), E2 = J(2), E3 = J(3) real(DP) :: u_matrix(2*lmax+1, 2*lmax+1, 2*lmax+1, 2*lmax+1), ak real(DP), allocatable :: ap(:,:,:), F(:) ! integer :: n, nl, moffset, i, m1, m2, m3, m4, k, q !-- ! number of all spher. harm.: ! from l = 0 to l = L nl = (L+1)**2 ! from l = 0 to l = 2L n = (2*L+1)**2 ! up to L moffset = L**2 !-- allocate( ap(n,nl,nl) ) allocate( F(0:6) ) !-- Set up the F_2k coefficients k = 0, 1, ... L F(:) = 0.d0 if (L.eq.0) then F(0) = U elseif (L.eq.1) then F(0) = U F(2) = 5.d0 * J(1) elseif (L.eq.2) then F(0) = U F(2) = 5.d0 * J(1) + 31.5d0 * J(2) F(4) = 9.d0 * J(1) - 31.5d0 * J(2) elseif (L.eq.3) then F(0) = U F(2) = 225.d0/54.d0*J(1) + 32175.d0/42.d0*J(2) + 2475.d0/42.d0*J(3) F(4) = 11.d0*J(1) - 141570.d0/77.d0*J(2) + 4356.d0/77.d0*J(3) F(6) = 7361.64d0/594.d0*J(1) + 36808.2d0/66.d0*J(2) - 11154.d-2*J(3) else call errore( 'hubbard_matrix', & & 'lda_plus_u is not implemented for L > 3 ...', 1 ) endif !-- ap = 0.d0 u_matrix = 0.d0 !-- Calculate Y_{kq} * Y_{lm} * Y_{lm'} integrals call aainit_1(n, nl, ap) !-- do m1 = 1, 2*l+1 do m2 = 1, 2*l+1 do m3 = 1, 2*l+1 do m4 = 1, 2*l+1 i = 0 do k = 0, 2*l, 2 ak = 0.d0 do q = 1, 2*k + 1 i = i + 1 ak = ak + ap(i,moffset+m1,moffset+m3) * ap(i,moffset+m2,moffset+m4) enddo ak = ak * fpi / (2.d0*k+1.d0) u_matrix(m1,m2,m3,m4) = u_matrix(m1,m2,m3,m4) + ak*f(k) i = i + 2*(k+1) + 1 enddo enddo enddo enddo enddo deallocate( ap ) deallocate( f ) return end subroutine hubbard_matrix subroutine aainit_1(n2l, nl, ap) !----------------------------------------------------------------------- ! ! this routine computes the expansion coefficients of ! of two real spherical harmonics: ! ! Y_limi(r) * Y_ljmj(r) = \sum_LM ap(LM,limi,ljmj) Y_LM(r) ! ! using: ! ap(LM,limi,ljmj) = int Y_LM(r) * Y_limi(r) * Y_ljmj(r) ! ! ! On output: ! ap the expansion coefficients ! ! The indices limi,ljmj and LM assume the order for real spherical ! harmonics given in routine ylmr2 ! ! The routine is similar to aainit in Modules/uspp.f90 ! USE kinds, ONLY : DP implicit none ! ! input: n2l = (2*L+1)**2, nl = (L+1)**2 - dimensions of ! {2*L} and {L} full spaces ! integer :: n2l, nl ! ! local variables ! integer :: li, lj, l, ir real(DP) , allocatable :: r(:,:), rr(:), ylm(:,:), mly(:,:) real(DP) :: ap(n2l, nl, nl), compute_ap_1, dum allocate (r( 3, n2l )) allocate (rr( n2l )) allocate (ylm( n2l, n2l )) allocate (mly( n2l, n2l )) r(:,:) = 0.d0 ylm(:,:) = 0.d0 mly(:,:) = 0.d0 ap(:,:,:)= 0.d0 ! - generate an array of random vectors (uniform deviate on unitary sphere) call gen_rndm_r_1 (n2l,r,rr) ! - generate the real spherical harmonics for the array: ylm(ir,lm) call ylmr2(n2l,n2l,r,rr,ylm) !- store the inverse of ylm(ir,lm) in mly(lm,ir) call invmat(n2l, ylm, mly, dum) !- for each l,li,lj compute ap(l,li,lj) do li = 1, nl do lj = 1,nl do l = 1, n2l ap(l,li,lj) = 0.0_DP do ir = 1, n2l ap(l,li,lj) = ap(l,li,lj) + mly(l,ir)*ylm(ir,li)*ylm(ir,lj) end do end do end do end do deallocate(mly) deallocate(ylm) deallocate(rr) deallocate(r) return end subroutine aainit_1 subroutine gen_rndm_r_1(llx,r,rr) !----------------------------------------------------------------------- ! - generate an array of random vectors (uniform deviate on unitary sphere) ! USE kinds, ONLY : DP USE constants, ONLY: tpi USE random_numbers, ONLY: randy implicit none ! ! first the I/O variables ! integer :: llx ! input: the dimension of r and rr real(DP) :: & r(3,llx), &! output: an array of random vectors rr(llx) ! output: the norm of r ! ! here the local variables ! integer :: ir real(DP) :: costheta, sintheta, phi do ir = 1, llx costheta = 2.0_DP * randy() - 1.0_DP sintheta = SQRT ( 1.0_DP - costheta*costheta) phi = tpi * randy() r (1,ir) = sintheta * cos(phi) r (2,ir) = sintheta * sin(phi) r (3,ir) = costheta rr(ir) = 1.0_DP end do return end subroutine gen_rndm_r_1 !----------------------------------------------------------------------- subroutine comp_dspinldau () ! ! Initialize the spin rotation matrix d_spin_ldau for each symmetry operation. ! Will be needed when symmetrizing the +U occupation matrix. ! USE kinds, ONLY : DP USE ldaU, ONLY : d_spin_ldau USE symm_base, ONLY : nsym, sr, t_rev, sname ! implicit none complex(DP) :: a, b integer :: isym d_spin_ldau = 0.d0 do isym = 1, nsym call find_u(sr(1,1,isym),d_spin_ldau(1,1,isym)) !-- if time-reversal: d_spin_ldau --> i sigma_y d_spin_ldau^* ! if (t_rev(isym)==1) then a = CONJG( d_spin_ldau(1,1,isym) ) b = CONJG( d_spin_ldau(1,2,isym) ) d_spin_ldau(1,1,isym) = CONJG( d_spin_ldau(2,1,isym) ) d_spin_ldau(1,2,isym) = CONJG( d_spin_ldau(2,2,isym) ) d_spin_ldau(2,1,isym) = -a d_spin_ldau(2,2,isym) = -b endif enddo !-- return end subroutine comp_dspinldau SUBROUTINE atomic_wfc_nc_updown (ik, wfcatom) !----------------------------------------------------------------------- ! ! For noncollinear case: builds up the superposition (for a k-point "ik") of ! pure spin up or spin down atomic wavefunctions. ! ! Based on atomic_wfc.f90 USE kinds, ONLY : DP USE constants, ONLY : tpi, fpi, pi USE cell_base, ONLY : tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE basis, ONLY : natomwfc USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE klist, ONLY : xk USE wvfct, ONLY : npwx, npw, nbnd, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin, npol, angle1, angle2 USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef, lmaxx, domag, & starting_spin_angle ! implicit none ! integer, intent(in) :: ik complex(DP), intent(out) :: wfcatom (npwx, npol, natomwfc) ! integer :: n_starting_wfc, lmax_wfc, nt, l, nb, na, m, lm, ig, iig, & i0, i1, i2, i3, nwfcm real(DP), allocatable :: qg(:), ylm (:,:), chiq (:,:,:), gk (:,:) complex(DP), allocatable :: sk (:), aux(:) complex(DP) :: kphase real(DP) :: arg, px, ux, vx, wx call start_clock ('atomic_wfc') ! calculate max angular momentum required in wavefunctions lmax_wfc = 0 do nt = 1, ntyp lmax_wfc = MAX ( lmax_wfc, MAXVAL (upf(nt)%lchi(1:upf(nt)%nwfc) ) ) enddo ! nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) ! allocate ( ylm (npw,(lmax_wfc+1)**2), chiq(npw,nwfcm,ntyp), & sk(npw), gk(3,npw), qg(npw) ) ! do ig = 1, npw gk (1,ig) = xk(1, ik) + g(1, igk(ig) ) gk (2,ig) = xk(2, ik) + g(2, igk(ig) ) gk (3,ig) = xk(3, ik) + g(3, igk(ig) ) qg(ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! ! ylm = spherical harmonics ! call ylmr2 ((lmax_wfc+1)**2, npw, gk, qg, ylm) ! ! set now q=|k+G| in atomic units ! do ig = 1, npw qg(ig) = sqrt(qg(ig))*tpiba enddo ! n_starting_wfc = 0 ! ! chiq = radial fourier transform of atomic orbitals chi ! do nt = 1, ntyp do nb = 1, upf(nt)%nwfc if ( upf(nt)%oc (nb) >= 0.d0) then do ig = 1, npw px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq (ig, nb, nt) = & tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 enddo endif enddo enddo deallocate (qg, gk) allocate ( aux(npw) ) ! wfcatom(:,:,:) = (0.0_dp, 0.0_dp) ! do na = 1, nat arg = (xk(1,ik)*tau(1,na) + xk(2,ik)*tau(2,na) + xk(3,ik)*tau(3,na)) * tpi kphase = CMPLX(cos (arg), - sin (arg) ,kind=DP) ! ! sk is the structure factor ! do ig = 1, npw iig = igk (ig) sk (ig) = kphase * eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) enddo ! nt = ityp (na) do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) ! ! IF ( upf(nt)%has_so ) THEN ! call wfc_atom ( .true. ) ! ELSE ! call wfc_atom ( .false. ) ! ENDIF ! END IF ! END DO ! END DO if (n_starting_wfc /= natomwfc) call errore ('atomic_wfc_nc_updown', & 'internal error: some wfcs were lost ', 1) deallocate(aux, sk, chiq, ylm) call stop_clock ('atomic_wfc') return CONTAINS SUBROUTINE wfc_atom ( soc ) ! ! real(DP) :: j real(DP), ALLOCATABLE :: chiaux(:) integer :: nc, ib logical :: soc ! .true. if the fully-relativistic pseudo ! ! If SOC go on only if j=l+1/2 if (soc) j = upf(nt)%jchi(nb) if (soc.and.ABS(j-l+0.5_DP)<1.d-4 ) return ! allocate (chiaux(npw)) if (soc) then ! ! Find the index for j=l-1/2 ! if (l == 0) then chiaux(:)=chiq(:,nb,nt) else do ib=1, upf(nt)%nwfc if ((upf(nt)%lchi(ib) == l).and. & (ABS(upf(nt)%jchi(ib)-l+0.5_DP)<1.d-4)) then nc=ib exit endif enddo ! ! Average the two radial functions ! chiaux(:)=(chiq(:,nb,nt)*(l+1.0_DP)+chiq(:,nc,nt)*l)/(2.0_DP*l+1.0_DP) endif else chiaux(:) = chiq(:,nb,nt) endif do m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc + 2*l+1 > natomwfc) call errore & ('atomic_wfc_nc', 'internal error: too many wfcs', 1) do ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiaux(ig) enddo ! do ig=1,npw ! wfcatom(ig,1,n_starting_wfc) = aux(ig) wfcatom(ig,2,n_starting_wfc) = 0.d0 ! wfcatom(ig,1,n_starting_wfc+2*l+1) = 0.d0 wfcatom(ig,2,n_starting_wfc+2*l+1) = aux(ig) ! enddo enddo n_starting_wfc = n_starting_wfc + 2*l+1 deallocate (chiaux) ! END SUBROUTINE wfc_atom ! END SUBROUTINE atomic_wfc_nc_updown espresso-5.0.2/PW/src/save_in_cbands.f900000644000700200004540000000266712053145627016773 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine save_in_cbands (iter, ik_, dr2) !----------------------------------------------------------------------- USE kinds, ONLY: DP USE io_files, ONLY: iunres, prefix, seqopn USE klist, ONLY: nks USE control_flags, ONLY: io_level, tr2, ethr USE wvfct, ONLY: nbnd, et USE funct, ONLY: exx_is_active USE exx, ONLY: fock0, fock1, fock2, dexx, x_occupation implicit none character :: where * 20 ! are we in the right place? integer :: ik, ibnd, ik_, iter ! counters ! last completed kpoint ! last completed iteration logical :: exst real(DP) :: dr2 ! ! open recover file ! call seqopn (iunres, 'restart', 'unformatted', exst) ! ! save restart information ! where = 'ELECTRONS' write (iunres) where write (iunres) ( (et (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) write (iunres) iter, ik_, dr2, tr2, ethr write (iunres) exx_is_active(), fock0, fock1, fock2, dexx if(exx_is_active() ) & write (iunres) ( (x_occupation (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) close (unit = iunres, status = 'keep') ! return end subroutine save_in_cbands espresso-5.0.2/PW/src/s_1psi.f900000644000700200004540000000311712053145630015214 0ustar marsamoscm! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE s_1psi( npwx, n, psi, spsi ) !---------------------------------------------------------------------------- ! ! ... spsi = S*psi for one wavefunction ! ... Wrapper routine - calls calbec and s_psi ! USE kinds, ONLY : DP USE uspp, ONLY : vkb, nkb USE becmod, ONLY : bec_type, becp, calbec USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol USE realus, ONLY : real_space, fft_orbital_gamma, bfft_orbital_gamma, & calbec_rs_gamma, s_psir_gamma, initialisation_level USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! INTEGER :: npwx, n, ibnd COMPLEX(DP) :: psi(npwx*npol,1), spsi(npwx*npol,1) ! ! CALL start_clock( 's_1psi' ) ! IF ( gamma_only .and. real_space) then do ibnd=1,nbnd,2 ! transform the orbital to real space call fft_orbital_gamma(psi,ibnd,nbnd) ! global becp%r is updated call calbec_rs_gamma(ibnd,nbnd,becp%r) enddo call s_psir_gamma(1,1) call bfft_orbital_gamma(spsi,1,1) ! ELSE ! CALL calbec( n, vkb, psi, becp ) ! END IF ! if (.not. real_space) CALL s_psi( npwx, n, 1, psi, spsi ) ! CALL stop_clock( 's_1psi' ) ! RETURN ! END SUBROUTINE s_1psi espresso-5.0.2/PW/src/offset_atom_wfc.f900000644000700200004540000000462512053145630017170 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE offset_atom_wfc( nat, offset ) !---------------------------------------------------------------------------- ! ! For each Hubbard atom, compute the index of the projector in the ! list of atomic wavefunctions ! USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin USE ions_base, ONLY : ityp USE basis, ONLY : natomwfc USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat ! INTEGER, INTENT(OUT) :: offset(nat) ! INTEGER :: counter, na, nt, n ! ! counter = 0 offset(:) = -99 ! ! DO na = 1, nat ! nt = ityp(na) ! DO n = 1, upf(nt)%nwfc ! IF ( upf(nt)%oc(n) >= 0.D0 ) THEN ! IF ( noncolin ) THEN ! IF ( upf(nt)%has_so ) THEN ! IF (upf(nt)%oc(n)>0.D0.AND.upf(nt)%lchi(n)==Hubbard_l(nt).and.offset(na).eq.-99) & offset(na) = counter counter = counter + 2 * upf(nt)%lchi(n) ! IF ( ABS( upf(nt)%jchi(n)-upf(nt)%lchi(n) - 0.5D0 ) < 1.D-6 ) & counter = counter + 2 ! ELSE ! IF (upf(nt)%oc(n)>0.D0.AND.upf(nt)%lchi(n)==Hubbard_l(nt)) & offset(na) = counter counter = counter + 2 * ( 2 * upf(nt)%lchi(n) + 1 ) ! END IF ! ELSE ! IF ( upf(nt)%oc(n) > 0.D0 .AND. upf(nt)%lchi(n) == Hubbard_l(nt) ) & offset(na) = counter ! counter = counter + 2 * upf(nt)%lchi(n) + 1 ! END IF END IF END DO IF ( (Hubbard_U(nt).NE.0.D0 .OR. Hubbard_alpha(nt).NE.0.D0 ) .AND. & offset(na) < 0 ) CALL errore('offset_atom_wfc', 'wrong offset', na) END DO ! IF ( counter.NE.natomwfc ) & CALL errore ('offset_atom_wfc', 'wrong number of wavefunctions', 1) ! RETURN ! END SUBROUTINE offset_atom_wfc ! espresso-5.0.2/PW/src/gweights.f900000644000700200004540000000360212053145627015644 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine gweights (nks, wk, nbnd, nelec, degauss, ngauss, & et, ef, demet, wg, is, isk) !-------------------------------------------------------------------- ! calculates weights with the gaussian spreading technique USE kinds implicit none ! integer, intent(in) :: nks, nbnd, ngauss real(DP), intent(in) :: wk (nks), et (nbnd, nks), nelec, degauss real(DP), intent(out) :: wg (nbnd, nks), ef, demet integer, intent(in) :: is, isk(nks) ! integer :: kpoint, ibnd real(DP) , external :: wgauss, w1gauss, efermig ! Calculate the Fermi energy ef ef = efermig (et, nbnd, nks, nelec, wk, degauss, ngauss, is, isk) demet = 0.d0 do kpoint = 1, nks if (is /= 0) then if (isk(kpoint).ne.is) cycle end if do ibnd = 1, nbnd ! Calculate the gaussian weights wg (ibnd, kpoint) = wk (kpoint) * & wgauss ( (ef-et(ibnd,kpoint)) / degauss, ngauss) ! ! The correct (i.e. variational) form of the band energy is ! Eband = \int e N(e) de for e d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_symme') becsym(:,:,:) = 0._dp usym = 1._dp / DBLE(nsym) ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! becsym(ijh, ia, is) = becsym(ijh, ia, is) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * pref * becsum(ouh, ma, is) ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is) = .5_dp * becsym(ijh,ia,is) ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! call inverse_s( ) becsym(:,:,2:4) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=becsum(ijh,ia,ipol+1) ENDDO DO ipol=1,3 becsum(ijh,ia,ipol+1)=bg(1,ipol)*mb(1)+bg(2,ipol)*mb(2) + & bg(3,ipol)*mb(3) END DO END DO END DO atoms_1: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-segno IF (t_rev(isym)==1) segno=-segno DO is=1,3 DO kpol=1,3 becsym(ijh, ia, is+1) = becsym(ijh, ia, is+1) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * pref * becsum(ouh, ma, kpol+1)*& s(kpol,is,invs(isym))* & segno ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,2:4) = .5_dp * becsym(ijh,ia,2:4) ENDDO ! ih ENDDO ! jh ENDDO atoms_1 ! nat DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=becsym(ijh,ia,ipol+1) ENDDO DO ipol=1,3 becsym(ijh,ia,ipol+1)=at(ipol,1)*mb(1)+at(ipol,2)*mb(2) + & at(ipol,3)*mb(3) END DO END DO END DO END IF #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is) ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: becsum(:,:,:) = becsym(:,:,:) CALL stop_clock('PAW_symme') END SUBROUTINE PAW_symmetrize SUBROUTINE PAW_symmetrize_ddd(ddd) USE lsda_mod, ONLY : nspin USE cell_base, ONLY : at, bg USE noncollin_module, ONLY : nspin_mag, nspin_lsda USE spin_orb, ONLY : domag USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE symm_base, ONLY : nsym, irt, d1, d2, d3, t_rev, sname, s, & invs, inverse_s USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode REAL(DP), INTENT(INOUT) :: ddd(nhm*(nhm+1)/2,nat,nspin)! cross band occupations REAL(DP) :: dddsym(nhm*(nhm+1)/2,nat,nspin)! symmetrized becsum REAL(DP) :: usym, segno REAL(DP) :: mb(3) INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym ! counter for symmetry operation INTEGER :: ipol, kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsym==1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_symme') dddsym(:,:,:) = 0._dp usym = 1._dp / DBLE(nsym) ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! dddsym(ijh, ia, is) = dddsym(ijh, ia, is) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * usym * ddd(ouh, ma, is) ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! call inverse_s( ) dddsym(:,:,2:4) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=ddd(ijh,ia,ipol+1) ENDDO DO ipol=1,3 ddd(ijh,ia,ipol+1)=bg(1,ipol)*mb(1)+bg(2,ipol)*mb(2) + & bg(3,ipol)*mb(3) END DO END DO END DO atoms_1: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) segno=1.0_DP IF (sname(invs(isym))(1:3)=='inv') segno=-segno IF (t_rev(invs(isym))==1) segno=-segno DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! DO is=1,3 DO kpol=1,3 dddsym(ijh, ia, is+1) = dddsym(ijh, ia, is+1) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * usym * ddd(ouh, ma, kpol+1)*& s(kpol,is,invs(isym))*segno ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ENDDO ! ih ENDDO ! jh ENDDO atoms_1 ! nat DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=dddsym(ijh,ia,ipol+1) ENDDO DO ipol=1,3 dddsym(ijh,ia,ipol+1)=at(ipol,1)*mb(1)+at(ipol,2)*mb(2) + & at(ipol,3)*mb(3) END DO END DO END DO END IF #ifdef __MPI IF( mykey /= 0 ) dddsym = 0.0_dp CALL mp_sum(dddsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) write(stdout,"(1f10.3)", advance='no') dddsym(ijh,ia,is) ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: ddd(:,:,:) = dddsym(:,:,:) CALL stop_clock('PAW_symme') END SUBROUTINE PAW_symmetrize_ddd SUBROUTINE PAW_desymmetrize(dbecsum) ! ! This routine similar to PAW_symmetrize, symmetrize the change of ! dbecsum due to an electric field perturbation. ! USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE cell_base, ONLY : at, bg USE spin_orb, ONLY : domag USE symm_base, ONLY : nsym, irt, d1, d2, d3, s, t_rev, sname, & invs, inverse_s USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode COMPLEX(DP), INTENT(INOUT) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,3)! cross band occupations COMPLEX(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin_mag,3)! symmetrized becsum COMPLEX(DP) :: mb(3) REAL(DP) :: pref, usym, segno INTEGER :: ia, mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym ! counter for symmetry operation INTEGER :: ipol, jpol, kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsym == 1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_dsymme') becsym(:,:,:,:) = (0.0_DP,0.0_DP) usym = 1._dp / DBLE(nsym) ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! DO ipol=1,3 DO jpol=1,3 becsym(ijh, ia, is, ipol) = becsym(ijh, ia, is,ipol) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * pref * dbecsum(ouh, ma, is, jpol) * s(ipol,jpol,isym) ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! ! call inverse_s ( ) becsym(:,:,2:4,1:3) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 DO jpol=1,3 mb(jpol)=dbecsum(ijh,ia,jpol+1,ipol) ENDDO DO jpol=1,3 dbecsum(ijh,ia,jpol+1,ipol)=bg(1,jpol)*mb(1) + & bg(2,jpol)*mb(2) + bg(3,jpol)*mb(3) ENDDO ENDDO ENDDO ENDDO DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-segno IF (t_rev(isym)==1) segno=-segno ! DO ipol=1,3 DO jpol=1,3 DO is=1,3 DO kpol=1,3 becsym(ijh,ia,is+1,ipol)=becsym(ijh,ia,is+1,ipol) & + D(l_i)%d(m_o,m_i,isym)*D(l_j)%d(m_u,m_j,isym)* & pref*dbecsum(ouh,ma,kpol+1,jpol)*s(ipol,jpol,isym)*& segno*s(kpol,is,invs(isym)) END DO END DO END DO END DO END DO ! m_o END DO ! m_u END DO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO ! nat ! DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 DO jpol=1,3 mb(jpol)=becsym(ijh,ia,jpol+1,ipol) ENDDO DO jpol=1,3 becsym(ijh,ia,jpol+1,ipol)=at(jpol,1)*mb(1)+at(jpol,2)*mb(2)+& at(jpol,3)*mb(3) END DO END DO END DO END DO ENDIF #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin_mag write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) DO ipol=1,3 write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is,ipol) ENDDO ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: dbecsum(:,:,:,:) = becsym(:,:,:,:) CALL stop_clock('PAW_dsymme') END SUBROUTINE PAW_desymmetrize SUBROUTINE PAW_dusymmetrize(dbecsum,npe,irr,npertx,nsymq,rtau,xq,t) ! ! This routine similar to PAW_symmetrize, symmetrize the change of ! dbecsum due to an electric field perturbation. ! USE noncollin_module, ONLY : nspin_mag, nspin_lsda USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : at, bg USE symm_base, ONLY : irt, d1, d2, d3, t_rev, sname, s, nsym, & invs, inverse_s USE spin_orb, ONLY : domag USE constants, ONLY : tpi USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode COMPLEX(DP), INTENT(INOUT) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,npe)! cross band occupations COMPLEX(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin_mag,npe)! symmetrized becsum REAL(DP) :: pref, usym INTEGER, INTENT(IN) :: npe, irr, npertx, nsymq REAL(DP), INTENT(IN) :: rtau(3,48,nat), xq(3) COMPLEX(DP), INTENT(IN) :: t(npertx, npertx, 48, 3*nat) INTEGER :: ia, mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym, irot ! counter for symmetry operation INTEGER :: ipol, jpol COMPLEX(DP) :: fase(48,nat), mb(3) REAL(DP) :: arg, ft(3), segno INTEGER :: kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsymq==1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_dusymm') becsym(:,:,:,:) = (0.0_DP,0.0_DP) usym = 1._dp / DBLE(nsymq) do ia=1,nat do isym=1,nsymq irot = isym arg = 0.0_DP do ipol = 1, 3 arg = arg + xq (ipol) * rtau(ipol,irot,ia) enddo arg = arg * tpi fase(irot,ia) = CMPLX(cos (arg), sin (arg) ,kind=DP) enddo enddo ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsymq irot = isym ma = irt(irot,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! DO ipol=1,npe DO jpol=1,npe becsym(ijh, ia, is, ipol) = becsym(ijh, ia, is,ipol) & + D(l_i)%d(m_o,m_i, irot) * D(l_j)%d(m_u,m_j, irot) & * pref * dbecsum(ouh, ma, is, jpol) * & t(jpol,ipol,irot,irr) * fase(irot,ia) ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! call inverse_s () ! becsym(:,:,2:4,1:npe) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,npe DO jpol=1,3 mb(jpol)=dbecsum(ijh,ia,jpol+1,ipol) END DO DO jpol=1,3 dbecsum(ijh,ia,jpol+1,ipol)=bg(1,jpol)*mb(1) + & bg(2,jpol)*mb(2) + bg(3,jpol)*mb(3) END DO END DO END DO END DO DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsymq irot = isym ma = irt(irot,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-segno IF (t_rev(isym)==1) segno=-segno DO ipol=1,npe DO jpol=1,npe DO is=1, 3 DO kpol=1,3 becsym(ijh,ia,is+1,ipol)=becsym(ijh,ia,is+1,ipol) & + D(l_i)%d(m_o,m_i,irot)*D(l_j)%d(m_u,m_j,irot)* & pref*dbecsum(ouh,ma,kpol+1,jpol)* & t(jpol,ipol,irot,irr)*fase(irot,ia)* & segno*s(kpol,is,invs(isym)) ENDDO ENDDO ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO ! nat DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,npe DO jpol=1,3 mb(jpol)=becsym(ijh,ia,jpol+1,ipol) ENDDO DO jpol=1,3 becsym(ijh,ia,jpol+1,ipol)=at(jpol,1)*mb(1)+at(jpol,2)*mb(2)+& at(jpol,3)*mb(3) END DO END DO END DO END DO END IF #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin_lsda write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) DO ipol=1,npe write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is,ipol) ENDDO ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: dbecsum(:,:,:,:) = becsym(:,:,:,:) CALL stop_clock('PAW_dusymm') END SUBROUTINE PAW_dusymmetrize SUBROUTINE PAW_dumqsymmetrize(dbecsum,npe,irr,npertx,isymq,rtau,xq,tmq) ! ! This routine similar to PAW_symmetrize, symmetrize the change of ! dbecsum due to an electric field perturbation. ! USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE constants, ONLY : tpi USE symm_base, ONLY : nsym, irt, d1, d2, d3 USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode COMPLEX(DP), INTENT(INOUT) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,npe)! cross band occupations COMPLEX(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin_mag,npe)! symmetrized becsum REAL(DP), INTENT(IN) :: rtau(3,48,nat), xq(3) REAL(DP) :: pref INTEGER, INTENT(IN) :: npe, irr, npertx INTEGER, INTENT(IN) :: isymq ! counter for symmetry operation COMPLEX(DP), INTENT(IN) :: tmq(npertx, npertx, 3*nat) INTEGER :: ia, mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: ipol, jpol REAL(DP) :: arg COMPLEX(DP) :: fase(nat) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF (nspin_mag==4) call errore('PAW_dumqsymmetrize',& & 'This should not happen',1) CALL start_clock('PAW_dumqsym') d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM becsym(:,:,:,:) = (0.0_DP,0.0_DP) do ia=1,nat arg = 0.0_DP do ipol = 1, 3 arg = arg + xq (ipol) * rtau(ipol,isymq,ia) enddo arg = arg * tpi fase(ia) = CMPLX(cos (arg), sin (arg) ,kind=DP) enddo ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! ma = irt(isymq,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp ELSE pref = 1._DP ENDIF ! DO ipol=1,npe DO jpol=1,npe becsym(ijh, ia, is, ipol) = becsym(ijh, ia, is,ipol) & + D(l_i)%d(m_o,m_i, isymq) * D(l_j)%d(m_u,m_j, isymq) & * pref * dbecsum(ouh, ma, is, jpol) * & tmq(jpol,ipol,irr)*fase(ia) ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) becsym(ijh, ia, is,:)=(CONJG(becsym(ijh, ia, is, :))+ & dbecsum(ijh, ia, is, :))*0.5_DP ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin_mag write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) DO ipol=1,npe write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is,ipol) ENDDO ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: dbecsum(:,:,:,:) = becsym(:,:,:,:) CALL stop_clock('PAW_dumqsym') END SUBROUTINE PAW_dumqsymmetrize END MODULE paw_symmetry espresso-5.0.2/PW/src/trnvecc.f900000644000700200004540000000273312053145627015473 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine trnvecc (u, at, bg, iflg) !----------------------------------------------------------------------- ! ! transforms a COMPLEX vector in real space (like a displacement) ! from crystal to cartesian axis (iflag.gt.0) and viceversa (iflag.le.0 ! USE kinds, only : DP implicit none integer :: iflg ! input: gives the versus of the transformatio real(DP) :: at (3, 3), bg (3, 3) ! input: the direct lattice vectors ! input: the reciprocal lattice vectors complex(DP) :: u (3) ! inp/out: the vector to transform integer :: i, k ! ! counter on polarizations !/ complex(DP) :: wrk (3) ! auxiliary variable if (iflg.gt.0) then ! ! forward transformation : ! do i = 1, 3 wrk (i) = u (i) enddo do i = 1, 3 u (i) = 0.d0 do k = 1, 3 u (i) = u (i) + wrk (k) * at (i, k) enddo enddo else ! ! backward transformation : ! do i = 1, 3 wrk (i) = 0.d0 do k = 1, 3 wrk (i) = wrk (i) + u (k) * bg (k, i) enddo enddo do i = 1, 3 u (i) = wrk (i) enddo endif return end subroutine trnvecc espresso-5.0.2/PW/src/generate_vdW_kernel_table.f900000644000700200004540000012052212053145630021137 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! Copyright (C) 2009 Brian Kolb, Timo Thonhauser - Wake Forest University ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- program generate_kernel !! This is a stand-alone program to generate the file !! "vdW_kernel_table" needed for a van der Waals run. There should be no !! need, in general, to use this program as the default kernel file !! supplied with the distribution should suffice for most cases. !! However, if that file is insufficient for a particular purpose, a more !! suitable kernel file can be generated by running this program. !! This method is based on the method of Guillermo Roman-Perez and Jose !! M. Soler described in: !! G. Roman-Perez and J. M. Soler, PRL 103, 096102 (2009) !! henceforth referred to as SOLER. That method is a new implementation !! of the method found in: !! M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and !! B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). !! henceforth referred to as DION. Further information about the !! functional and its corresponding potential can be found in: !! T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, !! and D.C. Langreth, Phys. Rev. B 76, 125112 (2007). !! A review article that shows many of the applications vdW-DF has been !! applied to so far can be found at: !! D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). !! The original definition of the kernel function is given in DION !! equations 13-16. The Soler method makes the kernel function a !! function of only 1 variable (r) by first putting it in the form !! phi(q1*r, q2*r). Then, the q-dependence is removed by expanding the !! function in a special way (see SOLER equation 3). This yields a !! separate function for each pair of q points that is a function of r !! alone. There are (N^2+N)/2 unique functions, where N is the number of !! q points used. In the Soler method, the kernel is first made in the !! form phi(d1, d2) but this is not done here. It was found that, with !! q's chosen judiciously ahead of time, the kernel and the second !! derivatives required for interpolation could be tabulated ahead !! of time for faster use of the vdW_FD functional. This means equations !! 8-10 of SOLER are not used. There is no nead to soften the kernel and !! correct for this later. !! The algorithm employed here is "embarrassingly parallel", meaning that !! it parallelizes very well up to (N^2+N)/2 processors, where, !! again, N is the number of q points chosen. However, parallelization !! on this scale is unnecessary. In testing the code runs in under a !! minute on 16 Intel Xeon processors. !! Some of the algorithms here are somewhat modified versions of those found !! in the book: !! Numerical Recipes in C; William H. Press, Brian P. Flannery, Saul A. !! Teukolsky, and William T. Vetterling. Cambridge University Press (1988). !! hereafter referred to as NUMERICAL_RECIPES. The routines were !! translated to Fortran, of course and variable names are generally different. !! For the calculation of the kernel we have benefited from access to !! earlier vdW-DF implementation into PWscf and ABINIT, written by Timo !! Thonhauser, Valentino Cooper, and David Langreth. These codes, in turn, !! benefited from earlier codes written by Maxime Dion and Henrik !! Rydberg. !! Use some PWSCF modules. In particular, we need the parallelization modules. !! -------------------------------------------------------------------------------------------- use mp, ONLY : mp_get, mp_end, mp_barrier use mp_global, ONLY : mp_startup, nproc, mpime use kinds, ONLY : dp use io_global, ONLY : io_global_start, ionode, ionode_id use constants, ONLY : pi !! -------------------------------------------------------------------------------------------- implicit none !! These are the user set-able parameters. integer, parameter :: Nr_points = 1024 !! The number of radial points (also the number of k points) used in the formation ! !! of the kernel functions for each pair of q values. Increasing this value will ! !! help in case you get a run-time error saying that you are trying to use a k value ! !! that is larger than the largest tabulated k point since the largest k point will ! !! be 2*pi/r_max * Nr_points. Memory usage of the vdW_DF piece of PWSCF will increase ! !! roughly linearly with this variable. real(dp), parameter :: r_max = 100.0D0 !! The value of the maximum radius to use for the real-space kernel functions for each ! !! pair of q values. The larger this value is the smaller the smallest k value will be ! !! since the smallest k point value is 2*pi/r_max. Be careful though, since this will ! !! also decrease the maximum k point value and the vdW_DF code will crash if it encounters ! !! a g-vector with a magnitude greater than 2*pi/r_max *Nr_points !! Integration parameters for the kernel. These are based on DION. !! Changing these MAY make the kernel more accurate. They will not affect the run time or memory !! usage of the vdW-DF code. !!------------------------------------------------------------------------------------------------- integer, parameter :: Nintegration_points = 256 !! Number of integration points for real-space kernel generation (see DION ! !! equation 14). This is how many a's and b's there will be. real(dp), parameter :: a_min = 0.0D0 !! Starting value for the a and b integration in DION equation 14 real(dp), parameter :: a_max = 64.0D0 !! Maximum value for the a and b integration in DION equation 14 !!------------------------------------------------------------------------------------------------- CHARACTER(LEN=30) :: double_format = "(1p4e23.14)" !! The next 2 parameters define the q mesh to be used in the vdW_DF code. These are perhaps the most important to have !! set correctly. Increasing the number of q points will DRAMATICALLY increase the memory usage of the vdW_DF code because !! the memory consumption depends quadratically on the number of q points in the mesh. !! Increasing the number of q points may increase accuracy of the vdW_DF code, although, in testing it was found to have little effect. !! The largest value of the q mesh is q_cut. All values of q0 (DION equation 11) larger than this value during a run will be saturated !! to this value using equations 6-7 of SOLER. In testing, increasing the value of q_cut was found to have little impact on the results, !! though it is possible that in some systems it may be more important. Always make sure that the variable Nqs is consistent with !! the number of q points that are actually in the variable q_mesh. Also, do not set any q value to 0. This will cause an infinity !! in the Fourier transform. !! --------------------------------------------------------------------------------------------------------------------------------------- !! CHANGE THESE VALUES AT YOUR OWN RISK integer, parameter :: Nqs = 20 real(dp), dimension(Nqs):: q_mesh = (/ 1.00D-5, 0.0449420825586261D0, 0.0975593700991365D0, & 0.159162633466142D0, 0.231286496836006D0, 0.315727667369529D0, 0.414589693721418D0, & 0.530335368404141D0, 0.665848079422965D0, 0.824503639537924D0, 1.010254382520950D0, & 1.227727621364570D0, 1.482340921174910D0, 1.780437058359530D0, 2.129442028133640D0, & 2.538050036534580D0, 3.016440085356680D0, 3.576529545442460D0, 4.232271035198720D0, & 5.0D0 /) !! --------------------------------------------------------------------------------------------------------------------------------------- !! The following are a few suggested sets of parameters that may be useful in some systems. Again, only !! change the default values if 1) you know what you're doing and 2) the default values are insufficient !! (or suspected to be insufficient) for your particular system. Use these Sets by commenting out the !! definition of Nqs and q_mesh above and uncommenting 1 of the desired sets below. You may also make your !! own set if you know what you're doing. !! -------------------------------------------------------------------------------------------------------------- !! Uncomment to use a q_mesh of 25 points with a cutoff of 5 ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !integer, parameter :: Nqs = 25 !real(dp), dimension(Nqs) :: q_mesh = (/ 1.0D-5, 0.0319324863726618D0, 0.0683071727114252D0, & ! 0.109742023439998D0, 0.156940969402303D0, 0.210705866844455D0, & ! 0.271950120037604D0, 0.341714198974465D0, 0.421183315767499D0, & ! 0.511707560050586D0, 0.614824835461683D0, 0.732286986871156D0, & ! 0.866089562227575D0, 1.01850571464079D0, 1.19212482065999D0, & ! 1.38989647082725D0, 1.61518057985587D0, 1.87180446774829D0, & ! 2.16412788159658D0, 2.49711706271187D0, 2.87642911739861D0, & ! 3.30850812473687D0, 3.80069461413434D0, 4.36135027254676D0, & ! 5.0D0 /) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! Uncomment to use a q_mesh of 30 points with a cutoff of 5 ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! integer, parameter :: Nqs = 30 ! real(dp), dimension(Nqs) :: q_mesh = (/ 1.0D-5, 0.026559672691443D0, 0.0561185595841672D0, & ! 0.08901534278204D0, 0.125626949595767D0, 0.166372871329829D0, & ! 0.211719969762446D0, 0.262187826390619D0, 0.318354695731256D0, & ! 0.380864130890569D0, 0.4504323573167D0, 0.527856479223139D0, & ! 0.61402361271113D0, 0.709921050237249D0, 0.816647572889386D0, & ! 0.935426040085808D0, 1.06761740094853D0, 1.21473628789156D0, & ! 1.37846837109353D0, 1.56068967270003D0, 1.76348806205544D0, & ! 1.98918717825406D0, 2.24037305411209D0, 2.51992374661476D0, & ! 2.83104231334061D0, 3.17729351270267D0, 3.56264464851356D0, & ! 3.99151102686645D0, 4.46880654617114D0, 5.0D0 & ! /) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Uncomment to use a q_mesh of 30 poits with a cutoff of 8 ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! integer, parameter :: Nqs = 30 ! real(dp), dimension(Nqs) :: q_mesh = (/ 1.0D-5, 0.0424954763063088D0, 0.0897896953346675D0, & ! 0.142424548451264D0, 0.201003119353227D0, 0.266196594127727D0, & ! 0.338751951619913D0, 0.41950052222499D0, 0.50936751317001D0, & ! 0.609382609424911D0, 0.720691771706719D0, 0.844570366757022D0, & ! 0.982437780337809D0, 1.1358736803796D0, 1.30663611662302D0, & ! 1.49668166413729D0, 1.70818784151764D0, 1.94357806062649D0, & ! 2.20554939374965D0, 2.49710347632005D0, 2.82158089928871D0, & ! 3.18269948520649D0, 3.58459688657934D0, 4.03187799458362D0, & ! 4.52966770134498D0, 5.08366962032427D0, 5.7002314376217D0, & ! 6.38641764298631D0, 7.15009047387383D0, 8.0D0& ! /) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! ------------------------------------------------------------------------------------------------------------------ !! DO NOT CHANGE ANYTHING BELOW THIS LINE !! ######################################################################################################### !! ######################################################################################################### !! ######################################################################################################### !! ######################################################################################################### !! DO NOT CHANGE ANYTHING BELOW THIS LINE integer :: a_i, b_i, q1_i, q2_i, r_i, count !! Indexing variables real(dp) :: weights(Nintegration_points) !! Array to hold dx values for the Gaussian-Legendre ! !! integration of the kernel real(dp) :: nu(Nintegration_points), nu1(Nintegration_points) !! Defined in the discussion below equation 16 of DION real(dp) :: a(Nintegration_points), a2(Nintegration_points) !! The values of the points a (DION equation 14) and a^2 real(dp) :: sin_a(Nintegration_points), cos_a(Nintegration_points) !! sine and cosine values of the aforementioned points a real(dp) :: W_ab(Nintegration_points, Nintegration_points) !! Defined in DION equation 16 real(dp) :: dr, d1, d2, d, w, x, y, z, T, integral !! Intermediate values real(dp) :: gamma = 4.0D0*pi/9.0D0 !! Multiplicative factor for exponent in the functions called ! !! "h" in DION real(dp), parameter :: small = 1.0D-15 !! Number at which to employ special algorithms to avoid numerical ! !! problems. This is probably not needed but I like to be careful. !! The following sets up a parallel run. !! ------------------------------------------------------------------------------------------------------------------------------------------ integer :: my_start_q, my_end_q, Ntotal !! starting and ending q value for each processor, also the total number of ! !! calculations to do ( (Nqs^2 + Nqs)/2 ) real(dp), allocatable :: phi(:,:), d2phi_dk2(:,:) !! Arrays to store the kernel functions and their second derivatives. They are ! !! stored as phi(radial_point, index) integer, allocatable :: indices(:,:), proc_indices(:,:) !! indices holds the values of q1 and q2 as partitioned out to the processors. It is an ! !! Ntotal x 2 array stored as indices(index of point number, q1:q2). ! !! Proc_indices holds the section of the indices array that is assigned to each processor. ! !! This is a Nprocs x 2 array, stored as proc_indices(processor number, starting_index:ending_index) integer :: Nper, Nextra, start_q, end_q !! Baseline number of jobs per processor, number of processors that get an extra job in case the ! !! number of jobs doesn't split evenly over the number of processors, starting index into the ! !! indices array, ending index into the indices array. integer :: index, proc_i, kernel_file, my_Nqs ! Set up the parallel run using PWSCF methods. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! Start a parallel run call mp_startup () ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! The total number of phi_alpha_beta functions that have to be calculated Ntotal = (Nqs**2 + Nqs)/2 allocate( indices(Ntotal, 2) ) count = 1 ! This part fills in the indices array. It just loops through the q1 and q2 values and stores them. Sections ! of this array will be assigned to each of the processors later. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do q1_i = 1, Nqs do q2_i = 1, q1_i indices(count, 1) = q1_i indices(count, 2) = q2_i count = count + 1 end do end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Figure out the baseline number of functions to be calculated by each processor and how many processors get 1 extra job. Nper = Ntotal/nproc Nextra = mod(Ntotal, nproc) allocate(proc_indices(nproc,2) ) start_q = 0 end_q = 0 ! Loop over all the processors and figure out which section of the indices array each processor should do. All processors ! figure this out for every processor so there is no need to communicate results. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do proc_i = 1, nproc start_q = end_q + 1 end_q = start_q + (Nper - 1) if (proc_i <= Nextra) end_q = end_q + 1 if (proc_i == (mpime+1)) then my_start_q = start_q my_end_q = end_q end if proc_indices(proc_i, 1) = start_q proc_indices(proc_i, 2) = end_q end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Store how many jobs are assigned to me my_Nqs = my_end_q - my_start_q + 1 !! ------------------------------------------------------------------------------------------------------------------------------------------ allocate( phi(0:Nr_points, my_Nqs), d2phi_dk2(0:Nr_points, my_Nqs) ) phi = 0.0D0 d2phi_dk2 = 0.0D0 dr = (r_max)/(Nr_points) !! Find the integration points we are going to use in the Gaussian-Legendre integration call prep_gaussian_quadrature(a_min, a_max, a, weights, Nintegration_points) !! Get a, a^2, sin(a), cos(a) and the weights for the Gaussian-Legendre integration !! ------------------------------------------------------------------------------------ do a_i=1, Nintegration_points a(a_i) = tan(a(a_i)) a2(a_i) = a(a_i)**2 weights(a_i) = weights(a_i)*(1+a2(a_i)) cos_a(a_i) = cos(a(a_i)) sin_a(a_i) = sin(a(a_i)) end do !! ------------------------------------------------------------------------------------ !! Calculate the value of the W function defined in DION equation 16 for each value of a and b !! ------------------------------------------------------------------------------------ do a_i = 1, Nintegration_points do b_i = 1, Nintegration_points W_ab(a_i, b_i) = 2.0D0 * weights(a_i)*weights(b_i) * ( & (3.0D0-a2(a_i))*a(b_i)*cos_a(b_i)*sin_a(a_i) + & (3.0D0-a2(b_i))*a(a_i)*cos_a(a_i)*sin_a(b_i) + & (a2(a_i)+a2(b_i)-3.0D0)*sin_a(a_i)*sin_a(b_i) - & 3.0D0*a(a_i)*a(b_i)*cos_a(a_i)*cos_a(b_i) ) / & (a(a_i)*a(b_i)) enddo enddo !! ------------------------------------------------------------------------------------ !! Now, we loop over all the pairs q1,q2 that are assigned to us and perform our calculations !! ----------------------------------------------------------------------------------------------------- do index = 1, my_Nqs ! First, get the value of phi(q1*r, q2*r) for each r and the particular values of q1 and q2 we are using ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do r_i = 1, Nr_points d1 = q_mesh(indices(index+my_start_q-1, 1)) * (dr * r_i) d2 = q_mesh(indices(index+my_start_q-1, 2)) * (dr * r_i) phi(r_i, index) = phi_value(d1, d2) end do ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Now, perform a radial FFT to turn our phi_alpha_beta(r) into phi_alpha_beta(k) needed for SOLER ! equation 11 call radial_fft( phi(:,index) ) ! Determine the spline interpolation coefficients for the Fourier transformed kernel function call set_up_splines( phi(:, index), d2phi_dk2(:, index) ) end do !! ----------------------------------------------------------------------------------------------------- !! Finally, we write out the results, after letting everybody catch up !! ----------------------------------------------------------------------------------------------------- call mp_barrier() call write_kernel_table_file(phi, d2phi_dk2) !! ----------------------------------------------------------------------------------------------------- !! Finalize the mpi run using the PWSCF method call mp_end() deallocate( phi, d2phi_dk2, indices, proc_indices ) CONTAINS !! ########################################################################################################### !! | | !! | SET UP SPLINES | !! |__________________| !! This subroutine accepts a function (phi) and finds at each point the second derivative (D2) for use with !! spline interpolation. This function assumes we are using the expansion described in SOLER 3 and 4. That !! is, the derivatives are those needed to interpolate Kronecker delta functions at each of the q values !! Other than some special modification to speed up the algorithm in our particular case, this algorithm is !! taken directly from NUMERICAL_RECIPES pages 96-97. subroutine set_up_splines(phi, D2) real(dp), intent(in) :: phi(0:Nr_points) !! The k-space kernel function for a particular q1 and q2 real(dp), intent(inout) :: D2(0:Nr_points) !! The second derivatives to be used in the interpolation ! !! expansion (SOLER equation 3) real(dp), save :: dk = 2.0D0*pi/r_max !! Spacing of k points real(dp), allocatable :: temp_array(:) !! Temporary storage real(dp) :: temp_1, temp_2 !! allocate( temp_array(0:Nr_points) ) D2 = 0 temp_array = 0 do r_i = 1, Nr_points - 1 temp_1 = dble(r_i - (r_i - 1))/dble( (r_i + 1) - (r_i - 1) ) temp_2 = temp_1 * D2(r_i-1) + 2.0D0 D2(r_i) = (temp_1 - 1.0D0)/temp_2 temp_array(r_i) = ( phi(r_i+1) - phi(r_i))/dble( dk*((r_i+1) - r_i) ) - & ( phi(r_i) - phi(r_i-1))/dble( dk*(r_i - (r_i-1)) ) temp_array(r_i) = (6.0D0*temp_array(r_i)/dble( dk*((r_i+1) - (r_i-1)) )-temp_1*temp_array(r_i-1))/temp_2 end do D2(Nr_points) = 0.0D0 do r_i = Nr_points-1, 0, -1 D2(r_i) = D2(r_i)*D2(r_i+1) + temp_array(r_i) end do deallocate( temp_array ) end subroutine set_up_splines !! ########################################################################################################### !! ########################################################################################################### !! | | !! | PHI_VALUE | !! |_____________| !! This function returns the value of the kernel calculated via DION equation 14. real(dp) function phi_value(d1, d2) real(dp), intent(in) :: d1, d2 !! The point at which to evaluate the kernel. Note that ! !! d1 = q1*r and d2 = q2*r phi_value = 0.0D0 if (d1==0 .and. d2==0) then phi_value = 0.0 return end if !! Loop over all integration points and calculate the value of the nu functions defined in the !! discussion below equation 16 in DION. There are a number of checks here to ensure that we don't !! run into numerical problems for very small d values. They are probably unnecessary but I !! wanted to be careful. !! ---------------------------------------------------------------------------------------------- do a_i = 1, Nintegration_points if ( a(a_i) <= small .and. d1 > small) then nu(a_i) = 9.0D0/8.0D0*d1**2/pi else if (d1 <= small) then nu(a_i) = a(a_i)**2/2.0D0 else nu(a_i) = a(a_i)**2/((-exp(-(a(a_i)**2*gamma)/d1**2) + 1.0D0)*2.0D0) end if if ( a(a_i) <= small .and. d2 > small) then nu1(a_i) = 9.0D0/8.0D0*d2**2/pi else if (d2 < small) then nu1(a_i) = a(a_i)**2/2.0D0 else nu1(a_i) = a(a_i)**2/((-exp(-(a(a_i)**2*gamma)/d2**2) + 1.0D0)*2.0D0) end if end do !! ---------------------------------------------------------------------------------------------- !! Carry out the integration of DION equation 13 !! ---------------------------------------------------------------------------------------------- do a_i = 1, Nintegration_points do b_i = 1, Nintegration_points w = nu(a_i) x = nu(b_i) y = nu1(a_i) z = nu1(b_i) ! Again, watch out for possible numerical problems if (w < small .or. x phi(:,:) call write_data(21, data) !! --------------------------------------------------------------------------------------- end if !! Now, loop over all other processors (if any) and collect their kernel functions in the phi !! array of processor 0, which is big enough to hold any of them. Figure out how many functions !! should have been passed and make data point to just the right amount of the phi array. Then !! write the data. !! ------------------------------------------------------------------------------------------- do proc_i = 1, nproc-1 call mp_get(phi, phi, mpime, 0, proc_i, 0) if (ionode) then proc_Nqs = proc_indices(proc_i+1, 2) - proc_indices(proc_i+1,1) + 1 !write(*) "Writing phi proc ", proc_i data => phi(:,1:proc_Nqs) call write_data(21, data) end if end do !! ------------------------------------------------------------------------------------------- !! Here, we basically repeat the process exactly but for the second derivatives d2phi_dk2 !! instead of the kernel itself !! ------------------------------------------------------------------------------------------- if (ionode) then !write(*) "Writing d2phi_dk2 proc ", 0 data => d2phi_dk2(:,:) call write_data(21, data) end if do proc_i = 1, nproc-1 call mp_get(d2phi_dk2, d2phi_dk2, mpime, 0, proc_i, 0) if (mpime == 0) then proc_Nqs = proc_indices(proc_i+1,2) - proc_indices(proc_i+1,1) + 1 !write(*) "Writing d2phi_dk2 proc ", proc_i data => d2phi_dk2(:, 1:proc_Nqs) call write_data(21, data) end if end do !! ------------------------------------------------------------------------------------------- if (ionode) then close(21) end if end subroutine write_kernel_table_file !! ########################################################################################################### !! ########################################################################################################### !! | | !! | WRITE_DATA | !! !______________| !! Write matrix data held in the point "array" to the file with unit number "file". Data is written !! in binary format. subroutine write_data(file, array) real(dp), pointer:: array(:,:) !! Input pointer to the matrix data to be written integer, intent(in) :: file !! Unit number of file to write to integer :: index, ios !! Indexing variable do index = 1, size(array,2) ! write(file) array(:,index) write (file, double_format, err=100, iostat=ios) array(:,index) end do 100 call errore ('generate_vdW_kernel_table', 'Writing table file', abs (ios) ) end subroutine write_data !! ########################################################################################################### !! ########################################################################################################### !! | | !! | RADIAL_FFT | !! |______________| !! This subroutine performs a radial Fourier transform on the real-space kernel functions. Basically, this is !! just int( 4*pi*r^2*phi*sin(k*r)/(k*r))dr integrated from 0 to r_max. That is, it is the kernel function phi !! integrated with the 0^th spherical Bessel function radially, with a 4*pi assumed from angular integration !! since we have spherical symmetry. The spherical symmetry comes in because the kernel function depends only !! on the magnitude of the vector between two points. The integration is done using the trapezoid rule. subroutine radial_fft(phi) real(dp), intent(inout) :: phi(0:Nr_points) !! On input holds the real-space function phi_q1_q2(r) ! !! On output hold the reciprocal-space function phi_q1_q2(k) real(dp) :: phi_k(0:Nr_points) !! Temporary storage for phi_q1_q2(k) real(dp) :: dr = r_max/Nr_points !! Spacing between real-space sample points real(dp) :: dk = 2.0D0*pi/r_max !! Spacing between reciprocal space sample points integer :: k_i, r_i !! Indexing variables real(dp) :: r, k !! The real and reciprocal space points phi_k = 0.0D0 !! Handle the k=0 point separately !! ------------------------------------------------------------------------------------------------- do r_i = 1, Nr_points r = r_i * dr phi_k(0) = phi_k(0) + phi(r_i)*r**2 end do !! Subtract half of the last value of because of the trapezoid rule phi_k(0) = phi_k(0) - 0.5D0 * (Nr_points*dr)**2 * phi(Nr_points) !! ------------------------------------------------------------------------------------------------- !! Integration for the rest of the k-points !! ------------------------------------------------------------------------------------------------- do k_i = 1, Nr_points k = k_i * dk do r_i = 1, Nr_points r = r_i * dr phi_k(k_i) = phi_k(k_i) + phi(r_i) * r * sin(k*r) / k end do phi_k(Nr_points) = phi_k(Nr_points) - 0.5D0 * phi(Nr_points) * r *sin(k*r) / k end do !! Add in the 4*pi and the dr factor for the integration phi = 4.0D0 * pi * phi_k * dr !! ------------------------------------------------------------------------------------------------- end subroutine radial_fft !! ########################################################################################################### end program generate_kernel espresso-5.0.2/PW/src/new_occ.f900000644000700200004540000002330412053145630015433 0ustar marsamoscm! ! Copyright (C) 2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE new_evc() !----------------------------------------------------------------------- ! ! This routine is used only for isolated atoms in combination with ! the flag one_atom_occupations. ! It makes linear combinations of the degenerate bands so ! that they have maximum overlap with the atomic states, and order ! the bands in the same order as the atomic states. ! Weights "wg" must have been set to fixed values (as read in input) ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : rytoev USE basis, ONLY : natomwfc USE klist, ONLY : nks, ngk USE ldaU, ONLY : swfcatom USE lsda_mod, ONLY : lsda, current_spin, nspin, isk USE wvfct, ONLY : nbnd, npw, npwx, igk, wg, et USE control_flags, ONLY : gamma_only, iverbosity USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : noncolin, npol USE gvect, ONLY : gstart USE io_files, ONLY : iunigk, nwordwfc, iunwfc, nwordatwfc, iunsat USE buffers, ONLY : get_buffer, save_buffer USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables ! INTEGER :: ik, ibnd, jbnd, igroup ! counter on k points ! " " bands ! " " groups of bands REAL(DP), EXTERNAL :: ddot COMPLEX(DP), EXTERNAL :: zdotc COMPLEX(DP), ALLOCATABLE :: proj(:,:), aux(:,:), aux_proj(:,:), a(:,:), v(:,:) REAL(DP) :: max_value, save_value, aux_et, maxproj INTEGER :: select_ibnd, iatwfc, first_available_band, info, nsize, & current_band, ngroups INTEGER, ALLOCATABLE :: ind(:), group_size(:), start_band(:), used_atwfc(:) REAL(DP), ALLOCATABLE :: wband(:) IF (natomwfc > nbnd) THEN WRITE(6,'(5x,"natomwfc=", i5, " nbnd=",i5)') natomwfc, nbnd CALL errore('new_evc','increase nbnd',1) ENDIF ALLOCATE(proj(natomwfc,nbnd)) ALLOCATE(wband(nbnd)) ALLOCATE(group_size(nbnd)) ALLOCATE(start_band(nbnd)) ALLOCATE(used_atwfc(nbnd)) ALLOCATE(ind(nbnd)) ! ! we start a loop over k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF CALL davcio (swfcatom, nwordatwfc, iunsat, ik, - 1) ! ! make the projection on the atomic wavefunctions, ! DO ibnd = 1, nbnd DO iatwfc = 1, natomwfc IF ( gamma_only ) THEN proj (iatwfc, ibnd) = 2.d0 * & ddot(2*npw, swfcatom (1, iatwfc), 1, evc (1, ibnd), 1) IF (gstart.EQ.2) proj (iatwfc, ibnd) = proj (iatwfc, ibnd) - & swfcatom (1, iatwfc) * evc (1, ibnd) ELSE proj(iatwfc, ibnd) = zdotc(npw,swfcatom(1,iatwfc),1,evc(1,ibnd),1) IF (noncolin) & proj (iatwfc, ibnd) = proj(iatwfc, ibnd) + & zdotc (npw, swfcatom(npwx+1,iatwfc), 1, evc(npwx+1,ibnd), 1) ENDIF ENDDO ENDDO #ifdef __MPI CALL mp_sum ( proj, intra_bgrp_comm ) #endif IF ( iverbosity > 0 ) THEN DO ibnd=1,nbnd WRITE(6,*) 'bands ', ibnd, et(ibnd,ik)*rytoev WRITE(6,'(8f9.4)') (ABS(proj(iatwfc,ibnd)), iatwfc=1,natomwfc) END DO END IF ! ! We have to select natomwfc bands that have the largest overlap with ! the atomic states. The other bands are empty and will be put above the ! natomwfc with large projections. ! IF (natomwfc < nbnd) THEN DO ibnd=1,nbnd wband(ibnd) =0.0_DP DO iatwfc=1,natomwfc wband(ibnd) = wband(ibnd) + ABS(proj(iatwfc,ibnd)) ENDDO ind(ibnd)=ibnd ENDDO ! ! order from the largest to the smaller overlap ! wband=-wband CALL hpsort(nbnd, wband, ind) ! ! now put the bands with smaller overlap above the others, change also ! the eigenvalues and the projectors ! ALLOCATE(aux(npwx*npol,1)) ALLOCATE(aux_proj(natomwfc,1)) current_band=natomwfc+1 DO ibnd =1, natomwfc IF (ind(ibnd) > natomwfc) THEN DO jbnd=current_band,nbnd IF (ind(jbnd)<=natomwfc) THEN aux(:,1)=evc(:,ind(ibnd)) evc(:,ind(ibnd))=evc(:,ind(jbnd)) evc(:,ind(jbnd))=aux(:,1) aux_proj(:,1)=proj(:,ind(ibnd)) proj(:,ind(ibnd))=proj(:,ind(jbnd)) proj(:,ind(jbnd))=aux_proj(:,1) aux_et = et(ind(ibnd),ik) et(ind(ibnd),ik)=et(ind(jbnd),ik) et(ind(jbnd),ik)=aux_et current_band=jbnd+1 EXIT ENDIF ENDDO ENDIF ENDDO DEALLOCATE(aux) DEALLOCATE(aux_proj) ENDIF ! ! Here we partition the bands in groups of degenerate bands. ! ngroups=1 group_size=1 start_band(1)=1 DO iatwfc=1,natomwfc-1 IF ( ABS(et(iatwfc,ik)-et(iatwfc+1,ik))>1.d-4) THEN ngroups=ngroups+1 start_band(ngroups)=iatwfc+1 ELSE group_size(ngroups) = group_size(ngroups) + 1 ENDIF ENDDO ! ! For each group of bands we decide which are the atomic states ! with the largest projection on the group of bands ! used_atwfc=0 DO igroup = 1, ngroups DO iatwfc=1, natomwfc wband(iatwfc) = 0.0_DP DO ibnd = start_band(igroup), start_band(igroup)+group_size(igroup)-1 wband(iatwfc) = wband(iatwfc) + ABS(proj(iatwfc,ibnd)) ENDDO ind(iatwfc) = iatwfc IF (used_atwfc(iatwfc)==1) wband(iatwfc)=0.0_DP ENDDO ! ! order the atomic states from the largest to the smaller projection ! wband=-wband CALL hpsort(natomwfc, wband, ind) nsize = group_size(igroup) ! DO iatwfc=1,nsize IF (used_atwfc(ind(iatwfc))==1) THEN CALL errore('new_evc','this atomic wfc already used',ind(iatwfc)) ELSE used_atwfc(ind(iatwfc))=1 ENDIF ENDDO ! ! At this point we solve a linear system of size group_size x group_size ! and find the linear combination of degenerate wavefunctions which has ! projection one on each atomic state. ! IF (nsize>1) THEN ALLOCATE(aux(npwx*npol,nsize)) ALLOCATE(aux_proj(natomwfc,nsize)) ALLOCATE(a(nsize,nsize)) ALLOCATE(v(nsize,nsize)) v=(0.0_DP,0.0_DP) DO ibnd = 1, nsize DO jbnd = 1, nsize a(ibnd,jbnd) = proj(ind(ibnd),start_band(igroup)+jbnd-1) ENDDO v(ibnd,ibnd)=(1.0_DP,0.0_DP) ENDDO CALL ZGESV(nsize, nsize, a, nsize, ind, v, nsize, info) ! ! We cannot use the vectors v to make the linear combinations ! because they are not orthonormal. We orthonormalize them, so the ! projection will not be exactly one, but quite close. ! CALL orthogonalize_vects(nsize, v) ! ! And now make the linear combination. Update also the projections on ! the atomic states. ! aux=(0.0_DP, 0.0_DP) aux_proj=(0.0_DP, 0.0_DP) DO ibnd=1, nsize DO jbnd=1,nsize aux(:,ibnd)=aux(:,ibnd)+ v(jbnd,ibnd)* & evc(:,start_band(igroup)+jbnd-1) aux_proj(:,ibnd)=aux_proj(:,ibnd)+ v(jbnd,ibnd)* & proj(:,start_band(igroup)+jbnd-1) ENDDO ENDDO evc(:,start_band(igroup):start_band(igroup)+nsize-1)= aux(:,:) proj(:,start_band(igroup):start_band(igroup)+nsize-1)= aux_proj(:,:) DEALLOCATE(aux) DEALLOCATE(aux_proj) DEALLOCATE(a) DEALLOCATE(v) ENDIF ENDDO ! loop over the groups of bands ! ! Finally, we order the new bands as the atomic states ! ALLOCATE(aux(npwx*npol,natomwfc)) used_atwfc=0 DO ibnd=1,natomwfc current_band=1 maxproj=0.0_DP DO iatwfc=1,natomwfc IF (ABS(proj(iatwfc,ibnd))>maxproj.AND.used_atwfc(iatwfc)==0) THEN current_band=iatwfc maxproj=ABS(proj(iatwfc,ibnd)) ENDIF ENDDO used_atwfc(current_band)=1 aux(:,current_band)=evc(:,ibnd) wband(current_band)=et(ibnd,ik) ENDDO evc(:,1:natomwfc)=aux(:,:) et(1:natomwfc,ik)=wband(1:natomwfc) DEALLOCATE(aux) ! ! If needed save the new bands on disk ! IF (nks > 1) THEN CALL save_buffer (evc, nwordwfc, iunwfc, ik) END IF ENDDO DEALLOCATE(group_size) DEALLOCATE(start_band) DEALLOCATE(ind) DEALLOCATE(wband) DEALLOCATE(used_atwfc) DEALLOCATE(proj) RETURN END SUBROUTINE new_evc SUBROUTINE orthogonalize_vects(n,v) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n COMPLEX(DP), INTENT(INOUT) :: v(n,n) COMPLEX(DP) :: sca REAL(DP) :: norm INTEGER :: i,k COMPLEX(DP), EXTERNAL :: zdotc REAL(DP), EXTERNAL :: ddot norm=ddot(2*n,v(:,1),1,v(:,1),1) v(:,1)=v(:,1)/SQRT(norm) DO i=2,n DO k=i-1, 1, -1 sca=zdotc(n, v(:,k),1, v(:,i),1 ) v(:,i)=v(:,i) - sca * v(:,k) ENDDO norm=ddot(2*n,v(:,i),1,v(:,i),1) v(:,i)=v(:,i)/SQRT(norm) ENDDO RETURN END SUBROUTINE orthogonalize_vects espresso-5.0.2/PW/src/stres_hub.f900000644000700200004540000005337412053145627016034 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE stres_hub ( sigmah ) !---------------------------------------------------------------------- ! ! This routines computes the Hubbard contribution to the internal stress ! tensor. It gives in output the array sigmah(i,j) which corresponds to ! the quantity -(1/\Omega)dE_{h}/d\epsilon_{i,j} ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : omega, at, bg USE ldaU, ONLY : hubbard_lmax, hubbard_l, hubbard_u, & hubbard_alpha, lda_plus_u_kind, U_projection USE scf, ONLY : v USE lsda_mod, ONLY : nspin USE symme, ONLY : symmatrix USE io_files, ONLY : prefix, iunocc USE io_global, ONLY : stdout, ionode ! IMPLICIT NONE ! REAL (DP) :: sigmah(3,3) ! output: the Hubbard stresses INTEGER :: ipol, jpol, na, nt, is, m1,m2 INTEGER :: ldim REAL (DP), ALLOCATABLE :: dns(:,:,:,:) ! dns(ldim,ldim,nspin,nat), ! the derivative of the atomic occupations ! CALL start_clock( 'stres_hub' ) ! IF (U_projection .NE. "atomic") CALL errore("stres_hub", & " stress for this U_projection_type not implemented",1) IF (lda_plus_u_kind.eq.1) CALL errore("stres_hub", & " stress in full LDA+U scheme is not yet implemented",1) sigmah(:,:) = 0.d0 ldim = 2 * Hubbard_lmax + 1 ALLOCATE (dns(ldim,ldim,nspin,nat)) dns(:,:,:,:) = 0.d0 #ifdef DEBUG DO na=1,nat DO is=1,nspin nt = ityp(na) IF (Hubbard_U(nt).NE.0.d0.OR.Hubbard_alpha(nt).NE.0.d0) THEN WRITE( stdout,'(a,2i3)') 'NS(NA,IS) ', na,is DO m1=1,ldim WRITE( stdout,'(7f10.4)') (v%ns(m1,m2,is,na),m2=1,ldim) END DO END IF END DO END DO #endif ! ! NB: both ipol and jpol must run from 1 to 3 because this stress ! contribution is not in general symmetric when computed only ! from k-points in the irreducible wedge of the BZ. ! It is (must be) symmetric after symmetrization but this requires ! the full stress tensor not only its upper triangular part. ! DO ipol = 1,3 DO jpol = 1,3 CALL dndepsilon(dns,ldim,ipol,jpol) DO na = 1,nat nt = ityp(na) IF ( Hubbard_U(nt) /= 0.d0 .OR. Hubbard_alpha(nt) /= 0.d0 ) THEN DO is = 1,nspin #ifdef DEBUG WRITE( stdout,'(a,4i3)') 'DNS(IPOL,JPOL,NA,IS) ', ipol,jpol,na,is WRITE( stdout,'(5f10.4)') ((dns(m1,m2,is,na),m2=1,5),m1=1,5) #endif DO m2 = 1, 2 * Hubbard_l(nt) + 1 DO m1 = 1, 2 * Hubbard_l(nt) + 1 sigmah(ipol,jpol) = sigmah(ipol,jpol) - & v%ns(m2,m1,is,na) * dns(m1,m2,is,na) / omega END DO END DO END DO END IF END DO END DO END DO IF (nspin.EQ.1) sigmah(:,:) = 2.d0 * sigmah(:,:) CALL symmatrix ( sigmah ) ! ! Impose symmetry s(i,j) = s(j,i) to the stress tensor ! it should NOT be needed, let's do it for safety. ! DO ipol = 1,3 DO jpol = ipol,3 if ( abs( sigmah(ipol,jpol)-sigmah(jpol,ipol) ) > 1.d-6 ) then write (stdout,'(2i3,2f12.7)') ipol,jpol,sigmah(ipol,jpol), & sigmah(jpol,ipol) call errore('stres_hub',' non-symmetric stress contribution',1) end if sigmah(ipol,jpol) = 0.5d0* ( sigmah(ipol,jpol) + sigmah(jpol,ipol) ) sigmah(jpol,ipol) = sigmah(ipol,jpol) END DO END DO DEALLOCATE (dns) ! CALL stop_clock( 'stres_hub' ) ! RETURN END SUBROUTINE stres_hub ! !----------------------------------------------------------------------- SUBROUTINE dndepsilon ( dns,ldim,ipol,jpol ) !----------------------------------------------------------------------- ! This routine computes the derivative of the ns atomic occupations with ! respect to the strain epsilon(ipol,jpol) used to obtain the hubbard ! contribution to the internal stres tensor. ! USE kinds, ONLY : DP USE wavefunctions_module, ONLY : evc USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc USE control_flags, ONLY : gamma_only USE klist, ONLY : nks, xk, ngk USE ldaU, ONLY : swfcatom, Hubbard_l, & Hubbard_U, Hubbard_alpha, oatwfc USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE io_files, ONLY : iunigk, nwordwfc, iunwfc, & iunat, iunsat, nwordatwfc USE buffers, ONLY : get_buffer USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables first ! INTEGER :: ipol, jpol, ldim REAL (DP) :: dns(ldim,ldim,nspin,nat) ! ! local variable ! INTEGER :: ik, & ! counter on k points ibnd, & ! " " bands is, & ! " " spins na, nt, m1, m2 COMPLEX (DP), ALLOCATABLE :: spsi(:,:) type (bec_type) :: proj, dproj ! COMPLEX (DP), ALLOCATABLE :: dproj(:,:) ! REAL (DP), ALLOCATABLE :: drproj(:,:) ! ! ALLOCATE ( spsi(npwx,nbnd) ) call allocate_bec_type( natomwfc,nbnd, proj) call allocate_bec_type ( natomwfc,nbnd, dproj ) call allocate_bec_type ( nkb,nbnd, becp ) ! ! D_Sl for l=1 and l=2 are already initialized, for l=0 D_S0 is 1 ! ! Offset of atomic wavefunctions initialized in setup and stored in oatwfc dns(:,:,:,:) = 0.d0 ! ! we start a loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) IF (nks > 1) READ (iunigk) igk npw = ngk(ik) ! ! now we need the first derivative of proj with respect to ! epsilon(ipol,jpol) ! CALL get_buffer (evc, nwordwfc, iunwfc, ik) CALL init_us_2 (npw,igk,xk(1,ik),vkb) CALL calbec( npw, vkb, evc, becp ) CALL s_psi (npwx, npw, nbnd, evc, spsi ) ! read atomic wfc - swfcatom is used as work space CALL davcio(swfcatom,nwordatwfc,iunat,ik,-1) IF ( gamma_only ) THEN CALL dprojdepsilon_gamma (swfcatom, spsi, ipol, jpol, dproj%r) ELSE CALL dprojdepsilon_k (swfcatom, spsi, ik, ipol, jpol, dproj%k) END IF CALL davcio(swfcatom,nwordatwfc,iunsat,ik,-1) CALL calbec ( npw, swfcatom, evc, proj) ! ! compute the derivative of the occupation numbers (quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! DO na = 1,nat nt = ityp(na) IF ( Hubbard_U(nt) /= 0.d0 .OR. Hubbard_alpha(nt) /= 0.d0) THEN DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1, 2 * Hubbard_l(nt) + 1 IF ( gamma_only ) THEN DO ibnd = 1,nbnd dns(m1,m2,current_spin,na) = & dns(m1,m2,current_spin,na) + wg(ibnd,ik) *& (proj%r(oatwfc(na)+m1,ibnd) * & dproj%r(oatwfc(na)+m2,ibnd) + & dproj%r(oatwfc(na)+m1,ibnd) * & proj%r(oatwfc(na)+m2,ibnd)) END DO ELSE DO ibnd = 1,nbnd dns(m1,m2,current_spin,na) = & dns(m1,m2,current_spin,na) + wg(ibnd,ik) *& DBLE(proj%k(oatwfc(na)+m1,ibnd) * & CONJG(dproj%k(oatwfc(na)+m2,ibnd) ) + & dproj%k(oatwfc(na)+m1,ibnd)* & CONJG(proj%k(oatwfc(na)+m2,ibnd) ) ) END DO END IF END DO END DO END IF END DO END DO ! on k-points ! CALL mp_sum( dns, inter_pool_comm ) ! ! In nspin.eq.1 k-point weight wg is normalized to 2 el/band ! in the whole BZ but we are interested in dns of one spin component ! IF (nspin.EQ.1) dns = 0.5d0 * dns ! ! impose hermeticity of dn_{m1,m2} ! DO na = 1,nat nt = ityp(na) DO is = 1,nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1+1, 2 * Hubbard_l(nt) + 1 dns(m2,m1,is,na) = dns(m1,m2,is,na) END DO END DO END DO END DO DEALLOCATE ( spsi ) call deallocate_bec_type (proj) call deallocate_bec_type (dproj) call deallocate_bec_type (becp) RETURN END SUBROUTINE dndepsilon ! !----------------------------------------------------------------------- SUBROUTINE dprojdepsilon_k ( wfcatom, spsi, ik, ipol, jpol, dproj ) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the strain epsilon(i,j) ! (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE basis, ONLY : natomwfc USE cell_base, ONLY : tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE gvect, ONLY : g USE klist, ONLY : nks, xk USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : upf, nhm, nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables first ! INTEGER, INTENT(IN) :: ik, ipol, jpol COMPLEX (DP), INTENT(IN) :: & wfcatom(npwx,natomwfc), &! the atomic wfc spsi(npwx,nbnd) ! S|evc> COMPLEX (DP), INTENT(OUT) :: & dproj(natomwfc,nbnd) ! the derivative of the projection ! INTEGER :: i, ig, jkb2, lmax_wfc, na, ibnd, iwf, nt, ih,jh, & nworddw, nworddb REAL (DP) :: xyz(3,3), q, a1, a2 REAL (DP), PARAMETER :: eps=1.0d-8 COMPLEX (DP), EXTERNAL :: zdotc COMPLEX (DP), ALLOCATABLE :: & dwfc(:,:), aux(:,:), dbeta(:,:), aux1(:,:), & betapsi(:,:), dbetapsi(:,:), wfatbeta(:,:), wfatdbeta(:,:) ! dwfc(npwx,natomwfc), ! the derivative of the atomic d wfc ! aux(npwx,natomwfc), ! auxiliary array ! dbeta(npwx,nkb), ! the derivative of the beta function ! aux1(npwx,nkb), ! auxiliary array ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(natomwfc,nhm),! ! wfatdbeta(natomwfc,nhm)! REAL (DP), ALLOCATABLE :: gk(:,:), qm1(:) ! gk(3,npwx), ! qm1(npwx) ! ! xyz are the three unit vectors in the x,y,z directions xyz(:,:) = 0.d0 DO i=1,3 xyz(i,i) = 1.d0 END DO dproj(:,:) = (0.d0,0.d0) ! ! At first the derivatives of the atomic wfcs: we compute the term ! ! ALLOCATE ( qm1(npwx), gk(3,npwx) ) ALLOCATE ( dwfc(npwx,natomwfc), aux(npwx,natomwfc) ) nworddw = 2*npwx*natomwfc nworddb = 2*npwx*nkb lmax_wfc = 0 DO nt=1, ntyp lmax_wfc=MAX(lmax_wfc,MAXVAL(upf(nt)%lchi(1:upf(nt)%nwfc))) END DO ! here the derivative of the Bessel function CALL gen_at_dj (ik,natomwfc,lmax_wfc,dwfc) ! and here the derivative of the spherical harmonic CALL gen_at_dy (ik,natomwfc,lmax_wfc,xyz(1,ipol),aux) DO ig = 1,npw gk(1,ig) = (xk(1,ik)+g(1,igk(ig)))*tpiba gk(2,ig) = (xk(2,ik)+g(2,igk(ig)))*tpiba gk(3,ig) = (xk(3,ik)+g(3,igk(ig)))*tpiba q = SQRT(gk(1,ig)**2+gk(2,ig)**2+gk(3,ig)**2) IF (q.GT.eps) THEN qm1(ig)=1.d0/q ELSE qm1(ig)=0.d0 END IF a1 = -gk(jpol,ig) a2 = -gk(ipol,ig)*gk(jpol,ig)*qm1(ig) DO iwf = 1,natomwfc dwfc(ig,iwf) = aux(ig,iwf)*a1 + dwfc(ig,iwf)*a2 END DO END DO IF (ipol.EQ.jpol) dwfc(1:npw,:) = dwfc(1:npw,:) - wfcatom(1:npw,:)*0.5d0 CALL calbec ( npw, dwfc, spsi, dproj ) DEALLOCATE ( dwfc, aux ) ! ! Now the derivatives of the beta functions: we compute the term ! <\fi^{at}_{I,m1}|dS/d\epsilon(ipol,jpol)|\psi_{k,v,s}> ! ALLOCATE (dbeta(npwx,nkb), aux1(npwx,nkb), & dbetapsi(nhm,nbnd), betapsi(nhm,nbnd), wfatbeta(natomwfc,nhm), & wfatdbeta(natomwfc,nhm) ) ! here the derivative of the Bessel function CALL gen_us_dj (ik,dbeta) ! and here the derivative of the spherical harmonic CALL gen_us_dy (ik,xyz(1,ipol),aux1) jkb2 = 0 DO nt=1,ntyp DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN DO ih=1,nh(nt) jkb2 = jkb2 + 1 ! now we compute the true dbeta function DO ig = 1,npw dbeta(ig,jkb2) = - aux1(ig,jkb2)*gk(jpol,ig) - & dbeta(ig,jkb2) * gk(ipol,ig) * gk(jpol,ig) * qm1(ig) IF (ipol.EQ.jpol) & dbeta(ig,jkb2) = dbeta(ig,jkb2) - vkb(ig,jkb2)*0.5d0 END DO DO ibnd = 1,nbnd betapsi(ih,ibnd)= becp%k(jkb2,ibnd) dbetapsi(ih,ibnd)= zdotc(npw,dbeta(1,jkb2),1,evc(1,ibnd),1) END DO DO iwf=1,natomwfc wfatbeta(iwf,ih) = zdotc(npw,wfcatom(1,iwf),1,vkb(1,jkb2),1) wfatdbeta(iwf,ih)= zdotc(npw,wfcatom(1,iwf),1,dbeta(1,jkb2),1) END DO END DO ! CALL mp_sum( dbetapsi, intra_bgrp_comm ) CALL mp_sum( wfatbeta, intra_bgrp_comm ) CALL mp_sum( wfatdbeta, intra_bgrp_comm ) ! DO ibnd = 1,nbnd DO ih=1,nh(nt) DO jh = 1,nh(nt) DO iwf=1,natomwfc dproj(iwf,ibnd) = dproj(iwf,ibnd) + & qq(ih,jh,nt) * & ( wfatdbeta(iwf,ih)*betapsi(jh,ibnd) + & wfatbeta(iwf,ih)*dbetapsi(jh,ibnd) ) END DO END DO END DO END DO END IF END DO END DO DEALLOCATE (dbeta, aux1, dbetapsi, betapsi, wfatbeta, wfatdbeta ) DEALLOCATE ( qm1, gk ) RETURN END SUBROUTINE dprojdepsilon_k ! !----------------------------------------------------------------------- SUBROUTINE dprojdepsilon_gamma ( wfcatom, spsi, ipol, jpol, dproj ) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the strain epsilon(i,j) ! (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE basis, ONLY : natomwfc USE cell_base, ONLY : tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE gvect, ONLY : g, gstart USE klist, ONLY : nks, xk USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : upf, nhm, nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables first ! INTEGER, INTENT(IN) :: ipol, jpol COMPLEX (DP), INTENT(IN) :: & wfcatom(npwx,natomwfc), &! the atomic wfc spsi(npwx,nbnd) ! S|evc> REAL (DP), INTENT(OUT) :: & dproj(natomwfc,nbnd) ! the derivative of the projection ! INTEGER :: ik=1, i, ig, jkb2, lmax_wfc, na, ibnd, iwf, nt, ih,jh, & nworddw, nworddb REAL (DP) :: xyz(3,3), q, a1, a2 REAL (DP), PARAMETER :: eps=1.0d-8 REAL (DP), EXTERNAL :: ddot COMPLEX (DP), ALLOCATABLE :: & dwfc(:,:), aux(:,:), dbeta(:,:), aux1(:,:) ! dwfc(npwx,natomwfc), ! the derivative of the atomic d wfc ! aux(npwx,natomwfc), ! auxiliary array ! dbeta(npwx,nkb), ! the derivative of the beta function ! aux1(npwx,nkb), ! auxiliary array REAL (DP), ALLOCATABLE :: & betapsi(:,:), dbetapsi(:,:), wfatbeta(:,:), wfatdbeta(:,:) ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(natomwfc,nhm),! ! wfatdbeta(natomwfc,nhm)! REAL (DP), ALLOCATABLE :: gk(:,:), qm1(:) ! gk(3,npwx), ! qm1(npwx) ! ! xyz are the three unit vectors in the x,y,z directions xyz(:,:) = 0.d0 DO i=1,3 xyz(i,i) = 1.d0 END DO dproj(:,:) = 0.d0 ! ! At first the derivatives of the atomic wfcs: we compute the term ! ! ALLOCATE ( qm1(npwx), gk(3,npwx) ) ALLOCATE ( dwfc(npwx,natomwfc), aux(npwx,natomwfc) ) nworddw = 2*npwx*natomwfc nworddb = 2*npwx*nkb lmax_wfc = 0 DO nt=1, ntyp lmax_wfc=MAX(lmax_wfc,MAXVAL(upf(nt)%lchi(1:upf(nt)%nwfc))) END DO ! here the derivative of the Bessel function CALL gen_at_dj (ik,natomwfc,lmax_wfc,dwfc) ! and here the derivative of the spherical harmonic CALL gen_at_dy (ik,natomwfc,lmax_wfc,xyz(1,ipol),aux) DO ig = 1,npw gk(1,ig) = (xk(1,ik)+g(1,igk(ig)))*tpiba gk(2,ig) = (xk(2,ik)+g(2,igk(ig)))*tpiba gk(3,ig) = (xk(3,ik)+g(3,igk(ig)))*tpiba q = SQRT(gk(1,ig)**2+gk(2,ig)**2+gk(3,ig)**2) IF (q.GT.eps) THEN qm1(ig)=1.d0/q ELSE qm1(ig)=0.d0 END IF a1 = -gk(jpol,ig) a2 = -gk(ipol,ig)*gk(jpol,ig)*qm1(ig) DO iwf = 1,natomwfc dwfc(ig,iwf) = aux(ig,iwf)*a1 + dwfc(ig,iwf)*a2 END DO END DO IF (ipol.EQ.jpol) dwfc(1:npw,:) = dwfc(1:npw,:) - wfcatom(1:npw,:)*0.5d0 CALL calbec ( npw, dwfc, spsi, dproj ) DEALLOCATE ( dwfc, aux ) ! ! Now the derivatives of the beta functions: we compute the term ! <\fi^{at}_{I,m1}|dS/d\epsilon(ipol,jpol)|\psi_{k,v,s}> ! ALLOCATE (dbeta(npwx,nkb), aux1(npwx,nkb), & dbetapsi(nhm,nbnd), betapsi(nhm,nbnd), & wfatbeta(natomwfc,nhm), wfatdbeta(natomwfc,nhm) ) ! here the derivative of the Bessel function CALL gen_us_dj (ik,dbeta) ! and here the derivative of the spherical harmonic CALL gen_us_dy (ik,xyz(1,ipol),aux1) jkb2 = 0 DO nt=1,ntyp DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN DO ih=1,nh(nt) jkb2 = jkb2 + 1 ! now we compute the true dbeta function DO ig = 1,npw dbeta(ig,jkb2) = - aux1(ig,jkb2)*gk(jpol,ig) - & dbeta(ig,jkb2) * gk(ipol,ig) * gk(jpol,ig) * qm1(ig) IF (ipol.EQ.jpol) & dbeta(ig,jkb2) = dbeta(ig,jkb2) - vkb(ig,jkb2)*0.5d0 END DO DO ibnd = 1,nbnd betapsi(ih,ibnd)= becp%r(jkb2,ibnd) dbetapsi(ih,ibnd) = 2.0_dp * & ddot(2*npw,dbeta(1,jkb2),1,evc(1,ibnd),1) IF ( gstart == 2 ) dbetapsi(ih,ibnd) = & dbetapsi(ih,ibnd) - dbeta(1,jkb2)*evc(1,ibnd) END DO DO iwf=1,natomwfc wfatbeta(iwf,ih) = 2.0_dp * & ddot(2*npw,wfcatom(1,iwf),1,vkb(1,jkb2),1) IF ( gstart == 2 ) wfatbeta(iwf,ih) = & wfatbeta(iwf,ih) - wfcatom(1,iwf)*vkb(1,jkb2) wfatdbeta(iwf,ih)= 2.0_dp * & ddot(2*npw,wfcatom(1,iwf),1,dbeta(1,jkb2),1) IF ( gstart == 2 ) wfatdbeta(iwf,ih) = & wfatdbeta(iwf,ih) - wfcatom(1,iwf)*dbeta(1,jkb2) END DO END DO ! CALL mp_sum( dbetapsi, intra_bgrp_comm ) CALL mp_sum( wfatbeta, intra_bgrp_comm ) CALL mp_sum( wfatdbeta, intra_bgrp_comm ) ! DO ibnd = 1,nbnd DO ih=1,nh(nt) DO jh = 1,nh(nt) DO iwf=1,natomwfc dproj(iwf,ibnd) = dproj(iwf,ibnd) + & qq(ih,jh,nt) * & ( wfatdbeta(iwf,ih)*betapsi(jh,ibnd) + & wfatbeta(iwf,ih)*dbetapsi(jh,ibnd) ) END DO END DO END DO END DO END IF END DO END DO DEALLOCATE (dbeta, aux1, dbetapsi, betapsi, wfatbeta, wfatdbeta ) DEALLOCATE ( qm1, gk ) RETURN END SUBROUTINE dprojdepsilon_gamma espresso-5.0.2/PW/src/set_kup_and_kdw.f900000644000700200004540000000273712053145630017166 0ustar marsamoscm! ! Copyright (C) 2001-2007 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine set_kup_and_kdw (xk, wk, isk, nkstot, npk) !----------------------------------------------------------------------- ! This routine sets the k vectors for the up and down spin wfc ! ! on input: xk and wk contain k-points and corresponding weights ! ! on output: the number of points is doubled and xk and wk in the ! first (nkstot/2) positions correspond to up spin ! those in the second (nkstot/2) ones correspond to down spin ! USE kinds, ONLY : DP implicit none ! ! I/O variables first ! integer :: npk, isk (npk), nkstot ! input: maximum allowed number of k-points ! output: spin associated to a given k-point ! input-output: starting and ending number of k-points real(DP) :: xk (3, npk), wk (npk) ! input-output: coordinates of k points ! input-output: weights of k points ! integer :: ik, iq, ikq ! ! if (2*nkstot > npk) call errore ('set_kup_and_kdw','too many k points',nkstot) do ik = 1, nkstot xk(:,ik+nkstot)= xk(:,ik) wk (ik+nkstot) = wk(ik) isk(ik) = 1 isk(ik+nkstot) = 2 enddo nkstot = 2 * nkstot return end subroutine set_kup_and_kdw espresso-5.0.2/PW/src/kpoint_grid.f900000644000700200004540000003370212053145630016332 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE kpoint_grid ( nrot, time_reversal, skip_equivalence, s, t_rev, & bg, npk, k1,k2,k3, nk1,nk2,nk3, nks, xk, wk) !----------------------------------------------------------------------- ! ! Automatic generation of a uniform grid of k-points ! USE kinds, ONLY: DP IMPLICIT NONE ! INTEGER, INTENT(in):: nrot, npk, k1, k2, k3, nk1, nk2, nk3, & t_rev(48), s(3,3,48) LOGICAL, INTENT(in):: time_reversal, skip_equivalence real(DP), INTENT(in):: bg(3,3) ! INTEGER, INTENT(out) :: nks real(DP), INTENT(out):: xk(3,npk) real(DP), INTENT(out):: wk(npk) ! LOCAL: real(DP), PARAMETER :: eps=1.0d-5 real(DP) :: xkr(3), fact, xx, yy, zz real(DP), ALLOCATABLE:: xkg(:,:), wkk(:) INTEGER :: nkr, i,j,k, ns, n, nk INTEGER, ALLOCATABLE :: equiv(:) LOGICAL :: in_the_list ! nkr=nk1*nk2*nk3 ALLOCATE (xkg( 3,nkr),wkk(nkr)) ALLOCATE (equiv( nkr)) ! DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! this is nothing but consecutive ordering n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! xkg are the components of the complete grid in crystal axis xkg(1,n) = dble(i-1)/nk1 + dble(k1)/2/nk1 xkg(2,n) = dble(j-1)/nk2 + dble(k2)/2/nk2 xkg(3,n) = dble(k-1)/nk3 + dble(k3)/2/nk3 ENDDO ENDDO ENDDO ! equiv(nk) =nk : k-point nk is not equivalent to any previous k-point ! equiv(nk)!=nk : k-point nk is equivalent to k-point equiv(nk) DO nk=1,nkr equiv(nk)=nk ENDDO IF ( skip_equivalence ) THEN CALL infomsg('kpoint_grid', 'ATTENTION: skip check of k-points equivalence') wkk = 1.d0 ELSE DO nk=1,nkr ! check if this k-point has already been found equivalent to another IF (equiv(nk) == nk) THEN wkk(nk) = 1.0d0 ! check if there are equivalent k-point to this in the list ! (excepted those previously found to be equivalent to another) ! check both k and -k DO ns=1,nrot DO i=1,3 xkr(i) = s(i,1,ns) * xkg(1,nk) & + s(i,2,ns) * xkg(2,nk) & + s(i,3,ns) * xkg(3,nk) xkr(i) = xkr(i) - nint( xkr(i) ) ENDDO IF(t_rev(ns)==1) xkr = -xkr xx = xkr(1)*nk1 - 0.5d0*k1 yy = xkr(2)*nk2 - 0.5d0*k2 zz = xkr(3)*nk3 - 0.5d0*k3 in_the_list = abs(xx-nint(xx))<=eps .and. & abs(yy-nint(yy))<=eps .and. & abs(zz-nint(zz))<=eps IF (in_the_list) THEN i = mod ( nint ( xkr(1)*nk1 - 0.5d0*k1 + 2*nk1), nk1 ) + 1 j = mod ( nint ( xkr(2)*nk2 - 0.5d0*k2 + 2*nk2), nk2 ) + 1 k = mod ( nint ( xkr(3)*nk3 - 0.5d0*k3 + 2*nk3), nk3 ) + 1 n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 IF (n>nk .and. equiv(n)==n) THEN equiv(n) = nk wkk(nk)=wkk(nk)+1.0d0 ELSE IF (equiv(n)/=nk .or. nnk .and. equiv(n)==n) THEN equiv(n) = nk wkk(nk)=wkk(nk)+1.0d0 ELSE IF (equiv(n)/=nk.or.nnpk) CALL errore('kpoint_grid','too many k-points',1) wk(nks) = wkk(nk) fact = fact+wk(nks) ! bring back into to the first BZ DO i=1,3 xk(i,nks) = xkg(i,nk)-nint(xkg(i,nk)) ENDDO ENDIF ENDDO ! go to cartesian axis (in units 2pi/a0) CALL cryst_to_cart(nks,xk,bg,1) ! normalize weights to one DO nk=1,nks wk(nk) = wk(nk)/fact ENDDO DEALLOCATE(equiv) DEALLOCATE(xkg,wkk) RETURN END SUBROUTINE kpoint_grid ! !----------------------------------------------------------------------- SUBROUTINE tetrahedra ( nsym, s, time_reversal, t_rev, at, bg, npk, & k1,k2,k3, nk1,nk2,nk3, nks, xk, wk, ntetra, tetra ) !----------------------------------------------------------------------- ! ! Tetrahedron method according to P. E. Bloechl et al, PRB49, 16223 (1994) ! USE kinds, ONLY: DP IMPLICIT NONE ! INTEGER, INTENT(IN):: nks, nsym, t_rev(48), s(3,3,48), npk, & k1, k2, k3, nk1, nk2, nk3, ntetra LOGICAL, INTENT (IN) :: time_reversal real(DP), INTENT(IN) :: at(3,3), bg(3,3), xk(3,npk), wk(npk) ! INTEGER, INTENT(OUT) :: tetra(4,ntetra) ! real(DP) :: xkr(3), deltap(3), deltam(3) real(DP), PARAMETER:: eps=1.0d-5 real(DP), ALLOCATABLE :: xkg(:,:) INTEGER :: nkr, i,j,k, ns, n, nk, ip1,jp1,kp1, & n1,n2,n3,n4,n5,n6,n7,n8 INTEGER, ALLOCATABLE:: equiv(:) ! ! Re-generate a uniform grid of k-points xkg ! nkr=nk1*nk2*nk3 ! ntetra=6*nkr ALLOCATE (xkg( 3,nkr)) ALLOCATE (equiv( nkr)) ! DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! this is nothing but consecutive ordering n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! xkg are the components of the complete grid in crystal axis xkg(1,n) = dble(i-1)/nk1 + dble(k1)/2/nk1 xkg(2,n) = dble(j-1)/nk2 + dble(k2)/2/nk2 xkg(3,n) = dble(k-1)/nk3 + dble(k3)/2/nk3 ENDDO ENDDO ENDDO ! locate k-points of the uniform grid in the list of irreducible k-points ! that was previously calculated ! bring irreducible k-points to crystal axis CALL cryst_to_cart (nks,xk,at,-1) ! DO nk=1,nkr DO n=1,nks DO ns=1,nsym DO i=1,3 xkr(i) = s(i,1,ns) * xk(1,n) + & s(i,2,ns) * xk(2,n) + & s(i,3,ns) * xk(3,n) ENDDO IF(t_rev(ns)==1) xkr = -xkr ! xkr is the n-th irreducible k-point rotated wrt the ns-th symmetry DO i=1,3 deltap(i) = xkr(i)-xkg(i,nk) - nint (xkr(i)-xkg(i,nk) ) deltam(i) = xkr(i)+xkg(i,nk) - nint (xkr(i)+xkg(i,nk) ) ENDDO ! deltap is the difference vector, brought back in the first BZ ! deltam is the same but with k => -k (for time reversal) IF ( sqrt ( deltap(1)**2 + & deltap(2)**2 + & deltap(3)**2 ) < eps .or. ( time_reversal .and. & sqrt ( deltam(1)**2 + & deltam(2)**2 + & deltam(3)**2 ) < eps ) ) THEN ! equivalent irreducible k-point found equiv(nk) = n GOTO 15 ENDIF ENDDO ENDDO ! equivalent irreducible k-point found - something wrong CALL errore('tetrahedra','cannot locate k point',nk) 15 CONTINUE ENDDO DO n=1,nks DO nk=1,nkr IF (equiv(nk)==n) GOTO 20 ENDDO ! this failure of the algorithm may indicate that the displaced grid ! (with k1,k2,k3.ne.0) does not have the full symmetry of the lattice CALL errore('tetrahedra','cannot remap grid on k-point list',n) 20 CONTINUE ENDDO ! bring irreducible k-points back to cartesian axis CALL cryst_to_cart (nks,xk,bg, 1) ! construct tetrahedra DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! n1-n8 are the indices of k-point 1-8 forming a cube ip1 = mod(i,nk1)+1 jp1 = mod(j,nk2)+1 kp1 = mod(k,nk3)+1 n1 = ( k-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1 n2 = ( k-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1 n3 = ( k-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1 n4 = ( k-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1 n5 = (kp1-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1 n6 = (kp1-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1 n7 = (kp1-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1 n8 = (kp1-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1 ! there are 6 tetrahedra per cube (and nk1*nk2*nk3 cubes) n = 6 * ( (k-1) + (j-1)*nk3 + (i-1)*nk3*nk2 ) tetra (1,n+1) = equiv(n1) tetra (2,n+1) = equiv(n2) tetra (3,n+1) = equiv(n3) tetra (4,n+1) = equiv(n6) tetra (1,n+2) = equiv(n2) tetra (2,n+2) = equiv(n3) tetra (3,n+2) = equiv(n4) tetra (4,n+2) = equiv(n6) tetra (1,n+3) = equiv(n1) tetra (2,n+3) = equiv(n3) tetra (3,n+3) = equiv(n5) tetra (4,n+3) = equiv(n6) tetra (1,n+4) = equiv(n3) tetra (2,n+4) = equiv(n4) tetra (3,n+4) = equiv(n6) tetra (4,n+4) = equiv(n8) tetra (1,n+5) = equiv(n3) tetra (2,n+5) = equiv(n6) tetra (3,n+5) = equiv(n7) tetra (4,n+5) = equiv(n8) tetra (1,n+6) = equiv(n3) tetra (2,n+6) = equiv(n5) tetra (3,n+6) = equiv(n6) tetra (4,n+6) = equiv(n7) ENDDO ENDDO ENDDO ! check DO n=1,ntetra DO i=1,4 IF ( tetra(i,n)<1 .or. tetra(i,n)>nks ) & CALL errore ('tetrahedra','something wrong',n) ENDDO ENDDO DEALLOCATE(equiv) DEALLOCATE(xkg) RETURN END SUBROUTINE tetrahedra !----------------------------------------------------------------------- SUBROUTINE kpoint_grid_efield (at, bg, npk, & k1,k2,k3, nk1,nk2,nk3, nks, xk, wk, nspin) !----------------------------------------------------------------------- ! ! Automatic generation of a uniform grid of k-points, for Berry's phase electric field ! USE kinds, ONLY : DP USE bp, ONLY : nppstr_3d, nx_el, l3dstring, efield_cart, efield_cry,& transform_el USE io_global, ONLY : stdout USE noncollin_module, ONLY : noncolin IMPLICIT NONE ! INTEGER, INTENT(in):: npk, k1, k2, k3, nk1, nk2, nk3,nspin real(DP), INTENT(in):: bg(3,3), at(3,3) ! INTEGER, INTENT(out) :: nks real(DP), INTENT(out):: xk(3,npk) real(DP), INTENT(out):: wk(npk) INTEGER :: i,j,k,n,nk,m INTEGER :: nppstr_max real(DP) :: fact, sca real(DP) :: cry_to_cart(3,3) real(DP) :: bg_n(3,3) ! ! DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! this is nothing but consecutive ordering n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! xkg are the components of the complete grid in crystal axis xk(1,n) = dble(i-1)/nk1 + dble(k1)/2/nk1 xk(2,n) = dble(j-1)/nk2 + dble(k2)/2/nk2 xk(3,n) = dble(k-1)/nk3 + dble(k3)/2/nk3 ENDDO ENDDO ENDDO nks=nk1*nk2*nk3 ! go to cartesian axis (in units 2pi/a0) CALL cryst_to_cart(nks,xk,bg,1) fact=1.d0/dble(nks) ! normalize weights to one DO nk=1,nks wk(nk) = fact ENDDO !setup nppstr_3d nppstr_3d(1)=nk1 nppstr_3d(2)=nk2 nppstr_3d(3)=nk3 !allocate and set up correspondence nppstr_max=nk1*nk2*nk3 IF(noncolin) THEN ALLOCATE(nx_el(nppstr_max,3)) ELSE ALLOCATE(nx_el(nppstr_max*nspin,3)) END IF !establih correspondence DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 nx_el(n,3)=n m = (i-1) + (k-1)*nk1 + (j-1)*nk3*nk1 + 1 nx_el(m,1)=n m = (j-1) + (i-1)*nk2 + (k-1)*nk1*nk2 + 1 nx_el(m,2)=n ENDDO ENDDO ENDDO IF(nspin==2) THEN DO i=1,nks nx_el(i+nks,:)=nx_el(i,:)+nks ENDDO ENDIF l3dstring=.true. !setup transfromation matrix ! do i=1,3 ! cry_to_cart(:,i)=bg(:,i) ! sca=sqrt(cry_to_cart(1,i)**2.d0+cry_to_cart(2,i)**2.d0+cry_to_cart(3,i)**2.d0) ! cry_to_cart(:,i)=cry_to_cart(:,i)/sca ! enddo ! call invmat (3, cry_to_cart, transform_el, sca) DO i=1,3 sca=at(1,i)**2.d0+at(2,i)**2.d0+at(3,i)**2.d0 sca=dsqrt(sca) bg_n(1:3,i)=(1.d0/sca)*at(1:3,i) ENDDO DO i=1,3 DO j=1,3 cry_to_cart(j,i)=bg_n(1,j)*bg_n(1,i)+bg_n(2,j)*bg_n(2,i)+bg_n(3,j)*bg_n(3,i) ENDDO ENDDO CALL invmat (3, cry_to_cart, transform_el, sca) !set up electric field !calculate EFFECTIVE electric field on crystal axis efield_cry(:)=0.d0 ! do i=1,3 ! do j=1,3 ! efield_cry(i)=efield_cry(i)+transform_el(i,j)*efield_cart(j) ! enddo ! enddo DO i=1,3 ! do j=1,3 !efield_cry(i)=efield_cry(i)+transform_el(i,j)*(efield_cart(1)*bg_n(1,j)+efield_cart(2)*bg_n(2,j)+efield_cart(3)*bg_n(3,j)) efield_cry(i)=efield_cry(i)+efield_cart(1)*bg_n(1,i)+efield_cart(2)*bg_n(2,i)+efield_cart(3)*bg_n(3,i) !enddo ENDDO !efield_cry(:)=0.001d0 !efield_cry(3)=0.001d0 WRITE(*,*) 'EFIELD CART', efield_cart(1),efield_cart(2), efield_cart(3) WRITE(*,*) 'EFIELD CRY', efield_cry(1),efield_cry(2), efield_cry(3) WRITE(*,*) 'BG1', bg(1,1),bg(2,1),bg(3,1) WRITE(*,*) 'BG1', at(1,1),at(2,1),at(3,1) ! WRITE(*,*) 'nx_el1', nx_el(1:nks,1) ! write(*,*) 'nx_el2', nx_el(1:nks,2) ! write(*,*) 'nx_el3', nx_el(1:nks,3) RETURN END SUBROUTINE kpoint_grid_efield espresso-5.0.2/PW/src/allocate_wfc.f900000644000700200004540000000250212053145627016444 0ustar marsamoscm! ! Copyright (C) 2001-2008 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE allocate_wfc() !---------------------------------------------------------------------------- ! ! ... dynamical allocation of arrays: wavefunctions ! ... must be called after allocate_nlpot ! USE io_global, ONLY : stdout USE wvfct, ONLY : npwx, nbnd USE basis, ONLY : natomwfc USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : swfcatom, lda_plus_u, U_projection USE noncollin_module, ONLY : noncolin, npol USE wavefunctions_module, ONLY : evc USE wannier_new, ONLY : use_wannier ! IMPLICIT NONE ! ! IF (noncolin) THEN ALLOCATE( evc( npwx*npol, nbnd ) ) IF ( ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) & .OR. one_atom_occupations ) ALLOCATE( swfcatom( npwx*npol, natomwfc) ) ELSE ALLOCATE( evc( npwx, nbnd ) ) IF ( ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) .OR. use_wannier & .OR. one_atom_occupations ) ALLOCATE( swfcatom( npwx, natomwfc) ) ENDIF ! RETURN ! END subroutine allocate_wfc espresso-5.0.2/PW/src/wannier_init.f900000644000700200004540000000472612053145627016521 0ustar marsamoscm! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- SUBROUTINE wannier_init(hwwa) !---------------------------------------------------------------------- ! ! ... This routine ALLOCATEs all dynamically ALLOCATEd arrays for wannier calc ! USE wannier_new USE wvfct, only : nbnd, npwx USE input_parameters, only: constrain_pot, wan_data USE lsda_mod, only: nspin USE ions_base, only : nat USE basis, only : natomwfc USE constants, only: rytoev USE klist, only: nks USE io_files USE buffers USE ldaU, ONLY : swfcatom, U_projection USE noncollin_module, ONLY : npol IMPLICIT NONE LOGICAL,INTENT(IN) :: hwwa ! have we Wannier already? LOGICAL :: exst = .FALSE.,opnd INTEGER :: i ALLOCATE(pp(nwan,nbnd)) ALLOCATE(wan_in(nwan,nspin)) ALLOCATE(wannier_energy(nwan,nspin)) ALLOCATE(wannier_occ(nwan,nwan,nspin)) ALLOCATE(coef(natomwfc,nwan,nspin)) coef = ZERO wannier_energy = ZERO wannier_occ = ZERO wan_in(1:nwan,1:nspin) = wan_data(1:nwan,1:nspin) IF(.NOT. hwwa) THEN IF(use_energy_int) THEN do i=1,nwan wan_in(i,:)%bands_from = (1.d0/rytoev)*wan_in(i,:)%bands_from wan_in(i,:)%bands_to = (1.d0/rytoev)*wan_in(i,:)%bands_to end do END IF CALL wannier_check() end if ALLOCATE(wan_pot(nwan,nspin)) wan_pot(1:nwan,1:nspin) = constrain_pot(1:nwan,1:nspin) !now open files to store projectors and wannier functions nwordwpp = nwan*nbnd*npol nwordwf = nwan*npwx*npol CALL open_buffer( iunwpp, 'wproj', nwordwpp, nks, exst ) CALL open_buffer( iunwf, 'wwf', nwordwf, nks, exst ) ! For atomic wavefunctions INQUIRE( UNIT = iunigk, OPENED = opnd ) IF(.NOT. opnd) CALL seqopn( iunigk, 'igk', 'UNFORMATTED', exst ) IF(.NOT. ALLOCATED(swfcatom)) ALLOCATE( swfcatom( npwx, natomwfc)) U_projection = 'ortho-atomic' nwordatwfc = 2*npwx*natomwfc*npol INQUIRE( UNIT = iunat, OPENED = opnd ) IF(.NOT. opnd) CALL open_buffer( iunat, 'atwfc', nwordatwfc/2, nks, exst ) INQUIRE( UNIT = iunsat, OPENED = opnd ) IF(.NOT. opnd) CALL open_buffer( iunsat, 'satwfc', nwordatwfc/2, nks, exst ) RETURN ! END SUBROUTINE wannier_init espresso-5.0.2/PW/src/restart_in_ions.f900000644000700200004540000000601412053145630017217 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine restart_in_ions (iter, ik_, dr2) !----------------------------------------------------------------------- USE kinds, ONLY: DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc, iunres, prefix, seqopn USE cell_base, ONLY: omega, alat USE ions_base, ONLY : nat, ityp, ntyp => nsp USE ener, ONLY: etot, ehart, etxc, vtxc, epaw USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft USE gvect, ONLY: gstart, g, gg, nl, ngm USE klist, ONLY: nks USE lsda_mod, ONLY: nspin USE scf, ONLY : rho, rho_core, rhog_core, v, vnew USE ldaU, ONLY : eth USE control_flags, ONLY: restart, tr2, ethr USE wvfct, ONLY: nbnd, et USE wavefunctions_module, ONLY : evc, psic USE uspp, ONLY: becsum USE paw_variables, ONLY: okpaw, ddd_PAW USE paw_onecenter, ONLY : PAW_potential implicit none character :: where * 20 ! are we in the right place? integer :: ik, is, ibnd, ik_, iter ! counters ! last completed kpoint ! last completed iteration ! check for bravais lattice ! check for number of atoms logical :: exst real(DP) :: dr2, charge, etotefield call seqopn (iunres, 'restart', 'unformatted', exst) if (.not.exst) goto 10 read (iunres, err = 10, end = 10) where ! ! is this the right place where to restart ? ! if (where.ne.'IONS') then close (unit = iunres, status = 'keep') WRITE( stdout,*) where, '.......?' call errore ('restart_in_ions', ' we should not be here ...!', 1) endif ! ! read recover information ! read (iunres, err=10, end=10) ( (et(ibnd,ik), ibnd=1,nbnd), ik=1,nks) read (iunres, err=10, end=10) etot, tr2 ! vnew = V(in)-V(out) is needed in the scf correction term to forces read (iunres, err=10, end=10) vnew%of_r close (unit = iunres, status = 'keep') WRITE( stdout, '(5x,"Calculation restarted from IONS ",i3)') ! ! store wavefunctions in memory here if there is just one k-point ! (otherwise it is never done) ! if (nks.eq.1) call davcio (evc,2*nwordwfc, iunwfc, 1, -1) ! ! recalculate rho ! call sum_band ! ! ... bring rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rho%of_g(:,is) = psic(nl(:)) ! END DO ! recalculate etxc, vtxc, ehart, needed by stress calculation ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! ! restart procedure completed ! restart = .false. return ! ! in case of problems ! 10 call infomsg ('restart_in_ions', 'problems in reading recover file') return end subroutine restart_in_ions espresso-5.0.2/PW/src/regterg.f900000644000700200004540000011757412053145630015472 0ustar marsamoscm! ! Copyright (C) 2003-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! ! !---------------------------------------------------------------------------- SUBROUTINE regterg( npw, npwx, nvec, nvecx, evc, ethr, & uspp, gstart, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an uspp matrix, evc is a complex vector ! ... (real wavefunctions with only half plane waves stored) ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, gstart ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set ! (the basis set is refreshed when its dimension would exceed nvecx) COMPLEX(DP), INTENT(INOUT) :: evc(npwx,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence: root improvement is stopped, ! when two consecutive estimates of the root differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : S|psi> not needed INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already been rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, n, m, nb1, ibnd ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! do-loop counters ! counter on the bands INTEGER :: ierr REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:), ew(:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! eigenvectors of the Hamiltonian ! eigenvalues of the reduced hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:), hpsi(:,:), spsi(:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands INTEGER :: npw2, npwx2 ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,psi,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! CALL start_clock( 'regterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'regter', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! ALLOCATE( psi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate psi ', ABS(ierr) ) ALLOCATE( hpsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' regterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ALLOCATE( sr( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate sr ', ABS(ierr) ) ALLOCATE( hr( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate hr ', ABS(ierr) ) ALLOCATE( vr( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate vr ', ABS(ierr) ) ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate ew ', ABS(ierr) ) ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate conv ', ABS(ierr) ) ! npw2 = 2*npw npwx2 = 2*npwx notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,1:nvec) = evc(:,1:nvec) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,1:nvec) = CMPLX( DBLE( psi(1,1:nvec) ), 0.D0 ,kind=DP) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hr contains the projection of the hamiltonian onto the reduced ! ... space vr contains the eigenvectors of hr ! hr(:,:) = 0.D0 sr(:,:) = 0.D0 vr(:,:) = 0.D0 ! CALL DGEMM( 'T', 'N', nbase, nbase, npw2, 2.D0 , & psi, npwx2, hpsi, npwx2, 0.D0, hr, nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase, nbase, -1.D0, psi, npwx2, hpsi, npwx2, hr, nvecx ) ! CALL mp_sum( hr( :, 1:nbase ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL DGEMM( 'T', 'N', nbase, nbase, npw2, 2.D0, & psi, npwx2, spsi, npwx2, 0.D0, sr, nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase, nbase, -1.D0, psi, npwx2, spsi, npwx2, sr, nvecx ) ! ELSE ! CALL DGEMM( 'T', 'N', nbase, nbase, npw2, 2.D0, & psi, npwx2, psi, npwx2, 0.D0, sr, nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase, nbase, -1.D0, psi, npwx2, psi, npwx2, sr, nvecx ) ! END IF ! CALL mp_sum( sr( :, 1:nbase ), intra_bgrp_comm ) ! IF ( lrot ) THEN ! DO n = 1, nbase ! e(n) = hr(n,n) vr(n,n) = 1.D0 ! END DO ! ELSE ! ! ... diagonalize the reduced hamiltonian ! CALL rdiaghg( nbase, nvec, hr, sr, nvecx, ew, vr ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'regterg:update' ) ! np = 0 ! DO n = 1, nvec ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! IF ( np /= n ) vr(:,np) = vr(:,n) ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! IF ( uspp ) THEN ! CALL DGEMM( 'N', 'N', npw2, notcnv, nbase, 1.D0, & spsi, npwx2, vr, nvecx, 0.D0, psi(1,nb1), npwx2 ) ! ELSE ! CALL DGEMM( 'N', 'N', npw2, notcnv, nbase, 1.D0, & psi, npwx2, vr, nvecx, 0.D0, psi(1,nb1), npwx2 ) ! END IF ! DO np = 1, notcnv ! psi(:,nbase+np) = - ew(nbase+np) * psi(:,nbase+np) ! END DO ! CALL DGEMM( 'N', 'N', npw2, notcnv, nbase, 1.D0, & hpsi, npwx2, vr, nvecx, 1.D0, psi(1,nb1), npwx2 ) ! CALL stop_clock( 'regterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, 1, psi(1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (rdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! ew(n) = 2.D0 * ddot( npw2, psi(1,nbase+n), 1, psi(1,nbase+n), 1 ) ! IF ( gstart == 2 ) ew(n) = ew(n) - psi(1,nbase+n) * psi(1,nbase+n) ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,nbase+n) = psi(:,nbase+n) / SQRT( ew(n) ) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,nbase+n) = CMPLX( DBLE(psi(1,nbase+n)), 0.D0 ,kind=DP) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! CALL h_psi( npwx, npw, notcnv, psi(1,nb1), hpsi(1,nb1) ) ! IF ( uspp ) CALL s_psi( npwx, npw, notcnv, psi(1,nb1), spsi(1,nb1) ) ! ! ... update the reduced hamiltonian ! CALL start_clock( 'regterg:overlap' ) ! CALL DGEMM( 'T', 'N', nbase+notcnv, notcnv, npw2, 2.D0, psi, & npwx2, hpsi(1,nb1), npwx2, 0.D0, hr(1,nb1), nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase+notcnv, notcnv, -1.D0, psi, & npwx2, hpsi(1,nb1), npwx2, hr(1,nb1), nvecx ) ! CALL mp_sum( hr( :, nb1 : nb1+notcnv-1 ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL DGEMM( 'T', 'N', nbase+notcnv, notcnv, npw2, 2.D0, psi, & npwx2, spsi(1,nb1), npwx2, 0.D0, sr(1,nb1), nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase+notcnv, notcnv, -1.D0, psi, & npwx2, spsi(1,nb1), npwx2, sr(1,nb1), nvecx ) ! ELSE ! CALL DGEMM( 'T', 'N', nbase+notcnv, notcnv, npw2, 2.D0, psi, & npwx2, psi(1,nb1), npwx2, 0.D0, sr(1,nb1) , nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase+notcnv, notcnv, -1.D0, psi, & npwx2, psi(1,nb1), npwx2, sr(1,nb1), nvecx ) ! END IF ! CALL mp_sum( sr( :, nb1 : nb1+notcnv-1 ), intra_bgrp_comm ) ! CALL stop_clock( 'regterg:overlap' ) ! nbase = nbase + notcnv ! DO n = 1, nbase ! DO m = n + 1, nbase ! hr(m,n) = hr(n,m) sr(m,n) = sr(n,m) ! END DO ! END DO ! ! ... diagonalize the reduced hamiltonian ! CALL rdiaghg( nbase, nvec, hr, sr, nvecx, ew, vr ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. & nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'regterg:last' ) ! CALL DGEMM( 'N', 'N', npw2, nvec, nbase, 1.D0, & psi, npwx2, vr, nvecx, 0.D0, evc, npwx2 ) ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! WRITE( stdout, '(5X,"WARNING: ",I5, & & " eigenvalues not converged in regterg")' ) notcnv ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,1:nvec) = evc(:,1:nvec) ! IF ( uspp ) THEN ! CALL DGEMM( 'N', 'N', npw2, nvec, nbase, 1.D0, spsi, & npwx2, vr, nvecx, 0.D0, psi(1,nvec+1), npwx2 ) ! spsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) ! END IF ! CALL DGEMM( 'N', 'N', npw2, nvec, nbase, 1.D0, hpsi, & npwx2, vr, nvecx, 0.D0, psi(1,nvec+1), npwx2 ) ! hpsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! hr(:,1:nbase) = 0.D0 sr(:,1:nbase) = 0.D0 vr(:,1:nbase) = 0.D0 ! DO n = 1, nbase ! hr(n,n) = e(n) sr(n,n) = 1.D0 vr(n,n) = 1.D0 ! END DO ! CALL stop_clock( 'regterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( conv ) DEALLOCATE( ew ) DEALLOCATE( vr ) DEALLOCATE( hr ) DEALLOCATE( sr ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'regterg' ) ! RETURN ! END SUBROUTINE regterg ! ! ! Subroutine with distributed matrixes ! (written by Carlo Cavazzoni) ! !---------------------------------------------------------------------------- SUBROUTINE pregterg( npw, npwx, nvec, nvecx, evc, ethr, & uspp, gstart, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an uspp matrix, evc is a complex vector ! ... (real wavefunctions with only half plane waves stored) ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_global, ONLY : intra_bgrp_comm,& nbgrp, nproc_bgrp, me_bgrp, root_bgrp, & ortho_comm, np_ortho, me_ortho, ortho_comm_id, leg_ortho USE descriptors, ONLY : la_descriptor, descla_init, descla_local_dims USE parallel_toolkit, ONLY : dsqmdst, dsqmcll, dsqmred, dsqmsym USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, gstart ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set ! (the basis set is refreshed when its dimension would exceed nvecx) COMPLEX(DP), INTENT(INOUT) :: evc(npwx,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence: root improvement is stopped, ! when two consecutive estimates of the root differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : S|psi> not needed INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already be rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, n, m, nb1 ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! do-loop counters INTEGER :: ierr REAL(DP), ALLOCATABLE :: ew(:) REAL(DP), ALLOCATABLE :: hl(:,:), sl(:,:), vl(:,:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! eigenvectors of the Hamiltonian ! eigenvalues of the reduced hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:), hpsi(:,:), spsi(:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands INTEGER :: npw2, npwx2 TYPE(la_descriptor) :: desc, desc_old INTEGER, ALLOCATABLE :: irc_ip( : ) INTEGER, ALLOCATABLE :: nrc_ip( : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra INTEGER, ALLOCATABLE :: notcnv_ip( : ) INTEGER, ALLOCATABLE :: ic_notcnv( : ) ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,psi,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! ! CALL start_clock( 'regterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'regter', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! ALLOCATE( psi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate psi ', ABS(ierr) ) ALLOCATE( hpsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ! ... Initialize the matrix descriptor ! ALLOCATE( ic_notcnv( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate ic_notcnv ', ABS(ierr) ) ALLOCATE( notcnv_ip( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate notcnv_ip ', ABS(ierr) ) ALLOCATE( irc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate irc_ip ', ABS(ierr) ) ALLOCATE( nrc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate nrc_ip ', ABS(ierr) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate rank_ip ', ABS(ierr) ) ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! only procs involved in the diagonalization need to allocate local ! matrix block. ! ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) ! ELSE ! ALLOCATE( vl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( sl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) ALLOCATE( hl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) ! END IF ! ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate ew ', ABS(ierr) ) ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate conv ', ABS(ierr) ) ! npw2 = 2*npw npwx2 = 2*npwx notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,1:nvec) = evc(:,1:nvec) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,1:nvec) = CMPLX( DBLE( psi(1,1:nvec) ), 0.D0 ,kind=DP) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hl contains the projection of the hamiltonian onto the reduced ! ... space, vl contains the eigenvectors of hl. Remember hl, vl and sl ! ... are all distributed across processors, global replicated matrixes ! ... here are never allocated ! CALL compute_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL compute_distmat( sl, psi, spsi ) ! ELSE ! CALL compute_distmat( sl, psi, psi ) ! END IF ! IF ( lrot ) THEN ! CALL set_e_from_h() ! CALL set_to_identity( vl, desc ) ! ELSE ! ! ... diagonalize the reduced hamiltonian ! Calling block parallel algorithm ! CALL prdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'regterg:update' ) ! CALL reorder_v() ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! CALL hpsi_dot_v() ! CALL stop_clock( 'regterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, 1, psi(1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (cdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! ew(n) = 2.D0 * ddot( npw2, psi(1,nbase+n), 1, psi(1,nbase+n), 1 ) ! IF ( gstart == 2 ) ew(n) = ew(n) - psi(1,nbase+n) * psi(1,nbase+n) ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,nbase+n) = psi(:,nbase+n) / SQRT( ew(n) ) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,nbase+n) = CMPLX( DBLE(psi(1,nbase+n)), 0.D0 ,kind=DP) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! CALL h_psi( npwx, npw, notcnv, psi(1,nb1), hpsi(1,nb1) ) ! IF ( uspp ) CALL s_psi( npwx, npw, notcnv, psi(1,nb1), spsi(1,nb1) ) ! ! ... update the reduced hamiltonian ! ! we need to save the old descriptor in order to redistribute matrices ! desc_old = desc ! ! ... RE-Initialize the matrix descriptor ! CALL desc_init( nbase+notcnv, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! redistribute hl and sl (see dsqmred), since the dimension of the subspace has changed ! vl = hl DEALLOCATE( hl ) ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) CALL dsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, hl, nx, desc ) vl = sl DEALLOCATE( sl ) ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) CALL dsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, sl, nx, desc ) DEALLOCATE( vl ) ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) END IF ! CALL start_clock( 'regterg:overlap' ) ! CALL update_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL update_distmat( sl, psi, spsi ) ! ELSE ! CALL update_distmat( sl, psi, psi ) ! END IF ! CALL stop_clock( 'regterg:overlap' ) ! nbase = nbase + notcnv ! ! ... diagonalize the reduced hamiltonian ! Call block parallel algorithm ! CALL prdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'regterg:last' ) ! CALL refresh_evc() ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! WRITE( stdout, '(5X,"WARNING: ",I5, & & " eigenvalues not converged")' ) notcnv ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,1:nvec) = evc(:,1:nvec) ! IF ( uspp ) THEN ! CALL refresh_spsi() ! END IF ! CALL refresh_hpsi() ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! note that nx has been changed by desc_init ! we need to re-alloc with the new size. ! DEALLOCATE( vl, hl, sl ) ALLOCATE( vl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( hl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) ALLOCATE( sl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) ! END IF ! CALL set_h_from_e( ) ! CALL set_to_identity( vl, desc ) CALL set_to_identity( sl, desc ) ! CALL stop_clock( 'regterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( vl, hl, sl ) ! DEALLOCATE( rank_ip ) DEALLOCATE( ic_notcnv ) DEALLOCATE( irc_ip ) DEALLOCATE( nrc_ip ) DEALLOCATE( notcnv_ip ) DEALLOCATE( conv ) DEALLOCATE( ew ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'regterg' ) ! RETURN ! ! CONTAINS ! ! SUBROUTINE desc_init( nsiz, desc, irc_ip, nrc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc INTEGER, INTENT(OUT) :: irc_ip(:) INTEGER, INTENT(OUT) :: nrc_ip(:) INTEGER :: i, j, rank ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 CALL descla_local_dims( irc_ip( j + 1 ), nrc_ip( j + 1 ), desc%n, desc%nx, np_ortho(1), j ) DO i = 0, desc%npr - 1 CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE set_to_identity( distmat, desc ) TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP), INTENT(OUT) :: distmat(:,:) INTEGER :: i distmat = 0_DP IF( desc%myc == desc%myr .AND. desc%active_node > 0 ) THEN DO i = 1, desc%nc distmat( i, i ) = 1_DP END DO END IF RETURN END SUBROUTINE set_to_identity ! ! SUBROUTINE reorder_v() ! INTEGER :: ipc, ipr INTEGER :: nc, ic INTEGER :: nl, npl ! np = 0 ! notcnv_ip = 0 ! n = 0 ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! npl = 0 ! IF( ic <= nvec ) THEN ! DO nl = 1, min( nvec - ic + 1, nc ) ! n = n + 1 ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 npl = npl + 1 IF( npl == 1 ) ic_notcnv( ipc ) = np ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! notcnv_ip( ipc ) = notcnv_ip( ipc ) + 1 ! IF ( npl /= nl ) THEN IF( la_proc .AND. desc%myc == ipc-1 ) THEN vl( :, npl) = vl( :, nl ) END IF END IF ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! END IF ! END DO ! END SUBROUTINE reorder_v ! ! SUBROUTINE hpsi_dot_v() ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, notcl, root, np REAL(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP), ALLOCATABLE :: ptmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ALLOCATE( ptmp( npwx, nx ) ) DO ipc = 1, desc%npc ! IF( notcnv_ip( ipc ) > 0 ) THEN notcl = notcnv_ip( ipc ) ic = ic_notcnv( ipc ) ptmp = 0.0d0 beta = 0.0d0 DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN vtmp(:,1:notcl) = vl(:,1:notcl) END IF CALL mp_bcast( vtmp(:,1:notcl), root, intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL DGEMM( 'N', 'N', npw2, notcl, nr, 1.D0, & spsi( 1, ir ), npwx2, vtmp, nx, beta, psi(1,nb1+ic-1), npwx2 ) ! ELSE ! CALL DGEMM( 'N', 'N', npw2, notcl, nr, 1.D0, & psi( 1, ir ), npwx2, vtmp, nx, beta, psi(1,nb1+ic-1), npwx2 ) ! END IF ! CALL DGEMM( 'N', 'N', npw2, notcl, nr, 1.D0, & hpsi( 1, ir ), npwx2, vtmp, nx, 1.D0, ptmp, npwx2 ) beta = 1.0d0 END DO DO np = 1, notcl ! psi(:,nbase+np+ic-1) = ptmp(:,np) - ew(nbase+np+ic-1) * psi(:,nbase+np+ic-1) ! END DO ! END IF ! END DO DEALLOCATE( vtmp ) DEALLOCATE( ptmp ) RETURN END SUBROUTINE hpsi_dot_v ! ! SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = 0.0d0 DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & psi(1,ir), npwx2, vl, nx, beta, evc(1,ic), npwx2 ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & psi(1,ir), npwx2, vtmp, nx, beta, evc(1,ic), npwx2 ) END IF ! beta = 1.0d0 END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc ! ! SUBROUTINE refresh_spsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = 0_DP ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & spsi(1,ir), npwx2, vl, nx, beta, psi(1,nvec+ic), npwx2 ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & spsi(1,ir), npwx2, vtmp, nx, beta, psi(1,nvec+ic), npwx2 ) END IF ! beta = 1_DP END DO ! END IF ! END DO ! spsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_spsi ! ! ! SUBROUTINE refresh_hpsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = 0.0d0 ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & hpsi(1,ir), npwx2, vl, nx, beta, psi(1,nvec+ic), npwx2 ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & hpsi(1,ir), npwx2, vtmp, nx, beta, psi(1,nvec+ic), npwx2 ) END IF ! beta = 1.0d0 END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) hpsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) RETURN END SUBROUTINE refresh_hpsi ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = 0.0d0 ! DO ipc = 1, desc%npc ! loop on column procs ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! DO ipr = 1, ipc ! use symmetry for the loop on row procs ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0 , & v(1,ir), npwx2, w(1,ic), npwx2, 0.D0, work, nx ) IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v(1,ir), npwx2, w(1,ic), npwx2, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! CALL dsqmsym( nbase, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat ! ! SUBROUTINE update_distmat( dm, v, w ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root, icc, ii REAL(DP) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: vtmp( :, : ) ALLOCATE( vtmp( nx, nx ) ) ! vtmp = 0.0d0 ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic+nc-1 >= nb1 ) THEN nc = MIN( nc, ic+nc-1 - nb1 + 1 ) IF( ic >= nb1 ) THEN ii = ic icc = 1 ELSE ii = nb1 icc = nb1-ic+1 END IF DO ipr = 1, ipc ! desc%npr use symmetry ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0, v( 1, ir ), & npwx2, w(1,ii), npwx2, 0.D0, vtmp, nx ) ! IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v( 1, ir ), npwx2, w(1,ii), npwx2, vtmp, nx ) IF( (desc%active_node > 0) .AND. (ipr-1 == desc%myr) .AND. (ipc-1 == desc%myc) ) THEN CALL mp_root_sum( vtmp(:,1:nc), dm(:,icc:icc+nc-1), root, intra_bgrp_comm ) ELSE CALL mp_root_sum( vtmp(:,1:nc), dm, root, intra_bgrp_comm ) END IF END DO ! END IF ! END DO ! CALL dsqmsym( nbase+notcnv, dm, nx, desc ) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE update_distmat ! ! ! SUBROUTINE set_e_from_h() INTEGER :: nc, ic, i e(1:nbase) = 0.0d0 IF( desc%myc == desc%myr .AND. la_proc ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc e( i + ic - 1 ) = hl( i, i ) END DO END IF CALL mp_sum( e(1:nbase), intra_bgrp_comm ) RETURN END SUBROUTINE set_e_from_h ! SUBROUTINE set_h_from_e() INTEGER :: nc, ic, i IF( la_proc ) THEN hl = 0.0d0 IF( desc%myc == desc%myr ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc hl(i,i) = e( i + ic - 1 ) END DO END IF END IF RETURN END SUBROUTINE set_h_from_e ! END SUBROUTINE pregterg espresso-5.0.2/PW/src/c_bands.f900000644000700200004540000005243512053145630015416 0ustar marsamoscm ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE c_bands( iter, ik_, dr2 ) !---------------------------------------------------------------------------- ! ! ... Driver routine for Hamiltonian diagonalization routines ! ... It reads the Hamiltonian and an initial guess of the wavefunctions ! ... from a file and computes initialization quantities for the ! ... diagonalization routines. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunigk, nwordatwfc, iunsat, iunwfc, & nwordwfc USE buffers, ONLY : get_buffer, save_buffer USE klist, ONLY : nkstot, nks, xk, ngk USE uspp, ONLY : vkb, nkb USE gvect, ONLY : g USE wvfct, ONLY : et, nbnd, npwx, igk, npw, current_k USE control_flags, ONLY : ethr, isolve, io_level USE ldaU, ONLY : lda_plus_u, swfcatom, U_projection USE lsda_mod, ONLY : current_spin, lsda, isk USE wavefunctions_module, ONLY : evc USE bp, ONLY : lelfield USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... First the I/O variables ! INTEGER :: ik_, iter ! k-point already done ! current iterations REAL(DP),INTENT(IN) :: dr2 ! current accuracy of self-consistency ! ! ... local variables ! REAL(DP) :: avg_iter ! average number of H*psi products INTEGER :: ik ! counter on k points ! IF ( ik_ == nks ) THEN ! ik_ = 0 ! RETURN ! END IF ! CALL start_clock( 'c_bands' ) ! IF ( isolve == 0 ) THEN ! WRITE( stdout, '(5X,"Davidson diagonalization with overlap")' ) ! ELSE IF ( isolve == 1 ) THEN ! WRITE( stdout, '(5X,"CG style diagonalization")') ! ELSE ! CALL errore ( 'c_bands', 'invalid type of diagonalization', isolve) !!! WRITE( stdout, '(5X,"DIIS style diagonalization")') ! END IF ! avg_iter = 0.D0 ! if ( nks > 1 ) REWIND( iunigk ) ! ! ... For each k point diagonalizes the hamiltonian ! k_loop: DO ik = 1, nks ! current_k = ik ! IF ( lsda ) current_spin = isk(ik) ! ! ... Reads the list of indices k+G <-> G of this k point ! IF ( nks > 1 ) READ( iunigk ) igk ! npw = ngk(ik) ! ! ... do not recalculate k-points if restored from a previous run ! IF ( ik <= ik_ ) THEN ! CYCLE k_loop ! END IF ! ! ... various initializations ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... kinetic energy ! call g2_kin( ik ) ! ! ... read in wavefunctions from the previous iteration ! IF ( nks > 1 .OR. (io_level > 1) .OR. lelfield ) & CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! ! ... Needed for LDA+U ! IF ( lda_plus_u .AND. (U_projection .NE. 'pseudo') ) & CALL davcio( swfcatom, nwordatwfc, iunsat, ik, -1 ) ! ! ... diagonalization of bands for k-point ik ! call diag_bands ( iter, ik, avg_iter ) ! ! ... save wave-functions to be used as input for the ! ... iterative diagonalization of the next scf iteration ! ... and for rho calculation ! IF ( nks > 1 .OR. (io_level > 1) .OR. lelfield ) & CALL save_buffer ( evc, nwordwfc, iunwfc, ik ) ! ! ... save restart information ! IF ( io_level > 1 ) CALL save_in_cbands( iter, ik, dr2 ) ! END DO k_loop ! ik_ = 0 ! CALL mp_sum( avg_iter, inter_pool_comm ) ! avg_iter = avg_iter / nkstot ! WRITE( stdout, & '( 5X,"ethr = ",1PE9.2,", avg # of iterations =",0PF5.1 )' ) & ethr, avg_iter ! CALL stop_clock( 'c_bands' ) ! RETURN ! END SUBROUTINE c_bands ! !---------------------------------------------------------------------------- SUBROUTINE diag_bands( iter, ik, avg_iter ) !---------------------------------------------------------------------------- ! ! ... Driver routine for diagonalization at each k-point ! ... Two types of iterative diagonalizations are currently used: ! ... a) Davidson algorithm (all-band) ! ... b) Conjugate Gradient (band-by-band) ! ... ! ... internal procedures : ! ! ... c_bands_gamma() : optimized algorithms for gamma sampling of the BZ ! ... (real Hamiltonian) ! ... c_bands_k() : general algorithm for arbitrary BZ sampling ! ... (complex Hamiltonian) ! ... test_exit_cond() : the test on the iterative diagonalization ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : nwordwfc, iunefieldp, iunefieldm USE uspp, ONLY : vkb, nkb, okvan USE gvect, ONLY : gstart USE wvfct, ONLY : g2kin, nbndx, et, nbnd, npwx, npw, & current_k, btype USE control_flags, ONLY : ethr, lscf, max_cg_iter, isolve, istep, & gamma_only, use_para_diag USE noncollin_module, ONLY : noncolin, npol USE wavefunctions_module, ONLY : evc USE g_psi_mod, ONLY : h_diag, s_diag USE scf, ONLY : v_of_0 USE bp, ONLY : lelfield, evcel, evcelp, evcelm, bec_evcel, gdir, l3dstring, & & efield, efield_cry USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE klist, ONLY : nks USE mp_global, ONLY : nproc_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iter, ik ! REAL (KIND=DP), INTENT(INOUT) :: avg_iter ! REAL (KIND=DP) :: cg_iter ! (weighted) number of iterations in Conjugate-Gradient INTEGER :: ig, dav_iter, ntry, notconv ! number of iterations in Davidson ! number or repeated call to diagonalization in case of non convergence ! number of notconverged elements INTEGER :: ierr ! LOGICAL :: lrot ! .TRUE. if the wfc have already be rotated ! ALLOCATE( h_diag( npwx, npol ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' diag_bands ', ' cannot allocate h_diag ', ABS(ierr) ) ! ALLOCATE( s_diag( npwx, npol ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' diag_bands ', ' cannot allocate s_diag ', ABS(ierr) ) ! ! ... allocate space for - used in h_psi and s_psi ! IF ( nbndx > npwx*nproc_bgrp ) & CALL errore ( 'diag_bands', 'too many bands, or too few plane waves',1) ! CALL allocate_bec_type ( nkb, nbnd, becp, intra_bgrp_comm ) ! IF ( gamma_only ) THEN ! CALL c_bands_gamma() ! ELSE ! CALL c_bands_k() ! END IF ! ! ... deallocate work space ! CALL deallocate_bec_type ( becp ) DEALLOCATE( s_diag ) DEALLOCATE( h_diag ) ! IF ( notconv > MAX( 5, nbnd / 4 ) ) THEN ! CALL errore( 'c_bands', & & 'too many bands are not converged', 1 ) ! ELSE IF ( notconv > 0 ) THEN ! WRITE( stdout, '(5X,"c_bands: ",I2, & & " eigenvalues not converged")' ) notconv ! END IF ! RETURN ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE c_bands_gamma() !----------------------------------------------------------------------- ! ! ... Diagonalization of a real Hamiltonian ! IMPLICIT NONE ! IF ( isolve == 1 ) THEN ! ! ... Conjugate-Gradient diagonalization ! ! ... h_diag is the precondition matrix ! FORALL( ig = 1 : npw ) ! h_diag(ig,1) = 1.D0 + g2kin(ig) + & SQRT( 1.D0 + ( g2kin(ig) - 1.D0 )**2 ) ! END FORALL ! ntry = 0 ! CG_loop : DO ! lrot = ( iter == 1 .AND. istep ==0 .AND. ntry == 0 ) ! IF ( .NOT. lrot ) THEN ! CALL rotate_wfc ( npwx, npw, nbnd, gstart, nbnd, & evc, npol, okvan, evc, et(1,ik) ) ! avg_iter = avg_iter + 1.D0 ! END IF ! CALL rcgdiagg( npwx, npw, nbnd, evc, et(1,ik), btype(1,ik), & h_diag, ethr, max_cg_iter, .NOT. lscf, notconv, cg_iter ) ! avg_iter = avg_iter + cg_iter ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT CG_loop ! END DO CG_loop ! ELSE ! ! ... Davidson diagonalization ! ! ... h_diag are the diagonal matrix elements of the ! ... hamiltonian used in g_psi to evaluate the correction ! ... to the trial eigenvectors ! h_diag(1:npw, 1) = g2kin(1:npw) + v_of_0 ! CALL usnldiag( h_diag, s_diag ) ! ntry = 0 ! david_loop: DO ! lrot = ( iter == 1 ) ! IF ( use_para_diag ) then ! CALL pregterg( npw, npwx, nbnd, nbndx, evc, ethr, & okvan, gstart, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) ! ELSE ! CALL regterg ( npw, npwx, nbnd, nbndx, evc, ethr, & okvan, gstart, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) END IF ! avg_iter = avg_iter + dav_iter ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT david_loop ! END DO david_loop ! END IF ! RETURN ! END SUBROUTINE c_bands_gamma ! !----------------------------------------------------------------------- SUBROUTINE c_bands_k() !----------------------------------------------------------------------- ! ! ... Complex Hamiltonian diagonalization ! IMPLICIT NONE ! ! ... here the local variables ! INTEGER :: ipol, ierr REAL(dp) :: eps ! --- Define a small number --- eps=0.000001d0 ! IF ( lelfield ) THEN ! ! ... save wave functions from previous iteration for electric field ! evcel = evc ! !... read projectors from disk ! if(.not.l3dstring .and. ABS(efield)>eps ) then CALL davcio(evcelm(:,:,gdir), 2*nwordwfc,iunefieldm,ik+(gdir-1)*nks,-1) CALL davcio(evcelp(:,:,gdir), 2*nwordwfc,iunefieldp,ik+(gdir-1)*nks,-1) else do ipol=1,3 if(ABS(efield_cry(ipol))>eps) then CALL davcio(evcelm(:,:,ipol), 2*nwordwfc,iunefieldm,ik+(ipol-1)*nks,-1) CALL davcio(evcelp(:,:,ipol), 2*nwordwfc,iunefieldp,ik+(ipol-1)*nks,-1) endif enddo endif ! IF ( okvan ) THEN ! ALLOCATE( bec_evcel ( nkb, nbnd ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_k ', ' cannot allocate bec_evcel ', ABS( ierr ) ) ! CALL calbec(npw, vkb, evcel, bec_evcel) ! ENDIF ! END IF ! IF ( isolve == 1 ) THEN ! ! ... Conjugate-Gradient diagonalization ! ! ... h_diag is the precondition matrix ! h_diag = 1.D0 ! FORALL( ig = 1 : npwx ) ! h_diag(ig,:) = 1.D0 + g2kin(ig) + & SQRT( 1.D0 + ( g2kin(ig) - 1.D0 )**2 ) ! END FORALL ! ntry = 0 ! CG_loop : DO ! lrot = ( iter == 1 .AND. istep ==0 .AND. ntry == 0 ) ! IF ( .NOT. lrot ) THEN ! CALL rotate_wfc ( npwx, npw, nbnd, gstart, nbnd, & evc, npol, okvan, evc, et(1,ik) ) ! avg_iter = avg_iter + 1.D0 ! END IF ! CALL ccgdiagg( npwx, npw, nbnd, npol, evc, et(1,ik), btype(1,ik), & h_diag, ethr, max_cg_iter, .NOT. lscf, notconv, cg_iter ) ! avg_iter = avg_iter + cg_iter ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT CG_loop ! END DO CG_loop ! ELSE ! ! ... Davidson diagonalization ! ! ... h_diag are the diagonal matrix elements of the ! ... hamiltonian used in g_psi to evaluate the correction ! ... to the trial eigenvectors ! DO ipol = 1, npol ! h_diag(1:npw, ipol) = g2kin(1:npw) + v_of_0 ! END DO ! CALL usnldiag( h_diag, s_diag ) ! ntry = 0 ! david_loop: DO ! lrot = ( iter == 1 ) ! IF ( use_para_diag ) then ! CALL pcegterg( npw, npwx, nbnd, nbndx, npol, evc, ethr, & okvan, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) ! ELSE ! CALL cegterg ( npw, npwx, nbnd, nbndx, npol, evc, ethr, & okvan, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) END IF ! avg_iter = avg_iter + dav_iter ! ! ... save wave-functions to be used as input for the ! ... iterative diagonalization of the next scf iteration ! ... and for rho calculation ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT david_loop ! END DO david_loop ! END IF ! IF ( lelfield .AND. okvan ) DEALLOCATE( bec_evcel ) ! RETURN ! END SUBROUTINE c_bands_k ! !----------------------------------------------------------------------- FUNCTION test_exit_cond() !----------------------------------------------------------------------- ! ! ... this logical function is .TRUE. when iterative diagonalization ! ... is converged ! IMPLICIT NONE ! LOGICAL :: test_exit_cond ! ! test_exit_cond = .NOT. ( ( ntry <= 5 ) .AND. & ( ( .NOT. lscf .AND. ( notconv > 0 ) ) .OR. & ( lscf .AND. ( notconv > 5 ) ) ) ) ! END FUNCTION test_exit_cond ! END SUBROUTINE diag_bands ! !---------------------------------------------------------------------------- SUBROUTINE c_bands_efield ( iter, ik_, dr2 ) !---------------------------------------------------------------------------- ! ! ... Driver routine for Hamiltonian diagonalization under an electric field ! USE noncollin_module, ONLY : noncolin, npol USE kinds, ONLY : DP USE bp, ONLY : nberrycyc, fact_hepsi, & evcel, evcelp, evcelm, gdir, l3dstring,& efield, efield_cry USE klist, ONLY : nks USE wvfct, ONLY : nbnd, npwx USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER, INTENT (in) :: iter, ik_ REAL(DP), INTENT (in) :: dr2 ! INTEGER :: inberry, ipol, ierr ! ! ALLOCATE( evcel ( npol*npwx, nbnd ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate evcel ', ABS( ierr ) ) ALLOCATE( evcelm( npol*npwx, nbnd, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate evcelm ', ABS( ierr ) ) ALLOCATE( evcelp( npol*npwx, nbnd, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate evcelp ', ABS( ierr ) ) ALLOCATE( fact_hepsi(nks, 3), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate fact_hepsi ', ABS( ierr ) ) ! DO inberry = 1, nberrycyc ! !...set up electric field hermitean operator ! call flush_unit(stdout) if(.not.l3dstring) then CALL h_epsi_her_set (gdir, efield) else do ipol=1,3 CALL h_epsi_her_set(ipol, efield_cry(ipol)) enddo endif call flush_unit(stdout) ! CALL c_bands( iter, ik_, dr2 ) ! END DO ! DEALLOCATE( fact_hepsi ) DEALLOCATE( evcelp ) DEALLOCATE( evcelm ) DEALLOCATE( evcel ) ! RETURN ! END SUBROUTINE c_bands_efield ! !---------------------------------------------------------------------------- SUBROUTINE c_bands_nscf( ik_ ) !---------------------------------------------------------------------------- ! ! ... Driver routine for Hamiltonian diagonalization routines ! ... specialized to non-self-consistent calculations (no electric field) ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunigk, nwordatwfc, iunsat, iunwfc, & nwordwfc USE buffers, ONLY : get_buffer, save_buffer USE basis, ONLY : starting_wfc USE klist, ONLY : nkstot, nks, xk, ngk USE uspp, ONLY : vkb, nkb USE gvect, ONLY : g USE wvfct, ONLY : et, nbnd, npwx, igk, npw, current_k USE control_flags, ONLY : ethr, lbands, isolve, io_level, iverbosity USE ldaU, ONLY : lda_plus_u, swfcatom, U_projection USE lsda_mod, ONLY : current_spin, lsda, isk USE wavefunctions_module, ONLY : evc USE mp_global, ONLY : npool, kunit, inter_pool_comm USE mp, ONLY : mp_sum USE check_stop, ONLY : check_stop_now ! IMPLICIT NONE ! ! ... First the I/O variables ! INTEGER :: ik_ ! k-point already done ! ! ... local variables ! REAL(DP) :: avg_iter, dr2=0.d0 ! average number of H*psi products INTEGER :: ik, nkdum, iter=1 ! counter on k points ! REAL(DP), EXTERNAL :: get_clock ! IF ( ik_ == nks ) THEN ! ik_ = 0 ! RETURN ! END IF ! CALL start_clock( 'c_bands' ) ! IF ( isolve == 0 ) THEN ! WRITE( stdout, '(5X,"Davidson diagonalization with overlap")' ) ! ELSE IF ( isolve == 1 ) THEN ! WRITE( stdout, '(5X,"CG style diagonalization")') ! ELSE ! CALL errore ( 'c_bands', 'invalid type of diagonalization', isolve) !!! WRITE( stdout, '(5X,"DIIS style diagonalization")') ! END IF ! avg_iter = 0.D0 ! if ( nks > 1 ) REWIND( iunigk ) ! ! ... For each k point diagonalizes the hamiltonian ! k_loop: DO ik = 1, nks ! current_k = ik ! IF ( lsda ) current_spin = isk(ik) ! ! ... Reads the list of indices k+G <-> G of this k point ! IF ( nks > 1 ) READ( iunigk ) igk ! npw = ngk(ik) ! ! ... do not recalculate k-points if restored from a previous run ! IF ( ik <= ik_ ) THEN ! CYCLE k_loop ! END IF ! ! IF ( iverbosity > 0 ) WRITE( stdout, 9001 ) ik ! ! ... various initializations ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... kinetic energy ! call g2_kin( ik ) ! ! ... Needed for LDA+U ! IF ( lda_plus_u .AND. (U_projection .NE. 'pseudo') ) & CALL davcio( swfcatom, nwordatwfc, iunsat, ik, -1 ) ! ! ... calculate starting wavefunctions ! IF ( TRIM(starting_wfc) == 'file' ) THEN ! CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! ELSE ! CALL init_wfc ( ik ) ! END IF ! ! ... diagonalization of bands for k-point ik ! call diag_bands ( iter, ik, avg_iter ) ! ! ... save wave-functions (unless instructed not to save them) ! IF ( io_level > -1 ) CALL save_buffer ( evc, nwordwfc, iunwfc, ik ) ! ! ... save restart information ! IF ( io_level > 0 ) CALL save_in_cbands( iter, ik, dr2 ) ! ! ... check is performed only if not interfering with phonon calc. ! IF ( lbands) THEN #ifdef __MPI ! ... beware: with pools, if the number of k-points on different ! ... pools differs, make sure that all processors are still in ! ... the loop on k-points before checking for stop condition ! nkdum = kunit * ( nkstot / kunit / npool ) ! IF (ik .le. nkdum) THEN IF (check_stop_now()) RETURN ENDIF #else IF ( check_stop_now() ) RETURN #endif ENDIF ! ! report about timing ! IF ( iverbosity > 0 ) THEN ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! CALL flush_unit( stdout ) ! ENDIF ! END DO k_loop ! CALL mp_sum( avg_iter, inter_pool_comm ) avg_iter = avg_iter / nkstot ! WRITE( stdout, '( /,5X,"ethr = ",1PE9.2,", avg # of iterations =",0PF5.1 )' ) & ethr, avg_iter ! CALL stop_clock( 'c_bands' ) ! ! RETURN ! ! formats ! 9001 FORMAT(/' Computing kpt #: ',I5 ) 9000 FORMAT( ' total cpu time spent up to now is ',F10.1,' secs' ) ! END SUBROUTINE c_bands_nscf espresso-5.0.2/PW/src/report_mag.f900000644000700200004540000000635012053145630016157 0ustar marsamoscm! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- subroutine report_mag !---------------------------------------------------------------------------- ! This subroutine prints out information about the local magnetization ! and/or charge, integrated around the atomic positions at points which ! are calculated in make_pointlists ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, tau, ityp USE io_global, ONLY : stdout use constants, ONLY : pi USE scf, ONLY : rho USE noncollin_module, ONLY : noncolin, mcons, i_cons USE lsda_mod, ONLY : nspin implicit none real(DP) :: theta,phi,norm,norm1 integer :: ipol,iat real (DP) :: r1_loc(nat), m1_loc(nspin-1,nat) ! ! get_local integrates on the previously determined points ! call get_locals(r1_loc,m1_loc,rho%of_r) do iat = 1,nat if (noncolin) then ! ! norm is the length of the magnetic moment vector ! norm= dsqrt(m1_loc(1,iat)**2+m1_loc(2,iat)**2+m1_loc(3,iat)**2) ! ! norm1 is the length of the projection of the mm vector into ! the xy plane ! norm1 = dsqrt(m1_loc(1,iat)**2+m1_loc(2,iat)**2) ! calculate the polar angles of the magnetic moment if(norm.gt.1.d-10) then theta = acos(m1_loc(3,iat)/norm) if (norm1.gt.1.d-10) then phi = acos(m1_loc(1,iat)/norm1) if (m1_loc(2,iat).lt.0.d0) phi = - phi else phi = 2.d0*pi endif else theta = 2.d0*pi phi = 2.d0*pi endif ! go to degrees theta = theta*180.d0/pi phi = phi*180.d0/pi end if WRITE( stdout,1010) WRITE( stdout,1011) iat,(tau(ipol,iat),ipol=1,3) WRITE( stdout,1014) r1_loc (iat) if (noncolin) then WRITE( stdout,1012) (m1_loc(ipol,iat),ipol=1,3) WRITE( stdout,1018) (m1_loc(ipol,iat)/r1_loc(iat),ipol=1,3) WRITE( stdout,1013) norm,theta,phi if (i_cons.eq.1) then WRITE( stdout,1015) (mcons(ipol,ityp(iat)),ipol=1,3) else if (i_cons.eq.2) then WRITE( stdout,1017) 180.d0 * acos(mcons(3,ityp(iat)))/pi endif else WRITE( stdout,1012) m1_loc(1,iat) WRITE( stdout,1018) m1_loc(1,iat)/r1_loc(iat) if (i_cons.eq.1) WRITE( stdout,1015) mcons(1,ityp(iat)) endif WRITE( stdout,1010) enddo 1010 format (/,1x,78('=')) 1011 format (5x,'atom number ',i4,' relative position : ',3f9.4) 1012 format (5x,'magnetization : ',3f12.6) 1013 format (5x,'polar coord.: r, theta, phi [deg] : ',3f12.6) 1014 format (5x,'charge : ',f12.6) 1018 format (5x,'magnetization/charge:',3f12.6) 1015 format (5x,'constrained moment : ',3f12.6) 1017 format (5x,'constrained theta [deg] : ',f12.6) end subroutine report_mag espresso-5.0.2/PW/src/h_epsi_her_apply.f900000644000700200004540000001401712053145630017331 0ustar marsamoscm! ! Copyright (C) 2005 Paolo Umari ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine h_epsi_her_apply(lda, n,nbande, psi, hpsi, pdir, e_field) !----------------------------------------------------------------------- ! ! this subroutine applies w_k+w_k* on psi, ! (as in Souza et al. PRB B 69, 085106 (2004)) ! the output is put into hpsi ! ! evcel must contain the wavefunctions from previous iteration ! spin polarized systems supported only with fixed occupations USE noncollin_module, ONLY : noncolin, npol USE kinds, ONLY : DP USE us USE wvfct, ONLY : igk, npwx, npw, nbnd, ik => current_k USE ldaU, ONLY : lda_plus_u USE lsda_mod, ONLY : current_spin, nspin USE scf, ONLY : vrs USE gvect USE uspp USE uspp_param, ONLY: nh, nhm, nbetam USE bp USE basis USE klist USE cell_base, ONLY: at, alat, tpiba, omega, tpiba2 USE ions_base, ONLY: ityp, tau, nat,ntyp => nsp USE constants, ONLY : e2, pi, tpi, fpi USE fixed_occ USE io_global, ONLY : stdout USE becmod, ONLY : calbec USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated REAL(DP) :: e_field!electric field along pdir ! INTEGER :: lda !leading dimension INTEGER :: n! total number of wavefunctions INTEGER :: nbande!number of wavefunctions to be calculated COMPLEX(DP) :: psi (lda*npol, nbande ), hpsi (lda*npol,nbande) COMPLEX(DP), EXTERNAL :: zdotc COMPLEX(DP), ALLOCATABLE :: evct(:,:)!temporary array COMPLEX(DP) :: ps(nkb,nbnd) COMPLEX(DP) :: becp0(nkb,nbnd) INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) COMPLEX(DP) :: sca, sca1, pref INTEGER nb,mb, jkb, nhjkb, na, np, nhjkbm,jkb1,i,j INTEGER :: jkb_bp,nt,ig, ijkb0,ibnd,jh,ih,ikb REAL(dp) :: eps ! --- Define a small number --- eps=0.000001d0 if(ABS(e_field) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) == nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih ps (ikb, ibnd) = ps (ikb, ibnd) + & qq(ih,jh,nt)* bec_evcel(jkb,ibnd) enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw, nbnd , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do mb=1,nbnd!index on states of evcel sca = zdotc(npw,evcelm(1,mb,pdir),1,psi(1,nb),1) sca1 = zdotc(npw,evcelp(1,mb,pdir),1,psi(1,nb),1) call mp_sum( sca, intra_bgrp_comm ) call mp_sum( sca1, intra_bgrp_comm ) do ig=1,npw hpsi(ig,nb) = hpsi(ig,nb) + & & CONJG(fact_hepsi(ik,pdir))*evct(ig,mb)*(sca-sca1) enddo enddo endif ENDDO DEALLOCATE( evct) ! -- !------------------------------------------------------------------------------! return END SUBROUTINE h_epsi_her_apply espresso-5.0.2/PW/src/data_structure_custom.f900000644000700200004540000000520712053145627020451 0ustar marsamoscm ! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE data_structure_custom(fc, gamma_only) !----------------------------------------------------------------------- ! this routine sets the data structure for the custom fft array ! In the parallel case, it distributes columns to processes, too ! USE kinds, ONLY : DP USE cell_base, ONLY : bg, tpiba, tpiba2 USE klist, ONLY : xk, nks USE mp, ONLY : mp_sum, mp_max,mp_barrier USE mp_global, ONLY : mpime, me_bgrp, nproc_bgrp, inter_bgrp_comm,& & intra_bgrp_comm, root_bgrp USE mp_global, ONLY : get_ntask_groups USE stick_set, ONLY : pstickset_custom USE fft_custom, ONLY : fft_cus, gvec_init USE fft_base, ONLY : dfftp USE gvect, ONLY : gcutm ! ! IMPLICIT NONE TYPE(fft_cus) :: fc LOGICAL :: gamma_only REAL (DP) :: gkcut INTEGER :: ik, ngm_, ngs_, ngw_ , nogrp INTEGER :: me, nproc, inter_comm, intra_comm, root INTEGER :: kpoint ! sticks coordinates ! ! Subroutine body ! ! ! compute gkcut calling an internal procedure ! me = me_bgrp nproc = nproc_bgrp inter_comm = inter_bgrp_comm intra_comm = intra_bgrp_comm root = root_bgrp nogrp = get_ntask_groups() IF (nks == 0) THEN ! ! if k-points are automatically generated (which happens later) ! use max(bg)/2 as an estimate of the largest k-point ! gkcut = 0.5d0 * MAX ( & &SQRT (SUM(bg (1:3, 1)**2) ), & &SQRT (SUM(bg (1:3, 2)**2) ), & &SQRT (SUM(bg (1:3, 3)**2) ) ) ELSE gkcut = 0.0d0 DO kpoint = 1, nks gkcut = MAX (gkcut, SQRT ( SUM(xk (1:3, kpoint)**2) ) ) ENDDO ENDIF gkcut = (SQRT (fc%ecutt) / tpiba + gkcut)**2 ! ! ... find maximum value among all the processors ! CALL mp_max (gkcut, inter_comm ) ! ! ... set up fft descriptors, including parallel stuff: sticks, planes, etc. ! nogrp = get_ntask_groups() ! CALL pstickset_custom( gamma_only, bg, gcutm, gkcut, fc%gcutmt, & dfftp, fc%dfftt, ngw_ , ngm_, ngs_, me, root, nproc, intra_comm, & nogrp ) ! ! on output, ngm_ and ngs_ contain the local number of G-vectors ! for the two grids. Initialize local and global number of G-vectors ! CALL gvec_init (fc, ngs_ , intra_comm ) END SUBROUTINE data_structure_custom espresso-5.0.2/PW/src/rdiaghg.f900000644000700200004540000002136412053145627015435 0ustar marsamoscm! ! Copyright (C) 2003-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rdiaghg( n, m, h, s, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H symmetric matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... LAPACK version - uses both DSYGV and DSYGVX ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_global, ONLY : me_bgrp, root_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, m, ldh ! dimension of the matrix to be diagonalized ! number of eigenstates to be calculated ! leading dimension of h, as declared in the calling pgm unit REAL(DP), INTENT(INOUT) :: h(ldh,n), s(ldh,n) ! matrix to be diagonalized ! overlap matrix ! REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues REAL(DP), INTENT(OUT) :: v(ldh,m) ! eigenvectors (column-wise) ! INTEGER :: i, j, lwork, nb, mm, info ! mm = number of calculated eigenvectors REAL(DP) :: abstol REAL(DP), PARAMETER :: one = 1_DP REAL(DP), PARAMETER :: zero = 0_DP INTEGER, ALLOCATABLE :: iwork(:), ifail(:) REAL(DP), ALLOCATABLE :: work(:), sdiag(:), hdiag(:) LOGICAL :: all_eigenvalues INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" ! CALL start_clock( 'rdiaghg' ) ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... save the diagonal of input S (it will be overwritten) ! ALLOCATE( sdiag( n ) ) DO i = 1, n sdiag(i) = s(i,i) END DO ! all_eigenvalues = ( m == n ) ! ! ... check for optimal block size ! nb = ILAENV( 1, 'DSYTRD', 'U', n, -1, -1, -1 ) ! IF ( nb < 5 .OR. nb >= n ) THEN ! lwork = 8*n ! ELSE ! lwork = ( nb + 3 )*n ! END IF ! ALLOCATE( work( lwork ) ) ! IF ( all_eigenvalues ) THEN ! ! ... calculate all eigenvalues ! v(:,:) = h(:,:) ! #if defined (__ESSL) ! ! ... there is a name conflict between essl and lapack ... ! CALL DSYGV( 1, v, ldh, s, ldh, e, v, ldh, n, work, lwork ) ! info = 0 #else CALL DSYGV( 1, 'V', 'U', n, v, ldh, s, ldh, e, work, lwork, info ) #endif ! ELSE ! ! ... calculate only m lowest eigenvalues ! ALLOCATE( iwork( 5*n ) ) ALLOCATE( ifail( n ) ) ! ! ... save the diagonal of input H (it will be overwritten) ! ALLOCATE( hdiag( n ) ) DO i = 1, n hdiag(i) = h(i,i) END DO ! abstol = 0.D0 ! abstol = 2.D0*DLAMCH( 'S' ) ! CALL DSYGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, & 0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & work, lwork, iwork, ifail, info ) ! DEALLOCATE( ifail ) DEALLOCATE( iwork ) ! ! ... restore input H matrix from saved diagonal and lower triangle ! DO i = 1, n h(i,i) = hdiag(i) DO j = i + 1, n h(i,j) = h(j,i) END DO DO j = n + 1, ldh h(j,i) = 0.0_DP END DO END DO ! DEALLOCATE( hdiag ) ! END IF ! DEALLOCATE( work ) ! IF ( info > n ) THEN CALL errore( 'rdiaghg', 'S matrix not positive definite', ABS( info ) ) ELSE IF ( info > 0 ) THEN CALL errore( 'rdiaghg', 'eigenvectors failed to converge', ABS( info ) ) ELSE IF ( info < 0 ) THEN CALL errore( 'rdiaghg', 'incorrect call to DSYGV*', ABS( info ) ) END IF ! ... restore input S matrix from saved diagonal and lower triangle ! DO i = 1, n s(i,i) = sdiag(i) DO j = i + 1, n s(i,j) = s(j,i) END DO DO j = n + 1, ldh s(j,i) = 0.0_DP END DO END DO ! DEALLOCATE( sdiag ) ! END IF ! ! ... broadcast eigenvectors and eigenvalues to all other processors ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'rdiaghg' ) ! RETURN ! END SUBROUTINE rdiaghg ! !---------------------------------------------------------------------------- SUBROUTINE prdiaghg( n, h, s, ldh, e, v, desc ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H symmetric matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... Parallel version with full data distribution ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_global, ONLY : root_bgrp, intra_bgrp_comm USE descriptors, ONLY : la_descriptor #if defined __SCALAPACK USE mp_global, ONLY : ortho_cntx, me_blacs, np_ortho, me_ortho USE dspev_module, ONLY : pdsyevd_drv #endif ! ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, ldh ! dimension of the matrix to be diagonalized and number of eigenstates to be calculated ! leading dimension of h, as declared in the calling pgm unit REAL(DP), INTENT(INOUT) :: h(ldh,ldh), s(ldh,ldh) ! matrix to be diagonalized ! overlap matrix ! REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues REAL(DP), INTENT(OUT) :: v(ldh,ldh) ! eigenvectors (column-wise) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: nx ! local block size REAL(DP), PARAMETER :: one = 1_DP REAL(DP), PARAMETER :: zero = 0_DP REAL(DP), ALLOCATABLE :: hh(:,:) REAL(DP), ALLOCATABLE :: ss(:,:) #ifdef __SCALAPACK INTEGER :: desch( 16 ), info #endif ! CALL start_clock( 'rdiaghg' ) ! IF( desc%active_node > 0 ) THEN ! nx = desc%nrcx ! IF( nx /= ldh ) & CALL errore(" prdiaghg ", " inconsistent leading dimension ", ldh ) ! ALLOCATE( hh( nx, nx ) ) ALLOCATE( ss( nx, nx ) ) ! hh(1:nx,1:nx) = h(1:nx,1:nx) ss(1:nx,1:nx) = s(1:nx,1:nx) ! END IF ! CALL start_clock( 'rdiaghg:choldc' ) ! ! ... Cholesky decomposition of s ( L is stored in s ) ! IF( desc%active_node > 0 ) THEN ! #ifdef __SCALAPACK CALL descinit( desch, n, n, desc%nrcx, desc%nrcx, 0, 0, ortho_cntx, SIZE( hh, 1 ) , info ) IF( info /= 0 ) CALL errore( ' rdiaghg ', ' descinit ', ABS( info ) ) #endif ! #ifdef __SCALAPACK CALL PDPOTRF( 'L', n, ss, 1, 1, desch, info ) IF( info /= 0 ) CALL errore( ' rdiaghg ', ' problems computing cholesky ', ABS( info ) ) #else CALL qe_pdpotrf( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'rdiaghg:choldc' ) ! ! ... L is inverted ( s = L^-1 ) ! CALL start_clock( 'rdiaghg:inversion' ) ! IF( desc%active_node > 0 ) THEN ! #ifdef __SCALAPACK ! CALL sqr_dsetmat( 'U', n, zero, ss, size(ss,1), desc ) CALL PDTRTRI( 'L', 'N', n, ss, 1, 1, desch, info ) ! IF( info /= 0 ) CALL errore( ' rdiaghg ', ' problems computing inverse ', ABS( info ) ) #else CALL qe_pdtrtri ( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'rdiaghg:inversion' ) ! ! ... v = L^-1*H ! CALL start_clock( 'rdiaghg:paragemm' ) ! IF( desc%active_node > 0 ) THEN ! CALL sqr_mm_cannon( 'N', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! END IF ! ! ... h = ( L^-1*H )*(L^-1)^T ! IF( desc%active_node > 0 ) THEN ! CALL sqr_mm_cannon( 'N', 'T', n, ONE, v, nx, ss, nx, ZERO, hh, nx, desc ) ! END IF ! CALL stop_clock( 'rdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN ! ! Compute local dimension of the cyclically distributed matrix ! #ifdef __SCALAPACK CALL pdsyevd_drv( .true., n, desc%nrcx, hh, SIZE(hh,1), e, ortho_cntx ) #else CALL qe_pdsyevd( .true., n, desc, hh, SIZE(hh,1), e ) #endif ! END IF ! ! ... v = (L^T)^-1 v ! CALL start_clock( 'rdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN ! CALL sqr_mm_cannon( 'T', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! DEALLOCATE( ss ) DEALLOCATE( hh ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'rdiaghg:paragemm' ) ! CALL stop_clock( 'rdiaghg' ) ! RETURN ! END SUBROUTINE prdiaghg espresso-5.0.2/PW/src/init_vloc.f900000644000700200004540000000275412053145627016020 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine init_vloc() !---------------------------------------------------------------------- ! ! This routine computes the fourier coefficient of the local ! potential vloc(ig,it) for each type of atom ! USE atom, ONLY : msh, rgrid USE kinds, ONLY : dp USE uspp_param, ONLY : upf USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba2 USE vlocal, ONLY : vloc USE gvect, ONLY : ngl, gl ! implicit none ! integer :: nt ! counter on atomic types ! call start_clock ('init_vloc') vloc(:,:) = 0._dp do nt = 1, ntyp ! ! compute V_loc(G) for a given type of atom ! IF ( .NOT. ASSOCIATED ( upf(nt)%vloc ) ) THEN ! ! special case: pseudopotential is coulomb 1/r potential ! call vloc_coul (upf(nt)%zp, tpiba2, ngl, gl, omega, vloc (1, nt) ) ! ELSE ! ! normal case ! call vloc_of_g (rgrid(nt)%mesh, msh (nt), rgrid(nt)%rab, rgrid(nt)%r, & upf(nt)%vloc(1), upf(nt)%zp, tpiba2, ngl, gl, omega, vloc (1, nt) ) ! END IF enddo call stop_clock ('init_vloc') return end subroutine init_vloc espresso-5.0.2/PW/src/ewald.f900000644000700200004540000001260512053145627015122 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function ewald (alat, nat, ntyp, ityp, zv, at, bg, tau, omega, g, & gg, ngm, gcutm, gstart, gamma_only, strf) !----------------------------------------------------------------------- ! ! Calculates Ewald energy with both G- and R-space terms. ! Determines optimal alpha. Should hopefully work for any structure. ! ! USE kinds USE constants, ONLY : tpi, e2 USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE martyna_tuckerman, ONLY : wg_corr_ewald, do_comp_mt USE esm, ONLY : do_comp_esm, esm_bc, esm_ewald implicit none ! ! first the dummy variables ! integer :: nat, ntyp, ityp (nat), ngm, gstart ! input: number of atoms in the unit cell ! input: number of different types of atoms ! input: the type of each atom ! input: number of plane waves for G sum ! input: first non-zero G vector logical :: gamma_only real(DP) :: tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, alat, gcutm ! input: the positions of the atoms in the cell ! input: the coordinates of G vectors ! input: the square moduli of G vectors ! input: the charge of each type of atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: lattice parameter ! input: cut-off of g vectors complex(DP) :: strf (ngm, ntyp) ! input: structure factor real(DP) :: ewald ! output: the ewald energy ! ! here the local variables ! integer, parameter :: mxr = 50 ! the maximum number of R vectors included in r integer :: ng, nr, na, nb, nt, nrm ! counter over reciprocal G vectors ! counter over direct vectors ! counter on atoms ! counter on atoms ! counter on atomic types ! number of R vectors included in r sum real(DP) :: charge, tpiba2, ewaldg, ewaldr, dtau (3), alpha, & r (3, mxr), r2 (mxr), rmax, rr, upperbound, fact ! total ionic charge in the cell ! length in reciprocal space ! ewald energy computed in reciprocal space ! ewald energy computed in real space ! the difference tau_s - tau_s' ! alpha term in ewald sum ! input of the rgen routine ( not used here ) ! the square modulus of R_j-tau_s-tau_s' ! the maximum radius to consider real space sum ! buffer variable ! used to optimize alpha complex(DP) :: rhon real(DP), external :: qe_erfc tpiba2 = (tpi / alat) **2 charge = 0.d0 do na = 1, nat charge = charge+zv (ityp (na) ) enddo alpha = 2.9d0 100 alpha = alpha - 0.1d0 ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! if (alpha.le.0.d0) call errore ('ewald', 'optimal alpha not found', 1) upperbound = 2.d0 * charge**2 * sqrt (2.d0 * alpha / tpi) * qe_erfc ( & sqrt (tpiba2 * gcutm / 4.d0 / alpha) ) if (upperbound.gt.1.0d-7) goto 100 ! ! G-space sum here. ! Determine if this processor contains G=0 and set the constant term ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc') ) THEN ! ! ... call ESM-specific Ewald routine for G-space sum only ! CALL esm_ewald (charge, alpha, ewaldg) ! ELSE if (gstart==2) then ewaldg = - charge**2 / alpha / 4.0d0 else ewaldg = 0.0d0 endif if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do ng = gstart, ngm rhon = (0.d0, 0.d0) do nt = 1, ntyp rhon = rhon + zv (nt) * CONJG(strf (ng, nt) ) enddo ewaldg = ewaldg + fact * abs (rhon) **2 * exp ( - gg (ng) * tpiba2 / & alpha / 4.d0) / gg (ng) / tpiba2 enddo ewaldg = 2.d0 * tpi / omega * ewaldg ! ! Here add the other constant term ! if (gstart.eq.2) then do na = 1, nat ewaldg = ewaldg - zv (ityp (na) ) **2 * sqrt (8.d0 / tpi * & alpha) enddo endif ENDIF ! ! R-space sum here (only for the processor that contains G=0) ! ewaldr = 0.d0 if (gstart.eq.2) then rmax = 4.d0 / sqrt (alpha) / alat ! ! with this choice terms up to ZiZj*erfc(4) are counted (erfc(4)=2x10^-8 ! do na = 1, nat do nb = 1, nat dtau (:) = tau (:, na) - tau (:, nb) ! ! generates nearest-neighbors shells ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) ! ! and sum to the real space part ! do nr = 1, nrm rr = sqrt (r2 (nr) ) * alat ewaldr = ewaldr + zv (ityp (na) ) * zv (ityp (nb) ) * qe_erfc ( & sqrt (alpha) * rr) / rr enddo enddo enddo endif ewald = 0.5d0 * e2 * (ewaldg + ewaldr) if ( do_comp_mt ) ewald = ewald + wg_corr_ewald ( omega, ntyp, ngm, zv, strf ) ! call mp_sum( ewald, intra_bgrp_comm ) ! call mp_sum( ewaldr, intra_bgrp_comm ) ! call mp_sum( ewaldg, intra_bgrp_comm ) ! WRITE( stdout,'(/5x,"alpha used in ewald term: ",f4.2/ ! + 5x,"R-space term: ",f12.7,5x,"G-space term: ",f12.7/)') ! + alpha, ewaldr, ewaldg return end function ewald espresso-5.0.2/PW/src/sumkg.f900000644000700200004540000000314212053145627015150 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function sumkg (et, nbnd, nks, wk, degauss, ngauss, e, is, isk) !----------------------------------------------------------------------- ! ! This function computes the number of states under a given energy e ! ! USE kinds USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum implicit none ! Output variable real(DP) :: sumkg ! Input variables integer, intent(in) :: nks, nbnd, ngauss ! input: the total number of K points ! input: the number of bands ! input: the type of smearing real(DP), intent(in) :: wk (nks), et (nbnd, nks), degauss, e ! input: the weight of the k points ! input: the energy eigenvalues ! input: gaussian broadening ! input: the energy to check integer, intent(in) :: is, isk(nks) ! ! local variables ! real(DP), external :: wgauss ! function which compute the smearing real(DP) ::sum1 integer :: ik, ibnd ! counter on k points ! counter on the band energy ! sumkg = 0.d0 do ik = 1, nks sum1 = 0.d0 if (is /= 0) then if (isk(ik).ne.is) cycle end if do ibnd = 1, nbnd sum1 = sum1 + wgauss ( (e-et (ibnd, ik) ) / degauss, ngauss) enddo sumkg = sumkg + wk (ik) * sum1 enddo #ifdef __MPI call mp_sum ( sumkg, inter_pool_comm ) #endif return end function sumkg espresso-5.0.2/PW/src/ruotaijk.f900000644000700200004540000000372212053145627015656 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk) !---------------------------------------------------------------------- ! ! This routine computes the rotated of the point i,j,k throught ! the symmetry (s,f). Then it computes the equivalent point ! on the original mesh ! ! USE kinds implicit none ! ! first the dummy variables ! integer :: s (3, 3), ftau (3), i, j, k, nr1, nr2, nr3, ri, rj, rk ! input: the rotation matrix ! input: the fractionary translation ! ! input: the point to rotate ! / ! ! input: the dimension of the mesh ! / ! ! output: the rotated point !/ ! ! local variable ! ! the rotation matrix in scaled crystallographic integer :: ss (3, 3) ! axes. Compatibility with the FFT grid must have ! been checked elsewhere (sgam_at) ! ! this is a temporary fix. Much better would be to pass directly the ss ! matrix ! ss (1, 1) = s (1, 1) ss (2, 1) = s (2, 1) * nr1 / nr2 ss (3, 1) = s (3, 1) * nr1 / nr3 ss (1, 2) = s (1, 2) * nr2 / nr1 ss (2, 2) = s (2, 2) ss (3, 2) = s (3, 2) * nr2 / nr3 ss (1, 3) = s (1, 3) * nr3 / nr1 ss (2, 3) = s (2, 3) * nr3 / nr2 ss (3, 3) = s (3, 3) ! ri = ss (1, 1) * (i - 1) + ss (2, 1) * (j - 1) + ss (3, 1) & * (k - 1) - ftau (1) ri = mod (ri, nr1) + 1 if (ri.lt.1) ri = ri + nr1 rj = ss (1, 2) * (i - 1) + ss (2, 2) * (j - 1) + ss (3, 2) & * (k - 1) - ftau (2) rj = mod (rj, nr2) + 1 if (rj.lt.1) rj = rj + nr2 rk = ss (1, 3) * (i - 1) + ss (2, 3) * (j - 1) + ss (3, 3) & * (k - 1) - ftau (3) rk = mod (rk, nr3) + 1 if (rk.lt.1) rk = rk + nr3 return end subroutine ruotaijk espresso-5.0.2/PW/src/gen_at_dj.f900000644000700200004540000000756012053145627015744 0ustar marsamoscm! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_at_dj ( kpoint, natw, lmax_wfc, dwfcat ) !---------------------------------------------------------------------- ! ! This routine calculates the atomic wfc generated by the derivative ! (with respect to the q vector) of the bessel function. This vector ! is needed in computing the internal stress tensor. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi, fpi USE atom, ONLY : msh USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : omega, at, bg, tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf ! implicit none ! ! I/O variables ! integer :: kpoint, natw, lmax_wfc complex (DP) :: dwfcat(npwx,natw) ! ! local variables ! integer :: l, na, nt, nb, iatw, iig, ig, i0, i1, i2 ,i3, m, lm, nwfcm real (DP) :: eps, qt, arg, px, ux, vx, wx parameter (eps=1.0d-8) complex (DP) :: phase, pref real (DP), allocatable :: gk(:,:), q(:), ylm(:,:), djl(:,:,:) complex (DP), allocatable :: sk(:) ! sk(npw) nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) allocate ( ylm (npw,(lmax_wfc+1)**2) , djl (npw,nwfcm,ntyp) ) allocate ( gk(3,npw), q (npw) ) do ig = 1, npw gk (1,ig) = xk(1, kpoint) + g(1, igk(ig) ) gk (2,ig) = xk(2, kpoint) + g(2, igk(ig) ) gk (3,ig) = xk(3, kpoint) + g(3, igk(ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! ! ylm = spherical harmonics ! call ylmr2 ((lmax_wfc+1)**2, npw, gk, q, ylm) q(:) = dsqrt ( q(:) ) do nt=1,ntyp do nb=1,upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l =upf(nt)%lchi(nb) do ig = 1, npw qt=q(ig)*tpiba px = qt / dq - int (qt / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qt / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 djl(ig,nb,nt) = & ( tab_at (i0, nb, nt) * (-vx*wx-ux*wx-ux*vx)/6.d0 + & tab_at (i1, nb, nt) * (+vx*wx-px*wx-px*vx)/2.d0 - & tab_at (i2, nb, nt) * (+ux*wx-px*wx-px*ux)/2.d0 + & tab_at (i3, nb, nt) * (+ux*vx-px*vx-px*ux)/6.d0 )/dq enddo end if end do end do deallocate ( q, gk ) allocate ( sk(npw) ) iatw = 0 do na=1,nat nt=ityp(na) arg = ( xk(1,kpoint) * tau(1,na) + & xk(2,kpoint) * tau(2,na) + & xk(3,kpoint) * tau(3,na) ) * tpi phase=CMPLX(cos(arg),-sin(arg),kind=DP) do ig =1,npw iig = igk(ig) sk(ig) = eigts1(mill(1,iig),na) * & eigts2(mill(2,iig),na) * & eigts3(mill(3,iig),na) * phase end do do nb = 1,upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) pref = (0.d0,1.d0)**l do m = 1,2*l+1 lm = l*l+m iatw = iatw+1 do ig=1,npw dwfcat(ig,iatw)= djl(ig,nb,nt)*sk(ig)*ylm(ig,lm)*pref end do enddo end if enddo enddo if (iatw.ne.natw) then WRITE( stdout,*) 'iatw =',iatw,'natw =',natw call errore('gen_at_dj','unexpected error',1) end if deallocate ( sk ) deallocate ( djl, ylm ) return end subroutine gen_at_dj espresso-5.0.2/PW/src/cegterg.f900000644000700200004540000011725012053145627015450 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! ! !---------------------------------------------------------------------------- SUBROUTINE cegterg( npw, npwx, nvec, nvecx, npol, evc, ethr, & uspp, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an overlap matrix, evc is a complex vector ! USE kinds, ONLY : DP USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set : ! (the basis set is refreshed when its dimension would exceed nvecx) ! umber of spin polarizations COMPLEX(DP), INTENT(INOUT) :: evc(npwx,npol,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence : ! root improvement is stopped, when two consecutive estimates of the root ! differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : do not calculate S|psi> INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already been rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, kdim, kdmx, n, m, nb1, nbn ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! adapted npw and npwx ! do-loop counters INTEGER :: ierr COMPLEX(DP), ALLOCATABLE :: hc(:,:), sc(:,:), vc(:,:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! the eigenvectors of the Hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:,:), hpsi(:,:,:), spsi(:,:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi REAL(DP), ALLOCATABLE :: ew(:) ! eigenvalues of the reduced hamiltonian LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! CALL start_clock( 'cegterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'cegterg', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ! ALLOCATE( psi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate psi ', ABS(ierr) ) ALLOCATE( hpsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ALLOCATE( sc( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate sc ', ABS(ierr) ) ALLOCATE( hc( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate hc ', ABS(ierr) ) ALLOCATE( vc( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate vc ', ABS(ierr) ) ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate ew ', ABS(ierr) ) ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate conv ', ABS(ierr) ) ! notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,:,1:nvec) = evc(:,:,1:nvec) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! ! ... spsi contains s times the basis vectors ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hc contains the projection of the hamiltonian onto the reduced ! ... space vc contains the eigenvectors of hc ! hc(:,:) = ZERO sc(:,:) = ZERO vc(:,:) = ZERO ! CALL ZGEMM( 'C', 'N', nbase, nbase, kdim, ONE, & psi, kdmx, hpsi, kdmx, ZERO, hc, nvecx ) ! CALL mp_sum( hc( :, 1:nbase ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL ZGEMM( 'C', 'N', nbase, nbase, kdim, ONE, & psi, kdmx, spsi, kdmx, ZERO, sc, nvecx ) ! ELSE ! CALL ZGEMM( 'C', 'N', nbase, nbase, kdim, ONE, & psi, kdmx, psi, kdmx, ZERO, sc, nvecx ) ! END IF ! CALL mp_sum( sc( :, 1:nbase ), intra_bgrp_comm ) ! IF ( lrot ) THEN ! DO n = 1, nbase ! e(n) = REAL( hc(n,n) ) ! vc(n,n) = ONE ! END DO ! ELSE ! ! ... diagonalize the reduced hamiltonian ! CALL cdiaghg( nbase, nvec, hc, sc, nvecx, ew, vc ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'cegterg:update' ) ! np = 0 ! DO n = 1, nvec ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! IF ( np /= n ) vc(:,np) = vc(:,n) ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! IF ( uspp ) THEN ! CALL ZGEMM( 'N', 'N', kdim, notcnv, nbase, ONE, spsi, & kdmx, vc, nvecx, ZERO, psi(1,1,nb1), kdmx ) ! ELSE ! CALL ZGEMM( 'N', 'N', kdim, notcnv, nbase, ONE, psi, & kdmx, vc, nvecx, ZERO, psi(1,1,nb1), kdmx ) ! END IF ! DO np = 1, notcnv ! psi(:,:,nbase+np) = - ew(nbase+np)*psi(:,:,nbase+np) ! END DO ! CALL ZGEMM( 'N', 'N', kdim, notcnv, nbase, ONE, hpsi, & kdmx, vc, nvecx, ONE, psi(1,1,nb1), kdmx ) ! CALL stop_clock( 'cegterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, npol, psi(1,1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (cdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! nbn = nbase + n ! IF ( npol == 1 ) THEN ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) ! ELSE ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) + & ddot( 2*npw, psi(1,2,nbn), 1, psi(1,2,nbn), 1 ) ! END IF ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,:,nbase+n) = psi(:,:,nbase+n) / SQRT( ew(n) ) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! ! CALL h_psi( npwx, npw, notcnv, psi(1,1,nb1), hpsi(1,1,nb1) ) ! IF ( uspp ) & CALL s_psi( npwx, npw, notcnv, psi(1,1,nb1), spsi(1,1,nb1) ) ! ! ... update the reduced hamiltonian ! CALL start_clock( 'cegterg:overlap' ) ! CALL ZGEMM( 'C', 'N', nbase+notcnv, notcnv, kdim, ONE, psi, & kdmx, hpsi(1,1,nb1), kdmx, ZERO, hc(1,nb1), nvecx ) ! CALL mp_sum( hc( :, nb1:nb1+notcnv-1 ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL ZGEMM( 'C', 'N', nbase+notcnv, notcnv, kdim, ONE, psi, & kdmx, spsi(1,1,nb1), kdmx, ZERO, sc(1,nb1), nvecx ) ! ELSE ! CALL ZGEMM( 'C', 'N', nbase+notcnv, notcnv, kdim, ONE, psi, & kdmx, psi(1,1,nb1), kdmx, ZERO, sc(1,nb1), nvecx ) ! END IF ! CALL mp_sum( sc( :, nb1:nb1+notcnv-1 ), intra_bgrp_comm ) ! CALL stop_clock( 'cegterg:overlap' ) ! nbase = nbase + notcnv ! DO n = 1, nbase ! ! ... the diagonal of hc and sc must be strictly real ! hc(n,n) = CMPLX( REAL( hc(n,n) ), 0.D0 ,kind=DP) sc(n,n) = CMPLX( REAL( sc(n,n) ), 0.D0 ,kind=DP) ! DO m = n + 1, nbase ! hc(m,n) = CONJG( hc(n,m) ) sc(m,n) = CONJG( sc(n,m) ) ! END DO ! END DO ! ! ... diagonalize the reduced hamiltonian ! CALL cdiaghg( nbase, nvec, hc, sc, nvecx, ew, vc ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. & nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'cegterg:last' ) ! CALL ZGEMM( 'N', 'N', kdim, nvec, nbase, ONE, & psi, kdmx, vc, nvecx, ZERO, evc, kdmx ) ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! !!!WRITE( stdout, '(5X,"WARNING: ",I5, & !!! & " eigenvalues not converged")' ) notcnv ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,:,1:nvec) = evc(:,:,1:nvec) ! IF ( uspp ) THEN ! CALL ZGEMM( 'N', 'N', kdim, nvec, nbase, ONE, spsi, & kdmx, vc, nvecx, ZERO, psi(1,1,nvec+1), kdmx ) ! spsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) ! END IF ! CALL ZGEMM( 'N', 'N', kdim, nvec, nbase, ONE, hpsi, & kdmx, vc, nvecx, ZERO, psi(1,1,nvec+1), kdmx ) ! hpsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! hc(:,1:nbase) = ZERO sc(:,1:nbase) = ZERO vc(:,1:nbase) = ZERO ! DO n = 1, nbase ! ! hc(n,n) = REAL( e(n) ) hc(n,n) = CMPLX( e(n), 0.0_DP ,kind=DP) ! sc(n,n) = ONE vc(n,n) = ONE ! END DO ! CALL stop_clock( 'cegterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( conv ) DEALLOCATE( ew ) DEALLOCATE( vc ) DEALLOCATE( hc ) DEALLOCATE( sc ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'cegterg' ) ! RETURN ! END SUBROUTINE cegterg ! ! Subroutine with distributed matrixes ! (written by Carlo Cavazzoni) ! !---------------------------------------------------------------------------- SUBROUTINE pcegterg( npw, npwx, nvec, nvecx, npol, evc, ethr, & uspp, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an uspp matrix, evc is a complex vector ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_global, ONLY : nbgrp, nproc_bgrp, me_bgrp, & intra_bgrp_comm, root_bgrp, & ortho_comm, np_ortho, me_ortho, ortho_comm_id, & leg_ortho USE descriptors, ONLY : la_descriptor, descla_init , descla_local_dims USE parallel_toolkit, ONLY : zsqmred, zsqmher, zsqmdst USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set ! (the basis set is refreshed when its dimension would exceed nvecx) ! number of spin polarizations COMPLEX(DP), INTENT(INOUT) :: evc(npwx,npol,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence: root improvement is stopped, ! when two consecutive estimates of the root differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : S|psi> not needed INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already been rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, kdim, kdmx, n, nb1, nbn ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! do-loop counters INTEGER :: ierr REAL(DP), ALLOCATABLE :: ew(:) COMPLEX(DP), ALLOCATABLE :: hl(:,:), sl(:,:), vl(:,:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! eigenvectors of the Hamiltonian ! eigenvalues of the reduced hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:,:), hpsi(:,:,:), spsi(:,:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands TYPE(la_descriptor) :: desc, desc_old INTEGER, ALLOCATABLE :: irc_ip( : ) INTEGER, ALLOCATABLE :: nrc_ip( : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra INTEGER, ALLOCATABLE :: notcnv_ip( : ) INTEGER, ALLOCATABLE :: ic_notcnv( : ) ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,psi,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! ! CALL start_clock( 'cegterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'pcegterg', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ALLOCATE( psi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate psi ', ABS(ierr) ) ! ALLOCATE( hpsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ! ... Initialize the matrix descriptor ! ALLOCATE( ic_notcnv( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate ic_notcnv ', ABS(ierr) ) ! ALLOCATE( notcnv_ip( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate notcnv_ip ', ABS(ierr) ) ! ALLOCATE( irc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate irc_ip ', ABS(ierr) ) ! ALLOCATE( nrc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate nrc_ip ', ABS(ierr) ) ! ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate rank_ip ', ABS(ierr) ) ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! only procs involved in the diagonalization need to allocate local ! matrix block. ! ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) ! ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) ! ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) ! ELSE ! ALLOCATE( vl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) ! ALLOCATE( sl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) ! ALLOCATE( hl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) ! END IF ! ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate ew ', ABS(ierr) ) ! ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate conv ', ABS(ierr) ) ! notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,:,1:nvec) = evc(:,:,1:nvec) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hl contains the projection of the hamiltonian onto the reduced ! ... space, vl contains the eigenvectors of hl. Remember hl, vl and sl ! ... are all distributed across processors, global replicated matrixes ! ... here are never allocated ! CALL compute_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL compute_distmat( sl, psi, spsi ) ! ELSE ! CALL compute_distmat( sl, psi, psi ) ! END IF ! IF ( lrot ) THEN ! CALL set_e_from_h() ! CALL set_to_identity( vl, desc ) ! ELSE ! ! ... diagonalize the reduced hamiltonian ! Calling block parallel algorithm ! CALL pcdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'cegterg:update' ) ! CALL reorder_v() ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! CALL hpsi_dot_v() ! CALL stop_clock( 'cegterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, npol, psi(1,1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (cdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! nbn = nbase + n ! IF ( npol == 1 ) THEN ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) ! ELSE ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) + & ddot( 2*npw, psi(1,2,nbn), 1, psi(1,2,nbn), 1 ) ! END IF ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,:,nbase+n) = psi(:,:,nbase+n) / SQRT( ew(n) ) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! CALL h_psi( npwx, npw, notcnv, psi(1,1,nb1), hpsi(1,1,nb1) ) ! IF ( uspp ) & CALL s_psi( npwx, npw, notcnv, psi(1,1,nb1), spsi(1,1,nb1) ) ! ! ... update the reduced hamiltonian ! ! we need to save the old descriptor in order to redistribute matrices ! desc_old = desc ! ! ... RE-Initialize the matrix descriptor ! CALL desc_init( nbase+notcnv, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! redistribute hl and sl (see dsqmred), since the dimension of the subspace has changed ! vl = hl DEALLOCATE( hl ) ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) CALL zsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, hl, nx, desc ) vl = sl DEALLOCATE( sl ) ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) CALL zsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, sl, nx, desc ) DEALLOCATE( vl ) ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) END IF ! CALL start_clock( 'cegterg:overlap' ) ! CALL update_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL update_distmat( sl, psi, spsi ) ! ELSE ! CALL update_distmat( sl, psi, psi ) ! END IF ! CALL stop_clock( 'cegterg:overlap' ) ! nbase = nbase + notcnv ! ! ... diagonalize the reduced hamiltonian ! Call block parallel algorithm ! CALL pcdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'cegterg:last' ) ! CALL refresh_evc() ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! !!!WRITE( stdout, '(5X,"WARNING: ",I5, & !!! & " eigenvalues not converged")' ) notcnv ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,:,1:nvec) = evc(:,:,1:nvec) ! IF ( uspp ) THEN ! CALL refresh_spsi() ! END IF ! CALL refresh_hpsi() ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! note that nx has been changed by desc_init ! we need to re-alloc with the new size. ! DEALLOCATE( vl, hl, sl ) ALLOCATE( vl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( hl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) ALLOCATE( sl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) ! END IF ! CALL set_h_from_e( ) ! CALL set_to_identity( vl, desc ) CALL set_to_identity( sl, desc ) ! CALL stop_clock( 'cegterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( vl, hl, sl ) ! DEALLOCATE( rank_ip ) DEALLOCATE( ic_notcnv ) DEALLOCATE( irc_ip ) DEALLOCATE( nrc_ip ) DEALLOCATE( notcnv_ip ) DEALLOCATE( conv ) DEALLOCATE( ew ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'cegterg' ) ! RETURN ! ! CONTAINS ! ! SUBROUTINE desc_init( nsiz, desc, irc_ip, nrc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc INTEGER, INTENT(OUT) :: irc_ip(:) INTEGER, INTENT(OUT) :: nrc_ip(:) INTEGER :: i, j, rank ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 CALL descla_local_dims( irc_ip( j + 1 ), nrc_ip( j + 1 ), desc%n, desc%nx, np_ortho(1), j ) DO i = 0, desc%npr - 1 CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE set_to_identity( distmat, desc ) TYPE(la_descriptor), INTENT(IN) :: desc COMPLEX(DP), INTENT(OUT) :: distmat(:,:) INTEGER :: i distmat = ( 0_DP , 0_DP ) IF( desc%myc == desc%myr .AND. desc%active_node > 0 ) THEN DO i = 1, desc%nc distmat( i, i ) = ( 1_DP , 0_DP ) END DO END IF RETURN END SUBROUTINE set_to_identity ! ! SUBROUTINE reorder_v() ! INTEGER :: ipc INTEGER :: nc, ic INTEGER :: nl, npl ! np = 0 ! notcnv_ip = 0 ! n = 0 ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! npl = 0 ! IF( ic <= nvec ) THEN ! DO nl = 1, min( nvec - ic + 1, nc ) ! n = n + 1 ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 npl = npl + 1 IF( npl == 1 ) ic_notcnv( ipc ) = np ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! notcnv_ip( ipc ) = notcnv_ip( ipc ) + 1 ! IF ( npl /= nl ) THEN IF( la_proc .AND. desc%myc == ipc-1 ) THEN vl( :, npl) = vl( :, nl ) END IF END IF ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! END IF ! END DO ! END SUBROUTINE reorder_v ! ! SUBROUTINE hpsi_dot_v() ! INTEGER :: ipc, ipr INTEGER :: nr, ir, ic, notcl, root, np COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP), ALLOCATABLE :: ptmp( :, :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ALLOCATE( ptmp( npwx, npol, nx ) ) DO ipc = 1, desc%npc ! IF( notcnv_ip( ipc ) > 0 ) THEN notcl = notcnv_ip( ipc ) ic = ic_notcnv( ipc ) ptmp = ZERO beta = ZERO DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN vtmp(:,1:notcl) = vl(:,1:notcl) END IF CALL mp_bcast( vtmp(:,1:notcl), root, intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL ZGEMM( 'N', 'N', kdim, notcl, nr, ONE, & spsi( 1, 1, ir ), kdmx, vtmp, nx, beta, psi(1,1,nb1+ic-1), kdmx ) ! ELSE ! CALL ZGEMM( 'N', 'N', kdim, notcl, nr, ONE, & psi( 1, 1, ir ), kdmx, vtmp, nx, beta, psi(1,1,nb1+ic-1), kdmx ) ! END IF ! CALL ZGEMM( 'N', 'N', kdim, notcl, nr, ONE, & hpsi( 1, 1, ir ), kdmx, vtmp, nx, ONE, ptmp, kdmx ) beta = ONE END DO DO np = 1, notcl ! psi(:,:,nbase+np+ic-1) = ptmp(:,:,np) - ew(nbase+np+ic-1) * psi(:,:,nbase+np+ic-1) ! END DO ! END IF ! END DO DEALLOCATE( vtmp ) DEALLOCATE( ptmp ) RETURN END SUBROUTINE hpsi_dot_v ! ! SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = ZERO DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & psi(1,1,ir), kdmx, vl, nx, beta, evc(1,1,ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & psi(1,1,ir), kdmx, vtmp, nx, beta, evc(1,1,ic), kdmx ) END IF ! beta = ONE END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc ! ! SUBROUTINE refresh_spsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = ZERO ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & spsi(1,1,ir), kdmx, vl, nx, beta, psi(1,1,nvec+ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & spsi(1,1,ir), kdmx, vtmp, nx, beta, psi(1,1,nvec+ic), kdmx ) END IF ! beta = ONE END DO ! END IF ! END DO ! spsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_spsi ! ! ! SUBROUTINE refresh_hpsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = ZERO ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & hpsi(1,1,ir), kdmx, vl, nx, beta, psi(1,1,nvec+ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & hpsi(1,1,ir), kdmx, vtmp, nx, beta, psi(1,1,nvec+ic), kdmx ) END IF ! beta = ONE END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) hpsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) RETURN END SUBROUTINE refresh_hpsi ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:,:), w(:,:,:) COMPLEX(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = ZERO ! ! Only upper triangle is computed, then the matrix is hermitianized ! DO ipc = 1, desc%npc ! loop on column procs ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! DO ipr = 1, ipc ! desc%npr ! ipc ! use symmetry for the loop on row procs ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL ZGEMM( 'C', 'N', nr, nc, kdim, ONE , & v(1,1,ir), kdmx, w(1,1,ic), kdmx, ZERO, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! ! The matrix is hermitianized using upper triangle ! CALL zsqmher( nbase, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat ! ! SUBROUTINE update_distmat( dm, v, w ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root, icc, ii COMPLEX(DP) :: dm( :, : ) COMPLEX(DP) :: v(:,:,:), w(:,:,:) COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) ALLOCATE( vtmp( nx, nx ) ) ! vtmp = ZERO ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic+nc-1 >= nb1 ) THEN nc = MIN( nc, ic+nc-1 - nb1 + 1 ) IF( ic >= nb1 ) THEN ii = ic icc = 1 ELSE ii = nb1 icc = nb1-ic+1 END IF DO ipr = 1, ipc ! desc%npr use symmetry ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) CALL ZGEMM( 'C', 'N', nr, nc, kdim, ONE, v( 1, 1, ir ), & kdmx, w(1,1,ii), kdmx, ZERO, vtmp, nx ) ! IF( (desc%active_node > 0) .AND. (ipr-1 == desc%myr) .AND. (ipc-1 == desc%myc) ) THEN CALL mp_root_sum( vtmp(:,1:nc), dm(:,icc:icc+nc-1), root, intra_bgrp_comm ) ELSE CALL mp_root_sum( vtmp(:,1:nc), dm, root, intra_bgrp_comm ) END IF END DO ! END IF ! END DO ! CALL zsqmher( nbase+notcnv, dm, nx, desc ) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE update_distmat ! ! ! SUBROUTINE set_e_from_h() INTEGER :: nc, ic, i e(1:nbase) = 0_DP IF( desc%myc == desc%myr .AND. la_proc ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc e( i + ic - 1 ) = REAL( hl( i, i ) ) END DO END IF CALL mp_sum( e(1:nbase), intra_bgrp_comm ) RETURN END SUBROUTINE set_e_from_h ! SUBROUTINE set_h_from_e() INTEGER :: nc, ic, i IF( la_proc ) THEN hl = ZERO IF( desc%myc == desc%myr ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc hl(i,i) = CMPLX( e( i + ic - 1 ), 0_DP ,kind=DP) END DO END IF END IF RETURN END SUBROUTINE set_h_from_e ! END SUBROUTINE pcegterg espresso-5.0.2/PW/src/pwscf.f900000644000700200004540000001176212053145627015153 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- PROGRAM pwscf !---------------------------------------------------------------------------- ! ! ... Plane Wave Self-Consistent Field code ! USE io_global, ONLY : stdout, ionode, ionode_id USE parameters, ONLY : ntypx, npk, lmaxx USE cell_base, ONLY : fix_volume, fix_area USE control_flags, ONLY : conv_elec, gamma_only, lscf USE control_flags, ONLY : conv_ions, istep, nstep, restart, lmd, lbfgs USE force_mod, ONLY : lforce, lstres, sigma USE environment, ONLY : environment_start USE check_stop, ONLY : check_stop_init, check_stop_now USE mp_global, ONLY : mp_startup, mp_global_end, intra_image_comm USE mp_global, ONLY : nimage, me_image, root_image, my_image_id #if defined(__MS2) USE ms2, ONLY : MS2_enabled, & ms2_initialization, & set_positions, return_forces #endif USE io_files, ONLY : tmp_dir USE image_io_routines, ONLY : io_image_start USE xml_io_base, ONLY : create_directory, change_directory USE read_input, ONLY : read_input_file ! IMPLICIT NONE ! ! CHARACTER(len=256) :: dirname ! #ifdef __MPI ! CALL mp_startup ( ) ! reset IO nodes ! (do this to make each "image head node" an ionode) ! Has to be used ONLY to run nimage copies of pwscf ! IF ( nimage > 1 ) CALL io_image_start( ) #endif CALL environment_start ( 'PWSCF' ) ! IF ( ionode ) WRITE( unit = stdout, FMT = 9010 ) & ntypx, npk, lmaxx ! IF (ionode) CALL plugin_arguments() CALL plugin_arguments_bcast( ionode_id, intra_image_comm ) ! ! ... open, read, close input file ! CALL read_input_file ('PW') ! ! ... convert to internal variables ! CALL iosys() ! IF ( gamma_only ) WRITE( UNIT = stdout, & & FMT = '(/,5X,"gamma-point specific algorithms are used")' ) ! IF( nimage > 1 ) THEN ! ! ... When nimage are used, open a directory for each one ! ...It has to be done here in order not to disturb NEB like calculations ! WRITE( dirname, FMT = '( I5.5 )' ) my_image_id tmp_dir = TRIM( tmp_dir )//TRIM( dirname )//'/' CALL create_directory( tmp_dir ) CALL change_directory( tmp_dir ) ! END IF ! ! call to void routine for user defined / plugin patches initializations ! CALL plugin_initialization() ! CALL check_stop_init() ! #if defined(__MS2) CALL ms2_initialization() #endif ! CALL setup () ! #if defined(__MS2) CALL set_positions() #endif ! CALL init_run() ! IF ( check_stop_now() ) CALL stop_run( .TRUE. ) ! main_loop: DO ! ! ... electronic self-consistency ! CALL electrons() ! IF ( .NOT. conv_elec ) THEN CALL punch( 'all' ) CALL stop_run( conv_elec ) ENDIF ! ! ... ionic section starts here ! CALL start_clock( 'ions' ) conv_ions = .TRUE. ! ! ... recover from a previous run, if appropriate ! IF ( restart .AND. lscf ) CALL restart_in_ions() ! ! ... file in CASINO format written here if required ! CALL pw2casino() ! ! ... force calculation ! IF ( lforce ) CALL forces() ! ! ... stress calculation ! IF ( lstres ) CALL stress ( sigma ) ! IF ( lmd .OR. lbfgs ) THEN ! if (fix_volume) CALL impose_deviatoric_stress(sigma) ! if (fix_area) CALL impose_deviatoric_stress_2d(sigma) ! ! ... ionic step (for molecular dynamics or optimization) ! CALL move_ions() ! ! ... then we save restart information for the new configuration ! IF ( istep < nstep .AND. .NOT. conv_ions ) THEN ! CALL punch( 'config' ) CALL save_in_ions() ! END IF ! END IF ! CALL stop_clock( 'ions' ) ! #if defined(__MS2) CALL return_forces() #endif ! ... exit condition (ionic convergence) is checked here ! IF ( conv_ions ) EXIT main_loop ! ! ... terms of the hamiltonian depending upon nuclear positions ! ... are reinitialized here ! #if defined(__MS2) CALL set_positions() #endif IF ( lmd .OR. lbfgs ) CALL hinit1() ! END DO main_loop ! ! ... save final data file ! CALL punch('all') CALL stop_run( conv_ions ) ! ! END IF ! STOP ! 9010 FORMAT( /,5X,'Current dimensions of program PWSCF are:', & & /,5X,'Max number of different atomic species (ntypx) = ',I2,& & /,5X,'Max number of k-points (npk) = ',I6,& & /,5X,'Max angular momentum in pseudopotentials (lmaxx) = ',i2) ! END PROGRAM pwscf espresso-5.0.2/PW/src/symme.f900000644000700200004540000007210012053145627015154 0ustar marsamoscm! ! Copyright (C) 2008-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE symme USE kinds, ONLY : DP USE cell_base, ONLY : at, bg USE symm_base, ONLY : s, sname, ft, nrot, nsym, t_rev, time_reversal, & irt, invs, invsym ! ! ... Routines used for symmetrization ! SAVE PRIVATE ! ! General-purpose symmetrizaton routines ! PUBLIC :: symscalar, symvector, symtensor, symmatrix, symv, & symtensor3, symmatrix3, crys_to_cart, cart_to_crys ! ! For symmetrization in reciprocal space (all variables are private) ! PUBLIC :: sym_rho_init, sym_rho, sym_rho_deallocate ! LOGICAL :: & no_rho_sym=.true. ! do not perform symetrization of charge density INTEGER :: ngs ! number of symmetry-related G-vector shells TYPE shell_type INTEGER, POINTER :: vect(:) END TYPE shell_type ! shell contains a list of symmetry-related G-vectors for each shell TYPE(shell_type), ALLOCATABLE :: shell(:) ! Arrays used for parallel symmetrization INTEGER, ALLOCATABLE :: sendcnt(:), recvcnt(:), sdispls(:), rdispls(:) ! CONTAINS ! LOGICAL FUNCTION rho_sym_needed ( ) !----------------------------------------------------------------------- rho_sym_needed = .NOT. no_rho_sym END FUNCTION rho_sym_needed ! SUBROUTINE symscalar (nat, scalar) !----------------------------------------------------------------------- ! Symmetrize a function f(na), na=atom index ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: scalar(nat) ! INTEGER :: isym REAL(DP), ALLOCATABLE :: work (:) IF (nsym == 1) RETURN ALLOCATE (work(nat)) work(:) = 0.0_dp DO isym = 1, nsym work (:) = work (:) + scalar(irt(isym,:)) END DO scalar(:) = work(:) / DBLE(nsym) DEALLOCATE (work) END SUBROUTINE symscalar ! SUBROUTINE symvector (nat, vect) !----------------------------------------------------------------------- ! Symmetrize a function f(i,na), i=cartesian component, na=atom index ! e.g. : forces (in cartesian axis) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: vect(3,nat) ! INTEGER :: na, isym, nar REAL(DP), ALLOCATABLE :: work (:,:) ! IF (nsym == 1) RETURN ! ALLOCATE (work(3,nat)) ! ! bring vector to crystal axis ! DO na = 1, nat work(:,na) = vect(1,na)*at(1,:) + & vect(2,na)*at(2,:) + & vect(3,na)*at(3,:) END DO ! ! symmetrize in crystal axis ! vect (:,:) = 0.0_dp DO na = 1, nat DO isym = 1, nsym nar = irt (isym, na) vect (:, na) = vect (:, na) + & s (:, 1, isym) * work (1, nar) + & s (:, 2, isym) * work (2, nar) + & s (:, 3, isym) * work (3, nar) END DO END DO work (:,:) = vect (:,:) / DBLE(nsym) ! ! bring vector back to cartesian axis ! DO na = 1, nat vect(:,na) = work(1,na)*bg(:,1) + & work(2,na)*bg(:,2) + & work(3,na)*bg(:,3) END DO ! DEALLOCATE (work) ! END SUBROUTINE symvector ! SUBROUTINE symtensor (nat, tens) !----------------------------------------------------------------------- ! Symmetrize a function f(i,j,na), i,j=cartesian components, na=atom index ! e.g. : effective charges (in cartesian axis) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: tens(3,3,nat) ! INTEGER :: na, isym, nar, i,j,k,l REAL(DP), ALLOCATABLE :: work (:,:,:) ! IF (nsym == 1) RETURN ! ! bring tensor to crystal axis ! DO na=1,nat CALL cart_to_crys ( tens (:,:,na) ) END DO ! ! symmetrize in crystal axis ! ALLOCATE (work(3,3,nat)) work (:,:,:) = 0.0_dp DO na = 1, nat DO isym = 1, nsym nar = irt (isym, na) DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work (i,j,na) = work (i,j,na) + & s (i,k,isym) * s (j,l,isym) * tens (k,l,nar) END DO END DO END DO END DO END DO END DO tens (:,:,:) = work (:,:,:) / DBLE(nsym) DEALLOCATE (work) ! ! bring tensor back to cartesian axis ! DO na=1,nat CALL crys_to_cart ( tens (:,:,na) ) END DO ! ! END SUBROUTINE symtensor ! !----------------------------------------------------------------------- SUBROUTINE symv ( vect) !-------------------------------------------------------------------- ! ! Symmetrize a vector f(i), i=cartesian components ! The vector is supposed to be axial: inversion does not change it. ! Time reversal changes its sign. Note that only groups compatible with ! a finite magnetization give a nonzero output vector. ! IMPLICIT NONE ! REAL (DP), INTENT(inout) :: vect(3) ! the vector to rotate ! integer :: isym real(DP) :: work (3), segno ! IF (nsym == 1) RETURN ! ! bring vector to crystal axis ! work(:) = vect(1)*at(1,:) + vect(2)*at(2,:) + vect(3)*at(3,:) vect = work work=0.0_DP do isym = 1, nsym segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-1.0_DP IF (t_rev(isym)==1) segno=-1.0_DP*segno work (:) = work (:) + segno * ( & s (:, 1, isym) * vect (1) + & s (:, 2, isym) * vect (2) + & s (:, 3, isym) * vect (3) ) enddo work=work/nsym ! ! And back in cartesian coordinates. ! vect(:) = work(1) * bg(:,1) + work(2) * bg(:,2) + work(3) * bg(:,3) ! end subroutine symv ! SUBROUTINE symmatrix ( matr ) !----------------------------------------------------------------------- ! Symmetrize a function f(i,j), i,j=cartesian components ! e.g. : stress, dielectric tensor (in cartesian axis) ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: matr(3,3) ! INTEGER :: isym, i,j,k,l REAL(DP) :: work (3,3) ! IF (nsym == 1) RETURN ! ! bring matrix to crystal axis ! CALL cart_to_crys ( matr ) ! ! symmetrize in crystal axis ! work (:,:) = 0.0_dp DO isym = 1, nsym DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work (i,j) = work (i,j) + & s (i,k,isym) * s (j,l,isym) * matr (k,l) END DO END DO END DO END DO END DO matr (:,:) = work (:,:) / DBLE(nsym) ! ! bring matrix back to cartesian axis ! CALL crys_to_cart ( matr ) ! END SUBROUTINE symmatrix ! SUBROUTINE symmatrix3 ( mat3 ) !----------------------------------------------------------------------- ! ! Symmetrize a function f(i,j,k), i,j,k=cartesian components ! e.g. : nonlinear susceptibility ! BEWARE: input in crystal axis, output in cartesian axis ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: mat3(3,3,3) ! INTEGER :: isym, i,j,k,l,m,n REAL(DP) :: work (3,3,3) ! IF (nsym == 1) RETURN ! work (:,:,:) = 0.0_dp DO isym = 1, nsym DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 DO m = 1, 3 DO n = 1, 3 work (i, j, k) = work (i, j, k) + & s (i, l, isym) * s (j, m, isym) * & s (k, n, isym) * mat3 (l, m, n) END DO END DO END DO END DO END DO END DO END DO mat3 = work/ DBLE(nsym) ! ! Bring to cartesian axis ! CALL crys_to_cart_mat3 ( mat3 ) ! END SUBROUTINE symmatrix3 ! ! SUBROUTINE symtensor3 (nat, tens3 ) !----------------------------------------------------------------------- ! Symmetrize a function f(i,j,k, na), i,j,k=cartesian, na=atom index ! e.g. : raman tensor ! BEWARE: input in crystal axis, output in cartesian axis ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: tens3(3,3,3,nat) ! INTEGER :: na, isym, nar, i,j,k,l,n,m REAL(DP), ALLOCATABLE :: work (:,:,:,:) ! IF (nsym == 1) RETURN ! ! symmetrize in crystal axis ! ALLOCATE (work(3,3,3,nat)) work (:,:,:,:) = 0.0_dp DO na = 1, nat DO isym = 1, nsym nar = irt (isym, na) DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 DO m =1, 3 DO n =1, 3 work (i, j, k, na) = work (i, j, k, na) + & s (i, l, isym) * s (j, m, isym) * & s (k, n, isym) * tens3 (l, m, n, nar) END DO END DO END DO END DO END DO END DO END DO END DO tens3 (:,:,:,:) = work(:,:,:,:) / DBLE (nsym) DEALLOCATE (work) ! ! Bring to cartesian axis ! DO na = 1, nat CALL crys_to_cart_mat3 ( tens3(:,:,:,na) ) END DO ! END SUBROUTINE symtensor3 ! ! Routines for crystal to cartesian axis conversion ! !INTERFACE cart_to_crys ! MODULE PROCEDURE cart_to_crys_mat, cart_to_crys_mat3 !END INTERFACE !INTERFACE crys_to_cart ! MODULE PROCEDURE crys_to_cart !END INTERFACE ! SUBROUTINE cart_to_crys ( matr ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: matr(3,3) ! REAL(DP) :: work(3,3) INTEGER :: i,j,k,l ! work(:,:) = 0.0_dp DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work(i,j) = work(i,j) + matr(k,l) * at(k,i) * at(l,j) END DO END DO END DO END DO ! matr(:,:) = work(:,:) ! END SUBROUTINE cart_to_crys ! SUBROUTINE crys_to_cart ( matr ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: matr(3,3) ! REAL(DP) :: work(3,3) INTEGER :: i,j,k,l ! work(:,:) = 0.0_dp DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work(i,j) = work(i,j) + & matr(k,l) * bg(i,k) * bg(j,l) END DO END DO END DO END DO matr(:,:) = work(:,:) ! END SUBROUTINE crys_to_cart ! SUBROUTINE crys_to_cart_mat3 ( mat3 ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: mat3(3,3,3) ! REAL(DP) :: work(3,3,3) INTEGER :: i,j,k,l,m,n ! work(:,:,:) = 0.0_dp DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 DO m = 1, 3 DO n = 1, 3 work (i, j, k) = work (i, j, k) + & mat3 (l, m, n) * bg (i, l) * bg (j, m) * bg (k, n) END DO END DO END DO END DO END DO END DO mat3(:,:,:) = work (:,:,:) ! END SUBROUTINE crys_to_cart_mat3 ! ! G-space symmetrization ! SUBROUTINE sym_rho_init ( gamma_only ) !----------------------------------------------------------------------- ! ! Initialize arrays needed for symmetrization in reciprocal space ! USE gvect, ONLY : ngm, g ! LOGICAL, INTENT(IN) :: gamma_only ! no_rho_sym = gamma_only .OR. (nsym==1) IF (no_rho_sym) RETURN #ifdef __MPI CALL sym_rho_init_para ( ) #else CALL sym_rho_init_shells( ngm, g ) #endif ! END SUBROUTINE sym_rho_init ! #ifdef __MPI ! SUBROUTINE sym_rho_init_para ( ) !----------------------------------------------------------------------- ! ! Initialize arrays needed for parallel symmetrization ! USE mp_global, ONLY : nproc_bgrp, me_bgrp, intra_bgrp_comm USE parallel_include USE gvect, ONLY : ngm, gcutm, g, gg ! IMPLICIT NONE ! REAL(DP), PARAMETER :: twothirds = 0.6666666666666666_dp REAL(DP), ALLOCATABLE :: gcut_(:), g_(:,:) INTEGER :: np, ig, ngloc, ngpos, ierr, ngm_ ! ALLOCATE ( sendcnt(nproc_bgrp), recvcnt(nproc_bgrp), & sdispls(nproc_bgrp), rdispls(nproc_bgrp) ) ALLOCATE ( gcut_(nproc_bgrp) ) ! ! the gcut_ cutoffs are estimated in such a way that there is an similar ! number of G-vectors in each shell gcut_(i) < G^2 < gcut_(i+1) ! DO np = 1, nproc_bgrp gcut_(np) = gcutm * np**twothirds/nproc_bgrp**twothirds END DO ! ! find the number of G-vectors in each shell (defined as above) ! beware: will work only if G-vectors are in order of increasing |G| ! ngpos=0 DO np = 1, nproc_bgrp sdispls(np) = ngpos ngloc=0 DO ig=ngpos+1,ngm IF ( gg(ig) > gcut_(np) ) EXIT ngloc = ngloc+1 END DO IF ( ngloc < 1 ) CALL infomsg('sym_rho_init', & 'likely internal error: no G-vectors found') sendcnt(np) = ngloc ngpos = ngpos + ngloc IF ( ngpos > ngm ) & CALL errore('sym_rho','internal error: too many G-vectors', ngpos) END DO IF ( ngpos /= ngm .OR. ngpos /= SUM (sendcnt)) & CALL errore('sym_rho_init', & 'internal error: inconsistent number of G-vectors', ngpos) DEALLOCATE ( gcut_ ) ! ! sendcnt(i) = n_j(i) = number of G-vectors in shell i for processor j (this) ! sdispls(i) = \sum_{k=1}^i n_j(k) = starting position of shell i for proc j ! we need the number and positions of G-vector shells for other processors ! CALL mpi_alltoall( sendcnt, 1, MPI_INTEGER, recvcnt, 1, MPI_INTEGER, & intra_bgrp_comm, ierr) ! rdispls(1) = 0 DO np = 2, nproc_bgrp rdispls(np) = rdispls(np-1)+ recvcnt(np-1) END DO ! ! recvcnt(i) = n_i(j) = number of G-vectors in shell j for processor i ! rdispls(i) = \sum_{k=1}^i n_k(j) = start.pos. of shell j for proc i ! ! now collect G-vector shells on each processor ! ngm_ = SUM(recvcnt) ALLOCATE (g_(3,ngm_)) ! remember that G-vectors have 3 components sendcnt(:) = 3*sendcnt(:) recvcnt(:) = 3*recvcnt(:) sdispls(:) = 3*sdispls(:) rdispls(:) = 3*rdispls(:) CALL mpi_alltoallv ( g , sendcnt, sdispls, MPI_DOUBLE_PRECISION, & g_, recvcnt, rdispls, MPI_DOUBLE_PRECISION, & intra_bgrp_comm, ierr) sendcnt(:) = sendcnt(:)/3 recvcnt(:) = recvcnt(:)/3 sdispls(:) = sdispls(:)/3 rdispls(:) = rdispls(:)/3 ! ! find shells of symmetry-related G-vectors ! CALL sym_rho_init_shells( ngm_, g_ ) ! DEALLOCATE (g_) ! END SUBROUTINE sym_rho_init_para ! #endif ! SUBROUTINE sym_rho_init_shells ( ngm_, g_ ) !----------------------------------------------------------------------- ! ! Initialize G-vector shells needed for symmetrization ! USE constants, ONLY : eps8 USE mp_global, ONLY : nproc_bgrp IMPLICIT NONE ! INTEGER, INTENT(IN) :: ngm_ REAL(DP), INTENT(IN) :: g_(3,ngm_) ! LOGICAL, ALLOCATABLE :: done(:) INTEGER, ALLOCATABLE :: n(:,:), igsort(:) REAL(DP), ALLOCATABLE :: g2sort_g(:) INTEGER :: i,j,is,ig, iig, jg, ng, sn(3), gshell(3,48) LOGICAL :: found ! ngs = 0 ! shell should be allocated to the number of symmetry shells ! since this is unknown, we use the number of all G-vectors ALLOCATE ( shell(ngm_) ) ALLOCATE ( done(ngm_), n(3,ngm_) ) ALLOCATE ( igsort (ngm_)) DO ig=1,ngm_ ! done(ig) = .false. ! G-vectors are stored as integer indices in crystallographic axis: ! G = n(1)*at(1) + n(2)*at(2) + n(3)*at(3) n(:,ig) = nint ( at(1,:)*g_(1,ig) + at(2,:)*g_(2,ig) + at(3,:)*g_(3,ig) ) ! NULLIFY(shell(ig)%vect) ! END DO ! ! The following algorithm can become very slow if ngm_ is large and ! g vectors are not ordered in increasing order. This happens ! in the parallel case. ! IF (nproc_bgrp > 1 .AND. ngm_ > 20000) THEN ALLOCATE ( g2sort_g(ngm_)) g2sort_g(:)=g_(1,:)*g_(1,:)+g_(2,:)*g_(2,:)+g_(3,:)*g_(3,:) igsort(1) = 0 CALL hpsort_eps( ngm_, g2sort_g, igsort, eps8 ) DEALLOCATE( g2sort_g) ELSE DO ig=1,ngm_ igsort(ig)=ig ENDDO ENDIF ! DO iig=1,ngm_ ! ig=igsort(iig) IF ( done(ig) ) CYCLE ! ! we start a new shell of symmetry-equivalent G-vectors ngs = ngs+1 ! ng: counter on G-vectors in this shell ng = 0 DO is=1,nsym ! integer indices for rotated G-vector sn(:)=s(:,1,is)*n(1,ig)+s(:,2,is)*n(2,ig)+s(:,3,is)*n(3,ig) found = .false. ! check if this rotated G-vector is equivalent to any other ! vector already present in this shell shelloop: DO i=1,ng found = ( sn(1)==gshell(1,i) .and. & sn(2)==gshell(2,i) .and. & sn(3)==gshell(3,i) ) if (found) exit shelloop END DO shelloop IF ( .not. found ) THEN ! add rotated G-vector to this shell ng = ng + 1 IF (ng > 48) CALL errore('sym_rho_init_shell','internal error',48) gshell(:,ng) = sn(:) END IF END DO ! there are ng vectors gshell in shell ngs ! now we have to locate them in the list of G-vectors ALLOCATE ( shell(ngs)%vect(ng)) DO i=1,ng gloop: DO jg=iig,ngm_ j=igsort(jg) IF (done(j)) CYCLE gloop found = ( gshell(1,i)==n(1,j) .and. & gshell(2,i)==n(2,j) .and. & gshell(3,i)==n(3,j) ) IF ( found ) THEN done(j)=.true. shell(ngs)%vect(i) = j EXIT gloop END IF END DO gloop IF (.not. found) CALL errore('sym_rho_init_shell','lone vector',i) END DO ! END DO DEALLOCATE ( n, done ) DEALLOCATE( igsort) END SUBROUTINE sym_rho_init_shells ! !----------------------------------------------------------------------- SUBROUTINE sym_rho (nspin, rhog) !----------------------------------------------------------------------- ! ! Symmetrize the charge density rho in reciprocal space ! Distributed parallel algorithm: collects entire shells of G-vectors ! and corresponding rho(G), calls sym_rho_serial to perform the ! symmetrization, re-distributed rho(G) into original ordering ! rhog(ngm,nspin) components of rho: rhog(ig) = rho(G(:,ig)) ! unsymmetrized on input, symmetrized on output ! nspin=1,2,4 unpolarized, LSDA, non-colinear magnetism ! USE constants, ONLY : eps8, eps6 USE gvect, ONLY : ngm, g #ifdef __MPI USE parallel_include USE mp_global, ONLY : intra_bgrp_comm #endif ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nspin COMPLEX(DP), INTENT(INOUT) :: rhog(ngm,nspin) ! REAL(DP), allocatable :: g0(:,:), g_(:,:), gg_(:) REAL(DP) :: gg0_, gg1_ COMPLEX(DP), allocatable :: rhog_(:,:) INTEGER :: is, ig, igl, np, ierr, ngm_ ! IF ( no_rho_sym) RETURN #ifndef __MPI ! CALL sym_rho_serial ( ngm, g, nspin, rhog ) ! #else ! ! we transpose the matrix of G-vectors and their coefficients ! ngm_ = SUM(recvcnt) ALLOCATE (rhog_(ngm_,nspin),g_(3,ngm_)) DO is=1,nspin CALL mpi_alltoallv (rhog (1,is) , sendcnt, sdispls, MPI_DOUBLE_COMPLEX,& rhog_(1,is), recvcnt, rdispls, MPI_DOUBLE_COMPLEX, & intra_bgrp_comm, ierr) END DO ! remember that G-vectors have 3 components sendcnt(:) = 3*sendcnt(:) recvcnt(:) = 3*recvcnt(:) sdispls(:) = 3*sdispls(:) rdispls(:) = 3*rdispls(:) CALL mpi_alltoallv ( g , sendcnt, sdispls, MPI_DOUBLE_PRECISION, & g_, recvcnt, rdispls, MPI_DOUBLE_PRECISION, & intra_bgrp_comm, ierr) ! ! Now symmetrize ! CALL sym_rho_serial ( ngm_, g_, nspin, rhog_ ) ! DEALLOCATE ( g_ ) ! ! bring symmetrized rho(G) back to original distributed form ! sendcnt(:) = sendcnt(:)/3 recvcnt(:) = recvcnt(:)/3 sdispls(:) = sdispls(:)/3 rdispls(:) = rdispls(:)/3 DO is = 1, nspin CALL mpi_alltoallv (rhog_(1,is), recvcnt, rdispls, MPI_DOUBLE_COMPLEX, & rhog (1,is), sendcnt, sdispls, MPI_DOUBLE_COMPLEX, & intra_bgrp_comm, ierr) END DO DEALLOCATE ( rhog_ ) #endif ! RETURN END SUBROUTINE sym_rho ! !----------------------------------------------------------------------- SUBROUTINE sym_rho_serial ( ngm_, g_, nspin_, rhog_ ) !----------------------------------------------------------------------- ! ! symmetrize the charge density rho in reciprocal space ! Serial algorithm - requires in input: ! g_(3,ngm_) list of G-vectors ! nspin_ number of spin components to be symmetrized ! rhog_(ngm_,nspin_) rho in reciprocal space: rhog_(ig) = rho(G(:,ig)) ! unsymmetrized on input, symmetrized on output ! USE kinds USE constants, ONLY : tpi ! IMPLICIT NONE ! INTEGER, INTENT (IN) :: ngm_, nspin_ REAL(DP) , INTENT (IN) :: g_( 3, ngm_ ) COMPLEX(DP) , INTENT (INOUT) :: rhog_( ngm_, nspin_ ) ! REAL(DP), ALLOCATABLE :: g0(:,:) REAL(DP) :: sg(3), ft_(3,48), arg COMPLEX(DP) :: fact, rhosum(2), mag(3), magrot(3), magsum(3) INTEGER :: irot(48), ig, isg, igl, ng, ns, nspin_lsda, is LOGICAL, ALLOCATABLE :: done(:) LOGICAL :: non_symmorphic(48) ! ! convert fractional translations to cartesian, in a0 units ! DO ns=1,nsym non_symmorphic(ns) = ( ft(1,ns) /= 0.0_dp .OR. & ft(2,ns) /= 0.0_dp .OR. & ft(3,ns) /= 0.0_dp ) IF ( non_symmorphic(ns) ) ft_(:,ns) = at(:,1)*ft(1,ns) + & at(:,2)*ft(2,ns) + & at(:,3)*ft(3,ns) END DO ! IF ( nspin_ == 4 ) THEN nspin_lsda = 1 ! ELSE IF ( nspin_ == 1 .OR. nspin_ == 2 ) THEN nspin_lsda = nspin_ ELSE CALL errore('sym_rho_serial','incorrect value of nspin',nspin_) END IF ! ! scan shells of G-vectors ! DO igl=1, ngs ! ! symmetrize: \rho_sym(G) = \sum_S rho(SG) for all G-vectors in the star ! ng = SIZE ( shell(igl)%vect ) allocate ( g0(3,ng), done(ng) ) IF ( ng < 1 ) CALL errore('sym_rho_serial','internal error',1) ! ! bring G-vectors to crystal axis ! DO ig=1,ng g0(:,ig) = g_(:,shell(igl)%vect(ig) ) END DO CALL cryst_to_cart (ng, g0, at,-1) ! ! rotate G-vectors ! done(1:ng) = .false. DO ig=1,ng IF ( .NOT. done(ig)) THEN rhosum(:) = (0.0_dp, 0.0_dp) magsum(:) = (0.0_dp, 0.0_dp) ! S^{-1} are needed here DO ns=1,nsym sg(:) = s(:,1,invs(ns)) * g0(1,ig) + & s(:,2,invs(ns)) * g0(2,ig) + & s(:,3,invs(ns)) * g0(3,ig) irot(ns) = 0 DO isg=1,ng IF ( ABS ( sg(1)-g0(1,isg) ) < 1.0D-5 .AND. & ABS ( sg(2)-g0(2,isg) ) < 1.0D-5 .AND. & ABS ( sg(3)-g0(3,isg) ) < 1.0D-5 ) THEN irot(ns) = isg EXIT END IF END DO IF ( irot(ns) < 1 .OR. irot(ns) > ng ) & CALL errore('sym_rho_serial','internal error',2) ! isg is the index of rotated G-vector isg = shell(igl)%vect(irot(ns)) ! ! non-spin-polarized case: component 1 is the charge ! LSDA case: components 1,2 are spin-up and spin-down charge ! non colinear case: component 1 is the charge density, ! components 2,3,4 are the magnetization ! non colinear case: components 2,3,4 are the magnetization ! IF ( nspin_ == 4 ) THEN ! bring magnetization to crystal axis mag(:) = rhog_(isg, 2) * bg(1,:) + & rhog_(isg, 3) * bg(2,:) + & rhog_(isg, 4) * bg(3,:) ! rotate and add magnetization magrot(:) = s(1,:,invs(ns)) * mag(1) + & s(2,:,invs(ns)) * mag(2) + & s(3,:,invs(ns)) * mag(3) IF (sname(invs(ns))(1:3)=='inv') magrot(:)=-magrot(:) IF (t_rev(invs(ns)) == 1) magrot(:)=-magrot(:) END IF IF ( non_symmorphic (ns) ) THEN arg = tpi * ( g_(1,isg) * ft_(1,ns) + & g_(2,isg) * ft_(2,ns) + & g_(3,isg) * ft_(3,ns) ) fact = CMPLX ( COS(arg), -SIN(arg), KIND=dp ) DO is=1,nspin_lsda rhosum(is) = rhosum(is) + rhog_(isg, is) * fact END DO IF ( nspin_ == 4 ) & magsum(:) = magsum(:) + magrot(:) * fact ELSE DO is=1,nspin_lsda rhosum(is) = rhosum(is) + rhog_(isg, is) END DO IF ( nspin_ == 4 ) & magsum(:) = magsum(:) + magrot(:) END IF END DO ! DO is=1,nspin_lsda rhosum(is) = rhosum(is) / nsym END DO IF ( nspin_ == 4 ) magsum(:) = magsum(:) / nsym ! ! now fill the shell of G-vectors with the symmetrized value ! DO ns=1,nsym isg = shell(igl)%vect(irot(ns)) IF ( nspin_ == 4 ) THEN ! rotate magnetization magrot(:) = s(1,:,ns) * magsum(1) + & s(2,:,ns) * magsum(2) + & s(3,:,ns) * magsum(3) IF (sname(ns)(1:3)=='inv') magrot(:)=-magrot(:) IF (t_rev(ns) == 1) magrot(:)=-magrot(:) ! back to cartesian coordinates mag(:) = magrot(1) * at(:,1) + & magrot(2) * at(:,2) + & magrot(3) * at(:,3) END IF IF ( non_symmorphic (ns) ) THEN arg = tpi * ( g_(1,isg) * ft_(1,ns) + & g_(2,isg) * ft_(2,ns) + & g_(3,isg) * ft_(3,ns) ) fact = CMPLX ( COS(arg), SIN(arg), KIND=dp ) DO is=1,nspin_lsda rhog_(isg,is) = rhosum(is) * fact END DO IF ( nspin_ == 4 ) THEN DO is=2,nspin_ rhog_(isg, is) = mag(is-1)*fact END DO END IF ELSE DO is=1,nspin_lsda rhog_(isg,is) = rhosum(is) END DO IF ( nspin_ == 4 ) THEN DO is=2,nspin_ rhog_(isg, is) = mag(is-1) END DO END IF END IF done(irot(ns)) =.true. END DO END IF END DO DEALLOCATE ( done, g0 ) END DO ! RETURN END SUBROUTINE sym_rho_serial SUBROUTINE sym_rho_deallocate ( ) ! IF ( ALLOCATED (rdispls) ) DEALLOCATE (rdispls) IF ( ALLOCATED (recvcnt) ) DEALLOCATE (recvcnt) IF ( ALLOCATED (sdispls) ) DEALLOCATE (sdispls) IF ( ALLOCATED (sendcnt) ) DEALLOCATE (sendcnt) IF ( ALLOCATED (shell) ) THEN DO i=1,SIZE(shell) IF ( ASSOCIATED(shell(i)%vect) ) DEALLOCATE (shell(i)%vect) END DO DEALLOCATE (shell) END IF ! END SUBROUTINE sym_rho_deallocate ! END MODULE symme espresso-5.0.2/PW/src/coset.f900000644000700200004540000000475712053145627015154 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine coset (nrot, table, sym, nsym, irg) !----------------------------------------------------------------------- ! ! Divides the elements of a given group into left cosets of one ! of its subgroups. ! The input is the array sym which is true only for the ! operations of the subgroup, the output is nsym, and the array irg, ! which contains as its first elements the indices of the subgroup, ! and then its right cosets. ! ! revised layout 1 may 1995 by A. Dal Corso ! USE kinds implicit none ! ! first the dummy variables ! integer :: nrot, table (48, 48), nsym, irg (48) ! input: order of the group ! input: multiplication table of the group ! output: order of the subgroup ! output: gives the correspondence of symme ! operations forming a n-th coset ! input: flag indicating if an operations logical :: sym (48) ! belongs to the subgroup ! ! here the local variables ! logical :: done (48) ! if true the operation has been already ch integer :: irot, ncos, isym, nc, nelm ! counter on rotations ! number of cosets (=nrot/nsym) ! counter on symmetries ! counter on cosets ! counter on the number of elements ! ! here we count the elements of the subgroup and set the first part o ! irg which contain the subgroup ! nsym = 0 do irot = 1, nrot done (irot) = sym (irot) if (sym (irot) ) then nsym = nsym + 1 irg (nsym) = irot endif enddo ! ! we check that the order of the subgroup is a divisor of the order ! total group. ncos is the number of cosets ! IF ( nsym == 0 ) CALL errore( 'coset', 'nsym == 0', 1 ) ! ncos = nrot / nsym if (ncos * nsym.ne.nrot) call errore ('coset', & 'The order'//' of the group is not a multiple of that of the subgroup', 1) ! ! here we set the other elements of irg, by using the multiplication ! nelm = nsym do nc = 2, ncos do irot = 1, nrot if (.not.done (irot) ) then do isym = 1, nsym nelm = nelm + 1 irg (nelm) = table (irot, irg (isym) ) done (irg (nelm) ) = .true. enddo endif enddo enddo return end subroutine coset espresso-5.0.2/PW/src/bp_qvan3.f900000644000700200004540000000472512053145630015535 0ustar marsamoscm! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Modified by PG - Oct.2007: removed obsolete comments !-------------------------------------------------------------------------- subroutine qvan3(iv,jv,is,qg,ylm_k,qr) !-------------------------------------------------------------------------- ! ! calculate qg = SUM_LM (-I)^L AP(LM,iv,jv) YR_LM QRAD(iv,jv,L,is) USE kinds, ONLY: DP USE ions_base, ONLY : ntyp => nsp USE us, ONLY: dq, qrad USE uspp_param, ONLY: lmaxq, nbetam USE uspp, ONLY: nlx, lpl, lpx, ap, indv, nhtol, nhtolm implicit none integer :: iv,jv,is complex(DP) :: qg,sig real(DP) :: ylm_k(lmaxq*lmaxq) real(DP) :: qr(nbetam,nbetam,lmaxq,ntyp) integer ivs,jvs,ivl,jvl,lp,l,i ivs = indv(iv,is) jvs = indv(jv,is) ivl = nhtolm(iv,is) jvl = nhtolm(jv,is) if (ivs > nbetam .OR. jvs > nbetam) & call errore (' qvan3 ', ' wrong dimensions (1)', MAX(ivs,jvs)) if (ivl > nlx .OR. jvl > nlx) & call errore (' qvan3 ', ' wrong dimensions (2)', MAX(ivl,jvl)) qg = (0.0d0,0.0d0) !odl Write(*,*) 'QVAN3 -- ivs jvs = ',ivs,jvs !odl Write(*,*) 'QVAN3 -- ivl jvl = ',ivl,jvl do i=1,lpx(ivl,jvl) !odl Write(*,*) 'QVAN3 -- i = ',i lp = lpl(ivl,jvl,i) !odl Write(*,*) 'QVAN3 -- lp = ',lp ! EXTRACTION OF ANGULAR MOMENT L FROM LP: if (lp.eq.1) then l = 1 else if ((lp.ge.2) .and. (lp.le.4)) then l = 2 else if ((lp.ge.5) .and. (lp.le.9)) then l = 3 else if ((lp.ge.10).and.(lp.le.16)) then l = 4 else if ((lp.ge.17).and.(lp.le.25)) then l = 5 else if ((lp.ge.26).and.(lp.le.36)) then l = 6 else if ((lp.ge.37).and.(lp.le.49)) then l = 7 else if (lp.gt.49) then call errore(' qvan3 ',' l not programmed ',lp) end if sig = (0.d0,-1.d0)**(l-1) sig = sig * ap(lp,ivl,jvl) !odl Write(*,*) 'QVAN3 -- sig = ',sig ! WRITE( stdout,*) 'qvan3',ng1,LP,L,ivs,jvs qg = qg + sig * ylm_k(lp) * qr(ivs,jvs,l,is) end do return end subroutine qvan3 espresso-5.0.2/PW/src/xk_wk_collect.f900000644000700200004540000001120312053145627016647 0ustar marsamoscm! ! Copyright (C) 2007-2012 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE xk_wk_collect( xk_collect, wk_collect, xk, wk, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine collects the k points (with granularity kunit) among ! ... nodes and sets the variable xk_collect and wk_collect with the total ! ... number of k-points ! USE io_global, only : stdout USE kinds, ONLY : DP USE mp_global, ONLY : my_pool_id, npool, kunit USE mp_global, ONLY : inter_pool_comm, intra_pool_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool REAL (DP) :: xk(3,nks), wk(nks) REAL (DP) :: xk_collect(3,nkstot), wk_collect(nkstot) ! k-points ! k-point weights ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! xk_collect=0.d0 ! wk_collect=0.d0 ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + kunit ! IF (nks1.ne.nks) & call errore('xk_wk_collect','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! copy the original points in the correct position of the list ! xk_collect(:,nbase+1:nbase+nks) = xk(:,1:nks) ! wk_collect(nbase+1:nbase+nks)=wk(1:nks) ! CALL mp_sum( xk_collect, inter_pool_comm ) ! CALL mp_sum( wk_collect, inter_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE xk_wk_collect ! !---------------------------------------------------------------------------- SUBROUTINE wg_all(wg_collect, wg, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine collects all the weights and copy them in all pools. ! USE kinds, ONLY : DP USE mp_global, ONLY : my_pool_id, npool, kunit USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum USE wvfct, ONLY : nbnd ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool REAL (DP) :: wg(nbnd, nks) REAL (DP) :: wg_collect(nbnd, nkstot) ! distributed weights of the k points of this pool ! collected weights of all k points ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! wg_collect=(0.0_DP, 0.0_DP) ! nks1 = ( nkstot / npool ) ! rest = ( nkstot - nks1 * npool ) ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + 1 ! IF (nks1.ne.nks) & call errore('wg_all','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest ! ! copy the original wavefunctions in the correct position of the list ! wg_collect(:,nbase+1:nbase+nks) = wg(:,1:nks) ! CALL mp_sum( wg_collect, inter_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE wg_all ! ! INTEGER FUNCTION find_current_k(ik, nkstot, nks) !---------------------------------------------------------------------------- ! ! ... This function receives the index of a k point in the list ! ... of nks k-points within a pool and gives the index in the ! ... full list of nkstot k-points ! ! USE kinds, ONLY : DP USE mp_global, ONLY : my_pool_id, npool, kunit ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool INTEGER :: ik ! k-points ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + kunit ! IF (nks1.ne.nks) & call errore('isk_ngk_collect','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! copy the original points in the correct position of the list ! ! find_current_k = nbase+ik #else find_current_k = ik #endif ! RETURN END FUNCTION find_current_k ! espresso-5.0.2/PW/src/save_in_electrons.f900000644000700200004540000000377712053145630017534 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine save_in_electrons (iter, dr2) !----------------------------------------------------------------------- USE kinds, ONLY: DP USE io_files, ONLY: iunres, prefix, seqopn USE ener, ONLY: etot USE klist, ONLY: nks USE control_flags, ONLY: io_level, conv_elec, tr2, ethr USE wvfct, ONLY: nbnd, et USE scf, ONLY: vnew USE funct, ONLY : exx_is_active USE exx, ONLY : fock0, fock1, fock2, dexx, x_occupation implicit none character :: where * 20 ! are we in the right place? integer :: ik, ibnd, ik_, iter ! counters ! last completed kpoint ! last completed iteration logical :: exst real(DP) :: dr2 if ( io_level < 2 ) return ! ! open recover file ! call seqopn (iunres, 'restart', 'unformatted', exst) ! ! save restart information ! if (conv_elec) then ! ! step on electrons has been completed. restart from ions ! where = 'IONS' write (iunres) where write (iunres) ( (et (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) write (iunres) etot, tr2 ! vnew = V(in)-V(out) is needed in the scf correction term to forces write (iunres) vnew%of_r else ! ! save iteration number ! ! iteration iter has been completed ik_ = 0 where = 'ELECTRONS' write (iunres) where write (iunres) ( (et (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) write (iunres) iter, ik_, dr2, tr2, ethr endif write (iunres) exx_is_active(), fock0, fock1, fock2, dexx IF ( exx_is_active() ) write (iunres) & ( (x_occupation (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) ! close (unit = iunres, status = 'keep') return end subroutine save_in_electrons espresso-5.0.2/PW/src/stres_har.f900000644000700200004540000000402512053145627016015 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine stres_har (sigmahar) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : e2, fpi USE cell_base, ONLY: omega, tpiba2 USE ener, ONLY: ehart USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft USE gvect, ONLY: ngm, gstart, nl, g, gg USE lsda_mod, ONLY: nspin USE scf, ONLY: rho USE control_flags, ONLY: gamma_only USE wavefunctions_module, ONLY : psic USE mp_global, ONLY: intra_pool_comm, intra_bgrp_comm USE mp, ONLY: mp_sum implicit none ! real(DP) :: sigmahar (3, 3), shart, g2 real(DP), parameter :: eps = 1.d-8 integer :: is, ig, l, m, nspin0 sigmahar(:,:) = 0.d0 psic (:) = (0.d0, 0.d0) nspin0=nspin if (nspin==4) nspin0=1 do is = 1, nspin0 call daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, psic, 2) enddo CALL fwfft ('Dense', psic, dfftp) ! psic contains now the charge density in G space ! the G=0 component is not computed do ig = gstart, ngm g2 = gg (ig) * tpiba2 shart = psic (nl (ig) ) * CONJG(psic (nl (ig) ) ) / g2 do l = 1, 3 do m = 1, l sigmahar (l, m) = sigmahar (l, m) + shart * tpiba2 * 2 * & g (l, ig) * g (m, ig) / g2 enddo enddo enddo ! call mp_sum( sigmahar, intra_bgrp_comm ) ! if (gamma_only) then sigmahar(:,:) = fpi * e2 * sigmahar(:,:) else sigmahar(:,:) = 0.5d0 * fpi * e2 * sigmahar(:,:) end if do l = 1, 3 sigmahar (l, l) = sigmahar (l, l) - ehart / omega enddo do l = 1, 3 do m = 1, l - 1 sigmahar (m, l) = sigmahar (l, m) enddo enddo sigmahar(:,:) = -sigmahar(:,:) return end subroutine stres_har espresso-5.0.2/PW/src/wannier_enrg.f900000644000700200004540000000244512053145630016477 0ustar marsamoscm! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- subroutine wannier_enrg(enrg) !---------------------------------------------------------------------- ! ! ... This routine computes energy of each wannier. It is assumed that WF generated already and stored if the buffer. ! use kinds, only: DP use wannier_new, only: nwan, pp use io_global, only : stdout use wvfct, only: nbnd, et, wg use klist, only: nks, wk use lsda_mod, only: current_spin, lsda, nspin, isk USE io_files USE buffers implicit none real(DP), intent(out) :: enrg(nwan,nspin) integer :: i,j, ik enrg = ZERO current_spin = 1 DO ik=1, nks IF (lsda) current_spin = isk(ik) CALL get_buffer( pp, nwordwpp, iunwpp, ik) DO i=1, nwan DO j=1, nbnd enrg(i,current_spin) = enrg(i,current_spin) + pp(i,j)*conjg(pp(i,j))*wk(ik)*et(j,ik) END DO END DO END DO IF(nspin.eq.1) enrg=enrg*0.5D0 return end subroutine wannier_enrg espresso-5.0.2/PW/src/data_structure.f900000644000700200004540000000461612053145627017062 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE data_structure( gamma_only ) !----------------------------------------------------------------------- ! this routine sets the data structure for the fft arrays ! (both the smooth and the dense grid) ! In the parallel case, it distributes columns to processes, too ! USE kinds, ONLY : DP USE mp, ONLY : mp_max USE mp_global, ONLY : me_bgrp, nproc_bgrp, root_bgrp, intra_bgrp_comm, & inter_pool_comm USE mp_global, ONLY : get_ntask_groups USE fft_base, ONLY : dfftp, dffts USE cell_base, ONLY : bg, tpiba USE klist, ONLY : xk, nks USE gvect, ONLY : gcutm, gvect_init USE gvecs, ONLY : gcutms, gvecs_init USE stick_set, ONLY : pstickset USE wvfct, ONLY : ecutwfc ! IMPLICIT NONE LOGICAL, INTENT(in) :: gamma_only REAL (DP) :: gkcut INTEGER :: ik, ngm_, ngs_, ngw_, nogrp ! ! ... calculate gkcut = max |k+G|^2, in (2pi/a)^2 units ! IF (nks == 0) THEN ! ! if k-points are automatically generated (which happens later) ! use max(bg)/2 as an estimate of the largest k-point ! gkcut = 0.5d0 * max ( & sqrt (sum(bg (1:3, 1)**2) ), & sqrt (sum(bg (1:3, 2)**2) ), & sqrt (sum(bg (1:3, 3)**2) ) ) ELSE gkcut = 0.0d0 DO ik = 1, nks gkcut = max (gkcut, sqrt ( sum(xk (1:3, ik)**2) ) ) ENDDO ENDIF gkcut = (sqrt (ecutwfc) / tpiba + gkcut)**2 ! ! ... find maximum value among all the processors ! CALL mp_max (gkcut, inter_pool_comm ) ! ! ... set up fft descriptors, including parallel stuff: sticks, planes, etc. ! nogrp = get_ntask_groups() ! CALL pstickset( gamma_only, bg, gcutm, gkcut, gcutms, & dfftp, dffts, ngw_ , ngm_ , ngs_ , me_bgrp, & root_bgrp, nproc_bgrp, intra_bgrp_comm, nogrp ) ! ! on output, ngm_ and ngs_ contain the local number of G-vectors ! for the two grids. Initialize local and global number of G-vectors ! call gvect_init ( ngm_ , intra_bgrp_comm ) call gvecs_init ( ngs_ , intra_bgrp_comm ); ! END SUBROUTINE data_structure espresso-5.0.2/PW/src/allocate_locpot.f900000644000700200004540000000167312053145630017167 0ustar marsamoscm ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine allocate_locpot !----------------------------------------------------------------------- ! ! dynamical allocation of arrays: ! local potential for each kind of atom, structure factor ! USE ions_base, ONLY : nat, ntyp => nsp USE vlocal, ONLY : vloc, strf USE gvect, ONLY : eigts1, eigts2, eigts3, ngm, ngl USE fft_base , ONLY : dfftp ! implicit none ! allocate (vloc( ngl, ntyp)) allocate (strf( ngm, ntyp)) allocate( eigts1(-dfftp%nr1:dfftp%nr1,nat) ) allocate( eigts2(-dfftp%nr2:dfftp%nr2,nat) ) allocate( eigts3(-dfftp%nr3:dfftp%nr3,nat) ) return end subroutine allocate_locpot espresso-5.0.2/PW/src/interpolate.f900000644000700200004540000001074712053145630016353 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! subroutine interpolate (v, vs, iflag) ! ! This subroutine interpolates : ! from the smooth mesh (vs) to a thicker mesh (v) (iflag>0) ! vs is unchanged on output ! from the thick mesh (v ) to a smoother mesh (vs) (iflag<=0) ! v is unchanged on output ! V and Vs are real and in real space . V and Vs may coincide ! USE kinds, ONLY: DP USE gvect, ONLY: nl, nlm USE gvecs,ONLY: ngms, nls, nlsm, doublegrid USE control_flags, ONLY: gamma_only USE fft_base, ONLY : dfftp, dffts USE fft_interfaces,ONLY : fwfft, invfft ! implicit none real(DP) :: v (dfftp%nnr), vs (dffts%nnr) ! function on thick mesh ! function on smooth mesh complex(DP), allocatable :: aux (:), auxs (:) ! work array on thick mesh ! work array on smooth mesh integer :: iflag ! gives the direction of the interpolation integer :: ig, ir call start_clock ('interpolate') if (iflag <= 0) then ! ! from thick to smooth ! if (doublegrid) then allocate (aux( dfftp%nnr)) allocate (auxs(dffts%nnr)) aux (:) = v (:) CALL fwfft ('Dense', aux, dfftp) auxs (:) = (0.d0, 0.d0) do ig = 1, ngms auxs (nls (ig) ) = aux (nl (ig) ) enddo if (gamma_only) then do ig = 1, ngms auxs (nlsm(ig) ) = aux (nlm(ig) ) enddo end if CALL invfft ('Smooth', auxs, dffts) vs (:) = auxs (:) deallocate (auxs) deallocate (aux) else do ir = 1, dfftp%nnr vs (ir) = v (ir) enddo endif else ! ! from smooth to thick ! if (doublegrid) then allocate (aux( dfftp%nnr)) allocate (auxs(dffts%nnr)) auxs (:) = vs (:) CALL fwfft ('Smooth', auxs, dffts) aux (:) = (0.d0, 0.d0) do ig = 1, ngms aux (nl (ig) ) = auxs (nls (ig) ) enddo if (gamma_only) then do ig = 1, ngms aux (nlm(ig) ) = auxs (nlsm(ig) ) enddo end if CALL invfft ('Dense', aux, dfftp) v (:) = aux (:) deallocate (auxs) deallocate (aux) else do ir = 1, dfftp%nnr v (ir) = vs (ir) enddo endif endif call stop_clock ('interpolate') return end subroutine interpolate ! subroutine cinterpolate (v, vs, iflag) ! ! This subroutine interpolates : ! from the smooth mesh (vs) to a thicker mesh (v) (iflag>0) ! vs is unchanged on output ! from the thick mesh (v ) to a smoother mesh (vs) (iflag<=0) ! v is unchanged on output ! V and Vs are complex and in real space . V and Vs may coincide ! USE kinds, ONLY: DP USE gvect, ONLY: nl, nlm USE gvecs,ONLY: ngms, nls, nlsm, doublegrid USE control_flags, ONLY: gamma_only USE fft_base, ONLY : dfftp, dffts USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE complex(DP) :: v (dfftp%nnr), vs (dffts%nnr) ! function on thick mesh ! function on smooth mesh integer :: iflag ! gives the direction of the interpolation complex(DP), allocatable :: aux (:), auxs (:) ! work array on thick mesh ! work array on smooth mesh integer :: ig if (gamma_only) call errore ('cinterpolate','not allowed', 1) call start_clock ('cinterpolate') if (iflag <= 0) then ! ! from thick to smooth ! if (doublegrid) then allocate (aux ( dfftp%nnr)) aux (:) = v(:) CALL fwfft ('Dense', aux, dfftp) vs (:) = (0.d0, 0.d0) do ig = 1, ngms vs (nls (ig) ) = aux (nl (ig) ) enddo CALL invfft ('Smooth', vs, dffts) deallocate (aux) else call zcopy (dfftp%nnr, v, 1, vs, 1) endif else ! ! from smooth to thick ! if (doublegrid) then allocate (auxs (dffts%nnr)) auxs (:) = vs(:) CALL fwfft ('Smooth', auxs, dffts) v (:) = (0.d0, 0.d0) do ig = 1, ngms v (nl (ig) ) = auxs (nls (ig) ) enddo CALL invfft ('Dense', v, dfftp) deallocate (auxs) else call zcopy (dfftp%nnr, vs, 1, v, 1) endif endif call stop_clock ('cinterpolate') return end subroutine cinterpolate espresso-5.0.2/PW/src/setqf.f900000644000700200004540000000244312053145627015147 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine setqf (qfcoef, rho, r, nqf, ltot, mesh) !----------------------------------------------------------------------- ! ! This routine compute the first part of the Q function up to rinner. ! On output it contains r^2 Q ! ! USE kinds implicit none ! ! first the dummy variables ! integer :: nqf, ltot, mesh ! input: the number of coefficients ! input: the angular momentum ! input: the number of mesh point real(DP) :: r (mesh), qfcoef (nqf), rho (mesh) ! input: the radial mesh ! input: the coefficients of Q ! output: the function to be computed ! ! here the local variables ! integer :: ir, i ! counter on mesh points ! counter on the coeffients real(DP) :: rr ! the square of the radius do ir = 1, mesh rr = r (ir) **2 rho (ir) = qfcoef (1) do i = 2, nqf rho (ir) = rho (ir) + qfcoef (i) * rr** (i - 1) enddo rho (ir) = rho (ir) * r (ir) ** (ltot + 2) enddo return end subroutine setqf espresso-5.0.2/PW/src/h_epsi_her_set.f900000755000700200004540000012753712053145627017024 0ustar marsamoscm! ! Copyright (C) 2005 Paolo Umari ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine h_epsi_her_set(pdir, e_field) !----------------------------------------------------------------------- ! ! this subroutine builds the hermitean operators w_k w_k*, ! (as in Souza,et al. PRB B 69, 085106 (2004)) ! ! wavefunctions from previous iteration are read into 'evcel' ! spin polarized systems supported only with fixed occupations USE noncollin_module, ONLY : noncolin, npol USE kinds, ONLY : DP USE us USE wvfct, ONLY : igk, g2kin, npwx, npw, nbnd, ecutwfc USE ldaU, ONLY : lda_plus_u USE lsda_mod, ONLY : current_spin, nspin USE scf, ONLY : vrs USE gvect USE fft_base, ONLY : dfftp USE uspp USE uspp_param, ONLY: upf, nh, nhm, nbetam, lmaxq USE bp, ONLY : nppstr_3d, fact_hepsi, evcel, evcp=>evcelp, & evcm=>evcelm, mapgp_global, mapgm_global, nx_el USE basis USE klist USE cell_base, ONLY: at, alat, tpiba, omega, tpiba2,bg USE ions_base, ONLY: ityp, tau, nat,ntyp => nsp USE io_files, ONLY: iunwfc, nwordwfc, iunefieldm, iunefieldp USE buffers, ONLY: get_buffer USE constants, ONLY : e2, pi, tpi, fpi USE fixed_occ USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm USE becmod, ONLY : calbec ! implicit none ! INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated REAL(DP) :: e_field!electric field along pdir ! ! --- Internal definitions --- COMPLEX(DP), ALLOCATABLE :: evct(:,:)!for temporary wavefunctios INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: info INTEGER :: is INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: jv INTEGER :: m INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 !INTEGER :: nstring INTEGER :: nt INTEGER :: ik_stringa!k-point index inside string REAL(dp) :: dk(3) REAL(dp) :: dkm(3)! -dk REAL(dp) :: dkmod REAL(dp) :: eps REAL(dp) :: fac REAL(dp) :: g2kin_bp(npwx) REAL(dp) :: gpar(3) REAL(dp) :: gtr(3) !REAL(dp) :: gvec REAL(dp), ALLOCATABLE :: ln(:,:,:) REAL(dp), ALLOCATABLE :: ln0(:,:,:)!map g-space global to g-space k-point dependent REAL(dp) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(dp) :: ylm_dk(lmaxq*lmaxq) COMPLEX(dp), ALLOCATABLE :: aux(:) COMPLEX(dp), ALLOCATABLE :: aux0(:) ! Also for noncollinear calculation COMPLEX(DP), ALLOCATABLE :: aux_2(:) COMPLEX(DP), ALLOCATABLE :: aux0_2(:) COMPLEX(dp) :: becp0(nkb,nbnd) COMPLEX(dp) :: becp_bp(nkb,nbnd) COMPLEX(dp) :: cdet(2) COMPLEX(dp) :: cdwork(nbnd) COMPLEX(dp) :: mat(nbnd,nbnd) COMPLEX(dp) :: pref COMPLEX(dp) :: q_dk(nhm,nhm,ntyp) COMPLEX(dp) :: q_dkp(nhm,nhm,ntyp)!to store the terms T^dagger e^(iGx) T COMPLEX(dp) :: struc(nat) COMPLEX(dp) :: zdotc COMPLEX(dp) :: sca,sca1 COMPLEX(dp) :: ps(nkb,nbnd) COMPLEX(dp) :: matbig(nks,nbnd,nbnd) INTEGER :: mdone(nks) INTEGER :: ijkb0, ibnd,jh, ih, ikb, ik LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for empty/occupied states INTEGER, ALLOCATABLE :: map_g(:) REAL(dp) :: dkfact LOGICAL :: l_para! if true new parallel treatment COMPLEX(kind=DP), ALLOCATABLE :: aux_g(:) COMPLEX(kind=DP), ALLOCATABLE :: aux_g_2(:) ! non-collinear case ! --- Define a small number --- eps=0.000001d0 if(ABS(e_field) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- end if END DO END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm pref = pref+CONJG(becp_bp(jkb,nb))*becp0(jkb1+j,mb) & & *q_dkp(nhjkb,j,np)*CONJG(struc(na)) ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif ENDIF ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik,pdir),:,:)=mat mdone(nx_el(ik,pdir))=1 ELSE mat=matbig(nx_el(ik,pdir),:,:) END IF ! mat=S^-1(k,k-1) do ig=1,npw0 gtr(1)=g(1,igk0(ig)) gtr(2)=g(2,igk0(ig)) gtr(3)=g(3,igk0(ig)) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcm(ng,m,pdir)=evcm(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcm(ng+npwx,m,pdir)=evcm(ng+npwx,m,pdir) & +mat(nb,m)*evct(ig+npwx,nb) enddo enddo end if ENDIF enddo ! add US terms into evcm ! calculate |beta_(ik,na,ih)>Q_dkp(na,ih,ij)<|beta_(ik-1,na,ih)| if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dkp(ih,jh,ityp(na))*CONJG(struc(na))* becp0(jkb,ibnd) enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcm(ig,m,pdir)=evcm(ig,m,pdir) + mat(nb,m)*evct(ig,nb) enddo enddo enddo endif ! --- End of dot products between wavefunctions and betas --- ELSE !(ik_stringa == 1) CALL gk_sort(xk(1,nx_el(ik+nppstr_3d(pdir)-1,pdir)),ngm,g,ecutwfc/tpiba2, & & npw0,igk0,g2kin_bp) CALL get_buffer (evct,nwordwfc,iunwfc,nx_el(ik+nppstr_3d(pdir)-1,pdir)) ! ! --- Calculate dot products between wavefunctions ! --- Dot wavefunctions and betas for PREVIOUS k-point --- if(okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(ik+nppstr_3d(pdir)-1,pdir)),vkb) CALL calbec( npw0, vkb, evct, becp0 ) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- CALL gk_sort(xk(1,nx_el(ik,pdir)),ngm,g,ecutwfc/tpiba2, & & npw1,igk1,g2kin_bp) ! --- Recalculate FFT correspondence (see ggen.f90) --- if(.not.l_para) then ln0=0!set to 0 DO ig=1,npw1 mk1=nint(g(1,igk1(ig))*at(1,1)+g(2,igk1(ig))*at(2,1)+g(3,igk1(ig))*at(3,1)) mk2=nint(g(1,igk1(ig))*at(1,2)+g(2,igk1(ig))*at(2,2)+g(3,igk1(ig))*at(3,2)) mk3=nint(g(1,igk1(ig))*at(1,3)+g(2,igk1(ig))*at(2,3)+g(3,igk1(ig))*at(3,3)) ln0(mk1,mk2,mk3) = ig END DO endif if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(ik,pdir)),vkb) CALL calbec( npw1, vkb, evcel, becp_bp ) endif ! --- Matrix elements calculation --- IF(mdone(nx_el(ik,pdir))==0) THEN mat=(0.d0,0.d0) if(.not. l_para) then map_g(:) = 0 do ig=1,npw0 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk0(ig)) + gpar(1) gtr(2)=g(2,igk0(ig)) + gpar(2) gtr(3)=g(3,igk0(ig)) + gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ((ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps)) THEN WRITE(6,*) ' error hepsiher: translated G=', & gtr(1),gtr(2),gtr(3), & ' with crystal coordinates',n1,n2,n3, & ' corresponds to ng=',ng,' but G(ng)=', & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng enddo endif ! OPTIMIZATION BY AM ! NOTE THERE ARE TOO MANY COMMUNICATION CALLS FOR GLOBAL ARRAY ! CAN REDUCE THEM SIGNIFICANTLY !!! ! NOTE CHANGED ORDER OF LOOPS OVER BANDS!!! DO mb=1,nbnd IF(l_para) THEN !allocate global array allocate(aux_g(ngm_g)) aux_g=(0.d0,0.d0) IF (noncolin) THEN allocate(aux_g_2(ngm_g)) aux_g_2=(0.d0,0.d0) END IF !put psi1 on global array do ig=1,npw0 aux_g(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig,mb) IF (noncolin) aux_g_2(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,mb) enddo call mp_sum(aux_g(:)) IF (noncolin) call mp_sum(aux_g_2(:)) END IF DO nb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE if(.not.l_para) then aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) aux_2=(0.d0,0.d0) IF(noncolin) aux0_2=(0.d0,0.d0) DO ig=1,npw1 aux0(igk1(ig))=evcel(ig,nb) IF(noncolin) aux0_2(igk1(ig))=evcel(ig+npwx,nb) END DO do ig=1,npw0 aux(map_g(ig))=evct(ig,mb) IF (noncolin) aux_2(map_g(ig))=evct(ig+npwx,mb) ENDDO mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) IF (noncolin) mat(nb,mb) = mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) else sca=(0.d0,0.d0) !do scalar product do ig=1,npw1 sca=sca+conjg(evcel(ig,nb))*aux_g(ig_l2g(igk1(ig))) IF (noncolin) sca=sca+conjg(evcel(ig+npwx,nb))*aux_g_2(ig_l2g(igk1(ig))) enddo ! mp_sum is done later!!! mat(nb,mb)=sca endif endif END DO IF(l_para) THEN deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) END IF END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- if (okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm pref = pref+CONJG(becp_bp(jkb,nb))*becp0(jkb1+j,mb) & *q_dkp(nhjkb,j,np)*CONJG(struc(na)) ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif endif ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik,pdir),:,:)=mat mdone(nx_el(ik,pdir))=1 ELSE mat=matbig(nx_el(ik,pdir),:,:) END IF ! mat=S^-1(k,k-1) if(.not.l_para) then do ig=1,npw0 gtr(1)=g(1,igk0(ig)) + gpar(1) gtr(2)=g(2,igk0(ig)) + gpar(2) gtr(3)=g(3,igk0(ig)) + gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcm(ng,m,pdir)=evcm(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcm(ng+npwx,m,pdir)=evcm(ng+npwx,m,pdir) & +mat(nb,m)*evct(ig+npwx,nb) enddo enddo endif ENDIF enddo else !allocate allocate(aux_g(ngm_g)) IF (noncolin) allocate(aux_g_2(ngm_g)) !loop on nb do nb=1,nbnd aux_g(:)=(0.d0,0.d0) IF (noncolin) aux_g_2(:)=(0.d0,0.d0) do ig=1,npw0 aux_g(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig,nb) IF (noncolin) aux_g_2(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,nb) enddo !put evct on global array call mp_sum(aux_g(:)) IF (noncolin) call mp_sum(aux_g_2(:)) do m=1,nbnd do ig=1,npw1 evcm(ig,m,pdir)=evcm(ig,m,pdir)+mat(nb,m)*aux_g(ig_l2g(igk1(ig))) IF (noncolin) evcm(ig+npwx,m,pdir)=evcm(ig+npwx,m,pdir) & +mat(nb,m)*aux_g_2(ig_l2g(igk1(ig))) enddo enddo enddo deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) endif if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dkp(ih,jh,ityp(na))*CONJG(struc(na))* becp0(jkb,ibnd) enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcm(ig,m,pdir)=evcm(ig,m,pdir) + mat(nb,m)*evct(ig,nb) enddo enddo enddo endif ENDIF ! calculate S-1(k,k+1) ! if(ik_stringa /= nppstr_3d(pdir)) then CALL gk_sort(xk(1,nx_el(ik+1,pdir)),ngm,g,ecutwfc/tpiba2, & & npw0,igk0,g2kin_bp) CALL get_buffer (evct,nwordwfc,iunwfc,nx_el(ik+1,pdir)) ! ! --- Calculate dot products between wavefunctions ! --- Dot wavefunctions and betas for PREVIOUS k-point --- if(okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(ik+1,pdir)),vkb) CALL calbec( npw0, vkb, evct, becp0) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- CALL gk_sort(xk(1,nx_el(ik,pdir)),ngm,g,ecutwfc/tpiba2, & & npw1,igk1,g2kin_bp) ! --- Recalculate FFT correspondence (see ggen.f90) --- ln0=0!set to 0 DO ig=1,npw1 mk1=nint(g(1,igk1(ig))*at(1,1)+g(2,igk1(ig))*at(2,1)+g(3,igk1(ig))*at(3,1)) mk2=nint(g(1,igk1(ig))*at(1,2)+g(2,igk1(ig))*at(2,2)+g(3,igk1(ig))*at(3,2)) mk3=nint(g(1,igk1(ig))*at(1,3)+g(2,igk1(ig))*at(2,3)+g(3,igk1(ig))*at(3,3)) ln0(mk1,mk2,mk3) = ig END DO if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(ik,pdir)),vkb) CALL calbec( npw1, vkb, evcel, becp_bp ) endif ! --- Matrix elements calculation --- IF(mdone(nx_el(ik+1,pdir))==0) THEN mat=(0.d0,0.d0) DO nb=1,nbnd DO mb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) aux_2=(0.d0,0.d0) IF(noncolin) aux0_2=(0.d0,0.d0) DO ig=1,npw1 aux0(igk1(ig))=evcel(ig,nb) if (noncolin) aux0_2(igk1(ig))=evcel(ig+npwx,nb) END DO DO ig=1,npw0 aux(igk0(ig))=evct(ig,mb) if (noncolin) aux_2(igk0(ig))=evct(ig+npwx,mb) END DO mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) if (noncolin) mat(nb,mb)=mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- endif END DO END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm pref = pref+CONJG(becp_bp(jkb,nb))*becp0(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif ENDIF ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik+1,pdir),:,:)=TRANSPOSE(CONJG(mat)) mdone(nx_el(ik+1,pdir))=1 ELSE mat=TRANSPOSE(CONJG(matbig(nx_el(ik+1,pdir),:,:))) END IF ! mat=S^-1(k,k-1) do ig=1,npw0 gtr(1)=g(1,igk0(ig)) gtr(2)=g(2,igk0(ig)) gtr(3)=g(3,igk0(ig)) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcp(ng,m,pdir)=evcp(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcp(ng+npwx,m,pdir)=evcp(ng+npwx,m,pdir) & + mat(nb,m)*evct(ig+npwx,nb) enddo enddo endif ENDIF enddo if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dk(ih,jh,ityp(na))*struc(na)* becp0(jkb,ibnd) enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcp(ig,m,pdir)=evcp(ig,m,pdir) + mat(nb,m)*evct(ig,nb) enddo enddo enddo endif ! --- End of dot products between wavefunctions and betas --- else CALL gk_sort(xk(1,nx_el(ik-nppstr_3d(pdir)+1,pdir)),ngm,g,ecutwfc/tpiba2, & & npw0,igk0,g2kin_bp) CALL get_buffer (evct,nwordwfc,iunwfc,nx_el(ik-nppstr_3d(pdir)+1,pdir)) ! ! --- Calculate dot products between wavefunctions ! --- Dot wavefunctions and betas for PREVIOUS k-point --- if(okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(ik-nppstr_3d(pdir)+1,pdir)),vkb) CALL calbec( npw0, vkb, evct, becp0 ) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- CALL gk_sort(xk(1,nx_el(ik,pdir)),ngm,g,ecutwfc/tpiba2, & & npw1,igk1,g2kin_bp) ! --- Recalculate FFT correspondence (see ggen.f90) --- if(.not.l_para) then ln0=0! set to 0 DO ig=1,npw1 mk1=nint(g(1,igk1(ig))*at(1,1)+g(2,igk1(ig))*at(2,1)+g(3,igk1(ig))*at(3,1)) mk2=nint(g(1,igk1(ig))*at(1,2)+g(2,igk1(ig))*at(2,2)+g(3,igk1(ig))*at(3,2)) mk3=nint(g(1,igk1(ig))*at(1,3)+g(2,igk1(ig))*at(2,3)+g(3,igk1(ig))*at(3,3)) ln0(mk1,mk2,mk3) = ig END DO endif if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(ik,pdir)),vkb) CALL calbec( npw1, vkb, evcel, becp_bp ) endif ! --- Matrix elements calculation --- IF(mdone(nx_el(ik-nppstr_3d(pdir)+1,pdir))==0) THEN if(.not.l_para) then map_g(:) = 0 do ig=1,npw0 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk0(ig)) - gpar(1) gtr(2)=g(2,igk0(ig)) - gpar(2) gtr(3)=g(3,igk0(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ((ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps)) THEN WRITE(6,*) ' error hepsiher: translated G=', & gtr(1),gtr(2),gtr(3), & ' with crystal coordinates',n1,n2,n3, & ' corresponds to ng=',ng,' but G(ng)=', & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng ENDDO endif mat=(0.d0,0.d0) DO mb=1,nbnd if(l_para) then !allocate global array allocate(aux_g(ngm_g)) aux_g=(0.d0,0.d0) IF (noncolin) THEN allocate(aux_g_2(ngm_g)) aux_g_2=(0.d0,0.d0) END IF !put psi1 on global array do ig=1,npw0 aux_g(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig,mb) IF (noncolin) aux_g_2(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,mb) enddo call mp_sum(aux_g(:)) IF (noncolin) call mp_sum(aux_g_2(:)) end if DO nb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE if(.not.l_para) then aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) aux_2=(0.d0,0.d0) IF(noncolin) aux0_2=(0.d0,0.d0) DO ig=1,npw1 aux0(igk1(ig))=evcel(ig,nb) IF(noncolin) aux0_2(igk1(ig))=evcel(ig+npwx,nb) END DO do ig=1,npw0 aux(map_g(ig))=evct(ig,mb) IF(noncolin) aux_2(map_g(ig))=evct(ig+npwx,mb) ENDDO mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) IF (noncolin) mat(nb,mb)=mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) else sca=(0.d0,0.d0) !do scalar product do ig=1,npw1 sca=sca+conjg(evcel(ig,nb))*aux_g(ig_l2g(igk1(ig))) IF (noncolin) sca=sca+conjg(evcel(ig+npwx,nb)) & *aux_g_2(ig_l2g(igk1(ig))) enddo ! mp_sum is done later!!! mat(nb,mb)=sca endif endif END DO IF(l_para) THEN deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) END IF END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm pref = pref+CONJG(becp_bp(jkb,nb))*becp0(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif ENDIF ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik-nppstr_3d(pdir)+1,pdir),:,:)=TRANSPOSE(CONJG(mat)) mdone(nx_el(ik-nppstr_3d(pdir)+1,pdir))=1 ELSE mat=TRANSPOSE(CONJG(matbig(nx_el(ik-nppstr_3d(pdir)+1,pdir),:,:))) END IF ! mat=S^-1(k,k-1) if(.not.l_para) then do ig=1,npw0 gtr(1)=g(1,igk0(ig)) - gpar(1) gtr(2)=g(2,igk0(ig)) - gpar(2) gtr(3)=g(3,igk0(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcp(ng,m,pdir)=evcp(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcp(ng+npwx,m,pdir)=evcp(ng+npwx,m,pdir) & +mat(nb,m)*evct(ig+npwx,nb) end do enddo end if ENDIF enddo else !allocate allocate(aux_g(ngm_g)) IF (noncolin) allocate(aux_g_2(ngm_g)) !loop on nb do nb=1,nbnd aux_g(:)=(0.d0,0.d0) IF (noncolin) aux_g_2(:)=(0.d0,0.d0) do ig=1,npw0 aux_g(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig,nb) IF (noncolin) aux_g_2(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,nb) enddo !put evct on global array call mp_sum(aux_g(:)) IF (noncolin) call mp_sum(aux_g_2(:)) do m=1,nbnd do ig=1,npw1 evcp(ig,m,pdir)=evcp(ig,m,pdir)+mat(nb,m)*aux_g(ig_l2g(igk1(ig))) IF (noncolin) evcp(ig+npwx,m,pdir)=evcp(ig+npwx,m,pdir) & +mat(nb,m)*aux_g_2(ig_l2g(igk1(ig))) enddo enddo enddo deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) endif if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dk(ih,jh,ityp(na))*struc(na)* becp0(jkb,ibnd) enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcp(ig,m,pdir)=evcp(ig,m,pdir) + mat(nb,m)*evct(ig,nb) enddo enddo enddo endif ENDIF !writes projectors to disk call davcio(evcm(:,:,pdir), 2*nwordwfc,iunefieldm,nx_el(ik,pdir)+(pdir-1)*nks,1) call davcio(evcp(:,:,pdir), 2*nwordwfc,iunefieldp,nx_el(ik,pdir)+(pdir-1)*nks,1) END DO !on ik DEALLOCATE (l_cal) DEALLOCATE( evct) DEALLOCATE( map_g) deallocate(ln,ln0) DEALLOCATE(aux,aux0) IF (ALLOCATED(aux_2)) DEALLOCATE(aux_2) IF (ALLOCATED(aux0_2)) DEALLOCATE(aux0_2) ! -- !------------------------------------------------------------------------------! return END SUBROUTINE h_epsi_her_set !==============================================================================! SUBROUTINE factor_a(dir, a,fact) USE kinds, ONLY : DP IMPLICIT NONE REAL(kind=DP):: a(3,3),fact INTEGER :: dir INTEGER :: d1,d2 REAL(kind=DP) :: v(3), sca if(dir==1) then d1=2 d2=3 else if(dir==2) then d1=3 d2=1 else if(dir==3) then d1=1 d2=2 endif !calculate vect(a(d1,:) X a(d2,:) v(1)=a(2,d1)*a(3,d2)-a(3,d1)*a(2,d2) v(2)=-a(1,d1)*a(3,d2)+a(3,d1)*a(1,d2) v(3)=a(1,d1)*a(2,d2)-a(2,d1)*a(1,d2) !normalize v sca=sqrt(v(1)**2.d0+v(2)**2.d0+v(3)**2.d0) v(:)=v(:)/sca !calculate a(dir:)*v(:) fact=v(1)*a(1,dir)+v(2)*a(2,dir)+v(3)*a(3,dir) !!!!!!!!!!!!!! fact=dsqrt(a(1,dir)**2.d0+a(2,dir)**2.d0+a(3,dir)**2.d0) fact=abs(fact) return END SUBROUTINE factor_a espresso-5.0.2/PW/src/bp_mod.f900000644000700200004540000001370012053145630015255 0ustar marsamoscm! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE bp ! ! ... The variables needed for the Berry phase polarization calculation ! USE kinds, ONLY: DP ! SAVE PRIVATE PUBLIC:: lberry, lelfield, lorbm, gdir, nppstr, nberrycyc, evcel, evcelp, evcelm, & fact_hepsi, bec_evcel, mapgp_global, mapgm_global, nppstr_3d, & ion_pol, el_pol, fc_pol, l_el_pol_old, el_pol_old, el_pol_acc, & nx_el, l3dstring, efield, efield_cart, efield_cry, transform_el PUBLIC :: allocate_bp_efield, deallocate_bp_efield, bp_global_map ! LOGICAL :: & lberry =.false., & ! if .TRUE. calculate polarization using Berry phase lelfield=.false., & ! if .TRUE. finite electric field using Berry phase lorbm=.false. ! if .TRUE. calculate orbital magnetization (Kubo terms) INTEGER :: & gdir, &! G-vector for polarization calculation nppstr, &! number of k-points (parallel vector) nberrycyc ! number of cycles for convergence in electric field ! without changing the selfconsistent charge REAL(DP) :: efield ! electric field intensity in a.u. COMPLEX(DP), ALLOCATABLE , TARGET :: evcel(:,:) ! wavefunctions for calculating the electric field operator COMPLEX(DP), ALLOCATABLE , TARGET :: evcelm(:,:,:) ! wavefunctions for storing projectors for electric field operator COMPLEX(DP), ALLOCATABLE , TARGET :: evcelp(:,:,:) ! wavefunctions for storing projectors for electric field operator COMPLEX(DP), ALLOCATABLE, TARGET :: fact_hepsi(:,:) ! factors for hermitean electric field operators COMPLEX(DP), ALLOCATABLE, TARGET :: bec_evcel(:,:) !for storing bec's factors with evcel INTEGER, ALLOCATABLE, TARGET :: mapgp_global(:,:) ! map for G'= G+1 correspondence INTEGER, ALLOCATABLE, TARGET :: mapgm_global(:,:) ! map for G'= G-1 correspondence REAL(DP) :: ion_pol(3) ! the ionic polarization REAL(DP) :: el_pol(3) ! the electronic polarization REAL(DP) :: fc_pol(3) ! the prefactor for the electronic polarization LOGICAL :: l_el_pol_old! if true there is already stored a n older value for the polarization ! neeeded for having correct polarization during MD REAL(DP) :: el_pol_old(3)! the old electronic polarization REAL(DP) :: el_pol_acc(3)! accumulator for the electronic polarization INTEGER :: nppstr_3d(3) ! number of element of strings along the reciprocal directions INTEGER, ALLOCATABLE :: nx_el(:,:) ! index for string to k-point map, (nks*nspin,dir=3) LOGICAL :: l3dstring ! if true strings are on the 3 three directions REAL(DP) :: efield_cart(3) ! electric field vector in cartesian units REAL(DP) :: efield_cry(3) ! electric field vector in crystal units REAL(DP) :: transform_el(3,3)! transformation matrix from cartesian coordinates to normed reciprocal space ! CONTAINS SUBROUTINE allocate_bp_efield ( ) USE gvect, ONLY : ngm_g ! allocate memory for the Berry's phase electric field ! NOTICE: should be allocated ONLY in parallel case, for gdir=1 or 2 IMPLICIT NONE IF ( lberry .OR. lelfield .OR. lorbm ) THEN ALLOCATE(mapgp_global(ngm_g,3)) ALLOCATE(mapgm_global(ngm_g,3)) ENDIF l_el_pol_old=.false. el_pol_acc=0.d0 RETURN END SUBROUTINE allocate_bp_efield SUBROUTINE deallocate_bp_efield ! deallocate memory used in Berry's phase electric field calculation IMPLICIT NONE IF ( lberry .OR. lelfield .OR. lorbm ) THEN IF ( ALLOCATED(mapgp_global) ) DEALLOCATE(mapgp_global) IF ( ALLOCATED(mapgm_global) ) DEALLOCATE(mapgm_global) IF ( ALLOCATED(nx_el) ) DEALLOCATE(nx_el) ENDIF RETURN END SUBROUTINE deallocate_bp_efield SUBROUTINE bp_global_map !this subroutine sets up the global correspondence map G+1 and G-1 USE mp, ONLY : mp_sum USE gvect, ONLY : ngm_g, g, ngm, ig_l2g USE fft_base, ONLY : dfftp USE cell_base, ONLY : at IMPLICIT NONE INTEGER :: ig, mk1,mk2,mk3, idir, imk(3) INTEGER, ALLOCATABLE :: ln_g(:,:,:) INTEGER, ALLOCATABLE :: g_ln(:,:) IF ( .NOT.lberry .AND. .NOT. lelfield .AND. .NOT. lorbm ) RETURN ! set up correspondence ln_g ix,iy,iz ---> global g index in ! (for now...) coarse grid ! and inverse realtion global g (coarse) to ix,iy,iz ALLOCATE(ln_g(-dfftp%nr1:dfftp%nr1,-dfftp%nr2:dfftp%nr2,-dfftp%nr3:dfftp%nr3)) ALLOCATE(g_ln(3,ngm_g)) ln_g(:,:,:)=0!it means also not found DO ig=1,ngm mk1=nint(g(1,ig)*at(1,1)+g(2,ig)*at(2,1)+g(3,ig)*at(3,1)) mk2=nint(g(1,ig)*at(1,2)+g(2,ig)*at(2,2)+g(3,ig)*at(3,2)) mk3=nint(g(1,ig)*at(1,3)+g(2,ig)*at(2,3)+g(3,ig)*at(3,3)) ln_g(mk1,mk2,mk3)=ig_l2g(ig) ENDDO CALL mp_sum(ln_g(:,:,:)) g_ln(:,:)= 0!it means also not found DO ig=1,ngm mk1=nint(g(1,ig)*at(1,1)+g(2,ig)*at(2,1)+g(3,ig)*at(3,1)) mk2=nint(g(1,ig)*at(1,2)+g(2,ig)*at(2,2)+g(3,ig)*at(3,2)) mk3=nint(g(1,ig)*at(1,3)+g(2,ig)*at(2,3)+g(3,ig)*at(3,3)) g_ln(1,ig_l2g(ig))=mk1 g_ln(2,ig_l2g(ig))=mk2 g_ln(3,ig_l2g(ig))=mk3 ENDDO CALL mp_sum(g_ln(:,:)) !loop on direction DO idir=1,3 !for every g on global array find G+1 and G-1 and put on DO ig=1,ngm_g imk(:)=g_ln(:,ig) imk(idir)=imk(idir)+1 !table array mapgp_global(ig,idir)=ln_g(imk(1),imk(2),imk(3)) imk(idir)=imk(idir)-2 mapgm_global(ig,idir)=ln_g(imk(1),imk(2),imk(3)) ENDDO ENDDO DEALLOCATE(ln_g,g_ln) RETURN END SUBROUTINE bp_global_map END MODULE bp espresso-5.0.2/PW/src/save_in_ions.f900000644000700200004540000000301512053145627016475 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine save_in_ions !----------------------------------------------------------------------- USE kinds, ONLY: DP USE io_files, ONLY: iunres, prefix, seqopn USE klist, ONLY: nks USE control_flags, ONLY: io_level, lscf, tr2, ethr USE wvfct, ONLY: nbnd, et USE funct, ONLY: exx_is_active USE exx, ONLY: fock0, fock1, fock2, dexx, x_occupation implicit none character :: where * 20 ! are we in the right place? integer :: ik, ibnd, ik_, iter ! counters ! last completed kpoint ! last completed iteration logical :: exst, lexx real(DP) :: dr2 ! if ( io_level < 2 .or. .not.lscf ) return ! ! open recover file ! call seqopn (iunres, 'restart', 'unformatted', exst) ! ! save restart information ! where = 'ELECTRONS' iter = 0 ik_ = 0 dr2 = 0.0d0 write (iunres) where write (iunres) ( (et (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) write (iunres) iter, ik_, dr2, tr2, ethr lexx=exx_is_active() write (iunres) lexx, fock0, fock1, fock2, dexx if(lexx) then write (iunres) ( (x_occupation (ibnd, ik), ibnd = 1, nbnd), ik = 1, nks) endif close (unit = iunres, status = 'keep') ! return end subroutine save_in_ions espresso-5.0.2/PW/src/compute_rho.f900000644000700200004540000000272112053145627016350 0ustar marsamoscm! ! Copyright (C) 2005-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_rho(rho,rhoout,segni,nrxx) ! ! This subroutine diagonalizes the spin density matrix and gives as output ! the spin up and spin down compotents of the charge ! If lsign is true up and dw are with respect to the fixed quantization ! axis ux, otherwise rho+|m| is always rhoup and rho-|m| is always ! rhodw ! USE kinds, ONLY : dp USE noncollin_module, ONLY : lsign, ux IMPLICIT NONE INTEGER :: nrxx ! input: the dimension of the mesh REAL(DP), INTENT(IN) :: rho(nrxx,4) REAL(DP), INTENT(OUT) :: rhoout(nrxx,2) REAL(DP), INTENT(OUT) :: segni(nrxx) ! input: the four components of the charge ! output: the spin up and spin down charge ! output: the orientation when needed REAL(DP) :: amag INTEGER :: ir ! counter on mesh points segni=1.0_DP IF (lsign) THEN DO ir=1,nrxx segni(ir)=SIGN(1.0_DP,rho(ir,2)*ux(1)+rho(ir,3)*ux(2)+rho(ir,4)*ux(3)) ENDDO ENDIF DO ir=1,nrxx amag=SQRT(rho(ir,2)**2+rho(ir,3)**2+rho(ir,4)**2) rhoout(ir,1)=0.5d0*(rho(ir,1)+segni(ir)*amag) rhoout(ir,2)=0.5d0*(rho(ir,1)-segni(ir)*amag) ENDDO RETURN END SUBROUTINE compute_rho espresso-5.0.2/PW/src/hinit1.f900000644000700200004540000000416112053145627015220 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE hinit1() !---------------------------------------------------------------------------- ! ! ... Atomic configuration dependent hamiltonian initialization ! USE ions_base, ONLY : nat, nsp, ityp, tau USE cell_base, ONLY : at, bg, omega, tpiba2 USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, g USE gvecs, ONLY : doublegrid USE ldaU, ONLY : lda_plus_u USE lsda_mod, ONLY : nspin USE scf, ONLY : vrs, vltot, v, kedtau USE control_flags, ONLY : tqr USE realus, ONLY : qpointlist USE wannier_new, ONLY : use_wannier USE martyna_tuckerman, ONLY : tag_wg_corr_as_obsolete USE scf, ONLY : rho USE paw_variables, ONLY : okpaw, ddd_paw USE paw_onecenter, ONLY : paw_potential USE paw_init, ONLY : paw_atomic_becsum USE paw_symmetry, ONLY : paw_symmetrize_ddd USE dfunct, ONLY : newd ! IMPLICIT NONE ! ! ! ... update the wavefunctions, charge density, potential ! ... update_pot initializes structure factor array as well ! CALL update_pot() ! ! ... calculate the total local potential ! CALL setlocal() ! ! ... define the total local potential (external+scf) ! CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) ! IF ( tqr ) CALL qpointlist() ! ! ... update the D matrix and the PAW coefficients ! IF (okpaw) THEN ! CALL paw_atomic_becsum() CALL compute_becsum(.true.) CALL PAW_potential(rho%bec, ddd_paw) CALL PAW_symmetrize_ddd(ddd_paw) ENDIF ! CALL newd() ! ! ... and recalculate the products of the S with the atomic wfcs used ! ... in LDA+U calculations ! IF ( lda_plus_u .OR. use_wannier ) CALL orthoatwfc() ! call tag_wg_corr_as_obsolete ! RETURN ! END SUBROUTINE hinit1 espresso-5.0.2/PW/src/weights.f900000644000700200004540000001104412053145627015474 0ustar marsamoscm! ! Copyright (C) 2001-2011 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE weights() !---------------------------------------------------------------------------- ! ! ... calculates weights of Kohn-Sham orbitals used in calculation of rho, ! ... Fermi energies, HOMO and LUMO, "-TS" term (gaussian) ! USE kinds, ONLY : DP USE ener, ONLY : demet, ef, ef_up, ef_dw USE fixed_occ, ONLY : f_inp, tfixed_occ USE klist, ONLY : lgauss, degauss, ngauss, nks, & nkstot, wk, xk, nelec, nelup, neldw, & two_fermi_energies USE ktetra, ONLY : ltetra, ntetra, tetra USE lsda_mod, ONLY : nspin, current_spin, isk USE noncollin_module, ONLY : bfield USE wvfct, ONLY : nbnd, wg, et USE mp_global, ONLY : intra_image_comm, inter_pool_comm USE mp, ONLY : mp_bcast, mp_sum USE io_global, ONLY : ionode, ionode_id ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ibnd, ik ! counters: bands, k-points real (DP) demet_up, demet_dw ! demet = 0.D0 ! IF ( tfixed_occ .OR. ltetra ) THEN ! ! ... For these two cases, the weights are computed on one processor, ! ... broadcast to the other. All eigenvalues (et) must be present on ! ... the first pool: poolreduce must have been called for et ! IF ( ionode ) THEN ! IF ( tfixed_occ ) THEN ! ! ... occupancies are fixed to the values read from input ! DO ik = 1, nkstot wg(:,ik) = f_inp(:,isk(ik)) * wk(ik) IF ( nspin == 1 ) wg(:,ik) = wg(:,ik)/2.0_dp END DO ! ef = -1.0d10 DO ik = 1, nkstot DO ibnd = 1, nbnd IF ( wg(ibnd,ik) > 0.D0 ) ef = MAX( ef, et(ibnd,ik) ) END DO END DO ! ELSE ! ! ... calculate weights for the metallic case using tetrahedra ! IF (two_fermi_energies) THEN ! CALL tweights( nkstot, nspin, nbnd, nelup, & ntetra, tetra, et, ef_up, wg, 1, isk ) CALL tweights( nkstot, nspin, nbnd, neldw, & ntetra, tetra, et, ef_dw, wg, 2, isk ) ! ELSE ! CALL tweights( nkstot, nspin, nbnd, nelec, & ntetra, tetra, et, ef, wg, 0, isk ) ! END IF ! END IF ! END IF ! CALL poolscatter( nbnd, nkstot, wg, nks, wg ) CALL mp_bcast( ef, ionode_id, intra_image_comm ) ! ELSE ! IF ( lgauss ) THEN ! ! ... calculate weights for the metallic case using smearing ! IF ( two_fermi_energies ) THEN ! CALL gweights( nks, wk, nbnd, nelup, degauss, & ngauss, et, ef_up, demet_up, wg, 1, isk ) CALL gweights( nks, wk, nbnd, neldw, degauss, & ngauss, et, ef_dw, demet_dw, wg, 2, isk ) ! demet = demet_up + demet_dw ! bfield(3) = 0.5D0*( ef_up - ef_dw ) ! ELSE ! CALL gweights( nks, wk, nbnd, nelec, degauss, & ngauss, et, ef, demet, wg, 0, isk) END IF ! CALL mp_sum( demet, inter_pool_comm ) ! ELSE ! ! ... calculate weights for the insulator case ! IF ( two_fermi_energies ) THEN ! CALL iweights( nks, wk, nbnd, nelup, et, ef_up, wg, 1, isk ) CALL iweights( nks, wk, nbnd, neldw, et, ef_dw, wg, 2, isk ) ! ! the following line to prevent NaN in Ef ! ef = ( ef_up + ef_dw ) / 2.0_dp ! ELSE ! CALL iweights( nks, wk, nbnd, nelec, et, ef, wg, 0, isk ) ! END IF ! END IF ! ! ... collect all weights on the first pool; ! ... not needed for calculation but useful for printout ! CALL poolrecover( wg, nbnd, nkstot, nks ) ! END IF ! RETURN ! END SUBROUTINE weights espresso-5.0.2/PW/src/spinor.f900000644000700200004540000000260612053145630015332 0ustar marsamoscm! ! Copyright (C) 2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! function spinor(l,j,m,spin) ! This function calculates the numerical coefficient of a spinor ! with orbital angular momentum l, total angular momentum j, ! projection along z of the total angular momentum m+-1/2. Spin selects ! the up (spin=1) or down (spin=2) coefficient. use kinds implicit none real(DP) :: spinor integer :: l, & ! orbital angular momentum m, & ! projection of the total angular momentum+-1/2 spin ! 1 or 2 select the component real(DP) :: j ! total angular momentum real(DP) :: denom ! denominator if (spin.ne.1.and.spin.ne.2) call errore('spinor','spin direction unknown',1) if (m.lt.-l-1.or.m.gt.l) call errore('spinor','m not allowed',1) denom=1.d0/(2.d0*l+1.d0) if (abs(j-l-0.5d0).lt.1.d-8) then if (spin.eq.1) spinor= sqrt((l+m+1.d0)*denom) if (spin.eq.2) spinor= sqrt((l-m)*denom) elseif (abs(j-l+0.5d0).lt.1.d-8) then if (m.lt.-l+1) then spinor=0.d0 else if (spin.eq.1) spinor= sqrt((l-m+1.d0)*denom) if (spin.eq.2) spinor= -sqrt((l+m)*denom) endif else call errore('spinor','j and l not compatible',1) endif return end function spinor espresso-5.0.2/PW/src/rotate_wfc.f900000644000700200004540000000460012053145630016151 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rotate_wfc & ( npwx, npw, nstart, gstart, nbnd, psi, npol, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Driver routine (maybe it should be an interface) for ! ... Hamiltonian diagonalization in the subspace spanned ! ... by nstart states psi ( atomic or random wavefunctions ). ! ... Produces on output nbnd eigenvectors ( nbnd <= nstart ) in evc. ! ... Calls h_psi, s_psi to calculate H|psi> ans S|psi> ! ... It only uses an auxiliary array of the same size as psi. ! USE kinds, ONLY : DP USE control_flags, ONLY : use_para_diag, gamma_only ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd, gstart, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! first G with nonzero norm ! number of spin polarizations LOGICAL, INTENT(IN) :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP), INTENT(INOUT) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd) ! input and output eigenvectors (may overlap) REAL(DP), INTENT(OUT) :: e(nbnd) ! eigenvalues ! CALL start_clock( 'wfcrot' ) ! IF( use_para_diag ) THEN ! ! use data distributed subroutine ! IF ( gamma_only ) THEN ! CALL protate_wfc_gamma & ( npwx, npw, nstart, gstart, nbnd, psi, overlap, evc, e ) ! ELSE ! CALL protate_wfc_k & ( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) ! END IF ! ELSE ! ! use serial subroutines ! IF ( gamma_only ) THEN ! CALL rotate_wfc_gamma & ( npwx, npw, nstart, gstart, nbnd, psi, overlap, evc, e ) ! ELSE ! CALL rotate_wfc_k & ( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) ! END IF ! END IF ! CALL stop_clock( 'wfcrot' ) ! END SUBROUTINE rotate_wfc espresso-5.0.2/PW/src/wannier_occ.f900000644000700200004540000000253212053145627016313 0ustar marsamoscm! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- subroutine wannier_occupancies(occ) !---------------------------------------------------------------------- ! ! ... This routine computes occupation of each wannier. It is assumed that WF generated already and stored if the buffer. ! use kinds, only: DP use wannier_new, only: nwan, pp use io_global, only : stdout use wvfct, only: nbnd, et, wg use klist, only: nks use lsda_mod, only: current_spin, lsda, nspin, isk USE io_files USE buffers implicit none real(DP), intent(out) :: occ(nwan,nwan,nspin) integer :: i,j,k,ik occ = ZERO current_spin = 1 DO ik=1, nks IF (lsda) current_spin = isk(ik) CALL get_buffer( pp, nwordwpp, iunwpp, ik) DO i=1, nwan DO j=1,nwan DO k=1, nbnd occ(i,j,current_spin) = occ(i,j,current_spin) + pp(i,k)*conjg(pp(j,k))*wg(k,ik) END DO END DO END DO END DO IF(nspin.eq.1) occ=occ*0.5D0 return end subroutine wannier_occupancies espresso-5.0.2/PW/src/stres_us.f900000644000700200004540000005566612053145627015713 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE stres_us( ik, gk, sigmanlc ) !---------------------------------------------------------------------------- ! ! nonlocal (separable pseudopotential) contribution to the stress ! NOTICE: sum of partial results over procs is performed in calling routine ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE constants, ONLY : eps8 USE klist, ONLY : nks, xk USE lsda_mod, ONLY : current_spin, lsda, isk USE wvfct, ONLY : npw, npwx, nbnd, igk, wg, et USE control_flags, ONLY : gamma_only USE uspp_param, ONLY : upf, lmaxkb, nh, newpseudo, nhm USE uspp, ONLY : nkb, vkb, qq, deeq, deeq_nc, qq_so USE wavefunctions_module, ONLY : evc USE spin_orb, ONLY : lspinorb USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : noncolin, npol USE mp_global, ONLY : me_pool, root_pool, intra_bgrp_comm,inter_bgrp_comm, mpime USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE mp, ONLY : mp_sum, mp_get_comm_null, mp_circular_shift_left ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ik REAL(DP), INTENT(IN) :: gk(3,npw) REAL(DP), INTENT(INOUT):: sigmanlc(3,3) ! REAL(DP), ALLOCATABLE :: qm1(:) REAL(DP) :: q INTEGER :: i ! ! IF ( nkb == 0 ) RETURN ! IF ( lsda ) current_spin = isk(ik) IF ( nks > 1 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! CALL allocate_bec_type ( nkb, nbnd, becp, intra_bgrp_comm ) CALL calbec( npw, vkb, evc, becp ) ! ALLOCATE( qm1( npwx ) ) DO i = 1, npw q = SQRT( gk(1,i)**2 + gk(2,i)**2 + gk(3,i)**2 ) IF ( q > eps8 ) THEN qm1(i) = 1.D0 / q ELSE qm1(i) = 0.D0 END IF END DO ! IF ( gamma_only ) THEN ! CALL stres_us_gamma() ! ELSE ! CALL stres_us_k() ! END IF ! DEALLOCATE( qm1 ) CALL deallocate_bec_type ( becp ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE stres_us_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: na, np, ibnd, ipol, jpol, l, i, & ikb, jkb, ih, jh, ijkb0, ibnd_loc, & nproc, mype, nbnd_loc, nbnd_begin, & icur_blk, icyc INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block REAL(DP) :: fac, xyz(3,3), evps, ddot REAL(DP), ALLOCATABLE :: deff(:,:,:) COMPLEX(DP), ALLOCATABLE :: work1(:), work2(:), dvkb(:,:) ! dvkb contains the derivatives of the kb potential COMPLEX(DP) :: ps ! xyz are the three unit vectors in the x,y,z directions DATA xyz / 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0 / ! ! IF( becp%comm /= mp_get_comm_null() ) THEN nproc = becp%nproc mype = becp%mype nbnd_loc = becp%nbnd_loc nbnd_begin = becp%ibnd_begin IF( ( nbnd_begin + nbnd_loc - 1 ) > nbnd ) nbnd_loc = nbnd - nbnd_begin + 1 ELSE nproc = 1 nbnd_loc = nbnd nbnd_begin = 1 END IF ALLOCATE( work1( npwx ), work2( npwx ) ) ALLOCATE( deff(nhm,nhm,nat) ) ! ! ... diagonal contribution - if the result from "calbec" are not ! ... distributed, must be calculated on a single processor ! evps = 0.D0 IF ( nproc == 1 .AND. me_pool /= root_pool ) GO TO 100 ! DO ibnd_loc = 1, nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 CALL compute_deff ( deff, et(ibnd,ik) ) fac = wg(ibnd,ik) ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih evps = evps + fac * deff(ih,ih,na) * & ABS( becp%r(ikb,ibnd_loc) )**2 ! IF ( upf(np)%tvanp .OR. newpseudo(np) ) THEN ! ! ... only in the US case there is a contribution ! ... for jh<>ih ! ... we use here the symmetry in the interchange of ! ... ih and jh ! DO jh = ( ih + 1 ), nh(np) jkb = ijkb0 + jh evps = evps + deff(ih,jh,na) * fac * 2.D0 * & becp%r(ikb,ibnd_loc) * becp%r(jkb,ibnd_loc) END DO END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO END DO ! 100 CONTINUE ! ! ... non diagonal contribution - derivative of the bessel function !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ALLOCATE( dvkb( npwx, nkb ) ) ! CALL gen_us_dj( ik, dvkb ) ! DO icyc = 0, nproc -1 ! DO ibnd_loc = 1, nbnd_loc ! ibnd = ibnd_loc + becp%ibnd_begin - 1 CALL compute_deff ( deff, et(ibnd,ik) ) work2(:) = (0.D0,0.D0) ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN ps = becp%r(ikb,ibnd_loc) * deff(ih,ih,na) ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh ps = ps + becp%r(jkb,ibnd_loc) * deff(ih,jh,na) END DO END IF CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO ! ! ... a factor 2 accounts for the other half of the G-vector sphere ! DO ipol = 1, 3 DO jpol = 1, ipol DO i = 1, npw work1(i) = evc(i,ibnd) * gk(ipol,i) * gk(jpol,i) * qm1(i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 4.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END DO END DO END DO IF ( nproc > 1 ) THEN CALL mp_circular_shift_left(becp%r, icyc, becp%comm) CALL mp_circular_shift_left(becp%ibnd_begin, icyc, becp%comm) CALL mp_circular_shift_left(nbnd_loc, icyc, becp%comm) END IF END DO ! ! ... non diagonal contribution - derivative of the spherical harmonics ! ... (no contribution from l=0) ! IF ( lmaxkb == 0 ) GO TO 10 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DO ipol = 1, 3 CALL gen_us_dy( ik, xyz(1,ipol), dvkb ) icur_blk = mype DO icyc = 0, nproc -1 DO ibnd_loc = 1, nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 CALL compute_deff ( deff, et(ibnd,ik) ) work2(:) = (0.D0,0.D0) ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN ps = becp%r(ikb,ibnd_loc) * deff(ih,ih,na) ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh ps = ps + becp%r(jkb,ibnd_loc)*deff(ih,jh,na) END DO END IF CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO ! ! ... a factor 2 accounts for the other half of the G-vector sphere ! DO jpol = 1, ipol DO i = 1, npw work1(i) = evc(i,ibnd) * gk(jpol,i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 4.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END DO END DO IF ( nproc > 1 ) THEN CALL mp_circular_shift_left(becp%r, icyc, becp%comm) CALL mp_circular_shift_left(becp%ibnd_begin, icyc, becp%comm) CALL mp_circular_shift_left(nbnd_loc, icyc, becp%comm) END IF ENDDO END DO 10 CONTINUE ! DO l = 1, 3 sigmanlc(l,l) = sigmanlc(l,l) - evps END DO ! DEALLOCATE( dvkb ) DEALLOCATE( deff, work2, work1 ) ! RETURN ! END SUBROUTINE stres_us_gamma ! ! !---------------------------------------------------------------------- SUBROUTINE stres_us_k() !---------------------------------------------------------------------- ! ! ... k-points version ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: na, np, ibnd, ipol, jpol, l, i, & ikb, jkb, ih, jh, ijkb0, is, js, ijs REAL(DP) :: fac, xyz (3, 3), evps, ddot COMPLEX(DP), ALLOCATABLE :: work1(:), work2(:), dvkb(:,:) COMPLEX(DP), ALLOCATABLE :: work2_nc(:,:) COMPLEX(DP), ALLOCATABLE :: deff_nc(:,:,:,:) REAL(DP), ALLOCATABLE :: deff(:,:,:) ! dvkb contains the derivatives of the kb potential COMPLEX(DP) :: ps, ps_nc(2) ! xyz are the three unit vectors in the x,y,z directions DATA xyz / 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0 / ! ! if (noncolin) then ALLOCATE( work2_nc(npwx,npol) ) ALLOCATE( deff_nc(nhm,nhm,nat,nspin) ) else ALLOCATE( deff(nhm,nhm,nat) ) endif ! ALLOCATE( work1(npwx), work2(npwx) ) ! evps = 0.D0 ! ... diagonal contribution ! IF ( me_pool /= root_pool ) GO TO 100 ! ! ... the contribution is calculated only on one processor because ! ... partial results are later summed over all processors ! DO ibnd = 1, nbnd fac = wg(ibnd,ik) IF (ABS(fac) < 1.d-9) CYCLE IF (noncolin) THEN CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE CALL compute_deff(deff,et(ibnd,ik)) ENDIF ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 evps=evps+fac*deff_nc(ih,ih,na,ijs)* & CONJG(becp%nc(ikb,is,ibnd))* & becp%nc(ikb,js,ibnd) END DO END DO ELSE evps = evps+fac*deff(ih,ih,na)*ABS(becp%k(ikb,ibnd) )**2 END IF ! IF ( upf(np)%tvanp .OR. newpseudo(np) ) THEN ! ! ... only in the US case there is a contribution ! ... for jh<>ih ! ... we use here the symmetry in the interchange of ! ... ih and jh ! DO jh = ( ih + 1 ), nh(np) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 evps = evps+2.d0*fac& *DBLE(deff_nc(ih,jh,na,ijs)* & (CONJG( becp%nc(ikb,is,ibnd) ) * & becp%nc(jkb,js,ibnd)) ) END DO END DO ELSE evps = evps + deff(ih,jh,na) * fac * 2.D0 * & DBLE( CONJG( becp%k(ikb,ibnd) ) * & becp%k(jkb,ibnd) ) END IF END DO END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO END DO DO l = 1, 3 sigmanlc(l,l) = sigmanlc(l,l) - evps END DO ! 100 CONTINUE ! ! ... non diagonal contribution - derivative of the bessel function ! ALLOCATE( dvkb( npwx, nkb ) ) ! CALL gen_us_dj( ik, dvkb ) ! DO ibnd = 1, nbnd IF (noncolin) THEN work2_nc = (0.D0,0.D0) CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE work2 = (0.D0,0.D0) CALL compute_deff(deff,et(ibnd,ik)) ENDIF ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN IF (noncolin) THEN if (lspinorb) call errore('stres_us','wrong case',1) ijs=0 ps_nc=(0.D0, 0.D0) DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+becp%nc(ikb,js,ibnd)* & deff_nc(ih,ih,na,ijs) END DO END DO ELSE ps = becp%k(ikb, ibnd) * deeq(ih,ih,na,current_spin) ENDIF ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) ps_nc = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+becp%nc(jkb,js,ibnd)* & deff_nc(ih,jh,na,ijs) END DO END DO ELSE ps = ps + becp%k(jkb,ibnd) * deff(ih,jh,na) END IF END DO END IF IF (noncolin) THEN DO is=1,npol CALL zaxpy(npw,ps_nc(is),dvkb(1,ikb),1,& work2_nc(1,is),1) END DO ELSE CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO DO ipol = 1, 3 DO jpol = 1, ipol IF (noncolin) THEN DO i = 1, npw work1(i) = evc(i ,ibnd)*gk(ipol,i)* & gk(jpol,i)*qm1(i) work2(i) = evc(i+npwx,ibnd)*gk(ipol,i)* & gk(jpol,i)*qm1(i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ( ddot(2*npw,work1,1,work2_nc(1,1), 1) + & ddot(2*npw,work2,1,work2_nc(1,2), 1) ) ELSE DO i = 1, npw work1(i) = evc(i,ibnd)*gk(ipol,i)*gk(jpol,i)*qm1(i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END IF END DO END DO END DO ! ! ... non diagonal contribution - derivative of the spherical harmonics ! ... (no contribution from l=0) ! IF ( lmaxkb == 0 ) GO TO 10 ! DO ipol = 1, 3 CALL gen_us_dy( ik, xyz(1,ipol), dvkb ) DO ibnd = 1, nbnd IF (noncolin) THEN work2_nc = (0.D0,0.D0) CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE work2 = (0.D0,0.D0) CALL compute_deff(deff,et(ibnd,ik)) ENDIF ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN IF (noncolin) THEN ijs=0 ps_nc = (0.D0,0.D0) DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+becp%nc(ikb,js,ibnd)* & deff_nc(ih,ih,na,ijs) END DO END DO ELSE ps = becp%k(ikb,ibnd) * deeq(ih,ih,na,current_spin) END IF ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) ps_nc = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+ & becp%nc(jkb,js,ibnd)* & deff_nc(ih,jh,na,ijs) END DO END DO ELSE ps = ps + becp%k(jkb,ibnd) * deff(ih,jh,na) END IF END DO END IF IF (noncolin) THEN DO is=1,npol CALL zaxpy(npw,ps_nc(is),dvkb(1,ikb),1, & work2_nc(1,is),1) END DO ELSE CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO DO jpol = 1, ipol IF (noncolin) THEN DO i = 1, npw work1(i) = evc(i ,ibnd) * gk(jpol,i) work2(i) = evc(i+npwx,ibnd) * gk(jpol,i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ( ddot( 2 * npw, work1, 1, work2_nc(1,1), 1 ) + & ddot( 2 * npw, work2, 1, work2_nc(1,2), 1 ) ) ELSE DO i = 1, npw work1(i) = evc(i,ibnd) * gk(jpol,i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END IF END DO END DO END DO ! 10 CONTINUE ! IF (noncolin) THEN DEALLOCATE( work2_nc ) DEALLOCATE( deff_nc ) ELSE DEALLOCATE( work2 ) DEALLOCATE( deff ) ENDIF DEALLOCATE( dvkb ) DEALLOCATE( work1 ) ! RETURN ! END SUBROUTINE stres_us_k ! END SUBROUTINE stres_us espresso-5.0.2/PW/src/electrons.f900000644000700200004540000011250412053145627016023 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE electrons() !---------------------------------------------------------------------------- ! ! ... This routine is a driver of the self-consistent cycle. ! ... It uses the routine c_bands for computing the bands at fixed ! ... Hamiltonian, the routine sum_band to compute the charge density, ! ... the routine v_of_rho to compute the new potential and the routine ! ... mix_rho to mix input and output charge densities. ! ... It prints on output the total energy and its decomposition in ! ... the separate contributions. ! USE kinds, ONLY : DP USE constants, ONLY : eps8, pi USE io_global, ONLY : stdout, ionode USE cell_base, ONLY : at, bg, alat, omega, tpiba2 USE ions_base, ONLY : zv, nat, nsp, ityp, tau, compute_eextfor USE basis, ONLY : starting_pot, starting_wfc USE bp, ONLY : lelfield USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, gstart, nl, nlm, g, gg, gcutm USE gvecs, ONLY : doublegrid, ngms USE klist, ONLY : xk, wk, nelec, ngk, nks, nkstot, lgauss USE lsda_mod, ONLY : lsda, nspin, magtot, absmag, isk USE vlocal, ONLY : strf USE wvfct, ONLY : nbnd, et, npwx, ecutwfc USE ener, ONLY : etot, hwf_energy, eband, deband, ehart, & vtxc, etxc, etxcc, ewld, demet, epaw, & elondon USE scf, ONLY : scf_type, scf_type_COPY, bcast_scf_type,& create_scf_type, destroy_scf_type, & rho, rho_core, rhog_core, & v, vltot, vrs, kedtau, vnew USE control_flags, ONLY : mixing_beta, tr2, ethr, niter, nmix, & iprint, istep, lscf, lmd, conv_elec, & restart, io_level, do_makov_payne, & gamma_only, iverbosity, textfor, & llondon, scf_must_converge USE io_files, ONLY : iunwfc, iunocc, nwordwfc, output_drho, & iunefield, iunpaw USE buffers, ONLY : save_buffer USE ldaU, ONLY : eth, Hubbard_U, Hubbard_lmax, & niter_with_fixed_ns, lda_plus_u USE extfield, ONLY : tefield, etotefield USE wavefunctions_module, ONLY : evc, psic USE noncollin_module, ONLY : noncolin, magtot_nc, i_cons, bfield, & lambda, report USE spin_orb, ONLY : domag USE io_rho_xml, ONLY : write_rho USE uspp, ONLY : okvan USE exx, ONLY : exxinit, exxenergy, exxenergy2, & fock0, fock1, fock2, dexx, exx_restart USE funct, ONLY : dft_is_hybrid, exx_is_active USE control_flags, ONLY : adapt_thr, tr2_init, tr2_multi USE funct, ONLY : dft_is_meta USE mp_global, ONLY : intra_bgrp_comm, inter_pool_comm, & root_pool, my_pool_id USE mp, ONLY : mp_sum, mp_bcast ! USE london_module, ONLY : energy_london ! USE paw_variables, ONLY : okpaw, ddd_paw, total_core_energy, only_paw USE paw_onecenter, ONLY : PAW_potential USE paw_symmetry, ONLY : PAW_symmetrize_ddd USE uspp_param, ONLY : nh, nhm ! used for PAW #ifdef __ENVIRON USE environ_base, ONLY : do_environ, update_venviron, & vltot_zero, environ_thr, & env_static_permittivity, & env_surface_tension, env_pressure, & env_periodicity, env_ioncc_concentration,& deenviron, esolvent, ecavity, epressure, & eperiodic, eioncc #endif USE dfunct, only : newd USE esm, ONLY : do_comp_esm, esm_printpot ! ! IMPLICIT NONE ! ! ... a few local variables ! REAL(DP) :: & dr2, &! the norm of the diffence between potential charge, &! the total charge deband_hwf, &! deband for the Harris-Weinert-Foulkes functional mag ! local magnetization INTEGER :: & i, &! counter on polarization idum, &! dummy counter on iterations iter, &! counter on iterations ik_, &! used to read ik from restart file kilobytes REAL(DP) :: & tr2_min, &! estimated error on energy coming from diagonalization descf, &! correction for variational energy en_el=0.0_DP,&! electric field contribution to the total energy eext=0.0_DP ! external forces contribution to the total energy LOGICAL :: & first ! ! ... auxiliary variables for calculating and storing temporary copies of ! ... the charge density and of the HXC-potential ! type (scf_type), save :: rhoin ! used to store rho_in of current/next iteration ! ! ... external functions ! REAL(DP), EXTERNAL :: ewald, get_clock REAL(DP) :: tr2_final ! final threshold for exx minimization ! when using adaptive thresholds. iter = 0 ik_ = 0 dr2 = 0.0_dp tr2_final = tr2 IF (dft_is_hybrid() .AND. adapt_thr ) THEN tr2= tr2_init ENDIF ! IF ( restart ) THEN ! CALL restart_in_electrons( iter, ik_, dr2 ) ! IF ( ik_ == -1000 ) THEN ! conv_elec = .TRUE. ! IF ( output_drho /= ' ' ) CALL remove_atomic_rho () ! RETURN ! END IF ! IF( exx_is_active() ) THEN iter = 0 call save_in_electrons( iter, dr2 ) WRITE( stdout, '(5x,"EXX: now go back to refine exchange calculation")') ELSE IF ( dft_is_hybrid() .AND. TRIM(starting_wfc) == 'file' ) THEN ! ! suggested by Hannu Komsa: useful when several calculations with ! different values of alpha have to be performed ! call exx_restart(.true.) WRITE( stdout, '(5x,"EXX: now go back to refine exchange calculation")') ENDIF END IF ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! CALL memstat( kilobytes ) IF ( kilobytes > 0 ) WRITE( stdout, 9001 ) kilobytes/1000.0 ! CALL flush_unit( stdout ) ! IF ( .NOT. lscf ) THEN ! CALL non_scf (ik_) ! conv_elec = .TRUE. ! RETURN ! END IF ! CALL start_clock( 'electrons' ) ! if ( exx_is_active()) then CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) end if ! #ifdef __ENVIRON IF ( do_environ ) THEN vltot_zero = vltot CALL environ_initions( dfftp%nnr, nat, nsp, ityp, zv, tau, alat ) CALL environ_initcell( dfftp%nnr, dfftp%nr1*dfftp%nr2*dfftp%nr3, & omega, alat, at ) END IF #endif ! CALL flush_unit( stdout ) ! ! ... calculates the ewald contribution to total energy ! ewld = ewald( alat, nat, nsp, ityp, zv, at, bg, tau, & omega, g, gg, ngm, gcutm, gstart, gamma_only, strf ) ! IF ( llondon ) THEN elondon = energy_london ( alat , nat , ityp , at ,bg , tau ) ELSE elondon = 0.d0 END IF ! call create_scf_type ( rhoin ) ! 10 CONTINUE ! ! ... Convergence threshold for iterative diagonalization ! ! ... for the first scf iteration of each ionic step (after the first), ! ... the threshold is fixed to a default value of 1.D-6 ! IF ( istep > 0 ) ethr = 1.D-6 ! WRITE( stdout, 9002 ) ! CALL flush_unit( stdout ) ! !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !%%%%%%%%%%%%%%%%%%%% iterate ! %%%%%%%%%%%%%%%%%%%%% !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! DO idum = 1, niter ! IF ( check_stop_now() ) RETURN ! iter = iter + 1 ! WRITE( stdout, 9010 ) iter, ecutwfc, mixing_beta ! CALL flush_unit( stdout ) ! ! ... Convergence threshold for iterative diagonalization is ! ... automatically updated during self consistency ! IF ( iter > 1 .AND. ik_ == 0 ) THEN ! IF ( iter == 2 ) ethr = 1.D-2 ethr = MIN( ethr, 0.1D0*dr2 / MAX( 1.D0, nelec ) ) ! ... do not allow convergence threshold to become too small: ! ... iterative diagonalization may become unstable ethr = MAX( ethr, 1.D-13 ) ! END IF ! first = ( iter == 1 ) ! ! ... deband = - \sum_v <\psi_v | V_h + V_xc |\psi_v> is calculated a ! ... first time here using the input density and potential ( to be ! ... used to calculate the Harris-Weinert-Foulkes energy ) ! deband_hwf = delta_e() ! ! save input current density in rhoin call scf_type_COPY( rho, rhoin ) ! scf_step: DO ! ! ... tr2_min is set to an estimate of the error on the energy ! ... due to diagonalization - used only for the first scf iteration ! tr2_min = 0.D0 ! IF ( first ) tr2_min = ethr*MAX( 1.D0, nelec ) ! ! ... diagonalization of the KS hamiltonian ! IF ( lelfield ) THEN ! CALL c_bands_efield ( iter, ik_, dr2 ) ! ELSE ! CALL c_bands( iter, ik_, dr2 ) ! END IF ! IF ( check_stop_now() ) RETURN ! ! ... xk, wk, isk, et, wg are distributed across pools; ! ... the first node has a complete copy of xk, wk, isk, ! ... while eigenvalues et and weights wg must be ! ... explicitely collected to the first node ! ... this is done here for et, in sum_band for wg ! CALL poolrecover( et, nbnd, nkstot, nks ) ! ! ... the new density is computed here CALL sum_band() ! PAW : sum_band computes new becsum (stored in uspp modules) and a ! subtly different copy in rho%bec (scf module) ! ! ... the Harris-Weinert-Foulkes energy is computed here using only ! ... quantities obtained from the input density ! hwf_energy = eband + deband_hwf + (etxc - etxcc) + ewld + ehart + demet ! IF ( lda_plus_u ) THEN ! hwf_energy = hwf_energy + eth ! IF ( iverbosity > 0 .OR. first ) THEN IF (noncolin) THEN CALL write_ns_nc() ELSE CALL write_ns() ENDIF ENDIF ! IF ( first .AND. istep == 0 .AND. starting_pot == 'atomic' ) THEN CALL ns_adj() IF (noncolin) THEN rhoin%ns_nc = rho%ns_nc ELSE rhoin%ns = rho%ns ENDIF END IF IF ( iter <= niter_with_fixed_ns ) THEN WRITE( stdout, '(/,5X,"RESET ns to initial values (iter <= mixing_fixed_ns)",/)') IF (noncolin) THEN rho%ns_nc = rhoin%ns_nc ELSE rho%ns = rhoin%ns ENDIF END IF ! END IF IF (okpaw) hwf_energy = hwf_energy + epaw ! ! ... calculate total and absolute magnetization ! IF ( lsda .OR. noncolin ) CALL compute_magnetization() ! ! ... eband = \sum_v \epsilon_v is calculated by sum_band ! ... deband = - \sum_v <\psi_v | V_h + V_xc |\psi_v> ! ... eband + deband = \sum_v <\psi_v | T + Vion |\psi_v> ! deband = delta_e() ! ! ... mix_rho mixes several quantities: rho in g-space, tauk (for ! ... meta-gga), ns and ns_nc (for lda+u) and becsum (for paw) ! ... Results are broadcast from pool 0 to others to prevent trouble ! ... on machines unable to yield the same results from the same ! ... calculation on same data, performed on different procs ! ... The mixing should be done on pool 0 only as well, but inside ! ... mix_rho there is a call to rho_ddot that in the PAW case ! ... contains a hidden parallelization level on the entire image ! IF ( my_pool_id == root_pool ) CALL mix_rho & ( rho, rhoin, mixing_beta, dr2, tr2_min, iter, nmix, conv_elec ) CALL bcast_scf_type ( rhoin, root_pool, inter_pool_comm ) CALL mp_bcast ( dr2, root_pool, inter_pool_comm ) CALL mp_bcast ( conv_elec, root_pool, inter_pool_comm ) ! if (.not. scf_must_converge .and. idum == niter) conv_elec = .true. ! ! ... if convergence is achieved or if the self-consistency error ! ... (dr2) is smaller than the estimated error due to diagonalization ! ... (tr2_min), rhoin and rho are unchanged: rhoin contains the input ! ... density and rho contains the output density ! ... In the other cases rhoin contains the mixed charge density ! ... (the new input density) while rho is unchanged ! IF ( first .and. nat > 0) THEN ! ! ... first scf iteration: check if the threshold on diagonalization ! ... (ethr) was small enough wrt the error in self-consistency (dr2) ! ... if not, perform a new diagonalization with reduced threshold ! first = .FALSE. ! IF ( dr2 < tr2_min ) THEN ! WRITE( stdout, '(/,5X,"Threshold (ethr) on eigenvalues was ", & & "too large:",/,5X, & & "Diagonalizing with lowered threshold",/)' ) ! ethr = 0.1D0*dr2 / MAX( 1.D0, nelec ) ! CYCLE scf_step ! END IF ! END IF ! not_converged_electrons : & IF ( .NOT. conv_elec ) THEN ! ... no convergence yet: calculate new potential from mixed ! ... charge density (i.e. the new estimate) ! CALL v_of_rho( rhoin, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) IF (okpaw) THEN CALL PAW_potential(rhoin%bec, ddd_paw, epaw) CALL PAW_symmetrize_ddd(ddd_paw) ENDIF ! ! ... estimate correction needed to have variational energy: ! ... T + E_ion (eband + deband) are calculated in sum_band ! ... and delta_e using the output charge density rho; ! ... E_H (ehart) and E_xc (etxc) are calculated in v_of_rho ! ... above, using the mixed charge density rhoin%of_r. ! ... delta_escf corrects for this difference at first order ! descf = delta_escf() ! ! ... now copy the mixed charge density in R- and G-space in rho ! CALL scf_type_COPY( rhoin, rho ) ! ! ... write the charge density to file ! ... also write ldaU ns coeffs and PAW becsum CALL write_rho( rho, nspin ) ! ELSE not_converged_electrons ! ! ... convergence reached: ! ... 1) the output HXC-potential is saved in vr ! ... 2) vnew contains V(out)-V(in) ( used to correct the forces ). ! vnew%of_r(:,:) = v%of_r(:,:) ! CALL v_of_rho( rho,rho_core,rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) ! IF (okpaw) THEN CALL PAW_potential(rho%bec, ddd_paw, epaw) CALL PAW_symmetrize_ddd(ddd_paw) ENDIF ! vnew%of_r(:,:) = v%of_r(:,:) - vnew%of_r(:,:) ! ! ... note that rho is here the output, not mixed, charge density ! ... so correction for variational energy is no longer needed ! descf = 0._dp ! END IF not_converged_electrons ! IF ( exx_is_active() ) THEN ! fock1 = exxenergy2() fock2 = fock0 ! ELSE ! fock0 = 0.D0 fock1 = 0.D0 fock2 = 0.D0 ! END IF ! ! ... if we didn't cycle before we can exit the do-loop ! EXIT scf_step ! END DO scf_step ! #ifdef __ENVIRON ! ... computes the external environment contribution to energy and potential ! IF ( do_environ ) THEN ! vltot = vltot_zero ! CALL calc_eenviron( dfftp%nnr, nspin, rhoin%of_r, deenviron, esolvent, & ecavity, epressure, eperiodic, eioncc ) ! update_venviron = .NOT. conv_elec .AND. dr2 .LT. environ_thr ! IF ( update_venviron ) WRITE( stdout, 9200 ) ! CALL calc_venviron( update_venviron, dfftp%nnr, nspin, dr2, rhoin%of_r, vltot ) ! END IF #endif ! ! ... define the total local potential (external + scf) ! CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) ! ! ... in the US case we have to recompute the self-consistent ! ... term in the nonlocal potential ! ! ... PAW: newd contains PAW updates of NL coefficients CALL newd() ! ! ... save converged wfc if they have not been written previously ! IF ( nks == 1 .AND. (io_level < 2) ) & CALL save_buffer ( evc, nwordwfc, iunwfc, nks ) ! ! ... calculate the polarization ! IF ( lelfield ) THEN CALL calc_pol (en_el) ELSE en_el=0.d0 ENDIF ! ! ... write recover file ! CALL save_in_electrons( iter, dr2 ) ! IF ( ( MOD( iter, report ) == 0 ) .OR. & ( report /= 0 .AND. conv_elec ) ) THEN ! IF ( noncolin .AND. domag .or. i_cons==1) CALL report_mag() ! END IF ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! IF ( conv_elec ) WRITE( stdout, 9101 ) ! IF ( conv_elec .OR. MOD( iter, iprint ) == 0 ) THEN ! IF ( lda_plus_U .AND. iverbosity == 0 ) THEN IF (noncolin) THEN CALL write_ns_nc() ELSE CALL write_ns() ENDIF ENDIF CALL print_ks_energies() ! END IF ! IF ( ABS( charge - nelec ) / charge > 1.D-7 ) THEN WRITE( stdout, 9050 ) charge, nelec IF ( ABS( charge - nelec ) / charge > 1.D-3 ) THEN IF (.not.lgauss) THEN CALL errore( 'electrons', 'charge is wrong: smearing is needed', 1 ) ELSE CALL errore( 'electrons', 'charge is wrong', 1 ) END IF END IF END IF ! etot = eband + ( etxc - etxcc ) + ewld + ehart + deband + demet + descf +en_el IF (okpaw) etot = etot + epaw IF( textfor ) THEN eext = compute_eextfor() etot = etot + eext END IF IF (llondon) THEN etot = etot + elondon hwf_energy = hwf_energy + elondon END IF ! etot = etot - 0.5D0*fock0 hwf_energy = hwf_energy -0.5D0*fock0 ! IF ( dft_is_hybrid() .AND. conv_elec ) THEN ! first = .NOT. exx_is_active() ! CALL exxinit() ! IF ( first ) THEN ! fock0 = exxenergy2() ! CALL v_of_rho( rho, rho_core,rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) ! conv_elec = .false. iter = 0 CALL save_in_electrons( iter, dr2 ) WRITE( stdout,'(5x,"EXX: now go back to refine exchange calculation")') WRITE( stdout, * ) fock0 ! GO TO 10 ! END IF ! fock2 = exxenergy2() ! dexx = fock1 - 0.5D0*( fock0 + fock2 ) ! ! dexx is by definition positive definite. If it is less than ! 0 there is some numerical problem. One such cause could be ! that the exx divergence treatment has failed. ! IF ( dexx < 0d0 ) CALL errore( 'electrons', 'dexx is negative! & & Check that exxdiv_treatment is appropriate for the system.', 1 ) ! etot = etot - dexx hwf_energy = hwf_energy - dexx ! WRITE( stdout, * ) fock0, fock1, fock2 WRITE( stdout, 9066 ) dexx ! fock0 = fock2 ! END IF ! IF ( lda_plus_u ) etot = etot + eth IF ( tefield ) THEN etot = etot + etotefield hwf_energy = hwf_energy + etotefield END IF ! #ifdef __ENVIRON ! ! ... adds the external environment contribution to the energy ! IF ( do_environ ) etot = etot + deenviron + esolvent + ecavity + & epressure + eperiodic + eioncc #endif ! IF ( ( conv_elec .OR. MOD( iter, iprint ) == 0 ) .AND. .NOT. lmd ) THEN ! IF ( dr2 > eps8 ) THEN WRITE( stdout, 9081 ) etot, hwf_energy, dr2 ELSE WRITE( stdout, 9083 ) etot, hwf_energy, dr2 END IF IF ( only_paw ) WRITE( stdout, 9085 ) etot+total_core_energy ! WRITE( stdout, 9060 ) & ( eband + deband ), ehart, ( etxc - etxcc ), ewld ! IF ( llondon ) WRITE ( stdout , 9074 ) elondon ! IF ( dft_is_hybrid()) THEN WRITE( stdout, 9062 ) - fock1 WRITE( stdout, 9064 ) 0.5D0*fock2 ENDIF ! IF ( textfor) WRITE( stdout, & '(/5x,"Energy of the external Forces = ", F18.8)' ) eext IF ( tefield ) WRITE( stdout, 9061 ) etotefield IF ( lda_plus_u ) WRITE( stdout, 9065 ) eth IF ( ABS (descf) > eps8 ) WRITE( stdout, 9069 ) descf IF ( okpaw ) WRITE( stdout, 9067 ) epaw ! ! ... With Fermi-Dirac population factor, etot is the electronic ! ... free energy F = E - TS , demet is the -TS contribution ! IF ( lgauss ) WRITE( stdout, 9070 ) demet ! ELSE IF ( conv_elec .AND. lmd ) THEN ! IF ( dr2 > eps8 ) THEN WRITE( stdout, 9081 ) etot, hwf_energy, dr2 ELSE WRITE( stdout, 9083 ) etot, hwf_energy, dr2 END IF ! ELSE ! IF ( dr2 > eps8 ) THEN WRITE( stdout, 9080 ) etot, hwf_energy, dr2 ELSE WRITE( stdout, 9082 ) etot, hwf_energy, dr2 END IF END IF ! #ifdef __ENVIRON IF ( do_environ ) THEN IF ( env_static_permittivity .GT. 1.D0 ) WRITE( stdout, 9201 ) esolvent IF ( env_surface_tension .GT. 0.D0 ) WRITE( stdout, 9202 ) ecavity IF ( env_pressure .NE. 0.D0 ) WRITE( stdout, 9203 ) epressure IF ( env_ioncc_concentration .GT. 0.D0 ) THEN WRITE( stdout, 9205 ) eioncc ELSE IF ( env_periodicity .NE. 3 ) THEN WRITE( stdout, 9204 ) eperiodic ENDIF ENDIF ! #endif ! IF ( lsda ) WRITE( stdout, 9017 ) magtot, absmag ! IF ( noncolin .AND. domag ) & WRITE( stdout, 9018 ) magtot_nc(1:3), absmag ! IF ( i_cons == 3 .OR. i_cons == 4 ) & WRITE( stdout, 9071 ) bfield(1), bfield(2), bfield(3) IF ( i_cons /= 0 .AND. i_cons < 4 ) & WRITE( stdout, 9073 ) lambda ! CALL flush_unit( stdout ) ! IF ( conv_elec ) THEN ! IF ( dft_is_hybrid() .AND. dexx > tr2_final ) THEN ! conv_elec = .false. iter = 0 CALL save_in_electrons( iter, dr2 ) ! WRITE (stdout,*) " NOW GO BACK TO REFINE HYBRID CALCULATION" IF ( adapt_thr ) THEN tr2 = MAX(tr2_multi * dexx, tr2_final) WRITE( stdout, 9121 ) tr2 ENDIF ! GO TO 10 ! END IF ! ! ... if system is charged add a Makov-Payne correction to the energy ! IF ( do_makov_payne ) CALL makov_payne( etot ) ! ! ... print out ESM potentials if desired ! IF ( do_comp_esm ) CALL esm_printpot() ! if (idum < niter) then WRITE( stdout, 9110 ) iter else WRITE( stdout, 9122 ) iter endif ! ! ... jump to the end ! IF ( output_drho /= ' ' ) CALL remove_atomic_rho() ! CALL stop_clock( 'electrons' ) ! call destroy_scf_type ( rhoin ) ! RETURN ! END IF ! ! ... uncomment the following line if you wish to monitor the evolution ! ... of the force calculation during self-consistency ! !CALL forces() ! END DO ! WRITE( stdout, 9101 ) WRITE( stdout, 9120 ) iter ! CALL flush_unit( stdout ) ! IF ( output_drho /= ' ' ) CALL remove_atomic_rho() ! CALL stop_clock( 'electrons' ) ! RETURN ! ! ... formats ! 9000 FORMAT(/' total cpu time spent up to now is ',F10.1,' secs' ) 9001 FORMAT(/' per-process dynamical memory: ',f7.1,' Mb' ) 9002 FORMAT(/' Self-consistent Calculation' ) 9010 FORMAT(/' iteration #',I3,' ecut=', F9.2,' Ry',5X,'beta=',F4.2 ) 9017 FORMAT(/' total magnetization =', F9.2,' Bohr mag/cell', & /' absolute magnetization =', F9.2,' Bohr mag/cell' ) 9018 FORMAT(/' total magnetization =',3F9.2,' Bohr mag/cell' & & ,/' absolute magnetization =', F9.2,' Bohr mag/cell' ) 9050 FORMAT(/' WARNING: integrated charge=',F15.8,', expected=',F15.8 ) 9060 FORMAT(/' The total energy is the sum of the following terms:',/,& /' one-electron contribution =',F17.8,' Ry' & /' hartree contribution =',F17.8,' Ry' & /' xc contribution =',F17.8,' Ry' & /' ewald contribution =',F17.8,' Ry' ) 9061 FORMAT( ' electric field correction =',F17.8,' Ry' ) 9062 FORMAT( ' - averaged Fock potential =',F17.8,' Ry' ) 9064 FORMAT( ' + Fock energy =',F17.8,' Ry' ) 9065 FORMAT( ' Hubbard energy =',F17.8,' Ry' ) 9066 FORMAT( ' est. exchange err (dexx) =',F17.8,' Ry' ) 9067 FORMAT( ' one-center paw contrib. =',F17.8,' Ry' ) 9069 FORMAT( ' scf correction =',F17.8,' Ry' ) 9070 FORMAT( ' smearing contrib. (-TS) =',F17.8,' Ry' ) 9071 FORMAT( ' Magnetic field =',3F12.7,' Ry' ) 9072 FORMAT( ' Magnetic field =',F12.7, ' Ry' ) 9073 FORMAT( ' lambda =',F11.2,' Ry' ) 9074 FORMAT( ' Dispersion Correction =',F17.8,' Ry' ) 9080 FORMAT(/' total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',0PF17.8,' Ry' ) 9081 FORMAT(/'! total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',0PF17.8,' Ry' ) 9082 FORMAT(/' total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',1PE17.1,' Ry' ) 9083 FORMAT(/'! total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',1PE17.1,' Ry' ) 9085 FORMAT(/' total all-electron energy =',0PF17.6,' Ry' ) 9101 FORMAT(/' End of self-consistent calculation' ) 9110 FORMAT(/' convergence has been achieved in ',i3,' iterations' ) 9120 FORMAT(/' convergence NOT achieved after ',i3,' iterations: stopping' ) 9122 FORMAT(/' WARNING: convergence NOT achieved after ',i3,' iterations' ) 9121 FORMAT(/' scf convergence threshold =',1PE17.1,' Ry' ) #ifdef __ENVIRON 9200 FORMAT(/' add environment contribution to local potential') 9201 FORMAT( ' solvation energy =',F17.8,' Ry' ) 9202 FORMAT( ' cavitation energy =',F17.8,' Ry' ) 9203 FORMAT( ' PV energy =',F17.8,' Ry' ) 9204 FORMAT( ' periodic energy correct. =',F17.8,' Ry' ) 9205 FORMAT( ' ionic charge energy =',F17.8,' Ry' ) #endif ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE compute_magnetization() !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER :: ir ! ! IF ( lsda ) THEN ! magtot = 0.D0 absmag = 0.D0 ! DO ir = 1, dfftp%nnr ! mag = rho%of_r(ir,1) - rho%of_r(ir,2) ! magtot = magtot + mag absmag = absmag + ABS( mag ) ! END DO ! magtot = magtot * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) absmag = absmag * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( magtot, intra_bgrp_comm ) CALL mp_sum( absmag, intra_bgrp_comm ) ! ELSE IF ( noncolin ) THEN ! magtot_nc = 0.D0 absmag = 0.D0 ! DO ir = 1,dfftp%nnr ! mag = SQRT( rho%of_r(ir,2)**2 + & rho%of_r(ir,3)**2 + & rho%of_r(ir,4)**2 ) ! DO i = 1, 3 ! magtot_nc(i) = magtot_nc(i) + rho%of_r(ir,i+1) ! END DO ! absmag = absmag + ABS( mag ) ! END DO ! CALL mp_sum( magtot_nc, intra_bgrp_comm ) CALL mp_sum( absmag, intra_bgrp_comm ) ! DO i = 1, 3 ! magtot_nc(i) = magtot_nc(i) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! END DO ! absmag = absmag * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! END IF ! RETURN ! END SUBROUTINE compute_magnetization ! !----------------------------------------------------------------------- FUNCTION check_stop_now() !----------------------------------------------------------------------- ! USE check_stop, ONLY : global_check_stop_now => check_stop_now ! IMPLICIT NONE ! LOGICAL :: check_stop_now INTEGER :: unit ! unit = stdout ! check_stop_now = global_check_stop_now( unit ) ! IF ( check_stop_now ) conv_elec = .FALSE. ! RETURN ! END FUNCTION check_stop_now ! !----------------------------------------------------------------------- FUNCTION delta_e() !----------------------------------------------------------------------- ! ... delta_e = - \int rho%of_r(r) v%of_r(r) ! - \int rho%kin_r(r) v%kin_r(r) [for Meta-GGA] ! - \sum rho%ns v%ns [for LDA+U] ! - \sum becsum D1_Hxc [for PAW] IMPLICIT NONE REAL(DP) :: delta_e, delta_e_hub ! delta_e = - SUM( rho%of_r(:,:)*v%of_r(:,:) ) ! IF ( dft_is_meta() ) & delta_e = delta_e - SUM( rho%kin_r(:,:)*v%kin_r(:,:) ) ! delta_e = omega * delta_e / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( delta_e, intra_bgrp_comm ) ! if (lda_plus_u) then if (noncolin) then delta_e_hub = - SUM (rho%ns_nc(:,:,:,:)*v%ns_nc(:,:,:,:)) delta_e = delta_e + delta_e_hub else delta_e_hub = - SUM (rho%ns(:,:,:,:)*v%ns(:,:,:,:)) if (nspin==1) delta_e_hub = 2.d0 * delta_e_hub delta_e = delta_e + delta_e_hub endif end if ! IF (okpaw) delta_e = delta_e - SUM(ddd_paw(:,:,:)*rho%bec(:,:,:)) ! RETURN ! END FUNCTION delta_e ! !----------------------------------------------------------------------- FUNCTION delta_escf() !----------------------------------------------------------------------- ! ! ... delta_escf = - \int \delta rho%of_r(r) v%of_r(r) ! - \int \delta rho%kin_r(r) v%kin_r(r) [for Meta-GGA] ! - \sum \delta rho%ns v%ns [for LDA+U] ! - \sum \delta becsum D1 [for PAW] ! ... calculates the difference between the Hartree and XC energy ! ... at first order in the charge density difference \delta rho(r) IMPLICIT NONE ! REAL(DP) :: delta_escf, delta_escf_hub ! delta_escf = - SUM( ( rhoin%of_r(:,:)-rho%of_r(:,:) )*v%of_r(:,:) ) ! IF ( dft_is_meta() ) & delta_escf = delta_escf - & SUM( (rhoin%kin_r(:,:)-rho%kin_r(:,:) )*v%kin_r(:,:)) ! delta_escf = omega * delta_escf / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( delta_escf, intra_bgrp_comm ) ! if (lda_plus_u) then if (noncolin) then delta_escf_hub = - SUM((rhoin%ns_nc(:,:,:,:)-rho%ns_nc(:,:,:,:))*v%ns_nc(:,:,:,:)) delta_escf = delta_escf + delta_escf_hub else delta_escf_hub = - SUM((rhoin%ns(:,:,:,:)-rho%ns(:,:,:,:))*v%ns(:,:,:,:)) if (nspin==1) delta_escf_hub = 2.d0 * delta_escf_hub delta_escf = delta_escf + delta_escf_hub endif end if IF (okpaw) delta_escf = delta_escf - & SUM(ddd_paw(:,:,:)*(rhoin%bec(:,:,:)-rho%bec(:,:,:))) RETURN ! END FUNCTION delta_escf ! !----------------------------------------------------------------------- SUBROUTINE calc_pol ( en_el ) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : pi USE bp, ONLY : lelfield, ion_pol, el_pol, fc_pol, l_el_pol_old, & el_pol_acc, el_pol_old, efield, l3dstring, gdir, & transform_el, efield_cart ! IMPLICIT NONE REAL (DP), INTENT(out) :: en_el ! INTEGER :: i, j REAL(DP):: sca, el_pol_cart(3), el_pol_acc_cart(3) ! IF (.not.l3dstring) THEN CALL c_phase_field(el_pol(gdir),ion_pol(gdir),fc_pol(gdir),gdir) if (.not.l_el_pol_old) then l_el_pol_old=.true. el_pol_old(gdir)=el_pol(gdir) en_el=-efield*(el_pol(gdir)+ion_pol(gdir)) el_pol_acc(gdir)=0.d0 else sca=(el_pol(gdir)-el_pol_old(gdir))/fc_pol(gdir) if(sca < - pi) then el_pol_acc(gdir)=el_pol_acc(gdir)+2.d0*pi*fc_pol(gdir) else if(sca > pi) then el_pol_acc(gdir)=el_pol_acc(gdir)-2.d0*pi*fc_pol(gdir) endif en_el=-efield*(el_pol(gdir)+ion_pol(gdir)+el_pol_acc(gdir)) el_pol_old=el_pol endif ELSE do i=1,3 CALL c_phase_field(el_pol(i),ion_pol(i),fc_pol(i),i) enddo el_pol_cart(:)=0.d0 do i=1,3 do j=1,3 !el_pol_cart(i)=el_pol_cart(i)+transform_el(j,i)*el_pol(j) el_pol_cart(i)=el_pol_cart(i)+at(i,j)*el_pol(j)/(dsqrt(at(1,j)**2.d0+at(2,j)**2.d0+at(3,j)**2.d0)) enddo enddo write(stdout,'( "Electronic Dipole on Cartesian axes" )') do i=1,3 write(stdout,*) i, el_pol_cart(i) enddo write(stdout,'( "Ionic Dipole on Cartesian axes" )') do i=1,3 write(stdout,*) i, ion_pol(i) enddo if(.not.l_el_pol_old) then l_el_pol_old=.true. el_pol_old(:)=el_pol(:) en_el=0.d0 do i=1,3 en_el=en_el-efield_cart(i)*(el_pol_cart(i)+ion_pol(i)) enddo el_pol_acc(:)=0.d0 else do i=1,3 sca=(el_pol(i)-el_pol_old(i))/fc_pol(i) if(sca < - pi) then el_pol_acc(i)=el_pol_acc(i)+2.d0*pi*fc_pol(i) else if(sca > pi) then el_pol_acc(i)=el_pol_acc(i)-2.d0*pi*fc_pol(i) endif enddo el_pol_acc_cart(:)=0.d0 do i=1,3 do j=1,3 el_pol_acc_cart(i)=el_pol_acc_cart(i)+transform_el(j,i)*el_pol_acc(j) enddo enddo en_el=0.d0 do i=1,3 en_el=en_el-efield_cart(i)*(el_pol_cart(i)+ion_pol(i)+el_pol_acc_cart(i)) enddo el_pol_old(:)=el_pol(:) endif ENDIF ! END SUBROUTINE calc_pol ! END SUBROUTINE electrons espresso-5.0.2/PW/src/pw2blip.f900000644000700200004540000002573312053145630015405 0ustar marsamoscmMODULE pw2blip USE kinds, ONLY: DP USE io_global, ONLY: ionode, ionode_id USE mp_global, ONLY: me_pool,nproc_pool,intra_pool_comm USE mp, ONLY: mp_get USE control_flags, ONLY: gamma_only USE constants, ONLY: tpi USE cell_base, ONLY: at,alat USE fft_scalar, ONLY: allowed, good_fft_dimension PRIVATE PUBLIC pw2blip_init,pw2blip_cleanup,pw2blip_transform,pw2blip_transform2,& &blipgrid,cavc,avc1,avc2,pw2blip_get,blipeval,blip3dk,g_int INTEGER,PUBLIC :: blipreal = 0 ! blipreal == 0 -- complex wfn1 ! blipreal == 1 -- one real wfn (gamma_only) ! blipreal == 2 -- two real wfn (gamma_only) INTEGER :: ngtot COMPLEX(dp),ALLOCATABLE :: psic(:),cavc_flat(:) INTEGER :: blipgrid(3),ld_bg(3),bg_vol REAL(dp),ALLOCATABLE :: gamma(:) INTEGER,PARAMETER :: gamma_approx = 1 REAL(dp),PARAMETER :: pi = 3.14159265358979324d0 INTEGER,ALLOCATABLE :: map_igk_to_fft(:) INTEGER,ALLOCATABLE :: map_minus_igk_to_fft(:) ! gamma_only INTEGER,ALLOCATABLE :: do_fft_x(:),do_fft_y(:) INTEGER :: nr(3) INTEGER,ALLOCATABLE :: g_int(:,:) REAL(dp) :: rnr(3),rnr2(3),bg(3,3),lvp(6) CONTAINS SUBROUTINE pw2blip_init(ngtot_in,g_vec,multiplicity) INTEGER,INTENT(in) :: ngtot_in REAL(dp),INTENT(in) :: g_vec(3,ngtot_in) REAL(dp),INTENT(in) :: multiplicity REAL(dp) :: da(3),k,k2,k4,cosk INTEGER :: ig,ig2,d,g_idx(3) INTEGER,PARAMETER :: nmax = 5000 ngtot = ngtot_in ALLOCATE(g_int(3,ngtot)) DO ig=1,ngtot g_int(1,ig) = nint (sum(g_vec(:,ig) * at (:,1))) g_int(2,ig) = nint (sum(g_vec(:,ig) * at (:,2))) g_int(3,ig) = nint (sum(g_vec(:,ig) * at (:,3))) ENDDO IF(any(g_int(:,1)/=0))THEN CALL errore('pw2blip_init','first G vector is not zero',0) ENDIF ! choose size of blip grid in real space DO d=1,3 blipgrid(d) = 2*ceiling(dble(maxval(abs(g_int(d,:))))*multiplicity)+2 DO WHILE(.not.allowed(blipgrid(d))) blipgrid(d) = blipgrid(d) + 1 ENDDO IF (blipgrid(d)>nmax) & CALL errore ('pw2blip_init', 'blipgrid is unreasonably large', blipgrid(d)) ENDDO nr(:) = blipgrid(:) rnr(:) = dble(nr(:)) rnr2(:) = rnr(:)*rnr(:) CALL inve(at,bg) bg=transpose(bg) lvp(1)=bg(1,1)**2+bg(2,1)**2+bg(3,1)**2 lvp(2)=bg(1,2)**2+bg(2,2)**2+bg(3,2)**2 lvp(3)=bg(1,3)**2+bg(2,3)**2+bg(3,3)**2 lvp(4)=2.d0*(bg(1,1)*bg(1,2)+bg(2,1)*bg(2,2)+bg(3,1)*bg(3,2)) lvp(5)=2.d0*(bg(1,2)*bg(1,3)+bg(2,2)*bg(2,3)+bg(3,2)*bg(3,3)) lvp(6)=2.d0*(bg(1,3)*bg(1,1)+bg(2,3)*bg(2,1)+bg(3,3)*bg(3,1)) ! set up leading dimensions of fft data array ld_bg(1) = good_fft_dimension(blipgrid(1)) ld_bg(2) = blipgrid(2) ld_bg(3) = blipgrid(3) bg_vol = ld_bg(1)*ld_bg(2)*ld_bg(3) ! Set up indices to fft grid: map_igk_to_fft ALLOCATE(map_igk_to_fft(ngtot)) ! map_igk_to_fft(1) = 1 IF(gamma_only)THEN ALLOCATE(map_minus_igk_to_fft(ngtot)) ! map_minus_igk_to_fft(1) = 1 ENDIF ALLOCATE(do_fft_x(blipgrid(3)*ld_bg(2)),do_fft_y(blipgrid(3))) do_fft_x(:)=0 ; do_fft_y(:)=0 ! do_fft_x(1)=1 ; do_fft_y(1)=1 DO ig=1,ngtot g_idx(:) = modulo(g_int(:,ig),blipgrid(:)) do_fft_x(1 + g_idx(2) + ld_bg(2)*g_idx(3)) = 1 do_fft_y(1 + g_idx(3)) = 1 map_igk_to_fft (ig) = 1 + g_idx(1) + ld_bg(1)*(g_idx(2) + ld_bg(2)*g_idx(3)) IF(gamma_only)THEN ! gamma_only g_idx(:) = modulo(-g_int(:,ig),blipgrid(:)) do_fft_x(1 + g_idx(2) + ld_bg(2)*g_idx(3)) = 1 do_fft_y(1 + g_idx(3)) = 1 map_minus_igk_to_fft (ig) = 1 + g_idx(1) + ld_bg(1)*(g_idx(2) + ld_bg(2)*g_idx(3)) ENDIF ENDDO ! Set up blipgrid ALLOCATE(psic(bg_vol)) ! local FFT grid for transform ! Calculating gamma. ALLOCATE(gamma(ngtot)) gamma(:) = 1.d0 da(1:3)=2.d0*pi/dble( blipgrid(:) ) IF(gamma_approx==1)THEN DO ig=1,ngtot DO d=1,3 IF(g_int(d,ig)/=0)THEN k=da(d)*dble(g_int(d,ig)) ; cosk=cos(k) ; k2=k*k ; k4=k2*k2 gamma(ig)=gamma(ig)*k4/(6.d0*((cosk-2.d0)*cosk+1.d0)) ELSE gamma(ig)=gamma(ig)*2.d0/3.d0 ENDIF ENDDO ENDDO ! ig ELSEIF(gamma_approx==2)THEN DO ig=1,ngtot gamma(ig)=1.d0/(& & (1.d0+0.5d0*cos(da(1)*g_vec(1,ig))) & &*(1.d0+0.5d0*cos(da(2)*g_vec(2,ig))) & &*(1.d0+0.5d0*cos(da(3)*g_vec(3,ig))) & &) ENDDO ! ig ELSE WRITE(6,*)'Bug: bad gamma_approx.' ; STOP ENDIF ! gamma_approx END SUBROUTINE pw2blip_init SUBROUTINE pw2blip_cleanup DEALLOCATE(psic,gamma,g_int) DEALLOCATE(map_igk_to_fft,do_fft_x,do_fft_y) IF(gamma_only)DEALLOCATE(map_minus_igk_to_fft) END SUBROUTINE pw2blip_cleanup SUBROUTINE pw2blip_transform(psi) USE fft_scalar, ONLY: cfft3ds COMPLEX(DP), INTENT(in) :: psi(ngtot) psic (:) = (0.d0, 0.d0) psic (map_igk_to_fft (1:ngtot)) = psi(1:ngtot)*gamma(1:ngtot) IF(gamma_only)THEN psic (map_minus_igk_to_fft (1:ngtot)) = conjg(psi(1:ngtot))*gamma(1:ngtot) blipreal = 1 ENDIF ! perform the transformation CALL cfft3ds (psic,blipgrid(1),blipgrid(2),blipgrid(3),& &ld_bg(1),ld_bg(2),ld_bg(3),+1,do_fft_x(:),do_fft_y(:)) END SUBROUTINE SUBROUTINE pw2blip_transform2(psi1,psi2) USE fft_scalar, ONLY: cfft3ds COMPLEX(DP), INTENT(in) :: psi1(ngtot),psi2(ngtot) IF(.not.gamma_only)THEN CALL errore("pw2blip_transform2","BUG: can only perform one complex FFT at a time",3) ENDIF blipreal = 2 psic (:) = (0.d0, 0.d0) psic (map_igk_to_fft (1:ngtot)) = (psi1(1:ngtot)+(0.d0,1.d0)*psi2(1:ngtot))*gamma(1:ngtot) psic (map_minus_igk_to_fft (1:ngtot)) = conjg((psi1(1:ngtot)-(0.d0,1.d0)*psi2(1:ngtot)))*gamma(1:ngtot) ! perform the transformation CALL cfft3ds (psic,blipgrid(1),blipgrid(2),blipgrid(3),& &ld_bg(1),ld_bg(2),ld_bg(3),+1,do_fft_x(:),do_fft_y(:)) END SUBROUTINE SUBROUTINE pw2blip_get(node) INTEGER,INTENT(in) :: node IF(ionode_id /= node)THEN CALL mp_get(psic,psic,me_pool,ionode_id,node,2498,intra_pool_comm) CALL mp_get(blipreal,blipreal,me_pool,ionode_id,node,2314,intra_pool_comm) ENDIF END SUBROUTINE pw2blip_get COMPLEX(dp) FUNCTION cavc(i1,i2,i3) INTEGER,INTENT(in) :: i1,i2,i3 cavc = psic(1+i1+ld_bg(1)*(i2+ld_bg(2)*i3)) END FUNCTION cavc REAL(dp) FUNCTION avc1(i1,i2,i3) INTEGER,INTENT(in) :: i1,i2,i3 avc1 = real(psic(1+i1+ld_bg(1)*(i2+ld_bg(2)*i3))) END FUNCTION avc1 REAL(dp) FUNCTION avc2(i1,i2,i3) INTEGER,INTENT(in) :: i1,i2,i3 avc2 = aimag(psic(1+i1+ld_bg(1)*(i2+ld_bg(2)*i3))) END FUNCTION avc2 SUBROUTINE blipeval(r,rpsi,grad,lap) !----------------------------------------------------------------------------! ! This subroutine evaluates the value of a function, its gradient and its ! ! Laplacian at a vector point r, using the overlapping of blip functions. ! ! The blip grid is defined on a cubic cell, so r should always be given in ! ! units of the crystal lattice vectors. ! !----------------------------------------------------------------------------! IMPLICIT NONE DOUBLE PRECISION,INTENT(in) :: r(3) COMPLEX(dp),INTENT(out) :: rpsi,grad(3),lap REAL(dp) t(3) INTEGER i(3),idx(3,4),jx,jy,jz REAL(dp) x(3),tx(3,4),dtx(3,4),d2tx(3,4) COMPLEX(dp) sderiv(6),C rpsi=(0.d0,0.d0) ; grad(:)=(0.d0,0.d0) ; sderiv(:)=(0.d0,0.d0) t(:) = r(:)*rnr(:) i(:) = modulo(floor(t(:)),nr(:)) idx(:,1) = modulo(i(:)-1,nr(:)) idx(:,2) = i(:) idx(:,3) = modulo(i(:)+1,nr(:)) idx(:,4) = modulo(i(:)+2,nr(:)) x(:)=t(:)-dble(idx(:,2)-1) tx(:,1)=2.d0+x(:)*(-3.d0+x(:)*(1.5d0-0.25d0*x(:))) ! == (8+x*(-12+x*(6-x)))/4 == (2-x)(4-2x+x2)/4 dtx(:,1)=(-3.d0+x(:)*(3.d0-0.75d0*x(:)))*rnr(:) ! == (-12+x*(12-3*x))r/4 == (2-x)(x-2)3r/4 d2tx(:,1)=(3.d0-1.5d0*x(:))*rnr2(:) ! == (2-x)3r2/2 x(:)=t(:)-dble(idx(:,2)) tx(:,2)=1.d0+x(:)*x(:)*(-1.5d0+0.75d0*x(:)) ! == (4-3x2(2-x))/4 dtx(:,2)=x(:)*(-3.d0+2.25d0*x(:))*rnr(:) ! == -x(12-9x)r/4 d2tx(:,2)=(-3.d0+4.5d0*x(:))*rnr2(:) ! == -(6-9x)r2/2 x(:)=t(:)-dble(idx(:,2)+1) tx(:,3)=1.d0+x(:)*x(:)*(-1.5d0-0.75d0*x(:)) ! == (4-3x2(2+x))/4 dtx(:,3)=x(:)*(-3.d0-2.25d0*x(:))*rnr(:) ! == -x(12+9x)r/4 d2tx(:,3)=(-3.d0-4.5d0*x(:))*rnr2(:) ! == -(6+9x)r2/2 x(:)=t(:)-dble(idx(:,2)+2) tx(:,4)=2.d0+x(:)*(3.d0+x(:)*(1.5d0+0.25d0*x(:))) ! == (8+x*(12+x*(6+x)))/4 == (2+x)(4+2x+x2)/4 dtx(:,4)=(3.d0+x(:)*(3.d0+0.75d0*x(:)))*rnr(:) ! == (12+x*(12+3*x))r/4 == (2+x)(x+2)3r/4 d2tx(:,4)=(3.d0+1.5d0*x(:))*rnr2(:) ! == (2+x)3r2/2 DO jx=1,4 DO jy=1,4 DO jz=1,4 C = cavc(idx(1,jx),idx(2,jy),idx(3,jz)) rpsi = rpsi + C * tx(1,jx)*tx(2,jy)*tx(3,jz) grad(1) = grad(1) + C * dtx(1,jx)*tx(2,jy)*tx(3,jz) grad(2) = grad(2) + C * tx(1,jx)*dtx(2,jy)*tx(3,jz) grad(3) = grad(3) + C * tx(1,jx)*tx(2,jy)*dtx(3,jz) sderiv(1) = sderiv(1) + C * d2tx(1,jx)*tx(2,jy)*tx(3,jz) sderiv(2) = sderiv(2) + C * tx(1,jx)*d2tx(2,jy)*tx(3,jz) sderiv(3) = sderiv(3) + C * tx(1,jx)*tx(2,jy)*d2tx(3,jz) sderiv(4) = sderiv(4) + C * dtx(1,jx)*dtx(2,jy)*tx(3,jz) sderiv(5) = sderiv(5) + C * tx(1,jx)*dtx(2,jy)*dtx(3,jz) sderiv(6) = sderiv(6) + C * dtx(1,jx)*tx(2,jy)*dtx(3,jz) ENDDO ENDDO ENDDO ! Transformation of gradient to the Cartesian grid grad(1:3)=matmul(bg/alat,grad(1:3)) ! The Laplacian: summing all contributions with appropriate transformation lap= sum(sderiv(:)*lvp(:))/alat**2 END SUBROUTINE blipeval SUBROUTINE inve(v,inv) !-----------------------! ! Inverts 3x3 matrices. ! !-----------------------! IMPLICIT NONE REAL(dp),INTENT(in) :: v(3,3) REAL(dp),INTENT(out) :: inv(3,3) REAL(dp) d d=v(1,1)*(v(2,2)*v(3,3)-v(2,3)*v(3,2))+ & &v(2,1)*(v(3,2)*v(1,3)-v(1,2)*v(3,3))+ & &v(3,1)*(v(1,2)*v(2,3)-v(1,3)*v(2,2)) IF(d==0.d0)THEN WRITE(6,*)'Trying to invert a singular determinant.' STOP ENDIF d=1.d0/d inv(1,1)=(v(2,2)*v(3,3)-v(2,3)*v(3,2))*d inv(1,2)=(v(3,2)*v(1,3)-v(1,2)*v(3,3))*d inv(1,3)=(v(1,2)*v(2,3)-v(1,3)*v(2,2))*d inv(2,1)=(v(3,1)*v(2,3)-v(2,1)*v(3,3))*d inv(2,2)=(v(1,1)*v(3,3)-v(3,1)*v(1,3))*d inv(2,3)=(v(2,1)*v(1,3)-v(1,1)*v(2,3))*d inv(3,1)=(v(2,1)*v(3,2)-v(2,2)*v(3,1))*d inv(3,2)=(v(3,1)*v(1,2)-v(1,1)*v(3,2))*d inv(3,3)=(v(1,1)*v(2,2)-v(1,2)*v(2,1))*d END SUBROUTINE inve END MODULE espresso-5.0.2/PW/src/g2_kin.f900000644000700200004540000000255012053145630015167 0ustar marsamoscm! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE g2_kin ( ik ) !---------------------------------------------------------------------------- ! ! ... Calculation of kinetic energy - includes the case of the modified ! ... kinetic energy functional for variable-cell calculations ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba2 USE klist, ONLY : xk USE gvect, ONLY : g USE wvfct, ONLY : g2kin, igk, npw, ecfixed, qcutz, q2sigma ! IMPLICIT NONE ! INTEGER, INTENT (IN) :: ik ! ! ... local variables ! INTEGER :: ig REAL(DP), EXTERNAL :: qe_erf ! ! g2kin(1:npw) = ( ( xk(1,ik) + g(1,igk(1:npw)) )**2 + & ( xk(2,ik) + g(2,igk(1:npw)) )**2 + & ( xk(3,ik) + g(3,igk(1:npw)) )**2 ) * tpiba2 ! IF ( qcutz > 0.D0 ) THEN ! DO ig = 1, npw ! g2kin(ig) = g2kin(ig) + qcutz * & ( 1.D0 + qe_erf( ( g2kin(ig) - ecfixed ) / q2sigma ) ) ! END DO ! END IF ! RETURN ! END SUBROUTINE g2_kin espresso-5.0.2/PW/src/potinit.f900000644000700200004540000001755312053145630015515 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE potinit() !---------------------------------------------------------------------------- ! ! ... This routine initializes the self consistent potential in the array ! ... vr. There are three possible cases: ! ! ... a) the code is restarting from a broken run: ! ... read rho from data stored during the previous run ! ... b) the code is performing a non-scf calculation following a scf one: ! ... read rho from the file produced by the scf calculation ! ... c) the code starts a new calculation: ! ... calculate rho as a sum of atomic charges ! ! ... In all cases the scf potential is recalculated and saved in vr ! USE kinds, ONLY : DP USE constants, ONLY : pi USE io_global, ONLY : stdout USE cell_base, ONLY : alat, omega USE ions_base, ONLY : nat, ityp, ntyp => nsp USE basis, ONLY : starting_pot USE klist, ONLY : nelec USE lsda_mod, ONLY : lsda, nspin USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, gg USE gvecs, ONLY : doublegrid USE control_flags, ONLY : lscf USE scf, ONLY : rho, rho_core, rhog_core, & vltot, v, vrs, kedtau USE funct, ONLY : dft_is_meta USE wavefunctions_module, ONLY : psic USE ener, ONLY : ehart, etxc, vtxc, epaw USE ldaU, ONLY : lda_plus_u, Hubbard_lmax, eth, & niter_with_fixed_ns USE noncollin_module, ONLY : noncolin, report USE io_files, ONLY : tmp_dir, prefix, iunocc, input_drho USE spin_orb, ONLY : domag USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_image_comm, inter_bgrp_comm, & intra_bgrp_comm, mpime USE io_global, ONLY : ionode, ionode_id USE pw_restart, ONLY : pw_readfile USE io_rho_xml, ONLY : read_rho USE xml_io_base, ONLY : check_file_exst ! USE uspp, ONLY : becsum USE paw_variables, ONLY : okpaw, ddd_PAW USE paw_init, ONLY : PAW_atomic_becsum USE paw_onecenter, ONLY : PAW_potential ! IMPLICIT NONE ! REAL(DP) :: charge ! the starting charge REAL(DP) :: etotefield ! REAL(DP) :: fact INTEGER :: is, ios LOGICAL :: exst CHARACTER(LEN=256) :: filename ! CALL start_clock('potinit') ! ! check for both .dat and .xml extensions (compatibility reasons) ! filename = TRIM( tmp_dir ) // TRIM( prefix ) // '.save/charge-density.dat' exst = check_file_exst( TRIM(filename) ) ! IF ( .NOT. exst ) THEN ! filename = TRIM( tmp_dir ) // TRIM( prefix ) // '.save/charge-density.xml' exst = check_file_exst( TRIM(filename) ) ! ENDIF ! ! IF ( starting_pot == 'file' .AND. exst ) THEN ! ! ... Cases a) and b): the charge density is read from file ! ... this also reads rho%ns if lda+U and rho%bec if PAW ! CALL pw_readfile( 'rho', ios ) ! IF ( ios /= 0 ) THEN ! WRITE( stdout, '(/5X,"Error reading from file :"/5X,A,/)' ) & TRIM( filename ) ! CALL errore ( 'potinit' , 'reading starting density', ios) ! ELSE IF ( lscf ) THEN ! WRITE( stdout, '(/5X, & & "The initial density is read from file :"/5X,A,/)' ) & TRIM( filename ) ! ELSE ! WRITE( stdout, '(/5X, & & "The potential is recalculated from file :"/5X,A,/)' ) & TRIM( filename ) ! END IF ! ELSE ! ! ... Case c): the potential is built from a superposition ! ... of atomic charges contained in the array rho_at ! IF ( starting_pot == 'file' .AND. .NOT. exst ) & WRITE( stdout, '(5X,"Cannot read rho : file not found")' ) ! WRITE( UNIT = stdout, & FMT = '(/5X,"Initial potential from superposition of free atoms")' ) ! CALL atomic_rho( rho%of_r, nspin ) ! ... in the lda+U case set the initial value of ns IF (lda_plus_u) THEN ! IF (noncolin) THEN CALL init_ns_nc() ELSE CALL init_ns() ENDIF ! ENDIF ! ... in the paw case uses atomic becsum IF ( okpaw ) CALL PAW_atomic_becsum() ! IF ( input_drho /= ' ' ) THEN ! IF ( nspin > 1 ) CALL errore & ( 'potinit', 'spin polarization not allowed in drho', 1 ) ! CALL read_rho ( v%of_r, 1, input_drho ) ! WRITE( UNIT = stdout, & FMT = '(/5X,"a scf correction to at. rho is read from",A)' ) & TRIM( input_drho ) ! rho%of_r = rho%of_r + v%of_r ! END IF ! END IF ! ! ... check the integral of the starting charge ! IF ( nspin == 2 ) THEN ! charge = SUM ( rho%of_r(:,1:nspin) )*omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! ELSE ! charge = SUM ( rho%of_r(:,1) )*omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! END IF ! CALL mp_sum( charge , intra_bgrp_comm ) ! IF ( lscf .AND. ABS( charge - nelec ) > ( 1.D-7 * charge ) ) THEN ! IF ( charge > 1.D-8 .AND. nat > 0 ) THEN WRITE( stdout, '(/,5X,"starting charge ",F10.5, & & ", renormalised to ",F10.5)') charge, nelec rho%of_r = rho%of_r / charge * nelec ELSE WRITE( stdout, '(/,5X,"Starting from uniform charge")') rho%of_r = nelec / omega ENDIF ! ELSE IF ( .NOT. lscf .AND. ABS( charge - nelec ) > (1.D-3 * charge ) ) THEN ! CALL errore( 'potinit', 'starting and expected charges differ', 1 ) ! END IF ! ! ... bring starting rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rho%of_g(:,is) = psic(nl(:)) ! END DO ! if ( dft_is_meta()) then ! ... define a starting (TF) guess for rho%kin_r and rho%kin_g fact = (3.d0/5.d0)*(3.d0*pi*pi)**(2.0/3.0) ! ! ... for obscure reasons this starting guess doesn't seem much better ! ... (and sometimes it is much worse) than starting from zero ! !!! fact = 0.0_dp DO is = 1, nspin rho%kin_r(:,is) = fact * abs(rho%of_r(:,is)*nspin)**(5.0/3.0)/nspin psic(:) = rho%kin_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%kin_g(:,is) = psic(nl(:)) END DO ! end if ! ! ... compute the potential and store it in v ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! ! ... define the total local potential (external+scf) ! CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) ! ! ... write on output the parameters used in the lda+U calculation ! IF ( lda_plus_u ) THEN ! WRITE( stdout, '(5X,"Number of +U iterations with fixed ns =",I3)') & niter_with_fixed_ns WRITE( stdout, '(5X,"Starting occupations:")') ! IF (noncolin) THEN CALL write_ns_nc() ELSE CALL write_ns() ENDIF ! END IF ! IF ( report /= 0 .AND. & noncolin .AND. domag .AND. lscf ) CALL report_mag() ! CALL stop_clock('potinit') ! RETURN ! END SUBROUTINE potinit espresso-5.0.2/PW/src/set_rhoc.f900000644000700200004540000001114612053145630015625 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine set_rhoc !----------------------------------------------------------------------- ! ! This routine computes the core charge on the real space 3D mesh ! ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE atom, ONLY : msh, rgrid USE uspp_param,ONLY : upf USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba2 USE ener, ONLY : etxcc USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft USE gvect, ONLY : ngm, nl, nlm, ngl, gl, igtongl USE scf, ONLY : rho_core, rhog_core USE lsda_mod, ONLY : nspin USE vlocal, ONLY : strf USE control_flags, ONLY : gamma_only USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP), parameter :: eps = 1.d-10 complex(DP) , allocatable :: aux (:) ! used for the fft of the core charge real(DP) , allocatable :: rhocg(:) ! the radial fourier trasform real(DP) :: rhoima, rhoneg, rhorea ! used to check the core charge real(DP) :: vtxcc ! dummy xc energy term real(DP) , allocatable :: dum(:,:) ! dummy array containing rho=0 complex(DP) , allocatable :: dumg(:,:) ! dummy array containing rhog=0 integer :: ir, nt, ng ! counter on mesh points ! counter on atomic types ! counter on g vectors etxcc = 0.0_DP if ( ANY( upf(1:ntyp)%nlcc ) ) goto 10 rhog_core(:) = 0.0_DP rho_core(:) = 0.0_DP return 10 continue allocate (aux( dfftp%nnr)) allocate (rhocg( ngl)) aux (:) = (0.0_DP, 0.0_DP) ! ! the sum is on atom types ! do nt = 1, ntyp if ( upf(nt)%nlcc ) then ! ! drhoc compute the radial fourier transform for each shell of g vec ! call drhoc (ngl, gl, omega, tpiba2, msh (nt), rgrid(nt)%r, & rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) ! ! multiply by the structure factor and sum ! do ng = 1, ngm aux(nl(ng)) = aux(nl(ng)) + strf(ng,nt) * rhocg(igtongl(ng)) enddo endif enddo if (gamma_only) then do ng = 1, ngm aux(nlm(ng)) = CONJG(aux(nl (ng))) end do end if ! rhog_core(:) = aux(nl(:)) ! ! the core charge in real space ! CALL invfft ('Dense', aux, dfftp) ! ! test on the charge and computation of the core energy ! rhoneg = 0.d0 rhoima = 0.d0 do ir = 1, dfftp%nnr rhoneg = rhoneg + min (0.d0, DBLE (aux (ir) ) ) rhoima = rhoima + abs (AIMAG (aux (ir) ) ) rho_core(ir) = DBLE (aux(ir)) ! ! NOTE: Core charge is computed in reciprocal space and brought to real ! space by FFT. For non smooth core charges (or insufficient cut-off) ! this may result in negative values in some grid points. ! Up to October 1999 the core charge was forced to be positive definite. ! This induces an error in the force, and probably stress, calculation if ! the number of grid points where the core charge would be otherwise neg ! is large. The error disappears for sufficiently high cut-off, but may be ! rather large and it is better to leave the core charge as it is. ! If you insist to have it positive definite (with the possible problems ! mentioned above) uncomment the following lines. SdG, Oct 15 1999 ! ! rhorea = max ( DBLE (aux (ir) ), eps) ! rho_core(ir) = rhorea ! enddo rhoneg = rhoneg / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) rhoima = rhoima / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) ! call mp_sum( rhoneg, intra_bgrp_comm ) call mp_sum( rhoima, intra_bgrp_comm ) ! IF (rhoneg < -1.0d-6 .OR. rhoima > 1.0d-6) & WRITE( stdout, '(/5x,"Check: negative/imaginary core charge=",2f12.6)')& rhoneg, rhoima ! ! calculate core_only exch-corr energy etxcc=E_xc[rho_core] if required ! The term was present in previous versions of the code but it shouldn't ! ! call create_scf_type(dum) ! dum%of_r(:,:) = 0.0_DP ! dum%of_g(:,:) = (0.0_DP, 0.0_DP) ! ! call v_xc( dum, rho_core, rhog_core, etxcc, vtxcc, aux ) ! ! call destroy_scf_type(dum) ! WRITE( stdout, 9000) etxcc ! WRITE( stdout, * ) 'BEWARE it will be subtracted from total energy !' ! deallocate (rhocg) deallocate (aux) ! return 9000 format (5x,'core-only xc energy = ',f15.8,' Ry') end subroutine set_rhoc espresso-5.0.2/PW/src/orbm_kubo.f900000644000700200004540000004723212053145627016011 0ustar marsamoscm!==============================================================================! ! ! Copyright (C) 2001-2010 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! this routine is used to calculate the Kubo terms ! of orbital magnetization (in SI, i.e., A/m) ! written by Andrei Malashevich at UC Berkeley ! For details see ! New. J. Phys. 12, 053032 (2010) ! Many parts from bp_c_phase.f90 and ! h_epsi_her_set.f90 are reused ! NOTES: ! ! In order to compute Kubo terms one must first perform a usual SCF ! calculation, then NSCF calculation with flag ! lorbm=.true. (in the "control" section) using a UNIFORM grid ! of k-points. ! !==============================================================================! SUBROUTINE orbm_kubo() !------------------------------------------------------------------------------! ! --- Make use of the module with common information --- USE ener, ONLY : ef USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE noncollin_module, ONLY : noncolin, npol USE wvfct, ONLY : npwx, nbnd,ecutwfc, g2kin,npw_k=>npw,igk_k=>igk,et USE lsda_mod, ONLY : nspin USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm,ngm_g,g,gcutm,ig_l2g USE start_k, ONLY : nk1, nk2, nk3 USE klist, ONLY : nks,xk USE cell_base, ONLY : tpiba,tpiba2,gpar=>bg,at,alat,omega USE mp, ONLY : mp_sum,mp_barrier USE constants, ONLY : pi, tpi,rytoev USE bp, ONLY : lelfield,mapgp_global,mapgm_global,nx_el USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE uspp, ONLY : nkb,vkb USE scf, ONLY : vrs, vltot, v, kedtau USE gvecs, ONLY : doublegrid USE mp_global, ONLY : intra_pool_comm,me_pool ! --- Avoid implicit definitions --- IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: evc_k(:,:)!for wavefunctios at k COMPLEX(DP), ALLOCATABLE :: evc_kp(:,:)!for wavefunctios at k' COMPLEX(DP), ALLOCATABLE :: aux_k(:) COMPLEX(DP), ALLOCATABLE :: aux_kp(:) COMPLEX(DP), ALLOCATABLE :: aux_kp_g(:) COMPLEX(DP), ALLOCATABLE :: evcpm(:,:,:) COMPLEX(DP), ALLOCATABLE :: H_evc(:,:) COMPLEX(DP), ALLOCATABLE :: temp(:),temp2(:) COMPLEX(DP) :: store1, store2 COMPLEX(DP) :: sca ! map g-space global to g-space k-point dependent INTEGER, ALLOCATABLE :: ln(:,:,:) INTEGER, ALLOCATABLE :: map_g(:) INTEGER :: ik INTEGER :: i,j,k,n,np ! Numbering of k-points ! np (n') is used in the loop over neigboring k-points INTEGER :: signum INTEGER :: tmp INTEGER :: ipol ! from 1 to npol INTEGER :: istart, iend ! ranges of some arrays LOGICAL :: inbz(6) ! if true k' is in BZ REAL(DP) :: gtr(3) ! G+G_0 INTEGER :: npw_kp INTEGER :: igk_kp(npwx) INTEGER :: nb, mb INTEGER :: ig INTEGER :: n1,n2,n3,ng COMPLEX(DP) :: mat(nbnd,nbnd) REAL(DP) :: eps ! small number ! For matrix inversion (zgedi) INTEGER :: ivpt(nbnd) INTEGER :: info COMPLEX(DP) :: cdet(2) COMPLEX(DP) :: cdwork(nbnd) REAL(DP) :: mlc(3),mic(3) ! orbital magnetization (LC and IC terms) COMPLEX(DP) :: zdotc INTEGER :: kpt_arr(3) ! k-point mesh INTEGER :: eps_i(3) ! these play role of the antisymmetric tensor e_ijk INTEGER :: eps_j(3) INTEGER :: sig, sigp INTEGER :: l REAL(DP) :: pref ! prefactor for MAGNETIZATION in SI REAL(DP) :: pref_bm ! prefactor for MAGNETIC MOMENT per cell in Bohr magnetons REAL(DP) :: pbm ! prefactor for MAGNETIC MOMENT per cell in Bohr magnetons REAL(DP), PARAMETER :: el_si=1.60217646E-19 ! electron charge (SI) REAL(DP), PARAMETER :: hbar_si=1.054571628E-34 ! hbar (SI) REAL(DP), PARAMETER :: bohr_si=5.2917720859E-11 ! Bohr radius in m REAL(DP), PARAMETER :: ry_si=2.179871993E-18 ! Rydberg in J (energy) REAL(DP), PARAMETER :: ry_ev=13.6056923 ! Rydberg in eV (energy) LOGICAL :: store_flag INTEGER :: nbr(6) ! map for 6 neighboring k-points ! Allocate necessary arrays ALLOCATE(evc_k(npwx*npol,nbnd)) ALLOCATE(evc_kp(npwx*npol,nbnd)) ALLOCATE(map_g(npwx)) ALLOCATE(ln(-dfftp%nr1:dfftp%nr1,-dfftp%nr2:dfftp%nr2,-dfftp%nr3:dfftp%nr3) ) ALLOCATE(aux_k(ngm*npol)) ALLOCATE(aux_kp(ngm*npol)) ALLOCATE(evcpm(npol*npwx,nbnd,6)) ALLOCATE(H_evc(npol*npwx,nbnd)) ALLOCATE(temp(ngm)) CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) CALL allocate_bec_type ( nkb, nbnd, becp ) ! Initializations ! Define small number eps=1.0d-6 mlc=0.0d0 mic=0.0d0 kpt_arr(1)=nk1 kpt_arr(2)=nk2 kpt_arr(3)=nk3 eps_i(1)=2 eps_i(2)=3 eps_i(3)=1 eps_j(1)=3 eps_j(2)=1 eps_j(3)=2 ! convert energy from Ry to J ! alat is in a.u. (Bohr) need to convert to SI pref=ry_si*el_si/hbar_si/4.0_dp/(tpi**3)*tpiba/bohr_si ! magnetic moment in Bohr magnetons ! need to multiply by unit-cell volume omega ! convert Ry to Ha by dividing by 2.0 ! Bohr magneton in a.u. is 1/2 ! so these two factors cancel out ! e=hbar=1 so forget about it ! the rest is in atomic units already pref_bm=omega/4.0_dp/(tpi**3)*tpiba pbm=pref_bm/pref !--- Recalculate FFT correspondence (see ggen.f90) --- ln=0 DO ng=1,ngm n1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) n2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) n3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(n1,n2,n3) = ng END DO DO i=1,nk1 ! x DO j=1,nk2 ! y DO k=1,nk3 ! z ! Consecutive ordering of k-points n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! Read wavefunction at k CALL get_buffer ( evc_k, nwordwfc, iunwfc, n ) CALL gk_sort(xk(1,n),ngm,g,ecutwfc/tpiba2, & npw_k,igk_k,g2kin) CALL init_us_2(npw_k,igk_k,xk(1,n),vkb) evcpm=(0.0d0,0.0d0) !====================================================! !=== Compute dual vectors ===========================! !====================================================! inbz=.false. ! Find indices of neighboring k-points ! Current point ! n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! ! k'=k-dx IF(i>1) THEN !np = (k-1) + (j-1)*nk3 + (i-2)*nk2*nk3 + 1 nbr(1)=n-nk2*nk3 inbz(1)=.true. ELSE !np = (k-1) + (j-1)*nk3 + (nk1-1)*nk2*nk3 + 1 nbr(1)=n+(nk1-1)*nk2*nk3 END IF ! k'=k+dx IF(i1) THEN !np = (k-1) + (j-2)*nk3 + (i-1)*nk2*nk3 + 1 nbr(3)=n-nk3 inbz(3)=.true. ELSE !np = (k-1) + (nk2-1)*nk3 + (nk1-1)*nk2*nk3 + 1 nbr(3)=n+(nk2-1)*nk3 END IF ! k'=k+dy IF(j1) THEN !np = (k-2) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 nbr(5)=n-1 inbz(5)=.true. ELSE !np = (nk3-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 nbr(5)=n+(nk3-1) END IF ! k'=k+dz IF(k4)) THEN ! regular treatment, same for serial and parallel map_g=0 DO ig=1,npw_kp !--- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- !--- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- !--- or psi_k'(G)=psi_k(G+G_0) ! np=1,3,5 sign "+" ! np=2,4,6 sign "-" (use signum for this purpose) ! np=1,2 gpar(:,1) ! np=3,4 gpar(:,2) ! np=5,6 gpar(:,3) ! (use (np+1)/2 for this purpose, note integer arithmetic) gtr(1)=g(1,igk_kp(ig)) - DBLE(signum) * gpar(1,(np+1)/2) gtr(2)=g(2,igk_kp(ig)) - DBLE(signum) * gpar(2,(np+1)/2) gtr(3)=g(3,igk_kp(ig)) - DBLE(signum) * gpar(3,(np+1)/2) !--- Find crystal coordinates of gtr, n1,n2,n3 --- !--- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1)+gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2)+gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3)+gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ((ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps)) THEN WRITE(6,*) ' error hepsiher: translated G=', & gtr(1),gtr(2),gtr(3), & ' with crystal coordinates',n1,n2,n3, & ' corresponds to ng=',ng,' but G(ng)=', & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & ' a reciprocal lattice vector ' !WRITE(6,*) 'DBGG: n,np=',n,np STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng END DO END IF ! regular treatment DO mb=1,nbnd IF((ngm==ngm_g).OR.(np>4)) THEN ! regular treatment, same for serial and parallel DO nb=1,nbnd aux_k=(0.d0,0.d0) aux_kp=(0.d0,0.d0) DO ipol=1,npol istart = (ipol-1)*npwx+1 iend = istart+npw_k-1 aux_k(igk_k(1:npw_k)+ngm*(ipol-1))=evc_k(istart:iend,nb) iend = istart+npw_kp-1 aux_kp(map_g(1:npw_kp)+ngm*(ipol-1))=evc_kp(istart:iend,mb) END DO mat(nb,mb) = zdotc(ngm*npol,aux_k,1,aux_kp,1) END DO ELSE ! Special parallel treatment ! allocate global array ALLOCATE(aux_kp_g(ngm_g*npol)) aux_kp_g=(0.0d0,0.0d0) DO ipol=1,npol istart = (ipol-1)*npwx+1 iend = istart+npw_kp-1 IF(np==1) THEN aux_kp_g(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),1)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF IF(np==2) THEN aux_kp_g(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),1)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF IF(np==3) THEN aux_kp_g(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),2)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF IF(np==4) THEN aux_kp_g(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),2)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF END DO CALL mp_sum(aux_kp_g(:)) DO nb=1,nbnd sca=(0.0d0,0.0d0) DO ipol=1,npol DO ig=1,npw_k sca=sca+CONJG(evc_k(ig+npwx*(ipol-1),nb))*& aux_kp_g(ig_l2g(igk_k(ig))+ngm_g*(ipol-1)) END DO END DO mat(nb,mb)=sca END DO DEALLOCATE(aux_kp_g) END IF ! parallel treatment END DO CALL mp_sum( mat, intra_pool_comm ) END IF !--- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('orbm_kubo','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) DO nb=1,nbnd DO ipol=1,npol temp=(0.0d0,0.0d0) istart = (ipol-1)*npwx+1 iend = istart+npw_kp-1 ! map_g is needed only if kp is outside of BZ ! otherwise use igk_kp IF (inbz(np)) THEN temp(igk_kp(1:npw_kp))=evc_kp(istart:iend,nb) ELSE IF((ngm==ngm_g).OR.(np>4)) THEN ! regular treatment temp(map_g(1:npw_kp))=evc_kp(istart:iend,nb) ELSE ! map_g is not defined ALLOCATE(temp2(ngm_g)) temp2=(0.0d0,0.0d0) !playing role of temp above IF(np==1) THEN temp2(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),1))=& evc_kp(istart:iend,nb) END IF IF(np==2) THEN temp2(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),1))=& evc_kp(istart:iend,nb) END IF IF(np==3) THEN temp2(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),2))=& evc_kp(istart:iend,nb) END IF IF(np==4) THEN temp2(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),2))=& evc_kp(istart:iend,nb) END IF CALL mp_sum(temp2(:)) END IF END IF iend = istart+npw_k-1 DO mb=1,nbnd IF(inbz(np).OR.(np>4).OR.(ngm==ngm_g)) THEN evcpm(istart:iend,mb,np)=evcpm(istart:iend,mb,np)+& mat(nb,mb)*temp(igk_k(1:npw_k)) ELSE ! special parallel case evcpm(istart:iend,mb,np)=evcpm(istart:iend,mb,np)+& mat(nb,mb)*temp2(ig_l2g(igk_k(1:npw_k))) END IF END DO IF(ALLOCATED(temp2)) DEALLOCATE(temp2) END DO END DO END DO ! loop over neighbors !====================================================! !=== Compute orbital magnetization ==================! !====================================================! CALL gk_sort(xk(1,nbr(1)),ngm,g,ecutwfc/tpiba2, & npw_kp,igk_kp,g2kin) ! gk_sort overwrites the kinetic energy - recalculate at ik g2kin(1:npw_k)=( ( xk(1,n) + g(1,igk_k(1:npw_k)) )**2 + & ( xk(2,n) + g(2,igk_k(1:npw_k)) )**2 + & ( xk(3,n) + g(3,igk_k(1:npw_k)) )**2 ) * tpiba2 ! these 2 lines are equivalent to the kinetic energy calculation above ! CALL gk_sort(xk(1,n), ngm, g, ecutwfc/tpiba2, npw_k, igk_k, g2kin) ! g2kin(1:npw) = g2kin(1:npw) * tpiba2 ! LC TERM DO l=1,3 ! loop over gpar's DO sig=0,1 ! i -/+ DO sigp=0,1 ! j -/+ IF(sig==sigp) THEN signum=1 ELSE signum=-1 END IF ! H | u_{nk j sigp} > H_evc=(0.0d0,0.0d0) store_flag=lelfield lelfield=.false. CALL h_psi(npwx, npw_k, nbnd, evcpm(:,:,2*eps_j(l)+sigp-1), H_evc) lelfield=store_flag DO nb=1,nbnd ! loop over bands mlc=mlc+DBLE(signum)*pref*gpar(:,l)/kpt_arr(l)* & AIMAG( zdotc(npwx*npol,evcpm(:,nb,2*eps_i(l)+sig-1),1,H_evc(:,nb),1) ) END DO END DO END DO END DO ! IC TERM DO l=1,3 ! loop over gpar's DO sig=0,1 ! i +/- DO sigp=0,1 ! j +/- IF(sig==sigp) THEN signum=1 ELSE signum=-1 END IF H_evc=(0.0d0,0.0d0) store_flag=lelfield lelfield=.false. CALL h_psi(npwx, npw_k, nbnd, evc_k, H_evc) lelfield=store_flag DO nb=1,nbnd ! loop over bands DO mb=1,nbnd ! loop over bands store1=zdotc(npw_k,evc_k(1:npw_k,nb),1,H_evc(1:npw_k,mb),1) store2=zdotc(npw_k,evcpm(1:npw_k,mb,2*eps_i(l)+sig-1),1, & evcpm(1:npw_k,nb,2*eps_j(l)+sigp-1),1) IF(noncolin) THEN store1=store1+zdotc(npw_k,evc_k(npwx+1:npwx+npw_k,nb),1,H_evc(npwx+1:npwx+npw_k,mb),1) store2=store2+zdotc(npw_k,evcpm(npwx+1:npwx+npw_k,mb,2*eps_i(l)+sig-1),1, & evcpm(npwx+1:npwx+npw_k,nb,2*eps_j(l)+sigp-1),1) END IF CALL mp_sum(store1) CALL mp_sum(store2) mic=mic+DBLE(signum)*pref*gpar(:,l)/kpt_arr(l)*AIMAG(store1*store2) END DO END DO END DO END DO END DO END DO ! loop over k-points END DO END DO CALL mp_sum(mlc) WRITE (stdout,*) ' ' WRITE (stdout,*) '==============================================' WRITE (stdout,*) '= ORBITAL MAGNETIZATION (KUBO TERMS) =' WRITE (stdout,*) '==============================================' WRITE (stdout,*) ' ' WRITE (stdout,*) '= Local circulation term =' WRITE (stdout,*) 'M_LC = ', mlc(1), mlc(2), mlc(3),' (A/m)' WRITE (stdout,*) 'M_LC = ', mlc(1)*pbm, mlc(2)*pbm, mlc(3)*pbm,' (Bohr mag/cell)' WRITE (stdout,*) ' ' WRITE (stdout,*) '= Itinerant circulation term =' WRITE (stdout,*) 'M_IC = ', mic(1), mic(2), mic(3),' (A/m)' WRITE (stdout,*) 'M_IC = ', mic(1)*pbm, mic(2)*pbm, mic(3)*pbm,' (Bohr mag/cell)' WRITE (stdout,*) ' ' WRITE (stdout,*) '==============================================' WRITE (stdout,*) ' ' ! Deallocate arrays CALL deallocate_bec_type ( becp ) DEALLOCATE(evc_k) DEALLOCATE(evc_kp) DEALLOCATE(aux_k) DEALLOCATE(aux_kp) DEALLOCATE(ln) DEALLOCATE(map_g) DEALLOCATE(evcpm) DEALLOCATE(H_evc) DEALLOCATE(temp) END SUBROUTINE orbm_kubo !==============================================================================! espresso-5.0.2/PW/src/cdiagh.f900000644000700200004540000001063312053145630015236 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE cdiagh( n, h, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates all the eigenvalues and eigenvectors of a complex ! ... hermitean matrix H. On output, the matrix is unchanged ! USE kinds, ONLY : DP USE mp_global, ONLY : nbgrp, me_bgrp, root_bgrp, intra_bgrp_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! ! ... on INPUT ! INTEGER :: n, ldh ! dimension of the matrix to be diagonalized ! leading dimension of h, as declared in the calling pgm unit COMPLEX(DP) :: h(ldh,n) ! matrix to be diagonalized ! ! ... on OUTPUT ! REAL(DP) :: e(n) ! eigenvalues COMPLEX(DP) :: v(ldh,n) ! eigenvectors (column-wise) ! CALL start_clock( 'diagh' ) ! #if defined (__ESSL) CALL cdiagh_aix() #else CALL cdiagh_lapack( v, e ) #endif ! CALL stop_clock( 'diagh' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! #if defined (__ESSL) ! !----------------------------------------------------------------------- SUBROUTINE cdiagh_aix() !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! ... local variables (ESSL version) ! INTEGER :: naux, i, j, ij COMPLEX(DP), ALLOCATABLE :: hp(:), aux(:) ! ! naux = 4 * n ! ALLOCATE( hp( n * (n + 1) / 2 ) ) ALLOCATE( aux( naux ) ) ! ! ... copy to upper triangular packed matrix ! ij = 0 DO j = 1, n DO i = 1, j ij = ij + 1 hp(ij) = h(i,j) END DO END DO ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! CALL ZHPEV( 21, hp, e, v, ldh, n, aux, naux ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! DEALLOCATE( aux ) DEALLOCATE( hp ) ! RETURN ! END SUBROUTINE cdiagh_aix ! #else ! !----------------------------------------------------------------------- SUBROUTINE cdiagh_lapack( v, e ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP) :: e(n) ! eigenvalues COMPLEX(DP) :: v(ldh,n) ! ! ... local variables (LAPACK version) ! INTEGER :: lwork, nb, info REAL(DP), ALLOCATABLE :: rwork(:) COMPLEX(DP), ALLOCATABLE :: work(:) ! INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" ! ! ... check for the block size ! nb = ILAENV( 1, 'ZHETRD', 'U', n, - 1, - 1, - 1 ) ! IF ( nb < 1 .OR. nb >= n ) THEN ! lwork = 2*n ! ELSE ! lwork = ( nb + 1 )*n ! END IF ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... allocate workspace ! #ifdef __PGI ! workaround for PGI compiler bug ! v(1:ldh,1:n) = h(1:ldh,1:n) #else v = h #endif ! ALLOCATE( work( lwork ) ) ALLOCATE( rwork( 3 * n - 2 ) ) ! CALL ZHEEV( 'V', 'U', n, v, ldh, e, work, lwork, rwork, info ) ! CALL errore( 'cdiagh', 'diagonalization (ZHEEV) failed', ABS( info ) ) ! ! ... deallocate workspace ! DEALLOCATE( rwork ) DEALLOCATE( work ) ! END IF ! #ifdef __PGI ! workaround for PGI compiler bug ! CALL mp_bcast( e(1:n), root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v(1:ldh,1:n), root_bgrp, intra_bgrp_comm ) #else CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) #endif ! RETURN ! END SUBROUTINE cdiagh_lapack ! #endif ! END SUBROUTINE cdiagh espresso-5.0.2/PW/src/vhpsi.f900000644000700200004540000001100512053145627015150 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine vhpsi (ldap, np, mps, psip, hpsi) !----------------------------------------------------------------------- ! ! This routine computes the Hubbard potential applied to the electronic ! of the current k-point, the result is added to hpsi ! USE kinds, ONLY : DP USE becmod, ONLY : bec_type, calbec, allocate_bec_type, deallocate_bec_type USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, HUbbard_U, Hubbard_alpha, & swfcatom, oatwfc, Hubbard_J0, Hubbard_beta USE lsda_mod, ONLY : current_spin USE scf, ONLY : v USE ions_base, ONLY : nat, ntyp => nsp, ityp USE basis, ONLY : natomwfc USE control_flags, ONLY : gamma_only USE mp, ONLY: mp_sum ! implicit none ! integer, intent (in) :: ldap, np, mps complex(DP), intent(in) :: psip (ldap, mps) complex(DP), intent(inout) :: hpsi (ldap, mps) ! integer :: ibnd, na, nt, m1, m2 complex(DP) :: temp type (bec_type) :: proj CALL start_clock('vhpsi') ! ! Offset of atomic wavefunctions initialized in setup and stored in oatwfc ! call allocate_bec_type ( natomwfc,mps, proj ) CALL calbec (np, swfcatom, psip, proj) do ibnd = 1, mps do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0 .or. Hubbard_alpha(nt).ne.0.d0.or.& Hubbard_J0(nt).ne.0.d0 .or. Hubbard_beta(nt).ne.0.d0 ) then do m1 = 1, 2 * Hubbard_l(nt) + 1 temp = 0.d0 if (gamma_only) then do m2 = 1, 2 * Hubbard_l(nt) + 1 temp = temp + v%ns( m1, m2, current_spin, na) * & proj%r(oatwfc(na)+m2, ibnd) enddo call daxpy (2*np, temp, swfcatom(1,oatwfc(na)+m1), 1, & hpsi(1,ibnd), 1) else do m2 = 1, 2 * Hubbard_l(nt) + 1 temp = temp + v%ns( m1, m2, current_spin, na) * & proj%k(oatwfc(na)+m2, ibnd) enddo call zaxpy (np, temp, swfcatom(1,oatwfc(na)+m1), 1, & hpsi(1,ibnd), 1) endif enddo endif enddo enddo call deallocate_bec_type (proj) ! CALL stop_clock('vhpsi') return end subroutine vhpsi subroutine vhpsi_nc (ldap, np, mps, psip, hpsi) !----------------------------------------------------------------------- ! ! Noncollinear version (A. Smogunov). ! USE kinds, ONLY : DP USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, HUbbard_U, swfcatom, oatwfc USE scf, ONLY : v USE ions_base, ONLY : nat, ntyp => nsp, ityp USE noncollin_module, ONLY : npol USE basis, ONLY : natomwfc USE wvfct, ONLY : npwx USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! integer, intent (in) :: ldap, np, mps complex(DP), intent(in) :: psip (ldap*npol, mps) complex(DP), intent(inout) :: hpsi (ldap*npol, mps) ! integer :: ibnd, na, nwfc, is1, is2, nt, m1, m2 complex(DP) :: temp, zdotc complex(DP), allocatable :: proj(:,:) CALL start_clock('vhpsi') ALLOCATE( proj(natomwfc, mps) ) !-- ! calculate DO ibnd = 1, mps DO na = 1, natomwfc proj(na, ibnd) = zdotc (ldap*npol, swfcatom(1, na), 1, psip(1, ibnd), 1) ENDDO ENDDO #ifdef __MPI CALL mp_sum ( proj, intra_bgrp_comm ) #endif !-- do ibnd = 1, mps do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0) then nwfc = 2 * Hubbard_l(nt) + 1 do is1 = 1, npol do m1 = 1, nwfc temp = 0.d0 do is2 = 1, npol do m2 = 1, nwfc temp = temp + v%ns_nc( m1, m2, npol*(is1-1)+is2, na) * & proj(oatwfc(na)+(is2-1)*nwfc+m2, ibnd) enddo enddo call zaxpy (ldap*npol, temp, swfcatom(1,oatwfc(na)+(is1-1)*nwfc+m1), 1, & hpsi(1,ibnd),1) enddo enddo endif enddo enddo deallocate (proj) CALL stop_clock('vhpsi') return end subroutine vhpsi_nc espresso-5.0.2/PW/src/stress.f900000644000700200004540000001562612053145630015351 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine stress ( sigma ) !---------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE cell_base, ONLY : omega, alat, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv USE constants, ONLY : ry_kbar USE ener, ONLY : etxc, vtxc USE gvect, ONLY : ngm, gstart, nl, g, gg, gcutm USE fft_base, ONLY : dfftp USE ldaU, ONLY : lda_plus_u, U_projection USE lsda_mod, ONLY : nspin USE scf, ONLY : rho, rho_core, rhog_core USE control_flags, ONLY : iverbosity, gamma_only, llondon USE noncollin_module, ONLY : noncolin USE funct, ONLY : dft_is_meta, dft_is_gradient USE symme, ONLY : symmatrix USE bp, ONLY : lelfield USE uspp, ONLY : okvan USE london_module, ONLY : stres_london USE exx, ONLY : exx_stress USE funct, ONLY : dft_is_hybrid ! IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: sigma(3,3) ! real(DP) :: sigmakin (3, 3), sigmaloc (3, 3), sigmahar (3, 3), & sigmaxc (3, 3), sigmaxcc (3, 3), sigmaewa (3, 3), sigmanlc (3, 3), & sigmabare (3, 3), sigmah (3, 3), sigmael( 3, 3), sigmaion(3, 3), & sigmalon ( 3 , 3 ), sigma_nonloc_dft (3 ,3), sigmaexx(3,3) integer :: l, m ! WRITE( stdout, '(//5x,"entering subroutine stress ..."/)') IF ( dft_is_meta() ) THEN CALL infomsg ('stress','Meta-GGA and stress not implemented') RETURN ELSE IF ( noncolin .AND. dft_is_gradient() ) then CALL infomsg('stres', 'noncollinear stress + GGA not implemented') RETURN ELSE IF ( lelfield .AND. okvan ) THEN CALL infomsg('stres', 'stress with USPP and electric fields (Berry) not implemented') RETURN END IF ! call start_clock ('stress') ! ! contribution from local potential ! call stres_loc (sigmaloc) ! ! hartree contribution ! call stres_har (sigmahar) ! ! xc contribution (diagonal) ! sigmaxc(:,:) = 0.d0 do l = 1, 3 sigmaxc (l, l) = - (etxc - vtxc) / omega enddo ! ! xc contribution: add gradient corrections (non diagonal) ! call stres_gradcorr ( rho%of_r, rho%of_g, rho_core, rhog_core, nspin, & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nnr, nl, ngm, g, alat, omega, sigmaxc) ! ! core correction contribution ! call stres_cc (sigmaxcc) ! ! ewald contribution ! call stres_ewa (alat, nat, ntyp, ityp, zv, at, bg, tau, omega, g, & gg, ngm, gstart, gamma_only, gcutm, sigmaewa) ! ! semi-empirical dispersion contribution ! sigmalon ( : , : ) = 0.d0 ! IF ( llondon ) & sigmalon = stres_london ( alat , nat , ityp , at , bg , tau , omega ) ! ! kinetic + nonlocal contribuition ! call stres_knl (sigmanlc, sigmakin) ! do l = 1, 3 do m = 1, 3 sigmabare (l, m) = sigmaloc (l, m) + sigmanlc (l, m) enddo enddo ! ! Hubbard contribution ! (included by stres_knl if using beta as local projectors) ! sigmah(:,:) = 0.d0 IF ( lda_plus_u .AND. U_projection.NE.'pseudo' ) CALL stres_hub(sigmah) ! ! Electric field contribution ! sigmael(:,:)=0.d0 sigmaion(:,:)=0.d0 !the following is for calculating the improper stress tensor ! call stress_bp_efield (sigmael ) ! call stress_ion_efield (sigmaion ) ! ! DFT-non_local contribution ! sigma_nonloc_dft (:,:) = 0.d0 call stres_nonloc_dft(rho%of_r, rho_core, nspin, sigma_nonloc_dft) ! ! SUM ! sigma(:,:) = sigmakin(:,:) + sigmaloc(:,:) + sigmahar(:,:) + & sigmaxc(:,:) + sigmaxcc(:,:) + sigmaewa(:,:) + & sigmanlc(:,:) + sigmah(:,:) + sigmael(:,:) + & sigmaion(:,:) + sigmalon(:,:) + sigma_nonloc_dft(:,:) ! IF (dft_is_hybrid()) THEN sigmaexx = exx_stress() CALL symmatrix ( sigmaexx ) sigma(:,:) = sigma(:,:) + sigmaexx(:,:) ELSE sigmaexx = 0.d0 ENDIF ! Resymmetrize the total stress. This should not be strictly necessary, ! but prevents loss of symmetry in long vc-bfgs runs CALL symmatrix ( sigma ) ! ! write results in Ryd/(a.u.)^3 and in kbar ! WRITE( stdout, 9000) (sigma(1,1) + sigma(2,2) + sigma(3,3)) * ry_kbar/3d0, & (sigma(l,1), sigma(l,2), sigma(l,3), & sigma(l,1)*ry_kbar, sigma(l,2)*ry_kbar, sigma(l,3)*ry_kbar, l=1,3) if ( iverbosity > 0 ) WRITE( stdout, 9005) & (sigmakin(l,1)*ry_kbar,sigmakin(l,2)*ry_kbar,sigmakin(l,3)*ry_kbar, l=1,3),& (sigmaloc(l,1)*ry_kbar,sigmaloc(l,2)*ry_kbar,sigmaloc(l,3)*ry_kbar, l=1,3),& (sigmanlc(l,1)*ry_kbar,sigmanlc(l,2)*ry_kbar,sigmanlc(l,3)*ry_kbar, l=1,3),& (sigmahar(l,1)*ry_kbar,sigmahar(l,2)*ry_kbar,sigmahar(l,3)*ry_kbar, l=1,3),& (sigmaxc (l,1)*ry_kbar,sigmaxc (l,2)*ry_kbar,sigmaxc (l,3)*ry_kbar, l=1,3),& (sigmaxcc(l,1)*ry_kbar,sigmaxcc(l,2)*ry_kbar,sigmaxcc(l,3)*ry_kbar, l=1,3),& (sigmaewa(l,1)*ry_kbar,sigmaewa(l,2)*ry_kbar,sigmaewa(l,3)*ry_kbar, l=1,3),& (sigmah (l,1)*ry_kbar,sigmah (l,2)*ry_kbar,sigmah (l,3)*ry_kbar, l=1,3),& (sigmalon(l,1)*ry_kbar,sigmalon(l,2)*ry_kbar,sigmalon(l,3)*ry_kbar, l=1,3), & (sigma_nonloc_dft(l,1)*ry_kbar,sigma_nonloc_dft(l,2)*ry_kbar,sigma_nonloc_dft(l,3)*ry_kbar, l=1,3) IF ( dft_is_hybrid() .AND. (iverbosity > 0) ) WRITE( stdout, 9006) & (sigmaexx(l,1)*ry_kbar,sigmaexx(l,2)*ry_kbar,sigmaexx(l,3)*ry_kbar, l=1,3) 9006 format (5x,'EXX stress (kbar)',3f10.2/2(26x,3f10.2/)/ ) if( lelfield .and. iverbosity > 0 ) then write(stdout,*) "Stress tensor electronic el field part:" write(stdout,*) (sigmael(l,1),sigmael(l,2),sigmael(l,3), l=1,3) write(stdout,*) "Stress tensor electronic el field part:" write(stdout,*) (sigmaion(l,1),sigmaion(l,2),sigmaion(l,3), l=1,3) endif call stop_clock ('stress') return 9000 format (10x,'total stress (Ry/bohr**3) ',18x,'(kbar)', & &5x,'P=',f8.2/3 (3f13.8,4x,3f10.2/)) 9001 format (5x,'Isostatic pressure: ',f8.2,' kbar') 9005 format & & (5x,'kinetic stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'local stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'nonloc. stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'hartree stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'exc-cor stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'corecor stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'ewald stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'hubbard stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'london stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'dft-nl stress (kbar)',3f10.2/2(26x,3f10.2/)/ ) end subroutine stress espresso-5.0.2/PW/src/gk_sort.f900000644000700200004540000000466312053145627015503 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE gk_sort( k, ngm, g, ecut, ngk, igk, gk ) !---------------------------------------------------------------------------- ! ! ... sorts k+g in order of increasing magnitude, up to ecut ! ... NB: this version should yield the same ordering for different ecut ! ... and the same ordering in all machines ! USE kinds, ONLY : DP USE constants, ONLY : eps8 USE wvfct, ONLY : npwx ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: k(3) ! the k point INTEGER, INTENT(in) :: ngm ! the number of g vectors REAL(DP), INTENT(in) :: g(3,ngm) ! the coordinates of G vectors REAL(DP), INTENT(in) :: ecut ! the cut-off energy INTEGER, INTENT(out) :: ngk ! the number of k+G vectors inside the "ecut sphere" INTEGER, INTENT(out) :: igk(npwx) ! the correspondence k+G <-> G REAL(DP), INTENT(out) :: gk(npwx) ! the moduli of k+G ! INTEGER :: ng ! counter on G vectors INTEGER :: nk ! counter on k+G vectors REAL(DP) :: q ! |k+G|^2 REAL(DP) :: q2x ! upper bound for |G| ! ! ... first we count the number of k+G vectors inside the cut-off sphere ! q2x = ( sqrt( sum(k(:)**2) ) + sqrt( ecut ) )**2 ! ngk = 0 igk(:) = 0 gk (:) = 0.0_dp ! DO ng = 1, ngm q = sum( ( k(:) + g(:,ng) )**2 ) IF(q<=eps8) q=0.d0 ! ! ... here if |k+G|^2 <= Ecut ! IF ( q <= ecut ) THEN ngk = ngk + 1 IF ( ngk > npwx ) & CALL errore( 'gk_sort', 'array gk out-of-bounds', 1 ) ! gk(ngk) = q ! ! set the initial value of index array igk(ngk) = ng ELSE ! if |G| > |k| + SQRT( Ecut ) stop search and order vectors IF ( sum( g(:,ng)**2 ) > ( q2x + eps8 ) ) exit ENDIF ENDDO ! IF ( ng > ngm ) & CALL infomsg( 'gk_sort', 'unexpected exit from do-loop') ! ! ... order vector gk keeping initial position in index ! CALL hpsort_eps( ngk, gk, igk, eps8 ) ! ! ... now order true |k+G| ! DO nk = 1, ngk gk(nk) = sum( (k(:) + g(:,igk(nk)) )**2 ) ENDDO ! END SUBROUTINE gk_sort espresso-5.0.2/PW/src/s_psi.f900000644000700200004540000002364312053145627015147 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE s_psi( lda, n, m, psi, spsi ) !---------------------------------------------------------------------------- ! ! ... This routine applies the S matrix to m wavefunctions psi ! ... and puts the results in spsi. ! ... Requires the products of psi with all beta functions ! ... in array becp(nkb,m) (calculated in h_psi or by calbec) ! ! ... input: ! ! ... lda leading dimension of arrays psi, spsi ! ... n true dimension of psi, spsi ! ... m number of states psi ! ... psi ! ! ... output: ! ! ... spsi S*psi ! USE kinds, ONLY : DP USE uspp, ONLY : vkb, nkb, qq, okvan USE uspp_param, ONLY : upf, nh USE ions_base, ONLY : nat, nsp, ityp USE control_flags, ONLY: gamma_only USE noncollin_module, ONLY: npol, noncolin USE realus, ONLY : real_space, fft_orbital_gamma, initialisation_level,& bfft_orbital_gamma, calbec_rs_gamma, s_psir_gamma ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: lda, n, m COMPLEX(DP), INTENT(IN) :: psi(lda*npol,m) COMPLEX(DP), INTENT(OUT)::spsi(lda*npol,m) ! INTEGER :: ibnd ! ! ... initialize spsi ! spsi = psi ! IF ( nkb == 0 .OR. .NOT. okvan ) RETURN ! CALL start_clock( 's_psi' ) ! ! ... The product with the beta functions ! IF ( gamma_only ) THEN ! IF (real_space ) THEN ! DO ibnd = 1, m, 2 ! transform the orbital to real space CALL fft_orbital_gamma(psi,ibnd,m) CALL s_psir_gamma(ibnd,m) CALL bfft_orbital_gamma(spsi,ibnd,m) END DO ! ELSE ! CALL s_psi_gamma() ! END IF ! ELSE IF ( noncolin ) THEN ! CALL s_psi_nc() ! ELSE ! CALL s_psi_k() ! END IF ! CALL stop_clock( 's_psi' ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE s_psi_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! USE becmod, ONLY : bec_type, becp USE mp, ONLY: mp_get_comm_null, mp_circular_shift_left ! IMPLICIT NONE ! ! ... here the local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ierr ! counters INTEGER :: nproc, mype, m_loc, m_begin, ibnd_loc, icyc, icur_blk, m_max ! data distribution indexes INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block ! data distribution functions REAL(DP), ALLOCATABLE :: ps(:,:) ! the product vkb and psi ! m_loc = m m_begin = 1 m_max = m nproc = 1 mype = 0 ! IF( becp%comm /= mp_get_comm_null() ) THEN nproc = becp%nproc mype = becp%mype m_loc = becp%nbnd_loc m_begin = becp%ibnd_begin m_max = SIZE(becp%r,2) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 END IF ! ALLOCATE( ps( nkb, m_max ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' s_psi_gamma ', ' cannot allocate memory (ps) ', ABS(ierr) ) ! ps(:,:) = 0.D0 ! ijkb0 = 0 DO nt = 1, nsp IF ( upf(nt)%tvanp ) THEN DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ibnd_loc = 1, m_loc DO jh = 1, nh(nt) jkb = ijkb0 + jh DO ih = 1, nh(nt) ikb = ijkb0 + ih ps(ikb,ibnd_loc) = ps(ikb,ibnd_loc) + & qq(ih,jh,nt) * becp%r(jkb,ibnd_loc) END DO END DO END DO ijkb0 = ijkb0 + nh(nt) END IF END DO ELSE DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO END IF END DO ! IF( becp%comm /= mp_get_comm_null() ) THEN ! ! parallel block multiplication of vkb and ps ! icur_blk = mype ! DO icyc = 0, nproc - 1 m_loc = ldim_block( becp%nbnd , nproc, icur_blk ) m_begin = gind_block( 1, becp%nbnd, nproc, icur_blk ) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 IF( m_loc > 0 ) THEN CALL DGEMM( 'N', 'N', 2 * n, m_loc, nkb, 1.D0, vkb, & 2 * lda, ps, nkb, 1.D0, spsi( 1, m_begin ), 2 * lda ) END IF ! block rotation ! CALL mp_circular_shift_left( ps, icyc, becp%comm ) icur_blk = icur_blk + 1 IF( icur_blk == nproc ) icur_blk = 0 END DO ! ELSE IF ( m == 1 ) THEN ! CALL DGEMV( 'N', 2 * n, nkb, 1.D0, vkb, & 2 * lda, ps, 1, 1.D0, spsi, 1 ) ! ELSE ! CALL DGEMM( 'N', 'N', 2 * n, m, nkb, 1.D0, vkb, & 2 * lda, ps, nkb, 1.D0, spsi, 2 * lda ) ! END IF ! DEALLOCATE( ps ) ! RETURN ! END SUBROUTINE s_psi_gamma ! !----------------------------------------------------------------------- SUBROUTINE s_psi_k() !----------------------------------------------------------------------- ! ! ... k-points version ! USE becmod, ONLY : becp ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ierr ! counters COMPLEX(DP), ALLOCATABLE :: ps(:,:) ! the product vkb and psi ! ALLOCATE( ps( nkb, m ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' s_psi_k ', ' cannot allocate memory (ps) ', ABS(ierr) ) ! ps(:,:) = ( 0.D0, 0.D0 ) ! ijkb0 = 0 DO nt = 1, nsp IF ( upf(nt)%tvanp ) THEN DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ibnd = 1, m DO jh = 1, nh(nt) jkb = ijkb0 + jh DO ih = 1, nh(nt) ikb = ijkb0 + ih ps(ikb,ibnd) = ps(ikb,ibnd) + & qq(ih,jh,nt) * becp%k(jkb,ibnd) END DO END DO END DO ijkb0 = ijkb0 + nh(nt) END IF END DO ELSE DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO END IF END DO ! IF ( m == 1 ) THEN ! CALL ZGEMV( 'N', n, nkb, ( 1.D0, 0.D0 ), vkb, & lda, ps, 1, ( 1.D0, 0.D0 ), spsi, 1 ) ! ELSE ! CALL ZGEMM( 'N', 'N', n, m, nkb, ( 1.D0, 0.D0 ), vkb, & lda, ps, nkb, ( 1.D0, 0.D0 ), spsi, lda ) ! END IF ! DEALLOCATE( ps ) ! RETURN ! END SUBROUTINE s_psi_k ! ! !----------------------------------------------------------------------- SUBROUTINE s_psi_nc ( ) !----------------------------------------------------------------------- ! USE uspp, ONLY: qq_so USE becmod, ONLY: bec_type, becp USE spin_orb, ONLY: lspinorb IMPLICIT NONE ! ! here the local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ipol, ierr ! counters COMPLEX (DP), ALLOCATABLE :: ps (:,:,:) ! the product vkb and psi ! ALLOCATE (ps(nkb,npol,m),STAT=ierr) IF( ierr /= 0 ) & CALL errore( ' s_psi_nc ', ' cannot allocate memory (ps) ', ABS(ierr) ) ps(:,:,:) = (0.D0,0.D0) ! ijkb0 = 0 do nt = 1, nsp if ( upf(nt)%tvanp ) then do na = 1, nat if (ityp (na) == nt) then do ih = 1,nh(nt) ikb = ijkb0 + ih do ibnd = 1, m do jh = 1, nh (nt) jkb = ijkb0 + jh if (lspinorb) then ps(ikb,1,ibnd)=ps(ikb,1,ibnd) + & qq_so(ih,jh,1,nt)*becp%nc(jkb,1,ibnd)+ & qq_so(ih,jh,2,nt)*becp%nc(jkb,2,ibnd) ps(ikb,2,ibnd)=ps(ikb,2,ibnd) + & qq_so(ih,jh,3,nt)*becp%nc(jkb,1,ibnd)+ & qq_so(ih,jh,4,nt)*becp%nc(jkb,2,ibnd) else do ipol=1,npol ps(ikb,ipol,ibnd)=ps(ikb,ipol,ibnd) + & qq(ih,jh,nt)*becp%nc(jkb,ipol,ibnd) enddo endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo else do na = 1, nat if (ityp (na) == nt) ijkb0 = ijkb0 + nh (nt) enddo endif enddo call ZGEMM ('N', 'N', n, m*npol, nkb, (1.d0, 0.d0) , vkb, & lda, ps, nkb, (1.d0, 0.d0) , spsi(1,1), lda) DEALLOCATE(ps) RETURN END SUBROUTINE s_psi_nc END SUBROUTINE s_psi espresso-5.0.2/PW/src/cdiaghg.f900000644000700200004540000002656512053145627015426 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! !---------------------------------------------------------------------------- SUBROUTINE cdiaghg( n, m, h, s, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H hermitean matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... LAPACK version - uses both ZHEGV and ZHEGVX ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast, mp_sum, mp_barrier, mp_max USE mp_global, ONLY : me_bgrp, root_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, m, ldh ! dimension of the matrix to be diagonalized ! number of eigenstates to be calculate ! leading dimension of h, as declared in the calling pgm unit COMPLEX(DP), INTENT(INOUT) :: h(ldh,n), s(ldh,n) ! actually intent(in) but compilers don't know and complain ! matrix to be diagonalized ! overlap matrix REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues COMPLEX(DP), INTENT(OUT) :: v(ldh,m) ! eigenvectors (column-wise) ! INTEGER :: lwork, nb, mm, info, i, j ! mm = number of calculated eigenvectors REAL(DP) :: abstol INTEGER, ALLOCATABLE :: iwork(:), ifail(:) REAL(DP), ALLOCATABLE :: rwork(:), sdiag(:), hdiag(:) COMPLEX(DP), ALLOCATABLE :: work(:) ! various work space LOGICAL :: all_eigenvalues ! REAL(DP), EXTERNAL :: DLAMCH INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" ! ! CALL start_clock( 'cdiaghg' ) ! ! ... only the first processor diagonalizes the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... save the diagonal of input S (it will be overwritten) ! ALLOCATE( sdiag( n ) ) DO i = 1, n sdiag(i) = DBLE( s(i,i) ) END DO ! all_eigenvalues = ( m == n ) ! ! ... check for optimal block size ! nb = ILAENV( 1, 'ZHETRD', 'U', n, -1, -1, -1 ) ! IF ( nb < 1 .OR. nb >= n) THEN ! lwork = 2*n ! ELSE ! lwork = ( nb + 1 )*n ! END IF ! ALLOCATE( work( lwork ) ) ! IF ( all_eigenvalues ) THEN ! ALLOCATE( rwork( 3*n - 2 ) ) ! ! ... calculate all eigenvalues (overwritten to v) ! v(:,:) = h(:,:) ! CALL ZHEGV( 1, 'V', 'U', n, v, ldh, & s, ldh, e, work, lwork, rwork, info ) ! ELSE ! ALLOCATE( rwork( 7*n ) ) ! ! ... save the diagonal of input H (it will be overwritten) ! ALLOCATE( hdiag( n ) ) DO i = 1, n hdiag(i) = DBLE( h(i,i) ) END DO ! ALLOCATE( iwork( 5*n ) ) ALLOCATE( ifail( n ) ) ! ! ... calculate only m lowest eigenvalues ! abstol = 0.D0 ! abstol = 2.D0*DLAMCH( 'S' ) ! ! ... the following commented lines calculate optimal lwork ! !lwork = -1 ! !CALL ZHEGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, & ! 0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & ! work, lwork, rwork, iwork, ifail, info ) ! !lwork = INT( work(1) ) + 1 ! !IF( lwork > SIZE( work ) ) THEN ! DEALLOCATE( work ) ! ALLOCATE( work( lwork ) ) !END IF ! CALL ZHEGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, & 0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & work, lwork, rwork, iwork, ifail, info ) ! DEALLOCATE( ifail ) DEALLOCATE( iwork ) ! ! ... restore input H matrix from saved diagonal and lower triangle ! DO i = 1, n h(i,i) = CMPLX( hdiag(i), 0.0_DP ,kind=DP) DO j = i + 1, n h(i,j) = CONJG( h(j,i) ) END DO DO j = n + 1, ldh h(j,i) = ( 0.0_DP, 0.0_DP ) END DO END DO ! DEALLOCATE( hdiag ) ! END IF ! ! DEALLOCATE( rwork ) DEALLOCATE( work ) ! IF ( info > n ) THEN CALL errore( 'cdiaghg', 'S matrix not positive definite', ABS( info ) ) ELSE IF ( info > 0 ) THEN CALL errore( 'cdiaghg', 'eigenvectors failed to converge', ABS( info ) ) ELSE IF ( info < 0 ) THEN CALL errore( 'cdiaghg', 'incorrect call to ZHEGV*', ABS( info ) ) END IF ! ! ... restore input S matrix from saved diagonal and lower triangle ! DO i = 1, n s(i,i) = CMPLX( sdiag(i), 0.0_DP ,kind=DP) DO j = i + 1, n s(i,j) = CONJG( s(j,i) ) END DO DO j = n + 1, ldh s(j,i) = ( 0.0_DP, 0.0_DP ) END DO END DO ! DEALLOCATE( sdiag ) ! END IF ! ! ... broadcast eigenvectors and eigenvalues to all other processors ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'cdiaghg' ) ! RETURN ! END SUBROUTINE cdiaghg ! !---------------------------------------------------------------------------- SUBROUTINE pcdiaghg( n, h, s, ldh, e, v, desc ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H hermitean matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... Parallel version, with full data distribution ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_global, ONLY : root_bgrp, intra_bgrp_comm USE zhpev_module, ONLY : pzhpev_drv, zhpev_drv USE descriptors, ONLY : la_descriptor USE parallel_toolkit, ONLY : zsqmdst, zsqmcll #if defined __SCALAPACK USE mp_global, ONLY : ortho_cntx, me_blacs, np_ortho, me_ortho USE zhpev_module, ONLY : pzheevd_drv #endif ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, ldh ! dimension of the matrix to be diagonalized ! leading dimension of h, as declared in the calling pgm unit COMPLEX(DP), INTENT(INOUT) :: h(ldh,ldh), s(ldh,ldh) ! actually intent(in) but compilers don't know and complain ! matrix to be diagonalized ! overlap matrix REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues COMPLEX(DP), INTENT(OUT) :: v(ldh,ldh) ! eigenvectors (column-wise) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: nx #if defined __SCALAPACK INTEGER :: descsca( 16 ), info #endif ! local block size COMPLEX(DP), ALLOCATABLE :: ss(:,:), hh(:,:), tt(:,:) ! work space used only in parallel diagonalization ! ! ... input s and h are copied so that they are not destroyed ! CALL start_clock( 'cdiaghg' ) ! IF( desc%active_node > 0 ) THEN ! nx = desc%nrcx ! IF( nx /= ldh ) & CALL errore(" pcdiaghg ", " inconsistent leading dimension ", ldh ) ! ALLOCATE( hh( nx, nx ) ) ALLOCATE( ss( nx, nx ) ) ! hh(1:nx,1:nx) = h(1:nx,1:nx) ss(1:nx,1:nx) = s(1:nx,1:nx) ! END IF CALL start_clock( 'cdiaghg:choldc' ) ! ! ... Cholesky decomposition of sl ( L is stored in sl ) ! IF( desc%active_node > 0 ) THEN ! #if defined __SCALAPACK CALL descinit( descsca, n, n, desc%nrcx, desc%nrcx, 0, 0, ortho_cntx, SIZE( ss, 1 ) , info ) ! IF( info /= 0 ) CALL errore( ' cdiaghg ', ' desckinit ', ABS( info ) ) #endif ! #if defined __SCALAPACK CALL pzpotrf( 'L', n, ss, 1, 1, descsca, info ) IF( info /= 0 ) CALL errore( ' cdiaghg ', ' problems computing cholesky ', ABS( info ) ) #else CALL qe_pzpotrf( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'cdiaghg:choldc' ) ! ! ... L is inverted ( sl = L^-1 ) ! CALL start_clock( 'cdiaghg:inversion' ) ! IF( desc%active_node > 0 ) THEN ! #if defined __SCALAPACK !CALL clear_upper_tr( ss ) ! set to zero the upper triangle of ss ! CALL sqr_zsetmat( 'U', n, ZERO, ss, size(ss,1), desc ) ! CALL pztrtri( 'L', 'N', n, ss, 1, 1, descsca, info ) ! IF( info /= 0 ) CALL errore( ' cdiaghg ', ' problems computing inverse ', ABS( info ) ) #else CALL qe_pztrtri( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'cdiaghg:inversion' ) ! ! ... vl = L^-1*H ! CALL start_clock( 'cdiaghg:paragemm' ) ! IF( desc%active_node > 0 ) THEN ! CALL sqr_zmm_cannon( 'N', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! END IF ! ! ... hl = ( L^-1*H )*(L^-1)^T ! IF( desc%active_node > 0 ) THEN ! CALL sqr_zmm_cannon( 'N', 'C', n, ONE, v, nx, ss, nx, ZERO, hh, nx, desc ) ! ! ensure that "hh" is really Hermitian, it is sufficient to set the diagonal ! properly, because only the lower triangle of hh will be used ! CALL sqr_zsetmat( 'H', n, ZERO, hh, size(hh,1), desc ) ! END IF ! CALL stop_clock( 'cdiaghg:paragemm' ) ! ! IF ( desc%active_node > 0 ) THEN ! #ifdef TEST_DIAG CALL test_drv_begin() #endif #ifdef __SCALAPACK ! CALL pzheevd_drv( .true., n, desc%nrcx, hh, e, ortho_cntx ) ! #else ! CALL qe_pzheevd( .true., n, desc, hh, SIZE( hh, 1 ), e ) ! #endif ! #ifdef TEST_DIAG CALL test_drv_end() #endif ! END IF ! ! ... v = (L^T)^-1 v ! CALL start_clock( 'cdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN ! CALL sqr_zmm_cannon( 'C', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'cdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN DEALLOCATE( ss, hh ) END IF ! CALL stop_clock( 'cdiaghg' ) ! RETURN ! CONTAINS ! SUBROUTINE test_drv_begin() ALLOCATE( tt( n, n ) ) CALL zsqmcll( n, hh, nx, tt, n, desc, desc%comm ) RETURN END SUBROUTINE test_drv_begin ! SUBROUTINE test_drv_end() ! INTEGER :: i, j, k COMPLEX(DP), ALLOCATABLE :: diag(:,:) ! IF( desc%myc == 0 .AND. desc%myr == 0 ) THEN write( 100, fmt="(A20,2D18.10)" ) ' e code = ', e( 1 ), e( n ) ALLOCATE( diag( n*(n+1)/2, 1 ) ) k = 1 ! write( 100, fmt="(I5)" ) n DO j = 1, n DO i = j, n diag( k, 1 ) = tt( i, j ) ! write( 100, fmt="(2I5,2D18.10)" ) i, j, tt( i, j ) k = k + 1 END DO END DO call zhpev_drv( 'V', 'L', N, diag(:,1), e, tt, n ) write( 100, fmt="(A20,2D18.10)" ) ' e test = ', e( 1 ), e( n ) ! write( 100, * ) 'eigenvalues and eigenvectors' DO j = 1, n ! write( 100, fmt="(1I5,1D18.10,A)" ) j, e( j ) DO i = 1, n ! write( 100, fmt="(2I5,2D18.10)" ) i, j, tt( i, j ) END DO END DO close(100) DEALLOCATE( diag ) END IF CALL mp_bcast( tt, 0, desc%comm ) CALL zsqmdst( n, tt, n, hh, nx, desc ) DEALLOCATE( tt ) CALL errore('cdiaghg','stop serial',1) RETURN END SUBROUTINE test_drv_end ! END SUBROUTINE pcdiaghg ! espresso-5.0.2/PW/src/newd.f900000644000700200004540000003170312053145630014755 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE dfunct CONTAINS !--------------------------------------- SUBROUTINE newq(vr,deeq,skip_vltot) ! ! This routine computes the integral of the perturbed potential with ! the Q function ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : g, gg, ngm, gstart, mill, & eigts1, eigts2, eigts3, nl USE lsda_mod, ONLY : nspin USE scf, ONLY : vltot USE uspp, ONLY : okvan, indv USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE spin_orb, ONLY : lspinorb, domag USE noncollin_module, ONLY : nspin_mag USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ! Input: potential , output: contribution to integral REAL(kind=dp), intent(in) :: vr(dfftp%nnr,nspin) REAL(kind=dp), intent(out) :: deeq( nhm, nhm, nat, nspin ) LOGICAL, intent(in) :: skip_vltot !If .false. vltot is added to vr when necessary ! INTERNAL INTEGER :: ig, nt, ih, jh, na, is, nht, nb, mb ! counters on g vectors, atom type, beta functions x 2, ! atoms, spin, aux, aux, beta func x2 (again) #ifdef __OPENMP INTEGER :: mytid, ntids, omp_get_thread_num, omp_get_num_threads #endif COMPLEX(DP), ALLOCATABLE :: aux(:,:), qgm(:), qgm_na(:) ! work space COMPLEX(DP) :: dtmp REAL(DP), ALLOCATABLE :: ylmk0(:,:), qmod(:) ! spherical harmonics, modulus of G REAL(DP) :: fact, ddot IF ( gamma_only ) THEN ! fact = 2.D0 ! ELSE ! fact = 1.D0 ! END IF ! CALL start_clock( 'newd' ) ! ALLOCATE( aux( ngm, nspin_mag ), & qgm( ngm ), qmod( ngm ), ylmk0( ngm, lmaxq*lmaxq ) ) ! deeq(:,:,:,:) = 0.D0 ! CALL ylmr2( lmaxq * lmaxq, ngm, g, gg, ylmk0 ) ! qmod(1:ngm) = SQRT( gg(1:ngm) ) ! ! ... fourier transform of the total effective potential ! DO is = 1, nspin_mag ! IF ( (nspin_mag == 4 .AND. is /= 1) .or. skip_vltot ) THEN ! psic(:) = vr(:,is) ! ELSE ! psic(:) = vltot(:) + vr(:,is) ! END IF ! CALL fwfft ('Dense', psic, dfftp) ! aux(1:ngm,is) = psic( nl(1:ngm) ) ! END DO ! ! ... here we compute the integral Q*V for each atom, ! ... I = sum_G exp(-iR.G) Q_nm v^* ! DO nt = 1, ntyp ! IF ( upf(nt)%tvanp ) THEN ! DO ih = 1, nh(nt) ! DO jh = ih, nh(nt) ! ! ... The Q(r) for this atomic species without structure factor ! CALL qvan2( ngm, ih, jh, nt, qmod, qgm, ylmk0 ) ! #ifdef __OPENMP !$omp parallel default(shared), private(na,qgm_na,is,dtmp,ig,mytid,ntids) mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #endif ALLOCATE( qgm_na( ngm ) ) ! DO na = 1, nat ! #ifdef __OPENMP ! distribute atoms round robin to threads ! IF( MOD( na, ntids ) /= mytid ) CYCLE #endif ! IF ( ityp(na) == nt ) THEN ! ! ... The Q(r) for this specific atom ! qgm_na(1:ngm) = qgm(1:ngm) * eigts1(mill(1,1:ngm),na) & * eigts2(mill(2,1:ngm),na) & * eigts3(mill(3,1:ngm),na) ! ! ... and the product with the Q functions ! DO is = 1, nspin_mag ! #ifdef __OPENMP dtmp = 0.0d0 DO ig = 1, ngm dtmp = dtmp + aux( ig, is ) * CONJG( qgm_na( ig ) ) END DO #else dtmp = ddot( 2 * ngm, aux(1,is), 1, qgm_na, 1 ) #endif deeq(ih,jh,na,is) = fact * omega * DBLE( dtmp ) ! IF ( gamma_only .AND. gstart == 2 ) & deeq(ih,jh,na,is) = deeq(ih,jh,na,is) - & omega * DBLE( aux(1,is) * qgm_na(1) ) ! deeq(jh,ih,na,is) = deeq(ih,jh,na,is) ! END DO ! END IF ! END DO ! DEALLOCATE( qgm_na ) #ifdef __OPENMP !$omp end parallel #endif ! END DO ! END DO ! END IF ! END DO ! CALL mp_sum( deeq( :, :, :, 1:nspin_mag ), intra_bgrp_comm ) ! DEALLOCATE( aux, qgm, qmod, ylmk0 ) ! END SUBROUTINE newq !--------------------------------------- SUBROUTINE newd() USE uspp, ONLY : deeq USE realus, ONLY : newd_r USE noncollin_module, ONLY : noncolin USE control_flags, ONLY : tqr USE ldaU, ONLY : lda_plus_U, U_projection IMPLICIT NONE ! IF (tqr) THEN CALL newd_r() ELSE CALL newd_g() END IF ! IF (.NOT.noncolin) CALL add_paw_to_deeq(deeq) ! IF (lda_plus_U .AND. (U_projection == 'pseudo')) CALL add_vhub_to_deeq(deeq) ! RETURN ! END SUBROUTINE newd !---------------------------------------------------------------------------- SUBROUTINE newd_g() !---------------------------------------------------------------------------- ! ! ... This routine computes the integral of the effective potential with ! ... the Q function and adds it to the bare ionic D term which is used ! ... to compute the non-local term in the US scheme. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE lsda_mod, ONLY : nspin USE uspp, ONLY : deeq, dvan, deeq_nc, dvan_so, okvan, indv USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE spin_orb, ONLY : lspinorb, domag USE noncollin_module, ONLY : noncolin, nspin_mag USE uspp, ONLY : nhtol, nhtolm USE scf, ONLY : v ! IMPLICIT NONE ! INTEGER :: ig, nt, ih, jh, na, is, nht, nb, mb ! counters on g vectors, atom type, beta functions x 2, ! atoms, spin, aux, aux, beta func x2 (again) ! ! IF ( .NOT. okvan ) THEN ! ! ... no ultrasoft potentials: use bare coefficients for projectors ! DO na = 1, nat ! nt = ityp(na) nht = nh(nt) ! IF ( lspinorb ) THEN ! deeq_nc(1:nht,1:nht,na,1:nspin) = dvan_so(1:nht,1:nht,1:nspin,nt) ! ELSE IF ( noncolin ) THEN ! deeq_nc(1:nht,1:nht,na,1) = dvan(1:nht,1:nht,nt) deeq_nc(1:nht,1:nht,na,2) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,na,3) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,na,4) = dvan(1:nht,1:nht,nt) ! ELSE ! DO is = 1, nspin ! deeq(1:nht,1:nht,na,is) = dvan(1:nht,1:nht,nt) ! END DO ! END IF ! END DO ! ! ... early return ! RETURN ! END IF ! call newq(v%of_r,deeq,.false.) IF (noncolin) call add_paw_to_deeq(deeq) ! atoms : & DO na = 1, nat ! nt = ityp(na) if_noncolin:& IF ( noncolin ) THEN ! IF (upf(nt)%has_so) THEN ! CALL newd_so(na) ! ELSE ! CALL newd_nc(na) ! END IF ! ELSE if_noncolin ! DO is = 1, nspin ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) deeq(ih,jh,na,is) = deeq(ih,jh,na,is) + dvan(ih,jh,nt) deeq(jh,ih,na,is) = deeq(ih,jh,na,is) END DO END DO ! END DO ! END IF if_noncolin ! END DO atoms ! CALL stop_clock( 'newd' ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE newd_so(na) !------------------------------------------------------------------------ ! USE spin_orb, ONLY : fcoef ! IMPLICIT NONE ! INTEGER :: na INTEGER :: ijs, is1, is2, kh, lh ! ! nt=ityp(na) ijs = 0 ! DO is1 = 1, 2 ! DO is2 =1, 2 ! ijs = ijs + 1 ! IF (domag) THEN DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) ! DO lh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = deeq_nc(ih,jh,na,ijs) + & deeq (kh,lh,na,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) + & deeq (kh,lh,na,2)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & (0.D0,-1.D0)*deeq (kh,lh,na,3)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & deeq (kh,lh,na,4)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) ! END DO ! END DO ! END DO ! END DO ! ELSE ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) ! DO lh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = deeq_nc(ih,jh,na,ijs) + & deeq (kh,lh,na,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt) ) ! END DO ! END DO ! END DO ! END DO ! END IF ! END DO ! END DO ! RETURN ! END SUBROUTINE newd_so ! !------------------------------------------------------------------------ SUBROUTINE newd_nc(na) !------------------------------------------------------------------------ ! IMPLICIT NONE ! INTEGER :: na ! nt = ityp(na) ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! IF (lspinorb) THEN deeq_nc(ih,jh,na,1) = dvan_so(ih,jh,1,nt) + & deeq(ih,jh,na,1) + deeq(ih,jh,na,4) ! deeq_nc(ih,jh,na,4) = dvan_so(ih,jh,4,nt) + & deeq(ih,jh,na,1) - deeq(ih,jh,na,4) ! ELSE deeq_nc(ih,jh,na,1) = dvan(ih,jh,nt) + & deeq(ih,jh,na,1) + deeq(ih,jh,na,4) ! deeq_nc(ih,jh,na,4) = dvan(ih,jh,nt) + & deeq(ih,jh,na,1) - deeq(ih,jh,na,4) ! END IF deeq_nc(ih,jh,na,2) = deeq(ih,jh,na,2) - & ( 0.D0, 1.D0 ) * deeq(ih,jh,na,3) ! deeq_nc(ih,jh,na,3) = deeq(ih,jh,na,2) + & ( 0.D0, 1.D0 ) * deeq(ih,jh,na,3) ! END DO ! END DO ! RETURN END SUBROUTINE newd_nc ! END SUBROUTINE newd_g END MODULE dfunct espresso-5.0.2/PW/src/force_corr.f900000644000700200004540000000640212053145627016147 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine force_corr (forcescc) !----------------------------------------------------------------------- ! This routine calculates the force term vanishing at full ! self-consistency. It follows the suggestion of Chan-Bohnen-Ho ! (PRB 47, 4771 (1993)). The true charge density is approximated ! by means of a free atom superposition. ! (alessio f.) ! Uses superposition of atomic charges contained in the array rho_at ! and read from pseudopotential files ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE atom, ONLY : msh, rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, ngl, gl, igtongl USE lsda_mod, ONLY : nspin USE scf, ONLY : vnew USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP) :: forcescc (3, nat) ! real(DP), allocatable :: rhocgnt (:), aux (:) ! work space real(DP) :: gx, arg, fact ! temp factors integer :: ir, isup, isdw, ig, nt, na, ipol, ndm ! counters ! ! vnew is V_out - V_in, psic is the temp space ! if (nspin == 1 .or. nspin == 4) then psic(:) = vnew%of_r (:, 1) else isup = 1 isdw = 2 psic(:) = (vnew%of_r (:, isup) + vnew%of_r (:, isdw)) * 0.5d0 end if ! ndm = MAXVAL ( msh(1:ntyp) ) allocate ( aux(ndm), rhocgnt(ngl) ) forcescc(:,:) = 0.d0 CALL fwfft ('Dense', psic, dfftp) if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do nt = 1, ntyp ! ! Here we compute the G.ne.0 term ! do ig = gstart, ngl gx = sqrt (gl (ig) ) * tpiba do ir = 1, msh (nt) if (rgrid(nt)%r(ir) .lt.1.0d-8) then aux (ir) = upf(nt)%rho_at (ir) else aux (ir) = upf(nt)%rho_at (ir) * & sin(gx*rgrid(nt)%r(ir)) / (rgrid(nt)%r(ir)*gx) endif enddo call simpson (msh (nt), aux, rgrid(nt)%rab, rhocgnt (ig) ) enddo do na = 1, nat if (nt.eq.ityp (na) ) then do ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) * tpi do ipol = 1, 3 forcescc (ipol, na) = forcescc (ipol, na) + fact * & rhocgnt (igtongl(ig) ) * CMPLX(sin(arg),cos(arg),kind=DP) * & g(ipol,ig) * tpiba * CONJG(psic(nl(ig))) enddo enddo endif enddo enddo ! call mp_sum( forcescc, intra_bgrp_comm ) ! deallocate ( aux, rhocgnt ) return end subroutine force_corr espresso-5.0.2/PW/src/divide_et_impera.f900000644000700200004540000000470512053145630017313 0ustar marsamoscm! ! Copyright (C) 2001-2008 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE divide_et_impera( xk, wk, isk, lsda, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine divides the k points across nodes, sets the variable ! ... nks equal to the local (on this processors) number of k-points ! ... (nkstot on input is the total number of k-points) ! ... The distributed has "granularity kunit", that is, kunit consecutive ! ... points stay on the same processor. Usually kunit=1; kunit=2 is used ! ... in phonon calculations, when one has interspersed k_i and k_i+q and ! ... it is needed that they stay on the same processor ! USE io_global, only : stdout USE kinds, ONLY : DP USE mp_global, ONLY : my_pool_id, npool, kunit ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lsda ! logical for local spin density approx. INTEGER, INTENT(IN) :: nkstot ! total number of k-points INTEGER, INTENT(INOUT) :: isk(nkstot) ! spin index of each kpoint (when lsda=.t.) INTEGER, INTENT(OUT) :: nks ! number of k-points per pool REAL (DP), INTENT(INOUT) :: xk(3,nkstot), wk(nkstot) ! k-points ! k-point weights ! #if defined (__MPI) ! INTEGER :: ik, nbase, rest ! ! IF ( MOD( nkstot, kunit ) /= 0 ) & CALL errore( 'divide_et_impera', ' nkstot/kunit is not an integer', nkstot ) ! nks = kunit * ( nkstot / kunit / npool ) ! IF ( nks == 0 ) CALL errore( 'divide_et_impera', ' some nodes have no k-points', 1 ) ! rest = ( nkstot - nks * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks = nks + kunit ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! ... displaces these points in the first positions of the list ! IF ( nbase > 0 ) THEN ! xk(:,1:nks) = xk(:,nbase+1:nbase+nks) ! wk(1:nks) = wk(nbase+1:nbase+nks) ! IF ( lsda ) isk(1:nks) = isk(nbase+1:nbase+nks) ! ! END IF ! #else ! nks = nkstot ! #endif ! RETURN ! END SUBROUTINE divide_et_impera espresso-5.0.2/PW/src/force_lc.f900000644000700200004540000000615612053145630015600 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine force_lc (nat, tau, ityp, alat, omega, ngm, ngl, & igtongl, g, rho, nl, nspin, gstart, gamma_only, vloc, forcelc) !---------------------------------------------------------------------- ! USE kinds USE constants, ONLY : tpi USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE esm, ONLY : esm_force_lc, do_comp_esm, esm_bc implicit none ! ! first the dummy variables ! integer, intent(in) :: nat, ngm, nspin, ngl, gstart, & igtongl (ngm), nl (ngm), ityp (nat) ! nat: number of atoms in the cell ! ngm: number of G vectors ! nspin: number of spin polarizations ! ngl: number of shells ! igtongl correspondence G <-> shell of G ! nl: correspondence fft mesh <-> G vec ! ityp: types of atoms logical, intent(in) :: gamma_only real(DP), intent(in) :: tau (3, nat), g (3, ngm), vloc (ngl, * ), & rho (dfftp%nnr, nspin), alat, omega ! tau: coordinates of the atoms ! g: coordinates of G vectors ! vloc: local potential ! rho: valence charge ! alat: lattice parameter ! omega: unit cell volume real(DP), intent(out) :: forcelc (3, nat) ! the local-potential contribution to forces on atoms integer :: ipol, ig, na ! counter on polarizations ! counter on G vectors ! counter on atoms complex(DP), allocatable :: aux (:) ! auxiliary space for FFT real(DP) :: arg, fact ! ! contribution to the force from the local part of the bare potential ! F_loc = Omega \Sum_G n*(G) d V_loc(G)/d R_i ! allocate (aux(dfftp%nnr)) if ( nspin == 2) then aux(:) = CMPLX( rho(:,1)+rho(:,2), 0.0_dp, kind=dp ) else aux(:) = CMPLX( rho(:,1), 0.0_dp, kind=dp ) end if CALL fwfft ('Dense', aux, dfftp) ! ! aux contains now n(G) ! if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do na = 1, nat do ipol = 1, 3 forcelc (ipol, na) = 0.d0 enddo ! contribution from G=0 is zero do ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) + & g (3, ig) * tau (3, na) ) * tpi do ipol = 1, 3 forcelc (ipol, na) = forcelc (ipol, na) + & g (ipol, ig) * vloc (igtongl (ig), ityp (na) ) * & (sin(arg)*DBLE(aux(nl(ig))) + cos(arg)*AIMAG(aux(nl(ig))) ) enddo enddo do ipol = 1, 3 forcelc (ipol, na) = fact * forcelc (ipol, na) * omega * tpi / alat enddo enddo IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... Perform corrections for ESM method (add long-range part) ! CALL esm_force_lc ( aux, forcelc ) ENDIF ! call mp_sum( forcelc, intra_bgrp_comm ) ! deallocate (aux) return end subroutine force_lc espresso-5.0.2/PW/src/plugin_forces.f900000644000700200004540000000134612053145630016657 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_forces() !---------------------------------------------------------------------------- ! ! USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY : DP USE io_files, ONLY : outdir ! USE plugin_flags ! IMPLICIT NONE ! ! END SUBROUTINE plugin_forces espresso-5.0.2/PW/src/h_1psi.f900000644000700200004540000000312312053145627015204 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE h_1psi( lda, n, psi, hpsi, spsi ) !---------------------------------------------------------------------------- ! ! ... This routine applies the Hamiltonian and the S matrix ! ... to a vector psi and puts the result in hpsi and spsi ! ... Wrapper routine - calls h_psi and s_psi ! USE kinds, ONLY: DP USE bp, ONLY: lelfield USE noncollin_module, ONLY: noncolin, npol USE realus, ONLY : real_space, fft_orbital_gamma, bfft_orbital_gamma, & calbec_rs_gamma, s_psir_gamma, initialisation_level ! IMPLICIT NONE ! INTEGER :: lda, n COMPLEX (DP) :: psi(lda*npol,1), hpsi(n), spsi(n,1) ! ! CALL start_clock( 'h_1psi' ) ! !OBM: I know this form is somewhat inelegant but, leaving the pre-real_space part intact ! makes it easier to debug probable errors, please do not "beautify" if (real_space) then CALL h_psi( lda, n, 1, psi, hpsi ) call fft_orbital_gamma(psi,1,1) !transform the orbital to real space call s_psir_gamma(1,1) call bfft_orbital_gamma(spsi,1,1) else CALL h_psi( lda, n, 1, psi, hpsi ) CALL s_psi( lda, n, 1, psi, spsi ) endif ! CALL stop_clock( 'h_1psi' ) ! RETURN ! END SUBROUTINE h_1psi espresso-5.0.2/PW/src/scf_mod.f900000644000700200004540000006511412053145627015443 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE scf ! ! This module contains variables and auxiliary routines needed for ! the self-consistent cycle ! ! ROUTINES: allocate_scf_type ! USE kinds, ONLY : DP ! USE lsda_mod, ONLY : nspin USE ldaU, ONLY : lda_plus_u, Hubbard_lmax USE ions_base, ONLY : nat USE io_files, ONLY : diropn USE funct, ONLY : dft_is_meta USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY: invfft USE gvect, ONLY : ngm USE gvecs, ONLY : ngms USE paw_variables,ONLY : okpaw USE uspp_param, ONLY : nhm USE extfield, ONLY : dipfield, emaxpos, eopreg, edir ! SAVE ! ! Details of PAW implementation: ! NOTE: scf_type is used for two different quantities: density and potential. ! These correspond, for PAW, to becsum and D coefficients. ! Due to interference with the ultrasoft routines only the becsum part ! is stored in the structure (at the moment). ! This only holds for scf_type; mix_type is not affected. ! NOTE: rho%bec is different from becsum for two reasons: ! 1. rho%bec is mixed, while becsum is not ! 2. for npool > 1 rho%bec is collected, becsum is not ! ( this is necessary to make the stress work) #ifdef __STD_F95 TYPE scf_type REAL(DP), POINTER :: of_r(:,:) ! the charge density in R-space COMPLEX(DP),POINTER :: of_g(:,:) ! the charge density in G-space REAL(DP), POINTER :: kin_r(:,:) ! the kinetic energy density in R-space COMPLEX(DP),POINTER :: kin_g(:,:) ! the kinetic energy density in G-space REAL(DP), POINTER :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP),POINTER :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), POINTER :: bec(:,:,:) ! the PAW hamiltonian elements END TYPE scf_type ! TYPE mix_type COMPLEX(DP), POINTER :: of_g(:,:) ! the charge density in G-space COMPLEX(DP), POINTER :: kin_g(:,:) ! the charge density in G-space REAL(DP), POINTER :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP), POINTER :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), POINTER :: bec(:,:,:) ! PAW corrections to hamiltonian REAL(DP) :: el_dipole ! electrons dipole END TYPE mix_type #else TYPE scf_type REAL(DP), ALLOCATABLE :: of_r(:,:) ! the charge density in R-space COMPLEX(DP),ALLOCATABLE :: of_g(:,:) ! the charge density in G-space REAL(DP), ALLOCATABLE :: kin_r(:,:) ! the kinetic energy density in R-space COMPLEX(DP),ALLOCATABLE :: kin_g(:,:) ! the kinetic energy density in G-space REAL(DP), ALLOCATABLE :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP),ALLOCATABLE :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), ALLOCATABLE :: bec(:,:,:) ! the PAW hamiltonian elements END TYPE scf_type ! TYPE mix_type COMPLEX(DP), ALLOCATABLE :: of_g(:,:) ! the charge density in G-space COMPLEX(DP), ALLOCATABLE :: kin_g(:,:) ! the charge density in G-space REAL(DP), ALLOCATABLE :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP), ALLOCATABLE :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), ALLOCATABLE :: bec(:,:,:) ! PAW corrections to hamiltonian REAL(DP) :: el_dipole ! electrons dipole END TYPE mix_type #endif type (scf_type) :: rho ! the charge density and its other components type (scf_type) :: v ! the scf potential type (scf_type) :: vnew ! used to correct the forces REAL(DP) :: v_of_0 ! vltot(G=0) REAL(DP), ALLOCATABLE :: & vltot(:), &! the local potential in real space vrs(:,:), &! the total pot. in real space (smooth grid) rho_core(:), &! the core charge in real space kedtau(:,:) ! position dependent kinetic energy enhancement factor COMPLEX(DP), ALLOCATABLE :: & rhog_core(:) ! the core charge in reciprocal space INTEGER, PRIVATE :: record_length, & rlen_rho=0, rlen_kin=0, rlen_ldaU=0, rlen_bec=0,& rlen_dip=0, & start_rho=0, start_kin=0, start_ldaU=0, start_bec=0, & start_dipole=0 REAL(DP), PRIVATE, ALLOCATABLE:: io_buffer(:) CONTAINS SUBROUTINE create_scf_type ( rho, do_not_allocate_becsum ) IMPLICIT NONE TYPE (scf_type) :: rho LOGICAL,INTENT(IN),OPTIONAL :: do_not_allocate_becsum ! PAW hack LOGICAL :: allocate_becsum ! PAW hack allocate ( rho%of_r( dfftp%nnr, nspin) ) allocate ( rho%of_g( ngm, nspin ) ) #ifdef __STD_F95 nullify (rho%kin_r, rho%kin_g, rho%ns, rho%ns_nc, rho%bec) #endif if (dft_is_meta()) then allocate ( rho%kin_r( dfftp%nnr, nspin) ) allocate ( rho%kin_g( ngm, nspin ) ) else allocate ( rho%kin_r(1,1) ) allocate ( rho%kin_g(1,1) ) endif if (lda_plus_u) then allocate (rho%ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) allocate (rho%ns_nc(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) endif if (okpaw) then ! See the top of the file for clarification if(present(do_not_allocate_becsum)) then allocate_becsum = .not. do_not_allocate_becsum else allocate_becsum = .true. endif if(allocate_becsum) allocate (rho%bec(nhm*(nhm+1)/2,nat,nspin)) endif return END SUBROUTINE create_scf_type SUBROUTINE destroy_scf_type ( rho ) IMPLICIT NONE TYPE (scf_type) :: rho #ifdef __STD_F95 if (ASSOCIATED(rho%of_r)) deallocate(rho%of_r) if (ASSOCIATED(rho%of_g)) deallocate(rho%of_g) if (ASSOCIATED(rho%kin_r)) deallocate(rho%kin_r) if (ASSOCIATED(rho%kin_g)) deallocate(rho%kin_g) if (ASSOCIATED(rho%ns)) deallocate(rho%ns) if (ASSOCIATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ASSOCIATED(rho%bec)) deallocate(rho%bec) #else if (ALLOCATED(rho%of_r)) deallocate(rho%of_r) if (ALLOCATED(rho%of_g)) deallocate(rho%of_g) if (ALLOCATED(rho%kin_r)) deallocate(rho%kin_r) if (ALLOCATED(rho%kin_g)) deallocate(rho%kin_g) if (ALLOCATED(rho%ns)) deallocate(rho%ns) if (ALLOCATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ALLOCATED(rho%bec)) deallocate(rho%bec) #endif return END SUBROUTINE destroy_scf_type ! SUBROUTINE create_mix_type ( rho ) IMPLICIT NONE TYPE (mix_type) :: rho allocate ( rho%of_g( ngms, nspin ) ) #ifdef __STD_F95 nullify (rho%kin_g, rho%ns, rho%ns_nc, rho%bec) #endif if (dft_is_meta()) allocate (rho%kin_g( ngms, nspin ) ) if (lda_plus_u) then allocate (rho%ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) allocate (rho%ns_nc(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) endif if (okpaw) allocate (rho%bec(nhm*(nhm+1)/2,nat,nspin)) rho%of_g = 0._dp if (dft_is_meta()) rho%kin_g = 0._dp if (lda_plus_u) then rho%ns = 0._dp rho%ns_nc = 0._dp endif if (okpaw) rho%bec = 0._dp if (dipfield) rho%el_dipole = 0._dp return END SUBROUTINE create_mix_type SUBROUTINE destroy_mix_type ( rho ) IMPLICIT NONE TYPE (mix_type) :: rho #ifdef __STD_F95 if (ASSOCIATED(rho%of_g)) deallocate(rho%of_g) if (ASSOCIATED(rho%kin_g)) deallocate(rho%kin_g) if (ASSOCIATED(rho%ns)) deallocate(rho%ns) if (ASSOCIATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ASSOCIATED(rho%bec)) deallocate(rho%bec) #else if (ALLOCATED(rho%of_g)) deallocate(rho%of_g) if (ALLOCATED(rho%kin_g)) deallocate(rho%kin_g) if (ALLOCATED(rho%ns)) deallocate(rho%ns) if (ALLOCATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ALLOCATED(rho%bec)) deallocate(rho%bec) #endif return END SUBROUTINE destroy_mix_type ! subroutine assign_scf_to_mix_type(rho_s, rho_m) IMPLICIT NONE TYPE (scf_type), INTENT(IN) :: rho_s TYPE (mix_type), INTENT(INOUT) :: rho_m REAL(DP) :: e_dipole rho_m%of_g(1:ngms,:) = rho_s%of_g(1:ngms,:) if (dft_is_meta()) rho_m%kin_g(1:ngms,:) = rho_s%kin_g(1:ngms,:) if (lda_plus_u) then rho_m%ns = rho_s%ns rho_m%ns_nc = rho_s%ns_nc endif if (okpaw) rho_m%bec = rho_s%bec if (dipfield) then CALL compute_el_dip(emaxpos, eopreg, edir, rho_s%of_r,e_dipole) rho_m%el_dipole = e_dipole endif return end subroutine assign_scf_to_mix_type ! subroutine assign_mix_to_scf_type(rho_m, rho_s) USE wavefunctions_module, ONLY : psic USE control_flags, ONLY : gamma_only USE gvect, ONLY : nl, nlm IMPLICIT NONE TYPE (mix_type), INTENT(IN) :: rho_m TYPE (scf_type), INTENT(INOUT) :: rho_s INTEGER :: is rho_s%of_g(1:ngms,:) = rho_m%of_g(1:ngms,:) ! define rho_s%of_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho_s%of_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho_s%of_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho_s%of_r(:,is) = psic(:) END DO if (dft_is_meta()) then rho_s%kin_g(1:ngms,:) = rho_m%kin_g(:,:) ! define rho_s%kin_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho_s%kin_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho_s%kin_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho_s%kin_r(:,is) = psic(:) END DO end if if (lda_plus_u) then rho_s%ns(:,:,:,:) = rho_m%ns(:,:,:,:) rho_s%ns_nc(:,:,:,:) = rho_m%ns_nc(:,:,:,:) endif if (okpaw) rho_s%bec(:,:,:) = rho_m%bec(:,:,:) return end subroutine assign_mix_to_scf_type ! !---------------------------------------------------------------------------- subroutine scf_type_COPY (X,Y) !---------------------------------------------------------------------------- ! works like DCOPY for scf_type copy variables : Y = X USE kinds, ONLY : DP IMPLICIT NONE TYPE(scf_type), INTENT(IN) :: X TYPE(scf_type), INTENT(INOUT) :: Y Y%of_r = X%of_r Y%of_g = X%of_g if (dft_is_meta()) then Y%kin_r = X%kin_r Y%kin_g = X%kin_g end if if (lda_plus_u) then Y%ns = X%ns Y%ns_nc = X%ns_nc endif if (okpaw) Y%bec = X%bec ! RETURN end subroutine scf_type_COPY ! !---------------------------------------------------------------------------- subroutine mix_type_AXPY (A,X,Y) !---------------------------------------------------------------------------- ! works like daxpy for scf_type variables : Y = A * X + Y ! NB: A is a REAL(DP) number USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: A TYPE(mix_type), INTENT(IN) :: X TYPE(mix_type), INTENT(INOUT) :: Y Y%of_g = Y%of_g + A * X%of_g if (dft_is_meta()) Y%kin_g = Y%kin_g + A * X%kin_g if (lda_plus_u) then Y%ns = Y%ns + A * X%ns Y%ns_nc = Y%ns_nc + A * X%ns_nc endif if (okpaw) Y%bec = Y%bec + A * X%bec if (dipfield) Y%el_dipole = Y%el_dipole + A * X%el_dipole ! RETURN END SUBROUTINE mix_type_AXPY ! !---------------------------------------------------------------------------- subroutine mix_type_COPY (X,Y) !---------------------------------------------------------------------------- ! works like DCOPY for mix_type copy variables : Y = X USE kinds, ONLY : DP IMPLICIT NONE TYPE(mix_type), INTENT(IN) :: X TYPE(mix_type), INTENT(INOUT) :: Y Y%of_g = X%of_g if (dft_is_meta()) Y%kin_g = X%kin_g if (lda_plus_u) then Y%ns = X%ns Y%ns_nc = X%ns_nc endif if (okpaw) Y%bec = X%bec if (dipfield) Y%el_dipole = X%el_dipole ! RETURN end subroutine mix_type_COPY ! !---------------------------------------------------------------------------- subroutine mix_type_SCAL (A,X) !---------------------------------------------------------------------------- ! works like DSCAL for mix_type copy variables : X = A * X ! NB: A is a REAL(DP) number USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), INTENT(IN) :: A TYPE(mix_type), INTENT(INOUT) :: X X%of_g(:,:) = A * X%of_g(:,:) if (dft_is_meta()) X%kin_g = A * X%kin_g if (lda_plus_u) then X%ns = A * X%ns X%ns_nc = A * X%ns_nc endif if (okpaw) X%bec= A * X%bec if (dipfield) X%el_dipole = A * X%el_dipole ! RETURN end subroutine mix_type_SCAL ! subroutine high_frequency_mixing ( rhoin, input_rhout, alphamix ) USE wavefunctions_module, ONLY : psic USE control_flags, ONLY : gamma_only USE gvect, ONLY : nl, nlm IMPLICIT NONE TYPE (scf_type), INTENT(INOUT) :: rhoin TYPE (scf_type), INTENT(IN) :: input_rhout REAL(DP), INTENT(IN) :: alphamix INTEGER :: is if (ngms < ngm ) then rhoin%of_g = rhoin%of_g + alphamix * ( input_rhout%of_g-rhoin%of_g) rhoin%of_g(1:ngms,1:nspin) = (0.d0,0.d0) ! define rho_s%of_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rhoin%of_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rhoin%of_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rhoin%of_r(:,is) = psic(:) END DO ! if (dft_is_meta()) then rhoin%kin_g = rhoin%kin_g + alphamix * ( input_rhout%kin_g-rhoin%kin_g) rhoin%kin_g(1:ngms,1:nspin) = (0.d0,0.d0) ! define rho_s%of_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rhoin%kin_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rhoin%kin_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rhoin%kin_r(:,is) = psic(:) END DO end if else rhoin%of_g(:,:)= (0.d0,0.d0) rhoin%of_r(:,:)= 0.d0 if (dft_is_meta()) then rhoin%kin_g(:,:)= (0.d0,0.d0) rhoin%kin_r(:,:)= 0.d0 endif endif if (lda_plus_u) then rhoin%ns(:,:,:,:) = 0.d0 rhoin%ns_nc(:,:,:,:) = 0.d0 endif return end subroutine high_frequency_mixing subroutine diropn_mix_file( iunit, extension, exst ) implicit none character(len=*), intent(in) :: extension integer, intent(in) :: iunit logical :: exst ! define lengths of different record chunks rlen_rho = 2 * ngms * nspin if (dft_is_meta() ) rlen_kin = 2 * ngms * nspin if (lda_plus_u) rlen_ldaU = (2*Hubbard_lmax+1)**2 *nspin*nat if (okpaw) rlen_bec = (nhm*(nhm+1)/2) * nat * nspin if (dipfield) rlen_dip = 1 ! define total record length record_length = rlen_rho + rlen_kin + rlen_ldaU + rlen_bec + rlen_dip ! and the starting point of different chunks start_rho = 1 start_kin = start_rho + rlen_rho start_ldaU = start_kin + rlen_kin start_bec = start_ldaU + rlen_ldaU start_dipole = start_bec + rlen_bec ! open file and allocate io_buffer call diropn ( iunit, extension, record_length, exst) allocate (io_buffer(record_length+1)) ! return end subroutine diropn_mix_file ! subroutine close_mix_file( iunit ) implicit none integer, intent(in) :: iunit deallocate (io_buffer) close(iunit,status='keep') return end subroutine close_mix_file subroutine davcio_mix_type( rho, iunit, record, iflag ) implicit none type (mix_type) :: rho integer, intent(in) :: iunit, record, iflag if (iflag > 0) then call DCOPY(rlen_rho,rho%of_g,1,io_buffer(start_rho),1) if (dft_is_meta()) call DCOPY(rlen_kin, rho%kin_g,1,io_buffer(start_kin),1) if (lda_plus_u) call DCOPY(rlen_ldaU,rho%ns, 1,io_buffer(start_ldaU),1) if (lda_plus_u) call DCOPY(rlen_ldaU,rho%ns_nc, 1,io_buffer(start_ldaU),1) if (okpaw) call DCOPY(rlen_bec, rho%bec, 1,io_buffer(start_bec),1) if (dipfield) call DCOPY(1, rho%el_dipole, 1,io_buffer(start_dipole),1) end if CALL davcio( io_buffer, record_length, iunit, record, iflag ) if (iflag < 0) then call DCOPY(rlen_rho,io_buffer(start_rho),1,rho%of_g,1) if (dft_is_meta()) call DCOPY(start_kin,io_buffer(start_kin), 1,rho%kin_g,1) if (lda_plus_u) call DCOPY(rlen_ldaU,io_buffer(start_ldaU),1,rho%ns,1) if (lda_plus_u) call DCOPY(rlen_ldaU,io_buffer(start_ldaU),1,rho%ns_nc,1) if (okpaw) call DCOPY(rlen_bec, io_buffer(start_bec), 1,rho%bec,1) if (dipfield) call DCOPY(1, io_buffer(start_dipole), 1, rho%el_dipole, 1) end if end subroutine davcio_mix_type ! !---------------------------------------------------------------------------- FUNCTION rho_ddot( rho1, rho2, gf ) !---------------------------------------------------------------------------- ! ! ... calculates 4pi/G^2*rho1(-G)*rho2(G) = V1_Hartree(-G)*rho2(G) ! ... used as an estimate of the self-consistency error on the energy ! USE kinds, ONLY : DP USE constants, ONLY : e2, tpi, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, gstart USE spin_orb, ONLY : domag USE control_flags, ONLY : gamma_only USE paw_onecenter, ONLY : paw_ddot USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! type(mix_type), INTENT(IN) :: rho1, rho2 INTEGER, INTENT(IN) :: gf REAL(DP) :: rho_ddot ! REAL(DP) :: fac INTEGER :: ig ! fac = e2 * fpi / tpiba2 ! rho_ddot = 0.D0 IF ( nspin == 1 ) THEN ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & REAL( CONJG( rho1%of_g(ig,1) )*rho2%of_g(ig,1), DP ) / gg(ig) ! END DO ! rho_ddot = fac*rho_ddot ! IF ( gamma_only ) rho_ddot = 2.D0 * rho_ddot ! ELSE IF ( nspin == 2 ) THEN ! ! ... first the charge ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & REAL( CONJG( rho1%of_g(ig,1)+rho1%of_g(ig,2) ) * & ( rho2%of_g(ig,1)+rho2%of_g(ig,2) ), DP ) / gg(ig) ! END DO ! rho_ddot = fac*rho_ddot ! IF ( gamma_only ) rho_ddot = 2.D0 * rho_ddot ! ! ... then the magnetization ! fac = e2 * fpi / tpi**2 ! lambda = 1 a.u. ! ! ... G=0 term ! IF ( gstart == 2 ) THEN ! rho_ddot = rho_ddot + & fac * REAL( CONJG( rho1%of_g(1,1) - rho1%of_g(1,2) ) * & ( rho2%of_g(1,1) - rho2%of_g(1,2) ), DP ) ! END IF ! IF ( gamma_only ) fac = 2.D0 * fac ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & fac * REAL( CONJG( rho1%of_g(ig,1) - rho1%of_g(ig,2) ) * & ( rho2%of_g(ig,1) - rho2%of_g(ig,2) ), DP ) ! END DO ! ELSE IF ( nspin == 4 ) THEN ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & REAL( CONJG( rho1%of_g(ig,1) )*rho2%of_g(ig,1), DP ) / gg(ig) ! END DO ! rho_ddot = fac*rho_ddot ! IF ( gamma_only ) rho_ddot = 2.D0 * rho_ddot ! IF (domag) THEN fac = e2*fpi / (tpi**2) ! lambda=1 a.u. ! IF ( gstart == 2 ) THEN ! rho_ddot = rho_ddot + & fac * ( REAL( CONJG( rho1%of_g(1,2))*(rho2%of_g(1,2) ),DP ) + & REAL( CONJG( rho1%of_g(1,3))*(rho2%of_g(1,3) ),DP ) + & REAL( CONJG( rho1%of_g(1,4))*(rho2%of_g(1,4) ),DP ) ) ! END IF ! IF ( gamma_only ) fac = 2.D0 * fac ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & fac *( REAL( CONJG( rho1%of_g(ig,2))*(rho2%of_g(ig,2) ), DP ) + & REAL( CONJG( rho1%of_g(ig,3))*(rho2%of_g(ig,3) ), DP ) + & REAL( CONJG( rho1%of_g(ig,4))*(rho2%of_g(ig,4) ), DP ) ) ! END DO ! END IF ! END IF ! rho_ddot = rho_ddot * omega * 0.5D0 ! CALL mp_sum( rho_ddot , intra_bgrp_comm ) ! IF (dft_is_meta()) rho_ddot = rho_ddot + tauk_ddot( rho1, rho2, gf ) IF (lda_plus_u ) rho_ddot = rho_ddot + ns_ddot(rho1,rho2) ! ! Beware: paw_ddot has a hidden parallelization on all processors ! it must be called on all processors or else it will hang ! IF (okpaw) rho_ddot = rho_ddot + paw_ddot(rho1%bec, rho2%bec) IF (dipfield) rho_ddot = rho_ddot + (e2/2.0_DP)* & (rho1%el_dipole * rho2%el_dipole)*omega/fpi RETURN ! END FUNCTION rho_ddot ! !---------------------------------------------------------------------------- FUNCTION tauk_ddot( rho1, rho2, gf ) !---------------------------------------------------------------------------- ! ! ... calculates 4pi/G^2*rho1(-G)*rho2(G) = V1_Hartree(-G)*rho2(G) ! ... used as an estimate of the self-consistency error on the energy ! USE kinds, ONLY : DP USE constants, ONLY : e2, tpi, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, gstart USE control_flags, ONLY : gamma_only USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! type(mix_type), INTENT(IN) :: rho1, rho2 INTEGER, INTENT(IN) :: gf REAL(DP) :: tauk_ddot ! REAL(DP) :: fac INTEGER :: ig ! tauk_ddot = 0.D0 ! ! write (*,*) rho1%kin_g(1:4,1) ! if (.true. ) stop IF ( nspin == 1 ) THEN ! DO ig = gstart, gf tauk_ddot = tauk_ddot + & REAL( CONJG( rho1%kin_g(ig,1) )*rho2%kin_g(ig,1) ) END DO ! IF ( gamma_only ) tauk_ddot = 2.D0 * tauk_ddot ! ! ... G=0 term ! IF ( gstart == 2 ) THEN ! tauk_ddot = tauk_ddot + & REAL( CONJG( rho1%kin_g(1,1) ) * rho2%kin_g(1,1) ) ! END IF ! ELSE IF ( nspin == 2 ) THEN ! DO ig = gstart, gf ! tauk_ddot = tauk_ddot + & ( REAL( CONJG(rho1%kin_g(ig,1))*rho2%kin_g(ig,1) ) + & REAL( CONJG(rho1%kin_g(ig,2))*rho2%kin_g(ig,2) ) ) ! END DO ! IF ( gamma_only ) tauk_ddot = 2.D0 * tauk_ddot ! ! ... G=0 term ! IF ( gstart == 2 ) THEN ! tauk_ddot = tauk_ddot + & ( REAL( CONJG( rho1%kin_g(1,1))*rho2%kin_g(1,1) ) + & REAL( CONJG( rho1%kin_g(1,2))*rho2%kin_g(1,2) ) ) ! END IF tauk_ddot = 0.5D0 * tauk_ddot ! ELSE IF ( nspin == 4 ) THEN ! DO ig = gstart, gf ! tauk_ddot = tauk_ddot + & ( REAL( CONJG(rho1%kin_g(ig,1))*rho2%kin_g(ig,1) ) + & REAL( CONJG(rho1%kin_g(ig,2))*rho2%kin_g(ig,2) ) + & REAL( CONJG(rho1%kin_g(ig,3))*rho2%kin_g(ig,3) ) + & REAL( CONJG(rho1%kin_g(ig,4))*rho2%kin_g(ig,4) ) ) ! END DO ! IF ( gamma_only ) tauk_ddot = 2.D0 * tauk_ddot ! IF ( gstart == 2 ) THEN ! tauk_ddot = tauk_ddot + & ( REAL( CONJG( rho1%kin_g(1,1))*rho2%kin_g(1,1) ) + & REAL( CONJG( rho1%kin_g(1,2))*rho2%kin_g(1,2) ) + & REAL( CONJG( rho1%kin_g(1,3))*rho2%kin_g(1,3) ) + & REAL( CONJG( rho1%kin_g(1,4))*rho2%kin_g(1,4) ) ) ! END IF ! END IF ! fac = e2 * fpi / tpi**2 ! lambda = 1 a.u. ! tauk_ddot = fac * tauk_ddot * omega * 0.5D0 ! CALL mp_sum( tauk_ddot , intra_bgrp_comm ) ! RETURN ! END FUNCTION tauk_ddot !---------------------------------------------------------------------------- FUNCTION ns_ddot( rho1, rho2 ) !---------------------------------------------------------------------------- ! ! ... calculates U/2 \sum_i ns1(i)*ns2(i) ! ... used as an estimate of the self-consistency error on the ! ... LDA+U correction to the energy ! USE kinds, ONLY : DP USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha USE ions_base, ONLY : nat, ityp ! IMPLICIT NONE ! type(mix_type), INTENT(IN) :: rho1, rho2 REAL(DP) :: ns_ddot ! INTEGER :: na, nt, m1, m2 ! ns_ddot = 0.D0 ! DO na = 1, nat nt = ityp(na) IF ( Hubbard_U(nt) /= 0.D0 .OR. Hubbard_alpha(nt) /= 0.D0 ) THEN m1 = 2 * Hubbard_l(nt) + 1 m2 = 2 * Hubbard_l(nt) + 1 if (nspin.eq.4) then ns_ddot = ns_ddot + 0.5D0 * Hubbard_U(nt) * & SUM( CONJG(rho1%ns_nc(:m1,:m2,:nspin,na))*rho2%ns_nc(:m1,:m2,:nspin,na) ) else ns_ddot = ns_ddot + 0.5D0 * Hubbard_U(nt) * & SUM( rho1%ns(:m1,:m2,:nspin,na)*rho2%ns(:m1,:m2,:nspin,na) ) endif END IF END DO ! IF ( nspin == 1 ) ns_ddot = 2.D0*ns_ddot ! RETURN ! END FUNCTION ns_ddot !---------------------------------------------------------------------------- FUNCTION local_tf_ddot( rho1, rho2, ngm0 ) !---------------------------------------------------------------------------- ! ! ... calculates 4pi/G^2*rho1(-G)*rho2(G) = V1_Hartree(-G)*rho2(G) ! ... used as an estimate of the self-consistency error on the energy ! USE kinds, ONLY : DP USE constants, ONLY : e2, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, gstart USE control_flags, ONLY : gamma_only USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ngm0 COMPLEX(DP), INTENT(IN) :: rho1(ngm0), rho2(ngm0) REAL(DP) :: local_tf_ddot ! REAL(DP) :: fac INTEGER :: ig ! local_tf_ddot = 0.D0 ! fac = e2 * fpi / tpiba2 ! DO ig = gstart, ngm0 local_tf_ddot = local_tf_ddot + REAL( CONJG(rho1(ig))*rho2(ig) ) / gg(ig) END DO ! local_tf_ddot = fac * local_tf_ddot * omega * 0.5D0 ! IF ( gamma_only ) local_tf_ddot = 2.D0 * local_tf_ddot ! CALL mp_sum( local_tf_ddot , intra_bgrp_comm ) ! RETURN ! END FUNCTION local_tf_ddot ! SUBROUTINE bcast_scf_type ( rho, root, comm ) !---------------------------------------------------------------------------- ! ... Broadcast all mixed quantities from first pool to all others ! ... Needed to prevent divergencies in k-point parallization ! USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! type(scf_type), INTENT(INOUT) :: rho INTEGER, INTENT(IN) :: root, comm ! CALL mp_bcast ( rho%of_g, root, comm ) CALL mp_bcast ( rho%of_r, root, comm ) IF ( dft_is_meta() ) THEN CALL mp_bcast ( rho%kin_g, root, comm ) CALL mp_bcast ( rho%kin_r, root, comm ) END IF IF ( lda_plus_u ) THEN CALL mp_bcast ( rho%ns, root, comm ) CALL mp_bcast ( rho%ns_nc, root, comm ) END IF IF ( okpaw ) & CALL mp_bcast ( rho%bec, root, comm ) ! END SUBROUTINE ! END MODULE scf espresso-5.0.2/PW/src/input.f900000644000700200004540000015431712053145627015174 0ustar marsamoscm ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE iosys() !----------------------------------------------------------------------------- ! ! ... this subroutine reads input data from standard input ( unit 5 ) ! ... Use "-input filename" to read input from file "filename": ! ... may be useful if you have trouble reading from standard input ! ... --------------------------------------------------------------- ! ! ... access the modules renaming the variables that have the same name ! ... as the input parameters, this is required in order to use a code ! ... independent input parser ! ! USE kinds, ONLY : DP USE uspp, ONLY : okvan USE funct, ONLY : dft_has_finite_size_correction, & set_finite_size_volume, get_inlc USE funct, ONLY: set_exx_fraction, set_screening_parameter USE control_flags, ONLY: adapt_thr, tr2_init, tr2_multi USE constants, ONLY : autoev, eV_to_kelvin, pi, rytoev, & ry_kbar, amu_ry, bohr_radius_angs, eps8 USE mp_global, ONLY : npool, nproc_pool ! USE io_global, ONLY : stdout, ionode, ionode_id ! USE kernel_table, ONLY : initialize_kernel_table ! USE bp, ONLY : nppstr_ => nppstr, & gdir_ => gdir, & lberry_ => lberry, & lelfield_ => lelfield, & lorbm_ => lorbm, & efield_ => efield, & nberrycyc_ => nberrycyc, & efield_cart_ => efield_cart ! USE cell_base, ONLY : at, alat, omega, & cell_base_init, init_dofree ! USE ions_base, ONLY : if_pos, ityp, tau, extfor, & ntyp_ => nsp, & nat_ => nat, & amass, tau_format ! USE basis, ONLY : startingconfig, starting_wfc, starting_pot ! USE run_info, ONLY : title_ => title ! USE cellmd, ONLY : cmass, omega_old, at_old, ntcheck, & cell_factor_ => cell_factor , & press_ => press, & calc, lmovecell ! USE dynamics_module, ONLY : control_temp, temperature, thermostat, & dt_ => dt, & delta_t_ => delta_t, & nraise_ => nraise, & refold_pos_ => refold_pos ! USE extfield, ONLY : tefield_ => tefield, & dipfield_ => dipfield, & edir_ => edir, & emaxpos_ => emaxpos, & eopreg_ => eopreg, & eamp_ => eamp, & forcefield ! USE io_files, ONLY : input_drho, output_drho, & psfile, tmp_dir, wfc_dir, & prefix_ => prefix, & pseudo_dir_ => pseudo_dir ! USE force_mod, ONLY : lforce, lstres, force ! USE gvecs, ONLY : dual USE gvect, ONLY : ecutrho_ => ecutrho ! USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts ! USE klist, ONLY : lgauss, ngauss, two_fermi_energies, & smearing_ => smearing, & degauss_ => degauss, & tot_charge_ => tot_charge, & tot_magnetization_ => tot_magnetization ! USE ktetra, ONLY : ltetra USE start_k, ONLY : init_start_k ! USE ldaU, ONLY : Hubbard_U_ => hubbard_u, & Hubbard_J0_ => hubbard_j0, & Hubbard_J_ => hubbard_j, & Hubbard_alpha_ => hubbard_alpha, & Hubbard_beta_ => hubbard_beta, & lda_plus_u_ => lda_plus_u, & lda_plus_u_kind_ => lda_plus_u_kind, & niter_with_fixed_ns, starting_ns, U_projection ! USE martyna_tuckerman, ONLY: do_comp_mt #ifdef __ENVIRON USE constants, ONLY : rydberg_si, bohr_radius_si, amu_si, k_boltzmann_ry USE environ_base, ONLY : do_environ_ => do_environ, & verbose_ => verbose, & environ_thr_ => environ_thr, & stype_ => stype, & rhomax_ => rhomax, & rhomin_ => rhomin, & tbeta_ => tbeta, & env_static_permittivity_ => env_static_permittivity, & eps_mode_ => eps_mode, & solvationrad_ => solvationrad, & atomicspread_ => atomicspread, & add_jellium_ => add_jellium, & ifdtype_ => ifdtype, & nfdpoint_ => nfdpoint, & mixtype_ => mixtype, & ndiis_ => ndiis, & mixrhopol_ => mixrhopol, & tolrhopol_ => tolrhopol, & env_surface_tension_ => env_surface_tension, & delta_ => delta, & env_pressure_ => env_pressure, & env_periodicity, slab_axis, & env_ioncc_concentration_ => env_ioncc_concentration, & zion_ => zion, & rhopb_ => rhopb, & solvent_temperature_ => solvent_temperature #endif ! USE esm, ONLY: do_comp_esm, & esm_bc_ => esm_bc, & esm_nfit_ => esm_nfit, & esm_efield_ => esm_efield, & esm_w_ => esm_w ! USE a2F, ONLY : la2F_ => la2F ! USE exx, ONLY : x_gamma_extrapolation_ => x_gamma_extrapolation, & nqx1_ => nq1, & nqx2_ => nq2, & nqx3_ => nq3, & exxdiv_treatment_ => exxdiv_treatment, & yukawa_ => yukawa, & ecutvcut_ => ecutvcut, & ecutfock_ => ecutfock ! ! USE lsda_mod, ONLY : nspin_ => nspin, & starting_magnetization_ => starting_magnetization, & lsda ! USE kernel_table, ONLY : vdw_table_name_ => vdw_table_name ! USE relax, ONLY : epse, epsf, epsp, starting_scf_threshold ! USE control_flags, ONLY : isolve, max_cg_iter, david, tr2, imix, gamma_only,& nmix, iverbosity, niter, pot_order, wfc_order, & remove_rigid_rot_ => remove_rigid_rot, & diago_full_acc_ => diago_full_acc, & tolp_ => tolp, & upscale_ => upscale, & mixing_beta_ => mixing_beta, & nstep_ => nstep, & iprint_ => iprint, & noinv_ => noinv, & lkpoint_dir_ => lkpoint_dir, & tqr_ => tqr, & io_level, ethr, lscf, lbfgs, lmd, & ldamped, lbands, llang, & lconstrain, restart, twfcollect, & llondon, do_makov_payne, & lecrpa_ => lecrpa, & smallmem USE control_flags, ONLY: scf_must_converge_ => scf_must_converge ! USE wvfct, ONLY : nbnd_ => nbnd, & ecutwfc_ => ecutwfc, & ecfixed_ => ecfixed, & qcutz_ => qcutz, & q2sigma_ => q2sigma ! USE fixed_occ, ONLY : tfixed_occ, f_inp, & one_atom_occupations_ => one_atom_occupations ! USE noncollin_module, ONLY : i_cons, mcons, bfield, & noncolin_ => noncolin, & lambda_ => lambda, & angle1_ => angle1, & angle2_ => angle2, & report_ => report ! USE spin_orb, ONLY : lspinorb_ => lspinorb, & starting_spin_angle_ => starting_spin_angle ! USE symm_base, ONLY : no_t_rev_ => no_t_rev, nofrac, allfrac, & nosym_ => nosym, nosym_evc_=> nosym_evc ! USE bfgs_module, ONLY : bfgs_ndim_ => bfgs_ndim, & trust_radius_max_ => trust_radius_max, & trust_radius_min_ => trust_radius_min, & trust_radius_ini_ => trust_radius_ini, & w_1_ => w_1, & w_2_ => w_2 USE wannier_new, ONLY : use_wannier_ => use_wannier, & use_energy_int_ => use_energy_int, & nwan_ => nwan, & print_wannier_coeff_ => print_wannier_coeff USE realus, ONLY : real_space_ => real_space USE read_pseudo_mod, ONLY : readpp #if defined __MS2 USE MS2, ONLY : MS2_enabled_ => MS2_enabled, & MS2_handler_ => MS2_handler #endif ! ! ... CONTROL namelist ! USE input_parameters, ONLY : title, calculation, verbosity, restart_mode, & nstep, iprint, tstress, tprnfor, dt, outdir, & wfcdir, prefix, etot_conv_thr, forc_conv_thr, & pseudo_dir, disk_io, tefield, dipfield, lberry, & gdir, nppstr, wf_collect,lelfield,lorbm,efield, & nberrycyc, lkpoint_dir, efield_cart, lecrpa, & vdw_table_name, memory #if defined __MS2 USE input_parameters, ONLY : MS2_enabled, MS2_handler #endif ! ! ... SYSTEM namelist ! USE input_parameters, ONLY : ibrav, celldm, a, b, c, cosab, cosac, cosbc, & nat, ntyp, nbnd,tot_charge,tot_magnetization,& ecutwfc, ecutrho, nr1, nr2, nr3, nr1s, nr2s, & nr3s, noinv, nosym, nosym_evc, no_t_rev, & use_all_frac, force_symmorphic, & starting_magnetization, & occupations, degauss, smearing, nspin, & ecfixed, qcutz, q2sigma, lda_plus_U, & lda_plus_U_kind, Hubbard_U, Hubbard_J, & Hubbard_J0, Hubbard_beta, & Hubbard_alpha, input_dft, la2F, & starting_ns_eigenvalue, U_projection_type, & x_gamma_extrapolation, nqx1, nqx2, nqx3, & exxdiv_treatment, yukawa, ecutvcut, & exx_fraction, screening_parameter, ecutfock, & #ifdef __ENVIRON do_environ, & #endif edir, emaxpos, eopreg, eamp, noncolin, lambda, & angle1, angle2, constrained_magnetization, & B_field, fixed_magnetization, report, lspinorb,& starting_spin_angle, & assume_isolated, spline_ps, london, london_s6, & london_rcut, one_atom_occupations, & esm_bc, esm_efield, esm_w, esm_nfit #ifdef __ENVIRON ! ! ... ENVIRON namelist ! USE input_parameters, ONLY : verbose, environ_thr, environ_type, & stype, rhomax, rhomin, tbeta, & env_static_permittivity, eps_mode, & solvationrad, atomicspread, add_jellium, & ifdtype, nfdpoint, & mixtype, ndiis, mixrhopol, tolrhopol, & env_surface_tension, delta, & env_pressure, & env_ioncc_concentration, zion, rhopb, & solvent_temperature #endif ! ! ... ELECTRONS namelist ! USE input_parameters, ONLY : electron_maxstep, mixing_mode, mixing_beta, & mixing_ndim, mixing_fixed_ns, conv_thr, & tqr, diago_thr_init, diago_cg_maxiter, & diago_david_ndim, diagonalization, & diago_full_acc, startingwfc, startingpot, & real_space, scf_must_converge USE input_parameters, ONLY : adaptive_thr, conv_thr_init, conv_thr_multi ! ! ... IONS namelist ! USE input_parameters, ONLY : phase_space, ion_dynamics, ion_positions, tolp, & tempw, delta_t, nraise, ion_temperature, & refold_pos, remove_rigid_rot, upscale, & pot_extrapolation, wfc_extrapolation, & w_1, w_2, trust_radius_max, trust_radius_min, & trust_radius_ini, bfgs_ndim ! ! ... CELL namelist ! USE input_parameters, ONLY : cell_parameters, cell_dynamics, press, wmass, & cell_temperature, cell_factor, press_conv_thr, & cell_dofree ! ! ... WANNIER_NEW namelist ! USE input_parameters, ONLY : use_wannier, nwan, constrain_pot, & use_energy_int, print_wannier_coeff ! ! ... CARDS ! USE input_parameters, ONLY : k_points, xk, wk, nk1, nk2, nk3, & k1, k2, k3, nkstot USE input_parameters, ONLY : nconstr_inp, trd_ht, rd_ht, cell_units ! USE constraints_module, ONLY : init_constraint USE read_namelists_module, ONLY : read_namelists, sm_not_set USE london_module, ONLY : init_london, lon_rcut, scal6 USE us, ONLY : spline_ps_ => spline_ps ! USE input_parameters, ONLY : deallocate_input_parameters ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! INTEGER :: ia, image, nt, inlc REAL(DP) :: theta, phi ! ! ! ... various initializations of control variables ! lforce = tprnfor ! SELECT CASE( trim( calculation ) ) CASE( 'scf' ) ! lscf = .true. nstep = 1 ! CASE( 'nscf' ) ! lforce = .false. nstep = 1 ! CASE( 'bands' ) ! lforce = .false. lbands = .true. nstep = 1 ! CASE( 'relax' ) ! lscf = .true. lforce = .true. ! epse = etot_conv_thr epsf = forc_conv_thr ! SELECT CASE( trim( ion_dynamics ) ) CASE( 'bfgs' ) ! lbfgs = .true. ! CASE ( 'damp' ) ! lmd = .true. ldamped = .true. ! ntcheck = nstep + 1 ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) ! END SELECT ! CASE( 'md' ) ! lscf = .true. lmd = .true. lforce = .true. ! SELECT CASE( trim( ion_dynamics ) ) CASE( 'verlet' ) ! CONTINUE ! CASE( 'langevin' ) ! llang = .true. temperature = tempw ! CASE DEFAULT ! CALL errore( 'iosys ', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) END SELECT ! CASE( 'vc-relax' ) ! lscf = .true. lmd = .true. lmovecell = .true. lforce = .true. ldamped = .true. ! epse = etot_conv_thr epsf = forc_conv_thr epsp = press_conv_thr ! SELECT CASE( trim( cell_dynamics ) ) CASE( 'none' ) ! calc = 'mm' ntcheck = nstep + 1 ! CASE( 'damp-pr' ) ! calc = 'cm' ntcheck = nstep + 1 ! CASE( 'damp-w' ) ! calc = 'nm' ntcheck = nstep + 1 ! CASE( 'bfgs' ) ! lbfgs = .true. lmd = .false. ldamped = .false. ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': cell_dynamics=' // trim( cell_dynamics ) // & & ' not supported', 1 ) ! END SELECT ! IF ( .not. ldamped .and. .not. lbfgs) & CALL errore( 'iosys', 'calculation='// trim( calculation ) // & & ': incompatible ion (' // trim( ion_dynamics )// & & ') and cell dynamics ('// trim(cell_dynamics )// ')', 1 ) ! CASE( 'vc-md' ) ! lscf = .true. lmd = .true. lmovecell = .true. lforce = .true. ! ntcheck = nstep + 1 ! SELECT CASE( trim( cell_dynamics ) ) CASE( 'none' ) ! calc = 'md' ! CASE( 'pr' ) ! calc = 'cd' ! CASE( 'w' ) ! calc = 'nd' ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) ! END SELECT ! IF ( trim( ion_dynamics ) /= 'beeman' ) & CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation ' // & & trim( calculation ) // ' not implemented', 1 ) ! END SELECT ! lstres = lmovecell .OR. ( tstress .and. lscf ) ! IF ( tefield .and. ( .not. nosym ) ) THEN nosym = .true. WRITE( stdout, & '(5x,"Presently no symmetry can be used with electric field",/)' ) ENDIF IF ( tefield .and. tstress ) THEN tstress = .false. WRITE( stdout, & '(5x,"Presently stress not available with electric field",/)' ) ENDIF IF ( tefield .and. ( nspin > 2 ) ) THEN CALL errore( 'iosys', 'LSDA not available with electric field' , 1 ) ENDIF ! ! ... define memory related internal switches ! IF( TRIM( memory ) == 'small' ) THEN smallmem = .TRUE. END IF ! twfcollect = wf_collect ! ! ... Set Values for electron and bands ! tfixed_occ = .false. ltetra = .false. lgauss = .false. ! SELECT CASE( trim( occupations ) ) CASE( 'fixed' ) ! ngauss = 0 IF ( degauss /= 0.D0 ) THEN CALL errore( ' iosys ', & & ' fixed occupations, gauss. broadening ignored', -1 ) degauss = 0.D0 ENDIF ! CASE( 'smearing' ) ! lgauss = ( degauss > 0.0_dp ) IF ( .NOT. lgauss ) & CALL errore( ' iosys ', & & ' smearing requires gaussian broadening', 1 ) ! SELECT CASE ( trim( smearing ) ) CASE ( 'gaussian', 'gauss', 'Gaussian', 'Gauss' ) ngauss = 0 smearing_ = 'gaussian' CASE ( 'methfessel-paxton', 'm-p', 'mp', 'Methfessel-Paxton', 'M-P', 'MP' ) ngauss = 1 smearing_ = 'Methfessel-Paxton' CASE ( 'marzari-vanderbilt', 'cold', 'm-v', 'mv', 'Marzari-Vanderbilt', 'M-V', 'MV') ngauss = -1 smearing_ = 'Marzari-Vanderbilt' CASE ( 'fermi-dirac', 'f-d', 'fd', 'Fermi-Dirac', 'F-D', 'FD') ngauss = -99 smearing_ = 'Fermi-Dirac' CASE DEFAULT CALL errore( ' iosys ', ' smearing '//trim(smearing)//' unknown', 1 ) END SELECT ! CASE( 'tetrahedra' ) ! ! replace "errore" with "infomsg" in the next line if you really want ! to perform a calculation with forces using tetrahedra ! IF( lforce ) CALL errore( 'iosys', & 'force calculation with tetrahedra not recommanded: use smearing',1) ! ! as above, for stress ! IF( lstres ) CALL errore( 'iosys', & 'stress calculation with tetrahedra not recommanded: use smearing',1) ngauss = 0 ltetra = .true. ! CASE( 'from_input' ) ! ngauss = 0 tfixed_occ = .true. ! CASE DEFAULT ! CALL errore( 'iosys','occupations ' // trim( occupations ) // & & 'not implemented', 1 ) ! END SELECT ! IF( nbnd < 1 ) & CALL errore( 'iosys', 'nbnd less than 1', nbnd ) ! SELECT CASE( nspin ) CASE( 1 ) ! lsda = .false. IF ( noncolin ) nspin = 4 ! CASE( 2 ) ! lsda = .true. IF ( noncolin ) CALL errore( 'iosys', & 'noncolin .and. nspin==2 are conflicting flags', 1 ) ! CASE( 4 ) ! lsda = .false. noncolin = .true. ! CASE DEFAULT ! CALL errore( 'iosys', 'wrong input value for nspin', 1 ) ! END SELECT ! IF ( lda_plus_u .AND. lda_plus_u_kind == 0 .AND. noncolin ) THEN CALL errore('iosys', 'simplified LDA+U not implemented with & &noncol. magnetism, use lda_plus_u_kind = 1', 1) END IF ! two_fermi_energies = ( tot_magnetization /= -1._DP) IF ( two_fermi_energies .and. tot_magnetization < 0._DP) & CALL errore( 'iosys', 'tot_magnetization only takes positive values', 1 ) IF ( two_fermi_energies .and. .not. lsda ) & CALL errore( 'iosys', 'tot_magnetization requires nspin=2', 1 ) ! IF ( occupations == 'fixed' .and. lsda .and. lscf ) THEN ! IF ( two_fermi_energies ) THEN ! IF ( abs( nint(tot_magnetization ) - tot_magnetization ) > eps8 ) & CALL errore( 'iosys', & & 'fixed occupations requires integer tot_magnetization', 1 ) IF ( abs( nint(tot_charge ) - tot_charge ) > eps8 ) & CALL errore( 'iosys', & & 'fixed occupations requires integer charge', 1 ) ! ELSE ! CALL errore( 'iosys', & & 'fixed occupations and lsda need tot_magnetization', 1 ) ! ENDIF ! ENDIF ! IF (noncolin) THEN DO nt = 1, ntyp ! angle1(nt) = pi * angle1(nt) / 180.D0 angle2(nt) = pi * angle2(nt) / 180.D0 ! ENDDO ELSE angle1=0.d0 angle2=0.d0 ENDIF ! SELECT CASE( trim( constrained_magnetization ) ) CASE( 'none' ) ! ! ... starting_magnetization(nt) = sm_not_set means "not set" ! ... if no constraints are imposed on the magnetization, ! ... starting_magnetization must be set for at least one atomic type ! IF ( lscf .AND. lsda .AND. ( .NOT. tfixed_occ ) .AND. & ( .not. two_fermi_energies ) .AND. & ALL (starting_magnetization(1:ntyp) == sm_not_set) ) & CALL errore('iosys','some starting_magnetization MUST be set', 1 ) ! ! ... bring starting_magnetization between -1 and 1 ! DO nt = 1, ntyp ! IF ( starting_magnetization(nt) == sm_not_set ) THEN starting_magnetization(nt) = 0.0_dp ELSEIF ( starting_magnetization(nt) > 1.0_dp ) THEN starting_magnetization(nt) = 1.0_dp ELSEIF ( starting_magnetization(nt) <-1.0_dp ) THEN starting_magnetization(nt) =-1.0_dp ENDIF ! ENDDO ! i_cons = 0 ! CASE( 'atomic' ) ! IF ( nspin == 1 ) & CALL errore( 'iosys','constrained atomic magnetizations ' // & & 'require nspin=2 or 4 ', 1 ) IF ( ALL (starting_magnetization(1:ntyp) == sm_not_set) ) & CALL errore( 'iosys','constrained atomic magnetizations ' // & & 'require that some starting_magnetization is set', 1 ) ! i_cons = 1 ! IF (nspin == 4) THEN ! non-collinear case DO nt = 1, ntyp ! theta = angle1(nt) phi = angle2(nt) ! mcons(1,nt) = starting_magnetization(nt) * sin( theta ) * cos( phi ) mcons(2,nt) = starting_magnetization(nt) * sin( theta ) * sin( phi ) mcons(3,nt) = starting_magnetization(nt) * cos( theta ) ! ENDDO ELSE ! collinear case DO nt = 1, ntyp ! mcons(1,nt) = starting_magnetization(nt) ! ENDDO ENDIF ! CASE( 'atomic direction' ) ! IF ( nspin == 1 ) & CALL errore( 'iosys','constrained atomic magnetization ' // & & 'directions require nspin=2 or 4 ', 1 ) ! i_cons = 2 ! DO nt = 1, ntyp ! ! ... angle between the magnetic moments and the z-axis is ! ... constrained ! theta = angle1(nt) mcons(3,nt) = cos(theta) ! ENDDO ! CASE( 'total' ) ! IF ( nspin == 4 ) THEN ! i_cons = 3 ! mcons(1,1) = fixed_magnetization(1) mcons(2,1) = fixed_magnetization(2) mcons(3,1) = fixed_magnetization(3) ! ELSE ! CALL errore( 'iosys','constrained total magnetization ' // & & 'requires nspin= 4 ', 1 ) ! ENDIF ! CASE( 'total direction' ) i_cons = 6 mcons(3,1) = fixed_magnetization(3) IF ( mcons(3,1) < 0.D0 .or. mcons(3,1) > 180.D0 ) & CALL errore( 'iosys','constrained magnetization angle: ' // & & 'theta must be within [0,180] degrees', 1 ) ! CASE DEFAULT ! CALL errore( 'iosys','constrained magnetization ' // & & trim( constrained_magnetization ) // 'not implemented', 1 ) ! END SELECT ! IF ( B_field(1) /= 0.D0 .or. & B_field(2) /= 0.D0 .or. & B_field(3) /= 0.D0 ) THEN ! IF ( nspin == 1 ) CALL errore( 'iosys', & & 'non-zero external B_field requires nspin=2 or 4', 1 ) IF ( TRIM( constrained_magnetization ) /= 'none' ) & CALL errore( 'iosys', 'constrained_magnetization and ' // & & 'non-zero external B_field are conflicting flags', 1 ) IF ( nspin == 2 .AND. ( B_field(1) /= 0.D0 .OR. B_field(2) /= 0.D0 ) ) & CALL errore('iosys','only B_field(3) can be specified with nspin=2', 1) IF ( i_cons /= 0 ) CALL errore( 'iosys', & & 'non-zero external B_field and constrained magnetization?', i_cons) ! ! i_cons=4 signals the presence of an external B field ! this should be done in a cleaner way ! i_cons = 4 bfield(:)=B_field(:) ! ENDIF ! IF ( ecutrho <= 0.D0 ) THEN ! dual = 4.D0 ecutrho = dual*ecutwfc ! ELSE ! dual = ecutrho / ecutwfc IF ( dual <= 1.D0 ) & CALL errore( 'iosys', 'invalid dual?', 1 ) ! ENDIF ! SELECT CASE( trim( restart_mode ) ) CASE( 'from_scratch' ) ! restart = .false. IF ( lscf ) THEN startingconfig = 'input' ELSE startingconfig = 'file' ENDIF ! CASE( 'restart' ) ! restart = .true. ! IF ( trim( ion_positions ) == 'from_input' ) THEN ! startingconfig = 'input' ! ELSE ! startingconfig = 'file' ! ENDIF ! CASE DEFAULT ! CALL errore( 'iosys', & & 'unknown restart_mode ' // trim( restart_mode ), 1 ) ! END SELECT ! SELECT CASE( trim( disk_io ) ) CASE( 'high' ) ! io_level = 2 ! CASE ( 'low' ) ! io_level = 0 restart = .false. ! CASE ( 'none' ) ! io_level = -1 restart = .false. IF ( twfcollect ) THEN CALL infomsg('iosys', 'minimal I/O required, wf_collect reset to FALSE') twfcollect= .false. ENDIF ! CASE DEFAULT ! io_level = 1 ! IF ( lscf ) restart = .false. ! END SELECT ! Hubbard_U(:) = Hubbard_U(:) / rytoev Hubbard_J0(:) = Hubbard_J0(:) / rytoev Hubbard_J(:,:) = Hubbard_J(:,:) / rytoev Hubbard_alpha(:)= Hubbard_alpha(:) / rytoev Hubbard_beta(:)= Hubbard_beta(:) / rytoev ! ethr = diago_thr_init ! IF ( startingpot /= 'atomic' .and. startingpot /= 'file' ) THEN ! CALL infomsg( 'iosys', 'wrong startingpot: use default (1)' ) ! IF ( lscf ) THEN startingpot = 'atomic' ELSE startingpot = 'file' END IF ! ENDIF ! IF ( .not. lscf .and. startingpot /= 'file' ) THEN ! CALL infomsg( 'iosys', 'wrong startingpot: use default (2)' ) ! startingpot = 'file' ! ENDIF ! IF ( startingwfc /= 'atomic' .and. & startingwfc /= 'random' .and. & startingwfc /= 'atomic+random' .and. & startingwfc /= 'file' ) THEN ! CALL infomsg( 'iosys', 'wrong startingwfc: use default' ) ! startingwfc = 'atomic' ! ENDIF ! IF (one_atom_occupations .and. startingwfc /= 'atomic' ) THEN CALL infomsg( 'iosys', 'one_atom_occupations requires startingwfc atomic' ) startingwfc = 'atomic' ENDIF ! SELECT CASE( trim( diagonalization ) ) CASE ( 'cg' ) ! isolve = 1 max_cg_iter = diago_cg_maxiter ! CASE ( 'david', 'davidson' ) ! isolve = 0 david = diago_david_ndim ! CASE DEFAULT ! CALL errore( 'iosys', 'diagonalization ' // & & trim( diagonalization ) // ' not implemented', 1 ) ! END SELECT ! tr2 = conv_thr niter = electron_maxstep adapt_thr = adaptive_thr tr2_init = conv_thr_init tr2_multi = conv_thr_multi ! pot_order = 1 SELECT CASE( trim( pot_extrapolation ) ) CASE( 'from_wfcs', 'from-wfcs' ) ! not actually implemented pot_order =-1 ! CASE( 'none' ) ! pot_order = 0 ! CASE( 'first_order', 'first-order', 'first order' ) ! IF ( lmd ) THEN pot_order = 2 ELSE CALL infomsg('iosys', "pot_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! CASE( 'second_order', 'second-order', 'second order' ) ! IF ( lmd ) THEN pot_order = 3 ELSE CALL infomsg('iosys', "pot_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! CASE DEFAULT ! pot_order = 1 ! END SELECT ! wfc_order = 0 SELECT CASE( trim( wfc_extrapolation ) ) ! CASE( 'first_order', 'first-order', 'first order' ) ! IF ( lmd ) THEN wfc_order = 2 ELSE CALL infomsg('iosys', "wfc_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! CASE( 'second_order', 'second-order', 'second order' ) ! IF ( lmd ) THEN wfc_order = 3 ELSE CALL infomsg('iosys', "wfc_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! END SELECT ! SELECT CASE( trim( ion_temperature ) ) CASE( 'not_controlled', 'not-controlled', 'not controlled' ) ! control_temp = .false. ! CASE( 'initial' ) ! control_temp = .TRUE. thermostat = TRIM( ion_temperature ) temperature = tempw ! CASE( 'rescaling' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw tolp_ = tolp ntcheck = nraise ! CASE( 'rescale-v', 'rescale-V', 'rescale_v', 'rescale_V' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw nraise_ = nraise ! CASE( 'reduce-T', 'reduce-t', 'reduce_T', 'reduce_t' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw delta_t_ = delta_t nraise_ = nraise ! CASE( 'rescale-T', 'rescale-t', 'rescale_T', 'rescale_t' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw delta_t_ = delta_t ! CASE( 'berendsen', ' Berendsen' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw nraise_ = nraise ! CASE( 'andersen', 'Andersen' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw nraise_ = nraise ! CASE DEFAULT ! CALL errore( 'iosys', & & 'unknown ion_temperature ' // trim( ion_temperature ), 1 ) ! END SELECT ! SELECT CASE( trim( mixing_mode ) ) CASE( 'plain' ) ! imix = 0 ! CASE( 'TF' ) ! imix = 1 ! CASE( 'local-TF' ) ! imix = 2 ! CASE( 'potential' ) ! CALL errore( 'iosys', 'potential mixing no longer implemented', 1 ) ! CASE DEFAULT ! CALL errore( 'iosys', 'unknown mixing ' // trim( mixing_mode ), 1 ) ! END SELECT ! starting_scf_threshold = tr2 nmix = mixing_ndim niter_with_fixed_ns = mixing_fixed_ns ! IF ( ion_dynamics == ' bfgs' .and. epse <= 20.D0 * ( tr2 / upscale ) ) & CALL errore( 'iosys', 'required etot_conv_thr is too small:' // & & ' conv_thr must be reduced', 1 ) ! SELECT CASE( trim( verbosity ) ) CASE( 'debug', 'high', 'medium' ) ! iverbosity = 1 ! CASE( 'low', 'default', 'minimal' ) ! iverbosity = 0 ! CASE DEFAULT ! iverbosity = 0 ! END SELECT ! tmp_dir = trimcheck ( outdir ) ! IF ( lberry .OR. lelfield ) THEN IF ( npool > 1 ) CALL errore( 'iosys', & 'Berry Phase/electric fields not implemented with pools', 1 ) IF ( noncolin .AND. okvan ) CALL errore( 'iosys', & 'Noncolinear Berry Phase/electric fields not implemented with USPP', 1 ) IF ( lgauss .OR. ltetra ) CALL errore( 'iosys', & 'Berry Phase/electric fields only for insulators!', 1 ) END IF ! ! ... Copy values from input module to PW internals ! nppstr_ = nppstr gdir_ = gdir lberry_ = lberry lelfield_ = lelfield lorbm_ = lorbm efield_ = efield nberrycyc_ = nberrycyc efield_cart_ = efield_cart tqr_ = tqr real_space_ = real_space ! title_ = title lkpoint_dir_=lkpoint_dir dt_ = dt tefield_ = tefield dipfield_ = dipfield prefix_ = trim( prefix ) pseudo_dir_ = trimcheck( pseudo_dir ) nstep_ = nstep iprint_ = iprint lecrpa_ = lecrpa scf_must_converge_ = scf_must_converge ! nat_ = nat ntyp_ = ntyp edir_ = edir emaxpos_ = emaxpos eopreg_ = eopreg eamp_ = eamp dfftp%nr1 = nr1 dfftp%nr2 = nr2 dfftp%nr3 = nr3 ecutrho_ = ecutrho ecutwfc_ = ecutwfc ecfixed_ = ecfixed qcutz_ = qcutz q2sigma_ = q2sigma dffts%nr1 = nr1s dffts%nr2 = nr2s dffts%nr3 = nr3s degauss_ = degauss ! tot_charge_ = tot_charge tot_magnetization_ = tot_magnetization ! lspinorb_ = lspinorb starting_spin_angle_ = starting_spin_angle noncolin_ = noncolin angle1_ = angle1 angle2_ = angle2 report_ = report lambda_ = lambda one_atom_occupations_ = one_atom_occupations ! no_t_rev_ = no_t_rev allfrac = use_all_frac ! spline_ps_ = spline_ps ! Hubbard_U_(1:ntyp) = hubbard_u(1:ntyp) Hubbard_J_(1:3,1:ntyp) = hubbard_j(1:3,1:ntyp) Hubbard_J0_(1:ntyp) = hubbard_j0(1:ntyp) Hubbard_alpha_(1:ntyp) = hubbard_alpha(1:ntyp) Hubbard_beta_(1:ntyp) = hubbard_beta(1:ntyp) lda_plus_u_ = lda_plus_u lda_plus_u_kind_ = lda_plus_u_kind la2F_ = la2F nspin_ = nspin starting_magnetization_ = starting_magnetization starting_ns = starting_ns_eigenvalue U_projection = U_projection_type noinv_ = noinv nosym_ = nosym nosym_evc_ = nosym_evc nofrac = force_symmorphic nbnd_ = nbnd ! x_gamma_extrapolation_ = x_gamma_extrapolation ! nqx1_ = nqx1 nqx2_ = nqx2 nqx3_ = nqx3 ! exxdiv_treatment_ = trim(exxdiv_treatment) yukawa_ = yukawa ecutvcut_ = ecutvcut ecutfock_ = ecutfock ! vdw_table_name_ = vdw_table_name ! diago_full_acc_ = diago_full_acc starting_wfc = startingwfc starting_pot = startingpot mixing_beta_ = mixing_beta ! remove_rigid_rot_ = remove_rigid_rot upscale_ = upscale refold_pos_ = refold_pos press_ = press cell_factor_ = cell_factor ! ! ... for WANNIER_AC ! use_wannier_ = use_wannier use_energy_int_ = use_energy_int nwan_ = nwan print_wannier_coeff_ = print_wannier_coeff ! ! ! ... BFGS specific ! bfgs_ndim_ = bfgs_ndim trust_radius_max_ = trust_radius_max trust_radius_min_ = trust_radius_min trust_radius_ini_ = trust_radius_ini w_1_ = w_1 w_2_ = w_2 ! #ifdef __ENVIRON ! ! ... Environ ! do_environ_ = do_environ verbose_ = verbose environ_thr_ = environ_thr ! stype_ = stype rhomax_ = rhomax rhomin_ = rhomin tbeta_ = tbeta IF ( stype .EQ. 1 ) THEN tbeta_ = LOG( rhomax / rhomin ) END IF ! eps_mode_ = eps_mode ALLOCATE( solvationrad_( ntyp ) ) solvationrad_( 1:ntyp ) = solvationrad( 1:ntyp ) ALLOCATE( atomicspread_( ntyp ) ) atomicspread_( 1:ntyp ) = atomicspread( 1:ntyp ) IF ( do_environ ) CALL environ_initions_allocate( nat_, ntyp ) add_jellium_ = add_jellium ! ifdtype_ = ifdtype nfdpoint_ = nfdpoint ! mixtype_ = mixtype ndiis_ = ndiis mixrhopol_ = mixrhopol tolrhopol_ = tolrhopol ! delta_ = delta ! zion_ = zion rhopb_ = rhopb solvent_temperature_ = solvent_temperature ! SELECT CASE (TRIM(environ_type)) ! if a specific environ is selected use hardcoded parameters CASE ('vacuum') ! vacuum, all flags off env_static_permittivity_ = 1.D0 env_surface_tension_ = 0.D0 env_pressure_ = 0.D0 env_periodicity = 3 env_ioncc_concentration = 0.D0 CASE ('water') ! water, experimental and SCCS tuned parameters env_static_permittivity_ = 78.3D0 env_surface_tension_ = 50.D0*1.D-3*bohr_radius_si**2/rydberg_si env_pressure_ = -0.35D0*1.D9/rydberg_si*bohr_radius_si**3 env_periodicity = 3 env_ioncc_concentration = 0.D0 CASE ('input') ! take values from input, this is the default option env_static_permittivity_ = env_static_permittivity env_surface_tension_ = & env_surface_tension*1.D-3*bohr_radius_si**2/rydberg_si env_pressure_ = env_pressure*1.D9/rydberg_si*bohr_radius_si**3 env_periodicity = 3 env_ioncc_concentration_ = env_ioncc_concentration & * bohr_radius_si**3 / amu_si CASE DEFAULT call errore ('iosys','unrecognized value for environ_type',1) END SELECT ! #endif ! ! ... ESM ! esm_bc_ = esm_bc esm_efield_ = esm_efield esm_w_ = esm_w esm_nfit_ = esm_nfit ! IF (trim(occupations) /= 'from_input') one_atom_occupations_=.false. ! llondon = london lon_rcut = london_rcut scal6 = london_s6 ! #if defined __MS2 ! ! MS2 specific parameters ! MS2_enabled_ = MS2_enabled MS2_handler_ = MS2_handler #endif ! SELECT CASE( trim( assume_isolated ) ) ! CASE( 'makov-payne', 'm-p', 'mp' ) ! do_makov_payne = .true. IF ( ibrav < 1 .OR. ibrav > 3 ) CALL errore(' iosys', & 'Makov-Payne correction defined only for cubic lattices', 1) ! do_comp_mt = .false. do_comp_esm = .false. ! CASE( 'dcc' ) ! CALL errore('iosys','density countercharge correction currently disabled',1) ! CASE( 'martyna-tuckerman', 'm-t', 'mt' ) ! do_comp_mt = .true. do_makov_payne = .false. do_comp_esm = .false. ! CASE( 'esm' ) ! do_comp_esm = .true. do_comp_mt = .false. do_makov_payne = .false. ! #ifdef __ENVIRON CASE( 'slabx' ) ! do_environ_ = .true. env_periodicity = 2 slab_axis = 1 do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. ! CASE( 'slaby' ) ! do_environ_ = .true. env_periodicity = 2 slab_axis = 2 do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. ! CASE( 'slabz' ) ! do_environ_ = .true. env_periodicity = 2 slab_axis = 3 do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. ! CASE( 'pcc' ) ! do_environ_ = .true. env_periodicity = 0 do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. ! #endif CASE( 'none' ) ! do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. ! CASE DEFAULT ! call errore ('iosys','unrecognized value for assume_isolated',1) END SELECT #ifdef __ENVIRON IF ( env_ioncc_concentration .GT. 0.D0 .AND. env_periodicity .NE. 2 ) & call errore ('iosys','ioncc requires slab boundary conditions',1) #endif ! ! ... read following cards ! ALLOCATE( ityp( nat_ ) ) ALLOCATE( tau( 3, nat_ ) ) ALLOCATE( force( 3, nat_ ) ) ALLOCATE( if_pos( 3, nat_ ) ) ALLOCATE( extfor( 3, nat_ ) ) IF ( tfixed_occ ) THEN IF ( nspin_ == 4 ) THEN ALLOCATE( f_inp( nbnd_, 1 ) ) ELSE ALLOCATE( f_inp( nbnd_, nspin_ ) ) ENDIF ENDIF ! IF ( tefield ) ALLOCATE( forcefield( 3, nat_ ) ) ! ! ... note that read_cards_pw no longer reads cards! ! CALL read_cards_pw ( psfile, tau_format ) ! ! ... set up atomic positions and crystal lattice ! call cell_base_init ( ibrav, celldm, a, b, c, cosab, cosac, cosbc, & trd_ht, rd_ht, cell_units ) ! ! ... set up k-points ! CALL init_start_k ( nk1, nk2, nk3, k1, k2, k3, k_points, nkstot, xk, wk ) gamma_only = ( k_points == 'gamma' ) ! IF ( lelfield .AND. gamma_only ) & CALL errore( 'iosys', 'electric fields not available for k=0 only', 1 ) ! CALL convert_tau ( tau_format, nat_, tau) ! IF ( wmass == 0.D0 ) THEN ! ! ... set default value of wmass ! #if defined __PGI DO ia = 1, nat_ wmass = wmass + amass( ityp(ia) ) ENDDO #else wmass = sum( amass(ityp(:)) ) #endif ! wmass = wmass * amu_ry IF ( calc == 'nd' .or. calc == 'nm' ) THEN wmass = 0.75D0 * wmass / pi / pi / omega**( 2.D0 / 3.D0 ) ELSEIF ( calc == 'cd' .or. calc == 'cm' ) THEN wmass = 0.75D0 * wmass / pi / pi ENDIF ! cmass = wmass ! ELSE ! ! ... wmass is given in amu, Renata's dynamics uses masses in atomic units ! cmass = wmass * amu_ry ! ENDIF ! ! ... unit conversion for pressure ! press_ = press_ / ry_kbar ! ! ... set constraints for cell dynamics/optimization ! CALL init_dofree ( cell_dofree ) ! ! ... read pseudopotentials (also sets DFT) ! CALL readpp ( input_dft ) ! ! Set variables for hybrid functional HSE ! IF (exx_fraction >= 0.0_DP) CALL set_exx_fraction (exx_fraction) IF (screening_parameter >= 0.0_DP) & & CALL set_screening_parameter (screening_parameter) ! ! ... read the vdw kernel table if needed ! inlc = get_inlc() if (inlc == 1 .or. inlc == 2) then call initialize_kernel_table() endif ! ! ... if DFT finite size corrections are needed, define the appropriate volume ! IF (dft_has_finite_size_correction()) & CALL set_finite_size_volume(REAL(omega*nk1*nk2*nk3)) ! ! ... In the case of variable cell dynamics save old cell variables ! ... and initialize a few other variables ! IF ( lmovecell ) THEN ! at_old = at omega_old = omega IF ( cell_factor_ <= 0.D0 ) cell_factor_ = 1.2D0 ! IF ( cmass <= 0.D0 ) & CALL errore( 'iosys', & & 'vcsmd: a positive value for cell mass is required', 1 ) ! ELSE ! cell_factor_ = 1.D0 ! ENDIF ! ! ... allocate arrays for dispersion correction ! IF ( llondon) CALL init_london ( ) ! ! ... variables for constrained dynamics are set here ! lconstrain = ( nconstr_inp > 0 ) ! IF ( lconstrain ) THEN IF ( lbfgs .OR. lmovecell ) CALL errore( 'iosys', & 'constraints only with fixed-cell dynamics', 1 ) CALL init_constraint( nat, tau, ityp, alat ) END IF ! ! ... read atomic positions and unit cell from data file ! ... must be done before "verify_tmpdir" because the latter ! ... removes the data file in a run from scratch ! IF ( startingconfig == 'file' ) CALL read_config_from_file() ! CALL verify_tmpdir( tmp_dir ) ! IF ( .not. trim( wfcdir ) == 'undefined' ) THEN ! wfc_dir = trimcheck ( wfcdir ) ! CALL verify_tmpdir( wfc_dir ) ! ENDIF ! CALL restart_from_file() ! ! ... Files ! input_drho = ' ' output_drho = ' ' ! IF (real_space ) THEN IF ( gamma_only ) THEN WRITE( stdout, '(5x,"Real space treatment of Beta functions, & &V.1 (BE SURE TO CHECK MANUAL!)",/)' ) ELSE CALL errore ('iosys', 'Real space only with Gamma point', 1) END IF ENDIF ! ! Deallocation of temp input arrays ! CALL deallocate_input_parameters () ! RETURN ! END SUBROUTINE iosys ! !---------------------------------------------------------------------------- SUBROUTINE read_cards_pw ( psfile, tau_format ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE input_parameters, ONLY : atom_label, atom_pfile, atom_mass, taspc, & tapos, rd_pos, atomic_positions, if_pos, & sp_pos, f_inp, rd_for, tavel, sp_vel, rd_vel USE dynamics_module, ONLY : tavel_ => tavel, vel USE cell_base, ONLY : at, ibrav USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, atm, extfor USE fixed_occ, ONLY : tfixed_occ, f_inp_ => f_inp USE ions_base, ONLY : if_pos_ => if_pos, amass, fixatom USE control_flags, ONLY : lfixatom, textfor ! IMPLICIT NONE ! CHARACTER (len=256) :: psfile(ntyp) CHARACTER (len=80) :: tau_format INTEGER, EXTERNAL :: atomic_number REAL(DP), EXTERNAL :: atom_weight ! INTEGER :: is, ia ! ! amass = 0 ! IF ( .not. taspc ) & CALL errore( 'read_cards_pw', 'atomic species info missing', 1 ) IF ( .not. tapos ) & CALL errore( 'read_cards_pw', 'atomic position info missing', 1 ) ! DO is = 1, ntyp ! amass(is) = atom_mass(is) psfile(is) = atom_pfile(is) atm(is) = atom_label(is) ! IF ( amass(is) <= 0.0_DP ) amass(is)= & atom_weight(atomic_number(trim(atm(is)))) IF ( amass(is) <= 0.D0 ) CALL errore( 'read_cards_pw', 'invalid mass', is ) ! ENDDO ! textfor = .false. IF( any( rd_for /= 0.0_DP ) ) textfor = .true. ! DO ia = 1, nat ! tau(:,ia) = rd_pos(:,ia) ityp(ia) = sp_pos(ia) extfor(:,ia) = rd_for(:,ia) ! ENDDO ! ! ... check for initial velocities read from input file ! IF ( tavel .AND. ANY ( sp_pos(:) /= sp_vel(:) ) ) & CALL errore("cards","list of species in block ATOMIC_VELOCITIES & & must be identical to those in ATOMIC_POSITIONS",1) tavel_ = tavel IF ( tavel_ ) THEN ALLOCATE( vel(3, nat) ) DO ia = 1, nat vel(:,ia) = rd_vel(:,ia) END DO END IF ! ! ... The constrain on fixed coordinates is implemented using the array ! ... if_pos whose value is 0 when the coordinate is to be kept fixed, 1 ! ... otherwise. ! if_pos_(:,:) = if_pos(:,1:nat) fixatom = COUNT( if_pos_(1,:)==0 .AND. if_pos_(2,:)==0 .AND. if_pos_(3,:)==0 ) lfixatom = ANY ( if_pos_ == 0 ) ! tau_format = trim( atomic_positions ) ! IF ( tfixed_occ ) THEN ! f_inp_ = f_inp ! DEALLOCATE ( f_inp ) ! ENDIF ! RETURN ! END SUBROUTINE read_cards_pw ! !----------------------------------------------------------------------- SUBROUTINE convert_tau (tau_format, nat_, tau) !----------------------------------------------------------------------- ! ! ... convert input atomic positions to internally used format: ! ... tau in a0 units ! USE kinds, ONLY : DP USE constants, ONLY : bohr_radius_angs USE cell_base, ONLY : at, alat IMPLICIT NONE CHARACTER (len=*), INTENT(in) :: tau_format INTEGER, INTENT(in) :: nat_ REAL (DP), INTENT(inout) :: tau(3,nat_) ! SELECT CASE( tau_format ) CASE( 'alat' ) ! ! ... input atomic positions are divided by a0: do nothing ! CASE( 'bohr' ) ! ! ... input atomic positions are in a.u.: divide by alat ! tau = tau / alat ! CASE( 'crystal' ) ! ! ... input atomic positions are in crystal axis ! CALL cryst_to_cart( nat_, tau, at, 1 ) ! CASE( 'angstrom' ) ! ! ... atomic positions in A: convert to a.u. and divide by alat ! tau = tau / bohr_radius_angs / alat ! CASE DEFAULT ! CALL errore( 'iosys','tau_format=' // & & trim( tau_format ) // ' not implemented', 1 ) ! END SELECT ! END SUBROUTINE convert_tau !----------------------------------------------------------------------- SUBROUTINE verify_tmpdir( tmp_dir ) !----------------------------------------------------------------------- ! USE wrappers, ONLY : f_mkdir USE input_parameters, ONLY : restart_mode USE control_flags, ONLY : lbands USE io_files, ONLY : prefix, xmlpun, & delete_if_present, check_writable USE pw_restart, ONLY : pw_readfile USE mp_global, ONLY : mpime, nproc USE io_global, ONLY : ionode USE mp, ONLY : mp_barrier USE xml_io_base, ONLY : copy_file ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(inout) :: tmp_dir ! INTEGER :: ios, image, proc, nofi LOGICAL :: exst CHARACTER (len=256) :: file_path, filename CHARACTER(len=6), EXTERNAL :: int_to_char ! ! file_path = trim( tmp_dir ) // trim( prefix ) ! ! IF ( restart_mode == 'from_scratch' ) THEN ! ! ... let us try to create the scratch directory ! CALL parallel_mkdir ( tmp_dir ) ! ENDIF ! ! ! ... if starting from scratch all temporary files are removed ! ... from tmp_dir ( only by the master node ) ! IF ( restart_mode == 'from_scratch' ) THEN ! ! ... xml data file in save directory is removed ! but, header is read anyway to store qexml version ! CALL pw_readfile( 'header', ios ) ! IF ( ionode ) THEN ! IF ( .not. lbands ) THEN ! ! save a bck copy of datafile.xml (AF) ! filename = trim( file_path ) // '.save/' // trim( xmlpun ) INQUIRE( FILE = filename, EXIST = exst ) ! IF ( exst ) CALL copy_file( trim(filename), trim(filename) // '.bck' ) ! CALL delete_if_present( trim(filename) ) ! ENDIF ! ! ... extrapolation file is removed ! CALL delete_if_present( trim( file_path ) // '.update' ) ! ! ... MD restart file is removed ! CALL delete_if_present( trim( file_path ) // '.md' ) ! ! ... BFGS restart file is removed ! CALL delete_if_present( trim( file_path ) // '.bfgs' ) ! ENDIF ! ENDIF ! RETURN ! END SUBROUTINE verify_tmpdir !----------------------------------------------------------------------- SUBROUTINE parallel_mkdir ( tmp_dir ) !----------------------------------------------------------------------- ! ! ... Safe creation of the scratch directory in the parallel case ! ... Works on both parallel and distributed file systems ! ... Not really a smart algorithm, though ! USE wrappers, ONLY : f_mkdir USE mp_global, ONLY : mpime, nproc USE mp, ONLY : mp_barrier, mp_sum USE io_files, ONLY : check_writable ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(in) :: tmp_dir ! INTEGER :: ios, proc CHARACTER(len=6), EXTERNAL :: int_to_char ! ! ... the scratch directory is created sequentially by all the cpus ! DO proc = 0, nproc - 1 ! IF ( proc == mpime ) ios = f_mkdir( trim( tmp_dir ) ) CALL mp_barrier() ! ENDDO ! ! ... each job checks whether the scratch directory is writable ! ... note that tmp_dir should end by a "/" ! IF ( ios /= 0 ) CALL errore( 'parallel_mkdir', trim( tmp_dir ) // & & ' non existent or non writable', 1 ) ! RETURN ! END SUBROUTINE parallel_mkdir espresso-5.0.2/PW/src/efermig.f900000644000700200004540000000454612053145627015451 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- FUNCTION efermig (et, nbnd, nks, nelec, wk, Degauss, Ngauss, is, isk) !-------------------------------------------------------------------- ! ! Finds the Fermi energy - Gaussian Broadening ! (see Methfessel and Paxton, PRB 40, 3616 (1989 ) ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY: rytoev USE mp, ONLY : mp_max, mp_min USE mp_global, ONLY : inter_pool_comm implicit none ! I/O variables integer, intent(in) :: nks, nbnd, Ngauss, is, isk(nks) real(DP), intent(in) :: wk (nks), et (nbnd, nks), Degauss, nelec real(DP) :: efermig ! real(DP), parameter :: eps= 1.0d-10 integer, parameter :: maxiter = 300 ! internal variables real(DP) :: Ef, Eup, Elw, sumkup, sumklw, sumkmid real(DP), external:: sumkg integer :: i, kpoint ! ! find bounds for the Fermi energy. Very safe choice! ! Elw = et (1, 1) Eup = et (nbnd, 1) do kpoint = 2, nks Elw = min (Elw, et (1, kpoint) ) Eup = max (Eup, et (nbnd, kpoint) ) enddo Eup = Eup + 2 * Degauss Elw = Elw - 2 * Degauss #ifdef __MPI ! ! find min and max across pools ! call mp_max( eup, inter_pool_comm ) call mp_min( elw, inter_pool_comm ) #endif ! ! Bisection method ! sumkup = sumkg (et, nbnd, nks, wk, Degauss, Ngauss, Eup, is, isk) sumklw = sumkg (et, nbnd, nks, wk, Degauss, Ngauss, Elw, is, isk) if ( (sumkup - nelec) < -eps .or. (sumklw - nelec) > eps ) & call errore ('efermig', 'internal error, cannot bracket Ef', 1) do i = 1, maxiter Ef = (Eup + Elw) / 2.d0 sumkmid = sumkg (et, nbnd, nks, wk, Degauss, Ngauss, Ef, is, isk) if (abs (sumkmid-nelec) < eps) then efermig = Ef return elseif ( (sumkmid-nelec) < -eps) then Elw = Ef else Eup = Ef endif enddo if (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is WRITE( stdout, '(5x,"Warning: too many iterations in bisection"/ & & 5x,"Ef = ",f10.6," sumk = ",f10.6," electrons")' ) & Ef * rytoev, sumkmid ! efermig = Ef return end FUNCTION efermig espresso-5.0.2/PW/src/pwcom.f900000644000700200004540000003460512053145627015157 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE basis ! ! ... The variables needed to describe the atoms in the unit cell ! SAVE ! INTEGER :: & natomwfc ! number of starting wavefunctions CHARACTER(len=30) :: &! starting_wfc, &! 'random' or 'atomic' or 'atomic+randm' or 'file' starting_pot, &! 'atomic' or 'file' startingconfig ! 'input' or 'file' ! END MODULE basis ! ! MODULE klist ! ! ... The variables for the k-points ! USE kinds, ONLY : DP USE parameters, ONLY : npk ! SAVE ! CHARACTER (len=32) :: & smearing ! smearing type REAL(DP) :: & xk(3,npk), &! coordinates of k points wk(npk), &! weight of k points xqq(3), &! coordinates of q point (used in the ACFDT part) degauss, &! smearing parameter nelec, &! number of electrons nelup=0.0_dp, &! number of spin-up electrons (if two_fermi_energies=t) neldw=0.0_dp, &! number of spin-dw electrons (if two_fermi_energies=t) tot_magnetization, &! nelup-neldw >= 0 (negative value means unspecified) tot_charge REAL(DP) :: & qnorm= 0.0_dp ! |q|, used in phonon+US calculations only INTEGER, ALLOCATABLE :: & ngk(:) ! number of plane waves for each k point INTEGER :: & nks, &! number of k points in this pool nkstot, &! total number of k points ngauss ! type of smearing technique LOGICAL :: & lgauss, &! if .TRUE.: use gaussian broadening lxkcry=.false., &! if .TRUE.:k-pnts in cryst. basis accepted in input two_fermi_energies ! if .TRUE.: nelup and neldw set ef_up and ef_dw ! separately ! END MODULE klist ! ! MODULE lsda_mod ! ! ... The variables needed for the lsda calculation ! USE kinds, ONLY : DP USE parameters, ONLY : ntypx, npk ! SAVE ! LOGICAL :: & lsda REAL(DP) :: & magtot, &! total magnetization absmag, &! total absolute magnetization starting_magnetization(ntypx) ! the magnetization used to start with INTEGER :: & nspin, &! number of spin polarization: 2 if lsda, 1 other current_spin, &! spin of the current kpoint isk(npk) ! for each k-point: 1=spin up, 2=spin down ! END MODULE lsda_mod ! ! MODULE ktetra ! ! ... The variables for the tetrahedron method ! SAVE ! INTEGER :: & ntetra ! number of tetrahedra INTEGER, ALLOCATABLE :: & tetra(:,:) ! index of k-points in a given tetrahedron ! shape (4,ntetra) LOGICAL :: & ltetra ! if .TRUE.: use tetrahedron method ! END MODULE ktetra ! ! MODULE rap_point_group ! USE kinds, ONLY : DP ! INTEGER :: & code_group, & ! The code of the point group nclass, & ! The number of classes of the point group nelem(12), & ! The elements of each class elem(8,12), & ! Which elements in the smat list for each class which_irr(12) ! For each class gives its position in the ! character table. ! COMPLEX(DP) :: char_mat(12,12) ! the character tables: rap,class CHARACTER(len=15) :: name_rap(12) ! the name of the representation CHARACTER(len=3) :: ir_ram(12) ! a string I, R or I+R for infrared, ! Raman, or infrared+raman modes. CHARACTER(len=11) :: gname ! the name of the group CHARACTER(len=5) :: name_class(12) ! the name of the class ! END MODULE rap_point_group MODULE rap_point_group_so ! USE kinds, ONLY : DP ! INTEGER :: & nrap, & ! The number of classes of the point group nelem_so(24), &! The elements of each class elem_so(12,24), &! Which elements in the smat list for each class has_e(12,24), & ! if -1 the smat is multiplied by -E which_irr_so(24) ! For each class gives its position in the ! character table. ! COMPLEX(DP) :: char_mat_so(12,24), & ! the character tables d_spin(2,2,48) ! the rotation in spin space CHARACTER(len=15) :: name_rap_so(12) ! the name of the representation CHARACTER(len=5) :: name_class_so(24), & ! the name of the class name_class_so1(24) ! the name of the class ! END MODULE rap_point_group_so ! MODULE rap_point_group_is ! USE kinds, ONLY : DP ! INTEGER :: & ftau_is(3,48), & ! The fractional transl. of the invariant subgroup nsym_is, & ! The number of operations of the invariant subgroup code_group_is ! The code of the point invariant subgroup REAL(DP) :: & sr_is(3,3,48) ! The matrices of the invariant subgroup COMPLEX(DP) :: & d_spin_is(2,2,48) ! the rotation in spin space CHARACTER(len=45) :: sname_is(48) ! name of the symmetries CHARACTER(len=11) :: gname_is ! the name of the invariant group ! END MODULE rap_point_group_is ! MODULE vlocal ! ! ... The variables needed for the local potential in reciprocal space ! USE kinds, ONLY : DP ! SAVE ! COMPLEX(DP), ALLOCATABLE :: & strf(:,:) ! the structure factor REAL(DP), ALLOCATABLE :: & vloc(:,:) ! the local potential for each atom type ! END MODULE vlocal ! ! MODULE wvfct ! ! ... The variables needed to compute the band structure ! USE kinds, ONLY : DP ! SAVE ! INTEGER :: & npwx, &! maximum number of PW for wavefunctions nbndx, &! max number of bands use in iterative diag nbnd, &! number of bands npw, &! the number of plane waves current_k ! the index of k-point under consideration INTEGER, ALLOCATABLE, TARGET :: & igk(:) ! index of G corresponding to a given index of k+G REAL(DP) :: & ecutwfc, &! energy cut-off ecfixed, &! qcutz = 0.0_DP,&! For the modified Ekin functional q2sigma ! REAL(DP), ALLOCATABLE :: & et(:,:), &! eigenvalues of the hamiltonian wg(:,:), &! the weight of each k point and band g2kin(:) ! kinetic energy INTEGER, ALLOCATABLE :: & btype(:,:) ! one if the corresponding state has to be ! converged to full accuracy, zero otherwise ! END MODULE wvfct ! ! MODULE ener ! ! ... The variables needed to compute the energies ! USE kinds, ONLY : DP ! SAVE ! REAL(DP) :: & etot, &! the total Kohn-Sham energy of the solid hwf_energy, &! this is the Harris-Weinert-Foulkes energy eband, &! the band energy deband, &! scf correction to have variational energy ehart, &! the hartree energy etxc, &! the exchange and correlation energy vtxc, &! another exchange-correlation energy etxcc, &! the nlcc exchange and correlation ewld, &! the ewald energy elondon, &! the semi-empirical dispersion energy demet, &! variational correction ("-TS") for metals epaw, &! sum of one-center paw contributions ef, ef_up, ef_dw ! the fermi energy (up and dw if two_fermi_energies=.T.) ! END MODULE ener ! ! MODULE force_mod ! ! ... The variables for the first derivative of the energy ! USE kinds, ONLY : DP ! SAVE ! REAL(DP), ALLOCATABLE :: & force(:,:) ! the force on each atom REAL(DP) :: & sigma(3,3) ! the stress acting on the system LOGICAL :: & lforce, &! if .TRUE. compute the forces lstres ! if .TRUE. compute the stress ! END MODULE force_mod ! MODULE relax ! ! ... The variables used to control ionic relaxations ! USE kinds, ONLY : DP ! SAVE ! REAL(DP) :: & epse, &! threshold on total energy epsf, &! threshold on forces epsp, &! threshold on pressure starting_scf_threshold ! self-explanatory ! END MODULE relax ! ! MODULE cellmd ! ! ... The variables used to control cell relaxation ! USE kinds, ONLY : DP ! SAVE ! REAL(DP) :: & press, cmass, &! target pressure and cell mass, at_old(3,3), &! the lattice vectors at the previous ste omega_old, &! the cell volume at the previous step cell_factor=0.0_dp ! maximum expected (linear) cell contraction ! during relaxation/MD INTEGER :: & nzero, &! iteration # of last thermalization ntimes=-1, &! # of thermalization steps to be performed (-i=inf) ntcheck ! # of steps between thermalizations LOGICAL :: lmovecell ! used in cell relaxation ! CHARACTER(len=2) :: & calc=' ' ! main switch for variable cell shape MD ! see readin, vcsmd and/or INPUT files ! END MODULE cellmd ! ! MODULE us ! ! ... These parameters are needed with the US pseudopotentials ! USE kinds, ONLY : DP ! SAVE ! INTEGER :: & nqxq, &! size of interpolation table nqx ! number of interpolation points REAL(DP), PARAMETER:: & dq = 0.01D0 ! space between points in the pseudopotential tab. REAL(DP), ALLOCATABLE :: & qrad(:,:,:,:), &! radial FT of Q functions tab(:,:,:), &! interpolation table for PPs tab_at(:,:,:) ! interpolation table for atomic wfc LOGICAL :: spline_ps = .false. REAL(DP), ALLOCATABLE :: & tab_d2y(:,:,:) ! for cubic splines ! END MODULE us ! ! MODULE ldaU ! ! ... The quantities needed in lda+U calculations ! USE kinds, ONLY : DP USE parameters, ONLY : lqmax, ntypx ! SAVE ! INTEGER, PARAMETER :: nspinx=2 COMPLEX(DP), ALLOCATABLE :: & swfcatom(:,:), &! orthogonalized atomic wfcs d_spin_ldau(:,:,:) ! the rotations in spin space for all the symmetries REAL(DP) :: & eth, &! the Hubbard contribution to the energy Hubbard_U(ntypx), &! the Hubbard U Hubbard_J0(ntypx), &! the Hubbard J, in lda_plus_u_kind=0 Hubbard_J(3,ntypx), &! extra Hubbard parameters: ! p: J(1) = J ! d: J(1) = J, J(2) = B ! f: J(1) = J, J(2) = E2, J(3) = E3 Hubbard_alpha(ntypx), &! the Hubbard alpha (used to calculate U) Hubbard_beta(ntypx), &! the Hubbard beta (used to calculate J0) starting_ns(lqmax,nspinx,ntypx) ! INTEGER :: & niter_with_fixed_ns, &! no. of iterations with fixed ns lda_plus_u_kind, &! 1/0 --> full/simplified(old) LDA+U calculation Hubbard_l(ntypx), &! the angular momentum of Hubbard states Hubbard_lmax = 0 ! maximum angular momentum of Hubbard states LOGICAL :: & lda_plus_u, &! .TRUE. if lda+u calculation is performed conv_ns ! .TRUE. if ns are converged CHARACTER(len=30) :: & ! 'atomic', 'ortho-atomic', 'file' U_projection ! specifies how input coordinates are given INTEGER, ALLOCATABLE :: & oatwfc(:) ! offset of atomic wfcs used for projections REAL(DP), ALLOCATABLE :: & q_ae(:,:,:), &! coefficients for projecting onto beta functions q_ps(:,:,:) ! (matrix elements on AE and PS atomic wfcs) ! END MODULE ldaU ! ! MODULE extfield ! ! ... The quantities needed in calculations with external field ! USE kinds, ONLY : DP ! SAVE ! LOGICAL :: & tefield, &! if .TRUE. a finite electric field is added to the ! local potential dipfield ! if .TRUE. the dipole field is subtracted INTEGER :: & edir ! direction of the field REAL(DP) :: & emaxpos, &! position of the maximum of the field (0 nsp, ityp USE cell_base, ONLY : omega, tpiba USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g, eigts1, eigts2, eigts3, mill USE noncollin_module, ONLY : nspin_mag USE scf, ONLY : v, vltot USE uspp, ONLY : becsum, okvan USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE control_flags, ONLY : gamma_only USE fft_interfaces,ONLY : fwfft ! implicit none ! real(DP) :: forcenl (3, nat) ! local variables integer :: ig, ir, dim, nt, ih, jh, ijh, ipol, is, na complex(DP):: cfac real(DP) :: fact, ddot ! work space complex(DP), allocatable :: aux(:,:), aux1(:,:), vg(:), qgm(:) real(DP) , allocatable :: ddeeq(:,:,:,:), qmod(:), ylmk0(:,:) ! if (.not.okvan) return ! if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if allocate (aux(ngm,nspin_mag)) ! ! fourier transform of the total effective potential ! allocate (vg(dfftp%nnr)) do is = 1, nspin_mag if (nspin_mag.eq.4.and.is.ne.1) then vg (:) = v%of_r(:,is) else vg (:) = vltot (:) + v%of_r (:, is) endif CALL fwfft ('Dense', vg, dfftp) aux (:, is) = vg (nl (:) ) * tpiba * (0.d0, -1.d0) enddo deallocate (vg) ! allocate (aux1(ngm,3)) allocate (ddeeq( 3, (nhm*(nhm+1))/2,nat,nspin_mag)) allocate (qgm( ngm)) allocate (qmod( ngm)) allocate (ylmk0(ngm,lmaxq*lmaxq)) ! ddeeq(:,:,:,:) = 0.d0 ! call ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) ! !qmod (:) = sqrt (gg (:) ) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngm qmod (ig) = sqrt (gg (ig) ) enddo !$OMP END PARALLEL DO ! ! here we compute the integral Q*V for each atom, ! I = sum_G i G_a exp(-iR.G) Q_nm v^* ! do nt = 1, ntyp if ( upf(nt)%tvanp ) then ijh = 1 do ih = 1, nh (nt) do jh = ih, nh (nt) call qvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0) do na = 1, nat if (ityp (na) == nt) then ! ! The product of potential, structure factor and iG ! do is = 1, nspin_mag !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig, cfac) do ig = 1, ngm cfac = aux (ig, is) * CONJG(eigts1 (mill(1,ig), na) *& eigts2 (mill(2,ig), na) *& eigts3 (mill(3,ig), na) ) aux1 (ig, 1) = g (1, ig) * cfac aux1 (ig, 2) = g (2, ig) * cfac aux1 (ig, 3) = g (3, ig) * cfac enddo !$OMP END PARALLEL DO ! ! and the product with the Q functions ! G=0 term gives no contribution ! do ipol = 1, 3 ddeeq (ipol, ijh, na, is) = omega * fact * & ddot (2 * ngm, aux1 (1, ipol), 1, qgm, 1) enddo enddo endif enddo ijh = ijh + 1 enddo enddo endif enddo #ifdef __MPI call mp_sum ( ddeeq, intra_bgrp_comm ) #endif ! WRITE( stdout,'( "dmatrix atom ",i4)') na ! do ih = 1, nh(nt) ! WRITE( stdout,'(8f9.4)') (ddeeq(ipol,ih,jh,na),jh=1,nh(nt)) ! end do ! WRITE( stdout,'( "dion pseudo ",i4)') nt ! do ih = 1, nh(nt) ! WRITE( stdout,'(8f9.4)') (dvan(ih,jh,nt),jh=1,nh(nt)) ! end do do is = 1, nspin_mag do na = 1, nat nt = ityp (na) dim = (nh (nt) * (nh (nt) + 1) ) / 2 do ipol = 1, 3 do ir = 1, dim forcenl (ipol, na) = forcenl (ipol, na) + & ddeeq (ipol, ir, na, is) * becsum (ir, na, is) enddo enddo enddo enddo deallocate (ylmk0) deallocate (qgm) deallocate (qmod) deallocate (ddeeq) deallocate (aux1) deallocate (aux) return end subroutine addusforce espresso-5.0.2/PW/src/sph_ind.f900000644000700200004540000000252312053145627015450 0ustar marsamoscm! ! Copyright (C) 2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! function sph_ind(l,j,m,spin) ! This function calculates the m index of the spherical harmonic ! in a spinor with orbital angular momentum l, total angular ! momentum j, projection along z of the total angular momentum m+-1/2. ! Spin selects the up (spin=1) or down (spin=2) coefficient. ! use kinds implicit none integer :: sph_ind integer :: l, & ! orbital angular momentum m, & ! projection of the total angular momentum+-1/2 spin ! 1 or 2 select the component real(DP) :: j ! total angular momentum if (spin.ne.1.and.spin.ne.2) call errore('sph_ind','spin direction unknown',1) if (m.lt.-l-1.or.m.gt.l) call errore('sph_ind','m not allowed',1) if (abs(j-l-0.5d0).lt.1.d-8) then if (spin.eq.1) sph_ind= m if (spin.eq.2) sph_ind= m+1 elseif (abs(j-l+0.5d0).lt.1.d-8) then if (m.lt.-l+1) then sph_ind=0 else if (spin.eq.1) sph_ind= m-1 if (spin.eq.2) sph_ind= m endif else write(6,*) l, j call errore('sph_ind','l and j not compatible',1) endif if (sph_ind.lt.-l.or.sph_ind.gt.l) sph_ind=0 return end function sph_ind espresso-5.0.2/PW/src/add_vhub_to_deeq.f900000644000700200004540000000302212053145630017265 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE add_vhub_to_deeq(deeq) ! ! Add Hubbard contributions to deeq when U_projection is pseudo ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE lsda_mod, ONLY : nspin USE scf, ONLY : v USE ldaU, ONLY : Hubbard_U, Hubbard_alpha, & Hubbard_l, oatwfc, q_ae IMPLICIT NONE REAL(KIND=DP), INTENT(INOUT) :: deeq( nhm, nhm, nat, nspin ) INTEGER :: na, nt, ih, jh, ijh, m1, m2, ow1, ow2 ! ! DO na = 1, nat ! nt = ityp(na) ! ! skip atoms without Hubbard U IF ( Hubbard_U(nt)==0.D0 .AND. Hubbard_alpha(nt)==0.D0 ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 ! ow1 = oatwfc(na)+m1 ow2 = oatwfc(na)+m2 deeq(ih,jh,na,1:nspin) = deeq(ih,jh,na,1:nspin) + & v%ns(m1,m2,1:nspin,na)*q_ae(ow1,ih,na)*q_ae(ow2,jh,na) ! ENDDO ENDDO ! deeq(jh,ih,na,1:nspin) = deeq(ih,jh,na,1:nspin) ! ENDDO ENDDO ! ENDDO ! END SUBROUTINE add_vhub_to_deeq espresso-5.0.2/PW/src/force_us.f900000644000700200004540000003524212053145630015627 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE force_us( forcenl ) !---------------------------------------------------------------------------- ! ! ... nonlocal potential contribution to forces ! ... wrapper ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE cell_base, ONLY : at, bg, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE klist, ONLY : nks, xk, ngk USE gvect, ONLY : g USE uspp, ONLY : nkb, vkb, qq, deeq, qq_so, deeq_nc USE uspp_param, ONLY : upf, nh, newpseudo, nhm USE wvfct, ONLY : nbnd, npw, npwx, igk, wg, et USE lsda_mod, ONLY : lsda, current_spin, isk, nspin USE symme, ONLY : symvector USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : npol, noncolin USE spin_orb, ONLY : lspinorb USE io_files, ONLY : iunwfc, nwordwfc, iunigk USE buffers, ONLY : get_buffer USE becmod, ONLY : bec_type, becp, allocate_bec_type, deallocate_bec_type USE mp_global, ONLY : inter_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum, mp_get_comm_null ! IMPLICIT NONE ! ! ... the dummy variable ! REAL(DP) :: forcenl(3,nat) ! output: the nonlocal contribution ! CALL allocate_bec_type ( nkb, nbnd, becp, intra_bgrp_comm ) ! IF ( gamma_only ) THEN ! CALL force_us_gamma( forcenl ) ! ELSE ! CALL force_us_k( forcenl ) ! END IF ! CALL deallocate_bec_type ( becp ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE force_us_gamma( forcenl ) !----------------------------------------------------------------------- ! ! ... calculation at gamma ! USE becmod, ONLY : calbec IMPLICIT NONE ! REAL(DP) :: forcenl(3,nat) TYPE(bec_type) :: rdbecp (3) ! auxiliary variable, contains COMPLEX(DP), ALLOCATABLE :: vkb1(:,:) ! auxiliary variable contains g*|beta> REAL(DP) :: ps INTEGER :: ik, ipol, ibnd, ibnd_loc, ig, ih, jh, na, nt, ikb, jkb, ijkb0 ! counters ! ! ... Important notice about parallelization over the band group of processors: ! ... 1) internally, "calbec" parallelises on plane waves over the band group ! ... 2) the results of "calbec" are distributed across processors of the band ! ... group: the band index of becp, rdbecp is distributed ! ... 3) the band group is subsequently used to parallelize over bands ! forcenl(:,:) = 0.D0 ! DO ipol = 1, 3 CALL allocate_bec_type ( nkb, nbnd, rdbecp(ipol), intra_bgrp_comm ) END DO ALLOCATE( vkb1( npwx, nkb ) ) ! IF ( nks > 1 ) REWIND iunigk ! ! ... the forces are a sum over the K points and over the bands ! DO ik = 1, nks IF ( lsda ) current_spin = isk(ik) ! npw = ngk (ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) END IF ! CALL calbec ( npw, vkb, evc, becp ) ! DO ipol = 1, 3 DO jkb = 1, nkb !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) DO ig = 1, npw vkb1(ig,jkb) = vkb(ig,jkb) * (0.D0,-1.D0) * g(ipol,igk(ig)) END DO !$OMP END PARALLEL DO END DO ! CALL calbec ( npw, vkb1, evc, rdbecp(ipol) ) ! END DO ! ! ... from now on, sums over bands are parallelized over the band group ! ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih DO ibnd_loc = 1, becp%nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 ps = deeq(ih,ih,na,current_spin) - & et(ibnd,ik) * qq(ih,ih,nt) DO ipol = 1, 3 forcenl(ipol,na) = forcenl(ipol,na) - & ps * wg(ibnd,ik) * 2.D0 * tpiba * & rdbecp(ipol)%r(ikb,ibnd_loc) *becp%r(ikb,ibnd_loc) END DO END DO ! IF ( upf(nt)%tvanp .OR. newpseudo(nt) ) THEN ! ! ... in US case there is a contribution for jh<>ih. ! ... We use here the symmetry in the interchange ! ... of ih and jh ! DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh DO ibnd_loc = 1, becp%nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 ps = deeq(ih,jh,na,current_spin) - & et(ibnd,ik) * qq(ih,jh,nt) DO ipol = 1, 3 forcenl(ipol,na) = forcenl(ipol,na) - & ps * wg(ibnd,ik) * 2.d0 * tpiba * & (rdbecp(ipol)%r(ikb,ibnd_loc) *becp%r(jkb,ibnd_loc) + & rdbecp(ipol)%r(jkb,ibnd_loc) *becp%r(ikb,ibnd_loc) ) END DO END DO END DO END IF END DO ijkb0 = ijkb0 + nh(nt) END IF END DO END DO END DO ! IF( becp%comm /= mp_get_comm_null() ) CALL mp_sum( forcenl, becp%comm ) ! DEALLOCATE( vkb1 ) DO ipol = 1, 3 CALL deallocate_bec_type ( rdbecp(ipol) ) END DO ! ! ... The total D matrix depends on the ionic position via the ! ... augmentation part \int V_eff Q dr, the term deriving from the ! ... derivative of Q is added in the routine addusforce ! CALL addusforce( forcenl ) ! ! ... collect contributions across pools (sum over k-points) ! CALL mp_sum( forcenl, inter_pool_comm ) ! ! ... Since our summation over k points was only on the irreducible ! ... BZ we have to symmetrize the forces ! CALL symvector ( nat, forcenl ) ! RETURN ! END SUBROUTINE force_us_gamma ! !----------------------------------------------------------------------- SUBROUTINE force_us_k( forcenl ) !----------------------------------------------------------------------- ! USE becmod, ONLY : calbec IMPLICIT NONE ! REAL(DP) :: forcenl(3,nat) COMPLEX(DP), ALLOCATABLE :: dbecp(:,:,:), dbecp_nc(:,:,:,:) ! auxiliary variable contains and COMPLEX(DP), ALLOCATABLE :: vkb1(:,:) ! auxiliary variable contains g*|beta> COMPLEX(DP) :: psc(2,2), fac COMPLEX(DP), ALLOCATABLE :: deff_nc(:,:,:,:) REAL(DP), ALLOCATABLE :: deff(:,:,:) REAL(DP) :: ps INTEGER :: ik, ipol, ibnd, ig, ih, jh, na, nt, ikb, jkb, ijkb0, & is, js, ijs ! counters ! ! forcenl(:,:) = 0.D0 ! IF (noncolin) then ALLOCATE( dbecp_nc(nkb,npol,nbnd,3) ) ALLOCATE( deff_nc(nhm,nhm,nat,nspin) ) ELSE ALLOCATE( dbecp( nkb, nbnd, 3 ) ) ALLOCATE( deff(nhm,nhm,nat) ) ENDIF ALLOCATE( vkb1( npwx, nkb ) ) ! IF ( nks > 1 ) REWIND iunigk ! ! ... the forces are a sum over the K points and the bands ! DO ik = 1, nks IF ( lsda ) current_spin = isk(ik) ! npw = ngk(ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) END IF ! CALL calbec ( npw, vkb, evc, becp) ! DO ipol = 1, 3 DO jkb = 1, nkb !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) DO ig = 1, npw vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk(ig)) END DO !$OMP END PARALLEL DO END DO ! IF (noncolin) THEN IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd*npol, npw, ( 1.D0, 0.D0 ),& vkb1, npwx, evc, npwx, ( 0.D0, 0.D0 ), & dbecp_nc(1,1,1,ipol), nkb ) ELSE IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd, npw, ( 1.D0, 0.D0 ), & vkb1, npwx, evc, npwx, ( 0.D0, 0.D0 ), & dbecp(1,1,ipol), nkb ) END IF END DO ! DO ibnd = 1, nbnd IF (noncolin) THEN CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE CALL compute_deff(deff,et(ibnd,ik)) ENDIF fac=wg(ibnd,ik)*tpiba ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih IF (noncolin) THEN DO ipol=1,3 ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 forcenl(ipol,na) = forcenl(ipol,na)- & deff_nc(ih,ih,na,ijs)*fac*( & CONJG(dbecp_nc(ikb,is,ibnd,ipol))* & becp%nc(ikb,js,ibnd)+ & CONJG(becp%nc(ikb,is,ibnd))* & dbecp_nc(ikb,js,ibnd,ipol) ) END DO END DO END DO ELSE DO ipol=1,3 forcenl(ipol,na) = forcenl(ipol,na) - & 2.D0 * fac * deff(ih,ih,na)*& DBLE( CONJG( dbecp(ikb,ibnd,ipol) ) * & becp%k(ikb,ibnd) ) END DO END IF ! IF ( upf(nt)%tvanp .OR. newpseudo(nt) ) THEN ! ! ... in US case there is a contribution for jh<>ih. ! ... We use here the symmetry in the interchange ! ... of ih and jh ! DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh IF (noncolin) THEN DO ipol=1,3 ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 forcenl(ipol,na)=forcenl(ipol,na)- & deff_nc(ih,jh,na,ijs)*fac*( & CONJG(dbecp_nc(ikb,is,ibnd,ipol))* & becp%nc(jkb,js,ibnd)+ & CONJG(becp%nc(ikb,is,ibnd))* & dbecp_nc(jkb,js,ibnd,ipol))- & deff_nc(jh,ih,na,ijs)*fac*( & CONJG(dbecp_nc(jkb,is,ibnd,ipol))* & becp%nc(ikb,js,ibnd)+ & CONJG(becp%nc(jkb,is,ibnd))* & dbecp_nc(ikb,js,ibnd,ipol) ) END DO END DO END DO ELSE DO ipol = 1, 3 forcenl(ipol,na) = forcenl (ipol,na) - & 2.D0 * fac * deff(ih,jh,na)* & DBLE( CONJG( dbecp(ikb,ibnd,ipol) ) * & becp%k(jkb,ibnd) + & dbecp(jkb,ibnd,ipol) * & CONJG( becp%k(ikb,ibnd) ) ) END DO END IF END DO !jh END IF ! tvanp END DO ! ih = 1, nh(nt) ijkb0 = ijkb0 + nh(nt) END IF ! ityp(na) == nt END DO ! nat END DO ! ntyp END DO ! nbnd END DO ! nks ! CALL mp_sum( forcenl , intra_bgrp_comm ) ! DEALLOCATE( vkb1 ) IF (noncolin) THEN DEALLOCATE( dbecp_nc ) DEALLOCATE( deff_nc ) ELSE DEALLOCATE( dbecp ) DEALLOCATE( deff ) ENDIF ! ! ... The total D matrix depends on the ionic position via the ! ... augmentation part \int V_eff Q dr, the term deriving from the ! ... derivative of Q is added in the routine addusforce ! CALL addusforce( forcenl ) ! ! ! ... collect contributions across pools ! CALL mp_sum( forcenl, inter_pool_comm ) ! ! ... Since our summation over k points was only on the irreducible ! ... BZ we have to symmetrize the forces. ! CALL symvector ( nat, forcenl ) ! RETURN ! END SUBROUTINE force_us_k ! END SUBROUTINE force_us espresso-5.0.2/PW/src/stop_run.f900000644000700200004540000000461112053145627015675 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE stop_run( lflag ) !---------------------------------------------------------------------------- ! ! ... Close all files and synchronize processes before stopping. ! ... Called at the end of the run with flag = .TRUE. (removes 'restart') ! ... or during execution with flag = .FALSE. (does not remove 'restart') ! USE io_global, ONLY : ionode USE mp_global, ONLY : mp_global_end USE environment, ONLY : environment_end USE io_files, ONLY : iuntmp, seqopn USE image_io_routines, ONLY : io_image_stop ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lflag LOGICAL :: exst, opnd ! ! ! ! ... iunwfc contains wavefunctions and is kept open during ! ... the execution - close the file and save it (or delete it ! ... if the wavefunctions are already stored in the .save file) ! IF (lflag ) THEN CALL seqopn( iuntmp, 'restart', 'UNFORMATTED', exst ) CLOSE( UNIT = iuntmp, STATUS = 'DELETE' ) ENDIF IF ( lflag .AND. ionode ) THEN ! ! ... all other files must be reopened and removed ! CALL seqopn( iuntmp, 'update', 'FORMATTED', exst ) CLOSE( UNIT = iuntmp, STATUS = 'DELETE' ) ! CALL seqopn( iuntmp, 'para', 'FORMATTED', exst ) CLOSE( UNIT = iuntmp, STATUS = 'DELETE' ) ! END IF ! CALL close_files(lflag) ! CALL print_clock_pw() ! CALL environment_end( 'PWSCF' ) ! CALL io_image_stop() ! CALL mp_global_end () ! CALL clean_pw( .TRUE. ) ! IF ( lflag ) THEN ! STOP ! ELSE ! STOP 1 ! END IF ! END SUBROUTINE stop_run ! !---------------------------------------------------------------------------- SUBROUTINE closefile() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout ! ! ... Close all files and synchronize processes before stopping ! ... Called by "sigcatch" when it receives a signal ! WRITE( stdout,'(5X,"Signal Received, stopping ... ")') ! CALL stop_run( .FALSE. ) ! RETURN ! END SUBROUTINE closefile espresso-5.0.2/PW/src/rotate_wfc_k.f900000644000700200004540000002315512053145630016471 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rotate_wfc_k( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Serial version of rotate_wfc for colinear, k-point calculations ! USE kinds, ONLY : DP USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! number of spin polarizations LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... local variables ! INTEGER :: kdim, kdmx COMPLEX(DP), ALLOCATABLE :: aux(:,:), hc(:,:), sc(:,:), vc(:,:) REAL(DP), ALLOCATABLE :: en(:) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ! ALLOCATE( aux(kdmx, nstart ) ) ALLOCATE( hc( nstart, nstart) ) ALLOCATE( sc( nstart, nstart) ) ALLOCATE( vc( nstart, nstart) ) ALLOCATE( en( nstart ) ) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! call ZGEMM( 'C', 'N', nstart, nstart, kdim, ( 1.D0, 0.D0 ), psi, kdmx, aux, kdmx, ( 0.D0, 0.D0 ), hc, nstart ) ! CALL mp_sum( hc , intra_bgrp_comm ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) ! CALL ZGEMM( 'C', 'N', nstart, nstart, kdim, ( 1.D0, 0.D0 ), psi, kdmx, aux, kdmx, ( 0.D0, 0.D0 ), sc, nstart ) ! ELSE ! CALL ZGEMM( 'C', 'N', nstart, nstart, kdim, ( 1.D0, 0.D0 ), psi, kdmx, psi, kdmx, ( 0.D0, 0.D0 ), sc, nstart ) ! END IF ! CALL mp_sum( sc , intra_bgrp_comm ) ! ! ... Diagonalize ! CALL cdiaghg( nstart, nbnd, hc, sc, nstart, en, vc ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL ZGEMM( 'N', 'N', kdim, nbnd, nstart, ( 1.D0, 0.D0 ), psi, kdmx, vc, nstart, ( 0.D0, 0.D0 ), aux, kdmx ) ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( en ) DEALLOCATE( vc ) DEALLOCATE( sc ) DEALLOCATE( hc ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE rotate_wfc_k ! ! !---------------------------------------------------------------------------- SUBROUTINE protate_wfc_k( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Parallel version of rotate_wfc for colinear, k-point calculations ! ... Subroutine with distributed matrices, written by Carlo Cavazzoni ! USE kinds, ONLY : DP USE mp_global, ONLY : intra_bgrp_comm, & nbgrp, nproc_bgrp, me_bgrp, root_bgrp, & ortho_comm, np_ortho, me_ortho, ortho_comm_id,& leg_ortho USE descriptors, ONLY : descla_init , la_descriptor USE parallel_toolkit, ONLY : zsqmred, zsqmher, zsqmdst USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER :: npw, npwx, nstart, nbnd, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! number of spin polarizations LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... local variables ! INTEGER :: kdim, kdmx COMPLEX(DP), ALLOCATABLE :: aux(:,:), hc(:,:), sc(:,:), vc(:,:) REAL(DP), ALLOCATABLE :: en(:) ! TYPE(la_descriptor) :: desc ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra TYPE(la_descriptor), ALLOCATABLE :: desc_ip( :, : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! ALLOCATE( desc_ip( np_ortho(1), np_ortho(2) ) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ) ) ! CALL desc_init( nstart, desc, desc_ip ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ! ALLOCATE( aux(kdmx, nstart ) ) ALLOCATE( hc( nx, nx) ) ALLOCATE( sc( nx, nx) ) ALLOCATE( vc( nx, nx) ) ALLOCATE( en( nstart ) ) aux=(0.0_DP,0.0_DP) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! CALL compute_distmat( hc, psi, aux ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) ! CALL compute_distmat( sc, psi, aux ) ! ELSE ! CALL compute_distmat( sc, psi, psi ) ! END IF ! ! ... Diagonalize ! CALL pcdiaghg( nstart, hc, sc, nx, en, vc, desc ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL refresh_evc() ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( en ) DEALLOCATE( vc ) DEALLOCATE( sc ) DEALLOCATE( hc ) DEALLOCATE( aux ) ! DEALLOCATE( desc_ip ) DEALLOCATE( rank_ip ) ! RETURN ! ! CONTAINS ! SUBROUTINE desc_init( nsiz, desc, desc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc TYPE(la_descriptor), INTENT(OUT) :: desc_ip(:,:) INTEGER :: i, j, rank INTEGER :: coor_ip( 2 ) ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 DO i = 0, desc%npr - 1 coor_ip( 1 ) = i coor_ip( 2 ) = j CALL descla_init( desc_ip(i+1,j+1), desc%n, desc%nx, & np_ortho, coor_ip, ortho_comm, 1 ) CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) COMPLEX(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = ( 0.0_DP, 0.0_DP ) ! DO ipc = 1, desc%npc ! loop on column procs ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! DO ipr = 1, ipc ! desc%npr ! ipc ! use symmetry for the loop on row procs ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL ZGEMM( 'C', 'N', nr, nc, kdim, ( 1.D0, 0.D0 ) , v(1,ir), kdmx, w(1,ic), kdmx, ( 0.D0, 0.D0 ), work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! CALL zsqmher( nstart, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! IF( ic <= nbnd ) THEN ! nc = min( nc, nbnd - ic + 1 ) ! beta = ( 0.D0, 0.D0 ) DO ipr = 1, desc%npr ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vc(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ( 1.D0, 0.D0 ), psi(1,ir), kdmx, vc, nx, beta, aux(1,ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ( 1.D0, 0.D0 ), psi(1,ir), kdmx, vtmp, nx, beta, aux(1,ic), kdmx ) END IF ! beta = ( 1.D0, 0.D0 ) END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc END SUBROUTINE protate_wfc_k espresso-5.0.2/PW/src/iweights.f900000644000700200004540000000273612053145627015655 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine iweights (nks, wk, nbnd, nelec, et, Ef, wg, is, isk) !-------------------------------------------------------------------- ! calculates weights for semiconductors and insulators ! (bands are either empty or filled) ! On output, Ef is the highest occupied Kohn-Sham level USE kinds USE noncollin_module, ONLY: noncolin USE mp, ONLY : mp_max USE mp_global, ONLY : inter_pool_comm implicit none ! integer, intent(in) :: nks, nbnd, is, isk(nks) real(DP), intent(in) :: wk (nks), et(nbnd, nks), nelec real(DP), intent(out) :: wg (nbnd, nks), Ef real(DP) :: degspin integer :: kpoint, ibnd degspin=2.d0 if (noncolin) degspin=1.d0 if (is /= 0) degspin = 1.d0 Ef = - 1.0d+20 do kpoint = 1, nks if (is /= 0) then if (isk(kpoint) .ne. is ) cycle end if do ibnd = 1, nbnd if (ibnd <= nint (nelec) / degspin) then wg (ibnd, kpoint) = wk (kpoint) Ef = MAX (Ef, et (ibnd, kpoint) ) else wg (ibnd, kpoint) = 0.d0 endif enddo enddo #ifdef __MPI ! ! find max across pools ! CALL mp_max( ef, inter_pool_comm ) #endif return end subroutine iweights espresso-5.0.2/PW/src/Makefile0000644000700200004540000001016112053145630015133 0ustar marsamoscm# Makefile for PW include ../../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules $(MOD_FLAG). PWOBJS = \ pwscf.o PWLIBS = \ a2fmod.o \ add_bfield.o \ add_efield.o \ add_vuspsi.o \ add_paw_to_deeq.o \ add_vhub_to_deeq.o \ addusdens.o \ addusforce.o \ addusstress.o \ allocate_fft.o \ allocate_fft_custom.o \ allocate_locpot.o \ allocate_nlpot.o \ allocate_wfc.o \ atomic_rho.o \ atomic_wfc.o \ average_pp.o \ acfdt_in_pw.o \ newd.o \ bp_mod.o \ bp_c_phase.o \ bp_calc_btq.o \ bp_qvan3.o \ bp_strings.o \ buffers.o \ c_bands.o \ c_phase_field.o \ orbm_kubo.o \ ccgdiagg.o \ cdiagh.o \ cdiaghg.o \ cegterg.o \ clean_pw.o \ close_files.o \ compute_becsum.o \ compute_deff.o \ compute_dip.o \ compute_rho.o \ compute_qdipol.o \ compute_qdipol_so.o \ compute_ux.o \ coset.o \ d_matrix.o \ data_structure.o \ data_structure_custom.o \ deriv_drhoc.o \ divide_class.o \ divide_class_so.o \ realus.o \ divide.o \ divide_et_impera.o \ dqvan2.o \ drhoc.o \ dvloc_of_g.o \ dynamics_module.o \ efermig.o \ efermit.o \ electrons.o \ eqvect.o \ esm.o \ ewald.o \ ewald_dipole.o \ exx.o \ find_group.o \ forces_bp_efield.o \ force_cc.o \ force_corr.o \ force_ew.o \ force_hub.o \ force_lc.o \ force_us.o \ forces.o \ g_psi.o \ g_psi_mod.o \ gen_at_dj.o \ gen_at_dy.o \ gen_us_dj.o \ gen_us_dy.o \ get_locals.o \ gk_sort.o \ gradcorr.o \ gweights.o \ g2_kin.o \ h_epsi_her_apply.o \ h_epsi_her_set.o \ h_1psi.o \ h_psi.o \ h_psi_meta.o \ hinit0.o \ hinit1.o \ init_ns.o \ init_q_aeps.o \ init_run.o \ init_us_1.o \ init_us_2.o \ init_at_1.o \ init_vloc.o \ input.o \ interpolate.o \ io_rho_xml.o \ irrek.o \ iweights.o \ start_k.o \ kpoint_grid.o \ lchk_tauxk.o \ make_pointlists.o \ makov_payne.o \ martyna_tuckerman.o \ memory_report.o \ mix_rho.o \ move_ions.o \ ms2.o \ multable.o \ n_plane_waves.o \ new_ns.o \ new_occ.o \ ns_adj.o \ nonloccorr.o \ non_scf.o \ offset_atom_wfc.o \ openfil.o \ orthoatwfc.o \ output_tau.o \ para.o \ paw_init.o \ paw_onecenter.o \ paw_symmetry.o \ plugin_initialization.o \ plugin_forces.o \ plus_u_full.o \ potinit.o \ print_clock_pw.o \ print_ks_energies.o \ punch.o \ pw_restart.o \ pwcom.o \ pw2blip.o \ pw2casino.o \ pw2casino_write.o \ qvan2.o \ rcgdiagg.o \ rdiagh.o \ rdiaghg.o \ read_conf_from_file.o \ read_file.o \ regterg.o \ remove_atomic_rho.o \ report_mag.o \ restart_from_file.o \ restart_in_electrons.o \ restart_in_ions.o \ rho2zeta.o \ rotate_wfc.o \ rotate_wfc_k.o \ rotate_wfc_gamma.o \ ruotaijk.o \ s_1psi.o \ s_psi.o \ save_in_cbands.o \ save_in_electrons.o \ save_in_ions.o \ scale_h.o \ scf_mod.o \ set_kplusq.o \ set_kup_and_kdw.o \ set_rhoc.o \ set_vrs.o \ setlocal.o \ setqf.o \ setup.o \ spinor.o \ sph_ind.o \ stop_run.o \ stres_cc.o \ stres_ewa.o \ stres_gradcorr.o \ stres_har.o \ stres_hub.o \ stres_knl.o \ stres_loc.o \ stres_us.o \ stres_nonloc_dft.o \ stress.o \ struct_fact.o \ sum_band.o \ sumkg.o \ sumkt.o \ summary.o \ symme.o \ symm_base.o \ symmetrize_at.o \ tabd.o \ transform_becsum_so.o \ transform_becsum_nc.o \ transform_qq_so.o \ trnvecc.o \ tweights.o \ update_pot.o \ usnldiag.o \ v_of_rho.o \ vcsmd.o \ vcsubs.o \ vhpsi.o \ vloc_of_g.o \ vloc_psi.o \ xk_wk_collect.o \ wfcinit.o \ write_ns.o \ wsweight.o \ weights.o \ ortho_wfc.o \ wannier_proj.o \ wannier_init.o \ wannier_check.o \ wannier_clean.o \ wannier_occ.o \ wannier_enrg.o \ QEMODS=../../Modules/libqemod.a TLDEPS=bindir mods libs liblapack libblas libenviron LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a all : tldeps pw.x generate_vdW_kernel_table.x pw.x : $(PWOBJS) libpw.a $(LIBOBJS) $(QEMODS) $(LD) $(LDFLAGS) -o $@ \ $(PWOBJS) libpw.a $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) libpw.a : $(PWLIBS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ tldeps: test -n "$(TLDEPS)" && ( cd ../.. ; $(MAKE) $(MFLAGS) $(TLDEPS) || exit 1) || : clean : - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L generate_vdW_kernel_table.x : libpw.a generate_vdW_kernel_table.o $(LD) $(LDFLAGS) -o $@ \ generate_vdW_kernel_table.o $(QEMODS) libpw.a $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) include make.depend # DO NOT DELETE espresso-5.0.2/PW/src/tweights.f900000644000700200004540000001520512053145627015663 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- subroutine tweights (nks, nspin, nbnd, nelec, ntetra, tetra, et, & ef, wg, is, isk ) !-------------------------------------------------------------------- ! ! ... calculates weights with the tetrahedron method (P.E.Bloechl) ! ... Generalization to noncollinear case courtesy of Yurii Timrov USE kinds implicit none ! I/O variables integer, intent(in) :: nks, nspin, nbnd, ntetra, tetra (4, ntetra) real(DP), intent(in) :: et (nbnd, nks), nelec real(DP), intent(out) :: wg (nbnd, nks), ef integer, intent(in) :: is, isk(nks) ! local variables real(DP), external :: efermit real(DP) :: e1, e2, e3, e4, c1, c2, c3, c4, etetra (4), dosef integer :: ik, ibnd, nt, nk, ns, i, kp1, kp2, kp3, kp4, itetra (4) integer :: nspin_lsda ! Calculate the Fermi energy ef ef = efermit (et, nbnd, nks, nelec, nspin, ntetra, tetra, is, isk) ! ! if efermit cannot find a sensible value for Ef it returns Ef=1d10 ! if (abs(ef) > 1.0d8) call errore ('tweights', 'bad Fermi energy ',1) ! do ik = 1, nks if (is /= 0) then if (isk(ik) .ne. is) cycle end if do ibnd = 1, nbnd wg (ibnd, ik) = 0.d0 enddo enddo IF ( nspin == 2 ) THEN nspin_lsda = 2 ELSE nspin_lsda = 1 END IF do ns = 1, nspin_lsda if (is /= 0) then if (ns .ne. is) cycle end if ! ! nk is used to select k-points with up (ns=1) or down (ns=2) spin ! if (ns.eq.1) then nk = 0 else nk = nks / 2 endif do nt = 1, ntetra do ibnd = 1, nbnd ! ! etetra are the energies at the vertexes of the nt-th tetrahedron ! do i = 1, 4 etetra (i) = et (ibnd, tetra (i, nt) + nk) enddo itetra (1) = 0 call hpsort (4, etetra, itetra) ! ! ...sort in ascending order: e1 < e2 < e3 < e4 ! e1 = etetra (1) e2 = etetra (2) e3 = etetra (3) e4 = etetra (4) ! ! kp1-kp4 are the irreducible k-points corresponding to e1-e4 ! kp1 = tetra (itetra (1), nt) + nk kp2 = tetra (itetra (2), nt) + nk kp3 = tetra (itetra (3), nt) + nk kp4 = tetra (itetra (4), nt) + nk ! ! calculate weights wg ! if (ef.ge.e4) then wg (ibnd, kp1) = wg (ibnd, kp1) + 0.25d0 / ntetra wg (ibnd, kp2) = wg (ibnd, kp2) + 0.25d0 / ntetra wg (ibnd, kp3) = wg (ibnd, kp3) + 0.25d0 / ntetra wg (ibnd, kp4) = wg (ibnd, kp4) + 0.25d0 / ntetra elseif (ef.lt.e4.and.ef.ge.e3) then c4 = 0.25d0 / ntetra * (e4 - ef) **3 / (e4 - e1) / (e4 - e2) & / (e4 - e3) dosef = 3.d0 / ntetra * (e4 - ef) **2 / (e4 - e1) / (e4 - e2) & / (e4 - e3) wg (ibnd, kp1) = wg (ibnd, kp1) + 0.25d0 / ntetra - c4 * & (e4 - ef) / (e4 - e1) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et & (ibnd, kp1) ) / 40.d0 wg (ibnd, kp2) = wg (ibnd, kp2) + 0.25d0 / ntetra - c4 * & (e4 - ef) / (e4 - e2) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et & (ibnd, kp2) ) / 40.d0 wg (ibnd, kp3) = wg (ibnd, kp3) + 0.25d0 / ntetra - c4 * & (e4 - ef) / (e4 - e3) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et & (ibnd, kp3) ) / 40.d0 wg (ibnd, kp4) = wg (ibnd, kp4) + 0.25d0 / ntetra - c4 * & (4.d0 - (e4 - ef) * (1.d0 / (e4 - e1) + 1.d0 / (e4 - e2) & + 1.d0 / (e4 - e3) ) ) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * & et (ibnd, kp4) ) / 40.d0 elseif (ef.lt.e3.and.ef.ge.e2) then c1 = 0.25d0 / ntetra * (ef - e1) **2 / (e4 - e1) / (e3 - e1) c2 = 0.25d0 / ntetra * (ef - e1) * (ef - e2) * (e3 - ef) & / (e4 - e1) / (e3 - e2) / (e3 - e1) c3 = 0.25d0 / ntetra * (ef - e2) **2 * (e4 - ef) / (e4 - e2) & / (e3 - e2) / (e4 - e1) dosef = 1.d0 / ntetra / (e3 - e1) / (e4 - e1) * (3.d0 * & (e2 - e1) + 6.d0 * (ef - e2) - 3.d0 * (e3 - e1 + e4 - e2) & * (ef - e2) **2 / (e3 - e2) / (e4 - e2) ) wg (ibnd, kp1) = wg (ibnd, kp1) + c1 + (c1 + c2) * (e3 - ef) & / (e3 - e1) + (c1 + c2 + c3) * (e4 - ef) / (e4 - e1) + dosef * & (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp1) ) / 40.d0 wg (ibnd, kp2) = wg (ibnd, kp2) + c1 + c2 + c3 + (c2 + c3) & * (e3 - ef) / (e3 - e2) + c3 * (e4 - ef) / (e4 - e2) + dosef * & (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp2) ) / 40.d0 wg (ibnd, kp3) = wg (ibnd, kp3) + (c1 + c2) * (ef - e1) & / (e3 - e1) + (c2 + c3) * (ef - e2) / (e3 - e2) + dosef * & (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp3) ) / 40.d0 wg (ibnd, kp4) = wg (ibnd, kp4) + (c1 + c2 + c3) * (ef - e1) & / (e4 - e1) + c3 * (ef - e2) / (e4 - e2) + dosef * (e1 + e2 + & e3 + e4 - 4.d0 * et (ibnd, kp4) ) / 40.d0 elseif (ef.lt.e2.and.ef.ge.e1) then c4 = 0.25d0 / ntetra * (ef - e1) **3 / (e2 - e1) / (e3 - e1) & / (e4 - e1) dosef = 3.d0 / ntetra * (ef - e1) **2 / (e2 - e1) / (e3 - e1) & / (e4 - e1) wg (ibnd, kp1) = wg (ibnd, kp1) + c4 * (4.d0 - (ef - e1) & * (1.d0 / (e2 - e1) + 1.d0 / (e3 - e1) + 1.d0 / (e4 - e1) ) ) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp1) ) / 40.d0 wg (ibnd, kp2) = wg (ibnd, kp2) + c4 * (ef - e1) / (e2 - e1) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp2) ) / 40.d0 wg (ibnd, kp3) = wg (ibnd, kp3) + c4 * (ef - e1) / (e3 - e1) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp3) ) / 40.d0 wg (ibnd, kp4) = wg (ibnd, kp4) + c4 * (ef - e1) / (e4 - e1) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp4) ) / 40.d0 endif enddo enddo enddo ! add correct spin normalization (2 for LDA, 1 for all other cases) IF ( nspin == 1 ) wg (:,1:nks) = wg (:,1:nks) * 2.d0 return end subroutine tweights espresso-5.0.2/PW/src/io_rho_xml.f900000644000700200004540000003004712053145627016165 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE io_rho_xml !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE xml_io_base, ONLY : create_directory, write_rho_xml, read_rho_xml ! PRIVATE ! PUBLIC :: write_rho, read_rho ! ! {read|write}_rho_only: read or write the real space charge density ! {read|write}_rho_general: as above, plus read or write ldaU ns coeffs ! and PAW becsum coeffs. INTERFACE write_rho MODULE PROCEDURE write_rho_only, write_rho_general END INTERFACE INTERFACE read_rho MODULE PROCEDURE read_rho_only, read_rho_general END INTERFACE CONTAINS SUBROUTINE write_rho_general( rho, nspin, extension ) USE paw_variables, ONLY : okpaw USE ldaU, ONLY : lda_plus_u USE funct, ONLY : dft_is_meta USE noncollin_module, ONLY : noncolin USE io_files, ONLY : iunocc, iunpaw, seqopn USE io_global, ONLY : ionode, ionode_id, stdout USE scf, ONLY : scf_type USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE TYPE(scf_type), INTENT(IN) :: rho INTEGER, INTENT(IN) :: nspin CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension LOGICAL :: lexist INTEGER :: ierr ! Use the equivalent routine to write real space density CALL write_rho_only( rho%of_r, nspin, extension ) ! Then write the other terms to separate files IF ( lda_plus_u ) THEN ! IF ( ionode ) THEN CALL seqopn( iunocc, 'occup', 'FORMATTED', lexist ) if (noncolin) then WRITE( iunocc, * , iostat = ierr) rho%ns_nc else WRITE( iunocc, * , iostat = ierr) rho%ns endif END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('write_rho_general', 'Writing ldaU ns', 1) IF ( ionode ) THEN CLOSE( UNIT = iunocc, STATUS = 'KEEP' ) ENDIF ! END IF ! IF ( okpaw ) THEN ! IF ( ionode ) THEN CALL seqopn( iunpaw, 'paw', 'FORMATTED', lexist ) WRITE( iunpaw, * , iostat = ierr) rho%bec END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('write_rho_general', 'Writing PAW becsum',1) IF ( ionode ) THEN CLOSE( UNIT = iunpaw, STATUS = 'KEEP' ) ENDIF ! END IF ! IF ( dft_is_meta() ) THEN WRITE(stdout,'(5x,"Warning: cannot save meta-gga kinetic terms: not implemented.")') ENDIF RETURN END SUBROUTINE write_rho_general SUBROUTINE read_rho_general( rho, nspin, extension ) USE paw_variables, ONLY : okpaw USE ldaU, ONLY : lda_plus_u USE noncollin_module, ONLY : noncolin USE funct, ONLY : dft_is_meta USE io_files, ONLY : iunocc, iunpaw, seqopn USE io_global, ONLY : ionode, ionode_id, stdout USE scf, ONLY : scf_type USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast, mp_sum ! IMPLICIT NONE TYPE(scf_type), INTENT(INOUT) :: rho INTEGER, INTENT(IN) :: nspin CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension LOGICAL :: lexist INTEGER :: ierr ! Use the equivalent routine to read real space density CALL read_rho_only( rho%of_r, nspin, extension ) ! IF ( lda_plus_u ) THEN ! ! The occupations ns also need to be read in order to build up ! the potential ! IF ( ionode ) THEN CALL seqopn( iunocc, 'occup', 'FORMATTED', lexist ) if (noncolin) then READ( UNIT = iunocc, FMT = *, iostat = ierr ) rho%ns_nc else READ( UNIT = iunocc, FMT = *, iostat = ierr ) rho%ns endif END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('read_rho_general', 'Reading ldaU ns', 1) IF ( ionode ) THEN CLOSE( UNIT = iunocc, STATUS = 'KEEP') ELSE rho%ns(:,:,:,:) = 0.D0 rho%ns_nc(:,:,:,:) = 0.D0 END IF if (noncolin) then CALL mp_sum(rho%ns_nc, intra_image_comm) else CALL mp_sum(rho%ns, intra_image_comm) endif END IF ! IF ( okpaw ) THEN ! ! Also the PAW coefficients are needed: ! IF ( ionode ) THEN CALL seqopn( iunpaw, 'paw', 'FORMATTED', lexist ) READ( UNIT = iunpaw, FMT = *, iostat=ierr ) rho%bec END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('read_rho_general', 'Reading PAW becsum',1) IF ( ionode ) THEN CLOSE( UNIT = iunpaw, STATUS = 'KEEP') ELSE rho%bec(:,:,:) = 0.D0 END IF CALL mp_sum(rho%bec, intra_image_comm) ! END IF ! IF ( dft_is_meta() ) THEN WRITE(stdout,'(5x,"Warning: cannot read meta-gga kinetic terms: not implemented.")') END IF RETURN END SUBROUTINE read_rho_general ! !------------------------------------------------------------------------ SUBROUTINE write_rho_only( rho, nspin, extension ) !------------------------------------------------------------------------ ! ! ... this routine writes the charge-density in xml format into the ! ... '.save' directory ! ... the '.save' directory is created if not already present ! USE io_files, ONLY : tmp_dir, prefix USE fft_base, ONLY : dfftp USE spin_orb, ONLY : domag USE io_global, ONLY : ionode USE mp_global, ONLY : intra_bgrp_comm, inter_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin) CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension ! CHARACTER(LEN=256) :: dirname, file_base CHARACTER(LEN=256) :: ext REAL(DP), ALLOCATABLE :: rhoaux(:) ! ! ext = ' ' ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ! CALL create_directory( dirname ) ! IF ( PRESENT( extension ) ) ext = '.' // TRIM( extension ) ! file_base = TRIM( dirname ) // '/charge-density' // TRIM( ext ) ! IF ( nspin == 1 ) THEN ! CALL write_rho_xml( file_base, rho(:,1), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! ELSE IF ( nspin == 2 ) THEN ! ALLOCATE( rhoaux( dfftp%nnr ) ) ! rhoaux(:) = rho(:,1) + rho(:,2) ! CALL write_rho_xml( file_base, rhoaux, dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! file_base = TRIM( dirname ) // '/spin-polarization' // TRIM( ext ) ! rhoaux(:) = rho(:,1) - rho(:,2) ! CALL write_rho_xml( file_base, rhoaux, dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! DEALLOCATE( rhoaux ) ! ELSE IF ( nspin == 4 ) THEN ! CALL write_rho_xml( file_base, rho(:,1), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! IF (domag) THEN file_base = TRIM( dirname ) // '/magnetization.x' // TRIM( ext ) ! CALL write_rho_xml( file_base, rho(:,2), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! file_base = TRIM( dirname ) // '/magnetization.y' // TRIM( ext ) ! CALL write_rho_xml( file_base, rho(:,3), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! file_base = TRIM( dirname ) // '/magnetization.z' // TRIM( ext ) ! CALL write_rho_xml( file_base, rho(:,4), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) END IF END IF ! RETURN ! END SUBROUTINE write_rho_only ! !------------------------------------------------------------------------ SUBROUTINE read_rho_only( rho, nspin, extension ) !------------------------------------------------------------------------ ! ! ... this routine reads the charge-density in xml format from the ! ... files saved into the '.save' directory ! USE io_files, ONLY : tmp_dir, prefix USE fft_base, ONLY : dfftp USE spin_orb, ONLY : domag USE mp_global, ONLY : intra_bgrp_comm, inter_bgrp_comm, root_pool, me_pool USE mp_global, ONLY : intra_image_comm USE io_global, ONLY : ionode ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(OUT) :: rho(dfftp%nnr,nspin) CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension ! CHARACTER(LEN=256) :: dirname, file_base CHARACTER(LEN=256) :: ext REAL(DP), ALLOCATABLE :: rhoaux(:) ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ext = ' ' IF ( PRESENT( extension ) ) ext = '.' // TRIM( extension ) file_base = TRIM( dirname ) // '/charge-density' // TRIM( ext ) ! CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,1) ) ! IF ( nspin == 2 ) THEN ! rho(:,2) = rho(:,1) ! ALLOCATE( rhoaux( dfftp%nnr ) ) ! file_base = TRIM( dirname ) // '/spin-polarization' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rhoaux ) ! rho(:,1) = 0.5D0*( rho(:,1) + rhoaux(:) ) rho(:,2) = 0.5D0*( rho(:,2) - rhoaux(:) ) ! DEALLOCATE( rhoaux ) ! ELSE IF ( nspin == 4 ) THEN ! IF ( domag ) THEN ! file_base = TRIM( dirname ) // '/magnetization.x' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,2) ) ! file_base = TRIM( dirname ) // '/magnetization.y' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,3) ) ! file_base = TRIM( dirname ) // '/magnetization.z' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,4) ) ! ELSE ! rho(:,2:4) = 0.D0 ! END IF END IF ! RETURN ! END SUBROUTINE read_rho_only ! END MODULE io_rho_xml espresso-5.0.2/PW/src/init_run.f900000644000700200004540000001001512053145627015646 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE init_run() !---------------------------------------------------------------------------- ! USE klist, ONLY : nkstot USE symme, ONLY : sym_rho_init USE wvfct, ONLY : nbnd, et, wg, btype USE control_flags, ONLY : lmd, gamma_only USE cell_base, ONLY : at, bg USE cellmd, ONLY : lmovecell USE dynamics_module, ONLY : allocate_dyn_vars USE paw_variables, ONLY : okpaw USE paw_init, ONLY : paw_init_onecenter, allocate_paw_internals #ifdef __MPI USE paw_init, ONLY : paw_post_init #endif USE bp, ONLY : allocate_bp_efield, bp_global_map USE fft_base, ONLY : dffts USE funct, ONLY : dft_is_hybrid #ifdef __ENVIRON USE fft_base, ONLY : dfftp USE environ_base, ONLY : do_environ #endif USE recvec_subs, ONLY : ggen USE wannier_new, ONLY : use_wannier USE dfunct, ONLY : newd USE esm, ONLY : do_comp_esm, esm_ggen_2d ! IMPLICIT NONE ! ! CALL start_clock( 'init_run' ) ! ! ... calculate limits of some indices, used in subsequent allocations ! CALL pre_init() ! ! ... allocate memory for G- and R-space fft arrays ! CALL allocate_fft() ! IF ( dft_is_hybrid() .AND. dffts%have_task_groups ) & CALL errore ('init_run', '-ntg option incompatible with EXX',1) ! ! ... generate reciprocal-lattice vectors and fft indices ! CALL ggen ( gamma_only, at, bg ) IF (do_comp_esm) CALL esm_ggen_2d () CALL gshells ( lmovecell ) ! ! ... variable initialization for parallel symmetrization ! CALL sym_rho_init (gamma_only ) ! CALL summary() ! ! ... allocate memory for all other arrays (potentials, wavefunctions etc) ! CALL allocate_nlpot() IF (okpaw) THEN CALL allocate_paw_internals() CALL paw_init_onecenter() ENDIF CALL allocate_locpot() CALL allocate_wfc() CALL allocate_bp_efield() CALL bp_global_map() #ifdef __ENVIRON IF ( do_environ ) CALL environ_initbase( dfftp%nnr ) #endif ! CALL memory_report() ! ALLOCATE( et( nbnd, nkstot ) , wg( nbnd, nkstot ), btype( nbnd, nkstot ) ) ! et(:,:) = 0.D0 wg(:,:) = 0.D0 ! btype(:,:) = 1 ! CALL openfil() ! CALL hinit0() ! CALL potinit() ! CALL newd() ! CALL wfcinit() ! IF(use_wannier) CALL wannier_init() ! #ifdef __MPI ! Cleanup PAW arrays that are only used for init IF (okpaw) CALL paw_post_init() ! only parallel! #endif ! IF ( lmd ) CALL allocate_dyn_vars() ! CALL stop_clock( 'init_run' ) ! RETURN ! END SUBROUTINE init_run ! !---------------------------------------------------------------------------- SUBROUTINE pre_init() !---------------------------------------------------------------------------- ! USE ions_base, ONLY : nat, nsp, ityp USE uspp_param, ONLY : upf, lmaxkb, nh, nhm, nbetam USE uspp, ONLY : nkb, nkbus IMPLICIT NONE INTEGER :: na, nt, nb ! ! calculate the number of beta functions for each atomic type ! lmaxkb = - 1 DO nt = 1, nsp ! nh (nt) = 0 ! ! do not add any beta projector if pseudo in 1/r fmt (AF) IF ( upf(nt)%tcoulombp ) CYCLE ! DO nb = 1, upf(nt)%nbeta nh (nt) = nh (nt) + 2 * upf(nt)%lll(nb) + 1 lmaxkb = MAX (lmaxkb, upf(nt)%lll(nb) ) ENDDO ! ENDDO ! ! calculate the maximum number of beta functions ! nhm = MAXVAL (nh (1:nsp)) nbetam = MAXVAL (upf(:)%nbeta) ! ! calculate the number of beta functions of the solid ! nkb = 0 nkbus = 0 do na = 1, nat nt = ityp(na) nkb = nkb + nh (nt) if (upf(nt)%tvanp) nkbus = nkbus + nh (nt) enddo END SUBROUTINE pre_init espresso-5.0.2/PW/src/allocate_fft_custom.f900000644000700200004540000000210512053145630020027 0ustar marsamoscm! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- ! This subroutine allocates all of the fft stuff for the custom defined grid ! SUBROUTINE allocate_fft_custom(fc) USE kinds, ONLY : DP USE gvect, ONLY : g, mill USE cell_base, ONLY : at, bg, tpiba2 USE control_flags, ONLY : gamma_only USE fft_custom, ONLY : fft_cus, set_custom_grid, ggent USE grid_subroutines, ONLY : realspace_grid_init_custom IMPLICIT NONE TYPE (fft_cus) :: fc INTEGER :: ng,n1t,n2t,n3t IF(fc%initalized) RETURN ! fc%gcutmt = fc%dual_t*fc%ecutt / tpiba2 ! CALL realspace_grid_init_custom(fc%dfftt, at, bg, fc%gcutmt) ! CALL data_structure_custom(fc, .TRUE.) ! fc%initalized = .true. ! CALL ggent(fc) RETURN END SUBROUTINE allocate_fft_custom espresso-5.0.2/PW/src/compute_qdipol_so.f900000644000700200004540000000434312053145627017553 0ustar marsamoscm ! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE compute_qdipol_so(dpqq,dpqq_so) !---------------------------------------------------------------------- ! ! This routine multiplies the dpqq coefficients for the ! spin orbit fcoef coefficients ! USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : upf, nh, nhm USE spin_orb, ONLY : lspinorb, fcoef ! IMPLICIT NONE REAL(DP) :: dpqq( nhm, nhm, 3, ntyp) COMPLEX(DP) :: dpqq_so( nhm, nhm, nspin, 3, ntyp) INTEGER :: ipol ! ! here a few local variables ! INTEGER :: nt, ih, jh, kh, lh, ijs, is1, is2, is dpqq_so=(0.d0,0.d0) DO ipol=1,3 DO nt = 1, ntyp IF ( upf(nt)%tvanp ) THEN IF (upf(nt)%has_so) THEN DO ih=1,nh(nt) DO jh=1,nh(nt) DO kh=1,nh(nt) DO lh=1,nh(nt) ijs=0 DO is1=1,2 DO is2=1,2 ijs=ijs+1 DO is=1,2 dpqq_so(kh,lh,ijs,ipol,nt)=dpqq_so(kh,lh,ijs,ipol,nt)& +dpqq(ih,jh,ipol,nt)*fcoef(kh,ih,is1,is,nt) & *fcoef(jh,lh,is,is2,nt) END DO END DO END DO END DO END DO END DO END DO ELSE DO ih = 1, nh (nt) DO jh = ih, nh (nt) IF (lspinorb) THEN dpqq_so (ih, jh, 1, ipol, nt) = dpqq( ih, jh, ipol, nt) dpqq_so (jh, ih, 1, ipol, nt) = dpqq_so (ih, jh, 1, ipol, nt) dpqq_so (ih, jh, 4, ipol, nt) = dpqq_so (ih, jh, 1, ipol, nt) dpqq_so (jh, ih, 4, ipol, nt) = dpqq_so (ih, jh, 4, ipol, nt) END IF END DO END DO END IF END IF END DO END DO RETURN END SUBROUTINE compute_qdipol_so espresso-5.0.2/PW/src/punch.f900000644000700200004540000000216312053145630015133 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE punch( what ) !---------------------------------------------------------------------------- ! ! ... This routine is called at the end of the run to save to a file ! ... the information needed for further processing (phonon etc.) ! USE io_global, ONLY : stdout USE io_files, ONLY : prefix, iunpun USE control_flags, ONLY : io_level USE pw_restart, ONLY : pw_writefile USE a2F, ONLY : la2F, a2Fsave ! IMPLICIT NONE ! CHARACTER(LEN=*) :: what ! ! IF (io_level < 0 ) RETURN ! WRITE( UNIT = stdout, FMT = '(/,5X,"Writing output data file ",A)' ) & TRIM( prefix ) // '.save' ! iunpun = 4 ! CALL pw_writefile( TRIM( what ) ) ! IF ( la2F ) CALL a2Fsave() ! RETURN ! END SUBROUTINE punch espresso-5.0.2/PW/src/lchk_tauxk.f900000644000700200004540000000336012053145630016153 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine check_atoms (nvec, vec, trmat) !----------------------------------------------------------------------- ! ! This routine tests that the atomic coordinates (or k-points) ! are different and not related by a lattice translation ! ! USE kinds implicit none ! real(DP), parameter :: accep=1.d-5 ! integer, intent(in) :: nvec ! nvec : number of atomic positions (or k-points) real(DP), intent(in) :: vec (3, nvec), trmat (3, 3) ! vec : cartesian coordinates of atomic positions (or k-points) ! trmat: transformation matrix to crystal axis ! ( = bg , basis of the real-space lattice, for atoms ! = at , basis of the rec.-space lattice, for k-points ) ! integer :: nv1, nv2 real(DP), allocatable :: vaux(:,:) real(DP) :: zero (3) = 0.0_dp character(len=30) :: message logical, external :: eqvect ! ! Copy input positions and transform them to crystal units ! allocate ( vaux(3,nvec) ) vaux = vec call cryst_to_cart ( nvec, vaux, trmat, -1) ! ! Test that all the atomic positions (or k-points) are different ! do nv1 = 1, nvec-1 do nv2 = nv1+1, nvec if ( eqvect ( vaux (1,nv1), vaux (1,nv2), zero, accep ) ) then write (message,'("atoms #",i4," and #",i4," overlap!")') nv1, nv2 call errore ( 'check_atoms', message, 1) end if enddo enddo ! deallocate(vaux) return end subroutine check_atoms espresso-5.0.2/PW/src/nonloccorr.f900000644000700200004540000000262212053145630016174 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE nonloccorr( rho, rho_core, enl, vnl, v ) !---------------------------------------------------------------------------- ! USE constants, ONLY : e2 USE kinds, ONLY : DP USE gvect, ONLY : nl, ngm, g USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat USE funct, ONLY : dft_is_nonlocc, get_inlc, nlc USE spin_orb, ONLY : domag USE noncollin_module, ONLY : ux USE wavefunctions_module, ONLY : psic USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin), rho_core(dfftp%nnr) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr,nspin) REAL(DP), INTENT(INOUT) :: vnl, enl ! INTEGER :: k, ipol, is, nspin0, ir, jpol ! ! REAL(DP), PARAMETER :: epsr = 1.D-6, epsg = 1.D-10 ! ! IF ( .NOT. dft_is_nonlocc() ) RETURN ! ! Everything is summed inside the proc ! CALL nlc( rho, rho_core, enl, vnl, v ) ! RETURN ! END SUBROUTINE nonloccorr espresso-5.0.2/PW/src/ms2.f900000644000700200004540000000424412053145630014521 0ustar marsamoscmMODULE ms2 ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . #if defined(__MS2) ! This code is a safety net for people who accidentaly or due to ! curiosity try to compile pw.x with the __MS2 preprocessing symbol ! defined. ! ! Since the use of error pragmas is not secure, this module will ! allow the user to reach the end of the compile process safely, and ! then present her/him a descriptive error at runtime. ! ! Note that this measure doesn't prevent users from running ph.x (or ! other tools) with -D__MS2, which should produce no harm, since the ! net result will just be that MS2 related options in the ! configuration will be ignored. USE iso_c_binding USE mp_global, ONLY : root, world_comm, mpime USE mp, ONLY : mp_bcast, mp_barrier IMPLICIT NONE PUBLIC LOGICAL :: MS2_enabled = .FALSE. ! Enable MS2 CHARACTER(LEN=256) :: MS2_handler = ' ' ! Arguments to be passed to the MS2 transport CONTAINS SUBROUTINE ms2_initialization() PRINT *, "*******************************************************************" PRINT *, "* This code was compiled with the __MS2 symbol defined manually *" PRINT *, "* which is not the correct way to configure the MS2 system. *" PRINT *, "* *" PRINT *, "* In order to do so, you need to properly install the MS2 package *" PRINT *, "* and library, patch Quantum ESPRESSO and only then, compile *" PRINT *, "*******************************************************************" STOP END SUBROUTINE ms2_initialization SUBROUTINE set_positions() PRINT *, "Placeholder for the MS2 project. This code shouldn't be used at all!" END SUBROUTINE set_positions SUBROUTINE ms2ec_add_esf() PRINT *, "Placeholder for the MS2 project. This code shouldn't be used at all!" END SUBROUTINE ms2ec_add_esf SUBROUTINE return_forces() PRINT *, "Placeholder for the MS2 project. This code shouldn't be used at all!" END SUBROUTINE return_forces #endif END MODULE ms2 espresso-5.0.2/PW/src/qvan2.f900000644000700200004540000001070712053145627015056 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine qvan2 (ngy, ih, jh, np, qmod, qg, ylmk0) !----------------------------------------------------------------------- ! ! This routine computes the fourier transform of the Q functions ! The interpolation table for the radial fourier trasform is stored ! in qrad. ! ! The formula implemented here is ! ! q(g,i,j) = sum_lm (-i)^l ap(lm,i,j) yr_lm(g^) qrad(g,l,i,j) ! ! USE kinds, ONLY: DP USE us, ONLY: dq, qrad USE uspp_param, ONLY: lmaxq, nbetam USE uspp, ONLY: nlx, lpl, lpx, ap, indv, nhtolm implicit none ! ! Input variables ! integer :: ngy, ih, jh, np ! ngy : number of G vectors to compute ! ih, jh: first and second index of Q ! np : index of pseudopotentials ! real(DP) :: ylmk0 (ngy, lmaxq * lmaxq), qmod (ngy) ! ylmk0 : spherical harmonics ! qmod : moduli of the q+g vectors ! ! output: the fourier transform of interest ! real(DP) :: qg (2,ngy) ! ! here the local variables ! real (DP) :: sig ! the nonzero real or imaginary part of (-i)^L real (DP), parameter :: sixth = 1.d0 / 6.d0 ! integer :: nb, mb, ijv, ivl, jvl, ig, lp, l, lm, i0, i1, i2, i3, ind ! nb,mb : atomic index corresponding to ih,jh ! ijv : combined index (nb,mb) ! ivl,jvl: combined LM index corresponding to ih,jh ! ig : counter on g vectors ! lp : combined LM index ! l-1 is the angular momentum L ! lm : all possible LM's compatible with ih,jh ! i0-i3 : counters for interpolation table ! ind : ind=1 if the results is real (l even), ind=2 if complex (l odd) ! real(DP) :: dqi, qm, px, ux, vx, wx, uvx, pwx, work, qm1 ! 1 divided dq ! qmod/dq ! measures for interpolation table ! auxiliary variables for intepolation ! auxiliary variables ! ! compute the indices which correspond to ih,jh ! dqi = 1.0_DP / dq nb = indv (ih, np) mb = indv (jh, np) if (nb.ge.mb) then ijv = nb * (nb - 1) / 2 + mb else ijv = mb * (mb - 1) / 2 + nb endif ivl = nhtolm(ih, np) jvl = nhtolm(jh, np) if (nb > nbetam .OR. mb > nbetam) & call errore (' qvan2 ', ' wrong dimensions (1)', MAX(nb,mb)) if (ivl > nlx .OR. jvl > nlx) & call errore (' qvan2 ', ' wrong dimensions (2)', MAX(ivl,jvl)) qg = 0.d0 ! ! and make the sum over the non zero LM ! do lm = 1, lpx (ivl, jvl) lp = lpl (ivl, jvl, lm) if ( lp < 1 .or. lp > 49 ) call errore ('qvan2', ' lp wrong ', max(lp,1)) ! ! find angular momentum l corresponding to combined index lp ! if (lp == 1) then l = 1 sig = 1.0d0 ind = 1 elseif ( lp <= 4) then l = 2 sig =-1.0d0 ind = 2 elseif ( lp <= 9 ) then l = 3 sig =-1.0d0 ind = 1 elseif ( lp <= 16 ) then l = 4 sig = 1.0d0 ind = 2 elseif ( lp <= 25 ) then l = 5 sig = 1.0d0 ind = 1 elseif ( lp <= 36 ) then l = 6 sig =-1.0d0 ind = 2 else l = 7 sig =-1.0d0 ind = 1 endif sig = sig * ap (lp, ivl, jvl) qm1 = -1.0_dp ! any number smaller than qmod(1) !$omp parallel do default(shared), private(qm,px,ux,vx,wx,i0,i1,i2,i3,uvx,pwx,work) do ig = 1, ngy ! ! calculate quantites depending on the module of G only when needed ! #if ! defined __OPENMP IF ( ABS( qmod(ig) - qm1 ) > 1.0D-6 ) THEN #endif ! qm = qmod (ig) * dqi px = qm - int (qm) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qm ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 uvx = ux * vx * sixth pwx = px * wx * 0.5d0 work = qrad (i0, ijv, l, np) * uvx * wx + & qrad (i1, ijv, l, np) * pwx * vx - & qrad (i2, ijv, l, np) * pwx * ux + & qrad (i3, ijv, l, np) * px * uvx #if ! defined __OPENMP qm1 = qmod(ig) END IF #endif qg (ind,ig) = qg (ind,ig) + sig * ylmk0 (ig, lp) * work enddo !$omp end parallel do enddo return end subroutine qvan2 espresso-5.0.2/PW/src/remove_atomic_rho.f900000644000700200004540000000232112053145627017521 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine remove_atomic_rho !----------------------------------------------------------------------- USE io_global, ONLY: stdout USE io_files, ONLY: output_drho USE kinds, ONLY: DP USE fft_base, ONLY: dfftp USE lsda_mod, ONLY: nspin USE scf, ONLY: rho USE io_rho_xml, ONLY : write_rho implicit none real(DP), allocatable :: work (:,:) ! workspace, is the difference between the charge density ! and the superposition of atomic charges allocate ( work( dfftp%nnr, 1 ) ) work = 0.d0 ! IF ( nspin > 1 ) CALL errore & ( 'remove_atomic_rho', 'spin polarization not allowed in drho', 1 ) WRITE( stdout, '(/5x,"remove atomic charge density from scf rho")') ! ! subtract the old atomic charge density ! call atomic_rho (work, nspin) ! work = rho%of_r - work ! call write_rho ( work, 1, output_drho ) ! deallocate(work) return end subroutine remove_atomic_rho espresso-5.0.2/PW/src/wannier_proj.f900000644000700200004540000000665612053145627016534 0ustar marsamoscm! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) subroutine wannier_proj(ik, wan_func) ! This routine computes for all eigenvectors ! for current k-point USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files USE wannier_new, ONLY : wan_in, nwan, use_energy_int USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc USE wvfct, ONLY : nbnd, npw, npwx, et USE lsda_mod, ONLY : lsda, isk USE constants, ONLY : rytoev USE ldaU, ONLY : swfcatom USE control_flags, ONLY : gamma_only USE uspp_param, ONLY : upf USE wavefunctions_module, ONLY : evc USE gvect, ONLY : gstart USE noncollin_module, ONLY : npol USE buffers implicit none ! input-output INTEGER, intent(in) :: ik COMPLEX(DP), intent(out) :: wan_func(npwx,nwan) ! COMPLEX(DP), ALLOCATABLE :: pp(:,:) COMPLEX(DP), ALLOCATABLE :: trialwf(:,:) INTEGER :: current_spin, i,j,k, ierr, ibnd, iwan REAL(DP), EXTERNAL :: ddot COMPLEX(DP) :: zdotc ALLOCATE(trialwf(npwx,nwan)) ALLOCATE(pp(nwan, nbnd)) current_spin = 1 IF (lsda) current_spin = isk(ik) !Read current wavefunctions evc = ZERO call davcio( evc, nwordwfc, iunwfc, ik, -1 ) ! Reads ortho-atomic wfc ! You should prepare data using orthoatwfc.f90 swfcatom = ZERO CALL davcio (swfcatom, nwordatwfc, iunsat, ik, -1) ! generates trial wavefunctions as a summ of ingridients trialwf = ZERO do iwan=1, nwan do j=1,wan_in(iwan,current_spin)%ning do k=1,npwx trialwf(k,iwan) = trialwf(k,iwan) + & CMPLX(wan_in(iwan,current_spin)%ing(j)%c,0.d0,KIND=DP) * & swfcatom(k,wan_in(iwan,current_spin)%ing(j)%iatomwfc) end do end do end do ! copmputes <\Psi|\hat S|\phi> for all \Psi and \phi ! later one should select only few columns pp = ZERO DO ibnd = 1, nbnd DO iwan = 1, nwan pp (iwan, ibnd) = zdotc (npwx, trialwf (1, iwan), 1, evc (1, ibnd), 1) ENDDO ENDDO ! And now we should nullify few elements do iwan=1, nwan do ibnd=1, nbnd if(use_energy_int) then if( et(ibnd,ik) < wan_in(iwan,current_spin)%bands_from ) pp(iwan,ibnd) = ZERO if( et(ibnd,ik) > wan_in(iwan,current_spin)%bands_to ) pp(iwan,ibnd) = ZERO else if( (ibnd < INT(wan_in(iwan,current_spin)%bands_from)) & .OR. ( ibnd > INT(wan_in(iwan,current_spin)%bands_to) )) then pp(iwan,ibnd) = ZERO ! write(stdout,'(5x,"nullify component for band",i3," of wannier",i3)') ibnd,iwan end if end if end do end do ! Orthogonalize pp CALL ortho_wfc(nwan,nbnd,pp,ierr) IF (ierr .EQ. 1) call errore('wannier_proj', 'wrong orthogonalization on k-point', ik) !And write ortho-pp to file call save_buffer( pp, nwordwpp, iunwpp, ik) wan_func = ZERO call ZGEMM('N', 'C', npw, nwan, nbnd, ONE, evc, & npwx, pp, nwan, ZERO, wan_func, npwx) !And dump wannier to file call save_buffer( wan_func, nwordwf, iunwf, ik) DEALLOCATE(trialwf) DEALLOCATE(pp) RETURN ! END SUBROUTINE wannier_proj espresso-5.0.2/PW/src/stres_knl.f900000644000700200004540000000726512053145630016032 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine stres_knl (sigmanlc, sigmakin) !----------------------------------------------------------------------- ! USE kinds, ONLY: DP USE constants, ONLY: pi, e2 USE cell_base, ONLY: omega, alat, at, bg, tpiba USE gvect, ONLY: g USE klist, ONLY: nks, xk, ngk USE io_files, ONLY: iunwfc, nwordwfc, iunigk USE buffers, ONLY: get_buffer USE symme, ONLY: symmatrix USE wvfct, ONLY: npw, npwx, nbnd, igk, wg, qcutz, ecfixed, q2sigma USE control_flags, ONLY: gamma_only USE noncollin_module, ONLY: noncolin, npol USE wavefunctions_module, ONLY: evc USE mp_global, ONLY: inter_pool_comm, intra_pool_comm, intra_bgrp_comm USE mp, ONLY: mp_sum implicit none real(DP) :: sigmanlc (3, 3), sigmakin (3, 3) real(DP), allocatable :: gk (:,:), kfac (:) real(DP) :: twobysqrtpi, gk2, arg integer :: ik, l, m, i, ibnd, is allocate (gk( 3, npwx)) allocate (kfac( npwx)) sigmanlc(:,:) =0.d0 sigmakin(:,:) =0.d0 twobysqrtpi = 2.d0 / sqrt (pi) kfac(:) = 1.d0 if (nks.gt.1) rewind (iunigk) do ik = 1, nks npw = ngk(ik) if (nks > 1) then read (iunigk) igk call get_buffer (evc, nwordwfc, iunwfc, ik) endif do i = 1, npw gk (1, i) = (xk (1, ik) + g (1, igk (i) ) ) * tpiba gk (2, i) = (xk (2, ik) + g (2, igk (i) ) ) * tpiba gk (3, i) = (xk (3, ik) + g (3, igk (i) ) ) * tpiba if (qcutz.gt.0.d0) then gk2 = gk (1, i) **2 + gk (2, i) **2 + gk (3, i) **2 arg = ( (gk2 - ecfixed) / q2sigma) **2 kfac (i) = 1.d0 + qcutz / q2sigma * twobysqrtpi * exp ( - arg) endif enddo ! ! kinetic contribution ! do l = 1, 3 do m = 1, l do ibnd = 1, nbnd do i = 1, npw if (noncolin) then sigmakin (l, m) = sigmakin (l, m) + wg (ibnd, ik) * & gk (l, i) * gk (m, i) * kfac (i) * & ( DBLE (CONJG(evc(i ,ibnd))*evc(i ,ibnd)) + & DBLE (CONJG(evc(i+npwx,ibnd))*evc(i+npwx,ibnd))) else sigmakin (l, m) = sigmakin (l, m) + wg (ibnd, ik) * & gk (l, i) * gk (m, i) * kfac (i) * & DBLE (CONJG(evc (i, ibnd) ) * evc (i, ibnd) ) end if enddo enddo enddo enddo ! ! contribution from the nonlocal part ! call stres_us (ik, gk, sigmanlc) enddo ! ! add the US term from augmentation charge derivatives ! call addusstres (sigmanlc) ! call mp_sum( sigmakin, intra_bgrp_comm ) call mp_sum( sigmanlc, intra_bgrp_comm ) call mp_sum( sigmakin, inter_pool_comm ) call mp_sum( sigmanlc, inter_pool_comm ) ! do l = 1, 3 do m = 1, l - 1 sigmanlc (m, l) = sigmanlc (l, m) sigmakin (m, l) = sigmakin (l, m) enddo enddo ! if (gamma_only) then sigmakin(:,:) = 2.d0 * e2 / omega * sigmakin(:,:) else sigmakin(:,:) = e2 / omega * sigmakin(:,:) end if sigmanlc(:,:) = -1.d0 / omega * sigmanlc(:,:) ! ! symmetrize stress ! call symmatrix ( sigmakin ) call symmatrix ( sigmanlc ) deallocate(kfac) deallocate(gk) return end subroutine stres_knl espresso-5.0.2/PW/src/compute_qdipol.f900000644000700200004540000001031012053145630017033 0ustar marsamoscm! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_qdipol(dpqq) ! ! This routine computes the term dpqq, i.e. the dipole moment of the ! augmentation charge. The output is given on cartesian coordinates ! USE kinds, only: DP USE constants, ONLY: fpi USE atom, ONLY: rgrid USE ions_base, ONLY: ntyp => nsp USE uspp, only: nhtol, nhtolm, indv, nlx, ap USE uspp_param, only: upf, nbetam, nh, nhm implicit none REAL(DP) :: dpqq( nhm, nhm, 3, ntyp) real(DP), allocatable :: qrad2(:,:,:), qtot(:,:,:), aux(:) real(DP) :: fact integer :: nt, l, ir, nb, mb, ijv, ilast, ipol, ih, ivl, jh, jvl, lp, ndm call start_clock('cmpt_qdipol') ndm = MAXVAL ( upf(1:ntyp)%kkbeta ) allocate (qrad2( nbetam , nbetam, ntyp)) allocate (aux( ndm)) allocate (qtot( ndm, nbetam, nbetam)) qrad2(:,:,:)=0.d0 dpqq=0.d0 do nt = 1, ntyp if ( upf(nt)%tvanp ) then l=1 ! ! Only l=1 terms enter in the dipole of Q ! do nb = 1, upf(nt)%nbeta do mb = nb, upf(nt)%nbeta ijv = mb * (mb-1) /2 + nb if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then if (upf(nt)%q_with_l .or. upf(nt)%tpawp) then qtot(1:upf(nt)%kkbeta,nb,mb) =& upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l) else do ir = 1, upf(nt)%kkbeta if (rgrid(nt)%r(ir) >= upf(nt)%rinner(l+1)) then qtot(ir, nb, mb)=upf(nt)%qfunc(ir,ijv) else ilast = ir endif enddo if ( upf(nt)%rinner(l+1) > 0.0_dp) & call setqf( upf(nt)%qfcoef (1, l+1, nb, mb), & qtot(1,nb,mb), rgrid(nt)%r, upf(nt)%nqf, l, ilast) endif endif enddo enddo do nb=1, upf(nt)%nbeta ! ! the Q are symmetric with respect to indices ! do mb=nb, upf(nt)%nbeta if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then do ir = 1, upf(nt)%kkbeta aux(ir)=rgrid(nt)%r(ir)*qtot(ir, nb, mb) enddo call simpson ( upf(nt)%kkbeta, aux, rgrid(nt)%rab, & qrad2(nb,mb,nt) ) endif enddo enddo endif ! ntyp enddo do ipol = 1,3 fact=-sqrt(fpi/3.d0) if (ipol.eq.1) lp=3 if (ipol.eq.2) lp=4 if (ipol.eq.3) then lp=2 fact=-fact endif do nt = 1,ntyp if ( upf(nt)%tvanp ) then do ih = 1, nh(nt) ivl = nhtolm(ih, nt) mb = indv(ih, nt) do jh = ih, nh (nt) jvl = nhtolm(jh, nt) nb=indv(jh,nt) if (ivl > nlx) call errore('compute_qdipol',' ivl > nlx', ivl) if (jvl > nlx) call errore('compute_qdipol',' jvl > nlx', jvl) if (nb > nbetam) & call errore('compute_qdipol',' nb out of bounds', nb) if (mb > nbetam) & call errore('compute_qdipol',' mb out of bounds', mb) if (mb > nb) call errore('compute_qdipol',' mb > nb', 1) dpqq(ih,jh,ipol,nt)=fact*ap(lp,ivl,jvl)*qrad2(mb,nb,nt) dpqq(jh,ih,ipol,nt)=dpqq(ih,jh,ipol,nt) ! WRITE( stdout,'(3i5,2f15.9)') ih,jh,ipol,dpqq(ih,jh,ipol,nt) enddo enddo endif enddo enddo deallocate(qtot) deallocate(aux) deallocate(qrad2) call stop_clock('cmpt_qdipol') return end subroutine compute_qdipol espresso-5.0.2/PW/src/mix_rho.f900000644000700200004540000004417212053145627015477 0ustar marsamoscm! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0._dp, 0._dp ) ! ! This macro force the normalization of betamix matrix, usually not necessary !#define __NORMALIZE_BETAMIX ! #ifdef __GFORTRAN ! gfortran hack - for some mysterious reason gfortran doesn't save ! derived-type variables even with the SAVE attribute MODULE mix_save USE scf, ONLY : mix_type TYPE(mix_type), ALLOCATABLE, SAVE :: & df(:), &! information from preceding iterations dv(:) ! " " " " " " END MODULE mix_save #endif !---------------------------------------------------------------------------- SUBROUTINE mix_rho( input_rhout, rhoin, alphamix, dr2, tr2_min, iter, n_iter, conv ) !---------------------------------------------------------------------------- ! ! ... Modified Broyden's method for charge density mixing ! ... D.D. Johnson PRB 38, 12807 (1988) ! ! ... On output: the mixed density is in rhoin, mixed augmentation ! ... channel occ. is in becin ! input_rhocout, input_becout etc are unchanged ! USE kinds, ONLY : DP USE ions_base, ONLY : nat USE gvect, ONLY : ngm USE gvecs, ONLY : ngms USE lsda_mod, ONLY : nspin USE control_flags, ONLY : imix, ngm0, tr2, io_level ! ... for PAW: USE uspp_param, ONLY : nhm USE scf, ONLY : scf_type, create_scf_type, destroy_scf_type, & mix_type, create_mix_type, destroy_mix_type, & assign_scf_to_mix_type, assign_mix_to_scf_type, & mix_type_AXPY, diropn_mix_file, close_mix_file, & davcio_mix_type, rho_ddot, high_frequency_mixing, & mix_type_COPY, mix_type_SCAL USE io_global, ONLY : stdout #ifdef __GFORTRAN USE mix_save #endif ! IMPLICIT NONE integer :: kilobytes ! ! ... First the I/O variable ! INTEGER, INTENT(IN) :: & iter, &! counter of the number of iterations n_iter ! numb. of iterations used in mixing REAL(DP), INTENT(IN) :: & alphamix, &! mixing factor tr2_min ! estimated error in diagonalization. If the estimated ! scf error is smaller than this, exit: a more accurate ! diagonalization is needed REAL(DP), INTENT(OUT) :: & dr2 ! the estimated errr on the energy LOGICAL, INTENT(OUT) :: & conv ! .true. if the convergence has been reached type(scf_type), intent(in) :: input_rhout type(scf_type), intent(inout) :: rhoin ! ! ... Here the local variables ! type(mix_type) :: rhout_m, rhoin_m INTEGER, PARAMETER :: & maxmix = 25 ! max number of iterations for charge mixing INTEGER :: & iunmix, &! I/O unit number of charge density file in G-space iunmix_paw, &! I/O unit number of PAW file iter_used, &! actual number of iterations used ipos, &! index of the present iteration inext, &! index of the next iteration i, j, &! counters on number of iterations info, &! flag saying if the exec. of libr. routines was ok ldim ! 2 * Hubbard_lmax + 1 type(mix_type) :: rhoin_save, rhout_save REAL(DP),ALLOCATABLE :: betamix(:,:), work(:) INTEGER, ALLOCATABLE :: iwork(:) REAL(DP) :: gamma0 #ifdef __NORMALIZE_BETAMIX REAL(DP) :: norm2, obn #endif LOGICAL :: & savetofile, &! save intermediate steps on file $prefix."mix",... exst ! if true the file exists ! ! ... saved variables and arrays ! INTEGER, SAVE :: & mixrho_iter = 0 ! history of mixing #ifndef __GFORTRAN TYPE(mix_type), ALLOCATABLE, SAVE :: & df(:), &! information from preceding iterations dv(:) ! " " " " " " #endif REAL(DP) :: dr2_paw, norm ! REAL(DP),ALLOCATABLE :: e(:),v(:,:) INTEGER, PARAMETER :: read_ = -1, write_ = +1 ! ! ... external functions ! INTEGER, EXTERNAL :: find_free_unit ! CALL start_clock( 'mix_rho' ) ! ! ngm0 = ngms ! mixrho_iter = iter ! IF ( n_iter > maxmix ) CALL errore( 'mix_rho', 'n_iter too big', 1 ) ! savetofile = (io_level > 1) ! ! define rhocout variables and copy input_rhocout in there ! call create_mix_type(rhout_m) call create_mix_type(rhoin_m) ! call assign_scf_to_mix_type(rhoin, rhoin_m) call assign_scf_to_mix_type(input_rhout, rhout_m) call mix_type_AXPY ( -1.d0, rhoin_m, rhout_m ) ! dr2 = rho_ddot( rhout_m, rhout_m, ngms ) !!!! this used to be ngm NOT ngms ! IF (dr2 < 0.0_DP) CALL errore('mix_rho','negative dr2',1) ! conv = ( dr2 < tr2 ) ! IF ( conv .OR. dr2 < tr2_min ) THEN ! ! ... if convergence is achieved or if the self-consistency error (dr2) is ! ... smaller than the estimated error due to diagonalization (tr2_min), ! ... exit and leave rhoin and rhocout unchanged ! IF ( ALLOCATED( df ) ) THEN DO i=1, n_iter call destroy_mix_type(df(i)) END DO DEALLOCATE( df ) END IF IF ( ALLOCATED( dv ) ) THEN DO i=1, n_iter call destroy_mix_type(dv(i)) END DO DEALLOCATE( dv ) END IF ! call destroy_mix_type(rhoin_m) call destroy_mix_type(rhout_m) CALL stop_clock( 'mix_rho' ) ! RETURN ! END IF ! IF ( savetofile ) THEN ! iunmix = find_free_unit() CALL diropn_mix_file( iunmix, 'mix', exst ) ! IF ( mixrho_iter > 1 .AND. .NOT. exst ) THEN ! CALL infomsg( 'mix_rho', 'file not found, restarting' ) mixrho_iter = 1 ! END IF ! END IF ! IF ( savetofile .OR. mixrho_iter == 1 ) THEN ! IF ( .NOT. ALLOCATED( df ) ) THEN ALLOCATE( df( n_iter ) ) DO i=1,n_iter CALL create_mix_type( df(i) ) END DO END IF IF ( .NOT. ALLOCATED( dv ) ) THEN ALLOCATE( dv( n_iter ) ) DO i=1,n_iter CALL create_mix_type( dv(i) ) END DO END IF ! END IF ! ! ... iter_used = mixrho_iter-1 if mixrho_iter <= n_iter ! ... iter_used = n_iter if mixrho_iter > n_iter ! iter_used = MIN( ( mixrho_iter - 1 ), n_iter ) ! ! ... ipos is the position in which results from the present iteration ! ... are stored. ipos=mixrho_iter-1 until ipos=n_iter, then back to 1,2,... ! ipos = mixrho_iter - 1 - ( ( mixrho_iter - 2 ) / n_iter ) * n_iter ! IF ( mixrho_iter > 1 ) THEN ! IF ( savetofile ) THEN ! CALL davcio_mix_type( df(ipos), iunmix, 1, read_ ) CALL davcio_mix_type( dv(ipos), iunmix, 2, read_ ) ! END IF ! call mix_type_AXPY ( -1.d0, rhout_m, df(ipos) ) call mix_type_AXPY ( -1.d0, rhoin_m, dv(ipos) ) #ifdef __NORMALIZE_BETAMIX ! NORMALIZE norm2 = rho_ddot( df(ipos), df(ipos), ngm0 ) obn = 1.d0/sqrt(norm2) call mix_type_SCAL (obn,df(ipos)) call mix_type_SCAL (obn,dv(ipos)) #endif ! END IF ! IF ( savetofile ) THEN ! DO i = 1, iter_used ! IF ( i /= ipos ) THEN ! CALL davcio_mix_type( df(i), iunmix, 2*i+1, read_ ) CALL davcio_mix_type( dv(i), iunmix, 2*i+2, read_ ) END IF ! END DO ! CALL davcio_mix_type( rhout_m, iunmix, 1, write_ ) CALL davcio_mix_type( rhoin_m, iunmix, 2, write_ ) ! IF ( mixrho_iter > 1 ) THEN CALL davcio_mix_type( df(ipos), iunmix, 2*ipos+1, write_ ) CALL davcio_mix_type( dv(ipos), iunmix, 2*ipos+2, write_ ) END IF ! ELSE ! call create_mix_type (rhoin_save) call create_mix_type (rhout_save) ! call mix_type_COPY( rhoin_m, rhoin_save ) call mix_type_COPY( rhout_m, rhout_save ) ! END IF ! Nothing else to do on first iteration skip_on_first: & IF (iter_used > 0) THEN ! ALLOCATE(betamix(iter_used, iter_used)) !iter_used)) betamix = 0._dp ! DO i = 1, iter_used ! DO j = i, iter_used ! betamix(i,j) = rho_ddot( df(j), df(i), ngm0 ) betamix(j,i) = betamix(i,j) ! END DO ! END DO ! ! allocate(e(iter_used), v(iter_used, iter_used)) ! CALL rdiagh(iter_used, betamix, iter_used, e, v) ! write(*,'(1e11.3)') e(:) ! write(*,*) ! deallocate(e,v) allocate(work(iter_used), iwork(iter_used)) !write(*,*) betamix(:,:) CALL DSYTRF( 'U', iter_used, betamix, iter_used, iwork, work, iter_used, info ) CALL errore( 'broyden', 'factorization', abs(info) ) ! CALL DSYTRI( 'U', iter_used, betamix, iter_used, iwork, work, info ) CALL errore( 'broyden', 'DSYTRI', abs(info) ) ! deallocate(iwork) ! FORALL( i = 1:iter_used, & j = 1:iter_used, j > i ) betamix(j,i) = betamix(i,j) ! DO i = 1, iter_used ! work(i) = rho_ddot( df(i), rhout_m, ngm0 ) ! END DO ! DO i = 1, iter_used ! gamma0 = DOT_PRODUCT( betamix(1:iter_used,i), work(1:iter_used) ) ! call mix_type_AXPY ( -gamma0, dv(i), rhoin_m ) call mix_type_AXPY ( -gamma0, df(i), rhout_m ) ! END DO DEALLOCATE(betamix, work) ! ! ... auxiliary vectors dv and df not needed anymore ! ENDIF skip_on_first ! IF ( savetofile ) THEN ! call close_mix_file( iunmix ) ! IF ( ALLOCATED( df ) ) THEN DO i=1, n_iter call destroy_mix_type(df(i)) END DO DEALLOCATE( df ) END IF IF ( ALLOCATED( dv ) ) THEN DO i=1, n_iter call destroy_mix_type(dv(i)) END DO DEALLOCATE( dv ) END IF ! ELSE ! inext = mixrho_iter - ( ( mixrho_iter - 1 ) / n_iter ) * n_iter ! call mix_type_COPY( rhout_save, df(inext) ) call mix_type_COPY( rhoin_save, dv(inext) ) ! call destroy_mix_type( rhoin_save ) call destroy_mix_type( rhout_save ) ! END IF ! ! ... preconditioning the new search direction ! IF ( imix == 1 ) THEN ! CALL approx_screening( rhout_m ) ! ELSE IF ( imix == 2 ) THEN ! CALL approx_screening2( rhout_m, rhoin_m ) ! END IF ! ! ... set new trial density ! call mix_type_AXPY ( alphamix, rhout_m, rhoin_m ) ! ... simple mixing for high_frequencies (and set to zero the smooth ones) call high_frequency_mixing ( rhoin, input_rhout, alphamix ) ! ... add the mixed rho for the smooth frequencies call assign_mix_to_scf_type(rhoin_m,rhoin) ! call destroy_mix_type(rhout_m) call destroy_mix_type(rhoin_m) CALL stop_clock( 'mix_rho' ) ! RETURN ! END SUBROUTINE mix_rho ! !---------------------------------------------------------------------------- SUBROUTINE approx_screening( drho ) !---------------------------------------------------------------------------- ! ! ... apply an average TF preconditioning to drho ! USE kinds, ONLY : DP USE constants, ONLY : e2, pi, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, ngm, nl, nlm USE klist, ONLY : nelec USE lsda_mod, ONLY : nspin USE control_flags, ONLY : ngm0 USE scf, ONLY : mix_type USE wavefunctions_module, ONLY : psic ! IMPLICIT NONE ! type (mix_type), intent(INOUT) :: drho ! (in/out) ! REAL(DP) :: rrho, rmag, rs, agg0 INTEGER :: ig, is ! rs = ( 3.D0 * omega / fpi / nelec )**( 1.D0 / 3.D0 ) ! agg0 = ( 12.D0 / pi )**( 2.D0 / 3.D0 ) / tpiba2 / rs ! IF ( nspin == 1 .OR. nspin == 4 ) THEN ! drho%of_g(:ngm0,1) = drho%of_g(:ngm0,1) * gg(:ngm0) / (gg(:ngm0)+agg0) ! ELSE IF ( nspin == 2 ) THEN ! DO ig = 1, ngm0 ! rrho = ( drho%of_g(ig,1) + drho%of_g(ig,2) ) * gg(ig) / (gg(ig)+agg0) rmag = ( drho%of_g(ig,1) - drho%of_g(ig,2) ) ! drho%of_g(ig,1) = 0.5D0*( rrho + rmag ) drho%of_g(ig,2) = 0.5D0*( rrho - rmag ) ! END DO ! END IF ! RETURN ! END SUBROUTINE approx_screening ! !---------------------------------------------------------------------------- SUBROUTINE approx_screening2( drho, rhobest ) !---------------------------------------------------------------------------- ! ! ... apply a local-density dependent TF preconditioning to drho ! USE kinds, ONLY : DP USE constants, ONLY : e2, pi, tpi, fpi, eps8, eps32 USE cell_base, ONLY : omega, tpiba2 USE gvecs, ONLY : nls, nlsm USE gvect, ONLY : gg, ngm, nl, nlm USE wavefunctions_module, ONLY : psic USE klist, ONLY : nelec USE lsda_mod, ONLY : nspin USE control_flags, ONLY : ngm0, gamma_only USE scf, ONLY : mix_type, local_tf_ddot USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! IMPLICIT NONE ! type(mix_type), intent(inout) :: drho type(mix_type), intent(in) :: rhobest ! INTEGER, PARAMETER :: mmx = 12 ! INTEGER :: & iwork(mmx), i, j, m, info, is REAL(DP) :: & rs, avg_rsm1, target, dr2_best REAL(DP) :: & aa(mmx,mmx), invaa(mmx,mmx), bb(mmx), work(mmx), vec(mmx), agg0 COMPLEX(DP), ALLOCATABLE :: & v(:,:), &! v(ngm0,mmx) w(:,:), &! w(ngm0,mmx) dv(:), &! dv(ngm0) vbest(:), &! vbest(ngm0) wbest(:) ! wbest(ngm0) REAL(DP), ALLOCATABLE :: & alpha(:) ! alpha(dffts%nnr) ! COMPLEX(DP) :: rrho, rmag INTEGER :: ir, ig REAL(DP), PARAMETER :: one_third = 1.D0 / 3.D0 ! ! IF ( nspin == 2 ) THEN ! DO ig = 1, ngm0 ! rrho = drho%of_g(ig,1) + drho%of_g(ig,2) rmag = drho%of_g(ig,1) - drho%of_g(ig,2) ! drho%of_g(ig,1) = rrho drho%of_g(ig,2) = rmag ! END DO ! END IF ! target = 0.D0 ! IF ( gg(1) < eps8 ) drho%of_g(1,1) = ZERO ! ALLOCATE( alpha( dffts%nnr ) ) ALLOCATE( v( ngm0, mmx ), & w( ngm0, mmx ), dv( ngm0 ), vbest( ngm0 ), wbest( ngm0 ) ) ! v(:,:) = ZERO w(:,:) = ZERO dv(:) = ZERO vbest(:) = ZERO wbest(:) = ZERO ! ! ... calculate alpha from density ! psic(:) = ZERO ! IF ( nspin == 2 ) THEN ! psic(nls(:ngm0)) = ( rhobest%of_g(:ngm0,1) + rhobest%of_g(:ngm0,2) ) ! ELSE ! psic(nls(:ngm0)) = rhobest%of_g(:ngm0,1) ! END IF ! IF ( gamma_only ) psic(nlsm(:ngm0)) = CONJG( psic(nls(:ngm0)) ) ! CALL invfft ('Smooth', psic, dffts) ! alpha(:) = REAL( psic(1:dffts%nnr) ) ! avg_rsm1 = 0.D0 ! DO ir = 1, dffts%nnr ! alpha(ir) = ABS( alpha(ir) ) ! IF ( alpha(ir) > eps32 ) THEN ! rs = ( 3.D0 / fpi / alpha(ir) )**one_third avg_rsm1 = avg_rsm1 + 1.D0 / rs alpha(ir) = rs ! END IF ! END DO ! alpha = 3.D0 * ( tpi / 3.D0 )**( 5.D0 / 3.D0 ) * alpha rs = ( 3.D0 * omega / fpi / nelec )**one_third ! CALL mp_sum( avg_rsm1 , intra_bgrp_comm ) avg_rsm1 = ( dffts%nr1*dffts%nr2*dffts%nr3 ) / avg_rsm1 agg0 = ( 12.D0 / pi )**( 2.D0 / 3.D0 ) / tpiba2 / avg_rsm1 ! ! ... calculate deltaV and the first correction vector ! psic(:) = ZERO ! psic(nls(:ngm0)) = drho%of_g(:ngm0,1) ! IF ( gamma_only ) psic(nlsm(:ngm0)) = CONJG( psic(nls(:ngm0)) ) ! CALL invfft ('Smooth', psic, dffts) ! psic(:dffts%nnr) = psic(:dffts%nnr) * alpha(:) ! CALL fwfft ('Smooth', psic, dffts) ! dv(:) = psic(nls(:ngm0)) * gg(:ngm0) * tpiba2 v(:,1)= psic(nls(:ngm0)) * gg(:ngm0) / ( gg(:ngm0) + agg0 ) ! m = 1 aa(:,:) = 0.D0 bb(:) = 0.D0 ! repeat_loop: DO ! ! ... generate the vector w ! w(:,m) = fpi * e2 * v(:,m) ! psic(:) = ZERO ! psic(nls(:ngm0)) = v(:,m) ! IF ( gamma_only ) psic(nlsm(:ngm0)) = CONJG( psic(nls(:ngm0)) ) ! CALL invfft ('Smooth', psic, dffts) ! psic(:dffts%nnr) = psic(:dffts%nnr) * alpha(:) ! CALL fwfft ('Smooth', psic, dffts) ! w(:,m) = w(:,m) + gg(:ngm0) * tpiba2 * psic(nls(:ngm0)) ! ! ... build the linear system ! DO i = 1, m ! aa(i,m) = local_tf_ddot( w(1,i), w(1,m), ngm0) ! aa(m,i) = aa(i,m) ! END DO ! bb(m) = local_tf_ddot( w(1,m), dv, ngm0) ! ! ... solve it -> vec ! invaa = aa ! CALL DSYTRF( 'U', m, invaa, mmx, iwork, work, mmx, info ) CALL errore( 'broyden', 'factorization', info ) ! CALL DSYTRI( 'U', m, invaa, mmx, iwork, work, info ) CALL errore( 'broyden', 'DSYTRI', info ) ! FORALL( i = 1:m, j = 1:m, j > i ) invaa(j,i) = invaa(i,j) ! FORALL( i = 1:m ) vec(i) = SUM( invaa(i,:)*bb(:) ) ! vbest(:) = ZERO wbest(:) = dv(:) ! DO i = 1, m ! vbest = vbest + vec(i) * v(:,i) wbest = wbest - vec(i) * w(:,i) ! END DO ! dr2_best = local_tf_ddot( wbest, wbest, ngm0 ) ! IF ( target == 0.D0 ) target = 1.D-6 * dr2_best ! IF ( dr2_best < target ) THEN ! drho%of_g(:ngm0,1) = vbest(:) ! IF ( nspin == 2 ) THEN ! DO ig = 1, ngm0 ! rrho = drho%of_g(ig,1) rmag = drho%of_g(ig,2) ! drho%of_g(ig,1) = 0.5D0 * ( rrho + rmag ) drho%of_g(ig,2) = 0.5D0 * ( rrho - rmag ) ! END DO ! END IF ! DEALLOCATE( alpha, v, w, dv, vbest, wbest ) ! EXIT repeat_loop ! ELSE IF ( m >= mmx ) THEN ! m = 1 ! v(:,m) = vbest(:) aa(:,:) = 0.D0 bb(:) = 0.D0 ! CYCLE repeat_loop ! END IF ! m = m + 1 ! v(:,m) = wbest(:) / ( gg(:ngm0) + agg0 ) ! END DO repeat_loop ! RETURN ! END SUBROUTINE approx_screening2 espresso-5.0.2/PW/src/hinit0.f900000644000700200004540000000642212053145630015213 0ustar marsamoscm! ! Copyright (C) 2001-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE hinit0() !----------------------------------------------------------------------- ! ! ... hamiltonian initialization: ! ... atomic position independent initialization for nonlocal PP, ! ... structure factors, local potential, core charge ! USE ions_base, ONLY : nat, nsp, ityp, tau USE basis, ONLY : startingconfig USE cell_base, ONLY : at, bg, omega, tpiba2 USE cellmd, ONLY : omega_old, at_old, lmovecell USE klist, ONLY : nks, xk USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, ig_l2g, g, eigts1, eigts2, eigts3 USE vlocal, ONLY : strf USE wvfct, ONLY : npw, g2kin, igk, ecutwfc USE io_files, ONLY : iunigk USE realus, ONLY : qpointlist,betapointlist,init_realspace_vars,real_space use ldaU, ONLY : lda_plus_U, U_projection USE control_flags, ONLY : tqr USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER :: ik ! counter on k points ! ! ... calculate the Fourier coefficients of the local part of the PP ! CALL init_vloc() ! ! ... k-point independent parameters of non-local pseudopotentials ! CALL init_us_1() IF ( lda_plus_U .AND. ( U_projection == 'pseudo' ) ) CALL init_q_aeps() CALL init_at_1() ! REWIND( iunigk ) ! ! ... The following loop must NOT be called more than once in a run ! ... or else there will be problems with variable-cell calculations ! DO ik = 1, nks ! ! ... g2kin is used here as work space ! CALL gk_sort( xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin ) ! ! ... if there is only one k-point npw and igk stay in memory ! IF ( nks > 1 ) WRITE( iunigk ) igk ! END DO ! IF ( lmovecell .AND. startingconfig == 'file' ) THEN ! ! ... If lmovecell and restart are both true the cell shape is read from ! ... the restart file and stored. The xxx_old variables are used instead ! ... of the current (read from input) ones. ! ... xxx and xxx_old are swapped, the atomic positions rescaled and ! ... the hamiltonian scaled. ! CALL cryst_to_cart( nat, tau, bg, - 1 ) ! CALL dswap( 9, at, 1, at_old, 1 ) CALL dswap( 1, omega, 1, omega_old, 1 ) ! CALL cryst_to_cart( nat, tau, at, + 1 ) ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) CALL scale_h() ! END IF ! ! ... initialize the structure factor ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! ! ... calculate the total local potential ! CALL setlocal() ! ! ... calculate the core charge (if any) for the nonlinear core correction ! CALL set_rhoc() ! IF ( tqr ) CALL qpointlist() IF (real_space ) then !call qpointlist() call betapointlist() call init_realspace_vars() write(stdout,'(5X,"Real space initialisation completed")') endif ! RETURN ! END SUBROUTINE hinit0 espresso-5.0.2/PW/src/memory_report.f900000644000700200004540000000703512053145630016724 0ustar marsamoscm! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE memory_report() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE wvfct, ONLY : npwx, nbnd, nbndx USE basis, ONLY : natomwfc USE fft_base, ONLY : dfftp USE gvect, ONLY : ngl, ngm USE uspp, ONLY : nkb USE ldaU, ONLY : lda_plus_u, U_projection USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : npol USE control_flags, ONLY: isolve, nmix, gamma_only, lscf USE mp_global, ONLY : np_ortho ! IMPLICIT NONE ! INTEGER, PARAMETER :: Mb=1024*1024, complex_size=16, real_size=8 INTEGER :: g_size, nbnd_l ! ! the conversions to double prevent integer overflow in very large run ! WRITE( stdout, '(/5x,"Largest allocated arrays",5x,"est. size (Mb)", & &5x,"dimensions")') WRITE( stdout, '(8x,"Kohn-Sham Wavefunctions ",f10.2," Mb", & & 5x,"(",i7,",",i5,")")') & complex_size*nbnd*npol*DBLE(npwx)/Mb, npwx*npol,nbnd IF ( lda_plus_u .AND. U_projection .NE. 'pseudo' ) & WRITE( stdout, '(8x,"Atomic wavefunctions ",f10.2," Mb", & & 5x,"(",i7,",",i5,")")') & complex_size*natomwfc*npol*DBLE(npwx)/Mb, npwx*npol,natomwfc WRITE( stdout, '(8x,"NL pseudopotentials ",f10.2," Mb", & & 5x,"(",i7,",",i5,")")') & complex_size*nkb*DBLE(npwx)/Mb, npwx, nkb IF ( nspin == 2 ) THEN WRITE( stdout, '(8x,"Each V/rho on FFT grid ",f10.2," Mb", & & 5x,"(",i7,",",i4,")")') & DBLE(complex_size*nspin*dfftp%nnr)/Mb, dfftp%nnr, nspin ELSE WRITE( stdout, '(8x,"Each V/rho on FFT grid ",f10.2," Mb", & & 5x,"(",i7,")")') DBLE(complex_size*dfftp%nnr)/Mb, dfftp%nnr END IF WRITE( stdout, '(8x,"Each G-vector array ",f10.2," Mb", & & 5x,"(",i7,")")') DBLE(real_size*ngm)/Mb, ngm WRITE( stdout, '(8x,"G-vector shells ",f10.2," Mb", & & 5x,"(",i7,")")') DBLE(real_size*ngl)/Mb, ngl ! WRITE( stdout, '(5x,"Largest temporary arrays",5x,"est. size (Mb)", & &5x,"dimensions")') IF ( gamma_only) THEN g_size = real_size ELSE g_size = complex_size END IF ! IF ( isolve == 0 ) THEN WRITE( stdout, '(8x,"Auxiliary wavefunctions ",f10.2," Mb", & & 5x,"(",i7,",",i5,")")') & g_size*nbndx*npol*DBLE(npwx)/Mb, npwx*npol, nbndx ENDIF ! nbnd_l : estimated dimension of distributed matrices nbnd_l = nbndx/np_ortho(1) WRITE( stdout, '(8x,"Each subspace H/S matrix ",f10.2," Mb", & & 5x,"(",i4,",",i4,")")') & DBLE(g_size*nbnd_l*nbnd_l)/Mb, nbnd_l, nbnd_l ! IF ( npol > 1 ) THEN WRITE( stdout, '(8x,"Each matrix",f10.2," Mb", & & 5x,"(",i7,",",i4,",",i5,")")') & DBLE(g_size*nkb*npol*nbnd)/Mb, nkb, npol, nbnd ELSE WRITE( stdout, '(8x,"Each matrix",f10.2," Mb", & & 5x,"(",i7,",",i5,")")') & DBLE(g_size*nkb*nbnd)/Mb, nkb, nbnd END IF ! IF ( lscf) WRITE( stdout, & '(8x,"Arrays for rho mixing ",f10.2," Mb", 5x,"(",i7,",",i4,")")') & DBLE(complex_size*dfftp%nnr*nmix)/Mb, dfftp%nnr, nmix ! RETURN ! END subroutine memory_report espresso-5.0.2/PW/src/stres_ewa.f900000644000700200004540000001252212053145627016020 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine stres_ewa (alat, nat, ntyp, ityp, zv, at, bg, tau, & omega, g, gg, ngm, gstart, gamma_only, gcutm, sigmaewa) !----------------------------------------------------------------------- ! ! Ewald contribution, both real- and reciprocal-space terms are present ! USE kinds USE constants, only : tpi, e2, eps6 USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum implicit none ! ! first the dummy variables ! integer :: nat, ntyp, ityp (nat), ngm, gstart ! input: number of atoms in the unit cell ! input: number of different types of atoms ! input: the type of each atom ! input: number of plane waves for G sum ! input: first nonzero g vector logical :: gamma_only real(DP) :: tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, alat, gcutm, sigmaewa (3, 3) ! input: the positions of the atoms in the cell ! input: the coordinates of G vectors ! input: the square moduli of G vectors ! input: the charge of each type of atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: measure of length ! input: cut-off of g vectors ! output: the ewald stress ! ! here the local variables ! integer, parameter :: mxr = 50 ! the maximum number of R vectors included in r sum integer :: ng, nr, na, nb, l, m, nrm ! counter over reciprocal G vectors ! counter over direct vectors ! counter on atoms ! counter on atoms ! counter on atoms ! number of R vectors included in r sum real(DP) :: charge, arg, tpiba2, dtau (3), alpha, r (3, mxr), & r2 (mxr), rmax, rr, upperbound, fact, fac, g2, g2a, sdewald, sewald ! total ionic charge in the cell ! the argument of the phase ! length in reciprocal space ! the difference tau_s - tau_s' ! alpha term in ewald sum ! input of the rgen routine ( not used here ) ! the square modulus of R_j-tau_s-tau_s' ! the maximum radius to consider real space sum ! buffer variable ! used to optimize alpha ! auxiliary variables ! diagonal term ! nondiagonal term complex(DP) :: rhostar real(DP), external :: qe_erfc ! the erfc function ! tpiba2 = (tpi / alat) **2 sigmaewa(:,:) = 0.d0 charge = 0.d0 do na = 1, nat charge = charge+zv (ityp (na) ) enddo ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error ON THE ENERGY ! alpha = 2.9d0 12 alpha = alpha - 0.1d0 if (alpha.eq.0.0) call errore ('stres_ew', 'optimal alpha not found & &', 1) upperbound = e2 * charge**2 * sqrt (2 * alpha / tpi) * & qe_erfc ( sqrt (tpiba2 * gcutm / 4.0d0 / alpha) ) if (upperbound.gt.1d-7) goto 12 ! ! G-space sum here ! ! Determine if this processor contains G=0 and set the constant term ! if (gstart == 2) then sdewald = tpi * e2 / 4.d0 / alpha * (charge / omega) **2 else sdewald = 0.d0 endif ! sdewald is the diagonal term if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do ng = gstart, ngm g2 = gg (ng) * tpiba2 g2a = g2 / 4.d0 / alpha rhostar = (0.d0, 0.d0) do na = 1, nat arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) + & g (3, ng) * tau (3, na) ) * tpi rhostar = rhostar + zv (ityp (na) ) * CMPLX(cos (arg), sin (arg),kind=DP) enddo rhostar = rhostar / omega sewald = fact * tpi * e2 * exp ( - g2a) / g2 * abs (rhostar) **2 sdewald = sdewald-sewald do l = 1, 3 do m = 1, l sigmaewa (l, m) = sigmaewa (l, m) + sewald * tpiba2 * 2.d0 * & g (l, ng) * g (m, ng) / g2 * (g2a + 1) enddo enddo enddo do l = 1, 3 sigmaewa (l, l) = sigmaewa (l, l) + sdewald enddo ! ! R-space sum here (only for the processor that contains G=0) ! if (gstart.eq.2) then rmax = 4.0d0 / sqrt (alpha) / alat ! ! with this choice terms up to ZiZj*erfc(5) are counted (erfc(5)=2x10^-1 ! do na = 1, nat do nb = 1, nat dtau (:) = tau (:, na) - tau (:, nb) ! ! generates nearest-neighbors shells r(i)=R(i)-dtau(i) ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) do nr = 1, nrm rr = sqrt (r2 (nr) ) * alat fac = - e2 / 2.0d0 / omega * alat**2 * zv (ityp (na) ) * & zv ( ityp (nb) ) / rr**3 * (qe_erfc (sqrt (alpha) * rr) + & rr * sqrt (8 * alpha / tpi) * exp ( - alpha * rr**2) ) do l = 1, 3 do m = 1, l sigmaewa (l, m) = sigmaewa (l, m) + fac * r(l,nr) * r(m,nr) enddo enddo enddo enddo enddo endif ! do l = 1, 3 do m = 1, l - 1 sigmaewa (m, l) = sigmaewa (l, m) enddo enddo do l = 1, 3 do m = 1, 3 sigmaewa (l, m) = - sigmaewa (l, m) enddo enddo call mp_sum( sigmaewa, intra_bgrp_comm ) return end subroutine stres_ewa espresso-5.0.2/PW/src/rho2zeta.f900000644000700200004540000000437712053145627015573 0ustar marsamoscm! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE rho2zeta( rho, rho_core, nrxx, nspin, iop ) !--------------------------------------------------------------------------- ! ! ... if ( iopi == 1 ) transform the spin up spin down charge density ! ... rho(*,is) into : ! ! ... rho(*,1) = ( rho_up + rho_dw ) and ! ... rho(*,2) = ( rho_up - rho_dw ) / rho_tot = zeta ! ! ... if ( iopi == -1) do the opposit transformation ! USE constants, ONLY : eps32 USE io_global, ONLY : stdout USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER :: iop, nspin, nrxx, ir ! the input option ! the number of spin polarizations ! the fft grid dimension ! the counter for fft grid REAL(DP) :: rho(nrxx,nspin), rho_core(nrxx), & rho_up, rho_dw, zeta, rhox ! the scf charge density ! the core charge density ! auxiliary variable for rho up ! auxiliary variable for rho dw ! auxiliary variable for zeta ! auxiliary variable for total rho ! ! IF ( nspin == 1 ) RETURN ! IF ( iop == 1 ) THEN ! DO ir = 1, nrxx ! rhox = rho(ir,1) + rho(ir,2) + rho_core(ir) ! IF ( rhox > eps32 ) THEN ! zeta = ( rho(ir,1) - rho(ir,2) ) / rhox ! ELSE ! zeta = 0.D0 ! END IF ! rho(ir,1) = rho(ir,1) + rho(ir,2) rho(ir,2) = zeta ! END DO ! ELSE IF ( iop == - 1 ) THEN ! DO ir = 1, nrxx ! rhox = rho(ir,1) + rho_core(ir) ! rho_up = 0.5D0 * ( rho(ir,1) + rho(ir,2) * rhox ) rho_dw = 0.5D0 * ( rho(ir,1) - rho(ir,2) * rhox ) ! rho(ir,1) = rho_up rho(ir,2) = rho_dw ! END DO ! ELSE ! WRITE( stdout , '(5X,"iop = ",I5)' ) iop ! CALL errore( 'mag2zeta', 'wrong iop', 1 ) ! END IF ! RETURN ! END SUBROUTINE rho2zeta espresso-5.0.2/PW/src/ewald_dipole.f900000644000700200004540000001103612053145627016453 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine ewald_dipole (tens,dipole) !----------------------------------------------------------------------- ! ! Calculates the ewald field on each atom due to the presence of dipole, or ! the electic field on each atom due to the ionic charge of other atoms, ! with both G- and R-space terms. ! Determines optimal alpha. Should hopefully work for any structure. ! ! USE kinds , ONLY : dp USE gvect , ONLY : gcutm, gstart, ngm, g, gg USE constants , ONLY : tpi, e2, fpi, pi USE cell_base , ONLY : tpiba2, omega, alat, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE vlocal , ONLY : strf USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP) :: dipole(ntyp),charge, eta, arg, upperbound, temp complex(DP) :: tens(nat,3,3) complex(DP) :: rhon real(DP), external :: qe_erfc complex(DP), allocatable:: ewaldg(:,:,:), ewaldr(:,:,:) integer :: alpha, beta, na, ng, nt, ipol, nb, nrm, nr integer, parameter :: mxr = 50 real (DP) :: r(3,mxr), r2(mxr), rmax, rr, dtau(3) real (DP) :: expcoeff complex(DP) :: carg, recarg, recarg_dgg allocate (ewaldg(nat,3,3)) allocate (ewaldr(nat,3,3)) ewaldg=(0.d0,0.d0) ewaldr=(0.d0,0.d0) ! e2=1.d0 !hartree charge = 0.d0 do na = 1, nat charge = charge+dipole (ityp (na) ) enddo eta = 2.9d0 do eta = eta - 0.1d0 ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! if (eta.le.0.d0) call errore ('ewald_dipole', 'optimal eta not found', 1) upperbound = 2.d0 * charge**2 * sqrt (2.d0 * eta / tpi) & * qe_erfc ( sqrt (tpiba2 * gcutm / 4.d0 / eta) ) if (upperbound.le.1.0d-7) exit enddo ! ! G-space sum here. do ng = gstart, ngm rhon = (0.d0, 0.d0) expcoeff = exp ( - gg (ng) * tpiba2 * 0.25d0 / eta ) do nt = 1, ntyp rhon = rhon + dipole (nt) * CONJG(strf (ng, nt) ) enddo do na=1, nat arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) & + g (3, ng) * tau (3, na) ) * tpi carg = CMPLX(cos(arg), -sin(arg),kind=DP) recarg = rhon*expcoeff*carg recarg_dgg = recarg / gg(ng) do alpha = 1,3 do beta=1,3 ewaldg(na , alpha, beta) = ewaldg(na, alpha, beta) & - recarg_dgg * g(alpha,ng) * g(beta,ng) enddo ewaldg(na , alpha, alpha) = ewaldg(na, alpha, alpha) & + 1.d0/3.d0 * recarg enddo enddo enddo ewaldg = e2 / 2.d0 * fpi / omega * ewaldg !Temp to compare with paratec ! ewaldg = e2 * fpi / omega * ewaldg ! call mp_sum( ewaldg, intra_bgrp_comm ) !2 because ewaldg is complex ! ! R-space sum here (only for the processor that contains G=0) ! ewaldr = 0.d0 if (gstart.eq.2) then rmax = 4.d0 / sqrt (eta) / alat ! ! with this choice terms up to ZiZj*erfc(4) are counted (erfc(4)=2x10^-8 ! do na = 1, nat do nb = 1, nat do ipol = 1, 3 dtau (ipol) = tau (ipol, na) - tau (ipol, nb) enddo ! ! generates nearest-neighbors shells ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) ! ! and sum to the real space part ! r = r * alat do nr = 1, nrm rr = sqrt (r2 (nr) ) * alat temp= dipole (ityp (na)) * ( 3.d0 / rr**3 * qe_erfc ( sqrt (eta) * rr) & + (6.d0 * sqrt (eta/pi) * 1.d0 / rr*2 + 4.d0 * sqrt (eta**3/pi)) & * exp(-eta* rr**2)) do alpha=1,3 do beta=1,3 ewaldr(na, alpha,beta) = ewaldr(na, alpha,beta) & + temp*r(alpha,nr)*r(beta,nr) / rr**2 enddo ewaldr(na, alpha,alpha)= ewaldr(na, alpha,alpha) & - 1.d0/3.d0 * temp enddo enddo enddo enddo endif ewaldr = e2 * ewaldr ! call mp_sum( ewaldr, intra_bgrp_comm ) !2 because ewaldr is complex ! tens=ewaldg+ewaldr end subroutine ewald_dipole espresso-5.0.2/PW/src/ccgdiagg.f900000644000700200004540000002447412053145627015565 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! !---------------------------------------------------------------------------- SUBROUTINE ccgdiagg( npwx, npw, nbnd, npol, psi, e, btype, precondition, & ethr, maxter, reorder, notconv, avg_iter ) !---------------------------------------------------------------------------- ! ! ... "poor man" iterative diagonalization of a complex hermitian matrix ! ... through preconditioned conjugate gradient algorithm ! ... Band-by-band algorithm with minimal use of memory ! ... Calls h_1psi and s_1psi to calculate H|psi> and S|psi> ! ... Works for generalized eigenvalue problem (US pseudopotentials) as well ! USE constants, ONLY : pi USE kinds, ONLY : DP USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npwx, npw, nbnd, npol, maxter INTEGER, INTENT(IN) :: btype(nbnd) REAL(DP), INTENT(IN) :: precondition(npwx*npol), ethr COMPLEX(DP), INTENT(INOUT) :: psi(npwx*npol,nbnd) REAL(DP), INTENT(INOUT) :: e(nbnd) INTEGER, INTENT(OUT) :: notconv REAL(DP), INTENT(OUT) :: avg_iter ! ! ... local variables ! INTEGER :: i, j, m, iter, moved COMPLEX(DP), ALLOCATABLE :: hpsi(:), spsi(:), lagrange(:), & g(:), cg(:), scg(:), ppsi(:), g0(:) REAL(DP) :: psi_norm, a0, b0, gg0, gamma, gg, gg1, & cg0, e0, es(2) REAL(DP) :: theta, cost, sint, cos2t, sin2t LOGICAL :: reorder INTEGER :: kdim, kdmx, kdim2 REAL(DP) :: empty_ethr, ethr_m ! ! ... external functions ! REAL (DP), EXTERNAL :: ddot ! ! CALL start_clock( 'ccgdiagg' ) ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx * npol kdmx = npwx * npol ! END IF ! kdim2 = 2 * kdim ! ALLOCATE( spsi( kdmx ) ) ALLOCATE( scg( kdmx ) ) ALLOCATE( hpsi( kdmx ) ) ALLOCATE( g( kdmx ) ) ALLOCATE( cg( kdmx ) ) ALLOCATE( g0( kdmx ) ) ALLOCATE( ppsi( kdmx ) ) ! ALLOCATE( lagrange( nbnd ) ) ! avg_iter = 0.D0 notconv = 0 moved = 0 ! ! ... every eigenfunction is calculated separately ! DO m = 1, nbnd ! IF ( btype(m) == 1 ) THEN ! ethr_m = ethr ! ELSE ! ethr_m = empty_ethr ! END IF ! spsi = ZERO scg = ZERO hpsi = ZERO g = ZERO cg = ZERO g0 = ZERO ppsi = ZERO lagrange = ZERO ! ! ... calculate S|psi> ! CALL s_1psi( npwx, npw, psi(1,m), spsi ) ! ! ... orthogonalize starting eigenfunction to those already calculated ! CALL ZGEMV( 'C', kdim, m, ONE, psi, kdmx, spsi, 1, ZERO, lagrange, 1 ) ! CALL mp_sum( lagrange( 1:m ), intra_bgrp_comm ) ! psi_norm = DBLE( lagrange(m) ) ! DO j = 1, m - 1 ! psi(:,m) = psi(:,m) - lagrange(j) * psi(:,j) ! psi_norm = psi_norm - & ( DBLE( lagrange(j) )**2 + AIMAG( lagrange(j) )**2 ) ! END DO ! psi_norm = SQRT( psi_norm ) ! psi(:,m) = psi(:,m) / psi_norm ! ! ... calculate starting gradient (|hpsi> = H|psi>) ... ! CALL h_1psi( npwx, npw, psi(1,m), hpsi, spsi ) ! ! ... and starting eigenvalue (e = = ) ! ! ... NB: ddot(2*npw,a,1,b,1) = REAL( zdotc(npw,a,1,b,1) ) ! e(m) = ddot( kdim2, psi(1,m), 1, hpsi, 1 ) ! CALL mp_sum( e(m), intra_bgrp_comm ) ! ! ... start iteration for this band ! iterate: DO iter = 1, maxter ! ! ... calculate P (PHP)|y> ! ... ( P = preconditioning matrix, assumed diagonal ) ! g(:) = hpsi(:) / precondition(:) ppsi(:) = spsi(:) / precondition(:) ! ! ... ppsi is now S P(P^2)|y> = S P^2|psi>) ! es(1) = ddot( kdim2, spsi(1), 1, g(1), 1 ) es(2) = ddot( kdim2, spsi(1), 1, ppsi(1), 1 ) ! CALL mp_sum( es , intra_bgrp_comm ) ! es(1) = es(1) / es(2) ! g(:) = g(:) - es(1) * ppsi(:) ! ! ... e1 = / ensures that ! ... = 0 ! ... orthogonalize to lowest eigenfunctions (already calculated) ! ! ... scg is used as workspace ! CALL s_1psi( npwx, npw, g(1), scg(1) ) ! CALL ZGEMV( 'C', kdim, ( m - 1 ), ONE, psi, & kdmx, scg, 1, ZERO, lagrange, 1 ) ! CALL mp_sum( lagrange( 1:m-1 ), intra_bgrp_comm ) ! DO j = 1, ( m - 1 ) ! g(:) = g(:) - lagrange(j) * psi(:,j) scg(:) = scg(:) - lagrange(j) * psi(:,j) ! END DO ! IF ( iter /= 1 ) THEN ! ! ... gg1 is (used in Polak-Ribiere formula) ! gg1 = ddot( kdim2, g(1), 1, g0(1), 1 ) ! CALL mp_sum( gg1, intra_bgrp_comm ) ! END IF ! ! ... gg is ! g0(:) = scg(:) ! g0(:) = g0(:) * precondition(:) ! gg = ddot( kdim2, g(1), 1, g0(1), 1 ) ! CALL mp_sum( gg, intra_bgrp_comm ) ! IF ( iter == 1 ) THEN ! ! ... starting iteration, the conjugate gradient |cg> = |g> ! gg0 = gg ! cg(:) = g(:) ! ELSE ! ! ... |cg(n+1)> = |g(n+1)> + gamma(n) * |cg(n)> ! ! ... Polak-Ribiere formula : ! gamma = ( gg - gg1 ) / gg0 gg0 = gg ! cg(:) = cg(:) * gamma cg(:) = g + cg(:) ! ! ... The following is needed because ! ... is not 0. In fact : ! ... = sin(theta)* ! psi_norm = gamma * cg0 * sint ! cg(:) = cg(:) - psi_norm * psi(:,m) ! END IF ! ! ... |cg> contains now the conjugate gradient ! ! ... |scg> is S|cg> ! CALL h_1psi( npwx, npw, cg(1), ppsi(1), scg(1) ) ! cg0 = ddot( kdim2, cg(1), 1, scg(1), 1 ) ! CALL mp_sum( cg0 , intra_bgrp_comm ) ! cg0 = SQRT( cg0 ) ! ! ... |ppsi> contains now HP|cg> ! ... minimize , where : ! ... |y(t)> = cos(t)|y> + sin(t)/cg0 |cg> ! ... Note that = 1, = 0 , ! ... = cg0^2 ! ... so that the result is correctly normalized : ! ... = 1 ! a0 = 2.D0 * ddot( kdim2, psi(1,m), 1, ppsi(1), 1 ) / cg0 ! CALL mp_sum( a0 , intra_bgrp_comm ) ! b0 = ddot( kdim2, cg(1), 1, ppsi(1), 1 ) / cg0**2 ! CALL mp_sum( b0 , intra_bgrp_comm ) ! e0 = e(m) ! theta = 0.5D0 * ATAN( a0 / ( e0 - b0 ) ) ! cost = COS( theta ) sint = SIN( theta ) ! cos2t = cost*cost - sint*sint sin2t = 2.D0*cost*sint ! es(1) = 0.5D0 * ( ( e0 - b0 ) * cos2t + a0 * sin2t + e0 + b0 ) es(2) = 0.5D0 * ( - ( e0 - b0 ) * cos2t - a0 * sin2t + e0 + b0 ) ! ! ... there are two possible solutions, choose the minimum ! IF ( es(2) < es(1) ) THEN ! theta = theta + 0.5D0 * pi ! cost = COS( theta ) sint = SIN( theta ) ! END IF ! ! ... new estimate of the eigenvalue ! e(m) = MIN( es(1), es(2) ) ! ! ... upgrade |psi> ! psi(:,m) = cost * psi(:,m) + sint / cg0 * cg(:) ! ! ... here one could test convergence on the energy ! IF ( ABS( e(m) - e0 ) < ethr_m ) EXIT iterate ! ! ... upgrade H|psi> and S|psi> ! spsi(:) = cost * spsi(:) + sint / cg0 * scg(:) ! hpsi(:) = cost * hpsi(:) + sint / cg0 * ppsi(:) ! END DO iterate ! IF ( iter >= maxter ) notconv = notconv + 1 ! avg_iter = avg_iter + iter + 1 ! ! ... reorder eigenvalues if they are not in the right order ! ... ( this CAN and WILL happen in not-so-special cases ) ! IF ( m > 1 .AND. reorder ) THEN ! IF ( e(m) - e(m-1) < - 2.D0 * ethr_m ) THEN ! ! ... if the last calculated eigenvalue is not the largest... ! DO i = m - 2, 1, - 1 ! IF ( e(m) - e(i) > 2.D0 * ethr_m ) EXIT ! END DO ! i = i + 1 ! moved = moved + 1 ! ! ... last calculated eigenvalue should be in the ! ... i-th position: reorder ! e0 = e(m) ! ppsi(:) = psi(:,m) ! DO j = m, i + 1, - 1 ! e(j) = e(j-1) ! psi(:,j) = psi(:,j-1) ! END DO ! e(i) = e0 ! psi(:,i) = ppsi(:) ! ! ... this procedure should be good if only a few inversions occur, ! ... extremely inefficient if eigenvectors are often in bad order ! ... ( but this should not happen ) ! END IF ! END IF ! END DO ! avg_iter = avg_iter / DBLE( nbnd ) ! DEALLOCATE( lagrange ) DEALLOCATE( ppsi ) DEALLOCATE( g0 ) DEALLOCATE( cg ) DEALLOCATE( g ) DEALLOCATE( hpsi ) DEALLOCATE( scg ) DEALLOCATE( spsi ) ! CALL stop_clock( 'ccgdiagg' ) ! RETURN ! END SUBROUTINE ccgdiagg espresso-5.0.2/PW/src/stres_loc.f900000644000700200004540000000623312053145630016015 0ustar marsamoscm ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine stres_loc (sigmaloc) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE atom, ONLY : msh, rgrid USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, ngl, gl, igtongl USE lsda_mod, ONLY : nspin USE scf, ONLY : rho USE vlocal, ONLY : strf, vloc USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE uspp_param, ONLY : upf USE noncollin_module, ONLY : nspin_lsda USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP) :: sigmaloc (3, 3) real(DP) , allocatable :: dvloc(:) real(DP) :: evloc, fact integer :: ng, nt, l, m, is ! counter on g vectors ! counter on atomic type ! counter on angular momentum ! counter on spin components allocate(dvloc(ngl)) sigmaloc(:,:) = 0.d0 psic(:)=(0.d0,0.d0) do is = 1, nspin_lsda call daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, psic, 2) enddo CALL fwfft ('Dense', psic, dfftp) ! psic contains now the charge density in G space if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if evloc = 0.0d0 do nt = 1, ntyp if (gstart==2) evloc = evloc + & psic (nl (1) ) * strf (1, nt) * vloc (igtongl (1), nt) do ng = gstart, ngm evloc = evloc + DBLE (CONJG(psic (nl (ng) ) ) * strf (ng, nt) ) & * vloc (igtongl (ng), nt) * fact enddo enddo ! ! WRITE( 6,*) ' evloc ', evloc, evloc*omega ! DEBUG ! do nt = 1, ntyp IF ( .NOT. ASSOCIATED ( upf(nt)%vloc ) ) THEN ! ! special case: pseudopotential is coulomb 1/r potential ! call dvloc_coul (upf(nt)%zp, tpiba2, ngl, gl, omega, dvloc) ! ELSE ! ! normal case: dvloc contains dV_loc(G)/dG ! call dvloc_of_g (rgrid(nt)%mesh, msh (nt), rgrid(nt)%rab, rgrid(nt)%r,& upf(nt)%vloc(1), upf(nt)%zp, tpiba2, ngl, gl, omega, dvloc) ! END IF ! no G=0 contribution do ng = 1, ngm do l = 1, 3 do m = 1, l sigmaloc(l, m) = sigmaloc(l, m) + DBLE( CONJG( psic(nl(ng) ) ) & * strf (ng, nt) ) * 2.0d0 * dvloc (igtongl (ng) ) & * tpiba2 * g (l, ng) * g (m, ng) * fact enddo enddo enddo enddo ! do l = 1, 3 sigmaloc (l, l) = sigmaloc (l, l) + evloc do m = 1, l - 1 sigmaloc (m, l) = sigmaloc (l, m) enddo enddo ! call mp_sum( sigmaloc, intra_bgrp_comm ) ! deallocate(dvloc) return end subroutine stres_loc espresso-5.0.2/PW/src/vcsmd.f900000644000700200004540000003644012053145630015137 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE vcsmd() !---------------------------------------------------------------------------- ! ! Main (interface) routine between PWSCF and the variable-cell shape ! molecular dynamics code by R.M. Wentzcovitch, PRB 44, 2358 (1991). ! ! Molecular and/or cell dynamics is performed according to the value of ! the switch variable calc: ! ! calc = 'md' : standard molecular dynamics ! calc = 'mm' : structural minimization by damped dynamics ! calc = 'cd' : Parrinello-Rahman cell dynamics ! calc = 'cm' : Parrinello-Rahman cell minimization by damped dynami ! calc = 'nd' : Wentzcovitch's new cell dynamics ! calc = 'nm' : Wentzcovitch's new cell minimization by damped dynam ! ! Dynamics performed using Beeman algorithm, J. Comp. Phys. 20, 130 (1976)) ! ! Contraints with vcsmd have been implemented by Vivek Ranjan in 2012 ! from the Department of Physics, North Carolina State University ! Raleigh, North Carolina, USA ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : e2, ry_kbar, amu_ry USE cell_base, ONLY : omega, alat, at, bg, iforceh, fix_volume, fix_area USE ions_base, ONLY : tau, nat, ntyp => nsp, ityp, atm, if_pos USE cellmd, ONLY : nzero, ntimes, calc, press, at_old, omega_old, & cmass, ntcheck, lmovecell USE dynamics_module, ONLY : dt, temperature USE ions_base, ONLY : amass, if_pos USE relax, ONLY : epse, epsf, epsp USE force_mod, ONLY : force, sigma USE control_flags, ONLY : nstep, istep, tolp, conv_ions, lconstrain, lfixatom USE parameters, ONLY : ntypx USE ener, ONLY : etot USE io_files, ONLY : prefix, delete_if_present, seqopn USE constraints_module, ONLY : nconstr USE constraints_module, ONLY : remove_constr_force, check_constraint ! ! IMPLICIT NONE ! ! ... I/O variable first ! ! PWSCF variables ! nat = total number of atoms ! ntyp = total number of atomic types ! ityp(na) = atomic type for na-th atom ! tau(i,na) = position of the na-th atom ! at (icar,ivec) = direct Bravais lattice vectors ! bg (icar,ivec) = reciprocal lattice vectors ! amass_(nt) = mass (in atomic ryd units) for atom of nt-th type ! cmass = cell mass in ryd units. ! press = target pressure in ryd/(a.u.)^3 ! ! ... local variables #if ! defined (__REDUCE_OUTPUT) ! for vcsmd with constraints REAL(DP), EXTERNAL :: DNRM2 ! #endif ! REAL(DP) :: p, & ! virial pressure vcell, & ! cell volume avec(3,3), & ! at(3,3) * alat aveci(3,3), & ! avec at t-dt avecd(3,3), & ! d(avec)/dt avec2d(3,3), & ! d2(avec)/dt2 avec2di(3,3), & ! d2(avec)/dt2 at t-dt avec0(3,3), & ! avec at t = 0 sig0(3,3), & ! sigma at t=0 v0 ! volume at t=0 REAL(DP), ALLOCATABLE :: & amass_(:), & ! scaled atomic masses rat(:,:), & ! atomic positions (lattice coord) rati(:,:), & ! rat at previous step ratd(:,:), & ! rat derivatives at current step rat2d(:,:), & ! rat 2nd derivatives at current step rat2di(:,:), & ! rat 2nd derivatives at previous step tauold(:,:,:) ! additional history variables REAL(DP) :: & avmod(3), theta(3,3), & ! used to monitor cell dynamics enew, e_start, & ! DFT energy at current and first step eold, & ! DFT energy at previous step uta, eka, eta, ekla, utl, etl, ut, ekint, edyn, & ! other energies acu, ack, acp, acpv, avu, avk, avp, avpv, & ! acc.& avrg. ener tnew, pv, & ! instantaneous temperature and p*vcell sigmamet(3,3), & ! sigma = avec^-1 * vcell = bg/alat*omega vx2(ntypx), vy2(ntypx), vz2(ntypx), & ! work vectors vmean(ntypx), rms(ntypx), ekin(ntypx), & ! work vectors tempo, time_au CHARACTER(LEN=3) :: ios ! status (old or new) for I/O files CHARACTER(LEN=6) :: ipos ! status ('append' or 'asis') for I/O files CHARACTER(LEN=80):: calc_long ! Verbose description of type of calculation LOGICAL :: exst INTEGER, SAVE :: idone = 0 ! counter on completed moves on this run INTEGER :: na, nst, ipol, i, j, k ! counters ! ! ... I/O units ! INTEGER, PARAMETER :: iun_e = 21, & iun_eal = 22, & iun_ave = 23, & iun_p = 24, & iun_avec = 25, & iun_tv = 26 ! ! ! ... Allocate work arrays ! ALLOCATE( amass_(ntyp) ) amass_(1:ntyp) = amass(1:ntyp) * amu_ry ALLOCATE( rat(3,nat) ) ALLOCATE( rati(3,nat) ) ALLOCATE( ratd(3,nat) ) ALLOCATE( rat2d(3,nat) ) ALLOCATE( rat2di(3,nat) ) ALLOCATE( tauold(3,nat,3) ) ! ! ... open MD history file (if not present this is a new run!) ! CALL seqopn( 4, 'md', 'FORMATTED', exst ) ! IF ( .NOT. exst ) THEN ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! IF ( istep /= 0 ) & CALL errore( 'vcsmd', 'previous MD history got lost', 1 ) ! tnew = 0.D0 acu = 0.D0 ack = 0.D0 acp = 0.D0 acpv = 0.D0 avu = 0.D0 avk = 0.D0 avp = 0.D0 avpv = 0.D0 nzero = 0 tauold(:,:,:) = 0.D0 ! ! ... set value for eold at first iteration ! eold = etot + 2.D0 * epse ! ELSE ! ! ... read MD run history ! READ( 4, * ) rati, ratd, rat2d, rat2di, tauold READ( 4, * ) aveci, avecd, avec2d, avec2di READ( 4, * ) avec0, sig0, v0, e_start, eold READ( 4, * ) acu, ack, acp, acpv, avu, avk, avp, avpv, sigmamet READ( 4, * ) istep, nzero, ntimes ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! tauold(:,:,3) = tauold(:,:,2) tauold(:,:,2) = tauold(:,:,1) ! END IF ! idone = idone + 1 istep = istep + 1 ! IF ( calc == 'cm' ) THEN calc_long="Parrinello-Rahman Damped Cell Dynamics Minimization: " ELSE IF ( calc == 'nm' ) THEN calc_long="Wentzcovitch Damped Cell Dynamics Minimization: " ELSE IF ( calc == 'mm' ) THEN calc_long="Beeman Damped Dynamics Minimization: " ELSE IF ( calc == 'cd' ) THEN calc_long="Parrinello-Rahman Cell Dynamics: " ELSE IF ( calc == 'nd' ) THEN calc_long="Wentzcovitch Cell Dynamics: " ELSE IF ( calc == 'md' ) THEN calc_long="Beeman Dynamics: " END IF ! conv_ions = .FALSE. IF ( calc(2:2) == 'm' ) THEN ! ! ... check if convergence for structural minimization is achieved ! conv_ions = ( (eold - etot) < epse ) .AND. ALL(ABS(force(:,1:nat)) < epsf) ! IF ( lmovecell ) THEN DO i = 1, 3 conv_ions = conv_ions .AND. & ( ABS( sigma(i,i) - press ) * ry_kbar * iforceh(i,i) < epsp ) DO j = ( i + 1 ), 3 conv_ions = conv_ions .AND. & ( ABS( sigma(i,j) ) * ry_kbar * iforceh(i,j) < epsp ) END DO END DO END IF ! IF ( conv_ions ) THEN ! WRITE( UNIT = stdout, FMT = '(/,5X,A,/,5X,"convergence achieved, ",& & "Efinal=", F15.8)' ) TRIM(calc_long), etot ! IF ( lmovecell ) THEN WRITE( UNIT = stdout, & FMT = '(/72("-")//5X,"Final estimate of lattice vectors ", & & "(input alat units)")' ) WRITE( UNIT = stdout, & FMT = '(3F14.9)') ( ( at(i,k) , i = 1, 3 ) , k = 1, 3 ) WRITE( UNIT = stdout, & FMT = '(" final unit-cell volume =",F12.4," (a.u.)^3")') omega WRITE( UNIT = stdout, & FMT = '(" input alat = ",F12.4," (a.u.)")') alat END IF ! CALL output_tau( lmovecell, .TRUE. ) ! RETURN ! END IF ! END IF ! tauold(:,:,1) = tau(:,:) ! time_au = 0.0000242d0 * e2 ! tempo = ( istep - 1 ) * dt * time_au ! IF ( istep == 1 ) THEN ! IF ( calc(2:2) == 'm' ) THEN WRITE( stdout,'(/5X,A,/,5x,"convergence thresholds EPSE = ",E8.2, & & " EPSF = ",E8.2)' ) TRIM(calc_long), epse, epsf END IF ! END IF ! WRITE( stdout, '(/5X,"Entering Dynamics; it = ",I5," time = ", & & F8.5," pico-seconds"/)' ) istep, tempo ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! END IF ! ! ... save cell shape of previous step ! at_old = at ! omega_old = omega ! ! ... Translate ! ! ... define rat as the atomic positions in lattice coordinates ! rat = tau ! CALL cryst_to_cart( nat, rat, bg, -1 ) ! avec = alat * at ! ! ... convert forces to lattice coordinates ! CALL cryst_to_cart( nat, force, bg, -1 ) ! force = force / alat ! ! ... scale stress to stress*omega ! sigma = sigma * omega ! vcell = omega ! IF ( istep == 1 ) THEN ! e_start = etot ! enew = etot - e_start ! CALL vcinit( ntyp, nat, ntyp, nat, rat, ityp, avec, vcell, force, if_pos, & sigma, calc, temperature, vx2, vy2, vz2, rms, vmean, ekin, & avmod, theta, amass_,cmass, press, p, dt, aveci, avecd, avec2d,& avec2di, sigmamet, sig0, avec0, v0, rati, ratd, rat2d, rat2di, & enew, uta, eka, eta, ekla, utl, etl, ut, ekint, edyn, iforceh ) ! ELSE ! enew = etot - e_start ! CALL vcmove( ntyp, nat, ntyp, ityp, rat, avec, vcell, force, if_pos, & sigma, calc, avmod, theta, amass_,cmass, press, p, dt, avecd, & avec2d, aveci, avec2di, sigmamet, sig0, avec0, v0, ratd, rat2d,& rati, rat2di, enew, uta, eka, eta, ekla, utl, etl, ut, ekint, & edyn, temperature, tolp, ntcheck, ntimes, istep, tnew, nzero, & nat, acu, ack, acp, acpv, avu, avk, avp, avpv, iforceh) ! END IF ! pv = p * omega ! IF ( calc(2:2) == 'd' ) THEN ! ! ... Dynamics: write to output files several control quantities ! ! ... NB: at the first iteration files should not be present, ! ... for subsequent iterations they should. ! IF ( istep == 1 ) THEN ! CALL delete_if_present( 'e' ) CALL delete_if_present( 'eal' ) CALL delete_if_present( 'ave' ) CALL delete_if_present( 'p' ) CALL delete_if_present( 'avec' ) CALL delete_if_present( 'tv' ) ! ios = 'NEW' ipos = 'ASIS' ! ELSE ! ios = 'OLD' ipos = 'APPEND' ! END IF ! OPEN( UNIT = iun_e, FILE = 'e', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_eal, FILE = 'eal', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_ave, FILE = 'ave', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_p, FILE = 'p', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_avec, FILE = 'avec', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_tv, FILE = 'tv', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) ! nst = istep - 1 ! WRITE( iun_e, 101 ) ut, ekint, edyn, pv, nst WRITE( iun_eal, 103 ) uta, eka, eta, utl, ekla, etl, nst WRITE( iun_ave, 104 ) avu, avk, nst WRITE( iun_p, 105 ) press, p, avp, nst ! IF ( calc(1:1) /= 'm' ) & WRITE( iun_avec, 103 ) & avmod(:), theta(1,2), theta(2,3), theta(3,1), nst ! WRITE( iun_tv, 104 ) vcell, tnew, nst ! CLOSE( UNIT = iun_e, STATUS = 'KEEP' ) CLOSE( UNIT = iun_eal, STATUS = 'KEEP' ) CLOSE( UNIT = iun_ave, STATUS = 'KEEP' ) CLOSE( UNIT = iun_p, STATUS = 'KEEP' ) CLOSE( UNIT = iun_avec, STATUS = 'KEEP' ) CLOSE( UNIT = iun_tv, STATUS = 'KEEP' ) ! END IF ! ! ... update configuration in PWSCF variables ! if (fix_volume) call impose_deviatoric_strain(alat*at, avec) ! if (fix_area) call impose_deviatoric_strain_2d(alat*at, avec) ! at = avec / alat ! CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2) , bg(1,3) ) ! tau = rat ! IF ( lmovecell ) THEN ! WRITE( stdout, * ) ' new lattice vectors (alat unit) :' WRITE( stdout, '(3F14.9)') ( ( at(i,k) , i = 1, 3 ) , k = 1, 3 ) WRITE( stdout,'(A,F12.4,A)') ' new unit-cell volume =', omega, ' (a.u.)^3' ! END IF ! WRITE( stdout, * ) ' new positions in cryst coord' WRITE( stdout,'(A3,3X,3F14.9)') ( atm(ityp(na)), tau(:,na), na = 1, nat ) WRITE( stdout, * ) ' new positions in cart coord (alat unit)' ! CALL cryst_to_cart( nat, tau, at, 1 ) ! WRITE( stdout,'(A3,3X,3F14.9)') ( atm(ityp(na)), tau(:,na), na = 1, nat ) WRITE( stdout, '(/5X,"Ekin = ",F14.8," Ry T = ",F6.1," K ", & & " Etot = ",F14.8)') ekint, tnew, edyn + e_start ! CALL cryst_to_cart( nat, force, at, 1 ) force = force*alat ! CALL output_tau( lmovecell, .FALSE. ) ! ! ... for vcsmd with constraints ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau, tauold(:,:,1), & force, if_pos, ityp, alat, dt**2, amu_ry ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! END DO ! WRITE( stdout, '(/5X,"Total force = ",F12.6)') DNRM2( 3*nat, force, 1 ) ! #endif ! END IF ! ! ... save MD history to file ! CALL seqopn( 4, 'md', 'FORMATTED', exst ) ! WRITE(4,*) rati, ratd, rat2d, rat2di, tauold WRITE(4,*) aveci, avecd, avec2d, avec2di WRITE(4,*) avec0, sig0, v0, e_start, etot WRITE(4,*) acu, ack, acp, acpv, avu, avk, avp, avpv, sigmamet WRITE(4,*) istep, nzero, ntimes ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! DEALLOCATE( amass_, rat, rati, ratd, rat2d, rat2di, tauold ) ! ! ... check if max number of steps reached ! conv_ions = ( idone == nstep ) IF ( conv_ions ) WRITE( UNIT = stdout, FMT = '(/,5X,A,i4," iterations ", & & "completed, stopping")' ) TRIM(calc_long),nstep ! RETURN ! 101 FORMAT(1X,4D12.5,I6) 103 FORMAT(1X,6D12.5,I6) 104 FORMAT(1X,2D12.5,I6) 105 FORMAT(1X,3D12.5,I6) ! END SUBROUTINE vcsmd espresso-5.0.2/PW/src/scale_h.f900000644000700200004540000000516012053145627015422 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine scale_h !----------------------------------------------------------------------- ! When variable cell calculation are performed this routine scales the ! quantities needed in the calculation of the hamiltonian using the ! new and old cell parameters. ! USE kinds, ONLY : dp USE io_global, ONLY : stdout USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : bg, omega USE cellmd, ONLY : at_old, omega_old USE gvect, ONLY : g, gg, ngm USE klist, ONLY : xk, wk, nkstot USE us, ONLY : nqxq, nqx, qrad, tab, tab_at, dq USE control_flags, ONLY : iverbosity USE start_k, ONLY : nks_start, xk_start #ifdef __MPI USE mp, ONLY : mp_max USE mp_global, ONLY : intra_bgrp_comm #endif ! implicit none ! integer :: ig ! counter on G vectors integer :: ik, ipol real(dp) :: gg_max ! ! scale the k points ! call cryst_to_cart (nkstot, xk, at_old, - 1) call cryst_to_cart (nkstot, xk, bg, + 1) call cryst_to_cart (nks_start, xk_start, at_old, - 1) call cryst_to_cart (nks_start, xk_start, bg, + 1) IF ( iverbosity > 0 .OR. nkstot < 100) THEN WRITE( stdout, '(5x,a)' ) 'NEW k-points:' do ik = 1, nkstot WRITE( stdout, '(8x,"k(",i5,") = (",3f12.7,"), wk =",f12.7)') ik, & (xk (ipol, ik) , ipol = 1, 3) , wk (ik) enddo ELSE WRITE( stdout, '(5x,a)' ) "NEW k-points: (use verbosity='high' to print them)" ENDIF ! ! scale the g vectors (as well as gg and gl arrays) ! call cryst_to_cart (ngm, g, at_old, - 1) call cryst_to_cart (ngm, g, bg, + 1) gg_max = 0.0_dp do ig = 1, ngm gg (ig) = g(1, ig) * g(1, ig) + g(2, ig) * g(2, ig) + g(3, ig) * g(3, ig) gg_max = max(gg(ig), gg_max) enddo #ifdef __MPI CALL mp_max (gg_max, intra_bgrp_comm) #endif if(nqxq < int(sqrt(gg_max)/dq)+4) then call errore('scale_h', 'Not enough space allocated for radial FFT: '//& 'try restarting with a larger cell_factor.',1) endif ! ! scale the non-local pseudopotential tables ! tab(:,:,:) = tab(:,:,:) * sqrt (omega_old/omega) qrad(:,:,:,:) = qrad(:,:,:,:) * omega_old/omega tab_at(:,:,:) = tab_at(:,:,:) * sqrt (omega_old/omega) ! ! recalculate the local part of the pseudopotential ! call init_vloc ( ) ! return end subroutine scale_h espresso-5.0.2/PW/src/paw_onecenter.f900000644000700200004540000027237712053145627016675 0ustar marsamoscm! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! NOTE ON PARALLELIZATION: ! this code is parallelized on atoms, i.e. each node computes potential, energy, ! newd coefficients, ddots and \int v \times n on a reduced number of atoms. ! The implementation assumes that divisions of atoms among the nodes is always ! done in the same way! By doing so we can avoid to allocate the potential for ! all the atoms on all the nodes, and (most important) we don't need to ! distribute the potential among the nodes after computing it. ! Beware: paw_ddot, paw_potential, paw_dpotential, must be called by all ! processors of an image, or else they will hang ! MODULE paw_onecenter ! USE kinds, ONLY : DP USE paw_variables, ONLY : paw_info, rad, radial_grad_style, vs_rad USE mp_global, ONLY : nproc_image, me_image, intra_image_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! entry points: PUBLIC :: PAW_potential ! prepare paw potential and store it, ! also computes energy if required PUBLIC :: PAW_ddot ! error estimate for mix_rho PUBLIC :: PAW_dpotential ! calculate change of the paw potential ! and derivatives of D^1-~D^1 coefficients PUBLIC :: PAW_rho_lm ! uses becsum to generate one-center charges ! (all-electron and pseudo) on radial grid ! INTEGER, SAVE :: paw_comm, me_paw, nproc_paw ! INTEGER, SAVE :: nx_loc, ix_s, ix_e ! parallelization on the directions ! PRIVATE REAL(DP), ALLOCATABLE :: msmall_lm(:,:,:) ! magnetiz. due to small ! components expanded on Y_lm REAL(DP), ALLOCATABLE :: g_lm(:,:,:) ! potential density as lm components ! LOGICAL :: with_small_so = .FALSE. ! ! the following macro controls the use of several fine-grained clocks ! set it to 'if(.false.) CALL' (without quotes) in order to disable them, ! set it to 'CALL' to enable them. ! LOGICAL, PARAMETER :: TIMING = .false. ! INTEGER, EXTERNAL :: ldim_block INTEGER, EXTERNAL :: gind_block CONTAINS !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! Computes V_h and V_xc using the "density" becsum provided and then !!! !!! Update the descreening coefficients: !!! D_ij = \int v_Hxc p_ij - \int vt_Hxc (pt_ij + augfun_ij) !!! !!! calculate the onecenter contribution to the energy !!! SUBROUTINE PAW_potential(becsum, d, energy, e_cmp) USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE mp, ONLY : mp_barrier, mp_comm_split, mp_comm_free, mp_size, mp_rank REAL(DP), INTENT(IN) :: becsum(nhm*(nhm+1)/2,nat,nspin)! cross band occupations REAL(DP), INTENT(OUT) :: d(nhm*(nhm+1)/2,nat,nspin) ! descreening coefficients (AE - PS) REAL(DP), INTENT(OUT), OPTIONAL :: energy ! if present compute E[rho] REAL(DP), INTENT(OUT), OPTIONAL :: e_cmp(nat, 2, 2) ! components of the energy ! {AE!PS} INTEGER, PARAMETER :: AE = 1, PS = 2,& ! All-Electron and Pseudo XC = 1, H = 2 ! XC and Hartree REAL(DP), POINTER :: rho_core(:) ! pointer to AE/PS core charge density TYPE(paw_info) :: i ! minimal info on atoms INTEGER :: i_what ! counter on AE and PS INTEGER :: is ! spin index INTEGER :: lm ! counters on angmom and radial grid INTEGER :: nb, mb, nmb ! augfun indexes INTEGER :: ia,ia_s,ia_e ! atoms counters and indexes INTEGER :: mykey ! my index in the atom group INTEGER :: j, l2, kkbeta, imesh ! REAL(DP), ALLOCATABLE :: v_lm(:,:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: rho_lm(:,:,:) ! density expanded on Y_lm REAL(DP), ALLOCATABLE :: savedv_lm(:,:,:) ! workspace: potential ! fake cross band occupations to select only one pfunc at a time: REAL(DP) :: becfake(nhm*(nhm+1)/2,nat,nspin) REAL(DP) :: integral ! workspace REAL(DP) :: energy_xc, energy_h, energy_tot REAL(DP) :: sgn ! +1 for AE -1 for PS CALL start_clock('PAW_pot') ! Some initialization becfake(:,:,:) = 0._dp d(:,:,:) = 0._dp energy_tot = 0._dp ! ! ! Parallel: divide tasks among all the processor for this image ! (i.e. all the processors except for NEB and similar) ! CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! ! build the group of all the procs associated with the same atom ! CALL mp_comm_split( intra_image_comm, ia_s - 1, me_image, paw_comm ) ! me_paw = mp_rank( paw_comm ) nproc_paw = mp_size( paw_comm ) ! atoms: DO ia = ia_s, ia_e ! i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia l2 = i%l**2 kkbeta = upf(i%t)%kkbeta imesh = i%m ! ifpaw: IF (upf(i%t)%tpawp) THEN ! ! parallelization over the direction. Here each processor chooses ! its directions ! nx_loc = ldim_block( rad(i%t)%nx, nproc_paw, me_paw ) ix_s = gind_block( 1, rad(i%t)%nx, nproc_paw, me_paw ) ix_e = ix_s + nx_loc - 1 ! ! Arrays are allocated inside the cycle to allow reduced ! memory usage as different atoms have different meshes ALLOCATE(v_lm(i%m,l2,nspin)) ALLOCATE(savedv_lm(i%m,l2,nspin)) ALLOCATE(rho_lm(i%m,l2,nspin)) ! ! whattodo: DO i_what = AE, PS ! STEP: 1 [ build rho_lm (PAW_rho_lm) ] i%ae=i_what NULLIFY(rho_core) IF (i_what == AE) THEN ! Compute rho spherical harmonics expansion from becsum and pfunc CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%pfunc, rho_lm) with_small_so=upf(i%t)%has_so.AND.nspin_mag==4 IF (with_small_so) THEN ALLOCATE(msmall_lm(i%m,l2,nspin)) ALLOCATE(g_lm(i%m,l2,nspin)) CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%pfunc_rel, msmall_lm) ENDIF ! used later for xc potential: rho_core => upf(i%t)%paw%ae_rho_atc ! sign to sum up the enrgy sgn = +1._dp ELSE CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) ! optional argument for pseudo part (aug. charge) --> ^^^ rho_core => upf(i%t)%rho_atc ! as before sgn = -1._dp ! as before with_small_so=.FALSE. ENDIF ! cleanup auxiliary potentials savedv_lm(:,:,:) = 0._dp ! First compute the Hartree potential (it does not depend on spin...): CALL PAW_h_potential(i, rho_lm, v_lm(:,:,1), energy) ! ! ! NOTE: optional variables works recursively: e.g. if energy is not present here ! it will not be present in PAW_h_potential too! !IF (present(energy)) write(*,*) 'H',i%a,i_what,sgn*energy IF (present(energy) .AND. mykey == 0 ) energy_tot = energy_tot + sgn*energy IF (present(e_cmp) .AND. mykey == 0 ) e_cmp(ia, H, i_what) = energy DO is = 1,nspin_lsda ! ... v_H has to be copied to all spin components savedv_lm(:,:,is) = v_lm(:,:,1) ENDDO ! Then the XC one: CALL PAW_xc_potential(i, rho_lm, rho_core, v_lm, energy) !IF (present(energy)) write(*,*) 'X',i%a,i_what,sgn*energy IF (present(energy) .AND. mykey == 0 ) energy_tot = energy_tot + sgn*energy IF (present(e_cmp) .AND. mykey == 0 ) e_cmp(ia, XC, i_what) = energy savedv_lm(:,:,:) = savedv_lm(:,:,:) + v_lm(:,:,:) ! spins: DO is = 1, nspin_mag nmb = 0 ! loop on all pfunc for this kind of pseudo DO nb = 1, nh(i%t) DO mb = nb, nh(i%t) nmb = nmb+1 ! nmb = 1, nh*(nh+1)/2 ! ! compute the density from a single pfunc becfake(nmb,ia,is) = 1._dp IF (i_what == AE) THEN CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, rho_lm) IF (with_small_so) & CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc_rel, & msmall_lm) ELSE CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) ! optional argument for pseudo part --> ^^^ ENDIF ! ! Now I multiply the rho_lm and the potential, I can use ! rho_lm itself as workspace DO lm = 1, l2 DO j = 1, imesh rho_lm(j,lm,is) = rho_lm(j,lm,is) * savedv_lm(j,lm,is) END DO ! Integrate! CALL simpson(kkbeta,rho_lm(1,lm,is),g(i%t)%rab(1),& integral) d(nmb,i%a,is) = d(nmb,i%a,is) + sgn * integral IF (is>1.and.with_small_so.AND.i_what== AE ) THEN DO j=1, imesh msmall_lm(j,lm,is)=msmall_lm(j,lm,is)*& g_lm(j,lm,is) ENDDO CALL simpson(kkbeta,msmall_lm(1,lm,is),& g(i%t)%rab(1), integral) d(nmb,i%a,is) = d(nmb,i%a,is) + sgn * integral ENDIF ENDDO ! restore becfake to zero becfake(nmb,ia,is) = 0._dp ENDDO ! mb ENDDO ! nb ENDDO spins IF (with_small_so) THEN DEALLOCATE ( msmall_lm ) DEALLOCATE ( g_lm ) END IF ENDDO whattodo ! cleanup DEALLOCATE(rho_lm) DEALLOCATE(savedv_lm) DEALLOCATE(v_lm) ! ENDIF ifpaw ENDDO atoms #ifdef __MPI ! recollect D coeffs and total one-center energy IF( mykey /= 0 ) energy_tot = 0.0d0 CALL mp_sum(energy_tot, intra_image_comm) IF( mykey /= 0 ) d = 0.0d0 CALL mp_sum(d, intra_image_comm) #endif ! put energy back in the output variable IF ( present(energy) ) energy = energy_tot ! CALL mp_comm_free( paw_comm ) ! CALL stop_clock('PAW_pot') END SUBROUTINE PAW_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! As rho_ddot in mix_rho for radial grids !! FUNCTION PAW_ddot(bec1,bec2) USE constants, ONLY : e2, pi USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat, ityp USE atom, ONLY : g => rgrid USE uspp_param, ONLY : nhm, upf REAL(DP) :: PAW_ddot REAL(DP), INTENT(IN) :: & bec1(nhm*(nhm+1)/2,nat,nspin), &! cross band occupations (previous step) bec2(nhm*(nhm+1)/2,nat,nspin) ! cross band occupations (next step) INTEGER, PARAMETER :: AE = 1, PS = 2 ! All-Electron and Pseudo INTEGER :: i_what ! counter on AE and PS INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: lm,k ! counters on angmom and radial grid ! hartree energy scalar fields expanded on Y_lm REAL(DP), ALLOCATABLE :: rho_lm(:,:,:) ! radial density expanded on Y_lm REAL(DP), ALLOCATABLE :: rho_lm_save(:,:,:) ! radial density expanded on Y_lm REAL(DP), ALLOCATABLE :: v_lm(:,:) ! hartree potential, summed on spins (from bec1) ! REAL(DP) :: i_sign ! +1 for AE, -1 for PS REAL(DP) :: integral ! workspace TYPE(paw_info) :: i CALL start_clock ('PAW_ddot') ! initialize PAW_ddot = 0._dp ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! atoms: DO ia = ia_s, ia_e ! i%a = ia ! the index of the atom i%t = ityp(ia) ! the type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom ia i%b = upf(i%t)%nbeta i%l = upf(i%t)%lmax_rho+1 ! ifpaw: IF (upf(i%t)%tpawp) THEN ! IF (nspin_mag>1) ALLOCATE(rho_lm_save(i%m,i%l**2,nspin)) ALLOCATE(rho_lm(i%m,i%l**2,nspin)) ALLOCATE(v_lm(i%m,i%l**2)) ! whattodo: DO i_what = AE, PS ! Build rho from the occupations in bec1 IF (i_what == AE) THEN CALL PAW_rho_lm(i, bec1, upf(i%t)%paw%pfunc, rho_lm) i_sign = +1._dp ELSE CALL PAW_rho_lm(i, bec1, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) i_sign = -1._dp ENDIF IF (nspin_mag>1) rho_lm_save=rho_lm ! ! Compute the hartree potential from bec1 CALL PAW_h_potential(i, rho_lm, v_lm) ! ! Now a new rho is computed, this time from bec2 IF (i_what == AE) THEN CALL PAW_rho_lm(i, bec2, upf(i%t)%paw%pfunc, rho_lm) ELSE CALL PAW_rho_lm(i, bec2, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) ENDIF ! ! Finally compute the integral DO lm = 1, i%l**2 ! I can use v_lm as workspace DO k = 1, i%m v_lm(k,lm) = v_lm(k,lm) * SUM(rho_lm(k,lm,1:nspin_lsda)) ENDDO CALL simpson (upf(i%t)%kkbeta,v_lm(:,lm),g(i%t)%rab,integral) ! ! Sum all the energies in PAW_ddot PAW_ddot = PAW_ddot + i_sign * integral * 0.5_DP ! ENDDO IF (nspin_mag==2) THEN DO lm = 1, i%l**2 ! I can use rho_lm_save as workspace DO k = 1, i%m rho_lm_save(k,lm,1) = (rho_lm_save(k,lm,1)- & rho_lm_save(k,lm,2)) * (rho_lm(k,lm,1)-rho_lm(k,lm,2)) ENDDO CALL simpson (upf(i%t)%kkbeta,rho_lm_save(:,lm,1),& g(i%t)%rab,integral) ! ! Sum all the energies in PAW_ddot PAW_ddot = PAW_ddot + i_sign * integral * 0.5_DP* e2/pi ! ENDDO ELSEIF (nspin_mag==4) THEN DO lm = 1, i%l**2 ! I can use rho_lm_save as workspace DO k = 1, i%m rho_lm_save(k,lm,1) = & rho_lm_save(k,lm,2)*rho_lm(k,lm,2)+ & rho_lm_save(k,lm,3)*rho_lm(k,lm,3)+ & rho_lm_save(k,lm,4)*rho_lm(k,lm,4) ENDDO CALL simpson (upf(i%t)%kkbeta,rho_lm_save(:,lm,1),& g(i%t)%rab,integral) ! ! Sum all the energies in PAW_ddot PAW_ddot = PAW_ddot + i_sign * integral * 0.5_DP *e2 /pi ! ENDDO ENDIF ENDDO whattodo ! DEALLOCATE(v_lm) DEALLOCATE(rho_lm) IF (nspin_mag>1) DEALLOCATE(rho_lm_save) ENDIF ifpaw ENDDO atoms #ifdef __MPI IF( mykey /= 0 ) PAW_ddot = 0.0_dp CALL mp_sum(PAW_ddot, intra_image_comm) #endif CALL stop_clock ('PAW_ddot') END FUNCTION PAW_ddot !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! use the density produced by sum_rad_rho to compute xc potential and energy, as !!! xc functional is not diagonal on angular momentum numerical integration is performed SUBROUTINE PAW_xc_potential(i, rho_lm, rho_core, v_lm, energy) USE noncollin_module, ONLY : nspin_mag USE constants, ONLY : e2, eps12 USE uspp_param, ONLY : upf USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid USE funct, ONLY : dft_is_gradient, evxc_t_vec, xc_spin USE constants, ONLY : fpi ! REMOVE TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin)! charge density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial and spherical REAL(DP), INTENT(OUT) :: v_lm(i%m,i%l**2,nspin) ! potential density as lm components REAL(DP),OPTIONAL,INTENT(OUT) :: energy ! XC energy (if required) ! REAL(DP), ALLOCATABLE :: rho_loc(:,:) ! local density (workspace), up and down REAL(DP) :: v_rad(i%m,rad(i%t)%nx,nspin) ! radial potential (to be integrated) REAL(DP), ALLOCATABLE :: g_rad(:,:,:) ! radial potential REAL(DP), ALLOCATABLE :: rho_rad(:,:) ! workspace (only one radial slice of rho) ! REAL(DP), ALLOCATABLE :: msmall_rad(:,:) ! workspace REAL(DP) :: hatr(3) ! aux, used to integrate energy REAL(DP), ALLOCATABLE :: e_rad(:) ! aux, used to store radial slices of energy REAL(DP), ALLOCATABLE :: e_of_tid(:) ! aux, for openmp parallel reduce REAL(DP) :: e ! aux, used to integrate energy ! INTEGER :: ix,k ! counters on directions and radial grid INTEGER :: lsd ! switch for local spin density REAL(DP) :: exc_ret, stmp ! REAL(DP) :: arho, amag, zeta, ex, ec, vx(2), vc(2), vs ! INTEGER :: ipol, kpol INTEGER :: mytid, ntids #ifdef __OPENMP INTEGER, EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif if(TIMING) CALL start_clock ('PAW_xc_pot') ! ! true if using spin lsd = 0 IF (nspin==2) lsd=1 IF (with_small_so) THEN ALLOCATE(g_rad(i%m,rad(i%t)%nx,nspin)) g_rad = 0.0_DP ENDIF ! !$omp parallel default(private), & !$omp shared(i,rad,v_lm,rho_lm,rho_core,v_rad,ix_s,ix_e,energy,e_of_tid,nspin,g,lsd,nspin_mag,with_small_so,g_rad) #ifdef __OPENMP mytid = omp_get_thread_num()+1 ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #else mytid = 1 ntids = 1 #endif ! This will hold the "true" charge density, without r**2 or other factors ALLOCATE( rho_loc(i%m,nspin_mag) ) rho_loc = 0._dp ! ALLOCATE( rho_rad(i%m,nspin_mag) ) ! IF (present(energy)) THEN !$omp single energy = 0._dp ALLOCATE(e_of_tid(ntids)) !$omp end single ALLOCATE(e_rad(i%m)) e_of_tid(mytid) = 0._dp ENDIF !$omp workshare v_rad = 0.0_dp !$omp end workshare !$omp do DO ix = ix_s, ix_e ! ! *** LDA (and LSDA) part (no gradient correction) *** ! convert _lm density to real density along ix ! CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) ! ! compute the potential along ix ! IF ( nspin_mag ==4 ) THEN IF (with_small_so.AND.i%ae==1) CALL add_small_mag(i,ix,rho_rad) DO k=1,i%m rho_loc(k,1:nspin) = rho_rad(k,1:nspin)*g(i%t)%rm2(k) arho = rho_loc(k,1)+rho_core(k) amag = SQRT(rho_loc(k,2)**2+rho_loc(k,3)**2+rho_loc(k,4)**2) arho = ABS( arho ) IF ( arho > eps12 ) THEN zeta = amag / arho IF ( ABS( zeta ) > 1.D0 ) zeta = SIGN( 1.D0, zeta ) CALL xc_spin( arho, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) IF (present(energy)) & e_rad(k) = e2*(ex+ec)*(rho_rad(k,1)+rho_core(k)*g(i%t)%r2(k)) vs = e2*0.5D0*( vx(1) + vc(1) - vx(2) - vc(2) ) v_rad(k,ix,1) = e2*(0.5D0*( vx(1) + vc(1) + vx(2) + vc(2))) IF ( amag > eps12 ) THEN v_rad(k,ix,2:4) = vs * rho_loc(k,2:4) / amag ELSE v_rad(k,ix,2:4)=0.0_DP ENDIF ELSE v_rad(k,ix,:)=0.0_DP IF (present(energy)) e_rad(k)=0.0_DP END IF END DO IF (with_small_so) CALL compute_g(i,ix,v_rad,g_rad) ELSEIF (nspin==2) THEN DO k = 1,i%m rho_loc(k,1) = rho_rad(k,1)*g(i%t)%rm2(k) rho_loc(k,2) = rho_rad(k,2)*g(i%t)%rm2(k) ENDDO ELSE DO k = 1,i%m rho_loc(k,1) = rho_rad(k,1)*g(i%t)%rm2(k) ENDDO END IF ! ! Integrate to obtain the energy ! IF (present(energy)) THEN IF (nspin_mag <= 2 ) THEN CALL evxc_t_vec(rho_loc, rho_core, lsd, i%m, v_rad(:,ix,:), e_rad) IF ( nspin_mag < 2 ) THEN e_rad = e_rad * ( rho_rad(:,1) + rho_core*g(i%t)%r2 ) ELSE IF (nspin_mag == 2) THEN e_rad = e_rad *(rho_rad(:,1)+rho_rad(:,2)+rho_core*g(i%t)%r2 ) END IF END IF ! Integrate to obtain the energy CALL simpson(i%m, e_rad, g(i%t)%rab, e) e_of_tid(mytid) = e_of_tid(mytid) + e * rad(i%t)%ww(ix) ELSE IF (nspin_mag <= 2) & CALL evxc_t_vec(rho_loc, rho_core, lsd, i%m, v_rad(:,ix,:)) ENDIF ENDDO !$omp end do nowait IF(present(energy)) DEALLOCATE(e_rad) DEALLOCATE( rho_rad ) DEALLOCATE( rho_loc ) !$omp end parallel IF(present(energy)) THEN energy = sum(e_of_tid) DEALLOCATE(e_of_tid) CALL mp_sum( energy, paw_comm ) END IF ! Recompose the sph. harm. expansion CALL PAW_rad2lm(i, v_rad, v_lm, i%l, nspin_mag) IF (with_small_so) THEN CALL PAW_rad2lm(i, g_rad, g_lm, i%l, nspin_mag) DEALLOCATE( g_rad ) END IF ! Add gradient correction, if necessary IF( dft_is_gradient() ) & CALL PAW_gcxc_potential( i, rho_lm, rho_core, v_lm, energy ) if(TIMING) CALL stop_clock ('PAW_xc_pot') RETURN END SUBROUTINE PAW_xc_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! add gradient correction to v_xc, code mostly adapted from ../atomic/vxcgc.f90 !!! in order to support non-spherical charges (as Y_lm expansion) !!! Note that the first derivative in vxcgc becames a gradient, while the second is a divergence. !!! We also have to temporary store some additional Y_lm components in order not to loose !!! precision during the calculation, even if only the ones up to lmax_rho (the maximum in the !!! density of charge) matter when computing \int v * rho SUBROUTINE PAW_gcxc_potential(i, rho_lm,rho_core, v_lm, energy) USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : noncolin, nspin_mag, nspin_gga USE atom, ONLY : g => rgrid USE constants, ONLY : sqrtpi, fpi,pi,e2, eps => eps12, eps2 => eps24 USE funct, ONLY : gcxc, gcx_spin_vec, gcc_spin, gcx_spin USE mp, ONLY : mp_sum ! TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin) ! charge density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial and spherical REAL(DP), INTENT(INOUT) :: v_lm(i%m,i%l**2,nspin) ! potential to be updated REAL(DP),OPTIONAL,INTENT(INOUT) :: energy ! if present, add GC to energy REAL(DP),ALLOCATABLE :: rho_rad(:,:)! charge density sampled REAL(DP),ALLOCATABLE :: grad(:,:,:) ! gradient REAL(DP),ALLOCATABLE :: grad2(:,:) ! square modulus of gradient ! (first of charge, than of hamiltonian) REAL(DP),ALLOCATABLE :: gc_rad(:,:,:) ! GC correction to V (radial samples) REAL(DP),ALLOCATABLE :: gc_lm(:,:,:) ! GC correction to V (Y_lm expansion) REAL(DP),ALLOCATABLE :: h_rad(:,:,:,:)! hamiltonian (vector field) REAL(DP),ALLOCATABLE :: h_lm(:,:,:,:)! hamiltonian (vector field) !!! ^^^^^^^^^^^^^^^^^^ expanded to higher lm than rho !!! REAL(DP),ALLOCATABLE :: div_h(:,:,:) ! div(hamiltonian) REAL(DP), ALLOCATABLE :: rhoout_lm(:,:,:) ! charge density as lm components REAL(DP), ALLOCATABLE :: vout_lm(:,:,:) ! potential as lm components REAL(DP), ALLOCATABLE :: segni_rad(:,:) ! sign of the magnetization REAL(DP),ALLOCATABLE :: e_rad(:) ! aux, used to store energy REAL(DP) :: e, e_gcxc ! aux, used to integrate energy INTEGER :: k, ix, is, lm ! counters on spin and mesh REAL(DP) :: sx,sc,v1x,v2x,v1c,v2c ! workspace REAL(DP) :: v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw ! workspace REAL(DP) :: sgn, arho ! workspace REAL(DP) :: rup, rdw, co2 ! workspace REAL(DP) :: rh, zeta, grh2 REAL(DP), ALLOCATABLE :: rup_vec(:), rdw_vec(:) REAL(DP), ALLOCATABLE :: sx_vec(:) REAL(DP), ALLOCATABLE :: v1xup_vec(:), v1xdw_vec(:) REAL(DP), ALLOCATABLE :: v2xup_vec(:), v2xdw_vec(:) INTEGER :: mytid, ntids #ifdef __OPENMP INTEGER, EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif REAL(DP),ALLOCATABLE :: egcxc_of_tid(:) if(TIMING) CALL start_clock ('PAW_gcxc_v') e_gcxc = 0._dp ALLOCATE( gc_rad(i%m,rad(i%t)%nx,nspin_gga) )! GC correction to V (radial samples) ALLOCATE( gc_lm(i%m,i%l**2,nspin_gga) )! GC correction to V (Y_lm expansion) ALLOCATE( h_rad(i%m,3,rad(i%t)%nx,nspin_gga))! hamiltonian (vector field) ALLOCATE( h_lm(i%m,3,(i%l+rad(i%t)%ladd)**2,nspin_gga) ) !!! ^^^^^^^^^^^^^^^^^^ expanded to higher lm than rho !!! ALLOCATE(div_h(i%m,i%l**2,nspin_gga)) ALLOCATE(rhoout_lm(i%m,i%l**2,nspin_gga)) ! charge density as lm components ALLOCATE(vout_lm(i%m,i%l**2,nspin_gga)) ! potential as lm components ALLOCATE(segni_rad(i%m,rad(i%t)%nx)) ! charge density as lm components vout_lm=0.0_DP IF ( nspin_mag == 2 .OR. nspin_mag == 4 ) THEN ! transform the noncollinear case into sigma-GGA case IF (noncolin) THEN CALL compute_rho_spin_lm(i, rho_lm, rhoout_lm, segni_rad) ELSE rhoout_lm=rho_lm ENDIF ENDIF !$omp parallel default(private), & !$omp shared(i,g,nspin,nspin_gga,nspin_mag,rad,e_gcxc,egcxc_of_tid,gc_rad,h_rad,rho_lm,rhoout_lm,rho_core,energy,ix_s,ix_e) mytid = 1 ntids = 1 #ifdef __OPENMP mytid = omp_get_thread_num()+1 ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #endif ALLOCATE( rho_rad(i%m,nspin_gga))! charge density sampled ALLOCATE( grad(i%m,3,nspin_gga) )! gradient ALLOCATE( grad2(i%m,nspin_gga) )! square modulus of gradient ! (first of charge, than of hamiltonian) !$omp workshare gc_rad = 0.0d0 h_rad = 0.0d0 !$omp end workshare nowait IF (present(energy)) THEN !$omp single allocate(egcxc_of_tid(ntids)) !$omp end single egcxc_of_tid(mytid) = 0.0_dp ALLOCATE(e_rad(i%m)) ENDIF spin:& !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX IF ( nspin_mag == 1 ) THEN ! ! GGA case ! !$omp do DO ix = ix_s, ix_e ! ! WARNING: the next 2 calls are duplicated for spin==2 CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) CALL PAW_gradient(i, ix, rho_lm, rho_rad, rho_core, grad2, grad) DO k = 1, i%m ! arho is the absolute value of real charge, sgn is its sign arho = rho_rad(k,1)*g(i%t)%rm2(k) + rho_core(k) sgn = SIGN(1._dp,arho) arho = ABS(arho) ! I am using grad(rho)**2 here, so its eps has to be eps**2 IF ( (arho>eps) .and. (grad2(k,1)>eps2) ) THEN CALL gcxc(arho,grad2(k,1), sx,sc,v1x,v2x,v1c,v2c) IF (present(energy)) & e_rad(k) = sgn *e2* (sx+sc) * g(i%t)%r2(k) gc_rad(k,ix,1) = (v1x+v1c)!*g(i%t)%rm2(k) h_rad(k,:,ix,1) = (v2x+v2c)*grad(k,:,1)*g(i%t)%r2(k) ELSE IF (present(energy)) & e_rad(k) = 0._dp gc_rad(k,ix,1) = 0._dp h_rad(k,:,ix,1) = 0._dp ENDIF ENDDO ! ! integrate energy (if required) IF (present(energy)) THEN CALL simpson(i%m, e_rad, g(i%t)%rab, e) egcxc_of_tid(mytid) = egcxc_of_tid(mytid) + e * rad(i%t)%ww(ix) ENDIF ENDDO !$omp end do !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ELSEIF ( nspin_mag == 2 .OR. nspin_mag == 4 ) THEN ALLOCATE( rup_vec(i%m) ) ALLOCATE( rdw_vec(i%m) ) ALLOCATE( sx_vec(i%m) ) ALLOCATE( v1xup_vec(i%m) ) ALLOCATE( v1xdw_vec(i%m) ) ALLOCATE( v2xup_vec(i%m) ) ALLOCATE( v2xdw_vec(i%m) ) ! ! this is the \sigma-GGA case ! !$omp do DO ix = ix_s, ix_e ! CALL PAW_lm2rad(i, ix, rhoout_lm, rho_rad, nspin_gga) CALL PAW_gradient(i, ix, rhoout_lm, rho_rad, rho_core, & grad2, grad) ! DO k = 1,i%m ! ! Prepare the necessary quantities ! rho_core is considered half spin up and half spin down: co2 = rho_core(k)/2._dp ! than I build the real charge dividing by r**2 rup_vec(k) = rho_rad(k,1)*g(i%t)%rm2(k) + co2 rdw_vec(k) = rho_rad(k,2)*g(i%t)%rm2(k) + co2 END DO ! bang! CALL gcx_spin_vec (rup_vec, rdw_vec, grad2(:,1), grad2(:,2), & sx_vec, v1xup_vec, v1xdw_vec, v2xup_vec, v2xdw_vec, i%m) DO k = 1,i%m rh = rup_vec(k) + rdw_vec(k) ! total charge IF ( rh > eps ) THEN zeta = (rup_vec(k) - rdw_vec(k) ) / rh ! polarization ! grh2 = (grad(k,1,1) + grad(k,1,2))**2 & + (grad(k,2,1) + grad(k,2,2))**2 & + (grad(k,3,1) + grad(k,3,2))**2 CALL gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) ELSE sc = 0._dp v1cup = 0._dp v1cdw = 0._dp v2c = 0._dp ENDIF IF (present(energy)) & e_rad(k) = e2*(sx_vec(k)+sc)* g(i%t)%r2(k) gc_rad(k,ix,1) = (v1xup_vec(k)+v1cup)!*g(i%t)%rm2(k) gc_rad(k,ix,2) = (v1xdw_vec(k)+v1cdw)!*g(i%t)%rm2(k) ! h_rad(k,:,ix,1) =( (v2xup_vec(k)+v2c)*grad(k,:,1)+v2c*grad(k,:,2) )*g(i%t)%r2(k) h_rad(k,:,ix,2) =( (v2xdw_vec(k)+v2c)*grad(k,:,2)+v2c*grad(k,:,1) )*g(i%t)%r2(k) ENDDO ! k ! integrate energy (if required) ! NOTE: this integration is duplicated for every spin, FIXME! IF (present(energy)) THEN CALL simpson(i%m, e_rad, g(i%t)%rab, e) egcxc_of_tid(mytid) = egcxc_of_tid(mytid) + e * rad(i%t)%ww(ix) ENDIF ENDDO ! ix !$omp end do nowait DEALLOCATE( rup_vec ) DEALLOCATE( rdw_vec ) DEALLOCATE( sx_vec ) DEALLOCATE( v1xup_vec ) DEALLOCATE( v1xdw_vec ) DEALLOCATE( v2xup_vec ) DEALLOCATE( v2xdw_vec ) !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ELSE spin !$omp master CALL errore('PAW_gcxc_v', 'unknown spin number', 2) !$omp end master ENDIF spin ! IF (present(energy)) THEN DEALLOCATE(e_rad) ENDIF DEALLOCATE( rho_rad ) DEALLOCATE( grad ) DEALLOCATE( grad2 ) !$omp end parallel ! ! IF (present(energy)) THEN e_gcxc = sum(egcxc_of_tid) CALL mp_sum( e_gcxc, paw_comm ) energy = energy + e_gcxc ENDIF ! IF (present(energy)) THEN deallocate(egcxc_of_tid) ENDIF ! ! convert the first part of the GC correction back to spherical harmonics CALL PAW_rad2lm(i, gc_rad, gc_lm, i%l, nspin_gga) ! ! Note that the expansion into spherical harmonics of the derivative ! with respect to theta of the spherical harmonics, is very slow to ! converge and would require a huge angular momentum ladd. ! This derivative divided by sin_th is much faster to converge, so ! we divide here before calculating h_lm and keep into account for ! this factor sin_th in the expression of the divergence. ! ! ADC 30/04/2009. ! DO ix = ix_s, ix_e h_rad(1:i%m,3,ix,1:nspin_gga) = h_rad(1:i%m,3,ix,1:nspin_gga)/& rad(i%t)%sin_th(ix) ENDDO ! We need the gradient of h to calculate the last part of the exchange ! and correlation potential. First we have to convert H to its Y_lm expansion CALL PAW_rad2lm3(i, h_rad, h_lm, i%l+rad(i%t)%ladd,nspin_gga) ! ! Compute div(H) CALL PAW_divergence(i, h_lm, div_h, i%l+rad(i%t)%ladd, i%l) ! input max lm --^ ^-- output max lm ! Finally sum it back into v_xc DO is = 1,nspin_gga DO lm = 1,i%l**2 vout_lm(1:i%m,lm,is) = vout_lm(1:i%m,lm,is) + e2*(gc_lm(1:i%m,lm,is)-div_h(1:i%m,lm,is)) ENDDO ENDDO IF (nspin_mag == 4 ) THEN CALL compute_pot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm) ELSE v_lm(:,:,1:nspin_mag)=v_lm(:,:,1:nspin_mag)+vout_lm(:,:,1:nspin_mag) ENDIF DEALLOCATE( gc_rad ) DEALLOCATE( gc_lm ) DEALLOCATE( h_rad ) DEALLOCATE( h_lm ) DEALLOCATE( div_h ) DEALLOCATE(rhoout_lm) DEALLOCATE(vout_lm) DEALLOCATE(segni_rad) !if(present(energy)) write(*,*) "gcxc -->", e_gcxc if(TIMING) CALL stop_clock ('PAW_gcxc_v') END SUBROUTINE PAW_gcxc_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! compute divergence of a vector field (actutally the hamiltonian) !!! it is assumed that: 1. the input function is multiplied by r**2; !!! 2. the output function is multiplied by r**2 too SUBROUTINE PAW_divergence(i, F_lm, div_F_lm, lmaxq_in, lmaxq_out) USE constants, ONLY : sqrtpi, fpi, e2 USE noncollin_module, ONLY : nspin_gga USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: lmaxq_in ! max angular momentum to derive ! (divergence is reliable up to lmaxq_in-2) INTEGER, INTENT(IN) :: lmaxq_out ! max angular momentum to reconstruct for output REAL(DP), INTENT(IN) :: F_lm(i%m,3,lmaxq_in**2,nspin_gga) ! Y_lm expansion of F REAL(DP), INTENT(OUT):: div_F_lm(i%m,lmaxq_out**2,nspin_gga)! div(F) ! REAL(DP) :: div_F_rad(i%m,rad(i%t)%nx,nspin_gga)! div(F) on rad. grid REAL(DP) :: aux(i%m)!,aux2(i%m) ! workspace ! counters on: spin, angular momentum, radial grid point: INTEGER :: is, lm, ix if(TIMING) CALL start_clock ('PAW_div') ! This is the divergence in spherical coordinates: ! {1 \over r^2}{\partial ( r^2 A_r ) \over \partial r} ! + {1 \over r\sin\theta}{\partial \over \partial \theta} ( A_\theta\sin\theta ) ! + {1 \over r\sin\theta}{\partial A_\phi \over \partial \phi} ! ! The derivative sum_LM d(Y_LM sin(theta) )/dtheta will be expanded as: ! sum_LM ( Y_lm cos(theta) + sin(theta) dY_lm/dtheta ) ! The radial component of the divergence is computed last, for practical reasons ! CALL errore('PAW_divergence', 'More angular momentum components are needed (in input)'//& ! ' to provide the number you have requested (in output)', lmaxq_out-lmaxq_in+2) ! phi component div_F_rad=0.0_DP DO is = 1,nspin_gga DO ix = ix_s,ix_e aux(:) = 0._dp ! this derivative has no spherical component, so lm starts from 2 DO lm = 2,lmaxq_in**2 aux(1:i%m) = aux(1:i%m) + rad(i%t)%dylmp(ix,lm)* (F_lm(1:i%m,2,lm,is))! & !* g(i%t)%rm1(1:i%m) !/sin_th(ix) ! as for PAW_gradient this is already present in dylmp --^ ENDDO div_F_rad(1:i%m,ix,is) = aux(1:i%m) ENDDO ENDDO ! theta component DO is = 1,nspin_gga DO ix = ix_s,ix_e aux(:) = 0._dp ! this derivative has a spherical component too! DO lm = 1,lmaxq_in**2 aux(1:i%m) = aux(1:i%m) + F_lm(1:i%m,3,lm,is) & * (rad(i%t)%dylmt(ix,lm)*rad(i%t)%sin_th(ix)& + 2.0_DP*rad(i%t)%ylm(ix,lm)*rad(i%t)%cos_th(ix)) ! *( rad(i%t)%dylmt(ix,lm) & ! + rad(i%t)%ylm(ix,lm) * rad(i%t)%cotg_th(ix) ) ENDDO div_F_rad(1:i%m,ix,is) = div_F_rad(1:i%m,ix,is)+aux(1:i%m) ENDDO ENDDO ! Convert what I have done so far to Y_lm CALL PAW_rad2lm(i, div_F_rad, div_F_lm, lmaxq_out, nspin_gga) ! Multiply by 1/r**3: 1/r is for theta and phi componente only ! 1/r**2 is common to all the three components. DO is = 1,nspin_gga DO lm = 1,lmaxq_out**2 div_F_lm(1:i%m,lm,is) = div_F_lm(1:i%m,lm,is) * g(i%t)%rm3(1:i%m) ENDDO ENDDO ! Compute partial radial derivative d/dr DO is = 1,nspin_gga DO lm = 1,lmaxq_out**2 ! Derive along \hat{r} (F already contains a r**2 factor, otherwise ! it may be better to expand (1/r**2) d(A*r**2)/dr = dA/dr + 2A/r) CALL radial_gradient(F_lm(1:i%m,1,lm,is), aux, g(i%t)%r, i%m, radial_grad_style) ! Sum it in the divergence: it is already in the right Y_lm form aux(1:i%m) = aux(1:i%m)*g(i%t)%rm2(1:i%m) ! div_F_lm(1:i%m,lm,is) = div_F_lm(1:i%m,lm,is) + aux(1:i%m) ENDDO ENDDO if(TIMING) CALL stop_clock ('PAW_div') END SUBROUTINE PAW_divergence !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! build gradient of radial charge distribution from its spherical harmonics expansion SUBROUTINE PAW_gradient(i, ix, rho_lm, rho_rad, rho_core, grho_rad2, grho_rad) USE constants, ONLY : fpi USE noncollin_module, ONLY : nspin_gga USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid INTEGER, INTENT(IN) :: ix ! line of the dylm2 matrix to use actually it is ! one of the nx spherical integration directions TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin_gga)! Y_lm expansion of rho REAL(DP), INTENT(IN) :: rho_rad(i%m,nspin_gga) ! radial density along direction ix REAL(DP), INTENT(IN) :: rho_core(i%m) ! core density REAL(DP), INTENT(OUT):: grho_rad2(i%m,nspin_gga) ! |grad(rho)|^2 on rad. grid REAL(DP), OPTIONAL,INTENT(OUT):: grho_rad(i%m,3,nspin_gga) ! vector gradient (only for gcxc) ! r, theta and phi components ---^ ! REAL(DP) :: aux(i%m),aux2(i%m), fact ! workspace INTEGER :: is, lm ! counters on: spin, angular momentum if(TIMING) CALL start_clock ('PAW_grad') ! 1. build real charge density = rho/r**2 + rho_core ! 2. compute the partial derivative of rho_rad fact=1.0_DP/DBLE(nspin_gga) grho_rad2(:,:) = 0._dp DO is = 1,nspin_gga ! build real charge density aux(1:i%m) = rho_rad(1:i%m,is)*g(i%t)%rm2(1:i%m) & + rho_core(1:i%m)*fact CALL radial_gradient(aux, aux2, g(i%t)%r, i%m, radial_grad_style) ! compute the square grho_rad2(:,is) = aux2(:)**2 ! store in vector gradient, if present: IF (present(grho_rad)) grho_rad(:,1,is) = aux2(:) ENDDO spin: & DO is = 1,nspin_gga aux(:) = 0._dp aux2(:) = 0._dp ! Spherical (lm=1) component (that would also include core correction) can be omitted ! as its contribution to non-radial derivative is zero DO lm = 2,i%l**2 ! 5. [ \sum_{lm} rho(r) (dY_{lm}/dphi /cos(theta)) ]**2 aux(1:i%m) = aux(1:i%m) + rad(i%t)%dylmp(ix,lm)* rho_lm(1:i%m,lm,is) ! 6. [ \sum_{lm} rho(r) (dY_{lm}/dtheta) ]**2 aux2(1:i%m) = aux2(1:i%m) + rad(i%t)%dylmt(ix,lm)* rho_lm(1:i%m,lm,is) ENDDO ! Square and sum up these 2 components, the (1/r**2)**3 factor come from: ! a. 1/r**2 from the derivative in spherical coordinates ! b. (1/r**2)**2 from rho_lm being multiplied by r**2 ! (as the derivative is orthogonal to r you can multiply after deriving) grho_rad2(1:i%m,is) = grho_rad2(1:i%m,is)& + (aux(1:i%m)**2 + aux2(1:i%m)**2)& * g(i%t)%rm2(1:i%m)**3 ! Store vector components: IF (present(grho_rad)) THEN grho_rad(1:i%m,2,is) = aux(1:i%m) *g(i%t)%rm3(1:i%m) ! phi grho_rad(1:i%m,3,is) = aux2(1:i%m) *g(i%t)%rm3(1:i%m) ! theta ENDIF ENDDO spin if(TIMING) CALL stop_clock ('PAW_grad') END SUBROUTINE PAW_gradient !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! computes H potential from rho, used by PAW_h_energy and PAW_ddot SUBROUTINE PAW_h_potential(i, rho_lm, v_lm, energy) USE constants, ONLY : fpi, e2 USE radial_grids, ONLY : hartree USE uspp_param, ONLY : upf USE noncollin_module, ONLY : nspin_lsda USE ions_base, ONLY : ityp USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info ! charge density as lm components already summed on spin: REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin) REAL(DP), INTENT(OUT) :: v_lm (i%m,i%l**2) ! potential as lm components REAL(DP),INTENT(OUT),OPTIONAL :: energy ! if present, compute energy ! REAL(DP) :: aux(i%m) ! workspace REAL(DP) :: pref ! workspace INTEGER :: lm,l ! counter on composite angmom lm = l**2 +m INTEGER :: k ! counter on radial grid (only for energy) REAL(DP) :: e ! workspace if(TIMING) CALL start_clock ('PAW_h_pot') ! this loop computes the hartree potential using the following formula: ! l is the first argument in hartree subroutine ! r1 = min(r,r'); r2 = MAX(r,r') ! V_h(r) = \sum{lm} Y_{lm}(\hat{r})/(2l+1) \int dr' 4\pi r'^2 \rho^{lm}(r') (r1^l/r2^{l+1}) ! done here --> ^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^ <-- input to the hartree subroutine ! output from the h.s. --> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ v_lm=0.0_DP DO lm = 1, i%l**2 l = INT(sqrt(DBLE(lm-1))) ! l has to start from *zero* pref = e2*fpi/DBLE(2*l+1) DO k = 1, i%m aux(k) = pref * SUM(rho_lm(k,lm,1:nspin_lsda)) ENDDO ! CALL hartree(l, 2*l+2, i%m, g(i%t), aux(:), v_lm(:,lm)) ENDDO ! compute energy if required: ! E_h = \sum_lm \int v_lm(r) (rho_lm(r) r^2) dr IF(present(energy)) THEN energy = 0._dp DO lm = 1, i%l**2 ! I can use v_lm as workspace DO k = 1, i%m aux(k) = v_lm(k,lm) * SUM(rho_lm(k,lm,1:nspin_lsda)) ENDDO CALL simpson (i%m, aux, g(i%t)%rab, e) ! ! Sum all the energies in PAW_ddot energy = energy + e ! ENDDO ! fix double counting energy = energy/2._dp ENDIF if(TIMING) CALL stop_clock ('PAW_h_pot') END SUBROUTINE PAW_h_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! sum up pfuncs x occupation to build radial density's angular momentum components SUBROUTINE PAW_rho_lm(i, becsum, pfunc, rho_lm, aug) USE ions_base, ONLY : nat USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : nspin_mag USE uspp_param, ONLY : upf, nh, nhm USE uspp, ONLY : indv, ap, nhtolm,lpl,lpx USE constants, ONLY : eps12 USE atom, ONLY : g => rgrid TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag)! cross band occupation REAL(DP), INTENT(IN) :: pfunc(i%m,i%b,i%b) ! psi_i * psi_j REAL(DP), INTENT(OUT) :: rho_lm(i%m,i%l**2,nspin_mag) ! AE charge density on rad. grid REAL(DP), OPTIONAL,INTENT(IN) :: & aug(i%m,i%b*(i%b+1)/2,0:2*upf(i%t)%lmax) ! augmentation functions (only for PS part) REAL(DP) :: pref ! workspace (ap*becsum) INTEGER :: ih,jh, & ! counters for pfunc ih,jh = 1, nh (CRYSTAL index) nb,mb, & ! counters for pfunc nb,mb = 1, nbeta (ATOMIC index) ijh,nmb, & ! composite "triangular" index for pfunc nmb = 1,nh*(nh+1)/2 lm,lp,l, & ! counters for angular momentum lm = l**2+m ispin ! counter for spin (FIXME: may be unnecessary) ! This subroutine computes the angular momentum components of rho ! using the following formula: ! rho(\vec{r}) = \sum_{LM} Y_{LM} \sum_{i,j} (\hat{r}) a_{LM}^{(lm)_i(lm)_j} becsum_ij pfunc_ij(r) ! where a_{LM}^{(lm)_i(lm)_j} are the Clebsh-Gordan coefficients. ! ! actually different angular momentum components are stored separately: ! rho^{LM}(\vec{r}) = \sum_{i,j} (\hat{r}) a_{LM}^{(lm)_i(lm)_j} becsum_ij pfunc_ij(r) ! ! notice that pfunc's are already multiplied by r^2 and they are indexed on the atom ! (they only depends on l, not on m), the augmentation charge depend only on l ! but the becsum depend on both l and m. if(TIMING) CALL start_clock ('PAW_rho_lm') ! initialize density rho_lm(:,:,:) = 0._dp spins: DO ispin = 1, nspin_mag ijh = 0 ! loop on all pfunc for this kind of pseudo DO ih = 1, nh(i%t) DO jh = ih, nh(i%t) ijh = ijh+1 nb = indv(ih,i%t) mb = indv(jh,i%t) nmb = mb * (mb-1)/2 + nb ! mb has to be .ge. nb !write(*,'(99i4)') nb,mb,nmb IF (ABS(becsum(ijh,i%a,ispin)) < eps12) CYCLE ! angular_momentum: & DO lp = 1, lpx (nhtolm(jh,i%t), nhtolm(ih,i%t)) !lmaxq**2 ! the lpl array contains the possible combination of LM,lm_j,lm_j that ! have non-zero a_{LM}^{(lm)_i(lm)_j} (it saves some loops) lm = lpl (nhtolm(jh,i%t), nhtolm(ih,i%t), lp) ! ! becsum already contains a factor 2 for off-diagonal pfuncs pref = becsum(ijh,i%a,ispin) * ap(lm, nhtolm(ih,i%t), nhtolm(jh,i%t)) ! rho_lm(1:i%m,lm,ispin) = rho_lm(1:i%m,lm,ispin) & +pref * pfunc(1:i%m, nb, mb) IF (present(aug)) THEN ! if I'm doing the pseudo part I have to add the augmentation charge l = INT(SQRT(DBLE(lm-1))) ! l has to start from zero, lm = l**2 +m rho_lm(1:i%m,lm,ispin) = rho_lm(1:i%m,lm,ispin) & +pref * aug(1:i%m, nmb, l) ENDIF ! augfun ENDDO angular_momentum ENDDO !mb ENDDO !nb ENDDO spins if(TIMING) CALL stop_clock ('PAW_rho_lm') END SUBROUTINE PAW_rho_lm !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! build radial charge distribution from its spherical harmonics expansion SUBROUTINE PAW_lm2rad(i, ix, F_lm, F_rad, nspin) TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER :: ix ! line of the ylm matrix to use ! actually it is one of the nx directions INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(IN) :: F_lm(i%m,i%l**2,nspin)! Y_lm expansion of rho REAL(DP), INTENT(OUT) :: F_rad(i%m,nspin) ! charge density on rad. grid ! INTEGER :: ispin, lm ! counters on angmom and spin if(TIMING) CALL start_clock ('PAW_lm2rad') F_rad(:,:) = 0._dp ! cycling on spin is a bit less general... spins: DO ispin = 1,nspin DO lm = 1, i%l**2 F_rad(:,ispin) = F_rad(:,ispin) +& rad(i%t)%ylm(ix,lm)*F_lm(:,lm,ispin) ENDDO ! lm ENDDO spins if(TIMING) CALL stop_clock ('PAW_lm2rad') END SUBROUTINE PAW_lm2rad !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! computes F_lm(r) = \int d \Omega F(r,th,ph) Y_lm(th,ph) SUBROUTINE PAW_rad2lm(i, F_rad, F_lm, lmax_loc, nspin) TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: nspin INTEGER, INTENT(IN) :: lmax_loc ! in some cases I have to keep higher angular components ! than the default ones (=lmaxq =the ones present in rho) REAL(DP), INTENT(OUT):: F_lm(i%m, lmax_loc**2, nspin) ! lm component of F up to lmax_loc REAL(DP), INTENT(IN) :: F_rad(i%m, rad(i%t)%nx, nspin)! radial samples of F ! INTEGER :: ix ! counter for integration INTEGER :: lm ! counter for angmom INTEGER :: ispin ! counter for spin INTEGER :: j if(TIMING) CALL start_clock ('PAW_rad2lm') !$omp parallel default(shared), private(ispin,lm,ix,j) DO ispin = 1,nspin !$omp do DO lm = 1,lmax_loc**2 F_lm(:,lm,ispin) = 0._dp DO ix = ix_s, ix_e DO j = 1, i%m F_lm(j, lm, ispin) = F_lm(j, lm, ispin) + F_rad(j,ix,ispin)* rad(i%t)%wwylm(ix,lm) ENDDO ENDDO ENDDO !$omp end do ENDDO !$omp end parallel ! ! This routine recollects the result within the paw communicator ! CALL mp_sum( F_lm, paw_comm ) if(TIMING) CALL stop_clock ('PAW_rad2lm') END SUBROUTINE PAW_rad2lm !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! computes F_lm(r) = \int d \Omega F(r,th,ph) Y_lm(th,ph) !!! duplicated version to work on vector fields, necessary for performance reasons SUBROUTINE PAW_rad2lm3(i, F_rad, F_lm, lmax_loc, nspin) TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: lmax_loc ! in some cases I have to keep higher angular components ! than the default ones (=lmaxq =the ones present in rho) REAL(DP), INTENT(OUT):: F_lm(i%m, 3, lmax_loc**2, nspin) ! lm component of F up to lmax_loc REAL(DP), INTENT(IN) :: F_rad(i%m, 3, rad(i%t)%nx, nspin)! radial samples of F ! REAL(DP) :: aux(i%m) ! optimization INTEGER, INTENT(IN) :: nspin INTEGER :: ix ! counter for integration INTEGER :: lm ! counter for angmom INTEGER :: ispin ! counter for spin if(TIMING) CALL start_clock ('PAW_rad2lm3') ! Third try: 50% faster than blind implementation (60% with prefetch) DO ispin = 1,nspin DO lm = 1,lmax_loc**2 aux(:) = 0._dp DO ix = ix_s, ix_e aux(1:i%m) = aux(1:i%m) + F_rad(1:i%m,1,ix,ispin) * rad(i%t)%wwylm(ix,lm) !CALL MM_PREFETCH( F_rad(1:i%m,1,MIN(ix+1,rad(i%t)%nx),ispin), 1 ) ENDDO F_lm(1:i%m, 1, lm, ispin) = aux(1:i%m) ! aux(:) = 0._dp DO ix = ix_s, ix_e aux(1:i%m) = aux(1:i%m) + F_rad(1:i%m,2,ix,ispin) * rad(i%t)%wwylm(ix,lm) !CALL MM_PREFETCH( F_rad(1:i%m,2,MIN(ix+1,rad(i%t)%nx),ispin), 1 ) ENDDO F_lm(1:i%m, 2, lm, ispin) = aux(1:i%m) ! aux(:) = 0._dp DO ix = ix_s, ix_e aux(1:i%m) = aux(1:i%m) + F_rad(1:i%m,3,ix,ispin) * rad(i%t)%wwylm(ix,lm) !CALL MM_PREFETCH( F_rad(1:i%m,3,MIN(ix+1,rad(i%t)%nx),ispin), 1 ) ENDDO F_lm(1:i%m, 3, lm, ispin) = aux(1:i%m) ENDDO ENDDO ! ! NB: this routine collects the result among the paw communicator ! CALL mp_sum( F_lm, paw_comm ) if(TIMING) CALL stop_clock ('PAW_rad2lm3') END SUBROUTINE PAW_rad2lm3 ! ! Computes dV_h and dV_xc using the "change of density" dbecsum provided ! Update the change of the descreening coefficients: ! D_ij = \int dv_Hxc p_ij - \int dvt_Hxc (pt_ij + augfun_ij) ! ! SUBROUTINE PAW_dpotential(dbecsum, becsum, int3, npe) USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp USE mp, ONLY : mp_comm_split, mp_comm_free, mp_size, mp_rank USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf INTEGER, INTENT(IN) :: npe ! number of perturbations REAL(DP), INTENT(IN) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag) ! cross band ! occupations COMPLEX(DP), INTENT(IN) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,npe)! COMPLEX(DP), INTENT(OUT) :: int3(nhm,nhm,npe,nat,nspin_mag) ! change of !descreening coefficients (AE - PS) INTEGER, PARAMETER :: AE = 1, PS = 2,& ! All-Electron and Pseudo XC = 1, H = 2 ! XC and Hartree REAL(DP), POINTER :: rho_core(:) ! pointer to AE/PS core charge density TYPE(paw_info) :: i ! minimal info on atoms INTEGER :: i_what ! counter on AE and PS INTEGER :: is ! spin index INTEGER :: lm ! counters on angmom and radial grid INTEGER :: nb, mb, nmb ! augfun indexes INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes ! REAL(DP), ALLOCATABLE :: rho_lm(:,:,:) ! density expanded on Y_lm REAL(DP), ALLOCATABLE :: dv_lm(:,:,:) ! workspace: change of potential REAL(DP), ALLOCATABLE :: drhor_lm(:,:,:,:) ! change of density expanded ! on Y_lm (real part) REAL(DP), ALLOCATABLE :: drhoi_lm(:,:,:,:) ! change of density expanded ! on Y_lm (imaginary part) REAL(DP), ALLOCATABLE :: savedvr_lm(:,:,:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: savedvi_lm(:,:,:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: aux_lm(:) ! auxiliary radial function ! fake cross band occupations to select only one pfunc at a time: REAL(DP) :: becfake(nhm*(nhm+1)/2,nat,nspin_mag) REAL(DP) :: integral_r ! workspace REAL(DP) :: integral_i ! workspace REAL(DP) :: sgn ! +1 for AE -1 for PS COMPLEX(DP) :: sumd INTEGER :: ipert CALL start_clock('PAW_dpot') ! Some initialization becfake(:,:,:) = 0._dp int3 = (0.0_DP, 0.0_DP) ! ! Parallel: divide tasks among all the processor for this image ! (i.e. all the processors except for NEB and similar) CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! build the group of all the procs associated with the same atom ! CALL mp_comm_split( intra_image_comm, ia_s - 1, me_image, paw_comm ) ! me_paw = mp_rank( paw_comm ) nproc_paw = mp_size( paw_comm ) ! atoms: DO ia = ia_s, ia_e ! i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia ! ifpaw: IF (upf(i%t)%tpawp) THEN ! ! Initialize parallelization over the directions ! nx_loc = ldim_block( rad(i%t)%nx, nproc_paw, me_paw ) ix_s = gind_block( 1, rad(i%t)%nx, nproc_paw, me_paw ) ix_e = ix_s + nx_loc - 1 ! ! Arrays are allocated inside the cycle to allow reduced ! memory usage as differnt atoms have different meshes ! ALLOCATE(dv_lm(i%m,i%l**2,nspin_mag)) ALLOCATE(savedvr_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(savedvi_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(rho_lm(i%m,i%l**2,nspin_mag)) ALLOCATE(drhor_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(drhoi_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(aux_lm(i%m)) ! whattodo: DO i_what = AE, PS NULLIFY(rho_core) IF (i_what == AE) THEN CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%pfunc, rho_lm) rho_core => upf(i%t)%paw%ae_rho_atc sgn = +1._dp ELSE CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%ptfunc, & rho_lm, upf(i%t)%qfuncl) rho_core => upf(i%t)%rho_atc sgn = -1._dp ENDIF ! ! Compute the change of the charge density. Complex because the ! displacements might be complex ! DO ipert=1,npe IF (i_what == AE) THEN becfake(:,ia,:)=DBLE(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, & drhor_lm(1,1,1,ipert)) becfake(:,ia,:)=AIMAG(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, & drhoi_lm(1,1,1,ipert)) ELSE becfake(:,ia,:)=DBLE(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, & drhor_lm(1,1,1,ipert), upf(i%t)%qfuncl) becfake(:,ia,:)=AIMAG(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, & drhoi_lm(1,1,1,ipert), upf(i%t)%qfuncl) END IF END DO savedvr_lm(:,:,:,:) = 0._dp savedvi_lm(:,:,:,:) = 0._dp DO ipert=1,npe ! ! Change of Hartree potential ! CALL PAW_h_potential(i, drhor_lm(1,1,1,ipert), dv_lm(:,:,1)) DO is = 1,nspin_lsda savedvr_lm(:,:,is,ipert) = dv_lm(:,:,1) ENDDO CALL PAW_h_potential(i, drhoi_lm(1,1,1,ipert), dv_lm(:,:,1)) DO is = 1,nspin_lsda savedvi_lm(:,:,is,ipert) = dv_lm(:,:,1) ENDDO ! ! Change of Exchange-correlation potential ! CALL PAW_dxc_potential(i, drhor_lm(1,1,1,ipert), & rho_lm, rho_core, dv_lm) savedvr_lm(:,:,:,ipert) = savedvr_lm(:,:,:,ipert)+dv_lm(:,:,:) CALL PAW_dxc_potential(i, drhoi_lm(1,1,1,ipert), & rho_lm, rho_core, dv_lm) savedvi_lm(:,:,:,ipert) = savedvi_lm(:,:,:,ipert)+dv_lm(:,:,:) END DO ! spins: DO is = 1, nspin_mag nmb = 0 ! loop on all pfunc for this kind of pseudo becfake=0.0_DP DO nb = 1, nh(i%t) DO mb = nb, nh(i%t) nmb = nmb+1 becfake(nmb,ia,is) = 1._dp IF (i_what == AE) THEN CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, rho_lm) ELSE CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, & rho_lm, upf(i%t)%qfuncl) ENDIF ! ! Integrate the change of Hxc potential and the partial waves ! to find the change of the D coefficients: D^1-~D^1 ! DO ipert=1,npe DO lm = 1,i%l**2 aux_lm(1:i%m)=rho_lm(1:i%m,lm,is)* & savedvr_lm(1:i%m,lm,is,ipert) CALL simpson (upf(i%t)%kkbeta,aux_lm, & g(i%t)%rab,integral_r) aux_lm(1:i%m)=rho_lm(1:i%m,lm,is)* & savedvi_lm(1:i%m,lm,is,ipert) CALL simpson (upf(i%t)%kkbeta,aux_lm, & g(i%t)%rab,integral_i) int3(nb,mb,ipert,i%a,is) = & int3(nb,mb,ipert,i%a,is) & + sgn * CMPLX(integral_r, integral_i,kind=DP) ENDDO IF (nb /= mb) int3(mb,nb,ipert,i%a,is) = & int3(nb,mb,ipert,i%a,is) ENDDO becfake(nmb,ia,is) = 0._dp ENDDO ! mb ENDDO ! nb ENDDO spins ENDDO whattodo ! cleanup DEALLOCATE(rho_lm) DEALLOCATE(drhor_lm) DEALLOCATE(drhoi_lm) DEALLOCATE(savedvr_lm) DEALLOCATE(savedvi_lm) DEALLOCATE(dv_lm) DEALLOCATE(aux_lm) ! ENDIF ifpaw ENDDO atoms #ifdef __MPI IF( mykey /= 0 ) int3 = 0.0_dp CALL mp_sum(int3, intra_image_comm) #endif CALL mp_comm_free( paw_comm ) CALL stop_clock('PAW_dpot') END SUBROUTINE PAW_dpotential SUBROUTINE PAW_dxc_potential(i, drho_lm, rho_lm, rho_core, v_lm) ! ! This routine computes the change of the exchange and correlation ! potential in the spherical basis. It receives as input the charge ! density and its variation. ! USE spin_orb, ONLY : domag USE noncollin_module, ONLY : nspin_mag USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid USE funct, ONLY : dmxc, dmxc_spin, dmxc_nc, & dft_is_gradient TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin_mag) ! charge density as ! lm components REAL(DP), INTENT(IN) :: drho_lm(i%m,i%l**2,nspin_mag)! change of charge ! density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial ! and spherical REAL(DP), INTENT(OUT) :: v_lm(i%m,i%l**2,nspin_mag) ! potential density ! as lm components REAL(DP), ALLOCATABLE :: dmuxc(:,:,:) ! fxc in the lsda case REAL(DP), ALLOCATABLE :: v_rad(:,:,:) ! radial potential ! (to be integrated) REAL(DP), ALLOCATABLE :: rho_rad(:,:) ! workspace (only one ! radial slice of rho) REAL(DP) :: rho_loc(nspin_mag) ! workspace REAL(DP) :: rhotot, rhoup, rhodw ! auxiliary REAL(DP) :: auxdmuxc(nspin_mag,nspin_mag) ! auxiliary space INTEGER :: is,js,ix,k ! counters on directions ! and radial grid CALL start_clock ('PAW_dxc_pot') ALLOCATE(dmuxc(i%m,nspin_mag,nspin_mag)) ALLOCATE(v_rad(i%m,rad(i%t)%nx,nspin_mag)) ALLOCATE(rho_rad(i%m,nspin_mag)) ! DO ix = ix_s, ix_e ! ! *** LDA (and LSDA) part (no gradient correction) *** ! convert _lm density to real density along ix ! CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) ! ! Compute the fxc function on the radial mesh along ix ! DO k = 1,i%m rho_loc(1:nspin_mag) = rho_rad(k,1:nspin_mag)*g(i%t)%rm2(k) IF (nspin_mag==4) THEN rhotot = rho_loc(1) + rho_core (k) CALL dmxc_nc (rhotot, rho_loc(2), rho_loc(3), rho_loc(4), auxdmuxc) DO is=1,nspin_mag DO js=1,nspin_mag dmuxc(k,is,js)=auxdmuxc(is,js) END DO END DO ELSEIF (nspin_mag==2) THEN rhoup = rho_loc(1) + 0.5_DP * rho_core (k) rhodw = rho_loc(2) + 0.5_DP * rho_core (k) CALL dmxc_spin (rhoup, rhodw, dmuxc(k,1,1), dmuxc(k,2,1), & dmuxc(k,1,2), dmuxc(k,2,2) ) ELSE rhotot = rho_loc(1) + rho_core (k) IF (rhotot.GT.1.d-30) v_rad (k,ix,1) = dmxc (rhotot) IF (rhotot.LT. - 1.d-30) v_rad(k, ix, 1) = - dmxc ( - rhotot) IF (rhotot.LT.1.d-30.AND.rhotot.GT.-1.d-30) v_rad(k,ix,1)=0.0_DP ENDIF ENDDO ! ! Compute the change of the charge on the radial mesh along ix ! CALL PAW_lm2rad(i, ix, drho_lm, rho_rad, nspin_mag) ! ! fxc * dn ! IF (nspin_mag==1) THEN DO k = 1,i%m v_rad(k,ix,1)=v_rad(k,ix,1)*rho_rad(k,1)*g(i%t)%rm2(k) ENDDO ELSE DO k = 1,i%m DO is=1,nspin_mag v_rad(k,ix,is)=0.0_DP DO js=1,nspin_mag v_rad(k,ix,is)= v_rad(k,ix,is) + & dmuxc(k,is,js)*rho_rad(k,js)*g(i%t)%rm2(k) ENDDO ENDDO ENDDO ENDIF ENDDO ! ! Recompose the sph. harm. expansion ! CALL PAW_rad2lm(i, v_rad, v_lm, i%l, nspin_mag) ! ! Add gradient correction, if necessary ! IF( dft_is_gradient() ) & CALL PAW_dgcxc_potential(i,rho_lm,rho_core,drho_lm,v_lm) DEALLOCATE(rho_rad) DEALLOCATE(v_rad) DEALLOCATE(dmuxc) CALL stop_clock ('PAW_dxc_pot') RETURN END SUBROUTINE PAW_dxc_potential ! ! add gradient correction to dvxc. Both unpolarized and ! spin polarized cases are supported. ! SUBROUTINE PAW_dgcxc_potential(i,rho_lm,rho_core, drho_lm, v_lm) USE noncollin_module, ONLY : nspin_mag, nspin_gga USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid USE constants, ONLY : pi,e2, eps => eps12, eps2 => eps24 USE funct, ONLY : gcxc, gcx_spin, gcc_spin, dgcxc, & dgcxc_spin ! TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin_mag) ! charge density as lm components REAL(DP), INTENT(IN) :: drho_lm(i%m,i%l**2,nspin_mag) ! change of charge density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial and spherical REAL(DP), INTENT(INOUT) :: v_lm(i%m,i%l**2,nspin_mag) ! potential to be updated REAL(DP) :: zero(i%m) ! dcore charge, not used REAL(DP) :: rho_rad(i%m,nspin_gga)! charge density sampled REAL(DP) :: drho_rad(i%m,nspin_gga)! charge density sampled REAL(DP) :: grad(i%m,3,nspin_gga) ! gradient REAL(DP) :: grad2(i%m,nspin_gga) ! square modulus of gradient ! (first of charge, than of hamiltonian) REAL(DP) :: dgrad(i%m,3,nspin_gga) ! gradient REAL(DP) :: dgrad2(i%m,nspin_gga) ! square modulus of gradient ! of dcharge REAL(DP) :: gc_rad(i%m,rad(i%t)%nx,nspin_gga) ! GC correction to V (radial samples) REAL(DP) :: gc_lm(i%m,i%l**2,nspin_gga) ! GC correction to V (Y_lm expansion) REAL(DP) :: h_rad(i%m,3,rad(i%t)%nx,nspin_gga)! hamiltonian (vector field) REAL(DP) :: h_lm(i%m,3,(i%l+rad(i%t)%ladd)**2,nspin_gga)! hamiltonian (vector field) !!! ^^^^^^^^^^^^^^^^^^ expanded to higher lm than rho !!! REAL(DP) :: vout_lm(i%m,i%l**2,nspin_gga) ! potential to be updated REAL(DP) :: rhoout_lm(i%m,i%l**2,nspin_gga) ! change of charge density as lm components REAL(DP) :: drhoout_lm(i%m,i%l**2,nspin_gga) ! change of charge density as lm components REAL(DP) :: segni_rad(i%m, rad(i%t)%nx) REAL(DP) :: div_h(i%m,i%l**2,nspin_gga) ! div(hamiltonian) INTEGER :: k, ix, is, lm ! counters on spin and mesh REAL(DP) :: sx,sc,v1x,v2x,v1c,v2c ! workspace REAL(DP) :: v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw ! workspace REAL(DP) :: vrrx,vsrx,vssx,vrrc,vsrc,vssc ! workspace REAL(DP) :: dvxc_rr, dvxc_sr, dvxc_ss, dvxc_s ! workspace REAL(DP) :: vrrxup, vrrxdw, vrsxup, vrsxdw, vssxup, vssxdw, & vrrcup, vrrcdw, vrscup, vrscdw, vrzcup, vrzcdw REAL(DP) :: dsvxc_rr(2,2), dsvxc_sr(2,2), & dsvxc_ss(2,2), dsvxc_s(2,2) ! workspace REAL(DP) :: a(2,2,2), b(2,2,2,2), c(2,2,2) REAL(DP) :: arho, s1 ! workspace REAL(DP) :: rup, rdw, co2 ! workspace REAL(DP) :: rh, zeta, grh2 REAL(DP) :: grho(3,2), ps(2,2), ps1(3,2,2), ps2(3,2,2,2) INTEGER :: js, ls, ks, ipol if(TIMING) CALL start_clock ('PAW_dgcxc_v') zero=0.0_DP gc_rad=0.0_DP h_rad=0.0_DP vout_lm=0.0_DP IF ( nspin_mag == 1 ) THEN ! ! GGA case - no spin polarization ! DO ix = ix_s, ix_e ! CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) CALL PAW_gradient(i, ix, rho_lm, rho_rad, rho_core, grad2, grad) CALL PAW_lm2rad(i, ix, drho_lm, drho_rad, nspin_mag) CALL PAW_gradient(i, ix, drho_lm, drho_rad, zero, dgrad2, dgrad) DO k = 1, i%m ! arho is the absolute value of real charge, sgn is its sign arho = rho_rad(k,1)*g(i%t)%rm2(k) + rho_core(k) arho = ABS(arho) s1 = grad (k, 1, 1) * dgrad(k, 1, 1) + & grad (k, 2, 1) * dgrad(k, 2, 1) + & grad (k, 3, 1) * dgrad(k, 3, 1) ! I am using grad(rho)**2 here, so its eps has to be eps**2 IF ( (arho>eps) .and. (grad2(k,1)>eps2) ) THEN CALL gcxc(arho,grad2(k,1),sx,sc,v1x,v2x,v1c,v2c) CALL dgcxc(arho,grad2(k,1),vrrx,vsrx,vssx,vrrc,vsrc,vssc) dvxc_rr = vrrx + vrrc dvxc_sr = vsrx + vsrc dvxc_ss = vssx + vssc dvxc_s = v2x + v2c gc_rad(k,ix,1) = dvxc_rr*drho_rad(k, 1)*g(i%t)%rm2(k) & + dvxc_sr*s1 h_rad(k,:,ix,1) = ((dvxc_sr*drho_rad(k, 1)*g(i%t)%rm2(k) + & dvxc_ss*s1)*grad(k,:, 1) + & dvxc_s*dgrad(k,:,1))*g(i%t)%r2(k) ELSE gc_rad(k,ix,1) = 0._dp h_rad(k,:,ix,1) = 0._dp ENDIF ENDDO ENDDO ELSEIF ( nspin_mag == 2 .OR. nspin_mag == 4 ) THEN ! ! \sigma-GGA case - spin polarization ! IF (nspin_mag==4) THEN CALL compute_drho_spin_lm(i, rho_lm, drho_lm, rhoout_lm, & drhoout_lm, segni_rad) ELSE rhoout_lm=rho_lm drhoout_lm=drho_lm ENDIF DO ix = ix_s, ix_e ! CALL PAW_lm2rad(i, ix, rhoout_lm, rho_rad, nspin_gga) CALL PAW_gradient(i, ix, rhoout_lm, rho_rad, rho_core, & grad2, grad) CALL PAW_lm2rad(i, ix, drhoout_lm, drho_rad, nspin_gga) CALL PAW_gradient(i, ix, drhoout_lm, drho_rad, zero, dgrad2, dgrad) ! DO k = 1,i%m ! ! Prepare the necessary quantities ! rho_core is considered half spin up and half spin down: co2 = rho_core(k)/DBLE(nspin_gga) rup = rho_rad(k,1)*g(i%t)%rm2(k) + co2 rdw = rho_rad(k,2)*g(i%t)%rm2(k) + co2 CALL gcx_spin (rup, rdw, grad2(k,1), grad2(k,2), & sx, v1xup, v1xdw, v2xup, v2xdw) grho(:,:)=grad(k,:,:) CALL dgcxc_spin (rup, rdw, grho (1,1), grho (1, 2), vrrxup, & vrrxdw, vrsxup, vrsxdw, vssxup, vssxdw, & vrrcup, vrrcdw, vrscup, vrscdw, vssc, vrzcup, vrzcdw) rh = rup + rdw ! total charge IF ( rh > eps ) THEN zeta = (rup - rdw ) / rh ! polarization ! grh2 = (grad(k,1,1) + grad(k,1,2))**2 & + (grad(k,2,1) + grad(k,2,2))**2 & + (grad(k,3,1) + grad(k,3,2))**2 CALL gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) dsvxc_rr (1, 1) = vrrxup + vrrcup + vrzcup *(1.d0 - zeta) / rh dsvxc_rr (1, 2) = vrrcup - vrzcup * (1.d0 + zeta) / rh dsvxc_rr (2, 1) = vrrcdw + vrzcdw * (1.d0 - zeta) / rh dsvxc_rr (2, 2) = vrrxdw + vrrcdw - vrzcdw *(1.d0 + zeta) / rh dsvxc_s (1, 1) = v2xup + v2c dsvxc_s (1, 2) = v2c dsvxc_s (2, 1) = v2c dsvxc_s (2, 2) = v2xdw + v2c ELSE sc = 0._DP v1cup = 0._DP v1cdw = 0._DP v2c = 0._DP dsvxc_rr = 0._DP dsvxc_s = 0._DP ENDIF dsvxc_sr (1, 1) = vrsxup + vrscup dsvxc_sr (1, 2) = vrscup dsvxc_sr (2, 1) = vrscdw dsvxc_sr (2, 2) = vrsxdw + vrscdw dsvxc_ss (1, 1) = vssxup + vssc dsvxc_ss (1, 2) = vssc dsvxc_ss (2, 1) = vssc dsvxc_ss (2, 2) = vssxdw + vssc ps (:,:) = (0._DP, 0._DP) DO is = 1, nspin_gga DO js = 1, nspin_gga ps1(:, is, js)=drho_rad(k,is)*g(i%t)%rm2(k)*grad(k,:,js) DO ipol=1,3 ps(is, js)=ps(is,js)+grad(k,ipol,is)*dgrad(k,ipol,js) ENDDO DO ks = 1, nspin_gga IF (is == js .AND. js == ks) THEN a (is, js, ks) = dsvxc_sr (is, is) c (is, js, ks) = dsvxc_sr (is, is) ELSE IF (is == 1) THEN a (is, js, ks) = dsvxc_sr (1, 2) ELSE a (is, js, ks) = dsvxc_sr (2, 1) ENDIF IF (js == 1) THEN c (is, js, ks) = dsvxc_sr (1, 2) ELSE c (is, js, ks) = dsvxc_sr (2, 1) ENDIF ENDIF ps2 (:, is, js, ks) = ps (is, js) * grad (k,:,ks) DO ls = 1, nspin_gga IF (is == js .AND. js == ks .AND. ks == ls) THEN b (is, js, ks, ls) = dsvxc_ss (is, is) ELSE IF (is == 1) THEN b (is, js, ks, ls) = dsvxc_ss (1, 2) ELSE b (is, js, ks, ls) = dsvxc_ss (2, 1) ENDIF ENDIF ENDDO ENDDO ENDDO ENDDO DO is = 1, nspin_gga DO js = 1, nspin_gga gc_rad(k,ix,is) = gc_rad(k,ix,is)+ dsvxc_rr (is,js) & *drho_rad(k, js)*g(i%t)%rm2(k) h_rad(k,:,ix,is) = h_rad(k,:,ix,is) + & dsvxc_s (is,js) * dgrad(k,:,js) DO ks = 1, nspin_gga gc_rad(k,ix,is) = gc_rad(k,ix,is)+a(is,js,ks)*ps(js,ks) h_rad(k,:,ix,is) = h_rad(k,:,ix,is) + & c (is, js, ks) * ps1 (:, js, ks) DO ls = 1, nspin_gga h_rad(k,:,ix,is) = h_rad(k,:,ix,is) + & b (is, js, ks, ls) * ps2 (:, js, ks, ls) ENDDO ENDDO ENDDO ENDDO h_rad(k,:,ix,:)=h_rad(k,:,ix,:)*g(i%t)%r2(k) ENDDO ! k ENDDO ! ix ELSE CALL errore('PAW_gcxc_v', 'unknown spin number', 2) ENDIF ! ! convert the first part of the GC correction back to spherical harmonics CALL PAW_rad2lm(i, gc_rad, gc_lm, i%l, nspin_gga) ! ! We need the divergence of h to calculate the last part of the exchange ! and correlation potential. First we have to convert H to its Y_lm expansion DO ix = ix_s, ix_e h_rad(1:i%m,3,ix,1:nspin_gga)=h_rad(1:i%m,3,ix,1:nspin_gga)& /rad(i%t)%sin_th(ix) ENDDO CALL PAW_rad2lm3(i, h_rad, h_lm, i%l+rad(i%t)%ladd, nspin_gga) ! ! Compute div(H) CALL PAW_divergence(i, h_lm, div_h, i%l+rad(i%t)%ladd, i%l) ! input max lm --^ ^-- output max lm ! Finally sum it back into v_xc DO is = 1,nspin_gga DO lm = 1,i%l**2 vout_lm(1:i%m,lm,is) = vout_lm(1:i%m,lm,is) + & e2*(gc_lm(1:i%m,lm,is)-div_h(1:i%m,lm,is)) ENDDO ENDDO ! ! In the noncollinear case we have to calculate the four components of ! the potential ! IF (nspin_mag == 4 ) THEN CALL compute_dpot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm,drho_lm) ELSE v_lm(:,:,1:nspin_mag)=v_lm(:,:,1:nspin_mag)+vout_lm(:,:,1:nspin_mag) ENDIF if(TIMING) CALL stop_clock ('PAW_dgcxc_v') END SUBROUTINE PAW_dgcxc_potential ! SUBROUTINE compute_rho_spin_lm(i,rho_lm,rhoout_lm,segni_rad) ! ! This subroutine diagonalizes the spin density matrix and gives ! the spin-up and spin-down components of the charge. In input ! the spin_density is decomposed into the lm components and in ! output the spin-up and spin-down densities are decomposed into ! the lm components. segni_rad is an output variable with the sign ! of the direction of the magnetization in each point. ! USE kinds, ONLY : dp USE constants, ONLY: eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : ux, nspin_gga, nspin_mag USE uspp_param, ONLY : upf USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(OUT) :: rhoout_lm(i%m, i%l**2, nspin_gga) ! output: the spin up and spin down charge REAL(DP), INTENT(OUT) :: segni_rad(i%m, rad(i%t)%nx) ! output: keep track of the spin direction REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: msmall_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: rhoout_rad(i%m, rad(i%t)%nx, nspin_gga) ! auxiliary: rho up and down along a line REAL(DP) :: mag ! modulus of the magnetization REAL(DP) :: m(3), hatr(3) INTEGER :: ix, k, ipol, kpol ! counter on mesh points IF (nspin /= 4) CALL errore('compute_rho_spin_lm','called in the wrong case',1) segni_rad=0.0_DP DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin) IF (with_small_so) CALL add_small_mag(i,ix,rho_rad) DO k=1, i%m rho_rad(k, 1:nspin) = rho_rad(k, 1:nspin)*g(i%t)%rm2(k) mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag.LT.eps12) THEN segni_rad(k,ix)=1.0_DP ELSE DO ipol=1,3 m(ipol)=rho_rad(k,1+ipol)/mag ENDDO ! ! The axis ux is chosen in the corresponding routine in real space. ! segni_rad(k,ix)=SIGN(1.0_DP, m(1)*ux(1)+m(2)*ux(2)+m(3)*ux(3)) ENDIF rhoout_rad(k, ix, 1)= 0.5d0*( rho_rad(k,1) + segni_rad(k,ix)*mag )* & g(i%t)%r2(k) rhoout_rad(k, ix, 2)= 0.5d0*( rho_rad(k,1) - segni_rad(k,ix)*mag )* & g(i%t)%r2(k) ENDDO ENDDO CALL PAW_rad2lm(i, rhoout_rad, rhoout_lm, i%l, nspin_gga) #ifdef __MPI CALL mp_sum( segni_rad, paw_comm ) #endif RETURN END SUBROUTINE compute_rho_spin_lm ! SUBROUTINE compute_pot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm) ! ! This subroutine receives the GGA potential for spin up and ! spin down and calculates the exchange and correlation potential and ! magnetic field. ! USE kinds, ONLY : dp USE constants, ONLY: eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : nspin_gga, nspin_mag USE uspp_param, ONLY : upf USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the charge and magnetization densities REAL(DP), INTENT(IN) :: vout_lm(i%m, i%l**2, nspin_gga) ! input: the spin up and spin down charges REAL(DP), INTENT(IN) :: segni_rad(i%m, rad(i%t)%nx) ! input: keep track of the direction of the magnetization REAL(DP), INTENT(OUT) :: v_lm(i%m, i%l**2, nspin) ! output: the xc potential and magnetic field REAL(DP) :: vsave_lm(i%m, i%l**2, nspin) ! auxiliary: v_lm is updated REAL(DP) :: gsave_lm(i%m, i%l**2, nspin) ! auxiliary: g_lm is updated REAL(DP) :: vout_rad(i%m, nspin_gga) ! auxiliary: the potential along a line REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: msmall_rad(i%m, nspin) ! auxiliary: the mag of small components ! along a line REAL(DP) :: v_rad(i%m, rad(i%t)%nx, nspin) ! auxiliary: rho up and down along a line REAL(DP) :: g_rad(i%m, rad(i%t)%nx, nspin) ! auxiliary: rho up and down along a line REAL(DP) :: mag ! modulus of the magnetization REAL(DP) :: hatr(3) ! modulus of the magnetization integer :: ix, k, ipol, kpol ! counter on mesh points IF (nspin /= 4) CALL errore('compute_pot_nonc','called in the wrong case',1) v_rad=0.0_DP IF (upf(i%t)%has_so.and.i%ae==1) g_rad=0.0_DP DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, vout_lm, vout_rad, nspin_gga) CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) IF (with_small_so) CALL add_small_mag(i,ix,rho_rad) DO k=1, i%m rho_rad(k, 1:nspin) = rho_rad(k, 1:nspin) * g(i%t)%rm2(k) mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) v_rad(k, ix, 1) = 0.5_DP * ( vout_rad(k,1) + vout_rad(k,2) ) vs_rad(k,ix,i%a) = 0.5_DP * ( vout_rad(k,1) - vout_rad(k,2) ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag.GT.eps12) THEN DO ipol=2,4 v_rad(k, ix, ipol) = vs_rad(k,ix,i%a) * segni_rad(k,ix) * & rho_rad(k,ipol) / mag ENDDO ENDIF ENDDO IF (with_small_so) CALL compute_g(i,ix,v_rad,g_rad) ENDDO CALL PAW_rad2lm(i, v_rad, vsave_lm, i%l, nspin) v_lm=v_lm+vsave_lm IF (with_small_so) THEN CALL PAW_rad2lm(i, g_rad, gsave_lm, i%l, nspin) g_lm=g_lm+gsave_lm ENDIF RETURN END SUBROUTINE compute_pot_nonc ! SUBROUTINE compute_drho_spin_lm(i, rho_lm, drho_lm, rhoout_lm, & drhoout_lm, segni_rad) ! ! This routine receives as input the induced charge and magnetization ! densities and gives as output the spin up and spin down components of ! the induced densities ! ! USE kinds, ONLY : dp USE constants, ONLY : eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : ux, nspin_gga USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(IN) :: drho_lm(i%m, i%l**2, nspin) ! input: the four components of the induced charge REAL(DP), INTENT(OUT) :: rhoout_lm(i%m, i%l**2, nspin_gga) ! output: the spin up and spin down charge REAL(DP), INTENT(OUT) :: drhoout_lm(i%m, i%l**2, nspin_gga) ! output: the induced spin-up and spin-down charge REAL(DP), INTENT(OUT) :: segni_rad(i%m, rad(i%t)%nx) ! output: keep track of the magnetization direction REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: drho_rad(i%m, nspin) ! auxiliary: the induced ch+mag along a line REAL(DP) :: rhoout_rad(i%m, rad(i%t)%nx, nspin_gga) ! auxiliary: rho up and down along a line REAL(DP) :: drhoout_rad(i%m, rad(i%t)%nx, nspin_gga) ! auxiliary: the charge of the charge+mag along a line REAL(DP) :: mag ! modulus of the magnetization REAL(DP) :: prod REAL(DP) :: m(3) integer :: ix, k, ipol ! counter on mesh points IF (nspin /= 4) CALL errore('compute_drho_spin_lm','called in the wrong case',1) DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin) CALL PAW_lm2rad(i, ix, drho_lm, drho_rad, nspin) ! ! Qui manca il pezzo della small component ! DO k=1, i%m mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag*g(i%t)%rm2(k).LT.eps12) THEN segni_rad(k,ix)=1.0_DP ELSE DO ipol=1,3 m(ipol)=rho_rad(k,1+ipol)/mag ENDDO ! ! The axis ux is chosen in the corresponding routine in real space. ! segni_rad(k,ix)=sign(1.0_DP, m(1)*ux(1)+m(2)*ux(2)+m(3)*ux(3)) ENDIF rhoout_rad(k, ix, 1)= 0.5d0*( rho_rad(k,1) + segni_rad(k,ix)*mag ) rhoout_rad(k, ix, 2)= 0.5d0*( rho_rad(k,1) - segni_rad(k,ix)*mag ) drhoout_rad(k, ix, 1)= 0.5d0 * drho_rad(k,1) drhoout_rad(k, ix, 2)= 0.5d0 * drho_rad(k,1) IF (mag*g(i%t)%rm2(k)>eps12) THEN prod=0.0_DP DO ipol=1,3 prod=prod + m(ipol) * drho_rad(k,ipol+1) ENDDO prod=0.5_DP * prod drhoout_rad(k, ix, 1)= drhoout_rad(k,ix,1) + segni_rad(k,ix) * prod drhoout_rad(k, ix, 2)= drhoout_rad(k,ix,2) - segni_rad(k,ix) * prod ENDIF ENDDO ENDDO CALL PAW_rad2lm(i, rhoout_rad, rhoout_lm, i%l, nspin_gga) CALL PAW_rad2lm(i, drhoout_rad, drhoout_lm, i%l, nspin_gga) RETURN END SUBROUTINE compute_drho_spin_lm ! SUBROUTINE compute_dpot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm,drho_lm) ! ! Anche qui manca ancora il pezzo dovuto alla small component. ! This subroutine receives the GGA potential for spin up and ! spin down and calculate the effective potential and the effective ! magnetic field. ! USE kinds, ONLY : dp USE constants, ONLY: eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : nspin_gga USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(IN) :: drho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(IN) :: vout_lm(i%m, i%l**2, nspin_gga) ! output: the spin up and spin down charge REAL(DP), INTENT(OUT) :: v_lm(i%m, i%l**2, nspin) ! output: the spin up and spin down charge REAL(DP), INTENT(IN) :: segni_rad(i%m, rad(i%t)%nx) ! output: keep track of the spin direction REAL(DP) :: vsave_lm(i%m, i%l**2, nspin) ! auxiliary: v_lm is not overwritten REAL(DP) :: vout_rad(i%m, nspin_gga) ! auxiliary: the potential along a line REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: drho_rad(i%m, nspin) ! auxiliary: the d n along a line REAL(DP) :: v_rad(i%m, rad(i%t)%nx, nspin) ! auxiliary: rho up and down along a line REAL(DP) :: mag, dvs, term, term1 ! auxiliary integer :: ix, k, ipol ! counter on mesh points v_rad=0.0_DP DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, vout_lm, vout_rad, nspin_gga) CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin) CALL PAW_lm2rad(i, ix, drho_lm, drho_rad, nspin) DO k=1, i%m ! ! Core charge is not added because we need only the magnetization. ! rho_rad(k, 1:nspin) =rho_rad(k, 1:nspin) * g(i%t)%rm2(k) drho_rad(k, 1:nspin) =drho_rad(k, 1:nspin) * g(i%t)%rm2(k) mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) v_rad(k, ix, 1) = 0.5_DP * ( vout_rad(k,1) + vout_rad(k,2) ) dvs = 0.5_DP * ( vout_rad(k,1) - vout_rad(k,2) ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag.GT.eps12) THEN ! ! The axis ux is chosen in the corresponding routine in real space. ! term=0.0_DP DO ipol=2,4 term=term+rho_rad(k,ipol)*drho_rad(k,ipol) ENDDO DO ipol=2,4 term1 = term*rho_rad(k,ipol)/mag**2 v_rad(k, ix, ipol)= segni_rad(k,ix)*( dvs*rho_rad(k,ipol) + & vs_rad(k,ix,i%a)*(drho_rad(k,ipol)-term1))/mag ENDDO ENDIF ENDDO ENDDO CALL PAW_rad2lm(i, v_rad, vsave_lm, i%l, nspin) v_lm=v_lm+vsave_lm RETURN END SUBROUTINE compute_dpot_nonc ! SUBROUTINE add_small_mag(i, ix, rho_rad) USE noncollin_module, ONLY : nspin_mag ! ! This subroutine computes the contribution of the small component to the ! magnetization in the noncollinear case and adds its to rho_rad. ! The calculation is done along the radial line ix. ! ! NB: Both the input and the output magnetizations are multiplied by ! r^2. ! TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: ix ! the line REAL(DP), INTENT(INOUT) :: rho_rad(i%m,nspin_mag) ! the magnetization REAL(DP) :: msmall_rad(i%m, nspin_mag) ! auxiliary: the mag of the small ! components along a line REAL(DP) :: hatr(3) INTEGER :: k, ipol, kpol CALL PAW_lm2rad(i, ix, msmall_lm, msmall_rad, nspin_mag) hatr(1)=rad(i%t)%sin_th(ix)*rad(i%t)%cos_phi(ix) hatr(2)=rad(i%t)%sin_th(ix)*rad(i%t)%sin_phi(ix) hatr(3)=rad(i%t)%cos_th(ix) DO k=1,i%m DO ipol=1,3 DO kpol=1,3 rho_rad(k,ipol+1) = rho_rad(k,ipol+1) - & msmall_rad(k,kpol+1) * hatr(ipol) * hatr(kpol) * 2.0_DP ENDDO ENDDO ENDDO RETURN END SUBROUTINE add_small_mag ! SUBROUTINE compute_g(i, ix, v_rad, g_rad) ! ! This routine receives as input B_{xc} and calculates the function G ! described in Phys. Rev. B 82, 075116 (2010). The same routine can ! be used when v_rad contains the induced B_{xc}. In this case the ! output is the change of G. ! USE noncollin_module, ONLY : nspin_mag TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: ix ! the line REAL(DP), INTENT(IN) :: v_rad(i%m,rad(i%t)%nx,nspin_mag) ! radial pot REAL(DP), INTENT(INOUT) :: g_rad(i%m,rad(i%t)%nx,nspin_mag) ! radial potential (small comp) REAL(DP) :: hatr(3) INTEGER :: k, ipol, kpol hatr(1)=rad(i%t)%sin_th(ix)*rad(i%t)%cos_phi(ix) hatr(2)=rad(i%t)%sin_th(ix)*rad(i%t)%sin_phi(ix) hatr(3)=rad(i%t)%cos_th(ix) DO k=1, i%m DO ipol=1,3 DO kpol=1,3 ! ! v_rad contains -B_{xc} with the notation of the papers ! g_rad(k,ix,ipol+1)=g_rad(k,ix,ipol+1) - & v_rad(k,ix,kpol+1)*hatr(kpol)*hatr(ipol)*2.0_DP ENDDO ENDDO ENDDO RETURN END SUBROUTINE compute_g ! END MODULE paw_onecenter espresso-5.0.2/PW/src/wannier_check.f900000644000700200004540000000674712053145627016640 0ustar marsamoscm! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) subroutine wannier_check() use io_global, only : stdout use kinds, only : DP use klist, only : nks, nkstot use ions_base, only : nat, ityp, atm,tau use wvfct, only: nbnd use basis, only: natomwfc use wannier_new, only: nwan, wan_in, use_energy_int use lsda_mod, only: nspin USE control_flags, ONLY : gamma_only USE uspp_param, ONLY : upf implicit none integer :: nwfc, lmax_wfc, na, nt, n, l, m, i, iwan, ispin ! number of k points in this pool .ne. total number of k points if (nks.ne.nkstot) call errore ('wannier_check', 'not implemented 1', 1) if ( gamma_only ) call errore ('wannier_check', 'gamma_only calculation not implemented', 1) ! here we will write to stdout source of wannier functions (atomic functions from which wannier are generated) do ispin=1, nspin ! write(stdout,'(5x,a4,i2)') 'Spin',ispin do iwan=1,nwan write(stdout,'(7x,"Wannier #",i3," centered on atom ",a3," (position ",3f8.5," )")') & iwan, atm(ityp(wan_in(iwan,ispin)%iatom)), (tau(i,wan_in(iwan,ispin)%iatom),i=1,3) if( use_energy_int) then write(stdout,'(9x,"Bands for generation: from",f6.3," to",f6.3)') & wan_in(iwan,ispin)%bands_from,wan_in(iwan,ispin)%bands_to else write(stdout,'(9x,"Bands for generation: from",i4," to",i4)') & INT(wan_in(iwan,ispin)%bands_from),INT(wan_in(iwan,ispin)%bands_to) end if write(stdout,'(9x,a31)') 'Trial wavefunction ingredients:' do i=1,wan_in(iwan,ispin)%ning nwfc=0 lmax_wfc = 0 write(stdout,'(10x,f12.10," of l=",i1,", m=",i1)') & wan_in(iwan,ispin)%ing(i)%c, wan_in(iwan,ispin)%ing(i)%l, wan_in(iwan,ispin)%ing(i)%m ! now we shoud associate every ingridient of trial wavefunction with atomic orbital ! it will be done only once - for future using in wannier_proj DO na = 1, nat nt = ityp (na) DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) lmax_wfc = max (lmax_wfc, l ) DO m=1, 2*l+1 nwfc=nwfc+1 ! the most important part if ( & (na == wan_in(iwan,ispin)%iatom) .AND. & (l == wan_in(iwan,ispin)%ing(i)%l) .AND. & (m == wan_in(iwan,ispin)%ing(i)%m) ) & wan_in(iwan,ispin)%ing(i)%iatomwfc = nwfc enddo endif enddo enddo end do ! ingredients end do ! iwannier end do !ispin ! do iwan=1,nwan ! write(stdout,'(7x,"Wannier #",i3," atomic wavefunction", i3)') iwan, wan_in(iwan,1)%ing(1)%iatomwfc ! end do ! iwannier if (lmax_wfc > 3) call errore ('wannier_check', 'l > 3 not yet implemented', 1) if (nwfc /= natomwfc) call errore ('wannier_check', 'wrong # of atomic wfcs?', 1) if (nwan > nbnd ) call errore( 'wannier_check','too few bands', nwan-nbnd) return end subroutine wannier_check espresso-5.0.2/PW/src/efermit.f900000644000700200004540000000745212053145630015457 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- FUNCTION efermit (et, nbnd, nks, nelec, nspin, ntetra, tetra, is, isk) !-------------------------------------------------------------------- ! ! Finds the Fermi energy - tetrahedron method ! (see P. E. Bloechl et al, PRB49, 16223 (1994)) ! USE io_global, ONLY : stdout USE kinds, ONLY: DP USE constants, ONLY: rytoev implicit none integer, intent(in) :: nks, nbnd, nspin, ntetra, tetra (4, ntetra) ! nks : the number of k points ! nbnd : the number of bands ! nspin : the number of spin components ! ntetra: the number of tetrahedra ! tetra : the vertices of a tetrahedron real(DP), intent(in) :: et (nbnd, nks), nelec ! input: the eigenvalues ! input: the number of electrons real(DP):: efermit ! output: the fermi energy integer, intent(in) :: is, isk(nks) ! ! two parameters ! integer, parameter :: maxiter = 300 ! the maximum number of iterations in bisection real(DP), parameter :: eps= 1.0d-10 ! a small quantity ! ! here the local variables ! integer :: nlw, ik, iter ! the minimum energy band ! counter on k points ! counter on iterations real(DP) :: ef, elw, eup, sumkup, sumklw, sumkmid ! elw, eup: lower and upper bounds for fermi energy (ef) ! sumklw, sumkup: number of states for ef=elw, ef=eup resp. ! sumkmid: number of states for ef=(elw+eup)/2 real(DP), external :: sumkt real(DP) :: efbetter, better ! ! find bounds for the Fermi energy. ! nlw = max (1, nint (nelec / 2.0d0 - 5.0d0) ) elw = et (nlw, 1) eup = et (nbnd, 1) do ik = 2, nks elw = min (elw, et (nlw, ik) ) eup = max (eup, et (nbnd, ik) ) enddo ! ! Bisection method ! sumkup = sumkt (et, nbnd, nks, nspin, ntetra, tetra, eup, is, isk) sumklw = sumkt (et, nbnd, nks, nspin, ntetra, tetra, elw, is, isk) better = 1.0d+10 if ( (sumkup - nelec) < -eps .or. (sumklw - nelec) > eps) then ! ! this is a serious error and the code should stop here ! we don't stop because this may occasionally happen in nonscf ! calculations where it may be completely irrelevant ! call infomsg ('efermit', 'internal error, cannot bracket Ef') efermit = better return end if do iter = 1, maxiter ef = (eup + elw) / 2.d0 sumkmid = sumkt (et, nbnd, nks, nspin, ntetra, tetra, ef, is, isk) if (abs (sumkmid-nelec) < better) then better = abs (sumkmid-nelec) efbetter = ef endif ! converged if (abs (sumkmid-nelec) < eps) then goto 100 elseif ( (sumkmid-nelec) < -eps) then elw = ef else eup = ef endif enddo ! unconverged exit: ! the best available ef is used . Needed in some difficult cases ef = efbetter sumkmid = sumkt (et, nbnd, nks, nspin, ntetra, tetra, ef, is, isk ) if (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is WRITE( stdout, 9010) ef * rytoev, sumkmid ! converged exit: 100 continue ! Check if Fermi level is above any of the highest eigenvalues do ik = 1, nks if (is /= 0) then if (isk(ik) /= is ) cycle end if if (ef > et (nbnd, ik) + 1.d-4) & WRITE( stdout, 9020) ef * rytoev, ik, et (nbnd, ik) * rytoev enddo efermit = ef return 9010 format (/5x,'Warning: too many iterations in bisection'/ & & 5x,'ef = ',f10.6,' sumk = ',f10.6,' electrons') 9020 format (/5x,'Warning: ef =',f10.6, & & ' is above the highest band at k-point',i4,/5x,9x, & & 'e = ',f10.6) end FUNCTION efermit espresso-5.0.2/PW/src/setlocal.f900000644000700200004540000000514412053145627015634 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine setlocal !---------------------------------------------------------------------- ! ! This routine computes the local potential in real space vltot(ir) ! USE kinds, ONLY : DP USE constants, ONLY : eps8 USE ions_base, ONLY : zv, ntyp => nsp USE cell_base, ONLY : omega USE extfield, ONLY : tefield, dipfield, etotefield USE gvect, ONLY : igtongl, gg USE scf, ONLY : rho, v_of_0, vltot USE vlocal, ONLY : strf, vloc USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft USE gvect, ONLY : nl, nlm, ngm USE control_flags, ONLY : gamma_only USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum USE martyna_tuckerman, ONLY : wg_corr_loc, do_comp_mt USE esm, ONLY : esm_local, esm_bc, do_comp_esm #ifdef __MS2 USE ms2, ONLY : ms2ec_add_esf #endif ! implicit none complex(DP), allocatable :: aux (:), v_corr(:) ! auxiliary variable integer :: nt, ng ! counter on atom types ! counter on g vectors ! allocate (aux( dfftp%nnr)) aux(:)=(0.d0,0.d0) ! if (do_comp_mt) then allocate(v_corr(ngm)) call wg_corr_loc(omega,ntyp,ngm,zv,strf,v_corr) aux(nl(:)) = v_corr(:) deallocate(v_corr) end if ! do nt = 1, ntyp do ng = 1, ngm aux (nl(ng))=aux(nl(ng)) + vloc (igtongl (ng), nt) * strf (ng, nt) enddo enddo if (gamma_only) then do ng = 1, ngm aux (nlm(ng)) = CONJG(aux (nl(ng))) enddo end if ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... Perform ESM correction to local potential ! CALL esm_local ( aux ) ENDIF ! ! ... v_of_0 is (Vloc)(G=0) ! v_of_0=0.0_DP if (gg(1) < eps8) v_of_0 = DBLE ( aux (nl(1)) ) ! call mp_sum( v_of_0, intra_bgrp_comm ) ! ! ... aux = potential in G-space . FFT to real space ! CALL invfft ('Dense', aux, dfftp) ! vltot (:) = DBLE (aux (:) ) ! ! ... If required add an electric field to the local potential ! if ( tefield .and. ( .not. dipfield ) ) & call add_efield(vltot,etotefield,rho%of_r,.true.) ! #ifdef __MS2 ! ! ... Add the electrostatic field generated by the MM atoms to the ! local potential (used only by the MS2 plug-in) ! call ms2ec_add_esf() #endif ! deallocate(aux) ! return end subroutine setlocal espresso-5.0.2/PW/src/transform_becsum_nc.f900000644000700200004540000000464712053145627020066 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE transform_becsum_nc(becsum_nc,becsum,na) !---------------------------------------------------------------------------- ! ! This routine multiply becsum_nc by the identity and the Pauli ! matrices and saves it in becsum for the calculation of ! augmentation charge and magnetization. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : npol, nspin_mag USE spin_orb, ONLY : domag ! IMPLICIT NONE COMPLEX(DP) :: becsum_nc(nhm*(nhm+1)/2,nat,npol,npol) REAL(DP) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag) INTEGER :: na ! ! ... local variables ! INTEGER :: ih, jh, ijh, np np=ityp(na) ijh=1 DO ih = 1, nh(np) becsum(ijh,na,1)= becsum(ijh,na,1)+ & becsum_nc(ijh,na,1,1)+becsum_nc(ijh,na,2,2) IF (domag) THEN becsum(ijh,na,2)= becsum(ijh,na,2)+ & becsum_nc(ijh,na,1,2)+becsum_nc(ijh,na,2,1) becsum(ijh,na,3)= becsum(ijh,na,3)+(0.d0,-1.d0)* & (becsum_nc(ijh,na,1,2)-becsum_nc(ijh,na,2,1)) becsum(ijh,na,4)= becsum(ijh,na,4)+ & becsum_nc(ijh,na,1,1)-becsum_nc(ijh,na,2,2) END IF ijh=ijh+1 DO jh = ih+1, nh(np) becsum(ijh,na,1)= becsum(ijh,na,1) + & (becsum_nc(ijh,na,1,1)+becsum_nc(ijh,na,2,2)) & + CONJG(becsum_nc(ijh,na,1,1)+becsum_nc(ijh,na,2,2)) IF (domag) THEN becsum(ijh,na,2)= becsum(ijh,na,2) + & becsum_nc(ijh,na,1,2)+becsum_nc(ijh,na,2,1) & + CONJG(becsum_nc(ijh,na,2,1)+becsum_nc(ijh,na,1,2)) becsum(ijh,na,3)= becsum(ijh,na,3) +(0.d0,-1.d0)* & (becsum_nc(ijh,na,1,2)-becsum_nc(ijh,na,2,1) & + CONJG(becsum_nc(ijh,na,2,1)-becsum_nc(ijh,na,1,2)) ) becsum(ijh,na,4)= becsum(ijh,na,4) + & (becsum_nc(ijh,na,1,1)-becsum_nc(ijh,na,2,2)) & + CONJG(becsum_nc(ijh,na,1,1)-becsum_nc(ijh,na,2,2)) END IF ijh=ijh+1 END DO END DO RETURN END SUBROUTINE transform_becsum_nc espresso-5.0.2/PW/src/start_k.f900000644000700200004540000000576112053145630015474 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE start_k ! ! ... Basic variables for k-point generations, as read from input ! USE kinds, ONLY : DP USE cell_base, ONLY : bg ! SAVE ! ! ... uniform k-point grid parameters ! INTEGER :: & nk1, nk2, nk3, &! the special-point grid k1, k2, k3 ! the offset from the origin ! ! ! ... k points and weights, read from input, if any ! INTEGER :: nks_start=0 ! number of k points REAL(DP), ALLOCATABLE :: wk_start(:) ! weights of k points REAL(DP), ALLOCATABLE :: xk_start(:,:) ! coordinates of k points CONTAINS SUBROUTINE init_start_k ( nk1_, nk2_, nk3_, k1_, k2_, k3_, & k_points, nk_, xk_, wk_ ) ! ! initialize the grid of k points ! INTEGER, INTENT (IN) :: nk1_, nk2_, nk3_, k1_, k2_, k3_, nk_ CHARACTER(LEN=*), INTENT (IN) :: k_points REAL(dp),INTENT (IN) :: xk_(3,nk_), wk_(nk_) ! LOGICAL :: done ! ! variables for automatic grid ! nk1 = 0; nk2 = 0; nk3 = 0; k1 = 0; k2 = 0; k3 = 0 done = reset_grid ( nk1_, nk2_, nk3_, k1_, k2_, k3_ ) IF ( k_points == 'automatic' .AND. .not. done ) & CALL errore ('init_start_k','automatic k-points and nk*=0?',1) ! ! variables for manual grid ! IF ( k_points == 'gamma' ) THEN nks_start = 1 ELSE nks_start = nk_ END IF ! IF ( nks_start > 0) THEN IF ( .NOT. ALLOCATED (xk_start) ) ALLOCATE ( xk_start(3,nks_start) ) IF ( .NOT. ALLOCATED (wk_start) ) ALLOCATE ( wk_start(nks_start) ) ! ! k-points in crystal axis: transform to cartesian (in units 2pi/a) ! BEWARE: reciprocal axis bg NEEDED, must have been initialized ! IF ( k_points == 'crystal' ) CALL cryst_to_cart(nk_, xk_, bg, 1) ! IF ( k_points == 'gamma' ) THEN xk_start(:,1) = 0.0_dp wk_start(1) = 1.0_dp ELSE xk_start(:,:) = xk_(:,1:nk_) wk_start(:) = wk_(1:nk_) ENDIF END IF ! END SUBROUTINE init_start_k ! LOGICAL FUNCTION reset_grid ( nk1_, nk2_, nk3_, k1_, k2_, k3_ ) ! ! reset the automatic grid to new values if these are > 0 ! INTEGER, INTENT (IN) :: nk1_, nk2_, nk3_, k1_, k2_, k3_ ! IF ( nk1_ > 0 ) nk1 = nk1_ IF ( nk2_ > 0 ) nk2 = nk2_ IF ( nk3_ > 0 ) nk3 = nk3_ IF ( k1_ > 0 ) k1 = k1_ IF ( k2_ > 0 ) k2 = k2_ IF ( k3_ > 0 ) k3 = k3_ ! reset_grid = (nk1_*nk2_*nk3_ > 0) ! END FUNCTION reset_grid END MODULE start_k espresso-5.0.2/PW/src/clean_pw.f900000644000700200004540000001642212053145630015611 0ustar marsamoscm ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE clean_pw( lflag ) !---------------------------------------------------------------------- ! ! ... This routine deallocates dynamically allocated arrays ! ... if lflag=.TRUE. all arrays are deallocated (end of calculation) ! ... if lflag=.FALSE. ion-related variables and arrays allocated ! ... at the very beginning of the calculation (routines iosys, read_file, ! ... setup, read_pseudo) are not deallocated; all others arrayes are. ! ... This is used when a new calculation has to be performed (e.g. in neb, ! ... phonon, vc-relax). Beware: the new calculation should not call any ! ... of the routines mentioned above ! USE cellmd, ONLY : lmovecell USE ions_base, ONLY : deallocate_ions_base USE gvect, ONLY : g, gg, gl, nl, nlm, igtongl, mill, & eigts1, eigts2, eigts3 USE gvecs, ONLY : nls, nlsm USE fixed_occ, ONLY : f_inp USE ktetra, ONLY : tetra USE klist, ONLY : ngk USE gvect, ONLY : ig_l2g USE vlocal, ONLY : strf, vloc USE wvfct, ONLY : igk, g2kin, et, wg, btype USE force_mod, ONLY : force USE scf, ONLY : rho, v, vltot, rho_core, rhog_core, & vrs, kedtau, destroy_scf_type, vnew USE symm_base, ONLY : irt USE symme, ONLY : sym_rho_deallocate USE wavefunctions_module, ONLY : evc, psic, psic_nc USE us, ONLY : qrad, tab, tab_at, tab_d2y, spline_ps USE uspp, ONLY : deallocate_uspp USE uspp_param, ONLY : upf USE ldaU, ONLY : lda_plus_u, oatwfc, swfcatom, q_ae, q_ps USE extfield, ONLY : forcefield USE fft_base, ONLY : dfftp, dffts USE stick_base, ONLY : sticks_deallocate USE fft_types, ONLY : fft_dlay_deallocate USE spin_orb, ONLY : lspinorb, fcoef USE noncollin_module, ONLY : deallocate_noncol USE dynamics_module, ONLY : deallocate_dyn_vars USE paw_init, ONLY : deallocate_paw_internals USE atom, ONLY : msh, rgrid USE radial_grids, ONLY : deallocate_radial_grid USE wannier_new, ONLY : use_wannier ! USE london_module, ONLY : dealloca_london USE constraints_module, ONLY : deallocate_constraint USE realus, ONLY : deallocatenewdreal USE pseudo_types, ONLY : deallocate_pseudo_upf USE bp, ONLY : deallocate_bp_efield USE exx, ONLY : deallocate_exx #ifdef __ENVIRON USE environ_base, ONLY : do_environ #endif ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lflag ! INTEGER :: nt ! IF ( lflag ) THEN ! ! ... arrays allocated at the very beginning of the calculation ! IF( ALLOCATED( upf ) ) THEN DO nt = 1, SIZE( upf ) CALL deallocate_pseudo_upf( upf( nt ) ) END DO DEALLOCATE( upf ) END IF DEALLOCATE (msh) CALL deallocate_radial_grid(rgrid) ! CALL deallocate_ions_base() ! IF ( ALLOCATED( force ) ) DEALLOCATE( force ) IF ( ALLOCATED( forcefield ) ) DEALLOCATE( forcefield ) IF ( ALLOCATED (irt) ) DEALLOCATE (irt) ! IF ( lda_plus_u ) THEN IF ( ALLOCATED( oatwfc ) ) DEALLOCATE( oatwfc ) IF ( ALLOCATED( q_ae ) ) DEALLOCATE( q_ae ) IF ( ALLOCATED( q_ps ) ) DEALLOCATE( q_ps ) END IF CALL deallocate_bp_efield() CALL dealloca_london() CALL deallocate_constraint() ! END IF ! IF ( ALLOCATED( f_inp ) ) DEALLOCATE( f_inp ) IF ( ALLOCATED( tetra ) ) DEALLOCATE( tetra ) ! ! ... arrays allocated in ggen.f90 ! IF ( ALLOCATED( ig_l2g ) ) DEALLOCATE( ig_l2g ) IF ( .NOT. lmovecell ) THEN IF ( ASSOCIATED( gl ) ) DEALLOCATE ( gl ) END IF ! CALL sym_rho_deallocate ( ) ! ! ... arrays allocated in allocate_fft.f90 ( and never deallocated ) ! IF ( ALLOCATED( g ) ) DEALLOCATE( g ) IF ( ALLOCATED( gg ) ) DEALLOCATE( gg ) IF ( ALLOCATED( nl ) ) DEALLOCATE( nl ) IF ( ALLOCATED( nlm ) ) DEALLOCATE( nlm ) IF ( ALLOCATED( igtongl ) ) DEALLOCATE( igtongl ) IF ( ALLOCATED( mill ) ) DEALLOCATE( mill ) call destroy_scf_type(rho) call destroy_scf_type(v) call destroy_scf_type(vnew) IF ( ALLOCATED( kedtau ) ) DEALLOCATE( kedtau ) IF ( ALLOCATED( vltot ) ) DEALLOCATE( vltot ) IF ( ALLOCATED( rho_core ) ) DEALLOCATE( rho_core ) IF ( ALLOCATED( rhog_core ) ) DEALLOCATE( rhog_core ) IF ( ALLOCATED( psic ) ) DEALLOCATE( psic ) IF ( ALLOCATED( psic_nc ) ) DEALLOCATE( psic_nc ) IF ( ALLOCATED( vrs ) ) DEALLOCATE( vrs ) if (spline_ps) then IF ( ALLOCATED( tab_d2y) ) DEALLOCATE( tab_d2y ) endif IF ( ALLOCATED( nls ) ) DEALLOCATE( nls ) IF ( ALLOCATED( nlsm ) ) DEALLOCATE( nlsm ) ! ! ... arrays allocated in allocate_locpot.f90 ( and never deallocated ) ! IF ( ALLOCATED( vloc ) ) DEALLOCATE( vloc ) IF ( ALLOCATED( strf ) ) DEALLOCATE( strf ) IF ( ALLOCATED( eigts1 ) ) DEALLOCATE( eigts1 ) IF ( ALLOCATED( eigts2 ) ) DEALLOCATE( eigts2 ) IF ( ALLOCATED( eigts3 ) ) DEALLOCATE( eigts3 ) ! ! ... arrays allocated in allocate_nlpot.f90 ( and never deallocated ) ! IF ( ALLOCATED( ngk ) ) DEALLOCATE( ngk ) IF ( ALLOCATED( igk ) ) DEALLOCATE( igk ) IF ( ALLOCATED( g2kin ) ) DEALLOCATE( g2kin ) IF ( ALLOCATED( qrad ) ) DEALLOCATE( qrad ) IF ( ALLOCATED( tab ) ) DEALLOCATE( tab ) IF ( ALLOCATED( tab_at ) ) DEALLOCATE( tab_at ) IF ( lspinorb ) THEN IF ( ALLOCATED( fcoef ) ) DEALLOCATE( fcoef ) END IF ! CALL deallocate_uspp() CALL deallocate_noncol() ! ! ... arrays allocated in init_run.f90 ( and never deallocated ) ! IF ( ALLOCATED( et ) ) DEALLOCATE( et ) IF ( ALLOCATED( wg ) ) DEALLOCATE( wg ) IF ( ALLOCATED( btype ) ) DEALLOCATE( btype ) ! ! ... arrays allocated in allocate_wfc.f90 ( and never deallocated ) ! IF ( ALLOCATED( evc ) ) DEALLOCATE( evc ) IF ( lda_plus_u ) THEN IF ( ALLOCATED( swfcatom ) ) DEALLOCATE( swfcatom ) ENDIF ! ! ... fft structures allocated in data_structure.f90 ! CALL fft_dlay_deallocate( dfftp ) CALL fft_dlay_deallocate( dffts ) ! ! ... stick-owner matrix allocated in sticks_base ! CALL sticks_deallocate() ! ! ... arrays allocated for dynamics ! CALL deallocate_dyn_vars() ! ! ... additional arrays for PAW ! CALL deallocate_paw_internals() ! ! ... arrays for real-space algorithm ! CALL deallocatenewdreal() ! ! for Wannier_ac if (use_wannier) CALL wannier_clean() ! CALL deallocate_exx ( ) #ifdef __ENVIRON ! ... additional arrays for external environment ! CALL environ_clean( lflag ) ! #endif ! RETURN ! END SUBROUTINE clean_pw espresso-5.0.2/PW/src/move_ions.f900000644000700200004540000003124512053145627016025 0ustar marsamoscm! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE move_ions() !---------------------------------------------------------------------------- ! ! ... This routine moves the ions according to the requested scheme: ! ! ... lbfgs bfgs minimizations ! ... lmd molecular dynamics ( verlet of vcsmd ) ! ... lmd + lconstrain constrained molecular dynamics, ! ! ... coefficients for potential and wavefunctions extrapolation are ! ... also computed here ! USE constants, ONLY : e2, eps8, ry_kbar USE io_global, ONLY : stdout USE io_files, ONLY : tmp_dir, iunupdate, seqopn USE kinds, ONLY : DP USE cell_base, ONLY : alat, at, bg, omega, cell_force, fix_volume, fix_area USE cellmd, ONLY : omega_old, at_old, press, lmovecell, calc USE ions_base, ONLY : nat, ityp, tau, if_pos USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE grid_subroutines, ONLY : realspace_grids_init USE gvect, ONLY : gcutm USE gvecs, ONLY : gcutms USE grid_subroutines, ONLY : realspace_grids_init USE symm_base, ONLY : checkallsym USE ener, ONLY : etot USE force_mod, ONLY : force, sigma USE control_flags, ONLY : istep, nstep, upscale, lbfgs, ldamped, & lconstrain, conv_ions, & lmd, llang, history, tr2 USE relax, ONLY : epse, epsf, epsp, starting_scf_threshold USE lsda_mod, ONLY : lsda, absmag USE mp_global, ONLY : intra_image_comm USE io_global, ONLY : ionode_id, ionode USE mp, ONLY : mp_bcast USE bfgs_module, ONLY : bfgs, terminate_bfgs USE basic_algebra_routines, ONLY : norm USE dynamics_module, ONLY : verlet, langevin_md, proj_verlet USE dfunct, only : newd ! IMPLICIT NONE ! LOGICAL, SAVE :: lcheck_mag = .TRUE., & restart_with_starting_magnetiz = .FALSE., & lcheck_cell= .TRUE., & final_cell_calculation=.FALSE. REAL(DP), ALLOCATABLE :: tauold(:,:,:) REAL(DP) :: energy_error, gradient_error, cell_error LOGICAL :: step_accepted, exst REAL(DP), ALLOCATABLE :: pos(:), grad(:) REAL(DP) :: h(3,3), fcell(3,3)=0.d0, epsp1 INTEGER, ALLOCATABLE :: fixion(:) real(dp) :: tr ! ! ... only one node does the calculation in the parallel case ! IF ( ionode ) THEN ! conv_ions = .FALSE. ! ALLOCATE( tauold( 3, nat, 3 ) ) ! ! ... the file containing old positions is opened ! ... ( needed for extrapolation ) ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) ! IF ( exst ) THEN ! READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold ! ELSE ! history = 0 tauold = 0.D0 ! WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold ! END IF ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! ! ... save the previous two steps ( a total of three steps is saved ) ! tauold(:,:,3) = tauold(:,:,2) tauold(:,:,2) = tauold(:,:,1) tauold(:,:,1) = tau(:,:) ! ! ... history is updated (a new ionic step has been done) ! history = MIN( 3, ( history + 1 ) ) ! ! ... old positions are written on file ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) ! WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! DEALLOCATE( tauold ) ! ! ... do the minimization / dynamics step ! IF ( lmovecell .AND. lconstrain ) THEN ! IF ( lbfgs) CALL errore('move_ions', & & 'variable-cell bfgs and constraints not implemented yet', 1 ) WRITE(stdout, '(5x,"-------------------------------------------")') WRITE(stdout, '(5x,"NEW FEATURE: constraints with variable cell")') WRITE(stdout, '(5x,"-------------------------------------------")') ! END IF ! ! ... BFGS algorithm is used to minimize ionic configuration ! bfgs_minimization : & IF ( lbfgs ) THEN ! ! ... the bfgs procedure is used ! ALLOCATE( pos( 3*nat ), grad( 3*nat ), fixion( 3*nat ) ) ! h = at * alat ! pos = RESHAPE( tau, (/ 3 * nat /) ) CALL cryst_to_cart( nat, pos, bg, -1 ) grad = - RESHAPE( force, (/ 3 * nat /) ) * alat CALL cryst_to_cart( nat, grad, at, -1 ) fixion = RESHAPE( if_pos, (/ 3 * nat /) ) ! IF ( lmovecell ) THEN at_old = at omega_old = omega etot = etot + press * omega CALL cell_force( fcell, - transpose(bg)/alat, sigma, omega, press ) epsp1 = epsp / ry_kbar END IF ! CALL bfgs( pos, h, etot, grad, fcell, fixion, tmp_dir, stdout, epse,& epsf, epsp1, energy_error, gradient_error, cell_error, & istep, nstep, step_accepted, conv_ions, lmovecell ) ! IF ( lmovecell ) THEN ! changes needed only if cell moves if (fix_volume) call impose_deviatoric_strain(alat*at, h) if (fix_area) call impose_deviatoric_strain_2d(alat*at, h) at = h /alat CALL recips( at(1,1),at(1,2),at(1,3), bg(1,1),bg(1,2),bg(1,3) ) CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) END IF ! CALL cryst_to_cart( nat, pos, at, 1 ) tau = RESHAPE( pos, (/ 3 , nat /) ) CALL cryst_to_cart( nat, grad, bg, 1 ) force = - RESHAPE( grad, (/ 3, nat /) ) ! IF ( conv_ions ) THEN ! IF ( ( lsda .AND. ( absmag < eps8 ) .AND. lcheck_mag ) ) THEN ! ! ... lsda relaxation : a final configuration with zero ! ... absolute magnetization has been found. ! A check on this configuration is needed restart_with_starting_magnetiz = .true. ! ELSE IF (lmovecell.and.lcheck_cell) THEN ! ! After the cell relaxation we make a final calculation ! with the correct g vectors corresponding to the relaxed ! cell. ! final_cell_calculation=.TRUE. CALL terminate_bfgs ( etot, epse, epsf, epsp, lmovecell, & stdout, tmp_dir ) ! ELSE ! CALL terminate_bfgs ( etot, epse, epsf, epsp, lmovecell, & stdout, tmp_dir ) ! END IF ! ELSE ! ! ... if a new bfgs step is done, new threshold is computed ! IF ( step_accepted ) THEN ! tr2 = starting_scf_threshold * & MIN( 1.D0, ( energy_error / ( epse * upscale ) ), & ( gradient_error / ( epsf * upscale ) ) ) tr2 = MAX( ( starting_scf_threshold / upscale ), tr2 ) ! END IF ! IF ( tr2 > 1.D-10 ) THEN WRITE( stdout, & '(5X,"new conv_thr",T30,"= ",0PF18.10," Ry",/)' ) tr2 ELSE WRITE( stdout, & '(5X,"new conv_thr",T30,"= ",1PE18.1 ," Ry",/)' ) tr2 END IF ! ! ... the logical flag lcheck_mag is set again to .TRUE. (needed if ! ... a new configuration with zero absolute magnetization is ! ... identified in the following steps of the relaxation) ! lcheck_mag = .TRUE. IF (lmovecell) lcheck_cell = .TRUE. ! END IF ! CALL output_tau( lmovecell, conv_ions ) ! DEALLOCATE( pos, grad, fixion ) ! END IF bfgs_minimization ! ! ... molecular dynamics schemes are used ! IF ( lmd ) THEN ! IF ( calc == ' ' ) THEN ! ! ... dynamics algorithms ! IF ( ldamped ) THEN ! CALL proj_verlet() ! ELSE IF ( llang ) THEN ! CALL langevin_md() ! ELSE ! CALL verlet() ! END IF ! ELSE IF ( calc /= ' ' ) THEN ! ! ... variable cell shape md ! CALL vcsmd() ! END IF ! END IF ! ! ... before leaving check that the new positions still transform ! ... according to the symmetry of the system. ! CALL checkallsym( nat, tau, ityp, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! END IF CALL mp_bcast(restart_with_starting_magnetiz,ionode_id,intra_image_comm) CALL mp_bcast(final_cell_calculation,ionode_id,intra_image_comm) ! IF ( final_cell_calculation ) THEN ! ! ... Variable-cell optimization: once convergence is achieved, ! ... make a final calculation with G-vectors and plane waves ! ... calculated for the final cell (may differ from the curent ! ... result, using G_vectors and PWs for the starting cell) ! WRITE( UNIT = stdout, FMT = 9110 ) WRITE( UNIT = stdout, FMT = 9120 ) ! CALL clean_pw( .FALSE. ) CALL close_files(.TRUE.) lmovecell=.FALSE. lcheck_cell=.FALSE. final_cell_calculation=.FALSE. lbfgs=.FALSE. lmd=.FALSE. lcheck_mag = .FALSE. restart_with_starting_magnetiz = .FALSE. ! ... conv_ions is set to .FALSE. to perform a final scf cycle conv_ions = .FALSE. ! ... allow re-calculation of FFT grid ! dfftp%nr1=0; dfftp%nr2=0; dfftp%nr3=0; dffts%nr1=0; dffts%nr2=0; dffts%nr3=0 CALL realspace_grids_init (dfftp, dffts,at, bg, gcutm, gcutms ) CALL init_run() ! ELSE IF (restart_with_starting_magnetiz) THEN ! ! ... lsda optimization : a final configuration with zero ! ... absolute magnetization has been found and we check ! ... if it is really the minimum energy structure by ! ... performing a new scf iteration without any "electronic" history ! WRITE( UNIT = stdout, FMT = 9010 ) WRITE( UNIT = stdout, FMT = 9020 ) ! lcheck_mag = .FALSE. restart_with_starting_magnetiz = .FALSE. ! ... conv_ions is set to .FALSE. to perform a final scf cycle conv_ions = .FALSE. ! ! ... re-initialize the potential and wavefunctions ! CALL potinit() CALL newd() CALL wfcinit() ! END IF ! ! ... broadcast calculated quantities to all nodes ! CALL mp_bcast( istep, ionode_id, intra_image_comm ) CALL mp_bcast( tau, ionode_id, intra_image_comm ) CALL mp_bcast( force, ionode_id, intra_image_comm ) CALL mp_bcast( tr2, ionode_id, intra_image_comm ) CALL mp_bcast( conv_ions, ionode_id, intra_image_comm ) CALL mp_bcast( history, ionode_id, intra_image_comm ) ! IF ( lmovecell ) THEN ! CALL mp_bcast( at, ionode_id, intra_image_comm ) CALL mp_bcast( at_old, ionode_id, intra_image_comm ) CALL mp_bcast( omega, ionode_id, intra_image_comm ) CALL mp_bcast( omega_old, ionode_id, intra_image_comm ) CALL mp_bcast( bg, ionode_id, intra_image_comm ) ! END IF ! RETURN 9010 FORMAT( /5X,'lsda relaxation : a final configuration with zero', & & /5X,' absolute magnetization has been found' ) 9020 FORMAT( /5X,'the program is checking if it is really ', & & 'the minimum energy structure', & & /5X,'by performing a new scf iteration ', & & 'without any "electronic" history' ) ! 9110 FORMAT( /5X,'A final scf calculation at the relaxed structure.' ) 9120 FORMAT( 5X,'The G-vectors are recalculated for the final unit cell'/ & 5X,'Results may differ from those at the preceding step.' ) ! END SUBROUTINE move_ions ! espresso-5.0.2/PW/src/force_ew.f900000644000700200004540000001240512053145630015607 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine force_ew (alat, nat, ntyp, ityp, zv, at, bg, tau, & omega, g, gg, ngm, gstart, gamma_only, gcutm, strf, forceion) !----------------------------------------------------------------------- ! ! This routine computes the Ewald contribution to the forces, ! both the real- and reciprocal-space terms are present ! USE kinds USE constants, ONLY : tpi, e2 USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE esm, ONLY : esm_force_ew, do_comp_esm, esm_bc implicit none ! ! First the dummy variables ! integer :: nat, ntyp, ngm, ityp (nat), gstart ! input: the number of atoms ! input: the number of types of atom ! input: the number of G vectors ! input: the type of each atom ! input: first non-zero G vector logical :: gamma_only real(DP) :: factor, tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, gcutm, alat ! input: the coordinates of the atoms ! input: the G vectors ! input: the moduli of G vectors ! input: the charge of the atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: cut-off of g vectors ! input: the edge of the cell ! complex(DP) :: strf (ngm, ntyp) ! input: the structure factor on the potential ! real(DP) :: forceion (3, nat) ! output: the ewald part of the forces ! integer, parameter :: mxr=50 ! the maximum number of R vectors integer :: ig, n, na, nb, nt, nrm, ipol ! counter on G vectos ! counter on r vectors ! counter on atoms ! counter on atoms ! counter on atomic types ! the number of R vectors for real space su ! counter on polarization real(DP) :: sumnb, arg, tpiba2, alpha, dtau (3), r (3, mxr), & r2 (mxr), rmax, rr, charge, upperbound, fact ! auxiliary variable for speed ! the argument of the exponential ! 2 pi /alat ! the alpha parameter ! the difference of two tau ! the position of the atoms in the shell ! the square of r ! the maximum r ! the modulus of the r vectors ! the total charge ! used to determine alpha complex(DP), allocatable :: aux (:) ! auxiliary space real(DP), external :: qe_erfc ! forceion(:,:) = 0.d0 tpiba2 = (tpi / alat) **2 charge = 0.d0 do na = 1, nat charge = charge+zv (ityp (na) ) enddo ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error ON THE ENERGY ! alpha = 1.1d0 10 alpha = alpha - 0.1d0 if (alpha.eq.0.d0) call errore ('force_ew', 'optimal alpha not found', 1) upperbound = e2 * charge**2 * sqrt (2.d0 * alpha / tpi) * & qe_erfc ( sqrt (tpiba2 * gcutm / 4.d0 / alpha) ) if (upperbound > 1.0d-6) goto 10 ! ! G-space sum here ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc') ) THEN ! ! ... Perform ESM calculation ! CALL esm_force_ew ( alpha, forceion ) ! ELSE allocate(aux(ngm)) aux(:) = (0.d0, 0.d0) do nt = 1, ntyp do ig = gstart, ngm aux (ig) = aux (ig) + zv (nt) * CONJG(strf (ig, nt) ) enddo enddo do ig = gstart, ngm aux (ig) = aux (ig) * exp ( - gg (ig) * tpiba2 / alpha / 4.d0) & / (gg (ig) * tpiba2) enddo if (gamma_only) then fact = 4.d0 else fact = 2.d0 end if do na = 1, nat do ig = gstart, ngm arg = tpi * (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) sumnb = cos (arg) * AIMAG (aux(ig)) - sin (arg) * DBLE (aux(ig) ) forceion (1, na) = forceion (1, na) + g (1, ig) * sumnb forceion (2, na) = forceion (2, na) + g (2, ig) * sumnb forceion (3, na) = forceion (3, na) + g (3, ig) * sumnb enddo do ipol = 1, 3 forceion (ipol, na) = - zv (ityp (na) ) * fact * e2 * tpi**2 / & omega / alat * forceion (ipol, na) enddo enddo deallocate (aux) ENDIF if (gstart == 1) goto 100 ! ! R-space sum here (only for the processor that contains G=0) ! rmax = 5.d0 / (sqrt (alpha) * alat) ! ! with this choice terms up to ZiZj*erfc(5) are counted (erfc(5)=2x10^-1 ! do na = 1, nat do nb = 1, nat if (nb.eq.na) goto 50 dtau (:) = tau (:, na) - tau (:, nb) ! ! generates nearest-neighbors shells r(i)=R(i)-dtau(i) ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) do n = 1, nrm rr = sqrt (r2 (n) ) * alat factor = zv (ityp (na) ) * zv (ityp (nb) ) * e2 / rr**2 * & (qe_erfc (sqrt (alpha) * rr) / rr + & sqrt (8.0d0 * alpha / tpi) * exp ( - alpha * rr**2) ) * alat do ipol = 1, 3 forceion (ipol, na) = forceion (ipol, na) - factor * r (ipol, n) enddo enddo 50 continue enddo enddo 100 continue ! CALL mp_sum( forceion, intra_bgrp_comm ) ! return end subroutine force_ew espresso-5.0.2/PW/src/pw2casino.f900000644000700200004540000000517412053145630015730 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This routine is inspired by the former routine pw2casino of ! Norbert Nemec ! (C) 2010 by Norbert Nemec !---------------------------------------------------------------------------- SUBROUTINE pw2casino() !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! USE mp_global, ONLY : npool, nimage ! USE control_flags, ONLY : istep, nstep ! USE io_files, ONLY : tmp_dir ! USE plugin_flags, ONLY : use_pw2casino ! IMPLICIT NONE ! CHARACTER(len=4) :: postfix ! CHARACTER(len=6), EXTERNAL :: int_to_char ! INTEGER, EXTERNAL :: find_free_unit ! INTEGER :: tmp_unit ! INTEGER :: ios LOGICAL :: casino_gather = .true. LOGICAL :: blip_convert = .true. LOGICAL :: blip_binary = .true. LOGICAL :: blip_single_prec = .false. REAL(dp) :: blip_multiplicity = 1.d0 INTEGER :: n_points_for_test = 0 ! NAMELIST / inputpp / & blip_convert, & blip_multiplicity, & blip_binary, & blip_single_prec, & n_points_for_test ! ! IF ( use_pw2casino ) THEN ! IF ( npool > 1 .or. nimage > 1) THEN CALL errore('pw2casino', 'pool or image parallelization not (yet) implemented',1) ENDIF ! tmp_unit = find_free_unit() OPEN(unit=tmp_unit,file = trim(tmp_dir)//'/'//'pw2casino.dat',status='old',err=20) READ(tmp_unit,inputpp,iostat=ios) CLOSE(tmp_unit) 20 CONTINUE IF ( .not. blip_convert ) blip_binary = .false. IF ( nstep == 1 ) THEN write(postfix,*) '' CALL write_casino_wfn( & casino_gather, & ! gather blip_convert, & ! blip blip_multiplicity, & ! multiplicity blip_binary, & ! binwrite blip_single_prec, & ! single_precision_blips n_points_for_test, & ! n_points_for_test postfix) ! postfix ELSE ! write(postfix,'(i4.4)') istep postfix=trim(int_to_char(istep)) ! CALL write_casino_wfn( & casino_gather, & ! gather blip_convert, & ! blip blip_multiplicity, & ! multiplicity blip_binary, & ! binwrite blip_single_prec, & ! single_precision_blips n_points_for_test, & ! n_points_for_test '.'//postfix) ! postfix ENDIF ENDIF ! ! END SUBROUTINE pw2casino espresso-5.0.2/PW/src/gen_at_dy.f900000644000700200004540000001011612053145627015752 0ustar marsamoscm! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_at_dy ( ik, natw, lmax_wfc, u, dwfcat ) !---------------------------------------------------------------------- ! ! This routines calculates the atomic wfc generated by the derivative ! (with respect to the q vector) of the spherical harmonic. This quantity ! is needed in computing the the internal stress tensor. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi, fpi USE atom, ONLY : msh USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : omega, at, bg, tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf ! implicit none ! ! I/O variables ! integer :: ik, natw, lmax_wfc real (DP) :: u(3) complex (DP) :: dwfcat(npwx,natw) ! ! local variables ! integer :: ig, na, nt, nb, l, lm, m, iig, ipol, iatw, i0, i1, i2, i3, nwfcm real (DP) :: arg, px, ux, vx, wx complex (8) :: phase, pref real (DP), allocatable :: q(:), gk(:,:), dylm(:,:), dylm_u(:,:), & chiq(:,:,:) complex (DP), allocatable :: sk(:) nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) allocate ( q(npw), gk(3,npw), chiq(npwx,nwfcm,ntyp) ) dwfcat(:,:) = (0.d0,0.d0) do ig = 1,npw gk (1, ig) = xk (1, ik) + g (1, igk (ig) ) gk (2, ig) = xk (2, ik) + g (2, igk (ig) ) gk (3, ig) = xk (3, ik) + g (3, igk (ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 end do allocate ( dylm_u(npw,(lmax_wfc+1)**2) ) allocate ( dylm(npw,(lmax_wfc+1)**2) ) dylm_u(:,:) = 0.d0 do ipol=1,3 call dylmr2 ((lmax_wfc+1)**2, npw, gk, q, dylm, ipol) call daxpy(npw*(lmax_wfc+1)**2,u(ipol),dylm,1,dylm_u,1) end do deallocate (dylm) q(:) = sqrt ( q(:) ) * tpiba ! ! here we compute the radial fourier transform of the chi functions ! do nt = 1,ntyp do nb = 1,upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) do ig = 1, npw px = q (ig) / dq - int (q (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = q (ig) / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq(ig,nb,nt) = tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 enddo endif enddo enddo allocate ( sk(npw) ) iatw=0 do na = 1,nat nt = ityp(na) arg=(xk(1,ik)*tau(1,na)+xk(2,ik)*tau(2,na)+xk(3,ik)*tau(3,na))*tpi phase=CMPLX(cos(arg),-sin(arg),kind=DP) do ig =1,npw iig = igk(ig) sk(ig) = eigts1(mill(1,iig),na) * & eigts2(mill(2,iig),na) * & eigts3(mill(3,iig),na) * phase end do do nb = 1,upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) pref = (0.d0,1.d0)**l do m = 1,2*l+1 lm = l*l+m iatw = iatw+1 do ig=1,npw dwfcat(ig,iatw) = chiq(ig,nb,nt) * sk(ig) * & dylm_u(ig,lm) * pref / tpiba end do enddo end if enddo enddo if (iatw.ne.natw) then WRITE( stdout,*) 'iatw =',iatw,'natw =',natw call errore('gen_at_dy','unexpected error',1) end if deallocate (sk) deallocate (dylm_u) deallocate ( q, gk, chiq ) return end subroutine gen_at_dy espresso-5.0.2/PW/src/init_q_aeps.f900000644000700200004540000002060312053145630016310 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE init_q_aeps ( ) !------------------------------------------------------------------------ ! ! Initialization of the pseudopotential-dependent quantities needed for ! LDA+U method with projections computed through : ! q_ae = integral of the AE wfc up to r_core ! q_ps = integral of the PS wfc up to r_core (not used at the moment) ! USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp, ityp, nat USE basis, ONLY : natomwfc USE atom, ONLY : rgrid, msh USE lsda_mod, ONLY : nspin USE ldaU, ONLY : q_ae, q_ps, Hubbard_l, oatwfc, & U_projection, Hubbard_U, Hubbard_alpha USE uspp_param, ONLY : nbetam, nh, nhm, upf USE uspp, ONLY : indv, nhtol, nhtolm, nkb USE control_flags, ONLY : iverbosity USE io_global, ONLY : ionode ! IMPLICIT NONE ! LOCAL INTEGER :: l, m, mb, nb, ndm, cnt, kk, iwfc, jwfc INTEGER :: nt, nt_, na, ih, jh, ib, jb, lH, nchiH, nbH !INTEGER :: ijkb0, ikb, jkb REAL(DP), ALLOCATABLE :: aux (:), qq_ae(:,:,:), qq_ps(:,:,:) REAL(DP) :: psint, aeint, wsgn ! ! ALLOCATE ( q_ae(natomwfc,nhm,nat), q_ps(natomwfc,nhm,nat) ) !IF ( .NOT.ALLOCATED( q_ae ) ) ALLOCATE ( q_ae(natomwfc,nhm,nat) ) !IF ( .NOT.ALLOCATED( q_ps ) ) ALLOCATE ( q_ps(natomwfc,nhm,nat) ) ! ndm = MAXVAL (msh(1:ntyp)) ALLOCATE ( aux(ndm), qq_ae(nbetam,nbetam,ntyp), qq_ps(nbetam,nbetam,ntyp) ) ! qq_ae(:,:,:) = 0.0_DP qq_ps(:,:,:) = 0.0_DP q_ae(:,:,:) = 0.0_DP q_ps(:,:,:) = 0.0_DP ! ! ! Compute the integrals of the AE and PS wavefunctions up to core radii ! (only for atomic types entering in the Hubbard Hamiltonian, while for ! the others set q_ae=q_ps=0, so that AE atomic wfcs are not required) ! DO nt = 1, ntyp ! IF ( Hubbard_U(nt) == 0.D0 .AND. Hubbard_alpha(nt) == 0.D0 ) CYCLE ! IF ( .NOT.upf(nt)%has_wfc ) CALL errore('init_q_aeps', & "All-electron atomic-wavefunctions needed for pseudo U_projection",1) ! DO nb = 1, upf(nt)%nbeta ! DO mb = nb, upf(nt)%nbeta ! IF ( upf(nt)%lll(mb) == upf(nt)%lll(nb) ) then ! kk = MAX(upf(nt)%kbeta(mb),upf(nt)%kbeta(nb)) ! needed ??? aux(1:msh(nt)) = upf(nt)%aewfc(1:msh(nt),mb)*upf(nt)%aewfc(1:msh(nt),nb) CALL simpson (upf(nt)%kbeta(nb),aux,rgrid(nt)%rab,aeint) qq_ae(nb,mb,nt) = aeint qq_ae(mb,nb,nt) = aeint aux(1:msh(nt)) = upf(nt)%pswfc(1:msh(nt),mb)*upf(nt)%pswfc(1:msh(nt),nb) CALL simpson (upf(nt)%kbeta(nb),aux,rgrid(nt)%rab,psint) qq_ps(nb,mb,nt) = psint qq_ps(mb,nb,nt) = psint ! ENDIF ENDDO ENDDO !!! WARNING: when generated with lsave_wfc, the PP file contains the !!! AE and PS wfcs for every beta projector (in principle more than one !!! for each l). We identify which beta corresponds to the bound state !!! by checking the norm of the difference |pswfc(r) - chi(r)| lH = Hubbard_l(nt) nbH = -1 ! ! select chi corresponding to bound states (the same used to build initial ! wfcs) AND with l = Hubbard_l (only for species with Hubbard_l defined) ! IF ( lH .GE. 0 ) THEN ! !!! NOTE: one might run into troubles when using a PP with semicore !!! states with same l as valence states (also otherwhere for LDA+U) DO nb = 1, upf(nt)%nwfc IF (upf(nt)%lchi(nb) == lH .AND. upf(nt)%oc(nb) >= 0.d0) nchiH = nb ENDDO ! DO nb = 1, upf(nt)%nbeta ! IF (upf(nt)%lll(nb) == lH) THEN ! check if chi and pswfc have the same sign or not aux(1:msh(nt)) = upf(nt)%pswfc(:,nb)*upf(nt)%chi(:,nchiH) CALL simpson(msh(nt),aux,rgrid(nt)%rab,psint) wsgn = sign(1.0_DP,psint) ! compute norm of the difference [pswfc(r) - chi(r)] aux(1:msh(nt)) = (upf(nt)%pswfc(:,nb) - wsgn*upf(nt)%chi(:,nchiH))**2 CALL simpson(msh(nt),aux,rgrid(nt)%rab,psint) IF ( abs(psint) .LE. 1.d-9 ) nbH = nb ENDIF ! ENDDO ! !!! DEBUG if ( ionode .AND. iverbosity == 1 ) then write(*,*) '> QQ_AE matrix:' do nb = 1, upf(nt)%nbeta write(*,'(99F9.6)') qq_ae(nb,1:upf(nt)%nbeta,nt) enddo write(*,*) "nbH=",nbH,", lH",lH endif !!! ! IF ( nbH .EQ. -1 ) CALL errore("init_q_aeps", "could not set nbH", 1) ! ENDIF cnt = 0 ! ! initialize q_ae and q_ps for U projectors on beta functions (in the solid) DO na = 1, nat ! on atoms ! nt_ = ityp(na) ! offset for atomic wavefunctions (initialized in offset_atom_wfc) iwfc = oatwfc(na) IF ( nt_ == nt .AND. lH .GE. 0 ) THEN ! !! we use indv instead of this (should give the same): ! compute offset for beta functions !IF ( nt == 0 ) THEN ! ijkb0 = 0 !ELSE ! ijkb0 = SUM(nh(1:nt-1)) !ENDIF !!! DEBUG if ( ionode .AND. iverbosity == 1 ) then write(*,*) "na, ityp, lH=",na,ityp(na),lH write(*,*) "nbH,lH,offset",nbH,lH,iwfc endif !!! DO jh = 1, nh(nt) ! !jkb = ijkb0 + jh IF (nhtol(jh,nt) .NE. lH) CYCLE jb = indv(jh,nt) ! DO ih = 1, nh(nt) ! !ikb = ijkb0 + ih ib = indv(ih,nt) IF (nhtol(ih,nt) .NE. lH) CYCLE IF (ib .NE. nbH) CYCLE IF ( nhtolm(ih,nt)==nhtolm(jh,nt) ) THEN ! m=nhtolm(ih,nt)-lH*lH !!! DEBUG if ( ionode .AND. iverbosity == 1 ) write(*,'(A,6I3,F9.6)') & "jh,ih,nhtolm,lH,m,iwfc+m,qq",jh,ih,nhtolm(ih,nt),lH,m,iwfc+m,qq_ae(jb,ib,nt) !!! ! q_ae(iwfc+m,jh,na) = qq_ae(jb,ib,nt) q_ps(iwfc+m,jh,na) = qq_ps(jb,ib,nt) ! !!! DEBUG if ( ionode .AND. iverbosity == 1 ) THEN write(*,'(A,3I3,2F9.6)') "iwfc,jh,na,q_ae,qq_ae", & iwfc+m,jh,na,q_ae(iwfc+m,jh,na),qq_ae(jb,ib,nt) write(*,'(A,3I3,2F9.6)') "iwfc,jh,na,q_ps,qq_ps", & iwfc+m,jh,na,q_ps(iwfc+m,jh,na),qq_ps(jb,ib,nt) endif !!! ! ENDIF ! ENDDO ! ih ENDDO ! jh ENDIF ! ityp ENDDO ! on atoms ! ENDDO ! on atomic types !!! DEBUG if ( ionode .AND. iverbosity == 1 ) then iwfc=0 do na = 1,nat nt = ityp(na) write(*,*) ">>> atom ",na,", type ",nt jwfc=iwfc write(*,*) " q_ae matrix" do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) do m = 1,2*l+1 jwfc=jwfc+1 write(*,'(2I1,99F6.3)') l,m,q_ae(jwfc,:,na) ! enddo endif enddo ! jwfc=iwfc write(*,*) " q_ps matrix" do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) do m = 1,2*l+1 jwfc=jwfc+1 write(*,'(2I1,99F6.3)') l,m,q_ps(jwfc,:,na) ! enddo endif enddo ! iwfc=jwfc ! enddo endif !!! ! ! deallocate( aux, qq_ae, qq_ps ) ! RETURN END SUBROUTINE init_q_aeps ! espresso-5.0.2/PW/src/close_files.f900000644000700200004540000000476712053145627016327 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE close_files(lflag) !---------------------------------------------------------------------------- ! ! ... Close all files and synchronize processes for a new scf calculation. ! USE ldaU, ONLY : lda_plus_u, U_projection USE control_flags, ONLY : twfcollect, io_level USE fixed_occ, ONLY : one_atom_occupations USE io_files, ONLY : prefix, iunwfc, iunigk, iunat, iunsat, & iunefield, iunefieldm, iunefieldp USE buffers, ONLY : close_buffer USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_barrier USE wannier_new, ONLY : use_wannier USE bp, ONLY : lelfield ! IMPLICIT NONE ! LOGICAL, intent(in) :: lflag ! LOGICAL :: opnd ! ... close buffer/file containing wavefunctions: discard if ! ... wavefunctions are written in xml format, save otherwise ! IF ( lflag .AND. (twfcollect .OR. io_level < 0 )) THEN CALL close_buffer ( iunwfc, 'DELETE' ) ELSE CALL close_buffer ( iunwfc, 'KEEP' ) END IF ! ! ... iunigk is kept open during the execution - close and remove ! INQUIRE( UNIT = iunigk, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunigk, STATUS = 'DELETE' ) ! ! ... iunat contains the (orthogonalized) atomic wfcs ! ... iunsat contains the (orthogonalized) atomic wfcs * S ! IF ( ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) .OR. & use_wannier .OR. one_atom_occupations ) THEN ! INQUIRE( UNIT = iunat, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunat, STATUS = 'KEEP' ) INQUIRE( UNIT = iunsat, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunsat, STATUS = 'KEEP' ) ! END IF ! ! ... close unit for electric field if needed ! IF ( lelfield ) THEN ! INQUIRE( UNIT = iunefield, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunefield, STATUS = 'KEEP' ) ! INQUIRE( UNIT = iunefieldm, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunefieldm, STATUS = 'KEEP' ) ! INQUIRE( UNIT = iunefieldp, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunefieldp, STATUS = 'KEEP' ) ! END IF ! CALL mp_barrier( intra_image_comm ) ! RETURN ! END SUBROUTINE close_files espresso-5.0.2/PW/src/divide.f900000644000700200004540000000313712053145630015264 0ustar marsamoscm! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE divide (comm, ntodiv, startn, lastn) !----------------------------------------------------------------------- ! Divide ntodiv poins across processors belonging to communicator comm ! Each processor gets points from startn to lastn ! #ifdef __MPI ! USE mp, ONLY : mp_size, mp_rank IMPLICIT NONE ! INTEGER, INTENT(in) :: comm INTEGER, INTENT(in) :: ntodiv INTEGER, INTENT(out):: startn, lastn ! INTEGER :: me_comm, nproc_comm ! INTEGER :: nb, resto, idx, ip ! number of bands per processor ! one additional band if me_pool+1 <= resto ! counter on bands ! counter on processors ! nproc_comm = mp_size(comm) me_comm = mp_rank(comm) ! nb = ntodiv / nproc_comm resto = ntodiv - nb * nproc_comm idx = 0 DO ip = 1, nproc_comm IF (ip <= resto) THEN IF (me_comm+1 == ip) THEN startn = idx + 1 lastn = startn + nb ENDIF idx = idx + nb + 1 ELSE IF (me_comm+1 == ip) THEN startn = idx + 1 lastn = startn + nb - 1 ENDIF idx = idx + nb ENDIF ENDDO #else IMPLICIT NONE ! INTEGER, INTENT(in) :: comm INTEGER, INTENT(in) :: ntodiv INTEGER, INTENT(out):: startn, lastn startn = 1 lastn = ntodiv #endif RETURN END SUBROUTINE divide espresso-5.0.2/PW/src/allocate_fft.f900000644000700200004540000000645712053145630016453 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE allocate_fft !----------------------------------------------------------------------- ! This routine computes the data structure associated to the FFT ! grid and allocate memory for all the arrays which depend upon ! these dimensions ! USE io_global, ONLY : stdout USE gvect, ONLY : ngm, g, gg, nl, nlm, mill, igtongl USE gvecs, ONLY : ngms, nls, nlsm USE fft_base, ONLY : dfftp, dffts ! DCC ! USE gcoarse, ONLY : nr1c,nr2c,nr3c,nnr,ngmc, nlc, nlcm ! USE ee_mod, ONLY : do_coarse USE ions_base, ONLY : nat USE lsda_mod, ONLY : nspin USE spin_orb, ONLY : domag USE scf, ONLY : rho, v, vnew, vltot, vrs, rho_core, rhog_core, & kedtau, create_scf_type USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : pointlist, factlist, r_loc, & report, i_cons, noncolin, npol USE wavefunctions_module, ONLY : psic, psic_nc USE funct, ONLY: dft_is_meta IMPLICIT NONE ! ! determines the data structure for fft arrays ! CALL data_structure( gamma_only ) ! ! DCC ! IF( do_coarse ) CALL data_structure_coarse( gamma_only, nr1,nr2,nr3, ecutwfc ) ! IF (dfftp%nnr.lt.ngm) THEN WRITE( stdout, '(/,4x," nr1=",i4," nr2= ", i4, " nr3=",i4, & &" nrxx = ",i8," ngm=",i8)') dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nnr, ngm CALL errore ('allocate_fft', 'the nr"s are too small!', 1) ENDIF IF (dffts%nnr.lt.ngms) THEN WRITE( stdout, '(/,4x," nr1s=",i4," nr2s= ", i4, " nr3s=",i4, & &" nrxxs = ",i8," ngms=",i8)') dffts%nr1, dffts%nr2, dffts%nr3, dffts%nnr, ngms CALL errore ('allocate_fft', 'the nrs"s are too small!', 1) ENDIF IF (ngm <= 0) CALL errore ('allocate_fft', 'wrong ngm', 1) IF (ngms <= 0) CALL errore ('allocate_fft', 'wrong ngms', 1) IF (dfftp%nnr <= 0) CALL errore ('allocate_fft', 'wrong nnr', 1) IF (dffts%nnr<= 0) CALL errore ('allocate_fft', 'wrong smooth nnr', 1) IF (nspin<= 0) CALL errore ('allocate_fft', 'wrong nspin', 1) ! ! Allocate memory for all kind of stuff. ! CALL create_scf_type(rho) CALL create_scf_type(v, do_not_allocate_becsum = .true.) CALL create_scf_type(vnew, do_not_allocate_becsum = .true.) ALLOCATE (vltot( dfftp%nnr)) ALLOCATE (rho_core( dfftp%nnr)) IF (dft_is_meta() ) THEN ALLOCATE ( kedtau(dffts%nnr,nspin) ) ELSE ALLOCATE ( kedtau(1,nspin) ) ENDIF ALLOCATE( rhog_core( ngm ) ) ALLOCATE (psic( dfftp%nnr)) ALLOCATE (vrs( dfftp%nnr, nspin)) ! DCC ! IF( do_coarse ) THEN ! ALLOCATE (nlc( ngmc)) ! IF (gamma_only) ALLOCATE (nlcm(ngmc)) ! ENDIF IF (noncolin) ALLOCATE (psic_nc( dfftp%nnr, npol)) IF ( ((report.ne.0).or.(i_cons.ne.0)) .and. (noncolin.and.domag) .or. (i_cons.eq.1) ) THEN ! ! In order to print out local quantities, integrated around the atoms, ! we need the following variables ! ALLOCATE(pointlist(dfftp%nnr)) ALLOCATE(factlist(dfftp%nnr)) ALLOCATE(r_loc(nat)) CALL make_pointlists ENDIF RETURN END SUBROUTINE allocate_fft espresso-5.0.2/PW/src/set_vrs.f900000644000700200004540000000347312053145630015510 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- subroutine set_vrs (vrs, vltot, vr, kedtau, kedtaur,nrxx, nspin, doublegrid) !-------------------------------------------------------------------- ! set the total local potential vrs on the smooth mesh to be used in ! h_psi, adding the (spin dependent) scf (H+xc) part and the sum of ! all the local pseudopotential contributions. ! USE kinds USE funct, only : dft_is_meta USE fft_base, only : dffts implicit none integer :: nspin, nrxx ! input: number of spin components: 1 if lda, 2 if lsd, 4 if noncolinear ! input: the fft grid dimension real(DP) :: vrs (nrxx, nspin), vltot (nrxx), vr (nrxx, nspin), & kedtau(dffts%nnr,nspin), kedtaur(nrxx,nspin) ! output: total local potential on the smooth grid ! vrs=vltot+vr ! input: the total local pseudopotential ! input: the scf(H+xc) part of the local potential logical :: doublegrid ! input: true if a doublegrid is used integer:: is do is = 1, nspin ! ! define the total local potential (external + scf) for each spin ... ! if (is > 1 .and. nspin == 4) then ! ! noncolinear case: only the first component contains vltot ! vrs (:, is) = vr (:, is) else vrs (:, is) = vltot (:) + vr (:, is) end if ! ! ... and interpolate it on the smooth mesh if necessary ! if (doublegrid) call interpolate (vrs (1, is), vrs (1, is), - 1) if (dft_is_meta()) call interpolate(kedtaur(1,is),kedtau(1,is),-1) enddo return end subroutine set_vrs espresso-5.0.2/PW/src/make_pointlists.f900000644000700200004540000001252612053145627017235 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------------- SUBROUTINE make_pointlists !-------------------------------------------------------------------------- ! ! This initialization is needed in order to integrate charge (or ! magnetic moment) in a sphere around the atomic positions. ! This can be used to simply monitor these quantities during the scf ! cycles or in order to calculate constrains on these quantities. ! ! If the integration radius r_m is not provided in input, it is ! calculated here. The integration is a sum over all points in real ! space with the weight 1, if they are closer than r_m to an atom ! and 1 - (distance-r_m)/(0.2*r_m) if r_m nsp, ityp USE cell_base, ONLY : at, bg, alat USE mp_global, ONLY : me_pool USE fft_base, ONLY : dfftp USE noncollin_module, ONLY : factlist, pointlist, r_m ! IMPLICIT NONE ! INTEGER idx0,idx,indproc,iat,ir,iat1 INTEGER i,j,k,i0,j0,k0,ipol,nt,nt1 REAL(DP) :: posi(3),distance REAL(DP), ALLOCATABLE :: tau0(:,:), distmin(:) WRITE( stdout,'(5x,"Generating pointlists ...")') ALLOCATE(tau0(3,nat)) ALLOCATE( distmin(ntyp) ) ! First, the real-space position of every point ir is needed ... ! In the parallel case, find the index-offset to account for the planes ! treated by other procs idx0 = 0 #ifdef __MPI DO indproc=1,me_pool idx0 = idx0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(indproc) ENDDO #endif ! Bring all the atomic positions on the first unit cell tau0=tau CALL cryst_to_cart(nat,tau0,bg,-1) DO iat=1,nat DO ipol=1,3 tau0(ipol,iat)=tau0(ipol,iat)-NINT(tau0(ipol,iat)) ENDDO ENDDO CALL cryst_to_cart(nat,tau0,at,1) ! Check the minimum distance between two atoms in the system distmin(:) = 1.d0 DO iat = 1,nat nt = ityp(iat) DO iat1 = 1,nat nt1 = ityp(iat1) ! posi is the position of a second atom DO i = -1,1 DO j = -1,1 DO k = -1,1 distance = 0.d0 DO ipol = 1,3 posi(ipol) = tau0(ipol,iat1) + DBLE(i)*at(ipol,1) & + DBLE(j)*at(ipol,2) & + DBLE(k)*at(ipol,3) distance = distance + (posi(ipol)-tau0(ipol,iat))**2 ENDDO distance = SQRT(distance) IF ((distance.LT.distmin(nt)).AND.(distance.GT.1.d-8)) & & distmin(nt) = distance IF ((distance.LT.distmin(nt1)).AND.(distance.GT.1.d-8)) & & distmin(nt1) = distance ENDDO ! k ENDDO ! j ENDDO ! i ENDDO ! iat1 ENDDO ! iat DO nt = 1, ntyp IF ((distmin(nt).LT.(2.d0*r_m(nt)*1.2d0)).OR.(r_m(nt).LT.1.d-8)) THEN ! Set the radius r_m to a value a little smaller than the minimum ! distance divided by 2*1.2 (so no point in space can belong to more ! than one atom) r_m(nt) = 0.5d0*distmin(nt)/1.2d0 * 0.99d0 WRITE( stdout,'(5x,"new r_m : ",f8.4," (alat units)", f8.4, & &" (a.u.) for type",i5)') & r_m(nt), r_m(nt) * alat, nt ENDIF ENDDO ! Now, set for every point in the fft grid an index corresponding ! to the atom whose integration sphere the grid point belong to. ! if the point is outside of all spherical regions set the index to 0. ! Set as well the integration weight ! This also works in the parallel case. pointlist(:) = 0 factlist(:) = 0.d0 DO iat = 1,nat nt=ityp(iat) DO ir=1,dfftp%nnr idx = idx0 + ir - 1 k0 = idx/(dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x) * k0 j0 = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j0 i0 = idx DO i = i0-dfftp%nr1,i0+dfftp%nr1, dfftp%nr1 DO j = j0-dfftp%nr2, j0+dfftp%nr2, dfftp%nr2 DO k = k0-dfftp%nr3, k0+dfftp%nr3, dfftp%nr3 DO ipol=1,3 posi(ipol) = DBLE(i)/DBLE(dfftp%nr1) * at(ipol,1) & + DBLE(j)/DBLE(dfftp%nr2) * at(ipol,2) & + DBLE(k)/DBLE(dfftp%nr3) * at(ipol,3) posi(ipol) = posi(ipol) - tau0(ipol,iat) ENDDO distance = SQRT(posi(1)**2+posi(2)**2+posi(3)**2) IF (distance.LE.r_m(nt)) THEN factlist(ir) = 1.d0 pointlist(ir) = iat ELSE IF (distance.LE.1.2*r_m(nt)) THEN factlist(ir) = 1.d0 - (distance -r_m(nt))/(0.2d0*r_m(nt)) pointlist(ir) = iat ENDIF ENDDO ! k ENDDO ! j ENDDO ! i ENDDO ! ir ENDDO ! ipol DEALLOCATE(tau0) DEALLOCATE(distmin) END SUBROUTINE make_pointlists espresso-5.0.2/PW/src/print_ks_energies.f900000644000700200004540000001274212053145630017534 0ustar marsamoscm! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE print_ks_energies() !---------------------------------------------------------------------------- ! ! ... printout of Kohn-Sham eigenvalues ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE io_global, ONLY : stdout, ionode USE ener, ONLY : ef, ef_up, ef_dw USE klist, ONLY : xk, nelec, ngk, nks, nkstot, & lgauss, two_fermi_energies, nelup, neldw, & wk USE lsda_mod, ONLY : lsda, nspin, isk USE ktetra, ONLY : ltetra USE wvfct, ONLY : nbnd, et, wg USE fixed_occ, ONLY : f_inp, tfixed_occ, one_atom_occupations USE control_flags, ONLY : conv_elec, lbands, iverbosity USE mp_global, ONLY : root_pool, intra_pool_comm, inter_pool_comm USE mp_global, ONLY : root_bgrp, intra_bgrp_comm, inter_bgrp_comm USE mp, ONLY : mp_sum, mp_bcast ! IMPLICIT NONE ! ! ... a few local variables ! INTEGER, ALLOCATABLE :: & ngk_g(:) ! number of plane waves summed on all nodes REAL(DP) :: & ehomo, elumo ! highest occupied and lowest unoccupied levels INTEGER :: & i, &! counter on polarization ik, &! counter on k points kbnd, &! counter on bands ibnd_up, &! counter on bands ibnd_dw, &! counter on bands ibnd ! IF (nkstot >= 100 .and. iverbosity <= 0 ) THEN WRITE( stdout, '(/,5x,a)') & "Number of k-points >= 100: set verbosity='high' to print the bands." ELSE ! ALLOCATE ( ngk_g (nkstot) ) ! ngk_g(1:nks) = ngk(:) ! CALL mp_sum( ngk_g(1:nks), intra_bgrp_comm ) ! CALL ipoolrecover( ngk_g, 1, nkstot, nks ) ! CALL mp_bcast( ngk_g, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( ngk_g, root_bgrp, inter_bgrp_comm ) ! DO ik = 1, nkstot ! IF ( lsda ) THEN ! IF ( ik == 1 ) WRITE( stdout, 9015) IF ( ik == ( 1 + nkstot / 2 ) ) WRITE( stdout, 9016) ! END IF ! IF ( conv_elec ) THEN WRITE( stdout, 9021 ) ( xk(i,ik), i = 1, 3 ), ngk_g(ik) ELSE WRITE( stdout, 9020 ) ( xk(i,ik), i = 1, 3 ) END IF ! WRITE( stdout, 9030 ) ( et(ibnd,ik) * rytoev, ibnd = 1, nbnd ) ! IF( iverbosity > 0 .AND. .NOT. lbands ) THEN ! WRITE( stdout, 9032 ) WRITE( stdout, 9030 ) ( wg(ibnd,ik)/wk(ik), ibnd = 1, nbnd ) ! END IF ! END DO ! DEALLOCATE ( ngk_g ) ! ENDIF ! IF ( .NOT. lbands ) THEN ! IF ( lgauss .OR. ltetra ) THEN ! IF ( two_fermi_energies ) THEN WRITE( stdout, 9041 ) ef_up*rytoev, ef_dw*rytoev ELSE WRITE( stdout, 9040 ) ef*rytoev END IF ! ELSE ! IF ( tfixed_occ ) THEN ibnd = 0 ibnd_up = 0 ibnd_dw = 0 DO kbnd = 1, nbnd IF ( nspin == 1 .OR. nspin == 4 ) THEN IF ( f_inp(kbnd,1) > 0.D0 ) ibnd = kbnd ELSE IF ( f_inp(kbnd,1) > 0.D0 ) ibnd_up = kbnd IF ( f_inp(kbnd,2) > 0.D0 ) ibnd_dw = kbnd ibnd = MAX(ibnd_up, ibnd_dw) END IF END DO ELSE IF ( nspin == 1 ) THEN ibnd = NINT( nelec ) / 2 ELSE ibnd = NINT( nelec ) ibnd_up = NINT( nelup ) ibnd_dw = NINT( neldw ) END IF END IF ! IF ( ionode .AND. nbnd > ibnd .AND. .NOT. one_atom_occupations ) THEN ! IF ( nspin == 1 .OR. nspin == 4 ) THEN ehomo = MAXVAL( et(ibnd, 1:nkstot) ) elumo = MINVAL( et(ibnd+1,1:nkstot) ) ELSE elumo = MIN( MINVAL( et(ibnd_up+1,1:nkstot/2) ), & MINVAL( et(ibnd_dw+1,nkstot/2+1:nkstot) ) ) IF ( ibnd_up == 0 ) THEN ! ehomo = MAXVAL( et(ibnd_dw,1:nkstot/2) ) ! ELSE IF ( ibnd_dw == 0 ) THEN ! ehomo = MAXVAL( et(ibnd_up,1:nkstot/2) ) ! ELSE ! ehomo = MAX( MAXVAL( et(ibnd_up,1:nkstot/2) ), & MAXVAL( et(ibnd_dw,nkstot/2+1:nkstot) ) ) ! END IF END IF ! WRITE( stdout, 9042 ) ehomo*rytoev, elumo*rytoev ! END IF END IF ! END IF ! CALL flush_unit( stdout ) ! RETURN ! ! ... formats ! 9015 FORMAT(/' ------ SPIN UP ------------'/ ) 9016 FORMAT(/' ------ SPIN DOWN ----------'/ ) 9020 FORMAT(/' k =',3F7.4,' band energies (ev):'/ ) 9021 FORMAT(/' k =',3F7.4,' (',I6,' PWs) bands (ev):'/ ) 9030 FORMAT( ' ',8F9.4 ) 9032 FORMAT(/' occupation numbers ' ) 9042 FORMAT(/' highest occupied, lowest unoccupied level (ev): ',2F10.4 ) 9041 FORMAT(/' the spin up/dw Fermi energies are ',2F10.4,' ev' ) 9040 FORMAT(/' the Fermi energy is ',F10.4,' ev' ) ! END SUBROUTINE print_ks_energies espresso-5.0.2/PW/src/init_us_1.f900000644000700200004540000003314012053145627015715 0ustar marsamoscm ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine init_us_1 !---------------------------------------------------------------------- ! ! This routine performs the following tasks: ! a) For each non vanderbilt pseudopotential it computes the D and ! the betar in the same form of the Vanderbilt pseudopotential. ! b) It computes the indices indv which establish the correspondence ! nh <-> beta in the atom ! c) It computes the indices nhtol which establish the correspondence ! nh <-> angular momentum of the beta function ! d) It computes the indices nhtolm which establish the correspondence ! nh <-> combined (l,m) index for the beta function. ! e) It computes the coefficients c_{LM}^{nm} which relates the ! spherical harmonics in the Q expansion ! f) It computes the radial fourier transform of the Q function on ! all the g vectors ! g) It computes the q terms which define the S matrix. ! h) It fills the interpolation table for the beta functions ! USE kinds, ONLY : DP USE parameters, ONLY : lmaxx USE constants, ONLY : fpi, sqrt2 USE atom, ONLY : rgrid USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba USE gvect, ONLY : g, gg USE lsda_mod, ONLY : nspin USE us, ONLY : nqxq, dq, nqx, tab, tab_d2y, qrad, spline_ps USE splinelib USE uspp, ONLY : nhtol, nhtoj, nhtolm, ijtoh, dvan, qq, indv,& ap, aainit, qq_so, dvan_so, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm, lmaxkb USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef USE paw_variables,ONLY : okpaw USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! ! here a few local variables ! integer :: nt, ih, jh, nb, mb, ijv, l, m, ir, iq, is, startq, & lastq, ilast, ndm ! various counters real(DP), allocatable :: aux (:), aux1 (:), besr (:), qtot (:,:) ! various work space real(DP) :: prefr, pref, q, qi ! the prefactor of the q functions ! the prefactor of the beta functions ! the modulus of g for each shell ! q-point grid for interpolation real(DP), allocatable :: ylmk0 (:) ! the spherical harmonics real(DP) :: vqint, j ! interpolated value ! J=L+S (noninteger!) integer :: n1, m0, m1, n, li, mi, vi, vj, ijs, is1, is2, & lk, mk, vk, kh, lh integer, external :: sph_ind complex(DP) :: coeff, qgm(1) real(DP) :: spinor, ji, jk ! real(DP), allocatable :: xdata(:) real(DP) :: d1 ! call start_clock ('init_us_1') ! ! Initialization of the variables ! ndm = MAXVAL ( upf(:)%kkbeta ) allocate (aux ( ndm)) allocate (aux1( ndm)) allocate (besr( ndm)) allocate (qtot( ndm , nbetam*(nbetam+1)/2 )) allocate (ylmk0( lmaxq * lmaxq)) ap (:,:,:) = 0.d0 if (lmaxq > 0) qrad(:,:,:,:)= 0.d0 ! ! the following prevents an out-of-bound error: upf(nt)%nqlc=2*lmax+1 ! but in some versions of the PP files lmax is not set to the maximum ! l of the beta functions but includes the l of the local potential ! do nt=1,ntyp upf(nt)%nqlc = MIN ( upf(nt)%nqlc, lmaxq ) IF ( upf(nt)%nqlc < 0 ) upf(nt)%nqlc = 0 end do prefr = fpi / omega if (lspinorb) then ! ! In the spin-orbit case we need the unitary matrix u which rotates the ! real spherical harmonics and yields the complex ones. ! rot_ylm=(0.d0,0.d0) l=lmaxx rot_ylm(l+1,1)=(1.d0,0.d0) do n1=2,2*l+1,2 m=n1/2 n=l+1-m rot_ylm(n,n1)=CMPLX((-1.d0)**m/sqrt2,0.0_dp,kind=DP) rot_ylm(n,n1+1)=CMPLX(0.d0,-(-1.d0)**m/sqrt2,kind=DP) n=l+1+m rot_ylm(n,n1)=CMPLX(1.0_dp/sqrt2,0.d0,kind=DP) rot_ylm(n,n1+1)=CMPLX(0.d0, 1.0_dp/sqrt2,kind=DP) enddo fcoef=(0.d0,0.d0) dvan_so = (0.d0,0.d0) qq_so=(0.d0,0.d0) qq = 0.d0 else qq = 0.d0 dvan = 0.d0 endif ! ! For each pseudopotential we initialize the indices nhtol, nhtolm, ! nhtoj, indv, and if the pseudopotential is of KB type we initialize the ! atomic D terms ! do nt = 1, ntyp ih = 1 do nb = 1, upf(nt)%nbeta l = upf(nt)%lll (nb) do m = 1, 2 * l + 1 nhtol (ih, nt) = l nhtolm(ih, nt) = l*l+m indv (ih, nt) = nb ih = ih + 1 enddo enddo if ( upf(nt)%has_so ) then ih = 1 do nb = 1, upf(nt)%nbeta l = upf(nt)%lll (nb) j = upf(nt)%jjj (nb) do m = 1, 2 * l + 1 nhtoj (ih, nt) = j ih = ih + 1 enddo enddo endif ! ijtoh map augmentation channel indexes ih and jh to composite ! "triangular" index ijh ijtoh(:,:,nt) = -1 ijv = 0 do ih = 1,nh(nt) do jh = ih,nh(nt) ijv = ijv+1 ijtoh(ih,jh,nt) = ijv ijtoh(jh,ih,nt) = ijv enddo enddo ! ! From now on the only difference between KB and US pseudopotentials ! is in the presence of the q and Q functions. ! ! Here we initialize the D of the solid ! if (upf(nt)%has_so) then ! ! first calculate the fcoef coefficients ! do ih = 1, nh (nt) li = nhtol(ih, nt) ji = nhtoj(ih, nt) mi = nhtolm(ih, nt)-li*li vi = indv (ih, nt) do kh=1,nh(nt) lk = nhtol(kh, nt) jk = nhtoj(kh, nt) mk = nhtolm(kh, nt)-lk*lk vk = indv (kh, nt) if (li == lk .and. abs(ji-jk) < 1.d-7) then do is1=1,2 do is2=1,2 coeff = (0.d0, 0.d0) do m=-li-1, li m0= sph_ind(li,ji,m,is1) + lmaxx + 1 m1= sph_ind(lk,jk,m,is2) + lmaxx + 1 coeff=coeff + rot_ylm(m0,mi)*spinor(li,ji,m,is1)* & CONJG(rot_ylm(m1,mk))*spinor(lk,jk,m,is2) enddo fcoef(ih,kh,is1,is2,nt)=coeff enddo enddo endif enddo enddo ! ! and calculate the bare coefficients ! do ih = 1, nh (nt) vi = indv (ih, nt) do jh = 1, nh (nt) vj = indv (jh, nt) ijs=0 do is1=1,2 do is2=1,2 ijs=ijs+1 dvan_so(ih,jh,ijs,nt) = upf(nt)%dion(vi,vj) * & fcoef(ih,jh,is1,is2,nt) if (vi.ne.vj) fcoef(ih,jh,is1,is2,nt)=(0.d0,0.d0) enddo enddo enddo enddo else do ih = 1, nh (nt) do jh = 1, nh (nt) if (nhtol (ih, nt) == nhtol (jh, nt) .and. & nhtolm(ih, nt) == nhtolm(jh, nt) ) then ir = indv (ih, nt) is = indv (jh, nt) if (lspinorb) then dvan_so (ih, jh, 1, nt) = upf(nt)%dion (ir, is) dvan_so (ih, jh, 4, nt) = upf(nt)%dion (ir, is) else dvan (ih, jh, nt) = upf(nt)%dion (ir, is) endif endif enddo enddo endif enddo ! ! compute Clebsch-Gordan coefficients ! if (okvan .or. okpaw) call aainit (lmaxkb + 1) ! ! here for the US types we compute the Fourier transform of the ! Q functions. ! call divide (intra_bgrp_comm, nqxq, startq, lastq) ! do nt = 1, ntyp if ( upf(nt)%tvanp ) then do l = 0, upf(nt)%nqlc -1 ! ! first we build for each nb,mb,l the total Q(|r|) function ! note that l is the true (combined) angular momentum ! and that the arrays have dimensions 0..l (no more 1..l+1) ! do nb = 1, upf(nt)%nbeta do mb = nb, upf(nt)%nbeta respect_sum_rule : & if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then ijv = mb * (mb-1) / 2 + nb paw : & ! in PAW formalism aug. charge is computed elsewhere if (upf(nt)%q_with_l .or. upf(nt)%tpawp) then qtot(1:upf(nt)%kkbeta,ijv) =& upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l) else do ir = 1, upf(nt)%kkbeta if (rgrid(nt)%r(ir) >=upf(nt)%rinner (l+1) ) then qtot (ir, ijv) = upf(nt)%qfunc(ir,ijv) else ilast = ir endif enddo if ( upf(nt)%rinner (l+1) > 0.0_dp) & call setqf(upf(nt)%qfcoef (1, l+1, nb, mb), & qtot(1,ijv), rgrid(nt)%r, upf(nt)%nqf, & l, ilast) endif paw endif respect_sum_rule enddo ! mb enddo ! nb ! ! here we compute the spherical bessel function for each |g| ! do iq = startq, lastq q = (iq - 1) * dq * tpiba call sph_bes ( upf(nt)%kkbeta, rgrid(nt)%r, q, l, aux) ! ! and then we integrate with all the Q functions ! do nb = 1, upf(nt)%nbeta ! ! the Q are symmetric with respect to indices ! do mb = nb, upf(nt)%nbeta ijv = mb * (mb - 1) / 2 + nb if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod(l+upf(nt)%lll(nb)+upf(nt)%lll(mb),2)==0) ) then do ir = 1, upf(nt)%kkbeta aux1 (ir) = aux (ir) * qtot (ir, ijv) enddo call simpson ( upf(nt)%kkbeta, aux1, rgrid(nt)%rab, & qrad(iq,ijv,l + 1, nt) ) endif enddo enddo ! igl enddo ! l enddo qrad (:, :, :, nt) = qrad (:, :, :, nt)*prefr #ifdef __MPI call mp_sum ( qrad (:, :, :, nt), intra_bgrp_comm ) #endif endif ! ntyp enddo ! ! and finally we compute the qq coefficients by integrating the Q. ! q are the g=0 components of Q. ! #ifdef __MPI if (gg (1) > 1.0d-8) goto 100 #endif call ylmr2 (lmaxq * lmaxq, 1, g, gg, ylmk0) do nt = 1, ntyp if ( upf(nt)%tvanp ) then if (upf(nt)%has_so) then do ih=1,nh(nt) do jh=1,nh(nt) call qvan2 (1, ih, jh, nt, gg, qgm, ylmk0) qq (ih, jh, nt) = omega * DBLE (qgm (1) ) do kh=1,nh(nt) do lh=1,nh(nt) ijs=0 do is1=1,2 do is2=1,2 ijs=ijs+1 do is=1,2 qq_so(kh,lh,ijs,nt) = qq_so(kh,lh,ijs,nt) & + omega* DBLE(qgm(1))*fcoef(kh,ih,is1,is,nt)& *fcoef(jh,lh,is,is2,nt) enddo enddo enddo enddo enddo enddo enddo else do ih = 1, nh (nt) do jh = ih, nh (nt) call qvan2 (1, ih, jh, nt, gg, qgm, ylmk0) if (lspinorb) then qq_so (ih, jh, 1, nt) = omega * DBLE (qgm (1) ) qq_so (jh, ih, 1, nt) = qq_so (ih, jh, 1, nt) qq_so (ih, jh, 4, nt) = qq_so (ih, jh, 1, nt) qq_so (jh, ih, 4, nt) = qq_so (ih, jh, 4, nt) endif qq (ih, jh, nt) = omega * DBLE (qgm (1) ) qq (jh, ih, nt) = qq (ih, jh, nt) enddo enddo endif endif enddo #ifdef __MPI 100 continue if (lspinorb) then call mp_sum( qq_so , intra_bgrp_comm ) call mp_sum( qq , intra_bgrp_comm ) else call mp_sum( qq , intra_bgrp_comm ) endif #endif ! ! fill the interpolation table tab ! pref = fpi / sqrt (omega) call divide (intra_bgrp_comm, nqx, startq, lastq) tab (:,:,:) = 0.d0 do nt = 1, ntyp do nb = 1, upf(nt)%nbeta l = upf(nt)%lll (nb) do iq = startq, lastq qi = (iq - 1) * dq call sph_bes (upf(nt)%kkbeta, rgrid(nt)%r, qi, l, besr) do ir = 1, upf(nt)%kkbeta aux (ir) = upf(nt)%beta (ir, nb) * besr (ir) * rgrid(nt)%r(ir) enddo call simpson (upf(nt)%kkbeta, aux, rgrid(nt)%rab, vqint) tab (iq, nb, nt) = vqint * pref enddo enddo enddo #ifdef __MPI call mp_sum( tab, intra_bgrp_comm ) #endif ! initialize spline interpolation if (spline_ps) then allocate( xdata(nqx) ) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo do nt = 1, ntyp do nb = 1, upf(nt)%nbeta d1 = (tab(2,nb,nt) - tab(1,nb,nt)) / dq call spline(xdata, tab(:,nb,nt), 0.d0, d1, tab_d2y(:,nb,nt)) enddo enddo deallocate(xdata) endif deallocate (ylmk0) deallocate (qtot) deallocate (besr) deallocate (aux1) deallocate (aux) call stop_clock ('init_us_1') return end subroutine init_us_1 espresso-5.0.2/PW/src/force_cc.f900000644000700200004540000000646212053145627015575 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine force_cc (forcecc) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : alat, omega, tpiba, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, gg, ngl, gl, igtongl USE ener, ONLY : etxc, vtxc USE lsda_mod, ONLY : nspin USE scf, ONLY : rho, rho_core, rhog_core USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin USE wavefunctions_module, ONLY : psic USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! ! first the dummy variable ! real(DP) :: forcecc (3, nat) ! output: the local forces on atoms integer :: ipol, ig, ir, nt, na ! counter on polarizations ! counter on G vectors ! counter on FFT grid points ! counter on types of atoms ! counter on atoms real(DP), allocatable :: vxc (:,:), rhocg (:) ! exchange-correlation potential ! radial fourier trasform of rho core real(DP) :: arg, fact ! forcecc(:,:) = 0.d0 if ( ANY ( upf(1:ntyp)%nlcc ) ) go to 15 return ! 15 continue if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if ! ! recalculate the exchange-correlation potential ! allocate ( vxc(dfftp%nnr,nspin) ) ! call v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) ! psic=(0.0_DP,0.0_DP) if (nspin == 1 .or. nspin == 4) then do ir = 1, dfftp%nnr psic (ir) = vxc (ir, 1) enddo else do ir = 1, dfftp%nnr psic (ir) = 0.5d0 * (vxc (ir, 1) + vxc (ir, 2) ) enddo endif deallocate (vxc) CALL fwfft ('Dense', psic, dfftp) ! ! psic contains now Vxc(G) ! allocate ( rhocg(ngl) ) ! ! core correction term: sum on g of omega*ig*exp(-i*r_i*g)*n_core(g)*vxc ! g = 0 term gives no contribution ! do nt = 1, ntyp if ( upf(nt)%nlcc ) then call drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, rgrid(nt)%r,& rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) do na = 1, nat if (nt.eq.ityp (na) ) then do ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) * tpi do ipol = 1, 3 forcecc (ipol, na) = forcecc (ipol, na) + tpiba * omega * & rhocg (igtongl (ig) ) * CONJG(psic (nl (ig) ) ) * & CMPLX( sin (arg), cos (arg) ,kind=DP) * g (ipol, ig) * fact enddo enddo endif enddo endif enddo ! call mp_sum( forcecc, intra_bgrp_comm ) ! deallocate (rhocg) ! return end subroutine force_cc espresso-5.0.2/PW/src/eqvect.f900000644000700200004540000000161512053145630015306 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- logical function eqvect (x, y, f, accep ) !----------------------------------------------------------------------- ! ! This function test if the difference x-y-f is an integer. ! x, y = 3d vectors in crystal axis, f = fractionary translation ! USE kinds implicit none real(DP), intent(in) :: x (3), y (3), f (3), accep ! eqvect = abs( x(1)-y(1)-f(1) - nint(x(1)-y(1)-f(1)) ) < accep .and. & abs( x(2)-y(2)-f(2) - nint(x(2)-y(2)-f(2)) ) < accep .and. & abs( x(3)-y(3)-f(3) - nint(x(3)-y(3)-f(3)) ) < accep ! return end function eqvect espresso-5.0.2/PW/src/force_hub.f900000644000700200004540000005234512053145627015767 0ustar marsamoscm! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE force_hub(forceh) !---------------------------------------------------------------------- ! ! This routine computes the Hubbard contribution to the force. It gives ! in output the product (dE_{hub}/dn_{ij}^{alpha})(dn_{ij}^{alpha} ! /du(alpha,ipol)) which is the force acting on the atom at tau_{alpha} ! (in the unit cell) along the direction ipol. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : at, bg USE ldaU, ONLY : hubbard_lmax, hubbard_l, hubbard_u, & hubbard_alpha, U_projection, & swfcatom, lda_plus_u_kind, oatwfc USE symme, ONLY : symvector USE io_files, ONLY : prefix, iunocc USE wvfct, ONLY : nbnd, npwx, npw, igk USE control_flags, ONLY : gamma_only USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE scf, ONLY : v USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum USE basis, ONLY : natomwfc USE becmod, ONLY : bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type USE uspp, ONLY : nkb, vkb USE wavefunctions_module, ONLY : evc USE klist, ONLY : nks, xk, ngk USE io_files, ONLY : iunigk, nwordwfc, iunwfc, & iunat, iunsat, nwordatwfc USE buffers, ONLY : get_buffer IMPLICIT NONE REAL (DP) :: forceh(3,nat) ! output: the Hubbard forces type (bec_type) :: proj ! proj(natomwfc,nbnd) COMPLEX (DP), ALLOCATABLE :: spsi(:,:) ! spsi(npwx,nbnd) REAL (DP), ALLOCATABLE :: dns(:,:,:,:) ! dns(ldim,ldim,nspin,nat) ! the derivative of the atomic occupations COMPLEX (DP) :: c_one, c_zero INTEGER :: alpha, na, nt, is, m1, m2, ipol, ldim, ik IF (U_projection .NE. "atomic") CALL errore("force_hub", & " forces for this U_projection_type not implemented",1) IF (lda_plus_u_kind.eq.1) CALL errore("force_hub", & " forces in full LDA+U scheme are not yet implemented",1) call start_clock('force_hub') ldim= 2 * Hubbard_lmax + 1 ALLOCATE ( dns(ldim,ldim,nspin,nat), spsi(npwx,nbnd) ) call allocate_bec_type ( nkb, nbnd, becp) call allocate_bec_type ( natomwfc, nbnd, proj ) forceh(:,:) = 0.d0 ! Offset of atomic wavefunctions initialized in setup and stored in oatwfc ! ! we start a loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) ! ! now we need the first derivative of proj with respect to tau(alpha,ipol) ! npw = ngk (ik) IF (nks > 1) READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) CALL davcio(swfcatom,nwordatwfc,iunsat,ik,-1) CALL init_us_2 (npw,igk,xk(1,ik),vkb) CALL calbec( npw, swfcatom, evc, proj ) CALL calbec( npw, vkb, evc, becp ) CALL s_psi (npwx, npw, nbnd, evc, spsi ) ! read atomic wfc - swfcatom is used here as work space CALL davcio(swfcatom,nwordatwfc,iunat,ik,-1) DO ipol = 1,3 DO alpha = 1,nat ! the displaced atom IF ( gamma_only ) THEN CALL dndtau_gamma(ldim,oatwfc,proj%r,swfcatom,spsi,alpha,ipol,ik,dns) ELSE CALL dndtau_k (ldim,oatwfc,proj%k,swfcatom,spsi,alpha,ipol,ik,dns) ENDIF DO na = 1,nat ! the Hubbard atom nt = ityp(na) IF (Hubbard_U(nt).NE.0.d0.OR. Hubbard_alpha(nt).NE.0.d0) THEN DO is = 1,nspin DO m2 = 1,ldim DO m1 = 1,ldim forceh(ipol,alpha) = forceh(ipol,alpha) - & v%ns(m2,m1,is,na) * dns(m1,m2,is,na) END DO END DO END DO END IF END DO END DO END DO END DO ! CALL mp_sum( forceh, inter_pool_comm ) ! DEALLOCATE(dns, spsi) call deallocate_bec_type (proj) call deallocate_bec_type (becp) IF (nspin.EQ.1) forceh(:,:) = 2.d0 * forceh(:,:) ! ! ...symmetrize... ! CALL symvector ( nat, forceh ) ! call stop_clock('force_hub') ! RETURN END SUBROUTINE force_hub ! !----------------------------------------------------------------------- SUBROUTINE dndtau_k (ldim, offset, proj, wfcatom, spsi, alpha, ipol, ik, dns) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the ns with respect to the ionic ! displacement u(alpha,ipol) used to obtain the Hubbard contribution to the ! atomic forces. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc USE lsda_mod, ONLY : nspin, current_spin USE ldaU, ONLY : Hubbard_U, Hubbard_alpha, Hubbard_l USE wvfct, ONLY : nbnd, npwx, npw, wg IMPLICIT NONE INTEGER, INTENT(IN) :: alpha, ipol, ik, ldim, offset(nat) ! offset(nat): offset of d electrons of atom d in the natomwfc ordering COMPLEX (DP), INTENT(IN) :: & proj(natomwfc,nbnd), wfcatom(npwx,natomwfc), spsi(npwx,nbnd) REAL (DP), INTENT (OUT) :: dns(ldim,ldim,nspin,nat) ! INTEGER :: ibnd, is, na, nt, m1, m2 COMPLEX (DP), ALLOCATABLE :: dproj(:,:) ! ! CALL start_clock('dndtau') ! ALLOCATE ( dproj(natomwfc,nbnd) ) CALL dprojdtau_k ( wfcatom, spsi, alpha, ipol, offset(alpha), dproj ) ! ! compute the derivative of occupation numbers (the quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! dns(:,:,:,:) = 0.d0 DO na = 1,nat nt = ityp(na) IF ( Hubbard_U(nt) /= 0.d0 .OR. Hubbard_alpha(nt) /= 0.d0) THEN DO m1 = 1, 2*Hubbard_l(nt)+1 DO m2 = m1, 2*Hubbard_l(nt)+1 DO ibnd = 1,nbnd dns(m1,m2,current_spin,na) = dns(m1,m2,current_spin,na) + & wg(ibnd,ik) * & DBLE( proj(offset(na)+m1,ibnd) * & CONJG(dproj(offset(na)+m2,ibnd)) + & dproj(offset(na)+m1,ibnd) * & CONJG(proj(offset(na)+m2,ibnd)) ) END DO END DO END DO END IF END DO DEALLOCATE ( dproj ) ! ! In nspin.eq.1 k-point weight wg is normalized to 2 el/band ! in the whole BZ but we are interested in dns of one spin component ! IF (nspin == 1) dns = 0.5d0 * dns ! ! impose hermiticity of dn_{m1,m2} ! DO na = 1,nat DO is = 1,nspin DO m1 = 1,ldim DO m2 = m1+1,ldim dns(m2,m1,is,na) = dns(m1,m2,is,na) END DO END DO END DO END DO CALL stop_clock('dndtau') RETURN END SUBROUTINE dndtau_k ! !----------------------------------------------------------------------- SUBROUTINE dndtau_gamma (ldim, offset, rproj, wfcatom, spsi, alpha, ipol, ik, dns) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the ns with respect to the ionic ! displacement u(alpha,ipol) used to obtain the Hubbard contribution to the ! atomic forces. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc USE lsda_mod, ONLY : nspin, current_spin USE ldaU, ONLY : Hubbard_U, Hubbard_alpha, Hubbard_l USE wvfct, ONLY : nbnd, npwx, npw, wg IMPLICIT NONE INTEGER, INTENT(IN) :: alpha, ipol, ik, ldim, offset(nat) ! offset(nat): offset of d electrons of atom d in the natomwfc ordering COMPLEX (DP), INTENT(IN) :: wfcatom(npwx,natomwfc), spsi(npwx,nbnd) REAL(DP), INTENT (IN) :: rproj(natomwfc,nbnd) REAL (DP), INTENT (OUT) :: dns(ldim,ldim,nspin,nat) ! INTEGER :: ibnd, is, na, nt, m1, m2 REAL (DP), ALLOCATABLE :: dproj(:,:) ! ! CALL start_clock('dndtau') ! ALLOCATE ( dproj(natomwfc,nbnd) ) CALL dprojdtau_gamma ( wfcatom, spsi, alpha, ipol, offset(alpha), dproj ) ! ! compute the derivative of occupation numbers (the quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! dns(:,:,:,:) = 0.d0 DO na = 1,nat nt = ityp(na) IF (Hubbard_U(nt) /= 0.d0 .OR. Hubbard_alpha(nt) /= 0.d0) THEN DO m1 = 1, 2*Hubbard_l(nt)+1 DO m2 = m1, 2*Hubbard_l(nt)+1 DO ibnd = 1,nbnd dns(m1,m2,current_spin,na) = dns(m1,m2,current_spin,na) + & wg(ibnd,ik) * ( & rproj(offset(na)+m1,ibnd) * & dproj(offset(na)+m2,ibnd) + & dproj(offset(na)+m1,ibnd) * & rproj(offset(na)+m2,ibnd) ) END DO END DO END DO END IF END DO DEALLOCATE ( dproj ) ! ! In nspin.eq.1 k-point weight wg is normalized to 2 el/band ! in the whole BZ but we are interested in dns of one spin component ! IF (nspin == 1) dns = 0.5d0 * dns ! ! impose hermiticity of dn_{m1,m2} ! DO na = 1,nat DO is = 1,nspin DO m1 = 1,ldim DO m2 = m1+1,ldim dns(m2,m1,is,na) = dns(m1,m2,is,na) END DO END DO END DO END DO CALL stop_clock('dndtau') RETURN END SUBROUTINE dndtau_gamma ! !----------------------------------------------------------------------- SUBROUTINE dprojdtau_k (wfcatom, spsi, alpha, ipol, offset, dproj) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the atomic displacement ! u(alpha,ipol) (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE basis, ONLY : natomwfc USE cell_base, ONLY : tpiba USE gvect, ONLY : g USE klist, ONLY : nks, xk USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : nhm, nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER, INTENT (IN) :: & alpha, &! the displaced atom ipol, &! the component of displacement offset ! the offset of the wfcs of the atom "alpha" COMPLEX (DP), INTENT (IN) :: & wfcatom(npwx,natomwfc), &! the atomic wfc spsi(npwx,nbnd) ! S|evc> COMPLEX (DP), INTENT (OUT) :: & dproj(natomwfc,nbnd) ! output: the derivative of the projection ! INTEGER :: ig, jkb2, na, m1, ibnd, iwf, nt, ih, jh, ldim REAL (DP) :: gvec COMPLEX (DP), ALLOCATABLE :: dwfc(:,:), dbeta(:,:), & betapsi(:,:), dbetapsi(:,:), & wfatbeta(:,:), wfatdbeta(:,:) ! dwfc(npwx,ldim), ! the derivative of the atomic d wfc ! dbeta(npwx,nhm), ! the derivative of the beta function ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(natomwfc,nhm),! ! wfatdbeta(natomwfc,nhm)! call start_clock('dprojdtau') nt = ityp(alpha) ldim = 2 * Hubbard_l(nt) + 1 dproj(:,:) = (0.d0, 0.d0) ! ! At first the derivatives of the atomic wfc and the beta are computed ! IF (Hubbard_U(nt) /= 0.d0 .OR. Hubbard_alpha(nt) /= 0.d0) THEN ALLOCATE ( dwfc(npwx,ldim) ) DO ig = 1,npw gvec = g(ipol,igk(ig)) * tpiba ! in the expression of dwfc we don't need (k+G) but just G; k always ! multiplies the underived quantity and gives an opposite contribution ! in c.c. term because the sign of the imaginary unit. DO m1 = 1, ldim dwfc(ig,m1) = (0.d0,-1.d0) * gvec * wfcatom(ig,offset+m1) END DO END DO CALL ZGEMM('C','N',ldim, nbnd, npw, (1.d0,0.d0), & dwfc, npwx, spsi, npwx, (0.d0,0.d0), & dproj(offset+1,1), natomwfc) DEALLOCATE ( dwfc ) END IF ! CALL mp_sum( dproj, intra_bgrp_comm ) ! jkb2 = 0 DO nt=1,ntyp DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN IF ( na.EQ.alpha ) THEN ALLOCATE (dbetapsi(nh(nt),nbnd) ) ALLOCATE (wfatdbeta(natomwfc,nh(nt)) ) ALLOCATE ( wfatbeta(natomwfc,nh(nt)) ) ALLOCATE ( dbeta(npwx,nh(nt)) ) DO ih=1,nh(nt) DO ig = 1, npw gvec = g(ipol,igk(ig)) * tpiba dbeta(ig,ih) = (0.d0,-1.d0) * vkb(ig,jkb2+ih) * gvec END DO END DO CALL calbec ( npw, dbeta, evc, dbetapsi ) CALL calbec ( npw, wfcatom, dbeta, wfatdbeta ) DO ih=1,nh(nt) DO ig = 1, npw dbeta(ig,ih) = vkb(ig,jkb2+ih) END DO END DO CALL calbec ( npw, wfcatom, dbeta, wfatbeta ) DEALLOCATE ( dbeta ) ! calculate \sum_j qq(i,j)*dbetapsi(j) ! betapsi is used here as work space ALLOCATE ( betapsi(nh(nt), nbnd) ) betapsi(:,:) = (0.0_dp, 0.0_dp) DO ih=1,nh(nt) DO ibnd=1,nbnd DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * dbetapsi(jh,ibnd) END DO END DO END DO dbetapsi(:,:) = betapsi(:,:) ! calculate \sum_j qq(i,j)*betapsi(j) betapsi(:,:) = (0.0_dp, 0.0_dp) DO ih=1,nh(nt) DO ibnd=1,nbnd DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * becp%k(jkb2+jh,ibnd) END DO END DO END DO ! DO ibnd=1,nbnd DO ih=1,nh(nt) DO iwf=1,natomwfc dproj(iwf,ibnd) = dproj(iwf,ibnd) + & ( wfatdbeta(iwf,ih)*betapsi(ih,ibnd) + & wfatbeta(iwf,ih)*dbetapsi(ih,ibnd) ) END DO END DO END DO DEALLOCATE ( betapsi ) DEALLOCATE ( wfatbeta ) DEALLOCATE (wfatdbeta ) DEALLOCATE (dbetapsi ) END IF jkb2 = jkb2 + nh(nt) END IF END DO END DO call stop_clock('dprojdtau') RETURN END SUBROUTINE dprojdtau_k ! !----------------------------------------------------------------------- SUBROUTINE dprojdtau_gamma (wfcatom, spsi, alpha, ipol, offset, dproj) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the atomic displacement ! u(alpha,ipol) (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE basis, ONLY : natomwfc USE cell_base, ONLY : tpiba USE gvect, ONLY : g, gstart USE klist, ONLY : nks, xk USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : nhm, nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER, INTENT (IN) :: & alpha, &! the displaced atom ipol, &! the component of displacement offset ! the offset of the wfcs of the atom "alpha" COMPLEX (DP), INTENT (IN) :: & wfcatom(npwx,natomwfc), &! the atomic wfc spsi(npwx,nbnd) ! S|evc> REAL (DP), INTENT (OUT) :: & dproj(natomwfc,nbnd) ! output: the derivative of the projection ! INTEGER :: ig, jkb2, na, m1, ibnd, iwf, nt, ih, jh, ldim REAL (DP) :: gvec COMPLEX (DP), ALLOCATABLE :: dwfc(:,:), dbeta(:,:) REAL (DP), ALLOCATABLE :: betapsi(:,:), dbetapsi(:,:), & wfatbeta(:,:), wfatdbeta(:,:) ! dwfc(npwx,ldim), ! the derivative of the atomic d wfc ! dbeta(npwx,nhm), ! the derivative of the beta function ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(natomwfc,nhm),! ! wfatdbeta(natomwfc,nhm)! call start_clock('dprojdtau') nt = ityp(alpha) ldim = 2 * Hubbard_l(nt) + 1 ALLOCATE ( dwfc(npwx,ldim) ) dproj(:,:) = (0.d0, 0.d0) ! ! At first the derivatives of the atomic wfc and the beta are computed ! IF (Hubbard_U(nt) /= 0.d0 .OR. Hubbard_alpha(nt) /= 0.d0) THEN DO ig = 1,npw gvec = g(ipol,igk(ig)) * tpiba ! in the expression of dwfc we don't need (k+G) but just G; k always ! multiplies the underived quantity and gives an opposite contribution ! in c.c. term because the sign of the imaginary unit. DO m1 = 1, ldim dwfc(ig,m1) = (0.d0,-1.d0) * gvec * wfcatom(ig,offset+m1) END DO END DO ! there is no G=0 term CALL DGEMM('T','N',ldim, nbnd, 2*npw, 2.0_dp, & dwfc, 2*npwx, spsi, 2*npwx, 0.0_dp,& dproj(offset+1,1), natomwfc) DEALLOCATE ( dwfc ) END IF ! CALL mp_sum( dproj, intra_bgrp_comm ) ! jkb2 = 0 DO nt=1,ntyp DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN IF ( na.EQ.alpha ) THEN ALLOCATE (dbetapsi(nh(nt),nbnd) ) ALLOCATE (wfatdbeta(natomwfc,nh(nt)) ) ALLOCATE ( wfatbeta(natomwfc,nh(nt)) ) ALLOCATE ( dbeta(npwx,nh(nt)) ) DO ih=1,nh(nt) DO ig = 1, npw gvec = g(ipol,igk(ig)) * tpiba dbeta(ig,ih) = (0.d0,-1.d0) * vkb(ig,jkb2+ih) * gvec END DO END DO CALL calbec ( npw, dbeta, evc, dbetapsi ) CALL calbec ( npw, wfcatom, dbeta, wfatdbeta ) DO ih=1,nh(nt) DO ig = 1, npw dbeta(ig,ih) = vkb(ig,jkb2+ih) END DO END DO CALL calbec ( npw, wfcatom, dbeta, wfatbeta ) DEALLOCATE ( dbeta ) ! calculate \sum_j qq(i,j)*dbetapsi(j) ! betapsi is used here as work space ALLOCATE ( betapsi(nh(nt), nbnd) ) betapsi(:,:) = (0.0_dp, 0.0_dp) DO ih=1,nh(nt) DO ibnd=1,nbnd DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * dbetapsi(jh,ibnd) END DO END DO END DO dbetapsi(:,:) = betapsi(:,:) ! calculate \sum_j qq(i,j)*betapsi(j) betapsi(:,:) = (0.0_dp, 0.0_dp) DO ih=1,nh(nt) DO ibnd=1,nbnd DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * becp%r(jkb2+jh,ibnd) END DO END DO END DO ! DO ibnd=1,nbnd DO ih=1,nh(nt) DO iwf=1,natomwfc dproj(iwf,ibnd) = dproj(iwf,ibnd) + & ( wfatdbeta(iwf,ih)*betapsi(ih,ibnd) + & wfatbeta(iwf,ih)*dbetapsi(ih,ibnd) ) END DO END DO END DO DEALLOCATE ( betapsi ) DEALLOCATE ( wfatbeta ) DEALLOCATE (wfatdbeta ) DEALLOCATE (dbetapsi ) END IF jkb2 = jkb2 + nh(nt) END IF END DO END DO call stop_clock('dprojdtau') RETURN END SUBROUTINE dprojdtau_gamma espresso-5.0.2/PW/src/esm.f900000644000700200004540000013761212053145627014620 0ustar marsamoscm! ! Copyright (C) 2007-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Original version by Minoru Otani (AIST), Yoshio Miura (Tohoku U.), ! Nicephore Bonet (MIT), Nicola Marzari (MIT), Brandon Wood (LLNL), ! Tadashi Ogitsu (LLNL) ! ! Contains subroutines for implementation of the ESM (Effective Screening ! Medium Method) developed by M. Otani and O. Sugino (see PRB 73, 115407 ! [2006]). ! ! ESM enables description of a surface slab sandwiched between two ! semi-infinite media, making it possible to deal with polarized surfaces ! without using dipole corrections. It is useful for simulating interfaces ! with vacuum, one or more electrodes, or an electrolyte. ! ! Modified subroutines for calculating the Hartree potential, the local ! potential, and the Ewald sum are contained here, along with subroutines for ! calculating force contributions based on the modified local potential and ! Ewald term. ! !---------------------------------------------------------------------------- MODULE esm !---------------------------------------------------------------------------- ! ! ... this module contains the variables and subroutines needed for the ! ... EFFECTIVE SCREENING MEDIUM (ESM) METHOD ! USE kinds, ONLY : DP USE constants, ONLY : pi, tpi, fpi, eps4, eps8, e2 SAVE ! LOGICAL :: do_comp_esm=.FALSE. INTEGER :: esm_nfit REAL(KIND=DP) :: esm_efield, esm_w CHARACTER (LEN=3) :: esm_bc INTEGER, ALLOCATABLE, TARGET :: mill_2d(:,:), imill_2d(:,:) INTEGER :: ngm_2d = 0 ! PUBLIC :: esm_hartree, esm_local, esm_ewald, esm_force_lc, esm_force_ew, & esm_printpot, esm_summary, esm_ggen_2d, esm_deallocate_gvect_2d CONTAINS SUBROUTINE esm_deallocate_gvect_2d IF( ALLOCATED( mill_2d ) ) DEALLOCATE( mill_2d ) RETURN END SUBROUTINE esm_deallocate_gvect_2d SUBROUTINE esm_ggen_2d() USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, mill USE control_flags, ONLY : gamma_only USE fft_scalar, ONLY : cft_1z ! IMPLICIT NONE ! INTEGER :: n1xh, n2xh, ng, n1, n2, ng_2d Logical, ALLOCATABLE :: do_mill_2d(:,:) COMPLEX(DP), ALLOCATABLE :: vg2_in(:), vg2(:) ! ! Make g parallel array ! n1xh = dfftp%nr1x/2 n2xh = dfftp%nr2x/2 ALLOCATE( do_mill_2d(-n1xh:n1xh,-n2xh:n2xh) ) do_mill_2d(:,:) = .false. DO ng = 1, ngm n1 = mill(1,ng) n2 = mill(2,ng) do_mill_2d(n1,n2) = .true. ENDDO ngm_2d = COUNT( do_mill_2d ) !*** do_mill_2d(h,k) = .true. means there is an h,k vector on this proc !*** ngm_2d = total number of vectors (h,k) on this proc, excluding duplicates !*** with different l values ALLOCATE( mill_2d(2,ngm_2d), imill_2d(-n1xh:n1xh,-n2xh:n2xh) ) mill_2d(:,:) = 0 imill_2d(:,:) = 0 ng_2d = 1 DO n1 = -n1xh, n1xh DO n2 = -n2xh, n2xh IF( do_mill_2d(n1,n2) ) THEN mill_2d(1,ng_2d) = n1 mill_2d(2,ng_2d) = n2 imill_2d(n1,n2) = ng_2d ng_2d = ng_2d + 1 ENDIF ENDDO ENDDO DEALLOCATE(do_mill_2d) !**** mill_2d(:,ig) = h,k indices of vector ig !**** imill_2d(h,k) = 2d index of vector with h,k indices !**** ng_2d = total number of 2d g vectors on this proc RETURN END SUBROUTINE esm_ggen_2d ! !----------------------------------------------------------------------- !--------------ESM HARTREE SUBROUTINE----------------------------------- !----------------------------------------------------------------------- SUBROUTINE esm_hartree (rhog, ehart, aux) USE gvect, ONLY : g, nl, nlm, ngm, mill USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE control_flags, ONLY : gamma_only USE fft_scalar, ONLY : cft_1z USE mp_global, ONLY : intra_bgrp_comm, me_bgrp USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! COMPLEX(DP) :: rhog(ngm,nspin) ! n(G) REAL(DP) :: ehart ! Hartree energy COMPLEX(DP) :: aux(dfftp%nnr) ! v_h(G) ! ! here the local variables ! real(DP) :: tt, t(2), zz, gz, z0, gp, gp2, z1, kn, cc, ss, z, L, & z_l, z_r, eh integer :: ipol, k, k1, k2, k3, iz, ng, n1, n2, n3, & nz_r, nz_l, ng_2d complex(DP),allocatable :: rhog3(:,:), vg2(:), vg2_in(:), vg3(:,:) complex(DP) :: xc, ci, tmp, tmp1, tmp2, tmp3, tmp4, f1, f2, f3, f4, & a0, a1, a2, a3, c_r, c_l, s_r, s_l, rg3 allocate(vg2(dfftp%nr3),vg2_in(dfftp%nr3),rhog3(dfftp%nr3,ngm_2d)) ! ! Map to FFT mesh (dfftp%nr3,ngm_2d) rhog3(:,:)=(0.d0,0.d0) do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng)+1 IF (n3<1) n3 = n3 + dfftp%nr3 if (nspin == 2) then rg3 = rhog(ng,1)+rhog(ng,2) else rg3 = rhog(ng,1) endif rhog3(n3,ng_2d)=rg3 if ( gamma_only .and. n1==0 .and. n2==0 ) then n3 = -mill(3,ng)+1 IF (n3<1) n3 = n3 + dfftp%nr3 rhog3(n3,ng_2d)=CONJG(rg3) endif enddo ! End mapping ! allocate(vg3(dfftp%nr3,ngm_2d)) vg3(:,:)=(0.d0,0.d0) L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) ci=(0.d0,1.d0) !****For gp!=0 case ******************** !$omp parallel do private( k1, k2, gp2, ipol, t, gp, tmp1, tmp2, vg2, iz, kn, & !$omp cc, ss, tmp, vg2_in, k3, z, rg3 ) do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) tmp1=(0.d0,0.d0); tmp2=(0.d0,0.d0) vg2(:)=(0.d0,0.d0) do iz=1, dfftp%nr3 if(iz<=dfftp%nr3/2) kn=dble(iz-1) * tpi/L if(iz> dfftp%nr3/2) kn=dble(iz-1-dfftp%nr3) * tpi/L cc=cos(kn*z0) ss=sin(kn*z0) rg3=rhog3(iz,ng_2d) vg2(iz)=fpi*rg3/(gp**2+kn**2) if (esm_bc.eq.'bc1') then tmp1=tmp1+rg3*(cc+ci*ss)/(gp-ci*kn) tmp2=tmp2+rg3*(cc-ci*ss)/(gp+ci*kn) else if (esm_bc.eq.'bc2') then tmp=((gp+ci*kn)*exp(gp*(z1-z0))+(gp-ci*kn)*exp(-gp*(z1-z0)))/(2.d0*gp) tmp1=tmp1+rg3*(cc+ci*ss)/(gp**2+kn**2)*tmp tmp=((gp-ci*kn)*exp(gp*(z1-z0))+(gp+ci*kn)*exp(-gp*(z1-z0)))/(2.d0*gp) tmp2=tmp2+rg3*(cc-ci*ss)/(gp**2+kn**2)*tmp else if (esm_bc.eq.'bc3') then tmp=((gp+ci*kn)*exp(gp*(z1-z0))+(gp-ci*kn)*exp(-gp*(z1-z0)))/(2.d0*gp) tmp1=tmp1+rg3*(cc+ci*ss)/(gp**2+kn**2)*tmp tmp=(gp-ci*kn)/gp tmp2=tmp2+rg3*(cc-ci*ss)/(gp**2+kn**2)*tmp endif enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,1,vg2) do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L if (esm_bc.eq.'bc1') then vg2(iz)=vg2(iz)-tpi/gp*(exp(gp*(z-z0))*tmp1+exp(-gp*(z+z0))*tmp2) else if (esm_bc.eq.'bc2') then vg2(iz)=vg2(iz)-fpi*(exp(gp*(z-z1))-exp(-gp*(z+3.d0*z1)))*tmp1 & /(1.d0-exp(-4.d0*gp*z1)) & +fpi*(exp(gp*(z-3.d0*z1))-exp(-gp*(z+z1)))*tmp2 & /(1.d0-exp(-4.d0*gp*z1)) else if (esm_bc.eq.'bc3') then vg2(iz)=vg2(iz)-fpi*exp(gp*(z-z1))*tmp1 & +tpi*(exp(gp*(z-z0-2.d0*z1))-exp(-gp*(z+z0)))*tmp2 endif enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) vg3(1:dfftp%nr3,ng_2d)=vg2(1:dfftp%nr3)*2.d0 enddo !****For gp=0 case ******************** ng_2d = imill_2d(0,0) if( ng_2d > 0 ) then tmp1=(0.d0,0.d0); tmp2=(0.d0,0.d0); tmp3=(0.d0,0.d0); tmp4=(0.d0,0.d0) !for smoothing f1=(0.d0,0.d0); f2=(0.d0,0.d0); f3=(0.d0,0.d0); f4=(0.d0,0.d0) nz_l=dfftp%nr3/2+1+esm_nfit nz_r=dfftp%nr3/2+1-esm_nfit z_l=dble(nz_l-1)*L/dble(dfftp%nr3)-L z_r=dble(nz_r-1)*L/dble(dfftp%nr3) ! rg3=rhog3(1,ng_2d) if (esm_bc.eq.'bc1') then vg2(1)=-tpi*z0**2*rg3 else if (esm_bc.eq.'bc2') then vg2(1)= tpi*(2.d0*z1-z0)*z0*rg3 else if (esm_bc.eq.'bc3') then vg2(1)= tpi*(4.d0*z1-z0)*z0*rg3 endif do iz=2,dfftp%nr3 if(iz<=dfftp%nr3/2) kn=dble(iz-1) *tpi/L if(iz> dfftp%nr3/2) kn=dble(iz-1-dfftp%nr3) *tpi/L cc=cos(kn*z0) ss=sin(kn*z0) rg3=rhog3(iz,ng_2d) if (esm_bc.eq.'bc1') then tmp1=tmp1+rg3*ci*(cc+ci*ss)/kn tmp2=tmp2+rg3*ci*(cc-ci*ss)/kn tmp3=tmp3+rg3*cc/kn**2 tmp4=tmp4+(0.d0,0.d0) else if (esm_bc.eq.'bc2') then tmp1=tmp1+rg3*(cc+ci*ss)/kn**2 tmp2=tmp2+rg3*(cc-ci*ss)/kn**2 tmp3=tmp3+rg3*ci*cc/kn tmp4=tmp4+rg3*ss/kn else if (esm_bc.eq.'bc3') then tmp1=tmp1+rg3*(cc+ci*ss)/kn**2 tmp2=tmp2+rg3*(cc-ci*ss)/kn tmp3=tmp3+rg3*(cc+ci*ss)/kn tmp4=tmp4+(0.d0,0.d0) endif vg2(iz)=fpi*rg3/(kn**2) !for smoothing c_r=cos(kn*z_r) s_r=sin(kn*z_r) c_l=cos(kn*z_l) s_l=sin(kn*z_l) f1=f1+fpi* rg3*(c_r+ci*s_r)/kn**2 f2=f2+fpi* rg3*(c_l+ci*s_l)/kn**2 f3=f3+fpi*ci*rg3*(c_r+ci*s_r)/kn f4=f4+fpi*ci*rg3*(c_l+ci*s_l)/kn ! enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,1,vg2) rg3=rhog3(1,ng_2d) do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L if (esm_bc.eq.'bc1') then vg2(iz)=vg2(iz)-tpi*z**2*rg3 & -tpi*(z-z0)*tmp1 & -tpi*(z+z0)*tmp2 & -fpi*tmp3 else if (esm_bc.eq.'bc2') then vg2(iz)=vg2(iz)-tpi*z**2*rg3 & -tpi*(z+z1)*tmp1/z1 & +tpi*(z-z1)*tmp2/z1 & -fpi*z*(z1-z0)/z1*tmp3 & +fpi*(z1-z0)*tmp4 else if (esm_bc.eq.'bc3') then vg2(iz)=vg2(iz)-tpi*(z**2+2.d0*z*z0)*rg3 & -fpi*tmp1 & -fpi*ci*(z-z0)*tmp2 & -fpi*ci*(z1-z0)*tmp3 endif enddo !for smoothing if (esm_bc.eq.'bc1') then f1=f1-tpi*z_r**2*rg3 & -tpi*(z_r-z0)*tmp1 & -tpi*(z_r+z0)*tmp2 & -fpi*tmp3 f1=f1-tpi*z0**2*rg3 f2=f2-tpi*z_l**2*rg3 & -tpi*(z_l-z0)*tmp1 & -tpi*(z_l+z0)*tmp2 & -fpi*tmp3 f2=f2-tpi*z0**2*rg3 f3=f3-tpi*tmp1-tpi*tmp2-fpi*z_r*rg3 f4=f4-tpi*tmp1-tpi*tmp2-fpi*z_l*rg3 else if (esm_bc.eq.'bc2') then f1=f1-tpi*z_r**2*rg3 & -tpi*(z_r+z1)*tmp1/z1 & +tpi*(z_r-z1)*tmp2/z1 & -fpi*z*(z1-z0)/z1*tmp3 & +fpi *(z1-z0) *tmp4 f1=f1+tpi*(2.d0*z1-z0)*z0*rg3 f2=f2-tpi*z_l**2*rg3 & -tpi*(z_l+z1)*tmp1/z1 & +tpi*(z_l-z1)*tmp2/z1 & -fpi*z*(z1-z0)/z1*tmp3 & +fpi *(z1-z0) *tmp4 f2=f2+tpi*(2.d0*z1-z0)*z0*rg3 f3=f3-fpi*z_r*rg3-tpi*tmp1/z1+tpi*tmp2/z1-fpi*(z1-z0)/z1*tmp3 f4=f4-fpi*z_l*rg3-tpi*tmp1/z1+tpi*tmp2/z1-fpi*(z1-z0)/z1*tmp3 else if (esm_bc.eq.'bc3') then f1=f1-tpi*(z_r**2+2.d0*z_r*z0)*rg3 & -fpi*tmp1 & -fpi*ci*(z_r-z1)*tmp2 & -fpi*ci*(z1 -z0)*tmp3 f1=f1+tpi*(4.d0*z1-z0)*z0*rg3 f2=f2-tpi*(z_l**2+2.d0*z_l*z0)*rg3 & -fpi*tmp1 & -fpi*ci*(z_l-z1)*tmp2 & -fpi*ci*(z1 -z0)*tmp3 f2=f2+tpi*(4.d0*z1-z0)*z0*rg3 f3=f3-tpi*(2.d0*z_r+2.d0*z0)*rg3-fpi*ci*tmp2 f4=f4-tpi*(2.d0*z_l+2.d0*z0)*rg3-fpi*ci*tmp2 endif ! for smoothing !factor 2 will be multiplied later (at vg3 <= vg2) !f1=f1*2.d0; f2=f2*2.d0; f3=f3*2.d0; f4=f4*2.d0 z_r=z_r z_l=z_l+L a0=(f1*z_l**2*(z_l-3.d0*z_r)+z_r*(f3*z_l**2*(-z_l+z_r) & +z_r*(f2*(3.d0*z_l-z_r)+f4*z_l*(-z_l+z_r))))/(z_l-z_r)**3 a1=(f3*z_l**3+z_l*(6.d0*f1-6.d0*f2+(f3+2.d0*f4)*z_l)*z_r & -(2*f3+f4)*z_l*z_r**2-f4*z_r**3)/(z_l-z_r)**3 a2=(-3*f1*(z_l+z_r)+3.d0*f2*(z_l+z_r)-(z_l-z_r)*(2*f3*z_l & +f4*z_l+f3*z_r+2*f4*z_r))/(z_l-z_r)**3 a3=(2.d0*f1-2.d0*f2+(f3+f4)*(z_l-z_r))/(z_l-z_r)**3 do iz=nz_r,nz_l z=dble(iz-1)/dble(dfftp%nr3)*L vg2(iz)=(a0+a1*z+a2*z**2+a3*z**3) enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) vg3(1:dfftp%nr3,ng_2d)=vg2(1:dfftp%nr3)*2.d0 endif ! if( ng_2d > 0 ) ! Hartree Energy ehart=0.d0 !$omp parallel private( ng_2d, k1, k2, k, eh ) eh = 0d0 !$omp do do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) eh = eh + sum( vg3(:,ng_2d)*conjg(rhog3(:,ng_2d)) ) enddo !$omp atomic ehart=ehart+eh !$omp end parallel if( gamma_only ) then ehart = ehart * 2d0 ng_2d = imill_2d(0,0) if( ng_2d > 0 ) then ehart = ehart - sum( vg3(:,ng_2d)*conjg(rhog3(:,ng_2d)) ) endif endif ehart = ehart *omega*0.5d0 ! call mp_sum( ehart, intra_bgrp_comm ) ! ! Map to FFT mesh (dfftp%nrx) aux=0.0d0 do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng) + 1 if (n3<1) n3 = n3 + dfftp%nr3 aux(nl(ng))= aux(nl(ng)) + vg3(n3,ng_2d) enddo if (gamma_only) then do ng=1,ngm aux(nlm(ng))=CONJG(aux(nl(ng))) enddo endif deallocate (vg3) deallocate (vg2,vg2_in,rhog3) RETURN END SUBROUTINE esm_hartree !----------------------------------------------------------------------- !--------------ESM EWALD SUBROUTINE------------------------------------- !----------------------------------------------------------------------- SUBROUTINE esm_ewald ( charge, alpha, ewg ) USE gvect, ONLY : gstart USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE ions_base, ONLY : nat, tau, ityp, ntyp=>nsp USE uspp_param, ONLY : upf USE fft_base, ONLY : dfftp USE control_flags, ONLY : gamma_only implicit none REAL(DP) :: charge, alpha, ewg ! ! here the local variables ! real(DP), external :: qe_erfc, qe_erf real(DP) :: gp2, t(2), gp, sa, z1, z0, L integer :: k1, k2, k3, ipol, it1, it2, ng_2d real(DP) :: tt, z, zp, kk1, kk2, g, cc1, cc2, arg1, arg2, t1, t2, ff, argmax, ew #ifdef __OPENMP INTEGER :: nth, ith, omp_get_thread_num, omp_get_num_threads #endif argmax=0.9*log(huge(1.d0)) ewg=0.d0 L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) g=sqrt(alpha) sa=omega/L #ifdef __OPENMP !$omp parallel private( nth, ith, ew, it1, it2, z, zp, tt, kk1, kk2, cc1, cc2, & !$omp ng_2d, k1, k2, gp2, ipol, t, gp, ff, arg1, arg2, t1, t2 ) #endif #ifdef __OPENMP nth=omp_get_num_threads() ith=omp_get_thread_num() #endif ew=0d0 do it1=1,nat do it2=1,it1 #ifdef __OPENMP if( mod( (it1-1)*it1/2+it2-1, nth) /= ith ) cycle #endif z=tau(3,it1) if (z.gt.at(3,3)*0.5) z=z-at(3,3) z=z*alat zp=tau(3,it2) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat tt=upf(ityp(it1))%zp*upf(ityp(it2))%zp*tpi/sa kk1=0.5d0*(-(z-zp)*qe_erf(g*(z-zp))-exp(-g**2*(z-zp)**2)/g/sqrt(pi)) if (esm_bc.eq.'bc1') then kk2=0.d0 else if (esm_bc.eq.'bc2') then kk2=0.5d0*(z1-z*zp/z1) else if (esm_bc.eq.'bc3') then kk2=0.5d0*(2.d0*z1-z-zp) endif cc1=0.d0 cc2=0.d0 if (it1.eq.it2) then do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if( k1==0 .and. k2==0 ) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cc1=cc1+(t1+t2)/4.d0/gp if (esm_bc.eq.'bc1') then cc2=0.d0 else if (esm_bc.eq.'bc2') then cc2=cc2+(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp else if (esm_bc.eq.'bc3') then cc2=cc2+(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp endif enddo if( gamma_only ) then cc1 = cc1 * 2d0 cc2 = cc2 * 2d0 endif ew=ew+tt*(cc1+cc2) if(gstart==2) ew=ew+tt*(kk1+kk2) else do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if( k1==0 .and. k2==0 ) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) ff = ( ( k1*bg(1,1)+k2*bg(1,2) ) * ( tau(1,it1)-tau(1,it2) ) & + ( k1*bg(2,1)+k2*bg(2,2) ) * ( tau(2,it1)-tau(2,it2) ) ) * tpi arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cc1=cc1+cos(ff)*(t1+t2)/4.d0/gp if (esm_bc.eq.'bc1') then cc2=0.d0 else if (esm_bc.eq.'bc2') then cc2=cc2+cos(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp else if (esm_bc.eq.'bc3') then cc2=cc2+cos(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp endif enddo if( gamma_only ) then cc1 = cc1 * 2d0 cc2 = cc2 * 2d0 endif ew=ew+tt*(cc1+cc2)*2d0 if(gstart==2) ew=ew+tt*(kk1+kk2)*2d0 endif enddo enddo !$omp atomic ewg=ewg+ew #ifdef __OPENMP !$omp end parallel #endif ewg=2.0*ewg if( gstart == 2 ) then do it1=1,nat ewg=ewg- upf(ityp(it1))%zp **2 * sqrt (8.d0 / tpi * alpha) enddo endif return end subroutine esm_ewald !----------------------------------------------------------------------- !--------------ESM LOCAL POTENTIAL SUBROUTINE--------------------------- !----------------------------------------------------------------------- subroutine esm_local (aux) USE kinds, ONLY : DP USE gvect, ONLY : g, ngm, nl, nlm, mill USE control_flags, ONLY : gamma_only USE cell_base, ONLY : at, bg, alat, tpiba2, tpiba, omega USE ions_base, ONLY : nat, tau, ityp USE uspp_param, ONLY : upf USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE fft_scalar, ONLY : cft_1z USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp ! implicit none COMPLEX(DP) :: aux( dfftp%nnr ) ! aux contains v_loc_short(G) (input) and v_loc(G) (output) ! ! here the local variables ! complex(DP),allocatable :: vloc3(:,:),vg2(:),vg2_in(:) real(DP),allocatable :: rhog(:,:),bgauss(:,:) real(DP), external :: qe_erf, qe_erfc real(DP) :: t(3),tt,gp,gp2,sa,z1,z0,pp,cc,ss,t1,t2, & z,zp,arg11,arg12,arg21,arg22,v0,tmp,L,argmax, & z_l,z_r integer :: iz,ig,it,ipol,k1,k2,k3,ng,n1,n2,n3, & nz_l,nz_r, ng_2d complex(DP) :: cs,cc1,cc2,ci,a0,a1,a2,a3,f1,f2,f3,f4 argmax=0.9*log(huge(1.d0)) L =at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) allocate(vloc3(dfftp%nr3,ngm_2d),vg2(dfftp%nr3),vg2_in(dfftp%nr3),bgauss(nat,1)) do it=1,nat bgauss(it,1)=1.d0 enddo sa=omega/L v0=esm_efield*z1*2.d0/2.d0 ! factor 1/2: unit Ry. -> hartree ci=(0.d0,1.d0) ! for gp!=0 !$omp parallel do private( k1, k2, gp2, gp, vg2, it, tt, pp, cc, ss, cs, zp, iz, & !$omp k3, z, cc1, ig, tmp, arg11, arg12, arg21, arg22, t1, t2, & !$omp cc2, vg2_in ) do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) vg2(1:dfftp%nr3)=(0.d0,0.d0) do it=1,nat tt=-fpi*upf(ityp(it))%zp/sa pp=-tpi*(tau(1,it)*(k1*bg(1,1)+k2*bg(1,2))+tau(2,it)*(k1*bg(2,1)+k2*bg(2,2))) cc=cos(pp) ss=sin(pp) cs=CMPLX ( cc, ss, kind=DP ) zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cc1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 arg11=-gp*(z-zp) arg11=min(arg11,argmax) arg12= gp/2.d0/tmp-tmp*(z-zp) arg21= gp*(z-zp) arg21=min(arg21,argmax) arg22= gp/2.d0/tmp+tmp*(z-zp) t1=exp(arg11)*qe_erfc(arg12) t2=exp(arg21)*qe_erfc(arg22) cc1=cc1+bgauss(it,ig)*cs*(t1+t2)/4.d0/gp enddo if (esm_bc.eq.'bc1') then cc2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cc2=cs*( exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp else if (esm_bc.eq.'bc3') then cc2=cs*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp endif vg2(iz) = vg2(iz) + tt*(cc1+cc2)*2.d0 ! factor 2: hartree -> Ry. enddo enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) do iz=1,dfftp%nr3 vloc3(iz,ng_2d)=vg2(iz) enddo enddo ng_2d=imill_2d(0,0) if( ng_2d > 0 ) then vg2(1:dfftp%nr3)=(0.d0,0.d0) ! for smoothing f1=0.d0; f2=0.d0; f3=0.d0; f4=0.d0 nz_l=dfftp%nr3/2+1+esm_nfit nz_r=dfftp%nr3/2+1-esm_nfit z_l=dble(nz_l-1)*L/dble(dfftp%nr3)-L z_r=dble(nz_r-1)*L/dble(dfftp%nr3) ! add constant potential (capacitor term) do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L vg2(iz)=-0.5d0*v0*(z-z1)/z1*2.d0 ! factor 2: hartree -> Ry. enddo f1=-0.5d0*v0*(z_r-z1)/z1 ! unit: hartree f2=-0.5d0*v0*(z_l-z1)/z1 ! unit: hartree f3=-0.5d0*v0/z1 ! unit: hartree/a.u. f4=-0.5d0*v0/z1 ! unit: harteee/a.u. ! for gp=0 do it=1,nat tt=-fpi*upf(ityp(it))%zp/sa zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cc1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 cc1=cc1+bgauss(it,ig)*0.5d0*(-(z-zp)*qe_erf(tmp*(z-zp)) & -exp(-tmp**2*(z-zp)**2)/tmp/sqrt(pi)) enddo if (esm_bc.eq.'bc1') then cc2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cc2=0.5d0*(z1-z*zp/z1) else if (esm_bc.eq.'bc3') then cc2=0.5d0*(2.d0*z1-z-zp) endif vg2(iz) = vg2(iz) + tt*(cc1+cc2)*2.d0 ! factor 2: hartree -> Ry. enddo ! smoothing cell edge potential (avoiding unphysical oscillation) do ig=1,1 tmp=1.d0 f1=f1+tt*bgauss(it,ig)*0.5d0*(-(z_r-zp)*qe_erf(tmp*(z_r-zp)) & -exp(-tmp**2*(z_r-zp)**2)/tmp/sqrt(pi)) f2=f2+tt*bgauss(it,ig)*0.5d0*(-(z_l-zp)*qe_erf(tmp*(z_l-zp)) & -exp(-tmp**2*(z_l-zp)**2)/tmp/sqrt(pi)) f3=f3-tt*bgauss(it,ig)*0.5d0*qe_erf(tmp*(z_r-zp)) f4=f4-tt*bgauss(it,ig)*0.5d0*qe_erf(tmp*(z_l-zp)) enddo if(esm_bc.eq.'bc1')then f1=f1+tt*0.d0 f2=f2+tt*0.d0 f3=f3+tt*0.d0 f4=f4+tt*0.d0 elseif(esm_bc.eq.'bc2')then f1=f1+tt*0.5d0*(z1-z_r*zp/z1) f2=f2+tt*0.5d0*(z1-z_l*zp/z1) f3=f3+tt*(-0.5d0*(zp/z1)) f4=f4+tt*(-0.5d0*(zp/z1)) elseif(esm_bc.eq.'bc3')then f1=f1+tt*0.5d0*(2.d0*z1-z_r-zp) f2=f2+tt*0.5d0*(2.d0*z1-z_l-zp) f3=f3-tt*0.5d0 f4=f4-tt*0.5d0 endif enddo ! for smoothing f1=f1*2.d0; f2=f2*2.d0; f3=f3*2.d0; f4=f4*2.d0 ! factor 2: hartree -> Ry. z_r=z_r z_l=z_l+L a0=(f1*z_l**2*(z_l-3.d0*z_r)+z_r*(f3*z_l**2*(-z_l+z_r) & +z_r*(f2*(3.d0*z_l-z_r)+f4*z_l*(-z_l+z_r))))/(z_l-z_r)**3 a1=(f3*z_l**3+z_l*(6.d0*f1-6.d0*f2+(f3+2.d0*f4)*z_l)*z_r & -(2*f3+f4)*z_l*z_r**2-f4*z_r**3)/(z_l-z_r)**3 a2=(-3*f1*(z_l+z_r)+3.d0*f2*(z_l+z_r)-(z_l-z_r)*(2*f3*z_l & +f4*z_l+f3*z_r+2*f4*z_r))/(z_l-z_r)**3 a3=(2.d0*f1-2.d0*f2+(f3+f4)*(z_l-z_r))/(z_l-z_r)**3 do iz=nz_r,nz_l z=dble(iz-1)/dble(dfftp%nr3)*L vg2(iz)=(a0+a1*z+a2*z**2+a3*z**3) enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) do iz=1,dfftp%nr3 vloc3(iz,ng_2d)=vg2(iz) enddo endif ! if( ng_2d > 0 ) deallocate(vg2,vg2_in,bgauss) ! Map to FFT mesh (dfftp%nrx) do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng) + 1 IF (n3<1) n3 = n3 + dfftp%nr3 aux(nl(ng))= aux(nl(ng)) + vloc3(n3,ng_2d) enddo if (gamma_only) then do ng=1,ngm aux (nlm(ng))=CONJG(aux(nl(ng))) enddo endif deallocate(vloc3) return end subroutine esm_local !----------------------------------------------------------------------- !--------------ESM EWALD-DERIVED FORCE SUBROUTINE----------------------- !----------------------------------------------------------------------- subroutine esm_force_ew ( alpha, forceion ) USE kinds USE cell_base, ONLY : omega, alat, tpiba2, at, bg USE control_flags, ONLY : gamma_only USE ions_base, ONLY : nat, tau, ityp USE uspp_param, ONLY : upf USE fft_base, ONLY : dfftp USE gvect, ONLY : gstart implicit none REAL(DP) :: alpha REAL(DP) :: forceion(3,nat) ! ! here the local variables ! real(DP), external :: qe_erfc, qe_erf integer :: it1, it2, ipol, k1, k2, k3, ng_2d integer :: nth, ith, omp_get_num_threads, omp_get_thread_num real(DP) :: t1_for, t2_for, z, zp, kk1_for, kk2_for, g, for_g(3, nat), gp2, gp, z1, t(2), L real(DP) :: cx1_for, cy1_for, cz1_for, cx2_for, cy2_for, cz2_for, arg1, arg2, t1, t2, ff real(DP) :: sa, z0, g_b,tauz1,tauz2,gt,tt,gz,argmax,for(3, nat) argmax=0.9*log(huge(1.d0)) for_g(:,:)=0.d0 forceion(:,:)=0.d0 L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) sa=omega/L g=sqrt(alpha) !$omp parallel private( nth, ith, for, z, zp, t1_for, t2_for, kk1_for, kk2_for, & !$omp cz1_for, cz2_for, ng_2d, k1, k2, gp2, gp, arg1, arg2, t1, t2, & !$omp cx1_for, cy1_for, cx2_for, cy2_for, ff ) #ifdef __OPENMP nth=omp_get_num_threads() ith=omp_get_thread_num() #endif for=0d0 do it1=1,nat do it2=1,nat #ifdef __OPENMP if( mod( (it1-1)*nat+it2-1, nth) /= ith ) cycle #endif z=tau(3,it1) if (z.gt.at(3,3)*0.5) z=z-at(3,3) z=z*alat zp=tau(3,it2) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat if (gamma_only) then t1_for=upf(ityp(it1))%zp*upf(ityp(it2))%zp*fpi/sa*2.d0 else t1_for=upf(ityp(it1))%zp*upf(ityp(it2))%zp*fpi/sa endif t2_for=upf(ityp(it1))%zp*upf(ityp(it2))%zp*fpi/sa kk1_for=0.5d0*qe_erf(g*(z-zp)) if (esm_bc.eq.'bc1') then kk2_for=0.d0 else if (esm_bc.eq.'bc2') then kk2_for=-0.5d0*(z/z1) else if (esm_bc.eq.'bc3') then kk2_for=-0.5d0 endif if (it1.eq.it2) then cz1_for=0.d0 cz2_for=0.d0 do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cz1_for=0.d0 if (esm_bc.eq.'bc1') then cz2_for=0.d0 else if (esm_bc.eq.'bc2') then cz2_for=cz2_for - (exp(gp*(z-zp-4.d0*z1))-exp(-gp*(z-zp+4.d0*z1)) & +exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cz2_for=cz2_for - exp(gp*(z+zp-2.d0*z1))/2.d0 endif enddo for(3,it2) = for(3,it2) + t1_for*(cz1_for+cz2_for) if(gstart==2) then for(3,it2) = for(3,it2) + t2_for*(kk1_for+kk2_for) endif else if (it1.gt.it2) then cx1_for=0.d0 cy1_for=0.d0 cz1_for=0.d0 cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) ff = ( ( k1*bg(1,1)+k2*bg(1,2) ) * ( tau(1,it1)-tau(1,it2) ) & + ( k1*bg(2,1)+k2*bg(2,2) ) * ( tau(2,it1)-tau(2,it2) ) ) * tpi arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cx1_for=cx1_for+sin(ff)*(t1+t2)/4.d0/gp*k1 cy1_for=cy1_for+sin(ff)*(t1+t2)/4.d0/gp*k2 cz1_for=cz1_for+cos(ff)*(t1-t2)/4.d0 if (esm_bc.eq.'bc1') then cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 else if (esm_bc.eq.'bc2') then cx2_for=cx2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k1 cy2_for=cy2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k2 cz2_for=cz2_for - cos(ff)*(exp(gp*(z-zp-4.d0*z1))-exp(-gp*(z-zp+4.d0*z1)) & + exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cx2_for=cx2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k1 cy2_for=cy2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k2 cz2_for=cz2_for+cos(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0 endif enddo for(1,it2)=for(1,it2)+t1_for*(cx1_for+cx2_for) for(2,it2)=for(2,it2)+t1_for*(cy1_for+cy2_for) for(3,it2)=for(3,it2)+t1_for*(cz1_for+cz2_for) if(gstart==2) then for(3,it2)=for(3,it2)+t2_for*(kk1_for+kk2_for) endif else if (it1.lt.it2) then cx1_for=0.d0 cy1_for=0.d0 cz1_for=0.d0 cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) ff = ( ( k1*bg(1,1)+k2*bg(1,2) ) * ( tau(1,it1)-tau(1,it2) ) & + ( k1*bg(2,1)+k2*bg(2,2) ) * ( tau(2,it1)-tau(2,it2) ) ) * tpi arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cx1_for=cx1_for+sin(ff)*(t1+t2)/4.d0/gp*k1 cy1_for=cy1_for+sin(ff)*(t1+t2)/4.d0/gp*k2 cz1_for=cz1_for+cos(ff)*(t1-t2)/4.d0 if (esm_bc.eq.'bc1') then cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 else if (esm_bc.eq.'bc2') then cx2_for=cx2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k1 cy2_for=cy2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k2 cz2_for=cz2_for - cos(ff)*(exp(gp*(z-zp-4.d0*z1))-exp(-gp*(z-zp+4.d0*z1)) & + exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cx2_for=cx2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k1 cy2_for=cy2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k2 cz2_for=cz2_for+cos(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0 endif enddo for(1,it2)=for(1,it2)+t1_for*(cx1_for+cx2_for) for(2,it2)=for(2,it2)+t1_for*(cy1_for+cy2_for) for(3,it2)=for(3,it2)+t1_for*(cz1_for+cz2_for) if(gstart==2) then for(3,it2)=for(3,it2)+t2_for*(kk1_for+kk2_for) endif endif enddo enddo !$omp critical for_g(:,:) = for_g(:,:) + for(:,:) !$omp end critical !$omp end parallel for_g(:,:)=2.0*for_g(:,:) do it1=1,nat forceion(1,it1)=sum( for_g(1:2,it1)*bg(1,1:2) )*sqrt(tpiba2) forceion(2,it1)=sum( for_g(1:2,it1)*bg(2,1:2) )*sqrt(tpiba2) forceion(3,it1)=for_g(3,it1) enddo forceion(:,:)=-forceion(:,:) return end subroutine esm_force_ew !----------------------------------------------------------------------- !--------------ESM LOCAL POTENTIAL-DERIVED FORCE SUBROUTINE------------- !----------------------------------------------------------------------- subroutine esm_force_lc ( aux, forcelc ) USE kinds USE gvect, ONLY : g, ngm, nl, nlm, mill USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE control_flags, ONLY : gamma_only USE ions_base, ONLY : nat, tau, ityp USE uspp_param, ONLY : upf USE fft_scalar, ONLY : cft_1z USE fft_base, ONLY : dfftp implicit none COMPLEX(DP) :: aux(dfftp%nnr) ! aux contains n(G) (input) REAL(DP) :: forcelc(3,nat) ! ! here are the local variables ! real(DP),allocatable :: bgauss(:,:),for(:,:),for_g(:,:) real(DP), external :: qe_erf, qe_erfc real(DP) :: t(3),tt,gp,gp2,sa,z1,z0,pp,cc,ss,t1,t2,z,zp,L real(DP) :: arg11,arg12,arg21,arg22,tmp,r1,r2,fx1,fy1,fz1,fx2,fy2,fz2,argmax integer :: iz,ig,it,ipol,k1,k2,k3,ng,n1,n2,n3,ng_2d complex(DP),allocatable :: vg2(:),vg2_fx(:),vg2_fy(:),vg2_fz(:),rhog3(:,:) complex(DP) :: cx1,cy1,cz1,cx2,cy2,cz2,cc1,cc2 argmax=0.9*log(huge(1.d0)) ! Map to FULL FFT mesh (dfftp%nr1x,dfftp%nr2x,dfftp%nr3) allocate(rhog3(dfftp%nr3,ngm_2d)) rhog3(:,:)=(0.d0,0.d0) do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng) + 1 IF (n3<1) n3 = n3 + dfftp%nr3 rhog3(n3,ng_2d)=aux(nl(ng)) if (gamma_only .and. n1==0 .and. n2==0) then n3 = -mill(3,ng)+1 IF(n3<1)n3=n3+dfftp%nr3 rhog3(n3,ng_2d)=aux(nlm(ng)) endif enddo L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) allocate(vg2(dfftp%nr3),vg2_fx(dfftp%nr3),vg2_fy(dfftp%nr3),vg2_fz(dfftp%nr3),bgauss(nat,1)) allocate(for_g(3,nat)) do it=1,nat bgauss(it,1)=1.d0 enddo sa=omega/L for_g(:,:)=0.d0 vg2_fx(:)=(0.d0,0.d0) vg2_fy(:)=(0.d0,0.d0) vg2_fz(:)=(0.d0,0.d0) !**** for gp!=0 ********* !$omp parallel private( k1, k2, gp2, gp, it, tt, pp, cc, ss, zp, iz, & !$omp k3, z, cx1, cy1, cz1, tmp, arg11, arg12, arg21, arg22, & !$omp t1, t2, cx2, cy2, cz2, vg2_fx, vg2_fy, vg2_fz, vg2, & !$omp r1, r2, fx1, fy1, fz1, fx2, fy2, fz2, for ) allocate(for(3,nat)) for(:,:)=0.d0 !$omp do do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) do it=1,nat IF (gamma_only) THEN tt=-fpi*upf(ityp(it))%zp/sa*2.d0 ELSE tt=-fpi*upf(ityp(it))%zp/sa ENDIF pp=-tpi*(tau(1,it)*(k1*bg(1,1)+k2*bg(1,2))+tau(2,it)*(k1*bg(2,1)+k2*bg(2,2))) cc=cos(pp) ss=sin(pp) zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cx1=(0.d0,0.d0); cy1=(0.d0,0.d0); cz1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 arg11=-gp*(z-zp) arg11=min(arg11,argmax) arg12= gp/2.d0/tmp-tmp*(z-zp) arg21= gp*(z-zp) arg21=min(arg21,argmax) arg22= gp/2.d0/tmp+tmp*(z-zp) t1=exp(arg11)*qe_erfc(arg12) t2=exp(arg21)*qe_erfc(arg22) cx1=cx1+bgauss(it,ig)*CMPLX(ss, -cc, kind=DP) & *(t1+t2)/4.d0/gp*k1 cy1=cy1+bgauss(it,ig)*CMPLX(ss, -cc, kind=DP) & *(t1+t2)/4.d0/gp*k2 cz1=cz1+bgauss(it,ig)*CMPLX(cc, ss, kind=DP) & *(t1-t2)/4.d0 enddo if (esm_bc.eq.'bc1') then cx2=(0.d0,0.d0) cy2=(0.d0,0.d0) cz2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cx2=CMPLX(ss, -cc, kind=DP)* & (exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k1 cy2=CMPLX(ss, -cc, kind=DP)* & (exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k2 cz2=CMPLX(cc, ss, kind=DP)* & (-exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))+exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cx2=CMPLX(ss, -cc, kind=DP)* & (-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k1 cy2=CMPLX(ss, -cc, kind=DP)* & (-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k2 cz2=CMPLX(cc, ss, kind=DP)* & (-exp(gp*(z+zp-2.d0*z1)))/2.d0 endif vg2_fx(iz) = tt*(cx1+cx2) vg2_fy(iz) = tt*(cy1+cy2) vg2_fz(iz) = tt*(cz1+cz2) enddo vg2(1:dfftp%nr3)=vg2_fx(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fx) vg2(1:dfftp%nr3)=vg2_fy(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fy) vg2(1:dfftp%nr3)=vg2_fz(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fz) do iz=1,dfftp%nr3 r1= dble(rhog3(iz,ng_2d)) r2=aimag(rhog3(iz,ng_2d)) fx1=dble( vg2_fx(iz)) fy1=dble( vg2_fy(iz)) fz1=dble( vg2_fz(iz)) fx2=aimag( vg2_fx(iz)) fy2=aimag( vg2_fy(iz)) fz2=aimag( vg2_fz(iz)) for(1,it)=for(1,it)-r1*fx1-r2*fx2 for(2,it)=for(2,it)-r1*fy1-r2*fy2 for(3,it)=for(3,it)-r1*fz1-r2*fz2 enddo enddo enddo !$omp critical for_g(:,:) = for_g(:,:) + for(:,:) deallocate(for) !$omp end critical !$omp end parallel !***** for gp==0******** ng_2d = imill_2d(0,0) if( ng_2d > 0 ) then vg2_fz(:)=(0.d0,0.d0) do it=1,nat tt=-fpi*upf(ityp(it))%zp/sa zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cc1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 cc1=cc1+bgauss(it,ig)*(0.5d0*qe_erf(tmp*(z-zp))) enddo if (esm_bc.eq.'bc1') then cc2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cc2=-0.5d0*(z/z1) else if (esm_bc.eq.'bc3') then cc2=-0.5d0 endif vg2_fz(iz) = tt*(cc1+cc2) enddo vg2(1:dfftp%nr3)=vg2_fz(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fz) do iz=1,dfftp%nr3 r1=dble( rhog3(iz,ng_2d)) r2=aimag(rhog3(iz,ng_2d)) fz1=dble( vg2_fz(iz)) fz2=aimag(vg2_fz(iz)) for_g(3,it)=for_g(3,it)-r1*fz1-r2*fz2 enddo enddo endif ! if( ng_2d > 0 ) deallocate(vg2,vg2_fx,vg2_fy,vg2_fz,bgauss) !***** sum short_range part and long_range part in local potential force at cartecian coordinate do it=1,nat forcelc(1,it)=forcelc(1,it)+sum(for_g(1:2,it)*bg(1,1:2))*sqrt(tpiba2)*omega*2.d0 forcelc(2,it)=forcelc(2,it)+sum(for_g(1:2,it)*bg(2,1:2))*sqrt(tpiba2)*omega*2.d0 forcelc(3,it)=forcelc(3,it)+for_g(3,it)*omega*2.d0 enddo deallocate(for_g) call setlocal() deallocate(rhog3) return end subroutine esm_force_lc !----------------------------------------------------------------------- !--------------ESM FINAL PRINTOUT SUBROUTINE---------------------------- !----------------------------------------------------------------------- ! ! Prints out vlocal and vhartree to stdout once electrons are converged ! Format: z, rho(r), v_hartree, v_local, (v_hartree + v_local) ! SUBROUTINE esm_printpot () USE kinds, ONLY : DP USE cell_base, ONLY : at, alat USE scf, ONLY : rho, vltot USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm USE fft_base, ONLY : dfftp USE io_global, ONLY : ionode, stdout USE constants, ONLY : rytoev, bohr_radius_angs ! IMPLICIT NONE ! REAL(DP) :: z1,z2,z3,z4,charge,ehart,L,area REAL(DP), ALLOCATABLE :: work1(:),work2(:,:),work3(:), work4(:,:) INTEGER :: ix,iy,iz,izz,i,k3 allocate(work1(dfftp%nnr)) allocate(work2(dfftp%nnr,nspin)) allocate(work3(dfftp%nnr)) allocate(work4(5,dfftp%nr3)) work1(:)=0.d0; work2(:,:)=0.d0; work3(:)=0.d0; work4(:,:)=0.d0 L=alat*at(3,3) area=(at(1,1)*at(2,2)-at(2,1)*at(1,2))*alat**2 CALL v_h (rho%of_g, ehart, charge, work2) work3(1:dfftp%nnr)=vltot(1:dfftp%nnr) if( nspin == 2 ) then work1(:)=rho%of_r(:,1)+rho%of_r(:,2) else work1(:)=rho%of_r(:,1) endif ! z = position along slab (A) ! rho = planar-summed charge density of slab section (e) ! v_hartree = planar-averaged hartree potential term (eV) ! v_local = planar-averaged local potential term (eV) !$omp parallel do private( iz, izz, k3, z1, z2, z3, z4, iy, ix, i ) do iz = 1, dfftp%npp(dfftp%mype+1) izz = iz + dfftp%ipp(dfftp%mype+1) k3 = izz - 1 if( k3 > dfftp%nr3/2 ) k3 = k3 - dfftp%nr3 z1=0.d0;z2=0.d0;z3=0.d0;z4=0.d0 do iy=1,dfftp%nr2 do ix=1,dfftp%nr1 i=ix+(iy-1)*dfftp%nr1+(iz-1)*dfftp%nr1*dfftp%nr2 z1=z1+work1(i)*area/dble(dfftp%nr1*dfftp%nr2) z2=z2+(work2(i,1)+work3(i))/dble(dfftp%nr1*dfftp%nr2) z3=z3+work2(i,1)/dble(dfftp%nr1*dfftp%nr2) z4=z4+work3(i)/dble(dfftp%nr1*dfftp%nr2) enddo enddo work4(1:5,izz) = (/dble(k3)/dble(dfftp%nr3)*L*bohr_radius_angs, & z1/bohr_radius_angs, z3*rytoev,z4*rytoev, & z2*rytoev/) enddo ! call mp_sum(work4, intra_bgrp_comm) ! IF ( ionode ) then write(stdout, & FMT = '(/,5x, "ESM Charge and Potential",& &/,5x, "========================",/)' ) write(stdout, 9051) write(stdout, 9052) do k3 = dfftp%nr3/2-dfftp%nr3+1, dfftp%nr3/2 iz = k3 + dfftp%nr3 + 1 if( iz > dfftp%nr3 ) iz = iz - dfftp%nr3 write(stdout,'(f9.2,f12.4,2f19.7,f18.7)') work4(1:5,iz) enddo write(stdout,*) ENDIF deallocate(work1,work2,work3,work4) 9051 FORMAT( 4x,'z (A)',3x,'Tot chg (e/A)',3x,'Avg v_hartree',8x,& &'Avg v_local',2x,'Avg v_hart+v_loc' ) 9052 FORMAT(37x,'(eV)',15x,'(eV)',14x,'(eV)',/,4x,& &'==========================================================================' ) END SUBROUTINE esm_printpot ! !----------------------------------------------------------------------- !--------------ESM SUMMARY PRINTOUT SUBROUTINE-------------------------- !----------------------------------------------------------------------- ! ! Prints summary of ESM parameters to stdout ! SUBROUTINE esm_summary () ! USE io_global, ONLY : stdout, & ionode ! IMPLICIT NONE ! WRITE( UNIT = stdout, & FMT = '(/,5x, "Effective Screening Medium Method", & &/,5x, "=================================")' ) ! WRITE( UNIT = stdout, FMT = 9051 ) esm_efield ! WRITE( UNIT = stdout, FMT = 9052 ) esm_w ! WRITE( UNIT = stdout, FMT = 9053 ) esm_nfit ! IF( ionode ) THEN ! SELECT CASE( TRIM( esm_bc ) ) ! CASE( 'pbc' ) WRITE( UNIT = stdout, & FMT = '(5x, "Ordinary Periodic Boundary Conditions")' ) CASE( 'bc1' ) WRITE( UNIT = stdout, & FMT = '(5x, "Boundary Conditions: Vacuum-Slab-Vacuum")' ) CASE( 'bc2' ) WRITE( UNIT = stdout, & FMT = '(5x, "Boundary Conditions: Metal-Slab-Metal")' ) CASE( 'bc3' ) WRITE( UNIT = stdout, & FMT = '(5x, "Boundary Conditions: Vacuum-Slab-Metal")' ) END SELECT END IF ! WRITE( stdout, * ) ! 9051 FORMAT( ' field strength (Ry/a.u.) = ', F10.2,' ') 9052 FORMAT( ' ESM offset from cell edge (a.u.) = ', F10.2,' ' ) 9053 FORMAT( ' grid points for fit at edges = ', I10,' ') END SUBROUTINE esm_summary END MODULE esm espresso-5.0.2/PW/src/write_ns.f900000644000700200004540000002153512053145627015662 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine write_ns !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE ions_base, ONLY : nat, ntyp => nsp, ityp USE lsda_mod, ONLY : nspin USE io_global, ONLY : stdout USE scf, ONLY : rho USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_U, Hubbard_J, & Hubbard_alpha, lda_plus_u_kind, Hubbard_J0, & Hubbard_beta ! implicit none ! integer :: is, na, nt, m1, m2, ldim ! counter on spin component ! counters on atoms and their type ! counters on d components integer, parameter :: ldmx = 7 complex(DP) :: f (ldmx, ldmx), vet (ldmx, ldmx) real(DP) :: lambda (ldmx), nsum, nsuma(2) WRITE (stdout,*) '--- enter write_ns ---' if ( 2 * Hubbard_lmax + 1 > ldmx ) & call errore ('write_ns', 'ldmx is too small', 1) !-- ! output of +U parameters ! write (stdout,*) 'LDA+U parameters:' if (lda_plus_u_kind.eq.0) then do nt = 1, ntyp if (Hubbard_U(nt) /= 0.d0 .or. Hubbard_alpha(nt) /= 0.d0) then if (Hubbard_J0(nt) /= 0.d0 .or. Hubbard_beta(nt) /=0.d0) then write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'J0(',nt,') =', Hubbard_J0(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'alpha(',nt,') =', Hubbard_alpha(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'beta(',nt,') =', Hubbard_beta(nt)*rytoev else write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'alpha(',nt,') =', Hubbard_alpha(nt)*rytoev end if endif enddo else do nt = 1, ntyp if (Hubbard_U(nt) /= 0.d0) then if (Hubbard_l(nt).eq.0) then write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt) * rytoev elseif (Hubbard_l(nt).eq.1) then write (stdout,'(2(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev elseif (Hubbard_l(nt).eq.2) then write (stdout,'(3(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev, & 'B(',nt,') =', Hubbard_J(2,nt)*rytoev elseif (Hubbard_l(nt).eq.3) then write (stdout,'(4(a,i3,a,f9.4,3x))') 'U (',nt,') =', Hubbard_U(nt)*rytoev, & 'J (',nt,') =', Hubbard_J(1,nt)*rytoev, & 'E2(',nt,') =', Hubbard_J(2,nt)*rytoev, & 'E3(',nt,') =', Hubbard_J(3,nt)*rytoev endif endif enddo endif !-- nsum = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt) /= 0.d0 .or. Hubbard_alpha(nt) /= 0.d0) then ldim = 2 * Hubbard_l(nt) + 1 nsuma = 0.d0 do is = 1, nspin do m1 = 1, ldim nsuma(is) = nsuma(is) + rho%ns (m1, m1, is, na) enddo nsum = nsum + nsuma(is) enddo if (nspin.eq.1) then WRITE( stdout,'("atom ",i4,3x,"Tr[ns(na)] = ",f9.5)') & na, 2.d0*nsuma(1) else WRITE( stdout,'("atom ",i4,3x,"Tr[ns(na)] (up, down, total) = ",3f9.5)') & na, nsuma(1), nsuma(2), nsuma(1) + nsuma(2) endif do is = 1, nspin do m1 = 1, ldim do m2 = 1, ldim f (m1, m2) = rho%ns (m1, m2, is, na) enddo enddo call cdiagh(ldim, f, ldmx, lambda, vet) if (nspin.ne.1) write( stdout,'(" spin ",i2)') is WRITE( stdout,*) ' eigenvalues: ' WRITE( stdout,'(7f7.3)') (lambda(m1), m1=1, ldim) WRITE( stdout,*) ' eigenvectors:' do m1 = 1, ldim WRITE( stdout,'(7f7.3)') ( REAL(vet(m1,m2))**2 + & AIMAG(vet(m1,m2))**2, m2=1, ldim ) enddo WRITE( stdout,*) ' occupations:' do m1 = 1, ldim WRITE( stdout,'(7f7.3)') ( DBLE(f(m1,m2)), m2=1, ldim ) enddo enddo if (nspin.ne.1) write(stdout,'(''atomic mag. moment = '',f12.6)') & nsuma(1) - nsuma(2) endif enddo if (nspin.eq.1) nsum = 2.d0 * nsum WRITE( stdout, '(a,1x,f11.7)') 'N of occupied +U levels =', nsum WRITE( stdout,*) '--- exit write_ns ---' return end subroutine write_ns subroutine write_ns_nc !--------------------------------- ! Noncollinear version (A. Smogunov). ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE ions_base, ONLY : nat, ntyp => nsp, ityp USE noncollin_module, ONLY : npol USE io_global, ONLY : stdout USE scf, ONLY : rho USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_alpha, & Hubbard_U, Hubbard_J ! implicit none ! integer :: is, js, i, na, nt, m1, m2, ldim integer, parameter :: ldmx = 7 complex(DP) :: f (2*ldmx, 2*ldmx), vet (2*ldmx, 2*ldmx) real(DP) :: lambda (2*ldmx), nsum, nsuma(2), ns, mx, my, mz WRITE (stdout,*) '--- enter write_ns ---' if ( 2 * Hubbard_lmax + 1 > ldmx ) & call errore ('write_ns', 'ldmx is too small', 1) !-- ! output of +U parameters ! write (stdout,*) 'LDA+U parameters:' do nt = 1, ntyp if (Hubbard_U(nt) /= 0.d0) then if (Hubbard_l(nt).eq.0) then write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt) * rytoev elseif (Hubbard_l(nt).eq.1) then write (stdout,'(2(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev elseif (Hubbard_l(nt).eq.2) then write (stdout,'(3(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev, & 'B(',nt,') =', Hubbard_J(2,nt)*rytoev elseif (Hubbard_l(nt).eq.3) then write (stdout,'(4(a,i3,a,f9.4,3x))') 'U (',nt,') =', Hubbard_U(nt)*rytoev, & 'J (',nt,') =', Hubbard_J(1,nt)*rytoev, & 'E2(',nt,') =', Hubbard_J(2,nt)*rytoev, & 'E3(',nt,') =', Hubbard_J(3,nt)*rytoev endif endif enddo !-- nsum = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt) /= 0.d0 .or. Hubbard_alpha(nt) /= 0.d0) then ldim = 2 * Hubbard_l(nt) + 1 nsuma = 0.d0 do is = 1, npol i = is**2 do m1 = 1, ldim nsuma(is) = nsuma(is) + rho%ns_nc(m1, m1, i, na) end do end do nsum = nsum + nsuma(1) + nsuma(2) WRITE( stdout,'("atom ",i4,3x,"Tr[ns(na)] (up, down, total) = ",3f9.5)') & na, nsuma(1), nsuma(2), nsuma(1) + nsuma(2) do m1 = 1, ldim do m2 = 1, ldim f(m1, m2) = rho%ns_nc(m1, m2, 1, na) f(m1, ldim+m2) = rho%ns_nc(m1, m2, 2, na) f(ldim+m1, m2) = rho%ns_nc(m1, m2, 3, na) f(ldim+m1, ldim+m2) = rho%ns_nc(m1, m2, 4, na) enddo enddo call cdiagh(2*ldim, f, 2*ldmx, lambda, vet) WRITE( stdout,*) 'eigenvalues: ' WRITE( stdout,'(14f7.3)') (lambda(m1), m1=1, 2*ldim) WRITE( stdout,*) 'eigenvectors:' do m1 = 1, 2*ldim WRITE( stdout,'(14f7.3)') ( REAL(vet(m1,m2))**2 + & AIMAG(vet(m1,m2))**2, m2=1, 2*ldim ) enddo WRITE( stdout,*) 'occupations, | n_(i1, i2)^(sigma1, sigma2) |:' do m1 = 1, 2*ldim WRITE( stdout,'(14f7.3)') ( sqrt(REAL(f(m1,m2))**2+ & AIMAG(f(m1,m2))**2), m2=1, 2*ldim) enddo !-- calculate the spin moment on +U atom ! mx = 0.d0 my = 0.d0 mz = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 mx = mx + DBLE( rho%ns_nc(m1, m1, 2, na) + rho%ns_nc(m1, m1, 3, na) ) my = my + 2.d0 * AIMAG( rho%ns_nc(m1, m1, 2, na) ) mz = mz + DBLE( rho%ns_nc(m1, m1, 1, na) - rho%ns_nc(m1, m1, 4, na) ) enddo write(stdout,'(''atomic mx, my, mz = '',3f12.6)') mx, my, mz !-- endif enddo WRITE( stdout, '(a,1x,f11.7)') 'N of occupied +U levels =', nsum WRITE( stdout,*) '--- exit write_ns ---' return end subroutine write_ns_nc espresso-5.0.2/PW/src/compute_becsum.f900000644000700200004540000003014512053145630017031 0ustar marsamoscm! ! Copyright (C) 2001-2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE compute_becsum(iflag) !---------------------------------------------------------------------------- ! ! ... calculates the becsum term ! ... this version works also for metals (gaussian spreading technique) ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : tpiba2 USE klist, ONLY : nks, nkstot, wk, xk, ngk USE gvect USE lsda_mod, ONLY : lsda, current_spin, isk USE io_files, ONLY : iunwfc, nwordwfc, iunigk USE buffers, ONLY : get_buffer USE uspp, ONLY : nkb, vkb, becsum, okvan USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic, psic_nc USE noncollin_module, ONLY : noncolin, npol USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, g2kin, ecutwfc USE paw_symmetry, ONLY : PAW_symmetrize USE paw_variables, ONLY : okpaw USE becmod, ONLY : calbec USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum USE scf, ONLY : rho ! IMPLICIT NONE INTEGER, INTENT(IN) :: iflag ! if 1 compute also the weights ! ! ... local variables ! INTEGER :: ikb, jkb, ijkb0, ih, jh, ijh, na, np ! counters on beta functions, atoms, pseudopotentials INTEGER :: is, ibnd, ik ! counter on spin polarizations ! counter on bands ! counter on k points ! ! CALL start_clock( 'compute_becsum' ) ! becsum(:,:,:) = 0.D0 ! ! ... calculates weights of Kohn-Sham orbitals used in calculation of rho ! IF (iflag==1) CALL weights ( ) ! IF (gamma_only) THEN CALL compute_becsum_gamma() ELSE CALL compute_becsum_k() ENDIF ! ... Needed for PAW: becsum has to be symmetrized so that they reflect a real integral ! in k-space, not only on the irreducible zone. For USPP there is no need to do this as ! becsums are only used to compute the density, which is symmetrized later. ! IF( okpaw ) THEN rho%bec(:,:,:) = becsum(:,:,:) #ifdef __MPI CALL mp_sum(rho%bec, inter_pool_comm) #endif CALL PAW_symmetrize(rho%bec) ENDIF ! CALL stop_clock( 'compute_becsum' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE compute_becsum_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1 ! weights REAL(DP), ALLOCATABLE :: rbecp(:,:) ! contains ! ! ALLOCATE( rbecp( nkb, nbnd ) ) ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF ( nks > 1 ) REWIND( iunigk ) ! k_loop: DO ik = 1, nks ! IF ( lsda ) current_spin = isk(ik) npw = ngk(ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! IF ( .NOT. okvan ) CYCLE k_loop ! CALL calbec( npw, vkb, evc, rbecp ) ! CALL start_clock( 'becsum' ) ! DO ibnd = 1, nbnd ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF ( ityp(na) == np ) THEN ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 *rbecp(ikb,ibnd) *rbecp(ikb,ibnd) ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * 2.D0 *rbecp(ikb,ibnd) *rbecp(jkb,ibnd) ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! END DO ! END DO ! CALL stop_clock( 'becsum' ) ! END DO k_loop ! DEALLOCATE(rbecp ) ! RETURN ! END SUBROUTINE compute_becsum_gamma ! !----------------------------------------------------------------------- SUBROUTINE compute_becsum_k() !----------------------------------------------------------------------- ! ! ... k-points version ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1 ! weights COMPLEX(DP), ALLOCATABLE :: becp(:,:), becp_nc(:,:,:) ! contains ! COMPLEX(DP), ALLOCATABLE :: becsum_nc(:,:,:,:) ! INTEGER :: js ! IF (okvan) THEN IF (noncolin) THEN ALLOCATE(becsum_nc(nhm*(nhm+1)/2,nat,npol,npol)) becsum_nc=(0.d0, 0.d0) ALLOCATE( becp_nc( nkb, npol, nbnd ) ) ELSE ALLOCATE( becp( nkb, nbnd ) ) END IF ELSE RETURN ENDIF ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! REWIND( iunigk ) ! k_loop: DO ik = 1, nks ! IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! IF (noncolin) THEN CALL calbec( npw, vkb, evc, becp_nc ) ELSE CALL calbec( npw, vkb, evc, becp ) ENDIF ! CALL start_clock( 'becsum' ) ! DO ibnd = 1, nbnd ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF (ityp(na)==np) THEN ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js)+w1 * & CONJG(becp_nc(ikb,is,ibnd)) * & becp_nc(ikb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * DBLE( CONJG( becp(ikb,ibnd) ) * & becp(ikb,ibnd) ) ! END IF ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js) + w1 * & CONJG(becp_nc(ikb,is,ibnd)) * & becp_nc(jkb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.D0 * & DBLE( CONJG( becp(ikb,ibnd) ) * & becp(jkb,ibnd) ) ENDIF ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! END DO ! END DO ! CALL stop_clock( 'becsum' ) ! END DO k_loop IF (noncolin.and.okvan) THEN DO np = 1, ntyp IF ( upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp(na)==np) THEN IF (upf(np)%has_so) THEN CALL transform_becsum_so(becsum_nc,becsum,na) ELSE CALL transform_becsum_nc(becsum_nc,becsum,na) END IF END IF END DO END IF END DO END IF ! IF (okvan) THEN IF (noncolin) THEN DEALLOCATE( becsum_nc ) DEALLOCATE( becp_nc ) ELSE DEALLOCATE( becp ) ENDIF END IF ! RETURN ! END SUBROUTINE compute_becsum_k ! END SUBROUTINE compute_becsum espresso-5.0.2/PW/src/init_at_1.f900000644000700200004540000000403012053145630015660 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine init_at_1() !----------------------------------------------------------------------- ! ! This routine computes a table with the radial Fourier transform ! of the atomic wavefunctions. ! USE kinds, ONLY : dp USE atom, ONLY : rgrid, msh USE constants, ONLY : fpi USE cell_base, ONLY : omega USE ions_base, ONLY : ntyp => nsp USE us, ONLY : tab_at, nqx, dq USE uspp_param, ONLY : upf USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! integer :: nt, nb, iq, ir, l, startq, lastq, ndm ! real(DP), allocatable :: aux (:), vchi (:) real(DP) :: vqint, pref, q call start_clock ('init_at_1') ndm = MAXVAL (msh(1:ntyp)) allocate (aux(ndm),vchi(ndm)) ! ! chiq = radial fourier transform of atomic orbitals chi ! pref = fpi/sqrt(omega) ! needed to normalize atomic wfcs (not a bad idea in general and ! necessary to compute correctly lda+U projections) call divide (intra_bgrp_comm, nqx, startq, lastq) tab_at(:,:,:) = 0.d0 do nt = 1, ntyp do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi (nb) do iq = startq, lastq q = dq * (iq - 1) call sph_bes (msh(nt), rgrid(nt)%r, q, l, aux) do ir = 1, msh(nt) vchi(ir) = upf(nt)%chi(ir,nb) * aux(ir) * rgrid(nt)%r(ir) enddo call simpson (msh(nt), vchi, rgrid(nt)%rab, vqint) tab_at (iq, nb, nt) = vqint * pref enddo endif enddo enddo #ifdef __MPI call mp_sum ( tab_at, intra_bgrp_comm ) #endif deallocate(aux ,vchi) call stop_clock ('init_at_1') return end subroutine init_at_1 espresso-5.0.2/PW/src/wfcinit.f900000644000700200004540000002123312053145627015466 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE wfcinit() !---------------------------------------------------------------------------- ! ! ... This routine computes an estimate of the starting wavefunctions ! ... from superposition of atomic wavefunctions and/or random wavefunctions. ! USE io_global, ONLY : stdout USE basis, ONLY : natomwfc, starting_wfc USE bp, ONLY : lelfield USE klist, ONLY : xk, nks, ngk USE control_flags, ONLY : io_level, lscf USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : swfcatom, lda_plus_u, U_projection USE lsda_mod, ONLY : lsda, current_spin, isk USE io_files, ONLY : nwordwfc, nwordatwfc, iunwfc, iunigk, iunsat USE buffers, ONLY : get_buffer, save_buffer USE uspp, ONLY : nkb, vkb USE wavefunctions_module, ONLY : evc USE wvfct, ONLY : nbnd, npw, current_k, igk USE wannier_new, ONLY : use_wannier ! IMPLICIT NONE ! INTEGER :: ik ! ! CALL start_clock( 'wfcinit' ) ! ! ... Needed for LDA+U ! IF ( use_wannier .OR. one_atom_occupations ) CALL orthoatwfc() IF ( lda_plus_u ) THEN IF ( U_projection == 'pseudo' ) THEN WRITE( stdout,*) 'Beta functions used for LDA+U Projector' ELSE CALL orthoatwfc() ENDIF ENDIF ! ! ... state what is going to happen ! IF ( TRIM(starting_wfc) == 'file' ) THEN ! WRITE( stdout, '(5X,"Starting wfc from file")' ) ! ELSE IF ( starting_wfc == 'atomic' ) THEN ! IF ( natomwfc >= nbnd ) THEN ! WRITE( stdout, '(5X,"Starting wfc are ",I4," atomic wfcs")' ) natomwfc ! ELSE ! WRITE( stdout, '(5X,"Starting wfc are ",I4," atomic + ", & & I4," random wfc")' ) natomwfc, nbnd-natomwfc ! END IF ! ELSE IF ( TRIM(starting_wfc) == 'atomic+random' ) THEN ! WRITE( stdout, '(5X,"Starting wfc are ",I4," randomized atomic wfcs")' ) & natomwfc ! ELSE ! WRITE( stdout, '(5X,"Starting wfc are random")' ) ! END IF ! ! ... for non-scf calculations, the starting wavefunctions are not ! ... calculated here but immediately before diagonalization ! IF ( .NOT. lscf .AND. .NOT. lelfield ) THEN ! CALL stop_clock( 'wfcinit' ) ! RETURN ! END IF ! IF ( TRIM(starting_wfc) == 'file' ) THEN ! ! ... wavefunctions are to be read from file: store wavefunction into ! ... memory if c_bands will not do it (for a single k-point); ! ... return and do nothing otherwise (c_bands will read wavefunctions) ! IF ( nks == 1 .AND. (io_level < 2) ) & CALL get_buffer ( evc, nwordwfc, iunwfc, 1 ) ! CALL stop_clock( 'wfcinit' ) ! RETURN ! END IF ! IF ( nks > 1 ) REWIND( iunigk ) ! ! ... calculate and write all starting wavefunctions to file ! DO ik = 1, nks ! ! ... various initializations: k, spin, number of PW, indices ! current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) IF ( nks > 1 ) READ( iunigk ) igk ! call g2_kin (ik) ! ! ... Calculate nonlocal pseudopotential projectors |beta> ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... LDA+U: read atomic wavefunctions for U term in Hamiltonian ! IF ( lda_plus_u .AND. (U_projection .NE. 'pseudo') ) & CALL davcio( swfcatom, nwordatwfc, iunsat, ik, - 1 ) ! ! ... calculate starting wavefunctions ! CALL init_wfc ( ik ) ! ! ... write starting wavefunctions to file ! IF ( nks > 1 .OR. (io_level > 1) .OR. lelfield ) & CALL save_buffer ( evc, nwordwfc, iunwfc, ik ) ! END DO ! CALL stop_clock( 'wfcinit' ) ! RETURN ! END SUBROUTINE wfcinit ! !---------------------------------------------------------------------------- SUBROUTINE init_wfc ( ik ) !---------------------------------------------------------------------------- ! ! ... This routine computes starting wavefunctions for k-point ik ! USE kinds, ONLY : DP USE bp, ONLY : lelfield USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp USE constants, ONLY : tpi USE cell_base, ONLY : tpiba2 USE basis, ONLY : natomwfc, starting_wfc USE gvect, ONLY : g, gstart USE klist, ONLY : xk USE wvfct, ONLY : nbnd, npw, npwx, igk, et USE uspp, ONLY : nkb, okvan USE noncollin_module, ONLY : npol USE wavefunctions_module, ONLY : evc USE random_numbers, ONLY : randy USE mp_global, ONLY : intra_bgrp_comm USE control_flags, ONLY : gamma_only ! IMPLICIT NONE ! INTEGER :: ik ! INTEGER :: ibnd, ig, ipol, n_starting_wfc, n_starting_atomic_wfc LOGICAL :: lelfield_save ! REAL(DP) :: rr, arg REAL(DP), ALLOCATABLE :: etatom(:) ! atomic eigenvalues ! COMPLEX(DP), ALLOCATABLE :: wfcatom(:,:,:) ! atomic wfcs for initialization ! ! IF ( starting_wfc(1:6) == 'atomic' ) THEN ! n_starting_wfc = MAX( natomwfc, nbnd ) n_starting_atomic_wfc = natomwfc ! ELSE IF ( starting_wfc == 'random' ) THEN ! n_starting_wfc = nbnd n_starting_atomic_wfc = 0 ! ELSE ! ! ...case 'file' should not be done here ! CALL errore ( 'init_wfc', & 'invalid value for startingwfc: ' // TRIM ( starting_wfc ) , 1 ) ! END IF ! ALLOCATE( wfcatom( npwx, npol, n_starting_wfc ) ) ! IF ( starting_wfc(1:6) == 'atomic' ) THEN ! CALL atomic_wfc( ik, wfcatom ) ! IF ( starting_wfc == 'atomic+random' .AND. & n_starting_wfc == n_starting_atomic_wfc ) THEN ! ! ... in this case, introduce a small randomization of wavefunctions ! ... to prevent possible "loss of states" ! DO ibnd = 1, n_starting_atomic_wfc ! DO ipol = 1, npol ! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig, rr, arg) DO ig = 1, npw ! rr = randy() arg = tpi * randy() ! wfcatom(ig,ipol,ibnd) = wfcatom(ig,ipol,ibnd) * & ( 1.0_DP + 0.05_DP * CMPLX( rr*COS(arg), rr*SIN(arg) ,kind=DP) ) ! END DO !$OMP END PARALLEL DO ! END DO ! END DO ! END IF ! END IF ! ! ... if not enough atomic wfc are available, ! ... fill missing wfcs with random numbers ! DO ibnd = n_starting_atomic_wfc + 1, n_starting_wfc ! DO ipol = 1, npol ! wfcatom(:,ipol,ibnd) = (0.0_dp, 0.0_dp) ! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig, rr, arg) DO ig = 1, npw ! rr = randy() arg = tpi * randy() ! wfcatom(ig,ipol,ibnd) = & CMPLX( rr*COS( arg ), rr*SIN( arg ) ,kind=DP) / & ( ( xk(1,ik) + g(1,igk(ig)) )**2 + & ( xk(2,ik) + g(2,igk(ig)) )**2 + & ( xk(3,ik) + g(3,igk(ig)) )**2 + 1.0_DP ) END DO !$OMP END PARALLEL DO ! END DO ! END DO ! ! ... Diagonalize the Hamiltonian on the basis of atomic wfcs ! ALLOCATE( etatom( n_starting_wfc ) ) ! ! ... Allocate space for ! CALL allocate_bec_type ( nkb, n_starting_wfc, becp, intra_bgrp_comm ) ! ! ... the following trick is for electric fields with Berry's phase: ! ... by setting lelfield = .false. one prevents the calculation of ! ... electric enthalpy in the Hamiltonian (cannot be calculated ! ... at this stage: wavefunctions at previous step are missing) ! lelfield_save = lelfield lelfield = .FALSE. ! CALL rotate_wfc ( npwx, npw, n_starting_wfc, gstart, & nbnd, wfcatom, npol, okvan, evc, etatom ) ! lelfield = lelfield_save ! ! ... copy the first nbnd eigenvalues ! ... eigenvectors are already copied inside routine rotate_wfc ! et(1:nbnd,ik) = etatom(1:nbnd) ! CALL deallocate_bec_type ( becp ) DEALLOCATE( etatom ) DEALLOCATE( wfcatom ) ! RETURN ! END SUBROUTINE init_wfc espresso-5.0.2/PW/src/average_pp.f900000644000700200004540000001075012053145630016130 0ustar marsamoscm! ! Copyright (C) 2005-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE average_pp ( ntyp ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE atom, ONLY : rgrid USE uspp_param, ONLY : upf ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ntyp ! INTEGER :: nt, nb, nbe, ind, ind1, l REAL(DP) :: vionl ! ! DO nt = 1, ntyp ! IF ( upf(nt)%has_so ) THEN ! IF ( upf(nt)%tvanp ) & CALL errore( 'average_pp', 'FR-PP please use lspinorb=.true.', 1 ) ! nbe = 0 ! DO nb = 1, upf(nt)%nbeta ! nbe = nbe + 1 ! IF ( upf(nt)%lll(nb) /= 0 .AND. & ABS( upf(nt)%jjj(nb) - upf(nt)%lll(nb) - 0.5D0 ) < 1.D-7 ) & nbe = nbe - 1 END DO ! upf(nt)%nbeta = nbe ! nbe = 0 ! DO nb = 1, upf(nt)%nbeta ! nbe = nbe + 1 ! l = upf(nt)%lll(nbe) ! IF ( l /= 0 ) THEN ! IF (ABS(upf(nt)%jjj(nbe)-upf(nt)%lll(nbe)+0.5d0) < 1.d-7) THEN IF ( ABS( upf(nt)%jjj(nbe+1)-upf(nt)%lll(nbe+1)-0.5d0 ) & > 1.d-7 ) call errore('average_pp','wrong beta functions',1) ind=nbe+1 ind1=nbe ELSE IF (ABS(upf(nt)%jjj(nbe+1)-upf(nt)%lll(nbe+1)+0.5d0) > 1.d-7) & call errore('average_pp','wrong beta functions',2) ind=nbe ind1=nbe+1 ENDIF ! vionl = ( ( l + 1.D0 ) * upf(nt)%dion(ind,ind) + & l * upf(nt)%dion(ind1,ind1) ) / ( 2.D0 * l + 1.D0 ) ! upf(nt)%beta(1:rgrid(nt)%mesh,nb) = 1.D0 / ( 2.D0 * l + 1.D0 ) * & ( ( l + 1.D0 ) * SQRT( upf(nt)%dion(ind,ind) / vionl ) * & upf(nt)%beta(1:rgrid(nt)%mesh,ind) + & l * SQRT( upf(nt)%dion(ind1,ind1) / vionl ) * & upf(nt)%beta(1:rgrid(nt)%mesh,ind1) ) ! upf(nt)%dion(nb,nb) = vionl ! nbe = nbe + 1 ! ELSE ! upf(nt)%beta(1:rgrid(nt)%mesh,nb) = & upf(nt)%beta(1:rgrid(nt)%mesh,nbe) ! upf(nt)%dion(nb,nb) = upf(nt)%dion(nbe,nbe) ! END IF ! upf(nt)%lll(nb)=upf(nt)%lll(nbe) ! END DO ! nbe = 0 ! DO nb = 1, upf(nt)%nwfc ! nbe = nbe + 1 ! IF ( upf(nt)%lchi(nb) /= 0 .AND. & ABS(upf(nt)%jchi(nb)-upf(nt)%lchi(nb)-0.5D0 ) < 1.D-7 ) & nbe = nbe - 1 ! END DO ! upf(nt)%nwfc = nbe ! nbe = 0 ! do nb = 1, upf(nt)%nwfc ! nbe = nbe + 1 ! l = upf(nt)%lchi(nbe) ! IF ( l /= 0 ) THEN ! IF (ABS(upf(nt)%jchi(nbe)-upf(nt)%lchi(nbe)+0.5d0) < 1.d-7) THEN IF ( ABS(upf(nt)%jchi(nbe+1)-upf(nt)%lchi(nbe+1)-0.5d0) > & 1.d-7) call errore('average_pp','wrong chi functions',3) ind=nbe+1 ind1=nbe ELSE IF ( ABS(upf(nt)%jchi(nbe+1)-upf(nt)%lchi(nbe+1)+0.5d0) > & 1.d-7) call errore('average_pp','wrong chi functions',4) ind=nbe ind1=nbe+1 END IF ! upf(nt)%chi(1:rgrid(nt)%mesh,nb) = & ((l+1.D0) * upf(nt)%chi(1:rgrid(nt)%mesh,ind)+ & l * upf(nt)%chi(1:rgrid(nt)%mesh,ind1)) / ( 2.D0 * l + 1.D0 ) ! nbe = nbe + 1 ! ELSE ! upf(nt)%chi(1:rgrid(nt)%mesh,nb) = upf(nt)%chi(1:rgrid(nt)%mesh,nbe) ! END IF ! upf(nt)%lchi(nb)= upf(nt)%lchi(nbe) ! END DO ! END IF ! upf(nt)%has_so = .FALSE. ! END DO ! END SUBROUTINE average_pp espresso-5.0.2/PW/src/transform_qq_so.f900000644000700200004540000000360212053145630017232 0ustar marsamoscm ! Copyright (C) 2012 Quantum-Espresso group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE transform_qq_so(qq,qq_so) !---------------------------------------------------------------------- ! ! USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp USE uspp_param, ONLY : upf, nhm, nh USE spin_orb, ONLY : lspinorb, fcoef ! implicit none ! ! here a few local variables ! integer :: nt, ih, jh, kh, lh, ijs, is1, is2, is complex(DP) :: qq(nhm,nhm,ntyp), qq_so(nhm,nhm,4,ntyp) qq_so=(0.0_DP, 0.0_DP) DO nt = 1, ntyp IF ( upf(nt)%tvanp ) THEN IF (upf(nt)%has_so) THEN DO ih=1,nh(nt) DO jh=1,nh(nt) DO kh=1,nh(nt) DO lh=1,nh(nt) ijs=0 DO is1=1,2 DO is2=1,2 ijs=ijs+1 DO is=1,2 qq_so(kh,lh,ijs,nt) = qq_so(kh,lh,ijs,nt) & + qq(ih,jh,nt)*fcoef(kh,ih,is1,is,nt)& *fcoef(jh,lh,is,is2,nt) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ELSE DO ih = 1, nh (nt) DO jh = ih, nh (nt) IF (lspinorb) THEN qq_so (ih, jh, 1, nt) = qq (ih, jh, nt) qq_so (jh, ih, 1, nt) = qq_so (ih, jh, 1, nt) qq_so (ih, jh, 4, nt) = qq_so (ih, jh, 1, nt) qq_so (jh, ih, 4, nt) = qq_so (ih, jh, 4, nt) ENDIF ENDDO ENDDO ENDIF ENDIF ENDDO RETURN END SUBROUTINE transform_qq_so espresso-5.0.2/PW/src/symmetrize_at.f900000644000700200004540000000712112053145627016717 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine symmetrize_at(nsym, s, invs, ft, irt, nat, tau, at, bg, alat, omega) !----------------------------------------------------------------------- ! ! force atomic coordinates to have the symmetry of a given point group ! do the same for ! USE io_global, ONLY : stdout USE cellmd, ONLY: at_old, lmovecell USE kinds implicit none ! ! input variables ! integer, intent(in) :: nsym, s(3,3,48), invs(48), nat, irt (48, nat) real(DP), intent(in) :: ft (3, 48) real(DP), intent(inout) :: tau (3, nat), at (3, 3), bg (3, 3), alat, omega ! ! local variables ! integer :: na, icar, ipol, jpol, kpol, lpol, irot real(DP) , allocatable :: xau (:,:) ! atomic coordinates in crystal axis real(DP) :: work, bg_old(3,3), sat(3,3), wrk(3,3), ba(3,3) ! allocate(xau(3,nat)) ! ! Compute the coordinates of each atom in the basis of ! the direct lattice vectors ! xau = tau tau = 0.d0 call cryst_to_cart( nat, xau, bg, -1 ) do irot = 1, nsym do na = 1, nat do kpol = 1, 3 work = s (1, kpol, irot) * xau (1, na) + & s (2, kpol, irot) * xau (2, na) + & s (3, kpol, irot) * xau (3, na) - & ft(kpol,irot) tau (kpol, irt(irot,na)) = tau (kpol, irt(irot,na)) + work & - nint(work-xau(kpol,irt(irot,na))) enddo enddo enddo tau (:,:) = tau(:,:)/nsym ! ! If the cell is moving then the lattice vectors has to be ! symmetrized as well ! if (lmovecell) then CALL recips( at_old(1,1), at_old(1,2), at_old(1,3), & bg_old(1,1), bg_old(1,2), bg_old(1,3) ) do ipol=1,3 do jpol=1,3 ba(ipol,jpol) = bg_old(1,ipol) * at(1,jpol) + & bg_old(2,ipol) * at(2,jpol) + & bg_old(3,ipol) * at(3,jpol) end do end do at = 0.d0 ! ! at(i) = 1/nsym sum_S at_old(m) S(l,m) invS(i,k) ! do irot=1,nsym do icar = 1, 3 do lpol = 1, 3 sat(icar,lpol) = at_old(icar,1) * s(lpol,1,irot) & + at_old(icar,2) * s(lpol,2,irot) & + at_old(icar,3) * s(lpol,3,irot) end do end do do icar = 1, 3 do kpol =1, 3 wrk(icar,kpol) = sat(icar,1) * ba(1,kpol) & + sat(icar,2) * ba(2,kpol) & + sat(icar,3) * ba(3,kpol) end do end do do icar = 1, 3 do ipol =1, 3 at(icar,ipol) = at(icar,ipol) & + wrk(icar,1) * s(ipol,1,invs(irot)) & + wrk(icar,2) * s(ipol,2,invs(irot)) & + wrk(icar,3) * s(ipol,3,invs(irot)) end do end do end do at(:,:) = at(:,:) / nsym CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) end if ! ! deallocate work space ! deallocate (xau) ! call cryst_to_cart(nat, tau, at, 1) write (stdout,*) " SYMMETRIZED ATOMIC COORDINATES " call output_tau(lmovecell, .FALSE.) ! return end subroutine symmetrize_at espresso-5.0.2/PW/src/dqvan2.f900000644000700200004540000001172112053145627015217 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine dqvan2 (ngy, ih, jh, np, qmod, dqg, ylmk0, dylmk0, ipol) !----------------------------------------------------------------------- ! ! This routine computes the derivatives of the fourier transform of ! the Q function needed in stress assuming that the radial fourier ! trasform is already computed and stored in table qrad. ! ! The formula implemented here is ! ! dq(g,l,k) = sum_lm (-i)^l ap(lm,l,k) * ! ( yr_lm(g^) dqrad(g,l,l,k) + dyr_lm(g^) qrad(g,l,l,k)) ! ! here the dummy variables ! USE kinds, ONLY: DP USE gvect, ONLY: g USE us, ONLY: dq, qrad USE uspp_param, ONLY: lmaxq, nbetam USE uspp, ONLY: nlx, lpl, lpx, ap, indv, nhtol, nhtolm implicit none integer :: ngy, ih, jh, np, ipol ! input: the number of G vectors to compute ! input: the first index of Q ! input: the second index of Q ! input: the number of the pseudopotential ! input: the polarization of the derivative real(DP) :: ylmk0 (ngy, lmaxq * lmaxq), dylmk0 (ngy, lmaxq * lmaxq), & qmod (ngy) ! the spherical harmonics ! the spherical harmonics derivetives ! input: moduli of the q+g vectors complex(DP) :: dqg (ngy) ! output: the fourier transform of interest ! ! here the local variables ! complex(DP) :: sig ! (-i)^L integer :: nb, mb, ijv, ivl, jvl, ig, lp, l, lm, i0, i1, i2, i3 ! the atomic index corresponding to ih ! the atomic index corresponding to jh ! combined index (nb,mb) ! the lm corresponding to ih ! the lm corresponding to jh ! counter on g vectors ! the actual LM ! the angular momentum L ! the possible LM's compatible with ih,j ! counters for interpolation table real(DP) :: sixth, dqi, qm, px, ux, vx, wx, uvx, pwx, work, work1, qm1 ! 1 divided by six ! 1 divided dq ! qmod/dq ! measures for interpolation table ! auxiliary variables for intepolation ! auxiliary variable ! auxiliary variable ! ! compute the indices which correspond to ih,jh ! sixth = 1.d0 / 6.d0 dqi = 1 / dq nb = indv (ih, np) mb = indv (jh, np) if (nb.ge.mb) then ijv = nb * (nb - 1) / 2 + mb else ijv = mb * (mb - 1) / 2 + nb endif ivl = nhtolm (ih, np) jvl = nhtolm (jh, np) if (nb > nbetam .OR. mb > nbetam) & call errore (' dqvan2 ', ' wrong dimensions (1)', MAX(nb,mb)) if (ivl > nlx .OR. jvl > nlx) & call errore (' dqvan2 ', ' wrong dimensions (2)', MAX(ivl,jvl)) dqg(:) = (0.d0,0.d0) ! ! and make the sum over the non zero LM ! do lm = 1, lpx (ivl, jvl) lp = lpl (ivl, jvl, lm) ! ! extraction of angular momentum l from lp: ! if (lp.eq.1) then l = 1 elseif ( (lp.ge.2) .and. (lp.le.4) ) then l = 2 elseif ( (lp.ge.5) .and. (lp.le.9) ) then l = 3 elseif ( (lp.ge.10) .and. (lp.le.16) ) then l = 4 elseif ( (lp.ge.17) .and. (lp.le.25) ) then l = 5 elseif ( (lp.ge.26) .and. (lp.le.36) ) then l = 6 elseif ( (lp.ge.37) .and. (lp.le.49) ) then l = 7 else call errore (' dqvan2 ', ' lp.gt.49 ', lp) endif sig = (0.d0, -1.d0) ** (l - 1) sig = sig * ap (lp, ivl, jvl) ! qm1 = -1.0_dp ! any number smaller than qmod(1) ! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(qm,px,ux,vx,wx,i0,i1,i2,i3,uvx,pwx,work,work1) do ig = 1, ngy ! ! calculate quantites depending on the module of G only when needed ! #if !defined(__OPENMP) IF ( ABS( qmod(ig) - qm1 ) > 1.0D-6 ) THEN #endif qm = qmod (ig) * dqi px = qm - int (qm) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qm + 1 i1 = qm + 2 i2 = qm + 3 i3 = qm + 4 uvx = ux * vx * sixth pwx = px * wx * 0.5d0 work = qrad (i0, ijv, l, np) * uvx * wx + & qrad (i1, ijv, l, np) * pwx * vx - & qrad (i2, ijv, l, np) * pwx * ux + & qrad (i3, ijv, l, np) * px * uvx work1 = - qrad(i0, ijv, l, np) * (ux*vx + vx*wx + ux*wx) * sixth & + qrad(i1, ijv, l, np) * (wx*vx - px*wx - px*vx) * 0.5d0 & - qrad(i2, ijv, l, np) * (wx*ux - px*wx - px*ux) * 0.5d0 & + qrad(i3, ijv, l, np) * (ux*vx - px*ux - px*vx) * sixth work1 = work1 * dqi #if !defined(__OPENMP) qm1 = qmod(ig) END IF #endif dqg (ig) = dqg (ig) + sig * dylmk0 (ig, lp) * work if (qmod (ig) > 1.d-9) dqg (ig) = dqg (ig) + & sig * ylmk0 (ig, lp) * work1 * g (ipol, ig) / qmod (ig) enddo !$OMP END PARALLEL DO enddo return end subroutine dqvan2 espresso-5.0.2/PW/src/transform_becsum_so.f900000644000700200004540000000627312053145627020104 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE transform_becsum_so(becsum_nc,becsum,na) !---------------------------------------------------------------------------- ! ! This routine multiply becsum_nc by the identity and the Pauli ! matrices, rotate it as appropriate for the spin-orbit case ! and saves it in becsum for the calculation of ! augmentation charge and magnetization. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE lsda_mod, ONLY : nspin USE uspp, ONLY : ijtoh USE noncollin_module, ONLY : npol, nspin_mag USE spin_orb, ONLY : fcoef, domag ! IMPLICIT NONE COMPLEX(DP) :: becsum_nc(nhm*(nhm+1)/2,nat,npol,npol) REAL(DP) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag) INTEGER :: na ! ! ... local variables ! INTEGER :: ih, jh, lh, kh, ijh, np, is1, is2 COMPLEX(DP) :: fac INTEGER :: ijh_l LOGICAL :: same_lj np=ityp(na) DO ih = 1, nh(np) DO jh = 1, nh(np) ijh=ijtoh(ih,jh,np) DO kh = 1, nh(np) IF (same_lj(kh,ih,np)) THEN DO lh=1,nh(np) IF (same_lj(lh,jh,np)) THEN ijh_l=ijtoh(kh,lh,np) DO is1=1,npol DO is2=1,npol IF (kh <= lh) THEN fac=becsum_nc(ijh_l,na,is1,is2) ELSE fac=CONJG(becsum_nc(ijh_l,na,is2,is1)) ENDIF becsum(ijh,na,1)=becsum(ijh,na,1) + fac * & (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,1,is2,np) + & fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,2,is2,np) ) IF (domag) THEN becsum(ijh,na,2)=becsum(ijh,na,2)+fac * & (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,2,is2,np) +& fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,1,is2,np) ) becsum(ijh,na,3)=becsum(ijh,na,3)+fac*(0.d0,-1.d0)*& (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,2,is2,np) - & fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,1,is2,np) ) becsum(ijh,na,4)=becsum(ijh,na,4) + fac * & (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,1,is2,np) - & fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,2,is2,np) ) END IF END DO END DO END IF END DO END IF END DO END DO END DO ! RETURN END SUBROUTINE transform_becsum_so FUNCTION same_lj(ih,jh,np) USE uspp, ONLY : nhtol, nhtoj, indv IMPLICIT NONE LOGICAL :: same_lj INTEGER :: ih, jh, np same_lj = ((nhtol(ih,np)==nhtol(jh,np)).AND. & (ABS(nhtoj(ih,np)-nhtoj(jh,np))<1.d8).AND. & (indv(ih,np)==indv(jh,np)) ) RETURN END FUNCTION same_lj espresso-5.0.2/PW/src/a2fmod.f900000644000700200004540000000344012053145630015165 0ustar marsamoscm! ! Copyright (C) 2006 Malgorzata Wierbowska and Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE a2F ! ! This module contains a routine saving variables needed for the ! electron-phonon calculation (new algorithm implemeted by MW) ! USE kinds, ONLY : DP ! LOGICAL :: la2F = .FALSE. ! PRIVATE PUBLIC :: la2F, a2Fsave CONTAINS ! SUBROUTINE a2Fsave USE kinds, ONLY : DP USE klist, ONLY : nks, nkstot, xk, wk USE ions_base, ONLY : nat USE wvfct, ONLY : et, nbnd USE start_k, ONLY : nk1, nk2, nk3 USE symm_base, ONLY : s, nsym, irt USE io_global, ONLY : ionode USE io_files, ONLY : seqopn implicit none ! INTEGER :: iuna2Fsave = 40, i, j, ik, ns, na logical :: exst ! ! parallel case: only first node writes IF ( ionode ) THEN ! CALL seqopn( iuna2Fsave, 'a2Fsave', 'FORMATTED', exst ) !=========================================== ! WRITE( iuna2Fsave, * ) nbnd, nkstot WRITE( iuna2Fsave, * ) et WRITE( iuna2Fsave, * ) ((xk(i,ik), i=1,3), ik=1,nkstot) WRITE( iuna2Fsave, * ) wk(1:nkstot) WRITE( iuna2Fsave, * ) nk1, nk2, nk3 ! WRITE( iuna2Fsave, * ) nsym do ns=1,nsym WRITE( iuna2Fsave, * ) ((s(i,j,ns),j=1,3),i=1,3) enddo WRITE( iuna2Fsave, * ) ((irt(ns,na),ns=1,nsym),na=1,nat) ! CLOSE( UNIT = iuna2Fsave, STATUS = 'KEEP' ) ! END IF ! RETURN END SUBROUTINE a2Fsave END MODULE a2F espresso-5.0.2/PW/src/divide_class.f900000644000700200004540000020307112053145627016456 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------------- SUBROUTINE divide_class(code_group,nrot,smat,nclass,nelem,elem,which_irr) !----------------------------------------------------------------------------- ! ! This subroutine receives as input a set of nrot 3x3 matrices smat, which ! are assumed to be the operations of the point group given by code_group. ! smat are in cartesian coordinates. ! This routine divides the group in classes and find: ! ! nclass the number of classes of the group ! nelem(iclass) for each class, the number of elements of the class ! elem(i,iclass) 10) ax_save(:,which_irr(iclass))=ax(:) ELSEIF (ts==2) THEN which_irr(iclass)=5 ENDIF ENDDO ! ! Otherwise choose the first free axis ! DO iclass=2,nclass IF (which_irr(iclass)==0) THEN ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==4) THEN DO i=1,3 IF (done_ax(i)) THEN which_irr(iclass)=i+1 done_ax(i)=.FALSE. GOTO 100 END IF END DO 100 CONTINUE CALL versor(smat(1,1,elem(1,iclass)),ax) ax_save(:,which_irr(iclass))=ax(:) ENDIF ENDIF ENDDO ! ! Finally it orders the mirror planes. The perpendicular to the plane ! must be parallel to one of the C_2 axis. ! ! DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==5) THEN CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) DO i=2,4 IF (is_parallel(ax,ax_save(1,i))) which_irr(iclass)=i+4 ENDDO END IF IF (which_irr(iclass)==0) CALL errore('divide_class',& 'something wrong D_2h',1) END DO ELSEIF (code_group==21) THEN ! ! D_3h ! IF (nclass /= 6) CALL errore('divide_class','Wrong classes for D_3h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN which_irr(iclass)=2 ELSE IF (ts==4) THEN which_irr(iclass)=3 ELSE IF (ts==5) THEN IF (nelem(iclass)>1) THEN which_irr(iclass)=6 ELSE which_irr(iclass)=4 END IF ELSE IF (ts==6) THEN which_irr(iclass)=5 END IF END DO ELSEIF (code_group==22) THEN ! ! D_4h ! ! ! First search the order 4 axis ! IF (nclass /= 10) CALL errore('divide_class','Wrong classes for D_4h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN which_irr(iclass)=2 CALL versor(smat(1,1,elem(1,iclass)),ax) axis=0 DO ipol=1,3 IF (is_axis(ax,ipol)) axis=ipol ENDDO IF (axis==0) call errore('divide_class','unknown D_4h axis ',1) ENDIF END DO DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==4) THEN which_irr(iclass)=0 CALL versor(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=3 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=4 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=5 END IF ELSEIF (ts==2) THEN which_irr(iclass)=6 ELSEIF (ts==5) THEN which_irr(iclass)=0 CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=8 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=9 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=10 END IF ELSEIF (ts==6) THEN which_irr(iclass)=7 END IF END DO ELSEIF (code_group==23) THEN ! ! D_6h ! IF (nclass /= 12) CALL errore('divide_class','Wrong classes for D_6h',1) first=.TRUE. first1=.TRUE. DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN ars=angle_rot(smat(1,1,elem(1,iclass))) IF ((ABS(ars-60.d0)=0. In the xy plane the axis is in the y>0 region and the positive ! x axis is taken for z=0 and y=0. ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: smat(3,3), ax(3) REAL(DP), PARAMETER :: eps=1.d-7 REAL(DP) :: a1(3), norm INTEGER :: ipol, jpol, tipo_sym, ts ! ! Check if it is a 180 rotation ! ts=tipo_sym(smat) IF (ts/=3.and.ts/=4.and.ts/=6) & call errore('versor','called in the wrong case',1) IF (ts==4) THEN ! ! First the case where the axis is parallel to a coordinate axis ! ax=0.d0 DO ipol=1,3 IF (ABS(smat(ipol,ipol)-1.d0) < eps ) ax(ipol)=1.d0 END DO norm=sqrt(ax(1)**2+ax(2)**2+ax(3)**2) IF (ABS(norm)>eps) RETURN ! ! then the general case ! DO ipol=1,3 ax(ipol)=sqrt((smat(ipol,ipol)+1.d0)/2.d0) END DO DO ipol=1,3 DO jpol=ipol+1,3 IF (ABS(ax(ipol)*ax(jpol))>eps) THEN ax(ipol)=0.5d0*smat(ipol,jpol)/ax(jpol) END IF END DO END DO RETURN END IF ! ! It is not a 180 rotation: compute the rotation axis ! a1(1) =-smat(2,3)+smat(3,2) a1(2) =-smat(3,1)+smat(1,3) a1(3) =-smat(1,2)+smat(2,1) ! ! The direction of the axis is arbitrarily chosen ! IF (a1(3) < -eps ) THEN a1=-a1 ELSEIF (abs(a1(3))eps) THEN sint=SIGN(sint,a1(1)/ax(1)) ELSEIF (ABS(a1(2))>eps) THEN sint=SIGN(sint,a1(2)/ax(2)) ELSEIF (ABS(a1(3))>eps) THEN sint=SIGN(sint,a1(3)/ax(3)) END IF ! ! Compute the cos of the angle ! ax=a1/(2.d0*sint) IF (ABS(ax(1)**2-1.d0)>eps) THEN cost=(smat(1,1)-ax(1)**2)/(1.d0-ax(1)**2) ELSE IF (ABS(ax(2)**2-1.d0)>eps) THEN cost=(smat(2,2)-ax(2)**2)/(1.d0-ax(2)**2) ELSE IF (ABS(ax(3)**2-1.d0)>eps) THEN cost=(smat(3,3)-ax(3)**2)/(1.d0-ax(3)**2) END IF IF (ABS(sint**2+cost**2-1.d0) > eps ) & CALL errore('angle_rot','problem with the matrix',1) angle_rot1=ASIN(sint)*180.d0/pi IF (angle_rot1 < 0.d0) THEN IF (cost < 0.d0) THEN angle_rot1=-angle_rot1+180.d0 ELSE angle_rot1=360.d0+angle_rot1 ENDIF ELSE IF (cost < 0.d0) angle_rot1=-angle_rot1+180.d0 ENDIF angle_rot=angle_rot1 RETURN END FUNCTION angle_rot !----------------------------------------------------------------------------- FUNCTION angle_rot_s(smat) !----------------------------------------------------------------------------- ! ! This subroutine receives an improper rotation matrix and determines the ! rotation angle. ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: smat(3,3) REAL(DP) :: aux_mat(3,3) REAL(DP) :: angle_rot, angle_rot_s aux_mat=-smat angle_rot_s=mod(angle_rot(aux_mat)+180.0_DP,360.0_DP) RETURN END FUNCTION angle_rot_s !----------------------------------------------------------------------------- SUBROUTINE set_irr_rap(code_group,nclass_ref,char_mat,name_rap, & name_class,ir_ram) !----------------------------------------------------------------------------- ! ! This subroutine collects the character tables of the 32 crystallographic ! point groups. ! Various names have been used in the litterature to identify ! the irreducible representations. Several equivalent names are ! collected in this routine. The first name is taken ! from the book of P.W. Atkins, M.S. Child, and C.S.G. Phillips, ! "Tables for group theory". ! D, G, L, S are used for Delta, Gamma, Lambda and Sigma. ! Representations which correspond to infrared or raman active modes ! are identified with the string in ir_ram: I (infrared active), ! R (Raman active), I+R (Infrared and Raman active). ! ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nclass_ref, & ! Output: number of irreducible representation code_group ! Input: code of the group CHARACTER(LEN=15) :: name_rap(12) ! Output: name of the representations CHARACTER(LEN=5) :: name_class(12) ! Output: name of the classes CHARACTER(LEN=3) :: ir_ram(12) COMPLEX(DP) :: char_mat(12,12) ! Output: character matrix REAL(DP) :: sqr3d2 sqr3d2=SQRT(3.d0)*0.5d0 char_mat=(1.d0,0.d0) name_class(1)="E " ir_ram=" " IF (code_group==1) THEN ! ! C_1 ! nclass_ref=1 name_rap(1)="A " ir_ram(1)="I+R" ELSEIF (code_group==2) THEN ! ! C_i ! nclass_ref=2 name_class(2)="i " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="A_u " ir_ram(2)="I" char_mat(2,2)=(-1.d0,0.d0) ELSEIF (code_group==3) THEN ! ! C_s ! nclass_ref=2 name_class(2)="s " name_rap(1)="A' " ir_ram(1)="I+R" name_rap(2)="A'' " ir_ram(2)="I+R" char_mat(2,2)=(-1.d0,0.d0) ELSEIF (code_group==4) THEN ! ! C_2 ! nclass_ref=2 name_class(2)="C2 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="B " ir_ram(2)="I+R" char_mat(2,2)=(-1.d0,0.d0) ELSEIF (code_group==5) THEN ! ! C_3 ! nclass_ref=3 name_class(2)="C3 " name_class(3)="C3^2 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="E " ir_ram(2)="I+R" char_mat(2,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E* " ir_ram(3)="I+R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) ELSEIF (code_group==6) THEN ! ! C_4 ! nclass_ref=4 name_class(2)="C4 " name_class(3)="C2 " name_class(4)="C4^3 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="B " ir_ram(2)="R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="E " ir_ram(3)="I+R" char_mat(3,2)=( 0.d0,1.d0) char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=( 0.d0,-1.d0) name_rap(4)="E* " ir_ram(4)="I+R" char_mat(4,2)=( 0.d0,-1.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,4)=( 0.d0,1.d0) ELSEIF (code_group==7) THEN ! ! C_6 ! nclass_ref=6 name_class(2)="C6 " name_class(3)="C3 " name_class(4)="C2 " name_class(5)="C3^2 " name_class(6)="C6^5 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="B " char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="E_1 " ir_ram(3)="I+R" char_mat(3,2)=CMPLX( 0.5d0,sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) name_rap(4)="E_1*" ir_ram(4)="I+R" char_mat(4,2)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(4,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(4,6)=CMPLX( 0.5d0,sqr3d2,kind=DP) name_rap(5)="E_2 " ir_ram(5)="R" char_mat(5,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(6)="E_2*" ir_ram(6)="R" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(6,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,6)=CMPLX(-0.5d0,sqr3d2,kind=DP) ELSEIF (code_group==8) THEN ! ! D_2 ! nclass_ref=4 name_class(2)="C2z " name_class(3)="C2y " name_class(4)="C2x " name_rap(1)="A " ir_ram(1)="R" name_rap(2)="B_1 " ir_ram(2)="I+R" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="B_2 " ir_ram(3)="I+R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) name_rap(4)="B_3 " ir_ram(4)="I+R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) ELSEIF (code_group==9) THEN ! ! D_3 ! nclass_ref=3 name_class(2)="2C3 " name_class(3)="3C2' " name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " ir_ram(2)="I" char_mat(2,3)=(-1.d0,0.d0) name_rap(3)="E " ir_ram(3)="I+R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) ELSEIF (code_group==10) THEN ! ! D_4 ! nclass_ref=5 name_class(2)="2C4 " name_class(3)="C2 " name_class(4)="2C2' " name_class(5)="2C2''" name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " ir_ram(2)="I" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="B_1 " ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) name_rap(4)="B_2 " ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) name_rap(5)="E " ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) ELSEIF (code_group==11) THEN ! ! D_6 ! nclass_ref=6 name_class(2)="2C6 " name_class(3)="2C3 " name_class(4)="C2 " name_class(5)="3C2' " name_class(6)="3C2''" name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " ir_ram(2)="I" char_mat(2,5)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="B_1 " char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) name_rap(4)="B_2 " char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="E_1 " ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-2.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 0.d0,0.d0) name_rap(6)="E_2 " ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=( 2.d0,0.d0) char_mat(6,5)=( 0.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==12) THEN ! ! C_2v ! nclass_ref=4 name_class(2)="C2 " name_class(3)="s_xz " name_class(4)="s_yz " name_rap(1)="A_1 D_1 S_1" ir_ram(1)="I+R" name_rap(2)="A_2 D_2 S_2" ir_ram(2)="R" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="B_1 D_3 S_3" ir_ram(3)="I+R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) name_rap(4)="B_2 D_4 S_4" ir_ram(4)="I+R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) ELSEIF (code_group==13) THEN ! ! C_3v ! nclass_ref=3 name_class(2)="2C3 " name_class(3)="3s_v " name_rap(1)="A_1 L_1" ir_ram(1)="I+R" name_rap(2)="A_2 L_2" char_mat(2,3)=(-1.d0,0.d0) name_rap(3)="E L_3" ir_ram(3)="I+R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) ELSEIF (code_group==14) THEN ! ! C_4v ! nclass_ref=5 name_class(2)="2C4 " name_class(3)="C2 " name_class(4)="2s_v " name_class(5)="2s_d " name_rap(1)="A_1 G_1 D_1" ir_ram(1)="I+R" name_rap(2)="A_2 G_2 D_1'" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="B_1 G_3 D_2" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) name_rap(4)="B_2 G_4 D_2'" ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) name_rap(5)="E G_5 D_5" ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) ELSEIF (code_group==15) THEN ! ! C_6v ! nclass_ref=6 name_class(2)="2C6 " name_class(3)="2C3 " name_class(4)="C2 " name_class(5)="3s_v " name_class(6)="3s_d " name_rap(1)="A_1 " ir_ram(1)="I+R" name_rap(2)="A_2 " char_mat(2,5)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="B_1 " char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) name_rap(4)="B_2 " char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="E_1 " ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-2.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 0.d0,0.d0) name_rap(6)="E_2 " ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=( 2.d0,0.d0) char_mat(6,5)=( 0.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==16) THEN ! ! C_2h ! nclass_ref=4 name_class(2)="C2 " name_class(3)="i " name_class(4)="s_h " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_g " ir_ram(2)="R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="A_u " ir_ram(3)="I" char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) name_rap(4)="B_u " ir_ram(4)="I" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) ELSEIF (code_group==17) THEN ! ! C_3h ! nclass_ref=6 name_class(2)="C3 " name_class(3)="C3^2 " name_class(4)="s_h " name_class(5)="S3 " name_class(6)="S3^5 " name_rap(1)="A' " ir_ram(1)="R" name_rap(2)="E' " ir_ram(2)="I+R" char_mat(2,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(2,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E'* " ir_ram(3)="I+R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX(-0.5d0,sqr3d2,kind=DP) name_rap(4)="A'' " ir_ram(4)="I" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="E'' " ir_ram(5)="R" char_mat(5,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(5,6)=CMPLX(0.5d0,sqr3d2,kind=DP) name_rap(6)="E''*" ir_ram(6)="R" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=CMPLX( 0.5d0,sqr3d2,kind=DP) char_mat(6,6)=CMPLX(0.5d0,-sqr3d2,kind=DP) ELSEIF (code_group==18) THEN ! ! C_4h ! nclass_ref=8 name_class(2)="C4 " name_class(3)="C2 " name_class(4)="C4^3 " name_class(5)="i " name_class(6)="S4^3 " name_class(7)="s_h " name_class(8)="S4 " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_g " ir_ram(2)="R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) char_mat(2,8)=(-1.d0,0.d0) name_rap(3)="E_g " ir_ram(3)="R" char_mat(3,2)=( 0.d0,1.d0) char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=( 0.d0,-1.d0) char_mat(3,6)=( 0.d0,1.d0) char_mat(3,7)=(-1.d0,0.d0) char_mat(3,8)=( 0.d0,-1.d0) name_rap(4)="E_g*" ir_ram(4)="R" char_mat(4,2)=(0.d0,-1.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,4)=( 0.d0,1.d0) char_mat(4,6)=( 0.d0,-1.d0) char_mat(4,7)=(-1.d0,0.d0) char_mat(4,8)=( 0.d0,1.d0) name_rap(5)="A_u " ir_ram(5)="I" char_mat(5,5)=(-1.d0,0.d0) char_mat(5,6)=(-1.d0,0.d0) char_mat(5,7)=(-1.d0,0.d0) char_mat(5,8)=(-1.d0,0.d0) name_rap(6)="B_u " char_mat(6,2)=(-1.d0,0.d0) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=(-1.d0,0.d0) char_mat(6,7)=(-1.d0,0.d0) name_rap(7)="E_u " ir_ram(7)="I" char_mat(7,2)=( 0.d0,1.d0) char_mat(7,3)=(-1.d0,0.d0) char_mat(7,4)=( 0.d0,-1.d0) char_mat(7,5)=(-1.d0, 0.d0) char_mat(7,6)=( 0.d0,-1.d0) char_mat(7,8)=( 0.d0,1.d0) name_rap(8)="E_u*" ir_ram(8)="I" char_mat(8,2)=( 0.d0,-1.d0) char_mat(8,3)=(-1.d0,0.d0) char_mat(8,4)=( 0.d0,1.d0) char_mat(8,5)=(-1.d0, 0.d0) char_mat(8,6)=( 0.d0,1.d0) char_mat(8,8)=( 0.d0,-1.d0) ELSEIF (code_group==19) THEN ! ! C_6h ! nclass_ref=12 name_class(2)="C6 " name_class(3)="C3 " name_class(4)="C2 " name_class(5)="C3^2 " name_class(6)="C6^5 " name_class(7)="i " name_class(8)="S3^5 " name_class(9)="S6^5 " name_class(10)="s_h " name_class(11)="S6 " name_class(12)="S3 " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_g " char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) char_mat(2,8)=(-1.d0,0.d0) char_mat(2,10)=(-1.d0,0.d0) char_mat(2,12)=(-1.d0,0.d0) name_rap(3)="E_1g" ir_ram(3)="R" char_mat(3,2)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(3,8)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(3,9)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(3,10)=(-1.d0,0.d0) char_mat(3,11)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,12)=CMPLX( 0.5d0,-sqr3d2,kind=DP) name_rap(4)="E1g*" ir_ram(4)="R" char_mat(4,2)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(4,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(4,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(4,8)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(4,9)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(4,10)=(-1.d0,0.d0) char_mat(4,11)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(4,12)=CMPLX( 0.5d0,sqr3d2,kind=DP) name_rap(5)="E_2g" ir_ram(5)="R" char_mat(5,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,8)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,9)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,11)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,12)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(6)="E2g*" ir_ram(6)="R" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,6)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,8)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,9)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,11)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,12)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(7)="A_u " ir_ram(7)="I" char_mat(7,7)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) char_mat(7,9)=(-1.d0,0.d0) char_mat(7,10)=(-1.d0,0.d0) char_mat(7,11)=(-1.d0,0.d0) char_mat(7,12)=(-1.d0,0.d0) name_rap(8)="B_u " char_mat(8,2)=(-1.d0,0.d0) char_mat(8,4)=(-1.d0,0.d0) char_mat(8,6)=(-1.d0,0.d0) char_mat(8,7)=(-1.d0,0.d0) char_mat(8,9)=(-1.d0,0.d0) char_mat(8,11)=(-1.d0,0.d0) name_rap(9)="E_1u" ir_ram(9)="I" char_mat(9,2)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(9,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(9,4)=(-1.d0,0.d0) char_mat(9,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(9,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(9,7)=(-1.d0,0.d0) char_mat(9,8)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(9,9)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(9,11)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(9,12)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(10)="E1u*" ir_ram(10)="I" char_mat(10,2)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(10,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(10,4)=(-1.d0,0.d0) char_mat(10,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(10,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(10,7)=(-1.d0,0.d0) char_mat(10,8)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(10,9)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(10,11)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(10,12)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(11)="E_2u" char_mat(11,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(11,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(11,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(11,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(11,7)=(-1.d0,0.d0) char_mat(11,8)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(11,9)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(11,10)=(-1.d0,0.d0) char_mat(11,11)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(11,12)=CMPLX( 0.5d0, sqr3d2,kind=DP) name_rap(12)="E2u*" char_mat(12,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(12,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(12,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(12,6)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(12,7)=(-1.d0,0.d0) char_mat(12,8)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(12,9)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(12,10)=(-1.d0,0.d0) char_mat(12,11)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(12,12)=CMPLX( 0.5d0,-sqr3d2,kind=DP) ELSEIF (code_group==20) THEN ! ! D_2h ! nclass_ref=8 name_class(2)="C2_z " name_class(3)="C2_y " name_class(4)="C2_x " name_class(5)="i " name_class(6)="s_xy " name_class(7)="s_xz " name_class(8)="s_yz " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_1g" ir_ram(2)="R" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,7)=(-1.d0,0.d0) char_mat(2,8)=(-1.d0,0.d0) name_rap(3)="B_2g" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) char_mat(3,8)=(-1.d0,0.d0) name_rap(4)="B_3g" ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) char_mat(4,7)=(-1.d0,0.d0) name_rap(5)="A_u " char_mat(5,5)=(-1.d0,0.d0) char_mat(5,6)=(-1.d0,0.d0) char_mat(5,7)=(-1.d0,0.d0) char_mat(5,8)=(-1.d0,0.d0) name_rap(6)="B_1u" ir_ram(6)="I" char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=(-1.d0,0.d0) char_mat(6,6)=(-1.d0,0.d0) name_rap(7)="B_2u" ir_ram(7)="I" char_mat(7,2)=(-1.d0,0.d0) char_mat(7,4)=(-1.d0,0.d0) char_mat(7,5)=(-1.d0,0.d0) char_mat(7,7)=(-1.d0,0.d0) name_rap(8)="B_3u" ir_ram(8)="I" char_mat(8,2)=(-1.d0,0.d0) char_mat(8,3)=(-1.d0,0.d0) char_mat(8,5)=(-1.d0,0.d0) char_mat(8,8)=(-1.d0,0.d0) ELSEIF (code_group==21) THEN ! ! D_3h ! nclass_ref=6 name_class(2)="2C3 " name_class(3)="3C2 " name_class(4)="s_h " name_class(5)="2S3 " name_class(6)="3s_v " name_rap(1)="A'_1" ir_ram(1)="R" name_rap(2)="A'_2" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="E' " ir_ram(3)="I+R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) char_mat(3,4)=( 2.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) char_mat(3,6)=( 0.d0,0.d0) name_rap(4)="A''1" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="A''2" ir_ram(5)="I" char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=(-1.d0,0.d0) name_rap(6)="E'' " ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=( 0.d0,0.d0) char_mat(6,4)=(-2.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==22) THEN ! ! D_4h ! nclass_ref=10 name_class(2)="2C4 " name_class(3)="C2 " name_class(4)="2C2' " name_class(5)="2C2''" name_class(6)="i " name_class(7)="2S4 " name_class(8)="s_h " name_class(9)="2s_v " name_class(10)="2s_d " name_rap(1)="A_1g X_1 M_1" ir_ram(1)="R" name_rap(2)="A_2g X_4 M_4" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) char_mat(2,9)=(-1.d0,0.d0) char_mat(2,10)=(-1.d0,0.d0) name_rap(3)="B_1g X_2 M_2" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) char_mat(3,7)=(-1.d0,0.d0) char_mat(3,10)=(-1.d0,0.d0) name_rap(4)="B_2g X_3 M_3" ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,7)=(-1.d0,0.d0) char_mat(4,9)=(-1.d0,0.d0) name_rap(5)="E_g X_5 M_5" ir_ram(5)="R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 2.d0,0.d0) char_mat(5,7)=( 0.d0,0.d0) char_mat(5,8)=(-2.d0,0.d0) char_mat(5,9)=( 0.d0,0.d0) char_mat(5,10)=( 0.d0,0.d0) name_rap(6)="A_1u X_1' M_1'" char_mat(6,6)=(-1.d0,0.d0) char_mat(6,7)=(-1.d0,0.d0) char_mat(6,8)=(-1.d0,0.d0) char_mat(6,9)=(-1.d0,0.d0) char_mat(6,10)=(-1.d0,0.d0) name_rap(7)="A_2u X_4' M_4'" ir_ram(7)="I" char_mat(7,4)=(-1.d0,0.d0) char_mat(7,5)=(-1.d0,0.d0) char_mat(7,6)=(-1.d0,0.d0) char_mat(7,7)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) name_rap(8)="B_1u X_2' M_2'" char_mat(8,2)=(-1.d0,0.d0) char_mat(8,5)=(-1.d0,0.d0) char_mat(8,6)=(-1.d0,0.d0) char_mat(8,8)=(-1.d0,0.d0) char_mat(8,9)=(-1.d0,0.d0) name_rap(9)="B_2u X_3' M_3'" char_mat(9,2)=(-1.d0,0.d0) char_mat(9,4)=(-1.d0,0.d0) char_mat(9,6)=(-1.d0,0.d0) char_mat(9,8)=(-1.d0,0.d0) char_mat(9,10)=(-1.d0,0.d0) name_rap(10)="E_u X_5' M_5'" ir_ram(10)="I" char_mat(10,1)=( 2.d0,0.d0) char_mat(10,2)=( 0.d0,0.d0) char_mat(10,3)=(-2.d0,0.d0) char_mat(10,4)=( 0.d0,0.d0) char_mat(10,5)=( 0.d0,0.d0) char_mat(10,6)=(-2.d0,0.d0) char_mat(10,7)=( 0.d0,0.d0) char_mat(10,8)=( 2.d0,0.d0) char_mat(10,9)=( 0.d0,0.d0) char_mat(10,10)=( 0.d0,0.d0) ELSEIF (code_group==23) THEN ! ! D_6h ! nclass_ref=12 name_class(2)="2C6 " name_class(3)="2C3 " name_class(4)="C2 " name_class(5)="3C2' " name_class(6)="3C2''" name_class(7)="i " name_class(8)="2S3 " name_class(9)="2S6 " name_class(10)="s_h " name_class(11)="3s_d " name_class(12)="3s_v " name_rap(1)="A_1g" ir_ram(1)="R" name_rap(2)="A_2g" char_mat(2,5)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) char_mat(2,11)=(-1.d0,0.d0) char_mat(2,12)=(-1.d0,0.d0) name_rap(3)="B_1g" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) char_mat(3,8)=(-1.d0,0.d0) char_mat(3,10)=(-1.d0,0.d0) char_mat(3,12)=(-1.d0,0.d0) name_rap(4)="B_2g" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,8)=(-1.d0,0.d0) char_mat(4,10)=(-1.d0,0.d0) char_mat(4,11)=(-1.d0,0.d0) name_rap(5)="E_1g" ir_ram(5)="R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-2.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 0.d0,0.d0) char_mat(5,7)=( 2.d0,0.d0) char_mat(5,9)=(-1.d0,0.d0) char_mat(5,10)=(-2.d0,0.d0) char_mat(5,11)=( 0.d0,0.d0) char_mat(5,12)=( 0.d0,0.d0) name_rap(6)="E_2g" ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=( 2.d0,0.d0) char_mat(6,5)=( 0.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) char_mat(6,7)=( 2.d0,0.d0) char_mat(6,8)=(-1.d0,0.d0) char_mat(6,9)=(-1.d0,0.d0) char_mat(6,10)=( 2.d0,0.d0) char_mat(6,11)=( 0.d0,0.d0) char_mat(6,12)=( 0.d0,0.d0) name_rap(7)="A_1u" char_mat(7,7)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) char_mat(7,9)=(-1.d0,0.d0) char_mat(7,10)=(-1.d0,0.d0) char_mat(7,11)=(-1.d0,0.d0) char_mat(7,12)=(-1.d0,0.d0) name_rap(8)="A_2u" ir_ram(8)="I" char_mat(8,5)=(-1.d0,0.d0) char_mat(8,6)=(-1.d0,0.d0) char_mat(8,7)=(-1.d0,0.d0) char_mat(8,8)=(-1.d0,0.d0) char_mat(8,9)=(-1.d0,0.d0) char_mat(8,10)=(-1.d0,0.d0) name_rap(9)="B_1u" char_mat(9,2)=(-1.d0,0.d0) char_mat(9,4)=(-1.d0,0.d0) char_mat(9,6)=(-1.d0,0.d0) char_mat(9,7)=(-1.d0,0.d0) char_mat(9,9)=(-1.d0,0.d0) char_mat(9,11)=(-1.d0,0.d0) name_rap(10)="B_2u" char_mat(10,2)=(-1.d0,0.d0) char_mat(10,4)=(-1.d0,0.d0) char_mat(10,5)=(-1.d0,0.d0) char_mat(10,7)=(-1.d0,0.d0) char_mat(10,9)=(-1.d0,0.d0) char_mat(10,12)=(-1.d0,0.d0) name_rap(11)="E_1u" ir_ram(11)="I" char_mat(11,1)=( 2.d0,0.d0) char_mat(11,3)=(-1.d0,0.d0) char_mat(11,4)=(-2.d0,0.d0) char_mat(11,5)=( 0.d0,0.d0) char_mat(11,6)=( 0.d0,0.d0) char_mat(11,7)=(-2.d0,0.d0) char_mat(11,8)=(-1.d0,0.d0) char_mat(11,10)=( 2.d0,0.d0) char_mat(11,11)=( 0.d0,0.d0) char_mat(11,12)=( 0.d0,0.d0) name_rap(12)="E_2u" char_mat(12,1)=( 2.d0,0.d0) char_mat(12,2)=(-1.d0,0.d0) char_mat(12,3)=(-1.d0,0.d0) char_mat(12,4)=( 2.d0,0.d0) char_mat(12,5)=( 0.d0,0.d0) char_mat(12,6)=( 0.d0,0.d0) char_mat(12,7)=(-2.d0,0.d0) char_mat(12,10)=(-2.d0,0.d0) char_mat(12,11)=( 0.d0,0.d0) char_mat(12,12)=( 0.d0,0.d0) ELSEIF (code_group==24) THEN ! ! D_2d ! nclass_ref=5 name_class(2)="2S4 " name_class(3)="C2 " name_class(4)="2C2' " name_class(5)="2s_d " name_rap(1)="A_1 X_1 W_1" ir_ram(1)="R" name_rap(2)="A_2 X_4 W_2'" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="B_1 X_2 W_1'" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) name_rap(4)="B_2 X_3 W_2" ir_ram(4)="I+R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) name_rap(5)="E X_5 W_3" ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) ELSEIF (code_group==25) THEN ! ! D_3d ! nclass_ref=6 name_class(2)="2C3 " name_class(3)="3C2' " name_class(4)="i " name_class(5)="2S6 " name_class(6)="3s_d " name_rap(1)="A_1g L_1" ir_ram(1)="R" name_rap(2)="A_2g L_2" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="E_g L_3" ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) char_mat(3,4)=( 2.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) char_mat(3,6)=( 0.d0,0.d0) name_rap(4)="A_1u L_1'" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="A_2u L_2'" ir_ram(5)="I" char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=(-1.d0,0.d0) name_rap(6)="E_u L_3'" ir_ram(6)="I" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=( 0.d0,0.d0) char_mat(6,4)=(-2.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==26) THEN ! ! S_4 ! nclass_ref=4 name_class(2)="S4 " name_class(3)="C2 " name_class(4)="S4^3 " name_rap(1)="A W_1" ir_ram(1)="R" name_rap(2)="B W_3" ir_ram(2)="I+R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="E W_4" ir_ram(3)="I+R" char_mat(3,2)=( 0.d0, 1.d0) char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=( 0.d0,-1.d0) name_rap(4)="E* W_2" ir_ram(4)="I+R" char_mat(4,2)=( 0.d0,-1.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,4)=( 0.d0, 1.d0) ELSEIF (code_group==27) THEN ! ! S_6 ! nclass_ref=6 name_class(2)="C3 " name_class(3)="C3^2 " name_class(4)="i " name_class(5)="S6^5 " name_class(6)="S6 " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="E_g " ir_ram(2)="R" char_mat(2,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(2,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E_g*" ir_ram(3)="R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX(-0.5d0,sqr3d2,kind=DP) name_rap(4)="A_u " ir_ram(4)="I" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="E_u " ir_ram(5)="I" char_mat(5,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(5,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) name_rap(6)="E_u*" ir_ram(6)="I" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=CMPLX( 0.5d0,sqr3d2,kind=DP) char_mat(6,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) ELSEIF (code_group==28) THEN ! ! T ! nclass_ref=4 name_class(2)="4C3 " name_class(3)="4C3' " name_class(4)="3C2 " name_rap(1)="A " ir_ram(1)="R" name_rap(2)="E " ir_ram(2)="R" char_mat(2,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E* " ir_ram(3)="R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(4)="T " ir_ram(4)="I+R" char_mat(4,1)=( 3.0d0,0.d0) char_mat(4,2)=( 0.0d0,0.d0) char_mat(4,3)=( 0.0d0,0.d0) char_mat(4,4)=(-1.0d0,0.d0) ELSEIF (code_group==29) THEN ! ! T_h ! nclass_ref=8 name_class(2)="4C3 " name_class(3)="4C3' " name_class(4)="3C2 " name_class(5)="i " name_class(6)="4S6 " name_class(7)="4S6^5" name_class(8)="3s_h " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="E_g " ir_ram(2)="R" char_mat(2,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(2,6)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(2,7)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E_g*" ir_ram(3)="R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(3,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,7)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(4)="T_g " ir_ram(4)="R" char_mat(4,1)=( 3.0d0,0.d0) char_mat(4,2)=( 0.0d0,0.d0) char_mat(4,3)=( 0.0d0,0.d0) char_mat(4,4)=(-1.0d0,0.d0) char_mat(4,5)=( 3.0d0,0.d0) char_mat(4,6)=( 0.0d0,0.d0) char_mat(4,7)=( 0.0d0,0.d0) char_mat(4,8)=(-1.0d0,0.d0) name_rap(5)="A_u " char_mat(5,5)=(-1.0d0,0.d0) char_mat(5,6)=(-1.0d0,0.d0) char_mat(5,7)=(-1.0d0,0.d0) char_mat(5,8)=(-1.0d0,0.d0) name_rap(6)="E_u " char_mat(6,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,5)=(-1.0d0,0.d0) char_mat(6,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(6,7)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(6,8)=(-1.0d0,0.d0) name_rap(7)="E_u*" char_mat(7,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(7,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(7,5)=(-1.0d0,0.d0) char_mat(7,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(7,7)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(7,8)=(-1.0d0,0.d0) name_rap(8)="T_u " ir_ram(8)="I" char_mat(8,1)=( 3.0d0,0.d0) char_mat(8,2)=( 0.0d0,0.d0) char_mat(8,3)=( 0.0d0,0.d0) char_mat(8,4)=(-1.0d0,0.d0) char_mat(8,5)=(-3.0d0,0.d0) char_mat(8,6)=( 0.0d0,0.d0) char_mat(8,7)=( 0.0d0,0.d0) ELSEIF (code_group==30) THEN ! ! T_d ! nclass_ref=5 name_class(2)="8C3 " name_class(3)="3C2 " name_class(4)="6S4 " name_class(5)="6s_d " name_rap(1)="A_1 G_1 P_1" ir_ram(1)="R" name_rap(2)="A_2 G_2 P_2" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="E G_12 P_3" ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 2.d0,0.d0) char_mat(3,4)=( 0.d0,0.d0) char_mat(3,5)=( 0.d0,0.d0) name_rap(4)="T_1 G_25 P_5" char_mat(4,1)=( 3.d0,0.d0) char_mat(4,2)=( 0.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="T_2 G_15 P_4" ir_ram(5)="I+R" char_mat(5,1)=( 3.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) ELSEIF (code_group==31) THEN ! ! O ! nclass_ref=5 name_class(2)="8C3 " name_class(3)="3C2 " name_class(4)="6C2 " name_class(5)="6C4 " name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="E " ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 2.d0,0.d0) char_mat(3,4)=( 0.d0,0.d0) char_mat(3,5)=( 0.d0,0.d0) name_rap(4)="T_1 " ir_ram(4)="I" char_mat(4,1)=( 3.d0,0.d0) char_mat(4,2)=( 0.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="T_2 " ir_ram(5)="R" char_mat(5,1)=( 3.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) ELSEIF (code_group==32) THEN ! ! O_h ! nclass_ref=10 name_class(2)="8C3 " name_class(3)="6C2' " name_class(4)="6C4 " name_class(5)="3C2 " name_class(6)="i " name_class(7)="6S4 " name_class(8)="8S6 " name_class(9)="3s_h " name_class(10)="6s_d " name_rap(1)="A_1g G_1 G_1+" ir_ram(1)="R" name_rap(2)="A_2g G_2 G_2+" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,7)=(-1.d0,0.d0) char_mat(2,10)=(-1.d0,0.d0) name_rap(3)="E_g G_12 G_3+" ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) char_mat(3,4)=( 0.d0,0.d0) char_mat(3,5)=( 2.d0,0.d0) char_mat(3,6)=( 2.d0,0.d0) char_mat(3,7)=( 0.d0,0.d0) char_mat(3,8)=(-1.d0,0.d0) char_mat(3,9)=( 2.d0,0.d0) char_mat(3,10)=( 0.d0,0.d0) name_rap(4)="T_1g G_15' G_4+" char_mat(4,1)=( 3.d0,0.d0) char_mat(4,2)=( 0.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=( 3.d0,0.d0) char_mat(4,8)=( 0.d0,0.d0) char_mat(4,9)=(-1.d0,0.d0) char_mat(4,10)=(-1.d0,0.d0) name_rap(5)="T_2g G_25' G_5+" ir_ram(5)="R" char_mat(5,1)=( 3.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=(-1.d0,0.d0) char_mat(5,6)=( 3.d0,0.d0) char_mat(5,7)=(-1.d0,0.d0) char_mat(5,8)=( 0.d0,0.d0) char_mat(5,9)=(-1.d0,0.d0) name_rap(6)="A_1u G_1' G_1-" char_mat(6,6)=(-1.d0,0.d0) char_mat(6,7)=(-1.d0,0.d0) char_mat(6,8)=(-1.d0,0.d0) char_mat(6,9)=(-1.d0,0.d0) char_mat(6,10)=(-1.d0,0.d0) name_rap(7)="A_2u G_2' G_2-" char_mat(7,3)=(-1.d0,0.d0) char_mat(7,4)=(-1.d0,0.d0) char_mat(7,6)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) char_mat(7,9)=(-1.d0,0.d0) name_rap(8)="E_u G_12' G_3-" char_mat(8,1)=( 2.d0,0.d0) char_mat(8,2)=(-1.d0,0.d0) char_mat(8,3)=( 0.d0,0.d0) char_mat(8,4)=( 0.d0,0.d0) char_mat(8,5)=( 2.d0,0.d0) char_mat(8,6)=(-2.d0,0.d0) char_mat(8,7)=( 0.d0,0.d0) char_mat(8,9)=(-2.d0,0.d0) char_mat(8,10)=( 0.d0,0.d0) name_rap(9)="T_1u G_15 G_4-" ir_ram(9)="I" char_mat(9,1)=( 3.d0,0.d0) char_mat(9,2)=( 0.d0,0.d0) char_mat(9,3)=(-1.d0,0.d0) char_mat(9,5)=(-1.d0,0.d0) char_mat(9,6)=(-3.d0,0.d0) char_mat(9,7)=(-1.d0,0.d0) char_mat(9,8)=( 0.d0,0.d0) name_rap(10)="T_2u G_25 G_5-" char_mat(10,1)=( 3.d0,0.d0) char_mat(10,2)=( 0.d0,0.d0) char_mat(10,4)=(-1.d0,0.d0) char_mat(10,5)=(-1.d0,0.d0) char_mat(10,6)=(-3.d0,0.d0) char_mat(10,8)=( 0.d0,0.d0) char_mat(10,10)=(-1.d0,0.d0) ELSE CALL errore('set_irr_rap','code number not allowed',1) END IF RETURN END SUBROUTINE !-------------------------------------------------------------------------- FUNCTION is_complex(code) !-------------------------------------------------------------------------- ! This function receives a code of the group and provide .true. or ! .false. if the group HAS or HAS NOT complex irreducible ! representations. ! The order is the following: ! ! 1 "C_1 " F 11 "D_6 " F 21 "D_3h" F 31 "O " F ! 2 "C_i " F 12 "C_2v" F 22 "D_4h" F 32 "O_h " F ! 3 "C_s " F 13 "C_3v" F 23 "D_6h" F ! 4 "C_2 " F 14 "C_4v" F 24 "D_2d" F ! 5 "C_3 " T 15 "C_6v" F 25 "D_3d" F ! 6 "C_4 " T 16 "C_2h" F 26 "S_4 " T ! 7 "C_6 " T 17 "C_3h" T 27 "S_6 " T ! 8 "D_2 " F 18 "C_4h" T 28 "T " T ! 9 "D_3 " F 19 "C_6h" T 29 "T_h " T ! 10 "D_4 " F 20 "D_2h" F 30 "T_d " F ! IMPLICIT NONE INTEGER :: code LOGICAL :: is_complex LOGICAL :: complex_aux(32) data complex_aux / .FALSE., .FALSE., .FALSE., .FALSE., .TRUE. , & .TRUE. , .TRUE. , .FALSE., .FALSE., .FALSE., & .FALSE., .FALSE., .FALSE., .FALSE., .FALSE., & .FALSE., .TRUE. , .TRUE. , .TRUE. , .FALSE., & .FALSE., .FALSE., .FALSE., .FALSE., .FALSE., & .TRUE. , .TRUE. , .TRUE. , .TRUE. , .FALSE., & .FALSE., .FALSE. / IF (code < 1 .OR. code > 32 ) CALL errore('is_complex', & 'code is out of range',1) is_complex= complex_aux(code) RETURN END FUNCTION is_complex FUNCTION is_parallel(a,b) ! ! This function returns true if a(3) and b(3) are parallel vectors ! USE kinds, ONLY : DP IMPLICIT none LOGICAL :: is_parallel REAL(DP) :: a(3), b(3) REAL(DP) :: cross cross=(a(2)*b(3)-a(3)*b(2))**2+(a(3)*b(1)-a(1)*b(3))**2+(a(1)*b(2)-a(2)*b(1))**2 is_parallel=(ABS(cross)< 1.d-6) RETURN END FUNCTION is_parallel espresso-5.0.2/PW/src/vloc_of_g.f900000644000700200004540000001066112053145630015755 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine vloc_of_g (mesh, msh, rab, r, vloc_at, zp, tpiba2, ngl, & gl, omega, vloc) !---------------------------------------------------------------------- ! ! This routine computes the Fourier transform of the local ! part of an atomic pseudopotential, given in numerical form. ! A term erf(r)/r is subtracted in real space (thus making the ! function short-ramged) and added again in G space (for G<>0) ! The G=0 term contains \int (V_loc(r)+ Ze^2/r) 4pi r^2 dr. ! This is the "alpha" in the so-called "alpha Z" term of the energy. ! Atomic Ry units everywhere. ! USE kinds USE constants, ONLY : pi, fpi, e2, eps8 USE esm, ONLY : do_comp_esm, esm_bc implicit none ! ! first the dummy variables ! integer, intent(in) :: ngl, mesh, msh ! ngl : the number of shells of G vectors ! mesh: number of grid points in the radial grid ! msh : as above, used for radial integration ! real(DP), intent(in) :: zp, rab (mesh), r (mesh), vloc_at (mesh), tpiba2, & omega, gl (ngl) ! zp : valence pseudocharge ! rab: the derivative of mesh points ! r : the mesh points ! vloc_at: local part of the atomic pseudopotential on the radial mesh ! tpiba2 : 2 pi / alat ! omega : the volume of the unit cell ! gl : the moduli of g vectors for each shell ! real(DP), intent(out):: vloc (ngl) ! ! vloc: the fourier transform of the potential ! ! local variables ! real(DP) :: vlcp, fac, gx real(DP), allocatable :: aux (:), aux1 (:) integer :: igl, igl0, ir ! igl :counter on g shells vectors ! igl0:first shell with g != 0 ! ir :counter on mesh points ! real(DP), external :: qe_erf ! allocate ( aux(msh), aux1(msh) ) if (gl (1) < eps8) then ! ! first the G=0 term ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... temporarily redefine term for ESM calculation ! do ir = 1, msh aux (ir) = r (ir) * (r (ir) * vloc_at (ir) + zp * e2 & * qe_erf (r (ir) ) ) enddo ELSE do ir = 1, msh aux (ir) = r (ir) * (r (ir) * vloc_at (ir) + zp * e2) enddo END IF call simpson (msh, aux, rab, vlcp) vloc (1) = vlcp igl0 = 2 else igl0 = 1 endif ! ! here the G<>0 terms, we first compute the part of the integrand ! function independent of |G| in real space ! do ir = 1, msh aux1 (ir) = r (ir) * vloc_at (ir) + zp * e2 * qe_erf (r (ir) ) enddo fac = zp * e2 / tpiba2 ! ! and here we perform the integral, after multiplying for the |G| ! dependent part ! do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) do ir = 1, msh aux (ir) = aux1 (ir) * sin (gx * r (ir) ) / gx enddo call simpson (msh, aux, rab, vlcp) IF ( ( .not. do_comp_esm ) .or. ( esm_bc .eq. 'pbc' ) ) THEN ! ! here we re-add the analytic fourier transform of the erf function ! vlcp = vlcp - fac * exp ( - gl (igl) * tpiba2 * 0.25d0) / gl (igl) END IF vloc (igl) = vlcp enddo vloc (:) = vloc(:) * fpi / omega deallocate (aux, aux1) return end subroutine vloc_of_g ! !---------------------------------------------------------------------- subroutine vloc_coul (zp, tpiba2, ngl, gl, omega, vloc) !---------------------------------------------------------------------- ! ! Fourier transform of the Coulomb potential - For all-electron ! calculations, in specific cases only, for testing purposes ! USE kinds USE constants, ONLY : fpi, e2, eps8 implicit none ! integer, intent(in) :: ngl ! the number of shells of G vectors real(DP), intent(in) :: zp, tpiba2, omega, gl (ngl) ! valence pseudocharge ! 2 pi / alat ! the volume of the unit cell ! the moduli of g vectors for each shell real(DP), intent (out) :: vloc (ngl) ! the fourier transform of the potential ! integer :: igl0 ! if (gl (1) < eps8) then igl0 = 2 vloc(1) = 0.0_dp else igl0 = 1 endif vloc (igl0:ngl) = - fpi * zp *e2 / omega / tpiba2 / gl (igl0:ngl) return end subroutine vloc_coul espresso-5.0.2/PW/src/add_vuspsi.f900000644000700200004540000002063112053145630016157 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE add_vuspsi( lda, n, m, hpsi ) !---------------------------------------------------------------------------- ! ! This routine applies the Ultra-Soft Hamiltonian to a ! vector psi and puts the result in hpsi. ! Requires the products of psi with all beta functions ! in array becp(nkb,m) (calculated by calbec) ! input: ! lda leading dimension of arrays psi, spsi ! n true dimension of psi, spsi ! m number of states psi ! output: ! hpsi V_US|psi> is added to hpsi ! USE kinds, ONLY: DP USE ions_base, ONLY: nat, ntyp => nsp, ityp USE lsda_mod, ONLY: current_spin USE control_flags, ONLY: gamma_only USE noncollin_module USE uspp, ONLY: vkb, nkb, deeq, deeq_nc USE uspp_param, ONLY: nh USE becmod, ONLY: bec_type, becp ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: lda, n, m COMPLEX(DP), INTENT(INOUT) :: hpsi(lda*npol,m) ! ! ... here the local variables ! INTEGER :: jkb, ikb, ih, jh, na, nt, ijkb0, ibnd ! counters ! ! CALL start_clock( 'add_vuspsi' ) ! IF ( gamma_only ) THEN ! CALL add_vuspsi_gamma() ! ELSE IF ( noncolin) THEN ! CALL add_vuspsi_nc () ! ELSE ! CALL add_vuspsi_k() ! END IF ! CALL stop_clock( 'add_vuspsi' ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE add_vuspsi_gamma() !----------------------------------------------------------------------- ! USE mp, ONLY: mp_get_comm_null, mp_circular_shift_left ! IMPLICIT NONE INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block REAL(DP), ALLOCATABLE :: ps (:,:) INTEGER :: ierr INTEGER :: nproc, mype, m_loc, m_begin, ibnd_loc, icyc, icur_blk, m_max ! IF ( nkb == 0 ) RETURN ! m_loc = m m_begin = 1 m_max = m nproc = 1 mype = 0 ! IF( becp%comm /= mp_get_comm_null() ) THEN nproc = becp%nproc mype = becp%mype m_loc = becp%nbnd_loc m_begin = becp%ibnd_begin m_max = SIZE( becp%r, 2 ) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 END IF ! ALLOCATE (ps (nkb,m_max), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' add_vuspsi_gamma ', ' cannot allocate ps ', ABS( ierr ) ) ! ps(:,:) = 0.D0 ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! DO ibnd = 1, m_loc ! DO jh = 1, nh(nt) ! jkb = ijkb0 + jh ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih ! ps(ikb,ibnd) = ps(ikb,ibnd) + & deeq(ih,jh,na,current_spin) * becp%r(jkb,ibnd) ! END DO ! END DO ! END DO ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! IF( becp%comm /= mp_get_comm_null() ) THEN ! ! parallel block multiplication of vkb and ps ! icur_blk = mype ! DO icyc = 0, nproc - 1 m_loc = ldim_block( becp%nbnd , nproc, icur_blk ) m_begin = gind_block( 1, becp%nbnd, nproc, icur_blk ) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 IF( m_loc > 0 ) THEN CALL DGEMM( 'N', 'N', ( 2 * n ), m_loc, nkb, 1.D0, vkb, & ( 2 * lda ), ps, nkb, 1.D0, hpsi( 1, m_begin ), ( 2 * lda ) ) END IF ! block rotation ! CALL mp_circular_shift_left( ps, icyc, becp%comm ) icur_blk = icur_blk + 1 IF( icur_blk == nproc ) icur_blk = 0 END DO ELSE CALL DGEMM( 'N', 'N', ( 2 * n ), m, nkb, 1.D0, vkb, & ( 2 * lda ), ps, nkb, 1.D0, hpsi, ( 2 * lda ) ) END IF ! DEALLOCATE (ps) ! RETURN ! END SUBROUTINE add_vuspsi_gamma ! !----------------------------------------------------------------------- SUBROUTINE add_vuspsi_k() !----------------------------------------------------------------------- ! IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: ps (:,:) INTEGER :: ierr ! IF ( nkb == 0 ) RETURN ! ALLOCATE (ps (nkb,m), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' add_vuspsi_k ', ' cannot allocate ps ', ABS( ierr ) ) ps(:,:) = ( 0.D0, 0.D0 ) ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! DO ibnd = 1, m ! DO jh = 1, nh(nt) ! jkb = ijkb0 + jh ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih ! ps(ikb,ibnd) = ps(ikb,ibnd) + & deeq(ih,jh,na,current_spin) * becp%k(jkb,ibnd) ! END DO ! END DO ! END DO ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! CALL ZGEMM( 'N', 'N', n, m, nkb, ( 1.D0, 0.D0 ) , vkb, & lda, ps, nkb, ( 1.D0, 0.D0 ) , hpsi, lda ) ! DEALLOCATE (ps) ! RETURN ! END SUBROUTINE add_vuspsi_k ! !----------------------------------------------------------------------- SUBROUTINE add_vuspsi_nc() !----------------------------------------------------------------------- ! ! IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: ps (:,:,:) INTEGER :: ierr ! IF ( nkb == 0 ) RETURN ! ALLOCATE (ps( nkb,npol, m), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' add_vuspsi_nc ', ' error allocating ps ', ABS( ierr ) ) ! ps (:,:,:) = (0.d0, 0.d0) ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! DO ibnd = 1, m ! DO jh = 1, nh(nt) ! jkb = ijkb0 + jh ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih ! ps(ikb,1,ibnd) = ps(ikb,1,ibnd) + & deeq_nc(ih,jh,na,1)*becp%nc(jkb,1,ibnd)+ & deeq_nc(ih,jh,na,2)*becp%nc(jkb,2,ibnd) ps(ikb,2,ibnd) = ps(ikb,2,ibnd) + & deeq_nc(ih,jh,na,3)*becp%nc(jkb,1,ibnd)+& deeq_nc(ih,jh,na,4)*becp%nc(jkb,2,ibnd) ! END DO ! END DO ! END DO ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! call ZGEMM ('N', 'N', n, m*npol, nkb, ( 1.D0, 0.D0 ) , vkb, & lda, ps, nkb, ( 1.D0, 0.D0 ) , hpsi, lda ) ! DEALLOCATE (ps) ! RETURN ! END SUBROUTINE add_vuspsi_nc ! ! END SUBROUTINE add_vuspsi espresso-5.0.2/PW/src/bp_c_phase.f900000644000700200004540000012472612053145627016121 0ustar marsamoscm! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! April 2012, A. Dal Corso: parallelization for gdir /= 3 imported ! from c_phase_field.f90 ! May 2012, A. Dal Corso: Noncollinear/spin-orbit case allowed (experimental). ! !##############################################################################! !# #! !# #! !# This is the main one of a set of Fortran 90 files designed to compute #! !# the electrical polarization in a crystaline solid. #! !# #! !# #! !# AUTHORS #! !# ~~~~~~~ #! !# This set of subprograms is based on code written in an early Fortran #! !# 77 version of PWSCF by Alessio Filippetti. These were later ported #! !# into another version by Lixin He. Oswaldo Dieguez, in collaboration #! !# with Lixin He and Jeff Neaton, ported these routines into Fortran 90 #! !# version 1.2.1 of PWSCF. He, Dieguez, and Neaton were working at the #! !# time in David Vanderbilt's group at Rutgers, The State University of #! !# New Jersey, USA. #! !# #! !# #! !# LIST OF FILES #! !# ~~~~~~~~~~~~~ #! !# The complete list of files added to the PWSCF distribution is: #! !# * ../PW/bp_calc_btq.f90 #! !# * ../PW/bp_c_phase.f90 #! !# * ../PW/bp_qvan3.f90 #! !# * ../PW/bp_strings.f90 #! !# #! !# The PWSCF files that needed (minor) modifications were: #! !# * ../PW/electrons.f90 #! !# * ../PW/input.f90 #! !# * ../PW/pwcom.f90 #! !# * ../PW/setup.f90 #! !# #! !# Present in the original version and later removed: #! !# * bp_ylm_q.f bp_dbess.f bp_radin.f bp_bess.f #! !# #! !# BRIEF SUMMARY OF THE METHODOLOGY #! !# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #! !# The spontaneous polarization has two contibutions, electronic #! !# and ionic. With these additional routines, PWSCF will output both. #! !# #! !# The ionic contribution is relatively trivial to compute, requiring #! !# knowledge only of the atomic positions and core charges. The new #! !# subroutines focus mainly on evaluating the electronic contribution, #! !# computed as a Berry phase, i.e., a global phase property that can #! !# be computed from inner products of Bloch states at neighboring #! !# points in k-space. #! !# #! !# The standard procedure would be for the user to first perform a #! !# self-consistent (sc) calculation to obtain a converged charge density. #! !# With well-converged sc charge density, the user would then run one #! !# or more non-self consistent (or "band structure") calculations, #! !# using the same main code, but with a flag to ask for the polarization. #! !# Each such run would calculate the projection of the polarization #! !# onto one of the three primitive reciprocal lattice vectors. In #! !# cases of high symmetry (e.g. a tetragonal ferroelectric phase), one #! !# such run would suffice. In the general case of low symmetry, the #! !# user would have to submit up to three jobs to compute the three #! !# components of polarization, and would have to obtain the total #! !# polarization "by hand" by summing these contributions. #! !# #! !# Accurate calculation of the electronic or "Berry-phase" polarization #! !# requires overlaps between wavefunctions along fairly dense lines (or #! !# "strings") in k-space in the direction of the primitive G-vector for #! !# which one is calculating the projection of the polarization. The #! !# code would use a higher-density k-mesh in this direction, and a #! !# standard-density mesh in the two other directions. See below for #! !# details. #! !# #! !# #! !# FUNCTIONALITY/COMPATIBILITY #! !# ~~~~~~~~~~~~~~~~~~~~~~~~~~~ #! !# * Berry phases for a given G-vector. #! !# #! !# * Contribution to the polarization (in relevant units) for a given #! !# G-vector. #! !# #! !# * Spin-polarized systems supported. #! !# #! !# * Ultrasoft and norm-conserving pseudopotentials supported. #! !# #! !# * The value of the "polarization quantum" and the ionic contribution #! !# to the polarization are reported. #! !# #! !# #! !# NEW INPUT PARAMETERS #! !# ~~~~~~~~~~~~~~~~~~~~ #! !# * lberry (.TRUE. or .FALSE.) #! !# Tells PWSCF that a Berry phase calcultion is desired. #! !# #! !# * gdir (1, 2, or 3) #! !# Specifies the direction of the k-point strings in reciprocal space. #! !# '1' refers to the first reciprocal lattice vector, '2' to the #! !# second, and '3' to the third. #! !# #! !# * nppstr (integer) #! !# Specifies the number of k-points to be calculated along each #! !# symmetry-reduced string. #! !# #! !# #! !# EXPLANATION OF K-POINT MESH #! !# ~~~~~~~~~~~~~~~~~~~~~~~~~~~ #! !# If gdir=1, the program takes the standard input specification of the #! !# k-point mesh (nk1 x nk2 x nk3) and stops if the k-points in dimension #! !# 1 are not equally spaced or if its number is not equal to nppstr, #! !# working with a mesh of dimensions (nppstr x nk2 x nk3). That is, for #! !# each point of the (nk2 x nk3) two-dimensional mesh, it works with a #! !# string of nppstr k-points extending in the third direction. Symmetry #! !# will be used to reduce the number of strings (and assign them weights) #! !# if possible. Of course, if gdir=2 or 3, the variables nk2 or nk3 will #! !# be overridden instead, and the strings constructed in those #! !# directions, respectively. #! !# #! !# #! !# BIBLIOGRAPHY #! !# ~~~~~~~~~~~~ #! !# The theory behind this implementation is described in: #! !# [1] R D King-Smith and D Vanderbilt, "Theory of polarization of #! !# crystaline solids", Phys Rev B 47, 1651 (1993). #! !# #! !# Other relevant sources of information are: #! !# [2] D Vanderbilt and R D King-Smith, "Electronic polarization in the #! !# ultrasoft pseudopotential formalism", internal report (1998), #! !# [3] D Vanderbilt, "Berry phase theory of proper piezoelectric #! !# response", J Phys Chem Solids 61, 147 (2000). #! !# #! !# #! !# dieguez@physics.rutgers.edu #! !# 09 June 2003 #! !# #! !# #! !##############################################################################! !======================================================================! SUBROUTINE c_phase !----------------------------------------------------------------------! ! Geometric phase calculation along a strip of nppstr k-points ! averaged over a 2D grid of nkort k-points ortogonal to nppstr ! --- Make use of the module with common information --- USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY : at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi, tpi USE gvect, ONLY : ngm, g, gcutm, ngm_g, ig_l2g USE fft_base, ONLY : dfftp USE uspp, ONLY : nkb, vkb, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm USE lsda_mod, ONLY : nspin USE klist, ONLY : nelec, degauss, nks, xk, wk USE wvfct, ONLY : npwx, npw, nbnd, ecutwfc, wg USE wavefunctions_module, ONLY : evc USE bp, ONLY : gdir, nppstr, mapgm_global USE becmod, ONLY : calbec, bec_type, allocate_bec_type, & deallocate_bec_type USE noncollin_module, ONLY : noncolin, npol, nspin_lsda USE spin_orb, ONLY : lspinorb USE mp_global, ONLY : intra_bgrp_comm, nproc_bgrp USE mp, ONLY : mp_sum ! --- Avoid implicit definitions --- IMPLICIT NONE ! --- Internal definitions --- INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: ind1 INTEGER :: info INTEGER :: is INTEGER :: istring INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: job INTEGER :: jv INTEGER :: kindex INTEGER :: kort INTEGER :: kpar INTEGER :: kpoint INTEGER :: kstart INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER , ALLOCATABLE :: mod_elec(:) INTEGER , ALLOCATABLE :: ln(:,:,:) INTEGER :: mod_elec_dw INTEGER :: mod_elec_tot INTEGER :: mod_elec_up INTEGER :: mod_ion(nat) INTEGER :: mod_ion_tot INTEGER :: mod_tot INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: nkort INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 INTEGER :: nstring INTEGER :: nbnd_occ INTEGER :: nt INTEGER, ALLOCATABLE :: map_g(:) LOGICAL :: lodd LOGICAL :: l_para LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for occupied/empty states REAL(DP) :: dk(3) REAL(DP) :: dkmod REAL(DP) :: el_loc REAL(DP) :: eps REAL(DP) :: fac REAL(DP) :: g2kin_bp(npwx) REAL(DP) :: gpar(3) REAL(DP) :: gtr(3) REAL(DP) :: gvec REAL(DP), ALLOCATABLE :: loc_k(:) REAL(DP), ALLOCATABLE :: pdl_elec(:) REAL(DP), ALLOCATABLE :: phik(:) REAL(DP) :: phik_ave REAL(DP) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(DP) :: weight REAL(DP) :: upol(3) REAL(DP) :: pdl_elec_dw REAL(DP) :: pdl_elec_tot REAL(DP) :: pdl_elec_up REAL(DP) :: pdl_ion(nat) REAL(DP) :: pdl_ion_tot REAL(DP) :: pdl_tot REAL(DP) :: phidw REAL(DP) :: phiup REAL(DP) :: rmod REAL(DP), ALLOCATABLE :: wstring(:) REAL(DP) :: ylm_dk(lmaxq*lmaxq) REAL(DP) :: zeta_mod COMPLEX(DP), ALLOCATABLE :: aux(:) COMPLEX(DP), ALLOCATABLE :: aux_g(:) COMPLEX(DP), ALLOCATABLE :: aux0(:) TYPE (bec_type) :: becp0 TYPE (bec_type) :: becp_bp COMPLEX(DP) :: cave COMPLEX(DP) , ALLOCATABLE :: cphik(:) COMPLEX(DP) :: det COMPLEX(DP) :: dtheta COMPLEX(DP) :: mat(nbnd,nbnd) COMPLEX(DP) :: pref COMPLEX(DP), ALLOCATABLE :: psi(:,:) COMPLEX(DP), ALLOCATABLE :: q_dk_so(:,:,:,:) COMPLEX(DP) :: q_dk(nhm,nhm,ntyp) COMPLEX(DP) :: struc(nat) COMPLEX(DP) :: theta0 COMPLEX(DP) :: zdotc COMPLEX(DP) :: zeta ! ------------------------------------------------------------------------- ! ! INITIALIZATIONS ! ------------------------------------------------------------------------- ! ALLOCATE (psi(npwx*npol,nbnd)) ALLOCATE (aux(ngm*npol)) ALLOCATE (aux0(ngm*npol)) IF (okvan) THEN CALL allocate_bec_type ( nkb, nbnd, becp0 ) CALL allocate_bec_type ( nkb, nbnd, becp_bp ) IF (lspinorb) ALLOCATE(q_dk_so(nhm,nhm,4,ntyp)) END IF l_para= (nproc_bgrp > 1 .AND. gdir /= 3) IF (l_para) THEN ALLOCATE ( aux_g(ngm_g*npol) ) ELSE ALLOCATE ( map_g(ngm) ) ENDIF ! --- Write header --- WRITE( stdout,"(/,/,/,15X,50('='))") WRITE( stdout,"(28X,'POLARIZATION CALCULATION')") WRITE( stdout,"(25X,'!!! NOT THOROUGHLY TESTED !!!')") WRITE( stdout,"(15X,50('-'),/)") ! --- Check that we are working with an insulator with no empty bands --- IF ( degauss > 0.0_dp ) CALL errore('c_phase', & 'Polarization only for insulators',1) ! --- Define a small number --- eps=1.0E-6_dp ! --- Recalculate FFT correspondence (see ggen.f90) --- ALLOCATE (ln (-dfftp%nr1:dfftp%nr1, -dfftp%nr2:dfftp%nr2, -dfftp%nr3:dfftp%nr3) ) DO ng=1,ngm mk1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) mk2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) mk3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(mk1,mk2,mk3) = ng END DO if(okvan) then ! --- Initialize arrays --- jkb_bp=0 DO nt=1,ntyp DO na=1,nat IF (ityp(na).eq.nt) THEN DO i=1, nh(nt) jkb_bp=jkb_bp+1 nkbtona(jkb_bp) = na nkbtonh(jkb_bp) = i END DO END IF END DO END DO endif ! --- Get the number of strings --- nstring=nks/nppstr nkort=nstring/nspin_lsda ! --- Allocate memory for arrays --- ALLOCATE(phik(nstring)) ALLOCATE(loc_k(nstring)) ALLOCATE(cphik(nstring)) ALLOCATE(wstring(nstring)) ALLOCATE(pdl_elec(nstring)) ALLOCATE(mod_elec(nstring)) ! ------------------------------------------------------------------------- ! ! electronic polarization: set values for k-points strings ! ! ------------------------------------------------------------------------- ! ! --- Find vector along strings --- gpar(1)=xk(1,nppstr)-xk(1,1) gpar(2)=xk(2,nppstr)-xk(2,1) gpar(3)=xk(3,nppstr)-xk(3,1) gvec=dsqrt(gpar(1)**2+gpar(2)**2+gpar(3)**2)*tpiba ! --- Find vector between consecutive points in strings --- dk(1)=xk(1,2)-xk(1,1) dk(2)=xk(2,2)-xk(2,1) dk(3)=xk(3,2)-xk(3,1) dkmod=SQRT(dk(1)**2+dk(2)**2+dk(3)**2)*tpiba IF (ABS(dkmod-gvec/(nppstr-1)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) ! --- Check that k-points form strings --- DO i=1,nspin_lsda*nkort DO j=2,nppstr kindex=j+(i-1)*nppstr IF (ABS(xk(1,kindex)-xk(1,kindex-1)-dk(1)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) IF (ABS(xk(2,kindex)-xk(2,kindex-1)-dk(2)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) IF (ABS(xk(3,kindex)-xk(3,kindex-1)-dk(3)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) IF (ABS(wk(kindex)-wk(kindex-1)) > eps) & CALL errore('c_phase','Wrong k-strings weights?',1) END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: weight strings ! ! ------------------------------------------------------------------------- ! ! --- Calculate string weights, normalizing to 1 (no spin or noncollinear) ! or 1+1 (spin) --- DO is=1,nspin_lsda weight=0.0_dp DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wk(nppstr*istring) weight=weight+wstring(istring) END DO DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wstring(istring)/weight END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: structure factor ! ! ------------------------------------------------------------------------- ! ! --- Calculate structure factor e^{-i dk*R} --- DO na=1,nat fac=(dk(1)*tau(1,na)+dk(2)*tau(2,na)+dk(3)*tau(3,na))*tpi struc(na)=CMPLX(cos(fac),-sin(fac),kind=DP) END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: form factor ! ! ------------------------------------------------------------------------- ! if(okvan) then ! --- Calculate Bessel transform of Q_ij(|r|) at dk [Q_ij^L(|r|)] --- CALL calc_btq(dkmod,qrad_dk,0) ! --- Calculate the q-space real spherical harmonics at dk [Y_LM] --- dkmod=dk(1)**2+dk(2)**2+dk(3)**2 CALL ylmr2(lmaxq*lmaxq, 1, dk, dkmod, ylm_dk) ! --- Form factor: 4 pi sum_LM c_ij^LM Y_LM(Omega) Q_ij^L(|r|) --- q_dk = (0.d0, 0.d0) DO np =1, ntyp if( upf(np)%tvanp ) then DO iv = 1, nh(np) DO jv = iv, nh(np) call qvan3(iv,jv,np,pref,ylm_dk,qrad_dk) q_dk(iv,jv,np) = omega*pref q_dk(jv,iv,np) = omega*pref ENDDO ENDDO endif ENDDO IF (lspinorb) CALL transform_qq_so(q_dk,q_dk_so) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: strings phases ! ! ------------------------------------------------------------------------- ! el_loc=0.d0 kpoint=0 ALLOCATE ( l_cal(nbnd) ) CALL weights() ! --- Start loop over spin --- DO is=1,nspin_lsda ! l_cal(n) = .true./.false. if n-th state is occupied/empty nbnd_occ=0 DO nb = 1, nbnd l_cal(nb) = (wg(nb,1+nks*(is-1)/2) > eps) IF (l_cal(nb)) nbnd_occ = nbnd_occ + 1 END DO ! --- Start loop over orthogonal k-points --- DO kort=1,nkort ! --- Index for this string --- istring=kort+(is-1)*nkort ! --- Initialize expectation value of the phase operator --- zeta=(1.d0,0.d0) zeta_mod = 1.d0 ! --- Start loop over parallel k-points --- DO kpar = 1,nppstr ! --- Set index of k-point --- kpoint = kpoint + 1 ! --- Calculate dot products between wavefunctions and betas --- IF (kpar /= 1) THEN ! --- Dot wavefunctions and betas for PREVIOUS k-point --- CALL gk_sort(xk(1,kpoint-1),ngm,g,ecutwfc/tpiba2, & npw0,igk0,g2kin_bp) CALL get_buffer (psi,nwordwfc,iunwfc,kpoint-1) if (okvan) then CALL init_us_2 (npw0,igk0,xk(1,kpoint-1),vkb) CALL calbec (npw0, vkb, psi, becp0) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- IF (kpar /= nppstr) THEN CALL gk_sort(xk(1,kpoint),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer(evc,nwordwfc,iunwfc,kpoint) if (okvan) then CALL init_us_2 (npw1,igk1,xk(1,kpoint),vkb) CALL calbec (npw1, vkb, evc, becp_bp) endif ELSE kstart = kpoint-nppstr+1 CALL gk_sort(xk(1,kstart),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer(evc,nwordwfc,iunwfc,kstart) if (okvan) then CALL init_us_2 (npw1,igk1,xk(1,kstart),vkb) CALL calbec(npw1, vkb, evc, becp_bp) endif ENDIF IF (kpar == nppstr .AND. .NOT. l_para) THEN map_g(:) = 0 DO ig=1,npw1 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk1(ig)) - gpar(1) gtr(2)=g(2,igk1(ig)) - gpar(2) gtr(3)=g(3,igk1(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ( (ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps) ) THEN WRITE(6,*) ' error: translated G=', & gtr(1),gtr(2),gtr(3), & & ' with crystal coordinates',n1,n2,n3, & & ' corresponds to ng=',ng,' but G(ng)=', & & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO CALL errore('c_phase','wrong g',1) ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) CALL errore('c_phase','wrong gtr',1) END IF map_g(ig)=ng END DO END IF ! --- Matrix elements calculation --- mat(:,:) = (0.d0, 0.d0) DO mb=1,nbnd IF ( .NOT. l_cal(mb) ) THEN mat(mb,mb)=(1.d0, 0.d0) ELSE aux(:) = (0.d0, 0.d0) IF (kpar /= nppstr) THEN DO ig=1,npw1 aux(igk1(ig))=evc(ig,mb) ENDDO IF (noncolin) THEN DO ig=1,npw1 aux(igk1(ig)+ngm)=evc(ig+npwx,mb) ENDDO ENDIF ELSEIF (.NOT. l_para) THEN DO ig=1,npw1 aux(map_g(ig))=evc(ig,mb) ENDDO IF (noncolin) THEN DO ig=1,npw1 aux(map_g(ig)+ngm)=evc(ig+npwx,mb) ENDDO ENDIF ELSE ! ! In this case this processor might not have the G-G_0 ! aux_g=(0.d0,0.d0) DO ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),gdir)) & =evc(ig,mb) ENDDO IF (noncolin) THEN DO ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),gdir) & + ngm_g) =evc(ig+npwx,mb) ENDDO ENDIF CALL mp_sum(aux_g(:), intra_bgrp_comm ) DO ig=1,ngm aux(ig) = aux_g(ig_l2g(ig)) ENDDO IF (noncolin) THEN DO ig=1,ngm aux(ig+ngm) = aux_g(ig_l2g(ig)+ngm_g) ENDDO ENDIF ENDIF ! DO nb=1,nbnd IF ( l_cal(nb) ) THEN aux0(:)= (0.d0, 0.d0) DO ig=1,npw0 aux0(igk0(ig))=psi(ig,nb) END DO IF (noncolin) THEN DO ig=1,npw0 aux0(igk0(ig)+ngm)=psi(ig+npwx,nb) END DO ENDIF mat(nb,mb) = zdotc (ngm*npol,aux0,1,aux,1) END IF END DO END IF END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if (okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm IF (noncolin) THEN IF (lspinorb) THEN pref = pref+(CONJG(becp0%nc(jkb,1,nb))* & becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,1,np) & +CONJG(becp0%nc(jkb,1,nb))* & becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,2,np) & +CONJG(becp0%nc(jkb,2,nb))* & becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,3,np) & +CONJG(becp0%nc(jkb,2,nb))* & becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,4,np))*struc(na) ELSE pref = pref+(CONJG(becp0%nc(jkb,1,nb))* & becp_bp%nc(jkb1+j,1,mb) + & CONJG(becp0%nc(jkb,2,nb))* & becp_bp%nc(jkb1+j,2,mb)) & *q_dk(nhjkb,j,np)*struc(na) END IF ELSE pref = pref+CONJG(becp0%k(jkb,nb))* & becp_bp%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) END IF ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif endif ENDDO ENDDO ! --- Calculate matrix determinant --- CALL ZGETRF (nbnd,nbnd,mat,nbnd,ivpt,info) CALL errore('c_phase','error in factorization',abs(info)) det=(1.d0,0.d0) do nb=1,nbnd det = det*mat(nb,nb) if(nb.ne.ivpt(nb)) det=-det enddo ! --- Multiply by the already calculated determinants --- zeta=zeta*det ! --- End of dot products between wavefunctions and betas --- ENDIF ! --- End loop over parallel k-points --- END DO ! --- Calculate the phase for this string --- phik(istring)=AIMAG(LOG(zeta)) cphik(istring)=COS(phik(istring))*(1.0_dp,0.0_dp) & +SIN(phik(istring))*(0.0_dp,1.0_dp) ! --- Calculate the localization for current kort --- zeta_mod= DBLE(CONJG(zeta)*zeta) loc_k(istring)= - (nppstr-1) / gvec**2 / nbnd_occ *log(zeta_mod) ! --- End loop over orthogonal k-points --- END DO ! --- End loop over spin --- END DO DEALLOCATE ( l_cal ) ! ------------------------------------------------------------------------- ! ! electronic polarization: phase average ! ! ------------------------------------------------------------------------- ! ! --- Start loop over spins --- DO is=1,nspin_lsda ! --- Initialize average of phases as complex numbers --- cave=(0.0_dp,0.0_dp) phik_ave=(0.0_dp,0.0_dp) ! --- Start loop over strings with same spin --- DO kort=1,nkort ! --- Calculate string index --- istring=kort+(is-1)*nkort ! --- Average phases as complex numbers --- cave=cave+wstring(istring)*cphik(istring) ! --- End loop over strings with same spin --- END DO ! --- Get the angle corresponding to the complex numbers average --- theta0=atan2(AIMAG(cave), DBLE(cave)) ! --- Put the phases in an around theta0 --- DO kort=1,nkort istring=kort+(is-1)*nkort cphik(istring)=cphik(istring)/cave dtheta=atan2(AIMAG(cphik(istring)), DBLE(cphik(istring))) phik(istring)=theta0+dtheta phik_ave=phik_ave+wstring(istring)*phik(istring) END DO ! --- Assign this angle to the corresponding spin phase average --- IF (nspin == 1) THEN phiup=phik_ave !theta0+dtheta phidw=phik_ave !theta0+dtheta ELSE IF (nspin == 2) THEN IF (is == 1) THEN phiup=phik_ave !theta0+dtheta ELSE IF (is == 2) THEN phidw=phik_ave !theta0+dtheta END IF ELSE IF (nspin==4 ) THEN phiup=phik_ave phidw=0.0_DP END IF ! --- End loop over spins END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: remap phases ! ! ------------------------------------------------------------------------- ! ! --- Remap string phases to interval [-0.5,0.5) --- pdl_elec=phik/(2.0_dp*pi) mod_elec=1 ! --- Remap spin average phases to interval [-0.5,0.5) --- pdl_elec_up=phiup/(2.0_dp*pi) mod_elec_up=1 pdl_elec_dw=phidw/(2.0_dp*pi) mod_elec_dw=1 ! --- Depending on nspin, remap total phase to [-1,1) or [-0.5,0.5) --- pdl_elec_tot=pdl_elec_up+pdl_elec_dw IF (nspin == 1) THEN pdl_elec_tot=pdl_elec_tot-2.0_dp*NINT(pdl_elec_tot/2.0_dp) mod_elec_tot=2 ELSE IF (nspin == 2 .OR. nspin == 4) THEN pdl_elec_tot=pdl_elec_tot-1.0_dp*NINT(pdl_elec_tot/1.0_dp) mod_elec_tot=1 END IF ! ------------------------------------------------------------------------- ! ! ionic polarization ! ! ------------------------------------------------------------------------- ! ! --- Look for ions with odd number of charges --- mod_ion=2 lodd=.FALSE. DO na=1,nat IF (MOD(NINT(zv(ityp(na))),2) == 1) THEN mod_ion(na)=1 lodd=.TRUE. END IF END DO ! --- Calculate ionic polarization phase for every ion --- pdl_ion=0.0_dp DO na=1,nat DO i=1,3 pdl_ion(na)=pdl_ion(na)+zv(ityp(na))*tau(i,na)*gpar(i) ENDDO IF (mod_ion(na) == 1) THEN pdl_ion(na)=pdl_ion(na)-1.0_dp*nint(pdl_ion(na)/1.0_dp) ELSE IF (mod_ion(na) == 2) THEN pdl_ion(na)=pdl_ion(na)-2.0_dp*nint(pdl_ion(na)/2.0_dp) END IF ENDDO ! --- Add up the phases modulo 2 iff the ionic charges are even numbers --- pdl_ion_tot=SUM(pdl_ion(1:nat)) IF (lodd) THEN pdl_ion_tot=pdl_ion_tot-1.d0*nint(pdl_ion_tot/1.d0) mod_ion_tot=1 ELSE pdl_ion_tot=pdl_ion_tot-2.d0*nint(pdl_ion_tot/2.d0) mod_ion_tot=2 END IF ! ------------------------------------------------------------------------- ! ! total polarization ! ! ------------------------------------------------------------------------- ! ! --- Add electronic and ionic contributions to total phase --- pdl_tot=pdl_elec_tot+pdl_ion_tot IF ((.NOT.lodd).AND.(nspin == 1)) THEN mod_tot=2 ELSE mod_tot=1 END IF ! ------------------------------------------------------------------------- ! ! write output information ! ! ------------------------------------------------------------------------- ! ! --- Information about the k-points string used --- WRITE( stdout,"(/,21X,'K-POINTS STRINGS USED IN CALCULATIONS')") WRITE( stdout,"(21X,37('~'),/)") WRITE( stdout,"(7X,'G-vector along string (2 pi/a):',3F9.5)") & gpar(1),gpar(2),gpar(3) WRITE( stdout,"(7X,'Modulus of the vector (1/bohr):',F9.5)") & gvec WRITE( stdout,"(7X,'Number of k-points per string:',I4)") nppstr WRITE( stdout,"(7X,'Number of different strings :',I4)") nkort ! --- Information about ionic polarization phases --- WRITE( stdout,"(2/,31X,'IONIC POLARIZATION')") WRITE( stdout,"(31X,18('~'),/)") WRITE( stdout,"(8X,'Note: (mod 1) means that the phases (angles ranging from' & & /,8X,'-pi to pi) have been mapped to the interval [-1/2,+1/2) by',& & /,8X,'dividing by 2*pi; (mod 2) refers to the interval [-1,+1)',& & /)") WRITE( stdout,"(2X,76('='))") WRITE( stdout,"(4X,'Ion',4X,'Species',4X,'Charge',14X, & & 'Position',16X,'Phase')") WRITE( stdout,"(2X,76('-'))") DO na=1,nat WRITE( stdout,"(3X,I3,8X,A2,F12.3,5X,3F8.4,F12.5,' (mod ',I1,')')") & & na,atm(ityp(na)),zv(ityp(na)), & & tau(1,na),tau(2,na),tau(3,na),pdl_ion(na),mod_ion(na) END DO WRITE( stdout,"(2X,76('-'))") WRITE( stdout,"(47X,'IONIC PHASE: ',F9.5,' (mod ',I1,')')") pdl_ion_tot,mod_ion_tot WRITE( stdout,"(2X,76('='))") ! --- Information about electronic polarization phases --- WRITE( stdout,"(2/,28X,'ELECTRONIC POLARIZATION')") WRITE( stdout,"(28X,23('~'),/)") WRITE( stdout,"(8X,'Note: (mod 1) means that the phases (angles ranging from' & & /,8X,'-pi to pi) have been mapped to the interval [-1/2,+1/2) by',& & /,8X,'dividing by 2*pi; (mod 2) refers to the interval [-1,+1)',& & /)") WRITE( stdout,"(2X,76('='))") WRITE( stdout,"(3X,'Spin',4X,'String',5X,'Weight',6X, & & 'First k-point in string',9X,'Phase')") WRITE( stdout,"(2X,76('-'))") DO istring=1,nstring/nspin_lsda ind1=1+(istring-1)*nppstr WRITE( stdout,"(3X,' up ',3X,I5,F14.6,4X,3(F8.4),F12.5,' (mod ',I1,')')") & & istring,wstring(istring), & & xk(1,ind1),xk(2,ind1),xk(3,ind1),pdl_elec(istring),mod_elec(istring) END DO WRITE( stdout,"(2X,76('-'))") ! --- Treat unpolarized/polarized spin cases --- IF (nspin_lsda == 1) THEN ! --- In unpolarized spin, just copy again the same data --- DO istring=1,nstring ind1=1+(istring-1)*nppstr WRITE( stdout,"(3X,'down',3X,I5,F14.6,4X,3(F8.4),F12.5,' (mod ',I1,')')") & istring,wstring(istring), xk(1,ind1),xk(2,ind1),xk(3,ind1), & pdl_elec(istring),mod_elec(istring) END DO ELSE IF (nspin_lsda == 2) THEN ! --- If there is spin polarization, write information for new strings --- DO istring=nstring/2+1,nstring ind1=1+(istring-1)*nppstr WRITE( stdout,"(3X,'down',3X,I4,F15.6,4X,3(F8.4),F12.5,' (mod ',I1,')')") & & istring,wstring(istring), xk(1,ind1),xk(2,ind1),xk(3,ind1), & & pdl_elec(istring),mod_elec(istring) END DO END IF WRITE( stdout,"(2X,76('-'))") IF (noncolin) THEN WRITE( stdout,"(42X,'Average phase : ',F9.5,' (mod ',I1,')')") & pdl_elec_up,mod_elec_up ELSE WRITE( stdout,"(40X,'Average phase (up): ',F9.5,' (mod ',I1,')')") & pdl_elec_up,mod_elec_up WRITE( stdout,"(38X,'Average phase (down): ',F9.5,' (mod ',I1,')')")& pdl_elec_dw,mod_elec_dw WRITE( stdout,"(42X,'ELECTRONIC PHASE: ',F9.5,' (mod ',I1,')')") & pdl_elec_tot,mod_elec_tot ENDIF WRITE( stdout,"(2X,76('='))") ! --- Information about total phase --- WRITE( stdout,"(2/,31X,'SUMMARY OF PHASES')") WRITE( stdout,"(31X,17('~'),/)") WRITE( stdout,"(26X,'Ionic Phase:',F9.5,' (mod ',I1,')')") & pdl_ion_tot,mod_ion_tot WRITE( stdout,"(21X,'Electronic Phase:',F9.5,' (mod ',I1,')')") & pdl_elec_tot,mod_elec_tot WRITE( stdout,"(26X,'TOTAL PHASE:',F9.5,' (mod ',I1,')')") & pdl_tot,mod_tot ! --- Information about the value of polarization --- WRITE( stdout,"(2/,29X,'VALUES OF POLARIZATION')") WRITE( stdout,"(29X,22('~'),/)") WRITE( stdout,"( & & 8X,'The calculation of phases done along the direction of vector ',I1, & & /,8X,'of the reciprocal lattice gives the following contribution to', & & /,8X,'the polarization vector (in different units, and being Omega', & & /,8X,'the volume of the unit cell):')") & gdir ! --- Calculate direction of polarization and modulus of lattice vector --- rmod=SQRT(at(1,gdir)*at(1,gdir)+at(2,gdir)*at(2,gdir) & +at(3,gdir)*at(3,gdir)) upol(:)=at(:,gdir)/rmod rmod=alat*rmod ! --- Give polarization in units of (e/Omega).bohr --- fac=rmod WRITE( stdout,"(/,11X,'P = ',F11.7,' (mod ',F11.7,') (e/Omega).bohr')") & fac*pdl_tot,fac*DBLE(mod_tot) ! --- Give polarization in units of e.bohr --- fac=rmod/omega WRITE( stdout,"(/,11X,'P = ',F11.7,' (mod ',F11.7,') e/bohr^2')") & fac*pdl_tot,fac*DBLE(mod_tot) ! --- Give polarization in SI units (C/m^2) --- fac=(rmod/omega)*(1.60097E-19_dp/5.29177E-11_dp**2) WRITE( stdout,"(/,11X,'P = ',F11.7,' (mod ',F11.7,') C/m^2')") & fac*pdl_tot,fac*DBLE(mod_tot) ! --- Write polarization direction --- WRITE( stdout,"(/,8X,'The polarization direction is: ( ', & & F7.5,' , ',F7.5,' , ',F7.5,' )')") upol(1),upol(2),upol(3) ! --- End of information relative to polarization calculation --- WRITE( stdout,"(/,/,15X,50('=')/,/)") ! ------------------------------------------------------------------------- ! ! finalization ! ! ------------------------------------------------------------------------- ! ! --- Free memory --- DEALLOCATE(mod_elec) DEALLOCATE(pdl_elec) DEALLOCATE(wstring) DEALLOCATE(cphik) DEALLOCATE(loc_k) DEALLOCATE(phik) DEALLOCATE(ln) DEALLOCATE(aux) DEALLOCATE(aux0) DEALLOCATE(psi) IF (l_para) THEN DEALLOCATE ( aux_g ) ELSE DEALLOCATE ( map_g ) ENDIF IF (okvan) THEN CALL deallocate_bec_type ( becp0 ) CALL deallocate_bec_type ( becp_bp ) IF (lspinorb) DEALLOCATE(q_dk_so) END IF !------------------------------------------------------------------------------! END SUBROUTINE c_phase !==============================================================================! espresso-5.0.2/PW/src/n_plane_waves.f900000644000700200004540000000353012053145630016636 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine n_plane_waves (ecutwfc, tpiba2, nks, xk, g, ngm, npwx, ngk) !----------------------------------------------------------------------- ! ! Find number of plane waves for each k-point ! USE kinds, only: DP USE mp, ONLY : mp_max USE mp_global, ONLY : inter_pool_comm implicit none ! integer, intent(in) :: nks, ngm real(DP), intent(in) :: ecutwfc, tpiba2, xk (3, nks), g (3, ngm) ! integer, intent(out) :: npwx, ngk (nks) ! integer :: nk, ng real(DP) :: q2 ! npwx = 0 do nk = 1, nks ngk (nk) = 0 do ng = 1, ngm q2 = (xk (1, nk) + g (1, ng) ) **2 + (xk (2, nk) + g (2, ng) ) ** & 2 + (xk (3, nk) + g (3, ng) ) **2 if (q2 <= ecutwfc / tpiba2) then ! ! here if |k+G|^2 <= Ecut increase the number of G inside the sphere ! ngk (nk) = ngk (nk) + 1 else if (sqrt (g (1, ng) **2 + g (2, ng) **2 + g (3, ng) **2) & .gt.sqrt (xk (1, nk) **2 + xk (2, nk) **2 + xk (3, nk) **2) & + sqrt (ecutwfc / tpiba2) ) goto 100 ! ! if |G| > |k| + sqrt(Ecut) stop search ! endif enddo 100 npwx = max (npwx, ngk (nk) ) enddo if (npwx <= 0) call errore ('n_plane_waves', & 'No plane waves found: running on too many processors?', 1) ! ! when using pools, set npwx to the maximum value across pools ! (you may run into trouble at restart otherwise) ! CALL mp_max ( npwx, inter_pool_comm ) ! return end subroutine n_plane_waves espresso-5.0.2/PW/src/find_group.f900000644000700200004540000002040712053145627016161 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE find_group(nrot,smat,gname,code_group) ! ! Given a group of nrot rotation matrices smat (in cartesian coordinates) ! this routine finds the name of the point group. It assumes but does not ! check that: ! 1) The nrot matrices smat are actually a group. ! 2) The group is one of the thirty-two point groups. ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nrot, code_group REAL(DP) :: smat(3,3,nrot) CHARACTER (LEN=11) :: gname, group_name INTEGER :: noperation(6), irot, ts, tipo_sym ! ! For each possible group operation the function tipo_sym gives a code ! 1 identity, ! 2 inversion, ! 3 proper rotation <> 180, ! 4 proper rotation 180 degrees, ! 5 mirror, ! 6 improper rotation ! the variable noperation counts how many operations are present in the group. ! noperation=0 DO irot=1,nrot ts=tipo_sym(smat(1,1,irot)) noperation(ts)=noperation(ts)+1 END DO IF (noperation(1).ne.1) call errore('find_group','the group has not identity',1) code_group=0 IF (noperation(2)==0) THEN ! ! There is not inversion ! IF (nrot==1) THEN code_group=1 ! C_1 ELSEIF (nrot==2) THEN IF (noperation(4)==1) code_group=4 ! C_2 IF (noperation(5)==1) code_group=3 ! C_s ELSEIF (nrot==3) THEN IF (noperation(3)==2) code_group=5 ! C_3 ELSEIF (nrot==4) THEN IF (noperation(6)>0) code_group=26 ! S_4 IF (noperation(5)>0.and.code_group==0) code_group=12 ! C_2v IF (noperation(3)>0.and.code_group==0) code_group=6 ! C_4 IF (noperation(4)>0.and.code_group==0) code_group=8 ! D_2 ELSEIF (nrot==6) THEN IF (noperation(5)==3) code_group=13 ! C_3v IF (noperation(5)==1) code_group=17 ! C_3h IF (noperation(4)==3.and.code_group==0) code_group=9 ! D_3 IF (noperation(3)>0.and.code_group==0) code_group=7 ! C_6 ELSEIF (nrot==8) THEN IF (noperation(5)==4) code_group=14 ! C_4v IF (noperation(5)==2) code_group=24 ! D_2d IF (noperation(3)>0.and.code_group==0) code_group=10 ! D_4 ELSEIF (nrot==12) THEN IF (noperation(5)==6) code_group=15 ! C_6v IF (noperation(5)==4) code_group=21 ! D_3h IF (noperation(4)>6.and.code_group==0) code_group=11 ! D_6 IF (noperation(3)>0.and.code_group==0) code_group=28 ! T ELSEIF (nrot==24) THEN IF (noperation(5)>0) code_group=30 ! T_d IF (noperation(5)==0) code_group=31 ! O ELSE CALL errore('find_group','wrong number of elements',1) ENDIF ELSEIF (noperation(2)==1) THEN ! ! There is inversion ! IF (nrot==2) THEN code_group=2 ! C_i ELSEIF (nrot==4) THEN code_group=16 ! C_2h ELSEIF (nrot==6) THEN code_group=27 ! S_6 ELSEIF (nrot==8) THEN IF (noperation(5)==3) code_group=20 ! D_2h IF (noperation(5)==1) code_group=18 ! C_4h ELSEIF (nrot==12) THEN IF (noperation(5)==3) code_group=25 ! D_3d IF (noperation(5)==1) code_group=19 ! C_6h ELSEIF (nrot==16) THEN IF (noperation(5)==5) code_group=22 ! D_4h ELSEIF (nrot==24) THEN IF (noperation(5)>6) code_group=23 ! D_6h IF (noperation(5)==3) code_group=29 ! T_h ELSEIF (nrot==48) THEN code_group=32 ! O_h ELSE CALL errore('find_group','wrong number of elements',1) ENDIF ELSE CALL errore('find_group','too many inversions',1) ENDIF IF (code_group==0) call errore('find_group','incompatible operations',1) gname=group_name(code_group) RETURN END SUBROUTINE find_group !-------------------------------------------------------------------------- FUNCTION group_name(code) !-------------------------------------------------------------------------- ! This function receives a code of the group and provides the name of the ! group. The order is the following: ! ! 1 "C_1 " 11 "D_6 " 21 "D_3h" 31 "O " ! 2 "C_i " 12 "C_2v" 22 "D_4h" 32 "O_h " ! 3 "C_s " 13 "C_3v" 23 "D_6h" ! 4 "C_2 " 14 "C_4v" 24 "D_2d" ! 5 "C_3 " 15 "C_6v" 25 "D_3d" ! 6 "C_4 " 16 "C_2h" 26 "S_4 " ! 7 "C_6 " 17 "C_3h" 27 "S_6 " ! 8 "D_2 " 18 "C_4h" 28 "T " ! 9 "D_3 " 19 "C_6h" 29 "T_h " ! 10 "D_4 " 20 "D_2h" 30 "T_d " ! IMPLICIT NONE INTEGER :: code CHARACTER(LEN=11) :: group_name CHARACTER(LEN=11) :: gname(32) data gname / "C_1 (1) ", "C_i (-1) ", "C_s (m) ", "C_2 (2) ", & "C_3 (3) ", "C_4 (4) ", "C_6 (6) ", "D_2 (222) ", & "D_3 (32) ", "D_4 (422) ", "D_6 (622) ", "C_2v (mm2) ", & "C_3v (3m) ", "C_4v (4mm) ", "C_6v (6mm) ", "C_2h (2/m) ", & "C_3h (-6) ", "C_4h (4/m) ", "C_6h (6/m) ", "D_2h (mmm) ", & "D_3h (-62m)", "D_4h(4/mmm)", "D_6h(6/mmm)", "D_2d (-42m)", & "D_3d (-3m) ", "S_4 (-4) ", "S_6 (-3) ", "T (23) ", & "T_h (m-3) ", "T_d (-43m) ", "O (432) ", "O_h (m-3m) " / IF (code < 1 .OR. code > 32 ) CALL errore('group_name','code is out of range',1) group_name=gname(code) RETURN END FUNCTION group_name !-------------------------------------------------------------------------- FUNCTION tipo_sym(s) !-------------------------------------------------------------------------- ! This function receives a 3x3 orthogonal matrix which is a symmetry ! operation of the point group of the crystal written in cartesian ! coordinates and gives as output a code according to the following: ! ! 1 Identity ! 2 Inversion ! 3 Proper rotation of an angle <> 180 degrees ! 4 Proper rotation of 180 degrees ! 5 Mirror symmetry ! 6 Improper rotation ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), PARAMETER :: eps=1.d-7 REAL(DP) :: s(3,3), det, det1 INTEGER :: tipo_sym ! ! Check for identity ! IF ((ABS(s(1,1)-1.d0) < eps).AND. & (ABS(s(2,2)-1.d0) < eps).AND. & (ABS(s(3,3)-1.d0) < eps).AND. & (ABS(s(1,2)) < eps).AND.(ABS(s(2,1)) < eps).AND.(ABS(s(2,3)) < eps).AND. & (ABS(s(3,2)) < eps).AND.(ABS(s(1,3)) < eps).AND.(ABS(s(3,1)) < eps)) THEN tipo_sym=1 RETURN ENDIF ! ! Check for inversion ! IF ((ABS(s(1,1)+1.d0) < eps).AND. & (ABS(s(2,2)+1.d0) < eps).AND. & (ABS(s(3,3)+1.d0) < eps).AND. & (ABS(s(1,2)) < eps).AND.(ABS(s(2,1)) < eps).AND.(ABS(s(2,3)) < eps).AND. & (ABS(s(3,2)) < eps).AND.(ABS(s(1,3)) < eps).AND.(ABS(s(3,1)) < eps)) THEN tipo_sym=2 RETURN ENDIF ! ! compute the determinant ! det = s(1,1) * ( s(2,2) * s(3,3) - s(3,2) * s(2,3) )- & s(1,2) * ( s(2,1) * s(3,3) - s(3,1) * s(2,3) )+ & s(1,3) * ( s(2,1) * s(3,2) - s(3,1) * s(2,2) ) ! ! Determinant equal to 1: proper rotation ! IF (abs(det-1.d0) < eps) THEN ! ! check if an eigenvalue is equal to -1.d0 (180 rotation) ! det1=(s(1,1)+1.d0)*((s(2,2)+1.d0)*(s(3,3)+1.d0)-s(3,2)*s(2,3))- & s(1,2)* (s(2,1)* (s(3,3)+1.d0)-s(3,1)*s(2,3))+ & s(1,3)* (s(2,1)*s(3,2) -s(3,1)*(s(2,2)+1.d0)) IF (abs(det1) < eps) THEN tipo_sym=4 ! 180 proper rotation ELSE tipo_sym=3 ! proper rotation <> 180 ENDIF RETURN ENDIF ! ! Determinant equal to -1: mirror symmetry or improper rotation ! IF (abs(det+1.d0) < eps) THEN ! ! check if an eigenvalue is equal to 1.d0 (mirror symmetry) ! det1=(s(1,1)-1.d0)*((s(2,2)-1.d0)*(s(3,3)-1.d0)-s(3,2)*s(2,3))- & s(1,2)* (s(2,1)* (s(3,3)-1.d0)-s(3,1)*s(2,3))+ & s(1,3)* (s(2,1)*s(3,2) -s(3,1)*(s(2,2)-1.d0)) IF (abs(det1) < eps) THEN tipo_sym=5 ! mirror symmetry ELSE tipo_sym=6 ! improper rotation ENDIF RETURN ELSE call errore('tipo_sym','symmetry not recognized',1) ENDIF END FUNCTION tipo_sym espresso-5.0.2/PW/src/bp_calc_btq.f900000644000700200004540000000621612053145630016252 0ustar marsamoscm! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE calc_btq(ql,qr_k,idbes) !---------------------------------------------------------------------- ! ! Calculates the Bessel-transform (or its derivative if idbes=1) ! of the augmented qrad charges at a given ql point. ! Rydberg atomic units are used. ! USE kinds, ONLY: DP USE atom, ONLY: rgrid USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY: omega USE constants, ONLY: fpi USE uspp_param, ONLY: upf, nbetam, lmaxq ! IMPLICIT NONE ! REAL(DP) :: ql, qr_k(nbetam,nbetam,lmaxq,ntyp) INTEGER :: idbes ! INTEGER :: i, np, l, ilmin, ilmax, iv, jv, ijv, ilast REAL(DP) :: qrk REAL(DP), ALLOCATABLE :: jl(:), aux(:) ! DO np=1,ntyp ! IF ( upf(np)%tvanp ) THEN ! ALLOCATE ( jl(upf(np)%kkbeta), aux(upf(np)%kkbeta) ) DO iv =1, upf(np)%nbeta DO jv =iv, upf(np)%nbeta ijv = jv * (jv-1) / 2 + iv ilmin = abs ( upf(np)%lll(iv) - upf(np)%lll(jv) ) ilmax = upf(np)%lll(iv) + upf(np)%lll(jv) ! only need to calculate for l=lmin,lmin+2 ...lmax-2,lmax DO l = ilmin,ilmax,2 aux(:) = 0.0_DP IF (upf(np)%q_with_l .or. upf(np)%tpawp) then aux(1:upf(np)%kkbeta) = & upf(np)%qfuncl(1:upf(np)%kkbeta,ijv,l) ELSE DO i = 1, upf(np)%kkbeta IF (rgrid(np)%r(i) >=upf(np)%rinner (l+1) ) THEN aux (i) = upf(np)%qfunc(i,ijv) ELSE ilast = i ENDIF ENDDO IF ( upf(np)%rinner (l+1) > 0.0_dp) & CALL setqf ( upf(np)%qfcoef(1,l+1,iv,jv), aux(1), & rgrid(np)%r, upf(np)%nqf, l, ilast ) ENDIF IF (idbes == 1) THEN ! CALL sph_dbes( upf(np)%kkbeta, rgrid(np)%r, ql, l, jl ) ! ELSE ! CALL sph_bes( upf(np)%kkbeta, rgrid(np)%r, ql, l, jl ) ! ENDIF ! jl is the Bessel function (or its derivative) calculated at ql ! now integrate qfunc*jl*r^2 = Bessel transform of qfunc DO i=1, upf(np)%kkbeta aux(i) = jl(i)*aux(i) ENDDO ! if (tlog(np)) then CALL simpson(upf(np)%kkbeta,aux,rgrid(np)%rab,qrk) qr_k(iv,jv,l+1,np) = qrk*fpi/omega qr_k(jv,iv,l+1,np) = qr_k(iv,jv,l+1,np) END DO END DO ENDDO DEALLOCATE ( aux, jl ) ENDIF ENDDO ! RETURN END SUBROUTINE calc_btq espresso-5.0.2/PW/src/atomic_wfc.f900000644000700200004540000002532612053145627016145 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE atomic_wfc (ik, wfcatom) !----------------------------------------------------------------------- ! ! This routine computes the superposition of atomic wavefunctions ! for k-point "ik" - output in "wfcatom" ! USE kinds, ONLY : DP USE constants, ONLY : tpi, fpi, pi USE cell_base, ONLY : omega, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE basis, ONLY : natomwfc USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE klist, ONLY : xk USE wvfct, ONLY : npwx, npw, nbnd, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin, npol, angle1, angle2 USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef, lmaxx, domag, & starting_spin_angle ! implicit none ! integer, intent(in) :: ik complex(DP), intent(out) :: wfcatom (npwx, npol, natomwfc) ! integer :: n_starting_wfc, lmax_wfc, nt, l, nb, na, m, lm, ig, iig, & i0, i1, i2, i3, nwfcm real(DP), allocatable :: qg(:), ylm (:,:), chiq (:,:,:), gk (:,:) complex(DP), allocatable :: sk (:), aux(:) complex(DP) :: kphase, lphase real(DP) :: arg, px, ux, vx, wx call start_clock ('atomic_wfc') ! calculate max angular momentum required in wavefunctions lmax_wfc = 0 do nt = 1, ntyp lmax_wfc = MAX ( lmax_wfc, MAXVAL (upf(nt)%lchi(1:upf(nt)%nwfc) ) ) enddo ! nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) ! allocate ( ylm (npw,(lmax_wfc+1)**2), chiq(npw,nwfcm,ntyp), & sk(npw), gk(3,npw), qg(npw) ) ! do ig = 1, npw gk (1,ig) = xk(1, ik) + g(1, igk(ig) ) gk (2,ig) = xk(2, ik) + g(2, igk(ig) ) gk (3,ig) = xk(3, ik) + g(3, igk(ig) ) qg(ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! ! ylm = spherical harmonics ! call ylmr2 ((lmax_wfc+1)**2, npw, gk, qg, ylm) ! ! set now q=|k+G| in atomic units ! do ig = 1, npw qg(ig) = sqrt(qg(ig))*tpiba enddo ! n_starting_wfc = 0 ! ! chiq = radial fourier transform of atomic orbitals chi ! do nt = 1, ntyp do nb = 1, upf(nt)%nwfc if ( upf(nt)%oc (nb) >= 0.d0) then do ig = 1, npw px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq (ig, nb, nt) = & tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 enddo endif enddo enddo deallocate (qg, gk) allocate ( aux(npw) ) ! wfcatom(:,:,:) = (0.0_dp, 0.0_dp) ! do na = 1, nat arg = (xk(1,ik)*tau(1,na) + xk(2,ik)*tau(2,na) + xk(3,ik)*tau(3,na)) * tpi kphase = CMPLX(cos (arg), - sin (arg) ,kind=DP) ! ! sk is the structure factor ! do ig = 1, npw iig = igk (ig) sk (ig) = kphase * eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) enddo ! nt = ityp (na) do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) lphase = (0.d0,1.d0)**l ! ! the factor i^l MUST BE PRESENT in order to produce ! wavefunctions for k=0 that are real in real space ! IF ( noncolin ) THEN ! IF ( upf(nt)%has_so ) THEN ! IF (starting_spin_angle.OR..not.domag) THEN call atomic_wfc_so ( ) ELSE call atomic_wfc_so_mag ( ) ENDIF ! ELSE ! call atomic_wfc_nc ( ) ! ENDIF ! ELSE ! call atomic_wfc___ ( ) ! END IF ! END IF ! END DO ! END DO if (n_starting_wfc /= natomwfc) call errore ('atomic_wfc', & 'internal error: some wfcs were lost ', 1) deallocate(aux, sk, chiq, ylm) call stop_clock ('atomic_wfc') return CONTAINS SUBROUTINE atomic_wfc_so ( ) ! ! ... spin-orbit case ! real(DP) :: fact(2), j real(DP), external :: spinor integer :: ind, ind1, n1, is, sph_ind ! j = upf(nt)%jchi(nb) do m = -l-1, l fact(1) = spinor(l,j,m,1) fact(2) = spinor(l,j,m,2) if (abs(fact(1)) > 1.d-8 .or. abs(fact(2)) > 1.d-8) then n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc > natomwfc) call errore & ('atomic_wfc_so', 'internal error: too many wfcs', 1) DO is=1,2 IF (abs(fact(is)) > 1.d-8) THEN ind=lmaxx+1+sph_ind(l,j,m,is) aux=(0.d0,0.d0) DO n1=1,2*l+1 ind1=l**2+n1 if (abs(rot_ylm(ind,n1)) > 1.d-8) & aux(:)=aux(:)+rot_ylm(ind,n1)*ylm(:,ind1) ENDDO DO ig=1,npw wfcatom (ig,is,n_starting_wfc) = lphase*fact(is)*& sk(ig)*aux(ig)*chiq (ig, nb, nt) END DO ELSE wfcatom (:,is,n_starting_wfc) = (0.d0,0.d0) END IF END DO END IF END DO ! END SUBROUTINE atomic_wfc_so ! SUBROUTINE atomic_wfc_so_mag ( ) ! ! ... spin-orbit case, magnetization along "angle1" and "angle2" ! In the magnetic case we always assume that magnetism is much larger ! than spin-orbit and average the wavefunctions at l+1/2 and l-1/2 ! filling then the up and down spinors with the average wavefunctions, ! according to the direction of the magnetization, following what is ! done in the noncollinear case ! real(DP) :: alpha, gamman, j complex(DP) :: fup, fdown real(DP), ALLOCATABLE :: chiaux(:) integer :: nc, ib ! j = upf(nt)%jchi(nb) ! ! This routine creates two functions only in the case j=l+1/2 or exit in the ! other case ! IF (ABS(j-l+0.5_DP)<1.d-4) RETURN ALLOCATE(chiaux(npw)) ! ! Find the functions j=l-1/2 ! IF (l == 0) THEN chiaux(:)=chiq(:,nb,nt) ELSE DO ib=1, upf(nt)%nwfc IF ((upf(nt)%lchi(ib) == l).AND. & (ABS(upf(nt)%jchi(ib)-l+0.5_DP)<1.d-4)) THEN nc=ib EXIT ENDIF ENDDO ! ! Average the two functions ! chiaux(:)=(chiq(:,nb,nt)*(l+1.0_DP)+chiq(:,nc,nt)*l)/(2.0_DP*l+1.0_DP) ENDIF ! ! and construct the starting wavefunctions as in the noncollinear case. ! alpha = angle1(nt) gamman = - angle2(nt) + 0.5d0*pi ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc + 2*l+1 > natomwfc) call errore & ('atomic_wfc_nc', 'internal error: too many wfcs', 1) DO ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiaux(ig) END DO ! ! now, rotate wfc as needed ! first : rotation with angle alpha around (OX) ! DO ig=1,npw fup = cos(0.5d0*alpha)*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*alpha)*aux(ig) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! wfcatom(ig,1,n_starting_wfc) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0*gamman))*fup wfcatom(ig,2,n_starting_wfc) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown ! ! second: rotation with angle gamma around (OZ) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! fup = cos(0.5d0*(alpha+pi))*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*(alpha+pi))*aux(ig) ! ! second, rotation with angle gamma around (OZ) ! wfcatom(ig,1,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0 *gamman))*fup wfcatom(ig,2,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown END DO END DO n_starting_wfc = n_starting_wfc + 2*l+1 DEALLOCATE(chiaux) ! END SUBROUTINE atomic_wfc_so_mag ! SUBROUTINE atomic_wfc_nc ( ) ! ! ... noncolinear case, magnetization along "angle1" and "angle2" ! real(DP) :: alpha, gamman complex(DP) :: fup, fdown ! alpha = angle1(nt) gamman = - angle2(nt) + 0.5d0*pi ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc + 2*l+1 > natomwfc) call errore & ('atomic_wfc_nc', 'internal error: too many wfcs', 1) DO ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiq(ig,nb,nt) END DO ! ! now, rotate wfc as needed ! first : rotation with angle alpha around (OX) ! DO ig=1,npw fup = cos(0.5d0*alpha)*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*alpha)*aux(ig) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! wfcatom(ig,1,n_starting_wfc) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0*gamman))*fup wfcatom(ig,2,n_starting_wfc) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown ! ! second: rotation with angle gamma around (OZ) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! fup = cos(0.5d0*(alpha+pi))*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*(alpha+pi))*aux(ig) ! ! second, rotation with angle gamma around (OZ) ! wfcatom(ig,1,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0 *gamman))*fup wfcatom(ig,2,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown END DO END DO n_starting_wfc = n_starting_wfc + 2*l+1 ! END SUBROUTINE atomic_wfc_nc SUBROUTINE atomic_wfc___( ) ! ! ... LSDA or nonmagnetic case ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc > natomwfc) call errore & ('atomic_wfc___', 'internal error: too many wfcs', 1) ! DO ig = 1, npw wfcatom (ig, 1, n_starting_wfc) = lphase * & sk (ig) * ylm (ig, lm) * chiq (ig, nb, nt) ENDDO ! END DO ! END SUBROUTINE atomic_wfc___ ! END SUBROUTINE atomic_wfc espresso-5.0.2/PW/src/gen_us_dy.f900000644000700200004540000001054212053145627016000 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_us_dy (ik, u, dvkb) !---------------------------------------------------------------------- ! ! Calculates the kleinman-bylander pseudopotentials with the ! derivative of the spherical harmonics projected on vector u ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE uspp, ONLY : nkb, indv, nhtol, nhtolm USE us, ONLY : nqx, tab, tab_d2y, dq, spline_ps USE splinelib USE uspp_param, ONLY : upf, lmaxkb, nbetam, nh ! implicit none ! integer :: ik real(DP) :: u (3) complex(DP) :: dvkb (npwx, nkb) integer :: na, nt, nb, ih, l, lm, ikb, iig, ipol, i0, i1, i2, & i3, ig real(DP), allocatable :: gk(:,:), q (:) real(DP) :: px, ux, vx, wx, arg real(DP), allocatable :: vkb0 (:,:,:), dylm (:,:), dylm_u (:,:) ! dylm = d Y_lm/dr_i in cartesian axes ! dylm_u as above projected on u complex(DP), allocatable :: sk (:) complex(DP) :: phase, pref integer :: iq real(DP), allocatable :: xdata(:) dvkb(:,:) = (0.d0, 0.d0) if (lmaxkb.le.0) return allocate ( vkb0(npw,nbetam,ntyp), dylm_u(npw,(lmaxkb+1)**2), gk(3,npw) ) allocate ( q(npw) ) do ig = 1, npw gk (1, ig) = xk (1, ik) + g (1, igk (ig) ) gk (2, ig) = xk (2, ik) + g (2, igk (ig) ) gk (3, ig) = xk (3, ik) + g (3, igk (ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo allocate ( dylm(npw,(lmaxkb+1)**2) ) dylm_u(:,:) = 0.d0 do ipol = 1, 3 call dylmr2 ((lmaxkb+1)**2, npw, gk, q, dylm, ipol) call daxpy (npw * (lmaxkb + 1) **2, u (ipol), dylm, 1, dylm_u, 1) enddo deallocate (dylm) do ig = 1, npw q (ig) = sqrt ( q(ig) ) * tpiba end do if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif do nt = 1, ntyp ! calculate beta in G-space using an interpolation table do nb = 1, upf(nt)%nbeta do ig = 1, npw if (spline_ps) then vkb0(ig,nb,nt) = splint(xdata, tab(:,nb,nt), & tab_d2y(:,nb,nt), q(ig)) else px = q (ig) / dq - int (q (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = q (ig) / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 vkb0 (ig, nb, nt) = tab (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab (i1, nb, nt) * px * vx * wx / 2.d0 - & tab (i2, nb, nt) * px * ux * wx / 2.d0 + & tab (i3, nb, nt) * px * ux * vx / 6.d0 endif enddo enddo enddo deallocate (q) allocate ( sk(npw) ) ikb = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then arg = (xk (1, ik) * tau (1, na) + xk (2, ik) * tau (2, na) & + xk (3, ik) * tau (3, na) ) * tpi phase = CMPLX(cos (arg), - sin (arg) ,kind=DP) do ig = 1, npw iig = igk (ig) sk (ig) = eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) * phase enddo do ih = 1, nh (nt) nb = indv (ih, nt) l = nhtol (ih, nt) lm = nhtolm(ih, nt) ikb = ikb + 1 pref = (0.d0, -1.d0) **l ! do ig = 1, npw dvkb (ig, ikb) = vkb0(ig, nb, nt) * sk(ig) * dylm_u(ig, lm) & * pref / tpiba enddo enddo endif enddo enddo if (ikb.ne.nkb) then WRITE( stdout, * ) ikb, nkb call errore ('gen_us_dy', 'unexpected error', 1) endif deallocate ( sk ) deallocate ( vkb0, dylm_u, gk ) if (spline_ps) deallocate(xdata) return end subroutine gen_us_dy espresso-5.0.2/PW/src/add_bfield.f900000644000700200004540000001776112053145627016073 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE add_bfield (v,rho) !-------------------------------------------------------------------- ! ! If noncolinear is set, one can calculate constrains either on ! the local magnetization, calculated in get_locals or on the ! total magnetization. ! ! To this end, a "penalty term" of the form ! E_p = lambda * ( m_loc - m_loc_constr)^2 ! is added to the energy. Here we calculate the resulting ! "constraining B-field" and add it to v(ir,2..4) ! Moreover there is also the possibility to add a fixed ! magnetic field (apparently disabled at the moment). ! ! NB: So far, the contribution of the orbital currents ! to the magnetization is not included. ! ! USE kinds, ONLY : DP USE constants, ONLY : pi USE io_global, ONLY : stdout USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE noncollin_module, ONLY : bfield, lambda, i_cons, mcons, & pointlist, factlist, noncolin IMPLICIT NONE ! input/outpt variables REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr, nspin) ! local variables REAL(DP) :: ma, mperp, xx, fact, m1(3), etcon, fact1(3) REAL(DP), allocatable :: m2(:,:), m_loc(:,:), r_loc(:) INTEGER :: ir, ipol, nt, na, npol etcon=0.D0 IF (nspin ==1 .or. i_cons==0) RETURN ! i_cons==0, no constraint npol = nspin - 1 ! number of relevant magnetic components ! 3 for non-collinear case; 1 for collinear case ! ! get the actual values of the local integrated quantities IF (i_cons.LT.3) THEN allocate ( m2(npol,nat), m_loc(npol,nat), r_loc(nat) ) CALL get_locals(r_loc, m_loc, rho) DO na = 1,nat nt = ityp(na) IF (i_cons==1) THEN ! i_cons = 1 means that the npol components of the magnetization ! are constrained, they are given in the input-file m2(1:npol,na) = m_loc(1:npol,na) - mcons(1:npol,nt) do ipol=1,npol etcon = etcon + lambda * m2(ipol,na)*m2(ipol,na) end do ELSE IF (i_cons==2) THEN ! i_cons = 2 means that the angle theta between the local ! magn. moment and the z-axis is constrained ! mcons (3,nt) is the cos of the constraining angle theta ! the penalty functional in this case is ! lambda*(m_loc(z)/|m_loc| - cos(theta) )^2 IF (.NOT. noncolin) CALL errore('add_bfield', & 'this magnetic constraint only applies to non collinear calculations',2) ma = dsqrt(m_loc(1,na)**2+m_loc(2,na)**2+m_loc(3,na)**2) if (ma.lt.1.d-30) call errore('add_bfield', & 'local magnetization is zero',1) xx=(m_loc(3,na)/ma - mcons(3,nt)) m2(1,na) = - xx*m_loc(1,na)*m_loc(3,na) / (ma*ma*ma) m2(2,na) = - xx*m_loc(2,na)*m_loc(3,na) / (ma*ma*ma) m2(3,na) = xx*(-m_loc(3,na)*m_loc(3,na) / (ma*ma*ma) + 1.d0/ma) etcon = etcon + & lambda * (m_loc(3,na)/ma - mcons(3,nt))**2 END IF END DO ! na if (noncolin) then DO ir = 1, dfftp%nnr if (pointlist(ir) .eq. 0 ) cycle fact = 2.D0*lambda*factlist(ir)*omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) DO ipol = 1,3 v(ir,ipol+1) = v(ir,ipol+1) + fact*m2(ipol,pointlist(ir)) END DO ! ipol END DO ! points else DO ir = 1, dfftp%nnr if (pointlist(ir) .eq. 0 ) cycle fact = 2.D0*lambda*factlist(ir)*omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) v(ir,1) = v(ir,1) + fact*m2(1,pointlist(ir)) v(ir,2) = v(ir,2) - fact*m2(1,pointlist(ir)) END DO ! points end if deallocate (m2, m_loc, r_loc) write (stdout,'(4x,a,F15.8)' ) " constraint energy (Ryd) = ", etcon ELSE IF (i_cons==3.or.i_cons==6) THEN m1 = 0.d0 IF (npol==1) THEN DO ir = 1,dfftp%nnr m1(1) = m1(1) + rho(ir,1) - rho(ir,2) END DO m1(1) = m1(1) * omega / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) ELSE DO ipol = 1, 3 DO ir = 1,dfftp%nnr m1(ipol) = m1(ipol) + rho(ir,ipol+1) END DO m1(ipol) = m1(ipol) * omega / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) END DO END IF CALL mp_sum( m1, intra_bgrp_comm ) IF (i_cons==3) THEN IF (npol==1) THEN fact = 2.D0*lambda bfield(1)=-fact*(m1(1)-mcons(1,1)) DO ir =1,dfftp%nnr v(ir,1) = v(ir,1)-bfield(1) v(ir,2) = v(ir,2)+bfield(1) END DO ELSE fact = 2.D0*lambda DO ipol=1,3 bfield(ipol)=-fact*(m1(ipol)-mcons(ipol,1)) DO ir =1,dfftp%nnr v(ir,ipol+1) = v(ir,ipol+1)-bfield(ipol) END DO END DO END IF write(stdout,'(5x," External magnetic field: ", 3f13.5)') & (bfield(ipol),ipol=1,npol) END IF IF (i_cons==6) THEN ! IF (.NOT. noncolin) CALL errore('add_bfield', & 'this magnetic constraint only applies to non collinear calculations',6) ! ! penalty functional: E = lambda*(arccos(m_z/|m|) - theta)^2 ! ! modulus and azimuthal component of the magnetization: ma = SQRT(m1(1)**2 + m1(2)**2 + m1(3)**2) mperp = SQRT(m1(1)**2 + m1(2)**2) IF (ma < 1.D-12) CALL errore('add_bfield', & 'magnetization too small, cannot constrain polar angle', 1) fact = ACOS(m1(3)/ma) xx = fact - mcons(3,1)/180.D0*pi IF (mperp < 1.D-14) THEN fact1(1:2) = 0.D0 ! when m is along z, in order to allow the magnetization to rotate ! add a tiny B_ext along x (when required, because of theta-target > 0) IF (mcons(3,1) > 0.D0) fact1(1) = 1.D-14 ELSE fact1(1:2) = m1(1:2)/mperp * m1(3)/ma/ma ENDIF fact1(3) = - SQRT(1.D0 - (m1(3)/ma)**2)/ma etcon = lambda * xx**2 bfield(:) = 2.D0 * lambda * xx * fact1(:) DO ipol = 1,3 DO ir =1,dfftp%nnr v(ir,ipol+1) = v(ir,ipol+1)+bfield(ipol) END DO END DO ! write(stdout,'(/,5x,"Constraint on the polar angle of the magnetization")') ! N.B.: since the magnetization is here computed starting from the mixed ! rho (i.e. the input rho for the next scf iteration), as all the other ! contributions to the potential for the next iteration, it will differ ! from the magnetization written on the output, since that is calculated ! with the output rho of the current iteration. At convergence the two ! magnetizations will coincide (and so will do the polar angles). write(stdout,'(5x,"theta (target): ",F10.5," (",F10.5,")")') & ACOS(m1(3)/ma)*180.d0/pi, mcons(3,1) write(stdout,'(5x,"E_constraint: ",F15.9," (lambda:",F15.9,")")') etcon, lambda write(stdout,'(5x,"External magnetic field: ", 3F12.6)') bfield(1:npol) !write(stdout,'(5x,"Magnetization : ", 3F12.6)') m1(1:npol) ! END IF ELSE IF (i_cons==4) THEN write(stdout,'(5x," External magnetic field: ", 3f13.5)') & (bfield(ipol),ipol=1,npol) IF (npol==1) THEN DO ir =1,dfftp%nnr v(ir,1) = v(ir,1)-bfield(ipol) v(ir,2) = v(ir,2)+bfield(ipol) END DO ELSE DO ipol = 1,3 DO ir =1,dfftp%nnr v(ir,ipol+1) = v(ir,ipol+1)-bfield(ipol) END DO END DO END IF ELSE CALL errore('add_bfield','i_cons not programmed',1) END IF RETURN END SUBROUTINE add_bfield espresso-5.0.2/PW/src/symm_base.f900000644000700200004540000010253412053145627016006 0ustar marsamoscm! ! Copyright (C) 2010-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE symm_base USE kinds, ONLY : DP USE cell_base, ONLY : at, bg ! ! ... The variables needed to describe the symmetry properties ! ... and the routines to find crystal symmetries ! ! ... these are acceptance criteria ! REAL(DP), PARAMETER :: eps1 = 1.0d-6, eps2 = 1.0d-5 ! SAVE ! PRIVATE ! ! ... Exported variables ! PUBLIC :: s, sr, sname, ft, ftau, nrot, nsym, nsym_ns, nsym_na, t_rev, & no_t_rev, time_reversal, irt, invs, invsym, d1, d2, d3, & allfrac, nofrac, nosym, nosym_evc INTEGER :: & s(3,3,48), &! symmetry matrices, in crystal axis invs(48), &! index of inverse operation: S^{-1}_i=S(invs(i)) ftau(3,48), &! fractional translations, in FFT coordinates nrot, &! number of bravais lattice symmetries nsym = 1, &! total number of crystal symmetries nsym_ns = 0, &! nonsymmorphic (fractional translation) symms nsym_na = 0 ! excluded nonsymmorphic symmetries because ! fract. transl. is noncommensurate with FFT grid REAL (DP) :: & ft (3,48), &! fractional translations, in crystal axis sr (3,3,48), &! symmetry matrices, in cartesian axis accep = 1.0d-5 ! initial value of the acceptance threshold ! for position comparison by eqvect in checksym ! ! ... note: ftau are used for symmetrization in real space (phonon, exx) ! ... in which case they must be commensurated with the FFT grid ! CHARACTER(len=45) :: sname(48) ! name of the symmetries INTEGER :: & t_rev(48) = 0 ! time reversal flag, for noncolinear magnetism INTEGER, ALLOCATABLE :: & irt(:,:) ! symmetric atom for each atom and sym.op. LOGICAL :: & time_reversal=.true., &! if .TRUE. the system has time reversal symmetry invsym, &! if .TRUE. the system has inversion symmetry nofrac= .false., &! if .TRUE. fract. translations are not allowed allfrac= .false., &! if .TRUE. all fractionary translations allowed, ! even those not commensurate with FFT grid nosym = .false., &! if .TRUE. no symmetry is used nosym_evc = .false., &! if .TRUE. symmetry is used only to symmetrize ! k points no_t_rev=.false. ! if .TRUE. remove the symmetries that ! require time reversal REAL(DP),TARGET :: & d1(3,3,48), &! matrices for rotating spherical d2(5,5,48), &! harmonics (d1 for l=1, ...) d3(7,7,48) ! ! ! ... Exported routines ! PUBLIC :: find_sym, inverse_s, copy_sym, checkallsym, & s_axis_to_cart, set_sym, set_sym_bl ! CONTAINS ! SUBROUTINE inverse_s ( ) !----------------------------------------------------------------------- ! ! Locate index of S^{-1} ! IMPLICIT NONE ! INTEGER :: isym, jsym, ss (3, 3) LOGICAL :: found ! DO isym = 1, nsym found = .false. DO jsym = 1, nsym ! ss = matmul (s(:,:,jsym),s(:,:,isym)) ! s(:,:,1) is the identity IF ( all ( s(:,:,1) == ss(:,:) ) ) THEN invs (isym) = jsym found = .true. ENDIF ENDDO IF ( .not.found) CALL errore ('inverse_s', ' Not a group', 1) ENDDO ! END SUBROUTINE inverse_s ! !----------------------------------------------------------------------- SUBROUTINE set_sym_bl ( ) !----------------------------------------------------------------------- ! ! Provides symmetry operations for all bravais lattices ! Tests first the 24 proper rotations for the cubic lattice; ! then the 8 rotations specific for the hexagonal axis (special axis c); ! then inversion is added ! IMPLICIT NONE ! ! sin3 = sin(pi/3), cos3 = cos(pi/3), msin3 = -sin(pi/3), mcos3 = -cos(pi/3) ! real(DP), PARAMETER :: sin3 = 0.866025403784438597d0, cos3 = 0.5d0, & msin3 =-0.866025403784438597d0, mcos3 = -0.5d0 real(DP) :: s0(3, 3, 32), overlap (3, 3), rat (3), rot (3, 3), value ! s0: the s matrices in cartesian axis ! overlap: inverse overlap matrix between direct lattice ! rat: the rotated of a direct vector ( cartesian ) ! rot: the rotated of a direct vector ( crystal axis ) ! value: component of the s matrix in axis basis INTEGER :: jpol, kpol, mpol, irot, imat(24) ! counters over the polarizations and the rotations CHARACTER (len=45) :: s0name (64) ! full name of the rotational part of each symmetry operation data s0/ 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, & -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, & -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, & 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, & 0.d0, 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, 0.d0, & 0.d0, 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, 0.d0, & 0.d0, 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, 0.d0, & 0.d0, 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, 0.d0, & -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, & -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, & 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, & 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, & 0.d0, 0.d0, 1.d0, 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, & 0.d0, 0.d0, -1.d0, -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, & 0.d0, 0.d0, -1.d0, 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, & 0.d0, 0.d0, 1.d0, -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, & 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 1.d0, 0.d0, 0.d0, & 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 1.d0, 0.d0, 0.d0, & 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, -1.d0, 0.d0, 0.d0, & 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, -1.d0, 0.d0, 0.d0, & cos3, sin3, 0.d0, msin3, cos3, 0.d0, 0.d0, 0.d0, 1.d0, & cos3, msin3, 0.d0, sin3, cos3, 0.d0, 0.d0, 0.d0, 1.d0, & mcos3, sin3, 0.d0, msin3, mcos3, 0.d0, 0.d0, 0.d0, 1.d0, & mcos3, msin3, 0.d0, sin3, mcos3, 0.d0, 0.d0, 0.d0, 1.d0, & cos3, msin3, 0.d0, msin3, mcos3, 0.d0, 0.d0, 0.d0, -1.d0, & cos3, sin3, 0.d0, sin3, mcos3, 0.d0, 0.d0, 0.d0, -1.d0, & mcos3, msin3, 0.d0, msin3, cos3, 0.d0, 0.d0, 0.d0, -1.d0, & mcos3, sin3, 0.d0, sin3, cos3, 0.d0, 0.d0, 0.d0, -1.d0 / data s0name/ 'identity ',& '180 deg rotation - cart. axis [0,0,1] ',& '180 deg rotation - cart. axis [0,1,0] ',& '180 deg rotation - cart. axis [1,0,0] ',& '180 deg rotation - cart. axis [1,1,0] ',& '180 deg rotation - cart. axis [1,-1,0] ',& ' 90 deg rotation - cart. axis [0,0,-1] ',& ' 90 deg rotation - cart. axis [0,0,1] ',& '180 deg rotation - cart. axis [1,0,1] ',& '180 deg rotation - cart. axis [-1,0,1] ',& ' 90 deg rotation - cart. axis [0,1,0] ',& ' 90 deg rotation - cart. axis [0,-1,0] ',& '180 deg rotation - cart. axis [0,1,1] ',& '180 deg rotation - cart. axis [0,1,-1] ',& ' 90 deg rotation - cart. axis [-1,0,0] ',& ' 90 deg rotation - cart. axis [1,0,0] ',& '120 deg rotation - cart. axis [-1,-1,-1] ',& '120 deg rotation - cart. axis [-1,1,1] ',& '120 deg rotation - cart. axis [1,1,-1] ',& '120 deg rotation - cart. axis [1,-1,1] ',& '120 deg rotation - cart. axis [1,1,1] ',& '120 deg rotation - cart. axis [-1,1,-1] ',& '120 deg rotation - cart. axis [1,-1,-1] ',& '120 deg rotation - cart. axis [-1,-1,1] ',& ' 60 deg rotation - cryst. axis [0,0,1] ',& ' 60 deg rotation - cryst. axis [0,0,-1] ',& '120 deg rotation - cryst. axis [0,0,1] ',& '120 deg rotation - cryst. axis [0,0,-1] ',& '180 deg rotation - cryst. axis [1,-1,0] ',& '180 deg rotation - cryst. axis [2,1,0] ',& '180 deg rotation - cryst. axis [0,1,0] ',& '180 deg rotation - cryst. axis [1,1,0] ',& 'inversion ',& 'inv. 180 deg rotation - cart. axis [0,0,1] ',& 'inv. 180 deg rotation - cart. axis [0,1,0] ',& 'inv. 180 deg rotation - cart. axis [1,0,0] ',& 'inv. 180 deg rotation - cart. axis [1,1,0] ',& 'inv. 180 deg rotation - cart. axis [1,-1,0] ',& 'inv. 90 deg rotation - cart. axis [0,0,-1] ',& 'inv. 90 deg rotation - cart. axis [0,0,1] ',& 'inv. 180 deg rotation - cart. axis [1,0,1] ',& 'inv. 180 deg rotation - cart. axis [-1,0,1] ',& 'inv. 90 deg rotation - cart. axis [0,1,0] ',& 'inv. 90 deg rotation - cart. axis [0,-1,0] ',& 'inv. 180 deg rotation - cart. axis [0,1,1] ',& 'inv. 180 deg rotation - cart. axis [0,1,-1] ',& 'inv. 90 deg rotation - cart. axis [-1,0,0] ',& 'inv. 90 deg rotation - cart. axis [1,0,0] ',& 'inv. 120 deg rotation - cart. axis [-1,-1,-1]',& 'inv. 120 deg rotation - cart. axis [-1,1,1] ',& 'inv. 120 deg rotation - cart. axis [1,1,-1] ',& 'inv. 120 deg rotation - cart. axis [1,-1,1] ',& 'inv. 120 deg rotation - cart. axis [1,1,1] ',& 'inv. 120 deg rotation - cart. axis [-1,1,-1] ',& 'inv. 120 deg rotation - cart. axis [1,-1,-1] ',& 'inv. 120 deg rotation - cart. axis [-1,-1,1] ',& 'inv. 60 deg rotation - cryst. axis [0,0,1] ',& 'inv. 60 deg rotation - cryst. axis [0,0,-1] ',& 'inv. 120 deg rotation - cryst. axis [0,0,1] ',& 'inv. 120 deg rotation - cryst. axis [0,0,-1] ',& 'inv. 180 deg rotation - cryst. axis [1,-1,0] ',& 'inv. 180 deg rotation - cryst. axis [2,1,0] ',& 'inv. 180 deg rotation - cryst. axis [0,1,0] ',& 'inv. 180 deg rotation - cryst. axis [1,1,0] ' / ! compute the overlap matrix for crystal axis DO jpol = 1,3 DO kpol = 1,3 rot(kpol,jpol) = at(1,kpol)*at(1,jpol) +& at(2,kpol)*at(2,jpol) +& at(3,kpol)*at(3,jpol) ENDDO ENDDO ! ! then its inverse (rot is used as work space) ! CALL invmat (3, rot, overlap, value) nrot = 1 DO irot = 1,32 ! ! for each possible symmetry ! DO jpol = 1,3 DO mpol = 1,3 ! ! compute, in cartesian coordinates the rotated vector ! rat(mpol) = s0(mpol,1,irot)*at(1,jpol) +& s0(mpol,2,irot)*at(2,jpol) +& s0(mpol,3,irot)*at(3,jpol) ENDDO DO kpol = 1,3 ! ! the rotated vector is projected on the direct lattice ! rot(kpol,jpol) = at(1,kpol)*rat(1) +& at(2,kpol)*rat(2) +& at(3,kpol)*rat(3) ENDDO ENDDO ! ! and the inverse of the overlap matrix is applied ! DO jpol = 1,3 DO kpol = 1,3 value = overlap(jpol,1)*rot(1,kpol) +& & overlap(jpol,2)*rot(2,kpol) +& & overlap(jpol,3)*rot(3,kpol) IF ( abs(dble(nint(value))-value) > eps1 ) THEN ! ! if a noninteger is obtained, this implies that this operation ! is not a symmetry operation for the given lattice ! GOTO 10 ENDIF s(kpol,jpol,nrot) = nint(value) ENDDO ENDDO sname(nrot)=s0name(irot) imat(nrot)=irot nrot = nrot+1 IF (nrot > 25) CALL errore('set_sym_bl','some problem with symmetries',1) 10 CONTINUE ENDDO nrot = nrot-1 IF ( nrot /= 1 .AND. nrot /= 2 .AND. nrot /= 4 .AND. nrot /= 6 .AND. & nrot /= 8 .AND. nrot /=12 .AND. nrot /=24 ) CALL errore('set_sym_bl',& 'wrong number of symmetries! Use standard orientations for axis',nrot) ! ! set the inversion symmetry ( Bravais lattices have always inversion ! symmetry ) ! DO irot = 1, nrot DO kpol = 1,3 DO jpol = 1,3 s(kpol,jpol,irot+nrot) = -s(kpol,jpol,irot) sname(irot+nrot) = s0name(imat(irot)+32) ENDDO ENDDO ENDDO nrot = 2*nrot ! This happens for instance for an hexagonal lattice with one axis ! oriented at 15 degrees from the x axis, the opther along (-1,1,0) IF ( .not. is_group ( nrot ) ) THEN CALL errore ('set_sym_bl', & 'Symmetry group not a group! Use standard orientations for axis',1) ENDIF ! RETURN ! END SUBROUTINE set_sym_bl ! !----------------------------------------------------------------------- SUBROUTINE find_sym ( nat, tau, ityp, nr1, nr2, nr3, magnetic_sym, m_loc ) !----------------------------------------------------------------------- ! ! This routine finds the point group of the crystal, by eliminating ! the symmetries of the Bravais lattice which are not allowed ! by the atomic positions (or by the magnetization if present) ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), nr1, nr2, nr3 real(DP), INTENT(in) :: tau (3,nat), m_loc(3,nat) LOGICAL, INTENT(in) :: magnetic_sym ! INTEGER :: i LOGICAL :: sym (48) ! if true the corresponding operation is a symmetry operation ! IF ( .not. allocated(irt) ) ALLOCATE( irt( 48, nat ) ) irt( :, : ) = 0 ! ! Here we find the true symmetries of the crystal ! symm: DO i=1,3 !emine: if it is not resolved in 3 steps it is sth else? CALL sgam_at ( nat, tau, ityp, nr1, nr2, nr3, sym ) ! ! Here we check for magnetic symmetries ! IF ( magnetic_sym ) CALL sgam_at_mag ( nat, m_loc, sym ) ! ! If nosym_evc is true from now on we do not use the symmetry any more ! IF (nosym_evc) THEN sym=.false. sym(1)=.true. ENDIF ! ! Here we re-order all rotations in such a way that true sym.ops ! are the first nsym; rotations that are not sym.ops. follow ! nsym = copy_sym ( nrot, sym ) ! IF ( .not. is_group ( nsym ) ) THEN IF (i == 1) CALL infomsg ('find_sym', & 'Not a group! Trying with lower acceptance parameter...') accep = accep * 0.5d0 IF (i == 3) THEN CALL infomsg ('find_sym', 'Still not a group! symmetry disabled') nsym = 1 ENDIF CYCLE symm ELSE IF (i > 1) CALL infomsg ('find_sym', 'Symmetry operations form a group') exit symm ENDIF ENDDO symm ! ! check if inversion (I) is a symmetry. ! If so, it should be the (nsym/2+1)-th operation of the group ! invsym = all ( s(:,:,nsym/2+1) == -s(:,:,1) ) ! CALL inverse_s ( ) ! CALL s_axis_to_cart ( ) ! RETURN ! END SUBROUTINE find_sym ! !----------------------------------------------------------------------- SUBROUTINE sgam_at ( nat, tau, ityp, nr1, nr2, nr3, sym ) !----------------------------------------------------------------------- ! ! Given the point group of the Bravais lattice, this routine finds ! the subgroup which is the point group of the considered crystal. ! Non symmorphic groups are allowed, provided that fractional ! translations are allowed (nofrac=.false), that the unit cell is ! not a supercell, and that they are commensurate with the FFT grid ! ! On output, the array sym is set to .true.. for each operation ! of the original point group that is also a symmetry operation ! of the crystal symmetry point group ! USE io_global, ONLY : stdout USE kinds IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), nr1, nr2, nr3 ! nat : number of atoms in the unit cell ! ityp : species of each atom in the unit cell ! nr* : dimensions of the FFT mesh ! real(DP), INTENT(in) :: tau (3, nat) ! ! tau : cartesian coordinates of the atoms ! ! output variables ! LOGICAL, INTENT(out) :: sym (48) ! sym(isym) : flag indicating if sym.op. isym in the parent group ! is a true symmetry operation of the crystal ! INTEGER :: na, kpol, nb, irot, i, j ! counters real(DP) , ALLOCATABLE :: xau (:,:), rau (:,:) ! atomic coordinates in crystal axis LOGICAL :: fractional_translations real(DP) :: ft_(3), ft1, ft2, ft3 ! ALLOCATE(xau(3,nat)) ALLOCATE(rau(3,nat)) ! ! Compute the coordinates of each atom in the basis of ! the direct lattice vectors ! DO na = 1, nat xau(:,na) = bg(1,:) * tau(1,na) + bg(2,:) * tau(2,na) + bg(3,:) * tau(3,na) ENDDO ! ! check if the identity has fractional translations ! (this means that the cell is actually a supercell). ! When this happens, fractional translations are disabled, ! because there is no guarantee that the generated sym.ops. ! form a group ! nb = 1 irot = 1 ! fractional_translations = .not. nofrac DO na = 2, nat IF ( fractional_translations ) THEN IF (ityp (nb) == ityp (na) ) THEN ft_(:) = xau(:,na) - xau(:,nb) - nint( xau(:,na) - xau(:,nb) ) ! sym(irot) = checksym ( irot, nat, ityp, xau, xau, ft_ ) ! IF ( sym (irot) .and. & (abs (ft_(1) **2 + ft_(2) **2 + ft_(3) **2) < 1.d-8) ) & CALL errore ('sgam_at', 'overlapping atoms', na) IF (sym (irot) ) THEN fractional_translations = .false. WRITE( stdout, '(5x,"Found symmetry operation: I + (",& & 3f8.4, ")",/,5x,"This is a supercell,", & & " fractional translations are disabled")') ft_ ENDIF ENDIF ENDIF ENDDO ! nsym_ns = 0 DO irot = 1, nrot ! ! check that the grid is compatible with the S rotation ! IF ( mod (s (2, 1, irot) * nr1, nr2) /= 0 .or. & mod (s (3, 1, irot) * nr1, nr3) /= 0 .or. & mod (s (1, 2, irot) * nr2, nr1) /= 0 .or. & mod (s (3, 2, irot) * nr2, nr3) /= 0 .or. & mod (s (1, 3, irot) * nr3, nr1) /= 0 .or. & mod (s (2, 3, irot) * nr3, nr2) /= 0 ) THEN sym (irot) = .false. WRITE( stdout, '(5x,"warning: symmetry operation # ",i2, & & " not compatible with FFT grid. ")') irot WRITE( stdout, '(3i4)') ( (s (i, j, irot) , j = 1, 3) , i = 1, 3) GOTO 100 ENDIF DO na = 1, nat ! rau = rotated atom coordinates rau (:, na) = s (1,:, irot) * xau (1, na) + & s (2,:, irot) * xau (2, na) + & s (3,:, irot) * xau (3, na) ENDDO ! ! first attempt: no fractional translation ! ftau (:, irot) = 0 ft (:, irot) = 0 ft_(:) = 0.d0 ! sym(irot) = checksym ( irot, nat, ityp, xau, rau, ft_ ) ! IF (.not.sym (irot) .and. fractional_translations) THEN nb = 1 DO na = 1, nat IF (ityp (nb) == ityp (na) ) THEN ! ! second attempt: check all possible fractional translations ! ft_ (:) = rau(:,na) - xau(:,nb) - nint( rau(:,na) - xau(:,nb) ) ! sym(irot) = checksym ( irot, nat, ityp, xau, rau, ft_ ) ! IF (sym (irot) ) THEN nsym_ns = nsym_ns + 1 ft (:,irot) = ft_(:) GOTO 100 ENDIF ENDIF ENDDO ENDIF 100 CONTINUE ENDDO ! ! convert ft to FFT coordinates, check if compatible with FFT grid ! for real-space symmetrization (if done: currently, exx, phonon) ! nsym_na = 0 DO irot =1, nrot IF ( sym(irot) .and. .not. allfrac ) THEN ft1 = ft(1,irot) * nr1 ft2 = ft(2,irot) * nr2 ft3 = ft(3,irot) * nr3 ! check if the fractional translations are commensurate ! with the FFT grid, discard sym.op. if not ! (needed because ph.x symmetrizes in real space) IF (abs (ft1 - nint (ft1) ) / nr1 > eps2 .or. & abs (ft2 - nint (ft2) ) / nr2 > eps2 .or. & abs (ft3 - nint (ft3) ) / nr3 > eps2 ) THEN ! WRITE( stdout, '(5x,"warning: symmetry operation", & ! & " # ",i2," not allowed. fractional ", & ! & "translation:"/5x,3f11.7," in crystal", & ! & " coordinates")') irot, ft_ sym (irot) = .false. nsym_na = nsym_na + 1 nsym_ns = nsym_ns - 1 ENDIF ftau (1, irot) = nint (ft1) ftau (2, irot) = nint (ft2) ftau (3, irot) = nint (ft3) ENDIF ENDDO ! ! deallocate work space ! DEALLOCATE (rau) DEALLOCATE (xau) ! RETURN END SUBROUTINE sgam_at ! !----------------------------------------------------------------------- SUBROUTINE sgam_at_mag ( nat, m_loc, sym ) !----------------------------------------------------------------------- ! ! Find magnetic symmetries, i.e. point-group symmetries that are ! also symmetries of the local magnetization - including ! rotation + time reversal operations ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat real(DP), INTENT(in) :: m_loc(3, nat) ! ! m_loc: local magnetization, must be invariant under the sym.op. ! LOGICAL, INTENT(inout) :: sym (48) ! ! sym(isym) = .true. if rotation isym is a sym.op. of the crystal ! (i.e. not of the bravais lattice only) ! INTEGER :: na, nb, irot LOGICAL :: t1, t2 real(DP) , ALLOCATABLE :: mxau(:,:), mrau(:,:) ! magnetization and rotated magnetization in crystal axis ! ALLOCATE ( mxau(3,nat), mrau(3,nat) ) ! ! Compute the local magnetization of each atom in the basis of ! the direct lattice vectors ! DO na = 1, nat mxau (:, na)= bg (1, :) * m_loc (1, na) + & bg (2, :) * m_loc (2, na) + & bg (3, :) * m_loc (3, na) ENDDO ! DO irot = 1, nrot ! t_rev(irot) = 0 ! IF ( sym (irot) ) THEN ! ! mrau = rotated local magnetization ! DO na = 1, nat mrau(:,na) = s(1,:,irot) * mxau(1,na) + & s(2,:,irot) * mxau(2,na) + & s(3,:,irot) * mxau(3,na) ENDDO IF (sname(irot)(1:3)=='inv') mrau = -mrau ! ! check if this a magnetic symmetry ! t1 = .true. t2 = .true. DO na = 1, nat ! nb = irt (irot,na) IF ( nb < 1 .or. nb > nat ) CALL errore ('check_mag_sym', & 'internal error: out-of-bound atomic index', na) ! t1 = ( abs(mrau(1,na) - mxau(1,nb)) + & abs(mrau(2,na) - mxau(2,nb)) + & abs(mrau(3,na) - mxau(3,nb)) < eps2 ) .and. t1 t2 = ( abs(mrau(1,na) + mxau(1,nb))+ & abs(mrau(2,na) + mxau(2,nb))+ & abs(mrau(3,na) + mxau(3,nb)) < eps2 ) .and. t2 ! ENDDO ! IF ( .not.t1 .and. .not.t2 ) THEN ! not a magnetic symmetry sym(irot) = .false. ELSEIF( t2 .and. .not. t1 ) THEN ! magnetic symmetry with time reversal, if allowed IF (no_t_rev) THEN sym(irot) = .false. ELSE t_rev(irot) = 1 ENDIF ENDIF ! ENDIF ! ENDDO ! ! deallocate work space ! DEALLOCATE ( mrau, mxau ) ! RETURN END SUBROUTINE sgam_at_mag ! SUBROUTINE set_sym(nat, tau, ityp, nspin_mag, m_loc, nr1, nr2, nr3) ! ! This routine receives as input atomic types and positions, if there ! is noncollinear magnetism and the initial magnetic moments, the fft ! dimensions nr1, nr2, nr3; it sets the symmetry elements of this module. ! Note that at and bg are those in cell_base. It sets nrot, nsym, s, ! sname, sr, invs, ftau, irt, t_rev, time_reversal, and invsym ! !----------------------------------------------------------------------- ! IMPLICIT NONE ! input INTEGER, INTENT(in) :: nat, ityp(nat), nspin_mag, nr1, nr2, nr3 REAL(DP), INTENT(in) :: tau(3,nat) REAL(DP), INTENT(in) :: m_loc(3,nat) ! time_reversal = (nspin_mag /= 4) t_rev(:) = 0 CALL set_sym_bl ( ) CALL find_sym ( nat, tau, ityp, nr1, nr2, nr3, .not.time_reversal, m_loc ) ! RETURN END SUBROUTINE set_sym ! !----------------------------------------------------------------------- INTEGER FUNCTION copy_sym ( nrot_, sym ) !----------------------------------------------------------------------- ! IMPLICIT NONE INTEGER, INTENT(in) :: nrot_ LOGICAL, INTENT(inout) :: sym(48) ! INTEGER :: stemp(3,3), ftemp(3), ttemp, irot, jrot REAL(dp) :: ft_(3) INTEGER, ALLOCATABLE :: irtemp(:) CHARACTER(len=45) :: nametemp ! ! copy symm. operations in sequential order so that ! s(i,j,irot) , irot <= nsym are the sym.ops. of the crystal ! nsym+1 < irot <= nrot are the sym.ops. of the lattice ! on exit copy_sym returns nsym ! ALLOCATE ( irtemp( size(irt,2) ) ) jrot = 0 DO irot = 1, nrot_ IF (sym (irot) ) THEN jrot = jrot + 1 IF ( irot > jrot ) THEN stemp = s(:,:,jrot) s (:,:, jrot) = s (:,:, irot) s (:,:, irot) = stemp ftemp(:) = ftau(:,jrot) ftau (:, jrot) = ftau (:, irot) ftau (:, irot) = ftemp(:) ft_(:) = ft(:,jrot) ft (:, jrot) = ft (:, irot) ft (:, irot) = ft_(:) irtemp (:) = irt (jrot,:) irt (jrot,:) = irt (irot,:) irt (irot,:) = irtemp (:) nametemp = sname (jrot) sname (jrot) = sname (irot) sname (irot) = nametemp ttemp = t_rev(jrot) t_rev(jrot) = t_rev(irot) t_rev(irot) = ttemp ENDIF ENDIF ENDDO sym (1:jrot) = .true. sym (jrot+1:nrot_) = .false. DEALLOCATE ( irtemp ) ! copy_sym = jrot RETURN ! END FUNCTION copy_sym ! !----------------------------------------------------------------------- LOGICAL FUNCTION is_group ( nsym_ ) !----------------------------------------------------------------------- ! ! Checks that {S} is a group ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nsym_ INTEGER :: isym, jsym, ksym, ss (3, 3) REAL (DP) :: st(3), dt(3) LOGICAL :: found ! DO isym = 1, nsym_ DO jsym = 1, nsym_ ! ss = matmul (s(:,:,isym),s(:,:,jsym)) st(:)= ft(:,jsym) + s(1,:,jsym)*ft(1,isym) + & s(2,:,jsym)*ft(2,isym) + & s(3,:,jsym)*ft(3,isym) ! ! here we check that the input matrices really form a group: ! S(k) = S(i)*S(j) ! ftau_k = S(j)*ftau_i+ftau_j (modulo a lattice vector) ! found = .false. DO ksym = 1, nsym_ dt(:) = ft(:,ksym) - st(:) - nint( ft(:,ksym) - st(:) ) IF ( all( s(:,:,ksym) == ss(:,:) ) .and. & ( abs ( dt(1) ) < eps2 ) .and. & ( abs ( dt(2) ) < eps2 ) .and. & ( abs ( dt(3) ) < eps2 ) ) THEN IF (found) THEN is_group = .false. RETURN ENDIF found = .true. ENDIF ENDDO IF ( .not.found) THEN is_group = .false. RETURN ENDIF ENDDO ENDDO is_group=.true. RETURN ! END FUNCTION is_group ! !----------------------------------------------------------------------- LOGICAL FUNCTION checksym ( irot, nat, ityp, xau, rau, ft_ ) !----------------------------------------------------------------------- ! ! This function receives as input all the atomic positions xau, ! and the rotated rau by the symmetry operation ir. It returns ! true if for each atom na, it is possible to find an atom nb ! which is of the same type of na, and coincide with it after the ! symmetry operation. Fractional translations are allowed. ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), irot ! nat : number of atoms ! ityp: the type of each atom real(DP), INTENT(in) :: xau (3, nat), rau (3, nat), ft_(3) ! xau: the initial vectors (in crystal coordinates) ! rau: the rotated vectors (as above) ! ft_: fractionary translation (as above) ! INTEGER :: na, nb LOGICAL, EXTERNAL :: eqvect ! the testing function ! DO na = 1, nat DO nb = 1, nat checksym = ( ityp (na) == ityp (nb) .and. & eqvect (rau (1, na), xau (1, nb), ft_ , accep) ) IF ( checksym ) THEN ! ! the rotated atom does coincide with one of the like atoms ! keep track of which atom the rotated atom coincides with ! irt (irot, na) = nb GOTO 10 ENDIF ENDDO ! ! the rotated atom does not coincide with any of the like atoms ! s(ir) + ft is not a symmetry operation ! RETURN 10 CONTINUE ENDDO ! ! s(ir) + ft is a symmetry operation ! RETURN END FUNCTION checksym ! !----------------------------------------------------------------------- SUBROUTINE checkallsym ( nat, tau, ityp, nr1, nr2, nr3 ) !----------------------------------------------------------------------- ! given a crystal group this routine checks that the actual ! atomic positions and bravais lattice vectors are compatible with ! it. Used in relaxation/MD runs to check that atomic motion is ! consistent with assumed symmetry. ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), nr1, nr2, nr3 real(DP), INTENT(in) :: tau (3, nat) ! INTEGER :: na, kpol, isym, i, j, k, l LOGICAL :: loksym (48) real(DP) :: sx (3, 3), sy(3,3) real(DP) , ALLOCATABLE :: xau(:,:), rau(:,:) ! ALLOCATE (xau( 3 , nat)) ALLOCATE (rau( 3 , nat)) ! ! check that s(i,j, isym) is an orthogonal operation ! DO isym = 1, nsym sx = dble( s(:,:,isym) ) sy = matmul ( bg, sx ) sx = matmul ( sy, transpose(at) ) ! sx is s in cartesian axis sy = matmul ( transpose ( sx ), sx ) ! sy = s*transpose(s) = I DO i = 1, 3 sy (i,i) = sy (i,i) - 1.0_dp ENDDO IF (any (abs (sy) > eps1 ) ) & CALL errore ('checkallsym', 'not orthogonal operation', isym) ENDDO ! ! Compute the coordinates of each atom in the basis of the lattice ! DO na = 1, nat DO kpol = 1, 3 xau (kpol, na) = bg (1, kpol) * tau (1, na) + & bg (2, kpol) * tau (2, na) + & bg (3, kpol) * tau (3, na) ENDDO ENDDO ! ! generate the coordinates of the rotated atoms ! DO isym = 1, nsym DO na = 1, nat DO kpol = 1, 3 rau (kpol, na) = s (1, kpol, isym) * xau (1, na) + & s (2, kpol, isym) * xau (2, na) + & s (3, kpol, isym) * xau (3, na) ENDDO ENDDO ! loksym(isym) = checksym ( isym, nat, ityp, xau, rau, ft(1,isym) ) ! ENDDO ! ! deallocate work space ! DEALLOCATE(rau) DEALLOCATE(xau) ! DO isym = 1,nsym IF (.not.loksym (isym) ) CALL errore ('checkallsym', & 'the following symmetry operation is not satisfied ', -isym) ENDDO IF (any (.not.loksym (1:nsym) ) ) THEN !call symmetrize_at (nsym, s, invs, ft, irt, nat, tau, at, bg, & ! alat, omega) CALL errore ('checkallsym', & 'some of the original symmetry operations not satisfied ',1) ENDIF ! RETURN END SUBROUTINE checkallsym !---------------------------------------------------------------------- SUBROUTINE s_axis_to_cart ( ) !---------------------------------------------------------------------- ! ! This routine transforms symmetry matrices expressed in the ! basis of the crystal axis into rotations in cartesian axis ! USE kinds IMPLICIT NONE ! INTEGER :: isym real(dp):: sa(3,3), sb(3,3) ! DO isym = 1,nsym sa (:,:) = dble ( s(:,:,isym) ) sb = matmul ( bg, sa ) sr (:,:, isym) = matmul ( at, transpose (sb) ) ENDDO ! END SUBROUTINE s_axis_to_cart END MODULE symm_base espresso-5.0.2/PW/src/dvloc_of_g.f900000644000700200004540000000742012053145630016120 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine dvloc_of_g (mesh, msh, rab, r, vloc_at, zp, tpiba2, ngl, gl, & omega, dvloc) !---------------------------------------------------------------------- ! ! dvloc = D Vloc (g^2) / D g^2 = (1/2g) * D Vloc(g) / D g ! USE kinds USE constants , ONLY : pi, fpi, e2, eps8 implicit none ! ! first the dummy variables ! integer, intent(in) :: ngl, mesh, msh ! the number of shell of G vectors ! max number of mesh points ! number of mesh points for radial integration real(DP), intent(in) :: zp, rab (mesh), r (mesh), vloc_at (mesh), & tpiba2, omega, gl (ngl) ! valence pseudocharge ! the derivative of the radial grid ! the radial grid ! the pseudo on the radial grid ! 2 pi / alat ! the volume of the unit cell ! the moduli of g vectors for each s ! real(DP), intent(out) :: dvloc (ngl) ! the fourier transform dVloc/dG ! real(DP) :: vlcp, g2a, gx real(DP), allocatable :: aux (:), aux1 (:) real(DP), external :: qe_erf integer :: i, igl, igl0 ! counter on erf functions or gaussians ! counter on g shells vectors ! first shell with g != 0 ! the G=0 component is not computed if (gl (1) < eps8) then dvloc (1) = 0.0d0 igl0 = 2 else igl0 = 1 endif ! Pseudopotentials in numerical form (Vloc contains the local part) ! In order to perform the Fourier transform, a term erf(r)/r is ! subtracted in real space and added again in G space allocate (aux( mesh)) allocate (aux1( mesh)) ! ! This is the part of the integrand function ! indipendent of |G| in real space ! do i = 1, msh aux1 (i) = r (i) * vloc_at (i) + zp * e2 * qe_erf (r (i) ) enddo do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) ! ! and here we perform the integral, after multiplying for the |G| ! dependent part ! ! DV(g)/Dg = Integral of r (Dj_0(gr)/Dg) V(r) dr do i = 1, msh aux (i) = aux1 (i) * (r (i) * cos (gx * r (i) ) / gx - sin (gx & * r (i) ) / gx**2) enddo call simpson (msh, aux, rab, vlcp) ! DV(g^2)/Dg^2 = (DV(g)/Dg)/2g vlcp = fpi / omega / 2.0d0 / gx * vlcp ! subtract the long-range term g2a = gl (igl) * tpiba2 / 4.d0 vlcp = vlcp + fpi / omega * zp * e2 * exp ( - g2a) * (g2a + & 1.d0) / (gl (igl) * tpiba2) **2 dvloc (igl) = vlcp enddo deallocate (aux1) deallocate (aux) return end subroutine dvloc_of_g ! !---------------------------------------------------------------------- subroutine dvloc_coul (zp, tpiba2, ngl, gl, omega, dvloc) !---------------------------------------------------------------------- ! ! Fourier transform of the Coulomb potential - For all-electron ! calculations, in specific cases only, for testing purposes ! USE kinds USE constants , ONLY : fpi, e2, eps8 implicit none ! integer, intent(in) :: ngl ! the number of shell of G vectors real(DP), intent(in) :: zp, tpiba2, omega, gl (ngl) ! valence pseudocharge ! 2 pi / alat ! the volume of the unit cell ! the moduli of g vectors for each s real(DP), intent(out) :: dvloc (ngl) ! fourier transform: dvloc = D Vloc (g^2) / D g^2 = 4pi e^2/omegai /G^4 ! integer :: igl0 ! first shell with g != 0 ! the G=0 component is 0 if (gl (1) < eps8) then dvloc (1) = 0.0d0 igl0 = 2 else igl0 = 1 endif dvloc (igl0:ngl) = fpi * zp * e2 / omega / ( tpiba2 * gl (igl0:ngl) ) ** 2 return end subroutine dvloc_coul espresso-5.0.2/PW/src/v_of_rho.f900000644000700200004540000010556312053145627015635 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) !---------------------------------------------------------------------------- ! ! ... This routine computes the Hartree and Exchange and Correlation ! ... potential and energies which corresponds to a given charge density ! ... The XC potential is computed in real space, while the ! ... Hartree potential is computed in reciprocal space. ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm USE noncollin_module, ONLY : noncolin, nspin_lsda USE ions_base, ONLY : nat USE ldaU, ONLY : lda_plus_U USE funct, ONLY : dft_is_meta USE scf, ONLY : scf_type ! IMPLICIT NONE ! TYPE(scf_type), INTENT(IN) :: rho ! the valence charge TYPE(scf_type), INTENT(INOUT) :: v ! the scf (Hxc) potential !!!!!!!!!!!!!!!!! NB: NOTE that in F90 derived data type must be INOUT and !!!!!!!!!!!!!!!!! not just OUT because otherwise their allocatable or pointer !!!!!!!!!!!!!!!!! components are NOT defined !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! REAL(DP), INTENT(IN) :: rho_core(dfftp%nnr) ! the core charge COMPLEX(DP), INTENT(IN) :: rhog_core(ngm) ! the core charge in reciprocal space REAL(DP), INTENT(OUT) :: vtxc, etxc, ehart, eth, charge ! the integral V_xc * rho ! the E_xc energy ! the hartree energy ! the hubbard energy ! the integral of the charge REAL(DP), INTENT(INOUT) :: etotefield ! electric field energy - inout due to the screwed logic of add_efield ! ! INTEGER :: is ! CALL start_clock( 'v_of_rho' ) ! ! ... calculate exchange-correlation potential ! if (dft_is_meta()) then call v_xc_meta( rho, rho_core, rhog_core, etxc, vtxc, v%of_r, v%kin_r ) else CALL v_xc( rho, rho_core, rhog_core, etxc, vtxc, v%of_r ) endif ! ! ... add a magnetic field (if any) ! CALL add_bfield( v%of_r, rho%of_r ) ! ! ... calculate hartree potential ! CALL v_h( rho%of_g, ehart, charge, v%of_r ) ! ! ... LDA+U: build up Hubbard potential ! if (lda_plus_u) then if(noncolin) then call v_hubbard_nc(rho%ns_nc,v%ns_nc,eth) else call v_hubbard(rho%ns,v%ns,eth) endif endif ! ! ... add an electric field ! DO is = 1, nspin_lsda CALL add_efield(v%of_r(1,is), etotefield, rho%of_r, .false. ) END DO ! CALL stop_clock( 'v_of_rho' ) ! RETURN ! END SUBROUTINE v_of_rho !---------------------------------------------------------------------------- SUBROUTINE v_xc_meta( rho, rho_core, rhog_core, etxc, vtxc, v, kedtaur ) !---------------------------------------------------------------------------- ! ! ... Exchange-Correlation potential Vxc(r) from n(r) ! USE kinds, ONLY : DP USE constants, ONLY : e2, eps8 USE io_global, ONLY : stdout USE fft_base, ONLY : dfftp USE gvect, ONLY : g, nl,ngm USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat USE spin_orb, ONLY : domag USE funct, ONLY : xc, xc_spin, tau_xc, tau_xc_spin, & get_igcx, get_igcc USE scf, ONLY : scf_type USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm ! IMPLICIT NONE ! TYPE (scf_type), INTENT(IN) :: rho REAL(DP), INTENT(IN) :: rho_core(dfftp%nnr) ! the core charge in real space COMPLEX(DP), INTENT(IN) :: rhog_core(ngm) ! the core charge in reciprocal space REAL(DP), INTENT(OUT) :: v(dfftp%nnr,nspin), kedtaur(dfftp%nnr,nspin), & vtxc, etxc ! v: V_xc potential ! kedtau: local K energy density ! vtxc: integral V_xc * rho ! etxc: E_xc energy ! ! ... local variables ! REAL(DP) :: zeta, rh INTEGER :: k, ipol, is REAL(DP) :: ex, ec, v1x, v2x, v3x,v1c, v2c, v3c, & & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw, v2cup, v2cdw , & & v3xup, v3xdw,v3cup, v3cdw, & & arho, atau, fac, rhoup, rhodw, ggrho2, tauup,taudw REAL(DP), DIMENSION(2) :: grho2, rhoneg REAL(DP), DIMENSION(3) :: grhoup, grhodw, v2cup_vec, v2cdw_vec ! REAL(DP), ALLOCATABLE :: grho(:,:,:), h(:,:,:), dh(:) REAL(DP), ALLOCATABLE :: rhoout(:,:) COMPLEX(DP), ALLOCATABLE :: rhogsum(:,:) REAL(DP), PARAMETER :: eps12 = 1.0d-12, zero=0._dp ! !---------------------------------------------------------------------------- ! ! CALL start_clock( 'v_xc_meta' ) ! ! etxc = zero vtxc = zero v(:,:) = zero rhoneg(:) = zero ! ! ALLOCATE (grho(3,dfftp%nnr,nspin)) ALLOCATE (h(3,dfftp%nnr,nspin)) ALLOCATE (rhoout(dfftp%nnr,nspin)) ALLOCATE (rhogsum(ngm,nspin)) ! ! ... calculate the gradient of rho + rho_core in real space ! rhoout(:,1:nspin)=rho%of_r(:,1:nspin) rhogsum(:,1:nspin)=rho%of_g(:,1:nspin) fac = 1.D0 / DBLE( nspin ) ! DO is = 1, nspin ! rhoout(:,is) = fac * rho_core(:) + rhoout(:,is) rhogsum(:,is) = fac * rhog_core(:) + rhogsum(:,is) ! CALL gradrho( dfftp%nnr, rhogsum(1,is), ngm, g, nl, grho(1,1,is) ) ! END DO ! do k = 1, dfftp%nnr do is = 1, nspin grho2 (is) = grho(1,k, is)**2 + grho(2,k,is)**2 + grho(3,k, is)**2 end do if (nspin == 1) then ! ! This is the spin-unpolarised case ! arho = ABS (rho%of_r (k, 1) ) atau = rho%kin_r(k,1) / e2 ! kinetic energy density in Hartree if ( (arho > eps8) .and. (grho2 (1) > eps12) .and. & (abs(atau) > eps8)) then call tau_xc (arho, grho2(1),atau, ex, ec, v1x, v2x,v3x,v1c, v2c,v3c) v(k, 1) = (v1x + v1c )*e2 ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| h(:,k,1) = (v2x + v2c)*grho (:,k,1) *e2 kedtaur(k,1)= (v3x + v3c) * 0.5d0 * e2 etxc = etxc + (ex + ec) *e2 !* segno vtxc = vtxc + (v1x+v1c)*e2*arho else h (:, k, 1) = zero kedtaur(k,1)= zero end if if (rho%of_r (k, 1) < zero ) rhoneg(1) = rhoneg(1) - rho%of_r (k, 1) else ! ! spin-polarised case ! rhoup=rho%of_r(k, 1) rhodw=rho%of_r(k, 2) rh = rhoup + rhodw do ipol=1,3 grhoup(ipol)=grho(ipol,k,1) grhodw(ipol)=grho(ipol,k,2) end do ggrho2 = ( grho2 (1) + grho2 (2) ) * 4._dp tauup = rho%kin_r(k,1) / e2 taudw = rho%kin_r(k,2) / e2 atau = tauup + taudw if ((rh > eps8) .and. (ggrho2 > eps12) .and. (abs(atau) > eps8) ) then call tau_xc_spin (rhoup, rhodw, grhoup, grhodw, tauup, taudw, ex, ec, & v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, v1cup, v1cdw, & v2cup, v2cdw, v2cup_vec, v2cdw_vec, v3cup, v3cdw ) ! ! first term of the gradient correction : D(rho*Exc)/D(rho) ! v(k, 1) = (v1xup + v1cup)*e2 v(k, 2) = (v1xdw + v1cdw)*e2 ! ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| ! if (get_igcx()==7.AND.get_igcc()==6) then ! tpss functional ! h(:,k,1) = (v2xup * grhoup(:) + v2cup_vec(:)) * e2 h(:,k,2) = (v2xdw * grhodw(:) + v2cdw_vec(:)) * e2 ! else ! h(:,k,1) = (v2xup + v2cup) * grhoup(:) * e2 h(:,k,2) = (v2xdw + v2cdw) * grhodw(:) * e2 ! end if ! kedtaur(k,1)= (v3xup + v3cup) * 0.5d0 * e2 kedtaur(k,2)= (v3xdw + v3cdw) * 0.5d0 * e2 ! etxc = etxc + (ex + ec) * e2 vtxc = vtxc + (v1xup+v1cup+v1xdw+v1cdw) * e2 * rh ! else h(:,k,1) = zero h(:,k,2) = zero ! kedtaur(k,1)= zero kedtaur(k,2)= zero end if if (rho%of_r (k, 1) < zero ) rhoneg(1) = rhoneg(1) - rho%of_r (k, 1) if (rho%of_r (k, 2) < zero ) rhoneg(2) = rhoneg(2) - rho%of_r (k, 2) end if end do ! ! ALLOCATE( dh( dfftp%nnr ) ) ! ! ... second term of the gradient correction : ! ... \sum_alpha (D / D r_alpha) ( D(rho*Exc)/D(grad_alpha rho) ) ! DO is = 1, nspin ! CALL grad_dot( dfftp%nnr, h(1,1,is), ngm, g, nl, alat, dh ) ! v(:,is) = v(:,is) - dh(:) ! rhoout(:,is)=rhoout(:,is)-fac*rho_core(:) vtxc = vtxc - SUM( dh(:) * rhoout(:,is) ) ! END DO DEALLOCATE(dh) ! call mp_sum ( rhoneg, intra_bgrp_comm ) ! rhoneg(:) = rhoneg(:) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! if ((rhoneg(1) > eps8) .or. (rhoneg(2) > eps8)) then write (stdout, '(/,5x, "negative rho (up,down): ", 2e10.3)') rhoneg(:) end if ! vtxc = omega * vtxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) etxc = omega * etxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( vtxc , intra_bgrp_comm ) CALL mp_sum( etxc , intra_bgrp_comm ) ! DEALLOCATE(grho) DEALLOCATE(h) DEALLOCATE(rhoout) DEALLOCATE(rhogsum) ! RETURN ! END SUBROUTINE v_xc_meta SUBROUTINE v_xc( rho, rho_core, rhog_core, etxc, vtxc, v ) !---------------------------------------------------------------------------- ! ! ... Exchange-Correlation potential Vxc(r) from n(r) ! USE kinds, ONLY : DP USE constants, ONLY : e2, eps8 USE io_global, ONLY : stdout USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega USE spin_orb, ONLY : domag USE funct, ONLY : xc, xc_spin USE scf, ONLY : scf_type USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm, mpime USE mp, ONLY : mp_sum ! IMPLICIT NONE ! TYPE (scf_type), INTENT(IN) :: rho REAL(DP), INTENT(IN) :: rho_core(dfftp%nnr) ! the core charge COMPLEX(DP), INTENT(IN) :: rhog_core(ngm) ! input: the core charge in reciprocal space REAL(DP), INTENT(OUT) :: v(dfftp%nnr,nspin), vtxc, etxc ! V_xc potential ! integral V_xc * rho ! E_xc energy ! ! ... local variables ! REAL(DP) :: rhox, arhox, zeta, amag, vs, ex, ec, vx(2), vc(2), rhoneg(2) ! the total charge in each point ! the absolute value of the charge ! the absolute value of the charge ! local exchange energy ! local correlation energy ! local exchange potential ! local correlation potential INTEGER :: ir, ipol ! counter on mesh points ! counter on nspin ! REAL(DP), PARAMETER :: vanishing_charge = 1.D-10, & vanishing_mag = 1.D-20 ! ! CALL start_clock( 'v_xc' ) ! etxc = 0.D0 vtxc = 0.D0 v(:,:) = 0.D0 rhoneg = 0.D0 ! IF ( nspin == 1 .OR. ( nspin == 4 .AND. .NOT. domag ) ) THEN ! ! ... spin-unpolarized case ! !$omp parallel do private( rhox, arhox, ex, ec, vx, vc ), & !$omp reduction(+:etxc,vtxc), reduction(-:rhoneg) DO ir = 1, dfftp%nnr ! rhox = rho%of_r(ir,1) + rho_core(ir) ! arhox = ABS( rhox ) ! IF ( arhox > vanishing_charge ) THEN ! CALL xc( arhox, ex, ec, vx(1), vc(1) ) ! v(ir,1) = e2*( vx(1) + vc(1) ) ! etxc = etxc + e2*( ex + ec ) * rhox ! vtxc = vtxc + v(ir,1) * rho%of_r(ir,1) ! ENDIF ! IF ( rho%of_r(ir,1) < 0.D0 ) rhoneg(1) = rhoneg(1) - rho%of_r(ir,1) ! END DO !$omp end parallel do ! ELSE IF ( nspin == 2 ) THEN ! ! ... spin-polarized case ! !$omp parallel do private( rhox, arhox, zeta, ex, ec, vx, vc ), & !$omp reduction(+:etxc,vtxc), reduction(-:rhoneg) DO ir = 1, dfftp%nnr ! rhox = rho%of_r(ir,1) + rho%of_r(ir,2) + rho_core(ir) ! arhox = ABS( rhox ) ! IF ( arhox > vanishing_charge ) THEN ! zeta = ( rho%of_r(ir,1) - rho%of_r(ir,2) ) / arhox ! IF ( ABS( zeta ) > 1.D0 ) zeta = SIGN( 1.D0, zeta ) ! IF ( rho%of_r(ir,1) < 0.D0 ) rhoneg(1) = rhoneg(1) - rho%of_r(ir,1) IF ( rho%of_r(ir,2) < 0.D0 ) rhoneg(2) = rhoneg(2) - rho%of_r(ir,2) ! CALL xc_spin( arhox, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) ! v(ir,:) = e2*( vx(:) + vc(:) ) ! etxc = etxc + e2*( ex + ec ) * rhox ! vtxc = vtxc + v(ir,1) * rho%of_r(ir,1) + v(ir,2) * rho%of_r(ir,2) ! END IF ! END DO !$omp end parallel do ! ELSE IF ( nspin == 4 ) THEN ! ! ... noncolinear case ! DO ir = 1,dfftp%nnr ! amag = SQRT( rho%of_r(ir,2)**2 + rho%of_r(ir,3)**2 + rho%of_r(ir,4)**2 ) ! rhox = rho%of_r(ir,1) + rho_core(ir) ! IF ( rho%of_r(ir,1) < 0.D0 ) rhoneg(1) = rhoneg(1) - rho%of_r(ir,1) ! arhox = ABS( rhox ) ! IF ( arhox > vanishing_charge ) THEN ! zeta = amag / arhox ! IF ( ABS( zeta ) > 1.D0 ) THEN ! rhoneg(2) = rhoneg(2) + 1.D0 / omega ! zeta = SIGN( 1.D0, zeta ) ! END IF ! CALL xc_spin( arhox, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) ! vs = 0.5D0*( vx(1) + vc(1) - vx(2) - vc(2) ) ! v(ir,1) = e2*( 0.5D0*( vx(1) + vc(1) + vx(2) + vc(2 ) ) ) ! IF ( amag > vanishing_mag ) THEN ! DO ipol = 2, 4 ! v(ir,ipol) = e2 * vs * rho%of_r(ir,ipol) / amag ! vtxc = vtxc + v(ir,ipol) * rho%of_r(ir,ipol) ! END DO ! END IF ! etxc = etxc + e2*( ex + ec ) * rhox vtxc = vtxc + v(ir,1) * rho%of_r(ir,1) ! END IF ! END DO ! END IF ! CALL mp_sum( rhoneg , intra_bgrp_comm ) ! rhoneg(:) = rhoneg(:) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! IF ( rhoneg(1) > eps8 .OR. rhoneg(2) > eps8 ) & WRITE( stdout,'(/,5X,"negative rho (up, down): ",2E10.3)') rhoneg ! ! ... energy terms, local-density contribution ! vtxc = omega * vtxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) etxc = omega * etxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! ! ... add gradient corrections (if any) ! CALL gradcorr( rho%of_r, rho%of_g, rho_core, rhog_core, etxc, vtxc, v ) ! ! ... add non local corrections (if any) ! CALL nonloccorr(rho%of_r, rho_core, etxc, vtxc, v) ! CALL mp_sum( vtxc , intra_bgrp_comm ) CALL mp_sum( etxc , intra_bgrp_comm ) ! CALL stop_clock( 'v_xc' ) ! RETURN ! END SUBROUTINE v_xc ! !---------------------------------------------------------------------------- SUBROUTINE v_h( rhog, ehart, charge, v ) !---------------------------------------------------------------------------- ! ! ... Hartree potential VH(r) from n(G) ! USE constants, ONLY : fpi, e2 USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft USE gvect, ONLY : nl, nlm, ngm, gg, gstart USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, tpiba2 USE control_flags, ONLY : gamma_only USE mp_global, ONLY: intra_pool_comm, intra_bgrp_comm USE mp, ONLY: mp_sum USE martyna_tuckerman, ONLY : wg_corr_h, do_comp_mt USE esm, ONLY: do_comp_esm, esm_hartree, esm_bc ! IMPLICIT NONE ! COMPLEX(DP), INTENT(IN) :: rhog(ngm,nspin) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr,nspin) REAL(DP), INTENT(OUT) :: ehart, charge ! REAL(DP) :: fac REAL(DP), ALLOCATABLE :: aux1(:,:) REAL(DP) :: rgtot_re, rgtot_im, eh_corr INTEGER :: is, ig COMPLEX(DP), ALLOCATABLE :: aux(:), rgtot(:), vaux(:) INTEGER :: nt ! CALL start_clock( 'v_h' ) ! ALLOCATE( aux( dfftp%nnr ), aux1( 2, ngm ) ) charge = 0.D0 ! IF ( gstart == 2 ) THEN ! charge = omega*REAL( rhog(1,1) ) ! IF ( nspin == 2 ) charge = charge + omega*REAL( rhog(1,2) ) ! END IF ! CALL mp_sum( charge , intra_bgrp_comm ) ! ! ... calculate hartree potential in G-space (NB: V(G=0)=0 ) ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... calculate modified Hartree potential for ESM ! CALL esm_hartree (rhog, ehart, aux) ! ELSE ! ehart = 0.D0 aux1(:,:) = 0.D0 ! !$omp parallel do private( fac, rgtot_re, rgtot_im ), reduction(+:ehart) DO ig = gstart, ngm ! fac = 1.D0 / gg(ig) ! rgtot_re = REAL( rhog(ig,1) ) rgtot_im = AIMAG( rhog(ig,1) ) ! IF ( nspin == 2 ) THEN ! rgtot_re = rgtot_re + REAL( rhog(ig,2) ) rgtot_im = rgtot_im + AIMAG( rhog(ig,2) ) ! END IF ! ehart = ehart + ( rgtot_re**2 + rgtot_im**2 ) * fac ! aux1(1,ig) = rgtot_re * fac aux1(2,ig) = rgtot_im * fac ! ENDDO !$omp end parallel do ! fac = e2 * fpi / tpiba2 ! ehart = ehart * fac ! aux1 = aux1 * fac ! IF ( gamma_only ) THEN ! ehart = ehart * omega ! ELSE ! ehart = ehart * 0.5D0 * omega ! END IF ! if (do_comp_mt) then ALLOCATE( vaux( ngm ), rgtot(ngm) ) rgtot(:) = rhog(:,1) if (nspin==2) rgtot(:) = rgtot(:) + rhog(:,2) CALL wg_corr_h (omega, ngm, rgtot, vaux, eh_corr) aux1(1,1:ngm) = aux1(1,1:ngm) + REAL( vaux(1:ngm)) aux1(2,1:ngm) = aux1(2,1:ngm) + AIMAG(vaux(1:ngm)) ehart = ehart + eh_corr DEALLOCATE( rgtot, vaux ) end if ! CALL mp_sum( ehart , intra_bgrp_comm ) ! aux(:) = 0.D0 ! aux(nl(1:ngm)) = CMPLX ( aux1(1,1:ngm), aux1(2,1:ngm), KIND=dp ) ! IF ( gamma_only ) THEN ! aux(nlm(1:ngm)) = CMPLX ( aux1(1,1:ngm), -aux1(2,1:ngm), KIND=dp ) ! END IF END IF ! ! ... transform hartree potential to real space ! CALL invfft ('Dense', aux, dfftp) ! ! ... add hartree potential to the xc potential ! IF ( nspin == 4 ) THEN ! v(:,1) = v(:,1) + DBLE (aux(:)) ! ELSE ! DO is = 1, nspin ! v(:,is) = v(:,is) + DBLE (aux(:)) ! END DO ! END IF ! DEALLOCATE( aux, aux1 ) ! CALL stop_clock( 'v_h' ) ! RETURN ! END SUBROUTINE v_h ! !----------------------------------------------------------------------- SUBROUTINE v_hubbard(ns, v_hub, eth) ! ! Computes Hubbard potential and Hubbard energy ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_U, & Hubbard_J, Hubbard_alpha, lda_plus_u_kind,& Hubbard_J0, Hubbard_beta USE lsda_mod, ONLY : nspin USE control_flags, ONLY : iverbosity USE io_global, ONLY : stdout IMPLICIT NONE ! REAL(DP), INTENT(IN) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) REAL(DP), INTENT(OUT) :: v_hub(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) REAL(DP), INTENT(OUT) :: eth REAL(DP) :: n_tot, n_spin, eth_dc, eth_u, mag2, effU INTEGER :: is, isop, is1, na, nt, m1, m2, m3, m4 REAL(DP), ALLOCATABLE :: u_matrix(:,:,:,:) ALLOCATE( u_matrix(2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1) ) eth = 0.d0 eth_dc = 0.d0 eth_u = 0.d0 v_hub(:,:,:,:) = 0.d0 if (lda_plus_u_kind.eq.0) then DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0 .OR. Hubbard_alpha(nt).NE.0.d0) THEN IF (Hubbard_J0(nt).NE.0.d0) THEN effU = Hubbard_U(nt) - Hubbard_J0(nt) ELSE effU = Hubbard_U(nt) END IF DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 eth = eth + ( Hubbard_alpha(nt) + 0.5D0 * effU ) * & ns(m1,m1,is,na) v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + & ( Hubbard_alpha(nt) + 0.5D0 * effU ) DO m2 = 1, 2 * Hubbard_l(nt) + 1 eth = eth - 0.5D0 * effU * & ns(m2,m1,is,na)* ns(m1,m2,is,na) v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) - & effU * ns(m2,m1,is,na) ENDDO ENDDO ENDDO ENDIF IF (Hubbard_J0(nt).NE.0.d0 .OR. Hubbard_beta(nt).NE.0.d0) THEN DO is=1, nspin IF (is .eq. 2) THEN isop = 1 ELSE isop = 2 END IF DO m1 = 1, 2 * Hubbard_l(nt) + 1 IF ( is .eq. 1) THEN eth = eth + Hubbard_beta(nt) * ns(m1,m1,is,na) v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + Hubbard_beta(nt) DO m2 = 1, 2 * Hubbard_l(nt) + 1 eth = eth + 0.5D0 * Hubbard_J0(nt) * & ns(m2,m1,is,na)* ns(m1,m2,isop,na) v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & Hubbard_J0(nt) * ns(m2,m1,isop,na) END DO ELSE IF (is .eq. 2) THEN eth = eth - Hubbard_beta(nt) * ns(m1,m1,is,na) v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) - Hubbard_beta(nt) DO m2 = 1, 2 * Hubbard_l(nt) + 1 eth = eth + 0.5D0 * Hubbard_J0(nt) * & ns(m2,m1,is,na) * ns(m1,m2,isop,na) v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & Hubbard_J0(nt) * ns(m2,m1,isop,na) END DO END IF END DO END DO END IF END DO IF (nspin.EQ.1) eth = 2.d0 * eth !-- output of hubbard energies: IF ( iverbosity > 0 ) THEN write(stdout,*) '--- in v_hubbard ---' write(stdout,'(''Hubbard energy '',f9.4)') eth write(stdout,*) '-------' ENDIF !-- else DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0) THEN ! initialize U(m1,m2,m3,m4) matrix call hubbard_matrix (Hubbard_lmax, Hubbard_l(nt), Hubbard_U(nt), & Hubbard_J(1,nt), u_matrix) !--- total N and M^2 for DC (double counting) term n_tot = 0.d0 do is = 1, nspin do m1 = 1, 2 * Hubbard_l(nt) + 1 n_tot = n_tot + ns(m1,m1,is,na) enddo enddo if (nspin.eq.1) n_tot = 2.d0 * n_tot mag2 = 0.d0 if (nspin.eq.2) then do m1 = 1, 2 * Hubbard_l(nt) + 1 mag2 = mag2 + ns(m1,m1,1,na) - ns(m1,m1,2,na) enddo endif mag2 = mag2**2 !--- !--- hubbard energy: DC term eth_dc = eth_dc + 0.5d0*( Hubbard_U(nt)*n_tot*(n_tot-1.d0) - & Hubbard_J(1,nt)*n_tot*(0.5d0*n_tot-1.d0) - & 0.5d0*Hubbard_J(1,nt)*mag2 ) !-- DO is = 1, nspin !--- n_spin = up/down N n_spin = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 n_spin = n_spin + ns(m1,m1,is,na) enddo !--- DO m1 = 1, 2 * Hubbard_l(nt) + 1 ! hubbard potential: DC contribution v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + Hubbard_J(1,nt)*n_spin + & 0.5d0*(Hubbard_U(nt)-Hubbard_J(1,nt)) - Hubbard_U(nt)*n_tot ! +U contributions DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 if (nspin.eq.1) then v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & 2.d0*u_matrix(m1,m3,m2,m4)*ns(m3,m4,is,na) else do is1 = 1, nspin v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & u_matrix(m1,m3,m2,m4)*ns(m3,m4,is1,na) enddo endif v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) - & u_matrix(m1,m3,m4,m2) * ns(m3,m4,is,na) eth_u = eth_u + 0.5d0*( & ( u_matrix(m1,m2,m3,m4)-u_matrix(m1,m2,m4,m3) )* & ns(m1,m3,is,na)*ns(m2,m4,is,na) + & u_matrix(m1,m2,m3,m4)*ns(m1,m3,is,na)*ns(m2,m4,nspin+1-is,na) ) enddo enddo ENDDO ENDDO ENDDO endif enddo if (nspin.eq.1) eth_u = 2.d0 * eth_u eth = eth_u - eth_dc !-- output of hubbard energies: IF ( iverbosity > 0 ) THEN write(stdout,*) '--- in v_hubbard ---' write(stdout,'(''Hubbard energies (dc, U, total) '',3f9.4)') eth_dc, eth_u, eth write(stdout,*) '-------' ENDIF !-- endif DEALLOCATE (u_matrix) RETURN END SUBROUTINE v_hubbard !------------------------------------- !------------------------------------- SUBROUTINE v_hubbard_nc(ns, v_hub, eth) ! ! Noncollinear version of v_hubbard. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, & Hubbard_U, Hubbard_J, Hubbard_alpha USE lsda_mod, ONLY : nspin USE control_flags, ONLY : iverbosity USE io_global, ONLY : stdout IMPLICIT NONE ! COMPLEX(DP) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) COMPLEX(DP) :: v_hub(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) REAL(DP) :: eth, eth_dc, eth_noflip, eth_flip, psum, mx, my, mz, mag2 INTEGER :: is, is1, js, i, j, na, nt, m1, m2, m3, m4 COMPLEX(DP) :: n_tot, n_aux REAL(DP), ALLOCATABLE :: u_matrix(:,:,:,:) ALLOCATE( u_matrix(2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1) ) eth = 0.d0 eth_dc = 0.d0 eth_noflip = 0.d0 eth_flip = 0.d0 v_hub(:,:,:,:) = 0.d0 DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0) THEN ! initialize U(m1,m2,m3,m4) matrix call hubbard_matrix (Hubbard_lmax, Hubbard_l(nt), Hubbard_U(nt), & Hubbard_J(1,nt), u_matrix) !--- total N and M^2 for DC (double counting) term n_tot = 0.d0 mx = 0.d0 my = 0.d0 mz = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 n_tot = n_tot + ns(m1,m1,1,na) + ns(m1,m1,4,na) mx = mx + DBLE( ns(m1, m1, 2, na) + ns(m1, m1, 3, na) ) my = my + 2.d0 * AIMAG( ns(m1, m1, 2, na) ) mz = mz + DBLE( ns(m1, m1, 1, na) - ns(m1, m1, 4, na) ) enddo mag2 = mx**2 + my**2 + mz**2 !--- !--- hubbard energy: DC term mx = REAL(n_tot) eth_dc = eth_dc + 0.5d0*( Hubbard_U(nt)*mx*(mx-1.d0) - & Hubbard_J(1,nt)*mx*(0.5d0*mx-1.d0) - & 0.5d0*Hubbard_J(1,nt)*mag2 ) !-- DO is = 1, nspin if (is.eq.2) then is1 = 3 elseif (is.eq.3) then is1 = 2 else is1 = is endif !--- hubbard energy: if (is1.eq.is) then ! non spin-flip contribution DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 eth_noflip = eth_noflip + 0.5d0*( & ( u_matrix(m1,m2,m3,m4)-u_matrix(m1,m2,m4,m3) )* & ns(m1,m3,is,na)*ns(m2,m4,is,na) + & u_matrix(m1,m2,m3,m4)*ns(m1,m3,is,na)*ns(m2,m4,nspin+1-is,na) ) enddo enddo ENDDO ENDDO else ! spin-flip contribution DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 eth_flip = eth_flip - 0.5d0*u_matrix(m1,m2,m4,m3)* & ns(m1,m3,is,na)*ns(m2,m4,is1,na) enddo enddo ENDDO ENDDO endif !--- !--- hubbard potential: non spin-flip contribution if (is1.eq.is) then DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & u_matrix(m1,m3,m2,m4)*( ns(m3,m4,1,na)+ns(m3,m4,4,na) ) enddo enddo ENDDO ENDDO endif !--- !--- n_aux = /sum_{i} n_{i,i}^{sigma2, sigma1} for DC term n_aux = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 n_aux = n_aux + ns(m1,m1,is1,na) enddo !--- DO m1 = 1, 2 * Hubbard_l(nt) + 1 !--- hubbard potential: DC contribution v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + Hubbard_J(1,nt)*n_aux if (is1.eq.is) then v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + & 0.5d0*(Hubbard_U(nt)-Hubbard_J(1,nt)) - Hubbard_U(nt)*n_tot endif !--- !--- hubbard potential: spin-flip contribution DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) - & u_matrix(m1,m3,m4,m2) * ns(m3,m4,is1,na) enddo enddo ENDDO !--- ENDDO ENDDO ENDIF ENDDO eth = eth_noflip + eth_flip - eth_dc !-- output of hubbard energies: IF ( iverbosity > 0 ) THEN write(stdout,*) '--- in v_hubbard ---' write(stdout,'(''Hub. E (dc, noflip, flip, total) '',4f9.4)') & eth_dc, eth_noflip, eth_flip, eth write(stdout,*) '-------' ENDIF !-- DEALLOCATE (u_matrix) RETURN END SUBROUTINE v_hubbard_nc !------------------------------------------- !---------------------------------------------------------------------------- SUBROUTINE v_h_of_rho_r( rhor, ehart, charge, v ) !---------------------------------------------------------------------------- ! ! ... Hartree potential VH(r) from a density in R space n(r) ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : nl, ngm USE lsda_mod, ONLY : nspin ! IMPLICIT NONE ! ! ... Declares variables ! REAL( DP ), INTENT(IN) :: rhor( dfftp%nnr, nspin ) REAL( DP ), INTENT(INOUT) :: v( dfftp%nnr, nspin ) REAL( DP ), INTENT(OUT) :: ehart, charge ! ! ... Local variables ! COMPLEX( DP ), ALLOCATABLE :: rhog( : , : ) COMPLEX( DP ), ALLOCATABLE :: aux( : ) INTEGER :: is ! ! ... bring the (unsymmetrized) rho(r) to G-space (use aux as work array) ! ALLOCATE( rhog( ngm, nspin ) ) ALLOCATE( aux( dfftp%nnr ) ) DO is = 1, nspin aux(:) = CMPLX(rhor( : , is ),0.D0,kind=dp) CALL fwfft ('Dense', aux, dfftp) rhog(:,is) = aux(nl(:)) END DO DEALLOCATE( aux ) ! ! ... compute VH(r) from n(G) ! CALL v_h( rhog, ehart, charge, v ) DEALLOCATE( rhog ) ! RETURN ! END SUBROUTINE v_h_of_rho_r !---------------------------------------------------------------------------- SUBROUTINE gradv_h_of_rho_r( rho, gradv ) !---------------------------------------------------------------------------- ! ! ... Gradient of Hartree potential in R space from a total ! (spinless) density in R space n(r) ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE constants, ONLY : fpi, e2 USE control_flags, ONLY : gamma_only USE cell_base, ONLY : tpiba, omega USE gvect, ONLY : nl, ngm, nlm, gg, gstart, g USE martyna_tuckerman, ONLY : wg_corr_h, do_comp_mt ! IMPLICIT NONE ! ! ... Declares variables ! REAL( DP ), INTENT(IN) :: rho( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: gradv( 3, dfftp%nnr ) ! ! ... Local variables ! COMPLEX( DP ), ALLOCATABLE :: rhoaux( : ) COMPLEX( DP ), ALLOCATABLE :: gaux( : ) COMPLEX( DP ), ALLOCATABLE :: rgtot(:), vaux(:) REAL( DP ) :: fac, eh_corr INTEGER :: ig, ipol ! ! ... Bring rho to G space ! ALLOCATE( rhoaux( dfftp%nnr ) ) rhoaux( : ) = CMPLX( rho( : ), 0.D0 ) ! CALL fwfft('Dense', rhoaux, dfftp) ! ! ... Compute total potential in G space ! ALLOCATE( gaux( dfftp%nnr ) ) ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0,kind=dp) ! DO ig = gstart, ngm ! fac = g(ipol,ig) / gg(ig) gaux(nl(ig)) = CMPLX(-AIMAG(rhoaux(nl(ig))),REAL(rhoaux(nl(ig))),kind=dp) * fac ! END DO ! ! ...and add the factor e2*fpi/2\pi/a coming from the missing prefactor of ! V = e2 * fpi divided by the 2\pi/a factor missing in G ! fac = e2 * fpi / tpiba gaux = gaux * fac ! ! ...add martyna-tuckerman correction, if needed ! if (do_comp_mt) then ALLOCATE( vaux( ngm ), rgtot(ngm) ) rgtot(1:ngm) = rhoaux(nl(1:ngm)) CALL wg_corr_h (omega, ngm, rgtot, vaux, eh_corr) DO ig = gstart, ngm fac = g(ipol,ig) * tpiba gaux(nl(ig)) = gaux(nl(ig)) + CMPLX(-AIMAG(vaux(ig)),REAL(vaux(ig)),kind=dp)*fac END DO DEALLOCATE( rgtot, vaux ) end if ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = & CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! gradv(ipol,:) = REAL( gaux(:) ) ! ENDDO ! DEALLOCATE(gaux) ! RETURN ! END SUBROUTINE gradv_h_of_rho_r espresso-5.0.2/PW/src/output_tau.f900000644000700200004540000000513412053145627016236 0ustar marsamoscm! ! Copyright (C) 2003-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE output_tau( print_lattice, print_final ) !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : bohr_radius_angs USE cell_base, ONLY : alat, at, bg, omega USE ions_base, ONLY : nat, tau, ityp, atm, if_pos, tau_format ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: print_lattice, print_final REAL (DP), ALLOCATABLE :: tau_out(:,:) INTEGER :: na, i, k ! ! ! ... tau in output format ! ALLOCATE( tau_out(3,nat) ) ! tau_out(:,:) = tau(:,:) ! ! ... print cell parameters if required ! IF ( print_final ) WRITE( stdout, '("Begin final coordinates")') IF ( print_lattice ) THEN ! WRITE( stdout, '(5x,a,1F12.5," a.u.^3 ( ",1F11.5," Ang^3 )")') & "new unit-cell volume = ",omega, omega*bohr_radius_angs**3 WRITE( stdout, '(/"CELL_PARAMETERS (alat=",f12.8,")")') alat WRITE( stdout, '(3F14.9)') ( ( at(i,k), i = 1, 3), k = 1, 3 ) ! END IF ! SELECT CASE( tau_format ) ! ! ... convert output atomic positions from internally used format ! ... (a0 units) to the same format used in input ! CASE( 'alat' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (alat)")' ) ! CASE( 'bohr' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (bohr)")' ) tau_out(:,:) = tau_out(:,:) * alat ! CASE( 'crystal' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (crystal)")' ) ! call cryst_to_cart( nat, tau_out, bg, -1 ) ! CASE( 'angstrom' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (angstrom)")' ) ! tau_out(:,:) = tau_out(:,:) * alat * bohr_radius_angs ! CASE DEFAULT ! WRITE( stdout, '(/"ATOMIC_POSITIONS")' ) ! END SELECT ! DO na = 1, nat ! IF ( ANY( if_pos(:,na) == 0 ) ) THEN WRITE( stdout,'(A3,3X,3F14.9,1X,3i4)') & atm(ityp(na)), tau_out(:,na), if_pos(:,na) ELSE WRITE( stdout,'(A3,3X,3F14.9)') & atm(ityp(na)), tau_out(:,na) END IF ! END DO ! IF ( print_final ) WRITE( stdout, '("End final coordinates")') WRITE( stdout, '(/)' ) ! DEALLOCATE( tau_out ) ! RETURN ! END SUBROUTINE output_tau espresso-5.0.2/PW/src/addusstress.f900000644000700200004540000001122512053145630016361 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- subroutine addusstres (sigmanlc) !---------------------------------------------------------------------- ! ! This routine computes the part of the atomic force which is due ! to the dependence of the Q function on the atomic position. ! Adds contribution to input sigmanlc, does not sum contributions ! from various processors (sum is performed by calling routine) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega, tpiba USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g, eigts1, eigts2, eigts3, mill USE lsda_mod, ONLY : nspin USE scf, ONLY : v, vltot USE uspp, ONLY : becsum, okvan USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE control_flags, ONLY : gamma_only USE fft_interfaces,ONLY : fwfft ! implicit none ! real(DP) :: sigmanlc (3, 3) ! the nonlocal stress integer :: ig, nt, ih, jh, ijh, ipol, jpol, is, na ! counter on g vectors ! counter on mesh points ! number of composite nm components ! the atom type ! counter on atomic beta functions ! counter on atomic beta functions ! composite index for beta function ! counter on polarizations ! counter on polarizations ! counter on spin polarizations ! counter on atoms complex(DP), allocatable :: aux(:,:), aux1(:), vg(:), qgm(:) complex(DP) :: cfac ! used to contain the potential ! used to compute a product ! used to contain the structure fac real(DP) :: ps, ddot, sus(3,3) real(DP) , allocatable :: qmod(:), ylmk0(:,:), dylmk0(:,:) ! the integral ! the ultrasoft part of the stress ! the modulus of G ! the spherical harmonics ! the spherical harmonics derivativ ! of V_eff and dQ ! function which compute the scal. allocate ( aux(ngm,nspin), aux1(ngm), vg(dfftp%nnr), qgm(ngm), qmod(ngm) ) allocate ( ylmk0(ngm,lmaxq*lmaxq), dylmk0(ngm,lmaxq*lmaxq) ) ! sus(:,:) = 0.d0 ! call ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngm qmod (ig) = sqrt (gg (ig) ) enddo !$OMP END PARALLEL DO ! ! fourier transform of the total effective potential ! do is = 1, nspin if ( nspin == 4 .and. is /= 1 ) then ! vg(:) = v%of_r(:,is) ! ELSE ! vg(:) = vltot(:) + v%of_r(:,is) ! END IF CALL fwfft ('Dense', vg, dfftp) do ig = 1, ngm aux (ig, is) = vg (nl (ig) ) enddo enddo ! ! here we compute the integral Q*V for each atom, ! I = sum_G i G_a exp(-iR.G) Q_nm v^* ! (no contribution from G=0) ! do ipol = 1, 3 call dylmr2 (lmaxq * lmaxq, ngm, g, gg, dylmk0, ipol) do nt = 1, ntyp if ( upf(nt)%tvanp ) then ijh = 1 do ih = 1, nh (nt) do jh = ih, nh (nt) call dqvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0, dylmk0, ipol) do na = 1, nat if (ityp (na) == nt) then ! do is = 1, nspin do jpol = 1, ipol !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig, cfac) do ig = 1, ngm cfac = aux (ig, is) * & CONJG( eigts1 (mill (1,ig), na) * & eigts2 (mill (2,ig), na) * & eigts3 (mill (3,ig), na) ) aux1 (ig) = cfac * g (jpol, ig) enddo !$OMP END PARALLEL DO ! ! and the product with the Q functions ! ps = omega * ddot (2 * ngm, aux1, 1, qgm, 1) sus (ipol, jpol) = sus (ipol, jpol) - & ps * becsum (ijh, na, is) enddo enddo endif enddo ijh = ijh + 1 enddo enddo endif enddo enddo if (gamma_only) then sigmanlc(:,:) = sigmanlc(:,:) + 2.d0*sus(:,:) else sigmanlc(:,:) = sigmanlc(:,:) + sus(:,:) end if deallocate (ylmk0, dylmk0) deallocate (aux, aux1, vg, qgm, qmod) return end subroutine addusstres espresso-5.0.2/PW/src/wsweight.f900000644000700200004540000000324612053145630015662 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine wsinit(rws,nrwsx,nrws,atw) !----------------------------------------------------------------------- ! USE kinds, only : DP implicit none integer i, ii, ir, jr, kr, nrws, nrwsx, nx real(DP) eps, rws(0:3,nrwsx), atw(3,3) parameter (eps=1.0d-6,nx=2) ii = 1 do ir=-nx,nx do jr=-nx,nx do kr=-nx,nx do i=1,3 rws(i,ii) = atw(i,1)*ir + atw(i,2)*jr + atw(i,3)*kr end do rws(0,ii)=rws(1,ii)*rws(1,ii)+rws(2,ii)*rws(2,ii)+ & rws(3,ii)*rws(3,ii) rws(0,ii)=0.5d0*rws(0,ii) if (rws(0,ii).gt.eps) ii = ii + 1 if (ii.gt.nrwsx) call errore('wsinit', 'ii.gt.nrwsx',1) end do end do end do nrws = ii - 1 return end subroutine wsinit ! !----------------------------------------------------------------------- function wsweight(r,rws,nrws) !----------------------------------------------------------------------- ! USE kinds, only : dp implicit none integer ir, nreq, nrws real(DP) r(3), rrt, ck, eps, rws(0:3,nrws), wsweight parameter (eps=1.0d-6) ! wsweight = 0.d0 nreq = 1 do ir =1,nrws rrt = r(1)*rws(1,ir) + r(2)*rws(2,ir) + r(3)*rws(3,ir) ck = rrt-rws(0,ir) if ( ck .gt. eps ) return if ( abs(ck) .lt. eps ) nreq = nreq + 1 end do wsweight = 1.d0/DBLE(nreq) return end function wsweight espresso-5.0.2/PW/src/new_ns.f900000644000700200004540000004411212053145630015307 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE new_ns(ns) !----------------------------------------------------------------------- ! ! This routine computes the new value for ns (the occupation numbers of ! ortogonalized atomic wfcs). ! These quantities are defined as follows: ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|\psi_{k,v,s}><\psi_{k,v,s}|\fi^{at}_{I,m2}> ! It seems that the order of {m1, m2} in the definition should be opposite. ! Hovewer, since ns is symmetric (and real for collinear case, due to time reversal) ! it does not matter. ! (A.Smogunov) ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc USE klist, ONLY : nks, ngk USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, oatwfc, q_ae, & U_projection, Hubbard_U, Hubbard_alpha, swfcatom USE symm_base, ONLY : d1, d2, d3 USE lsda_mod, ONLY : lsda, current_spin, nspin, isk USE symm_base, ONLY : nsym, irt USE wvfct, ONLY : nbnd, npw, npwx, igk, wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE io_files, ONLY : iunigk, nwordwfc, iunwfc, nwordatwfc, iunsat USE buffers, ONLY : get_buffer USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum USE becmod, ONLY : bec_type, calbec, & allocate_bec_type, deallocate_bec_type IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) ! TYPE (bec_type) :: proj ! proj(natomwfc,nbnd) INTEGER :: ik, ibnd, is, i, na, nb, nt, isym, m1, m2, m0, m00, ldim ! counter on k points ! " " bands ! " " spins ! in the natomwfc ordering REAL(DP) , ALLOCATABLE :: nr (:,:,:,:) REAL(DP) :: psum CALL start_clock('new_ns') ldim = 2 * Hubbard_lmax + 1 ALLOCATE( nr(ldim,ldim,nspin,nat) ) CALL allocate_bec_type ( natomwfc, nbnd, proj ) ! ! D_Sl for l=1, l=2 and l=3 are already initialized, for l=0 D_S0 is 1 ! ! Offset of atomic wavefunctions initialized in setup and stored in oatwfc ! nr (:,:,:,:) = 0.d0 ns (:,:,:,:) = 0.d0 ! ! we start a loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF ! ! make the projection ! IF ( U_projection == 'pseudo' ) THEN ! CALL compute_pproj( q_ae, proj ) ! does not need mp_sum intra-pool, since it is already done in calbec ! ELSE CALL davcio (swfcatom, nwordatwfc, iunsat, ik, - 1) CALL calbec ( npw, swfcatom, evc, proj ) END IF ! ! compute the occupation numbers (the quantities n(m1,m2)) of the ! atomic orbitals ! DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0 .OR. Hubbard_alpha(nt).NE.0.d0) THEN DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1, 2 * Hubbard_l(nt) + 1 IF ( gamma_only ) THEN DO ibnd = 1, nbnd nr(m1,m2,current_spin,na) = nr(m1,m2,current_spin,na) + & proj%r(oatwfc(na)+m2,ibnd) * & proj%r(oatwfc(na)+m1,ibnd) * wg(ibnd,ik) ENDDO ELSE DO ibnd = 1, nbnd nr(m1,m2,current_spin,na) = nr(m1,m2,current_spin,na) + & DBLE( proj%k(oatwfc(na)+m2,ibnd) * & CONJG(proj%k(oatwfc(na)+m1,ibnd)) ) * wg(ibnd,ik) ENDDO END IF ENDDO ENDDO ENDIF ENDDO ! on k-points ENDDO CALL deallocate_bec_type (proj) ! CALL mp_sum( nr, inter_pool_comm ) ! IF (nspin.EQ.1) nr = 0.5d0 * nr ! ! impose hermiticity of n_{m1,m2} ! DO na = 1, nat nt = ityp(na) DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1 + 1, 2 * Hubbard_l(nt) + 1 nr (m2, m1, is, na) = nr (m1, m2, is, na) ENDDO ENDDO ENDDO ENDDO ! symmetrize the quantities nr -> ns DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0 .OR. Hubbard_alpha(nt).NE.0.d0) THEN DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 DO isym = 1, nsym nb = irt (isym, na) DO m0 = 1, 2 * Hubbard_l(nt) + 1 DO m00 = 1, 2 * Hubbard_l(nt) + 1 IF (Hubbard_l(nt).EQ.0) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & nr(m0,m00,is,nb) / nsym ELSE IF (Hubbard_l(nt).EQ.1) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & d1(m0 ,m1,isym) * nr(m0,m00,is,nb) * & d1(m00,m2,isym) / nsym ELSE IF (Hubbard_l(nt).EQ.2) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & d2(m0 ,m1,isym) * nr(m0,m00,is,nb) * & d2(m00,m2,isym) / nsym ELSE IF (Hubbard_l(nt).EQ.3) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & d3(m0 ,m1,isym) * nr(m0,m00,is,nb) * & d3(m00,m2,isym) / nsym ELSE CALL errore ('new_ns', & 'angular momentum not implemented', & ABS(Hubbard_l(nt)) ) END IF ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDIF ENDDO ! Now we make the matrix ns(m1,m2) strictly hermitean DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0 .OR. Hubbard_alpha(nt).NE.0.d0) THEN DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1, 2 * Hubbard_l(nt) + 1 psum = ABS ( ns(m1,m2,is,na) - ns(m2,m1,is,na) ) IF (psum.GT.1.d-10) THEN WRITE( stdout, * ) na, is, m1, m2 WRITE( stdout, * ) ns (m1, m2, is, na) WRITE( stdout, * ) ns (m2, m1, is, na) CALL errore ('new_ns', 'non hermitean matrix', 1) ELSE ns(m1,m2,is,na) = 0.5d0 * (ns(m1,m2,is,na) + & ns(m2,m1,is,na) ) ns(m2,m1,is,na) = ns(m1,m2,is,na) ENDIF ENDDO ENDDO ENDDO ENDIF ENDDO DEALLOCATE ( nr ) CALL stop_clock('new_ns') RETURN CONTAINS ! !------------------------------------------------------------------ SUBROUTINE compute_pproj( q, p ) ! ! Here we compute LDA+U projections using the overlaps ! USE ions_base, ONLY : ntyp => nsp USE klist, ONLY : xk USE becmod, ONLY : becp USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : nhm, nh ! IMPLICIT NONE REAL(DP), INTENT(IN) :: q(natomwfc,nhm,nat) TYPE(bec_type), INTENT(INOUT) :: p ! INTEGER :: ib, iw, nt, na, ijkb0, ikb, ih IF ( nkb == 0 ) RETURN ! ! compute ! CALL allocate_bec_type (nkb, nbnd, becp) CALL init_us_2 (npw,igk,xk(1,ik),vkb) CALL calbec (npw, vkb, evc, becp) ! IF ( gamma_only ) THEN p%r(:,:) = 0.0_DP ELSE p%k(:,:) = (0.0_DP,0.0_DP) ENDIF ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! IF ( Hubbard_U(nt).NE.0.D0 .OR. Hubbard_alpha(nt).NE.0.D0 ) THEN ! DO ib = 1, nbnd ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih DO iw = 1, natomwfc ! IF ( gamma_only ) THEN p%r(iw,ib) = p%r(iw,ib) + q(iw,ih,na)*becp%r(ikb,ib) ELSE p%k(iw,ib) = p%k(iw,ib) + q(iw,ih,na)*becp%k(ikb,ib) ENDIF ! ENDDO ! END DO ! END DO ! END IF ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! CALL deallocate_bec_type ( becp ) RETURN END SUBROUTINE compute_pproj ! END SUBROUTINE new_ns SUBROUTINE new_ns_nc(ns) !----------------------------------------------------------------------- ! ! Noncollinear version (A. Smogunov). ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc USE klist, ONLY : nks, ngk USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, oatwfc, & Hubbard_U, Hubbard_alpha, swfcatom, d_spin_ldau USE symm_base, ONLY : d1, d2, d3 USE lsda_mod, ONLY : lsda, current_spin, nspin, isk USE noncollin_module, ONLY : noncolin, npol USE symm_base, ONLY : nsym, irt, time_reversal, t_rev USE wvfct, ONLY : nbnd, npw, npwx, igk, wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE gvect, ONLY : gstart USE io_files, ONLY : iunigk, nwordwfc, iunwfc, nwordatwfc, iunsat USE buffers, ONLY : get_buffer USE mp_global, ONLY : intra_bgrp_comm, inter_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables ! COMPLEX(DP) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) INTEGER :: ik, ibnd, is, js, i, j, sigmay2, na, nb, nt, isym, & m1, m2, m3, m4, is1, is2, is3, is4, m0, m00, ldim COMPLEX(DP) , ALLOCATABLE :: nr (:,:,:,:,:), nr1 (:,:,:,:,:), proj(:,:) COMPLEX(DP) :: z, zdotc REAL(DP) :: psum CALL start_clock('new_ns') ldim = 2 * Hubbard_lmax + 1 ALLOCATE( nr(ldim,ldim,npol,npol,nat), nr1(ldim,ldim,npol,npol,nat) ) ALLOCATE( proj(natomwfc,nbnd) ) nr (:,:,:,:,:) = 0.d0 nr1 (:,:,:,:,:) = 0.d0 ns (:,:,:,:) = 0.d0 !-- ! loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF CALL davcio (swfcatom, nwordatwfc, iunsat, ik, - 1) ! ! make the projection ! DO ibnd = 1, nbnd DO i = 1, natomwfc proj(i, ibnd) = zdotc (npwx*npol, swfcatom (1, i), 1, evc (1, ibnd), 1) ENDDO ENDDO #ifdef __MPI CALL mp_sum ( proj, intra_bgrp_comm ) #endif ! ! compute the occupation matrix ! do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0) then ldim = 2 * Hubbard_l(nt) + 1 do m1 = 1, 2 * Hubbard_l(nt) + 1 do m2 = 1, 2 * Hubbard_l(nt) + 1 do is1 = 1, npol do is2 = 1, npol do ibnd = 1, nbnd nr(m1,m2,is1,is2,na) = nr(m1,m2,is1,is2,na) + & wg(ibnd,ik) * CONJG( proj(oatwfc(na)+m1+ldim*(is1-1),ibnd) ) * & proj(oatwfc(na)+m2+ldim*(is2-1),ibnd) enddo enddo enddo enddo enddo endif enddo enddo !--- CALL mp_sum( nr, inter_pool_comm ) !-- symmetrize: nr --> nr1 ! do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0) then do m1 = 1, 2 * Hubbard_l(nt) + 1 do m2 = 1, 2 * Hubbard_l(nt) + 1 do is1 = 1, npol do is2 = 1, npol loopisym: do isym = 1, nsym nb = irt (isym, na) do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 do is3 = 1, npol do is4 = 1, npol if (Hubbard_l(nt).eq.0) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) endif elseif (Hubbard_l(nt).eq.1) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d1(m1,m3,isym)* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d1(m2,m4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d1(m1,m3,isym)* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d1(m2,m4,isym) endif elseif (Hubbard_l(nt).eq.2) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d2(m1,m3,isym)* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d2(m2,m4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d2(m1,m3,isym)* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d2(m2,m4,isym) endif elseif (Hubbard_l(nt).eq.3) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d3(m1,m3,isym)* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d3(m2,m4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d3(m1,m3,isym)* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d3(m2,m4,isym) endif else CALL errore ('new_ns', & 'angular momentum not implemented', & ABS(Hubbard_l(nt)) ) endif enddo enddo enddo enddo enddo loopisym enddo enddo enddo enddo endif enddo !-- !-- Setup the output matrix ns with combined spin index ! DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0) THEN DO is1 = 1, npol do is2 = 1, npol i = npol*(is1-1) + is2 DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 ns(m1,m2,i,na) = nr1(m1,m2,is1,is2,na) ENDDO ENDDO enddo ENDDO ENDIF ENDDO !-- !-- make the matrix ns strictly hermitean ! DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0 .OR. Hubbard_alpha(nt).NE.0.d0) THEN DO is1 = 1, npol do is2 = 1, npol i = npol*(is1-1) + is2 j = is1 + npol*(is2-1) DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 psum = ABS ( ns(m1,m2,i,na) - CONJG(ns(m2,m1,j,na)) ) IF (psum.GT.1.d-10) THEN WRITE( stdout, * ) na, m1, m2, is1, is2 WRITE( stdout, * ) ns (m1, m2, i, na) WRITE( stdout, * ) ns (m2, m1, j, na) CALL errore ('new_ns', 'non hermitean matrix', 1) ELSE ns (m2, m1, j, na) = CONJG( ns(m1, m2, i, na)) ENDIF ENDDO ENDDO enddo ENDDO ENDIF ENDDO !-- DEALLOCATE ( nr, nr1 ) CALL stop_clock('new_ns') RETURN END SUBROUTINE new_ns_nc espresso-5.0.2/PW/src/stres_gradcorr.f900000644000700200004540000001330512053145627017047 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- subroutine stres_gradcorr( rho, rhog, rho_core, rhog_core, nspin, & nr1, nr2, nr3, nrxx, nl, & ngm, g, alat, omega, sigmaxc ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE noncollin_module, ONLY : noncolin use funct, ONLY : gcxc, gcx_spin, gcc_spin, gcc_spin_more, & dft_is_gradient, get_igcc USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! integer :: nspin, nr1, nr2, nr3, nrxx, ngm, nl (ngm) real(DP) :: rho (nrxx, nspin), rho_core (nrxx), g (3, ngm), & alat, omega, sigmaxc (3, 3) complex(DP) :: rhog(ngm, nspin), rhog_core(ngm) integer :: k, l, m, ipol, is, nspin0 real(DP) , allocatable :: grho (:,:,:) real(DP), parameter :: epsr = 1.0d-6, epsg = 1.0d-10, e2 = 2.d0 real(DP) :: grh2, grho2 (2), sx, sc, v1x, v2x, v1c, v2c, fac, & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw, v2cup, v2cdw, v2cud, & zeta, rh, rup, rdw, grhoup, grhodw, grhoud, grup, grdw, & sigma_gradcorr (3, 3), rhok logical :: igcc_is_lyp if ( .not. dft_is_gradient() ) return if (noncolin) call errore('stres_gradcorr', & 'noncollinear stress + GGA not implemented',1) igcc_is_lyp = (get_igcc() == 3) sigma_gradcorr(:,:) = 0.d0 allocate (grho( 3, nrxx, nspin)) nspin0=nspin if (nspin==4) nspin0=1 fac = 1.d0 / DBLE (nspin0) ! ! calculate the gradient of rho+rhocore in real space ! DO is = 1, nspin0 ! rho(:,is) = fac * rho_core(:) + rho(:,is) rhog(:,is) = fac * rhog_core(:) + rhog(:,is) ! CALL gradrho( nrxx, rhog(1,is), ngm, g, nl, grho(1,1,is) ) ! END DO ! if (nspin.eq.1) then ! ! This is the LDA case ! ! sigma_gradcor_{alpha,beta} == ! omega^-1 \int (grad_alpha rho) ( D(rho*Exc)/D(grad_alpha rho) ) d3 ! do k = 1, nrxx grho2 (1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 if (abs (rho (k, 1) ) .gt.epsr.and.grho2 (1) .gt.epsg) then call gcxc (rho (k, 1), grho2(1), sx, sc, v1x, v2x, v1c, v2c) do l = 1, 3 do m = 1, l sigma_gradcorr (l, m) = sigma_gradcorr (l, m) + & grho(l,k,1) * grho(m,k,1) * e2 * (v2x + v2c) enddo enddo endif enddo else ! ! This is the LSDA case ! do k = 1, nrxx grho2 (1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 grho2 (2) = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2 if ( (abs (rho (k, 1) ) .gt.epsr.and.grho2 (1) .gt.epsg) .and. & (abs (rho (k, 2) ) .gt.epsr.and.grho2 (2) .gt.epsg) ) then call gcx_spin (rho (k, 1), rho (k, 2), grho2 (1), grho2 (2), & sx, v1xup, v1xdw, v2xup, v2xdw) rh = rho (k, 1) + rho (k, 2) if (rh.gt.epsr) then if ( igcc_is_lyp ) then rup = rho (k, 1) rdw = rho (k, 2) grhoup = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 grhodw = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2 grhoud = grho(1,k,1) * grho(1,k,2) + & grho(2,k,1) * grho(2,k,2) + & grho(3,k,1) * grho(3,k,2) call gcc_spin_more(rup, rdw, grhoup, grhodw, grhoud, sc, & v1cup, v1cdw, v2cup, v2cdw, v2cud) else zeta = (rho (k, 1) - rho (k, 2) ) / rh grh2 = (grho (1, k, 1) + grho (1, k, 2) ) **2 + & (grho (2, k, 1) + grho (2, k, 2) ) **2 + & (grho (3, k, 1) + grho (3, k, 2) ) **2 call gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) v2cup = v2c v2cdw = v2c v2cud = v2c end if else sc = 0.d0 v1cup = 0.d0 v1cdw = 0.d0 v2c = 0.d0 v2cup = 0.d0 v2cdw = 0.d0 v2cud = 0.d0 endif do l = 1, 3 do m = 1, l ! exchange sigma_gradcorr (l, m) = sigma_gradcorr (l, m) + & grho (l, k, 1) * grho (m, k, 1) * e2 * v2xup + & grho (l, k, 2) * grho (m, k, 2) * e2 * v2xdw ! correlation sigma_gradcorr (l, m) = sigma_gradcorr (l, m) + & ( grho (l, k, 1) * grho (m, k, 1) * v2cup + & grho (l, k, 2) * grho (m, k, 2) * v2cdw + & (grho (l, k, 1) * grho (m, k, 2) + & grho (l, k, 2) * grho (m, k, 1) ) * v2cud ) * e2 enddo enddo endif enddo endif do l = 1, 3 do m = 1, l - 1 sigma_gradcorr (m, l) = sigma_gradcorr (l, m) enddo enddo call mp_sum( sigma_gradcorr, intra_bgrp_comm ) call dscal (9, 1.d0 / (nr1 * nr2 * nr3), sigma_gradcorr, 1) call daxpy (9, 1.d0, sigma_gradcorr, 1, sigmaxc, 1) DO is = 1, nspin0 ! rho(:,is) = rho(:,is) - fac * rho_core(:) rhog(:,is) = rhog(:,is) - fac * rhog_core(:) ! END DO ! deallocate(grho) return end subroutine stres_gradcorr espresso-5.0.2/PW/src/compute_dip.f900000644000700200004540000001057712053145627016344 0ustar marsamoscm! ! Copyright (C) 2003-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! 25/06/2009 (Riccardo Sabatini) ! reformulation using a unique saw(x) function (included in ! cell_base) in all e-field related routines and inclusion of ! a macroscopic electronic dipole contribution in the mixing ! scheme. ! ! the calculation of the dipole is split in the ionic (compute_ion_dip) ! and electronic (compute_el_dip) contributions. ! SUBROUTINE compute_ion_dip(emaxpos, eopreg, edir, ion_dipole) ! ! !--------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE ions_base, ONLY : nat, ityp, tau, zv USE constants, ONLY : fpi USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, omega, alat, saw ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: emaxpos, eopreg INTEGER, INTENT(IN) :: edir REAL(DP), INTENT(OUT) :: ion_dipole ! REAL(DP) :: bmod INTEGER :: na REAL(DP) :: sawarg, tvectb, zvia !-------------------------- ! Fix some values for later calculations !-------------------------- bmod=SQRT(bg(1,edir)**2+bg(2,edir)**2+bg(3,edir)**2) !-------------------------- ! Calculate IONIC dipole !-------------------------- ! ! P_{ion} = \sum^{nat}_{s} z_{v} Saw\left( \vec{t_{s}}\cdot\vec{b_{edir}}} ! \right) \frac{alat}{bmod} \frac{4\pi}{\Omega} ! ion_dipole=0.d0 DO na = 1, nat ! ! Ion charge zvia = zv(ityp(na)) ! Position vector tvectb = tau(1,na)*bg(1,edir) + tau(2,na)*bg(2,edir) + tau(3,na)*bg(3,edir) ion_dipole = ion_dipole + zvia* saw(emaxpos,eopreg, tvectb ) & * (alat/bmod) * (fpi/omega) END DO RETURN END SUBROUTINE compute_ion_dip ! SUBROUTINE compute_el_dip(emaxpos, eopreg, edir, charge, e_dipole) ! ! !--------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE lsda_mod, ONLY : nspin USE constants, ONLY : fpi USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, omega, alat, saw USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: emaxpos, eopreg REAL(DP), INTENT(IN), DIMENSION(dfftp%nnr,nspin) :: charge INTEGER, INTENT(IN) :: edir REAL(DP), INTENT(OUT) :: e_dipole ! REAL(DP), ALLOCATABLE :: rho_all(:), aux(:) REAL(DP) :: rhoir,bmod INTEGER :: i, k, j, ip, ir, index, index0, na REAL(DP) :: sawarg, tvectb !-------------------------- ! Fix some values for later calculations !-------------------------- bmod=SQRT(bg(1,edir)**2+bg(2,edir)**2+bg(3,edir)**2) ! !-------------------------- ! Calculate ELECTRONIC dipole !-------------------------- ! ! Case with edir = 3 (in the formula changes only tha rgument of saw, i for ! edir=1 and j for edir = 2) ! ! P_{ele} = \sum_{ijk} \rho_{r_{ijk}} Saw\left( \frac{k}{nr3} \right) ! \frac{alat}{bmod} \frac{\Omega}{nrxx} \frac{4\pi}{\Omega} ! e_dipole = 0.D0 ! ! Procedure for parallel summation ! index0 = 0 ! #if defined (__MPI) ! DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO ! #endif ! ! Loop in the charge array ! DO ir = 1, dfftp%nnr ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index ! ! Define the argument for the saw function ! if (edir.eq.1) sawarg = DBLE(i)/DBLE(dfftp%nr1) if (edir.eq.2) sawarg = DBLE(j)/DBLE(dfftp%nr2) if (edir.eq.3) sawarg = DBLE(k)/DBLE(dfftp%nr3) rhoir = charge(ir,1) ! IF ( nspin == 2 ) rhoir = rhoir + charge(ir,2) e_dipole = e_dipole + rhoir * saw(emaxpos,eopreg, sawarg) & * (alat/bmod) * (fpi/(dfftp%nr1*dfftp%nr2*dfftp%nr3)) END DO CALL mp_sum( e_dipole , intra_bgrp_comm ) RETURN END SUBROUTINE compute_el_dip espresso-5.0.2/PW/src/setup.f900000644000700200004540000005415712053145630015170 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE setup() !---------------------------------------------------------------------------- ! ! ... This routine is called at the beginning of the calculation and ! ... 1) determines various parameters of the calculation: ! ... zv charge of each atomic type ! ... nelec total number of electrons (if not given in input) ! ... nbnd total number of bands (if not given in input) ! ... nbndx max number of bands used in iterative diagonalization ! ... tpiba 2 pi / a (a = lattice parameter) ! ... tpiba2 square of tpiba ! ... gcutm cut-off in g space for charge/potentials ! ... gcutms cut-off in g space for smooth charge ! ... ethr convergence threshold for iterative diagonalization ! ... 2) finds actual crystal symmetry: ! ... s symmetry matrices in the direct lattice vectors basis ! ... nsym number of crystal symmetry operations ! ... nrot number of lattice symmetry operations ! ... ft fractionary translations ! ... irt for each atom gives the corresponding symmetric ! ... invsym if true the system has inversion symmetry ! ... 3) generates k-points corresponding to the actual crystal symmetry ! ... 4) calculates various quantities used in magnetic, spin-orbit, PAW ! ... electric-field, LDA+U calculations, and for parallelism ! USE kinds, ONLY : DP USE constants, ONLY : eps8, rytoev USE parameters, ONLY : npk USE io_global, ONLY : stdout USE io_files, ONLY : tmp_dir, prefix, xmlpun, delete_if_present USE constants, ONLY : pi, degspin USE cell_base, ONLY : at, bg, alat, tpiba, tpiba2, ibrav, omega USE ions_base, ONLY : nat, tau, ntyp => nsp, ityp, zv USE basis, ONLY : starting_pot, natomwfc USE gvect, ONLY : gcutm USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE grid_subroutines, ONLY : realspace_grids_init USE gvecs, ONLY : doublegrid, gcutms, dual USE klist, ONLY : xk, wk, nks, nelec, degauss, lgauss, & lxkcry, nkstot, & nelup, neldw, two_fermi_energies, & tot_charge, tot_magnetization USE lsda_mod, ONLY : lsda, nspin, current_spin, isk, & starting_magnetization USE ener, ONLY : ef USE electrons_base, ONLY : set_nelup_neldw USE start_k, ONLY : nks_start, xk_start, wk_start, & nk1, nk2, nk3, k1, k2, k3 USE ktetra, ONLY : tetra, ntetra, ltetra USE symm_base, ONLY : s, t_rev, irt, nrot, nsym, invsym, nosym, & d1,d2,d3, time_reversal, sname, set_sym_bl, & find_sym, inverse_s, no_t_rev USE wvfct, ONLY : nbnd, nbndx, ecutwfc USE control_flags, ONLY : tr2, ethr, lscf, lmd, david, lecrpa, & isolve, niter, noinv, & lbands, use_para_diag, gamma_only USE cellmd, ONLY : calc USE uspp_param, ONLY : upf, n_atom_wfc USE uspp, ONLY : okvan USE ldaU, ONLY : lda_plus_u, lda_plus_u_kind, U_projection, Hubbard_U, Hubbard_J, & Hubbard_l, Hubbard_alpha, Hubbard_lmax, d_spin_ldau, oatwfc,& Hubbard_J0, Hubbard_beta USE bp, ONLY : gdir, lberry, nppstr, lelfield, lorbm, nx_el, nppstr_3d,l3dstring, efield USE fixed_occ, ONLY : f_inp, tfixed_occ, one_atom_occupations USE funct, ONLY : set_dft_from_name USE mp_global, ONLY : kunit USE spin_orb, ONLY : lspinorb, domag USE noncollin_module, ONLY : noncolin, npol, m_loc, i_cons, & angle1, angle2, bfield, ux, nspin_lsda, & nspin_gga, nspin_mag USE pw_restart, ONLY : pw_readfile USE exx, ONLY : exx_grid_init, exx_div_check USE funct, ONLY : dft_is_meta, dft_is_hybrid, dft_is_gradient USE paw_variables, ONLY : okpaw ! IMPLICIT NONE ! INTEGER :: na, nt, is, ierr, ibnd, ik LOGICAL :: magnetic_sym, skip_equivalence=.FALSE. REAL(DP) :: iocc, ionic_charge, one ! LOGICAL, EXTERNAL :: check_para_diag INTEGER, EXTERNAL :: set_Hubbard_l ! ! ... okvan/okpaw = .TRUE. : at least one pseudopotential is US/PAW ! okvan = ANY( upf(:)%tvanp ) okpaw = ANY( upf(1:ntyp)%tpawp ) IF ( dft_is_meta() .AND. okvan ) & CALL errore( 'setup', 'US and Meta-GGA not yet implemented', 1 ) IF ( dft_is_hybrid() ) THEN IF (.NOT. lscf) CALL errore( 'setup ', & 'HYBRID XC not allowed in non-scf calculations', 1 ) IF ( okvan .OR. okpaw ) CALL errore( 'setup ', & 'HYBRID XC not implemented for USPP or PAW', 1 ) IF ( ANY (upf(1:ntyp)%nlcc) ) CALL infomsg( 'setup ', 'BEWARE:' // & & ' nonlinear core correction is not consistent with hybrid XC') IF (noncolin) no_t_rev=.true. END IF ! ! ... Compute the ionic charge for each atom type and the total ionic charge ! zv(1:ntyp) = upf(1:ntyp)%zp ! #if defined (__PGI) ionic_charge = 0._DP DO na = 1, nat ionic_charge = ionic_charge + zv( ityp(na) ) END DO #else ionic_charge = SUM( zv(ityp(1:nat)) ) #endif ! ! ... set the number of electrons ! nelec = ionic_charge - tot_charge ! ! ... magnetism-related quantities ! ALLOCATE( m_loc( 3, nat ) ) ! time reversal operation is set up to 0 by default t_rev = 0 IF ( noncolin ) THEN ! ! gamma_only and noncollinear not allowed ! if (gamma_only) call errore('setup', & 'gamma_only and noncolin not allowed',1) ! ! ... wavefunctions are spinors with 2 components ! npol = 2 ! ! ... Set the domag variable to make a spin-orbit calculation with zero ! ... magnetization ! IF ( lspinorb ) THEN ! domag = ANY ( ABS( starting_magnetization(1:ntyp) ) > 1.D-6 ) ! ELSE ! domag = .TRUE. ! END IF ! DO na = 1, nat ! m_loc(1,na) = starting_magnetization(ityp(na)) * & SIN( angle1(ityp(na)) ) * COS( angle2(ityp(na)) ) m_loc(2,na) = starting_magnetization(ityp(na)) * & SIN( angle1(ityp(na)) ) * SIN( angle2(ityp(na)) ) m_loc(3,na) = starting_magnetization(ityp(na)) * & COS( angle1(ityp(na)) ) END DO ! ! initialize the quantization direction for gga ! ux=0.0_DP if (dft_is_gradient()) call compute_ux(m_loc,ux,nat) ! ELSE ! ! ... wavefunctions are scalars ! IF (lspinorb) CALL errore( 'setup ', & 'spin orbit requires a non collinear calculation', 1 ) npol = 1 ! ! IF ( i_cons == 1) then do na=1,nat m_loc(1,na) = starting_magnetization(ityp(na)) end do end if IF ( i_cons /= 0 .AND. nspin ==1) & CALL errore( 'setup', 'this i_cons requires a magnetic calculation ', 1 ) IF ( i_cons /= 0 .AND. i_cons /= 1 ) & CALL errore( 'setup', 'this i_cons requires a non colinear run', 1 ) END IF ! ! Set the different spin indices ! nspin_mag = nspin nspin_lsda = nspin nspin_gga = nspin IF (nspin==4) THEN nspin_lsda=1 IF (domag) THEN nspin_gga=2 ELSE nspin_gga=1 nspin_mag=1 ENDIF ENDIF ! ! ... if this is not a spin-orbit calculation, all spin-orbit pseudopotentials ! ... are transformed into standard pseudopotentials ! IF ( lspinorb .AND. ALL ( .NOT. upf(:)%has_so ) ) & CALL infomsg ('setup','At least one non s.o. pseudo') ! IF ( .NOT. lspinorb ) CALL average_pp ( ntyp ) ! ! ... If the occupations are from input, check the consistency with the ! ... number of electrons ! IF ( tfixed_occ ) THEN ! iocc = 0 ! DO is = 1, nspin_lsda ! #if defined (__PGI) DO ibnd = 1, nbnd iocc = iocc + f_inp(ibnd,is) END DO #else iocc = iocc + SUM( f_inp(1:nbnd,is) ) #endif ! DO ibnd = 1, nbnd if (f_inp(ibnd,is) > 2.d0/nspin_lsda .or. f_inp(ibnd,is) < 0.d0) & call errore('setup','wrong fixed occupations',is) END DO END DO ! IF ( ABS( iocc - nelec ) > 1D-5 ) & CALL errore( 'setup', 'strange occupations: '//& 'number of electrons from occupations is wrong.', 1 ) ! END IF ! ! ... Check: if there is an odd number of electrons, the crystal is a metal ! IF ( lscf .AND. ABS( NINT( nelec / 2.D0 ) - nelec / 2.D0 ) > eps8 & .AND. .NOT. lgauss .AND. .NOT. ltetra .AND. .NOT. tfixed_occ ) & CALL infomsg( 'setup', 'the system is metallic, specify occupations' ) ! ! ... Check: spin-polarized calculations require either broadening or ! fixed occupation ! IF ( lscf .AND. lsda & .AND. .NOT. lgauss .AND. .NOT. ltetra & .AND. .NOT. tfixed_occ .AND. .NOT. two_fermi_energies ) & CALL errore( 'setup', 'spin-polarized system, specify occupations', 1 ) ! ! ... setting nelup/neldw ! call set_nelup_neldw ( tot_magnetization, nelec, nelup, neldw ) ! ! ... Set the number of occupied bands if not given in input ! IF ( nbnd == 0 ) THEN ! IF (nat==0) CALL errore('setup','free electrons: nbnd required in input',1) ! nbnd = MAX ( NINT( nelec / degspin ), NINT(nelup), NINT(neldw) ) ! IF ( lgauss .OR. ltetra ) THEN ! ! ... metallic case: add 20% more bands, with a minimum of 4 ! nbnd = MAX( NINT( 1.2D0 * nelec / degspin ), & NINT( 1.2D0 * nelup), NINT( 1.2d0 * neldw ), & ( nbnd + 4 ) ) ! END IF ! ! ... In the case of noncollinear magnetism, bands are NOT ! ... twofold degenerate : ! IF ( noncolin ) nbnd = INT( degspin ) * nbnd ! ELSE ! IF ( nbnd < NINT( nelec / degspin ) .AND. lscf ) & CALL errore( 'setup', 'too few bands', 1 ) ! IF ( nbnd < NINT( nelup ) .AND. lscf ) & CALL errore( 'setup', 'too few spin up bands', 1 ) IF ( nbnd < NINT( neldw ) .AND. lscf ) & CALL errore( 'setup', 'too few spin dw bands', 1 ) ! IF ( nbnd < NINT( nelec ) .AND. lscf .AND. noncolin ) & CALL errore( 'setup', 'too few bands', 1 ) ! END IF ! ! ... Here we set the precision of the diagonalization for the first scf ! ... iteration of for the first ionic step ! ... for subsequent steps ethr is automatically updated in electrons ! IF ( nat==0 ) THEN ethr=1.0D-8 ELSE IF ( .NOT. lscf ) THEN ! IF ( ethr == 0.D0 ) ethr = 0.1D0 * MIN( 1.D-2, tr2 / nelec ) ! ELSE ! IF ( ethr == 0.D0 ) THEN ! IF ( starting_pot == 'file' ) THEN ! ! ... if you think that the starting potential is good ! ... do not spoil it with a lousy first diagonalization : ! ... set a strict ethr in the input file (diago_thr_init) ! ethr = 1.D-5 ! ELSE ! ! ... starting atomic potential is probably far from scf ! ... do not waste iterations in the first diagonalizations ! ethr = 1.0D-2 ! END IF ! END IF ! END IF ! IF ( .NOT. lscf ) niter = 1 ! ! ... set number of atomic wavefunctions ! natomwfc = n_atom_wfc( nat, ityp, noncolin ) ! ! ... set the max number of bands used in iterative diagonalization ! nbndx = nbnd IF ( isolve == 0 ) nbndx = david * nbnd ! #ifdef __MPI use_para_diag = check_para_diag( nbnd ) #else use_para_diag = .FALSE. #endif ! ! ... Set the units in real and reciprocal space ! tpiba = 2.D0 * pi / alat tpiba2 = tpiba**2 ! ! ... Compute the cut-off of the G vectors ! doublegrid = ( dual > 4.D0 ) IF ( doublegrid .and. dft_is_hybrid() ) & CALL errore('setup','ecutrho>4*ecutwfc and exact exchange not allowed',1) IF ( doublegrid .AND. (.NOT.okvan .AND. .not.okpaw) ) & CALL infomsg ( 'setup', 'no reason to have ecutrho>4*ecutwfc' ) gcutm = dual * ecutwfc / tpiba2 ! IF ( doublegrid ) THEN ! gcutms = 4.D0 * ecutwfc / tpiba2 ! ELSE ! gcutms = gcutm ! END IF ! ! ... Test that atoms do not overlap ! call check_atoms ( nat, tau, bg ) ! ! ... calculate dimensions of the FFT grid ! CALL realspace_grids_init ( dfftp, dffts, at, bg, gcutm, gcutms ) ! ! ... generate transformation matrices for the crystal point group ! ... First we generate all the symmetry matrices of the Bravais lattice ! call set_sym_bl ( ) ! ! ... If lecrpa is true, nosym must be set to true also ! IF ( lecrpa ) nosym = .TRUE. IF ( lecrpa ) skip_equivalence=.TRUE. ! ! ... If nosym is true do not use any point-group symmetry ! IF ( nosym ) nrot = 1 ! ! ... time_reversal = use q=>-q symmetry for k-point generation ! magnetic_sym = noncolin .AND. domag time_reversal = .NOT. noinv .AND. .NOT. magnetic_sym ! ! ... Automatic generation of k-points (if required) ! IF ( nks_start == 0 ) THEN ! IF (lelfield .OR. lorbm) THEN ! CALL kpoint_grid_efield (at,bg, npk, & k1,k2,k3, nk1,nk2,nk3, nkstot, xk, wk, nspin) nosym = .TRUE. nrot = 1 nsym = 1 ! ELSE IF (lberry) THEN ! CALL kp_strings( nppstr, gdir, nrot, s, bg, npk, & k1, k2, k3, nk1, nk2, nk3, nkstot, xk, wk ) nosym = .TRUE. nrot = 1 nsym = 1 ! ELSE ! CALL kpoint_grid ( nrot, time_reversal, skip_equivalence, s, t_rev, bg,& npk, k1,k2,k3, nk1,nk2,nk3, nkstot, xk, wk) ! END IF ! ELSE nkstot = nks_start xk(:,1:nkstot) = xk_start(:,1:nks_start) wk(1:nkstot) = wk_start(1:nks_start) ! IF( lelfield) THEN ! IF(noncolin) THEN allocate(nx_el(nkstot,3)) ELSE allocate(nx_el(nkstot*nspin,3)) END IF ! IF ( gdir<0 .OR. gdir>3 ) CALL errore('setup','invalid gdir value',10) IF ( gdir == 0 ) CALL errore('setup','needed gdir probably not set',10) ! DO ik=1,nkstot nx_el(ik,gdir)=ik END DO if(nspin==2) nx_el(nkstot+1:2*nkstot,:) = nx_el(1:nkstot,:) + nkstot nppstr_3d(gdir)=nppstr l3dstring=.false. nosym = .TRUE. nrot = 1 nsym = 1 ! END IF END IF ! IF ( nat==0 ) THEN ! nsym=nrot invsym=.true. CALL inverse_s ( ) ! ELSE ! ! ... eliminate rotations that are not symmetry operations ! CALL find_sym ( nat, tau, ityp, dfftp%nr1, dfftp%nr2, dfftp%nr3, & magnetic_sym, m_loc ) ! END IF ! ! ... Input k-points are assumed to be given in the IBZ of the Bravais ! ... lattice, with the full point symmetry of the lattice. ! ... If some symmetries of the lattice are missing in the crystal, ! ... "irreducible_BZ" computes the missing k-points. ! IF ( .NOT. lbands ) THEN CALL irreducible_BZ (nrot, s, nsym, time_reversal, & magnetic_sym, at, bg, npk, nkstot, xk, wk, t_rev) ELSE one = SUM (wk(1:nkstot)) IF ( one > 0.0_dp ) wk(1:nkstot) = wk(1:nkstot) / one END IF ! ! ... if dynamics is done the system should have no symmetries ! ... (inversion symmetry alone is allowed) ! IF ( lmd .AND. ( nsym == 2 .AND. .NOT. invsym .OR. nsym > 2 ) & .AND. .NOT. ( calc == 'mm' .OR. calc == 'nm' ) ) & CALL infomsg( 'setup', 'Dynamics, you should have no symmetries' ) ! ntetra = 0 ! IF ( lbands ) THEN ! ! ... if calculating bands, we read the Fermi energy ! CALL pw_readfile( 'reset', ierr ) CALL pw_readfile( 'ef', ierr ) CALL errore( 'setup ', 'problem reading ef from file ' // & & TRIM( tmp_dir ) // TRIM( prefix ) // '.save', ierr ) ! ELSE IF ( ltetra ) THEN ! ! ... Calculate quantities used in tetrahedra method ! ntetra = 6 * nk1 * nk2 * nk3 ! ALLOCATE( tetra( 4, ntetra ) ) ! CALL tetrahedra( nsym, s, time_reversal, t_rev, at, bg, npk, k1, k2, k3, & nk1, nk2, nk3, nkstot, xk, wk, ntetra, tetra ) ! END IF ! ! IF ( lsda ) THEN ! ! ... LSDA case: two different spin polarizations, ! ... each with its own kpoints ! if (nspin /= 2) call errore ('setup','nspin should be 2; check iosys',1) ! CALL set_kup_and_kdw( xk, wk, isk, nkstot, npk ) ! ELSE IF ( noncolin ) THEN ! ! ... noncolinear magnetism: potential and charge have dimension 4 (1+3) ! if (nspin /= 4) call errore ('setup','nspin should be 4; check iosys',1) current_spin = 1 isk(:) = 1 ! ELSE ! ! ... LDA case: the two spin polarizations are identical ! wk(1:nkstot) = wk(1:nkstot) * degspin current_spin = 1 isk(:) = 1 ! IF ( nspin /= 1 ) & CALL errore( 'setup', 'nspin should be 1; check iosys', 1 ) ! END IF ! IF ( nkstot > npk ) CALL errore( 'setup', 'too many k points', nkstot ) ! #ifdef __MPI ! ! ! ... distribute k-points (and their weights and spin indices) ! kunit = 1 CALL divide_et_impera( xk, wk, isk, lsda, nkstot, nks ) ! #else ! nks = nkstot ! #endif IF ( dft_is_hybrid() ) THEN CALL exx_grid_init() CALL exx_div_check() ENDIF IF (one_atom_occupations) THEN DO ik=1,nkstot DO ibnd=natomwfc+1, nbnd IF (f_inp(ibnd,ik)> 0.0_DP) CALL errore('setup', & 'no atomic wavefunction for some band',1) ENDDO ENDDO ENDIF !--- ! ... Set up Hubbard parameters for LDA+U calculation ! IF ( lda_plus_u ) THEN ! Hubbard_lmax = -1 ! Set the default of Hubbard_l for the species which have ! Hubbard_U=0 (in that case set_Hubbard_l will not be called) Hubbard_l(:) = -1 if ( lda_plus_u_kind.eq.0 ) then ! DO nt = 1, ntyp ! IF ( Hubbard_U(nt)/=0.d0.OR.Hubbard_alpha(nt)/=0.D0 .OR.& Hubbard_J0(nt) /=0.d0 .OR. Hubbard_beta(nt) /=0.d0) THEN ! Hubbard_l(nt) = set_Hubbard_l( upf(nt)%psd ) ! Hubbard_lmax = MAX( Hubbard_lmax, Hubbard_l(nt) ) ! END IF ! END DO elseif ( lda_plus_u_kind.eq.1 ) then ! IF ( U_projection == 'pseudo' ) CALL errore( 'setup', & & 'full LDA+U not implemented with pseudo projection type', 1 ) if (noncolin) then ALLOCATE( d_spin_ldau(2,2,48) ) call comp_dspinldau () endif DO nt = 1, ntyp if (Hubbard_alpha(nt)/=0.d0 ) CALL errore( 'setup', & & 'full LDA+U does not support Hubbard_alpha calculation', 1 ) IF ( Hubbard_U(nt)/=0.d0 .OR. ANY( Hubbard_J(:,nt)/=0.d0 ) ) THEN ! Hubbard_l(nt) = set_Hubbard_l( upf(nt)%psd ) Hubbard_lmax = MAX( Hubbard_lmax, Hubbard_l(nt) ) ! if (Hubbard_U(nt) == 0.d0) Hubbard_U(nt) = 1.d-14 if ( Hubbard_l(nt) == 2 ) then if ( Hubbard_J(2,nt) == 0.d0 ) & Hubbard_J(2,nt) = 0.114774114774d0 * Hubbard_J(1,nt) elseif ( Hubbard_l(nt) == 3 ) then if ( Hubbard_J(2,nt) == 0.d0 ) & Hubbard_J(2,nt) = 0.002268d0 * Hubbard_J(1,nt) if ( Hubbard_J(3,nt)==0.d0 ) & Hubbard_J(3,nt) = 0.0438d0 * Hubbard_J(1,nt) endif END IF ! END DO else CALL errore( 'setup', & & 'lda_plus_u_kind should be 0 or 1', 1 ) endif IF ( Hubbard_lmax == -1 ) & CALL errore( 'setup', & & 'lda_plus_u calculation but Hubbard_l not set', 1 ) IF ( Hubbard_lmax > 3 ) & CALL errore( 'setup', & & 'Hubbard_l should not be > 3 ', 1 ) ! compute index of atomic wfcs used as projectors if(.not.allocated(oatwfc)) ALLOCATE ( oatwfc(nat) ) CALL offset_atom_wfc ( nat, oatwfc ) ELSE ! Hubbard_lmax = 0 ! END IF !--- ! ! ... initialize d1 and d2 to rotate the spherical harmonics ! IF (lda_plus_u .or. okpaw ) CALL d_matrix( d1, d2, d3 ) ! RETURN ! END SUBROUTINE setup ! !---------------------------------------------------------------------------- LOGICAL FUNCTION check_para_diag( nbnd ) ! USE io_global, ONLY : stdout, ionode, ionode_id USE mp_global, ONLY : np_ortho IMPLICIT NONE INTEGER, INTENT(IN) :: nbnd LOGICAL, SAVE :: first = .TRUE. IF( .NOT. first ) RETURN first = .FALSE. ! IF( np_ortho(1) > nbnd ) & CALL errore ('check_para_diag', 'Too few bands for required ndiag',nbnd) ! check_para_diag = ( np_ortho( 1 ) > 1 .AND. np_ortho( 2 ) > 1 ) ! IF ( ionode ) THEN ! WRITE( stdout, '(/,5X,"Subspace diagonalization in iterative solution ",& & "of the eigenvalue problem:")' ) IF ( check_para_diag ) THEN #ifdef __SCALAPACK WRITE( stdout, '(5X,"scalapack distributed-memory algorithm ", & & "(size of sub-group: ", I2, "*", I3, " procs)",/)') & np_ortho(1), np_ortho(2) #else WRITE( stdout, '(5X,"custom distributed-memory algorithm ", & & "(size of sub-group: ", I2, "*", I3, " procs)",/)') & np_ortho(1), np_ortho(2) #endif ELSE WRITE( stdout, '(5X,"a serial algorithm will be used",/)' ) END IF ! END IF ! RETURN END FUNCTION check_para_diag espresso-5.0.2/PW/src/allocate_nlpot.f900000644000700200004540000001012312053145627017017 0ustar marsamoscm! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine allocate_nlpot !----------------------------------------------------------------------- ! ! This routine computes the dimension of the Hamiltonian matrix and ! allocates arrays containing the non-local part of the pseudopotential ! ! It computes the following global quantities: ! ! ngk ! number of plane waves (for each k point) ! npwx ! maximum number of plane waves ! nqx ! number of points of the interpolation table ! nqxq ! as above, for q-function interpolation table ! ! USE ions_base, ONLY : nat, nsp, ityp USE cell_base, ONLY : tpiba2 USE cellmd, ONLY : cell_factor USE gvect, ONLY : ngm, gcutm, g USE klist, ONLY : xk, wk, ngk, nks, qnorm USE lsda_mod, ONLY : nspin USE ldaU, ONLY : Hubbard_lmax USE scf, ONLY : rho USE noncollin_module, ONLY : noncolin USE wvfct, ONLY : npwx, npw, igk, g2kin, ecutwfc USE us, ONLY : qrad, tab, tab_d2y, tab_at, dq, nqx, & nqxq, spline_ps USE uspp, ONLY : indv, nhtol, nhtolm, ijtoh, qq, dvan, deeq, vkb,& nkb, nkbus, nhtoj, becsum, qq_so,dvan_so, deeq_nc USE uspp_param, ONLY : upf, lmaxq, lmaxkb, nh, nhm, nbetam USE spin_orb, ONLY : lspinorb, fcoef USE paw_variables, ONLY : okpaw USE control_flags, ONLY : program_name USE io_global, ONLY : stdout ! implicit none ! ! a few local variables ! integer :: nwfcm ! counters on atom type, atoms, beta functions ! ! calculate number of PWs for all kpoints ! allocate (ngk( nks )) ! call n_plane_waves (ecutwfc, tpiba2, nks, xk, g, ngm, npwx, ngk) ! ! igk relates the index of PW k+G to index in the list of G vector ! allocate (igk( npwx ), g2kin ( npwx ) ) ! ! Note: computation of the number of beta functions for ! each atomic type and the maximum number of beta functions ! and the number of beta functions of the solid has been ! moved to init_run.f90 : pre_init() ! allocate (indv( nhm, nsp)) allocate (nhtol(nhm, nsp)) allocate (nhtolm(nhm, nsp)) allocate (nhtoj(nhm, nsp)) allocate (ijtoh(nhm, nhm, nsp)) allocate (deeq( nhm, nhm, nat, nspin)) if (noncolin) then allocate (deeq_nc( nhm, nhm, nat, nspin)) endif allocate (qq( nhm, nhm, nsp)) if (lspinorb) then allocate (qq_so(nhm, nhm, 4, nsp)) allocate (dvan_so( nhm, nhm, nspin, nsp)) allocate (fcoef(nhm,nhm,2,2,nsp)) else allocate (dvan( nhm, nhm, nsp)) endif ! GIPAW needs a slighly larger q-space interpolation for quantities calculated ! at k+q_gipaw if (trim(program_name) == 'GIPAW') then if (cell_factor == 1.d0) cell_factor = 1.1d0 write(stdout,"(5X,'q-space interpolation up to ',F8.2,' Rydberg')") ecutwfc*cell_factor endif ! ! This routine is called also by the phonon code, in which case it should ! allocate an array that includes q+G vectors up to |q+G|_max <= |Gmax|+|q| ! nqxq = INT( ( (sqrt(gcutm) + qnorm ) / dq + 4) * cell_factor ) lmaxq = 2*lmaxkb+1 ! if (lmaxq > 0) allocate (qrad( nqxq, nbetam*(nbetam+1)/2, lmaxq, nsp)) allocate (vkb( npwx, nkb)) allocate (becsum( nhm * (nhm + 1)/2, nat, nspin)) ! ! Calculate dimensions for array tab (including a possible factor ! coming from cell contraction during variable cell relaxation/MD) ! nqx = INT( (sqrt (ecutwfc) / dq + 4) * cell_factor ) allocate (tab( nqx , nbetam , nsp)) ! d2y is for the cubic splines if (spline_ps) allocate (tab_d2y( nqx , nbetam , nsp)) nwfcm = MAXVAL ( upf(1:nsp)%nwfc ) allocate (tab_at( nqx , nwfcm , nsp)) return end subroutine allocate_nlpot espresso-5.0.2/PW/src/get_locals.f900000644000700200004540000000441512053145630016134 0ustar marsamoscm! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- subroutine get_locals(rholoc,magloc, rho) !--------------------------------------------------------------------------- ! ! Here local integrations are carried out around atoms. ! The points and weights for these integrations are determined in the ! subroutine make_pointlists, the result may be printed in the ! subroutine report_mag. If constraints are present, the results of this ! calculation are used in v_of_rho for determining the penalty functional. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat USE cell_base, ONLY : omega USE lsda_mod, ONLY : nspin USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE noncollin_module, ONLY : pointlist, factlist, noncolin implicit none ! ! I/O variables ! real(DP) :: & rholoc(nat), & ! integrated charge arount the atoms magloc(nspin-1,nat) ! integrated magnetic moment around the atom real(DP) :: rho (dfftp%nnr, nspin) ! ! local variables ! integer i,ipol real(DP) :: fact real(DP), allocatable :: auxrholoc(:,:) allocate (auxrholoc(0:nat,nspin)) auxrholoc(:,:) = 0.d0 do i=1,dfftp%nnr auxrholoc(pointlist(i),1:nspin) = auxrholoc(pointlist(i),1:nspin) + & rho(i,1:nspin) * factlist(i) end do ! call mp_sum( auxrholoc( 0:nat, 1:nspin), intra_bgrp_comm ) ! fact = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) if (nspin.eq.2) then rholoc(1:nat) = (auxrholoc(1:nat,1)+auxrholoc(1:nat,2)) * fact magloc(1,1:nat) = (auxrholoc(1:nat,1)-auxrholoc(1:nat,2)) * fact else rholoc(1:nat) = auxrholoc(1:nat,1) * fact if (noncolin) then do ipol=1,3 magloc(ipol,1:nat) = auxrholoc(1:nat,ipol+1) * fact end do end if endif ! deallocate (auxrholoc) end subroutine get_locals espresso-5.0.2/PW/src/pw2casino_write.f900000644000700200004540000013431312053145630017140 0ustar marsamoscm! ! Copyright (C) 2004-2009 Dario Alfe' and Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE write_casino_wfn(gather,blip,multiplicity,binwrite,single_precision_blips,n_points_for_test,postfix) USE kinds, ONLY: DP,sgl USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY: omega, alat, tpiba2, at, bg USE run_info, ONLY: title ! title of the run USE constants, ONLY: tpi, e2 USE ener, ONLY: ewld, ehart, etxc, vtxc, etot, etxcc, demet, ef USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY: ngm, gstart, g, gg, gcutm, nl, nlm, igtongl USE klist , ONLY: nks, nelec, xk, wk, degauss, ngauss USE lsda_mod, ONLY: lsda, nspin USE scf, ONLY: rho, rho_core, rhog_core, v USE ldaU, ONLY : eth USE vlocal, ONLY: vloc, strf USE wvfct, ONLY: npw, npwx, nbnd, igk, g2kin, wg, et, ecutwfc USE control_flags, ONLY : gamma_only USE uspp, ONLY: nkb, vkb, dvan USE uspp_param, ONLY: nh USE io_global, ONLY: stdout, ionode, ionode_id USE io_files, ONLY: nd_nmbr, nwordwfc, iunwfc, prefix, tmp_dir, seqopn USE wavefunctions_module, ONLY : evc USE funct, ONLY : dft_is_meta USE mp_global, ONLY: inter_pool_comm, intra_pool_comm, nproc_pool, me_pool USE mp, ONLY: mp_sum, mp_gather, mp_bcast, mp_get USE buffers, ONLY : get_buffer USE pw2blip IMPLICIT NONE LOGICAL, INTENT(in) :: gather,blip,binwrite,single_precision_blips REAL(dp), INTENT(in) :: multiplicity INTEGER, INTENT(in) :: n_points_for_test CHARACTER(*), INTENT(in) :: postfix INTEGER, PARAMETER :: n_overlap_tests = 12 REAL(dp), PARAMETER :: eps = 1.d-10 INTEGER, PARAMETER :: io = 77, iob = 78 INTEGER :: ig, ibnd, ik, ispin, nbndup, nbnddown, & nk, ig7, ikk, id, ip, iorb, iorb_node, inode, ierr, norb INTEGER :: jk(nproc_pool), jspin(nproc_pool), jbnd(nproc_pool) INTEGER :: jk2(nproc_pool), jspin2(nproc_pool), jbnd2(nproc_pool) INTEGER, ALLOCATABLE :: idx(:), igtog(:), gtoig(:) LOGICAL :: exst,dowrite REAL(DP) :: ek, eloc, enl INTEGER, EXTERNAL :: atomic_number REAL (DP), EXTERNAL :: ewald, w1gauss ! number of g vectors (union of all k points) INTEGER ngtot_l ! on this processor INTEGER, ALLOCATABLE :: ngtot_d(:), ngtot_cumsum(:), indx(:) INTEGER ngtot_g ! sum over processors REAL(DP), ALLOCATABLE :: g_l(:,:), g_g(:,:), g2(:) COMPLEX(DP), ALLOCATABLE :: evc_l(:), evc_g(:), evc_g2(:), avc_tmp(:,:,:), cavc_tmp(:,:,:) LOGICAL dotransform REAL(dp) :: av_overlap(5,2),avsq_overlap(5,2) !----------------------------------------------------------------------------! ! Random number generator, using the method suggested by D.E. Knuth in ! ! Seminumerical Algorithms (vol 2 of The Art of Computer Programming). ! ! The method is based on lagged Fibonacci sequences with subtraction. ! !----------------------------------------------------------------------------! INTEGER,PARAMETER :: KK=100,LL=37 ! Leave these. REAL(DP) :: ranstate(kk) ! Determines output of gen_ran_array. INTEGER,PARAMETER :: default_seed=310952 ! Random seed, betw. 0 & 2^30-3. INTEGER,PARAMETER :: Nran=1009,Nkeep=100 ! See comment on p. 188 of Knuth. INTEGER,SAVE :: ran_array_idx=-1 REAL(DP),SAVE :: ran_array(Nran) dowrite=ionode.or..not.(gather.or.blip) ALLOCATE (idx (ngm) ) ALLOCATE (igtog (ngm) ) ALLOCATE (gtoig (ngm) ) idx(:) = 0 igtog(:) = 0 IF( lsda )THEN nbndup = nbnd nbnddown = nbnd nk = nks/2 ! nspin = 2 ELSE nbndup = nbnd nbnddown = 0 nk = nks ! nspin = 1 ENDIF CALL calc_energies DO ispin = 1, nspin DO ik = 1, nk ikk = ik + nk*(ispin-1) CALL gk_sort (xk (1:3, ikk), ngm, g(1:3,1:ngm), ecutwfc / tpiba2, & ! input &npw, igk, g2kin) ! output idx( igk(1:npw) ) = 1 ENDDO ENDDO ngtot_l = 0 DO ig = 1, ngm IF( idx(ig) >= 1 )THEN ngtot_l = ngtot_l + 1 igtog(ngtot_l) = ig gtoig(ig) = ngtot_l ENDIF ENDDO DEALLOCATE (idx) IF(dowrite)THEN IF(blip)THEN IF(binwrite)THEN WRITE (6,'(a)')'Writing file '//trim(prefix)//'.bwfn.data.b1'//trim(postfix)//' for program CASINO.' OPEN( iob, file=trim(tmp_dir)//'/'//trim(prefix)//'.bwfn.data.b1'//trim(postfix), & form='unformatted', action='write', access='sequential') ELSE WRITE (6,'(a)')'Writing file '//trim(prefix)//'.bwfn.data'//trim(postfix)//' for program CASINO.' OPEN( io, file=trim(tmp_dir)//'/'//trim(prefix)//'.bwfn.data'//trim(postfix), & form='formatted', action='write', access='sequential') ENDIF ELSE IF(gather)THEN WRITE (6,'(a)')'Writing file '//trim(prefix)//'.pwfn.data'//trim(postfix)//' for program CASINO.' OPEN( io, file=trim(tmp_dir)//'/'//trim(prefix)//'.pwfn.data'//trim(postfix), & form='formatted', action='write', access='sequential') ELSE WRITE (6,'(a)')'Writing one file per node '//trim(prefix)//'.pwfn.data'//trim(postfix)//'.XX for program CASINO' CALL seqopn( io, 'pwfn.data'//trim(postfix), 'formatted',exst) ENDIF ENDIF WRITE (6,'(a)') ENDIF ALLOCATE ( g_l(3,ngtot_l), evc_l(ngtot_l) ) DO ig = 1, ngtot_l g_l(:,ig) = g(:,igtog(ig)) ENDDO IF(gather.or.blip)THEN ALLOCATE ( ngtot_d(nproc_pool), ngtot_cumsum(nproc_pool) ) CALL mp_gather( ngtot_l, ngtot_d, ionode_id, intra_pool_comm ) CALL mp_bcast( ngtot_d, ionode_id, intra_pool_comm ) id = 0 DO ip = 1,nproc_pool ngtot_cumsum(ip) = id id = id + ngtot_d(ip) ENDDO ngtot_g = id ALLOCATE ( g_g(3,ngtot_g), g2(ngtot_g), evc_g(ngtot_g) ) IF(blip.and.gamma_only)THEN ALLOCATE( evc_g2(ngtot_g) ) ENDIF CALL mp_gather( g_l, g_g, ngtot_d, ngtot_cumsum, ionode_id, intra_pool_comm) IF(blip)THEN CALL mp_bcast( g_g, ionode_id, intra_pool_comm ) g2(:) = sum(g_g(:,:)**2,dim=1) CALL pw2blip_init(ngtot_g,g_g,multiplicity) IF(dowrite)THEN WRITE (6,'(a)')'Blip grid: '//trim(i2s(blipgrid(1)))//'x'//trim(i2s(blipgrid(2)))//'x'//trim(i2s(blipgrid(3))) WRITE (6,'(a)') ENDIF ELSEIF(dowrite)THEN ALLOCATE ( indx(ngtot_g) ) CALL create_index2(g_g,indx) ENDIF ELSEIF(dowrite)THEN ALLOCATE ( indx(ngtot_l) ) CALL create_index2(g_l,indx) ENDIF IF(dowrite)THEN CALL write_header IF(blip)THEN CALL write_gvecs_blip ELSEIF(gather)THEN CALL write_gvecs(g_g,indx) ELSE CALL write_gvecs(g_l,indx) ENDIF CALL write_wfn_head ENDIF IF(dowrite.and.blip.and.binwrite)THEN IF(gamma_only)THEN ALLOCATE(avc_tmp(blipgrid(1),blipgrid(2),blipgrid(3))) ELSE ALLOCATE(cavc_tmp(blipgrid(1),blipgrid(2),blipgrid(3))) ENDIF ENDIF ! making some assumptions about the parallel layout: IF(ionode_id/=0)CALL errore('write_casino_wfn','ionode_id/=0: ',ionode_id) iorb = 0 norb = nk*nspin*nbnd DO ik = 1, nk DO ispin = 1, nspin ikk = ik + nk*(ispin-1) IF( nks > 1 )THEN CALL gk_sort (xk (1:3, ikk), ngm, g(1:3,1:ngm), ecutwfc / tpiba2, & ! input &npw, igk, g2kin) ! output CALL get_buffer(evc,nwordwfc,iunwfc,ikk) ENDIF DO ibnd = 1, nbnd evc_l(:) = (0.d0, 0d0) evc_l(gtoig(igk(1:npw))) = evc(1:npw,ibnd) IF(blip)THEN iorb = iorb + 1 IF(gamma_only)THEN iorb_node = mod((iorb-1)/2,nproc_pool) ! the node that should compute this orbital IF(mod(iorb,2)==0)THEN jk2(iorb_node+1) = ik jspin2(iorb_node+1) = ispin jbnd2(iorb_node+1) = ibnd dotransform = (iorb_node==nproc_pool-1) ELSE jk(iorb_node+1) = ik jspin(iorb_node+1) = ispin jbnd(iorb_node+1) = ibnd dotransform = .false. ENDIF ELSE iorb_node = mod(iorb-1,nproc_pool) ! the node that should compute this orbital jk(iorb_node+1) = ik jspin(iorb_node+1) = ispin jbnd(iorb_node+1) = ibnd dotransform=(iorb_node==nproc_pool-1) ENDIF DO inode=0,nproc_pool-1 IF(gamma_only.and.mod(iorb,2)==0)THEN CALL mp_get(& evc_g2(ngtot_cumsum(inode+1)+1:ngtot_cumsum(inode+1)+ngtot_d(inode+1)),& evc_l(:),me_pool,iorb_node,inode,1234,intra_pool_comm) ELSE CALL mp_get(& evc_g(ngtot_cumsum(inode+1)+1:ngtot_cumsum(inode+1)+ngtot_d(inode+1)),& evc_l(:),me_pool,iorb_node,inode,1234,intra_pool_comm) ENDIF ENDDO IF(dotransform .or. iorb == norb)THEN IF(me_pool <= iorb_node)THEN IF(gamma_only.and.(me_pool/=iorb_node.or.iorb/=norb.or.mod(norb,2)==0))THEN CALL pw2blip_transform2(evc_g(:),evc_g2(:)) ELSE CALL pw2blip_transform(evc_g(:)) ENDIF ENDIF IF(me_pool <= iorb_node) CALL test_overlap DO inode=0,iorb_node CALL pw2blip_get(inode) IF(gamma_only)THEN IF(ionode)WRITE(6,*)"Transformed real orbital k="//trim(i2s(jk(inode+1)))//& &", spin="//trim(i2s(jspin(inode+1)))//& &", band="//trim(i2s(jbnd(inode+1)))//" on node "//trim(i2s(inode)) CALL print_overlap(inode,1) IF(blipreal==2)THEN IF(ionode)WRITE(6,*)"Transformed real orbital k="//trim(i2s(jk2(inode+1)))//& &", spin="//trim(i2s(jspin2(inode+1)))//& &", band="//trim(i2s(jbnd2(inode+1)))//" on node "//trim(i2s(inode)) ENDIF CALL print_overlap(inode,2) ELSE IF(ionode)WRITE(6,*)"Transformed complex orbital k="//trim(i2s(jk(inode+1)))//& &", spin="//trim(i2s(jspin(inode+1)))//& &", band="//trim(i2s(jbnd(inode+1)))//" on node "//trim(i2s(inode)) CALL print_overlap(inode,1) ENDIF IF(gamma_only)THEN IF(ionode)CALL write_bwfn_data_gamma(1,jk(inode+1),jspin(inode+1),jbnd(inode+1)) IF(blipreal==2)THEN IF(ionode)CALL write_bwfn_data_gamma(2,jk2(inode+1),jspin2(inode+1),jbnd2(inode+1)) ENDIF ELSE IF(ionode)CALL write_bwfn_data(jk(inode+1),jspin(inode+1),jbnd(inode+1)) ENDIF ENDDO ENDIF ELSEIF(gather)THEN CALL mp_gather( evc_l, evc_g, ngtot_d, ngtot_cumsum, ionode_id, intra_pool_comm) IF(dowrite)CALL write_pwfn_data(ik,ispin,ibnd,evc_g,indx) ELSE CALL write_pwfn_data(ik,ispin,ibnd,evc_l,indx) ENDIF ENDDO ENDDO ENDDO IF(dowrite)THEN IF(binwrite)THEN CLOSE(iob) ELSE CLOSE(io) ENDIF ENDIF IF(dowrite.and.blip.and.binwrite)THEN IF(gamma_only)THEN DEALLOCATE(avc_tmp) ELSE DEALLOCATE(cavc_tmp) ENDIF ENDIF IF(blip)CALL pw2blip_cleanup DEALLOCATE (igtog, g_l, evc_l ) IF(blip.or.gather) DEALLOCATE ( ngtot_d, ngtot_cumsum, g_g, evc_g ) IF(dowrite.and..not.blip) DEALLOCATE (indx) CONTAINS SUBROUTINE calc_energies USE becmod, ONLY: becp, calbec, allocate_bec_type, deallocate_bec_type USE exx, ONLY : exxenergy2, fock2 USE funct, ONLY : dft_is_hybrid COMPLEX(DP), ALLOCATABLE :: aux(:) INTEGER :: ibnd, j, ig, ik, ikk, ispin, na, nt, ijkb0, ikb, ih, jh, jkb REAL(DP) :: charge, etotefield, elocg ALLOCATE (aux(dfftp%nnr)) CALL allocate_bec_type ( nkb, nbnd, becp ) ek = 0.d0 eloc= 0.d0 enl = 0.d0 demet=0.d0 fock2=0.d0 ! DO ispin = 1, nspin ! ! calculate the local contribution to the total energy ! ! bring rho to G-space ! aux(:) = cmplx( rho%of_r(:,ispin), 0.d0,kind=DP) CALL fwfft ('Dense', aux, dfftp) ! DO nt=1,ntyp DO ig = 1, ngm elocg = vloc(igtongl(ig),nt) * & dble ( strf(ig,nt) * conjg(aux(nl(ig))) ) eloc = eloc + elocg IF( gamma_only .and. ig>=gstart) eloc = eloc + elocg ENDDO ENDDO DO ik = 1, nk ikk = ik + nk*(ispin-1) CALL gk_sort (xk (1, ikk), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL get_buffer (evc, nwordwfc, iunwfc, ikk ) CALL init_us_2 (npw, igk, xk (1, ikk), vkb) CALL calbec ( npw, vkb, evc, becp ) ! ! -TS term for metals (ifany) ! IF( degauss > 0.0_dp)THEN DO ibnd = 1, nbnd demet = demet + wk (ik) * & degauss * w1gauss ( (ef-et(ibnd,ik)) / degauss, ngauss) ENDDO ENDIF ! ! calculate the kinetic energy ! DO ibnd = 1, nbnd DO j = 1, npw IF(gamma_only)THEN !.and.j>1)then ek = ek + 2*conjg(evc(j,ibnd)) * evc(j,ibnd) * & g2kin(j) * wg(ibnd,ikk) ELSE ek = ek + conjg(evc(j,ibnd)) * evc(j,ibnd) * & g2kin(j) * wg(ibnd,ikk) ENDIF ENDDO ! ! Calculate Non-local energy ! ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF(ityp (na) == nt)THEN DO ih = 1, nh (nt) ikb = ijkb0 + ih IF(gamma_only)THEN enl=enl+becp%r(ikb,ibnd)*becp%r(ikb,ibnd) & *wg(ibnd,ikk)* dvan(ih,ih,nt) ELSE enl=enl+conjg(becp%k(ikb,ibnd))*becp%k(ikb,ibnd) & *wg(ibnd,ikk)* dvan(ih,ih,nt) ENDIF DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh IF(gamma_only)THEN enl=enl + & (becp%r(ikb,ibnd)*becp%r(jkb,ibnd)+& becp%r(jkb,ibnd)*becp%r(ikb,ibnd))& * wg(ibnd,ikk) * dvan(ih,jh,nt) ELSE enl=enl + & (conjg(becp%k(ikb,ibnd))*becp%k(jkb,ibnd)+& conjg(becp%k(jkb,ibnd))*becp%k(ikb,ibnd))& * wg(ibnd,ikk) * dvan(ih,jh,nt) ENDIF ENDDO ENDDO ijkb0 = ijkb0 + nh (nt) ENDIF ENDDO ENDDO ENDDO ENDDO ENDDO #ifdef __MPI CALL mp_sum( eloc, intra_pool_comm ) CALL mp_sum( ek, intra_pool_comm ) CALL mp_sum( ek, inter_pool_comm ) CALL mp_sum( enl, inter_pool_comm ) CALL mp_sum( demet, inter_pool_comm ) #endif eloc = eloc * omega ek = ek * tpiba2 ! ! compute ewald contribution ! ewld = ewald( alat, nat, ntyp, ityp, zv, at, bg, tau, omega, & g, gg, ngm, gcutm, gstart, gamma_only, strf ) ! ! compute hartree and xc contribution ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) ! ! compute exact exchange contribution (if present) ! IF(dft_is_hybrid()) fock2 = 0.5_DP * exxenergy2() ! etot=(ek + (etxc-etxcc)+ehart+eloc+enl+ewld)+demet+fock2 ! CALL deallocate_bec_type (becp) DEALLOCATE (aux) WRITE (stdout,*) WRITE (stdout,*) 'Energies determined by pw2casino tool' WRITE (stdout,*) '-------------------------------------' WRITE (stdout,*) 'Kinetic energy ', ek/e2, ' au = ', ek, ' Ry' WRITE (stdout,*) 'Local energy ', eloc/e2, ' au = ', eloc, ' Ry' WRITE (stdout,*) 'Non-Local energy ', enl/e2, ' au = ', enl, ' Ry' WRITE (stdout,*) 'Ewald energy ', ewld/e2, ' au = ', ewld, ' Ry' WRITE (stdout,*) 'xc contribution ',(etxc-etxcc)/e2, ' au = ', etxc-etxcc, ' Ry' WRITE (stdout,*) 'hartree energy ', ehart/e2, ' au = ', ehart, ' Ry' IF(dft_is_hybrid()) & WRITE (stdout,*) 'EXX energy ', fock2/e2, ' au = ', fock2, ' Ry' IF( degauss > 0.0_dp ) & WRITE (stdout,*) 'Smearing (-TS) ', demet/e2, ' au = ', demet, ' Ry' WRITE (stdout,*) 'Total energy ', etot/e2, ' au = ', etot, ' Ry' WRITE (stdout,*) END SUBROUTINE calc_energies SUBROUTINE test_overlap ! Carry out the overlap test described in the CASINO manual. ! Repeat the whole test n_overlap_tests times, to compute error bars. INTEGER i,j,k REAL(dp) r(3) COMPLEX(dp) xb(5),xp(5) ! 1->val, 2:4->grad, 5->lap REAL(dp) xbb(5,2),xpp(5,2) COMPLEX(dp) xbp(5,2) REAL(dp) overlap(5,2),sum_overlap(5,2),sumsq_overlap(5,2) IF(n_points_for_test<=0)RETURN IF(n_overlap_tests<=0)RETURN CALL init_rng(12345678) sum_overlap(:,:)=0.d0 ; sumsq_overlap(:,:)=0.d0 DO j=1,n_overlap_tests xbb(:,:)=0.d0 ; xpp(:,:)=0.d0 ; xbp(:,:)=0.d0 DO i=1,n_points_for_test r(1)=ranx() ; r(2)=ranx() ; r(3)=ranx() CALL blipeval(r,xb(1),xb(2:4),xb(5)) CALL pweval(r,xp(1),xp(2:4),xp(5)) IF(gamma_only)THEN xbb(:,1)=xbb(:,1)+dble(xb(:))**2 xbp(:,1)=xbp(:,1)+dble(xb(:))*dble(xp(:)) xpp(:,1)=xpp(:,1)+dble(xp(:))**2 IF(blipreal==2)THEN ! two orbitals - use complex and imaginary part independently xbb(:,2)=xbb(:,2)+aimag(xb(:))**2 xbp(:,2)=xbp(:,2)+aimag(xb(:))*aimag(xp(:)) xpp(:,2)=xpp(:,2)+aimag(xp(:))**2 ENDIF ELSE xbb(:,1)=xbb(:,1)+dble(xb(:))**2+aimag(xb(:))**2 xbp(:,1)=xbp(:,1)+xb(:)*conjg(xp(:)) xpp(:,1)=xpp(:,1)+dble(xp(:))**2+aimag(xp(:))**2 ENDIF ENDDO ! i overlap(:,:)=0.d0 DO k=1,5 IF(xbb(k,1)/=0.d0.and.xpp(k,1)/=0.d0)THEN overlap(k,1)=(dble(xbp(k,1))**2+aimag(xbp(k,1))**2)/(xbb(k,1)*xpp(k,1)) ENDIF ! xb & xd nonzero ENDDO ! k IF(blipreal==2)THEN DO k=1,5 IF(xbb(k,2)/=0.d0.and.xpp(k,2)/=0.d0)THEN overlap(k,2)=(dble(xbp(k,2))**2+aimag(xbp(k,2))**2)/(xbb(k,2)*xpp(k,2)) ENDIF ! xb & xd nonzero ENDDO ! k ELSE ENDIF sum_overlap(:,:)=sum_overlap(:,:)+overlap(:,:) sumsq_overlap(:,:)=sumsq_overlap(:,:)+overlap(:,:)**2 ENDDO ! j av_overlap(:,:)=sum_overlap(:,:)/dble(n_overlap_tests) avsq_overlap(:,:)=sumsq_overlap(:,:)/dble(n_overlap_tests) END SUBROUTINE test_overlap SUBROUTINE pweval(r,val,grad,lap) DOUBLE PRECISION,INTENT(in) :: r(3) COMPLEX(dp),INTENT(out) :: val,grad(3),lap INTEGER ig REAL(dp) dot_prod COMPLEX(dp) eigr,eigr2 REAL(dp),PARAMETER :: pi=3.141592653589793238462643d0 COMPLEX(dp),PARAMETER :: iunity=(0.d0,1.d0) val=0.d0 ; grad(:)=0.d0 ; lap=0.d0 DO ig=1,ngtot_g dot_prod=tpi*sum(dble(g_int(:,ig))*r(:)) eigr=evc_g(ig)*cmplx(cos(dot_prod),sin(dot_prod),dp) IF(.not.gamma_only)THEN val=val+eigr grad(:)=grad(:)+(eigr*iunity)*dble(g_int(:,ig)) lap=lap-eigr*g2(ig) ELSEIF(blipreal==1)THEN IF(all(g_int(:,ig)==0))eigr=eigr*0.5d0 val=val+dble(eigr) grad(:)=grad(:)-aimag(eigr)*dble(g_int(:,ig)) lap=lap-dble(eigr)*g2(ig) ELSEIF(blipreal==2)THEN eigr2=evc_g2(ig)*cmplx(cos(dot_prod),sin(dot_prod),dp) IF(all(g_int(:,ig)==0))THEN eigr=eigr*0.5d0 eigr2=eigr2*0.5d0 ENDIF val=val+cmplx(dble(eigr),dble(eigr2)) grad(:)=grad(:)+cmplx(-aimag(eigr),-aimag(eigr2))*dble(g_int(:,ig)) lap=lap-cmplx(dble(eigr),dble(eigr2))*g2(ig) ENDIF ENDDO ! ig IF(gamma_only)THEN val = val*2.d0 grad(:) = grad(:)*2.d0 lap = lap*2.d0 ENDIF grad(:)=matmul(bg(:,:),grad(:))*(tpi/alat) lap=lap*(tpi/alat)**2 END SUBROUTINE pweval SUBROUTINE print_overlap(inode,whichband) !-------------------------------------------------------------------------! ! Write out the overlaps of the value, gradient and Laplacian of the blip ! ! orbitals. Give error bars where possible. ! !-------------------------------------------------------------------------! INTEGER,INTENT(in) :: inode INTEGER,INTENT(in) :: whichband ! 1 or 2, indexing within a pair of real orbitals REAL(dp) :: av(5),avsq(5),err(5) INTEGER k CHARACTER(12) char12_arr(5) IF(n_points_for_test<=0)RETURN IF(n_overlap_tests<=0)RETURN CALL mp_get(av(:),av_overlap(:,whichband),me_pool,ionode_id,inode,6434,intra_pool_comm) CALL mp_get(avsq(:),avsq_overlap(:,whichband),me_pool,ionode_id,inode,6434,intra_pool_comm) IF(.not.ionode)RETURN IF(blipreal==1.and.whichband==2)RETURN IF(n_overlap_tests<2)THEN WRITE(stdout,*)'Error: need at least two overlap tests, to estimate error bars.' STOP ENDIF ! Too few overlap tests err(:)=sqrt(max(avsq(:)-av(:)**2,0.d0)/dble(n_overlap_tests-1)) DO k=1,5 char12_arr(k)=trim(write_mean(av(k),err(k))) ! Not room to quote error bar. Just quote mean. IF(index(char12_arr(k),')')==0)WRITE(char12_arr(k),'(f12.9)')av(k) ENDDO ! k WRITE(stdout,'(2(1x,a),2x,3(1x,a))')char12_arr(1:5) END SUBROUTINE print_overlap FUNCTION to_c80(c) CHARACTER(*),INTENT(in) :: c CHARACTER(80) :: to_c80 to_c80=c END FUNCTION to_c80 SUBROUTINE write_header INTEGER j, na, nt, at_num REAL(dp) :: kvec(3,nk),ksq(nk),kprod(6,nk) IF(blip.and.binwrite)THEN WRITE(iob)& to_c80(title) ,& to_c80("PWSCF") ,& to_c80("DFT") ,& to_c80("unknown"),& to_c80("unknown"),& dble(ecutwfc/2) ,& lsda ,& dble(etot/e2) ,& dble(ek/e2) ,& dble(eloc/e2) ,& dble(enl/e2) ,& dble(ehart/e2) ,& dble(ewld/e2) ,& nint(nelec) ,& nat ,& ngtot_g ,& nk ,& blipgrid(1:3) ,& nbnd ,& gamma_only ,& .true. ,& (/0,0/) ,& alat*at(1:3,1) ,& alat*at(1:3,2) ,& alat*at(1:3,3) ,& 2 ,& nbnd ! some old PGI compiler seems to choke on this commented version.... ! to_c80(title) ,& ! title ! to_c80("PWSCF") ,& ! code ! to_c80("DFT") ,& ! method ! to_c80("unknown"),& ! functional ! to_c80("unknown"),& ! pseudo_type ! dble(ecutwfc/2) ,& ! plane_wave_cutoff ! lsda ,& ! spin_polarized, ! dble(etot/e2) ,& ! total_energy ! dble(ek/e2) ,& ! kinetic_energy ! dble(eloc/e2) ,& ! local_potential_energy ! dble(enl/e2) ,& ! non_local_potential_energy ! dble(ehart/e2) ,& ! electron_electron_energy ! dble(ewld/e2) ,& ! eionion ! nint(nelec) ,& ! num_electrons ! nat ,& ! nbasis ! ngtot_g ,& ! nwvec ! nk ,& ! nkvec ! blipgrid(1:3) ,& ! nr ! nbnd ,& ! maxband ! gamma_only ,& ! gamma_only ! .true. ,& ! ext_orbs_present ! (/0,0/) ,& ! no_loc_orbs ! alat*at(1:3,1) ,& ! pa1 ! alat*at(1:3,2) ,& ! pa2 ! alat*at(1:3,3) ,& ! pa3 ! 2 ,& ! nspin_check ! nbnd ! num_nonloc_max kvec(:,:) = tpi/alat*xk(1:3,1:nk) kprod(1,:)=kvec(1,:)*kvec(1,:) kprod(2,:)=kvec(2,:)*kvec(2,:) kprod(3,:)=kvec(3,:)*kvec(3,:) kprod(4,:)=kvec(1,:)*kvec(2,:) kprod(5,:)=kvec(1,:)*kvec(3,:) kprod(6,:)=kvec(2,:)*kvec(3,:) ksq(:)=kprod(1,:)+kprod(2,:)+kprod(3,:) WRITE(iob)& kvec ,& ksq ,& kprod ,& (atomic_number(trim(atm(ityp(na)))),na=1,nat) ,& (alat*tau(1:3,na),na=1,nat) ,& (nbnd,j=1,nk*2) ,& et(1:nbnd,1:nk*nspin)/e2 ,& (.true.,j=1,nbnd*nk*nspin) ,& (/nbnd,nbnd/) ! kvec ,& ! kvec ! ksq ,& ! ksq ! kprod ,& ! kprod ! (atomic_number(trim(atm(ityp(na)))),na=1,nat) ,& ! atno -- atomic numbers ! (alat*tau(1:3,na),na=1,nat) ,& ! basis -- atom positions ! (nbnd,j=1,nk*2) ,& ! nband ! et(1:nbnd,1:nk*nspin)/e2 ,& ! eigenvalue ! (.true.,j=1,nbnd*nk*nspin) ,& ! on_this_cpu ! (/nbnd,nbnd/) ! num_nonloc WRITE(iob)single_precision_blips ! single_precision_blips ! IF(no_loc_orbs>0)THEN ! ... ! ENDIF WRITE(iob)& (0,j=1,nbnd*nk*2) ,& (0,j=1,nbnd*nk*2) ,& (0,j=1,nbnd*nk*2) ,& (0,j=1,nbnd*nk*2) ! (0,j=1,nbnd*nk*2) ,& ! orb_map_band ! (0,j=1,nbnd*nk*2) ,& ! orb_map_ik ! (0,j=1,nbnd*nk*2) ,& ! orb_map_iorb ! (0,j=1,nbnd*nk*2) ! occupied RETURN ENDIF WRITE(io,'(a)') title WRITE(io,'(a)') WRITE(io,'(a)') ' BASIC INFO' WRITE(io,'(a)') ' ----------' WRITE(io,'(a)') ' Generated by:' WRITE(io,'(a)') ' PWSCF' WRITE(io,'(a)') ' Method:' WRITE(io,'(a)') ' DFT' WRITE(io,'(a)') ' DFT Functional:' WRITE(io,'(a)') ' unknown' WRITE(io,'(a)') ' Pseudopotential' WRITE(io,'(a)') ' unknown' WRITE(io,'(a)') ' Plane wave cutoff (au)' WRITE(io,*) ecutwfc/2 WRITE(io,'(a)') ' Spin polarized:' WRITE(io,*)lsda IF( degauss > 0.0_dp )THEN WRITE(io,'(a)') ' Total energy (au per primitive cell; includes -TS term)' WRITE(io,*)etot/e2, demet/e2 ELSE WRITE(io,'(a)') ' Total energy (au per primitive cell)' WRITE(io,*)etot/e2 ENDIF WRITE(io,'(a)') ' Kinetic energy (au per primitive cell)' WRITE(io,*)ek/e2 WRITE(io,'(a)') ' Local potential energy (au per primitive cell)' WRITE(io,*)eloc/e2 WRITE(io,'(a)') ' Non local potential energy(au per primitive cell)' WRITE(io,*)enl/e2 WRITE(io,'(a)') ' Electron electron energy (au per primitive cell)' WRITE(io,*)ehart/e2 WRITE(io,'(a)') ' Ion-ion energy (au per primitive cell)' WRITE(io,*)ewld/e2 WRITE(io,'(a)') ' Number of electrons per primitive cell' WRITE(io,*)nint(nelec) ! uncomment the following ifyou want the Fermi energy - KN 2/4/09 ! WRITE(io,'(a)') ' Fermi energy (au)' ! WRITE(io,*) ef/e2 WRITE(io,'(a)') ' ' WRITE(io,'(a)') ' GEOMETRY' WRITE(io,'(a)') ' -------- ' WRITE(io,'(a)') ' Number of atoms per primitive cell ' WRITE(io,*) nat WRITE(io,'(a)')' Atomic number and position of the atoms(au) ' DO na = 1, nat nt = ityp(na) at_num = atomic_number(trim(atm(nt))) WRITE(io,'(i6,3f20.14)') at_num, (alat*tau(j,na),j=1,3) ENDDO WRITE(io,'(a)') ' Primitive lattice vectors (au) ' WRITE(io,100) alat*at(1,1), alat*at(2,1), alat*at(3,1) WRITE(io,100) alat*at(1,2), alat*at(2,2), alat*at(3,2) WRITE(io,100) alat*at(1,3), alat*at(2,3), alat*at(3,3) WRITE(io,'(a)') ' ' 100 FORMAT (3(1x,f20.15)) END SUBROUTINE write_header SUBROUTINE write_gvecs(g,indx) REAL(DP),INTENT(in) :: g(:,:) INTEGER,INTENT(in) :: indx(:) INTEGER ig IF(binwrite)RETURN WRITE(io,'(a)') ' G VECTORS' WRITE(io,'(a)') ' ---------' WRITE(io,'(a)') ' Number of G-vectors' WRITE(io,*) size(g,2) WRITE(io,'(a)') ' Gx Gy Gz (au)' DO ig = 1, size(g,2) WRITE(io,'(3(1x,f20.15))') & &tpi/alat*g(1,indx(ig)),tpi/alat*g(2,indx(ig)),tpi/alat*g(3,indx(ig)) ENDDO WRITE(io,'(a)') ' ' END SUBROUTINE write_gvecs SUBROUTINE write_gvecs_blip IF(binwrite)RETURN WRITE(io,'(a)') ' G VECTORS' WRITE(io,'(a)') ' ---------' WRITE(io,'(a)') ' Number of G-vectors' WRITE(io,*) 0 WRITE(io,'(a)') ' Gx Gy Gz (au)' WRITE(io,'(a)') ' Blip grid' WRITE(io,'(3(1x,3i4))') blipgrid WRITE(io,'(a)') ' ' END SUBROUTINE write_gvecs_blip SUBROUTINE write_wfn_head IF(binwrite)RETURN WRITE(io,'(a)') ' WAVE FUNCTION' WRITE(io,'(a)') ' -------------' WRITE(io,'(a)') ' Number of k-points' WRITE(io,*) nk END SUBROUTINE write_wfn_head SUBROUTINE write_pwfn_data(ik,ispin,ibnd,evc,indx) INTEGER,INTENT(in) :: ik,ispin,ibnd COMPLEX(DP),INTENT(in) :: evc(:) INTEGER,INTENT(in) :: indx(:) INTEGER ig,j,ikk IF(binwrite)RETURN ikk = ik + nk*(ispin-1) IF(ispin==1.and.ibnd==1)THEN WRITE(io,'(a)') ' k-point # ; # of bands (up spin/down spin); & & k-point coords (au)' WRITE(io,'(3i4,3f20.16)') ik, nbndup, nbnddown, & (tpi/alat*xk(j,ik),j=1,3) ENDIF IF(binwrite)RETURN ! KN: if you want to print occupancies, replace these two lines ... WRITE(io,'(a)') ' Band, spin, eigenvalue (au)' WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2 ! ...with the following two - KN 2/4/09 ! WRITE(io,'(a)') ' Band, spin, eigenvalue (au), occupation number' ! WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2, wg(ibnd,ikk)/wk(ikk) WRITE(io,'(a)') ' Eigenvectors coefficients' DO ig=1, size(indx,1) WRITE(io,*)evc(indx(ig)) ENDDO END SUBROUTINE write_pwfn_data SUBROUTINE write_bwfn_data(ik,ispin,ibnd) INTEGER,INTENT(in) :: ik,ispin,ibnd INTEGER lx,ly,lz,ikk,j,l1,l2,l3 IF(binwrite)THEN DO l3=1,blipgrid(3) DO l2=1,blipgrid(2) DO l1=1,blipgrid(1) cavc_tmp(l1,l2,l3) = cavc(l1-1,l2-1,l3-1) ENDDO ENDDO ENDDO IF(single_precision_blips)THEN WRITE(iob)cmplx(cavc_tmp(:,:,:),kind=sgl) ELSE WRITE(iob)cmplx(cavc_tmp(:,:,:),kind=DP) ENDIF RETURN ENDIF ikk = ik + nk*(ispin-1) IF(ispin==1.and.ibnd==1)THEN WRITE(io,'(a)') ' k-point # ; # of bands (up spin/down spin); & & k-point coords (au)' WRITE(io,'(3i4,3f20.16)') ik, nbndup, nbnddown, & (tpi/alat*xk(j,ik),j=1,3) ENDIF ! KN: if you want to print occupancies, replace these two lines ... WRITE(io,'(a)') ' Band, spin, eigenvalue (au), localized' WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2,'F' ! ...with the following two - KN 2/4/09 ! WRITE(io,'(a)') ' Band, spin, eigenvalue (au), occupation number' ! WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2, wg(ibnd,ikk)/wk(ikk) WRITE(io,*)'Complex blip coefficients for extended orbital' DO lx=0,blipgrid(1)-1 DO ly=0,blipgrid(2)-1 DO lz=0,blipgrid(3)-1 WRITE(io,*)cavc(lx,ly,lz) ENDDO ! lz ENDDO ! ly ENDDO ! lx END SUBROUTINE write_bwfn_data SUBROUTINE write_bwfn_data_gamma(re_im,ik,ispin,ibnd) INTEGER,INTENT(in) :: ik,ispin,ibnd,re_im INTEGER lx,ly,lz,ikk,j,l1,l2,l3 IF(binwrite)THEN IF(re_im==1)THEN DO l3=1,blipgrid(3) DO l2=1,blipgrid(2) DO l1=1,blipgrid(1) avc_tmp(l1,l2,l3) = avc1(l1-1,l2-1,l3-1) ENDDO ENDDO ENDDO ELSE DO l3=1,blipgrid(3) DO l2=1,blipgrid(2) DO l1=1,blipgrid(1) avc_tmp(l1,l2,l3) = avc2(l1-1,l2-1,l3-1) ENDDO ENDDO ENDDO ENDIF IF(single_precision_blips)THEN WRITE(iob)real(avc_tmp(:,:,:),kind=sgl) ELSE WRITE(iob)real(avc_tmp(:,:,:),kind=DP) ENDIF RETURN ENDIF ikk = ik + nk*(ispin-1) IF(ispin==1.and.ibnd==1)THEN WRITE(io,'(a)') ' k-point # ; # of bands (up spin/down spin); & & k-point coords (au)' WRITE(io,'(3i4,3f20.16)') ik, nbndup, nbnddown, & (tpi/alat*xk(j,ik),j=1,3) ENDIF ! KN: if you want to print occupancies, replace these two lines ... WRITE(io,'(a)') ' Band, spin, eigenvalue (au), localized' WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2,'F' ! ...with the following two - KN 2/4/09 ! WRITE(io,'(a)') ' Band, spin, eigenvalue (au), occupation number' ! WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2, wg(ibnd,ikk)/wk(ikk) WRITE(io,*)'Real blip coefficients for extended orbital' DO lx=0,blipgrid(1)-1 DO ly=0,blipgrid(2)-1 DO lz=0,blipgrid(3)-1 IF(re_im==1)THEN WRITE(io,*)avc1(lx,ly,lz) ELSE WRITE(io,*)avc2(lx,ly,lz) ENDIF ENDDO ! lz ENDDO ! ly ENDDO ! lx END SUBROUTINE write_bwfn_data_gamma SUBROUTINE create_index2(y,x_index) DOUBLE PRECISION,INTENT(in) :: y(:,:) INTEGER,INTENT(out) :: x_index(size(y,2)) DOUBLE PRECISION y2(size(y,2)) INTEGER i DO i = 1,size(y,2) y2(i) = sum(y(:,i)**2) ENDDO CALL create_index(y2,x_index) END SUBROUTINE create_index2 SUBROUTINE create_index(y,x_index) !-----------------------------------------------------------------------------! ! This subroutine creates an index array x_index for the n items of data in ! ! the array y. Adapted from Numerical Recipes. ! ! Copied from merge_pwfn.f90, included with CASINO distribution ! !-----------------------------------------------------------------------------! IMPLICIT NONE DOUBLE PRECISION,INTENT(in) :: y(:) INTEGER,INTENT(out) :: x_index(:) INTEGER,PARAMETER :: ins_sort_thresh=7,stacksize=80 INTEGER n,i,x_indexj,ir,itemp,j,jstack,k,l,lp1,istack(stacksize) DOUBLE PRECISION yj n=size(x_index) DO j=1,n x_index(j)=j ENDDO ! j IF(n<=1)RETURN jstack=0 l=1 ir=n DO IF(ir-ly(x_index(ir)))THEN itemp=x_index(l) ; x_index(l)=x_index(ir) ; x_index(ir)=itemp ENDIF IF(y(x_index(lp1))>y(x_index(ir)))THEN itemp=x_index(lp1) ; x_index(lp1)=x_index(ir) ; x_index(ir)=itemp ENDIF IF(y(x_index(l))>y(x_index(lp1)))THEN itemp=x_index(l) ; x_index(l)=x_index(lp1) ; x_index(lp1)=itemp ENDIF i=lp1 j=ir x_indexj=x_index(lp1) yj=y(x_indexj) DO DO i=i+1 IF(y(x_index(i))>=yj)exit ENDDO ! i DO j=j-1 IF(y(x_index(j))<=yj)exit ENDDO ! j IF(jstacksize)THEN WRITE(6,*)'stacksize is too small.' STOP ENDIF! jstack>stacksize IF(ir-i+1>=j-l)THEN istack(jstack)=ir istack(jstack-1)=i ir=j-1 ELSE istack(jstack)=j-1 istack(jstack-1)=l l=i ENDIF! ir-i+1>=j-l ENDIF! ir-l=1)THEN err_prec=err_prec_in ELSE write_mean='ERROR: NON-POSITIVE PRECISION!!!' RETURN ENDIF ! err_prec_in sensible. ELSE err_prec=err_prec_default ENDIF ! Accuracy of error supplied. ! Work out lowest digit of precision that should be retained in the ! mean (i.e. the digit in terms of which the error is specified). ! Calculate the error in terms of this digit and round. lowest_digit_to_quote=floor(log(std_err_in_mean)/log(10.d0))+1-err_prec err_quote=nint(std_err_in_mean*10.d0**dble(-lowest_digit_to_quote)) IF(err_quote==10**err_prec)THEN lowest_digit_to_quote=lowest_digit_to_quote+1 err_quote=err_quote/10 ENDIF ! err_quote rounds up to next figure. IF(err_quote>=10**err_prec.or.err_quote<10**(err_prec-1))THEN write_mean='ERROR: BUG IN WRITE_MEAN!!!' RETURN ENDIF ! Check error is in range. ! Truncate the mean to the relevant precision. Establish its sign, ! then take the absolute value and work out the integer part. av_quote=anint(av*10.d0**dble(-lowest_digit_to_quote)) & &*10.d0**dble(lowest_digit_to_quote) IF(av_quote<0.d0)THEN sgn='-' av_quote=-av_quote ELSE sgn=' ' ENDIF ! Sign IF(aint(av_quote)>dble(huge(1)))THEN write_mean='ERROR: NUMBERS ARE TOO LARGE IN WRITE_MEAN!' RETURN ENDIF ! Vast number int_part=floor(av_quote) IF(lowest_digit_to_quote<0)THEN ! If the error is in a decimal place then construct string using ! integer part and decimal part, noting that the latter may need to ! be padded with zeros, e.g. if we want "0001" rather than "1". IF(anint((av_quote-dble(int_part)) & &*10.d0**dble(-lowest_digit_to_quote))>dble(huge(1)))THEN write_mean='ERROR: NUMBERS ARE TOO LARGE IN WRITE_MEAN!' RETURN ENDIF ! Vast number dec_part=nint((av_quote-dble(int_part))*10.d0**dble(-lowest_digit_to_quote)) zero_pad=' ' IF(dec_part<0)THEN write_mean='ERROR: BUG IN WRITE_MEAN! (2)' RETURN ENDIF ! dec DO i=1,-lowest_digit_to_quote-no_digits_int(dec_part) zero_pad(i:i)='0' ENDDO ! i write_mean=sgn//trim(i2s(int_part))//'.'//trim(zero_pad) & &//trim(i2s(dec_part))//'('//trim(i2s(err_quote))//')' ELSE ! If the error is in a figure above the decimal point then, of ! course, we don't have to worry about a decimal part. write_mean=sgn//trim(i2s(int_part))//'(' & &//trim(i2s(err_quote*10**lowest_digit_to_quote))//')' ENDIF ! lowest_digit_to_quote<0 END FUNCTION write_mean INTEGER FUNCTION no_digits_int(i) !----------------------------------------------------------------------! ! Calculate the number of digits in integer i. For i>0 this should be ! ! floor(log(i)/log(10))+1, but sometimes rounding errors cause this ! ! expression to give the wrong result. ! !----------------------------------------------------------------------! INTEGER,INTENT(in) :: i INTEGER j,k j=i ; k=1 DO j=j/10 IF(j==0)exit k=k+1 ENDDO no_digits_int=k END FUNCTION no_digits_int SUBROUTINE init_rng(seed) !--------------------------------------------! ! Initialize the RNG: see Knuth's ran_start. ! !--------------------------------------------! INTEGER,INTENT(in) :: seed INTEGER j,s,t,sseed INTEGER,PARAMETER :: MM=2**30,TT=70 REAL(DP) ss,x(KK+KK-1) REAL(DP),PARAMETER :: ULP=1.d0/2.d0**52,ULP2=2.d0*ULP IF(seed<0)THEN sseed=MM-1-mod(-1-seed,MM) ELSE sseed=mod(seed,MM) ENDIF ! seed<0 ss=ULP2*dble(sseed+2) DO j=1,KK x(j)=ss ss=ss+ss IF(ss>=1.d0)ss=ss-1.d0+ULP2 ENDDO ! j x(2)=x(2)+ULP s=sseed t=TT-1 DO DO j=KK,2,-1 x(j+j-1)=x(j) x(j+j-2)=0.d0 ENDDO ! j DO j=KK+KK-1,KK+1,-1 x(j-(KK-LL))=mod(x(j-(KK-LL))+x(j),1.d0) x(j-KK)=mod(x(j-KK)+x(j),1.d0) ENDDO ! j IF(mod(s,2)==1)THEN DO j=KK,1,-1 x(j+1)=x(j) ENDDO ! j x(1)=x(KK+1) x(LL+1)=mod(x(LL+1)+x(KK+1),1.d0) ENDIF ! s odd IF(s/=0)THEN s=s/2 ELSE t=t-1 ENDIF ! s/=0 IF(t<=0)exit ENDDO ranstate(1+KK-LL:KK)=x(1:LL) ranstate(1:KK-LL)=x(LL+1:KK) DO j=1,10 CALL gen_ran_array(x,KK+KK-1) ENDDO ! j ran_array_idx=Nkeep END SUBROUTINE init_rng REAL(dp) FUNCTION ranx() !------------------------------------------------------------------------------! ! Return a random number uniformly distributed in [0,1). ! ! Uses M. Luescher's suggestion: generate 1009 random numbers at a time using ! ! Knuth's algorithm, but only use the first 100. ! !------------------------------------------------------------------------------! IF(ran_array_idx==-1)THEN CALL init_rng(default_seed) ! Initialize the RNG. ENDIF ! First call. IF(ran_array_idx==Nkeep)THEN CALL gen_ran_array(ran_array,Nran) ! Generate a new array of random nos. ran_array_idx=0 ENDIF ! i=Nkeep ran_array_idx=ran_array_idx+1 ranx=ran_array(ran_array_idx) END FUNCTION ranx SUBROUTINE gen_ran_array(ran_array,N) !---------------------------------------------------------------! ! Generate an array of N random numbers: see Knuth's ran_array. ! !---------------------------------------------------------------! INTEGER,INTENT(in) :: N REAL(DP),INTENT(out) :: ran_array(N) INTEGER j ran_array(1:KK)=ranstate(1:KK) DO j=KK+1,N ran_array(j)=mod(ran_array(j-KK)+ran_array(j-LL),1.d0) ENDDO ! j DO j=1,LL ranstate(j)=mod(ran_array(N+j-KK)+ran_array(N+j-LL),1.d0) ENDDO ! j DO j=LL+1,KK ranstate(j)=mod(ran_array(N+j-KK)+ranstate(j-LL),1.d0) ENDDO ! j END SUBROUTINE gen_ran_array END SUBROUTINE write_casino_wfn espresso-5.0.2/PW/src/plugin_initialization.f900000644000700200004540000000121312053145630020416 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_initialization() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir ! USE plugin_flags ! IMPLICIT NONE ! ! END SUBROUTINE plugin_initialization espresso-5.0.2/PW/src/sum_band.f900000644000700200004540000011246712053145627015625 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE sum_band() !---------------------------------------------------------------------------- ! ! ... calculates the symmetrized charge density and sum of occupied ! ... eigenvalues. ! ... this version works also for metals (gaussian spreading technique) ! USE kinds, ONLY : DP USE ener, ONLY : eband USE control_flags, ONLY : diago_full_acc, gamma_only, tqr USE cell_base, ONLY : at, bg, omega, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp, dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ngm, g, nl, nlm USE gvecs, ONLY : nls, nlsm, doublegrid USE klist, ONLY : nks, nkstot, wk, xk, ngk USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : lda_plus_U USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE scf, ONLY : rho USE symme, ONLY : sym_rho USE io_files, ONLY : iunwfc, nwordwfc, iunigk USE buffers, ONLY : get_buffer USE uspp, ONLY : nkb, vkb, becsum, nhtol, nhtoj, indv, okvan USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic, psic_nc USE noncollin_module, ONLY : noncolin, npol, nspin_mag USE spin_orb, ONLY : lspinorb, domag, fcoef USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, et, btype USE mp_global, ONLY : inter_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum USE funct, ONLY : dft_is_meta USE paw_symmetry, ONLY : PAW_symmetrize USE paw_variables, ONLY : okpaw USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp USE realus, ONLY : real_space, fft_orbital_gamma, initialisation_level,& bfft_orbital_gamma, calbec_rs_gamma, s_psir_gamma USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ikb, jkb, ijkb0, ih, jh, ijh, na, np ! counters on beta functions, atoms, pseudopotentials INTEGER :: ir, is, ig, ibnd, ik ! counter on 3D r points ! counter on spin polarizations ! counter on g vectors ! counter on bands ! counter on k points REAL (DP), ALLOCATABLE :: kplusg (:) ! ! CALL start_clock( 'sum_band' ) ! becsum(:,:,:) = 0.D0 rho%of_r(:,:) = 0.D0 rho%of_g(:,:) = (0.D0, 0.D0) if ( dft_is_meta() ) then rho%kin_r(:,:) = 0.D0 rho%kin_g(:,:) = (0.D0, 0.D0) end if eband = 0.D0 ! ! ... calculates weights of Kohn-Sham orbitals used in calculation of rho ! CALL weights ( ) ! IF (one_atom_occupations) CALL new_evc() ! IF ( diago_full_acc ) THEN ! ! ... for diagonalization purposes all the bands are considered occupied ! btype(:,:) = 1 ! ELSE ! ! ... for diagonalization purposes a band is considered empty when its ! ... occupation is less than 1.0 % ! btype(:,:) = 1 ! FORALL( ik = 1:nks, wk(ik) > 0.D0 ) ! WHERE( wg(:,ik) / wk(ik) < 0.01D0 ) btype(:,ik) = 0 ! END FORALL ! END IF ! ! ... Needed for LDA+U ! IF (lda_plus_u) THEN IF(noncolin) THEN CALL new_ns_nc(rho%ns_nc) ELSE CALL new_ns(rho%ns) ENDIF ENDIF ! IF ( okvan.OR.one_atom_occupations ) CALL allocate_bec_type (nkb,nbnd, becp,intra_bgrp_comm) ! ! ... specific routines are called to sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF (dft_is_meta()) ALLOCATE (kplusg(npwx)) IF ( gamma_only ) THEN ! CALL sum_band_gamma() ! ELSE ! CALL sum_band_k() ! END IF IF (dft_is_meta()) DEALLOCATE (kplusg) ! IF( okpaw ) THEN rho%bec(:,:,:) = becsum(:,:,:) ! becsum is filled in sum_band_{k|gamma} ! rho%bec has to be recollected and symmetrized, becsum must not, otherwise ! it will break stress routines. #ifdef __MPI CALL mp_sum(rho%bec, inter_pool_comm ) #endif CALL PAW_symmetrize(rho%bec) ENDIF ! IF ( okvan .OR. one_atom_occupations ) CALL deallocate_bec_type ( becp ) ! ! ... If a double grid is used, interpolate onto the fine grid ! IF ( doublegrid ) THEN ! DO is = 1, nspin ! CALL interpolate( rho%of_r(1,is), rho%of_r(1,is), 1 ) if (dft_is_meta()) CALL interpolate(rho%kin_r(1,is),rho%kin_r(1,is),1) ! END DO ! END IF ! ! ... Here we add the Ultrasoft contribution to the charge ! CALL addusdens(rho%of_r(:,:)) ! okvan is checked inside the routine ! IF ( noncolin .AND. .NOT. domag ) rho%of_r(:,2:4)=0.D0 ! CALL mp_sum( eband, inter_pool_comm ) ! #if defined (__MPI) ! ! ... reduce charge density across pools ! CALL mp_sum( rho%of_r, inter_pool_comm ) if (dft_is_meta() ) CALL mp_sum( rho%kin_r, inter_pool_comm ) #endif ! ! ... bring the (unsymmetrized) rho(r) to G-space (use psic as work array) ! DO is = 1, nspin psic(:) = rho%of_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,is) = psic(nl(:)) END DO ! ! ... symmetrize rho(G) ! CALL sym_rho ( nspin_mag, rho%of_g ) ! ! ... same for rho_kin(G) ! IF ( dft_is_meta()) THEN DO is = 1, nspin psic(:) = rho%kin_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%kin_g(:,is) = psic(nl(:)) END DO IF (.NOT. gamma_only) CALL sym_rho( nspin, rho%kin_g ) END IF ! ! ... synchronize rho%of_r to the calculated rho%of_g (use psic as work array) ! DO is = 1, nspin_mag ! psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho%of_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho%of_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho%of_r(:,is) = psic(:) ! END DO ! ! ... the same for rho%kin_r and rho%kin_g ! IF ( dft_is_meta()) THEN DO is = 1, nspin ! psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho%kin_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho%kin_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho%kin_r(:,is) = psic(:) ! END DO END IF ! CALL stop_clock( 'sum_band' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE sum_band_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! USE becmod, ONLY : bec_type, becp, calbec USE mp_global, ONLY : me_bgrp USE mp, ONLY : mp_sum, mp_get_comm_null ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1, w2 ! weights INTEGER :: idx, ioff, incr, v_siz, j, ibnd_loc COMPLEX(DP), ALLOCATABLE :: tg_psi(:) REAL(DP), ALLOCATABLE :: tg_rho(:) LOGICAL :: use_tg ! ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF ( nks > 1 ) REWIND( iunigk ) ! use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .AND. ( nbnd >= dffts%nogrp ) ! incr = 2 ! IF( dffts%have_task_groups ) THEN ! IF( dft_is_meta() ) & CALL errore( ' sum_band ', ' task groups with meta dft, not yet implemented ', 1 ) ! v_siz = dffts%tg_nnr * dffts%nogrp ! ALLOCATE( tg_psi( v_siz ) ) ALLOCATE( tg_rho( v_siz ) ) ! incr = 2 * dffts%nogrp ! END IF ! k_loop: DO ik = 1, nks ! IF( dffts%have_task_groups ) tg_rho = 0.0_DP IF ( lsda ) current_spin = isk(ik) ! npw = ngk(ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... here we compute the band energy: the sum of the eigenvalues ! DO ibnd = 1, nbnd ! ! ... the sum of eband and demet is the integral for ! ... e < ef of e n(e) which reduces for degauss=0 to the sum of ! ... the eigenvalues. ! eband = eband + et(ibnd,ik) * wg(ibnd,ik) ! END DO ! DO ibnd = 1, nbnd, incr ! IF( dffts%have_task_groups ) THEN ! tg_psi(:) = ( 0.D0, 0.D0 ) ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 ! ! ... 2*dffts%nogrp ffts at the same time ! IF( idx + ibnd - 1 < nbnd ) THEN DO j = 1, npw tg_psi(nls (igk(j))+ioff) = evc(j,idx+ibnd-1) + (0.0d0,1.d0) * evc(j,idx+ibnd) tg_psi(nlsm(igk(j))+ioff) = CONJG( evc(j,idx+ibnd-1) - (0.0d0,1.d0) * evc(j,idx+ibnd) ) END DO ELSE IF( idx + ibnd - 1 == nbnd ) THEN DO j = 1, npw tg_psi(nls (igk(j))+ioff) = evc(j,idx+ibnd-1) tg_psi(nlsm(igk(j))+ioff) = CONJG( evc(j,idx+ibnd-1) ) END DO END IF ioff = ioff + dffts%tg_nnr END DO ! CALL invfft ('Wave', tg_psi, dffts) ! ! Now the first proc of the group holds the first two bands ! of the 2*dffts%nogrp bands that we are processing at the same time, ! the second proc. holds the third and fourth band ! and so on ! ! Compute the proper factor for each band ! DO idx = 1, dffts%nogrp IF( dffts%nolist( idx ) == me_bgrp ) EXIT END DO ! ! Remember two bands are packed in a single array : ! proc 0 has bands ibnd and ibnd+1 ! proc 1 has bands ibnd+2 and ibnd+3 ! .... ! idx = 2 * idx - 1 ! IF( idx + ibnd - 1 < nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega w2 = wg( idx + ibnd , ik) / omega ELSE IF( idx + ibnd - 1 == nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega w2 = w1 ELSE w1 = 0.0d0 w2 = w1 END IF ! CALL get_rho_gamma(tg_rho, dffts%tg_npp( me_bgrp + 1 ) * dffts%nr1x * dffts%nr2x, w1, w2, tg_psi) ! ELSE ! psic(:) = ( 0.D0, 0.D0 ) ! IF ( ibnd < nbnd ) THEN ! ! ... two ffts at the same time ! psic(nls(igk(1:npw))) = evc(1:npw,ibnd) + & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) psic(nlsm(igk(1:npw))) = CONJG( evc(1:npw,ibnd) - & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) ) ! ELSE ! psic(nls(igk(1:npw))) = evc(1:npw,ibnd) psic(nlsm(igk(1:npw))) = CONJG( evc(1:npw,ibnd) ) ! END IF ! CALL invfft ('Wave', psic, dffts) ! w1 = wg(ibnd,ik) / omega ! ! ... increment the charge density ... ! IF ( ibnd < nbnd ) THEN ! ! ... two ffts at the same time ! w2 = wg(ibnd+1,ik) / omega ! ELSE ! w2 = w1 ! END IF ! CALL get_rho_gamma(rho%of_r(:,current_spin), dffts%nnr, w1, w2, psic) ! END IF ! IF (dft_is_meta()) THEN DO j=1,3 psic(:) = ( 0.D0, 0.D0 ) ! kplusg (1:npw) = (xk(j,ik)+g(j,igk(1:npw))) * tpiba IF ( ibnd < nbnd ) THEN ! ... two ffts at the same time psic(nls(igk(1:npw))) = CMPLX(0d0, kplusg(1:npw),kind=DP) * & ( evc(1:npw,ibnd) + & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) ) psic(nlsm(igk(1:npw))) = CMPLX(0d0, -kplusg(1:npw),kind=DP) * & CONJG( evc(1:npw,ibnd) - & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) ) ELSE psic(nls(igk(1:npw))) = CMPLX(0d0, kplusg(1:npw),kind=DP) * & evc(1:npw,ibnd) psic(nlsm(igk(1:npw))) = CMPLX(0d0, -kplusg(1:npw),kind=DP) * & CONJG( evc(1:npw,ibnd) ) END IF ! CALL invfft ('Wave', psic, dffts) ! ! ... increment the kinetic energy density ... ! DO ir = 1, dffts%nnr rho%kin_r(ir,current_spin) = & rho%kin_r(ir,current_spin) + & w1 * DBLE( psic(ir) )**2 + & w2 * AIMAG( psic(ir) )**2 END DO ! END DO END IF ! ! END DO ! IF( dffts%have_task_groups ) THEN ! ! reduce the group charge ! CALL mp_sum( tg_rho, gid = dffts%ogrp_comm ) ! ioff = 0 DO idx = 1, dffts%nogrp IF( me_bgrp == dffts%nolist( idx ) ) EXIT ioff = ioff + dffts%nr1x * dffts%nr2x * dffts%npp( dffts%nolist( idx ) + 1 ) END DO ! ! copy the charge back to the processor location ! DO ir = 1, dffts%nnr rho%of_r(ir,current_spin) = rho%of_r(ir,current_spin) + tg_rho(ir+ioff) END DO END IF ! ! ... If we have a US pseudopotential we compute here the becsum term ! IF ( .NOT. okvan ) CYCLE k_loop ! IF ( real_space ) then !if (.not. initialisation_level == 15) CALL errore ('sum_band', 'improper initialisation of real space routines' , 4) !print *, "sum band rolling the real space!" do ibnd = 1 , nbnd , 2 !call check_fft_orbital_gamma(psi,ibnd,m) call fft_orbital_gamma(evc,ibnd,nbnd) !transform the orbital to real space call calbec_rs_gamma(ibnd,nbnd,becp%r) !(global rbecp is updated) enddo else CALL calbec( npw, vkb, evc, becp ) endif ! CALL start_clock( 'sum_band:becsum' ) ! DO ibnd_loc = 1, becp%nbnd_loc ! ibnd = ibnd_loc + becp%ibnd_begin - 1 ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF ( ityp(na) == np ) THEN ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 *becp%r(ikb,ibnd_loc) *becp%r(ikb,ibnd_loc) ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * 2.D0 *becp%r(ikb,ibnd_loc) *becp%r(jkb,ibnd_loc) ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! END DO ! END DO ! CALL stop_clock( 'sum_band:becsum' ) ! END DO k_loop ! IF( becp%comm /= mp_get_comm_null() ) call mp_sum( becsum, becp%comm ) ! IF( dffts%have_task_groups ) THEN DEALLOCATE( tg_psi ) DEALLOCATE( tg_rho ) END IF dffts%have_task_groups = use_tg ! RETURN ! END SUBROUTINE sum_band_gamma ! ! !----------------------------------------------------------------------- SUBROUTINE sum_band_k() !----------------------------------------------------------------------- ! ! ... k-points version ! USE becmod, ONLY : bec_type, becp, calbec USE mp_global, ONLY : me_bgrp USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1 ! weights COMPLEX(DP), ALLOCATABLE :: becsum_nc(:,:,:,:) ! INTEGER :: ipol, js ! INTEGER :: idx, ioff, incr, v_siz, j COMPLEX(DP), ALLOCATABLE :: tg_psi(:), tg_psi_nc(:,:) REAL(DP), ALLOCATABLE :: tg_rho(:), tg_rho_nc(:,:) LOGICAL :: use_tg #ifdef __OPENMP INTEGER :: mytid, ntids, omp_get_thread_num, omp_get_num_threads, icnt #endif ! IF (okvan .AND. noncolin) THEN ALLOCATE(becsum_nc(nhm*(nhm+1)/2,nat,npol,npol)) becsum_nc=(0.d0, 0.d0) ENDIF ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF ( nks > 1 ) REWIND( iunigk ) ! use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .AND. & ( nbnd >= dffts%nogrp ) .AND. ( .NOT. dft_is_meta() ) ! incr = 1 ! IF( dffts%have_task_groups ) THEN ! v_siz = dffts%tg_nnr * dffts%nogrp ! IF (noncolin) THEN ALLOCATE( tg_psi_nc( v_siz, npol ) ) ALLOCATE( tg_rho_nc( v_siz, nspin_mag ) ) ELSE ALLOCATE( tg_psi( v_siz ) ) ALLOCATE( tg_rho( v_siz ) ) ENDIF ! incr = dffts%nogrp ! END IF ! k_loop: DO ik = 1, nks ! IF( dffts%have_task_groups ) THEN IF (noncolin) THEN tg_rho_nc = 0.0_DP ELSE tg_rho = 0.0_DP ENDIF ENDIF IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... here we compute the band energy: the sum of the eigenvalues ! DO ibnd = 1, nbnd, incr ! IF( dffts%have_task_groups ) THEN DO idx = 1, dffts%nogrp IF( idx + ibnd - 1 <= nbnd ) eband = eband + et( idx + ibnd - 1, ik ) * wg( idx + ibnd - 1, ik ) END DO ELSE eband = eband + et( ibnd, ik ) * wg( ibnd, ik ) END IF ! ! ... the sum of eband and demet is the integral for e < ef of ! ... e n(e) which reduces for degauss=0 to the sum of the ! ... eigenvalues w1 = wg(ibnd,ik) / omega ! IF (noncolin) THEN IF( dffts%have_task_groups ) THEN ! tg_psi_nc = ( 0.D0, 0.D0 ) ! ioff = 0 ! DO idx = 1, dffts%nogrp ! ! ... dffts%nogrp ffts at the same time ! IF( idx + ibnd - 1 <= nbnd ) THEN DO j = 1, npw tg_psi_nc( nls( igk( j ) ) + ioff, 1 ) = & evc( j, idx+ibnd-1 ) tg_psi_nc( nls( igk( j ) ) + ioff, 2 ) = & evc( j+npwx, idx+ibnd-1 ) END DO END IF ioff = ioff + dffts%tg_nnr END DO ! CALL invfft ('Wave', tg_psi_nc(:,1), dffts) CALL invfft ('Wave', tg_psi_nc(:,2), dffts) ! ! Now the first proc of the group holds the first band ! of the dffts%nogrp bands that we are processing at the same time, ! the second proc. holds the second and so on ! ! Compute the proper factor for each band ! DO idx = 1, dffts%nogrp IF( dffts%nolist( idx ) == me_bgrp ) EXIT END DO ! ! Remember ! proc 0 has bands ibnd ! proc 1 has bands ibnd+1 ! .... ! IF( idx + ibnd - 1 <= nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega ELSE w1 = 0.0d0 END IF ! DO ipol=1,npol CALL get_rho(tg_rho_nc(:,1), dffts%tg_npp( me_bgrp + 1 ) & * dffts%nr1x * dffts%nr2x, w1, tg_psi_nc(:,ipol)) ENDDO ! IF (domag) CALL get_rho_domag(tg_rho_nc(:,:), & dffts%tg_npp( me_bgrp + 1 )*dffts%nr1x*dffts%nr2x, & w1, tg_psi_nc(:,:)) ! ELSE ! ! Noncollinear case without task groups ! psic_nc = (0.D0,0.D0) DO ig = 1, npw psic_nc(nls(igk(ig)),1)=evc(ig ,ibnd) psic_nc(nls(igk(ig)),2)=evc(ig+npwx,ibnd) END DO CALL invfft ('Wave', psic_nc(:,1), dffts) CALL invfft ('Wave', psic_nc(:,2), dffts) ! ! increment the charge density ... ! DO ipol=1,npol CALL get_rho(rho%of_r(:,1), dffts%nnr, w1, psic_nc(:,ipol)) END DO ! ! In this case, calculate also the three ! components of the magnetization (stored in rho%of_r(ir,2-4)) ! IF (domag) THEN CALL get_rho_domag(rho%of_r(:,:), dffts%nnr, w1, psic_nc(:,:)) ELSE rho%of_r(:,2:4)=0.0_DP END IF ! END IF ! ELSE ! IF( dffts%have_task_groups ) THEN ! !$omp parallel default(shared), private(j,ioff,idx) !$omp do DO j = 1, SIZE( tg_psi ) tg_psi(j) = ( 0.D0, 0.D0 ) END DO !$omp end do ! ioff = 0 ! DO idx = 1, dffts%nogrp ! ! ... dffts%nogrp ffts at the same time ! IF( idx + ibnd - 1 <= nbnd ) THEN !$omp do DO j = 1, npw tg_psi( nls( igk( j ) ) + ioff ) = evc( j, idx+ibnd-1 ) END DO !$omp end do END IF ioff = ioff + dffts%tg_nnr END DO !$omp end parallel ! CALL invfft ('Wave', tg_psi, dffts) ! ! Now the first proc of the group holds the first band ! of the dffts%nogrp bands that we are processing at the same time, ! the second proc. holds the second and so on ! ! Compute the proper factor for each band ! DO idx = 1, dffts%nogrp IF( dffts%nolist( idx ) == me_bgrp ) EXIT END DO ! ! Remember ! proc 0 has bands ibnd ! proc 1 has bands ibnd+1 ! .... ! IF( idx + ibnd - 1 <= nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega ELSE w1 = 0.0d0 END IF ! CALL get_rho(tg_rho, dffts%tg_npp( me_bgrp + 1 ) * dffts%nr1x * dffts%nr2x, w1, tg_psi) ! ELSE ! psic(:) = ( 0.D0, 0.D0 ) ! psic(nls(igk(1:npw))) = evc(1:npw,ibnd) ! CALL invfft ('Wave', psic, dffts) ! ! ... increment the charge density ... ! CALL get_rho(rho%of_r(:,current_spin), dffts%nnr, w1, psic) END IF ! IF (dft_is_meta()) THEN DO j=1,3 psic(:) = ( 0.D0, 0.D0 ) ! kplusg (1:npw) = (xk(j,ik)+g(j,igk(1:npw))) * tpiba psic(nls(igk(1:npw))) = CMPLX(0d0, kplusg(1:npw),kind=DP) * & evc(1:npw,ibnd) ! CALL invfft ('Wave', psic, dffts) ! ! ... increment the kinetic energy density ... ! CALL get_rho(rho%kin_r(:,current_spin), dffts%nnr, w1, psic) END DO END IF ! END IF ! END DO ! IF( dffts%have_task_groups ) THEN ! ! reduce the group charge ! IF (noncolin) THEN CALL mp_sum( tg_rho_nc, gid = dffts%ogrp_comm ) ELSE CALL mp_sum( tg_rho, gid = dffts%ogrp_comm ) ENDIF ! ioff = 0 DO idx = 1, dffts%nogrp IF( me_bgrp == dffts%nolist( idx ) ) EXIT ioff = ioff + dffts%nr1x * dffts%nr2x * dffts%npp( dffts%nolist( idx ) + 1 ) END DO ! ! copy the charge back to the proper processor location ! IF (noncolin) THEN !$omp parallel do DO ir = 1, dffts%nnr rho%of_r(ir,1) = rho%of_r(ir,1) + & tg_rho_nc(ir+ioff,1) END DO !$omp end parallel do IF (domag) THEN !$omp parallel do DO ipol=2,4 DO ir = 1, dffts%nnr rho%of_r(ir,ipol) = rho%of_r(ir,ipol) + & tg_rho_nc(ir+ioff,ipol) END DO END DO !$omp end parallel do ENDIF ELSE !$omp parallel do DO ir = 1, dffts%nnr rho%of_r(ir,current_spin) = rho%of_r(ir,current_spin) + tg_rho(ir+ioff) END DO !$omp end parallel do END IF ! END IF ! ! ... If we have a US pseudopotential we compute here the becsum term ! IF ( .NOT. okvan ) CYCLE k_loop ! CALL calbec( npw, vkb, evc, becp ) ! CALL start_clock( 'sum_band:becsum' ) ! #ifdef __OPENMP !$omp parallel default(shared), private(ibnd,w1,ijkb0,np,na,ijh,ih,jh,ikb,jkb,is,js,mytid,ntids,icnt) #endif #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads icnt = 0 #endif ! DO ibnd = 1, nbnd ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF (ityp(na)==np) THEN ! #ifdef __OPENMP ! distribute atoms round robin to threads ! icnt = icnt + 1 ! IF( MOD( icnt, ntids ) /= mytid ) THEN ijkb0 = ijkb0 + nh(np) CYCLE END IF #endif ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js)+w1 * & CONJG(becp%nc(ikb,is,ibnd)) * & becp%nc(ikb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * DBLE( CONJG( becp%k(ikb,ibnd) ) * & becp%k(ikb,ibnd) ) ! END IF ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js) + w1 * & CONJG(becp%nc(ikb,is,ibnd)) * & becp%nc(jkb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.D0 * & DBLE( CONJG( becp%k(ikb,ibnd) ) * & becp%k(jkb,ibnd) ) ENDIF ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! !$omp barrier ! END DO ! END DO ! #ifdef __OPENMP !$omp end parallel #endif ! CALL stop_clock( 'sum_band:becsum' ) ! END DO k_loop IF( dffts%have_task_groups ) THEN IF (noncolin) THEN DEALLOCATE( tg_psi_nc ) DEALLOCATE( tg_rho_nc ) ELSE DEALLOCATE( tg_psi ) DEALLOCATE( tg_rho ) END IF END IF dffts%have_task_groups = use_tg IF (noncolin.and.okvan) THEN DO np = 1, ntyp IF ( upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp(na)==np) THEN IF (upf(np)%has_so) THEN CALL transform_becsum_so(becsum_nc,becsum,na) ELSE CALL transform_becsum_nc(becsum_nc,becsum,na) END IF END IF END DO END IF END DO END IF ! IF ( ALLOCATED (becsum_nc) ) DEALLOCATE( becsum_nc ) ! RETURN ! END SUBROUTINE sum_band_k ! ! SUBROUTINE get_rho(rho_loc, nrxxs_loc, w1_loc, psic_loc) IMPLICIT NONE INTEGER :: nrxxs_loc REAL(DP) :: rho_loc(nrxxs_loc) REAL(DP) :: w1_loc COMPLEX(DP) :: psic_loc(nrxxs_loc) INTEGER :: ir !$omp parallel do DO ir = 1, nrxxs_loc ! rho_loc(ir) = rho_loc(ir) + & w1_loc * ( DBLE( psic_loc(ir) )**2 + & AIMAG( psic_loc(ir) )**2 ) ! END DO !$omp end parallel do END SUBROUTINE get_rho SUBROUTINE get_rho_gamma(rho_loc, nrxxs_loc, w1_loc, w2_loc, psic_loc) IMPLICIT NONE INTEGER :: nrxxs_loc REAL(DP) :: rho_loc(nrxxs_loc) REAL(DP) :: w1_loc, w2_loc COMPLEX(DP) :: psic_loc(nrxxs_loc) INTEGER :: ir !$omp parallel do DO ir = 1, nrxxs_loc ! rho_loc(ir) = rho_loc(ir) + & w1_loc * DBLE( psic_loc(ir) )**2 + & w2_loc * AIMAG( psic_loc(ir) )**2 ! END DO !$omp end parallel do END SUBROUTINE get_rho_gamma SUBROUTINE get_rho_domag(rho_loc, nrxxs_loc, w1_loc, psic_loc) IMPLICIT NONE INTEGER :: nrxxs_loc REAL(DP) :: rho_loc(:, :) REAL(DP) :: w1_loc COMPLEX(DP) :: psic_loc(:, :) INTEGER :: ir !$omp parallel do DO ir = 1, nrxxs_loc ! rho_loc(ir,2) = rho_loc(ir,2) + w1_loc*2.D0* & (DBLE(psic_loc(ir,1))* DBLE(psic_loc(ir,2)) + & AIMAG(psic_loc(ir,1))*AIMAG(psic_loc(ir,2))) rho_loc(ir,3) = rho_loc(ir,3) + w1_loc*2.D0* & (DBLE(psic_loc(ir,1))*AIMAG(psic_loc(ir,2)) - & DBLE(psic_loc(ir,2))*AIMAG(psic_loc(ir,1))) rho_loc(ir,4) = rho_loc(ir,4) + w1_loc* & (DBLE(psic_loc(ir,1))**2+AIMAG(psic_loc(ir,1))**2 & -DBLE(psic_loc(ir,2))**2-AIMAG(psic_loc(ir,2))**2) ! END DO !$omp end parallel do END SUBROUTINE get_rho_domag END SUBROUTINE sum_band espresso-5.0.2/PW/src/dynamics_module.f900000644000700200004540000013521312053145630017175 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #undef __NPT #if defined (__NPT) #define RELAXTIME 2000.D0 #define TARGPRESS 2.39D0 #endif ! !---------------------------------------------------------------------------- MODULE dynamics_module !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE ions_base, ONLY : amass USE io_global, ONLY : stdout USE io_files, ONLY : prefix, tmp_dir, seqopn USE constants, ONLY : tpi, fpi USE constants, ONLY : amu_ry, ry_to_kelvin, au_ps, bohr_radius_cm, ry_kbar USE constants, ONLY : eps8 USE control_flags, ONLY : tolp ! USE basic_algebra_routines ! IMPLICIT NONE ! SAVE ! REAL(DP) :: & dt, &! time step temperature, &! starting temperature virial, &! virial (used for the pressure) delta_t ! parameter used in thermalization INTEGER :: & nraise, &! parameter used in thermalization ndof ! the number of degrees of freedom LOGICAL :: & tavel=.FALSE.,&! if true, starting velocities were read from input vel_defined, &! if true, vel is used rather than tau_old to do the next step control_temp, &! if true a thermostat is used to control the temperature refold_pos ! if true the positions are refolded into the supercell CHARACTER(len=10) & thermostat ! the thermostat used to control the temperature ! REAL(DP), ALLOCATABLE :: tau_old(:,:), tau_new(:,:), tau_ref(:,:) REAL(DP), ALLOCATABLE :: vel(:,:), acc(:,:), chi(:,:) REAL(DP), ALLOCATABLE :: mass(:) REAL(DP), ALLOCATABLE :: diff_coeff(:) REAL(DP), ALLOCATABLE :: radial_distr(:,:) ! INTEGER, PARAMETER :: hist_len = 1000 ! CONTAINS ! ! ... public methods ! !------------------------------------------------------------------------ SUBROUTINE allocate_dyn_vars() !------------------------------------------------------------------------ ! USE ions_base, ONLY : nat ! IF ( .not.allocated( mass ) ) ALLOCATE( mass( nat ) ) ! IF ( .not.allocated( tau_old ) ) ALLOCATE( tau_old( 3, nat ) ) IF ( .not.allocated( tau_new ) ) ALLOCATE( tau_new( 3, nat ) ) IF ( .not.allocated( tau_ref ) ) ALLOCATE( tau_ref( 3, nat ) ) ! IF ( .not.allocated( vel ) ) ALLOCATE( vel( 3, nat ) ) IF ( .not.allocated( acc ) ) ALLOCATE( acc( 3, nat ) ) IF ( .not.allocated( chi ) ) ALLOCATE( chi( 3, nat ) ) ! IF ( .not.allocated( diff_coeff ) ) ALLOCATE( diff_coeff( nat ) ) ! IF ( .not.allocated( radial_distr ) ) & ALLOCATE( radial_distr( hist_len , nat ) ) ! END SUBROUTINE allocate_dyn_vars ! !------------------------------------------------------------------------ SUBROUTINE deallocate_dyn_vars() !------------------------------------------------------------------------ ! IF ( allocated( mass ) ) DEALLOCATE( mass ) IF ( allocated( tau_old ) ) DEALLOCATE( tau_old ) IF ( allocated( tau_new ) ) DEALLOCATE( tau_new ) IF ( allocated( tau_ref ) ) DEALLOCATE( tau_ref ) IF ( allocated( vel ) ) DEALLOCATE( vel ) IF ( allocated( acc ) ) DEALLOCATE( acc ) IF ( allocated( chi ) ) DEALLOCATE( chi ) IF ( allocated( diff_coeff ) ) DEALLOCATE( diff_coeff ) IF ( allocated( radial_distr ) ) DEALLOCATE( radial_distr ) ! END SUBROUTINE deallocate_dyn_vars ! !------------------------------------------------------------------------ SUBROUTINE verlet() !------------------------------------------------------------------------ ! ! ... This routine performs one step of molecular dynamics evolution ! ... using the Verlet algorithm. ! ! ... Parameters: ! ... mass mass of the atoms ! ... dt time step ! ... temperature starting temperature ! ... The starting velocities of atoms are set accordingly ! ... to the starting temperature, in random directions. ! ... The initial velocity distribution is therefore a ! ... constant. ! ! ... Dario Alfe' 1997 and Carlo Sbraccia 2004-2006 ! USE ions_base, ONLY : nat, nsp, ityp, tau, if_pos, atm USE cell_base, ONLY : alat, omega USE ener, ONLY : etot USE force_mod, ONLY : force, lstres USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain, & lfixatom ! USE constraints_module, ONLY : nconstr, check_constraint USE constraints_module, ONLY : remove_constr_force, remove_constr_vec ! IMPLICIT NONE ! REAL(DP) :: ekin, etotold REAL(DP) :: total_mass, temp_new, temp_av, elapsed_time REAL(DP) :: delta(3), ml(3), mlt INTEGER :: na ! istep0 counts MD steps done during this run ! (istep counts instead all MD steps, including those of previous runs) INTEGER, SAVE :: istep0 = 0 #if defined (__NPT) REAL(DP) :: chi, press_new #endif LOGICAL :: file_exists, leof REAL(DP), EXTERNAL :: dnrm2 REAL(DP) :: kstress(3,3) INTEGER :: i, j ! ! ... the number of degrees of freedom ! IF ( any( if_pos(:,:) == 0 ) ) THEN ! ndof = 3*nat - count( if_pos(:,:) == 0 ) - nconstr ! ELSE ! ndof = 3*nat - 3 - nconstr ! ENDIF ! vel(:,:) = 0.D0 vel_defined = .true. ! by default use vel==0 as starting point ! not sure why the next 3 arrays were set to 0/0 ... maybe it ! was just a check. The following should do the job. tau_old(:,:) = 1.0D30 tau_new(:,:) = 1.0D30 acc(:,:) = 1.0D30 temp_av = 0.D0 ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! IF ( file_exists ) THEN ! ! ... the file is read : simulation is continuing ! READ( UNIT = 4, FMT = * ) etotold, istep, tau_old(:,:), leof ! IF ( leof ) THEN ! ! ... the file was created by projected_verlet: Ignore it ! CALL md_init() ! ELSE ! vel_defined = .false. ! READ( UNIT = 4, FMT = * ) & temp_new, temp_av, mass(:), total_mass, elapsed_time, & tau_ref(:,:) ! ENDIF ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ELSE ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! ! ... the file is absent : simulation is starting from scratch ! CALL md_init() ! ENDIF ! IF ( istep0 >= nstep ) THEN ! conv_ions = .true. ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of molecular dynamics calculation")' ) ! CALL print_averages() ! ENDIF ! ! ... elapsed_time is in picoseconds ! elapsed_time = elapsed_time + dt*2.D0*au_ps ! istep0= istep0+ 1 istep = istep + 1 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Entering Dynamics:",T28,"iteration",T37," = ", & &I5,/,T28,"time",T37," = ",F8.4," pico-seconds",/)' ) & istep, elapsed_time ! IF ( control_temp ) CALL apply_thermostat() ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! ENDIF ! ! ... calculate accelerations in a.u. units / alat ! FORALL( na = 1:nat ) acc(:,na) = force(:,na) / mass(na) / alat ! ! ... Verlet integration scheme ! IF (vel_defined) THEN ! IF ( lconstrain ) THEN ! ! ... remove the component of the velocity along the ! ... constraint gradient ! CALL remove_constr_vec( nat, tau, if_pos, ityp, alat, vel ) ! ENDIF ! tau_new(:,:) = tau(:,:) + vel(:,:) * dt + 0.5_DP * acc(:,:) * dt**2 tau_old(:,:) = tau(:,:) - vel(:,:) * dt + 0.5_DP * acc(:,:) * dt**2 ! ELSE ! tau_new(:,:) = 2.D0*tau(:,:) - tau_old(:,:) + acc(:,:) * dt**2 ! ENDIF ! IF ( all( if_pos(:,:) == 1 ) ) THEN ! ! ... if no atom has been fixed we compute the displacement of the ! ... center of mass and we subtract it from the displaced positions ! delta(:) = 0.D0 DO na = 1, nat delta(:) = delta(:) + mass(na)*( tau_new(:,na) - tau(:,na) ) ENDDO delta(:) = delta(:) / total_mass FORALL( na = 1:nat ) tau_new(:,na) = tau_new(:,na) - delta(:) ! IF (vel_defined) THEN delta(:) = 0.D0 DO na = 1, nat delta(:) = delta(:) + mass(na)*( tau_old(:,na) - tau(:,na) ) ENDDO delta(:) = delta(:) / total_mass FORALL( na = 1:nat ) tau_old(:,na) = tau_old(:,na) - delta(:) ENDIF ! ENDIF ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau_new, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! ENDDO ! WRITE( stdout, '(/5X,"Total force = ",F12.6)') dnrm2( 3*nat, force, 1 ) ! #endif IF (vel_defined) THEN CALL check_constraint( nat, tau_old, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ENDIF ! ENDIF ! ! ... the linear momentum and the kinetic energy are computed here ! vel = ( tau_new - tau_old ) / ( 2.D0*dt ) * dble( if_pos ) ! ml = 0.D0 ekin = 0.D0 kstress = 0.d0 ! DO na = 1, nat ! ml(:) = ml(:) + vel(:,na) * mass(na) ekin = ekin + 0.5D0 * mass(na) * & ( vel(1,na)**2 + vel(2,na)**2 + vel(3,na)**2 ) do i = 1, 3 do j = 1, 3 kstress(i,j) = kstress(i,j) + mass(na)*vel(i,na)*vel(j,na) enddo enddo ! ENDDO ! ekin = ekin*alat**2 kstress = kstress * alat**2 / omega ! ! ... find the new temperature and update the average ! temp_new = 2.D0 / dble( ndof ) * ekin * ry_to_kelvin ! temp_av = temp_av + temp_new ! #if defined (__NPT) ! ! ... find the new pressure (in Kbar) ! press_new = ry_kbar*( nat*temp_new/ry_to_kelvin + virial ) / omega ! chi = 1.D0 - dt / RELAXTIME*( TARGPRESS - press_new ) ! omega = chi * omega alat = chi**(1.D0/3.D0) * alat ! WRITE( stdout, '(/,5X,"NEW ALAT = ",F8.5,2X,"Bohr" )' ) alat WRITE( stdout, '( 5X,"PRESSURE = ",F8.5,2X,"Kbar",/)' ) press_new ! #endif ! ! ... save all the needed quantities on file ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! leof = .false. WRITE( UNIT = 4, FMT = * ) etot, istep, tau(:,:), leof ! WRITE( UNIT = 4, FMT = * ) & temp_new, temp_av, mass(:), total_mass, elapsed_time, tau_ref(:,:) ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ! ... here the tau are shifted ! tau(:,:) = tau_new(:,:) ! !!!IF ( nat == 2 ) & !!! PRINT *, "DISTANCE = ", dnrm2( 3, ( tau(:,1) - tau(:,2) ), 1 ) * ALAT ! #if ! defined (__REDUCE_OUTPUT) ! CALL output_tau( .false., .false. ) ! #endif ! ! ... infos are written on the standard output ! WRITE( stdout, '(5X,"kinetic energy (Ekin) = ",F14.8," Ry",/, & & 5X,"temperature = ",F14.8," K ",/, & & 5X,"Ekin + Etot (const) = ",F14.8," Ry")' ) & ekin, temp_new, ( ekin + etot ) IF (lstres) WRITE ( stdout, & '(5X,"Ions kinetic stress = ",F10.2," (kbar)",/3(27X,3F10.2/)/)') & ((kstress(1,1)+kstress(2,2)+kstress(3,3))/3.d0*ry_kbar), & (kstress(i,1)*ry_kbar,kstress(i,2)*ry_kbar,kstress(i,3)*ry_kbar, i=1,3) ! IF ( .not.( lconstrain .or. lfixatom ) ) THEN ! ! ... total linear momentum must be zero if all atoms move ! mlt = norm( ml(:) ) ! IF ( mlt > eps8 ) & CALL infomsg( 'dynamics', 'Total linear momentum <> 0' ) ! WRITE( stdout, '(/,5X,"Linear momentum :",3(2X,F14.10))' ) ml(:) ! ENDIF ! ! ... compute the average quantities ! CALL compute_averages( istep ) ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE md_init() !-------------------------------------------------------------------- ! IMPLICIT NONE ! istep = 0 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Molecular Dynamics Calculation")' ) ! ! ... atoms are refold in the central box if required ! IF ( refold_pos ) CALL refold_tau() ! ! ... reference positions ! tau_ref(:,:) = tau(:,:) ! IF ( control_temp ) THEN ! WRITE( stdout, & '(/,5X,"Starting temperature",T27," = ",F8.2," K")' ) & temperature ! SELECT CASE( trim( thermostat ) ) ! CASE( 'andersen', 'Andersen' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is controlled by Andersen ", & & "thermostat",/,5x,"Collision frequency =",& & f7.4,"/timestep")' ) 1.0_dp/nraise ! CASE( 'berendsen', 'Berendsen' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is controlled by soft ", & & "(Berendsen) velocity rescaling",/,5x,& & "Characteristic time =",i3,"*timestep")') & nraise ! CASE( 'initial', 'Initial' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is set once at start"/)' ) ! CASE DEFAULT ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is controlled by ", & & "velocity rescaling (",A,")"/)' )& trim( thermostat ) ! END SELECT ! ENDIF ! DO na = 1, nsp ! WRITE( UNIT = stdout, & FMT = '(5X,"mass ",A2,T27," = ",F8.2)' ) atm(na), amass(na) ! ENDDO ! WRITE( UNIT = stdout, & FMT = '(5X,"Time step",T27," = ",F8.2," a.u.,",F8.4, & & " femto-seconds")' ) dt, dt*2.D+3*au_ps ! ! ... masses in rydberg atomic units ! total_mass = 0.D0 ! DO na = 1, nat ! mass(na) = amass( ityp(na) ) * amu_ry ! total_mass = total_mass + mass(na) ! ENDDO ! IF ( tavel ) THEN ! initial velocities available from input file ! vel(:,:) = vel(:,:) / alat ! ELSEIF ( control_temp ) THEN ! ! ... initial thermalization. N.B. tau is in units of alat ! CALL start_therm() vel_defined = .true. ! temp_new = temperature ! temp_av = 0.D0 ! ELSE ! vel(:,:) = 0.0_DP vel_defined = .true. ! ENDIF ! elapsed_time = 0.D0 ! END SUBROUTINE md_init ! !-------------------------------------------------------------------- SUBROUTINE apply_thermostat() !-------------------------------------------------------------------- ! USE random_numbers, ONLY : randy, gauss_dist ! IMPLICIT NONE ! INTEGER :: nat_moved REAL(DP) :: sigma, kt ! IF(.not.vel_defined)THEN vel(:,:) = (tau(:,:) - tau_old(:,:)) / dt ENDIF ! SELECT CASE( trim( thermostat ) ) CASE( 'rescaling' ) IF ( abs (temp_new-temperature) > tolp ) THEN ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Velocity rescaling: T (",F6.1,"K) ", & & "out of range, reset to " ,F6.1)' ) & temp_new, temperature CALL thermalize( 0, temp_new, temperature ) ! ENDIF CASE( 'rescale-v', 'rescale-V', 'rescale_v', 'rescale_V' ) IF ( mod( istep, nraise ) == 0 ) THEN ! temp_av = temp_av / dble( nraise ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Velocity rescaling: average T on ",i3, & &" steps (",F6.1,"K) reset to ",F6.1)' ) & nraise, temp_av, temperature ! CALL thermalize( 0, temp_new, temperature ) ! temp_av = 0.D0 ! ENDIF CASE( 'rescale-T', 'rescale-t', 'rescale_T', 'rescale_t' ) IF ( delta_t > 0 ) THEN ! temperature = temp_new*delta_t ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Thermalization: T (",F6.1,"K) rescaled ",& & "by a factor ",F6.3)' ) temp_new, delta_t ! CALL thermalize( 0, temp_new, temperature ) ! ENDIF CASE( 'reduce-T', 'reduce-t', 'reduce_T', 'reduce_t' ) IF ( mod( istep, nraise ) == 0 .and. delta_t < 0 ) THEN ! temperature = temp_new + delta_t ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Thermalization: T (",F6.1,"K) reduced ",& & "by ",F6.3)' ) temp_new, -delta_t ! CALL thermalize( 0, temp_new, temperature ) ! ENDIF ! CASE( 'berendsen', 'Berendsen' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Soft (Berendsen) velocity rescaling")' ) ! CALL thermalize( nraise, temp_new, temperature ) ! CASE( 'andersen', 'Andersen' ) ! kt = temperature / ry_to_kelvin nat_moved = 0 ! DO na = 1, nat ! IF ( randy() < 1.D0 / dble( nraise ) ) THEN ! nat_moved = nat_moved + 1 sigma = sqrt( kt / mass(na) ) ! ! ... N.B. velocities must in a.u. units of alat and are zero ! ... for fixed ions ! vel(:,na) = dble( if_pos(:,na) ) * & gauss_dist( 0.D0, sigma, 3 ) / alat ! ENDIF ! ENDDO ! IF ( nat_moved > 0) WRITE( UNIT = stdout, & FMT = '(/,5X,"Andersen thermostat: ",I4," collisions")' ) & nat_moved ! CASE( 'initial', 'Initial' ) ! CONTINUE ! END SELECT ! ! ... the old positions are updated to reflect the new velocities ! IF(.not.vel_defined)THEN tau_old(:,:) = tau(:,:) - vel(:,:) * dt ENDIF ! END SUBROUTINE apply_thermostat ! !----------------------------------------------------------------------- SUBROUTINE start_therm() !----------------------------------------------------------------------- ! ! ... Starting thermalization of the system ! USE symm_base, ONLY : invsym, nsym, irt USE cell_base, ONLY : alat USE ions_base, ONLY : nat, if_pos USE random_numbers, ONLY : gauss_dist, set_random_seed ! IMPLICIT NONE ! INTEGER :: na, nb REAL(DP) :: total_mass, kt, sigma, ek, ml(3), system_temp ! ! ... next command prevents different MD runs to start ! ... with exactly the same "random" velocities ! call set_random_seed ( ) kt = temperature / ry_to_kelvin ! ! ... starting velocities have a Maxwell-Boltzmann distribution ! DO na = 1, nat ! sigma = sqrt( kt / mass(na) ) ! ! ... N.B. velocities must in a.u. units of alat ! vel(:,na) = gauss_dist( 0.D0, sigma, 3 ) / alat ! ENDDO ! ! ... the velocity of fixed ions must be zero ! vel = vel * dble( if_pos ) ! IF ( lconstrain ) THEN ! ! ... remove the component of the velocity along the ! ... constraint gradient ! CALL remove_constr_vec( nat, tau, if_pos, ityp, alat, vel ) ! ENDIF ! !IF ( thermostat == 'langevin' ) THEN ! ! ! ! ... vel is used already multiplied by the time step ! ! ! vel(:,:) = dt*vel(:,:) ! ! ! RETURN ! ! !END IF ! IF ( invsym ) THEN ! ! ... if there is inversion symmetry, equivalent atoms have ! ... opposite velocities ! DO na = 1, nat ! nb = irt( ( nsym / 2 + 1 ), na ) ! IF ( nb > na ) vel(:,nb) = - vel(:,na) ! ! ... the atom on the inversion center is kept fixed ! IF ( na == nb ) vel(:,na) = 0.D0 ! ENDDO ! ELSE ! ! ... put total linear momentum equal zero if all atoms ! ... are free to move ! ml(:) = 0.D0 ! IF ( .not. lfixatom ) THEN ! total_mass = 0.D0 ! DO na = 1, nat ! total_mass = total_mass + mass(na) ! ml(:) = ml(:) + mass(na)*vel(:,na) ! ENDDO ! ml(:) = ml(:) / total_mass ! ENDIF ! ENDIF ! ek = 0.D0 ! DO na = 1, nat ! vel(:,na) = vel(:,na) - ml(:) ! ek = ek + 0.5D0 * mass(na) * & ( ( vel(1,na) )**2 + ( vel(2,na) )**2 + ( vel(3,na) )**2 ) ! ENDDO ! ! ... after the velocity of the center of mass has been subtracted the ! ... temperature is usually changed. Set again the temperature to the ! ... right value. ! system_temp = 2.D0 / dble( ndof ) * ek * alat**2 * ry_to_kelvin ! CALL thermalize( 0, system_temp, temperature ) ! END SUBROUTINE start_therm ! END SUBROUTINE verlet ! !------------------------------------------------------------------------ SUBROUTINE proj_verlet() !------------------------------------------------------------------------ ! ! ... This routine performs one step of structural relaxation using ! ... the preconditioned-projected-Verlet algorithm. ! USE ions_base, ONLY : nat, ityp, tau, if_pos USE cell_base, ONLY : alat USE ener, ONLY : etot USE force_mod, ONLY : force USE relax, ONLY : epse, epsf USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain ! USE constraints_module, ONLY : remove_constr_force, check_constraint ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: step(:,:) REAL(DP) :: norm_step, etotold, delta(3) INTEGER :: na LOGICAL :: file_exists,leof ! REAL(DP), PARAMETER :: step_max = 0.6D0 ! bohr ! REAL(DP), EXTERNAL :: dnrm2 ! ! ALLOCATE( step( 3, nat ) ) ! tau_old(:,:) = tau(:,:) tau_new(:,:) = 0.D0 vel(:,:) = 0.D0 acc(:,:) = 0.D0 ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! IF ( file_exists ) THEN ! ! ... the file is read ! READ( UNIT = 4, FMT = * ) etotold, istep, tau_old(:,:) ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ELSE ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! ! ... atoms are refold in the central box ! IF ( refold_pos ) CALL refold_tau() ! tau_old(:,:) = tau(:,:) ! etotold = etot ! istep = 0 ! ENDIF ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient (this constitutes the initial guess ! ... for the calculation of the lagrange multipliers) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! ENDDO ! WRITE( stdout, & '(/5X,"Total force = ",F12.6)') dnrm2( 3*nat, force, 1 ) ! #endif ! ENDIF ! istep = istep + 1 ! IF ( istep == 1 ) & WRITE( UNIT = stdout, & FMT = '(/,5X,"Damped Dynamics Calculation")' ) ! ! ... check if convergence for structural minimization is achieved ! conv_ions = ( etotold - etot ) < epse conv_ions = conv_ions .and. ( maxval( abs( force ) ) < epsf ) ! IF ( conv_ions ) THEN ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Damped Dynamics: convergence achieved in " & & ,I3," steps")' ) istep WRITE( UNIT = stdout, & FMT = '(/,5X,"End of damped dynamics calculation")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"Final energy = ",F18.10," Ry"/)' ) etot ! CALL output_tau( .true., .true. ) ! ENDIF ! IF ( istep >= nstep ) THEN ! conv_ions = .true. ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of damped dynamics calculation")' ) ! CALL output_tau( .true., .true. ) ! ENDIF ! WRITE( stdout, '(/,5X,"Entering Dynamics:",& & T28,"iteration",T37," = ",I5)' ) istep ! ! ... Damped dynamics ( based on the projected-Verlet algorithm ) ! vel(:,:) = tau(:,:) - tau_old(:,:) ! CALL force_precond( istep, force, etotold ) ! acc(:,:) = force(:,:) / alat / amu_ry ! CALL project_velocity() ! step(:,:) = vel(:,:) + dt**2 * acc(:,:) ! norm_step = dnrm2( 3*nat, step, 1 ) ! step(:,:) = step(:,:) / norm_step ! tau_new(:,:) = tau(:,:) + step(:,:)*min( norm_step, step_max / alat ) ! IF ( all( if_pos(:,:) == 1 ) ) THEN ! ! ... if no atom has been fixed we compute the displacement of the ! ... center of mass and we subtract it from the displaced positions ! delta(:) = 0.D0 ! DO na = 1, nat ! delta(:) = delta(:) + ( tau_new(:,na) - tau(:,na) ) ! ENDDO ! delta(:) = delta(:) / dble( nat ) ! FORALL( na = 1:nat ) tau_new(:,na) = tau_new(:,na) - delta(:) ! ENDIF ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau_new, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ! ENDIF ! ! ... save on file all the needed quantities ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! leof = .true. WRITE( UNIT = 4, FMT = * ) etot, istep, tau(:,:), leof ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ! ... here the tau are shifted ! tau(:,:) = tau_new(:,:) ! #if ! defined (__REDUCE_OUTPUT) ! CALL output_tau( .false., .false. ) ! #endif ! DEALLOCATE( step ) ! END SUBROUTINE proj_verlet ! !------------------------------------------------------------------------ SUBROUTINE langevin_md() !------------------------------------------------------------------------ ! ! ... ! USE ions_base, ONLY : nat, ityp, tau, if_pos USE cell_base, ONLY : alat USE ener, ONLY : etot USE force_mod, ONLY : force USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain USE random_numbers, ONLY : gauss_dist ! USE constraints_module, ONLY : nconstr USE constraints_module, ONLY : remove_constr_force, check_constraint ! IMPLICIT NONE ! REAL(DP) :: sigma, kt REAL(DP) :: delta(3) INTEGER :: na LOGICAL :: file_exists ! REAL(DP), EXTERNAL :: dnrm2 ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! IF ( file_exists ) THEN ! ! ... the file is read : simulation is continuing ! READ( UNIT = 4, FMT = * ) istep ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ELSE ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! ! ... the file is absent : simulation is starting from scratch ! istep = 0 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Over-damped Langevin Dynamics Calculation")' ) ! ! ... atoms are refold in the central box if required ! IF ( refold_pos ) CALL refold_tau() ! WRITE( UNIT = stdout, & FMT = '(5X,"Integration step",T27," = ",F8.2," a.u.,")' ) dt ! ENDIF ! IF ( istep >= nstep ) THEN ! conv_ions = .true. ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of Langevin Dynamics calculation")' ) ! ENDIF ! istep = istep + 1 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Entering Dynamics:",T28, & & "iteration",T37," = ",I5,/)' ) istep ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! ENDIF ! ! ... compute the stochastic term ! kt = temperature / ry_to_kelvin ! sigma = sqrt( 2.D0*dt*kt ) ! delta(:) = 0.D0 ! DO na = 1, nat ! chi(:,na) = gauss_dist( 0.D0, sigma, 3 )*dble( if_pos(:,na) ) ! delta(:) = delta(:) + chi(:,na) ! ENDDO ! FORALL( na = 1:nat ) chi(:,na) = chi(:,na) - delta(:) / dble( nat ) ! PRINT *, "|F| = ", dt*dnrm2( 3*nat, force, 1 ) PRINT *, "|CHI| = ", dnrm2( 3*nat, chi, 1 ) ! ! ... over-damped Langevin dynamics ! tau_new(:,:) = tau(:,:) + ( dt*force(:,:) + chi(:,:) ) / alat ! IF ( all( if_pos(:,:) == 1 ) ) THEN ! ! ... here we compute the displacement of the center of mass and we ! ... subtract it from the displaced positions ! delta(:) = 0.D0 ! DO na = 1, nat ! delta(:) = delta(:) + ( tau_new(:,na) - tau(:,na) ) ! ENDDO ! FORALL( na = 1:nat ) tau_new(:,na) = tau_new(:,na) - delta(:) ! ENDIF ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau_new, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! ENDDO ! WRITE( stdout, '(/5X,"Total force = ",F12.6)') dnrm2( 3*nat, force, 1 ) ! #endif ! ENDIF ! ! ... save all the needed quantities on file ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! WRITE( UNIT = 4, FMT = * ) istep ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ! ... here the tau are shifted ! tau(:,:) = tau_new(:,:) ! !!!IF ( nat == 2 ) & !!! PRINT *, "DISTANCE = ", dnrm2( 3, ( tau(:,1) - tau(:,2) ), 1 ) * ALAT ! #if ! defined (__REDUCE_OUTPUT) ! CALL output_tau( .false., .false. ) ! #endif ! END SUBROUTINE langevin_md ! !----------------------------------------------------------------------- SUBROUTINE refold_tau() !----------------------------------------------------------------------- ! USE ions_base, ONLY : nat, tau USE cell_base, ONLY : alat USE constraints_module, ONLY : pbc ! IMPLICIT NONE ! INTEGER :: ia ! ! DO ia = 1, nat ! tau(:,ia) = pbc( tau(:,ia) * alat ) / alat ! ENDDO ! END SUBROUTINE refold_tau ! !----------------------------------------------------------------------- SUBROUTINE compute_averages( istep ) !----------------------------------------------------------------------- ! USE ions_base, ONLY : nat, tau, fixatom USE cell_base, ONLY : alat, at USE constraints_module, ONLY : pbc USE io_files, ONLY : delete_if_present ! IMPLICIT NONE ! INTEGER, INTENT(in) :: istep ! INTEGER :: i, j, idx REAL(DP) :: dx, dy, dz REAL(DP) :: dtau(3) REAL(DP) :: inv_dmax REAL(DP), ALLOCATABLE :: msd(:) REAL(DP), PARAMETER :: max_dist(3) = (/ 0.5D0, 0.5D0, 0.5D0 /) ! ! ... MSD and diffusion coefficient ! ALLOCATE( msd( nat ) ) ! IF ( istep == 1 ) THEN ! radial_distr(:,:) = 0.D0 ! CALL delete_if_present( trim( tmp_dir ) // & & trim( prefix ) // ".msd.dat" ) ! ENDIF ! DO i = 1, nat ! dx = ( tau(1,i) - tau_ref(1,i) ) * alat dy = ( tau(2,i) - tau_ref(2,i) ) * alat dz = ( tau(3,i) - tau_ref(3,i) ) * alat ! msd(i) = dx*dx + dy*dy + dz*dz ! ENDDO ! diff_coeff(:) = msd(:) / ( 6.D0*dble( istep )*dt ) ! ! ... conversion from Rydberg atomic units to cm^2/sec ! diff_coeff(:) = diff_coeff(:) * bohr_radius_cm**2 / ( 2.D-12*au_ps ) ! OPEN( UNIT = 4, POSITION = 'APPEND', & FILE = trim( tmp_dir ) // trim( prefix ) // ".msd.dat" ) ! WRITE( 4, '(2(2X,F16.8))' ) & ( istep*dt*2.D0*au_ps ), sum( msd(:) ) / dble( nat-fixatom ) ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! DEALLOCATE( msd ) ! ! ... radial distribution function g(r) ! inv_dmax = 1.D0 / ( norm( matmul( at(:,:), max_dist(:) ) ) * alat ) ! DO i = 1, nat ! DO j = 1, nat ! IF ( i == j ) CYCLE ! dtau(:) = pbc( ( tau(:,i) - tau(:,j) ) * alat ) ! idx = anint( norm( dtau(:) ) * inv_dmax * dble( hist_len ) ) ! IF( idx > 0 .and. idx <= size( radial_distr, 1 ) ) & radial_distr(idx,i) = radial_distr(idx,i) + 1.D0 ! ENDDO ! ENDDO ! END SUBROUTINE compute_averages ! !----------------------------------------------------------------------- SUBROUTINE print_averages() !----------------------------------------------------------------------- ! USE control_flags, ONLY : nstep USE cell_base, ONLY : omega, at, alat USE ions_base, ONLY : nat, fixatom ! IMPLICIT NONE ! INTEGER :: i, idx REAL(DP) :: dist, dmax REAL(DP), PARAMETER :: max_dist(3) = (/ 0.5D0, 0.5D0, 0.5D0 /) ! ! ... diffusion coefficient ! WRITE( UNIT = stdout, & FMT = '(/,5X,"diffusion coefficients :")' ) ! DO i = 1, nat ! WRITE( UNIT = stdout, & FMT = '(5X,"atom ",I5," D = ",F16.8," cm^2/s")' ) & i, diff_coeff(i) ! ENDDO ! WRITE( UNIT = stdout, FMT = '(/,5X,"< D > = ",F16.8," cm^2/s")' ) & sum( diff_coeff(:) ) / dble( nat-fixatom ) ! ! ... radial distribution function g(r) ! dmax = norm( matmul( at(:,:), max_dist(:) ) ) * alat ! radial_distr(:,:) = radial_distr(:,:) * omega / dble( nat ) / fpi ! radial_distr(:,:) = radial_distr(:,:) / ( dmax / dble( hist_len ) ) ! radial_distr(:,:) = radial_distr(:,:) / dble( nstep ) ! OPEN( UNIT = 4, FILE = trim( tmp_dir ) // trim( prefix ) // ".rdf.dat" ) ! DO idx = 1, hist_len ! dist = dble( idx ) / dble( hist_len ) * dmax ! IF ( dist > dmax / sqrt( 3.0d0 ) ) CYCLE ! radial_distr(idx,:) = radial_distr(idx,:) / dist**2 ! WRITE( 4, '(2(2X,F16.8))' ) & dist, sum( radial_distr(idx,:) ) / dble( nat ) ! ENDDO ! CLOSE( UNIT = 4 ) ! END SUBROUTINE print_averages ! !----------------------------------------------------------------------- SUBROUTINE force_precond( istep, force, etotold ) !----------------------------------------------------------------------- ! ! ... this routine computes an estimate of H^-1 by using the BFGS ! ... algorithm and the preconditioned gradient pg = H^-1 * g ! ... ( it works in atomic units ) ! USE ener, ONLY : etot USE cell_base, ONLY : alat USE ions_base, ONLY : nat, tau USE io_files, ONLY : iunbfgs, tmp_dir ! IMPLICIT NONE ! INTEGER, INTENT(in) :: istep REAL(DP), INTENT(inout) :: force(:,:) REAL(DP), INTENT(in) :: etotold ! REAL(DP), ALLOCATABLE :: pos(:), pos_p(:) REAL(DP), ALLOCATABLE :: grad(:), grad_p(:), precond_grad(:) REAL(DP), ALLOCATABLE :: inv_hess(:,:) REAL(DP), ALLOCATABLE :: y(:), s(:) REAL(DP), ALLOCATABLE :: Hy(:), yH(:) REAL(DP) :: sdoty, pg_norm INTEGER :: dim CHARACTER(len=256) :: bfgs_file LOGICAL :: file_exists ! INTEGER, PARAMETER :: nrefresh = 25 REAL(DP), PARAMETER :: max_pg_norm = 0.8D0 ! ! dim = 3 * nat ! ALLOCATE( pos( dim ), pos_p( dim ) ) ALLOCATE( grad( dim ), grad_p( dim ), precond_grad( dim ) ) ALLOCATE( y( dim ), s( dim ) ) ALLOCATE( inv_hess( dim, dim ) ) ALLOCATE( Hy( dim ), yH( dim ) ) ! pos(:) = reshape( tau, (/ dim /) ) * alat grad(:) = - reshape( force, (/ dim /) ) ! bfgs_file = trim( tmp_dir ) // trim( prefix ) // '.bfgs' ! INQUIRE( FILE = trim( bfgs_file ) , EXIST = file_exists ) ! IF ( file_exists ) THEN ! OPEN( UNIT = iunbfgs, & FILE = trim( bfgs_file ), STATUS = 'OLD', ACTION = 'READ' ) ! READ( iunbfgs, * ) pos_p READ( iunbfgs, * ) grad_p READ( iunbfgs, * ) inv_hess ! CLOSE( UNIT = iunbfgs ) ! ! ... the approximate inverse hessian is reset to one every nrefresh ! ... iterations: this is one to clean-up the memory of the starting ! ... configuration ! IF ( mod( istep, nrefresh ) == 0 ) inv_hess(:,:) = identity( dim ) ! IF ( etot < etotold ) THEN ! ! ... BFGS update ! s(:) = pos(:) - pos_p(:) y(:) = grad(:) - grad_p(:) ! sdoty = ( s(:) .dot. y(:) ) ! IF ( sdoty > eps8 ) THEN ! Hy(:) = ( inv_hess(:,:) .times. y(:) ) yH(:) = ( y(:) .times. inv_hess(:,:) ) ! inv_hess = inv_hess + 1.D0 / sdoty * & ( ( 1.D0 + ( y .dot. Hy ) / sdoty ) * matrix( s, s ) - & ( matrix( s, yH ) + matrix( Hy, s ) ) ) ! ENDIF ! ENDIF ! ELSE ! inv_hess(:,:) = identity( dim ) ! ENDIF ! precond_grad(:) = ( inv_hess(:,:) .times. grad(:) ) ! IF ( ( precond_grad(:) .dot. grad(:) ) < 0.D0 ) THEN ! WRITE( UNIT = stdout, & FMT = '(/,5X,"uphill step: resetting bfgs history",/)' ) ! precond_grad(:) = grad(:) ! inv_hess(:,:) = identity( dim ) ! ENDIF ! OPEN( UNIT = iunbfgs, & FILE = trim( bfgs_file ), STATUS = 'UNKNOWN', ACTION = 'WRITE' ) ! WRITE( iunbfgs, * ) pos(:) WRITE( iunbfgs, * ) grad(:) WRITE( iunbfgs, * ) inv_hess(:,:) ! CLOSE( UNIT = iunbfgs ) ! ! ... the length of the step is always shorter than pg_norm ! pg_norm = norm( precond_grad(:) ) ! precond_grad(:) = precond_grad(:) / pg_norm precond_grad(:) = precond_grad(:) * min( pg_norm, max_pg_norm ) ! force(:,:) = - reshape( precond_grad(:), (/ 3, nat /) ) ! DEALLOCATE( pos, pos_p ) DEALLOCATE( grad, grad_p, precond_grad ) DEALLOCATE( inv_hess ) DEALLOCATE( y, s ) DEALLOCATE( Hy, yH ) ! END SUBROUTINE force_precond ! !----------------------------------------------------------------------- SUBROUTINE project_velocity() !----------------------------------------------------------------------- ! ! ... quick-min algorithm ! USE control_flags, ONLY : istep USE ions_base, ONLY : nat ! IMPLICIT NONE ! REAL(DP) :: norm_acc, projection REAL(DP), ALLOCATABLE :: acc_versor(:,:) ! REAL(DP), EXTERNAL :: dnrm2, ddot ! ! IF ( istep == 1 ) RETURN ! ALLOCATE( acc_versor( 3, nat ) ) ! norm_acc = dnrm2( 3*nat, acc(:,:), 1 ) ! acc_versor(:,:) = acc(:,:) / norm_acc ! projection = ddot( 3*nat, vel(:,:), 1, acc_versor(:,:), 1 ) ! WRITE( UNIT = stdout, FMT = '(/,5X," = ",F12.8)' ) & projection / dnrm2( 3*nat, vel, 1 ) ! vel(:,:) = acc_versor(:,:) * max( 0.D0, projection ) ! DEALLOCATE( acc_versor ) ! END SUBROUTINE project_velocity ! !----------------------------------------------------------------------- SUBROUTINE thermalize( nraise, system_temp, required_temp ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: system_temp, required_temp INTEGER, INTENT(in) :: nraise ! REAL(DP) :: aux ! IF ( nraise > 0 ) THEN ! ! ... Berendsen rescaling (Eq. 7.59 of Allen & Tildesley) ! ... the "rise time" is tau=nraise*dt so dt/tau=1/nraise ! ... Equivalent to traditional rescaling if nraise=1 ! IF ( system_temp > 0.D0 .and. required_temp > 0.D0 ) THEN ! aux = sqrt( 1.d0 + (required_temp / system_temp - 1.d0) * & (1.D0/dble (nraise) ) ) ! ELSE ! aux = 0.d0 ! ENDIF ! ELSE ! ! ... rescale the velocities by a factor 3 / 2KT / Ek ! IF ( system_temp > 0.D0 .and. required_temp > 0.D0 ) THEN ! aux = sqrt( required_temp / system_temp ) ! ELSE ! aux = 0.d0 ! ENDIF ! ENDIF ! vel(:,:) = vel(:,:) * aux ! END SUBROUTINE thermalize ! END MODULE dynamics_module espresso-5.0.2/PW/src/exx.f900000644000700200004540000021401012053145630014616 0ustar marsamoscm! ! Copyright (C) 2005-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------- MODULE exx !-------------------------------------- ! USE kinds, ONLY : DP USE coulomb_vcut_module, ONLY : vcut_init, vcut_type, vcut_info, & vcut_get, vcut_spheric_get USE noncollin_module, ONLY : noncolin, npol USE io_global, ONLY : ionode, stdout USE fft_custom, ONLY : fft_cus ! ! FIXME: move down when ready USE mp_global, ONLY : npool IMPLICIT NONE SAVE ! ! general purpose vars ! REAL(DP):: exxalfa=0._dp ! 1 if exx, 0 elsewhere INTEGER :: exx_nwordwfc, ji ! ! variables defining the auxiliary k-point grid ! used in X BZ integration ! INTEGER :: nq1=1, nq2=1, nq3=1 ! integers defining the X integration mesh INTEGER :: nqs=1 ! number of points in the q-gridd INTEGER :: nkqs ! total number of different k+q ! REAL(DP), ALLOCATABLE :: xkq_collect(:,:) ! xkq(3,nkqs) the auxiliary k+q set REAL(DP), ALLOCATABLE :: x_occupation(:,:) ! x_occupation(nbnd,nks) the weight of ! auxiliary functions in the density matrix COMPLEX(DP), ALLOCATABLE :: exxbuff(:,:,:) ! temporay buffer to store wfc COMPLEX(DP), ALLOCATABLE :: exxbuff_nc(:,:,:,:) ! temporay buffer to store wfc in the ! noncollinear case ! ! let xk(:,ik) + xq(:,iq) = xkq(:,ikq) = S(isym)*xk(ik') + G ! ! index_xkq(ik,iq) = ikq ! index_xk(ikq) = ik' ! index_sym(ikq) = isym ! INTEGER, ALLOCATABLE :: index_xkq(:,:) ! index_xkq(nks,nqs) INTEGER, ALLOCATABLE :: index_xk(:) ! index_xk(nkqs) INTEGER, ALLOCATABLE :: index_sym(:) ! index_sym(nkqs) ! ! Used for k points pool parallelization. All pools need these quantities. ! They are allocated only IF needed. ! REAL(DP), ALLOCATABLE :: xk_collect(:,:) REAL(DP), ALLOCATABLE :: wk_collect(:) REAL(DP), ALLOCATABLE :: wg_collect(:,:) ! ! variables to deal with Coulomb divergence ! and related issues ! REAL(DP) :: eps = 1.d-6 REAL(DP) :: eps_qdiv = 1.d-8 ! |q| > eps_qdiv REAL(DP) :: eps_occ = 1.d-6 ! skip band where occupation is less than this REAL(DP) :: exxdiv = 0._dp CHARACTER(32) :: exxdiv_treatment ! ! x_gamma_extrapolation LOGICAL :: x_gamma_extrapolation =.TRUE. LOGICAl :: on_double_grid =.FALSE. REAL(DP) :: grid_factor = 8.d0/7.d0 ! ! Gygi-Baldereschi LOGICAL :: use_regularization = .TRUE. ! ! yukawa method REAL(DP) :: yukawa = 0._dp ! ! erfc screening REAL(DP) :: erfc_scrlen = 0._dp ! ! erf screening REAL(DP) :: erf_scrlen = 0._dp ! cutoff techniques LOGICAL :: use_coulomb_vcut_ws = .FALSE. LOGICAL :: use_coulomb_vcut_spheric = .FALSE. REAL(DP) :: ecutvcut TYPE(vcut_type) :: vcut ! ! energy related variables ! REAL(DP) :: fock0 = 0.0_DP, & ! sum fock1 = 0.0_DP, & ! sum fock2 = 0.0_DP, & ! sum dexx = 0.0_DP ! fock1 - 0.5*(fock2+fock0) ! ! custom fft grids ! TYPE(fft_cus) exx_fft_g2r ! Grid for wfcs -> real space TYPE(fft_cus) exx_fft_r2g ! Grid for real space -> restricted G space REAL(DP) :: ecutfock ! energy cutoff for custom grid REAL(DP) :: exx_dual = 4.0_DP! dual for the custom grid CONTAINS !------------------------------------------------------------------------ SUBROUTINE exx_grid_convert( psi, npw, fft, psi_t, sign, igkt ) !------------------------------------------------------------------------ ! ! This routine reorders the gvectors of the wavefunction psi and ! puts the result in psi_t. This reordering is needed when going ! between two different fft grids. ! ! sign > 0 goes from the smooth grid to the grid defined in fft ! sign < 0 goes from the grid defined in fft to the smooth grid ! USE mp_global, ONLY : me_bgrp, nproc_bgrp, intra_bgrp_comm USE fft_custom, ONLY : reorderwfp_col USE gvect, ONLY : ig_l2g IMPLICIT NONE INTEGER, INTENT(IN) :: npw COMPLEX(kind=DP), INTENT(IN) :: psi(npw) COMPLEX(kind=DP), INTENT(INOUT) :: psi_t(:) INTEGER, OPTIONAL, INTENT(INOUT) :: igkt(:) INTEGER, INTENT(IN) :: sign TYPE(fft_cus), INTENT(IN) :: fft INTEGER :: ig CALL start_clock('exx_grid_convert') IF(sign > 0 .AND. PRESENT(igkt) ) THEN DO ig=1, fft%ngmt igkt(ig)=ig ENDDO ENDIF IF( fft%dual_t==4.d0) THEN psi_t(1:fft%npwt)=psi(1:fft%npwt) ELSE IF (sign > 0 ) THEN CALL reorderwfp_col ( 1, npw, fft%npwt, psi, psi_t, npw, fft%npwt,& & ig_l2g, fft%ig_l2gt, fft%ngmt_g, me_bgrp, nproc_bgrp,& & intra_bgrp_comm ) ELSE CALL reorderwfp_col ( 1, fft%npwt, npw, psi, psi_t, fft%npwt, npw,& & fft%ig_l2gt, ig_l2g, fft%ngmt_g, me_bgrp, nproc_bgrp,& & intra_bgrp_comm ) ENDIF ENDIF CALL stop_clock('exx_grid_convert') RETURN END SUBROUTINE exx_grid_convert !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_fft_create () USE wvfct, ONLY : ecutwfc, npw USE gvect, ONLY : ecutrho, ig_l2g IMPLICIT NONE IF(ecutfock <= 0.0_DP) ecutfock = ecutrho IF(ecutfock < ecutwfc) CALL errore('exx_fft_create', & 'ecutfock can not be smaller than ecutwfc!', 1) ! Initalise the g2r grid that allows us to put the wavefunction ! onto the new (smaller) grid for rho. exx_fft_g2r%ecutt=ecutwfc exx_fft_g2r%dual_t=ecutfock/ecutwfc CALL allocate_fft_custom(exx_fft_g2r) IF (MAXVAL( ABS(ig_l2g(1:npw)-exx_fft_g2r%ig_l2gt(1:npw))) /= 0) THEN CALL errore('exx_fft_create', ' exx fft grid not compatible with & &the smooth fft grid. ', 1 ) ENDIF ! Initalise the r2g grid that we then use when applying the Fock ! operator in our new restricted space. exx_fft_r2g%ecutt=ecutfock/exx_dual exx_fft_r2g%dual_t=exx_dual CALL allocate_fft_custom(exx_fft_r2g) !------------------------------------------------------------------------ END SUBROUTINE exx_fft_create !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_fft_destroy () !------------------------------------------------------------------------ USE fft_custom, ONLY : deallocate_fft_custom IMPLICIT NONE CALL deallocate_fft_custom(exx_fft_g2r) CALL deallocate_fft_custom(exx_fft_r2g) !------------------------------------------------------------------------ END SUBROUTINE exx_fft_destroy !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE deallocate_exx () !------------------------------------------------------------------------ ! IMPLICIT NONE ! IF ( allocated(index_xkq) ) DEALLOCATE(index_xkq) IF ( allocated(index_xk ) ) DEALLOCATE(index_xk ) IF ( allocated(index_sym) ) DEALLOCATE(index_sym) IF ( allocated(x_occupation) ) DEALLOCATE(x_occupation) IF ( allocated(xkq_collect) ) DEALLOCATE(xkq_collect) IF ( allocated(exxbuff) ) DEALLOCATE(exxbuff) IF ( allocated(exxbuff_nc) ) DEALLOCATE(exxbuff_nc) ! ! CALL exx_fft_destroy() ! ! Pool variables deallocation ! IF ( allocated (xk_collect) ) DEALLOCATE( xk_collect ) IF ( allocated (wk_collect) ) DEALLOCATE( wk_collect ) IF ( allocated (wg_collect) ) DEALLOCATE( wg_collect ) ! ! !------------------------------------------------------------------------ END SUBROUTINE deallocate_exx !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_grid_init() !------------------------------------------------------------------------ ! USE symm_base, ONLY : nsym, s USE cell_base, ONLY : bg, at, alat USE lsda_mod, ONLY : nspin USE spin_orb, ONLY : domag USE noncollin_module, ONLY : nspin_lsda USE klist, ONLY : xk, wk, nkstot, nks USE wvfct, ONLY : nbnd USE io_global, ONLY : stdout ! IMPLICIT NONE ! CHARACTER(13) :: sub_name='exx_grid_init' INTEGER :: iq1, iq2, iq3, isym, ik, ikq, iq, max_nk, temp_nkqs INTEGER, allocatable :: temp_index_xk(:), temp_index_sym(:) INTEGER, allocatable :: temp_index_ikq(:), new_ikq(:) REAL(DP),allocatable :: temp_xkq(:,:) LOGICAL :: xk_not_found REAL(DP) :: sxk(3), dxk(3), xk_cryst(3) REAL(DP) :: dq1, dq2, dq3 CALL start_clock ('exx_grid') ! ! definitions and checks ! grid_factor = 1._dp IF (x_gamma_extrapolation) & grid_factor = 8.d0/7.d0 ! nqs = nq1 * nq2 * nq3 ! ! all processors need to have access to all k+q points ! IF ( .NOT.allocated (xk_collect) ) ALLOCATE(xk_collect(3,nkstot)) IF ( .NOT.allocated (wk_collect) ) ALLOCATE(wk_collect(nkstot)) ! the next if/then if probably not necessary, as xk_wk collect can ! deal with npool==1, leaving it for clarity. IF (npool>1) THEN CALL xk_wk_collect(xk_collect, wk_collect, xk, wk, nkstot, nks) ELSE xk_collect = xk wk_collect = wk ENDIF ! ! set a safe limit as the maximum number of auxiliary points we may need ! and allocate auxiliary arrays max_nk = nkstot * min(48, 2 * nsym) ALLOCATE( temp_index_xk(max_nk), temp_index_sym(max_nk) ) ALLOCATE( temp_index_ikq(max_nk), new_ikq(max_nk) ) ALLOCATE( temp_xkq(3,max_nk) ) ! ! find all k-points equivalent by symmetry to the points in the k-list ! temp_nkqs = 0 DO isym=1,nsym DO ik =1, nkstot ! go to crystalline coordinates xk_cryst(:) = xk_collect(:,ik) CALL cryst_to_cart(1, xk_cryst, at, -1) ! rotate with this sym.op. sxk(:) = s(:,1,isym)*xk_cryst(1) + & s(:,2,isym)*xk_cryst(2) + & s(:,3,isym)*xk_cryst(3) ! add sxk to the auxiliary list IF it is not already present xk_not_found = .true. ! *** do-loop skipped the first time becasue temp_nksq == 0 DO ikq=1, temp_nkqs IF (xk_not_found ) THEN dxk(:) = sxk(:)-temp_xkq(:,ikq) - nint(sxk(:)-temp_xkq(:,ikq)) IF ( abs(dxk(1)).le.eps .and. & abs(dxk(2)).le.eps .and. & abs(dxk(3)).le.eps ) xk_not_found = .false. ENDIF ENDDO IF (xk_not_found) THEN temp_nkqs = temp_nkqs + 1 temp_xkq(:,temp_nkqs) = sxk(:) temp_index_xk(temp_nkqs) = ik temp_index_sym(temp_nkqs) = isym ENDIF sxk(:) = - sxk(:) xk_not_found = .true. DO ikq=1, temp_nkqs IF (xk_not_found ) THEN dxk(:) = sxk(:) - temp_xkq(:,ikq) - nint(sxk(:) - temp_xkq(:,ikq)) IF ( abs(dxk(1)).le.eps .and. & abs(dxk(2)).le.eps .and. & abs(dxk(3)).le.eps ) xk_not_found = .false. ENDIF ENDDO IF (xk_not_found .and. .not. (noncolin.and.domag) ) THEN temp_nkqs = temp_nkqs + 1 temp_xkq(:,temp_nkqs) = sxk(:) temp_index_xk(temp_nkqs) = ik temp_index_sym(temp_nkqs) =-isym ENDIF ENDDO ENDDO ! ! define the q-mesh step-sizes ! dq1= 1._dp/DBLE(nq1) dq2= 1._dp/DBLE(nq2) dq3= 1._dp/DBLE(nq3) ! ! allocate and fill the array index_xkq(nkstot,nqs) ! if(.not.allocated(index_xkq)) ALLOCATE( index_xkq(nkstot,nqs) ) if(.not.allocated(x_occupation)) ALLOCATE( x_occupation(nbnd,nkstot) ) nkqs = 0 new_ikq(:) = 0 DO ik=1,nkstot ! go to crystalline coordinates xk_cryst(:) = xk_collect(:,ik) CALL cryst_to_cart(1, xk_cryst, at, -1) ! iq = 0 DO iq1=1, nq1 sxk(1) = xk_cryst(1) + (iq1-1) * dq1 DO iq2 =1, nq2 sxk(2) = xk_cryst(2) + (iq2-1) * dq2 DO iq3 =1, nq3 sxk(3) = xk_cryst(3) + (iq3-1) * dq3 iq = iq + 1 xk_not_found = .true. ! DO ikq=1, temp_nkqs IF ( xk_not_found ) THEN dxk(:) = sxk(:)-temp_xkq(:,ikq) - nint(sxk(:)-temp_xkq(:,ikq)) IF ( ALL(abs(dxk) < eps ) ) THEN xk_not_found = .false. IF ( new_ikq(ikq) == 0) THEN nkqs = nkqs + 1 temp_index_ikq(nkqs) = ikq new_ikq(ikq) = nkqs ENDIF index_xkq(ik,iq) = new_ikq(ikq) ENDIF ENDIF ENDDO ! ikq ! IF (xk_not_found) THEN write (*,*) ik, iq, temp_nkqs write (*,*) sxk(:) CALL errore(sub_name, ' k + q is not an S*k ', (ik-1) * nqs + iq ) ENDIF ENDDO ENDDO ENDDO ENDDO WRITE(stdout, '(5x,a,i10)') "EXX: grid of k+q point setup nkqs = ", nkqs ! ! allocate and fill the arrays xkq(3,nkqs), index_xk(nkqs) and index_sym(nkqs) ! ALLOCATE( xkq_collect(3,nspin_lsda*nkqs), index_xk(nspin_lsda*nkqs), & index_sym(nspin_lsda*nkqs) ) DO ik =1, nkqs ikq = temp_index_ikq(ik) xkq_collect(:,ik) = temp_xkq(:,ikq) index_xk(ik) = temp_index_xk(ikq) index_sym(ik) = temp_index_sym(ikq) ENDDO CALL cryst_to_cart(nkqs, xkq_collect, bg, +1) ! if nspin == 2, the kpoints are repeated in couples (spin up, spin down) IF (nspin_lsda == 2) THEN DO ik = 1, nkstot/2 DO iq =1, nqs index_xkq(nkstot/2+ik,iq) = index_xkq(ik,iq) + nkqs END DO ENDDO DO ikq=1,nkqs xkq_collect(:,ikq + nkqs) = xkq_collect(:,ikq) index_xk(ikq + nkqs) = index_xk(ikq) + nkstot/2 index_sym(ikq + nkqs) = index_sym(ikq) ENDDO nkqs = 2 * nkqs ENDIF ! ! clean up DEALLOCATE(temp_index_xk, temp_index_sym, temp_index_ikq, new_ikq, temp_xkq) ! ! check that everything is what it should be CALL exx_grid_check () ! CALL stop_clock ('exx_grid') ! RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_grid_init !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_div_check() !------------------------------------------------------------------------ ! USE cell_base, ONLY : bg, at, alat USE io_global, ONLY : stdout USE funct, ONLY : get_screening_parameter ! IMPLICIT NONE ! REAL(DP) :: atws(3,3) CHARACTER(13) :: sub_name='exx_div_check' ! ! EXX singularity treatment ! SELECT CASE ( TRIM(exxdiv_treatment) ) CASE ( "gygi-baldereschi", "gygi-bald", "g-b" ) ! use_regularization = .TRUE. ! ! CASE ( "vcut_ws" ) ! use_coulomb_vcut_ws = .TRUE. IF ( x_gamma_extrapolation ) & CALL errore(sub_name,'cannot USE x_gamm_extrap and vcut_ws', 1) ! CASE ( "vcut_spherical" ) ! use_coulomb_vcut_spheric = .TRUE. IF ( x_gamma_extrapolation ) & CALL errore(sub_name,'cannot USE x_gamm_extrap and vcut_spherical', 1) ! CASE ( "none" ) use_regularization = .FALSE. ! CASE DEFAULT CALL errore(sub_name,'invalid exxdiv_treatment: '//TRIM(exxdiv_treatment), 1) END SELECT ! ! ! Set variables for Coulomb vcut ! NOTE: some memory is allocated inside this routine (in the var vcut) ! and should be deallocated somewehre, at the end of the run ! IF ( use_coulomb_vcut_ws .OR. use_coulomb_vcut_spheric ) THEN ! ! build the superperiodicity direct lattice ! atws = alat * at ! atws(:,1) = atws(:,1) * nq1 atws(:,2) = atws(:,2) * nq2 atws(:,3) = atws(:,3) * nq3 ! !CALL start_clock ('exx_vcut_init') CALL vcut_init( vcut, atws, ecutvcut ) !CALL stop_clock ('exx_vcut_init') ! IF ( ionode ) CALL vcut_info( stdout, vcut ) ! ENDIF RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_div_check !------------------------------------------------------------------------ !------------------------------------------------------------------------ SUBROUTINE exx_grid_check ( ) !------------------------------------------------------------------------ USE symm_base, ONLY : s USE cell_base, ONLY : bg, at USE lsda_mod, ONLY : nspin USE io_global, ONLY : stdout USE klist, ONLY : nkstot, xk IMPLICIT NONE REAL(DP) :: sxk(3), dxk(3), xk_cryst(3), xkk_cryst(3) INTEGER :: iq1, iq2, iq3, isym, ik, ikk, ikq, iq REAL(DP) :: dq1, dq2, dq3 dq1= 1._dp/DBLE(nq1) dq2= 1._dp/DBLE(nq2) dq3= 1._dp/DBLE(nq3) DO ik =1, nkstot xk_cryst(:) = xk_collect(:,ik) CALL cryst_to_cart(1, xk_cryst, at, -1) ! iq = 0 DO iq1=1, nq1 sxk(1) = xk_cryst(1) + (iq1-1) * dq1 DO iq2 =1, nq2 sxk(2) = xk_cryst(2) + (iq2-1) * dq2 DO iq3 =1, nq3 sxk(3) = xk_cryst(3) + (iq3-1) * dq3 iq = iq + 1 ikq = index_xkq(ik,iq) ikk = index_xk(ikq) isym = index_sym(ikq) IF (npool>1) THEN xkk_cryst(:) = at(1,:)*xk_collect(1,ikk)+at(2,:)*xk_collect(2,ikk)+at(3,:)*xk_collect(3,ikk) ELSE xkk_cryst(:) = at(1,:)*xk(1,ikk)+at(2,:)*xk(2,ikk)+at(3,:)*xk(3,ikk) ENDIF IF (isym < 0 ) xkk_cryst(:) = - xkk_cryst(:) isym = abs (isym) dxk(:) = s(:,1,isym)*xkk_cryst(1) + & s(:,2,isym)*xkk_cryst(2) + & s(:,3,isym)*xkk_cryst(3) - sxk(:) dxk(:) = dxk(:) - nint(dxk(:)) IF ( .not. ( abs(dxk(1)).le.eps .and. & abs(dxk(2)).le.eps .and. & abs(dxk(3)).le.eps ) ) THEN write(*,*) ik,iq write(*,*) ikq,ikk,isym write(*,*) dxk(:) CALL errore('exx_grid_check', & 'something wrong', 1 ) ENDIF ENDDO ENDDO ENDDO ENDDO ! return !------------------------------------------------------------------------ END SUBROUTINE exx_grid_check !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_restart(l_exx_was_active) !------------------------------------------------------------------------ !This SUBROUTINE is called when restarting an exx calculation USE funct, ONLY : get_exx_fraction, start_exx, exx_is_active, & get_screening_parameter USE fft_base, ONLY : dffts USE io_global, ONLY : stdout IMPLICIT NONE LOGICAL, INTENT(IN) :: l_exx_was_active IF (.not. l_exx_was_active ) return ! nothing had happpened yet !! exx_nwordwfc=2*dffts%nnr !iunexx = find_free_unit() !CALL diropn(iunexx,'exx', exx_nwordwfc, exst) erfc_scrlen = get_screening_parameter() exxdiv = exx_divergence() exxalfa = get_exx_fraction() CALL start_exx CALL weights() CALL exxinit() fock0 = exxenergy2() return !------------------------------------------------------------------------ END SUBROUTINE exx_restart !------------------------------------------------------------------------ !------------------------------------------------------------------------ SUBROUTINE exxinit() !------------------------------------------------------------------------ !This SUBROUTINE is run before the first H_psi() of each iteration. !It saves the wavefunctions for the right density matrix. in real space !It saves all the wavefunctions in a single file called prefix.exx ! USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nwordwfc, iunwfc, iunigk, & tmp_dir, prefix USE io_global, ONLY : stdout USE buffers, ONLY : get_buffer USE gvecs, ONLY : nls, nlsm, ngms, doublegrid USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, et USE control_flags, ONLY : gamma_only USE klist, ONLY : wk, ngk, nks, nkstot USE symm_base, ONLY : nsym, s, sr, ftau USE mp_global, ONLY : nproc_pool, me_pool, nproc_bgrp, me_bgrp, & init_index_over_band, inter_bgrp_comm, & mpime, inter_pool_comm USE mp, ONLY : mp_sum USE funct, ONLY : get_exx_fraction, start_exx, exx_is_active, & get_screening_parameter USE fft_base, ONLY : cgather_smooth, cscatter_smooth,& dffts, cgather_custom, cscatter_custom USE fft_interfaces, ONLY : invfft USE uspp, ONLY : nkb, okvan IMPLICIT NONE INTEGER :: ik,ibnd, i, j, k, ir, ri, rj, rk, isym, ikq INTEGER :: h_ibnd, half_nbnd INTEGER :: ipol, jpol COMPLEX(DP),ALLOCATABLE :: temppsic(:), psic(:), tempevc(:,:) COMPLEX(DP),ALLOCATABLE :: temppsic_nc(:,:), psic_nc(:,:) INTEGER :: nxxs, nrxxs, nr1x,nr2x,nr3x,nr1,nr2,nr3 #ifdef __MPI COMPLEX(DP),allocatable :: temppsic_all(:), psic_all(:) COMPLEX(DP), ALLOCATABLE :: temppsic_all_nc(:,:), psic_all_nc(:,:) #endif COMPLEX(DP) :: d_spin(2,2,48) INTEGER :: current_ik logical, allocatable :: ispresent(:) INTEGER, ALLOCATABLE :: rir(:,:) integer :: find_current_k CALL start_clock ('exxinit') ! ! prepare the symmetry matrices for the spin part ! IF (noncolin) THEN DO isym=1,nsym CALL find_u(sr(:,:,isym), d_spin(:,:,isym)) ENDDO ENDIF ! Beware: not the same as nrxxs in parallel case IF(gamma_only) THEN CALL exx_fft_create() nxxs=exx_fft_g2r%dfftt%nr1x *exx_fft_g2r%dfftt%nr2x *exx_fft_g2r%dfftt%nr3x nrxxs= exx_fft_g2r%dfftt%nnr nr1 = exx_fft_g2r%dfftt%nr1 nr2 = exx_fft_g2r%dfftt%nr2 nr3 = exx_fft_g2r%dfftt%nr3 nr1x = exx_fft_g2r%dfftt%nr1x nr2x = exx_fft_g2r%dfftt%nr2x nr3x = exx_fft_g2r%dfftt%nr3x ELSE nxxs = dffts%nr1x * dffts%nr2x * dffts%nr3x nrxxs= dffts%nnr nr1 = dffts%nr1 nr2 = dffts%nr2 nr3 = dffts%nr3 nr1x = dffts%nr1x nr2x = dffts%nr2x nr3x = dffts%nr3x ENDIF #ifdef __MPI IF (noncolin) THEN ALLOCATE(psic_all_nc(nxxs,npol), temppsic_all_nc(nxxs,npol) ) ELSE ALLOCATE(psic_all(nxxs), temppsic_all(nxxs) ) ENDIF #endif CALL init_index_over_band(inter_bgrp_comm,nbnd) IF (noncolin) THEN ALLOCATE(temppsic_nc(nrxxs, npol), psic_nc(nrxxs, npol)) IF (.NOT. allocated(exxbuff_nc)) ALLOCATE( exxbuff_nc(nrxxs,npol,nbnd,nkqs)) ELSE ALLOCATE(temppsic(nrxxs), psic(nrxxs)) if( .not. allocated( exxbuff ) ) ALLOCATE( exxbuff(nrxxs,nbnd,nkqs) ) ENDIF ! ALLOCATE(ispresent(nsym),rir(nxxs,nsym)) ALLOCATE(tempevc( npwx*npol, nbnd )) exx_nwordwfc=2*nrxxs IF (.not.exx_is_active()) THEN !iunexx = find_free_unit() !CALL diropn(iunexx,'exx', exx_nwordwfc, exst) erfc_scrlen = get_screening_parameter() exxdiv = exx_divergence() exxalfa = get_exx_fraction() ! CALL start_exx ENDIF IF (.NOT.allocated (wg_collect)) ALLOCATE(wg_collect(nbnd,nkstot)) IF (npool>1) THEN CALL wg_all(wg_collect, wg, nkstot, nks) ELSE wg_collect = wg ENDIF IF ( nks > 1 ) REWIND( iunigk ) ispresent(1:nsym) = .false. DO ikq =1,nkqs isym = abs(index_sym(ikq)) IF (.not. ispresent(isym) ) THEN ispresent(isym) = .true. IF ( mod(s(2, 1, isym) * nr1, nr2) /= 0 .or. & mod(s(3, 1, isym) * nr1, nr3) /= 0 .or. & mod(s(1, 2, isym) * nr2, nr1) /= 0 .or. & mod(s(3, 2, isym) * nr2, nr3) /= 0 .or. & mod(s(1, 3, isym) * nr3, nr1) /= 0 .or. & mod(s(2, 3, isym) * nr3, nr2) /= 0 ) THEN CALL errore ('exxinit',' EXX smooth grid is not compatible with symmetry: change ecutfock',isym) ENDIF DO ir=1, nxxs rir(ir,isym) = ir ENDDO DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s(1,1,isym), ftau(1,isym), i, j, k, nr1,nr2,nr3, ri, rj, rk ) ir = i + ( j-1)*nr1x + ( k-1)*nr1x*nr2x rir(ir,isym) = ri + (rj-1)*nr1x + (rk-1)*nr1x*nr2x ENDDO ENDDO ENDDO ENDIF ENDDO IF (noncolin) THEN exxbuff_nc=(0.0_DP,0.0_DP) ELSE exxbuff=(0.0_DP,0.0_DP) ENDIF ! set appropriately the x_occupation DO ik =1,nkstot IF(ABS(wk_collect(ik)) > eps_occ ) THEN x_occupation(1:nbnd,ik) = wg_collect (1:nbnd, ik) / wk_collect(ik) ELSE x_occupation(1:nbnd,ik) = 0._dp ENDIF ENDDO ! ! This is parallelized over pool. Each pool computes only its k-points ! KPOINTS_LOOP : & DO ik = 1, nks npw = ngk (ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer(tempevc, nwordwfc, iunwfc, ik) ELSE tempevc(1:npwx*npol,1:nbnd) = evc(1:npwx*npol,1:nbnd) ENDIF ! ! only useful for npool>1, but always work current_ik=find_current_k(ik, nkstot, nks) ! GAMMA_OR_NOT : & IF (gamma_only) THEN half_nbnd = ( nbnd + 1 )/2 h_ibnd = 0 do ibnd =1, nbnd, 2 h_ibnd = h_ibnd + 1 ! temppsic(:) = ( 0._dp, 0._dp ) ! if (ibnd < nbnd) then temppsic(exx_fft_g2r%nlt(1:exx_fft_g2r%npwt)) = tempevc(1:exx_fft_g2r%npwt,ibnd) & + ( 0.D0, 1.D0 ) * tempevc(1:exx_fft_g2r%npwt,ibnd+1) temppsic(exx_fft_g2r%nltm(1:exx_fft_g2r%npwt)) = CONJG( tempevc(1:exx_fft_g2r%npwt,ibnd) ) & + ( 0.D0, 1.D0 ) * CONJG( tempevc(1:exx_fft_g2r%npwt,ibnd+1) ) else temppsic(exx_fft_g2r%nlt (1:exx_fft_g2r%npwt)) = tempevc(1:exx_fft_g2r%npwt,ibnd) temppsic(exx_fft_g2r%nltm(1:exx_fft_g2r%npwt)) = CONJG( tempevc(1:exx_fft_g2r%npwt,ibnd) ) end if CALL invfft ('CustomWave', temppsic, exx_fft_g2r%dfftt) DO ikq=1,nkqs IF (index_xk(ikq) .ne. current_ik) cycle isym = abs(index_sym(ikq) ) #ifdef __MPI CALL cgather_custom(temppsic,temppsic_all, exx_fft_g2r%dfftt) IF ( me_bgrp == 0 ) & psic_all(1:nxxs) = temppsic_all(rir(1:nxxs,isym)) CALL cscatter_custom(psic_all,psic, exx_fft_g2r%dfftt) #else psic(1:nrxxs) = temppsic(rir(1:nrxxs,isym)) #endif IF (index_sym(ikq) < 0 ) & CALL errore('exxinit','index_sym < 0 with gamma_only (!?)',1) exxbuff(1:nrxxs,h_ibnd,ikq)=psic(1:nrxxs) !CALL davcio(psic,exx_nwordwfc,iunexx,(ikq-1)*half_nbnd+h_ibnd,1) ENDDO END DO ! ELSE GAMMA_OR_NOT ! IBND_LOOP_K : & DO ibnd =1, nbnd IF (noncolin) THEN temppsic_nc(:,:) = ( 0._dp, 0._dp ) temppsic_nc(nls(igk(1:npw)),1) = tempevc(1:npw,ibnd) CALL invfft ('Wave', temppsic_nc(:,1), dffts) temppsic_nc(nls(igk(1:npw)),2) = tempevc(npwx+1:npwx+npw,ibnd) CALL invfft ('Wave', temppsic_nc(:,2), dffts) ELSE temppsic(:) = ( 0._dp, 0._dp ) temppsic(nls(igk(1:npw))) = tempevc(1:npw,ibnd) CALL invfft ('Wave', temppsic, dffts) ENDIF ! DO ikq=1,nkqs ! IF (index_xk(ikq) /= current_ik) CYCLE isym = abs(index_sym(ikq) ) ! IF (noncolin) THEN ! noncolinear #ifdef __MPI DO ipol=1,npol CALL cgather_smooth(temppsic_nc(:,ipol), temppsic_all_nc(:,ipol)) ENDDO IF ( me_bgrp == 0 ) THEN psic_all_nc(:,:) = (0.0_DP, 0.0_DP) DO ipol=1,npol DO jpol=1,npol psic_all_nc(:,ipol)=psic_all_nc(:,ipol) & + CONJG(d_spin(jpol,ipol,isym))* & temppsic_all_nc(rir(:,isym),jpol) ENDDO ENDDO ENDIF DO ipol=1,npol CALL cscatter_smooth(psic_all_nc(:,ipol), psic_nc(:,ipol)) ENDDO #else psic_nc(:,:) = (0._dp, 0._dp) DO ipol=1,npol DO jpol=1,npol psic_nc(:,ipol) = psic_nc(:,ipol) + & CONJG(d_spin(jpol,ipol,isym))* & temppsic_nc(rir(:,isym),jpol) END DO END DO #endif exxbuff_nc(:,:,ibnd,ikq)=psic_nc(:,:) ELSE ! noncolinear #ifdef __MPI CALL cgather_smooth(temppsic,temppsic_all) IF ( me_bgrp == 0 ) & psic_all(1:nxxs) = temppsic_all(rir(1:nxxs,isym)) CALL cscatter_smooth(psic_all,psic) #else psic(1:nrxxs) = temppsic(rir(1:nrxxs,isym)) #endif IF (index_sym(ikq) < 0 ) psic(1:nrxxs) = CONJG(psic(1:nrxxs)) exxbuff(1:nrxxs,ibnd,ikq)=psic(1:nrxxs) ! !CALL davcio(psic,exx_nwordwfc,iunexx,(ikq-1)*nbnd+ibnd,1) ENDIF ! noncolinear ENDDO ! ENDDO & IBND_LOOP_K ! ENDIF & GAMMA_OR_NOT ENDDO & KPOINTS_LOOP ! ! All pools must have the complete set of wavefunctions (i.e. from every kpoint) IF (npool>1) THEN IF (noncolin) THEN CALL mp_sum(exxbuff_nc, inter_pool_comm) ELSE CALL mp_sum(exxbuff, inter_pool_comm) END IF END IF ! ! DEALLOCATE(tempevc) DEALLOCATE(ispresent,rir) IF (noncolin) THEN DEALLOCATE(temppsic_nc, psic_nc) #ifdef __MPI DEALLOCATE(temppsic_all_nc, psic_all_nc) #endif ELSE DEALLOCATE(temppsic, psic) #ifdef __MPI DEALLOCATE(temppsic_all, psic_all) #endif ENDIF CALL stop_clock ('exxinit') ! !----------------------------------------------------------------------- END SUBROUTINE exxinit !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE vexx(lda, n, m, psi, hpsi) !----------------------------------------------------------------------- !This routine calculates V_xx \Psi ! ... This routine computes the product of the Hamiltonian ! ... matrix with m wavefunctions contained in psi ! ! ... input: ! ... lda leading dimension of arrays psi, spsi, hpsi ! ... n true dimension of psi, spsi, hpsi ! ... m number of states psi ! ... psi ! ! ... output: ! ... hpsi Vexx*psi ! USE constants, ONLY : fpi, e2, pi USE cell_base, ONLY : alat, omega, bg, at, tpiba USE symm_base, ONLY : nsym, s USE gvect, ONLY : ngm USE gvecs, ONLY : nls, nlsm, ngms, doublegrid USE wvfct, ONLY : nbnd, npwx, npw, igk, current_k, wg USE control_flags, ONLY : gamma_only USE klist, ONLY : xk, wk, nks, nkstot USE lsda_mod, ONLY : lsda, current_spin, isk USE gvect, ONLY : g, nl USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! USE parallel_include USE mp_global, ONLY : nproc, ibnd_start, ibnd_end, mpime, & inter_bgrp_comm, intra_bgrp_comm, my_bgrp_id, nbgrp USE mp, ONLY : mp_sum, mp_barrier USE gvect, ONLY : ecutrho USE wavefunctions_module, ONLY : psic IMPLICIT NONE INTEGER :: lda, n, m COMPLEX(DP) :: psi(lda*npol,m) COMPLEX(DP) :: hpsi(lda*npol,m) ! ! local variables COMPLEX(DP),ALLOCATABLE :: tempphic(:), temppsic(:), result(:) COMPLEX(DP),ALLOCATABLE :: tempphic_nc(:,:), temppsic_nc(:,:), & result_nc(:,:) ! COMPLEX(DP),ALLOCATABLE :: rhoc(:), vc(:), deexx(:)!,:,:) REAL(DP), ALLOCATABLE :: fac(:) INTEGER :: ibnd, ik, im , ikq, iq, isym, ipol INTEGER :: h_ibnd, half_nbnd, nrxxs INTEGER :: current_ik INTEGER :: ibnd_loop_start REAL(DP) :: x1, x2, xkp(3) REAL(DP) :: xk_cryst(3), sxk(3), xkq(3) ! temp array for vcut_spheric INTEGER :: find_current_k CALL start_clock ('vexx') IF(gamma_only) THEN ALLOCATE( fac(exx_fft_r2g%ngmt) ) nrxxs= exx_fft_g2r%dfftt%nnr ELSE ALLOCATE( fac(ngm) ) nrxxs = dffts%nnr ENDIF IF (noncolin) THEN ALLOCATE(tempphic_nc(nrxxs,npol), temppsic_nc(nrxxs,npol), result_nc(nrxxs,npol)) ELSE ALLOCATE( tempphic(nrxxs), temppsic(nrxxs), result(nrxxs) ) ENDIF ALLOCATE(rhoc(nrxxs), vc(nrxxs)) ! current_ik=find_current_k(current_k,nkstot,nks) xkp = xk_collect(:,current_ik) ! ! This is to stop numerical inconsistencies creeping in through the band parallelization. ! IF(my_bgrp_id>0) THEN hpsi=(0.0_DP,0.0_DP) psi=(0.0_DP,0.0_DP) ENDIF IF (nbgrp>1) THEN CALL mp_sum(hpsi,inter_bgrp_comm) CALL mp_sum(psi,inter_bgrp_comm) ENDIF ! LOOP_ON_PSI_BANDS : & DO im=1,m !for each band of psi (the k cycle is outside band) IF (noncolin) THEN temppsic_nc = ( 0.D0, 0.D0 ) ELSE temppsic(:) = ( 0.D0, 0.D0 ) ENDIF IF(gamma_only) THEN ! temppsic(exx_fft_g2r%nlt(1:exx_fft_g2r%npwt)) =& & psi(1:exx_fft_g2r%npwt, im) temppsic(exx_fft_g2r%nltm(1:exx_fft_g2r%npwt)) =& & CONJG(psi(1:exx_fft_g2r%npwt,im)) ! CALL invfft ('CustomWave', temppsic, exx_fft_g2r%dfftt) ! ELSE IF (noncolin) THEN temppsic_nc(nls(igk(1:npw)),1) = psi(1:npw,im) CALL invfft ('Wave', temppsic_nc(:,1), dffts) temppsic_nc(nls(igk(1:npw)),2) = psi(npwx+1:npwx+npw,im) CALL invfft ('Wave', temppsic_nc(:,2), dffts) ELSE temppsic(nls(igk(1:npw))) = psi(1:npw,im) CALL invfft ('Wave', temppsic, dffts) ENDIF ENDIF IF (noncolin) THEN result_nc(:,:) = (0.0_DP,0.0_DP) ELSE result(:) = (0._dp,0._dp) ENDIF INTERNAL_LOOP_ON_Q : & DO iq=1,nqs ! ikq = index_xkq(current_ik,iq) ik = index_xk(ikq) isym = ABS(index_sym(ikq)) xkq = xkq_collect(:,ikq) ! ! calculate the 1/|r-r'| (actually, k+q+g) factor and place it in fac IF(gamma_only) THEN CALL g2_convolution(exx_fft_r2g%ngmt, exx_fft_r2g%gt, xk(:,current_k), xkq, fac) ELSE CALL g2_convolution(ngms, g, xk(:,current_k), xkq, fac) ENDIF ! GAMMA_OR_NOT : & IF (gamma_only) THEN half_nbnd = ( nbnd + 1 ) / 2 h_ibnd = ibnd_start/2 IF(MOD(ibnd_start,2)==0) THEN h_ibnd=h_ibnd-1 ibnd_loop_start=ibnd_start-1 ELSE ibnd_loop_start=ibnd_start ENDIF IBND_LOOP_GAM : & DO ibnd=ibnd_loop_start,ibnd_end, 2 !for each band of psi h_ibnd = h_ibnd + 1 IF( ibnd < ibnd_start ) THEN x1 = 0._dp ELSE x1 = x_occupation(ibnd, ik) ENDIF IF( ibnd == ibnd_end) THEN x2 = 0._dp ELSE x2 = x_occupation(ibnd+1, ik) ENDIF IF ( ABS(x1) < 1.d-6 .AND. ABS(x2) < 1.d-6 ) CYCLE ! !loads the phi from file tempphic = exxbuff(:,h_ibnd,ikq) !CALL davcio ( tempphic, exx_nwordwfc, iunexx, & ! (ikq-1)*half_nbnd+h_ibnd, -1 ) !calculate rho in real space rhoc(:)=(0._dp,0._dp) rhoc(1:nrxxs)=CONJG(tempphic(1:nrxxs))*temppsic(1:nrxxs) / omega !brings it to G-space IF (ecutfock == ecutrho) THEN CALL fwfft ('Custom', rhoc, exx_fft_r2g%dfftt) vc(:) = ( 0.D0, 0.D0 ) vc(exx_fft_r2g%nlt(1:exx_fft_r2g%ngmt)) =& & fac(1:exx_fft_r2g%ngmt) * rhoc(exx_fft_r2g& &%nlt(1:exx_fft_r2g%ngmt)) vc(exx_fft_r2g%nltm(1:exx_fft_r2g%ngmt)) =& & fac(1:exx_fft_r2g%ngmt) * rhoc(exx_fft_r2g& &%nltm(1:exx_fft_r2g%ngmt)) !brings back v in real space CALL invfft ('Custom', vc, exx_fft_r2g%dfftt) ELSE CALL fwfft ('CustomWave', rhoc, exx_fft_r2g%dfftt) vc(:) = ( 0.D0, 0.D0 ) vc(exx_fft_r2g%nlt(1:exx_fft_r2g%npwt)) =& & fac(1:exx_fft_r2g%npwt) * rhoc(exx_fft_r2g& &%nlt(1:exx_fft_r2g%npwt)) vc(exx_fft_r2g%nltm(1:exx_fft_r2g%npwt)) =& & fac(1:exx_fft_r2g%npwt) * rhoc(exx_fft_r2g& &%nltm(1:exx_fft_r2g%npwt)) !brings back v in real space CALL invfft ('CustomWave', vc, exx_fft_r2g%dfftt) ENDIF vc = CMPLX( x1 * DBLE (vc), x2 * AIMAG(vc) ,kind=DP)/ nqs !accumulates over bands and k points result(1:nrxxs) = result(1:nrxxs) + DBLE( vc(1:nrxxs) & &* tempphic(1:nrxxs)) END DO & IBND_LOOP_GAM ! ELSE GAMMA_OR_NOT ! IBND_LOOP_K : & DO ibnd=ibnd_start,ibnd_end !for each band of psi IF ( ABS(x_occupation(ibnd,ik)) < eps_occ) CYCLE IBND_LOOP_K ! !loads the phi from file ! IF (noncolin) THEN tempphic_nc(:,:)=exxbuff_nc(:,:,ibnd,ikq) ELSE tempphic(:)=exxbuff(:,ibnd,ikq) ENDIF !calculate rho in real space IF (noncolin) THEN rhoc(:) = ( CONJG(tempphic_nc(:,1))*temppsic_nc(:,1) + & CONJG(tempphic_nc(:,2))*temppsic_nc(:,2) )/omega ELSE rhoc(:)=CONJG(tempphic(:))*temppsic(:) / omega ENDIF !brings it to G-space CALL fwfft('Smooth', rhoc, dffts) vc(:) = ( 0._dp, 0._dp ) vc(nls(1:ngms)) = fac(1:ngms) * rhoc(nls(1:ngms)) vc = vc * x_occupation(ibnd,ik) / nqs ! !brings back v in real space CALL invfft ('Smooth', vc, dffts) !accumulates over bands and k points IF (noncolin) THEN DO ipol=1,npol result_nc(:,ipol)= result_nc(:,ipol) & +vc(:) * tempphic_nc(:,ipol) ENDDO ELSE result(1:nrxxs)=result(1:nrxxs)+vc(1:nrxxs)*tempphic(1:nrxxs) END IF END DO & IBND_LOOP_K END IF & GAMMA_OR_NOT ! END DO & INTERNAL_LOOP_ON_Q ! IF (noncolin) THEN CALL mp_sum( result_nc(1:nrxxs,1:npol), inter_bgrp_comm) ELSE CALL mp_sum( result(1:nrxxs), inter_bgrp_comm) END IF ! !brings back result in G-space IF( gamma_only) THEN ! CALL fwfft( 'CustomWave' , result, exx_fft_g2r%dfftt ) ! hpsi(1:npw,im)=hpsi(1:npw,im) - exxalfa*result(exx_fft_g2r%nlt(1:npw)) ! ELSE IF (noncolin) THEN !brings back result in G-space CALL fwfft ('Wave', result_nc(:,1), dffts) CALL fwfft ('Wave', result_nc(:,2), dffts) !adds it to hpsi hpsi(1:n,im) = hpsi(1:n,im) - exxalfa*result_nc(nls(igk(1:n)),1) hpsi(lda+1:lda+n,im) = hpsi(lda+1:lda+n,im) - exxalfa*result_nc(nls(igk(1:n)),2) ELSE CALL fwfft ('Wave', result, dffts) !adds it to hpsi hpsi(1:npw,im)=hpsi(1:npw,im) - exxalfa*result(nls(igk(1:npw))) ENDIF ENDIF ! END DO & LOOP_ON_PSI_BANDS IF (noncolin) THEN DEALLOCATE(tempphic_nc, temppsic_nc, result_nc) ELSE DEALLOCATE(tempphic, temppsic, result) END IF DEALLOCATE(rhoc, vc, fac ) ! CALL stop_clock ('vexx') ! !----------------------------------------------------------------------- END SUBROUTINE vexx !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE g2_convolution(ngm, g, xk, xkq, fac) !----------------------------------------------------------------------- ! This routine calculates the 1/|r-r'| part of the exact exchange ! expression in reciprocal space (the G^-2 factor). ! It then regularizes it according to the specified recipe USE kinds, ONLY : DP USE cell_base, ONLY : tpiba, at USE constants, ONLY : fpi, e2, pi IMPLICIT NONE INTEGER, INTENT(IN) :: ngm ! Number of G vectors REAL(DP), INTENT(IN) :: g(3,ngm) ! Cartesian components of G vectors REAL(DP), INTENT(IN) :: xk(3) ! current k vector REAL(DP), INTENT(IN) :: xkq(3) ! current q vector REAL(DP), INTENT(INOUT) :: fac(ngm) ! Calculated convolution !Local variables INTEGER :: ig !Counters REAL(DP) :: q(3), qq, x !CALL start_clock ('vexx_ngmloop') DO ig=1,ngm ! q(:)= xk(:) - xkq(:) + g(:,ig) ! q = q * tpiba ! qq = SUM(q(:)**2) ! IF (x_gamma_extrapolation) THEN on_double_grid = .TRUE. x= 0.5d0/tpiba*(q(1)*at(1,1)+q(2)*at(2,1)+q(3)*at(3,1))*nq1 on_double_grid = on_double_grid .AND. (ABS(x-NINT(x)) eps_qdiv) THEN ! IF ( erfc_scrlen > 0 ) THEN fac(ig)=e2*fpi/qq*(1._dp-EXP(-qq/4.d0/erfc_scrlen**2)) * grid_factor ELSEIF( erf_scrlen > 0 ) THEN fac(ig)=e2*fpi/qq*(EXP(-qq/4.d0/erf_scrlen**2)) * grid_factor ELSE fac(ig)=e2*fpi/( qq + yukawa ) * grid_factor END IF IF (on_double_grid) fac(ig) = 0._dp ! ELSE ! fac(ig)= - exxdiv ! or rather something ELSE (see F.Gygi) ! IF ( yukawa > 0._dp.AND. .NOT. x_gamma_extrapolation ) & fac(ig) = fac(ig) + e2*fpi/( qq + yukawa ) IF( erfc_scrlen > 0._dp.AND. .NOT. x_gamma_extrapolation ) fac(ig) = fac(ig) + e2*pi/(erfc_scrlen**2) ! ENDIF ! ENDDO !CALL stop_clock ('vexx_ngmloop') END SUBROUTINE g2_convolution !----------------------------------------------------------------------- !----------------------------------------------------------------------- FUNCTION exxenergy () !----------------------------------------------------------------------- ! This function is called to correct the deband value and have ! the correct energy USE io_files, ONLY : iunigk,iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, current_k USE control_flags, ONLY : gamma_only USE gvect, ONLY : gstart USE wavefunctions_module, ONLY : evc USE lsda_mod, ONLY : lsda, current_spin, isk USE klist, ONLY : ngk, nks, xk USE mp_global, ONLY : inter_pool_comm, inter_bgrp_comm, intra_bgrp_comm, nbgrp USE mp, ONLY : mp_sum IMPLICIT NONE REAL(DP) :: exxenergy, energy INTEGER :: ibnd, ik COMPLEX(DP) :: vxpsi ( npwx*npol, nbnd ), psi(npwx*npol,nbnd) COMPLEX(DP),EXTERNAL :: ZDOTC CALL start_clock ('exxenergy') energy=0._dp IF ( nks > 1 ) REWIND( iunigk ) DO ik=1,nks current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer(psi, nwordwfc, iunwfc, ik) ELSE psi(1:npwx*npol,1:nbnd) = evc(1:npwx*npol,1:nbnd) END IF ! vxpsi(:,:) = (0._dp, 0._dp) CALL vexx(npwx,npw,nbnd,psi,vxpsi) DO ibnd=1,nbnd energy = energy + wg(ibnd,ik) * ZDOTC(npw,psi(1,ibnd),1,vxpsi(1,ibnd),1) IF (noncolin) energy = energy + & wg(ibnd,ik) * ZDOTC(npw,psi(npwx+1,ibnd),1,vxpsi(npwx+1,ibnd),1) ENDDO IF (gamma_only .and. gstart == 2) THEN DO ibnd=1,nbnd energy = energy - & 0.5_dp * wg(ibnd,ik) * CONJG(psi(1,ibnd)) * vxpsi(1,ibnd) ENDDO ENDIF END DO ! IF (gamma_only) energy = 2 * energy CALL mp_sum( energy, intra_bgrp_comm) CALL mp_sum( energy, inter_pool_comm ) ! exxenergy = energy ! CALL stop_clock ('exxenergy') !----------------------------------------------------------------------- END FUNCTION exxenergy !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- FUNCTION exxenergy2() !----------------------------------------------------------------------- ! USE constants, ONLY : fpi, e2, pi USE io_files, ONLY : iunigk,iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE cell_base, ONLY : alat, omega, bg, at, tpiba USE symm_base, ONLY : nsym, s USE gvect, ONLY : ngm, gstart, g, nl USE gvecs, ONLY : ngms, nls, nlsm, doublegrid USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE klist, ONLY : xk, ngk, nks, nkstot USE lsda_mod, ONLY : lsda, current_spin, isk USE mp_global, ONLY : inter_pool_comm, inter_image_comm, inter_bgrp_comm, intra_bgrp_comm, nbgrp USE mp_global, ONLY : my_image_id, nimage, ibnd_start, ibnd_end USE mp, ONLY : mp_sum USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ecutrho USE klist, ONLY : wk IMPLICIT NONE ! REAL(DP) :: exxenergy2, energy ! ! local variables COMPLEX(DP), allocatable :: tempphic(:), temppsic(:) COMPLEX(DP), ALLOCATABLE :: tempphic_nc(:,:), temppsic_nc(:,:) COMPLEX(DP), ALLOCATABLE :: rhoc(:) REAL(DP), ALLOCATABLE :: fac(:) INTEGER :: jbnd, ibnd, ik, ikk, ig, ikq, iq, isym INTEGER :: half_nbnd, h_ibnd, nrxxs, current_ik REAL(DP) :: x1, x2 REAL(DP) :: xk_cryst(3), sxk(3), xkq(3), vc ! temp array for vcut_spheric INTEGER,EXTERNAL :: find_current_k COMPLEX(kind=DP), ALLOCATABLE :: psi_t(:), prod_tot(:) INTEGER, ALLOCATABLE :: igkt(:) ! CALL start_clock ('exxen2') IF(gamma_only) THEN nrxxs= exx_fft_g2r%dfftt%nnr ALLOCATE( fac(exx_fft_r2g%ngmt) ) ELSE nrxxs = dffts%nnr ALLOCATE( fac(ngms) ) ENDIF IF (noncolin) THEN ALLOCATE(tempphic_nc(nrxxs,npol), temppsic_nc(nrxxs,npol)) ELSE ALLOCATE(tempphic(nrxxs), temppsic(nrxxs)) ENDIF ALLOCATE( rhoc(nrxxs) ) energy=0._dp IF ( nks > 1 ) REWIND( iunigk ) IKK_LOOP : & DO ikk=1,nks current_ik=find_current_k(ikk,nkstot,nks) ! IF ( lsda ) current_spin = isk(ikk) npw = ngk (ikk) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer (evc, nwordwfc, iunwfc, ikk) END IF ! JBND_LOOP : & DO jbnd = ibnd_start, ibnd_end !for each band of psi (the k cycle is outside band) IF (noncolin) THEN temppsic_nc = ( 0._dp, 0._dp ) ELSE temppsic = ( 0._dp, 0._dp ) ENDIF IF(gamma_only) THEN ! temppsic(exx_fft_g2r%nlt(1:exx_fft_g2r%npwt)) =& & evc(1:exx_fft_g2r%npwt,jbnd) temppsic(exx_fft_g2r%nltm(1:exx_fft_g2r%npwt)) =& & CONJG(evc(1:exx_fft_g2r%npwt,jbnd)) CALL invfft ('CustomWave', temppsic, exx_fft_g2r%dfftt) ! ELSE IF (noncolin) THEN temppsic_nc(nls(igk(1:npw)),1) = evc(1:npw,jbnd) CALL invfft ('Wave', temppsic_nc(:,1), dffts) temppsic_nc(nls(igk(1:npw)),2) = evc(npwx+1:npwx+npw,jbnd) CALL invfft ('Wave', temppsic_nc(:,2), dffts) ELSE temppsic(nls(igk(1:npw))) = evc(1:npw,jbnd) CALL invfft ('Wave', temppsic, dffts) ENDIF ENDIF IQ_LOOP : & DO iq = 1,nqs ! ikq = index_xkq(current_ik,iq) ik = index_xk(ikq) isym = abs(index_sym(ikq)) ! xkq = xkq_collect(:,ikq) ! IF(gamma_only) THEN CALL g2_convolution(exx_fft_r2g%ngmt, exx_fft_r2g%gt, xk(:,current_ik), xkq, fac) fac(exx_fft_r2g%gstart_t:) = 2.d0 * fac(exx_fft_r2g%gstart_t:) ELSE CALL g2_convolution(ngms, g, xk(:,current_ik), xkq, fac) ENDIF GAMMA_OR_NOT : & IF (gamma_only) THEN half_nbnd = ( nbnd + 1) / 2 h_ibnd = 0 ! IBND_LOOP_GAM : & DO ibnd=1,nbnd,2 !for each band of psi h_ibnd = h_ibnd + 1 x1 = x_occupation(ibnd,ik) IF ( ibnd < nbnd ) THEN x2 = x_occupation(ibnd+1,ik) ELSE x2 = 0._dp ENDIF IF ( abs(x1) < 1.d-6 .and. abs(x2) < 1.d-6 ) cycle ! !loads the phi from file ! tempphic(1:nrxxs)=exxbuff(1:nrxxs,h_ibnd,ikq) ! !CALL davcio (tempphic, exx_nwordwfc, iunexx, & ! (ikq-1)*half_nbnd+h_ibnd, -1 ) !calculate rho in real space rhoc(:)=(0._dp, 0._dp) rhoc(1:nrxxs)=CONJG(tempphic(1:nrxxs))*temppsic(1:nrxxs) / omega IF_ECUTFOCK : & IF (ecutfock == ecutrho) THEN !brings it to G-space CALL fwfft ('Custom', rhoc, exx_fft_r2g%dfftt) vc = 0._dp DO ig=1,exx_fft_r2g%ngmt vc = vc + fac(ig) * x1 * & ABS( rhoc(exx_fft_r2g%nlt(ig)) + CONJG(rhoc(exx_fft_r2g%nltm(ig))) )**2 vc = vc + fac(ig) * x2 * & ABS( rhoc(exx_fft_r2g%nlt(ig)) - CONJG(rhoc(exx_fft_r2g%nltm(ig))) )**2 END DO ! ELSE IF_ECUTFOCK ! !brings it to G-space CALL fwfft ('CustomWave', rhoc, exx_fft_r2g%dfftt) vc = 0._dp DO ig=1,exx_fft_r2g%npwt vc = vc + fac(ig) * x1 * & ABS( rhoc(exx_fft_r2g%nlt(ig)) + CONJG(rhoc(exx_fft_r2g%nltm(ig))) )**2 vc = vc + fac(ig) * x2 * & ABS( rhoc(exx_fft_r2g%nlt(ig)) - CONJG(rhoc(exx_fft_r2g%nltm(ig))) )**2 END DO ENDIF& IF_ECUTFOCK ! vc = vc * omega * 0.25d0 / nqs energy = energy - exxalfa * vc * wg(jbnd,ikk) ! END DO & IBND_LOOP_GAM ! ELSE GAMMA_OR_NOT ! IBND_LOOP_K : & DO ibnd=1,nbnd !for each band of psi IF ( abs(x_occupation(ibnd,ik)) < 1.d-6) cycle ! !loads the phi from file ! IF (noncolin) THEN tempphic_nc(:,:)=exxbuff_nc(:,:,ibnd,ikq) rhoc(:)=(CONJG(tempphic_nc(:,1))*temppsic_nc(:,1) + & CONJG(tempphic_nc(:,2))*temppsic_nc(:,2) )/omega ELSE tempphic(:)=exxbuff(:,ibnd,ikq) !CALL davcio (tempphic, exx_nwordwfc, iunexx, & ! (ikq-1)*nbnd+ibnd, -1 ) !calculate rho in real space rhoc(:)=CONJG(tempphic(:))*temppsic(:) / omega ENDIF !brings it to G-space CALL fwfft ('Smooth', rhoc, dffts) ! vc = 0._dp DO ig=1,ngms vc = vc + fac(ig) * rhoc(nls(ig)) * CONJG(rhoc(nls(ig))) ENDDO vc = vc * omega * x_occupation(ibnd,ik) / nqs energy = energy - exxalfa * vc * wg(jbnd,ikk) END DO & IBND_LOOP_K END IF & GAMMA_OR_NOT ! END DO IQ_LOOP END DO JBND_LOOP END DO IKK_LOOP IF (noncolin) THEN DEALLOCATE(tempphic_nc, temppsic_nc) ELSE DEALLOCATE(tempphic, temppsic) ENDIF DEALLOCATE(rhoc, fac ) ! ! Was used for image parallelization ! CALL mp_sum( energy, inter_image_comm ) ! CALL mp_sum( energy, inter_bgrp_comm ) CALL mp_sum( energy, intra_bgrp_comm ) CALL mp_sum( energy, inter_pool_comm ) ! exxenergy2 = energy ! CALL stop_clock ('exxen2') !----------------------------------------------------------------------- END FUNCTION exxenergy2 !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- FUNCTION exx_divergence () !----------------------------------------------------------------------- USE constants, ONLY : fpi, e2, pi USE cell_base, ONLY : bg, at, alat, omega USE gvect, ONLY : ngm, g USE wvfct, ONLY : ecutwfc USE io_global, ONLY : stdout USE control_flags, ONLY : gamma_only USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE REAL(DP) :: exx_divergence ! local variables INTEGER :: iq1,iq2,iq3, ig REAL(DP) :: div, dq1, dq2, dq3, xq(3), q_, qq, tpiba2, alpha, x, q(3) INTEGER :: nqq, iq REAL(DP) :: aa, dq CALL start_clock ('exx_div') tpiba2 = (fpi / 2.d0 / alat) **2 alpha = 10._dp * tpiba2 / ecutwfc IF ( .NOT. use_regularization ) THEN exx_divergence = 0._dp return END IF dq1= 1._dp/DBLE(nq1) dq2= 1._dp/DBLE(nq2) dq3= 1._dp/DBLE(nq3) div = 0._dp DO iq1=1,nq1 DO iq2=1,nq2 DO iq3=1,nq3 xq(:) = bg(:,1) * (iq1-1) * dq1 + & bg(:,2) * (iq2-1) * dq2 + & bg(:,3) * (iq3-1) * dq3 DO ig=1,ngm q(1)= xq(1) + g(1,ig) q(2)= xq(2) + g(2,ig) q(3)= xq(3) + g(3,ig) qq = ( q(1)**2 + q(2)**2 + q(3)**2 ) IF (x_gamma_extrapolation) THEN on_double_grid = .true. x= 0.5d0*(q(1)*at(1,1)+q(2)*at(2,1)+q(3)*at(3,1))*nq1 on_double_grid = on_double_grid .and. (abs(x-nint(x)) 1.d-8 ) THEN IF ( erfc_scrlen > 0 ) THEN div = div + exp( -alpha * qq) / qq * & (1._dp-exp(-qq*tpiba2/4.d0/erfc_scrlen**2)) * grid_factor ELSEIF ( erf_scrlen >0 ) THEN div = div + exp( -alpha * qq) / qq * & (exp(-qq*tpiba2/4.d0/erf_scrlen**2)) * grid_factor ELSE div = div + exp( -alpha * qq) / (qq + yukawa/tpiba2) & * grid_factor ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ENDDO CALL mp_sum( div, intra_bgrp_comm ) IF (gamma_only) THEN div = 2.d0 * div ENDIF IF ( .not. x_gamma_extrapolation ) THEN IF ( yukawa > 0._dp) THEN div = div + tpiba2/yukawa ELSEIF( erfc_scrlen > 0._dp ) THEN div = div + tpiba2/4.d0/erfc_scrlen**2 ELSE div = div - alpha ENDIF ENDIF div = div * e2 * fpi / tpiba2 / nqs alpha = alpha / tpiba2 nqq = 100000 dq = 5.0d0 / sqrt(alpha) /nqq aa = 0._dp DO iq=0, nqq q_ = dq * (iq+0.5d0) qq = q_ * q_ IF ( erfc_scrlen > 0 ) THEN aa = aa -exp( -alpha * qq) * exp(-qq/4.d0/erfc_scrlen**2) * dq ELSEIF ( erf_scrlen > 0 ) THEN aa = 0._dp ELSE aa = aa - exp( -alpha * qq) * yukawa / (qq + yukawa) * dq ENDIF ENDDO aa = aa * 8.d0 /fpi aa = aa + 1._dp/sqrt(alpha*0.25d0*fpi) if( erf_scrlen > 0) aa = 1._dp/sqrt((alpha+1._dp/4.d0/erf_scrlen**2)*0.25d0*fpi) div = div - e2*omega * aa ! div = div - e2*omega/sqrt(alpha*0.25d0*fpi) exx_divergence = div * nqs CALL stop_clock ('exx_div') return !----------------------------------------------------------------------- END FUNCTION exx_divergence !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- FUNCTION exx_stress() !----------------------------------------------------------------------- ! ! This is Eq.(10) of PRB 73, 125120 (2006). ! USE constants, ONLY : fpi, e2, pi, tpi USE io_files, ONLY : iunigk,iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE cell_base, ONLY : alat, omega, bg, at, tpiba USE symm_base,ONLY : nsym, s USE gvect, ONLY : ngm USE gvecs, ONLY : nls, nlsm, doublegrid USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, current_k USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE klist, ONLY : xk, ngk, nks USE lsda_mod, ONLY : lsda, current_spin, isk USE gvect, ONLY : g, nl USE mp_global, ONLY : inter_pool_comm, inter_bgrp_comm, intra_bgrp_comm USE mp_global, ONLY : my_image_id, nimage USE mp, ONLY : mp_sum USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! ---- local variables ------------------------------------------------- IMPLICIT NONE REAL(DP) :: exx_stress(3,3), exx_stress_(3,3) complex(dp), allocatable :: tempphic(:), temppsic(:) complex(dp), allocatable :: rhoc(:) REAL(DP), allocatable :: fac(:), fac_tens(:,:,:), fac_stress(:) INTEGER :: jbnd, ibnd, ik, ikk, ig, ikq, iq, isym INTEGER :: half_nbnd, h_ibnd, nqi, iqi, beta, nrxxs REAL(DP) :: x1, x2 REAL(DP) :: qq, xk_cryst(3), sxk(3), xkq(3), vc(3,3), x, q(3) ! temp array for vcut_spheric REAL(DP) :: delta(3,3) CALL start_clock ('exx_stress') IF (npool>1) CALL errore('exx_stress','stress not available with pools',1) IF (noncolin) CALL errore('exx_stress','stress not available with noncolin',1) nrxxs = dffts%nnr delta = reshape( (/1._dp,0._dp,0._dp, 0._dp,1._dp,0._dp, 0._dp,0._dp,1._dp/), (/3,3/)) exx_stress_ = 0._dp allocate( tempphic(nrxxs), temppsic(nrxxs), rhoc(nrxxs), fac(ngm) ) allocate( fac_tens(3,3,ngm), fac_stress(ngm) ) IF ( nks > 1 ) rewind( iunigk ) ! ! Was used for image parallelization ! nqi=nqs ! nqi = nqs/nimage ! ! loop over k-points DO ikk = 1, nks current_k = ikk IF (lsda) current_spin = isk(ikk) npw = ngk(ikk) IF (nks > 1) THEN read(iunigk) igk CALL get_buffer(evc, nwordwfc, iunwfc, ikk) ENDIF ! loop over bands DO jbnd = 1, nbnd temppsic(:) = ( 0._dp, 0._dp ) temppsic(nls(igk(1:npw))) = evc(1:npw,jbnd) if(gamma_only) temppsic(nlsm(igk(1:npw))) = conjg(evc(1:npw,jbnd)) CALL invfft ('Wave', temppsic, dffts) DO iqi = 1, nqi ! ! Was used for image parallelization ! ! iq = iqi + nqi*my_image_id iq=iqi ! ikq = index_xkq(current_k,iq) ik = index_xk(ikq) isym = abs(index_sym(ikq)) ! FIXME: use cryst_to_cart and company as above.. xk_cryst(:)=at(1,:)*xk(1,ik)+at(2,:)*xk(2,ik)+at(3,:)*xk(3,ik) IF (index_sym(ikq) < 0) xk_cryst = -xk_cryst sxk(:) = s(:,1,isym)*xk_cryst(1) + & s(:,2,isym)*xk_cryst(2) + & s(:,3,isym)*xk_cryst(3) xkq(:) = bg(:,1)*sxk(1) + bg(:,2)*sxk(2) + bg(:,3)*sxk(3) !CALL start_clock ('exxen2_ngmloop') DO ig = 1, ngm q(1)= xk(1,current_k) - xkq(1) + g(1,ig) q(2)= xk(2,current_k) - xkq(2) + g(2,ig) q(3)= xk(3,current_k) - xkq(3) + g(3,ig) q = q * tpiba qq = ( q(1)*q(1) + q(2)*q(2) + q(3)*q(3) ) DO beta = 1, 3 fac_tens(1:3,beta,ig) = q(1:3)*q(beta) enddo IF (x_gamma_extrapolation) THEN on_double_grid = .true. x= 0.5d0/tpiba*(q(1)*at(1,1)+q(2)*at(2,1)+q(3)*at(3,1))*nq1 on_double_grid = on_double_grid .and. (abs(x-nint(x)) 1.d-8) fac(ig) = 2.d0 * fac(ig) ELSE IF ( use_coulomb_vcut_spheric ) THEN fac(ig) = vcut_spheric_get(vcut, q) fac_stress(ig) = 0._dp ! not implemented IF (gamma_only .and. qq > 1.d-8) fac(ig) = 2.d0 * fac(ig) ELSE IF (qq > 1.d-8) THEN IF ( erfc_scrlen > 0 ) THEN fac(ig)=e2*fpi/qq*(1._dp-exp(-qq/4.d0/erfc_scrlen**2)) * grid_factor fac_stress(ig) = -e2*fpi * 2.d0/qq**2 * ( & (1._dp+qq/4.d0/erfc_scrlen**2)*exp(-qq/4.d0/erfc_scrlen**2) - 1._dp) * & grid_factor ELSE fac(ig)=e2*fpi/( qq + yukawa ) * grid_factor fac_stress(ig) = 2.d0 * e2*fpi/(qq+yukawa)**2 * grid_factor ENDIF IF (gamma_only) fac(ig) = 2.d0 * fac(ig) IF (gamma_only) fac_stress(ig) = 2.d0 * fac_stress(ig) IF (on_double_grid) fac(ig) = 0._dp IF (on_double_grid) fac_stress(ig) = 0._dp ELSE fac(ig)= -exxdiv ! or rather something else (see f.gygi) fac_stress(ig) = 0._dp ! or -exxdiv_stress (not yet implemented) IF ( yukawa> 0._dp .and. .not. x_gamma_extrapolation) THEN fac(ig) = fac(ig) + e2*fpi/( qq + yukawa ) fac_stress(ig) = 2.d0 * e2*fpi/(qq+yukawa)**2 ENDIF IF (erfc_scrlen > 0._dp .and. .not. x_gamma_extrapolation) THEN fac(ig) = e2*fpi / (4.d0*erfc_scrlen**2) fac_stress(ig) = e2*fpi / (8.d0*erfc_scrlen**4) ENDIF ENDIF enddo !CALL stop_clock ('exxen2_ngmloop') IF (gamma_only) THEN half_nbnd = (nbnd + 1) / 2 h_ibnd = 0 DO ibnd=1,nbnd, 2 !for each band of psi h_ibnd = h_ibnd + 1 x1 = x_occupation(ibnd,ik) IF ( ibnd < nbnd ) THEN x2 = x_occupation(ibnd+1,ik) ELSE x2 = 0._dp ENDIF IF ( abs(x1) < 1.d-6 .and. abs(x2) < 1.d-6 ) cycle ! loads the phi from file tempphic(1:nrxxs)=exxbuff(1:nrxxs,h_ibnd,ikq) ! calculate rho in real space rhoc(:)=CONJG(tempphic(:))*temppsic(:) / omega ! brings it to G-space CALL fwfft ('Smooth', rhoc, dffts) vc = 0._dp DO ig=1,ngm vc(:,:) = vc(:,:) + fac(ig) * x1 * & abs( rhoc(nls(ig))+CONJG(rhoc(nlsm(ig))))**2 * & (fac_tens(:,:,ig)*fac_stress(ig)/2.d0 - delta(:,:)*fac(ig)) vc(:,:) = vc(:,:) + fac(ig) * x2 * & abs( rhoc(nls(ig))-CONJG(rhoc(nlsm(ig))))**2 * & (fac_tens(:,:,ig)*fac_stress(ig)/2.d0 - delta(:,:)*fac(ig)) enddo vc = vc / nqs / 4.d0 exx_stress_ = exx_stress_ + exxalfa * vc * wg(jbnd,ikk) enddo ELSE DO ibnd=1,nbnd !for each band of psi IF ( abs(x_occupation(ibnd,ik)) < 1.d-6) cycle ! loads the phi from file tempphic(1:nrxxs)=exxbuff(1:nrxxs,ibnd,ikq) ! ! calculate rho in real space rhoc(:)=CONJG(tempphic(:))*temppsic(:) / omega ! brings it to G-space CALL fwfft ('Smooth', rhoc, dffts) vc = 0._dp DO ig=1,ngm vc(:,:) = vc(:,:) + rhoc(nls(ig))*CONJG(rhoc(nls(ig))) * & (fac_tens(:,:,ig)*fac_stress(ig)/2.d0 - delta(:,:)*fac(ig)) ENDDO vc = vc * x_occupation(ibnd,ik) / nqs / 4.d0 exx_stress_ = exx_stress_ + exxalfa * vc * wg(jbnd,ikk) ENDDO ENDIF ! gamma or k-points enddo ! iqi enddo ! jbnd enddo ! ikk DEALLOCATE(tempphic, temppsic, rhoc, fac, fac_tens, fac_stress ) ! ! Was used for image parallelization ! CALL mp_sum( exx_stress_, inter_image_comm ) ! CALL mp_sum( exx_stress_, intra_bgrp_comm ) CALL mp_sum( exx_stress_, inter_pool_comm ) exx_stress = exx_stress_ CALL stop_clock ('exx_stress') !----------------------------------------------------------------------- END FUNCTION exx_stress !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- END MODULE exx !----------------------------------------------------------------------- espresso-5.0.2/PW/src/paw_init.f900000644000700200004540000005073712053145627015650 0ustar marsamoscm! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE paw_init ! USE kinds, ONLY : DP ! IMPLICIT NONE PUBLIC :: PAW_atomic_becsum PUBLIC :: PAW_init_onecenter !PUBLIC :: PAW_increase_lm ! <-- unused #ifdef __MPI PUBLIC :: PAW_post_init #endif PUBLIC :: allocate_paw_internals, deallocate_paw_internals LOGICAL,PARAMETER :: TIMING = .false. !!!========================================================================= CONTAINS ! Allocate PAW internal variables require for SCF calculation SUBROUTINE allocate_paw_internals USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat USE uspp_param, ONLY : nhm ! USE paw_variables ! IMPLICIT NONE ! ALLOCATE(ddd_paw(nhm*(nhm+1)/2, nat, nspin)) ! END SUBROUTINE allocate_paw_internals ! Called from clean_pw SUBROUTINE deallocate_paw_internals USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ntyp => nsp USE paw_variables ! IMPLICIT NONE INTEGER :: nt, na ! IF(allocated(ddd_paw)) DEALLOCATE (ddd_paw) ! IF(allocated(rad)) THEN DO nt = 1,ntyp IF(associated(rad(nt)%ww)) DEALLOCATE (rad(nt)%ww) IF(associated(rad(nt)%ylm)) DEALLOCATE (rad(nt)%ylm) IF(associated(rad(nt)%wwylm)) DEALLOCATE (rad(nt)%wwylm) IF(associated(rad(nt)%dylmt)) DEALLOCATE (rad(nt)%dylmt) IF(associated(rad(nt)%dylmp)) DEALLOCATE (rad(nt)%dylmp) IF(associated(rad(nt)%cotg_th)) DEALLOCATE (rad(nt)%cotg_th) IF(associated(rad(nt)%cos_phi)) DEALLOCATE (rad(nt)%cos_phi) IF(associated(rad(nt)%sin_phi)) DEALLOCATE (rad(nt)%sin_phi) IF(associated(rad(nt)%cos_th)) DEALLOCATE (rad(nt)%cos_th) IF(associated(rad(nt)%sin_th)) DEALLOCATE (rad(nt)%sin_th) ENDDO DEALLOCATE(rad) ENDIF IF (allocated(vs_rad)) DEALLOCATE(vs_rad) paw_is_init = .false. RETURN END SUBROUTINE deallocate_paw_internals #ifdef __MPI ! Deallocate variables that are used only at init and then no more necessary. ! This is only useful in parallel, as each node only does a limited number of atoms SUBROUTINE PAW_post_init() ! this routine does nothing at this moment... USE ions_base, ONLY : nat, ntyp=>nsp, ityp USE uspp_param, ONLY : upf USE mp_global, ONLY : me_image, nproc_image, intra_image_comm USE mp, ONLY : mp_sum USE io_global, ONLY : stdout, ionode USE control_flags, ONLY : iverbosity ! INTEGER :: nt, np, ia, ia_s, ia_e, mykey INTEGER :: info(0:nproc_image-1,ntyp) IF(ionode) & WRITE(stdout,"(5x,a)") & 'Checking if some PAW data can be deallocated... ' info(:,:) = 0 CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! types : & DO nt = 1,ntyp DO ia =ia_s, ia_e IF (ityp(ia) == nt.or..not.upf(nt)%tpawp ) CYCLE types ENDDO ! If I can't find any atom within first_nat and last_nat ! which is of type nt, then I can deallocate: IF (ASSOCIATED(upf(nt)%paw%ae_rho_atc )) & DEALLOCATE( upf(nt)%paw%ae_rho_atc ) IF (ASSOCIATED(upf(nt)%paw%pfunc)) DEALLOCATE( upf(nt)%paw%pfunc ) IF (ASSOCIATED(upf(nt)%paw%ptfunc)) DEALLOCATE( upf(nt)%paw%ptfunc ) IF (ASSOCIATED(upf(nt)%paw%pfunc_rel)) DEALLOCATE(upf(nt)%paw%pfunc_rel) IF (ASSOCIATED(upf(nt)%paw%ae_vloc)) DEALLOCATE( upf(nt)%paw%ae_vloc ) info(me_image,nt) = 1 ENDDO types CALL mp_sum(info, intra_image_comm) IF(ionode .and. iverbosity>0) THEN DO np = 0,nproc_image-1 DO nt = 1,ntyp IF( info(np,nt) > 0 ) & WRITE(stdout,"(7x,a,i4,a,10i3)") "node ",np,& ", deallocated PAW data for type:", nt ENDDO ENDDO ENDIF END SUBROUTINE PAW_post_init #endif ! Initialize becsum with atomic occupations (for PAW atoms only) ! Notice: requires exact correspondence chi <--> beta in the atom, ! that is that all wavefunctions considered for PAW generation are ! counted in chi (otherwise the array "oc" does not correspond to beta) SUBROUTINE PAW_atomic_becsum() USE kinds, ONLY : dp USE uspp, ONLY : nhtoj, nhtol, indv, becsum USE scf, ONLY : rho USE uspp_param, ONLY : upf, nh, nhm USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, starting_magnetization USE paw_variables, ONLY : okpaw USE paw_symmetry, ONLY : PAW_symmetrize USE random_numbers, ONLY : randy USE basis, ONLY : starting_wfc USE noncollin_module, ONLY : nspin_mag, angle1, angle2 IMPLICIT NONE !REAL(DP), INTENT(INOUT) :: becsum(nhm*(nhm+1)/2,nat,nspin) INTEGER :: ispin, na, nt, ijh, ih, jh, nb, mb REAL(DP) :: noise = 0._dp ! IF (.NOT. okpaw) RETURN IF (.NOT. allocated(becsum)) & CALL errore('PAW_init_becsum', & 'Something bad has happened: becsum is not allocated yet', 1) ! Add a bit of random noise if not starting from atomic or saved wfcs: IF ( starting_wfc=='atomic+random') noise = 0.05_dp IF ( starting_wfc=='random') noise = 0.10_dp ! ! becsum=0.0_DP na_loop: DO na = 1, nat nt = ityp(na) is_paw: IF (upf(nt)%tpawp) THEN ! ijh = 1 ih_loop: DO ih = 1, nh(nt) nb = indv(ih,nt) ! IF (nspin==1) THEN ! becsum(ijh,na,1) = upf(nt)%paw%oc(nb) / DBLE(2*nhtol(ih,nt)+1) ! ELSE IF (nspin==2) THEN ! becsum(ijh,na,1)=0.5_dp*(1._dp+starting_magnetization(nt))* & upf(nt)%paw%oc(nb) / DBLE(2*nhtol(ih,nt)+1) becsum(ijh,na,2)=0.5_dp*(1._dp-starting_magnetization(nt))* & upf(nt)%paw%oc(nb) / DBLE(2*nhtol(ih,nt)+1) ! ELSE IF (nspin==4) THEN becsum(ijh,na,1) = upf(nt)%paw%oc(nb)/DBLE(2*nhtol(ih,nt)+1) IF (nspin_mag==4) THEN becsum(ijh,na,2) = becsum(ijh,na,1)* & starting_magnetization(nt)* & sin(angle1(nt))*cos(angle2(nt)) becsum(ijh,na,3) = becsum(ijh,na,1)* & starting_magnetization(nt)* & sin(angle1(nt))*sin(angle2(nt)) becsum(ijh,na,4) = becsum(ijh,na,1)* & starting_magnetization(nt)* & cos(angle1(nt)) END IF END IF ijh = ijh + 1 ! jh_loop: & DO jh = ( ih + 1 ), nh(nt) !mb = indv(jh,nt) DO ispin = 1, nspin_mag if (noise > 0._dp) & becsum(ijh,na,ispin) = becsum(ijh,na,ispin) + noise *2._dp*(.5_dp-randy()) END DO ! ijh = ijh + 1 ! END DO jh_loop END DO ih_loop END IF is_paw END DO na_loop ! copy becsum in scf structure and symmetrize it rho%bec(:,:,:) = becsum(:,:,:) CALL PAW_symmetrize(rho%bec) END SUBROUTINE PAW_atomic_becsum ! This allocates space to store onecenter potential and ! calls PAW_rad_init to initialize onecenter integration. SUBROUTINE PAW_init_onecenter() USE ions_base, ONLY : nat, ityp, ntyp => nsp USE paw_variables, ONLY : xlm, lm_fact, lm_fact_x, & rad, paw_is_init, vs_rad, & total_core_energy, only_paw USE atom, ONLY : g => rgrid USE radial_grids, ONLY : do_mesh USE uspp_param, ONLY : upf USE lsda_mod, ONLY : nspin USE spin_orb, ONLY : domag USE noncollin_module, ONLY : noncolin USE funct, ONLY : dft_is_gradient USE mp_global, ONLY : me_image, nproc_image USE mp, ONLY : mp_sum INTEGER :: nt, lmax_safe, lmax_add, ia, ia_s, ia_e, na, mykey, max_mesh, & max_nx CHARACTER(len=12) :: env=' ' IF( paw_is_init ) THEN CALL errore('PAW_init_onecenter', 'Already initialized!', 1) RETURN ENDIF ! ! Init only for the atoms that it will actually use later. ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! Sum all core energies to get... total_core_energy = 0._dp only_paw = .true. max_nx=0 max_mesh=0 DO na = 1, nat only_paw = only_paw .and. upf(ityp(na))%tpawp ! IF( upf(ityp(na))%tpawp ) & total_core_energy = total_core_energy & +upf(ityp(na))%paw%core_energy ENDDO ! initialize for integration on angular momentum and gradient, integrating ! up to 2*lmaxq (twice the maximum angular momentum of rho) is enough for ! H energy and for XC energy. If I have gradient correction I have to go a bit higher ALLOCATE( rad(ntyp) ) DO nt = 1,ntyp NULLIFY (rad(nt)%ww) NULLIFY (rad(nt)%ylm) NULLIFY (rad(nt)%wwylm) NULLIFY (rad(nt)%dylmt) NULLIFY (rad(nt)%dylmp) NULLIFY (rad(nt)%cotg_th) NULLIFY (rad(nt)%cos_phi) NULLIFY (rad(nt)%sin_phi) NULLIFY (rad(nt)%cos_th) NULLIFY (rad(nt)%sin_th) ENDDO ! types : & DO nt = 1,ntyp ! only allocate radial grid integrator for atomic species ! that are actually present on this parallel node: DO ia = ia_s, ia_e IF (ityp(ia) == nt ) THEN IF (upf(nt)%lmax_rho == 0) THEN ! no need for more than one direction, when it is spherical! lmax_safe = 0 lmax_add = 0 ELSE ! IF ( dft_is_gradient() ) THEN ! Integrate up to a higher maximum lm if using gradient ! correction check expression for d(y_lm)/d\theta for details lmax_safe = lm_fact_x*upf(nt)%lmax_rho lmax_add = xlm ELSE ! no gradient correction: lmax_safe = lm_fact*upf(nt)%lmax_rho lmax_add = 0 ENDIF ENDIF ! !CALL get_environment_variable('LMAX', env) !READ(env, '(i)'), lmax_safe !lmax_safe=max(lmax_safe, upf(nt)%lmax_rho) CALL PAW_rad_init(lmax_safe, lmax_add, rad(nt)) max_mesh = MAX( max_mesh, g(nt)%mesh ) max_nx = MAX( max_nx, rad(nt)%nx ) ! CYCLE types ENDIF ENDDO ENDDO types IF (noncolin.and.domag) ALLOCATE(vs_rad(max_mesh,max_nx,nat)) paw_is_init = .true. END SUBROUTINE PAW_init_onecenter #ifdef __COMPILE_THIS_UNUSED_FUNCTION !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! Increase maximum angularm momentum component for integration !!! from l to l+incr. SUBROUTINE PAW_increase_lm(incr) USE ions_base, ONLY : nat, ityp, ntyp => nsp USE paw_variables, ONLY : rad, paw_is_init USE mp_global, ONLY : me_image, nproc_image, intra_image_comm USE io_global, ONLY : stdout, ionode INTEGER,INTENT(IN) :: incr ! required increase in lm precision INTEGER :: nt, lmax_safe, ia, ia_s, ia_e, mykey IF( .not. paw_is_init .or. .not. allocated(rad)) THEN CALL infomsg('PAW_increase_lm', & 'WARNING: trying to increase max paw angular momentum, but it is not set!') RETURN ENDIF ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) IF (ionode) & WRITE( stdout, '(5x,a)') & "WARNING: increasing angular resolution of radial grid for PAW." types : & DO nt = 1,ntyp IF (ionode) THEN WRITE( stdout, '(7x,a,i3,a,i3,a,i3,a,i3)') & "type: ", nt, & ", prev. max{l}:",rad(nt)%lmax, & ", cur. max{l}:",rad(nt)%lmax+incr,& ", directions:",((rad(nt)%lmax+1+incr)*(rad(nt)%lmax+2+incr))/2 ENDIF ! only allocate radial grid integrator for atomic species ! that are actually present on this parallel node: DO ia = ia_s, ia_e IF (ityp(ia) == nt ) THEN IF(associated(rad(nt)%ww)) DEALLOCATE (rad(nt)%ww) IF(associated(rad(nt)%ylm)) DEALLOCATE (rad(nt)%ylm) IF(associated(rad(nt)%wwylm)) DEALLOCATE (rad(nt)%wwylm) IF(associated(rad(nt)%dylmt)) DEALLOCATE (rad(nt)%dylmt) IF(associated(rad(nt)%dylmp)) DEALLOCATE (rad(nt)%dylmp) IF(associated(rad(nt)%cos_phi)) DEALLOCATE (rad(nt)%cos_phi) IF(associated(rad(nt)%sin_phi)) DEALLOCATE (rad(nt)%sin_phi) IF(associated(rad(nt)%cos_th)) DEALLOCATE (rad(nt)%cos_th) IF(associated(rad(nt)%sin_th)) DEALLOCATE (rad(nt)%sin_th) IF(associated(rad(nt)%cotg_th)) DEALLOCATE (rad(nt)%cotg_th) CALL PAW_rad_init(rad(nt)%lmax+incr, rad(nt)) ! CYCLE types ENDIF ENDDO ENDDO types !paw_is_init = .true. END SUBROUTINE PAW_increase_lm #endif !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! initialize several quantities related to radial integration: spherical harmonics and their !!! gradients along a few (depending on lmaxq) directions, weights for spherical integration !! !!! IMPORTANT: routine PW/summary.f90 has the initialization parameters hardcoded in it !!! remember to update it if you change this!!! SUBROUTINE PAW_rad_init(l, ls, rad) USE constants, ONLY : pi, fpi, eps8 USE funct, ONLY : dft_is_gradient USE paw_variables, ONLY : paw_radial_integrator INTEGER,INTENT(IN) :: l ! max angular momentum component that will be ! integrated exactly (to numerical precision) INTEGER,INTENT(IN) :: ls! additional max l that will be used when computing ! gradient and divergence in speherical coords TYPE(paw_radial_integrator),INTENT(OUT) :: & rad ! containt weights and more info to integrate ! on radial grid up to lmax = l REAL(DP),ALLOCATABLE :: x(:),& ! nx versors in smart directions w(:),& ! temporary integration weights r(:,:),& ! integration directions r2(:),& ! square modulus of r ath(:),aph(:)! angles in sph coords for r INTEGER :: i,ii,n,nphi ! counters INTEGER :: lm,m ! indexes for ang.mom REAL(DP) :: phi,dphi,rho ! spherical coordinates REAL(DP) :: z ! cartesian coordinates ! for gradient corrections: INTEGER :: ipol REAL(DP),ALLOCATABLE :: aux(:,:) ! workspace REAL(DP) :: vth(3), vph(3) !versors for theta and phi if(TIMING) CALL start_clock ('PAW_rad_init') ! maximum value of l correctly integrated rad%lmax = l+ls rad%ladd = ls ! volume element for angle phi nphi = rad%lmax+1+mod(rad%lmax,2) dphi = 2._dp*pi/nphi !(rad%lmax+1) ! number of samples for theta angle n = (rad%lmax+2)/2 ALLOCATE(x(n),w(n)) ! compute weights for theta integration CALL weights(x,w,n) ! number of integration directions rad%nx = n*nphi !(rad%lmax+1) !write(*,*) "paw --> directions",rad%nx," lmax:",rad%lmax ! ALLOCATE(r(3,rad%nx),r2(rad%nx), rad%ww(rad%nx), ath(rad%nx), aph(rad%nx)) ! compute real weights multiplying theta and phi weights ii = 0 do i=1,n z = x(i) rho=sqrt(1._dp-z**2) do m=1,nphi !rad%lmax ii= ii+1 phi = dphi*DBLE(m-1) r(1,ii) = rho*cos(phi) r(2,ii) = rho*sin(phi) r(3,ii) = z rad%ww(ii) = w(i)*2._dp*pi/nphi !(rad%lmax+1) r2(ii) = r(1,ii)**2+r(2,ii)**2+r(3,ii)**2 ! these will be used later: ath(ii) = acos(z/sqrt(r2(ii))) aph(ii) = phi end do end do ! cleanup DEALLOCATE (x,w) ! initialize spherical harmonics that will be used ! to convert rho_lm to radial grid rad%lm_max = (rad%lmax+1)**2 ALLOCATE( rad%ylm(rad%nx, rad%lm_max) ) CALL ylmr2(rad%lm_max, rad%nx, r,r2,rad%ylm) ! As I will mostly use the product ww*ylm I can ! precompute it here: ALLOCATE( rad%wwylm(rad%nx, rad%lm_max) ) DO i = 1,rad%nx DO lm = 1, rad%lm_max rad%wwylm(i, lm) = rad%ww(i) * rad%ylm(i, lm) ENDDO ENDDO ALLOCATE(rad%cos_phi(rad%nx) ) ALLOCATE(rad%sin_phi(rad%nx) ) ALLOCATE(rad%cos_th(rad%nx) ) ALLOCATE(rad%sin_th(rad%nx) ) DO i = 1, rad%nx rad%cos_phi(i) = cos(aph(i)) rad%sin_phi(i) = sin(aph(i)) rad%cos_th(i) = cos(ath(i)) rad%sin_th(i) = sin(ath(i)) ENDDO ! if gradient corrections will be used than we need ! to initialize the gradient of ylm, as we are working in spherical ! coordinates the formula involves \hat{theta} and \hat{phi} gradient: IF (dft_is_gradient()) THEN ALLOCATE( rad%dylmt(rad%nx,rad%lm_max),& rad%dylmp(rad%nx,rad%lm_max),& aux(rad%nx,rad%lm_max) ) ALLOCATE(rad%cotg_th(rad%nx) ) rad%dylmt(:,:) = 0._dp rad%dylmp(:,:) = 0._dp ! compute derivative along x, y and z => gradient, then compute the ! scalar products with \hat{theta} and \hat{phi} and store them in ! dylmt and dylmp respectively DO ipol = 1,3 !x,y,z CALL dylmr2(rad%lm_max, rad%nx, r,r2, aux, ipol) DO lm = 1, rad%lm_max DO i = 1, rad%nx vph = (/-sin(aph(i)), cos(aph(i)), 0._dp/) ! this is the explicit form, but the cross product trick (below) is much faster: ! vth = (/cos(aph(i))*cos(ath(i)), sin(aph(i))*cos(ath(i)), -sin(ath(i))/) vth = (/vph(2)*r(3,i)-vph(3)*r(2,i),& vph(3)*r(1,i)-vph(1)*r(3,i),& vph(1)*r(2,i)-vph(2)*r(1,i)/) rad%dylmt(i,lm) = rad%dylmt(i,lm) + aux(i,lm)*vth(ipol) ! CHECK: the 1/sin(th) factor should be correct, but deals wrong result, why? rad%dylmp(i,lm) = rad%dylmp(i,lm) + aux(i,lm)*vph(ipol) !/sin(ath(i)) ENDDO ENDDO ENDDO DO i = 1, rad%nx rad%cotg_th(i) = cos(ath(i))/sin(ath(i)) ENDDO DEALLOCATE(aux) ENDIF gradient ! cleanup DEALLOCATE (r,r2,ath,aph) if(TIMING) CALL stop_clock ('PAW_rad_init') CONTAINS ! Computes weights for gaussian integrals, ! from numerical recipes SUBROUTINE weights(x,w,n) USE constants, ONLY : pi, eps => eps12 implicit none integer :: n, i,j,m real(8) :: x(n),w(n), z,z1, p1,p2,p3,pp m=(n+1)/2 do i=1,m z1 = 2._dp z=cos(pi*(i-0.25_dp)/(n+0.5_dp)) do while (abs(z-z1).gt.eps) p1=1._dp p2=0._dp do j=1,n p3=p2 p2=p1 p1=((2._dp*j-1._dp)*z*p2-(j-1._dp)*p3)/j end do pp = n*(z*p1-p2)/(z*z-1._dp) z1=z z=z1-p1/pp end do x(i) = -z x(n+1-i) = z w(i) = 2._dp/((1._dp-z*z)*pp*pp) w(n+1-i) = w(i) end do END SUBROUTINE weights END SUBROUTINE PAW_rad_init END MODULE paw_init espresso-5.0.2/PW/src/multable.f900000644000700200004540000000276112053145627015635 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE multable (nsym, s, table) !----------------------------------------------------------------------- ! ! Checks that {S} is a group and calculates multiplication table ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nsym, s(3,3,nsym) ! nsym = number of symmetry operations ! s = rotation matrix (in crystal axis, represented by integers) INTEGER, INTENT(OUT) :: table (48, 48) ! multiplication table: S(n)*S(m) = S (table(n,m) ) ! INTEGER :: isym, jsym, ksym, ss (3, 3) LOGICAL :: found, smn ! DO isym = 1, nsym DO jsym = 1, nsym ! ss = MATMUL (s(:,:,jsym),s(:,:,isym)) ! ! here we check that the input matrices really form a group ! and we set the multiplication table ! found = .false. DO ksym = 1, nsym smn = ALL ( s(:,:,ksym) == ss(:,:) ) IF (smn) THEN IF (found) CALL errore ('multable', 'Not a group', 1) found = .true. table (jsym, isym) = ksym END IF END DO IF ( .NOT.found) CALL errore ('multable', ' Not a group', 2) END DO END DO RETURN ! END SUBROUTINE multable espresso-5.0.2/PW/src/rotate_wfc_gamma.f900000644000700200004540000002450712053145630017323 0ustar marsamoscm! ! Copyright (C) 2003-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rotate_wfc_gamma( npwx, npw, nstart, gstart, nbnd, & psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Serial version of rotate_wfc for Gamma-only calculations ! ... This version assumes real wavefunctions (k=0) with only ! ... half plane waves stored: psi(-G)=psi*(G), except G=0 ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER :: npw, npwx, nstart, nbnd, gstart, ibnd ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! first G with nonzero norm LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx,nstart), evc(npwx,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... auxiliary variables: ! COMPLEX(DP), ALLOCATABLE :: aux(:,:) REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:), en(:) ! ALLOCATE( aux( npwx, nstart ) ) ALLOCATE( hr( nstart, nstart ) ) ALLOCATE( sr( nstart, nstart ) ) ALLOCATE( vr( nstart, nstart ) ) ALLOCATE( en( nstart ) ) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! ! ... set Im[ psi(G=0) ] - needed for numerical stability ! IF ( gstart == 2 ) & psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0 ,kind=DP) ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! CALL DGEMM( 'T', 'N', nstart, nstart, 2 * npw, 2.D0 , psi, 2 * npwx, aux, 2 * npwx, 0.D0, hr, nstart ) ! IF ( gstart == 2 ) & call DGER( nstart, nstart, -1.D0, psi, 2 * npwx, aux, & 2 * npwx, hr, nstart ) ! CALL mp_sum( hr , intra_bgrp_comm ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) ! CALL DGEMM( 'T', 'N', nstart, nstart, 2 * npw, 2.D0 , psi, 2 * npwx, aux, 2 * npwx, 0.D0, sr, nstart ) ! IF ( gstart == 2 ) & CALL DGER( nstart, nstart, -1.D0, psi, 2 * npwx, & aux, 2 * npwx, sr, nstart ) ! ELSE ! CALL DGEMM( 'T', 'N', nstart, nstart, 2 * npw, 2.D0, psi, 2 * npwx, psi, 2 * npwx, 0.D0, sr, nstart ) ! IF ( gstart == 2 ) & CALL DGER( nstart, nstart, -1.D0, psi, 2 * npwx, & psi, 2 * npwx, sr, nstart ) ! END IF ! CALL mp_sum( sr , intra_bgrp_comm ) ! ! ... Diagonalize ! CALL rdiaghg( nstart, nbnd, hr, sr, nstart, en, vr ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL DGEMM( 'N', 'N', 2 * npw, nbnd, nstart, 1.D0, psi, 2 * npwx, vr, nstart, 0.D0, aux, 2 * npwx ) ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( en ) DEALLOCATE( vr ) DEALLOCATE( sr ) DEALLOCATE( hr ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE rotate_wfc_gamma ! ! !---------------------------------------------------------------------------- SUBROUTINE protate_wfc_gamma( npwx, npw, nstart, gstart, nbnd, psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Parallel version of rotate_wfc for Gamma-only calculations ! ... Subroutine with distributed matrices, written by Carlo Cavazzoni ! ... This version assumes real wavefunctions (k=0) with only ! ... half plane waves stored: psi(-G)=psi*(G), except G=0 ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE mp_global, ONLY : nbgrp, nproc_bgrp, me_bgrp, root_bgrp, & intra_bgrp_comm, & ortho_comm, np_ortho, me_ortho, ortho_comm_id,& leg_ortho USE descriptors, ONLY : la_descriptor, descla_init USE parallel_toolkit, ONLY : dsqmred, dsqmdst, dsqmsym USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER :: npw, npwx, nstart, nbnd, gstart ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! first G with nonzero norm LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx,nstart), evc(npwx,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... auxiliary variables: ! COMPLEX(DP), ALLOCATABLE :: aux(:,:) REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:), en(:) ! TYPE(la_descriptor) :: desc ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra TYPE(la_descriptor), ALLOCATABLE :: desc_ip( :, : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! Integer :: ibnd ! ALLOCATE( desc_ip( np_ortho(1), np_ortho(2) ) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ) ) ! CALL desc_init( nstart, desc, desc_ip ) ! ALLOCATE( aux( npwx, nstart ) ) ALLOCATE( hr( nx, nx ) ) ALLOCATE( sr( nx, nx ) ) ALLOCATE( vr( nx, nx ) ) ALLOCATE( en( nstart ) ) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! ! ... set Im[ psi(G=0) ] - needed for numerical stability ! IF ( gstart == 2 ) & psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0 ,kind=DP) ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! CALL compute_distmat( hr, psi, aux ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) CALL compute_distmat( sr, psi, aux ) ! ELSE ! CALL compute_distmat( sr, psi, psi ) ! END IF ! ! ... Diagonalize ! CALL prdiaghg( nstart, hr, sr, nx, en, vr, desc ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL refresh_evc( ) ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( desc_ip ) DEALLOCATE( rank_ip ) DEALLOCATE( en ) DEALLOCATE( vr ) DEALLOCATE( sr ) DEALLOCATE( hr ) DEALLOCATE( aux ) ! RETURN ! CONTAINS ! SUBROUTINE desc_init( nsiz, desc, desc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc TYPE(la_descriptor), INTENT(OUT) :: desc_ip(:,:) INTEGER :: i, j, rank INTEGER :: coor_ip( 2 ) ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 DO i = 0, desc%npr - 1 coor_ip( 1 ) = i coor_ip( 2 ) = j CALL descla_init( desc_ip(i+1,j+1), desc%n, desc%nx, np_ortho, coor_ip, ortho_comm, 1 ) CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = 0.0d0 ! DO ipc = 1, desc%npc ! loop on column procs ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! DO ipr = 1, ipc ! use symmetry for the loop on row procs ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL DGEMM( 'T', 'N', nr, nc, 2*npw, 2.D0 , v(1,ir), 2*npwx, w(1,ic), 2*npwx, 0.D0, work, nx ) IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v(1,ir), 2*npwx, w(1,ic), 2*npwx, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! CALL dsqmsym( nstart, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat ! ! SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! IF( ic <= nbnd ) THEN ! nc = min( nc, nbnd - ic + 1 ) ! beta = 0.0d0 DO ipr = 1, desc%npr ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vr(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', 2*npw, nc, nr, 1.D0, psi(1,ir), 2*npwx, vr, nx, beta, aux(1,ic), 2*npwx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', 2*npw, nc, nr, 1.D0, psi(1,ir), 2*npwx, vtmp, nx, beta, aux(1,ic), 2*npwx ) END IF ! beta = 1.0d0 END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc ! END SUBROUTINE protate_wfc_gamma espresso-5.0.2/PW/src/realus.f900000644000700200004540000030120412053145627015315 0ustar marsamoscm! ! Copyright (C) 2004-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE realus !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! ! ... module originally written by Antonio Suriano and Stefano de Gironcoli ! ... modified by Carlo Sbraccia ! ... modified by O. Baris Malcioglu (2008) ! ... modified by P. Umari and G. Stenuit (2009) ! ... TODO : Write the k points part INTEGER, ALLOCATABLE :: box(:,:), maxbox(:) REAL(DP), ALLOCATABLE :: qsave(:) REAL(DP), ALLOCATABLE :: boxrad(:) REAL(DP), ALLOCATABLE :: boxdist(:,:), xyz(:,:,:) REAL(DP), ALLOCATABLE :: spher(:,:,:) ! Beta function in real space INTEGER, ALLOCATABLE :: box_beta(:,:), maxbox_beta(:) REAL(DP), ALLOCATABLE :: betasave(:,:,:) REAL(DP), ALLOCATABLE :: boxrad_beta(:) REAL(DP), ALLOCATABLE :: boxdist_beta(:,:), xyz_beta(:,:,:) REAL(DP), ALLOCATABLE :: spher_beta(:,:,:) !General !LOGICAL :: tnlr ! old hidden variable, should be removed soon LOGICAL :: real_space ! When this flag is true, real space versions of the corresponding ! calculations are performed INTEGER :: real_space_debug ! remove this, for debugging purposes INTEGER :: initialisation_level ! init_realspace_vars sets this to 3 qpointlist adds 5 ! betapointlist adds 7 so the value should be 15 if the ! real space routine is initalised properly INTEGER, ALLOCATABLE :: & igk_k(:,:),& ! The g<->k correspondance for each k point npw_k(:) ! number of plane waves at each k point ! They are (used many times, it is much better to hold them in memory !REAL(DP), ALLOCATABLE :: psic_rs(:) !In order to prevent mixup, a redundant copy of psic` ! COMPLEX(DP), ALLOCATABLE :: tg_psic(:) COMPLEX(DP), ALLOCATABLE :: psic_temp(:),tg_psic_temp(:) !Copies of psic and tg_psic COMPLEX(DP), ALLOCATABLE :: tg_vrs(:) !task groups linear V memory COMPLEX(DP), ALLOCATABLE :: psic_box_temp(:),tg_psic_box_temp(:) ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE read_rs_status( dirname, ierr ) !------------------------------------------------------------------------ ! ! This subroutine reads the real space control flags from a pwscf punch card ! OBM 2009 ! USE iotk_module USE io_global, ONLY : ionode,ionode_id USE io_files, ONLY : iunpun, xmlpun USE mp, ONLY : mp_bcast USE mp_global, ONLY : intra_image_comm USE control_flags, ONLY : tqr ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(in) :: dirname INTEGER, INTENT(out) :: ierr ! ! IF ( ionode ) THEN ! ! ... look for an empty unit ! CALL iotk_free_unit( iunpun, ierr ) ! CALL errore( 'realus->read_rs_status', 'no free units to read real space flags', ierr ) ! CALL iotk_open_read( iunpun, FILE = trim( dirname ) // '/' // & & trim( xmlpun ), IERR = ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN CALL iotk_scan_begin( iunpun, "CONTROL" ) ! CALL iotk_scan_dat( iunpun, "Q_REAL_SPACE", tqr ) CALL iotk_scan_dat( iunpun, "BETA_REAL_SPACE", real_space ) ! CALL iotk_scan_end( iunpun, "CONTROL" ) ! CALL iotk_close_read( iunpun ) ENDIF CALL mp_bcast( tqr, ionode_id, intra_image_comm ) CALL mp_bcast( real_space, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_rs_status !---------------------------------------------------------------------------- SUBROUTINE init_realspace_vars() !--------------------------------------------------------------------------- !This subroutine should be called to allocate/reset real space related variables. !--------------------------------------------------------------------------- USE wvfct, ONLY : npwx,npw, igk, g2kin, ecutwfc USE klist, ONLY : nks, xk USE gvect, ONLY : ngm, g USE cell_base, ONLY : tpiba2 USE control_flags, ONLY : tqr USE fft_base, ONLY : dffts USE wavefunctions_module, ONLY : psic USE io_global, ONLY : stdout IMPLICIT NONE INTEGER :: ik !print *, "<<<<>>>>>>" IF ( allocated( igk_k ) ) DEALLOCATE( igk_k ) IF ( allocated( npw_k ) ) DEALLOCATE( npw_k ) ALLOCATE(igk_k(npwx,nks)) ALLOCATE(npw_k(nks)) !allocate (psic_temp(size(psic))) !real space, allocation for task group fft work arrays IF( dffts%have_task_groups ) THEN ! IF (allocated( tg_psic ) ) DEALLOCATE( tg_psic ) ! ALLOCATE( tg_psic( dffts%tg_nnr * dffts%nogrp ) ) !ALLOCATE( tg_psic_temp( dffts%tg_nnr * dffts%nogrp ) ) ALLOCATE( tg_vrs( dffts%tg_nnr * dffts%nogrp ) ) ! ENDIF !allocate (psic_rs( nnr)) !at this point I can not decide if I should preserve a redundant copy of the real space psi, or transform it whenever required, DO ik=1,nks ! CALL gk_sort( xk(1,ik), ngm, g, ( ecutwfc / tpiba2 ), npw, igk, g2kin ) ! npw_k(ik) = npw ! igk_k(:,ik) = igk(:) ! ! ENDDO !tqr = .true. initialisation_level = initialisation_level + 7 IF (real_space_debug > 20 .and. real_space_debug < 30) THEN real_space=.false. IF (tqr) THEN tqr = .false. WRITE(stdout,'("Debug level forced tqr to be set false")') ELSE WRITE(stdout,'("tqr was already set false")') ENDIF real_space_debug=real_space_debug-20 ENDIF !print *, "Real space = ", real_space !print *, "Real space debug ", real_space_debug END SUBROUTINE init_realspace_vars !------------------------------------------------------------------------ SUBROUTINE deallocatenewdreal() !------------------------------------------------------------------------ ! IF ( allocated( box ) ) DEALLOCATE( box ) IF ( allocated( maxbox ) ) DEALLOCATE( maxbox ) IF ( allocated( qsave ) ) DEALLOCATE( qsave ) IF ( allocated( boxrad ) ) DEALLOCATE( boxrad ) ! END SUBROUTINE deallocatenewdreal ! !------------------------------------------------------------------------ SUBROUTINE qpointlist() !------------------------------------------------------------------------ ! ! ... This subroutine is the driver routine of the box system in this ! ... implementation of US in real space. ! ... All the variables common in the module are computed and stored for ! ... reusing. ! ... This routine has to be called every time the atoms are moved and of ! ... course at the beginning. ! ... A set of spherical boxes are computed for each atom. ! ... In boxradius there are the radii of the boxes. ! ... In maxbox the upper limit of leading index, namely the number of ! ... points of the fine mesh contained in each box. ! ... In xyz there are the coordinates of the points with origin in the ! ... centre of atom. ! ... In boxdist the distance from the centre. ! ... In spher the spherical harmonics computed for each box ! ... In qsave the q value interpolated in these boxes. ! ! ... Most of time is spent here; the calling routines are faster. ! USE constants, ONLY : pi, fpi, eps8, eps16 USE ions_base, ONLY : nat, nsp, ityp, tau USE cell_base, ONLY : at, bg, omega, alat USE uspp, ONLY : okvan, indv, nhtol, nhtolm, ap, nhtoj, lpx, lpl USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE atom, ONLY : rgrid USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp USE splinelib, ONLY : spline, splint ! IMPLICIT NONE ! INTEGER :: qsdim, ia, mbia, iqs, iqsia INTEGER :: indm, idimension, & ih, jh, ijh, lllnbnt, lllmbnt INTEGER :: roughestimate, goodestimate, lamx2, l, nt INTEGER, ALLOCATABLE :: buffpoints(:,:) REAL(DP), ALLOCATABLE :: buffdist(:,:) REAL(DP) :: distsq, qtot_int, first, second INTEGER :: idx0, idx, ir INTEGER :: i, j, k, ipol, lm, nb, mb, ijv, ilast REAL(DP) :: posi(3) REAL(DP), ALLOCATABLE :: rl(:,:), rl2(:), d1y(:), d2y(:) REAL(DP), ALLOCATABLE :: tempspher(:,:), qtot(:,:,:), & xsp(:), ysp(:), wsp(:) REAL(DP) :: mbr, mbx, mby, mbz, dmbx, dmby, dmbz, aux REAL(DP) :: inv_nr1, inv_nr2, inv_nr3, tau_ia(3), boxradsq_ia ! ! initialisation_level = 3 IF ( .not. okvan ) RETURN ! CALL start_clock( 'realus' ) ! ! ... qsave is deallocated here to free the memory for the buffers ! IF ( allocated( qsave ) ) DEALLOCATE( qsave ) ! IF ( .not. allocated( boxrad ) ) THEN ! ! ... here we calculate the radius of each spherical box ( one ! ... for each non-local projector ) ! ALLOCATE( boxrad( nsp ) ) ! boxrad(:) = 0.D0 ! DO nt = 1, nsp IF ( .not. upf(nt)%tvanp ) CYCLE DO ijv = 1, upf(nt)%nbeta*(upf(nt)%nbeta+1)/2 DO indm = upf(nt)%mesh,1,-1 ! IF( upf(nt)%q_with_l ) THEN aux = sum(abs( upf(nt)%qfuncl(indm,ijv,:) )) ELSE aux = abs( upf(nt)%qfunc(indm,ijv) ) ENDIF IF ( aux > eps16 ) THEN ! boxrad(nt) = max( rgrid(nt)%r(indm), boxrad(nt) ) ! exit ! ENDIF ! ENDDO ENDDO ENDDO ! boxrad(:) = boxrad(:) / alat ! ENDIF ! ! ... a rough estimate for the number of grid-points per box ! ... is provided here ! mbr = maxval( boxrad(:) ) ! mbx = mbr*sqrt( bg(1,1)**2 + bg(1,2)**2 + bg(1,3)**2 ) mby = mbr*sqrt( bg(2,1)**2 + bg(2,2)**2 + bg(2,3)**2 ) mbz = mbr*sqrt( bg(3,1)**2 + bg(3,2)**2 + bg(3,3)**2 ) ! dmbx = 2*anint( mbx*dfftp%nr1x ) + 2 dmby = 2*anint( mby*dfftp%nr2x ) + 2 dmbz = 2*anint( mbz*dfftp%nr3x ) + 2 ! roughestimate = anint( dble( dmbx*dmby*dmbz ) * pi / 6.D0 ) ! CALL start_clock( 'realus:boxes' ) ! ALLOCATE( buffpoints( roughestimate, nat ) ) ALLOCATE( buffdist( roughestimate, nat ) ) ! ALLOCATE( xyz( 3, roughestimate, nat ) ) ! buffpoints(:,:) = 0 buffdist(:,:) = 0.D0 ! IF ( .not.allocated( maxbox ) ) ALLOCATE( maxbox( nat ) ) ! maxbox(:) = 0 ! ! ... now we find the points ! #if defined (__MPI) idx0 = dfftp%nr1x*dfftp%nr2x * sum ( dfftp%npp(1:me_bgrp) ) #else idx0 = 0 #endif ! inv_nr1 = 1.D0 / dble( dfftp%nr1 ) inv_nr2 = 1.D0 / dble( dfftp%nr2 ) inv_nr3 = 1.D0 / dble( dfftp%nr3 ) ! DO ia = 1, nat ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! boxradsq_ia = boxrad(nt)**2 ! tau_ia(1) = tau(1,ia) tau_ia(2) = tau(2,ia) tau_ia(3) = tau(3,ia) ! DO ir = 1, dfftp%nnr ! ! ... three dimensional indices (i,j,k) ! idx = idx0 + ir - 1 k = idx / (dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x)*k j = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j i = idx ! ! ... do not include points outside the physical range! ! IF ( i >= dfftp%nr1 .or. j >= dfftp%nr2 .or. k >= dfftp%nr3 ) CYCLE ! DO ipol = 1, 3 posi(ipol) = dble( i )*inv_nr1*at(ipol,1) + & dble( j )*inv_nr2*at(ipol,2) + & dble( k )*inv_nr3*at(ipol,3) ENDDO ! posi(:) = posi(:) - tau_ia(:) ! ! ... minimum image convenction ! CALL cryst_to_cart( 1, posi, bg, -1 ) ! posi(:) = posi(:) - anint( posi(:) ) ! CALL cryst_to_cart( 1, posi, at, 1 ) ! distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! IF ( distsq < boxradsq_ia ) THEN ! mbia = maxbox(ia) + 1 ! maxbox(ia) = mbia buffpoints(mbia,ia) = ir buffdist(mbia,ia) = sqrt( distsq )*alat xyz(:,mbia,ia) = posi(:)*alat ! ENDIF ENDDO ENDDO ! goodestimate = maxval( maxbox ) ! IF ( goodestimate > roughestimate ) & CALL errore( 'qpointlist', 'rough-estimate is too rough', 2 ) ! ! ... now store them in a more convenient place ! IF ( allocated( box ) ) DEALLOCATE( box ) IF ( allocated( boxdist ) ) DEALLOCATE( boxdist ) ! ALLOCATE( box( goodestimate, nat ) ) ALLOCATE( boxdist( goodestimate, nat ) ) ! box(:,:) = buffpoints(1:goodestimate,:) boxdist(:,:) = buffdist(1:goodestimate,:) ! DEALLOCATE( buffpoints ) DEALLOCATE( buffdist ) ! CALL stop_clock( 'realus:boxes' ) CALL start_clock( 'realus:spher' ) ! ! ... now it computes the spherical harmonics ! lamx2 = lmaxq*lmaxq ! IF ( allocated( spher ) ) DEALLOCATE( spher ) ! ALLOCATE( spher( goodestimate, lamx2, nat ) ) ! spher(:,:,:) = 0.D0 ! DO ia = 1, nat ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! idimension = maxbox(ia) ! ALLOCATE( rl( 3, idimension ), rl2( idimension ) ) ! DO ir = 1, idimension ! rl(:,ir) = xyz(:,ir,ia) ! rl2(ir) = rl(1,ir)**2 + rl(2,ir)**2 + rl(3,ir)**2 ! ENDDO ! ALLOCATE( tempspher( idimension, lamx2 ) ) ! CALL ylmr2( lamx2, idimension, rl, rl2, tempspher ) ! spher(1:idimension,:,ia) = tempspher(:,:) ! DEALLOCATE( rl, rl2, tempspher ) ! ENDDO ! DEALLOCATE( xyz ) ! CALL stop_clock( 'realus:spher' ) CALL start_clock( 'realus:qsave' ) ! ! ... let's do the main work ! qsdim = 0 DO ia = 1, nat mbia = maxbox(ia) IF ( mbia == 0 ) CYCLE nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE DO ih = 1, nh(nt) DO jh = ih, nh(nt) qsdim = qsdim + mbia ENDDO ENDDO ENDDO ! ! ALLOCATE( qsave( qsdim ) ) ! qsave(:) = 0.D0 ! ! ... the source is inspired by init_us_1 ! ! ... we perform two steps: first we compute for each l the qtot ! ... (radial q), then we interpolate it in our mesh, and then we ! ... add it to qsave with the correct spherical harmonics ! ! ... Q is read from pseudo and it is divided into two parts: ! ... in the inner radius a polinomial representation is known and so ! ... strictly speaking we do not use interpolation but just compute ! ... the correct value ! iqs = 0 iqsia = 0 ! DO ia = 1, nat ! mbia = maxbox(ia) ! IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! ALLOCATE( qtot( upf(nt)%kkbeta, upf(nt)%nbeta, upf(nt)%nbeta ) ) ! ! ... variables used for spline interpolation ! ALLOCATE( xsp( upf(nt)%kkbeta ), ysp( upf(nt)%kkbeta ), & wsp( upf(nt)%kkbeta ) ) ! ! ... the radii in x ! xsp(:) = rgrid(nt)%r(1:upf(nt)%kkbeta) ! DO l = 0, upf(nt)%nqlc - 1 ! ! ... first we build for each nb,mb,l the total Q(|r|) function ! ... note that l is the true (combined) angular momentum ! ... and that the arrays have dimensions 1..l+1 ! DO nb = 1, upf(nt)%nbeta DO mb = nb, upf(nt)%nbeta ijv = mb * (mb-1) /2 + nb ! lllnbnt = upf(nt)%lll(nb) lllmbnt = upf(nt)%lll(mb) ! IF ( .not. ( l >= abs( lllnbnt - lllmbnt ) .and. & l <= lllnbnt + lllmbnt .and. & mod( l + lllnbnt + lllmbnt, 2 ) == 0 ) ) CYCLE ! IF( upf(nt)%q_with_l ) THEN qtot(1:upf(nt)%kkbeta,nb,mb) = & upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l) & / rgrid(nt)%r(1:upf(nt)%kkbeta)**2 ELSE DO ir = 1, upf(nt)%kkbeta IF ( rgrid(nt)%r(ir) >= upf(nt)%rinner(l+1) ) THEN qtot(ir,nb,mb) = upf(nt)%qfunc(ir,ijv) / & rgrid(nt)%r(ir)**2 ELSE ilast = ir ENDIF ENDDO ENDIF ! IF ( upf(nt)%rinner(l+1) > 0.D0 ) & CALL setqfcorr( upf(nt)%qfcoef(1:,l+1,nb,mb), & qtot(1,nb,mb), rgrid(nt)%r, upf(nt)%nqf, l, ilast ) ! ! ... we save the values in y ! ysp(:) = qtot(1:upf(nt)%kkbeta,nb,mb) ! IF ( upf(nt)%nqf > 0 ) THEN ! ! ... compute the first derivative in first point ! CALL setqfcorrptfirst( upf(nt)%qfcoef(1:,l+1,nb,mb), & first, rgrid(nt)%r(1), upf(nt)%nqf, l ) ! ! ... compute the second derivative in first point ! CALL setqfcorrptsecond( upf(nt)%qfcoef(1:,l+1,nb,mb), & second, rgrid(nt)%r(1), upf(nt)%nqf, l ) ELSE ! ! ... if we don't have the analitical coefficients, try to do ! ... the same numerically (note that setting first=0.d0 and ! ... second=0.d0 makes almost no difference) ! ALLOCATE( d1y(upf(nt)%kkbeta), d2y(upf(nt)%kkbeta) ) CALL radial_gradient(ysp(1:upf(nt)%kkbeta), d1y, & rgrid(nt)%r, upf(nt)%kkbeta, 1) CALL radial_gradient(d1y, d2y, rgrid(nt)%r, upf(nt)%kkbeta, 1) ! first = d1y(1) ! first derivative in first point second =d2y(1) ! second derivative in first point DEALLOCATE( d1y, d2y ) ENDIF ! ! ... call spline ! CALL spline( xsp, ysp, first, second, wsp ) ! DO ir = 1, maxbox(ia) ! IF ( boxdist(ir,ia) < upf(nt)%rinner(l+1) ) THEN ! ! ... if in the inner radius just compute the ! ... polynomial ! CALL setqfcorrpt( upf(nt)%qfcoef(1:,l+1,nb,mb), & qtot_int, boxdist(ir,ia), upf(nt)%nqf, l ) ! ELSE ! ! ... spline interpolation ! qtot_int = splint( xsp, ysp, wsp, boxdist(ir,ia) ) ! ENDIF ! ijh = 0 ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! iqs = iqsia + ijh*mbia + ir ijh = ijh + 1 ! IF ( .not.( nb == indv(ih,nt) .and. & mb == indv(jh,nt) ) ) CYCLE ! DO lm = l*l+1, (l+1)*(l+1) ! qsave(iqs) = qsave(iqs) + & qtot_int*spher(ir,lm,ia)*& ap(lm,nhtolm(ih,nt),nhtolm(jh,nt)) ! ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ! iqsia = iqs ! DEALLOCATE( qtot ) DEALLOCATE( xsp ) DEALLOCATE( ysp ) DEALLOCATE( wsp ) ! ENDDO ! DEALLOCATE( boxdist ) DEALLOCATE( spher ) ! CALL stop_clock( 'realus:qsave' ) CALL stop_clock( 'realus' ) ! END SUBROUTINE qpointlist ! !------------------------------------------------------------------------ SUBROUTINE betapointlist() !------------------------------------------------------------------------ ! ! ... This subroutine is the driver routine of the box system in this ! ... implementation of US in real space. ! ... All the variables common in the module are computed and stored for ! ... reusing. ! ... This routine has to be called every time the atoms are moved and of ! ... course at the beginning. ! ... A set of spherical boxes are computed for each atom. ! ... In boxradius there are the radii of the boxes. ! ... In maxbox the upper limit of leading index, namely the number of ! ... points of the fine mesh contained in each box. ! ... In xyz there are the coordinates of the points with origin in the ! ... centre of atom. ! ... In boxdist the distance from the centre. ! ... In spher the spherical harmonics computed for each box ! ... In qsave the q value interpolated in these boxes. ! ! ... Most of time is spent here; the calling routines are faster. ! ! The source inspired by qsave ! USE constants, ONLY : pi, eps8, eps16 USE ions_base, ONLY : nat, nsp, ityp, tau USE cell_base, ONLY : at, bg, omega, alat USE uspp, ONLY : okvan, indv, nhtol, nhtolm, ap USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE atom, ONLY : rgrid !USE pffts, ONLY : npps USE fft_base, ONLY : dffts USE mp_global, ONLY : me_bgrp USE splinelib, ONLY : spline, splint USE ions_base, ONLY : ntyp => nsp ! IMPLICIT NONE ! INTEGER :: betasdim, ia, it, mbia, iqs INTEGER :: indm, inbrx, idimension, & ilm, ih, jh, iih, ijh INTEGER :: roughestimate, goodestimate, lamx2, l, nt INTEGER, ALLOCATABLE :: buffpoints(:,:) REAL(DP), ALLOCATABLE :: buffdist(:,:) REAL(DP) :: distsq, qtot_int, first, second INTEGER :: index0, index, indproc, ir INTEGER :: i, j, k, i0, j0, k0, ipol, lm, nb, mb, ijv, ilast REAL(DP) :: posi(3) REAL(DP), ALLOCATABLE :: rl(:,:), rl2(:) REAL(DP), ALLOCATABLE :: tempspher(:,:), qtot(:,:,:), & xsp(:), ysp(:), wsp(:), d1y(:), d2y(:) REAL(DP) :: mbr, mbx, mby, mbz, dmbx, dmby, dmbz REAL(DP) :: inv_nr1s, inv_nr2s, inv_nr3s, tau_ia(3), boxradsq_ia !Delete Delete CHARACTER(len=256) :: filename CHARACTER(len=256) :: tmp !Delete Delete ! ! initialisation_level = initialisation_level + 5 IF ( .not. okvan ) RETURN ! !print *, "<<>>" ! CALL start_clock( 'betapointlist' ) ! ! ... betasave is deallocated here to free the memory for the buffers ! IF ( allocated( betasave ) ) DEALLOCATE( betasave ) ! IF ( .not. allocated( boxrad_beta ) ) THEN ! ! ... here we calculate the radius of each spherical box ( one ! ... for each non-local projector ) ! ALLOCATE( boxrad_beta( nsp ) ) ! boxrad_beta(:) = 0.D0 ! DO it = 1, nsp DO inbrx = 1, upf(it)%nbeta DO indm = upf(it)%kkbeta, 1, -1 ! IF ( abs( upf(it)%beta(indm,inbrx) ) > 0.d0 ) THEN ! boxrad_beta(it) = max( rgrid(it)%r(indm), boxrad_beta(it) ) ! CYCLE ! ENDIF ! ENDDO ENDDO ENDDO ! boxrad_beta(:) = boxrad_beta(:) / alat ! ENDIF ! ! ... a rough estimate for the number of grid-points per box ! ... is provided here ! mbr = maxval( boxrad_beta(:) ) ! mbx = mbr*sqrt( bg(1,1)**2 + bg(1,2)**2 + bg(1,3)**2 ) mby = mbr*sqrt( bg(2,1)**2 + bg(2,2)**2 + bg(2,3)**2 ) mbz = mbr*sqrt( bg(3,1)**2 + bg(3,2)**2 + bg(3,3)**2 ) ! dmbx = 2*anint( mbx*dffts%nr1x ) + 2 dmby = 2*anint( mby*dffts%nr2x ) + 2 dmbz = 2*anint( mbz*dffts%nr3x ) + 2 ! roughestimate = anint( dble( dmbx*dmby*dmbz ) * pi / 6.D0 ) ! CALL start_clock( 'realus:boxes' ) ! ALLOCATE( buffpoints( roughestimate, nat ) ) ALLOCATE( buffdist( roughestimate, nat ) ) ! ALLOCATE( xyz_beta( 3, roughestimate, nat ) ) ! buffpoints(:,:) = 0 buffdist(:,:) = 0.D0 ! IF ( .not.allocated( maxbox_beta ) ) ALLOCATE( maxbox_beta( nat ) ) ! maxbox_beta(:) = 0 ! ! ... now we find the points ! ! The beta functions are treated on smooth grid #if defined (__MPI) index0 = dffts%nr1x*dffts%nr2x * sum ( dffts%npp(1:me_bgrp) ) #else index0 = 0 #endif ! inv_nr1s = 1.D0 / dble( dffts%nr1 ) inv_nr2s = 1.D0 / dble( dffts%nr2 ) inv_nr3s = 1.D0 / dble( dffts%nr3 ) ! DO ia = 1, nat ! IF ( .not. upf(ityp(ia))%tvanp ) CYCLE ! boxradsq_ia = boxrad_beta(ityp(ia))**2 ! tau_ia(1) = tau(1,ia) tau_ia(2) = tau(2,ia) tau_ia(3) = tau(3,ia) ! DO ir = 1, dffts%nnr ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dffts%nr1x*dffts%nr2x) index = index - (dffts%nr1x*dffts%nr2x)*k j = index / dffts%nr1x index = index - dffts%nr1x*j i = index ! DO ipol = 1, 3 posi(ipol) = dble( i )*inv_nr1s*at(ipol,1) + & dble( j )*inv_nr2s*at(ipol,2) + & dble( k )*inv_nr3s*at(ipol,3) ENDDO ! posi(:) = posi(:) - tau_ia(:) ! ! ... minimum image convenction ! CALL cryst_to_cart( 1, posi, bg, -1 ) ! posi(:) = posi(:) - anint( posi(:) ) ! CALL cryst_to_cart( 1, posi, at, 1 ) ! distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! IF ( distsq < boxradsq_ia ) THEN ! mbia = maxbox_beta(ia) + 1 ! maxbox_beta(ia) = mbia buffpoints(mbia,ia) = ir buffdist(mbia,ia) = sqrt( distsq )*alat xyz_beta(:,mbia,ia) = posi(:)*alat ! ENDIF ENDDO ENDDO ! goodestimate = maxval( maxbox_beta ) ! IF ( goodestimate > roughestimate ) & CALL errore( 'betapointlist', 'rough-estimate is too rough', 2 ) ! ! ... now store them in a more convenient place ! IF ( allocated( box_beta ) ) DEALLOCATE( box_beta ) IF ( allocated( boxdist_beta ) ) DEALLOCATE( boxdist_beta ) ! ALLOCATE( box_beta ( goodestimate, nat ) ) ALLOCATE( boxdist_beta( goodestimate, nat ) ) ! box_beta(:,:) = buffpoints(1:goodestimate,:) boxdist_beta(:,:) = buffdist(1:goodestimate,:) ! DEALLOCATE( buffpoints ) DEALLOCATE( buffdist ) ! CALL stop_clock( 'realus:boxes' ) CALL start_clock( 'realus:spher' ) ! ! ... now it computes the spherical harmonics ! lamx2 = lmaxq*lmaxq ! IF ( allocated( spher_beta ) ) DEALLOCATE( spher_beta ) ! ALLOCATE( spher_beta( goodestimate, lamx2, nat ) ) ! spher_beta(:,:,:) = 0.D0 ! DO ia = 1, nat ! IF ( .not. upf(ityp(ia))%tvanp ) CYCLE ! idimension = maxbox_beta(ia) ! ALLOCATE( rl( 3, idimension ), rl2( idimension ) ) ! DO ir = 1, idimension ! rl(:,ir) = xyz_beta(:,ir,ia) ! rl2(ir) = rl(1,ir)**2 + rl(2,ir)**2 + rl(3,ir)**2 ! ENDDO ! ALLOCATE( tempspher( idimension, lamx2 ) ) ! CALL ylmr2( lamx2, idimension, rl, rl2, tempspher ) ! spher_beta(1:idimension,:,ia) = tempspher(:,:) ! DEALLOCATE( rl, rl2, tempspher ) ! ENDDO ! DEALLOCATE( xyz_beta ) ! CALL stop_clock( 'realus:spher' ) CALL start_clock( 'realus:qsave' ) ! ! ... let's do the main work ! betasdim = 0 DO ia = 1, nat mbia = maxbox_beta(ia) IF ( mbia == 0 ) CYCLE nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE DO ih = 1, nh(nt) betasdim = betasdim + mbia ENDDO ENDDO ! ALLOCATE( betasave( nat, nhm, goodestimate ) ) ! betasave = 0.D0 ! Box is set, Y_lm is known in the box, now the calculation can commence ! Reminder: In real space ! |Beta_lm(r)>=f_l(r).Y_lm(r) ! In q space (calculated in init_us_1 and then init_us_2 ) ! |Beta_lm(q)>= (4pi/omega).Y_lm(q).f_l(q).(i^l).S(q) ! Where ! f_l(q)=\int_0 ^\infty dr r^2 f_l (r) j_l(q.r) ! ! We know f_l(r) and Y_lm(r) for certain points, ! basically we interpolate the known values to new mesh using splint ! iqs = 0 ! DO ia = 1, nat ! mbia = maxbox_beta(ia) ! IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! ALLOCATE( qtot( upf(nt)%kkbeta, upf(nt)%nbeta, upf(nt)%nbeta ) ) ! ! ... variables used for spline interpolation ! ALLOCATE( xsp( upf(nt)%kkbeta ), ysp( upf(nt)%kkbeta ), wsp( upf(nt)%kkbeta ) ) ! ! ... the radii in x ! xsp(:) = rgrid(nt)%r(1:upf(nt)%kkbeta) ! DO ih = 1, nh (nt) ! lm = nhtolm(ih, nt) nb = indv(ih, nt) ! !OBM rgrid(nt)%r(1) == 0, attempting correction ! In the UPF file format, beta field is r*|beta> IF (rgrid(nt)%r(1)==0) THEN ysp(2:) = upf(nt)%beta(2:upf(nt)%kkbeta,nb) / rgrid(nt)%r(2:upf(nt)%kkbeta) ysp(1)=0.d0 ELSE ysp(:) = upf(nt)%beta(1:upf(nt)%kkbeta,nb) / rgrid(nt)%r(1:upf(nt)%kkbeta) ENDIF ALLOCATE( d1y(upf(nt)%kkbeta), d2y(upf(nt)%kkbeta) ) CALL radial_gradient(ysp(1:upf(nt)%kkbeta), d1y, & rgrid(nt)%r, upf(nt)%kkbeta, 1) CALL radial_gradient(d1y, d2y, rgrid(nt)%r, upf(nt)%kkbeta, 1) first = d1y(1) ! first derivative in first point second =d2y(1) ! second derivative in first point DEALLOCATE( d1y, d2y ) CALL spline( xsp, ysp, first, second, wsp ) DO ir = 1, mbia ! ! ... spline interpolation ! qtot_int = splint( xsp, ysp, wsp, boxdist_beta(ir,ia) ) !the value of f_l(r) in point ir in atom ia ! !iqs = iqs + 1 ! betasave(ia,ih,ir) = qtot_int*spher_beta(ir,lm,ia) !spher_beta is the Y_lm in point ir for atom ia ! ENDDO ENDDO ! DEALLOCATE( qtot ) DEALLOCATE( xsp ) DEALLOCATE( ysp ) DEALLOCATE( wsp ) ! ENDDO ! DEALLOCATE( boxdist_beta ) DEALLOCATE( spher_beta ) ! CALL stop_clock( 'realus:qsave' ) CALL stop_clock( 'betapointlist' ) ! END SUBROUTINE betapointlist !------------------------------------------------------------------------ SUBROUTINE newq_r(vr,deeq,skip_vltot) ! ! This routine computes the integral of the perturbed potential with ! the Q function in real space ! USE cell_base, ONLY : omega USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat, ityp USE uspp_param, ONLY : upf, nh, nhm USE control_flags, ONLY : tqr USE noncollin_module, ONLY : nspin_mag USE scf, ONLY : vltot USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! Input: potential , output: contribution to integral REAL(kind=dp), INTENT(in) :: vr(dfftp%nnr,nspin) REAL(kind=dp), INTENT(out) :: deeq( nhm, nhm, nat, nspin ) LOGICAL, INTENT(in) :: skip_vltot !If .false. vltot is added to vr when necessary !Internal REAL(DP), ALLOCATABLE :: aux(:) ! INTEGER :: ia, ih, jh, is, ir, nt INTEGER :: mbia, nht, nhnt, iqs ! IF (tqr .and. .not. allocated(maxbox)) THEN CALL qpointlist() ENDIF deeq(:,:,:,:) = 0.D0 ! ALLOCATE( aux( dfftp%nnr ) ) ! DO is = 1, nspin_mag ! IF ( (nspin_mag == 4 .and. is /= 1) .or. skip_vltot ) THEN aux(:) = vr(:,is) ELSE aux(:) = vltot(:) + vr(:,is) ENDIF ! iqs = 0 ! DO ia = 1, nat ! mbia = maxbox(ia) ! IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! nhnt = nh(nt) ! DO ih = 1, nhnt DO jh = ih, nhnt DO ir = 1, mbia iqs = iqs + 1 deeq(ih,jh,ia,is)= deeq(ih,jh,ia,is) + & qsave(iqs)*aux(box(ir,ia)) ENDDO deeq(jh,ih,ia,is) = deeq(ih,jh,ia,is) ENDDO ENDDO ENDDO ENDDO ! deeq(:,:,:,:) = deeq(:,:,:,:)*omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) ! DEALLOCATE( aux ) ! CALL mp_sum( deeq(:,:,:,1:nspin_mag) , intra_bgrp_comm ) END SUBROUTINE newq_r !------------------------------------------------------------------------ SUBROUTINE newd_r() !------------------------------------------------------------------------ ! ! ... this subroutine is the version of newd in real space ! USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin USE scf, ONLY : v USE uspp, ONLY : okvan, deeq, deeq_nc, dvan, dvan_so USE uspp_param, ONLY : upf, nh, nhm USE noncollin_module, ONLY : noncolin, nspin_mag USE spin_orb, ONLY : domag, lspinorb USE mp_global, ONLY : mpime ! IMPLICIT NONE ! INTEGER :: ia, ih, jh, is, ir, nt INTEGER :: mbia, nht, nhnt, iqs ! IF ( .not. okvan ) THEN ! ! ... no ultrasoft potentials: use bare coefficients for projectors ! DO ia = 1, nat ! nt = ityp(ia) nht = nh(nt) ! IF ( lspinorb ) THEN ! deeq_nc(1:nht,1:nht,ia,1:nspin) = dvan_so(1:nht,1:nht,1:nspin,nt) ! ELSEIF ( noncolin ) THEN ! deeq_nc(1:nht,1:nht,ia,1) = dvan(1:nht,1:nht,nt) deeq_nc(1:nht,1:nht,ia,2) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,ia,3) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,ia,4) = dvan(1:nht,1:nht,nt) ! ELSE ! DO is = 1, nspin ! deeq(1:nht,1:nht,ia,is) = dvan(1:nht,1:nht,nt) ! ENDDO ! ENDIF ! ENDDO ! ! ... early return ! RETURN ! ENDIF ! CALL start_clock( 'newd' ) ! CALL newq_r(v%of_r,deeq,.false.) IF (noncolin) call add_paw_to_deeq(deeq) ! DO ia = 1, nat ! nt = ityp(ia) ! IF ( noncolin ) THEN ! IF ( upf(nt)%has_so ) THEN CALL newd_so( ia ) ELSE CALL newd_nc( ia ) ENDIF ! ELSE ! nhnt = nh(nt) ! DO is = 1, nspin_mag DO ih = 1, nhnt DO jh = ih, nhnt deeq(ih,jh,ia,is) = deeq(ih,jh,ia,is) + dvan(ih,jh,nt) deeq(jh,ih,ia,is) = deeq(ih,jh,ia,is) ENDDO ENDDO ENDDO ! ENDIF ENDDO ! CALL stop_clock( 'newd' ) ! RETURN ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE newd_so( ia ) !-------------------------------------------------------------------- ! USE spin_orb, ONLY : fcoef, domag, lspinorb ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ia INTEGER :: ijs, is1, is2, kh, lh ! ! nt = ityp(ia) ijs = 0 ! DO is1 = 1, 2 DO is2 = 1, 2 ! ijs = ijs + 1 ! IF ( domag ) THEN ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) DO lh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = deeq_nc(ih,jh,ia,ijs) + & deeq (kh,lh,ia,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) + & deeq (kh,lh,ia,2)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & (0.D0,-1.D0)*deeq (kh,lh,ia,3)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & deeq (kh,lh,ia,4)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) ! ENDDO ENDDO ENDDO ENDDO ! ELSE ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) DO lh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = deeq_nc(ih,jh,ia,ijs) + & deeq (kh,lh,ia,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt) ) ! ENDDO ENDDO ENDDO ENDDO ! ENDIF ! ENDDO ENDDO ! RETURN ! END SUBROUTINE newd_so ! !-------------------------------------------------------------------- SUBROUTINE newd_nc( ia ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ia ! nt = ityp(ia) ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ! IF ( lspinorb ) THEN ! deeq_nc(ih,jh,ia,1) = dvan_so(ih,jh,1,nt) + & deeq(ih,jh,ia,1) + deeq(ih,jh,ia,4) deeq_nc(ih,jh,ia,4) = dvan_so(ih,jh,4,nt) + & deeq(ih,jh,ia,1) - deeq(ih,jh,ia,4) ! ELSE ! deeq_nc(ih,jh,ia,1) = dvan(ih,jh,nt) + & deeq(ih,jh,ia,1) + deeq(ih,jh,ia,4) deeq_nc(ih,jh,ia,4) = dvan(ih,jh,nt) + & deeq(ih,jh,ia,1) - deeq(ih,jh,ia,4) ! ENDIF ! deeq_nc(ih,jh,ia,2) = deeq(ih,jh,ia,2) - & ( 0.D0, 1.D0 ) * deeq(ih,jh,ia,3) ! deeq_nc(ih,jh,ia,3) = deeq(ih,jh,ia,2) + & ( 0.D0, 1.D0 ) * deeq(ih,jh,ia,3) ! ENDDO ENDDO ! RETURN ! END SUBROUTINE newd_nc ! END SUBROUTINE newd_r ! !------------------------------------------------------------------------ SUBROUTINE setqfcorr( qfcoef, rho, r, nqf, ltot, mesh ) !----------------------------------------------------------------------- ! ! ... This routine compute the first part of the Q function up to rinner. ! ... On output it contains Q ! IMPLICIT NONE ! INTEGER, INTENT(in):: nqf, ltot, mesh ! input: the number of coefficients ! input: the angular momentum ! input: the number of mesh point REAL(DP), INTENT(in) :: r(mesh), qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho(mesh) ! output: the function to be computed ! INTEGER :: ir, i REAL(DP) :: rr ! DO ir = 1, mesh ! rr = r(ir)**2 ! rho(ir) = qfcoef(1) ! DO i = 2, nqf rho(ir) = rho(ir) + qfcoef(i)*rr**(i-1) ENDDO ! rho(ir) = rho(ir)*r(ir)**ltot ! ENDDO ! RETURN ! END SUBROUTINE setqfcorr ! !------------------------------------------------------------------------ SUBROUTINE setqfcorrpt( qfcoef, rho, r, nqf, ltot ) !------------------------------------------------------------------------ ! ! ... This routine compute the first part of the Q function at the ! ... point r. On output it contains Q ! IMPLICIT NONE ! INTEGER, INTENT(in):: nqf, ltot ! input: the number of coefficients ! input: the angular momentum REAL(DP), INTENT(in) :: r, qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho ! output: the function to be computed ! INTEGER :: i REAL(DP) :: rr ! rr = r*r ! rho = qfcoef(1) ! DO i = 2, nqf rho = rho + qfcoef(i)*rr**(i-1) ENDDO ! rho = rho*r**ltot ! RETURN ! END SUBROUTINE setqfcorrpt ! !------------------------------------------------------------------------ SUBROUTINE setqfcorrptfirst( qfcoef, rho, r, nqf, ltot ) !------------------------------------------------------------------------ ! ! ... On output it contains Q' (probably wrong) ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nqf, ltot ! input: the number of coefficients ! input: the angular momentum REAL(DP), INTENT(in) :: r, qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho ! output: the function to be computed ! INTEGER :: i REAL(DP) :: rr ! rr = r*r ! rho = 0.D0 ! DO i = max( 1, 2-ltot ), nqf rho = rho + qfcoef(i)*rr**(i-2+ltot)*(i-1+ltot) ENDDO ! RETURN ! END SUBROUTINE setqfcorrptfirst ! !------------------------------------------------------------------------ SUBROUTINE setqfcorrptsecond( qfcoef, rho, r, nqf, ltot ) !------------------------------------------------------------------------ ! ! ... On output it contains Q ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nqf, ltot ! input: the number of coefficients ! input: the angular momentum REAL(DP), INTENT(in) :: r, qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho ! output: the function to be computed ! INTEGER :: i REAL(DP) :: rr ! rr = r*r ! rho = 0.D0 ! DO i = max( 3-ltot, 1 ), nqf rho = rho + qfcoef(i)*rr**(i-3+ltot)*(i-1+ltot)*(i-2+ltot) ENDDO ! RETURN ! END SUBROUTINE setqfcorrptsecond ! !------------------------------------------------------------------------ SUBROUTINE addusdens_r(rho_1,rescale) !------------------------------------------------------------------------ ! ! ... This routine adds to the charge density the part which is due to ! ... the US augmentation. ! USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : omega USE lsda_mod, ONLY : nspin !USE scf, ONLY : rho USE klist, ONLY : nelec USE fft_base, ONLY : dfftp USE uspp, ONLY : okvan, becsum USE uspp_param, ONLY : upf, nh USE noncollin_module, ONLY : noncolin, nspin_mag, nspin_lsda USE spin_orb, ONLY : domag USE mp_global, ONLY : inter_pool_comm, intra_bgrp_comm, inter_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! REAL(kind=dp), INTENT(inout) :: rho_1(dfftp%nnr,nspin_mag) !The charge density to be augmented LOGICAL, INTENT(in) :: rescale !If this is the ground charge density, enable rescaling ! INTEGER :: ia, nt, ir, irb, ih, jh, ijh, is, mbia, nhnt, iqs CHARACTER(len=80) :: msg REAL(DP) :: charge REAL(DP) :: tolerance ! ! IF ( .not. okvan ) RETURN tolerance = 1.D-4 IF ( real_space ) tolerance = 1.D-2 !Charge loss in real_space case is even worse. !Final verdict: Mixing of Real Space paradigm and !Q space paradigm results in fast but not so ! accurate code. Not giving up though, I think ! I can still increase the accuracy a bit... ! CALL start_clock( 'addusdens' ) ! DO is = 1, nspin_mag ! iqs = 0 ! DO ia = 1, nat ! mbia = maxbox(ia) ! IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! nhnt = nh(nt) ! ijh = 0 ! DO ih = 1, nhnt DO jh = ih, nhnt ! ijh = ijh + 1 ! DO ir = 1, mbia ! irb = box(ir,ia) iqs = iqs + 1 ! rho_1(irb,is) = rho_1(irb,is) + qsave(iqs)*becsum(ijh,ia,is) ENDDO ENDDO ENDDO ENDDO ! ENDDO ! ! ... check the integral of the total charge IF (rescale) THEN !OBM, RHO IS NOT NECESSARILY GROUND STATE CHARGE DENSITY, thus rescaling is optional charge = sum( rho_1(:,1:nspin_lsda) )*omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) CALL mp_sum( charge , intra_bgrp_comm ) CALL mp_sum( charge , inter_pool_comm ) IF ( abs( charge - nelec ) / charge > tolerance ) THEN ! ! ... the error on the charge is too large ! WRITE (msg,'("expected ",f13.8,", found ",f13.8)') & nelec, charge CALL errore( 'addusdens_r', & trim(msg)//': wrong charge, increase ecutrho', 1 ) ! ELSE ! ! ... rescale the density to impose the correct number of electrons ! rho_1(:,:) = rho_1(:,:) / charge * nelec ! ENDIF ENDIF ! CALL stop_clock( 'addusdens' ) ! RETURN ! END SUBROUTINE addusdens_r !-------------------------------------------------------------------------- SUBROUTINE calbec_rs_gamma ( ibnd, m, becp_r ) !-------------------------------------------------------------------------- ! ! Subroutine written by Dario Rocca Stefano de Gironcoli, modified by O. Baris Malcioglu ! ! Calculates becp_r in real space ! Requires BETASAVE (the beta functions at real space) calculated by betapointlist() (added to realus) ! ibnd is an index that runs over the number of bands, which is given by m ! So you have to call this subroutine inside a cycle with index ibnd ! In this cycle you have to perform a Fourier transform of the orbital ! corresponding to ibnd, namely you have to transform the orbital to ! real space and store it in the global variable psic. ! Remember that in the gamma_only case you ! perform two fast Fourier transform at the same time, and so you have ! that the real part correspond to ibnd, and the imaginary part to ibnd+1 ! ! WARNING: For the sake of speed, there are no checks performed in this routine, check beforehand! USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE fft_base, ONLY : tg_gather, dffts USE mp_global, ONLY : me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m INTEGER :: iqs, iqsp, ikb, nt, ia, ih, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: wr, wi REAL(DP) :: bcr, bci REAL(DP), DIMENSION(:,:), INTENT(out) :: becp_r !COMPLEX(DP), allocatable, dimension(:) :: bt !integer :: ir, k ! REAL(DP), EXTERNAL :: ddot ! ! CALL start_clock( 'calbec_rs' ) ! IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'calbec_rs_gamma', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here fac = sqrt(omega) / (dffts%nr1*dffts%nr2*dffts%nr3) ! becp_r(:,ibnd)=0.d0 IF ( ibnd+1 .le. m ) becp_r(:,ibnd+1)=0.d0 ! Clearly for an odd number of bands for ibnd=nbnd=m you don't have ! anymore bands, and so the imaginary part equal zero ! ! iqs = 1 ikb = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ! maxbox_beta contains the maximum number of real space points necessary ! to describe the beta function corresponding to the atom ia ! Namely this is the number of grid points for which beta is ! different from zero ! ALLOCATE( wr(mbia), wi(mbia) ) ! just working arrays ! DO ih = 1, nh(nt) ! nh is the number of beta functions, or something similar ! ikb = ikb + 1 iqsp = iqs+mbia-1 wr(:) = dble ( psic( box_beta(1:mbia,ia) ) ) wi(:) = aimag( psic( box_beta(1:mbia,ia) ) ) !print *, "betasave check", betasave(ia,ih,:) ! box_beta contains explictly the points of the real space grid in ! which the beta functions are differet from zero. Remember ! that dble(psic) corresponds to ibnd, and aimag(psic) to ibnd+1: ! this is the standard way to perform fourier transform in pwscf ! in the gamma_only case bcr = ddot( mbia, betasave(ia,ih,:), 1, wr(:) , 1 ) bci = ddot( mbia, betasave(ia,ih,:), 1, wi(:) , 1 ) ! in the previous two lines the real space integral is performed, using ! few points of the real space mesh only becp_r(ikb,ibnd) = fac * bcr IF ( ibnd+1 .le. m ) becp_r(ikb,ibnd+1) = fac * bci ! It is necessary to multiply by fac which to obtain the integral in real ! space !print *, becp_r(ikb,ibnd) iqs = iqsp + 1 ! ENDDO ! DEALLOCATE( wr, wi ) ! ENDIF ! ENDDO ! ENDDO ! ! ENDIF CALL mp_sum( becp_r( :, ibnd ), intra_bgrp_comm ) IF ( ibnd+1 .le. m ) CALL mp_sum( becp_r( :, ibnd+1 ), intra_bgrp_comm ) CALL stop_clock( 'calbec_rs' ) ! RETURN END SUBROUTINE calbec_rs_gamma ! SUBROUTINE calbec_rs_k ( ibnd, m ) !-------------------------------------------------------------------------- ! The k_point generalised version of calbec_rs_gamma. Basically same as above, but becp is used instead ! of becp_r, skipping the gamma point reduction ! derived from above by OBM 051108 USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_global, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m INTEGER :: iqs, iqsp, ikb, nt, ia, ih, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: wr, wi REAL(DP) :: bcr, bci !COMPLEX(DP), allocatable, dimension(:) :: bt !integer :: ir, k ! REAL(DP), EXTERNAL :: ddot ! ! CALL start_clock( 'calbec_rs' ) ! IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'calbec_rs_k', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here fac = sqrt(omega) / (dffts%nr1*dffts%nr2*dffts%nr3) ! becp%k(:,ibnd)=0.d0 iqs = 1 ikb = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( wr(mbia), wi(mbia) ) DO ih = 1, nh(nt) ! nh is the number of beta functions, or something similar ! ikb = ikb + 1 iqsp = iqs+mbia-1 wr(:) = dble ( psic( box_beta(1:mbia,ia) ) ) wi(:) = aimag( psic( box_beta(1:mbia,ia) ) ) bcr = ddot( mbia, betasave(ia,ih,:), 1, wr(:) , 1 ) bci = ddot( mbia, betasave(ia,ih,:), 1, wi(:) , 1 ) becp%k(ikb,ibnd) = fac * cmplx( bcr, bci,kind=DP) iqs = iqsp + 1 ! ENDDO ! DEALLOCATE( wr, wi ) ! ENDIF ! ENDDO ! ENDDO ! ! ENDIF CALL stop_clock( 'calbec_rs' ) ! RETURN END SUBROUTINE calbec_rs_k !-------------------------------------------------------------------------- SUBROUTINE s_psir_gamma ( ibnd, m ) !-------------------------------------------------------------------------- ! ! ... This routine applies the S matrix to m wavefunctions psi in real space (in psic), ! ... and puts the results again in psic for backtransforming. ! ... Requires becp%r (calbecr in REAL SPACE) and betasave (from betapointlist in realus) ! Subroutine written by Dario Rocca, modified by O. Baris Malcioglu ! WARNING ! for the sake of speed, no checks performed in this subroutine USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : qq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_global, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: w1, w2, bcr, bci ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 's_psir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 's_psir_gamma', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) !print *, "mbia=",mbia ALLOCATE( w1(nh(nt)), w2(nh(nt)) ) w1 = 0.D0 w2 = 0.D0 ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! jkb = ikb + jh w1(ih) = w1(ih) + qq(ih,jh,nt) * becp%r(jkb, ibnd) IF ( ibnd+1 .le. m ) w2(ih) = w2(ih) + qq(ih,jh,nt) * becp%r(jkb, ibnd+1) ! ENDDO ! ENDDO ! w1 = w1 * fac w2 = w2 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + betasave(ia,ih,ir)*cmplx( w1(ih), w2(ih) ,kind=DP) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1, w2 ) ! ENDIF ! ENDDO ! ENDDO ! ENDIF CALL stop_clock( 's_psir' ) ! RETURN ! END SUBROUTINE s_psir_gamma ! SUBROUTINE s_psir_k ( ibnd, m ) !-------------------------------------------------------------------------- ! Same as s_psir_gamma but for generalised k point scheme i.e.: ! 1) Only one band is considered at a time ! 2) Becp is a complex entity now ! Derived from s_psir_gamma by OBM 061108 USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : qq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_global, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: bcr, bci COMPLEX(DP) , ALLOCATABLE, DIMENSION(:) :: w1 ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 's_psir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 's_psir_k', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( w1(nh(nt)) ) w1 = 0.D0 ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! jkb = ikb + jh w1(ih) = w1(ih) + qq(ih,jh,nt) * becp%k(jkb, ibnd) ! ENDDO ! ENDDO ! w1 = w1 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + betasave(ia,ih,ir)*w1(ih) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1 ) ! ENDIF ! ENDDO ! ENDDO ! ENDIF CALL stop_clock( 's_psir' ) ! RETURN ! END SUBROUTINE s_psir_k ! SUBROUTINE add_vuspsir_gamma ( ibnd, m ) !-------------------------------------------------------------------------- ! ! This routine applies the Ultra-Soft Hamiltonian to a ! vector transformed in real space contained in psic. ! ibnd is an index that runs over the number of bands, which is given by m ! Requires the products of psi with all beta functions ! in array becp%r(nkb,m) (calculated by calbecr in REAL SPACE) ! Subroutine written by Dario Rocca, modified by O. Baris Malcioglu ! WARNING ! for the sake of speed, no checks performed in this subroutine USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : deeq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_global, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: w1, w2, bcr, bci ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 'add_vuspsir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'add_vuspsir_gamma', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( w1(nh(nt)), w2(nh(nt)) ) w1 = 0.D0 w2 = 0.D0 ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! jkb = ikb + jh ! w1(ih) = w1(ih) + deeq(ih,jh,ia,current_spin) * becp%r(jkb,ibnd) IF ( ibnd+1 .le. m ) w2(ih) = w2(ih) + deeq(ih,jh,ia,current_spin) * becp%r(jkb,ibnd+1) ! ENDDO ! ENDDO ! w1 = w1 * fac w2 = w2 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + betasave(ia,ih,ir)*cmplx( w1(ih), w2(ih) ,kind=DP) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1, w2 ) ! ENDIF ! ENDDO ! ENDDO ! ENDIF CALL stop_clock( 'add_vuspsir' ) ! RETURN ! END SUBROUTINE add_vuspsir_gamma ! SUBROUTINE add_vuspsir_k ( ibnd, m ) !-------------------------------------------------------------------------- ! ! This routine applies the Ultra-Soft Hamiltonian to a ! vector transformed in real space contained in psic. ! ibnd is an index that runs over the number of bands, which is given by m ! Requires the products of psi with all beta functions ! in array becp(nkb,m) (calculated by calbecr in REAL SPACE) ! Subroutine written by Stefano de Gironcoli, modified by O. Baris Malcioglu ! WARNING ! for the sake of speed, no checks performed in this subroutine ! USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : deeq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_global, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: bcr, bci ! COMPLEX(DP), ALLOCATABLE, DIMENSION(:) :: w1 ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 'add_vuspsir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'add_vuspsir_k', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( w1(nh(nt)) ) w1 = (0.d0, 0d0) ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! jkb = ikb + jh ! w1(ih) = w1(ih) + deeq(ih,jh,ia,current_spin) * becp%k(jkb,ibnd) ! ENDDO ! ENDDO ! w1 = w1 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + betasave(ia,ih,ir)*w1(ih) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1) ! ENDIF ! ENDDO ! ENDDO ENDIF CALL stop_clock( 'add_vuspsir' ) RETURN ! END SUBROUTINE add_vuspsir_k !-------------------------------------------------------------------------- SUBROUTINE fft_orbital_gamma (orbital, ibnd, nbnd, conserved) !-------------------------------------------------------------------------- ! ! OBM 241008 ! This driver subroutine transforms the given orbital using fft and puts the result in psic ! Warning! In order to be fast, no checks on the supplied data are performed! ! orbital: the orbital to be transformed ! ibnd: band index ! nbnd: total number of bands USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls,nlsm,doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : invfft USE mp_global, ONLY : me_bgrp IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Current index of the band currently being transformed nbnd ! Total number of bands you want to transform COMPLEX(DP),INTENT(in) :: orbital(:,:) LOGICAL, OPTIONAL :: conserved !if this flag is true, the orbital is stored in temporary memory !integer :: ig !Internal temporary variables COMPLEX(DP) :: fp, fm,alpha INTEGER :: i, j, incr, ierr, idx, ioff, nsiz LOGICAL :: use_tg COMPLEX(DP), ALLOCATABLE :: psic_temp2(:) !Task groups !COMPLEX(DP), ALLOCATABLE :: tg_psic(:) INTEGER :: recv_cnt( dffts%nogrp ), recv_displ( dffts%nogrp ) INTEGER :: v_siz !The new task group version based on vloc_psi !print *, "->Real space" CALL start_clock( 'fft_orbital' ) ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! tg_psic = (0.d0, 0.d0) ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 IF( idx + ibnd - 1 < nbnd ) THEN DO j = 1, npw_k(1) tg_psic(nls (igk_k(j,1))+ioff) = orbital(j,idx+ibnd-1) +& (0.0d0,1.d0) * orbital(j,idx+ibnd) tg_psic(nlsm(igk_k(j,1))+ioff) =conjg(orbital(j,idx+ibnd-1) -& (0.0d0,1.d0) * orbital(j,idx+ibnd) ) ENDDO ELSEIF( idx + ibnd - 1 == nbnd ) THEN DO j = 1, npw_k(1) tg_psic(nls (igk_k(j,1))+ioff) = orbital(j,idx+ibnd-1) tg_psic(nlsm(igk_k(j,1))+ioff) = conjg( orbital(j,idx+ibnd-1)) ENDDO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! ! CALL invfft ('Wave', tg_psic, dffts) ! ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(tg_psic_temp)) ALLOCATE( tg_psic_temp( dffts%tg_nnr * dffts%nogrp ) ) tg_psic_temp=tg_psic ENDIF ENDIF ELSE !Task groups not used ! psic(:) = (0.d0, 0.d0) ! alpha=(0.d0,1.d0) ! if (ibnd .eq. nbnd) alpha=(0.d0,0.d0) ! ! allocate (psic_temp2(npw_k(1))) ! call zcopy(npw_k(1),orbital(:, ibnd),1,psic_temp2,1) ! call zaxpy(npw_k(1),alpha,orbital(:, ibnd+1),1,psic_temp2,1) ! psic (nls (igk_k(:,1)))=psic_temp2(:) ! call zaxpy(npw_k(1),(-2.d0,0.d0)*alpha,orbital(:, ibnd+1),1,psic_temp2,1) ! psic (nlsm (igk_k(:,1)))=conjg(psic_temp2(:)) ! deallocate(psic_temp2) IF (ibnd < nbnd) THEN ! two ffts at the same time !print *,"alpha=",alpha DO j = 1, npw_k(1) psic (nls (igk_k(j,1))) = orbital(j, ibnd) + (0.0d0,1.d0)*orbital(j, ibnd+1) psic (nlsm(igk_k(j,1))) = conjg(orbital(j, ibnd) - (0.0d0,1.d0)*orbital(j, ibnd+1)) !print *, nls (igk_k(j,1)) ENDDO !CALL errore( 'fft_orbital_gamma', 'bye bye', 1 ) ELSE DO j = 1, npw_k(1) psic (nls (igk_k(j,1))) = orbital(j, ibnd) psic (nlsm(igk_k(j,1))) = conjg(orbital(j, ibnd)) ENDDO ENDIF ! ! CALL invfft ('Wave', psic, dffts) ! ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(psic_temp) ) ALLOCATE (psic_temp(size(psic))) CALL zcopy(size(psic),psic,1,psic_temp,1) ENDIF ENDIF ENDIF dffts%have_task_groups = use_tg !if (.not. allocated(psic)) CALL errore( 'fft_orbital_gamma', 'psic not allocated', 2 ) ! OLD VERSION ! Based on an algorithm found somewhere in the TDDFT codes, generalised to k points ! ! psic(:) =(0.0d0,0.0d0) ! if(ibndfourier space" CALL start_clock( 'bfft_orbital' ) !New task_groups versions use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! CALL fwfft ('Wave', tg_psic, dffts ) ! ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 ! IF( idx + ibnd - 1 < nbnd ) THEN DO j = 1, npw_k(1) fp= ( tg_psic( nls(igk_k(j,1)) + ioff ) + & tg_psic( nlsm(igk_k(j,1)) + ioff ) ) * 0.5d0 fm= ( tg_psic( nls(igk_k(j,1)) + ioff ) - & tg_psic( nlsm(igk_k(j,1)) + ioff ) ) * 0.5d0 orbital (j, ibnd+idx-1) = cmplx( dble(fp), aimag(fm),kind=DP) orbital (j, ibnd+idx ) = cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSEIF( idx + ibnd - 1 == nbnd ) THEN DO j = 1, npw_k(1) orbital (j, ibnd+idx-1) = tg_psic( nls(igk_k(j,1)) + ioff ) ENDDO ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(tg_psic_temp)) DEALLOCATE( tg_psic_temp ) ENDIF ENDIF ELSE !Non task_groups version !larger memory slightly faster CALL fwfft ('Wave', psic, dffts) IF (ibnd < nbnd) THEN ! two ffts at the same time DO j = 1, npw_k(1) fp = (psic (nls(igk_k(j,1))) + psic (nlsm(igk_k(j,1))))*0.5d0 fm = (psic (nls(igk_k(j,1))) - psic (nlsm(igk_k(j,1))))*0.5d0 orbital( j, ibnd) = cmplx( dble(fp), aimag(fm),kind=DP) orbital( j, ibnd+1) = cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSE DO j = 1, npw_k(1) orbital(j, ibnd) = psic (nls(igk_k(j,1))) ENDDO ENDIF IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(psic_temp) ) DEALLOCATE(psic_temp) ENDIF ENDIF ENDIF dffts%have_task_groups = use_tg !! OLD VERSION Based on the algorithm found in lr_apply_liovillian !!print * ,"a" !CALL fwfft ('Wave', psic, dffts) !! !!print *, "b" !if (ibnd= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! tg_psic = ( 0.D0, 0.D0 ) ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= nbnd ) THEN !DO j = 1, size(orbital,1) tg_psic( nls( igk_k(:, ik) ) + ioff ) = orbital(:,idx+ibnd-1) !END DO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! CALL invfft ('Wave', tg_psic, dffts) IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.NOT. ALLOCATED(tg_psic_temp)) & &ALLOCATE( tg_psic_temp( dffts%tg_nnr * dffts%nogrp ) ) tg_psic_temp=tg_psic ENDIF ENDIF ! ELSE !non task_groups version ! psic(1:dffts%nnr) = ( 0.D0, 0.D0 ) ! psic(nls(igk_k(1:npw_k(ik), ik))) = orbital(1:npw_k(ik),ibnd) ! CALL invfft ('Wave', psic, dffts) IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(psic_temp) ) ALLOCATE (psic_temp(size(psic))) psic_temp=psic ENDIF ENDIF ! ENDIF dffts%have_task_groups = use_tg CALL stop_clock( 'fft_orbital' ) END SUBROUTINE fft_orbital_k !-------------------------------------------------------------------------- SUBROUTINE bfft_orbital_k (orbital, ibnd, nbnd, ik, conserved) !-------------------------------------------------------------------------- ! ! OBM 110908 ! This subroutine transforms the given orbital using fft and puts the result in psic ! Warning! In order to be fast, no checks on the supplied data are performed! ! orbital: the orbital to be transformed ! ibnd: band index ! nbnd: total number of bands USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls, nlsm, doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft USE mp_global, ONLY : me_bgrp IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Index of the band currently being transformed nbnd,& ! Total number of bands you want to transform ik ! kpoint index of the bands COMPLEX(DP),INTENT(out) :: orbital(:,:) LOGICAL, OPTIONAL :: conserved !if this flag is true, the orbital is stored in temporary memory ! Internal variables INTEGER :: j, ioff, idx LOGICAL :: use_tg CALL start_clock( 'bfft_orbital' ) use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! CALL fwfft ('Wave', tg_psic, dffts) ! ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= nbnd ) THEN orbital (:, ibnd+idx-1) = tg_psic( nls(igk_k(:,ik)) + ioff ) ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(tg_psic_temp)) DEALLOCATE( tg_psic_temp ) ENDIF ENDIF ! ELSE !non task groups version ! CALL fwfft ('Wave', psic, dffts) ! orbital(1:npw_k(ik),ibnd) = psic(nls(igk_k(1:npw_k(ik),ik))) ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(psic_temp) ) DEALLOCATE(psic_temp) ENDIF ENDIF ENDIF dffts%have_task_groups = use_tg CALL stop_clock( 'bfft_orbital' ) END SUBROUTINE bfft_orbital_k !-------------------------------------------------------------------------- SUBROUTINE v_loc_psir (ibnd, nbnd) !-------------------------------------------------------------------------- ! Basically the same thing as v_loc but without implicit fft ! modified for real space implementation ! OBM 241008 ! USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls,nlsm,doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts, tg_gather USE mp_global, ONLY : me_bgrp USE scf, ONLY : vrs USE lsda_mod, ONLY : current_spin IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Current index of the band currently being transformed nbnd ! Total number of bands you want to transform !Internal temporary variables COMPLEX(DP) :: fp, fm INTEGER :: i, j, incr, ierr, idx, ioff, nsiz !Task groups REAL(DP), ALLOCATABLE :: tg_v(:) INTEGER :: recv_cnt( dffts%nogrp ), recv_displ( dffts%nogrp ) INTEGER :: v_siz CALL start_clock( 'v_loc_psir' ) IF( dffts%have_task_groups .and. nbnd >= dffts%nogrp ) THEN IF (ibnd == 1 ) THEN CALL tg_gather( dffts, vrs(:,current_spin), tg_v ) !if ibnd==1 this is a new calculation, and tg_v should be distributed. ENDIF ! DO j = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic (j) = tg_psic (j) + tg_psic_temp (j) * tg_v(j) ENDDO ! DEALLOCATE( tg_v ) ELSE ! product with the potential v on the smooth grid ! DO j = 1, dffts%nnr psic (j) = psic (j) + psic_temp (j) * vrs(j,current_spin) ENDDO ENDIF CALL stop_clock( 'v_loc_psir' ) END SUBROUTINE v_loc_psir !-------------------------------------------------------------------------- ! NOW start the part added by GWW team ! SUBROUTINE adduspos_gamma_r(iw,jw,r_ij,ik,becp_iw,becp_jw) !---------------------------------------------------------------------- ! ! This routine adds the US term < Psi_iw|r> ! to the array r_ij ! this is a GAMMA only routine (i.e. r_ij is real) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb USE uspp_param, ONLY : upf, lmaxq, nh USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE io_global, ONLY : stdout USE cell_base, ONLY : omega ! USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! INTEGER, INTENT(in) :: iw,jw!the states indices REAL(kind=DP), INTENT(inout) :: r_ij(dfftp%nnr)!where to add the us term INTEGER, INTENT(in) :: ik!spin index for spin polarized calculations NOT IMPLEMENTED YET REAL(kind=DP), INTENT(in) :: becp_iw( nkb)!overlap of wfcs with us projectors REAL(kind=DP), INTENT(in) :: becp_jw( nkb)!overlap of wfcs with us projectors ! here the local variables ! INTEGER :: na, nt, nhnt, ir, ih, jh, is , ia, mbia, irb, iqs, sizeqsave INTEGER :: ikb, jkb, ijkb0, np ! counters ! work space for rho(G,nspin) ! Fourier transform of q IF (.not.okvan) RETURN IF( .not.gamma_only) THEN WRITE(stdout,*) ' adduspos_gamma_r is a gamma ONLY routine' STOP ENDIF ijkb0 = 0 DO is=1,nspin ! DO np = 1, ntyp ! iqs = 0 ! IF ( upf(np)%tvanp ) THEN ! DO ia = 1, nat ! mbia = maxbox(ia) nt = ityp(ia) nhnt = nh(nt) ! IF ( ityp(ia) /= np ) iqs=iqs+(nhnt+1)*nhnt*mbia/2 IF ( ityp(ia) /= np ) CYCLE ! DO ih = 1, nhnt ! ikb = ijkb0 + ih ! DO jh = ih, nhnt ! jkb = ijkb0 + jh ! DO ir = 1, mbia ! irb = box(ir,ia) iqs = iqs + 1 ! r_ij(irb) = r_ij(irb) + qsave(iqs)*becp_iw(ikb)*becp_jw(jkb)*omega ! IF ( ih /= jh ) THEN r_ij(irb) = r_ij(irb) + qsave(iqs)*becp_iw(jkb)*becp_jw(ikb)*omega ENDIF ENDDO ENDDO ENDDO ijkb0 = ijkb0 + nhnt ! ENDDO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ENDDO ENDDO ! RETURN ! END SUBROUTINE adduspos_gamma_r ! SUBROUTINE adduspos_r(r_ij,becp_iw,becp_jw) !---------------------------------------------------------------------- ! ! This routine adds the US term < Psi_iw|r> ! to the array r_ij USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb USE uspp_param, ONLY : upf, lmaxq, nh USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE cell_base, ONLY : omega ! IMPLICIT NONE ! COMPLEX(kind=DP), INTENT(inout) :: r_ij(dfftp%nnr)!where to add the us term COMPLEX(kind=DP), INTENT(in) :: becp_iw( nkb)!overlap of wfcs with us projectors COMPLEX(kind=DP), INTENT(in) :: becp_jw( nkb)!overlap of wfcs with us projectors ! here the local variables ! INTEGER :: na, ia, nt, nhnt, ir, ih, jh, is, mbia, irb, iqs INTEGER :: ikb, jkb, ijkb0, np ! counters ! work space for rho(G,nspin) ! Fourier transform of q IF (.not.okvan) RETURN ijkb0 = 0 DO is=1,nspin ! DO np = 1, ntyp ! iqs = 0 ! IF ( upf(np)%tvanp ) THEN ! DO ia = 1, nat ! mbia = maxbox(ia) nt = ityp(ia) nhnt = nh(nt) ! IF ( ityp(ia) /= np ) iqs=iqs+(nhnt+1)*nhnt*mbia/2 IF ( ityp(ia) /= np ) CYCLE ! DO ih = 1, nhnt ! ikb = ijkb0 + ih DO jh = ih, nhnt ! jkb = ijkb0 + jh ! DO ir = 1, mbia ! irb = box(ir,ia) iqs = iqs + 1 ! r_ij(irb) = r_ij(irb) + qsave(iqs)*conjg(becp_iw(ikb))*becp_jw(jkb)*omega ! IF ( ih /= jh ) THEN r_ij(irb) = r_ij(irb) + qsave(iqs)*conjg(becp_iw(jkb))*becp_jw(ikb)*omega ENDIF ENDDO ENDDO ENDDO ijkb0 = ijkb0 + nhnt ! ENDDO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ENDDO ENDDO ! RETURN END SUBROUTINE adduspos_r ! SUBROUTINE adduspos_real(sca,qq_op,becp_iw,becp_jw) !---------------------------------------------------------------------- ! ! This routine adds the US term < Psi_iw|r> ! to the array r_ij USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb, qq USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE cell_base, ONLY : omega ! USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! REAL(kind=DP), INTENT(inout) :: sca!where to add the us term REAL(kind=DP), INTENT(in) :: becp_iw( nkb)!overlap of wfcs with us projectors REAL(kind=DP), INTENT(in) :: becp_jw( nkb)!overlap of wfcs with us projectors REAL(kind=DP), INTENT(in) :: qq_op(nhm, nhm,nat)!US augmentation charges ! here the local variables ! INTEGER :: na, ia, nhnt, nt, ir, ih, jh, is, mbia INTEGER :: ikb, jkb, ijkb0, np ! counters ! work space for rho(G,nspin) ! Fourier transform of q IF (.not.okvan) RETURN ijkb0 = 0 DO is=1,nspin ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO ia = 1, nat ! IF ( ityp(ia) /= np ) CYCLE ! mbia = maxbox(ia) nt = ityp(ia) nhnt = nh(nt) ! DO ih = 1, nhnt ! ikb = ijkb0 + ih DO jh = ih, nhnt ! jkb = ijkb0 + jh ! sca = sca + qq_op(ih,jh,ia) * becp_iw(ikb)*becp_jw(jkb) ! IF ( ih /= jh ) THEN sca = sca + qq_op(jh,ih,ia) * becp_iw(ikb)*becp_jw(jkb) ENDIF ! ENDDO ENDDO ijkb0 = ijkb0 + nhnt ! ENDDO ! ELSE ! DO ia = 1, nat ! IF ( ityp(ia) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ENDDO ENDDO ! RETURN ! END SUBROUTINE adduspos_real ! SUBROUTINE augmentation_qq(op,qq_op) !---------------------------------------------------------------------- ! ! this routine calculates the augmentaion charghe qq=\int q_ij(r)*op(r) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb, qq USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE cell_base, ONLY : omega ! USE mp, ONLY : mp_sum USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER :: is, ia, nhnt, na, nt, ih, jh, ir, mbia, irb, iqs REAL(kind=DP) :: sca REAL(kind=DP), INTENT(out) :: qq_op(nhm, nhm,nat)!US augmentation charges to be calculated REAL(kind=DP), INTENT(in) :: op(dfftp%nnr)!operator qq_op(:,:,:)=0.d0 DO is=1,nspin ! iqs = 0 ! DO ia = 1, nat ! mbia = maxbox(ia) ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! nhnt = nh(nt) ! DO ih = 1, nhnt ! DO jh = ih, nhnt ! sca = 0.d0 DO ir = 1, mbia ! irb = box(ir,ia) iqs = iqs + 1 ! sca=sca+op(irb)*qsave(iqs) ENDDO !!!! call mp_sum(sca , intra_pool_comm) CALL mp_sum(sca) sca=sca/dble(dfftp%nr1*dfftp%nr2*dfftp%nr3) qq_op(ih,jh,ia)=sca qq_op(jh,ih,ia)=sca ENDDO ENDDO ENDDO ENDDO ! RETURN ! END SUBROUTINE augmentation_qq ! END MODULE realus espresso-5.0.2/PW/src/deriv_drhoc.f900000644000700200004540000000361212053145630016306 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine deriv_drhoc (ngl, gl, omega, tpiba2, mesh, r, rab, rhoc, drhocg) !----------------------------------------------------------------------- USE kinds USE constants, ONLY : pi, fpi implicit none ! ! first the dummy variables ! integer :: ngl, mesh ! input: the number of g shell ! input: the number of radial mesh points real(DP), intent(in) :: gl (ngl), r (mesh), rab (mesh), rhoc (mesh), & omega, tpiba2 real(DP), intent(out) :: drhocg (ngl) ! input: the number of G shells ! input: the radial mesh ! input: the derivative of the radial mesh ! input: the radial core charge ! input: the volume of the unit cell ! input: 2 times pi / alat ! output: fourier transform of d Rho_c/dG ! ! here the local variables ! real(DP) :: gx, rhocg1 ! the modulus of g for a given shell ! the fourier transform real(DP), allocatable :: aux (:) ! auxiliary memory for integration integer :: ir, igl, igl0 ! counter on radial mesh points ! counter on g shells ! lower limit for loop on ngl ! ! G=0 term ! if (gl (1) < 1.0d-8) then drhocg (1) = 0.0d0 igl0 = 2 else igl0 = 1 endif ! ! G <> 0 term ! allocate (aux( mesh)) do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) do ir = 1, mesh aux (ir) = r (ir) * rhoc (ir) * (r (ir) * cos (gx * r (ir) ) & / gx - sin (gx * r (ir) ) / gx**2) enddo call simpson (mesh, aux, rab, rhocg1) drhocg (igl) = fpi / omega * rhocg1 enddo deallocate (aux) return end subroutine deriv_drhoc espresso-5.0.2/PW/src/h_psi.f900000644000700200004540000001162612053145627015132 0ustar marsamoscm ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE h_psi( lda, n, m, psi, hpsi ) !---------------------------------------------------------------------------- ! ! ... This routine computes the product of the Hamiltonian ! ... matrix with m wavefunctions contained in psi ! ! ... input: ! ... lda leading dimension of arrays psi, spsi, hpsi ! ... n true dimension of psi, spsi, hpsi ! ... m number of states psi ! ... psi ! ! ... output: ! ... hpsi H*psi ! USE kinds, ONLY : DP USE bp, ONLY : lelfield,l3dstring,gdir, efield, efield_cry USE becmod, ONLY : bec_type, becp, calbec USE lsda_mod, ONLY : current_spin USE scf, ONLY : vrs USE wvfct, ONLY : g2kin USE uspp, ONLY : vkb, nkb USE ldaU, ONLY : lda_plus_u, U_projection USE gvect, ONLY : gstart USE funct, ONLY : dft_is_meta USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY: npol, noncolin USE realus, ONLY : real_space, fft_orbital_gamma, initialisation_level, & bfft_orbital_gamma, calbec_rs_gamma, & add_vuspsir_gamma, v_loc_psir USE fft_base, ONLY : dffts USE exx, ONLY : vexx USE funct, ONLY : exx_is_active ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: lda, n, m COMPLEX(DP), INTENT(IN) :: psi(lda*npol,m) COMPLEX(DP), INTENT(OUT) :: hpsi(lda*npol,m) ! INTEGER :: ipol, ibnd, incr ! CALL start_clock( 'h_psi' ) ! ! ... Here we apply the kinetic energy (k+G)^2 psi ! DO ibnd = 1, m hpsi (1:n, ibnd) = g2kin (1:n) * psi (1:n, ibnd) hpsi (n+1:lda,ibnd) = (0.0_dp, 0.0_dp) IF ( noncolin ) THEN hpsi (lda+1:lda+n, ibnd) = g2kin (1:n) * psi (lda+1:lda+n, ibnd) hpsi (lda+n+1:lda*npol, ibnd) = (0.0_dp, 0.0_dp) END IF END DO ! if (dft_is_meta()) call h_psi_meta (lda, n, m, psi, hpsi) ! ! ... Here we add the Hubbard potential times psi ! IF ( lda_plus_u .AND. U_projection.NE."pseudo" ) THEN ! IF (noncolin) THEN CALL vhpsi_nc( lda, n, m, psi, hpsi ) ELSE call vhpsi( lda, n, m, psi, hpsi ) ENDIF ! ENDIF ! ! ! ... the local potential V_Loc psi ! CALL start_clock( 'h_psi:vloc' ) ! IF ( gamma_only ) THEN ! IF ( real_space .and. nkb > 0 ) then ! ! ... real-space algorithm ! ... fixme: real_space without beta functions does not make sense ! IF ( dffts%have_task_groups .AND. ( m >= dffts%nogrp )) then incr = 2 * dffts%nogrp ELSE incr = 2 ENDIF DO ibnd = 1, m, incr ! ... transform psi to real space, saved in temporary memory CALL fft_orbital_gamma(psi,ibnd,m,.true.) ! ... becp%r = < beta|psi> on psi in real space CALL calbec_rs_gamma(ibnd,m,becp%r) ! ... psi is now replaced by hpsi ??? WHAT FOR ??? CALL fft_orbital_gamma(hpsi,ibnd,m) ! ... hpsi -> hpsi + psi*vrs (psi read from temporary memory) CALL v_loc_psir(ibnd,m) ! ... hpsi -> hpsi + vusp CALL add_vuspsir_gamma(ibnd,m) ! ... transform back hpsi, clear psi in temporary memory CALL bfft_orbital_gamma(hpsi,ibnd,m,.true.) END DO ! ELSE ! ... usual reciprocal-space algorithm CALL vloc_psi_gamma ( lda, n, m, psi, vrs(1,current_spin), hpsi ) ENDIF ! ELSE IF ( noncolin ) THEN ! CALL vloc_psi_nc ( lda, n, m, psi, vrs, hpsi ) ! ELSE ! CALL vloc_psi_k ( lda, n, m, psi, vrs(1,current_spin), hpsi ) ! END IF CALL stop_clock( 'h_psi:vloc' ) ! ! ... Here the product with the non local potential V_NL psi ! ... (not in the real-space case: it is done together with V_loc) ! IF ( nkb > 0 .AND. .NOT. real_space) THEN ! CALL start_clock( 'h_psi:vnl' ) CALL calbec ( n, vkb, psi, becp, m ) CALL add_vuspsi( lda, n, m, hpsi ) CALL stop_clock( 'h_psi:vnl' ) ! END IF IF ( exx_is_active() ) CALL vexx( lda, n, m, psi, hpsi ) ! ! ... electric enthalpy if required ! IF ( lelfield ) THEN ! IF ( .NOT.l3dstring ) THEN CALL h_epsi_her_apply( lda, n, m, psi, hpsi,gdir, efield ) ELSE DO ipol=1,3 CALL h_epsi_her_apply( lda, n, m, psi, hpsi,ipol,efield_cry(ipol) ) END DO END IF ! END IF ! ! ... Gamma-only trick: set to zero the imaginary part of hpsi at G=0 ! IF ( gamma_only .AND. gstart == 2 ) & hpsi(1,1:m) = CMPLX( DBLE( hpsi(1,1:m) ), 0.D0 ,kind=DP) ! CALL stop_clock( 'h_psi' ) ! RETURN ! END SUBROUTINE h_psi espresso-5.0.2/PW/src/forces.f900000644000700200004540000002641512053145630015305 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE forces() !---------------------------------------------------------------------------- ! ! ... This routine is a driver routine which computes the forces ! ... acting on the atoms. The complete expression of the forces ! ... contains four parts which are computed by different routines: ! ! ... a) force_lc, local contribution to the forces ! ... b) force_cc, contribution due to NLCC ! ... c) force_ew, contribution due to the electrostatic ewald term ! ... d) force_us, contribution due to the non-local potential ! ... e) force_corr, correction term for incomplete self-consistency ! ... f) force_hub, contribution due to the Hubbard term ! ... g) force_london, semi-empirical correction for dispersion forces ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE cell_base, ONLY : at, bg, alat, omega USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, amass, extfor USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, gstart, ngl, nl, igtongl, g, gg, gcutm USE lsda_mod, ONLY : nspin USE symme, ONLY : symvector USE vlocal, ONLY : strf, vloc USE force_mod, ONLY : force, lforce USE scf, ONLY : rho USE ions_base, ONLY : if_pos USE ldaU, ONLY : lda_plus_u, U_projection USE extfield, ONLY : tefield, forcefield USE control_flags, ONLY : gamma_only, remove_rigid_rot, textfor, & iverbosity, llondon #ifdef __ENVIRON USE environ_base, ONLY : do_environ, env_static_permittivity, rhopol USE fft_interfaces, ONLY : fwfft #endif USE bp, ONLY : lelfield, gdir, l3dstring, efield_cart, & efield_cry,efield USE uspp, ONLY : okvan USE martyna_tuckerman, ONLY: do_comp_mt, wg_corr_force USE london_module, ONLY : force_london ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: forcenl(:,:), & forcelc(:,:), & forcecc(:,:), & forceion(:,:), & force_disp(:,:),& force_mt(:,:), & forcescc(:,:), & forces_bp_efield(:,:), & forceh(:,:) ! nonlocal, local, core-correction, ewald, scf correction terms, and hubbard #ifdef __ENVIRON REAL(DP), ALLOCATABLE :: force_environ(:,:) COMPLEX(DP), ALLOCATABLE :: aux(:) #endif REAL(DP) :: sumfor, sumscf, sum_mm REAL(DP),PARAMETER :: eps = 1.e-12_dp INTEGER :: ipol, na ! counter on polarization ! counter on atoms ! ! CALL start_clock( 'forces' ) ! ALLOCATE( forcenl( 3, nat ), forcelc( 3, nat ), forcecc( 3, nat ), & forceh( 3, nat ), forceion( 3, nat ), forcescc( 3, nat ) ) ! forcescc(:,:) = 0.D0 forceh(:,:) = 0.D0 ! WRITE( stdout, '(/,5x,"Forces acting on atoms (Ry/au):", / )') ! ! ... The nonlocal contribution is computed here ! CALL force_us( forcenl ) ! ! ... The local contribution ! CALL force_lc( nat, tau, ityp, alat, omega, ngm, ngl, igtongl, & g, rho%of_r, nl, nspin, gstart, gamma_only, vloc, & forcelc ) ! ! ... The NLCC contribution ! CALL force_cc( forcecc ) ! ! ... The Hubbard contribution ! (included by force_us if using beta as local projectors) ! IF ( lda_plus_u .AND. U_projection.NE.'pseudo' ) CALL force_hub( forceh ) ! ! ... The ionic contribution is computed here ! CALL force_ew( alat, nat, ntyp, ityp, zv, at, bg, tau, omega, g, & gg, ngm, gstart, gamma_only, gcutm, strf, forceion ) ! ! ... the semi-empirical dispersion correction ! IF ( llondon ) THEN ! ALLOCATE ( force_disp ( 3 , nat ) ) force_disp ( : , : ) = 0.0_DP force_disp = force_london( alat , nat , ityp , at , bg , tau ) ! END IF ! ! ... The SCF contribution ! CALL force_corr( forcescc ) ! IF (do_comp_mt) THEN ! ALLOCATE ( force_mt ( 3 , nat ) ) #ifdef __ENVIRON IF ( do_environ .AND. env_static_permittivity .GT. 1.D0 ) THEN ALLOCATE( aux( dfftp%nnr ) ) aux(:) = CMPLX(rhopol( : ),0.D0,kind=dp) CALL fwfft ('Dense', aux, dfftp) rho%of_g(:,1) = rho%of_g(:,1) + aux(nl(:)) ENDIF #endif CALL wg_corr_force( omega, nat, ntyp, ityp, ngm, g, tau, zv, strf, & nspin, rho%of_g, force_mt ) #ifdef __ENVIRON IF ( do_environ .AND. env_static_permittivity .GT. 1.D0 ) THEN rho%of_g(:,1) = rho%of_g(:,1) - aux(nl(:)) DEALLOCATE(aux) ENDIF #endif END IF #ifdef __ENVIRON IF (do_environ) THEN ! ! ... The external environment contribution ! ALLOCATE ( force_environ ( 3 , nat ) ) force_environ = 0.0_DP ! ! ... Computes here the solvent contribution ! IF ( env_static_permittivity .GT. 1.D0 ) & CALL force_lc( nat, tau, ityp, alat, omega, ngm, ngl, igtongl, & g, rhopol, nl, 1, gstart, gamma_only, vloc, & force_environ ) ! ! ... Add the other environment contributions ! CALL calc_fenviron( dfftp%nnr, nat, force_environ ) ! END IF ! #endif ! ! Berry's phase electric field terms ! if(lelfield) then ALLOCATE ( forces_bp_efield (3,nat) ) forces_bp_efield(:,:)=0.d0 if(.not.l3dstring) then if(okvan) call forces_us_efield(forces_bp_efield,gdir,efield) call forces_ion_efield(forces_bp_efield,gdir,efield) else if(okvan)then do ipol=1,3 call forces_us_efield(forces_bp_efield,ipol,efield_cry(ipol)) enddo endif do ipol=1,3 call forces_ion_efield(forces_bp_efield,ipol,efield_cart(ipol)) enddo endif endif ! ! ... here we sum all the contributions and compute the total force acting ! ... on the crstal ! DO ipol = 1, 3 ! sumfor = 0.D0 ! DO na = 1, nat ! force(ipol,na) = forcenl(ipol,na) + & forceion(ipol,na) + & forcelc(ipol,na) + & forcecc(ipol,na) + & forceh(ipol,na) + & forcescc(ipol,na) ! IF ( llondon ) force(ipol,na) = force(ipol,na) + force_disp(ipol,na) IF ( tefield ) force(ipol,na) = force(ipol,na) + forcefield(ipol,na) IF (lelfield) force(ipol,na) = force(ipol,na) + forces_bp_efield(ipol,na) IF (do_comp_mt)force(ipol,na) = force(ipol,na) + force_mt(ipol,na) ! DCC ! IF (do_comp) force(ipol,na) = force(ipol,na) + force_vcorr(ipol,na) #ifdef __ENVIRON IF (do_environ) force(ipol,na) = force(ipol,na) + force_environ(ipol,na) #endif sumfor = sumfor + force(ipol,na) ! END DO ! ! ... impose total force = 0 ! DO na = 1, nat ! force(ipol,na) = force(ipol,na) - sumfor / DBLE( nat ) ! END DO ! #ifdef __MS2 ! ! ... impose total force of the quantum subsystem /= 0 ! DO na = 1, nat ! force(ipol,na) = force(ipol,na) + sumfor / DBLE( nat ) ! END DO ! #endif ! END DO ! ! ... resymmetrize (should not be needed, but ...) ! CALL symvector ( nat, force ) ! IF ( remove_rigid_rot ) & CALL remove_tot_torque( nat, tau, amass(ityp(:)), force ) ! IF( textfor ) force(:,:) = force(:,:) + extfor(:,:) ! ! ... call void routine for user define/ plugin patches on forces ! CALL plugin_forces() ! ! ... write on output the forces ! DO na = 1, nat ! WRITE( stdout, 9035) na, ityp(na), force(:,na) ! END DO ! ! ... forces on fixed coordinates are set to zero ( C.S. 15/10/2003 ) ! force(:,:) = force(:,:) * DBLE( if_pos ) forcescc(:,:) = forcescc(:,:) * DBLE( if_pos ) ! IF ( iverbosity > 0 ) THEN IF ( do_comp_mt ) THEN WRITE( stdout, '(5x,"The Martyna-Tuckerman correction term to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( force_mt(ipol,na), ipol = 1, 3 ) END DO END IF ! WRITE( stdout, '(5x,"The non-local contrib. to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcenl(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The ionic contribution to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forceion(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The local contribution to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcelc(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The core correction contribution to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcecc(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The Hubbard contrib. to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forceh(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The SCF correction term to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcescc(ipol,na), ipol = 1, 3 ) END DO #ifdef __ENVIRON IF ( do_environ ) THEN WRITE( stdout, '(5x,"The external environment correction to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( force_environ(ipol,na), ipol = 1, 3 ) END DO END IF #endif ! IF ( llondon) THEN WRITE( stdout, '(/,5x,"Dispersion contribution to forces:")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), (force_disp(ipol,na), ipol = 1, 3) END DO END IF ! END IF ! sumfor = 0.D0 sumscf = 0.D0 ! DO na = 1, nat ! sumfor = sumfor + force(1,na)**2 + force(2,na)**2 + force(3,na)**2 sumscf = sumscf + forcescc(1,na)**2 + forcescc(2,na)**2+ forcescc(3,na)**2 ! END DO ! sumfor = SQRT( sumfor ) sumscf = SQRT( sumscf ) ! WRITE( stdout, '(/5x,"Total force = ",F12.6,5X, & & "Total SCF correction = ",F12.6)') sumfor, sumscf ! IF ( llondon .AND. iverbosity > 0 ) THEN ! sum_mm = 0.D0 DO na = 1, nat sum_mm = sum_mm + & force_disp(1,na)**2 + force_disp(2,na)**2 + force_disp(3,na)**2 END DO sum_mm = SQRT( sum_mm ) WRITE ( stdout, '(/,5x, "Total Dispersion Force = ",F12.6)') sum_mm ! END IF ! DEALLOCATE( forcenl, forcelc, forcecc, forceh, forceion, forcescc ) IF ( llondon ) DEALLOCATE ( force_disp ) IF ( lelfield ) DEALLOCATE ( forces_bp_efield ) ! lforce = .TRUE. ! CALL stop_clock( 'forces' ) ! IF ( ( sumfor < 10.D0*sumscf ) .AND. ( sumfor > eps ) ) & WRITE( stdout,'(5x,"SCF correction compared to forces is large: ", & & "reduce conv_thr to get better values")') ! IF(ALLOCATED(force_mt)) DEALLOCATE( force_mt ) #ifdef __ENVIRON IF(ALLOCATED(force_environ)) DEALLOCATE( force_environ ) #endif RETURN ! 9035 FORMAT(5X,'atom ',I4,' type ',I2,' force = ',3F14.8) ! END SUBROUTINE forces espresso-5.0.2/PW/src/wannier_clean.f900000644000700200004540000000317112053145630016623 0ustar marsamoscm! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- subroutine wannier_clean() !---------------------------------------------------------------------- ! ! ... This routine deallocates all dynamically allocated arrays for wannier calc and closes all open files ! USE wannier_new, only: wan_in, wan_pot, wannier_energy, wannier_occ, pp, coef USE io_files USE buffers USE ldaU, ONLY : swfcatom, lda_plus_u USE fixed_occ, ONLY : one_atom_occupations IMPLICIT NONE LOGICAL :: opnd if(allocated(wan_in)) deallocate(wan_in) if(allocated(wan_pot)) deallocate(wan_pot) if(allocated(wannier_energy)) deallocate(wannier_energy) if(allocated(wannier_occ)) deallocate(wannier_occ) if(allocated(pp)) deallocate(pp) if(allocated(coef)) deallocate(coef) CALL close_buffer( iunwpp, 'keep' ) CALL close_buffer( iunwf, 'keep' ) IF ( .NOT. ( lda_plus_u .OR. one_atom_occupations ) ) THEN INQUIRE( UNIT = iunat, OPENED = opnd ) IF ( opnd ) CALL close_buffer( iunat, 'delete' ) INQUIRE( UNIT = iunsat, OPENED = opnd ) IF ( opnd ) CALL close_buffer( iunsat, 'delete' ) END IF INQUIRE( UNIT = iunigk, OPENED = opnd ) IF ( opnd ) CALL close_buffer( iunigk, 'delete' ) IF(ALLOCATED(swfcatom)) DEALLOCATE(swfcatom) return ! end subroutine wannier_clean espresso-5.0.2/PW/src/vloc_psi.f900000644000700200004540000003367612053145630015651 0ustar marsamoscm! ! Copyright (C) 2003-2009 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE vloc_psi_gamma(lda, n, m, psi, v, hpsi) !----------------------------------------------------------------------- ! ! Calculation of Vloc*psi using dual-space technique - Gamma point ! USE parallel_include USE kinds, ONLY : DP USE gvecs, ONLY : nls, nlsm USE wvfct, ONLY : igk USE mp_global, ONLY : me_pool, me_bgrp USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : fwfft, invfft USE wavefunctions_module, ONLY: psic ! IMPLICIT NONE ! INTEGER, INTENT(in) :: lda, n, m COMPLEX(DP), INTENT(in) :: psi (lda, m) COMPLEX(DP), INTENT(inout):: hpsi (lda, m) REAL(DP), INTENT(in) :: v(dffts%nnr) ! INTEGER :: ibnd, j, incr COMPLEX(DP) :: fp, fm ! LOGICAL :: use_tg ! Variables for task groups REAL(DP), ALLOCATABLE :: tg_v(:) COMPLEX(DP), ALLOCATABLE :: tg_psic(:) INTEGER :: v_siz, idx, ioff ! ! incr = 2 ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = dffts%have_task_groups .and. ( m >= dffts%nogrp ) ! IF( dffts%have_task_groups ) THEN ! v_siz = dffts%tg_nnr * dffts%nogrp ! ALLOCATE( tg_v ( v_siz ) ) ALLOCATE( tg_psic( v_siz ) ) ! CALL tg_gather( dffts, v, tg_v ) ! incr = 2 * dffts%nogrp ! ENDIF ! ! the local potential V_Loc psi. First bring psi to real space ! DO ibnd = 1, m, incr ! IF( dffts%have_task_groups ) THEN ! tg_psic = (0.d0, 0.d0) ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 IF( idx + ibnd - 1 < m ) THEN DO j = 1, n tg_psic(nls (igk(j))+ioff) = psi(j,idx+ibnd-1) + & (0.0d0,1.d0) * psi(j,idx+ibnd) tg_psic(nlsm(igk(j))+ioff) = conjg( psi(j,idx+ibnd-1) - & (0.0d0,1.d0) * psi(j,idx+ibnd) ) ENDDO ELSEIF( idx + ibnd - 1 == m ) THEN DO j = 1, n tg_psic(nls (igk(j))+ioff) = psi(j,idx+ibnd-1) tg_psic(nlsm(igk(j))+ioff) = conjg( psi(j,idx+ibnd-1) ) ENDDO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! ELSE ! psic(:) = (0.d0, 0.d0) IF (ibnd < m) THEN ! two ffts at the same time DO j = 1, n psic(nls (igk(j)))= psi(j,ibnd) + (0.0d0,1.d0)*psi(j,ibnd+1) psic(nlsm(igk(j)))=conjg(psi(j,ibnd) - (0.0d0,1.d0)*psi(j,ibnd+1)) ENDDO ELSE DO j = 1, n psic (nls (igk(j))) = psi(j, ibnd) psic (nlsm(igk(j))) = conjg(psi(j, ibnd)) ENDDO ENDIF ! ENDIF ! ! fft to real space ! product with the potential v on the smooth grid ! back to reciprocal space ! IF( dffts%have_task_groups ) THEN ! CALL invfft ('Wave', tg_psic, dffts) ! DO j = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic (j) = tg_psic (j) * tg_v(j) ENDDO ! CALL fwfft ('Wave', tg_psic, dffts) ! ELSE ! CALL invfft ('Wave', psic, dffts) ! DO j = 1, dffts%nnr psic (j) = psic (j) * v(j) ENDDO ! CALL fwfft ('Wave', psic, dffts) ! ENDIF ! ! addition to the total product ! IF( dffts%have_task_groups ) THEN ! ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 ! IF( idx + ibnd - 1 < m ) THEN DO j = 1, n fp= ( tg_psic( nls(igk(j)) + ioff ) + & tg_psic( nlsm(igk(j)) + ioff ) ) * 0.5d0 fm= ( tg_psic( nls(igk(j)) + ioff ) - & tg_psic( nlsm(igk(j)) + ioff ) ) * 0.5d0 hpsi (j, ibnd+idx-1) = hpsi (j, ibnd+idx-1) + & cmplx( dble(fp), aimag(fm),kind=DP) hpsi (j, ibnd+idx ) = hpsi (j, ibnd+idx ) + & cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSEIF( idx + ibnd - 1 == m ) THEN DO j = 1, n hpsi (j, ibnd+idx-1) = hpsi (j, ibnd+idx-1) + & tg_psic( nls(igk(j)) + ioff ) ENDDO ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ! ELSE IF (ibnd < m) THEN ! two ffts at the same time DO j = 1, n fp = (psic (nls(igk(j))) + psic (nlsm(igk(j))))*0.5d0 fm = (psic (nls(igk(j))) - psic (nlsm(igk(j))))*0.5d0 hpsi (j, ibnd) = hpsi (j, ibnd) + & cmplx( dble(fp), aimag(fm),kind=DP) hpsi (j, ibnd+1) = hpsi (j, ibnd+1) + & cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSE DO j = 1, n hpsi (j, ibnd) = hpsi (j, ibnd) + psic (nls(igk(j))) ENDDO ENDIF ENDIF ! ENDDO ! IF( dffts%have_task_groups ) THEN ! DEALLOCATE( tg_psic ) DEALLOCATE( tg_v ) ! ENDIF dffts%have_task_groups = use_tg ! RETURN END SUBROUTINE vloc_psi_gamma ! !----------------------------------------------------------------------- SUBROUTINE vloc_psi_k(lda, n, m, psi, v, hpsi) !----------------------------------------------------------------------- ! ! Calculation of Vloc*psi using dual-space technique - k-points ! USE parallel_include USE kinds, ONLY : DP USE gvecs, ONLY : nls, nlsm USE wvfct, ONLY : igk USE mp_global, ONLY : me_pool, me_bgrp USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : fwfft, invfft USE wavefunctions_module, ONLY: psic ! IMPLICIT NONE ! INTEGER, INTENT(in) :: lda, n, m COMPLEX(DP), INTENT(in) :: psi (lda, m) COMPLEX(DP), INTENT(inout):: hpsi (lda, m) REAL(DP), INTENT(in) :: v(dffts%nnr) ! INTEGER :: ibnd, j, incr ! LOGICAL :: use_tg ! Task Groups REAL(DP), ALLOCATABLE :: tg_v(:) COMPLEX(DP), ALLOCATABLE :: tg_psic(:) INTEGER :: v_siz, idx, ioff ! ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = dffts%have_task_groups .and. ( m >= dffts%nogrp ) ! incr = 1 ! IF( dffts%have_task_groups ) THEN ! v_siz = dffts%tg_nnr * dffts%nogrp ! ALLOCATE( tg_v ( v_siz ) ) ALLOCATE( tg_psic( v_siz ) ) ! CALL tg_gather( dffts, v, tg_v ) incr = dffts%nogrp ! ENDIF ! ! the local potential V_Loc psi. First bring psi to real space ! DO ibnd = 1, m, incr ! IF( dffts%have_task_groups ) THEN ! tg_psic = (0.d0, 0.d0) ioff = 0 ! DO idx = 1, dffts%nogrp IF( idx + ibnd - 1 <= m ) THEN !$omp parallel do DO j = 1, n tg_psic(nls (igk(j))+ioff) = psi(j,idx+ibnd-1) ENDDO !$omp end parallel do ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! CALL invfft ('Wave', tg_psic, dffts) ! ELSE ! psic(:) = (0.d0, 0.d0) psic (nls (igk(1:n))) = psi(1:n, ibnd) ! CALL invfft ('Wave', psic, dffts) ! ENDIF ! ! fft to real space ! product with the potential v on the smooth grid ! back to reciprocal space ! IF( dffts%have_task_groups ) THEN ! !$omp parallel do DO j = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic (j) = tg_psic (j) * tg_v(j) ENDDO !$omp end parallel do ! CALL fwfft ('Wave', tg_psic, dffts) ! ELSE ! !$omp parallel do DO j = 1, dffts%nnr psic (j) = psic (j) * v(j) ENDDO !$omp end parallel do ! CALL fwfft ('Wave', psic, dffts) ! ENDIF ! ! addition to the total product ! IF( dffts%have_task_groups ) THEN ! ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= m ) THEN !$omp parallel do DO j = 1, n hpsi (j, ibnd+idx-1) = hpsi (j, ibnd+idx-1) + tg_psic( nls(igk(j)) + ioff ) ENDDO !$omp end parallel do ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ! ELSE !$omp parallel do DO j = 1, n hpsi (j, ibnd) = hpsi (j, ibnd) + psic (nls(igk(j))) ENDDO !$omp end parallel do ENDIF ! ENDDO ! IF( dffts%have_task_groups ) THEN ! DEALLOCATE( tg_psic ) DEALLOCATE( tg_v ) ! ENDIF dffts%have_task_groups = use_tg ! RETURN END SUBROUTINE vloc_psi_k ! !----------------------------------------------------------------------- SUBROUTINE vloc_psi_nc (lda, n, m, psi, v, hpsi) !----------------------------------------------------------------------- ! ! Calculation of Vloc*psi using dual-space technique - noncolinear ! USE parallel_include USE kinds, ONLY : DP USE gvecs, ONLY : nls, nlsm USE wvfct, ONLY : igk USE mp_global, ONLY : me_pool, me_bgrp USE fft_base, ONLY : dffts, dfftp, tg_gather USE fft_interfaces,ONLY : fwfft, invfft USE noncollin_module, ONLY: npol USE wavefunctions_module, ONLY: psic_nc ! IMPLICIT NONE ! INTEGER, INTENT(in) :: lda, n, m REAL(DP), INTENT(in) :: v(dfftp%nnr,4) ! beware dimensions! COMPLEX(DP), INTENT(in) :: psi (lda*npol, m) COMPLEX(DP), INTENT(inout):: hpsi (lda,npol,m) ! INTEGER :: ibnd, j,ipol, incr COMPLEX(DP) :: sup, sdwn ! LOGICAL :: use_tg ! Variables for task groups REAL(DP), ALLOCATABLE :: tg_v(:,:) COMPLEX(DP), ALLOCATABLE :: tg_psic(:,:) INTEGER :: v_siz, idx, ioff ! ! incr = 1 ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = dffts%have_task_groups .and. ( m >= dffts%nogrp ) ! IF( dffts%have_task_groups ) THEN v_siz = dffts%tg_nnr * dffts%nogrp ALLOCATE( tg_v( v_siz, 4 ) ) CALL tg_gather( dffts, v(:,1), tg_v(:,1) ) CALL tg_gather( dffts, v(:,2), tg_v(:,2) ) CALL tg_gather( dffts, v(:,3), tg_v(:,3) ) CALL tg_gather( dffts, v(:,4), tg_v(:,4) ) ALLOCATE( tg_psic( v_siz, npol ) ) incr = dffts%nogrp ENDIF ! ! the local potential V_Loc psi. First the psi in real space ! DO ibnd = 1, m, incr IF( dffts%have_task_groups ) THEN ! DO ipol = 1, npol ! tg_psic(:,ipol) = ( 0.D0, 0.D0 ) ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= m ) THEN DO j = 1, n tg_psic( nls( igk(j) ) + ioff, ipol ) = psi( j +(ipol-1)*lda, idx+ibnd-1 ) ENDDO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! CALL invfft ('Wave', tg_psic(:,ipol), dffts) ! ENDDO ! ELSE psic_nc = (0.d0,0.d0) DO ipol=1,npol DO j = 1, n psic_nc(nls(igk(j)),ipol) = psi(j+(ipol-1)*lda,ibnd) ENDDO CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ENDIF ! ! product with the potential v = (vltot+vr) on the smooth grid ! IF( dffts%have_task_groups ) THEN DO j=1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) sup = tg_psic(j,1) * (tg_v(j,1)+tg_v(j,4)) + & tg_psic(j,2) * (tg_v(j,2)-(0.d0,1.d0)*tg_v(j,3)) sdwn = tg_psic(j,2) * (tg_v(j,1)-tg_v(j,4)) + & tg_psic(j,1) * (tg_v(j,2)+(0.d0,1.d0)*tg_v(j,3)) tg_psic(j,1)=sup tg_psic(j,2)=sdwn ENDDO ELSE DO j=1, dffts%nnr sup = psic_nc(j,1) * (v(j,1)+v(j,4)) + & psic_nc(j,2) * (v(j,2)-(0.d0,1.d0)*v(j,3)) sdwn = psic_nc(j,2) * (v(j,1)-v(j,4)) + & psic_nc(j,1) * (v(j,2)+(0.d0,1.d0)*v(j,3)) psic_nc(j,1)=sup psic_nc(j,2)=sdwn ENDDO ENDIF ! ! back to reciprocal space ! IF( dffts%have_task_groups ) THEN ! DO ipol = 1, npol CALL fwfft ('Wave', tg_psic(:,ipol), dffts) ! ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= m ) THEN DO j = 1, n hpsi (j, ipol, ibnd+idx-1) = hpsi (j, ipol, ibnd+idx-1) + & tg_psic( nls(igk(j)) + ioff, ipol ) ENDDO ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ENDDO ! ELSE DO ipol=1,npol CALL fwfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ! ! addition to the total product ! DO ipol=1,npol DO j = 1, n hpsi(j,ipol,ibnd) = hpsi(j,ipol,ibnd) + psic_nc(nls(igk(j)),ipol) ENDDO ENDDO ENDIF ENDDO IF( dffts%have_task_groups ) THEN ! DEALLOCATE( tg_v ) DEALLOCATE( tg_psic ) ! ENDIF dffts%have_task_groups = use_tg ! RETURN END SUBROUTINE vloc_psi_nc espresso-5.0.2/PW/src/make.depend0000644000700200004540000020172112053145627015603 0ustar marsamoscma2fmod.o : ../../Modules/io_files.o a2fmod.o : ../../Modules/io_global.o a2fmod.o : ../../Modules/ions_base.o a2fmod.o : ../../Modules/kind.o a2fmod.o : pwcom.o a2fmod.o : start_k.o a2fmod.o : symm_base.o acfdt_in_pw.o : ../../Modules/kind.o add_bfield.o : ../../Modules/cell_base.o add_bfield.o : ../../Modules/constants.o add_bfield.o : ../../Modules/fft_base.o add_bfield.o : ../../Modules/io_global.o add_bfield.o : ../../Modules/ions_base.o add_bfield.o : ../../Modules/kind.o add_bfield.o : ../../Modules/mp.o add_bfield.o : ../../Modules/mp_global.o add_bfield.o : ../../Modules/noncol.o add_bfield.o : pwcom.o add_efield.o : ../../Modules/cell_base.o add_efield.o : ../../Modules/constants.o add_efield.o : ../../Modules/control_flags.o add_efield.o : ../../Modules/fft_base.o add_efield.o : ../../Modules/io_global.o add_efield.o : ../../Modules/ions_base.o add_efield.o : ../../Modules/kind.o add_efield.o : ../../Modules/mp.o add_efield.o : ../../Modules/mp_global.o add_efield.o : pwcom.o add_paw_to_deeq.o : ../../Modules/ions_base.o add_paw_to_deeq.o : ../../Modules/kind.o add_paw_to_deeq.o : ../../Modules/paw_variables.o add_paw_to_deeq.o : ../../Modules/uspp.o add_paw_to_deeq.o : pwcom.o add_vhub_to_deeq.o : ../../Modules/ions_base.o add_vhub_to_deeq.o : ../../Modules/kind.o add_vhub_to_deeq.o : ../../Modules/uspp.o add_vhub_to_deeq.o : pwcom.o add_vhub_to_deeq.o : scf_mod.o add_vuspsi.o : ../../Modules/becmod.o add_vuspsi.o : ../../Modules/control_flags.o add_vuspsi.o : ../../Modules/ions_base.o add_vuspsi.o : ../../Modules/kind.o add_vuspsi.o : ../../Modules/mp.o add_vuspsi.o : ../../Modules/noncol.o add_vuspsi.o : ../../Modules/uspp.o add_vuspsi.o : pwcom.o addusdens.o : ../../Modules/control_flags.o addusdens.o : ../../Modules/fft_base.o addusdens.o : ../../Modules/fft_interfaces.o addusdens.o : ../../Modules/ions_base.o addusdens.o : ../../Modules/kind.o addusdens.o : ../../Modules/noncol.o addusdens.o : ../../Modules/recvec.o addusdens.o : ../../Modules/uspp.o addusdens.o : ../../Modules/wavefunctions.o addusdens.o : realus.o addusforce.o : ../../Modules/cell_base.o addusforce.o : ../../Modules/control_flags.o addusforce.o : ../../Modules/fft_base.o addusforce.o : ../../Modules/fft_interfaces.o addusforce.o : ../../Modules/ions_base.o addusforce.o : ../../Modules/kind.o addusforce.o : ../../Modules/mp.o addusforce.o : ../../Modules/mp_global.o addusforce.o : ../../Modules/noncol.o addusforce.o : ../../Modules/recvec.o addusforce.o : ../../Modules/uspp.o addusforce.o : scf_mod.o addusstress.o : ../../Modules/cell_base.o addusstress.o : ../../Modules/control_flags.o addusstress.o : ../../Modules/fft_base.o addusstress.o : ../../Modules/fft_interfaces.o addusstress.o : ../../Modules/ions_base.o addusstress.o : ../../Modules/kind.o addusstress.o : ../../Modules/recvec.o addusstress.o : ../../Modules/uspp.o addusstress.o : pwcom.o addusstress.o : scf_mod.o allocate_fft.o : ../../Modules/control_flags.o allocate_fft.o : ../../Modules/fft_base.o allocate_fft.o : ../../Modules/funct.o allocate_fft.o : ../../Modules/io_global.o allocate_fft.o : ../../Modules/ions_base.o allocate_fft.o : ../../Modules/noncol.o allocate_fft.o : ../../Modules/recvec.o allocate_fft.o : ../../Modules/wavefunctions.o allocate_fft.o : pwcom.o allocate_fft.o : scf_mod.o allocate_fft_custom.o : ../../Modules/cell_base.o allocate_fft_custom.o : ../../Modules/control_flags.o allocate_fft_custom.o : ../../Modules/fft_custom.o allocate_fft_custom.o : ../../Modules/griddim.o allocate_fft_custom.o : ../../Modules/kind.o allocate_fft_custom.o : ../../Modules/recvec.o allocate_locpot.o : ../../Modules/fft_base.o allocate_locpot.o : ../../Modules/ions_base.o allocate_locpot.o : ../../Modules/recvec.o allocate_locpot.o : pwcom.o allocate_nlpot.o : ../../Modules/cell_base.o allocate_nlpot.o : ../../Modules/control_flags.o allocate_nlpot.o : ../../Modules/io_global.o allocate_nlpot.o : ../../Modules/ions_base.o allocate_nlpot.o : ../../Modules/noncol.o allocate_nlpot.o : ../../Modules/paw_variables.o allocate_nlpot.o : ../../Modules/recvec.o allocate_nlpot.o : ../../Modules/uspp.o allocate_nlpot.o : pwcom.o allocate_nlpot.o : scf_mod.o allocate_wfc.o : ../../Modules/io_global.o allocate_wfc.o : ../../Modules/noncol.o allocate_wfc.o : ../../Modules/wannier_new.o allocate_wfc.o : ../../Modules/wavefunctions.o allocate_wfc.o : pwcom.o atomic_rho.o : ../../Modules/atom.o atomic_rho.o : ../../Modules/cell_base.o atomic_rho.o : ../../Modules/control_flags.o atomic_rho.o : ../../Modules/fft_base.o atomic_rho.o : ../../Modules/fft_interfaces.o atomic_rho.o : ../../Modules/io_global.o atomic_rho.o : ../../Modules/ions_base.o atomic_rho.o : ../../Modules/kind.o atomic_rho.o : ../../Modules/mp.o atomic_rho.o : ../../Modules/mp_global.o atomic_rho.o : ../../Modules/noncol.o atomic_rho.o : ../../Modules/recvec.o atomic_rho.o : ../../Modules/uspp.o atomic_rho.o : ../../Modules/wavefunctions.o atomic_rho.o : pwcom.o atomic_wfc.o : ../../Modules/cell_base.o atomic_wfc.o : ../../Modules/constants.o atomic_wfc.o : ../../Modules/ions_base.o atomic_wfc.o : ../../Modules/kind.o atomic_wfc.o : ../../Modules/noncol.o atomic_wfc.o : ../../Modules/recvec.o atomic_wfc.o : ../../Modules/uspp.o atomic_wfc.o : pwcom.o average_pp.o : ../../Modules/atom.o average_pp.o : ../../Modules/kind.o average_pp.o : ../../Modules/uspp.o bp_c_phase.o : ../../Modules/becmod.o bp_c_phase.o : ../../Modules/cell_base.o bp_c_phase.o : ../../Modules/constants.o bp_c_phase.o : ../../Modules/fft_base.o bp_c_phase.o : ../../Modules/io_files.o bp_c_phase.o : ../../Modules/io_global.o bp_c_phase.o : ../../Modules/ions_base.o bp_c_phase.o : ../../Modules/kind.o bp_c_phase.o : ../../Modules/mp.o bp_c_phase.o : ../../Modules/mp_global.o bp_c_phase.o : ../../Modules/noncol.o bp_c_phase.o : ../../Modules/recvec.o bp_c_phase.o : ../../Modules/uspp.o bp_c_phase.o : ../../Modules/wavefunctions.o bp_c_phase.o : bp_mod.o bp_c_phase.o : buffers.o bp_c_phase.o : pwcom.o bp_calc_btq.o : ../../Modules/atom.o bp_calc_btq.o : ../../Modules/cell_base.o bp_calc_btq.o : ../../Modules/constants.o bp_calc_btq.o : ../../Modules/ions_base.o bp_calc_btq.o : ../../Modules/kind.o bp_calc_btq.o : ../../Modules/uspp.o bp_mod.o : ../../Modules/cell_base.o bp_mod.o : ../../Modules/fft_base.o bp_mod.o : ../../Modules/kind.o bp_mod.o : ../../Modules/mp.o bp_mod.o : ../../Modules/recvec.o bp_qvan3.o : ../../Modules/ions_base.o bp_qvan3.o : ../../Modules/kind.o bp_qvan3.o : ../../Modules/uspp.o bp_qvan3.o : pwcom.o bp_strings.o : ../../Modules/kind.o buffers.o : ../../Modules/io_files.o buffers.o : ../../Modules/kind.o c_bands.o : ../../Modules/becmod.o c_bands.o : ../../Modules/check_stop.o c_bands.o : ../../Modules/control_flags.o c_bands.o : ../../Modules/io_files.o c_bands.o : ../../Modules/io_global.o c_bands.o : ../../Modules/kind.o c_bands.o : ../../Modules/mp.o c_bands.o : ../../Modules/mp_global.o c_bands.o : ../../Modules/noncol.o c_bands.o : ../../Modules/recvec.o c_bands.o : ../../Modules/uspp.o c_bands.o : ../../Modules/wavefunctions.o c_bands.o : bp_mod.o c_bands.o : buffers.o c_bands.o : g_psi_mod.o c_bands.o : pwcom.o c_bands.o : scf_mod.o c_phase_field.o : ../../Modules/becmod.o c_phase_field.o : ../../Modules/cell_base.o c_phase_field.o : ../../Modules/constants.o c_phase_field.o : ../../Modules/fft_base.o c_phase_field.o : ../../Modules/io_files.o c_phase_field.o : ../../Modules/io_global.o c_phase_field.o : ../../Modules/ions_base.o c_phase_field.o : ../../Modules/kind.o c_phase_field.o : ../../Modules/mp.o c_phase_field.o : ../../Modules/mp_global.o c_phase_field.o : ../../Modules/noncol.o c_phase_field.o : ../../Modules/recvec.o c_phase_field.o : ../../Modules/uspp.o c_phase_field.o : ../../Modules/wavefunctions.o c_phase_field.o : bp_mod.o c_phase_field.o : buffers.o c_phase_field.o : pwcom.o ccgdiagg.o : ../../Modules/constants.o ccgdiagg.o : ../../Modules/kind.o ccgdiagg.o : ../../Modules/mp.o ccgdiagg.o : ../../Modules/mp_global.o cdiagh.o : ../../Modules/kind.o cdiagh.o : ../../Modules/mp.o cdiagh.o : ../../Modules/mp_global.o cdiaghg.o : ../../Modules/descriptors.o cdiaghg.o : ../../Modules/kind.o cdiaghg.o : ../../Modules/mp.o cdiaghg.o : ../../Modules/mp_global.o cdiaghg.o : ../../Modules/ptoolkit.o cdiaghg.o : ../../Modules/zhpev_drv.o cegterg.o : ../../Modules/descriptors.o cegterg.o : ../../Modules/io_global.o cegterg.o : ../../Modules/kind.o cegterg.o : ../../Modules/mp.o cegterg.o : ../../Modules/mp_global.o cegterg.o : ../../Modules/ptoolkit.o clean_pw.o : ../../Modules/atom.o clean_pw.o : ../../Modules/constraints_module.o clean_pw.o : ../../Modules/fft_base.o clean_pw.o : ../../Modules/fft_types.o clean_pw.o : ../../Modules/ions_base.o clean_pw.o : ../../Modules/mm_dispersion.o clean_pw.o : ../../Modules/noncol.o clean_pw.o : ../../Modules/pseudo_types.o clean_pw.o : ../../Modules/radial_grids.o clean_pw.o : ../../Modules/recvec.o clean_pw.o : ../../Modules/stick_base.o clean_pw.o : ../../Modules/uspp.o clean_pw.o : ../../Modules/wannier_new.o clean_pw.o : ../../Modules/wavefunctions.o clean_pw.o : bp_mod.o clean_pw.o : dynamics_module.o clean_pw.o : exx.o clean_pw.o : paw_init.o clean_pw.o : pwcom.o clean_pw.o : realus.o clean_pw.o : scf_mod.o clean_pw.o : symm_base.o clean_pw.o : symme.o close_files.o : ../../Modules/control_flags.o close_files.o : ../../Modules/io_files.o close_files.o : ../../Modules/mp.o close_files.o : ../../Modules/mp_global.o close_files.o : ../../Modules/wannier_new.o close_files.o : bp_mod.o close_files.o : buffers.o close_files.o : pwcom.o compute_becsum.o : ../../Modules/becmod.o compute_becsum.o : ../../Modules/cell_base.o compute_becsum.o : ../../Modules/control_flags.o compute_becsum.o : ../../Modules/io_files.o compute_becsum.o : ../../Modules/ions_base.o compute_becsum.o : ../../Modules/kind.o compute_becsum.o : ../../Modules/mp.o compute_becsum.o : ../../Modules/mp_global.o compute_becsum.o : ../../Modules/noncol.o compute_becsum.o : ../../Modules/paw_variables.o compute_becsum.o : ../../Modules/recvec.o compute_becsum.o : ../../Modules/uspp.o compute_becsum.o : ../../Modules/wavefunctions.o compute_becsum.o : buffers.o compute_becsum.o : paw_symmetry.o compute_becsum.o : pwcom.o compute_becsum.o : scf_mod.o compute_deff.o : ../../Modules/ions_base.o compute_deff.o : ../../Modules/kind.o compute_deff.o : ../../Modules/noncol.o compute_deff.o : ../../Modules/uspp.o compute_deff.o : pwcom.o compute_dip.o : ../../Modules/cell_base.o compute_dip.o : ../../Modules/constants.o compute_dip.o : ../../Modules/fft_base.o compute_dip.o : ../../Modules/io_global.o compute_dip.o : ../../Modules/ions_base.o compute_dip.o : ../../Modules/kind.o compute_dip.o : ../../Modules/mp.o compute_dip.o : ../../Modules/mp_global.o compute_dip.o : pwcom.o compute_qdipol.o : ../../Modules/atom.o compute_qdipol.o : ../../Modules/constants.o compute_qdipol.o : ../../Modules/ions_base.o compute_qdipol.o : ../../Modules/kind.o compute_qdipol.o : ../../Modules/uspp.o compute_qdipol_so.o : ../../Modules/ions_base.o compute_qdipol_so.o : ../../Modules/kind.o compute_qdipol_so.o : ../../Modules/uspp.o compute_qdipol_so.o : pwcom.o compute_rho.o : ../../Modules/kind.o compute_rho.o : ../../Modules/noncol.o compute_ux.o : ../../Modules/constants.o compute_ux.o : ../../Modules/io_global.o compute_ux.o : ../../Modules/kind.o compute_ux.o : ../../Modules/noncol.o coset.o : ../../Modules/kind.o d_matrix.o : ../../Modules/kind.o d_matrix.o : ../../Modules/random_numbers.o d_matrix.o : symm_base.o data_structure.o : ../../Modules/cell_base.o data_structure.o : ../../Modules/fft_base.o data_structure.o : ../../Modules/kind.o data_structure.o : ../../Modules/mp.o data_structure.o : ../../Modules/mp_global.o data_structure.o : ../../Modules/recvec.o data_structure.o : ../../Modules/stick_set.o data_structure.o : pwcom.o data_structure_custom.o : ../../Modules/cell_base.o data_structure_custom.o : ../../Modules/fft_base.o data_structure_custom.o : ../../Modules/fft_custom.o data_structure_custom.o : ../../Modules/kind.o data_structure_custom.o : ../../Modules/mp.o data_structure_custom.o : ../../Modules/mp_global.o data_structure_custom.o : ../../Modules/recvec.o data_structure_custom.o : ../../Modules/stick_set.o data_structure_custom.o : pwcom.o deriv_drhoc.o : ../../Modules/constants.o deriv_drhoc.o : ../../Modules/kind.o divide.o : ../../Modules/mp.o divide_class.o : ../../Modules/kind.o divide_class_so.o : ../../Modules/constants.o divide_class_so.o : ../../Modules/io_global.o divide_class_so.o : ../../Modules/kind.o divide_class_so.o : ../../Modules/noncol.o divide_class_so.o : pwcom.o divide_et_impera.o : ../../Modules/io_global.o divide_et_impera.o : ../../Modules/kind.o divide_et_impera.o : ../../Modules/mp_global.o dqvan2.o : ../../Modules/kind.o dqvan2.o : ../../Modules/recvec.o dqvan2.o : ../../Modules/uspp.o dqvan2.o : pwcom.o drhoc.o : ../../Modules/constants.o drhoc.o : ../../Modules/kind.o dvloc_of_g.o : ../../Modules/constants.o dvloc_of_g.o : ../../Modules/kind.o dynamics_module.o : ../../Modules/basic_algebra_routines.o dynamics_module.o : ../../Modules/cell_base.o dynamics_module.o : ../../Modules/constants.o dynamics_module.o : ../../Modules/constraints_module.o dynamics_module.o : ../../Modules/control_flags.o dynamics_module.o : ../../Modules/io_files.o dynamics_module.o : ../../Modules/io_global.o dynamics_module.o : ../../Modules/ions_base.o dynamics_module.o : ../../Modules/kind.o dynamics_module.o : ../../Modules/random_numbers.o dynamics_module.o : pwcom.o dynamics_module.o : symm_base.o efermig.o : ../../Modules/constants.o efermig.o : ../../Modules/io_global.o efermig.o : ../../Modules/kind.o efermig.o : ../../Modules/mp.o efermig.o : ../../Modules/mp_global.o efermit.o : ../../Modules/constants.o efermit.o : ../../Modules/io_global.o efermit.o : ../../Modules/kind.o electrons.o : ../../Modules/cell_base.o electrons.o : ../../Modules/check_stop.o electrons.o : ../../Modules/constants.o electrons.o : ../../Modules/control_flags.o electrons.o : ../../Modules/fft_base.o electrons.o : ../../Modules/funct.o electrons.o : ../../Modules/io_files.o electrons.o : ../../Modules/io_global.o electrons.o : ../../Modules/ions_base.o electrons.o : ../../Modules/kind.o electrons.o : ../../Modules/mm_dispersion.o electrons.o : ../../Modules/mp.o electrons.o : ../../Modules/mp_global.o electrons.o : ../../Modules/noncol.o electrons.o : ../../Modules/paw_variables.o electrons.o : ../../Modules/recvec.o electrons.o : ../../Modules/uspp.o electrons.o : ../../Modules/wavefunctions.o electrons.o : bp_mod.o electrons.o : buffers.o electrons.o : esm.o electrons.o : exx.o electrons.o : io_rho_xml.o electrons.o : newd.o electrons.o : paw_onecenter.o electrons.o : paw_symmetry.o electrons.o : pwcom.o electrons.o : scf_mod.o eqvect.o : ../../Modules/kind.o esm.o : ../../Modules/cell_base.o esm.o : ../../Modules/constants.o esm.o : ../../Modules/control_flags.o esm.o : ../../Modules/fft_base.o esm.o : ../../Modules/fft_scalar.o esm.o : ../../Modules/io_global.o esm.o : ../../Modules/ions_base.o esm.o : ../../Modules/kind.o esm.o : ../../Modules/mp.o esm.o : ../../Modules/mp_global.o esm.o : ../../Modules/recvec.o esm.o : ../../Modules/uspp.o esm.o : pwcom.o esm.o : scf_mod.o ewald.o : ../../Modules/constants.o ewald.o : ../../Modules/kind.o ewald.o : ../../Modules/mp.o ewald.o : ../../Modules/mp_global.o ewald.o : esm.o ewald.o : martyna_tuckerman.o ewald_dipole.o : ../../Modules/cell_base.o ewald_dipole.o : ../../Modules/constants.o ewald_dipole.o : ../../Modules/ions_base.o ewald_dipole.o : ../../Modules/kind.o ewald_dipole.o : ../../Modules/mp.o ewald_dipole.o : ../../Modules/mp_global.o ewald_dipole.o : ../../Modules/recvec.o ewald_dipole.o : pwcom.o exx.o : ../../Modules/cell_base.o exx.o : ../../Modules/constants.o exx.o : ../../Modules/control_flags.o exx.o : ../../Modules/coulomb_vcut.o exx.o : ../../Modules/fft_base.o exx.o : ../../Modules/fft_custom.o exx.o : ../../Modules/fft_interfaces.o exx.o : ../../Modules/funct.o exx.o : ../../Modules/io_files.o exx.o : ../../Modules/io_global.o exx.o : ../../Modules/kind.o exx.o : ../../Modules/mp.o exx.o : ../../Modules/mp_global.o exx.o : ../../Modules/noncol.o exx.o : ../../Modules/recvec.o exx.o : ../../Modules/uspp.o exx.o : ../../Modules/wavefunctions.o exx.o : buffers.o exx.o : pwcom.o exx.o : symm_base.o find_group.o : ../../Modules/kind.o force_cc.o : ../../Modules/atom.o force_cc.o : ../../Modules/cell_base.o force_cc.o : ../../Modules/constants.o force_cc.o : ../../Modules/control_flags.o force_cc.o : ../../Modules/fft_base.o force_cc.o : ../../Modules/fft_interfaces.o force_cc.o : ../../Modules/ions_base.o force_cc.o : ../../Modules/kind.o force_cc.o : ../../Modules/mp.o force_cc.o : ../../Modules/mp_global.o force_cc.o : ../../Modules/noncol.o force_cc.o : ../../Modules/recvec.o force_cc.o : ../../Modules/uspp.o force_cc.o : ../../Modules/wavefunctions.o force_cc.o : pwcom.o force_cc.o : scf_mod.o force_corr.o : ../../Modules/atom.o force_corr.o : ../../Modules/cell_base.o force_corr.o : ../../Modules/constants.o force_corr.o : ../../Modules/control_flags.o force_corr.o : ../../Modules/fft_base.o force_corr.o : ../../Modules/fft_interfaces.o force_corr.o : ../../Modules/ions_base.o force_corr.o : ../../Modules/kind.o force_corr.o : ../../Modules/mp.o force_corr.o : ../../Modules/mp_global.o force_corr.o : ../../Modules/recvec.o force_corr.o : ../../Modules/uspp.o force_corr.o : ../../Modules/wavefunctions.o force_corr.o : pwcom.o force_corr.o : scf_mod.o force_ew.o : ../../Modules/constants.o force_ew.o : ../../Modules/kind.o force_ew.o : ../../Modules/mp.o force_ew.o : ../../Modules/mp_global.o force_ew.o : esm.o force_hub.o : ../../Modules/becmod.o force_hub.o : ../../Modules/cell_base.o force_hub.o : ../../Modules/control_flags.o force_hub.o : ../../Modules/io_files.o force_hub.o : ../../Modules/ions_base.o force_hub.o : ../../Modules/kind.o force_hub.o : ../../Modules/mp.o force_hub.o : ../../Modules/mp_global.o force_hub.o : ../../Modules/recvec.o force_hub.o : ../../Modules/uspp.o force_hub.o : ../../Modules/wavefunctions.o force_hub.o : buffers.o force_hub.o : pwcom.o force_hub.o : scf_mod.o force_hub.o : symme.o force_lc.o : ../../Modules/constants.o force_lc.o : ../../Modules/fft_base.o force_lc.o : ../../Modules/fft_interfaces.o force_lc.o : ../../Modules/kind.o force_lc.o : ../../Modules/mp.o force_lc.o : ../../Modules/mp_global.o force_lc.o : esm.o force_us.o : ../../Modules/becmod.o force_us.o : ../../Modules/cell_base.o force_us.o : ../../Modules/control_flags.o force_us.o : ../../Modules/io_files.o force_us.o : ../../Modules/ions_base.o force_us.o : ../../Modules/kind.o force_us.o : ../../Modules/mp.o force_us.o : ../../Modules/mp_global.o force_us.o : ../../Modules/noncol.o force_us.o : ../../Modules/recvec.o force_us.o : ../../Modules/uspp.o force_us.o : ../../Modules/wavefunctions.o force_us.o : buffers.o force_us.o : pwcom.o force_us.o : symme.o forces.o : ../../Modules/cell_base.o forces.o : ../../Modules/control_flags.o forces.o : ../../Modules/fft_base.o forces.o : ../../Modules/fft_interfaces.o forces.o : ../../Modules/io_global.o forces.o : ../../Modules/ions_base.o forces.o : ../../Modules/kind.o forces.o : ../../Modules/mm_dispersion.o forces.o : ../../Modules/recvec.o forces.o : ../../Modules/uspp.o forces.o : bp_mod.o forces.o : martyna_tuckerman.o forces.o : pwcom.o forces.o : scf_mod.o forces.o : symme.o forces_bp_efield.o : ../../Modules/becmod.o forces_bp_efield.o : ../../Modules/cell_base.o forces_bp_efield.o : ../../Modules/constants.o forces_bp_efield.o : ../../Modules/fft_base.o forces_bp_efield.o : ../../Modules/io_files.o forces_bp_efield.o : ../../Modules/io_global.o forces_bp_efield.o : ../../Modules/ions_base.o forces_bp_efield.o : ../../Modules/kind.o forces_bp_efield.o : ../../Modules/mp.o forces_bp_efield.o : ../../Modules/mp_global.o forces_bp_efield.o : ../../Modules/recvec.o forces_bp_efield.o : ../../Modules/uspp.o forces_bp_efield.o : ../../Modules/wavefunctions.o forces_bp_efield.o : bp_mod.o forces_bp_efield.o : buffers.o forces_bp_efield.o : pwcom.o g2_kin.o : ../../Modules/cell_base.o g2_kin.o : ../../Modules/kind.o g2_kin.o : ../../Modules/recvec.o g2_kin.o : pwcom.o g_psi.o : ../../Modules/kind.o g_psi.o : g_psi_mod.o g_psi_mod.o : ../../Modules/kind.o gen_at_dj.o : ../../Modules/atom.o gen_at_dj.o : ../../Modules/cell_base.o gen_at_dj.o : ../../Modules/constants.o gen_at_dj.o : ../../Modules/io_global.o gen_at_dj.o : ../../Modules/ions_base.o gen_at_dj.o : ../../Modules/kind.o gen_at_dj.o : ../../Modules/recvec.o gen_at_dj.o : ../../Modules/uspp.o gen_at_dj.o : pwcom.o gen_at_dy.o : ../../Modules/atom.o gen_at_dy.o : ../../Modules/cell_base.o gen_at_dy.o : ../../Modules/constants.o gen_at_dy.o : ../../Modules/io_global.o gen_at_dy.o : ../../Modules/ions_base.o gen_at_dy.o : ../../Modules/kind.o gen_at_dy.o : ../../Modules/recvec.o gen_at_dy.o : ../../Modules/uspp.o gen_at_dy.o : pwcom.o gen_us_dj.o : ../../Modules/cell_base.o gen_us_dj.o : ../../Modules/constants.o gen_us_dj.o : ../../Modules/ions_base.o gen_us_dj.o : ../../Modules/kind.o gen_us_dj.o : ../../Modules/recvec.o gen_us_dj.o : ../../Modules/splinelib.o gen_us_dj.o : ../../Modules/uspp.o gen_us_dj.o : pwcom.o gen_us_dy.o : ../../Modules/cell_base.o gen_us_dy.o : ../../Modules/constants.o gen_us_dy.o : ../../Modules/io_global.o gen_us_dy.o : ../../Modules/ions_base.o gen_us_dy.o : ../../Modules/kind.o gen_us_dy.o : ../../Modules/recvec.o gen_us_dy.o : ../../Modules/splinelib.o gen_us_dy.o : ../../Modules/uspp.o gen_us_dy.o : pwcom.o generate_vdW_kernel_table.o : ../../Modules/constants.o generate_vdW_kernel_table.o : ../../Modules/io_global.o generate_vdW_kernel_table.o : ../../Modules/kind.o generate_vdW_kernel_table.o : ../../Modules/mp.o generate_vdW_kernel_table.o : ../../Modules/mp_global.o get_locals.o : ../../Modules/cell_base.o get_locals.o : ../../Modules/fft_base.o get_locals.o : ../../Modules/ions_base.o get_locals.o : ../../Modules/kind.o get_locals.o : ../../Modules/mp.o get_locals.o : ../../Modules/mp_global.o get_locals.o : ../../Modules/noncol.o get_locals.o : pwcom.o gk_sort.o : ../../Modules/constants.o gk_sort.o : ../../Modules/kind.o gk_sort.o : pwcom.o gradcorr.o : ../../Modules/cell_base.o gradcorr.o : ../../Modules/constants.o gradcorr.o : ../../Modules/control_flags.o gradcorr.o : ../../Modules/fft_base.o gradcorr.o : ../../Modules/fft_interfaces.o gradcorr.o : ../../Modules/funct.o gradcorr.o : ../../Modules/kind.o gradcorr.o : ../../Modules/noncol.o gradcorr.o : ../../Modules/recvec.o gradcorr.o : ../../Modules/wavefunctions.o gradcorr.o : pwcom.o gweights.o : ../../Modules/kind.o h_1psi.o : ../../Modules/kind.o h_1psi.o : ../../Modules/noncol.o h_1psi.o : bp_mod.o h_1psi.o : realus.o h_epsi_her_apply.o : ../../Modules/becmod.o h_epsi_her_apply.o : ../../Modules/cell_base.o h_epsi_her_apply.o : ../../Modules/constants.o h_epsi_her_apply.o : ../../Modules/io_global.o h_epsi_her_apply.o : ../../Modules/ions_base.o h_epsi_her_apply.o : ../../Modules/kind.o h_epsi_her_apply.o : ../../Modules/mp.o h_epsi_her_apply.o : ../../Modules/mp_global.o h_epsi_her_apply.o : ../../Modules/noncol.o h_epsi_her_apply.o : ../../Modules/recvec.o h_epsi_her_apply.o : ../../Modules/uspp.o h_epsi_her_apply.o : bp_mod.o h_epsi_her_apply.o : pwcom.o h_epsi_her_apply.o : scf_mod.o h_epsi_her_set.o : ../../Modules/becmod.o h_epsi_her_set.o : ../../Modules/cell_base.o h_epsi_her_set.o : ../../Modules/constants.o h_epsi_her_set.o : ../../Modules/fft_base.o h_epsi_her_set.o : ../../Modules/io_files.o h_epsi_her_set.o : ../../Modules/ions_base.o h_epsi_her_set.o : ../../Modules/kind.o h_epsi_her_set.o : ../../Modules/mp.o h_epsi_her_set.o : ../../Modules/mp_global.o h_epsi_her_set.o : ../../Modules/noncol.o h_epsi_her_set.o : ../../Modules/recvec.o h_epsi_her_set.o : ../../Modules/uspp.o h_epsi_her_set.o : bp_mod.o h_epsi_her_set.o : buffers.o h_epsi_her_set.o : pwcom.o h_epsi_her_set.o : scf_mod.o h_psi.o : ../../Modules/becmod.o h_psi.o : ../../Modules/control_flags.o h_psi.o : ../../Modules/fft_base.o h_psi.o : ../../Modules/funct.o h_psi.o : ../../Modules/kind.o h_psi.o : ../../Modules/noncol.o h_psi.o : ../../Modules/recvec.o h_psi.o : ../../Modules/uspp.o h_psi.o : bp_mod.o h_psi.o : exx.o h_psi.o : pwcom.o h_psi.o : realus.o h_psi.o : scf_mod.o h_psi_meta.o : ../../Modules/cell_base.o h_psi_meta.o : ../../Modules/control_flags.o h_psi_meta.o : ../../Modules/fft_base.o h_psi_meta.o : ../../Modules/fft_interfaces.o h_psi_meta.o : ../../Modules/kind.o h_psi_meta.o : ../../Modules/recvec.o h_psi_meta.o : ../../Modules/wavefunctions.o h_psi_meta.o : pwcom.o h_psi_meta.o : scf_mod.o hinit0.o : ../../Modules/cell_base.o hinit0.o : ../../Modules/control_flags.o hinit0.o : ../../Modules/fft_base.o hinit0.o : ../../Modules/io_files.o hinit0.o : ../../Modules/io_global.o hinit0.o : ../../Modules/ions_base.o hinit0.o : ../../Modules/recvec.o hinit0.o : pwcom.o hinit0.o : realus.o hinit1.o : ../../Modules/cell_base.o hinit1.o : ../../Modules/control_flags.o hinit1.o : ../../Modules/fft_base.o hinit1.o : ../../Modules/ions_base.o hinit1.o : ../../Modules/paw_variables.o hinit1.o : ../../Modules/recvec.o hinit1.o : ../../Modules/wannier_new.o hinit1.o : martyna_tuckerman.o hinit1.o : newd.o hinit1.o : paw_init.o hinit1.o : paw_onecenter.o hinit1.o : paw_symmetry.o hinit1.o : pwcom.o hinit1.o : realus.o hinit1.o : scf_mod.o init_at_1.o : ../../Modules/atom.o init_at_1.o : ../../Modules/cell_base.o init_at_1.o : ../../Modules/constants.o init_at_1.o : ../../Modules/ions_base.o init_at_1.o : ../../Modules/kind.o init_at_1.o : ../../Modules/mp.o init_at_1.o : ../../Modules/mp_global.o init_at_1.o : ../../Modules/uspp.o init_at_1.o : pwcom.o init_ns.o : ../../Modules/ions_base.o init_ns.o : ../../Modules/kind.o init_ns.o : ../../Modules/noncol.o init_ns.o : ../../Modules/uspp.o init_ns.o : pwcom.o init_ns.o : scf_mod.o init_q_aeps.o : ../../Modules/atom.o init_q_aeps.o : ../../Modules/control_flags.o init_q_aeps.o : ../../Modules/io_global.o init_q_aeps.o : ../../Modules/ions_base.o init_q_aeps.o : ../../Modules/kind.o init_q_aeps.o : ../../Modules/uspp.o init_q_aeps.o : pwcom.o init_run.o : ../../Modules/cell_base.o init_run.o : ../../Modules/control_flags.o init_run.o : ../../Modules/fft_base.o init_run.o : ../../Modules/funct.o init_run.o : ../../Modules/ions_base.o init_run.o : ../../Modules/paw_variables.o init_run.o : ../../Modules/recvec_subs.o init_run.o : ../../Modules/uspp.o init_run.o : ../../Modules/wannier_new.o init_run.o : bp_mod.o init_run.o : dynamics_module.o init_run.o : esm.o init_run.o : newd.o init_run.o : paw_init.o init_run.o : pwcom.o init_run.o : symme.o init_us_1.o : ../../Modules/atom.o init_us_1.o : ../../Modules/cell_base.o init_us_1.o : ../../Modules/constants.o init_us_1.o : ../../Modules/ions_base.o init_us_1.o : ../../Modules/kind.o init_us_1.o : ../../Modules/mp.o init_us_1.o : ../../Modules/mp_global.o init_us_1.o : ../../Modules/parameters.o init_us_1.o : ../../Modules/paw_variables.o init_us_1.o : ../../Modules/recvec.o init_us_1.o : ../../Modules/splinelib.o init_us_1.o : ../../Modules/uspp.o init_us_1.o : pwcom.o init_us_2.o : ../../Modules/cell_base.o init_us_2.o : ../../Modules/constants.o init_us_2.o : ../../Modules/ions_base.o init_us_2.o : ../../Modules/kind.o init_us_2.o : ../../Modules/recvec.o init_us_2.o : ../../Modules/splinelib.o init_us_2.o : ../../Modules/uspp.o init_us_2.o : pwcom.o init_vloc.o : ../../Modules/atom.o init_vloc.o : ../../Modules/cell_base.o init_vloc.o : ../../Modules/ions_base.o init_vloc.o : ../../Modules/kind.o init_vloc.o : ../../Modules/recvec.o init_vloc.o : ../../Modules/uspp.o init_vloc.o : pwcom.o input.o : ../../Modules/bfgs_module.o input.o : ../../Modules/cell_base.o input.o : ../../Modules/constants.o input.o : ../../Modules/constraints_module.o input.o : ../../Modules/control_flags.o input.o : ../../Modules/fft_base.o input.o : ../../Modules/funct.o input.o : ../../Modules/input_parameters.o input.o : ../../Modules/io_files.o input.o : ../../Modules/io_global.o input.o : ../../Modules/ions_base.o input.o : ../../Modules/kernel_table.o input.o : ../../Modules/kind.o input.o : ../../Modules/mm_dispersion.o input.o : ../../Modules/mp.o input.o : ../../Modules/mp_global.o input.o : ../../Modules/noncol.o input.o : ../../Modules/read_namelists.o input.o : ../../Modules/read_pseudo.o input.o : ../../Modules/recvec.o input.o : ../../Modules/run_info.o input.o : ../../Modules/uspp.o input.o : ../../Modules/wannier_new.o input.o : ../../Modules/wrappers.o input.o : ../../Modules/xml_io_base.o input.o : a2fmod.o input.o : bp_mod.o input.o : dynamics_module.o input.o : esm.o input.o : exx.o input.o : martyna_tuckerman.o input.o : ms2.o input.o : pw_restart.o input.o : pwcom.o input.o : realus.o input.o : start_k.o input.o : symm_base.o interpolate.o : ../../Modules/control_flags.o interpolate.o : ../../Modules/fft_base.o interpolate.o : ../../Modules/fft_interfaces.o interpolate.o : ../../Modules/kind.o interpolate.o : ../../Modules/recvec.o io_rho_xml.o : ../../Modules/fft_base.o io_rho_xml.o : ../../Modules/funct.o io_rho_xml.o : ../../Modules/io_files.o io_rho_xml.o : ../../Modules/io_global.o io_rho_xml.o : ../../Modules/kind.o io_rho_xml.o : ../../Modules/mp.o io_rho_xml.o : ../../Modules/mp_global.o io_rho_xml.o : ../../Modules/noncol.o io_rho_xml.o : ../../Modules/paw_variables.o io_rho_xml.o : ../../Modules/xml_io_base.o io_rho_xml.o : pwcom.o io_rho_xml.o : scf_mod.o irrek.o : ../../Modules/kind.o iweights.o : ../../Modules/kind.o iweights.o : ../../Modules/mp.o iweights.o : ../../Modules/mp_global.o iweights.o : ../../Modules/noncol.o kpoint_grid.o : ../../Modules/io_global.o kpoint_grid.o : ../../Modules/kind.o kpoint_grid.o : ../../Modules/noncol.o kpoint_grid.o : bp_mod.o lchk_tauxk.o : ../../Modules/kind.o make_pointlists.o : ../../Modules/cell_base.o make_pointlists.o : ../../Modules/fft_base.o make_pointlists.o : ../../Modules/io_global.o make_pointlists.o : ../../Modules/ions_base.o make_pointlists.o : ../../Modules/kind.o make_pointlists.o : ../../Modules/mp_global.o make_pointlists.o : ../../Modules/noncol.o makov_payne.o : ../../Modules/basic_algebra_routines.o makov_payne.o : ../../Modules/cell_base.o makov_payne.o : ../../Modules/constants.o makov_payne.o : ../../Modules/control_flags.o makov_payne.o : ../../Modules/fft_base.o makov_payne.o : ../../Modules/io_files.o makov_payne.o : ../../Modules/io_global.o makov_payne.o : ../../Modules/ions_base.o makov_payne.o : ../../Modules/kind.o makov_payne.o : ../../Modules/mp.o makov_payne.o : ../../Modules/mp_global.o makov_payne.o : ../../Modules/recvec.o makov_payne.o : pwcom.o makov_payne.o : scf_mod.o martyna_tuckerman.o : ../../Modules/cell_base.o martyna_tuckerman.o : ../../Modules/constants.o martyna_tuckerman.o : ../../Modules/control_flags.o martyna_tuckerman.o : ../../Modules/fft_base.o martyna_tuckerman.o : ../../Modules/fft_interfaces.o martyna_tuckerman.o : ../../Modules/ions_base.o martyna_tuckerman.o : ../../Modules/kind.o martyna_tuckerman.o : ../../Modules/mp.o martyna_tuckerman.o : ../../Modules/mp_global.o martyna_tuckerman.o : ../../Modules/recvec.o martyna_tuckerman.o : ../../Modules/ws_base.o martyna_tuckerman.o : pwcom.o memory_report.o : ../../Modules/control_flags.o memory_report.o : ../../Modules/fft_base.o memory_report.o : ../../Modules/io_global.o memory_report.o : ../../Modules/mp_global.o memory_report.o : ../../Modules/noncol.o memory_report.o : ../../Modules/recvec.o memory_report.o : ../../Modules/uspp.o memory_report.o : pwcom.o mix_rho.o : ../../Modules/cell_base.o mix_rho.o : ../../Modules/constants.o mix_rho.o : ../../Modules/control_flags.o mix_rho.o : ../../Modules/fft_base.o mix_rho.o : ../../Modules/fft_interfaces.o mix_rho.o : ../../Modules/io_global.o mix_rho.o : ../../Modules/ions_base.o mix_rho.o : ../../Modules/kind.o mix_rho.o : ../../Modules/mp.o mix_rho.o : ../../Modules/mp_global.o mix_rho.o : ../../Modules/recvec.o mix_rho.o : ../../Modules/uspp.o mix_rho.o : ../../Modules/wavefunctions.o mix_rho.o : pwcom.o mix_rho.o : scf_mod.o move_ions.o : ../../Modules/basic_algebra_routines.o move_ions.o : ../../Modules/bfgs_module.o move_ions.o : ../../Modules/cell_base.o move_ions.o : ../../Modules/constants.o move_ions.o : ../../Modules/control_flags.o move_ions.o : ../../Modules/fft_base.o move_ions.o : ../../Modules/griddim.o move_ions.o : ../../Modules/io_files.o move_ions.o : ../../Modules/io_global.o move_ions.o : ../../Modules/ions_base.o move_ions.o : ../../Modules/kind.o move_ions.o : ../../Modules/mp.o move_ions.o : ../../Modules/mp_global.o move_ions.o : ../../Modules/recvec.o move_ions.o : dynamics_module.o move_ions.o : newd.o move_ions.o : pwcom.o move_ions.o : symm_base.o ms2.o : ../../Modules/mp.o ms2.o : ../../Modules/mp_global.o n_plane_waves.o : ../../Modules/kind.o n_plane_waves.o : ../../Modules/mp.o n_plane_waves.o : ../../Modules/mp_global.o new_ns.o : ../../Modules/becmod.o new_ns.o : ../../Modules/control_flags.o new_ns.o : ../../Modules/io_files.o new_ns.o : ../../Modules/io_global.o new_ns.o : ../../Modules/ions_base.o new_ns.o : ../../Modules/kind.o new_ns.o : ../../Modules/mp.o new_ns.o : ../../Modules/mp_global.o new_ns.o : ../../Modules/noncol.o new_ns.o : ../../Modules/recvec.o new_ns.o : ../../Modules/uspp.o new_ns.o : ../../Modules/wavefunctions.o new_ns.o : buffers.o new_ns.o : pwcom.o new_ns.o : symm_base.o new_occ.o : ../../Modules/constants.o new_occ.o : ../../Modules/control_flags.o new_occ.o : ../../Modules/io_files.o new_occ.o : ../../Modules/io_global.o new_occ.o : ../../Modules/kind.o new_occ.o : ../../Modules/mp.o new_occ.o : ../../Modules/mp_global.o new_occ.o : ../../Modules/noncol.o new_occ.o : ../../Modules/recvec.o new_occ.o : ../../Modules/wavefunctions.o new_occ.o : buffers.o new_occ.o : pwcom.o newd.o : ../../Modules/cell_base.o newd.o : ../../Modules/control_flags.o newd.o : ../../Modules/fft_base.o newd.o : ../../Modules/fft_interfaces.o newd.o : ../../Modules/ions_base.o newd.o : ../../Modules/kind.o newd.o : ../../Modules/mp.o newd.o : ../../Modules/mp_global.o newd.o : ../../Modules/noncol.o newd.o : ../../Modules/recvec.o newd.o : ../../Modules/uspp.o newd.o : ../../Modules/wavefunctions.o newd.o : pwcom.o newd.o : realus.o newd.o : scf_mod.o non_scf.o : ../../Modules/control_flags.o non_scf.o : ../../Modules/io_files.o non_scf.o : ../../Modules/io_global.o non_scf.o : ../../Modules/kind.o non_scf.o : ../../Modules/wavefunctions.o non_scf.o : bp_mod.o non_scf.o : buffers.o non_scf.o : pwcom.o nonloccorr.o : ../../Modules/cell_base.o nonloccorr.o : ../../Modules/constants.o nonloccorr.o : ../../Modules/fft_base.o nonloccorr.o : ../../Modules/fft_interfaces.o nonloccorr.o : ../../Modules/funct.o nonloccorr.o : ../../Modules/kind.o nonloccorr.o : ../../Modules/noncol.o nonloccorr.o : ../../Modules/recvec.o nonloccorr.o : ../../Modules/wavefunctions.o nonloccorr.o : pwcom.o ns_adj.o : ../../Modules/io_global.o ns_adj.o : ../../Modules/ions_base.o ns_adj.o : ../../Modules/kind.o ns_adj.o : ../../Modules/noncol.o ns_adj.o : pwcom.o ns_adj.o : scf_mod.o offset_atom_wfc.o : ../../Modules/ions_base.o offset_atom_wfc.o : ../../Modules/noncol.o offset_atom_wfc.o : ../../Modules/uspp.o offset_atom_wfc.o : pwcom.o openfil.o : ../../Modules/control_flags.o openfil.o : ../../Modules/io_files.o openfil.o : ../../Modules/io_global.o openfil.o : ../../Modules/kind.o openfil.o : ../../Modules/noncol.o openfil.o : ../../Modules/wannier_new.o openfil.o : bp_mod.o openfil.o : buffers.o openfil.o : pw_restart.o openfil.o : pwcom.o orbm_kubo.o : ../../Modules/becmod.o orbm_kubo.o : ../../Modules/cell_base.o orbm_kubo.o : ../../Modules/constants.o orbm_kubo.o : ../../Modules/fft_base.o orbm_kubo.o : ../../Modules/io_files.o orbm_kubo.o : ../../Modules/io_global.o orbm_kubo.o : ../../Modules/kind.o orbm_kubo.o : ../../Modules/mp.o orbm_kubo.o : ../../Modules/mp_global.o orbm_kubo.o : ../../Modules/noncol.o orbm_kubo.o : ../../Modules/recvec.o orbm_kubo.o : ../../Modules/uspp.o orbm_kubo.o : bp_mod.o orbm_kubo.o : buffers.o orbm_kubo.o : pwcom.o orbm_kubo.o : scf_mod.o orbm_kubo.o : start_k.o ortho_wfc.o : ../../Modules/io_global.o ortho_wfc.o : ../../Modules/kind.o ortho_wfc.o : ../../Modules/mp.o ortho_wfc.o : ../../Modules/mp_global.o ortho_wfc.o : ../../Modules/noncol.o orthoatwfc.o : ../../Modules/becmod.o orthoatwfc.o : ../../Modules/control_flags.o orthoatwfc.o : ../../Modules/io_files.o orthoatwfc.o : ../../Modules/io_global.o orthoatwfc.o : ../../Modules/ions_base.o orthoatwfc.o : ../../Modules/kind.o orthoatwfc.o : ../../Modules/mp.o orthoatwfc.o : ../../Modules/mp_global.o orthoatwfc.o : ../../Modules/noncol.o orthoatwfc.o : ../../Modules/uspp.o orthoatwfc.o : pwcom.o output_tau.o : ../../Modules/cell_base.o output_tau.o : ../../Modules/constants.o output_tau.o : ../../Modules/io_global.o output_tau.o : ../../Modules/ions_base.o output_tau.o : ../../Modules/kind.o para.o : ../../Modules/kind.o para.o : ../../Modules/mp.o para.o : ../../Modules/mp_global.o para.o : ../../Modules/parallel_include.o paw_init.o : ../../Modules/atom.o paw_init.o : ../../Modules/constants.o paw_init.o : ../../Modules/control_flags.o paw_init.o : ../../Modules/funct.o paw_init.o : ../../Modules/io_global.o paw_init.o : ../../Modules/ions_base.o paw_init.o : ../../Modules/kind.o paw_init.o : ../../Modules/mp.o paw_init.o : ../../Modules/mp_global.o paw_init.o : ../../Modules/noncol.o paw_init.o : ../../Modules/paw_variables.o paw_init.o : ../../Modules/radial_grids.o paw_init.o : ../../Modules/random_numbers.o paw_init.o : ../../Modules/uspp.o paw_init.o : paw_symmetry.o paw_init.o : pwcom.o paw_init.o : scf_mod.o paw_onecenter.o : ../../Modules/atom.o paw_onecenter.o : ../../Modules/constants.o paw_onecenter.o : ../../Modules/funct.o paw_onecenter.o : ../../Modules/io_global.o paw_onecenter.o : ../../Modules/ions_base.o paw_onecenter.o : ../../Modules/kind.o paw_onecenter.o : ../../Modules/mp.o paw_onecenter.o : ../../Modules/mp_global.o paw_onecenter.o : ../../Modules/noncol.o paw_onecenter.o : ../../Modules/paw_variables.o paw_onecenter.o : ../../Modules/radial_grids.o paw_onecenter.o : ../../Modules/uspp.o paw_onecenter.o : pwcom.o paw_symmetry.o : ../../Modules/cell_base.o paw_symmetry.o : ../../Modules/constants.o paw_symmetry.o : ../../Modules/io_global.o paw_symmetry.o : ../../Modules/ions_base.o paw_symmetry.o : ../../Modules/kind.o paw_symmetry.o : ../../Modules/mp.o paw_symmetry.o : ../../Modules/mp_global.o paw_symmetry.o : ../../Modules/noncol.o paw_symmetry.o : ../../Modules/uspp.o paw_symmetry.o : pwcom.o paw_symmetry.o : symm_base.o plugin_forces.o : ../../Modules/io_files.o plugin_forces.o : ../../Modules/io_global.o plugin_forces.o : ../../Modules/kind.o plugin_forces.o : ../../Modules/mp.o plugin_forces.o : ../../Modules/mp_global.o plugin_forces.o : ../../Modules/plugin_flags.o plugin_initialization.o : ../../Modules/io_files.o plugin_initialization.o : ../../Modules/io_global.o plugin_initialization.o : ../../Modules/kind.o plugin_initialization.o : ../../Modules/plugin_flags.o plus_u_full.o : ../../Modules/cell_base.o plus_u_full.o : ../../Modules/constants.o plus_u_full.o : ../../Modules/ions_base.o plus_u_full.o : ../../Modules/kind.o plus_u_full.o : ../../Modules/noncol.o plus_u_full.o : ../../Modules/random_numbers.o plus_u_full.o : ../../Modules/recvec.o plus_u_full.o : ../../Modules/uspp.o plus_u_full.o : pwcom.o plus_u_full.o : symm_base.o potinit.o : ../../Modules/cell_base.o potinit.o : ../../Modules/constants.o potinit.o : ../../Modules/control_flags.o potinit.o : ../../Modules/fft_base.o potinit.o : ../../Modules/fft_interfaces.o potinit.o : ../../Modules/funct.o potinit.o : ../../Modules/io_files.o potinit.o : ../../Modules/io_global.o potinit.o : ../../Modules/ions_base.o potinit.o : ../../Modules/kind.o potinit.o : ../../Modules/mp.o potinit.o : ../../Modules/mp_global.o potinit.o : ../../Modules/noncol.o potinit.o : ../../Modules/paw_variables.o potinit.o : ../../Modules/recvec.o potinit.o : ../../Modules/uspp.o potinit.o : ../../Modules/wavefunctions.o potinit.o : ../../Modules/xml_io_base.o potinit.o : io_rho_xml.o potinit.o : paw_init.o potinit.o : paw_onecenter.o potinit.o : pw_restart.o potinit.o : pwcom.o potinit.o : scf_mod.o print_clock_pw.o : ../../Modules/control_flags.o print_clock_pw.o : ../../Modules/funct.o print_clock_pw.o : ../../Modules/io_global.o print_clock_pw.o : ../../Modules/paw_variables.o print_clock_pw.o : pwcom.o print_clock_pw.o : realus.o print_ks_energies.o : ../../Modules/constants.o print_ks_energies.o : ../../Modules/control_flags.o print_ks_energies.o : ../../Modules/io_global.o print_ks_energies.o : ../../Modules/kind.o print_ks_energies.o : ../../Modules/mp.o print_ks_energies.o : ../../Modules/mp_global.o print_ks_energies.o : pwcom.o punch.o : ../../Modules/control_flags.o punch.o : ../../Modules/io_files.o punch.o : ../../Modules/io_global.o punch.o : a2fmod.o punch.o : pw_restart.o pw2blip.o : ../../Modules/cell_base.o pw2blip.o : ../../Modules/constants.o pw2blip.o : ../../Modules/control_flags.o pw2blip.o : ../../Modules/fft_scalar.o pw2blip.o : ../../Modules/io_global.o pw2blip.o : ../../Modules/kind.o pw2blip.o : ../../Modules/mp.o pw2blip.o : ../../Modules/mp_global.o pw2casino.o : ../../Modules/control_flags.o pw2casino.o : ../../Modules/io_files.o pw2casino.o : ../../Modules/kind.o pw2casino.o : ../../Modules/mp_global.o pw2casino.o : ../../Modules/plugin_flags.o pw2casino_write.o : ../../Modules/becmod.o pw2casino_write.o : ../../Modules/cell_base.o pw2casino_write.o : ../../Modules/constants.o pw2casino_write.o : ../../Modules/control_flags.o pw2casino_write.o : ../../Modules/fft_base.o pw2casino_write.o : ../../Modules/fft_interfaces.o pw2casino_write.o : ../../Modules/funct.o pw2casino_write.o : ../../Modules/io_files.o pw2casino_write.o : ../../Modules/io_global.o pw2casino_write.o : ../../Modules/ions_base.o pw2casino_write.o : ../../Modules/kind.o pw2casino_write.o : ../../Modules/mp.o pw2casino_write.o : ../../Modules/mp_global.o pw2casino_write.o : ../../Modules/recvec.o pw2casino_write.o : ../../Modules/run_info.o pw2casino_write.o : ../../Modules/uspp.o pw2casino_write.o : ../../Modules/wavefunctions.o pw2casino_write.o : buffers.o pw2casino_write.o : exx.o pw2casino_write.o : pw2blip.o pw2casino_write.o : pwcom.o pw2casino_write.o : scf_mod.o pw_restart.o : ../../Modules/cell_base.o pw_restart.o : ../../Modules/constants.o pw_restart.o : ../../Modules/control_flags.o pw_restart.o : ../../Modules/electrons_base.o pw_restart.o : ../../Modules/fft_base.o pw_restart.o : ../../Modules/funct.o pw_restart.o : ../../Modules/io_files.o pw_restart.o : ../../Modules/io_global.o pw_restart.o : ../../Modules/ions_base.o pw_restart.o : ../../Modules/kernel_table.o pw_restart.o : ../../Modules/kind.o pw_restart.o : ../../Modules/mp.o pw_restart.o : ../../Modules/mp_global.o pw_restart.o : ../../Modules/noncol.o pw_restart.o : ../../Modules/parser.o pw_restart.o : ../../Modules/recvec.o pw_restart.o : ../../Modules/run_info.o pw_restart.o : ../../Modules/version.o pw_restart.o : ../../Modules/wavefunctions.o pw_restart.o : ../../Modules/xml_io_base.o pw_restart.o : ../../iotk/src/iotk_module.o pw_restart.o : buffers.o pw_restart.o : esm.o pw_restart.o : exx.o pw_restart.o : io_rho_xml.o pw_restart.o : martyna_tuckerman.o pw_restart.o : pwcom.o pw_restart.o : realus.o pw_restart.o : scf_mod.o pw_restart.o : start_k.o pw_restart.o : symm_base.o pwcom.o : ../../Modules/cell_base.o pwcom.o : ../../Modules/constants.o pwcom.o : ../../Modules/kind.o pwcom.o : ../../Modules/parameters.o pwcom.o : ../../Modules/recvec.o pwscf.o : ../../Modules/cell_base.o pwscf.o : ../../Modules/check_stop.o pwscf.o : ../../Modules/control_flags.o pwscf.o : ../../Modules/environment.o pwscf.o : ../../Modules/image_io_routines.o pwscf.o : ../../Modules/io_files.o pwscf.o : ../../Modules/io_global.o pwscf.o : ../../Modules/mp_global.o pwscf.o : ../../Modules/parameters.o pwscf.o : ../../Modules/read_input.o pwscf.o : ../../Modules/xml_io_base.o pwscf.o : ms2.o pwscf.o : pwcom.o qvan2.o : ../../Modules/kind.o qvan2.o : ../../Modules/uspp.o qvan2.o : pwcom.o rcgdiagg.o : ../../Modules/constants.o rcgdiagg.o : ../../Modules/kind.o rcgdiagg.o : ../../Modules/mp.o rcgdiagg.o : ../../Modules/mp_global.o rcgdiagg.o : ../../Modules/recvec.o rdiagh.o : ../../Modules/kind.o rdiagh.o : ../../Modules/mp.o rdiagh.o : ../../Modules/mp_global.o rdiaghg.o : ../../Modules/descriptors.o rdiaghg.o : ../../Modules/dspev_drv.o rdiaghg.o : ../../Modules/kind.o rdiaghg.o : ../../Modules/mp.o rdiaghg.o : ../../Modules/mp_global.o read_conf_from_file.o : ../../Modules/cell_base.o read_conf_from_file.o : ../../Modules/io_files.o read_conf_from_file.o : ../../Modules/io_global.o read_conf_from_file.o : ../../Modules/ions_base.o read_conf_from_file.o : ../../Modules/kind.o read_conf_from_file.o : pw_restart.o read_conf_from_file.o : pwcom.o read_file.o : ../../Modules/cell_base.o read_file.o : ../../Modules/constants.o read_file.o : ../../Modules/control_flags.o read_file.o : ../../Modules/fft_base.o read_file.o : ../../Modules/fft_interfaces.o read_file.o : ../../Modules/funct.o read_file.o : ../../Modules/griddim.o read_file.o : ../../Modules/io_files.o read_file.o : ../../Modules/io_global.o read_file.o : ../../Modules/ions_base.o read_file.o : ../../Modules/kernel_table.o read_file.o : ../../Modules/kind.o read_file.o : ../../Modules/noncol.o read_file.o : ../../Modules/paw_variables.o read_file.o : ../../Modules/read_pseudo.o read_file.o : ../../Modules/recvec.o read_file.o : ../../Modules/recvec_subs.o read_file.o : ../../Modules/uspp.o read_file.o : ../../Modules/wavefunctions.o read_file.o : ../../Modules/xml_io_base.o read_file.o : buffers.o read_file.o : esm.o read_file.o : newd.o read_file.o : paw_init.o read_file.o : paw_onecenter.o read_file.o : pw_restart.o read_file.o : pwcom.o read_file.o : realus.o read_file.o : scf_mod.o read_file.o : symm_base.o realus.o : ../../Modules/atom.o realus.o : ../../Modules/becmod.o realus.o : ../../Modules/cell_base.o realus.o : ../../Modules/constants.o realus.o : ../../Modules/control_flags.o realus.o : ../../Modules/fft_base.o realus.o : ../../Modules/fft_interfaces.o realus.o : ../../Modules/io_files.o realus.o : ../../Modules/io_global.o realus.o : ../../Modules/ions_base.o realus.o : ../../Modules/kind.o realus.o : ../../Modules/mp.o realus.o : ../../Modules/mp_global.o realus.o : ../../Modules/noncol.o realus.o : ../../Modules/recvec.o realus.o : ../../Modules/splinelib.o realus.o : ../../Modules/uspp.o realus.o : ../../Modules/wavefunctions.o realus.o : ../../iotk/src/iotk_module.o realus.o : pwcom.o realus.o : scf_mod.o regterg.o : ../../Modules/descriptors.o regterg.o : ../../Modules/io_global.o regterg.o : ../../Modules/kind.o regterg.o : ../../Modules/mp.o regterg.o : ../../Modules/mp_global.o regterg.o : ../../Modules/ptoolkit.o remove_atomic_rho.o : ../../Modules/fft_base.o remove_atomic_rho.o : ../../Modules/io_files.o remove_atomic_rho.o : ../../Modules/io_global.o remove_atomic_rho.o : ../../Modules/kind.o remove_atomic_rho.o : io_rho_xml.o remove_atomic_rho.o : pwcom.o remove_atomic_rho.o : scf_mod.o report_mag.o : ../../Modules/constants.o report_mag.o : ../../Modules/io_global.o report_mag.o : ../../Modules/ions_base.o report_mag.o : ../../Modules/kind.o report_mag.o : ../../Modules/noncol.o report_mag.o : pwcom.o report_mag.o : scf_mod.o restart_from_file.o : ../../Modules/control_flags.o restart_from_file.o : ../../Modules/io_files.o restart_from_file.o : ../../Modules/io_global.o restart_from_file.o : ../../Modules/mp.o restart_in_electrons.o : ../../Modules/control_flags.o restart_in_electrons.o : ../../Modules/io_files.o restart_in_electrons.o : ../../Modules/io_global.o restart_in_electrons.o : ../../Modules/kind.o restart_in_electrons.o : ../../Modules/noncol.o restart_in_electrons.o : ../../Modules/wavefunctions.o restart_in_electrons.o : exx.o restart_in_electrons.o : pwcom.o restart_in_ions.o : ../../Modules/cell_base.o restart_in_ions.o : ../../Modules/control_flags.o restart_in_ions.o : ../../Modules/fft_base.o restart_in_ions.o : ../../Modules/fft_interfaces.o restart_in_ions.o : ../../Modules/io_files.o restart_in_ions.o : ../../Modules/io_global.o restart_in_ions.o : ../../Modules/ions_base.o restart_in_ions.o : ../../Modules/kind.o restart_in_ions.o : ../../Modules/paw_variables.o restart_in_ions.o : ../../Modules/recvec.o restart_in_ions.o : ../../Modules/uspp.o restart_in_ions.o : ../../Modules/wavefunctions.o restart_in_ions.o : paw_onecenter.o restart_in_ions.o : pwcom.o restart_in_ions.o : scf_mod.o rho2zeta.o : ../../Modules/constants.o rho2zeta.o : ../../Modules/io_global.o rho2zeta.o : ../../Modules/kind.o rotate_wfc.o : ../../Modules/control_flags.o rotate_wfc.o : ../../Modules/kind.o rotate_wfc_gamma.o : ../../Modules/control_flags.o rotate_wfc_gamma.o : ../../Modules/descriptors.o rotate_wfc_gamma.o : ../../Modules/kind.o rotate_wfc_gamma.o : ../../Modules/mp.o rotate_wfc_gamma.o : ../../Modules/mp_global.o rotate_wfc_gamma.o : ../../Modules/ptoolkit.o rotate_wfc_k.o : ../../Modules/descriptors.o rotate_wfc_k.o : ../../Modules/kind.o rotate_wfc_k.o : ../../Modules/mp.o rotate_wfc_k.o : ../../Modules/mp_global.o rotate_wfc_k.o : ../../Modules/ptoolkit.o ruotaijk.o : ../../Modules/kind.o s_1psi.o : ../../Modules/becmod.o s_1psi.o : ../../Modules/control_flags.o s_1psi.o : ../../Modules/kind.o s_1psi.o : ../../Modules/noncol.o s_1psi.o : ../../Modules/uspp.o s_1psi.o : pwcom.o s_1psi.o : realus.o s_psi.o : ../../Modules/becmod.o s_psi.o : ../../Modules/control_flags.o s_psi.o : ../../Modules/ions_base.o s_psi.o : ../../Modules/kind.o s_psi.o : ../../Modules/mp.o s_psi.o : ../../Modules/noncol.o s_psi.o : ../../Modules/uspp.o s_psi.o : pwcom.o s_psi.o : realus.o save_in_cbands.o : ../../Modules/control_flags.o save_in_cbands.o : ../../Modules/funct.o save_in_cbands.o : ../../Modules/io_files.o save_in_cbands.o : ../../Modules/kind.o save_in_cbands.o : exx.o save_in_cbands.o : pwcom.o save_in_electrons.o : ../../Modules/control_flags.o save_in_electrons.o : ../../Modules/funct.o save_in_electrons.o : ../../Modules/io_files.o save_in_electrons.o : ../../Modules/kind.o save_in_electrons.o : exx.o save_in_electrons.o : pwcom.o save_in_electrons.o : scf_mod.o save_in_ions.o : ../../Modules/control_flags.o save_in_ions.o : ../../Modules/funct.o save_in_ions.o : ../../Modules/io_files.o save_in_ions.o : ../../Modules/kind.o save_in_ions.o : exx.o save_in_ions.o : pwcom.o scale_h.o : ../../Modules/cell_base.o scale_h.o : ../../Modules/control_flags.o scale_h.o : ../../Modules/io_global.o scale_h.o : ../../Modules/ions_base.o scale_h.o : ../../Modules/kind.o scale_h.o : ../../Modules/mp.o scale_h.o : ../../Modules/mp_global.o scale_h.o : ../../Modules/recvec.o scale_h.o : pwcom.o scale_h.o : start_k.o scf_mod.o : ../../Modules/cell_base.o scf_mod.o : ../../Modules/constants.o scf_mod.o : ../../Modules/control_flags.o scf_mod.o : ../../Modules/fft_base.o scf_mod.o : ../../Modules/fft_interfaces.o scf_mod.o : ../../Modules/funct.o scf_mod.o : ../../Modules/io_files.o scf_mod.o : ../../Modules/ions_base.o scf_mod.o : ../../Modules/kind.o scf_mod.o : ../../Modules/mp.o scf_mod.o : ../../Modules/mp_global.o scf_mod.o : ../../Modules/paw_variables.o scf_mod.o : ../../Modules/recvec.o scf_mod.o : ../../Modules/uspp.o scf_mod.o : ../../Modules/wavefunctions.o scf_mod.o : paw_onecenter.o scf_mod.o : pwcom.o set_kplusq.o : ../../Modules/kind.o set_kup_and_kdw.o : ../../Modules/kind.o set_rhoc.o : ../../Modules/atom.o set_rhoc.o : ../../Modules/cell_base.o set_rhoc.o : ../../Modules/control_flags.o set_rhoc.o : ../../Modules/fft_base.o set_rhoc.o : ../../Modules/fft_interfaces.o set_rhoc.o : ../../Modules/io_global.o set_rhoc.o : ../../Modules/ions_base.o set_rhoc.o : ../../Modules/kind.o set_rhoc.o : ../../Modules/mp.o set_rhoc.o : ../../Modules/mp_global.o set_rhoc.o : ../../Modules/recvec.o set_rhoc.o : ../../Modules/uspp.o set_rhoc.o : pwcom.o set_rhoc.o : scf_mod.o set_vrs.o : ../../Modules/fft_base.o set_vrs.o : ../../Modules/funct.o set_vrs.o : ../../Modules/kind.o setlocal.o : ../../Modules/cell_base.o setlocal.o : ../../Modules/constants.o setlocal.o : ../../Modules/control_flags.o setlocal.o : ../../Modules/fft_base.o setlocal.o : ../../Modules/fft_interfaces.o setlocal.o : ../../Modules/ions_base.o setlocal.o : ../../Modules/kind.o setlocal.o : ../../Modules/mp.o setlocal.o : ../../Modules/mp_global.o setlocal.o : ../../Modules/recvec.o setlocal.o : esm.o setlocal.o : martyna_tuckerman.o setlocal.o : ms2.o setlocal.o : pwcom.o setlocal.o : scf_mod.o setqf.o : ../../Modules/kind.o setup.o : ../../Modules/cell_base.o setup.o : ../../Modules/constants.o setup.o : ../../Modules/control_flags.o setup.o : ../../Modules/electrons_base.o setup.o : ../../Modules/fft_base.o setup.o : ../../Modules/funct.o setup.o : ../../Modules/griddim.o setup.o : ../../Modules/io_files.o setup.o : ../../Modules/io_global.o setup.o : ../../Modules/ions_base.o setup.o : ../../Modules/kind.o setup.o : ../../Modules/mp_global.o setup.o : ../../Modules/noncol.o setup.o : ../../Modules/parameters.o setup.o : ../../Modules/paw_variables.o setup.o : ../../Modules/recvec.o setup.o : ../../Modules/uspp.o setup.o : bp_mod.o setup.o : exx.o setup.o : pw_restart.o setup.o : pwcom.o setup.o : start_k.o setup.o : symm_base.o sph_ind.o : ../../Modules/kind.o spinor.o : ../../Modules/kind.o start_k.o : ../../Modules/cell_base.o start_k.o : ../../Modules/kind.o stop_run.o : ../../Modules/environment.o stop_run.o : ../../Modules/image_io_routines.o stop_run.o : ../../Modules/io_files.o stop_run.o : ../../Modules/io_global.o stop_run.o : ../../Modules/mp_global.o stres_cc.o : ../../Modules/atom.o stres_cc.o : ../../Modules/cell_base.o stres_cc.o : ../../Modules/control_flags.o stres_cc.o : ../../Modules/fft_base.o stres_cc.o : ../../Modules/fft_interfaces.o stres_cc.o : ../../Modules/ions_base.o stres_cc.o : ../../Modules/kind.o stres_cc.o : ../../Modules/mp.o stres_cc.o : ../../Modules/mp_global.o stres_cc.o : ../../Modules/recvec.o stres_cc.o : ../../Modules/uspp.o stres_cc.o : ../../Modules/wavefunctions.o stres_cc.o : pwcom.o stres_cc.o : scf_mod.o stres_ewa.o : ../../Modules/constants.o stres_ewa.o : ../../Modules/kind.o stres_ewa.o : ../../Modules/mp.o stres_ewa.o : ../../Modules/mp_global.o stres_gradcorr.o : ../../Modules/funct.o stres_gradcorr.o : ../../Modules/kind.o stres_gradcorr.o : ../../Modules/mp.o stres_gradcorr.o : ../../Modules/mp_global.o stres_gradcorr.o : ../../Modules/noncol.o stres_har.o : ../../Modules/cell_base.o stres_har.o : ../../Modules/constants.o stres_har.o : ../../Modules/control_flags.o stres_har.o : ../../Modules/fft_base.o stres_har.o : ../../Modules/fft_interfaces.o stres_har.o : ../../Modules/kind.o stres_har.o : ../../Modules/mp.o stres_har.o : ../../Modules/mp_global.o stres_har.o : ../../Modules/recvec.o stres_har.o : ../../Modules/wavefunctions.o stres_har.o : pwcom.o stres_har.o : scf_mod.o stres_hub.o : ../../Modules/becmod.o stres_hub.o : ../../Modules/cell_base.o stres_hub.o : ../../Modules/control_flags.o stres_hub.o : ../../Modules/io_files.o stres_hub.o : ../../Modules/io_global.o stres_hub.o : ../../Modules/ions_base.o stres_hub.o : ../../Modules/kind.o stres_hub.o : ../../Modules/mp.o stres_hub.o : ../../Modules/mp_global.o stres_hub.o : ../../Modules/recvec.o stres_hub.o : ../../Modules/uspp.o stres_hub.o : ../../Modules/wavefunctions.o stres_hub.o : buffers.o stres_hub.o : pwcom.o stres_hub.o : scf_mod.o stres_hub.o : symme.o stres_knl.o : ../../Modules/cell_base.o stres_knl.o : ../../Modules/constants.o stres_knl.o : ../../Modules/control_flags.o stres_knl.o : ../../Modules/io_files.o stres_knl.o : ../../Modules/kind.o stres_knl.o : ../../Modules/mp.o stres_knl.o : ../../Modules/mp_global.o stres_knl.o : ../../Modules/noncol.o stres_knl.o : ../../Modules/recvec.o stres_knl.o : ../../Modules/wavefunctions.o stres_knl.o : buffers.o stres_knl.o : pwcom.o stres_knl.o : symme.o stres_loc.o : ../../Modules/atom.o stres_loc.o : ../../Modules/cell_base.o stres_loc.o : ../../Modules/control_flags.o stres_loc.o : ../../Modules/fft_base.o stres_loc.o : ../../Modules/fft_interfaces.o stres_loc.o : ../../Modules/ions_base.o stres_loc.o : ../../Modules/kind.o stres_loc.o : ../../Modules/mp.o stres_loc.o : ../../Modules/mp_global.o stres_loc.o : ../../Modules/noncol.o stres_loc.o : ../../Modules/recvec.o stres_loc.o : ../../Modules/uspp.o stres_loc.o : ../../Modules/wavefunctions.o stres_loc.o : pwcom.o stres_loc.o : scf_mod.o stres_nonloc_dft.o : ../../Modules/fft_base.o stres_nonloc_dft.o : ../../Modules/funct.o stres_nonloc_dft.o : ../../Modules/kind.o stres_nonloc_dft.o : ../../Modules/mp.o stres_nonloc_dft.o : ../../Modules/mp_global.o stres_nonloc_dft.o : ../../Modules/xc_vdW_DF.o stres_us.o : ../../Modules/becmod.o stres_us.o : ../../Modules/constants.o stres_us.o : ../../Modules/control_flags.o stres_us.o : ../../Modules/ions_base.o stres_us.o : ../../Modules/kind.o stres_us.o : ../../Modules/mp.o stres_us.o : ../../Modules/mp_global.o stres_us.o : ../../Modules/noncol.o stres_us.o : ../../Modules/uspp.o stres_us.o : ../../Modules/wavefunctions.o stres_us.o : pwcom.o stress.o : ../../Modules/cell_base.o stress.o : ../../Modules/constants.o stress.o : ../../Modules/control_flags.o stress.o : ../../Modules/fft_base.o stress.o : ../../Modules/funct.o stress.o : ../../Modules/io_global.o stress.o : ../../Modules/ions_base.o stress.o : ../../Modules/kind.o stress.o : ../../Modules/mm_dispersion.o stress.o : ../../Modules/noncol.o stress.o : ../../Modules/recvec.o stress.o : ../../Modules/uspp.o stress.o : bp_mod.o stress.o : exx.o stress.o : pwcom.o stress.o : scf_mod.o stress.o : symme.o struct_fact.o : ../../Modules/constants.o struct_fact.o : ../../Modules/kind.o sum_band.o : ../../Modules/becmod.o sum_band.o : ../../Modules/cell_base.o sum_band.o : ../../Modules/control_flags.o sum_band.o : ../../Modules/fft_base.o sum_band.o : ../../Modules/fft_interfaces.o sum_band.o : ../../Modules/funct.o sum_band.o : ../../Modules/io_files.o sum_band.o : ../../Modules/ions_base.o sum_band.o : ../../Modules/kind.o sum_band.o : ../../Modules/mp.o sum_band.o : ../../Modules/mp_global.o sum_band.o : ../../Modules/noncol.o sum_band.o : ../../Modules/paw_variables.o sum_band.o : ../../Modules/recvec.o sum_band.o : ../../Modules/uspp.o sum_band.o : ../../Modules/wavefunctions.o sum_band.o : buffers.o sum_band.o : paw_symmetry.o sum_band.o : pwcom.o sum_band.o : realus.o sum_band.o : scf_mod.o sum_band.o : symme.o sumkg.o : ../../Modules/kind.o sumkg.o : ../../Modules/mp.o sumkg.o : ../../Modules/mp_global.o sumkt.o : ../../Modules/kind.o summary.o : ../../Modules/atom.o summary.o : ../../Modules/cell_base.o summary.o : ../../Modules/constants.o summary.o : ../../Modules/control_flags.o summary.o : ../../Modules/fft_base.o summary.o : ../../Modules/funct.o summary.o : ../../Modules/io_files.o summary.o : ../../Modules/io_global.o summary.o : ../../Modules/ions_base.o summary.o : ../../Modules/kernel_table.o summary.o : ../../Modules/kind.o summary.o : ../../Modules/mp.o summary.o : ../../Modules/mp_global.o summary.o : ../../Modules/noncol.o summary.o : ../../Modules/recvec.o summary.o : ../../Modules/run_info.o summary.o : ../../Modules/uspp.o summary.o : bp_mod.o summary.o : esm.o summary.o : martyna_tuckerman.o summary.o : pwcom.o summary.o : symm_base.o symm_base.o : ../../Modules/cell_base.o symm_base.o : ../../Modules/io_global.o symm_base.o : ../../Modules/kind.o symme.o : ../../Modules/cell_base.o symme.o : ../../Modules/constants.o symme.o : ../../Modules/kind.o symme.o : ../../Modules/mp_global.o symme.o : ../../Modules/parallel_include.o symme.o : ../../Modules/recvec.o symme.o : symm_base.o symmetrize_at.o : ../../Modules/io_global.o symmetrize_at.o : ../../Modules/kind.o symmetrize_at.o : pwcom.o tabd.o : ../../Modules/kind.o transform_becsum_nc.o : ../../Modules/ions_base.o transform_becsum_nc.o : ../../Modules/kind.o transform_becsum_nc.o : ../../Modules/noncol.o transform_becsum_nc.o : ../../Modules/uspp.o transform_becsum_nc.o : pwcom.o transform_becsum_so.o : ../../Modules/ions_base.o transform_becsum_so.o : ../../Modules/kind.o transform_becsum_so.o : ../../Modules/noncol.o transform_becsum_so.o : ../../Modules/uspp.o transform_becsum_so.o : pwcom.o transform_qq_so.o : ../../Modules/ions_base.o transform_qq_so.o : ../../Modules/kind.o transform_qq_so.o : ../../Modules/uspp.o transform_qq_so.o : pwcom.o trnvecc.o : ../../Modules/kind.o tweights.o : ../../Modules/kind.o update_pot.o : ../../Modules/becmod.o update_pot.o : ../../Modules/cell_base.o update_pot.o : ../../Modules/constants.o update_pot.o : ../../Modules/control_flags.o update_pot.o : ../../Modules/fft_base.o update_pot.o : ../../Modules/fft_interfaces.o update_pot.o : ../../Modules/io_files.o update_pot.o : ../../Modules/io_global.o update_pot.o : ../../Modules/ions_base.o update_pot.o : ../../Modules/kind.o update_pot.o : ../../Modules/mp.o update_pot.o : ../../Modules/mp_global.o update_pot.o : ../../Modules/noncol.o update_pot.o : ../../Modules/paw_variables.o update_pot.o : ../../Modules/recvec.o update_pot.o : ../../Modules/uspp.o update_pot.o : ../../Modules/wavefunctions.o update_pot.o : buffers.o update_pot.o : io_rho_xml.o update_pot.o : paw_onecenter.o update_pot.o : pwcom.o update_pot.o : scf_mod.o usnldiag.o : ../../Modules/ions_base.o usnldiag.o : ../../Modules/kind.o usnldiag.o : ../../Modules/noncol.o usnldiag.o : ../../Modules/uspp.o usnldiag.o : pwcom.o v_of_rho.o : ../../Modules/cell_base.o v_of_rho.o : ../../Modules/constants.o v_of_rho.o : ../../Modules/control_flags.o v_of_rho.o : ../../Modules/fft_base.o v_of_rho.o : ../../Modules/fft_interfaces.o v_of_rho.o : ../../Modules/funct.o v_of_rho.o : ../../Modules/io_global.o v_of_rho.o : ../../Modules/ions_base.o v_of_rho.o : ../../Modules/kind.o v_of_rho.o : ../../Modules/mp.o v_of_rho.o : ../../Modules/mp_global.o v_of_rho.o : ../../Modules/noncol.o v_of_rho.o : ../../Modules/recvec.o v_of_rho.o : esm.o v_of_rho.o : martyna_tuckerman.o v_of_rho.o : pwcom.o v_of_rho.o : scf_mod.o vcsmd.o : ../../Modules/cell_base.o vcsmd.o : ../../Modules/constants.o vcsmd.o : ../../Modules/constraints_module.o vcsmd.o : ../../Modules/control_flags.o vcsmd.o : ../../Modules/io_files.o vcsmd.o : ../../Modules/io_global.o vcsmd.o : ../../Modules/ions_base.o vcsmd.o : ../../Modules/kind.o vcsmd.o : ../../Modules/parameters.o vcsmd.o : dynamics_module.o vcsmd.o : pwcom.o vcsubs.o : ../../Modules/constants.o vcsubs.o : ../../Modules/io_global.o vcsubs.o : ../../Modules/kind.o vhpsi.o : ../../Modules/becmod.o vhpsi.o : ../../Modules/control_flags.o vhpsi.o : ../../Modules/ions_base.o vhpsi.o : ../../Modules/kind.o vhpsi.o : ../../Modules/mp.o vhpsi.o : ../../Modules/mp_global.o vhpsi.o : ../../Modules/noncol.o vhpsi.o : pwcom.o vhpsi.o : scf_mod.o vloc_of_g.o : ../../Modules/constants.o vloc_of_g.o : ../../Modules/kind.o vloc_of_g.o : esm.o vloc_psi.o : ../../Modules/fft_base.o vloc_psi.o : ../../Modules/fft_interfaces.o vloc_psi.o : ../../Modules/kind.o vloc_psi.o : ../../Modules/mp_global.o vloc_psi.o : ../../Modules/noncol.o vloc_psi.o : ../../Modules/parallel_include.o vloc_psi.o : ../../Modules/recvec.o vloc_psi.o : ../../Modules/wavefunctions.o vloc_psi.o : pwcom.o wannier_check.o : ../../Modules/control_flags.o wannier_check.o : ../../Modules/io_global.o wannier_check.o : ../../Modules/ions_base.o wannier_check.o : ../../Modules/kind.o wannier_check.o : ../../Modules/uspp.o wannier_check.o : ../../Modules/wannier_new.o wannier_check.o : pwcom.o wannier_clean.o : ../../Modules/io_files.o wannier_clean.o : ../../Modules/wannier_new.o wannier_clean.o : buffers.o wannier_clean.o : pwcom.o wannier_enrg.o : ../../Modules/io_files.o wannier_enrg.o : ../../Modules/io_global.o wannier_enrg.o : ../../Modules/kind.o wannier_enrg.o : ../../Modules/wannier_new.o wannier_enrg.o : buffers.o wannier_enrg.o : pwcom.o wannier_init.o : ../../Modules/constants.o wannier_init.o : ../../Modules/input_parameters.o wannier_init.o : ../../Modules/io_files.o wannier_init.o : ../../Modules/ions_base.o wannier_init.o : ../../Modules/noncol.o wannier_init.o : ../../Modules/wannier_new.o wannier_init.o : buffers.o wannier_init.o : pwcom.o wannier_occ.o : ../../Modules/io_files.o wannier_occ.o : ../../Modules/io_global.o wannier_occ.o : ../../Modules/kind.o wannier_occ.o : ../../Modules/wannier_new.o wannier_occ.o : buffers.o wannier_occ.o : pwcom.o wannier_proj.o : ../../Modules/constants.o wannier_proj.o : ../../Modules/control_flags.o wannier_proj.o : ../../Modules/io_files.o wannier_proj.o : ../../Modules/io_global.o wannier_proj.o : ../../Modules/ions_base.o wannier_proj.o : ../../Modules/kind.o wannier_proj.o : ../../Modules/noncol.o wannier_proj.o : ../../Modules/recvec.o wannier_proj.o : ../../Modules/uspp.o wannier_proj.o : ../../Modules/wannier_new.o wannier_proj.o : ../../Modules/wavefunctions.o wannier_proj.o : buffers.o wannier_proj.o : pwcom.o weights.o : ../../Modules/io_global.o weights.o : ../../Modules/kind.o weights.o : ../../Modules/mp.o weights.o : ../../Modules/mp_global.o weights.o : ../../Modules/noncol.o weights.o : pwcom.o wfcinit.o : ../../Modules/becmod.o wfcinit.o : ../../Modules/cell_base.o wfcinit.o : ../../Modules/constants.o wfcinit.o : ../../Modules/control_flags.o wfcinit.o : ../../Modules/io_files.o wfcinit.o : ../../Modules/io_global.o wfcinit.o : ../../Modules/kind.o wfcinit.o : ../../Modules/mp_global.o wfcinit.o : ../../Modules/noncol.o wfcinit.o : ../../Modules/random_numbers.o wfcinit.o : ../../Modules/recvec.o wfcinit.o : ../../Modules/uspp.o wfcinit.o : ../../Modules/wannier_new.o wfcinit.o : ../../Modules/wavefunctions.o wfcinit.o : bp_mod.o wfcinit.o : buffers.o wfcinit.o : pwcom.o write_ns.o : ../../Modules/constants.o write_ns.o : ../../Modules/io_global.o write_ns.o : ../../Modules/ions_base.o write_ns.o : ../../Modules/kind.o write_ns.o : ../../Modules/noncol.o write_ns.o : pwcom.o write_ns.o : scf_mod.o wsweight.o : ../../Modules/kind.o xk_wk_collect.o : ../../Modules/io_global.o xk_wk_collect.o : ../../Modules/kind.o xk_wk_collect.o : ../../Modules/mp.o xk_wk_collect.o : ../../Modules/mp_global.o xk_wk_collect.o : pwcom.o espresso-5.0.2/PW/src/summary.f900000644000700200004540000005556012053145627015532 0ustar marsamoscm! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE summary() !----------------------------------------------------------------------- ! ! This routine writes on output all the information obtained from ! the input file and from the setup routine, before starting the ! self-consistent calculation. ! ! if iverbosity < 1 only a partial summary is done. ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE run_info, ONLY: title USE constants, ONLY : amu_ry, rytoev USE cell_base, ONLY : alat, ibrav, omega, at, bg, celldm USE ions_base, ONLY : nat, atm, zv, tau, ntyp => nsp, ityp USE cellmd, ONLY : calc, cmass USE ions_base, ONLY : amass USE gvect, ONLY : ecutrho, ngm, ngm_g, gcutm USE gvecs, ONLY : doublegrid, ngms, gcutms USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE lsda_mod, ONLY : lsda, starting_magnetization USE ldaU, ONLY : lda_plus_U, Hubbard_u, Hubbard_j, Hubbard_alpha, & Hubbard_l, lda_plus_u_kind, Hubbard_lmax,& Hubbard_J0, Hubbard_beta USE klist, ONLY : degauss, smearing, lgauss, nkstot, xk, wk, & nelec, nelup, neldw, two_fermi_energies USE ktetra, ONLY : ltetra USE control_flags, ONLY : imix, nmix, mixing_beta, nstep, lscf, & tr2, isolve, lmd, lbfgs, lpath, iverbosity USE noncollin_module,ONLY : noncolin USE spin_orb, ONLY : domag, lspinorb USE funct, ONLY : write_dft_name USE bp, ONLY : lelfield, gdir, nppstr_3d, efield, nberrycyc, & l3dstring,efield_cart,efield_cry USE fixed_occ, ONLY : f_inp, tfixed_occ USE uspp_param, ONLY : upf USE wvfct, ONLY : nbnd, ecutwfc, qcutz, ecfixed, q2sigma USE lsda_mod, ONLY : nspin USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum #ifdef __ENVIRON USE environ_base, ONLY : do_environ #endif USE esm, ONLY : do_comp_esm, esm_summary USE martyna_tuckerman,ONLY: do_comp_mt ! IMPLICIT NONE ! ! ... declaration of the local variables ! INTEGER :: i, ipol, apol, na, isym, ik, nt, ibnd, ngmtot ! counter on the celldm elements ! counter on polarizations ! counter on direct or reciprocal lattice vect ! counter on atoms ! counter on symmetries ! counter on k points ! counter on beta functions ! counter on types ! counter on bands ! total number of G-vectors (parallel execution) ! REAL(DP), ALLOCATABLE :: xau(:,:) ! atomic coordinate referred to the crystal axes REAL(DP) :: xkg(3) ! coordinates of the k point in crystal axes CHARACTER :: mixing_style * 9 REAL(DP) :: xp ! fraction contributing to a given atom type (obsolescent) ! ! ... we start with a general description of the run ! IF ( imix == 0 ) mixing_style = 'plain' IF ( imix == 1 ) mixing_style = 'TF' IF ( imix == 2 ) mixing_style = 'local-TF' ! IF ( title /= ' ') WRITE( stdout, "(/,5X,'Title: ',/,5X,A75)" ) title ! WRITE( stdout, 100) ibrav, alat, omega, nat, ntyp IF ( two_fermi_energies ) THEN WRITE( stdout, 101) nelec, nelup, neldw ELSE WRITE( stdout, 102) nelec END IF WRITE( stdout, 103) nbnd, ecutwfc, ecutrho IF ( lscf) WRITE( stdout, 104) tr2, mixing_beta, nmix, mixing_style ! 100 FORMAT( /,/,5X, & & 'bravais-lattice index = ',I12,/,5X, & & 'lattice parameter (alat) = ',F12.4,' a.u.',/,5X, & & 'unit-cell volume = ',F12.4,' (a.u.)^3',/,5X, & & 'number of atoms/cell = ',I12,/,5X, & & 'number of atomic types = ',I12) 101 FORMAT(5X, & & 'number of electrons = ',F12.2,' (up:',f7.2,', down:',f7.2,')') 102 FORMAT(5X, & & 'number of electrons = ',f12.2) 103 FORMAT(5X, & & 'number of Kohn-Sham states= ',I12,/,5X, & & 'kinetic-energy cutoff = ',F12.4,' Ry',/,5X, & & 'charge density cutoff = ',F12.4,' Ry') 104 FORMAT(5X, & & 'convergence threshold = ',1PE12.1,/,5X, & & 'mixing beta = ',0PF12.4,/,5X, & & 'number of iterations used = ',I12,2X,A,' mixing') ! call write_dft_name ( ) ! IF ( lmd .OR. lbfgs .OR. lpath ) & WRITE( stdout, '(5X,"nstep = ",I12,/)' ) nstep ! IF (noncolin) THEN IF (lspinorb) THEN IF (domag) THEN WRITE( stdout, '(5X, "Noncollinear calculation with spin-orbit",/)') ELSE WRITE( stdout, '(5X, "Non magnetic calculation with spin-orbit",/)') ENDIF ELSE WRITE( stdout, '(5X, "Noncollinear calculation without spin-orbit",/)') END IF END IF ! IF ( qcutz > 0.D0 ) THEN ! WRITE( stdout, 110 ) ecfixed, qcutz, q2sigma ! 110 FORMAT( 5X,'A smooth kinetic-energy cutoff is imposed at ', & & F12.4,' Ry',/5X,'height of the smooth ', & & 'step-function =',F21.4,' Ry',/5X, & & 'width of the smooth step-function =',F21.4,' Ry',/ ) ! END IF #ifdef __ENVIRON IF ( do_environ ) CALL environ_summary() #endif ! ! ... ESM ! IF ( do_comp_esm ) CALL esm_summary() ! IF ( do_comp_mt ) WRITE( stdout, & '(5X, "Assuming isolated system, Martyna-Tuckerman method",/)') IF ( lelfield ) THEN !here information for berry's phase el. fields calculations WRITE(stdout, *) WRITE(stdout, '(" Using Berry phase electric field")') if(.not.l3dstring) then WRITE(stdout, '(" Direction :", i4)') gdir WRITE(stdout, '(" Intensity (Ry a.u.) :", f13.10)') efield WRITE(stdout, '(" Strings composed by:", i5," k-points")') nppstr_3d(gdir) else write(stdout,'(" In a.u.(Ry) cartesian system of reference" )') do i=1,3 write(stdout,'(7x,f13.10)') efield_cart(i) enddo write(stdout,'(" In a.u.(Ry) crystal system of reference" )') do i=1,3 write(stdout,'(7x,f13.10)') efield_cry(i) enddo endif WRITE(stdout, '(" Number of iterative cycles:", i4)') nberrycyc WRITE(stdout, *) ENDIF ! ! ... and here more detailed information. Description of the unit cell ! WRITE( stdout, '(/2(3X,3(2X,"celldm(",I1,")=",F11.6),/))' ) & ( i, celldm(i), i = 1, 6 ) ! WRITE( stdout, '(5X, & & "crystal axes: (cart. coord. in units of alat)",/, & & 3(15x,"a(",i1,") = (",3f11.6," ) ",/ ) )') (apol, & (at (ipol, apol) , ipol = 1, 3) , apol = 1, 3) ! WRITE( stdout, '(5x, & & "reciprocal axes: (cart. coord. in units 2 pi/alat)",/, & & 3(15x,"b(",i1,") = (",3f10.6," ) ",/ ) )') (apol,& & (bg (ipol, apol) , ipol = 1, 3) , apol = 1, 3) ! CALL print_ps_info ( ) ! ! ! ... print the vdw table information if needed CALL print_vdw_info () ! WRITE( stdout, '(/5x, "atomic species valence mass pseudopotential")') xp = 1.d0 DO nt = 1, ntyp WRITE( stdout, '(5x,a6,6x,f10.2,2x,f10.5,5x,5 (a2,"(",f5.2,")"))') & atm(nt), zv(nt), amass(nt), upf(nt)%psd, xp ENDDO IF (calc.EQ.'cd' .OR. calc.EQ.'cm' ) & WRITE( stdout, '(/5x," cell mass =", f10.5, " AMU ")') cmass/amu_ry IF (calc.EQ.'nd' .OR. calc.EQ.'nm' ) & WRITE( stdout, '(/5x," cell mass =", f10.5, " AMU/(a.u.)^2 ")') cmass/amu_ry IF (lsda) THEN WRITE( stdout, '(/5x,"Starting magnetic structure ", & & /5x,"atomic species magnetization")') DO nt = 1, ntyp WRITE( stdout, '(5x,a6,9x,f6.3)') atm(nt), starting_magnetization(nt) ENDDO ENDIF ! ! Some output for LDA+U ! IF ( lda_plus_U ) THEN IF (lda_plus_u_kind == 0) THEN ! WRITE( stdout, '(/,/,5x,"Simplified LDA+U calculation (l_max = ",i1, & &") with parameters (eV):")') Hubbard_lmax WRITE( stdout, '(5x,A)') & &"atomic species L U alpha J0 beta" DO nt = 1, ntyp IF ( Hubbard_U(nt) /= 0.D0 .OR. Hubbard_alpha(nt) /= 0.D0 .OR. & Hubbard_J0(nt) /= 0.D0 .OR. Hubbard_beta(nt) /= 0.D0 ) THEN WRITE( stdout,'(5x,a6,12x,i1,2x,4f9.4)') atm(nt), Hubbard_L(nt), & Hubbard_U(nt)*rytoev, Hubbard_alpha(nt)*rytoev, & Hubbard_J0(nt)*rytoev, Hubbard_beta(nt)*rytoev END IF END DO ! ELSEIF(lda_plus_u_kind == 1) THEN ! WRITE( stdout, '(/,/,5x,"Full LDA+U calculation (l_max = ",i1, & &") with parameters (eV):")') Hubbard_lmax DO nt = 1, ntyp IF (Hubbard_U(nt) /= 0.d0) THEN IF (Hubbard_l(nt) == 0) THEN WRITE (stdout,'(5x,a,i2,a,f12.8)') & 'U(',nt,') =', Hubbard_U(nt) * rytoev ELSEIF (Hubbard_l(nt) == 1) THEN WRITE (stdout,'(5x,2(a,i3,a,f9.4,3x))') & 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev ELSEIF (Hubbard_l(nt) == 2) THEN WRITE (stdout,'(5x,3(a,i3,a,f9.4,3x))') & 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev, & 'B(',nt,') =', Hubbard_J(2,nt)*rytoev ELSEIF (Hubbard_l(nt) == 3) THEN WRITE (stdout,'(5x,4(a,i3,a,f9.4,3x))') & 'U (',nt,') =', Hubbard_U(nt)*rytoev, & 'J (',nt,') =', Hubbard_J(1,nt)*rytoev, & 'E2(',nt,') =', Hubbard_J(2,nt)*rytoev, & 'E3(',nt,') =', Hubbard_J(3,nt)*rytoev END IF END IF ENDDO IF (lspinorb) THEN WRITE(stdout, '(5x,"LDA+U on averaged j=l+1/2,l-1/2 radial WFs")') END IF ! END IF ! WRITE( stdout,'(/)') END IF ! ! description of symmetries ! CALL print_symmetries ( iverbosity, noncolin, domag ) ! ! description of the atoms inside the unit cell ! WRITE( stdout, '(/,3x,"Cartesian axes")') WRITE( stdout, '(/,5x,"site n. atom positions (alat units)")') WRITE( stdout, '(6x,i4,8x,a6," tau(",i4,") = (",3f12.7," )")') & (na, atm(ityp(na)), na, (tau(ipol,na), ipol=1,3), na=1,nat) ! ! output of starting magnetization ! IF (iverbosity > 0) THEN ! ! allocate work space ! ALLOCATE (xau(3,nat)) ! ! Compute the coordinates of each atom in the basis of the ! direct lattice vectors ! DO na = 1, nat DO ipol = 1, 3 xau(ipol,na) = bg(1,ipol)*tau(1,na) + bg(2,ipol)*tau(2,na) + & bg(3,ipol)*tau(3,na) ENDDO ENDDO ! ! description of the atoms inside the unit cell ! (in crystallographic coordinates) ! WRITE( stdout, '(/,3x,"Crystallographic axes")') WRITE( stdout, '(/,5x,"site n. atom ", & & " positions (cryst. coord.)")') WRITE( stdout, '(6x,i4,8x,a6," tau(",i4,") = (",3f11.7," )")') & (na, atm(ityp(na)), na, (xau(ipol,na), ipol=1,3), na=1,nat) ! ! deallocate work space ! DEALLOCATE(xau) ENDIF IF (lgauss) THEN WRITE( stdout, '(/5x,"number of k points=", i6, 2x, & & a," smearing, width (Ry)=",f8.4)') & & nkstot, TRIM(smearing), degauss ELSE IF (ltetra) THEN WRITE( stdout,'(/5x,"number of k points=",i6, & & " (tetrahedron method)")') nkstot ELSE WRITE( stdout, '(/5x,"number of k points=",i6)') nkstot ENDIF IF ( iverbosity > 0 .OR. nkstot < 100 ) THEN WRITE( stdout, '(23x,"cart. coord. in units 2pi/alat")') DO ik = 1, nkstot WRITE( stdout, '(8x,"k(",i5,") = (",3f12.7,"), wk =",f12.7)') ik, & (xk (ipol, ik) , ipol = 1, 3) , wk (ik) ENDDO ELSE WRITE( stdout, '(/5x,a)') & "Number of k-points >= 100: set verbosity='high' to print them." ENDIF IF ( iverbosity > 0 ) THEN WRITE( stdout, '(/23x,"cryst. coord.")') DO ik = 1, nkstot DO ipol = 1, 3 xkg(ipol) = at(1,ipol)*xk(1,ik) + at(2,ipol)*xk(2,ik) + & at(3,ipol)*xk(3,ik) ! xkg are the component in the crystal RL basis ENDDO WRITE( stdout, '(8x,"k(",i5,") = (",3f12.7,"), wk =",f12.7)') & ik, (xkg (ipol) , ipol = 1, 3) , wk (ik) ENDDO ENDIF WRITE( stdout, '(/5x,"Dense grid: ",i8," G-vectors", 5x, & & "FFT dimensions: (",i4,",",i4,",",i4,")")') & & ngm_g, dfftp%nr1, dfftp%nr2, dfftp%nr3 IF (doublegrid) THEN ! ngmtot = ngms CALL mp_sum (ngmtot, intra_bgrp_comm) ! WRITE( stdout, '(/5x,"Smooth grid: ",i8," G-vectors", 5x, & & "FFT dimensions: (",i4,",",i4,",",i4,")")') & & ngmtot, dffts%nr1, dffts%nr2, dffts%nr3 ENDIF ! DCC ! IF (do_coarse .OR. do_mltgrid ) THEN ! WRITE( stdout, '(5x,"G cutoff =",f10.4," (", & ! & i7," G-vectors)"," coarse grid: (",i3, & ! & ",",i3,",",i3,")")') gcutmc, ngmc, mr1, mr2, mr3 ! END IF IF (tfixed_occ) THEN WRITE( stdout, '(/,5X,"Occupations read from input ")' ) IF (nspin==2) THEN WRITE(stdout, '(/,5X," Spin-up")' ) WRITE(stdout, '(/,(5X,8f9.4))') (f_inp(ibnd,1),ibnd=1,nbnd) WRITE(stdout, '(/,5X," Spin-down")' ) WRITE(stdout, '(/,(5X,8f9.4))') (f_inp(ibnd,2),ibnd=1,nbnd) ELSE WRITE(stdout, '(/,(5X,8f9.4))') (f_inp(ibnd,1), ibnd=1,nbnd) END IF END IF ! CALL flush_unit( stdout ) ! RETURN ! END SUBROUTINE summary ! !----------------------------------------------------------------------- SUBROUTINE print_ps_info !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE io_files, ONLY : pseudo_dir, psfile USE ions_base, ONLY : ntyp => nsp USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE funct, ONLY : dft_is_gradient ! INTEGER :: nt, lmax CHARACTER :: ps*35 ! DO nt = 1, ntyp ! IF ( upf(nt)%tpawp ) THEN ! Note: for PAW pseudo also tvanp is .true. ps="Projector augmented-wave" ELSE IF ( upf(nt)%tvanp ) THEN ps='Ultrasoft' ELSE ps='Norm-conserving' END IF ! IF ( upf(nt)%nlcc ) ps = TRIM(ps) // ' + core correction' ! WRITE( stdout, '(/5x,"PseudoPot. #",i2," for ",a2," read from file:", & & /5x,a)') nt, upf(nt)%psd, TRIM(pseudo_dir)//TRIM (psfile(nt)) WRITE( stdout, '(5x,"MD5 check sum: ", a )') upf(nt)%md5_cksum ! WRITE( stdout, '( 5x,"Pseudo is ",a,", Zval =",f5.1)') & TRIM (ps), upf(nt)%zp ! WRITE( stdout, '(5x,A)') TRIM(upf(nt)%generated) ! IF(upf(nt)%tpawp) & WRITE( stdout, '(5x,a,a)') & "Shape of augmentation charge: ", TRIM(upf(nt)%paw%augshape) ! ! info added for 1/r pseudos (AF) IF(upf(nt)%tcoulombp ) & WRITE( stdout, '(5x,a,a)') "1/r Coulomb pseudo" ! WRITE( stdout, '(5x,"Using radial grid of ", i4, " points, ", & &i2," beta functions with: ")') rgrid(nt)%mesh, upf(nt)%nbeta DO ib = 1, upf(nt)%nbeta IF (ib < 10 ) THEN WRITE( stdout, '(15x," l(",i1,") = ",i3)') ib, upf(nt)%lll(ib) ELSE WRITE( stdout, '(14x," l(",i2,") = ",i3)') ib, upf(nt)%lll(ib) ENDIF END DO IF ( upf(nt)%tvanp ) THEN IF (upf(nt)%nqf==0) THEN WRITE( stdout, '(5x,"Q(r) pseudized with 0 coefficients ",/)') ELSE WRITE( stdout, '(5x,"Q(r) pseudized with ", & & i2," coefficients, rinner = ",3f8.3,/ & & 52x,3f8.3,/ 52x,3f8.3)') & & upf(nt)%nqf, (upf(nt)%rinner(i), i=1,upf(nt)%nqlc) END IF ENDIF ENDDO END SUBROUTINE print_ps_info ! !----------------------------------------------------------------------- SUBROUTINE print_vdw_info !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE io_files, ONLY : psfile USE funct, ONLY : get_inlc USE kernel_table, ONLY : vdw_table_name, vdw_kernel_md5_cksum integer :: inlc inlc = get_inlc() if (inlc==1 .or. inlc==2) then WRITE( stdout, '(/5x,"vdW kernel table read from file ",a)')& TRIM (vdw_table_name) WRITE( stdout, '(5x,"MD5 check sum: ", a )') vdw_kernel_md5_cksum endif END SUBROUTINE print_vdw_info ! SUBROUTINE print_symmetries ( iverbosity, noncolin, domag ) !----------------------------------------------------------------------- ! USE kinds, ONLY : dp USE io_global, ONLY : stdout USE symm_base, ONLY : nsym, nsym_ns, nsym_na, invsym, s, sr, & t_rev, ftau, sname USE rap_point_group, ONLY : code_group, nclass, nelem, elem, & which_irr, char_mat, name_rap, name_class, gname, ir_ram USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, & which_irr_so, char_mat_so, name_rap_so, name_class_so, d_spin, & name_class_so1 USE rap_point_group_is, ONLY : nsym_is, sr_is, ftau_is, d_spin_is, & gname_is, sname_is, code_group_is USE cell_base, ONLY : at USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iverbosity LOGICAL, INTENT(IN) :: noncolin, domag ! INTEGER :: nclass_ref ! The number of classes of the point group INTEGER :: isym, ipol REAL (dp) :: ft1, ft2, ft3 ! ! IF (nsym <= 1) THEN WRITE( stdout, '(/5x,"No symmetry found")') ELSE IF (invsym) THEN IF ( nsym_ns > 0 ) THEN WRITE( stdout, '(/5x,i2," Sym. Ops., with inversion, found ", & & "(",i2," have fractional translation)")' ) nsym, nsym_ns ELSE WRITE( stdout, '(/5x,i2," Sym. Ops., with inversion, found")' )& nsym END IF ELSE IF ( nsym_ns > 0 ) THEN WRITE( stdout, '(/5x,i2," Sym. Ops. (no inversion) found ",& & "(",i2," have fractional translation)")' ) nsym, nsym_ns ELSE WRITE( stdout,'(/5x,i2," Sym. Ops. (no inversion) found")' ) nsym END IF ENDIF ENDIF IF ( nsym_na > 0 ) THEN WRITE( stdout, '(10x,"(note: ",i2," additional sym.ops. were found ", & & "but ignored",/,10x," their fractional translations ",& & "are incommensurate with FFT grid)",/)') nsym_na ELSE WRITE( stdout, '(/)' ) END IF IF ( iverbosity > 0 ) THEN WRITE( stdout, '(36x,"s",24x,"frac. trans.")') nsym_is=0 DO isym = 1, nsym WRITE( stdout, '(/6x,"isym = ",i2,5x,a45/)') isym, sname(isym) IF (noncolin) THEN IF (domag) THEN WRITE(stdout,*) 'Time Reversal ', t_rev(isym) IF (t_rev(isym)==0) THEN nsym_is=nsym_is+1 sr_is(:,:,nsym_is) = sr(:,:,isym) CALL find_u(sr_is(1,1,nsym_is), d_spin_is(1,1,nsym_is)) ftau_is(:,nsym_is)=ftau(:,isym) sname_is(nsym_is)=sname(isym) ENDIF ELSE CALL find_u(sr(1,1,isym),d_spin(1,1,isym)) END IF END IF IF ( ftau(1,isym).NE.0 .OR. ftau(2,isym).NE.0 .OR. & ftau(3,isym).NE.0) THEN ft1 = at(1,1)*ftau(1,isym)/dfftp%nr1 + at(1,2)*ftau(2,isym)/dfftp%nr2 + & at(1,3)*ftau(3,isym)/dfftp%nr3 ft2 = at(2,1)*ftau(1,isym)/dfftp%nr1 + at(2,2)*ftau(2,isym)/dfftp%nr2 + & at(2,3)*ftau(3,isym)/dfftp%nr3 ft3 = at(3,1)*ftau(1,isym)/dfftp%nr1 + at(3,2)*ftau(2,isym)/dfftp%nr2 + & at(3,3)*ftau(3,isym)/dfftp%nr3 WRITE( stdout, '(1x,"cryst.",3x,"s(",i2,") = (",3(i6,5x), & & " ) f =( ",f10.7," )")') & isym, (s(1,ipol,isym),ipol=1,3), DBLE(ftau(1,isym))/DBLE(dfftp%nr1) WRITE( stdout, '(17x," (",3(i6,5x), " ) ( ",f10.7," )")') & (s(2,ipol,isym),ipol=1,3), DBLE(ftau(2,isym))/DBLE(dfftp%nr2) WRITE( stdout, '(17x," (",3(i6,5x), " ) ( ",f10.7," )"/)') & (s(3,ipol,isym),ipol=1,3), DBLE(ftau(3,isym))/DBLE(dfftp%nr3) WRITE( stdout, '(1x,"cart. ",3x,"s(",i2,") = (",3f11.7, & & " ) f =( ",f10.7," )")') & isym, (sr(1,ipol,isym),ipol=1,3), ft1 WRITE( stdout, '(17x," (",3f11.7, " ) ( ",f10.7," )")') & (sr(2,ipol,isym),ipol=1,3), ft2 WRITE( stdout, '(17x," (",3f11.7, " ) ( ",f10.7," )"/)') & (sr(3,ipol,isym),ipol=1,3), ft3 ELSE WRITE( stdout, '(1x,"cryst.",3x,"s(",i2,") = (",3(i6,5x), " )")') & isym, (s (1, ipol, isym) , ipol = 1,3) WRITE( stdout, '(17x," (",3(i6,5x)," )")') (s(2,ipol,isym), ipol=1,3) WRITE( stdout, '(17x," (",3(i6,5x)," )"/)') (s(3,ipol,isym), ipol=1,3) WRITE( stdout, '(1x,"cart. ",3x,"s(",i2,") = (",3f11.7," )")') & isym, (sr (1, ipol,isym) , ipol = 1, 3) WRITE( stdout, '(17x," (",3f11.7," )")') (sr (2, ipol,isym) , ipol = 1, 3) WRITE( stdout, '(17x," (",3f11.7," )"/)') (sr (3, ipol,isym) , ipol = 1, 3) END IF END DO CALL find_group(nsym,sr,gname,code_group) IF (noncolin.AND.domag) THEN CALL find_group(nsym_is,sr_is,gname_is,code_group_is) CALL set_irr_rap_so(code_group_is,nclass_ref,nrap,char_mat_so, & name_rap_so,name_class_so,name_class_so1) CALL divide_class_so(code_group_is,nsym_is,sr_is,d_spin_is, & has_e,nclass,nelem_so,elem_so,which_irr_so) IF (nclass.ne.nclass_ref) CALL errore('summary', & 'point double group ?',1) ELSE IF (noncolin) THEN CALL set_irr_rap_so(code_group,nclass_ref,nrap,char_mat_so, & name_rap_so,name_class_so,name_class_so1) CALL divide_class_so(code_group,nsym,sr,d_spin,has_e,nclass, & nelem_so, elem_so,which_irr_so) IF (nclass.ne.nclass_ref) CALL errore('summary', & 'point double group ?',1) ELSE CALL set_irr_rap(code_group,nclass_ref,char_mat,name_rap, & name_class,ir_ram) CALL divide_class(code_group,nsym,sr,nclass,nelem,elem,which_irr) IF (nclass.ne.nclass_ref) CALL errore('summary','point group ?',1) ENDIF ENDIF CALL write_group_info(.true.) END IF ! END SUBROUTINE print_symmetries espresso-5.0.2/PW/src/init_ns.f900000644000700200004540000001141312053145630015457 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine init_ns !----------------------------------------------------------------------- ! ! This routine computes the starting ns (for lda+U calculation) filling ! up the d states (the only interested by the on-site potential for the ! moment) according to the Hund's rule (valid for the isolated atoms on ! which starting potential is built), and to the starting_magnetization: ! majority spin levels are populated first, then the remaining electrons ! are equally distributed among the minority spin states ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, starting_magnetization USE ldaU, ONLY : hubbard_u, hubbard_alpha, hubbard_l USE scf, ONLY : rho USE uspp_param,ONLY : upf ! implicit none real(DP) :: totoc real(DP), external :: hubbard_occ integer :: ldim, na, nt, is, m1, majs, mins logical :: nm ! true if the atom is non magnetic rho%ns(:,:,:,:) = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0 .or. Hubbard_alpha(nt).ne.0.d0) then ldim = 2*Hubbard_l(nt)+1 totoc = hubbard_occ ( upf(nt)%psd ) nm=.true. if (nspin.eq.2) then if (starting_magnetization (nt) .gt.0.d0) then nm=.false. majs = 1 mins = 2 elseif (starting_magnetization (nt) .lt.0.d0) then nm=.false. majs = 2 mins = 1 endif endif if (.not.nm) then if (totoc.gt.ldim) then do m1 = 1, ldim rho%ns (m1, m1, majs, na) = 1.d0 rho%ns (m1, m1, mins, na) = (totoc - ldim) / ldim enddo else do m1 = 1, ldim rho%ns (m1, m1, majs, na) = totoc / ldim enddo endif else do is = 1,nspin do m1 = 1, ldim rho%ns (m1, m1, is, na) = totoc / 2.d0 / ldim enddo enddo endif endif enddo return end subroutine init_ns !----------------------------------------------------------------------- subroutine init_ns_nc ! ! Noncollinear version (A. Smogunov). ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, starting_magnetization USE ldaU, ONLY : hubbard_u, hubbard_l USE noncollin_module, ONLY : angle1, angle2 USE scf, ONLY : rho USE uspp_param, ONLY : upf ! implicit none real(DP) :: totoc, cosin real(DP), external :: hubbard_occ complex(DP) :: esin, n, m, ns(4) integer :: ldim, na, nt, is, m1, m2, majs, isym, mins logical :: nm ! true if the atom is non magnetic rho%ns_nc(:,:,:,:) = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0) then ldim = 2*Hubbard_l(nt)+1 totoc = hubbard_occ ( upf(nt)%psd ) nm=.true. if (starting_magnetization (nt) .gt.0.d0) then nm=.false. majs = 1 mins = 2 elseif (starting_magnetization (nt) .lt.0.d0) then nm=.false. majs = 2 mins = 1 endif if (.not.nm) then !-- parameters for rotating occ. matrix cosin = COS(angle1(nt)) esin = ( COS(angle2(nt)) + (0.d0,1.d0)*SIN(angle2(nt)) ) * SIN(angle1(nt)) !-- !-- occ. matrix in quantiz. axis if (totoc.gt.ldim) then ns(majs) = 1.d0 ns(mins) = (totoc -ldim ) / ldim else ns(majs) = totoc / ldim ns(mins) = 0.d0 endif !-- !-- charge and moment n = ns(1) + ns(2) m = ns(1) - ns(2) !-- !-- rotating occ. matrix ns(1) = ( n + m*cosin ) / 2.d0 ns(2) = m * esin / 2.d0 ns(3) = m * CONJG( esin ) / 2.d0 ns(4) = ( n - m*cosin ) / 2.d0 do m1 = 1, ldim rho%ns_nc (m1, m1, :, na) = ns(:) enddo !-- else do m1 = 1, ldim rho%ns_nc (m1, m1, 1, na) = totoc / 2.d0 / ldim rho%ns_nc (m1, m1, 4, na) = totoc / 2.d0 / ldim enddo endif endif enddo return end subroutine init_ns_nc espresso-5.0.2/PW/src/g_psi.f900000644000700200004540000000366512053145627015135 0ustar marsamoscm! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define TEST_NEW_PRECONDITIONING ! !----------------------------------------------------------------------- subroutine g_psi (lda, n, m, npol, psi, e) !----------------------------------------------------------------------- ! ! This routine computes an estimate of the inverse Hamiltonian ! and applies it to m wavefunctions ! USE kinds USE g_psi_mod implicit none integer :: lda, n, m, npol, ipol ! input: the leading dimension of psi ! input: the real dimension of psi ! input: the number of bands ! input: the number of coordinates of psi ! local variable: counter of coordinates of psi real(DP) :: e (m) ! input: the eigenvectors complex(DP) :: psi (lda, npol, m) ! inp/out: the psi vector ! ! Local variables ! real(DP), parameter :: eps = 1.0d-4 ! a small number real(DP) :: x, scala, denm integer :: k, i ! counter on psi functions ! counter on G vectors ! call start_clock ('g_psi') ! #ifdef TEST_NEW_PRECONDITIONING scala = 1.d0 do ipol=1,npol do k = 1, m do i = 1, n x = (h_diag(i,ipol) - e(k)*s_diag(i,ipol))*scala denm = 0.5_dp*(1.d0+x+sqrt(1.d0+(x-1)*(x-1.d0)))/scala psi (i, ipol, k) = psi (i, ipol, k) / denm enddo enddo enddo #else do ipol=1,npol do k = 1, m do i = 1, n denm = h_diag (i,ipol) - e (k) * s_diag (i,ipol) ! ! denm = g2+v(g=0) - e(k) ! if (abs (denm) < eps) denm = sign (eps, denm) ! ! denm = sign( max( abs(denm),eps ), denm ) ! psi (i, ipol, k) = psi (i, ipol, k) / denm enddo enddo enddo #endif call stop_clock ('g_psi') return end subroutine g_psi espresso-5.0.2/PW/src/stres_nonloc_dft.f900000644000700200004540000000251712053145627017374 0ustar marsamoscm! ! Copyright (C) 2010- Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- subroutine stres_nonloc_dft( rho, rho_core, nspin, sigma_nonloc_dft ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP use funct, ONLY : gcxc, gcx_spin, gcc_spin, gcc_spin_more, & dft_is_gradient, get_igcc, get_inlc USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE vdW_DF, ONLY : stress_vdW_DF, print_sigma ! IMPLICIT NONE ! real(DP), intent(in) :: rho (dfftp%nnr, nspin), rho_core (dfftp%nnr) real(DP), intent(inout) :: sigma_nonloc_dft (3, 3) integer ::nspin, inlc integer :: l, m sigma_nonloc_dft(:,:) = 0.d0 inlc = get_inlc() if (inlc==1 .or. inlc==2) then if (nspin>1) call errore('stres_vdW_DF', & 'vdW+DF non implemented in spin polarized calculations',1) CALL stress_vdW_DF(rho, rho_core, sigma_nonloc_dft) end if return end subroutine stres_nonloc_dft espresso-5.0.2/PW/src/set_kplusq.f900000644000700200004540000000404612053145630016212 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine set_kplusq (xk, wk, xq, nks, npk) !----------------------------------------------------------------------- ! This routine sets the k and k+q points (with zero weight) used in ! the preparatory run for a linear response calculation. ! ! on input: xk and wk contain k-points and corresponding weights ! ! on output: the number of points is doubled and xk and wk in the ! odd positions are the original ones; those in the ! even positions are the corresponding k+q values. ! the gamma point is treated in a special way. No change is done ! to the k-points ! USE kinds, only : DP implicit none ! ! First the dummy variables ! integer :: npk, nks ! input-output: maximum allowed number of k ! input-output: starting and ending number of real(DP) :: xk (3, npk), wk (npk), eps, xq (3) ! input-output: coordinates of k points ! input-output: weights of k points ! the smallest xq ! input: coordinates of a q-point ! ! And then the local variables ! logical :: lgamma ! true if xq is the gamma point integer :: ik, j ! counter on k ! counter ! eps = 1.d-12 ! ! shift the k points in the odd positions and fill the even ones with k+ ! lgamma = abs (xq (1) ) .lt.eps.and.abs (xq (2) ) .lt.eps.and.abs ( & xq (3) ) .lt.eps if (.not.lgamma) then if (2 * nks.gt.npk) call errore ('set_kplusq', 'too many k points', & & nks) do ik = nks, 1, - 1 do j = 1, 3 xk (j, 2 * ik - 1) = xk (j, ik) xk (j, 2 * ik) = xk (j, ik) + xq (j) enddo wk (2 * ik - 1) = wk (ik) wk (2 * ik) = 0.d0 enddo nks = 2 * nks endif return end subroutine set_kplusq espresso-5.0.2/PW/src/rdiagh.f900000755000700200004540000000762612053145627015276 0ustar marsamoscm! ! Copyright (C) 2001-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rdiagh( n, h, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates all the eigenvalues and eigenvectors of a real ! ... simmetric matrix H . On output, the matrix is unchanged ! USE kinds, ONLY : DP USE mp_global, ONLY : nbgrp, nproc_bgrp, me_bgrp, & root_bgrp, intra_bgrp_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! ! ... on INPUT ! INTEGER :: n, ldh ! dimension of the matrix to be diagonalized ! leading dimension of h, as declared in the calling pgm unit REAL(DP) :: h(ldh,n) ! matrix to be diagonalized ! ! ... on OUTPUT ! REAL(DP) :: e(n) ! eigenvalues REAL(DP) :: v(ldh,n) ! eigenvectors (column-wise) ! ! CALL start_clock( 'diagh' ) ! #if defined (__ESSL) CALL rdiagh_aix() #else CALL rdiagh_lapack() #endif ! CALL stop_clock( 'diagh' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! #if defined (__ESSL) ! !----------------------------------------------------------------------- SUBROUTINE rdiagh_aix() !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! ... local variables (ESSL version) ! INTEGER :: naux, i, j, ij COMPLEX(DP), ALLOCATABLE :: hp(:), aux(:) ! ! naux = 4 * n ! ALLOCATE( hp( n * (n + 1) / 2 ) ) ALLOCATE( aux( naux ) ) ! ! ... copy to upper triangular packed matrix ! ij = 0 DO j = 1, n DO i = 1, j ij = ij + 1 hp(ij) = h(i,j) END DO END DO ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! CALL DSPEV( 21, hp, e, v, ldh, n, aux, naux ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! DEALLOCATE( aux ) DEALLOCATE( hp ) ! RETURN ! END SUBROUTINE rdiagh_aix ! #else ! !----------------------------------------------------------------------- SUBROUTINE rdiagh_lapack( ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! ... local variables (LAPACK version) ! INTEGER :: lwork, nb, info INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" REAL (KIND=DP), ALLOCATABLE :: work(:) ! ! ! ... check for the block size ! nb = ILAENV( 1, 'DSYTRD', 'U', n, - 1, - 1, - 1 ) ! IF ( nb < 1 .OR. nb >= n ) THEN ! lwork = 3*n ! ELSE ! lwork = ( nb + 2 ) * n ! END IF ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... allocate workspace ! v = h ! ALLOCATE( work( lwork ) ) ! CALL DSYEV( 'V', 'U', n, v, ldh, e, work, lwork, info ) ! CALL errore( 'rdiagh', 'diagonalization (DSYEV) failed', ABS( info ) ) ! ! ... deallocate workspace ! DEALLOCATE( work ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! RETURN ! END SUBROUTINE rdiagh_lapack ! #endif ! END SUBROUTINE rdiagh espresso-5.0.2/PW/src/c_phase_field.f900000644000700200004540000005341712053145627016601 0ustar marsamoscm! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! this routine is used to calculate the electronic polarization ! when a finite electric field, described through the modern ! theory of the polarization, is applied. ! It is very similar to the routine c_phase in bp_c_phase ! however the numbering of the k-points in the strings is different !======================================================================! SUBROUTINE c_phase_field(el_pola,ion_pola, fact_pola, pdir) !----------------------------------------------------------------------! ! Geometric phase calculation along a strip of nppstr_3d(pdir) k-points ! averaged over a 2D grid of nkort k-points ortogonal to nppstr_3d(pdir) ! --- Make use of the module with common information --- USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY : at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi, tpi USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, g, gcutm, ngm_g USE uspp, ONLY : nkb, vkb, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm USE lsda_mod, ONLY : nspin USE klist, ONLY : nelec, degauss, nks, xk, wk USE wvfct, ONLY : npwx, npw, nbnd, ecutwfc USE noncollin_module, ONLY : noncolin, npol USE wavefunctions_module, ONLY : evc USE bp, ONLY : nppstr_3d, mapgm_global, nx_el USE fixed_occ USE gvect, ONLY : ig_l2g USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm USE becmod, ONLY : calbec ! --- Avoid implicit definitions --- IMPLICIT NONE REAL(kind=DP), INTENT(out) :: el_pola!in output electronic polarization REAL(kind=DP), INTENT(out) :: ion_pola!in output ionic polarization REAL(kind=DP), INTENT(out) :: fact_pola!in outout the prefactor of the polarization INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated ! --- Internal definitions --- INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: info INTEGER :: is INTEGER :: istring INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: jv INTEGER :: kort INTEGER :: kpar INTEGER :: kpoint INTEGER :: kstart INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER , ALLOCATABLE :: mod_elec(:) INTEGER , ALLOCATABLE :: ln(:,:,:) INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: nkort INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 INTEGER :: nstring INTEGER :: nt INTEGER :: nspinnc REAL(dp) :: dk(3) REAL(dp) :: dkmod REAL(dp) :: el_loc REAL(dp) :: eps REAL(dp) :: fac REAL(dp) :: g2kin_bp(npwx) REAL(dp) :: gpar(3) REAL(dp) :: gtr(3) REAL(dp) :: gvec REAL(dp), ALLOCATABLE :: loc_k(:) REAL(dp), ALLOCATABLE :: pdl_elec(:) REAL(dp), ALLOCATABLE :: phik(:) REAL(dp) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(dp) :: weight REAL(dp) :: pola, pola_ion REAL(dp), ALLOCATABLE :: wstring(:) REAL(dp) :: ylm_dk(lmaxq*lmaxq) REAL(dp) :: zeta_mod COMPLEX(dp), ALLOCATABLE :: aux(:) COMPLEX(dp), ALLOCATABLE :: aux0(:) ! For noncollinear calculations COMPLEX(dp), ALLOCATABLE :: aux_2(:) COMPLEX(dp), ALLOCATABLE :: aux0_2(:) COMPLEX(dp) :: becp0(nkb,nbnd) COMPLEX(dp) :: becp_bp(nkb,nbnd) COMPLEX(dp) , ALLOCATABLE :: cphik(:) COMPLEX(dp) :: det COMPLEX(dp) :: mat(nbnd,nbnd) COMPLEX(dp) :: pref COMPLEX(dp) :: q_dk(nhm,nhm,ntyp) COMPLEX(dp) :: struc(nat) COMPLEX(dp) :: zdotc COMPLEX(dp) :: zeta COMPLEX(dp), ALLOCATABLE :: psi(:,:) COMPLEX(dp), ALLOCATABLE :: psi1(:,:) COMPLEX(dp) :: zeta_loc LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for occupied/empty states INTEGER, ALLOCATABLE :: map_g(:) REAL(dp) :: dkfact COMPLEX(dp) :: zeta_tot LOGICAL :: l_para! if true new parallel treatment COMPLEX(kind=DP) :: sca COMPLEX(kind=DP), ALLOCATABLE :: aux_g(:) COMPLEX(kind=DP), ALLOCATABLE :: aux_g_2(:) ! noncollinear case ! ------------------------------------------------------------------------- ! ! INITIALIZATIONS ! ------------------------------------------------------------------------- ! ALLOCATE (psi1(npol*npwx,nbnd)) ALLOCATE (psi(npol*npwx,nbnd)) ALLOCATE (aux(ngm)) ALLOCATE (aux0(ngm)) nspinnc=nspin IF (noncolin) THEN nspinnc=1 ALLOCATE (aux_2(ngm)) ALLOCATE (aux0_2(ngm)) END IF ALLOCATE (map_g(npwx)) ALLOCATE (l_cal(nbnd)) if(pdir==3) then l_para=.false. else l_para=.true. endif pola=0.d0 !set to 0 electronic polarization zeta_tot=(1.d0,0.d0) ! --- Check that we are working with an insulator with no empty bands --- IF ( degauss > 0.0_dp ) CALL errore('c_phase_field', & 'Polarization only for insulators and no empty bands',1) ! --- Define a small number --- eps=1.0E-6_dp ! --- Recalculate FFT correspondence (see ggen.f90) --- ALLOCATE (ln (-dfftp%nr1:dfftp%nr1, -dfftp%nr2:dfftp%nr2, -dfftp%nr3:dfftp%nr3) ) DO ng=1,ngm mk1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) mk2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) mk3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(mk1,mk2,mk3) = ng END DO if (okvan) then ! --- Initialize arrays --- jkb_bp=0 DO nt=1,ntyp DO na=1,nat IF (ityp(na).eq.nt) THEN DO i=1, nh(nt) jkb_bp=jkb_bp+1 nkbtona(jkb_bp) = na nkbtonh(jkb_bp) = i END DO END IF END DO END DO endif ! --- Get the number of strings --- nstring=nks/nppstr_3d(pdir) nkort=nstring/(nspinnc) ! Include noncollinear case ! --- Allocate memory for arrays --- ALLOCATE(phik(nstring)) ALLOCATE(loc_k(nstring)) ALLOCATE(cphik(nstring)) ALLOCATE(wstring(nstring)) ALLOCATE(pdl_elec(nstring)) ALLOCATE(mod_elec(nstring)) ! ------------------------------------------------------------------------- ! ! electronic polarization: set values for k-points strings ! ! ------------------------------------------------------------------------- ! ! --- Find vector along strings --- if(nppstr_3d(pdir) .ne. 1) then gpar(1)=(xk(1,nx_el(nppstr_3d(pdir),pdir))-xk(1,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(2)=(xk(2,nx_el(nppstr_3d(pdir),pdir))-xk(2,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(3)=(xk(3,nx_el(nppstr_3d(pdir),pdir))-xk(3,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gvec=dsqrt(gpar(1)**2+gpar(2)**2+gpar(3)**2)*tpiba else gpar(1)=0.d0 gpar(2)=0.d0 gpar(3)=0.d0 gpar(pdir)=1.d0/at(pdir,pdir)! gvec=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! --- Find vector between consecutive points in strings --- if(nppstr_3d(pdir).ne.1) then ! orthorhombic cell dk(1)=xk(1,nx_el(2,pdir))-xk(1,nx_el(1,pdir)) dk(2)=xk(2,nx_el(2,pdir))-xk(2,nx_el(1,pdir)) dk(3)=xk(3,nx_el(2,pdir))-xk(3,nx_el(1,pdir)) dkmod=SQRT(dk(1)**2+dk(2)**2+dk(3)**2)*tpiba else ! Gamma point case, only cubic cell for now dk(1)=0.d0 dk(2)=0.d0 dk(3)=0.d0 dk(pdir)=1.d0/at(pdir,pdir) dkmod=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: weight strings ! ! ------------------------------------------------------------------------- ! ! --- Calculate string weights, normalizing to 1 (no spin) or 1+1 (spin) --- DO is=1,nspinnc ! Include noncollinear case weight=0.0_dp DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wk(nppstr_3d(pdir)*istring) weight=weight+wstring(istring) END DO DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wstring(istring)/weight END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: structure factor ! ! ------------------------------------------------------------------------- ! ! --- Calculate structure factor e^{-i dk*R} --- DO na=1,nat fac=(dk(1)*tau(1,na)+dk(2)*tau(2,na)+dk(3)*tau(3,na))*tpi struc(na)=CMPLX(cos(fac),-sin(fac),kind=DP) END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: form factor ! ! ------------------------------------------------------------------------- ! if(okvan) then ! --- Calculate Bessel transform of Q_ij(|r|) at dk [Q_ij^L(|r|)] --- CALL calc_btq(dkmod,qrad_dk,0) ! --- Calculate the q-space real spherical harmonics at dk [Y_LM] --- dkmod = dk(1)**2+dk(2)**2+dk(3)**2 CALL ylmr2(lmaxq*lmaxq, 1, dk, dkmod, ylm_dk) ! --- Form factor: 4 pi sum_LM c_ij^LM Y_LM(Omega) Q_ij^L(|r|) --- q_dk=(0.d0,0.d0) DO np =1, ntyp if( upf(np)%tvanp ) then DO iv = 1, nh(np) DO jv = iv, nh(np) call qvan3(iv,jv,np,pref,ylm_dk,qrad_dk) q_dk(iv,jv,np) = omega*pref q_dk(jv,iv,np) = omega*pref ENDDO ENDDO endif ENDDO endif ! ------------------------------------------------------------------------- ! ! electronic polarization: strings phases ! ! ------------------------------------------------------------------------- ! el_loc=0.d0 kpoint=0 zeta=(1.d0,0.d0) ! --- Start loop over spin --- DO is=1,nspinnc ! Include noncollinear case ! l_cal(n) = .true./.false. if n-th state is occupied/empty DO nb = 1, nbnd IF ( nspin == 2 .AND. tfixed_occ) THEN l_cal(nb) = ( f_inp(nb,is) /= 0.0_dp ) ELSE l_cal(nb) = ( nb <= NINT ( nelec/2.0_dp ) ) ENDIF END DO ! --- Start loop over orthogonal k-points --- DO kort=1,nkort zeta_loc=(1.d0,0.d0) ! --- Index for this string --- istring=kort+(is-1)*nkort ! --- Initialize expectation value of the phase operator --- zeta_mod = 1.d0 ! --- Start loop over parallel k-points --- DO kpar = 1,nppstr_3d(pdir)+1 ! --- Set index of k-point --- kpoint = kpoint + 1 ! --- Calculate dot products between wavefunctions and betas --- IF (kpar /= 1 ) THEN ! --- Dot wavefunctions and betas for PREVIOUS k-point --- CALL gk_sort(xk(1,nx_el(kpoint-1,pdir)),ngm,g,ecutwfc/tpiba2, & npw0,igk0,g2kin_bp) CALL get_buffer (psi,nwordwfc,iunwfc,nx_el(kpoint-1,pdir)) if (okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(kpoint-1,pdir)),vkb) CALL calbec( npw0, vkb, psi, becp0) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- IF (kpar /= (nppstr_3d(pdir)+1)) THEN CALL gk_sort(xk(1,nx_el(kpoint,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kpoint,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kpoint,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) endif ELSE kstart = kpoint-(nppstr_3d(pdir)+1)+1 CALL gk_sort(xk(1,nx_el(kstart,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kstart,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kstart,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) endif ENDIF ! --- Matrix elements calculation --- IF (kpar == (nppstr_3d(pdir)+1) .and. .not.l_para) THEN map_g(:) = 0 do ig=1,npw1 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk1(ig)) - gpar(1) gtr(2)=g(2,igk1(ig)) - gpar(2) gtr(3)=g(3,igk1(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ( (ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps) ) THEN WRITE(6,*) ' error: translated G=', & gtr(1),gtr(2),gtr(3), & & ' with crystal coordinates',n1,n2,n3, & & ' corresponds to ng=',ng,' but G(ng)=', & & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng enddo ENDIF mat=(0.d0,0.d0) DO mb=1,nbnd IF ( .NOT. l_cal(mb) ) THEN mat(mb,mb)=(1.d0, 0.d0) ELSE aux=(0.d0,0.d0) IF (noncolin) aux_2=(0.d0,0.d0) IF (kpar /= (nppstr_3d(pdir)+1)) THEN DO ig=1,npw1 aux(igk1(ig))=psi1(ig,mb) IF (noncolin) aux_2(igk1(ig))=psi1(ig+npwx,mb) ENDDO ELSE IF( .not. l_para) THEN DO ig=1,npw1 aux(map_g(ig))=psi1(ig,mb) IF (noncolin) aux_2(map_g(ig))=psi1(ig+npwx,mb) ENDDO ELSE ! allocate global array ALLOCATE (aux_g(ngm_g)) IF(noncolin) ALLOCATE (aux_g_2(ngm_g)) aux_g=(0.d0,0.d0) IF(noncolin) aux_g_2=(0.d0,0.d0) ! put psi1 on global array DO ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),pdir))=psi1(ig,mb) IF(noncolin) aux_g_2(mapgm_global(ig_l2g(igk1(ig)),pdir))=psi1(ig+npwx,mb) ENDDO CALL mp_sum(aux_g(:)) IF (noncolin) CALL mp_sum(aux_g_2(:)) !non-collinear DO ig=1,ngm aux(ig) = aux_g(ig_l2g(ig)) IF (noncolin) aux_2(ig) = aux_g_2(ig_l2g(ig)) ENDDO DEALLOCATE (aux_g) IF(noncolin) DEALLOCATE (aux_g_2) END IF DO nb=1,nbnd IF ( l_cal(nb) ) THEN aux0=(0.d0,0.d0) IF(noncolin) aux0_2=(0.d0,0.d0) DO ig=1,npw0 aux0(igk0(ig))=psi(ig,nb) IF(noncolin) aux0_2(igk0(ig))=psi(ig+npwx,nb) END DO ! do scalar product mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) IF (noncolin) mat(nb,mb) = mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) END IF ENDDO END IF ENDDO ! CALL mp_sum( mat, intra_bgrp_comm ) ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- IF (okvan) THEN DO mb=1,nbnd DO nb=1,nbnd IF ( l_cal(mb) .AND. l_cal(nb) ) THEN pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm pref = pref+CONJG(becp0(jkb,nb))*becp_bp(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref ENDIF ENDDO ENDDO ENDIF ! --- Calculate matrix determinant --- call ZGETRF(nbnd,nbnd,mat,nbnd,ivpt,info) CALL errore('c_phase_field','error in zgetrf',abs(info)) det=(1.d0,0.d0) do nb=1,nbnd if(nb.ne.ivpt(nb)) det=-det det = det*mat(nb,nb) enddo ! --- Multiply by the already calculated determinants --- zeta=zeta*det zeta_loc=zeta_loc*det ! --- End of dot products between wavefunctions and betas --- ENDIF ! --- End loop over parallel k-points --- END DO zeta_tot=zeta_tot*(zeta_loc**wstring(istring)) pola=pola+wstring(istring)*aimag(log(zeta_loc)) kpoint=kpoint-1 ! --- Calculate the phase for this string --- phik(istring)=AIMAG(LOG(zeta)) cphik(istring)=COS(phik(istring))*(1.0_dp,0.0_dp) & +SIN(phik(istring))*(0.0_dp,1.0_dp) ! --- Calculate the localization for current kort --- zeta_mod= DBLE(CONJG(zeta)*zeta) loc_k(istring)= - (nppstr_3d(pdir)-1) / gvec**2 / nbnd *log(zeta_mod) ! --- End loop over orthogonal k-points --- END DO ! --- End loop over spin --- END DO !-----calculate polarization !-----the factor 2. is because of spin !new system for avoiding phases problem pola=aimag(log(zeta_tot)) if(nspin==1) pola=pola*2.d0 !pola=pola/(gpar(pdir)*tpiba) call factor_a(pdir,at,dkfact) !factor sqrt(2) is the electronic charge in Rydberg units pola=pola*dsqrt(2.d0)/tpiba*dkfact !write output write(stdout,*) write(stdout,*) " Expectation value of exp(iGx):",zeta_tot,dkfact write(stdout,*) " Electronic Dipole per cell (Ry a.u.)",pola ! ------------------------------------------------------------------------- ! ! ionic polarization ! ! ------------------------------------------------------------------------- ! !factor sqrt(2) is the electronic charge in Rydberg units pola_ion=0.d0 DO na=1,nat pola_ion=pola_ion+zv(ityp(na))*tau(pdir,na)*alat*dsqrt(2.d0) END DO write(stdout,*) " Ionic Dipole per cell (Ry a.u.)",pola_ion el_pola=pola ion_pola=pola_ion fact_pola=dsqrt(2.d0)/tpiba*dkfact ! ------------------------------------------------------------------------- ! ! --- Free memory --- DEALLOCATE(l_cal) DEALLOCATE(pdl_elec) DEALLOCATE(mod_elec) DEALLOCATE(wstring) DEALLOCATE(loc_k) DEALLOCATE(phik) DEALLOCATE(cphik) DEALLOCATE(ln) DEALLOCATE(map_g) DEALLOCATE(aux) DEALLOCATE(aux0) DEALLOCATE(psi) DEALLOCATE(psi1) IF (ALLOCATED(aux_2)) DEALLOCATE(aux_2) IF (ALLOCATED(aux0_2)) DEALLOCATE(aux0_2) !------------------------------------------------------------------------------! END SUBROUTINE c_phase_field !==============================================================================! espresso-5.0.2/PW/src/gen_us_dj.f900000644000700200004540000001075112053145630015755 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_us_dj (ik, dvkb) !---------------------------------------------------------------------- ! ! Calculates the beta function pseudopotentials with ! the derivative of the Bessel functions ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE uspp, ONLY : nkb, indv, nhtol, nhtolm USE us, ONLY : nqx, tab, tab_d2y, dq, spline_ps USE splinelib USE uspp_param, ONLY : upf, lmaxkb, nbetam, nh ! implicit none ! integer :: ik complex(DP) :: dvkb (npwx, nkb) ! ! local variables ! integer :: ikb, nb, ih, ig, i0, i1, i2, i3 , nt ! counter on beta functions ! counter on beta functions ! counter on beta functions ! counter on G vectors ! index of the first nonzero point in the r ! counter on atomic type real(DP) :: arg, px, ux, vx, wx ! argument of the atomic phase factor complex(DP) :: phase, pref ! atomic phase factor ! prefactor integer :: na, l, iig, lm real(DP), allocatable :: djl (:,:,:), ylm (:,:), q (:), gk (:,:) real(DP) :: qt, eps parameter (eps = 1.0d-8) complex(DP), allocatable :: sk (:) integer :: iq real(DP), allocatable :: xdata(:) if (nkb.eq.0) return call start_clock('stres_us31') allocate (djl( npw , nbetam , ntyp)) allocate (ylm( npw ,(lmaxkb + 1) **2)) allocate (gk( 3, npw)) allocate (q( npw)) do ig = 1, npw gk (1,ig) = xk (1, ik) + g(1, igk(ig) ) gk (2,ig) = xk (2, ik) + g(2, igk(ig) ) gk (3,ig) = xk (3, ik) + g(3, igk(ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo call stop_clock('stres_us31') call start_clock('stres_us32') call ylmr2 ((lmaxkb+1)**2, npw, gk, q, ylm) call stop_clock('stres_us32') call start_clock('stres_us33') if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif do nt = 1, ntyp do nb = 1, upf(nt)%nbeta do ig = 1, npw qt = sqrt(q (ig)) * tpiba if (spline_ps) then djl(ig,nb,nt) = splint_deriv(xdata, tab(:,nb,nt), & tab_d2y(:,nb,nt), qt) else px = qt / dq - int (qt / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qt / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 djl(ig,nb,nt) = ( tab (i0, nb, nt) * (-vx*wx-ux*wx-ux*vx)/6.d0 + & tab (i1, nb, nt) * (+vx*wx-px*wx-px*vx)/2.d0 - & tab (i2, nb, nt) * (+ux*wx-px*wx-px*ux)/2.d0 + & tab (i3, nb, nt) * (+ux*vx-px*vx-px*ux)/6.d0 )/dq endif enddo enddo enddo call stop_clock('stres_us33') call start_clock('stres_us34') deallocate (q) deallocate (gk) allocate (sk( npw)) ikb = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then arg = (xk (1, ik) * tau(1,na) + & xk (2, ik) * tau(2,na) + & xk (3, ik) * tau(3,na) ) * tpi phase = CMPLX(cos (arg), - sin (arg) ,kind=DP) do ig = 1, npw iig = igk (ig) sk (ig) = eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) * phase enddo do ih = 1, nh (nt) nb = indv (ih, nt) l = nhtol (ih, nt) lm= nhtolm(ih, nt) ikb = ikb + 1 pref = (0.d0, -1.d0) **l ! do ig = 1, npw dvkb (ig, ikb) = djl (ig, nb, nt) * sk (ig) * ylm (ig, lm) & * pref enddo enddo endif enddo enddo call stop_clock('stres_us34') if (ikb.ne.nkb) call errore ('gen_us_dj', 'unexpected error', 1) deallocate (sk) deallocate (ylm) deallocate (djl) if (spline_ps) deallocate(xdata) return end subroutine gen_us_dj espresso-5.0.2/PW/src/irrek.f900000644000700200004540000002744012053145630015137 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine irreducible_BZ (nrot, s, nsym, minus_q, magnetic_sym, at, bg, & npk, nks, xk, wk, t_rev) !----------------------------------------------------------------------- ! ! This routine finds the special points in the irreducible wedge of ! the true point group (or small group of q) of the crystal, ! starting from the points in the irreducible BZ wedge ! of the point group of the Bravais lattice. ! USE kinds, only : DP implicit none ! integer, intent(in) :: nrot, nsym, npk, s(3,3,48), t_rev(48) real(DP), intent(in) :: at (3,3), bg (3,3) logical, intent(in) :: minus_q, magnetic_sym integer, intent(inout) :: nks real(DP), intent(inout) :: xk (3, npk), wk (npk) ! integer :: table (48, 48), invs (3, 3, 48), irg (48) ! table: multiplication table of the group ! invs : contains the inverse of each rotation ! irg : gives the correspondence of symmetry operations forming a n-th coset integer :: isym, jsym logical :: sym(48) ! ! We compute the multiplication table of the group ! call multable (nrot, s, table) ! ! And we set the matrices of the inverse ! DO isym = 1, nrot DO jsym = 1, nrot IF (table (isym, jsym)==1) invs (:,:,isym) = s(:,:,jsym) ENDDO ENDDO ! ! Find the coset in the point group of the Bravais lattice ! IF ( magnetic_sym ) THEN call irrek_nc(at, bg, nrot, invs, nsym, irg, npk, nks, xk, & wk, t_rev) ELSE sym(1:nsym) = .true. sym(nsym+1:)= .false. call coset (nrot, table, sym, nsym, irg) ! ! here we set the k-points in the irreducible wedge of the point grou ! of the crystal ! call irrek (at, bg, nrot, invs, nsym, irg, minus_q, npk, nks, xk, & wk, t_rev) ENDIF ! return ! end subroutine irreducible_BZ ! !----------------------------------------------------------------------- subroutine irrek (at, bg, nrot, invs, nsym, irg, minus_q, npk, & nks, xk, wk, t_rev) !----------------------------------------------------------------------- ! ! Given a set of special points in the Irreducible Wedge of some ! group, finds the equivalent special points in the IW of one of ! its subgroups. ! USE kinds, only : DP implicit none ! integer, intent(in) :: npk, nrot, nsym, invs (3, 3, 48), irg (nrot) ! maximum number of special points ! order of the parent point group ! order of the subgroup ! inverse of the elements of the symmetry group ! partition of the elements of the symmetry group into left cosets, ! as given by SUBROUTINE COSET integer, intent(inout) :: nks ! number of special points integer, intent(in) :: t_rev(48) real(DP), intent(in) :: at (3, 3), bg (3, 3) ! basis vectors of the Bravais and reciprocal lattice real(DP), intent(inout) :: xk (3, npk), wk (npk) ! special points and weights logical, intent(in) :: minus_q ! .true. if symmetries q = -q+G are acceptable ! ! here the local variables ! integer :: nks0, jk, kpol, irot, jrot, ncos, jc, ic, isym ! nks0: used to save the initial number of k-points ! ncos: total number of cosets real(DP) :: xkg (3), xks (3, 48), w (48), sw, one ! coordinates of the k point in crystal axis ! coordinates of the rotated k point ! weight of each coset ! buffer which contains the weight of k points ! total weight of k-points logical :: latm, satm ! true if a k-point is equivalent to a previous one ! true if equivalent point found nks0 = nks do jk = 1, nks0 ! ! The k point is first computed in crystal axis ! do kpol = 1, 3 ! xkg are the components ofx k in the crystal RL base xkg (kpol) = at (1, kpol) * xk (1, jk) + & at (2, kpol) * xk (2, jk) + & at (3, kpol) * xk (3, jk) enddo ! ! Then it is rotated with each symmetry of the global group. Note that ! the irg vector is used to divide all the rotated vector in cosets ! do irot = 1, nrot jrot = irg (irot) do kpol = 1, 3 ! the rotated of xkg with respect to the group operations xks (kpol, irot) = invs (kpol, 1, jrot) * xkg (1) + & invs (kpol, 2, jrot) * xkg (2) + & invs (kpol, 3, jrot) * xkg (3) enddo IF (t_rev(jrot)==1) xks (:, irot)=-xks(:, irot) enddo ! ! For each coset one point is tested with all the preceding ! ncos = nrot / nsym do ic = 1, ncos irot = (ic - 1) * nsym + 1 latm = .false. ! ! latm = .true. if the present k-vector is equivalent to some previous ! do jc = 1, ic - 1 do isym = 1, nsym ! ! satm = .true. if the present symmetry operation makes ! the ir and ik k-vectors equivalent ... ! jrot = (jc - 1) * nsym + isym satm = abs (xks (1, irot) - xks (1, jrot) - & nint (xks (1, irot) - xks (1, jrot) ) ) < 1.0d-5 .and. & abs (xks (2, irot) - xks (2, jrot) - & nint (xks (2, irot) - xks (2, jrot) ) ) < 1.0d-5 .and. & abs (xks (3, irot) - xks (3, jrot) - & nint (xks (3, irot) - xks (3, jrot) ) ) < 1.0d-5 ! ! .... or equivalent to minus each other when minus_q=.t. ! if (minus_q) satm = satm .or. & abs (xks (1, irot) + xks (1, jrot) - & nint (xks (1, irot) + xks (1, jrot) ) ) < 1.0d-5 .and. & abs (xks (2, irot) + xks (2, jrot) - & nint (xks (2, irot) + xks (2, jrot) ) ) < 1.0d-5 .and. & abs (xks (3, irot) + xks (3, jrot) - & nint (xks (3, irot) + xks (3, jrot) ) ) < 1.0d-5 latm = latm .or. satm if (satm .and. w (jc) /= 0.d0) then w (jc) = w (jc) + 1.d0 goto 100 endif enddo enddo 100 continue if (latm) then w (ic) = 0.d0 else w (ic) = 1.d0 endif enddo ! ! here the k-point list is updated ! sw = wk (jk) / SUM (w(1:ncos)) wk (jk) = sw * w (1) do ic = 2, ncos irot = (ic - 1) * nsym + 1 if (w (ic) /= 0.d0) then nks = nks + 1 if (nks > npk) call errore ('irrek', 'too many k-points', nks) wk (nks) = sw * w (ic) do kpol = 1, 3 xk (kpol, nks) = bg (kpol, 1) * xks (1, irot) + & bg (kpol, 2) * xks (2, irot) + & bg (kpol, 3) * xks (3, irot) enddo endif enddo enddo ! ! normalize weights to one ! one = SUM (wk(1:nks)) if ( one > 0.d0 ) wk(1:nks) = wk(1:nks) / one ! return end subroutine irrek !----------------------------------------------------------------------- subroutine irrek_nc (at, bg, nrot, invs, nsym, irg, npk, & nks, xk, wk, t_rev) !----------------------------------------------------------------------- ! ! Given a set of special points in the Irreducible Wedge of some ! group, finds the equivalent special points in the IW of one of ! its subgroups. ! USE kinds, only : DP implicit none ! integer, intent(in) :: npk, nrot, nsym, invs (3, 3, 48), irg (nrot) ! maximum number of special points ! order of the parent point group ! order of the subgroup ! inverse of the elements of the symmetry group ! partition of the elements of the symmetry group into left cosets, ! as given by SUBROUTINE COSET integer, intent(inout) :: nks ! number of special points integer, intent(in) :: t_rev(48) real(DP), intent(in) :: at (3, 3), bg (3, 3) ! basis vectors of the Bravais and reciprocal lattice real(DP), intent(inout) :: xk (3, npk), wk (npk) ! special points and weights ! ! here the local variables ! integer :: nks0, jk, kpol, irot, jrot, isym, ik, iks, start_k ! nks0: used to save the initial number of k-points ! ncos: total number of cosets real(DP) :: xkg (3), xks (3), xkn(3), one, xk_new(3,npk), wk_new(npk), & xk_cart(3) ! coordinates of the k point in crystal axis ! coordinates of the rotated k point ! weight of each coset ! buffer which contains the weight of k points ! total weight of k-points logical :: satm ! true if equivalent point found nks0 = nks nks=0 start_k=0 DO jk = 1, nks0 ! ! The k point is first computed in crystal axis ! ! xkg are the components of xk in the crystal base xkg (:) = at (1, :) * xk (1, jk) + & at (2, :) * xk (2, jk) + & at (3, :) * xk (3, jk) ! ! Then it is rotated with each symmetry of the global group. ! DO irot = 1, nrot xks (:) = invs (:, 1, irot) * xkg (1) + & invs (:, 2, irot) * xkg (2) + & invs (:, 3, irot) * xkg (3) ! ! Now check if there is an operation of the subgroup that ! makes xks equivalent to some other already found k point ! DO jrot=1,nsym xkn (:) = invs (:, 1, jrot) * xks (1) + & invs (:, 2, jrot) * xks (2) + & invs (:, 3, jrot) * xks (3) IF (t_rev(jrot)==1) xkn =-xkn DO ik = start_k+1, nks satm = abs (xk_new (1, ik) - xkn (1) - & nint (xk_new (1, ik) - xkn (1) ) ) < 1.0d-5 .and. & abs (xk_new (2, ik) - xkn (2) - & nint (xk_new (2, ik) - xkn (2) ) ) < 1.0d-5 .and. & abs (xk_new (3, ik) - xkn (3) - & nint (xk_new (3, ik) - xkn (3) ) ) < 1.0d-5 IF ( satm ) THEN wk_new(ik) = wk_new(ik) + wk(jk) GOTO 100 ENDIF END DO END DO nks=nks+1 IF (nks > npk) CALL errore('irrek_nc','too many k points',1) xk_new(:,nks)=xks wk_new(nks)=wk(jk) 100 CONTINUE ENDDO start_k=nks ENDDO ! ! The order of the original k points is preserved ! iks=nks0 DO ik = 1, nks ! ! for each new k point found, check if it was in the original list ! DO jk=1, nks0 xkg (:) = at (1, :) * xk (1, jk) + & at (2, :) * xk (2, jk) + & at (3, :) * xk (3, jk) satm = abs (xk_new (1, ik) - xkg (1) - & nint (xk_new (1, ik) - xkg (1) ) ) < 1.0d-5 .and. & abs (xk_new (2, ik) - xkg (2) - & nint (xk_new (2, ik) - xkg (2) ) ) < 1.0d-5 .and. & abs (xk_new (3, ik) - xkg (3) - & nint (xk_new (3, ik) - xkg (3) ) ) < 1.0d-5 IF (satm) THEN ! ! If it was, just update the weight ! wk(jk)=wk_new(ik) goto 200 ENDIF ENDDO ! ! If it was not, bring xk_new in cartesian coodinates and copy it in the ! first free place available ! iks=iks+1 xk_cart (:) = bg (:, 1) * xk_new (1, ik) + & bg (:, 2) * xk_new (2, ik) + & bg (:, 3) * xk_new (3, ik) xk(:,iks)=xk_cart(:) wk(iks)=wk_new(ik) 200 CONTINUE ENDDO IF (iks /= nks ) CALL errore('irrek_nc','Internal problem with k points',1) ! ! normalize weights to one ! one = SUM (wk(1:nks)) IF ( one > 0.d0 ) wk(1:nks) = wk(1:nks) / one ! RETURN END SUBROUTINE irrek_nc espresso-5.0.2/PW/src/orthoatwfc.f900000644000700200004540000001366612053145630016210 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE orthoatwfc !----------------------------------------------------------------------- ! ! This routine is meant to orthogonalize all the atomic wfcs. This is ! useful when we want to compute the occupation of the atomic orbitals ! in order to make lda+U calculations ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunat, iunsat, nwordatwfc, iunigk USE ions_base, ONLY : nat USE basis, ONLY : natomwfc USE klist, ONLY : nks, xk, ngk USE ldaU, ONLY : swfcatom, U_projection USE wvfct, ONLY : npwx, npw, igk USE uspp, ONLY : nkb, vkb USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol ! IMPLICIT NONE ! ! INTEGER :: ik, ibnd, info, i, j, k, na, nb, nt, isym, n, ntemp, m, & l, lm, ltot, ntot, ipol ! the k point under consideration ! counter on bands REAL(DP) :: t0, scnds ! cpu time spent LOGICAL :: orthogonalize_wfc COMPLEX(DP) :: temp, t (5) COMPLEX(DP) , ALLOCATABLE :: wfcatom (:,:), work (:,:), overlap (:,:) REAL(DP) , ALLOCATABLE :: e (:) t0 = scnds () IF (noncolin) THEN ALLOCATE (wfcatom( npwx*npol, natomwfc)) ELSE ALLOCATE (wfcatom( npwx, natomwfc)) END IF ALLOCATE (overlap( natomwfc , natomwfc)) ALLOCATE (work ( natomwfc , natomwfc)) ALLOCATE (e ( natomwfc)) IF (U_projection=="file") THEN WRITE( stdout,*) 'LDA+U Projector read from file ' RETURN END IF IF (U_projection=="atomic") THEN orthogonalize_wfc = .FALSE. WRITE( stdout,*) 'Atomic wfc used for LDA+U Projector are NOT orthogonalized' ELSE IF (U_projection=="ortho-atomic") THEN orthogonalize_wfc = .TRUE. WRITE( stdout,*) 'Atomic wfc used for LDA+U Projector are orthogonalized' IF (gamma_only) THEN WRITE( stdout,*) 'Gamma-only calculation for this case not implemented' STOP END IF ELSE IF (U_projection=="norm-atomic") THEN orthogonalize_wfc = .TRUE. WRITE( stdout,*) 'Atomic wfc used for LDA+U Projector are normalized but NOT orthogonalized' IF (gamma_only) THEN WRITE( stdout,*) 'Gamma-only calculation for this case not implemented' STOP END IF ELSE WRITE( stdout,*) "U_projection_type =", U_projection CALL errore ("orthoatwfc"," this U_projection_type is not valid",1) END IF ! Allocate the array becp = CALL allocate_bec_type (nkb,natomwfc, becp) IF (nks > 1) REWIND (iunigk) DO ik = 1, nks npw = ngk (ik) IF (nks > 1) READ (iunigk) igk overlap(:,:) = (0.d0,0.d0) work(:,:) = (0.d0,0.d0) IF (noncolin) THEN CALL atomic_wfc_nc_updown (ik, wfcatom) ELSE CALL atomic_wfc (ik, wfcatom) ENDIF ! ! write atomic wfc on unit iunat ! CALL davcio (wfcatom, nwordatwfc, iunat, ik, 1) CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec (npw, vkb, wfcatom, becp) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) IF (orthogonalize_wfc) THEN ! ! calculate overlap matrix ! IF (noncolin) THEN CALL zgemm ('c', 'n', natomwfc, natomwfc, npwx*npol, (1.d0, 0.d0), & wfcatom, npwx*npol, swfcatom, npwx*npol, (0.d0,0.d0), overlap, & natomwfc) ELSE CALL zgemm ('c', 'n', natomwfc, natomwfc, npw, (1.d0, 0.d0), & wfcatom, npwx, swfcatom, npwx, (0.d0, 0.d0), overlap, natomwfc) END IF ! CALL mp_sum( overlap, intra_bgrp_comm ) ! IF (U_projection=="norm-atomic") THEN DO i = 1, natomwfc DO j = i+1, natomwfc overlap(i,j) = CMPLX(0.d0,0.d0, kind=dp) overlap(j,i) = CMPLX(0.d0,0.d0, kind=dp) ENDDO ENDDO END IF ! ! find O^-.5 ! CALL cdiagh (natomwfc, overlap, natomwfc, e, work) DO i = 1, natomwfc e (i) = 1.d0 / dsqrt (e (i) ) ENDDO DO i = 1, natomwfc DO j = i, natomwfc temp = (0.d0, 0.d0) DO k = 1, natomwfc temp = temp + e (k) * work (j, k) * CONJG (work (i, k) ) ENDDO overlap (i, j) = temp IF (j.NE.i) overlap (j, i) = CONJG (temp) ENDDO ENDDO ! ! trasform atomic orbitals O^-.5 psi ! DO i = 1, npw work(:,1) = (0.d0,0.d0) IF (noncolin) THEN DO ipol=1,npol j = i + (ipol-1)*npwx CALL zgemv ('n',natomwfc,natomwfc,(1.d0,0.d0),overlap, & natomwfc,swfcatom(j,1),npwx*npol, (0.d0,0.d0),work,1) CALL zcopy (natomwfc,work,1,swfcatom(j,1),npwx*npol) END DO ELSE CALL zgemv ('n', natomwfc, natomwfc, (1.d0, 0.d0) , overlap, & natomwfc, swfcatom (i, 1) , npwx, (0.d0, 0.d0) , work, 1) CALL zcopy (natomwfc, work, 1, swfcatom (i, 1), npwx) END IF ENDDO END IF ! orthogonalize_wfc ! ! write S * atomic wfc to unit iunsat ! CALL davcio (swfcatom, nwordatwfc, iunsat, ik, 1) ENDDO DEALLOCATE (overlap) DEALLOCATE (work) DEALLOCATE (e) DEALLOCATE (wfcatom) CALL deallocate_bec_type ( becp ) ! RETURN END SUBROUTINE orthoatwfc espresso-5.0.2/PW/src/g_psi_mod.f900000644000700200004540000000102412053145627015757 0ustar marsamoscm! ! Copyright (C) 2001-2007 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE g_psi_mod ! ! ... These are the variables needed in g_psi ! USE kinds, only : DP ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: & h_diag (:,:),& ! diagonal part of the Hamiltonian s_diag (:,:) ! diagonal part of the overlap matrix ! END MODULE g_psi_mod espresso-5.0.2/PW/src/read_conf_from_file.f900000644000700200004540000000374612053145630017770 0ustar marsamoscm! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE read_config_from_file() !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ions_base, ONLY : nat, ityp, tau USE basis, ONLY : startingconfig USE cell_base, ONLY : at, bg, omega USE cellmd, ONLY : at_old, omega_old, lmovecell USE io_files, ONLY : tmp_dir, prefix USE pw_restart, ONLY : pw_readfile ! IMPLICIT NONE ! INTEGER :: ierr ! ! IF ( TRIM( startingconfig ) /= 'file' ) RETURN ! WRITE( stdout, '(/5X,"Atomic positions and unit cell read from directory:"/5X,A)') & TRIM( tmp_dir ) // TRIM( prefix ) // ".save/" ! ! ... check if restart file is present, if yes read config parameters ! CALL pw_readfile( 'config', ierr ) ! IF ( ierr > 0 ) THEN ! WRITE( stdout, '(5X,"Nothing found: ", & & "using input atomic positions and unit cell",/)' ) ! RETURN ! END IF ! WRITE( stdout, * ) ! IF ( lmovecell ) THEN ! ! ... input value of at and omega (currently stored in xxx_old variables) ! ... must be used to initialize G vectors and other things ! ... swap xxx and xxx_old variables and scale the atomic position to the ! ... input cell shape in order to check the symmetry. ! CALL cryst_to_cart( nat, tau, bg, - 1 ) ! CALL dswap( 9, at, 1, at_old,1 ) CALL dswap( 1, omega, 1, omega_old, 1 ) ! CALL cryst_to_cart( nat, tau, at, + 1 ) ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! END IF ! RETURN ! END SUBROUTINE read_config_from_file espresso-5.0.2/PW/src/vcsubs.f900000644000700200004540000011560412053145627015336 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !* !* subroutine vcinit (mxdtyp, mxdatm, ntype, natot, rat, ityp, avec, & vcell, force, if_pos, frr, calc, temp, vx2, vy2, vz2, rms, vmean, ekin, & avmod, theta, atmass, cmass, press, p, dt, aveci, avecd, avec2d, & avec2di, sigma, sig0, avec0, v0, rati, ratd, rat2d, rat2di, enew, & uta, eka, eta, ekla, utl, etl, ut, ekint, etot, iforceh) ! ! rmw (18/8/99) ! Cesar RS Silva (04/12/2005) ! ! input: ! mxdtyp = array dimension for type of atoms ! mxdatm = array dimension for atoms (irrespective of type) ! ntype = number of types of atoms ! atmass(nt) = atomic masses for atoms of type nt (in proton masses) ! natot = total number of atoms ! rat(j,na) = atomic positions in lattice coordinates ! ityp(na) = atomic type of na-th atom ! avec(3,3) = lattice vectors ! enew = DFT total energy ! calc = calculation type ! temp = temperature in Kelvin ! ! output: ! rat(j,na) = atomic positions in lattice coordinates ! rati(j,na) = atomic positions for previous step ! ratd(j,na) = atomic velocities " " ! rat2d(i,na) = " acceleration " " ! rat2di(i,na) = " acceleration " " (previous step) ! avec(3,3) = lattice vectors ! aveci(3,3) = lattice vectors for "previous" step ! avecd(3,3) = 1st lattice vectors derivatives ! avec2d(3,3) = 2nd lattice vectors derivatives ! avec2di(3,3) = 2nd lattice vectors derivatives (previous step) ! p = internal (virial) pressure ! ut = new total potential energy ! ekin = new total kinetic energy ! etot = total energy ! we also obtain the same quantities for atomic and lattice components ! uta,eka,eta,utl,ekla,etl ! theta(3,3) = angle between lattice vectors ! avmod(3) = lattice vectors moduli ! USE kinds implicit none ! real(DP) :: zero, um, dois, tres, quatro, seis parameter (zero = 0.0d0, um = 1.0d0, dois = 2.0d0, tres = 3.0d0, & quatro = 4.0d0, seis = 6.0d0) ! character (len=2) :: calc ! integer :: mxdatm, mxdtyp real(DP) :: avec (3, 3), avecd (3, 3), avec2d (3, 3), avec2di (3, & 3), aveci (3, 3), g (3, 3), gm1 (3, 3), gd (3, 3), sigma (3, 3), & sigav (3, 3), gmgd (3, 3), avec0 (3, 3), sig0 (3, 3), avmod (3), & theta (3, 3), pim (3, 3), piml (3, 3), frr (3, 3) ! integer :: ityp (mxdatm), natot, if_pos(3,mxdatm), iforceh(3,3) real(DP) :: atmass (mxdtyp), rat (3, mxdatm), ratd (3, mxdatm), & rati (3, mxdatm), rat2d (3, mxdatm), rat2di (3, mxdatm) ! real(DP) :: force (3, mxdatm), d2 (3, 3) ! real(DP) :: vx2 (mxdtyp), vy2 (mxdtyp), vz2 (mxdtyp) real(DP) :: rms (mxdtyp), vmean (mxdtyp), ekin (mxdtyp) real(DP) :: ekint, ut, etot, tr, ekk, etl, & cmass, uta, enew, v0, eka, utl, ekla, eta, dt, vcell, p, press, & temp, ww, pv integer :: na, nt, i, j, l, k, m, ntype ! real(DP) :: scaloff=1.0d0 ! IF ( COUNT( iforceh == 2 ) > 0 ) scaloff=0.5d0 ! ! calculate the metric for the current step ! call setg (avec, g) ! ! initialize cell related quantities ! do j = 1, 3 do i = 1, 3 avecd (i, j) = zero avec2d (i, j) = zero avec2di (i, j) = zero enddo enddo ! ! update metric related quantities ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) ! ! define reference cell ! do j = 1, 3 do i = 1, 3 avec0 (i, j) = avec (i, j) sig0 (i, j) = sigma (i, j) enddo enddo v0 = vcell ! ! establish maxwellian distribution of velocities ! if (calc (2:2) .eq.'d') then ! ! NB: velocities are generated in cartesian coordinates by ranv ! and converted to lattice coordinates immediately after. ! In order to avoid the use of an additional array just for ! this call, rat2di is used and contains therefore the velocities ! in cartesian coordinate. It is set to zero shortly after. ! ! I apologize, sdg. :-) ! call ranv (ntype, natot, ityp, atmass, mxdtyp, mxdatm, temp, & ekint, rat2di, vmean, rms, vx2, vy2, vz2, ekin) ! do na = 1, natot do l = 1, 3 ratd(l,na) = zero do k = 1, 3 IF ( if_pos(l,na) == 1 ) & ratd(l,na) = rat2di(k,na) * sigma(k,l) / vcell + ratd(l,na) enddo enddo enddo else do na = 1, natot do k = 1, 3 ratd(k,na) = zero enddo enddo endif ! ! define (uncorrected) accelerations and initialize rat2di ! do na = 1, natot nt = ityp(na) do l = 1, 3 rat2d (l, na) = if_pos(l,na) * force (l, na) / atmass (nt) rat2di(l, na) = zero enddo enddo ! ! update cell related quantities ! if (calc (1:1) .ne.'m') then ! ! initialize piml (virial stress in lattice coordinates) ! do j = 1, 3 do i = 1, 3 piml (i, j) = zero enddo enddo ! ! correct forces on atoms ! do na = 1, natot nt = ityp (na) do k = 1, 3 do m = 1, 3 rat2d (k, na) = rat2d (k, na) - gmgd (k, m) * ratd (m, na) enddo enddo ! ! calculate virial stress in lattice coordinates ! do j = 1, 3 do i = 1, 3 piml(i,j) = piml(i,j) + atmass(nt) * ratd(i,na) * ratd(j,na) enddo enddo enddo ! ! calculate virial stress in cartesian coordinates ! do j = 1, 3 do i = 1, 3 pim (i, j) = zero do l = 1, 3 do m = 1, 3 pim(i,j) = pim(i,j) + avec(i,l) * piml(l,m) * avec(j,m) enddo enddo enddo enddo ! ! add potential energy contribution to stress ! do j = 1, 3 do i = 1, 3 pim (i, j) = (pim (i, j) + frr (i, j) ) / vcell avec2d (i, j) = zero enddo enddo ! ! subtract external pressure from diagonal term ! pim (1, 1) = pim (1, 1) - press pim (2, 2) = pim (2, 2) - press pim (3, 3) = pim (3, 3) - press ! do j = 1, 3 do i = 1, 3 do k = 1, 3 avec2d (i, j) = avec2d (i, j) + pim (i, k) * sigma (k, j) enddo avec2d (i, j) = avec2d (i, j) / cmass enddo enddo ! ! if new cell dynamics... ! if (calc (1:1) .eq.'n') then call sigp (avec, avecd, avec2d, sigma, vcell) endif ! ! strain/stress symmetrization ! do i = 1, 3 do j = 1, 3 d2 (i, j) = zero do k = 1, 3 d2 (i, j) = d2 (i, j) + avec2d (i, k) * sig0 (j, k) enddo d2 (i, j) = d2 (i, j) / v0 enddo enddo ! d2 (1, 2) = (d2 (1, 2) + d2 (2, 1) ) / dois d2 (1, 3) = (d2 (1, 3) + d2 (3, 1) ) / dois d2 (2, 3) = (d2 (2, 3) + d2 (3, 2) ) / dois d2 (2, 1) = d2 (1, 2) d2 (3, 1) = d2 (1, 3) d2 (3, 2) = d2 (2, 3) ! do i = 1, 3 do j = 1, 3 avec2d (i, j) = zero do k = 1, 3 avec2d (i, j) = avec2d (i, j) + d2 (i, k) * avec0 (k, j) enddo enddo enddo else do i = 1, 3 do j = 1, 3 avec2d (i, j) = zero enddo enddo endif ! ! WRITE( stdout,*) avec2d(2,1),avec2d(3,1), avec2d(3,2) ! ! compute atomic energies ! eka = zero do na = 1, natot nt = ityp (na) do i = 1, 3 ekk = zero do j = 1, 3 ekk = ekk + ratd (i, na) * g (i, j) * ratd (j, na) enddo eka = eka + ekk * atmass (nt) / dois enddo enddo uta = enew eta = eka + uta ! ! WRITE( stdout,*) 'eka,ekint', eka, ekint ! ! lattice contribution ! ekla = zero if (calc (1:1) .ne.'m') then ! ! new dynamics case ! if (calc (1:1) .eq.'n') then do j = 1, 3 do i = 1, 3 sigav (i, j) = zero do l = 1, 3 sigav (i, j) = sigav (i, j) + sigma (l, i) * avecd (l, j) enddo enddo enddo do k = 1, 3 tr = zero do m = 1, 3 tr = tr + sigav (m, k) * sigav (m, k) enddo ekla = ekla + tr enddo endif ! ! parrinello rahman case ! if (calc (1:1) .eq.'c') then do k = 1, 3 tr = zero do m = 1, 3 tr = tr + avecd (m, k) * avecd (m, k) enddo ekla = ekla + tr enddo endif endif ! ekla = ekla * cmass / dois utl = + press * vcell etl = utl + ekla ! ! total energy ! ekint = eka + ekla ut = uta + utl etot = ekint + ut ! ! calculate "internal (virial) pressure" ! ww = frr (1, 1) + frr (2, 2) + frr (3, 3) p = (dois * eka + ww) / tres / vcell pv = p * vcell ! ! WRITE( stdout,1001) ekint,ut,etot ! ! now make the initial move ! ! ! update atomic positions and calculate intermediate velocities ! and accelerations ! do na = 1, natot do k = 1, 3 rati (k, na) = rat (k, na) rat (k, na) = rat (k, na) + dt * ratd (k, na) + dt * dt * (quatro & * rat2d (k, na) - rat2di (k, na) ) / seis rat2di (k, na) = rat2d (k, na) enddo enddo ! ! update lattice vectors if cell dynamics ! if (calc (1:1) .ne.'m') then do j = 1, 3 do i = 1, 3 aveci (i, j) = avec (i, j) avec (i, j) = avec (i, j) + dt * avecd (i, j) + (dt * dt * & (quatro * avec2d (i, j) - avec2di (i, j) ) / seis) * dble(iforceh(i,j))*scaloff avec2di (i, j) = avec2d (i, j) enddo enddo ! ! update cell quantities just in case forclj need them ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) endif return 1001 format(/,' new values for : kinetic energy = ',f18.12,/, & & ' potential energy = ',f18.12,/, & & ' total energy = ',f18.12,/) end subroutine vcinit !* !* subroutine vcmove (mxdtyp, mxdatm, ntype, ityp, rat, avec, vcell, & force, if_pos, frr, calc, avmod, theta, atmass, cmass, press, p, dt, & avecd, avec2d, aveci, avec2di, sigma, sig0, avec0, v0, ratd, & rat2d, rati, rat2di, enew, uta, eka, eta, ekla, utl, etl, ut, & ekint, etot, temp, tolp, ntcheck, ntimes, nst, tnew, nzero, natot, & acu, ack, acp, acpv, avu, avk, avp, avpv, iforceh) ! ! rmw (18/8/99) ! ! input: ! mxdtyp = array dimension for type of atoms ! mxdatm = array dimension for atoms (irrespective of type) ! ntype = number of types of atoms ! atmass(nt) = atomic masses for atoms of type nt (in proton masses) ! ityp(na) = atomic type of na-th atom ! rat(j,na) = atomic positions in lattice coordinates ! rati(j,na) = atomic positions in lattice coordinates (previous ste ! ratd(j,na) = atomic velocities " " ! rat2di(i,na) = " acceleration " " (previous step) ! avec(3,3) = lattice vectors ! aveci(3,3) = lattice vectors (previous step) ! avecd(3,3) = 1st lattice vectors derivatives ! avec2d(3,3) = 2nd lattice vectors derivatives ! avec2di(3,3) = 2nd lattice vectors derivatives (previous step) ! avec0(3,3) = initial lattice vectors ! sig0(3,3) = initial reciprocal lattice vectors * vcell / 2 pi ! v0 = initial volume ! enew = DFT total energy ! ! output: ! rat(j,na) = atomic positions in lattice coordinates (updated) ! ratd(j,na) = atomic velocities " " (updated) ! rat2d(i,na) = " acceleration " " (updated) ! rati(j,na) and rat2di(i,na) (updated) ! avec(3,3) = lattice vectors ! avecd(3,3) = 1st lattice vectors derivatives ! avec2d(3,3) = 2nd lattice vectors derivatives ! aveci(3,3) and avec2di(3,3) (updated) ! p = internal (virial) pressure ! ut = new total potential energy ! ekin = new total kinetic energy ! etot = total energy ! we also obtain the same quantities for atomic and lattice componen ! uta,eka,eta,utl,ekl,etl ! theta(3,3) = angle between lattice vectors ! avmod(3) = lattice vectors moduli ! ! USE kinds, only : DP USE constants, ONLY : pi, eps16, k_boltzmann_ry USE io_global, ONLY : stdout implicit none ! real(DP) :: zero, um, dois, tres, quatro, seis parameter (zero = 0.0d0, um = 1.0d0, dois = 2.0d0, tres = 3.0d0, & quatro = 4.0d0, seis = 6.0d0) ! character (len=2) :: calc ! integer :: mxdatm, mxdtyp integer :: ityp (mxdatm), if_pos(3,mxdtyp), iforceh(3,3) real(DP) :: avec (3, 3), rat (3, mxdatm) ! real(DP) :: atmass (mxdtyp), ratd (3, mxdatm), rat2d (3, mxdatm), & avecd (3, 3), avec2d (3, 3), g (3, 3), gm1 (3, 3), gd (3, 3), & sigma (3, 3), avec0 (3, 3), sig0 (3, 3), avmod (3), theta (3, 3), & pim (3, 3), piml (3, 3), frr (3, 3), rati (3, mxdatm), rat2di (3, & mxdatm), sigav (3, 3), gmgd (3, 3), aveci (3, 3), avec2di (3, 3) integer :: i, j, k, l, m, na, nt, nst, natot, nzero, ntimes, & ntcheck, ntype, i_update, n_update real(DP) :: avpv, pv, ww, ts, xx, alpha, x, & tr, tnew, tolp, temp, avk, avu, ekk, avp, ack, acu, acpv, acp, dt, & p, enew, v0, vcell, press, ut, etl, etot, ekint, utl, uta, cmass, & eka, ekla, eta logical :: symmetrize_stress ! real(DP) :: force (3, mxdatm), d2 (3, 3) ! real(DP) :: scaloff=1.0d0 ! IF ( COUNT( iforceh == 2 ) > 0 ) scaloff=0.5d0 ! ! ! zero energy components ! ut = zero ekint = zero etot = zero uta = zero eka = zero eta = zero utl = zero ekla = zero etl = zero p = zero ! ! set the metric for the current step ! call setg (avec, g) ! ! calculate (uncorrected) rat2d ! do na = 1, natot nt = ityp (na) do i = 1, 3 rat2d (i, na) = if_pos(i,na) * force (i, na) / atmass (nt) enddo enddo ! ! if variable cell, estimate velocities and set the number of update to ! be performed in order to have them accurate. This is needed only for ! variable cell shape dynamics (where accelerations depends on velocities) ! and a few, even just one, iteration is usually enough ! if (calc (1:1) .ne.'m') then do na = 1, natot do k = 1, 3 ratd (k, na) = ratd (k, na) + dt * rat2di (k, na) enddo enddo do j = 1, 3 do i = 1, 3 avecd (i, j) = avecd (i, j) + dt * avec2di (i, j) !* dble(iforceh(i,j)) enddo enddo n_update = 19 else n_update = 1 endif do i_update = 1, n_update if (calc (1:1) .ne.'m') then ! ! update metric related quantities ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) ! ! zero piml (virial stress in lattice coordinates) ! do j = 1, 3 do i = 1, 3 piml (i, j) = zero enddo enddo ! ! correct forces on atoms and set cell forces ! do na = 1, natot nt = ityp (na) do k = 1, 3 rat2d (k, na) = if_pos(k,na) * force (k, na) / atmass (nt) do m = 1, 3 rat2d (k, na) = rat2d (k, na) - gmgd (k, m) * ratd (m, na) enddo enddo ! ! calculate virial stress in lattice coordinates ! do j = 1, 3 do i = 1, 3 piml(i,j) = piml(i,j) + atmass(nt) * ratd(i,na) * ratd(j,na) enddo enddo enddo ! ! calculate virial stress in cartesian coordinates ! do i = 1, 3 do j = 1, 3 pim (i, j) = zero do l = 1, 3 do m = 1, 3 pim(i,j) = pim(i,j) + avec(i,l) * piml(l,m) * avec(j,m) enddo enddo enddo enddo ! ! add potential energy contribution to stress ! do j = 1, 3 do i = 1, 3 pim (i, j) = (pim (i, j) + frr (i, j) ) / vcell enddo enddo ! ! subtract external pressure from diagonal term ! pim (1, 1) = pim (1, 1) - press pim (2, 2) = pim (2, 2) - press pim (3, 3) = pim (3, 3) - press ! do j = 1, 3 do i = 1, 3 avec2d (i, j) = zero do k = 1, 3 avec2d (i, j) = avec2d (i, j) + pim (i, k) * sigma (k, j) enddo avec2d (i, j) = avec2d (i, j) / cmass enddo enddo ! ! if new cell dynamics... ! if (calc (1:1) .eq.'n') call sigp (avec, avecd, avec2d, sigma, vcell) ! ! strain/stress symmetrization ! symmetrize_stress = .true. if (.not.symmetrize_stress) goto 666 do i = 1, 3 do j = 1, 3 d2 (i, j) = zero do k = 1, 3 d2 (i, j) = d2 (i, j) + avec2d (i, k) * sig0 (j, k) enddo d2 (i, j) = d2 (i, j) / v0 enddo enddo ! d2 (1, 2) = (d2 (1, 2) + d2 (2, 1) ) / dois d2 (1, 3) = (d2 (1, 3) + d2 (3, 1) ) / dois d2 (2, 3) = (d2 (2, 3) + d2 (3, 2) ) / dois d2 (2, 1) = d2 (1, 2) d2 (3, 1) = d2 (1, 3) d2 (3, 2) = d2 (2, 3) ! do i = 1, 3 do j = 1, 3 avec2d (i, j) = zero do k = 1, 3 avec2d (i, j) = avec2d (i, j) + d2 (i, k) * avec0 (k, j) enddo enddo enddo 666 continue ! ! calculate correct lattice velocities and ... ! do j = 1, 3 do i = 1, 3 avecd (i, j) = (avec (i, j) - aveci (i, j) ) / dt + (dt * & (dois * avec2d (i, j) + avec2di (i, j) ) / seis) * dble(iforceh(i,j))*scaloff enddo enddo endif ! ! calculate correct atomic velocities ! do na = 1, natot do k = 1, 3 ratd (k, na) = (rat (k, na) - rati (k, na) ) / dt + dt * (dois * & rat2d (k, na) + rat2di (k, na) ) / seis enddo enddo ! and do-loop on n_update enddo ! ! calculate basis vectors' moduli and angles ! if (calc (1:1) .ne.'m') then do k = 1, 3 avmod (k) = zero do l = 1, 3 theta (l, k) = zero avmod (k) = avmod (k) + avec (l, k) * avec (l, k) do m = 1, 3 theta (l, k) = theta (l, k) + avec (m, l) * avec (m, k) enddo enddo avmod (k) = dsqrt (avmod (k) ) enddo do k = 1, 3 do l = 1, 3 x = theta (l, k) / avmod (l) / avmod (k) if (x.ge.0.d0) then x = dmin1 (1.d0, x) else x = dmax1 ( - 1.d0, x) endif theta (l, k) = dacos (x) * 180.d0 / pi enddo enddo endif ! ! compute atomic energies ! do na = 1, natot nt = ityp (na) do i = 1, 3 ekk = zero do j = 1, 3 ekk = ekk + ratd (i, na) * g (i, j) * ratd (j, na) enddo eka = eka + ekk * atmass (nt) / dois enddo enddo ! uta = enew eta = eka + uta ! ! lattice contribution ! ekla = zero if (calc (1:1) .ne.'m') then if (calc (1:1) .eq.'n') then ! ! new dynamics or new minimization cases ! do j = 1, 3 do i = 1, 3 sigav (i, j) = zero do l = 1, 3 sigav (i, j) = sigav (i, j) + sigma (l, i) * avecd (l, j) enddo enddo enddo do k = 1, 3 tr = zero do m = 1, 3 tr = tr + sigav (m, k) * sigav (m, k) enddo ekla = ekla + tr enddo endif ! if (calc (1:1) .eq.'c') then ! ! cell dynamics or cell minimization cases ! do k = 1, 3 tr = zero do m = 1, 3 tr = tr + avecd (m, k) * avecd (m, k) enddo ekla = ekla + tr enddo endif endif ! ekla = ekla * cmass / dois utl = + press * vcell etl = utl + ekla ! ! total energy ! ekint = eka + ekla ut = uta + utl etot = ekint + ut ! ! calculate "internal (virial) pressure" ! ww = frr (1, 1) + frr (2, 2) + frr (3, 3) p = (dois * eka + ww) / tres / vcell pv = p * vcell ! ! update accumulators and set averages ! nzero = nzero + 1 acu = acu + ut ack = ack + ekint acp = acp + p acpv = acpv + pv avu = acu / DBLE (nzero) avk = ack / DBLE (nzero) avp = acp / DBLE (nzero) avpv = acpv / DBLE (nzero) ! ! choose # of degrees of freedom and calculate tnew ! if (calc (1:1) .ne.'m') then tnew = dois / tres / DBLE (natot + 1) * avk / k_boltzmann_ry else tnew = dois / tres / DBLE (natot - 1) * avk / k_boltzmann_ry endif ! ! rescale velocities ! if ( mod (nst, ntcheck) == 0 ) then ! ! with the new definition of tolp, this is the test to perform ! if ( ( ABS (tnew - temp ) > tolp) .and. ( abs(ntimes) > 0) ) then ! if ( tnew < 1.0d-12) then alpha = 1.0_dp else alpha = sqrt (temp / tnew) endif do na = 1, natot do k = 1, 3 ratd (k, na) = alpha * ratd (k, na) enddo enddo if (calc (2:2) .eq.'d') then do k = 1, 3 do l = 1, 3 avecd (l, k) = alpha * avecd (l, k) !* dble(iforceh(i,j)) enddo enddo endif ! ! update ntimes and nzero and reset accumulators ! acu = zero ack = zero acp = zero acpv = zero if ( ntimes > 0 ) ntimes = ntimes - 1 nzero = 0 endif endif if (calc (2:2) .eq.'m') then ! WRITE( stdout,109) alpha,nst ! if(.true. ) = original version modified by Cesar Da Silva ! if(.false.) = modified algorithm by SdG if (.false.) then do na = 1, natot do k = 1, 3 xx = rat2di (k, na) * rat2d (k, na) if (xx.lt.zero) then ratd (k, na) = zero rat(k,na)=rat2d(k,na)*rati(k,na)-rat2di(k,na)*rat(k,na) rat(k,na)=rat(k,na)/(rat2d(k,na)-rat2di(k,na)) rat2d(k,na)=zero rat2di(k,na)=zero endif enddo enddo else do na = 1, natot xx = 0.d0 do k=1,3 xx = rat2d(1,na) * g(1,k) * ratd(k,na) + & rat2d(2,na) * g(2,k) * ratd(k,na) + & rat2d(3,na) * g(3,k) * ratd(k,na) + xx end do if (xx.gt.eps16) then ratd (:,na) = rat2d (:,na) * xx xx = 0.d0 do k=1,3 xx = rat2d(1,na) * g(1,k) * rat2d(k,na) + & rat2d(2,na) * g(2,k) * rat2d(k,na) + & rat2d(3,na) * g(3,k) * rat2d(k,na) + xx end do ratd(:,na) = ratd(:,na) / xx else ratd(:, na) = zero endif enddo endif if (calc (1:1) .ne.'m') then do k = 1, 3 do l = 1, 3 xx = avec2d (l, k) * avec2di (l, k) if (xx.lt.zero) then avecd (l, k) = zero avec(l, k)=avec2d(l,k)*aveci(l,k)-avec2di(l,k)*avec(l,k) avec(l, k)=avec(l,k)/(avec2d(l,k)-avec2di(l,k)) avec2d(l,k)=zero avec2di(l,k)=zero endif enddo enddo endif endif ! ! update atomic positions and calculate intermediate velocities ! and accelerations ! do na = 1, natot do k = 1, 3 rati (k, na) = rat (k, na) rat (k, na) = rat (k, na) + dt * ratd (k, na) + dt * dt * (quatro & * rat2d (k, na) - rat2di (k, na) ) / seis rat2di (k, na) = rat2d (k, na) enddo enddo ! ! update lattice vectors if cell dynamics ! if (calc (1:1) .ne.'m') then do j = 1, 3 do i = 1, 3 aveci (i, j) = avec (i, j) avec (i, j) = avec (i, j) + dt * avecd (i, j) + (dt * dt * & (quatro * avec2d (i, j) - avec2di (i, j) ) / seis) * dble(iforceh(i,j))*scaloff avec2di (i, j) = avec2d (i, j) enddo enddo endif ! ! update metric related quantities just in case are needed by forclj ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) return 302 format(1x,3e12.8) 109 format(1x,'at quench alpha = ',f7.4,' nstep = ',i4,/) 1001 format(/,' new values for : kinetic energy = ',f18.12,/, & & ' potential energy = ',f18.12,/, & & ' total energy = ',f18.12,/) end subroutine vcmove !* !* subroutine ranv (ntype, natot, ityp, atmass, mxdtyp, mxdatm, temp, & ekint, v, vmean, rms, vx2, vy2, vz2, ekin) ! ! sets up random velocities with maxwellian distribution ! at temperature t. total linear momentum components are zero ! rewritten on 1/31/90 by rmw ! extracted from car & parrinello 's program ! ! input: ! mxdtyp = array dimension for type of atoms ! mxdatm = array dimension for atoms (irrespective of type) ! ntype = number of types of atoms ! natot = total number of atoms ! ityp(na) = atomic type of na-th atom ! atmass(i) = atomic masses for atoms of type i (in proton masses) ! temp = temperature in k ! ! output: ! v(i,na) = initial velocity of atom na of type nt ! vmean(nt), rms(nt),vx2(nt),vy2(nt),vz2(nt) ! USE io_global, ONLY : stdout USE constants, ONLY : k_boltzmann_ry USE kinds , only : DP implicit none ! integer :: mxdtyp, mxdatm real(DP) :: atmass (mxdtyp) real(DP) :: v (3, mxdatm), p (3) real(DP) :: vx2 (mxdtyp), vy2 (mxdtyp), vz2 (mxdtyp) real(DP) :: rms (mxdtyp), vmean (mxdtyp), ekin (mxdtyp) ! integer :: ityp (mxdatm), natot integer :: na, nt, j, k, ntype, iseed, natom real(DP) :: ran3, vfac, sig, tfac, vr, atemp, eps, temp, ekint, t real(DP) :: b0, b1, c0, c1 real(DP) :: zero, um, dois, tres data b0, b1, c0, c1 / 2.30753d0, 0.27061d0, 0.99229d0, 0.04481d0 / data zero, um, dois, tres / 0.d0, 1.d0, 2.d0, 3.0d0 / ! ! example run ! do nt = 1, ntype ekin (nt) = zero enddo ekint = zero ! ! if (natot.ne.1) then ! ! assign random velocities ! t = temp if (temp.lt.1.d-14) t = 1.d-14 iseed = - 119 eps = ran3 (iseed) ! ! establish gaussian distribution for each atom kind ! ! natom (the number of atoms of a given type) is calculated when needed ! do nt = 1, ntype natom = 0 vfac = dsqrt (k_boltzmann_ry * t / atmass (nt) ) ! WRITE( stdout,901) ! WRITE( stdout,*) 'vfac = ',vfac iseed = iseed+382 do na = 1, natot if (ityp (na) .eq.nt) then natom = natom + 1 do j = 1, 3 eps = ran3 (iseed) if (eps.lt.1.d-10) eps = 1.d-10 if (eps.le.0.5d0) goto 100 eps = eps - um if (eps.gt. - 1.d-10) eps = - 1.d-10 100 sig = dsqrt (log (um / (eps * eps) ) ) vr = sig - (b0 + b1 * sig) / (um + c0 * sig + c1 * sig * & sig) vr = vr * vfac if (eps.lt.zero) vr = - vr v (j, na) = vr enddo endif enddo ! p (1) = zero p (2) = zero p (3) = zero ekin (nt) = zero if (natom.eq.0) then WRITE( stdout,*) 'natom=0 for type',nt,'in sub ranv (1) !!!! ' go to 111 end if ! ! calculate linear-momentum. ! do na = 1, natot if (ityp (na) .eq.nt) then p (1) = p (1) + v (1, na) p (2) = p (2) + v (2, na) p (3) = p (3) + v (3, na) endif enddo p (1) = p (1) / DBLE (natom) p (2) = p (2) / DBLE (natom) p (3) = p (3) / DBLE (natom) ! ! zero linear momentum for atom type nt ! do na = 1, natot if (ityp (na) .eq.nt) then v (1, na) = v (1, na) - p (1) v (2, na) = v (2, na) - p (2) v (3, na) = v (3, na) - p (3) endif enddo do na = 1, natot if (ityp (na) .eq.nt) then ekin(nt) = ekin(nt) + ( v(1,na)*v(1,na) + v(2,na)*v(2,na) + & v(3,na)*v(3,na) ) / dois endif enddo ! WRITE( stdout,*) 'ekin(nt)',ekin(nt) ekin (nt) = atmass (nt) * ekin (nt) ekint = ekint + ekin (nt) 111 continue enddo ! ! rescale velocities to give correct temperature ! atemp = dois * ekint / tres / DBLE (natot - 1) / k_boltzmann_ry tfac = dsqrt (t / atemp) if (temp.lt.1d-14) tfac = zero ! WRITE( stdout,*) 'atemp = ',atemp,' k' ! WRITE( stdout,*) 'tfac = ',tfac do nt = 1, ntype vmean (nt) = zero rms (nt) = zero vx2 (nt) = zero vy2 (nt) = zero vz2 (nt) = zero enddo do na = 1, natot nt = ityp (na) v (1, na) = v (1, na) * tfac v (2, na) = v (2, na) * tfac v (3, na) = v (3, na) * tfac vmean(nt) = vmean(nt) + dsqrt (v(1,na)**2 + v(2,na)**2 + v(3,na)**2) vx2 (nt) = vx2 (nt) + v (1, na) **2 vy2 (nt) = vy2 (nt) + v (2, na) **2 vz2 (nt) = vz2 (nt) + v (3, na) **2 enddo do nt = 1, ntype natom = 0 do na = 1, natot if (ityp (na) .eq.nt) natom = natom + 1 enddo if (natom.gt.0) then vmean (nt) = vmean (nt) / DBLE (natom) rms (nt) = dsqrt ( (vx2 (nt) + vy2 (nt) + vz2 (nt) ) / & DBLE ( natom) ) vx2 (nt) = dsqrt (vx2 (nt) / DBLE (natom) ) vy2 (nt) = dsqrt (vy2 (nt) / DBLE (natom) ) vz2 (nt) = dsqrt (vz2 (nt) / DBLE (natom) ) else vmean (nt) = zero rms (nt) = zero vx2 (nt) = zero vy2 (nt) = zero vz2 (nt) = zero end if enddo ekint = ekint * tfac * tfac else ekint = zero do k = 1, 3 v (k, 1) = zero enddo vmean (1) = zero rms (1) = zero vx2 (1) = zero vy2 (1) = zero ekin (1) = zero endif return 801 format(1x,5f14.10) 901 format(/,10x, 'initial conditions',/) 1999 format(1x,//) end subroutine ranv !* !* subroutine sigp (avec, avecd, avec2d, sigma, vcell) ! ! calculates sigmap matrices and avec2d for ! new dynamics(rmw 5/30/90) ! ! input: ! avec = lattice vectors ! avecd = time derivative of lattice vectors ! avec2d = 2nd time derivative of lattice vectors ! sigma = volume * rec. latt. vectors / 2 pi ! vcell = cell volume ! ! output: ! avec2d = new 2nd time derivative of lattice vectors ! USE kinds, only : DP implicit none ! real(DP) :: avec (3, 3), avecd (3, 3), avec2d (3, 3), sigmap (3, & 3, 3, 3), sigmad (3, 3), sigma (3, 3), e (3, 3), fp (3, 3, 3, 3), & fd (3, 3), fm1 (3, 3), fm (3, 3), sm (3, 3), avint (3, 3), & vcell ! integer :: i, j, k, l, m, n real(DP) :: zero, dois parameter (zero = 0.d0, dois = 2.d0) ! ! sigmap_ijkl = d sigma_ij / d h_kl ! =( sigma_ij * sigma_kl - sigma_kj * sigma_il ) / vcell ! do i = 1, 3 do j = 1, 3 do k = 1, 3 do l = 1, 3 sigmap(i,j,k,l) = ( sigma(i,j)*sigma(k,l) - & sigma(k,j)*sigma(i,l) ) / vcell enddo enddo enddo enddo ! _1 t 2 ! calculate f = h * h / vcell ! do j = 1, 3 do i = 1, 3 fm1 (i, j) = zero do l = 1, 3 fm1 (i, j) = fm1 (i, j) + avec (l, i) * avec (l, j) enddo fm1 (i, j) = fm1 (i, j) / vcell / vcell enddo enddo ! .t . ! calculate e = h * h ! do j = 1, 3 do i = 1, 3 e (i, j) = zero do m = 1, 3 e (i, j) = e (i, j) + avecd (m, i) * avecd (m, j) enddo enddo enddo ! ij t t ij ! calculate f' = sigma' * sigma + sigma * sigma' ! do n = 1, 3 do m = 1, 3 do j = 1, 3 do i = 1, 3 fp(i,j,m,n) = zero do l = 1, 3 fp(i,j,m,n) = fp(i,j,m,n) + sigmap(i,j,l,m) * sigma(l,n) + & sigma(l,m) * sigmap(i,j,l,n) enddo enddo enddo enddo enddo ! ! calculate sigmad ! do n = 1, 3 do m = 1, 3 sigmad(m,n) = zero do j = 1, 3 do i = 1, 3 sigmad(m,n) = sigmad(m,n) + sigmap(i,j,m,n)*avecd(i,j) enddo enddo enddo enddo ! . ! calculate f ! do j = 1, 3 do i = 1, 3 fd(i,j) = zero do l = 1, 3 fd(i,j) = fd(i,j) + sigmad(l,i)*sigma(l,j) + sigma(l,i)*sigmad(l,j) enddo enddo enddo ! ! calculate fm ! do j = 1, 3 do i = 1, 3 fm (i, j) = zero do l = 1, 3 do k = 1, 3 fm (i, j) = fm (i, j) + e (l, k) * fp (i, j, k, l) enddo enddo fm (i, j) = fm (i, j) / dois enddo enddo ! ! calculate sm ! do j = 1, 3 do i = 1, 3 sm (i, j) = zero do l = 1, 3 sm (i, j) = sm (i, j) + avecd (i, l) * fd (l, j) enddo enddo enddo ! ! calculate new avec2d ! do j = 1, 3 do i = 1, 3 avint (i, j) = avec2d (i, j) + fm (i, j) - sm (i, j) enddo enddo ! ! do j = 1, 3 do i = 1, 3 avec2d (i, j) = zero do m = 1, 3 avec2d (i, j) = avec2d (i, j) + avint (i, m) * fm1 (m, j) enddo enddo enddo ! return end subroutine sigp !* !* subroutine updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) ! ! ! update metric related quantities ! (rmw 18/8/99) ! ! input: ! avec(3,3) = lattice vectors ! avecd(3,3) = derivative of lattice vectors ! ! output: t ! g(3,3) = avec * avec ! t t ! gd(3,3) = avecd * avec + avecd * avec ! _1 ! gm1(3,3) = g ! _1 ! gmgd(3,3) = g * gd ! sigma(3,3) = reciprocal lattice vectors / twopi ! vcell = cell volume ! USE kinds, only : DP implicit none ! real(DP) :: zero, um, dois, tres parameter (zero = 0.0d0, um = 1.0d0, dois = 2.0d0, tres = 3.0d0) ! real(DP) :: avec (3, 3), avecd (3, 3), sigma (3, 3) real(DP) :: g (3, 3), gd (3, 3), gmgd (3, 3), gm1 (3, 3) real(DP) :: vcell integer :: i, j, m ! ! compute the lattice wave-vectors/twopi and the cell volume ! ! vcell = abs (det (h_ij)) ! NOTE the abs value ! ! ! sigma_ij = d vcell / d h_ij ! sigma (1, 1) = avec (2, 2) * avec (3, 3) - avec (3, 2) * avec (2, 3) sigma (2, 1) = avec (3, 2) * avec (1, 3) - avec (1, 2) * avec (3, 3) sigma (3, 1) = avec (1, 2) * avec (2, 3) - avec (2, 2) * avec (1, 3) sigma (1, 2) = avec (2, 3) * avec (3, 1) - avec (3, 3) * avec (2, 1) sigma (2, 2) = avec (3, 3) * avec (1, 1) - avec (1, 3) * avec (3, 1) sigma (3, 2) = avec (1, 3) * avec (2, 1) - avec (2, 3) * avec (1, 1) sigma (1, 3) = avec (2, 1) * avec (3, 2) - avec (3, 1) * avec (2, 2) sigma (2, 3) = avec (3, 1) * avec (1, 2) - avec (1, 1) * avec (3, 2) sigma (3, 3) = avec (1, 1) * avec (2, 2) - avec (2, 1) * avec (1, 2) ! ! compute cell volume and modify sigma if needed ! vcell = sigma (1, 1) * avec (1, 1) + sigma (2, 1) * avec (2, 1) & + sigma (3, 1) * avec (3, 1) if (vcell.lt.0.d0) then vcell = - vcell do i = 1, 3 do j = 1, 3 sigma (i, j) = - sigma (i, j) enddo enddo endif ! ! calculate g, gd, and gm1 matrices ! do j = 1, 3 do i = 1, 3 g (i, j) = zero gm1 (i, j) = zero gd (i, j) = zero enddo enddo do j = 1, 3 do i = 1, 3 do m = 1, 3 g(i, j) = g(i, j) + avec(m,i)*avec(m,j) gm1(i, j) = gm1(i, j) + sigma(m,i)*sigma(m,j) gd(i, j) = gd(i, j) + avec(m,i)*avecd(m,j) + avecd(m,i)*avec(m,j) enddo gm1(i,j) = gm1(i,j) / vcell / vcell enddo enddo ! _1 . ! calculate g * g ( = gmgd) ! do j = 1, 3 do i = 1, 3 gmgd (i, j) = zero do m = 1, 3 gmgd (i, j) = gmgd (i, j) + gm1 (i, m) * gd (m, j) enddo enddo enddo return end subroutine updg !* !* subroutine setg (avec, g) ! ! ! update metric related quantities ! (rmw 18/8/99) ! ! input: ! avec(3,3) = lattice vectors ! ! output: t ! g(3,3) = avec * avec ! USE kinds, only : DP implicit none ! real(DP) :: zero parameter (zero = 0.0d0) ! real(DP) :: avec (3, 3), g (3, 3) integer :: i, j, m ! ! calculate g ! do j = 1, 3 do i = 1, 3 g (i, j) = zero enddo enddo do j = 1, 3 do i = 1, 3 do m = 1, 3 g (i, j) = g (i, j) + avec (m, i) * avec (m, j) enddo enddo enddo return end subroutine setg !* !* real(8) function ran3 (idum) USE kinds, only : DP implicit none save ! implicit real*4(m) ! parameter (mbig=4000000.,mseed=1618033.,mz=0.,fac=2.5e-7) integer :: mbig, mseed, mz real(DP) :: fac parameter (mbig = 1000000000, mseed = 161803398, mz = 0, fac = 1.d-9) integer :: ma (55), iff, k, inext, inextp, ii, mj, idum, i, mk ! common /ranz/ ma,inext,inextp data iff / 0 / if (idum.lt.0.or.iff.eq.0) then iff = 1 mj = mseed-iabs (idum) mj = mod (mj, mbig) ma (55) = mj mk = 1 do i = 1, 54 ii = mod (21 * i, 55) ma (ii) = mk mk = mj - mk if (mk.lt.mz) mk = mk + mbig mj = ma (ii) enddo do k = 1, 4 do i = 1, 55 ma (i) = ma (i) - ma (1 + mod (i + 30, 55) ) if (ma (i) .lt.mz) ma (i) = ma (i) + mbig enddo enddo inext = 0 inextp = 31 idum = 1 endif inext = inext + 1 if (inext.eq.56) inext = 1 inextp = inextp + 1 if (inextp.eq.56) inextp = 1 mj = ma (inext) - ma (inextp) if (mj.lt.mz) mj = mj + mbig ma (inext) = mj ran3 = mj * fac return end function ran3 espresso-5.0.2/PW/src/para.f900000644000700200004540000001362112053145627014750 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! ! ... here are all parallel subroutines (wrappers to MPI calls) used ! ... by the PWscf code ! !---------------------------------------------------------------------------- SUBROUTINE poolscatter( nsize, nkstot, f_in, nks, f_out ) !---------------------------------------------------------------------------- ! ! ... This routine scatters a quantity ( typically the eigenvalues ) ! ... among the pools. ! ... On input, f_in is required only on the first node of the first pool. ! ... f_in and f_out may coincide. ! ... Not a smart implementation! ! USE kinds, ONLY : DP USE mp_global, ONLY : intra_pool_comm, inter_pool_comm, & my_pool_id, npool, me_pool, root_pool, kunit USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! INTEGER :: nsize, nkstot, nks ! first dimension of vectors f_in and f_out ! number of k-points per pool ! total number of k-points REAL(DP) :: f_in(nsize,nkstot), f_out(nsize,nks) ! input ( contains values for all k-point ) ! output ( only for k-points of mypool ) ! #if defined (__MPI) ! INTEGER :: rest, nbase ! the rest of the integer division nkstot / npo ! the position in the original list ! ! ! ... copy from the first node of the first pool ! ... to the first node of all the other pools ! IF ( me_pool == root_pool ) & CALL mp_bcast( f_in, root_pool, inter_pool_comm ) ! ! ... distribute the vector on the first node of each pool ! rest = nkstot / kunit - ( nkstot / kunit / npool ) * npool ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! f_out(:,1:nks) = f_in(:,(nbase+1):(nbase+nks)) ! ! ... copy from the first node of every pool ! ... to the other nodes of every pool ! CALL mp_bcast( f_out, root_pool, intra_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE poolscatter ! ! ... other parallel subroutines ! !----------------------------------------------------------------------- SUBROUTINE poolrecover( vec, length, nkstot, nks ) !----------------------------------------------------------------------- ! ! ... recovers on the first processor of the first pool a ! ... distributed vector ! USE kinds, ONLY : DP USE mp_global, ONLY : inter_pool_comm, intra_image_comm, & npool, me_pool, root_pool, my_pool_id, kunit USE mp, ONLY : mp_barrier USE parallel_include ! IMPLICIT NONE ! INTEGER :: length, nks, nkstot REAL(DP) :: vec(length,nkstot) ! #if defined (__MPI) ! INTEGER :: status(MPI_STATUS_SIZE) INTEGER :: i, nks1, rest, fine, nbase, info ! ! IF ( npool <= 1 ) RETURN ! IF ( MOD( nkstot, kunit ) /= 0 ) & CALL errore( 'poolrecover', 'nkstot/kunit is not an integer', nkstot ) ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! CALL mp_barrier( intra_image_comm ) ! IF ( me_pool == root_pool .AND. my_pool_id > 0 ) THEN ! CALL MPI_SEND( vec, (length*nks), MPI_DOUBLE_PRECISION, 0, 17, & inter_pool_comm, info ) ! CALL errore( 'poolrecover', 'info<>0 in send', info ) ! END IF ! DO i = 2, npool ! IF ( i <= rest ) THEN ! fine = nks1 + kunit ! nbase = ( nks1 + kunit ) * ( i - 1 ) ! ELSE ! fine = nks1 ! nbase = rest * (nks1 + kunit) + (i - 1 - rest) * nks1 ! END IF ! IF ( me_pool == root_pool .AND. my_pool_id == 0 ) THEN ! CALL MPI_RECV( vec(1,nbase+1), (length*fine), MPI_DOUBLE_PRECISION, & (i-1), 17, inter_pool_comm, status, info ) ! CALL errore( 'poolrecover', 'info<>0 in recv', info ) ! END IF ! END DO ! #endif ! RETURN ! END SUBROUTINE poolrecover ! !------------------------------------------------------------------------ SUBROUTINE ipoolrecover( ivec, length, nkstot, nks ) !------------------------------------------------------------------------ ! ! ... as above, for an integer vector ! USE mp_global, ONLY : inter_pool_comm, intra_image_comm, & npool, me_pool, root_pool, my_pool_id, kunit USE mp, ONLY : mp_barrier USE parallel_include ! IMPLICIT NONE ! INTEGER :: length, nks, nkstot INTEGER :: ivec(length,nkstot) ! #if defined (__MPI) ! INTEGER :: status(MPI_STATUS_SIZE) INTEGER :: i, nks1, rest, fine, nbase, info ! ! IF ( npool <= 1 ) RETURN ! IF ( MOD( nkstot, kunit ) /= 0 ) & CALL errore( 'poolrecover', 'nkstot/kunit is not an integer', nkstot ) ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! CALL mp_barrier( intra_image_comm ) ! IF ( me_pool == root_pool .AND. my_pool_id > 0 ) THEN ! CALL MPI_SEND( ivec, (length*nks), MPI_INTEGER, 0, 17, & inter_pool_comm, info ) ! CALL errore( 'ipoolrecover', 'info<>0 in send', info ) ! END IF ! DO i = 2, npool ! IF ( i <= rest ) THEN ! fine = nks1 + kunit ! nbase = ( nks1 + kunit ) * ( i - 1 ) ! ELSE ! fine = nks1 ! nbase = rest * ( nks1 + kunit ) + ( i - 1 - rest ) * nks1 ! END IF ! IF ( me_pool == root_pool .AND. my_pool_id == 0 ) THEN ! CALL MPI_RECV( ivec(1,nbase+1), (length*fine), MPI_INTEGER, & (i-1), 17, inter_pool_comm, status, info ) ! CALL errore( 'ipoolrecover', 'info<>0 in recv', info ) ! END IF ! END DO ! #endif ! RETURN ! END SUBROUTINE ipoolrecover espresso-5.0.2/PW/src/h_psi_meta.f900000644000700200004540000000676712053145627016152 0ustar marsamoscm! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine h_psi_meta (ldap, np, mp, psip, hpsi) !----------------------------------------------------------------------- ! ! This routine computes the specific contribution from the meta-GGA ! potential to H*psi; the result is added to hpsi ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba USE lsda_mod, ONLY : nspin, current_spin USE wvfct, ONLY : igk, current_k USE gvecs, ONLY : nls, nlsm USE gvect, ONLY : g USE scf, ONLY : kedtau USE klist, ONLY : xk USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! implicit none ! COMPLEX(DP), PARAMETER :: ci=(0.d0,1.d0) integer :: ldap, np, mp complex(DP) :: psip (ldap, mp), hpsi (ldap, mp) real (DP), allocatable :: kplusg (:) ! complex (DP), allocatable :: psi(:) ! integer :: im, j, nrxxs ! CALL start_clock( 'h_psi_meta' ) nrxxs = dffts%nnr allocate (kplusg(np)) if (gamma_only) then ! ! gamma algorithm ! do im = 1, mp, 2 do j =1,3 psic(1:nrxxs) = ( 0.D0, 0.D0 ) ! kplusg (1:np) = (xk(j,current_k)+g(j,igk(1:np))) * tpiba if (im < mp ) then psic(nls(igk(1:np))) = ci * kplusg(1:np) * & ( psip (1:np,im) + ci * psip(1:np,im+1) ) psic(nlsm(igk(1:np)))= -ci * kplusg(1:np) * & CONJG ( psip (1:np,im) - ci * psip(1:np,im+1) ) else psic(nls(igk(1:np))) = ci * kplusg(1:np) * psip(1:np,im) psic(nlsm(igk(1:np)))= -ci * kplusg(1:np) * CONJG(psip(1:np,im)) end if ! CALL invfft ('Wave', psic, dffts) ! psic(1:nrxxs) = kedtau(1:nrxxs,current_spin) * psic(1:nrxxs) ! CALL fwfft ('Wave', psic, dffts) ! if ( im < mp ) then hpsi(1:np,im) = hpsi(1:np,im) - ci * kplusg(1:np) * 0.5d0 * & ( psic(nls(igk(1:np))) + CONJG(psic(nlsm(igk(1:np)))) ) hpsi(1:np,im+1)= hpsi(1:np,im+1) - kplusg(1:np) * 0.5d0 * & ( psic(nls(igk(1:np))) - CONJG(psic(nlsm(igk(1:np)))) ) else hpsi(1:np,im) = hpsi(1:np,im) - ci * kplusg(1:np) * & psic(nls(igk(1:np))) end if end do end do else ! ! generic k algorithm ! do im = 1, mp do j =1,3 psic(1:nrxxs) = ( 0.D0, 0.D0 ) ! kplusg (1:np) = (xk(j,current_k)+g(j,igk(1:np))) * tpiba psic(nls(igk(1:np))) = CMPLX(0d0, kplusg(1:np),kind=DP) * psip (1:np,im) ! CALL invfft ('Wave', psic, dffts) ! psic(1:nrxxs) = kedtau(1:nrxxs,current_spin) * psic(1:nrxxs) ! CALL fwfft ('Wave', psic, dffts) ! hpsi(1:np,im) = hpsi(1:np,im) - & CMPLX(0d0, kplusg(1:np),kind=DP) * psic(nls(igk(1:np))) end do end do end if deallocate (kplusg) CALL stop_clock( 'h_psi_meta' ) return end subroutine h_psi_meta espresso-5.0.2/PW/src/ns_adj.f900000644000700200004540000000664612053145627015274 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine ns_adj !----------------------------------------------------------------------- ! This routine tries to suggest to the code the right atomic orbital to ! localize the charge on. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_U, starting_ns USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : noncolin, npol USE io_global, ONLY : stdout implicit none ! integer, parameter:: ldmx=7 integer :: na, nt, is, m1, m2, ldim, i, j, l real(DP) :: lambda(npol*ldmx) complex(DP) :: vet(npol*ldmx,npol*ldmx), f(npol*ldmx,npol*ldmx), temp if (ALL(starting_ns == -1.d0)) return write (stdout,*) "Modify starting ns matrices according to input values " if (2*Hubbard_lmax+1>ldmx) call errore('ns_adj',' ldmx too small',ldmx) do na = 1, nat nt = ityp(na) if (Hubbard_U(nt).ne.0.d0) then ldim = 2 * Hubbard_l(nt) + 1 if (noncolin) then do m1 = 1, ldim do m2 = 1, ldim f(m1, m2) = rho%ns_nc(m1, m2, 1, na) f(m1, ldim+m2) = rho%ns_nc(m1, m2, 2, na) f(ldim+m1, m2) = rho%ns_nc(m1, m2, 3, na) f(ldim+m1, ldim+m2) = rho%ns_nc(m1, m2, 4, na) end do end do call cdiagh( npol*ldim, f, npol*ldmx, lambda, vet) j = 0 do is = 1, npol do i = 1, ldim j = j + 1 if (starting_ns(i,is,nt) >= 0.d0) lambda(j) = starting_ns(i,is,nt) enddo enddo do m1 = 1, npol*ldim do m2 = m1, npol*ldim temp = 0.d0 do i = 1, npol*ldim temp = temp + vet(m1,i)*lambda(i)*CONJG(vet(m2,i)) end do f(m1,m2) = temp f(m2,m1) = CONJG(temp) end do end do do m1 = 1, ldim do m2 = 1, ldim rho%ns_nc(m1, m2, 1, na) = f(m1, m2) rho%ns_nc(m1, m2, 2, na) = f(m1, ldim+m2) rho%ns_nc(m1, m2, 3, na) = f(ldim+m1, m2) rho%ns_nc(m1, m2, 4, na) = f(ldim+m1, ldim+m2) end do end do else do is = 1, nspin do m1 = 1, ldim do m2 = 1, ldim f(m1,m2) = rho%ns(m1,m2,is,na) enddo enddo call cdiagh(ldim, f, ldmx, lambda, vet) do i = 1, ldim if (starting_ns(i,is,nt) >= 0.d0) lambda(i) = starting_ns(i,is,nt) enddo do m1 = 1, ldim do m2 = m1, ldim temp = 0.d0 do i = 1, ldim temp = temp + CONJG(vet(m1,i))*lambda(i)*vet(m2,i) enddo rho%ns(m1,m2,is,na) = DBLE(temp) rho%ns(m2,m1,is,na) = rho%ns(m1,m2,is,na) enddo enddo enddo endif endif enddo ! on na if (noncolin) then CALL write_ns_nc else CALL write_ns endif return end subroutine ns_adj espresso-5.0.2/PW/src/usnldiag.f900000644000700200004540000000744212053145630015631 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine usnldiag (h_diag, s_diag) !----------------------------------------------------------------------- ! ! add nonlocal pseudopotential term to diagonal part of Hamiltonian ! compute the diagonal part of the S matrix ! USE kinds, ONLY: DP USE ions_base, ONLY : nat, ityp, ntyp => nsp USE wvfct, ONLY: npw, npwx USE lsda_mod, ONLY: current_spin USE uspp, ONLY: deeq, vkb, qq, qq_so, deeq_nc USE uspp_param, ONLY: upf, nh, newpseudo USE spin_orb, ONLY: lspinorb USE noncollin_module, ONLY: noncolin, npol ! implicit none ! ! here the dummy variables ! real(DP) :: h_diag (npwx,npol), s_diag (npwx,npol) ! input/output: the diagonal part of the hamiltonian ! output: the diagonal part of the S matrix ! ! and here the local variables ! integer :: ikb, jkb, ih, jh, na, nt, ig, ijkb0, ipol ! counters complex(DP) :: ps1(2), ps2(2), ar ! ! initialise s_diag ! s_diag = 1.d0 ! ! multiply on projectors ! ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) == nt) then do ih = 1, nh (nt) ikb = ijkb0 + ih if (lspinorb) then ps1(1) = deeq_nc (ih, ih, na, 1) ps1(2) = deeq_nc (ih, ih, na, 4) ps2(1) = qq_so(ih, ih, 1, nt) ps2(2) = qq_so(ih, ih, 4, nt) else if (noncolin) then ps1(1) = deeq_nc (ih, ih, na, 1) ps1(2) = deeq_nc (ih, ih, na, 4) ps2(1) = qq (ih, ih, nt) ps2(2) = qq (ih, ih, nt) else ps1(1) = deeq (ih, ih, na, current_spin) ps2(1) = qq (ih, ih, nt) end if do ipol =1, npol do ig = 1, npw ar = vkb (ig, ikb)*CONJG(vkb (ig, ikb)) h_diag (ig,ipol) = h_diag (ig,ipol) + ps1(ipol) * ar s_diag (ig,ipol) = s_diag (ig,ipol) + ps2(ipol) * ar enddo enddo if ( upf(nt)%tvanp .or.newpseudo (nt) ) then do jh = 1, nh (nt) if (jh.ne.ih) then jkb = ijkb0 + jh if (lspinorb) then ps1(1) = deeq_nc (ih, jh, na, 1) ps1(2) = deeq_nc (ih, jh, na, 4) ps2(1) = qq_so(ih, jh, 1, nt) ps2(2) = qq_so(ih, jh, 4, nt) else if (noncolin) then ps1(1) = deeq_nc (ih, jh, na, 1) ps1(2) = deeq_nc (ih, jh, na, 4) ps2(1) = qq (ih, jh, nt) ps2(2) = qq (ih, jh, nt) else ps1(1) = deeq (ih, jh, na, current_spin) ps2(1) = qq (ih, jh, nt) end if do ipol = 1, npol do ig = 1, npw ar = vkb (ig, ikb) *CONJG( vkb (ig, jkb)) h_diag (ig,ipol) = h_diag (ig,ipol) + & ps1(ipol) * ar s_diag (ig,ipol) = s_diag (ig,ipol) + & ps2(ipol) * ar enddo enddo endif enddo endif enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo return end subroutine usnldiag espresso-5.0.2/PW/src/tabd.f900000644000700200004540000000531512053145630014732 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION hubbard_occ ( psd ) !----------------------------------------------------------------------- ! ! This routine is a table (far from being complete) for the total number ! of localized electrons in transition metals or rare earths ! (PPs usually are built on non physical configurations) ! USE kinds, ONLY: DP ! IMPLICIT NONE ! CHARACTER(LEN=2), INTENT(IN) :: psd REAL(DP) :: hubbard_occ ! SELECT CASE( TRIM(ADJUSTL(psd)) ) ! ! TRANSITION METALS ! CASE( 'Ti', 'Zr', 'Hf' ) hubbard_occ = 2.d0 ! CASE( 'V', 'Nb', 'Ta' ) hubbard_occ = 3.d0 ! CASE( 'Cr', 'Mo', 'W' ) hubbard_occ = 5.d0 ! CASE( 'Mn', 'Tc', 'Re' ) hubbard_occ = 5.d0 ! CASE( 'Fe', 'Ru', 'Os' ) hubbard_occ = 6.d0 ! CASE( 'Co', 'Rh', 'Ir' ) hubbard_occ = 7.d0 ! CASE( 'Ni', 'Pd', 'Pt' ) hubbard_occ = 8.d0 ! CASE( 'Cu', 'Ag', 'Au' ) hubbard_occ = 10.d0 ! CASE( 'Zn', 'Cd', 'Hg' ) hubbard_occ = 10.d0 ! ! RARE EARTHS ! CASE( 'Ce', 'Th' ) hubbard_occ = 2.d0 ! CASE( 'Pr', 'Pa' ) hubbard_occ = 3.d0 ! CASE( 'Nd', 'U' ) hubbard_occ = 4.d0 ! CASE( 'Pm', 'Np' ) hubbard_occ = 5.d0 ! CASE( 'Sm', 'Pu' ) hubbard_occ = 6.d0 ! CASE( 'Eu', 'Am' ) hubbard_occ = 6.d0 ! CASE( 'Gd', 'Cm' ) hubbard_occ = 7.d0 ! CASE( 'Tb', 'Bk' ) hubbard_occ = 8.d0 ! CASE( 'Dy', 'Cf' ) hubbard_occ = 9.d0 ! CASE( 'Ho', 'Es' ) hubbard_occ =10.d0 ! CASE( 'Er', 'Fm' ) hubbard_occ =11.d0 ! CASE( 'Tm', 'Md' ) hubbard_occ =12.d0 ! CASE( 'Yb', 'No' ) hubbard_occ =13.d0 ! CASE( 'Lu', 'Lr' ) hubbard_occ =14.d0 ! ! OTHER ELEMENTS ! CASE( 'C' ) hubbard_occ = 2.d0 ! CASE( 'N' ) hubbard_occ = 3.d0 ! CASE( 'O' ) hubbard_occ = 4.d0 ! CASE( 'H' ) hubbard_occ = 1.d0 ! CASE( 'Ga', 'In' ) hubbard_occ = 10.d0 ! ! ! NOT INSERTED ! CASE DEFAULT hubbard_occ = 0.d0 call errore ('hubbard_occ', 'pseudopotential not yet inserted', 1) ! END SELECT RETURN END FUNCTION hubbard_occ espresso-5.0.2/PW/src/openfil.f900000644000700200004540000000754412053145630015462 0ustar marsamoscm! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE openfil() !---------------------------------------------------------------------------- ! ! ... This routine opens some files needed to the self consistent run, ! ... sets various file names, units, record lengths ! ... All units are set in Modules/io_files.f90 ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE basis, ONLY : natomwfc, starting_wfc USE wvfct, ONLY : nbnd, npwx USE fixed_occ, ONLY : one_atom_occupations USE klist, ONLY : nks USE ldaU, ONLY : lda_plus_U, U_projection USE io_files, ONLY : prefix, iunpun, iunat, iunsat, iunwfc, iunigk, & nwordwfc, nwordatwfc, iunefield, diropn, & tmp_dir, wfc_dir, iunefieldm, iunefieldp, seqopn USE pw_restart, ONLY : pw_readfile USE noncollin_module, ONLY : npol USE bp, ONLY : lelfield USE buffers, ONLY : open_buffer, init_buffer USE control_flags, ONLY : io_level, twfcollect USE wannier_new, ONLY : use_wannier ! IMPLICIT NONE ! LOGICAL :: exst INTEGER :: ierr CHARACTER(LEN=256) :: tmp_dir_save ! ! ... tmp_dir may be replaced by wfc_dir for large files ! tmp_dir_save = tmp_dir ! IF ( wfc_dir /= 'undefined' ) THEN ! WRITE( stdout, '(5X,"writing wfc files to a dedicated directory")' ) ! tmp_dir = wfc_dir ! END IF ! ! ... nwordwfc is the record length (IN COMPLEX WORDS) ! ... for the direct-access file containing wavefunctions ! nwordwfc = nbnd*npwx*npol ! ! ... iunwfc=10: read/write wfc from/to file ! ... iunwfc=-1: copy wfc to/from RAM ! IF ( io_level > 0 ) THEN iunwfc = 10 ELSE iunwfc = -1 END IF CALL open_buffer( iunwfc, 'wfc', nwordwfc, nks, exst ) ! IF ( TRIM(starting_wfc) == 'file' .AND. .NOT. exst) THEN ! ierr = 1 IF ( twfcollect ) THEN ! ! ... wavefunctions are read from the "save" file and rewritten ! ... (directly in pw_readfile) using the internal format ! CALL pw_readfile( 'wave', ierr ) ! ELSE ! ! ... wavefunctions are read into memory ! CALL init_buffer ( iunwfc, exst, ierr ) ! END IF IF ( ierr > 0 ) THEN ! WRITE( stdout, '(5X,"Cannot read wfc : file not found")' ) ! starting_wfc = 'atomic' ! END IF ! END IF ! ! ... Needed for LDA+U ! ! ... iunat contains the (orthogonalized) atomic wfcs ! ... iunsat contains the (orthogonalized) atomic wfcs * S ! ... iunocc contains the atomic occupations computed in new_ns ! ... it is opened and closed for each reading-writing operation ! nwordatwfc = 2*npwx*natomwfc*npol ! IF ( ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) .OR. & use_wannier .OR. one_atom_occupations ) THEN CALL diropn( iunat, 'atwfc', nwordatwfc, exst ) CALL diropn( iunsat, 'satwfc', nwordatwfc, exst ) END IF ! ! ... iunigk contains the number of PW and the indices igk ! ... Note that unit 15 is reserved for error messages ! CALL seqopn( iunigk, 'igk', 'UNFORMATTED', exst ) ! ! ... open units for electric field calculations ! IF ( lelfield ) THEN CALL diropn( iunefield , 'ewfc' , 2*nwordwfc, exst ) CALL diropn( iunefieldm, 'ewfcm', 2*nwordwfc, exst ) CALL diropn( iunefieldp, 'ewfcp', 2*nwordwfc, exst ) END IF ! tmp_dir = tmp_dir_save ! RETURN ! END SUBROUTINE openfil espresso-5.0.2/PW/src/init_us_2.f900000644000700200004540000001134112053145630015707 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine init_us_2 (npw_, igk_, q_, vkb_) !---------------------------------------------------------------------- ! ! Calculates beta functions (Kleinman-Bylander projectors), with ! structure factor, for all atoms, in reciprocal space. On input: ! npw_ : number of PWs ! igk_(npw_) : indices of G in the list of q+G vectors ! q_(3) : q vector (2pi/a units) ! On output: ! vkb_(npwx,nkb) : beta functions (npw_ <= npwx) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE constants, ONLY : tpi USE gvect, ONLY : eigts1, eigts2, eigts3, mill, g USE wvfct, ONLY : npwx USE us, ONLY : nqx, dq, tab, tab_d2y, spline_ps USE splinelib USE uspp, ONLY : nkb, nhtol, nhtolm, indv USE uspp_param, ONLY : upf, lmaxkb, nhm, nh ! implicit none ! INTEGER, INTENT (IN) :: npw_, igk_ (npw_) REAL(dp), INTENT(IN) :: q_(3) COMPLEX(dp), INTENT(OUT) :: vkb_ (npwx, nkb) ! ! Local variables ! integer :: i0,i1,i2,i3, ig, l, lm, na, nt, nb, ih, jkb real(DP) :: px, ux, vx, wx, arg real(DP), allocatable :: gk (:,:), qg (:), vq (:), ylm (:,:), vkb1(:,:) complex(DP) :: phase, pref complex(DP), allocatable :: sk(:) real(DP), allocatable :: xdata(:) integer :: iq ! ! if (lmaxkb.lt.0) return call start_clock ('init_us_2') allocate (vkb1( npw_,nhm)) allocate ( sk( npw_)) allocate ( qg( npw_)) allocate ( vq( npw_)) allocate ( ylm( npw_, (lmaxkb + 1) **2)) allocate ( gk( 3, npw_)) ! do ig = 1, npw_ gk (1,ig) = q_(1) + g(1, igk_(ig) ) gk (2,ig) = q_(2) + g(2, igk_(ig) ) gk (3,ig) = q_(3) + g(3, igk_(ig) ) qg (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! call ylmr2 ((lmaxkb+1)**2, npw_, gk, qg, ylm) ! ! set now qg=|q+G| in atomic units ! do ig = 1, npw_ qg(ig) = sqrt(qg(ig))*tpiba enddo if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif ! |beta_lm(q)> = (4pi/omega).Y_lm(q).f_l(q).(i^l).S(q) jkb = 0 do nt = 1, ntyp ! calculate beta in G-space using an interpolation table f_l(q)=\int _0 ^\infty dr r^2 f_l(r) j_l(q.r) do nb = 1, upf(nt)%nbeta do ig = 1, npw_ if (spline_ps) then vq(ig) = splint(xdata, tab(:,nb,nt), tab_d2y(:,nb,nt), qg(ig)) else px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 vq (ig) = tab (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab (i1, nb, nt) * px * vx * wx / 2.d0 - & tab (i2, nb, nt) * px * ux * wx / 2.d0 + & tab (i3, nb, nt) * px * ux * vx / 6.d0 endif enddo ! add spherical harmonic part (Y_lm(q)*f_l(q)) do ih = 1, nh (nt) if (nb.eq.indv (ih, nt) ) then l = nhtol (ih, nt) lm =nhtolm (ih, nt) do ig = 1, npw_ vkb1 (ig,ih) = ylm (ig, lm) * vq (ig) enddo endif enddo enddo ! ! vkb1 contains all betas including angular part for type nt ! now add the structure factor and factor (-i)^l ! do na = 1, nat ! ordering: first all betas for atoms of type 1 ! then all betas for atoms of type 2 and so on if (ityp (na) .eq.nt) then arg = (q_(1) * tau (1, na) + & q_(2) * tau (2, na) + & q_(3) * tau (3, na) ) * tpi phase = CMPLX(cos (arg), - sin (arg) ,kind=DP) do ig = 1, npw_ sk (ig) = eigts1 (mill(1,igk_(ig)), na) * & eigts2 (mill(2,igk_(ig)), na) * & eigts3 (mill(3,igk_(ig)), na) enddo do ih = 1, nh (nt) jkb = jkb + 1 pref = (0.d0, -1.d0) **nhtol (ih, nt) * phase do ig = 1, npw_ vkb_(ig, jkb) = vkb1 (ig,ih) * sk (ig) * pref enddo enddo endif enddo enddo deallocate (gk) deallocate (ylm) deallocate (vq) deallocate (qg) deallocate (sk) deallocate (vkb1) call stop_clock ('init_us_2') return end subroutine init_us_2 espresso-5.0.2/PW/src/add_efield.f900000644000700200004540000001752012053145627016067 0ustar marsamoscm! ! Copyright (C) 2003-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... written by J. Tobik ! ! Changes 30/06/2003 (ADC) : ! Calculation of corrections to energy and forces due ! to the field. ! Added possibility to subtract the dipole field ! for slab or molecule calculation. ! (See Bengtsson PRB 59, 12 301 (1999) and ! Meyer and Vanderbilt, PRB 63, 205426 (2001).) ! ! 25/06/2009 (Riccardo Sabatini) ! reformulation using a unique saw(x) function (included in ! cell_base) in all e-field related routines and inclusion of ! a macroscopic electronic dipole contribution in the mixing ! scheme. ! ! !-------------------------------------------------------------------------- SUBROUTINE add_efield(vpoten,etotefield,rho,iflag) !-------------------------------------------------------------------------- ! ! This routine adds an electric field to the local potential. The ! field is made artificially periodic by introducing a saw-tooth ! potential. The field is parallel to a reciprocal lattice vector bg, ! according to the index edir. ! ! if dipfield is false the electric field correction is added to the ! potential given as input (the bare local potential) only ! at the first call to this routine. In the following calls ! the routine exit. ! ! if dipfield is true the dipole moment per unit surface is calculated ! and used to cancel the electric field due to periodic boundary ! conditions. This potential is added to the Hartree and xc potential ! in v_of_rho. NB: in this case the electric field contribution to the ! band energy is subtracted by deband. ! ! USE kinds, ONLY : DP USE constants, ONLY : fpi, eps8, e2, au_debye USE ions_base, ONLY : nat, ityp, zv USE cell_base, ONLY : alat, at, omega, bg, saw USE extfield, ONLY : tefield, dipfield, edir, eamp, emaxpos, & eopreg, forcefield USE force_mod, ONLY : lforce USE io_global, ONLY : stdout,ionode USE control_flags, ONLY : mixing_beta USE lsda_mod, ONLY : nspin USE mp_global, ONLY : intra_image_comm, me_bgrp, intra_bgrp_comm USE fft_base, ONLY : dfftp USE mp, ONLY : mp_bcast, mp_sum USE control_flags, ONLY : iverbosity IMPLICIT NONE ! ! I/O variables ! REAL(DP),INTENT(INOUT) :: vpoten(dfftp%nnr)! ef is added to this potential REAL(DP),INTENT(INOUT) :: etotefield ! contribution to etot due to ef REAL(DP),INTENT(IN) :: rho(dfftp%nnr,nspin) ! the density whose dipole is computed LOGICAL,INTENT(IN) :: iflag ! set to true to force recalculation of field ! ! local variables ! INTEGER :: index, index0, i, j, k INTEGER :: ir, na, ipol REAL(DP) :: length, vamp, value, sawarg, e_dipole, ion_dipole REAL(DP) :: tot_dipole, bmod LOGICAL :: first=.TRUE. SAVE first !--------------------- ! Execution control !--------------------- IF (.NOT.tefield) RETURN ! efield only needs to be added on the first iteration, if dipfield ! is not used. note that for relax calculations it has to be added ! again on subsequent relax steps. IF ((.NOT.dipfield).AND.(.NOT.first) .AND..NOT. iflag) RETURN first=.FALSE. IF ((edir.lt.1).or.(edir.gt.3)) THEN CALL errore('add_efield',' wrong edir',1) ENDIF !--------------------- ! Variable initialization !--------------------- bmod=SQRT(bg(1,edir)**2+bg(2,edir)**2+bg(3,edir)**2) tot_dipole=0._dp e_dipole =0._dp ion_dipole=0._dp !--------------------- ! Calculate dipole !--------------------- if (dipfield) then ! ! dipole correction is active ! CALL compute_el_dip(emaxpos, eopreg, edir, rho, e_dipole) CALL compute_ion_dip(emaxpos, eopreg, edir, ion_dipole) tot_dipole = -e_dipole + ion_dipole #ifdef __MPI CALL mp_bcast(tot_dipole, 0, intra_image_comm) #endif ! ! E_{TOT} = -e^{2} \left( eamp - dip \right) dip \frac{\Omega}{4\pi} ! etotefield=-e2*(eamp-tot_dipole/2.d0)*tot_dipole*omega/fpi !--------------------- ! Define forcefield ! ! F_{s} = e^{2} \left( eamp - dip \right) z_{v}\cross\frac{\vec{b_{3}}}{bmod} !--------------------- IF (lforce) THEN DO na=1,nat DO ipol=1,3 forcefield(ipol,na)= e2 *(eamp - tot_dipole) & *zv(ityp(na))*bg(ipol,edir)/bmod ENDDO ENDDO ENDIF else ! ! dipole correction is not active ! CALL compute_ion_dip(emaxpos, eopreg, edir, ion_dipole) ! ! E_{TOT} = -e^{2} eamp * iondip \frac{\Omega}{4\pi} ! etotefield=-e2*eamp*ion_dipole*omega/fpi !--------------------- ! Define forcefield ! ! F_{s} = e^{2} eamp z_{v}\cross\frac{\vec{b_{3}}}{bmod} !--------------------- IF (lforce) THEN DO na=1,nat DO ipol=1,3 forcefield(ipol,na)= e2 *eamp & *zv(ityp(na))*bg(ipol,edir)/bmod ENDDO ENDDO ENDIF end if ! ! Calculate potential and print values ! length=(1._dp-eopreg)*(alat*SQRT(at(1,edir)**2+at(2,edir)**2+at(3,edir)**2)) vamp=e2*(eamp-tot_dipole)*length IF (ionode) THEN ! ! Output data ! WRITE( stdout,*) WRITE( stdout,'(5x,"Adding external electric field":)') IF (dipfield) then WRITE( stdout,'(/5x,"Computed dipole along edir(",i1,") : ")' ) edir ! ! If verbose prints also the different components ! IF ( iverbosity > 0 ) THEN WRITE( stdout, '(8X,"Elec. dipole ",1F15.4," Ry au, ", 1F15.4," Debye")' ) & e_dipole, (e_dipole*au_debye) WRITE( stdout, '(8X,"Ion. dipole ",1F15.4," Ry au,", 1F15.4," Debye")' ) & ion_dipole, (ion_dipole*au_debye) ENDIF WRITE( stdout, '(8X,"Dipole ",1F15.4," Ry au, ", 1F15.4," Debye")' ) & (tot_dipole* (omega/fpi)), & ((tot_dipole* (omega/fpi))*au_debye) WRITE( stdout, '(8x,"Dipole field ", f11.4," Ry au")') tot_dipole WRITE( stdout,*) ENDIF IF (abs(eamp)>0._dp) WRITE( stdout, & '(8x,"E field amplitude [Ha a.u.]: ", es11.4)') eamp WRITE( stdout,'(8x,"Potential amp. ", f11.4," Ry")') vamp WRITE( stdout,'(8x,"Total length ", f11.4," bohr")') length WRITE( stdout,*) ENDIF ! !------------------------------ ! Add potential ! ! V\left(ijk\right) = e^{2} \left( eamp - dip \right) z_{v} ! Saw\left( \frac{k}{nr3} \right) \frac{alat}{bmod} ! !--------------------- ! Index for parallel summation ! index0 = 0 #if defined (__MPI) ! DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO ! #endif ! ! Loop in the charge array ! DO ir = 1, dfftp%nnr ! ! ... three dimensional indexes ! index = index0 + ir - 1 k = index / (dfftp%nr1x*dfftp%nr2x) index = index - (dfftp%nr1x*dfftp%nr2x)*k j = index / dfftp%nr1x index = index - dfftp%nr1x*j i = index if (edir.eq.1) sawarg = DBLE(i)/DBLE(dfftp%nr1) if (edir.eq.2) sawarg = DBLE(j)/DBLE(dfftp%nr2) if (edir.eq.3) sawarg = DBLE(k)/DBLE(dfftp%nr3) value = e2*(eamp - tot_dipole)*saw(emaxpos,eopreg,sawarg) * (alat/bmod) vpoten(ir) = vpoten(ir) + value END DO RETURN END SUBROUTINE add_efield espresso-5.0.2/PW/src/ortho_wfc.f900000644000700200004540000000543312053145627016021 0ustar marsamoscm! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name, Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) SUBROUTINE ortho_wfc(lda,ldb,wfc,ierr) !This subroutine orthogonalizes wfcs. USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE noncollin_module, ONLY : noncolin, npol implicit none INTEGER, intent(in) :: lda,ldb INTEGER, intent(out) :: ierr COMPLEX(DP), intent(inout) :: wfc(lda,ldb) INTEGER :: i,j,k COMPLEX(DP), allocatable :: overlap(:,:),work(:,:), wfc_ortho(:,:) REAL(DP) , ALLOCATABLE :: e (:) ierr = 0 ALLOCATE (overlap( lda , lda)) ALLOCATE (work ( lda , lda)) ALLOCATE (e ( lda)) ALLOCATE (wfc_ortho( lda , ldb)) ! ! calculate overlap matrix ! overlap = ZERO work = ZERO e = 0.d0 CALL ZGEMM ('n', 'c', lda, lda, ldb, (1.d0, 0.d0), & wfc, lda, wfc, lda, (0.d0, 0.d0), overlap, lda) #ifdef __MPI CALL mp_sum( overlap, intra_bgrp_comm ) #endif ! find O^-.5 ! CALL cdiagh (lda, overlap, lda, e, work) DO i = 1, lda IF(ABS(e(i)).lt.1.d-10) THEN ierr = 1 RETURN ELSE e (i) = 1.d0/dsqrt(e(i)) END IF ENDDO overlap = ZERO DO i = 1, lda DO j = 1, lda overlap (i, j) = ZERO DO k = 1, lda overlap (i, j) = overlap (i, j) + e(k)*work(i, k)*DCONJG(work (j, k) ) ENDDO ENDDO ENDDO ! ! trasform wfs O^-.5 psi ! wfc_ortho(:,:) = ZERO call ZGEMM('N', 'N', lda, ldb, lda, ONE, overlap, lda, & wfc, lda, ZERO, wfc_ortho, lda) wfc(:,:) = wfc_ortho(:,:) DEALLOCATE (overlap) DEALLOCATE (work) DEALLOCATE (e) DEALLOCATE (wfc_ortho) RETURN END SUBROUTINE SUBROUTINE check_ortho(lda,ldb,wfc) !This subroutine checks orthogonality of wfs. Created for debug purposes. USE kinds, ONLY : DP USE io_global, ONLY : stdout USE noncollin_module, ONLY : noncolin, npol implicit none INTEGER, intent(in) :: lda,ldb COMPLEX(DP), intent(in) :: wfc(lda,ldb) INTEGER :: i,j,k COMPLEX(DP), allocatable :: overlap(:,:) ALLOCATE (overlap( lda , lda)) overlap = ZERO ! ! calculate overlap matrix ! CALL ZGEMM ('n', 'c', lda, lda, ldb, ONE, & wfc, lda, wfc, lda, ZERO, overlap, lda) write(stdout,'(5x,a45,2i5)') 'check_ortho for wavefunction with dimentions ', lda,ldb do i=1,lda write(stdout,'(5x,8f8.4)') (dreal(overlap(i,j)),j=1,lda) end do write(stdout,'(5x,a18)') 'end of check_ortho' DEALLOCATE (overlap) RETURN END SUBROUTINE espresso-5.0.2/PW/src/pw_restart.f900000644000700200004540000036127512053145630016224 0ustar marsamoscm! ! Copyright (C) 2005-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE pw_restart !---------------------------------------------------------------------------- ! ! ... this module contains methods to read and write data produced by PWscf ! ! ... written by Carlo Sbraccia (2005) ! USE iotk_module USE xml_io_base, ONLY : default_fmt_version => fmt_version, rho_binary, & kpoint_dir, write_control, write_xc, write_occ, & attr, wfc_filename, write_eig, write_wfc, & write_exx, write_spin, write_cell, write_header, & write_moving_cell, write_para, write_ions, & write_symmetry, write_efield, write_planewaves, & write_magnetization, write_bz, save_history, & create_directory, read_wfc ! USE kinds, ONLY : DP USE constants, ONLY : e2 USE io_files, ONLY : tmp_dir, prefix, iunpun, xmlpun, delete_if_present, & qexml_version, qexml_version_init, pseudo_dir USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : my_pool_id, intra_image_comm, intra_pool_comm, & my_bgrp_id, intra_image_comm, intra_bgrp_comm, mpime USE mp, ONLY : mp_bcast, mp_sum, mp_max USE parser, ONLY : version_compare ! ! IMPLICIT NONE ! CHARACTER(LEN=256), external :: trimcheck ! SAVE ! PRIVATE ! PUBLIC :: pw_writefile, pw_readfile ! INTEGER, PRIVATE :: iunout ! LOGICAL :: lcell_read = .FALSE., & lpw_read = .FALSE., & lions_read = .FALSE., & lspin_read = .FALSE., & lstarting_mag_read = .FALSE., & lxc_read = .FALSE., & locc_read = .FALSE., & lbz_read = .FALSE., & lbs_read = .FALSE., & lefield_read = .FALSE., & lwfc_read = .FALSE., & lsymm_read = .FALSE. ! ! variables to describe qexml current version ! and back compatibility ! LOGICAL :: qexml_version_before_1_4_0 = .FALSE. ! ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE pw_writefile( what ) !------------------------------------------------------------------------ ! USE control_flags, ONLY : istep, twfcollect, conv_ions, & lscf, lkpoint_dir, gamma_only, & tqr, noinv, do_makov_payne USE realus, ONLY : real_space USE global_version, ONLY : version_number USE cell_base, ONLY : at, bg, alat, tpiba, tpiba2, & ibrav, celldm USE gvect, ONLY : ig_l2g USE ions_base, ONLY : nsp, ityp, atm, nat, tau, if_pos USE noncollin_module, ONLY : noncolin, npol USE io_files, ONLY : nwordwfc, iunwfc, iunigk, psfile USE buffers, ONLY : get_buffer USE wavefunctions_module, ONLY : evc USE klist, ONLY : nks, nkstot, xk, ngk, wk, qnorm, & lgauss, ngauss, degauss, nelec, & two_fermi_energies, nelup, neldw USE start_k, ONLY : nk1, nk2, nk3, k1, k2, k3, & nks_start, xk_start, wk_start USE ktetra, ONLY : ntetra, tetra, ltetra USE gvect, ONLY : ngm, ngm_g, g, mill USE fft_base, ONLY : dfftp USE basis, ONLY : natomwfc USE gvecs, ONLY : ngms_g, dual USE fft_base, ONLY : dffts USE wvfct, ONLY : npw, npwx, g2kin, et, wg, & igk, nbnd, ecutwfc USE ener, ONLY : ef, ef_up, ef_dw USE fixed_occ, ONLY : tfixed_occ, f_inp USE ldaU, ONLY : lda_plus_u, lda_plus_u_kind, U_projection, & Hubbard_lmax, Hubbard_l, Hubbard_U, Hubbard_J, & Hubbard_alpha, Hubbard_J0, Hubbard_beta USE spin_orb, ONLY : lspinorb, domag USE symm_base, ONLY : nrot, nsym, invsym, s, ft, irt, & t_rev, sname, time_reversal, no_t_rev USE lsda_mod, ONLY : nspin, isk, lsda, starting_magnetization USE noncollin_module, ONLY : angle1, angle2, i_cons, mcons, bfield, & lambda USE ions_base, ONLY : amass USE funct, ONLY : get_dft_name, get_inlc USE kernel_table, ONLY : vdw_table_name USE scf, ONLY : rho USE extfield, ONLY : tefield, dipfield, edir, & emaxpos, eopreg, eamp USE io_rho_xml, ONLY : write_rho USE mp_global, ONLY : kunit, nproc, nproc_pool, me_pool, & nproc_image, nproc_bgrp, me_bgrp, & nproc_pot, nproc_ortho, & root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm, & root_bgrp, intra_bgrp_comm, inter_bgrp_comm, nbgrp, get_ntask_groups, ntask_groups_file USE funct, ONLY : get_exx_fraction, dft_is_hybrid, & get_screening_parameter, exx_is_active USE exx, ONLY : x_gamma_extrapolation, nq1, nq2, nq3, & exxdiv_treatment, yukawa, ecutvcut USE cellmd, ONLY : lmovecell, cell_factor ! USE martyna_tuckerman, ONLY: do_comp_mt USE esm, ONLY: do_comp_esm ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: what ! CHARACTER(LEN=20) :: dft_name CHARACTER(LEN=256) :: dirname, filename INTEGER :: i, ig, ik, ngg, ierr, ipol, ik_eff, num_k_points INTEGER :: npool, nkbl, nkl, nkr, npwx_g INTEGER :: ike, iks, npw_g, ispin, inlc, ntask_groups INTEGER, ALLOCATABLE :: ngk_g(:) INTEGER, ALLOCATABLE :: igk_l2g(:,:), igk_l2g_kdip(:,:), mill_g(:,:) LOGICAL :: lwfc REAL(DP), ALLOCATABLE :: raux(:) ! ! lwfc = .FALSE. ! SELECT CASE( what ) CASE( "all" ) ! lwfc = twfcollect ! CASE DEFAULT ! END SELECT ! IF ( ionode ) THEN ! ! ... look for an empty unit (only ionode needs it) ! CALL iotk_free_unit( iunout, ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pw_writefile ', & 'no free units to write wavefunctions', ierr ) ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ! ! ... create the main restart directory ! CALL create_directory( dirname ) ! ! ... create the k-points subdirectories ! IF ( nspin == 2 ) THEN num_k_points = nkstot / 2 ELSE num_k_points = nkstot END IF ! IF (lkpoint_dir) THEN ! DO i = 1, num_k_points ! CALL create_directory( kpoint_dir( dirname, i ) ) ! END DO ! END IF ! IF ( nkstot > 0 ) THEN ! ! ... find out the number of pools ! npool = nproc_image / nproc_pool ! ! ... find out number of k points blocks ! nkbl = nkstot / kunit ! ! ... k points per pool ! nkl = kunit * ( nkbl / npool ) ! ! ... find out the reminder ! nkr = ( nkstot - nkl * npool ) / kunit ! ! ... Assign the reminder to the first nkr pools ! IF ( my_pool_id < nkr ) nkl = nkl + kunit ! ! ... find out the index of the first k point in this pool ! iks = nkl*my_pool_id + 1 ! IF ( my_pool_id >= nkr ) iks = iks + nkr*kunit ! ! ... find out the index of the last k point in this pool ! ike = iks + nkl - 1 ! END IF ! ! ... find out the global number of G vectors: ngm_g ! ngm_g = ngm ! CALL mp_sum( ngm_g, intra_bgrp_comm ) ! ! ... collect all G-vectors across processors within the pools ! ALLOCATE( mill_g( 3, ngm_g ) ) ! mill_g = 0 ! DO ig = 1, ngm ! mill_g(1,ig_l2g(ig)) = mill(1,ig) mill_g(2,ig_l2g(ig)) = mill(2,ig) mill_g(3,ig_l2g(ig)) = mill(3,ig) ! END DO ! CALL mp_sum( mill_g, intra_bgrp_comm ) ! ! ... build the igk_l2g array, yielding the correspondence between ! ... the local k+G index and the global G index - see also ig_l2g ! ... igk_l2g is build from arrays igk, previously stored in hinit0 ! ... Beware: for variable-cell case, one has to use starting G and ! ... k+G vectors ! ALLOCATE ( igk_l2g( npwx, nks ) ) ! igk_l2g = 0 ! IF ( nks > 1 ) REWIND( iunigk ) ! DO ik = 1, nks ! npw = ngk (ik) IF ( nks > 1 ) READ( iunigk ) igk ! CALL gk_l2gmap( ngm, ig_l2g(1), npw, igk(1), igk_l2g(1,ik) ) ! END DO ! ! ... compute the global number of G+k vectors for each k point ! ALLOCATE( ngk_g( nkstot ) ) ! ngk_g = 0 ngk_g(iks:ike) = ngk(1:nks) ! CALL mp_sum( ngk_g, inter_pool_comm) CALL mp_sum( ngk_g, intra_pool_comm) ! ngk_g = ngk_g / nbgrp ! ! ... compute the maximum G vector index among all G+k an processors ! npw_g = MAXVAL( igk_l2g(:,:) ) ! CALL mp_max( npw_g, inter_pool_comm ) CALL mp_max( npw_g, intra_pool_comm ) ! ! ... compute the maximum number of G vector among all k points ! npwx_g = MAXVAL( ngk_g(1:nkstot) ) ! ! ... define a further l2g map to write gkvectors and wfc coherently ! ALLOCATE ( igk_l2g_kdip( npwx_g, nks ) ) ! igk_l2g_kdip = 0 ! DO ik = iks, ike ! CALL gk_l2gmap_kdip( npw_g, ngk_g(ik), ngk(ik-iks+1), & igk_l2g(1,ik-iks+1), igk_l2g_kdip(1,ik-iks+1) ) END DO ! IF ( ionode ) THEN ! ! ... open XML descriptor ! CALL iotk_open_write( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), BINARY = .FALSE., IERR = ierr ) ! IF (.NOT.(lkpoint_dir)) & CALL iotk_open_write( iunout, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun )//'.eig', BINARY = .FALSE., IERR = ierr ) END IF ! ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pw_writefile ', & 'cannot open restart file for writing', ierr ) ! IF ( ionode ) THEN ! ! ... here we start writing the punch-file ! !------------------------------------------------------------------------------- ! ... HEADER !------------------------------------------------------------------------------- ! CALL write_header( "PWSCF", TRIM(version_number) ) ! !------------------------------------------------------------------------------- ! ... CONTROL !------------------------------------------------------------------------------- ! CALL write_control( PP_CHECK_FLAG=conv_ions, LKPOINT_DIR=lkpoint_dir, & Q_REAL_SPACE=tqr, BETA_REAL_SPACE=real_space ) ! !------------------------------------------------------------------------------- ! ... CELL !------------------------------------------------------------------------------- ! CALL write_cell( ibrav, celldm, alat, & at(:,1), at(:,2), at(:,3), bg(:,1), bg(:,2), bg(:,3), & do_makov_payne, do_comp_mt, do_comp_esm ) IF (lmovecell) CALL write_moving_cell(lmovecell, cell_factor) ! !------------------------------------------------------------------------------- ! ... IONS !------------------------------------------------------------------------------- ! CALL write_ions( nsp, nat, atm, ityp, psfile, & pseudo_dir, amass, tau, if_pos, dirname, alat ) ! !------------------------------------------------------------------------------- ! ... SYMMETRIES !------------------------------------------------------------------------------- ! CALL write_symmetry( ibrav, nrot, nsym, invsym, noinv, & time_reversal, no_t_rev, ft, s, sname, irt, & nat, t_rev ) ! !------------------------------------------------------------------------------- ! ... ELECTRIC FIELD !------------------------------------------------------------------------------- ! CALL write_efield( tefield, dipfield, edir, emaxpos, eopreg, eamp) ! ! !------------------------------------------------------------------------------- ! ... PLANE_WAVES !------------------------------------------------------------------------------- ! CALL write_planewaves( ecutwfc, dual, npwx_g, gamma_only, dfftp%nr1, dfftp%nr2, & dfftp%nr3, ngm_g, dffts%nr1, dffts%nr2, dffts%nr3, ngms_g, dfftp%nr1, & dfftp%nr2, dfftp%nr3, mill_g, lwfc ) ! !------------------------------------------------------------------------------- ! ... SPIN !------------------------------------------------------------------------------- ! CALL write_spin( lsda, noncolin, npol, lspinorb, domag ) ! CALL write_magnetization(starting_magnetization, angle1, angle2, nsp, & two_fermi_energies, i_cons, mcons, bfield, & ef_up/e2, ef_dw/e2, nelup, neldw, lambda) ! !------------------------------------------------------------------------------- ! ... EXCHANGE_CORRELATION !------------------------------------------------------------------------------- ! dft_name = get_dft_name() inlc = get_inlc() ! CALL write_xc( DFT = dft_name, NSP = nsp, LDA_PLUS_U = lda_plus_u, & LDA_PLUS_U_KIND = lda_plus_u_kind, U_PROJECTION = U_projection, & HUBBARD_LMAX = Hubbard_lmax, HUBBARD_L = Hubbard_l, & HUBBARD_U = Hubbard_U, HUBBARD_J = Hubbard_J, & HUBBARD_J0 = Hubbard_J0, HUBBARD_BETA = Hubbard_beta, & HUBBARD_ALPHA = Hubbard_alpha, INLC = inlc, VDW_TABLE_NAME = vdw_table_name, & PSEUDO_DIR = pseudo_dir, DIRNAME = dirname) IF ( dft_is_hybrid() ) CALL write_exx & ( x_gamma_extrapolation, nq1, nq2, nq3, & exxdiv_treatment, yukawa, ecutvcut, & get_exx_fraction(), & get_screening_parameter(), exx_is_active() ) ! !------------------------------------------------------------------------------- ! ... OCCUPATIONS !------------------------------------------------------------------------------- ! CALL write_occ( LGAUSS = lgauss, NGAUSS = ngauss, & DEGAUSS = degauss, LTETRA = ltetra, NTETRA = ntetra, & TETRA = tetra, TFIXED_OCC = tfixed_occ, LSDA = lsda, & NSTATES_UP = nbnd, NSTATES_DOWN = nbnd, F_INP = f_inp ) ! !------------------------------------------------------------------------------- ! ... BRILLOUIN_ZONE !------------------------------------------------------------------------------- ! CALL write_bz( num_k_points, xk, wk, k1, k2, k3, nk1, nk2, nk3, & qnorm, nks_start, xk_start, wk_start ) ! !------------------------------------------------------------------------------- ! ... PARALLELISM !------------------------------------------------------------------------------- ! ntask_groups=get_ntask_groups() CALL write_para( kunit, nproc, nproc_pool, nproc_image, ntask_groups,& nproc_pot, nproc_bgrp, nproc_ortho ) ! !------------------------------------------------------------------------------- ! ... CHARGE DENSITY !------------------------------------------------------------------------------- ! ! filename = "./charge-density.dat" IF ( .NOT. rho_binary ) filename = "./charge-density.xml" ! CALL iotk_link( iunpun, "CHARGE-DENSITY", TRIM(filename), & CREATE=.FALSE., BINARY=.TRUE. ) ! !------------------------------------------------------------------------------- ! ... BAND_STRUCTURE_INFO !------------------------------------------------------------------------------- ! CALL iotk_write_begin( iunpun, "BAND_STRUCTURE_INFO" ) ! CALL iotk_write_dat ( iunpun, "NUMBER_OF_K-POINTS", num_k_points ) ! CALL iotk_write_dat ( iunpun, "NUMBER_OF_SPIN_COMPONENTS", nspin ) ! CALL iotk_write_dat ( iunpun, "NON-COLINEAR_CALCULATION", noncolin ) ! CALL iotk_write_dat ( iunpun, "NUMBER_OF_ATOMIC_WFC", natomwfc ) ! IF ( nspin == 2 ) THEN ! Compatibility with CP CALL iotk_write_attr( attr, "UP", nbnd, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "DW", nbnd ) CALL iotk_write_dat( iunpun, & "NUMBER_OF_BANDS", nbnd, ATTR = attr ) CALL iotk_write_attr( attr, "UP", NINT(nelup), FIRST = .TRUE. ) CALL iotk_write_attr( attr, "DW", NINT(neldw) ) CALL iotk_write_dat( iunpun, & "NUMBER_OF_ELECTRONS", nelec, ATTR = attr ) ELSE ! CALL iotk_write_dat ( iunpun, "NUMBER_OF_BANDS", nbnd ) CALL iotk_write_dat ( iunpun, "NUMBER_OF_ELECTRONS", nelec ) END IF ! CALL iotk_write_attr ( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_K-POINTS", ATTR = attr ) ! CALL iotk_write_attr ( attr, "UNITS", "Hartree", FIRST = .TRUE. ) CALL iotk_write_empty( iunpun, "UNITS_FOR_ENERGIES", ATTR = attr ) ! ! Fermi energy units in Hartree ! IF (two_fermi_energies) THEN ! CALL iotk_write_dat(iunpun,"TWO_FERMI_ENERGIES",two_fermi_energies) CALL iotk_write_dat( iunpun, "ELECTRONS_UP", nelup ) CALL iotk_write_dat( iunpun, "ELECTRONS_DOWN", neldw ) CALL iotk_write_dat( iunpun, "FERMI_ENERGY_UP", ef_up / e2 ) CALL iotk_write_dat( iunpun, "FERMI_ENERGY_DOWN", ef_dw / e2 ) ! ELSE ! CALL iotk_write_dat( iunpun, "FERMI_ENERGY", ef / e2) ! ENDIF ! CALL iotk_write_end ( iunpun, "BAND_STRUCTURE_INFO" ) ! ! CALL iotk_write_begin( iunpun, "EIGENVALUES" ) ! END IF ! ALLOCATE( raux( nbnd) ) ! !------------------------------------------------------------------------------- ! ... EIGENVALUES !------------------------------------------------------------------------------- ! k_points_loop1: DO ik = 1, num_k_points ! IF ( ionode ) THEN ! CALL iotk_write_begin( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! CALL iotk_write_dat( iunpun, "K-POINT_COORDS", xk(:,ik), COLUMNS=3 ) ! CALL iotk_write_dat( iunpun, "WEIGHT", wk(ik) ) ! ! IF ( nspin == 2 ) THEN ! ispin = 1 ! IF (lkpoint_dir) THEN filename=wfc_filename(".",'eigenval1', ik, EXTENSION='xml',& DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "DATAFILE.1", & filename, CREATE = .FALSE., BINARY = .FALSE. ) ELSE CALL iotk_write_begin( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_UP" ) ENDIF ! IF ( wk(ik) == 0.D0 ) THEN ! raux = wg(:,ik) ! ELSE ! raux = wg(:,ik) / wk(ik) ! END IF ! IF (lkpoint_dir) THEN filename = wfc_filename( dirname, 'eigenval1', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL write_eig( iunout, filename, nbnd, et(:, ik) / e2, & "Hartree", OCC = raux(:), IK=ik, ISPIN=ispin ) ELSE filename=' ' CALL write_eig( iunout, filename, nbnd, et(:, ik) / e2, & "Hartree", OCC = raux(:), IK=ik, ISPIN=ispin, & LKPOINT_DIR=.FALSE. ) ENDIF ! ispin = 2 ! ik_eff = ik + num_k_points ! IF (lkpoint_dir) THEN filename = wfc_filename( ".", 'eigenval2', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "DATAFILE.2", & filename, CREATE = .FALSE., BINARY = .FALSE. ) ELSE CALL iotk_write_end( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_UP" ) CALL iotk_write_begin( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_DW" ) ENDIF ! IF ( wk(ik_eff) == 0.D0 ) THEN ! raux = wg(:,ik_eff) ! ELSE ! raux = wg(:,ik_eff) / wk(ik_eff) ! END IF ! IF (lkpoint_dir) THEN filename = wfc_filename( dirname, 'eigenval2', ik, & EXTENSION = 'xml', DIR=lkpoint_dir ) ! CALL write_eig( iunout, filename, nbnd, et(:, ik_eff) / e2, & "Hartree", OCC = raux(:), IK = ik, ISPIN = ispin) ELSE filename=' ' CALL write_eig( iunout, filename, nbnd, et(:, ik_eff) / e2, & "Hartree", OCC = raux(:), IK = ik, & ISPIN = ispin, LKPOINT_DIR=.false.) CALL iotk_write_end( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_DW" ) ENDIF ! ELSE ! IF (lkpoint_dir) THEN filename = wfc_filename( ".", 'eigenval', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "DATAFILE", & filename, CREATE = .FALSE., BINARY = .FALSE. ) ELSE CALL iotk_write_begin( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) ) ) ENDIF ! IF ( wk(ik) == 0.D0 ) THEN ! raux(:) = wg(:,ik) ! ELSE ! raux(:) = wg(:,ik) / wk(ik) ! END IF ! IF (lkpoint_dir) THEN filename = wfc_filename( dirname, 'eigenval', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL write_eig( iunout, filename, nbnd, et(:, ik) / e2, & "Hartree", OCC = raux(:), IK = ik ) ELSE filename=' ' CALL write_eig( iunout, filename, nbnd, et(:, ik) / e2, & "Hartree", OCC = raux(:), IK = ik, & LKPOINT_DIR=.false. ) CALL iotk_write_end( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) ) ) ENDIF ! END IF ! CALL iotk_write_end( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END IF ! ENDDO k_points_loop1 ! ! IF (.NOT.lkpoint_dir.AND.ionode) CALL iotk_close_write( iunout ) ! DEALLOCATE ( raux ) ! ! IF ( ionode ) THEN ! CALL iotk_write_end( iunpun, "EIGENVALUES" ) ! CALL iotk_write_begin( iunpun, "EIGENVECTORS" ) ! CALL iotk_write_dat ( iunpun, "MAX_NUMBER_OF_GK-VECTORS", npwx_g ) ! END IF ! !------------------------------------------------------------------------------- ! ... EIGENVECTORS !------------------------------------------------------------------------------- ! k_points_loop2: DO ik = 1, num_k_points ! IF ( ionode ) THEN ! CALL iotk_write_begin( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! ! ... G+K vectors ! CALL iotk_write_dat( iunpun, "NUMBER_OF_GK-VECTORS", ngk_g(ik) ) ! IF ( lwfc ) THEN ! filename = wfc_filename( ".", 'gkvectors', ik, DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "GK-VECTORS", & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = wfc_filename( dirname, 'gkvectors', ik, & DIR=lkpoint_dir ) END IF ! END IF ! IF ( lwfc ) THEN ! CALL write_gk( iunout, ik, filename ) ! CALL write_this_wfc ( iunout, ik ) ! END IF ! IF ( ionode ) THEN ! CALL iotk_write_end( iunpun, "K-POINT" // TRIM( iotk_index(ik) ) ) ! END IF ! END DO k_points_loop2 ! IF ( ionode ) THEN ! CALL iotk_write_end( iunpun, "EIGENVECTORS" ) ! CALL iotk_close_write( iunpun ) ! CALL delete_if_present( TRIM( dirname ) // '/' // TRIM( xmlpun ) // '.bck' ) ! END IF ! DEALLOCATE ( igk_l2g ) DEALLOCATE ( igk_l2g_kdip ) ! !------------------------------------------------------------------------------- ! ... CHARGE-DENSITY FILES !------------------------------------------------------------------------------- ! ! ... do not overwrite the scf charge density with a non-scf one ! ... also writes rho%ns if lda+U and rho%bec if PAW ! IF ( lscf ) CALL write_rho( rho, nspin ) !------------------------------------------------------------------------------- ! ... END RESTART SECTIONS !------------------------------------------------------------------------------- ! DEALLOCATE( mill_g ) DEALLOCATE( ngk_g ) ! CALL save_history( dirname, istep ) ! RETURN ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE write_gk( iun, ik, filename ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun, ik CHARACTER(LEN=256), INTENT(IN) :: filename ! INTEGER, ALLOCATABLE :: igwk(:,:) INTEGER, ALLOCATABLE :: itmp(:) ! ! ALLOCATE( igwk( npwx_g, nkstot ) ) ! igwk(:,ik) = 0 ! ALLOCATE( itmp( npw_g ) ) ! itmp = 0 ! IF ( ik >= iks .AND. ik <= ike ) THEN ! DO ig = 1, ngk(ik-iks+1) ! itmp(igk_l2g(ig,ik-iks+1)) = igk_l2g(ig,ik-iks+1) ! END DO ! END IF ! CALL mp_sum( itmp, inter_pool_comm ) CALL mp_sum( itmp, intra_pool_comm ) ! ngg = 0 ! DO ig = 1, npw_g ! if ( itmp(ig) == ig ) THEN ! ngg = ngg + 1 ! igwk(ngg,ik) = ig ! END IF ! END DO ! DEALLOCATE( itmp ) ! IF ( ionode ) THEN ! CALL iotk_open_write( iun, FILE = TRIM( filename ), & ROOT="GK-VECTORS", BINARY = .TRUE. ) ! CALL iotk_write_dat( iun, "NUMBER_OF_GK-VECTORS", ngk_g(ik) ) CALL iotk_write_dat( iun, "MAX_NUMBER_OF_GK-VECTORS", npwx_g ) CALL iotk_write_dat( iun, "GAMMA_ONLY", gamma_only ) ! CALL iotk_write_attr ( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_dat( iun, "K-POINT_COORDS", xk(:,ik), ATTR = attr ) ! CALL iotk_write_dat( iun, "INDEX", igwk(1:ngk_g(ik),ik) ) CALL iotk_write_dat( iun, "GRID", mill_g(1:3,igwk(1:ngk_g(ik),ik)), & COLUMNS = 3 ) ! CALL iotk_close_write( iun ) ! END IF ! DEALLOCATE( igwk ) ! END SUBROUTINE write_gk ! !-------------------------------------------------------------------- SUBROUTINE write_this_wfc ( iun, ik ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun, ik CHARACTER(LEN=256) :: filename ! ! ... wavefunctions ! IF ( nspin == 2 ) THEN ! ! ... beware: with pools, this is correct only on ionode ! ispin = isk(ik) ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL get_buffer ( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! END IF ! IF ( ionode ) THEN ! filename = wfc_filename( ".", 'evc', ik, ispin, & DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "WFC" // TRIM( iotk_index (ispin) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ! END IF ! CALL write_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, gamma_only, nbnd, igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! ik_eff = ik + num_k_points ! ispin = isk(ik_eff) ! IF ( ( ik_eff >= iks ) .AND. ( ik_eff <= ike ) ) THEN ! CALL get_buffer ( evc, nwordwfc, iunwfc, (ik_eff-iks+1) ) ! END IF ! IF ( ionode ) THEN ! filename = wfc_filename( ".", 'evc', ik, ispin, & DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "WFC"//TRIM( iotk_index( ispin ) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ! END IF ! CALL write_wfc( iunout, ik_eff, nkstot, kunit, ispin, nspin, & evc, npw_g, gamma_only, nbnd, igk_l2g_kdip(:,ik_eff-iks+1), & ngk(ik_eff-iks+1), filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! ELSE ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL get_buffer( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! END IF ! IF ( noncolin ) THEN ! DO ipol = 1, npol ! IF ( ionode ) THEN ! filename = wfc_filename( ".", 'evc', ik, ipol, & DIR=lkpoint_dir ) ! CALL iotk_link(iunpun,"WFC"//TRIM(iotk_index(ipol)), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = wfc_filename( dirname, 'evc', ik, ipol, & DIR=lkpoint_dir) ! END IF ! !!! TEMP nkl=(ipol-1)*npwx+1 nkr= ipol *npwx CALL write_wfc( iunout, ik, nkstot, kunit, ipol, npol, & evc(nkl:nkr,:), npw_g, gamma_only, nbnd, & igk_l2g_kdip(:,ik-iks+1), ngk(ik-iks+1), & filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END DO ! ELSE ! ispin = 1 ! IF ( ionode ) THEN ! filename = wfc_filename( ".", 'evc', ik, DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "WFC", filename, & CREATE = .FALSE., BINARY = .TRUE. ) ! filename = wfc_filename( dirname, 'evc', ik, & DIR=lkpoint_dir ) ! END IF ! CALL write_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, gamma_only, nbnd, & igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END IF ! END IF ! END SUBROUTINE write_this_wfc ! END SUBROUTINE pw_writefile ! !------------------------------------------------------------------------ SUBROUTINE pw_readfile( what, ierr ) !------------------------------------------------------------------------ ! USE io_rho_xml, ONLY : read_rho USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE mp_global, ONLY : intra_pool_comm, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: what INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=256) :: dirname LOGICAL :: lcell, lpw, lions, lspin, linit_mag, & lxc, locc, lbz, lbs, lwfc, lheader, & lsymm, lrho, lefield ! ! ierr = 0 ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ! ! ... look for an empty unit ! CALL iotk_free_unit( iunout, ierr ) ! CALL errore( 'pw_readfile', & 'no free units to read wavefunctions', ierr ) ! lheader = .NOT. qexml_version_init lcell = .FALSE. lpw = .FALSE. lions = .FALSE. lspin = .FALSE. linit_mag = .FALSE. lxc = .FALSE. locc = .FALSE. lbz = .FALSE. lbs = .FALSE. lwfc = .FALSE. lsymm = .FALSE. lrho = .FALSE. lefield = .FALSE. ! SELECT CASE( what ) CASE( 'header' ) ! lheader = .TRUE. ! CASE( 'dim' ) ! CALL read_dim( dirname, ierr ) ! lbz = .TRUE. ! CASE( 'pseudo' ) ! lions = .TRUE. ! CASE( 'config' ) ! lcell = .TRUE. lions = .TRUE. ! CASE( 'rho' ) ! lrho = .TRUE. ! CASE( 'wave' ) ! lpw = .TRUE. lwfc = .TRUE. ! CASE( 'nowave' ) ! lcell = .TRUE. lpw = .TRUE. lions = .TRUE. lspin = .TRUE. linit_mag = .TRUE. lxc = .TRUE. locc = .TRUE. lbz = .TRUE. lbs = .TRUE. lsymm = .TRUE. lefield = .TRUE. ! CASE( 'all' ) ! lcell = .TRUE. lpw = .TRUE. lions = .TRUE. lspin = .TRUE. linit_mag = .TRUE. lxc = .TRUE. locc = .TRUE. lbz = .TRUE. lbs = .TRUE. lwfc = .TRUE. lsymm = .TRUE. lefield = .TRUE. lrho = .TRUE. ! CASE( 'reset' ) ! lcell_read = .FALSE. lpw_read = .FALSE. lions_read = .FALSE. lspin_read = .FALSE. lstarting_mag_read = .FALSE. lxc_read = .FALSE. locc_read = .FALSE. lbz_read = .FALSE. lbs_read = .FALSE. lwfc_read = .FALSE. lsymm_read = .FALSE. lefield_read = .FALSE. ! CASE( 'ef' ) ! CALL read_ef( dirname, ierr ) RETURN CASE( 'exx' ) CALL read_exx(dirname, ierr) RETURN ! END SELECT ! IF ( .NOT. lheader .AND. .NOT. qexml_version_init) & CALL errore( 'pw_readfile', 'qexml version not set', 71 ) ! ! IF ( lheader ) THEN ! CALL read_header( dirname, ierr ) ! ! to be as safe as possible ! IF ( ierr /= 0 ) THEN ! qexml_version = TRIM( default_fmt_version ) qexml_version_init = .TRUE. ! ENDIF ! ierr = 0 ! ENDIF ! IF ( lcell ) THEN ! CALL read_cell( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lpw ) THEN ! CALL read_planewaves( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lions ) THEN ! CALL read_ions( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lspin ) THEN ! CALL read_spin( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF (linit_mag) THEN ! CALL read_magnetization( dirname, ierr ) IF ( ierr > 0 ) RETURN ! ENDIF IF ( lxc ) THEN ! CALL read_xc( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( locc ) THEN ! CALL read_occupations( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lbz ) THEN ! CALL read_brillouin_zone( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lbs ) THEN ! CALL read_band_structure( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lwfc ) THEN ! CALL read_wavefunctions( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lsymm ) THEN ! CALL read_symmetry( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lefield ) THEN ! CALL read_efield( dirname, ierr ) IF ( ierr > 0 ) RETURN ! END IF IF ( lrho ) THEN ! ! ... to read the charge-density we use the routine from io_rho_xml ! ... it also reads ns for ldaU and becsum for PAW CALL read_rho( rho, nspin ) ! END IF ! RETURN ! END SUBROUTINE pw_readfile ! !------------------------------------------------------------------------ SUBROUTINE read_header( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... this routine reads the format version of the current xml datafile ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ierr = 0 IF ( qexml_version_init ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr /=0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "HEADER" ) ! CALL iotk_scan_empty( iunpun, "FORMAT", ATTR=attr ) ! CALL iotk_scan_attr( attr, "VERSION", qexml_version ) ! qexml_version_init = .TRUE. ! CALL iotk_scan_end( iunpun, "HEADER" ) ! ! CALL iotk_close_read( iunpun ) ! ENDIF ! CALL mp_bcast( qexml_version, ionode_id, intra_image_comm ) CALL mp_bcast( qexml_version_init, ionode_id, intra_image_comm ) ! ! init logical variables for versioning ! qexml_version_before_1_4_0 = .FALSE. ! IF ( TRIM( version_compare( qexml_version, "1.4.0" )) == "older" ) & qexml_version_before_1_4_0 = .TRUE. ! END SUBROUTINE read_header ! !------------------------------------------------------------------------ SUBROUTINE read_dim( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... this routine collects array dimensions from various sections ! ... plus with some other variables needed for array allocation ! USE ions_base, ONLY : nat, nsp USE symm_base, ONLY : nsym USE gvect, ONLY : ngm_g, ecutrho USE fft_base, ONLY : dfftp USE gvecs, ONLY : ngms_g, dual USE fft_base, ONLY : dffts USE lsda_mod, ONLY : lsda USE noncollin_module, ONLY : noncolin USE ktetra, ONLY : ntetra USE klist, ONLY : nkstot, nelec USE wvfct, ONLY : nbnd, npwx, ecutwfc USE control_flags, ONLY : gamma_only USE mp_global, ONLY : kunit, nproc_file, nproc_pool_file, & nproc_image_file, ntask_groups_file, & nproc_pot_file, nproc_bgrp_file, & nproc_ortho_file ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: npwx_ LOGICAL :: found, found2 ! ! ! ... first the entire CELL section is read ! CALL read_cell( dirname, ierr ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! ! ... then selected tags are read from the other sections ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "IONS" ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! CALL iotk_scan_end( iunpun, "IONS" ) ! CALL iotk_scan_begin( iunpun, "SYMMETRIES", FOUND = found ) ! IF ( .NOT. found ) THEN ! nsym = 1 ! ELSE ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SYMMETRIES", nsym ) ! CALL iotk_scan_end( iunpun, "SYMMETRIES" ) ! END IF ! CALL iotk_scan_begin( iunpun, "PLANE_WAVES" ) ! CALL iotk_scan_dat( iunpun, "WFC_CUTOFF", ecutwfc ) ! CALL iotk_scan_dat( iunpun, "RHO_CUTOFF", ecutrho ) ! ecutwfc = ecutwfc * e2 ecutrho = ecutrho * e2 ! dual = ecutrho / ecutwfc ! CALL iotk_scan_dat( iunpun, "MAX_NUMBER_OF_GK-VECTORS", npwx_ ) ! CALL iotk_scan_dat( iunpun, "GAMMA_ONLY", gamma_only ) ! CALL iotk_scan_empty( iunpun, "FFT_GRID", attr ) CALL iotk_scan_attr( attr, "nr1", dfftp%nr1 ) CALL iotk_scan_attr( attr, "nr2", dfftp%nr2 ) CALL iotk_scan_attr( attr, "nr3", dfftp%nr3 ) ! CALL iotk_scan_dat( iunpun, "GVECT_NUMBER", ngm_g ) ! CALL iotk_scan_empty( iunpun, "SMOOTH_FFT_GRID", attr ) CALL iotk_scan_attr( attr, "nr1s", dffts%nr1 ) CALL iotk_scan_attr( attr, "nr2s", dffts%nr2 ) CALL iotk_scan_attr( attr, "nr3s", dffts%nr3 ) ! CALL iotk_scan_dat( iunpun, "SMOOTH_GVECT_NUMBER", ngms_g ) ! CALL iotk_scan_end( iunpun, "PLANE_WAVES" ) ! CALL iotk_scan_begin( iunpun, "SPIN" ) ! CALL iotk_scan_dat( iunpun, "LSDA", lsda ) ! CALL iotk_scan_dat( iunpun, "NON-COLINEAR_CALCULATION", & noncolin, FOUND = found ) ! IF ( .NOT. found ) noncolin = .FALSE. ! CALL iotk_scan_end( iunpun, "SPIN" ) ! CALL iotk_scan_begin( iunpun, "OCCUPATIONS" ) ! CALL iotk_scan_dat( iunpun, & "NUMBER_OF_TETRAHEDRA", ntetra, DEFAULT = 0 ) ! CALL iotk_scan_end( iunpun, "OCCUPATIONS" ) ! CALL iotk_scan_begin( iunpun, "BRILLOUIN_ZONE" ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_K-POINTS", nkstot ) ! IF ( lsda ) nkstot = nkstot * 2 ! CALL iotk_scan_end( iunpun, "BRILLOUIN_ZONE" ) ! CALL iotk_scan_begin( iunpun, "BAND_STRUCTURE_INFO" ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ELECTRONS", nelec ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_BANDS", nbnd ) ! CALL iotk_scan_end( iunpun, "BAND_STRUCTURE_INFO" ) ! CALL iotk_scan_begin( iunpun, "PARALLELISM", FOUND = found ) ! IF ( .NOT. found ) THEN ! kunit = 1 nproc_file=1 nproc_pool_file=1 nproc_image_file=1 ntask_groups_file=1 nproc_pot_file=1 nproc_bgrp_file=1 nproc_ortho_file=1 ! ELSE ! CALL iotk_scan_dat( iunpun, & "GRANULARITY_OF_K-POINTS_DISTRIBUTION", kunit ) ! CALL iotk_scan_dat( iunpun, & "NUMBER_OF_PROCESSORS", nproc_file, & FOUND=found2 ) IF ( .NOT. found2) nproc_file=1 ! compatibility ! CALL iotk_scan_dat( iunpun, & "NUMBER_OF_PROCESSORS_PER_POOL", nproc_pool_file,& FOUND=found2 ) IF ( .NOT. found2) nproc_pool_file=1 ! compatibility CALL iotk_scan_dat( iunpun, & "NUMBER_OF_PROCESSORS_PER_IMAGE", nproc_image_file,& FOUND=found2 ) IF ( .NOT. found2) nproc_image_file=1 ! compatibility ! CALL iotk_scan_dat( iunpun, & "NUMBER_OF_PROCESSORS_PER_TASKGROUP", ntask_groups_file,& FOUND=found2 ) IF ( .NOT. found2) ntask_groups_file=1 ! compatibility CALL iotk_scan_dat( iunpun, "NUMBER_OF_PROCESSORS_PER_POT", & nproc_pot_file, FOUND=found2 ) IF ( .NOT. found2) nproc_pot_file=1 ! compatibility CALL iotk_scan_dat( iunpun, "NUMBER_OF_PROCESSORS_PER_BAND_GROUP", & nproc_bgrp_file, FOUND=found2 ) IF ( .NOT. found2) nproc_bgrp_file=1 ! compatibility CALL iotk_scan_dat( iunpun, & "NUMBER_OF_PROCESSORS_PER_DIAGONALIZATION", & nproc_ortho_file, FOUND=found2 ) IF ( .NOT. found2) nproc_ortho_file=1 ! compatibility ! CALL iotk_scan_end( iunpun, "PARALLELISM" ) ! END IF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( nat, ionode_id, intra_image_comm ) CALL mp_bcast( nsp, ionode_id, intra_image_comm ) CALL mp_bcast( nsym, ionode_id, intra_image_comm ) CALL mp_bcast( ecutwfc, ionode_id, intra_image_comm ) CALL mp_bcast( ecutrho, ionode_id, intra_image_comm ) CALL mp_bcast( dual, ionode_id, intra_image_comm ) CALL mp_bcast( npwx_, ionode_id, intra_image_comm ) CALL mp_bcast( gamma_only, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngm_g, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngms_g, ionode_id, intra_image_comm ) CALL mp_bcast( lsda, ionode_id, intra_image_comm ) CALL mp_bcast( noncolin, ionode_id, intra_image_comm ) CALL mp_bcast( ntetra, ionode_id, intra_image_comm ) CALL mp_bcast( nkstot, ionode_id, intra_image_comm ) CALL mp_bcast( nelec, ionode_id, intra_image_comm ) CALL mp_bcast( nbnd, ionode_id, intra_image_comm ) CALL mp_bcast( kunit, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_pool_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_image_file, ionode_id, intra_image_comm ) CALL mp_bcast( ntask_groups_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_pot_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_bgrp_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_ortho_file, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_dim ! !------------------------------------------------------------------------ SUBROUTINE read_cell( dirname, ierr ) !------------------------------------------------------------------------ ! USE constants, ONLY : pi USE run_info, ONLY: title USE cell_base, ONLY : ibrav, alat, at, bg, celldm USE cell_base, ONLY : tpiba, tpiba2, omega USE cellmd, ONLY : lmovecell, cell_factor USE control_flags, ONLY : do_makov_payne USE martyna_tuckerman, ONLY: do_comp_mt USE esm, ONLY: do_comp_esm ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found CHARACTER(LEN=80) :: bravais_lattice, es_corr ! ! ierr = 0 IF ( lcell_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "CELL" ) ! CALL iotk_scan_dat( iunpun, "NON-PERIODIC_CELL_CORRECTION", & es_corr, FOUND=found ) IF ( .NOT. found ) es_corr="None" SELECT CASE ( TRIM(es_corr)) CASE ("Makov-Payne") do_makov_payne = .true. do_comp_mt = .false. do_comp_esm = .false. CASE ("Martyna-Tuckerman") do_makov_payne = .false. do_comp_mt = .true. do_comp_esm = .false. CASE ("ESM") do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .true. CASE ("None") do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. END SELECT ! CALL iotk_scan_dat( iunpun, & "BRAVAIS_LATTICE", bravais_lattice ) ! SELECT CASE ( TRIM(bravais_lattice) ) CASE( "free" ) ibrav = 0 CASE( "cubic P (sc)" ) ibrav = 1 CASE( "cubic F (fcc)" ) ibrav = 2 CASE( "cubic I (bcc)" ) ibrav = 3 CASE( "Hexagonal and Trigonal P" ) ibrav = 4 CASE( "Trigonal R" ) ibrav = 5 CASE( "Tetragonal P (st)" ) ibrav = 6 CASE( "Tetragonal I (bct)" ) ibrav = 7 CASE( "Orthorhombic P" ) ibrav = 8 CASE( "Orthorhombic base-centered(bco)" ) ibrav = 9 CASE( "Orthorhombic face-centered" ) ibrav = 10 CASE( "Orthorhombic body-centered" ) ibrav = 11 CASE( "Monoclinic P" ) ibrav = 12 CASE( "Monoclinic base-centered" ) ibrav = 13 CASE( "Triclinic P" ) ibrav = 14 CASE DEFAULT ibrav = 0 END SELECT ! CALL iotk_scan_dat( iunpun, "LATTICE_PARAMETER", alat ) ! ! ... some internal variables ! tpiba = 2.D0 * pi / alat tpiba2 = tpiba**2 ! CALL iotk_scan_dat( iunpun, "CELL_DIMENSIONS", celldm ) ! CALL iotk_scan_begin( iunpun, "DIRECT_LATTICE_VECTORS" ) CALL iotk_scan_dat( iunpun, "a1", at(:,1) ) CALL iotk_scan_dat( iunpun, "a2", at(:,2) ) CALL iotk_scan_dat( iunpun, "a3", at(:,3) ) CALL iotk_scan_end( iunpun, "DIRECT_LATTICE_VECTORS" ) ! ! ... to alat units ! at(:,:) = at(:,:) / alat ! CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! ! ... Generate the reciprocal lattice vectors ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! CALL iotk_scan_end( iunpun, "CELL" ) ! CALL iotk_scan_begin( iunpun, "MOVING_CELL", found=lmovecell ) IF (lmovecell) THEN CALL iotk_scan_dat( iunpun, "CELL_FACTOR", cell_factor) CALL iotk_scan_end( iunpun, "MOVING_CELL" ) END IF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( ibrav, ionode_id, intra_image_comm ) CALL mp_bcast( alat, ionode_id, intra_image_comm ) CALL mp_bcast( celldm, ionode_id, intra_image_comm ) CALL mp_bcast( tpiba, ionode_id, intra_image_comm ) CALL mp_bcast( tpiba2, ionode_id, intra_image_comm ) CALL mp_bcast( omega, ionode_id, intra_image_comm ) CALL mp_bcast( at, ionode_id, intra_image_comm ) CALL mp_bcast( bg, ionode_id, intra_image_comm ) CALL mp_bcast( do_makov_payne, ionode_id, intra_image_comm ) CALL mp_bcast( do_comp_mt, ionode_id, intra_image_comm ) CALL mp_bcast( do_comp_esm, ionode_id, intra_image_comm ) CALL mp_bcast( lmovecell, ionode_id, intra_image_comm ) IF (lmovecell) THEN CALL mp_bcast( cell_factor, ionode_id, intra_image_comm ) ELSE cell_factor=1.0_DP END IF ! title = ' ' ! lcell_read = .TRUE. ! RETURN ! END SUBROUTINE read_cell ! !------------------------------------------------------------------------ SUBROUTINE read_ions( dirname, ierr ) !------------------------------------------------------------------------ ! USE ions_base, ONLY : nat, nsp, ityp, amass, atm, tau, if_pos USE cell_base, ONLY : alat USE io_files, ONLY : psfile, pseudo_dir, pseudo_dir_cur ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: i LOGICAL :: exst ! ierr = 0 IF ( lions_read ) RETURN ! IF ( .NOT. lcell_read ) & CALL errore( 'read_ions', 'read cell first', 1 ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! ! this is where PP files should be read from ! pseudo_dir_cur = trimcheck ( dirname ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "IONS" ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! DO i = 1, nsp ! IF ( qexml_version_before_1_4_0 ) THEN ! CALL iotk_scan_dat( iunpun, "ATOM_TYPE", atm(i) ) CALL iotk_scan_dat( iunpun, TRIM( atm(i) ) // "_MASS", amass(i) ) CALL iotk_scan_dat( iunpun, & "PSEUDO_FOR_" // TRIM( atm(i) ), psfile(i) ) ! ELSE ! ! current version ! CALL iotk_scan_begin( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! CALL iotk_scan_dat( iunpun, "ATOM_TYPE", atm(i) ) CALL iotk_scan_dat( iunpun, "MASS", amass(i) ) CALL iotk_scan_dat( iunpun, "PSEUDO", psfile(i) ) ! CALL iotk_scan_end( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ENDIF ! ENDDO ! ! this is the original location of PP files ! CALL iotk_scan_dat( iunpun, "PSEUDO_DIR", pseudo_dir ) ! ENDIF ! IF ( ionode ) THEN ! DO i = 1, nat ! CALL iotk_scan_empty( iunpun, & "ATOM" // TRIM( iotk_index(i) ), attr ) ! CALL iotk_scan_attr( attr, "INDEX", ityp(i) ) CALL iotk_scan_attr( attr, "tau", tau(:,i) ) CALL iotk_scan_attr( attr, "if_pos", if_pos(:,i) ) ! tau(:,i) = tau(:,i) / alat ! END DO ! CALL iotk_scan_end( iunpun, "IONS" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( nat, ionode_id, intra_image_comm ) CALL mp_bcast( nsp, ionode_id, intra_image_comm ) CALL mp_bcast( atm, ionode_id, intra_image_comm ) CALL mp_bcast( amass, ionode_id, intra_image_comm ) CALL mp_bcast( psfile, ionode_id, intra_image_comm ) CALL mp_bcast( pseudo_dir, ionode_id, intra_image_comm ) CALL mp_bcast( ityp, ionode_id, intra_image_comm ) CALL mp_bcast( tau, ionode_id, intra_image_comm ) CALL mp_bcast( if_pos, ionode_id, intra_image_comm ) ! lions_read = .TRUE. ! RETURN ! END SUBROUTINE read_ions ! !------------------------------------------------------------------------ SUBROUTINE read_symmetry( dirname, ierr ) !------------------------------------------------------------------------ ! USE symm_base, ONLY : nrot, nsym, invsym, s, ft,ftau, irt, t_rev, & sname, sr, invs, inverse_s, s_axis_to_cart, & time_reversal, no_t_rev USE control_flags, ONLY : noinv USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: i, nat_ LOGICAL :: found ! ierr = 0 IF ( lsymm_read ) RETURN ! IF ( .NOT. lpw_read ) & CALL errore( 'read_symmetry', 'read planewaves first', 1 ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "SYMMETRIES", FOUND = found ) ! IF ( .NOT. found ) THEN ! nsym = 1 s(:,:,nsym) = 0 s(1,1,nsym) = 1 s(2,2,nsym) = 1 s(3,3,nsym) = 1 sr(:,:,nsym) = DBLE(s(:,:,nsym)) ftau(:,nsym)= 0 ft (:,nsym)= 0.0_DP sname(nsym) = 'identity' do i = 1, SIZE( irt, 2 ) irt(nsym,i) = i end do invsym = .FALSE. noinv=.FALSE. t_rev(nsym) = 0 invs(1)=1 time_reversal=.TRUE. no_t_rev=.FALSE. ! ELSE ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SYMMETRIES", nsym ) CALL iotk_scan_dat( iunpun, "NUMBER_OF_BRAVAIS_SYMMETRIES", & nrot, FOUND = found ) IF (.NOT. found) nrot = nsym ! CALL iotk_scan_dat( iunpun, "INVERSION_SYMMETRY", invsym ) CALL iotk_scan_dat( iunpun, "DO_NOT_USE_TIME_REVERSAL", & noinv, FOUND = found ) IF (.NOT. found) noinv = .FALSE. CALL iotk_scan_dat( iunpun, "TIME_REVERSAL_FLAG", & time_reversal, FOUND = found ) IF (.NOT. found) time_reversal = .TRUE. CALL iotk_scan_dat( iunpun, "NO_TIME_REV_OPERATIONS", & no_t_rev, FOUND = found ) IF (.NOT. found) no_t_rev = .FALSE. ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ATOMS", nat_ ) ! DO i = 1, nsym ! CALL iotk_scan_begin( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! CALL iotk_scan_empty( iunpun, "INFO", ATTR = attr ) CALL iotk_scan_attr( attr, "NAME", sname(i) ) CALL iotk_scan_attr( attr, "T_REV", t_rev(i) ) ! CALL iotk_scan_dat( iunpun, "ROTATION", s(:,:,i) ) CALL iotk_scan_dat( iunpun, "FRACTIONAL_TRANSLATION", ft(:,i) ) CALL iotk_scan_dat( iunpun, "EQUIVALENT_IONS", irt(i,1:nat_) ) ! ftau(1,i) = NINT( ft(1,i)*DBLE( dfftp%nr1 ) ) ftau(2,i) = NINT( ft(2,i)*DBLE( dfftp%nr2 ) ) ftau(3,i) = NINT( ft(3,i)*DBLE( dfftp%nr3 ) ) ! CALL iotk_scan_end( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! END DO ! ! indices of inverse operations and matrices in cartesian axis ! are not saved to disk (maybe they should), are recalculated here ! CALL inverse_s () CALL s_axis_to_cart () ! DO i = nsym+1, nrot ! CALL iotk_scan_begin( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) CALL iotk_scan_empty( iunpun, "INFO", ATTR = attr ) CALL iotk_scan_attr( attr, "NAME", sname(i) ) CALL iotk_scan_dat( iunpun, "ROTATION", s(:,:,i) ) CALL iotk_scan_end( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! END DO ! CALL iotk_scan_end( iunpun, "SYMMETRIES" ) ! END IF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( nsym, ionode_id, intra_image_comm ) CALL mp_bcast( nrot, ionode_id, intra_image_comm ) CALL mp_bcast( invsym, ionode_id, intra_image_comm ) CALL mp_bcast( noinv, ionode_id, intra_image_comm ) CALL mp_bcast( time_reversal, ionode_id, intra_image_comm ) CALL mp_bcast( no_t_rev, ionode_id, intra_image_comm ) CALL mp_bcast( s, ionode_id, intra_image_comm ) CALL mp_bcast( ftau, ionode_id, intra_image_comm ) CALL mp_bcast( ft, ionode_id, intra_image_comm ) CALL mp_bcast( sname, ionode_id, intra_image_comm ) CALL mp_bcast( irt, ionode_id, intra_image_comm ) CALL mp_bcast( t_rev, ionode_id, intra_image_comm ) CALL mp_bcast( invs, ionode_id, intra_image_comm ) CALL mp_bcast( sr, ionode_id, intra_image_comm ) ! lsymm_read = .TRUE. ! RETURN ! END SUBROUTINE read_symmetry ! !------------------------------------------------------------------------ SUBROUTINE read_efield( dirname, ierr ) !---------------------------------------------------------------------- ! USE extfield, ONLY : tefield, dipfield, edir, emaxpos, eopreg, eamp ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr LOGICAL :: found ! ierr = 0 IF ( lefield_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "ELECTRIC_FIELD", FOUND = found ) ! IF ( found ) THEN ! CALL iotk_scan_dat( iunpun, "HAS_ELECTRIC_FIELD", tefield ) ! CALL iotk_scan_dat( iunpun, "HAS_DIPOLE_CORRECTION", dipfield ) ! CALL iotk_scan_dat( iunpun, "FIELD_DIRECTION", edir ) ! CALL iotk_scan_dat( iunpun, "MAXIMUM_POSITION", emaxpos ) ! CALL iotk_scan_dat( iunpun, "INVERSE_REGION", eopreg ) ! CALL iotk_scan_dat( iunpun, "FIELD_AMPLITUDE", eamp ) ! CALL iotk_scan_end( iunpun, "ELECTRIC_FIELD" ) ! ELSE ! tefield = .FALSE. dipfield = .FALSE. ! END IF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( tefield, ionode_id, intra_image_comm ) CALL mp_bcast( dipfield, ionode_id, intra_image_comm ) CALL mp_bcast( edir, ionode_id, intra_image_comm ) CALL mp_bcast( emaxpos, ionode_id, intra_image_comm ) CALL mp_bcast( eopreg, ionode_id, intra_image_comm ) CALL mp_bcast( eamp, ionode_id, intra_image_comm ) ! lefield_read = .TRUE. ! RETURN ! END SUBROUTINE read_efield ! !------------------------------------------------------------------------ SUBROUTINE read_planewaves( dirname, ierr ) !------------------------------------------------------------------------ ! USE gvect, ONLY : ngm_g, ecutrho USE gvecs, ONLY : ngms_g, dual USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE wvfct, ONLY : npwx, g2kin, ecutwfc USE control_flags, ONLY : gamma_only ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: npwx_ ! ierr = 0 IF ( lpw_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "PLANE_WAVES" ) ! CALL iotk_scan_dat( iunpun, "WFC_CUTOFF", ecutwfc ) ! CALL iotk_scan_dat( iunpun, "RHO_CUTOFF", ecutrho ) ! ecutwfc = ecutwfc * e2 ecutrho = ecutrho * e2 ! dual = ecutrho / ecutwfc ! CALL iotk_scan_dat( iunpun, "MAX_NUMBER_OF_GK-VECTORS", npwx_ ) ! CALL iotk_scan_dat( iunpun, "GAMMA_ONLY", gamma_only ) ! CALL iotk_scan_empty( iunpun, "FFT_GRID", attr ) CALL iotk_scan_attr( attr, "nr1", dfftp%nr1 ) CALL iotk_scan_attr( attr, "nr2", dfftp%nr2 ) CALL iotk_scan_attr( attr, "nr3", dfftp%nr3 ) ! CALL iotk_scan_dat( iunpun, "GVECT_NUMBER", ngm_g ) ! CALL iotk_scan_empty( iunpun, "SMOOTH_FFT_GRID", attr ) CALL iotk_scan_attr( attr, "nr1s", dffts%nr1 ) CALL iotk_scan_attr( attr, "nr2s", dffts%nr2 ) CALL iotk_scan_attr( attr, "nr3s", dffts%nr3 ) ! CALL iotk_scan_dat( iunpun, "SMOOTH_GVECT_NUMBER", ngms_g ) ! CALL iotk_scan_end( iunpun, "PLANE_WAVES" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( ecutwfc, ionode_id, intra_image_comm ) CALL mp_bcast( ecutrho, ionode_id, intra_image_comm ) CALL mp_bcast( dual, ionode_id, intra_image_comm ) CALL mp_bcast( npwx_, ionode_id, intra_image_comm ) CALL mp_bcast( gamma_only, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngm_g, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngms_g, ionode_id, intra_image_comm ) ! lpw_read = .TRUE. ! RETURN ! END SUBROUTINE read_planewaves ! !------------------------------------------------------------------------ SUBROUTINE read_spin( dirname, ierr ) !------------------------------------------------------------------------ ! USE spin_orb, ONLY : lspinorb, domag USE lsda_mod, ONLY : nspin, lsda USE noncollin_module, ONLY : noncolin, npol ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found ! ierr = 0 IF ( lspin_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "SPIN" ) ! CALL iotk_scan_dat( iunpun, "LSDA", lsda ) ! CALL iotk_scan_dat( iunpun, "NON-COLINEAR_CALCULATION", & noncolin, FOUND = found ) IF ( .not. found ) noncolin = .FALSE. ! IF ( lsda ) THEN ! nspin = 2 ! ELSE IF ( noncolin ) THEN ! nspin = 4 ! ELSE ! nspin = 1 ! END IF ! IF ( noncolin ) THEN ! CALL iotk_scan_dat( iunpun, "SPINOR_DIM", npol ) ! ELSE ! npol = 1 ! END IF ! CALL iotk_scan_dat( iunpun, "SPIN-ORBIT_CALCULATION", & lspinorb, FOUND = found ) IF ( .NOT. found ) lspinorb = .FALSE. ! CALL iotk_scan_dat( iunpun, "SPIN-ORBIT_DOMAG", domag, & FOUND = found ) IF ( .NOT. found ) domag = .FALSE. ! CALL iotk_scan_end( iunpun, "SPIN" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( lsda, ionode_id, intra_image_comm ) CALL mp_bcast( nspin, ionode_id, intra_image_comm ) CALL mp_bcast( noncolin, ionode_id, intra_image_comm ) CALL mp_bcast( npol, ionode_id, intra_image_comm ) CALL mp_bcast( lspinorb, ionode_id, intra_image_comm ) CALL mp_bcast( domag, ionode_id, intra_image_comm ) ! lspin_read = .TRUE. ! RETURN ! END SUBROUTINE read_spin ! !-------------------------------------------------------------------------- SUBROUTINE read_magnetization( dirname, ierr ) !------------------------------------------------------------------------ ! USE constants, ONLY : PI USE klist, ONLY : two_fermi_energies, nelup, neldw USE ener, ONLY : ef_up, ef_dw USE lsda_mod, ONLY : starting_magnetization USE noncollin_module, ONLY : angle1, angle2, i_cons, mcons, bfield, & lambda ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found INTEGER :: i, nsp ! ierr = 0 IF ( lstarting_mag_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "MAGNETIZATION_INIT", FOUND = found ) ! IF( found ) THEN ! CALL iotk_scan_dat(iunpun,"CONSTRAINT_MAG", i_cons) CALL iotk_scan_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! DO i=1,nsp ! CALL iotk_scan_begin( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! CALL iotk_scan_dat( iunpun, "STARTING_MAGNETIZATION", & starting_magnetization(i) ) CALL iotk_scan_dat( iunpun, "ANGLE1", angle1(i) ) CALL iotk_scan_dat( iunpun, "ANGLE2", angle2(i) ) ! angle1(i)=angle1(i)*PI/180.d0 angle2(i)=angle2(i)*PI/180.d0 ! IF (i_cons==1.OR.i_cons==2) THEN ! CALL iotk_scan_dat( iunpun, "CONSTRANT_1", mcons(1,i) ) CALL iotk_scan_dat( iunpun, "CONSTRANT_2", mcons(2,i) ) CALL iotk_scan_dat( iunpun, "CONSTRANT_3", mcons(3,i) ) ! ENDIF ! CALL iotk_scan_end( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ENDDO IF (i_cons==3) THEN ! CALL iotk_scan_dat( iunpun, "FIXED_MAGNETIZATION_1", mcons(1,1) ) CALL iotk_scan_dat( iunpun, "FIXED_MAGNETIZATION_2", mcons(2,1) ) CALL iotk_scan_dat( iunpun, "FIXED_MAGNETIZATION_3", mcons(3,1) ) ! ELSE IF (i_cons==4) THEN ! CALL iotk_scan_dat( iunpun, "MAGNETIC_FIELD_1", bfield(1) ) CALL iotk_scan_dat( iunpun, "MAGNETIC_FIELD_2", bfield(2) ) CALL iotk_scan_dat( iunpun, "MAGNETIC_FIELD_3", bfield(3) ) ! ENDIF ! CALL iotk_scan_dat(iunpun,"TWO_FERMI_ENERGIES", & two_fermi_energies, FOUND = found) IF ( .not. found ) two_fermi_energies=.FALSE. ! IF (two_fermi_energies) THEN ! CALL iotk_scan_dat( iunpun, "FIXED_MAGNETIZATION", mcons(3,1) ) CALL iotk_scan_dat( iunpun, "ELECTRONS_UP", nelup ) CALL iotk_scan_dat( iunpun, "ELECTRONS_DOWN", neldw ) CALL iotk_scan_dat( iunpun, "FERMI_ENERGY_UP", ef_up ) CALL iotk_scan_dat( iunpun, "FERMI_ENERGY_DOWN", ef_dw ) ! ef_up = ef_up * e2 ef_dw = ef_dw * e2 ! ENDIF ! IF (i_cons>0) CALL iotk_scan_dat(iunpun,"LAMBDA",lambda) ! CALL iotk_scan_end( iunpun, "MAGNETIZATION_INIT" ) ! END IF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( found, ionode_id, intra_image_comm ) ! IF( found ) THEN ! CALL mp_bcast( starting_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( angle1, ionode_id, intra_image_comm ) CALL mp_bcast( angle2, ionode_id, intra_image_comm ) CALL mp_bcast( two_fermi_energies, ionode_id, intra_image_comm ) CALL mp_bcast( i_cons, ionode_id, intra_image_comm ) CALL mp_bcast( mcons, ionode_id, intra_image_comm ) CALL mp_bcast( bfield, ionode_id, intra_image_comm ) CALL mp_bcast( nelup, ionode_id, intra_image_comm ) CALL mp_bcast( neldw, ionode_id, intra_image_comm ) CALL mp_bcast( ef_up, ionode_id, intra_image_comm ) CALL mp_bcast( ef_dw, ionode_id, intra_image_comm ) CALL mp_bcast( lambda, ionode_id, intra_image_comm ) ! ENDIF ! lstarting_mag_read = .TRUE. ! RETURN ! END SUBROUTINE read_magnetization ! !------------------------------------------------------------------------ SUBROUTINE read_xc( dirname, ierr ) !------------------------------------------------------------------------ ! USE ions_base, ONLY : nsp USE funct, ONLY : enforce_input_dft USE ldaU, ONLY : lda_plus_u, lda_plus_u_kind, U_projection, & Hubbard_lmax, Hubbard_l, Hubbard_U, Hubbard_J, & Hubbard_alpha, Hubbard_J0, Hubbard_beta USE kernel_table, ONLY : vdw_table_name ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=20) :: dft_name INTEGER :: nsp_, inlc LOGICAL :: found, nomsg = .true. ! ierr = 0 IF ( lxc_read ) RETURN ! IF ( .NOT. lions_read ) & CALL errore( 'read_xc', 'read ions first', 1 ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "EXCHANGE_CORRELATION" ) ! CALL iotk_scan_dat( iunpun, "DFT", dft_name ) ! CALL iotk_scan_dat( iunpun, "LDA_PLUS_U_CALCULATION", lda_plus_u, & FOUND = found ) IF ( .NOT. found ) lda_plus_u = .FALSE. ! IF ( lda_plus_u ) THEN ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SPECIES", nsp_ ) ! CALL iotk_scan_dat( iunpun, "LDA_PLUS_U_KIND", lda_plus_u_kind ) ! CALL iotk_scan_dat( iunpun, "U_PROJECTION_TYPE", U_projection ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_LMAX", Hubbard_lmax ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_L", Hubbard_l(1:nsp_) ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_U", Hubbard_U(1:nsp_) ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_J", Hubbard_J(1:3,1:nsp_) ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_J0", Hubbard_J0(1:nsp_) ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_ALPHA", Hubbard_alpha(1:nsp_) ) ! CALL iotk_scan_dat( iunpun, "HUBBARD_BETA", Hubbard_beta(1:nsp_) ) ! END IF ! ! Vdw DF ! CALL iotk_scan_dat( iunpun, "NON_LOCAL_DF", inlc, FOUND = found ) IF ( found ) THEN ! IF ( inlc == 1 .OR. inlc == 2 ) THEN ! CALL iotk_scan_dat( iunpun, "VDW_KERNEL_NAME", vdw_table_name ) ! END IF ELSE inlc = 0 ENDIF ! CALL iotk_scan_end( iunpun, "EXCHANGE_CORRELATION" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( dft_name, ionode_id, intra_image_comm ) CALL mp_bcast( lda_plus_u, ionode_id, intra_image_comm ) CALL mp_bcast( inlc, ionode_id, intra_image_comm ) ! IF ( lda_plus_u ) THEN ! CALL mp_bcast( lda_plus_u_kind, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_lmax, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_l , ionode_id, intra_image_comm ) CALL mp_bcast( U_projection, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_U, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_J, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_J0, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_alpha, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_beta, ionode_id, intra_image_comm ) ! END IF IF ( inlc == 1 .OR. inlc == 2 ) THEN CALL mp_bcast( vdw_table_name, ionode_id, intra_image_comm ) END IF ! discard any further attempt to set a different dft CALL enforce_input_dft( dft_name, nomsg ) ! lxc_read = .TRUE. ! RETURN ! END SUBROUTINE read_xc ! !------------------------------------------------------------------------ SUBROUTINE read_brillouin_zone( dirname, ierr ) !------------------------------------------------------------------------ ! USE lsda_mod, ONLY : lsda USE klist, ONLY : nkstot, xk, wk, qnorm USE start_k, ONLY : nks_start, xk_start, wk_start, & nk1, nk2, nk3, k1, k2, k3 USE symm_base, ONLY : nrot, s, sname ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: i, ik, num_k_points LOGICAL :: found ! ierr = 0 IF ( lbz_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "BRILLOUIN_ZONE" ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_K-POINTS", num_k_points ) ! nkstot = num_k_points ! IF ( lsda ) nkstot = num_k_points * 2 ! CALL iotk_scan_empty( iunpun, "MONKHORST_PACK_GRID", attr ) CALL iotk_scan_attr( attr, "nk1", nk1 ) CALL iotk_scan_attr( attr, "nk2", nk2 ) CALL iotk_scan_attr( attr, "nk3", nk3 ) CALL iotk_scan_empty( iunpun, "MONKHORST_PACK_OFFSET", attr ) CALL iotk_scan_attr( attr, "k1", k1 ) CALL iotk_scan_attr( attr, "k2", k2 ) CALL iotk_scan_attr( attr, "k3", k3 ) ! DO ik = 1, num_k_points ! CALL iotk_scan_empty( iunpun, "K-POINT" // & & TRIM( iotk_index( ik ) ), attr ) ! CALL iotk_scan_attr( attr, "XYZ", xk(:,ik) ) ! CALL iotk_scan_attr( attr, "WEIGHT", wk(ik) ) ! IF ( lsda ) THEN ! xk(:,ik+num_k_points) = xk(:,ik) ! wk(ik+num_k_points) = wk(ik) ! END IF ! END DO CALL iotk_scan_dat( iunpun, "STARTING_K-POINTS", nks_start, & FOUND = found ) IF (.NOT. found) nks_start=0 IF (nks_start > 0 ) THEN IF (.NOT.ALLOCATED(xk_start)) ALLOCATE(xk_start(3,nks_start)) IF (.NOT.ALLOCATED(wk_start)) ALLOCATE(wk_start(nks_start)) END IF DO ik = 1, nks_start ! CALL iotk_scan_empty( iunpun, "K-POINT_START" // & & TRIM( iotk_index( ik ) ), attr ) ! CALL iotk_scan_attr( attr, "XYZ", xk_start(:,ik) ) ! CALL iotk_scan_attr( attr, "WEIGHT", wk_start(ik) ) ! END DO ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_BRAVAIS_SYMMETRIES", & nrot, FOUND = found ) IF (.NOT. found) THEN nrot=0 ELSE IF (nrot > 0 .AND. nrot < 49 ) THEN DO i = 1, nrot CALL iotk_scan_begin( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! CALL iotk_scan_empty( iunpun, "INFO", ATTR = attr ) CALL iotk_scan_attr( attr, "NAME", sname(i) ) CALL iotk_scan_dat( iunpun, "ROTATION", s(:,:,i) ) CALL iotk_scan_end( iunpun, "SYMM" // TRIM( iotk_index( i ) ) ) ! END DO ELSE CALL errore ( 'read_brillouin zone', & 'incorrect number of symmetries for lattice', nrot ) END IF ! CALL iotk_scan_dat( iunpun, "NORM-OF-Q", qnorm, FOUND = found ) IF (.not. found) qnorm=0.0_DP CALL iotk_scan_end( iunpun, "BRILLOUIN_ZONE" ) CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( nkstot, ionode_id, intra_image_comm ) CALL mp_bcast( xk, ionode_id, intra_image_comm ) CALL mp_bcast( wk, ionode_id, intra_image_comm ) CALL mp_bcast( nk1, ionode_id, intra_image_comm ) CALL mp_bcast( nk2, ionode_id, intra_image_comm ) CALL mp_bcast( nk3, ionode_id, intra_image_comm ) CALL mp_bcast( k1, ionode_id, intra_image_comm ) CALL mp_bcast( k2, ionode_id, intra_image_comm ) CALL mp_bcast( k3, ionode_id, intra_image_comm ) CALL mp_bcast( qnorm, ionode_id, intra_image_comm) CALL mp_bcast( nks_start, ionode_id, intra_image_comm ) IF (nks_start>0.and..NOT.ionode) THEN IF (.NOT.ALLOCATED(xk_start)) ALLOCATE(xk_start(3,nks_start)) IF (.NOT.ALLOCATED(wk_start)) ALLOCATE(wk_start(nks_start)) ENDIF IF (nks_start>0) THEN CALL mp_bcast( xk_start, ionode_id, intra_image_comm ) CALL mp_bcast( wk_start, ionode_id, intra_image_comm ) ENDIF CALL mp_bcast( nrot, ionode_id, intra_image_comm ) CALL mp_bcast( s, ionode_id, intra_image_comm ) CALL mp_bcast( sname, ionode_id, intra_image_comm ) ! lbz_read = .TRUE. ! RETURN ! END SUBROUTINE read_brillouin_zone ! !------------------------------------------------------------------------ SUBROUTINE read_occupations( dirname, ierr ) !------------------------------------------------------------------------ ! USE lsda_mod, ONLY : lsda, nspin USE fixed_occ, ONLY : tfixed_occ, f_inp USE ktetra, ONLY : ntetra, tetra, ltetra USE klist, ONLY : lgauss, ngauss, degauss, smearing USE electrons_base, ONLY : nupdwn USE wvfct, ONLY : nbnd ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: i LOGICAL :: found ! ierr = 0 IF ( locc_read ) RETURN ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "OCCUPATIONS" ) ! CALL iotk_scan_dat( iunpun, "SMEARING_METHOD", lgauss, & FOUND = found ) IF ( .NOT. found ) lgauss = .FALSE. ! IF ( lgauss ) THEN ! CALL iotk_scan_dat( iunpun, "SMEARING_TYPE", ngauss ) SELECT CASE (ngauss ) CASE (0) smearing = 'gaussian' CASE (1) smearing = 'Methfessel-Paxton' CASE (-1) smearing = 'Marzari-Vanderbilt' CASE (-99) smearing = 'Fermi-Dirac' CASE DEFAULT CALL errore('read_occupations',& 'wrong smearing index', abs(1000+ngauss) ) END SELECT ! CALL iotk_scan_dat( iunpun, "SMEARING_PARAMETER", degauss ) ! degauss = degauss * e2 ! ELSE ! ngauss = 0 degauss = 0.d0 ! END IF ! CALL iotk_scan_dat( iunpun, "TETRAHEDRON_METHOD", ltetra, & FOUND = found ) IF ( .NOT. found ) ltetra = .FALSE. ! IF ( ltetra ) THEN ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_TETRAHEDRA", ntetra ) ! DO i = 1, ntetra ! CALL iotk_scan_dat( iunpun, "TETRAHEDRON" // & & iotk_index( i ), tetra(1:4,i) ) ! END DO ! ELSE ! ntetra = 0 ! END IF ! CALL iotk_scan_dat( iunpun, "FIXED_OCCUPATIONS", tfixed_occ, & FOUND = found ) IF ( .NOT. found ) tfixed_occ = .FALSE. ! IF ( tfixed_occ ) THEN ! CALL iotk_scan_empty( iunpun, "INFO", ATTR=attr, FOUND=found ) ! IF ( .NOT. found ) THEN ! nupdwn(1:2) = nbnd ! ELSE ! IF ( qexml_version_before_1_4_0 ) THEN ! CALL iotk_scan_attr( attr, "nelup", nupdwn(1) ) CALL iotk_scan_attr( attr, "neldw", nupdwn(2) ) ! ELSE ! ! current version ! CALL iotk_scan_attr( attr, "nstates_up", nupdwn(1) ) CALL iotk_scan_attr( attr, "nstates_down", nupdwn(2) ) ! ENDIF ! ENDIF ! IF ( .NOT. ALLOCATED( f_inp ) ) THEN ! IF ( nspin == 4 ) THEN ALLOCATE( f_inp( nbnd, 1 ) ) ELSE ALLOCATE( f_inp( nbnd, nspin ) ) ENDIF ! ENDIF ! f_inp( :, :) = 0.0d0 ! CALL iotk_scan_dat( iunpun, "INPUT_OCC_UP", f_inp(1:nupdwn(1),1) ) ! IF ( lsda ) THEN CALL iotk_scan_dat( iunpun, "INPUT_OCC_DOWN", f_inp(1:nupdwn(2),2) ) ENDIF ! END IF ! CALL iotk_scan_end( iunpun, "OCCUPATIONS" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( lgauss, ionode_id, intra_image_comm ) ! IF ( lgauss ) THEN ! CALL mp_bcast( ngauss, ionode_id, intra_image_comm ) CALL mp_bcast( degauss, ionode_id, intra_image_comm ) CALL mp_bcast( smearing, ionode_id, intra_image_comm ) ! END IF ! CALL mp_bcast( ltetra, ionode_id, intra_image_comm ) ! IF ( ltetra ) THEN ! CALL mp_bcast( ntetra, ionode_id, intra_image_comm ) CALL mp_bcast( tetra, ionode_id, intra_image_comm ) ! END IF ! CALL mp_bcast( tfixed_occ, ionode_id, intra_image_comm ) ! IF ( tfixed_occ ) THEN ! CALL mp_bcast( nupdwn, ionode_id, intra_image_comm ) ! IF ( .NOT. ALLOCATED( f_inp ) ) THEN ! IF ( nspin == 4 ) THEN ALLOCATE( f_inp( nbnd, 1 ) ) ELSE ALLOCATE( f_inp( nbnd, nspin ) ) END IF ! ENDIF ! CALL mp_bcast( f_inp, ionode_id, intra_image_comm ) ! ENDIF ! locc_read = .TRUE. ! RETURN ! END SUBROUTINE read_occupations ! !------------------------------------------------------------------------ SUBROUTINE read_band_structure( dirname, ierr ) !------------------------------------------------------------------------ ! USE control_flags, ONLY : lkpoint_dir USE basis, ONLY : natomwfc USE lsda_mod, ONLY : lsda, isk USE klist, ONLY : nkstot, wk, nelec USE wvfct, ONLY : et, wg, nbnd USE ener, ONLY : ef, ef_up, ef_dw ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: ik, ik_eff, num_k_points LOGICAL :: found, two_fermi_energies_ ! ierr = 0 IF ( lbs_read ) RETURN ! IF ( .NOT. lspin_read ) & CALL errore( 'read_band_structure', 'read spin first', 1 ) IF ( .NOT. lbz_read ) & CALL errore( 'read_band_structure', 'read band_structure first', 1 ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF (.NOT.lkpoint_dir) THEN ! IF ( ionode ) & CALL iotk_open_read( iunout, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun )//'.eig', IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! END IF ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "BAND_STRUCTURE_INFO" ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ELECTRONS", nelec ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ATOMIC_WFC", natomwfc, & FOUND = found ) IF ( .NOT. found ) natomwfc = 0 ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_BANDS", nbnd ) ! CALL iotk_scan_dat( iunpun, "FERMI_ENERGY", ef, FOUND = found ) ! IF ( found ) THEN ef = ef * e2 ELSE ef = 0.d0 END IF ! CALL iotk_scan_dat( iunpun, "TWO_FERMI_ENERGIES", & two_fermi_energies_, FOUND = found) IF ( .not. found ) two_fermi_energies_=.FALSE. ! IF ( two_fermi_energies_ ) THEN ! CALL iotk_scan_dat( iunpun, "FERMI_ENERGY_UP", ef_up ) CALL iotk_scan_dat( iunpun, "FERMI_ENERGY_DOWN", ef_dw ) ! ef_up = ef_up * e2 ef_dw = ef_dw * e2 ! ENDIF ! CALL iotk_scan_end( iunpun, "BAND_STRUCTURE_INFO" ) ! END IF ! num_k_points = nkstot ! IF ( lsda ) num_k_points = nkstot / 2 ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "EIGENVALUES" ) ! k_points_loop: DO ik = 1, num_k_points ! CALL iotk_scan_begin( iunpun, & "K-POINT" // TRIM( iotk_index( ik ) ) ) ! IF ( lsda ) THEN ! isk(ik) = 1 ! IF (lkpoint_dir) THEN CALL iotk_scan_begin(iunpun, "DATAFILE"//TRIM(iotk_index(1)) & , FOUND = found) IF (.NOT. found ) GO TO 10 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunpun, "EIGENVALUES", et(:,ik) ) CALL iotk_scan_dat ( iunpun, "OCCUPATIONS", wg(:,ik) ) CALL iotk_scan_end(iunpun, "DATAFILE"//TRIM(iotk_index(1)) ) ELSE CALL iotk_scan_begin( iunout, & "DATA_EIG"//TRIM( iotk_index(ik) )//"_SPIN_UP", FOUND=found ) IF (.NOT. found ) GO TO 10 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunout, "EIGENVALUES", et(:,ik) ) CALL iotk_scan_dat ( iunout, "OCCUPATIONS", wg(:,ik) ) CALL iotk_scan_end( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_UP") ENDIF ! 10 CONTINUE ik_eff = ik + num_k_points isk(ik_eff) = 2 ! IF (lkpoint_dir) THEN CALL iotk_scan_begin(iunpun,"DATAFILE"//TRIM(iotk_index(2)) & , FOUND = found) IF (.NOT. found ) GO TO 20 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunpun, "EIGENVALUES", et(:,ik_eff) ) CALL iotk_scan_dat ( iunpun, "OCCUPATIONS", wg(:,ik_eff) ) CALL iotk_scan_end( iunpun, "DATAFILE"//TRIM(iotk_index(2)) ) ELSE CALL iotk_scan_begin( iunout, & "DATA_EIG"//TRIM( iotk_index(ik) )//"_SPIN_DW", FOUND=found ) IF (.NOT. found ) GO TO 20 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunout, "EIGENVALUES", et(:,ik_eff) ) CALL iotk_scan_dat ( iunout, "OCCUPATIONS", wg(:,ik_eff) ) CALL iotk_scan_end( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_DW") ENDIF 20 CONTINUE ! ELSE ! isk(ik) = 1 ! IF (lkpoint_dir) THEN CALL iotk_scan_begin( iunpun, "DATAFILE" , FOUND = found) IF (.NOT. found ) GO TO 15 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunpun, "EIGENVALUES", et(:,ik) ) CALL iotk_scan_dat ( iunpun, "OCCUPATIONS", wg(:,ik) ) CALL iotk_scan_end ( iunpun, "DATAFILE" ) ELSE CALL iotk_scan_begin( iunout, & "DATA_EIG"//TRIM( iotk_index(ik) ), FOUND = found ) IF (.NOT. found ) GO TO 15 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunout, "EIGENVALUES", et(:,ik) ) CALL iotk_scan_dat ( iunout, "OCCUPATIONS", wg(:,ik) ) CALL iotk_scan_end( iunout, & "DATA_EIG"//TRIM( iotk_index( ik ) )) ENDIF 15 CONTINUE ! END IF ! CALL iotk_scan_end( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END DO k_points_loop ! et(:,:) = et(:,:) * e2 ! FORALL( ik = 1:nkstot ) wg(:,ik) = wg(:,ik)*wk(ik) ! CALL iotk_scan_end( iunpun, "EIGENVALUES" ) ! CALL iotk_close_read( iunpun ) ! IF (.NOT.lkpoint_dir) CALL iotk_close_read( iunout ) ! END IF ! CALL mp_bcast( nelec, ionode_id, intra_image_comm ) CALL mp_bcast( natomwfc, ionode_id, intra_image_comm ) CALL mp_bcast( nbnd, ionode_id, intra_image_comm ) CALL mp_bcast( isk, ionode_id, intra_image_comm ) CALL mp_bcast( et, ionode_id, intra_image_comm ) CALL mp_bcast( wg, ionode_id, intra_image_comm ) CALL mp_bcast( ef, ionode_id, intra_image_comm ) ! lbs_read = .TRUE. ! RETURN ! END SUBROUTINE read_band_structure ! !------------------------------------------------------------------------ SUBROUTINE read_wavefunctions( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... This routines reads wavefunctions from the new file format and ! ... writes them into the old format ! USE control_flags, ONLY : twfcollect, lkpoint_dir USE cell_base, ONLY : tpiba2 USE lsda_mod, ONLY : nspin, isk USE klist, ONLY : nkstot, wk, nks, xk, ngk USE wvfct, ONLY : npw, npwx, g2kin, et, wg, nbnd, ecutwfc USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nwordwfc, iunwfc USE buffers, ONLY : save_buffer USE gvect, ONLY : ngm, ngm_g, g, ig_l2g USE noncollin_module, ONLY : noncolin, npol USE mp_global, ONLY : kunit, nproc_image, nproc_pool, me_pool, me_bgrp, nbgrp, & root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm, & root_bgrp, intra_bgrp_comm, inter_bgrp_comm ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=256) :: filename INTEGER :: ik, ipol, ik_eff, num_k_points INTEGER, ALLOCATABLE :: kisort(:) INTEGER :: npool, nkbl, nkl, nkr, npwx_g INTEGER :: nupdwn(2), ike, iks, npw_g, ispin INTEGER, ALLOCATABLE :: ngk_g(:) INTEGER, ALLOCATABLE :: igk_l2g(:,:), igk_l2g_kdip(:,:) LOGICAL :: opnd REAL(DP) :: scalef ! ! IF ( iunwfc > 0 ) THEN ! INQUIRE( UNIT = iunwfc, OPENED = opnd ) ! IF ( .NOT. opnd ) CALL errore( 'read_wavefunctions', & & 'wavefunctions unit (iunwfc) is not opened', 1 ) END IF ! IF ( ionode ) THEN ! CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( nkstot > 0 ) THEN ! ! ... find out the number of pools ! npool = nproc_image / nproc_pool ! ! ... find out number of k points blocks ! nkbl = nkstot / kunit ! ! k points per pool ! nkl = kunit * ( nkbl / npool ) ! ! ... find out the reminder ! nkr = ( nkstot - nkl * npool ) / kunit ! ! ... Assign the reminder to the first nkr pools ! IF ( my_pool_id < nkr ) nkl = nkl + kunit ! ! ... find out the index of the first k point in this pool ! iks = nkl * my_pool_id + 1 ! IF ( my_pool_id >= nkr ) iks = iks + nkr * kunit ! ! ... find out the index of the last k point in this pool ! ike = iks + nkl - 1 ! END IF ! ! ... find out the global number of G vectors: ngm_g ! ngm_g = ngm ! CALL mp_sum( ngm_g, intra_bgrp_comm ) ! ! ... build the igk_l2g array, yielding the correspondence between ! ... the local k+G index and the global G index - see also ig_l2g ! ALLOCATE ( igk_l2g( npwx, nks ) ) igk_l2g = 0 ! ALLOCATE( kisort( npwx ) ) ! DO ik = 1, nks ! kisort = 0 npw = npwx ! CALL gk_sort( xk(1,ik+iks-1), ngm, g, & ecutwfc/tpiba2, npw, kisort(1), g2kin ) ! CALL gk_l2gmap( ngm, ig_l2g(1), npw, kisort(1), igk_l2g(1,ik) ) ! ngk(ik) = npw ! END DO ! DEALLOCATE( kisort ) ! ! ... compute the global number of G+k vectors for each k point ! ALLOCATE( ngk_g( nkstot ) ) ! ngk_g = 0 ngk_g(iks:ike) = ngk(1:nks) ! CALL mp_sum( ngk_g, inter_pool_comm ) CALL mp_sum( ngk_g, intra_pool_comm ) ngk_g = ngk_g / nbgrp ! ! ... compute the Maximum G vector index among all G+k an processors ! npw_g = MAXVAL( igk_l2g(:,:) ) ! CALL mp_max( npw_g, inter_pool_comm ) CALL mp_max( npw_g, intra_pool_comm ) ! ! ... compute the Maximum number of G vector among all k points ! npwx_g = MAXVAL( ngk_g(1:nkstot) ) ! ! ! ... define a further l2g map to read gkvectors and wfc coherently ! ALLOCATE( igk_l2g_kdip( npwx_g, nks ) ) igk_l2g_kdip = 0 ! DO ik = iks, ike ! CALL gk_l2gmap_kdip( npw_g, ngk_g(ik), ngk(ik-iks+1), & igk_l2g(1,ik-iks+1), igk_l2g_kdip(1,ik-iks+1) ) END DO ! ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "EIGENVECTORS" ) ! END IF ! num_k_points = nkstot ! IF ( nspin == 2 ) num_k_points = nkstot / 2 ! k_points_loop: DO ik = 1, num_k_points ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! IF ( nspin == 2 .OR. noncolin ) THEN ! CALL iotk_scan_begin( iunpun, "WFC.1", FOUND = twfcollect ) IF ( twfcollect ) CALL iotk_scan_end( iunpun, "WFC.1" ) ! ELSE ! CALL iotk_scan_begin( iunpun, "WFC", FOUND = twfcollect ) IF ( twfcollect ) CALL iotk_scan_end( iunpun, "WFC" ) ! ENDIF ! END IF ! CALL mp_bcast( twfcollect, ionode_id, intra_image_comm ) ! IF ( .NOT. twfcollect ) THEN ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, & "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END IF ! EXIT k_points_loop ! END IF ! IF ( nspin == 2 ) THEN ! ispin = 1 evc=(0.0_DP, 0.0_DP) ! ! ... no need to read isk here: they are read from band structure ! ... and correctly distributed across pools in read_file !!! isk(ik) = 1 ! IF ( ionode ) THEN ! filename = TRIM( wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ) ! END IF ! CALL read_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, nbnd, igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL save_buffer ( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! END IF ! ispin = 2 ik_eff = ik + num_k_points evc=(0.0_DP, 0.0_DP) ! ! ... no need to read isk here (see above why) !isk(ik_eff) = 2 ! IF ( ionode ) THEN ! filename = TRIM( wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ) ! END IF ! CALL read_wfc( iunout, ik_eff, nkstot, kunit, ispin, nspin, & evc, npw_g, nbnd, igk_l2g_kdip(:,ik_eff-iks+1), & ngk(ik_eff-iks+1), filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! IF ( ( ik_eff >= iks ) .AND. ( ik_eff <= ike ) ) THEN ! CALL save_buffer ( evc, nwordwfc, iunwfc, (ik_eff-iks+1) ) ! END IF ! ELSE ! ! ... no need to read isk here (see above why) !isk(ik) = 1 ! evc=(0.0_DP, 0.0_DP) IF ( noncolin ) THEN ! DO ipol = 1, npol ! IF ( ionode ) THEN ! filename = TRIM( wfc_filename( dirname, 'evc', ik, ipol, & DIR=lkpoint_dir ) ) ! END IF ! !!! TEMP nkl=(ipol-1)*npwx+1 nkr= ipol *npwx CALL read_wfc( iunout, ik, nkstot, kunit, ispin, & npol, evc(nkl:nkr,:), npw_g, nbnd, & igk_l2g_kdip(:,ik-iks+1), ngk(ik-iks+1), & filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END DO ! ELSE ! IF ( ionode ) THEN ! filename = TRIM( wfc_filename( dirname, 'evc', ik, & DIR=lkpoint_dir ) ) ! END IF ! CALL read_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, nbnd, igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END IF ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL save_buffer ( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! ! the following two line can be used to debug read_wfc ! WRITE(200+10*ik+me_pool,fmt="(2D18.10)") evc ! CLOSE(200+10*ik+me_pool ) ! END IF ! END IF ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END IF ! END DO k_points_loop ! DEALLOCATE ( igk_l2g ) DEALLOCATE ( igk_l2g_kdip ) ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, "EIGENVECTORS" ) ! CALL iotk_close_read( iunpun ) ! END IF ! RETURN ! END SUBROUTINE read_wavefunctions ! !------------------------------------------------------------------------ SUBROUTINE read_ef( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... this routine reads only the Fermi energy ! USE ener, ONLY : ef ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found ! ! IF ( ionode ) THEN ! CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! ! ... then selected tags are read from the other sections ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "BAND_STRUCTURE_INFO" ) ! CALL iotk_scan_dat( iunpun, "FERMI_ENERGY", ef, FOUND = found ) ! IF (found) THEN ef = ef * e2 ELSE ef = 0.d0 END IF ! CALL iotk_scan_end( iunpun, "BAND_STRUCTURE_INFO" ) END IF ! CALL mp_bcast( ef, ionode_id, intra_image_comm ) ! IF ( ionode ) CALL iotk_close_read( iunpun ) ! RETURN ! END SUBROUTINE read_ef ! !------------------------------------------------------------------------ SUBROUTINE read_exx( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... read EXX variables ! USE funct, ONLY : set_exx_fraction, set_screening_parameter, & enforce_input_dft, start_exx USE exx, ONLY : x_gamma_extrapolation, nq1, nq2, nq3, & exxdiv_treatment, yukawa, ecutvcut IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr REAL(DP) :: exx_fraction, screening_parameter LOGICAL :: exx_is_active, found ! IF ( ionode ) THEN CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) RETURN IF ( ionode ) THEN CALL iotk_scan_begin( iunpun, "EXACT_EXCHANGE", FOUND = found ) END IF CALL mp_bcast( found, ionode_id, intra_image_comm ) IF ( ionode ) THEN IF ( found ) THEN CALL iotk_scan_dat(iunpun, "x_gamma_extrapolation", x_gamma_extrapolation) CALL iotk_scan_dat(iunpun, "nqx1", nq1) CALL iotk_scan_dat(iunpun, "nqx2", nq2) CALL iotk_scan_dat(iunpun, "nqx3", nq3) CALL iotk_scan_dat(iunpun, "exxdiv_treatment", exxdiv_treatment) CALL iotk_scan_dat(iunpun, "yukawa", yukawa) CALL iotk_scan_dat(iunpun, "ecutvcut", ecutvcut) CALL iotk_scan_dat(iunpun, "exx_fraction", exx_fraction) CALL iotk_scan_dat(iunpun, "screening_parameter", screening_parameter) CALL iotk_scan_dat(iunpun, "exx_is_active", exx_is_active) CALL iotk_scan_end( iunpun, "EXACT_EXCHANGE" ) END IF CALL iotk_close_read( iunpun ) END IF ! IF ( .NOT. found ) RETURN ! CALL mp_bcast( x_gamma_extrapolation, ionode_id, intra_image_comm ) CALL mp_bcast( nq1, ionode_id, intra_image_comm ) CALL mp_bcast( nq2, ionode_id, intra_image_comm ) CALL mp_bcast( nq3, ionode_id, intra_image_comm ) CALL mp_bcast( exxdiv_treatment, ionode_id, intra_image_comm ) CALL mp_bcast( yukawa, ionode_id, intra_image_comm ) CALL mp_bcast( ecutvcut, ionode_id, intra_image_comm ) CALL mp_bcast( exx_fraction, ionode_id, intra_image_comm ) CALL mp_bcast( screening_parameter, ionode_id, intra_image_comm ) CALL mp_bcast( exx_is_active, ionode_id, intra_image_comm ) ! CALL set_exx_fraction(exx_fraction) CALL set_screening_parameter(screening_parameter) IF (exx_is_active) CALL start_exx( ) ! RETURN ! END SUBROUTINE read_exx ! !------------------------------------------------------------------------ SUBROUTINE read_( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... this is a template for a "read section" subroutine ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: idum ! ! IF ( ionode ) THEN ! CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "" ) ! CALL iotk_scan_end( iunpun, "" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( idum, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_ ! !---------------------------------------------------------------------------- SUBROUTINE gk_l2gmap( ngm, ig_l2g, ngk, igk, igk_l2g ) !---------------------------------------------------------------------------- ! ! ... This subroutine maps local G+k index to the global G vector index ! ... the mapping is used to collect wavefunctions subsets distributed ! ... across processors. ! ... Written by Carlo Cavazzoni ! IMPLICIT NONE ! ! ... Here the dummy variables ! INTEGER, INTENT(IN) :: ngm, ngk, igk(ngk), ig_l2g(ngm) INTEGER, INTENT(OUT) :: igk_l2g(ngk) INTEGER :: ig ! ! ... input: mapping between local and global G vector index ! DO ig = 1, ngk ! igk_l2g(ig) = ig_l2g(igk(ig)) ! END DO ! RETURN ! END SUBROUTINE gk_l2gmap ! !----------------------------------------------------------------------- SUBROUTINE gk_l2gmap_kdip( npw_g, ngk_g, ngk, igk_l2g, igk_l2g_kdip, igwk ) !----------------------------------------------------------------------- ! ! ... This subroutine maps local G+k index to the global G vector index ! ... the mapping is used to collect wavefunctions subsets distributed ! ... across processors. ! ... This map is used to obtained the G+k grids related to each kpt ! IMPLICIT NONE ! ! ... Here the dummy variables ! INTEGER, INTENT(IN) :: npw_g, ngk_g, ngk INTEGER, INTENT(IN) :: igk_l2g(ngk) INTEGER, OPTIONAL, INTENT(OUT) :: igwk(ngk_g), igk_l2g_kdip(ngk) ! INTEGER, ALLOCATABLE :: igwk_(:), itmp(:), igwk_lup(:) INTEGER :: ig, ig_, ngg ! ! ALLOCATE( itmp( npw_g ) ) ALLOCATE( igwk_( ngk_g ) ) ! itmp(:) = 0 igwk_(:) = 0 ! ! DO ig = 1, ngk ! itmp(igk_l2g(ig)) = igk_l2g(ig) ! END DO ! CALL mp_sum( itmp, intra_bgrp_comm ) ! ngg = 0 DO ig = 1, npw_g ! IF ( itmp(ig) == ig ) THEN ! ngg = ngg + 1 ! igwk_(ngg) = ig ! END IF ! END DO ! IF ( ngg /= ngk_g ) & CALL errore( 'gk_l2gmap_kdip', 'unexpected dimension in ngg', 1 ) ! IF ( PRESENT( igwk ) ) THEN ! igwk(1:ngk_g) = igwk_(1:ngk_g) ! END IF ! IF ( PRESENT( igk_l2g_kdip ) ) THEN ! ALLOCATE( igwk_lup( npw_g ) ) ! !$omp parallel private(ig_, ig) !$omp workshare igwk_lup = 0 !$omp end workshare !$omp do do ig_ = 1, ngk_g igwk_lup(igwk_(ig_)) = ig_ end do !$omp end do !$omp do do ig = 1, ngk igk_l2g_kdip(ig) = igwk_lup(igk_l2g(ig)) end do !$omp end do !$omp end parallel ! DEALLOCATE( igwk_lup ) END IF ! DEALLOCATE( itmp, igwk_ ) ! RETURN ! END SUBROUTINE gk_l2gmap_kdip ! END MODULE pw_restart espresso-5.0.2/PW/src/compute_ux.f900000644000700200004540000000352012053145630016204 0ustar marsamoscm! ! Copyright (C) 2007-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_ux(m_loc,ux,nat) ! ! This subroutine determines the direction of a fixed quantization axis ! from the starting magnetization. ! USE kinds, ONLY : dp USE constants, ONLY: pi, eps12 USE io_global, ONLY : stdout USE noncollin_module, ONLY : lsign IMPLICIT NONE INTEGER, INTENT(IN) :: nat ! number of atoms REAL(DP), INTENT(OUT) :: ux(3) ! fixed direction to calculate signs REAL(DP), INTENT(IN) :: m_loc(3,nat) ! local moments REAL(DP) :: amag, uxmod ! modulus of the magnetization and of ux INTEGER :: na ! counter on atoms INTEGER :: starting_na ! auxiliary variable LOGICAL :: is_parallel ! external function true if two vectors are parallel ! ! Do not use the sign feature in the general case ! lsign=.FALSE. ux=0.0_DP starting_na=0 DO na=1,nat amag=m_loc(1,na)**2+m_loc(2,na)**2+m_loc(3,na)**2 IF (amag > eps12) THEN ux(:)=m_loc(:,na) starting_na=na lsign=.TRUE. GOTO 20 ENDIF ENDDO 20 CONTINUE ! ! The sign feature is used only when all initial magnetizations are parallel ! to a fixed direction that is taken as the quantization axis. ! DO na=starting_na+1, nat lsign=lsign.AND.is_parallel(ux,m_loc(:,na)) ENDDO IF (lsign) THEN uxmod=ux(1)**2+ux(2)**2+ux(3)**2 IF (uxmod nsp USE cell_base, ONLY : tpiba, omega USE gvect, ONLY : ngm, ngl, gstart, nl, nlm, gl, igtongl USE lsda_mod, ONLY : starting_magnetization, lsda USE vlocal, ONLY : strf USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE noncollin_module, ONLY : angle1, angle2 USE uspp_param, ONLY : upf USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : invfft ! implicit none ! integer :: nspina ! the number of spin polarizations real(DP) :: rhoa (dfftp%nnr, nspina) ! the output atomic charge ! ! local variables ! real(DP) :: rhoneg, rhoima, gx real(DP), allocatable :: rhocgnt (:), aux (:) complex(DP), allocatable :: rhocg (:,:) integer :: ir, is, ig, igl, nt, ndm ! ! superposition of atomic charges contained in the array rho_at ! (read from pseudopotential files) ! ! allocate work space (psic must already be allocated) ! allocate (rhocg( ngm, nspina)) ndm = MAXVAL ( msh(1:ntyp) ) allocate (aux(ndm)) allocate (rhocgnt( ngl)) rhoa(:,:) = 0.d0 rhocg(:,:) = (0.d0,0.d0) do nt = 1, ntyp ! ! Here we compute the G=0 term ! if (gstart == 2) then do ir = 1, msh (nt) aux (ir) = upf(nt)%rho_at (ir) enddo call simpson (msh (nt), aux, rgrid(nt)%rab, rhocgnt (1) ) endif ! ! Here we compute the G<>0 term ! do igl = gstart, ngl gx = sqrt (gl (igl) ) * tpiba do ir = 1, msh (nt) if (rgrid(nt)%r(ir) < 1.0d-8) then aux(ir) = upf(nt)%rho_at(ir) else aux(ir) = upf(nt)%rho_at(ir) * & sin(gx*rgrid(nt)%r(ir)) / (rgrid(nt)%r(ir)*gx) endif enddo call simpson (msh (nt), aux, rgrid(nt)%rab, rhocgnt (igl) ) enddo ! ! we compute the 3D atomic charge in reciprocal space ! if (nspina == 1) then do ig = 1, ngm rhocg(ig,1) = rhocg(ig,1) + & strf(ig,nt) * rhocgnt(igtongl(ig)) / omega enddo else if (nspina == 2) then do ig = 1, ngm rhocg(ig,1) = rhocg(ig,1) + & 0.5d0 * ( 1.d0 + starting_magnetization(nt) ) * & strf(ig,nt) * rhocgnt(igtongl(ig)) / omega rhocg(ig,2) = rhocg(ig,2) + & 0.5d0 * ( 1.d0 - starting_magnetization(nt) ) * & strf(ig,nt) * rhocgnt(igtongl(ig)) / omega enddo else ! ! Noncolinear case ! do ig = 1,ngm rhocg(ig,1) = rhocg(ig,1) + & strf(ig,nt)*rhocgnt(igtongl(ig))/omega ! Now, the rotated value for the magnetization rhocg(ig,2) = rhocg(ig,2) + & starting_magnetization(nt)* & sin(angle1(nt))*cos(angle2(nt))* & strf(ig,nt)*rhocgnt(igtongl(ig))/omega rhocg(ig,3) = rhocg(ig,3) + & starting_magnetization(nt)* & sin(angle1(nt))*sin(angle2(nt))* & strf(ig,nt)*rhocgnt(igtongl(ig))/omega rhocg(ig,4) = rhocg(ig,4) + & starting_magnetization(nt)* & cos(angle1(nt))* & strf(ig,nt)*rhocgnt(igtongl(ig))/omega end do endif enddo deallocate (rhocgnt) deallocate (aux) do is = 1, nspina ! ! and we return to real space ! psic(:) = (0.d0,0.d0) psic (nl (:) ) = rhocg (:, is) if (gamma_only) psic ( nlm(:) ) = CONJG( rhocg (:, is) ) CALL invfft ('Dense', psic, dfftp) ! ! we check that everything is correct ! rhoneg = 0.d0 rhoima = 0.d0 do ir = 1, dfftp%nnr rhoneg = rhoneg + MIN (0.d0, DBLE (psic (ir)) ) rhoima = rhoima + abs (AIMAG (psic (ir) ) ) enddo rhoneg = omega * rhoneg / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) rhoima = omega * rhoima / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) ! call mp_sum( rhoneg, intra_bgrp_comm ) call mp_sum( rhoima, intra_bgrp_comm ) ! IF ( rhoima > 1.0d-4 ) THEN WRITE( stdout,'(5x,"Check: imaginary charge or magnetization=",& & f12.6," (component ",i1,") set to zero")') rhoima, is END IF IF ( (is == 1) .OR. lsda ) THEN ! IF ( (rhoneg < -1.0d-4) ) THEN IF ( lsda ) THEN WRITE( stdout,'(5x,"Check: negative starting charge=", & &"(component",i1,"):",f12.6)') is, rhoneg ELSE WRITE( stdout,'(5x,"Check: negative starting charge=", & & f12.6)') rhoneg END IF END IF END IF ! ! set imaginary terms to zero - negative terms are not set to zero ! because it is basically useless to do it in real space: negative ! charge will re-appear when Fourier-transformed back and forth ! DO ir = 1, dfftp%nnr rhoa (ir, is) = DBLE (psic (ir)) END DO ! enddo deallocate (rhocg) return end subroutine atomic_rho espresso-5.0.2/PW/src/struct_fact.f900000644000700200004540000000551212053145627016346 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine struc_fact (nat, tau, ntyp, ityp, ngm, g, bg, nr1, nr2, & nr3, strf, eigts1, eigts2, eigts3) !---------------------------------------------------------------------- ! ! calculate the structure factors for each type of atoms in the unit ! cell ! USE kinds USE constants, ONLY : tpi implicit none ! ! Here the dummy variables ! integer :: nat, ntyp, ityp (nat), ngm, nr1, nr2, nr3 ! input: the number of atom in the unit cel ! input: the number of atom types ! input: for each atom gives the type ! input: the number of G vectors ! input: fft dimension along x ! input: fft dimension along y ! input: fft dimension along z real(DP) :: bg (3, 3), tau (3, nat), g (3, ngm) ! input: reciprocal crystal basis vectors ! input: the positions of the atoms in the c ! input: the coordinates of the g vectors complex(DP) :: strf (ngm, ntyp), & eigts1 ( -nr1:nr1, nat), & eigts2 ( -nr2:nr2, nat), & eigts3 ( -nr3:nr3, nat) ! output: the structure factor ! ! output: the phases e^{-iG\tau_s} ! ! ! here the local variables ! integer :: nt, na, ng, n1, n2, n3, ipol ! counter over atom type ! counter over atoms ! counter over G vectors ! counter over fft dimension along x ! counter over fft dimension along y ! counter over fft dimension along z ! counter over polarizations real(DP) :: arg, bgtau (3) ! the argument of the exponent ! scalar product of bg and tau strf(:,:) = (0.d0,0.d0) do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ng = 1, ngm arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) & + g (3, ng) * tau (3, na) ) * tpi strf (ng, nt) = strf (ng, nt) + CMPLX(cos (arg), -sin (arg),kind=DP) enddo endif enddo enddo do na = 1, nat do ipol = 1, 3 bgtau (ipol) = bg (1, ipol) * tau (1, na) + & bg (2, ipol) * tau (2, na) + & bg (3, ipol) * tau (3, na) enddo do n1 = - nr1, nr1 arg = tpi * n1 * bgtau (1) eigts1 (n1, na) = CMPLX(cos (arg), - sin (arg) ,kind=DP) enddo do n2 = - nr2, nr2 arg = tpi * n2 * bgtau (2) eigts2 (n2, na) = CMPLX(cos (arg), - sin (arg) ,kind=DP) enddo do n3 = - nr3, nr3 arg = tpi * n3 * bgtau (3) eigts3 (n3, na) = CMPLX(cos (arg), - sin (arg) ,kind=DP) enddo enddo return end subroutine struc_fact espresso-5.0.2/PW/src/restart_from_file.f900000644000700200004540000000510712053145627017533 0ustar marsamoscm! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE restart_from_file !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode, ionode_id USE io_files, ONLY : iunres, tmp_dir, prefix, delete_if_present, seqopn USE control_flags, ONLY : restart USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! CHARACTER(LEN=20) :: where_restart ! parameter indicating from where to restart INTEGER :: ios ! ! ... restart not required: delete restart file if present, return ! IF ( .NOT. restart ) THEN ! !WRITE( UNIT = stdout, & ! & FMT = '(/5X,"RECOVER from restart file has been", & ! & " switched off on input")' ) ! IF ( ionode ) THEN ! CALL delete_if_present( TRIM(tmp_dir) // TRIM(prefix) // '.restart' ) ! END IF ! RETURN ! END IF ! ! ... restart required: check if restart file is present ! ... report the result of the check into variable "restart" ! iunres = 1 ! IF ( ionode ) THEN ! CALL seqopn( iunres, 'restart', 'UNFORMATTED', restart ) ! END IF ! CALL mp_bcast ( restart, ionode_id ) ! IF ( .NOT. restart ) THEN ! WRITE( UNIT = stdout, & & FMT = '(/5X,"RECOVER from restart file failed:", & & " file not found")') ! IF ( ionode ) THEN ! CLOSE( UNIT = iunres, STATUS = 'DELETE' ) ! END IF ! RETURN ! END IF ! IF ( ionode ) THEN ! WRITE( UNIT = stdout, FMT = '(/5X,"read information from restart file")' ) ! READ( iunres, IOSTAT = ios ) where_restart ! IF ( where_restart /= 'ELECTRONS' .AND. where_restart /= 'IONS' ) THEN ! ios = 1001 ! END IF ! ... close the file for later use ! CLOSE( UNIT = iunres, STATUS = 'KEEP' ) ! END IF ! CALL mp_bcast ( ios, ionode_id ) CALL mp_bcast ( where_restart, ionode_id ) ! IF ( ios == 0 ) THEN ! WRITE( UNIT = stdout, FMT = '(5X,"Restarting in ",A)' ) where_restart ! ELSE ! CALL errore( 'restart_from_file', 'Cannot restart from here: '//TRIM(where_restart), ios) ! END IF ! RETURN ! END SUBROUTINE restart_from_file espresso-5.0.2/PW/src/non_scf.f900000644000700200004540000000565412053145627015461 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE non_scf (ik_) !----------------------------------------------------------------------- ! ! ... diagonalization of the KS hamiltonian in the non-scf case ! USE kinds, ONLY : DP USE bp, ONLY : lelfield, lberry, lorbm USE control_flags, ONLY : io_level USE ener, ONLY : ef USE io_global, ONLY : stdout, ionode USE io_files, ONLY : iunwfc, nwordwfc, iunefield USE buffers, ONLY : save_buffer USE klist, ONLY : xk, wk, nks, nkstot USE lsda_mod, ONLY : lsda, nspin USE wvfct, ONLY : nbnd, et, npwx USE wavefunctions_module, ONLY : evc ! IMPLICIT NONE ! INTEGER, INTENT (in) :: ik_ ! ! ... local variables ! INTEGER :: iter = 1, i, ik REAL(DP) :: dr2 = 0.d0 REAL(DP), EXTERNAL :: get_clock ! ! CALL start_clock( 'electrons' ) ! WRITE( stdout, 9002 ) ! CALL flush_unit( stdout ) ! IF ( lelfield) THEN ! CALL c_bands_efield ( iter, ik_, dr2 ) ! ELSE ! CALL c_bands_nscf ( ik_ ) ! END IF ! ! ... xk, wk, isk, et, wg are distributed across pools; ! ... the first node has a complete copy of xk, wk, isk, ! ... while eigenvalues et and weights wg must be ! ... explicitly collected to the first node ! ... this is done here for et, in weights () for wg ! CALL poolrecover( et, nbnd, nkstot, nks ) ! ! ... calculate weights of Kohn-Sham orbitals ! ... may be needed in further calculations such as phonon ! CALL weights ( ) ! ! ... Note that if you want to use more k-points for the phonon ! ... calculation then those needed for self-consistency, you can, ! ... by performing a scf with less k-points, followed by a non-scf ! ... one with additional k-points, whose weight on input is set to zero ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! WRITE( stdout, 9102 ) ! ! ... write band eigenvalues ! CALL print_ks_energies ( ) ! ! ... save converged wfc if they have not been written previously ! IF ( nks == 1 .AND. (io_level < 2) .AND. (io_level > -1) ) & CALL save_buffer ( evc, nwordwfc, iunwfc, nks ) ! ! ... do a Berry phase polarization calculation if required ! IF ( lberry ) CALL c_phase() ! ! ... do an orbital magnetization (Kubo terms) calculation ! IF ( lorbm ) CALL orbm_kubo() ! CALL stop_clock( 'electrons' ) ! 9000 FORMAT(/' total cpu time spent up to now is ',F10.1,' secs' ) 9002 FORMAT(/' Band Structure Calculation' ) 9102 FORMAT(/' End of band structure calculation' ) ! END SUBROUTINE non_scf espresso-5.0.2/PW/Doc/0000755000700200004540000000000012053440276013416 5ustar marsamoscmespresso-5.0.2/PW/Doc/user_guide/0000755000700200004540000000000012053165220015542 5ustar marsamoscmespresso-5.0.2/PW/Doc/user_guide/img9.png0000644000700200004540000000037212053165217017125 0ustar marsamoscm‰PNG  IHDR#4§Ç-PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000 ‰Ï~ÑtRNS@æØf{IDAT•c`àaH€0¸ø  L³0`  @ù f̼ äãÅd10q³Ãc@U±anÐÌ ¦E²ÀŒ½Û`ç³(00<1€~b¿bx0Ì+¹Å€"«¡HY P 7ŽIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/prev.png0000644000700200004540000000042712053165220017227 0ustar marsamoscm‰PNG  IHDR?GŸýT PLTE¿¿¿oooççç[Íã¹tRNS@æØf¹IDATxœ…= Ã0 …_pF—Dà5àK¤÷ t têÞ¡Cñ)éèät-´ªÓ}ñüYÒ#% À¡Æ4”ÒÍ¥d/Çùªåvµë`3 v3tâE$ Sãà™ù£ç°5•ªs}jßf/‹¹šÀŒˆˆ”hQ!žÜäÛ•=KV_³ªN8âK›Àþ8’!û™)Š‚x'‡Éë‘ÒȸÙD˜ˆ¹^Kù ê-êŸþsNH¼!%³IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node7.html0000644000700200004540000001223312053165221017446 0ustar marsamoscm 3 Using PWscf next up previous contents
Next: 3.1 Input data Up: User's Guide for the Previous: 2 Compilation   Contents

3 Using PWscf

Input files for pw.x may be either written by hand or produced via the PWgui graphical interface by Anton Kokalj, included in the QUANTUM ESPRESSO distribution. See PWgui-x.y.z/INSTALL (where x.y.z is the version number) for more info on PWgui, or GUI/README if you are using SVN sources.

You may take the tests and examples distributed with QUANTUM ESPRESSO as templates for writing your own input files. In the following, whenever we mention "Example N", we refer to those. Input files are those in the results/ subdirectories, with names ending with .in (they will appear after you have run the examples).



Subsections

Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/img8.png0000644000700200004540000000033012053165220017110 0ustar marsamoscm‰PNG  IHDR '¾7„·*PLTE³³³œœœ„„„xxxlll```TTTHHH<<<000$$$‹¯tRNS@æØf\IDAT•c`ÀÀdŠ#7Võ`µ )&ˆB˜ 0p÷î]$ž+âD² ¦$Æ Uƒ šÀ$—˜*“Ì`Š¢€ƒÊÁTBõ‘î‚®Å0MD}IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node19.html0000644000700200004540000010123312053165221017530 0ustar marsamoscm 5 Troubleshooting next up previous contents
Next: 5.1 Compilation problems with Up: User's Guide for the Previous: 4.5 Understanding the time   Contents

5 Troubleshooting

5.0.0.1 pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start

Possible reasons:
  • If you are running on the same machines on which the code was compiled, this is a library configuration problem. The solution is machine-dependent. On Linux, find the path to the missing libraries; then either add it to file /etc/ld.so.conf and run ldconfig (must be done as root), or add it to variable LD_LIBRARY_PATH and export it. Another possibility is to load non-shared version of libraries (ending with .a) instead of shared ones (ending with .so).
  • If you are not running on the same machines on which the code was compiled: you need either to have the same shared libraries installed on both machines, or to load statically all libraries (using appropriate configure or loader options). The same applies to Beowulf-style parallel machines: the needed shared libraries must be present on all PCs.

5.0.0.2 errors in examples with parallel execution

If you get error messages in the example scripts - i.e. not errors in the codes - on a parallel machine, such as e.g.: run example: -n: command not found you may have forgotten the " " in the definitions of PARA_PREFIX and PARA_POSTFIX.

5.0.0.3 pw.x prints the first few lines and then nothing happens (parallel execution)

If the code looks like it is not reading from input, maybe it isn't: the MPI libraries need to be properly configured to accept input redirection. Use pw.x -inp and the input file name (see Sec.[*]), or inquire with your local computer wizard (if any). Since v.4.2, this is for sure the reason if the code stops at Waiting for input....

5.0.0.4 pw.x stops with error while reading data

There is an error in the input data, typically a misspelled namelist variable, or an empty input file. Unfortunately with most compilers the code just reports Error while reading XXX namelist and no further useful information. Here are some more subtle sources of trouble:
  • Out-of-bound indices in dimensioned variables read in the namelists;
  • Input data files containing ^M (Control-M) characters at the end of lines, or non-ASCII characters (e.g. non-ASCII quotation marks, that at a first glance may look the same as the ASCII character). Typically, this happens with files coming from Windows or produced with "smart" editors.
Both may cause the code to crash with rather mysterious error messages. If none of the above applies and the code stops at the first namelist (&CONTROL) and you are running in parallel, see the previous item.

5.0.0.5 pw.x mumbles something like cannot recover or error reading recover file

You are trying to restart from a previous job that either produced corrupted files, or did not do what you think it did. No luck: you have to restart from scratch.

5.0.0.6 pw.x stops with inconsistent DFT error

As a rule, the flavor of DFT used in the calculation should be the same as the one used in the generation of pseudopotentials, which should all be generated using the same flavor of DFT. This is actually enforced: the type of DFT is read from pseudopotential files and it is checked that the same DFT is read from all PPs. If this does not hold, the code stops with the above error message. Use - at your own risk - input variable input_dft to force the usage of the DFT you like.

5.0.0.7 pw.x stops with error in cdiaghg or rdiaghg

Possible reasons for such behavior are not always clear, but they typically fall into one of the following cases:
  • serious error in data, such as bad atomic positions or bad crystal structure/supercell;
  • a bad pseudopotential, typically with a ghost, or a USPP giving non-positive charge density, leading to a violation of positiveness of the S matrix appearing in the USPP formalism;
  • a failure of the algorithm performing subspace diagonalization. The LAPACK algorithms used by cdiaghg (for generic k-points) or rdiaghg (for $ \Gamma$ - only case) are very robust and extensively tested. Still, it may seldom happen that such algorithms fail. Try to use conjugate-gradient diagonalization (diagonalization='cg'), a slower but very robust algorithm, and see what happens.
  • buggy libraries. Machine-optimized mathematical libraries are very fast but sometimes not so robust from a numerical point of view. Suspicious behavior: you get an error that is not reproducible on other architectures or that disappears if the calculation is repeated with even minimal changes in parameters. Known cases: HP-Compaq alphas with cxml libraries, Mac OS-X with system BLAS/LAPACK. Try to use compiled BLAS and LAPACK (or better, ATLAS) instead of machine-optimized libraries.

5.0.0.8 pw.x crashes with no error message at all

This happens quite often in parallel execution, or under a batch queue, or if you are writing the output to a file. When the program crashes, part of the output, including the error message, may be lost, or hidden into error files where nobody looks into. It is the fault of the operating system, not of the code. Try to run interactively and to write to the screen. If this doesn't help, move to next point.

5.0.0.9 pw.x crashes with segmentation fault or similarly obscure messages

Possible reasons:
  • too much RAM memory or stack requested (see next item).
  • if you are using highly optimized mathematical libraries, verify that they are designed for your hardware.
  • If you are using aggressive optimization in compilation, verify that you are using the appropriate options for your machine
  • The executable was not properly compiled, or was compiled on a different and incompatible environment.
  • buggy compiler or libraries: this is the default explanation if you have problems with the provided tests and examples.

5.0.0.10 pw.x works for simple systems, but not for large systems or whenever more RAM is needed

Possible solutions:
  • increase the amount of RAM you are authorized to use (which may be much smaller than the available RAM). Ask your system administrator if you don't know what to do. In some cases the stack size can be a source of problems: if so, increase it with command limits or ulimit).
  • reduce nbnd to the strict minimum, or reduce the cutoffs, or the cell size , or a combination of them
  • use conjugate-gradient (diagonalization='cg': slow but very robust): it requires less memory than the default Davidson algorithm. If you stick to the latter, use diago_david_ndim=2.
  • in parallel execution, use more processors, or use the same number of processors with less pools. Remember that parallelization with respect to k-points (pools) does not distribute memory: parallelization with respect to R- (and G-) space does.
  • buggy or weird-behaving compiler.

5.0.0.11 pw.x crashes with error in davcio

davcio is the routine that performs most of the I/O operations (read from disk and write to disk) in pw.x; error in davcio means a failure of an I/O operation.
  • If the error is reproducible and happens at the beginning of a calculation: check if you have read/write permission to the scratch directory specified in variable outdir. Also: check if there is enough free space available on the disk you are writing to, and check your disk quota (if any).
  • If the error is irreproducible: your might have flaky disks; if you are writing via the network using NFS (which you shouldn't do anyway), your network connection might be not so stable, or your NFS implementation is unable to work under heavy load
  • If it happens while restarting from a previous calculation: you might be restarting from the wrong place, or from wrong data, or the files might be corrupted.
  • If you are running two or more instances of pw.x at the same time, check if you are using the same file names in the same temporary directory. For instance, if you submit a series of jobs to a batch queue, do not use the same outdir and the same prefix, unless you are sure that one job doesn't start before a preceding one has finished.

5.0.0.12 pw.x crashes in parallel execution with an obscure message related to MPI errors

Random crashes due to MPI errors have often been reported, typically in Linux PC clusters. We cannot rule out the possibility that bugs in QUANTUM ESPRESSO cause such behavior, but we are quite confident that the most likely explanation is a hardware problem (defective RAM for instance) or a software bug (in MPI libraries, compiler, operating system).

Debugging a parallel code may be difficult, but you should at least verify if your problem is reproducible on different architectures/software configurations/input data sets, and if there is some particular condition that activates the bug. If this doesn't seem to happen, the odds are that the problem is not in QUANTUM ESPRESSO. You may still report your problem, but consider that reports like it crashes with...(obscure MPI error) contain 0 bits of information and are likely to get 0 bits of answers.

5.0.0.13 pw.x stops with error message the system is metallic, specify occupations

You did not specify state occupations, but you need to, since your system appears to have an odd number of electrons. The variable controlling how metallicity is treated is occupations in namelist &SYSTEM. The default, occupations='fixed', occupies the lowest (N electrons)/2 states and works only for insulators with a gap. In all other cases, use 'smearing' ('tetrahedra' for DOS calculations). See input reference documentation for more details.

5.0.0.14 pw.x stops with internal error: cannot bracket Ef

Possible reasons:
  • serious error in data, such as bad number of electrons, insufficient number of bands, absurd value of broadening;
  • the Fermi energy is found by bisection assuming that the integrated DOS N(E ) is an increasing function of the energy. This is not guaranteed for Methfessel-Paxton smearing of order 1 and can give problems when very few k-points are used. Use some other smearing function: simple Gaussian broadening or, better, Marzari-Vanderbilt 'cold smearing'.

5.0.0.15 pw.x yields internal error: cannot bracket Ef message but does not stop

This may happen under special circumstances when you are calculating the band structure for selected high-symmetry lines. The message signals that occupations and Fermi energy are not correct (but eigenvalues and eigenvectors are). Remove occupations='tetrahedra' in the input data to get rid of the message.

5.0.0.16 pw.x runs but nothing happens

Possible reasons:
  • in parallel execution, the code died on just one processor. Unpredictable behavior may follow.
  • in serial execution, the code encountered a floating-point error and goes on producing NaNs (Not a Number) forever unless exception handling is on (and usually it isn't). In both cases, look for one of the reasons given above.
  • maybe your calculation will take more time than you expect.

5.0.0.17 pw.x yields weird results

If results are really weird (as opposed to misinterpreted):
  • if this happens after a change in the code or in compilation or preprocessing options, try make clean, recompile. The make command should take care of all dependencies, but do not rely too heavily on it. If the problem persists, recompile with reduced optimization level.
  • maybe your input data are weird.

5.0.0.18 FFT grid is machine-dependent

Yes, they are! The code automatically chooses the smallest grid that is compatible with the specified cutoff in the specified cell, and is an allowed value for the FFT library used. Most FFT libraries are implemented, or perform well, only with dimensions that factors into products of small numbers (2, 3, 5 typically, sometimes 7 and 11). Different FFT libraries follow different rules and thus different dimensions can result for the same system on different machines (or even on the same machine, with a different FFT). See function allowed in Modules/fft_scalar.f90.

As a consequence, the energy may be slightly different on different machines. The only piece that explicitly depends on the grid parameters is the XC part of the energy that is computed numerically on the grid. The differences should be small, though, especially for LDA calculations.

Manually setting the FFT grids to a desired value is possible, but slightly tricky, using input variables nr1, nr2, nr3 and nr1s, nr2s, nr3s. The code will still increase them if not acceptable. Automatic FFT grid dimensions are slightly overestimated, so one may try very carefully to reduce them a little bit. The code will stop if too small values are required, it will waste CPU time and memory for too large values.

Note that in parallel execution, it is very convenient to have FFT grid dimensions along z that are a multiple of the number of processors.

5.0.0.19 pw.x does not find all the symmetries you expected

pw.x determines first the symmetry operations (rotations) of the Bravais lattice; then checks which of these are symmetry operations of the system (including if needed fractional translations). This is done by rotating (and translating if needed) the atoms in the unit cell and verifying if the rotated unit cell coincides with the original one.

Assuming that your coordinates are correct (please carefully check!), you may not find all the symmetries you expect because:

  • the number of significant figures in the atomic positions is not large enough. In file PW/eqvect.f90, the variable accep is used to decide whether a rotation is a symmetry operation. Its current value (10-5 ) is quite strict: a rotated atom must coincide with another atom to 5 significant digits. You may change the value of accep and recompile.
  • they are not acceptable symmetry operations of the Bravais lattice. This is the case for C60 , for instance: the Ih icosahedral group of C60 contains 5-fold rotations that are incompatible with translation symmetry.
  • the system is rotated with respect to symmetry axis. For instance: a C60 molecule in the fcc lattice will have 24 symmetry operations (Th group) only if the double bond is aligned along one of the crystal axis; if C60 is rotated in some arbitrary way, pw.x may not find any symmetry, apart from inversion.
  • they contain a fractional translation that is incompatible with the FFT grid (see next paragraph). Note that if you change cutoff or unit cell volume, the automatically computed FFT grid changes, and this may explain changes in symmetry (and in the number of k-points as a consequence) for no apparent good reason (only if you have fractional translations in the system, though).
  • a fractional translation, without rotation, is a symmetry operation of the system. This means that the cell is actually a supercell. In this case, all symmetry operations containing fractional translations are disabled. The reason is that in this rather exotic case there is no simple way to select those symmetry operations forming a true group, in the mathematical sense of the term.

5.0.0.20 Warning: symmetry operation # N not allowed

This is not an error. If a symmetry operation contains a fractional translation that is incompatible with the FFT grid, it is discarded in order to prevent problems with symmetrization. Typical fractional translations are 1/2 or 1/3 of a lattice vector. If the FFT grid dimension along that direction is not divisible respectively by 2 or by 3, the symmetry operation will not transform the FFT grid into itself. Solution: you can either force your FFT grid to be commensurate with fractional translation (set variables nr1, nr2, nr3 to suitable values), or set variable use_all_frac to .true., in namelist &SYSTEM. Note however that the latter is incompatible with hybrid functionals and with phonon calculations.

5.0.0.21 Self-consistency is slow or does not converge at all

Bad input data will often result in bad scf convergence. Please carefully check your structure first, e.g. using XCrySDen.

Assuming that your input data is sensible :

  1. Verify if your system is metallic or is close to a metallic state, especially if you have few k-points. If the highest occupied and lowest unoccupied state(s) keep exchanging place during self-consistency, forget about reaching convergence. A typical sign of such behavior is that the self-consistency error goes down, down, down, than all of a sudden up again, and so on. Usually one can solve the problem by adding a few empty bands and a small broadening.
  2. Reduce mixing_beta to $ \sim$ 0.3 ÷ 0.1 or smaller. Try the mixing_mode value that is more appropriate for your problem. For slab geometries used in surface problems or for elongated cells, mixing_mode='local-TF' should be the better choice, dampening "charge sloshing". You may also try to increase mixing_ndim to more than 8 (default value). Beware: this will increase the amount of memory you need.
  3. Specific to USPP: the presence of negative charge density regions due to either the pseudization procedure of the augmentation part or to truncation at finite cutoff may give convergence problems. Raising the ecutrho cutoff for charge density will usually help.

5.0.0.22 I do not get the same results in different machines!

If the difference is small, do not panic. It is quite normal for iterative methods to reach convergence through different paths as soon as anything changes. In particular, between serial and parallel execution there are operations that are not performed in the same order. As the numerical accuracy of computer numbers is finite, this can yield slightly different results.

It is also normal that the total energy converges to a better accuracy than its terms, since only the sum is variational, i.e. has a minimum in correspondence to ground-state charge density. Thus if the convergence threshold is for instance 10-8 , you get 8-digit accuracy on the total energy, but one or two less on other terms (e.g. XC and Hartree energy). It this is a problem for you, reduce the convergence threshold for instance to 10-10 or 10-12 . The differences should go away (but it will probably take a few more iterations to converge).

5.0.0.23 Execution time is time-dependent!

Yes it is! On most machines and on most operating systems, depending on machine load, on communication load (for parallel machines), on various other factors (including maybe the phase of the moon), reported execution times may vary quite a lot for the same job.

5.0.0.24 Warning : N eigenvectors not converged

This is a warning message that can be safely ignored if it is not present in the last steps of self-consistency. If it is still present in the last steps of self-consistency, and if the number of unconverged eigenvector is a significant part of the total, it may signal serious trouble in self-consistency (see next point) or something badly wrong in input data.

5.0.0.25 Warning : negative or imaginary charge..., or ...core charge ..., or npt with rhoup< 0 ... or rho dw< 0 ...

These are warning messages that can be safely ignored unless the negative or imaginary charge is sizable, let us say of the order of 0.1. If it is, something seriously wrong is going on. Otherwise, the origin of the negative charge is the following. When one transforms a positive function in real space to Fourier space and truncates at some finite cutoff, the positive function is no longer guaranteed to be positive when transformed back to real space. This happens only with core corrections and with USPPs. In some cases it may be a source of trouble (see next point) but it is usually solved by increasing the cutoff for the charge density.

5.0.0.26 Structural optimization is slow or does not converge or ends with a mysterious bfgs error

Typical structural optimizations, based on the BFGS algorithm, converge to the default thresholds ( etot_conv_thr and forc_conv_thr ) in 15-25 BFGS steps (depending on the starting configuration). This may not happen when your system is characterized by "floppy" low-energy modes, that make very difficult (and of little use anyway) to reach a well converged structure, no matter what. Other possible reasons for a problematic convergence are listed below.

Close to convergence the self-consistency error in forces may become large with respect to the value of forces. The resulting mismatch between forces and energies may confuse the line minimization algorithm, which assumes consistency between the two. The code reduces the starting self-consistency threshold conv thr when approaching the minimum energy configuration, up to a factor defined by upscale. Reducing conv_thr (or increasing upscale) yields a smoother structural optimization, but if conv_thr becomes too small, electronic self-consistency may not converge. You may also increase variables etot_conv_thr and forc_conv_thr that determine the threshold for convergence (the default values are quite strict).

A limitation to the accuracy of forces comes from the absence of perfect translational invariance. If we had only the Hartree potential, our PW calculation would be translationally invariant to machine precision. The presence of an XC potential introduces Fourier components in the potential that are not in our basis set. This loss of precision (more serious for gradient-corrected functionals) translates into a slight but detectable loss of translational invariance (the energy changes if all atoms are displaced by the same quantity, not commensurate with the FFT grid). This sets a limit to the accuracy of forces. The situation improves somewhat by increasing the ecutrho cutoff.

5.0.0.27 pw.x stops during variable-cell optimization in checkallsym with non orthogonal operation error

Variable-cell optimization may occasionally break the starting symmetry of the cell. When this happens, the run is stopped because the number of k-points calculated for the starting configuration may no longer be suitable. Possible solutions:
  • start with a nonsymmetric cell;
  • use a symmetry-conserving algorithm: the Wentzcovitch algorithm (cell dynamics='damp-w') should not break the symmetry.



Subsections
next up previous contents
Next: 5.1 Compilation problems with Up: User's Guide for the Previous: 4.5 Understanding the time   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/img6.png0000644000700200004540000000027612053165220017117 0ustar marsamoscm‰PNG  IHDR÷yi*PLTE³³³¨¨¨œœœxxx```TTTHHH<<<000$$$ |ŠÂtRNS@æØfBIDAT™c```àH`À xpI4°@™wA·¹u’\Ø$AZ/àÖ‹„+x00€˜ ,k·àTy.’è‘…ÃÊÍIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/next_g.png0000644000700200004540000000042012053165220017530 0ustar marsamoscm‰PNG  IHDR%/[:tRNS¿-Mc%ÉIDATxœ­’Áà C?y¬¥ý2N6èAKdƒ¬ÑƒqH÷ÚCuž°dS.€Ê l”`N‹#™“ÀQ‚[O‰´ 3.3 Electronic structure calculations next up previous contents
Next: 3.4 Optimization and dynamics Up: 3 Using PWscf Previous: 3.2 Data files   Contents

Subsections

3.3 Electronic structure calculations

3.3.0.1 Single-point (fixed-ion) SCF calculation

Set calculation='scf' (this is actually the default). Namelists &IONS and &CELL will be ignored. See Example 01.

3.3.0.2 Band structure calculation

First perform a SCF calculation as above; then do a non-SCF calculation with the desired k-point grid and number nbnd of bands. Use calculation='bands' if you are interested in calculating only the Kohn-Sham states for the given set of k-points (e.g. along symmetry lines: see for instance http://www.cryst.ehu.es/cryst/get_kvec.html). Specify instead calculation='nscf' if you are interested in further processing of the results of non-SCF calculations (for instance, in DOS calculations). In the latter case, you should specify a uniform grid of points. For DOS calculations you should choose occupations='tetrahedra', together with an automatically generated uniform k-point grid (card K_POINTS with option ``automatic''). Specify nosym=.true. to avoid generation of additional k-points in low symmetry cases. Variables prefix and outdir, which determine the names of input or output files, should be the same in the two runs. See Examples 01, 06, 07,

NOTA BENE: Since v.4.1, both atomic positions and the scf potential are read from the data file so that consistency is guaranteed.

3.3.0.3 Noncollinear magnetization, spin-orbit interactions

The following input variables are relevant for noncollinear and spin-orbit calculations:

noncolin
lspinorb
starting_magnetization (one for each type of atoms)
To make a spin-orbit calculation noncolin must be true. If starting_magnetization is set to zero (or not given) the code makes a spin-orbit calculation without spin magnetization (it assumes that time reversal symmetry holds and it does not calculate the magnetization). The states are still two-component spinors but the total magnetization is zero.

If starting_magnetization is different from zero, it makes a noncollinear spin polarized calculation with spin-orbit interaction. The final spin magnetization might be zero or different from zero depending on the system.

Furthermore to make a spin-orbit calculation you must use fully relativistic pseudopotentials at least for the atoms in which you think that spin-orbit interaction is large. If all the pseudopotentials are scalar relativistic the calculation becomes equivalent to a noncollinear calculation without spin orbit. (Andrea Dal Corso, 2007-07-27) See Example 06 for noncollinear magnetism, Example 07 for spin-orbit interactions.

3.3.0.4 DFT+U

DFT+U (formerly known as LDA+U) calculation can be performed within a simplified rotationally invariant form of the U Hubbard correction. Note that for all atoms having a U value there should be an item in function flib/set_hubbard_l.f90 and one in subroutine PW/src/tabd.f90, defining respectively the angular momentum and the occupancy of the orbitals with the Hubbard correction. If your Hubbard-corrected atoms are not there, you need to edit these files and to recompile.

See Example 08 and its README.

3.3.0.5 Dispersion Interactions (DFT-D)

For DFT-D (DFT + semiempirical dispersion interactions), see the description of input variables london*, sample files PW/tests/vdw.*, and the comments in source file Modules/mm_dispersion.f90.

3.3.0.6 Hartree-Fock and Hybrid functionals

Since v.5.0, calculations in the Hartree-Fock approximation, or using hybrid XC functionals that include some Hartree-Fock exchange, no longer require a special preprocessing before compilation. See EXX_example/ and its README file.

3.3.0.7 Dispersion interaction with non-local functional (vdwDF)

See example vdwDF_example and references quoted in file README therein.

3.3.0.8 Polarization via Berry Phase

See Example 04, its file README, the documentation in the header of PW/src/bp_c_phase.f90.

3.3.0.9 Finite electric fields

There are two different implementations of macroscopic electric fields in pw.x: via an external sawtooth potential (input variable tefield=.true.) and via the modern theory of polarizability (lelfield=.true.). The former is useful for surfaces, especially in conjunction with dipolar corrections (dipfield=.true.): see examples/dipole_example for an example of application. Electric fields via modern theory of polarization are documented in example 10. The exact meaning of the related variables, for both cases, is explained in the general input documentation.

3.3.0.10 Orbital magnetization

Modern theory of orbital magnetization [Phys. Rev. Lett. 95, 137205 (2005)] for insulators. The calculation is performed by setting input variable lorbm=.true. in nscf run. If finite electric field is present (lelfield=.true.) only Kubo terms are computed [see New J. Phys. 12, 053032 (2010) for details].


next up previous contents
Next: 3.4 Optimization and dynamics Up: 3 Using PWscf Previous: 3.2 Data files   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/img1.png0000644000700200004540000000034212053165220017104 0ustar marsamoscm‰PNG  IHDR#÷öÌù-PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000 ‰Ï~ÑtRNS@æØfcIDAT•c```à`ÀøØÑEXpªVy€ ’w@ð»WH3o‹eà§€×2¬F“ œsà V°×üL@  ËüÀ²–­ÜÓI³Ÿ(ð Ñý3ïõ@IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/internals.pl0000644000700200004540000000044212053165220020076 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate internals original text with physical files. $key = q/pw2casino_info/; $ref_files{$key} = "$dir".q|node12.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $ref_files{$key} = "$dir".q|node17.html|; $noresave{$key} = "$nosave"; 1; espresso-5.0.2/PW/Doc/user_guide/node15.html0000644000700200004540000000575512053165221017540 0ustar marsamoscm 4.2 Memory requirements next up previous contents
Next: 4.3 File space requirements Up: 4 Performances Previous: 4.1 Execution time   Contents

4.2 Memory requirements

A typical self-consistency or molecular-dynamics run requires a maximum memory in the order of O double precision complex numbers, where

O = mMN + PN + pN1N2N3 + qNr1Nr2Nr3

with m, p, q = small factors; all other variables have the same meaning as above. Note that if the $ \Gamma$ - point only (k = 0 ) is used to sample the Brillouin Zone, the value of N will be cut into half.

The memory required by the phonon code follows the same patterns, with somewhat larger factors m, p, q .



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/images.tex0000644000700200004540000002273212053165216017544 0ustar marsamoscm\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \usepackage{html} \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2065}% $\displaystyle \alpha$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2066}% $\displaystyle { \over \sqrt{}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2068}% $ \alpha$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2090}% $ \psi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2102}% $ \cal {O}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2107}% $ \sim$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2135}% $ \Gamma$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsubsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2161}% $ \langle$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2163}% $ \beta$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2164}% $ \rangle$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsubsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{section} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \end{document} espresso-5.0.2/PW/Doc/user_guide/node2.html0000644000700200004540000000620512053165221017443 0ustar marsamoscm 1 Introduction next up previous contents
Next: 1.1 What can PWscf Up: User's Guide for the Previous: Contents   Contents

1 Introduction

This guide covers the usage of the PWscf (Plane-Wave Self-Consistent Field) package, a core component of the QUANTUM ESPRESSO distribution. Further documentation, beyond what is provided in this guide, can be found in the directory PW/Doc/, containing a copy of this guide.

This guide assumes that you know the physics that PWscf describes and the methods it implements. It also assumes that you have already installed, or know how to install, QUANTUM ESPRESSO. If not, please read the general User's Guide for QUANTUM ESPRESSO, found in directory Doc/ two levels above the one containing this guide; or consult the web site:
http://www.quantum-espresso.org.

People who want to modify or contribute to PWscf should read the Developer Manual: Doc/developer_man.pdf.



Subsections

Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node18.html0000644000700200004540000002427612053165221017542 0ustar marsamoscm 4.5 Understanding the time report next up previous contents
Next: 5 Troubleshooting Up: 4 Performances Previous: 4.4 Parallelization issues   Contents

Subsections

4.5 Understanding the time report

The time report printed at the end of a pw.x run contains a lot of useful information that can be used to understand bottlenecks and improve performances.

4.5.1 Serial execution

The following applies to calculations taking a sizable amount of time (at least minutes): for short calculations (seconds), the time spent in the various initializations dominates. Any discrepancy with the following picture signals some anomaly.

  • For a typical job with norm-conserving PPs, the total (wall) time is mostly spent in routine "electrons", calculating the self-consistent solution.
  • Most of the time spent in "electrons" is used by routine "c_bands", calculating Kohn-Sham states. "sum_band" (calculating the charge density), "v_of_rho" (calculating the potential), "mix_rho" (charge density mixing) should take a small fraction of the time.
  • Most of the time spent in "c_bands" is used by routines "cegterg" (k-points) or "regterg" (Gamma-point only), performing iterative diagonalization of the Kohn-Sham Hamiltonian in the PW basis set.
  • Most of the time spent in "*egterg" is used by routine "h_psi", calculating H$ \psi$ products. "cdiaghg" (k-points) or "rdiaghg" (Gamma-only), performing subspace diagonalization, should take only a small fraction.
  • Among the "general routines", most of the time is spent in FFT on Kohn-Sham states: "fftw", and to a smaller extent in other FFTs, "fft" and "ffts", and in "calbec", calculating $ \langle$$ \psi$|$ \beta$$ \rangle$ products.
  • Forces and stresses typically take a fraction of the order of 10 to 20% of the total time.
For PAW and Ultrasoft PP, you will see a larger contribution by "sum_band" and a nonnegligible "newd" contribution to the time spent in "electrons", but the overall picture is unchanged. You may drastically reduce the overhead of Ultrasoft PPs by using input option "tqr=.true.".

4.5.2 Parallel execution

The various parallelization levels should be used wisely in order to achieve good results. Let us summarize the effects of them on CPU:

  • Parallelization on FFT speeds up (with varying efficiency) almost all routines, with the notable exception of "cdiaghg" and "rdiaghg".
  • Parallelization on k-points speeds up (almost linearly) "c_bands" and called routines; speeds up partially "sum_band"; does not speed up at all "v_of_rho", "newd", "mix_rho".
  • Linear-algebra parallelization speeds up (not always) "cdiaghg" and "rdiaghg"
  • "task-group" parallelization speeds up "fftw"
  • OpenMP parallelization speeds up "fftw", plus selected parts of the calculation, plus (depending on the availability of OpenMP-aware libraries) some linear algebra operations
and on RAM:
  • Parallelization on FFT distributes most arrays across processors (i.e. all G-space and R-spaces arrays) but not all of them (in particular, not subspace Hamiltonian and overlap matrices)
  • Linear-algebra parallelization also distributes subspace Hamiltonian and overlap matrices.
  • All other parallelization levels do not distribute any memory
In an ideally parallelized run, you should observe the following:
  • CPU and wall time do not differ by much
  • Time usage is still dominated by the same routines as for the serial run
  • Routine "fft_scatter" (called by parallel FFT) takes a sizable part of the time spent in FFTs but does not dominate it.

4.5.2.1 Quick estimate of parallelization parameters

You need to know

  • the number of k-points, Nk
  • the third dimension of the (smooth) FFT grid, N3
  • the number of Kohn-Sham states, M
These data allow to set bounds on parallelization:
  • k-point parallelization is limited to Nk processor pools: -npool Nk
  • FFT parallelization shouldn't exceed N3 processors, i.e. if you run with -npool Nk, use N = Nk x N3 MPI processes at most (mpirun -np N ...)
  • Unless M is a few hundreds or more, don't bother using linear-algebra parallelization
You will need to experiment a bit to find the best compromise. In order to have good load balancing among MPI processes, the number of k-point pools should be an integer divisor of Nk ; the number of processors for FFT parallelization should be an integer divisor of N3 .

4.5.2.2 Typical symptoms of bad/inadequate parallelization

  • a large fraction of time is spent in "v_of_rho", "newd", "mix_rho", or
    the time doesn't scale well or doesn't scale at all by increasing the number of processors for k-point parallelization. Solution:
    • use (also) FFT parallelization if possible
  • a disproportionate time is spent in "cdiaghg"/"rdiaghg". Solutions:
    • use (also) k-point parallelization if possible
    • use linear-algebra parallelization, with scalapack if possible.
  • a disproportionate time is spent in "fft_scatter", or in "fft_scatter" the difference between CPU and wall time is large. Solutions:
    • if you do not have fast (better than Gigabit ethernet) communication hardware, do not try FFT parallelization on more than 4 or 8 procs.
    • use (also) k-point parallelization if possible
  • the time doesn't scale well or doesn't scale at all by increasing the number of processors for FFT parallelization. Solutions:
    • use "task groups": try command-line option -ntg 4 or -ntg 8. This may improve your scaling.


next up previous contents
Next: 5 Troubleshooting Up: 4 Performances Previous: 4.4 Parallelization issues   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node21.html0000644000700200004540000000564712053165221017535 0ustar marsamoscm About this document ... next up previous contents
Up: User's Guide for the Previous: 5.1 Compilation problems with   Contents

About this document ...

Image quantum_espresso Image democritos
User's Guide for PWscf

(version 5.0.2)

This document was generated using the LaTeX2HTML translator Version 2002-2-1 (1.71)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -t 'User's Guide for the PWscf package' -html_version 3.2,math -toc_depth 5 -split 5 -toc_stars -show_section_numbers -local_icons -image_type png user_guide.tex

The translation was initiated by Layla Martin-Samos Colomer on 2012-11-21


Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/img10.png0000644000700200004540000000032212053165217017170 0ustar marsamoscm‰PNG  IHDR '¾7„·*PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$e–tRNS@æØfVIDAT•c`ÀxÀ$3ª ˜ä¦žÁI ¤ðªôÝ»wQ&q3Amã²  r†y@0êv0Ÿ€PœH<¨TådÂÖawv>Q|d ùIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node11.html0000644000700200004540000001673412053165220017532 0ustar marsamoscm 3.4 Optimization and dynamics next up previous contents
Next: 3.5 Direct interface with Up: 3 Using PWscf Previous: 3.3 Electronic structure calculations   Contents

Subsections

3.4 Optimization and dynamics

3.4.0.1 Structural optimization

For fixed-cell optimization, specify calculation='relax' and add namelist &IONS. All options for a single SCF calculation apply, plus a few others. You may follow a structural optimization with a non-SCF band-structure calculation (since v.4.1, you do not need any longer to update the atomic positions in the input file for non scf calculation).
See Example 02.

3.4.0.2 Molecular Dynamics

Specify calculation='md', the time step dt, and possibly the number of MD stops nstep. Use variable ion_dynamics in namelist &IONS for a fine-grained control of the kind of dynamics. Other options for setting the initial temperature and for thermalization using velocity rescaling are available. Remember: this is MD on the electronic ground state, not Car-Parrinello MD. See Example 03.

3.4.0.3 Free-energy surface calculations

Once PWscf is patched with the PLUMED plug-in, it is possible to use most PLUMED functionalities by running PWscf as: ./pw.x -plumed plus the other usual PWscf arguments. The input file for PLUMED must be found in the specified outdir with fixed name plumed.dat.

3.4.0.4 Variable-cell optimization

Since v.4.2 the newer BFGS algorithm covers the case of variable-cell optimization as well. Note however that variable-cell calculations (both optimization and dynamics) are performed with plane waves and G-vectors calculated for the starting cell. This means that if you re-run a self-consistent calculation for the final cell and atomic positions using the same cutoff ecutwfc (and/or ecutrho if applicable), you may not find exactly the same results, unless your final and initial cells are very similar, or unless your cutoff(s) are very high. In order to provide a further check, a last step is performed in which a scf calculation is performed for the converged structure, with plane waves and G-vectors calculated for the final cell. Small differences between the two last steps are thus to be expected and give an estimate of the reliability of the variable-cell optimization. If you get a large difference, you are likely quite far from convergence in the plane-wave basis set and you need to increase the cutoff(s).

3.4.0.5 Variable-cell molecular dynamics

"A common mistake many new users make is to set the time step dt improperly to the same order of magnitude as for CP algorithm, or not setting dt at all. This will produce a ``not evolving dynamics''. Good values for the original RMW (RM Wentzcovitch) dynamics are dt = 50 ÷ 70 . The choice of the cell mass is a delicate matter. An off-optimal mass will make convergence slower. Too small masses, as well as too long time steps, can make the algorithm unstable. A good cell mass will make the oscillation times for internal degrees of freedom comparable to cell degrees of freedom in non-damped Variable-Cell MD. Test calculations are advisable before extensive calculation. I have tested the damping algorithm that I have developed and it has worked well so far. It allows for a much longer time step (dt= 100 ÷ 150 ) than the RMW one and is much more stable with very small cell masses, which is useful when the cell shape, not the internal degrees of freedom, is far out of equilibrium. It also converges in a smaller number of steps than RMW." (Info from Cesar Da Silva: the new damping algorithm is the default since v. 3.1).


next up previous contents
Next: 3.5 Direct interface with Up: 3 Using PWscf Previous: 3.3 Electronic structure calculations   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/next.png0000644000700200004540000000036512053165220017232 0ustar marsamoscm‰PNG  IHDR%wìu PLTE¿¿¿oooççç[Íã¹tRNS@æØf—IDATxœmŽ1 Ã0 EQF >ŠÁk >B‡ú>†¬…NÙ3û¯=Œ¡k¡•äШ¾Ÿ?²d”Œ M53–—³³ˆkARMê9®êNÈlúà :CÕü5¥t•·¥læ¸]o¦÷ÁDª­×/ûÜ¡_ç\lŽEÄ6¶ãtÄUˆê›é¬è{Ccs=Ëßû@ªuwÿû¡®·ˆz User's Guide for the PWscf package next up previous contents
Next: Contents   Contents

Image quantum_espresso Image democritos
User's Guide for PWscf

(version 5.0.2)





Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/img5.png0000644000700200004540000000037412053165217017123 0ustar marsamoscm‰PNG  IHDR“1r¾0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfzIDAT™c`‚ .``húÀÀË ÀÁŠ™¸Å&00|#yƒTÀ&Í“ÀÀð${€áÈPFƒ({’]=ƒ†cï_ˆh&ËCÆ7 –œBì1O€¥v‚ˆ ‚¬¶H²,K1Îý¿äXÆö'SÛ–1IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node9.html0000644000700200004540000000570112053165221017452 0ustar marsamoscm 3.2 Data files next up previous contents
Next: 3.3 Electronic structure calculations Up: 3 Using PWscf Previous: 3.1 Input data   Contents

3.2 Data files

The output data files are written in the directory outdir/prefix.save, as specified by variables outdir and prefix (a string that is prepended to all file names, whose default value is: prefix='pwscf'). outdir can be specified as well in environment variable ESPRESSO_TMPDIR. The iotk toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the bin/iotk script.

The execution stops if you create a file prefix.EXIT either in the working directory (i.e. where the program is executed), or in the outdir directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state.



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node4.html0000644000700200004540000001267312053165221017453 0ustar marsamoscm 1.2 People next up previous contents
Next: 1.3 Terms of use Up: 1 Introduction Previous: 1.1 What can PWscf   Contents

1.2 People

The PWscf package (which included PHonon and PostProc in earlier releases) was originally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi (Univ. Udine), and many others. We quote in particular:

  • Matteo Cococcioni (Univ. Minnesota) for DFT+U implementation;
  • David Vanderbilt's group at Rutgers for Berry's phase calculations;
  • Ralph Gebauer (ICTP, Trieste) and Adriano Mosca Conte (SISSA, Trieste) for noncollinear magnetism;
  • Andrea Dal Corso for spin-orbit interactions;
  • Carlo Sbraccia (Princeton) for improvements to structural optimization and to many other parts;
  • Paolo Umari (Univ. Padua) for finite electric fields;
  • Renata Wentzcovitch and collaborators (Univ. Minnesota) for variable-cell molecular dynamics;
  • Lorenzo Paulatto (Univ.Paris VI) for PAW implementation, built upon previous work by Guido Fratesi (Univ.Milano Bicocca) and Riccardo Mazzarello (ETHZ-USI Lugano);
  • Ismaila Dabo (INRIA, Palaiseau) for electrostatics with free boundary conditions;
  • Norbert Nemec and Mike Towler (U.Cambridge) for interface with CASINO;
  • Alexander Smogunov (CEA) for extended and noncollinear DFT+U implementation;
  • Burak Himmetoglou (Univ. Minnesota) for DFT+U+J implementation;
  • Andrei Malashevich (Univ. Berkeley) for calculation of orbital magnetization;
  • Gabriele Sclauzero (IRRMA Lausanne) for DFT+U with on-site occupations obtained from pseudopotential projectors.

Other relevant contributions to PWscf:

  • Yves Ferro (Univ. Provence) contributed SOGGA and M06L functionls
  • Minoru Otani (AIST), Yoshio Miura (Tohoku U.), Nicephore Bonet (MIT), Nicola Marzari (Univ. Oxford), Brandon Wood (LLNL), Tadashi Ogitsu (LLNL), contributed Effective Screening Method (PRB 73, 115407 [2006])
  • Brian Kolb and Timo Thonhauser (Wake Forest University) implemented the vdW-DF and vdW-DF2 functionals, with support from Riccardo Sabatini and Stefano de Gironcoli (SISSA and DEMOCRITOS);
  • Hannu-Pekka Komsa (CSEA/Lausanne) contributed the HSE functional;
  • Dispersions interaction in the framework of DFT-D were contributed by Daniel Forrer (Padua Univ.) and Michele Pavone (Naples Univ. Federico II);
  • Filippo Spiga (ICHEC) contributed the mixed MPI-OpenMP parallelization;
  • The initial BlueGene porting was done by Costas Bekas and Alessandro Curioni (IBM Zurich).

This guide was mostly written by Paolo Giannozzi. Mike Towler wrote the PWscf to CASINO subsection.


next up previous contents
Next: 1.3 Terms of use Up: 1 Introduction Previous: 1.1 What can PWscf   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/up.png0000644000700200004540000000032312053165220016672 0ustar marsamoscm‰PNG  IHDRîë5À PLTE¿¿¿oooççç[Íã¹tRNS@æØfuIDATxœ]1ƒ0 EŸdÆ&Cwr„,Ü'köŽ•7n)âIT xO²¾m”'<æ‡Qßüâ²1A ¹ÙàB›­ÓPÕÔ+†× ñ:æ²×ŠpÛ­Yh/ãiOî.c7ùÏN¤´¾põ±_×Ä/11Ab$·}IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/prev_g.png0000644000700200004540000000050712053165220017534 0ustar marsamoscm‰PNG  IHDR?šJtRNS¿-Mc%IDATxœÍ”ÁuÄ D?~´5ým9î`ÓD:p9€cÇäm.™ÂBBb$9d¾b`Hí¨ž°UI:Bu:±éΓE»-'ƒ}› Øã²ØC|,¤÷tÇ%ì„}yF²sP©ª=šT¯’„¨Â.¢+—9döGƒ+WZ­~paòâÛnP8ðã9ÔâÔ5îil u9ä'»öͩβ ý²‘ÁÖ’á_¼ÿ¹+þxež ôŒUþ+Ôi„Îÿþ@i’ZfG-Κ6)nsU~!ÃL,À’cšˆÔwámP,ßv®zSßñ§Hµ¹Ë=hy™êW:þCý>Gæõ'ÿoå²i=Q)ÂIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node1.html0000644000700200004540000000673512053165221017452 0ustar marsamoscm Contents next up previous
Next: 1 Introduction Up: User's Guide for the Previous: User's Guide for the


Contents



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/WARNINGS0000644000700200004540000000023212053165216016717 0ustar marsamoscmNo implementation found for style `graphicx' Substitution of arg to newlabelxx delayed. There is no author for this document. ? brace missing for \cal espresso-5.0.2/PW/Doc/user_guide/node20.html0000644000700200004540000000722412053165221017525 0ustar marsamoscm 5.1 Compilation problems with PLUMED next up previous contents
Next: About this document ... Up: 5 Troubleshooting Previous: 5 Troubleshooting   Contents

Subsections

5.1 Compilation problems with PLUMED

5.1.0.1 xlc compiler

If you get an error message like:
Operation between types "char**" and "int" is not allowed.
change in file clib/metadyn.h
#define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(ptr)) calloc(nelem, sizeof(*(ptr))))
#define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,(nelem)*sizeof(*(ptr)))
with
#define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) calloc(nelem, sizeof(*(ptr))))
#define srenew(ptr,nelem) (ptr)= (void*) realloc(ptr,(nelem)*sizeof(*(ptr)))

5.1.0.2 Calling C from fortran

PLUMED assumes that fortran compilers add a single _ at the end of C routines. You may get an error message as :
ERROR: Undefined symbol: .init_metadyn
ERROR: Undefined symbol: .meta_force_calculation
eliminate the _ from the definition of init_metadyn and meta_force_calculation, i. e. change at line 529
void meta_force_calculation_(real *cell, int *istep, real *xxx, real *yyy, real *zzz,
with
void meta_force_calculation(real *cell, int *istep, real *xxx, real *yyy, real *zzz,
, and at line 961
  void init_metadyn_(int *atoms, real *ddt, real *mass, 
  void init_metadyn_(int *atoms, real *ddt, real *mass,



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/img3.png0000644000700200004540000000033712053165217017120 0ustar marsamoscm‰PNG  IHDRóŒËT-PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000 ‰Ï~ÑtRNS@æØf`IDAT™c`À|Œ0ç$ ù ,@Ò¢aÃ; x€Å ˜ÀÀÀPÀçÀÀÂÀäΈ.€ˆƒ´`× ¢:@Œ†X6ƒå1ƒČà ,ë˜P”¿ƒ‚;³_e½àIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/quantum_espresso.png0000644000700200004540000011316612053165216021702 0ustar marsamoscm‰PNG  IHDRµjê© pHYsdd–ÅÝFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 ÌÈu› vpAgµž½†è€IDATxÚìýy¼mYUŠǘÍZk7§»}µPTÑ ¨”H"*ŠŠØ!1ñg¢Q_4jó’¼ÄgòŒ>QIÔgŒÆî)¨ØD ÒŠÒSR@õu»Óìf­5›1ÞsŸ}O5·€*¹÷V±¿Ÿ[»ÎÙgïµÖœkïù£ûRU¬°Âß6åýçó=^IDå÷ *¯'‹C•dÿ $JRŽ­Ã_졯°ÂÃöb_À OˆÁeu'0hÁ J‹ÕŸd°  ¢û>ÎBásO*¸¼˜}^‘Õ&h…. V̱ƒÂ=LÖ%(L1ÊzO‹ÿÎÆ=ïûð ”îóØçYœ„W̱ +æXáAB±ô8À’!èžÏzàå‘îN ²ü]Iï×ݵ +ü­ƒVqŽ>Ø÷S@Î=·Xæ—ëþâ5÷Í)¤XØ-DË` P°î{±Ê9ÌÅø +|6`Å+Vš…æÅ?Rä»sÆò‘ÏgðÂFæÜ#ö­e2c‡g¬°Â +oÕ kÐ}0)š! *¢$ Í奙CU‰ï{ÝÀDDD-,"M†ˆ@ì@lA eðŠ?VXá3Žs¬ð·½LŽ…6IsÀ"”7,ßU~0狜sá "‚rù5‘S&"Ã䉳£j.öd¬°ÂÃ+oÕC À(€¸ðCI€›sþœ¡†O9€ Îå¼.x"{îx‹ú ÚC2$#'H@ÎÐ HV¨*i&‰$‘$«$RUeªPED5ƒ„å¾71\bd@,Ä 6²d@“°!¶j™Ø*Á’±`6 §l0óª1„ÓéÀ,)ˆB°«ˆÉ +œ+›ã¡ ˆBT¤J¬¢È £(ÛóxdWþœ[_‹£ ˆ(RDDXZˆB$";#C³æXX$«dé­b@>«B‹5ý|^¦Þ`°a°’“Ù~(1Ø9M†Œ%1–ÙG5”„Ǽυ`ÕLt€thtîÿ+ÒXa…ûÇŠ9z r„HT‘¬¢2°Xb§Æ[ýôMeZX¡¤¤Òm¤*ÈÈ šT’HÒ,Œ9T5'ä^s†¤Â6Í™PH†(H‘÷ã “* P‡9ŠT*þØ/ŠÒÕ”d‰=³Sr`£–32–Ø Y%ÇÖ)uÍ"XB¬XDÚ`•eÎ)­ò{WXá“aÅ1@¥Gî:HOY ¢" "fÃÆ)WŠd„>íísÞ¯æãk,S Éœ£æ ’5÷š£H†Î 9jÎHPì‰4¥Å»T!ÍPE>çXðG uœÇæ(Ùºû‹>)qò`Rö rÄd4lÙZ#¶Ä–’Û…©a˜L@f€Š»jap)ˆV…+¬ðI°bއHZJ†)År„$ÒD‚a&†ñdj‚ 6Õ?Ñ¢C‘T‘zHÖÜSŽ$As”XdŠ,$ 5G–¤9€Ì¡ºÏ² Ï|JŽe}8ÝwvoÖÅóDeY_¼ŸÅ Á9Pò v¶”Èrj±[ÖLla-$@<Œ"³ÈV1A‹Aó@=}+¬ðÙ‚s<Ôöæè§SHÉF2©@ 3` ØÂ JÌÊDôé)Ò¢>" H 9©$Š3•„!=$RîŒM ÒA9A稒He?ÎeêÔò‘Œå}¿Ó~•ßy˜C%`iaÀŠœ’ª˜4õDÌP&q`{°bãÁL’@ÖÃ:˜v?Šnj`ÝÏ5(ÑŽ{¬°Âù±bއºí;ív4ÎXzh†&Va0ÁÈÁÀd[;øO9 T¡ 9 öš#RPJSÊIrO¹ÇÂ](G‘¤’L9©F*^)HÖý(=b*Ö5þ\e h‘ Fça#‘ª™¡Ð\Â쀘, UdҬ˓ 5™ÂVÙ‚ð dÀ^­'×ÃzØ d’fËê`ì²F@€h…>›°bއ4Ì%¶gf´K"{ˆfÓ¨ïÕöãO÷ Ф9j {¤ ÈIÓ’)õ’;N¤Gì!A¡ª Íši‚Ê"¼a,ˆ˜-[°3ˆ(¤b|…Q8ÞçÕQHd‘û«ÅÅ™$‘f ’dÕLšÍQ([˜Hì…qVI”-)Œp„$!ˆÛoŒXÃÌfÅ+¬ð)bÅ—(`ËrI.†@2ÃäNšOM?AØEš ÷5`Ëq 7LT³µÉH4* Œæð=޼ðQBqý(/âè (N#e ‘b„HŸ¤Kª¶#rOÒ"Ï‘{ä’¹‘GìaZ'Æ‘AMD Â`‹E^,««A¤D3³,ëÃÏ•ÖÜ•kf•BQ"¢ª–TETK‚fä>§Ê;"AH[fËûŒWÃ8¶5L%¹–T“«È¸&ÍÁ®F¬aØ®ñÝ‹a²o†¬jÔWXaÅ1ˆ ÌgˆSäR—S‚fKi •L=Fq")\1ˆhÖ”E„b@Š#RÜC:–Öä@©ƒ$ͽÆ^¤¥I# ìk!cÁ¶"öd ÈÀQâÏE„0 Àø¥•1e*vŸ#&kPÖlR…f³ˆµw¤ ± ‰Ä–9"'≠gT4kJªj$ÁJ¶‡ °âÕ856"pЬE…ŒUãÎ ÂËÒ½¶Â ++æ¸dq[pÕœ’ ÛÒíIØå<#é5&U(œMM=l¥Ì'&&Û¸8»ŸÕN”¹äÝjÐÔåR ¦ŸPNˆ‡ii)µ, i"H)§$ÈXdÊ2×k%~ca=Œ°]ÇBWÊ€÷«ù2Uyo o(/Ã!ç¹R ûs! µ«B!©…d*þ+‰P¡‘’£­$HP ÈY5HÎ{M†mÐäÔxr5'KÖeÞ¶dr[CI4cÀ€Hµ0ÈÂ.Z±Ç +`Å A$’sæîlî÷´ß52§ÜsΔIˆ‘;h¤d¬µ+&ˆI˜Ÿ·ž£PˆB¤¥8Õ0¥¨o9GŽ3„)Ò qN9²däm(‘Ã1°c`7ÁlaÌ>s;^Ѓ±Ë0¸ë(”QÒ«ˆ”ÎÛñIbXp,¤sÉïe[AD4B9"gp½_{Ø“Hk²¡9¶*‚Ü«––eë‘ ˆÔXÒ ÚS’D’öb ³ƒuD XÝï=µ*/_a¬˜ã’Å=" *"'{v‘gÐÀI l”@¬1œ Ù³|Ëîïø¤yŽ4AœØ8—Ü›{Ä âaŽØAJ>‚Æëájk؊بÙ$"eGÆ©q0^%âl†DD‹Ø¸a2JÌD`ß/ ¹‰XÏèà T•P|V ”T`H†Fä„Äfæzß é =²Eò,Ä$")HΜ3rDîaJ ßA#I„”ÐN€u £Î¸ ­¾)+¬p«ïÃ¥ ÕsRü9¹5q.ýLÓ”$" 2  J0ÄpÙÃÒ{o!OË;s„=Š3¤)ÅÖH@W’n÷¦ˆ-PClÔ À¦‚k`êerìׄ ŒUv°ØÃ%cL‰°%c m(’÷[q°Ü2¸óõùàê`´¡« EÔdŸ9Š1a"²dI#r@ö$=Ègtš£«+¤ èT{ÉrfIˆ»ã =r7DŽÉA€ä¡:€iÀʰ² u¬°€s\ê8¨dLÄÌD5t-r$È epNDJ`ïà+¸†r‘.bàçPr“(žÕØk˜Q?¥4Gœ!vHaí§H3‘¤°ÌžLý˜ØÃzr² ›Z¸Rbª7ˆö½U¶Rc‰‹þ¹Ea%°¡e“ðÂÊK…ÁÅ@Ï£>"ç¤y_ Q8pB‚´"I$"Ú‹$¤€\qŠ0=™93¹gÓRjIzeì=r€‹š³Ú@¹"c‘™œ‡fdØ [3ÌJq…°bއ–aÙEöªPIQCoRG1#0™s&Ã!X9Bï# [lÉa‚Ôkì8µˆ- ¥ˆ0…•¹JŸUaر«à×ÔX6žlCvW±©@®YÄÀ‡ñd<Œ%bˆ,$vX$o·(¿×(Ï—•KÈw.(”„2bbÀƒ°$HŒ¥ìØfä€!‘‰™ ®Bò3RVi5LȤEQŠ…ªB„­#ji¿Q-Q^2´Št¬°VÌqÉ A-¨RŽ Ö‚ 먅ÄPkRK3A«":§ì¼¯0€Ïư@CO%F ÷8íh!Eô-B4EžIž&m}'`@Nh€zÄ՘݀LÅΓ±dåFìfȶñ}5""f6æîÒî|·ã¾ÛÅÞÃwoÜÛ!¢{†ˆ†Œgx@a3RDZAÐ,dåJSo¢[ ZØ_#µ'΂Õ͆Ò0·B®’œT…¼ô”+°CµUR¬PR!*_\"l…rX1ÇÃE\Ö–NPT‘R§1H¦H‘CÐ"î!Íf¬00ž¸2¶«ÕVdjX§¶&SÁÖdd°5l SÂØïözñ±pÎÃXäaŒ–ŒAna4(@B‰Á°B3’B2RÔ®Õ ²DšJ¢¨’ ä1ÀZ€Xq7ÄVøìÁŠ9.8×HC÷Ÿ 0/ÅsD 3ıEî´›˜ÑÏâ‰iÆ9›ÚØ~Hn;‚À6°ŽüÖÁÕ°%b\ÃxcˆïÁ‹¬Ù‹Tk­0 eb Í,‚\#÷à<;‡d5÷–¬¤9kžJh äjHG9J9%4™µ*Ò Äd À J0 YQÇ ŸUX1Çà ºŒmì¯æ¤@N-ÂaaJqJ¹ç°‡Ô#¶è÷fИŮ‘«¸ZƒÁÈÔ5dkTc**¶Hš[{”^Dó#”A &Œ,”³AîA-Œ‡ušœ&/©7&hô¤E%—‘æ”#¥^SO©*9W6÷I3HU²ª# %½˜É @(b\+¬ðY„s<\°P£º»åQê0R‹4AØAØE?A˜S »H=âa&)23ŠWªÚT絑©©P5„õäÖ`Œ€¶ø…îÍ×mµÜûï·¨] ¹¦&6ƒd(¹\æÀˆ¼ 4½¥0e)Î$ÐÍšIUKC”˜ÀDŽ˜œ<° ]a…‡2VÌñ°Cé§*"&ç è¶ÑŸEØC?Eè(´ÛȽäVR$2jkrkpCn6àjruCõCØùlEvæR»§J²Hqºä>@½FªÈtîy"€,¸)]LN92Ï•­–.OÖ‚ØRèQT9Îe†Å’éIh¿-•k ûUÁ>Ûp©}ñWx (R}´æSÕœ3çlº â4Ç Û÷gè[í#õSѨˆd¾ß@uvhë`ÛP5"7†Â5`r8§Ü¤ˆ•÷MŽeNíE“€UÄ ”¦QûmÎ j@Þ0y6¶º%"ãÀ°Ê3æ€$Î9G¤e€§‹D£*3Ä~%hµÂgVÌñ°E1;(Í%Í5Ì8ÍJb¯©'‰D‰˜ÈU¨‡¨×áÖ•‡dk°‡«áø®F©Û¸û¾še|ûíWéœ{ìb“‡€dZhañ~æÓ¾W‰J [ c@š-Ú¤»Ò="E€˜æY³‘Ø(xS‰2#)A©RÓ(5Ê•1*KjZa…Ϭ˜ã¢cEÓ}馅v, S„@ìœSBÞÆì,Â'x¶Ë;=f‚6£¦vÙz!9FƒÜr{ M#7¹j»Kq·ɵŸ±D Sª×PmÁÊn#¹5ÓŒM5˜ÛƹÊùü®VPYÈÝbqûŠ!8øäÅžÈp7§ÕÕò)^tÍ`à ¹VœBƒ®‚ZâV™‰†¬Vt;çÀíÔ$a[ë`‹2N‰¡BÔ-ŒCub¿¸=˜h«¯Ø C¬>Ö\j ûö"wd &v#8æ¬Ä™R›CgBÖ¾×.ð<¢OèT@ä•T` &1CBgR‡Ð#všZŠ}©×Ô«döØ nW“«Œ­ÈÕä*[­3[Øì[V¿‡³Ÿ,(ÃV¤dH@Ž "ŠŸsê…(r„‚âšÀLdVÙ1Yx eU¦¢mEPR¢sþ¼VxXaÅ¥Eì@ 9J "¢Ôiì{2•f &ïJ¿ƒy«³.ïu<íыƜ‘(dƒ¬dÈ0 ¶c7¡n€~*ý4w{ÜO´ß•8' E½ ?†Á¯±ÃÙá+_m-J Ø’ÓKªPóp-v[T~0QJQ!V €-4’$PFè‘:HŠp54W†Ò¢7ÖŒ¼%v€Qp.É\ôpµ>Û±bŽ‹ Y%‘‘¥©CL„9ÅŽr;Ê ä]î÷0ítož÷Z3‹œ)YœYX%PFèÔ6Œñ@û] {hwr¿Gq¦9²1pµV›äG¨ÖQ­Ã¯s½Žf_Á­ûÝ]Pä‡õÆ™K¸ŸœYôe;‡ØB3Q¤rÀ|[A"   d TxÈ\‘1™ @¡w“k\a…‡VÌq‘AHЍ©C ”{¤–SÏ)*uæHìLs@Þ6ý6¦3v4OÜIHÀF‘3‘ z… ”yù”Âu»Úo£ŸªffOÕõ0û-öö[¨6Pm¢£À:å’šB¥:îáÌK‚ؘ å'!ƒT¥í "Eˆ î@XKIʱ`!vLcKÞb¥‡õ¬­ðYs\ttƒvS-å©Cj‘"Q@ì{°GVpDÞF¿‹¶Ó>RP$†4U%UA”(ë¼Ç¬CwÝ÷{$‘Œƒh³EÃT¯;7B½‰z ~ ~[ƒÍAÍZHAë¬!ÒýH6ÁÌ–l b®Æ9Y… ‰]4²…Дd Q s²CdPú¬#,È’Y¦U…à c¬˜ãb#Ì¥ë$L¨Ÿ"·ˆs¤±S*Ìa&€"òDºzJBÊ(ÿ$ƒ…p†qD b(QîæAÚ3è[¤³ ^˃C¨¶L³ 7D½†z n [+[ -ê!@¤³>lé#Ìʲ° ÀŒJŒq‰ ¬‰2kÖœ˘ävF)q7‡É²d˜P{P­Èyó°±VX1Çņ†.çVCG±7¹Elgˆ!˜ØR /ŒD¹“Ð!‹ª"À”péñ§œ ìÁPÄ,¹æÚÏ9G†õ¨šlb‡ÞØ…~¶‚±$À |®+H!‡sr•B kœS|| "FÈhT‡š:TŒ(Æ{{&#p-û¹:²Z˜fc5ˆ«NP+<±bŽ €K\•‹„0Ñ~Jíi—ZôSô{H3Ä9ŠdÛv9v$i}K ÄhzFT RVp‚ Ê%–µ5V0F-e1ê4›Y¶n]‡iýx®›zÃ×'~ÃÛqU‚€ f±ˆ@sîš o=¹2ÐýoBѹ²`À{6ŽÉB!.¡NÎx¤WƆ¤ÝŽÆÖBጶ‘X †`›aÃŒ2 k^œç…\õ’+¬ð °bŽ …²R(¸ü(¡•~Æ¡[Ìh_ÿ¼dåržkê³$Hla1IîÎ{|&"XbÃL9³¢–á+ò5ì€l;„TUcm cîÎ +Ë> 8¸¹a7ÔÔeUS ‘ûFÓœ$"´jgD”Ü€cg°3„VMGvÀÌ÷©ÿ¸¢êX1Ç/,ašûí¦Òï vÚïQØãÐjî$Çœ³Õ©¦žÈ¡)rÒ4½ß33“”8+ A‘­çQP¯£Þàj~~Ã×Cpvw¿ÄöQêùØÃ5ÀT“1ƒ"sÊ-º½ÜM B5§(pDµÒ€L[‘^ìa¬°Âg+渠0A =”û=év©ß¥Ôi¿GýqJ)DlÛ˜@ŠHf™Ÿ÷Ð*‹nÅÚ(9R†“u¦nP¯Á¯Ão¢:„z Õ:\³êØúðwN}ª("»LD\—¦’“ÀBº3×å¡Õ8U‰„hx@šˆšf×Àz°Â–Ç,ÝSVÇ ¬˜ãBa¿¶šæè÷¨ß5¥gFì©ßE¿‡4GêLJ,™PÊ…dJ ÌÐÄ’Ï{|UU¥â¡Qy‹Æk³†z Õ&Ü&܆ú ªÇ¨F(}fµ”M/V%ÏK”›•®à‡È¢êbn¥Ê&Ìlš£›*í!ôjÜ*pŽB£¶«á,¬dŽVxØ`Å 1C$ ¶è&èvÑï¡ÛÅÁyê‘"‰ ¶H‚,HR"á I×óA”¤%üŠì *³9¤j Õ&ªMõëä7´k5`kUíë*;á‡sÕ§ RJ³qdXæš|6`ø¤õ yŽ~âú©´{úm ¡÷àZW[çÁšÜÑÒªéjŽWxX`ÅeÉ7r@?Õ~º=t;èö—­^gH=$åMKÈ‚”Ë!ÍÐóæx2ó~ÿ 5”­µã[#T›¨¶PmPµ…zëAv.fÙnvqiºHÀ]ùRI©pqñ[±±µ1.…¡h¦Ü"Ïgˆ-R mò³d{p S«ä®2¬¹ÉDdÌ*±j…‡VÌq!šEbÔØR?7¡“Ø!´æZ„¹“%gí='¡˜) BˆDbîgÉ¡E!˜PYx k²CØ!ì~×ÀyeÎr ý•ÀÒ½!³°à*‚jŒ¯8Wäk„üÕ@ʦÛc6¸ar# ©Z‰>çÌÌ™c…X1Ç‚ɻɬwÙÖíÄLnËÓ3èwÑžd=‰0ëÐôQ8e¡6@"È@VTB =¾d•4r$KÄä9Td$›ÔÁh¨<=l_ë¡øµTitH†G¨Ù4ÆZˆÅÁxÉNÝ+,A5ŠÞíâw^(xÕ—ƒ×U+IjbD37ƒ™Ë±Ÿ¶fÖU´_q§=Ie 25ÕÇh°w4iEEUäÜ{·Â +æ¸P ‹’È¿ptL4ͧH]Щ èbÖ4ejªš"šÀ€JÑóŽ…QHADJÅE¥†`3¨¹i`=›†ª±õ#ø†M%‹b´¢Yr±'ä¡ b&ãÔyr |[œÔŽöm‹º%S“k%Θ|î[ã:Ê=—•+Š^á!s\(¨`%ìrñ¬†³;ÚvÚ%öÔîú¬)¥”ü"¢Y!"Yºƒ¤ÀDJ ¢}ò'…1Ð gìx Ã5Ø1ûM­i¸ä|ο¾ºïÌpžüõâ:ª]Ôc{žžŽ¹ÓÉŒ\e¬cSg»Ã évÈ8ãÇv08à\‘Ç m¬V r,eéwП¥þ¬íÏ¢Û¦‰AtÖÑ,¢ôB)qLh…”²ŠpÖ¢wN Ê &&&µ¬L`)kA­Š5f8B³–ýº©KuÕ&ܦZv /…+< 0ØÂP¯#î!l PPÕ¤“4kÂ×Öxµœ©ÛeçƨFd Ò´ýbb…VÌqá st;ÜžånÝm‹©¥.ši@›ÐA(dÊ‚.“åŒ,* RßG‘…œ”!VÃd˜˜ÀJÑC­å¦É~ ·êH®6]׋‹ e~ð ZZ? Ī·(ÎÐíiŽÔ¬7ÏyŽéõÔ8§Î² ;è-âÒܘZ"Ä«ö+<´±bŽ Úî¡ÝÃ|ŽY‹YÀ$¡K˜Ì½ W„Ì)£ÏPER&¤”ë1 ‹E‡&r† +,2ÖÚ4R¨Þ@uHëuñ ‹Ò¯i‘„+Ûî°Ÿi¨¬ÌâF\­S˜¢Þ‘Øó`Fs>;E×b:#gÉ0¬…ßõè'ˆ-\n€o¯ðÇŠ9.t±X$é§h瘷:²—ÌL´:M4OÔ)z JNÙvªHY3-ÏóÂÕ±ðY1˜‰ ²cã½1Q5´õ&Ü5#r(é·º/N‚Uî„–Ú@¨m´ZCš S7—ÁˆG\oËÙO[ñÞ±s°{0•v{觨ÖÁ•‚WîÂêX1džjŒè{íSîrn…Û(]Ð.Q'Ü)zhÈ’Dº@¢9k ’ÓbÙgÑ&"bff^´Î&‚±’Õ;‡aƒÊsU‘o`r•€ haŽbˬnýÂ~³+%[Ã605¬ÏUÍͶAîzê*î#ú^ë¹ö­ô¥I¬+m°X- ª è&̳[èlc÷æ˜XÚ‰¦ösA§ (>):›2²"Ë"´MdÄ g0ÁF•ƒ:o)¤úò-l t´–›©¹—‹_s8WƒF‹¦w0¸hÅQEÕÈ’ RJ6Dø@—‚«½ô¡5ÞÛìˆ*YÊ€"90J UBå N`…#Àh‘•„È  ’¡h!7© H"r@¶¨ ð0†ˆBVv´‡Púë"Ì>]”º/ƒÉ„z ãã¹ë8n¦a§‡j:kÝ™}3Ëu4aHN¨äṽU•¢*T~±nÁ +jŸ©Ïè2z ¨¦Dm‚ªæ¬""Ê âÀÅÛD `Fv‘‚á‘1ŽP7dkØšMæ!×<¨‹þ €÷»š+”yá´±Ö3# |L§•I"’B HA1FkmXSµ†Áûη°(ˆ6™$[ÉöôÙ“·Ýz×ïþñìôö™›>qæ¦[¦wž’®« ;çØÌçm¯„hÌàèá#¾fýÊËÖ¹ü ¿¸¾þQ¸ê¨z'° N†;`£´N‚ÃÌW„~à |}Bû›ÅÔÖ×h }Ö6PkPÏ`‡fæ[Ι ëÊU¸ÂC+æ¸PP˜¢cž]Ä ºÛñ„dÚK›hÍ,£tŠ>k’Ò5V³Š€u±ßU ± ä"m«0@€²¤µhƒf€jÜû òc2õƒ¾îÏÐlˆx¹ïVÌí:[ÄI@å»Ú`,” LF¶J "˜Ì95p虌’íAx™"ŒZ+¦ý¡·ÿÎk>úÿK?|Û`¯ëÖ’Tª.c]„XTT;…ÒPÕ9ÒígOÚ¹åmï‚5öÇ~%S_qìŠ>ûš—|ñáÏ{b½¶QÃNŒmX­z/HŠ®ŸOâ°9‚Ù.ê†Cðnj;3±<°âwÀ•4{èwµ› îP鳡Ùâ k¬˜ãBA…À€°(bÆ< ºgt/£‹yÒcžLEÌœF L,©Ml˜D²*$  %ÈyŒÆ¨6xp ƒÃ0½ô¨Åf›Ö†ˆHÊÌLÖ üÇ?qö÷ßxæÎ“ÕsŸ|øi7Ð`Ë2eH”臔‡.€lѰµˆ©àHq¤ ûðÛ~ýÕø­×¸›îÜèãÕ–²ÍsŸš™‘¬"DÉa“4e``ˆÊ¢QLÀ˜ÙZ[ÅÓšx2ÞüË¿ñ×?÷kæØáë¿ê…Oùê/?ë©0&;ì É¢¶öòkqË)ñgÍ` à RÛ󞧪F3g;á~Wú]évæp Æ]r7f…>¬˜ã‚aá&'2F§˜ M”¦sÑi¬°ÂƒÂŠ9.H3`¡‹Tþœµ4&™úl"©,‹»õÜšO ¡ª-Ì¡š5ˆT# ;Ò±->¤[Guýhö몰 ât©ÝbeÉÆ(TÕö™3öó¿<5©>´>˜ö {rçm?ºõŽ÷üá?û±×:K g‘¹DŒªIWÌ©÷½ã5ÿÿWœýÍ×]Þë¡ÚÝ:¹k“ÉÔuë±ê)êx°qÙ‘öE_püW^õÄÇ®}¶6Py0Z@ÊÈ‚íÝé‡oºëûããŸØýýׯ;îŠ{»l$ 8»˜ü´?Ãݱª¢÷ôwÿÎ?=éñ_öß¿ùU_*Ò£ñú‘8]CSa<°Þ¥iÄ,†‰T®Ç¨Ã`OÚêw!sÐ¥g ®°Â§ƒKkYy8ƒýZµ„,2rí’›kÑAqI)4*¬!”Žƒä¡J0ç„ 0Ž0èxŒµ1×i0Np¤_’u9gÃçr…c×ÝqÇÓ¾m²áiÑ€ˆdÇU“Lúè;Þûì$›!(Z¿Y…)¼õ_ÿô‡þë/®ï¼fTO|¿ÚõÚϤ2Â<ØáøI_üìk_ò¥_ø÷ÈË‘¶`‘ ýbæ`”0ÎÂ'{âð#Ÿs㲤ÿë»øìöîÛÞý7¯zÍ-¯}:][!õ ¢v›¾6ï¿é×_þÝW¼ôK_üoþ™>öZ3X‹M¥•£¦6® ±G—â,»&rסk%Ì4ÍPª‹}VXáã’[V®ˆ9'ã”8+Ad LÎ)IfÑ"‡Tè…”´x¡Š_G—q¦NrcA …`ÄØ1Ú\;¦G qô‘iý }ŒQÌAæ!´àÅÀ9+1Ûò:«~>§g{Ô¾àÚ;Ožü³·ÝøÛ¿ÿ‘?}óçÌi: v !Nœê僵齿¼ñO^ôcÿÛ‘—U_D£¾]¿iVínVGu‚Ëvîøþ.ÌnÓù£híÑ«ù i¬˜ãÁ03@Ø/g€ƒÃ°PT…jqâh¿ÿì9¨jÉÂ….Añi™°YÓà†›Î71`siºDŒ18ÐõÜÕõ‰'Þ¥Ò¥n4´ÔCsc«~ÖÕ¾ºí W LÑ­aÐDÀÄ?ÿ…_úÐ?ÿ »U団¸=Ù@uVõ#C¾îËŸýÿû¶o?æQ¸ê¨Ú’¬ËµAžD3¾¿ ´*˜윳v]'“Ù\eÎ g«‡¾äéOÒ#o8ûÍïüáÿzû»ßëÚÙ¨ìq·öâ7»ü{ÿäG¶Þú‘—üëïÅÖ¦9zÕáã;ó7¼spt¬}¦6¡‹è#B/¡×Ø™ÜÃ>dH}…îs\ °C€eEN #ª,5@T…"*Õ¼XÀÊã~`|!·`ˆ¬€Ùð86Ôµ«±q5c)6 ûK³I¬@™-— c›‡}ñËÿΟþáìÝvK£q­æDÓ¬££'>ÿ»ÿaòÕñ>’O"“7ýÓ¿û?~§žMCuÀüÌ´Bµg«ÑSžøüïû¶+¾ú]„ކÜ#… k†Ÿ$—iÙ¸$%™ÏçmÛ6c¸².t„°6vãÑk^ð?½ýgïþð¯üöM¯ý_¶ï׆ƒú)æ;æÌo¼úÕŸøØ‹àe¦:úÀ`ÓÏw÷êšit0›Ó¼•vŠ~‚~²bŽÒX1Dž¾¹@¢P…Q­CBJ ¥PT¥(…Óçû{tFikˆ š³[5ŽÓú5fírئèñYfÕ¥Ìâ%Y–Ž“a-bŽDGèÖNÿîk6ÛBúøl2úÜ'áÿöÃG<Ê ¶Ïü÷—ýýúÍïÜ"µŠˆ´³ƒvóÐçûß»î;þ¾ZUU3Q*ö°>JŠ&1óù´U´!‚®ëº®K)©êÔ²H›3tͨ2Nðc¿ý~éÅ÷s¹ZLîÀ$£É´1æsê&ˆSÄmàš‹}+VXácÅ $ÂÏhŒŽ½*Y{&²FmB'Y³*h¡U%ºÌ­R (|3”¡€‡;rG7yýjðÊ%¸Qº@]z&Ç~ôF…ˆÄÌ슴¦<í†k¿à©`q6¦¬ëf¿üU߸ñç8¶¹¶ÓMÆg_ïšúq/þ²güÐ?ÓËNœìãØ 4bî›Ù–ˆEîÇmBœÏç1FU]:Ð8PU¹qSûʃ: k ©Mê17M}ýãžõŠ{“>ÿ×ÿÙÉæÎyë$¹u÷wæ_zÓºþ–z7¡IØë±—°1C?¡~ýÞž+¬ð °bŽ .ë>³5¨=Æ–b¥D*Y]$®ˆ#†U”S¦¨¤ Q¡¬*²_á!P(‰ª0•1‡Žàð!»v¦‚dC¦ø¼˜Kô*ÐE19áD0 ZLÆ ñô+Ÿöõ7}b²uûìZ5>=ªw/ý™¿êÅ_¢kÍv­ªª’ÖÌ)ƒ3²Ã@TØžwBH]×õ}¯ª¥š½ðÇÆÆ†3Æ{ †ÀìÙ0´~!½’¯00›ßú²ï|Ñ ~ú/Ùã]7qMØÈuÞ³¯}ýž4¶WïEô2É:gž;™ï¡Û3ÝŠ9VxhãR  >lQ,0‘ax‹ÚscÑX­µÑе²¨kjý¶øwÏÚÔåԥ܇Ôö¹ï% -âüb߇VxP¸$7¤Gä‰5'Svvp\·v2o%šT:’>ª ¨"zA—SH9g;Ó«ØÖØžç]5„‰Å8ƒÔ3±’ѰvT¯KqüUã² Øß ^*\ ÇÐ8‹Á®\["´ÄYu Býüì›ßtÓk_ß}à¯×£LÝP¢4—{ô—?w|ÃÜÕ—»dÿç¿ÿÓ?ùËzèvgíšl¥Ó—]þµoz5®zäZê~•ÅÒ¶8à§3€¹/¿]Ji6›õ]df&›sch84McÊAÈ.æðÜ*`¿?‡€¸ãùç=ãùoýõßúÊ¿W¿åyÈb¦ƒ¹tëWü¾=ýì¶9|§ƒŸË–òN‡S'»ã§lÚ±vC™dB0°»ê¸ÂC+æ¸@à²FÃ:xKµ3AGC‘„”@d6¤±ôû΀1°†ZÅþP%×Ö ñà’ëÃ!)ú²Ž;‘³¯\ìóš#té–_û­×þäÏ„›o±ÌºÝjäéììðpë”Ê_¾ú·óGŸþÅ_tÕðÐÉ_ø±‰“¶ £fÔÒ-[kßø?U7z~ ¶ò~ÒÚbiŽ1¦”þÉSUÎ9gŒ¹Ï·Ü0©v/ýÍŸûù§¿¨¹éh,6«|z·oôÎ0ߨj Mº^5VÒgYÄñÞºòx &í°Â}aÅû2醪õƒŽ$Ûl‘@ŽÀ€I°ž¹gM‰¢ (’€,*³hç·(ÖÈ¢‹^O¼áyãJ?\»Øã»'j¶* ý$cXIs³øøM¿÷/þÏ;_÷ÖGËݼGZÎÆ~¸îºùŠzÈ™›>úþ_=}—Žîî_Ïå/ÿ&<¬}ÀmGʺ/"!„BÎû ADÎ9ïý=^LDŸŠÍ1#ٵѱéuù†ÿñŠ„ËÍøl¿KTíw[Ðí¬;ŠYʳ]LN#÷%Wn?ñú€í±Â —ŸIÓÓaGkÔ›~¦Ó½õCOý§ß¥W^­ xDR¢ñ±]ú©2‡1Æ{ïÜ"æÁÌKò‘”RÎù|t²o À Ü›ÓÃê9ÿáß´G¯0ˆ>eâê »[væíSì%¤¤9Bz°ÿ ¯ä+TU5ç\¼[÷ü]ˆéŒnLm®:ñ?ðýÖ¨ÉZß:wjÚNOO11&h.5†ªyq…¸$åbVXá¾pÉ­8W$;p€GÈÕF]•šcâÖÑ9L†‡ÒÚ0o˜¼A²ieÓè¡jºÎXwÝaÖukz0Q <Ñž†ä™FˆáìµHælÝ_r÷ѹa®$+éôÿýýºÝýøØŠu9¦¹%©C3 d õrGMMö”íYï5×sçËñ¤Wüp/ˆ‡À†*F fúúŽ”¸·ˆˆHΙ˜1÷!¥¬ 2)+HŒ¥fPCªÈYRÅt:N§'OžÜÛÛÛÙÙÙÙÙ)ååç;Ý:P£¿ ‹fí²ïù»“g<'2R¼ehú]³þ¶“Œ³Þíí4á¶@>fJ¤â8Ìå’»+¬pßX}T/ÑO"ÃÎ8Ͼf_Ã7¨øŠ}e«ÊTµ©Ýyø¦ïÿÞí·Ù;±ßô³öÃ7ÝœÎDfciQõ—`s—Þm\a…ûÆ¥Y}˜B È ÎS54õqL@‹dÀ X†ñ° Y€¹õ@oš\G ØPià]<à«È^‚Ì¡ºÔ«ˆvNž¾ºvó˜õ<Ÿ¸Î™q—'5¸ÍMÐ6[W\õÈð2T÷4/î?Ùé-˽ªZç””ªƒUåK’(Ü ""©ÌyŸr’ÕÝ`ŸóŒ­g>-ÿÑ›«È]4øøîì1³!ú¸èÃNˆnµ…[á!…s\ Ðr!å ~ˆzqtŽXl` L€‹ÈMä-œ%5¨lYêÌ~Á‚9Îþdc!ã\а£ÁÐæ)áVÌq°…ƒ-ÜÕH† iÁ’Qb2–L³B´ˆS•º*|A*$¤(úá¢ÖÌ%Y]ÔÌëÂ!jœíBÄù5k)£õ´Ö…yãú$õÆæ£^þÕS GûÞ§O…6PZÕ8ç(?´](ù¸…–A‹"wˆý ¹1¦XÖ²s®¤]1óðSìÁyÁsݵìnüð†F„I«7ðôÈ€- @ ‹¬¥vòbß¶VøÔ°bŽ R()ÈÁÔðkZU’æ £l¼†ž8"‹ªU-yDL¾ÉG dB 0v àK1\%0ÌÚ÷ÔØ”Söf6‰nÐ Åû|¹fáÆçiVʵ?üÔÏáÇ?¦‚#º›æÇ²Þû|ÛÿÂ%ª(S•@±½OªcÓ4Î9kmUUÆðþqä W•<Ý`s( Ö>á›_òæø¡u_ï¨ ýú·NŸ‹ÊÎ"EvéÑÿ +œ—à’ó0….šŠgÖ£q³Fõª ®6QmÂo°ßäzƒê ª×ØoQ½ ?¦jŒªV°. ‘å!0ÍÜ ¦‘€ˆŠ”àã?ïÉÉ›Ÿÿb‰M”®6&ŠXóøoùê9œ‹ƒdÜo¨c{{{gggooo2™´mB(fÇ2Ð}Ðà`æõõõõõñpØXËË/O±´6˜Ù1"躿ûUîèF ó™I.Ù³»Ým½ k*zS®°Â%s\(`ÁPX¸Š\M~;„’²Âàpø!ü:Û5˜lÅΗEE÷ÿù¥ŒÒ"éR”X]8¼ï³ è©_ô<Ônšúó½^ ™yèÆÞd‘_ñÜ€Œ{Ù'%q?ç]fâ–_—¹UËàÇ=, cL±3rÖý#`¹„ß×§›‘pdíÐ5—yÇÜ8´Mýá܈ټ\Å+£c…‡ VÌq 0`b‚­£?GÀÀk3Ðz]ýøãð—Á‡;'¸ÞÂp½oŽ›Ëv‰ÌŒ p†Á‘’I¦òˆ—qˆ:O`«†„—YwÕ#ŽG·çúžRˆš¤ŠvÙ9Á¨U É‘ÁáSso^ñe_‘xc=»4î¾ÿ¤ûòeº3WUÕ4Íx<ÞÚÚ:räH15––G ˜‡ÍB‡Øì[òâ8K»dyÀÀ"j`P#l\þÿÁ.5vÇãáÜDùíbzmU+jÈ„$1IÙdYìR¾¿³–¿–×/ßÒ‡T.µ´U?xÙ ,Oqðçe^ÙÁ׫j’\^Ð…^ì]–/+§ˆ1–D—´<ò¼íåÀbÌ(ý eṌ1«žãÍ¥—RDU–a* ÐbH1ëþÅ«,¶$ Hyž šÎˆHÀÀtiù H‡$"ˆ˜©ìB‚è»@Ì è5@ßc{q/€½nY4vqн è Š®ÍH&‚ˆm`"@ÎB¡è1;'0r*£– zô@Ä$§@Dv€r„èº941!*ÀˆØö€èì1Ef€Bæ@‹)¨Ì0E–³@ ’ º Éô@Ô ÙCšÅYLÊ+æ¸88·ÿukäFäF´°9*xÊÃTp| WÁUEoã’ì,~>Dª+\¹ì­£_õÿðκ:$Þ)YCãíÍÖ¦}ËéãëªôQŒ ]÷è§>É–àú§¿ ošf4mlllmmmllŒF£º®­µåC–ä± §ßÏ=Z…,Ý\ ‘Oj”ˆ&€øQ×]˜Uµ ½sîìé3y23,4CT `kïö•ù$^2c(gíºÀ fˆ ï£÷v>Ÿ(…ñÅYB(KpQ.Gµ–ËÄ”1Þ{ }è+_íHô}_X¼ä.;çœsÓ锥¦ÒZVEŒ¹iª¬*žÃ2ç)iJj-bÌÎ"„CH1ff¤$8Ó*§(Ov}G g³Ž‰C å:R"e1®Œ§óu´È3§Ç±7ŠSšžžR{ƈDpbV‰Žd=‹Ÿ´ƒÝ #¯§Y¥g†íª àæÙœ0Ò©¾®Ý.Ù¬èGŒs‡Ýt4§@ ½ã„½Ó vˆYÄÙjw\ÏÚ@¤@Ä8™)rë +zìÝá±7Àh{óŽi}zZ¯Ä»!(XTn”´ßY—™ÁÔbjuow½‘ &,šžY€¢XÅéÐažÑ"M†!`º›‹óœ±¿_j°„jšÜŽÁÞXv†¦…îíTóO ÏQø*B~pïÍòâ‹êÁôÄÚ©FOÖir”‹BÄd<ª¡z +ª ò^%Ïb5¬z!ØêÄ7}Óã?ò1ù©_ÚI3©³6ÔQH’YÍ(eECãB¯×>÷YÈ Õ§?Ö"“~oJ!A*°'¬ý$Ÿÿ%1,WÕbÓà@Çܯ%$ €±þ„ÇÑ¡u{fCtµŸìíìÝtóÆ“N€Šû‘ª]ûgoÏ?øÁétꜫªj6›]yå•7ÜpÕW\vŸÇõ«÷äÉ“u]¿ìe/óÞÞrË-¯{Ýëæóù ¿ø‹ó˜Ç7]¹øB~m^óš×œ>}ºë:UuÎF£§>õ©×=æÑ÷É£?õŠŸ2Ƭ¯¯Ã7|Cá-oyËG>òfþ®ïøNìÇ~J¢sÎùU¯zÕd:/'²Ö†¼÷/zÑ‹Nœ8a -ìû>þÉëßxÓM71ów~×·ØÛ›¾êU¯RÕ«¯¾úÙÏ~vU9@–z0ÓéôÆÿúÝï~wÛ¶âãž÷¼çFùð‡?ü§ú§}ß眿ó»¿Ç9…P™Op”[?þ‰×<ûËŽö4MmphZ“ŽùºŸû±CÏ{:†ëņàŠ=DÞwãÿúáŸü«·ýÙ‰n:=m¯>\Ûõ—ýÊ÷Oú¼Ë†›öLì¡S†=³ûWü»_ñ‹ÃYØ mçä¬I|ìcŸþ-/»ê;¾qî‡}Цª²ë=° Áíwüü¾¸¹ó¬8hÒm2ÎV—Ñ3¾òÇþm¼ö 6Ì1ÇUèÑäî=?õÓïÿñŸA»·'Ýfr»ÃcG_ðô—¼âGâ‘CÆ7VAS-=ÞþþÿõÿròÞw «Í½ÔO|õ·~ÙóÿýOÕ#Vd‘Ò|F R^»ýoþç·ß©wÐõ•LZkÃ_ô´gÿÊÞݺ¼äƒ e&©Ü|ò=ÿû÷~è9=¹{¸WÞNCwøEÏxáÿ\ýørSV6ÇÅÁr'‹j Õ–VZm¢Ùf]šõÔ¬£ZG½‰Á!­×QÙ9QÕK¯¯øù 09'SUÈð†§]ÄpðÜïÿÇúŒ'ÇÃ[œ@1õµ„5çÉžd%­Dƒ5ÍÆûèœhdŒ¹ÏŠñ²áÅÝ{4ݧVÕ}Þ¦ƒ¦Æ½;>ÝßÊHœß|죽­ˆ(çÈ’öþú¦RÀÁ€‚Ü~×É÷¾÷½ÛÛÛUU•‹1ž:uêïxÇùŽ_èïm¹ž¾ï1ÓéôÕ‹eøïÿûÏœ9Óu]±Œ1'Ož|ûÛßÞ÷çBPuV*ßô]/·¯TޔˇÖÚ”}äÃÍI™˜@]¦“9“õ®^ B†w“Ùñ®uíigûzÄlr»ìk EKàÒ‡_ÿ†í7¾åÈ-·ÔýôêõÁÖ­wð]·ýþÏüL‹I`ìx¡<¬Fµ6ó §ÖGî2µ×e¾ç¯ûáé?ô!l+‘Ô‰Œ­±?}æP˜6³=;t[ÌWL'³7¾å-?ýÿ„~ `À¸m/;UÎÓSÔݳn²³9$kãäT–9ƵNØfX6Ĭ6ÿü/îºõoæOã¤Ë³£1þO¿ü¡_ÿ­º5„ „”ñßý/Û·ý™?{²Ö0ô°së»ßöW?ô£ €¡D¤¼àîº÷ýáënþý?X;¹sxm3ä´½wúp79ùæ·¼ñ‡~øÜïA.+Æè½/EUU•ý'½(¢…%sùS>ç¯ÿìmΛ”³g7ùÐÇS2Ö–F]"§·Ï†F£Ñãÿøº®‰èƒüàl6»í¶ÛÎwôãÒrYPµvé}Z&*ºõÖ[»®cæÏýÜÏ5ÆÜ~ûí1ƽ½½ù|Þ4ͽ+ðsÎMÓˆÈ?øÁg=ëÖÚÑhÔu]™Àê@…¿µö™Ï|fˆùÆolÛ–™o¸á"jš&%qvIÀT¦×Zëœ+'\æ^/íÂrkD¤0u©Ö´Öªjß÷Ö6óywêÔ©òú‚j^¸Â -©Î5Œ3~Æéøó¾ðÄ3oØÈÃÝT ù¨”mÛz­E"§qöÁ?k:uûå¿öÏ¿cÄaûÇu’sûÛon~è;$õ¾Bæì ?ág·¯õIèúoz^}äò3oÛ™×¾IÛX¥ÄÖÌ@!f_çmd”@†‰ÁΘZSV(YÀ“d ÆÜ4Ê„›#zá`2”(K²•’æä÷I…á¡á žÿå_ôì/úèGÏüéŸäW_½ó¶÷´ÚöÈ>ÛÑµ×€Ý XËÖOWN}).²¬I)ÏÉA?Õ¾ÊÈyi©Dt»®ëû¾Ø+Å–R*‹û’B>Yq»B‘1~ã‘W#/n¡#t·Ü‰EÃ/ÉP ‘ª‡Ãñx\ÂÌ\×õl6;ßÑ )îGÂQ`)òxoË#„0 ˜•+ãñØ{?™L–]I–{ÿr|ç\q+…vww™¹ÔNbß,Xž¢lùuAcYU m¤$"Rùe×,-lŽ«³2sñG•”Ë()m å1k‰( n»í¶«¯¾<„pÛm·¥´È"[¤,L&"(j¶ÆLZMD Å4´†mDS¥VÁŽ@bÎFÙιÍ*¸µ›£æñæ|^,À›¨=°” Ÿ ýÙa½%õ@Ǻ;»jt˜šÖ븘#nl­ “Ú¤Qegýa ëv§ÝÙ™ƒ5³ )5•@6¦1îW]LH1%À¯ˆk£‚G7ß 1h»ãœªÃƒ#a*zxŒ0Íõ†i¼H0{ç?w˜7û1ÌÚÔÍLuxcˆ#öp•Å cbE²Æ&©nïuP« äì`–ªÙÕd+æ¸hX|9÷ÅD@0ŒY‚Pñö¨"+|_34ïws¸ÔA bˆ5 Ù ;CÈ ¹ñufÎaqøøávcãÝäªíÙVÃôš-ÈdtÜÍC˜ sê¡v8î²:ÍÇoÍ uÄУ‰€‚-˜9Kd6uº½ÖëÇ’!GEÈ*€‘ 4‰úiu¨ÚÖ9‚l{÷ìWþûÙ¦_ÇÚ° ÙAÜÑØC¦-d¼þ¼ÿúïÂF¦£›L E b Ã" 5[èIÛrs *ÎqŸÚf­¹+n»UnÕ¥€Åwãn¹R  ``M3ÑHç0WžyÌ|ó–,w5ª ‚FN15Íl§7äK/ãÊ–ìâÀÞb ¬É¬ßñÞŒ¥O‘÷ÆÚÕ—uÄGrû@ã:Ë+f.á_"*Ë\Ù§¯¯¯‹àÞVG×…étšYC%cÕ”£©‚Õ„$Å^éû¸ÜÚŸïJj4ùl àªË“Ï”ÓPBwòƒ…ãZåŽò²j¤l½—;ñûì¾¶ã¹¢÷{WË.afc³%¢ÂLÌV•Ê3Kkã ¯ÐdùõøÀh4:Xé‚ýd¶åB_ºä¬eJêÚïG•1TþàL—#™ýŽˆ„®ïÙ˜,‚(F³”®*Ƙ,‘ÌÀ™3g¬Å7ÞX". ÊÑœˆŒ³”¡ŒHÖÛ¬HÁ wS:SõWóÜc±ëLh ÖTÉ¢ª®êDk92°Ýd¯{B}Ý`o†ã}NeŸÖ€Ôzm²ó¡nlu'M[š{À0w!Ä`XÊV0fX®"¡ÙºRF£è¡Ó<Ñ­dooÏNÃS0¤Œ&C]“Ž@}7&›Ü¨­˜È¬£Û±4Xud=µ@SC<2zèT?yGÊð\=ï9CƒÄHÀ@H[aAG=Èð]ìê0?=âiÆFøòï0zäªÒÒÁf¨5LŽáñ(ÎP³I’í± ;›2lB³üÔ­r«.Q(t&Xc㊠H‘—¶ È/9ÒødXü¦Ä¼XD-›âáyð(Kg1Êæ"çDÄ|·´”¤ëBß÷Ť¸w.ÖÁ|i‹|ªƒ`̾¡IJȺÈ:g}æ7eœs]—RÂÒ@¹ßÛ¥Þûâ ;{ö,>eõÉÏŠå±»;;{öl×u…Ø–ù¾÷†P·áHnþØîÛÞvæMo>õÎwxD°”›š³Xl™üîd^Uk¿ýÍß‹}¼éZBk‡8Iš½Õ”Df“rœ87 o=øDD}ç™CópíàÐpU ¦Ns" b8{ÖÌNUmÇñ°ºîì®çªg9iPT ŽÎô3ÑtLm|ëûøõïp¯ý3ûñ»`EöI q@Kµž˜‡;ÿðOÞû#ÿiýc3â2³Š$¹¤¬QY$˜py4ìüî›ÞõçßñoÍ›ÞsXj™¹žq³bŽKJ´Ø«Áy®=Ž,c‘:gd(#Ìé!UìgbêBPWJë^,ÐŽ $—çƒDYè , £ü°L‹ZrAŒq6›M§Óâ,*î”’ºŠ»ÇÕ—Ç¿ÿBÂA„I&ѬªL$½û÷Vˆ¢â˜“”RÉsµv‘=uÿQÕÁ`°±±Ñ÷ýÎÎÎE¤ n¾ùæS§NåœG£Ñ²ºð>}µó[~î7~ï…ßü[/xù_ý_?…ݽ9Ã’1ÌtáQOyòðêk>6ï蕯ÿɧ>ÿ­ÿâõ½æÞ11@jç¤lö6«³¹sàÁ,Aç&îØÚݮڅ౪TäA)÷TÃïíî¾îOξú ×sUM­!c'@'BˆH‚ÈvŽyûÔýûŸü¹oøö_þšøž_ûMI“))P2:À#›g=jzÔ«ÌoùÉ_ú§¿ä?üïhv‚4L`…îû?¸ê+_ªk'Ö3þ•ßýïÿ–þè+pË­ñSœö{cÅ—(²°ä‰á •ìïØÙ(,Ýî§Ý’û¢âÜ®0!32Tг1í«þVÎX*–òéåɃ µªèº0ŸÏçóy18ŠrI/©ªê€éneŸ´%X£ÊÅa'0û ¾GHFõ4w,ŸN§õWõ®w½ïæ›oŽ1ÞÏÊ[L«Á`pÝu×»­$|¦¯ó|¸òÊ+EäŸøDI#Ç… Ï÷úˆÅÔì1cö5{P•a I’B1<éûþÑ3¿ï;îó—9ûþWüü/|Ýß;õs¿±©‰C0YR&‰}èCˆó®ž„çõoû?ñêÿò_n9uj>~Þ žÛ…y*®ÑÄ´ !vƒÓ[Þóº¯û¾ÿ÷Û`zfç–ÜçËŽz€Ã¦xÊç‘ÐÌ‹C$X+j!HÆ~—“p/ù•W\ÿU/º¥ñ»ªéλÞ÷Š_øµç}Íì=ï3ÈJTôŽJ•§üÂO>ë[þþ´ò·n†Ûg7¿ÿ_þè¯>ûkgï}ᆱ8Ç% ˆ4)Y"XƒA…¡ÉM¤^(°$”Ðîñ"ðÐØÐþ£ª–’3_U3ÉÅMïÀ¹ $(-¿&ŸþYî•’ËûübOxï‹£?gíû~>ŸÙ%ï}Q\÷UÀ9“’ÝŽEàäÀæ¸õuÙ¯“!…2´Ê{?v!ÔrKnÕ|>ÿ‹¿ø‹2^cÌÁ2ÀóMæu×]÷ö·¿½$8=àn%‡J)Ýyç677—·à|¯¦fwh¯þ¦¯xòË^ìܸçãQ%@Ûê &¶ÙígëÍ•ßþw¾ç«¿ü¯ö_õë?ÿø®â›î|Ó¿þ±¯ý–o°uŠó‡™€Ê™»kÖд{ã/ÿÖc³Ó~ûoímÍÃW#€9Ï mÙ¶ƒæØ3>÷¹ßù-NâÜyßYÔ£0*uÔ® Õá­/ûÇÿàø OŸi=öÑäjáý~ 5P·nrôØçÿÌÿý9?ð=¯ÿ¾ÿxöw_¿q¦?5»åÏ_ý»Ï}ìå4Þ0`[ÄE4³bëkþÃ÷^ö÷¿øƒ?û ñK¿qghíÞ雾÷ÇýÉ+Øxh,7Ÿ… HÙ„$Xk†ÖF¬‹½zÈmw‘t«sc[¤ñq¢áÆZ&-‰T†h²½³ayÁÅ2ëi¹è/ãŤ Šù|>›ÍÊÒY×õp8F£ÑÀ9ãœp!©eÊoÉýä—’ó°½S¬Š"®´¾±±à~˜þx‹yÑ÷ý`0(Å(›$Þǽ"c\_– þÅM /6S)5?räHIo»›ÉƒgBüÈk¶ž÷Eãg>ûÈÓžV_e’€ž€f°6!7©®¼âÿî»ÿÅ[¿¾æÊ>µ£6€óèØŠQœÌÃî¤Ë]½1¾ò©C›Íóžýåÿöÿð×_ab¬VP €½«çÖÙg>é…¯ú‰õÑP ]vå#üc¯‡ 1IçÅ, 4æšØ!?ý©ü‚§¾ä9¸êJEU‰wla 9A2Ø6$ õšë_øóÿñÙ¯zÅ6ñ•<>õþX.…¥`@éd*ë5æ\]{í5?ôÝ_ÿ¿°n†£³»±éðXÙ—,ö…K8k†5Æe±¤¬[ÔEc75H‹¼¥‡ Rèb¹4¼qhëfcT³*DäÌ©Ó'Š?îA÷:*ù£ æ8 RÜV)I×umÛ–ŒÕ¦iŠ6âÒ_²›–šƒ÷ÈXÅþ*|ÿ6°pàì©ÓšEI³*ZÛÜ(Jd‹‡ ?( züøñ—¿ü›TñWõWï|ç;ïÇÛs'®¾úê÷½ï}÷Ï4Ÿi­":qâÄîîîý‹Næ÷h¢Ê6¹£é¾+›ã’†öòhænAÚœzFÑÎ|ˆ`ùßÄh42ÆH)sÌ2ÙÝ…üít-Ŧ–õËðF)P˜N§Ee¤®ëÁ`à½-r³T‘RÆûÁðø²Éù§4\"dUÅîîî9%sÂ`4$(èÁg|2”rñ3gÎkäw?¹I‹ºEçDpÕUW]ôîSUUmll”ßǬ/¹OŒ\2.µ&&‡™²vÎ œ•b¶' ¡.â¶{X 8¶v¥Auçt¯ÙÜRr¾W3 Ø*Þέ¾oû¶ô˜ãaTÏLÁ‘ îŠÌ¨ÉXv€yL[yx¤ojq_p}Ìé¶wÞØÄ˜"T)B`0MQØBlƒ¡Wç{T™(u…PÀ ‡Ì‡˜ÆI£ápv襵ý¦«†}¨T!y¿áô¾$~Î {"#xL½fo)¯"äC4ª°Š*ÜL7ÇyË`Sys$¶ØclÍþ¶³´×Svþ| É*zl8 ëŸñ¤­yÅT\3­¾ù=sÛ§¤Ë6?[j?šMÌ<Ÿ‚#¸â¤*µfvwwÛ¶` 5M5 ŠWJuQˆÀg™€ÎøØ'CV4°‘˜Úõõ1ó'«ê”»ãH9¶ïxgHy|p:B=ùÊÏÏB.Át0‰AÒS 2D&%)KtŒÙûº|OKBêrŒû]ClJ¼p™¥ª|yK!Èõ©ëz¿¶EX¥˜Ë fì'ïb?,¥ÄŒ+¯¼rccã RÖ}L¾4:‹{T„t±IXú*"¡e‰FS ð¨@E sN‰ŠF â‹y°FC?ƒF•tÕ•—3©w¦®4G‚€¬L5ˆ E2YlÈ£3â×yö ƒm@¨FµFëhê`¦ŽøG_þµ¿9Þü•+iæí㺳ƒéY›§©¢³#  öÂMOo UëÛ“©Çp °@]1 €èfôØ*«³º q’8_ù¸ç÷­õÕ¬}ÓïTH­áªŒè…ZØޏFÙLŒ™m;œ®0·*HZЉ«ŒjÐæ?ôOxãÑÏ}å‹¿UlÌø¶ìQ$$X` Q¤ß°—ýîåúËg½Ô(kÑg›ÇšfÔ‘5 ÑåJ¹Šþ8Ú °EGóíhÏÅÃVÞªK‹ÞXǾâºF=C•­·Â‰$;‚Î3Úo=d¶ÃTº?±+ Y²jãìí·Üüô,ÉÀÕùÁFbz–ÊjXÍâÂrÎ5µ/’±Ë×´Q°_XGw—U¿‡ íý…Èí7~¸¶F‰|Ƭm½±Uª:áÈ¢ {0¨jÎ Z(|Ä»®+ˆ8 `>Ÿ[kƒÁtÚVU•s®ëºÔÇ/\Úr€…ê–FÆR§¤LÎrÔ›é. ï}ÙïŸo¸Ëé]J»ãîÊÄe×××O:e­ÝÙÙ‡³Ù¬iš½½½º®‹×=n_IjðÞ[k¯¹æš£GZkÇãaÛ¶…ü€¥×¯Ì:@ÞÎúzmKÓ„Ý¡È|îÇC8Õ²{/µûY¶žÌÒÖÚúúÙÓà8´ßL"¤!Ù ÂÀù „¼MÌÌ<¼Ÿõ“‘€ìÀ€01;ñ¶C8ü´'¤Æ ßuãÇ¿  Èä¹|Dc\w\ïLêÑ H0¨zJÚ‡(€ ŽñPó¡í—£ˆ{8Õ®sì¶ÚE² %׆«Üdû®”;@¯›1žƒØs »…fóÔ’×v&gÑÞµmÍx{Ô½‹LÓs\ò`€k[h8ÄxŽ¡ÐÔØ½INÐo·fz{:v¹GõàOu! AUIi®ºj64qª’Gµ?uçØžÈz%ÎPÎÔŸî–«^QL*ÏóÁm¸ˆ8皦4Õýp@iH'"ÖX³_Ƿ߃Ö<×ù […BÒmïzߺHGZ«‹¾yôµ×YS-"˜„ûÚycÌÞÞÞ[ßúÖápHD·ß~{‘›}Ýë^÷øÇ?þšk®)@)7‘ÍÍÍ3gÎÜqÇðP¡¢‚®ª1ª1‹|³bŽ,-H(Œ{ÐÎýÕOĈ}q‘¾ï ë,¨°ONGŽùЇ>4N_ùÊW;v,„P´¹.»ì>Ú, 9ËÁ×ÖÖ67×—7¨ä;œKÃSå}ÑĤre3>½7ûÐ/þòümïÞIØ5_õ/ÿ±y£LµƒEEM–ãW^};ªÙ´ûéžså#/ëÿüí­O×_ Í9MÛPRh‚±â\Õ !Ò`v~§êlj×Fƪ.Ï£°}⣪ÍMÜzò#oø‹G|÷wõRPR©F¨%7Y1¼ù‡ÿÓÉŸþÕlÖŸñyOýß¿Gœ%Î@¤ÚÏDó¶wÿöÓ¾t: WΦ{3|üµ ÉûE¥¼?-þñ6ïz·|âæ_xò³‡G··gYÎŽj`Ñ¥(ŽÉÆã¯Ý~ üÞί>ç«êë® ·Þòˆ>ݾ×nÎQÇCf«úY¢E×r˜ÕƒFN׆ž€žœéÒäwkóxiC*±`”È~Ó4{”d¤œBšMfïx¿·$€ýdý3îƒ"N¥›Ó’-:dŠLúr¿Ä²ý_ùuéÌÁ*²}¾G“¨ó!È:€â–;òíwQNArE.Gƒ«®–ÒÒ•!U]_yùUëëckùÎ;o¿í¶[î¸ã6"I!t·ÜrK,ÚæË½üå—Ÿ8|xkmm´··³½}æÔ©»Œ¡µcÇŽ-ûàâ€IB×÷­1TziJ¡mgEÀüÞD˜R¡+Eæ’¦R ço©,5"´ßu±$Fã€Öýå—_~äÈ‘¦ibŒwÜqÇÍ7ßLD—]vÙe—]VZ ,)ªªØÅ")Š£Ñ¨ˆGY¼‰[E ô#$§ mŸ<}Ç[þrç ~òÏß±»½ÓW^5‹¾MåõÜg™Ç]÷q²Wß¶·óæ÷ˆX>råS¾îeÓdØ ©Râ¨#¢Ì»t[ }å=Ÿÿóéª H1bzòÓ„`+ ÈeOx\ôÓŸ¸=Ö¡¹4°äÈ‘zÓ1{rgÞõÁÝ?ùó[^÷‡gÿê=AP x Ufðù_ó5[ÇáöºÍ¿9Ý|ôäœÌÇ÷„/ûb4 €DÁã@ñ¬oþSSŸ<{¶úèÍmg'šÒhóÙ_ÿ-PØò5$¤ró›æ _öÅ©£õz=}àÆÓòöñ;oiû4lŽ|ÙK¿e9¾•Íq)C@P£~„á#Ÿ×z»m´2è“ p¦7»·0æÀÖžÚO D€‚‰³&o{ÕóžõÑ÷¼·©½ÎæÞè~÷oxÁs:#õƒø|'þrY/·û.{®ëºiæ{÷ÝýZª±¿·-Î¥âíYîèï?·J¡bØŠÞü–·U¡7¬¾r¯¹‡ J­`.5[G¶6ŸóœçÜ~ûíwÜq-²è{g†Ãaß÷UU•!Óçq»Þ{ë­·ž>}ÚsìØ±Ë/¿üxÄh4ºÏq?~¼¤‰³Y[[{ä#)"E@w9¢å ùÈG¦”Ž9R;†û-ìû~ss󪫮*>·òäÒ'VžÉ9>|ø†nØÙÙ¹õÖÛcŒUUmnn^sÍ5ÇŽB¬*·¼†œóp8c €ÒN5[®_ô¼gv»·Þxcû8~Õ¡gÞð¨oxéÜU ˜ð5´Ä碻þÑ'¾æËµò§Gîðù&"÷ †¼±<<ö‚ç`o²öÔÏQ0»Ñµ_÷U"¦ÍÚÎÚ ž„˜3•&K|Íåæ¹78£)¦Ë›µqÈþ󮇯pX¦Óû ú<ò_ý÷Ø+ÞóÚ?šÍbØë.Üu/ÿÆ/9òù7(ÌB_ÝÀ”î¿ÆÊwóÓŽ˜_ûGk³3°¾½vë_úÂök¾rB*L\ôP˜ã_pËÞðÊ?ûõ?~òGgwÊôŠI?yÔ‘Çý×î¾è9G—_䇌l÷gdÀ!ƒú»ú¾²ú›?ÕÿMú›™ûØÙü‰NÏNÍ é‰Çݽ/ü6 žr±/ùST\¬Ô!çîäÞú?¿òÖjÔÓY_Ýå×Í»_?«ì0Ü4‹sÖb·!õι¥èáx<^4Ñ»×÷7¶&ç¼··B‚Y´¥ãì½_[[[n‡ï_½#æ$ÆV]ÿ¦oûGwüÞ«‡¡Kä&Ù>æ~ëÓ~ògÜ 3„Râl33;%dÉ)¥ÊWK­@yŸùî6—ª Ê’ ›˜âRŠˆ‹B{ø¬Zš#5uƒ¢ï61„ü8éuÑËÏ; å…àüýHl•ZË2Ï]×–=ȯ…ÿ–SB*së½MI¬eR?8Þ¶m›¦)­A–¾Uå$À ÐQ¹ ±€Î:‚ƒ¹R@ h>éy¼µ Ó”E³q`•)"x ¦=ÖÖc®GE¨Ä Úlå+Dt 1èx@çñ'¤mH@>gïÜÁpÎóaÕA·2¡ï€„fÐ÷YëÁ8ÐS0ÎÛÑîaHš#Y‡P¤z,Â>ÄŒ†ZJ _ „z%1z !8ÀX%DɎ;Ï"ƒ( {Dp–B#@5A J0îöÆÙÔëèm; MÛ¢±èÝÙÊ/÷§+›ãR†–Æ,0µ©Ç i\ÑZƨ2kÜÇ©ž$lߎS·ãê‡sh‰^9ԜɚÀ|üɯ·Öw·ï¨4{Fºù®“ïz÷ÖÓ¾àtˆ@9ç¥F÷2Ja­­ªÊ¹ûøäßCœjß±NƘœtù׃;èOçpb÷ ªÛî¼ëmïI©”)Ð|èýügôl0Ì` € 1/JÙ±ŸÅÄ¢RX¡X˳— 0\*­ª–Ÿ±_¥ïëTU&nêF¡9gkópPÈý`þ1äŒåëχ¥[¬ ¡®kÜ]æý์1)I©¡)Dμ %ŠãkimC)I¹­)I¡³:#¢ ".òQ‰šàÌ®EHз8!a¬¼ %êXsÖ¹Ó!8àíÿ×Þ»[–_õ}ßµÖï÷Û¯sϽ·ûöt÷<õF ˠшÒXŠ%c‚dŠà Š ò!ÆÄ)ã¤â`WáÂT¹’8åØU.ìBئ p¶*À8HKB$02x`4¯žî¾ÏóØ{ÿ~¿µòÇ>÷ôížiI3‘Ô}»÷§ºNŸû8÷<î¹û»×ë»`"‚ÙÀĨ‹²æeYpÙÌs;¹É9ƒÂmÃû/]Ø!À€"ç(Ò \í hQ=V›êYB„}šœ™Á¢ë'+0ªá7K PiBÃ^ K C7eea’œˆÏ,’€ ØÍ‹3¡ÁêŸöÑo©O«¶<þ,ƒ±&d‡<Ùd8ß#i@Ås,CqZŒuŽÓ€ì eàÒ¡Ô…U€–³ý~wïV?ÄGæ5Ta` |öìëÞøu\â%Çd‹£_ÿÐGVËd_ëu놨á°5ÆCÇ5ÔkKÅO¦­N®_]{•?ßôð†Þì©ÎÑí=þD÷Ô%%™d+Ïnî<úæ~}„Æ8Ô`ðÎ{ç‡PÉcbœhèZ·­K/Ò†oŽiÕ¤¿Ž6†UKëgg°¬™@kÈšOJàu–À°!.zp¦ÜŒ¡w`-½«Ÿ,Çļžç6cu]4C×ŵf¬+"ƒßÉúב³ û¸T¯÷Óþª [ÙÍÇcN ìr0‰a«-ÊŽ]Š`ÃÐä@«ÖU DÃTæ6¸ŽØ0_,æd‡È>g -A=J÷Д0Ñ›¶o„ekM‚if ¤— à#DLÙB‹íˆŽ‘  >Ñø+른¾ìÍ‘Së´%‹$KÙÏy™ªHI@höùx°T Ó4œ{µ¹GBQ”³1’ fmns¿ú5k‚JLß9%ÁÈ#Oóµ™ó1[u»Ê ]èÓ×ßûeéSù.ëï?#O·ñéèžÔ”RùoÂw}]üš¿ê'÷t¨ÌP®nÏ‘ä´ züÎOÿ³×ß@Ú?lòWu“Ëõæw<ù©+U½ciðxÔØsQøhÞ7M¸YzhýnÞÝÝïûÞ¹Ð÷½÷‡ÜÈd2©ëzõÍ'VÌžÔƒÁø}ww½»i(ÏÆöööðáºL €" ,FiÈX«*±£Vìþ«ÿâ=õ/|úçÒiÔßúöo|ßϾð¸u–P##_X¡œ¼ù ëSàˆ”½ZT@êsÒ\–ÎèñgŸüÍOíh–¦¶ƒ«ó*¼å]ê¦ü–z˜Œ|‘ŒÊq»Â'«·ŒPK½…jŠ=Ù¬pÐʆa*¾[¤ý}wy7í?…éYWÖ‘0˜.ª½çϽâ[Þyðïo {…U‹ƒßú?ö®ÿêÚê>vAU›,_ÀEwA89š0tâºa+Å‚ˆº.¾ ]ÕàxÃ7›Yï“"x'Í|ŸDðç5—ikKÔ.º/ì¼íÍ7»k}ɺ‘‘¯ £rÜæØ°Ò›Br˶6ÏòFÆcC1UJ>8p—hïs8wÅ&·²š…>·ú)|Q$凿÷;ßÿ3ÿúÁ˜k–Ÿüä³øà…oÿžž @kðN»>_à}»Î2­7¤Vƒ©øóxú¾?ií·.GŸTŽ“É.GÀ”8(‹n(g>þøg~æ÷–ÍeM²ˆ3¯¯y÷7`ëìÍîWìtü¾FîrFå¸]9q^«`‘Å4ûí\•®©Ð¸4‰~*˜xîzì/ÜÑçpô &÷³o†i;ZõõžŽ#‘C(Þôº‹ï~{û³¿T÷œKžd|äÿø‡ßþMßа,ļðçy^CžjPŽõVíáKCÌñEæðN΂¬c—auÇÉO®ñHdp0‡™b,Ø}èïÿHÙÎgÝ‚z7¿÷@óòoûFÐÍþ饛Ќ|Å•ãvåÚ10¸@±©Õ¶¶” 4µnæ› 0ÇaëŸÆÁ3ØÚ' ~_‘}_2Œ’¯ýËÿÍÏ|àßœoÑú°`‹ýÁc?ú¿ö¿ÿžªä##O$4œÉ¾öžÁ2ädÌã!ä›7TÈ×£×kí9é¼´úýœØlAD¤*FT›0‰Ñå}ä3ïû?·´Õ‚&ê:í^ùÍﯾTÝìÁÿÔÍ¿42rû0*ÇmÊÊîu}bëJS*7¹Ü@½ÀƽéQÇ›¤³6ÏZš_ÂÁ%̰‘AbÃÞ§S”4gLàå­œÿÖwÈÏ}Ø-u¯± T|ìGßûµ¾>œAٕ‘ Ÿ·ÿó:Ù…ÕøÑçu6#¢¶m‡¨%ç¼Þ´±±ÄЬPfeî5+¬À—’7ˆ‚Ðí}úßýôßükoXö]$¥3{Eƒ7žÿêÿî›MȺ†Gu9åŒÊq»B×þ_ù%³JŠÁKU¸*pAðF1¢kµ›ébývb§gËlhS|àñŽÿñ/Ý·ÕÁ獵çŒý¯ýoOüÊ¿ÝÊó´hø• ­EBa˜°”`†©*èÚXø £Ï7}z>«‘ìã"Çúæ8¹# Ïj f €'âo}F@dàÉg~ê{ÿÆ}4yÜi]ÔäÓQºü®÷¼ š¨Þ º±Ó“DyAFå¸]¡•gÕjï ÎKQ£Ú r‚ªASPü4pÃ(æs,h¹ŸÃâ ‰(ã´Œê4å%´ðÀ™ïøû?ü¬“pκ¸ti³]üî÷ý­Åo¼ŸÆº„‘am‹."e°Šx×Co *Nú¢?ÿÎ×k*p¼>v½Üi¸ùP#!BKèØVÆIY- »+´Äæ².ZV¿{ù}ßñç/>}¤G½V9çYÚ{ëŸydûkÄÙ3VlÁ•4#§œQ9n[ÖÛVÀCÉ‚= Ê©•›¨”5š’7¼ND«¬‡3ÌŽ¤;Òų:{ñ†Óôû%d¡ ˜·ñŸ¿íþâ÷<Ѧf2íf‡³-{î÷>ñ‹ù–‹g»ÑFˆÒ$ PFÊ009ƒ[¯ ¿áǯۢž_$?©4ƒ«àɦ©!þX •^×ÕØ°ýmŽ”X|øûþgþÍÇ–Úî¡ßYÒ^¼zÿë.¼é=ïèÃgÎõnä@_Š5ë##·ŽÓsd¹ëࡳvð´ì)Ô¶s¹eÅÕêJ›—jÂB±X"ÎB¿k‹gÐî"-OIuÔˆ=Ôw‘À µ‡ÿ§ï?ÿ-ß\F¹Jz®(ݤºú‰Oýü»¾ÇöŸÅ&º´h‘æÐ^¢Hi½ìz]ÉXsCCíú“Ï9çuG/Žeæx•ø gИ4er¢ÐVã¼_J…Éîå_ý«?xùçeCx?ôÍ™ºˆ/¯ßþíïÀf ­³ uTnrº¦ûGFžÏ¨·)@ƒéå°3ŒD]™ÃY+Π:ƒrbUIII“àQ`Ñ£=ä~íeÌŸ³Å^À©©w†¢ëÄ…ùl^SL7¿åïþí+“êüù®<ûœWÚÞ˜Ôþä¿ý¦ïÆòrÁ¾€E¤ N@¶~ý»>ø›z«:LyëÌ×õÖÞÿÉßÿ;ÿí÷?ñó¿BÑ8(2QmíuxRÖvè_p§ÀÐXuƒ¨œɤKä9ƒ¼óHØÿÍOý½ïÿëñ_þò½u¹ë;á"MÚ«ûßôžÿì·¾j&Wü¹i—ËrúI…˜Š2äS ŽŒ¼0òC?ôC·ú1Œ¼0ÑñÿBÄCŸ;5B-õI,–°y/KéYµ#⢙P(²cW•€AD¸÷€A=¡ŽÕ·„2€¸A¨áA F ì£Ú¸÷{ßôÇ>ñ‰ïž¼tΰHóÝ ûcOîö¿û½ _ÿÕmYÌ]P_¢Y Α0&R3âªί\BÒ`ƒn "#P‚ˆMA„ÝýI©ä.‘™¹í¦&[UED ll’ÄG–¥†BÈúOýÄû>úëýÖ‘4BEC~6¿Ôïì¿þ=¯}ÙÛïµz^Lߘùœm݇éElÜ“%]Äéi˜y>£rœ2f¹¥nÆñHâÚ!µÈ‰[¢9•" h¸˜Z± WB&$Ž$ ³è@0œ’†ÝJ±;?Ú~õƒý#¿ö_,ûìÏ—îOè‰||ñë¿{߃÷M.ÞïHžšX`ŸÛçK5ËŽÔò&hÓÕD«’õ’”,³ö•(SNœ—¹ŸÍÀFl¯:²˜‘μùfB ”á0wê •ÿôGÿÏ÷ýÍßùßÿö//¶­BÓ|oùÌæyyóŸ~øÕo|ïLhç,üy.¶yr&ç94¶ÐÑQ9FN5£rœ:2C‘;Î-i ma‘¤Ž%›v¤F¡F95ßÀÊ5³ÀDÃÎQ0@§äÈe@á”Øíl?òÎwþƯÿÆÑ•=žuó³þÌalœöñ?üÝö7;¼ç‘×Úbßz¯…ÓÚ{ç&‰|Ò¾vi£®¢rJ{ê{qâ@³'r`ÎêI|ËLEÌÒ¥?Úá^Í'Û›TF$”é°Êé³ïý§ïÿÞ¿²øèoîHNyF’-¡ÏWÎ?T<ü¶W½ìáûèÞ)&“Äo܇ú,M.PsRب#§Q9Nd 0ÌRÜQŠ²æ¶€ÝÂRâP¢Ø€+ÉŠRœC(Iü0^È §¥/tŸâNZ®½pæáwãç<>¹÷ʽn&:§nZ.Ðï}ø£Ÿù¹_HWŸå7|Õ„­Ìi––WJ]NËåVK˜¼‡÷‚gˆAŒœÁ)DÙxïp‰Z³(T,¸'îJJÙrA4%—.¹ÅþOþ_üK?ðŸ~ôŸ?¨¦žÉsqa+3>¸ðPó†·¿ü¾G.b[SSaz¡w›~ã~4g0¹å&Èoz´±Ä8rª•ãB À4Yî9uÐ5 Áú}dïj %9Q.Å3\€fOÃf=œ'Ä*Œ$;š‹£ÍÉëÞý®œú?øðÇP×ö.l§*íégâgÿÃûîÊÕÏ„‹ÛB›¹ªsSÌC•› ° ¬@†ÐÁÕˇIa$¡j²/+¥IŸJÖP©]~ò3?þ¿ú?üà¥ÿÄ“›U‘SÚ;ÚPSoo?›–¯äü×¾õ5g_3ÅF3NÎô~§š>Ø×;\Ÿ¡ú,Ü$fÇÙªÓóŒ¼ô»MFn; °Ng—õðI:ü>iË«¶xJ–G¶w Gäl]ÀÎCØ<—'¯”3ؼÕ9„MHXý„S¢€Æ.ù"¬õδ'¢«ýÈ/þ¥^>öé‹“ÚõÝ~èg\pÛ”‹yŸëæÌ£¼ì¿|×ù·=ºùÀC\5KôÞyšj9ƒ}‚„“± ëºœ£ŸõåFU¦öàýþ?ÿ¹gþÍ¿£«»M=ëQ•³ùrêŠ U}yvÙ.Ôü›}õ½½œ ØÌZij6±ñª—¹âžvçåE½-“H:ã°:u¦‘‘dTŽS†êjt!µ{8zVfOÐᓘ]Ñå%Ì÷x~ó½Ü÷Vlºû1=—·^%õL/¢¹¨ÕY Ì™êÐ}t XF”~ž–¥÷³)Y: †Ê|þÄßý'ýïÝ‹W·¼/ç}ퟣ.°‰Ëqšúìë_{ÿ׿Þ}ÛÛ/ÞwosïE” `0ñ€(X Ìöw]Lq¾8¸|y1›µ¿öÉßûÐÇ®|â·ë6Ù"!yÂÂq^æ3ÍÖ¼;ÚÕÝGßý†GÞõFèU´{ íª-:svŽÚM_Vœy5´Y^|uYN©Ü àX°-1ÇÈ©fTŽSFN`©Ÿóâ9™=…ÃÏa~Y®èâŠë÷0¿ÒdÕÎØ8“ϼšêm4ur‘š Rn‚œæÌr:Îy ÈíÒ¤8Ã;@2ˆ†¤]Gÿñ³ý/?òØOþ¬5î´. fèÛ`,Y‹˜&æ®X ÂSSŸ{ùË'÷^<û²­*©(À,Y]ÿà±ßî/ï<ùt¿H1×i?sáÕ(Å(ì¹ð½æÖæÙ=ôæ¯~Ë·=^Iiñ;]ÿ´? a²™ËI,7‹­‡¬¸À~Óó݅ׄ¢&©a‚&˜%âqŒ|ä3*Ç©£$à ý‚æÏèÁéüŠtOä£=ž]æùUÌS]9ÁdË6¤ÉYlÞ‹æ>›œ§É| ´H 0e"càÔøb´€ÔPê#>ý?úã?ùÿÌû¿îàÒ2FrB>ôffvfVØ`f I ƦlVÅãñr ƒ}Ø÷Žs5Y)ÃiÏBòûSûš?ñúGþÌÃçþø=}{îstù9,Ú4)]]ccÍÙXÝcõýûÁ_ÄÓ—êu¹ÄfÝÅØ§ä9{©’BübÒ¬¤D¡ÉŒœøÀa׳Û8*äèâ=¯xç›ÿô·¾më ê–·§/çn7Ï.ÙÁ36»*Ú©df œ¢¨6QlJ¹…bŠr‚²ºÕ/ÓÈÈ—…1æ8u$ƒ3ÈyŽÅemøè’-v1¿DÝe,¯ØâJêŽTsvPmbz“‹©¹×ê hv¸ØpL&ƒ_àÐle åSttˆƒ'$Ã``ƒ¥¬¤Rx[<ýÔÓÿþãŸýÔcóýÖþ•Ýùîž$- Ô%IêRp—¢\&ÎŒP7“é†{Ë›^ùð_õ–Géå¢&ôX\År7=–Åìi¿÷f—Zà<ª‡PÔh΢>‡ê<šóhΡ˜"lÞê—jdäKÏsœ:V=Q4,n’€0 úÎ2,öl™,‘%†YZ -Ñ3Ú¾vReà‘$ž¨¦¼ 4;÷Ó¡€ FÀ÷Yò, ¤ÞÅ‘W¼bûÁÞþž÷ g̳çžëf˽ƒÃç®^ÞMí2sb'õtsçâù­sÓí-ÜsE@#^2¤@Ç‹–çGX.j=tË}w¸‡Ã],g&DÕõ$¹©+øM„m ›¦äj¸âV¿J##_Få8e¬öv¬2ÈÃ×&‚圲¥Ô«%ošÅŒ;oyI)¢;„/!AÄ9BŸÙD’kä8׿NƒÝþ ðjQ;#3 8äe‰¢†sjÈà°ªßL«ÉÆÙAïSƒfÃ+ÌÀÌ9%0±Y" îsp9Çç;„öðèòt~Ë],÷`=‚§Pf7ͶAÕ†ú —Ûg9l›Û0©ÀrJr##/ŽQ9NCr‘¯X¥;‚qްS¨A‰, 'UClyy)ÀžH€§æz"9²ò8’áÓRæ0SˆÙJüp& XaCµŸRFK&Žü µÇ»yUÕ³OÖón¸žˆ=RRØ\™ãê³è§}‹nÝAއjKqž‹ gÅo¥bƒÂŠM”›(·¨Ø0_(ä´Dp##/ŠQ9Nùút’”$pZqhZ¤i nAÎkŒ{’%usHe®"aKΈÈ*èøZÍý´(G @Aj,R„&X=T@5c’­¢à¡9A¦1Ax€uÐZ°¬59qn—GùJÆÑ•ª˜—q¡ý!ÇyB› ËB,ÞûÒ…)Â6‡’BƒÐÀWð%\’SÁŒ¼HFå8eøëì¼®{”gÀ RR‚rfŽqq¹¹ëæÔB’`$?DbÔ Ø†ßT °®×ëéjÆa¥*·×äàðÆ .Ž „5P¯-à†ëL€¿ÁjÐ!6Y?ëMÐ#A[Çus^¶Xa~íæO»”`ìÊ‹TÕ°­åû†ÝüÔÊ{ÐìP9…1Yrš å­~©FF¾ôŒÊq§@ äKÎ%¥©B¬áÕB¤Š˜!¶ˆsr>sMª,R€*Às ºÎL‰×t3îäõ§ °­V½–‘34Z×YZR\¢Ÿ£_ ÿ(µPyržCP"Tä*ø ¡‚¯ÈÆaº™ýpGîTFå¸S  !Jf‰¬EVã‚XЗ«yëœ,u´Ü‡E¥Š-$063È×FÞ@<2@ &€Vä;:qt·l¹·ØZês{H©åî€ÛC,¯byí>õ™7qRÖ¨¦(§¦Søå6Š „. Î2ˆÇÈÈÈøÎ¾S ¾‚™i†¦¬€«ˆE¸€²Z77í©ŸÁ"»-A„˜ÍÈTI¹µb›„=e‰èô´[½TŽ]x³i¤Ü¢ŸQê­Ý—ÜswHíUÌw±<°~A³›p(PNPLÍoR˜¢Ü„Ÿ ÚFh&`gƒ±Aè´”FF^£rÜ!ä!ÙB¾¢œ4dS€–£AœÔˆqiš³u{°n¥fC±V*{Qˆ‘£c{¨;%À9GÄ%ºúCôKײ.©ÝC»~†Ô0Tg¨(Q6&9lŸrØ¢¢±r“|€x¬¬àOÍ0þÈÈK`TŽ;2( â!5ifÀ¸ÐØ‘ b˜¨;ÐØZNh÷-w…̈ X4*ÔyÑ ®ƒàø?fhBŽ–Zêgè©;@ßr»GinÝÒÒ˜ ÄÑ EW#LQmQ¹רoDëMït\¹¹•ã :xˆóTT€*±Ó©EO0X†Ìà™õKI ¢%Ãp ‚F5Ï¡0URƒ(¤ ð{Ь}Gqiý!wûè—Ô ÎÑ › ÌWäk (J„ ¡¦°)Õ&Ê)¨‚x–ýAW㚃÷ðúºÜÝŒÊqÇl«Ã¤ÈÎP4ƒ¶È¨‡EÒå94jj3Í™ ð\ÈAÕh©0Áž1Ø›°O½æl©Õ8ç~nqAq‰8×8ã~iý‚RgLGE?H€/ÈJø®¯V ¦Ç3‡—Ü©ŒÊqÇàpí—Aªlq¨Ò(Á!P_Akò¥Ã®ÔnIýÂÇ]ä%¬…¶èOYRÝ„°õŠÐS6b«)ˆ‰N¸\­œz­—nÑ[+ë©"33J²zh˜ØÈbÌ9RžiÛb1siAº@Ú׸ßÇY9{ ÙÌ\r‚²¡P{©·áj S-7©Ü¢PÃÐñ³¦2GFîtFå¸Ã!7eíȲ‘FøVAYÙÈ4#÷PEjÑ/àÀ‡W@àÉLA Η@<¤­hð¢îÀ®ÕÏi5˜xK‡?ž¿%—hHѰŒÏ´Cì4µ–Ò’b˹£¸@>D:¢nNqØ;q¥ùš|M®„óp5\IE-E_@VÎY##w£rÜéøMB/ZØ`åD.#;tÈý –ÑwÐC¸Žá¹#é³U„ Ù›xvžƒ"FF+•NñmoeŠæ„Œað¢ž@ŒÜ#·HKKöKˑӂb‹8C·x„xDý¡Ë½!8ò5µ…¡¡PC¼…)5ªm¸Ú° 2F鹫•ãN‡jøˆD™Ð)C—l¨Àpà‹ h´ØRê` ±Bê‘; =cJ‘‹(L`4CØ CìÄ!ód¬q«R6ÃcŒ¸ˆŽ?a€µHq´DZR¿¤Ø’&Ä#J-ºÚ=ô3¤9´ÍÙmr(©¬á„F}#EWÚ¡*7àjƒ_?å1E5rW1*ÇN˜„|€I•-÷¬¹pýœ809°CïÐ/(÷€".aù¸b‘ HÐR±zäà  ÅâŽ3ülljªaîIy½nĦÐ3¤9R‡Ô"ΗHs‰4¡;@jÑ¡?D\B3Hà ”[æ=…©ù:»~ÄBIå|© >jëà#w£rÜá ÃÌÄ_€b#K-GöÆÄA\~í‘3ÔÚ•X†ÒR\‚x¸)á H‰aðÍÕ ãÒÌà|KS7¤ 2Ø›JÈ=r„f¤9r‡~‰¸DZ`Øy•ÚäÎâ ¹5»¾†ª6IŠÒ˜4S+6(TjH9=ÎΑ£#w£rÜá0z™1ÁUDÄ`áŠJEê3@Ì2è‡Å–b ËŠl©ŒÍ(¤„וr¸±0ßR.!Þœù‘@ÄbdtË@H;@¡9®d#õf†8³Ü#.)/(.çˆ äí L$Üü¤¦Â‘+áø òS*6à+xÐ0°Áݦ×ù_ŒÜéŒÊq‡CÈCW‘ƒ2¸`o‡°šUKCJ 5©B“ªš%$Hà $ !ˆ‰ÚÐëÊ1+˜û3À@t Û4“eÍ=R‡ÔC{ʉ4§ØRN–ZN-Åq~-uf‘X!B!À×ê¦Æ K{¸@¡¤0ŸÀ7€ÕâvàdZLó ôtŒÜ¹Ðà¤=r·¡Ë«–zŠKôGœæègˆshFœ[ìr¿´Ô±v‚dPÝñð%¤‚+L sX8L@<有7q8s`v 9‘dë¢òuËøn0ÇÞ–fÆr²sIOØh 0˜¢ë424Ã2ºã˜ÃzäÖR›sRK¾=$ë¡s¤#t ôsh†ZâŠÄ“/Í•¾"_²„X5,]MnаÙ»õÝŽŒÜåŒ1Ç] û Ìh(&rËD$€1“Û½#4[7#ç‘{¸¨©0W’Fg9‚à Ó)Œ‘)Q'°"È1]Sˆ¡_ÖÖ[¯S"˜]7º~,–XNf–)%ÓLMÐ/€ *­årÏš©›™FØ"Ç%RG 1³5Ø‘ Ê\©®  ¹†$oàK¸°^w522‚Q9î^\€8b†DÀÎÄYŒÌŒ\’T”–È-â±U‹––Èœ§ÔÁÊi;“ìX ä’R W9…ƒ° HˆØÈ 1Ã/"aµ|p—½~ð›†hØ0:f3)icKh2Ë”£j"ÍjqIšM#é’Ò’s‹Ü“Et ²ŒÜ‘öªJäáØS1…8H )LJöæ¦ÀÅ9à °Ç53ö‘‘‘Q9îV rñÞ8¨‹ÌMH\@*À…r«¹sñ€AÕZN‰¬…z0³/Á 5¸Cì "`”ˆÀäŒ$ÄĽDBD""0l–1ìžÙj#á Ph6dR3Ë•a™,[Δ{h"Sh6]š%&þb‹´dëâÐjlÌL˜+øR 4 ’\ß ”OåY¢á©[…<æGí•ã®EWãrdäì •årRn‘ æR”¬ P%MœÕ)eÄDš{f)ÁÜ‚— b €åðyˆ‘’`D  D¤R£ëc˜`"@Í2Ìtˆ0L àÜ v,ë:Gž[Nª©£ár¥1a0‘xâ~i Á|Aìà*øÊ\ _“¯á<¹jÓ°ã—ËV%–±Ð122*ÇÝ Ùj^ƒI@d$ÄžUa9&As \Áu¤¦Ébê(Gµž4ÁrR#ꙹ–¥€`C ’![5Xt;°cv+… A†Eç×p¸až ´šY¹ëcŽ‘ëÈC jš‘;MŨªÜï“eʹãÔYn)'hι[4Qަi5‹GCÅ[„a¤|X\á‹k¶×]Þä}¨ƒŠdd]¥¤Ô`kA€’ŒXÁ«8ÆUÄLˆÈ™sàÀÌSo\²/LØñäž[ý’Œœ>Ƙcä: ò3Dö"ÄT šIYÀBÉAzhæLÐL¦–±74dl€Œà¡@`ÆŠîdÂg}]orsmP‡–Ü!±¦Äƒ™H„Ęˆ†‚ÊPœ‡øáCsIL<8ˆ”ð%±_ ÷ŒŒ¼HÆ¿œ‘ë …V8XÀ¢„ ¶cÁˆÔ!÷È=Ì(Á2L)§!ìJ$ÑÊmÑ f¦Ç©Ç•çë‡Æ?oh¨ÄȘˆ`z´Vå†xb9ˆLàAì‰üÐvl~Bì Ž¯¥°üh652òÒ•cäFèÚ!)àPÔ =R‚ë‘"4BËÚ×*Õ 9çÀ2T¡ÃX_†éÐëjëËc yáM‚&CD¯†?†µV 1Ùà}ÂŽØâAñ«˜c,ÄAG,p@n\>2ò’•cä:Ïó _õAÀ”¡8™¦¡ÎÀ4Qî!zìbþ¸'ÊW!HZ'”ÃŒ†+|“l•›'²@$ƒ¨2$6„$Ì f“Àäà8¬”Ãy°# DbDÄÇw–Ç?€‘‘—Äø‡3r+Ù8)%& uˆ‘ƒ)é0%Ë–i´œÈ²Y¦\˜ °lN‡O`_®~îqÀa«‰¿|ÓD4D?ƬÄ06&áòXBìˆÙ†I*T˜%¬Æ×%8¯œƒôk1ÏxŒŒ¼xÆÞª‘Hލ×t¼g|=@W—«} ‘Ó0ua)ƒÌ,›eÓÞ ¤¤.­®KUqåX9#²1ƒ¼²(ˆHc ó†Cµƒ\Bì§Ì OÌz½@ص”±Évdä¥0Æ#7°NäÐqýÈ 'D€¯áP°B´~Ýêg92r71*ÇÈ—…|âäÿÚ¸™Ñ‹s)?iK2ˆÏð¡[еOãlßÈÈW‚ñïlddddäÅñÿ°u&ÆGB¿®Æñæú„À-¢RIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node3.html0000644000700200004540000001053112053165221017441 0ustar marsamoscm 1.1 What can PWscf do next up previous contents
Next: 1.2 People Up: 1 Introduction Previous: 1 Introduction   Contents

1.1 What can PWscf do

PWscf performs many different kinds of self-consistent calculations of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials (PP). In particular:

  • ground-state energy and one-electron (Kohn-Sham) orbitals;
  • atomic forces, stresses, and structural optimization;
  • molecular dynamics on the ground-state Born-Oppenheimer surface, also with variable cell;
  • macroscopic polarization and finite electric fields via the modern theory of polarization (Berry Phases).
  • the modern theory of polarization (Berry Phases).
  • modern theory of orbital magnetization.
  • free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED.
All of the above works for both insulators and metals, in any crystal structure, for many exchange-correlation (XC) functionals (including spin polarization, DFT+U, nonlocal VdW functional, hybrid functionals), for norm-conserving (Hamann-Schluter-Chiang) PPs (NCPPs) in separable form or Ultrasoft (Vanderbilt) PPs (USPPs) or Projector Augmented Waves (PAW) method. Noncollinear magnetism and spin-orbit interactions are also implemented. An implementation of finite electric fields with a sawtooth potential in a supercell is also available. Please note that NEB calculations are no longer performed by pw.x, but are instead carried out by neb.x (see main user guide), a dedicated code for path optimization which can use PWscf as computational engine.


next up previous contents
Next: 1.2 People Up: 1 Introduction Previous: 1 Introduction   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node16.html0000644000700200004540000000511412053165221017526 0ustar marsamoscm 4.3 File space requirements next up previous contents
Next: 4.4 Parallelization issues Up: 4 Performances Previous: 4.2 Memory requirements   Contents

4.3 File space requirements

A typical pw.x run will require an amount of temporary disk space in the order of O double precision complex numbers:

O = NkMN + qNr1Nr2Nr3

where q = 2 x mixing_ndim (number of iterations used in self-consistency, default value = 8) if disk_io is set to 'high'; q = 0 otherwise.



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node6.html0000644000700200004540000001141512053165221017446 0ustar marsamoscm 2 Compilation next up previous contents
Next: 3 Using PWscf Up: User's Guide for the Previous: 1.3 Terms of use   Contents

2 Compilation

PWscf is included in the core QUANTUM ESPRESSO distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for QUANTUM ESPRESSO.

Typing make pw from the main QUANTUM ESPRESSO directory or make from the PW/ subdirectory produces the pw.x executable in PW/src and a link to the bin/ directory. In addition, several utility programs, and related links in bin/, are produced in PW/tools:

  • PW/tools/dist.x calculates distances and angles between atoms in a cell, taking into account periodicity
  • PW/tools/ev.x fits energy-vs-volume data to an equation of state
  • PW/tools/kpoints.x produces lists of k-points
  • PW/tools/pwi2xsf.sh, pwo2xsf.sh process respectively input and output files (not data files!) for pw.xand produce an XSF-formatted file suitable for plotting with XCrySDen: http://www.xcrysden.org/, powerful crystalline and molecular structure visualization program. BEWARE: the pwi2xsf.sh shell script requires the pwi2xsf.x executables to be located somewhere in your PATH.
  • PW/tools/band_plot.x: undocumented and possibly obsolete
  • PW/tools/bs.awk, PW/tools/mv.awk are scripts that process the output of pw.x (not data files!). Usage:
             awk -f bs.awk < my-pw-file > myfile.bs
             awk -f mv.awk < my-pw-file > myfile.mv
    
    The files so produced are suitable for use with xbs, a very simple X-windows utility to display molecules, available at:
    http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml
  • PW/tools/kvecs_FS.x, PW/tools/bands_FS.x: utilities for Fermi Surface plotting using XCrySDen (contributed by the late Prof. Eyvaz)


next up previous contents
Next: 3 Using PWscf Up: User's Guide for the Previous: 1.3 Terms of use   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/images.pl0000644000700200004540000000354212053165220017350 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate images original text with physical files. $key = q/langle;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \langle$|; $key = q/psi;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi$|; $key = q/sim;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \sim$|; $key = q/alpha;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \alpha$|; $key = q/Gamma;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \Gamma$|; $key = q/rangle;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \rangle$|; $key = q/cal{O};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \cal {O}$|; $key = q/displaystylealpha;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \alpha$|; $key = q/displaystyle{oversqrt{}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {<BW\vert PW> \over \sqrt{<BW\vert BW><PW\vert PW>}}$|; $key = q/beta;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \beta$|; 1; espresso-5.0.2/PW/Doc/user_guide/contents.png0000644000700200004540000000042612053165220020107 0ustar marsamoscm‰PNG  IHDRA¯H PLTE¿¿¿oooççç[Íã¹tRNS@æØf¸IDATxœ= Ã0 …_ÐjÈUT¼âKô>†¬Y³wö:¨x ô*…®…VþKÈÐ7HÏŸd !xx8Ü!€2  ÈÛóâª*dqM #lÊÁ—”îa"¢­–Ôd2Ê‹z¶÷ƒ9mÙº«ÉኺCÒSr-$¢Ÿð¡¡—â»BDÌÁ`GRêœÜ ©‡ŽwýAÚsšÜ¥˜V töÎGIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node12.html0000644000700200004540000002432512053165221017527 0ustar marsamoscm 3.5 Direct interface with CASINO next up previous contents
Next: 4 Performances Up: 3 Using PWscf Previous: 3.4 Optimization and dynamics   Contents

Subsections


3.5 Direct interface with CASINO

PWscf now supports the Cambridge quantum Monte Carlo program CASINO directly. For more information on the CASINO code see http://www.tcm.phy.cam.ac.uk/~mdt26/casino.html. CASINO may take the output of PWSCF and 'improve it' giving considerably more accurate total energies and other quantities than DFT is capable of.

PWscf users wishing to learn how to use CASINO may like to attend one of the annual CASINO summer schools in Mike Towler's "Apuan Alps Centre for Physics" in Tuscany, Italy. More information can be found at http://www.vallico.net/tti/tti.html

3.5.0.1 Practicalities

The interface between PWscf and CASINO is provided through a file with a standard format containing geometry, basis set, and orbital coefficients, which PWscf will produce on demand. For SCF calculations, the name of this file may be pwfn.data, bwfn.data or bwfn.data.b1 depending on user requests (see below). If the files are produced from an MD run, the files have a suffix .0001, .0002, .0003 etc. corresponding to the sequence of timesteps.

CASINO support is implemented by three routines in the PW directory of the espresso distribution:

  • pw2casino.f90 : the main routine
  • pw2casino_write.f90 : writes the CASINO xwfn.data file in various formats
  • pw2blip.f90 : does the plane-wave to blip conversion, if requested
Relevant behavior of PWscf may be modified through an optional auxiliary input file, named pw2casino.dat (see below).

Note that in versions prior to 4.3, this functionality was provided through separate post-processing utilities available in the PP directory: these are no longer supported. For QMC-MD runs, PWSCF etc previously needed to be 'patched' using the patch script PP/pw2casino-MDloop.sh - this is no longer necessary.

3.5.0.2 How to generate xwfn.data files with PWscf

Use the '-pw2casino' option when invoking pw.x, e.g.:
pw.x -pw2casino < input_file > output_file
The xfwn.data file will then be generated automatically.

PWscf is capable of doing the plane wave to blip conversion directly (the 'blip' utility provided in the CASINO distribution is not required) and so by default, PWscf produces the 'binary blip wave function' file bwfn.data.b1

Various options may be modified by providing a file pw2casino.dat in outdir with the following format:

&inputpp
blip_convert=.true.
blip_binary=.true.
blip_single_prec=.false.
blip_multiplicity=1.d0
n_points_for_test=0
/
Some or all of the 5 keywords may be provided, in any order. The default values are as given above (and these are used if the pw2casino.dat file is not present.

The meanings of the keywords are as follows:

blip_convert
: reexpand the converged plane-wave orbitals in localized blip functions prior to writing the CASINO wave function file. This is almost always done, since wave functions expanded in blips are considerably more efficient in quantum Monte Carlo calculations. If blip_convert=.false. a pwfn.data file is produced (orbitals expanded in plane waves); if blip_convert=.true., either a bwfn.data file or a bwfn.data.b1 file is produced, depending on the value of blip_binary (see below).

blip_binary
: if true, and if blip_convert is also true, write the blip wave function as an unformatted binary bwfn.data.b1 file. This is much smaller than the formatted bwfn.data file, but is not generally portable across all machines.

blip_single_prec
: if .false. the orbital coefficients in bwfn.data(.b1) are written out in double precision; if the user runs into hardware limits blip_single_prec can be set to .true. in which case the coefficients are written in single precision, reducing the memory and disk requirements at the cost of a small amount of accuracy..

blip_multiplicity
: the quality of the blip expansion (i.e., the fineness of the blip grid) can be improved by increasing the grid multiplicity parameter given by this keyword. Increasing the grid multiplicity results in a greater number of blip coefficients and therefore larger memory requirements and file size, but the CPU time should be unchanged. For very accurate work, one may want to experiment with grid multiplicity larger that 1.0. Note, however, that it might be more efficient to keep the grid multiplicity to 1.0 and increase the plane wave cutoff instead.

n_points_for_test
: if this is set to a positive integer greater than zero, PWscf will sample the wave function, the Laplacian and the gradient at a large number of random points in the simulation cell and compute the overlap of the blip orbitals with the original plane-wave orbitals:

$\displaystyle \alpha$ = $\displaystyle {<BW\vert PW> \over \sqrt{<BW\vert BW><PW\vert PW>}}$

The closer $ \alpha$ is to 1, the better the blip representation. By increasing blip_multiplicity, or by increasing the plane-wave cutoff, one ought to be able to make $ \alpha$ as close to 1 as desired. The number of random points used is given by n_points_for_test.

Finally, note that DFT trial wave functions produced by PWSCF must be generated using the same pseudopotential as in the subsequent QMC calculation. This requires the use of tools to switch between the different file formats used by the two codes.

CASINO uses the `CASINO tabulated format', PWSCF officially supports the UPFv2 format (though it will read other `deprecated' formats). This can be done through the `casino2upf' and `upf2casino' tools included in the upftools directory (see the upftools/README file for instructions). An alternative converter `casinogon' is included in the CASINO distribution which produces the deprecated GON format but which can be useful when using non-standard grids.


next up previous contents
Next: 4 Performances Up: 3 Using PWscf Previous: 3.4 Optimization and dynamics   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/labels.pl0000644000700200004540000000110012053165220017331 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate labels original text with physical files. $key = q/pw2casino_info/; $external_labels{$key} = "$URL/" . q|node12.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $external_labels{$key} = "$URL/" . q|node17.html|; $noresave{$key} = "$nosave"; 1; # LaTeX2HTML 2002-2-1 (1.71) # labels from external_latex_labels array. $key = q/pw2casino_info/; $external_latex_labels{$key} = q|3.5|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $external_latex_labels{$key} = q|4.4|; $noresave{$key} = "$nosave"; 1; espresso-5.0.2/PW/Doc/user_guide/user_guide.css0000644000700200004540000000157312053165220020415 0ustar marsamoscm/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */ .MATH { font-family: "Century Schoolbook", serif; } .MATH I { font-family: "Century Schoolbook", serif; font-style: italic } .BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold } /* implement both fixed-size and relative sizes */ SMALL.XTINY { font-size : xx-small } SMALL.TINY { font-size : x-small } SMALL.SCRIPTSIZE { font-size : smaller } SMALL.FOOTNOTESIZE { font-size : small } SMALL.SMALL { } BIG.LARGE { } BIG.XLARGE { font-size : large } BIG.XXLARGE { font-size : x-large } BIG.HUGE { font-size : larger } BIG.XHUGE { font-size : xx-large } /* heading styles */ H1 { } H2 { } H3 { } H4 { } H5 { } /* mathematics styles */ DIV.displaymath { } /* math displays */ TD.eqno { } /* equation-number cells */ /* document-specific styles come next */ espresso-5.0.2/PW/Doc/user_guide/node17.html0000644000700200004540000001714212053165221017533 0ustar marsamoscm 4.4 Parallelization issues next up previous contents
Next: 4.5 Understanding the time Up: 4 Performances Previous: 4.3 File space requirements   Contents


4.4 Parallelization issues

pw.x can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon:

  • the size and type of the system under study;
  • the judicious choice of the various levels of parallelization (detailed in Sec.[*]);
  • the availability of fast interprocess communications (or lack of it).
Ideally one would like to have linear scaling, i.e. T $ \sim$ T0/Np for Np processors, where T0 is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: ON $ \sim$ O0/Np , so that large-memory systems fit into the RAM of each processor.

Parallelization on k-points:

  • guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools;
  • requires little communications (suitable for ethernet communications);
  • does not reduce the required memory per processor (unsuitable for large-memory jobs).
Parallelization on PWs:
  • yields good to very good scaling, especially if the number of processors in a pool is a divisor of N3 and Nr3 (the dimensions along the z-axis of the FFT grids, nr3 and nr3s, which coincide for NCPPs);
  • requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors );
  • yields almost linear reduction of memory per processor with the number of processors in the pool.

A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache).

VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: Np should not exceed N3 and Nr3 , and should ideally be no larger than 1/2 ÷ 1/4N3 and/or Nr3 . In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time.

The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of M x M matrices, should be determined by observing the performances of cdiagh/rdiagh (pw.x) or ortho (cp.x) for different numbers of processors in the linear-algebra group (must be a square integer).

Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (http://www.openmpi.org/) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem.

Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the QUANTUM ESPRESSO distribution do) that runs on processors of the same motherboard.


next up previous contents
Next: 4.5 Understanding the time Up: 4 Performances Previous: 4.3 File space requirements   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node14.html0000644000700200004540000002607712053165221017537 0ustar marsamoscm 4.1 Execution time next up previous contents
Next: 4.2 Memory requirements Up: 4 Performances Previous: 4 Performances   Contents

4.1 Execution time

The following is a rough estimate of the complexity of a plain scf calculation with pw.x, for NCPP. USPP and PAW give raise additional terms to be calculated, that may add from a few percent up to 30-40% to execution time. For phonon calculations, each of the 3Nat modes requires a time of the same order of magnitude of self-consistent calculation in the same system (possibly times a small multiple). For cp.x, each time step takes something in the order of Th + Torth + Tsub defined below.

The time required for the self-consistent solution at fixed ionic positions, Tscf , is:

Tscf = NiterTiter + Tinit

where Niter = number of self-consistency iterations (niter), Titer = time for a single iteration, Tinit = initialization time (usually much smaller than the first term).

The time required for a single self-consistency iteration Titer is:

Titer = NkTdiag + Trho + Tscf

where Nk = number of k-points, Tdiag = time per Hamiltonian iterative diagonalization, Trho = time for charge density calculation, Tscf = time for Hartree and XC potential calculation.

The time for a Hamiltonian iterative diagonalization Tdiag is:

Tdiag = NhTh + Torth + Tsub

where Nh = number of H$ \psi$ products needed by iterative diagonalization, Th = time per H$ \psi$ product, Torth = CPU time for orthonormalization, Tsub = CPU time for subspace diagonalization.

The time Th required for a H$ \psi$ product is

Th = a1MN + a2MN1N2N3log(N1N2N3) + a3MPN.

The first term comes from the kinetic term and is usually much smaller than the others. The second and third terms come respectively from local and nonlocal potential. a1, a2, a3 are prefactors (i.e. small numbers $ \cal {O}$(1) ), M = number of valence bands (nbnd), N = number of PW (basis set dimension: npw), N1, N2, N3 = dimensions of the FFT grid for wavefunctions (nr1s, nr2s, nr3s; N1N2N3 $ \sim$ 8N ), P = number of pseudopotential projectors, summed on all atoms, on all values of the angular momentum l , and m = 1,..., 2l + 1 .

The time Torth required by orthonormalization is

Torth = b1NMx2

and the time Tsub required by subspace diagonalization is

Tsub = b2Mx3

where b1 and b2 are prefactors, Mx = number of trial wavefunctions (this will vary between M and 2 ÷ 4M , depending on the algorithm).

The time Trho for the calculation of charge density from wavefunctions is

Trho = c1MNr1Nr2Nr3log(Nr1Nr2Nr3) + c2MNr1Nr2Nr3 + Tus

where c1, c2, c3 are prefactors, Nr1, Nr2, Nr3 = dimensions of the FFT grid for charge density (nr1, nr2, nr3; Nr1Nr2Nr3 $ \sim$ 8Ng , where Ng = number of G-vectors for the charge density, ngm), and Tus = time required by PAW/USPPs contribution (if any). Note that for NCPPs the FFT grids for charge and wavefunctions are the same.

The time Tscf for calculation of potential from charge density is

Tscf = d2Nr1Nr2Nr3 + d3Nr1Nr2Nr3log(Nr1Nr2Nr3)

where d1, d2 are prefactors.

The above estimates are for serial execution. In parallel execution, each contribution may scale in a different manner with the number of processors (see below).


next up previous contents
Next: 4.2 Memory requirements Up: 4 Performances Previous: 4 Performances   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/images.log0000644000700200004540000001733312053165216017526 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=latex 2012.9.4) 21 NOV 2012 15:51 entering extended mode **./images.tex (./images.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texmf/tex/latex/hyperre f/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count89 \Field@Width=\dimen104 \Fld@charsize=\dimen105 \Choice@toks=\toks15 \Field@toks=\toks16 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count90 \c@Hfootnote=\count91 ) *hyperref using default driver hdvips* (/usr/share/texmf/tex/latex/hyperref/hdvips.def File: hdvips.def 2003/11/30 v6.74m Hyperref driver for dvips (/usr/share/texmf/tex/latex/hyperref/pdfmark.def File: pdfmark.def 2003/11/30 v6.74m Hyperref definitions for pdfmark specials \pdf@docset=\toks17 \pdf@box=\box26 \pdf@toks=\toks18 \pdf@defaulttoks=\toks19 \Fld@listcount=\count92 \@outlinefile=\write3 )) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count93 \c@lchapter=\count94 \c@chapter=\count95 \c@lsection=\count96 \c@lsubsection=\count97 \c@lsubsubsection=\count98 \c@lparagraph=\count99 \c@lsubparagraph=\count100 \c@lsubsubparagraph=\count101 \ptrfile=\write4 ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: dvips.def on input line 80. (/usr/share/texmf/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (/usr/share/texmf/tex/latex/graphics/color.sty Package: color 1999/02/16 v1.0i Standard LaTeX Color (DPC) (/usr/share/texmf/tex/latex/graphics/color.cfg File: color.cfg 2005/02/03 v1.3 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 125. (/usr/share/texmf/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texmf/tex/latex/base/inputenc.sty Package: inputenc 2004/02/05 v1.0d Input encoding file (/usr/share/texmf/tex/latex/base/latin1.def File: latin1.def 2004/02/05 v1.0d Input encoding file )) \sizebox=\box27 \lthtmlwrite=\write5 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. Package hyperref Info: Link coloring OFF on input line 142. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count102 ) LaTeX Info: Redefining \ref on input line 142. LaTeX Info: Redefining \pageref on input line 142. \openout3 = `images.out'. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=721.41339pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 194. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 194. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 194. l2hSize :tex2html_wrap_indisplay2065:8.25pt::8.25pt::8.13745pt. [1 ] l2hSize :tex2html_wrap_indisplay2066:17.61809pt::17.61809pt::157.9167pt. [2 ] l2hSize :tex2html_wrap_inline2068:7.75pt::0.0pt::8.13745pt. [3 ] l2hSize :tex2html_wrap_inline2090:8.83331pt::8.83331pt::8.65688pt. [4 ] l2hSize :tex2html_wrap_inline2102:8.19998pt::0.0pt::10.47423pt. [5 ] l2hSize :tex2html_wrap_inline2107:7.75pt::0.0pt::9.92088pt. [6 ] l2hSize :tex2html_wrap_inline2135:8.2pt::0.0pt::7.92912pt. [7 ] l2hSize :tex2html_wrap_inline2161:9.5pt::9.5pt::5.2542pt. [8 ] l2hSize :tex2html_wrap_inline2163:8.83331pt::8.83331pt::7.88606pt. [9 ] l2hSize :tex2html_wrap_inline2164:9.5pt::9.5pt::5.2542pt. [10 ] (./images.aux) ) Here is how much of TeX's memory you used: 2741 strings out of 94501 37092 string characters out of 1176790 87925 words of memory out of 1000000 5927 multiletter control sequences out of 10000+50000 6376 words of font info for 23 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 32i,6n,23p,229b,243s stack positions out of 1500i,500n,5000p,200000b,5000s Output written on images.dvi (10 pages, 7772 bytes). espresso-5.0.2/PW/Doc/user_guide/img2.png0000644000700200004540000000313312053165217017114 0ustar marsamoscm‰PNG  IHDRÿ?ªÉ3Û0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfÙIDATX…íYÝ‹UÿÍd’L2k&‚_èC\¡` ÷jÙV0yÔ'ÑR¬HðØiÙêìÚ6‹¨t4Oâ8h…íÖ‡ˆ/+¾T|Y!~ }s iAÑsîÜI²Ùìîd“e+îoÙ;wνçÜsÏ=çž{'À`üŽ•°÷½€»I蘒 Ã)ÂdV ^To†$$ƒ-P[Gx1€µÅ¨ð< ¸AÀˆêøÅéöœØN`Ó–ÛYÚ$‚†ñlQ R–ÐrÇ=¬æf\ù:óöÉ&? ‚ÑðdM“«²Ðå0‚ŒÎ³Ýሻ†)¹äFI˜ƒÛÍOAÎ%? Ã )ÙÄ‹»¦çA Mœj„—Í3õðŠ¤´í\&X¥Bõ0IZ–…=ÎCpÀpƒ°f¸¼\€ì—­¼iPÔÙ.½Ù&‚¢­Ìuœ$ø‹X´fê4K0ENDzK…”ðµ¨/4n5G„СAó pÍ¡>ïmK¨>ðQ!aº4m„%¢=“Œÿ>.lú»ˆSd­T…—ê7Ùt,¡ ½ï1÷@?ßÛ¯×?#A ©ïH¹.´ù¡â¢À^n£jÑÎ`TszúØ0mJ8ŽÅÝd­§ÑCŽ_-ß5\;C‹`SxTí4·YNÔxt¡hwñ Y¾5«R Ù§I «D}Žp­G…¢Uš`MU‹ ë›Ñæ9ip#Eþ>nQ¸ÒÙÉCà óÈÃüǾm›s1m)Õ0'œî½-N€]?€˜bR¢€pšàódü¯qQÀs8mó™„fXœ“M žÅCX,© pCØ’ Sð(fêÒï9l‚(i'œ‚4â $6âcÙÖ÷CÊ ôïªCCe¦óþbM|‹Pöƒ²·T\ëésn¾t)Ó6é¤Vó=Uë@Ý ²ðlòá¢JC‡ÖÝ,Ž ´5€#ÝSµêÀ½ô¨¢icšóQ ªqŽ Ù 9µ¨[TÓë±óãê<ìŒÌY3óŽmÜ-ÛŽ"jlû¤aèFÝTM“‡Mè¸Möm"$Ý+r¸ÐŠjÝQ#õ5…¼à…À†Ðy5HUó&JVÔ§§?¥!8°å~àujZ#8Mó ÿM^ë×XKy°‹mð”Ç—Þ.ƵØn£ÁõŠ Oà£`Ð%fûØ3ùþ—8ö§g¼¡˜ùÉãÍÔ–ý¥Òä§q®-ôÏÞØUŒkäø_@§ŠÐ+Ñmd–þÛü &óùg¸?räÓªßvm£,ð8"®R8ÿŒšÀ\+¾6¼tj¬ÃgVãý¦ìûK¤ÊMˆUy• ²mžÆ+W²ÚõnxrŒKñc·º¶6–éüéU”O61¡Ý›ijîØ4èX€]€¬¯èFô ”³Q£ýéWêðŒÓ<ò‡—ç×üüŠºŸ±'þ>-ky"t³l=ÿ†²ç ìcŒí¤?úý@÷öhâ1F>㊶lÝy´%æ\:ý˜_ÀÖ ågCCçO£…2mˆLÛì8|“ŽÑsQG>†3ç'$Íë¡ B.¨½.)Úó­+˜¸§M¥ýóD¿JÃf òC°ÚUCqò0SUR”Ós&²@ŠÞòÍpRô+ð(ú»Šž¯c’rKY¤¦[x0CsK/ó¯?ÚáîTléKÖqÚŒ ·ð@Yh"âÌÐ.õÒXß³nwp–Q'Ë.91eŠº­±´Ch§Š‘³ ¼ìí~´õîŒÑË©~š".Ûã sNUúhNÆ +»Jÿ”G 1äx8CÇ8íÛdõGª°Þ$Úc]1R.g;z¬ 把óÓ~ZŸ˜r0òhfì| ãØ ”r̯rup¹#$/â4ÕÍq%b–œ©ëý4ô-A¾Þ‰åJ°I0mt„œëP¿–ðSa çÙm·Á]V ðýŽå™ê+ðÆ¿+_P)§¬IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/democritos.png0000644000700200004540000002310112053165216020422 0ustar marsamoscm‰PNG  IHDR9Yr¼£-PLTE32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿ{èœ pHYsVT™bUˆ vpAg9Yû©Å"ÒIDATxÚí|pU¶÷d¾Ñ}Ó¯i¿ž2»©"µ¬hÔº° jõ¼éà€Ês‰SQˆfã.DdDÄW(Í qÍú2¸,¡}\ž!*Aê… ¬¨$$RB0HHB.¤ÏtÕ­wnwÏßtObj«¾úª8J2Ó}ûÞs÷wÏ¿¾à Wddâø­Àÿ·r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘Ê?¹#é—ìnÍ,¶}êì¡ûN©Ãèž5üv8 ²\:²û£#})›ôíÞ÷cÜW+äÆŽÑelöíw/ÛqvÐíœ1ɲ*rK­tWÚŒ{^˜hyýPñXAð¤{D>ã¡RrèiÖЃ Ç,ˆox\W7kü”™OïŽÕü#>uÝ ™–Ðó•SªeœÚ1äŽOXwÈ7^àD¾.S$ ß’.2LyÛÍ‹‡l9ÇóâÌuëÖ®]¶`j&çÁűñ}eó|öºxY»;zæ!Käv‹nÏÛ‰—.M97'f,Øy¤O#Ç÷>›Åëc ¸çv‘C¢d<²-Qß¡wô0¥<³ “zQ+^»öÙ≸Öy.Ó&ÆÐÇiÁ%‰…`Ÿ{Ü‚Á‰Áœã87 Mï6›ÐƒŽ7á"™nîA‹6VÈqIœc]8÷X}°ß­kE>³w庤ë=¸5+ÿ @ÕÙí£6}én÷cNwðœ`ÙhÄð%ìV8Ž ÔÍÐ`Îñ œÛ‡Ë3ÛN ÃèÒ08_~ìð£ƒ9‡‚.Å$BgǹinwÁø#ÙGàÞvzܼ¹Ä§pýslÇdȼ;eQŽ›Ÿj=·è§Ïã<3çn¾Ç˜p’šE<ç&qœ`“i1éA³ ä ÕbW[qŽÌ9—7§¯ÜdÇ9’ɉ¯©ó .kÿœå">S[…»ú[j/Á ·³'1’Ó”‚BˆãÜήJâMâ\7n ûZ·Uá§n ‹1lΡ×â ²í8׃b/@&Ç'Þß¶çs ™ÑmœÛ%‹ö4΋±L·{"BXTÝÐçÓyîÃd5= œÃPuJ!gQ…—u“alrô2\Ρ'Ã} ›œA‹CHÔ÷ãË^艿>…c¾RâæfšJ J“kÑs5Ò‚ _¸Ä¨d Îw™þ)YMHà\økã yo<Ù7‘ųS’È?\ÎiЇ¶w5óæâ1ËVèVÇ¢õêÆi¿÷èi\ Ì@à9Ñ=&Šð©Ôx`@…{©ž¥CHKÌÎ_€ ]¦áÙ‡àÇR÷û¬àŽTwÔI¨/,ˆ/Ï ›s4¤ÒÓT_L³ˆÞ\ \ÇÙ,EÉá…ëbªO‹|:Î>B¡ç´Áì6µÖê­n÷ݨ<ïöСĴsêéCóí‹f­&5ç€w{*Sv«mÃ,Ëðh„^*æŒþħãâ­áÛ9:Ö­d¸˜n.A"#ÝÜ[èÅX(˜éI%oæ:ËxwFj4`&Ç¡%|ˆã³èP‚œYå'ÆJh¯™>;5çpxv¤îw¯'J ¶.Šz0V6ç(Ltë±tøfœø¤8¹}б£Nás‡ô%BŒs¢ÏmM 0¤V±Žfóœ]ýÓ”p1ÇcÆ3Åíž44r,%ÆøÕF…[["]¤äÜ>7êö‹‡¡S´jÔãÓxV{H_§Ú"gÃ9m"ÏMÕ3)‡ˆ$ãï"DFž´7vÔc0kúÇ»9=8 »Ý)­3Žõ^8˜ÊqÃ@Ž•¤Á³ºÁ²áÆïã£ãö™vä[¤Â¶h“7DNG )åÙFíŸâtRþÅã?¹Ã¬>‡)ÎXŽ÷Ämí!8én!eJ<M‹)‰~‹U†·fs¼ o;kθ‰ã5Ÿ­— µÇ«èøp„w³ú¨x7Å^É1ë:p£Ñ¬Ô›JÏqPàÝÂøXÛÔœÃБLAº}h(l,Šþnaøœ{[póh&†VœÓ„xv¡ÝæøÝTÅ1þ‹Tó0•'Ø»¶}pÎ6ª¨k‘³Cäüf5blëtˆ¼z05¾ÎvQT$ŠçGë{ð/ Ÿs-žhO6vîBKã½!›†ñ/Fc"ÂJ{:/5’ÅGJ®ƒåT¦ˆ†Ÿ cÉÛ6<ËA‹`ÖçÔlì4Z‚‚sªú{5dÓ3ÌF;mÔ\úVIvïÐN.çÎg¢R« òØp}BzÜj•QœÅ´ãŽøu]É'ØquÀq 17+EìF®{¬ß³|;FÏŸ¢ï!à0vÝÛCqpõxa•eÏôEu¬>ÝKé"Ÿ„/á8V4çŽ\‡?’‰ÚpîA.!Ç$*{-ˆ®?ÎÀø« m×a˜añz‘žÎÆ µ4•¬å±+ƒôy†[Gîp¤>á±ûH¡wΡœJç8“XI²,®æòª“xT–Ÿ‡sÛÜ,ìý—p{âF<ûÏq|v\2€ÉèlvÖdL"íGÃËÞñƒ÷BûAμd©æ`Îaʸ•^™¸*›2DÜ.Qg¡Î7ÇêrÚV85çÎn{<‹Õ¥ø™±G-9§ç¤ Ù`ÜÇ'½^"ôÖØY'X«ŸÐˉ¾óT÷-ðx-§/ާæ;ëØÉ9a|edåû*'éŲ‡ô:-qï!Ðióf014çX˜4FÀÉf­º¶Ó¯e!áøŒ­¹l$NFiV+Pí9—ž™™Éά鰉 /PÙbz2d«˜ïœbÝTZ¼òä'Zš#;3˜–aÒƒÏþeÕ‚©ìÄž(®Õ’žQa·~ËÃß:ûÙ7ž=^À(=f†ÿà„þ£ˆš©9ÇÐùi¨¤[à³rŠ_[÷‡œ,œ0Çó“NÇ­ôd³£.™Óþ¸jæ7’™9ZsÎ(’ë8ÑSœH&\ÌÄjºû1J§q|r݇)kR@ÞááŘ#ë<¢~Sðàæs3<:NV0V{Í£¡cgHS—‚È–„:ÚYì(£g˜œc*´Ü*èUQ^?”‡ŸÄìÝ ÇºI"Çʦ¸`ÒoØ!Gp=uIGu3sÞèK<ÖÎ6oGE|ŒBæàEw›”õN=æ©Tèy.‹÷°õAÍD>sÁYë÷×zVÝÄ3z°åøÌâÓQ¥Zx{ß oóýªÉǿÇ Ѫz ì˜&Š‚[÷g¼Gœ²-aº„1“ìÌfgm9· ÅbŹ×_¯|å¯ï~t ›¦À»o$ɺ½”V¾¾nPxvÄœ'TV¾/kì¸áë ¦egfOzð¹Ã*U5j#NW.˜’™51gÝqgÔ{Þ¨Œ? ÛP£K†š Œ¯¬¬´ªŸk)½£8gâØÌñ9Å;úôCrƒþhÕ}7ÉY»û¼šâD«º0¯F4ëSD‰B£gË’';%ù•Ÿ¦ª_àŠâ5UïÉb´xíõsÄ8w•Ä?§E#áD•›T‹èÝ©ö«뉰P€UÕ¸²³ý߇°]}Ë®-U:=øØX4ek1Ü14Ë«Ch2ÔófJ-4Fûøÿœ¿Ibò.ó÷ÇV7W†¢‹ª‡‚ÐáJõ¬ÐˆzøIT±A®4/¯¨¬?|?7%ôÓºŒ Ûtê÷õ__,ÏÍ}ª.Ú oIô£’rse¾ù¡:ùB*iHuÿÃ{'r˸Î+rpž÷.œK›´¨¤¤d(:0B…O‹Q»KªÐ?zñÇÀ )°|užTÔk6D‘¥‚^¬·ë—¬””ÎUüíÉ7.n ÕJ òœYx­ÃÉÄáÀÿÿéÈAÁ|€þ’»öÐr!Cî“i γ¼Õ 0Èè¹é2Îz½· M­Z§7µ@0:¤\AËäÖý7ËE]hcZýI7~P,ÀÞ(Ùkúá(§ÃéJKKs¸\N—럎™_aó½pB>8dÔ Á<«{ÚzYÂÉ‘¤ÔÒ“rÕw ~ÑáŠqŽÌ¨ ÝÛmFðú™†ÞŽÄëÐi©RlUýýÿAÂ9FßyOþÃ.]¼ô™TÓúª{ÈAA€Íú ¹ù¤TQ[[{Œ†žœ;¯±,·U(ÏË-»ˆ¿CsçW÷ÒàSy¡ö‚ŽÏdå)znuî¼*|²v^QG¤§ùþBüå/QÊè[’ù×À‡\ ÍÍ]Ï8·¿0w ¶öUÐl¹dõüEÌJµ>‘ûT¨Ðè¤]Ùݽ8šÂ幡^m¹ØC·ÌË-½H; žÈÝÏZtúåÀÚ\”[ø¥Û ç\ŒÎëdškòÖçÇwã¯F£übô¯˜îò7²TÿöÞoÿïÕ®vÇtr'û6Á9RPÀŽávKÕ'$9A)è“å’»!•‚%p‘,R«•BúïòŠÖVéX³O)íÂé Ú£z L䔊ÍJ‡Ö }Y8ý‘þŸÌ%+Y–äzP™ôz{‰R¡ÕH”ø”``úQzT‘ƒ²¢èQ¸V+ŸŒjƒ¹R )þÊJòªTÐT®Š”<­]ñ¿Ä0"]%X[‡Ïû¤íZ…R´5Æ"—ÃqUÍ=׸\¸cGšÓáJsŽz¦ŸÝøÛõëUÏǾü‡ëª7á«[\¿<Ãîlír¥ýÊì¤[¹~ýßvÈ-bœ£]Ê®J}ï…ž^µP3J¼¥Ðji@“j”þ  +þB šå£$€ ÒF`£rð¨úÞ´r‘Ë¡(€s…’rø=¬Hß‘%8 ô÷·É5€œ«–‘œ òºÒá­"½ì—ŽE4;(5uõ—äboíde.픩÷ÕþþZ¥ý¤Tk„°YÕÀç^¨bFšüÜé¼úÃL\ÌÎ1øpóºnÔc¹ð+xý6½åR—ãPáÌÏÒFÇêXb»´3F/¯0ÌIJÎÑZé\«ÜHXø\€~¥šn—Øô…¥J¿†¾+™? %ðÄôKP*ûŒÈvI$è=#o!¥öZé{³ß«uÒF ]Rð‚Œœ–ää: ¾JrWÈ!4kë ƒ]R•©˜V¢L—I9’ªîbv®W$)tB1Ý[ÞfHat¬\ŽÅ®#YÞ¿ 7jòsò¯Y³8ν“¯F?{¯^Ìú ¡Ìg ?u8®Ç¼KÓÒ~Ãf»Iç0¶+Ü6Áî¶³sçz•ÇÚ€"'éœ p¸¤·(|Sè5â…RœüQ9 ôÓni{·o‘Ñÿ åX+³yè!°§ºOê¶6"ç ZBΡñ¯ÿr´†A“sÚ¯Ž´¶VÈ{êöÔVw–cä±YFÎ5œ”Êë>ÙS…¹ÙÔ^¿þ~¨R:*â"”ÑÇä H˜9»n»öšý—Q£Fý‹ªÒc£‘|ÆÛᯉ¿g ';÷è1,¿Æñßw­Ã5Á@îçù蔩-rȹÞúrúVfu5R@2Õ2V4)e½j…ôq«´òÝURª5O?%sa£\î(‘O’Ew0¯Àd(­ Ò|´Xߥ·ü°BÐŽúʉÂ@, þRl¹šTx?ÓÚŸAÒå÷~p™ž Mo<)UµÄÛº‹BH¡Ê¤ÿ9¨•÷œ”›LS€œƒÀ¬VÚ<#*¼‘9ÁI„áyÜjw®añÛs®4œZøÒ8gÚU˜ÕB3xêx¹ÒÞÔŸ r8ê;ò¬ ñ· S!IQ¤‚c,–½^ïêpq®>.ÒÐrËABÊeÅ/¿`pN>JKMÇÒŸd¸E1š†¿3:h,l9è—¼^IÞŽˆ|0}QµO*ÑÚdy–¸¾rúw‰€¯ y·’vúd?îÂÈ&í*’¿"­èGÓècqN…LéVY·sè ¼RP‹qn+îÐö’wºï(Tø"sÒ^q¸Fç;\£>DgX:§SÏö¿B(Шˆ˜Î¹{ñÆ7úŠ©ã\:`ïÝöžË™¦»š{6<ìt^eϹ]7ÖÕS€“¨¯%jÓŽmE \_v½>Xê¢Pƒ¾ÿLÕ9²¿†ØSjC»Ðüj¾Y5²·ô³Àš«p]ûÞ*«g¾LÓNT”üï4v[W4á’oi†VlQý&»k¾«.­-Šf ¶V¯ØÒÆK7wiÞBÃØaU;c×7£1|ËHóðz5Æ¢ýÕ/Õ vØ.ÒÅNǽãðÏoÐЭùÓ›þ¼u«ávÕÉHÄ l·"çTläÒ:h÷ O¿ kïMP‘}ÿ¦oùž…ˆ¹-rzɨLh¬ø£±BûO/Öi`dè:¢FÄô`kËþ^g¤:¥ÿ wzÅžÂn4½üc¶³ÆZ¯´‡õÏOTHÓôSX¬`KŒæa0+ØDºÕm†uµi¬þ¤þÖáZ8Úáúý8§s °”Z$Gùδ[ðãWÈDä`Ôrµyà/½Á߈öÎd˜ìtÂ+_ÞH‘·öœT5°Ou|ÏÝß”ª¡–º‹ÁC:Rqn‰wVA#Žè vËqIÐêBˆ«½º ‡h.R= I!ýå¹Óý5‘o/)³ÊmZvÊõt8^êtü†ñ Ýä{‰¥QdÖmÌιtÎ};t´yg Ã{)îÖ4†RrÃ×t¡3çH?˜'}6,˜œ‘c…#æZ5ºŠ ¹ ¢â-S/l^¢ø[î×¶™.àÖ®ê%_E,’ׯ–0\©\!gäØ÷¢©«>g5<î¾ N×ÏÖ¸¯ ÅÚÿ†H¾Ë1ynp¾A ä ¼ÆépΡäý hýŽ_Ò3¿ ©9•ôûŸ.ppNŠ­»Vô€UöÂcdtr3Zm_oÜí Þ'ÌOÁ¹´yzÛÇjß]R ÐꃴqºE¹«KŠãÊî§'¥Rk%µF´ìºÚõ¦Ëéx'¡úÃöñ-ØàSƒs½Øàæ­G‘s£¤lÚwoÎaV1ç9 ¹Öe#  sz„s˜T”äÚ´c…$ ¯—0žQVÇnÚ)Ù!e±=Æ8ÕXtsßdÑ+ L"½”ùÑ›^¶]S'8\ã;7\åt¾—p9çÄ0WÓ9Gˆ:Úåø™¡ ¢ÄÊìœv·ëó“ßšsU¬$TëeQ]]îý{Ð>Íóæí¢ôrÙ,ï“O–Ñ-y³ò.w>éÍ­ºpNÂßœ ç>Ë}»$Rk»°Ü;kõ<Œ+r6J‘m‰iÜú¹³î¯^îÍm¦Za3……½M²<ÿÂQm®w‰‰Y$YÈÑù@3-›‡Ù#'rÛØŸsȹޕ~pQ¨U–siUlšëÍݺ(ô®Ž¦à —#íÑÉFäÞIœn¾‘ ü9·Ûý£^ìËs¥/ Ú9´y׺ãFÁœÃ\á~L¶å>o¯ê+Ìû÷Þ_yžÔDV(‹J¹H-WVÈ/”)ë»$_żéÆbä\ƒâÛ8+/Ò—\²D‘0"&J9 üM2‘-ÒÅ ´²@‘Wúó¨6£ŒÔÉ¥JÅ×»ÐèWËüç’n³0 y§¿tYëÄT0(½0_–WΚK[¥cìO—ÔHŠä’劲ú»€\r5­W|yR™V­Ê£V€jw"m6´&síœí¡ç4‘˜jô6ÜáÁ¼†Dù˜wL¦Cq. K»°‚@{{+FüJ°Èzù»ö“%J9À )å˜y–*m@¿¯ïTJI»Ülr.‰ÕHjÉveÁ/åfBñwÉüû›P&“º1Ó³®Wé.©º  ¤†oC±ÚþˆB]¥ò"úƒÜE œ‘VÂ)´—VùrŽÙA8(¯€2?Óêc…’¹s£ŒIÄŒè¬ÂGY}$ëõ®÷¶1ƒê“shç.›9“QNç•’w±ð;ˆØ+tHÎÍøûi¿"+’¤,"µwI/ŸÕÓeÜ®±Z «d9> >@F}`<[” {”“ZƒQÑB˜ 9‚?à¨üAdu %y ÔJýzÖU¢x›XÍ¥szã ¥ŽÆ½ Åàû?¥¶3ÓõÛ T“¥^–ò53Îí¯–»14ž±‘Óˆ\Õ/3ÓÐ,5²¡«£¥ud‡È7絋ß9“8Û…ç¸(çÐÐMv:æè7ÚjlËv+ÑÂ×8Ò¾ŠsdQÁ÷òJ–ü²ys3t’ ¹5èo>ØüAÝwzu\ÒrÎu{oÓ‰;†öFü+&°¸Íš¤ô¯Ÿ²ßÇØ›-ô­A¡×È’BJa¹.r¤›û_‚¾îöÀ\@ßzFi0^ü€á6ÊØk±­òÉ©‘C{YüìÿÕýrúõV©•Ð.e%}ÉO©TÓ§,Çö5òÑ­ŠJÿ.ÇMKÛuµ“•å~ñ+Sn@¹~± ÓOs³QizX^ãpÞɌ˟¯Å—ïtþ’êy…Ëqƹ‚4Cõð‚¿ö+¡—|]MÒÁ=JMÿ7þ"˜‡Ö9$A9rîceu×ÅÒÕJ=ôKú[BJ@ÎuR“sa[¸„Áì%]^oí¹ð‰åÒ 4‰y ícåøÖ÷ûJ ä~ ºKxëè~ÃËTHµ—”íêIÉ<챚"ç]´â.Ò%7Âý'è òjx}«T Á»jIà T)”ÔHñ1/í¹­{ƒÜ™¿YÈ¢BÖ ª¿fga{EqæÇhfðàá´nLÊ7¤-dó‡é퇶v£ºÈ×û½OB_ФT4õ’è"MxQBÎUø0A}A–”YÛ;™‹ãܧH¢Ï κŸVôš û¡×=°WÜqzS0Dýe—k°áÆÃ.©^ë H’T`DµPˆ#ŽBšÒ {d;Ò´…¢¬ hç´Z…õ¸‚¾êÓW¢k¾$O÷£›e·[MùêÎkqâp:~»q®kÎUŒŽ“(á7]W?ßýþõ®qÌV÷oW;¯]JiŸ Ó¯LÆpÏõ¯Kí8×ÜL¡{Wé¯ T5èªn`:šBMaüÕµ½êXS3ik`~éDU¡ý»: l7v'im¢».ÓÎZ=¿Â\àDuu{f]¤î¤q¥­6´¿_oú…ÚÚ±+ õ?ôÃѪ“”ýLë¯ÿM|ýæ3‘>¤mKtÝÛÏ{¤¾Cë¨ ‡aO¨‰’þúN :ª«O4T >îÀ8{Uý% '÷h«K ûW—èþôÊš5k–®YªË;Ÿü~ñíë|”9 þ›>âÿäN»fòÝC}‰7b¸Bÿÿ|Èšå?¼˜ÚÖJ"¦™°šI¤a}#32K$’Ïk‘¿ËLõÚÕbõ ,7×tcG0Ê8ÔL|Yqƒ­‰ˆ1yÄöY¤rC¢‡P1M¿¨êٽрh‘š¡!Th"¢ë&êÀÀå›{˜ãa/‚YW™Ff’¦#™Ð_T‰Ñ©rÚO;aý'Èhâ‡B’¿>¨3<`È×èÉ}’¸oª©‹þî êjðù Œ"—.ÿ ‚gÔàõ]hIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node13.html0000644000700200004540000000567312053165221017535 0ustar marsamoscm 4 Performances next up previous contents
Next: 4.1 Execution time Up: User's Guide for the Previous: 3.5 Direct interface with   Contents

4 Performances



Subsections

Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/images.aux0000644000700200004540000000060712053165216017536 0ustar marsamoscm\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi espresso-5.0.2/PW/Doc/user_guide/img7.png0000644000700200004540000000025112053165220017111 0ustar marsamoscm‰PNG  IHDRšÚÒÄPLTE³³³¨¨¨œœœ„„„lllTTTHHH<<<$$$DªtRNS@æØf9IDAT™c`€f(Í Cp.2@D ‚ƒ€¦ˆ©¡áSA,Ö @ c0 XLÓ‚ÚÀ H¡ú=IEND®B`‚espresso-5.0.2/PW/Doc/user_guide/user_guide.html0000644000700200004540000000000012053165221030237 1espresso-5.0.2/PW/Doc/user_guide/index.htmlustar marsamoscmespresso-5.0.2/PW/Doc/user_guide/crossref.png0000644000700200004540000000022312053165220020073 0ustar marsamoscm‰PNG  IHDR  ‡‹6tRNS¿-Mc%LIDATxœmÍË À@ ÑçÅý¦”ãrÜÛÈ!äÑE BRŒ¥cdWL«TÄÍB1 µœº<¤~¥¿Û»pjOú‚ºG¿”ÔC¡¯ë¥äâIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/img4.png0000644000700200004540000000034712053165220017114 0ustar marsamoscm‰PNG  IHDR#÷öÌù*PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH000$$$,àgtRNS@æØfkIDAT•c`.bA§n¾ì¼@’E@ÄI ÒT6Áå0õMh2/00H:Ô±cê$ °ÁYP##&0pl2XY7°0€X <  l WC0cTŒf*£ ° ÎÄÜ7ÑIEND®B`‚espresso-5.0.2/PW/Doc/user_guide/node5.html0000644000700200004540000000622312053165221017446 0ustar marsamoscm 1.3 Terms of use next up previous contents
Next: 2 Compilation Up: 1 Introduction Previous: 1.2 People   Contents

1.3 Terms of use

QUANTUM ESPRESSO is free software, released under the GNU General Public License. See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the distribution).

We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569
Reference for all exchange-correlation functionals can be found in the header of file Modules/funct.f90.
Note the form QUANTUM ESPRESSO for textual citations of the code. Pseudopotentials should be cited as (for instance)
[ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide/node8.html0000644000700200004540000001472212053165221017454 0ustar marsamoscm 3.1 Input data next up previous contents
Next: 3.2 Data files Up: 3 Using PWscf Previous: 3 Using PWscf   Contents

3.1 Input data

Input data is organized as several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are

&CONTROL: general variables controlling the run
&SYSTEM: structural information on the system under investigation
&ELECTRONS: electronic variables: self-consistency, smearing
&IONS (optional): ionic variables: relaxation, dynamics
&CELL (optional): variable-cell optimization or dynamics

Optional namelist may be omitted if the calculation to be performed does not require them. This depends on the value of variable calculation in namelist &CONTROL. Most variables in namelists have default values. Only the following variables in &SYSTEM must always be specified:

ibrav (integer) Bravais-lattice index
celldm (real, dimension 6) crystallographic constants
nat (integer) number of atoms in the unit cell
ntyp (integer) number of types of atoms in the unit cell
ecutwfc (real) kinetic energy cutoff (Ry) for wavefunctions.

For metallic systems, you have to specify how metallicity is treated in variable occupations. If you choose occupations='smearing', you have to specify the smearing type smearing and the smearing width degauss. Spin-polarized systems are as a rule treated as metallic system, unless the total magnetization, tot_magnetization is set to a fixed value, or if occupation numbers are fixed (occupations='from input' and card OCCUPATIONS).

Explanations for the meaning of variables ibrav and celldm, as well as on alternative ways to input structural data, are in files PW/Doc/INPUT_PW.txt and PW/Doc/INPUT_PW.html. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs.

Comment lines in namelists can be introduced by a "!", exactly as in fortran code.

After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names:

ATOMIC_SPECIES
ATOMIC_POSITIONS
K_POINTS
CELL_PARAMETERS (optional)
OCCUPATIONS (optional)
The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''.

Comments lines in ``cards'' can be introduced by either a ``!'' or a ``#'' character in the first position of a line.

Note about k points: The k-point grid can be either automatically generated or manually provided as a list of k-points and a weight in the Irreducible Brillouin Zone only of the Bravais lattice of the crystal. The code will generate (unless instructed not to do so: see variable nosym) all required k-points and weights if the symmetry of the system is lower than the symmetry of the Bravais lattice. The automatic generation of k-points follows the convention of Monkhorst and Pack.


next up previous contents
Next: 3.2 Data files Up: 3 Using PWscf Previous: 3 Using PWscf   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/PW/Doc/user_guide.out0000644000700200004540000000241312053165215016277 0ustar marsamoscm\BOOKMARK [1][-]{section.1}{Introduction}{} \BOOKMARK [2][-]{subsection.1.1}{What can PWscf do}{section.1} \BOOKMARK [2][-]{subsection.1.2}{People}{section.1} \BOOKMARK [2][-]{subsection.1.3}{Terms of use}{section.1} \BOOKMARK [1][-]{section.2}{Compilation}{} \BOOKMARK [1][-]{section.3}{Using PWscf}{} \BOOKMARK [2][-]{subsection.3.1}{Input data}{section.3} \BOOKMARK [2][-]{subsection.3.2}{Data files}{section.3} \BOOKMARK [2][-]{subsection.3.3}{Electronic structure calculations}{section.3} \BOOKMARK [2][-]{subsection.3.4}{Optimization and dynamics}{section.3} \BOOKMARK [2][-]{subsection.3.5}{Direct interface with CASINO}{section.3} \BOOKMARK [1][-]{section.4}{Performances}{} \BOOKMARK [2][-]{subsection.4.1}{Execution time}{section.4} \BOOKMARK [2][-]{subsection.4.2}{Memory requirements}{section.4} \BOOKMARK [2][-]{subsection.4.3}{File space requirements}{section.4} \BOOKMARK [2][-]{subsection.4.4}{Parallelization issues}{section.4} \BOOKMARK [2][-]{subsection.4.5}{Understanding the time report}{section.4} \BOOKMARK [3][-]{subsubsection.4.5.1}{Serial execution}{subsection.4.5} \BOOKMARK [3][-]{subsubsection.4.5.2}{Parallel execution}{subsection.4.5} \BOOKMARK [1][-]{section.5}{Troubleshooting}{} \BOOKMARK [2][-]{subsection.5.1}{Compilation problems with PLUMED}{section.5} espresso-5.0.2/PW/Doc/INPUT_PW.xml0000644000700200004540000025204512053165222015450 0ustar marsamoscm Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] 'scf' a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). ' ' reprinted on output. 'low' Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' 'from_scratch' 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one. See also startingpot, startingwfc .FALSE. This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory outdir/prefix.save, one wavefunction per k-point in subdirs K000001/, K000001/, etc. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Useful if you do not need the wavefunction or if you want to reduce the I/O or the disk occupancy. Note that this flag has no effect on reading, only on writing. number of ionic + electronic steps 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases write only at convergence band energies are written every iprint iterations .false. calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' print forces. Set to .TRUE. if calculation='relax','md','vc-md' 20.D0 time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise input, temporary, output files are found in this directory, see also 'wfcdir' same as outdir this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). The idea here is to be able to separately store the largest files, while the files necessary for restarting still go into 'outdir' (for now only works for stand alone PW ) 'pwscf' prepended to input/output filenames: prefix.wfc, prefix.rho, etc. .true. If .false. a subdirectory for each k_point is not opened in the prefix.save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with wf_collect 1.D+7, or 150 days, i.e. no time limit jobs stops after max_seconds CPU time 1.0D-4 convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. Note that etot_conv_thr is extensive, like the total energy. See also forc_conv_thr - both criteria must be satisfied 1.0D-3 convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr (note that the latter is extensive, forc_conv_thr is not) - both criteria must be satisfied 'default' Specifies the amount of disk I/O activity 'high': save all data at each SCF step 'default': save wavefunctions at each SCF step unless there is a single k-point per process 'low' : store wfc in memory, save only at the end 'none': do not save wfc, not even at the end (guaranteed to work only for 'scf', 'nscf', 'bands' calculations) If restarting from an interrupted calculation, the code will try to figure out what is available on disk. The more you write, the more complete the restart will be. value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise directory containing pseudopotential files .FALSE. If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables edir, eamp, emaxpos, eopreg for the form and size of the added potential. .FALSE. If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables edir, emaxpos, eopreg for the form of the correction, that must be used only in a slab geometry, for surface calculations, with the discontinuity in the empty space. .FALSE. If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! 1 In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density .FALSE. If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is nscf and should be performed on an automatically generated uniform grid of k points. Works with norm-conserving pseudopotentials. .FALSE. If .TRUE. perform a Berry phase calculation See the header of PW/bp_c_phase.f90 for documentation For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.), gdir is the direction of the field For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield==.true.) REQUIRED Bravais-lattice index. In all cases except ibrav=0, either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc] must be specified: see their description. For ibrav=0 you may specify the lattice parameter celldm(1) or a. ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b ibrav Crystallographic constants - see description of ibrav variable. * alat = celldm(1) is the lattice parameter "a" (in BOHR) * only needed celldm (depending on ibrav) must be specified * if ibrav=0 only alat = celldm(1) is used (if present) Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) specify either these OR celldm but NOT both. The axis are chosen according to the value of ibrav. If ibrav is not specified, the axis are taken from card CELL_PARAMETERS and only a is used as lattice parameter. REQUIRED number of atoms in the unit cell REQUIRED number of types of atoms in the unit cell for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled 0.0 total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. -1 [unspecified] total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. REQUIRED kinetic energy cutoff (Ry) for wavefunctions 4 * ecutwfc kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. ecutrho kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) .FALSE. if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms .FALSE. if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. .FALSE. if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation .FALSE. if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. .FALSE. if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation .FALSE. if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. 'smearing': gaussian smearing for metals requires a value for degauss 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file. Requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". .FALSE. This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. .FALSE. In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. 0.D0 Ry value of the gaussian spreading (Ry) for brillouin-zone integration in metals. 'gaussian' 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function 1 nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead .false. if .true. the program will perform a noncollinear calculation. 0.0 q2sigma 0.0 q2sigma 0.1 ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) read from pseudopotential files Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! it depends on the specified functional Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. 0.106 screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. gygi-baldereschi Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 0.0 Ry exxdiv_treatment Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. .FALSE. DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify PW/set_hubbard_l.f90 and PW/tabd.f90 if you plan to use DFT+U with an element that is not configured there. Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J 0 Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J 0.D0 for all species Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation 0.D0 for all species Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. 0.D0 for all species Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) 0.D0 for all species Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). 0.D0 for all species Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. -1.d0 that means NOT SET In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. 'atomic' Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. 0.5D0 Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. 0.1D0 Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. 0.001 a.u. Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. lambda, fixed_magnetization 'none' Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) constrained_magnetization 0.d0 value of the total magnetization to be maintained fixed when constrained_magnetization='total' constrained_magnetization 1.d0 parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda 1 It is the number of iterations after which the program write all the atomic magnetic moments. if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. 'none' Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'dcc' : density counter charge correction CURRENTLY DISABLED The electrostatic problem is solved in open boundary conditions (OBC). This approach provides the correct scf potential and energies (not just a correction to energies as 'mp'). BEWARE: the molecule should be centered around the middle of the cell, not around the origin (0,0,0). Theory described in: I.Dabo, B.Kozinsky, N.E.Singh-Miller and N.Marzari, "Electrostatic periodic boundary conditions and real-space corrections", Phys.Rev.B 77, 115139 (2008) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction. As for the dcc correction the scf potential is also corrected. Implementation adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. assume_isolated 'pbc' If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal assume_isolated 0.d0 If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). assume_isolated, esm_bc 0.d0 If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. assume_isolated 4 If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. .FALSE. if .TRUE. compute semi-empirical dispersion term (DFT-D). See S. Grimme, J. Comp. Chem. 27, 1787 (2006), and V. Barone et al., J. Comp. Chem. 30, 934 (2009). 0.75 global scaling parameter for DFT-D. Default is good for PBE. 200 cutoff radius (a.u.) for dispersion interactions 100 maximum number of iterations in a scf step .TRUE. If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. 1.D-6 Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy) .FALSE If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. 1.D-3 When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. 1.D-1 When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: min( conv_thr, conv_thr_multi * dexx ) 'plain' 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) 0.7D0 mixing factor for self-consistency 8 number of iterations used in mixing scheme 0 For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). 'david' 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. 0 OBSOLETE: use command-line option " -ndiag XX" instead Convergence threshold for the first iterative diagonalization (the check is on eigenvalue convergence). For scf calculations, the default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold (ethr) is automatically reduced when approaching convergence. For non-scf calculations, this is the threshold used in the iterative diagonalization. The default is conv_thr /N elec. For conjugate gradient diagonalization: max number of iterations 4 For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible .FALSE. If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). 0.D0 Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. (0.D0, 0.D0, 0.D0) Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. 'atomic+random' 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" .FALSE. If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation 'default' 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. 'full' 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) 'atomic' Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations 'none' Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations .FALSE. This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. 'not_controlled' 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled 300.D0 Starting temperature (Kelvin) in MD runs target temperature for most thermostats. 100.D0 Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. 1.D0 if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). 1 if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise .FALSE. This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. 100.D0 Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. 1 Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) 0.8D0 Maximum ionic displacement in the structural relaxation. (bfgs only) 1.D-3 Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) 0.5D0 Initial ionic displacement in the structural relaxation. (bfgs only) 0.01D0 w_2 0.5D0 Parameters used in line search based on the Wolfe conditions. (bfgs only) Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian 0.D0 Target pressure [KBar] in a variable-cell md or relaxation run. 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') 1.2D0 Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. 0.5D0 Kbar Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). 'all' Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v_2y are moved xz = only v1_x and v_3z are moved yz = only v2_x and v_3z are moved xyz = only v1_x, v2_x, v_3z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Module/cell_base.f90 label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format
alat | bohr | angstrom | crystal alat alat : atomic positions are in cartesian coordinates, in units of the lattice parameter "a" (default) bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors (see below) Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! label of the atom as specified in ATOMIC_SPECIES atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. 1
tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c tbipa tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. Number of supplied special k-points. Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1).
These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ).
alat | bohr | angstrom bohr / angstrom: lattice vectors in bohr radii / angstrom. alat or nothing specified: if a lattice constant (celldm(1) or a) is present, lattice vectors are in units of the lattice constant; otherwise, in bohr radii or angstrom, as specified. Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector
When this card is present the SHAKE algorithm is automatically used. Number of constraints. Tolerance for keeping the constraints satisfied. Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. Target for the constrain ( angles are specified in degrees ). This variable is optional.
Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations.
espresso-5.0.2/PW/Doc/user_guide.log0000644000700200004540000003107112053165215016253 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2012.9.4) 21 NOV 2012 15:51 entering extended mode **user_guide.tex (./user_guide.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texmf/tex/latex/hyperref/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count89 \Field@Width=\dimen104 \Fld@charsize=\dimen105 \Choice@toks=\toks15 \Field@toks=\toks16 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count90 \c@Hfootnote=\count91 ) *hyperref using default driver hpdftex* (/usr/share/texmf/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2003/11/30 v6.74m Hyperref driver for pdfTeX (/usr/share/texmf/tex/latex/psnfss/pifont.sty Package: pifont 2004/09/15 PSNFSS-v9.2 Pi font support (SPQR) LaTeX Font Info: Try loading font information for U+pzd on input line 63. (/usr/share/texmf/tex/latex/psnfss/upzd.fd File: upzd.fd 2001/06/04 font definitions for U/pzd. ) LaTeX Font Info: Try loading font information for U+psy on input line 64. (/usr/share/texmf/tex/latex/psnfss/upsy.fd File: upsy.fd 2001/06/04 font definitions for U/psy. )) \Fld@listcount=\count92 \@outlinefile=\write3 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count93 \c@lchapter=\count94 \c@chapter=\count95 \c@lsection=\count96 \c@lsubsection=\count97 \c@lsubsubsection=\count98 \c@lparagraph=\count99 \c@lsubparagraph=\count100 \c@lsubsubparagraph=\count101 \ptrfile=\write4 ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: pdftex.def on input line 80. (/usr/share/texmf/tex/latex/graphics/pdftex.def File: pdftex.def 2002/06/19 v0.03k graphics/color for pdftex \Gread@gobject=\count102 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./user_guide.aux) \openout1 = `user_guide.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. Package hyperref Info: Link coloring OFF on input line 28. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count103 ) LaTeX Info: Redefining \ref on input line 28. LaTeX Info: Redefining \pageref on input line 28. (./user_guide.out) (./user_guide.out) \openout3 = `user_guide.out'. (/usr/share/texmf/tex/context/base/supp-pdf.tex (/usr/share/texmf/tex/context/base/supp-mis.tex loading : Context Support Macros / Miscellaneous (2004.10.26) \protectiondepth=\count104 \scratchcounter=\count105 \scratchtoks=\toks17 \scratchdimen=\dimen108 \scratchskip=\skip43 \scratchmuskip=\muskip10 \scratchbox=\box26 \scratchread=\read1 \scratchwrite=\write5 \zeropoint=\dimen109 \onepoint=\dimen110 \onebasepoint=\dimen111 \minusone=\count106 \thousandpoint=\dimen112 \onerealpoint=\dimen113 \emptytoks=\toks18 \nextbox=\box27 \nextdepth=\dimen114 \everyline=\toks19 \!!counta=\count107 \!!countb=\count108 \recursecounter=\count109 ) loading : Context Support Macros / PDF (2004.03.26) \nofMPsegments=\count110 \nofMParguments=\count111 \MPscratchCnt=\count112 \MPscratchDim=\dimen115 \MPnumerator=\count113 \everyMPtoPDFconversion=\toks20 ) <../../Doc/quantum_espresso.pdf, id=91, 532.99126pt x 181.67876pt> File: ../../Doc/quantum_espresso.pdf Graphic file (type pdf) <../../Doc/democritos.pdf, id=92, 262.9825pt x 76.285pt> File: ../../Doc/democritos.pdf Graphic file (type pdf) LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 61. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 61. (./user_guide.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 2. LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 6. ) \tf@toc=\write6 \openout6 = `user_guide.toc'. [1 {/usr/share/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <../../Doc/quantum_es presso.pdf> <../../Doc/democritos.pdf>] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 86. LaTeX Font Info: Try loading font information for OMS+cmr on input line 94. (/usr/share/texmf/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 94. [2] Overfull \hbox (0.12177pt too wide) in paragraph at lines 162--166 []\OT1/cmr/m/n/12 Minoru Otani (AIST), Yoshio Miura (To-hoku U.), Nicephore Bon et (MIT), Nicola Marzari [] [3] [4] [5] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <17.28> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 254. Overfull \hbox (17.24237pt too wide) in paragraph at lines 256--261 \OT1/cmr/m/n/12 by An-ton Kokalj, in-cluded in the \OT1/cmr/m/sc/12 Quan-tum ES PRESSO \OT1/cmr/m/n/12 dis-tri-bu-tion. See \OT1/cmtt/m/n/12 PWgui-x.y.z/INSTAL L [] Underfull \hbox (badness 10000) in paragraph at lines 318--323 [] [6] Overfull \hbox (11.05257pt too wide) in paragraph at lines 342--351 \OT1/cmtt/m/n/12 prefix='pwscf'\OT1/cmr/m/n/12 ). \OT1/cmtt/m/n/12 outdir \OT1/ cmr/m/n/12 can be spec-i-fied as well in en-vi-ron-ment vari-able ESPRESSO[]TMP DIR. [] [7] Overfull \hbox (3.88734pt too wide) in paragraph at lines 445--448 \OT1/cmr/bx/n/12 Dis-per-sion in-ter-ac-tion with non-local func-tional (vd-wD F)[] \OT1/cmr/m/n/12 See ex-am-ple \OT1/cmtt/m/n/12 vdwDF[]example [] Overfull \hbox (12.57196pt too wide) in paragraph at lines 467--472 \OT1/cmr/m/n/12 137205 (2005)] for in-su-la-tors. The cal-cu-la-tion is per-for med by set-ting in-put vari-able \OT1/cmtt/m/n/12 lorbm=.true. [] [8] Overfull \hbox (4.4081pt too wide) in paragraph at lines 503--518 \OT1/cmr/bx/n/12 Variable-cell op-ti-miza-tion[] \OT1/cmr/m/n/12 Since v.4.2 t he newer BFGS al-go-rithm cov-ers the case of variable- [] [9] [10] [11] [12] LaTeX Warning: Reference `SubSec:para' on page 13 undefined on input line 758. [13] Overfull \hbox (21.37143pt too wide) in paragraph at lines 811--819 \OT1/cmr/m/n/12 on the avail-able com-mu-ni-ca-tion hard-ware. For PC clus-ters , Open-MPI (\OT1/cmtt/m/n/12 http://www.openmpi.org/\OT1/cmr/m/n/12 ) [] [14] [15] [16] LaTeX Warning: Reference `SubSec:para' on page 17 undefined on input line 1014. [17] [18] Overfull \hbox (34.44049pt too wide) in paragraph at lines 1112--1115 \OT1/cmr/m/n/12 mem-ory than the de-fault David-son al-go-rithm. If you stick t o the lat-ter, use \OT1/cmtt/m/n/12 diago[]david[]ndim=2\OT1/cmr/m/n/12 . [] [19] [20] [21] [22] [23] Overfull \hbox (29.32014pt too wide) in paragraph at lines 1419--1421 []\OT1/cmr/m/n/12 use a symmetry-conserving al-go-rithm: the Wentz-cov-itch al- go-rithm (\OT1/cmtt/m/n/12 cell dynamics='damp-w'\OT1/cmr/m/n/12 ) [] Overfull \hbox (96.75345pt too wide) in paragraph at lines 1434--1434 []\OT1/cmtt/m/n/12 #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(pt r)) calloc(nelem, sizeof(*(ptr))))[] [] Overfull \hbox (22.65341pt too wide) in paragraph at lines 1434--1434 []\OT1/cmtt/m/n/12 #define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,( nelem)*sizeof(*(ptr)))[] [] Overfull \hbox (59.70343pt too wide) in paragraph at lines 1439--1439 []\OT1/cmtt/m/n/12 #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) ca lloc(nelem, sizeof(*(ptr))))[] [] [24] Overfull \hbox (41.17842pt too wide) in paragraph at lines 1452--1452 []\OT1/cmtt/m/n/12 void meta_force_calculation_(real *cell, int *istep, real *x xx, real *yyy, real *zzz,[] [] Overfull \hbox (35.00342pt too wide) in paragraph at lines 1456--1456 []\OT1/cmtt/m/n/12 void meta_force_calculation(real *cell, int *istep, real *xx x, real *yyy, real *zzz,[] [] [25] (./user_guide.aux) LaTeX Warning: There were undefined references. ) Here is how much of TeX's memory you used: 2977 strings out of 94500 39419 string characters out of 1176767 89713 words of memory out of 1000000 6044 multiletter control sequences out of 10000+50000 11480 words of font info for 41 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 34i,6n,36p,362b,248s stack positions out of 1500i,500n,5000p,200000b,5000s PDF statistics: 324 PDF objects out of 300000 99 named destinations out of 131072 195 words of extra memory for PDF output out of 65536 < /usr/share/texmf/fonts/type1/bluesky/cm/cmmi8.pfb> Output written on user_guide.pdf (25 pages, 266349 bytes). espresso-5.0.2/PW/Doc/input_xx.xsl0000777000700200004540000000000012053147454022773 2../../dev-tools/input_xx.xslustar marsamoscmespresso-5.0.2/PW/Doc/Makefile0000644000700200004540000000327312053145627015065 0ustar marsamoscmHELPDOC=../../dev-tools/helpdoc LATEX = pdflatex LATEX2HTML = latex2html PDFS = user_guide.pdf AUXS = $(PDFS:.pdf=.aux) LOGS = $(PDFS:.pdf=.log) OUTS = $(PDFS:.pdf=.out) TOCS = $(PDFS:.pdf=.toc) doc: all all: pdf html defs pdf: $(PDFS) html: user_guide $(PDFS): %.pdf: %.tex $(LATEX) $< $(LATEX) $< clean: - rm -f $(PDFS) $(AUXS) $(LOGS) $(OUTS) $(TOCS) *~ - rm -rf user_guide/ - rm -rf input_xx.xsl - rm -f INPUT_*.html INPUT_*.txt INPUT_*.xml - rm -rf ../../Doc/INPUT_PW.* user_guide: user_guide.pdf rm -rf user_guide/ latex2html \ -t "User's Guide for the PWscf package" \ -html_version 3.2,math \ -toc_depth 5 -split 5 -toc_stars -show_section_numbers \ -local_icons -image_type png \ user_guide.tex cd user_guide; \ for file in *.html; do \ cp $$file /tmp/$$file; \ cat /tmp/$$file | sed 's/HREF="http/NAME="http/g' | sed 's/mathend000#//g' - > $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** User's Guide created in user_guide/user_guide.html" @echo "***" @echo "" defs: link_input_xx INPUT_PW.html INPUT_PW.txt link_on_main_doc link_input_xx: @(if test ! -f input_xx.xsl; then \ (if test -f ../../dev-tools/input_xx.xsl; then \ (ln -sf ../../dev-tools/input_xx.xsl input_xx.xsl) ; \ else \ echo ; \ echo " Sorry, can not find input_xx.xsl html style file !!!" ; \ echo ; \ fi) ; fi) INPUT_PW.html: %.html: %.def $(HELPDOC) $< INPUT_PW.txt: %.txt: %.def $(HELPDOC) $< link_on_main_doc: -@( cd ../../Doc ; ln -fs ../PW/Doc/INPUT_PW.html . ; \ ln -fs ../PW/Doc/INPUT_PW.xml . ; \ ln -fs ../PW/Doc/INPUT_PW.txt .) espresso-5.0.2/PW/Doc/user_guide.toc0000644000700200004540000001406612053165215016264 0ustar marsamoscm\contentsline {section}{\numberline {1}Introduction}{1}{section.1} \contentsline {subsection}{\numberline {1.1}What can \texttt {PWscf}\ do}{2}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}People}{2}{subsection.1.2} \contentsline {subsection}{\numberline {1.3}Terms of use}{4}{subsection.1.3} \contentsline {section}{\numberline {2}Compilation}{4}{section.2} \contentsline {section}{\numberline {3}Using \texttt {PWscf}}{6}{section.3} \contentsline {subsection}{\numberline {3.1}Input data}{6}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Data files}{7}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Electronic structure calculations}{7}{subsection.3.3} \contentsline {paragraph}{Single-point (fixed-ion) SCF calculation}{7}{section*.2} \contentsline {paragraph}{Band structure calculation}{7}{section*.3} \contentsline {paragraph}{Noncollinear magnetization, spin-orbit interactions}{7}{section*.4} \contentsline {paragraph}{DFT+U}{8}{section*.5} \contentsline {paragraph}{Dispersion Interactions (DFT-D)}{8}{section*.6} \contentsline {paragraph}{Hartree-Fock and Hybrid functionals}{8}{section*.7} \contentsline {paragraph}{Dispersion interaction with non-local functional (vdwDF)}{8}{section*.8} \contentsline {paragraph}{Polarization via Berry Phase}{8}{section*.9} \contentsline {paragraph}{Finite electric fields}{8}{section*.10} \contentsline {paragraph}{Orbital magnetization}{9}{section*.11} \contentsline {subsection}{\numberline {3.4}Optimization and dynamics}{9}{subsection.3.4} \contentsline {paragraph}{Structural optimization}{9}{section*.12} \contentsline {paragraph}{Molecular Dynamics}{9}{section*.13} \contentsline {paragraph}{Free-energy surface calculations}{9}{section*.14} \contentsline {paragraph}{Variable-cell optimization}{9}{section*.15} \contentsline {paragraph}{Variable-cell molecular dynamics}{9}{section*.16} \contentsline {subsection}{\numberline {3.5}Direct interface with \texttt {CASINO}}{10}{subsection.3.5} \contentsline {paragraph}{Practicalities}{10}{section*.17} \contentsline {paragraph}{How to generate \texttt {xwfn.data} files with \texttt {PWscf}}{10}{section*.18} \contentsline {section}{\numberline {4}Performances}{12}{section.4} \contentsline {subsection}{\numberline {4.1}Execution time}{12}{subsection.4.1} \contentsline {subsection}{\numberline {4.2}Memory requirements}{13}{subsection.4.2} \contentsline {subsection}{\numberline {4.3}File space requirements}{13}{subsection.4.3} \contentsline {subsection}{\numberline {4.4}Parallelization issues}{13}{subsection.4.4} \contentsline {subsection}{\numberline {4.5}Understanding the time report}{15}{subsection.4.5} \contentsline {subsubsection}{\numberline {4.5.1}Serial execution}{15}{subsubsection.4.5.1} \contentsline {subsubsection}{\numberline {4.5.2}Parallel execution}{15}{subsubsection.4.5.2} \contentsline {paragraph}{ Quick estimate of parallelization parameters}{16}{section*.19} \contentsline {paragraph}{Typical symptoms of bad/inadequate parallelization}{17}{section*.20} \contentsline {section}{\numberline {5}Troubleshooting}{17}{section.5} \contentsline {paragraph}{pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start}{17}{section*.21} \contentsline {paragraph}{errors in examples with parallel execution}{17}{section*.22} \contentsline {paragraph}{pw.x prints the first few lines and then nothing happens (parallel execution)}{18}{section*.23} \contentsline {paragraph}{pw.x stops with error while reading data}{18}{section*.24} \contentsline {paragraph}{pw.x mumbles something like {\em cannot recover} or {\em error reading recover file}}{18}{section*.25} \contentsline {paragraph}{pw.x stops with {\em inconsistent DFT} error}{18}{section*.26} \contentsline {paragraph}{pw.x stops with error in cdiaghg or rdiaghg}{18}{section*.27} \contentsline {paragraph}{pw.x crashes with no error message at all}{19}{section*.28} \contentsline {paragraph}{pw.x crashes with {\em segmentation fault} or similarly obscure messages}{19}{section*.29} \contentsline {paragraph}{pw.x works for simple systems, but not for large systems or whenever more RAM is needed}{19}{section*.30} \contentsline {paragraph}{pw.x crashes with {\em error in davcio}}{20}{section*.31} \contentsline {paragraph}{pw.x crashes in parallel execution with an obscure message related to MPI errors}{20}{section*.32} \contentsline {paragraph}{pw.x stops with error message {\em the system is metallic, specify occupations}}{20}{section*.33} \contentsline {paragraph}{pw.x stops with {\em internal error: cannot bracket Ef}}{20}{section*.34} \contentsline {paragraph}{pw.x yields {\em internal error: cannot bracket Ef} message but does not stop}{21}{section*.35} \contentsline {paragraph}{pw.x runs but nothing happens}{21}{section*.36} \contentsline {paragraph}{pw.x yields weird results}{21}{section*.37} \contentsline {paragraph}{FFT grid is machine-dependent}{21}{section*.38} \contentsline {paragraph}{pw.x does not find all the symmetries you expected}{22}{section*.39} \contentsline {paragraph}{{\em Warning: symmetry operation \# N not allowed}}{22}{section*.40} \contentsline {paragraph}{Self-consistency is slow or does not converge at all}{22}{section*.41} \contentsline {paragraph}{I do not get the same results in different machines!}{23}{section*.42} \contentsline {paragraph}{Execution time is time-dependent!}{23}{section*.43} \contentsline {paragraph}{{\em Warning : N eigenvectors not converged}}{23}{section*.44} \contentsline {paragraph}{{\em Warning : negative or imaginary charge...}, or {\em ...core charge ...}, or {\em npt with rhoup$<0$...} or {\em rho dw$<0$...}}{23}{section*.45} \contentsline {paragraph}{Structural optimization is slow or does not converge or ends with a mysterious bfgs error}{24}{section*.46} \contentsline {paragraph}{pw.x stops during variable-cell optimization in checkallsym with {\em non orthogonal operation} error}{24}{section*.47} \contentsline {subsection}{\numberline {5.1}Compilation problems with \texttt {PLUMED}}{24}{subsection.5.1} \contentsline {paragraph}{xlc compiler}{24}{section*.48} \contentsline {paragraph}{Calling C from fortran}{25}{section*.49} espresso-5.0.2/PW/Doc/user_guide.aux0000644000700200004540000001755012053165215016275 0ustar marsamoscm\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}What can \texttt {PWscf}\ do}{2}{subsection.1.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}People}{2}{subsection.1.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Terms of use}{4}{subsection.1.3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Compilation}{4}{section.2}} \@writefile{toc}{\contentsline {section}{\numberline {3}Using \texttt {PWscf}}{6}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Input data}{6}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Data files}{7}{subsection.3.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Electronic structure calculations}{7}{subsection.3.3}} \@writefile{toc}{\contentsline {paragraph}{Single-point (fixed-ion) SCF calculation}{7}{section*.2}} \@writefile{toc}{\contentsline {paragraph}{Band structure calculation}{7}{section*.3}} \@writefile{toc}{\contentsline {paragraph}{Noncollinear magnetization, spin-orbit interactions}{7}{section*.4}} \@writefile{toc}{\contentsline {paragraph}{DFT+U}{8}{section*.5}} \@writefile{toc}{\contentsline {paragraph}{Dispersion Interactions (DFT-D)}{8}{section*.6}} \@writefile{toc}{\contentsline {paragraph}{Hartree-Fock and Hybrid functionals}{8}{section*.7}} \@writefile{toc}{\contentsline {paragraph}{Dispersion interaction with non-local functional (vdwDF)}{8}{section*.8}} \@writefile{toc}{\contentsline {paragraph}{Polarization via Berry Phase}{8}{section*.9}} \@writefile{toc}{\contentsline {paragraph}{Finite electric fields}{8}{section*.10}} \@writefile{toc}{\contentsline {paragraph}{Orbital magnetization}{9}{section*.11}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Optimization and dynamics}{9}{subsection.3.4}} \@writefile{toc}{\contentsline {paragraph}{Structural optimization}{9}{section*.12}} \@writefile{toc}{\contentsline {paragraph}{Molecular Dynamics}{9}{section*.13}} \@writefile{toc}{\contentsline {paragraph}{Free-energy surface calculations}{9}{section*.14}} \@writefile{toc}{\contentsline {paragraph}{Variable-cell optimization}{9}{section*.15}} \@writefile{toc}{\contentsline {paragraph}{Variable-cell molecular dynamics}{9}{section*.16}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Direct interface with \texttt {CASINO}}{10}{subsection.3.5}} \newlabel{pw2casino_info}{{3.5}{10}{Direct interface with \texttt {CASINO}\relax }{subsection.3.5}{}} \@writefile{toc}{\contentsline {paragraph}{Practicalities}{10}{section*.17}} \@writefile{toc}{\contentsline {paragraph}{How to generate \texttt {xwfn.data} files with \texttt {PWscf}}{10}{section*.18}} \@writefile{toc}{\contentsline {section}{\numberline {4}Performances}{12}{section.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Execution time}{12}{subsection.4.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Memory requirements}{13}{subsection.4.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}File space requirements}{13}{subsection.4.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Parallelization issues}{13}{subsection.4.4}} \newlabel{SubSec:badpara}{{4.4}{13}{Parallelization issues\relax }{subsection.4.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Understanding the time report}{15}{subsection.4.5}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.5.1}Serial execution}{15}{subsubsection.4.5.1}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.5.2}Parallel execution}{15}{subsubsection.4.5.2}} \@writefile{toc}{\contentsline {paragraph}{ Quick estimate of parallelization parameters}{16}{section*.19}} \@writefile{toc}{\contentsline {paragraph}{Typical symptoms of bad/inadequate parallelization}{17}{section*.20}} \@writefile{toc}{\contentsline {section}{\numberline {5}Troubleshooting}{17}{section.5}} \@writefile{toc}{\contentsline {paragraph}{pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start}{17}{section*.21}} \@writefile{toc}{\contentsline {paragraph}{errors in examples with parallel execution}{17}{section*.22}} \@writefile{toc}{\contentsline {paragraph}{pw.x prints the first few lines and then nothing happens (parallel execution)}{18}{section*.23}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with error while reading data}{18}{section*.24}} \@writefile{toc}{\contentsline {paragraph}{pw.x mumbles something like {\em cannot recover} or {\em error reading recover file}}{18}{section*.25}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with {\em inconsistent DFT} error}{18}{section*.26}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with error in cdiaghg or rdiaghg}{18}{section*.27}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes with no error message at all}{19}{section*.28}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes with {\em segmentation fault} or similarly obscure messages}{19}{section*.29}} \@writefile{toc}{\contentsline {paragraph}{pw.x works for simple systems, but not for large systems or whenever more RAM is needed}{19}{section*.30}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes with {\em error in davcio}}{20}{section*.31}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes in parallel execution with an obscure message related to MPI errors}{20}{section*.32}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with error message {\em the system is metallic, specify occupations}}{20}{section*.33}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with {\em internal error: cannot bracket Ef}}{20}{section*.34}} \@writefile{toc}{\contentsline {paragraph}{pw.x yields {\em internal error: cannot bracket Ef} message but does not stop}{21}{section*.35}} \@writefile{toc}{\contentsline {paragraph}{pw.x runs but nothing happens}{21}{section*.36}} \@writefile{toc}{\contentsline {paragraph}{pw.x yields weird results}{21}{section*.37}} \@writefile{toc}{\contentsline {paragraph}{FFT grid is machine-dependent}{21}{section*.38}} \@writefile{toc}{\contentsline {paragraph}{pw.x does not find all the symmetries you expected}{22}{section*.39}} \@writefile{toc}{\contentsline {paragraph}{{\em Warning: symmetry operation \# N not allowed}}{22}{section*.40}} \@writefile{toc}{\contentsline {paragraph}{Self-consistency is slow or does not converge at all}{22}{section*.41}} \@writefile{toc}{\contentsline {paragraph}{I do not get the same results in different machines!}{23}{section*.42}} \@writefile{toc}{\contentsline {paragraph}{Execution time is time-dependent!}{23}{section*.43}} \@writefile{toc}{\contentsline {paragraph}{{\em Warning : N eigenvectors not converged}}{23}{section*.44}} \@writefile{toc}{\contentsline {paragraph}{{\em Warning : negative or imaginary charge...}, or {\em ...core charge ...}, or {\em npt with rhoup$<0$...} or {\em rho dw$<0$...}}{23}{section*.45}} \@writefile{toc}{\contentsline {paragraph}{Structural optimization is slow or does not converge or ends with a mysterious bfgs error}{24}{section*.46}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops during variable-cell optimization in checkallsym with {\em non orthogonal operation} error}{24}{section*.47}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Compilation problems with \texttt {PLUMED}}{24}{subsection.5.1}} \@writefile{toc}{\contentsline {paragraph}{xlc compiler}{24}{section*.48}} \@writefile{toc}{\contentsline {paragraph}{Calling C from fortran}{25}{section*.49}} espresso-5.0.2/PW/Doc/INPUT_PW.txt0000644000700200004540000036135112053165222015470 0ustar marsamoscm*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: pw.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] ======================================================================== NAMELIST: &CONTROL +-------------------------------------------------------------------- Variable: calculation Type: CHARACTER Default: 'scf' Description: a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: title Type: CHARACTER Default: ' ' Description: reprinted on output. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: verbosity Type: CHARACTER Default: 'low' Description: Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'from_scratch' Description: 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one. See also startingpot, startingwfc +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_collect Type: LOGICAL Default: .FALSE. Description: This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory outdir/prefix.save, one wavefunction per k-point in subdirs K000001/, K000001/, etc. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Useful if you do not need the wavefunction or if you want to reduce the I/O or the disk occupancy. Note that this flag has no effect on reading, only on writing. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep Type: INTEGER Description: number of ionic + electronic steps Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: iprint Type: INTEGER Default: write only at convergence Description: band energies are written every iprint iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tstress Type: LOGICAL Default: .false. Description: calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tprnfor Type: LOGICAL Description: print forces. Set to .TRUE. if calculation='relax','md','vc-md' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dt Type: REAL Default: 20.D0 Description: time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise Description: input, temporary, output files are found in this directory, see also 'wfcdir' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfcdir Type: CHARACTER Default: same as outdir Description: this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). The idea here is to be able to separately store the largest files, while the files necessary for restarting still go into 'outdir' (for now only works for stand alone PW ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'pwscf' Description: prepended to input/output filenames: prefix.wfc, prefix.rho, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lkpoint_dir Type: LOGICAL Default: .true. Description: If .false. a subdirectory for each k_point is not opened in the prefix.save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with wf_collect +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: max_seconds Type: REAL Default: 1.D+7, or 150 days, i.e. no time limit Description: jobs stops after max_seconds CPU time +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: etot_conv_thr Type: REAL Default: 1.0D-4 Description: convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. Note that etot_conv_thr is extensive, like the total energy. See also forc_conv_thr - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: forc_conv_thr Type: REAL Default: 1.0D-3 Description: convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr (note that the latter is extensive, forc_conv_thr is not) - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: disk_io Type: CHARACTER Default: 'default' Description: Specifies the amount of disk I/O activity 'high': save all data at each SCF step 'default': save wavefunctions at each SCF step unless there is a single k-point per process 'low' : store wfc in memory, save only at the end 'none': do not save wfc, not even at the end (guaranteed to work only for 'scf', 'nscf', 'bands' calculations) If restarting from an interrupted calculation, the code will try to figure out what is available on disk. The more you write, the more complete the restart will be. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pseudo_dir Type: CHARACTER Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise Description: directory containing pseudopotential files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tefield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables edir, eamp, emaxpos, eopreg for the form and size of the added potential. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dipfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables edir, emaxpos, eopreg for the form of the correction, that must be used only in a slab geometry, for surface calculations, with the discontinuity in the empty space. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lelfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nberrycyc Type: INTEGER Default: 1 Description: In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lorbm Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is nscf and should be performed on an automatically generated uniform grid of k points. Works with norm-conserving pseudopotentials. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lberry Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform a Berry phase calculation See the header of PW/bp_c_phase.f90 for documentation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: gdir Type: INTEGER Description: For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.), gdir is the direction of the field +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nppstr Type: INTEGER Description: For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield==.true.) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &SYSTEM +-------------------------------------------------------------------- Variable: ibrav Type: INTEGER Status: REQUIRED Description: Bravais-lattice index. In all cases except ibrav=0, either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc] must be specified: see their description. For ibrav=0 you may specify the lattice parameter celldm(1) or a. ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b +-------------------------------------------------------------------- ///--- EITHER: +-------------------------------------------------------------------- Variable: celldm(i), i=1,6 Type: REAL See: ibrav Description: Crystallographic constants - see description of ibrav variable. * alat = celldm(1) is the lattice parameter "a" (in BOHR) * only needed celldm (depending on ibrav) must be specified * if ibrav=0 only alat = celldm(1) is used (if present) +-------------------------------------------------------------------- OR: +-------------------------------------------------------------------- Variables: A, B, C, cosAB, cosAC, cosBC Type: REAL Description: Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) specify either these OR celldm but NOT both. The axis are chosen according to the value of ibrav. If ibrav is not specified, the axis are taken from card CELL_PARAMETERS and only a is used as lattice parameter. +-------------------------------------------------------------------- \\\--- +-------------------------------------------------------------------- Variable: nat Type: INTEGER Status: REQUIRED Description: number of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ntyp Type: INTEGER Status: REQUIRED Description: number of types of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nbnd Type: INTEGER Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) Description: number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_charge Type: REAL Default: 0.0 Description: total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_magnetization Type: REAL Default: -1 [unspecified] Description: total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_magnetization(i), i=1,ntyp Type: REAL Description: starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutwfc Type: REAL Status: REQUIRED Description: kinetic energy cutoff (Ry) for wavefunctions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutrho Type: REAL Default: 4 * ecutwfc Description: kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutfock Type: REAL Default: ecutrho Description: kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1, nr2, nr3 Type: INTEGER Description: three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1s, nr2s, nr3s Type: INTEGER Description: three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym_evc Type: LOGICAL Default: .FALSE. Description: if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noinv Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: no_t_rev Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: force_symmorphic Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_all_frac Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: occupations Type: CHARACTER Description: 'smearing': gaussian smearing for metals requires a value for degauss 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file. Requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: one_atom_occupations Type: LOGICAL Default: .FALSE. Description: This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_spin_angle Type: LOGICAL Default: .FALSE. Description: In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.D0 Ry Description: value of the gaussian spreading (Ry) for brillouin-zone integration in metals. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: smearing Type: CHARACTER Default: 'gaussian' Description: 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nspin Type: INTEGER Default: 1 Description: nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noncolin Type: LOGICAL Default: .false. Description: if .true. the program will perform a noncollinear calculation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecfixed Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: qcutz Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: q2sigma Type: REAL Default: 0.1 Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: input_dft Type: CHARACTER Default: read from pseudopotential files Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exx_fraction Type: REAL Default: it depends on the specified functional Description: Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: screening_parameter Type: REAL Default: 0.106 Description: screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exxdiv_treatment Type: CHARACTER Default: gygi-baldereschi Description: Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutvcut Type: REAL Default: 0.0 Ry See: exxdiv_treatment Description: Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nqx1, nqx2, nqx3 Type: INTEGER Description: three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u Type: LOGICAL Default: .FALSE. Status: DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify PW/set_hubbard_l.f90 and PW/tabd.f90 if you plan to use DFT+U with an element that is not configured there. Description: Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u_kind Type: INTEGER Default: 0 Description: Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_U(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J0(i), i=1,ntype Type: REAL Default: 0.D0 for all species Description: Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_alpha(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_beta(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J(i,ityp) Default: 0.D0 for all species Description: Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_ns_eigenvalue(m,ispin,I) Type: REAL Default: -1.d0 that means NOT SET Description: In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: U_projection_type Type: CHARACTER Default: 'atomic' Description: Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: edir Type: INTEGER Description: The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emaxpos Type: REAL Default: 0.5D0 Description: Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eopreg Type: REAL Default: 0.1D0 Description: Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eamp Type: REAL Default: 0.001 a.u. Description: Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle1(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle2(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constrained_magnetization Type: CHARACTER See: lambda, fixed_magnetization Default: 'none' Description: Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fixed_magnetization(i), i=1,3 Type: REAL See: constrained_magnetization Default: 0.d0 Description: value of the total magnetization to be maintained fixed when constrained_magnetization='total' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lambda Type: REAL See: constrained_magnetization Default: 1.d0 Description: parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: report Type: INTEGER Default: 1 Description: It is the number of iterations after which the program write all the atomic magnetic moments. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lspinorb Type: LOGICAL Description: if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: assume_isolated Type: CHARACTER Default: 'none' Description: Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'dcc' : density counter charge correction CURRENTLY DISABLED The electrostatic problem is solved in open boundary conditions (OBC). This approach provides the correct scf potential and energies (not just a correction to energies as 'mp'). BEWARE: the molecule should be centered around the middle of the cell, not around the origin (0,0,0). Theory described in: I.Dabo, B.Kozinsky, N.E.Singh-Miller and N.Marzari, "Electrostatic periodic boundary conditions and real-space corrections", Phys.Rev.B 77, 115139 (2008) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction. As for the dcc correction the scf potential is also corrected. Implementation adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_bc Type: CHARACTER See: assume_isolated Default: 'pbc' Description: If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_w Type: REAL See: assume_isolated Default: 0.d0 Description: If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_efield Type: REAL See: assume_isolated, esm_bc Default: 0.d0 Description: If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_nfit Type: INTEGER See: assume_isolated Default: 4 Description: If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london Type: LOGICAL Default: .FALSE. Description: if .TRUE. compute semi-empirical dispersion term (DFT-D). See S. Grimme, J. Comp. Chem. 27, 1787 (2006), and V. Barone et al., J. Comp. Chem. 30, 934 (2009). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_s6 Type: REAL Default: 0.75 Description: global scaling parameter for DFT-D. Default is good for PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_rcut Type: REAL Default: 200 Description: cutoff radius (a.u.) for dispersion interactions +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &ELECTRONS +-------------------------------------------------------------------- Variable: electron_maxstep Type: INTEGER Default: 100 Description: maximum number of iterations in a scf step +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: scf_must_converge Type: LOGICAL Default: .TRUE. Description: If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr Type: REAL Default: 1.D-6 Description: Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: adaptive_thr Type: LOGICAL Default: .FALSE Description: If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_init Type: REAL Default: 1.D-3 Description: When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_multi Type: REAL Default: 1.D-1 Description: When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: min( conv_thr, conv_thr_multi * dexx ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_mode Type: CHARACTER Default: 'plain' Description: 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_beta Type: REAL Default: 0.7D0 Description: mixing factor for self-consistency +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_ndim Type: INTEGER Default: 8 Description: number of iterations used in mixing scheme +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_fixed_ns Type: INTEGER Default: 0 Description: For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diagonalization Type: CHARACTER Default: 'david' Description: 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_para Type: INTEGER Default: 0 Status: OBSOLETE: use command-line option " -ndiag XX" instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_thr_init Type: REAL Description: Convergence threshold for the first iterative diagonalization (the check is on eigenvalue convergence). For scf calculations, the default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold (ethr) is automatically reduced when approaching convergence. For non-scf calculations, this is the threshold used in the iterative diagonalization. The default is conv_thr /N elec. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_cg_maxiter Type: INTEGER Description: For conjugate gradient diagonalization: max number of iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_david_ndim Type: INTEGER Default: 4 Description: For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_full_acc Type: LOGICAL Default: .FALSE. Description: If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield Type: REAL Default: 0.D0 Description: Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield_cart(i), i=1,3 Type: REAL Default: (0.D0, 0.D0, 0.D0) Description: Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingpot Type: CHARACTER Description: 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingwfc Type: CHARACTER Default: 'atomic+random' Description: 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tqr Type: LOGICAL Default: .FALSE. Description: If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &IONS INPUT THIS NAMELIST ONLY IF CALCULATION = 'RELAX', 'MD', 'VC-RELAX', 'VC-MD' +-------------------------------------------------------------------- Variable: ion_dynamics Type: CHARACTER Description: Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_positions Type: CHARACTER Default: 'default' Description: 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: phase_space Type: CHARACTER Default: 'full' Description: 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pot_extrapolation Type: CHARACTER Default: 'atomic' Description: Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfc_extrapolation Type: CHARACTER Default: 'none' Description: Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: remove_rigid_rot Type: LOGICAL Default: .FALSE. Description: This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. +-------------------------------------------------------------------- ///--- KEYWORDS USED FOR MOLECULAR DYNAMICS +-------------------------------------------------------------------- Variable: ion_temperature Type: CHARACTER Default: 'not_controlled' Description: 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tempw Type: REAL Default: 300.D0 Description: Starting temperature (Kelvin) in MD runs target temperature for most thermostats. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolp Type: REAL Default: 100.D0 Description: Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: delta_t Type: REAL Default: 1.D0 Description: if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nraise Type: INTEGER Default: 1 Description: if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: refold_pos Type: LOGICAL Default: .FALSE. Description: This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. +-------------------------------------------------------------------- \\\--- ///--- KEYWORDS USED ONLY IN BFGS CALCULATIONS +-------------------------------------------------------------------- Variable: upscale Type: REAL Default: 100.D0 Description: Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: bfgs_ndim Type: INTEGER Default: 1 Description: Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_max Type: REAL Default: 0.8D0 Description: Maximum ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_min Type: REAL Default: 1.D-3 Description: Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_ini Type: REAL Default: 0.5D0 Description: Initial ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_1 Type: REAL Default: 0.01D0 See: w_2 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_2 Type: REAL Default: 0.5D0 Description: Parameters used in line search based on the Wolfe conditions. (bfgs only) +-------------------------------------------------------------------- \\\--- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &CELL INPUT THIS NAMELIST ONLY IF CALCULATION = 'VC-RELAX', 'VC-MD' +-------------------------------------------------------------------- Variable: cell_dynamics Type: CHARACTER Description: Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press Type: REAL Default: 0.D0 Description: Target pressure [KBar] in a variable-cell md or relaxation run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wmass Type: REAL Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Description: Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_factor Type: REAL Default: 1.2D0 Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press_conv_thr Type: REAL Default: 0.5D0 Kbar Description: Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dofree Type: CHARACTER Default: 'all' Description: Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v_2y are moved xz = only v1_x and v_3z are moved yz = only v2_x and v_3z are moved xyz = only v1_x, v2_x, v_3z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Module/cell_base.f90 +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: ATOMIC_SPECIES ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_SPECIES X(1) Mass_X(1) PseudoPot_X(1) X(2) Mass_X(2) PseudoPot_X(2) . . . X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Mass_X Type: REAL Description: mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: PseudoPot_X Type: CHARACTER Description: File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } ________________________________________________________________________ * IF calculation == 'bands' OR calculation == 'nscf' : Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! * ELSE IF : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) } X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) } . . . X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) } ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom | crystal } Default: alat Description: alat : atomic positions are in cartesian coordinates, in units of the lattice parameter "a" (default) bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors (see below) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: x, y, z Type: REAL Description: atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: if_pos(1), if_pos(2), if_pos(3) Type: INTEGER Default: 1 Description: component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } ________________________________________________________________________ * IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c nks xk_x(1) xk_y(1) xk_z(1) wk(1) xk_x(2) xk_y(2) xk_z(2) wk(2) . . . xk_x(nks) xk_y(nks) xk_z(nks) wk(nks) ///////////////////////////////////////// * ELSE IF automatic : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS automatic nk1 nk2 nk3 sk1 sk2 sk3 ///////////////////////////////////////// * ELSE IF gamma : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS gamma ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } Default: tbipa Description: tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nks Type: INTEGER Description: Number of supplied special k-points. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: xk_x, xk_y, xk_z, wk Type: REAL Description: Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nk1, nk2, nk3 Type: INTEGER Description: These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: sk1, sk2, sk3 Type: INTEGER Description: The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ). +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CELL_PARAMETERS { alat | bohr | angstrom } OPTIONAL CARD, NEEDED ONLY IF IBRAV = 0 IS SPECIFIED, IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom } Description: bohr / angstrom: lattice vectors in bohr radii / angstrom. alat or nothing specified: if a lattice constant (celldm(1) or a) is present, lattice vectors are in units of the lattice constant; otherwise, in bohr radii or angstrom, as specified. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: v1, v2, v3 Type: REAL Description: Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CONSTRAINTS OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS (ONLY IF ION_DYNAMICS='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED) When this card is present the SHAKE algorithm is automatically used. ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CONSTRAINTS nconstr { constr_tol } constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) } constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) } . . . constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) } ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: nconstr Type: INTEGER Description: Number of constraints. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_tol Type: REAL Description: Tolerance for keeping the constraints satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_type Type: CHARACTER Description: Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: constr(1), constr(2), constr(3), constr(4) Description: These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_target Type: REAL Description: Target for the constrain ( angles are specified in degrees ). This variable is optional. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: OCCUPATIONS OPTIONAL CARD, USED ONLY IF OCCUPATIONS = 'FROM_INPUT', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// OCCUPATIONS f_inp1(1) f_inp1(2) . . . f_inp1(nbnd) [ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ] ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: f_inp1 Type: REAL Description: Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: f_inp2 Type: REAL Description: Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations. +-------------------------------------------------------------------- ===END OF CARD========================================================== espresso-5.0.2/PW/Doc/user_guide.tex0000644000700200004540000020760512053165077016310 0ustar marsamoscm\documentclass[12pt,a4paper]{article} \def\version{5.0.2} \def\PWscf{\texttt{PWscf}} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{../../Doc/quantum_espresso.pdf} \def\democritosImage{../../Doc/democritos.pdf} \begin{htmlonly} \def\qeImage{../../Doc/quantum_espresso.png} \def\democritosImage{../../Doc/democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \PWscf\smallskip \Large (version \version) } %\endhtmlonly %\latexonly %\title{ % \epsfig{figure=quantum_espresso.png,width=5cm}\hskip 2cm % \epsfig{figure=democritos.png,width=6cm}\vskip 1cm % % title % \Huge User's Guide for \qe \smallskip % \Large (version \version) %} %\endlatexonly \maketitle \tableofcontents \section{Introduction} This guide covers the usage of the \PWscf\ (Plane-Wave Self-Consistent Field) package, a core component of the \qe\ distribution. Further documentation, beyond what is provided in this guide, can be found in the directory \texttt{PW/Doc/}, containing a copy of this guide. This guide assumes that you know the physics that \PWscf\ describes and the methods it implements. It also assumes that you have already installed, or know how to install, \qe. If not, please read the general User's Guide for \qe, found in directory \texttt{Doc/} two levels above the one containing this guide; or consult the web site:\\ \texttt{http://www.quantum-espresso.org}. People who want to modify or contribute to \PWscf\ should read the Developer Manual: \texttt{Doc/developer\_man.pdf}. \subsection{What can \PWscf\ do} \PWscf\ performs many different kinds of self-consistent calculations of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials (PP). In particular: \begin{itemize} \item ground-state energy and one-electron (Kohn-Sham) orbitals; \item atomic forces, stresses, and structural optimization; \item molecular dynamics on the ground-state Born-Oppenheimer surface, also with variable cell; \item macroscopic polarization and finite electric fields via the modern theory of polarization (Berry Phases). \item the modern theory of polarization (Berry Phases). \item modern theory of orbital magnetization. \item free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED. \end{itemize} All of the above works for both insulators and metals, in any crystal structure, for many exchange-correlation (XC) functionals (including spin polarization, DFT+U, nonlocal VdW functional, hybrid functionals), for norm-conserving (Hamann-Schluter-Chiang) PPs (NCPPs) in separable form or Ultrasoft (Vanderbilt) PPs (USPPs) or Projector Augmented Waves (PAW) method. Noncollinear magnetism and spin-orbit interactions are also implemented. An implementation of finite electric fields with a sawtooth potential in a supercell is also available. Please note that NEB calculations are no longer performed by \pwx, but are instead carried out by \texttt{neb.x} (see main user guide), a dedicated code for path optimization which can use \PWscf\ as computational engine. \subsection{People} The \PWscf\ package (which included \PHonon\ and \PostProc\ in earlier releases) was originally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi (Univ. Udine), and many others. We quote in particular: \begin{itemize} \item Matteo Cococcioni (Univ. Minnesota) for DFT+U implementation; \item David Vanderbilt's group at Rutgers for Berry's phase calculations; \item Ralph Gebauer (ICTP, Trieste) and Adriano Mosca Conte (SISSA, Trieste) for noncollinear magnetism; \item Andrea Dal Corso for spin-orbit interactions; \item Carlo Sbraccia (Princeton) for improvements to structural optimization and to many other parts; \item Paolo Umari (Univ. Padua) for finite electric fields; \item Renata Wentzcovitch and collaborators (Univ. Minnesota) for variable-cell molecular dynamics; \item Lorenzo Paulatto (Univ.Paris VI) for PAW implementation, built upon previous work by Guido Fratesi (Univ.Milano Bicocca) and Riccardo Mazzarello (ETHZ-USI Lugano); \item Ismaila Dabo (INRIA, Palaiseau) for electrostatics with free boundary conditions; \item Norbert Nemec and Mike Towler (U.Cambridge) for interface with \texttt{CASINO}; \item Alexander Smogunov (CEA) for extended and noncollinear DFT+U implementation; \item Burak Himmetoglou (Univ. Minnesota) for DFT+U+J implementation; \item Andrei Malashevich (Univ. Berkeley) for calculation of orbital magnetization; \item Gabriele Sclauzero (IRRMA Lausanne) for DFT+U with on-site occupations obtained from pseudopotential projectors. \end{itemize} % \texttt{PWgui} was written by Anton Kokalj (IJS Ljubljana) and is % based on his GUIB concept (\texttt{http://www-k3.ijs.si/kokalj/guib/}). % \texttt{iotk} (\texttt{http://www.s3.infm.it/iotk}) was written by Giovanni Bussi (SISSA) . Other relevant contributions to \PWscf: \begin{itemize} \item Yves Ferro (Univ. Provence) contributed SOGGA and M06L functionls \item Minoru Otani (AIST), Yoshio Miura (Tohoku U.), Nicephore Bonet (MIT), Nicola Marzari (Univ. Oxford), Brandon Wood (LLNL), Tadashi Ogitsu (LLNL), contributed Effective Screening Method (PRB 73, 115407 [2006]) \item Brian Kolb and Timo Thonhauser (Wake Forest University) implemented the vdW-DF and vdW-DF2 functionals, with support from Riccardo Sabatini and Stefano de Gironcoli (SISSA and DEMOCRITOS); \item Hannu-Pekka Komsa (CSEA/Lausanne) contributed the HSE functional; \item Dispersions interaction in the framework of DFT-D were contributed by Daniel Forrer (Padua Univ.) and Michele Pavone (Naples Univ. Federico II); \item Filippo Spiga (ICHEC) contributed the mixed MPI-OpenMP parallelization; \item The initial BlueGene porting was done by Costas Bekas and Alessandro Curioni (IBM Zurich). \end{itemize} This guide was mostly written by Paolo Giannozzi. Mike Towler wrote the \PWscf\ to \texttt{CASINO} subsection. \subsection{Terms of use} \qe\ is free software, released under the GNU General Public License. See \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} \begin{quote} Reference for all exchange-correlation functionals can be found in the header of file \texttt{Modules/funct.f90}. \end{quote} Note the form \qe\ for textual citations of the code. Pseudopotentials should be cited as (for instance) \begin{quote} [ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from\\ \texttt{http://www.quantum-espresso.org}. \end{quote} \section{Compilation} \PWscf\ is included in the core \qe\ distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for \qe. Typing \texttt{make pw} from the main \qe\ directory or \texttt{make} from the \texttt{PW/} subdirectory produces the \pwx\ executable in \texttt{PW/src} and a link to the \texttt{bin/} directory. In addition, several utility programs, and related links in \texttt{bin/}, are produced in \texttt{PW/tools}: \begin{itemize} \item \texttt{PW/tools/dist.x} calculates distances and angles between atoms in a cell, taking into account periodicity \item \texttt{PW/tools/ev.x} fits energy-vs-volume data to an equation of state \item \texttt{PW/tools/kpoints.x} produces lists of k-points \item \texttt{PW/tools/pwi2xsf.sh}, \texttt{pwo2xsf.sh} process respectively input and output files (not data files!) for \pwx and produce an XSF-formatted file suitable for plotting with XCrySDen: \texttt{http://www.xcrysden.org/}, powerful crystalline and molecular structure visualization program. BEWARE: the \texttt{pwi2xsf.sh} shell script requires the \texttt{pwi2xsf.x} executables to be located somewhere in your PATH. \item \texttt{PW/tools/band\_plot.x}: undocumented and possibly obsolete \item \texttt{PW/tools/bs.awk}, \texttt{PW/tools/mv.awk} are scripts that process the output of \pwx\ (not data files!). Usage: \begin{verbatim} awk -f bs.awk < my-pw-file > myfile.bs awk -f mv.awk < my-pw-file > myfile.mv \end{verbatim} The files so produced are suitable for use with \texttt{xbs}, a very simple X-windows utility to display molecules, available at:\\ \texttt{http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml} \item \texttt{PW/tools/kvecs\_FS.x}, \texttt{PW/tools/bands\_FS.x}: utilities for Fermi Surface plotting using XCrySDen (contributed by the late Prof. Eyvaz) \end{itemize} \newpage\section{Using \PWscf} Input files for \texttt{pw.x} may be either written by hand or produced via the \texttt{PWgui} graphical interface by Anton Kokalj, included in the \qe\ distribution. See \texttt{PWgui-x.y.z/INSTALL} (where x.y.z is the version number) for more info on \texttt{PWgui}, or \texttt{GUI/README} if you are using SVN sources. You may take the tests and examples distributed with \qe\ as templates for writing your own input files. In the following, whenever we mention "Example N", we refer to those. Input files are those in the \texttt{results/} subdirectories, with names ending with \texttt{.in} (they will appear after you have run the examples). \subsection{Input data} Input data is organized as several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are \begin{tabular}{ll} \&CONTROL:& general variables controlling the run\\ \&SYSTEM: &structural information on the system under investigation\\ \&ELECTRONS: &electronic variables: self-consistency, smearing\\ \&IONS (optional): &ionic variables: relaxation, dynamics\\ \&CELL (optional): &variable-cell optimization or dynamics\\ \end{tabular} \\ Optional namelist may be omitted if the calculation to be performed does not require them. This depends on the value of variable \texttt{calculation} in namelist \&CONTROL. Most variables in namelists have default values. Only the following variables in \&SYSTEM must always be specified: \begin{tabular}{lll} \texttt{ibrav} & (integer)& Bravais-lattice index\\ \texttt{celldm} &(real, dimension 6)& crystallographic constants\\ \texttt{nat} &(integer)& number of atoms in the unit cell\\ \texttt{ntyp} &(integer)& number of types of atoms in the unit cell\\ \texttt{ecutwfc} &(real)& kinetic energy cutoff (Ry) for wavefunctions. \end{tabular} \\ For metallic systems, you have to specify how metallicity is treated in variable \texttt{occupations}. If you choose \texttt{occupations='smearing'}, you have to specify the smearing type \texttt{smearing} and the smearing width \texttt{degauss}. Spin-polarized systems are as a rule treated as metallic system, unless the total magnetization, \texttt{tot\_magnetization} is set to a fixed value, or if occupation numbers are fixed (\texttt{occupations='from input'} and card OCCUPATIONS). Explanations for the meaning of variables \texttt{ibrav} and \texttt{celldm}, as well as on alternative ways to input structural data, are in files \texttt{PW/Doc/INPUT\_PW.txt} and \texttt{PW/Doc/INPUT\_PW.html}. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs. Comment lines in namelists can be introduced by a "!", exactly as in fortran code. After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names: \begin{quote} ATOMIC\_SPECIES\\ ATOMIC\_POSITIONS\\ K\_POINTS\\ CELL\_PARAMETERS (optional)\\ OCCUPATIONS (optional)\\ \end{quote} The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''. Comments lines in ``cards'' can be introduced by either a ``!'' or a ``\#'' character in the first position of a line. Note about k points: The k-point grid can be either automatically generated or manually provided as a list of k-points and a weight in the Irreducible Brillouin Zone only of the Bravais lattice of the crystal. The code will generate (unless instructed not to do so: see variable \texttt{nosym}) all required k-points and weights if the symmetry of the system is lower than the symmetry of the Bravais lattice. The automatic generation of k-points follows the convention of Monkhorst and Pack. \subsection{Data files} The output data files are written in the directory \texttt{outdir/prefix.save}, as specified by variables \texttt{outdir} and \texttt{prefix} (a string that is prepended to all file names, whose default value is: \texttt{prefix='pwscf'}). \texttt{outdir} can be specified as well in environment variable ESPRESSO\_TMPDIR. The \texttt{iotk} toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the \texttt{bin/iotk} script. The execution stops if you create a file \texttt{prefix.EXIT} either in the working directory (i.e. where the program is executed), or in the \texttt{outdir} directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state. \subsection{Electronic structure calculations} \paragraph{Single-point (fixed-ion) SCF calculation} Set \texttt{calculation='scf'} (this is actually the default). Namelists \&IONS and \&CELL will be ignored. See Example 01. \paragraph{Band structure calculation} First perform a SCF calculation as above; then do a non-SCF calculation with the desired k-point grid and number \texttt{nbnd} of bands. Use \texttt{calculation='bands'} if you are interested in calculating only the Kohn-Sham states for the given set of k-points (e.g. along symmetry lines: see for instance \texttt{http://www.cryst.ehu.es/cryst/get\_kvec.html}). Specify instead \texttt{calculation='nscf'} if you are interested in further processing of the results of non-SCF calculations (for instance, in DOS calculations). In the latter case, you should specify a uniform grid of points. For DOS calculations you should choose \texttt{occupations='tetrahedra'}, together with an automatically generated uniform k-point grid (card K\_POINTS with option ``automatic''). Specify \texttt{nosym=.true.} to avoid generation of additional k-points in low symmetry cases. Variables \texttt{prefix} and \texttt{outdir}, which determine the names of input or output files, should be the same in the two runs. See Examples 01, 06, 07, NOTA BENE: Since v.4.1, both atomic positions and the scf potential are read from the data file so that consistency is guaranteed. \paragraph{Noncollinear magnetization, spin-orbit interactions} The following input variables are relevant for noncollinear and spin-orbit calculations: \begin{quote} \texttt{noncolin}\\ \texttt{lspinorb}\\ \texttt{starting\_magnetization} (one for each type of atoms) \end{quote} To make a spin-orbit calculation \texttt{noncolin} must be true. If \texttt{starting\_magnetization} is set to zero (or not given) the code makes a spin-orbit calculation without spin magnetization (it assumes that time reversal symmetry holds and it does not calculate the magnetization). The states are still two-component spinors but the total magnetization is zero. If \texttt{starting\_magnetization} is different from zero, it makes a noncollinear spin polarized calculation with spin-orbit interaction. The final spin magnetization might be zero or different from zero depending on the system. Furthermore to make a spin-orbit calculation you must use fully relativistic pseudopotentials at least for the atoms in which you think that spin-orbit interaction is large. If all the pseudopotentials are scalar relativistic the calculation becomes equivalent to a noncollinear calculation without spin orbit. (Andrea Dal Corso, 2007-07-27) See Example 06 for noncollinear magnetism, Example 07 for spin-orbit interactions. \paragraph{DFT+U} DFT+U (formerly known as LDA+U) calculation can be performed within a simplified rotationally invariant form of the $U$ Hubbard correction. Note that for all atoms having a $U$ value there should be an item in function \texttt{flib/set\_hubbard\_l.f90} and one in subroutine \texttt{PW/src/tabd.f90}, defining respectively the angular momentum and the occupancy of the orbitals with the Hubbard correction. If your Hubbard-corrected atoms are not there, you need to edit these files and to recompile. See Example 08 and its README. \paragraph{Dispersion Interactions (DFT-D)} For DFT-D (DFT + semiempirical dispersion interactions), see the description of input variables \texttt{london*}, sample files \texttt{PW/tests/vdw.*}, and the comments in source file \texttt{Modules/mm\_dispersion.f90}. \paragraph{Hartree-Fock and Hybrid functionals} Since v.5.0, calculations in the Hartree-Fock approximation, or using hybrid XC functionals that include some Hartree-Fock exchange, no longer require a special preprocessing before compilation. See \texttt{EXX\_example/} and its README file. \paragraph{Dispersion interaction with non-local functional (vdwDF)} See example \texttt{vdwDF\_example} and references quoted in file \texttt{README} therein. \paragraph{Polarization via Berry Phase} See Example 04, its file README, the documentation in the header of \texttt{PW/src/bp\_c\_phase.f90}. \paragraph{Finite electric fields} There are two different implementations of macroscopic electric fields in \pwx: via an external sawtooth potential (input variable \texttt{tefield=.true.}) and via the modern theory of polarizability (\texttt{lelfield=.true.}). The former is useful for surfaces, especially in conjunction with dipolar corrections (\texttt{dipfield=.true.}): see \texttt{examples/dipole\_example} for an example of application. Electric fields via modern theory of polarization are documented in example 10. The exact meaning of the related variables, for both cases, is explained in the general input documentation. \paragraph{Orbital magnetization} Modern theory of orbital magnetization [Phys. Rev. Lett. 95, 137205 (2005)] for insulators. The calculation is performed by setting input variable \texttt{lorbm=.true.} in nscf run. If finite electric field is present (\texttt{lelfield=.true.}) only Kubo terms are computed [see New J. Phys. 12, 053032 (2010) for details]. \subsection{Optimization and dynamics} \paragraph{Structural optimization} For fixed-cell optimization, specify \texttt{calculation='relax'} and add namelist \&IONS. All options for a single SCF calculation apply, plus a few others. You may follow a structural optimization with a non-SCF band-structure calculation (since v.4.1, you do not need any longer to update the atomic positions in the input file for non scf calculation).\\ See Example 02. \paragraph{Molecular Dynamics} Specify \texttt{calculation='md'}, the time step \texttt{dt}, and possibly the number of MD stops \texttt{nstep}. Use variable \texttt{ion\_dynamics} in namelist \&IONS for a fine-grained control of the kind of dynamics. Other options for setting the initial temperature and for thermalization using velocity rescaling are available. Remember: this is MD on the electronic ground state, not Car-Parrinello MD. See Example 03. \paragraph{Free-energy surface calculations} Once \PWscf\ is patched with the \texttt{PLUMED} plug-in, it is possible to use most PLUMED functionalities by running \PWscf\ as: \texttt{./pw.x -plumed} plus the other usual \PWscf\ arguments. The input file for \texttt{PLUMED} must be found in the specified \texttt{outdir} with fixed name \texttt{plumed.dat}. \paragraph{Variable-cell optimization} Since v.4.2 the newer BFGS algorithm covers the case of variable-cell optimization as well. Note however that variable-cell calculations (both optimization and dynamics) are performed with plane waves and G-vectors {\em calculated for the starting cell}. This means that if you re-run a self-consistent calculation for the final cell and atomic positions using the same cutoff \texttt{ecutwfc} (and/or \texttt{ecutrho} if applicable), you may not find exactly the same results, unless your final and initial cells are very similar, or unless your cutoff(s) are very high. In order to provide a further check, a last step is performed in which a scf calculation is performed for the converged structure, with plane waves and G-vectors {\em calculated for the final cell}. Small differences between the two last steps are thus to be expected and give an estimate of the reliability of the variable-cell optimization. If you get a large difference, you are likely quite far from convergence in the plane-wave basis set and you need to increase the cutoff(s). \paragraph{Variable-cell molecular dynamics} "A common mistake many new users make is to set the time step \texttt{dt} improperly to the same order of magnitude as for CP algorithm, or not setting \texttt{dt} at all. This will produce a ``not evolving dynamics''. Good values for the original RMW (RM Wentzcovitch) dynamics are \texttt{dt} $ = 50 \div 70$. The choice of the cell mass is a delicate matter. An off-optimal mass will make convergence slower. Too small masses, as well as too long time steps, can make the algorithm unstable. A good cell mass will make the oscillation times for internal degrees of freedom comparable to cell degrees of freedom in non-damped Variable-Cell MD. Test calculations are advisable before extensive calculation. I have tested the damping algorithm that I have developed and it has worked well so far. It allows for a much longer time step (dt=$100 \div 150$) than the RMW one and is much more stable with very small cell masses, which is useful when the cell shape, not the internal degrees of freedom, is far out of equilibrium. It also converges in a smaller number of steps than RMW." (Info from Cesar Da Silva: the new damping algorithm is the default since v. 3.1). \subsection{Direct interface with \texttt{CASINO}} \label{pw2casino_info} \texttt{PWscf} now supports the Cambridge quantum Monte Carlo program CASINO directly. For more information on the \texttt{CASINO} code see \texttt{http://www.tcm.phy.cam.ac.uk/\~{}mdt26/casino.html}. \texttt{CASINO} may take the output of \texttt{PWSCF} and 'improve it' giving considerably more accurate total energies and other quantities than DFT is capable of. \texttt{PWscf} users wishing to learn how to use CASINO may like to attend one of the annual \texttt{CASINO} summer schools in Mike Towler's "Apuan Alps Centre for Physics" in Tuscany, Italy. More information can be found at \texttt{http://www.vallico.net/tti/tti.html} \paragraph{Practicalities} The interface between \texttt{PWscf} and \texttt{CASINO} is provided through a file with a standard format containing geometry, basis set, and orbital coefficients, which \texttt{PWscf} will produce on demand. For SCF calculations, the name of this file may be \texttt{pwfn.data}, \texttt{bwfn.data} or \texttt{bwfn.data.b1} depending on user requests (see below). If the files are produced from an MD run, the files have a suffix \texttt{.0001}, \texttt{.0002}, \texttt{.0003} etc. corresponding to the sequence of timesteps. \texttt{CASINO} support is implemented by three routines in the \texttt{PW} directory of the espresso distribution: \begin{itemize} \item \texttt{pw2casino.f90} : the main routine \item \texttt{pw2casino\_write.f90} : writes the \texttt{CASINO} \texttt{xwfn.data} file in various formats \item \texttt{pw2blip.f90} : does the plane-wave to blip conversion, if requested \end{itemize} Relevant behavior of \texttt{PWscf} may be modified through an optional auxiliary input file, named \texttt{pw2casino.dat} (see below). Note that in versions prior to 4.3, this functionality was provided through separate post-processing utilities available in the PP directory: these are no longer supported. For QMC-MD runs, PWSCF etc previously needed to be 'patched' using the patch script PP/pw2casino-MDloop.sh - this is no longer necessary. \paragraph{How to generate \texttt{xwfn.data} files with \texttt{PWscf}} Use the '-pw2casino' option when invoking \pwx, e.g.: \begin{verbatim} pw.x -pw2casino < input_file > output_file \end{verbatim} The \texttt{xfwn.data} file will then be generated automatically. \texttt{PWscf} is capable of doing the plane wave to blip conversion directly (the 'blip' utility provided in the \texttt{CASINO} distribution is not required) and so by default, \texttt{PWscf} produces the 'binary blip wave function' file \texttt{bwfn.data.b1} Various options may be modified by providing a file \texttt{pw2casino.dat} in \texttt{outdir} with the following format: \begin{verbatim} &inputpp blip_convert=.true. blip_binary=.true. blip_single_prec=.false. blip_multiplicity=1.d0 n_points_for_test=0 / \end{verbatim} Some or all of the 5 keywords may be provided, in any order. The default values are as given above (and these are used if the \texttt{pw2casino.dat} file is not present. The meanings of the keywords are as follows: \begin{description} \item [blip\_convert]: reexpand the converged plane-wave orbitals in localized blip functions prior to writing the \texttt{CASINO} wave function file. This is almost always done, since wave functions expanded in blips are considerably more efficient in quantum Monte Carlo calculations. If \texttt{blip\_convert=.false.} a pwfn.data file is produced (orbitals expanded in plane waves); if \texttt{blip\_convert=.true.}, either a \texttt{bwfn.data file} or a \texttt{bwfn.data.b1} file is produced, depending on the value of \texttt{blip\_binary} (see below). \item [blip\_binary]: if true, and if \texttt{blip\_convert} is also true, write the blip wave function as an unformatted binary \texttt{bwfn.data.b1} file. This is much smaller than the formatted \texttt{bwfn.data} file, but is not generally portable across all machines. \item [blip\_single\_prec]: if \texttt{.false.} the orbital coefficients in \texttt{bwfn.data(.b1)} are written out in double precision; if the user runs into hardware limits \texttt{blip\_single\_prec} can be set to \texttt{.true.} in which case the coefficients are written in single precision, reducing the memory and disk requirements at the cost of a small amount of accuracy.. \item [blip\_multiplicity]: the quality of the blip expansion (i.e., the fineness of the blip grid) can be improved by increasing the grid multiplicity parameter given by this keyword. Increasing the grid multiplicity results in a greater number of blip coefficients and therefore larger memory requirements and file size, but the CPU time should be unchanged. For very accurate work, one may want to experiment with grid multiplicity larger that 1.0. Note, however, that it might be more efficient to keep the grid multiplicity to 1.0 and increase the plane wave cutoff instead. \item [n\_points\_for\_test]: if this is set to a positive integer greater than zero, \texttt{PWscf} will sample the wave function, the Laplacian and the gradient at a large number of random points in the simulation cell and compute the overlap of the blip orbitals with the original plane-wave orbitals: $$ \alpha = { \over \sqrt{}} $$ The closer $\alpha$ is to 1, the better the blip representation. By increasing \texttt{blip\_multiplicity}, or by increasing the plane-wave cutoff, one ought to be able to make $\alpha$ as close to 1 as desired. The number of random points used is given by \texttt{n\_points\_for\_test}. \end{description} Finally, note that DFT trial wave functions produced by \texttt{PWSCF} must be generated using the same pseudopotential as in the subsequent QMC calculation. This requires the use of tools to switch between the different file formats used by the two codes. \texttt{CASINO} uses the `\texttt{CASINO} tabulated format', \texttt{PWSCF} officially supports the UPFv2 format (though it will read other `deprecated' formats). This can be done through the `casino2upf' and `upf2casino' tools included in the upftools directory (see the upftools/README file for instructions). An alternative converter `casinogon' is included in the \texttt{CASINO} distribution which produces the deprecated GON format but which can be useful when using non-standard grids. \section{Performances} \subsection{Execution time} The following is a rough estimate of the complexity of a plain scf calculation with \pwx, for NCPP. USPP and PAW give raise additional terms to be calculated, that may add from a few percent up to 30-40\% to execution time. For phonon calculations, each of the $3N_{at}$ modes requires a time of the same order of magnitude of self-consistent calculation in the same system (possibly times a small multiple). For \cpx, each time step takes something in the order of $T_h + T_{orth} + T_{sub}$ defined below. The time required for the self-consistent solution at fixed ionic positions, $T_{scf}$ , is: $$T_{scf} = N_{iter} T_{iter} + T_{init}$$ where $N_{iter}$ = number of self-consistency iterations (\texttt{niter}), $T_{iter}$ = time for a single iteration, $T_{init}$ = initialization time (usually much smaller than the first term). The time required for a single self-consistency iteration $T_{iter}$ is: $$T_{iter} = N_k T_{diag} +T_{rho} + T_{scf}$$ where $N_k$ = number of k-points, $T_{diag}$ = time per Hamiltonian iterative diagonalization, $T_{rho}$ = time for charge density calculation, $T_{scf}$ = time for Hartree and XC potential calculation. The time for a Hamiltonian iterative diagonalization $T_{diag}$ is: $$T_{diag} = N_h T_h + T_{orth} + T_{sub}$$ where $N_h$ = number of $H\psi$ products needed by iterative diagonalization, $T_h$ = time per $H\psi$ product, $T_{orth}$ = CPU time for orthonormalization, $T_{sub}$ = CPU time for subspace diagonalization. The time $T_h$ required for a $H\psi$ product is $$T_h = a_1 M N + a_2 M N_1 N_2 N_3 log(N_1 N_2 N_3 ) + a_3 M P N. $$ The first term comes from the kinetic term and is usually much smaller than the others. The second and third terms come respectively from local and nonlocal potential. $a_1, a_2, a_3$ are prefactors (i.e. small numbers ${\cal O}(1)$), $M$ = number of valence bands (\texttt{nbnd}), $N$ = number of PW (basis set dimension: \texttt{npw}), $N_1, N_2, N_3$ = dimensions of the FFT grid for wavefunctions (\texttt{nr1s}, \texttt{nr2s}, \texttt{nr3s}; $N_1 N_2 N_3 \sim 8N$ ), P = number of pseudopotential projectors, summed on all atoms, on all values of the angular momentum $l$, and $m = 1, . . . , 2l + 1$. The time $T_{orth}$ required by orthonormalization is $$T_{orth} = b_1 N M_x^2$$ and the time $T_{sub}$ required by subspace diagonalization is $$T_{sub} = b_2 M_x^3$$ where $b_1$ and $b_2$ are prefactors, $M_x$ = number of trial wavefunctions (this will vary between $M$ and $2\div4 M$, depending on the algorithm). The time $T_{rho}$ for the calculation of charge density from wavefunctions is $$T_{rho} = c_1 M N_{r1} N_{r2}N_{r3} log(N_{r1} N_{r2} N_{r3}) + c_2 M N_{r1} N_{r2} N_{r3} + T_{us}$$ where $c_1, c_2, c_3$ are prefactors, $N_{r1}, N_{r2}, N_{r3}$ = dimensions of the FFT grid for charge density (\texttt{nr1}, \texttt{nr2}, \texttt{nr3}; $N_{r1} N_{r2} N_{r3} \sim 8N_g$, where $N_g$ = number of G-vectors for the charge density, \texttt{ngm}), and $T_{us}$ = time required by PAW/USPPs contribution (if any). Note that for NCPPs the FFT grids for charge and wavefunctions are the same. The time $T_{scf}$ for calculation of potential from charge density is $$T_{scf} = d_2 N_{r1} N_{r2} N_{r3} + d_3 N_{r1} N_{r2} N_{r3} log(N_{r1} N_{r2} N_{r3} )$$ where $d_1, d_2$ are prefactors. The above estimates are for serial execution. In parallel execution, each contribution may scale in a different manner with the number of processors (see below). \subsection{Memory requirements} A typical self-consistency or molecular-dynamics run requires a maximum memory in the order of $O$ double precision complex numbers, where $$ O = m M N + P N + p N_1 N_2 N_3 + q N_{r1} N_{r2} N_{r3}$$ with $m, p, q$ = small factors; all other variables have the same meaning as above. Note that if the $\Gamma-$point only ($k=0$) is used to sample the Brillouin Zone, the value of N will be cut into half. The memory required by the phonon code follows the same patterns, with somewhat larger factors $m, p, q$. \subsection{File space requirements} A typical \pwx\ run will require an amount of temporary disk space in the order of O double precision complex numbers: $$O = N_k M N + q N_{r1} N_{r2}N_{r3}$$ where $q = 2\times$ \texttt{mixing\_ndim} (number of iterations used in self-consistency, default value = 8) if \texttt{disk\_io} is set to 'high'; q = 0 otherwise. \subsection{Parallelization issues} \label{SubSec:badpara} \pwx\ can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon: \begin{itemize} \item the size and type of the system under study; \item the judicious choice of the various levels of parallelization (detailed in Sec.\ref{SubSec:para}); \item the availability of fast interprocess communications (or lack of it). \end{itemize} Ideally one would like to have linear scaling, i.e. $T \sim T_0/N_p$ for $N_p$ processors, where $T_0$ is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: $O_N \sim O_0/N_p$, so that large-memory systems fit into the RAM of each processor. Parallelization on k-points: \begin{itemize} \item guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools; \item requires little communications (suitable for ethernet communications); \item does not reduce the required memory per processor (unsuitable for large-memory jobs). \end{itemize} Parallelization on PWs: \begin{itemize} \item yields good to very good scaling, especially if the number of processors in a pool is a divisor of $N_3$ and $N_{r3}$ (the dimensions along the z-axis of the FFT grids, \texttt{nr3} and \texttt{nr3s}, which coincide for NCPPs); \item requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors ); \item yields almost linear reduction of memory per processor with the number of processors in the pool. \end{itemize} A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache). VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: $N_p$ should not exceed $N_3$ and $N_{r3}$, and should ideally be no larger than $1/2\div1/4 N_3$ and/or $N_{r3}$. In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time. The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of $M\times M$ matrices, should be determined by observing the performances of \texttt{cdiagh/rdiagh} (\pwx) or \texttt{ortho} (\cpx) for different numbers of processors in the linear-algebra group (must be a square integer). Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (\texttt{http://www.openmpi.org/}) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem. Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the \qe\ distribution do) that runs on processors of the same motherboard. \subsection{Understanding the time report} The time report printed at the end of a \pwx\ run contains a lot of useful information that can be used to understand bottlenecks and improve performances. \subsubsection{Serial execution} The following applies to calculations taking a sizable amount of time (at least minutes): for short calculations (seconds), the time spent in the various initializations dominates. Any discrepancy with the following picture signals some anomaly. \begin{itemize} \item For a typical job with norm-conserving PPs, the total (wall) time is mostly spent in routine "electrons", calculating the self-consistent solution. \item Most of the time spent in "electrons" is used by routine "c\_bands", calculating Kohn-Sham states. "sum\_band" (calculating the charge density), "v\_of\_rho" (calculating the potential), "mix\_rho" (charge density mixing) should take a small fraction of the time. \item Most of the time spent in "c\_bands" is used by routines "cegterg" (k-points) or "regterg" (Gamma-point only), performing iterative diagonalization of the Kohn-Sham Hamiltonian in the PW basis set. \item Most of the time spent in "*egterg" is used by routine "h\_psi", calculating $H\psi$ products. "cdiaghg" (k-points) or "rdiaghg" (Gamma-only), performing subspace diagonalization, should take only a small fraction. \item Among the "general routines", most of the time is spent in FFT on Kohn-Sham states: "fftw", and to a smaller extent in other FFTs, "fft" and "ffts", and in "calbec", calculating $\langle\psi|\beta\rangle$ products. \item Forces and stresses typically take a fraction of the order of 10 to 20\% of the total time. \end{itemize} For PAW and Ultrasoft PP, you will see a larger contribution by "sum\_band" and a nonnegligible "newd" contribution to the time spent in "electrons", but the overall picture is unchanged. You may drastically reduce the overhead of Ultrasoft PPs by using input option "tqr=.true.". \subsubsection{Parallel execution} The various parallelization levels should be used wisely in order to achieve good results. Let us summarize the effects of them on CPU: \begin{itemize} \item Parallelization on FFT speeds up (with varying efficiency) almost all routines, with the notable exception of "cdiaghg" and "rdiaghg". \item Parallelization on k-points speeds up (almost linearly) "c\_bands" and called routines; speeds up partially "sum\_band"; does not speed up at all "v\_of\_rho", "newd", "mix\_rho". \item Linear-algebra parallelization speeds up (not always) "cdiaghg" and "rdiaghg" \item "task-group" parallelization speeds up "fftw" \item OpenMP parallelization speeds up "fftw", plus selected parts of the calculation, plus (depending on the availability of OpenMP-aware libraries) some linear algebra operations \end{itemize} and on RAM: \begin{itemize} \item Parallelization on FFT distributes most arrays across processors (i.e. all G-space and R-spaces arrays) but not all of them (in particular, not subspace Hamiltonian and overlap matrices) \item Linear-algebra parallelization also distributes subspace Hamiltonian and overlap matrices. \item All other parallelization levels do not distribute any memory \end{itemize} In an ideally parallelized run, you should observe the following: \begin{itemize} \item CPU and wall time do not differ by much \item Time usage is still dominated by the same routines as for the serial run \item Routine "fft\_scatter" (called by parallel FFT) takes a sizable part of the time spent in FFTs but does not dominate it. \end{itemize} \paragraph{ Quick estimate of parallelization parameters} You need to know \begin{itemize} \item the number of k-points, $N_k$ \item the third dimension of the (smooth) FFT grid, $N_3$ \item the number of Kohn-Sham states, $M$ \end{itemize} These data allow to set bounds on parallelization: \begin{itemize} \item k-point parallelization is limited to $N_k$ processor pools: \texttt{-npool Nk} \item FFT parallelization shouldn't exceed $N_3$ processors, i.e. if you run with \texttt{-npool Nk}, use $N=N_k\times N_3$ MPI processes at most (\texttt{mpirun -np N ...}) \item Unless $M$ is a few hundreds or more, don't bother using linear-algebra parallelization \end{itemize} You will need to experiment a bit to find the best compromise. In order to have good load balancing among MPI processes, the number of k-point pools should be an integer divisor of $N_k$; the number of processors for FFT parallelization should be an integer divisor of $N_3$. \paragraph{Typical symptoms of bad/inadequate parallelization} \begin{itemize} \item {\em a large fraction of time is spent in "v\_of\_rho", "newd", "mix\_rho"}, or\\ {\em the time doesn't scale well or doesn't scale at all by increasing the number of processors for k-point parallelization.} Solution: \begin{itemize} \item use (also) FFT parallelization if possible \end{itemize} \item {\em a disproportionate time is spent in "cdiaghg"/"rdiaghg".} Solutions: \begin{itemize} \item use (also) k-point parallelization if possible \item use linear-algebra parallelization, with scalapack if possible. \end{itemize} \item {\em a disproportionate time is spent in "fft\_scatter"}, or {\em in "fft\_scatter" the difference between CPU and wall time is large.} Solutions: \begin{itemize} \item if you do not have fast (better than Gigabit ethernet) communication hardware, do not try FFT parallelization on more than 4 or 8 procs. \item use (also) k-point parallelization if possible \end{itemize} \item {\em the time doesn't scale well or doesn't scale at all by increasing the number of processors for FFT parallelization.} Solutions: \begin{itemize} \item use "task groups": try command-line option \texttt{-ntg 4} or \texttt{-ntg 8}. This may improve your scaling. \end{itemize} \end{itemize} \section{Troubleshooting} \paragraph{pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start} Possible reasons: \begin{itemize} \item If you are running on the same machines on which the code was compiled, this is a library configuration problem. The solution is machine-dependent. On Linux, find the path to the missing libraries; then either add it to file \texttt{/etc/ld.so.conf} and run \texttt{ldconfig} (must be done as root), or add it to variable LD\_LIBRARY\_PATH and export it. Another possibility is to load non-shared version of libraries (ending with .a) instead of shared ones (ending with .so). \item If you are {\em not} running on the same machines on which the code was compiled: you need either to have the same shared libraries installed on both machines, or to load statically all libraries (using appropriate \configure\ or loader options). The same applies to Beowulf-style parallel machines: the needed shared libraries must be present on all PCs. \end{itemize} \paragraph{errors in examples with parallel execution} If you get error messages in the example scripts -- i.e. not errors in the codes -- on a parallel machine, such as e.g.: {\em run example: -n: command not found} you may have forgotten the " " in the definitions of PARA\_PREFIX and PARA\_POSTFIX. \paragraph{pw.x prints the first few lines and then nothing happens (parallel execution)} If the code looks like it is not reading from input, maybe it isn't: the MPI libraries need to be properly configured to accept input redirection. Use \texttt{pw.x -inp} and the input file name (see Sec.\ref{SubSec:para}), or inquire with your local computer wizard (if any). Since v.4.2, this is for sure the reason if the code stops at {\em Waiting for input...}. \paragraph{pw.x stops with error while reading data} There is an error in the input data, typically a misspelled namelist variable, or an empty input file. Unfortunately with most compilers the code just reports {\em Error while reading XXX namelist} and no further useful information. Here are some more subtle sources of trouble: \begin{itemize} \item Out-of-bound indices in dimensioned variables read in the namelists; \item Input data files containing \^{}M (Control-M) characters at the end of lines, or non-ASCII characters (e.g. non-ASCII quotation marks, that at a first glance may look the same as the ASCII character). Typically, this happens with files coming from Windows or produced with "smart" editors. \end{itemize} Both may cause the code to crash with rather mysterious error messages. If none of the above applies and the code stops at the first namelist (\&CONTROL) and you are running in parallel, see the previous item. \paragraph{pw.x mumbles something like {\em cannot recover} or {\em error reading recover file}} You are trying to restart from a previous job that either produced corrupted files, or did not do what you think it did. No luck: you have to restart from scratch. \paragraph{pw.x stops with {\em inconsistent DFT} error} As a rule, the flavor of DFT used in the calculation should be the same as the one used in the generation of pseudopotentials, which should all be generated using the same flavor of DFT. This is actually enforced: the type of DFT is read from pseudopotential files and it is checked that the same DFT is read from all PPs. If this does not hold, the code stops with the above error message. Use -- at your own risk -- input variable \texttt{input\_dft} to force the usage of the DFT you like. \paragraph{pw.x stops with error in cdiaghg or rdiaghg} Possible reasons for such behavior are not always clear, but they typically fall into one of the following cases: \begin{itemize} \item serious error in data, such as bad atomic positions or bad crystal structure/supercell; \item a bad pseudopotential, typically with a ghost, or a USPP giving non-positive charge density, leading to a violation of positiveness of the S matrix appearing in the USPP formalism; \item a failure of the algorithm performing subspace diagonalization. The LAPACK algorithms used by \texttt{cdiaghg} (for generic k-points) or \texttt{rdiaghg} (for $\Gamma-$only case) are very robust and extensively tested. Still, it may seldom happen that such algorithms fail. Try to use conjugate-gradient diagonalization (\texttt{diagonalization='cg'}), a slower but very robust algorithm, and see what happens. \item buggy libraries. Machine-optimized mathematical libraries are very fast but sometimes not so robust from a numerical point of view. Suspicious behavior: you get an error that is not reproducible on other architectures or that disappears if the calculation is repeated with even minimal changes in parameters. Known cases: HP-Compaq alphas with cxml libraries, Mac OS-X with system BLAS/LAPACK. Try to use compiled BLAS and LAPACK (or better, ATLAS) instead of machine-optimized libraries. \end{itemize} \paragraph{pw.x crashes with no error message at all} This happens quite often in parallel execution, or under a batch queue, or if you are writing the output to a file. When the program crashes, part of the output, including the error message, may be lost, or hidden into error files where nobody looks into. It is the fault of the operating system, not of the code. Try to run interactively and to write to the screen. If this doesn't help, move to next point. \paragraph{pw.x crashes with {\em segmentation fault} or similarly obscure messages} Possible reasons: \begin{itemize} \item too much RAM memory or stack requested (see next item). \item if you are using highly optimized mathematical libraries, verify that they are designed for your hardware. \item If you are using aggressive optimization in compilation, verify that you are using the appropriate options for your machine \item The executable was not properly compiled, or was compiled on a different and incompatible environment. \item buggy compiler or libraries: this is the default explanation if you have problems with the provided tests and examples. \end{itemize} \paragraph{pw.x works for simple systems, but not for large systems or whenever more RAM is needed} Possible solutions: \begin{itemize} \item increase the amount of RAM you are authorized to use (which may be much smaller than the available RAM). Ask your system administrator if you don't know what to do. In some cases the stack size can be a source of problems: if so, increase it with command \texttt{limits} or \texttt{ulimit}). \item reduce \texttt{nbnd} to the strict minimum, or reduce the cutoffs, or the cell size , or a combination of them \item use conjugate-gradient (\texttt{diagonalization='cg'}: slow but very robust): it requires less memory than the default Davidson algorithm. If you stick to the latter, use \texttt{diago\_david\_ndim=2}. \item in parallel execution, use more processors, or use the same number of processors with less pools. Remember that parallelization with respect to k-points (pools) does not distribute memory: parallelization with respect to R- (and G-) space does. \item buggy or weird-behaving compiler. \end{itemize} \paragraph{pw.x crashes with {\em error in davcio}} \texttt{davcio} is the routine that performs most of the I/O operations (read from disk and write to disk) in \pwx; {\em error in davcio} means a failure of an I/O operation. \begin{itemize} \item If the error is reproducible and happens at the beginning of a calculation: check if you have read/write permission to the scratch directory specified in variable \texttt{outdir}. Also: check if there is enough free space available on the disk you are writing to, and check your disk quota (if any). \item If the error is irreproducible: your might have flaky disks; if you are writing via the network using NFS (which you shouldn't do anyway), your network connection might be not so stable, or your NFS implementation is unable to work under heavy load \item If it happens while restarting from a previous calculation: you might be restarting from the wrong place, or from wrong data, or the files might be corrupted. \item If you are running two or more instances of \pwx\ at the same time, check if you are using the same file names in the same temporary directory. For instance, if you submit a series of jobs to a batch queue, do not use the same \texttt{outdir} and the same \texttt{prefix}, unless you are sure that one job doesn't start before a preceding one has finished. \end{itemize} \paragraph{pw.x crashes in parallel execution with an obscure message related to MPI errors} Random crashes due to MPI errors have often been reported, typically in Linux PC clusters. We cannot rule out the possibility that bugs in \qe\ cause such behavior, but we are quite confident that the most likely explanation is a hardware problem (defective RAM for instance) or a software bug (in MPI libraries, compiler, operating system). Debugging a parallel code may be difficult, but you should at least verify if your problem is reproducible on different architectures/software configurations/input data sets, and if there is some particular condition that activates the bug. If this doesn't seem to happen, the odds are that the problem is not in \qe. You may still report your problem, but consider that reports like {\em it crashes with...(obscure MPI error)} contain 0 bits of information and are likely to get 0 bits of answers. \paragraph{pw.x stops with error message {\em the system is metallic, specify occupations}} You did not specify state occupations, but you need to, since your system appears to have an odd number of electrons. The variable controlling how metallicity is treated is \texttt{occupations} in namelist \&SYSTEM. The default, \texttt{occupations='fixed'}, occupies the lowest (N electrons)/2 states and works only for insulators with a gap. In all other cases, use \texttt{'smearing'} (\texttt{'tetrahedra'} for DOS calculations). See input reference documentation for more details. \paragraph{pw.x stops with {\em internal error: cannot bracket Ef}} Possible reasons: \begin{itemize} \item serious error in data, such as bad number of electrons, insufficient number of bands, absurd value of broadening; \item the Fermi energy is found by bisection assuming that the integrated DOS N(E ) is an increasing function of the energy. This is not guaranteed for Methfessel-Paxton smearing of order 1 and can give problems when very few k-points are used. Use some other smearing function: simple Gaussian broadening or, better, Marzari-Vanderbilt 'cold smearing'. \end{itemize} \paragraph{pw.x yields {\em internal error: cannot bracket Ef} message but does not stop} This may happen under special circumstances when you are calculating the band structure for selected high-symmetry lines. The message signals that occupations and Fermi energy are not correct (but eigenvalues and eigenvectors are). Remove \texttt{occupations='tetrahedra'} in the input data to get rid of the message. \paragraph{pw.x runs but nothing happens} Possible reasons: \begin{itemize} \item in parallel execution, the code died on just one processor. Unpredictable behavior may follow. \item in serial execution, the code encountered a floating-point error and goes on producing NaNs (Not a Number) forever unless exception handling is on (and usually it isn't). In both cases, look for one of the reasons given above. \item maybe your calculation will take more time than you expect. \end{itemize} \paragraph{pw.x yields weird results} If results are really weird (as opposed to misinterpreted): \begin{itemize} \item if this happens after a change in the code or in compilation or preprocessing options, try \texttt{make clean}, recompile. The \texttt{make} command should take care of all dependencies, but do not rely too heavily on it. If the problem persists, recompile with reduced optimization level. \item maybe your input data are weird. \end{itemize} \paragraph{FFT grid is machine-dependent} Yes, they are! The code automatically chooses the smallest grid that is compatible with the specified cutoff in the specified cell, and is an allowed value for the FFT library used. Most FFT libraries are implemented, or perform well, only with dimensions that factors into products of small numbers (2, 3, 5 typically, sometimes 7 and 11). Different FFT libraries follow different rules and thus different dimensions can result for the same system on different machines (or even on the same machine, with a different FFT). See function allowed in \texttt{Modules/fft\_scalar.f90}. As a consequence, the energy may be slightly different on different machines. The only piece that explicitly depends on the grid parameters is the XC part of the energy that is computed numerically on the grid. The differences should be small, though, especially for LDA calculations. Manually setting the FFT grids to a desired value is possible, but slightly tricky, using input variables \texttt{nr1}, \texttt{nr2}, \texttt{nr3} and \texttt{nr1s}, \texttt{nr2s}, \texttt{nr3s}. The code will still increase them if not acceptable. Automatic FFT grid dimensions are slightly overestimated, so one may try {\em very carefully} to reduce them a little bit. The code will stop if too small values are required, it will waste CPU time and memory for too large values. Note that in parallel execution, it is very convenient to have FFT grid dimensions along $z$ that are a multiple of the number of processors. \paragraph{pw.x does not find all the symmetries you expected} \pwx\ determines first the symmetry operations (rotations) of the Bravais lattice; then checks which of these are symmetry operations of the system (including if needed fractional translations). This is done by rotating (and translating if needed) the atoms in the unit cell and verifying if the rotated unit cell coincides with the original one. Assuming that your coordinates are correct (please carefully check!), you may not find all the symmetries you expect because: \begin{itemize} \item the number of significant figures in the atomic positions is not large enough. In file \texttt{PW/eqvect.f90}, the variable \texttt{accep} is used to decide whether a rotation is a symmetry operation. Its current value ($10^{-5}$) is quite strict: a rotated atom must coincide with another atom to 5 significant digits. You may change the value of accep and recompile. \item they are not acceptable symmetry operations of the Bravais lattice. This is the case for C$_{60}$, for instance: the $I_h$ icosahedral group of C$_{60}$ contains 5-fold rotations that are incompatible with translation symmetry. \item the system is rotated with respect to symmetry axis. For instance: a C$_{60}$ molecule in the fcc lattice will have 24 symmetry operations ($T_h$ group) only if the double bond is aligned along one of the crystal axis; if C$_{60}$ is rotated in some arbitrary way, \pwx\ may not find any symmetry, apart from inversion. \item they contain a fractional translation that is incompatible with the FFT grid (see next paragraph). Note that if you change cutoff or unit cell volume, the automatically computed FFT grid changes, and this may explain changes in symmetry (and in the number of k-points as a consequence) for no apparent good reason (only if you have fractional translations in the system, though). \item a fractional translation, without rotation, is a symmetry operation of the system. This means that the cell is actually a supercell. In this case, all symmetry operations containing fractional translations are disabled. The reason is that in this rather exotic case there is no simple way to select those symmetry operations forming a true group, in the mathematical sense of the term. \end{itemize} \paragraph{{\em Warning: symmetry operation \# N not allowed}} This is not an error. If a symmetry operation contains a fractional translation that is incompatible with the FFT grid, it is discarded in order to prevent problems with symmetrization. Typical fractional translations are 1/2 or 1/3 of a lattice vector. If the FFT grid dimension along that direction is not divisible respectively by 2 or by 3, the symmetry operation will not transform the FFT grid into itself. Solution: you can either force your FFT grid to be commensurate with fractional translation (set variables \texttt{nr1}, \texttt{nr2}, \texttt{nr3} to suitable values), or set variable \texttt{use\_all\_frac} to \texttt{.true.}, in namelist \&SYSTEM. Note however that the latter is incompatible with hybrid functionals and with phonon calculations. \paragraph{Self-consistency is slow or does not converge at all} Bad input data will often result in bad scf convergence. Please carefully check your structure first, e.g. using XCrySDen. Assuming that your input data is sensible : \begin{enumerate} \item Verify if your system is metallic or is close to a metallic state, especially if you have few k-points. If the highest occupied and lowest unoccupied state(s) keep exchanging place during self-consistency, forget about reaching convergence. A typical sign of such behavior is that the self-consistency error goes down, down, down, than all of a sudden up again, and so on. Usually one can solve the problem by adding a few empty bands and a small broadening. \item Reduce \texttt{mixing\_beta} to $\sim 0.3\div 0.1$ or smaller. Try the \texttt{mixing\_mode} value that is more appropriate for your problem. For slab geometries used in surface problems or for elongated cells, \texttt{mixing\_mode='local-TF'} should be the better choice, dampening "charge sloshing". You may also try to increase \texttt{mixing\_ndim} to more than 8 (default value). Beware: this will increase the amount of memory you need. \item Specific to USPP: the presence of negative charge density regions due to either the pseudization procedure of the augmentation part or to truncation at finite cutoff may give convergence problems. Raising the \texttt{ecutrho} cutoff for charge density will usually help. \end{enumerate} \paragraph{I do not get the same results in different machines!} If the difference is small, do not panic. It is quite normal for iterative methods to reach convergence through different paths as soon as anything changes. In particular, between serial and parallel execution there are operations that are not performed in the same order. As the numerical accuracy of computer numbers is finite, this can yield slightly different results. It is also normal that the total energy converges to a better accuracy than its terms, since only the sum is variational, i.e. has a minimum in correspondence to ground-state charge density. Thus if the convergence threshold is for instance $10^{-8}$, you get 8-digit accuracy on the total energy, but one or two less on other terms (e.g. XC and Hartree energy). It this is a problem for you, reduce the convergence threshold for instance to $10^{-10}$ or $10^{-12}$. The differences should go away (but it will probably take a few more iterations to converge). \paragraph{Execution time is time-dependent!} Yes it is! On most machines and on most operating systems, depending on machine load, on communication load (for parallel machines), on various other factors (including maybe the phase of the moon), reported execution times may vary quite a lot for the same job. \paragraph{{\em Warning : N eigenvectors not converged}} This is a warning message that can be safely ignored if it is not present in the last steps of self-consistency. If it is still present in the last steps of self-consistency, and if the number of unconverged eigenvector is a significant part of the total, it may signal serious trouble in self-consistency (see next point) or something badly wrong in input data. \paragraph{{\em Warning : negative or imaginary charge...}, or {\em ...core charge ...}, or {\em npt with rhoup$<0$...} or {\em rho dw$<0$...}} These are warning messages that can be safely ignored unless the negative or imaginary charge is sizable, let us say of the order of 0.1. If it is, something seriously wrong is going on. Otherwise, the origin of the negative charge is the following. When one transforms a positive function in real space to Fourier space and truncates at some finite cutoff, the positive function is no longer guaranteed to be positive when transformed back to real space. This happens only with core corrections and with USPPs. In some cases it may be a source of trouble (see next point) but it is usually solved by increasing the cutoff for the charge density. \paragraph{Structural optimization is slow or does not converge or ends with a mysterious bfgs error} Typical structural optimizations, based on the BFGS algorithm, converge to the default thresholds ( etot\_conv\_thr and forc\_conv\_thr ) in 15-25 BFGS steps (depending on the starting configuration). This may not happen when your system is characterized by "floppy" low-energy modes, that make very difficult (and of little use anyway) to reach a well converged structure, no matter what. Other possible reasons for a problematic convergence are listed below. Close to convergence the self-consistency error in forces may become large with respect to the value of forces. The resulting mismatch between forces and energies may confuse the line minimization algorithm, which assumes consistency between the two. The code reduces the starting self-consistency threshold conv thr when approaching the minimum energy configuration, up to a factor defined by \texttt{upscale}. Reducing \texttt{conv\_thr} (or increasing \texttt{upscale}) yields a smoother structural optimization, but if \texttt{conv\_thr} becomes too small, electronic self-consistency may not converge. You may also increase variables \texttt{etot\_conv\_thr} and \texttt{forc\_conv\_thr} that determine the threshold for convergence (the default values are quite strict). A limitation to the accuracy of forces comes from the absence of perfect translational invariance. If we had only the Hartree potential, our PW calculation would be translationally invariant to machine precision. The presence of an XC potential introduces Fourier components in the potential that are not in our basis set. This loss of precision (more serious for gradient-corrected functionals) translates into a slight but detectable loss of translational invariance (the energy changes if all atoms are displaced by the same quantity, not commensurate with the FFT grid). This sets a limit to the accuracy of forces. The situation improves somewhat by increasing the \texttt{ecutrho} cutoff. \paragraph{pw.x stops during variable-cell optimization in checkallsym with {\em non orthogonal operation} error} Variable-cell optimization may occasionally break the starting symmetry of the cell. When this happens, the run is stopped because the number of k-points calculated for the starting configuration may no longer be suitable. Possible solutions: \begin{itemize} \item start with a nonsymmetric cell; \item use a symmetry-conserving algorithm: the Wentzcovitch algorithm (\texttt{cell dynamics='damp-w'}) should not break the symmetry. \end{itemize} \subsection{Compilation problems with \texttt{PLUMED}} \paragraph{xlc compiler} If you get an error message like: \begin{verbatim} Operation between types "char**" and "int" is not allowed. \end{verbatim} change in file \texttt{clib/metadyn.h} \begin{verbatim} #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(ptr)) calloc(nelem, sizeof(*(ptr)))) #define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,(nelem)*sizeof(*(ptr))) \end{verbatim} with \begin{verbatim} #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) calloc(nelem, sizeof(*(ptr)))) #define srenew(ptr,nelem) (ptr)= (void*) realloc(ptr,(nelem)*sizeof(*(ptr))) \end{verbatim} \paragraph{Calling C from fortran} PLUMED assumes that fortran compilers add a single \texttt{\_} at the end of C routines. You may get an error message as : \begin{verbatim} ERROR: Undefined symbol: .init_metadyn ERROR: Undefined symbol: .meta_force_calculation \end{verbatim} eliminate the \texttt{\_} from the definition of init\_metadyn and meta\_force\_calculation, i. e. change at line 529 \begin{verbatim} void meta_force_calculation_(real *cell, int *istep, real *xxx, real *yyy, real *zzz, \end{verbatim} with \begin{verbatim} void meta_force_calculation(real *cell, int *istep, real *xxx, real *yyy, real *zzz, \end{verbatim}, and at line 961 \begin{verbatim} void init_metadyn_(int *atoms, real *ddt, real *mass, void init_metadyn_(int *atoms, real *ddt, real *mass, \end{verbatim} \end{document} espresso-5.0.2/PW/Doc/INPUT_PW.def0000644000700200004540000024207212053165077015415 0ustar marsamoscminput_description -distribution {Quantum Espresso} -package PWscf -program pw.x { toc {} intro { Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] } # # namelist CONTROL # namelist CONTROL { var calculation -type CHARACTER { default { 'scf' } info { a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). } } var title -type CHARACTER { default {' '} info { reprinted on output. } } var verbosity -type CHARACTER { default { 'low' } info { Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' } } var restart_mode -type CHARACTER { default { 'from_scratch' } info { 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one. See also startingpot, startingwfc } } var wf_collect -type LOGICAL { default { .FALSE. } info { This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory outdir/prefix.save, one wavefunction per k-point in subdirs K000001/, K000001/, etc. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Useful if you do not need the wavefunction or if you want to reduce the I/O or the disk occupancy. Note that this flag has no effect on reading, only on writing. } } var nstep -type INTEGER { info { number of ionic + electronic steps } default { 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases } } var iprint -type INTEGER { default { write only at convergence } info { band energies are written every iprint iterations } } var tstress -type LOGICAL { default { .false. } info { calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' } } var tprnfor -type LOGICAL { info { print forces. Set to .TRUE. if calculation='relax','md','vc-md' } } var dt -type REAL { default { 20.D0 } info { time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) } } var outdir -type CHARACTER { default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } info { input, temporary, output files are found in this directory, see also 'wfcdir' } } var wfcdir -type CHARACTER { default { same as outdir } info { this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). The idea here is to be able to separately store the largest files, while the files necessary for restarting still go into 'outdir' (for now only works for stand alone PW ) } } var prefix -type CHARACTER { default { 'pwscf' } info { prepended to input/output filenames: prefix.wfc, prefix.rho, etc. } } var lkpoint_dir -type LOGICAL { default { .true. } info { If .false. a subdirectory for each k_point is not opened in the prefix.save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with wf_collect } } var max_seconds -type REAL { default { 1.D+7, or 150 days, i.e. no time limit } info { jobs stops after max_seconds CPU time } } var etot_conv_thr -type REAL { default { 1.0D-4 } info { convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. Note that etot_conv_thr is extensive, like the total energy. See also forc_conv_thr - both criteria must be satisfied } } var forc_conv_thr -type REAL { default { 1.0D-3 } info { convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr (note that the latter is extensive, forc_conv_thr is not) - both criteria must be satisfied } } var disk_io -type CHARACTER { default { 'default' } info { Specifies the amount of disk I/O activity 'high': save all data at each SCF step 'default': save wavefunctions at each SCF step unless there is a single k-point per process 'low' : store wfc in memory, save only at the end 'none': do not save wfc, not even at the end (guaranteed to work only for 'scf', 'nscf', 'bands' calculations) If restarting from an interrupted calculation, the code will try to figure out what is available on disk. The more you write, the more complete the restart will be. } } var pseudo_dir -type CHARACTER { default { value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise } info { directory containing pseudopotential files } } var tefield -type LOGICAL { default { .FALSE. } info { If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables edir, eamp, emaxpos, eopreg for the form and size of the added potential. } } var dipfield -type LOGICAL { default { .FALSE. } info { If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables edir, emaxpos, eopreg for the form of the correction, that must be used only in a slab geometry, for surface calculations, with the discontinuity in the empty space. } } var lelfield -type LOGICAL { default { .FALSE. } info { If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! } } var nberrycyc -type INTEGER { default { 1 } info { In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density } } var lorbm -type LOGICAL { default { .FALSE. } info { If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is nscf and should be performed on an automatically generated uniform grid of k points. Works with norm-conserving pseudopotentials. } } var lberry -type LOGICAL { default { .FALSE. } info { If .TRUE. perform a Berry phase calculation See the header of PW/bp_c_phase.f90 for documentation } } var gdir -type INTEGER { info { For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.), gdir is the direction of the field } } var nppstr -type INTEGER { info { For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield==.true.) } } } # # NAMELIST &SYSTEM # namelist SYSTEM { var ibrav -type INTEGER { status { REQUIRED } info { Bravais-lattice index. In all cases except ibrav=0, either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc] must be specified: see their description. For ibrav=0 you may specify the lattice parameter celldm(1) or a. ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b } } group { label { Either: } dimension celldm -start 1 -end 6 -type REAL { see { ibrav } info { Crystallographic constants - see description of ibrav variable. * alat = celldm(1) is the lattice parameter "a" (in BOHR) * only needed celldm (depending on ibrav) must be specified * if ibrav=0 only alat = celldm(1) is used (if present) } } label { Or: } vargroup -type REAL { var A var B var C var cosAB var cosAC var cosBC info { Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) specify either these OR celldm but NOT both. The axis are chosen according to the value of ibrav. If ibrav is not specified, the axis are taken from card CELL_PARAMETERS and only a is used as lattice parameter. } } } var nat -type INTEGER { status { REQUIRED } info { number of atoms in the unit cell } } var ntyp -type INTEGER { status { REQUIRED } info { number of types of atoms in the unit cell } } var nbnd -type INTEGER { default { for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) } info { number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled } } var tot_charge -type REAL { default { 0.0 } info { total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. } } var tot_magnetization -type REAL { default { -1 [unspecified] } info { total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. } } dimension starting_magnetization -start 1 -end ntyp -type REAL { info { starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. } } var ecutwfc -type REAL { status { REQUIRED } info { kinetic energy cutoff (Ry) for wavefunctions } } var ecutrho -type REAL { default { 4 * ecutwfc } info { kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. } } var ecutfock -type REAL { default { ecutrho } info { kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. } } vargroup -type INTEGER { var nr1 var nr2 var nr3 info { three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") } } vargroup -type INTEGER { var nr1s var nr2s var nr3s info { three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) } } var nosym -type LOGICAL { default { .FALSE. } info { if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms } } var nosym_evc -type LOGICAL { default { .FALSE. } info { if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. } } var noinv -type LOGICAL { default { .FALSE. } info { if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation } } var no_t_rev -type LOGICAL { default { .FALSE. } info { if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. } } var force_symmorphic -type LOGICAL { default { .FALSE. } info { if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation } } var use_all_frac -type LOGICAL { default { .FALSE. } info { if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. } } var occupations -type CHARACTER { info { 'smearing': gaussian smearing for metals requires a value for degauss 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file. Requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". } } var one_atom_occupations -type LOGICAL { default { .FALSE. } info { This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. } } var starting_spin_angle -type LOGICAL { default { .FALSE. } info { In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. } } var degauss -type REAL { default { 0.D0 Ry } info { value of the gaussian spreading (Ry) for brillouin-zone integration in metals. } } var smearing -type CHARACTER { default { 'gaussian' } info { 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function } } var nspin -type INTEGER { default { 1 } info { nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead } } var noncolin -type LOGICAL { default { .false. } info { if .true. the program will perform a noncollinear calculation. } } var ecfixed -type REAL { default { 0.0 }; see { q2sigma } } var qcutz -type REAL { default { 0.0 }; see { q2sigma } } var q2sigma -type REAL { default { 0.1 } info { ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) } } var input_dft -type CHARACTER { default { read from pseudopotential files } info { Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! } } var exx_fraction -type REAL { default { it depends on the specified functional } info { Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. } } var screening_parameter -type REAL { default {0.106} info { screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. } } var exxdiv_treatment -type CHARACTER { default {gygi-baldereschi} info { Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 } } var ecutvcut -type REAL { default { 0.0 Ry }; see { exxdiv_treatment } info { Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. } } vargroup -type INTEGER { var nqx1 var nqx2 var nqx3 info { three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. } } var lda_plus_u -type LOGICAL { default { .FALSE. } status { DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify PW/set_hubbard_l.f90 and PW/tabd.f90 if you plan to use DFT+U with an element that is not configured there. } info { Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J } } var lda_plus_u_kind -type INTEGER { default { 0 } info { Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J } } dimension Hubbard_U -start 1 -end ntyp -type REAL { default { 0.D0 for all species } info { Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation } } dimension Hubbard_J0 -start 1 -end ntype -type REAL { default { 0.D0 for all species } info { Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. } } dimension Hubbard_alpha -start 1 -end ntyp -type REAL { default { 0.D0 for all species } info { Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) } } dimension Hubbard_beta -start 1 -end ntyp -type REAL { default { 0.D0 for all species } info { Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). } } var Hubbard_J(i,ityp) { default { 0.D0 for all species } info { Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. } } var starting_ns_eigenvalue(m,ispin,I) -type REAL { default { -1.d0 that means NOT SET } info { In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. } } var U_projection_type -type CHARACTER { default { 'atomic' } info { Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. } } var edir -type INTEGER { info { The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. } } var emaxpos -type REAL { default { 0.5D0 } info { Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. } } var eopreg -type REAL { default { 0.1D0 } info { Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. } } var eamp -type REAL { default { 0.001 a.u. } info { Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. } } dimension angle1 -start 1 -end ntyp -type REAL { info { The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. } } dimension angle2 -start 1 -end ntyp -type REAL { info { The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. } } var constrained_magnetization -type CHARACTER { see { lambda, fixed_magnetization } default { 'none' } info { Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) } } dimension fixed_magnetization -start 1 -end 3 -type REAL { see { constrained_magnetization } default { 0.d0 } info { value of the total magnetization to be maintained fixed when constrained_magnetization='total' } } var lambda -type REAL { see { constrained_magnetization } default { 1.d0 } info { parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda } } var report -type INTEGER { default { 1 } info { It is the number of iterations after which the program write all the atomic magnetic moments. } } var lspinorb -type LOGICAL { info { if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. } } var assume_isolated -type CHARACTER { default { 'none' } info { Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'dcc' : density counter charge correction CURRENTLY DISABLED The electrostatic problem is solved in open boundary conditions (OBC). This approach provides the correct scf potential and energies (not just a correction to energies as 'mp'). BEWARE: the molecule should be centered around the middle of the cell, not around the origin (0,0,0). Theory described in: I.Dabo, B.Kozinsky, N.E.Singh-Miller and N.Marzari, "Electrostatic periodic boundary conditions and real-space corrections", Phys.Rev.B 77, 115139 (2008) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction. As for the dcc correction the scf potential is also corrected. Implementation adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. } } var esm_bc -type CHARACTER { see { assume_isolated } default { 'pbc' } info { If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal } } var esm_w -type REAL { see { assume_isolated } default { 0.d0 } info { If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). } } var esm_efield -type REAL { see { assume_isolated, esm_bc } default { 0.d0 } info { If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. } } var esm_nfit -type INTEGER { see { assume_isolated } default { 4 } info { If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. } } var london -type LOGICAL { default { .FALSE. } info { if .TRUE. compute semi-empirical dispersion term (DFT-D). See S. Grimme, J. Comp. Chem. 27, 1787 (2006), and V. Barone et al., J. Comp. Chem. 30, 934 (2009). } } var london_s6 -type REAL { default { 0.75 } info { global scaling parameter for DFT-D. Default is good for PBE. } } var london_rcut -type REAL { default { 200 } info { cutoff radius (a.u.) for dispersion interactions } } } # # namelist ELECTRONS # namelist ELECTRONS { var electron_maxstep -type INTEGER { default { 100 } info { maximum number of iterations in a scf step } } var scf_must_converge -type LOGICAL { default { .TRUE. } info { If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. } } var conv_thr -type REAL { default { 1.D-6 } info { Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy) } } var adaptive_thr -type LOGICAL { default { .FALSE } info { If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. } } var conv_thr_init -type REAL { default { 1.D-3 } info { When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. } } var conv_thr_multi -type REAL { default { 1.D-1 } info { When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: min( conv_thr, conv_thr_multi * dexx ) } } var mixing_mode -type CHARACTER { default { 'plain' } info { 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) } } var mixing_beta -type REAL { default { 0.7D0 } info { mixing factor for self-consistency } } var mixing_ndim -type INTEGER { default { 8 } info { number of iterations used in mixing scheme } } var mixing_fixed_ns -type INTEGER { default { 0 } info { For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). } } var diagonalization -type CHARACTER { default { 'david' } info { 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. } } var ortho_para -type INTEGER { default { 0 } status { OBSOLETE: use command-line option " -ndiag XX" instead } info { } } var diago_thr_init -type REAL { info { Convergence threshold for the first iterative diagonalization (the check is on eigenvalue convergence). For scf calculations, the default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold (ethr) is automatically reduced when approaching convergence. For non-scf calculations, this is the threshold used in the iterative diagonalization. The default is conv_thr /N elec. } } var diago_cg_maxiter -type INTEGER { info { For conjugate gradient diagonalization: max number of iterations } } var diago_david_ndim -type INTEGER { default { 4 } info { For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible } } var diago_full_acc -type LOGICAL { default { .FALSE. } info { If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). } } var efield -type REAL { default { 0.D0 } info { Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. } } dimension efield_cart -start 1 -end 3 -type REAL { default { (0.D0, 0.D0, 0.D0) } info { Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. } } var startingpot -type CHARACTER { info { 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. } } var startingwfc -type CHARACTER { default { 'atomic+random' } info { 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" } } var tqr -type LOGICAL { default { .FALSE. } info { If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! } } } # # NAMELIST IONS # namelist IONS { label { input this namelist only if calculation = 'relax', 'md', 'vc-relax', 'vc-md' } var ion_dynamics -type CHARACTER { info { Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation } } var ion_positions -type CHARACTER { default { 'default' } info { 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. } } var phase_space -type CHARACTER { default { 'full' } info { 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) } } var pot_extrapolation -type CHARACTER { default { 'atomic' } info { Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations } } var wfc_extrapolation -type CHARACTER { default { 'none' } info { Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations } } var remove_rigid_rot -type LOGICAL { default { .FALSE. } info { This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. } } group { label { keywords used for molecular dynamics } var ion_temperature -type CHARACTER { default { 'not_controlled' } info { 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled } } var tempw -type REAL { default { 300.D0 } info { Starting temperature (Kelvin) in MD runs target temperature for most thermostats. } } var tolp -type REAL { default { 100.D0 } info { Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. } } var delta_t -type REAL { default { 1.D0 } info { if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). } } var nraise -type INTEGER { default { 1 } info { if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise } } var refold_pos -type LOGICAL { default { .FALSE. } info { This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. } } } group { label { keywords used only in BFGS calculations } var upscale -type REAL { default { 100.D0 } info { Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. } } var bfgs_ndim -type INTEGER { default { 1 } info { Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) } } var trust_radius_max -type REAL { default { 0.8D0 } info { Maximum ionic displacement in the structural relaxation. (bfgs only) } } var trust_radius_min -type REAL { default { 1.D-3 } info { Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) } } var trust_radius_ini -type REAL { default { 0.5D0 } info { Initial ionic displacement in the structural relaxation. (bfgs only) } } var w_1 -type REAL { default { 0.01D0 }; see { w_2 } } var w_2 -type REAL { default { 0.5D0 } info { Parameters used in line search based on the Wolfe conditions. (bfgs only) } } } } # # namelist CELL # namelist CELL { label { input this namelist only if calculation = 'vc-relax', 'vc-md' } var cell_dynamics -type CHARACTER { info { Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian } } var press -type REAL { default { 0.D0 } info { Target pressure [KBar] in a variable-cell md or relaxation run. } } var wmass -type REAL { default { 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD } info { Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') } } var cell_factor -type REAL { default { 1.2D0 } info { Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. } } var press_conv_thr -type REAL { default { 0.5D0 Kbar } info { Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). } } var cell_dofree -type CHARACTER { default { 'all' } info { Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v_2y are moved xz = only v1_x and v_3z are moved yz = only v2_x and v_3z are moved xyz = only v1_x, v2_x, v_3z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Module/cell_base.f90 } } } # # card ATOMIC_SPECIES # card ATOMIC_SPECIES { syntax { table atomic_species { rows -start 1 -end ntyp { col X -type CHARACTER { info { label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) } } col Mass_X -type REAL { info { mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' } } col PseudoPot_X -type CHARACTER { info { File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format } } } } } } # # card ATOMIC_POSITIONS # card ATOMIC_POSITIONS { flag atompos_unit -use optional { enum { alat | bohr | angstrom | crystal } default { alat } info { alat : atomic positions are in cartesian coordinates, in units of the lattice parameter "a" (default) bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors (see below) } } choose { when -test "calculation == 'bands' OR calculation == 'nscf'" { message { Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! } } elsewhen { syntax { table atomic_coordinates { rows -start 1 -end nat { col X -type CHARACTER { info { label of the atom as specified in ATOMIC_SPECIES } } colgroup -type REAL { info { atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). } col x col y col z } optional { colgroup -type INTEGER { info { component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. } default { 1 } col if_pos(1) col if_pos(2) col if_pos(3) } } } } } } } } # # K_POINTS # card K_POINTS { flag kpoint_type -use optional { enum { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } default { tbipa } info { tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. } } choose { when -test "tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c" { syntax -flag {tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c } { line { var nks -type INTEGER { info {Number of supplied special k-points.} } } table kpoints { rows -start 1 -end nks { colgroup -type REAL { col xk_x col xk_y col xk_z col wk info { Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1). } } } } } } elsewhen -test "automatic" { syntax -flag {automatic} { line { vargroup -type INTEGER { var nk1 var nk2 var nk3 info { These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. } } vargroup -type INTEGER { var sk1 var sk2 var sk3 info { The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ). } } } } } elsewhen -test "gamma" { syntax -flag {gamma} {} } } } # # CELL_PARAMETERS # card CELL_PARAMETERS { flag lattice_type -use optional { enum { alat | bohr | angstrom } info { bohr / angstrom: lattice vectors in bohr radii / angstrom. alat or nothing specified: if a lattice constant (celldm(1) or a) is present, lattice vectors are in units of the lattice constant; otherwise, in bohr radii or angstrom, as specified. } } label { Optional card, needed only if ibrav = 0 is specified, ignored otherwise ! } syntax { table lattice { cols -start 1 -end 3 { rowgroup -type REAL { info { Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector } row v1 row v2 row v3 } } } } } # # CONSTRAINTS # card CONSTRAINTS { label { Optional card, used for constrained dynamics or constrained optimisations (only if ion_dynamics='damp' or 'verlet', variable-cell excepted) } message { When this card is present the SHAKE algorithm is automatically used. } syntax { line { var nconstr -type INTEGER { info { Number of constraints. } } optional { var constr_tol -type REAL { info { Tolerance for keeping the constraints satisfied. } } } } table constraints_table { rows -start 1 -end nconstr { col constr_type -type CHARACTER { info { Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) } } colgroup { col constr(1) col constr(2) conditional { col constr(3) col constr(4) } info { These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. } } optional { col constr_target -type REAL { info { Target for the constrain ( angles are specified in degrees ). This variable is optional. } } } } } } } # # card OCCUPATIONS # card OCCUPATIONS { label { Optional card, used only if occupations = 'from_input', ignored otherwise ! } syntax { table occupations_table { cols -start 1 -end nbnd { row f_inp1 -type REAL { info { Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. } } conditional { row f_inp2 -type REAL { info { Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations. } } } } } } } } espresso-5.0.2/PW/Doc/user_guide.pdf0000644000700200004540000101015512053165215016244 0ustar marsamoscm%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (subsection.1.1) >> endobj 12 0 obj (What can PWscf do) endobj 13 0 obj << /S /GoTo /D (subsection.1.2) >> endobj 16 0 obj (People) endobj 17 0 obj << /S /GoTo /D (subsection.1.3) >> endobj 20 0 obj (Terms of use) endobj 21 0 obj << /S /GoTo /D (section.2) >> endobj 24 0 obj (Compilation) endobj 25 0 obj << /S /GoTo /D (section.3) >> endobj 28 0 obj (Using PWscf) endobj 29 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 32 0 obj (Input data) endobj 33 0 obj << /S /GoTo /D (subsection.3.2) >> endobj 36 0 obj (Data files) endobj 37 0 obj << /S /GoTo /D (subsection.3.3) >> endobj 40 0 obj (Electronic structure calculations) endobj 41 0 obj << /S /GoTo /D (subsection.3.4) >> endobj 44 0 obj (Optimization and dynamics) endobj 45 0 obj << /S /GoTo /D (subsection.3.5) >> endobj 48 0 obj (Direct interface with CASINO) endobj 49 0 obj << /S /GoTo /D (section.4) >> endobj 52 0 obj (Performances) endobj 53 0 obj << /S /GoTo /D (subsection.4.1) >> endobj 56 0 obj (Execution time) endobj 57 0 obj << /S /GoTo /D (subsection.4.2) >> endobj 60 0 obj (Memory requirements) endobj 61 0 obj << /S /GoTo /D (subsection.4.3) >> endobj 64 0 obj (File space requirements) endobj 65 0 obj << /S /GoTo /D (subsection.4.4) >> endobj 68 0 obj (Parallelization issues) endobj 69 0 obj << /S /GoTo /D (subsection.4.5) >> endobj 72 0 obj (Understanding the time report) endobj 73 0 obj << /S /GoTo /D (subsubsection.4.5.1) >> endobj 76 0 obj (Serial execution) endobj 77 0 obj << /S /GoTo /D (subsubsection.4.5.2) >> endobj 80 0 obj (Parallel execution) endobj 81 0 obj << /S /GoTo /D (section.5) >> endobj 84 0 obj (Troubleshooting) endobj 85 0 obj << /S /GoTo /D (subsection.5.1) >> endobj 88 0 obj (Compilation problems with PLUMED) endobj 89 0 obj << /S /GoTo /D [90 0 R /Fit ] >> endobj 94 0 obj << /Length 1493 /Filter /FlateDecode >> stream xÚíYKoÜ6¾ï¯Ð­Ñ|“:¶~.šÆ©×È¡éA–´¶P­´Ñ®’¸¿¾3$%ïÚ2R -ÚÚÁ«ÉáðãÌ7Ë(üXĸ"ÊÈHE´,*Ö‹èCD ×:s}ön¡íÂ…‘áÅÑùšE'Ýâí"z;µq*‰ÖÂ÷pâ´ÌØ(ïþþ ü‘ÀTÐC˜(ÝWô»åâè DqIŒ5,Z®"& ьÂ`a’Z-Ë_â«m’²¸ê¿« <þ~¨ËÊß®º„Å}òëò‡£3NDéŒP¥(€2.ÞAÇm+ß&f†p¦$öÖ‚£Xèüž*ú1áætS×0¬kýŒ î %ðÏ¡ S«}aÐÏ)e”ZXeÆ =FUÛD°x7Ê…'ï¶÷2É”â(ƒF)ׄ[é³$ͨ‰ÏýÛw Ë¡puçÂ;jUôb2AE¥²(e´ƒ'˜€hF)ßÝæ;®ã"o'D÷†[F8‡½y Ѓ¹šÓ¡s ÚIªc’¤ ¦úë™eŸ°â¤ÎbŽÈÞLkå¼ ÀóüEÂM\u›lBkþß^׿»)À4 JÂ)œËÄ"Y¬·Þ˜»•¿žDàAò¯hÞ£)çØ'©8ˆ)æ!枃ŽÓ¬75^šü!ûpžy™Â¦á¿BÚpcÛ›9–Qà+T°§XæPOÉ2"´ GØ[Ï1Q*²°>´1ñÞy»ñ•ù.à¹üêuìDz]PIì$‡=BôÇ÷”ɦ‡ËÔW{ ¥™#01ØiSè˜&ô][Ôí®‡X?ôÕ¤›b÷«]ZXCÂñÁû­Ðû¼ÑŒ@y/”B=we(³Üf(Êg(Ë$“±ËLºáºq¿½õÄÎàá0aÑh3óål%Ÿ²•ãn½©wœR–M›qÝT¾cžÎ< %†q>ù„aW¯áïôd6óT –ÿ¿Ì÷ŽËÙ‚1 0:JEF”ÔcÍì]ÅçSÝØÕ|™¯ùº¢ 6Ì@4ý>-okÜ“ï²8Ïá©èГ>&ÜúB7¾ó”ll¨—á–Þ„î«ÂL½ævÒrr_EÿR…X†ÓyKîMÞVé»Är˜wÒÌÏxY5«5:îÚm½Ý9‰Óõ¬®šÒUã]ßÈ@ûo‰Rq~S½‚† W㺻Ç}8¨|–3K¨Ðâм 0jˆçP°vè)Ìñ:a!ôþò2N`I£™¾š­s¶a zˆ,>½¼øùY—øvö˜Å#LȱÀUÂÊûúzðÛߢmÁ‘à +žC/oñ‚ZaÅT/†1{ó¶ÛøÚ5Wwɸ¾Òû„_<(\†t ZWÆy7`ñŒ©ôo °ÃƒúØg´6œÒ0÷YÁõÀ¹ÝÆâÃjÜŒ¡}$¨ò/Jw°í0ߺ›3;n±ŒŠ}»;:Áo6h|G³$"Õbü84*èjD«n=+*,18Šnƒ‹¾ó/ƒ?àíã5㪈ÒRb8:àK¬5á» ¶-N—‹?šÉendstream endobj 90 0 obj << /Type /Page /Contents 94 0 R /Resources 93 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R /Annots [ 107 0 R 108 0 R 112 0 R 113 0 R 114 0 R 115 0 R 116 0 R 117 0 R 118 0 R 119 0 R 120 0 R 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 128 0 R 129 0 R 130 0 R ] >> endobj 91 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 135 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 531.00000000 181.00000000] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 136 0 R >>>> /Length 137 0 R /Filter /FlateDecode >> stream xÚ+TT(TÐH-JN-()MÌQ(Ê ˜*¡¡„NÎUÐ÷Ì5Tpɪ”˜ òendstream endobj 135 0 obj << /CreationDate (D:20090714182634+02'00') /ModDate (D:20090714182634+02'00') /Producer (Mac OS X 10.4.11 Quartz PDFContext) >> endobj 136 0 obj << /Length 138 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 139 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xÚìxTU÷'½÷Bh*MŠAAlkW…Õµ VA¤)½†„R(„IH%ÒHïm’™¹åœó~ç½wÀWÝo¿E¿ûÞ'aZ&r~÷íš4ý߉€ @ѨÆù…uÝá:†O¢>O×S¡ñ/ÌlüI”×b RµO^“&Mšþ¤" wì´›%À.¢‹$f»>€º qùÎôê‡uÝA&Mš4iÒtc{ì*ë– L5zÕ·]ÇÈu )s<.SäŠgë¾³† Mš4iú3€u-Ãl¿îPüëýa×CÎå`3‡±Ô–&Mš4iú³å2/(\y´«Ž•ÌFDÕºò¿4`ܨ©«b[æ¬Ç/|Mš4iÒtË^ÛT‡éÀ¹`¹¤6[Ah1›©ÍØ„fhSÓuŒß¹MÔ£I³1Å@€Ë)xMš4iÒô'c„R™‰F;Ahc3çí¬fú nÐ^†ÖV ­%h-ÅÜXs‘ùÿb´[k¿úràï¨}5tÔ0c=˜@hI²ñ„ŽŒ†Mš4iús€£²,J’ Š&0´Cg 蘾†¶VÈ-%rS!7hÊEkÌáÆ²i}7Rwê²®iRC¶Ü˜Ã4åÓæó´©€5r“ZJŶ2©½‚èëh'÷\ÚÁÔ‰´Ò¤I“&MWKV#ùÖ—€ hj"€1YÀ®óÿÆ´ô/ÄŸ„’® 5èD•¡»nŠu{j¶¢äv[ÀØUÐ^ŽÞD[1i-–[ŠHsmÌeõ™P›Æª“¡*‰UžåF+iÅRqŠTÄÉå'äŠcôÒÉk”Å£]J€rþdZ™J«3äêL¨É†Úl¨Ï¡ùœ#´½ˆu”QÃ%f¨¡¤ í@J¢D-º¢äÊTÉUe½˜u§@d-[¢I“¦¿8øˆ¹~hw0¹“J;7ÉÄys™Ó‡¹«î_êeÕÊ[BÑ8G0£mÂ×dÔ`(©¥š ¡ñ<4äʵ™rmº\“B«’8#G@éq´’X(9ÅG‹fEQ¬è€bQ×4(ŠFãwƇDz²xV~Š•'@Ån¬2‰V§šL¹>]’¦,ŒkuT2c=35QO‰ ÁÚLgä*pÐk¶„h!/Mš4ý¥Àв€±}¡™eC½ÔQ/wÔÑÎFjl¡‚^Åü!n°îžl¸ºÎVù J$*ùKð’;¤ö:hçþE †rhí9ZF‡‚Ÿó¬ô” àâ~(ˆ€óáp! òBÐrƒ!wäî†ÈÙÙ;•ײÜ@ÈÛùÜBðá…áPÉï㸡E‡iñQZÇ.¡å)´2¥B¤¥Hn-“ÚªHg=34qÆ1™;eü“±c½«ËŒBB¹øÏ«thàФIÓ_Jx~„6è¬Ã‹üÖ2¹¥Dl*’š‹ù ÚÆ/¶«Íç$c à"_ÑpETŠJ ›€S‰?yG=i«šK„Æ‹ÐpêÒYu2w+øŽÇxQ47¸°.„Àù`È @@dípn¤o@K[–ú3¤®ƒ”µÜXÊO×4šþ37–±27À¹ìÜfÈÚ‚v~œß@á4)8…Ü19Åq¤,Ž”'ð÷ÃjÒI]iÈ£MYK©Š¬æ’ ÀÄ.SŒËQ¢Vüv÷¤0íÿ3Mš4ý•DüôÃò¤æ Ðu™¤6UªN•«3h]ÔŸƒ¦|¬G24r¾üP¾ÜAÍÍXLkÀ²XC#ÓWqTâ_šLR• '¡ì÷,XQ-ˆ„ó{Yn7ÈÞY[áÜ&Èܨ2)²ή6[ò*´¤Õª±äk›töGÕä”Uäì*šò£jù=÷3;·²¶Avä„B.wg"Yá> pqg‡¿«K§XeT§Bm¦R¸U†EYÆ:ÌÈü$‘ ]Ý%Wd@4iÒ¤é/%F‡ø¹ UIxh_:ÎIZÍ/õ¡ô(”Ÿ€Êx¨MÅWS3e¿{è_—¯¡ ƒv‚ØÆ&ƽ›V%UŸµP}*âáÒ1†a¨H ay½“Û ™›!cK]Ë“‚9»š›œ¼Š›ú}ÅÝØ©›ÐÒ6³ô×41õgnrê:’Â?Ûjnœ;$u5¢„çì:–²Ÿ$} ¤mÃè÷q·§ØÅ(ã)?‰ø¨É€†\h)À ¾¡L AŒhL4³Ã<‰QûÿL“&M!µ°º,z)žÆhA\†óA4/O˽pq”ãÇ»¬¯$¢þøL«q© õÜÅ`-¥´©‹c«Ó1yQvJbðUøËåÒì]${=·Ïù´u€>Åpvg„Ê ~àÓTŒ8©  ç¶³¬,k'¯ÐS‚ÜP´¼àkÉÙM³w“¬ø(N¥ŒMŠmèva¸WB“~dh+Ð8’Ò×CæVàÉ `¹ücáhÛ%Ç 4.%°ª¨ÏF­½ô岩‰r8ªñ+ÖÕœ®yš4iú ‰Õg’ÊD¹è0Éß‹¹ƒ¼]Ëá­ôÜ~TBîÈäÛ¤']ˆ’+ß…Q˜ž(Œîª­ú¥á™!ù!˜OÏQÒ%ÜÎm‡ŒÍ˜.IY É+ñu¿‡Ä%äÌrÎJÚ’¾•fî¢Ùˆ̃¢EGhi©HÆ<¾RÇkÔ׊†*è 84iÒô§–2èUÙÁp@¹R8Ú mÅPv ã…zæfÀ+|~y¿Ã>‰Ë õ'9m‹œ±ÏUî\:-…×@9Œ±}lsèN¡«¦©Í¥PW5¹P•.Wœ1]:É.DÃ…C9pn ¤ÿ)+ y;¹â¾a§¿ƒ3?ÀÙÕœ4s w Ø¹È „œÈÛ‹×üxnäG7)=AËb•x¨8•º•‰JÇuŒ¿4¿sY,–i•cÅ1äâa¹ð\ŒbèùÈãKwa8&Hêfš¼\N\*&,•N/%gV`åìZHY™[°v‹3« ’EË¥'9YM*f…óðƒí¨Â&wɨbãêZf5‡NµÎtMš4ýùÀÑr c w/dlÔUô=9½ˆœZ–CÜ×pæ{!q¥xvdü̽,mjȹ®ç¢<ÿ{”$&™ˆ` úK´¥êÎCÕ9(? eñ´$Fºx£IÙ{Xæš²ÃPüÂ>á;š°˜¿($.ÇðTê:dz=»Ñ)ØÞDÑ!¬È-=†‰†²8¸Çkìì¨Âþ <·k3¸…V—uMƒÚ³)ýƒP™ÀqÃÊOaB3ò‡‘GÜ%ÉßËrö°sþœh,u-¾ÃÄIâJš¸’ãCNø)éüܲwѼ¹`?)ަeÇ1øVÍñ‘ƒY¡¶Jfhb¢ˆxÕ4ø+{[4iÒ¤éF•ô¯à ¤á<¿º¦i›äÄåôô?[>>K:6K>öDÀŽ!Ä}-œZI‹iÊj1/›µ¯Ž®­üŒ41©U6Ô›Ú+%ìÝ;G+’¡8]›óá,'€p¤¯…ÔÕ,i¿’NÇMLX"qj¤ÿ 1p”ãÅ·…P´J¢ ü4T$5ñc?­.“mÌÇQÓyurk-†¶´öÒk[k¦³ÑÎCs>4å! ë³1AÏ]þ*—âLO£0ö•Yþ¹Ò7bž$i«äôb9á{𼂤¬ÁØZö–· ‚ÉÅZ|œ]:Ãj21(×ZF;”¾&ªTeìòäxš4iú³€ƒ¨‡¼Ô.Öæ²´Ÿùq-ÆÎfÇ?‚#ïÐÃÓÙÁ·HÔ;°ÿUvø1fåßûT>=ß”±•”Å^Ý»ôduVH-ç…†,¹2™^: E1†!/%‰À_83Àéo¸#'.‘SVÒôµôÜϘwÀÖ¼p,a*‰K±XpU™@k¹¿ÍêóN—*b-¥ØL±ÕJ§I ë¬Ãæn#ÎÅeBŽ+¼–ÑŽZ¼ggú@ÐW°örlWi.0C¤6jR *!R‡ònŸÒf¸²7CæZš¶’ÔùŽI\B“—BêJÈ\ÙëINÉçž Ð*Ïò÷ŒÍï­eDh©³«ãCÛ®I“¦?Y¨Ê\"+¶™ª³!i©tò+)æ=vhD½ûž‡ˆ ü%ÿD¾H¼‡¦Â‘7éñOMg×±Òø—ƒ?¯`À‘æü¾)›Õ&“ªx¬>â—îùüº}3w1 q)$,ÁFüWpj.œùÎ.ƒŒu,{ Ë÷‡ ìb4§ +17M°štZŸÅr¤æ™“¢­‚èkÌ½ÛÆfj±d=žÉ܈ ç–¨ÝÜT¸¦©ßLÆû3±.´áó £Ú+°;£å"Î9©É¢Õp)ÊÎ@IÇ ïSy;!g3¤¯â° IßK ‹9ûàÌ"H^©ß³ô͘åÏ V*¯Ž }jÒ !‹¿sN7ZŒêoC‡&MšþàÀ¹…]àÚ èÑåýÓhødØû? OBÀSø8O¢!‡ˆgáÀ?é¡·…Ä•èüÒÑ`TLmL_Ã=lͨ<…MsÅ!/LIsGã8³N/„SßAÂR–¸ˆ%/e©«Ø¹,ÇŸ^ØK ÷‘‹‡pÖGE2N©Í¢h3v¯ÓöJÚÙˆùS+žö 0ˆò™×3]96êz{=®ÊPw÷°ã(Ñ#´aF»“³¯Šµ”ÑÆR_@ër9AhE"&Ö‹£å‚H)?kº²¶È©ëÄÄÒé%ôÔ"üÑNÃ’V` qæF¥¢ ¡Yv *âH]k:å 6âL0|óL‡&Mšþà…Ëàõbm.¿ìg13¤½ÏSN ÿaûý°å>Øül½WÞvŸ´ý>xBŸ¤‘¯‰§—süb¯+ÿ£,Ë’$ñËiÚV†9*Ïbkza„=t©?Cò2H˜OOÍ!§æ³„¥´ZNÿ™dn!9»82”ÖìãôÒiR~êó á4Aë%è¨ÅÐ÷¤vìŒPëø!U5÷Ùuù=¿näª9‹]Qÿ)C‘D’ wg±sØ©E4ñ’²NÎØ&gмìø(‹5³£õ"†Ë˜¶Õ\“&M7®ðÈT.¸ùq+¨k6ˆ@jÏBü·ôÐÛrðclËݰz,|ýŽÛhX|,OWß ›'@Àß rªtf”D™Äîüh55BGkËþT• P| ÎGAN0œÛFÓÖˆ)K!öˆýŒœ-Ç}+%­$›YNäï¥÷³’CP‹“Ìk³hC´TA{ƒ EÑ$ËâåÊÞÿñÐ'uXŠâƒ›X[%i*‘ë‹H} ­I"q˜È(ÜÕÅ»XêVì:ç®Gìl8>N|Êý,Hÿ‘eo’s‚È…Z|ë‡ë³Ys!t\ÂA%æ!íTézQÃW’²ÁV“&Mšþôà—Cé!¹;¥Ë:¡U´ä“Æ Z~‚–ÄÀùý i›!yMX,ŸžÏ©N ÿ—c7_ö. aî'¥G¿h¯NÆRئ"h«„Î&0upd"Q*ÿKzâô¹áG%£×CŒ*; £–¶WcYoÇeTœFvìÇ„xÖn„rv%œZ±_ÂñY÷;óMù‘“fïÆèVñQ¹â ©;‡ìЗI‰Â¡ÿ¤T»á/I6ÁiÒ¤IÓŸ ßÝiǦñ*8HÒp)ZÍ€,±Úê ñ"ί›)ô—0*ÅÏOÉTúGüFöõ¹©›Dº*ø•Z,c3Vaµ”b¯_U2– b…8È7k60žú?_Ð_É'çafçìjì‘Ï – £ÄÒxR›Îšò˜¾ŸŠûØL*¥¨Vo¥I“¦?-8Ȫqfp웦‚C¹"–qxk5Ô_€Ê4(£EG ×OÅÔµpj1ÿ Ž}'>ƒ“ŸKg–áøÙìí8´äb.Ý«L‚ÚLl'×—ãLrIIdñznÅå~¹ÿ…¤kìQò$„hÂ5èíUÐ|Õ§Óê¹ü+ŽÆlø¹ü£âwÌfÇf‘#ŸÒcŸCÜ<,Hÿ ²wa§yYnl,Ä.S §Rws‡† Mš4ý¹CUWze‡HèðÓ²>[­‹ÀùH–‚s®’WÀéoàøç4æ8ú)ÄÍ„bÚfE[%1¬ø9´ÒÖ@öN,?.=†®²‘¡bkwÀJ‡&MšþÜàØ<b¯`r¼ø ^·Wb|¦"ÿ˜¤œ›ðêúä\züS9æCrä;Î,…”ur^()<€+“h}6m.ŽZ|¬ï’º‚QŒ0J(È7âçvU¥–ܽkœ";”H–„}¦FÚ^.5óO†U¥ÐÒ8Ø»;å—CÜBùè'ôèÇpüˆû¾´Õ4g'½°—GaVc²ChÃþm‰&Mšþ¤àX4–ÝÍÖŒ‡-÷ppÐð—M§–`"£µòIÕiZ¼.øCÖ8û#;µ Ž}AÎ$G? Ç>$ñ_áXòŒmÌJ°K'Íe¨m—°¯[¼Å+§ü©à¸r cf»d¦Z@Ý!~ÙõPÞ+UŽ˜@hW"W%ÐxžÕ¤³²x(ŠÆñ)é[pÇÇ©y4ö zä8ò>\^HÓÖÐs[.#YyîXçDôj“¦&Mš4ýÀaŒÿNºA/È5iRi )„Ü ¾¾£±óáÈLvôCvüCˆŸgCÖ&ÈÃÙéÜ1©JÂaãmŘÑ;”^Œ«ÚðºÆþ)‰èŽÊ*X*©E³W¼qõݪí‡2PY [ `¨ä?)ÎÔªJS!@vKß g—pžJ13äƒÓéá4öKš¸LN]‡{ÏóvӢäê¬ÜXD:pØ—6n]“&MÿOÕ}šeéQ.‰•( éÀAOm`j‚Î"R ÇÞ€Ð)°ñX9ÃS_†ùãaáð Çh²v4Ý:¦¡“…˜wå´o ê$Ä^Œ ¥üÔ\vì~; Ç>„Ó àìZ’á/äï“KO°ê$Cý9©å½ÊvO¢«'À¢Ñ0oÌNgasn‡E·Ë+o‡caçƒ4`’pà5–<Jcàü^š¹+N1þ~û,pä=89 Q’±™æ„ȅѤò 4dˆí¥¤£„F zåô£Ü‰ á jl9@ì` 8/±6Jãáb4vydn…ÄïÙñÏYôûìÐ ˆæÀý'\%ý€›GòÃhñqZ†sz9;Dþ»“#dnTÝEµ–&Mšþþ†Z¼J»O0ÚÙ,륎JÚRÄø5pS‘X‘4äAm‚éÜØû<Ýø´p |1 >Âf ’f ‘?Å>NçŒ"KFcüjýDºù!)d ÄÍ€ aôÜ)i%îé;2“D½C¾_‡ø/±^ˆ»!¹Áü›–%`g_[Ž ”:qç¸rÍÌ0¦Ã$FÿÊ¿eþÔFÎŽR¥R™ŒùŽóa¸Üe‘/°ð¾—àÈ;7—³ÌíPAËO@]:¢_Ô+y!­1P“&Mÿ5‰õœrc©:‹eÜÅ(ˆ€Ü=ìüœû‘¾²¶’ô­lO]"|ß!6L~óV˜:^/„©ý`zööÍlæør$Ì ³o§Ÿ¿ þF¾CN#aS ây8ô&œœKÒ~"¹{¤Ò£˜ oÌà NB&v͹Â<Àý¯‡Ýþ×Á¡t2èšÓNÑ]`&èlæ<• ¤ê³ré!š·‹œ]IâBÌ[$ò%ö<ìŸ 13良hÒ½.F ‡ØúDÐês5iÒôß;·:Ê¥–±:]*;ÅѸ-"Ç2¶ÊY[NY ©ë¤äuêÖo!üEøv´ôéP:}0L½ ^/ d¯Ü¦÷£ïöf3ÂW#aÞ]0çNúÙÓ¼Ñdõ½4jª67F>‡•T‰‹ÅsÛMöÓªDh8me˜X!8Ü•˜‡ƒ•ÿJæé}*5þ—ÎÊÒÜou2~’ -´í’Ô-UÅ‘‹áäÜ&¥Æàczð51t ²ãÀkrÌÇrüw¾žßÍŠ@U 4W€Á€uU˜-Ò|Mš4ý¢xKDsè[±…é+ >ªÏàÚÖ {!w'î0M[‡cÏ,å×·,qIøZ:1 #êG?–÷¼ óngŸ£oß ¯†WÁËé´~ôÍþðöPòÁÓì‘Ò‚;Ù×£å/†“¹#á»±¸U6x „OeGfBò2’¹\ˆ€Š8}C¾ÐR&ƒê^`ïæ2´½]"ÊpHî‹á˜¯lZvœ^œXŽ{ôSþ œÄ‚ž‚¯Â‰OYÂ7ùäm‡ÒƒP›‚KùVdʆÜ_¬dZÒ\“&M¿éÊf‰šC"˜„í¨&Xe"?”Xa„âhl€ÔUØ¡œð=Ä-ŸøBŽûRŽ)ļ ÇÞƒCo‰»§\¿º};榟§_€EwAÀ${N‡“_!’röàhÜÚ±½«€$Á¼U m¯D7èÕYWnôh¹UI¬(Šœ†”•85÷à[,d2pp„=Ï¿±ŸÉg—ÎŽ‚`¨8‰3L:(©Žÿýf+Mš4ýyÁ¡ºJ<„Š`j Mùre )>Ì]’µ“¦®…3ËØ©oå“óœsþ¡ý69ò6‰~]Úÿx"Ÿv<úkàøx;¾üë§·Áì°ð.ü$ìŽ}IK•9KÑPž Í… փܮúAÝà`8®ü}™ç$pôJËyZyZ*ŽF¯0ù&¼ïþ; x묿.žœ+ŸùŽfnb…ûhåYÖR†c¬ÕÀ¡I“¦ÿæ~Yí¥¬:™¡yA,kMYÃN/ƦG?%1âL益Xäólß?XÄd2 B'AðãÒ¶‰×Ç;C88GÆ‚qðÕh˜9 ÁñÝ8!ì82NÏÃ<{a”§@}t6ë&¨ÀóŒ)5E¬É©"Ý¿/Ú †j¹1G¨L‚‹‘$s;µ¢ßƒÐ)òŽ™ÿÃö4‰yŸÆ~É’–Óì]´ø(«Ë}5HíW‚ƒýP¤¦I“¦ÿÆ5,î³0ÕACæ5òC0©‘²#çÇgAÌ ˆzöMc¯@ØSüìy‚ÿC°ë~²eüõsƒÉGCGÆ×cáËQü>04üx¯éÐ4ˆÿ,ÙÁPšÀj ¡½dcWúÛL s÷ºvaÜ%¹k#¬¹ÒLn“õ•¦† Ò¥X!?L>»b¿ÂÅî;fÛïƒÀ‡`ÿ«ˆè´u,?”•Ÿ‚æ|0VjàФIÓJ lOîÀíŠ\±—¹’–)#¤fÁ¡·1¦þyƒçœÛ„-÷Æ{aý=°áX?ü4îºà˜~+ýp(ÌUU³GɳGåwÃŽÇ…ã@ò"ÈÚŽ“o«rik p»Z ¾7 Ý£ÜäËÑEÍ’¾Z¬NŠŽJY» q)¶?Kwü vÜ ¡Ç_ßñáÌbš¹ wšÔ$Ckž,‹]Ûu•ÿ 4phÒ¤éw†>ð›¡1—ÆzI?Àɹ0zû‘ƒŸBÿÂÿA²c"¬¿ÖÝ«î†åcÑ~KWÜ%®¸óúÇøh|É=Ž»ØÜÛ…£É†aÿsÂé¯!óg¸¥g¡©Lm„šd¤tË®ìÚÐd>âE¥–]Õ(ëå¦|±*Y.Ø• ñ_Ã7iÀ$qË}ÈŽ I8,öKš¼BÎÝM¸GY—$FB¤+Á¡±C“&M¿236’šLù|8I^ ñ‹èÑÏhÔ{› ~½Œ÷Эc¥MwÈ«ÆÓƱ%w⢅cè¢1Ââ;Œßÿ 8†ÂG·Áì10,ûz´°ä.y×cp|ª˜´rvBÑQ¨Êö F·PWlV¥æŽ? WäÎ)¼L|l ˜¾˜Ög2…œ]XopäC4¹sódöëb>O/2¶È÷ÑÊ“C‡$ 84iÒô‡ÈÑÆOg?ƒšK¡0Фn&ñ‹ æCˆþ'D> »‡ÍƒuáÇñ°ôNöÝh˜w‡Ò> >ŸŽ€™#àã‘ð ¿=†}4’¼3Tz} <µ?L¯Þ ¯ g # YÃ`îPaá(iëpä=)a–)}½\NjÓ%}­,ˬû ÔôÇx"™hg#­Ë'c c+ΰÚÿ†ð”aã8aýÝàÿ(|E>ö~gÂ·Øøa?kÈÎ*þ‹J_¥€Ý”Tí¸Ô¤I“¦#Ú)«çFC>œ%‰+å³1²Á©ô$Ûö¬?Ü KîbßÜNç€Ï†Ã§·áø©†Ðw‡À»C÷)Þƽ5„¼y«üÚ@2m{u ¼:^LgŒÀPÕ·Á×#äãhà8ñ1IúZÎÝ eG 9ŸZéºÚ¥ÚÁõ‡/D0µ±æ"\5Ë?ÛÄ¥px†òœ´y‚¸æNØt/„N!‡§âfÓôu W¦°Öb J;:ŽÌ5ï=פI“¦àH˜i¥„V%Á¹ $~®ý6„?˧[&«'ÒïÇ‚1ÜÅ ³n? o¦Ó‘×p:H¯ô“^êO£/¢±—З°WÂÔAlš¶z{8|8> o‡MÀ¾×!~Kÿ‘†ÚT¼è•µöV‡.ùÃ.‡ŒÓ×;jpåÓÅþ&5ö¿ Û~ÃVŒíCÄ ¦#H ‹ mXt”Ôd‚¡”që²ZÙ³&Mš~‹Ç¡ôH0‘–DÃÙïèÑ÷ؾ@àý°áolÕD²øNö•’zÿ6öÎ`ùðb?öBú›Éä¾äé>ôïÜnbOÝOô…I7ÁÓ·À³ýØsØ?±o¥/Ý Ó¸?2”ÍB–Ü“áw7~€\R‘-E ¶«»M™–ÈøOÁ¡l}Û µ÷³ç@Â÷ìÈgð¸¼òéÛa°únxJÞ?M:ñ $~#åîe—NBkÃåy¹ÚJYMš4ý6p¨#åü ˆû ;ÁƒŸ€­cᇠ8äË‘hzk¼:^Hžï¿ &Ý ÷Gz±‡zÁßzÁ½áÁ>p?¿Ñ ì÷fõ¥OÞÌþÞ=Ó&€©Å ËDZð—å“óä´-p1Z¬¿úzE38@Ëÿ‡¿G¥á…JÔЀù‹’þžÆ/„ð²µ÷Éó‡Ââ‘°ñ2™~;h2¶@a$4dâ6ÞnOjÃ5iÒô›ÁÁÚ¥ôMýÖPm{ÖÜóÇÀ#áý!ðÚ­8#Ÿÿ“náD@:Üß&ö„»}a¬/ÜéƒvG¸ÃÇ|û.6Ηñ;Üß›=ÐîC&÷æà ?ßOO“–òk](OÚë©:û‚™ÛÄ•ë^­_ãJÙ¿Î?FY2Òör¨J‚¼=rò*ünŠ~3æ …wÁ¶‡qÉÑ·±â:{Tž‚Ž e? êqhàФIÓoˆp0ÍBâJˆx¶?ÂÖÜC ‡Ï†±ƒè´~ì}ažÿܧïá€ð†1^0ÒÝæÎ†¸rƒÁîh·º0Õø7os‡ž0ÊFûÀñ‰ä³aàÿÄ}"e¬cEÇ¡æ‚(” T 8°Ó_ìʲ6ZäKé¶—•R]"´Bs$é[iüL Kï¡_ †o†Óµãéî'`ÿ‹û5¤¬eEQ¬é<“ÚÕ=äZ¹&Mš~8šLñK!èlÃò²»…9H òÆÍòó½É¤žì!?6ÑŽõÇxÑa Îò '©¿ƒt³ƒ|³¹Éôu’úØH7ÙÊ7ÛÑ~0À ¹À­œ)np§—éQo,ß ’¾ y›¡ü 4\’€u›î¥# d’&í7ò‡=G~諵µ”˜ ½ÊŽ‘,)ù+8ø.¬xHž5Xš=H^~Ýú0„NfG>£§—Éya¤.‹Íʯ@‡&Mš~#8°£ (5%ÌÅÔÆw÷×#å#á¥A0ùfx¨'Œï£}á6_¸Õ ú{B/wðso'ð°W[p±Aã7œíÁÁœìÀݼ™íåHoqeýÜà™~°t<;2]>·ÊTr„´—I¦–íså¦öÊ”¨¨Ì} ƒQe2‰jà vÊØ¯­DÖdf¾ÎïZb>~?Â$“r˜Ë]ü5Ô‡˜pF!‘Íô”•ÍMüŽF ::¡MÀu}ø8Lð.¢„©ëfMj@O¤æîM©«³{ú”(€ØM9â…ƒrÚr9v¦´c’<ç6xg̼ VŽ'÷ÃÁ©;“e¬“ËŽP}1@'Ã÷¨… 5iÒô[È¡x„šNÍõc`ÞöñéµÁðìÍðD/6ÑSCÝ¡¿;ôqc~NàfÇ1Áœ¬¨ƒ…l§£¶hÌŽ›%³±àvà`Iœ,EwKÉÛ†ÜbÏõ‡ÕƒȹÄK§Xg^ß`"—OßËÕÁjÚ(¯ø¦MÊn®>k¦.@WF}I’À¯ÛJ°H¡º9Üô@]•Å¿+5Ü µõéI%óæÌ˜÷ØäðAwîr¹y‡M=ö=÷ºÜîî½ÛÎÅßÞe›“{P¿Çy$õÍ× ç~ÞuŠŠAÔ3|+lü¹ T^ ‰ Zð;íÐ^ ei,ëgÿþKÞ3†°ÅwÐ-!l2D¿K“—J…‘rs.v­Z“&M¿=Äy™ ±³áÇ0s }í2¥}ØO¾Ç›Ü¡¯#ø8p^PGkjkA¬t’…Žèt²NG¬tÄÊ‚‡(äwmt¢N诃iƒ`ÓS0—É5Ù¸üôÆ“Œ^E ñ–@ßÉ/úùÕ~»Rú*0‚­sŒ® ðeP6)2³‹a¦ÐΣ„NÚ:²Ïž\¸`ëØ [Üo´ì±ÍÝk§«W‹g˜£ç>{÷ýv®ûl]"mœ#­]"¬œÚ{DØy„Úy9{ïpñÞáÑc·ßNûÞÁÇ$¼?³êøaÜ–Hô@ŒzdYT½þùvâëwvV]€ÂP’¸Â_ƒ€·Ê¯ß¾?Ž£»¤/Êqs¤œRu6tP¦•µiҤ鷘J ¦,KÇ¿„eÃà0¥{¸/ë#tûÙ“Öàf V`­ XáWÖÅ nL1“¥ŽÙX²¿c¡àÃB'ÐÁŒÛ ð%HýUIJ¶j 7âùô‹z`J©,JT&ü6ðO§¬¨yÝÖ‹s—”;lÐ7*9ˆ }eû9ciRÃKDqODõye¤ÈÏHžÿõ¶acüí{°ð9fããàaïaãfåbéjåfçêàµÇÞû»íÐõuì³×®Wˆ¥_¨…_˜U¯}v7Eë9SB]}÷¸ôÜf㻳ϰäf ǀРrÁT‘9¦¼§¥´ýlz>¼ÕôBOúÞ­0ÿNºaN‚#ïÓ´5rI ´–aŠI‹TiÒ¤é7C=jdùÄø~8¼:óƒq=a˜'½ÅEò¶&Ž:°1ó‚³€£ëâ…úGn¿mm VVøM+¼Á:éA˜7"ß“òw±–|Lj0èFöÎ_4F(7¼×7fÏœì;h³­kˆG¯]–A#'ÐSñÊX'î;™°„X1GBi'°&j>²[ô%ydÔ8|üñvºõÜîäèÚ3Ô­Gƒ{ˆƒë^'·`Ç½Ž¾áÎ~aüûÎüûÞÁ¶>¡v¾a~aÎî!În{œ÷8¹9»îqr vrÞãฮûN—}NQnÞü w;ûØù¿Û¼L­mRk‡2AÄœïh(–ò"Hü\🠟 3üÃG~¥ÌÍ~ÛÂÙ2gó{ >÷¼kàФIÓo UÉJ¨J’bçÂÒQðòp¸× †{cFÃÛ8X0KfR\ée\i¿¥5X¨à°R£Xàb/Oí k'Ñ“óL‡1c«änÀv —·1B»7´Öο›é:»½Î.!6öǬ=­=‚úÝÚ–‘Í] ‘™°„X1UÍ0Fd¹™u0{nl>4á±µV^Üû»û /,]#-Ý£ì|ö;ú;zírpß«s ³õröÝîä³ÁÅgGï~‡ï¸'å±g›thì„m½o^ïî³ÅÅ+ÀÙ+ÜÙ7ÌÆãˆ…÷P=ƒœ¼öZ»GX¹‡:xìróŒq¾yƒÎuÏ÷Ôƒ©C­ÃdĤEG‡Tž ¦,…ð—`ÁÃó=„É}àÍ‘lÑpøéÇ?¡ç~¦•§¡³Q‡&Mš~[Œ‡kƒ,Jqó/ ewºÂ-®àæö܃°ìö,Tj˜³WQCý>§†’à°KK“Ng²ÖA//2kìy•d­5¶§dµÓï†mAQƒVT&*8Z#zܲÁÍk‡—oˆÛ^ç@O¯-ÎA6.§¾[ F#æU‹ªð“Ôwpd4œK {ååÍvÞ‡t^Gíý¶[9EÚ8pñqóÞᆀXgï³ÓsÀÑÁc?•¿vMÇÉcPy @Ú€ñc¿?"nü—c2BMmG|bñ–À„¹K¸/È{ðN[?ß]n¾»<¼ö8»YÙÚ8FØyDÚùm¶ôÚ3ú¾–ý`(0nÖV`Ê_‡_‡ÅWúžèÁ˃aé°óIˆzCNúŽG¾üFt5iÒt# ëEˆbü %»Lr Ôâ =%p£I䎻 ÉhÊÏÎñwï±ÓÙ×ßÊóuÏÃ6½Bl}‚]|œ=v<û*¦ËA0*jë6`·4Ÿùê»m®Ãt®Çœ}#\ÜìÃÜ"ݼwÛ¸îvï8奆©8X³Z£EÔÙæJZ„*C§ø[1½b6&»9DZisiËáÈÔ×ߊè9(ÒÚ#ÚÞó€­s­}»‡¿›û^¿›>¬úüçÛwQ Õ˜J·±oÃÏ“×t<ìÏ êx¿?]0 6þ Â^ãç¡ÐV hÿ4iÒôï±ALX&$㾆ïo‡ç‡³Qn²½leMuVœœÜ•PbP–ü¿È‰›Áaiaä·m»]]«³žF”ŦB¼šÇ+s¼ ¿1¯l¯ Ž'ß½~‘½öZù„YûF8õ ròòwtK|ô%hkÒcÅ)¦8ÀÔfÊI6.йgµ[¨£k€£3wöÙùÆèz¬µí»w“…ë6Au…kj”S»Q*½®ðÁ ’½¡¹Eßz¾¸p[àþ'_XáÒó¨U¯ï½n^öN¡ÖŽ\ü‚\{ïòÐ࿊àBuœ]o x¨ñ]¸‡Û@xá&ød8,Ÿ€+W޾ «XMºVU¥I“¦ß"ÊD¬Ž¥D0ƒã6톽{övÔÆ¦ *;³ø…©u˜CW£XX|e©Óûê`Úñ"äí`ú spJ6aZù†< ®ª tôÞfãâá·ÓÑu§ƒSˆ›çNkÇ`G½Ÿ}¢± ÜëP*©„¤ ëv8÷ÛnçèÚc¿Oï0k×(k/îªüàêw`Ê?õ1Ç¡¤äN†õ²Ò­Dÿoö_\¹˜¤³Ó¨¯m¬«©/­«/kn®imjª,mHKª9z(êþ'rë³ÉÖ#ÐÍg«£Ë&;ÇÝ6îlý¶yûF¾3* ábxô øæí:˜ØŸ=ÛÞ ï‚­AÔ+4y))?£¾/Mš4iúwä j xb,ÿ cÝY?Wðpg[fcÑí_˜Iai‰v55”4‡%XÙî¡ \tÌRg¸Õ>¿—Ÿ UG@nÕbW ÄаÓìzÉñú·g†÷´ÃÂ>XguØÞõ “×6 ‡¨[†Õ–cÓ· “©±å䇟ísédá¶ÛÙ5ÔÕ3ÈÒ)ÂÒsm¯ˆqU†„ƒÐfêhcx.Óv%ƒAÍòüfÇK–i{{G]]C{m]c}Cus륶ÖÒöÖKíÕmuu­µ¦ºòšÈñS^ÛáÔ{§ÞŽ.{]í=¶ºùE>ö¸|Òk«¾ ãl #¼éþðò@öÅ(¶f<„NÁ©Åc0?®I“&M¿á:[m”ŽÍ…E·ÁKCؽžl¸ôu†ÌÅïìÚ°¼ŠÝ:[nDgÍñÁÝ ÙBg¸ÛV>.¤n}.àð óCÆàœÁzÝrÜÚÚco¿¿É÷–}.½öÙù®Ö9l3¾iûnL µ17Þ\·õÑIö~‡zìup tt¶r ³õì1¸`þ÷P]Ïá‚ ’bJ]锕<ý_ÃL4 ƒ©¹¹µ¾¾±¶¶¾º¡¦º¶¦²ª¦¦º¡±®µ½Å tH²‘Tµµ×¬ßÎl¬7üýföÞP¶d ìz”Æ|BsC¡µTû¡I“¦ßpb*×¾‚, ß ƒ×†Ñ'|É„8áv3íeG=¬¨ƒŽZc«¸ Ã¯jÏ8¹‚&ŠKbCuֲάm™–T™&õ†ÝÏw^< R-?ÓDµòHÃzÖT]¯°BÄÔr:áâŠ5Y ¾+ 2–_⾆(Ä@CÝáG&ûë\Â}\¢,CmÜÃ}ûE=ð˜1:d£ØÝ()-£òUIˆË@„_E(g‡$‘ŽCccsMM7îqT4ÖU××5ÕÕÚ€»qÆ.$ øB͘F7 2O¿þ†¿“ï!KO—žQ.nÑ6n»u®Azv,œdx¶?¸9ÀP¸¿LˆãÖ7LdûÞd™Û¡!Cû¡I“¦ßådeáøWðÃpxoùgùñ¾l‚7»Ã“ q†›™-s±–ì,8Dk Y)¬º²"WfCˆ¥÷8°‘ÜQG^GÞ1ÖéÀx¾ºtC¹Š¿=Žë©ÐóSYqr ,©‰‟ÔÍ»Ç?pPçsÄ£wˆƒëK·ýö>[œúž™þ>T—1ê…£B#&B§¹§üŠi„ ~å- ‚ÔÒÒÆ Î îkpã7ªªë›šZDƒ§ +3B8:ڕߣÁ(7¹ßžM-«×o°îæØg«ÎÖßËs§«Ï.;ÇÀž¶¦gî2ÙÛ@/ãÏô…n£YÈó¼ *ã´š4iú÷R»DŠ}ëÆÀcéôò 飽Èý>ô./æ ýœ¡§õr$nvÔÑ–9Ø‚ ±´¼Ü¨ô•Ëj¥.wL<¬`ÖÃ>G2µá15§› Q:o<ŸãºC¥«ÏÊÊ9k;«B‡O8èØ{›{ Îê ûW¿UÎ~åaЮçþD»2öƒ™ÅÿHÛ±˜J@ËñI¨üküE¹­MÏaÁ Îük§Aµ…= uȡ١ ï%@%WÃýÈö(,ÜÐ÷ÖÝ®7mqòØéí¶ßÉ3ÂÉw¿³c™s¶‡ôo>dz¶pÙñ‰ûŠhÿ 4iÒô[B4&5`uz>l ó'‡ƒåׇ§ûÇüÈD6Ú†xB?èë=ݰ1ÐÕœì±=Ћ¬h×tÎÙZ§Îª¢>ðí(\Ú}Nªÿ%’|y”Ò¤ëŽUç~¨ QW‘Áï& H§›äÔ3ÚÒ5ÌÎv·§ãgí7 ®ÙÐŒuc@ܨÂ3\°u…IøDDÏEÙÒú+åeÜ×hhhâ°à_Õì¿ÝØØŒ½8yWffäœ@/NV&bQI¤Ì<çâG\Á‘’;ô¡:ï½¶ÖÑö¡–}v:ºïsÔIÖ6ré7áewyîMÒ¦1Vy>Xû¡I“¦©2/rª3Å-‚ÝO³Õ÷Éߌ7}4œ½6„¼8@~ª/{È&úÂ^òH7á6g2Èn²§}ì•îrk¥kC§·Áú[ÐÙRkKÌžÛè„7›‚ŸÖל¿Ñ~^Ü“!a›ˆ’ºh»÷F{ZSOuÔ;”<ëӸǟÌ|èñÓÿ#þ¡É)¯¾×"•åkSGÔ7‹ƒmúDºß¬³9ìì«sí5¼½¬¨þ_èOá´jkk«­i¬¯kn¨oÁ„xum]]]GG‡¹`ø÷‡Ÿ´4†O|ò Î7ÊÉ/ØÆ=TçìÖ'ÂÕ¾ÑËô†=è‡}aÙx|Ô½N–qF;cêgÃ_OI¢h×5iÒte¤J UAƒ)a)„L±ååÙ#àÝìµÁì¹~0é&Ü;±'ç-ñ`#\a°3 t†ÁàeG¯‡…öqXë¤ÛЃoˆme7ÚÏk’%¢ÆøWBE^õM¯Û;ÅŠ-A[‡Ý·Þù×›6غm÷ôÙ¡s<èÔ'̱×O.¾k†Oýø“º9‹¶ûݶ׾‡¿ÛVg×(+÷]ž7 qÐÔøÇº cW®Þ3MMM*8¸©¾Fkk« ×{ȯÿ†ecÔUoë?jÎ}ƒw°oï@K— '»\{g¹—7Lôf¯÷„oǰ€©ìÜ YlVv2šU)àA[E®I“¦+O-eƒ@³ºöOÿ'aýðýh˜5> o †À3·À“7ÁC½Éý=`‚Üé ·{âZÀ^ŽLi÷3X©MÖ²F®88È=CáôÀTíFJ†u¶Á-H‰,"5Š‹<7u³k¿ãöƒbu¾Ñ:ÏýN=w¸x†º¹íµqÓÙÙ8m°sØáåÕs@¨Î-ÌÙÝßÞ)гÏ&×¾…»t‚$wü¡Ü U¤Þæthiiáþ… ŽºÚ&Žææ_RC}È寓ëCDVR,u¬ {Ÿ‘Áν¶¹»…»º::ÒÙ–x¸‹·ûÂ3¾tÖydz8W4Ô+c²4phÒ¤éWŽ-böv8ú.„OÿGáç»àÛq0g |<Þ Ó|L¾™<Õë úÁ}~pooèïÆ”Ú*ÁÊýà Π|1þ„ä„íF¿¡×ë95ª««985˜×ë;†+©ñëàhsáœäÎØÓí{ÅxõÙb§ÛãähåtÚÉ­þf/v¿}o ðÓƒpäQ_¡,±UJàÐ5™á£I“&M—R&©0N}Q¯Aè³°ã>¶j"ý~,w;ût8ÌÓ‡ÐiÄûÑçúÂÓ}褾ðd:ÔƒY!8dKÁ¡¸Ø¾³­,uòô;¡äÃëÕL‚Ø} Ö íXÍÚÚ¸í¹özx{xn·wÜ`mìéêÙc»¥=Çn'ïpg¿ƒv=öêÜÂízD8÷µórî{ÀÉÅ_çœòÊ{8ÀL`”¸ëòU‹‰¢ÈÝEœ*8›Fá×ñ«àPŽ} Kˆ Mk·l×9†yx9yñ-ÒÞ3ÓÕÅ0Æ^,-‘/[Š€Í‘<ùç„784iÒtõ¸ˆý ¢t)R–ÓãŸÒý¯BÐlëdݲì.º`4|9f—ß,¾=H~£{åúbx~0íElÌÓH¨Î–CÄ`¥4tXëȗ㡾@éÆó°dP:¹Û)næ±ãâ?.sôá>E€¥Ý>WïHGÝ!Nžaž=\½•|~¶~û{GºôÝmë½ÍÂ-Ĺ× ç£c0V¡¡WÊÑùã[qqTg'çD­"•õuÍíí’Dºïóûc‘ØB‚˜4"; ³9~òË»­½‚íøOÑsÏ~[‡²[½ar˜;Â&êòvb%£G¦C“&Mÿ¬1â§Ô¦AÖ6zjù"^†àGÙÎÙÏaÅݰøN˜?†ãCþl›9Þ o…ׇӻýd»®µ€:Gj£kÇ­O–²­[òô Ø#ÎdbD?¨¡CA˜ÂÂM†¶éuÀ£o°NvŠvîyȹgˆµÛvKÇ`÷Û­Ü‚œýœ}¶Ùºm±sñwõôôÙîäºÑýæ– ½uÈ `2áƒÃd2©Ù ³j›jªšÛL&ñJ·¢Û¹ÀîAY&„üÛ,9R‡\Ïø›kä)(ØÜkÔ^;ÇH{ß ‡>Ûí]Oû:ïö…G@ðß;«³°a“`§H8´¢*Mš4]-Ù *­Дù!,éGˆ§Cä$y¶Ýë8;&À’»aÁ:ïv˜=>½ >ïŽ&ý${V`áBítmØhAìlaõCüT6ÝxÁqQêFÕrS‘ü-Û6»ôJÐy†Zû„Øø†»ö pðÙiãìäìèdë~ÀÑ;ÌÑ=ÐÞ9Ä'¥‡;8tu ±´Ž{ù=ÚùSñëùþTxÎ~ÿ>‹n'¢£££¾¾}º:~CGsS;!ì_ÁÁ¿J’ÄY#¯ƒ£Míð4¡ÏÑDÄþsÛ«×úG::´òÜëÒÿg¯G‹†Žðæi÷UتH8–ˆ ¢”ÞiÒ¤IÓen¨š˜H:ªäò$é\ =½ ŽÞ‚Èi4xмë1²õ^²~<]=V^yûᮎoGÀ¼Ñ¦ywÈ“ú(CÔ-LÖ¢¦9dK[Nb©k>4]fÍ7à^ þÊÄÀ‘¡üàRÊƒÏø[;¸à"×k?]×yzDØx†:xmt÷³õqï³§Ï@îtW:ýæÊXó»Ë¢ˆB|Kijn­®©«­k¨«o¬VÆRÕ×7ªÙ ¦tÜ«#Öõz=G ÿk,ÙU(ó{߀*ÿGç?T½ÍNwç.î]áÙ‘ðóxZzPÙ‡ 8IK#dí߉&Mš®¼âej÷²†zV“NòÃáì8µŽ|‡Þ‚ˆ— øiØýºîŸÆÃÚq¦å·Ãâ»äÅ㤧û¨k›Dµd­€ÃÊtÎÔJ×óam Þp?¯¨ìhb¢QY,%øÞjãªø×G¸½W€«÷GÏ`+×w¿Ý¶^»l|J|}e}¬Zãôë½×û[‚(746WUs4Ô74ÕÔÖ«3FÚÛ;AÒë;››[›•Ù#õUUUüF2÷PÐï¾`ˆ9²ÍÍo¯S «{ˆWÏ0+«Â‘îòÂ;áÒajž^"ª„¹˜¤UãjÒ¤éJÚåyH­Ð|JŽ@ÖNH]‹V±3!z:ì ž…=“`×c°ýØ~¼q¬¹{ÌŸï§®—t¶TÙâ$YZrp0+ñäçJkà ÷ó Ø”€àPqù“Îó ½Wˆ­×õÀèâ»ß–³Ã3ØÂ)ܱÇ6{ßÈwBEþ/ÂM¿÷š_ÍPH’¤‚£Ó`âŽFeU ŽZeªau5çG#G†:{„G‡ÿÚ¨¨¹¹Yõ_~÷a순ôl˜•g˜ƒw€÷Ak—£7ÛÀ—÷Cá~Êt1¨`’4phÒ¤éÚ'˜ú_ÜèÚQÕg¡ ²vAÊR8ó œü ޼‡¦Bä?aïd~‚$÷ö‡`ë£òÔA²ª³c¸7ÖB´Ðqp€µN>³Kªn¼îܾ„󢘴ӱo´wˆ¥ûõÀàâaáîìfçbå±Óù¦‹s1hýÝ€&ä_›/0U!S“ µ¶é¹—q¥Ç¡òBrˆ]]Á+®¶¶¶–––ÎÎN£¢?üI4ÄD;ö=`ßÛ_çÂ?„]^íÿ¼›d…2Ù¨$€þL~1IKŽkҤ闱*óAÆÔfhÊ£e±äü>ÈÜi«Yâ"÷9;þ>ÄL‡¯AäTùw9üï°çiš"¾5\âàÀ¹6`fEœX¥´“§®9ŒnPu7DQlkïhimç°¨æ€àt¨oäVÓ5D]¦Î‹–Ž ½^°P«¾4ý£yke»1|Ôý¡¶=Øú°óüÉQ—;| d‡•ÐeÖðbM•È4phҤ骃ŒëÒ*@_Aj2åÒxÈßK³wÑôu$y M˜Kcg±£³èéá×¥C¯BøT¶ÿUéý»LœVJÓŸ%Õé$káßÌÜdRé14'1c'Ž®%Æ>,C\ý®ëqØyïq÷ݧsÜãì¶ÃÉçøäi ö\¡Rqðë9ît‚À=…ÖÖVî8`É-÷0ê10U×ÀaÁ­UœܱeªfÆ»)Ø:ÖÛ”Ú€‚•k¶Xyqèbï¾ÃÝí¸»¤…àcÂ_ ³8J™±Mš4ý2V¥Ì´SÏxÄÖZÌÙÅÇ àÍ ë!e$.†S àä\8þ™|â88b>>½×ÈIaÓ½ÈÉ Œ_eûnLp¨k\Meú«˜úøs;í]¶»_79`ïâälïbç²Íͯæ@„¡Ë“ºòÄþ·ÞGsssSSSCw"jkjjª««Õqîe ¡°C5•ííœWB5vuŒþ@f\ ÙaŸ{CÙΞý£¬Ü·;98{…Z¸W…|¯L}ç/`4©à`¿2ý]“&Mÿz2v+C픺\tVѦ¸”Å'Ø…H–» έ‡Ô!iœY§Òøùpx'ùò!“ ‚CY#kÉ¿Êü:{ƒ#'À ®1ºcU8'\î$Lä7V¬ßéî¹ÖÙízàðwêfáºÓÇ+ÌÚy‹‹/ÐæVu~ÇÕàø·—ý*5T/ƒó¢»_C¥'…9'®Ünhl掆ú”Ý}*(ºû8ºyñÇÀÁ?öv4œ0ñ¨½çNo+—0k¿“ó§A[›r%T¥x84iÒô+~+IÖš6¤±ê$ZK C~dCú.HÙ&¦m³«!~‘pæXs§`§æ8ì¨Î,1?޹–:Èß‹Éñ3àqØ]q2Ô”n9&ÔÎ{³›ó.'7ÿÿÃÞ{ÀÇQ]ûãk«mW/– 65 %< ü tL51Ièðh)@BHB¡Ü›lY’Õ{ï’«\d[ͽWÉV_moÓÏÿÜ{WËb°É#/Áâ¿ç3Ÿõz5s÷ÎìÌùÞÓ¾',&Wœcœ’£O*SÇÖ†‹Â’Ö$$Õª4ÅÑ“ ¬ôubþhq R d Xà{›Íæv»ERû­0o•ÿ•;.ü“ƒüo(Ö_çÇ®ì¬ÍÄ\µ¾**);"výÕ?°“?yhÓ[hš² Ê,Œµ&Ý¢¤ }+û+ÛßÇ‹lªx‹¼¤¡ìïüþÙ×Ѥ‚sîU|Úm‘6d<§|¾e|àWT€†òØ”ü#»=\`Пñº(”¤‹™\ø ³ò›pÖˆ<%YVhŸ¯ÏæOJ^D§¼ý¾É+2ç7ðHPMvKnò…ÒFÓä‘z+*Ô¢$é뼌·%9e\ŠlCØ–IÉ?d£?¡ƒáúÅø”Z|¿þf^7sÅ*‚W"üiv£)ó’‘½É×$ÚAF¶Ð‰á̃™þ̸L’ƒu“”DvÖøÓSN’ÈÑ ãVúÆBil¼^RE;Q ¬e›—=Z™-k‚É1Ǩ ØY_3yu‘iË"ixL>q²Ä}RNëÄS0³No„_Sæé°8#éšI‡Hß;ˆ.jzQ‚òÍ{ȳf= Ãû”Þ6åt o„ƒ°¯öä𻲡+¶ʵ-?æ58ÐÊ;Àá¦Þ9 | 8WJê’ȉe†˜|mT¾:¶*,¾^[¥ŠÎÕF.‹1†'­‰Œ­ÑçjâÍ[Bô‡ôu(8<˃ÂËË*/˜>D]ê74XŒƒ½~ß1A¾M$ZIð;ót“s"t…Úè}RIâU’£Ÿý Uîæ&©ÚŸifïx^” *j—÷ååHî1^„ÀU ^žçñš ;“¬œ×¬û"j0uý¥U™N§“íê–ð•Mžªk'àw4 ¼‚ ÿŒæ sœ€dÿ¥ÎC\Yq¤å—"©GÑÃyñ‹#£(qˆã#åJ(Í(„8섯Þ뢙vòê49À3‚úÓ+:ˆ és/%nsƒ U8êeo-ú?ùʘ‹@ÚRÇË‘?åš]tN˜¾Ð˜¡I´ì٩ЇT&­Dô€Ã³­uÇê´Œ…‹–,[ž‚o-^ZV^yælßùÆ/¯¨Z¹jufV±2NwŸI]ŽGN·jê%Y—_Çïì¤Ö2ÀQžßqÈr`Ö‚¼èk+ïÊTMY6i¶:©ðúÛ{–¬Þ«%„Tª±=”³Ú}§Ó§\“žœ«KΉ˜°D=)EYõÃÏÀ±“>.WY§N*V©§åç&ú_&¸åéƒ$Ê{œYbŒÉ Õ—/+SOÍUió'$w½ñšƒZ•ŠBI6‰ËMV÷¾åÙe}•*ºÄxY^ØÄ,Ud³Ê˜—¼é…'‚ û¢±=?ªÌã"Â"9{%Û1Ñ´Wêz;•Þ­pf«{”?/LФ‘qÕØQ’¨s™®Õxetý#™7½ýçŒØ©*MñxmN„.3T[¦ŽÍ×Ä•h¢³"ãš~t7©‘dt±ÿ‰ãDBÈ`ÀÁ,f}x¼ü,—ÀÃQ+:³ÙŒ«_|ƒj6;.ä"ÐØ·¸÷í¿—’ŠôQyšH<ßýïÏæ<¢Ž¯ÌïißÅTzËæ­;Û:ÚÚ;Ñ”@õŽø|ã£ù€ûãÆ¼O¨¥Ùj¿££ãœé1ßb*sÔí;v¶#ˆTU×2 1™L_4Op¦–qÌÍ[¶áG•U5háþ_¶ëêêÂa×dfãQ8gœ?~ŰÉ,ˆrÎfeEíÒ%)i«3ýc j vTVVû9†6 š;:ºp‡:'õó¸ÜÞµë6 ¨!”àqŠ$0W¹0&93vRaô¤¬ð˜|mL)®Ãõq¯¼!ñ.º°åïSý¢gÞu V÷çOÇEÓC¿â¡²õxOò‚8àÅÁ­EÆ„4uRçGsÑÉQEJèþÉè<øl=œ"Wyßãáñù-ÞSÿ³‡Sb§åh¾C7@¢ç¸gÑ(¹}s>(ÖÇ¯Š™hÞØDޝl¨P…·è“º>ü@‘yQò­ò9.pƒ³$fZuôÄuÓA×óæ"ÝÔ†qQ›nºÍ$ÜDÛZh»ùà'ËêÇ'•‡'ò hÂqÀ ,áž¹ªX±Ç] ž†VRÃý÷Ò¸?WysQÈ´Â'^û %m ÉQ'SêبŠ]§2vÞŠh%:¶‚)7•ë.Ý}÷/åQrfæ ´w¢}ý=¿h Ó¤©&6ä´çªb+µI]·ÝÔØC|œ<À²‡XP¤6<𸦰ƒgܧŽS°ý#¸áj 1ŒGžž¨øR«p#­ûdêÕwË@##»ÞþkfDB±&zM˜¶8"áDV&>ÙÃÌÛõ/p©øU%ªÒƒƒ†6X®8.àc²X,%!¾v´$Ä_`ˆûø셀íô±UîÑ…á Zcn„¶Â³îúÛQGÑ|H…™.;)p  þgZ—žÎ7>.ïY0šYgÎö±ýÛÛÛýñ—ÀŒÖŠÊj„üÔç¨.v¶u°xJooï9¦;aWõ¨™/Y±wß¡ºúfT×ø‰ÿ¬™Ù凅~‚nÔ.àýé»W©¢¼&uU†8ðè´´ ´)jjê-¶dÇa;:ºÐY¾<%eeZIi%Ú>f‹QÿË€ƒEv%A¤ÏL‚½-mea†²° Ý_@ÄÀâ^4=À98‚$’Í‹FÙH…,õ%å*C×ý3†À…s%.3Á¼ÀËdø}sæWª Ù:ýආZþEÒ´¼4óõ%ð’ùŽ‹/É¿ï§À[- 4·X6ÕCë6 VGNòÍ _“¸B‡§éôˆ¸*¨kîÙÖpæØb"!ÆyeŽ´àÅ,-÷<^ Qe§â’†¸ÇÄÁ2ã¤U]Ýô»‚zû"žÄ²ÐÜЖ=òÄ49Q%ª4 R£Ý¡¨Tž0•gœÚW;å±T7F‰Äq9H¯dý&Ößÿó²°È¢C‰.*Ã0¼©™%JLïþ ¨á7=PÕ#p°0ǰɌØo¼œ }™¾÷zy“Éìç$ñ«„6~ÂWFø•3¡ úÔÉÐÖ\}l‰ÞP_aȘB4LbEºcK{ê|Ü8˜+©²ª†á€ƒÂöGà`ñŽsb=LoW×4  Áôy{Çn¦xѤ:§õ!{;¯\•Žû–ÖÔ6âáøþü!;Ä2_Ø…åÊ*æ û°¢¦~ÉŠUKSRý¾,všx¾¾çŽ<]T¡.¡ã•—lÛšGZ6 ·wM|" X‚ÂI$ó í¾òf¦©ôMÚØòÇ_ÃGÀ;BâÑC´*P]$¥J&N0‘¼?¯Ü0!%.Á²¥™èÞêæ*•vƒ!©ý£HðœfvyY—.òóºò “  µ÷?ìFœPœ+ÕúÆñº­÷ÿÊ)‰£îTj.‘ã¸Î÷g‡ÆWF_Òûé|~ýVgÓF8ÙCê8ñ³+Ƀ«T}Uåøøòñq{gÍ’OG‹^!(à$atR`éfæ5jÊÕú1'$qûs¯CËêt£=ïƒÀñmAf®ö•8^¹¾¡zE"àáCiÀÍŸzÆÔy8àŒ{EkîQ®‰AÔÀ-]çܺÉKK]iVÕ¿þÈ8é¬Ñ7À°€y«>Î)¬ã8!ƒØ´ÛÓ4bÁÍŸ¾K²yÍ~à! ½ÆÂ" ›(M®+W]¨Ój‹Õ†5aÉŸIÙÚÑõïŽÊªº…‹–åæ 4Mº­}SÅÔÏ…EeÙ9¸Ôǵ=êêo8ò JðÍÞ}‡ËðDÈpzhzœ82£ µãõã9Ú„ÔФ¦‡ŸÛˆ 8’ò§°õ¹ vÛžY³ .¹v¥JW¡º|‘>yÛ¿Söv *f…Û pN’¨%ÐÀ²gáÒ4mtZ\×X¼›¯)«OLÊ Ó´Íý€Ž)2©×ó2ƒœÚøBƒ¡ù–Ûú›ëÌå±ë41=åbEß4agÌ«BØñéœ MbµJ›nœ´<ö»)Ú+ö|¸@öX s¬3M$ÆC+îº?7ib™J[g¸¤<階ÞÛ>…`"q£y"KL•t<þlvâUÕª¤šÐKþëÄÇ‹àL—>_AàøvÍ9…• âÏ~¸Üùæõð-èÐâ/à“BÆÁøPh~‡Sç¥øƒç²XyÿŒ¢N pdê<[[x™DÅyYù?—ËEÂÙĆ#f+Ëùav44,íßÄÚý ›-6«Íár{N73R|¹X8ðæ+gBÕÇœ À» t± 8Š4†,õdaÔs"oïØõï\¨/Z¼!Uq×®}¥eUˆhtœ8Ø’¾º¦÷Ç7 .ÅcñÍ7[¶îÀÁñ,˜­¼¢†™!çŽTƒ±^ÙWªžP>¥åÑÁî´CTÚ"­•Àb?³8eÉ5?¨SM)Žž²*D“qå÷†Wfã°<ïApÑY9Žk›;?E¥ÉˆÙýÊ›;>þ¨èžÛWY'unñr6ÑË)tåã«{V˜¡Z£®WEg¯X{EŽJ·2\W÷ê›-â ¶5c%ÓÚæÏ©PÇÕ"pD&¥Ä^‘b¼|לy’`±ám$Q yÁ0„˜4t -©Eš¨|ý”bUüš„äüë/wµíFKBä,žfอ§þòi~Ä””ø 麘*URÞÔGö¶ãÛ:§ á4]T„ãUÎwo†Ÿ¤8µLZÇ"phHòñ*¨zM!ŽøÀ“RUª·e¡þÑ_åE (pä铜ëÖ2Sœ––ý«ÍÔQSY­V’EqYó&ÜFÓD·Û‹†±2ú‡‡G¬V»ÓéFeÎLÄÖ¦œ…9ÃEÒû¿¢Žƒ£À,Dé²ëã8 ´‰yZ}aÜU ©ä"_A='òŽÎÝÿnà(+¯Æõ9b.Ôqc(€o.¸!pXm.¶'¢ ¾~SÀqðÐ1œüê´LüŠ¢âr²!1—ó¹ª4‰º‰­/½Ò¿±Î´usok;y´ðJrK…&mÈ6·•Øõt÷ùëûN›R¡‰ª )½¼¡Æ’%ó;’a•ƒŸ.iŒœÒ’°H{ISÄå…ªØÊññÙ—^ÍÞÅS¥-ÑÊ—G*®D×|×ÝüÞ}¤F# ¬Ú‚DÜdnïœ TÆú¸I}þCn^ëhjTzŽ“$*¶¾FŸuè ‹+jÃÃÏå©&W„$¤ê"Ö½ý¾è0I4F(±»Ž¤MHN›­!îØî]|}e|⪰Èô˜ií·Ï Ç·N<4!œ^Ÿ®ó̹¦ÇHSµ’ZE-­¬G€£ði‰­BÆm>¥07NËó¯d« y:ã(4Lè/)ÅW«+ý ÀÁ (Š&“‰ðªÓÆÌv@` € Êáp!X0CV¹HˆÃC|E«„‘c\8H¼Fâ})g»Ëô yÚ„\­¾áòJ 8ˆ›ÇÎ?pTVÕ!pÌýdAZz¢C Ç8P-#Üà§,ÀG}ƒÀqäèI4‘pKY™¶aã´8ü8J4Ò4“vÌ™Ë!jCz_¾@R`î =_Hä›ì%µu’EìßÛð½k‹UšFí•À»í r’ÑštœÒžYsªUÑU*ãÊäkÖ¨§-½¼éŽÇF²‹hXD潌×ëË]UõúKŠ ñû_x­jhpøÆLÏ’æÄò§>YX8>6'~²cC=êp‰P—p #dùf‚H ‰…ëA •¶#æ3¥Õ¡I †¸‚—Iå=ó›žàñ”’ê(—Õ}ÜÜÞP¨N.RÅ´Þÿ`8¾uâbÀA~ÿÞ&~é=ðˉpM¤¬'ŽGà0»c¼ŠÏ|”°–!à ·"G5%kM²ç­¿æè¢rµ†"1_—¸E 9ž=ÿp°Z –I‹šµ1Ža“Wa¸Î'n(„꛲۲ì®ÚÿÁ¼ª°øº¤Ëøâ2pŽ’C§Ç·“f lO8_p¼î†ó±›2LB¦Y ¯ƒÞôŽÌ^P1e…q’iÓFBL¸¦9€•˜¼”e‘Ü6M Í#á¼9º)™CÃý¿ÑÎ3‚]e”Ζ¤gê,7šWøÉž«™V¨IÜ0ýö p|+C`ΚµrêƒðüT¸)^Ž/‘V€>àð¤Ýw‡röŽ=¯óh8pœøÇl|”²u†B´;ÔñÛ?žC*?ÜÿÀjÊëõ² ³8Ðv ÊŸ’`0ÚC†6›ÃßÎÉW€6Ê슯þ<ÞÁa¦a+5Zª&_Ðâ ¹ø¡Ú8µiCqD Žlƒa×í3ð©¹̹ÑÖþŸˆq,\´lÁÂ¥£€{P!£>p 0Wjñ“§ÎPDø&ãÌÙ4šXî°ÉZWߌ Bb.çŽZ6×·ó£Ù"]¾“NA+Š{ ±¤DilYQÄ”Ê]Ørç#©š˜‚è«ÓGqÅMÖv’‰¤ì»¨@7'BíÞ½'\·Ô[LïX/-¸“F£[_LÇÝöÛ§³t‘ÚK)ÐàÀ^ðp´Ä›§¥éBçûs 5—®ÐOumj#Ó¢ I¡+ zY8¼©ÃéØÂ9È-{$[mÔ%áî{x ÇNIö1É£]#S(iy¢Í›rYqäÄ÷ÞŽoȬg¹1†¶ÚKžþxÜS‚^å&ÞªW¨JúÇÍ`7_„/"Ðt\Z©… ¼3ëêC“sõñÕ†„Õ!úÖ{‰ËAR·ä•¨Oák:©˜:7ØúI*”¿ ëßd±0 Ån·)ñ{ïry†h2Õ¨¡ák…ÿL/r‘ø­DŸ ç}šYfŒ+7Äo^ô1'“µ!mˆ@ôÒ–Ž,lj±j(¤0¼2uõV7H¨è§íE `Kng{™ªß±cÇgEy£í¨ð ³8PÙ2ý¼}GSÂxF0JÀ£•ãÌâÀ¿âQ4¹yE¾þùƒJ«V­Z²d |¾í/£(a–••-[¶lÅ ÆyE~,B`¸2µ¬¬âœÑØ›ÎÎÎE‹-]º´§çlW×n<4--ÃápÕÕ5¤§¯Yθ¼hL˜uÛ ö/÷nl+W',Ö'þx®·]€µ¦ô0Zž‚Psÿc…ú¨\ŠöÖâÐ"(2& Y¡¥5“ƒüR^:þ¾wßiŒˆ[mLìÝÒt¬—ÏßìÊÑ'–k#·üt:\ÏŠÌÔñ±eщžuåÄËD«×Iyˆ,° ®®FO^ëݲÑB .Ü$«‹g!ÜÓE8äI©H¡jJcÜw‹ï}˜ü“ƒyÕ(=/9ÐmÇA²Ôqy‘ׂ[¢¨è-?5+,¾õg÷õòůa}鏸›w:«žWÞ¹N‚«¢•˜Pn¼ T‘|˜Jüó0xRC…Dú ñ^ÅçÔ³¿«h|B®&¶B“«Ž*½úG ¹E‹µü/ÇˆÉÆ€cp´4ñ‚Ù,ÛÖårRNCW‚‚Úip4™ Ã_BÎR|5pЄ)3í±î…K#bjÔh^ÅåŒ×ïÍ\å¥ä@,ƒ•õ¶®v\T§gdŸ:}V¤Éø,$zžá”oÈÞ§¢ârÔíYÙùv®\åîž¾´ô,ÄŽŽŽŽ@6Zÿ•)-«Z•šXÀ€Wò Ξ=ûEó„UŽ#LTU×3¯]qIÅ… Q8–/_ޏpÎ/yëÖ­[¹reZZšÕj _,X„@ dIûÏ´«« Q÷ïë°XlgÏö±êËÒÒr„›ÅŒ’ÅÇÝÜ4$fÔ·­+g\øª„¤C|@ú-J‚Ãa£ -¸B6k2éå×?ôdþ8}}d$˜M`íïøñ]9†ÈTUÀ @“à”h9Ú†û?x¯V“5Áºeýùwro“VMàÊ2&UãZî|ØwWÇ ]R£!ùôÒùNð ±ÔB2»ß_X O*ˆŽ‡šjqr„bQ‘9Iä©Ã‰ÆiH1yNìU‹B ï¾¼Ã0ÐS¨›š¦)%õ€v/3‚xFìŽÏ_ª¢ËüáM XÁ6˜ti~¨~ë=÷áŸ\|pKtÛq‚]ša"ŒôYøA †SŒI¹qÉ-÷cìnÖ=ÞÆ×àã›à©iðƒ˜!‘žã:%Då}éåÄVþ_Î>úFÆÉCM)ÈLòYí¦ ãT´ýËã* «c§i$5_´÷_¸|¤ ¨ú~¾²8 U0!}cÝÞ/R¼¾aiº8ɤ43–ª‘‘?)ÇWá$H;yue]ÿÃʰ¨’ðÈ∸sæÎ/(,EPÀçÍ_ŒŸ°¿¬ œˆ+hÇÎNæª:sæÌ9'ÎÞ°Êqœ ޲òj?ïÏ+¨äSRRpž~ÍÎdöìÙƒÈ2oÞ¼ÔÔ´ªªš’’2Tþ»víù"pà±mmmhnà˜;à8ÂJJoâEpðRÏÖŽMÚØRµ¡âÒ+:þîå3ž”:Û3sô—Qhg¯@J­½àAœu ÄñxdÎÇe‰éºd¾ñü‡ÝéòåX8ó“ËBc7Þù0!¼,链ۨŠ]ûèL -¥ŸNGp*‚ ‡ß›W©I¬T©7ßü³Òû_w÷¯Úߟ—Áƒ%_(áÐ\w_ñßéªq%ÆÈòïÿ ûòk6ªâª´úu~pöx¶Í†´éðÖ5â×ÀEIQ!0^¥ŒSyo,·Ì8;VΊ-ÉÃH¨€©ÃYæ¶ýõÙšørclEˆ&=<²íÕ?’˜Šø5¸Tüõ¥Íæ` !¨ö{û˜{ ß pØìNé÷ç[Áž3”ËEüT¨¬€˜× Í@ÇÑ…½U.\§Ó> =y¹yÑjCu%º¨*ÝIJn£.rAxY¢~™)úÛÚ;QQ£Š.+¯Ä׊ÊjÜêêêŽ9Âücdéxȱã'7nÚŒˆP^Q…ûwvíöw6ô~Pزµµ¦¶¾¡±m:ü¾C‡ÖÖ5àQ6›-ÐÜ𭬪iݾÓOŠˆ;×7œw¥3ܶmMMMþö²þogaößS§NíÚµ«¦¦®¼¼²®®¡µuGÿh øsòœñ¨ƒâ˜UUU&“yÓI Üöí;ñc§„Ì´a†äK6àùÁ#Ç[¦?Ýpÿ/Ö>øXËmî¸åÑõ>'ìÜ+1BQy¶±ê~7ד[Ôú·÷Öß1£êÎGÛžzãĪ|°rnÿ~Š@{¼’”Ûý…%3Ÿ*~êSë–óþðN§—¹dE®þ±êïš¹}ÖG RpÇ3rjï›™ÿij`µ0nP)ÊŠG ŠK¦?¼ö¡‡ªï»¿qÆ/·=0³ýƒÙà°£^-y„ðŸâz’;“•]û«_Õ>ôó¼Ûhý͇·¬G!ÛòhcÒ•È!ʱ¼êçžÚtËm·ÍhyéÅîòŠÁ2íEËÂB@YJDͽ¡áõ?ì™þrÓ}O¸å±Ͼê¨_?l{ñ+XÚÚXaƒ{ëX …3•÷¯ž¾n‰“&ëEa¬®M‚Ê_ƒ{×:1Ú§’h Žö¼öö­[Ÿª‰-ŒŽ­ SbË¿ócÔ.–ñòuE’”‘ ±hŒ2kÿ××?h±øˆªÎã"ôˆ- c ÁAÐâÀ×ÁÁA?)î#_⺑hùŸ—kyêÅBclZW¡‰ÊÛñÚŸA&lH´ˆY$„”ƒ¦±H¬Ç·ßU©P°øÒV#lâ–âz‘%ÜÃ: ˆÔXßU·×ã–’ÜÂçÛ&í0Î d…£Ùøò<‘¯Ù-ÄÓß”Ý:tý)ó2³ö¤ÖÄã¦ç-8˜žQ$ßžâ(—¼‡DJldÄñæ ^ÀÁ³G8›¸?ªŸƒ…7‹¿½îW'pI*"Mƒ5Cwݘ9/ߪÉCü¯^rǺ^6 dO¼t•VSV[¢½|hÇN|ŒÐ_/>„êehÈÄ€ƒØ~²©á‡ÓÍr”/êáUßÐЉŒ™|‘qÄ ¡!\œZ7|ØIíÕ‰îâËoÌÕêË5êŠýJc‚©²µ‘Å”¤ü« ‰†Ô} LKÓ&D{³“òû|>Óð£ÈÂ! ßÿ3¿P öïƒû ’øYc€¹ñ¹XöèÆ #püó¡Æ9Íáó¼îçØhçtšbý§§ìè:©ß4"&Ó¾À‘I ,àA†£&;ðVÒÉOfI¤°†÷fôùyÂ(Ð? “8D‚mVFjN nôĽ4QžåÆ:¥óÆàxßž¬3ðè«$Ù¨ù"ùZÍûîq Eœ uÏ’õ”ä!Ú ‘ÌEXן*†¬ZD&‰ÅŠm”´„zéIJНÎ]m‡&‚™³Ñ. eE+u£Š¾ßx´Ã»ÄèRH}¡@=­J^0)í’”1¢W>\M/CÊOå?þž7NöN#a)1–ÞÊïÊ[À÷#·ÀˆwP‡u>4culTµF]ª,V%VÍ™'«‚øz憄Ze€2„ÿR¿‰eR!|X¬v¿¹AàcTO~ÑgÅŠ5†ÑNéõ Å ð‹ÉKŸ÷uC?p–u[r4S²uú2mDµJ—9í r€hcŠC¤ùú’Òç*Ö?37dé‹Èè›v° qçœþˆ€Ÿ©©*aVÆ—Žn¶@ÀÎ ÎØÿÉ_>açÄ\üß…†á—¡æ›µß ì-ÅÖì sl)ryº&§Vª[ô0Qd3‰P€/ç™urX[ FSûˆ9!1¦Ö׉âvQ ŠSXË/‚ìá5B¾@ùAª²$ôlc宊g´ÂBdWQRXY"'û’²Yá†OŸ{|¼%¤&±HEZ{Bº·x+™•GÀOåQæC+[jQNwÒ“„ÔÄàpJÏ:YˆñÊ…weÀÁ€ƒî×¾@„‘ƒ)þå,Ëjµžã9aÀ!Òg‹tÚµ}A¤S—%ÅŽÊL.VEäk ¦‚”¯¾àÜ.æ-(©°ô~e”¾À²:—AíÿÈiwÂ;×ÁÓ“•;à; .>0 òg8Ö÷ ózÐÃÖ£uìˆgÝ3¯–©J4‘©F]eDBýnO¯×çKü­D;­ß!Ïúh dôõ“WfnØl¶¯ð,Š—˜¹Á ?;",%r~ìp‘”J޶&ΜÑf#䟯þnMˆ&7fBAÔ„ºñÆò«®„Þó&30΢àÜ.ò-¨¡/nà`a8\'á@®Òü–X0æÞ¯^ª<2nšÉî'1°ø×Ε`éÅ壴¡eìü¾¢Ì™[·¦©“›Cc3⌅ªˆ•q x5ÍÝ%þ[’eHÍã/p^ 8<œw´<ÜÜ?€šßÜ××g2™<ÏW–ì1±;\þx:Û¹n »> õ—t÷$96ÔcÌF"pòTzÌ% º¸ì¨ø‚ð¨¢ý®7_WÏWûÚ‚[p šAùßGÇýÀAðÝÛǫų¹ÊÇ`ÙOáW OM†;§À•Fá&=üãÿqëþ=õ 1’ºÇù¡â,u=Q­Š-4Få©5UaÆ’þØs•GínÀQö§óŸ þ:\NV!>08‚‹Åâ§KúJaTêØÿµXíVF pÈà =¼<ËÀ±Ä ^496½öÇøûq¿¾½nœ Üd„7¯—ÊŸƒ}é`?ÊÂ#>ö´1ôûnÎܲnex|Exla5f« {>YNÂï`eä<[Ç_8$E¶Ø¬LÛ£¹Á€£¿¿?°Üû‹AÀ÷¤M9¥(ñ—™³7N—çóqì€âqÙCQ’Ê´s'Ï ¯ß¸Ø:úÚQqŠ”ÈX:öØ9aÚÀZ1óÕ¡I%ã£S QպĔK¯†-Û@ôXE/Ï»Ãèbb›Éd:‡'ö‹ÀÁ>¡Œ¸Ã~à`ø_Žg¬ˆÀsŸ«Ôf‡£­¤¸ q¢=½üÊï–EMÌ‹ªU'—ãêU–¯Á–8³‹49‚” ü[DðGÆ©_F@…#™ŽÃá½Y~ë¿à¹+aÆdñíï@æƒÒú·¸ý`:I;M²†öcDÜh3HfÒŒLÞ娩Z™Ð¬NJÓ—é“êÆ%6]u³{÷vž’®‘e¿¤´W ¹ccÙA“C%Åfw2AcS÷LF(üÀ÷xeE$ÌÁÙä¾­ÂÞ eã[Pý$dÞ'Ï¿E~ûZþ¥‰üsÉðÉ¡êIië»ÒÁ2bt~ ‡$ûØæ8BúææÌ`6Õ<øt¥~òÒqê IS ôÆÕcÞ­wx­ghf´7xˆäEôDc!—Ç4b98ðõ‹Ÿ«Âý<«‚ÅbéëëcÀáoÿDz2¼ Áo?D†.™³‘ö› ™‡7þþ÷¥‘“«5 Ë£ŒyñÖª"˦ÅOŸ ï ûV¸û6óîam” %(ÿ·2Š2£ËcÚµª`:Ä©Tv| ͯ(EÉ«î–?ºQøÃ4å¹iðÞõPô ²á·R×JèÞ¡ØúÆP:.G×í<çAq9­„'áàØ™´¤+‹“®(VÖÜÒ„ä UtÝMw‚§D +x¬Y2O¢x¶hnø£þàø°ÉüåÍ,>ÝÚ?bxx-¬šƒ%âúêe_›9ú_Y"M4D²y-/¿Q9­84f.z•^—­ ©ÐëýëíPógqãláx¹s  OÔíRŒ%(Aùw‡ä#ÉšaŸûx{?ß½v¯€Í‚êg•ìGIKÙ¿_ /]/þåZ%ãV©ñ)eÇ8R/öïqÌ´^áYÍ·Lhpð=iW-²¹«¥<þšã¤|cb¹JÝšXc˜’þƒ`Ç.p9Ò%Ó3Ú‡€£±exÁÌ Ä‘ÀŠïóìÓé ŒˆôØQ¦ÄÖ¿CV|dY4ÛMâEŽ8Ê<"œê¯äç«Ô1%¡19ê¸ôð˜†Ø¤L­êÌë?†Æ§…ÆßÞï‰ÍŠ£—0ˆ)C0(A ÊØÆÑM*Üv±¯ fAëß¡á(þ¬ºæÜ¿»ÅûÇ«=Ënâ«f([gÁþ¡» Ü}cÈ56'.݇ÀiB, õ¤¿€foÇ–ò¤k*T±%Qɹê¨2}B“*ê“ïý´§¨ÚÌÕ¾—Ø(NY LÁeÊ¡Äfw‚à_ v»ø©†|­ÉÍÁß¿C"ý×$'H´É&b•hÝÔ±ð¡g«TÆš˜äU]ž1¹>bJ…JÝÿÜO äYçÚû óï\W Ÿ·™tæÁA¸à ” å?(ŠGtôxOmòv¬V6½ uÏCþ½|êðîø?]ÍÍþä?k'µ/€Sµ0Ô^(¸2'µÊnº°§ý.]cå|-T¯ÛZZÒ¯½¡p|ÔÚШâPõšHÝ&U\IDòî¿ýðjÐÞ–^Ôýý0ÐÓ7áÌvao.lýš ¥J™·ÂìK³®ãg_éwBÍÿ@ëÇÊ‘R¥w«b; ¤rŽÔ¶Ñ¢9…¶%;õ2˜vP<ÐѶrÂåUêÄjm\^dtº.jY|Â2m̦»ñ´l$=—Eè•“Í3Ðk>{¢·÷Ì@ïððÙ~çÐ0¸]$kÙ){çI`]ôîW<~â=Ýý½g‡†úL&èt÷éï;=ÜïâX—4ÂÿB†’8y²íÉWs"&ä†GçÄÅ–ë¦G$¬V©JÃN=}£²t”?[^†sa÷¥g«â"¥¥ p%(Aù&€x³4¼O>VC:t´üꞅ⇠eî¼ÿ?þ®²èF(x6¼+ï^#Ÿlƒ³5¥2JjI—Êcˆ5—t¬$)¼:we^ÿ£4MB¶J¿,)6_YhˆOSÇdª'îë]0õÙ†zFúm#޳ÛàˆÕ1`¶ž0ÙFì¤0O$$W⢊Ÿ^ ‰\âì’ICNQv;=Ã#ÎÞkwß×`·i ¿·Ïj¶¹I[Mê(Dt‘ì 8§,OzZ@MÑÅ!aFM‘:.'t\ý´ˆž'¾ î‡â§ ñUqãë°;Ž–ÃÐàm˜\” %(ÿ9 á¡óŒ|f›r ¶Ï…µ¯Cõ3}'¤þXžûiÎ÷ ý^¨}Ci]¨,Ní„‘ã Ø_¢¯dyìÔŸYiïc•·’ÌÁ™SU?ÿU®qÚÆñ8ÒtºâØø¢Ø )¡‘™W~ë[¿?zêðÈÀYë@ß龞–¾#‹ÉéVì‚,Jþ³V|]^}Å• E𿦠iÿ40Ôß?Øvøäàð1ËȰÛN|Yž~°ŸÎÉÈÿÑmé㢛ŒË£ãS5ê<­¾>":G²ö Ãàÿ\ K;ÅÊ_É›ßölýÁ™õ`?²F»Óqƒ” ü§—à¨çx‹l:(h€®U°ùïÐø”=¹wÉ‹®“f_+n’gaÃß¡+E8ÜýàêÉãCŒ1Õ‡ÅÁ­‹”‡;HŒF—s׬rUÑyÆäÒ¨¤4Õ¸¾*2¾@¥©Œœ˜}yç«¿n]?l9}Êröøp_Ÿ×kõ}vú,ï@b}Í»»{zMgûÍÃVwŸÅ;©RŸ¡ ) ‹ªLºdµ.²ã§Sí¯Ý o‡Œ[ jº¸îE‚{³ø“MÊP'x˜•'Ó+cÉâ JP‚ò-ñV¡âdûYñìé`‰²c¡¼ñ©î9(}LY}‹²àZXz3ä< o@ëGÒÞB8Õ æƒà&ýéÆšÅAšàõÏàŽøad놼ïßš¦Š­ÓOn O(ÒG¥kukU†]|‘*2_›ÜxÇC‡W®²Ü+;l ŠÑ-‚ š]„sX"l%n8šÌë•!‹Ýd·÷÷ ôõ?môôvTWoýås%±—–ª¢Âcóà ùÆøÔ}aD즨É%¡êâI1‡_š.½w,™Y÷ÊÅwóu3ùÍoñíËå½%î¾ÉzDÛç}ƒÀ” å?©FGKD¯E>¤œj‚=é°m®¼îrÕsÿ¬þ±´üF1íN¨|6üIêJ…åз l'eâfiÑ¢"pÂ.Áƒj^8ž˜!´y‡ËÑóþ¢‚¸ï®ˆLÈ›XU¿$Ú¸26zMdlAX\‘*®H7eÝÍw~ýÇ7ÕºŽu«$;H6I²‰à¦aDBUâ´ö{‡Ï8N9Û¾õèÆÆ½Ì.ùÙô”È)Y uò´qùÚ¨]TVdLFxdeô%yÚ˜¥jUÇc×CÆ‹ö(,»Í½äÿ)ù÷AãS®Æ—¹ÖÉe?Øà±W $ð.Éz În…ƒоDÞ0K¬ý5”ÿrîäWÜèYùc(ý%4ýFj_$È’O7‹¦} ©³–¥1³â%ñ¯‡.Ñ97£ –X -¥ã:¶oÏó¯d‡Çè²µÑõãã«ÃâóÃ"3tÆŒè¨,£±P£­U3#Ⲍ²'\Öð£;·üüéƒo½s`Ö‡?úôàÇó|øé‰Y³›úeíÿ»;oò5k S2Õ‹Cuh\êcòu±ÙáÆ£l%·¯€ÝÅp²…s÷+’r2úM&Ö>(A JPþc±îN¤"€wƒå„|zƒx Xéš'¶üM®{ Šg@ÆâÊ[!s:”>©¬ý+lŸOÀ¥{³2r¸ÒäTñ*A…õ% ³¬¿½Ä/-KqQÞà9èÚ¿íwopeMDdñxmI¸¡T›¯AK¡@Ÿ”¯K,ÓNÀ­D“T ! „¹úØ\c\–!¶Xˆ’-‚låË“KÃ&äë4%‘ºBMx~XX¹ÚX©Ž)W’8?:¡aúÃ+ÿ­ó`ç;JÍ3q/šbæ½äÊ7ülþ³Ð>Ÿ?P$v·Âà‘àý” åâÙW r`ïQζJG«a÷reÛGJóëPùäÝ/¦ÿLμ Æ7IKÙ=òñ©7Ø{I^(é}ä[SrWJÖ$û“®Æ‚¾ÙJ,[@ô€Û ½}Ggý£è'w-2LÈÑL¬ÒM* ‹-*6&äŽÓ†Ët±Õ†„J]Li„±$B_ª6h¸j£‹t1ºØ¼_ƒ” \Sö ˸Á´GîÞ󔎥$êé7P9Sλ[ȾCʽ ª_„õoÁÎ…Êþ"þT‹8|Dr )‚¥)Y©$ÛG;QsJ¥Ž—À#q6Ñé/OJ5%+ñ¶ïnûãßs¿{Snä%å:´ ¢s£²tÑÙ‘š¨Òˆ¨²0Cuxd“6®TY¨ÖçkôºÈl!C­_£Ì‰¯Q%W„^’­¹4óò›7¿ò{SC…8ÐÉ{÷*'׋‡J¸öEÞuoz*ÁÜ+gÝ™·Cå3Ðð*lþt.„Ãг ÌGȯ” %(ß¼ˆÊ({ñ5‰°Ÿ”‡vÁ‰Fe_¾²c!´ü_RÊ îäòn‡’™Pû"lž])â‘*áÌNÁ|±ƒ”GH¾ŠVÈ@쎱cr°roxÒ ÃWѧx$É+ŒæÜJ¡Î=y¸¯(wÓÛoÕÝ|GÞå×§ÆLM7NÉ3LÉO.ŸT’T©M. / O(Ô'ç&eGN*œpUíU74¾ðëcËÓ•Ý ƒ‘«†÷AÏóÉ2ç aç‡Ðø*”> …÷AÉ}PñÉˆÞøhûög‰èÇVô” %(ß´È>šV߯×$;ºáìùh£Ô•©lŸ›þ ÏKåðÅwCÁPþ h~¶Ï=™Ò‰©—l9®¸mÀ¹=øhœ$ŠfŽ$Dq’ÂSNÝÑs oD^± ¼‹Ö€¸÷ˆ.’ zÀ6âsf츪8¿Eû²¯ =*}7e£"à*øºÊ‚P÷Çú¸{’ë‘É ‚@¡þH‡&I¢6 í²Ásüp×w†wCßû¾\Ø16þªŸ‡¢G à~(›!Õ½À7¿!ì˜+w.‡C%pz+ Rìƒ ïvú JP‚r‘Øæ0ä o[ On”CG* ˆ¯û#Ô½ ¥ÊÅÊå¿„úWˆÃªc)(„“õÒðvÅr€Ô5ÞÏʪ•±SßÁ3º)…Võ)ÊhY²2šE‹`9)Ÿí”6·c1l˜õ¿‡ÊÇÅ’G…¢JÕ3ÄÁ²ícew.û›eÓpžÎùÙ²|ìàRÝ¡(¢»–æåÒÀ›\É%"¥\W|¨+\4Í/N<š^NI‘%‰šþk‹VˆÃæ°ž°Z»,ýÞSE°/MÞ¶Öý^l|Á[;ÃUy¯§æQ±éhù¶§ÈÖÀ±r8»0ƒ¹-@Í–`µFP‚”‹Z$<eä”ÔÛ)o€}YÐþ)l™%4ýN¬}^){JŠ'v옯ìYGkÉ@Ø7 2O0Hù¬2>‹ßf6WEdvÖgicën§ ñÙ-p¬ö¤Aëyýß êq(›!–þ¯ª´þ-aËlZë— GêáôVÅtLñZ}D†8²Œq%(A¹˜}X"ð.°÷+C {3ÚеvÌU6½­¬{ ªŸÄŽò_Aýo`ËûбDÚW$®"Y£Ã{Hþg…ðжÈ#ýjiA¾­À!ûÓ’}„ó¢x«bï–͇ä¾6ùd#ȇö%°i–Òô&TüÊ!U=¥4ÿVÙò®´s¡²k (S¡·l=¤*Ó72|ŽŸ*(A JP.:HÕoGP÷Àéf8PH¼Rmó`ë? ù5¨zÊŸTªÿšÿ›ß:WK{óˆÝqf íSì=;Hsse4ŒŒ°! ŠÏ)ô­¿xJÑ%{F$G??´Oèk—N­U+iDü}Y)Šp‚5!þþ•Øt{ÒáPo„þÝ`>ž…¸=úú %(ÿ?†8›l;­ôwŠ'›Å#UÒÞ5Dïmy~«T>'W> µ/AÓï¤ÖùйäÂñ:¥g«<°¬§Á= KÍò%ýŽ–x|Û!—æÈ’WáFd[·!Ux­ê_U~£4¿.míËao†r°P<^/õÒ‹¶~IóÒäoÿu JP‚òíX:ûKùDàͧ ·M9ÝGªaO&t.†mïËþ$6þ¥ñ×°þO¤âƒø¬ áD=ô¬çúwI#{7iüÄ;Hï'é[­pfÉÑ/›OÊ»¡{­"WÑ¡QãoÐø:4ü!CÞøeëûr[* w¸D9Y'ÝæÃàCú,)K¦w9ˆA JP.zýL$Twqà1ƒ½LWÅ'›à`ìM…ŽyÊ–wÅ oAÝóPÿ¢Üôš°áoRë|iW:,…cµÞ3­B—2rˆTºMÀSvùÛ{Ù<òs@´œ÷I=Û”ãõ5v§Ë­saÓ{JÓ Íõo*­(í å®L ²ÕгŽô„%„TNyí¤B›Ñ*‚/Ë7A JPÆ (î#’e¿Ð·S9¹þ¿ö®„©Í+Ëþݙ鞚îI'tÛIÇqâݼ“ØxÁKœØÆ+66„„vÚ%Є¾ï½wçžOˆ%íôÔT2åÄ~§n¹ƒìz络;ÿˆü7Éy–&Ž‘í€ùH=ýwzòo4òg²¦™säñ!T{ÝTŒªrZ5–¨µB²ºmÁaM(HF·…µû4ÝÁóη½Ã6T!wóDÛeoôwfQv'5Ä*µ*b½(Wãf)l¦*>J±'4wSú϶ÜGèåéùä³?Ã6ÆΣ¦·Wø/@$GTÞ%Væ™qÐÆ¦Ú¤­E444Þ'´ ª™åY™sRü%&X\¸{Éy„ÆâFýì?èÅÑør'÷95;H±˜JÈ{d!"W’Š/Õ­&­E»ÃJ©NIEX”¡º±‡>~[Eu<«@yÖPžÑ ’\Íšµ¤(‡Ä¢[%Æ)ò„·ÈA¹ŽnM¤ä_‹ùûÜíGäLŸ ö«¹f ÊNÀ)Ã/5<š2ôŒ¸††Æ{&9¨]·#”uÂñ;z‡æ®‘ï"¹NÑØôò#búù˜Þ ‰¯À)þ~¤­âÃ*5e.ùøj-ê smEn6,³X]îèxgí±Îz×owÏ+Qû^Ä Ï¯¿U¡f^ñ;*…‚Oæì*ùZÍ‘ÿ¹Ï¢‡jìSñú¿1ë÷ê4â:+ïy¾F±{”xÈZ¬ÑÌ“Qg­V]ÊÐÐÐx¹CÀA}­$Wæåâ”̼©‡V&ÿ*¹zhü½ú”éC½ü èÃöM%Ï9 Rô‘L©Åiµh¯¤DcU­U27Ðô«ÄÞƒZíq|‡ƒbOgò6_tªÕpXoÀÑ«‘¤Ê,<";)Òcrá1f1øWá•‘û¸ö!û7|Á~õzý ÒV|ñöôÁð*z%ܤ(¡Yª ZÍ¡h«k¤÷·{PÕž¡ã¿ßm‰a’lãu²ÐØ,áÀ¯- ávÑA™Wè@Ž QèºÕv{³á¯?†—׫hô¯bê¤dñPsß›±'fj\f˜qÔú2kŽË®zÏ›Î444>@l÷Z‘µ¨ÜXS³k­Uz)šè ß&ï%¤­&¾Ä@ôè§ôæï8E§¾&O/¯ÐüÄ×òÔeí´ä¦åUcVÏU‘¶*ÖúòVw¾\zW@ݾÓÚ$-ûÛV•ø¨_[e¬„ñú36J ƒg)x £‘ŽãÊö¹zó‰ýý·“‡ù+Òÿ­bN‰ý¨Ø£\ Èj’šô9ËíµïÆŽY±†††Æ{Im¬¦à³´Óòd6寲Áª¡è§ü´H޳ô€Sà;¦ å8†tÍøçÒöwa;(¦+wŠéÁAŠ Qì%_>òµ´è#¥ÖËVþŠHÓ &?×;ìCUæ¦2×Ñì´YÁ9ÏW‰Ã´¶à“y2oñgù”1sC‘¶Ãh»ûTÿUM$çqš¹Hþë*r 6é©*?%KAUKÓF…Œ®›ÈnNìw¶ÇDCCCã=HiSQKvrJRâ*ÝQ¡j”ŠA‘uñ×ftˆÏIì—3½d?B_™ãŒ±Ï ÛÁºÃÕCîˤð=Š>¦Ä«™wËb@•fÍZJÖs¸Õ·j$,îPÆ;\ì¡ÚM¸um”åj3}+ój9L…€™uˆÔ„¹0Œ]ð&XÃq’&¨Ñƒòõ§,7ÔÄg4ýùÎÉÐ-1;¤b?Râ1åÞPÉKõ$­¯`ãLçw‰c›±ª]·ãjhh|JÄò€µÆ¥”ŸÂêºèƒÎU\Í\6=ÆÄ11~ˆÆÒøßÈö7rŸ'o?…n á*öX%^ÊÌ„ÌMKR˜*ó|ºªfVnD»l¶ËhU5Ö¬DÖV§ ‹¶ïçû«Õn샴ÐÙâªöê§Ýý r»Q .è« ->Ì_Õ,UÓ´’ r„Š>•w˜™‰vú ú¦"÷hv€}4}”X\ð›ûÌ´B·íôá½(×ÅÜ=”Ë“/ŒÂ¤(M«j˜V³xpÃÔUp |ÞnÕÔÚ¢ªÆ`o˜›¤Ä ¸¬ÏÝ¥ÐuæéêSŽHøO|AãÔä1ržF%ÝwEÅÜrá)°*=®²“Î+,°h$͵¬h.¢ˆÌ'9¹íUV jMôwíNÊí…G»¤°/ºÛ@þ‰5T‹~\FS¶¬žd³ÄoD62°¨-2_„aržŸ¦ŒM&‡Í…G&sbà†ò]QÞ³¦ë˜iÿRØ‚m_(×I+wŒ9÷½ˆ=R©”3Ë>Y¥µ4µJd®[bHg¤444>læ@Z £pEjðý<¤–œ,"Ðk¢¹{pdò]FÀ~TÚ¾cÿ`‚˹ã”tŸ•¾~Œ6Ì Ê(3È%‡±jÑIËÈ_‰RTUãði_Í¡0Ý,ªõµQ£V„Õ ±1‚*¶åÑaÒÞ þT´æS{ë­BËlÕÌf“häD=-+ ¢‘ËaVO2çT;j˜X¹Os·dh@ûñF\§hê1ùÃö¹˜8„Î1ç ­„®ÒÜmþf¦2oð.J^¹š·¨jèãíúÌë2¸††Æ‡ µ³ðN4a*²–••¨Y CzdÆ,õ1õ¸&=—LW/¤ÇäaeÿZL}úô X&úú(ÜqÂèmŠÁ+m£´Ò*z!dÊ!XŽWº<ÒȪ5øÐëe 6©¨VUµêr³Âa}Œ@&mc…ƒ¿‡C¬—ø§Ìµ<3…YOõ$¿Z¹2§Ê!Yô³Þ‘¹)Ÿô8K ™x¢b÷QÝ^÷ïÌ)š>†–cûa²¥¦IÇ7ä:CÞ‹¸J‘ï1)ŸxJé×*?…Xµ(­&U{Ó*j]ßõN•¦ ]v¥d‹$Úu¹Q6X”ÃTôó½/íXl}¨Âwep¼½ä9Ã|Á¬ƒ—¯ëö¯ùOé9IÞ \Â@Äì]Š<¤yÖ,Ïù¦ì(¬Ú¸Ã/Ͱ¡R¥beže‚¬ÅU-Å„‚ÍSÖ;ÁŸ¢þRM½–PÕ³(ÏšüË~Zrâ‘óLs£XžÎúbá “ó… _Áï„÷¼ôôHç1e?¬&¿¤‰Ã–Ä8Bî“4s–‚p_™R‰akPÅÎLÇLįS*ûÖšOaÑE «¡¬©e(¹¥ÌuÑ^Cr©–R¥ˆ\òâŸW‰—já9Í ªð5éë—î³ÊyZNU‡•íP{òkÃþ Æå¦{¬FÖ«¼A¡[Ø‚Ä7ùø#¾Ìóᬒ#”~CÙ •·xT⦂ª¤ä·"¸,R:0Ñý´ìEÝSØÁD¹7ˆÔ J>Cã? «†¹Ûæç½.gú„§×œ>m:O™SÇøµ™“ëž!ß9 } r‰>€sWÒ&Xefh%¬ê ¤Ô°©c?µc‘H]ëFajâÐÐÐøÀ³UVó’Õï´½]»[uµW‘\*ÏQÁK9e&)ùB.`Ø\…n:CŽ“Â~b;ødvœVî^Üç½çTઠ^£ð VŸÏÞÃFQì)ª!¬8X•°^àÈŽ#?ÆîÊÁ\“yE©¬PO=§äJ ÑÂCŠ3YÜE&?tüßaÁ+?¯»O90©qÇqæá:¦ó\hûÌð 9[Æï«Ô3l<Ì{h) ÊÖ<ãZŽ6˪ÝÂè0JÚ_ï´{éÿ60mt-Çѹ$»Dî\7 TOaGÁ«ò.V23Áê¡ykì:p#çžs4ÝGÎå8%§ŽKç å:NÓ'„û¼ð^F#S`@nŠàmºË ‚nÞÈØå}¨bÑÇ{ŒXæ”…g»ÁŸÆžb°}þ!?bîžÅAƒ¬,+‹à5p“¯_Í\d¶b„0ûQšê¤¤Ž¢Šá9N Ý ðM#öÀL ÉÌs•¡¥ *Π_·šÄŒ|nË$Ö ¼,ÖØÂ/ÈèÁwéC‘ž×ÐÐÐøgXµ4¾"ye¬ŠÍ²¹ºÔ®çÍRX,ä’Gæì”Åü5+ˆÈ¾#‚ƒ˜€ð]‘žKbúœpö²ô0'8„ë4ðé^‹û<‚OrfŽàUDhfm2ðö „ø–¼—!sÜ}äêež"ÇQ°ÃÔ1Ô\ð\§L×ÄÌ%áë­„oCéD m8ñœrvdÞ=²@ÓW--W—d³¤ÿÅ5444~!ÌÝ‚Æ÷àÝQE3mjØ=-ûP¡ÈØPSN¼`Õù¹ÇugVs‚žËÂ}†CN÷ öáêÛç9é>¯<ve+¤çÂ[£ûçÔôYäÁ\üh=¬/Ð[;}ŠY rƒÿ–ÁwIu ¦fo¡ê½o *Zµï̘*¸©èEV%ŠqõelHÜZÕÿâ¿TqÈn>fg£ÖŽobùf{()̉—‚(mÃ3p”Ò#(UwÌf#? ô0{‡ý‘ð]F: Ù¤Kjú"‡tõu‚…ÉÞ0]ÿ*Ät‡t÷JÐD‚dѯX¯Ydq›æï¡’|BéaGrãŠ_rQq|QK`—úz¶ªpÖÖ‰††††Æ/&8öí[½j™\©èÃhÀ> stream xÚ}’OHQÇ¿³%B¬e&RðN¶Wí`ŒÝõoʶ¬k¦²Î¾ÙÞÌn%Bˆ.AÖ1ºXÑI:†‚b]"è(‚—í73»îˆÚƒ7ï3¿ÿ¿ß{@](mšz€yÃÉþ(»;>Áê7P‡A+­Xf$‘v™lqdí}…䜛áãõÿ] ‚U€Æ¬ÇמöxÀáû¶iO:¬äÒb“¸M¤’1âWÄg³>žöq†[ ñ2ñMÅ'"()Y'æ±ld4ƒä—‰»2–’'&ßÀSg^™öÐ}8õ¹&›°€åwÀ¥Öš,Ô \V:k²Ý¤;©iÝR;;\‘Œu?ÊåÝV þ°ÿ¼\þûº\ÞC9¾u¥(J•IÒÀëÃ]ýÜàBS˜s_ QP5ûFz¼Úë׋Gõ%«t{3qW°D÷0vz ¼ü \}\ø$€Ôu¡ºmþÀÍ+˜…–ÍÙ¬C–;XØ9:Y„^g±BÞ,Ú\°ACioci]g®©Å·¸(ñL;òz±Úï9ÚAnŒŽÐIó ¨Üê­°4“I÷ÐÝ x#Ã{zwA¼¨j}ƒÎ…Ðþ¤Š¾Q¥óš=˜ò8Ðmèñá Ã(Äo{1±cÚÑd5¾Ué­ÊgÒ·t¶üÆlaȱi"ßÐ\.5æ±”šËÅâ^Å8tph0èk€!‰~D† TÒhd¡‘”»6‚ØÂì±–:>f¤ß&Ÿm×çŠäíxÝA4Ž…¶ƒLþ&ÿ–·ä%ù­ük±¥ªiÄ”¦¬?ûCqÌÕ¸m¥&/¾By#¤Õ‘%iþ 'ËW©¯:ÕXl©Errð'ñ=_—Ü—)Œi7Ò¬›©äê,úF|ÙNšٮͯ6×rm^™Ü ®ÍšUáHWü «Ãÿ5;¿?ÿͰhendstream endobj 141 0 obj 706 endobj 92 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 142 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 262.00000000 76.00000000] /Resources << /Font << /F0 143 0 R >> /XObject << /Im0 144 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 145 0 R >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 142 0 obj << /Title (democritos_03.pdf) /CreationDate (D:20110323170410) /ModDate (D:20110323170410) /Producer (ImageMagick 6.2.8 10/20/10 Q16 file:/usr/share/ImageMagick-6.2.8/doc/index.html) >> endobj 143 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 144 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 146 0 R /BitsPerComponent 8 /Length 147 0 R >> stream xÚí|pU¶ÿd¾£û¦_Ó~{Ê즊Բ¢Q7""èÂ6¨ÕóÒÁ•ç§¢ Í*Æ]ˆÈˆˆ¯X‰hVˆkÖ—Áe %è3àò Q R/$H`E%1 Ñ‚a IÈ…ô™®ºõÎíîùÝ=ß÷}ÿËÑdzúÞ>÷Üs?÷üê(¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥ÿot4ó²]Ó¬2Û§ÎÞµÿ´:ö¬ã·#éø£éòÑ=LÙepÏþ¤f2~œNãsï¸gùÎsIÍùãiu¸I­qר0½ L²¼¸l¼ x2="ŸõðG©trøÖуÇ-ŒíxB7gâÔYÏì‰}Åü=>uÝ8 šÇù5S=n‘q'¿qÎzôwdñï™s8…ˆn^'ýÃ#d¯KXˆ›ùDz<Ò¶¿Ù†éxOòMõµ,Qp»y7#Îíñ<~Áúiu}–Gp3™°#/x²^Žèèˆ)¬Û·ÿUŠy?¥{DÞ‚rbXœÌ{Øà†aÒþäáÏÝ#ðÞ-ˆwÚˆH)a¢ ‚(¬ØtbWnÂÇã(ª85—ŽX2…ëxþÛě۳™È¼(ò^ôˆn¯¶BÝö,ÏëE±g2MhC;*MÀ^W}nxZLÌû)ìá#RƈU܉ic‡hãNôèË2íhÂðí™"S)c»y1ËtäaByææô*­lݺçÊ&áRóüøsQ1q§#Râ´óÃG$yUŽ:Ÿºùà?€\hÿË4‘!Tˆ·7êuœ[Ì\×®’£ë²Pu™g¬õ¦¢P5„ª*.Ôä +·¸9ÒÊqó³H DÚ⺋–î!q±0îÎé›p©ÅÉí$J8=ËìÞøGÛ¯c`™´%Ó{„¶çŠLÅ ]p‡<¨†T•’Y¼[˜GÕˆ”8ãçÌËÈeÈFÈ|c0Äî@@%5 ]âÂÜÃ"'Lï¿‚Ó :-ÆDk[ ˆÜ¿0ñ’ý·' ÷·…K.Ç$²¤õ(ÇÊ=œÃæ¾5öÎQB û# ßÐe?: åßíx˜m‘ìíjd}4ª…€ÍOl×!âöƒ..ÌAI÷„Åäîg3nòu ™Îûýe0{i¬;¹´7‚8-ª›oQ“㉪é Gà÷¤vËÙ‡ÐÊÖháoÁûE7'ì‹ Žçl÷sh$r,V#^ˆY¨ #qr?ÕâúiyœMæ`ôÖ™,œÆ¤ ÛSà öO”Ÿ¨ˆ8O¸?œÃÀé6.†°eu¼Pe´• ðÆõS÷!î=Fîl9n?S­®^€IYû¨%ihc7ÇñRW3$0¿æºmwÚoN´0žÙÌ%‰QKšˆ0z,X@ kE.£¥g©I=qSM時vt-QEçsa`ˆ‹>€‚=Çb3šÄ¬„&±†o³Ðέ/ãÝÙ±íÿH2ÂaBs·Ý€„â¼Í8,d¿U ª­Ìo’>BëŽÞ!•,Ç•˜je)4B–£œþþ(pròä˜ QïÑwÌa>VqÛ=fغ9n}5Dœ¸:–ÃifËŽR+‚ÏÙ4Œð€ÐIœ{jÜÈv„áH<âð™*pÂ.ãÁ·ÝVÝ#pürDHbÓxwî$Ž(|ã Ú­ñý6"|œãNãú„ÈsÙ6€>N;®H4ôúÜã D$#ŽCÜt4»Ûm"nŒb8ÞÔÉvsÑ‘áÇ88÷x}°ßªëD>»·äú„ûý¸/k~;Õ9•í§6ƒ™n÷8cJwòœ`ÙhØèÅmU8øÓMP2âø8ÄíÇÕ™c'‚cTi˜?œ/?~DŠ£ÉˆCBgb ‡³CÜt·;Ÿ`à‘èpcŠÃ»‡¦#DœÈJE8/V2{ÍôÖ©‡»À³35ß}ž"ز<$ê¿Õ)j­Öˆ£0É­GС›qÞ“c莩Æv:ÏÖUœyn»h €‘¤°š1šÃs7Ó”*ãxLs¦ºÝ“Ó+Ž¥Á²R¨pkûp˜EJÄíx±=%[À˜)R§ê‰é<+7d®·W5â´I<Çb* ã—2œ¿‹2’£u¸«#þcXÓ3ÞÃéAY¨ÌíNQj뵂i7ű '+Ír™·c –*%⎊±ÁŸ%ˆ‹YŽ×>™UC=ãŽØ‹• 0ÁHgº¦r k˜!§ÙÛY)íÑ4€Ø˜:5â#RÙÒ.Œ"â*–*À®ñº—Ølóˆ5âÂå°É4LFÍR¥6‡`ª o¨v7@„Íb$‡°#ÝžÂFæÜbû=BB/ â41MDD¡ÆÃsqR²e!5™¢Â:]´AKm6³¸Ä&sÐDwä=º³~ByŸ0تƒ<çÙEhhŸ˜TåM•ñœ̱}KÓÐa«ýL¦›÷ÄE.©§^çæ¦§âªÁC¼ìÂ4Jf±â¹õº[#næ z\k“9œ@[öBˆJÓ=¼ëáÄÓáC-gU 1±ŒžHïâXèg.ð ¥ +­*LôÄØâOÄÁãƒÔ¨Ïrs¿±º¯Þ)ZG6ˆcá[®ya‰¸Í±–k=€…‹0‰:Fòã ä§‹GîÑ* #ço‘âB¡GwÜ;–4qCý®\É>TUÀdݸu"h‰¸ý‚çtceƒ8ŒÚ#åGdnØoÛ#]Þ9]a(ÏvjOø§CòÏ·øQÅaõ8LlÆs¼'f_§Adº…”iðT´+$z“YHHl³ÌUs9^Ð÷œ5âÜÄñOD»ÏÑëÍÚ¨ªÈðp”w³Š¨YØšb£ä›…¸€AhNê¥çµ)„òn!æõSjÄaL„ŠL¹ýh%l̉þ"Á²Å qo nþQÍT¡â4![h²9~UqˆßEƒUà<Ì÷AÀ öNm?Æ™sŒ¢é:Dlš4ß,R†}£LÓäªÐéðu¶k¢"N<6©)<Ê #F\»'ÂÈÆÆEME3w`ï¦càÁ‹‘Xˆ°RžŽJäðák2δÐð! yÛŽçX'hÌzœš‹L#Ç4ˆSÕר[ Î0m´Qe\=.ѱc k]]MFÜ…l”iµÄ¡;ˆuÒZ †ç0Ù¸3vU†³v¤Ãci\F•›¥! ö Ò=Öõ×oÇéISäA¦‘q€‹Ç «-9Ó?à¨ãõé^ÎùõŽó¬·z*qG¯C[Î>m÷—W•½ÿCŸcÛ üE G´ë1ñ³<„q&·w8ÄÒT²ŽG&VÆèó,·®¸#áz„þ€ìÃeÝ4ˆC:Éq&¬hyL•åQ'>ÇÂ4E´>>’ˆ¸í4ê7 †S+kÄ1Z =ÌŽ;qY±i‰õˆŠá'¾Äæ {ÿœõ'ì¡À Ï'Y£·=¼‡M(t4šS’I¢ý6bÆ#ŽIsq%LO:±q9Ÿ¥¾ûLÁÏà4rb ç;Ù ‹–IˆÛ3™%¹Se8–Ä…=j»ÀNÅËJE3ÑÃÂÞt wÄïÂsóÇçÆ¤˜€ÎaçIÆÅƒîÈD4ºìM>¨1ï´oQÇÙ—-ÅLF¦ž Y™5ñ‹²9KÄÍñsð8Ê|s´‡}Ø'Qqç¶?‘ÃêPü¬è“–ˆÓóÐ8v€ñŸð"‰Ð[£§™`~/?ònSÝ¿Ð#à½üÁ”j˜ä¬g'ㄉ5áu¬™¬ÇÖá´Ç¼s@wÍ›QDzıøhœ€“ÍYñjg^ËA¸ñYí4Re!¹ˆ›¬°B¦{Xy@µE\fvv6;“¦kMŒ{QÊ–Ò“G«YÅ#1($5ïö0Ó‰”âÈ®,&¤G˜üÐs^½pZ;‘'Šë´„gTØ£7yø[ç<÷Æss& Ýñ¢ÇLêcß9܉šÿ(,fjÄ1ßsa: éøœü²×Öÿ.?'Ìñüä31Ký¹ì8Köô߯ž5NÀmdŸ.†+âú'zÊâ¡„K_:w?NétŽOLš1MMˆ$B;=¼5`d½GÔY Üyn¦Ž‡Ï…ÅŒÑ^óèGäØ QãL¥°0| =®nveõqL„ö[½Êë‡îðJÌÝwÂ57YäX•׋Cðí´{#Lp5uÊDi³óߌÇe(×lŽø8…ìäõDG›‘õ4Î<ê£Tè>‡÷°åAÁD>{á9k¡ô¯¾‰gà`«)ðÙeg"Bµó>ú^Þæ=úË4“}SY¢UÁ@Ø9]·îÊx8u{Üt Ã%Ù•ËÒrnAÊlO‡Súúë5o ýåÝöÑd¼ûF­ßGiÍë듲£îÄì ¦æ˜0Yc§ __8=7;wòCÏQ©ªQ"p¦fáÔÜìœIùëO{ÞÿFMì‰gØŽ]6ÄŒÃ{MMU±\#èeù“ÆgOÌ/Û9¨‚KÖïG«ï¿y\þº=Ô'€°b*þÍúœP<ÑÈٱĹNMô>šªBB`ë‰÷T“¥É ¯s$ÆÇ˜»$ö9-Ç‹„ê±É¯ˆÎNÕ¯Jl#®’ªB µEDHß%V›VI>Ö]ÙRŒt ÍònIÒµ˜)¥ÐèG"æ"{%ï6??¶j\Œ\–Ö¥‚БRÝìàÿˆÃBŠ5U–VöàÅ÷ó ‘‚ÿC6lo<Ø£_è_¬((xº1Ò¡piäRI9ÈùÊâ¼Áa:úB*oNÕþá}·tË„ÿwM%ߘァÒ)-.//O§Pò¬®{¥jýºÄ‹¿†WJþk ¥Ò³ƒ?¢8Pªé¥&;þ»e¥¼bžâëJl¸’Üê”Ð9»èZ‡“‘Ãÿÿoë Š •ß½—ž”[ I»I꥽40ß²©Ya£çgÈ8é ÞZ´²j£Rj4jþ@dH¹šVÊ'­ù·É¥½h_:|- ?(ºÞ$ÙKúá§ÃéÊÈÈp¸\N—ë[qdA1„,ðÂIùPúÞ ÖSZµid çF‚’Ò@OÉ•TwÙõøE×Vqdf5éÛa3‚Ï?ļ/ tÇ߇ Å‘ZÅVÔßþ„›cì]÷=òز%ËžM5­¯ú~¼â ØÏ&ý…ÜvJªnhh8NƒOÍ›ßRYP‚’WT^ÂÏà¼u4ðta°«¸û3Yyšž_S0¿Ÿl˜_Úæ´ÀW‚¾r¥’¾%™Nyˆ´à¼‚ qJ –bï¼jÚŒ=—®Y°˜Y¨Ž' ž–Lº”Ý‘Í7€C å¨/YQÐVHþ½tëü‚ŠK´§øÉ‚¬GOöo¥m¥%_Pº£d~ñ¥È¼žEœ¹¦l{a„ 7þb,ÒÏÆÞøŠé(ÿ~£AËôoïýúÿ^íºaQ_´em˜É]ìÛm6*.fGlû¤º“’„€È“åò»#•âbʼn,Vük”ú¯òÊŽéx[žRÑ‹=üÒ“´_)ñ›ŠSª·(ÝZ³ôeÉ|ð…ù?U@V*²,Éåô23àõ¥Z«—(ÉSþÇè1EÈŠ¢ßZƒ|*"™_Hµ4¨øV*«È«Rqk•â/U µ.Å÷Séõ+†F|>OÚ¡U+¥Û¢r9WÕß{Ë…ÛÕápd8® ç˜g‡Xãð_¯G­^õÂwìË¿¹®z¾ºÅõó³¬eãX—+ã&“nìåúåÚ(n1CíUvŸTš.ö¨% œUä-…ÖI{Z¥`‹ô½Að•hÐ&#?”N›”CǤà÷¦]ì–›‰\¥~œ*”‡‡ßCŠô)WÃÿÐP§\ˆ¸:¡é"o¥«|Õ*²Áå€t<,Ù!©µw¨¼¹u‘U´Gj¡ÞW‡†”®SRƒoÀ T¯Ÿ÷{¡ZŠhòS§óêop0r1Ç´‡;×u£Ã…^Áû·ë=—¹Ï‚ g’1ö;V¸z ûeœ5¸¼ÂTÞbcö ÄÑé|‡ÜBXÐ\ê‡!¥Žî†Ùìü%ʆnü«˜ñ>å~ðB„ IÕP!ç!ì–zHÀ{VÞJI] Ò÷&ÿ¼W¥M@z¥ÀE-Éň8ô1@òÊ))X3,Ѥm0ŒôJµ¦`Z¹2CR$åxP¨½›Ù¸6|\‘¤àIÅôlu»™…½Òñ*9²>‚Pyÿ„Û˜)wÍ-Z²ví’¢¹÷M¹=ì}zõê+Ôdëø©ÃùS=Ô]–‘ñ+6Ûm9‡±WáöÛP×væÏ@Ü€RR«Þ½|½$}Œaä+l–WÉçYð­DÅI:âü~íé- ß”x@¡ç~Lö+C´OÚÑ—·Øà¿R9ÞÁì:äÔøIã¶DÔIˆ8ô¾•à[–0`"N[ê5⎎jyoãÞ†ºž* 9¶Èˆ¸æSRUã'{kÑ·™Òë÷ß‹Z¥»:&4ëpL¹ á2w÷í×^óÏÿ4f̘RUz|,BïOØú qø[ÖqŠÓy¯þSå×8þ;®u¸ ³?-BwL퇈hš)w£WeW#å~„RÃD«R9 VKwH«.Òݥ௠ZÛŒãP>6Éu¡îrùTq ©WtïóK0þðK¦¤•¤EZ€Öêû€ô€ï¦ÿ|çáX^Q‚€…ÀW=×jïgZ§’gÀ…ôú¼\¡çƒ3ZNIµD-÷ï¦Th²Áä½§äVÓ âÀ?»ƒ¶Í,€joxNp µðî³»Ö²@„m8WN-ty‚3ã*Ìd¡ »Çtu¹2ÞÔŸ q8ê;·9X¦Ã_/J¡8ðKŠ"g°ìõzׄ qMðt‰¾ˆF[R%+>ùEqò1Zî§°xn£ Ö¢äI†CƒhøƒÆâ•C>Éë•ä¨f,®Ë“ʵNYž-û/A^ý›D ¯Q·ŠöäÉ>Ü‚áÚ[*)>EZ9„f18Õ2¥ÛdÝÆ¡ðJ-Џm¸=»fJÞyÇ :/<'í‡kl‘Ã5æC´o†•s:õÿ+Ôz¦#î>løF_0u‚K××{·¿çrfè^æÞ8WÙ"n÷¦M ÇôÀ?Ȩš;µãÛ@‡6TbïU{)Ô£Ó?[{ž¨'öV;Ñ&´½Ú¨ïTlÁ=C,Þ…¶Z\Õ¡æ·*›˜Ó´“ÕU‡þ³ ݶ•­¸à[Û {Ô}¡ÿ¡¾úïê*J#¨u+·v‡CKÅ–n m[iÕv8¾iC·ŒÜï×a :T÷R=J‡ýÂ,îr:?¿B#·öonüÓ¶m†ÃU§ ‡°­ŠˆS±“Kwç Ý‹(ý*¤½w›ŠØû}¿÷/B•Û)N¯(µU{4V8cÿéÅ9 Œ\½FÄ€˜^Fc}Ùj†ËQúG¨×Ãx(ú²ÑôzÙÌ¢hÒÖ· ^ MÓY±ò,1º‡À¬Y '³Õe†t±i´à¤þÚáZ4Öáúí§s-°4Z §DEÎŒ[ðò+Ä!"0\¹Ú<ÐW„Žà¯D{g LqºÆà/o¤ˆZ[Ä%Õ ì“?]½çhMÕQKÍ"y €'ï®l.—?I×»_ŒŒ+’–0ê¸Èá(ët,¹ÞåØˆÊ™BEN×¶e:â(FycŒ‡à1¼~ Ûm£3Ãñ)úÙgÉ"G Ä-õÎ.n¡#!]¾>9&óYSbÙqW'tm¥Š¢ç)h¨ª`†¯>ü­û%ev•MϹ‰Ž„BËœŽ_1´¡ƒ|/¾ЏºÙ8—ޏ¯q{Ž5[Ö¢!¼âVîGCø%7|M9íGŠ}Bé³ Ä謭A Àª 4VWËÅÕÕçi¥âqËRÅ××ÞÐi^\Ä}];@ ¶hX*oX#aœR›\ !gåè  ™«;o9#J7:]?Yër¼‚Öj[ìë E.Çmˆrqð êÏP„Ö:ι”¼Z>‡ãçôìÏhJĆ#C¾§Gª78/EW]+}Ъ{¹€¡1Z¹š¬NÞ@LóEï“æU`m›ÄþÑBw¯T´îm™aQßꕢŷÊè)©ÂZH­ú¯v½ér:Þ‰ üÙ&¾;|j n;üÌlz ‡/Ú8@Àf|÷æ\f퇊£P0ŸŽŒ4è™F¦åv\åjU/5´xVYm"´#\¢CÀÃzo«ªè–¾Õ‚+‹HÂ\*}èG¯X®©·9\–87^åt¾ׂˆsbt«éˆ#DërüÄ•ÄàÉlœv ÷ê SÞO‹¸žZVª+ð²h®±à½h›æ{ wSz¥r¶÷©§*éÖÂÙ…WzžòÔ^@<}`<[Z{•SZ³Q Ñ‚˜QqÁ1ùƒð⣒ä­Ð é©V¹âmeU–ž-'•Fó"cî—:ÏÎЛA©#K,Ïkcˆ;P'÷aD³wXèUQ%^#5 *­„å·ˆFìî{ ûºüó½êY¥ÙxdžǨd/À¶É§º¥6TÚÊ:DçÐ7˜œ»Ñ£wH„ö*«èK>J¥úAeö¯—mSTú79fZÚ ÷³_˜tÒõKŒ˜~‚ˆ{„ÚâÌÐã‘ÐZ‡ó.fYþt-þºr—óçTÏ&\޳vŠ+.FÔ/úÚà€|)¯·U:´W©úÆW óÑ0¥R¨BÄ}¬¬é½T±¦Gi‚!Ic@Hùƒˆ¸j"µ_Ò*gz`6Ž’^¯·á|èä i%šÃB¦ícå"ämÊ+‡ò˜fÐQ‚ßÛHð¦Zj¸Ò¬øi·ÔDÊç#Ç:ŠˆClÑê»I¯ÜŸ¤/ÊkàUôªRîn Í3ó V¡¤^Š uiÿ½h©ØËš0á¶üÕ"޲•úKo¾±×g¯qŒeÆÉèÃD|cÆ"6¿ ˜Ò~hgã0¡‹ó¾Ï“Ð @")~­¼$û{I+Þ”qÕy˜”¾(KÊì=̳ŠîS„Ðgâ@Ý‚O+z•„ýÒ+È·›Þ øP_å•z츕¡°WjÒzü’$Á,”àˆþcÐf4ÀÙ B?¡(+)Ú8­AaWÒWóô…è] É3|Çé™ÄlU“¾ºëZg 9œŽ_/bˆë{ã¦“Л®«_è{ÿz×f§¿û—«×.£tÐ…9×ß§`˜çúçe6ˆkk£Ð·»“ 5O©ôÖ5³C­ÁÖ~ôî¨=ÞÚF:›™G:YÛLèÐî;Œ­I:ZiÏî+´§AOª08YW×Õˆ©iÓ†š~@ëÞ´åløÝéÜÚ‰\ߎóÀiêÖºB!Øl¥d¨©Gƒîºº“­ÇE‚»1¼>PÛt™Â©½:c'ƪ*ýaã_Y»ví²µËtzç“ß.Ù¨}]„4wÑ#ÕGü¯¢±×LY«;§/±aÆ)ôßðçCÖ­è‘%v‹üÃY„UI•ãt éYä á^ ÿe2Õ«T‹VL€°t\ÏÉíLÀ¨ÛP3Ùeå vz&|æÅ8ÈÝdáZ ‰œïAÁ4ý¦ª'ôF¢…ˆ„4\“ “.cˆ¨ÃÃW†‡i(dn`vR‡½ðe¬Â22‰ÌÌL3F25I%`W±Ð~Ü)ŠÈ¿!Fã/RIüš|gd2ÀÈ”˜> stream 32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿendstream endobj 149 0 obj 768 endobj 107 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 510.5261 164.5694 520.8208] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 108 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 496.0803 218.7956 506.375] /Subtype /Link /A << /S /GoTo /D (subsection.1.1) >> >> endobj 112 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 479.3098 151.1317 491.9291] /Subtype /Link /A << /S /GoTo /D (subsection.1.2) >> >> endobj 113 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 467.1886 182.6423 477.4833] /Subtype /Link /A << /S /GoTo /D (subsection.1.3) >> >> endobj 114 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 438.7122 162.8466 451.3315] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 115 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 412.5604 159.559 425.1797] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 116 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 398.1146 172.4279 410.7339] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 117 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 385.9933 166.1543 396.288] /Subtype /Link /A << /S /GoTo /D (subsection.3.2) >> >> endobj 118 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 371.5475 282.954 381.8422] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 119 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 354.7771 259.6417 367.3964] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 120 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 342.6559 264.1321 352.9506] /Subtype /Link /A << /S /GoTo /D (subsection.3.5) >> >> endobj 121 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 316.504 169.9644 326.7988] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 122 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 302.0582 195.3542 312.2201] /Subtype /Link /A << /S /GoTo /D (subsection.4.1) >> >> endobj 123 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 285.2878 229.3971 297.7743] /Subtype /Link /A << /S /GoTo /D (subsection.4.2) >> >> endobj 124 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 270.842 237.7559 283.4613] /Subtype /Link /A << /S /GoTo /D (subsection.4.3) >> >> endobj 125 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 258.7207 223.5136 269.0154] /Subtype /Link /A << /S /GoTo /D (subsection.4.4) >> >> endobj 126 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 241.9503 274.9203 254.5696] /Subtype /Link /A << /S /GoTo /D (subsection.4.5) >> >> endobj 127 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 229.8291 235.9045 240.1238] /Subtype /Link /A << /S /GoTo /D (subsubsection.4.5.1) >> >> endobj 128 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 215.3832 246.1451 225.678] /Subtype /Link /A << /S /GoTo /D (subsubsection.4.5.2) >> >> endobj 129 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 186.9068 185.5864 199.5261] /Subtype /Link /A << /S /GoTo /D (section.5) >> >> endobj 130 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 172.461 298.1791 185.0803] /Subtype /Link /A << /S /GoTo /D (subsection.5.1) >> >> endobj 95 0 obj << /D [90 0 R /XYZ 72 786.281 null] >> endobj 96 0 obj << /D [90 0 R /XYZ 72 761.3744 null] >> endobj 106 0 obj << /D [90 0 R /XYZ 72 525.9682 null] >> endobj 6 0 obj << /D [90 0 R /XYZ 72 155.8291 null] >> endobj 93 0 obj << /Font << /F19 99 0 R /F20 102 0 R /F25 105 0 R /F15 111 0 R /F36 133 0 R >> /XObject << /Im1 91 0 R /Im2 92 0 R >> /ProcSet [ /PDF /Text ] >> endobj 152 0 obj << /Length 2844 /Filter /FlateDecode >> stream xÚµÉvÛFò®¯à-àFcGr’,;q2v˜PŠæ½$h’=Æf,’鯟ZºAP†òìyɅ襺¶®­‹×·/^‹`!„»¸Ý-âÄ‚dù‰í‹Ä[Üæ¿[·Õ-W¾¬ý rÉôë†Rêõþö8ò­ãÒ¬z)¬wÞWõÒ­Gœ…V 9 è±SY7Ù<ÞþøâµëL¹r£Øò“…C ­ï´ËàgÇÐç2x¹Ž¯s +aµ®¶Ë•8׬§°\åF Í[)ûCM ¹SÄ×b幉{¾·X ßö}PÒPeSÈRV(QßÙ|ä ¨Ä C¢PtHQ†L’æZƒ„U}âˆ*«žÀÌ–Ì7/Z™æGž¨ªëÓ¢ù%ò“î[>ùE«ñà£Feî‚(Ög.Y“^8դ W«ò—¹N«?CÉa´Fb}µYõ__m6?Ï]QÛ" Í}‚Â<°7;þV5šÂ%N" ;êKò>Þ$(€'tg8Øãj%Û´àù]'Ûo:Ïv‹Ã]ÝÎIê‚ÁÇ" Ÿ‘tå…¾õ (lpá/EnãÑü. Ù¡‚S¹Ö™؉òŸéLUë†V®Z™õu{œs…гƒHã¾ÁËÎ^ÌqáÆvà$°g# ×$…|@Sh—,§ìõÔÔ޵«]ºÒ㬮®OU¥ª½DçU^k\Xßñ>h¾!¢ÛŠþŒHÈÊ-#éT/¿ÓÀ*qm'ÙΔw@ú~¾}?/á÷цŸù8îÃM k>'¬†¬¨ÃaP5Î÷³š8vä$'c¥+‘g Pñy X“5-Ä€ ±1Œ‹,ñA1‚w‘¥š‡%y#\ýîÈ ÚqhôݪíÐËéѹPéƒv'þÂPÚpÀ˜Iw¨‡"g†[ò0qTš7’M£@Þà ¨e˜·)ÉEš.æoÍM;ÜàüÚŒ ƒkHøy †×(ÉO/^Ý^`p-DàÚ‘ð¼EÂÀ‡ œ•.~ÿÓYäÎâÇ Çö’8X<ÂıE’¸‹ò³ÃÏ‹‹ÍÅ/#ÂÕˆq5Eyiñœ{@süàD™/éBÑzšü9 ûží„^05@ ¾íù!«C†Æ]|; ED ÂF'ð#ÜÀºÇ‰É^ŽÕ|Â%€4Dõg3å9e°7c¦œ5(P„œ %¹®-Â0ù"ÃòmÇÅ2æ†Ón Á·Ä„AŠ]b|¥|0ý?áI“ªiÀvÏÞ«*çD€³zÇßN»‚¢“è4¡º^7CÌYZdC‘¢Ë¨º2ˆsÊ‚ˆe=Ò­+•­ ·CÖ­d8 u³Ò•€–ðÌœeÛ+Léž.¯ú’¬xz#+i,0!¤ðz»ÖPe=°EžÃ·IÑèÈÓ?ÀavóúFâ’‡QXŠÀú¬‹T‡j rR¤Éáþ„p}ÈøÈ6í”æ¹“½Æ†5šŽP ,µs.n^7:o€º´Î•©w0ˆ©5’²9Ä¿ák¥qƒ 0¼œV PèÔíÀ/<ßË¢¸63‰fã´€ÊÌ1|O—5Tù Ê›^'Yöµ?ò Šª2V·ƒÈF ¨5·(ÊOõ¡Zm)¯ÖŸ–¾ÝªþTè}7'ÌÊ0øHCÆ[—*c^v\MÙLÁK^ïúR—·—Oäƒ=2fch(rÓ«R}¢¨&øE\û_ÁuYƒ"2HÌŽkåG2t„KpX¤’€‡œk`ðÙõáâ5¹EE¾ó3F]„ªƒT¥Ô$º¡Ý! ¢ A ¾+t ^39&–”Óô2H·fL<“Eñ·_g™fmMñ³nèN1º°'±¶àRàFX/¸É·± ðû•"{æÈu2TƒAdœ=¨”Or•…‘W¿ld[;XlÒãê_q3£!tŒkÙ¶Ú¡Ö‡´“»ü߬¶±P<KÈÚ0 #;zæó:Õ± f×d'­ ¸°±>œ^ÿŒ óüB¾…§‘…—¨æØW²?ù­ýwûí®•’œ ßS{f+ðv­ î pö/bŒ’«Ñ,Âé2‡hŒe®Pd* žõòaày))§+Œ$0ˆ±c©ck(f˜g­“GϘæúßwo_ÝèŠ^îP_×2ãëz¿€Ðãf^D¸Î¯¨ö=[ˆ•¾(ik{Ê…^·5ꆮ±Óx©ÙQ!-H@áR‘À»º"ÂIÖ’V4«&K}v¤_Žï‹ãœ2äGVAí¥®šµVŽÕ`òÙ5þƒÀ/9ËáÚN*ÄIw‚SUV 9•!¸Ô5J#áàŒ ½Ÿ¬#ra9ó¯»K†¬Èv vŠŒä„Õßòû91vÓ‚‰’Ʀ¬Ú¶ŠúÉ9éDÑ©R°Ö<ñ¶\AõØÉö‹)8­cÃ)ë”SΆõW ½©ZSɽ<(V«® ÅzM5cp½{I­ƒ5E”sÁ’ñùï|'›”²4f$XA^ñ–JÞF¾ñ{WPÔO»z×óŠ&ôÛ2º­52¹UEϬ! ±†ˆñÄÝf‰ ä­;”Â`€Ë |뿲Þt™òj؛ΗQKÎ;O«Ï Q" l^-…“X÷Ÿ«„ïz҇æšZïêŠl¶(T%ÓöiLìJÝÏÐ]=j$€E®j £\3+Û±J8½ è¬~~ИŠ:U6üL(Ï'’9‹¬+VÖ7v5/3`äƒãô ñâI‚ÇU˜ pÊî¸BÙV1Ãã .gp/å…Ž:†}}pGçÃþ\…‡ÛŠC8 ªÁ<ݰÒP™ö5‰<ÅJ0ÜR–T¨Š‚BBU0§ÊpãEñ؆Id½{u̓ÙLÓñ Êì’᪚¿ÔŸ€×òtúø”9¯mÇ(ùYÿ$~š–gƒm$ûãl‹ ëNMú|‰cmÍý”1l±rÃ¥I©ÖPÌ Hsèy¶° iË{Òoª°i²ÅÄÇg:á"¦„Ž×Iä)ŒÙgèm “¡#e…wøÍ;3âWeˆ•J®Ækè‰õP_Œn\i´Vawhw¸J #~kŒyŠc*ƒe©®Î˜¥9=øŽ°…â/þ'`"Úéîk$ðÏ ÿI¡_— Evcaia{ˆ5³g®eãê–Ízéa׸ÔrŽ=ç¼¥ïþY‹ llj½/–xb”MJê}OÏŒ‘’Ý-a¢{ßÁRÓ¸Ìç8ž°Ý(6X×?PŸ„æZ^ÂŽ‚±•ŽÏœTž]Ókµ¿¦d“Íá üi+Ê `\³l ÅoÀ¯—õsX2Ž®àÒŽ'u«öäiQucHúnð¤Q™Ï4?1Ïy‰ñZoz¹K«š#äõÈZ])ü&§ y ~¿§N·Ÿ²º0°WUÞÊ”AnôÀõë%” ^ææÍfs¥ÝרR¢¬§$¸š©?}RϽäî*õ@-°î ªcÁ´•0-4ù½esÛéc”öuþü0pkH§Æ±ñÓRîûG?oÓ~Ìo”»ëå)NeO†ûº:{Ntð–{l•ìHÔt}tÙ¬dñ–qúWàWuV¾FÈεJ_È´äk±ÖûfòO ¿²šSaÔóðWJ<ûi-«O¢];í‘QÂåáû^ÿÄU-dGR.\'÷÷àî¼È CbØ5Íüÿì­ Ôendstream endobj 151 0 obj << /Type /Page /Contents 152 0 R /Resources 150 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 153 0 obj << /D [151 0 R /XYZ 72 786.281 null] >> endobj 10 0 obj << /D [151 0 R /XYZ 72 643.3587 null] >> endobj 14 0 obj << /D [151 0 R /XYZ 72 203.7987 null] >> endobj 150 0 obj << /Font << /F15 111 0 R /F20 102 0 R /F36 133 0 R /F25 105 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 159 0 obj << /Length 2201 /Filter /FlateDecode >> stream xÚµX[s£¸~Ÿ_‘G\;ö€cö<9ÎÍ»q’ŠÚÛƒ J¬@.ÉÄ¿~û"ðe™ª™­ÌR«Q«o_·tºüðéÂ÷OcÆ[ÿm_TEU ×ÌdÝãB¦¡2±êõaU£DÅaÏ 5Àc0Å\…,u…›PrÙ8xé…¡ÃÆ«LRz$2Ëx5'aää¤Î8»;b!}#…r•†¼»Á®I?YlÁýÃx¼s/œ©ªˆ¸‹‚A»jTÉü¿ÍXs“æÈ‡È7éyn  %È©¬Í$òdà¤ïúΪVYÅlõ†M8Ì”‘/J×VÚkÏ®šg&¬¾šD—µJmH_4@,*Yª&N­Js•Ì#ñT%š${±Mñƒ{tܧÙxÎÅÀs¶[aÀ³z·÷ùòêòøÃbÆÔëú‰ê‹Æßݳ2 ÉnÛ(Þivs?ÃÚ„ Ø:2ª”¢îÈdLÜÊèÒº ãÿ|UÕÚris|Õz­.RaÞx=ÑEª¾ ï¿§NÝP~¢ä±#­77cbšZÞúI=c¬Ø/^3iöBb09’W”·é“ì°L[ÕÛ2#y…ŒCGºûG‡îfƒ¨©UÄ…çÜÜviê±ç5šv›ÎýA4Åÿ%X&™ü‚Qmû«Ö‚ é©.lñk2=G®IWŒ|i›š"•éQ¾@Gc!ûûËÙÅò§kÇ.Px÷Ì8…ý̯TžKBô§Lׇ@°«p ¬#`tèL ü‹¿p(hA £¿~Lg¦Ž'岩gІê„Ω°äBüÖ¡N"2[*jX¦í—:9”ñ<O¨YÛA©ms ú÷”§K±‚&Ë$\ œE’‰z+æ)Ú=ˆ½ŸO˜r-êRÅQ£ mc8d0Ã4ߥ¢N~è"h¢e¸6oýJ˹"“@H§]uçÑèÜ6m¥¬Sm+Ú.O0¹*Õ˜[Í~8ÿ°%D£2? ÑpѱÝnÿÕšfëLrËaCÑ‚0ÕR$µªmlZ,ç~´¯¼‘? ý¶KüÌWúþ.¸rQ7àösw ÄÁ t£ø¿þï܈—{Õ\C•-<Žö;c»<ÄzÛìï¢>Ñl~2EƒW‹ÛËËÉqшœ¹ “ѵM—ºH0²ò½#ÐFÀ¢¡±oE¡p6&Í`>™¡‹%jñ‘ù~GÐut­4“¸ÄÕÔåüN·P½FO?[1ƒf¯ÀunT"7kîùÇS WKæÄ=æ$_<ü¢3aå ³å†°+öœº¡s Œ_yR»™ÑzÊ‘Œz§¶ïóCêÜ=›‡Ü’¥Lǯ¯±r^·›¸\ÎE*šüY#L±sûDøE´šI¼ÿ KvƒD·ø½‹  ŸƒýÝFq$v©ºH *TñdºÉõîüœïîO9Ä"Xö?ò‚ç…0 ÐeSþâÄýÝ\/Þ»0∊FίÍÕ=[!a/`¼T¹f¶åZkº”-E¬Ý´DÛbÁoMYVL¢:Ký`-Z²)HÑQ3 ­èëpü’~îŸ]t™žŽá(´,Cž`Êî½8P±¤@À(†ý^)cHþ0rÊzcÁÛIÚ‚°G­?2/¨Åæ{>%ìh´;Ç¢’t©ÀI*yõRŠï¤µõWS†^‘Žš©³óùíô~¶¼]üûÖMpMÝç—2 óçg*',ÿW—b¯'\œO>arÅ•G{œJ@¯Ö¶÷¾Zœï="ÕÅÑÓÈÞ]¹3U²g1ð¸ÃÕôðqŠ»K§oµæÂxp©'¦\òoŸÈ¡©"Òš ²ÜNíEU6Ð&™§õü^=ÆÕ”—W”v;J@ÅeIte1”Pæk‘³ÿ:cßs~m#䇻xšÛž‘š«½+aóî¥m§×¼Ý஢¶uØ+¹t0™¶Ú*«'‰™‘Ýg?$f/T¦š”µ¥|£žö‚CÅkzu>ýw€ÒYÛÝ|bU_š¸ßá³þ­ ¡ ÈÃr"Ëd†/~Šžß½ë_Ò‘âaÚFû óÓ¬–—t÷,,ÇîñÄT\ˆâ€#Q”NcÅ4êÑ©ÆÏ»·ÿ¨CôOgÛX3ЋSW7¬?ŠPf¯MÀÛÕü@—ìÍrúJŠlendstream endobj 158 0 obj << /Type /Page /Contents 159 0 R /Resources 157 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 160 0 obj << /D [158 0 R /XYZ 72 786.281 null] >> endobj 157 0 obj << /Font << /F33 156 0 R /F15 111 0 R /F20 102 0 R >> /ProcSet [ /PDF /Text ] >> endobj 163 0 obj << /Length 3029 /Filter /FlateDecode >> stream xÚ½ÉrÛFö®¯Ðœ¬2! ,º9ЬIÆNS®LU’‚"" ±hûúy[ƒ¤Ú®šÔ\€F/ïõÛ|wsröNÙÓÐøÚDêôfu«Óؤ¾ S}z³üÍ ýÙ<ô4ð~ró# ÊÚù kYÅ÷%S“Å´˜xN²­@¤‰ñ$Òò0sÍ^^vX¿wë@Yç0W°ŠÔ‡ju{5ª°¼/ÖeÖâþ¾GpZ§ÞAIË(äØËå•—Lî4÷ƒìú>»¥õ† Â¥·ãR5BªºFÖ²þÕŽÃZÙÉÚÕn ¦Y™»òÕÁeqH+ËUÙ6uîèÏ{gDÑ¡wUÜfƒ³Ÿ–/‹[>Ñ: ˆ¨J›¬®ß° ¼pPüp× n_G7Ç-oeË¿›{’ÞãOçaýƒ zò+ÚRfßûS¤|ÈZrõ,Ö¦!DqLŠfL„›^H]JYx7. 2‘rñÜËK1¡9áþ…¬]Si*ÖW«1ĤÓd§-(d&‘·®vÏ2IFÔ1hÐÞÃþ¦Í@Þ?”@o Û8Xe=8nVü–P>‘£¼6A¼àí¼âÄc…ÚŒä=f+bÏdîß&c¶3æKÚOLœ²ï§¦g«2Z»|¹Øn¦Ë8õ“D;ÀÉ+Mz—‹kø…¼Òø‘N\^ ˆc_<áEôØø Q9ëÙáw|¹†s º§„YKtXBZ8A;¯;r™î–#C/2Í@œÄ̶¯ÓÇnÝ Õ’£õNÌ}ʾù¬ã)Ôz¼’€óeÝõ("êÿDl·„à7Þûƒó,CлbÛ@Çv oŽ ‚ 7]øÛñ¦¡7oÛ?1]ØŒ?]¿“K×üçqûüùáÎUÛl¾A=çÐà©Ql$Î <æ”sŠØá°Á] ~ßMªHøq¦ûêËUS ¿5¸¤¹3Nî‚N†sWIÙt÷¶DN‰‰Sþ7M˜d_LÙõ¯ÈÜœÔm*k7 ̓ÂHƒ¾–u^ K’ O€ZM’ÔèmÚÉJ-šŒŠãc¥ýõJ k¨ƒ©<Ž…d‰RoXA¡ì;8¾ž{¯9Éå¾qÄÌÅb\J_›LO~VÅPôøNÙSâ`TLüOIeøƒƒ»½ê¿—’ó ›b—È÷t_<¦÷©¦vœ‹^ å’ÍOR,˜`»†âêÇè(ÛÁ.‘çÈúÎN³^AÉ({èhMúAœ†‡lº¡x»ÅZ`BMè+‡ˆ"ý}…ºñÐħ°›ÍÄ!'³}IDé’”Á”õG®ÒHuäÆ|Ý‘k(—¬Õ®-òžþÌØ÷˜Hkd} ‰ï+Z'P ÿ„¬i’À)Âö$vv@V|6¤}£Í+5XY…¤Â@=²m%¾ 9–7Š€#èCa0šáÝ¡ÿt„¬$é/žŠ|è³[*ïz9é¢bí§JÒ†®´Í'5›?©ÓnrýHKÆ Í¾ç ´pzOS”F~bç‡o©×pöuŠTâfHé¨Å„!Ö‘+Mv&ˆõõÛ:çFM”š©Š¼û9K¹á¨‰Âï¦Å‹v‘ý=$R°(6$;¬ò|¤s=M&øä$Úyž©øêGQd÷ãPƒ%ô]p~J¿b`Ž); Зv\‰€s‡ªØV±nm‡ž‡§xÖk†~œäšWàHÙT7²H*Èj’ø:çv˜åð?8¯³¡Šk‚nÈél˜oÀ体ýð¨ õ¹mìtcdžÿY¼›cU,m9âúò¸£J2‹[71¶"vÕôdJÔ †‰Ç²_ d4É‹öyñ}QŸOÑ5#ç‰úÖúë)G›FA/éÇÅÞïŒI‚D22‘Ù‹fd¹ªsô½.Ù^Q’èÚíí3æÿÔò¬¥Ï …ÅMS Zþ„êcÈû¡•mÔ–"[DͪòÅü¢ îZdo©ëvGµÂ†Šà ïK0¬ õÞ~¼<ßÕ^Sæ¨!è¦i²¯&å7Ù‡…`:¦Ìݺ î’ÖP*¶å¶çñØ¢üŒ…VI-q-•©Ë`k|ϱËLª¯M}mŒúKþèP‘#ç?A1É*9Œo}JÌœºüÆ ®å†èx\.­¡¢–b:ÉAºטâ½Å>åÍ¿üÿK4¼•´NŸ\Þœ`질MwêG ÄÄ|sòùä·?‚ÓåIpúãIrOìé#|~˜B»9Ñ~”†Ê}W'‹“_F€óâ|äwô÷ðÒ‰Ÿ›Új’&šµ×¦å¨#?>¦r­XüOúºôûN.«Óìºò–~Áad¾íÀØŽDd,ÕBXŸ(g¨­÷“ ¡ò¡þþRŒJ°vŒ¿„có𱯃1ëtÿŒ Å1/TX¬‘fóÇ^P£_'nKÁƒ†š&µès5Y$ôÈ~S™éÐŒ™™ jêáIn(Œtòê'-uª$#£fèqð“_I‘÷©Ë¨‘-¿ƒÄ-Ö³X‡%1[¹qöñ_¹T÷)endstream endobj 162 0 obj << /Type /Page /Contents 163 0 R /Resources 161 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 164 0 obj << /D [162 0 R /XYZ 72 786.281 null] >> endobj 18 0 obj << /D [162 0 R /XYZ 72 761.3744 null] >> endobj 22 0 obj << /D [162 0 R /XYZ 72 418.4632 null] >> endobj 161 0 obj << /Font << /F25 105 0 R /F36 133 0 R /F15 111 0 R /F20 102 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 167 0 obj << /Length 725 /Filter /FlateDecode >> stream xÚ­UMo›@½ó+8‚–ý^ˆªJMkKÔ&­-5R’ƒ ¸FÁÆâþúÎìb'VÝV•rïî oÞ¾™Y_L½xÌ©ÏI•âþtá3¥‰\úF¦D²TøÓü6˜õ! ÂH1D ÷;oáŒÌÀôƒçûYíà,Úà'Ë‚²*œãíà‡³Ý¢ € ûé¥OýˆI"¥Jÿ˜rõøJ)RÆc¦^Þ=RŠm¤ñ”ˆ$M,‘é°„QÁe²*Z·ikü•Á¦7A¾ÍŠÜ¹_3|ÓnË÷ój8XÔûpÛ'}Ù-›ãJp© 5Œ0Hãi0í)Ú,!R©dˆ;ÔÄ ›å1äI‰€J0*W›=Ÿ›¨/×yÂúájÛÎ*Xvx¸s8]mkq-‰â:Ý×ÊI”—í¦šíùVµ•:ÃÄ[ÐìÌÛÇPFeõ, 7V³îü” ô8ÕÉu0ç1˜¸Çš÷L–UXÚ5˜ƒâ,;è¶Æ¦è0t†:ñ vÊ70?{…Ëø µH%þ fô]ŸFˆŠ½¾ì°*GRˆ£Îu"¨€+M”å cN]iì vms#ãÚªÖ"ãìô"³õöFS»0 Ö a‚r_+Nx"”Ÿ­¼Þí=õsú—%"…ô=l(aiÊý•'ˆNßï+oâ}9FÄè%äʼn—!ÚœÉçÔÈ~> endobj 168 0 obj << /D [166 0 R /XYZ 72 786.281 null] >> endobj 165 0 obj << /Font << /F20 102 0 R /F15 111 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 171 0 obj << /Length 3398 /Filter /FlateDecode >> stream xÚ½ZYsÛF~ׯàúÁªLsápÕ>8³¥D–“Ù­T’-l@€@Kò¯ß>fpPPlW\ûB 3==}|Ý=Ão7gÏ¿—f!"_ £›Ý"’‹H'¾‰Zl¶¿zê|)„4ÞÏçÂk ø©ÞŸÿ¾ù¦ãi±ö…JMzóÁÏŽ XCø‰1/Ýè¥ }ë˜&]T‡cw¾”:ñ~ „.ó–_vÀW­fXx ~·ðáÆùws‹ÊÈ710Ë÷鹌½{^á<"/‡_xyÑÝä ¸mŠvyåÂ8;é&Ealù¥¶M ÐÛ3ä:·Ÿ?)6bHÏmBš$…cñ½?ÂO1·¥üHEn'ï—nŠ,-yµ¢Â½uy³K3Zn±Tqìa’ÅRh_kÃï·#"ïe…/Ê7+bïÇúsc¼´üï3èPH7+[Ú|.*žØoI…c&Eh|­Bi¹üéˆòH«Ç= Ix+Xlýæíj½¾žÛ§‰¯Dì6º-Ú®)ÞQ#E]ùçK•$Þ:Ÿ•hùZ†ê¡@—wh!÷øó~ž_\!øyy ?—³öªbé‹88ßo nÁVÀpt ¼; K$K¯EËO”5> €ó¦Þ¹ƒ$ŽLí±Ñ!º@₇íи°±''°ÔŠjWs ÈÍ™T”ø&ê3M ¼È$‘ úÖ2xÜç¤òu»ÑÿBh¸x?oQ¡/¿{}ŽªY% AŸÒÍ+vÌÿ=î×:ò{ê¶xl ›¼¾PR;$Daýï+0p·ÖAıÉrzñi”95ú_PIõMZ ° ÀK‡ýǹ…eUG &Š–‡ ¤¤×;?´ó;|Û± cl©¤Ð-“¹h™óA[‡âQ_‰Œ·BGASÅÎÇý%4±C‘´uÌkiÏKk%*_„*š ‡lM&Œ|(}z4_U€–s[ñKaq;á6*l(PçA,Êd„æeÉTðWhv*0¸TEœ~Àï¹]òÖêÛûœÁŠ€ûž ÑÝ¥¨^èꉣ7šÙ仜Ld4Ùx‡Î$XÅ7u›ûa¸˜„_ú½iÁê'3Å)8ž›ˆ‰ø™¨Ìâ’H_å|h€FÐ-K2®çsz5-•p!®=2Rl‹&Ϻº)òýÌŽEIk3Ù¥ã9¯¶¤QdôÖ›snøî½Û§˜?‹Š:P*™:%¢"hûž=ó¶(Kn¥‡#\ÚØŽ]—Ûæðý†Ü’õ=‘×+þD†„ 2sÒy‹xéÛý›ÚW:$6AÑJûa("Îg|œ'lVcõ«"Ù)øÿÌ6a¾ôÃI–¢ÂfœhÀKLp5‚÷û´*>b Ä/©ýÒæ6à´’ûªtŸ—€¨BwÔ½[àÐ-rq©Õœ`-2/·–<Êý7¡tF¶¹mŸp!ÞØ]æ&øÑŸøk’¡ðþù©"º´2ÞæÆêÄš£=Xµ6œs@0* $Z‰d’O_]Ü«Í[$ÍË0K€§½wøT "ÀwT¤ïÈý°7ã4Ån ±„,{bh13ŽþtýËz³zýCL¤=êcÖ)‡²†Š‘µÙ“n] ¯>µ>¸{ŽŒÄüž¿«­3m–½3e߸Õh;ÇzÀâêrõ E{×WkàTòܽ©«"cÂ, yW2í¬¡6/wKìÈêªÍäUF©É3–^»GdÔ[þ‚t´æÁhVÈéÁ2œ–hW°ö¸YŠNY"ÑX–š¼ÄÞ»Ô‚ö3ÞÄö< ÈÚY>^­./yؘ ²ºž‰@ýdYÞyîp§†Iûâã‰>›a}4bÇÂrlµ¡’’8¹>X®aƲ÷\~ëË |é39|©÷EGæ±åwÌzðÉ– HÛ³cÙÛ¬ñ)Æ””gá³ÙQ^¶w·5÷·–¯Ú²„Îÿ<MÞ/¸÷çä¼¹!ì2ÚÛævjk{Oд1Ú,ñòH¯Ê«wãn2-tÖùøC0‹]ZJ`Ub¡x,Ù+·„vŠÃ#Å “M+^z¤xx¹²Žsés×ëÚ}î´ƒ’‘ÏX½C(-§H«Äb€iå i»O¨„|—ËŽG÷ÒAÄ Á@¯«òž?Y­‹ÇÓ … ê¡éXnžb(†SV¯¹Jˆck9HKŠl”íÔ*g, = µGVPXÙ¾x$ñˆéÅ;d¹ý0›½?}:ž\ôÙ­HÈßp´2*ÖÞ·®²YÊ¢h—à#䆽ºnó»9N—nÙÉF³œ$?ÛýçñÚäd¡9·¤žm"a_§eÍ}Û¥¨P1ªÊÇ«i/‚öó¹'øé¾ŽŒ¹öžÉ—1ŒÓQÀÞÜbÿ`jUtÜEHûù{@–îÿ§Mt”Û€´i掛$Ïzßö‘šzû?Þ#%9_°Ïœ0 Y¿ÝÁOöEÖÆ[ #yUÞ9#‚º¨A!ØÜšÖ¨ÁgÕ*ßÞÛÜÞw.Ô ˆÀièîXe6èŒ*æeCÉlÔ4~O5321d|T(CΕqÇL.´§&zMhlväÁ'ØišP[JVU´³bwo§8„t«£—Œ !xÍÁáÙ±; ‘&¶Á"žD­ù¥¡J0Ýg½Ô¨É K´ƒÍ!Xdsç‘Js±Í TƒDCå©}\  ’M̲ ›¿áxŽ5åüq§±üoÂûç7-'çÂës=á}3{l  K2”ˆ¦ŒÔcÀ7e(ð¥×X±c+ ^v!üÌåËœ¢~%•†xô ÌPñ&Úi Ý£I1Ñô‰3I?‰´+’Ójk¥5j 1ëÌŸV” ¼iWCo­ŽE |•$NÛœª=ôõvó)g8•é­b©ºÖ‡¢Z²ê’YøèŽŠB yrI´§®Ç5Ç2çýøÀ ûÜà©Ë⾉ü3–‘СÅò ‚+H<ðè@&ö ug+%|£"é=TŸ^?›8†ìŠ …±³Õæ ½`ðBš™XÈJ÷0 Ùþìϳ_Û³`ñÃYbÍâ^0ÐÀþ *Ò½—g볟zzKGp9¦ø-]xL-„êÞ¨ÑÊö~·†ò¤¤ÃnðÑì46¾DŸZ¹µyçä†Ïµ†¯˜bÝt¥åœ qÄÈzø–fÐa)<²ìx˜TxDèKcNPf&@Žªt/€J<æ˜$¾ ûÜû¯Pƒ•äP ðõ¢:¸@8>FøF÷güè·ÛÈæ·÷°}…¢zõóŒD/Ï!ÇÝ\@qLq®]R)¼FBXÝÊ´ÕÜx.Çö¬®²Á6àAÅçžqDivžÔ5íü±™ö£ÁÈ?‘+Í6;A«$¥/‡AŸÊ]Uè'BŒP\&†Ï€cwœ„%1¾¥öš˜Êº®²ËÎ1‹îÜÍu¥ß&Ižâ‚*Ù¦ìσ#5$|ÈbËgA©IúHùÔW ’AâºW‚§;oÓXøQNnŸ‡¾™õW:oðVbsŠ2Jƾ2Qp#8.ü]˜é).Ç$gpF)é:ÃÒ=ï>Šèn6³×°j}ÒNýriè0›ÈÿÕ¤ÑSü”4t$ý0Pñœ4nÐ÷d+ŸN![¡Zø&oíu§†Aa©Óû:w‚wËdzï×AÈg&”ÈäM^ev„½€Óβ±oK±6µ´ìe}àc¯¬)úÃBÊ´±Ø9[¿à[£P“Ï{±ù†˜²}:Ÿ=ãyYîù¡¿<=^ŸØaïͨL°çd©v”è”]Ù,:I±gz·Xô"&6ÎÝ&|decQwz#ÐØÃæ<Ç臷z >¯ê}+DJ(œNŠ×ùóê,µŸ‡Ã6žC§Ë\›`éÌrŽúãx&?ðöéO¬ò»4ëÊ~aí˜á Dß­Ÿq÷²÷¼&ùÖ,ÜfeZMnÀ±†‚ ?N•‰=§ZëÑ]Žpw T¹ºü½¿RÀCiÞLäƒßœ|°=Ü!°:·Ý…2;äoxbÍÙèÌmŽ!œNŸ)ylœáÀ¾Û|Û@†‰(Y@‰ sBL ^_PqŠÂ·“þ%Ò|!âG0°§¸“$ <Í}´/5„ì~]j¿YQ®s±Z³@¨²¡C·±|ÙÞT‚ÌÑ×ÜÛˆä_îÍ#|¿^_PÞ6»3öäìÈa/ Èù&â¿¿ Gq9&9· ` b{8,Í»¸¸ÚØ-(¡~š*‡..Nw¹)ø˜æí˜¯`fŽàrDqnü+ŒF[À úå[ü»ÆëÚÎfõvýWw-6ñƒ"#'aõú¥åÂÚ$©w Ô_ ddû‘QÀ¹ÆÿÙŠ+tû 4gendstream endobj 170 0 obj << /Type /Page /Contents 171 0 R /Resources 169 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 134 0 R >> endobj 172 0 obj << /D [170 0 R /XYZ 72 786.281 null] >> endobj 26 0 obj << /D [170 0 R /XYZ 72 761.3744 null] >> endobj 30 0 obj << /D [170 0 R /XYZ 72 602.296 null] >> endobj 169 0 obj << /Font << /F25 105 0 R /F20 102 0 R /F15 111 0 R /F36 133 0 R >> /ProcSet [ /PDF /Text ] >> endobj 175 0 obj << /Length 3724 /Filter /FlateDecode >> stream xÚ¥ioÜÆõ»~Å&.às^.ò¡¶eÀI|4«A“| H®ÄŠKnH®eõ×÷3C Ô€Å9Þ¼yóæÝ³/¯.ž¿‘ÑJJ‘E‘Z]íV‰Z%&FfzuUþ\ÝVëÊLp·VIP=Üã§[Ë /žØçk•ܹ†€qg×5M‡“´¨*y·Üò!ßèí4u[9l°ÎbΧeˆá0Ö]+Ö£LðK{×ò>à÷Pšªqæý„»¾i‰øª¤µQ°­ªõW?¬ÂÕFaL”ѱ‰2­bBÕTv’`_µHlÄàp)Ãs§ñiÍÀÕ»®çFYyÝ ÜéZþúMr\òiEº¦bÜ¿Km _¬7’ö®+ˆ`™ˆˆµT§Dõ«nïHØab§mÖÄMX ‡Ž‡ü„Tq§fœ}]8˱¨ºtî’tPÕp¦žÛù´×7ß"³uÐ=žú‹ß°ÜMy1ò…AÛïO_+/šn¥FbÄf‰’Ãn¨í]17±¹s—FœGæ<ÍÏ÷¥DG©¿f@sq( Ý æ-£†pÞ,aå!À…±–™âð –h8A¹Ù4ÄPïxž%ÃX¾±àžÓs€o­C{€ «ö R[LsÕ;¤ÖÎvHíÈM·ÉnIr<< [ÎÁJLdøe EGkk%` (8R ŽÚ#,/¤ïä4`ˆÐ|‰ø2ŽÝÛ1¯ Ð.º–Õíüܯñ´ça¼ëÚ»[r›Öäž9K¾.°¦×Ö’5¿Vä@ˆŒÐ&&!‚µÚˆ8– ­ÕÏ àoüšŒÚˆf"‰Ø÷âH5,‰#`RJÈ8N§HEÇ1šçYhh—k‡/f_Ž˜úõÝOÜ€œ†âÉ‘ì’BµÀÛ·«Ê q´w· Ï-4¦ÀàvÝ‘¼RÙ2›"- D«KþTgÁëŠ=UÓY­îyü]N2täH èyËr“à,û’áR>9À‹ÐûBh—ì#Ì™x˜|à9ç¡™[è†à˜š|S_ù˜ÖïsÎd ¯xÆ–äÉÕ£¥mE7a·ï–¼é‰_îÇ“T”¸†‹‚óô”ŽHY'ZGÎÆy–ÚÚöõ䣟ñ’ãÀÆÔnµè€Æ02VÞ®‘ísŠLžQ¸Q)çD†¢¯£Õ þ%‹uöX'6:ƒêsU­ ¥Q0ŒÝaà&…~ñà Gî}•;‘Ncºª4r½tž0¡1Ù’;ͽüùjéT‰* •]è34¤­åÍGwŒ{ºûþŽ™ eݻܶ `.’ÂZØ\rÜD¤)XîÜÃFVQ½ÆBºFid¾Ÿ«¼"â.”3V%zÒWÉI!«Gµè­C½ùÚ@ e¤3[V‹ø|©C¸‰Œ†|Ú¦>dtPÿrk©î‹Üº½=Ú'”KvùœZ‹ÆÑ)ó â®D‚©?áÕ»o­ë6rʱÍ,¼¼á±ziùH+Ý²Ç ö:N XnÙ}1šoÖ›8‹X²q$/ÙϹŒ|ÌoX"pƒ{Æwž—NÉ9¿ÒâÞÖ%èÆ#J[l]3/˜š¬ƒ­_¸5òÁÖ•÷\ ‰¢§|Æñ$0·èÿMÒ4¸Ê¤´,Ô‘Ë‘,Z&o°›îs“\Så“eãù’t6_ʤ|VAJnCzoò\¯l˜ŽU4û=r¥cÈm-žBÆ|¬¾>)Ñ6)¹ÄNcu¶§’C[SÓ”“rNÕ‰KÄfÙ‹¼)Ž ç45/¦í2¾å-qÖ퉥#M!+exš631› D†|vV¥ÜÔÙRzNpÛW8ð†;3’ÙvÁbŒaR‡>åßV㢩€Ä'‹¥Qž ×|r<8…µÑŸŠVBfT8ùI6&4¬!(N1}Ù ¬ýÂ'ƒ 8Ö§bTV»btbFdrÇÁ{Žî›ÚK†u¡uáÛh¼ß>vðŠ$â§5þ'ùº'6’Ö©xçÀ‡Š\mg Κ Î4sù™ˆ8¸Ro=)ž-…L Ÿè%kd$ÂؙhIìÙ'AZf¿©{®é…‹¯víy0çÏöÕnð³Ò ÖWJçú.ƒ¿á<Öd*»‹W»Ê :êÚ“V.P2‰'jw¦úî¬ðÈ}(()ª¸³×ðþ¶äñ'*•?þ_J‡täØ,‡§4K" ÏTC-•š“P ûþA%5®æŽbà2ejŸà;¿)´h8FNU;|YÐø‡o[º—-•ßö<1Œ`²nÓcŠJõ´ì¦vÕ+®X› ¨³Ä?*½s¦šríµ7bÑù4D(†Xráê"ç8`ßTdðb½I¤áš«‰z3PÝõm±]A[%‘ "o)TǤÿ†ÔÏïï1ÿÇ2QÑc9vÀyQ!“Ž8ZáM>/ˆ"r?¸ê†­ó}üðöýÕö”EÑô«­*^x"œø$NUåé%èÛY誻™x?*ùJˆB=~Òû‘;V®8ù¨¶‘Q>(¤¢bꟀµ ÒtþØÌAXê_ÝTʹfYR0ç;ð §goU8S[öµŠ;äu7ÎdEBšð¬\Ä~øxîPE#ÿ\§röºøÎ!ÃH¤¾ŒúÅW ˆÃ3ý…w ¤~uÍ=·á·÷‰wÍfÁ&ɘÂ=ý*»>Ýnó½KîéU‹-çÉ8ÔÛï,}žjVÑUî<–ñ©¢;ûô(›ñ¿Xò}5ϾgS#_!™3 ‰k}X;å@1§Ö˜»æ˜ ³DÈÖ%ÃxÍï/v\¡Eþ;ÖÓLðòòýå nB:]TÜü$ðGö,ñ¿Ú¡$ ‰&Õ£'X9ÿ%É`)sÁ(Ž Åîd…ÿ 'uÞð‚œÒ4hôUnqìún?a{òG-®XrRAÎ +ÝÚ¤ &wJq™˜ÂVŽkËm4ÌGŠès’`ªúå,ô}×T8h®LT9 \¦ÁjQõ¢­¸ºðŸ„Z®ê·›ŽŠ)×ôZÁ¿òѶ$QÑ€¦ÚÄâû¯–X¯\;6êôáÛ¿:Íð/u`ø—V/³Ñg‡ú„ÿ}ÕTþ]Õ;©ùϼZ  ÷³¬‘1[¨¾ŠÏc$z=[’Š£è‰DV‘Iœóû/— æendstream endobj 174 0 obj << /Type /Page /Contents 175 0 R /Resources 173 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 180 0 R >> endobj 176 0 obj << /D [174 0 R /XYZ 72 786.281 null] >> endobj 34 0 obj << /D [174 0 R /XYZ 72 602.6779 null] >> endobj 38 0 obj << /D [174 0 R /XYZ 72 399.0664 null] >> endobj 177 0 obj << /D [174 0 R /XYZ 72 375.7372 null] >> endobj 178 0 obj << /D [174 0 R /XYZ 72 327.1278 null] >> endobj 179 0 obj << /D [174 0 R /XYZ 72 123.2673 null] >> endobj 173 0 obj << /Font << /F15 111 0 R /F20 102 0 R /F25 105 0 R >> /ProcSet [ /PDF /Text ] >> endobj 183 0 obj << /Length 3673 /Filter /FlateDecode >> stream xÚ­ZYsÜ6~ׯ˜Ç™ áà™ª<8‘\N*ÙÊ&Jmª’¾I„”2Ú„I,¢îá¹ê3Rôæ$WÔÇ÷5ÒI¦­ÿ‘ú€±„`,|Þ²çËëa1]¼BQ´´ª/= ¶vìƒâ¡pT¿Ž»M;ðÄûò-©FC*Eß»cÁí é нœ†"¸C<ëSÏ“Rþg >³Náò¥NÑØ»r8"'çaZÆ­:½·¢¶,"l±˜Hצ£”ÚOIûþ\WFò1RÜD'@ .¸Õ|à®GÂÏíêºõžul«¼çfÚäÜ(-­¼eÓ´ûØO³ó–‹£Ý×n€‹·ÇA‘ƒÊû¾¿½ƒi+ž´-µí­ è nôCYU3§ñÿ´^ÖÖì:ÚQ–ÍÌl`O‚Ò&=蹿§k@GK—\ÌZÒ+lóÂÒòó¶ Mt‰Ø_\̺E+#T¶E«Ì*ó })’ÈÄ_ XŠÞœäj@…‰´™¶þ‡(©çËm^þ)•)º¢Á $טl9zžñ¡ Þ è%†Õ0Jæ~ÝRJùƒõËmU•M‘vçíˆAÚ¡~XAVÎ8”Äê`âoÉá‚–VEJ,ÀÐÁÅh³äà»C2ï÷&-›YÛ¦ë …µpûoð’–‡;'¹¢kÁSM¾‡)±dÀƒy\N6¸öéÚ‰ü®>uÂ?4Åú…3…Le~g{ý±=Wx¡r~éð!mx°„Pg[ 9œ›Ñ¿®à;/R._Ç8ð4S‰†¼>±<ÙP;+#ÈøË ¤ö›e#nál޼ ?Ë]¡6èáÏuquÝÖ6"žka @cpk8µË²ó)m²þHÅß¡>è¬k³¬/ Bˆ‡ ±C×È­‰5áX°ŸQÚÜ#PŽÃí÷xDÚÚ ¸qî¸G«q~N‘ˆâx‡‹ KŽÐBKà ¦sÆ Nú}ÄO`õ(j?¶¤QP¼¶)l6 W* X®ÊË)cìm¤Äkª ›R’›ÎÇd’þwˆTNeU<•9È?†c›ü:ºå`7û>Þ¾¼ùé%±rGк¼%A&Ð&CuÂO MÙ.t|ßìŒÆXãf ˜ä ýT‰ÀƽW—»ÔqØÌZùVË)- D¡’í ìëÖó’u£ØÿŠÿõE] Ä®Ì>ÁP^:ƒèzÎ’`Ðb4!À¿VUG.°;9ïžM x·Yf›¡ôceµyÑg]yš€–œy–͉0 ̓õub-0#´ #ªZÖ½ÚþkM‚¾2c÷ Æè½ƒ0VYb5jâÊ®‘±ë±ì«HJxóC ß"ïÄ*q(”Ž– °>Æ.”ÚʸYø¢ýwîgg‹9;\D•Qž»laR«emÄ$¼ŸpYŽ fáëš ‘JC uB Ó"ƸñÜH5Rôæ$W"•†Ðjð;ÎC¶sÌ#@ym•²w` ×ü¤ø× ]GÈÛÄÎÔy§×i7ùQ¼W;¸8rK –PàÆl,ðM¸}ý°ïÈÌmÿ€×8‡*-ÁkÌóÖ¬Ü(ˆÉ‰C[¿– ]&ØÇ[`”¤6zz÷Δ¸LcíNÿèÞ‡®(ÈÛ³ïà0…Úô†§§'g莉Ed>u”¼/kWQViÈ ù! (Êbóˆ3Q9÷Çm¾ã¶E|h¦”ìâgãØ‚Wg¬c§okÛzÍU½œgï9õ§ðq_Xþ «Y FUK±Ý²Ž DHz)߆&¸°Aos•¬´5&üvê ”m]ôdutl\°Ÿª>W«Á5¸œØîKV¤QkæiT Lä‡V n‡•¿?FŽ¡ÂìQ¢+4æ GKÑ›“\CŽ c Ù8Ù,Þã•rr’½^}ÌѪ9~DÉQ0FQý‘˜ôÐ$€ƒKtÄ^í³RãODhHî4hÄÃe„æ ®LéQGš¶ñ*û¨a°.ƒš¸T†×ò˜ÃûÛüÝÍ«1D®âj#ü@»D‡ŒV¨ÒcpZQ”Ї”#r.C…ýKe `‘” JÄ£gëÊHЛQ\QÀ @fÚwMQÖäáñ ØÅÝà­+X•ÍæÏŸ©@v?}ˆ?ÉøøË-,‰âc|„@Õˆ—Íx1†Ô ‚ÇBF,ØrÍŽTÞCœ®ùÕÎûrûmÑÑÄîþLe~U^*†ëÌ?×|] aè#ö1†Äà´}k€/¸Ãfäü€Ç¥Ä™‘÷–ïÌ,‘¢{:i^ØbX»ú¬i!ý`³8%D„µ?=‚&”4áF%1X‘ÿü$z¤èÍI®Að€± ñ8Ú#ÁcFFA-ÁOò‡7 ç;S,Ç WJ%”ॢPùL*‰D”Èp©ê¯Ø­²Û¤G_ 6u1<Êø •ñèkÞ¯W ÀN#‡Vïl½I…câåü“?ŠÁ`‰–àôw|b¢BNFþà!£çÈ>kOô¬c\mþ;7Â|3Ï ËåBçËõ_ABFÊÁÓ;vïWá 8O9ú÷¯w^éí[Ľè!°üÀƇÍâ=D0÷†}:Vs~ŧ‡#?O3ΖËÔ.¤ ¥\F†#ÙjBcù˸[0“8 §úøüAø °‹Ýkà|öSµó@±ÆR±Q¦Ìü0&JYâ ¹¨tÖ|Vp2Ä5½ˆ{à.záÿøŽ‰ßÀïË T¡+'A¬Ý_ˆÁzÄg”5UòKjåßà…¢H»s±k ©Y¹g|)ùqSkCï๠ /øî„Ãç¾8œ+7Å–†µ}#:ã’ƒK ²‚Á—kßl—…/†´ÕƒEü`ê‘1á#奕TjþGLÕZúĵ)lååô›~¥òµû퇭-I ÎJ¶ZBÔÚÉ–’¼Óseûµ}êûä–"°ÓÞK„B™=³ÒŽeÆñ§EÀdMò||5ôf× xbDBñÇNû\€å"™~„ÊÆF"‘Q¸Ìý¨~'s4J}.Þ`êxªÊÌ=¾à“(hçme_9:÷8œÈÉgÒ:2hÇK‹Å/h±h®øÑí²ò³ƒå/{¬»è,wöW6ÙXÖË’üàèãáìÉ £¤}zŒÝï ÈÅ’Y±G¥iuAþÉ–—}[èuÀ ôPàF¹²:yR„¯TFzp&¿Ížµµß €Ÿ3g,ºÒ;4ñt"ÿe+íNîLO…ô¸úª ÀyÂÕ‰ˆãˆÕ$vfñIGendstream endobj 182 0 obj << /Type /Page /Contents 183 0 R /Resources 181 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 180 0 R >> endobj 184 0 obj << /D [182 0 R /XYZ 72 786.281 null] >> endobj 185 0 obj << /D [182 0 R /XYZ 72 521.2537 null] >> endobj 189 0 obj << /D [182 0 R /XYZ 72 403.8583 null] >> endobj 190 0 obj << /D [182 0 R /XYZ 72 343.9141 null] >> endobj 191 0 obj << /D [182 0 R /XYZ 72 272.5129 null] >> endobj 192 0 obj << /D [182 0 R /XYZ 72 225.022 null] >> endobj 193 0 obj << /D [182 0 R /XYZ 72 179.5236 null] >> endobj 181 0 obj << /Font << /F20 102 0 R /F15 111 0 R /F25 105 0 R /F30 188 0 R >> /ProcSet [ /PDF /Text ] >> endobj 196 0 obj << /Length 4010 /Filter /FlateDecode >> stream xÚZÉ’ÛF½÷Wtø`ƒ"T…ŽÐA–,‡<Ö2î¶’hd#4ªÕþúÉ—™. I¾µ¯™/_fñ§ë‹Ç/‚øÒZ?ãàòz}™—i”û‘ÍÃËëò÷¦¿©KëE³XÆAàm‘+6m5"QÿSÈ·Ão»øpýëãödD~žR™á_QË õʪoË(޼ñ¶êÖëï%‹ôZ“4÷HYLü¶  fæY1©ñîíí‚Æ¼üÅ2³™÷;UVŸ4ó[…¶£ærJǰÎËå´2JùQç¼@R“4 ÓRmê½7±á<XäìTdÞš.éºö 8v=Öæ¹w}[Iå ÍŠŒ5ú´Úgê×]O•Û gYÊÜ7¼1I\Á»©Û”Õín?Ê(Ÿqì¡.nšJî"0ÇwÆóé.^ÿ æ|B?þˆÎû ɹ›\NÝõÀ2¥ÆnÒÈk‡ÕZRj¶ë«¡jq£k›¹AàÇQæ6†=4k§JÙvûåí夹ހ[ÆúS¯k›{™û?ûJd^'ٱ귃$‹¾’Ä ›À©néZªRä,¤ÓÊ‚ôôÔÞ õ ig¯«;Iü ± ïHš£0ö,dï‘41_¨ iÌb½ÀX”ʲQYâDY¾º>è¶¡ñ‘F oÛÐ#?IlÊë }l!¢ÄÞ›¨÷vNÙ—aJ×–’(ï!Ø…´\ ‡©'LSÑ5Ù$M»"y£ÆûÕ¸çCLl¼îk“Î!LLƒ¦‰“ê‹,ð°û(ÍX²>Wå’/¦j)Å ˜ƒ‹BÒùÆP1UÅU½F‡û9Q³YæQ–êtªÛyÑÿš~™¬÷ä(BÕÂ>Óϳ‹§ILääÇÉB%¡oBcO¥¦(¡ QFÍHÑ@Q,+~Oe/‘C‰×W¾”>Å®ƒ(g¹ÜÑ~ÛA*XD(ä3U,”‡›_={!å«B ËA.wÙíH-è éà‚„µÙ'ƒ­YŸï$Ó¡ïmÅÀYãý¯h/•ë¤T|Ôãí®»†0Šj¡!y€±ÃÜzƒÕÊÁá¾‡è æp±,P| ¸èW·ÒPGj»vÉûDæ†9¸A{–ËJªVn¸Sǘª€Ü¯nWÚá“ùVô62Øpc?·Çp’'´”QU…KÎS9Î0X·›ª—V£vÛ‹Ä–#kžzrÔ:2Ý–a–²Ò´jÝÀ Å àÒusF%OX-yá¥jÏe-™Ù3 ù§ÛVåwð÷ógå]S .ð¿¡%MÒ‰I@Zi6žx‡ÞsQ܇Xt¦w!ÑÕ»+§øÜE8Èô?"#˜æÉŒúCÑÕK¿å¬Öç™…ÆMp·VÎ?4t…õVS“4²6íæ–“¦~–ÅÎò•ã<Èø¡ Ϧä6±ê˜:^[ ÛÞýv©–,±d7{z•7J_@Ư[Ë÷Õs|ãúÝ0·þ<ô“`º’Ij ½›ÛHhü4Îô‚Ó‘÷ˆ¦TTãJ¾À€2¢ Ù4€ê1µ»øùúÂR)5¾ èvl‡—qûYDLxµ½øûâÝsY^˜Ë_/ŒæY|yGãÛ<.·´‹Ü.ß\\]üwp9¸<ò'¦ßætÖÏb2eS;¾Tg¨ ¤k^ cñ؉eÝÊ‘¨`M©‡Q®äû—o^_Irí‹Þ^!ÅLÖ¸×&¡/êÖ±™ ‹|rÎ ÓªS–F;åëÝzbø2êÇ"w\UÞ“–’†òM¶[Ôº—æÎ^)TñrÙ®SÇs.|2OݲßP;Ça¬¶;fnUÏ&a…[ÏÑ1Ì@4–ÄÎGs ¤Qèíö7È$€P„F\œ-Bà-‰È¢©À…v.ÙÆpš:‰×á%Èê2ÊbqjßV[Œ{£;ú‘ª“ŒÖ*€qÜ÷?—ôÑ’Eµ)QÉð+¹³–ŒÄ Lo`i»=C‘Éa$;óHÒl°xÆNǃ½ÅxS=I Œ7·xõ\©íOYI†ßÁ~B„öÀË¿ û/9< #Zµg7ð 3Xb06LÌ1Ê„ÂLœàˆPÎê±i? "Õ¥7°ê3XB«2DfµÕÛ¿ÀVl:æ+öÓ$tÚ q¶¹·ãÕ¬ph·0ú(ŽÏ 75Ç?Mâ„9ºûö7ãWôóóó¹‰#JÚÐÙâi›e ºEt£ÌYJ:mB‰ŒžÈÀ±}ÀmYaøî-Øv¤ÞþöÇ«ŸèYE˜}»R½)ÑM¾»Aº8'iñ[hÈœ›—§„r‡½ãÌ ©ˆŒ9j=ü8Oçý, ÝÍø:wÅÏp "o¹ƒÆîF˹Y²ÜÏÍä}æ3’ë£S%ƧIt *#jŒ½¡ è0÷„X3KLŒŸ„ößo:Ls·VÍÍ~«N4pJ\‹}ÕCÒQ=¤×>8.r¶B;YÐoJ‘¥ÑÙ2›tBå G3 Îð²ä«<$19g/(ç——úÖ&NÜ;ÜÛXBàúùFÑÝdÁéݨŸ$ÎjêŒé¯HÈÀO¢¶܃þU˜Û/uf@„*¶ÓmÍâ­Œ„>Ë"‡ƒ²Æ?ƒDvÔH1—+±òpöbûЉæ†Ý¼M«ÂØ Ø•¸1Sò#¬?`ÓèâYmu·PʇìO/ûåJrlá6,@tŒ[éºêĺÁd‰È³ö s%*i zpÒr„NYè´ÜSÂÞ}Ûï^Ê (flæcý(™æ¬Ñ1_ßN–,6~˜3ÌÝV3É4S™2ˆöàëÜtÎôղ߷’-²Îf½$º;žB“hã<Áå!Äjêw²Cõô`žÍýt Q…êÉÔˆ)ËÕKÉN£tµÈØ qÛr˜©úõH ÅVS²JöÊh á,’°Yà´b=îW]Í‚}êÇäËB¨FÄçñ­ ¡/uþ`ŽþKûö¸8ìá¨z„b€ ftIù6ÑÂE™8#Ô5x—fâUŸ‹ÕØh 5Îâñı‘Ûy*Kr˜A–€Úï›q@$,Ɇ5Õ0H® —Üñe#ÏWŒü•zªHY t‰,g‰ºx%An ÜhXóuV÷Au¼UáÃ"”£`µùÖqAƒ O¥¾V 8ÐÏånëÍ-ô\ˆ—À¬ ÷JFJÊ19¤ï®g,ýT—•òYïûÉÏC^ù/>âîHc¸iæ5“jDʶ“û7ÔäüÕ¤Ôj]ÓŽà¶–ÁæÏQ+žü®§fö}4ßÖ1‚)Ê.:¯Ï©zûÐàm\·aÔ袆õßH'TFá1*ÓăKØöö_Àq˜d´ ý*[ÇÆÁ±QYm\ØGG9A˜octâ§aA4×Õ¶`KI̺ §Ó©Z Òâ7(;æ˜k[é+ ¥f‡úNjTd(u<¤”5J†6êÆ±2B|ÄK©÷ý¼p¨K§Í—h5x€Ä¦þ´8t(t…Õ4}½Åi+u‘#9õ ŠI>EnÃÔx½[v#4£†Û¤^yûSnO‰LiéŒ j2"ðž$äÇ9L7>´FÄÏ»Hòaé7:™^\O7Æœ™#Ñ~Ž• sýQâ"³pò÷žùͪPmZ÷ÝVRWr@ {¨š»H%°æ,ÒTn 6–ªAoNN›'¸<ÏX†Òj’SFª³%<Ö¯Ç3¾Éã¥eþÞqèâ$ÒMU<ã›þB#ôÓÀùß=…X:ÑíÖ½A§`¿~Tæ²Âá×½ôi§ÇÊì‡Ïí?êa#Wk)¿P¤FމÉ!v ; ²qжŒ¡~†,¥K²ä‘îØ'Î2Åw·°Aöœóƒ.M$o(‘{øˆMwö´”Ç–Øý)Ém±‘èâ¾Ô¦Å _}‰¼goµâÈ ‚š˜‰¢Vß{„2g_Bߤ&úêΗQ’ûqvNSØi IÖÙ׉è®%R"ÔÄRflªùi¿ÐÇ®J* ù¼·!AáM”¯X»ºæ“LßEr¿ÓY~‘uXé% ÕìâC}€DB4ˆlÉêMíhV‰Àç«¿t¤Y¿¿šƒ‘¿ð¤XÉ1-müG 1‘w" ~SnO*y\dþ3T0&_—¼AGeŸSÏýY! O3ó“`r·ß}áÑ&ÊŒcº©áøè2 ô%ò,‰=uµ{uT9ErœÚà$7$¾Ã åõpòZV УvbǪ÷Æ0éÙÃÏÓVƒÞ’½Ywo´J„?d¶`µ ; ¦_ÇT‰!Þ!¬"=ѵ†cq`æIB¼È¬7‰7“¹Ýä ЃŠGŽþ‰[Ëä ’.‰š“õÁU«j‰ûœ‹°ŠÇOc¢’8$>Þb’Ìz’<Œ ù¾%&ä‡M&2öTJ7JX¨»³è±»GJéÉ&‰ìÙá8ª”~ +juxÁçJÚ‘ñõ×Zœ\üaKþ£A>>‰Ë¦¯*F¾üÄí©´„ñF#25žý)AA]eʼ¡³…Þà»>±¹4ð‚ "F‘GëŒ ·Ä|§”‡äÖ—ÒäO@Ã7z†‰g6+/Ï,`SI¼mŸ¿kR>½ßhºüT…DÉóØ=шƒ¢­ªÏcÕƘÇgÿ¯€ŽGþÇæ·G€´iQÌNò#Ñ¢tY@ávjBÎÃd‹@pûš=¯-ÂþÉQ „2/ås:aDt¸ä³:Õtz¼¥´–(5ªÇ©;+ÒÂÊ{Ñ…ò¨L‚”:é½v” êâ¥:œ¨´è¿Ž*O€Ô©Ä”›‡‡J̽å1͈ŒU)ΕãþÕ,f癟âZ_Áì8±³m|øOVd8„غ”.âwX¶H™A«…rªF0_~ð;ì%]?mcÒ.dõùÈØ3ßó^[‹û…äÊ©€ È+1xÑŒoL*ïl¹{ÿ?ð¸‹endstream endobj 195 0 obj << /Type /Page /Contents 196 0 R /Resources 194 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 180 0 R >> endobj 197 0 obj << /D [195 0 R /XYZ 72 786.281 null] >> endobj 198 0 obj << /D [195 0 R /XYZ 72 761.3744 null] >> endobj 42 0 obj << /D [195 0 R /XYZ 72 686.364 null] >> endobj 199 0 obj << /D [195 0 R /XYZ 72 660.9095 null] >> endobj 200 0 obj << /D [195 0 R /XYZ 72 572.4164 null] >> endobj 201 0 obj << /D [195 0 R /XYZ 72 483.4583 null] >> endobj 202 0 obj << /D [195 0 R /XYZ 72 408.6139 null] >> endobj 206 0 obj << /D [195 0 R /XYZ 72 232.6488 null] >> endobj 194 0 obj << /Font << /F25 105 0 R /F15 111 0 R /F20 102 0 R /F40 205 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 209 0 obj << /Length 3215 /Filter /FlateDecode >> stream xÚ­ZYoÜF~ׯü"ài±^ÆbG^cÀY%Ö®’  Hކ0/óÐØ/ûÛ·Žnj8¦,›—aßGõ×U_UÏ7g—oep.¥H‚@ßìÎ#u™D™èó›üW¯N‡¡^n¶:ò½Ã¾Ì6*òö }¯ð+½i(6[éí¦ŠË˜Û çÆ}ÁͲ¢ª85ìÓn³… 8L¼¦O— N4}“n¤gûåÅ]¹‚¦³“·P°ãä®/м­í˜nu»´ç±ÛÉNÒî6¿ßüxîŸo¥Æ í´ø<•UyÛ—S-6[ÆÞ;l¯#/­†–SÎF+»ÇŸ¢¿ÃåàD:Æ%ssþ uZUEÏê3Õø{Ë;·íζÆ-8&º ïF÷)ÍI™_ ù|zÁ]óÿ]³ÃbZfèQ%ÕÖÜä ŠGêy¤7L—bˆI Êê~^ú „ {"*ôZÙ3yZwesÇ:¡;M_Žûš Iüx„ħób—NÕÈ †²Élù½à¹´Ðö#.íò­l¡MHØ„•j#ÂPF´R-pAüHÀ† Sö´Ñ §ˆB< R¥…÷»”¦‹Æg9Jí<þñ<2N„ŸøLˆó\½†E}x??ýë¡ùÕÙÎí·J †Œ§ëxˆÁ“z-/šÖ"4ÆØ9šv£b\˜2Ê¦Ž¯GÛ ,¥ƒPFzW)ã¸Ìïléç)mpŒPFï¯ãܹ¯ZNv„ºQ©ísõö¹¥BÞ÷ò²aV_7±òðŒüÈ{»‰yØž»Ôm_޶nG 8•Í®íkœb,[ d¸ZGIÜ׊T¥/…Jbýè!,Åi¤Ð¾Nlë¬%ùåO1«S˜PÄI`»ìQÔ#^¼W—ðsy8Àï¯Ù˜áúVí¿b*CÀ×X•fø;}ÂÿÅÂGQ!æ©ÕPâFq·‚&¨«µÅ+4¾[½XE™‰bêX.åû¤\|aÂÈI±N"_A8IL73ýDz "‹°„Og;Ô—XÞîVHI&2´CÜ?\ÁÏÛU¸Ãõ’ƒ{Úä<ôEYw=aÿþh!åxÁ‰»òž´ ¦³¶ʼèQ¬·ÕW.$ôQ*Ͳ©O­¥íá.Æ´bpÊ$&2z)½¢^’G=†«ÂD ’è9 ×j¾Bå87­ÜpêÍÛVb¥­ÊÒŽ—h•[»[=O‰,ÏÂ=¥2KådV·‡)ÒÞ¡ö$'Ì ZNViü†s{§c¨5Ql»±¯>^{,D˜DÌT¥ÃÈÉè8ö8(4l×6¶‰µÈÔz_<´mئÕ*¼-t$ÍŸD7è J›%2Lu]Xc?0Qa=ÐVƒe,–“¼Ÿ÷„¹Vi(0ضí‹×Ý”Úö¯«Î–^Œ…ÞöíÆ‰ë=ËL²)/³áÅrÎT¢¬k+½S¤Y-ay7’!µÊ–Pëö·Ê{Â<ÙXR®teÛ8øÙ„å Â];á”9ç¨Ç:(c!ã0yR'ÞÃ)ÂZQ»'pøÐô’ ¥—ÔµüFñ©`i:Ý„[-…Œ ïðºO3è ‚ÊÒŠ¾œƒÛ·‚8*4ÎZß0äü¹Ãí’Øm•̈õÂꪆó…/Üw/gÅÑ‘‚[QiGqü|›–¨Ù@•¯ÞéKÐ…9—Œ{²äÓðr îH@±ø7_šÊnùÄÌU²±ö‘è(ZBkaá¤3)‰7㋳ْS`MÙX˜xwVÕ…£²ýŒn BOÒŠÑZ›0¡¸-Q]óD|q ØC˜•öÎ ¶×ƒ²fÔ}#”ž{jÀ'“²óƒ·ö ê°]*Ÿ2kwðÞá7/jØ ’$ £ ’•®Þ²Q"RP‘ñBVŽ‘ÎÀíùzfÌØž¼ŸúÈ,ïl÷å‰wÐd,<»±·Ê}tà ­”SÞì]ƒ×5'²–®I+„#g€^® ”*2²·Ï¬|7*èÓuö#…‰ÍÉ1¬LÉ[ø‘k3¡²QRÚ™ò¢s* î%#9HèPQg£å’ÜÃb­@— I%e¬:©œye²«xïvǾ-ŒÅçe‡J{¦,˜Æ«M¼ЕsÛ¥+¤ÞáKôþ cÔíkA&ú©y‰£9Ïáxb“íÓí Ho¨ fû5á̓i¿¬*FPÖ:šéªí|ÿ1¡k_DA}4Ÿ˜o†Sípú7,B׸3¼ÁRƒB¡÷ÅÀî8±² ÌGAZÈ P\³t9 ò¹3C*³îÞ"Pc²†Æ¢Ö©>ÜK°û&üÓT?2‰œÉБ :͆k€¨宊ÚêTq = ¬ÕjLƒY!ˆC²g l 7FÃc>â¼)Ã)Íz”ðÊzeNt® »š-› š”B#´»Šbèà@(£ð¶c_Z-­Á²*?<¡÷·“U¯¯x~­O¸Ñè¯*èâÇuØG«—"Ö~x¬.Z•t Hh?‰¿JQÐîGîhN#+uZZÎÖcŒ Ç+Ö¼M€cøh³ÿ’CŸ³ܜ᪠㹠"¸ÔÐÁH0 ¨ù¬>û|öëïþy~æŸÿx¥ Ìy€Œ/d’¨óúL£ ¨\¾:ûpöó<àvq{<ät /ì´È¥Óí~ÆÇz9ؾ³öT ]2rºþH.Ž 4r(N€±¾·:ÃuXÔEîèæ]4)Ðw 3]:²‹Wä\4± M`ù,ÍàZqvÈú²9}}}Ù>UŽgc½¹“'Ÿ÷oªv¦vøE€TÒöHû¹§ ÷m¬ž«©w.TØ»8ýCç4êá»h¿cü³ÅWŠƒ…8á;‚Óâ÷DE.VCä@µq,ëË#Þ–:µ—I'抟›âÇÞFΚ¯dò<Õi”0áìŠÿŠÏSL| q±í(£\€†CæM{ÁõNKÒë¬ßuhc;÷xÀí'ÄÅ*‹°“$YQ„âËjÞˆé•s-èTI8ßùÄ«õil¯…•r³liK° Þ¤Ý ÃëþÆÐôİáçšm<¬ø;(|7r›?PܶÍÊ.ü%i¸yŒ¡ãR޵|AŽpxÒQ_P­c¦ã't¶GñÇØ³áL‘û±8ŠANck£—YZU‹ ³”qˆÁ5u¬zÊn‡"”ó)z–øÇ ’ŽÅ¼ VC2oYÃÄÉLz°˜H;æc¡gP(j™ö`j&[6;—{X£öh^Y©Aæǹàf³µàX1™š˜a$õ·¶æ8(È~ñÐb å̱ÅçD"ƒ`öÔÐñº¬µÓ ü¥—|´&Èé`“9qªJmÓƒ}~¸=zhÈ/JÛ©W{(p6ùlòûfŽrÍñ•9"<,¤„ž Féx©4.nËÆ*õ†»F†CoÄÑYÑ—Ú³¦ÉQ+Ç2Z‰›Ñýø~X – ŠVÞÿà}:r;`k^ÛÙ%ÙüLg<¢³TsJg±ðvn,ùQÊ;®Hy´Çw«¢XÄ`¾ëL‡š‘hßÑËõнalcФ=i‘ý#ðŽI]¬Ü¡BG")/¼k+K‚ç¿BÌñr²ç ðç'`.·¾Œ´¤~Òw¾÷ÿQˆ¹ÿendstream endobj 208 0 obj << /Type /Page /Contents 209 0 R /Resources 207 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 180 0 R >> endobj 210 0 obj << /D [208 0 R /XYZ 72 786.281 null] >> endobj 46 0 obj << /D [208 0 R /XYZ 72 700.8099 null] >> endobj 211 0 obj << /D [208 0 R /XYZ 72 557.6384 null] >> endobj 212 0 obj << /D [208 0 R /XYZ 72 270.2578 null] >> endobj 207 0 obj << /Font << /F15 111 0 R /F25 105 0 R /F20 102 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 215 0 obj << /Length 3900 /Filter /FlateDecode >> stream xÚµZݓ۶¿¿BO݌łIݙڭg’iÒdìN’އ'Qw¬)J&)_.}÷I ºsêë‹D‚ËÅb±¿]ðÕ»«¯ÞÈt!DRh-ï¶‹\.ò¬H2Q¨Å»Í/Ë?Õ×bÙàç8ÀÏápýïwß-ÒÅJdI–邈nxT#Ñû5üìÛOð[uð3¼Lð/ü$ó×íéë7xÕ–ðÛ=ÀÏË'íŽÈî©W{zõ~œéý'­ÖÄ~¶%’öŸ#Ä¥mßÔȤÆû‡—ð#’ ü¦1E´ïQG{’×Ýãýï»÷ø~Õ“NÎ_g¾ÂÁ¯Þ=Ý ‘Y"¥!’·û]u½Rh¹ãÿ²iðB.qš-_w_h¦ùp-í†`@t-sx}Ó3ͮħLys½bR¼9t{$Åݬ7ÕæŽ\½‡»Ôâó/Цê’ëUfÅò`SmKÔ%Q|ºÖä=Vnæ’¶È]»1ÜÀú²­Ú˜ŽJ”ÄG™™ Þ“fùkªÓ²Ý𠬿§ñœ¤ìÜõ±¯A½åTé|îÂä‰.R“㜇{`"Ñ J¶2T5YA9Ä¶ÌªÄæ¹poÿšŠ¬qÔ=Ïßî¾8t )iq`³\I¥’"µù|Ù¬P ÛU¤w°ôžü¶# ¸ôtH7¼×¨ƒ›ºìœÆJÇ€ì³ih«ïû¯>f Z ÐØøÔoš ŠÂÕßß]árA‰‹B‰,Úê$KÓ|±Þ]}¼úåßébs•.¾»JUX½¸‡›4E!»«,IUVøûæêíÕOßÊ3\M9¾¢Ð5²(©s;NŒR®÷íµBËS‘@àèŽAÈ“ÊnǾ#9˜ ¹ÌoèÓdZ²ìZx±Þ{ûg3ìnÙ˜ÅÒQRì(Ûj…c´åÔh‘„6æ¦pK›Çä’.?†=A[_—Mý{市Ú|µ=¶ë¡Þ·½›®«‰sÏÖ”å°0qbL÷]=`¨\)-.¹€Ija3X#¯ÿ ¬ß~ ??ü3ª?‘‘gŽú|±JË /Oë½ÃñJ ä@èÿËf‡+êy×è­²y?8² m±Â¥í²¯Ûµ›Ô“Ó.ÙSQzV’He"ScæÁ¼ú vXo¦MÁOšŒ¶oLˆ0øÌ­‡PÙ•7ÍîöþYK6ëÚyû”^~Ä”Sò“ãŽßü§ F68.¯)h’eà|e³>6(-£¯ÐËo·±½ðNÜWH“‘‚ÿf2I’Ÿã¿*1…ü7p\MY¾:ÇBïTŠqjö`TÁ ¢Ø²Ç„l~jEždÊúø]®ƒZá¶m²)7b3\“Ù CYÝns\Sºœ\ØL}ÇÑDPº`"ħu|h_ÚŠïN}¢žâg ¡,×'^ZGw.-èÇ­ìÒ&*›dFƒ&eºÇüâMôWS–±M„½Ú¨qê‹›è`at­I„ )”ü”VC°BØ£SPeD9‚–°A9˜¶·í˜«KŒ4dKÐYSEí# ?íþ±¹ šLf—ç‚K„³"6OnAP-OD8~ÎÑàFC|Á¦¢r\¢RóPµ©DIfH1‹Ã;dyŠ· ‰8ÝæžÇ­LåIš[õ¸™I6ƒIB •ˆ–ø¥f8®¦,#f&¡)›ªqj’“’§+bi*M¬P&¨]§}åÔ°²jXÞ£ÑAÇørˆ¤-C"•埇‰2k+á­gÃDSŽ`¢@ÆZjËŽ‹˜Ž`Œ4($áeY@êŽ:cª–åâT^$E!Ä”Y”Oÿ!Å)¬6I.òa}ï6bcê ¼ðÚ_crÀ-¾ñø7¯¯|ËíaÛExø=-ìÜÔNûÍ‘>‡Í½…sñ%å]²˜± S_ñNó8Då:ÃóY gBï+H‹Hað­$7ƒŸ‰­ýò¶qä‡ÎÓ‚S0Rx']†P?P”%‘|…WwÕnD®UÄk›¡£º©û|ÕUuWíÆP3q˜•–Ü¡Âp™n}’ÓÝnô=¢š!E®”T××V.“G’`ö¹‚:Â…~¾,8åøH d(åÛ“GJØËËb¯4ª 8=WI–gÙ´e©ÅY½üx,x™ûÒ­â¥#2}ù´ÑÙSG1â×I• AÙø¡€bâ½eú3ƆÚù]½¡ŒA4´¥´Hê—LŠÛÌä'¶ÞÑ9„ÆTu ÃóÉ6;)´(Uù[P7Ô[=\ßRrÝTÆ î¬zVtÒãÔÓJ2¼‹(ÜD&6Ós î̆װ©ÊuAéÃ# –jù-ù÷º«JßãDq#'.á+¯K¾aÉÑ“’¥æ£#ÁG‰!/¬ç¨-ÿ%“ÜÂÄ~=8Lx$®nK:&$÷ÞS¼š¡ŒI$cîØãklÖTŒÔÝ š’»ä]ìðl G”ÏÃVRotqð¹Ÿ)KóÐ@Áñ¾þÝ÷‚3\ b ¤!5"ÁëÿåFêçŽÐH³áÛL *0 îe;6øa Mn—o0a“é>…3¶1¦žž]­](HZ÷áš[ײ8ã§rž®ƒdŽYžT¿¹ÎOW晴^©‡;¾ OlÁŸØ <¡newKÛ·ä2¥c&÷¥h¸™Xþ°§¼ˆ­ðεOP"w,‚ Sháx£ÐÅèWßÞ]Ódt;&q…so8ð$‚ha\²à9{vÁðŽ=.Æ¥#Cœé|éHïð \Š$eΜùPVòѾºìš’z½­»Œœ8àÎq؆ÊUŽm?Tåæóë¹ö4…Ù4‘9Àm Ê"ÞûÒæ®¦#) “¨6NL ÛܨE( ¿Ï@»F<ŸÀžáS ½ÐÅ\âí¾;“0“‰T©~F=Ç'eÌ îy6—q €ÒGûP2Or­gºÔ5êtH@Ú5¨wUƒ{´çÿ’ÿî<Ý'¡aLlŽ;ºåÔ§9Aöð÷ìÚ-Oó{Õí)œÅJ'ck<|þñgœsM¸$VRg‰´…¯“ïkDŒ8[ïÓûî@ætéÝ5ÈuR€2ON<ÏO$SŽ©Gç2Žÿ£ä³›uMå…ovâE8bO3ÖCIÝvÖ](Ãü?þÉøx0žkáåZøï8¹íw|;nQ=&ÛÔ¥ôTù#ÜÓ„Ú×.ÚS¢ç“Wk–¸_ïw‡£+<”Ì|lSËý˺¦<¸Á-ÿ;ªÌÃ|„AûtJ÷Á®îëðBÆÔõmÝ–N ñØL,Wgû “ùÜÇ ê¤·aØ^<]³ØžÌ|KOÅÌN¤‰Í¤7»—1†*Ç¢P àfs–áϸCùò6~–?»—Ô‰9ë"œ,ý'ÆW%J†æé°~e€àúlù—ó£ aÇÈ…(,FíÏêŽ \¡.¾8ž«)SŠUP0%ž ‡©!dYˆ¿(ïÇ3 Ìôìs$Ì@B {uABÏs5eJÎU9Nn1ŒñÚ%d•†Mrüiëòøsõ%VpÖ²†ZLíÒ¡R I€=ëfß3àŽØq¦„»õ—B‰|vÜ\)‰ ^ÂÚP»/Îð hg¤¼s½ ¾YFºŠ>~#géN:gBx}ÅGT4M}©¼‹6èD’õTƒêgÐU¾FˆxŽž—縚²Œõ¼rÈð C £ò‡‹¹ØW‡Ê+• äÜÂÉŠDåJÌócJf¼v¨–‰ïÛ˜œ‘ì*’/Í ˆå’%7®d1œ Žèž#×½Ÿy5r)ùÄäá1u„>„æ¿y˜~O7T¸Lµ?¹¢¯Û€7ÙM³çûlVáÄ!ä㰃ˑ'=ÁMÕCõIe;˜ð;äça<‘‡ž—DÞÒçI;ýÑDdG5áãDw4o1à·ƒQ£ÏZy4xV,(ˆ—©ÌÀÜ!Ä ü8ñKÍ=p\MYFÌ]E’ Pf £zaò•ì™oª%,¸€̉°ÜÄ8Ó@Á¤SûŒbzŽOŠ ‘£Èä\ÊO.Ô Øìνo¸/MA8H’i>û¬ó "±†ú¬/¸Òî}Ç¢“2nþ—oÞ¹]í¢ ÃÛ…œžf÷> endobj 216 0 obj << /D [214 0 R /XYZ 72 786.281 null] >> endobj 213 0 obj << /Font << /F20 102 0 R /F15 111 0 R /F25 105 0 R /F30 188 0 R /F33 156 0 R /F1 219 0 R >> /ProcSet [ /PDF /Text ] >> endobj 222 0 obj << /Length 3419 /Filter /FlateDecode >> stream xÚíZÝsÛ¸¿¿Â/PS‹G|sÓ‡kšôÚ™ä<=ß\gz -Q‰RI*Nú×w?@Š”!Kví‡vú"$°À.vûüþú›oßÉäBˆ8KSyq½¸pYœ¦Ù…ÕY¬E¦.®ç‹Þ|?ÑO‚Ÿ?Nþ~ýço߉t8FË8Z_$Ô{×Ídª¥‹Z±,°m£ª¥§ c¥ôd[+,SˆqðtÞâ×b¶kK ®v¥¥•¯IÒ¡Eš2Æ0¾\³íäºZmPxwÌ}–D ô‘:â> ÌxiÚrÍ{Æ=6 þ÷¸ YÓ×ÛUñ° hõý&4mO;‰¶«¼¬øc3óŸHV¤:€ïdEßç®l—!]רÂ:éµw{£â/!iH›Ävj~‰o ~ X[€<Òìo®®&à ØÑŸ‚Gj1ºA>Ëì,É¢_øÍmøTçeã›ù|^zã"vù-ºñÍ þ³÷fùjæeRÌqñ)øœ%šv…=aYÓÐiî×µ¨7kî’‡mQ€)˜…=ZQÏ B)´0øÛmùW„ÿ (' 7øûÍøKÁÚÉ0G‰Å5‰Í‚¿mj°%GWÑö£gÏË¥¹ôT;lìm!|á§&•£UÑn«±^HËL ¿Ý|qaãÌ&‚â‚XYå@ ±ËeoÕ†4› }Ðqí¡ŽôÂ&£ÔG¯‹îÊìÎê?þõò‘6ëÌ›] íyö©çì7Iÿ×9šgU¶ä!†_šbEÚ=@ÔûŠ龜–†ŸJÿö&¢~!kO½ù ”Ö!]B×룦)o(\JðšÂÂw’þšuŽÑ 6×h"»U[`tQŠIzM Ø»L4ìkÚh³í#ì]&Q‘wªDkëö@'2¾¶þ5 ä9j¿ò¦ƒ‰uÑ. -ñ-Ç'¢‹3à'«ñM‚›PN€eðЉ’c ^”Ô@8*F:º 1‹ñ¤¶C ýmhbhZ#ºPø¼ùÈbÖË ud±ÔR¿ÈÜÍî&8%ôÔ §œÇUJÀÆyÿþÍq ³¡ZÈŒ­—Šª©ááÇD\¬÷ìŒ>ö®vˆŽ–@̓,®{‚îÝ/»AXÃ8é-ªì¢ÎËl•5}ôiË™Âq`p¦’‘€/™¡’8zÖjðÅ©“ƒ˜>Ö8í3­Eél¤_¿ ê—ŒµìáLÀ'O\ÔAz  R«á¼çñ2¢yÀ‹—d/b+€FçL q„Ž­P¸3qÄÁuT'$ûtQ° ¾8‘r¼…R̉À¬'{“­ùyya^lö•¿”2už«áWè‚ÂNäžuùPUr냾{€$¶iÖù ôJ—G¶È$Æ>n‹ž"¢=& ,$вéCî%„þÆ÷à9ØaÅa#ÈÂTÁÚLgOqC¨ð¢Œ4‡¼ z@ ÂÕ”ò_ùGÈ‹û¸kv&Ê à‡ Ã@°Ys]¦ó·ŒÊù˜æ²Ø£lÝxTÆ`7v²w à´GoOñ ¹‡}Ø“ÕQÿ0ó,…·*´SÒ! šsAž¡m°4m¾wua’X*¤êò ´:Ã<¨3¥O!J&ŠÌ'<ÊĘ‹9ÂEŽ»t{,üé]>¢3!¼ Q {Eá´~‘ypÆS‰ÕT-{OâNxˆÖUOÚ¿ñÌY¬3aÇ 3U&å²Ú=bL_s€æ§©£JΚ#“è¾nvž°N¨‡LâLŽ÷ɯ»eHÕmGËþ’¾rÕnª²33tw]]ßÎKÊÿ6UŽˆê½a9iX@ú|8Õ†pGÈØ¤Ò ‘Þs7ÄFÆî±îÖƒé¼HìëDØ'T oVf‘û‚!ïqV~È©ö_Å>œ¯|üþWdç ÷óZ×çàGòU' _ÛàÂc¿÷F2Q󺳲”C×RŸ¯éµ·zÞú‚ÔÀ5‡ôȪX¨T?Jî§D§zâuGOdOÈ1N9 •z™yDQÎqJQÓ§ìš×S¼½¤ ^ÂH“®ÒàR•Nb£]:ÆB[v'\nÓšÊmÜšíÏÑéÑwd :úTVEKG :¸Šä»Ð‰;6JO ¿Â±ëoiág ÄöåBxCÇŽ”ÑL]n´Ÿv¥ªÁk—G“Φèù ó«ûPÓ­‚ýîÉìCD3àž¿ÕE㣜>ñ‘žB]ÁXóÊoKí3ÇûsÓåªjÅÎyiâ-Ý$ î|&ÊEØ8¨àIu–¹35LgwÜí;Xº±Aš0N¹l‚È¡´C‘Ä*G¤9;o>ß7Ü»p‡1d±Èg-8 WuÌʸJS¯˜¾L}´ZÕyh5†H Ùú÷Ç#A´î÷ 'Æ‚6ÂÇÑC i!Uëó ÷Gë }V²¯±ŽiàÓÀÿçIŠ·ßŠjæ S7¬•©„fD_¥ô'37¬Ê'OóŸÊHØ&eÇNã€AgÎ<‚AVðY€“b¬W¿àí¤Œø#Žù2YÃo›¢åÆbϪáhõuP w;é倷îŽîušº3Ä`³çúΧØpˆ(ˆÆ÷˜ð™DUØÒ$ISJHGæþRÕóÞ𠶬»Á–EïÞ]s’ºœóî^& z¨ #õbWíÁO"9a‘.NÅýû½Á+lÃ8§BÐÍ9Z¤,Ĺ}\E¤ä¤ÜIRzHJAê»`Zg™øŸ‹ãÆxÅI¢ô8ŽSÁÄM(HÜúÃh. Ò•G"èÄõ]¦ÊQð†Å““E©…/²4Ån¾éÊÔ]²JhØr©;ar™êèEçëüdÍn½æ:“Žú‚1ÈÊ©X­n‚¯|å›J›uão”ð@³ÿ¾„ƒšÕŽ¢ÄþÎßàÒM^Ýòù€O§×›µlvë ãK!EU¶ÓÂUðà?¶{wzÙÍ3’Ëâl–²>ºÍ‰Ø»imX­ñèߺ´· BÂׯ_w¤n$u5CÓõ£t–œöÙ0僳pÎ(qûÓp÷Bµ”³ eÚÙQe;XY¹œ"QY¬]n*y|P×|¨*"X^ü>þláŒ9¸wsæáB»7@‚èÅZñÇýÓ»÷¡2lf$WfŒ™C¾aR©Ãë.ó7Õ¿„DÇç¾ Làݸ§ ’ß¼½þæßkì}Lendstream endobj 221 0 obj << /Type /Page /Contents 222 0 R /Resources 220 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 180 0 R >> endobj 223 0 obj << /D [221 0 R /XYZ 72 786.281 null] >> endobj 50 0 obj << /D [221 0 R /XYZ 72 671.2956 null] >> endobj 54 0 obj << /D [221 0 R /XYZ 72 639.8634 null] >> endobj 220 0 obj << /Font << /F20 102 0 R /F15 111 0 R /F25 105 0 R /F30 188 0 R /F31 226 0 R /F28 229 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 232 0 obj << /Length 3030 /Filter /FlateDecode >> stream xÚí[[sÛÆ~ׯàô%ÐÔ„÷†Ån3yH:u§™‰ãNÔéLã<À$(¢&@ -»¿¾ç²€deQŽâ>T/Ôb/g/çö³«ï®.ž¿ÙBÊÔg™Z\m¹Z䯧Fz½¸ZÿœÍúr©•MŽÛ2ªº¼üåêûç/´´>Í\f‚Æ]….r‘§>’z¤ÎÊÅR¦¹×L½;½á~ÓEHèi¤]Œz¶å»SÕ^ÊV!“°¦7—*O>rHu‡bE‹Ì“uU@ßë=ü4Å®úOq„Rµo¸oÕÅ6 aZÖʦ—üûPV˜ñ>¾‰Î¬R£²,] ¥ÜhJ¥|:§ŠQ2i®•OøC„Ì—åÚ"UmuÓ‘}ÂlÊ8·Xæ©ó2§~bû„ƒ㡤Sc`+Ø÷f[¶QQÑ:µ¹²Û¯ŒÍìRã|>Þ/ ldJ¥R [øœ¾wÆ –ZfÉ¡-7Å …mßvÏb ÉQz¼ +ù!rìÐYùO–=vŸ ¥fÒ«0Iƒzqª/•ƒ­.á·l¹õaÃ+=⪫bÇ 78¢ÀŸ÷8ªÜ –è²ÂRОŽ;¿™8n«Ž ÝT»@äýe–Ái|ä/œ9OÊ#%òeÙD9ã\êrk§'20ÖEKÒ:ƒæ¦Æ©×=‘2ß\ê@÷µ&ª£Tìùab+ÌR—éO-¯×'îòŒ×´&KuàShÖUsÍõd“ØJá±nƒÅ*v×$5UÖpÆ2Ź`ï&ÞLw~Õ#ÎÄ r&Ò\eþAåD$Û}t—9X©©èoöíÌ;¬ŠÝê´›šÛý†×ºB)Ø¢an¯ƒÊ ©.›®:Ž,ù¦Ý×\ê¥Ò¡TÂ)nNÍêäðN3¾ti¦ñ¼lÅ?¹ytI.{ )_E M– íb–í~K¾”"K^Fö¢`œÉÍl71#'²AÓΜ66(c>ÛĽө/;>o:0]J‘N^GÙž’Ù`C2' …ÞB<Öþ/Ø3=í_O‡f9¤’?FµÍ!uý mSOÚö…Ø™§ÚùñlqB;¸éó,õ©‹¢íÐö[Dð&µ"Ïï¡ ·(¿ƒ­þ¤ÇæQšR¤Ê©ÏÂò÷RUª:µqüêL_÷XÕ!~‰cXøÝüoì]8ƒØ¬¬ü}ôä‘g½›3nç†`¶.âFEà±c^¬‚¿Œ½ ðâŸn«5Wmp@Ëå1ü #ÆØ‹°¦Ry*µ˜¡Í[¿§îö{ ÊL4H+ !¡àq„’ƒ@Y›1%õ[(ecJú~J_Ǥ#½Ì|Çâ_—¸JÖ‡}ßvÜÚ«=–[6ïX& ¿°jlœŠë¸S‘jëmoT2dßAáTµåš; E(¿ºt2ùöR Ÿüó9tûÇO¯pīޛW{â’m«7§#‡»Ð@ÖæÚðTÅûH–cú¥U>y¹?§ =(⇙FsHíEòòÏ4Û«Ž-sž¥™ÌýÔ0a7›~˜äš–³îøkˆÏ綪†äI,Êž%}°{[NBý<é\M§È™ ™ƒ?ð_&QÑÑ7w„ê^ ÍS„ô¬å8KOتÙKæ+ew!%Ñ›„>31S¤hãŽ,³L‰›yx’ù“[ÖÆ?4Ñ¼Ž˜s› êóàôÉC~Ñ@éLæé'æ=唞rJ¿Ê)‘OÕxmEW-#cü©[+'sõ0ý{XT#J×AÖŸs3!”ŽFöà”úÈ!@×ß,äà‹LóØŸû[dÀõe7 ƒº8âõîç‚2¹Ë>ò„ï®lù¦ G(W–ʤJþÖpÓ¡hÉçîÊQ_ºˆ PoV2¼»_îD8Ì%ÇÂÂí 4Ô„iB`KØÄÍÀIp OÀ@.oª×Bj„€ñ¨².š¦ @â¦:ngxˆ–1‡íšNo݈ "¨uEÈ©ëú\ 6£1èÊ@/Ùn°3In@[ %LÚXâ¾q6©µážÖ¤8@ÁT%3“²ÞŒAx’gȨ£[uj¤ßæRk£ÈZ`v •Ö2øÿ/u€çP­ZRλw OV}º¸×®Z}äAˆÆðoí»À㔋v¹þØ5²›j;îØžšP —¡ºdŠUŸP—D¹ ÓUa0q Û©q]’AÁ}eb¿‰ú^j-û€æÇ;" jÝ›‡ýéÍn¢}«ª çj_våþˆ„{Ý3v§-ò/¹¦(òÇ»®&}¿¨30a=Í{O‰A˜&¼ê©R0`Ò6N „ÉdœOìð2f3|£à?ÇæÆÈEÜŽzTj†ÿÞ„Ø»’Þë'`p0!S)Æô¶ {ì™d½ä×Á]ÐDQÙ?â £Üp?…‰í“®.èŧ¹v ÖLÇ–º,~‰­Ep»±¤ ,…¿}œ!â)2å]ošB|^ݺdÏ)vû¹âPÚŠÔ実ëm|"—+sË't˜ÄáûG$NÏ]´HN加XŠZ8r $¡ÅíÖ¿ë“Õn·?1ÀðÉ¿zlÔ”häµ¼}ƒù Íî>{äÅ—<<¼¶Šà+ø UXæ”Úà#à¤Aº§üÙ»M,iãGP¨±#ÕBöÞwÍ_C®Œ’Œ%Û}Óc0^!Þá÷0H“r“;D5àß:®ŽÊ¹ÿðq ;–mC.QXBüH&ôßi¨›A>aê]Èδ#8÷€8Š÷¶Ï¬ó b ÙK[«-spÂÌ eÒt€l/hŸ;Be ØúçˆÝF¹K’2úæC‡Jàé,§AÇg0.’Î`öpƒ84ú*MyŒ‚B?n8A[(!â"4$g§Aµóp½…K+ë ù-!Ä\½®º·\ÎÅ0Їóä ÊØ›Pý1PA˜V²„8|/¦f"òPàö§¨çÎÄpÎNI? ^;ÓE¾ß¥HéÝÝf|Å«åÏÇk÷ åŸ Ê½E@o}*Á)Ý›¡—çMø±›ËóøÛIé@ÜmŽJ¨˜MQôf‰ºMû€? å½.þruï*aЃ*Ç¿†ÀèU}ñîâç_Äb}!ß_€=DGì h@}¡Së¥ê¿w?]ü} ·ì .Ç¿Ã÷ì³%º<Vf¦›«5e/¢b;φ!Åì5mž„ BäÛP™ |T­ÐqU@ ØØðßy`\ ™¶Ü«p=øËMqÚyäÀç7<¹ ðŠÕ&zq' üL-ϙԽ3ÉC‚Í•ñ '¿•I=Áå˜bŒIB¦‚ģ¬îzˆ©ÄpYT…ÄIW† ƒ2›|µ­Ðûo¿úš;¼ãêoø¸}Š‹èú†QƵÁSÇÒ+&øêW˜5)Ú‚¼5e¯@ºðøÉÆ’áø¢ªëNeãÔÌ-Ê¿‚ ƒô÷¯–ȃZ<­•,lPqh«fU1,µrxvlåèF’{Fï›û1.Ú>k…«3wÚ $JNOI]®ŽG ôü5™ÛP5ZU.:ûýM$¡ªI¿JBûF'ÿ¦¬*ò5é™Á'ç”ð£fF¤Pù‡>¼blÑÖ ’—T)E9Îâ³_z¨>¬ùŸ]ˆLS–kžG³Áßð¸»ÝìÛškа¶ý.P†±c !eÈGROq>Œo(GLR¬Ý³Ù}îìáy¸¿=BxN e¡t– H"aŒ-»YÝ›…ÿ„5Äendstream endobj 231 0 obj << /Type /Page /Contents 232 0 R /Resources 230 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 234 0 R >> endobj 233 0 obj << /D [231 0 R /XYZ 72 786.281 null] >> endobj 58 0 obj << /D [231 0 R /XYZ 72 455.7289 null] >> endobj 62 0 obj << /D [231 0 R /XYZ 72 274.5334 null] >> endobj 66 0 obj << /D [231 0 R /XYZ 72 153.4458 null] >> endobj 230 0 obj << /Font << /F15 111 0 R /F30 188 0 R /F31 226 0 R /F28 229 0 R /F33 156 0 R /F20 102 0 R /F25 105 0 R >> /ProcSet [ /PDF /Text ] >> endobj 237 0 obj << /Length 3281 /Filter /FlateDecode >> stream xÚÅZ[ÛÆ~ϯXø‰,šÃÞ\ÄØ1Òmƒ¢éWäJ“¥(•¯7¿¾ç6©ÙŽc¤/âÜ/çú3úëõWÏ^j}¥TX$I|u}{•¡ÑÆ\e ªÐW×Õ¿ƒ_"•­þsý·g/U2 Å\GéUD£†]½Zë8 úÕZö7©•mÅ…agÁÃqµ†ôn¥‹§fAÿÐõžǶª;iÆj¥‚‡¿ð)–G^»c¬cš(O>çÌ¿â™GØ£²:þÊcÏÛoðä;l±9èÙÉÓàÝ*1A C:{àyiÐÔ¸Ô»Uœu#ká*·\<–Tʦ©û[9Ж-wý%¦JÛÔB@+¯7!_-^\MçQX¤ÆÝí›o¼÷Ã,ŠŒ}”Ÿ¨&JBSdŒª%(“p $Îm,ËÀ‰·e?L÷„úPwG¤ÏfC¤ì…°Ä"œ»ßãбµ›r@öÚ~AÀC'œ(‰‡wvµ’êDQ¸lÆiâ.mè:¯ª˜'6‘¡¹mÍå{\ó06W{G¬ÆZ |vìØ•ØþnÅ‚ÏCÛ¸eÍê²Aê@ëö)4Æ:°a-<ÖÑœÐqªÂ$^1¥¯}¼S:Ôyzb±Ž|+)ª"_®çWYXd‘Âi˜§ ´+Ì ÍvÀ»Ž 3Ãþ§a_#ÃßÈX5[¶L2¤îlðÑ'NE˜‘™¯y œô]"s¥œÜùö,Béüs¶ š““’@¹'·ç·Ù[žÎ4…Zv$·xÃPKfdä̟߯šÃU¹×Ê·äI{ì›Á›š;œïüØž v˜É‘™~›þ‹ƒº®þïhÙ@£`‡¡©? >07úÑå›së D ×îÚzøøR—ÁÕ¸\Åt«ç´¸·œ¥««ÑáÓ ‚11„œ”ubC-×òÚÎ1Æö9š²Û"©I¤pyœ÷0ÕØpC´øÄútM}‹kþìWL°¼|YlÝT=ºxl“€¦AÅmh»ðë#€‡Ë£:“ׄècPo#‹ &ÓNÈ9,x5;2’Y&2È E–jù[ʸ¹¾±³§Q4:†Q]­ì;Û‡|¡ù é¼ñx3öÒ>VˆvÍ=>ôC€“«ß÷:ÏÉ@%©ãý'ž Õ€Õ HR¤jû)R$»a l¨¶åA2Ú¿­å~oe¤³£Pœ†½|yÍ…-Å‘`N>úY Ã"6™œ¾EAô^¨•¤ƒ&’Æ )/Ö{W3aen×§E üÌ?ßï¬8ñ¥´íÆVb &òæÛ·o‰ˆý î Ñ£xŽË¸is˜Ùp´ªâ ëÌ@¤ëì#”¿·È¯òÆ<š–&°4 ö0v<òÂBð5ˆ±Ò(ȹú-Nxûž—bÛ¡HvµžútµŸr*`qبPöEbõùf9ÝÌ "ÞŽ{wIª{6ÁbßÛº®æKLìÊO!´$gØä×p#§˜üËûCg¸µ*@û˜LLj"ü$g…*¹HǦ´0ïä¡<óŽX{dj¹ýÞ;.±CÁÀf»œÅ•Ü&ûbÌó2‰#BdçD{ãu"° æ ]S'S¥‚ç`ù“88%RldFƒRv÷Gƃc/[â(ö°Œ`:XÏmÍÉŠ; F–-ùP¨•§‰Ó"²*«Þd6´Á¾¦Ù =úÞ²F* ¸Op¸&žs0Ø üÑì“ypuŽ‚=w—üéÙPA©9ÔÄöÍ@Q"„» o8݇àå¤_0bOVæ+(w<®’FGê 뫘,ŽˆÏ0øáô°+¥2œ…£I–E¸Nv&ÇIíëNc3ä¤7%ÝÍê§vY͉–gv‡Xm`j86ò-¥ïö\‘"Ÿ B+)|œøÌœ¤”9¹Gr{Ç{aÎP0p]öÖAÚE²cžeÞÏ$·u€YDƒA’¤úÈq³œ§`gKKÓ"›¸”\NÓüó»ŸVyü I§‚W¯I–~„)Ô|½Ê!$~sýœ»_bÚš8‹N‘1u¹L9–1"a¦a ~Ë–¿HRô†×éJ²2 ßÉlåd¶8©‚ÃÝ€GfË­Ý^VÓÈYÚàÛ­40‹àWŠPML6LF³ÑÚË7pÍod¡ƒcÌ|qÚI zÞìÞ6 "ç!äÒìØÉÞq»Á­ÓòÊE&rØWJVENh#‘pø>Bã=·[ù²ãtq‚åÌs\pfæ¾k^«HÃ8Vê $DóPƒ˜à~ǹn<%Z›Ã '~¿´p!ªó$ù"!‚VØ?)D0FFˆð8 ÷”\ôä…,#VîNÙQd³{LÀ~‘]V ¦aÇéR’Z”3'ÿWOÆ*ÊGˆ\‡*Éc¹À×¾ $À¹ð ö³8x;väŒ8_9²'©ì;tõU½H-.!í2GéÛ¹-rÉ0ã Á…þŽûÈJPIð„\ñ:‰uð3cÒOH•.rœç^ÏcëÙüáé ËCÁ¿xq ü ïCáØ”mM/LJÍG¡ƒ‰¡-¼™žÏ¡PÊöCgoÆÁa¶Š§ñ«‹! ¥#Çwn;²HÇþ ¢ü>Nâä>”Iø³ën ÕQ‹*[à'˜½€w„¡‘#ÍÓ“èíØn†SîµΞÖ{Gƒ½Ãjvïî{9ùMÓ£ iþÑ‘NæÒyÐ)^:»[ÃŽ)ð‡ò“sÔ½.›m}C8á ¯w,/Ĩ —$¾caø†ƒ+AVršµg‰úÙcsJZp@SâÑ0©ñO Ø·%½.)»ê°7Žô§÷T–‡qfœ'}íM¸¦a”™üä â Ï^YQ¤Ë…Î|HfÓ3×Y%T ÐDD+›ðJëðU 1uÅõù‹ÝŽòÏÄÆŽìÒ;P¾Ø A§à^}õÝõWÿ ^UYendstream endobj 236 0 obj << /Type /Page /Contents 237 0 R /Resources 235 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 234 0 R >> endobj 238 0 obj << /D [236 0 R /XYZ 72 786.281 null] >> endobj 235 0 obj << /Font << /F33 156 0 R /F15 111 0 R /F25 105 0 R /F30 188 0 R /F28 229 0 R /F31 226 0 R /F20 102 0 R >> /ProcSet [ /PDF /Text ] >> endobj 241 0 obj << /Length 3093 /Filter /FlateDecode >> stream xÚ­Ù’ÛÆñ}¿‚ŪT‘©%Œ—ªò ;’;©¬³«r¥l?€à, C»«¯O_ƒƒ‹È¶¤bΞž¾»‡_ß]}õZ+¥œ$¼ÕÝý*òV‘N­uwøyÓÕÛVîæ”n½hó~ëŃ#Þ&ݪM–mwjcÎvöͨÍy»ÃeÍ} £M™V™iyæ!ïNܺùIÖ¦ î-p/|òØëòºr¶»0N6—ó«ºã æÁG“ÉÀ±¦>þ†›µ,#ÀyuœœýëÝ÷+wµSÚÑ:Hè†^ìdRë„SÚÀ¶Ãަy›ý€Ðõa„aÒ­ûBP…ߪåiÚk¸½GO ´ªù[š”—†›´âïÚ”¸pÀ¢!ßÞ¸àL3)P¨XËžR¹K‡.¤"'€ËÈ­bºÕË¢%ºh<Ð4ÜéN„4wèà¾èrHd$VÁñÄ:Y¤W@!Ç…{b/.`Rµ¸,ØÜO¶ü£BÐ)¸{ƒ=ÃcyËJÿæa¾i7®§sžÁ]ŸpÈ¿:\ô–HßÊ ˆö†ˆ°[¢BiÊqD6¸îfßãQI¸6Ü€£¸qn†ûè2-¡‚ßò–!ˆCeÚå, …@n‹‘|°Ë¸‡€*91‰À~ƇÌ»‰xî%1жù{¢ÏM”­•3:âÙL Ÿ]ÚÓáæ7pÓ–Ûemå«ãlD&p,¯øÛˆ²_½öé…PçèÆ\:íÇ·¦UGŒAÆ&jóêöæ?¯à¨ÛÛ3ˆ¹‘Q¾ë¸ž ˆCÞvM¾ïñF ù|ú¡Ä¶”ZÁïÕW„hÄÜçñeö±`x1 Gþ\íë{V&¼%5hqW˜ˆÓÍž éáÁá yp!íø:¤ |í„¡Š¶vV?Ê 6oªƒiˆ¾]Zr ÔmÐ"!€š¢Ó#¸©!ƒ´©f×áTÏsT2ßïø&*¥%æˆM2¬éxŠt>==ð˜Ø‚ÁÀd{uà 2Ü):ž8I&ÂÕó@s—÷bG~, ›¾bè™åc•‚­=‘–µà‡Ë™¾5÷lyM^z—ÖðK†—Å8¦}7š‹óZ$ DJÄ€÷ÈKâ#÷E4:ÝÂTD,r(ïXÑÈ)ØÅy‰b †aÐl4æö@6®õJ”}"n3ÆûÊQ‘ž‰ý*º[†H"•,`æ‘ñëYÒêê£B•ŒBåyˆXQŒV œøÁôäY×7ÖLæÇŠénëÒØˆ†°KÁ'UDp}fø#P9­AÄ"ÇO"1qU´è%”û®õ3¯(rNJ~&¼­÷Ü@ZùÂrG’œ4Í{+¼8}C!H ¬Á„ È5ɪ€E¾s@Xì•øtàUI@·[,ë¶Ã ÛV ¬ãX^-±¢!iïòJø°FƱ±,ðáfŸKŠân r*ŽœH‡jÁÅB]s@¶é’M–ÛĄ̂¨þEùgz÷Ó’2k'Ô`R\«Ås@±ãúâ·K`|Ç÷Üd£ô˜Èñ"åË¢|I! ”÷ÍÅ3‘×>Dàžþ‘—н˜p¤f ¥ ÝPzm[»àâcQ“Eyïm]ð0P ªòtN¹ób¥0Ü¿üŸýc…c)\z$޶RãÍk0ž‡:Ðy¹Uà~â–Dh¼)èúi[ßw²˜V_sçi+&«çþCN¯0Ð"F#àðãC>Á©›ÕƒÝ¦7B`ÝÁ¢$ºZ%XƒòW$бï«/÷ ÄÝäR:ž-Áƒa1%Bièóíåõ®âÂò‘j‚Ç«¤œUO&€s{U™Ìž½Ð½,©SÍ Z¨ûÚà-ʘ¡zÀ‡R ռDe+4×ü,‡O9tü³ßñ~sƒA¬+¢4²ˆ"ì˾’EUGs ú¦¿ù/‰^¿øÞ•Nr«=–¶ÝTÉsè3sSN ñÍÉ *F_zÏ͹ãv)ÚâÿøÂÛ¶yuîey};–õºßäßœ®éƒ¯ðÇÏ*üžTøo¶>¾À5‘üldMÖÓ³¼“ûÔø}àÛe5ÇÎ)ûíÂL"ž* ÓJÁQ õtŽRP ¸¼Ç }¡Åï­!î@?h”‡°MÃÇàš¿/‘4ä$kö-ç&/ÿÑF f·/:¬{iþÓ,Öø{›Kôœ@5ù›=[+iÐ늷Ï,i9‰¾¸ùÍÍ›/|ÿi7s³µ,x΄ ‘°&±qN2(-WG[ìÏü¥J6×ý¡üôK/ŒáÃ,7Uö$!qÀ¯×EÉéQ ¯æØ˜„q×èŽÀmíç‚èý› ¥—¢0¢ùh½µ9Såvîõ$™Æ8CËãÚ¾7H8¼¦‡ÙqÖú0|Œ=rHTåÅloU`]ÂÿÊÚ”âendstream endobj 240 0 obj << /Type /Page /Contents 241 0 R /Resources 239 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 234 0 R >> endobj 242 0 obj << /D [240 0 R /XYZ 72 786.281 null] >> endobj 70 0 obj << /D [240 0 R /XYZ 72 660.4612 null] >> endobj 74 0 obj << /D [240 0 R /XYZ 72 586.8622 null] >> endobj 78 0 obj << /D [240 0 R /XYZ 72 168.8879 null] >> endobj 239 0 obj << /Font << /F15 111 0 R /F36 133 0 R /F25 105 0 R /F20 102 0 R /F33 156 0 R /F30 188 0 R >> /ProcSet [ /PDF /Text ] >> endobj 245 0 obj << /Length 2443 /Filter /FlateDecode >> stream xÚ­YKsÛF¾ëW°tY°Êœ`qí!ÙZï:»vG9¤â@Qƒ €’•_¿ý˜ ²,Yb0Óèéç×=Ã/ξ{£õBJ‘F‘Z\\.’TmÌ"60©^\lÿ>…2^þyñÓwod4&†a¢C»‰êÃRÅAÖ.e•e^e}ÑÀ[½\+ƒÑðzµ_®€¸)ê¥J‚¾ãéŽgóåJùÖMà³=?…Q˜ÁkY5]SaP5‘ãt[Þ…ä…ó |öÏ‹3 â… ¹0a$¬4ö¨Ú¦:ûßÙ†‹íY¸øé,:M¢Å-¼„B¦©ZTgZDR&þ½<ûõì—ájำü:µ“ S!•¦V]gõÄîPþs–Õ€IÒvƒVÜò|ÛzXrÊv¯Q·ÅJ‡±H,lµ’F¥ÄöžU’‡=?÷䟾Þw¦µ‘¡P1fÞXëæòžˆ*À4zA=ÇGETZ¤2ÑSÛföù+0kjɬu~‹ÁGîMWÅçSe"e„¶æí=p|L™HAòÄc;Ž”ŒvSh\@š)ŒeÈ·01OÇÿBîRî­<\•WùºÍ š•…´Dü`S½©y‰:Á€îp"¦ˆÆDÃ¥íù=+o €Qï:FBœ?ßl‹ì èvWçŽÒ¡ rCÇ´#‚9½½&Níè jŸ£.Yw½ºjQÔÃþÜ+Ü’ NêJtÌà…ÏaKÝ£Ž·/.çÏnÓúÝD\3ýU¢GþòžëÉ9H5ÈJñÞñäaÏω¼” &Mƒ}y º(èò2ßô ñÔ8`ÞöŽä==û]΃Í6›Cé 6f‰!ô• qªGá6÷šm‹ú ‡P‰k|*fŽ y³Œ¢ +JÜd]”I~羸ä/~æbŒñ–ZÑw.ê Œr&*‹5Ù®-rªmŠÈ¦kªÒiøuœ´Ÿºõ¹Àú”,£gÊ6ÅÐGþð7ÿ~.RdÌMÎ3òø MŽ––L‹Ï7o.x°-È=Ùc}èÑ$ZÆA…aƒDYK Éà›ÚPÂtŽ|ßb½³Á†€®i¹sÀ5ts!rÁ )Kfò/$^uû ?#®d+|\MÆ·@‰\M<•É¡‰±¨ÀëTqq†**Π¼—<„ȪxDÂÕÚ¹¥ž#F¾í"Tèy®¨¬Qz<³ …ó:×/šãr @ F&‡DŒ6‡›jb, €8£CI26¼×/‡b³Ô2¸†Ïã6è U,D+†˜mpŒ ÆÔj2a˜AI䈛ø¤†>ðDUÞû,Å`&â Ÿ:Šcr¿/4§e>F¹ÞaÁuÍ5í*JÝéðéá>ä"9ê@0²vƒÐK6òµ/Ÿîbˆ.;È»Ý+'V8Ù„±¡öJ¾w4rÃY.”H’ kðqª‘]Ï糉D&tE!¬ŒÔs4ìwE»õ%¬Êk* ÅÒ9p¤)F“G̤®j•ûÝñØÆ$,\Qÿ²5ƒ2ZØ82S3@Ö>`¾xÒóŽŒHâ4ù&3<êèÿ ž»š|ýëó¬rÈÛsÒ=àï8¡´Úí÷nN¤• ­P‰TÓP½Øqëç$ÜRõÈü™Ùgç—]ÞûÂB®9Ô[Þ›uuõJ¼~Nyœ\•Æþ¬ÿ…û‚Â]YTE?Êô9£&J˜rã+“H“h*t*B@8"ãK ':­°Ø.Òé·ìœ­ÔD¨Äâýt2­jìa1f@ÇHšàý|«Dˆõ³`ŠS͘WX⾯þU4wŸa™ÎåxÛ8gßTC¡¶ñ³²s*p"h÷ };lWM¸s`£K|ÒÀÂ;v54¸-úÝœ¤…qh¢G=prŸßbDNœC—ϺP(±rZ¥ßϺJ‹Ôh/Íßç‹0*ŠžÆÓ0ŠE[36ó§0T³{ÒP¾ˆk-bÈì݇·œÃcóÁßÁ–ƒ¾Dàû…áNpÖ§é m…wM†:ƺ”ìÜ‹:èzÄl®'€faê˜=x¢Ö!h–šô9ù[]‚Êsv×V$6¿T¤&Ž<+‡ñ/ó[ì¨RÕÛv¸gà€™¿òý 'ý±º‡ŽîÔpX>ã~—úÕ‹mxR³†¦Í„!$*v†&Ä‹uº-„9¬TøÌ?û›2l:\…À…Œë½ÓÁ¦ö|è~X»jÝ9òMSí[>nqñT±‘ ÞâKÍ4tµE[ ƒÑ»ìx Á3WÍùÝÖ%²Ï¶s—6ëŒî.ê ›7ÖdЪá7å¦G Bé‘&ѱË¢ùžü… ¹Ì&ãÆÓí0n±dñäp ãµÿ·Í‹YóÐqɯüYµeÙ·ÅMÁ^øïÓgañYu9R¦“ºñúäÄKÿÀN¬ã…u7—c,²®àQÍqå«ûбN£}¸0§Îjt}r´¦§o_œñÑÈz­¿¦¸Aï§G¹:oCüSKÊ0z€†CžV€îò j“ÅÿÃV q_'­?ÏÿŸh’•endstream endobj 244 0 obj << /Type /Page /Contents 245 0 R /Resources 243 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 234 0 R >> endobj 246 0 obj << /D [244 0 R /XYZ 72 786.281 null] >> endobj 247 0 obj << /D [244 0 R /XYZ 72 391.968 null] >> endobj 243 0 obj << /Font << /F33 156 0 R /F15 111 0 R /F25 105 0 R /F30 188 0 R /F31 226 0 R /F28 229 0 R /F20 102 0 R >> /ProcSet [ /PDF /Text ] >> endobj 250 0 obj << /Length 2797 /Filter /FlateDecode >> stream xÚÍYK“Û¸¾Ï¯PÍÅd•…!IçdoÖÉn¹j[©Jj³ŽK¤–¤¬™äϧ ‡”èõc'U{F÷÷5 W««›×*^H)²8V‹Õf‘¨Eb2ad¦«âç`j<Êu¾ —:±AûÊ`.epèj,ö-~ˆjl°n‚Û¼¸ÁfYå…ûõ˜wŽ'ò&ßíð‹£ßò?yG%M®Â_V?Þ¼Öz¬L„ÑÆ,–Ê¥1iõ¯H&<ØD“ÁR¤:²‹ˆFå°h»¼ ¡¸sÜÜ@Kùº+ëŠ{ê —]¹÷cÊ–Ëö€3]Õùn?áú#.~õýêJÂR ÁBeJX›f`¿XD2JëýÕ¯W?ÿ-Š«hñãU$tÊŸ  ™ej±¿Ò"N­íÛ»«÷W.‰Ë±ÈWxbÓ=«Ì ÇñãÒ¸wØÓ™Š`ëäé4ì~NA-a¾Òvª`³­¯Ÿ{sVîT }y®ºiFûtº?§¼‘ð9’úRyö?9‰¥DjÁYÙÿpGÊu3çªK­­°Qö“àÙ&fÉÝ]0œjEMNØV¡Œ¢àYǽí{óJ³à„…ÎÎ_aMꆹ&›Î…Þñ\œ{‘ùDÄí—eµ¦ˆq4§-«;¯`¯iuÜß’†~M 'è?PØ‘òkÞA jÉ Es€‰&ûÞÆ0êÃ’b®.û £fÎAët;ˆ_1wR'`ØDûSx_ïŽ]ˆS½àáSÄ[JD­¦óßYÉJÄI’zÁÇ  @£8Êa…][CUò©¿~½â¯ü„°GZCÝŒ)7~H¸„ßšl8Ø–·p43X N!÷Í`X”­?6sãbˆþ*¤C-Êün{w}sÝŒZ³Ç‚€Ö³—ÇÒΟ‹J€‡"¥ûÝš§9t027lŠŽ{§§ä›=¥vt<žÄj,%h®€J¿Vá]Y9Rd‰~@ªß¹Û&ŸÓÑœ™SÙm¹F.´¦¹ù!_ã?Œ7bÏ6£ÅÿÃÙw¼³ÉÁÙ=ͤ½§Á8ò4è{vWÜ} ‹êî’r3¡ž,bð“(NåP®—¸‹œc´H‰Dý¸4nÚ£j×¹f–t°$³19ÄŸ 줬ôCÙÙ'ì ³L¤ódv$~Öú¹”¿a>é­ë·à˜O*fþ Ò{QH*d v˜PÅwoÿΔWWN#æš…°!œ' “‚ƒGú‹‘IêX(èûZÆàÔÁC¨Ò >bC!ESYÕW¶9ÆìGãxü&oý7D´[ _‡öåϨì6¯xÄ_(Ÿ¾ƒ®ü¶ô³@S¹®A¬ëýW9VåzÌI¸zSœð{ÎK€’3¤íU¶A‡4òpA|Ø;@j‰üæ!µ‡Ö}Ý8/ÁoÀfÈš¨L=f¡¬šv¾nG˜õÛ,ÿx”ñt ûÔ©"Zõrþ<]do§‰Ñ—¦‰ îMÀÑ_ôR‹(³É7æ‰Æ׸@Þ~à†hSí5T^„K÷æ®A+š˜âáM” `^À³0ˆ­¬ã”6´‘ŽzÞXVÙ`ÿX«E‘1½Cõ\4 fujæd¦³4gE&e/SÀÆ2¬¶Ìñò„n~›åþÐÔt±Ó1êk°o¬ÌÙÅè!ô)ò±¹ÈsÀÉFp%cCgã-%J\¸HR %Pï*ÌLа׃XˆÐv‹X NHžž;ãàˆè8©aµø>r(åýYmj<´ÜzF /C¯ƒ6¶%¿ƒð0ª×yQÒ;Èk ×iª+FãÊ[êËíÚg<¼ÿlW=¨tþÀ¦¥€QIË2á3ŠÕÁ¿ÝÚø1;÷l.î˜r“س,ÎMf| iYÔ®› æ4é½ém8ND11â]Þ>Fá^JH½ŒÎì§ó|µ1`þ°A8Vô z:®4Ǫ"´Â†ç*Mìê¸Þæ{?zÏ™õ³õS*.OÛ’?]N_3^Ó¬Ÿ¾îq(w®ÞUpNÅ Î-ý¸œ‹8Aά;sLëºÂC¼£pQ“í‰ì½§cMòFÇ_[ÔÐ9ƒ²v¼ßeAžÄÜæªÂ1)zq?ù‰o˜+÷ÏÙCPrk=XO¡tqÁÞÙ£cãé`_¶­?å·_ºöOÐΤ·rÅ#]‰ù×q¢à:¦CXv5 a?ÿ$JÕéC5×ðs³Cy½¼ð†ñÕsÆ÷ ‰ŽÍ€Å8¸(¸ÙÜŠF‰ÌDýå`WltÂMHéÜÌ1DBb{çÆÄ…Sº¶c5 dÚì G}ö°lèy–ð ôDÙzÃ^J ˆ9Ðs䦌à?çhN¬ 9±Dsbù1Œ geNñŒoþ|q_Q€*R •F€ÔêKï+R¦Ÿº¯ô—c‘t_9£&­…Öðy‡yóëw/ß…mÿ¼Ð5M„µV>¡®½ÄÏêšI!“$›êú6Leðu]ýÕŸž`Áuwÿø’Ôtý)A`¦‘ ^V5›küå*N”*›ºÇ(c-wpÂÌÕF&„XÒqK쀮¸‡W”¨¯Ðµ¾¤þÓ´'8“=,)~ÉUœ‹þ `BŽm~ÐÀšÈ9'%ª¶£’b*’aí© §1o/4}9mÁ¸àü£HÏ(ßH?ìñ˜Ép›`ÜÍåû1¸k"û9vî] |0¶±4°’)_G·°óÖöh«1…ag?Þ'(=MDŒ8 ›ÃU±í?3aB«/÷Z9<ËD‹D%gà4 ·ñ( %^‡‡‘¿l}¥í_Ɉ•»6ÑËBJ”ˆ¤aø'F|1-¸—¨Ê[|[nç¥d òmädqtMu„X`Ÿ´¢:úÛ õõ¡du7çžÓxÐ*"7E»‘´2ôY¡„€?0…f1 Ý|ÒŽ|â}bB$˜¸Y:ɤʣ»¬–R”ÓM Vîï(Ô¢¸””ãkÌñ«ÞöGâÕÝñ¦ öÂò•«ñ¶}ê +lI·yTt7~6’þ„©þö»vþ‘èJAÀ‚%áážCžO)}Ci{ƒ˜á©sÂŽuÇ7 Ø=ÿ÷Ê·~à‰F^fêìOVìq÷n}¼ü£õ G¬QšÆ#´2gh…í;‡Ä‚FiJ ÐnpWïCñŽâ«%–ýi`ÝÝçûÃÎßó†§G¾nÊCG·§n×H˜A)ø˜Çaãx«ÂK•K¯¤iT驦ÂúÓ‚žœ{¦n•žƒ#æ?„õqÀCœÚò\~?ǰ/æ \gQÛGxFi¶·xllܪ_ø»o?|šÎÓË¿@ªlüu *›úX³Ôqá¢ä×à°Qt Où®Î{6„qwdìÎUÜé_qU@¯º²/ÊóÏ…£\¿|D ì¥g(ßbòòòÝË‹ÿxS%T,RAþ¥¿?Óê.Çg-“Æ"± ã(Ñz÷ýëþÁ*ç•ç,#5x,çdïBLÌÎ6%£X¤±M¡’‰È*õ»w5H\ŽEÎl ?k›&K“®?½_Á¾—2K€ƒñŸÏ8i1q*ƒ»øTFâendstream endobj 249 0 obj << /Type /Page /Contents 250 0 R /Resources 248 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 234 0 R >> endobj 251 0 obj << /D [249 0 R /XYZ 72 786.281 null] >> endobj 252 0 obj << /D [249 0 R /XYZ 72 761.3744 null] >> endobj 82 0 obj << /D [249 0 R /XYZ 72 408.2819 null] >> endobj 253 0 obj << /D [249 0 R /XYZ 72 373.5023 null] >> endobj 254 0 obj << /D [249 0 R /XYZ 72 164.521 null] >> endobj 248 0 obj << /Font << /F25 105 0 R /F33 156 0 R /F40 205 0 R /F15 111 0 R /F20 102 0 R >> /ProcSet [ /PDF /Text ] >> endobj 257 0 obj << /Length 3357 /Filter /FlateDecode >> stream xÚµZmä¶ þ¾¿b‘¸qlù=E\® zi^¶½ ’"IïØ3ãœÇžøe÷.ùóåCR{Î r(úeG¢(‰)ò!½ŸÞß|ô¹‰n}ßÍ¢ÈÜÞïos›„™úYp{_üàœ7ï<¹›­ï¼ÙlÃ8pÎ:UƒÍ^èÜ>–è„Ξ2_?a_>¡9urSöBÏ›Bñl¤Õ´àŽÂxâ1?Ÿ7[Ú²dªîù£yèŸó.¯Ñ¨y¸–9å›r7²X/Ù»¿ùéþ‹>÷‡“ÐõÒ,»õøÌ/÷`ºÝNä­ºae<:àŒAâ9;ZÔ$N¡ÝÝØi_÷Ú¯^oLêèh5诎Ò!ùúÐîÊœ:E…³¢¿ï0xÒ ÍyžQ;õœS¾¡ ßÒàíµ\;ÎhíæÃáãÍ62æ"åWw/­<öéªÒÊÀ—U2{h…úÀ§*ù <{ôTŒ;ËÞ5ë·˜ãã*øzýð0v¼ -dÌw»ò<#NcN¢”E…eXŽÝPñ*dkQœ:ßö¥¨ÊxsU™$rã8MUUç'šâ’eF~èl+Ì?¯i8ÊÜ$‹cÅFÇ"Ú[â[¡pŠZÉM~Ò,­—ûã‚È%{—7ôªÜ¹*öbã¹~ìºÿ'Ÿ¬Éè7ñL¨<°UV{â´dˆHÈ_ƪ+¥óT Gi½…Q´£2©î *Ô]ƒ‹†NtÈRùžø]ñWËÙ2‚£V{™zÃFy šÔ8¯ªf§R<º¡kˆ‡%Mñh{•µ—öVø~´’ãÒå ›Æ&YÞ =†ží€˜i_„Î#š"ÂüÕ½Ús/Í|[ ã©›ø‘}ÛßåÕ -òT¸0õ»®»ªÏs£lZ`U½[dnàû)Êwý$LWœgdä+ÕiŠÔD=ˆóJÉŽ³c—Õ͘ŽU-öÇ$f*óbò’ ù Ú\9‡‰ŒkL”è9î%+$PŸD¿y#¿eÇï¼ÓQ¥Š‚Ë[¡fûrhŸ£ù…·çj—×äXÅÓ¦ çàœSÕ÷êLêš½ñäêªç BçqENQåuÉEò ˆWœòDþ…=#w'ƒé1““ ˜Åη )} õÆ&ÊZgèc¢ O8¹Ý]M%+@Š^¬ _ùÇEDœŸÇž#™ô&Gwf&¾á¡_3ÙÌwÓ$±.î³®ÛD¾œ9#Q,šL/7dȹ"~ÿý÷Ò˜.rͦSã†i˜.ýaÀ¡7HŒ³‡œ#$¦“v26ŠûÛµô+Ü$î'Ÿ9nzñƒ]‰ò)~±‰—ñ3׋ÀcîÛ“¾ãSÛÙ=> õ4Mu»RqÆ[ëØHÇQÎÇrÌ X3qà $mh/ Õ±úÉêЭž ߌ0’-?Ujì¹%¡±ùºH„ª)ªGSxªFˆEu*›¾j¶hæÈ VöÉ8öÛõdL]<é°ÿóÚñ¶Vd=_ôç{ißH§‘KK^ Û8"Fƒ÷<äU#ÆE ÿ&Y¿’aD‰ÊÒµµ½¬¯c1óOò˜3èØQÜÑusÝVýI¤ˆNo!P@ŠŒ%¸‰Þ´Íöù«/Ùs¼\}‡º3­™ëΡgXäÒ=lØı½3ý£jvl¤DaãÝkyý,Mhàq N¿òÃЗa/­†ÍêœÃ%ºp)Ü:`”.ìí¨|=pÇÊÁrœ$ôåîÐPé–žú×w®Q;¡ØpÏÞ2‘çKå,€~¶1_`6ð_£qhMÖ!éË8±q€4ÁVt¾£·Ñâ°O6E…¿[ž+›€%{N€ÃÝ„JévÔ3S냞´€Kú@úl6EJÛõ®ºœÌ5q´|🶼„ŸLø™;»œ=Zà§jŠÔ˜;pba 2[R”žŠD-&«‡Äò¼zO×ÎÞ\§–£ì{ûæe˜è·Ë3çŠÃ/ÁO.òåêp±›waºzØó¹fo’±o7© Ul¯`R`ßK/‚¦5J´'ÃÆ" ˜N’mU–ˆö'¢¿øæëûB¼o¨ó¥x„…,oq€vTj§‚uc#®øBüžå@¨Ÿ­=‰¾,¯œæ¹+«vÔpQ åi³y¿‹Õ6„pÆèd4ú÷ ÍN¥€6uޱf¶¯7¤QM]B"$!€í6]u£Ù® å´h”nè±ìÖDÏ<7 C»PÛ­îð2FyÊŽ—0>ßÇ"‡$YnN¼üu”/©µoOw^b%V¦m(O`g>+XêиqèÅK 2Ú ”ó£‹÷ëwÍÜ :¹ðœ§(úˆ%Dé4üs+92Úä¨í"žðVbÕŒóÖýÒ(„y×vÏ{£hrH„%ù6‰¯¨txJêAÔctVÌW’7ì¢V¼a“zmW¨ØA ,ÙÙ×­ Ö#{{¦edzV>æ3/1­­såré\nkÇÁcHòþ/'Š2ÆÏšâD1]A%U3õ7ó-*¡Ä’MðÃpÒÎÔùëç÷kÒøt~”D“¥Ï³§µbïzabÓìçMpBø¡{9ɈŒúËÒoRzt¹K(TF…2‚1J!-x/ ©ÿÔ\(s}ãeWX%¯wc}=˜þÈQÒµ“Ô&ð¾zRgvÛhCdB«j®V8ØÇÓ”Ý\OO†ˆPŽE« Ë0±3è«ò!ôä$b.«úØÊIÈ#—ÆåHi r4SŽ•Ës#.ÉŸ¸ªsŠÈNsèôšF¤ÁІÀ«iÈâ½T(ˆ&¿qä„•{¥f5 BPM mlÁþ¶wž pØi¿vp6 ©ËiïòÓØÞžº= á,i]ûfJ‡’k0§Áµð]°:Jl¸¢âº(¿¢™R}nÝüÁJKï’¦«Yõ]ùK+ø¢HIÐë ¹»ë5õŽ€N0' g…¢B\o©ÝK]4tŽm]h l2mbYdÙÑ »,Ëbó)+¸‰é%;x‰Š!ÐGyAg\ìò¸ɼ¿ S®Â]·ÎnAxjÖ,¡«zuè¿ÙDO²/jRvÚìp#Hc¥ìé{ ¥ÒS…ºBº¤•Tâ¾ùìþƧ!šrk|1âÀK]?KÓÛÝéæ—›~òn‹ïö‹Ï 2JŸ¨ãCfnO7g¾±ýúæÕÍ?¦·ÓŠÛù’Ÿò·ƒem–ÎEivÙ²{+æ;)ãÑTç44éû»Fuã 8_liP ÖÄïU[Š_¯Ýùqˆ”ü.Œ“yT âôÕ¸w]´‹Áâw'5ºüp<aÎÔI“&V¯)NÜ4 m€»ãÃõ}õ UOJ¦M/©iR£Õ'sOî‘3 KÊǶ§+5í ±Êî¹L?ë'L—$Vñõ®ž\Z÷LHÖ¶I3o-ô˜—EÏ ¤ì±D'¼Ìd'`¤ä}[×’\ j„y/¯÷‚Þ§PÒ#›³ÉÄ£$£›J61W^éôX’ÙýÇ£q7y1U«áô)pò‘.EÁ)æ!ÛšWw5{×QžiËû@mC7ٕõãÙ†W‘V‚Y]ÿ¡*ÒûTÉrùÐö qß÷§ÐØE h!K5†Î °fIû'™«§ë §T(¸ÊƒzèÏùdÎÂÍ®pWŽôë¬ú©so?Jƒ÷ËçwÐçshöÅßWEè×nL ´É"ò¢l+š2Û ì¾]ÁP hµêÖÃØÒdö¹Ïc×m2²eBÃ<ö|mK«j>•Àï^Ë*Ä1•ÕÞA ¤ÀÄ-jèþ7©~ô> endobj 258 0 obj << /D [256 0 R /XYZ 72 786.281 null] >> endobj 259 0 obj << /D [256 0 R /XYZ 72 761.3744 null] >> endobj 260 0 obj << /D [256 0 R /XYZ 72 672.5824 null] >> endobj 261 0 obj << /D [256 0 R /XYZ 72 452.6156 null] >> endobj 265 0 obj << /D [256 0 R /XYZ 72 392.5492 null] >> endobj 266 0 obj << /D [256 0 R /XYZ 72 288.8132 null] >> endobj 255 0 obj << /Font << /F25 105 0 R /F15 111 0 R /F20 102 0 R /F40 205 0 R /F33 156 0 R /F41 264 0 R >> /ProcSet [ /PDF /Text ] >> endobj 269 0 obj << /Length 2866 /Filter /FlateDecode >> stream xÚµYY“·~ß_Á7 «ÄÑ܇«ü 9q"Û*+ÒV%UŽf‡Ø%¢9¨9vµþõ鯻1$Wã8Q)/$Ðh4¾çÕõÕ‹ïãx†~™¦ÑæúvS”~'É&Oh–ñæzÿ‹÷Ï Ì·¿^ÿðâû0=G¦aÙ&`¬›ùînzÛ]\„^cošUƒ5£¿Ý¥eá½Ùî@ÀzåÞÁvfHOãd[û›ÙËÞ¶šv0Xm±a²uÕ`-`º([^e#ãûmTx¼8œØ¹­ÆIF7œu<ö­¡“͈ÛÑ5vaâ'IZò}ºž°’¸ ,ùú›yTØ­£ß·”ÄÃ;\mnÍ@Ój#‹ÇíŽÀ½íÀÚ$0\ûV†÷Ö<Œò<òÞÏ#(mm€0n˜_êPÈ=/ßlwYÐ% ÔÏ‚‹G0“ã*$–xh†·\^µà«N–2!F¥gGù—ûáÁi+ØÏµ½iŒ¬÷JÃé`A®}ÝÉÔÓ ¹wr{^œ¹·cu)~]Å··Y%=¨ç†õÃöÝÂðʈk¥7±^•‘÷`§ƒŒ˜'Q”Økmg[(l#r‹ª»;»à¶“ÿc5€Ò3@Á³8ö~^׃ìCçȨÎB„,Írï¯owß9ÝoÕGAf9ªÕûóQY ÍOØ ^ƒàÂÖž”zoªZ~¿û‡`ŒãdZ¾úéåû´ù§—o·d/qíï~ôñ áQ&S/ÿ3®‚­µpo–¯ÒZ³¤ªB”É!‘;°œœK¨ZšN¯2MNî¸ÙsA}‰Í×tí Ývt•JÉ÷·òßV'ÓŸ¹Z÷Á>‰ZtáÐè~~”¥›]úažäÌýq‡ìB'…#ÿ5,¯z8i7!YL å$Š üo¤ºy-Æfñhw<x5éÓ¬ùÛ(-ý¬ÈJu¸×˜jœAOñt ù8“ʰ¿XÉihõÿÈþ§¨›O¦žwü„»å°‹§œØïtÏÁg°˜s@žªÛ³ 5¨ä連ädúq6³ù|[xž¹0P€/ôa°lêd†Õvu3ï™eÆS–1^z衆تØÏ0Žy$ŒGÙ³¸~Lš^|£HBÑõÐúÁî÷üØ4ÖhÓëÑG+Åé¬ûrå8-ÍHƒåpuþ`(MÁ?Œ‚e9æŸ>J¼×“®(†ˆŠ·ÕÜLB…Åx¾Æi€ÿ 1Ÿ%H¨|ßÇó‹Kf€ëg1ìŒãyJµVÞ²v 2<*V/ s·& ½˜°SOöSÓ<Š'©:‚îÅ11!‚©ºšKè¢ëÁ˜ÎGHμ×ê¯&1dð)ìš±{6ÉÚÁ4Gu-G—ÞœŸÐ™OŠ~™i¬:¹À¹·bͽ%©Ó|™,>)%áeþGã¢p Å…”ÒqnÝTM¡)i“w_á% s? ÊT)@=“$óFËDlÃ~vhDh)ñØÞŒõÌ.‚pÉ‚ÈzÔ ¯%©Eîçaëoñˆý8JÛ£©Ôë%aæa”\jÂØw¹™øeºLìsº¼‹;(Òÿ!]žzg[²ð^³ó—xÛwÄÖË7úò¦e#WÕë5VŽ“º2 ùØqr¡U²óTK(6´ˆ¡þÚvŽÏ/¸¼yTÄ'o‘¹±7tÙ¦;X8¼Œ +—5 ’÷ ÕK* 8pÈBrˆÒ¦Ë„ßÞ*Í%Áä Û ®¸jã½í]çN½ýÝù‘õ®^…¨†ý€Bí«‹Î :Xæ•æÔK± Ñ1‰="w§œ{T—å,ÇÉø,}&¸Õÿ%«Î‚|{Bc`¹â’ë$#amÖÇ…©…!¸áYR¶ÂÁè8X~"õfÊ Ÿ­þðÖ©úgâ?Ëñ¾¶ä¯á¬#*X‘A3˜¬Øa¼¼ú(s.”0Ð[‰ X· Z÷íònøQöœ ÇlÃQ™+±ñ„*é4fZ`aXÉßÞÒ bŠÏr™g×X¥ÄCë‰i·ÏÄåqš(5äÐw­¹_OŠgí€@ë ¥^Tš¸ñE ó ’ÄØEEZtÿK `·.™´œCEtlªN’h7–à‘€nF˜k­öLÊI@­ž¥µ"ÁG‰‘@²÷ÎáNfIPT}—ÂÇ|âbñ(:ð_kÑ9Î( o〵'$¿/'e™J†ÐɹѱqŽ0Nž&†´œÑf½Ï$I?«¯ÐГ¦â#îR2.ºó¸'a:sNùe3NUvÚ‘!œwÇÖôёˊMÌd¹¢YYæi–¬‡pdUxØfÆ«¯ÇiÊBü,о(¤u”²U#‡ ­"í8µý¼"e9ý­,áº<8‹‚áYС1—.‡~pñNʙ夈Ã7!‰|íÒ5lT¹÷([´dÖ•‹D±¥B#üKKhµ i–aÄ2Ò„y¦x r¦—“„Wà¡ç üå(êÈ”KWM«K»´÷h´Œûä-°–—áó}/©0 ¡îè®Ài2à#ÎäDØZ…dqá½^½%Z~P¹ô³ÖŒ@E 9'WNèB¯%£ºêûTœ´ØØÏC­ mòa(§z˜ÐC#(ŽåÚ ÝÃ, ”èµËdÌ9ƒ@²“œÀ:Á•ÆAùé[Η:µž(x’ðŸK 2µø™Væ$  8ÎN)ù I¢¹Ë©gô¸{f§5Šqæ—aè(þ‡Ä3ˆý"‹Ã/1ÓÁìçÚ¬ñJ§!Ù¾àu7grzÒ^¡d>ÏÓó8WƒGØùöÁÖ“€¤gÈ _¤¢¨jYYž™bÐB¨žYïÉYïžl=ᙦѣYñ¢¸ôžàVÂ#=?¸¸±§ØÇÅLûIFw»xþ~):Mûµc¾´s´Qÿ‹“§;6u³»ã¼}o—ä%ÎJñrk F‡giæ ý•VYwÇMZÌÓÛâA¿¥Ÿg5Òßg«lF±ÄK¥ ã‹HôÍâMˆ ˆ¥KxeFY6âåù¡¾º_ì18½öG`ÚÁŒoÐâ“fZ’ûY™†—O²N¿QDa±øfQŒ)×q®€SÀþ1€Ñ{˜Ý~tù•nçŠéŽ©S"Ó²Ÿ.¹¦Àê)0Ñd¤K½\JOÿYi@õÀd†ç¢€xá5Ë3?.ÓèóçöÕŸ¯¯BZ¢-›4(ý0-B*CªËƒ|S·W¯~ù5Øì¯‚ÍW"¥{ Ià‡emÚ«˜„FnÞ\½¿úÛBp·PÜ“|…o[—L¦aäIŸŽf^!ª{ËÍœ§¼&äæ’ükòê(þ!¯”°Â>áµÛ;GûmôÇŽvÝÉ&eê§aúeå=´«HNýcÓ€Çp> endobj 270 0 obj << /D [268 0 R /XYZ 72 786.281 null] >> endobj 271 0 obj << /D [268 0 R /XYZ 72 657.4724 null] >> endobj 272 0 obj << /D [268 0 R /XYZ 72 569.1785 null] >> endobj 273 0 obj << /D [268 0 R /XYZ 72 343.7323 null] >> endobj 267 0 obj << /Font << /F33 156 0 R /F15 111 0 R /F25 105 0 R /F41 264 0 R /F20 102 0 R >> /ProcSet [ /PDF /Text ] >> endobj 277 0 obj << /Length 3673 /Filter /FlateDecode >> stream xÚµZI“ÛÆ¾ûWÌ)«†ÐhlråàÄRJ®ÈR<“¤\q Ð$Ût˜Ñä×çm .‚lÇ_ˆÞ—·~ï5ÿtÿÅË7*½‰ã°LSus¿½ÉÕM®ËPÇersßü+8®’8x Wë8ø¸Z'EÔ®öfàÊvØ÷«ßóòŽÏ—‹£2Ìó$¹‰h5ãÜ*-ƒÞ­ÖZ©À®â ãbƒKTµíy].£Â<.ü2MkøñÃã‹Kè(,ʲ”ÑÏšè`Ü,$ë§çvÆwT#÷Wk•Ã)·½; Üt臑‡õ0g{±”Þ¾„Æ÷x†›µJ“0)á$ëX‡Z§%íÞû5ñÌ£í;\·Œ‚¢4rnØ"Ôû74vxàRÕɘ'gGÃű—Qx“ç>@ V¹ÝvK„TiƉN…4Ç'˜~\¢¡Òaå¹ üR˜{±Xª2×笙µQÛ÷Vxz¹A¡BD~úÁTž2•У²í„ô  Ç3ù¡X‘ÜÑ“<uîI^ÐZo_¾‡q*£)HþNÅ È3C>H幈åp­*L£"¥•~ˆâ|éìP,’(“³¿Åcå °8 ”¸—ÃZÂ"­Î¡y Gk¦ÚnZL÷i¸¼ÇÊQ„ÙJd5HFá{¾Ë†‡íl×ÙnÇýžN´.µÔ¸d[O­'À«Õ:UeP¯`òÞÐçA*3Ÿ± ÇNDæè’ÀpF é㊘\¬jP¼€B“—ûƒHãG ØL§‡±³meš9±D'W`D³+ÏÑ™G¢É4ðâ[pøÔzˆê¢s/AÏŽ’]ƒ&9¡gêÏEƒ ÄýK¼g÷äw= ‡â‘NA2WÜ÷+Wž¨âg5™¤« ²~Ž,ÐxO>!w²ˆòm zº Th{7GÓü.¦L•É…’b}¶çPv“ U¢!?©5àñ{èϦØÈßÕˆî±Úo1$7Qiü+0dÆQæq8:Ê^vS©Œö@üŠ¢OœK).óî; x[†µ$-‘_¿w)bo+åŽ;®˜ˆÔ tAy¨üþ2„“{N]k!7Y[”*Œ" ça½È¡]&çÇh<:iú±ßˆqa,avžè£P*Èâ¸Kó± ‡,"( ì.›´Æz“EæKÎAÆ~8ÙªÎBˆî­Îe€ªª ‚Ôø£óì³Q>)É rÏ«‰ kp•óZÔbMcËæ£©§Q@ÿZPÿU²€V>$ÀèzMr ò8ÑÒ†Û²;ŠÀNÚ¸Ÿö­ÀºrãȤ£ò»0þ­†F;Zß KRq¥9ß1Ð%Ï—é³|G–4\ MÊp§·Üà>x"A Åe£é¸&ü6ž<‡ÔػюæÖG–ˆªŽ¶®Úö™G[Y诖°Êô‘«þÌߺ†Ñ¸!\² ÿDã#¢SWݬà Unj¥ƒ Ïxåå„Ã`7¶µäTÖ…ô:°™vâ%}"É.CFÚkûß&âdGœìy¼¾ûðÝkXóî[ß/ºÄô3ö„ºbãDj9Û´“j!Gò€Ñ‹»õÙƒ<ŒÒ«ˆmC·ª?yîa(í¤ðÓd…=Id&-D•kÎp£0m?‡ì{~Àáƒô·ö6 ŽbÊà#c—î vB3çRÌï+×Ò+‘#,ë’¸‚X¾1[„Ó" "ðÝWïy°ã¤Î`Påö–äw÷ X}È T~‡´ Í@Àk7àí ðdÕýáHÔyÌ5çÉ87'«Ï Ƈ9Ä4M |º¸Ë×fCAóNÐÒ>)¬¶E[íµDu†«ŽV¸28¬4˜VÈê©É'',Øs Ÿ¡‚1ZÀF¶•1­©|Œ7òI˜Îne3Æ3ùY@‚5r_ÂIÅž}½té‹TVJ1S_ºDbœéÎPwåX7ìxB'´:/&q˜Ñg1ÓçÒ¾›Nù̗įã$”–`a0#1[—âС°Ö>÷AË~a-zBYJ G‹ ,ÇM|ÆJÀ¨HÙ¼ƒ;Ò•ìœÉ|«ôã Ì2ƒp,I9z¢e8ÊÓŸ8m¼ŽÄˆŸ'1Ò`gÄ}GbÚùBØó™ v1®afô³3Æ4 !²ãÀÕ+l-tDGàQœ£ê¿ŠwŒ—Þœò2Ôiî€õ)‹À•ó%uÊ8Ý—¤¥,:V ÃP#©© vE˜d†&ƒ?lb‘ Ï<­_¥´b×DÃÀk³I ú,EÙ s•øècÖ(•cž»‘$²Va\DÅB’K¡ òio:yl+±æJ¥bsj8–h…r‰ƒ!''³;ãÓçX£PUÆC@] Ç®ó /-ÃΙ;gX!–•è+ÀKÄçU÷xë(çÀa`¡Ôì‹Ýç[Òº'qH1!>óžDÈðNSN›svØx¦x®o[N«‚>ï{vz4è`(Ýõ s±’Ä1›g8úö¥€-i^úTI_Sx³’L¾çÎ’°ä*œ£azKƒ=:Ÿ³€sÙA ¦V:ŒKØâ‚H¸ûþîþõ;ñn'š@ aE¸féä(/Ò_8oüñ…Ù’ÂÏ‹å”UE–ŸÂm%ƒ’+QK–6‘§ `~t™¡2¶¡ý…]¾åÚ9çÑØ¾T¼§Gɇ¬UªÂ2KÕ%®`«'Üd㓌E»ãø q±<ßeññìßeä¸Tñr;Ê·ÁSo;߇"Äå&ˆ·r£Uƒ®[FøœŸ_~©Jr‡Ø?U½Xä‘Eø3<ÈÒ°(•OÁ–×€/•¤^-!¯/5¾¸¸>÷†Q–e—8Ç_¿Ç(ΛŸf‹g&¿)ˆ, îŒñqÉч¡Žó#ˆhks‘[©§ƒ ÜÙ3^F7‡Þ, h¶m‹×Ê5Ån`ä“=YÂø‹}(óPéI‡G‚  Ãœ'aààV¢|M»ŒÇ Ž€½¦KTõƒ‘P'½Þ.:(k=kÓ}8OP©H½ZLF«2UY&¿å³=J¯Î´—p4®Ž[È~aò„8ŽIv]–gA:Ž©³‘D`yvÅ)8#åÁ äüví)–!dI7AÍ¥HŽüåáÄ«Õé?+oÀT ·K.¨Ú “pÅ.¦DºzI"]†¬£_þ¿$©- e|mçªéŒÛQ&Z® mÆÙÀO) œÑ›Ÿú”}€Õ0LŽÆ£9Ëe§}-ÓÔìÈHp6š¿ÆÿÅÜqù[4;¯¹,Ù…³SU_h½Dë¼ì ïÑ ÏS'¯„*Ÿa©òQèâ”…/Ø–ÄEp¿ç÷õ<ð_T°àn"t\qâæ„„r±XxÇq¿èÉâ¶&ýªÐý|Éé ÿãÀŸ—_P>0n– Üóg~b/{HIâóûŽCZÉQÀJúxÁÇ¿+aãÓÞ§±ö8c}y˜À…¶æ‰{Ö—¡“°RV¢ &¾tC/Qð÷Áð:¡ãˆ£y.@çßa®®í™÷Jܵ<»¢ÚüÅ_–}à`}fU‰TºjLw‘ûö‰#QÞ‘¼7æÁ;bÃà(ë  0aÛØV|É‹ºoE…ÆTžs/È áùUÞ"Rð *T±b›¨È…~ñúþ‹ÿŒRÝÀendstream endobj 276 0 obj << /Type /Page /Contents 277 0 R /Resources 275 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 274 0 R >> endobj 278 0 obj << /D [276 0 R /XYZ 72 786.281 null] >> endobj 279 0 obj << /D [276 0 R /XYZ 72 761.3744 null] >> endobj 280 0 obj << /D [276 0 R /XYZ 72 477.9548 null] >> endobj 281 0 obj << /D [276 0 R /XYZ 72 302.649 null] >> endobj 282 0 obj << /D [276 0 R /XYZ 72 198.9081 null] >> endobj 275 0 obj << /Font << /F25 105 0 R /F41 264 0 R /F20 102 0 R /F15 111 0 R /F40 205 0 R /F33 156 0 R /F36 133 0 R >> /ProcSet [ /PDF /Text ] >> endobj 285 0 obj << /Length 3064 /Filter /FlateDecode >> stream xÚÅYYÜÆ~ß_1yÐPl²yȃ|,`#œx $püÀ%{f:â1â¡Õø×§®æk –y™é£ºº»ºŽ¯Š_?ܽºãR~Çáîá¸KÃ]ªs_«<Ú=T¿x—}¤¼'PÞÇý!R±wµ¦Æn5ì}øáÕ½VËõIæ'©R»€VÛv4ý^ym+`Y§žÁ6Žöû8÷ºþ«ý!´Wb¯hÛnD²Ì{d²$ðŠ›ïŒL|wä×å«Då²sƒKÌ0À6ʼnÚ|úÇ ¹¨Ä«:ø„ÇÛ‰dn©wá}Ôj•h_gi"û<œ-pÓØkŠ}˜yW\³;èHûQ$»ƒrçD|..$öL %©7µȇšƒÌàÆ¥-ö,.˜ Ë[”µ¦fq¶-éèIæ=»ë8t09q¿èð(êrª‹¦l{â±ñ,“E[ÉÆ~*Ç ÷2ÌûØÑ;ñ,‰±6åh*ºeàn—ñíìé|®McÆþŠOyµmÍÊ« $…Ö†OÏY  ‚_ñò(Z.?¨4ó3–‚„‚,RéænÊÏ¢`ùQŠŒ»užÌGSN¨÷/¡Ç„‰²#¯QI·²¦âV'¬þ3 ã<Âf†ÞùóÒ’d1 ]Ϻ§÷3’^zSÙ’_Ã>ì§ÀFQã­s0³ô€Ï,êØÕ5©û“¿-5‘Ãÿ(4N›ÜSï\§Vé,64œŽr–Î-$‡«MKW%çI¶ e‰sÿÁqâÎùлëÎ2±0é{îàœ¶O³¼Qåq„ÅÍKÏN®šØ×ƒºnˆðmñ–~Hî V¿%gýÿ ?5xyŸžÜ ͳ7ìiz›Ú£#µÍÇÒ\P»˜Ï[-aN#D<;o.1 (*Œ\¹oåPvh_Œ7—ëÐû¾ÝºŸ·ÏìÊb0ÃK¶µšåÒ½ã©c×s£kÅtGþ"Ö‰BDá'B¿åû·¼¢mo.ø‹+¦˜Ã£‹ëx+uSïîz ËìÉÖµ¸I¼Ã»½[ î²ë¥5ÚF’Ó.dí*þãº*ÊqÓ¹ÂÜ“ø\ìÕräÔGcOû(€ÀGÞ·bïÚ³'Áí‰tÜö¯qê+:!}/1¡7ÃTƒ<Ž»go@·®"’„í+î¢Bß ¬Â«³"˜;XgÕ—þ¥¤Q‰ž~£G¹ŸYèt@ÿçtdx9LDlIØæ²{­ Ðâ8’qb“ÿJ<1Ñ·'¯!”Sx¤Yèvý’.öf§Ö\ìRѤàç*4³ñ#ÍE–Eˆ{²ô ´ò̪R^ƒÐ¡=¸dCÙY¢üó îé`³m/%7¶ÍR? ³ìfr´ëÆ&a†*.tÀºqî9Ìso8“ÕÔÒ¥€÷MÕð@éPvÐé„y†ñ™•q¨¾’0bÙ…Á5F"QÇJ¥©¯ÃP­3¦h¤ïÐÅùqï,^ Ý•u$C0)²#:Y˜%ƒ‚‡æ°}¡°¼‘¾„ˆÁ#4Inž³tê"‹Ÿ,¹f:D(2-F*ý­»åÜk‰:õÿÁ» †ÅfUŒ…¸ …K2§WÕçøÈ”6¿¿ÀçÔJ0n ±28ù„¬òK æPN) ~¢¢ ›·¨ö³Ø!ÐQZCžõ%ÞÓ#sEÕPè'ÿ‚"âä*„°»ðD1Q2ÒÀ•Œê«Ð¡¨ÎLÜ ”Ò$‚+qÝЀvDcå<+…5¥ J€€ÈÜh8&Qàȱû!‰3O$9RS·XfÖ©0¨ƒ6¿äëÀPÄœ»|ÞZS×(Á\»ÌÍR “1˜éP5X?dùœýmÃÛž³:gu`á¬$8XÛGÂó˜c èÚ!U¹÷¦C9âàŠš´ÔT ÃYgqÖ60c#Á¬BT«cÏ¡ÎPy‹û÷œr±üû†çùR$ ·²­å`dê׫n´ƒ¤ÝdŠøÒQè²€„·çÈ‹“h;ž]`ÛQ´ÁEꆵ’gZTÊ5Š•5íC $¯šyÑ­3³‘¼Á´UL†¦SÀ€A´$|R¦fô ¥öœ˜û[÷þ(‚DÀü(ËÅö󀊴_€ئdˆ†ª-6ýTY§É09A‚iøÔ2”§ØÏ;–ï¶Üg(µ8MÏíñüLwÙ’‡‚°$ø÷á:Œ"†û0öûCÀdS04Áê“áû¸­°Ä÷A‚§Ä'ÇÏÜlÞ–T`fHá(ž£e_øÇáoux~@bö“Ù6Щ-Çc.uÎáb _(,+†I*Þø ^²šÏà ¼:¢‘¿ûîáëž°|j€4=í@Ç|°s½+›»÷w¿ü쪻`÷Ã]àG9„»'è¾Êóp×ÜE~’«Ðõ뻟îþ>3<ÌK–_S÷YÕ(öÃ0n[Ó#—TP /„ Ù1‡ßàÁ›Å!TÚ±è¹êkòO9åÇ ÍR RøDï''ÚŸTSYÏ0¡ig÷tºò+¿9¦ã ñ«-Ò’uŒµ,ùfâ ¾ð''—j‹þW+Ž›¸'T}uÍÁ:Vfr±K%:$ÊéTâòGDB5—J(žÑ n QR©ž“~b"ÜNäë+îHå|¹>²Ã³ÿÄK|ãèqõÈ)±­ˆÅ•·9‘àNã¼É†Õ ŸnYBd†>ª1ýQd\q ňlEà=x’©•/4dàYzëϸÚÄ0<TB1½ÑÎÒçR¢Ëwm1Ÿ‹b36þôßâá_oÞ•sqW_fÅ_+¾)Xóåµ¼ÁŒ£E1Ÿ¸Ïò$ZàJƒ}6Íw<]p·2ƒårtnHƒºôþ@z!IPŠËEs@RhYIÆIÒ µ]Z Ö»à™pàåmu’{“K•]µiSé„N ÿp½½·X 6“±ÀÏ#taœÓà «M„›ù:޳9áÛ`•úy —ŒÂ/Å(ÚÌCh:>·êñ‘Ý>0ñí6KÌ$Ašþ¹ë}1NÑgpÂ\1Kä“Lš®ËÈš*Kñk˜4SЇ²§<~pŸÔR éLù¿íö’Û@èHrØYek#*J,9œ•"/8Q¢´÷z‘¯ &Jn- ìTTÃpã>ƒÀpzËî2©cÄ[šD”ÅŒíoeöCpO‚"«, 2+®7fÉ-La¿rñÐÕƒè$ÀêòÔ¦wßÝÄÚïìãƒ2üš#ΠQ_·žP'¾Î”‹Ì\ÚŠ%)ç¶¼DÈ  j;ŽŒUhô‘ª:ŠååÃuýhQ}ŒY|¸¸»ð€=ÞjjTkc²€“Õ'2œ•Bžòý„î¥`­‘‡i;_n%Âg€R^õÍ?KÑSÊŸ‰@gú”ÔtýÕÕ‰‰J}tqàÄ«‹^>SE«oz[Ÿ ÖÙyVû#ôË-pvk´zþÕ!‚,˺5“H)þÊ£e×ÞT²µ7t‹ûuLs. i† C«€ÀŽËœQh„}ûøW÷ÑZSã ½Õ¥ -Po&qÞøo 9ÄïTøJž)Œb?€Síyè':âªL¨ÿ/à\A,endstream endobj 284 0 obj << /Type /Page /Contents 285 0 R /Resources 283 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 274 0 R >> endobj 286 0 obj << /D [284 0 R /XYZ 72 786.281 null] >> endobj 287 0 obj << /D [284 0 R /XYZ 72 761.3744 null] >> endobj 288 0 obj << /D [284 0 R /XYZ 72 672.5824 null] >> endobj 289 0 obj << /D [284 0 R /XYZ 72 524.8448 null] >> endobj 290 0 obj << /D [284 0 R /XYZ 72 401.5156 null] >> endobj 283 0 obj << /Font << /F25 105 0 R /F41 264 0 R /F15 111 0 R /F20 102 0 R /F33 156 0 R /F40 205 0 R /F30 188 0 R >> /ProcSet [ /PDF /Text ] >> endobj 293 0 obj << /Length 3537 /Filter /FlateDecode >> stream xÚµÙŽä¶ñ}¾¢ƒØ–ER§ý”u¼À°á`p ÇZ‰Ý-XG¯Ž|}ꢎ9ÞÎK7b±X¬›zýøðÅ”ò³(Ò‡Çó!ч$ÌüPeæðXþìÝŽFyOþñ¤¼OÇ“ŽŒWvǓў¸Ûv87b'ôþ¨°-y"¯q¢æ‰ñj¹1<•×àLcia¿c ½ç# &Œc±¼³Bh×b¤‘òøËã·@{°¦Ý¡¯”I“þËüO ©6§Ô‰¯ÃÈ`iGÛ7UKDhE§è<’„rž›Æ¹ ˆ”‡“1Ê7Qv8©ÐCh ®èÔ‰gûǪk§ gàÚnœ'`HñdCgnòvÐxÇÄùð}ãÝÄ0ö“hÑ|"|ÏCE> öK6RƬlš0<œ4ì¤í 4&{ š© b±hD]Ç^‹dL ÿýBB“k- Õ½Âó“¨Üãš‘qâ2õx6„G‘ÆÿYÛ¡³Ðƒ¡¡.Ÿ·*Qe·Rþ‰åØ KÖ_ø¶q€èkéª.WPñ|À[Ùɨížå¿é~„õ_XøùðQH©†Ÿ,Øc^’ùY)aÊL’È Ã¶`{CbI_åï÷÷O´Ÿ$à:A^paÉiíìf"_ÁÅ 0²ÄĉRPrkìxßÒUiyìéjžž;9Ï;Àæ)‡M@Äœ‹ÃRiâ§Y”ÜÙî{ \O”öÞŽxY ŒÈÔ÷v•. ©'Ë ¨JX 'K€"±Œ±ƇÐ7& E„Õé 4ö£4Ž„+ÑãB?1ÚN\h‘„J¨ý€¢SBØ*YŒ_O1¸òœÉïÅ#¿†MvÆf˜Á‹ (]Γµ«ù:3Ñ–›9ɮܕžõ‚ŠaÇã‘Xê"z—“ªŽ X’FVãwšÈû阪Ù~Áüb¿´3|y+ZD9ë´½*gÛÏÜÄqÒ÷ÂÞ„ZöA [¶èš[U³Í¿·L'gmþ7Ó„9 X¥­‘hü(ãÐ3’ªQbêu .¦ ÌÕÊÈDÊ›³…‚ö래6s¤ð%˜Bs³D°—as úŸzîðºá޾ÞlûY¦4¬ð“ÌpXïÚ¡ÔÏbPÚ¢,üG²Ú¸EÕcÞà3NQÈ‘5_ÑÆ"e©ŸÄ‘cú[Q+²À Å:ÛPuÝ# l#„ k¢ª¢ò«-‰÷5Su¡àvºqÏ Yªw9¢ÐµEÉç°D?ÒÀ¼`щ1‚Ý+¼tÜ1:»ºä¶Æ%ÇAJXİ#Ñé±NÀ„Û`$‰¨0 ü(P¢ct|¾‹ØŠAÏGàÄÿC•`Ï žCml“€ÿU²Aކ$Ò“I¢nU¢ &È÷ÑJç°—ªÈú¼q–¨—íPñôÌ~‰P!¹˜Ü»{k¸ûX}ÎÝk?Ö*[ß}ÓÕ¶˜jë6ªYÍ9+K"?HÒ;ý,ÀÎiÈ.8…@eçþS…¡²†Û¹Jžg”9 !Onƒ¼g\§KKxœ²Š•„t Ü>îèdì§wœ¹îÛ‰$ Õš/Ný$§DêÚZèÄäÿ9µL)ƒOBR] A©(ÑJN’×àžl)z‚‡Ò;Îæ5É>Fþ¡!ÁÀä ÂÖÙ„KZˆí¢G>N5È~ÀÊü“˜då}…¸âœfv \J£Ï3 Aœ&û50fÈ{~@ŸÄ þ‡®±BUÿ¾âì“T!ÔÞÓ‘'EøÀ¡W{Ñ R—„&ýŒ:Üde¸xõÐHV ÉJX¸S¸ƒ0¸Ë¾8txf³š{œ‹+³íyµxü[ÞKrîW±IÕ—Üs 0ð3ÌUøß{þ æ £›“ òÆã¸"Ä} H^V–aÊ7C1~8(Ö›9Ž1´†ü9À¿yóÈ#—¾*yµw°²¤ËOãÖí3ãoäGò Qv»JU"ŠRï{rA¼CPw%1“ý̃K‚ƒ÷!ÌEŽÀZÃDÿ’çã*Îóã”ÍVWO¥ä%]4&‘½€¬agVäœ1ãú®9íE3·‰UBEÌ lÐ+ÝK:‹Û*–¯V€F £°Õˆ¾@'Ä\¸ÎIÓDdA¬@»¹• R\ªÉj2ŸÚ$J›L·ÿÍJUx¿žÐz§HH Iv8ù› Ç`?L|œä0G!ÎbÿóÛ#Ú9U‚ÁKÇÆ•ª%¯ìmî, Ä 8ФnýÌK©@¨Míû×|QT†<Ï0êŒm~§ åfQýuýgð™¶Í+ ‰9KúÎ`ÐèûÓ8‘˜—’•F¤ØDØÈpÛø€¸:ˆ“9ÿm 8ð" –añb¸=±‡Öb¸…šžDœ-ì0»±¹«ýr=ŒZ"°Ú(Ñ^å²®Zò1›XO©:+µÙÉ‘è ‡“\á}\x®â V´S‡èº ÕrÕçßΨˆÔ•­®Z¬óíå@d²1 !“­M¼S¸åqWìÓSÝ %+  ¹jô¥²àh%ˆg9t[ 9 åâ8g?ul¹KÉœ ±½]cNP«w þP5·Z_G4 Ù=6[ϵ>7uíx»”Øïpqѵÿv ©i*T„ ÷sAŠÇ›'Ùg_ñ; ³#] \걸چoc–‘][1Ø–˜.¡;ß•ˆGw$¢[€1éÊèÌ×΂yöU2Þó¾­$b¤tÂfnæ+-À(C+¿9+$ÿ™ÿ¾ç?.$bDk¼ƒ'{\îÖÞ‚ÀãÄ…fœêá§1„]¨t-ÿÛ¾ï*Ì0õÞž>çÙ—Bnƒÿ\cƒ.•–îb ¼pªHÁ_rን tA »ä;$Âøáà=HËKe†\=60B12nP‚²y_ÚÝ÷. Gœ–VŠÌ˜Q†qèÝzË>k),ã`”5ƒJ€G/ƒØê_Î$QMXAö„Šw« y¢ÀU÷Ac­,ТR8>מ ­¾€ŽÞ ð Ua:¢9QàòqÑ&ËS.‰Dý'f Í`[ÞÊR©Î~BƒÒ7Š@¡SV|ðvpuÚoN´…\8/èm1®¹Î¾*«ÔÇj¨¤€}oØz;lž(PEùº(X4˜%J g03¦?ŠHï¦ º[‰¡0fÆ™}/k\nLèµT¶àQ¯ I\khŽû Í*@s-‰ç:éÎØúìï]ó;ˆœEÐ ‚s,úµÜ°‹îp)ž£@qÚ–¶O^ÂÒ%x{ÿÏO2ÊڀѸœ ƒR²Áˆ«F_ÚƒóqJ3ri†_’ûJœî°ûœaü8Q.-mqµ¿¥~ÙÎün²ƒ*õcè5&ý‡a2»)5 ÝË> B8U® <³ ž,½#¿bÃNºŽ ÖÕþ¡óO?* }ȲaÓà*‹ß<>à“@Bûiš{Ì”œ-š‡?ÿʇàðíCà› bå'è¾Ê2}hà°j,ýúáÝÃßg|§ái…ñ5}α¡.4¥™7æšóúÃÌO’Ðüq4:„¿GcdÀeFцÆ3g»7œt†ÙrÅ{·ùa¢]fᓘðfüݨ ö3¥âåý¢b]Û‰Æ[ƒÙæ­+úH$‹½¿¼ûéÝã7ß¡äø<ò}‡Ù¿Î ½íÐP´(°g ^3‰ªVÞ"‚_óè¿¥H¹xòÌ•3pù•ìï{2/Ø?OíœF8s!˜~ãS‡å€ÛµkçjvÂÏì5a›*LÜ~9l½w–¾ÿ9Ÿ0{&F÷ÛBÞÜ)Ü‚ÿ¡æÈ?2â‡÷N¾X}f´z¤ç/<˜ûˆË,}@t‘Ï܇îã£Ý0öãh~i|Su?Ô¸Q Í’¬iÎñMÐêΣm¹ÙsÙcªG·Ø…‚|ÃÞ÷¹<« …<½ÑÆ\n»`iAžú~àÌÁ%o| s½Þ}ï ï¾wà¡­ïÁb çÅ8õ‚‹¾mZ`¥2hý‹¹¨Lƒ|y{ÿ@”_SÍöÝßl»÷ Hzÿ ˆv²-4aKžC“±’Èa-€ÔJÎá\b¾‹8hÜÏà[U¤ÀšÉ—iZ; öoÆendstream endobj 292 0 obj << /Type /Page /Contents 293 0 R /Resources 291 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 274 0 R >> endobj 294 0 obj << /D [292 0 R /XYZ 72 786.281 null] >> endobj 295 0 obj << /D [292 0 R /XYZ 72 761.3744 null] >> endobj 299 0 obj << /D [292 0 R /XYZ 72 292.8398 null] >> endobj 300 0 obj << /D [292 0 R /XYZ 72 143.7738 null] >> endobj 291 0 obj << /Font << /F25 105 0 R /F20 102 0 R /F15 111 0 R /F33 156 0 R /F34 298 0 R /F28 229 0 R /F30 188 0 R /F31 226 0 R /F41 264 0 R >> /ProcSet [ /PDF /Text ] >> endobj 303 0 obj << /Length 3893 /Filter /FlateDecode >> stream xÚµZK“ä4¾÷¯(¸àŠ˜2–%¿&v°Áć……fY8¸«TU^ü(ü˜žæ×o¾$—kÜ,ì¡Ûz¤¤T*•ùeª>½¿ûø•J6J…E’Ä›ûã&OCez“™"4ªÐ›ûÃ÷ ·;“Á¿¶¹ l_Ÿ¶;­“ :ò÷igA·UÁÔsÃð4Œ¶ÁrT·5v,¤®«=wà¡gš4Ø×ØX†{ÆŽ¿%~ L‚}#•n¢„é©m´/°) ,µ]¶;`Ìî+ ~–e®ŸKlx³s^9 Žöqûãýçe@8YºÙAÁ˜¤ ‰ü´ã¹»ªÅq£ã•d:x«ÀÛÏ–Ëçêt¶Ãˆ•VÆÑûýt©ìûQ8­”A ÀÈ#N-Ct0µ8d„ëÌã`aß?DI4À?Åm?ÉF@Žn±o÷8ݹlO°Pÿ©ùR—{KûŒÜsÚáaê‰(6Q0Øú¸£eQb-í´‚n÷OÛ<@æq’Ç®‡Þ“yPùÀš¤ÞÛr\ý´´šQd»í‘;˜ØŠ4M”Ÿ 9ž0Œ~ºTû²¶ªSË¥îÈ$ÃÄ›äVf€fÂã̓7ëÜÊvIaÌxÆs]Årá} ÛãÞ;Rç"8ññZ™ó § ƒZÔO£]Óu5›«ÌDË£Aw¹€K¥MØš+dÓ…×.O%]–¤`q i;(fc‚o†Iî‰ë ›çT¶nT=ßhÖn(_zñPÓ­ÒÜÌU¬oXÆOŽû€c~ä6Û\Æ+ò¾ O쯅ŽÜ`ÃÆd¹K¾œÄK ¢eC¢Øù[a”"ŒÅ®}eß‚_Åѵ9LÒ0V,€äMӾŰ ¾ûìþNAŒØ¨< UfÔ&Mâ0Ëa̾¹ûùîû£Íá.Ú|~…ºÈ“Í#T€²(âMs§Ã´P±«×w_ßýÓO¸ó3î®§üMö’G•ë0O=/MB°¨Ç%ojiãã=γ0‹Í 4ÿ”î(ag:nû'HâL qVE °4Ÿ-(þ,eÚt“ {"F‰ßÆ6]ÿÄe±J\i-[•äÈ–C äøÚÅ&%ˆ”Re$¬@ï7_‰]_¾”fd —Þ€;%DÂä ¿­eS1’æÆ¥ÞSࢡr€ z{B•ë×ÁD”9 ¤ã6[ýÌËeKñ_;ª_ʱbd^H‘ù¤€€)´!Ûø¥a¡œû7–e^ââUç&({†å4²—‘Ìû©ÝóîÝr€âm«QÖÙOc-škî2¯™ìÊ¡]£€÷®CD&Å(Ø›CG4 µé|…f¯Äô¤Ïá‚Xi,Ú‹ÖrÂõgÚÖÊ­29ŒÈ‚¹Ú0á\%qÊgÎÑ7-Îø`irjbDý$—+UaTDÉR$g[_BÙ΂·\ù8j­µ2õkŒß2ŒnèÛv#N¤½Ráó‡ÂP6Rê© ûOÌaXQüÄåUp÷–iÛ­æÓ†Ñ Ä™P#Î.ÿƒU¨†7G¤€Œ G|P8T<;3ºújöúƒ®¥Šö§Mûcã&_ÈîR¶Õ”$5EðmJ‘3F‚ïÏ©'[ $ynapÔ¨´©ž²^?±pΙoÙA&¥ÜI‘IäMa1Vß »óyNQk}&Ì3Î\Ÿ%âl"Ìu)Çó°iâ©iM&fZ®ºæ²e]ÄëÏ7¯Ö¥S²$ ^Ëh°dhSMV ~êc}RqΛX¨Î2¨¬¹êâI,_hõ5/`ßZ¸V•ãMž†ûÕ,I'f¼w¶‡B~‚óAX†£í\n!w¹©ž³& %s ™°¨É\ê‚]òDR!Úƒ?-ô%E|2ÜŒ!áNí½°œ6A'ÁÚ½‡º%§0Ø`?¥8šË„k%¸–¹ñ¿È¼Ä™Š{uÖö7;¿+™+—ÙãgX^˜b¨+P7Pȱ+ZçvlÙ ÏáÑZ ìyU&Àíâ ^/‚’T`–èPà¾Õ\@:‰bNÎÑØ–óTO’µ|ï…ü ¼0<Œo´tãéL=‹ç§îG7›í›ág|ÀÕH o·¶ó®EYBm†Ñ ‚#¤F6p'ñ(2i ^®)té¸\+F2ªäIšª ûæY RcìØ“Æö×éXÔa†0ÄYÇ_j¨ë°·ï¢÷Ûl啃@­l!ú™”uàS¿FIV"‡çsØ ÐBHÂIÄ‚‚ïÑv/ííœöcÔ\Âl²°Èã“ÛØ9‰ÌÆ„—ÑÒ8¿"MÃ$O„ÎWñ@˜éXCœ?Ïõ‚ÁõuvÙ99-™ç£2ªeƒ¥¹ôš‡5°‚ìÍÀµ)„ ; R4ŒÂFga¡n‡K #ò~˜FîqIE*“ø0Eî,vÇ 5+Ëp5d.2¥eál=F6<ṃWú7N÷7îñöÊgÙ[»à‘4öµ“fÓõL²Ø(Ö~øpî‚sŸX?òÞ  L ·€²ŒÔ#Ò+žC•ÅRûŠ+|‡— nÇLHr˵ªoyfªH¯¾©õtŸêd©q¼×g–!¼£øw¯¯­žƒ"¼š ñœÓ½$ fPÕdŽÅ8,°£8t6’nÀò©ãoéß]JŸ‘NI»Ÿ“Ó©$"œIŒJÊɱtO0MRã‘3ÞÙ ËlKTçÞ(&ÆÖm•†oáx´âŸ®¡P³­ RsŠàå¹­ˆ.{vzCrÎ÷ `{VÇ* Ó4r°ú;´^æ&bÉ|<ùÔ&˃/äù¢éyti¬|˜Ø?E@rI?C°Q¶8~qœ,³;ô0‰ž3N AR.YÄ1€\$wØ>rÜp[Ío 2Sš4„Œ&@ús{5Œ+¨O.Ë(÷›pg½õÍ¢>-ÒWÝ´j¨:çòy c‚# ç°:ÄnØŒŒ¨'‚1.0ö‰¸Ø$l¶°ór¦¬ ùí-ñèËM7»zÏø‚›‘@O)Qœ‡:Þ: ‚álû±s¬;ÈÜ.û†í³¤©µ€„ïQÝÉÝõ¹å›ÄG¡HñŸîAî–Qï¹[ß–}+;ºB/9!ý¾H¶›þÆn $nl¥H ûm‚çùFŽޱù°zÁðúQîžî\Gò„ñC9|æü'Au„çìYKI Ý w¡Â}Pð‡Ž•¡ö?n'Ìzôö2‰™9Ðõ*¯!Iò IžÆ˜ÁœJÚö£±À~ä5É@$MIFƒÆ–h±u @(¡ü­"…8\ù8ª¤@¬½“JÜ2 Á@ {ò&f+FË o׫cýùõU‡q’ýoË·—‘ç¤(æ,(PG¡‰ã›Ôepo‹®gåeX›0U~þå™÷eNzù¾¼äíú}™³ºáÿ„'WŽ'Yú@†<ç_2a+âÃcÒÄŤG& #š+—ŽV,Lk«øçUk¾ÉJ$!¦ãPÌJÇ’f´l=u•kò¿ RiðÅ5ŒTüK¦jÀ-ǙIJ8ºë+–œTy³Xô$ï¼QaãÍ69†<¨Ló.×õüƒªŠ²ÅÂç·gÛ®9¤Ž~É^y¤þA>ã[çРm¸xÄí˜èøË?Y˜úŠx†¤{¡ÉÃÖ(qâtê®bÿ¼µrì Eá Œzn£Ðs„9Ž5ÆHxßøKqL{"–S¾JSÙÏ Á2T¼Ëôê!ß­ ª%Kòí÷x¶²Üʹ 8úIÝ#Ù&ÖI ©Öa’é„Ú¥Ýûùt@¨¦endstream endobj 302 0 obj << /Type /Page /Contents 303 0 R /Resources 301 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 274 0 R >> endobj 304 0 obj << /D [302 0 R /XYZ 72 786.281 null] >> endobj 305 0 obj << /D [302 0 R /XYZ 72 761.3744 null] >> endobj 306 0 obj << /D [302 0 R /XYZ 72 669.8842 null] >> endobj 307 0 obj << /D [302 0 R /XYZ 72 587.6924 null] >> endobj 308 0 obj << /D [302 0 R /XYZ 72 508.1989 null] >> endobj 309 0 obj << /D [302 0 R /XYZ 72 331.9016 null] >> endobj 310 0 obj << /D [302 0 R /XYZ 72 258.0536 null] >> endobj 311 0 obj << /D [302 0 R /XYZ 72 169.0955 null] >> endobj 301 0 obj << /Font << /F15 111 0 R /F20 102 0 R /F33 156 0 R /F30 188 0 R /F25 105 0 R /F34 298 0 R /F28 229 0 R /F41 264 0 R >> /ProcSet [ /PDF /Text ] >> endobj 314 0 obj << /Length 3701 /Filter /FlateDecode >> stream xÚ­ZY“ÛÆ~ß_ÁRªD3\J¹R±c%v9±­£¤l?€¸D …Côê×§¯@.ä•m=ìbΞžžžî¯{øÅíÍg/T°QÊM‚@on›Ho"“¸F%þæ6ÿÁ銴Úîü8vúSšîvjíÜË[ç˜n•s:mw:rŠíN9MÏÃÛ¦ºçÒ¹Ž<8kapWØJGµ g P,ÛFˆ"Í&ç²;ß¿zùÇöÄ„r¾¦å„¹¶¶dqr]…P+S§[;÷ÛŸn¿Ùx›2®1AB»Ü[þ}ãÃêðÑ@rì2iB¾\:¬ŒûJº~ô¯/¤Ò?\b‰àвÙBi€qŠ ïGCŒAÉêc?¦I —Ç-àüêÎ/r³ç=ðü&ƒã±Û-›;ž9 .dGmû£§|žt±OÃ.D“(2\í˜âÙÜ!:¹,ðK‹ÇÊqqêg/ô…î%_¹*2LéÕÐÙ0RÉ$6•ÓP⧦ÿïqm¢•CÅ(“Àö*–…¯œó‚DÇå¼E.é´qpÓ²>Q_&ä ÿN/ˆÜ×5•¢É…À™ø nŽÜ—rGîû¤ÑãíØ¯Ép¸#Ý3|%:ZäN2»¼oaâêÀ„@'Þ¢ðïO%)1Þ;?pú¡#.šP-@€uù>µçöDÎ~Ö~TßÀ=ä/kLþâ.ò·W\K«;Ô®DBÇZÈd0 Žš5¯Ã2yhgj¸ñåÿbÿyqHÇ µÛO`hÇó±#)tNúîÑÕá1ÅÐ’É›¯noˆÃÛ¨J"P§8Ù„¡çšPéMVß¼½ùá'o“ßx›on<×Oâ`s†Šçª$Ñ›úÆw¥b[¯n^Ýük"¸›(î–$¿xhµç¹aâEóÒt9ZºÌï®ÕÚ¸±|:>-ÁGÙÔ±ë«0¾dENr )”Ö tÙöÏbõ Ù‚²ŸW':ù8)û*vê“ñ9Q|ŒQ_CY%³Øv(• È9Øé€kË+—À….N‹â=›œM8 Ácjìõ‘›¦Á-# 7­ÈR<3T(;°õ¯,˜ ±È8ÍVÏ #ÑFäJB²šd4±|L­?GBíœ\ë·§†ÈÔÜ[›3Ø‹^s¯]ÊúTÇl(ºò=ʹw¿àã ŒþƒX VlZqØU‹ö‰Lõ®hÀDÁ|DNÝçyAü 5óÀeAܾٲ£× ™·X,ôwAy 뇙/¬ãÙk„õöÀߪ†J½ÒÆr}ÆK˜µ—Gë‰ÃØk³Td"hVQU\›î²ÙÝE_ñ5Ö=XÑÞM`È à)ù èø°zQ€&D¾ÃŽ£í¼Ò÷%!l.{‚dX!Ø`4qJã ÑX%‹”w]³ÝdB0í¤P•pVw#@ 7r΄26*rƒàJ↓ڞPNÂ.ÉÄŒvøâL«Û³&høQ ì%«Ãøí‘¡&ce&jE×1PŠùNAF˜Ò$‹Ëi˜Aè–`hà9ŠdòœÐ 8ÖàéÓÒrDzaÚ]óËÝ&bhˆˆ»‚£% 0J ª#~ÖÉã}WÜwhpUÐi¶àÕÏ'g5 É t¤ŽtùÂa&ï ä[ LWmí´X›H‚€tE°‡p†”«²YÅ uÙ,Á (òVŠA@x,-÷4¨ïÇš±7̇{Ï ëûÃ’2¦¾C8d)29±/\íŠ|Ìl¬ai¬^Ò¥™öÕBù&­íËKJãXp3 §*ç굞C£f©v\sík‡c³®­0 çcð5‹»ÇšìqÞsõÒ§ìÖ68”ÄÜèœð«øjÂ7å+pH3Ây·æRm¨“à¸Â[:_N74`d ò˶P ¬VPµñ]/ôí ¼ ^âüÛJ6·"FÇÊ‚¡r}ÉlºÖÍC0jוÙ>@GFÂÀÃÀˆ¥¸[’$0rÉž†.€–p^š‰vEZ»!€ Ù:´Å)pÙ@‘q}áÓo½ £€ABIâgüOjAÏøÆõâk`#ž¼eEfµï]ÇBØÔb „´ßSŒI·¬EE¼Ä¡¶SÖv§=㪌ì/Ÿ´§Üâ&P wÐêï>iKq·$¹vÒ^àjíÏ+?rÐÊ…-ÙÓK7Ù‹ŠlѲhf?PU"6>&pMäätì$}n_zÌ{Á¦Žâ+3n@l$®ášØ(vþ·!"yÌbfÌþ®o¹GÔµà.ð‡¢i-SÀ"ýê!G¾›xž ± ʇ<5ýdgB¸Sx6A¤~ÿ![Š»%ɵC†K–ø ¼iÜ/(£¸TÇ~ôéøœ(>Ƨñ@‘I.ùümôÁоÈ=mòÕÓñÝH'Ö6ÖãS…®Á„O·iKñÑMÇسÐ|Ôáp]Âûú©øœ(>Æ'88Wy`wÓá ÇÔæ_@6ãê8¾Îé@Q#`£œ CRLlò`Ì)éî8X'£`ó)­Ä¸êè–„h¸H Ae z{œÚ<2”ߎ¥`&¬‡(3N¶J–r³†¨ÿ£# Dêr°>ƒ›³àפأå2Φ¢­I ™ÁßÑ"2ˆ='›L-ÖdAk®\“Ü÷ôŠKr‹lzljg%qòE4}• æ¢ü|„©‡ÝZÁ§'†²$О „Êw¾ÆEâž%0Æò1͹@ pß9þNâºBês®\%»Ë] X°è¨qàPêþ5—3ëª+ˆ³í>lP†¡æÜ<òÐÑÖåÄØiݯÒR4·M"#΀X³ bv{c `d[deÔ]„ôÚ¹%Í.xt. [(Hª‹ÿEçõ¥P#‚!OUñLyèPù9ÀΘeçLKIè'ç“Z(6B±ÿÀîá6ö–Sp,Ä “ \ûœ5Îá\LèƒQEÛFÈ FX›õŸÃÿ?bkŠi°ÓîŒõÕíûë.SsðEfÔUîØ2§Ã‘XlÏOWo®‚@‘¥Œ/b`ÉÏJ'. ° Æ CÅIË€"À\J ø’”Ÿìÿ©$KžòÏDØ«"r¤ÚžúŠZòüèAšy鼺†Ík|ÏçÍ¿üxýþðï«¿®º<š¥]†|}®2f„XRŸJΔ}Ð~ǾkâÀÚoеÈÓƒv`® …xWˆlÓ†¿öé ŠGöéÝÝV%¿_>_Óš]ìâ2|wb» œù9õhÍ*KQ°qÁÖáþ$ðkOGNéžÂ¿§O¸9E´œóûÒþ…Üé,enÃi6ž@¦oйȷ“~¨ë_-íÊ\åÝ—" ´ŒÕ: R®VÊŠ;ÃeKÜèg5íw’£uiÜ#«¾p!²? ÅÁî¬à"¨hPTg¼¶äkQªÏhH…5‡¸ã‹!ØüùÜÎð_w÷s»þÌŸ~mß~Ë•çó,<<>œöÀ4eÉuÌkó‡HÜYä›×ÛÒû0êË÷D }6zzASèÙ?K~Ÿ~XV©Uq¾&üŒ„økÆ[Ç m­S…›m3;”0Ê3©]/ZÝ£}ÏäE^OåËsWÄð0¸ý:áó'µ±ÂÿÑ,Øendstream endobj 313 0 obj << /Type /Page /Contents 314 0 R /Resources 312 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 274 0 R >> endobj 315 0 obj << /D [313 0 R /XYZ 72 786.281 null] >> endobj 316 0 obj << /D [313 0 R /XYZ 72 701.4741 null] >> endobj 317 0 obj << /D [313 0 R /XYZ 72 352.4911 null] >> endobj 86 0 obj << /D [313 0 R /XYZ 72 214.7161 null] >> endobj 318 0 obj << /D [313 0 R /XYZ 72 188.5973 null] >> endobj 312 0 obj << /Font << /F15 111 0 R /F25 105 0 R /F20 102 0 R /F41 264 0 R /F33 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 321 0 obj << /Length 1057 /Filter /FlateDecode >> stream xÚÍVKoÛF¾óWè… ÄÍ>ù0`Hê7mSùP$ÁŠ+›*IÅ–~}gvW)+‘ƒúÐËrvvfvæÛyðÍÂ{ýŽ)Ÿ1’*ÅýÅʹË”H– ‘ Šþ~öeñþõ;NÇrÔ¹$’&ʈý”ÏX W°5R³P1t@Ö–‡ÏTÑ5} Ë܈”xPÁCaLD}yà[\ªKX/©=úÙ~>ÜïúÚn.Z_ݰä¯×,aŸ•h«YÚ‹èȹêPk‡œfå„ÐzÝÃÒ¢=cÓºjH@ aa‹TÉXZm°ypÖGØàÁ`c£Ä‹FQ¢œÎ0ʲe9½Ã…R;HÍWèW±Cê¬LÔÿND y¡ŽòB0Âbix >„àDk}7 … Á[ûYµÈl*·kp×öfÍjk{š›L ¢(ãp Úþýúæ×«_f!Oâ ëºM¥;Ü$¾Ð}ÖÛ“UÓß3 Øž/1¼j]”ºíœzž;Â~º|5ÏnxW Áÿ¾L¡‚r?ŠS"R –•÷÷é õsúï= \¨‰ØPÂÒ”û•'H”¢×v_zz ÃÁb86ùæie*Ê Sbt5‚`ÃŒ‚þ^[×µA:7ÙJA­Î$+!§CÁ#ó<6¹Òlú¢Ö™Š þš%ÀöÆJTÙŒ'ÁÖjÝéÞðHæ«Ûe['«».»³ÉŽ{Ľ³äÅ3ÉÕGÿø.®’o°rr,ˆ•-¢ÜÕ(ÐÛêotÓøÂÖÙ×ZYp[¡^>äÛúT…¾Ä}‡KnW l,úÖv¬¾ æR†IÃÉ}„ƒ.‹ª¨)¤yá£lÄ‚ˆSL ÊH”°è?gã`1›<‘L1"cš®F¯W­-gaó‰\¦LÖE_4µå˜ôƒoÌãˆx"çqôƒ)Æ’oD4X<T‰Eª¦UzÈó ¦ä–6gGˆD–Èôå,ž @$1£}Å-\ÕãpÔ®¶±ô]mcU#³tµmGÏnÝÄÜO`cÇèÒLÛÒýaàFÝ»SÜt=v‘õ|:¿íÇÇGœÜîTÛÖbO·Ø˜¶E¼Èö'ÔÝáLßÍŸÑuÎþíÉ@Èý}Lƒ0Jæ·lPmžv¢ÀþÛëõ·Px4 }…­Áé¤înÒs0šï§_î7™–‚¥ˆÂŠDP‘~'ßL^¸Ù5›oÇ™u@\7¢AÑîdhø_˜÷cÐXà´2Ó¹ÛG~<ÿ?ž=iÖÛMUŸ¦DŶ‰pµïsÿËã”endstream endobj 320 0 obj << /Type /Page /Contents 321 0 R /Resources 319 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 324 0 R >> endobj 322 0 obj << /D [320 0 R /XYZ 72 786.281 null] >> endobj 323 0 obj << /D [320 0 R /XYZ 72 691.1793 null] >> endobj 319 0 obj << /Font << /F15 111 0 R /F20 102 0 R /F25 105 0 R >> /ProcSet [ /PDF /Text ] >> endobj 297 0 obj << /Length1 745 /Length2 580 /Length3 532 /Length 1113 /Filter /FlateDecode >> stream xÚSU ÖuLÉOJuËÏ+Ñ5Ô3´Rpö Ž´P0Ô3àRUu.JM,ÉÌÏsI,IµR0´´4Tp,MW04U00·22²2*RpÎ/¨,ÊLÏ(QÐpÖ)2WpÌM-ÊLNÌSðM,ÉHÍš‘œ˜£œŸœ™ZR©§à˜“£ÒQ¬”ZœZT–š¢Çeh¨’™\¢”šž™Ç¥rg^Z¾‚9D8¥´&U–ZT t”‚Бš @'¦äçåT*¤¤¦qéûåíJº„ŽB7Ü­4'Ç/1d<(0¤s3s*¡ òs JKR‹|óSR‹òЕ†§BÜæ›š’Yš‹.ëY’˜“™ì˜—ž“ª kh¢g`l ‘È,vˬHM È,IÎPHKÌ)N‹§æ¥ ;z`‡è{E„z¸¸hCb,˜™WRYª`€P æ"øÀ0*ʬPˆ6Ð300*B+Í.×¼äü”̼t#S3…Ä¢¢ÄJ. QF¦¦ Õ† ™y)© ©@ëëåå—µ(C¦V!-¿ˆ © ú¹™y¥Å Q.L_89åWTë(èZ 44´0U07·¬EQ˜\ZT”šWN'À°€ñÓ2á—šZ‘šÌuóZ~²uKÖômm+ë\_XŪÏùóÄÚ—7ÙD쨛™Rl:/P1½dÉ«…¶öϾ(á•l=U¸h‹d¯_OÜ—EÂk¶v-X1¡Át¿Þ`ñÊæ®i¼ÿ´Õ_y. ›1§õ‘´Õþ¢Ç³:•un~Q®?Á3/å…SÔâ}ßï]ãÒ š¤¥$e~sû]F1ñʻϯþ‘Välžt·Vtl_]ׂhWÎ×V¼M\­|e¦ÂïsWgE²)šÜð: Àؾì¬|Ã×»7/)­ÙxÈXmyjVrŒ—ŠÌY£Ó˜±íXeö]¤ü«g¢àƒÐãžLë?=É;ãæ¤ÏÜpa²†G“ªòï[âbgüõtN]ýXüg_ÞÝ%kUc®>=ð#IÄÒþt|ŒÂí­yflÎ(zØXœìåöò’öu‰)O®DÝýñLÌ·¥ŒÜa!k¸Üš`»5y£…Ã.Ñïz÷4ˆ&wìúaSki‡¦Ï°Ë—²L¾ #~Ó™{¼«:Ï-ŽÿïиïÀÔå:æ8«]Ø”mbªñ©«nßTéìÈç5ï¯ü¿sc%WØí †„¶YÏÜþ¤K5ÛLZ23ñÕÿIŒÓ‚²c™Oz ñFì¬Óük3Óç,ôº¤žuaá¹&­ÝëzC :;ÖP¸F $ç¤&•äç&es( sBendstream endobj 298 0 obj << /Type /Font /Subtype /Type1 /Encoding 325 0 R /FirstChar 0 /LastChar 0 /Widths 326 0 R /BaseFont /JXUHDD+CMSY8 /FontDescriptor 296 0 R >> endobj 296 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /JXUHDD+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus) /FontFile 297 0 R >> endobj 326 0 obj [826 ] endobj 325 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef] >> endobj 263 0 obj << /Length1 1238 /Length2 7348 /Length3 532 /Length 8130 /Filter /FlateDecode >> stream xÚí–e\”ýöîA¤„¡ºcèN ‘î¡fj`` iNI¥%¤Sº[N‘–’><ÏþïGÏÞ/Ïyu>gî7ó]÷õ[ëº×Z÷|†…AK—Gа†)#œÝy@¼  âS#=U?ÄËÇ¢ˆ„Y¹ÃέÜa@¸8(²‚Ä€ Q ! Á;Páâ„ÛÚ¹Ù9þ‰å`H8ÄÊøÔÊÝæt—båÔE@à0wo^ ¼£#Pç¯n@˜ éƒòâ@@(â´†ÙÂñøþò¤êlƒŠþ+ E¹üû– évg È~g’xgŠpvôBa6x|šˆ»Z°;'ÿ7Lýgre”££¦•Ó_éÿ§Oÿ¥°r‚;zÿáä‚r‡!OPÒù?¥†°ÙS@8þW!Uw+G8DÞÙÖä ñò ý+wS†{Á ZpwˆÐÆÊÑ öwæ ýOwÝûÛŸþS5®û÷m-+¸³»ž· Èÿ[ÿ7ƒ~ó]›p/ )?/??èNxwýûø?Ê)9CP¸³-P@Xh…DZyãÝ­Ð }@@¸3æ„yÝyæãuF¸ßÞuÆhƒ@âý5WÏþWìoò9£œ¬ÿ³­ó?a!! áädõ;"äs¹*úOHXì/‘#â÷1‘»Èãß$äSú‡Dù|Ê¿éN©ù‰Ý•ÓûM¢@>Ãèn›ø~Û¿;gý›î*@þ!ÿ] èòÁþÀ¿žüòÙþwìþÀ»¾ÀÿÀ;à Ç?ðΆÓo¼›<ŸóxgñÞÙpùïê"ÿÀ»ºnà]×ÝÿÀ;¨?ðΆÇxgÃó7 ÜÕõþÿ{_^><â@á»íŠ ùýoB ‰„9»ÿý‹p·õÿføÝ‹ƒyÁ x3Sˆä+ûäÚ"¥¼±bL7šÔ‚WC­ÁÕ©’¼Û ’$Ÿ‘u£z0ºŸÄÁÄöð’‡I»êe|Pá%ÊZyß^]¾àiâ^‚G9iºØûm3ó{}Y=DN™a›3ôk.u\û³L'‹­˜å[ Ñ\ÊÝðûE_§®ü^ /Íà§@™Ö“ðÀYM‰0ƒï‹±ƒ;*ˆ<ÄÌ»>€YÚ éÍ eÇü„ÃAªxDÖS4õ '¡ï‘À½¶bf`|hîâÊó¨Ÿ)¹p‰LTòb|]¦ðiµ˜½vVã¯Ø­\S4öò|·»·¤å;¥žÂÍ#ư“$(Å{ÞÁTbÎ’ýb;ÆD§q¬Æ$æµþ¬øìÁkéïÑßÂjD°rOÈ–º,‰­$êÅT©K²Vø»‡¼'8XV§½³Ø°;9Pù çÚ2Oƒ6×»Ì é[„̾U†ü<Ìè™rn‚ÐN©Øk½±ÍÏxÇRÀýŽ0°},’K”§FÃXµW·Vˆ[gµ«Ê9,Õj/¨GgJ¤˜JšŠP*Ý>âÌ‘—‡§Š™_JÜ3ˆµ ¨BΓD:™*%K,í¢ªn> ] 4zŽ¦Úª†ŠÈˆ‹ö¤Ú¬ŠpE©X(¹Õ½É2­Z¿Ed»­!½'a¤)è|m,²ôòi|Xt¢|‚ÌAÏ ‡SÀÑ$‰-C1Jd™­ÝDÜ^V“tÌnJo4™Í2ȬåÞ“§SNñÎ@Á…köâ$4M°³|´®Ú}À|e$eÃÓ£µµÚ•žÛÄLå œ4ý+««ütvåS—Ò|ZžrCÑÁ=…·~v“Hk8Èñ‘¿•kç‹×gx^ä͇ |Œì1ͯ3g¾—T›ÇʵqËñÅ…`ª¾,ï„{–óÓo±žq+§Ç]Ð0‹±òâR¿¿WAÀôHÖ—/¥£çá K!øb5 )Å:Z]¼öÐcÊöF%[Ü#ïò6a%Âéùgù3ÇÏ«Ÿ«‹ãsÜí|åÿJEölfLò…âi?R÷ÖÓŸk‹ì}00íƒãÃyR4 sÆTÝTÇX ¯~: únª†ëÁý¢Žr¶°#_ïôÇ÷×jÄŠi@zØ”ŽV3ÊÍrf±aõI³]¯×áxoüå·\’Éô.$AþnHëwëróÍTû«†¹É»“KÞ›³» µBÅk’Ž[Èòmš{  2“Ž6“°èYì•,GÕ#ÜÊN +{î³}»A]-¿¬­ÿôE/þfŸ«&ˆmª0Äx¬Y„±Òí¡ -Õ;:2Úz¤±h̃qÊÈ ÌCY¢Ùò4‰õ£³dNí—g÷¿Vmq|ò¡d§Óv˜ .èï?êH]ÀsDoù|>YªÖ=‡†ÓþÝ£ç×ÍKɳƫE €œº¡Žµü‚ŠZY4çRB̵߉”ÍFÀÂVIÈ"Ç};ž­u+Å·ˆûQ\¬bpLœC'ôóz¿<§´*ë3õG¶#þ¡@ê§¥{!»GÇcÌU3'êc¿2©%!÷¨ÀÐø¿øê¯ŒÁ{åÎ~ß’Å™m—Äc·iS¼YXyž„^Ñ=mG—SYAZ†CEl„ M؉ÄcÀ&B(º<,‘ˆ~ôfK•z‡{]J¶·Ž,¨å CŠÏ²¼þajß”ª¿Ÿ$ßP~vòY‚jEU»oQÓÛÕóóçð錦gטcÖjéh¬sñŒÇçDB‡Ñ"ö1@Ì ïï#*¶ž·O¼‘¡¤&]ì W÷‹04ßͯr_)–`•ÍÍw±@ëh›ä€s4ÒG›´„S•7J÷b9 PR+»w¢qKâó0Y+Å!er÷#$ùèó‰] ×0»ÛSP8Ô¾ö¸åʉ«°*‡CèX{¡/õeûÐ:NC#gx:Ë¥?P˜ß-»Ø5â²räl¦Ÿ*|6JY™¯N•åK‡ÕøGG_Èò%¯å°~íX7Ûjù9éµ’u¦;+7còâ¼´ª×¯Â­ähÔöÊ+ÕZ2üŽ®'»Åx ;_«ªØ|¹µ¼â®±›Lª R™Ç¼Ct¹e¼"½’¿¥÷+ªÿ(5w´ü¾3-H2]éC@ò=•×ÒQ»*ÿ#ÛD®N6Ÿ½Þ¹…YÈo‰5ý܆tÏÿôÞ=sý#´10€g÷‡aMÝó)פZ€¡—ÝÓÓg¦nñõqý_1åÉB•JDøû娩9(G¬¡°@%¢Ùs\GŸÙdÿû¤ŸÐ÷†A²/ŸeàXbóhc4¾:%˜·)M1æ" UEYaÒ¹Æ×M¿°4qi”-;LaYÐ5¯§‚ Ê »[X×m}Äþ’‰ÛÄ×%e'ÂhÄÆÌðËlKÔ–ÓéàU-t ‹Nüå™O™›LêÛö3±˜§¿‘R±_K"S¶ ojy¢–Γäfø`Mjv0›°|)°SÙô€¦Öñ±­Åâð|¤F–™Š®á>uض׉ÿ{Ûg“y%þ±4Çkd9ÔhºŸñžœÐ—O |Ô‹îj» 󫆊´À\7–u;ÚQæ’yV8_ê†."uZý|ø¿¥ºÿ¸ÒÃo:ó6ZÜ*ÐC†,æÈŸròA‹v>´ÜÏ|¿hÈhˆ[uòÁyòŒyâhk¶“ìWØÛ‹Ÿ±¬ý—„rЦ–$¿ìœšâ,ªÇÄs©²“p¶¶¿} <Ñ|99bÅ‹¿¸»ÒA|‰GÍzùƒÑ4pïöü5Z¬ÒWÛ!Œ9uûKíà÷»’^ƒòT¸ïgúVœ†üMæ)™ sd7œ²áJœzƒÃ2œ¯1PJMªPŠˆƒ-æ!ÍM' ´Qœ"ú]¢ü¦,Ū5ÕŠdr“Êl\@4bFOõ¨þfè†wEí¡Ñ»]Ë2R-NÓ>%vé;†E„1öðË•Tóܯª¯ÃT<7ñãrËæAfvÔ‚îúÉʉÔZ;U•ÄЊoÇ`•?ÄÝc휉엿&a¼<ŸAG÷{¦‡²‡ Æ™¾§‰ó?üöíMÖD 3u5»À=^•ïû‚<œ ùd"kWV»rîÒ09ìDJî¿æyëÎ$GŠ]©rµö‘$}%’÷\õåN°IoÊE#±ÿÈ[¤"¿žÖ¼ÆÑ><ÐÈ£ô›–S±›^8 £«9$º…5¹þÔnÍ0.²TwŽÍYK Ân0ìÓìL™­ËA]B–×kxÏàa”øÕ©«"Ù½uE«xÀYX_ã +¸QR—yq¯ì²6)—˜ºÄ"ñ2Kšý«|ÓÀ‹C¶=:0Öƒá«Sõ¶Ul”º Š‹­u*[|q̇0¾²KÊ{ó›IÜ×:HVÖLÝKcüú#ý|9À¢NVs“196ÕÀ sFCðäÍŠvÄíˆ —øU)ØLõ¾}·ÏŽeÖ×€˜È©5pwR7Î×ö•EÓç9Ïý>³ 裃+šãO81‹¼²…c)äØe›õɼ›S™_s°rø²fæؽÊò2¹Ú‘Qž™÷¡8C”ešú¢]öBLáôÓµ‡(‹ì$ªi[ð|hµ;ÙŸfO6Aód"…b+T¼xZßv’§E* K“¹3ÌÍ3V‹ƒ#ˆWÄ(“lä‚j²cÊ,"=1+èNæñˆÃTKäg7Žë¢„Ù(kp¼7s=Ló°G\Ü,Þq=ôÌþÀç9güd:È`ØL‹Èß2 2!€–6µ¶Q*ààÜŒ°áÑŠßúhZ#କïõëuüqoÌX¸‰:õ*P[¸å‰öæ„¡A¹äB蜾h[Õ$K®¡æH)—à¤hTjÿÓ­ "vî@P(ÆðqìDåÅG÷ _ä“„ÅœŒ7ŒUOZq“MÆ÷y¿ñö¶F¨_Ä!ºHIÛinúi¸+=*.Ý/†ñ¹B1U4hiWîÙE*Oá,K{e·\ê§s&.ÊCpøžXèûÖ/jvúä‘åS–ów]F4 :=[ @ÌeÍšY=º0•~ý7ó¡\?P…•ç/ââ7T^EÆR§îvêRºEô˜é„ ëz°ÏIê›óýõNkÂÏxI)ˆv€ó¥vxòKè­]ܦt€ê7>Œ#,S'ávèço’Ûb°fõ1»‹×ýM©f¦÷뎄'6¾:ƒ ~aÌ6³°çÌö¹"Ë￯eÏMöÙt}PÏ#°[ë‡Æ€Ãö¡¾¾“X|nÆÌ·AóþßûÒÎÏ«˜ ±Åšµ ¦E;ž¥­¼ ?’ÒrèEQ®!>µñç¾5ÑðpàFuE”OŸâÏ.Øà.Hgmo„F‘”˜Y;L«ò´xÇl’Èݱ{NíëwÅwVº \ÿBÿ•×Y ÌœctŠt:<Ü`8,|^G}Fïdש¢HosBòàAƸÀ°éu°È/?Än"ŸÃœð›¿–L’ÛXÍ’PÃihìÀžVeï­±æ›iS·J®Ç³R\¶(ß„ë^¥NИøé•áÊ|Ncaih²WÌ>N-”4(?ݾS nc*Å•©™•>{ÞÒýþfö‚·µÔ:mûÆÁï-ÒJ¿_Ü©J× e%OÊóm)`ck·Ô½¬ÀÛ£%ˆÀ±·H> ä:·Ã ý•}{l&“ý!õ•§Fƒ´‚–O²ÇZõ¢üÉã]ÉKEÚËñ‰2#D{iDÚa¼É1ùP›ü#éxQ2jŸìƒüÏ66‘ºÄ[©ô­Ë‚ƒss—™†¦vÆÒkLí¸ º‡¹G¤´ýç®5Ý*`Û~ͤ²ù§áÔ[Ìm ™ ó¸-ÁpgþÑl40?!¥Ú3 ÞEÍÖXyÞ %±¨1’`TÄ;:žGÈþµ*öaedÂIÓ(6Ž(¼ƒkc©ž¥cžoó3“ ƒb–~SA{ÉëH?ìhlïÓl“ëëMK:œd²a„±ÚS7 ‰ÑÉâŽÊ••FÕÊBK÷Í"˜D¦“¿Ò¶Ò}dp T+c{SrpžöÃ,\µâYA1†™.(9ØÏŸ~ Â(&Øí>OŠáZÉhY-RªnáQ«Fž챞jüzFs œoL«B«‹po`BZå1öUãrêƒègÙQMן¯›óà´šeØ»nsÂÇ“™éaˆQNÒ†=–åÙÁ¥a¦•>g&ÁWo ¤4Þ££À󒎤iAIv.t• tC.ɉDâ»ÛXà–β@–W)2j›¥ocö0›Ý²Z¶@s„)7·V“†ÑѬÈC‚/3Ù‚£<&Ãà_'ñ £D:÷XN‡_ø=ŽÝËÚ"/MƒsSÃÙшŒê‡¤Ø“ES„FbKMõÒ ©Þëï)=skZYæ–¥+o[ÏÑñðˈmªà›O~h,N•ÓO‡ §-ù9Ã5o·™ÙT»¢nÆïahdo/ïѵnW£d4W^Íœp&ȱ à&YÇÎW:/¬9WÎ[ªøò5Æ-\ḼÃùjóƒ= ±¢ÇirüÀ¶ßÉ×0SNÁW½þļ¸qá[URËÀ˵üy㎨ù5\´mŠéâcW‚ú>¸êŽÜ©„¬T£]&Ó+Ÿ.œ T'V‰ÔÔº˜ö½JêÄ´|¯ß‚´ xöÂãÇQ¢ÍZ°‰ñ >ßmøÏq› ʇ¬Ý2[+ò‘_Ó°È€`Uø¬ Lì×öÉu¼‰Gª0wJ~·üÅ'^@ðSvZ{6K}SN×ëƒö31…÷oÛË>0ìÁX:I|´Ñ˜dwÓ9‡£pÚ³«y:AŸå†%.WklƼZcäT•“O¿ž*CUqÅýï]`ì±Ãg•\£yP&îT*ÖØ> ËáA°ã´5,(†<‡k °EýOžc­–ŒÓñš½í`¨øÐ±qãk[Øï_ÌàþÄŸEyÓ‹.¬+sj@›¢cÔàݲbÊþ²ÜKÌ!rž1‡~Š¥“J¥ Û<žÙ ÖÛv]À”­%âªè (è< ó8ò tÐ=-?µl ~Bj†'$ñhÖæ[,o”¡zUœO^]SÅ ¶.Ÿn“Ï[Ç’Jþh:æôžùx‰‡:K”ÅLMppÛÔ>Ü£b&——u½/ÎfðLié<Ã5—ÂLêÎjçºV{ÄÆÕøY=» fðžñõn BaG˜_Ê·Í(‘ïú=ø¶§:iG/ð%~÷Þk²ÛÜ¢éʱӖݕçÕcª·bØ;>ÑòYÏÇ«ºßuF¦c˜Œ ÒEoÕ¯•Øt…ksvcè=£;¨JzZÓZ“ %1,ˆÃÔÇ"í›K¼ÿà+ÑÌ Nnk¼úègÙé)2Zpw?‡^1«lÌŠ):Ì¥óHÎ7µà~C´^¤Á{¯ˆÿ=†É•É“ó`òœ—ñ.’6T¯Zs¨‰ÓhH&ºcù™söO6|õ™à CRå«„…z‡3±:imw*ÇÔH)¨¨wLé°yM >"¿§ŠÍÕÅVQ↠5{ƒ• w `°¤Û“|ÖZ§¸vÌÜ[vò¸9ÞÉÑ3ñAN!&¸äñ©k|8§9@ Ò½f`oA³µK¾ja²ÂHQ|Î˸¸ÌÿøÁûÿ þŸHq„Y!ÝNVH¼ÿW+endstream endobj 264 0 obj << /Type /Font /Subtype /Type1 /Encoding 327 0 R /FirstChar 12 /LastChar 121 /Widths 328 0 R /BaseFont /VUMJGB+CMBXTI10 /FontDescriptor 262 0 R >> endobj 262 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /VUMJGB+CMBXTI10 /ItalicAngle -14.04 /StemV 107 /XHeight 444 /FontBBox [-29 -250 1274 754] /Flags 4 /CharSet (/fi/numbersign/comma/period/colon/D/E/F/N/T/W/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 263 0 R >> endobj 328 0 obj [674 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 944 0 0 0 0 0 0 0 0 356 0 356 0 0 0 0 0 0 0 0 0 0 0 356 0 0 0 0 0 0 0 0 0 876 757 727 0 0 0 0 0 0 0 896 0 0 0 0 0 796 0 0 1160 0 0 0 0 0 0 0 0 0 591 532 532 591 532 400 532 591 356 0 532 297 944 650 591 591 0 502 487 385 621 532 768 0 562 ] endobj 327 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 35/numbersign 36/.notdef 44/comma 45/.notdef 46/period 47/.notdef 58/colon 59/.notdef 68/D/E/F 71/.notdef 78/N 79/.notdef 84/T 85/.notdef 87/W 88/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y 122/.notdef] >> endobj 228 0 obj << /Length1 837 /Length2 2165 /Length3 532 /Length 2765 /Filter /FlateDecode >> stream xÚíRy<”kŽ,IH´z)J¶Ë4v3–CûA$ÆÌ‹a¶fÆb(ë‘KG¶œDÖh±¯QIqÊ’±•J!K&k"Ëõåëüù}}¿ï}þy¯ë¾žû¾~×ýÈËÚØ« qdOÐŒL¢«ÀTa:€1ÚÀT¡yyc*ˆ¡ãÉ$ Ô`ÚÚ0éï ¨C\GC[G“+ŒÉ”@*ÞÛ‡5VÜDŠÇbHC÷‰ÜX °'cñ =P@€Ýæ `Ò@*Ä©B`0‡ÇÒOÐO‚¨mú± y‘ãßhœ?å¤Ò¸¦€£\“Š×"ŽL"8Ð ¢fEæÎ¹Nþ¦¾onæO Xaˆ›í¹ý£Š!â ÿª“‰:HÐdH%}/u¿YCƒ8¼?ñûªCÀc‘$o@¿Qxšž âlðt¬à…!ÐÀ¯%ZWÙ³ðA‹ÇºûU{áåS¹-WgMeÛ5qx/øRvK³+£¼9#~ÜÙ,ðctä] Y»©g c4£‡v^NâêgùFo«Vz1K®÷_ÉÙv-yýôÂD·‘ëîL6ÜôŒÝçÓK$ø`.Æ™+iÊÄåÄgÔÔ®®”dªvjT*$¤’zô3“1pÓêCIì¶á½ÁåWYª^öD¶g(ÈÕ †—x»‚æù“[ðáÈd=óê퀈DZZGûŠ YµÏSötÝë8AÄ1¢‘Ó“×_îi¿lTÝÚ瘴»Râ…èC÷ë90Õíf7Öø¼Š…‚78xªµÏظAVû^Ä–IiÀvÚÊ»!=ÛtfÈg½m(J;óƒr½³{ÅQg¾w¯…ÇTä?›ÊÊ­ÙK(ùˆÒ=³Øº÷5—aögÁ]¡ŠÓ‹»ª¦Ž ~†vm)<-Z½{pÆé¾ýuX’NDT·½‚Ç5ÕüÁ¢{ª[X«¨‡m¯ÃžšOäÄÐ+ÊXqVƒz˜hM©ù3Öb^‘ô“Î2¾Ú'~¨;?xcÒ>WzÄ%L-_ŒÒ¬'x®·seûø²¦1…Ó·ëfù;‹Û÷ \v¯W¿ÙÀðè/2mSxÚ+k¦Þev*-d½9µTtîMǃ¢!Ÿ¶ƒYÛ¶¶'YödOãÍXïלdþ¤m?‘ w‘î—Þy #i“ï¿Òl¥ó0òгø{ÝÓ¶†}qåu=ÅqN_DÇ"OÇP˜^ÍfònL¥ýti9žQ™{¦V-¹u _ÿը̙`ÒXWî'ÈÐ謹uKèµ ÚõÞ‡Z±ŒøjIçÇ÷$€ ¹UæÉ¼ùè…Æç{*ØÈDd OE×É‚‹>ίٻK÷:–YèJÕµ^ö¬XÈúyUé"`÷°&BHq$Ú§u!9á‘iÚÖÑdÄ3aU)»Ãeú-ÚqMk1µK©½´ÁÇÛ}èšÐæÚqMt{ð%Åõ´Êæt–ï‚ýmê…ÇëÙ&¸m<*1ã |5EÞMÉB6¼ï@&²m>k‡ŠE ð ¬cžýæ#R–q3{Hp%‹eªÅ™‡‚Þ2ò‹º¶BGᢋç,M/.÷’eΣÅnÙðïg¸%fúŽÝ8BoÜ %¯M ñœpd‰«‹"§c(˜’¾ÆÂ;ŽòûÅFj|‘ÿ¬ü6u—,'âËš˜MÖS줽!ôÓ g–"‚ß§Õq'ßEåõUTsJ09?™¦4/‹¡­+Ak!ôâ€Ï%ÛXûU·çà³ÄUw b÷Öû=ôÃì{zæ:«¨™,ëqCèDçù4?VÛ«˜q7PlåZ?4S`ø¢\œ÷Ý× CßQÆ|>–†~ë’"~ž|×óÇ T½ è/-rQ³> endobj 227 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ZRHWFY+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/zero/one/two/three/five/six/eight) /FontFile 228 0 R >> endobj 330 0 obj [531 531 531 531 0 531 531 0 531 ] endobj 329 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one/two/three 52/.notdef 53/five/six 55/.notdef 56/eight 57/.notdef] >> endobj 225 0 obj << /Length1 1012 /Length2 4792 /Length3 532 /Length 5473 /Filter /FlateDecode >> stream xÚí—g8\m·Çƒ(Ñ{°µ Êè=‰ÞFÑ2Æ`†QBô>zDˆ$¢I$!¢aôNôˆÎ‘<ç=OÎó~<çÓ¹ÎÞ_îßZëþ¯ÿu¯{ؼœ†ÆÂÊö(;¸ÊÍKXLDLPÕÓÓ–.–¢¢¤¼¼ªh8Ô rSƒzÁå199i@Ç ˆK¢2òRòR’¤¼€*ÊÝptòøU~ÉÊ®p4uô ^Np×  £`¸—Ÿ ŒD·íðnÃ=áh¸½©˜`€yvpG„)ø—%m7 óWØÞÛý_)8ÚóÂÀÿÛ¦paÒå†ôìá¤`}ÔE7ø…—ÿ [ÿ×ðF"õ¡®¿äÔ¿¥¡®¤ß \ݽ½àh@eG»ý³Ôþ—7=¸=ÂÛõŸYm/(SvsDÂa1IQÉ¿âO „/ÜÞás HOøï8ÜÍþŸN.Žï·°¹™–¡‘®à_ƒý3„"ܼLüÜá€èßÅ¿Yìo¾8"4°»(¼xÿµ²þG/u7ÊáæˆKIP4êG*z!%.%ø‹7{¸/÷½0 qCy]l.&p@¡IMUFëÿ ý¦‹1¡ÓEÎîo’À°ÿ¢‹Ù`û?P Ãÿ@qìðJ`Ç?P;ýRñ^˜pùÅ.¹ýPàE#÷?ðBý^({þÒØë¼häý7Š_4òýÿ>M”¯¿°¸$ ,.%úË„( #%øß aÞh4ÜÍë÷sq'þň‹k‡ûÂa¤ØaL!Â9ã}Taz^oHÀójVADW}äÛ,‘µIšAtõ78ûu$µ3¢˜*}R ¶wšf~¯Ðêo Ž¥n¥ xþؘx¶feƒß–ÛÒDéš³„å˜w¯ÜãÞ›ò©•뮈ɼ`^%,>Ý r îžÆ’eÚs/¤“ZçÖê¦ÁÍ–§v}×Då¡°¯Ú­ïÑža™›&ú]pYrq¹zï·,5ËÓ6ù ¿BÇq™Í{· /±1¯H»½?¥¿!OE^dG37„•{èœ î*é„SMnŸRÃüpBŸs%s7é«ï£‰}c{¡¡k…Î=cÊ€oWEo.]Fê¢k_‰ BËÙ×;”JÀPÙ“Öý$»/(íª¦…ÅëÇf¸hµ»4…*:‹L}g¬Ô…ßr‹8Ä¡þñ  húMQ£Yþ}0œJ©4«@yG³%„x1>b¥¯·!«Èú~ ¦` §ÕñGt¹Ž0miLV$l¢òÍå ˜±×\½ÍWÓgtuµÎU¬aQ#"W¡¢ÒÉÐ8õ³­‰•§HO5›S’d¤¼[:’ç]1“<‹a“ÍóÕØ}óA3 bqÃQ!ˆag-™t–84üÒî “Ý}*ãªöÅq•áªKô?ýsˆÃ€!ïkj)DªŸ¾9é×ÓÎeÃA6Ÿ@ºâÚvø6­OÙè-¤Ïı;\ªÆ;/‘Rw69Q.•y„5û·ë¿K7«‘™:o~ÿaRP[`ìßIµÖD¥)!#­œ€Ý{Z¼ÉÃÖèPH¤I¸èŽAòÕYÝôhݰŸŠ«w<ê®"µ°SìwQe¾If—'µ8^0 Ìd,•è¼Ï¤:œEñôØC[%ôsi¤ø–c­£Z‘° t8g)(ô±5Z—ÚÀüyd›™"EWá­tY=YšZy­mÊMÒY0²¥|©ÊØWkHŽYdæ'|[)1ž1§×|e×ú­^†ˆ5©©Þܨ­¤‡1F}‰+y·ÃúudU$®B[ÝPæ­­<%Vç.O÷TÅåt™Å] µl°* cÆ “ߥ³Ü™ $ã•[ #ø`.ÝGSÐ ©Ìåªè²aao&M‚ý„ï€ÃÑ+.5ŠÛc'!¾—¯~.dÝ _y°ä*€_TËÎ ÚªøZ‘ ÷8>IìyÍñ‚ÏDU,hà3aä„7WFÜßeÞµ~Åk0w%võ.B¼a[›=Á>0PÉbíI±^Aäe¼½>oE]~#eGY}üSÓfD–Ì÷Êvñ”äÄ!aßÖÀeS§I©ïÇ×,GhEUÞiƒðDëðøËo¿kÃ×О # ­1\›¾‚©"Ø5é}aöÜÈæxïõéãÅ1óº¹>oE­[A‘•Iž¾»…+Ä?b¶ÛW;¦4]ˆ Õ ,ŠãµætÚ ÂsâUE1A²,Þ[ç¬yóˆ‡òÈ™lËÕ Ëµ]±³’àoc‚hƒíGʑүÉK.×;¹Óü`œ¯XTŠÎ"gPáÁ$ÖŒr¥V7„9ß âT|¿ab¥âO©1·(<œ°ËïËS>'ÖÙÈ5±Úå)c;ÍlËø1U€/ûìøYª"…s4-.‚÷€ÞÐ<êÁ}òèU#ñ´\µÓ’ö9ÉcÊ«é—öÛ†Œ:Ò¶³;TS)¡JᎯê«ô qŸG#z6 o €ùs8ÀÆ£ôƒ.GãŠ'Š´7¦M´F_ ?Pr#<ÁÛ½û 55%°ËÇÔF¾8cµ*0¯9\Õ#ïš[Þ?¼Œ ñ~ŠüRgé¾KÏÞ«}{-)gKÌeïE!æ¦÷sU%(nfåìZÆÄ}Óñ—ˆÇ¢Šªæäs¯íà{Ï”•ׇ/*@n ÒË'{lw¼íµ{@ÈѱóLah-“v·Ù!tæäö€S—ÚLG6’AeíÀb¢ß?i®{F1/M ·Ø«V0dÒ»k怶E Tãô—ÈŽ¦Si8¨ðšˆxÏ¢¦¶‡¨~./̵íñDh¾ã ñ&~®qõ/‰ BÛßèÚØ”Å[cI’ö• ®õ:e#y‡—çÎ^Ä?1æŒÅ3´½Åt­¹É³ÆR‘ég]ý´ê(#CK˜}Ã1.Tþdð1çA¸E÷óžÉ¾÷”4M—Ø»Ò ï±^›žPgÝ)«¤Šo%a¼ÝÒ›Ú•±xc±v¾Q5º¸5óÖØÿßÂd¯ñù“Å–k³kOcd>úcr+͸®gS´˜ãÚI³Õ¾Ör2¾™Ï"“(ÿÁŒ¥Õ€ÖêápítvÃû.z/‚[¶d½Rã­Uð6ÖUÛ|Ô¤¿ØD +o­` Jð‹>˜Þ•<º¯ø˜å¶Nå®H÷ú0¬í]Få áUñº½Ùµy9û¦Ã™ˆ×ô `ö¥Á»‰ÐV÷iJ6MDsjYl¨c‘§TáÆ!÷ðÝŒ~U‚sô<¥&mΫ83—!GBéd!£‹ä3ä~+Ýv}àx µ ®‘”SŒÞðlD¶ˆ¶î®Â5•¸w{:ºˆÜ¼¾ÙÆaäc'êN -soæ`³—'ÆQ™=q0÷4Î'}&ÊN·ÁñX®)·Z@] ßÀXÎÃa05Âwøgï\ VRz瓉Ìõ„ö÷ûu^Û\ݘ§qš?&êô¡TlÝ~µ]uK(¸¦3™¡i!« VÇÿš‹'±xœ·{ŒH2¶ãÓµ$nëûOâ¿û:ÒW&Ï(îmqÅVqß¡§³¯úþ`0ÚOt,˼|ç,g²d *¢}ߘ?Ä{ï­(¥?3wS‚‚)Û’ê°™,üäÀ÷¼^¾+"öeǨëHïné3kŸõ[dܪn÷ZìK¡ ˜¢c#MºïÀ~M ûŒtÑaßûÚÆzÁeô[']I[[æá0˽žºíѦËKªßù Œ÷"59Y ¯¹1¯ò·uJ?ºSßEÖ-Ñ:XÕ­Vbñ‚}}¹ :ÂI€°¸š®9ÂõW#¾ö†!=φ>—m`óÎŒá³ãñí¾ß¤Ù?#ýŽ~i¥íù'½MVëMå#è³KÚÙÂARÉŠ*ô3míÔM*-º—7&†±cB‰cÜ~܉®Áx=LЖTû®dýNDˆEu-<íÁÈ xÝjBàa׬‘DÝGªèŸè =Î|¶—æ ŸÊ ZOšÈ¤L—íû<åQkþh“Íè¹ 1«¥¯óS“7Ú¤µãïJi)w4`:)}ͳÌÅW‚ܲ™ügœÏ𼸿R "ÕÁ2k¡ýˆ¼dÅDw‚SÓ@C<,­i+º½÷üŒù`„ãR`&uýš··Ð©,Ù~GFøö6£+À Ë"ß‚~`Ëĺ 1aå§Õ\ò øÚèW¿X/@8p÷†¦8³;H«ªÂƒfvk‘0pX\Í¿,a¬Ì÷6ß éãÈ©ô„4ßêÌõ8î J©ö݈ýñ–yý‘¨’GbyMÐGž5fbFs§=ß)…ì P§å'aŸ< BuÒç”_Í•í¯Å”¦îÐÒÖVTõ›HéPòäN…Å´pÓŸ,|×'dÛÑèax_óÌj™ªžel‡¦zS¢f ×5B}î2–)¯+m ·¾M¨,ô ×5g‰$ ñ‹cMÒVv}ý4ŸÞ´“¦²Ã%¯d.Èsƒs‡üæÂ=3sr§U­À0׆©šV…†û–a£¯Lc#³0#[Kg±!”=9Awý|–´ó‘"ïÛýZ Ù×›;i/ÝÐ?Õ.ªaÝwa#C¼í¢ *kV’ÉÒd·³Åž\RøäØðää'1ý]¶æ[·®h‘0Ëó*nòê×JJó9hbA¡UÓÆiëf~Àœi1#á¾ÎF¿z."…1ÎÈqÉt…ÀÛå˜PäÈ`4­Ê(-M³[²1€}+„aus¯œ|Àêi‚ŒÙVoŒKä$ÎE37ØÒâCmn|öÞ5’ÒÃ6}UiþëÏM÷ÀÁ\ô0}Ò@v‚Þ°Á^Ýò‚Um ÿ©R EÎ:B¼ÌºÆËåÆL|èç„(PÃÍw_LЉd÷y‡.½Ög÷vvh&ó;ÆFvÚÆØÓ=æã³»E0ïÈ8þ¢Åá¦POçq_2¬Zõ4qÇmBYk­XëKUWWòpc凇 [¶‡åG¡–Ù¼ñ ÍýDüA‚Ÿ®f’û]nßµ_ ¹÷š]ªnñzjÄDIcö|‚N[µâ¤Êa?`Zþˆ"&_EÞˆ;”f’ð1Zjf”hý;#±){{©Ts‰·žQñaýn˜úÄø,“f= 7¢ÝQ’½Z×Ò|T0ÑÎS¯\ƒIê¸\nïv™Ø¶‰szŸÔì_j"*’Ï%½¾)’fíÈ*z:²ªøUÂnMµ¢h­åáëƒ!{œ¥Ý¯?¾Ëmɶü˜)æLðB‡eyê³öÁZž Gã¨I*¯\ÓДӽÓ`§Ò…í¶ü!E9E kÖ/é³Ýq’J‰®i%¦  ~x¶ÿ¶Îª%[¢9ñâ“Ðsk¶»âNTþØBýÝ‹Øiø¨føfNÇá"?qIúÂå4ëa;ìÀàé:‰F ¾ÌÍÉe÷xñ r™œ+F5Ò+=”ÇÉ»®SÂ*±rá³o?eÙþ~ ªZL”ŸŽ~Ù,µ^²®V¯ÏE°&̈Î^mzŠ'iHËලѷ3a;Ç?’r»¼šŠ™d÷LÛáh ªýžÚæcB‰È” o–aZb­»·R'p\4R¸èÚÏA ú›Ç­ «ëI[ØMÉç‡QX¶`Ɔ—×kïø¬–æ[üFq Y@Ï® Ú)Ç“[r8Kx;ûs¡ð¾Jü‡nñÁà ‘j¢UmÝÓ¸ãB?×^”úOÙýl9~ç`=“[¹Aì_’ÎÖ†•;ÓWï¶W]œA$©Üw˜R(93Úö•ŽçPNbÝWÖ£bz÷‡* 5p¼WÍk¢úÓY5̉ƒëå• …/CNr|"FΪ†kñ³%{NXkýÖš^,ëðõƧÖ×/¹uß˾” :ÏFg§«±L*-ê¨æ –Ÿ='wâ ¹œnO¼¦Çë1Ó'wê®ÜF&pµë}<ènؽ„<¡ #€ÃVÅ)GëÖCy™‰ÜLr™=ôKAöz*Åxø®}Øüï»dËŒ8^bõoìÛ <áJn3˜D·Ñ¶îhme6ïGk–¬ÖɃ¥žY¢¢2ñGk¥~NNË·¢+h=3Vn6$4¬rûI3têílÞ:Z´~Éý’çXü…:¥0ìy;A}‹TÃÚ`Óg&jìæÁ|sÇ&«” áó&$‘ÒŠ‡³ ç³(r–¨Eµ!I(/W¶3gôQß6øP;}úÇý}Û‰¯H5Y¶üëXë8×Bëï}4P¡Õ#­ÿ¹òyÞ^Ãÿæœu L¯jµ‰:'™¢ùúáspby¾|=g‚'l`Õ[ÆÁ¥Btk2ê.é"2YKi|ƒêÆkìU¡p‘ÃÅ ¢ür¯ƒäƒ˜˜ì†' ñž^-YÅt­‡\ìºe¹Az{qø’bµž7Sd~… û}ÆàZ:ú«‰\Ř¡9Ì ûÌÆ9edÙÀ=§ŽR*r»6N’ÐùIìVtŽé2›‚XÛuØáž-kg`qQ©.F‘Eí Ýüäl}RH9?_« ÏbÆêtž…É}nn!)«˜$;¼Ö°ÂG+·"Ët.š&ribfÆ!ž2Ã2Ã;-»©×AñeoRm}4›×õ:ñK†²Â0ñèK/ Q¤Ê’²l‚Ÿ„SÊnYži¬{ëàÓ³ i¤H&†]¶Œw¢Á~Ô\_+ªÒ3ZH¶øº'7Id|ùrøi°Ú}LIèëzã; ¸=替9Pžøœ`8¥_ZCòA×Üü>îgÇÙWZ|æqÍ éÂL+Éo§Gï4êpäÓõåð¥Ò7Lµ*Z¢ÿÇôÿþOÀp(Ú å E»þÈWtendstream endobj 226 0 obj << /Type /Font /Subtype /Type1 /Encoding 331 0 R /FirstChar 78 /LastChar 120 /Widths 332 0 R /BaseFont /WVHPQL+CMMI8 /FontDescriptor 224 0 R >> endobj 224 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /WVHPQL+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/N/a/b/c/d/e/f/g/h/i/k/n/o/p/r/s/t/u/x) /FontFile 225 0 R >> endobj 332 0 obj [843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 564 455 460 547 493 510 506 612 362 0 553 0 0 645 514 535 0 479 491 384 615 0 0 598 ] endobj 331 0 obj << /Type /Encoding /Differences [ 0 /.notdef 78/N 79/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k 108/.notdef 110/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef 120/x 121/.notdef] >> endobj 218 0 obj << /Length1 752 /Length2 1024 /Length3 532 /Length 1573 /Filter /FlateDecode >> stream xÚíRmXLi®UÔt!k¯Šz+µ‰jÎ|H!;ÕLß#eÕ”VÇœ3u˜9g:I‰Ú”>lBjKK!¤LØŠZµ®F–DT ¹2‰%‹>¬¥bÏ„Ýkós÷×^ûž?ïóÜ÷{¿÷¹Ÿ×Æ20؇«QS#ä <ø¡@ŽL&ÃÆÆƒDa #pO˜B]äâ¾ )`± re±\9 6Àƒ'XT4ì<æhI΀'CIL ã ¦¢Q­!†¥ ˜c(•àxR)ÒžˆAh,JÆ¡ˆ#‚‚‰)°Âp†“Ö’.!€ó»6¢€âP2–6ì´.çÚ#BàÒ€ †“ /Ci+ÿ†«±â…T*„eZùÑœ>Âa&MxÏ dr…’ €@PK Aß™ @L!‹úP°óð() ˜ïZX¬‹G‘@ŒG ,EGû(ŽŒ5A'7jÁÉË[Ì÷û~¦£` ŒáÔòùŸ²Zöh ýUÓùX<gÒùB4‘þ>ì"Æ\ÆÇÅ‚áQ€Å`’„ôë¡+.H„†#h<@ãiÇNŽ8AÑGÊF !H†v¢ÄN$Œh'áŽEiAÆÇãîNÄ':°8Àå2Ÿ–çp9ÀÙ™µñoL±‚$Qœ},t(j FGˆ¢ñ¨˜qó:!^˜¶¦àdzy¿´­Bß^×=ªv»°ºñêF©;t¥‡Züb컫B_)š6©W¿×bݰYì–† ËZÏRb¶ªßôÆEö­ÿÁ,´¿( á¾ÜêeêãÉõ'¯ >áê.íè¾Xž':ðÓžççï ´ó\þ`Â-KUx\ê»´ùΡ‚"é—›«lÙ–AÆ…1噜 Í:ã¼\=͕Ԥ5us»úˆÅÔ×¥{w¾Yù¢®å\ÙémVq÷§¼=fÇĸ{1š•×¶AÙd=™™l¾ÏLS–›<À¥?r»9Çï‹…Y–êeO ¢·x6®y~k‡["SïàÀv"–ñ¦ÿ*«ù–¬±2$iûý6µ»ÁÞ£Évç9}L»&Íêôµt—ýµBƒþÆw}w xõ ºø÷ •'|Bð,=aУӢð ȧ²=ÙsLö‘ógm0]üYÖÙäqçõMÅꇷõ^+½¸æ›Zz|˱yHPôªìPY¥a]yü"ë¯T,WØšm«†6Åð»¡p\UÝy2‘mý~4xƺÞÒßíx3;‹@^[4Tâ3E?5®óÙ)Q¦_)”~aEZJȬ±½ê€È~Zò€.¬cR§Ž Í3s<3¢S© ¤žz{>óž²ikvöÅÕvÓ4êjÞ±"‰®é©¾ßz»Š‡Ï†¶ýÜÐ;’:)ÉðxWáúµâZÁ‚á˃ÙÑ^Ŧ›­VÈoìÖÜW­{Qž×"7Z5¹ïUò9·‘ëîsß= É¤ð{ûI\Óê馥ù­Ï>=Óg±Ehÿ¯Ð§`×åKÍ6AH¼ÿU†Û¦üÌœ¡3㚧Ά=}Úúv½×á¬Ó¿8Äv†J‰•ú­š8ñáSáíßîqц³;ÕµnÏ…•Éü‚ ‡+c¯iøÝ&’Ò:›™ãÒgøsC¿ÖØ6Oú¶ýHúÌ\•Sø[Ì,álSÛbµÅ€G€¸¾êÛz9jÆ”.§·²¤œŽÓ×­_Åö¦m­4Ÿ·ÈV¢ hW5/Xº}MbEë ¯žqtÿ¡‚{Á7»ª:-"ý wìÄÀUÔí¹Äb¸^¯]4^¢äNͦ*MºÃo¤c4ÒÑÆ;ÌÉKuÛeýòL‡X\¡3g×ø-—‹²­’®¬º¸Ùu¹nÍÕsõÉG%ÆÃ^jkÿáRçôȈ“@󃎼‚]ûÊ.g]éú¤˜ï„t=–­î«àúœÍµÂ÷^ˆð^fq"3‰o6¼‘ýû¡¹äÐbñÊ·“¦™t´³¦hvÖ,5Pì¾ÔǦž€|Ûð‘©KFÊ×¼ ³­5©)yrMÇj·Ú-Ôr›\ÑxŸßªs7ç„§RuLO9t’g0ÿábü/ðŸKQ˜¤L®eüLHU÷endstream endobj 219 0 obj << /Type /Font /Subtype /Type1 /Encoding 333 0 R /FirstChar 113 /LastChar 113 /Widths 334 0 R /BaseFont /GHYSEJ+CMEX10 /FontDescriptor 217 0 R >> endobj 217 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /GHYSEJ+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/radicalBig) /FontFile 218 0 R >> endobj 334 0 obj [1000 ] endobj 333 0 obj << /Type /Encoding /Differences [ 0 /.notdef 113/radicalBig 114/.notdef] >> endobj 204 0 obj << /Length1 1443 /Length2 9333 /Length3 532 /Length 10193 /Filter /FlateDecode >> stream xÚí•UX\Û–¨q‚ (Ü¥ ¸;÷àP¸ÜÝÝ-hÐ@p ÜÝ=$¸[³÷9½“>ýxïÓýnÕKýcŒ9濦¬¢"SRe1±3KÚÙ:1™¼1y5 ÈÌŠLE%ƒœ,ìlÅAN`^‡q6¹l@^VN^vd*€˜½;ÄÂÌÜ @+F÷W@Ä ±0ÙäANæ`›—Æ k€ª±ØÉ bm Pùk„#@솸€M˜‘@€‰…±Àlfa‹Ìò—‘Œ­©€ë_agûÿN¹€!Ž/RÚI:À‹¢‰­µ;ÀlŠÌ¢`÷2øÅäÿ†Ô6—t¶¶VÙüÕþïUú_y…µû¿+ìlìÀ€¼ bûŸ¥šàÉɃM,œmþ3+ã²¶0±5³˜€ï˜Yßý+ná(iá6Q²p26˜‚¬ÁÇÁ¶&ÿiò²z{°|“–Õ–fø÷¶þTYØ:©¹Ûƒ¬¿«ÿfào~Y$ˆ…@‡•™•øRøòýï_zÿ1™„­±‰…­€ƒ‚@@îȬ/­Ø88@€…­ Ø v{1fa¶µszxY/€©ù¯]}ÙxÓ¿cÿB¶´øÙßXœíœÀ&FÖÿÚÐ2<ÿÎüÏð;V‹=¶µ›þþ;úÅ/Ýíll@¿#sw{s°íïçËØ—YìL~‡¸,ŽÖ Gó"Üu²¶û=Œó¥Fì7½ØJüC\/’’¿‰À"ó›^ÆÉÿCÜ/•J¿éÅWí7½¸ªÿ¦—qš¿éÅçÃ?ôrüY~?#ÏKÎè7½˜ÿ^~Ö— MþÀ—…ÿíÎøbnö¾è™ÿ/~à‹„Õøbaý¾hØüFà‹†íø¢a÷¾hØÿ/óBþÀ—yÿÀ—ýsú_4œÿÀ —?ðEÃõÃø¢áö¾h¸ÿ/ÿÆÿ}ýDEíÜ<˜Ø9LlÀ¿ž‡ÀÅÁêõ? !/GÒéïÜË%þo6µx¹÷`°ØyaÖΘ/Ð2¥>¸Ô[¢`¼ žÎ‘8­8p¸=¨.ù`•kÒ0¦&9à ´´øü:ùH¶‚ÅÄ”c ^ijÏC•%h³ ‡./]ñØø@W¦?ç{†MVØîé¶}Ãñ"ÅåšK;|•ÜO W>ÁQ8\éÜìã¹·•ÏÈúJª ÅN2²^N‹\Xco-vèîPÊ®Àn¡°O7ýûi keÒj-'"Gv¶äDGª*阶´´´œÚãy©¢{¾´ÓøeOдáÖkÅsýWƒ¶[[´†â¾EþM¾S™>•~…3f¹EÖá¹Ký|¸É%Špœå–îP fmÃëÈÒ˜PüîÃsB>LȦÎ?y' 5êF¢¯õö:ó"®›&Ú!JÒÛ%’”ˆu½y¿®«Ö"ÁU×úùÍë »‹ô½€ÕÈ`Ü:ú.ÝYë{œcôS’V¤öfÅwÚz6iÔŸ»šç–°iÁ$b÷ü’‹FdɆœ‘çSöò¼u ®‡7àiÙ+bx@Â$p Šþd<+(l;…l öåi™ Û¡+Úu5E¬wùì%rýäàj`W4¶=Ùéëí“àþf=ùh¢ ÙÌ—ô½Ìktg_.‡MÖPóôbmo¶ý'û—dÆŽèÛ7ž¼ïw)òù݃Ûx¤~^&«­cÏ>ˆ[>£ Š_.Ò »z&WÔ†Nìq¬ mPÜ+»¸75[Ø"f)+£lšØŠt*–`iKŸ#”—rÌ4£ÒY¶j) 2~ñŽZÐÑÒ%Ûé@+¦œF qy¬4Efá2Y£ D ü“uôHŒØ ã0¿Ùôš½¯ÅW¡¨)žuÍáéCLÀWd䃎WÚD#ðM»Á¹éU¿¿éS hÀ#¼Q×By"|äˆ^%Oé;,ˆ”QhÝ7!ïɉ ÂSöÏwñ令åþ…s{;?:m rNÀ›¸TC¤˜¯;–<`ªžL>;¾V…H´§2ª³æ¼Ð(Âŧ$À€è´…8GF­ÍÂl†gßé«KF–é¹R/ª[}°U~);í¢¼¥˜ëAg}ôÊïaÖ)ˆg£©Ë‡hŒÒv¡€4u›;„n‡±5}CÉ% êý|ÀA?êJG‡Ã›[ê¶öé7λ^BÆô½È%áá8}Ü“Å|zí‚p2‹M¾gäÝ Ô·”ò¼Œ÷ ˜ «ÏŠ·µ“FŽôÅÍÎÐýYU0¬²@à¹'u§ˆHF5aZxd6dôñØÙ.^Ò9•šÊ›"› .3J&½7KM¤Z|¿Pc½ž»—}~ô&ŽíE€/êD;Úž%CŽ;çà~Œa«eü† IVx¤S¦à‹Û™Ë˜ª®âC¥'"Ÿ£®‚ËÁá˜J¶Þv*Emý®Q;›@BžP–ÙmêE™â|éù³ƒPÎÊ)çUŸS۵નv+#D˜Ó'1rÀ'kH$IÒxéÎqè1CàY¨#yÎ2¾¼gb~r¸ŒdÊ,áÈœþ|ùûAžÔóü.ð‹¡ÒœWýôãÞ놢nZ×Z[=ÎójŒñ©,[˜Añ×£¹CÞ^öÎÔÒ2pZüí£ÐWyß}9“ŸæÉ¼KÖ4ðÔû\ÕY¨Ñ,¹U«ýK;-+‰½bHðyqÇâ^Ãî›nŽN‰8s)ÚSÎÑ´k"ÏÞ:š*…÷­%<\*'µëd°È™À´±rä~âãç;hγ¤%à˜ùu~Ž;5ŽZ¾N ¦ýO „·VJ©eŠÐ£ ?ÄÁC*²³(±0™§;‚g˜z±æû_JcÄe¢ß^“|ó¯C` ×^LIV4ÙöN' žŠÌQ‰„Þñ¢°~¿f’\!%-u¢–;âËBi3׃!0Õq‰‹ÐÆ,FXpH£°§˜k"3/ìm˜GÞk Å×ñ$ˆ€§2UÅÿõbw\B+”&“l ÞŸ¶”ïèò¡Âô¡÷žäÎ’b–ÒT¯‡‰dikXÏÁóèZÜ7Z¢Û  dá~2~&‡ Ž]¶¯Ò#­À7Ñë»Öµ)\Û0ç…²&ó㉿ˆ½á[P¤W€û„ûάçzDn`Ýq`˜¥("é¡g;Sªø6%v1¼äL¸ÌɃ‡*iÕRTJ£‘_ËËûøðj¼¤W’\;“Ïì •ÆO¹lBŽ®Ú\ëÞPq!Ý&¡v!ª‡\k"bt >6“ kK.°œxÖ/s"#tÿDÂ.jii“%8¶m+;—É®ÞÙSCÙEé—LÑ&#­ÅÎÿx•3îÖdêŽ"‡¯Q‹Up™öIXµ¯2ƒÐh4²Q0éuUí¹Ö0)z@{nÝ0ƒúÕΖ¸ûXÅ%$,ôæ$˜qºE$dN¼¶åº©ÈRCœ£„Ú'̵ɬÂÌZù0 CÏ“ý¾7,Ÿcªqe_©ƒ>sðå®fUQ[Ü-ŸÅ-âa¯p­öòôcí¸IŽ\X²Ÿàì+]ÜlµXü œâ‚-±¾váÁ ²ËÅìM&öQI STÅAîc¥H˜á))9—4ωRvãq«i3g1¸bäáý|Y–è·É¦’žÚa&êUà'Í•¹9¼oGJéYß UÞ©¯§UɺZb<ÝÍhLýÙé2¤ý¶Gµ;ÊáókÞâÆá?ÃMpP¯®Ñ¤„ϾÒV¾m§ðæéíe?ÖŽ¸¬Úr·WÜä³ RÖ¦¾ÉóŒæ¾–Éí„jÈ'tUJqV[Dm$‘ÛŽøì'¦YVدõ&#ÎÞ# Ù}0ÓæÝÕ ¤í‰FÞ‹ÃP£F’SÀÉê… 2ÙF?zwiÒˆyi¿óK7,¾„Kyµf×…0”æêPÞf%¤½^»x»ðU`DS<,M¾U—Lz¶ÔÃQr,UßiÁ´yù5Íœ‡6ûø§-Äëù9ï½£þîýZwå&ÂÌÊ– mos êPa89»–®Ú‘'š—~#Ĉ)0äÌÔÁ³¾HØvüœÑK…ú,ü6­µ¡­9ÏÑ&C0î“ÃRêùºÌô£ ÐКmeŽÃ“AÇe¢5#* ýF¾y7Ó•ÞöÀö¨pWá·’ï]ùc"¾iGË|SÔ6¤Ç”bi‰À$|ø ÷¼p²×÷Ão “R|N#.‘ŒLÞªg(í»éxmoâ•ëï¢\î¨3w³3C½ 4%‰ynÈÖ¦­ìžµþæ~šsb—’ƒF~ˆËÁž¯ÌñaPŸ¥®ù¿­dVÝfàÖëøak˜)ÈúâèáRT6¨D¿„KKé è-Ê\Ú÷poó³.á²éd»ËI>çØ¸Ìr;±Õ"ÞÌí!ĺ~»¡^°bP|Å £)RÂ2„hœS®¬mvÅÖáà}H:WsÕ3lˆ.ÝQ‡ÌÜa,ô@¾R­~6Ã{mË«0_`“Õ«g^ALCê‡q¦?ž×›I×è,ÿ¸Æë_hõœ,Ç4Æç QX¶«sªwJ÷Æ¡òÝ‹%Ö?æwK{}jѱ-¹>¾BÅ0Κë1w#äÇ’Ÿž¢t÷mÖ|oÛ:[éêé#e©hÇx|7üÖ6®%¨Fÿ£RÞþÑ0d÷ŠÈæ$g´’í°¯( \Žì¦ÒÒÏžB¨¢;~ËΠ¼uÃ3èJò·‰X,°r­h¬\ØasûÕD3žRFÙðU}½šÚžM Öxu÷OÚ´Ãød[‰„÷z»-º%HO0á.ò4÷¬×bfÛ' •‹–ölëð¹~Ø4;«©ˆVnŠñoUÌéUT\æ=]„¸ó ÉSåÒ¹ñÂWüSŒ>ÄM?u00g? Qí)SHÇ8"'0Å ’CÈ8ìÌ<ý€l^:˜>šô¦ H@4©á}½ã ŽB£ƒûÉ3ÑS¨JdÌ©óØQ¹<Îì…·Ù9 ß7˜TÊÛòÅtÕcYšRò{ƒèY8$ ì7×F:g݈«Æ„Yû½Ö t9uG›G0`&Þ$œHnî+fÓøžw ó‹²èD8¦ªõÕ한rôDzÑoÕ=Ce{EòRŒ±>Y’éaïm»&âö÷®Fb(°Û‚ÇE3H$é¬íVÑ 6^Ū¤êÃÄANFƒ> $Üæ÷a¶®„‡*Ÿ6‰3+B—Ð>Z˜®ÄÖ«Þ 8Y¶š‹}Z>„5zÐÎ?¤ &ò λì¸ 2À ƒ‰õŽË´_-RSÅ’˜ÖS!k£Üò%pbÀHù«¹«› Ÿ›ÑH‰ê†:T‡ÅàðÌ0$ar Dž¶/ß\]À«Ê5Úõ¦Ö8F×׽ъu~¼fT8Î{‰—îû)–&F¤FI,xro'¥õ¢€üïüýçbåLNüÇýª›l}Ìé¶%¯I 6]ñÊRζšú%[¹½Ã¶´([/„˜î¿”tX3= §ú8÷s¤˜…~Y¬R|emôN¥æ4z`º¤-‹š~ Š˜Lv°±êÖXM]ÿS;óCšØ'=dÝ“£méÆ>ùᶇ¾¢Ë"[ã$U!ô÷=jEgãÈÔg½W¥[Ý‹²ž6…$-‘Þ:"M›À>KÓ´­ îËÝp¯j#ùœ¯ÓÝ À·ñõßúcG0;µv>×…îÂñ>õ1iêŸÝªç9aŒØ ° ÏaB¡Aè6•z/ß—…3Õ1~HÈukê½Åê™$+Âz<×ÂsÿXFôÀU1ÑÎ[»!#1‡¬ò:· Ú ;f[ïœü±†î ð §–7ýÖ÷i(ÅœEâq5”1<Žr~T;\p99:¬ç×u¥{âX'GýTs>7½¯•œ(FÜÍP0Tœ"ªÜÞ~@Å\”1õtW—¨x’Öo°0Û@”WZ6šBÔõ‘Z¶¬À S[÷ÎŽèY×FçJ¯³j‡4‘XÖãÚñ}ÐoRÞµ<·è7óxtè\ÿHC@ðË¡ûÔ¨D[Û±cÌ@ŒYœNý¨é–‘iY2³ïÖ4­XeÖŸºÎA@ëØ ¹¡T¡În‡aŠâÈQå^Ú·?4¯Þp<Ơϲ1ç© Xw`ævêXîõèõO¿³½¾»Oß­pŸˆfæ2øÍÏ‘¬,;&NËø‚YÎ3l¢ÇK¡{¡5áMùòFÇn}ܧ“­¾æÅŠ­ƒ¡žØì•=ʉóË­Šøý6 ö·‹J}EŽóáUñÁjúˆÓ²Ø¼ÌlxhQ»7ИÚÖbx¾GVƒŠ–"6j Hnpïäk¡|‡K[&p^ùÏWéAk­}{ÿ dGdc‹—ª8×îý¼…×À*m}Ëy*kÜB…mñî ØáŠõùŒ‡åø·Qgò›£k}‡âRöUÇU“·]¯”¼i§3 =™XÛ¼È Yæ¥Ø>ÅP¸‹28‘ S·~¶ä©‘Gž‹þ‰s(‘€xÇ›;¶ùf[_Ûmø†ŠàJÝ®Šúç7}Æò–ߟ˜më²zÍzî)ªqÕ鯵ãXÎ1æ±HÌ`ü7·TÃ.£W>o´(ð2²â^…Þ÷3Äò:¸UW?õ#ü)`ÚªO¼w×!{ŒEu9G–1,wäé¾ð|^sè‘Ѱ1¬¬0;/°m~³çAìYý4£‡÷K𫽺í­VÑ»0Vr¯–z2±‚6Ö]iNf‡‚!lÚ?N‰Kþh%®ägÅ.?Bëm(“úê¯\˜ÿVL÷äqŸ}»Ô Ú››Ítö3… …k0~óøAЪJè–á%Ü/`½]¹›˜Žˆëç óäöù«‹Åš z²{TCëòÆÆnTñHu$;à':±ÀȺ¯›tQS9 Hm¡.ï>y<_}]®V7Y:C|o1ÃSd Öd‰‰¥ >¢³ôŒTKk )0Wt\*ìíƒ6L)¹“‡Jpp 艀úzª,¼Ü+'ýz§\RL**Ë·:—âŠÍ¸Ãj…öé®V7ÿ¶ƒw²i¥QÕK_iªêÀ¤g˱J^ý†Ðìmb*›Cn ¡×<œ\S'©U9’P=ÊBÄðŽ†§Š/ô@à X¸í •bv—&/M¸““^¶¸㧃UÉ`$Ï„ï*µ­É&ΔvÈ-›äqðí~èGļÐSÒ ?§R³²£ô‡aLUí&övæbÞgnG¬+$ÉÎò.2+c7Ò^¿õÍ‘VF I!Yhã÷Ü{’,T6±Þ”;¦sÐ ¶ ò-¤p†WµŽ*„úªÇ窔šñ\|>9µ¥ç»º¼(‹÷;Óú´Å½Òï ÀÝ b|àê7¨ÝÒ$&vÕP1÷!]q–*G~âwÜŸ§‹HáT¹T¾Ë:ï”XW• ØÖ &©5ÙxDhå2lW;ÛwÕcšQ´--[ÉH#±YÏe‘æŠÍ¥ P]oo¶û¥0)`¨ç®! wª ˜Pnðuûµ_y*ËÆZ;|žï~•æÄ…rL>¿vªáŒRôÄ©xiWbL4:‚F—2š7i¡o„“iÔéÕí¬k¿}TI9Œÿ]×ZóƒoÙ4ºVŠ%[µ(Õ‡ïV‘ÈJË™N‚Áp¾â±gÁ‰Iqœ<˜¬i RRØp ßï(r¢ÃAí÷§XD?ëØÞ'%“5ibj ¶å÷ù|žIº×È–_Ód£)µ—evL/ ¢ê¦˜rìMûÂÿh‚ÐêŠÛ§ï i¼È9×ÍvÒ]X·±[lDÕ[ômG°]Òž¨{ß;º$}­íßÈ|–hL…É÷R¨)‘˜¿*îr§Ã¥ú vY!7òjUwBù úÒ%¼¡j ±©ìCo¿š4}¬×CS0Ó ÃëÛ4aŵ`Gê€×†4s·¾>Ù0zQ‡³1za´Þ”…F]©ßà2áa%™%Ô`™‚È>[íÎâ  Œ#‚'s ¨y·®~ùòW±6³ED2Dp‘ÀÔp ]PåO–o¦Œ³êºæ(@#<»¾÷7QÊ«ñå›QbQÖéÁH€+-ñvòÝâ %AË\J­{ŒiF³ßTed*÷>ÀB=êd¨Øé‚ÜszšÝ;Öä«……:•¾ÙÖ‘õ‡éóÅæéjR&¹Ø·•Ž5òÿ1KÕ£ã¨Nú܆^³§å̲äÍüŽ2E%ˆ*%üh˜áéõ`ªÒ¼Lî-ºl±[šm `–M¼Eæ°øQ^fø3›x@m‹«Uc¸ ¾ˆN1åÖ«)/Qî×úSY|ˆ>+·ÔSúQûQû;¦!*FÅÖV$ '›å,Ϭ®Ú,X4Ô6[9Éï lLjÏ÷öL‚=!coÚC¸­J3ÙùÄ;R+R–ƒ]#² ™Ë®¬è¡5ϨÀámÆü/ —hÆ!޽–Sê|¥ß0Ö¶ù¨A\sds`ñqŸ)[—yz¶_$Ô%ïn® ©X~ß“÷“V8ï+¿/UŒõû¸…ƺ³èë°ß÷Ï>GÐà@àQІì@G[ñ¬Î9ÎWt£ú}X}šÁ>RÌ®ÐÝYn÷LÇH—ï*V+t­ŸV•öH&Ä Ñ$¿œ |ŒÂf„*ÂBB¸Ù|Ûß5.ÂQr#¨ý„ø)X Æë'ã«;Ö’¹€ëµBñOg9ü¶Ú1„#Æ£I¨õøá‘DEjKxKJXÅÐ$XúŸ¨ÌÚ‡ûI®×EÄ`îS¸,™‘Zû>®¨’2ÁÿÊJÃmWä€à·¨ å0²w·ïžÄØ@¢¡¾ßœñ¿ÿtaÿ€–Ág/©Nps+¦®+nG ¤:a»«mT¾<òBPþ"xõ)Ú­„v7$F…9GßÞ.µzgƒëªã‹¢Ý$ù×59Q•uje–L1ÄŸ˜Œ^4ðÆö±ê,«[1†&bíÐ} AAù²HìŒ`ÉZ19µH¿5¦{µÛ%œå&Ìí¯‚9ë) Êy!qMéúÖd-Eÿ\•yæá2Šª»Ê/ìæ¬mãÁ®+wöyk—¬1X+æ¯Î2èn]ôXsÞCÇ LÛÏ$W%_ÇôdŸò0gÐÆŒÈQW§ ŸìW辞O]®ƒA 'ZHÒ°éÔ²8÷á‹ýn2Ðc[Æ)œ™P ë5ŽÉ3ìÛ½gØ;£¬(“Š\lhàôÃÐÜ»S‘Š-jø°× ï>ÚÈö!¹ žýéìú!¥WöOµøŽÁx¾Ï|yD îŠH2H½oÔÛAL…°ÏçaÆ8?§ÆGxçmðc-GQö%Å!S>©´ oú ×Ú¤ê‡Ø¤º·:kÕùT*³"âC:mµKXšÒÉÐ&Zê<õޏÈóX”iÀa¡™d±çañ雯µp¤’èÁü#%)Å•YéÕUê¬ n£f>G->ü]’MŒXN§íÓÖ¨X·J¬ÕºŒÜ‘à oë#}ÍN¼ï׊eȹàÀ…±ÀMá{TæÝ(~õPÙ/Pl\wqÄ|§s."ÍŸêñ"óýYDÙŸä£.ì´uk8+ÔSñ'_#›ÏÅb6òÊB7r9ù~ÍmѽÎjyCæ´*É ÿ,b· ?¥5ÉÔÙøD*Ìeù‰­!ÛïìéÖF§Îu¢:ªhЬÈó"¬†°†vGÜCî¹8_/k;SµÄºJ¹w$)~þ­ÉH6ž¯Ä@z*¦™1h ãD¸Ý8À¯¶—KÉ•ôž)9­–RWl2|ÍÉvõMF!+ –y‹<ÎüÃÎáô<úΫ#Ù帄óG·Ër*„ä3ÙÖ† ­ªQ ñr•3ù;k¹°>÷:×q ¤B,^^[S·Êéˆ V©H{¸!—ø9ÐŽiÄS) ^jKÙÅè¥ã²tà½ÃQÕ;ÿzØ×_KÓËÎñUßšÏÛC'²áK *c…êK ½TÌfÄ"Êz³õå–¯vƒ0ú5ƒÇÆ/Ä3Æ\ô²BÂçeì.7÷ó¸zò¶"hM“¸¦Þ ¶P¦“Mck°D¥!ÐcÂÄõÐU|Ux]T»`XìV༶pM ðÂÐ{®±fˆËs9Ææz³*õÿî.Y¨±ýN~Ð0²ZrN9‰¾I}EÖV¾nÖCzÇò žÙŸè¾£‰ì­4©[ßN…)—›¨DyØ%Úœùô×§Û§gpÛÇØëÃö ýÚgßæZ™ãÍÏ—W@éi>â[,¬ ïxÄãð3"e9‹ÂZA]A¯üMŸ7£_ {1вÂ4MÔ^AÉ!‡7ôf¿£+&ÎîÜ“=;>ùñ0"Úàqc* 4¥Øý¨»Îû^7w°¤•Ÿ]êyWÆãÄh@ÊjiÉB¨Ç‡Ž¯ç*³Dæç7Ø£ …@%ºpñU¦½ÔOÂëpçÚ²CK¾¨ÝPXHt®uÑ™RfÛú7â¼@çÚñðÛ\~è;îÂÂæ$ ‚< ÄÅ«÷¥Ç*é‚Ý Ñ´•#qTc´È-÷ð"h+i;±áÈöÆÈòÀöt‰heóê¤ Ù)EÝɲv „vì¡Óqá˜ì¦âã>º÷ ¾î®4v^|h~þ ¯ì©Ð„žˆüT1&týFLy{ŒI—Ù‹úéÙÙvñ‡¨ÂÞäÿl"i5CRS³„&K/nÑ—oòãsí6h‘>Öûœ¼NØ€N¦îŒ0$•JÎW”•½™Íu z e1å0b;i®t6ª¾­Ùv©â¬i%)< œtïRpÊÊ© #Ã=XLVw(Il6þeºÚßzß´(dCôRPÙ‡*eMfƒþè$T+$®ƒ9N5ØÅüÑÙQÁºÚÇŸ¯3êê#½‚M[—,[¨rJf6}êó¢ ¼„³sÑ*þÂÏlŽKLY „×A°;x’²‰D•qgÀr°¡MÿQèR%œØ°TãλcM'þ:ãùí”èâ &ÑOß'q©2b6Nžüô³ª†Ï¶f°‘_•YqtÚ›cÿ#GEÄwZ—ïƒ#(‰ýÄjhÚ9;â$£†]æ9Xò­í1v±Ë? BjB`Þå"Q¹S- ¼éûe8„Nµ÷ ÕòŒïÎ#û‘Ÿ‚E‚ŸtÂ!…”†TƒWâ: ¿k±Sþ£ ÊJùFâü½°ù“Ù#I¾Ñɉ¡æoa§–K"¾s¹‚޾Hº@¼V›Sn®¯áŸ_塊f†’ˆË„D¢­“¯ñòfxäÊOЍÆc…œ/bñ¹Ñ&,ùrÚs5{ÿÜ÷…I?UÝ•¸,'†è(ô‰v´øœ §˜®Oo< ~7M ã¼ö³œ±©ª€ ËQ$9ËþXúZ‰Ï~t’ž†ën¦Ïá‡> endobj 203 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /XCHKZH+CMTI12 /ItalicAngle -14.04 /StemV 63 /XHeight 431 /FontBBox [-36 -251 1103 750] /Flags 4 /CharSet (/ff/fi/quotedblright/quoteright/parenleft/parenright/comma/hyphen/period/slash/colon/C/E/F/I/M/P/T/U/W/X/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 204 0 R >> endobj 336 0 obj [600 550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 300 400 400 0 0 300 350 300 500 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 700 0 663 638 0 0 377 0 0 0 877 0 0 663 0 0 0 700 727 0 977 727 0 0 0 0 0 0 0 0 500 450 450 500 450 300 450 500 300 0 450 250 800 550 500 500 0 413 400 325 525 450 650 450 475 400 ] endobj 335 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi 13/.notdef 34/quotedblright 35/.notdef 39/quoteright/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash 48/.notdef 58/colon 59/.notdef 67/C 68/.notdef 69/E/F 71/.notdef 73/I 74/.notdef 77/M 78/.notdef 80/P 81/.notdef 84/T/U 86/.notdef 87/W/X 89/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 187 0 obj << /Length1 1194 /Length2 7442 /Length3 532 /Length 8215 /Filter /FlateDecode >> stream xÚí“e\”m×îIé”p†R†îné–†``†¡»»CDBiîîTZR@éF:6÷ý¼ï㽟÷ãÞŸöoÏ|¹þë\籎k­u_¨i²I‚æ9„3'ˆS ­¬¬ÈÉx|æàÀ¥!fÎP„Œ™3DÀ)(Èxípñ8„xù…xy±i„½‡#ÔÊÚÀ,ÍòW?@q„Z˜Ù”Íœ­!ðG 3@a…8{€’0@ã¯N ˆÄÑasrÀP g€9Ä j‡Íþ—'E;K€ÿ_a°‹ý¹BM˜ÿ¶Éx4 FØÁ<`ˆ%6» â±äÑËÿ [ÿ).烩˜Áÿ’ÿ»SÿãÜ …yüWnïâ q(#ÀG»ÿLÕ…üËœ2 uÿç©¢³ j!igƒØ8y@<ÿŠCä î°ÔÙÂ`is‚ü‡ØÿÓÉcÿþöÁ.¥.§úFçåöïC53¨³–‡=Àñ'ûoæüÃMr„º 8@œ‰ÿÿ~2úb²v0ÔÎ ÀÅË0st4óÀæx”ââåxq v`ˆ;âþè˜d‡p~¼xìŒÀáˆý×\GÏn³·6û+ü¯€Ýâü'Àý°w‚þ›yùqš🠀݇ÿ¹ÄÇ`‡Aœœþ 9ÁÌœ¬ÿDu­þÚòÇ9ý;Æ÷Ø´ÿc†Ââ°+þ!~»òzô¤ò‡í¨þ›­¨ý!»Öâ°kÿ¡GMÝÓãÖ²ÿy!ÁÇ æè¯þÓ2ŽÇàà£S«à£í?ðQ ö|”‚ÿÁ¿‚øþÕüࣲÃ?Fõxêù7þÏ ”’B¸{±qsظx7‚ƒ‹ÀÏËáó¿%Z¸8:BìœÿþÊ÷ø¿Ùú¸úˆ;Ä{þÂB8Ø&µ>´ØWöãx :‹uzaðh{Hmº0hwY˜xÚ±aL B{BBd-%LÙW*g[ò®RÖKzxi²‡Ì à‘°äfhbZì£ f÷wÀ³"6矯Û7¼<\ ÿ½âÚŽ^ñf›“?r?­xöÛÝ©¯­ß—Õyœ40ýF ¶QvË›dˆÎÖJüÈõž<â#b>Ü0ã÷ÓûyÊîï“¶Kxé‚QÙÊ¨ßŠŽ ä+’™‹ûÌ—Òz½k¨!ÓPnóÙÕߑРâ–˜¯ÍÌ Æ;ùÅpÁy¼|—¤†VdPBoI³ðÓ¦q}îï–úü`$¨¶°!í&yB['y#Ú™î*§°†óYX1èkŠWîS&Ô¼{~Ž Až´½/#66¾!ø_„ž°£ã¸p¶q<#ãíùåt!~ËÁ–€‹*¡à­{+sèSqÐ_ ÷©­i6©¹ò.™-ІFé; yT’y«YB±̶›™âÃ]vëAë,«~• ¬üeywXD ÿ˜›ô6-Ó"}4ë!ÅN-%—%KþpâÂùäWìêáìG±ÖcfXXl´K¿µ±ÙšñÅ"ŸT†­‚¡[¤k\WU³Ê©ÕúÇðâBE…5eŠkàþìWü P¿k’~éw-ófŽï¯âEs7æ¾àcÿP¿²^Ž ßÑo#v aqz±TònÇ¢;§eSKÎÔ&†Éò3É÷iópæzX”‘a2Òw*Љ(«-I ù¬Üîû”Î{JæŠÚy† !Ë锹9ò;"š9’×"ñ.™‘ÉHÝZ:%¶xÂ×Í÷¨e/â9NÆ*Xï^™‚Ç¿S¤@t=1‹ª% ç¤ú¨â!jftîË€Æc¼9Չ厦Ÿ¹F͸’x~GÏrùLaÝÖ#CÌC‘Æf×ï.M7ÝÆ9ªH‘>ó’ðÊ¢%)£Ö‰ÕÒšKV+k— ‘ Z嘾æº=ÉUÁ˜2ßÙ_÷áîæ·ò‡Öï–©ÌŽMÁ&õ’¡ÇnóC—˜ä;¸è¹Hwd:!ÄV4=I1ôd“Q’ ü$éÍQqâ}qÅBV©ä‘bŠq(Œªš7à§Ê}Oc¿E[ß]ïñ1.¿Cz7œUÑS}UIŒ?ÿ ¶)—ôBEå.žé6)ƒbˆâ´ï5<ž"U€!Ü¢€¥vš¯îU³ûd÷+‚C7ÎÈó㥠\áô¤L¸º?+‰·Jc~Þ óJÎt ¤ÿÅóÊi­/©å¡uÜå¾¼`˜uM8õýâÇjL¸Ë°\çJ®’|ç̆án`̯ÙKg‹íÑ×ß4^U… ôîa¸² ¼Ê\¾£þz¤?» ‰UKÝLŒ—/8˧ñyéVj††ÿPÎELR3ò8Y(à¾]i ’:?×Èpf¬ì+Õrü4ÞÏ<– +ßDŽþsjjÕ"¢Z y(®Î•DÉEÄ‹ô=5%»ZÑ8¨âД…Œ$<(7àiIƹ‡W%²4cˆcd,z°<z²ÃPµ„ƒ8.xê¹zàã~Úr¯¯áï[µ½ß¨"y)O¿´ŠUrñªÔÓ£í­É&\-R¢H-\,:µÓõš!Ú·7‰-¶4¬ç~ÀÌð©‹|väd@Íù*Z`?ÛÁËïwcº_¢J J­ˆNƒÛ9þÕÍÉÛ(Ø›%ሟ¿+‡7Ëâü“¤_ÏaãËE­÷½¥”‚Q1@|G(ׇ²Ÿ™3?]>ù¢Ð¥1‡†R͉G…ò{ô@thmù[ÏFºÐºQ hoŽøÎ¬ÛI¢ô@Ú©ØñÂ˸ ðûU\>9UžœY·•ÏÄÃ,˜Áuj :uÞó'Þ+[sËí%Ž{’V`/¡¢ÜË{á¥gH(Qó&ÞžÞ”%Œ„¾Iòj;-jbSäT„† ív¦. ô/'m=k\DËë–° ¤üY± ±œmvþéoz¸¾ÿ˜/+h.`">Ð.¢G¦^š°`fV•}zQéLÚ‘xnb&6bMåá¤_í8JýÃvvL©P&”,sǬ2&:åqò2¿:Êö8¡&Zû¦¼,380˜Þl€ÆSð>bvåI¦þOé%ÍûºðwÉÔ‹FòÁÞ?ŸŠ-Â?¬Xˆ°6“ó5fô>U¸eòf+Ë϶f®7 ™á ß^å„åØE'PV¬D›æOÜðè=–z%1º:ßT;YÄ󪉹“’w‚ŸóŠîLß3·”ÜӊiÇ$*–ž9Ða~Ÿhºs4dö;I³Üï,6ë*Êžæ ðþ´¹zr߬n£šº„sÇreÆ©¦¤ø¡ Ý#Ñ ~zOÂ'ÉÑÅœ¾é ÓÓqzy‡•Œ°N œûýuLBŽÉ>¢ÐŸÏé]Ùä˹â gZ0e›@I¿åË'²ŸÅuÜ!AQ’ØOSîTu¶å«õó_XåN¨•h˜tQ±s­[v:`Ÿx/l&$êìöX.ÈÍœ« înë –‹ÚÆëßFùS‹ó̹$ß(ºµoÙäéX,ÏrL2‰*Û˜óBê Úߨ¨ìãÅ]N9NéÍ?/¥}âlëZŠ­G‘ Ý71°gO;;®E¯ošÄòújBo•ÇX¢ú“ê£ü·ÕCÆžW_71¼ôXA9&hG9¨ZϾœ¹êñMCuà–†“a£~îm8ê±¼%ºKHL©_¸º ¾JŠovNåF”%ƒ=î¹\Ñ4ùvBû±WU¥ÙPˆa€¨ŒÈøùŽBF2J~Ã{&Ú§:ÚOOPÁ ±šÎê„«½‹/6ùfF2¾¾­¤ÈìSÓb h!¡ éǰ1ñ<ûbCW×o/‹Œã’,ºp4nÿ"nXÔñËÏŸ™ÒÌeM¿ò¨ŽŠÞL¶øö£™e?9!g½}%¨+þ®üèì]16“Â9žœ6w‘çý¤”x*IÞºkc’˜XžUdžCr´µÍ¬kOY)²¥Moƒn Ù\HC^¦ g¬ e˜š·¤¸c´ç7Hš©ºŠŽ‚D¯¼NÎÑ'>!L¶õéi[Ÿf!×áfþ:ö¾#( •Ÿe,,­sÚ5Z}¼ak‡h!¶42ú×Í+ÎÑÌ®wþR,SÊ|icŒzb'Û©ÊÇ—èÇBa³ 'ûG÷±Æ[Ó×——­‹LÂÀ´B q™áD ¤†Xýox %XÝëð,bš+¥X F]_o´¹ dNaMX&Q¿qãC<‰w„Há×á§­U½kE¡­Ý iäÈãý‘¸J¢?«99u:OÜ↼jÒ¿qõ8¸)ŸÞPïÞ>Çq|8_X°†n»æï4î¼ÿTacÜÜÁvtävº¥¶¶Ä«¼„œ8 « J×ÀÊ ·z /Ô!.jnV:8U¡B¦óÈëDΛü|m,Åÿ¾¼÷24å>cn=ÃkA~BˆäõîGlºV!ªãm§3ÒͦšmÕ‡_``¶å}vúi9°_u™E8¤Qœ˜]}"Â7.‚€¾¬çÛr^ÿ÷ÕÆÚÎàì¶Ê”Y;'î3¸5†¸?Á;À Ýï’ŠkUsé°K§Ð•’'~,  œ“ÅMÜjµw(ÉÙ¯¯sîlL\±”-VæGKiCOÙCÜ¢:¦y”/á9“MÁËÈ`ŽÑ19Ù–zÍËš‚€š“;«‚/oœ Là5…¨^/ðÛ3jÁMóW÷ñ×*š÷ʇ]V¼"å²pšSÕo¦Ò•êÙï Ðø%ŽzÜ2µSíý½² [ËÕ„ÏìVQ†ÏT=‘@Û¢K´šoÐøÉ›¬o'JkIý|Û —L´¯íÒ?i|í›ÕÆMåÖžmâMóÒ2Z’¡ põ¨÷v-©ÇZ,ª e»Æw¿ 옶ÀÓ“èMÉâ*s!E»&|ºâ] ’~æUrûc(ƒÂèˆD8ššö˜üõìåç" ñ==”…½żÊU s¾–ä$NÓ“«:‡˜i­`‘ùŽýê½Ùs­:—Ä0ç{óoíÅ&ôŽh €–Z^Vx /‘œqèÚLë°€s +ñíþPò¥yšê­º–¤Ÿƒ×BqYÙï¥q£¾€zI™œ—ÚšD ~«Åégú2bwñågRuºì(îûR‹ßl<ß©¬¸Â:t4ûqZ >Rñ¿‘ܖϧÊÕ‰uÓÅꥱ°ðƒÃ˜{Æ\¹À)W6¨;yn¡ßtÝjÇ'vÚê‡Ù?¡Ñp^‘}þê%Þ-ØÓ‚ÄžBÝ+Ód·}cc»«`“YÑ-&Š3z%O$;³wË $÷±g°Ìë‹ëVE´eG]]‡õÚ:ó4¤€êÓG#Ú±£DÒQÖÎxï¹ÉÈØã¢_⧯*Ê9Nƒu_^ÒÆØU'{.‚´­œÚ((gÂãqJŒÓjpHuuÒ=âÌÒ‹¿˜Ä´xÎãÞàŸj 7Oa<$Fm­ù”$KgD*)¨ó/k×WæIfd†pL³óc×WÕí‡ZB‘…Úç„>uS–îùT”Ë,Þ¿é³IÿŒûò¸l2èÝ—f‡iP”ÖÐÊ[‚q³VøÌ/¦V™?„^WÜ`V lÅȾèî$4yZüz2©£î-®§6=ìÁN5(}xÆsÐ1:M9²2‚ºÎ@¸| ç¬Ó³*ÎpòýýÒ÷oÃÁ§d0ÑÓÃüÒ -x¼&·9¦e—é·+É­RzwÞkHï;¶ì¯ÏõŠÒ¡;y'=]9³!>«¸ã|½¹^-m‚Õ$×Lßå¯rhãž|£šÂ1a¨Å8"⸠¡¾ŠªÖx1P_гºn¬áЬŽƒ8ª8Ö¶€ Éfw]_£R›Á²JLèú$Û´4|Ç®éŽ+8%JÆÛrh,¥s<^ôYfOÇbV&“ˆ»×xAm>Ï«®¬u{k°âZknV¡!ÐÁÖ(>ç²'±<2,A_jÖÊËyrëä0½{б¶Ž‹f=0ÝÜÍ.CÓB*µ™ô/YŒrjx~æáÏ”Fº¶×iì-ÅUO u€CŽ®´« Ï'ÉŠZõLZpvÅv ªªâÊÒ¢¬+pÕ0>3õp¦@”›~I‚I×xeJ™Ñ€F´‚ šÒ¦î„OØÎfNõúñ—‹ý趞÷D.QÓ²u ¿ÓÞD°uu&ÀÂÛ3g‡/÷p K䬨wÁx?ôWy)Û{MoضÇg“Ÿ6ˆ?Û¸RÂ'²Ú ó¾Þl¦Ã´Ôb‘Ú&ý”5’+Æ8Ù*Í ô©4ïx#ëUP»á‹x¯JÞªuY‡¾• g"çb>–ð“!°‰0|öå%%|©è´/^Á@JŸúÕ{²puY[WFÿÂzœÿi”®tW^êÿDØr(j»ûÈdÄû(g{kƒÅŽÐÍñ‰ù’¨‚7¢ „4\Ì»·çŠñDoˆF‘S*<ßx®³ :ë(*&_`NÙòßœ©'½2PÏÊÙ&35ן(—UµÈ“^?ƒn©õ›M=.#o¯•o'ì¶«6TŽr ²»r½kºüäˆËY‰Š®™,‰vüôò‰¼Úa[Ò[åKö–!¥1¶Þ€ü"•øŠ*RÃrÏã_*ÏÜó}/&((™ žé"‚;7xc%È="1ü¹´zKÄØÐã­© #~»E¨FõþL÷l¡Ž:×-j.”Zªóy¸ñd~ý…o&qšãMì†6àJoëRA²s5³]Ö]¯3z~G²XéQ9 –%émñXD sÌ|G¾Xës.¬q™Í]¦":²ýØ5Ð¥=­÷äÄ-j÷2ïs)Öዼ‘"$X•HGŠ$úõEpãÈr&/þUÊè-ìÒ>â>˜>åóÅO}©›‚ú±­8ŸOn¯­|ûRæð ÌS~}ìXˆŽ²ÿà|þB‘O[DˆœX±Os{½ÐÃg-=s/»ý W ß˜AšÏAÄ\ÂYñå#ˆ™>ów#“)q®¥™ô^Zó‰q/Sñ¹Ô,*8µ„4¢èXó:ã¸'h±ir+Y‚‘¿ÔXq‹ÿQ^%àsðÊ“ûׇé[;äø·%È#ŠW;Ùow|óu†Ç2—~éqU&ìŽÄílšœt«ÊJ¦Pâ(gaZ„FNXÆå5û¬2c-mGǘñÄϾYÖ…¾¶Bg”É­Mjc™/Õ@3‚®}ê`™Åüâ´®lg-òÈIŽ º$¥ZaëÂoe½ y 9!`áKè•jÙž-™³Ò­Îr‰TdÖÞÚ?¼záéçúÃóÒµvqˆì`Ê“Ñe}çvtÏÉ;_³Ó[Eó£UÛõù¬€9V‘¾ÈXèxlX3oÿ*1äGsŒÀ^éìẮÚ›%ž€S.FÈ×k9Ã`뛣'ÏÂx„ðæ…ó¹wûY€¨‘¸2ÁÞ÷ÈK£w¢•j_Ž~65ЇmU-<ÿˆåΚˮI4¬|mÝõ©h\0;߽囒ß{† sÌEá‚ëg­ м+7/^¶ÖZœd¥Ë™ „åºôl¨ÒF[€çpÕ1^6L;àŠ!¾—}RÛÞöø„¡­ÿ!!fúq®x­¯]džQ4v8áLIÖ8:4Ú‰³w®´Lµ:Ç€ùV Lê¶§ÑÈ/PuµÛinÃdÀ…aâ¼&u¥\šï(c l¬” ¸m\ô:Å¡/Àðèi?lA“Kï\¡q‡Z)°þ”a‰"3þÜ({iЇЮäÖ;h–^؉J…¼3G7nn¾”Lé‡Âê)Ð*š@¼!¼ÌÏc¸¼ÔÍŸÂÖ#$µ°$™“ÓÖ×>³6Z2^ÏHï{}Tôøà¢I•µkaÙ€yµéöUŸÞ’A-Ž÷)‹*xLá^€9H¡\õQ“Zß˧cãbªZ‹S?PŠœÿÒ’°:ÒKÊÞÆÆµ4í0ËŠßžW¼èðÁñ}Ày5%/˜#qþ¬b3g|òxízÆùý²ŒýÔpñGoßEBaÁîÕ!ÚÌZ.5 ñtnÜg¾dw‚+ýLZm¹äÀ}3Çâ{¶ Û˽îfÇц–äA[ <™ûiã®í9¶µµ§ÍÛX€A%)ºŽ!ÈT¢¢Û-!½±9ÓN„½¸•*g?!mhŠómöZu|çÙdÙäNSÌňéi€ùƤ ñQŒÌTŒÐiB’ͳ¬CÿMYBéüó.òÉù7K”Òñq;z&ý,#ß;èÏÂ:§‡#—nÈT™‰Õ€d3Ö[~'Þvþa>kòwSž8¼u1¯XerÀÏLñÚ$3Žoyée¯Þšt<äQ˜2ü OÈoFMò¨QCÁºU‚© ù¿™…[HqºLù’‘M&Мi\žzF|5Û¶¸û@õE%უÞ`Rìy³É*Ù»ÞdÇI‡ÜÖ½?%êøÛ7[ ÔU~3éV²Ýálb•ÍnD†&põ·r%@¢_¢‡€«òÍ¥¤—}MI6dÞzoë/cäG’æVw¥‘Ïf¦QFVgËcÚÕ—žüRó.ƒé_vžÙ6Þúói©…“ÁGRwbâ ßPÀú’ˆ˜tÍ$O¥ŽûIDh¤ñÞªDˆóÕQþ*IÆ+œ•›UË3ædJ¿ÃÕNMKþq€h#ëÁ³ï„j_£Ô Õ ì'©à±i‡Íc1õ{ççq¤>Ç|=óë ËLQ+ɡ෠bHp»[VT{UŸZ|lƒÁY/ÐÓ«³7gÏ´lö‘CÐ俉²ûâӵ̱³zìèüˆ÷µáˆ®ô!øF '…5“ÿ{ÔŽQwÍcUonEÉ͇NH½ThÄa#¥R?¤Âñƒa¨{ž™dªÞíND“ýZ’6#»ºM?Æ´zýÓ“rÐXk•öhö;þÚÜWóR5ÚëЪS©TUÐÈ} f‘WAr˜jP¹*V± ™ML§:îBwøsÁòSJA2µüJ¥RÀê<–s“›¤ñºÎ6+’_ã¡ñ¹×vò2±yÅ ê¨mäê^3æŽy8Çÿáûÿ ü?!`ƒ˜9:#àf޶Øÿ Aju–endstream endobj 188 0 obj << /Type /Font /Subtype /Type1 /Encoding 337 0 R /FirstChar 11 /LastChar 122 /Widths 338 0 R /BaseFont /BQFOLV+CMMI12 /FontDescriptor 186 0 R >> endobj 186 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /BQFOLV+CMMI12 /ItalicAngle -14.04 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/alpha/beta/psi/period/comma/less/slash/greater/B/H/I/M/N/O/P/T/U/W/a/b/c/d/g/k/l/m/o/p/q/z) /FontFile 187 0 R >> endobj 338 0 obj [623 553 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 637 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 272 762 490 762 0 0 0 744 0 0 0 0 0 811 432 0 0 0 947 784 748 631 0 0 0 574 665 0 924 0 0 0 0 0 0 0 0 0 514 416 421 509 0 0 469 0 0 0 509 292 856 0 471 491 434 0 0 0 0 0 0 0 0 455 ] endobj 337 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/alpha/beta 13/.notdef 32/psi 33/.notdef 58/period/comma/less/slash/greater 63/.notdef 66/B 67/.notdef 72/H/I 74/.notdef 77/M/N/O/P 81/.notdef 84/T/U 86/.notdef 87/W 88/.notdef 97/a/b/c/d 101/.notdef 103/g 104/.notdef 107/k/l/m 110/.notdef 111/o/p/q 114/.notdef 122/z 123/.notdef] >> endobj 155 0 obj << /Length1 913 /Length2 1569 /Length3 532 /Length 2202 /Filter /FlateDecode >> stream xÚíS{Hqƒ8ä€J¢‡€‹8Ȥ|kߢ´ãÎ]Þv®úŸ÷ºHº‘ &Ç+40_Õ‹1ök O‰ ñ_ ƒÁÂBøùòÏï›föL2‹1i€!Þ ±Ù¤P|Ap„±Ĥ€|äÃŽÑ(&‹§ðh"*‹XX+@3 &7d] a€Kç@Apƒ/@S DÿBà+DûÃ9_aU/Äþ #˜hׯIXBbÒüÙ$r È¡ƒTÎß8üß¹Oçó•4†Û}®ûÏYÛØ°øá†&€‰1üîX¬1@ à#ÿCHæ²Ù “³xÎðƾÄTÞ2òA2¢·‡E6;´/«"¾(Êþôý_¤Ð²3-Ÿ÷J_ßQu¢DzâóÜ×Ó8g~/,?Ò (Z³•l–¡Ä.C¦“÷LžR*.œ,Ü‘ƒ¯Gýæ©+È\1¯¿ñw§†àíÙ¹qƒj¦õ졜D­z'µ¢[äó(b›]§ëÞôÈ­ÒóH×ÓT%ôž—î—ø^%´ÿY§Æ›ªè¬fsòË»ÜTBET 9ÿIÒ»a„•'é»Zßèî_C™StM®÷å«'hÖ™hô,äO ¢ÔÂÜ’VéHK)˜Šp•EÔ«ÛÜê¿ßp¨yãX§î¼¶eÈ(`VµEŸ˜©Là I–ŽV!ïìö¾| {ø£XZõlÔt!)0·ògu»ñ°às5æï½UR"QÛ*²w¾:SÓ ×S³«dÙÕk›:“/Kl[.0tᖿˬ 82†Vykë¹ïxf(†±D)Œp÷«D¤¸’æ—§ÜHº„{WQVA}ê¾Ì'‡¸;z8e!sþ‰·>O=ÉŒ)NpÚYî¢&t—ÍšÕU:Vú1÷™‰ê[÷Ö–ž2Ïj牪_ço±W מ=ähgÝÝæ¼jÝüº­¯nfÈ/C';[Í*bµÑˆãµg»JŒ6ý¤K°jÇ cF­b‘“(äÁB²G[ ]íeèÅäBqcN8×€1î#ýë3,,zLؽNÔd.³eÍ[—Ø'ª¯XùÜT¸ÚßpêÈÒäþAžbDn]Ço¾å£¢M«=›B|‘:·,Ezf|öõ4Ô3¦4Ö9Yí;n£u[à¸a7}P—»å½d…„²›õøQ`d Ý$kr«L‰os_A•£OòG]’Ä}8ŒpDk“:ßoò¤„·}mçqÍ©§í«‹®Þk ‹ºxÏ×û-ñ,¢U$gYõÇðÌõeKÖšÄÍž²m‹}"»Ú3ðƒÆÙ®+?_Ò æä¼iËyót÷´P€ÛÔc+#o>³w–(" bbÞÊj8]îªèÈxâ9LÓ ¾EX¥5[vÌ}ªl>0àjǬÐ%èF•m+”5:Ø®3uH/A/æ ¦“0>˜'PNꎖ*3öÈâ„eÝ'¥å? MœRSh* ÎoøÕÜça–$Õ@aê}ƒixû.eÇ %Ýí Á^’­´ÛWj±š¼öojñR«jWyû¾RW”–ôyn¿ÖÜñÈ;m~àPã·„7 y ¹FÝ’µQÝ27£•ƒçbkû•‹J¯ä^‰‚¿0JgÞz¶M¤w•ÄüžðÚÖ{s¯^´à2n™’¼BÂôÚ~]Sߥù3éAq;û»í™39wîsïþ¨´üÁK/O¿ÛÆ+ŒÔq¼t‰Š÷Avz®ûõJ­ö¸ÔbÑsž¿{l}Ú6ÆùÔ©]™ÃÏ.IÇsFe¯ž ðb9uöÛâÛûãóüZñ(­A3µBmHÒƒ2‚dø›oȾž>SVòGSUÓå½,ïÑéαՙÆÏÙhëåâk!åþ¢æ§:ƒ•3º@n.ªNIò9æOìc5+v^÷}(žg Pš‚Í};ã\‚äZ˜Ôoú=¸Ç8ÖÜÄõMæ iØÅâ¨*=BíàÖ+µzÎUjGV“¥»Ê•c5ùáT×l¼'3ztBÁL÷í’8¼iä/DÜþF§´kFÎT}çô4€~ìé$/ž–1Q•a«qécšÄÕ½{´W(Ô`þËâßÿÈtÄæ°$v âO|š››endstream endobj 156 0 obj << /Type /Font /Subtype /Type1 /Encoding 339 0 R /FirstChar 0 /LastChar 106 /Widths 340 0 R /BaseFont /GYZUDO+CMSY10 /FontDescriptor 154 0 R >> endobj 154 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /GYZUDO+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/divide/bullet/similar/O/angbracketleft/angbracketright/bar) /FontFile 155 0 R >> endobj 340 0 obj [778 0 778 0 778 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 389 389 278 ] endobj 339 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 2/multiply 3/.notdef 4/divide 5/.notdef 15/bullet 16/.notdef 24/similar 25/.notdef 79/O 80/.notdef 104/angbracketleft/angbracketright/bar 107/.notdef] >> endobj 132 0 obj << /Length1 885 /Length2 2823 /Length3 532 /Length 3443 /Filter /FlateDecode >> stream xÚí’y<”kÿÇe‰Y²dË-K†˜a,E#˱…¬ifŒa6cˆ"‰ìÙB1Ì4²Ät,Ò1vÉNd%!KÐJ=Sç9§óôüùûýõ{ýîûŸûý½>×çúÜß索äè¢e†"žF[ -˜6̰°·p±€A˜6¤ªjAFûS°DÂ1 Ú€³0 3`p#]}#]C*`A$E’±˜@  nþ&‚fx4‹ô'öþ”@4žãôÇ.D$M‰ÔÌp8ÀùÛŽPÀŠ&‡£QÚ  @a‘à4ƒ%€ ß"ÙˆüÏ2*Œô×R8šÊ ¨sB‚ND‘€‹PèÄÈ9 ÍIò¿êgs«0ÎÁÿÍþÏ6ý—ÀÅEþ[BÄ“Â(h2`OD¡É„Ÿ¥îè?ÓÙ£QØ0üÏ«6iFÀàÐôÏ6Ô F9b)È@ ÀŠþ^GP?‡àtî{Èqw7;'Í¿fú}ÕÑK ¸F’þöý&ÿΰÌéxAµ¡PGÈyÿúòùé4K’ˆÂ0€Žž>àO&ûG‚8·‡CzÀ9€% Ð:‚¢M R8[NW¢"ôm¤ú†Äò[é;Á9ôËßd Ž?@œ~qþA‡ˆËßÄ™5Äÿo‚A9¦øÈi„ðÔ ” goØwü連›#ÎÁt-=Î/Báp®þ2ŒLF(ßo,g2q–3G4:MŽ‘ÆñAWë*Î[Þ¬ä‡Êç—Ç?zpén¾±öòïÆâ£ä†Wô¾·b—Ä‚°LѼUÛ_!¨½Y™z³¨®s.KOĺ„%ÀŒþ×Èeo_înzg›¾(yaRñ©Aóõ”òæLø¾j»%¼Xf5…·bb|{ý|pLÿì¤à5”ò|ȇÞd—‹v[œÉìû´bM¼Aœ,í–ö.ØÜóeR¦=<-œo˜J·çË?²µ ŽxÖ‚.‡s_gî¨5*}Ⱥn©Îû‹Z0ãÜ‹Ä.jΧÎq„U|Gë«ÄæGgFAC’Î<¾¹s\!jfé£Ô@«T†CÒ˵s×ø‰òW±¥ÕÍê¾^’é·èÙDœ`†‚û$KAµê€¸ÞÞ¢ƒ“ÚnɳJÐäµË¥/ÂTûÒ™•¶ ÏWº$d¦Ñ×{¹Æ^ºç5?í:Šͤڤ£3CUÀ´¥ ‹ŽoyúëäA,ÆÊ"ÚÍ-ú—"\Z:™–ÛÞ»~=`_œM÷8Üó¨Ív¦35[Lô³ô-^«3Š”I iË=³cÜsÁªLzôeŸJcLÿ¯¼‰UÅ;>¿y!ÇÞ+[.sôþû|º{û¤ž´ö¦» JLB :3Ÿf‰Î© 7­¿,<Çå'Úd!ÞÛ¹ Î{ ßsº}û9ÿWY3Çw|ÝYê–ªä„åÝBÃ[ÜçÇŒûÈYÊw§ÞiŸŽ]ÜN)§.]QJHx[txRÕ ?–¸iv}JNžÕüJí+*õ.ël¢¢ÜýÉ ‹˜PGi±ÅCËZ&ûHW¶3ûkƦmÓY ¡•}à°Ž«d2ì3: ËYlè‘¿À;è3C‘„È(Š®“t2æB1sq+MÃO*·Â•%mNo ¬!²UGBî×c¸¼$?åŠE§Ë=ü1äå —ïŠE5ÙßpìóZ3fã¦y/®óvLØp+®„Tï,pËq‰Íâü\ÙBD°8x¹Zÿ<¶ùžnØÇ»Â•#¹ñ9¾5ì^[n/ꂎKÎQ1ˆRÉDyÔD_Å%ÔÒ„öZ.€¯Í– sõ•KDéé¶ó÷ßø4 º!Ïz³«šØïäy]Ü| á(!Úy[±|ë à&,.áêú`J Þ?¸Aø}·ñT…,³NxZ͇)×üéz)‚[o=—æGµ’”Ñ»ÜåödŽâEŽçÙºŸ Û§T’ºsÃÄa£«@#()Ø”íé75ôdnoåên•“oà:GÌ×ū乄²ÒMŠ7ÒfŠJR’ôH(¾¨„‘eq5O5 –íÛFu<*Ú¦ží(i19¼å ·ÇpI-Tïª\ADŒX1tXÛR/”°:Üíj:lÌ'¢u tÎ&¯c´‘ú‚·ÎÅh_Ë“ÖZ¹&ðÐ&}´œglºAî³Ýà*ÁZ¡|£3ÖmzKM>k—#ZÙ Ÿ½U«{vr!’\.§dÖ±eв’—ý(®¬‹Æïm¹y^ám¼—ô \]ÎìPì²êåf·ñS9+<›æ—-wвžW8é'ç”}¶‡H‹2x®f¹+`GƒŸ)S3|µ!öHÖQGeód…Ú©§^v–áÆ¸Jȱ˜þ§&šº¹_ŒaÃÌý ”\KGãv)*}ÄK5M?~nli56k~ÙØ÷üc´ þm·¬àçíµÚwÒåw&æŸEè;s[=Uö¶<£4l$¤à»zjiÕ?…ºÇU^£˜BmÑä†nõeµ fL!·SéhJØ¿v•ìÒ,úÃr*O¸„ÖßóÈÏíqØSˆ°`°Èí*óó©È¹¤Qƒ'ž¹Už¯–ÀNq:ô¶ E{cŸÎÁçžÔ²ÃïÛrN%V«»dÏñ:,5 LßÜ©ièSö£øãxFÀ‹‡Æ¦U”: *Ï­_n7µõ 5øGæUÑ(é‹~ñ׊ÓnÒXÓ¸˜+ïÂG¹[ ;©2dK¢ß[°nºÃj- =ïüåù®vyèÐ)¡bHÆ6ßv4n6á|ʼsb\KÁ Œ±´EÝ:Ê®”ç^E,ÈDƒygw¸‘»îZRñ71ּܓ}üzŠ!•EÌO.w†Û2èQk ¶u£‡hY~ßijý’ššY‚9À†uåJMÈÙ’fÔ´áÞ½;I^yI3Ópz’g²³ËãX9N âøY$†âå-Ìo{TÃ?Øa6*îùÞdâ+7—Ê SÕ7ÍM-51”]ñ» °®ÞóQ 5ju$ÒB,¤² 4Ý©Ÿ•Q´v¢Â×›ý…òO-Êò­¡ù¡—ý¸±Qe5’Ò‘ª/+£çB2q‘YVåZwrŠÂ;±2E©u> £·\y'lj)µ7ÜI1ó<ï½MsU÷d‚׸\w1/˜ÛXî9¨çS*™]Q+þyU;¹÷$Íj¨Ð,:¾Øf½ÞR#ÐŽlå‡|ç þZSc”B[ÿ)õÏs&¬fäö ù=nÁC®ë$1± %³ž_÷ˆ{-^»n®VÀúsOWëÄéÓêdx úrF2SI7½e(-Ú$A»Ù’@S*UÔë­ÎœëÖð†eàÕö˜ß«’„ÍO$‚^‹·­»ÕuÝ–S\N® ,…¯²ÖS×ÝéŽ.õ†Ó¢'~A”)ÝjX¬<Ût™8¥pBX^]‡*;‘4v@²Þ{¢ÐzØÂet¤m¶÷6æpMØiÆ¥—j¬^MŽAƒ=7ÔÊ?Œ[8Ö üV¯i¦WIz¹/Æ+6⃡'m.~(JZ~îÚ)ïš}A…ko%wŸgih?š{kr—þêRÍ]L÷hG`¬ó>ñ#ï ³‹Îè©9º.f+âxÊ®xÚ+¢ÐõK½þerzk˜ã~ÌñÜt!QÕM¶'MKà’@ßãèmYJiª ÊØñµ[õ³K³ŒÝº Ù¦7¸ó]4ñˆ-OãÓ;.T_Á½ðwXi/µªKî’6µ zó²Ú 5Ñà±çÝä>®ÂÚyã(hî©¢Pe}Ε> endobj 131 0 obj << /Ascent 514 /CapHeight 683 /Descent 0 /FontName /JWVLXQ+CMCSC10 /ItalicAngle 0 /StemV 72 /XHeight 431 /FontBBox [14 -250 1077 750] /Flags 4 /CharSet (/E/O/P/Q/R/S/a/m/n/t/u) /FontFile 132 0 R >> endobj 342 0 obj [742 0 0 0 0 0 0 0 0 0 844 742 844 800 611 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0 0 0 0 0 0 0 0 0 0 0 747 613 0 0 0 0 0 591 613 ] endobj 341 0 obj << /Type /Encoding /Differences [ 0 /.notdef 69/E 70/.notdef 79/O/P/Q/R/S 84/.notdef 97/a 98/.notdef 109/m/n 111/.notdef 116/t/u 118/.notdef] >> endobj 110 0 obj << /Length1 2207 /Length2 15250 /Length3 532 /Length 16438 /Filter /FlateDecode >> stream xÚí·UX\Ͷ°‹„àî wwww Ö¸wwî\ƒ»ww·àî®kï½’µÿËs®Îsš›~G9ê­šcÖlȉ”im b¶6Ž´ŒtŒ\aY%F&#9¹°=ÐÀÑÜÖFÄÀÈ`ääd:™˜Œl\Ì\ ¬päa[;7{sS3G¥ð—’Ø‚Ö@{s#€¬£ÐTÃÈÀ  lkdtt£ZY”þ¹Â tÚ;éàÆæFŽC ©¹ ý?B’6&¶öÿ ;ÙýÏ3ÐÞ$ I~€mm¬ÜÆ@8z9[Ð\@ÉÿRÿ»¸˜“••œõ?åÿÙ¤ÿkØÀÚÜÊí¿l­íœöY[c ½ÍÿNUþ—›,ÐØÜÉúJ:X™ Ú˜Z ÿ2w3w+˜;™L ¬€ÿŠmŒÿ·hßþ¥@¯¦!£%%Jý_÷ó_c æ6Ž*nvÿ®úOò¿˜ñƒvÇÞÜ Í@ÇÀÀJýýÏ7Ýÿ5—¨‘­±¹ ¨!XÙöönp Î+Àƒ`nc t]AÂôt6¶Ž K =ñ˜ØÚÃýs;ôâÖÖÿDÿµ½‰Éd¡ùd¡Õdù'ùÏ03h4™•õŸ(囓­#ÐØÐ꿚áß#¬z'kÃ:ÉÔæO˜@o´7Úü•Ê 7°E @›ýï(ç—þϺ, 5ÙØm¬€&Eÿ;ú¿’Aë3pø§„ƒåŸ hvVN EÙþ½M, y37;3àq¶‰›Ûþ1d­ÅÁÊÀÁìO´w ½íŸh¶6À3+ÈÞÑåÏ8+ÈÛÑÌøWÆ?·ÄÖÉþOàŸ›bîüWH×Ô?ÿf¬Ðù/WP¯Ðÿc#XAª6æ‹pü³f+Û¿.âü§ŒµùFÙ@‚ÀoNº‚ 4àM%ô‡@Óÿ!Ð"T_ôßÄÚ±?šEü¶@âÖ/ù‡@‹—úC é?r‘ùC Ù?r‘ûC ùÈEá\ÿÈEé\”ÿÈEå\TÿÈEí\ÔÿÈEã\4ÿMœ ­?r1´70²:þG»s2ýyìþs€ùßüç“ÀùO›Û9Y›Xÿô'ÛúÏ* Ý?'H×ðtþ _ã¿ðŸvù ÿiæ¿dgú‚œÌþBÐþu1€Ô,þB“å_’úë¤bYYÿuʬlþB•í_²²û AVßþB•ý_øÏÓõ‚¬ÿB•Ó_²rþ AV.¶ +׿dåö‚¬ÜÿÂ[ãÿ9]þïW­«-è¦e"œ ¦bgeðú<#'{Ð‘èø¯·;¨Öÿ°‰9è­ºà–æm¸-’‚K¼Eó&K¡¨À…Lcäj;g~Á,Æ‚[K£Z¯Ñx*KCGÚƒÚ#ryÁwoóT;÷û“2÷¶ç¬¿—æÞŒ¯q•&ë¶kGrpŒÜÚ0{s .?½>R’ ™ß—yÑœ£@)¢²½J Ö¥í\וÈÆ®!–f¥Tó™™X %å[I(KÈš JB܇µ‰o‹˜&ê•KÛ6'´§<˜ìø7›Ãim¬Œ96]›ñ¹³yk+3ƒˆH j¢È¼¨ôæ–—§ò zþIæ†Ï1)6³¼ñl¢M¤qsÿñ<ë2½éüWgƒF²e\˜èjöŠ2Vqå4»¹Ë­é÷t4Wjk6õr'-~àeKÌõžyÙS–”Š ’ò°Ö·Ü«&­Iõ!IÂŒ^_ –`¢S$ÑlI×6îk\ÖR¡t"P3*2R1Ã{+Œ½Ð˜œÆ×ÂR•BGþ6ÏaÖšaZ.Q˜†L,âa~·?ÊÃÓs¶1ú*ÚÛiVî}`Ê éWåÙ,ûåÖKó=Õ`*±Db{Ñ“ÑÿS\b5qˆ¶`J´;VކBϾœ°j+û•ê| ûxÒ•Šé=rNrë×›³„ŒQ·«‡ õ¹ûôæ¾ ½SÝõæ$¯ô¤± ‡¹ù¯÷ZO­&8-[Æšö€ÁSnŸ¥â!&]뎑¾`G†DÏ£@Ÿå®UãV„öyOœKÛÁ€cI$\e5+–"ýV‡Â…Çb§ðZxrÃo:Nˆà).£l“º§gÎÔRÄ|Tö ‹™Û›òÉá4®µ ±ã¶mp³åÜÃœÎØpÔZå*ŒdÛÊîÅ` ÿ©9$©Ißû¤Í‘iåDÃðê'™±”p£ûîF½J †*I1$Djf·ÐK…fº”,…>übÞkç þà©G×P~~ içï¥a—FikRq°ëáò”ê&6ÅšFéq£c÷éÔMs¡ÃN²hê÷–Ê)²7ñvñ¥çn`™L¹i2XÏ^¦è4 ‚È`å6¦(j ª,û? ¦ä®ä"gOP==¸'×ïðÝ–èÊHÂÐ 83½üÁÀáq†Xö¦Î(¾÷ó¼¨ –Ìî1y† @7Á]« tªÂ Gˆ¹$¡×WŽO»›M¯~šÐoL#Ú1÷q.JAAdøM¾³30ïøì"£M#ÚŠwÚ°@%wúöCË%Î¾ÚÆ-¥‚ ò®n˜D·Ó-\72ó1xƒÖ…š Oû{q‰HÇ3ËHWqµÇ 1üÖü+Æ;){ÖíÖ^mµbܵšŸ,_ψOG…-˜zôÝô-.s§ŠÏ-ã}?Š“û¡¾ 3|»í°v´#vƒ¾¬ì Òþº^âÒµ%dímÊVæË©³…Ÿ[QSïCµAãíé½0Ë´V÷ô,y 43NÅØCf‘FÕÁæÄ=N OŠî%pÚƒ:|Zr¾% Õ¢k´auƒB‰!¶Šãw]Jp™K”sp·/ÎǺrBƒpƒ˜)1@¥ŽË4uý/*˧é»Iè¼öO:c#[õx”E_ù®­ùbY •¯#95¶pCqW ó5®óqE¿j+ÉG¡¥s}ïÏ®T”Œ¸‹Ö¸Ð¥¾EKÜ$¶·(“ ¤k^_ÒP±bb?±©Îj²j;8^_IÈ–4‘V³XË»BRŽ)lÛ&z§· Ú_2 Ç3€b{Ìbд•ž„¹·.9µ¼¡}´”VÂNÜœ+z¶[:Cô&¬6ì#µŽ1x€q>EN ò,x'†uÐG½ò¿Á«g^!PSÞ³wÎS…gðN‡_Ü ª$~ÒšÌ]&zöÁ$l ©ºLì[#²´0-^˜ó« óãô?DÙÒ…)ÿ~%'d!€àªÍ“Œåjc¬~Š@”C6˜6¾Ô4°ÇŒ¶óÑ€±‹.îc£h6Ga%ïÀç}ˆ^xjTÿeŸJX·!æì\m®õñRrôµå‹DJ«qâ ô^î ™¤‡lêþ#×j—6 Ðô 'ÌZ0¦cÕbõ·€¯™}؇æWVÍwÀ1jV;Û‡¸7ÓS®pô›P!ûÓ5\š¹]ý/9*#u:–í.W'è‡Ø@ÿZÜò=MYëöµ-T£Ž6¶Xþ)¹=%zþRéÃ.º×Éj¸Ý㮕©Dã`ÿl­Âœ £C\tÞÐ1¢Fbòó¶M½ig4TiÎÌ .WèZ¶.WM–³'Ü­ô®«å1s[¡bsÓÜqt˜éFëÆií{®ÓèÏu ÿwwvXÔ¥é f'ÿö£Ö‡èa„.tín¬ ž˜Áah?øñºôÆùo²ÙŸ?û郙ßf¤Ñ·VÌ,îsP0ëOãñ¨D²ÖžÞÓ«FW`ùrŠ"õìÛ”Òúe!Ð/dÍÖ•^I¸§ý–š•/CÚ³6:Lj­÷÷U/’¥<à‚ǤÊn&ZЙõBèˆ÷­xºG¾ê™Îæ:Û~ªj±uš˜ž \8ã7­òšTÐC”¦‚&Ðù¸ý=¯Pùã¨O¦ûàLöåÄe<üK±œ2A ¯\"¢øè<Ç5—apüöæ‘•UÜû77§¹ò/û­VáCuçŸ[¼èÓi(¶îj¸*›;¾¼˜ÿúæ—áå?`~À°ð‰ûè‡]*oyÝõ¨s+$]mÆ‹ˆã]š7æJ“J­úœV¢3"ë˰yé‚3¯éo§†Uài´Ý³ƒ.ls¿wFç—t.ç ˆ°Õiá1Ý¬Ý QöôúZ²œtQ2]Æ^¶ø'Ù>u‡`WU`(V^ëWÅÜîx„®ÁaQ›§\õ¶Oëz„G }ÈöÏc À‹Ã\¿1é,25̼¢€Ã8¨¾#cÖMf{{÷ŒpAüM@X ËSyƒ™DT•õ º+½‡¯t®´Œ@…MªÜ—i‹ö¥àêúŒL%· ìd ç¦û0q°±~ªð±ÜËØ^ 6P»:Ì0™î/êU3/‹B䆥X¬[j•ílÓ¢ó@1Œ9ìéøÊ3(N‰äJÐÌþ~¹}%Ì53ZÇõo%“Üë'T‘:ø‡ÞXÜ…6S6ñ'0(Ú;ÞW5iñ“x†^Ù…£~%ËïÎÉë™ã‡7ª>f·"²ͬªeŘ¼_|£ìµMîî ÔÙ†E­ƒ?’_ê…ó²Lìf<ù¯õso+ h}!Y Û]ƒ|Ê.Ç#Ÿò8òˆ°÷7XÁO|äNœ°²U-¹Í\9vÑ¢,rQéÿÁäïV‰)¦—Έ;9Hð㧪=16•hO2Œ£|.é ý"T›&$Êw1ž FÙïP*`7]7‹øv?ýÐÛûZ·6eêFðE®×u^0P/Ç×Ù : ]0 ›mßòhñ·fµ|h“à„ø±üý—¯Ñ9­€v2B"wÕ·åšÎÕžÈI  «ªW†¼þivåBÿÆ­…šÜ…¤cXé#á\×]MÛü/¾`5§ˆ¾Kpº¶Ì´œS[GœËß…ZnÊtr”IvÑm8½),¥WÕE¢¿XDÑ‹/MÒ–þÎ%-½—ÀE³wí_åX¨•¡æp6 h'OÁdT׃:…Æ¢çaà…ë‰/gc±ž¡O³"bÿeF0X°kÂ"¯¢l"ù"‰ƒFcÚçåš+Þ„µˆPgÓ}Yw¦wÂâxÜc“v¥éÛ~ʇEz£æŒÜì£éº#/F"_î«P|Ðé…Å¿Óôý½ oY}öü€'ÁÆ•‰JËœ<§™³k‹êãÿ+51ã²ç6>z¥¦¨„B«–Ø“…ÄÙѵ¹_Uke[¨ cÛã#õ›íã‰Ã_êʇ҈tÐGêDÐlɧgø¨·ÚÇj‚Ĉ?¡å<1zç¯Ý9raÄäýN°k‰k¾ÊT"Ä5ζaåw N9§iQÓ+ºÔ ÷à2¡§¯(tf¼ƒàã‰l`q1Æ€ƒƒ.ÊêãGd: ºB‘¸âÆsÎîùÆn„Àâ9éXyâ;ò¤ƒÐåS…m ®3$3¾éeb_Aºñv÷]² LГ·M·yJ°à‹w À2ùsz 7±B ½¨_¸NÉuí¤Æs»²>&0BmBœ*™Œo)9y~O›v´ œ¼¥†šB' íÅ»¥~0F_³G1Q™R Ënúë!ozП³‰’Z§“P7“ú÷¯¨×àf¢#Éû¼Mˆ?ôÔ!þ<©•[M·‹K„7”oÓ?afçÞ zp?¥ÂìwKº<ë‘˽ÐÜé¿ã¥——õ}*Jƃãó{ `æ„ÍhÃû¨¯©EFœf»å¶ZDmôs¦+V~”†ð èšCÕj& ïHÂúlݙ߼#£ïš¹ÔˆE{¯KÁÝ:ìëB\{„l£}F´¬RÌC^÷“:?鵨='Ö½cær|VæŒ7÷—ŠgÍ1ª¥„£¼Š›ŽÖ³(Ï¥`¶=.²È†² {iŸ®—-åÓžyõw˜…Îj¢ìÓçÒólnÑoœlFL”̯TÄ©)Z˜5Nñ©Îx¦fÖ1,ãÚvÝ_Ê“\ò<ª~ÏÁÑ—ƒÕEqc¾åYéìkÔi ûÌ"Di!7@¨ÒÔÿ ‚5¤9èGÇçS‹4DZŽ\͆æa˜¢Ž:é u ñõ§T>/Š0UFZV>xE‰‡vœÉ7’!$Þó Ìl#¶‡o çîÅ®‘E–iM!­ ¯ëG:!‡í|+Ndq8{>…Íäm,*ÂÖt/—· 1Џ…,À!ÍH{õfø¾Üs¥#Æ?Þ>Ó“d˜ƒsªu!tC´~¤w©ýmïŒ&so™ W98ÎÔ [G2WïÌÓ=åæ˜6࿱\žŽ~÷dœ~8¶~qÙêÕº±»qúüÙóQaF±p®)ƒíû<‰>ÆÞ¤Ý¡Hñ²;<Ý*ñ·­ä“/ ’‘ñò§ßŒëU–ÔÖàwŸWNwΈx9ßs-Ësil¦ÅÝqîZeQÑóÆ~<œáǵò“>…ÀkJ ˜Ói{0IÁíôÌpðʪð s0zCað|ÌNô¹Ö0¦ãùНó·xÆÈ1>•ûõXü࢘uäÀU¦ðJ‘)GÒoÑ­áÆù”Ëð5}—*צ$½¡703§âE‘FîŽÐЪRDš4e‹V•PΦ³¸¼ê óÒå÷ƒèÚ{`9yO3¶õkÞ·ÉIY7)­ˆšÙn½2©«Ý´ÝMÁžFÅB)–pެh…§ÐU„2-³LÔ×YĵrM‘£‘õÐ4b–Që»'¿!Hõ)¬Z(A†_z-#î }á"}_Tz¬ UÚØ,ØíSÖT{£ÍmçË áöçÐn?J[ÿŒŽ hÕ¤>jA_ÂÓL3Ÿ#‘ăîÃïžðrý—»4™r»ïxpŒ£~ä4*T£jp¡K³A™«é/–…/¨ð­Ä¶´rÑq$á!Œ½L@¹]7(ÈtzlPjK¸ý½ˆ ý`®­ê˜tHü}‰¾F¸`û ñ§·îUÆè"ûï|´ÓænßiëÎX2q*Käe„ÇQ³_»Ï®ô÷+Ð ·Ö¾FÚW tzúºf1À_îG§I}¬€‚—µ]ßÊ uPZ‘§in¬£fSVV§\ 4 µë?äÈ÷ÜÙy/´»¹ïóqu1ÎSç¹>O ðØÄOÙxfõ¡ß嘜äÀßj×£/àeFÚô Dt9¥Y Çyßžßïå.®»¢&±(ü©ô#¹¬Õ׸$À—BiÑ0¤M8eÂÝÌDÔk…^<˜mó³V–¤²Pw© ù…úõ4&›Ðr•ùjÜ_ŸŒHäwnG³\:¡nµ^(Bg7[2 ÇµácêÞ6;£T ³…£Íÿ8F’éMÚGú‰}Ãk—„¶C l¦gp'¿ª“°£ <“ìZ»æ‹6½8 µY¡÷ìÅ Þ)”–ªã6Hm“÷¿¼¼A pþ£Îçú­'Hó ËOÓæâ`Z9hS_ß–ß÷#zkoñËE} û2r?Þó —»v°ˆ^äô?7§Û Š ô®Ñ|c|'ù°”„S¸7¯¹iAûÍ[Æ=\ÓûT‡3âÙo§d ¥éƒ;Ü-iuçñûÐ äI€ñ^ÆgØq™îD&í¹®ŽBÇ'é܉C$îƒ0{Y<ó “‚p›&,©”pA®AX(ñù¹M‚È ó½¡×IþÞ5!T?ä$­Zí÷Ó2ãêõx®»­•«Î…M ø½Yn*!1–П:âß áÊŠôm,%­ ‘`r4¼ÖÔ¤‰PÁÍüÒè¯3ƒ¾îZ~,ýáÖp,ÞGMK§ä?ôñY´ô™gëýJÏ Ãbåv_b:¸Ó>‹‹)’X¢¸×ÿý„YE;zIäÉ=S>Ú4à3Ч6ûò¥jRo Ì´$8ºr~û¦Grž¸¼u±Nw‰wiaÊ„®3˜ü„m8Î.¥)Zí~”=dNX7œµkâ*Uóã+1šÎ0•ô3ÄŽ0ž¤q‹µÁ)Éçpþ8èŸ9@Œ(œØ\^1ÅÅ6®ÏçÓí»eÊ­SÝ^Àzc ppOõc2]ÓoâO·wiQƒð‚ÒF÷A¶ý›¦ž+FôÁ6•¡VH? *Vås}š,¬ SÊï¯ÝïXR#Ç€^aÛùIE rHxïG3Þ·±Þ’uèSÄ"uhê¹›ÙŒ ©˜¿}9+ñÄÅ1‹›h4:,µp%©XÐUˆÏ¿ bì{—ê\ºòŽJ{¥Hð@žk[u DÈ:n¿µiŸÅO(f~ófÃG<´û,nL_º©Ìïç_?Ëîr+w­IД$,£=£W»¦àl·ãéÁ!2Ü‚J’òÎE¸¢‹¨p>UãÏEÇa3|÷æïžŒÞ½ÖŒq©ñ{Ÿ¶7¹¾[Ü äÀ**¾þ’dŸÿýÎ2á¹XKK–„,ÚÞ­–¢¤’èÜÙR¨†Åa­hôuà™|ÝÔ žñ'³•IcphsÁ¼¤1±Ü‡«*´lÎþë }ÔÒâôô³ª°¾Oì |”¨&Í·%]‹¾JÞ)âs9|j ãI%ÁyÞÕð`‡ÜNN?¬ßâyV "\Dù„Q:F»EóZøm›Rw ì®ÃW¸jH^‘‹‚8òUZ],bx‡g÷ñ"|¡‹ö3‚¼7nÏ=Û< 0%àæÄVq¸góÇÛ.OÖ0·gF“£Â­õ<OG•fHqoU\­¾cVúÉ ]}M˜†¬ ZâÏ“w;r³Ia¹Ÿ?†Å=ûèwà‰¾…¶H4â i–Êý,vÁ¼E’x±& Ò[ `ÿösÄt§¨Â·Ä˜¦åH)¸;HŠÊ¿U—o`²|è‡;\+óª/ñoùn곑<Þ¨Îáëw!¥Oå=æÙo;_PKŸú C“bm,òhŠ<ñRkçQäwM–ˆet·`OŸ|h¶g4 hŸƒ¶¹ …NBè×Þ’˜ Àv{~ ‡¬OqEÞ·‡f¹ç’¥ýD>²uƺoF‘K$³ªœŠÌWm<$!Ì,l6Ä‹‡á¾•§lõVʱî”Ù[œXP¶Þ +ÀQ£!È2èÐZÎ h°ÿú®Ëq"Õ§Œ=–¦„ìêyá ­îÁö5§®aqºs.DÓ‚Vó×½i@5súÓ·;G¹S¾Þ`0â[‹~üU–’ƒ¶ïcƬa!%ŽÍûa×¥ç»gèƒü ÷Mg®¥ª[Ô¦,ØQ(†$÷ÀÖêècµžd0™<dO¨”È! Ñ|4a$_.ŒO·OÞ¡dïXd1L³')¦G5¯BܨI^g|øŒVýºüP?ú4¿ùbÒn¦Ô¶ W>™¤­EÏÕ,Ë)TÅT2H\n\µDø2ÑL #`§hìæRFÓÚŠšEN=ÈRW]›Ì™>TQ»)³²}Z*KíìÞü3cÓÞ zŽÞ¨ìãŒ×ºÈ©…ä:˸ÚQ›L„ß +8¸¡Ï{-ă߲lˆ¦~iì¼ø\jR$£œ¾%„`œ»ò½ÈœûG™áÆzuÏ/žš¯î €«}’9„ƪî¸Ì7ƒ?”Î}(~q¶Ëº“”5¸]v¬þ6ù8•“ùø£äÕÀôdœ®Ž-Ðåû)õ˧Tß¹1vØQ“X7*ù›ä„sƒõžáÆþƒ’ÞÕM–Î~<žO¡L÷‘31þK\›h”mA-Î=‹a#?¿ãvA<¡Ó¨ØÈ基¦T})WܰÐS¬é'Ñn‚Füî»UµEé̃ðª Üߦ«Ó¸ zPSnp’SIîjS`àϯÜL=Á&­‘$GX—€@+§c.ÄrΆ=cBw×PÞu(”_ÆæîZâ{:ÈÄP†Õe—â}ÝËJZê|œœ“Ór Wü˜º¦R,¾ò)KVˆUÓH[C-P‰òÁ:æcÅÀ=ÍM ¹›î’ ? 쉲Þ5Ïb²c…³Ø„ì7<__åy3‰~%ÁÐTVZxD–>éŸ[ŠÝØEøÖé2 óT6ÇäO‹Yw–çjyÖ¯E¦m!s´˜Në)ºåmaM rV ’ÌŽE¡CYøž«…œD¥Æ7â\èF«ñ‡ù»•On¿è¾deÃ+À]ÃNuæöB(F_ÇÅt:æ?T£uÍÑ}¹¯ÀdH#¯Ø¡@ƒêÅæ”ù0ä#y~ç–Q¡Ç–ä¼ÐÚñ Ú»UwøºƒFz©S“¼M?Í]‘ÑÚ`_0)ø]÷Sá“Ü*=ã=>x/ ¼(:ó¸$ åÜ;s‡þT䑟–uMxþ»ôˆ‚ûƒ¼ Ãp瘝Á¹óµôÁOÉV­æOèŸo)Â[5)n‡É6™Q¦¬ûb…cù6_k‹OÀêé~ñ&ì+ú$`IlÚȼ *õI(†}‰×=cUÒ¤d£NqÒù­¶Å-ÙÙK°wÆ^mÑÉ×Åð6%°¨Z`2”jwU1˜Œ½_O±±X¶Ó\?Þo\ûÙ^YÑYÚ®ÿÔ)Bç, Û9í0ç2³óD¹ ›äd?±6Ø€Œ^¾ˆùhñ E_¬3†8À7êŠ%°Éôu-Zž÷ùB>|'û»ðÒ›q-ÙRn´^‡-© …t•©ñC¾´d™_h”ºÄôÕ<†ÛM8Ùó)^‚ÉþAžú”ÄVŒ“?:½‰×ðò j5zlu!?×`‡,Ó&/>šÛ)xÙ§žMô$ ynvGíæDb/žQ…1`¹»~}z"•!™S«šµ¡C¶ÉýQæ;Œ¹6Ãgw½z³°ñËöL_?toüŸä½H>±E=J!¦ƒ-o„År¬äõç×{܆UéÑ{a]uŒÎºÔ½,ÏnÊ!ý½Xu^rdÕ%í3³}‰Ø¿ëÒ_ðwkÁ‰!zù5Zg· ·X` Â#”d²D1N"Ÿ§sà>Å&Å3QuoÁnÎ X"X#GÝ]q0önI´ÊØ,3“^=!ý2å4QTù«ë˜\R=Òžý7ÐÿGÇy! …¡(ãÒbm\ñàÖÕ·¶+°{†B´M¹‰èÖÛø˜XØ ¢Íü¾Æ8§;¹|ee´×{ÕPNy¦Øß{h„åc¥Ñ’Ý#{þë…Õšdæôˆ} -ðê ¹!¬HsF4×êýýôtkmÚŒz< ëœû0˜¬ »¸¯Ä²„æ]³= 5>á`t±ÿ0•éýˆ @zŸÐ’ﵬøŽŽB®y¤emý5ãÎ7K:Ú­nå1,.òüŽW^ò[üÓû6ÐOyu¼{Ktú>sõ’æ¤ Hò“D‰;•ƒ;w }q ƒ˜Sï»ûÖÉï¥ôY×úæöìoÕsFN3—3l8·~©áyRÓfˆbæYí™NúÖ>@ˆAú=\!3M{ßzæ[¦Ûüý¯¹ Hæ#öØäY¼ysE ŽS}10‹ŸÁùõw— éÓ‰¬K‚º”lSÙ„¿q–¿vÍ¡”/Nî†$§s!æð|ÆÜÁ†ñ!Ó‹¹Y–wá(î¡â mQyy­NÅMúLkеœÝŒ!¼n[ýƆŽäÿBàý0ãwþ¡óã1 $'z«%`*”̵½œáËf½j}(zü½¢¯#9 :„^S,æåú€«o[ŒIs@tæµE¬X¿Á)|¡ýK"Ö­QÁ'ß… "äðÖï4ø#,]tà?o­0ÏÙo™) Å›àô^Á‘Œ4ãèJ%ªŠvcúðRð¼Û"QgÌv]ëTzJÜp /×ÝlWüÚ9/ýùMbM-+Ç©Œ•¶s«Ù=œµ¢›Â`ƒ•IB»5’4Ç×Â¥Úk÷¦À*yÎ?QÄõØ …IL&‹›ó©©úºsµ®òÈ£GÖáè¹ýêês”¹Ã¦ÄÚÐÿŒý–SQT¼~Gï©oŸ^&ô*¼#­ùž²¡» 'ÏlÍyÏ =ø¹ÆìÆ•9Ù` t}ÁZÙsÂA ù)çñ×í:dr2ØÈdbÕ³Z56g™IÞ`ÜPt*·•¦ž3 g²k›ÔßdGTbµ«9'뜉‚®`DÂ’Ö¹.<¤©CUÀ¹3 1zçc|ú #]"ùˆß‘)˜÷¾Ýyʬ^¿7׳Û÷³¼áÃI oUÀ† Âøð“[¶‰Æti?–+%"Kêü×ד°ûØUT„Bmé!$Ù>3ŽÌ_w°[‹yë—3È›te©\;ˆª°£|ùâk>ÊhrEfÆ ÇFÀ9ÁiCYݵÞÞ¡L>*ÈmW´k Áz—ûs…½¼Þ A|òN÷a¡â˜Փ-$Ñø‘[Ù}^Å{ÐxáÑr™+»f²@ccè‡OÊÚ¡§gyÎ@ùV ì$ù^fNŽÇ9n@<Æûö>¸+‡ «¸ζÒÉqgTK0Ru‡[Äoü_Ê£×ÜÂÒ{{:{„˺䛛ë^Päñ‡Ä„ñÄmâ¡/‰bõŒB½û/sÓ<Þ)¾ªR ’·…(ZõD.®H¼-0ƒÁê[ÑÔÇ÷]œ¼m.òï¼Á«(·ðøC÷¬YS`5êó†ÉY\pžäŸSgÏ£'ã©£®È¸{qê~ߊ®“, v‘|ʶ Ð1ˆÀ¦×ÝöóC؇“@]r2g•e™ÍíñÈÿÑÜ&/“|þN£È’­Ç%eQïu]%ð½’­¬xá0 –º¼”¾)¤q~XY‚It¥ ·uQ /G ÍwPšµ“WøW›áϯB5S4I?‡Ü.㇯_ 7ÑQ£ûbõ°)N‰XJ §v!}¾ŽÄÍ>‘9PO5AC‰{ÝÛKrúUiØ«"pm5;Év¢ãúâhѸÂ:Ü´ CYâ(½ð_†W¿õ þˆDç:hšôXŽkÓ×=ïãºp\Ü Ú¢óÁ)±ùCMÖe¶¿©ú¦lK¯;ùìX§ÌbëðLhi™•®„Žxï³nU2µ×÷* 6{=çG~YH­ß²gš¼ñ¼)‘鉙z«efLzÙëìéT5¸Ã[,^·£ØeÙ¼¿’æçõÀrén ƒó¢¥PË—èUl{ŒÔîðpÚ‘ç‘$lâì†BØÖ† —b–Ìu÷Ók³#Qwæ:96õ-+lh ³¡á³ù\7RàÁµi³ÐGãJ!D}ÉQ=q¤Í¢!ýÞíqR¼9ÅÈ"竸¬•`çÀp”l“…MSN«xeÝð]–þ½‹ˆÉàÆÄ×¹Œª¿Nk]ƒáRáê%äp4Ä^ ˜ŸÁëù¸‰e±ÛÚÚs¼!¸Þ6kµHCnýš×Ђ`6™5Ë $"vœñ ÖBÖ43Ÿ¨,§å¿\ÙJ_,Š¥çI7€Ÿ²Tm}Ø›®G†Êîtt2Ÿ[æà€åñ(ØÑD gd€Î¯}h ¢G iw‰káÓ†Œs¡|`}]èá€}—;ω ÓnO øpÐ8¼’—÷à±ë*îÈ>a®tÃ=ª6ðœ•ÿAa'ð†™I-öÝî2…ïÂù»¿LŒ¢…~]ÄÜä^°4”'?.òQÙ¤“uq2´t×­¾ðÕ»vEù•Ô|Ú |wV–«…‡T;é6ÁÙ}!?ÃÔ€ÆÍÌ'½ |=ùú7¨è|‘Š´ "+$Ž,ðiâ|ûƒóðEa¯RâhðÔþp‡q–åÍ: MQZáÃõMñY„‰…üQXß{+¥fwÔ°È ç.y â›òIKrC7. YŠŠâ½wOgvU×{/3‡e´­l)¬<*42ª¦¶Ò%Ýl·ÆbÒ&u:1áÌ»ÚF_Zâ\ ºÌÈSSB›ÚUçŸú+¥úìu—ßù݆µ’Ö¶cN¡ÉN:Lø^øviqÞŸéa¥yÁŠàFlmÌjB°Mê‘ç—\X;/``ùÖùÏG4\1VF=ñEØŸ½¿Žæc2ýö¨ç4Æo7o:àuQ˜?¼ÜaÄ—¢¢!ŸÊ­h‹yíÈØÃ-|N)ö²9P&ôV?@Qé±Vbô’´6= ajµÿä+¤‘»°/0 UÑ]x#кqÆpÙa=[Ýt»ÎuÔ¼Ä$4´¼½xHÎ0!„ nÓèUÊUOªà.0/Â|P"Ù" 0ƒbX¢OîO ^2ÑQª^ÅÉ V-^5c¯ÿ™/A#c¤”²EZ?’)”¤,oñ¡Ù@cÁå‹Ûé)Êq›^»¯Ø1¶ªú+4~[EKÂIt¬tøD$ñ—¬;Þ¯’;HŒ`ó4Â|³÷ɾÆòGM6o-WOâV*”ÜioàQ¯},&üiC0=:a•œs xla`ßòTZ³1Æ}i…1Õ‹A Џž!x#Ò%ówC27¨FH‡Äåí#•Î’3¤IkdÏ.B•BŽÏIƺJ„D/)Ò“M½¦ˆ i¨ë"åßÔ¬²ðòáGÓH Ë‚‹¾B SØ3àv¯üÊ*ÎÏaÌuLÄÛæ $~ã‰P¹h¦ŒÁ&œ"y÷ê‰ð®Ñì)´YÊBÙW-ìÿ¡¼S\pŠl˜Qeð$3ÍÜÖ SÞ¯ôZóÑÊ Ì a?¤æE ª³}Dàmχâk,K³§2¹:ñŽEwËáEÀyWÏ'Μ Q Eô–pvQ‰éí…Êç¹HÛ Öx›’“T¥Œ´5£2|@xÏæÁÓñ%×/,-ˆƒ›ÓêþbGÏ•50ú´cô¾’ j¸—ÁH²P»O%ÃtIL”Øtê®æ&GÈú¼Û^ª~ý¾s–"UaäRkì%‚²30ç Þ,mùv*ÈmoõÑ» a7Í9ó7Mþ+ÚÙ¯œÞÅöÐj±±ùâ˜HÐð &_úø¸BåðÏD>‘$'\šÔ”¿§Æ,øª³›ð¾Î3~™¨ÛØý9šÄ`زþUŒÔîÀHJŸôz¥Þ©·ó5ÞîôÑtüK:2Ný…‰-e${\?ùé½Á¬™zŒ×I.ÇœûŬDƒªï•’%{u2À]=è—úÜéĸ¸\"¶|¸„ùs>sózq)–®‘`ë¶>•6—²j¦ààëGÏ/w>rÚãâñ€;ÆÛ’ë<л+Œ˜ÿÌn-Ž¢P1ü0Bykºù£WJ1~‚;eS1sèáÌÛ¨Ja0DÁ¨š·Ò¥bRÀìumш¥œ¸5ú»_¥ã™n›ôQýĿɶ“§ù›RXv¦.A(ï¨~‡~/C“­Û0õKª¡×æÀM«*Æ.\óþ§—íV)ÁÖ=CÎ%ñcáv¶ Î üe´ÂûðUìL]! ZhÀ5mË’Æ ƒnÐÒÞŸel9¿æGò·‘æß·)E|yÜÍVÂBˆôå<¶û­e§ôWa8ˆeJÈ¥è§÷·g§+tƒåëùMjR"BÀ;‡®£*/$UÎ.é7(ÝO4M‰ø/üÐóY°¯Ã&"Ъ•Ñ<®ª0Y«×®Ã9:„KMâׯà4Cx-X15;Å|fD¹ZFÒ ?Û¯XW6²ƒa2&:àO‡ì”®öÒãñ 8i')KE)RõGµí®dꬹØ,‹†c‚±À'ˆp' ~Ȳ!ªA‹Õ²5U·˜G>äÂDN]‚‹æ©Æóž²¾ç‚íÙš_XáEqzË™ „íy!|8Î ÕÜrv.-ïRdog)øÅ¥ÆÏ}O¨Dqt´%ËYãBƒÂ;÷~ÔâJ!¦(5Ä7B°ƒíÉ€¡ÙNF©jWýáø¸Ä<_—Vi…ïEЀ*GÆCäæ¡LÛÝIµ|˜¡¥À“(´0U?ºAÖWMÊðÿð÷ÿøÿD#+ ½£­µ½%Üÿ»ò¯endstream endobj 111 0 obj << /Type /Font /Subtype /Type1 /Encoding 343 0 R /FirstChar 0 /LastChar 123 /Widths 344 0 R /BaseFont /VXLZJE+CMR12 /FontDescriptor 109 0 R >> endobj 109 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VXLZJE+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/Gamma/ff/fi/fl/ffi/exclam/quotedblright/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 110 0 R >> endobj 344 0 obj [612 0 0 0 0 0 0 0 0 0 0 571 544 544 816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 490 816 0 816 762 272 381 381 490 762 272 326 272 490 490 490 490 490 490 490 490 490 490 490 272 272 0 762 0 0 0 734 693 707 748 666 639 768 734 353 503 761 612 897 734 762 666 762 721 544 707 734 734 1006 734 734 598 272 490 272 490 0 272 490 544 435 544 435 299 490 544 272 299 517 272 816 544 490 544 517 381 386 381 544 517 707 517 517 435 490 ] endobj 343 0 obj << /Type /Encoding /Differences [ 0 /Gamma 1/.notdef 11/ff/fi/fl/ffi 15/.notdef 33/exclam/quotedblright/numbersign 36/.notdef 37/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex 95/.notdef 96/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 104 0 obj << /Length1 1743 /Length2 10517 /Length3 532 /Length 11501 /Filter /FlateDecode >> stream xÚí¶UXœÍ¶p›w ®»»»CãîÒ¸6îÁ5¸»Ü-,Hp×@‚k§¿µ÷ZÉÙûòœ«ÿù››ó5kÔ¬ª·¡"SQg³p2I;9º1±1³ñ$”ÄuØØl̬ˆTT`©›“£¤©ˆÀÆÇÇs·°³ظù98ù¹8©NÎÞ`+k7­Ý?I<1ØÆÜÔ dêf r€Ô07µ¨;™Û€Ü¼™bööµF¸Ô@® °È‚‘ `acî0YÙ8"²üc$çhéàù¯°…»ó¿y€À®)-D’Q´pr´÷X€,Y€N¹@“ÿ?¤þgqiw{{ ©Ã?åÿÕ¥ÿõÜÔÁÆÞû¿3œœÝÝ@`€’“ìø?SµAÿ%'îdÿ¿¦‘s3µ·1s´²Xÿ+dã*mã²P±q3·XšÚ»‚þ9ZüOHÛþ%À".-!/¦Áðßûù¯‡*¦6ŽnÞÎÿ)ûOö¿˜íCº¶ñè³2³²²A!ÿþfø?&“r4w²°q„.n€)lê9âø²l-@^Ę…ÙÑÉ 2i‰?ÀÒ ŒøÏvBvœÅò_±ÿBvÚü98,Áö¦B|w'HWÿÕ¼‡9Y,Φ`£=Èò¯(ÛGÿG2¤¬³½»ëŸ'€ÅÜÉÁÁôO„ Àbííl rü↌‚Lëdñ'Ä`qµ7uµþè99‚þÃ\/7O§? 1r³ƒþÊøgÉNîà?ŽzàñWÄβÿaˆ›+Èã/5nŽšrýçžþ BÒÄþÄ^üAÄ%þ/€EòA– õâ,@úAdeÿdZ¹?©©ô‡ 5RSù?Ä ©©ò‡ -QýCÔþdõ?i„Æ‚¬OóAÖ§õ‡ .Úÿ!ÈÅgù³µ|3³?13ÿsþX!j!Ä ôþ³W!ÄÎê/„èYÿ…?›¿"hûBœìþBˆ”ý_±úsæÙØ VŽ!ÄÊé/„X9ÿ…ÿ†¿bþ ÿ9<!ÄÊí/„X¹ÿ…+¿båù×]…Xyý…+ï¿båóþs•-þ}Wþ÷K\ÜÉË— rø™Ø!—² >«ÿÿ+ÑÜ ¹Ìnÿú1€û7[Ú@Þ’ ÈqeÑÉ\ Ì6½5¢2@ªø[ ý[q«¶D`Sÿ\RèrÒ[û²qúÍF‡ê¬÷¨?`~z>ºFwû©NJŸ»$f,¼üð0ù‘åÓA¨s•¥ä½ïL~zŒÖÕ:ÿë„ë­òìæ×ÊTÝ’/¹ÃÇ…*´’?áÖÉÞ è{4d‡qóèHgÙkF†7Rs©¡g¸T~àŒÜðDOM†Þ˜ °„ogX»têvÇ|(†/Hy1†²˜Ô2¹U8KóFù®÷8q‹ÙdXýݽ@)S7¾öÉL4‡Mßþ*6{žæšÑÍ ³®×yµn>¯Dï^Ÿ³J&JžÅ&º³§„LóMCb=uàtÛFQ·µ‰ð7ÉDñ"‘µ‚ÌkËÓíæ9ÔøÎ>@25Þ1j=m6å«<‡BøJÂb¸Ôsms`&‰kbê­tiýË~trÊ…ý&¹Í–哯WÄC¿ r Y—$ºHj¡_~7Aˆ¶ëoª’JABÞûñò2wKŠW¾ÜÁ¿[¯kä⥸ ï·Ië5in¾Ox£°†Y)SÓ9 C±hRêhGGýdb³,þ²$ÚTÝ@3-ŽÌæp¯)T x±FUÎåV²É¬ÌdŒG’€Õ˜ä$ \¦öHõÖê| ÿ•w /ñò-kåMœ%Ê>RöRQ8³›-Ïr)°Cë;¬DavÊhZÁžK>+Ò‹ŽåÅâªÑ#\ʹ6¸óbªù@‹ÃìÑô¸`ƒ«šÚ{ióÖpC+ÁÃè¶ãüÀ"êjí _a ßwÔ¹¶cV®/Xq+œ²œXÏß×óìeò„ϲ0 4ÇàKÌ fr¹·uãÙÒå]ŽšÓ ç຦¬4wJ"6;f¬¸ÝBWnô¼é¯ì¨]»?C‚'/¢P™Á­.ï¹ÂI(8üÜÒ9“¤,ôö›#¯?‚9Nîq÷ÇR°3P]ÃD†Ms·qGeøö±˜Ž‹Â; 'Œ,fk;‚Èй„…©Imü®¡:¬‰—fýôʾè}BSS>Ì,»E§h59û ceÍsx\²ÇPq ’àOD#¬¼8ˆ¦f½m™ˆiÅâ-ÿvà$|#˜ä8 øíocæÄ|ï׎¢•ÓìÅ÷"øÁ-[öÛJ¸SÊÕLo/ÓbÜÚKýçSߊà-YÝ‚_—¨7ëb-ŒæhÌÂF<ë3Hæsc¶¼ý_ª"–-v•7"˜l´ûÃ&äù̸é.P .¸V§Ï•ânÒtÝ—Ý:ðm ¾€8-ôZ…íBy›¹vfkèÇ£™zXÑü¼lsðA|£½ÑNOøÂéR†]Hyš©øÉ…èG ŸuÔãm·Ýr(çÕU/H-Ιð?šß%$wÅÚÇÿªýr²*È0Ë8&A"Ñ­gÅŽ§¸m¡±ÆÏ«ïûˆ|”…¾ 6ƒŽ©l/YæÙôÇrüt ô_á0?2Î3fÄ~›˜—¯À0q5ŒpQv1'Z˜ ï”a”™W'ºÂýýSŸ¡…ØþõN}ÉM Ý3åi/nL>öÔ |µ©MYèW!­Mm¦"|·å·ÁKÝýyñð¯{bh)QþfK!€œ!Õ}u ê ût)B¢Æå*ä>î€{ "Ÿ ÿM‰oƒ¡Ÿ„CÎO\:{F{«xŒÉä›é³Í ”Šg­¯ñúU™ ÝÑHÙ’àÂÏ °NºxÇR\xêÚÉ |}ȵʩ”þ ô*üYo¦yI=΃Æß”[½ùÎØpŽ’Öu Wª©#S½›²ˆ” y%±š_ε~h÷½ŠÌZtÜü,£rãK.°Ó ðá!Û~tùžL;a-||÷lyY#xdEtoè&Δ_E™¹yXnxqÈV”G+ÄkëçœwÛEFC!aª¤t›@(¥ÉÐ;½„µ+G¥+óæ•–¼•í~ËÐJ‚ w Laçf¾´•ظOªò‚òqù{îh«­·Øßl}5cŽ~0±[»`¨0Ða+ᣊ¹ü\gm;’=+?c…vhÒ§x½x#˜ŽÛÖY(7—y±v÷ÛÖ†_†¦&º|W©ÿ#Å]èÆæšmñúqib_&~Ö {E)l}vó/jê”Ô½ç/äµdQÄØCÊvE–Ë›:lò†IæÞ¬uˆó˜ñ±ö&ì:ò[{Œ8«wHɉ—9&oG^´g²HÅtFš©Æ~k¹5™=cba$ ?wž ¶m}U”Óù¾Š«nÂkÝ/'7¯®JJ€ÖJúÞëÇÀÚ >3÷Âã²Ñ-~ÊETKÊ—}|M9døFÔò»Ô}‹Ôà;‹á]“R (Çõ@ˉ«..žÌ+ƒ£ØdA!n'6±0Ô­ døGŸò~Í|S ¡$­ú¨‹ä¾Â®Ò ·Ø‚Â÷«gÚÊÊiꫤÕï6Úo" d ü+&5o?öeG¾£ „Æ ï©¢æ@ÌŽ8¡’á^rcd :ás,¼ìÙ%mÚÇkŸëÂkIˆÒ¼³B-×ÍdDêöð·Þ26qW‘ Ѭpú•1+&Æ}'Æ>§èHà=‡oæ´š¦Æ<~ÂUš³Us®xÓºŸ@ÙVÕyË:vž%· +~º2½hóÅÏÞçSEÁÿ X¸«_üGÖ>[BUϳoêQœ[‰½»zT¥IR©²Æ¹;&Ê&¥®D×KˆXo’üN©/¡²¾Ê""½@‰'%Ô9Ôß*³Crïø“ºÂ}a\xEpSݬ ,W&BT:§jdfn@þtŸåôu3W"˜ÿ-yn×orgý»2ßÑð™N…L°ç—Ì—ŽÃôüÕ;¥>£‰ûç…ò{Þ(…ϘQ:&‹/›Aê@dS‰¯ÃõôOÁ/504)F§9N<÷¢EîÝŠÆöpN?Î|é8€·PÔäÔkìÙM®É äÕadaNâV÷[ N*ßôõcú„B?x+Gúž/ÁÐ~™–³ïQÂö—†T.È6>d†Šíð!VNSe9 âWŒàx-U'ð_÷+L&˜ýZo ÷xâûu`êX½|­š&oæ=fyÆ2oòµG.߯ty¡±Ÿ;s¬•ÒâEFÁhű€ïr¦D ß›¢·–Ú«¤¡¡m9ÇjŸ;° q6囈Eg r'}‘kÓÁGjíX6VYÚ#(b!vyMQ=a\epžS”Ô$0PÖé2ž±:ƒ(Í„ CãñƒP^³Ê¥‘›_?„$±_¯+®?m.Ö>7¿T ú|x#VÉCÅ­W$äDŠ~df«1»w\ug òŠÂÔ‰?[¶°yüõ¾›æýœ6¦÷«”}uW6ðCÌ"òqÊ73å'ÜD&›ŽÆ{ B)0\¯i Æñ:­µéü…FR(,|ŸUu^Rv(Oó g"“Íw3ŸýQ¿è:¸µzf©^bˢ¼05¹»Í=š•¹Yÿ•±¾czH¹ØPÌë§KÜš%ŒG%!”Q&£WÊÄ=XÞ½Á‰³2º¿œÞÌžô~3ÇQÂ}¶¼ÞÇÌ¢ö6ÓŠßÇ·æ¹8›„ïaדˆé‚fÖª¥äRKLœm;M·n¹=éu׎?‘4‘&\§ˆYg°Û½ŽkJì:±º’¨,QŸFÚtª u`¼ìÉ…˜æ•´ж¯sö:ÿ<Æ{kn-ȧ¼*Šð:ÉìBn/Óz”/ø¡ª)>Lêô“YËéw\¾I– ü§¢«ïM¶t”‘Vl'Ûf¬ÍŠºï…ŠSgeÎ^a3²^ \7™ÌzÒGFµ™ô¾*yšc »ï0&Êqw¸,à‡;î}¸œía¡†´`è(æÆòJ$E=A»Ç}ð{P0.]c2#®°ªÍÏV|»LìÊ©zÈtt>…¦ÔP.¾p8!J–õޏ’)¼³é\Z } 9Kÿ,Y­1wઃPùAª:~Ç'©y°/ŒÀóþç(½°¾gÎÆÚL¡<ÃäÄ•}¨ô´ä‰+èí·Â­kuÝW‚ût:ìsÍ®ÎÑ¡ä`߅ѲuFzCmóÆ:ÜÃÌGP´qm'=º·²Ô;!=ºôœòCæñÀ¢À‚<õ&²ÍŒïBœ{¯ÓÀÁÔ6ºÏ˜Ž‡®uçEÛŸ%÷R¤žÄG"Y~„Ž~¬im-&î‹eíQ€N %­É½• jÍðÊFÄÔf…{wö[´8ø; ºæáN«Œž«Ê7޼kŒà&Ç{= ]JÙ—ù£‡ÀŒÂRã4Hìñ&Ýv§Wq| ¯EdFÈ1Âx?ð|db^p±pµ™hCÇÖ®DÕm,˜™öÙ”“ÚÑÿ´ŸxJ‚»k®$aÙ+áÅWÔ¹¢pâèΠØ8ò2A@|  6âøø ®ÄòÎ=C•üÞ©¬ŠÎOû?}šý¢Õ<–ú—oþúFš´(Úw/|èzM÷–¹¯]ÆtLcà Éb&Q Å¿ß4‰y”„‰Zìë,‰ÙÜ.>2\ïUÃnz§56âÌ/y 껈¬ëáhjlÉŠhi ‹a&hŠýUÍ´!첿QP΢Œ(SŒcFDjf±ä¿åyrrñµSw·s`á‰IÚ:úSbȒʵpDc¬{yêw’Z}(þ£Ï?ô“c„€Ëî8©0ÙP ú‰°ŸV÷ºz¸ëguÈT¿aþ œA'`ðúpçé, ¶³¦¹òßø,Ï…ïÔáV†;ÌŸ: Àò4yÉgRé­ÒJuè¨çnºàõf¹[)JžÉ"~Iv œÌq˜Ø`WÓH2àf¼0VEÈ%Üãs&ñŽ| èøtü±ÌÎWˆ¶G¶0D>Ìéû»”=aËÉc UÏÊœw|‹÷JFeϵoä²›GØ1q–.W,tRBÅyíÓR¬Ð¸˜½¶<’¦ÆŸŽr«t©BÃúp}Ò»Ò’sh4Rº]"MbW>_›ÍËéõRÐwÛ­òž5Ý@‹µÖ/õË{3ú¨AÑv¡Ý@1IíÛ†óûlÇ_{È¿“fBˆ÷Cl6·â„êâb~ô¿;='l¤¶ZfH1ÐÜþ8ÓpÅʢўxkç8Æ[xØnžÝ~j–7늢)hF®O½$[1‘s@Š™'{Ó•ß"j{aÌú…cbµü‡ÜKÀæíeuÒOÖüwO“|ŠÑRl›,‰Ù®@øÍðØX  ¸ À[Qis–w€çžf­PºŒ{°$BŠò{šs^@X‰RrëÙ~&QI<¸ÖŠ_›«ã0:ý Ê•ëê> Ñ¢9‘§nñÓ“oB´ÙµUú¿žM:¨ì”¼r,ÒQÙä|©[›µ¬”¤qª$a”\>£©ÉÒ³ž hdäÌæÐIaÕÜ £¡=€ÍÁ¤­¯$n#t0&*H{st9:‚_Þšú)¤ íê¾N=˜Áê{ûkÝ#$¾9å°zæ0NÌ^My… ßUQ„¶Ç0ÓPt9Bþl‹§mzè¢Zx7Ê BykÞM^¹úÉ¥«ªaŸ'†€ÅNšðh¤’ªjòõ2.ÀáàDá»i:ç½ÚýÒ³’Í‘hó¼ô®"·B_PóD ü¤lÖcLZeÂÎt©ªÝ"Â…rüb›÷\"Ï%ѳO‡œ½Ðço(ÙÀ»s³EÕâ+ɼR'÷„8Ø‹J$» 6&±AòΠ࠱+¸‰^ðSÄïâ÷â­¦ ƒþRϯÛãPR¿¦4Ö_ˆåç´4áÖ00cô»(7œÁ›~Ï·q†09]48_Ü ›÷ÍžôZÑs6*Þ^uŽýKv2>uà¶_áÖ;Í\¨Õß{LÎyøW»ëôÉ‹1§Ó̒ɘxû–,õ{pi*_xKæ‰j³d¨Ÿ}óùìøJC‹˜kŽŒGBP`#EÄí¤ñ¯¾å¸=¡ãwV Þ´pžfb¢ý êÝÑ´TŽJ'$[XTåúú„wÎD|3]xŽ”¦K®ááwá‹Q:g·U‰-Ë`®‹Äà$×P£4;%ææœ}jbi«I½A¬Bõ(P»ÈL``–šscݾì½aá•N•Ø}ºÝuV ’Ý"egûiaayGì®z·Í[Î+í ïl¿Ž(i«^›˜z£íŠrQGëç倬@Ü’'blÔʨ£ÈŠÈI9N™ðíC~×dµ€±y¸;{*ílV¦â¨Br86óÙ½Ùà?Ò=>û=ŠšÁKñÆô0-½U«ÖZŸù`¶´ãï<õ—ŠÉ•éZTó‡M-ëw'åñ¡áÊO$—<ÇýÞl•2cÈIGX蛾Á‘ðR8†þíëÎiÐjò@u½gv5sa©èû o¤/q Å§Mõ±ò¹*3‚†êD+Ú^û€3êŽt¥tVr­ŠI""†i/oœ‰ü°“Ûw¶´ö)(¸ó‚t hoÕÿTÕüéŠþÎ0B®ÞÒum;mlªGZ&P¤#k•BFã Èˤ›µô©`L2C *û¾ò[Fb›˜V âI EU{Ã#Ã㎂2ékQkjêJ»öhÑ^˜œÆ£1ÅI€1ÕbÀµœh‹pàÕ8ÇÒ¼Á÷ø‹­g.)Àgê_Áo?wGo@aÐ?jh›Ó/»,ÖavVÓ?ŠÒ)§ß)¦<Î?Æ×Bg‡ ÛµX’*I÷ªàeRØ NYö¤Y4ùâ¤6tß^g_?*8ÆÆŒHÖE"÷ò¶gŸ„0ªÒ—ÒzÙ—°KÜI8"óRÍ0/]DyüpT/Ò)—ó½âi°Õ^/Ke‚Ç³ÜøEòõ¹Ùí«ªC;$ÖŠx•Üß«ž-—˹7Q¤QPìh¬¬ÚDv^h¼Ñ€õ­¦sPEÅÄ·vQO‘$Æü¨Ì¹ÆE{ý~Ie?V÷˜RKæÈ¼<ÒbÉezªa‡S´‹_¤ ŠÀj'œÿr³¤jý²,LJ×a½3Æd¨T5ö³®xö2×ú¥ œùÑ'C%ÓìÛ†{}( ®RÐé¬3~ýi4}Ì6=ÆâôÊ“ÂÌo‘§ºfªë†ðRctÿY4,ÇÓüvfÜgcëÐÖ³"e(Çô“Öù ƒêJ‡™!V%[»^fœ#¦ƒRdÖ±‹Lׇy©QdŒ€NJÁq»i)¡% ÐùWZs XUÆöKd8B.2>§‡PÁÉ‚¢ÆøNcÒõ³ìÕ ~eÛ§Àh™¤“ÜŽ¾zFøRá/‘ú¨±Ýc0`ãü{šêlA Å~œ±g¸½ªÆÓ´ñ-gZþ/¶Eò6’16½Y!ÄDsXhæÙà‘R…s$‹7‰â³QêMøo˜âg˜_ýBmIŸ…¬ý‡‘Òa…ö:ŸIš×D¤^ù`Ãhf§Ÿ]7N®§bÞâDzûBúmšV~V4$“}¬ÁzD£59rÙ–ë®#¥U*…ù/rÅŽt«nÙêYCÃ6Þ/Hôõ÷*Ú·¢³‹ªF^Ä£*™>1»Ñïq,èÁºµäÁ̪å/É åaòÞ8l2õˆwœ•VôèÓ4lJx˜ˆ°£7Ù},g§ö¡j?è„6Yfœ‘ñÃ]™'sJ®êL§ HçÈp'a Ô½™PTÕéßú%‰›³ ÞP’ô¿™WËÿH<ÖbÝŽ~Úa„‰‘þÑ-¼Àù!…Çâ î1¦ô½±©•j™v,ä·­ãŠlÏ[<ê!-¬_où¬í¨ã×1ómSØ„º#Ü¢vûÜàо r*évèóEÍ4¨ú5Lï-P ]Ú {W=SSc0ÂÉÒ†!EY…’IW!‰éF'ÖHT•N¶Ùá¨è•¥ÏyX³ù¸ Q›:¥•ò{aB}+úfl@nú#7³R\„j÷‘{·³Ê5 N?]BB`ØÁ{Á17T^]kG•‡ˆ@!ŽcJEReà #g½iÐ5ªz¹4Xk…ärþçÓw¹›ÝÆ_ÌŒoé¨YM®â3p#PÖzÔ’›CÌ„V8QÓ„xw¾ý‚iÂÝ»(2Uë®ÔSzý[ñ‘q6T3-ä‰äGZ_^Àð’Çø[Ší¨¸Ì íuy(aᦿë~d4n OûÈÑܱ0K„“{VTZüÔ˜êÿ6ݱ1x—ÊÁL]€ èM%¦®3™’Úç“Ù3žçÐÈÖf>SÛsQZUHdÇçD—á¾ƒí£‡Íß. ÀoÎ5±Ñ‘;^aL¾6äb¯Tç{V&4g»ðùPØ~”áÛÙ,ÁÇ”FÓêT5Æ&­‚T–ÈËi{ žPz­ˆJ¸ü×q»zyÚgM˜EPçíÃ,x÷ÜPadÖnù¨`wtÛ”Ì0olý-¶LCœ‡{¸ùø€ÝIÛct5½ai™f6ë Ð7\< MÄ®LaÝÌæCuµjçcâ{Oh~©¨ÆTxBÛã««Ž#4¼,0|{xãñ^×Û£‰¸ÍEÄê¬èÂЊÎÒBŽ—Ç™ÒJP rX6¡ll´¥ÉËTp%8#‹Èn`gÎêLZ|[SÕ]wdN´ú»€&Ù)›¢˜å /®ìd(¹•Bm RÑ‘a`œ OkÛàò&G.Vƒ›ú*ÚñµM~Få¶ÉÜs£OÖ¹z¼ßcºX5Òö¶ \Çw¨”=ÅÏ5A Ž„m¿NÝÓ>­(08ŽmÎöRÞøi"ËEíç ëYf]%pðoûÆì2禌ÎzSAEN4]›2dbË¥£˜þúH0•ð—,^ÅØq•³ˆ`¶óu¯˜"Í+–;7ðŽ«¤Ž 5aÞcÝ"üΈ›}ܲE/6ÿªgL[œud, g–:¹I$Ö™¢vœdoóÍù‡ž~Ù¹ŒdPcK¾9¹V|½Mæç©Ê“¶âû•#ç“éoSþàò,ÁŽãp!M¸µÇÏìioƒökSõ¾ D€ê/5<Ù+YQt)!Zi ÇR*0ÌîgÜ—d(ÙúZˆ·Fˆ¸t¨1ÔcºY/—Næóco7ÅXÏoH9ØY3•J›ÒÆPöz¢†%á­ÌÙVóªq·¦|íÿ&yÆe5D?)¡â×ùö²üöº…ËÜ|’3×Qp¹_ZlhIúXLüâ—šL¿éeÛí]Û4™tÍ_|iÛ†HìN)ŠíÍÕ8j˜´„2J«žOç~Y7‹ñ 5¬¿ÓÍïfaê˵û´†ý†“͈l»;>HìJœä¸HY|á;ùНÅLÛ¾Øãü63W½DRï¸ÖþE·qš~W\ãþ­7;üÑ)Êž„P8×Ñׇ° ¦;í]¦!ÿ‚ún¤]»M2<‚š©V‰Ùí÷€bO™Æ xÃ#¬"Ì*7 –WÍðµýgñÙ7r {À!«Ÿë?Ú?‚ÚbGËi•¼Ûe´±à8Dz¾1¹5›¿ra £73$>;à'F­wŠs##ÐæõœÃK‘ÒlB9Ñ/àöêv ÄÆL1ôœ–¨à€]b™=éº3´RXg-Ë»øWÈY]UÒ±˜H—ÅpßgâækÔòO8ÜkhÐúÞ׈‹éÃ+66KÛx£{ ‡N㜚¦«áË«ãV‹”Á|¬K¼x*–±Gð­FŒjN2 «ž ‘ìbagI†[T:p©(o;ã‡@Þ=FªÅ*„TƒYõýVÀËYûw+Ò"ˆlXW¨9?“¦Ï W1™›óߊ³P0H“]¸ÒÉÛ($µ„=•qS²Öÿî‹U%ÞbY¶ˆ+’¦¡Ão2ûˆiÒûa”ìfØõ-—)µMÑe…—·Fr¿›­XÙòPÄ´ÃÌ¥ÅI&ªzîþ-a ½¶“„mö©jK|fã$/Ò¢‘ä¬R2p¬ÍaZ"ŽpÁªsÞK ;Í›QÁ7èqž%/Sëeµ¬³k‹žå”î¯õ¸º•j|àUvõ@u/R¾}Q姦&Þý[çQ‘:eÇn‹nɹÉ2ã³FÛ£²îÚê­uL7±÷u;4gxµ^}½íBGEƒÌôE`žv“o¼FB; ‹AÑA¶¸õSg’js3ÚõéFPwPp߃È@‡I¢_×·dèuóÙëÍfÏúW¤·"íàd§p*³øÄNµšÛ¸ô¬¦÷FãH>ÅÖ°yÕt ˜- s£$U¾vkñ ñìŠ*†DX^5èg˜}nôOºwã}o9¨’7£G. ‘¹âêÕSJWqžå_žqÃs‡Ò£ÂíWÞšò‹`…p™á$h)ÀIÂÜ.KÕðú2ï7xš\vŸ:ÆxuÓhËŽÆ2ùœp^€J›)±iUi™%¶Ep±SJ±`èÅeÜs¥ Ê&B?3ÆQB{}M-wU±XRÇ=‰î`‡yëêÖ#S’$¶ë©íWwÊ£—-8”ÊÞßôö‘ì»\hU±ïTBW”[ÉZq¿^Þí+´n¸GÅâfRŒ-WöM“'#éÕÄëuo4©Í2þß0µhxÞå[TVº[XØgŽT§y!,žñ·æá—ÌÙ!QÄÓê”S+C]Zb›öW^¢Ã=³3Ö*–V÷iá ã{{2òŠ1ïòÙ ^ ›ÞÒ|LòKJ˜(cÕ’û*Gás©i€À@aþ}©ÇÊŠ+\lÉ [,…•г%:a;Qås.ûÒT^IjߎpU˜•3n8Ñš ÅÇ'¼$«AÞ÷> ' „Pš%ŒtJèÆ£}eAU¤œP“£ç¿Yo&1šJ¡ìˆ0†ñ¸mÏf+Ô½ ÃÑ<[öÙ7r³¨ËŽ™9É¥ÓƒõŠw¿X®<.c£lõsý|Dzù•nãÓŸB!d»¨þA,™ëƤønÒÖB=Û pðÛæd4K¡:¦b‡^Î!Ò±l·Ã×;„X)É3;ǯ /HWÙª*{úÌiC~@ÑDîÏYtú©ê¢d-v÷f¯©¾_—+¶ØØÊv`‹/iyJþ B-}RØÈ<´,Q´"ƒ/Ì‘?Ý¿å²Å²Â!ø’憔‡ß©©¸¹ë£7™æ§â[¢B¿#\"#š3Ê£Á³H:Ï«©rXñ?bò®Ø>­}1er»Ò]ÓÐeEñëu€sÇÄ÷¦¹,b…fGÂ1ÒO=ßg˜ýÐõ¹8^ì6a&|ä®xÚ—='̪_¥Ž¾àîG¤ÆÆú@å*ñȲ„Y¥Y¤ËÐ)¥8kùÖ¿1n¾KÇ­Ä%¨OZt;GŒ7ío¿[¢EYOúÖNÏõnˆó€ÿá·ÿSÒXûº´Ž{ÿHâ>Y+ÏHÛîÎÀ•š+ÐÂ1£§0en¶DÊù.¯BžÍÞ _ïØeõÆMËDÆÍ‰³Ãç6ýUÜÕ†³®Œgæ—~óÀåÔ°p÷ÚŽ,“VŸ°e:JLl±Db”îP³óO„(!•›*ÓÀ¯*hæ:ûçÞ2Îh˜r›žùLK<–]`¸ì™>•AÂà·|êì ’a®ÂPü÷ÁKFó²óؼ÷¿?H>q¶\J¶5ñù'^âóÉMR.HD„Üð9Èɽ§6?䞖ɸÛŠ»–c¥„«Œ‡/5WØ_Ó’òO,e°ÿöNCà—ƒ™íÜWà —U m¨¼âëOË]ãßõ¦$@UIV›øe-VÄý=Úyè~¯/Î|3å{í¼UQÉ×Ð-s@é¯ù/#C›__¥*¦4¡Ý’˜×1‰©9|8ïËaµÏ^ï\Åÿ´®|4%¨ý^š‡Õ4[wäp–¹EÁt­ØH¢Pu¡ŽÆåãÿY§ãô®òmÎÊa¹(Lé)ì7Ò_ªfíMHkà÷ƒóÉùê‘¶INª¥FnÆnÃ\å`ï/ÖH—l¡ïbâiîkI¾²¼EÕÊÁ¸T‰Š©v0Wä ¸þgÔ±xŸÙ6Vé?}v‚F“P;4©7n),Ý\Tçëäâl‹˜)…ãTØ÷?þžp.‚ÍqM<ŠÆØ•Q=¾€hT…ι/É“çp§¹rXÄz~¢Ø]æ—z/U2]ã )ç|ç_u*œ!Q±ßÁ6I |Ò`$ #ïåR%VgÍüµ¯êgÊ¿`X‡˜ú:xÞà3Ð ÛúäCü²Èúÿñƒø üQÀÜd vsr0Û!þ?w| Wendstream endobj 105 0 obj << /Type /Font /Subtype /Type1 /Encoding 345 0 R /FirstChar 11 /LastChar 123 /Widths 346 0 R /BaseFont /BFCJAT+CMBX12 /FontDescriptor 103 0 R >> endobj 103 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /BFCJAT+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/ff/fi/exclam/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/one/two/three/four/five/six/seven/question/A/B/C/D/E/F/H/I/M/N/O/P/Q/R/S/T/U/V/W/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 104 0 R >> endobj 346 0 obj [656 625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 343 0 0 0 0 0 313 438 438 0 875 313 375 313 563 0 563 563 563 563 563 563 563 0 0 0 0 0 0 0 531 0 850 800 813 862 738 707 0 880 419 0 0 0 1067 880 845 769 845 839 625 782 865 850 1162 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 344 594 313 938 625 563 625 594 459 444 438 625 594 813 594 594 500 563 ] endobj 345 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi 13/.notdef 33/exclam 34/.notdef 39/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash 48/.notdef 49/one/two/three/four/five/six/seven 56/.notdef 63/question 64/.notdef 65/A/B/C/D/E/F 71/.notdef 72/H/I 74/.notdef 77/M/N/O/P/Q/R/S/T/U/V/W 88/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 101 0 obj << /Length1 1865 /Length2 11345 /Length3 532 /Length 12404 /Filter /FlateDecode >> stream xÚí·eXÛÝÖ¸Iq§H¢Š»[q/R\ŠÁƒ»»»» /îÅâÅÝÝZŠMžsÞ÷Ðÿ™3ŸæšäKîµ×o­{Kv®PS(«1‹™BŒAÒ['fvv€„¢º:;€… •šZÂt²€ØJ@v~~v€˜3ÀÁ`çàâàâA¥H@ìÜ,ÀæN: ú’xb6   -@èd²Ö0ZÔ & 'w€˜µ5@õŸ'ª Gƒ È”•`jaâ0-lQYÿ1’³5ƒxÿ6u¶ûß!ƒ#T @•¤@M!¶ÖîS*«Ú 5ùCê¿‹K;[[+mþ)ÿ¯Uú¿m,¬Ýÿ'bcçìr(BLA¶ÿªú·œ"ÈÔÂÙæ¿G圀Ö&b¶`k€íß! Gi 7©²…“‰9ÀÉÁô¯0ÈÖô¿ ëö/V…O:òªŒÿ³¡ÿTZØ:©»Ûý§ê?Ùÿbö†.ƒ…@—…š}ÿï'ýÿj&ek1µ°…žnÐÁèŽ =Pâx²,lMAnT˜•Åâ}]o€ÄõŸýää°Ú;Cœ@¦ÆÖÿŒü;È `µu¶1þg“Á¶/a>+ÐÆBçüŸ(ÿÿTø÷^ÿo˜‹ ÀjtÙZƒÌþвÿOô¿’9 •ÿ)áhõ„ª™@ll€/¨—¹»9èʼn‹ZúäEˆ‹Àêh t4‰@Å=@—Ôb úsCe\_ƹ¡šNæ ¿2 †fg‡—ÔκGÿa¨èÿ˜7ÔÃÖâï.|ÿLÈòbÏík rt| @ƒì/{Ám þç½ôæáügÉAŽÿÜ /Aè∽´¹Ä A;K¾töRÿ!^¨ƒô Ad^Ú\ö… må^:a…‚öS|!h?¥‚öûøâƒöS~!hÕ‚vP{!è«¿t~/í§õBÐ~Úÿ!~h¦3ôà;8š@^–zÿ°¾œ%~è#Æ/U4ù±³AMÿÂvå/üç,ü…Pið_µ6ÿ ¡2!TÂê/„ZXÿ…P ›d‡jØþ…P È_Õ°û ÿ9!TÃá/„j8þ…ÐÍsú ¡VÎ!ÔÊå/„Z¹¾ ô§‡Õí/„Z¹ÿ…P+¿çŸo¶‰……“…µé¿×ðÿ~YŠ‹CÜ<™ÙÌÐ눛ƒ zB¹½ÿ4gè¥áô¯Ÿ!è…û¿lf½A 7 êÏ9ˆ‰`ejCH©TádÃ+qpcœR]×t;ZàBü+ëâay{†ÕZí?帘»»ä®ÄŽm^*cÒgþöqi³O».F»ÍÄÚ—Šî;v”¿°Zf®¹_}œZ)MÒ)êË>ï?ÊW¦“TßCZ¦€éÖuùÖÄë-a­\KÃI¡ú:;4Œ+tÅõuRüÊD e(rãÒ¤ÍçO!r^â“!œé˜¦Ñîó«6^l–,Úæ ©îƒÙ¹\âŠãyjˆZM‹û“!0â#˜¿Ëj‹šLpD'󦑨ý¬¶ŒšÝ\b©uMz‹mꄨ„nL„¼¸‰Ä†ÔÞNÝÌzQ=ï–è»Ý±õÃŒßpFyÜѳ5KjÚ¬å«ôÑ-( ³¥Òkwo¯¢3‰´6€;Ìùßð8)Û¾îéÞ·p‰ú „É¿ ôñbë¾7”qX¥1qô×jƒCÉæëbÞÀ°®jFEó²—¸V¡|ÕÛí˧ïÅóÑ cô3_ãòrÁOº`·¼æ|öAc%§¦åÇÈõǵB´K½D…îJÏnYÅF—k…öA6‡ub“ 7tkAÎH5Qr“˜\g1ª*vÃ|Z²‡Ðo[£¿ðKDz+ ›zK ®ŸÇP„_‰}[S„9o)õ€9Àú·’s]ÅDZ°ØXzŽþî#s:åÓj;g–w!Ï|§›"zl/žÔèB2ö¶Föå¡ää«{aRƯ:§Ÿe¸>$QàÛ%}¢ÓÖyè2ÊdÛ8mF¹bF(5Kë`£ð=@nø7e®.y–í’ÂPæK•¡©/¢¡À±ÌÜÝ2 oƒHÖs…,ȵâÃíuªk®E í—`it}¶Ï>îwƒ(€ÓåaCðWn‚å¹e¥”ám2Š\ÇÅ[cþ|•3ü²˜´42!C¾b=œ4Ã9[ýk[«üž¿:¦¤½- Ð0æ®·²K—ÎSŸÐÉqÏWc´6ÒÔ-¼°žû vE:" ¬ËÞ 2R1H¥>ímYP‡J×fö™Tì –Û¯âÿ´JÛõ¬’A=Ë'\i¯ž”ÍqÄQâJÊÆG â;8êˆIÙ¼£¿å‡h©·¦ÿò#Q~Qøcžý %ö×Hy¾µô—2Ö²ýp;¼¯ 1£¥t¥=ào»t^b¥Ê¢ƒÕ ß9ÀYê‡N›Ìî¾Î§ÊžÁ+†`\¢ìøî‚tY°7Þð%ñ:I/§Þ ÀI3hÓ³&XxÄú]‘03U.ù¹ÜªjÉlq"¹¥GYš0º»EýÛFÚG]š[:Fæ^EM}x0énÌfDøPñ"»§uHŠö•>"{€¼rß³–aÎä(Cõ©ÆA·ÑÀdß¡—Vcãy†T]Öû°«h"Ä…Çþ b6­C4 ¥‡UиÃ#/{é&•m‘Ü·ÐìúO:SEôä¬×z~—Ýûæeò{­Ž„o Ò}ߎ‘zÞ9|ãW·{Óxeóº=ŸjßvxI¼‚³Gs®`¯º·÷­_0‚¢[šì~¥òîëºm¡kT¨«Æe®ÈæåÔþg¸Ë »“A&óin49÷/Ÿ°ò;Êdò½ôXõ ‘Áup³÷Wba9ÉñW0‡¿ããU~Ó©‡Ï^xŠë×~¾êDTß;">6×;ô¿n9ž¿rü¥Â—ÔŠ©.l„jF_¾!J:—, èÝã.˯”Y 56“í”…IfdÈUk>¶Ò_•! ñõíó2x†Ê (*Š•L¡þ¸B1X,æ"ñ^ì0k®{3ËáõŒ²§³äx×ߦ_<£`8Ôh:|²~ëué°êa <}ì±]”oüúP£m‰€O[¿©>Ùw¼:%,E¬n<2~ç"d>|äRŸiÙ3>`þ™M5˜ a7ozù†Š’œåBü²½÷dñ‹c&F!ž¹æÓ¡¡<…ar²¡§4nîÍ!"ƒBµ4ëäMw‰ƒ7}c±Ôà ¦½!á/ŠnO™®å1jn?ÀìmNqHªÚJÄÈNÕ—Æ«Ž?´žTM¢Ô´"Öt©M4“Iåøap1õ#  ù_æ±ßÈgÅö¶dÅíš#&ƒKÃ]³²Ü´Úò>Ë®ã: LS;Þ$n˜‹¼A C')—ø=æ¿_FãtM‹.ÿ;Cc°§^À|UvÏHâ+ªŠš§Öí˜^=öYîs¦v~®!gìÏ~¬d`lë°3^h£¾¦eÌ™DTÚyt…¤â™êÚ3 ±Pý;Î4{«(zIöPVÎnÕtGj÷ÜQ”Àx³´Ù^ õWªï®ãY‡WÙ×UÇe5t®™zË­½3òuƤ6ÆN¡jô4±S¬QôÁÙ10¡ÂlJüÓ¡ŒBú„4¹_œª]Ý(l™Á»ä›5L[\Ý{YYöDH›¼¾£=6ÏQwŸöšÒ_5V ðGÌŒeå ö‰*ZvŒ4pVXçJ ¯Ìxï\[â©“?¡ÈT%bôÀð*‚Ô"ƒÎÇÕ–ž_Ýp/8~8ú|Ÿ‡¸4‚l½_r=8L$Ô–é ’ëúÞ=¿YØ? ³T•¨D¤•”tô¿‘+j²4œì‡€»Û­Ý°Ù°õQ›ý7Ó5pŸ[ŒŽ[Û¼£\=˜ý(W ¥’ ¦K°ë[QqÀÆMÖgؤ8¬üa¹Nš@ü€Á·ÓGý¼¿0xd#xŽZ×ç1j ~ŒôþÀÖîÒ!””ļG"ø\/”@ôº 2lk;k·Ëøÿ!¬ZÁ·ûMcWµq¨¨+‚,ËÒ\à"ìj²'L ®¨‘ç-䘥ª?@û|ö rC¢½àÇ5VTòe†«µƒ^’/1-¯ïXfX–ÛŠ«2WÀ Þ´Ñ&4+w$W0óúcºˆ¼ ÷<ßÍS~a~¿´>Ë‘!¦8´p\7 Å+û\uñúx4ØõÇdŒ)âfÛ8Á´ë£j¸9ƒŠ¨ôˆJ/ÉóŒi7ãÃåì«è´']6røø½_­Š#M½¹ùíe¶îú’‘Kï‡MÂDZ«Ef’B8~W“ptâ¿ö"ÕN=ŽZ8W¸ïªK!˜1ŠÁf`¨GÇ£”¥EHumò‹±ONlf´ê Rž1ù¢ÓkíD<¸>+ÆäЬIÐèå*‹´ôö“X‡ Ñ··ŸÜmBzârÔV•Ÿ‚•Î ç^Lú^-ÅoƒÕë1-w|c´ü·M°××F‚ ¿,¿†hÞ”S ʶâ]¯b^ãηŽ4á§Ôhqlü<„ï¹(—a«“Ír¿²l'_ƒOî'd:)8^QÍ.2Kèà4g«4Ðz¿®g~-„ aSnÒ;Ë™ÙË•.kA`vú¬žmUµWûtw袊…ñêOï)RÄ)âš2~¬HbÅhºº718s"ÍÌcŸÇS‘gEðÒæÑéb;U|Øû$'Ñš[}s—³‘=^.»QeÞw ýÚ+ÜCbÔþ5.vcó\yüöñøw`¸žÉúô¢d×áv‚yŸSÆ7\ˆú>bW‰€p¤‚^ßoC«†¨öð´‚“n.=TüÕIzWÏîÁŸ:{ªéc"ñϪå1K>Å`3´žþ®YÉ“5 i¨<67JD)/ £&’¾çŠKUø:½P/ùÂ%³¡ª¬ÝI[çâ†bÚ_Ià‰V™Ì!œìäƒÔ•°+)üþ2)¹è§”Û­?áZ gÛ©ƒç¢ì³YîQtËFçRîÏ2·ƒŸ²üš?O…ÿ”ÂÇw†>¾Áiøë®éAÄž+;ÜîαB2Ñ+Rj\¿RfCMC¹ÖÕŠ¨¶–œ„øa²•;,:·ó~ßc6VðìLQh…8 QUXk5*Áøsï øÛ͹`ÌŽÝÀz½-[ÔSo“ÚJdK¼$¥ íU¤¢³GIM‹¶EX§„áøJ {ÚU'7 øúkÞ¨sØ¥£Òl óvBMzýrR’éÑŸSO&Ýdzcoë†âŽ«gÅ ¥iF­™ú>Ί²R¶³ ¾ë/:êbŸ[DDL¯ 󉯔çOS‹Z?š2/×ÖÿîNO¦Á£^ !9ò,—udkžÊ·«j·&Y¦îÏDLýÝ5nÊšvê I¯Mz°‡62M/øS Yvê3•©nöˆ0oï<¨úƒÙ F…ùŒ®FÐû\{f¡·c½?f?,S¦*·tT4ÎZ'Þ… †–±Òj¨c§R} ûsìÄ`lV+k¼9ÁçF¼ã—f‹0ÌAé15î¾¹OYß­¥û ?<{—À}ÌGУҼ¦bÇMúÊâB_PÝ#m W~!™ã‹î’Ø'~¢žrH q ˆ§Ï¼è·ç®ÒÙ%ñÊ~ÛÇ[ÍÞ-VQxnAÏë‡Ös5j( Ÿ"+K¬m„d&KÂÙ7ûwÒê ŒÀŒf€¥²gε%!ýp#ÁÇAÍI0U•ƒWÕ»K绘4E¼´S÷K™Œ >¶' íßuX'þqNøh†|6ƒns.ȼÑ5R7ËKh&Iö-™z‹ß¿ïŽ6ÓσÐXBB„'*T¹®¦Bd§ wѤ°]Åå‚&ÐC¡#ó­ßÒÑWíã`;Çùp¬UËÞjìÆ=¾ƒ»³:¦Æñ3rÒº Þda!’‚ßPÜ|Ö­êýF´kZ£À%¿ÌㄱÀǤ|’¡åÙ–æ*µÑ߃u²~Üæo+è;Õ2ŸzP;áéèHLm½áâàIñbJ ³$ÌBÅ$·¾Ÿ `7’±²I“OÈQš…~]͵€pÙ¸³$§˜{ô$XÂÞaçòýÔuÙ”ËåAÜT&®¯ùäŸ ŽŒ¶èO‡ˆX¬<Úþúú4Ç1ãë•Ë#ø`-›¿ÊÛ‘Z^=Η¢DÝ3‚ðÎ©È ól‹"“>z´£l…í¾“÷: ¸èPý·öU.~·´®Íàýï…x3êñ~ÿdÜšã^Ÿf3S}—^æd$âWV®ŽºÉö"Ì÷ëÛ=ŒËnk‹âlåoð†IÔõ3=*ůvñžÒpäqQZ›´ìÉ“?•œŠý¹éüÌXðsÇ\Ë$·Aãë*ÑS™së¿nÜ„L”r¤šýi.ö“ÑØX=Œ5?TV®çuIÑÒ¦üZ#§¨?ÔÀšã,CŠ_>ž²ë""PúL{ ïàM™›Â·à&´²ŒÎw$E¦ŒïÓ»¬KÔ©'oHÒå‡Ð¹[¿/„óñlj’4õÖ@¸]†…;’aSú<¾í¹ÄäLo³ [‡­8Ôo¶l…5üb;0$À1¤«1g”ò5¡Œ,…ûê4á‡âFz¨çJ¨C/°ïähÚN´õÝ›4 ¢ûëñÉ a<ä$ܶ1¯ ”¤ý}|inÆþ¦¬äøªRÎ{s-ÛŒ¶Ûo5Î\ˆáSm£û ¶¿ks%ÅÄ=~{€ipuê1õO"ÿS* ñުɽŸ›fÔ4¦ç+o|órÞ—òÜc¿Ùå|ygæ wáãÀ–áÿŽÓºÃæ+ýYÅfÎ+aôðJæ˜1ÄíKø”iô·‡ĸ é!GUq™ˆ±s¤ÌØ IÂ,<ÙÒcø,»e }`Ûý@fCãÇéÛ‡Wꪥ*„djù eäFpQßÚÅÜ[Füo±¶ÕHÈ}53ÜÈ·úÔ.‚_AÚÞG}ÏÚª"åªÆž>1 \öÿ´"È*ÀçÏKã8Sýù;JéF\´)ý,l¯ð~§©ÚÖëH»Ò?z«­3 MäïZMh…1xå„ÿ0‡¼B±ìÇIÕ’¹ûm¯xÃÍëbl\4Šzì#*0^$7én]‚Eñn8ºà.™Ä±’àqê¨~î½¢N¯Ü×q9úM‡ŠB'åJA;&[Lw“õÞvÍÍ*Z±#^~ö±óÕúxµ]¿Xõ»õé·¯»è™YÑú¥\ÍŒ2¾…däTå0Ú‡Ù¢¢Ü«6W¦“à¬\9ÙWpÑ)êYrŸˆ¬ ^:ïé–G¨ò~Ô–Ž nÝètÑ>Ôª¶< ÎÊÞ¤ÌîꜦ$l…ûHê<ªtOÒ–ÑØñö³"5¢¤$Gýš|ñ–S_‡/ʵ™ó"áæÿA˜( JžµiΔ6Èâ|Q<Ç é8ÎCsU#Š $UT@“¾?ßPØz&å¹Ìl²0…å`+‹oŒƒ¤k… EijC³Îù§&³RïÏQƒíQiFüiÆŠ»ø®ëG—UªD|ľ…«çž_ˆ¾c¶õ%%×í ÉòFÌÝÜíÓÈÂZJæXg Êå($’¹]ìVPc­‘¤pH>¸éuÈ”h.] H›€õk‰QM­šnn6oÈ¢€ÌÕÌH´éüËÑY iM…š‰*.$)ÂxŽ˜½ŽË–·j¢7âÞZÉçÀFEG¸ƒ¯€0õ­ï1e~"¯)…j)÷%vÊ}¬w‹skL·^?y]à`¾ë#Y‘{deõ>Ck§FªM×(ü"—êÇ‚kÉÙìTŠ0ó’7õ1º)?ª-óI¢Œ èª ¢Nëƒz«2›Ur³GN,…Êãþ¹‹s@2EÔ†·HÒQ4Seƒôþ¾WKºuLu_©{®šŸˆfYq™cåø2ÕñŸ·âL#*($%?|uè6]ÈH£ÞóÝ>¤>‹ílö\^è< ÉÞ´"Z7»|Ø3ð(õL%ã"ôñÅ÷µÁfžÞVwHÕˆíÇ|ªó  9ù¡E)ìã›”i7ø_}‘hë#_ïB&*Þ ýI°óA…^ž¿hŸÊ ©‰ùضFdˆCCýq7áE¤2õIð:SIÒy¹K11–àqî·%á/Ž<¥ŒÇýµìƒ~ý(\Ô³wϳ•ãr9Ûtzx=¿‡ïÌo߃WeŸ¶…­W¸&ø·7©Ó‰‹Mèáä`6ÕƒªQ£×â’»`½9íêfƒR`F°dD°¯³iÎQGè5F͹AÀÿZ+wy/vžçÀ¡†ÿ‡Dm«Ø÷s°÷ ®N µ²¤†à/+¾{„Y×ï)½öñŠÒÔ\*Üž1ZÑÙ[M9y<ÂdZ«ÊÙ@Hlún–«äjƒeùñ›qãb!íäTïû0çGR3bêb)ˆ¦²ˆ¸Êï.OIJo9*o‰Ž•¥e]ìùÑAˆvWpYO[ceâQ/‰±#]‡î2>œÒrW‰À¹,uÌn.V†QÇJÄJÙñ§á«¶6uÏyË ºT¢l,(P{ûu”D,8•éÙÊc ï9Ò‹aß³ñ=¯vü"¡™‹Š9{UñX,Svîæ{ñ<¿[™T9ù]èS¤ƒºehz ,®øÎ+hDE3Üäç²Ó°×臨ç°O¹®Ÿ(tŸá’ã$0 riýæ­:Rª‹Ýt•|N"Ñœ¾j$6pž¢Ð*ð˜°êç`.piˆ•&ÃסOOÊWû^33¡ƒCD5¤*ÕýqYžæ-}6¯:ŠÊÞ q¬³%åHþ©9J«ntÆ`škb×ǸºOÎDE¾îBáaÅÍ3â>IÊëçÎ[8ìˆ@m!ï<­þ‹9)°Ä%|­z,.ïa‹R)MªµÀÇ£ìþä²÷wuÜZL´}¡LÏÇ)l3 •_.-HzéÒ¥c§Þ°5*ø ð džnú"x'ך|v ·|O`Õ‰²~Õ‚É'ƒKÝÒ3à%z&fÁ×nÚü$E‹€Äî¡ô׃G0]gjœükl2äÍN{¦Ž†7ª?â×̦{m”á6Ø+v‡KÈ…ƒTHòßþxMAòéVi˜ŒIl£_çi»—1&íêXìzÀyŽ›ßÈ»8ar*pþ™\›‘~©ÅþvQð å~ƒÚÙÏxìð 5›ÍáHò%·LÚQ¬Ç¡o;•ˆ9N¦É¾K~;µ4êÞgø2ò7wüÚÙî¹Ío ~ª™M’KU$j£Û¯x«½öÖ嘵ÖDù¹*ŒX )ºË²ªàÎV˜äm/ÊÖü¼nƒ†?Ê çµMŒlR¬Ÿh™Úü Nwͼ­"w€ÛÄÅvúµL~:ÛÍ7êůºNh“Šq÷**)ÎÐG̺(‹:ýG|q]òvÄH`ùÂá>3·ä ó§æD XŸª¢½8jïº7mâ}ǼÍÁOÄÕK¼]p0QjÝê(²y¿Ÿ÷ƒ¼X7€`å­·ùh—ÛBHð´;VLz€ :0ÝÎm”œÌbÍ7ßxòò©”TNßϺ/ìª]‡£šŸ~²ENáŽEžs òÄ÷I!¨à£äíLÕU0o¸ZÔCÎ5¢:•¹I]–úRÑ"ÉÒÃw@|¾–Ià19#ê {ÕÊsògàB EÈnô ÞIk˜Ìòª<ͬ'·°7/ßf¸áͲ¥ŸeÝÚÁAA€–ÐtãO¦8_ìqrëyälÖ.6òJ¶^ÿ?îX%¤q"kôÃB¬¹ÕŸÈh÷*2öz#NY*þ Ö~©ã§&©!;Úÿ Gx?İÅ=œ™ý W{Ì˳I'µëØJËhÛr[ô„8?Çà`ú§2u4V+k²NîPÛ…ñ½ÍÆ›W)ÒtTÊf+˜Ôäêò@ÙÁÿø9!Æ(´ZšžÑšfàu9Fè£â¢!ÎÞLj†@—-3ØKöZëÁ™Èhy 5ªqnJ+RÖ#A^ÿ Yp.ÃôÔ»IÕº@>ÎK”ØŒ¥•sÑË“ÝÈ6—)r§BóYGa<Ÿ7²ÁgtDVügåŸÉ•àñJV SqLcf?}éJ϶, 9±ªÆmpbC•WXèð»j"þÔÏ ØÜ¥é2‡rŠ ųº½ v¸#fTT@:ï̾¢î_…|ö*š® »œB„þç3Q@žîÒ,™Ñä3ÿÚæššï–Ôcèx+xŸ‹…o†9QR§?1ß ñ&?w^õ^JÁÝ$p‡x›n¹“lÏ‚ Üã Ð&\óa¥®²ÞN€lùœusëŠÏ˜°V*j:+dI³B pŒÀ{i8à}éDJ1½t.åKzYìù­oÄrÇés7¹êÖ%õkumýC{ûó+ìXÒ?3YHÔ CEëFƒú÷Eƒå¼G²U;53ÝÙJ@üŸ+¦Q¤Ñ®÷NˆIßÕ•y¤èh\¢V&{b®?’ºçµxvºòÜäXxx›z™>óVF«G´w$p˜wÖI‚©SŠýd)‰ª VâÂ/©ß”ŦÏ(:V ©Þ¢F¤9Òuð[-™3n‘·©©Ðç…ˆá¤ápõöL¹Á©/€‰Ú%œ ƒÞëÏÉ}³g:x:TÂ=Æ(«ùÖg›xËÎaºƒqÖœ„ìºê$è&ÅUUÇUˆ1@ë°€Gž ×£ðÔ9ÆG¬!‹ì÷j*:²d|ò1ÂãÅø·r°¢Ø²Zp×ÖêD¶ˆ\YDUur§œ –›3AÖ ­OÔñ2ça£Ëò7³]çL6[_1;¦ë —÷f»¼ðßVrT˶== ëèÌÿ”çûŒ¸d„[úÓ{ÿ’¦ÐŒø¬±Pkµ€©[nŠÎ³5Ôk`|¥Å]ù^4Š‹P&´ÑMiØçëÝW»ëVN@Ÿ­Õ¬íA†÷›‚ÈÕäFëÀüûÕp€ˆ#ÞbtÃrÿN‘Wù|‘ì5GzòªWí(ÿ÷†tÿÔwêHƒD¸×uÆ ü˜`~ÈœjëÇÙfW`‘”ˆX?ó%¹+e" liÞYÐS­¥uÞàP·«ÚÍFv›CërÓ(¼nâúøù…T*n¹²OZ—†c’=²÷cNºŽù¸ªP+ê!‘HF¤[®%¦ïqttCTKó q sE-wf~̸èöBÔfö®°¹Å™M>_~IùS–y§ï#YÉh,`÷'‘‹ Ô™{v* 3Fû­)SN|.b6xºÕåIšþÕ?¯2»?‘õ1jp·Tí„¥'T0TðþÛ€BŸ‘ÔíA-|îS-bla</-޽?Ž.7¹KŽÉ5"@ìJkMŒ7£lT.ÒŒ¡I޽nJ!x›_¾‰¸‘“TÄ¡ÏQl ÊÄ*KIRP1ñ?GôœŠðj!ï× FêÞíÀìQÈQ©‰Ò@hh¥%úÉ¿oÿ–‚%ÂȷᧉÀeT”¸ñ+éªÜc¢ ­Qav4í¦¬Ì ›y4Œí7$ Nsôw6ûï0‚i߈kOñsFú¬‹’ƒ#ô“v~'æ°íÒgNïZÔ#“x¸ù ~  qé¶‹Dó¢­LãM¨»ÙæWݨKWV„Õ²G|T¼¹:~ Àiû‚HVƒ™-‹¤×úʪ’‡T(rˆx1 ôô¬?Ô÷ct„²ÐtûíÛÁsš÷ Žèá‡8rÿ½åÜùcÓû78éæÄápOx¨àQaÂÈ‹e²‹Z›Ð™,¹½Ýxœ*Är#Í{Ÿy­˜øÊ:-f;è…HðxÔcQ:™ø‹šý¿?t!òIm pžŽÞ~óOÃû¹©Jõ~>àÝxµ¥rt4%÷é^p XéLÎxs×ÁhšƒWúøvž}ôýä¦ù¤,‹%b<›¹aÏ×¥þ…«÷–”†½™¦}ßÇìBà·7€b5M:£Œu)ÃØ˜Æïn¯½{½U°«_ÈOÌí2.,®ñ–°xº·õ¼h=Ï3ÐÐÔ'‡ã<6Z±‰àÖº¨a®OÜýz$}5féòÞÈóô4?ê¤Ù;àt< ÉYü&‰JV3$Ô³­ÔKMá³qLô[{*ÃLµ6ÖYzA„]S¯F¾Wq´?±L?7]£³fßÊš1„ðúPô€’ªQ Úø: üøH°j ÀæÞôí]…lÓÿhìáÃúçóAAÕTqV݃˜’Ǩ“¯7'^ÉoXÏÖº“Aú‡sÙ>ð+^äÕÖÜÓà·Sמd…¼ü6Úíèî¢{,Ÿ‰š>Xÿt.ÌÿMM<ÚÚè—BâÂýµlôºOÖ¨DVwExý’]ÛV’™|»c~O º°ªÔ$~¿fe+[ †¿;Ò¡]ÈG—Ä·4[®_÷~ŒX€|x¢`«//Êö‡i?¡ŽFޝ¡VjÔ;oaùE¡OV•±ä1õŠ»Ê°™ô×^¥ë'-÷ŠLôxi9½¾ÉìˆÝë“lˆZŠÔ‰èŠ¿wÜ‹Mí¿UT!T5 =üž¯ì~ðéÓ[&âé4˜î æ·îe?lÇ(°#úÈo‚OŘ_¹ÔwµlëÅÉWÁ4qh‘Tõ--Š|lïX1²âÖ=ˆ,©°ma¨³Z·Ð‘µÃ¨x®OÜåPÆ*%‡O€×Eè DQä-ÁiVAèÕ*´•k}X¼^(W€_eÙ뙺wì;^7¬—iÆ÷ÖÞ0þ:H¢±ƒÍÇÝ-gGÐîþØx„v/ 9?¸…Y½ž €¿üõ[®ŸE&‡[Ôa/6õY1¾·{¥‘—³¯Ñ×û—@ªŒžæpï²èÿ¡Î£pLŠ«»|ÖŠ2ɾ]IQž†ñf:‰2¤žeÈ"O¼30YœÑ·Û›Ô¿Ù?¢øycêø­±k}ÎÔOÞ'ù‰Gµ‘ž2w i´¶;í«?OHÁƒÃÈ¥‹£uaÃ…Foœ.T4Øw‡aeý5RL½E‹µCÇšŠ?RlžÐ¢‰lý®»½¾FtpÂ#À,øM¶ü!v~tÍ“TŒ™€¬ìš»Øk“Þ 5Óc–µtì7@š­Ó–ù†ê&Ñ\¼3¹¤sàëÛÅf~óúœ½s,a1Ë©ÅÓR_ô”ž[å‡*!ÓОïÝð¤Ï9Ÿ$ݧµ`嵨,Ë,Š}ѲrHùeظaÖ·õlÏlih[ }Ö|bÍ¢T'J‚dï¨9óÇvÏdF Yæq{Xz#e°’Bx¹Ëð.¬5Šw‘îªlÝN¼ÒÄ~¸ÅsiÌ0åT5³)ÈìZ€Ÿw¥:±1úéËF]ê{QœS„Æ5œ…Ë.Ô=¿aGG^l+Ó°¤± ë>ÆÄï¬o‰-Ig¸/6Þ/ºÓ6Q5šñ¸ÔS~WÜŠ¯ò,D7ï"òø†Ñ†{x¥¾‰Bú¬[…Ä #èb·ÅþÄ•O’Â,ØvàçAy‘ÄÅ 35Q›/±|Ä¿pâV“§«`sË@ ÄoCÜWÐ"c€+8oõ‰rئ¢¿ò6_J¿a‡"DÚ~7~¢"ù>9øÝ‚ár&ÜS‰›ŒÉÒHV×—7ÕÅ—½™ÔCëu%ÒÒCJ D¯ÓÜUÁ-×ofß·è‚ÃÆŒWÂñÆmµ^!pmʲì_›²9,y °ÚÉ8:qUþ\Î-‹†2?6=‘…”¯rƒØì DZÿIš9¦Ü±³K–öH°–&ƒËãáåÙùÊci‰P Í;\‚àvœ‡z•}3™`FÖBÛ~Zkm£¦Û2)UèÛ¿àëMòrUDÿ8æƒÒÓ}N"'õc5†ÍJŽ´5†³R-ªP¢ïkàýÞ hï>Wk8Itìès‹ør—£ë~½‚ýzÓxØ™‹@oâ†Ì³X|  7ü_ 9Ñ!H%š1ǬÿóçI¿¦½[ú´Ýh¡–3GÅêèq®P›bBć¡%^Äôu§€KèkeÕ.ƒIç;Îyiµ‹Çc¡na?åˆOð‚äIC-Üá‚äUÒ‚•µ=²ÃÜ;Çr\ b 왣2IeËÙÑ¥Ñ/¤â$8ÞßårrÚ4¡àÎ}ÁG4L•Zfž*Iy Ÿ’wò_×m#÷$µ¥Ó=ÚG*»yѫ̭¤K½ûÙ»rq Zæ~ì¸MVîkÿÃô}Bb§*ÿJ’¥šûï„eç~' }8Ž G|ß’fóµx½¹±ve³€‡Uî€$DÞxb†0⤹¼¤ØºÀ£sV„±/ŒäáÇ>] æнŒÍMfžðíºü˜’¨ñÉX`š‡Ÿ¸ºØâ9/ÂúeGzzðG ]ÁgYáO|Ÿ½â‡ sËqtý90òR{|-¡–Heª)cm3ìvhî±§¼tRh‰¹ùˆ9"8Q‰ÙIU¾ß‹@QøJK0¶™R6)Ýdæ{"brˮˣŃL¢r­1ý¥IœZ:/_5:á‚(€/a¬H}‚‹Íˆ:gáûZ\ÙÁ¯¬Ì˜SZÉFŸ‡tûãþ ‹?Óà„/Yäàâ2Ýn´ \)Ôü<u=#ãABÒïéϬXýËef5rò³€ï~‡TÔÁ­0„ºôÖ¤ÁåFù9…Rlÿ_¨ÿÿO0±œ 6@+Ôÿ í㩸endstream endobj 102 0 obj << /Type /Font /Subtype /Type1 /Encoding 347 0 R /FirstChar 34 /LastChar 126 /Widths 348 0 R /BaseFont /LZYKRC+CMTT12 /FontDescriptor 100 0 R >> endobj 100 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /LZYKRC+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/quotedbl/numbersign/ampersand/quoteright/parenleft/parenright/asterisk/comma/hyphen/period/slash/zero/one/two/three/four/six/eight/nine/colon/less/equal/greater/question/A/C/D/E/F/G/H/I/L/M/N/O/P/R/S/T/U/W/X/underscore/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/asciitilde) /FontFile 101 0 R >> endobj 348 0 obj [515 515 0 0 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 0 515 0 515 515 515 0 515 515 515 515 0 515 0 515 515 515 515 515 515 515 0 0 515 515 515 515 515 0 515 515 515 515 0 515 515 0 0 0 0 0 0 515 0 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 0 0 515 ] endobj 347 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl/numbersign 36/.notdef 38/ampersand/quoteright/parenleft/parenright/asterisk 43/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four 53/.notdef 54/six 55/.notdef 56/eight/nine/colon 59/.notdef 60/less/equal/greater/question 64/.notdef 65/A 66/.notdef 67/C/D/E/F/G/H/I 74/.notdef 76/L/M/N/O/P 81/.notdef 82/R/S/T/U 86/.notdef 87/W/X 89/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef 126/asciitilde 127/.notdef] >> endobj 98 0 obj << /Length1 1036 /Length2 3707 /Length3 532 /Length 4394 /Filter /FlateDecode >> stream xÚíTy<”mÛ¶ÓÈZ–²Ý–±ÆÐ ÅY‡ˆHÊdØaŒ-ûN¢ÔسÙC¶$²—=»Èš!{eû¦ž÷yÞ¾Þ?¿ï¯ï÷Ý÷?÷qœçy\Çu^çuƒM!ê(ü-´6G„@e *€¦¡ @eä@`°&$bð¸‹H"Z€*+Cuw{@^€žQ)©È+€À€&ÞÅ›€±w âš?“à€º3š€±EâC$ÑíLÖ°EbS¼-Mô–Ô±XÀäg…`‚vC<Ð(  0¶DàÚƒÉþ4¤‹³Ãð¿h”»Ëß!4Ál '›”ÈQxÖ@¡í@²íÐw•œ|nñ£0åó<í¼€ç>ÛW¾—»µ×‚\ï' Î{ØÌ§Ü®á±ØH1ôþä"´²ÌR[5¸õE‘Ò¨²3Ÿd™Ýšöµm9ËXüâ•ú‚V©¡gàÚ)X³ˆ°ç¢0AÖ$×üH…ˆ OVÒš‰ÞdžRãëøWîì?ž0d><¼I#3 ÄQºB;D–Í#_†‹Ò“Ζ(·*öưïËǪˆÇwŒ9I³—Üoø|£¬+eNMepŸ_é =}¡¤m[Üh圭ZØKÄô¾#.!aÈÌ]‡‡Âçû¹l“UU×QÕ‚ò÷“’÷ZC™ŸY}úðPè3ßÑ 0Ó²Ž=;£}ï{EÓuùÍž\ý`¯¬Ò´ÜÅgF/K„W¶ŸLû)+Y›p\j.(Œ­¦ÕuǽŒÝÒ*ÑÓõÍ)ê:?¤…•ö?Cr´ZGÈÄ'Åï¶éž ˜×kë ‡‡‰=ÖÁ,Í<-ÞšQª&úóAØütaRЭ¤î&§ÍeôÔÃ…Å^ŸÐˆ]q¼ ;Ú4ž]ZlXœªäx±Š´hz”Ò¬‹­Á@ú¨Na|dÁÍñ£-6LÓZ­HAÜWk%.‚fóɈۘ¬&™³_§e>=æLõ5Øé I«¹£†d‘fò•Îø‘$tdF}m¬È²Ú?À\X¶I}Œÿ[<•½VUíœãTÎ…üa$qüøÓÛ/®ù>s úÊóAìñH®·`HÕÞÉB”©¾~·y´ˆó X’”R÷‚hôkbUic`ÜLÙ7?ùa¼á;á¾u&IÏ3ù6»’ n*lTJòÝ{·"s=5wƒ ïå74ïRœTötÝ?Hÿä{è÷àEÄ—È eÆÆ¢|-Q>~âÀW4G7ñ²¢àŽrÀRy±"á}ž(InŽþãU $WؾX0M€µòH*g8äa† |7!HœÛ[—7}Tmx'…ïU«Œ( ®ãâåÙÛ/ç¤+&…¹y¨ ,v|Œ9x ñ¤ö–€»Ìa›K=÷†ª3(ûUOTÙ•´Z#ÃkÜ™*+ßså?úÀ?mï3ÖK…U¾Ï]=v{’ºöì<-'³?˜#§â½šçïÝšCâC3ôÛиӤ~D:>\(^¼ü)ïw•š †þ™[•ÝüuýÏHª±Nµ‚§g©äü?J´Ü“úLéxÔ¥| Â=°Em¬¼cø /‡Ú,èt>JØÌƒ«G¯•ufvNø&ò×Xve©O¼ª‚ˆþˆ\Š„PJŸœ¥]®:xw¬P?£q¹ð’o­4ŽFµ.²£×WürªìõÄw©wî„—ÍS¶Î%i]%óé:î(Ü5êº;é¢È2ÙhDºÍÛ¯o{Añì,ìÑwh_$µn9y/Ð-Oxß­ÕÕ†Ûʵ#I²¤˜.î»ÚÌtjቑyȾ‡ËN`o;¹@<]R«®ÀÍQ!˜s×p÷ã2MÕDBg\^’EÄM[WÞ¦ÌI÷­pï¬ã[ƒk·hVé†2Þ­raO‰ñ]0¼ªÒ÷z¤ª_´wpI>㪆ÚÛJ•†ŒÜÉöóMfØíY3Èj碃ÀYÃŒ[§Q Æ!ý®vPFiׇu—¸nfž¤f®iR[²ml.o?r5T%M#yÃDàûW{/+èù¾«–Ð;îÆd1Ñß}"𮔯=zpvÆ®–‡Û~Åñ9/¡©ø¸ J¡ ›e¼Q ¾CEըߛlJ°.“•ò´\èÂ^±c’¬»ho.¶(DmãÃõ0D5Âm$Ð¥x¬¤À(=¯œtå9 ÞºãVÙ’´ƒ‰!ë‚.Õ­ÍÞ”Íf7ª.x&q¨V}~ÅÌ‚Í×?·ÃÚ;.»Aù6–øH!ŒÝé·"< ÂuŽ˜Ú\t,4ðj2‰½鹎Åοjü~4íÊå÷bHºŠA^ÞÒ?èì¸ /‘Ñ;—ɦíyêEã ¸üv¨Å÷aÕþÉþsgž¬ÎÏ,lb²jv.û3À’öoŠÏ¹di,Ñ0íU_ºg6ÁR`‘"%×cAóê]RãÝÌ9uÁKªÖz‡:ˆᜟ׎OµwÅèϯÅx‰?È×êw,ß{œÍnñå=ŸØóx¹/8ÅÝ ÙÖùÁÛÖ %3zJ-ׂ‹˜Å©aa™(¦…ˆº<Š¢íC(Úšõä*K'ÏÊÕ¨òÏpѺÑ*Dñ+ Jù„IMöƒ÷z"üÙ.m­èÇ4á…#büQŒµ6¬@_ËÅ8s¦5“Ã~´€öÅHre«ù†9 â8•e½ôG(vø‘_DgSt]e^n2†I'W£ÆþìïóˆõÀ˜%>¦›×sRÞØÓ§u&tŽž^¬œâÛ¬¶‚8²Fá·“XYŒ%u‰'tBÝDKªn:åè ÚyÝFidz[½#¡ÂÍü¬Õ®¹ôðXÎ+S ªmüCïüd•‰z:É<ò©þ$®lVþ°MuîônßjÌäí„^gz½¥N†÷Ûx9.\ä×gÅITþ³q×nÖ«rKZg˜«A/¯˜¸¯ôÅ[¼@=^¯´OqJ_#àl‹aâ¿]Ÿºõ¦ú#¡ˆ§ßÅ„íõÃíÅs…/l/#ÍJ°¯ü¯„î¾Ù?"5WEÈTŸÍß;Σ٦HÃRoÐk l÷=^„ËewÏTúeI †Å.K•ªeµR£{À-\i5§¼öŸœŒ?Âwfövœr蜴8UèUWF‰„Ó¾«Ï5Pf´’¦Nkw¯¸ÄðÖõ’= ȇ’HèiQÞüšO¾üÜUFÖÔ‚eïÖ‰ýæj?fiø++Ýl¢zZ#Ê!‰«8YIQ—ø’E(ØèϾ|Ýc2Å«Ô4óe¯zN©ïÜ âß;ÅÜQXÕ5«•^4è° Ž/L0\¸ë´53H§;ò¡·;>yaã]p Û‹`‰uN£éò¡cŽ×V:?Þ_(¸X›a^"y1ë« ~gt.óÊ< –s*-§œdÞÝ»6;ܧ>_¯yS"Ýþ54ÒúE}\÷qËÏÂç׎:Ú—§jÐËAr»ÖeITl:Eu‹N ©®‘÷dXµðÁ,sZOoxœŸ=1ì3vδ bBÍ6‹©@l +üg£øçØ^ 5Å컊 %VŠÑ‘5:ç‹k™§ÁtæšOT‹Ø“U3ä}{ŠH1_nìoŒ¬X»ªú"å†{^žM=ì.5N7J+»O½µ{fMÖß5Û„±uÅœËÕvŠ«M¼§Ô¬o×Ú®û°ç¡è­7&êÀÑNÊ|³¬YÂU²@¹Žž³'yO„L£6”Û³ÚX¤?B•òÛL/Ó=‡À:^º(h¼¦ûF30=êžþ<®J/$su¤¥T4æ³—Ý& šÑàHHóãYKúbá}UO#v²wªéF‹AO½;úDtn÷í²×?¼qôp/NJ3=ÃüÅù ÿ\wÚ“Ð÷oFÏLÑe^é>|îZœÒéPœÎg´'ÿƒïͰ*L{uUú~¥9Ûõº¡ö™\¸ògß–š'|§Ý–p t‘´(‘{A»½}º¶U4wa‹Åøè7mí«/¹"W<”hZüî×Ks1 NK\¦­3¿öÈ+Œ§¨µ¼M ’ñ ô±hg ¼í-»¯{°=‡H´¨y ÕsŸ­ü0¾ñ³•l`ꢱt… ×è÷¡(ÇŠt~¶·Ñª’/·Üi iâs˜VÞb8û@j„½î6?Ÿ³È˜~œ 6‘‰½#!³ú0ÜÙ5.6f娀‡Sį ŸÌ¼ÑÖõ|«cüF/»ÊtM¢1––e<9h +§óEôÔ¬³ ~˜|ˆÍà×C-uÜÙ¥“õAtX(Z›C¾,õˆ¼)íÏ­QOw¼1\X«u&è#wê™X¯(ÀÐT²ž6 ÞîÅd †6‡"LÒàö£ƒª\Õ qÁÝÙ&ëúz¡>)éì––”Åóތ떙Òs‹ß’/^!%„ûÜçT¥ï—÷I‡©‹œÌÖ@PðŠ9E¸*Nh|ñ”XEubWˆ™ôOA_\$3âQ8ˆò®îu iÔ©1»Ñ/×Ô'8릘‰‡«UÉŒ|õ.2n™œyM¬FÙ‹"Â=y|ælöކu­²y9ôfXûô'@ù˜Þ\RWÅagÏ}¦—’û> ÿø?!`‹E# D¼3’àú/üÈà©endstream endobj 99 0 obj << /Type /Font /Subtype /Type1 /Encoding 349 0 R /FirstChar 39 /LastChar 118 /Widths 350 0 R /BaseFont /HCUUXM+CMR17 /FontDescriptor 97 0 R >> endobj 97 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /HCUUXM+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/quoteright/parenleft/parenright/period/zero/two/five/G/U/d/e/f/i/n/o/r/s/u/v) /FontFile 98 0 R >> endobj 350 0 obj [250 354 354 0 0 0 0 250 0 459 0 459 0 0 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 0 0 0 0 0 0 0 0 0 0 0 0 511 406 276 0 0 250 0 0 0 0 511 459 0 0 354 359 0 511 485 ] endobj 349 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright/parenleft/parenright 42/.notdef 46/period 47/.notdef 48/zero 49/.notdef 50/two 51/.notdef 53/five 54/.notdef 71/G 72/.notdef 85/U 86/.notdef 100/d/e/f 103/.notdef 105/i 106/.notdef 110/n/o 112/.notdef 114/r/s 116/.notdef 117/u/v 119/.notdef] >> endobj 134 0 obj << /Type /Pages /Count 6 /Parent 351 0 R /Kids [90 0 R 151 0 R 158 0 R 162 0 R 166 0 R 170 0 R] >> endobj 180 0 obj << /Type /Pages /Count 6 /Parent 351 0 R /Kids [174 0 R 182 0 R 195 0 R 208 0 R 214 0 R 221 0 R] >> endobj 234 0 obj << /Type /Pages /Count 6 /Parent 351 0 R /Kids [231 0 R 236 0 R 240 0 R 244 0 R 249 0 R 256 0 R] >> endobj 274 0 obj << /Type /Pages /Count 6 /Parent 351 0 R /Kids [268 0 R 276 0 R 284 0 R 292 0 R 302 0 R 313 0 R] >> endobj 324 0 obj << /Type /Pages /Count 1 /Parent 351 0 R /Kids [320 0 R] >> endobj 351 0 obj << /Type /Pages /Count 25 /Kids [134 0 R 180 0 R 234 0 R 274 0 R 324 0 R] >> endobj 352 0 obj << /Type /Outlines /First 7 0 R /Last 83 0 R /Count 5 >> endobj 87 0 obj << /Title 88 0 R /A 85 0 R /Parent 83 0 R >> endobj 83 0 obj << /Title 84 0 R /A 81 0 R /Parent 352 0 R /Prev 51 0 R /First 87 0 R /Last 87 0 R /Count -1 >> endobj 79 0 obj << /Title 80 0 R /A 77 0 R /Parent 71 0 R /Prev 75 0 R >> endobj 75 0 obj << /Title 76 0 R /A 73 0 R /Parent 71 0 R /Next 79 0 R >> endobj 71 0 obj << /Title 72 0 R /A 69 0 R /Parent 51 0 R /Prev 67 0 R /First 75 0 R /Last 79 0 R /Count -2 >> endobj 67 0 obj << /Title 68 0 R /A 65 0 R /Parent 51 0 R /Prev 63 0 R /Next 71 0 R >> endobj 63 0 obj << /Title 64 0 R /A 61 0 R /Parent 51 0 R /Prev 59 0 R /Next 67 0 R >> endobj 59 0 obj << /Title 60 0 R /A 57 0 R /Parent 51 0 R /Prev 55 0 R /Next 63 0 R >> endobj 55 0 obj << /Title 56 0 R /A 53 0 R /Parent 51 0 R /Next 59 0 R >> endobj 51 0 obj << /Title 52 0 R /A 49 0 R /Parent 352 0 R /Prev 27 0 R /Next 83 0 R /First 55 0 R /Last 71 0 R /Count -5 >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 27 0 R /Prev 43 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 27 0 R /Prev 39 0 R /Next 47 0 R >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 27 0 R /Prev 35 0 R /Next 43 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 27 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 352 0 R /Prev 23 0 R /Next 51 0 R /First 31 0 R /Last 47 0 R /Count -5 >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 352 0 R /Prev 7 0 R /Next 27 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 7 0 R /Prev 15 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 7 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 352 0 R /Next 23 0 R /First 11 0 R /Last 19 0 R /Count -3 >> endobj 353 0 obj << /Names [(Doc-Start) 96 0 R (Item.1) 305 0 R (Item.2) 306 0 R (Item.3) 307 0 R (page.1) 95 0 R (page.10) 210 0 R (page.11) 216 0 R (page.12) 223 0 R (page.13) 233 0 R (page.14) 238 0 R (page.15) 242 0 R (page.16) 246 0 R (page.17) 251 0 R (page.18) 258 0 R (page.19) 270 0 R (page.2) 153 0 R (page.20) 278 0 R (page.21) 286 0 R (page.22) 294 0 R (page.23) 304 0 R (page.24) 315 0 R (page.25) 322 0 R (page.3) 160 0 R (page.4) 164 0 R (page.5) 168 0 R (page.6) 172 0 R (page.7) 176 0 R (page.8) 184 0 R (page.9) 197 0 R (section*.1) 106 0 R (section*.10) 193 0 R (section*.11) 198 0 R (section*.12) 199 0 R (section*.13) 200 0 R (section*.14) 201 0 R (section*.15) 202 0 R (section*.16) 206 0 R (section*.17) 211 0 R (section*.18) 212 0 R (section*.19) 247 0 R (section*.2) 177 0 R (section*.20) 252 0 R (section*.21) 253 0 R (section*.22) 254 0 R (section*.23) 259 0 R (section*.24) 260 0 R (section*.25) 261 0 R (section*.26) 265 0 R (section*.27) 266 0 R (section*.28) 271 0 R (section*.29) 272 0 R (section*.3) 178 0 R (section*.30) 273 0 R (section*.31) 279 0 R (section*.32) 280 0 R (section*.33) 281 0 R (section*.34) 282 0 R (section*.35) 287 0 R (section*.36) 288 0 R (section*.37) 289 0 R (section*.38) 290 0 R (section*.39) 295 0 R (section*.4) 179 0 R (section*.40) 299 0 R (section*.41) 300 0 R (section*.42) 308 0 R (section*.43) 309 0 R (section*.44) 310 0 R (section*.45) 311 0 R (section*.46) 316 0 R (section*.47) 317 0 R (section*.48) 318 0 R (section*.49) 323 0 R (section*.5) 185 0 R (section*.6) 189 0 R (section*.7) 190 0 R (section*.8) 191 0 R (section*.9) 192 0 R (section.1) 6 0 R (section.2) 22 0 R (section.3) 26 0 R (section.4) 50 0 R (section.5) 82 0 R (subsection.1.1) 10 0 R (subsection.1.2) 14 0 R (subsection.1.3) 18 0 R (subsection.3.1) 30 0 R (subsection.3.2) 34 0 R (subsection.3.3) 38 0 R (subsection.3.4) 42 0 R (subsection.3.5) 46 0 R (subsection.4.1) 54 0 R (subsection.4.2) 58 0 R (subsection.4.3) 62 0 R (subsection.4.4) 66 0 R (subsection.4.5) 70 0 R (subsection.5.1) 86 0 R (subsubsection.4.5.1) 74 0 R (subsubsection.4.5.2) 78 0 R] /Limits [(Doc-Start) (subsubsection.4.5.2)] >> endobj 354 0 obj << /Kids [353 0 R] >> endobj 355 0 obj << /Dests 354 0 R >> endobj 356 0 obj << /Type /Catalog /Pages 351 0 R /Outlines 352 0 R /Names 355 0 R /PageMode /UseOutlines /OpenAction 89 0 R >> endobj 357 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfeTeX-1.21a)/Keywords() /CreationDate (D:20121121155157+01'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 358 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000063898 00000 n 0000256306 00000 n 0000000054 00000 n 0000000084 00000 n 0000067217 00000 n 0000256234 00000 n 0000000134 00000 n 0000000170 00000 n 0000067274 00000 n 0000256148 00000 n 0000000221 00000 n 0000000246 00000 n 0000073301 00000 n 0000256075 00000 n 0000000297 00000 n 0000000328 00000 n 0000073358 00000 n 0000255988 00000 n 0000000374 00000 n 0000000404 00000 n 0000078278 00000 n 0000255863 00000 n 0000000450 00000 n 0000000480 00000 n 0000078335 00000 n 0000255789 00000 n 0000000531 00000 n 0000000560 00000 n 0000082485 00000 n 0000255702 00000 n 0000000611 00000 n 0000000640 00000 n 0000082542 00000 n 0000255615 00000 n 0000000691 00000 n 0000000743 00000 n 0000091588 00000 n 0000255528 00000 n 0000000794 00000 n 0000000838 00000 n 0000095532 00000 n 0000255454 00000 n 0000000889 00000 n 0000000936 00000 n 0000103789 00000 n 0000255329 00000 n 0000000982 00000 n 0000001013 00000 n 0000103846 00000 n 0000255255 00000 n 0000001064 00000 n 0000001097 00000 n 0000107342 00000 n 0000255168 00000 n 0000001148 00000 n 0000001186 00000 n 0000107399 00000 n 0000255081 00000 n 0000001237 00000 n 0000001279 00000 n 0000107456 00000 n 0000254994 00000 n 0000001330 00000 n 0000001371 00000 n 0000114705 00000 n 0000254883 00000 n 0000001422 00000 n 0000001470 00000 n 0000114762 00000 n 0000254809 00000 n 0000001526 00000 n 0000001561 00000 n 0000114819 00000 n 0000254735 00000 n 0000001617 00000 n 0000001654 00000 n 0000121036 00000 n 0000254623 00000 n 0000001700 00000 n 0000001734 00000 n 0000149759 00000 n 0000254562 00000 n 0000001785 00000 n 0000001836 00000 n 0000003458 00000 n 0000003757 00000 n 0000049665 00000 n 0000063953 00000 n 0000001886 00000 n 0000063730 00000 n 0000063785 00000 n 0000253042 00000 n 0000248369 00000 n 0000252883 00000 n 0000246988 00000 n 0000234300 00000 n 0000246826 00000 n 0000233086 00000 n 0000221301 00000 n 0000232924 00000 n 0000063841 00000 n 0000060391 00000 n 0000060546 00000 n 0000219739 00000 n 0000203019 00000 n 0000219579 00000 n 0000060705 00000 n 0000060865 00000 n 0000061025 00000 n 0000061180 00000 n 0000061334 00000 n 0000061494 00000 n 0000061653 00000 n 0000061812 00000 n 0000061972 00000 n 0000062132 00000 n 0000062286 00000 n 0000062446 00000 n 0000062606 00000 n 0000062765 00000 n 0000062925 00000 n 0000063085 00000 n 0000063251 00000 n 0000063416 00000 n 0000063571 00000 n 0000202502 00000 n 0000198776 00000 n 0000202339 00000 n 0000253850 00000 n 0000004237 00000 n 0000004382 00000 n 0000048754 00000 n 0000048774 00000 n 0000048797 00000 n 0000048834 00000 n 0000049644 00000 n 0000050117 00000 n 0000050320 00000 n 0000050430 00000 n 0000059454 00000 n 0000059474 00000 n 0000059524 00000 n 0000059546 00000 n 0000060370 00000 n 0000067331 00000 n 0000067038 00000 n 0000064114 00000 n 0000067160 00000 n 0000198024 00000 n 0000195541 00000 n 0000197863 00000 n 0000069915 00000 n 0000069736 00000 n 0000067455 00000 n 0000069858 00000 n 0000073415 00000 n 0000073122 00000 n 0000070013 00000 n 0000073244 00000 n 0000074523 00000 n 0000074344 00000 n 0000073539 00000 n 0000074466 00000 n 0000078391 00000 n 0000078099 00000 n 0000074621 00000 n 0000078221 00000 n 0000082773 00000 n 0000082306 00000 n 0000078502 00000 n 0000082428 00000 n 0000082599 00000 n 0000082657 00000 n 0000082715 00000 n 0000253966 00000 n 0000087150 00000 n 0000086624 00000 n 0000082871 00000 n 0000086746 00000 n 0000086803 00000 n 0000194597 00000 n 0000186099 00000 n 0000194435 00000 n 0000086861 00000 n 0000086919 00000 n 0000086977 00000 n 0000087035 00000 n 0000087092 00000 n 0000091934 00000 n 0000091351 00000 n 0000087261 00000 n 0000091473 00000 n 0000091530 00000 n 0000091644 00000 n 0000091702 00000 n 0000091760 00000 n 0000091818 00000 n 0000184979 00000 n 0000174503 00000 n 0000184817 00000 n 0000091876 00000 n 0000095705 00000 n 0000095353 00000 n 0000092058 00000 n 0000095475 00000 n 0000095589 00000 n 0000095647 00000 n 0000099975 00000 n 0000099796 00000 n 0000095816 00000 n 0000099918 00000 n 0000174180 00000 n 0000172324 00000 n 0000174017 00000 n 0000103903 00000 n 0000103610 00000 n 0000100111 00000 n 0000103732 00000 n 0000171745 00000 n 0000165990 00000 n 0000171584 00000 n 0000165568 00000 n 0000162524 00000 n 0000165409 00000 n 0000107513 00000 n 0000107163 00000 n 0000104053 00000 n 0000107285 00000 n 0000254083 00000 n 0000111203 00000 n 0000111024 00000 n 0000107663 00000 n 0000111146 00000 n 0000114876 00000 n 0000114526 00000 n 0000111353 00000 n 0000114648 00000 n 0000117772 00000 n 0000117536 00000 n 0000115013 00000 n 0000117658 00000 n 0000117715 00000 n 0000121208 00000 n 0000120799 00000 n 0000117922 00000 n 0000120921 00000 n 0000120978 00000 n 0000121093 00000 n 0000121151 00000 n 0000125238 00000 n 0000124769 00000 n 0000121332 00000 n 0000124891 00000 n 0000124948 00000 n 0000125006 00000 n 0000125064 00000 n 0000161580 00000 n 0000153165 00000 n 0000161416 00000 n 0000125122 00000 n 0000125180 00000 n 0000128674 00000 n 0000128321 00000 n 0000125375 00000 n 0000128443 00000 n 0000128500 00000 n 0000128558 00000 n 0000128616 00000 n 0000254200 00000 n 0000132961 00000 n 0000132551 00000 n 0000128798 00000 n 0000132673 00000 n 0000132730 00000 n 0000132788 00000 n 0000132846 00000 n 0000132903 00000 n 0000136666 00000 n 0000136255 00000 n 0000133111 00000 n 0000136377 00000 n 0000136434 00000 n 0000136492 00000 n 0000136550 00000 n 0000136608 00000 n 0000140786 00000 n 0000140433 00000 n 0000136816 00000 n 0000140555 00000 n 0000140612 00000 n 0000152860 00000 n 0000151470 00000 n 0000152702 00000 n 0000140670 00000 n 0000140728 00000 n 0000145520 00000 n 0000144935 00000 n 0000140962 00000 n 0000145057 00000 n 0000145114 00000 n 0000145172 00000 n 0000145230 00000 n 0000145288 00000 n 0000145346 00000 n 0000145404 00000 n 0000145462 00000 n 0000149874 00000 n 0000149464 00000 n 0000145683 00000 n 0000149586 00000 n 0000149643 00000 n 0000149701 00000 n 0000149816 00000 n 0000151372 00000 n 0000151135 00000 n 0000149998 00000 n 0000151257 00000 n 0000151314 00000 n 0000254317 00000 n 0000153091 00000 n 0000153067 00000 n 0000162180 00000 n 0000161873 00000 n 0000165848 00000 n 0000165796 00000 n 0000172127 00000 n 0000171983 00000 n 0000174410 00000 n 0000174385 00000 n 0000185666 00000 n 0000185332 00000 n 0000195193 00000 n 0000194889 00000 n 0000198552 00000 n 0000198300 00000 n 0000202857 00000 n 0000202717 00000 n 0000220765 00000 n 0000220316 00000 n 0000233877 00000 n 0000233499 00000 n 0000247808 00000 n 0000247462 00000 n 0000253529 00000 n 0000253311 00000 n 0000254394 00000 n 0000254488 00000 n 0000256415 00000 n 0000258558 00000 n 0000258597 00000 n 0000258635 00000 n 0000258764 00000 n trailer << /Size 358 /Root 356 0 R /Info 357 0 R /ID [ ] >> startxref 259027 %%EOF espresso-5.0.2/PW/Doc/INPUT_PW.html0000644000700200004540000063300712053165222015615 0ustar marsamoscm

Input File Description

Program: pw.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&CONTROL

calculation | title | verbosity | restart_mode | wf_collect | nstep | iprint | tstress | tprnfor | dt | outdir | wfcdir | prefix | lkpoint_dir | max_seconds | etot_conv_thr | forc_conv_thr | disk_io | pseudo_dir | tefield | dipfield | lelfield | nberrycyc | lorbm | lberry | gdir | nppstr

&SYSTEM

ibrav | celldm | A | B | C | cosAB | cosAC | cosBC | nat | ntyp | nbnd | tot_charge | tot_magnetization | starting_magnetization | ecutwfc | ecutrho | ecutfock | nr1 | nr2 | nr3 | nr1s | nr2s | nr3s | nosym | nosym_evc | noinv | no_t_rev | force_symmorphic | use_all_frac | occupations | one_atom_occupations | starting_spin_angle | degauss | smearing | nspin | noncolin | ecfixed | qcutz | q2sigma | input_dft | exx_fraction | screening_parameter | exxdiv_treatment | ecutvcut | nqx1 | nqx2 | nqx3 | lda_plus_u | lda_plus_u_kind | Hubbard_U | Hubbard_J0 | Hubbard_alpha | Hubbard_beta | Hubbard_J(i,ityp) | starting_ns_eigenvalue(m,ispin,I) | U_projection_type | edir | emaxpos | eopreg | eamp | angle1 | angle2 | constrained_magnetization | fixed_magnetization | lambda | report | lspinorb | assume_isolated | esm_bc | esm_w | esm_efield | esm_nfit | london | london_s6 | london_rcut

&ELECTRONS

electron_maxstep | scf_must_converge | conv_thr | adaptive_thr | conv_thr_init | conv_thr_multi | mixing_mode | mixing_beta | mixing_ndim | mixing_fixed_ns | diagonalization | ortho_para | diago_thr_init | diago_cg_maxiter | diago_david_ndim | diago_full_acc | efield | efield_cart | startingpot | startingwfc | tqr

&IONS

ion_dynamics | ion_positions | phase_space | pot_extrapolation | wfc_extrapolation | remove_rigid_rot | ion_temperature | tempw | tolp | delta_t | nraise | refold_pos | upscale | bfgs_ndim | trust_radius_max | trust_radius_min | trust_radius_ini | w_1 | w_2

&CELL

cell_dynamics | press | wmass | cell_factor | press_conv_thr | cell_dofree

ATOMIC_SPECIES

X | Mass_X | PseudoPot_X

ATOMIC_POSITIONS

X | x | y | z | if_pos(1) | if_pos(2) | if_pos(3)

K_POINTS

nks | xk_x | xk_y | xk_z | wk | nk1 | nk2 | nk3 | sk1 | sk2 | sk3

CELL_PARAMETERS

v1 | v2 | v3

CONSTRAINTS

nconstr | constr_tol | constr_type | constr(1) | constr(2) | constr(3) | constr(4) | constr_target

OCCUPATIONS

f_inp1 | f_inp2

INTRODUCTION

Input data format: { } = optional, [ ] = it depends, | = or

All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied
by e); potentials are in energy units (i.e. they are multiplied by e)

BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in ``cards'' can be introduced by
either a "!" or a "#" character in the first position of a line.

Structure of the input data:
===============================================================================

&CONTROL
  ...
/

&SYSTEM
 ...
/

&ELECTRONS
...
/

[ &IONS
  ...
 / ]

[ &CELL
  ...
 / ]

ATOMIC_SPECIES
 X  Mass_X  PseudoPot_X
 Y  Mass_Y  PseudoPot_Y
 Z  Mass_Z  PseudoPot_Z

ATOMIC_POSITIONS { alat | bohr | crystal | angstrom }
  X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)}
  Y 0.5  0.0  0.0
  Z O.0  0.2  0.2

K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
if (gamma)
   nothing to read
if (automatic)
   nk1, nk2, nk3, k1, k2, k3
if (not automatic)
   nks
   xk_x, xk_y, xk_z,  wk

[ CELL_PARAMETERS { alat | bohr | angstrom }
   v1(1) v1(2) v1(3)
   v2(1) v2(2) v2(3)
   v3(1) v3(2) v3(3) ]

[ OCCUPATIONS
   f_inp1(1)  f_inp1(2)  f_inp1(3) ... f_inp1(10)
   f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
 [ f_inp2(1)  f_inp2(2)  f_inp2(3) ... f_inp2(10)
   f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]

[ CONSTRAINTS
   nconstr  { constr_tol }
   constr_type(.)   constr(1,.)   constr(2,.) [ constr(3,.)   constr(4,.) ] { constr_target(.) } ]
   

Namelist: CONTROL

calculation CHARACTER
Default: 'scf'
a string describing the task to be performed:
   'scf',
   'nscf',
   'bands',
   'relax',
   'md',
   'vc-relax',
   'vc-md'

   (vc = variable-cell).
         
title CHARACTER
Default: ' '
reprinted on output.
         
verbosity CHARACTER
Default: 'low'
Currently two verbosity levels are implemented:
  'high' and 'low'. 'debug' and 'medium' have the same
  effect as 'high'; 'default' and 'minimal', as 'low'
         
restart_mode CHARACTER
Default: 'from_scratch'
'from_scratch'  : from scratch. This is the normal way
                  to perform a PWscf calculation
'restart'       : from previous interrupted run. Use this
                  switch only if you want to continue an
                  interrupted calculation, not to start a
                  new one. See also startingpot, startingwfc
         
wf_collect LOGICAL
Default: .FALSE.
This flag controls the way wavefunctions are stored to disk :

.TRUE.  collect wavefunctions from all processors, store them
        into the output data directory outdir/prefix.save,
        one wavefunction per k-point in subdirs K000001/,
        K000001/, etc.

.FALSE. do not collect wavefunctions, leave them in temporary
        local files (one per processor). The resulting format
        will be readable only by jobs running on the same
        number of processors and pools. Useful if you do not
        need the wavefunction or if you want to reduce the I/O
        or the disk occupancy.

Note that this flag has no effect on reading, only on writing.
         
nstep INTEGER
Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases
number of ionic + electronic steps
         
iprint INTEGER
Default: write only at convergence
band energies are written every iprint iterations
         
tstress LOGICAL
Default: .false.
calculate stress. It is set to .TRUE. automatically if
calculation='vc-md' or 'vc-relax'
         
tprnfor LOGICAL
print forces. Set to .TRUE. if calculation='relax','md','vc-md'
         
dt REAL
Default: 20.D0
time step for molecular dynamics, in Rydberg atomic units
(1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses
 Hartree atomic units, half that much!!!)
         
outdir CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
input, temporary, output files are found in this directory,
see also 'wfcdir'
         
wfcdir CHARACTER
Default: same as outdir
this directory specifies where to store files generated by
each processor (*.wfc{N}, *.igk{N}, etc.). The idea here is
to be able to separately store the largest files, while
the files necessary for restarting still go into 'outdir'
(for now only works for stand alone PW )
         
prefix CHARACTER
Default: 'pwscf'
prepended to input/output filenames:
prefix.wfc, prefix.rho, etc.
         
lkpoint_dir LOGICAL
Default: .true.
If .false. a subdirectory for each k_point is not opened
in the prefix.save directory; Kohn-Sham eigenvalues are
stored instead in a single file for all k-points. Currently
doesn't work together with wf_collect
         
max_seconds REAL
Default: 1.D+7, or 150 days, i.e. no time limit
jobs stops after max_seconds CPU time
         
etot_conv_thr REAL
Default: 1.0D-4
convergence threshold on total energy (a.u) for ionic
minimization: the convergence criterion is satisfied
when the total energy changes less than etot_conv_thr
between two consecutive scf steps. Note that etot_conv_thr
is extensive, like the total energy.
See also forc_conv_thr - both criteria must be satisfied
         
forc_conv_thr REAL
Default: 1.0D-3
convergence threshold on forces (a.u) for ionic minimization:
the convergence criterion is satisfied when all components of
all forces are smaller than forc_conv_thr.
See also etot_conv_thr (note that the latter is extensive,
forc_conv_thr is not) - both criteria must be satisfied
         
disk_io CHARACTER
Default: 'default'
Specifies the amount of disk I/O activity
'high':    save all data at each SCF step

'default': save wavefunctions at each SCF step unless
           there is a single k-point per process

'low' :    store wfc in memory, save only at the end

'none':    do not save wfc, not even at the end
           (guaranteed to work only for 'scf', 'nscf',
            'bands' calculations)

If restarting from an interrupted calculation, the code
will try to figure out what is available on disk. The
more you write, the more complete the restart will be.
         
pseudo_dir CHARACTER
Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise
directory containing pseudopotential files
         
tefield LOGICAL
Default: .FALSE.
If .TRUE. a saw-like potential simulating an electric field
is added to the bare ionic potential. See variables
edir, eamp, emaxpos, eopreg for the form and size of
the added potential.
         
dipfield LOGICAL
Default: .FALSE.
If .TRUE. and tefield=.TRUE. a dipole correction is also
added to the bare ionic potential - implements the recipe
of L. Bengtsson, PRB 59, 12301 (1999). See variables edir,
emaxpos, eopreg for the form of the correction, that must
be used only in a slab geometry, for surface calculations,
with the discontinuity in the empty space.
         
lelfield LOGICAL
Default: .FALSE.
If .TRUE. a homogeneous finite electric field described
through the modern theory of the polarization is applied.
This is different from "tefield=.true." !
         
nberrycyc INTEGER
Default: 1
In the case of a finite electric field  ( lelfield == .TRUE. )
it defines the number of iterations for converging the
wavefunctions in the electric field Hamiltonian, for each
external iteration on the charge density
         
lorbm LOGICAL
Default: .FALSE.
If .TRUE. perform orbital magnetization calculation.
If finite electric field is applied (lelfield=.true.)
only Kubo terms are computed
[for details see New J. Phys. 12, 053032 (2010)].
The type of calculation is nscf and should be performed
on an automatically generated uniform grid of k points.
Works with norm-conserving pseudopotentials.
         
lberry LOGICAL
Default: .FALSE.
If .TRUE. perform a Berry phase calculation
See the header of PW/bp_c_phase.f90 for documentation
         
gdir INTEGER
For Berry phase calculation: direction of the k-point
strings in reciprocal space. Allowed values: 1, 2, 3
1=first, 2=second, 3=third reciprocal lattice vector
For calculations with finite electric fields
(lelfield==.true.), gdir is the direction of the field
         
nppstr INTEGER
For Berry phase calculation: number of k-points to be
calculated along each symmetry-reduced string
The same for calculation with finite electric fields
(lelfield==.true.)
         

Namelist: SYSTEM

ibrav INTEGER
Status: REQUIRED
  Bravais-lattice index. In all cases except ibrav=0,
  either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc]
  must be specified: see their description. For ibrav=0
  you may specify the lattice parameter celldm(1) or a.

ibrav      structure                   celldm(2)-celldm(6)
                                     or: b,c,cosab,cosac,cosbc
  0          free
      crystal axis provided in input: see card CELL_PARAMETERS

  1          cubic P (sc)
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)

  2          cubic F (fcc)
      v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)

  3          cubic I (bcc)
      v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)

  4          Hexagonal and Trigonal P        celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)

  5          Trigonal R, 3fold axis c        celldm(4)=cos(alpha)
      The crystallographic vectors form a three-fold star around
      the z-axis, the primitive cell is a simple rhombohedron:
      v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
      where c=cos(alpha) is the cosine of the angle alpha between
      any pair of crystallographic vectors, tx, ty, tz are:
        tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
 -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(alpha)
      The crystallographic vectors form a three-fold star around
      <111>. Defining a' = a/sqrt(3) :
      v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)
      where u and v are defined as
        u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
      and tx, ty, tz as for case ibrav=5

  6          Tetragonal P (st)               celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)

  7          Tetragonal I (bct)              celldm(3)=c/a
      v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)

  8          Orthorhombic P                  celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)

  9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
 -9          as 9, alternate description
      v1 = (a/2,-b/2,0),  v2 = (a/2,-b/2,0),  v3 = (0,0,c)

 10          Orthorhombic face-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)

 11          Orthorhombic body-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)

 12          Monoclinic P, unique axis c     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
      where gamma is the angle between axis a and b.
-12          Monoclinic P, unique axis b     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(5)=cos(ac)
      v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta))
      where beta is the angle between axis a and c

 13          Monoclinic base-centered        celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1 = (  a/2,         0,                -c/2),
      v2 = (b*cos(gamma), b*sin(gamma), 0),
      v3 = (  a/2,         0,                  c/2),
      where gamma is the angle between axis a and b

 14          Triclinic                       celldm(2)= b/a,
                                             celldm(3)= c/a,
                                             celldm(4)= cos(bc),
                                             celldm(5)= cos(ac),
                                             celldm(6)= cos(ab)
      v1 = (a, 0, 0),
      v2 = (b*cos(gamma), b*sin(gamma), 0)
      v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
           c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                     - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
  where alpha is the angle between axis b and c
         beta is the angle between axis a and c
        gamma is the angle between axis a and b
         
Either:

celldm(i), i=1,6 REAL
See: ibrav
Crystallographic constants - see description of ibrav variable.

* alat = celldm(1) is the lattice parameter "a" (in BOHR)
* only needed celldm (depending on ibrav) must be specified
* if ibrav=0 only alat = celldm(1) is used (if present)
            
Or:

A, B, C, cosAB, cosAC, cosBC REAL
Traditional crystallographic constants: a,b,c in ANGSTROM
cosAB = cosine of the angle between axis a and b (gamma)
cosAC = cosine of the angle between axis a and c (beta)
cosBC = cosine of the angle between axis b and c (alpha)
specify either these OR celldm but NOT both.

The axis are chosen according to the value of ibrav.
If ibrav is not specified, the axis are taken from card
CELL_PARAMETERS and only a is used as lattice parameter.
            
nat INTEGER
Status: REQUIRED
number of atoms in the unit cell
         
ntyp INTEGER
Status: REQUIRED
number of types of atoms in the unit cell
         
nbnd INTEGER
Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more)
number of electronic states (bands) to be calculated.
Note that in spin-polarized calculations the number of
k-point, not the number of bands per k-point, is doubled
         
tot_charge REAL
Default: 0.0
total charge of the system. Useful for simulations with charged cells.
By default the unit cell is assumed to be neutral (tot_charge=0).
tot_charge=+1 means one electron missing from the system,
tot_charge=-1 means one additional electron, and so on.

In a periodic calculation a compensating jellium background is
inserted to remove divergences if the cell is not neutral.
         
tot_magnetization REAL
Default: -1 [unspecified]
total majority spin charge - minority spin charge.
Used to impose a specific total electronic magnetization.
If unspecified then tot_magnetization variable is ignored and
the amount of electronic magnetization is determined during
the self-consistent cycle.
         
starting_magnetization(i), i=1,ntyp REAL
starting spin polarization on atomic type 'i' in a spin
polarized calculation. Values range between -1 (all spins
down for the valence electrons of atom type 'i') to 1
(all spins up). Breaks the symmetry and provides a starting
point for self-consistency. The default value is zero, BUT a
value MUST be specified for AT LEAST one atomic type in spin
polarized calculations, unless you constrain the magnetization
(see "tot_magnetization" and "constrained_magnetization").
Note that if you start from zero initial magnetization, you
will invariably end up in a nonmagnetic (zero magnetization)
state. If you want to start from an antiferromagnetic state,
you may need to define two different atomic species
corresponding to sublattices of the same atomic type.
starting_magnetization is ignored if you are performing a
non-scf calculation, if you are restarting from a previous
run, or restarting from an interrupted run.
If you fix the magnetization with "tot_magnetization",
you should not specify starting_magnetization.
         
ecutwfc REAL
Status: REQUIRED
kinetic energy cutoff (Ry) for wavefunctions
         
ecutrho REAL
Default: 4 * ecutwfc
kinetic energy cutoff (Ry) for charge density and potential
For norm-conserving pseudopotential you should stick to the
default value, you can reduce it by a little but it will
introduce noise especially on forces and stress.
If there are ultrasoft PP, a larger value than the default is
often desirable (ecutrho = 8 to 12 times ecutwfc, typically).
PAW datasets can often be used at 4*ecutwfc, but it depends
on the shape of augmentation charge: testing is mandatory.
The use of gradient-corrected functional, especially in cells
with vacuum, or for pseudopotential without non-linear core
correction, usually requires an higher values of ecutrho
to be accurately converged.
         
ecutfock REAL
Default: ecutrho
kinetic energy cutoff (Ry) for the exact exchange operator in
EXX type calculations. By default this is the same as ecutrho
but in some EXX calculations significant speed-up can be found
by reducing ecutfock, at the expense of some loss in accuracy.
Currently only implemented for the optimized gamma point only
calculations.
         
nr1, nr2, nr3 INTEGER
three-dimensional FFT mesh (hard grid) for charge
density (and scf potential). If not specified
the grid is calculated based on the cutoff for
charge density (see also "ecutrho")
         
nr1s, nr2s, nr3s INTEGER
three-dimensional mesh for wavefunction FFT and for the smooth
part of charge density ( smooth grid ).
Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default )
         
nosym LOGICAL
Default: .FALSE.
if (.TRUE.) symmetry is not used. Note that
- if the k-point grid is provided in input, it is used "as is"
  and symmetry-inequivalent k-points are not generated;
- if the k-point grid is automatically generated, it will
  contain only points in the irreducible BZ for the bravais
  lattice, irrespective of the actual crystal symmetry.
A careful usage of this option can be advantageous
- in low-symmetry large cells, if you cannot afford a k-point
  grid with the correct symmetry
- in MD simulations
- in calculations for isolated atoms
         
nosym_evc LOGICAL
Default: .FALSE.
if(.TRUE.) symmetry is not used but the k-points are
forced to have the symmetry of the Bravais lattice;
an automatically generated k-point grid will contain
all the k-points of the grid and the points rotated by
the symmetries of the Bravais lattice which are not in the
original grid. If available, time reversal is
used to reduce the k-points (and the q => -q symmetry
is used in the phonon code). To disable also this symmetry set
noinv=.TRUE..
         
noinv LOGICAL
Default: .FALSE.
if (.TRUE.) disable the usage of k => -k symmetry
(time reversal) in k-point generation
         
no_t_rev LOGICAL
Default: .FALSE.
if (.TRUE.) disable the usage of magnetic symmetry operations
that consist in a rotation + time reversal.
         
force_symmorphic LOGICAL
Default: .FALSE.
if (.TRUE.) force the symmetry group to be symmorphic by disabling
symmetry operations having an associated fractionary translation
         
use_all_frac LOGICAL
Default: .FALSE.
if (.TRUE.) do not discard symmetry operations with an
associated fractionary translation that does not send the
real-space FFT grid into itself. These operations are
incompatible with real-space symmetrization but not with the
new G-space symmetrization. BEWARE: do not use for phonons!
The phonon code still uses real-space symmetrization.
         
occupations CHARACTER
'smearing':     gaussian smearing for metals
                requires a value for degauss

'tetrahedra' :  especially suited for calculation of DOS
                (see P.E. Bloechl, PRB49, 16223 (1994))
                Requires uniform grid of k-points,
                automatically generated (see below)
                Not suitable (because not variational) for
                force/optimization/dynamics calculations

'fixed' :       for insulators with a gap

'from_input' :  The occupation are read from input file.
                Requires "nbnd" to be set in input.
                Occupations should be consistent with the
                value of "tot_charge".
         
one_atom_occupations LOGICAL
Default: .FALSE.
This flag is used for isolated atoms (nat=1) together with
occupations='from_input'. If it is .TRUE., the wavefunctions
are ordered as the atomic starting wavefunctions, independently
from their eigenvalue. The occupations indicate which atomic
states are filled.
The order of the states is written inside the UPF
pseudopotential file.
In the scalar relativistic case:
S -> l=0, m=0
P -> l=1, z, x, y
D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2
In the noncollinear magnetic case (with or without spin-orbit),
each group of states is doubled. For instance:
P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down.
Up and down is relative to the direction of the starting
magnetization.
In the case with spin-orbit and time-reversal
(starting_magnetization=0.0) the atomic wavefunctions are
radial functions multiplied by spin-angle functions.
For instance:
P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2,
     m_j=-3/2, -1/2, 1/2, 3/2.
In the magnetic case with spin-orbit the atomic wavefunctions
can be forced to be spin-angle functions by setting
starting_spin_angle to .TRUE..
         
starting_spin_angle LOGICAL
Default: .FALSE.
In the spin-orbit case when domag=.TRUE., by default,
the starting wavefunctions are initialized as in scalar
relativistic noncollinear case without spin-orbit.
By setting starting_spin_angle=.TRUE. this behaviour can
be changed and the initial wavefunctions are radial
functions multiplied by spin-angle functions.
When domag=.FALSE. the initial wavefunctions are always
radial functions multiplied by spin-angle functions
independently from this flag.
When lspinorb is .FALSE. this flag is not used.
         
degauss REAL
Default: 0.D0 Ry
value of the gaussian spreading (Ry) for brillouin-zone
integration in metals.
         
smearing CHARACTER
Default: 'gaussian'
'gaussian', 'gauss':
    ordinary Gaussian spreading (Default)

'methfessel-paxton', 'm-p', 'mp':
    Methfessel-Paxton first-order spreading
    (see PRB 40, 3616 (1989)).

'marzari-vanderbilt', 'cold', 'm-v', 'mv':
    Marzari-Vanderbilt cold smearing
    (see PRL 82, 3296 (1999))

'fermi-dirac', 'f-d', 'fd':
    smearing with Fermi-Dirac function
         
nspin INTEGER
Default: 1
nspin = 1 :  non-polarized calculation (default)

nspin = 2 :  spin-polarized calculation, LSDA
             (magnetization along z axis)

nspin = 4 :  spin-polarized calculation, noncollinear
             (magnetization in generic direction)
             DO NOT specify nspin in this case;
             specify "noncolin=.TRUE." instead
         
noncolin LOGICAL
Default: .false.
if .true. the program will perform a noncollinear calculation.
         
ecfixed REAL
Default: 0.0
See: q2sigma
qcutz REAL
Default: 0.0
See: q2sigma
q2sigma REAL
Default: 0.1
ecfixed, qcutz, q2sigma:  parameters for modified functional to be
used in variable-cell molecular dynamics (or in stress calculation).
"ecfixed" is the value (in Rydberg) of the constant-cutoff;
"qcutz" and "q2sigma" are the height and the width (in Rydberg)
of the energy step for reciprocal vectors whose square modulus
is greater than "ecfixed". In the kinetic energy, G^2 is
replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995)
         
input_dft CHARACTER
Default: read from pseudopotential files
Exchange-correlation functional: eg 'PBE', 'BLYP' etc
See Modules/functionals.f90 for allowed values.
Overrides the value read from pseudopotential files.
Use with care and if you know what you are doing!
         
exx_fraction REAL
Default: it depends on the specified functional
Fraction of EXX for hybrid functional calculations. In the case of
input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP'
the exx_fraction default value is 0.20.
         
screening_parameter REAL
Default: 0.106
screening_parameter for HSE like hybrid functionals.
See J. Chem. Phys. 118, 8207 (2003)
and J. Chem. Phys. 124, 219906 (2006) for more informations.
         
exxdiv_treatment CHARACTER
Default: gygi-baldereschi
Specific for EXX. It selects the kind of approach to be used
for treating the Coulomb potential divergencies at small q vectors.

gygi-baldereschi : appropriate for cubic and quasi-cubic supercells
vcut_spherical : appropriate for cubic and quasi-cubic supercells
vcut_ws : appropriate for strongly anisotropic supercells, see also
          ecutvcut.
none : sets Coulomb potential at G,q=0 to 0.0
         
ecutvcut REAL
Default: 0.0 Ry
See: exxdiv_treatment
Reciprocal space cutoff for correcting
Coulomb potential divergencies at small q vectors.
         
nqx1, nqx2, nqx3 INTEGER
three-dimensional mesh for q (k1-k2) sampling of
the Fock operator (EXX). Can be smaller than
the number of k-points.
         
lda_plus_u LOGICAL
Default: .FALSE.
Status: DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify PW/set_hubbard_l.f90 and PW/tabd.f90 if you plan to use DFT+U with an element that is not configured there.
Specify lda_plus_u = .TRUE. to enable DFT+U calculations
See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
     Anisimov et al., PRB 48, 16929 (1993);
     Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994).
You must specify, for each species with a U term, the value of
U and (optionally) alpha, J of the Hubbard model (all in eV):
see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J
         
lda_plus_u_kind INTEGER
Default: 0
Specifies the type of DFT+U calculation:
                  0   simplified version of Cococcioni and de Gironcoli,
                      PRB 71, 035105 (2005), using Hubbard_U
                  1   rotationally invariant scheme of Liechtenstein et al.,
                      using Hubbard_U and Hubbard_J
         
Hubbard_U(i), i=1,ntyp REAL
Default: 0.D0 for all species
Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation
         
Hubbard_J0(i), i=1,ntype REAL
Default: 0.D0 for all species
Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation,
see PRB 84, 115108 (2011) for details.
         
Hubbard_alpha(i), i=1,ntyp REAL
Default: 0.D0 for all species
Hubbard_alpha(i) is the perturbation (on atom i, in eV)
used to compute U with the linear-response method of
Cococcioni and de Gironcoli, PRB 71, 35105 (2005)
(only for lda_plus_u_kind=0)
         
Hubbard_beta(i), i=1,ntyp REAL
Default: 0.D0 for all species
Hubbard_beta(i) is the perturbation (on atom i, in eV)
used to compute J0 with the linear-response method of
Cococcioni and de Gironcoli, PRB 71, 35105 (2005)
(only for lda_plus_u_kind=0). See also
PRB 84, 115108 (2011).
         
Hubbard_J(i,ityp)
Default: 0.D0 for all species
Hubbard_J(i,ityp): J parameters (eV) for species ityp,
used in DFT+U calculations (only for lda_plus_u_kind=1)
For p orbitals:  J = Hubbard_J(1,ityp);
For d orbitals:  J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp);
For f orbitals:  J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp),
                 E3= Hubbard_J(3,ityp).
If B or E2 or E3 are not specified or set to 0 they will be
calculated from J using atomic ratios.
         
starting_ns_eigenvalue(m,ispin,I) REAL
Default: -1.d0 that means NOT SET
In the first iteration of an DFT+U run it overwrites
the m-th eigenvalue of the ns occupation matrix for the
ispin component of atomic species I. Leave unchanged
eigenvalues that are not set. This is useful to suggest
the desired orbital occupations when the default choice
takes another path.
         
U_projection_type CHARACTER
Default: 'atomic'
Only active when lda_plus_U is .true., specifies the type
of projector on localized orbital to be used in the DFT+U
scheme.

Currently available choices:
'atomic': use atomic wfc's (as they are) to build the projector

'ortho-atomic': use Lowdin orthogonalized atomic wfc's

'norm-atomic':  Lowdin normalization of atomic wfc. Keep in mind:
                atomic wfc are not orthogonalized in this case.
                This is a "quick and dirty" trick to be used when
                atomic wfc from the pseudopotential are not
                normalized (and thus produce occupation whose
                value exceeds unity). If orthogonalized wfc are
                not needed always try 'atomic' first.

'file':         use the information from file "prefix".atwfc that must
                have been generated previously, for instance by pmw.x
                (see PP/poormanwannier.f90 for details).

'pseudo':       use the pseudopotential projectors. The charge density
                outside the atomic core radii is excluded.
                N.B.: for atoms with +U, a pseudopotential with the
                all-electron atomic wavefunctions is required (i.e.,
                as generated by ld1.x with lsave_wfc flag).

NB: forces and stress currently implemented only for the
'atomic' and 'pseudo' choice.
         
edir INTEGER
The direction of the electric field or dipole correction is
parallel to the bg(:,edir) reciprocal lattice vector, so the
potential is constant in planes defined by FFT grid points;
edir = 1, 2 or 3. Used only if tefield is .TRUE.
         
emaxpos REAL
Default: 0.5D0
Position of the maximum of the saw-like potential along crystal
axis "edir", within the  unit cell (see below), 0 < emaxpos < 1
Used only if tefield is .TRUE.
         
eopreg REAL
Default: 0.1D0
Zone in the unit cell where the saw-like potential decreases.
( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE.
         
eamp REAL
Default: 0.001 a.u.
Amplitude of the electric field, in ***Hartree*** a.u.;
1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE.
The saw-like potential increases with slope "eamp" in the
region from (emaxpos+eopreg-1) to (emaxpos), then decreases
to 0 until (emaxpos+eopreg), in units of the crystal
vector "edir". Important: the change of slope of this
potential must be located in the empty region, or else
unphysical forces will result.
         
angle1(i), i=1,ntyp REAL
The angle expressed in degrees between the initial
magnetization and the z-axis. For noncollinear calculations
only; index i runs over the atom types.
         
angle2(i), i=1,ntyp REAL
The angle expressed in degrees between the projection
of the initial magnetization on x-y plane and the x-axis.
For noncollinear calculations only.
         
constrained_magnetization CHARACTER
Default: 'none'
See: lambda, fixed_magnetization
Used to perform constrained calculations in magnetic systems.
Currently available choices:

'none':
         no constraint

'total':
         total magnetization is constrained by
         adding a penalty functional to the total energy:

         LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2

         where the sum over i runs over the three components of
         the magnetization. Lambda is a real number (see below).
         Noncolinear case only. Use "tot_magnetization" for LSDA

'atomic':
         atomic magnetization are constrained to the defined
         starting magnetization adding a penalty:

         LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2

         where i runs over the cartesian components (or just z
         in the collinear case) and itype over the types (1-ntype).
         mcons(:,:) array is defined from starting_magnetization,
         (and angle1, angle2 in the non-collinear case). lambda is
         a real number

'total direction':
          the angle theta of the total magnetization
          with the z axis (theta = fixed_magnetization(3))
          is constrained:

          LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2

          where mag_tot is the modulus of the total magnetization.

'atomic direction':
          not all the components of the atomic
          magnetic moment are constrained but only the cosine
          of angle1, and the penalty functional is:

          LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2

N.B.: symmetrization may prevent to reach the desired orientation
      of the magnetization. Try not to start with very highly symmetric
      configurations or use the nosym flag (only as a last remedy)
         
fixed_magnetization(i), i=1,3 REAL
Default: 0.d0
See: constrained_magnetization
value of the total magnetization to be maintained fixed when
constrained_magnetization='total'
         
lambda REAL
Default: 1.d0
See: constrained_magnetization
parameter used for constrained_magnetization calculations
N.B.: if the scf calculation does not converge, try to reduce lambda
      to obtain convergence, then restart the run with a larger lambda
         
report INTEGER
Default: 1
It is the number of iterations after which the program
write all the atomic magnetic moments.
         
lspinorb LOGICAL
if .TRUE. the noncollinear code can use a pseudopotential with
spin-orbit.
         
assume_isolated CHARACTER
Default: 'none'
Used to perform calculation assuming the system to be
isolated (a molecule or a cluster in a 3D supercell).

Currently available choices:

'none' (default): regular periodic calculation w/o any correction.

'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the
         total energy is computed. An estimate of the vacuum
         level is also calculated so that eigenvalues can be
         properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3)
         Theory:
         G.Makov, and M.C.Payne,
         "Periodic boundary conditions in ab initio
         calculations" , Phys.Rev.B 51, 4014 (1995)

'dcc' :  density counter charge correction CURRENTLY DISABLED
         The electrostatic problem is solved in open boundary
         conditions (OBC). This approach provides the correct
         scf potential and energies (not just a correction to
         energies as 'mp'). BEWARE: the molecule should be
         centered around the middle of the cell, not around
         the origin (0,0,0).
         Theory described in:
         I.Dabo, B.Kozinsky, N.E.Singh-Miller and N.Marzari,
         "Electrostatic periodic boundary conditions and
         real-space corrections", Phys.Rev.B 77, 115139 (2008)

'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction.
         As for the dcc correction the scf potential is also
         corrected. Implementation adapted from:
         G.J. Martyna, and M.E. Tuckerman,
         "A reciprocal space based method for treating long
         range interactions in ab-initio and force-field-based
         calculation in clusters", J.Chem.Phys. 110, 2810 (1999)

'esm' :  Effective Screening Medium Method.
         For polarized or charged slab calculation, embeds
         the simulation cell within an effective semi-
         infinite medium in the perpendicular direction
         (along z). Embedding regions can be vacuum or
         semi-infinite metal electrodes (use 'esm_bc' to
         choose boundary conditions). If between two
         electrodes, an optional electric field
         ('esm_efield') may be applied. Method described in
         M. Otani and O. Sugino, "First-principles
         calculations of charged surfaces and interfaces:
         A plane-wave nonrepeated slab approach," PRB 73,
         115407 (2006).
         NB: Requires cell with a_3 lattice vector along z,
         normal to the xy plane, with the slab centered
         around z=0. Also requires symmetry checking to be
         disabled along z, either by setting 'nosym' = .TRUE.
         or by very slight displacement (i.e., 5e-4 a.u.)
         of the slab along z.
         See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'.
         
esm_bc CHARACTER
Default: 'pbc'
See: assume_isolated
If assume_isolated = 'esm', determines the boundary
conditions used for either side of the slab.

Currently available choices:

'pbc' (default): regular periodic calculation (no ESM).

'bc1' : Vacuum-slab-vacuum (open boundary conditions)

'bc2' : Metal-slab-metal (dual electrode configuration).
        See also 'esm_efield'.

'bc3' : Vacuum-slab-metal
         
esm_w REAL
Default: 0.d0
See: assume_isolated
If assume_isolated = 'esm', determines the position offset
[in a.u.] of the start of the effective screening region,
measured relative to the cell edge. (ESM region begins at
z = +/- [L_z/2 + esm_w] ).
         
esm_efield REAL
Default: 0.d0
See: assume_isolated, esm_bc
If assume_isolated = 'esm' and esm_bc = 'bc2', gives the
magnitude of the electric field [Ry/a.u.] to be applied
between semi-infinite ESM electrodes.
         
esm_nfit INTEGER
Default: 4
See: assume_isolated
If assume_isolated = 'esm', gives the number of z-grid points
for the polynomial fit along the cell edge.
         
london LOGICAL
Default: .FALSE.
if .TRUE. compute semi-empirical dispersion term (DFT-D).
See S. Grimme, J. Comp. Chem. 27, 1787 (2006), and
V. Barone et al., J. Comp. Chem. 30, 934 (2009).
         
london_s6 REAL
Default: 0.75
global scaling parameter for DFT-D. Default is good for PBE.
         
london_rcut REAL
Default: 200
cutoff radius (a.u.) for dispersion interactions
         

Namelist: ELECTRONS

electron_maxstep INTEGER
Default: 100
maximum number of iterations in a scf step
         
scf_must_converge LOGICAL
Default: .TRUE.
If .false. do not stop molecular dynamics or ionic relaxation
when electron_maxstep is reached. Use with care.
         
conv_thr REAL
Default: 1.D-6
Convergence threshold for selfconsistency:
estimated energy error < conv_thr
(note that conv_thr is extensive, like the total energy)
         
adaptive_thr LOGICAL
Default: .FALSE
If .TRUE. this turns on the use of an adaptive conv_thr for
the inner scf loops when using EXX.
         
conv_thr_init REAL
Default: 1.D-3
When adaptive_thr = .TRUE. this is the convergence threshold
used for the first scf cycle.
         
conv_thr_multi REAL
Default: 1.D-1
When adaptive_thr = .TRUE. the convergence threshold for
each scf cycle is given by:
min( conv_thr, conv_thr_multi * dexx )
         
mixing_mode CHARACTER
Default: 'plain'
'plain' :    charge density Broyden mixing

'TF' :       as above, with simple Thomas-Fermi screening
            (for highly homogeneous systems)

'local-TF':  as above, with local-density-dependent TF screening
             (for highly inhomogeneous systems)
         
mixing_beta REAL
Default: 0.7D0
mixing factor for self-consistency
         
mixing_ndim INTEGER
Default: 8
number of iterations used in mixing scheme
         
mixing_fixed_ns INTEGER
Default: 0
For DFT+U : number of iterations with fixed ns ( ns is the
  atomic density appearing in the Hubbard term ).
         
diagonalization CHARACTER
Default: 'david'
'david':  Davidson iterative diagonalization with overlap matrix
          (default). Fast, may in some rare cases fail.

'cg' :    conjugate-gradient-like band-by-band diagonalization
          Typically slower than 'david' but it uses less memory
          and is more robust (it seldom fails)

'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead"
          The subspace diagonalization in Davidson is performed
          by a fully distributed-memory parallel algorithm on
          4 or more processors, by default. The allocated memory
          scales down with the number of procs. Procs involved
          in diagonalization can be changed with command-line
          option "-ndiag N". On multicore CPUs it is often
          convenient to let just one core per CPU to work
          on linear algebra.
         
ortho_para INTEGER
Default: 0
Status: OBSOLETE: use command-line option " -ndiag XX" instead

         
diago_thr_init REAL
Convergence threshold for the first iterative diagonalization
(the check is on eigenvalue convergence).
For scf calculations, the default is 1.D-2 if starting from a
superposition of atomic orbitals; 1.D-5 if starting from a
charge density. During self consistency the threshold (ethr)
is automatically reduced when approaching convergence.
For non-scf calculations, this is the threshold used in the
iterative diagonalization. The default is conv_thr /N elec.
         
diago_cg_maxiter INTEGER
For conjugate gradient diagonalization:
max number of iterations
         
diago_david_ndim INTEGER
Default: 4
For Davidson diagonalization: dimension of workspace
(number of wavefunction packets, at least 2 needed).
A larger value may yield a somewhat faster algorithm
but uses more memory. The opposite holds for smaller values.
Try diago_david_ndim=2 if you are tight on memory or if
your job is large: the speed penalty is often negligible
         
diago_full_acc LOGICAL
Default: .FALSE.
If .TRUE. all the empty states are diagonalized at the same level
of accuracy of the occupied ones. Otherwise the empty states are
diagonalized using a larger threshold (this should not affect
total energy, forces, and other ground-state properties).
         
efield REAL
Default: 0.D0
Amplitude of the finite electric field (in Ry a.u.;
1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE.
and if k-points (K_POINTS card) are not automatic.
         
efield_cart(i), i=1,3 REAL
Default: (0.D0, 0.D0, 0.D0)
Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in
cartesian axis. Used only if lelfield=.TRUE. and if
k-points (K_POINTS card) are automatic.
         
startingpot CHARACTER
'atomic': starting potential from atomic charge superposition
          ( default for scf, *relax, *md )

'file'  : start from existing "charge-density.xml" file in the
          directory specified by variables "prefix" and "outdir"
          For nscf and bands calculation this is the default
          and the only sensible possibility.
         
startingwfc CHARACTER
Default: 'atomic+random'
'atomic': start from superposition of atomic orbitals
          If not enough atomic orbitals are available,
          fill with random numbers the remaining wfcs
          The scf typically starts better with this option,
          but in some high-symmetry cases one can "loose"
          valence states, ending up in the wrong ground state.

'atomic+random': as above, plus a superimposed "randomization"
          of atomic orbitals. Prevents the "loss" of states
          mentioned above.

'random': start from random wfcs. Slower start of scf but safe.
          It may also reduce memory usage in conjunction with
          diagonalization='cg'

'file':   start from an existing wavefunction file in the
          directory specified by variables "prefix" and "outdir"
         
tqr LOGICAL
Default: .FALSE.
If .true., use the real-space algorithm for augmentation
charges in ultrasoft pseudopotentials.
Must faster execution of ultrasoft-related calculations,
but numerically less accurate than the default algorithm.
Use with care and after testing!
         

Namelist: IONS

input this namelist only if calculation = 'relax', 'md', 'vc-relax', 'vc-md'

ion_dynamics CHARACTER
Specify the type of ionic dynamics.

For different type of calculation different possibilities are
allowed and different default values apply:

CASE ( calculation = 'relax' )
    'bfgs' :   (default)   use BFGS quasi-newton algorithm,
                           based on the trust radius procedure,
                           for structural relaxation
    'damp' :               use damped (quick-min Verlet)
                           dynamics for structural relaxation
                           Can be used for constrained
                           optimisation: see CONSTRAINTS card

CASE ( calculation = 'md' )
    'verlet' : (default)   use Verlet algorithm to integrate
                           Newton's equation. For constrained
                           dynamics, see CONSTRAINTS card
    'langevin'             ion dynamics is over-damped Langevin

CASE ( calculation = 'vc-relax' )
    'bfgs' :   (default)   use BFGS quasi-newton algorithm;
                           cell_dynamics must be 'bfgs' too
    'damp' :               use damped (Beeman) dynamics for
                           structural relaxation
CASE ( calculation = 'vc-md' )
    'beeman' : (default)   use Beeman algorithm to integrate
                           Newton's equation
         
ion_positions CHARACTER
Default: 'default'
'default '  : if restarting, use atomic positions read from the
              restart file; in all other cases, use atomic
              positions from standard input.

'from_input' : restart the simulation with atomic positions read
              from standard input, even if restarting.
         
phase_space CHARACTER
Default: 'full'
'full' :           the full phase-space is used for the ionic
                   dynamics.

'coarse-grained' : a coarse-grained phase-space, defined by a set
                   of constraints, is used for the ionic dynamics
                   (used for calculation of free-energy barriers)
         
pot_extrapolation CHARACTER
Default: 'atomic'
   Used to extrapolate the potential from preceding ionic steps.

   'none'        :  no extrapolation

   'atomic'      :  extrapolate the potential as if it was a sum of
                    atomic-like orbitals

   'first_order' :  extrapolate the potential with first-order
                    formula

   'second_order':  as above, with second order formula

Note: 'first_order' and 'second-order' extrapolation make sense
only for molecular dynamics calculations
         
wfc_extrapolation CHARACTER
Default: 'none'
    Used to extrapolate the wavefunctions from preceding ionic steps.

   'none'        :  no extrapolation

   'first_order' :  extrapolate the wave-functions with first-order
                    formula.

   'second_order':  as above, with second order formula.

Note: 'first_order' and 'second-order' extrapolation make sense
only for molecular dynamics calculations
         
remove_rigid_rot LOGICAL
Default: .FALSE.
This keyword is useful when simulating the dynamics and/or the
thermodynamics of an isolated system. If set to true the total
torque of the internal forces is set to zero by adding new forces
that compensate the spurious interaction with the periodic
images. This allows for the use of smaller supercells.

BEWARE: since the potential energy is no longer consistent with
the forces (it still contains the spurious interaction with the
repeated images), the total energy is not conserved anymore.
However the dynamical and thermodynamical properties should be
in closer agreement with those of an isolated system.
Also the final energy of a structural relaxation will be higher,
but the relaxation itself should be faster.
         
keywords used for molecular dynamics

ion_temperature CHARACTER
Default: 'not_controlled'
'rescaling'   control ionic temperature via velocity rescaling
              (first method) see parameters "tempw", "tolp", and
              "nraise" (for VC-MD only). This rescaling method
              is the only one currently implemented in VC-MD

'rescale-v'   control ionic temperature via velocity rescaling
              (second method) see parameters "tempw" and "nraise"

'rescale-T'   control ionic temperature via velocity rescaling
              (third method) see parameter "delta_t"

'reduce-T'    reduce ionic temperature every "nraise" steps
              by the (negative) value "delta_t"

'berendsen'   control ionic temperature using "soft" velocity
              rescaling - see parameters "tempw" and "nraise"

'andersen'    control ionic temperature using Andersen thermostat
              see parameters "tempw" and "nraise"

'initial'     initialize ion velocities to temperature "tempw"
              and leave uncontrolled further on

'not_controlled' (default) ionic temperature is not controlled
            
tempw REAL
Default: 300.D0
Starting temperature (Kelvin) in MD runs
target temperature for most thermostats.
            
tolp REAL
Default: 100.D0
Tolerance for velocity rescaling. Velocities are rescaled if
the run-averaged and target temperature differ more than tolp.
            
delta_t REAL
Default: 1.D0
if ion_temperature='rescale-T':
       at each step the instantaneous temperature is multiplied
       by delta_t; this is done rescaling all the velocities.

if ion_temperature='reduce-T':
       every 'nraise' steps the instantaneous temperature is
       reduced by -delta_T (i.e. delta_t < 0 is added to T)

The instantaneous temperature is calculated at the end of
every ionic move and BEFORE rescaling. This is the temperature
reported in the main output.

For delta_t < 0, the actual average rate of heating or cooling
should be roughly C*delta_t/(nraise*dt) (C=1 for an
ideal gas, C=0.5 for a harmonic solid, theorem of energy
equipartition between all quadratic degrees of freedom).
            
nraise INTEGER
Default: 1
if ion_temperature='reduce-T':
       every 'nraise' steps the instantaneous temperature is
       reduced by -delta_T (.e. delta_t is added to the temperature)

if ion_temperature='rescale-v':
       every 'nraise' steps the average temperature, computed from
       the last nraise steps, is rescaled to tempw

if ion_temperature='rescaling' and calculation='vc-md':
       every 'nraise' steps the instantaneous temperature
       is rescaled to tempw

if ion_temperature='berendsen':
       the "rise time" parameter is given in units of the time step:
       tau = nraise*dt, so dt/tau = 1/nraise

if ion_temperature='andersen':
       the "collision frequency" parameter is given as nu=1/tau
       defined above, so nu*dt = 1/nraise
            
refold_pos LOGICAL
Default: .FALSE.
This keyword applies only in the case of molecular dynamics or
damped dynamics. If true the ions are refolded at each step into
the supercell.
            
keywords used only in BFGS calculations

upscale REAL
Default: 100.D0
Max reduction factor for conv_thr during structural optimization
conv_thr is automatically reduced when the relaxation
approaches convergence so that forces are still accurate,
but conv_thr will not be reduced to less that
conv_thr / upscale.
            
bfgs_ndim INTEGER
Default: 1
Number of old forces and displacements vectors used in the
PULAY mixing of the residual vectors obtained on the basis
of the inverse hessian matrix given by the BFGS algorithm.
When bfgs_ndim = 1, the standard quasi-Newton BFGS method is
used.
(bfgs only)
            
trust_radius_max REAL
Default: 0.8D0
Maximum ionic displacement in the structural relaxation.
(bfgs only)
            
trust_radius_min REAL
Default: 1.D-3
Minimum ionic displacement in the structural relaxation
BFGS is reset when trust_radius < trust_radius_min.
(bfgs only)
            
trust_radius_ini REAL
Default: 0.5D0
Initial ionic displacement in the structural relaxation.
(bfgs only)
            
w_1 REAL
Default: 0.01D0
See: w_2
w_2 REAL
Default: 0.5D0
Parameters used in line search based on the Wolfe conditions.
(bfgs only)
            

Namelist: CELL

input this namelist only if calculation = 'vc-relax', 'vc-md'

cell_dynamics CHARACTER
Specify the type of dynamics for the cell.
For different type of calculation different possibilities
are allowed and different default values apply:

CASE ( calculation = 'vc-relax' )
  'none':    no dynamics
  'sd':      steepest descent ( not implemented )
  'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman
             extended lagrangian
  'damp-w':  damped (Beeman) dynamics of the new Wentzcovitch
             extended lagrangian
  'bfgs':    BFGS quasi-newton algorithm (default)
             ion_dynamics must be 'bfgs' too
CASE ( calculation = 'vc-md' )
  'none':    no dynamics
  'pr':      (Beeman) molecular dynamics of the Parrinello-Rahman
             extended lagrangian
  'w':       (Beeman) molecular dynamics of the new Wentzcovitch
             extended lagrangian
         
press REAL
Default: 0.D0
Target pressure [KBar] in a variable-cell md or relaxation run.
         
wmass REAL
Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
Fictitious cell mass [amu] for variable-cell simulations
(both 'vc-md' and 'vc-relax')
         
cell_factor REAL
Default: 1.2D0
Used in the construction of the pseudopotential tables.
It should exceed the maximum linear contraction of the
cell during a simulation.
         
press_conv_thr REAL
Default: 0.5D0 Kbar
Convergence threshold on the pressure for variable cell
relaxation ('vc-relax' : note that the other convergence
thresholds for ionic relaxation apply as well).
         
cell_dofree CHARACTER
Default: 'all'
Select which of the cell parameters should be moved:

all     = all axis and angles are moved
x       = only the x component of axis 1 (v1_x) is moved
y       = only the y component of axis 2 (v2_y) is moved
z       = only the z component of axis 3 (v3_z) is moved
xy      = only v1_x and v_2y are moved
xz      = only v1_x and v_3z are moved
yz      = only v2_x and v_3z are moved
xyz     = only v1_x, v2_x, v_3z are moved
shape   = all axis and angles, keeping the volume fixed
2Dxy    = only x and y components are allowed to change
2Dshape = as above, keeping the area in xy plane fixed

BEWARE: if axis are not orthogonal, some of these options do not
 work (symmetry is broken). If you are not happy with them,
 edit subroutine init_dofree in file Module/cell_base.f90
         

Card: ATOMIC_SPECIES

Syntax:

ATOMIC_SPECIES
 X(1)   Mass_X(1)   PseudoPot_X(1) 
 X(2)   Mass_X(2)   PseudoPot_X(2) 
 . . .
 X(ntyp)   Mass_X(ntyp)   PseudoPot_X(ntyp) 

Description of items:


X CHARACTER
label of the atom. Acceptable syntax:
chemical symbol X (1 or 2 characters, case-insensitive)
or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h)
                  
Mass_X REAL
mass of the atomic species [amu: mass of C = 12]
not used if calculation='scf', 'nscf', 'bands'
                  
PseudoPot_X CHARACTER
File containing PP for this species.

The pseudopotential file is assumed to be in the new UPF format.
If it doesn't work, the pseudopotential format is determined by
the file name:

*.vdb or *.van     Vanderbilt US pseudopotential code
*.RRKJ3            Andrea Dal Corso's code (old format)
none of the above  old PWscf norm-conserving format
                  

Card: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal }

IF calculation == 'bands' OR calculation == 'nscf' :
Specified atomic positions will be IGNORED and those from the
previous scf calculation will be used instead !!!
            
ELSEIF :

Syntax:

ATOMIC_POSITIONS { alat | bohr | angstrom | crystal }
 X(1)   x(1)   y(1)   z(1)  {  if_pos(1)(1)   if_pos(2)(1)   if_pos(3)(1)  }
 X(2)   x(2)   y(2)   z(2)  {  if_pos(1)(2)   if_pos(2)(2)   if_pos(3)(2)  }
 . . .
 X(nat)   x(nat)   y(nat)   z(nat)  {  if_pos(1)(nat)   if_pos(2)(nat)   if_pos(3)(nat)  }

Description of items:

alat    : atomic positions are in cartesian coordinates,
          in units of the lattice parameter "a" (default)

bohr    : atomic positions are in cartesian coordinate,
          in atomic units (i.e. Bohr)

angstrom: atomic positions are in cartesian coordinates,
          in Angstrom

crystal : atomic positions are in crystal coordinates, i.e.
          in relative coordinates of the primitive lattice vectors (see below)
         
X CHARACTER
 label of the atom as specified in ATOMIC_SPECIES
                        
x, y, z REAL
atomic positions

NOTE: each atomic coordinate can also be specified as a simple algebraic expression.
      To be interpreted correctly expression must NOT contain any blank
      space and must NOT start with a "+" sign. The available expressions are:

        + (plus), - (minus), / (division), * (multiplication), ^ (power)

     All numerical constants included are considered as double-precision numbers;
     i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are
     not available, although sqrt can be replaced with ^(1/2).

    Example:
                 C  1/3   1/2*3^(-1/2)   0

    is equivalent to

            C  0.333333  0.288675  0.000000

    Please note that this feature is NOT supported by XCrysDen (which will
    display a wrong structure, or nothing at all).
                        
if_pos(1), if_pos(2), if_pos(3) INTEGER
Default: 1
component i of the force for this atom is multiplied by if_pos(i),
which must be either 0 or 1.  Used to keep selected atoms and/or
selected components fixed in MD dynamics or
structural optimization run.
                           

Card: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }

IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c :

Syntax:

K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c
nks  
 xk_x(1)   xk_y(1)   xk_z(1)   wk(1) 
 xk_x(2)   xk_y(2)   xk_z(2)   wk(2) 
 . . .
 xk_x(nks)   xk_y(nks)   xk_z(nks)   wk(nks) 
ELSEIF automatic :

Syntax:

K_POINTS automatic
nk1  nk2  nk3  sk1  sk2  sk3  
ELSEIF gamma :

Syntax:

K_POINTS gamma

Description of items:

 tpiba    : read k-points in cartesian coordinates,
            in units of 2 pi/a (default)

 automatic: automatically generated uniform grid of k-points, i.e,
            generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset.
            nk1, nk2, nk3 as in Monkhorst-Pack grids
            k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced
            by half a grid step in the corresponding direction )
            BEWARE: only grids having the full symmetry of the crystal
            work with tetrahedra. Some grids with offset may not work.

 crystal  : read k-points in crystal coordinates, i.e. in relative
            coordinates of the reciprocal lattice vectors

 gamma    : use k = 0 (no need to list k-point specifications after card)
            In this case wavefunctions can be chosen as real,
            and specialized subroutines optimized for calculations
            at the gamma point are used (memory and cpu requirements
            are reduced by approximately one half).

 tpiba_b  : Used for band-structure plots.
            k-points are in units of  2 pi/a.
            nks points specify nks-1 lines in reciprocal space.
            Every couple of points identifies the initial and
            final point of a line. pw.x generates N
            intermediate points of the line where N is the
            weight of the first point.

 crystal_b: as tpiba_b, but k-points are in crystal coordinates.

 tpiba_c  : Used for band-structure contour plots.
            k-points are in units of  2 pi/a. nks must be 3.
            3 k-points k_0, k_1, and k_2 specify a rectangle
            in reciprocal space of vertices k_0, k_1, k_2,
            k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+
            \beta (k_2-k_0) with 0<\alpha,\beta < 1.
            The code produces a uniform mesh n1 x n2
            k points in this rectangle. n1 and n2 are
            the weights of k_1 and k_2. The weight of k_0
            is not used.

crystal_c: as tpiba_c, but k-points are in crystal coordinates.
         
nks INTEGER
 Number of supplied special k-points.
                     
xk_x, xk_y, xk_z, wk REAL
Special k-points (xk_x/y/z) in the irreducible Brillouin Zone
(IBZ) of the lattice (with all symmetries) and weights (wk)
See the literature for lists of special points and
the corresponding weights.

If the symmetry is lower than the full symmetry
of the lattice, additional points with appropriate
weights are generated. Notice that such procedure
assumes that ONLY k-points in the IBZ are provided in input

In a non-scf calculation, weights do not affect the results.
If you just need eigenvalues and eigenvectors (for instance,
for a band-structure plot), weights can be set to any value
(for instance all equal to 1).
                        
nk1, nk2, nk3 INTEGER
These parameters specify the k-point grid
(nk1 x nk2 x nk3) as in Monkhorst-Pack grids.
                     
sk1, sk2, sk3 INTEGER
The grid offsets;  sk1, sk2, sk3 must be
0 ( no offset ) or 1 ( grid displaced by
half a grid step in the corresponding direction ).
                     

Card: CELL_PARAMETERS { alat | bohr | angstrom }

Optional card, needed only if ibrav = 0 is specified, ignored otherwise !

Syntax:

CELL_PARAMETERS { alat | bohr | angstrom }
 v1(1)   v1(2)   v1(3) 
 v2(1)   v2(2)   v2(3) 
 v3(1)   v3(2)   v3(3) 

Description of items:

bohr / angstrom: lattice vectors in bohr radii / angstrom.
alat or nothing specified: if a lattice constant (celldm(1)
or a) is present, lattice vectors are in units of the lattice
constant; otherwise, in bohr radii or angstrom, as specified.
         
v1, v2, v3 REAL
Crystal lattice vectors (in cartesian axis):
    v1(1)  v1(2)  v1(3)    ... 1st lattice vector
    v2(1)  v2(2)  v2(3)    ... 2nd lattice vector
    v3(1)  v3(2)  v3(3)    ... 3rd lattice vector
                  

Card: CONSTRAINTS

Optional card, used for constrained dynamics or constrained optimisations (only if ion_dynamics='damp' or 'verlet', variable-cell excepted)

When this card is present the SHAKE algorithm is automatically used.
      

Syntax:

CONSTRAINTS
nconstr   { constr_tol   }
 constr_type(1)   constr(1)(1)   constr(2)(1)  [  constr(3)(1)    constr(4)(1)   ] {  constr_target(1)  }
 constr_type(2)   constr(1)(2)   constr(2)(2)  [  constr(3)(2)    constr(4)(2)   ] {  constr_target(2)  }
 . . .
 constr_type(nconstr)   constr(1)(nconstr)   constr(2)(nconstr)  [  constr(3)(nconstr)    constr(4)(nconstr)   ] {  constr_target(nconstr)  }

Description of items:


nconstr INTEGER
 Number of constraints.
               
constr_tol REAL
 Tolerance for keeping the constraints satisfied.
                  
constr_type CHARACTER
Type of constrain :

'type_coord'      : constraint on global coordination-number, i.e. the
                    average number of atoms of type B surrounding the
                    atoms of type A. The coordination is defined by
                    using a Fermi-Dirac.
                    (four indexes must be specified).

'atom_coord'      : constraint on local coordination-number, i.e. the
                    average number of atoms of type A surrounding a
                    specific atom. The coordination is defined by
                    using a Fermi-Dirac.
                    (four indexes must be specified).

'distance'        : constraint on interatomic distance
                    (two atom indexes must be specified).

'planar_angle'    : constraint on planar angle
                    (three atom indexes must be specified).

'torsional_angle' : constraint on torsional angle
                    (four atom indexes must be specified).

'bennett_proj'    : constraint on the projection onto a given direction
                    of the vector defined by the position of one atom
                    minus the center of mass of the others.
                    G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010)
                  
constr(1), constr(2), constr(3), constr(4)
                      These variables have different meanings
                      for different constraint types:

                     'type_coord' : constr(1) is the first index of the
                                    atomic type involved
                                    constr(2) is the second index of the
                                    atomic type involved
                                    constr(3) is the cut-off radius for
                                    estimating the coordination
                                    constr(4) is a smoothing parameter

                     'atom_coord' : constr(1) is the atom index of the
                                    atom with constrained coordination
                                    constr(2) is the index of the atomic
                                    type involved in the coordination
                                    constr(3) is the cut-off radius for
                                    estimating the coordination
                                    constr(4) is a smoothing parameter

                       'distance' : atoms indices object of the
                                    constraint, as they appear in
                                    the 'ATOMIC_POSITION' CARD

'planar_angle', 'torsional_angle' : atoms indices object of the
                                    constraint, as they appear in the
                                    'ATOMIC_POSITION' CARD (beware the
                                    order)

                   'bennett_proj' : constr(1) is the index of the atom
                                    whose position is constrained.
                                    constr(2:4) are the three coordinates
                                    of the vector that specifies the
                                    constraint direction.
                  
constr_target REAL
Target for the constrain ( angles are specified in degrees ).
This variable is optional.
                     

Card: OCCUPATIONS

Optional card, used only if occupations = 'from_input', ignored otherwise !

Syntax:

OCCUPATIONS
 f_inp1(1)   f_inp1(2)   . . .  f_inp1(nbnd) 
[    f_inp2(1)   f_inp2(2)   . . .  f_inp2(nbnd)    ]

Description of items:


f_inp1 REAL
Occupations of individual states (MAX 10 PER ROW).
For spin-polarized calculations, these are majority spin states.
                  
f_inp2 REAL
Occupations of minority spin states (MAX 10 PER ROW)
To be specified only for spin-polarized calculations.
                     
This file has been created by helpdoc utility.
espresso-5.0.2/PW/tools/0000755000700200004540000000000012053440276014051 5ustar marsamoscmespresso-5.0.2/PW/tools/mv.awk0000644000700200004540000000074712053145627015211 0ustar marsamoscmBEGIN {nr=0; nat=0; nline=0; nframe=0; label=""; print} { if ($3=="atoms/cell" && nr==0) {nat=$5 }; if ($1=="lattice" && $2=="parameter" && nr==0 ) {alat= $5*0.529177} if ($1=="Search") {label="BFGS Search" }; if ($1=="Final" && $2=="estimate") {label=$0}; if ($1=="ATOMIC_POSITIONS") {nframe=nframe+1; nr=NR; nline=nat; print "frame ",nframe,label ; print " "}; if (NR-nr>=1 && NR-nr<=nline) print $2*alat,$3*alat,$4*alat if (NR-nr==nline) {print " ";nline=0;label=""} } espresso-5.0.2/PW/tools/band_plot.f900000644000700200004540000000252712053145627016343 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! program prog implicit none real, allocatable :: e(:,:) real, allocatable :: k(:,:) real, dimension(3) ::k0,a integer nbnd, nbnd2, nks, i, n, j real ef, dk character(len=32):: input, output namelist/plot/ nbnd, nks write(6,*) 'Number of bands to be plotted:' read(5,*) nbnd2 write(6,*) 'Fermi level (eV):' read(5,*) ef write(6,*) 'Name of the bands file (produced by band.x):' read(5,*) input write(6,*) 'Name of the output file:' read(5,*) output open(10,file=input, status='old') open(11,file=output, status='unknown') read(10,plot) if (nbnd2.gt.nbnd) nbnd2=nbnd allocate(e(nks,nbnd)) allocate(k(nks,3)) do i=1,nks read(10,*)(k(i,j),j=1,3) write(6,9020)(k(i,j),j=1,3) read(10,*) (e(i,n),n=1,nbnd) write(6,9030) (e(i,n),n=1,nbnd) 9020 format (14x,3f7.4) 9030 format (8f9.4) enddo do j=1,nbnd2 dk=0.0 do i=1,nks if (i.eq.1) then k0=k(i,:) endif a=k(i,:)-k0 dk=dk+sqrt(dot_product(a,a)) write(11,*)dk,e(i,j)-ef k0=k(i,:) enddo write(11,*) enddo stop end program prog espresso-5.0.2/PW/tools/cif2qe.sh0000755000700200004540000001677012053145627015576 0ustar marsamoscm#!/bin/bash # # CIF to Quantum Espresso format converter # Version 0.2 # Date: 06 Nov 2012 # # Copyright (C) 2012 Carlo Nervi # This file is distributed under the terms of the # GNU General Public License. See the file `License' # in the root directory of the present distribution, # or http://www.gnu.org/copyleft/gpl.txt . # if [ $# != 1 ]; then printf "Usage: cif2qe.sh File (.cif extension not required!)\n Requires File.cif\n" exit fi if [ ! -f $1.cif ]; then echo "Error. Cannot find file $1.cif" exit fi awk -v FILE="$1" ' BEGIN { bohr = 0.52917720859 nfield=split("H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr " \ "Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb " \ "Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf " \ "Db Sg Bh Hs Mt", AtomSymb, " ") split("1.0079 4.0026 6.941 9.0122 10.811 12.0107 14.0067 15.9994 18.9984 20.1797 22.9897 24.305 26.9815 28.0855 30.9738 32.065 35.453 " \ "39.948 39.0983 40.078 44.9559 47.867 50.9415 51.9961 54.938 55.845 58.9332 58.6934 63.546 65.39 69.723 72.64 74.9216 78.96 79.904 " \ "83.8 85.4678 87.62 88.9059 91.224 92.9064 95.94 98 101.07 102.906 106.42 107.868 112.411 114.818 118.71 121.76 127.6 126.904 131.293 " \ "132.905 137.327 138.905 140.116 140.908 144.24 145 150.36 151.964 157.25 158.925 162.5 164.93 167.259 168.934 173.04 174.967 178.49 " \ "180.948 183.84 186.207 190.23 192.217 195.078 196.966 200.59 204.383 207.2 208.98 209 210 222 223 226 227 232.038 231.036 238.029 " \ "237 244 243 247 247 251 252 257 258 259 262 261 262 266 264 277 268", AtomMass, " ") for (i=1; i<=nfield; i++) Atoms[AtomSymb[i]] = AtomMass[i] # #Tolerance for recognize identical atoms generate by symmetry # tol=0.0001 # # Separation (in A) to generate K Points # separation=0.04 totatom=0 } function eval(cmd,expression) { expression = "awk \047BEGIN{printf \"%19.15f\", " cmd " }\047" expression |& getline l close(expression) return l } function norma(pat, repl, str) { gsub(pat, repl, str) gsub(/--/, "+", str) val=eval(str) while (val < 0.) val+=1. while (val >= 1.) val-=1. return val } function abs(numero) { if (numero < 0) numero=-numero; return numero } # Salta il commento /^\#/ { next } /loop_/ { loop_switch=1; next } /^_/ { jvar=0 if (loop_switch==1) { Var[ivar]=$1 ivar++ Num_Var=ivar if ($1 ~ /^_symmetry/) nsymm=0 if ($1 ~ /^_atom/) natom=0 } else { ivar=0 loop_switch=0 Var2[$1]=$2 } } /^[^_]/ { ivar=0 if (loop_switch==1 || loop_switch==2) { loop_switch=2 for (i=0; i [step_low step_high]"; exit; # fi # user=$( whoami ) # file=$1 fileout=/tmp/$file.dat # if [ -n $3 ]; then lra=$2; hra=$3; else lra="1"; hra="*"; fi # # while [ 1 -le 2 ]; do # awk 'BEGIN{ start = 1 } \ ( $1 == "!" ) { if ( start == 1 ) { epot0 = $5 } \ epot = $5 - epot0 } \ /kinetic energy/ { if ( start == 1 ) { ekin0 = $5 } \ ekin = $5 - ekin0; getline ; \ temp = $3; getline ; \ if ( start == 1 ) { etot0 = $6 } \ etot = $6 - etot0 ; \ if ( start == 1 ) { start = 0 } \ printf "%3i %16.10f %16.10f %16.10f %8.3f\n", \ ++it, etot, ekin, epot, temp }' $file > $fileout # kill $( ps -u $user | grep gnuplot_x11 | awk '{print $1}' ) &> /dev/null # #for term in X11 post; do # cat << EOF | gnuplot -persist #set term $term #set out '/tmp/$file.ps' set da s l set xra [$lra:$hra] set lmargin 10 set origin 0,0; set size 1,1 set multiplot set origin 0,0; set size 1,0.3 plot '$fileout' u 1:2 t "Etot" unset xlabel set origin 0,0.3; set size 1,0.4 plot '$fileout' u 1:2 t "Etot", '$fileout' u 1:3 t "Ekin", \ '$fileout' u 1:4 t "Epot" set origin 0,0.7; set size 1,0.3 set title 'MD - $file' plot '$fileout' u 1:5 t "T" set nomultiplot #reread EOF # #done # # sleep 5 # # done espresso-5.0.2/PW/tools/pwo2xsf.sh0000755000700200004540000003100312053145627016017 0ustar marsamoscm#!/bin/sh ############################################################################# # Author: # # ------ # # Anton Kokalj Email: Tone.Kokalj@ijs.si # # # # Copyright (c) 2004 by Anton Kokalj # ############################################################################# #------------------------------------------------------------------------ # This file is distributed under the terms of the # GNU General Public License. See the file `License' # in the root directory of the present distribution, # or http://www.gnu.org/copyleft/gpl.txt . #------------------------------------------------------------------------ # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # # Purpose: PWscf(v2.0 or latter)-output--to--XSF conversion # Usage: pwo2xsf [options] pw-output-file # # Last major rewrite by Tone Kokalj on Mon Feb 9 12:48:10 CET 2004 # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cat > pwo2xsfUsage.$$ <2) printf "%d.%d%d\n", vv[0],vv[1],vv[2]; else printf "%d.%d\n", vv[0], vv[1]; }' } pwoCheckPWSCFVersion() { # # Usage: $0 option file # # Purpose: if PWSCF version < 1.3 execute the old pwo2xsf_old.sh # script and exit version=`pwoGetVersion $input` result=`echo "$version < 1.3"|bc -l` if test $result -eq 1 ; then if test -f $scriptdir/pwo2xsf_old.sh ; then # execute pwo2xsf_old.sh $scriptdir/pwo2xsf_old.sh $1 $2 pwoExit $? else echo "ERROR: PWscf output generated by version < 1.3 !!!" pwoExit 1 fi fi } # ------------------------------------------------------------------------ # Function: pwoOptCoor # Extract: OPTIMIZED or LATEST coordinates # Perform: read PW-output file and print the XSF file according to # specified flags # ------------------------------------------------------------------------ pwoOptCoor() { #set -x pwoUsage "$# -lt 1" \ "$0 --latestcoor|-lc [pw-output-file] or $0 --optcoor|-oc [pw-output-file]" option=$1 case $1 in --latestcoor|-lc) type=LATEST; shift;; --optcoor|-oc) type=OPTIMIZED; shift;; esac if test $# -eq 0 ; then input=pw.$$ cat - >> $input else input=$1 fi pwoCheckPWSCFVersion $option $input if test $type = "OPTIMIZED" ; then # Check for the presence of CELL_PARAMETERS record # and/or: # Check also for the PWSCF-v.1.3.0 which uses the # "Final estimate of positions" record if test \( "`grep CELL_PARAMETERS $input`" = "" \) -a \( "`grep 'Final estimate of positions' $input`" = "" \) ; then echo "ERROR: OPTIMIZED coordinates does not exists" pwoExit 1 fi fi cat "$input" | awk -v t=$type ' function CheckAtoms() { if (nat < 1) { print "ERROR: no atoms found"; error_status=1; exit 1; } } function CrysToCartCoor(i,v,a,b,c) { # Crystal --> Cartesian (ANGSTROM units) conversion x[i] = v[0,0]*a + v[1,0]*b + v[2,0]*c; y[i] = v[0,1]*a + v[1,1]*b + v[2,1]*c; z[i] = v[0,2]*a + v[1,2]*b + v[2,2]*c; } function make_error(message,status) { printf "ERROR: %s\n", message; error_status=status; exit status; } BEGIN { nat=0; opt_coor_found=0; error_status=0; bohr=0.529177 } /celldm\(1\)=/ { a0=$2*bohr; scale=a0; l_scale=a0; } /number of atoms/ { nat=$NF; } /crystal axes:/ { # read the lattice-vectors for (i=0; i<3; i++) { getline; for (j=4; j<7; j++) v[i,j-4] = $j * a0; } } $1 == "CELL_PARAMETERS" { # read the lattice-vectors (type=OPTIMIZED) opt_coor_found=1; ff=l_scale; if ( $2 ~ /alat/ ) ff=a0; else if ( $2 ~ /angstrom/ ) ff=1.0; else if ( $2 ~ /bohr/ ) ff=bohr; CheckAtoms(); for (i=0; i<3; i++) { getline; if (NF != 3) make_error("error reading CELL_PARAMETERS records",1); for (j=1; j<4; j++) { v[i,j-1] = ff * $j; } } } $1 == "ATOMIC_POSITIONS" { crystal_coor=0; if ( $2 ~ /alat/ ) scale=a0; else if ( $2 ~ /angstrom/ ) scale=1.0; else if ( $2 ~ /bohr/ ) scale=bohr; else if ( $2 ~ /crystal/ ) { scale=1.0; crystal_coor=1; } CheckAtoms(); for(i=0; i> $input else input=$1 fi pwoCheckPWSCFVersion $option $input ncoor=`egrep "ATOMIC_POSITIONS" $input | wc | awk '{print $1}'` ncoor=`expr $ncoor + 1`; # add another step for initial coordinates nvec=`egrep "CELL_PARAMETERS" $input | wc | awk '{print $1}'` cat "$input" | awk \ -v ncoor=$ncoor \ -v nvec=$nvec \ -v onlyinit=$only_init ' function PrintPrimVec(is_vc,ith,vec) { if (!is_vc) printf "PRIMVEC\n"; else printf "PRIMVEC %d\n",ith; printf " %15.10f %15.10f %15.10f\n", v[0,0], v[0,1], v[0,2]; printf " %15.10f %15.10f %15.10f\n", v[1,0], v[1,1], v[1,2]; printf " %15.10f %15.10f %15.10f\n", v[2,0], v[2,1], v[2,2]; } function PrintPrimCoor(onlyinit,istep, nat, atom, x, y, z, fx, fy, fz) { if (onlyinit) { print " PRIMCOORD"; } else { print " PRIMCOORD", istep; } print nat, 1; for(i=0; i Cartesian (ANGSTROM units) conversion x[i] = v[0,0]*a + v[1,0]*b + v[2,0]*c; y[i] = v[0,1]*a + v[1,1]*b + v[2,1]*c; z[i] = v[0,2]*a + v[1,2]*b + v[2,2]*c; } function make_error(message,status) { printf "ERROR: %s\n", message; error_status=status; exit status; } BEGIN { bohr=0.529177; istep=1; error_status=0; if (nvec>1 || (nvec==1 && ncoor==2)) { is_vc=1; # variable-cell } else { is_vc=0; } } /celldm\(1\)=/ { a0=$2*bohr; scale=a0; l_scale=a0; } /number of atoms/ { nat=$NF; } /crystal axes:/ { # read the lattice-vectors for (i=0; i<3; i++) { getline; for (j=4; j<7; j++) v[i,j-4] = $j * a0; } if (istep==1) { printf "CRYSTAL\n"; PrintPrimVec(is_vc,istep,v); } } /Cartesian axes/ { # read INITIAL coordinates getline; getline; getline; if (istep == 1) GetInitCoor(nat, a0, atom, x, y, z); } $1 == "CELL_PARAMETERS" { # read the lattice-vectors (type=LATEST and OPTIMIZED) ff=l_scale; if ( $2 ~ /alat/ ) ff=a0; else if ( $2 ~ /angstrom/ ) ff=1.0; else if ( $2 ~ /bohr/ ) ff=bohr; for (i=0; i<3; i++) { getline; if (NF != 3) make_error("error reading CELL_PARAMETERS records",1); for (j=1; j<4; j++) { v[i,j-1] = ff * $j; } } if (is_vc) PrintPrimVec(is_vc,istep,v); } $1 == "ATOMIC_POSITIONS" { # read atomic positions crystal_coor=0; if ( $2 ~ /alat/ ) scale=a0; else if ( $2 ~ /angstrom/ ) scale=1.0; else if ( $2 ~ /bohr/ ) scale=bohr; else if ( $2 ~ /crystal/ ) { scale=1.0; crystal_coor=1; } for(i=0; i xsf.$$ if test $only_init -eq 0 ; then # Assign the number of ANIMSTEPS here. The reason is that the # output file (queue runs) is the result of several job runs, then # some of them might be terminated on the "wrong" place, and the # initial ANIMSTEPS might be wrong. The most secure way is to extract the # sequential digit from the last "PRIMCOORD id" record. #set -x nsteps=`grep PRIMCOORD xsf.$$ | wc | awk '{print $1}'` echo "ANIMSTEPS $nsteps" fi cat xsf.$$ } ####################################################################### #### MAIN ### ####################################################################### scriptdir=$XCRYSDEN_TOPDIR/scripts; # take advantage of XCRYSDEN if it exists AWK=`type awk` if test "$AWK" = ""; then echo "ERROR: awk program not found" pwoExit 1 fi if [ $# -eq 0 ]; then cat pwo2xsfUsage.$$ pwoExit 1 fi case $1 in --inicoor|-ic) pwoAnimCoor $@;; --latestcoor|-lc) pwoOptCoor $@;; --optcoor|-oc) pwoOptCoor $@;; --animcoor|-ac|--animxsf|-a) pwoAnimCoor $@;; *) cat pwo2xsfUsage.$$; pwoExit 1;; esac pwoExit 0 espresso-5.0.2/PW/tools/pwi2xsf.f900000644000700200004540000004316312053145627016004 0ustar marsamoscm! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Tone: File adapted from pwi2xsf.f file of XCRYSDEN distribution !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ------------------------------------------------------------------------ program pwi2xsf ! Reads pre-procesed (with pwi2xsf.sh) PW-input file ! and converts to XSF format file ! ! This program reads the NEWLY formated preprocessed-PW.X input ! ! Usage: pwi2xsf.sh < PW-preprocessed file ! ------------------------------------------------------------------------ ! implicit none ! ! maxtyp : maximum number of types of atoms ! maxatom: maximum number of atoms ! maximage: maximum number of images ! integer & & maxtyp, & & maxatom, & & maximage, & & ALAT_UNIT, & & BOHR_UNIT, & & ANGSTROM_UNIT, & & CRYSTAL_UNIT ! real*8 & & bohr ! parameter ( & & maxtyp = 100, & & maxatom = 10000, & & maximage = 50, & & bohr = 0.5291772108d0, & & ALAT_UNIT = 1, & & BOHR_UNIT = 2, & & ANGSTROM_UNIT = 3, & & CRYSTAL_UNIT = 4 ) ! integer & & ibrav, &! label for Bravais lattice & nat, &! number of atoms & ntyp, &! number of pseudopotentials & num_of_images, &! number of NEB images & inp_num_of_images, &! number of NEB images in the input & atomic_posunit ! length-unit of atomic positions ! real*8 & & celldm(6), &! cell parameters & omega, &! cell volume (not used) & alat, &! lattice parameter & a, b, c, cosab, cosac, cosbc ! lattice parameters ! character & & calculation*80, &! type of calculation & line*120 ! line of input character*3 & & atm(maxatom,maximage) ! atomic symbols ! integer & & ityp, &! type of PP & ounit, &! output unit & i, j, ipol, &! dummies & inat, iim, iim_old, &! counters & len, string_length ! length of string ! real*8 & & x,y,z, &! Cartesian coordinates & weights & w1,w2, &! linear interpolation weights & dx, dy, dz, &! auxiliary & tau(3,maxatom,maximage),&! atomic coordinates & pv( 3,3 ), &! lattice vectors (PRIMITIVE) & cv( 3,3 ), &! lattice vectors (CONVENTIONAL) & old_total_dist, old_dist(maximage),&! old(=input) inter-image distances & new_total_dist, new_dist ! new(=output) inter-image distances ! logical & & ltaucry, matches, last_image ! namelist/system/ & & ibrav, nat, celldm, a, b, c, cosab, cosac, cosbc, & & calculation, num_of_images ! ounit=6 ! ! set default values calculation = 'scf' num_of_images = 1 nat = 0 ibrav = 0 celldm(1) = 0.0d0 a = 0.0D0 b = 0.0D0 c = 0.0D0 cosab = 0.0D0 cosac = 0.0D0 cosbc = 0.0D0 ! ! read namelist system ! read (5,system) if ( nat.eq.0 ) then print *,'ERROR: while reading INPUT !!!' STOP endif ! ! was lattice specified in terms of A,B,C,... if ( celldm(1) .eq. 0.0D0 .AND. a .ne. 0.0D0 ) THEN if ( ibrav .eq. 0 ) ibrav = 14 celldm(1) = a / bohr celldm(2) = b / a celldm(3) = c / a celldm(4) = cosab celldm(5) = cosac celldm(6) = cosbc else if ( celldm(1) .ne. 0.0D0 .AND. a .ne. 0.0D0 ) THEN print *, 'ERROR: do not specify both celldm and a,b,c !!!' endif ! ! read the rest of the input ! 990 continue read(5,'(a120)',end=999) line len = string_length(line) ! ! ! CELL_PARAMETERS ! if ( line(1:15) .eq. 'CELL_PARAMETERS' ) then read (5,*) ((pv(i,j),i=1,3),j=1,3) do j=1,3 do i=1,3 cv(i,j) = pv(i,j) end do end do ! ! ATOMIC_POSITIONS ! elseif ( line(1:16) .eq. 'ATOMIC_POSITIONS' ) then ! find out the length-unit line = line(17:len) len = string_length(line) atomic_posunit = ALAT_UNIT if (len.gt.0 ) then if ( matches('ALAT',line) ) then atomic_posunit = ALAT_UNIT elseif ( matches('BOHR',line) ) then atomic_posunit = BOHR_UNIT elseif ( matches('CRYSTAL',line) ) then atomic_posunit = CRYSTAL_UNIT elseif ( matches('ANGSTROM',line) ) then atomic_posunit = ANGSTROM_UNIT endif endif ! ! ! read atoms ! if ( (calculation(1:3) .ne. 'NEB') .and. & & (calculation(1:3) .ne. 'SMD') ) then iim = 1 call read_atoms(nat,atm(1,1),tau(1,1,1)) else ! ! path calculation (NEB or SMD): read atoms ! iim = 0 last_image = .false. do while(.not.last_image) iim = iim + 1 read (5,'(a120)') line ! line: first_image if ( matches('LAST_IMAGE',line) ) last_image = .true. call read_atoms(nat,atm(1,iim),tau(1,1,iim)) enddo endif endif inp_num_of_images = iim goto 990 ! 999 continue ! if ( celldm(1).eq.0.0d0 ) then print *,'ERROR while reading INPUT: celldm(1)==0.0d0 !!!' STOP endif ! ! if ( ibrav.ne.0 ) then call latgen( ibrav, celldm, & & pv(1,1), pv(1,2), pv(1,3), & & cv(1,1), cv(1,2), cv(1,3), omega ) do j=1,3 do i=1,3 pv(i,j) = pv(i,j)/celldm(1) end do end do call latgen_conventional(ibrav, celldm, & & pv(1,1), pv(1,2), pv(1,3), & & cv(1,1), cv(1,2), cv(1,3)) endif ! alat = bohr*celldm(1) call write_XSF_header (num_of_images,alat, pv, cv, nat, ounit) ! ! coordinates to ANGSTROMs ! do iim=1,inp_num_of_images do inat=1,nat if ( atomic_posunit .eq. BOHR_UNIT ) then tau(1,inat,iim) = bohr * tau(1,inat,iim) tau(2,inat,iim) = bohr * tau(2,inat,iim) tau(3,inat,iim) = bohr * tau(3,inat,iim) ! elseif ( atomic_posunit .eq. ALAT_UNIT ) then tau(1,inat,iim) = alat * tau(1,inat,iim) tau(2,inat,iim) = alat * tau(2,inat,iim) tau(3,inat,iim) = alat * tau(3,inat,iim) ! elseif ( atomic_posunit .eq. CRYSTAL_UNIT ) then call cryst_to_cart(1, tau(1,inat,iim), pv, 1) endif enddo enddo ! IF ( num_of_images .lt. 2 ) then ! write atoms for non-PATH calculation do inat=1,nat write(ounit,'(a3,2x,3f15.10)') atm(inat,1), & & tau(1,inat,1), tau(2,inat,1), tau(3,inat,1) enddo ! ELSE ! ! calculate intermediate images for PATH calculation ! old_total_dist = 0.0d0 old_dist(1) = 0.0d0 do iim = 2, inp_num_of_images old_dist(iim) = 0.0 do inat=1,nat dx = tau(1,inat,iim) - tau(1,inat,iim-1) dy = tau(2,inat,iim) - tau(2,inat,iim-1) dz = tau(3,inat,iim) - tau(3,inat,iim-1) old_dist(iim) = old_dist(iim) + dx*dx + dy*dy + dz*dz enddo old_dist(iim) = sqrt( old_dist(iim) ) ! old_total_dist = old_total_dist + old_dist(iim) old_dist(iim) = old_total_dist enddo ! new_dist = old_total_dist / dble(num_of_images-1) ! ! -------------------------------------------------- ! perform INTERPOLATION ! -------------------------------------------------- ! new_total_dist = 0.0 do iim=1,num_of_images-1 do iim_old=1,inp_num_of_images-1 if ( new_total_dist .ge. old_dist(iim_old) & & .and. & & new_total_dist .lt. old_dist(iim_old+1) + 1d-10 ) & & then ! w1 = ( old_dist(iim_old+1) - new_total_dist ) & & / & & ( old_dist(iim_old+1) - old_dist(iim_old) ) w2 = 1.0d0 - w1 ! write(ounit,'('' PRIMCOORD '',i5)') iim write(ounit,*) nat, 1 ! do inat=1,nat x = w1*tau(1,inat,iim_old)+w2*tau(1,inat,iim_old+1) y = w1*tau(2,inat,iim_old)+w2*tau(2,inat,iim_old+1) z = w1*tau(3,inat,iim_old)+w2*tau(3,inat,iim_old+1) write(ounit,'(a3,2x,3f15.10)') & & atm(inat,iim_old), x, y, z enddo goto 11 endif enddo 11 continue new_total_dist = new_total_dist + new_dist enddo ! ! print last image write(ounit,'('' PRIMCOORD '',i5)') iim write(ounit,*) nat, 1 do inat=1,nat x = tau(1,inat,inp_num_of_images) y = tau(2,inat,inp_num_of_images) z = tau(3,inat,inp_num_of_images) write(ounit,'(a3,2x,3f15.10)') & & atm(inat,inp_num_of_images), x, y, z enddo endif END ! ! ! !--------------------------------------------------------------------- subroutine latgen_conventional & & ( ibrav, celldm, p1, p2, p3, c1, c2, c3 ) ! Generate convetional lattice !--------------------------------------------------------------------- ! ! Conventional crystallographic vectors c1, c2, and c3. ! See "latgen" for the meaning of variables ! implicit none ! ! First the input variables ! real*8 & & celldm( 6 ), &! input : the dimensions of the lattice & p1( 3 ), &! input : first lattice vector (PRIMITIVE) & p2( 3 ), &! input : second lattice vector & p3( 3 ), &! input : third lattice vector & c1( 3 ), &! output: first lattice vector(CONVENTIONAL) & c2( 3 ), &! output: second lattice vector & c3( 3 ) ! output: third lattice vector integer & & ibrav ! input: the index of the Bravais lattice ! integer i ! ! do i = 1, 3 c1(i) =0.d0 c2(i) =0.d0 c3(i) =0.d0 end do ! if ( ibrav .eq. 2 .or. ibrav .eq.3 ) then ! ! fcc and bcc lattice ! c1( 1 ) = 1.0d0 c2( 2 ) = 1.0d0 c3( 3 ) = 1.0d0 ! else if ( ibrav .eq. 7 ) then ! ! body centered tetragonal lattice ! if ( celldm( 1 ) .le. 0.d0 .or. celldm( 3 ) .le. 0.d0 ) & & call errore( 'latgen', 'wrong celldm', 7 ) c1(1) = 1.0d0 c2(2) = 1.0d0 c3(3) = celldm(3) ! else if ( ibrav .eq. 10 ) then ! ! All face centered orthorombic lattice ! if ( celldm( 1 ) .le. 0.d0 .or. celldm( 2 ) .le. 0.d0 & & .or. celldm( 3 ) .le. 0.d0 ) & & call errore( 'latgen', 'wrong celldm', 10 ) c1(1) = 1.0d0 c2(2) = celldm(2) c3(3) = celldm(3) ! elseif ( ibrav .eq. 11 ) then ! ! Body centered orthorombic lattice ! if ( celldm( 1 ) .le. 0.d0 .or. celldm( 2 ) .le. 0.d0 & & .or. celldm( 3 ) .le. 0.d0 ) & & call errore( 'latgen', 'wrong celldm', 11 ) c1(1) = 1.0d0 c2(2) = celldm(2) c3(3) = celldm(3) else ! ********** ! all other cases : just copy p vectors to c vectors !!! ! ********** do i = 1, 3 c1( i ) = p1( i ) c2( i ) = p2( i ) c3( i ) = p3( i ) enddo end if ! return end ! ! ! ------------------------------------------------------------------------ subroutine read_atoms(nat,atm,coor) ! read atomic coordinates ! ------------------------------------------------------------------------ implicit none integer & & nat, &! number of atoms & ipol,inat,len, &! counters & string_length ! integer-function character & & line*120 ! line of input character*3 & & atm(*) ! atomic symbols real*8 & & coor(3,*) ! do inat=1,nat 10 continue read (5,'(a120)') line len = string_length(line) ! if (len.eq.0) then ! an empty line, read again goto 10 endif ! read (line,*) atm(inat),(coor(ipol,inat),ipol=1,3) enddo return end ! ! ! ------------------------------------------------------------------------ subroutine write_XSF_header (num_of_images,alat, p, c, nat, ounit) ! writes the header for XSF structure file ! ------------------------------------------------------------------------ real*8 & & alat, &! lattice parameter & p(3,3), c(3,3), &! lattive vectors (PRIMITIVE & CONVETIONAL) & p1(3,3), c1(3,3) ! lattive vectors in ANGSTROMS unit integer & & nat, &! number of atoms & num_of_images, &! number of NEB images & ounit ! output unit integer & & i, j ! dummies ! do i=1,3 do j=1,3 p1(i,j) = alat*p(i,j) c1(i,j) = alat*c(i,j) enddo enddo ! if (num_of_images .gt. 1) & & write(ounit,'('' ANIMSTEPS '',i5)') num_of_images ! write(ounit,'('' CRYSTAL'')') write(ounit,'(/,'' PRIMVEC'')') write(ounit,'(3(f15.10,2x,f15.10,2x,f15.10,/))') & & ((p1(i,j),i=1,3),j=1,3) write(ounit,'('' CONVVEC'')') write(ounit,'(3(f15.10,2x,f15.10,2x,f15.10,/))') & & ((c1(i,j),i=1,3),j=1,3) if (num_of_images .eq. 1) then write(ounit,'('' PRIMCOORD'')') write(ounit,*) nat, 1 endif return end ! ! ---------------------------------------------------------------- INTEGER function string_length(word) ! trims the string from both sides and returns its trimmed length ! ---------------------------------------------------------------- CHARACTER word*(*) word = adjustl(word) string_length = len_trim(word) RETURN END ! ! ! ----------------------------------------------------------------------- logical function matches (str1, str2) ! .true. if str1 is contained in str2, .false. otherwise ! This function is taken from PWscf package (www.pwscf.org). ! ----------------------------------------------------------------------- implicit none character str1*(*), str2*(*) integer len1, len2, l ! len1 = len(str1) len2 = len(str2) do l = 1, len2 - len1 + 1 if ( str1(1:len1) .eq. str2(l:l + len1 - 1) ) then matches = .true. return endif enddo matches = .false. return end espresso-5.0.2/PW/tools/ev_xml.f900000644000700200004540000001013712053145627015667 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE ev_xml ! ! This module contains routines to write the information obtained by the ! ev.x program in an xml file. ! USE iotk_module ! USE kinds, ONLY : DP USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: write_evdata_xml INTEGER :: iunout ! CONTAINS !----------------------------------------------------------------------- SUBROUTINE write_evdata_xml & (npt,fac,v0,etot,efit,istat,par,npar,emin,chisq,filout) !----------------------------------------------------------------------- ! USE constants, ONLY : ry_kbar, bohr_radius_angs IMPLICIT NONE INTEGER, INTENT(in) :: npt, istat, npar REAL(DP), INTENT(in):: v0(npt), etot(npt), efit(npt), emin, chisq, fac REAL(DP), INTENT(in):: par(npar) CHARACTER(len=256), INTENT(IN) :: filout ! REAL(DP) :: p(npt), volume(2), a0(2), alldata(6,npt) INTEGER :: i, ierr CHARACTER(len=256) :: filename REAL(DP), EXTERNAL :: birch, keane IF (filout/=' ') THEN filename = TRIM(filout) // '.xml' ELSE filename = 'ev.xml' ENDIF IF ( ionode ) THEN ! CALL iotk_free_unit( iunout, ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'write_evdata_xml', 'no free units to write ', ierr ) ! IF ( ionode ) THEN ! ! ... open XML descriptor ! ierr=0 CALL iotk_open_write( iunout, FILE = TRIM( filename ), & BINARY = .FALSE., IERR = ierr ) ENDIF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) CALL errore( 'write_evdata_xml', 'error opening the xml file ', ierr ) IF (ionode) THEN CALL iotk_write_begin(iunout, "EQUATIONS_OF_STATE" ) IF (istat==1) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Birch 1st order") ELSEIF (istat==2) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Birch 2nd order") ELSEIF (istat==3) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Keane") ELSEIF (istat==4) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Murnaghan") ENDIF CALL iotk_write_dat(iunout, "CHI_SQUARE", chisq) CALL iotk_write_end(iunout, "EQUATIONS_OF_STATE" ) IF (istat==1 .or. istat==2) THEN DO i=1,npt p(i)=birch(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ELSE DO i=1,npt p(i)=keane(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ENDIF DO i=1,npt alldata (1,i) = v0(i) alldata (2,i) = etot(i) alldata (3,i) = efit(i) alldata (4,i) = etot(i) - efit(i) alldata (5,i) = p(i) alldata (6,i) = etot(i) + p(i) * v0(i) / ry_kbar ENDDO CALL iotk_write_begin(iunout, "EQUATIONS_PARAMETERS" ) volume(1)=par(1) volume(2)=par(1)*bohr_radius_angs**3 CALL iotk_write_dat(iunout, "EQUILIBRIUM_VOLUME_AU_A", volume(:), COLUMNS=2 ) CALL iotk_write_dat(iunout, "BULK_MODULUS_KBAR", par(2)) CALL iotk_write_dat(iunout, "DERIVATIVE_BULK_MODULUS", par(3)) CALL iotk_write_dat(iunout, "SECOND_DERIVATIVE_BULK_MODULUS", par(4)) CALL iotk_write_dat(iunout, "MINIMUM_ENERGY_RY", emin) CALL iotk_write_dat(iunout, "CELL_FACTOR", fac) IF (fac /= 0.0_DP) THEN a0(1) = (par(1)/fac)**(1d0/3d0) a0(2) = (par(1)/fac)**(1d0/3d0) * bohr_radius_angs CALL iotk_write_dat(iunout, "CELL_PARAMETER_AU_A", a0, COLUMNS=2 ) ENDIF CALL iotk_write_end(iunout, "EQUATIONS_PARAMETERS" ) CALL iotk_write_begin(iunout, "FIT_CHECK" ) CALL iotk_write_dat(iunout, "NUMBER_OF_DATA", npt ) CALL iotk_write_dat(iunout, "VOL_ENE_EFIT_DELTA_P_GIBBS", & alldata(:,:), COLUMNS=6 ) CALL iotk_write_end(iunout, "FIT_CHECK" ) CALL iotk_close_write( iunout ) ENDIF RETURN END SUBROUTINE write_evdata_xml ! END MODULE ev_xml espresso-5.0.2/PW/tools/Makefile0000644000700200004540000000322412053145627015514 0ustar marsamoscm# Makefile for tools include ../../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules \ $(MOD_FLAG)../src $(MOD_FLAG). PWOBJS = ../src/libpw.a QEMODS = ../../Modules/libqemod.a TLDEPS= bindir mods libs pw LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a all : tldeps band_plot.x dist.x ev.x kpoints.x \ pwi2xsf.x bands_FS.x kvecs_FS.x band_plot.x : band_plot.o $(LD) $(LDFLAGS) -o $@ band_plot.o - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) dist.x : dist.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ dist.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) ev.x : ev.o ev_xml.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ ev.o ev_xml.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) kpoints.x : kpoints.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ kpoints.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) pwi2xsf.x : pwi2xsf.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pwi2xsf.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) # Isaev bands_FS.x : bands_FS.o $(LD) $(LDFLAGS) -o $@ bands_FS.o $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) kvecs_FS.x : kvecs_FS.o $(LD) $(LDFLAGS) -o $@ kvecs_FS.o $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) tldeps: test -n "$(TLDEPS)" && ( cd ../.. ; $(MAKE) $(MFLAGS) $(TLDEPS) || exit 1) || : clean : - /bin/rm -f pwi2xsf pwi2xsf_old *.x *.o *~ *.F90 *.mod *.d *.i *.L include make.depend espresso-5.0.2/PW/tools/qeout2axsf.sh0000755000700200004540000000640612053145627016521 0ustar marsamoscm#!/bin/bash --noprofile ################################################################################ ## Copyright (C) 2006 Carlo Sbraccia. ## ## This file is distributed under the terms ## ## of the GNU General Public License. ## ## See http://www.gnu.org/copyleft/gpl.txt . ## ## ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ## ## EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ## ## MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ## ## NONINFRINGEMENT. IN NO EVENT SHALL CARLO SBRACCIA BE LIABLE FOR ANY ## ## CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ## ## TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ## ## SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## ################################################################################ # if [ "$1" == "" ]; then echo "input file missing"; exit fi # filename=$1 # alat=$( grep 'alat\|a_0' ${filename} | \ head -n 1 | awk -F = '{print $2}' | awk '{print $1}' ) # if grep "PWSCF" ${filename} &> /dev/null ; then code="PW"; fi if grep "CP:" ${filename} &> /dev/null ; then code="CP"; fi # string=$( cat ${filename} | awk -v code=${code} -v alat=${alat} ' \ BEGIN{ \ iter = 0 ; \ done = 0 ; \ b2a = 0.529177 ; \ if ( code == "PW" ) { runt = b2a*alat } \ if ( code == "CP" ) { runt = b2a } \ } \ { \ if ( $1 == "ATOMIC_POSITIONS" ){ \ if ( match( toupper( $0 ), "ANGSTROM" ) ){ runt = 1.0 } ; \ if ( match( toupper( $0 ), "BOHR" ) ){ runt = b2a } ; \ iter++ ; \ if ( done == 0 ){ \ nat = 0 ; \ getline ; \ while ( NF == 4 || NF == 7 ){ ++nat ; getline } \ done = 1 ; \ } \ } \ } \ END{ printf "%d %d %10.8f", nat, iter, runt } ' ) # nat=$( echo ${string} | awk '{print $1}' ) niter=$( echo ${string} | awk '{print $2}' ) runt=$( echo ${string} | awk '{print $3}' ) # cat ${filename} | awk -v runt=${runt} -v nat=${nat} \ -v alat=${alat} -v niter=${niter} ' \ BEGIN{ \ iter = 0 ; \ b2a = 0.529177 ; \ printf "ANIMSTEPS %5d\n", niter ; \ printf "CRYSTAL\n" ; \ printf "PRIMVEC\n" ; \ printf "%14.10f %14.10f %14.10f\n", alat*b2a, 0.0, 0.0 ; \ printf "%14.10f %14.10f %14.10f\n", 0.0, alat*b2a, 0.0 ; \ printf "%14.10f %14.10f %14.10f\n", 0.0, 0.0, alat*b2a ; \ } \ { \ if ( $1 == "ATOMIC_POSITIONS" ){ \ printf "PRIMCOORD %5d\n", ++iter ; \ printf "%5d 1\n", nat ; \ for ( i = 1; i <= nat; ++i ){ \ getline ; \ printf "%3s %14.9f%14.9f%14.9f\n", $1, $2*runt, $3*runt, $4*runt ; \ } \ } \ } ' > ${filename}.axsf # printf "\nalat = %12.8f Bohr\n" ${alat} printf "\npositions in alat coordinates :\n\n" # tail -n ${nat} ${filename}.axsf | awk -v alat=${alat} ' \ BEGIN{ \ angstrom2alat = 1.0 / 0.529177 / alat ; \ } \ { \ printf "%3s %14.9f%14.9f%14.9f\n", $1, $2*angstrom2alat, \ $3*angstrom2alat, \ $4*angstrom2alat ; \ } ' espresso-5.0.2/PW/tools/pwi2xsf.sh0000755000700200004540000000636712053145627016030 0ustar marsamoscm#!/bin/sh ############################################################################# # Author: # # ------ # # Anton Kokalj Email: Tone.Kokalj@ijs.si # # # # Copyright (c) 2004 by Anton Kokalj # ############################################################################# #------------------------------------------------------------------------ # This file is distributed under the terms of the # GNU General Public License. See the file `License' # in the root directory of the present distribution, # or http://www.gnu.org/copyleft/gpl.txt . #------------------------------------------------------------------------ # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # # pwi2xsf.sh: PW-input to XSF converison # # Usage: pwi2xsf [-r] pw-input-file # # Last major rewrite by Tone Kokalj on Mon Feb 9 12:48:10 CET 2004 # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if [ "$#" -lt 1 ]; then echo " Usage: pwi2xsf.sh [-r] pw-input Option for PWscf version < 1.2: -r ... one must specify i.e. ityp->nat conversion, and the corresponding data are writen to file nuclei.charges. The -r flag deletes this file. " exit 1 fi r=0 if [ "$1" = "-r" ]; then r=1 shift fi # # check if we have OLD or NEW PW.X input format # new_format1=`grep 'ATOMIC_POSITIONS' $1` new_format2=`grep -i '&system' $1` if [ "$new_format1" != "" -a "$new_format2" != "" ]; then # we have NEW PW.X input format # cat $1 | awk 'BEGIN {RS=",";} {print $0}' | awk ' BEGIN { calculation=""; num_of_images=""; nml_end=0; nml_end_string=""; } toupper($0) ~ /&SYSTEM/ { print; } /=/ { if ( toupper($1) ~ /^IBRAV($|=)|^CELLDM\([1-6]\)($|=)|^NAT($|=)|^A($|=)|^B($|=)|^C($|=)|^COSAB($|=)|^COSAC($|=)|^COSBC($|=)/ ) { print; } if ( toupper($1) ~ /^CALCULATION($|=)/ ) { calculation=toupper($0); } if ( toupper($1) ~ /^NUM_OF_IMAGES($|=)/ ) { num_of_images=toupper($0); } } /ATOMIC_POSITIONS|CELL_PARAMETERS/ { if ( !nml_end) { # first finish the namelist nml_end=1; if (calculation != "") print calculation; if (num_of_images != "") print num_of_images; print nml_end_string; } # now print the current record print_line=1; print toupper($0); next; } toupper($0) ~ /&END|^\/|^ \// { nml_end_string=$0; } /a*/ { if ( print_line == 1 ) { print toupper($0); } }'> pw.$$ else # we have OLD PW.X input format echo " ------------------------------------------------------------------------ ERROR: This is NOT a PW-input or an input for an older PW version ------------------------------------------------------------------------ " exit 1 fi # # execute $PWI2XSF fortran program and print the XSF file # if test -f $XCRYSDEN_TOPDIR/bin/$PWI2XSF ; then $XCRYSDEN_TOPDIR/bin/pwi2xsf < pw.$$ | tee pwi2xsf.xsf_out else pwi2xsf.x < pw.$$ | tee pwi2xsf.xsf_out fi rm -f pw.$$ if [ "$r" -eq 1 ]; then if [ -f nuclei.charges ]; then rm nuclei.charges; fi fi exit 0 espresso-5.0.2/PW/tools/kpoints.f900000644000700200004540000001702712053145627016071 0ustar marsamoscm! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- program special_points !-----======================-------------------------------------------- ! ! calculates special points for any structure, ! the default definition for the mesh is a shift of 1/(2n_i) ! where the length of b_i is equal to 1 !_______________________________________________________________________ ! use kinds, only: dp use cell_base, only: at, bg use symm_base, only: set_sym_bl, s, nrot implicit none integer, parameter :: nptx=20000 character(len=30) :: filout character(len=1) :: answer real(dp) :: celldm(6), xk(3,nptx), xkw(nptx), omega integer :: k(3,nptx), kw(nptx), ieq(nptx), i,j,l, n1,n2,n3 integer :: ibrav, nmax(3), nshift(3), nstart(3),n,n6,nf,nk,nptot logical :: aflag, sflag ! write(*,1) 1 format(/,5x,'***************************************************',/,& 5x,'* *',/,& 5x,'* Welcome to the special points world! *',/,& 5x,'*________________________________________________ *',/,& 5x,'* 1 = cubic p (sc ) 8 = orthor p (so ) *',/,& 5x,'* 2 = cubic f (fcc) 9 = orthor base-cent. *',/,& 5x,'* 3 = cubic i (bcc) 10 = orthor face-cent. *',/,& 5x,'* 4 = hex & trig p 11 = orthor body-cent. *',/,& 5x,'* 5 = trigonal r 12 = monoclinic p *',/,& 5x,'* 6 = tetrag p (st ) 13 = monocl base-cent. *',/,& 5x,'* 7 = tetrag i (bct) 14 = triclinic p *',/,& 5x,'***************************************************',/ ) ! !.....default values ! celldm(1)=1.d0 do i=1,3 nshift(i)=0 enddo ! write(*,'(5x,a,$)') 'bravais lattice >> ' read(*,*) ibrav ! write(*,'(5x,a,$)') 'filout [mesh_k] >> ' read(*,'(a)') filout if (filout.eq.' ') filout='mesh_k' open(unit=1,file=filout,status='unknown') open(unit=2,file='info',status='unknown') ! if(ibrav.eq.4 .or. ibrav.gt.5) then write(*,'(5x,a,$)') 'enter celldm(3) >> ' read(*,*) celldm(3) end if if(ibrav.ge.8) then write(*,'(5x,a,$)') 'enter celldm(2) >> ' read(*,*) celldm(2) end if if(ibrav.eq.5 .or. ibrav.ge.12) then write(*,'(5x,a,$)') 'enter celldm(4) >> ' read(*,*) celldm(4) end if if(ibrav.eq.14) then write(*,'(5x,a)') 'enter celldm(5) >> cos(ac)' write(*,'(5x,a,$)') 'enter celldm(5) >> ' read(*,*) celldm(5) write(*,'(5x,a)') 'enter celldm(6) >> cos(ab)' write(*,'(5x,a,$)') 'enter celldm(6) >> ' read(*,*) celldm(6) end if ! write(*,'(5x,a,$)') 'mesh: n1 n2 n3 >> ' read(*,*) nmax nptot=nmax(1)*nmax(2)*nmax(3) if(nptot.gt.nptx) then write(*,'(5x,i6)') nptx call errore('kpoints','nptx too small for this mesh',1) endif write(*,'(5x,a,$)') 'mesh: k1 k2 k3 (0 no shift, 1 shifted) >> ' read(*,*) nshift(1), nshift(2), nshift(3) ! write(*,'(5x,a,$)') 'write all k? [f] >> ' read(*,'(a1)') answer aflag= answer.eq.'t'.or.answer.eq.'T' .or. & answer.eq.'y'.or.answer.eq.'Y' .or. & answer.eq.'1' ! call latgen(ibrav,celldm,at(1,1),at(1,2),at(1,3),omega) ! ! normalize at to celldm(1) ( a0 for cubic lattices ) ! do i = 1, 3 at( i, 1 ) = at( i, 1 ) / celldm( 1 ) at( i, 2 ) = at( i, 2 ) / celldm( 1 ) at( i, 3 ) = at( i, 3 ) / celldm( 1 ) enddo ! call recips(at(1,1),at(1,2),at(1,3),bg(1,1),bg(1,2),bg(1,3)) ! write(2,'(2x,''crystal axis: ''/3(2x,''('',3f7.4,'') ''/) )') & ((at(i,j), i=1,3), j=1,3) write(2,'(2x,''reciprocal axis: ''/3(2x,''('',3f7.4,'') ''/) )') & ((bg(i,j), i=1,3), j=1,3) write(2,*)' Omega (in a^3 units) = ',omega ! !....................................................................... ! call set_sym_bl ( ) ! write(2,'(//,1x,i3,2x,a19)') nrot,'symmetry operations' do n6=0,(nrot-1)/6 nf=min(nrot-6*n6,6) write(2,'(1x)') do i=1,3 write(2,'(6(3i3,2x))') ((s(i,j,n6*6+n), j=1,3), n=1,nf) end do end do ! sflag=.false. do i=1,3 ! shifted grid if(nshift(i).eq.1) then nshift(i)=2 nmax(i)=nshift(i)*nmax(i) nstart(i)=1 sflag=.true. else ! unshifted grid nstart(i)=0 nshift(i)=1 end if enddo ! n=0 do n3=nstart(3),nmax(3)-1,nshift(3) do n2=nstart(2),nmax(2)-1,nshift(2) do n1=nstart(1),nmax(1)-1,nshift(1) n=n+1 k(1,n)=n1 k(2,n)=n2 k(3,n)=n3 kw(n)=1 ieq(n)=0 call check(n,k,kw,ieq,s,nrot,nmax) enddo enddo enddo ! nk=0 write(2,'(/)') do j=1,n if(kw(j).gt.0.or.aflag) then nk=nk+1 xkw(nk)=kw(j) do l=1,3 xk(l,nk)=0.d0 do i=1,3 xk(l,nk)=xk(l,nk)+k(i,j)*bg(l,i)/nmax(i) enddo end do write(2,2) j,k(1,j),k(2,j),k(3,j),kw(j),ieq(j) 2 format(' k(',i3,')=( ',i2,' ',i2,' ',i2,' ) --- weight=', & i3,' |folds in point #',i3) endif enddo ! write(*,'(/5x,a,$)') '# of k-points == ' write(*,'(i5,a5,i5)') nk,' of ',n write(*,'(2x)') ! write(1,'(i5)') nk do j=1,nk if(aflag.and.kw(j).eq.0) then write(1,'(i5,1x,3f11.7,f7.2,i4)') j,(xk(l,j),l=1,3),xkw(j),ieq(j) else write(1,'(i5,1x,3f11.7,f7.2)') j,(xk(l,j),l=1,3),xkw(j) end if end do ! if(.not.sflag.and.kw(1).ne.1) then write(*,'(5x,a)') '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,'(5x,a)') '!the considered mesh has not the correct symmetry!!' write(*,'(5x,a/)') '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' endif ! close(unit=1) close(unit=2) ! end program special_points ! !----------------------------------------------------------------------- subroutine check(n,k,kw,ieq,s,nrot,nmax) !----------------------------------------------------------------------- ! integer k(3,n),kw(n), s(3,3,nrot),kr(3),ieq(n),nmax(3) logical flag ! irot=1 flag=.true. do while(irot.le.nrot.and.flag) kr(1)=0 kr(2)=0 kr(3)=0 call ruotaijk ( s(1,1,irot),k(1,n),k(2,n),k(3,n),kr(1),kr(2),kr(3) ) do j=1,3 do while(kr(j).ge.nmax(j)) kr(j)=kr(j)-nmax(j) enddo do while(kr(j).le.-1) kr(j)=kr(j)+nmax(j) enddo enddo np=1 do while(flag.and.np.le.n-1) if( kr(1).eq.k(1,np) .and. & kr(2).eq.k(2,np) .and. & kr(3).eq.k(3,np) ) then kw(n)=0 naux =np do while(kw(naux).eq.0) naux=ieq(naux) enddo ieq(n)=naux kw(naux)=kw(naux)+1 flag=.false. endif np=np+1 enddo irot=irot+1 enddo ! return end subroutine check ! !----------------------------------------------------------------------- subroutine ruotaijk(s,i,j,k,ri,rj,rk) !----------------------------------------------------------------------- ! implicit real*8 (a-h, o-z) integer s(3,3),i,j,k,ri,rj,rk ! ri=s(1,1)*i+s(1,2)*j+s(1,3)*k rj=s(2,1)*i+s(2,2)*j+s(2,3)*k rk=s(3,1)*i+s(3,2)*j+s(3,3)*k ! return end subroutine ruotaijk espresso-5.0.2/PW/tools/bands_FS.f900000644000700200004540000002505112053145627016055 0ustar marsamoscm! ! Copyright (C) 2005 Eyvaz Isaev ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Program is designed to map the Fermi Surface using XCrySDen ! See www.xcrysden.org ! ! Eyvaz Isaev, 2004-2009 ! eyvaz_isaev@yahoo.com, isaev@ifm.liu.se ! ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys, Russia ! ! Department of Physics, Chemistry, and Biology (IFM), Linkoping University, Sweden, ! ! Division of Materials Theory, Institute of Physics and Materials Sciene, ! Uppsala University, Sweden ! ! Description: ! The program reads output files for band structure calculations produced by PWscf. ! Input_FS file contains reciprocal basis vectors, the Fermi level, grids numbers, and ! System name extracted from self-consistent output file (See Input_FS). ! The output file(s) Bands_FS.bxsf (non spin-polarized) or Bands_FS_up.bxsf and Bands_FS_down.bxsf ! (spin-polarized) is (are) written so that it can be used directly ! in conjunction with XCrySDen to visualize the Fermi Surface. ! ! Spin-polarized calculations are allowed ! !----------------------------------------------------------------------- PROGRAM bands_FS !----------------------------------------------------------------------- ! implicit real*8(a-h,o-z) parameter (max_kpoints=100000, max_bands=500) real, allocatable :: e_up(:,:),e_down(:,:) real :: x(3),y(3),z(3) real, allocatable :: valence(:) integer :: n_kpoints, nbands integer :: KS_number character*100 line character*24 nkpt character*33 n_bands character*38 Band_structure character*13 kpoint character*80 sysname character*22 Magnetic character*9 blank character*16 KS_states logical lsda ! nkpt=' number of k points=' n_bands='nbnd' Band_structure=' End of band structure calculation' kpoint=' k =' blank=' ' KS_states='Kohn-Sham states' ! Magnetic=' Starting magnetic' lsda=.false. ! ! Read input information ! open(12,file='input_FS') read(12,*) n_start, n_last read(12,*) E_fermi read(12,*) sysname read(12,*) na,nb, nc read(12,*) x(1),x(2),x(3) read(12,*) y(1),y(2),y(3) read(12,*) z(1),z(2),z(3) print*,'E_Fermi=', E_Fermi x0=0. y0=0. z0=0. close(12) do while( .true. ) read(5,'(a)',end=110) line if(line(16:31).eq.KS_states) then goto 110 endif enddo 110 continue Backspace(5) read(5,'(36x,I9)') KS_number print*, 'KS_number==', KS_number if(n_last.gt.KS_number) then write(6,'("n_last > number of Kohn-Sham states")') write(6,'("Wrong input: you have specifed more bands than number of Kohn-Sham states")') stop endif print*, 'LSDA====', lsda rewind(5) do while( .true. ) read(5,'(a)',end=111) line if(line(1:22).eq.Magnetic) then lsda=.true. goto 111 endif enddo 111 continue print*, 'LSDA====', lsda rewind(5) do while( .true. ) read(5,'(a)') line if(line(1:24).eq.nkpt) then backspace(5) read(line,'(24x,i6)') n_kpoints goto 101 endif enddo 101 if(n_kpoints.gt.max_kpoints) then stop 'Toooooooo many k-points' endif ! End of band structure calculation do while( .true. ) read(5,'(a)',end=102) line if(line(1:38).eq.Band_Structure) then goto 102 endif enddo 102 continue print*, ' lsda==', lsda ! Find bands number, nbands ! read(5,*) read(5,*) read(5,*) if(lsda.eqv..true.) then read(5,*) read(5,*) read(5,*) endif nlines=0 3 read(5,'(a)',end=4) line if(line(1:11).ne.blank) then nlines=nlines+1 goto 3 else goto 4 endif 4 continue print*,'nlines==', nlines do k=1,nlines+1 backspace(5) enddo nbands=0 do k=1,nlines read(5,'(a)') line do j=1,8 ! ! 9 is due to output format for e(n,k): 2X, 8f9.4 ! if(line((3+9*(j-1)):(3+9*j)).ne.blank) then nbands=nbands+1 endif enddo enddo print*, 'nbands==', nbands if(lsda.eqv..true.) then ! begin for lsda calculations n_kpoints=n_kpoints/2 print*, 'kpoints=', n_kpoints allocate (e_up(n_kpoints,nbands)) allocate (e_down(n_kpoints,nbands)) ! back nlines+1 positions (number of eigenvalues lines plus one blank line) ! do k=1,nlines+1 backspace(5) enddo ! ! back 3 positions for k-points ! backspace(5) backspace(5) backspace(5) ! Now ready to start ! read(5,*) ! ! Reading spin-up energies ! do k1=1,n_kpoints read(5,*) read(5,*) read(5,*) read(5,*,end=99) (e_up(k1,j),j=1,nbands) enddo 99 continue read(5,*) read(5,*) read(5,*) ! Reading Spin-down bands do k1=1,n_kpoints read(5,*) read(5,*) read(5,*) read(5,*,end=96) (e_down(k1,j),j=1,nbands) enddo 96 continue open(11,file='Bands_FS_up.bxsf',form='formatted') ! Write header file here write(11, '(" BEGIN_INFO")') write(11, '(" #")') write(11, '(" # this is a Band-XCRYSDEN-Structure-File")') write(11, '(" # aimed at Visualization of Fermi Surface")') write(11, '(" #")') write(11, '(" # Case: ",A)') Sysname write(11, '(" #")') write(11, '(" Fermi Energy: ", f12.4)') E_Fermi write(11, '(" END_INFO")') write(11, '(" BEGIN_BLOCK_BANDGRID_3D")') write(11, '(" band_energies")') write(11, '(" BANDGRID_3D_BANDS")') write(11, '(I5)') n_last-n_start+1 write(11, '(3I5)') na+1, nb+1, nc+1 write(11, '(3f10.6)') x0, y0, z0 write(11, '(3f10.6)') x(1), x(2), x(3) write(11, '(3f10.6)') y(1), y(2), y(3) write(11, '(3f10.6)') z(1), z(2), z(3) do i=n_start, n_last write(11, '("BAND:", i4)') i write(11, '(6f10.4)') (e_up(j,i),j=1,n_kpoints) enddo ! Write 2 last lines write(11, '(" END_BANDGRID_3D")') write(11, '(" END_BLOCK_BANDGRID_3D")') close(11) open(11,file='Bands_FS_down.bxsf',form='formatted') ! Write header file here write(11, '(" BEGIN_INFO")') write(11, '(" #")') write(11, '(" # this is a Band-XCRYSDEN-Structure-File")') write(11, '(" # aimed at Visualization of Fermi Surface")') write(11, '(" #")') write(11, '(" # Case: ",A)') Sysname write(11, '(" #")') write(11, '(" Fermi Energy: ", f12.4)') E_Fermi write(11, '(" END_INFO")') write(11, '(" BEGIN_BLOCK_BANDGRID_3D")') write(11, '(" band_energies")') write(11, '(" BANDGRID_3D_BANDS")') write(11, '(I5)') n_last-n_start+1 write(11, '(3I5)') na+1, nb+1, nc+1 write(11, '(3f10.6)') x0, y0, z0 write(11, '(3f10.6)') x(1), x(2), x(3) write(11, '(3f10.6)') y(1), y(2), y(3) write(11, '(3f10.6)') z(1), z(2), z(3) do i=n_start, n_last write(11, '("BAND:", i4)') i write(11, '(6f10.4)') (e_down(j,i),j=1,n_kpoints) enddo ! Write 2 last lines write(11, '(" END_BANDGRID_3D")') write(11, '(" END_BLOCK_BANDGRID_3D")') close(11) deallocate (e_up) deallocate (e_down) print*,'SPIN-POLARIZED CASE: FINISHED!!!!' !!! end for LSDA calculations else ! end of lsda section ! allocate (e_up(n_kpoints,nbands)) ! back nlines+1 positions (number of eigenvalues lines plus one blank line) ! print*, 'nlines==', nlines do k=1,nlines+1 backspace(5) enddo ! ! back 3 positions for k-points ! backspace(5) backspace(5) backspace(5) print*, 'n_kpoints===', n_kpoints do k1=1,n_kpoints read(5,*) read(5,*) read(5,*) read(5,*,end=98) (e_up(k1,j),j=1,nbands) ! read(5,'(2x,8f9.4)',end=98) (e_up(k1,j),j=1,nbands) enddo 98 continue open(11,file='Bands_FS.bxsf',form='formatted') ! Write header file here write(11, '(" BEGIN_INFO")') write(11, '(" #")') write(11, '(" # this is a Band-XCRYSDEN-Structure-File")') write(11, '(" # aimed at Visualization of Fermi Surface")') write(11, '(" #")') write(11, '(" # Case: ",A)') Sysname write(11, '(" #")') write(11, '(" Fermi Energy: ", f12.4)') E_Fermi write(11, '(" END_INFO")') write(11, '(" BEGIN_BLOCK_BANDGRID_3D")') write(11, '(" band_energies")') write(11, '(" BANDGRID_3D_BANDS")') write(11, '(I5)') n_last-n_start+1 write(11, '(3I5)') na+1, nb+1, nc+1 write(11, '(3f10.6)') x0, y0, z0 write(11, '(3f10.6)') x(1), x(2), x(3) write(11, '(3f10.6)') y(1), y(2), y(3) write(11, '(3f10.6)') z(1), z(2), z(3) do i=n_start, n_last write(11, '("BAND:", i4)') i write(11, '(6f10.4)') (e_up(j,i),j=1,n_kpoints) enddo ! Write 2 last lines write(11, '(" END_BANDGRID_3D")') write(11, '(" END_BLOCK_BANDGRID_3D")') close(11) deallocate (e_up) print*,'NON-SPIN-POLARIZED CASE: FINISHED!!!!' endif stop END PROGRAM bands_FS espresso-5.0.2/PW/tools/kvecs_FS.f0000644000700200004540000000335212053145627015730 0ustar marsamoscm! ! Copyright (C) 2005 Eyvaz Isaev ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Used for k-points generation for the Fermi Surface construction ! Eyvaz Isaev, 2005 ! eyvaz_isaev@yahoo.com, e.isaev@misis.ru ! Theoretical Physics Department ! Moscow State Institute of Steel and Alloys !----------------------------------------------------------------------- PROGRAM kvecs_FS !----------------------------------------------------------------------- implicit real*8(a-h,o-z) dimension x(3),y(3),z(3), rijk(100,100,100,3) character*80 sysname ! read(5,*) x(1),x(2),x(3) read(5,*) y(1),y(2),y(3) read(5,*) z(1),z(2),z(3) read(5,*) na,nb,nc read(5,*) sysname ! fna=dble(na) fnb=dble(nb) fnc=dble(nc) jj=0 DO I=0,na I1=i+1 DO J=0,nb j1=j+1 DO K=0,nc K1=k+1 Rijk(I1,j1,k1,1)=I*X(1)/fna + J*Y(1)/fnb + K*Z(1)/fnc Rijk(I1,j1,k1,2)=I*X(2)/fna + J*Y(2)/fnb + K*Z(2)/fnc Rijk(I1,j1,k1,3)=I*X(3)/fna + J*Y(3)/fnb + K*Z(3)/fnc ! jj=jj+1 END DO END DO END DO ! ! 3 format('i1,j1,k1=',3i4,' Rijk=',3f9.3) ! print *,'jj=',jj ! wk=1.0 open(9,file='kvecs_'//sysname) write(9,'(i6)') jj ! DO I=1,na+1 DO J=1,nb+1 DO K=1,nc+1 write(9,'(3f12.6,f6.2)') rijk(i,j,k,1),rijk(i,j,k,2), & rijk(i,j,k,3), wk END DO END DO END DO close (9) stop end espresso-5.0.2/PW/tools/bs.awk0000644000700200004540000000375712053145627015177 0ustar marsamoscmBEGIN {nr=0; nrs=0; nat=0; nstep=0; print "* XBS file created by pawk.bs "; print ""; print "" print "* the following are AUXILIARY lines defining the bonds as " print "* bonds spec1 spec2 dmin dmax bondthickness grayscale (white==1.0)" print "* " print "* bonds S H 0.1 0.6 0.0500 1.0" print "" } { if ($3=="atoms/cell" && nr==0) {nat=$5}; if ($1=="lattice" && $2=="parameter" && nr==0 ) {alat= $5*0.529177} if ($1=="a(1)" && nr==0) \ {print"* it might be useful to duplicate as follows" ; print "* dup ",$4*alat,$5*alat,$6*alat} if ($1=="a(2)" && nr==0) {print "* dup ",$4*alat,$5*alat,$6*alat} if ($1=="a(3)" && nr==0) {print "* dup ",$4*alat,$5*alat,$6*alat; print " "} if ($1=="atomic" && $2=="species" && nrs==0 ) \ {nrs=NR+nat+1 print "* the following are MANDATORY lines defining the atomic species as" print "* spec name radius grayscale (white==1.0) " print "* "} if (NR<=nrs) {if (NF==0) {print ""; nrs=-1} if (NF>0 && $1!="atomic") \ printf ( "spec %2s %6.2f %4.2f \n", \ $1, 0.4, 1.0/$2 ) } if ($1=="site" && nr==0 ) \ {nr=NR print "* the following are MANDATORY lines defining the atomic positions" print "* atom name x y z dummyinteger" print "* "} if (NR-nr>0 && NR-nr<=nat && nr>0) \ printf ( "atom %2s %10.7f %10.7f %10.7f %3d \n", \ $2, $(NF-3)*alat, $(NF-2)*alat, $(NF-1)*alat, $1) } END{ print "" #print "* the following are AUXILIARY lines defining the bonds as " #print "* bonds spec1 spec2 dmin dmax bondthickness grayscale (white==1.0)" #print "* " #print "* bonds S H 0.1 0.6 0.0500 1.0" print "" print "tmat 0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000" print "" print "dist 50.000" print "inc 1.000" print "scale 50.000" print "rfac 1.00" print "bfac 1.00" print "pos -10.000 -100.00" print "switches 1 0 1 0 0 1 1 0 0" } espresso-5.0.2/PW/tools/ev.f900000644000700200004540000003474112053145627015016 0ustar marsamoscm! ! Copyright (C) 2003-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Contributions by Eyvaz Isaev ! Dept of Physics, Chemistry and Biology (IFM), Linkoping University, Sweden ! ! a) Input: Add lattice parameters units: au or Ang ! b) Output: More info printed out ! c) Output: Additional output file with E+PV ! PROGRAM ev ! ! fit of E(v) to an equation of state (EOS) ! ! Interactive input: ! au or Ang ! structure ! equation of state ! input data file ! output data file ! ! Input data file format for cubic systems: ! a0(1) Etot(1) ! ... ! a0(n) Etot(n) ! where a0 is the lattice parameter (a.u. or Ang) ! Input data file format for noncubic (e.g. hexagonal) systems: ! V0(1) Etot(1) ! ... ! V0(n) Etot(n) ! where V0 is the unit-cell volume (a.u.^3 or Ang^3) ! e.g. for an hexagonal cell, ! V0(i) = sqrt(3)/2 * a^2 * c unit-cell volume ! Etot(i)= min Etot(c) for the given volume V0(i) ! Etot in atomic (Rydberg) units ! ! Output data file format for cubic systems: ! # a0=... a.u., K0=... kbar, dk0=..., d2k0=... kbar^-1, Emin=... Ry ! # a0=... Ang, K0=... GPa , V0=... (a.u.)^3, V0 = Ang^3 ! a0(1) Etot(1) Efit(1) Etot(1)-Efit(1) Pfit(1) Enth(1) ! ... ! a0(n) Etot(n) Efit(n) Etot(n)-Efit(n) Pfit(n) Enth(n) ! Output data file format for noncubic systems: ! # V0=...(a.u.)^3, K0=... kbar, dk0=..., d2k0=... kbar^-1, Emin=... Ry ! # V0=...Ang^3, K0=... GPa ! V0(1) Etot(1) Efit(1) Etot(1)-Efit(1) Pfit(1) Enth(1) ! ... ! V0(n) Etot(n) Efit(n) Etot(n)-Efit(n) Pfit(n) Enth(n) ! where ! a0(i), V0(i), Etot(i) as in input ! Efit(i) is the fitted value from the EOS ! Pfit(i) is the corresponding pressure from the EOS (GPa) ! Enth(i)=Efit(i)+Pfit(i)*V0(i) is the enthalpy (Ry) !! USE kinds, ONLY: DP USE constants, ONLY: bohr_radius_angs, ry_kbar USE ev_xml, ONLY : write_evdata_xml USE mp, ONLY : mp_start USE mp_global, ONLY : mp_global_end, nproc, mpime IMPLICIT NONE INTEGER, PARAMETER:: nmaxpar=4, nmaxpt=100, nseek=10000, nmin=4 INTEGER :: npar,npt,istat,ios,gid CHARACTER :: bravais*3, au_unit*3, filin*256 REAL(DP) :: par(nmaxpar), deltapar(nmaxpar), parmin(nmaxpar), & parmax(nmaxpar), v0(nmaxpt), etot(nmaxpt), efit(nmaxpt), & fac, emin, chisq, a REAL(DP), PARAMETER :: gpa_kbar = 10.0_dp LOGICAL :: in_angstrom CHARACTER(LEN=256) :: fileout ! CALL mp_start( nproc, mpime, gid ) ! IF ( mpime == 0 ) THEN PRINT '(5x,"Lattice parameter or Volume are in (au, Ang) > ",$)' READ '(a)', au_unit in_angstrom = au_unit=='Ang' .or. au_unit=='ANG' .or. & au_unit=='ang' IF (in_angstrom) PRINT '(5x,"Assuming Angstrom")' PRINT '(5x,"Enter type of bravais lattice (fcc, bcc, sc, hex) > ",$)' READ '(a)',bravais ! IF(bravais=='fcc'.or.bravais=='FCC') THEN fac = 0.25d0 ELSEIF(bravais=='bcc'.or.bravais=='BCC') THEN fac = 0.50d0 ELSEIF(bravais=='sc'.or.bravais=='SC') THEN fac = 1.0d0 ELSEIF(bravais=='hex'.or.bravais=='HEX') THEN ! fac = sqrt(3d0)/2d0 ! not used fac = 0.0_DP ! not used ELSE PRINT '(5x,"ev: unexpected lattice ",a3)', bravais STOP ENDIF ! PRINT '(5x,"Enter type of equation of state :"/& &5x,"1=birch1, 2=birch2, 3=keane, 4=murnaghan > ",$)' READ *,istat IF(istat==1 .or. istat==4) THEN npar=3 ELSEIF(istat==2 .or. istat==3) THEN npar=4 ELSE PRINT '(5x,"Unexpected eq. of state ",i2)', istat STOP ENDIF PRINT '(5x,"Input file > ",$)' READ '(a)',filin OPEN(unit=2,file=filin,status='old',form='formatted',iostat=ios) IF (ios/=0) THEN PRINT '(5x,"File ",A," cannot be opened, stopping")', trim(filin) STOP ENDIF 10 CONTINUE emin=1d10 DO npt=1,nmaxpt IF (bravais=='hex'.or.bravais=='HEX') THEN READ(2,*,err=10,END=20) v0(npt), etot(npt) IF (in_angstrom) v0(npt)=v0(npt)/bohr_radius_angs**3 ELSE READ(2,*,err=10,END=20) a, etot(npt) IF (in_angstrom) a = a/bohr_radius_angs v0 (npt) = fac*a**3 ENDIF IF(etot(npt) ",$)' READ '(a)',filout IF(filout/=' ') THEN iun=8 INQUIRE(file=filout,exist=exst) IF (exst) PRINT '(5x,"Beware: file ",A," will be overwritten")',& trim(filout) OPEN(unit=iun,file=filout,form='formatted',status='unknown', & iostat=ios) IF (ios /= 0) THEN PRINT '(5x,"Cannot open file ",A)',trim(filout) STOP ENDIF ELSE iun=6 ENDIF IF(istat==1) THEN WRITE(iun,'("# equation of state: birch 1st order. chisq = ", & & d10.4)') chisq ELSEIF(istat==2) THEN WRITE(iun,'("# equation of state: birch 3rd order. chisq = ", & & d10.4)') chisq ELSEIF(istat==3) THEN WRITE(iun,'("# equation of state: keane. chisq = ", & & d10.4)') chisq ELSEIF(istat==4) THEN WRITE(iun,'("# equation of state: murnaghan. chisq = ", & & d10.4)') chisq ENDIF IF(istat==1 .or. istat==4) par(4) = 0.0d0 IF(istat==1 .or. istat==2) THEN DO i=1,npt p(i)=birch(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ELSE DO i=1,npt p(i)=keane(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ENDIF DO i=1,npt epv(i) = etot(i) + p(i)*v0(i) / ry_kbar ENDDO IF ( fac /= 0.0_dp ) THEN ! cubic case WRITE(iun,'("# a0 =",f8.4," a.u., k0 =",i5," kbar, dk0 =", & &f6.2," d2k0 =",f7.3," emin =",f11.5)') & (par(1)/fac)**(1d0/3d0), int(par(2)), par(3), par(4), emin WRITE(iun,'("# a0 =",f9.5," Ang, k0 =", f6.1," GPa, V0 = ", & & f7.3," (a.u.)^3, V0 =", f7.3," A^3 ",/)') & & (par(1)/fac)**(1d0/3d0)*bohr_radius_angs, par(2)/gpa_kbar, & par(1), par(1)*bohr_radius_angs**3 WRITE(iun,'(73("#"))') WRITE(iun,'("# Lat.Par", 7x, "E_calc", 8x, "E_fit", 7x, & & "E_diff", 4x, "Pressure", 6x, "Enthalpy")') IF (in_angstrom) THEN WRITE(iun,'("# Ang", 13x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(73("#"))') WRITE(iun,'(f9.5,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & & ( (v0(i)/fac)**(1d0/3d0)*bohr_radius_angs, etot(i), efit(i), & & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) ELSE WRITE(iun,'("# a.u.",12x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(73("#"))') WRITE(iun,'(f9.5,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & & ( (v0(i)/fac)**(1d0/3d0), etot(i), efit(i), & & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) ENDIF ELSE ! noncubic case WRITE(iun,'("# V0 =",f8.2," a.u.^3, k0 =",i5," kbar, dk0 =", & & f6.2," d2k0 =",f7.3," emin =",f11.5)') & & par(1), int(par(2)), par(3), par(4), emin WRITE(iun,'("# V0 =",f8.2," Ang^3, k0 =",f6.1," GPa"/)') & & par(1)*bohr_radius_angs**3, par(2)/gpa_kbar WRITE(iun,'(74("#"))') WRITE(iun,'("# Vol.", 8x, "E_calc", 8x, "E_fit", 7x, & & "E_diff", 4x, "Pressure", 6x, "Enthalpy")') IF (in_angstrom) THEN WRITE(iun,'("# Ang^3", 9x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(74("#"))') WRITE(iun,'(f8.2,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & ( v0(i)*bohr_radius_angs**3, etot(i), efit(i), & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) else WRITE(iun,'("# a.u.^3",8x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(74("#"))') WRITE(iun,'(f8.2,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & ( v0(i), etot(i), efit(i), & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) end if ENDIF IF(filout/=' ') CLOSE(unit=iun) RETURN END SUBROUTINE write_results ! !----------------------------------------------------------------------- SUBROUTINE find_minimum & (npar,par,deltapar,parmin,parmax,nseek,nmin,chisq) !----------------------------------------------------------------------- ! ! Very Stupid Minimization ! USE random_numbers, ONLY : randy IMPLICIT NONE INTEGER maxpar, nseek, npar, nmin, n,j,i PARAMETER (maxpar=4) REAL(DP) par(npar), deltapar(npar), parmin(npar), parmax(npar), & parnew(maxpar), chisq, chinew, bidon ! ! various initializations ! chisq = 1.0d30 chinew= 1.0d30 CALL eqstate(npar,par,chisq) DO j = 1,nmin DO i = 1,nseek DO n = 1,npar 10 parnew(n) = par(n) + (0.5d0 - randy())*deltapar(n) IF(parnew(n)>parmax(n) .or. parnew(n) '',$)' read(5,'(a)',end=20,err=20) filename if (filename.eq.' ') then iout=6 else iout=1 open(unit=1,file=filename,form='formatted') end if ! scalef=fact*celldm(1) 30 continue if (nsp.gt.1) then do n = 1, nsp print '(''species # '',i1,'' : '', a3)', n, atm(n) end do print '(''indices of species 1 and 2 > '',$)' read(5,*,end=20,err=20) nsp1, nsp2 if (nsp1 .le. 0 .or. nsp2 .le. 0 .or. & nsp1 .gt. nspx .or. nsp2 .gt. nspx) then print '('' wrong indices (type control-D to exit)'')' go to 30 end if else nsp1 = nsp nsp2 = nsp end if atm1=atm(nsp1) atm2=atm(nsp2) print '(''min and max distance > '',$)' read(5,*,end=20,err=20) dmin, dmax if (dmin.ge.dmax.or.dmax.le.0.0) go to 20 ! !!! dmin=max(dmin,0.01) ndist=0 do na=1,nat if (atm(ityp(na)) .eq. atm1) then if (atm1.eq.atm2) then nat0=na+1 else nat0=1 end if do nb=nat0,nat if (atm(ityp(nb)) .eq. atm2) then do i=1,3 dr(i) = (tau(1,na)-tau(1,nb))*bg(1,i) + & (tau(2,na)-tau(2,nb))*bg(2,i) + & (tau(3,na)-tau(3,nb))*bg(3,i) enddo do nn1=-2,2 dn1=dr(1)-nn1 do nn2=-2,2 dn2=dr(2)-nn2 do nn3=-2,2 dn3=dr(3)-nn3 dd = scalef* sqrt( & ( dn1*at(1,1)+dn2*at(1,2)+dn3*at(1,3) )**2+ & ( dn1*at(2,1)+dn2*at(2,2)+dn3*at(2,3) )**2+ & ( dn1*at(3,1)+dn2*at(3,2)+dn3*at(3,3) )**2) if(dd.ge.dmin.and.dd.le.dmax) then ndist=ndist+1 if (ndist.gt.ndistx) & call errore ('dist','wrong ndist',1) atom1(ndist)=na atom2(ndist)=nb d(ndist)= dd if (nn1.eq.0.and.nn2.eq.0.and.nn3.eq.0) & then other_cell(ndist)=' ' else other_cell(ndist)='*' end if end if end do end do end do end if end do end if end do ! idx(1)=0.0 if (ndist.gt.0) call hpsort(ndist,d,idx) ! if (iout.eq.1) & write(iout,100) atm1, atm2, dmin,dmax do nd=1,ndist write(iout,200) atom1(idx(nd)), atom2(idx(nd)), & other_cell(idx(nd)), d(nd) end do ! go to 30 ! 20 nn = nnx print '(/''number of neighbors (max '',i1,'') > '', $)', nnx read(5,*,end=21,err=21) n nn = n if (nn.gt.nnx) call errore ('dist','too many neighbors',1) 21 continue ! ! look for nearest neighbors ! do na=1,nat !!! if (atm(ityp(na)) .eq. atm1) then ! ! ndist (.le.nnx) keep tracks of how many neighbors have been found ! ndist=0 do nd=1,nn d(nd)=100000.0 do i=1,3 drn(i,nd)=0.0 end do end do do nb=1,nat do i=1,3 dr(i)=(tau(1,na)-tau(1,nb))*bg(1,i) + & (tau(2,na)-tau(2,nb))*bg(2,i) + & (tau(3,na)-tau(3,nb))*bg(3,i) end do do nn1=-1,1 dn1=dr(1)-nn1 do nn2=-1,1 dn2=dr(2)-nn2 do nn3=-1,1 dn3=dr(3)-nn3 dd = scalef* sqrt( & ( dn1*at(1,1)+dn2*at(1,2)+dn3*at(1,3) )**2 + & ( dn1*at(2,1)+dn2*at(2,2)+dn3*at(2,3) )**2 + & ( dn1*at(3,1)+dn2*at(3,2)+dn3*at(3,3) )**2 ) do i=1,3 drv(i) = tau(i,na)-tau(i,nb) - & (nn1*at(i,1)+nn2*at(i,2)+nn3*at(i,3)) end do ! ! the "first" neighbor is the atom itself ! if (dd.gt.0.01) then ! straight insertion: look for first nn neighbors do nd=1,nn if (dd.lt.d(nd)) then ! swap d(nd) with dd temp = d(nd) d(nd)= dd dd = temp ! do the same for delta r do i=1,3 rtemp(i) = drn(i,nd) end do do i=1,3 drn(i,nd) = drv(i) end do do i=1,3 drv(i) = rtemp(i) end do ! ndist=min(ndist+1,nn) end if end do end if end do end do end do end do ! if (ndist.ne.nn) call errore ('dist','internal error',1) ! ! calculate angles with nearest neighbors ! nd=0 do nn1=1,nn do nn2=nn1+1,nn nd=nd+1 angolo(nd) = 360/(2*pi) * acos (scalef**2 * & ( drn(1,nn1)*drn(1,nn2) + & drn(2,nn1)*drn(2,nn2) + & drn(3,nn1)*drn(3,nn2) ) / d(nn1) / d(nn2) ) end do end do if (nd.ne.nn*(nn-1)/2) call errore('dist','internal err.',2) ! ! dd is the distance from the origin ! dd = sqrt(tau(1,na)**2 + tau(2,na)**2 + tau(3,na)**2)*scalef write(iout,250) atm(ityp(na)), na, (d(nn1),nn1=1,nn) write(iout,300) dd, (angolo(nn1),nn1=1,nn*(nn-1)/2) !!! end if end do ! stop ! 100 format(' species: ',a3,' - ',a3,3x,f6.2,' < D <',f6.2) 200 format(' atoms:', 2i6,a1, ' distance =',f10.5,' A') 250 format(a3,i3,': neighbors at ',4f8.3,' A') 300 format(9x,'d(center):',f6.3,' A angles :',6f8.1) ! ! end espresso-5.0.2/PW/tools/xsf2pwi.sh0000644000700200004540000000167012053145627016015 0ustar marsamoscm#!/bin/sh # Usage: xsf2pwi.sh [-c] XSF-file # # Purpose: convert XSF file to PW.X input syntax # if XSF-file is not specified read from stdin coor_only=0 if test x$1 = x"-c"; then # coor only option specified coor_only=1 shift fi if test $# -lt 1; then input=- else input=$1 fi cat $input | awk -v coor_only=$coor_only ' BEGIN { f=1.0; bohr=0.529177; } /PRIMVEC/ { if ( $2 != "bohr" ) { f = 1.0 / bohr; } if (!coor_only) { print "CELL_PARAMETERS cubic"; getline; printf " %12.6f %12.6f %12.6f\n", $1*f, $2*f, $3*f; getline; printf " %12.6f %12.6f %12.6f\n", $1*f, $2*f, $3*f; getline; printf " %12.6f %12.6f %12.6f\n", $1*f, $2*f, $3*f; print ""; } } /PRIMCOORD/ { if ( NF < 2 ) { unit="angstrom"; } else { unit=$2; } print "ATOMIC_POSITIONS ", unit; getline; nat=$1; for (i=0; i and not the two vector separately ... compute it in one single call. In this way S|psi> is inexpensive 4.3.2 Try the new "Density-Matrix-Based" diagonalization algorithm 4.3.3 image parallelization of the phonon code: irreps and q-vectors should be distributed across processors/grid computers. Could be done in the same way as for NEB? 4.3.4 PH: use charge mixing instead of potential mixing 4.3.5 D3: verify status of parallelization, clean it up if needed 4.4 Cleanup 4.4.1 Increase modularization by - collecting variables and routines acting on those variables into modules - classifying modules in a hierarchical way - avoiding as much as possible that modules depend on many other modules 4.4.2 Avoid monster routines that do too many things at the same time depending on the value of too many variables. An example: read_file 4.4.3 There is some confusion in the various initialization steps: - default values at startup - reading of the input data and copy into internal variables - reading from data file - initialization of general variables (that presumably will be written to or read from file) - initialization of variables used in a specific calculation (that may not be written to or read from the data file) All these steps are intermixed and/or replicated and it is never clear what is initialized where. Same for variable allocation: see recent GIPAW workaround for an example of allocation confusion (qnorm, cell_factor in allocate_nlpot) 4.4.4 More PW/CP merge: - f_inp, fixed occupancies - lda+U modules - makov-payne - "cellmd" module of PW and "cell_base" of CP - PW "real-space" approach / CP "small boxes" - there should be a single function or routine for periodic boundary conditions (i.e. bringing all atoms inside the unit cell) - spherical harmonics and integration routines - merge of atomic positions! currently CP uses a complex logic that is very hard to follow 4.4.6 adding/removing/modifying input variables is too complex Why are some checks on input variables performed in read_namelist, while others apparently similar are in */input.f90? 4.4.7 Units: all units should be clearly documented and printed on output (and also it should be clearly stated what the printed quantites are) 4.4.8 There should be a function calculating dj_l/dx; j_l with l=-1 should not be needed 4.4.9 too many confusing error messages are still around 4.4.10 Output should be more informative and less confused, better structured, and ready for automatic reading (.e.g by xcrysden) 4.4.11 any possibility to merge the various solve_* in PH ? 4.4.12 Replace "use pwcom" with more "use" statements 4.4.13 Move all plots requiring Fourier (or real-space) interpolation into pawplot.x, leaving in pp.x only gaussian cube and 3d xsf files. Plots of sums and differences should be performed using data files ready for plotting (gnuplot, xsf, cube; may require some tools). pp.x should be simplified a lot and intermediate format should disappear. Also: there is no reason to have dos.x together with projwfc.x 4.4.14 All allocated variables should be deallocated at the end: it makes easier to find memory leaks. Currently most variables are deallocated, but a few (mostly in ffts and in pseudopotential reading) aren't 4.4.16 add_efield must be rewritten from scratch: it is a mess beyond control 4.4.17 Some postprocessing codes could be used with command-line options instead of fortran input 4.4.18 What about transforming 'bands'/'nscf' into a postprocessing code? 4.5 Trouble-makers. inconsistencies, etc 4.5.1 Negative Charge problems (see qe-forge, H on graphene) 4.5.3 G-vector shells, especially in the variable-cell case, and the various tricks to reduce cpu by not re-calculating things that depend on |G| only (see e.g. qvan2). Maybe we should move to interpolation of all quantities and get rid of shells and tricks 4.5.4 PP: complete postprocessing in Gamma case (only average missing), and with CP data (in the latter case: when the data file does not contain the charge/potential, issue an error message saying what is missing and why instead of just crashing in iotk) 4.5.5 CP: add error check if dt^2/emass too large does not allow ortho to converge or cause energy to increase as time step evolve 4.5.6 epsilon.x should be extended at least to have the nonlocal contribution included; there should be a pointer in the documentation explaining how to make a better calculation. 4.5.7 There should be a check on the FFT grid preventing a bad choice of Nr1,Nr2,Nr3 (e.g. different Nr for axis of the same length or even worse related by symmetry): this is a frequent source of trouble with electron-phonon calculations 4.5.8 Still a few quirks with the atomic coordinate parser, if DOS characters or tabulators are present (Lorenzo) 4.5.9 Spin-polarized cases: input is clumsy, confusing, error-prone; the case occupations='from_input' is implemented as a special case, for no apparent good reason. 4.5.10 k-points in crystal IBZ should be correctly calculated also if input k-points are not in the IBZ of the lattice. It should sufficient to use brute forces instead of group theory: be expand to full BZ, remove symmetry-equivalent k. Or maybe there is a problem with grids not having the symmetry of the crystal? 5) Files and I/O 5.1 The "buffer" trick to keep wfc in memory wasn't such a great idea after all: a better approach would be to have a k-point index 5.2 Scratch files are a big mess. It should be possible to open files in places other than tmp_dir without resorting to obscure coding. This is especially serious for PH, D3 etc 5.3 There should be a clearer distinction, both in the code and in the input data, between directories to be read (and left unchanged), directories to be (over-)written, temporary files or directories 5.4 Some inconsistencies between PW and CP in the xml file format (and inconsistencies with the documentation). Also: CP should behave like PW and create a directory if not existent 5.5 Use qexml for xml file processing so that a single, easily exportable routine, is used everywhere. By reading the xml file in parallel, this should be simple (if the xml file is not accessible by all processors, we can just make a local copy with a small C routine and read it). This is also an opportunity to update the file format with 1) removal of obsolete variables, 2) addition of variables that should be present, 3) possibility to reduce the number of files and directories (hardcoded limit, more kpoints per directory, would replace and extend lkpoint_dir) 5.6 There should be a lock mechanism that prevents people from overwriting files of running processes. Should be done with care, or else every time a code crashes will make the following one crash as well! 5.7 Add rotation of restart files, similar to what is done in CPMD: "The number of distinct RESTART files generated during CPMD runs is read from the next line. The restart files are written in turn. Default is 1. If you specify e.g. 3, then the files RESTART.1, RESTART.2, RESTART.3 are used in rotation." espresso-5.0.2/environment_variables0000644000700200004540000000647312053145634016714 0ustar marsamoscm# environment_variables -- settings for running Quantum ESPRESSO examples ######## YOU MUST EDIT THIS FILE TO MATCH YOUR CONFIGURATION ######## # BIN_DIR = path of compiled executables # Usually this is $TOPDIR/bin, where $TOPDIR is the root of the # Quantum ESPRESSO source tree. # PSEUDO_DIR = path of pseudopotentials required by the examples # If you have downloaded the full distribution, they should already # be in $TOPDIR/pseudo; otherwise you may download them from the # www.quantum-espresso.org web site # TMP_DIR = temporary directory to be used by the examples # Make sure that it exists, is writable by you, and doesn't # contain any valuable data (everything there will be destroyed!). # The following should be good in many cases PREFIX=`cd ../../.. ; pwd` BIN_DIR=$PREFIX/bin PSEUDO_DIR=$PREFIX/pseudo NETWORK_PSEUDO=http://www.quantum-espresso.org/wp-content/uploads/upf_files/ # Beware: everything in $TMP_DIR will be destroyed ! TMP_DIR=$HOME/tmp # wget or curl needed if some PP has to be downloaded from web site # script wizard will surely find a better way to find what is available if test "`which curl`" = "" ; then if test "`which wget`" = "" ; then echo "wget or curl not found: will not be able to download missing PP" else WGET="wget -O" # echo "wget found" fi else WGET="curl -o" # echo "curl found" fi # To run the ESPRESSO programs on a parallel machine, you may have to # add the appropriate commands (poe, mpirun, mpprun...) and/or options # (specifying number of processors, pools...) before and after the # executable's name. That depends on how your machine is configured. # For example on an IBM SP4: # # poe pw.x -procs 4 < file.in > file.out # ^^^ PARA_PREFIX ^^^^^^^^ PARA_POSTFIX # # To run on a single processor, you can usually leave them empty. # BEWARE: most tests and examples are devised to be run serially or on # a small number of processors; do not use tests and examples to benchmark # parallelism, do not run on too many processors PARA_PREFIX="mpirun -np 8" PARA_PREFIX=" " # # available flags: # -nimage n number of images (or -nimages) # -npool n number of pools (or -npools) # -nband n number of band groups (or -nb, -nbgrp, # -nband_group ) # -ntask_groups n number of task groups (or -ntg) # -ndiag n number of processors for linear algebra # (or -nproc_ortho, -northo, # -nproc_diag) # PARA_POSTFIX=" -nband 1 -ntg 1 " # # The following variables are used for image parallelization. # (See for instance PHonon/examples/Image_example) # NB: the number of processors in PARA_IMAGE_PREFIX is the product of the # number of processors in PARA_PREFIX and the number of images in # PARA_IMAGE_POSTFIX # PARA_IMAGE_PREFIX="mpirun -np 8" PARA_IMAGE_POSTFIX="-nimage 4 $PARA_POSTFIX" # function to test the exit status of a job check_failure () { # usage: check_failure $? if test $1 != 0 then $ECHO "Error condition encountered during test: exit status = $1" $ECHO "Aborting" exit 1 fi } espresso-5.0.2/pseudo/0000755000700200004540000000000012053440273013657 5ustar marsamoscmespresso-5.0.2/pseudo/Rh.pbe-rrkjus_lb.UPF0000644000700200004540000145227512053145632017365 0ustar marsamoscm Generated using Andrea Dal Corso code (rrkj3) Author: Laura Biancchettin Generation date: before Mar 13 2001 Info: Rh 1 The Pseudo was generated with a Scalar-Relativistic Calculation 2.40000000000E+00 Local Potential cutoff radius nl pn l occ Rcut Rcut US E pseu 5P 2 1 0.00 2.50000000000 2.50000000000 0.00000000000 4D 3 2 8.00 1.80000000000 2.20000000000 0.00000000000 4D 3 2 0.00 1.80000000000 2.20000000000 0.00000000000 5S 1 0 1.00 2.40000000000 2.40000000000 0.00000000000 0 Version Number Rh Element US Ultrasoft pseudopotential F Nonlinear Core Correction SLA PW PBE PBE PBE Exchange-Correlation functional 9.00000000000 Z valence -43.22148820500 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 1491 Number of points in mesh 2 3 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 4D 2 8.00 5S 0 1.00 2.02640436790E-05 2.04677007038E-05 2.06734045157E-05 2.08811756852E-05 2.10910349898E-05 2.13030034154E-05 2.15171021591E-05 2.17333526310E-05 2.19517764562E-05 2.21723954774E-05 2.23952317566E-05 2.26203075777E-05 2.28476454483E-05 2.30772681026E-05 2.33091985028E-05 2.35434598424E-05 2.37800755475E-05 2.40190692801E-05 2.42604649395E-05 2.45042866657E-05 2.47505588410E-05 2.49993060928E-05 2.52505532960E-05 2.55043255756E-05 2.57606483090E-05 2.60195471287E-05 2.62810479248E-05 2.65451768476E-05 2.68119603102E-05 2.70814249912E-05 2.73535978372E-05 2.76285060658E-05 2.79061771681E-05 2.81866389113E-05 2.84699193419E-05 2.87560467881E-05 2.90450498630E-05 2.93369574671E-05 2.96317987914E-05 2.99296033203E-05 3.02304008344E-05 3.05342214138E-05 3.08410954408E-05 3.11510536030E-05 3.14641268966E-05 3.17803466291E-05 3.20997444227E-05 3.24223522175E-05 3.27482022745E-05 3.30773271791E-05 3.34097598439E-05 3.37455335126E-05 3.40846817628E-05 3.44272385095E-05 3.47732380088E-05 3.51227148608E-05 3.54757040136E-05 3.58322407664E-05 3.61923607731E-05 3.65561000460E-05 3.69234949594E-05 3.72945822531E-05 3.76693990361E-05 3.80479827903E-05 3.84303713746E-05 3.88166030280E-05 3.92067163741E-05 3.96007504245E-05 3.99987445829E-05 4.04007386491E-05 4.08067728229E-05 4.12168877079E-05 4.16311243161E-05 4.20495240713E-05 4.24721288141E-05 4.28989808051E-05 4.33301227299E-05 4.37655977031E-05 4.42054492726E-05 4.46497214238E-05 4.50984585843E-05 4.55517056284E-05 4.60095078809E-05 4.64719111226E-05 4.69389615941E-05 4.74107060008E-05 4.78871915177E-05 4.83684657937E-05 4.88545769565E-05 4.93455736177E-05 4.98415048775E-05 5.03424203292E-05 5.08483700649E-05 5.13594046800E-05 5.18755752784E-05 5.23969334776E-05 5.29235314137E-05 5.34554217471E-05 5.39926576672E-05 5.45352928981E-05 5.50833817037E-05 5.56369788934E-05 5.61961398273E-05 5.67609204221E-05 5.73313771562E-05 5.79075670757E-05 5.84895478003E-05 5.90773775284E-05 5.96711150434E-05 6.02708197197E-05 6.08765515282E-05 6.14883710426E-05 6.21063394453E-05 6.27305185337E-05 6.33609707262E-05 6.39977590686E-05 6.46409472403E-05 6.52905995605E-05 6.59467809951E-05 6.66095571628E-05 6.72789943417E-05 6.79551594761E-05 6.86381201830E-05 6.93279447592E-05 7.00247021877E-05 7.07284621447E-05 7.14392950068E-05 7.21572718580E-05 7.28824644965E-05 7.36149454422E-05 7.43547879438E-05 7.51020659861E-05 7.58568542977E-05 7.66192283578E-05 7.73892644047E-05 7.81670394425E-05 7.89526312494E-05 7.97461183852E-05 8.05475801992E-05 8.13570968385E-05 8.21747492552E-05 8.30006192153E-05 8.38347893065E-05 8.46773429465E-05 8.55283643913E-05 8.63879387439E-05 8.72561519623E-05 8.81330908687E-05 8.90188431576E-05 8.99134974049E-05 9.08171430770E-05 9.17298705390E-05 9.26517710645E-05 9.35829368444E-05 9.45234609959E-05 9.54734375723E-05 9.64329615720E-05 9.74021289482E-05 9.83810366185E-05 9.93697824744E-05 1.00368465391E-04 1.01377185239E-04 1.02396042889E-04 1.03425140229E-04 1.04464580169E-04 1.05514466654E-04 1.06574904673E-04 1.07646000272E-04 1.08727860561E-04 1.09820593726E-04 1.10924309042E-04 1.12039116882E-04 1.13165128727E-04 1.14302457178E-04 1.15451215971E-04 1.16611519982E-04 1.17783485242E-04 1.18967228948E-04 1.20162869476E-04 1.21370526392E-04 1.22590320461E-04 1.23822373665E-04 1.25066809209E-04 1.26323751538E-04 1.27593326348E-04 1.28875660596E-04 1.30170882519E-04 1.31479121637E-04 1.32800508778E-04 1.34135176080E-04 1.35483257011E-04 1.36844886382E-04 1.38220200354E-04 1.39609336462E-04 1.41012433620E-04 1.42429632139E-04 1.43861073740E-04 1.45306901568E-04 1.46767260207E-04 1.48242295695E-04 1.49732155535E-04 1.51236988716E-04 1.52756945722E-04 1.54292178550E-04 1.55842840724E-04 1.57409087312E-04 1.58991074940E-04 1.60588961808E-04 1.62202907706E-04 1.63833074030E-04 1.65479623798E-04 1.67142721667E-04 1.68822533946E-04 1.70519228620E-04 1.72232975359E-04 1.73963945538E-04 1.75712312258E-04 1.77478250355E-04 1.79261936424E-04 1.81063548837E-04 1.82883267756E-04 1.84721275154E-04 1.86577754833E-04 1.88452892443E-04 1.90346875500E-04 1.92259893403E-04 1.94192137455E-04 1.96143800883E-04 1.98115078854E-04 2.00106168499E-04 2.02117268927E-04 2.04148581250E-04 2.06200308601E-04 2.08272656156E-04 2.10365831149E-04 2.12480042901E-04 2.14615502834E-04 2.16772424497E-04 2.18951023582E-04 2.21151517952E-04 2.23374127659E-04 2.25619074964E-04 2.27886584365E-04 2.30176882614E-04 2.32490198743E-04 2.34826764086E-04 2.37186812301E-04 2.39570579394E-04 2.41978303746E-04 2.44410226129E-04 2.46866589739E-04 2.49347640213E-04 2.51853625659E-04 2.54384796678E-04 2.56941406388E-04 2.59523710453E-04 2.62131967106E-04 2.64766437173E-04 2.67427384105E-04 2.70115073998E-04 2.72829775624E-04 2.75571760454E-04 2.78341302691E-04 2.81138679289E-04 2.83964169990E-04 2.86818057344E-04 2.89700626743E-04 2.92612166446E-04 2.95552967610E-04 2.98523324317E-04 3.01523533604E-04 3.04553895497E-04 3.07614713033E-04 3.10706292296E-04 3.13828942448E-04 3.16982975756E-04 3.20168707625E-04 3.23386456631E-04 3.26636544553E-04 3.29919296402E-04 3.33235040455E-04 3.36584108290E-04 3.39966834816E-04 3.43383558309E-04 3.46834620444E-04 3.50320366330E-04 3.53841144545E-04 3.57397307169E-04 3.60989209821E-04 3.64617211695E-04 3.68281675595E-04 3.71982967968E-04 3.75721458949E-04 3.79497522389E-04 3.83311535897E-04 3.87163880878E-04 3.91054942569E-04 3.94985110081E-04 3.98954776433E-04 4.02964338596E-04 4.07014197527E-04 4.11104758218E-04 4.15236429727E-04 4.19409625226E-04 4.23624762036E-04 4.27882261675E-04 4.32182549897E-04 4.36526056735E-04 4.40913216542E-04 4.45344468037E-04 4.49820254351E-04 4.54341023065E-04 4.58907226260E-04 4.63519320560E-04 4.68177767179E-04 4.72883031964E-04 4.77635585446E-04 4.82435902886E-04 4.87284464317E-04 4.92181754601E-04 4.97128263470E-04 5.02124485580E-04 5.07170920558E-04 5.12268073049E-04 5.17416452775E-04 5.22616574578E-04 5.27868958473E-04 5.33174129705E-04 5.38532618793E-04 5.43944961592E-04 5.49411699341E-04 5.54933378717E-04 5.60510551894E-04 5.66143776593E-04 5.71833616141E-04 5.77580639528E-04 5.83385421460E-04 5.89248542420E-04 5.95170588725E-04 6.01152152586E-04 6.07193832162E-04 6.13296231628E-04 6.19459961228E-04 6.25685637340E-04 6.31973882537E-04 6.38325325650E-04 6.44740601827E-04 6.51220352601E-04 6.57765225953E-04 6.64375876376E-04 6.71052964940E-04 6.77797159360E-04 6.84609134061E-04 6.91489570246E-04 6.98439155964E-04 7.05458586179E-04 7.12548562841E-04 7.19709794953E-04 7.26942998645E-04 7.34248897242E-04 7.41628221341E-04 7.49081708879E-04 7.56610105213E-04 7.64214163188E-04 7.71894643216E-04 7.79652313352E-04 7.87487949369E-04 7.95402334837E-04 8.03396261201E-04 8.11470527861E-04 8.19625942250E-04 8.27863319916E-04 8.36183484604E-04 8.44587268337E-04 8.53075511501E-04 8.61649062927E-04 8.70308779977E-04 8.79055528631E-04 8.87890183570E-04 8.96813628267E-04 9.05826755075E-04 9.14930465313E-04 9.24125669359E-04 9.33413286743E-04 9.42794246234E-04 9.52269485934E-04 9.61839953377E-04 9.71506605617E-04 9.81270409327E-04 9.91132340895E-04 1.00109338652E-03 1.01115454232E-03 1.02131681442E-03 1.03158121905E-03 1.04194878267E-03 1.05242054203E-03 1.06299754432E-03 1.07368084725E-03 1.08447151916E-03 1.09537063912E-03 1.10637929706E-03 1.11749859386E-03 1.12872964144E-03 1.14007356293E-03 1.15153149273E-03 1.16310457663E-03 1.17479397196E-03 1.18660084767E-03 1.19852638445E-03 1.21057177487E-03 1.22273822348E-03 1.23502694692E-03 1.24743917409E-03 1.25997614622E-03 1.27263911701E-03 1.28542935277E-03 1.29834813254E-03 1.31139674821E-03 1.32457650464E-03 1.33788871983E-03 1.35133472500E-03 1.36491586478E-03 1.37863349727E-03 1.39248899427E-03 1.40648374133E-03 1.42061913793E-03 1.43489659763E-03 1.44931754818E-03 1.46388343170E-03 1.47859570478E-03 1.49345583866E-03 1.50846531937E-03 1.52362564787E-03 1.53893834021E-03 1.55440492766E-03 1.57002695690E-03 1.58580599014E-03 1.60174360531E-03 1.61784139617E-03 1.63410097251E-03 1.65052396032E-03 1.66711200190E-03 1.68386675606E-03 1.70078989831E-03 1.71788312096E-03 1.73514813336E-03 1.75258666201E-03 1.77020045080E-03 1.78799126110E-03 1.80596087202E-03 1.82411108053E-03 1.84244370167E-03 1.86096056872E-03 1.87966353337E-03 1.89855446594E-03 1.91763525554E-03 1.93690781027E-03 1.95637405739E-03 1.97603594354E-03 1.99589543494E-03 2.01595451754E-03 2.03621519728E-03 2.05667950023E-03 2.07734947285E-03 2.09822718214E-03 2.11931471590E-03 2.14061418290E-03 2.16212771310E-03 2.18385745787E-03 2.20580559021E-03 2.22797430495E-03 2.25036581898E-03 2.27298237146E-03 2.29582622407E-03 2.31889966122E-03 2.34220499026E-03 2.36574454176E-03 2.38952066968E-03 2.41353575167E-03 2.43779218923E-03 2.46229240805E-03 2.48703885816E-03 2.51203401423E-03 2.53728037580E-03 2.56278046751E-03 2.58853683941E-03 2.61455206715E-03 2.64082875228E-03 2.66736952248E-03 2.69417703185E-03 2.72125396118E-03 2.74860301817E-03 2.77622693775E-03 2.80412848233E-03 2.83231044211E-03 2.86077563528E-03 2.88952690841E-03 2.91856713663E-03 2.94789922400E-03 2.97752610375E-03 3.00745073859E-03 3.03767612101E-03 3.06820527358E-03 3.09904124922E-03 3.13018713158E-03 3.16164603526E-03 3.19342110617E-03 3.22551552186E-03 3.25793249179E-03 3.29067525768E-03 3.32374709384E-03 3.35715130747E-03 3.39089123904E-03 3.42497026256E-03 3.45939178596E-03 3.49415925141E-03 3.52927613571E-03 3.56474595056E-03 3.60057224298E-03 3.63675859562E-03 3.67330862715E-03 3.71022599260E-03 3.74751438375E-03 3.78517752945E-03 3.82321919607E-03 3.86164318779E-03 3.90045334704E-03 3.93965355489E-03 3.97924773137E-03 4.01923983594E-03 4.05963386784E-03 4.10043386651E-03 4.14164391199E-03 4.18326812531E-03 4.22531066892E-03 4.26777574713E-03 4.31066760646E-03 4.35399053615E-03 4.39774886852E-03 4.44194697945E-03 4.48658928877E-03 4.53168026076E-03 4.57722440455E-03 4.62322627460E-03 4.66969047113E-03 4.71662164059E-03 4.76402447616E-03 4.81190371813E-03 4.86026415449E-03 4.90911062132E-03 4.95844800330E-03 5.00828123421E-03 5.05861529742E-03 5.10945522637E-03 5.16080610511E-03 5.21267306875E-03 5.26506130405E-03 5.31797604986E-03 5.37142259771E-03 5.42540629230E-03 5.47993253204E-03 5.53500676959E-03 5.59063451244E-03 5.64682132340E-03 5.70357282119E-03 5.76089468102E-03 5.81879263512E-03 5.87727247333E-03 5.93634004369E-03 5.99600125299E-03 6.05626206742E-03 6.11712851311E-03 6.17860667674E-03 6.24070270619E-03 6.30342281111E-03 6.36677326356E-03 6.43076039865E-03 6.49539061513E-03 6.56067037609E-03 6.62660620955E-03 6.69320470916E-03 6.76047253482E-03 6.82841641336E-03 6.89704313923E-03 6.96635957517E-03 7.03637265287E-03 7.10708937370E-03 7.17851680938E-03 7.25066210273E-03 7.32353246834E-03 7.39713519329E-03 7.47147763793E-03 7.54656723655E-03 7.62241149819E-03 7.69901800733E-03 7.77639442469E-03 7.85454848797E-03 7.93348801265E-03 8.01322089274E-03 8.09375510159E-03 8.17509869270E-03 8.25725980049E-03 8.34024664114E-03 8.42406751341E-03 8.50873079945E-03 8.59424496566E-03 8.68061856352E-03 8.76786023048E-03 8.85597869077E-03 8.94498275630E-03 9.03488132757E-03 9.12568339450E-03 9.21739803737E-03 9.31003442773E-03 9.40360182928E-03 9.49810959886E-03 9.59356718731E-03 9.68998414048E-03 9.78737010013E-03 9.88573480495E-03 9.98508809149E-03 1.00854398952E-02 1.01868002512E-02 1.02891792958E-02 1.03925872669E-02 1.04970345054E-02 1.06025314560E-02 1.07090886687E-02 1.08167167991E-02 1.09254266102E-02 1.10352289731E-02 1.11461348681E-02 1.12581553859E-02 1.13713017286E-02 1.14855852109E-02 1.16010172614E-02 1.17176094232E-02 1.18353733557E-02 1.19543208354E-02 1.20744637572E-02 1.21958141354E-02 1.23183841052E-02 1.24421859237E-02 1.25672319711E-02 1.26935347522E-02 1.28211068973E-02 1.29499611639E-02 1.30801104373E-02 1.32115677327E-02 1.33443461958E-02 1.34784591047E-02 1.36139198708E-02 1.37507420401E-02 1.38889392952E-02 1.40285254557E-02 1.41695144805E-02 1.43119204685E-02 1.44557576605E-02 1.46010404403E-02 1.47477833364E-02 1.48960010230E-02 1.50457083222E-02 1.51969202047E-02 1.53496517919E-02 1.55039183571E-02 1.56597353271E-02 1.58171182836E-02 1.59760829652E-02 1.61366452683E-02 1.62988212494E-02 1.64626271263E-02 1.66280792795E-02 1.67951942546E-02 1.69639887630E-02 1.71344796845E-02 1.73066840683E-02 1.74806191348E-02 1.76563022779E-02 1.78337510658E-02 1.80129832438E-02 1.81940167351E-02 1.83768696432E-02 1.85615602536E-02 1.87481070355E-02 1.89365286437E-02 1.91268439206E-02 1.93190718978E-02 1.95132317982E-02 1.97093430382E-02 1.99074252288E-02 2.01074981786E-02 2.03095818949E-02 2.05136965864E-02 2.07198626646E-02 2.09281007463E-02 2.11384316556E-02 2.13508764256E-02 2.15654563011E-02 2.17821927402E-02 2.20011074166E-02 2.22222222222E-02 2.24455592685E-02 2.26711408895E-02 2.28989896434E-02 2.31291283154E-02 2.33615799195E-02 2.35963677010E-02 2.38335151390E-02 2.40730459483E-02 2.43149840823E-02 2.45593537350E-02 2.48061793435E-02 2.50554855907E-02 2.53072974072E-02 2.55616399746E-02 2.58185387273E-02 2.60780193554E-02 2.63401078071E-02 2.66048302916E-02 2.68722132813E-02 2.71422835147E-02 2.74150679990E-02 2.76905940131E-02 2.79688891095E-02 2.82499811183E-02 2.85338981486E-02 2.88206685926E-02 2.91103211274E-02 2.94028847186E-02 2.96983886228E-02 2.99968623906E-02 3.02983358696E-02 3.06028392075E-02 3.09104028548E-02 3.12210575681E-02 3.15348344132E-02 3.18517647680E-02 3.21718803259E-02 3.24952130985E-02 3.28217954196E-02 3.31516599476E-02 3.34848396692E-02 3.38213679026E-02 3.41612783011E-02 3.45046048558E-02 3.48513818998E-02 3.52016441110E-02 3.55554265159E-02 3.59127644932E-02 3.62736937768E-02 3.66382504600E-02 3.70064709988E-02 3.73783922155E-02 3.77540513026E-02 3.81334858263E-02 3.85167337304E-02 3.89038333399E-02 3.92948233652E-02 3.96897429056E-02 4.00886314533E-02 4.04915288976E-02 4.08984755285E-02 4.13095120410E-02 4.17246795392E-02 4.21440195401E-02 4.25675739781E-02 4.29953852089E-02 4.34274960141E-02 4.38639496051E-02 4.43047896276E-02 4.47500601660E-02 4.51998057477E-02 4.56540713476E-02 4.61129023928E-02 4.65763447665E-02 4.70444448136E-02 4.75172493444E-02 4.79948056397E-02 4.84771614555E-02 4.89643650279E-02 4.94564650776E-02 4.99535108150E-02 5.04555519452E-02 5.09626386725E-02 5.14748217062E-02 5.19921522650E-02 5.25146820824E-02 5.30424634117E-02 5.35755490315E-02 5.41139922509E-02 5.46578469146E-02 5.52071674086E-02 5.57620086653E-02 5.63224261693E-02 5.68884759629E-02 5.74602146515E-02 5.80376994094E-02 5.86209879856E-02 5.92101387095E-02 5.98052104967E-02 6.04062628546E-02 6.10133558893E-02 6.16265503103E-02 6.22459074378E-02 6.28714892078E-02 6.35033581792E-02 6.41415775393E-02 6.47862111106E-02 6.54373233570E-02 6.60949793903E-02 6.67592449766E-02 6.74301865430E-02 6.81078711843E-02 6.87923666694E-02 6.94837414486E-02 7.01820646598E-02 7.08874061359E-02 7.15998364117E-02 7.23194267309E-02 7.30462490530E-02 7.37803760608E-02 7.45218811678E-02 7.52708385249E-02 7.60273230287E-02 7.67914103281E-02 7.75631768325E-02 7.83426997192E-02 7.91300569412E-02 7.99253272349E-02 8.07285901278E-02 8.15399259471E-02 8.23594158269E-02 8.31871417169E-02 8.40231863904E-02 8.48676334526E-02 8.57205673488E-02 8.65820733732E-02 8.74522376771E-02 8.83311472777E-02 8.92188900665E-02 9.01155548188E-02 9.10212312016E-02 9.19360097834E-02 9.28599820427E-02 9.37932403777E-02 9.47358781149E-02 9.56879895188E-02 9.66496698014E-02 9.76210151315E-02 9.86021226445E-02 9.95930904520E-02 1.00594017651E-01 1.01605004336E-01 1.02626151607E-01 1.03657561578E-01 1.04699337391E-01 1.05751583225E-01 1.06814404306E-01 1.07887906916E-01 1.08972198407E-01 1.10067387209E-01 1.11173582841E-01 1.12290895924E-01 1.13419438190E-01 1.14559322494E-01 1.15710662826E-01 1.16873574321E-01 1.18048173271E-01 1.19234577136E-01 1.20432904558E-01 1.21643275372E-01 1.22865810614E-01 1.24100632539E-01 1.25347864632E-01 1.26607631615E-01 1.27880059467E-01 1.29165275431E-01 1.30463408031E-01 1.31774587080E-01 1.33098943697E-01 1.34436610320E-01 1.35787720716E-01 1.37152409997E-01 1.38530814634E-01 1.39923072467E-01 1.41329322724E-01 1.42749706032E-01 1.44184364429E-01 1.45633441382E-01 1.47097081801E-01 1.48575432051E-01 1.50068639967E-01 1.51576854873E-01 1.53100227591E-01 1.54638910459E-01 1.56193057346E-01 1.57762823670E-01 1.59348366408E-01 1.60949844115E-01 1.62567416940E-01 1.64201246643E-01 1.65851496607E-01 1.67518331859E-01 1.69201919084E-01 1.70902426642E-01 1.72620024585E-01 1.74354884674E-01 1.76107180397E-01 1.77877086984E-01 1.79664781429E-01 1.81470442502E-01 1.83294250769E-01 1.85136388615E-01 1.86997040254E-01 1.88876391753E-01 1.90774631048E-01 1.92691947966E-01 1.94628534239E-01 1.96584583527E-01 1.98560291438E-01 2.00555855543E-01 2.02571475401E-01 2.04607352575E-01 2.06663690655E-01 2.08740695277E-01 2.10838574141E-01 2.12957537039E-01 2.15097795868E-01 2.17259564656E-01 2.19443059582E-01 2.21648498996E-01 2.23876103445E-01 2.26126095691E-01 2.28398700734E-01 2.30694145838E-01 2.33012660550E-01 2.35354476721E-01 2.37719828536E-01 2.40108952532E-01 2.42522087623E-01 2.44959475125E-01 2.47421358779E-01 2.49907984775E-01 2.52419601778E-01 2.54956460951E-01 2.57518815983E-01 2.60106923111E-01 2.62721041148E-01 2.65361431508E-01 2.68028358232E-01 2.70722088016E-01 2.73442890234E-01 2.76191036968E-01 2.78966803037E-01 2.81770466019E-01 2.84602306281E-01 2.87462607012E-01 2.90351654243E-01 2.93269736881E-01 2.96217146738E-01 2.99194178556E-01 3.02201130041E-01 3.05238301891E-01 3.08305997825E-01 3.11404524616E-01 3.14534192119E-01 3.17695313304E-01 3.20888204285E-01 3.24113184353E-01 3.27370576010E-01 3.30660704997E-01 3.33983900331E-01 3.37340494332E-01 3.40730822665E-01 3.44155224363E-01 3.47614041871E-01 3.51107621072E-01 3.54636311329E-01 3.58200465512E-01 3.61800440040E-01 3.65436594913E-01 3.69109293751E-01 3.72818903825E-01 3.76565796101E-01 3.80350345270E-01 3.84172929790E-01 3.88033931924E-01 3.91933737774E-01 3.95872737325E-01 3.99851324479E-01 4.03869897099E-01 4.07928857045E-01 4.12028610217E-01 4.16169566593E-01 4.20352140272E-01 4.24576749516E-01 4.28843816789E-01 4.33153768801E-01 4.37507036550E-01 4.41904055368E-01 4.46345264960E-01 4.50831109450E-01 4.55362037427E-01 4.59938501986E-01 4.64560960780E-01 4.69229876056E-01 4.73945714712E-01 4.78708948333E-01 4.83520053249E-01 4.88379510573E-01 4.93287806254E-01 4.98245431128E-01 5.03252880959E-01 5.08310656499E-01 5.13419263527E-01 5.18579212910E-01 5.23791020646E-01 5.29055207921E-01 5.34372301157E-01 5.39742832069E-01 5.45167337714E-01 5.50646360546E-01 5.56180448474E-01 5.61770154910E-01 5.67416038830E-01 5.73118664827E-01 5.78878603167E-01 5.84696429850E-01 5.90572726664E-01 5.96508081242E-01 6.02503087126E-01 6.08558343820E-01 6.14674456856E-01 6.20852037850E-01 6.27091704565E-01 6.33394080973E-01 6.39759797317E-01 6.46189490173E-01 6.52683802518E-01 6.59243383786E-01 6.65868889942E-01 6.72560983542E-01 6.79320333801E-01 6.86147616659E-01 6.93043514851E-01 7.00008717972E-01 7.07043922548E-01 7.14149832106E-01 7.21327157241E-01 7.28576615694E-01 7.35898932415E-01 7.43294839643E-01 7.50765076974E-01 7.58310391439E-01 7.65931537575E-01 7.73629277502E-01 7.81404381002E-01 7.89257625592E-01 7.97189796601E-01 8.05201687255E-01 8.13294098748E-01 8.21467840329E-01 8.29723729379E-01 8.38062591493E-01 8.46485260564E-01 8.54992578867E-01 8.63585397141E-01 8.72264574673E-01 8.81030979391E-01 8.89885487940E-01 8.98828985779E-01 9.07862367266E-01 9.16986535747E-01 9.26202403645E-01 9.35510892555E-01 9.44912933335E-01 9.54409466195E-01 9.64001440797E-01 9.73689816346E-01 9.83475561689E-01 9.93359655407E-01 1.00334308592E+00 1.01342685157E+00 1.02361196076E+00 1.03389943200E+00 1.04429029404E+00 1.05478558597E+00 1.06538635735E+00 1.07609366825E+00 1.08690858942E+00 1.09783220235E+00 1.10886559941E+00 1.12000988396E+00 1.13126617043E+00 1.14263558446E+00 1.15411926300E+00 1.16571835442E+00 1.17743401866E+00 1.18926742728E+00 1.20121976363E+00 1.21329222296E+00 1.22548601252E+00 1.23780235171E+00 1.25024247216E+00 1.26280761790E+00 1.27549904545E+00 1.28831802398E+00 1.30126583538E+00 1.31434377444E+00 1.32755314898E+00 1.34089527994E+00 1.35437150155E+00 1.36798316143E+00 1.38173162077E+00 1.39561825443E+00 1.40964445107E+00 1.42381161333E+00 1.43812115794E+00 1.45257451587E+00 1.46717313245E+00 1.48191846758E+00 1.49681199578E+00 1.51185520643E+00 1.52704960386E+00 1.54239670753E+00 1.55789805215E+00 1.57355518787E+00 1.58936968043E+00 1.60534311127E+00 1.62147707777E+00 1.63777319332E+00 1.65423308756E+00 1.67085840649E+00 1.68765081265E+00 1.70461198530E+00 1.72174362056E+00 1.73904743162E+00 1.75652514888E+00 1.77417852011E+00 1.79200931068E+00 1.81001930367E+00 1.82821030009E+00 1.84658411907E+00 1.86514259801E+00 1.88388759275E+00 1.90282097783E+00 1.92194464659E+00 1.94126051141E+00 1.96077050390E+00 1.98047657508E+00 2.00038069557E+00 2.02048485579E+00 2.04079106618E+00 2.06130135738E+00 2.08201778043E+00 2.10294240700E+00 2.12407732956E+00 2.14542466162E+00 2.16698653793E+00 2.18876511471E+00 2.21076256982E+00 2.23298110303E+00 2.25542293621E+00 2.27809031357E+00 2.30098550185E+00 2.32411079060E+00 2.34746849237E+00 2.37106094294E+00 2.39489050159E+00 2.41895955128E+00 2.44327049894E+00 2.46782577568E+00 2.49262783706E+00 2.51767916330E+00 2.54298225956E+00 2.56853965616E+00 2.59435390887E+00 2.62042759913E+00 2.64676333433E+00 2.67336374807E+00 2.70023150042E+00 2.72736927816E+00 2.75477979511E+00 2.78246579233E+00 2.81043003845E+00 2.83867532991E+00 2.86720449128E+00 2.89602037548E+00 2.92512586413E+00 2.95452386781E+00 2.98421732633E+00 3.01420920908E+00 3.04450251525E+00 3.07510027422E+00 3.10600554578E+00 3.13722142048E+00 3.16875101993E+00 3.20059749713E+00 3.23276403675E+00 3.26525385546E+00 3.29807020228E+00 3.33121635887E+00 3.36469563987E+00 3.39851139324E+00 3.43266700058E+00 3.46716587748E+00 3.50201147385E+00 3.53720727430E+00 3.57275679841E+00 3.60866360119E+00 3.64493127333E+00 3.68156344164E+00 3.71856376936E+00 3.75593595655E+00 3.79368374047E+00 3.83181089593E+00 3.87032123567E+00 3.90921861076E+00 3.94850691096E+00 3.98819006515E+00 4.02827204167E+00 4.06875684875E+00 4.10964853490E+00 4.15095118934E+00 4.19266894235E+00 4.23480596575E+00 4.27736647327E+00 4.32035472101E+00 4.36377500782E+00 4.40763167576E+00 4.45192911055E+00 4.49667174196E+00 4.54186404429E+00 4.58751053681E+00 4.63361578420E+00 4.68018439704E+00 4.72722103221E+00 4.77473039343E+00 4.82271723167E+00 4.87118634564E+00 4.92014258232E+00 4.96959083735E+00 5.01953605560E+00 5.06998323164E+00 5.12093741024E+00 5.17240368684E+00 5.22438720812E+00 5.27689317247E+00 5.32992683054E+00 5.38349348573E+00 5.43759849476E+00 5.49224726817E+00 5.54744527088E+00 5.60319802274E+00 5.65951109908E+00 5.71639013124E+00 5.77384080718E+00 5.83186887201E+00 5.89048012858E+00 5.94968043808E+00 6.00947572058E+00 6.06987195566E+00 6.13087518300E+00 6.19249150296E+00 6.25472707723E+00 6.31758812942E+00 6.38108094569E+00 6.44521187537E+00 6.50998733161E+00 6.57541379201E+00 6.64149779927E+00 6.70824596184E+00 6.77566495460E+00 6.84376151950E+00 6.91254246625E+00 6.98201467302E+00 7.05218508706E+00 7.12306072550E+00 7.19464867594E+00 7.26695609724E+00 7.33999022021E+00 7.41375834832E+00 7.48826785845E+00 7.56352620159E+00 7.63954090367E+00 7.71631956619E+00 7.79386986711E+00 7.87219956151E+00 7.95131648242E+00 8.03122854161E+00 8.11194373034E+00 8.19347012021E+00 8.27581586392E+00 8.35898919611E+00 8.44299843418E+00 8.52785197914E+00 8.61355831640E+00 8.70012601666E+00 8.78756373678E+00 8.87588022060E+00 8.96508429984E+00 9.05518489498E+00 9.14619101615E+00 9.23811176404E+00 9.33095633082E+00 9.42473400099E+00 9.51945415243E+00 9.61512625721E+00 9.71175988263E+00 9.80936469213E+00 9.90795044628E+00 1.00075270037E+01 1.01081043222E+01 1.02096924596E+01 1.03123015747E+01 1.04159419285E+01 1.05206238852E+01 1.06263579131E+01 1.07331545856E+01 1.08410245825E+01 1.09499786910E+01 1.10600278064E+01 1.11711829338E+01 1.12834551888E+01 1.13968557987E+01 1.15113961037E+01 1.16270875580E+01 1.17439417306E+01 1.18619703072E+01 1.19811850908E+01 1.21015980028E+01 1.22232210847E+01 1.23460664989E+01 1.24701465301E+01 1.25954735863E+01 1.27220602003E+01 1.28499190310E+01 1.29790628643E+01 1.31095046146E+01 1.32412573264E+01 1.33743341749E+01 1.35087484680E+01 1.36445136472E+01 1.37816432892E+01 1.39201511069E+01 1.40600509514E+01 1.42013568127E+01 1.43440828214E+01 1.44882432505E+01 1.46338525159E+01 1.47809251788E+01 1.49294759465E+01 1.50795196742E+01 1.52310713665E+01 1.53841461786E+01 1.55387594181E+01 1.56949265466E+01 1.58526631807E+01 1.60119850944E+01 1.61729082200E+01 1.63354486498E+01 1.64996226381E+01 1.66654466025E+01 1.68329371254E+01 1.70021109560E+01 1.71729850119E+01 1.73455763806E+01 1.75199023214E+01 1.76959802670E+01 1.78738278254E+01 1.80534627815E+01 1.82349030989E+01 1.84181669218E+01 1.86032725768E+01 1.87902385745E+01 1.89790836117E+01 1.91698265731E+01 1.93624865331E+01 1.95570827580E+01 1.97536347073E+01 1.99521620367E+01 2.01526845988E+01 2.03552224462E+01 2.05597958329E+01 2.07664252162E+01 2.09751312594E+01 2.11859348331E+01 2.13988570180E+01 2.16139191065E+01 2.18311426049E+01 2.20505492357E+01 2.22721609398E+01 2.24959998786E+01 2.27220884361E+01 2.29504492213E+01 2.31811050707E+01 2.34140790498E+01 2.36493944564E+01 2.38870748221E+01 2.41271439152E+01 2.43696257429E+01 2.46145445533E+01 2.48619248388E+01 2.51117913375E+01 2.53641690362E+01 2.56190831730E+01 2.58765592394E+01 2.61366229833E+01 2.63993004113E+01 2.66646177914E+01 2.69326016554E+01 2.72032788020E+01 2.74766762992E+01 2.77528214870E+01 2.80317419800E+01 2.83134656705E+01 2.85980207312E+01 2.88854356179E+01 2.91757390721E+01 2.94689601246E+01 2.97651280977E+01 3.00642726083E+01 3.03664235713E+01 3.06716112019E+01 3.09798660193E+01 3.12912188490E+01 3.16057008267E+01 3.19233434008E+01 3.22441783359E+01 3.25682377156E+01 3.28955539463E+01 3.32261597598E+01 3.35600882170E+01 3.38973727109E+01 3.42380469704E+01 3.45821450630E+01 3.49297013991E+01 3.52807507343E+01 3.56353281741E+01 3.59934691763E+01 3.63552095555E+01 3.67205854859E+01 3.70896335054E+01 3.74623905193E+01 3.78388938034E+01 3.82191810084E+01 3.86032901633E+01 3.89912596794E+01 3.93831283540E+01 3.97789353743E+01 4.01787203212E+01 4.05825231737E+01 4.09903843123E+01 4.14023445235E+01 4.18184450036E+01 4.22387273631E+01 4.26632336305E+01 4.30920062569E+01 4.35250881197E+01 4.39625225277E+01 4.44043532245E+01 4.48506243937E+01 4.53013806627E+01 4.57566671075E+01 4.62165292571E+01 4.66810130982E+01 4.71501650795E+01 4.76240321166E+01 4.81026615966E+01 4.85861013828E+01 4.90743998197E+01 4.95676057375E+01 5.00657684571E+01 5.05689377953E+01 5.10771640694E+01 5.15904981025E+01 5.21089912284E+01 5.26326952968E+01 5.31616626786E+01 5.36959462710E+01 5.42355995028E+01 5.47806763397E+01 5.53312312899E+01 5.58873194093E+01 5.64489963073E+01 5.70163181519E+01 5.75893416758E+01 5.81681241819E+01 5.87527235489E+01 5.93431982373E+01 5.99396072949E+01 2.02640436790E-07 2.04677007038E-07 2.06734045157E-07 2.08811756852E-07 2.10910349898E-07 2.13030034154E-07 2.15171021591E-07 2.17333526310E-07 2.19517764562E-07 2.21723954774E-07 2.23952317566E-07 2.26203075777E-07 2.28476454483E-07 2.30772681026E-07 2.33091985028E-07 2.35434598424E-07 2.37800755475E-07 2.40190692801E-07 2.42604649395E-07 2.45042866657E-07 2.47505588410E-07 2.49993060928E-07 2.52505532960E-07 2.55043255756E-07 2.57606483090E-07 2.60195471287E-07 2.62810479248E-07 2.65451768476E-07 2.68119603102E-07 2.70814249912E-07 2.73535978372E-07 2.76285060658E-07 2.79061771681E-07 2.81866389113E-07 2.84699193419E-07 2.87560467881E-07 2.90450498630E-07 2.93369574671E-07 2.96317987914E-07 2.99296033203E-07 3.02304008344E-07 3.05342214138E-07 3.08410954408E-07 3.11510536030E-07 3.14641268966E-07 3.17803466291E-07 3.20997444227E-07 3.24223522175E-07 3.27482022745E-07 3.30773271791E-07 3.34097598439E-07 3.37455335126E-07 3.40846817628E-07 3.44272385095E-07 3.47732380088E-07 3.51227148608E-07 3.54757040136E-07 3.58322407664E-07 3.61923607731E-07 3.65561000460E-07 3.69234949594E-07 3.72945822531E-07 3.76693990361E-07 3.80479827903E-07 3.84303713746E-07 3.88166030280E-07 3.92067163741E-07 3.96007504245E-07 3.99987445829E-07 4.04007386491E-07 4.08067728229E-07 4.12168877079E-07 4.16311243161E-07 4.20495240713E-07 4.24721288141E-07 4.28989808051E-07 4.33301227299E-07 4.37655977031E-07 4.42054492726E-07 4.46497214238E-07 4.50984585843E-07 4.55517056284E-07 4.60095078809E-07 4.64719111226E-07 4.69389615941E-07 4.74107060008E-07 4.78871915177E-07 4.83684657937E-07 4.88545769565E-07 4.93455736177E-07 4.98415048775E-07 5.03424203292E-07 5.08483700649E-07 5.13594046800E-07 5.18755752784E-07 5.23969334776E-07 5.29235314137E-07 5.34554217471E-07 5.39926576672E-07 5.45352928981E-07 5.50833817037E-07 5.56369788934E-07 5.61961398273E-07 5.67609204221E-07 5.73313771562E-07 5.79075670757E-07 5.84895478003E-07 5.90773775284E-07 5.96711150434E-07 6.02708197197E-07 6.08765515282E-07 6.14883710426E-07 6.21063394453E-07 6.27305185337E-07 6.33609707262E-07 6.39977590686E-07 6.46409472403E-07 6.52905995605E-07 6.59467809951E-07 6.66095571628E-07 6.72789943417E-07 6.79551594761E-07 6.86381201830E-07 6.93279447592E-07 7.00247021877E-07 7.07284621447E-07 7.14392950068E-07 7.21572718580E-07 7.28824644965E-07 7.36149454422E-07 7.43547879438E-07 7.51020659861E-07 7.58568542977E-07 7.66192283578E-07 7.73892644047E-07 7.81670394425E-07 7.89526312494E-07 7.97461183852E-07 8.05475801992E-07 8.13570968385E-07 8.21747492552E-07 8.30006192153E-07 8.38347893065E-07 8.46773429465E-07 8.55283643913E-07 8.63879387439E-07 8.72561519623E-07 8.81330908687E-07 8.90188431576E-07 8.99134974049E-07 9.08171430770E-07 9.17298705390E-07 9.26517710645E-07 9.35829368444E-07 9.45234609959E-07 9.54734375723E-07 9.64329615720E-07 9.74021289482E-07 9.83810366185E-07 9.93697824744E-07 1.00368465391E-06 1.01377185239E-06 1.02396042889E-06 1.03425140229E-06 1.04464580169E-06 1.05514466654E-06 1.06574904673E-06 1.07646000272E-06 1.08727860561E-06 1.09820593726E-06 1.10924309042E-06 1.12039116882E-06 1.13165128727E-06 1.14302457178E-06 1.15451215971E-06 1.16611519982E-06 1.17783485242E-06 1.18967228948E-06 1.20162869476E-06 1.21370526392E-06 1.22590320461E-06 1.23822373665E-06 1.25066809209E-06 1.26323751538E-06 1.27593326348E-06 1.28875660596E-06 1.30170882519E-06 1.31479121637E-06 1.32800508778E-06 1.34135176080E-06 1.35483257011E-06 1.36844886382E-06 1.38220200354E-06 1.39609336462E-06 1.41012433620E-06 1.42429632139E-06 1.43861073740E-06 1.45306901568E-06 1.46767260207E-06 1.48242295695E-06 1.49732155535E-06 1.51236988716E-06 1.52756945722E-06 1.54292178550E-06 1.55842840724E-06 1.57409087312E-06 1.58991074940E-06 1.60588961808E-06 1.62202907706E-06 1.63833074030E-06 1.65479623798E-06 1.67142721667E-06 1.68822533946E-06 1.70519228620E-06 1.72232975359E-06 1.73963945538E-06 1.75712312258E-06 1.77478250355E-06 1.79261936424E-06 1.81063548837E-06 1.82883267756E-06 1.84721275154E-06 1.86577754833E-06 1.88452892443E-06 1.90346875500E-06 1.92259893403E-06 1.94192137455E-06 1.96143800883E-06 1.98115078854E-06 2.00106168499E-06 2.02117268927E-06 2.04148581250E-06 2.06200308601E-06 2.08272656156E-06 2.10365831149E-06 2.12480042901E-06 2.14615502834E-06 2.16772424497E-06 2.18951023582E-06 2.21151517952E-06 2.23374127659E-06 2.25619074964E-06 2.27886584365E-06 2.30176882614E-06 2.32490198743E-06 2.34826764086E-06 2.37186812301E-06 2.39570579394E-06 2.41978303746E-06 2.44410226129E-06 2.46866589739E-06 2.49347640213E-06 2.51853625659E-06 2.54384796678E-06 2.56941406388E-06 2.59523710453E-06 2.62131967106E-06 2.64766437173E-06 2.67427384105E-06 2.70115073998E-06 2.72829775624E-06 2.75571760454E-06 2.78341302691E-06 2.81138679289E-06 2.83964169990E-06 2.86818057344E-06 2.89700626743E-06 2.92612166446E-06 2.95552967610E-06 2.98523324317E-06 3.01523533604E-06 3.04553895497E-06 3.07614713033E-06 3.10706292296E-06 3.13828942448E-06 3.16982975756E-06 3.20168707625E-06 3.23386456631E-06 3.26636544553E-06 3.29919296402E-06 3.33235040455E-06 3.36584108290E-06 3.39966834816E-06 3.43383558309E-06 3.46834620444E-06 3.50320366330E-06 3.53841144545E-06 3.57397307169E-06 3.60989209821E-06 3.64617211695E-06 3.68281675595E-06 3.71982967968E-06 3.75721458949E-06 3.79497522389E-06 3.83311535897E-06 3.87163880878E-06 3.91054942569E-06 3.94985110081E-06 3.98954776433E-06 4.02964338596E-06 4.07014197527E-06 4.11104758218E-06 4.15236429727E-06 4.19409625226E-06 4.23624762036E-06 4.27882261675E-06 4.32182549897E-06 4.36526056735E-06 4.40913216542E-06 4.45344468037E-06 4.49820254351E-06 4.54341023065E-06 4.58907226260E-06 4.63519320560E-06 4.68177767179E-06 4.72883031964E-06 4.77635585446E-06 4.82435902886E-06 4.87284464317E-06 4.92181754601E-06 4.97128263470E-06 5.02124485580E-06 5.07170920558E-06 5.12268073049E-06 5.17416452775E-06 5.22616574578E-06 5.27868958473E-06 5.33174129705E-06 5.38532618793E-06 5.43944961592E-06 5.49411699341E-06 5.54933378717E-06 5.60510551894E-06 5.66143776593E-06 5.71833616141E-06 5.77580639528E-06 5.83385421460E-06 5.89248542420E-06 5.95170588725E-06 6.01152152586E-06 6.07193832162E-06 6.13296231628E-06 6.19459961228E-06 6.25685637340E-06 6.31973882537E-06 6.38325325650E-06 6.44740601827E-06 6.51220352601E-06 6.57765225953E-06 6.64375876376E-06 6.71052964940E-06 6.77797159360E-06 6.84609134061E-06 6.91489570246E-06 6.98439155964E-06 7.05458586179E-06 7.12548562841E-06 7.19709794953E-06 7.26942998645E-06 7.34248897242E-06 7.41628221341E-06 7.49081708879E-06 7.56610105213E-06 7.64214163188E-06 7.71894643216E-06 7.79652313352E-06 7.87487949369E-06 7.95402334837E-06 8.03396261201E-06 8.11470527861E-06 8.19625942250E-06 8.27863319916E-06 8.36183484604E-06 8.44587268337E-06 8.53075511501E-06 8.61649062927E-06 8.70308779977E-06 8.79055528631E-06 8.87890183570E-06 8.96813628267E-06 9.05826755075E-06 9.14930465313E-06 9.24125669359E-06 9.33413286743E-06 9.42794246234E-06 9.52269485934E-06 9.61839953377E-06 9.71506605617E-06 9.81270409327E-06 9.91132340895E-06 1.00109338652E-05 1.01115454232E-05 1.02131681442E-05 1.03158121905E-05 1.04194878267E-05 1.05242054203E-05 1.06299754432E-05 1.07368084725E-05 1.08447151916E-05 1.09537063912E-05 1.10637929706E-05 1.11749859386E-05 1.12872964144E-05 1.14007356293E-05 1.15153149273E-05 1.16310457663E-05 1.17479397196E-05 1.18660084767E-05 1.19852638445E-05 1.21057177487E-05 1.22273822348E-05 1.23502694692E-05 1.24743917409E-05 1.25997614622E-05 1.27263911701E-05 1.28542935277E-05 1.29834813254E-05 1.31139674821E-05 1.32457650464E-05 1.33788871983E-05 1.35133472500E-05 1.36491586478E-05 1.37863349727E-05 1.39248899427E-05 1.40648374133E-05 1.42061913793E-05 1.43489659763E-05 1.44931754818E-05 1.46388343170E-05 1.47859570478E-05 1.49345583866E-05 1.50846531937E-05 1.52362564787E-05 1.53893834021E-05 1.55440492766E-05 1.57002695690E-05 1.58580599014E-05 1.60174360531E-05 1.61784139617E-05 1.63410097251E-05 1.65052396032E-05 1.66711200190E-05 1.68386675606E-05 1.70078989831E-05 1.71788312096E-05 1.73514813336E-05 1.75258666201E-05 1.77020045080E-05 1.78799126110E-05 1.80596087202E-05 1.82411108053E-05 1.84244370167E-05 1.86096056872E-05 1.87966353337E-05 1.89855446594E-05 1.91763525554E-05 1.93690781027E-05 1.95637405739E-05 1.97603594354E-05 1.99589543494E-05 2.01595451754E-05 2.03621519728E-05 2.05667950023E-05 2.07734947285E-05 2.09822718214E-05 2.11931471590E-05 2.14061418290E-05 2.16212771310E-05 2.18385745787E-05 2.20580559021E-05 2.22797430495E-05 2.25036581898E-05 2.27298237146E-05 2.29582622407E-05 2.31889966122E-05 2.34220499026E-05 2.36574454176E-05 2.38952066968E-05 2.41353575167E-05 2.43779218923E-05 2.46229240805E-05 2.48703885816E-05 2.51203401423E-05 2.53728037580E-05 2.56278046751E-05 2.58853683941E-05 2.61455206715E-05 2.64082875228E-05 2.66736952248E-05 2.69417703185E-05 2.72125396118E-05 2.74860301817E-05 2.77622693775E-05 2.80412848233E-05 2.83231044211E-05 2.86077563528E-05 2.88952690841E-05 2.91856713663E-05 2.94789922400E-05 2.97752610375E-05 3.00745073859E-05 3.03767612101E-05 3.06820527358E-05 3.09904124922E-05 3.13018713158E-05 3.16164603526E-05 3.19342110617E-05 3.22551552186E-05 3.25793249179E-05 3.29067525768E-05 3.32374709384E-05 3.35715130747E-05 3.39089123904E-05 3.42497026256E-05 3.45939178596E-05 3.49415925141E-05 3.52927613571E-05 3.56474595056E-05 3.60057224298E-05 3.63675859562E-05 3.67330862715E-05 3.71022599260E-05 3.74751438375E-05 3.78517752945E-05 3.82321919607E-05 3.86164318779E-05 3.90045334704E-05 3.93965355489E-05 3.97924773137E-05 4.01923983594E-05 4.05963386784E-05 4.10043386651E-05 4.14164391199E-05 4.18326812531E-05 4.22531066892E-05 4.26777574713E-05 4.31066760646E-05 4.35399053615E-05 4.39774886852E-05 4.44194697945E-05 4.48658928877E-05 4.53168026076E-05 4.57722440455E-05 4.62322627460E-05 4.66969047113E-05 4.71662164059E-05 4.76402447616E-05 4.81190371813E-05 4.86026415449E-05 4.90911062132E-05 4.95844800330E-05 5.00828123421E-05 5.05861529742E-05 5.10945522637E-05 5.16080610511E-05 5.21267306875E-05 5.26506130405E-05 5.31797604986E-05 5.37142259771E-05 5.42540629230E-05 5.47993253204E-05 5.53500676959E-05 5.59063451244E-05 5.64682132340E-05 5.70357282119E-05 5.76089468102E-05 5.81879263512E-05 5.87727247333E-05 5.93634004369E-05 5.99600125299E-05 6.05626206742E-05 6.11712851311E-05 6.17860667674E-05 6.24070270619E-05 6.30342281111E-05 6.36677326356E-05 6.43076039865E-05 6.49539061513E-05 6.56067037609E-05 6.62660620955E-05 6.69320470916E-05 6.76047253482E-05 6.82841641336E-05 6.89704313923E-05 6.96635957517E-05 7.03637265287E-05 7.10708937370E-05 7.17851680938E-05 7.25066210273E-05 7.32353246834E-05 7.39713519329E-05 7.47147763793E-05 7.54656723655E-05 7.62241149819E-05 7.69901800733E-05 7.77639442469E-05 7.85454848797E-05 7.93348801265E-05 8.01322089274E-05 8.09375510159E-05 8.17509869270E-05 8.25725980049E-05 8.34024664114E-05 8.42406751341E-05 8.50873079945E-05 8.59424496566E-05 8.68061856352E-05 8.76786023048E-05 8.85597869077E-05 8.94498275630E-05 9.03488132757E-05 9.12568339450E-05 9.21739803737E-05 9.31003442773E-05 9.40360182928E-05 9.49810959886E-05 9.59356718731E-05 9.68998414048E-05 9.78737010013E-05 9.88573480495E-05 9.98508809149E-05 1.00854398952E-04 1.01868002512E-04 1.02891792958E-04 1.03925872669E-04 1.04970345054E-04 1.06025314560E-04 1.07090886687E-04 1.08167167991E-04 1.09254266102E-04 1.10352289731E-04 1.11461348681E-04 1.12581553859E-04 1.13713017286E-04 1.14855852109E-04 1.16010172614E-04 1.17176094232E-04 1.18353733557E-04 1.19543208354E-04 1.20744637572E-04 1.21958141354E-04 1.23183841052E-04 1.24421859237E-04 1.25672319711E-04 1.26935347522E-04 1.28211068973E-04 1.29499611639E-04 1.30801104373E-04 1.32115677327E-04 1.33443461958E-04 1.34784591047E-04 1.36139198708E-04 1.37507420401E-04 1.38889392952E-04 1.40285254557E-04 1.41695144805E-04 1.43119204685E-04 1.44557576605E-04 1.46010404403E-04 1.47477833364E-04 1.48960010230E-04 1.50457083222E-04 1.51969202047E-04 1.53496517919E-04 1.55039183571E-04 1.56597353271E-04 1.58171182836E-04 1.59760829652E-04 1.61366452683E-04 1.62988212494E-04 1.64626271263E-04 1.66280792795E-04 1.67951942546E-04 1.69639887630E-04 1.71344796845E-04 1.73066840683E-04 1.74806191348E-04 1.76563022779E-04 1.78337510658E-04 1.80129832438E-04 1.81940167351E-04 1.83768696432E-04 1.85615602536E-04 1.87481070355E-04 1.89365286437E-04 1.91268439206E-04 1.93190718978E-04 1.95132317982E-04 1.97093430382E-04 1.99074252288E-04 2.01074981786E-04 2.03095818949E-04 2.05136965864E-04 2.07198626646E-04 2.09281007463E-04 2.11384316556E-04 2.13508764256E-04 2.15654563011E-04 2.17821927402E-04 2.20011074166E-04 2.22222222222E-04 2.24455592685E-04 2.26711408895E-04 2.28989896434E-04 2.31291283154E-04 2.33615799195E-04 2.35963677010E-04 2.38335151390E-04 2.40730459483E-04 2.43149840823E-04 2.45593537350E-04 2.48061793435E-04 2.50554855907E-04 2.53072974072E-04 2.55616399746E-04 2.58185387273E-04 2.60780193554E-04 2.63401078071E-04 2.66048302916E-04 2.68722132813E-04 2.71422835147E-04 2.74150679990E-04 2.76905940131E-04 2.79688891095E-04 2.82499811183E-04 2.85338981486E-04 2.88206685926E-04 2.91103211274E-04 2.94028847186E-04 2.96983886228E-04 2.99968623906E-04 3.02983358696E-04 3.06028392075E-04 3.09104028548E-04 3.12210575681E-04 3.15348344132E-04 3.18517647680E-04 3.21718803259E-04 3.24952130985E-04 3.28217954196E-04 3.31516599476E-04 3.34848396692E-04 3.38213679026E-04 3.41612783011E-04 3.45046048558E-04 3.48513818998E-04 3.52016441110E-04 3.55554265159E-04 3.59127644932E-04 3.62736937768E-04 3.66382504600E-04 3.70064709988E-04 3.73783922155E-04 3.77540513026E-04 3.81334858263E-04 3.85167337304E-04 3.89038333399E-04 3.92948233652E-04 3.96897429056E-04 4.00886314533E-04 4.04915288976E-04 4.08984755285E-04 4.13095120410E-04 4.17246795392E-04 4.21440195401E-04 4.25675739781E-04 4.29953852089E-04 4.34274960141E-04 4.38639496051E-04 4.43047896276E-04 4.47500601660E-04 4.51998057477E-04 4.56540713476E-04 4.61129023928E-04 4.65763447665E-04 4.70444448136E-04 4.75172493444E-04 4.79948056397E-04 4.84771614555E-04 4.89643650279E-04 4.94564650776E-04 4.99535108150E-04 5.04555519452E-04 5.09626386725E-04 5.14748217062E-04 5.19921522650E-04 5.25146820824E-04 5.30424634117E-04 5.35755490315E-04 5.41139922509E-04 5.46578469146E-04 5.52071674086E-04 5.57620086653E-04 5.63224261693E-04 5.68884759629E-04 5.74602146515E-04 5.80376994094E-04 5.86209879856E-04 5.92101387095E-04 5.98052104967E-04 6.04062628546E-04 6.10133558893E-04 6.16265503103E-04 6.22459074378E-04 6.28714892078E-04 6.35033581792E-04 6.41415775393E-04 6.47862111106E-04 6.54373233570E-04 6.60949793903E-04 6.67592449766E-04 6.74301865430E-04 6.81078711843E-04 6.87923666694E-04 6.94837414486E-04 7.01820646598E-04 7.08874061359E-04 7.15998364117E-04 7.23194267309E-04 7.30462490530E-04 7.37803760608E-04 7.45218811678E-04 7.52708385249E-04 7.60273230287E-04 7.67914103281E-04 7.75631768325E-04 7.83426997192E-04 7.91300569412E-04 7.99253272349E-04 8.07285901278E-04 8.15399259471E-04 8.23594158269E-04 8.31871417169E-04 8.40231863904E-04 8.48676334526E-04 8.57205673488E-04 8.65820733732E-04 8.74522376771E-04 8.83311472777E-04 8.92188900665E-04 9.01155548188E-04 9.10212312016E-04 9.19360097834E-04 9.28599820427E-04 9.37932403777E-04 9.47358781149E-04 9.56879895188E-04 9.66496698014E-04 9.76210151315E-04 9.86021226445E-04 9.95930904520E-04 1.00594017651E-03 1.01605004336E-03 1.02626151607E-03 1.03657561578E-03 1.04699337391E-03 1.05751583225E-03 1.06814404306E-03 1.07887906916E-03 1.08972198407E-03 1.10067387209E-03 1.11173582841E-03 1.12290895924E-03 1.13419438190E-03 1.14559322494E-03 1.15710662826E-03 1.16873574321E-03 1.18048173271E-03 1.19234577136E-03 1.20432904558E-03 1.21643275372E-03 1.22865810614E-03 1.24100632539E-03 1.25347864632E-03 1.26607631615E-03 1.27880059467E-03 1.29165275431E-03 1.30463408031E-03 1.31774587080E-03 1.33098943697E-03 1.34436610320E-03 1.35787720716E-03 1.37152409997E-03 1.38530814634E-03 1.39923072467E-03 1.41329322724E-03 1.42749706032E-03 1.44184364429E-03 1.45633441382E-03 1.47097081801E-03 1.48575432051E-03 1.50068639967E-03 1.51576854873E-03 1.53100227591E-03 1.54638910459E-03 1.56193057346E-03 1.57762823670E-03 1.59348366408E-03 1.60949844115E-03 1.62567416940E-03 1.64201246643E-03 1.65851496607E-03 1.67518331859E-03 1.69201919084E-03 1.70902426642E-03 1.72620024585E-03 1.74354884674E-03 1.76107180397E-03 1.77877086984E-03 1.79664781429E-03 1.81470442502E-03 1.83294250769E-03 1.85136388615E-03 1.86997040254E-03 1.88876391753E-03 1.90774631048E-03 1.92691947966E-03 1.94628534239E-03 1.96584583527E-03 1.98560291438E-03 2.00555855543E-03 2.02571475401E-03 2.04607352575E-03 2.06663690655E-03 2.08740695277E-03 2.10838574141E-03 2.12957537039E-03 2.15097795868E-03 2.17259564656E-03 2.19443059582E-03 2.21648498996E-03 2.23876103445E-03 2.26126095691E-03 2.28398700734E-03 2.30694145838E-03 2.33012660550E-03 2.35354476721E-03 2.37719828536E-03 2.40108952532E-03 2.42522087623E-03 2.44959475125E-03 2.47421358779E-03 2.49907984775E-03 2.52419601778E-03 2.54956460951E-03 2.57518815983E-03 2.60106923111E-03 2.62721041148E-03 2.65361431508E-03 2.68028358232E-03 2.70722088016E-03 2.73442890234E-03 2.76191036968E-03 2.78966803037E-03 2.81770466019E-03 2.84602306281E-03 2.87462607012E-03 2.90351654243E-03 2.93269736881E-03 2.96217146738E-03 2.99194178556E-03 3.02201130041E-03 3.05238301891E-03 3.08305997825E-03 3.11404524616E-03 3.14534192119E-03 3.17695313304E-03 3.20888204285E-03 3.24113184353E-03 3.27370576010E-03 3.30660704997E-03 3.33983900331E-03 3.37340494332E-03 3.40730822665E-03 3.44155224363E-03 3.47614041871E-03 3.51107621072E-03 3.54636311329E-03 3.58200465512E-03 3.61800440040E-03 3.65436594913E-03 3.69109293751E-03 3.72818903825E-03 3.76565796101E-03 3.80350345270E-03 3.84172929790E-03 3.88033931924E-03 3.91933737774E-03 3.95872737325E-03 3.99851324479E-03 4.03869897099E-03 4.07928857045E-03 4.12028610217E-03 4.16169566593E-03 4.20352140272E-03 4.24576749516E-03 4.28843816789E-03 4.33153768801E-03 4.37507036550E-03 4.41904055368E-03 4.46345264960E-03 4.50831109450E-03 4.55362037427E-03 4.59938501986E-03 4.64560960780E-03 4.69229876056E-03 4.73945714712E-03 4.78708948333E-03 4.83520053249E-03 4.88379510573E-03 4.93287806254E-03 4.98245431128E-03 5.03252880959E-03 5.08310656499E-03 5.13419263527E-03 5.18579212910E-03 5.23791020646E-03 5.29055207921E-03 5.34372301157E-03 5.39742832069E-03 5.45167337714E-03 5.50646360546E-03 5.56180448474E-03 5.61770154910E-03 5.67416038830E-03 5.73118664827E-03 5.78878603167E-03 5.84696429850E-03 5.90572726664E-03 5.96508081242E-03 6.02503087126E-03 6.08558343820E-03 6.14674456856E-03 6.20852037850E-03 6.27091704565E-03 6.33394080973E-03 6.39759797317E-03 6.46189490173E-03 6.52683802518E-03 6.59243383786E-03 6.65868889942E-03 6.72560983542E-03 6.79320333801E-03 6.86147616659E-03 6.93043514851E-03 7.00008717972E-03 7.07043922548E-03 7.14149832106E-03 7.21327157241E-03 7.28576615694E-03 7.35898932415E-03 7.43294839643E-03 7.50765076974E-03 7.58310391439E-03 7.65931537575E-03 7.73629277502E-03 7.81404381002E-03 7.89257625592E-03 7.97189796601E-03 8.05201687255E-03 8.13294098748E-03 8.21467840329E-03 8.29723729379E-03 8.38062591493E-03 8.46485260564E-03 8.54992578867E-03 8.63585397141E-03 8.72264574673E-03 8.81030979391E-03 8.89885487940E-03 8.98828985779E-03 9.07862367266E-03 9.16986535747E-03 9.26202403645E-03 9.35510892555E-03 9.44912933335E-03 9.54409466195E-03 9.64001440797E-03 9.73689816346E-03 9.83475561689E-03 9.93359655407E-03 1.00334308592E-02 1.01342685157E-02 1.02361196076E-02 1.03389943200E-02 1.04429029404E-02 1.05478558597E-02 1.06538635735E-02 1.07609366825E-02 1.08690858942E-02 1.09783220235E-02 1.10886559941E-02 1.12000988396E-02 1.13126617043E-02 1.14263558446E-02 1.15411926300E-02 1.16571835442E-02 1.17743401866E-02 1.18926742728E-02 1.20121976363E-02 1.21329222296E-02 1.22548601252E-02 1.23780235171E-02 1.25024247216E-02 1.26280761790E-02 1.27549904545E-02 1.28831802398E-02 1.30126583538E-02 1.31434377444E-02 1.32755314898E-02 1.34089527994E-02 1.35437150155E-02 1.36798316143E-02 1.38173162077E-02 1.39561825443E-02 1.40964445107E-02 1.42381161333E-02 1.43812115794E-02 1.45257451587E-02 1.46717313245E-02 1.48191846758E-02 1.49681199578E-02 1.51185520643E-02 1.52704960386E-02 1.54239670753E-02 1.55789805215E-02 1.57355518787E-02 1.58936968043E-02 1.60534311127E-02 1.62147707777E-02 1.63777319332E-02 1.65423308756E-02 1.67085840649E-02 1.68765081265E-02 1.70461198530E-02 1.72174362056E-02 1.73904743162E-02 1.75652514888E-02 1.77417852011E-02 1.79200931068E-02 1.81001930367E-02 1.82821030009E-02 1.84658411907E-02 1.86514259801E-02 1.88388759275E-02 1.90282097783E-02 1.92194464659E-02 1.94126051141E-02 1.96077050390E-02 1.98047657508E-02 2.00038069557E-02 2.02048485579E-02 2.04079106618E-02 2.06130135738E-02 2.08201778043E-02 2.10294240700E-02 2.12407732956E-02 2.14542466162E-02 2.16698653793E-02 2.18876511471E-02 2.21076256982E-02 2.23298110303E-02 2.25542293621E-02 2.27809031357E-02 2.30098550185E-02 2.32411079060E-02 2.34746849237E-02 2.37106094294E-02 2.39489050159E-02 2.41895955128E-02 2.44327049894E-02 2.46782577568E-02 2.49262783706E-02 2.51767916330E-02 2.54298225956E-02 2.56853965616E-02 2.59435390887E-02 2.62042759913E-02 2.64676333433E-02 2.67336374807E-02 2.70023150042E-02 2.72736927816E-02 2.75477979511E-02 2.78246579233E-02 2.81043003845E-02 2.83867532991E-02 2.86720449128E-02 2.89602037548E-02 2.92512586413E-02 2.95452386781E-02 2.98421732633E-02 3.01420920908E-02 3.04450251525E-02 3.07510027422E-02 3.10600554578E-02 3.13722142048E-02 3.16875101993E-02 3.20059749713E-02 3.23276403675E-02 3.26525385546E-02 3.29807020228E-02 3.33121635887E-02 3.36469563987E-02 3.39851139324E-02 3.43266700058E-02 3.46716587748E-02 3.50201147385E-02 3.53720727430E-02 3.57275679841E-02 3.60866360119E-02 3.64493127333E-02 3.68156344164E-02 3.71856376936E-02 3.75593595655E-02 3.79368374047E-02 3.83181089593E-02 3.87032123567E-02 3.90921861076E-02 3.94850691096E-02 3.98819006515E-02 4.02827204167E-02 4.06875684875E-02 4.10964853490E-02 4.15095118934E-02 4.19266894235E-02 4.23480596575E-02 4.27736647327E-02 4.32035472101E-02 4.36377500782E-02 4.40763167576E-02 4.45192911055E-02 4.49667174196E-02 4.54186404429E-02 4.58751053681E-02 4.63361578420E-02 4.68018439704E-02 4.72722103221E-02 4.77473039343E-02 4.82271723167E-02 4.87118634564E-02 4.92014258232E-02 4.96959083735E-02 5.01953605560E-02 5.06998323164E-02 5.12093741024E-02 5.17240368684E-02 5.22438720812E-02 5.27689317247E-02 5.32992683054E-02 5.38349348573E-02 5.43759849476E-02 5.49224726817E-02 5.54744527088E-02 5.60319802274E-02 5.65951109908E-02 5.71639013124E-02 5.77384080718E-02 5.83186887201E-02 5.89048012858E-02 5.94968043808E-02 6.00947572058E-02 6.06987195566E-02 6.13087518300E-02 6.19249150296E-02 6.25472707723E-02 6.31758812942E-02 6.38108094569E-02 6.44521187537E-02 6.50998733161E-02 6.57541379201E-02 6.64149779927E-02 6.70824596184E-02 6.77566495460E-02 6.84376151950E-02 6.91254246625E-02 6.98201467302E-02 7.05218508706E-02 7.12306072550E-02 7.19464867594E-02 7.26695609724E-02 7.33999022021E-02 7.41375834832E-02 7.48826785845E-02 7.56352620159E-02 7.63954090367E-02 7.71631956619E-02 7.79386986711E-02 7.87219956151E-02 7.95131648242E-02 8.03122854161E-02 8.11194373034E-02 8.19347012021E-02 8.27581586392E-02 8.35898919611E-02 8.44299843418E-02 8.52785197914E-02 8.61355831640E-02 8.70012601666E-02 8.78756373678E-02 8.87588022060E-02 8.96508429984E-02 9.05518489498E-02 9.14619101615E-02 9.23811176404E-02 9.33095633082E-02 9.42473400099E-02 9.51945415243E-02 9.61512625721E-02 9.71175988263E-02 9.80936469213E-02 9.90795044628E-02 1.00075270037E-01 1.01081043222E-01 1.02096924596E-01 1.03123015747E-01 1.04159419285E-01 1.05206238852E-01 1.06263579131E-01 1.07331545856E-01 1.08410245825E-01 1.09499786910E-01 1.10600278064E-01 1.11711829338E-01 1.12834551888E-01 1.13968557987E-01 1.15113961037E-01 1.16270875580E-01 1.17439417306E-01 1.18619703072E-01 1.19811850908E-01 1.21015980028E-01 1.22232210847E-01 1.23460664989E-01 1.24701465301E-01 1.25954735863E-01 1.27220602003E-01 1.28499190310E-01 1.29790628643E-01 1.31095046146E-01 1.32412573264E-01 1.33743341749E-01 1.35087484680E-01 1.36445136472E-01 1.37816432892E-01 1.39201511069E-01 1.40600509514E-01 1.42013568127E-01 1.43440828214E-01 1.44882432505E-01 1.46338525159E-01 1.47809251788E-01 1.49294759465E-01 1.50795196742E-01 1.52310713665E-01 1.53841461786E-01 1.55387594181E-01 1.56949265466E-01 1.58526631807E-01 1.60119850944E-01 1.61729082200E-01 1.63354486498E-01 1.64996226381E-01 1.66654466025E-01 1.68329371254E-01 1.70021109560E-01 1.71729850119E-01 1.73455763806E-01 1.75199023214E-01 1.76959802670E-01 1.78738278254E-01 1.80534627815E-01 1.82349030989E-01 1.84181669218E-01 1.86032725768E-01 1.87902385745E-01 1.89790836117E-01 1.91698265731E-01 1.93624865331E-01 1.95570827580E-01 1.97536347073E-01 1.99521620367E-01 2.01526845988E-01 2.03552224462E-01 2.05597958329E-01 2.07664252162E-01 2.09751312594E-01 2.11859348331E-01 2.13988570180E-01 2.16139191065E-01 2.18311426049E-01 2.20505492357E-01 2.22721609398E-01 2.24959998786E-01 2.27220884361E-01 2.29504492213E-01 2.31811050707E-01 2.34140790498E-01 2.36493944564E-01 2.38870748221E-01 2.41271439152E-01 2.43696257429E-01 2.46145445533E-01 2.48619248388E-01 2.51117913375E-01 2.53641690362E-01 2.56190831730E-01 2.58765592394E-01 2.61366229833E-01 2.63993004113E-01 2.66646177914E-01 2.69326016554E-01 2.72032788020E-01 2.74766762992E-01 2.77528214870E-01 2.80317419800E-01 2.83134656705E-01 2.85980207312E-01 2.88854356179E-01 2.91757390721E-01 2.94689601246E-01 2.97651280977E-01 3.00642726083E-01 3.03664235713E-01 3.06716112019E-01 3.09798660193E-01 3.12912188490E-01 3.16057008267E-01 3.19233434008E-01 3.22441783359E-01 3.25682377156E-01 3.28955539463E-01 3.32261597598E-01 3.35600882170E-01 3.38973727109E-01 3.42380469704E-01 3.45821450630E-01 3.49297013991E-01 3.52807507343E-01 3.56353281741E-01 3.59934691763E-01 3.63552095555E-01 3.67205854859E-01 3.70896335054E-01 3.74623905193E-01 3.78388938034E-01 3.82191810084E-01 3.86032901633E-01 3.89912596794E-01 3.93831283540E-01 3.97789353743E-01 4.01787203212E-01 4.05825231737E-01 4.09903843123E-01 4.14023445235E-01 4.18184450036E-01 4.22387273631E-01 4.26632336305E-01 4.30920062569E-01 4.35250881197E-01 4.39625225277E-01 4.44043532245E-01 4.48506243937E-01 4.53013806627E-01 4.57566671075E-01 4.62165292571E-01 4.66810130982E-01 4.71501650795E-01 4.76240321166E-01 4.81026615966E-01 4.85861013828E-01 4.90743998197E-01 4.95676057375E-01 5.00657684571E-01 5.05689377953E-01 5.10771640694E-01 5.15904981025E-01 5.21089912284E-01 5.26326952968E-01 5.31616626786E-01 5.36959462710E-01 5.42355995028E-01 5.47806763397E-01 5.53312312899E-01 5.58873194093E-01 5.64489963073E-01 5.70163181519E-01 5.75893416758E-01 5.81681241819E-01 5.87527235489E-01 5.93431982373E-01 5.99396072949E-01 -9.16873229362E+00 -9.16873230284E+00 -9.16873232050E+00 -9.16873232208E+00 -9.16873231479E+00 -9.16873234504E+00 -9.16873233686E+00 -9.16873231469E+00 -9.16873229382E+00 -9.16873232460E+00 -9.16873241401E+00 -9.16873237187E+00 -9.16873230657E+00 -9.16873236415E+00 -9.16873236966E+00 -9.16873227034E+00 -9.16873227595E+00 -9.16873241495E+00 -9.16873244543E+00 -9.16873233054E+00 -9.16873231381E+00 -9.16873235805E+00 -9.16873234812E+00 -9.16873234116E+00 -9.16873232437E+00 -9.16873227276E+00 -9.16873229955E+00 -9.16873241291E+00 -9.16873242668E+00 -9.16873240617E+00 -9.16873239148E+00 -9.16873231627E+00 -9.16873227621E+00 -9.16873228978E+00 -9.16873229685E+00 -9.16873227345E+00 -9.16873226831E+00 -9.16873232570E+00 -9.16873236098E+00 -9.16873232565E+00 -9.16873229265E+00 -9.16873233412E+00 -9.16873234813E+00 -9.16873229155E+00 -9.16873229719E+00 -9.16873233842E+00 -9.16873235317E+00 -9.16873231635E+00 -9.16873224800E+00 -9.16873224057E+00 -9.16873227166E+00 -9.16873232066E+00 -9.16873232871E+00 -9.16873229308E+00 -9.16873230594E+00 -9.16873231678E+00 -9.16873230837E+00 -9.16873230749E+00 -9.16873230925E+00 -9.16873230546E+00 -9.16873230031E+00 -9.16873231114E+00 -9.16873231515E+00 -9.16873232022E+00 -9.16873232538E+00 -9.16873230160E+00 -9.16873228207E+00 -9.16873230242E+00 -9.16873231636E+00 -9.16873229679E+00 -9.16873229074E+00 -9.16873230866E+00 -9.16873231452E+00 -9.16873230209E+00 -9.16873230930E+00 -9.16873232527E+00 -9.16873232138E+00 -9.16873231989E+00 -9.16873232720E+00 -9.16873232851E+00 -9.16873231998E+00 -9.16873230510E+00 -9.16873230336E+00 -9.16873231752E+00 -9.16873232714E+00 -9.16873231980E+00 -9.16873228886E+00 -9.16873227114E+00 -9.16873229122E+00 -9.16873230844E+00 -9.16873230968E+00 -9.16873231892E+00 -9.16873232076E+00 -9.16873230860E+00 -9.16873230190E+00 -9.16873229652E+00 -9.16873230061E+00 -9.16873230835E+00 -9.16873230352E+00 -9.16873229957E+00 -9.16873229789E+00 -9.16873229282E+00 -9.16873229750E+00 -9.16873231555E+00 -9.16873230980E+00 -9.16873229696E+00 -9.16873231152E+00 -9.16873230864E+00 -9.16873228685E+00 -9.16873228830E+00 -9.16873229931E+00 -9.16873230306E+00 -9.16873230702E+00 -9.16873230049E+00 -9.16873229031E+00 -9.16873228647E+00 -9.16873228730E+00 -9.16873230102E+00 -9.16873230824E+00 -9.16873228888E+00 -9.16873227546E+00 -9.16873229047E+00 -9.16873229796E+00 -9.16873228758E+00 -9.16873228483E+00 -9.16873228980E+00 -9.16873229148E+00 -9.16873228576E+00 -9.16873228612E+00 -9.16873229027E+00 -9.16873228587E+00 -9.16873228332E+00 -9.16873227896E+00 -9.16873227622E+00 -9.16873228186E+00 -9.16873227911E+00 -9.16873227520E+00 -9.16873227811E+00 -9.16873227643E+00 -9.16873227273E+00 -9.16873226999E+00 -9.16873227417E+00 -9.16873227926E+00 -9.16873227629E+00 -9.16873227419E+00 -9.16873227330E+00 -9.16873227214E+00 -9.16873227068E+00 -9.16873226943E+00 -9.16873227011E+00 -9.16873226797E+00 -9.16873226428E+00 -9.16873225781E+00 -9.16873225366E+00 -9.16873225898E+00 -9.16873226340E+00 -9.16873225958E+00 -9.16873225268E+00 -9.16873225267E+00 -9.16873225641E+00 -9.16873225490E+00 -9.16873225109E+00 -9.16873225117E+00 -9.16873225096E+00 -9.16873224447E+00 -9.16873223585E+00 -9.16873223361E+00 -9.16873223731E+00 -9.16873223801E+00 -9.16873223408E+00 -9.16873223161E+00 -9.16873223498E+00 -9.16873223475E+00 -9.16873222796E+00 -9.16873222588E+00 -9.16873222590E+00 -9.16873222216E+00 -9.16873221712E+00 -9.16873221429E+00 -9.16873221287E+00 -9.16873221275E+00 -9.16873221062E+00 -9.16873220588E+00 -9.16873220337E+00 -9.16873220141E+00 -9.16873220000E+00 -9.16873219515E+00 -9.16873219074E+00 -9.16873219212E+00 -9.16873219132E+00 -9.16873218728E+00 -9.16873218402E+00 -9.16873218218E+00 -9.16873217809E+00 -9.16873217212E+00 -9.16873216825E+00 -9.16873216605E+00 -9.16873216360E+00 -9.16873215936E+00 -9.16873215640E+00 -9.16873215483E+00 -9.16873215108E+00 -9.16873214583E+00 -9.16873214208E+00 -9.16873213966E+00 -9.16873213707E+00 -9.16873213203E+00 -9.16873212572E+00 -9.16873212311E+00 -9.16873212054E+00 -9.16873211451E+00 -9.16873210947E+00 -9.16873210670E+00 -9.16873210219E+00 -9.16873209572E+00 -9.16873209003E+00 -9.16873208561E+00 -9.16873208152E+00 -9.16873207634E+00 -9.16873207049E+00 -9.16873206598E+00 -9.16873206182E+00 -9.16873205684E+00 -9.16873205091E+00 -9.16873204499E+00 -9.16873204038E+00 -9.16873203415E+00 -9.16873202654E+00 -9.16873202011E+00 -9.16873201389E+00 -9.16873200799E+00 -9.16873200187E+00 -9.16873199486E+00 -9.16873198789E+00 -9.16873198094E+00 -9.16873197378E+00 -9.16873196669E+00 -9.16873196034E+00 -9.16873195360E+00 -9.16873194554E+00 -9.16873193668E+00 -9.16873192765E+00 -9.16873191962E+00 -9.16873191191E+00 -9.16873190347E+00 -9.16873189482E+00 -9.16873188671E+00 -9.16873187840E+00 -9.16873186858E+00 -9.16873185839E+00 -9.16873184889E+00 -9.16873183949E+00 -9.16873182961E+00 -9.16873181952E+00 -9.16873180944E+00 -9.16873179900E+00 -9.16873178765E+00 -9.16873177638E+00 -9.16873176561E+00 -9.16873175399E+00 -9.16873174161E+00 -9.16873172940E+00 -9.16873171776E+00 -9.16873170631E+00 -9.16873169404E+00 -9.16873168010E+00 -9.16873166645E+00 -9.16873165372E+00 -9.16873163978E+00 -9.16873162564E+00 -9.16873161161E+00 -9.16873159684E+00 -9.16873158174E+00 -9.16873156632E+00 -9.16873155078E+00 -9.16873153530E+00 -9.16873151954E+00 -9.16873150297E+00 -9.16873148590E+00 -9.16873146871E+00 -9.16873145122E+00 -9.16873143317E+00 -9.16873141475E+00 -9.16873139605E+00 -9.16873137719E+00 -9.16873135795E+00 -9.16873133800E+00 -9.16873131791E+00 -9.16873129746E+00 -9.16873127640E+00 -9.16873125494E+00 -9.16873123303E+00 -9.16873121092E+00 -9.16873118843E+00 -9.16873116481E+00 -9.16873114073E+00 -9.16873111680E+00 -9.16873109202E+00 -9.16873106638E+00 -9.16873104078E+00 -9.16873101476E+00 -9.16873098797E+00 -9.16873096077E+00 -9.16873093284E+00 -9.16873090400E+00 -9.16873087479E+00 -9.16873084530E+00 -9.16873081486E+00 -9.16873078392E+00 -9.16873075256E+00 -9.16873072019E+00 -9.16873068703E+00 -9.16873065341E+00 -9.16873061928E+00 -9.16873058424E+00 -9.16873054845E+00 -9.16873051203E+00 -9.16873047477E+00 -9.16873043679E+00 -9.16873039804E+00 -9.16873035847E+00 -9.16873031803E+00 -9.16873027663E+00 -9.16873023438E+00 -9.16873019121E+00 -9.16873014720E+00 -9.16873010252E+00 -9.16873005690E+00 -9.16873001017E+00 -9.16872996253E+00 -9.16872991407E+00 -9.16872986443E+00 -9.16872981341E+00 -9.16872976156E+00 -9.16872970891E+00 -9.16872965493E+00 -9.16872959981E+00 -9.16872954353E+00 -9.16872948589E+00 -9.16872942717E+00 -9.16872936737E+00 -9.16872930637E+00 -9.16872924392E+00 -9.16872918004E+00 -9.16872911496E+00 -9.16872904850E+00 -9.16872898052E+00 -9.16872891114E+00 -9.16872884031E+00 -9.16872876802E+00 -9.16872869418E+00 -9.16872861873E+00 -9.16872854179E+00 -9.16872846318E+00 -9.16872838290E+00 -9.16872830099E+00 -9.16872821723E+00 -9.16872813156E+00 -9.16872804406E+00 -9.16872795471E+00 -9.16872786352E+00 -9.16872777040E+00 -9.16872767523E+00 -9.16872757806E+00 -9.16872747883E+00 -9.16872737732E+00 -9.16872727363E+00 -9.16872716777E+00 -9.16872705959E+00 -9.16872694903E+00 -9.16872683603E+00 -9.16872672065E+00 -9.16872660281E+00 -9.16872648235E+00 -9.16872635922E+00 -9.16872623343E+00 -9.16872610490E+00 -9.16872597357E+00 -9.16872583937E+00 -9.16872570220E+00 -9.16872556194E+00 -9.16872541858E+00 -9.16872527208E+00 -9.16872512234E+00 -9.16872496927E+00 -9.16872481284E+00 -9.16872465295E+00 -9.16872448943E+00 -9.16872432228E+00 -9.16872415140E+00 -9.16872397664E+00 -9.16872379796E+00 -9.16872361529E+00 -9.16872342854E+00 -9.16872323756E+00 -9.16872304219E+00 -9.16872284237E+00 -9.16872263806E+00 -9.16872242909E+00 -9.16872221533E+00 -9.16872199673E+00 -9.16872177310E+00 -9.16872154431E+00 -9.16872131025E+00 -9.16872107078E+00 -9.16872082574E+00 -9.16872057503E+00 -9.16872031852E+00 -9.16872005600E+00 -9.16871978734E+00 -9.16871951238E+00 -9.16871923097E+00 -9.16871894295E+00 -9.16871864811E+00 -9.16871834627E+00 -9.16871803723E+00 -9.16871772086E+00 -9.16871739693E+00 -9.16871706523E+00 -9.16871672559E+00 -9.16871637777E+00 -9.16871602154E+00 -9.16871565665E+00 -9.16871528287E+00 -9.16871489999E+00 -9.16871450776E+00 -9.16871410588E+00 -9.16871369408E+00 -9.16871327212E+00 -9.16871283973E+00 -9.16871239659E+00 -9.16871194236E+00 -9.16871147672E+00 -9.16871099943E+00 -9.16871051010E+00 -9.16871000838E+00 -9.16870949392E+00 -9.16870896631E+00 -9.16870842520E+00 -9.16870787016E+00 -9.16870730083E+00 -9.16870671680E+00 -9.16870611759E+00 -9.16870550273E+00 -9.16870487176E+00 -9.16870422417E+00 -9.16870355947E+00 -9.16870287715E+00 -9.16870217668E+00 -9.16870145747E+00 -9.16870071895E+00 -9.16869996054E+00 -9.16869918156E+00 -9.16869838138E+00 -9.16869755932E+00 -9.16869671467E+00 -9.16869584676E+00 -9.16869495482E+00 -9.16869403804E+00 -9.16869309565E+00 -9.16869212682E+00 -9.16869113062E+00 -9.16869010612E+00 -9.16868905245E+00 -9.16868796863E+00 -9.16868685362E+00 -9.16868570636E+00 -9.16868452579E+00 -9.16868331073E+00 -9.16868205995E+00 -9.16868077227E+00 -9.16867944645E+00 -9.16867808113E+00 -9.16867667487E+00 -9.16867522624E+00 -9.16867373377E+00 -9.16867219586E+00 -9.16867061085E+00 -9.16866897706E+00 -9.16866729273E+00 -9.16866555602E+00 -9.16866376499E+00 -9.16866191760E+00 -9.16866001177E+00 -9.16865804533E+00 -9.16865601600E+00 -9.16865392140E+00 -9.16865175906E+00 -9.16864952638E+00 -9.16864722060E+00 -9.16864483895E+00 -9.16864237848E+00 -9.16863983607E+00 -9.16863720851E+00 -9.16863449243E+00 -9.16863168432E+00 -9.16862878051E+00 -9.16862577711E+00 -9.16862267013E+00 -9.16861945534E+00 -9.16861612834E+00 -9.16861268451E+00 -9.16860911900E+00 -9.16860542675E+00 -9.16860160248E+00 -9.16859764062E+00 -9.16859353535E+00 -9.16858928057E+00 -9.16858486990E+00 -9.16858029665E+00 -9.16857555376E+00 -9.16857063386E+00 -9.16856552927E+00 -9.16856023179E+00 -9.16855473290E+00 -9.16854902371E+00 -9.16854309483E+00 -9.16853693636E+00 -9.16853053793E+00 -9.16852388867E+00 -9.16851697715E+00 -9.16850979130E+00 -9.16850231850E+00 -9.16849454545E+00 -9.16848645814E+00 -9.16847804185E+00 -9.16846928110E+00 -9.16846015959E+00 -9.16845066018E+00 -9.16844076475E+00 -9.16843045431E+00 -9.16841970881E+00 -9.16840850708E+00 -9.16839682686E+00 -9.16838464475E+00 -9.16837193600E+00 -9.16835867449E+00 -9.16834483272E+00 -9.16833038169E+00 -9.16831529078E+00 -9.16829952765E+00 -9.16828305823E+00 -9.16826584650E+00 -9.16824785444E+00 -9.16822904187E+00 -9.16820936638E+00 -9.16818878318E+00 -9.16816724490E+00 -9.16814470148E+00 -9.16812110001E+00 -9.16809638455E+00 -9.16807049591E+00 -9.16804337153E+00 -9.16801494524E+00 -9.16798514696E+00 -9.16795390258E+00 -9.16792113366E+00 -9.16788675714E+00 -9.16785068509E+00 -9.16781282441E+00 -9.16777307653E+00 -9.16773133698E+00 -9.16768749514E+00 -9.16764143377E+00 -9.16759302862E+00 -9.16754214808E+00 -9.16748865261E+00 -9.16743239428E+00 -9.16737321627E+00 -9.16731095230E+00 -9.16724542606E+00 -9.16717645057E+00 -9.16710382749E+00 -9.16702734645E+00 -9.16694678434E+00 -9.16686190450E+00 -9.16677245578E+00 -9.16667817178E+00 -9.16657876984E+00 -9.16647395002E+00 -9.16636339412E+00 -9.16624676453E+00 -9.16612370300E+00 -9.16599382946E+00 -9.16585674070E+00 -9.16571200884E+00 -9.16555917999E+00 -9.16539777269E+00 -9.16522727632E+00 -9.16504714927E+00 -9.16485681720E+00 -9.16465567116E+00 -9.16444306560E+00 -9.16421831643E+00 -9.16398069872E+00 -9.16372944448E+00 -9.16346374035E+00 -9.16318272519E+00 -9.16288548764E+00 -9.16257106357E+00 -9.16223843335E+00 -9.16188651922E+00 -9.16151418261E+00 -9.16112022135E+00 -9.16070336682E+00 -9.16026228137E+00 -9.15979555563E+00 -9.15930170572E+00 -9.15877917084E+00 -9.15822631088E+00 -9.15764140445E+00 -9.15702264705E+00 -9.15636814946E+00 -9.15567593687E+00 -9.15494394828E+00 -9.15417003679E+00 -9.15335197077E+00 -9.15248743571E+00 -9.15157403736E+00 -9.15060930611E+00 -9.14959070471E+00 -9.14851563400E+00 -9.14738144140E+00 -9.14618544104E+00 -9.14492492529E+00 -9.14359717612E+00 -9.14219950376E+00 -9.14072926482E+00 -9.13918388528E+00 -9.13756092467E+00 -9.13585810909E+00 -9.13407336885E+00 -9.13220492060E+00 -9.13025134606E+00 -9.12821164985E+00 -9.12608536677E+00 -9.12387269135E+00 -9.12157459023E+00 -9.11919294146E+00 -9.11673070609E+00 -9.11419213098E+00 -9.11158296350E+00 -9.10891068754E+00 -9.10618479567E+00 -9.10341712360E+00 -9.10062220621E+00 -9.09781766082E+00 -9.09502463589E+00 -9.09226832731E+00 -9.08957853522E+00 -9.08699028047E+00 -9.08454450913E+00 -9.08228884796E+00 -9.08027846628E+00 -9.07857701697E+00 -9.07725762964E+00 -9.07640407185E+00 -9.07611197059E+00 -9.07649005870E+00 -9.07766168002E+00 -9.07976632164E+00 -9.08296116355E+00 -9.08742284201E+00 -9.09334921830E+00 -9.10096126220E+00 -9.11050495768E+00 -9.12225317259E+00 -9.13650759697E+00 -9.15360056112E+00 -9.17389669909E+00 -9.19779451227E+00 -9.22572757992E+00 -9.25816534422E+00 -9.29561352486E+00 -9.33861385863E+00 -9.38774302802E+00 -9.44361063707E+00 -9.50685607069E+00 -9.57814414740E+00 -9.65815898604E+00 -9.74759606196E+00 -9.84715275012E+00 -9.95751601142E+00 -1.00793481008E+01 -1.02132698566E+01 -1.03598404654E+01 -1.05195353429E+01 -1.06927214623E+01 -1.08796298041E+01 -1.10803257538E+01 -1.12946776049E+01 -1.15223247179E+01 -1.17626464644E+01 -1.20147305413E+01 -1.22773434846E+01 -1.25489086201E+01 -1.28274871601E+01 -1.31107664864E+01 -1.33960603130E+01 -1.36803183523E+01 -1.39601505531E+01 -1.42318649284E+01 -1.44915203323E+01 -1.47349958838E+01 -1.49580747928E+01 -1.51565411220E+01 -1.53262880334E+01 -1.54634349815E+01 -1.55644474731E+01 -1.56262554725E+01 -1.56463662917E+01 -1.56229643416E+01 -1.55549948693E+01 -1.54422233436E+01 -1.52852719915E+01 -1.50856235535E+01 -1.48455947237E+01 -1.45682875813E+01 -1.42575046054E+01 -1.39176415899E+01 -1.35535659135E+01 -1.31704786076E+01 -1.27737673068E+01 -1.23688630799E+01 -1.19611026031E+01 -1.15555980287E+01 -1.11571260404E+01 -1.07700352897E+01 -1.03981742631E+01 -1.00448407962E+01 -9.71275444303E+00 -9.40404840110E+00 -9.12027791269E+00 -8.86244726050E+00 -8.63104746987E+00 -8.42610234340E+00 -8.24722323933E+00 -8.09366707491E+00 -7.96439478578E+00 -7.85812917650E+00 -7.77341113048E+00 -7.70865165904E+00 -7.66217867617E+00 -7.63227885190E+00 -7.61723442729E+00 -7.61535453770E+00 -7.62499949651E+00 -7.64460101104E+00 -7.67267876374E+00 -7.70785030079E+00 -7.74883857883E+00 -7.79447640932E+00 -7.84370694634E+00 -7.89558311462E+00 -7.94926452607E+00 -8.00401279835E+00 -8.05918635315E+00 -8.11423398380E+00 -8.16868804769E+00 -8.22215778453E+00 -8.27432192887E+00 -8.32492164643E+00 -8.37375409294E+00 -8.42066570528E+00 -8.46554607055E+00 -8.50832223126E+00 -8.54895356419E+00 -8.58742691041E+00 -8.62375193128E+00 -8.65795743381E+00 -8.69008795870E+00 -8.72020046001E+00 -8.74836159044E+00 -8.77464546586E+00 -8.79913152708E+00 -8.82190275281E+00 -8.84304423753E+00 -8.86264190660E+00 -8.88078144800E+00 -8.89754748387E+00 -8.91302288717E+00 -8.92728821600E+00 -8.94042129133E+00 -8.95249687995E+00 -8.96358648630E+00 -8.97375818926E+00 -8.98307655267E+00 -8.99160261488E+00 -8.99939388172E+00 -9.00650438864E+00 -9.01298478424E+00 -9.01888241379E+00 -9.02424144549E+00 -9.02910300010E+00 -9.03350528894E+00 -9.03748375579E+00 -9.04107121957E+00 -9.04429802445E+00 -9.04719218382E+00 -9.04977952204E+00 -9.05208381362E+00 -9.05412691529E+00 -9.05592889597E+00 -9.05750816047E+00 -9.05888156529E+00 -9.06006453043E+00 -9.06107114401E+00 -9.06191426053E+00 -9.06260559446E+00 -9.06315580727E+00 -9.06357458779E+00 -9.06387072857E+00 -9.06405219652E+00 -9.06412619823E+00 -9.06409924100E+00 -9.06397718924E+00 -9.06376531666E+00 -9.06346835469E+00 -9.06309053698E+00 -9.06263564075E+00 -9.06210702486E+00 -9.06150766443E+00 -9.06084018358E+00 -9.06010688498E+00 -9.05930977719E+00 -9.05845059982E+00 -9.05753084680E+00 -9.05655178756E+00 -9.05551448674E+00 -9.05441982222E+00 -9.05326850170E+00 -9.05206107793E+00 -9.05079796283E+00 -9.04947944050E+00 -9.04810567905E+00 -9.04667674163E+00 -9.04519259663E+00 -9.04365312694E+00 -9.04205813869E+00 -9.04040736922E+00 -9.03870049440E+00 -9.03693713555E+00 -9.03511686570E+00 -9.03323921549E+00 -9.03130367860E+00 -9.02930971675E+00 -9.02725676446E+00 -9.02514423334E+00 -9.02297151614E+00 -9.02073799054E+00 -9.01844302266E+00 -9.01608597026E+00 -9.01366618587E+00 -9.01118301956E+00 -9.00863582162E+00 -9.00602394503E+00 -9.00334674780E+00 -9.00060359512E+00 -8.99779386137E+00 -8.99491693210E+00 -8.99197220578E+00 -8.98895909553E+00 -8.98587703070E+00 -8.98272545846E+00 -8.97950384519E+00 -8.97621167796E+00 -8.97284846583E+00 -8.96941374115E+00 -8.96590706091E+00 -8.96232800795E+00 -8.95867619220E+00 -8.95495125195E+00 -8.95115285512E+00 -8.94728070047E+00 -8.94333451897E+00 -8.93931407506E+00 -8.93521916810E+00 -8.93104963375E+00 -8.92680534550E+00 -8.92248621622E+00 -8.91809219986E+00 -8.91362329317E+00 -8.90907953755E+00 -8.90446102110E+00 -8.89976788064E+00 -8.89500030400E+00 -8.89015853239E+00 -8.88524286295E+00 -8.88025365145E+00 -8.87519131521E+00 -8.87005633616E+00 -8.86484926411E+00 -8.85957072028E+00 -8.85422140099E+00 -8.84880208163E+00 -8.84331362084E+00 -8.83775696498E+00 -8.83213315283E+00 -8.82644332062E+00 -8.82068870731E+00 -8.81487066017E+00 -8.80899064072E+00 -8.80305023094E+00 -8.79705113984E+00 -8.79099521037E+00 -8.78488442668E+00 -8.77872092179E+00 -8.77250698551E+00 -8.76624507288E+00 -8.75993781293E+00 -8.75358801778E+00 -8.74719869226E+00 -8.74077304377E+00 -8.73431449265E+00 -8.72782668289E+00 -8.72131349324E+00 -8.71477904864E+00 -8.70822773210E+00 -8.70166419684E+00 -8.69509337879E+00 -8.68852050934E+00 -8.68195112842E+00 -8.67539109766E+00 -8.66884661389E+00 -8.66232422255E+00 -8.65583083130E+00 -8.64937372347E+00 -8.64296057143E+00 -8.63659944969E+00 -8.63029884767E+00 -8.62406768195E+00 -8.61791530787E+00 -8.61185153033E+00 -8.60588661353E+00 -8.60003128956E+00 -8.59429676548E+00 -8.58869472864E+00 -8.58323735008E+00 -8.57793728550E+00 -8.57280767361E+00 -8.56786213139E+00 -8.56311474592E+00 -8.55858006220E+00 -8.55427306671E+00 -8.55020916592E+00 -8.54640415948E+00 -8.54287420724E+00 -8.53963578973E+00 -8.53670566131E+00 -8.53410079536E+00 -8.53183832085E+00 -8.52993544954E+00 -8.52840939315E+00 -8.52727726977E+00 -8.52655599878E+00 -8.52626218368E+00 -8.52641198214E+00 -8.52702096265E+00 -8.52810394743E+00 -8.52967484098E+00 -8.53174644420E+00 -8.53433025378E+00 -8.53743624704E+00 -8.54107265235E+00 -8.54524570586E+00 -8.54995939500E+00 -8.55521519021E+00 -8.56101176620E+00 -8.56734471448E+00 -8.57420624977E+00 -8.58158491276E+00 -8.58946527263E+00 -8.59782763298E+00 -8.60664774557E+00 -8.61589653663E+00 -8.62553985113E+00 -8.63553822078E+00 -8.64584666233E+00 -8.65641451266E+00 -8.66718530800E+00 -8.67809671464E+00 -8.68908051849E+00 -8.70006268139E+00 -8.71096347120E+00 -8.72169767311E+00 -8.73217488851E+00 -8.74229992740E+00 -8.75197329918E+00 -8.76109180544E+00 -8.76954923706E+00 -8.77723717603E+00 -8.78404590058E+00 -8.78986539002E+00 -8.79458642316E+00 -8.79810176180E+00 -8.80030740786E+00 -8.80110391996E+00 -8.80039777245E+00 -8.79810273679E+00 -8.79414126259E+00 -8.78844583311E+00 -8.78096026733E+00 -8.77164093939E+00 -8.76045788442E+00 -8.74739575956E+00 -8.73245462899E+00 -8.71565054335E+00 -8.69701588643E+00 -8.67659946570E+00 -8.65446632869E+00 -8.63069729369E+00 -8.60538819117E+00 -8.57864882130E+00 -8.55060164267E+00 -8.52138021761E+00 -8.49112744900E+00 -8.45999365319E+00 -8.42813452080E+00 -8.39570902317E+00 -8.36287732533E+00 -8.32979876642E+00 -8.29662996577E+00 -8.26352310699E+00 -8.23062444362E+00 -8.19807305950E+00 -8.16599990437E+00 -8.13452711273E+00 -8.10376760092E+00 -8.07382492569E+00 -8.04479337739E+00 -8.01675827256E+00 -7.98979640496E+00 -7.96397661040E+00 -7.93936039975E+00 -7.91600261481E+00 -7.89395206435E+00 -7.87325210091E+00 -7.85394110340E+00 -7.83605283531E+00 -7.81961665353E+00 -7.80465754817E+00 -7.79119599906E+00 -7.77924764089E+00 -7.76882273494E+00 -7.75992545278E+00 -7.75255298558E+00 -7.74669450213E+00 -7.74232998992E+00 -7.73942902597E+00 -7.73794953775E+00 -7.73783662859E+00 -7.73902155566E+00 -7.74142096009E+00 -7.74493645709E+00 -7.74945469575E+00 -7.75484799252E+00 -7.76097562694E+00 -7.76768586076E+00 -7.77481870352E+00 -7.78220939826E+00 -7.78969254430E+00 -7.79710671386E+00 -7.80429936216E+00 -7.81113178297E+00 -7.81748383069E+00 -7.82325812201E+00 -7.82838344737E+00 -7.83281716698E+00 -7.83654643267E+00 -7.83958816105E+00 -7.84198777438E+00 -7.84381681403E+00 -7.84516960794E+00 -7.84615922928E+00 -7.84691301535E+00 -7.84756792077E+00 -7.84826596116E+00 -7.84914996581E+00 -7.85035980831E+00 -7.85202922821E+00 -7.85428330166E+00 -7.85723656968E+00 -7.86099179151E+00 -7.86563926093E+00 -7.87125660362E+00 -7.87790896463E+00 -7.88564949361E+00 -7.89452004038E+00 -7.90455198295E+00 -7.91576712171E+00 -7.92817858595E+00 -7.94179171166E+00 -7.95660486074E+00 -7.97261016182E+00 -7.98979416142E+00 -8.00813838069E+00 -8.02761977819E+00 -8.04821112294E+00 -8.06988128439E+00 -8.09259544769E+00 -8.11631526328E+00 -8.14099894009E+00 -8.16660129156E+00 -8.19307374288E+00 -8.22036430740E+00 -8.24841753928E+00 -8.27717446845E+00 -8.30657252339E+00 -8.33654544609E+00 -8.36702320313E+00 -8.39793189610E+00 -8.42919367411E+00 -8.46072665081E+00 -8.49244482823E+00 -8.52425802958E+00 -8.55607184354E+00 -8.58778758234E+00 -8.61930225681E+00 -8.65050857140E+00 -8.68129494294E+00 -8.71154554703E+00 -8.74114039604E+00 -8.76995545304E+00 -8.79786278547E+00 -8.82473076207E+00 -8.85042429598E+00 -8.87480513598E+00 -8.89773220676E+00 -8.91906199819E+00 -8.93864900242E+00 -8.95634619700E+00 -8.97200557182E+00 -8.98547869796E+00 -8.99661733788E+00 -9.00527409833E+00 -9.01130313096E+00 -9.01456089093E+00 -9.01490697027E+00 -9.01220503287E+00 -9.00642049621E+00 -8.99793118816E+00 -8.98708147770E+00 -8.97345077267E+00 -8.95648153499E+00 -8.93599250918E+00 -8.91191255335E+00 -8.88418696824E+00 -8.85277907844E+00 -8.81767177194E+00 -8.77886897328E+00 -8.73639702339E+00 -8.69030593621E+00 -8.64067049930E+00 -8.58759118275E+00 -8.53119481720E+00 -8.47163499831E+00 -8.40909217080E+00 -8.34377334050E+00 -8.27591135769E+00 -8.20576370839E+00 -8.13361074338E+00 -8.05975326364E+00 -7.98450937094E+00 -7.90821048285E+00 -7.83119639245E+00 -7.75380923472E+00 -7.67638620254E+00 -7.59925083749E+00 -7.52270277955E+00 -7.44696500874E+00 -7.37206723179E+00 -7.29799496639E+00 -7.22462038619E+00 -7.15204094410E+00 -7.08048342984E+00 -7.00969960329E+00 -6.93955645017E+00 -6.87016089903E+00 -6.80150126244E+00 -6.73356620267E+00 -6.66634472339E+00 -6.59982616123E+00 -6.53400017705E+00 -6.46885674694E+00 -6.40438615300E+00 -6.34057897397E+00 -6.27742607557E+00 -6.21491860082E+00 -6.15304796018E+00 -6.09180582163E+00 -6.03118410072E+00 -5.97117495068E+00 -5.91177075246E+00 -5.85296410500E+00 -5.79474781548E+00 -5.73711488984E+00 -5.68005852337E+00 -5.62357209156E+00 -5.56764914118E+00 -5.51228338158E+00 -5.45746867624E+00 -5.40319903459E+00 -5.34946860415E+00 -5.29627166287E+00 -5.24360261183E+00 -5.19145596817E+00 -5.13982635837E+00 -5.08870851176E+00 -5.03809725433E+00 -4.98798750288E+00 -4.93837425937E+00 -4.88925260563E+00 -4.84061769831E+00 -4.79246476415E+00 -4.74478909549E+00 -4.69758604614E+00 -4.65085102746E+00 -4.60457950479E+00 -4.55876699415E+00 -4.51340905948E+00 -4.46850130923E+00 -4.42403939387E+00 -4.38001900527E+00 -4.33643587368E+00 -4.29328576547E+00 -4.25056448278E+00 -4.20826786200E+00 -4.16639177292E+00 -4.12493211798E+00 -4.08388483176E+00 -4.04324588064E+00 -4.00301126256E+00 -3.96317700697E+00 -3.92373917485E+00 -3.88469385882E+00 -3.84603718333E+00 -3.80776530489E+00 -3.76987441235E+00 -3.73236072713E+00 -3.69522050358E+00 -3.65845002918E+00 -3.62204562486E+00 -3.58600364517E+00 -3.55032047849E+00 -3.51499254720E+00 -3.48001630777E+00 -3.44538825079E+00 -3.41110490106E+00 -3.37716281750E+00 -3.34355859307E+00 -3.31028885470E+00 -3.27735026312E+00 -3.24473951265E+00 -3.21245333100E+00 -3.18048847901E+00 -3.14884175040E+00 -3.11750997146E+00 -3.08649000072E+00 -3.05577872868E+00 -3.02537307743E+00 -2.99527000035E+00 -2.96546648174E+00 -2.93595953649E+00 -2.90674620973E+00 -2.87782357646E+00 -2.84918874128E+00 -2.82083883798E+00 -2.79277102924E+00 -2.76498250630E+00 -2.73747048862E+00 -2.71023222362E+00 -2.68326498629E+00 -2.65656607894E+00 -2.63013283090E+00 -2.60396259820E+00 -2.57805276332E+00 -2.55240073486E+00 -2.52700394731E+00 -2.50185986076E+00 -2.47696596063E+00 -2.45231975742E+00 -2.42791878642E+00 -2.40376060750E+00 -2.37984280484E+00 -2.35616298666E+00 -2.33271878500E+00 -2.30950785550E+00 -2.28652787711E+00 -2.26377655190E+00 -2.24125160479E+00 -2.21895078336E+00 -2.19687185760E+00 -2.17501261968E+00 -2.15337088376E+00 -2.13194448573E+00 -2.11073128302E+00 -2.08972915436E+00 -2.06893599962E+00 -2.04834973953E+00 -2.02796831552E+00 -2.00778968950E+00 -1.98781184366E+00 -1.96803278026E+00 -1.94845052142E+00 -1.92906310898E+00 -1.90986860421E+00 -1.89086508769E+00 -1.87205065912E+00 -1.85342343705E+00 -1.83498155880E+00 -1.81672318020E+00 -1.79864647542E+00 -1.78074963681E+00 -1.76303087469E+00 -1.74548841719E+00 -1.72812051009E+00 -1.71092541658E+00 -1.69390141717E+00 -1.67704680945E+00 -1.66035990796E+00 -1.64383904401E+00 -1.62748256551E+00 -1.61128883681E+00 -1.59525623853E+00 -1.57938316739E+00 -1.56366803609E+00 -1.54810927310E+00 -1.53270532253E+00 -1.51745464398E+00 -1.50235571237E+00 -1.48740701780E+00 -1.47260706537E+00 -1.45795437509E+00 -1.44344748167E+00 -1.42908493440E+00 -1.41486529702E+00 -1.40078714754E+00 -1.38684907815E+00 -1.37304969501E+00 -1.35938761817E+00 -1.34586148141E+00 -1.33246993209E+00 -1.31921163106E+00 -1.30608525245E+00 -1.29308948363E+00 -1.28022302499E+00 -1.26748458987E+00 -1.25487290441E+00 -1.24238670743E+00 -1.23002475029E+00 -1.21778579678E+00 -1.20566862299E+00 -1.19367201718E+00 -1.18179477967E+00 -1.17003572273E+00 -1.15839367044E+00 -1.14686745855E+00 -1.13545593445E+00 -1.12415795689E+00 -1.11297239628E+00 -1.10189813313E+00 -1.09093406547E+00 -1.08007908177E+00 -1.06933207523E+00 -1.05869206252E+00 -1.04815790057E+00 -1.03772855639E+00 -1.02740298473E+00 -1.01718015423E+00 -1.00705904259E+00 -9.97038637689E-01 -9.87117937486E-01 -9.77295949900E-01 -9.67571692722E-01 -9.57944193520E-01 -9.48412489536E-01 -9.38975627591E-01 -9.29632664195E-01 -9.20382664632E-01 -9.11224704103E-01 -9.02157866803E-01 -8.93181245309E-01 -8.84293943432E-01 -8.75495128288E-01 -8.66783754058E-01 -8.58159111568E-01 -8.49620282467E-01 -8.41166419407E-01 -8.32796673689E-01 -8.24510208333E-01 -8.16306194684E-01 -8.08183812335E-01 -8.00142249041E-01 -7.92180700639E-01 -7.84298370967E-01 -7.76494471786E-01 -7.68768222698E-01 -7.61118851074E-01 -7.53545591969E-01 -7.46047688052E-01 -7.38624389524E-01 -7.31274954052E-01 -7.23998646684E-01 -7.16794739784E-01 -7.09662512955E-01 -7.02601252969E-01 -6.95610253694E-01 -6.88688816024E-01 -6.81836247810E-01 -6.75051863788E-01 -6.68334985515E-01 -6.61684941298E-01 -6.55101066127E-01 -6.48582701607E-01 -6.42129195899E-01 -6.35739903645E-01 -6.29414185912E-01 -6.23151410121E-01 -6.16950949991E-01 -6.10812185470E-01 -6.04734502676E-01 -5.98717293837E-01 -5.92759957226E-01 -5.86861897105E-01 -5.81022523662E-01 -5.75241252956E-01 -5.69517506855E-01 -5.63850712979E-01 -5.58240304644E-01 -5.52685720805E-01 -5.47186405999E-01 -5.41741810289E-01 -5.36351389211E-01 -5.31014603720E-01 -5.25730920131E-01 -5.20499810073E-01 -5.15320750429E-01 -5.10193223290E-01 -5.05116715898E-01 -5.00090720598E-01 -4.95114734788E-01 -4.90188260864E-01 -4.85310806174E-01 -4.80481882969E-01 -4.75701008353E-01 -4.70967704234E-01 -4.66281497278E-01 -4.61641918861E-01 -4.57048505020E-01 -4.52500796410E-01 -4.47998338257E-01 -4.43540680311E-01 -4.39127376803E-01 -4.34757986399E-01 -4.30432072155E-01 -4.26149201477E-01 -4.21908946075E-01 -4.17710881919E-01 -4.13554589199E-01 -4.09439652283E-01 -4.05365659673E-01 -4.01332203967E-01 -3.97338881815E-01 -3.93385293883E-01 -3.89471044809E-01 -3.85595743163E-01 -3.81759001413E-01 -3.77960435881E-01 -3.74199666708E-01 -3.70476317813E-01 -3.66790016859E-01 -3.63140395212E-01 -3.59527087907E-01 -3.55949733611E-01 -3.52407974584E-01 -3.48901456649E-01 -3.45429829150E-01 -3.41992744922E-01 -3.38589860254E-01 -3.35220834853E-01 -3.31885331816E-01 -3.28583017588E-01 -3.25313561936E-01 -3.22076637911E-01 -3.18871921818E-01 -3.15699093183E-01 -3.12557834721E-01 -3.09447832302E-01 -3.06368774925E-01 -3.03320354680E-01 -3.00302266724E-01 1 1 Beta L 1183 1.45105478232E-08 1.48036803337E-08 1.51027345138E-08 1.54078299890E-08 1.57190888017E-08 1.60366354595E-08 1.63605969853E-08 1.66911029680E-08 1.70282856144E-08 1.73722798022E-08 1.77232231335E-08 1.80812559904E-08 1.84465215907E-08 1.88191660457E-08 1.91993384180E-08 1.95871907816E-08 1.99828782827E-08 2.03865592016E-08 2.07983950160E-08 2.12185504657E-08 2.16471936185E-08 2.20844959374E-08 2.25306323491E-08 2.29857813142E-08 2.34501248983E-08 2.39238488450E-08 2.44071426502E-08 2.49001996380E-08 2.54032170375E-08 2.59163960627E-08 2.64399419918E-08 2.69740642502E-08 2.75189764940E-08 2.80748966953E-08 2.86420472296E-08 2.92206549647E-08 2.98109513514E-08 3.04131725161E-08 3.10275593554E-08 3.16543576321E-08 3.22938180739E-08 3.29461964735E-08 3.36117537910E-08 3.42907562582E-08 3.49834754851E-08 3.56901885686E-08 3.64111782034E-08 3.71467327950E-08 3.78971465751E-08 3.86627197190E-08 3.94437584663E-08 4.02405752430E-08 4.10534887863E-08 4.18828242724E-08 4.27289134468E-08 4.35920947562E-08 4.44727134848E-08 4.53711218917E-08 4.62876793523E-08 4.72227525019E-08 4.81767153821E-08 4.91499495908E-08 5.01428444347E-08 5.11557970849E-08 5.21892127360E-08 5.32435047681E-08 5.43190949121E-08 5.54164134182E-08 5.65358992286E-08 5.76780001525E-08 5.88431730455E-08 6.00318839923E-08 6.12446084932E-08 6.24818316540E-08 6.37440483806E-08 6.50317635764E-08 6.63454923448E-08 6.76857601947E-08 6.90531032512E-08 7.04480684697E-08 7.18712138549E-08 7.33231086839E-08 7.48043337341E-08 7.63154815151E-08 7.78571565063E-08 7.94299753982E-08 8.10345673393E-08 8.26715741878E-08 8.43416507682E-08 8.60454651336E-08 8.77836988322E-08 8.95570471808E-08 9.13662195424E-08 9.32119396101E-08 9.50949456964E-08 9.70159910289E-08 9.89758440514E-08 1.00975288731E-07 1.03015124873E-07 1.05096168438E-07 1.07219251872E-07 1.09385224436E-07 1.11594952548E-07 1.13849320129E-07 1.16149228957E-07 1.18495599024E-07 1.20889368911E-07 1.23331496158E-07 1.25822957647E-07 1.28364749997E-07 1.30957889959E-07 1.33603414822E-07 1.36302382833E-07 1.39055873615E-07 1.41864988600E-07 1.44730851472E-07 1.47654608614E-07 1.50637429568E-07 1.53680507503E-07 1.56785059690E-07 1.59952327991E-07 1.63183579356E-07 1.66480106329E-07 1.69843227563E-07 1.73274288354E-07 1.76774661170E-07 1.80345746207E-07 1.83988971948E-07 1.87705795730E-07 1.91497704334E-07 1.95366214572E-07 1.99312873901E-07 2.03339261037E-07 2.07446986589E-07 2.11637693701E-07 2.15913058713E-07 2.20274791827E-07 2.24724637794E-07 2.29264376613E-07 2.33895824240E-07 2.38620833315E-07 2.43441293904E-07 2.48359134257E-07 2.53376321575E-07 2.58494862800E-07 2.63716805417E-07 2.69044238272E-07 2.74479292409E-07 2.80024141923E-07 2.85681004828E-07 2.91452143943E-07 2.97339867802E-07 3.03346531573E-07 3.09474538000E-07 3.15726338369E-07 3.22104433483E-07 3.28611374665E-07 3.35249764779E-07 3.42022259268E-07 3.48931567221E-07 3.55980452453E-07 3.63171734612E-07 3.70508290307E-07 3.77993054259E-07 3.85629020472E-07 3.93419243435E-07 4.01366839340E-07 4.09474987333E-07 4.17746930780E-07 4.26185978569E-07 4.34795506432E-07 4.43578958294E-07 4.52539847654E-07 4.61681758987E-07 4.71008349179E-07 4.80523348990E-07 4.90230564548E-07 5.00133878867E-07 5.10237253407E-07 5.20544729650E-07 5.31060430726E-07 5.41788563054E-07 5.52733418032E-07 5.63899373746E-07 5.75290896727E-07 5.86912543738E-07 5.98768963591E-07 6.10864899013E-07 6.23205188539E-07 6.35794768449E-07 6.48638674743E-07 6.61742045156E-07 6.75110121209E-07 6.88748250311E-07 7.02661887897E-07 7.16856599606E-07 7.31338063512E-07 7.46112072394E-07 7.61184536053E-07 7.76561483674E-07 7.92249066243E-07 8.08253559000E-07 8.24581363957E-07 8.41239012454E-07 8.58233167771E-07 8.75570627797E-07 8.93258327748E-07 9.11303342939E-07 9.29712891617E-07 9.48494337847E-07 9.67655194457E-07 9.87203126046E-07 1.00714595205E-06 1.02749164986E-06 1.04824835803E-06 1.06942437951E-06 1.09102818501E-06 1.11306841632E-06 1.13555388985E-06 1.15849360006E-06 1.18189672316E-06 1.20577262071E-06 1.23013084338E-06 1.25498113479E-06 1.28033343539E-06 1.30619788642E-06 1.33258483403E-06 1.35950483333E-06 1.38696865270E-06 1.41498727801E-06 1.44357191710E-06 1.47273400420E-06 1.50248520454E-06 1.53283741899E-06 1.56380278884E-06 1.59539370066E-06 1.62762279123E-06 1.66050295261E-06 1.69404733730E-06 1.72826936352E-06 1.76318272052E-06 1.79880137412E-06 1.83513957224E-06 1.87221185066E-06 1.91003303878E-06 1.94861826558E-06 1.98798296566E-06 2.02814288542E-06 2.06911408938E-06 2.11091296656E-06 2.15355623706E-06 2.19923637966E-06 2.24391104696E-06 2.28908477762E-06 2.33533891888E-06 2.38227981835E-06 2.43060996648E-06 2.47948839594E-06 2.52958205902E-06 2.58061851734E-06 2.63262514561E-06 2.68590708066E-06 2.74010634505E-06 2.79538132983E-06 2.85170336796E-06 2.90944126311E-06 2.96808591546E-06 3.02799723389E-06 3.08903506127E-06 3.15155838738E-06 3.21509183146E-06 3.28003878404E-06 3.34612218358E-06 3.41386889992E-06 3.48261191770E-06 3.55306977789E-06 3.62463546628E-06 3.69793764310E-06 3.77252552836E-06 3.84873624461E-06 3.92630259753E-06 4.00574923377E-06 4.08649583375E-06 4.16908065436E-06 4.25315352498E-06 4.33901899372E-06 4.42680084451E-06 4.51610110864E-06 4.60718385278E-06 4.70021269060E-06 4.79525997837E-06 4.89197174880E-06 4.99081423262E-06 5.09147328674E-06 5.19445665851E-06 5.29918966786E-06 5.40629652592E-06 5.51531408520E-06 5.62690602261E-06 5.74040818808E-06 5.85630106651E-06 5.97461059550E-06 6.09517715620E-06 6.21833563214E-06 6.34383689227E-06 6.47206946517E-06 6.60264852872E-06 6.73601959376E-06 6.87213034318E-06 7.01075579000E-06 7.15249664078E-06 7.29677642969E-06 7.44428192750E-06 7.59449343907E-06 7.74792322946E-06 7.90439826654E-06 8.06406478522E-06 8.22685491713E-06 8.39304338823E-06 8.56251391870E-06 8.73552029679E-06 8.91182016963E-06 9.09190323005E-06 9.27546041220E-06 9.46286890780E-06 9.65385319687E-06 9.84893519785E-06 1.00477455241E-05 1.02507895789E-05 1.04576959568E-05 1.06690170124E-05 1.08844062831E-05 1.11043799092E-05 1.13285930446E-05 1.15573085533E-05 1.17909290599E-05 1.20289146931E-05 1.22719139095E-05 1.25197395374E-05 1.27727223377E-05 1.30305479604E-05 1.32938696915E-05 1.35622676330E-05 1.38362384748E-05 1.41157141445E-05 1.44008282230E-05 1.46915832212E-05 1.49884943134E-05 1.52910886722E-05 1.56000553764E-05 1.59150365428E-05 1.62366196653E-05 1.65644407596E-05 1.68991695207E-05 1.72403691687E-05 1.75887273912E-05 1.79438780507E-05 1.83064345238E-05 1.86760822594E-05 1.90532896547E-05 1.94382794060E-05 1.98307821335E-05 2.02315033532E-05 2.06400414969E-05 2.10569908196E-05 2.14822799339E-05 2.19162333903E-05 2.23588622079E-05 2.28106111335E-05 2.32712919897E-05 2.37414628206E-05 2.42208466300E-05 2.47102634345E-05 2.52092593075E-05 2.57185871300E-05 2.62379916292E-05 2.67680771577E-05 2.73087208898E-05 2.78603516109E-05 2.84230514227E-05 2.89973270083E-05 2.95829198493E-05 3.01806406796E-05 3.07901908902E-05 3.14120456093E-05 3.20467329259E-05 3.26939960302E-05 3.33543758962E-05 3.40281607906E-05 3.47156328416E-05 3.54167757097E-05 3.61322491659E-05 3.68620650420E-05 3.76067846534E-05 3.83663247753E-05 3.91414135209E-05 3.99319911175E-05 4.07387383500E-05 4.15615261321E-05 4.24011801817E-05 4.32575882682E-05 4.41314890552E-05 4.50228762687E-05 4.59324490109E-05 4.68601769440E-05 4.78068828370E-05 4.87725255178E-05 4.97578139828E-05 5.07627804715E-05 5.17884122386E-05 5.28344294691E-05 5.39016748904E-05 5.49906653586E-05 5.61013649183E-05 5.72347672993E-05 5.83908032654E-05 5.95704022509E-05 6.07736799159E-05 6.20014729297E-05 6.32537944909E-05 6.45316850792E-05 6.58351901797E-05 6.71651758219E-05 6.85218092261E-05 6.99061493031E-05 7.13181275034E-05 7.27589507614E-05 7.42287102000E-05 7.57281227858E-05 7.72578333022E-05 7.88186344919E-05 8.04106842557E-05 8.20351202553E-05 8.36922105103E-05 8.53829458895E-05 8.71077003700E-05 8.88673294361E-05 9.06625685040E-05 9.24939698536E-05 9.43624674945E-05 9.62685849813E-05 9.82134582972E-05 1.00197239836E-04 1.02221474418E-04 1.04286304748E-04 1.06393037304E-04 1.08542237301E-04 1.10734967221E-04 1.12971802793E-04 1.15253967323E-04 1.17582218995E-04 1.19957500675E-04 1.22380631920E-04 1.24852986543E-04 1.27375019148E-04 1.29948201693E-04 1.32573137233E-04 1.35251414302E-04 1.37983445790E-04 1.40770958434E-04 1.43614588718E-04 1.46515705561E-04 1.49475589518E-04 1.52494978299E-04 1.55575598503E-04 1.58718294590E-04 1.61924728252E-04 1.65195588850E-04 1.68532789398E-04 1.71937267270E-04 1.75410644009E-04 1.78953952942E-04 1.82569184338E-04 1.86257145429E-04 1.90019874131E-04 1.93858332970E-04 1.97774483398E-04 2.01769741400E-04 2.05845704942E-04 2.10003883223E-04 2.14246296302E-04 2.18574177132E-04 2.22989691948E-04 2.27494260479E-04 2.32089955085E-04 2.36778316653E-04 2.41561552047E-04 2.46441271443E-04 2.51419606377E-04 2.56498680902E-04 2.61680100706E-04 2.66966364338E-04 2.72359273158E-04 2.77861314417E-04 2.83474363017E-04 2.89200886750E-04 2.95042948480E-04 3.01003228198E-04 3.07083677570E-04 3.13287146964E-04 3.19615890296E-04 3.26072385702E-04 3.32659428019E-04 3.39379477023E-04 3.46235271020E-04 3.53229634893E-04 3.60365152367E-04 3.67644989886E-04 3.75071686745E-04 3.82648596123E-04 3.90378449867E-04 3.98264492401E-04 4.06309841959E-04 4.14517660885E-04 4.22891391742E-04 4.31434228133E-04 4.40149613601E-04 4.49041093536E-04 4.58112125761E-04 4.67366442619E-04 4.76807790114E-04 4.86439736843E-04 4.96266339951E-04 5.06291365158E-04 5.16518949264E-04 5.26953163419E-04 5.37598130316E-04 5.48458140332E-04 5.59537446497E-04 5.70840685905E-04 5.82372269368E-04 5.94136686854E-04 6.06138831695E-04 6.18383426209E-04 6.30875309597E-04 6.43619598522E-04 6.56621336169E-04 6.69885617318E-04 6.83418029697E-04 6.97223550337E-04 7.11308238186E-04 7.25677264019E-04 7.40336540648E-04 7.55292044269E-04 7.70549678165E-04 7.86115376201E-04 8.01995617302E-04 8.18196568960E-04 8.34724915597E-04 8.51587060912E-04 8.68789710605E-04 8.86340050510E-04 9.04244845540E-04 9.22511340629E-04 9.41146837144E-04 9.60158706906E-04 9.79554610962E-04 9.99342594389E-04 1.01952991714E-03 1.04012526205E-03 1.06113654466E-03 1.08257228711E-03 1.10444099207E-03 1.12675157449E-03 1.14951270650E-03 1.17273363655E-03 1.19642367876E-03 1.22059235293E-03 1.24524895535E-03 1.27040399558E-03 1.29606676568E-03 1.32224818052E-03 1.34895845449E-03 1.37620814908E-03 1.40400840039E-03 1.43237011545E-03 1.46130498213E-03 1.49082395399E-03 1.52093942696E-03 1.55166318803E-03 1.58300757161E-03 1.61498506927E-03 1.64760842669E-03 1.68089102488E-03 1.71484565409E-03 1.74948624802E-03 1.78482665172E-03 1.82088075415E-03 1.85766318696E-03 1.89518863201E-03 1.93347211526E-03 1.97252872283E-03 2.01237441935E-03 2.05302486038E-03 2.09449657686E-03 2.13680580964E-03 2.17996969686E-03 2.22400544077E-03 2.26893080532E-03 2.31476340981E-03 2.36152190217E-03 2.40922485715E-03 2.45789134769E-03 2.50754086320E-03 2.55819308879E-03 2.60986864995E-03 2.66258789720E-03 2.71637188491E-03 2.77124234309E-03 2.82722117823E-03 2.88433059125E-03 2.94259342279E-03 3.00203331554E-03 3.06267355250E-03 3.12453879798E-03 3.18765341245E-03 3.25204295354E-03 3.31773301665E-03 3.38474983301E-03 3.45312030053E-03 3.52287161125E-03 3.59403187069E-03 3.66662926449E-03 3.74069299417E-03 3.81625267583E-03 3.89333837444E-03 3.97198112725E-03 4.05221208779E-03 4.13406364333E-03 4.21756821349E-03 4.30275940314E-03 4.38967122509E-03 4.47833825036E-03 4.56879614193E-03 4.66108102092E-03 4.75522961062E-03 4.85127979446E-03 4.94926977392E-03 5.04923879558E-03 5.15122676209E-03 5.25527458625E-03 5.36142358345E-03 5.46971645180E-03 5.58019637149E-03 5.69290742693E-03 5.80789480966E-03 5.92520433709E-03 6.04488300705E-03 6.16697857208E-03 6.29153984377E-03 6.41861661577E-03 6.54825962939E-03 6.68052087079E-03 6.81545282179E-03 6.95310978999E-03 7.09354654832E-03 7.23681928624E-03 7.38298533077E-03 7.53210284895E-03 7.68423173342E-03 7.83943257416E-03 7.99776742104E-03 8.15929941882E-03 8.32409341587E-03 8.49221492993E-03 8.66373121178E-03 8.83871079141E-03 9.01722386731E-03 9.19933985260E-03 9.38513826314E-03 9.57467924491E-03 9.76805776363E-03 9.96533195826E-03 1.01665955170E-02 1.03719143536E-02 1.05813916226E-02 1.07950912878E-02 1.10131005624E-02 1.12355193503E-02 1.14624265495E-02 1.16939096038E-02 1.19300746386E-02 1.21710050184E-02 1.24167941195E-02 1.26675489828E-02 1.29233706003E-02 1.31843501111E-02 1.34505983965E-02 1.37222280426E-02 1.39993345382E-02 1.42820377398E-02 1.45704451066E-02 1.48646799796E-02 1.51648475632E-02 1.54710799938E-02 1.57834888547E-02 1.61022067094E-02 1.64273571130E-02 1.67590730981E-02 1.70974775391E-02 1.74427174504E-02 1.77949259096E-02 1.81542388397E-02 1.85208101439E-02 1.88947719112E-02 1.92762874319E-02 1.96654963256E-02 2.00625666266E-02 2.04676437863E-02 2.08808997546E-02 2.13024935891E-02 2.17325937283E-02 2.21713749466E-02 2.26190081989E-02 2.30756753487E-02 2.35415554529E-02 2.40168351302E-02 2.45017085143E-02 2.49963565005E-02 2.55009928176E-02 2.60158040242E-02 2.65410052740E-02 2.70768020846E-02 2.76234009311E-02 2.81810326934E-02 2.87499139138E-02 2.93302643106E-02 2.99223258380E-02 3.05263274189E-02 3.11425132308E-02 3.17711233978E-02 3.24124153733E-02 3.30666383917E-02 3.37340564657E-02 3.44149333176E-02 3.51095408587E-02 3.58181535939E-02 3.65410576278E-02 3.72785335389E-02 3.80308847479E-02 3.87984008817E-02 3.95813913768E-02 4.03801666832E-02 4.11950468121E-02 4.20263515788E-02 4.28744159103E-02 4.37395732823E-02 4.46221670684E-02 4.55225515982E-02 4.64410817560E-02 4.73781243689E-02 4.83340498874E-02 4.93092353751E-02 5.03040756266E-02 5.13189576920E-02 5.23542893388E-02 5.34104796147E-02 5.44879462819E-02 5.55871200162E-02 5.67084340210E-02 5.78523341852E-02 5.90192735998E-02 6.02097164259E-02 6.14241320722E-02 6.26630026923E-02 6.39268209605E-02 6.52160848098E-02 6.65313061274E-02 6.78730065623E-02 6.92417165260E-02 7.06379755872E-02 7.20623410865E-02 7.35153728538E-02 7.49976465984E-02 7.65097479269E-02 7.80522767634E-02 7.96258412121E-02 8.12310623524E-02 8.28685762727E-02 8.45390293276E-02 8.62430803864E-02 8.79814018404E-02 8.97546822489E-02 9.15636175039E-02 9.34089252436E-02 9.52913306583E-02 9.72115751890E-02 9.91704187666E-02 1.01168629114E-01 1.03206998192E-01 1.05286323315E-01 1.07407426969E-01 1.09571141983E-01 1.11778320549E-01 1.14029828610E-01 1.16326554254E-01 1.18669396880E-01 1.21059279255E-01 1.23497138505E-01 1.25983931893E-01 1.28520635033E-01 1.31108242904E-01 1.33747770233E-01 1.36440251779E-01 1.39186740431E-01 1.41988314251E-01 1.44846067841E-01 1.47761119978E-01 1.50734610160E-01 1.53767701145E-01 1.56861577832E-01 1.60017447767E-01 1.63236542742E-01 1.66520119722E-01 1.69869457044E-01 1.73285861343E-01 1.76770662445E-01 1.80325217844E-01 1.83950909336E-01 1.87649146776E-01 1.91421368603E-01 1.95269038111E-01 1.99193649968E-01 2.03196725603E-01 2.07279817904E-01 2.11444507162E-01 2.15692407091E-01 2.20025159682E-01 2.24444448501E-01 2.28951947823E-01 2.33549460999E-01 2.38238698018E-01 2.43021501821E-01 2.47899693861E-01 2.52875186788E-01 2.57949840679E-01 2.63125661947E-01 2.68404596949E-01 2.73788688274E-01 2.79280006763E-01 2.84880624377E-01 2.90592727031E-01 2.96418450165E-01 3.02360080817E-01 3.08419822364E-01 3.14600022193E-01 3.20903015486E-01 3.27331221351E-01 3.33887052634E-01 3.40573032827E-01 3.47391656998E-01 3.54345551247E-01 3.61437304405E-01 3.68669629571E-01 3.76045231317E-01 3.83566919115E-01 3.91237480421E-01 3.99059852152E-01 4.07036928867E-01 4.15171723526E-01 4.23467285604E-01 4.31926705343E-01 4.40553133564E-01 4.49349829775E-01 4.58320007151E-01 4.67467065655E-01 4.76794354043E-01 4.86305342819E-01 4.96003564049E-01 5.05892589244E-01 5.15976058631E-01 5.26257708403E-01 5.36741286828E-01 5.47430673960E-01 5.58329753936E-01 5.69442530342E-01 5.80773043231E-01 5.92325436903E-01 6.04103884299E-01 6.16112680864E-01 6.28356156194E-01 6.40838733719E-01 6.53564918857E-01 6.66539273131E-01 6.79766466447E-01 6.93251212430E-01 7.06998337539E-01 7.21012738770E-01 7.35299377629E-01 7.49863331217E-01 7.64709737370E-01 7.79843827937E-01 7.95270923980E-01 8.10996423990E-01 8.27025830778E-01 8.43364718472E-01 8.60018769987E-01 8.76993743820E-01 8.94295504146E-01 9.11929990706E-01 9.29903262563E-01 9.48221455072E-01 9.66890795955E-01 9.85917635900E-01 1.00530837992E+00 1.02506958891E+00 1.04520785360E+00 1.06572994023E+00 1.08664264466E+00 1.10795291164E+00 1.12966776845E+00 1.15179434923E+00 1.17433988414E+00 1.19731171422E+00 1.22071728875E+00 1.24456413418E+00 1.26885992241E+00 1.29361239151E+00 1.31882940837E+00 1.34451893001E+00 1.37068902567E+00 1.39734787034E+00 1.42450373704E+00 1.45216500199E+00 1.48034015766E+00 1.50903778047E+00 1.53826656910E+00 1.56803530574E+00 1.59835288915E+00 1.62922830800E+00 1.66067065466E+00 1.69268912073E+00 1.72529298646E+00 1.75849164045E+00 1.79229455086E+00 1.82671128780E+00 1.86175150779E+00 1.89742494944E+00 1.93374144799E+00 1.97071091315E+00 2.00834333266E+00 2.04664878044E+00 2.08563739868E+00 2.12531939286E+00 2.16570505381E+00 2.20680471557E+00 2.24862878121E+00 2.29118770626E+00 2.33449199686E+00 2.37855219648E+00 2.42337889887E+00 2.46898271946E+00 2.51537430737E+00 2.56256433382E+00 2.61056347607E+00 2.65938242390E+00 2.70903186688E+00 2.75952248213E+00 2.81086492888E+00 2.86306984387E+00 2.91614782601E+00 2.97010942395E+00 3.02496514055E+00 3.08072539917E+00 3.13740055597E+00 3.19500086810E+00 3.25353649439E+00 3.31301747529E+00 3.37345372134E+00 3.43485499879E+00 3.49723091034E+00 3.56059089079E+00 3.62494417272E+00 3.69029978509E+00 3.75666652605E+00 3.82405294970E+00 3.89246733849E+00 3.96191769067E+00 4.03241169677E+00 4.10395671084E+00 4.17655973958E+00 4.25022740197E+00 4.32496592064E+00 4.40078108345E+00 4.47767821997E+00 4.55566217593E+00 4.63473727860E+00 4.71490730998E+00 4.79617547425E+00 4.87854436090E+00 4.96201591902E+00 5.04659141026E+00 5.13227138369E+00 5.21905562917E+00 5.30694314084E+00 5.39593207860E+00 5.48601972095E+00 5.57720242622E+00 5.66947558536E+00 5.76283357226E+00 5.85726970322E+00 5.95277618016E+00 6.04934404163E+00 6.14696311354E+00 6.24562194802E+00 6.34530777530E+00 6.44600643861E+00 6.54770234239E+00 6.65037838367E+00 6.75401589708E+00 6.85859458487E+00 6.96409245482E+00 7.07048575079E+00 7.17774888387E+00 7.28585436316E+00 7.39477272029E+00 7.50447243908E+00 7.61491987670E+00 7.72607918804E+00 7.83791224799E+00 7.95037856814E+00 8.06343521850E+00 8.17703674264E+00 8.29113507357E+00 8.40567944833E+00 8.52061632059E+00 8.63588927535E+00 8.75143893519E+00 8.86720287562E+00 8.98311553118E+00 9.09910810619E+00 9.21510848148E+00 9.33104112331E+00 9.44682699178E+00 9.56238344706E+00 9.67762415795E+00 9.79245901066E+00 9.90679401784E+00 1.00205312269E+01 1.01335686326E+01 1.02458000881E+01 1.03571152198E+01 1.04673993415E+01 1.05765333745E+01 1.06843937670E+01 1.07908524172E+01 1.08957766027E+01 1.09990289079E+01 1.11004671617E+01 1.11999443760E+01 1.12973086886E+01 1.13924033180E+01 1.14850665134E+01 1.15751315234E+01 1.16624265618E+01 1.17467747882E+01 1.18279942921E+01 1.19058980896E+01 1.19802941270E+01 1.20509852973E+01 1.21177694650E+01 1.21804395048E+01 1.22387833515E+01 1.22925840656E+01 1.23416199085E+01 1.23856644382E+01 1.24244866162E+01 1.24578509352E+01 1.24855175608E+01 1.25072424948E+01 1.25227777574E+01 1.25318715899E+01 1.25342686797E+01 1.25297104085E+01 1.25179351252E+01 1.24986784437E+01 1.24716735693E+01 1.24366516507E+01 1.23933421663E+01 1.23414733377E+01 1.22807725797E+01 1.22109669835E+01 1.21317838393E+01 1.20429511945E+01 1.19441984573E+01 1.18352570415E+01 1.17158610586E+01 1.15857480586E+01 1.14446598255E+01 1.12923432230E+01 1.11285511062E+01 1.09530432893E+01 1.07655875856E+01 1.05659609150E+01 1.03539504896E+01 1.01293550787E+01 9.89198636263E+00 9.64167037461E+00 9.37824904448E+00 9.10158184476E+00 8.81154754703E+00 8.50804609806E+00 8.19100061845E+00 7.86035953378E+00 7.51609884502E+00 7.15822454331E+00 6.78677517835E+00 6.40182458293E+00 6.00348476450E+00 5.59190896153E+00 5.16729487332E+00 4.72988806167E+00 4.27998552573E+00 3.81793944504E+00 3.34416108741E+00 2.85912486759E+00 2.36337254953E+00 1.85751756570E+00 1.34224943524E+00 8.18338244753E-01 2.86639159389E-01 -2.51903090184E-01 -7.96249792915E-01 -1.34526398745E+00 -1.89770640681E+00 -2.45223173427E+00 -3.00738526326E+00 -3.56160008371E+00 -4.11319491508E+00 -4.66037273465E+00 -5.20122035293E+00 -5.73370910779E+00 -6.25569686001E+00 -6.76493148393E+00 -7.25905605969E+00 -7.73561598008E+00 -8.19206818909E+00 -8.62579277269E+00 -9.03410711964E+00 -9.41428285775E+00 -9.76356576436E+00 -1.00791988169E+01 -1.03584485302E+01 -1.05986346819E+01 -1.07971634777E+01 -1.09515641514E+01 -1.10595289184E+01 -1.11189561195E+01 -1.11279962902E+01 -1.10851007810E+01 -1.09890724262E+01 -1.08391176173E+01 -1.06348989827E+01 -1.03765876992E+01 -1.00649142839E+01 -9.70121650282E+00 -9.28748282363E+00 -8.82638960371E+00 -8.32132995168E+00 -7.77643193689E+00 -7.19656352568E+00 -6.58732131266E+00 -5.95499977027E+00 -5.30653737218E+00 -4.64943552876E+00 -3.99164581773E+00 -3.34142059964E+00 -2.70712043680E+00 -2.09698212784E+00 -1.51798625708E+00 -9.74308940195E-01 -4.62263897243E-01 -4.53738759670E-02 4.75160351498E-03 -2.49564863525E-04 2.35912877423E-04 1.75983399898E-04 1.70907382962E-04 1.60921646834E-04 1.51947544206E-04 1.43370791352E-04 1.35228558706E-04 1.27494373136E-04 2 2 Beta L 1174 8.92065584701E-13 9.19233026338E-13 9.47227839749E-13 9.76075222156E-13 1.00580113815E-12 1.03643234306E-12 1.06799640704E-12 1.10052173988E-12 1.13403761657E-12 1.16857420367E-12 1.20416258643E-12 1.24083479681E-12 1.27862384226E-12 1.31756373547E-12 1.35768952499E-12 1.39903732672E-12 1.44164435649E-12 1.48554896349E-12 1.53079066484E-12 1.57741018112E-12 1.62544947303E-12 1.67495177920E-12 1.72596165503E-12 1.77852501285E-12 1.83268916324E-12 1.88850285758E-12 1.94601633198E-12 2.00528135243E-12 2.06635126147E-12 2.12928102611E-12 2.19412728742E-12 2.26094841139E-12 2.32980454155E-12 2.40075765306E-12 2.47387160852E-12 2.54921221541E-12 2.62684728537E-12 2.70684669521E-12 2.78928244980E-12 2.87422874687E-12 2.96176204382E-12 3.05196112654E-12 3.14490718029E-12 3.24068386279E-12 3.33937737951E-12 3.44107656130E-12 3.54587294426E-12 3.65386085223E-12 3.76513748161E-12 3.87980298888E-12 3.99796058073E-12 4.11971660697E-12 4.24518065625E-12 4.37446565467E-12 4.50768796747E-12 4.64496750372E-12 4.78642782427E-12 4.93219625295E-12 5.08240399119E-12 5.23718623609E-12 5.39668230213E-12 5.56103574652E-12 5.73039449847E-12 5.90491099227E-12 6.08474230456E-12 6.27005029566E-12 6.46100175527E-12 6.65776855258E-12 6.86052779100E-12 7.06946196753E-12 7.28475913703E-12 7.50661308150E-12 7.73522348444E-12 7.97079611066E-12 8.21354299143E-12 8.46368261531E-12 8.72144012487E-12 8.98704751925E-12 9.26074386303E-12 9.54277550142E-12 9.83339628190E-12 1.01328677828E-11 1.04414595487E-11 1.07594493330E-11 1.10871233480E-11 1.14247765224E-11 1.17727127669E-11 1.21312452475E-11 1.25006966678E-11 1.28813995589E-11 1.32736965790E-11 1.36779408221E-11 1.40944961353E-11 1.45237374463E-11 1.49660511014E-11 1.54218352128E-11 1.58915000168E-11 1.63754682436E-11 1.68741754972E-11 1.73880706477E-11 1.79176162355E-11 1.84632888875E-11 1.90255797457E-11 1.96049949099E-11 2.02020558930E-11 2.08173000900E-11 2.14512812623E-11 2.21045700357E-11 2.27777544143E-11 2.34714403093E-11 2.41862520850E-11 2.49228331202E-11 2.56818463876E-11 2.64639750502E-11 2.72699230767E-11 2.81004158748E-11 2.89562009440E-11 2.98380485486E-11 3.07467524111E-11 3.16831304261E-11 3.26480253972E-11 3.36423057949E-11 3.46668665388E-11 3.57226298026E-11 3.68105458446E-11 3.79315938626E-11 3.90867828755E-11 4.02771526314E-11 4.15037745434E-11 4.27677526541E-11 4.40702246291E-11 4.54123627810E-11 4.67953751248E-11 4.82205064650E-11 4.96890395159E-11 5.12022960565E-11 5.27616381198E-11 5.43684692188E-11 5.60242356101E-11 5.77304275952E-11 5.94885808619E-11 6.13002778670E-11 6.31671492600E-11 6.50908753512E-11 6.70731876240E-11 6.91158702931E-11 7.12207619108E-11 7.33897570218E-11 7.56248078680E-11 7.79279261460E-11 8.03011848178E-11 8.27467199763E-11 8.52667327683E-11 8.78634913754E-11 9.05393330556E-11 9.32966662470E-11 9.61379727357E-11 9.90658098892E-11 1.02082812959E-10 1.05191697450E-10 1.08395261571E-10 1.11696388743E-10 1.15098050204E-10 1.18603307681E-10 1.22215316139E-10 1.25937326632E-10 1.29772689220E-10 1.33724855988E-10 1.37797384153E-10 1.41993939265E-10 1.46318298507E-10 1.50774354094E-10 1.55366116777E-10 1.60097719453E-10 1.64973420883E-10 1.69997609527E-10 1.75174807495E-10 1.80509674614E-10 1.86007012624E-10 1.91671769502E-10 1.97509043910E-10 2.03524089789E-10 2.09722321087E-10 2.16109316631E-10 2.22690825147E-10 2.29472770437E-10 2.36461256710E-10 2.43662574075E-10 2.51083204204E-10 2.58729826165E-10 2.66609322434E-10 2.74728785089E-10 2.83095522195E-10 2.91717064380E-10 3.00601171613E-10 3.09755840191E-10 3.19189309935E-10 3.28910071602E-10 3.38926874535E-10 3.49248734532E-10 3.59884941965E-10 3.70845070137E-10 3.82138983905E-10 3.93776848552E-10 4.05769138942E-10 4.18126648947E-10 4.30860501159E-10 4.43982156904E-10 4.57503426559E-10 4.71436480180E-10 4.85793858454E-10 5.00588483991E-10 5.15833672952E-10 5.31543147038E-10 5.47731045834E-10 5.64411939543E-10 5.81600842095E-10 5.99313224661E-10 6.17565029583E-10 6.36372684715E-10 6.55753118218E-10 6.75723773790E-10 6.96302626368E-10 7.17508198309E-10 7.39359576059E-10 7.61876427333E-10 7.85079018816E-10 8.08988234408E-10 8.33625594015E-10 8.59013272924E-10 8.85174121761E-10 9.12131687054E-10 9.39910232431E-10 9.68534760460E-10 9.98031035146E-10 1.02842560513E-09 1.05974582757E-09 1.09201989279E-09 1.12527684961E-09 1.15954663156E-09 1.19486008374E-09 1.23124899064E-09 1.26874610474E-09 1.30738517597E-09 1.34720098210E-09 1.38822936005E-09 1.43050723812E-09 1.47407266925E-09 1.51896486529E-09 1.56522423222E-09 1.61289240661E-09 1.66201229303E-09 1.71262810269E-09 1.76478539323E-09 1.81853110974E-09 1.87391362700E-09 1.93098279299E-09 1.98978997383E-09 2.05038809995E-09 2.11283171375E-09 2.17717701869E-09 2.24348192989E-09 2.31180612625E-09 2.38221110416E-09 2.45476023284E-09 2.52951881141E-09 2.60655412764E-09 2.68593551851E-09 2.76773443262E-09 2.85202449452E-09 2.93888157096E-09 3.02838383916E-09 3.12061185721E-09 3.21564863654E-09 3.31357971668E-09 3.41449324220E-09 3.51848004208E-09 3.62563371147E-09 3.73605069589E-09 3.84983037809E-09 3.96707516745E-09 4.08789059220E-09 4.21238539437E-09 4.34067162768E-09 4.47286475841E-09 4.60908376929E-09 4.74945126662E-09 4.89409359063E-09 5.04314092916E-09 5.19672743487E-09 5.35499134599E-09 5.51807511071E-09 5.68612551543E-09 5.85929381685E-09 6.03773587813E-09 6.22161230916E-09 6.41108861113E-09 6.60633532551E-09 6.80752818751E-09 7.01484828428E-09 7.22848221790E-09 7.44862227332E-09 7.67546659145E-09 7.90921934747E-09 8.15009093464E-09 8.39829815363E-09 8.65406440770E-09 8.91761990372E-09 9.18920185943E-09 9.46905471691E-09 9.75743036260E-09 1.00545883541E-08 1.03607961535E-08 1.06763293686E-08 1.10014720006E-08 1.13365166997E-08 1.16817650288E-08 1.20375277347E-08 1.24041250278E-08 1.27818868705E-08 1.31711532737E-08 1.35722746036E-08 1.39856118965E-08 1.44115371837E-08 1.48504338268E-08 1.53026968623E-08 1.57687333575E-08 1.62489627767E-08 1.67438173587E-08 1.72537425060E-08 1.77791971857E-08 1.83206543424E-08 1.88786013241E-08 1.94535403206E-08 2.00459888159E-08 2.06564800536E-08 2.12855635169E-08 2.19338054235E-08 2.26017892346E-08 2.32901161808E-08 2.39994058029E-08 2.47302965091E-08 2.54834461506E-08 2.62595326127E-08 2.70592544256E-08 2.78833313929E-08 2.87325052394E-08 2.96075402787E-08 3.05092241016E-08 3.14383682841E-08 3.23958091187E-08 3.33824083666E-08 3.43990540339E-08 3.54466611700E-08 3.65261726920E-08 3.76385602331E-08 3.87848250170E-08 3.99659987594E-08 4.11831445961E-08 4.24373580406E-08 4.37297679694E-08 4.50615376386E-08 4.64338657307E-08 4.78479874334E-08 4.93051755516E-08 5.08067416528E-08 5.23540372476E-08 5.39484550065E-08 5.55914300127E-08 5.72844410546E-08 5.90290119561E-08 6.08267129487E-08 6.26791620842E-08 6.45880266919E-08 6.65550248783E-08 6.85819270745E-08 7.06705576289E-08 7.28227964498E-08 7.56860013943E-08 7.79761386003E-08 7.97336748333E-08 8.21613021016E-08 8.46615765449E-08 8.72397687630E-08 8.98944891566E-08 9.26322503761E-08 9.54513010220E-08 9.83571820306E-08 1.01352153339E-07 1.04436209729E-07 1.07616260406E-07 1.10891712674E-07 1.14268789675E-07 1.17746257302E-07 1.21332409956E-07 1.25026442608E-07 1.28831598119E-07 1.32754936443E-07 1.36795995379E-07 1.40961313611E-07 1.45251691354E-07 1.49675124747E-07 1.54232322624E-07 1.58926621146E-07 1.63765771286E-07 1.68751061403E-07 1.73889435874E-07 1.79185164891E-07 1.84640667003E-07 1.90261222303E-07 1.96054750518E-07 2.02022984240E-07 2.08174023431E-07 2.14512715195E-07 2.21044113691E-07 2.27775378853E-07 2.34710837236E-07 2.41856579046E-07 2.49220297679E-07 2.56808238532E-07 2.64628601694E-07 2.72685312923E-07 2.80988278574E-07 2.89545265489E-07 2.98358595542E-07 3.07445637711E-07 3.16805381461E-07 3.26453691532E-07 3.36393931738E-07 3.46634643744E-07 3.57189946813E-07 3.68068715392E-07 3.79273318833E-07 3.90822079360E-07 4.02724233489E-07 4.14987278885E-07 4.27623148142E-07 4.40644413465E-07 4.54062039379E-07 4.67887384139E-07 4.82136595744E-07 4.96815157402E-07 5.11944109213E-07 5.27535930754E-07 5.43598406066E-07 5.60151678481E-07 5.77205602605E-07 5.94786684650E-07 6.12894644818E-07 6.31559963202E-07 6.50790277516E-07 6.70610021026E-07 6.91028194067E-07 7.12073047272E-07 7.33753228794E-07 7.56101050699E-07 7.79122610394E-07 8.02848397795E-07 8.27296439774E-07 8.52490360055E-07 8.78448320708E-07 9.05198006911E-07 9.32765033969E-07 9.61170806727E-07 9.90437946184E-07 1.02059785292E-06 1.05167638721E-06 1.08370154864E-06 1.11670515296E-06 1.15071177001E-06 1.18575285135E-06 1.22186086865E-06 1.25906784574E-06 1.29740938855E-06 1.33691884841E-06 1.37763167305E-06 1.41958515273E-06 1.46281436410E-06 1.50736235093E-06 1.55326486405E-06 1.60056510274E-06 1.64930340127E-06 1.69953224816E-06 1.75128324862E-06 1.80461659201E-06 1.85956943514E-06 1.91620197147E-06 1.97455473607E-06 2.03468387465E-06 2.09664975443E-06 2.16049471427E-06 2.22629080999E-06 2.29408591514E-06 2.36394843456E-06 2.43593726668E-06 2.51011808892E-06 2.58655697385E-06 2.66532888758E-06 2.74649419857E-06 2.83013055629E-06 2.91631856634E-06 3.00513304221E-06 3.09664869305E-06 3.19094572025E-06 3.28812263054E-06 3.38825651579E-06 3.49143819580E-06 3.59776652162E-06 3.70732861809E-06 3.82022664796E-06 3.93656650173E-06 4.05644916343E-06 4.17997832799E-06 4.30727411413E-06 4.43844774885E-06 4.57360672888E-06 4.71289282645E-06 4.85641178338E-06 5.00430701879E-06 5.15670375634E-06 5.31374465606E-06 5.47556649941E-06 5.64231726484E-06 5.81414502798E-06 5.99120739310E-06 6.17365433316E-06 6.36166493289E-06 6.55539737057E-06 6.75503360300E-06 6.96074707608E-06 7.17272514764E-06 7.39115790327E-06 7.61624363124E-06 7.84818696032E-06 8.08718734859E-06 8.33346947044E-06 8.58725682114E-06 8.84876247886E-06 9.11824945587E-06 9.39591703136E-06 9.68207029079E-06 9.97691021810E-06 1.02807526976E-05 1.05938278683E-05 1.09164451428E-05 1.12488968321E-05 1.15914580624E-05 1.19444587865E-05 1.23082125001E-05 1.26830329028E-05 1.30692802663E-05 1.34672842097E-05 1.38774061843E-05 1.43000236784E-05 1.47355043388E-05 1.51842520389E-05 1.56466634225E-05 1.61231608322E-05 1.66141607714E-05 1.71201252398E-05 1.76414796098E-05 1.81787289792E-05 1.87323329279E-05 1.93027887552E-05 1.98906282158E-05 2.04963617444E-05 2.11205417164E-05 2.17637382374E-05 2.24265081758E-05 2.31094770226E-05 2.38132267891E-05 2.45384197705E-05 2.52857021385E-05 2.60557266943E-05 2.68492071589E-05 2.76668525177E-05 2.85093977229E-05 2.93775899445E-05 3.02722365598E-05 3.11941176828E-05 3.21440731994E-05 3.31229568541E-05 3.41316570303E-05 3.51710723750E-05 3.62421362214E-05 3.73458136097E-05 3.84831126498E-05 3.96550327242E-05 4.08626477002E-05 4.21070366246E-05 4.33893125535E-05 4.47106499892E-05 4.60722115511E-05 4.74752342796E-05 4.89209902536E-05 5.04107731120E-05 5.19459176374E-05 5.35278054886E-05 5.51578741830E-05 5.68375666516E-05 5.85684304413E-05 6.03519821310E-05 6.21898558155E-05 6.40836914051E-05 6.60351990536E-05 6.80461269746E-05 7.01183082557E-05 7.22535626171E-05 7.44538602625E-05 7.67211459807E-05 7.90574804514E-05 8.14649554271E-05 8.39457447869E-05 8.65020628129E-05 8.91362392811E-05 9.18505980315E-05 9.46476412231E-05 9.75298485425E-05 1.00499815246E-04 1.03560213157E-04 1.06713823032E-04 1.09963446242E-04 1.13312007436E-04 1.16762547130E-04 1.20318151794E-04 1.23982022639E-04 1.27757462092E-04 1.31647856063E-04 1.35656715753E-04 1.39787630029E-04 1.44044351490E-04 1.48430663351E-04 1.52950546474E-04 1.57608040365E-04 1.62407365814E-04 1.67352808755E-04 1.72448837782E-04 1.77700037472E-04 1.83111126506E-04 1.88686989397E-04 1.94432598062E-04 2.00353168765E-04 2.06453996944E-04 2.12740580767E-04 2.19218567319E-04 2.25893813493E-04 2.32772299942E-04 2.39860199292E-04 2.47163916694E-04 2.54689989830E-04 2.62445227917E-04 2.70436591168E-04 2.78671247050E-04 2.87156610600E-04 2.95900346416E-04 3.04910245617E-04 3.14194481007E-04 3.23761398728E-04 3.33619556063E-04 3.43777860252E-04 3.54245442614E-04 3.65031668807E-04 3.76146303593E-04 3.87599348656E-04 3.99400992962E-04 4.11562134268E-04 4.24091709329E-04 4.37020278437E-04 4.50171351564E-04 4.63660831084E-04 4.82140811367E-04 4.83193995796E-04 5.19472266160E-04 5.13553690969E-04 5.37763866531E-04 5.69680655231E-04 5.51158045429E-04 6.11972734299E-04 5.92413581912E-04 6.41923704976E-04 6.23735940108E-04 6.85446394595E-04 6.72992560321E-04 7.07730497609E-04 7.32660479918E-04 7.46480769170E-04 7.71331350312E-04 7.98955081960E-04 8.20761757894E-04 8.40181484000E-04 8.75413038129E-04 8.98143809722E-04 9.24322900003E-04 9.51103100344E-04 9.82926978794E-04 1.01680329935E-03 1.03173127488E-03 1.08564259137E-03 1.10361629451E-03 1.13744400991E-03 1.17850466773E-03 1.21169552239E-03 1.25316982944E-03 1.27934437773E-03 1.32503539402E-03 1.37339995760E-03 1.40043094978E-03 1.45136673087E-03 1.49505093695E-03 1.53978010931E-03 1.59085386901E-03 1.62887194931E-03 1.68980770382E-03 1.73260479166E-03 1.79406848814E-03 1.83694853533E-03 1.90488716363E-03 1.95480635136E-03 2.01912930780E-03 2.07249105206E-03 2.14371728810E-03 2.21337819376E-03 2.27588460688E-03 2.32785752756E-03 2.42576040285E-03 2.48404461992E-03 2.56506737126E-03 2.64843901364E-03 2.70421118631E-03 2.82094887978E-03 2.89315177330E-03 2.96415255755E-03 3.08318763451E-03 3.15099351538E-03 3.25891930948E-03 3.36506792750E-03 3.45268300705E-03 3.56332322499E-03 3.68517582832E-03 3.77294290387E-03 3.90689251803E-03 4.02531024792E-03 4.13694150929E-03 4.25279235090E-03 4.41211991308E-03 4.53488349707E-03 4.65287122077E-03 4.82840981276E-03 4.94454901842E-03 5.11652833994E-03 5.25878983081E-03 5.42514207576E-03 5.58636094562E-03 5.75888384517E-03 5.93752475283E-03 6.10457283668E-03 6.31329805611E-03 6.48496979512E-03 6.68356383629E-03 6.90547327366E-03 7.09408876278E-03 7.31993420274E-03 7.53712338223E-03 7.77258387787E-03 8.00729588250E-03 8.24906968293E-03 8.49726346081E-03 8.76613346219E-03 9.02050970996E-03 9.30089245600E-03 9.58309761364E-03 9.87185698355E-03 1.01742779426E-02 1.04850505168E-02 1.08041888613E-02 1.11226022986E-02 1.14740563591E-02 1.18153706215E-02 1.21764600431E-02 1.25445423391E-02 1.29312764812E-02 1.33198276324E-02 1.37239872797E-02 1.41412534226E-02 1.45719247812E-02 1.50166081992E-02 1.54708019885E-02 1.59399893397E-02 1.64247828042E-02 1.69251399518E-02 1.74385315815E-02 1.79653663270E-02 1.85150229817E-02 1.90762082703E-02 1.96548017429E-02 2.02516248636E-02 2.08686193459E-02 2.14997674225E-02 2.21537205633E-02 2.28254748061E-02 2.35187930229E-02 2.42325212013E-02 2.49704738191E-02 2.57245784552E-02 2.65077789961E-02 2.73116191637E-02 2.81416072405E-02 2.89909195033E-02 2.98772007996E-02 3.07791367886E-02 3.17147336176E-02 3.26757359313E-02 3.36676231614E-02 3.46881006205E-02 3.57415082596E-02 3.68241990095E-02 3.79396906552E-02 3.90918262530E-02 4.02758478806E-02 4.14985201843E-02 4.27541717956E-02 4.40515646893E-02 4.53851393614E-02 4.67612555316E-02 4.81786734932E-02 4.96367385532E-02 5.11417762585E-02 5.26899235530E-02 5.42861419216E-02 5.59299557644E-02 5.76236458953E-02 5.93674650082E-02 6.11663102604E-02 6.30155459084E-02 6.49241483465E-02 6.68877093276E-02 6.89129611614E-02 7.09967066955E-02 7.31440307289E-02 7.53571767249E-02 7.76351981951E-02 7.99831510974E-02 8.24004790798E-02 8.48915965108E-02 8.74571272483E-02 9.00999697054E-02 9.28221115617E-02 9.56257908112E-02 9.85142844488E-02 1.01488755874E-01 1.04553092459E-01 1.07709530253E-01 1.10960320916E-01 1.14308141595E-01 1.17757640698E-01 1.21309117420E-01 1.24968103453E-01 1.28735663445E-01 1.32617471987E-01 1.36613692858E-01 1.40731260889E-01 1.44970474995E-01 1.49337465436E-01 1.53834592499E-01 1.58465917362E-01 1.63235995335E-01 1.68148045249E-01 1.73207097262E-01 1.78416621032E-01 1.83781779299E-01 1.89306812379E-01 1.94996270960E-01 2.00855152023E-01 2.06888633316E-01 2.13101381420E-01 2.19498909929E-01 2.26086547253E-01 2.32869960909E-01 2.39854602802E-01 2.47046681234E-01 2.54451759751E-01 2.62076776405E-01 2.69927045016E-01 2.78010458577E-01 2.86332469499E-01 2.94900851101E-01 3.03722321070E-01 3.12804444511E-01 3.22154343644E-01 3.31780469105E-01 3.41690095792E-01 3.51891489479E-01 3.62393286905E-01 3.73204054664E-01 3.84332494611E-01 3.95787807307E-01 4.07579199802E-01 4.19716646357E-01 4.32209402333E-01 4.45068157155E-01 4.58302934667E-01 4.71924771213E-01 4.85944066498E-01 5.00372790221E-01 5.15221711691E-01 5.30503425964E-01 5.46229568141E-01 5.62412964124E-01 5.79066282826E-01 5.96202585310E-01 6.13835571204E-01 6.31979138827E-01 6.50647010443E-01 6.69854527342E-01 6.89615829693E-01 7.09946910679E-01 7.30863077725E-01 7.52380631675E-01 7.74515886157E-01 7.97286095112E-01 8.20708353521E-01 8.44800593216E-01 8.69580852564E-01 8.95068055501E-01 9.21281038862E-01 9.48239683501E-01 9.75963828248E-01 1.00447404825E+00 1.03379149911E+00 1.06393762114E+00 1.09493426013E+00 1.12680430760E+00 1.15957051871E+00 1.19325662423E+00 1.22788672927E+00 1.26348540425E+00 1.30007800574E+00 1.33769012600E+00 1.37634832033E+00 1.41607923366E+00 1.45691052007E+00 1.49887020878E+00 1.54198687849E+00 1.58628979389E+00 1.63180882121E+00 1.67857437641E+00 1.72661749362E+00 1.77596980450E+00 1.82666359187E+00 1.87873169898E+00 1.93220765372E+00 1.98712548476E+00 2.04351992965E+00 2.10142635026E+00 2.16088056219E+00 2.22191924109E+00 2.28457940885E+00 2.34889881885E+00 2.41491582448E+00 2.48266928635E+00 2.55219870355E+00 2.62354407139E+00 2.69674599590E+00 2.77184552802E+00 2.84888440025E+00 2.92790461195E+00 3.00894884299E+00 3.09206013896E+00 3.17728197121E+00 3.26465824945E+00 3.35423323763E+00 3.44605158767E+00 3.54015816642E+00 3.63659822389E+00 3.73541717622E+00 3.83666064678E+00 3.94037437566E+00 4.04660426370E+00 4.15539616607E+00 4.26679594074E+00 4.38084941234E+00 4.49760215208E+00 4.61709965074E+00 4.73938693294E+00 4.86450879391E+00 4.99250947604E+00 5.12343268470E+00 5.25732149452E+00 5.39421819115E+00 5.53416423583E+00 5.67720004395E+00 5.82336501504E+00 5.97269725618E+00 6.12523351025E+00 6.28100907001E+00 6.44005748411E+00 6.60241055997E+00 6.76809806827E+00 6.93714765349E+00 7.10958459348E+00 7.28543165606E+00 7.46470884001E+00 7.64743323326E+00 7.83361870507E+00 8.02327577689E+00 8.21641129003E+00 8.41302820056E+00 8.61312531197E+00 8.81669698929E+00 9.02373288187E+00 9.23421763316E+00 9.44813055152E+00 9.66544531986E+00 9.88612963615E+00 1.01101448866E+01 1.03374457929E+01 1.05679800267E+01 1.08016878465E+01 1.10385017159E+01 1.12783458546E+01 1.15211358893E+01 1.17667783709E+01 1.20151703722E+01 1.22661990249E+01 1.25197410572E+01 1.27756623460E+01 1.30338174172E+01 1.32940489658E+01 1.35561873757E+01 1.38200501979E+01 1.40854416619E+01 1.43521521528E+01 1.46199577059E+01 1.48886194858E+01 1.51578832685E+01 1.54274789338E+01 1.56971199461E+01 1.59665028581E+01 1.62353067998E+01 1.65031930093E+01 1.67698043424E+01 1.70347648272E+01 1.72976792225E+01 1.75581326037E+01 1.78156899767E+01 1.80698959184E+01 1.83202742628E+01 1.85663278149E+01 1.88075381155E+01 1.90433652586E+01 1.92732477617E+01 1.94966024951E+01 1.97128246866E+01 1.99212879944E+01 2.01213446662E+01 2.03123257821E+01 2.04935415989E+01 2.06642819967E+01 2.08238170378E+01 2.09713976475E+01 2.11062564235E+01 2.12276085861E+01 2.13346530723E+01 2.14265737976E+01 2.15025410683E+01 2.15617131906E+01 2.16032382469E+01 2.16262560803E+01 2.16299004908E+01 2.16133016177E+01 2.15755885867E+01 2.15158923628E+01 2.14333488433E+01 2.13271022237E+01 2.11963085926E+01 2.10401398038E+01 2.08577876181E+01 2.06484681007E+01 2.04114263112E+01 2.01459412533E+01 1.98513311039E+01 1.95269587163E+01 1.91722373811E+01 1.87866368483E+01 1.83696895998E+01 1.79209973521E+01 1.74402377714E+01 1.69271714016E+01 1.63816487454E+01 1.58036175074E+01 1.51931299363E+01 1.45503502584E+01 1.38755621266E+01 1.31691760761E+01 1.24317369029E+01 1.16639309219E+01 1.08665930510E+01 1.00407136271E+01 9.18744491140E+00 8.30810717087E+00 7.40419428696E+00 6.47737876467E+00 5.52951607321E+00 4.56264820733E+00 3.57900635691E+00 2.58101259086E+00 1.57128042994E+00 5.52614195476E-01 -4.71992978746E-01 -1.49936259349E+00 -2.52613581558E+00 -3.54878018991E+00 -4.56359818615E+00 -5.56673763738E+00 -6.55420424055E+00 -7.52187615730E+00 -8.46552086258E+00 -9.38081427312E+00 -1.02633622742E+01 -1.11087246638E+01 -1.19124415798E+01 -1.26700624372E+01 -1.33771773713E+01 -1.40294511895E+01 -1.46226598033E+01 -1.51527290712E+01 -1.56157760035E+01 -1.60081521964E+01 -1.63264894094E+01 -1.65677470950E+01 -1.67292617307E+01 -1.68087977326E+01 -1.68045997186E+01 -1.67154458558E+01 -1.65407019873E+01 -1.62803762191E+01 -1.59351735872E+01 -1.55065504107E+01 -1.49967678817E+01 -1.44089443993E+01 -1.37471061224E+01 -1.30162351268E+01 -1.22223145482E+01 -1.13723699629E+01 -1.04745062493E+01 -9.53793905032E+00 -8.57301991004E+00 -7.59125404694E+00 -6.60530966746E+00 -5.62901762307E+00 -4.67736015197E+00 -3.76644738672E+00 -2.91348026836E+00 -2.13669853315E+00 -1.45531230395E+00 -8.89417571417E-01 -4.59880090356E-01 -1.88327970248E-01 -9.58776050307E-02 -2.14001988000E-01 -4.76785145033E-01 -3.76504510229E-01 -2.35625564986E-01 -1.38318801175E-01 -7.13666818070E-02 -3.03466556588E-02 -9.19263399136E-03 -1.42959599758E-03 -3.29511417085E-04 -3.24950060530E-04 -3.20364486157E-04 -3.15762395968E-04 -3.11149487019E-04 -3.06531886932E-04 3 2 Beta L 1174 9.84547075439E-13 1.01453099778E-12 1.04542806649E-12 1.07726609104E-12 1.11007372779E-12 1.14388050582E-12 1.17871685352E-12 1.21461412596E-12 1.25160463309E-12 1.28972166889E-12 1.32899954124E-12 1.36947360289E-12 1.41118028323E-12 1.45415712108E-12 1.49844279850E-12 1.54407717558E-12 1.59110132635E-12 1.63955757571E-12 1.68948953757E-12 1.74094215405E-12 1.79396173599E-12 1.84859600459E-12 1.90489413438E-12 1.96290679747E-12 2.02268620918E-12 2.08428617501E-12 2.14776213909E-12 2.21317123408E-12 2.28057233257E-12 2.35002610010E-12 2.42159504975E-12 2.49534359841E-12 2.57133812475E-12 2.64964702898E-12 2.73034079438E-12 2.81349205081E-12 2.89917563999E-12 2.98746868295E-12 3.07845064939E-12 3.17220342921E-12 3.26881140624E-12 3.36836153420E-12 3.47094341490E-12 3.57664937898E-12 3.68557456892E-12 3.79781702476E-12 3.91347777229E-12 4.03266091397E-12 4.15547372269E-12 4.28202673826E-12 4.41243386695E-12 4.54681248396E-12 4.68528353912E-12 4.82797166573E-12 4.97500529274E-12 5.12651676034E-12 5.28264243907E-12 5.44352285258E-12 5.60930280411E-12 5.78013150680E-12 5.95616271802E-12 6.13755487773E-12 6.32447125113E-12 6.51708007557E-12 6.71555471200E-12 6.92007380097E-12 7.13082142349E-12 7.34798726662E-12 7.57176679431E-12 7.80236142321E-12 8.03997870407E-12 8.28483250847E-12 8.53714322138E-12 8.79713793945E-12 9.06505067550E-12 9.34112256906E-12 9.62560210347E-12 9.91874532952E-12 1.02208160959E-11 1.05320862867E-11 1.08528360661E-11 1.11833541305E-11 1.15239379686E-11 1.18748941287E-11 1.22365384950E-11 1.26091965721E-11 1.29932037772E-11 1.33889057427E-11 1.37966586272E-11 1.42168294357E-11 1.46497963504E-11 1.50959490707E-11 1.55556891642E-11 1.60294304280E-11 1.65175992611E-11 1.70206350486E-11 1.75389905565E-11 1.80731323398E-11 1.86235411622E-11 1.91907124288E-11 1.97751566320E-11 2.03773998110E-11 2.09979840253E-11 2.16374678426E-11 2.22964268416E-11 2.29754541298E-11 2.36751608775E-11 2.43961768682E-11 2.51391510648E-11 2.59047521943E-11 2.66936693494E-11 2.75066126088E-11 2.83443136763E-11 2.92075265394E-11 3.00970281479E-11 3.10136191133E-11 3.19581244294E-11 3.29313942147E-11 3.39343044777E-11 3.49677579054E-11 3.60326846756E-11 3.71300432942E-11 3.82608214581E-11 3.94260369440E-11 4.06267385245E-11 4.18640069120E-11 4.31389557315E-11 4.44527325232E-11 4.58065197748E-11 4.72015359862E-11 4.86390367662E-11 5.01203159624E-11 5.16467068262E-11 5.32195832123E-11 5.48403608158E-11 5.65104984457E-11 5.82314993388E-11 6.00049125120E-11 6.18323341569E-11 6.37154090763E-11 6.56558321647E-11 6.76553499339E-11 6.97157620848E-11 7.18389231276E-11 7.40267440503E-11 7.62811940396E-11 7.86043022526E-11 8.09981596435E-11 8.34649208456E-11 8.60068061103E-11 8.86261033062E-11 9.13251699773E-11 9.41064354660E-11 9.69724030989E-11 9.99256524403E-11 1.02968841614E-10 1.06104709696E-10 1.09336079178E-10 1.12665858512E-10 1.16097044724E-10 1.19632726113E-10 1.23276085030E-10 1.27030400745E-10 1.30899052396E-10 1.34885522029E-10 1.38993397738E-10 1.43226376886E-10 1.47588269441E-10 1.52083001401E-10 1.56714618329E-10 1.61487288991E-10 1.66405309113E-10 1.71473105246E-10 1.76695238749E-10 1.82076409893E-10 1.87621462097E-10 1.93335386280E-10 1.99223325362E-10 2.05290578884E-10 2.11542607785E-10 2.17985039312E-10 2.24623672088E-10 2.31464481331E-10 2.38513624231E-10 2.45777445492E-10 2.53262483045E-10 2.60975473928E-10 2.68923360353E-10 2.77113295954E-10 2.85552652228E-10 2.94249025162E-10 3.03210242082E-10 3.12444368686E-10 3.21959716311E-10 3.31764849414E-10 3.41868593275E-10 3.52280041946E-10 3.63008566433E-10 3.74063823134E-10 3.85455762524E-10 3.97194638118E-10 4.09291015697E-10 4.21755782818E-10 4.34600158611E-10 4.47835703882E-10 4.61474331515E-10 4.75528317195E-10 4.90010310459E-10 5.04933346077E-10 5.20310855789E-10 5.36156680392E-10 5.52485082198E-10 5.69310757869E-10 5.86648851650E-10 6.04514968996E-10 6.22925190617E-10 6.41896086957E-10 6.61444733102E-10 6.81588724153E-10 7.02346191062E-10 7.23735816951E-10 7.45776853925E-10 7.68489140406E-10 7.91893118986E-10 8.16009854823E-10 8.40861054609E-10 8.66469086100E-10 8.92856998253E-10 9.20048541971E-10 9.48068191477E-10 9.76941166348E-10 1.00669345421E-09 1.03735183413E-09 1.06894390072E-09 1.10149808897E-09 1.13504369984E-09 1.16961092666E-09 1.20523088226E-09 1.24193562700E-09 1.27975819763E-09 1.31873263702E-09 1.35889402479E-09 1.40027850891E-09 1.44292333819E-09 1.48686689587E-09 1.53214873412E-09 1.57880960964E-09 1.62689152037E-09 1.67643774328E-09 1.72749287330E-09 1.78010286352E-09 1.83431506645E-09 1.89017827676E-09 1.94774277509E-09 2.00706037337E-09 2.06818446147E-09 2.13117005516E-09 2.19607384575E-09 2.26295425102E-09 2.33187146786E-09 2.40288752640E-09 2.47606634589E-09 2.55147379221E-09 2.62917773716E-09 2.70924811952E-09 2.79175700804E-09 2.87677866629E-09 2.96438961950E-09 3.05466872345E-09 3.14769723541E-09 3.24355888732E-09 3.34233996115E-09 3.44412936652E-09 3.54901872078E-09 3.65710243140E-09 3.76847778104E-09 3.88324501502E-09 4.00150743159E-09 4.12337147491E-09 4.24894683085E-09 4.37834652570E-09 4.51168702791E-09 4.64908835293E-09 4.79067417124E-09 4.93657191962E-09 5.08691291588E-09 5.24183247708E-09 5.40147004126E-09 5.56596929302E-09 5.73547829277E-09 5.91014961006E-09 6.09014046085E-09 6.27561284906E-09 6.46673371235E-09 6.66367507239E-09 6.86661418970E-09 7.07573372317E-09 7.29122189450E-09 7.51327265758E-09 7.74208587308E-09 7.97786748832E-09 8.22082972269E-09 8.47119125856E-09 8.72917743823E-09 8.99502046666E-09 9.26895962051E-09 9.55124146350E-09 9.84212006833E-09 1.01418572454E-08 1.04507227783E-08 1.07689946670E-08 1.10969593775E-08 1.14349121003E-08 1.17831570156E-08 1.21420075673E-08 1.25117867451E-08 1.28928273753E-08 1.32854724200E-08 1.36900752864E-08 1.41070001443E-08 1.45366222542E-08 1.49793283049E-08 1.54355167619E-08 1.59055982254E-08 1.63899958005E-08 1.68891454777E-08 1.74034965254E-08 1.79335118941E-08 1.84796686336E-08 1.90424583216E-08 1.96223875069E-08 2.02199781648E-08 2.08357681673E-08 2.14703117668E-08 2.21241800955E-08 2.27979616789E-08 2.34922629658E-08 2.42077088743E-08 2.49449433539E-08 2.57046299653E-08 2.64874524778E-08 2.72941154844E-08 2.81253450362E-08 2.89818892958E-08 2.98645192109E-08 3.07740292078E-08 3.17112379070E-08 3.26769888593E-08 3.36721513059E-08 3.46976209599E-08 3.57543208132E-08 3.68432019670E-08 3.79652444876E-08 3.91214582890E-08 4.03128840416E-08 4.15405941088E-08 4.28056935124E-08 4.41093209273E-08 4.54526497059E-08 4.68368889347E-08 4.82632845224E-08 4.97331203210E-08 5.12477192818E-08 5.28084446461E-08 5.44167011718E-08 5.60739363981E-08 5.77816419485E-08 5.95413548731E-08 6.13546590320E-08 6.32231865212E-08 6.51486191412E-08 6.71326899113E-08 6.91771846288E-08 7.12839434767E-08 7.34548626798E-08 7.56918962117E-08 7.79970575533E-08 8.03724215051E-08 8.35048142080E-08 8.60321665560E-08 8.80008670991E-08 9.06801507890E-08 9.34396939398E-08 9.62851270439E-08 9.92151165993E-08 1.02236679434E-07 1.05348019184E-07 1.08555175594E-07 1.11860608085E-07 1.15264472340E-07 1.18774184400E-07 1.22389254082E-07 1.26116397246E-07 1.29954460290E-07 1.33912324477E-07 1.37989342469E-07 1.42189032659E-07 1.46519091087E-07 1.50979114559E-07 1.55576254805E-07 1.60311482795E-07 1.65193467241E-07 1.70223107348E-07 1.75404162638E-07 1.80744967994E-07 1.86247153308E-07 1.91918209509E-07 1.97762916695E-07 2.03783994666E-07 2.09987332479E-07 2.16381447623E-07 2.22968474345E-07 2.29757233521E-07 2.36753045253E-07 2.43961598559E-07 2.51390654871E-07 2.59045143361E-07 2.66931718303E-07 2.75058899334E-07 2.83433503186E-07 2.92064594969E-07 3.00956599183E-07 3.10120370383E-07 3.19564412529E-07 3.29291602067E-07 3.39320599445E-07 3.49650794675E-07 3.60299264811E-07 3.71270058153E-07 3.82572544526E-07 3.94222146345E-07 4.06228617608E-07 4.18594980882E-07 4.31341021032E-07 4.44477041296E-07 4.58011420253E-07 4.71957298285E-07 4.86328526873E-07 5.01137175558E-07 5.16395899965E-07 5.32122258078E-07 5.48322724984E-07 5.65020087699E-07 5.82228244471E-07 5.99955993087E-07 6.18225391735E-07 6.37047462121E-07 6.56451023348E-07 6.76436441360E-07 6.97036756529E-07 7.18260773520E-07 7.40135189002E-07 7.62670253476E-07 7.85896814015E-07 8.09824744602E-07 8.34489274139E-07 8.59897619268E-07 8.86083135983E-07 9.13065728840E-07 9.40871527872E-07 9.69520667367E-07 9.99043566903E-07 1.02946847761E-06 1.06081903081E-06 1.09312048533E-06 1.12640716162E-06 1.16070772002E-06 1.19605300073E-06 1.23247805945E-06 1.27001017648E-06 1.30868407691E-06 1.34853550426E-06 1.38959989663E-06 1.43191634945E-06 1.47552185918E-06 1.52045540255E-06 1.56675826572E-06 1.61446913070E-06 1.66363544878E-06 1.71429675715E-06 1.76650075718E-06 1.82029197008E-06 1.87572800964E-06 1.93284431140E-06 1.99170676416E-06 2.05235674855E-06 2.11486039281E-06 2.17926269890E-06 2.24562561677E-06 2.31401546671E-06 2.38447950437E-06 2.45709670991E-06 2.53192031242E-06 2.60902562230E-06 2.68847764146E-06 2.77034899972E-06 2.85471249607E-06 2.94165073225E-06 3.03123064750E-06 3.12353790568E-06 3.21866110494E-06 3.31668298410E-06 3.41768624033E-06 3.52175947185E-06 3.62901077694E-06 3.73952574656E-06 3.85340452363E-06 3.97075598468E-06 4.09167666726E-06 4.21627915133E-06 4.34468010603E-06 4.47699116487E-06 4.61332698957E-06 4.75381967291E-06 4.89859224095E-06 5.04776366134E-06 5.20148963690E-06 5.35988767551E-06 5.52311545322E-06 5.69131151124E-06 5.86463307309E-06 6.04323127643E-06 6.22726937976E-06 6.41691086050E-06 6.61232954013E-06 6.81369136891E-06 7.02119331578E-06 7.23501050783E-06 7.45534331505E-06 7.68238358030E-06 7.91633787340E-06 8.15741601698E-06 8.40583691371E-06 8.66182615206E-06 8.92560442365E-06 9.19741914507E-06 9.47751696930E-06 9.76613373134E-06 1.00635585047E-05 1.03700131088E-05 1.06858318173E-05 1.10112390203E-05 1.13465809827E-05 1.16921137918E-05 1.20481775442E-05 1.24150949108E-05 1.27931704895E-05 1.31827675806E-05 1.35842322922E-05 1.39979115231E-05 1.44242017720E-05 1.48634677304E-05 1.53161081620E-05 1.57825392684E-05 1.62631674433E-05 1.67584378220E-05 1.72687885483E-05 1.77946854675E-05 1.83365887944E-05 1.88950075493E-05 1.94704125547E-05 2.00633596124E-05 2.06743570519E-05 2.13039537892E-05 2.19527358907E-05 2.26212674990E-05 2.33101579514E-05 2.40200361550E-05 2.47515174903E-05 2.55052913138E-05 2.62820011117E-05 2.70823767837E-05 2.79071316603E-05 2.87569871230E-05 2.96327300354E-05 3.05351429291E-05 3.14650373161E-05 3.24232379026E-05 3.34106349694E-05 3.44280904209E-05 3.54765309063E-05 3.65568985671E-05 3.76701736895E-05 3.88173484095E-05 3.99994529724E-05 4.12175524072E-05 4.24727586583E-05 4.37661757850E-05 4.50989881894E-05 4.64723870911E-05 4.78876011783E-05 4.93459259516E-05 5.08486456499E-05 5.23971250090E-05 5.39927676709E-05 5.56370016564E-05 5.73313003921E-05 5.90771887872E-05 6.08762528301E-05 6.27300859550E-05 6.46403947520E-05 6.66088546850E-05 6.86372681236E-05 7.07274455171E-05 7.28812740277E-05 7.51006835920E-05 7.73876961820E-05 7.97443222840E-05 8.21727340760E-05 8.46750796505E-05 8.72536324293E-05 8.99107013416E-05 9.26486855530E-05 9.54700295345E-05 9.83773033628E-05 1.01373073861E-04 1.04460099953E-04 1.07641120110E-04 1.10918998507E-04 1.14296684069E-04 1.17777244644E-04 1.21363773543E-04 1.25059498819E-04 1.28867774817E-04 1.32792008980E-04 1.36835734200E-04 1.41002595063E-04 1.45296329122E-04 1.49720811067E-04 1.54280002561E-04 1.58978043922E-04 1.63819112404E-04 1.68807600401E-04 1.73947967163E-04 1.79244869888E-04 1.84703040247E-04 1.90327409404E-04 1.96123037160E-04 2.02095131752E-04 2.08249083296E-04 2.14590381484E-04 2.21124781004E-04 2.27858127877E-04 2.34796489863E-04 2.41946099960E-04 2.49313421066E-04 2.56905054921E-04 2.64727814998E-04 2.72788769109E-04 2.81095134309E-04 2.89654424269E-04 2.98474321235E-04 3.07562737150E-04 3.16927855341E-04 3.26578133725E-04 3.36522174640E-04 3.46768995301E-04 3.57327807258E-04 3.68208057381E-04 3.79419574754E-04 3.90972437659E-04 4.02876985022E-04 4.15143991470E-04 4.27784495458E-04 4.40809747374E-04 4.54231762698E-04 4.68060490653E-04 4.82328833846E-04 4.96850062052E-04 5.11747642167E-04 5.31957230558E-04 5.33698205154E-04 5.72826350347E-04 5.67209994662E-04 5.93575239260E-04 6.28140169327E-04 6.09229127997E-04 6.74448239408E-04 6.54506454225E-04 7.07773618902E-04 6.89404212202E-04 7.55562004666E-04 7.43333071067E-04 7.81043185617E-04 8.08386360035E-04 8.24050624689E-04 8.51344701652E-04 8.81648118274E-04 9.05861568513E-04 9.27524592464E-04 9.65973223880E-04 9.91253335165E-04 1.02018059396E-03 1.04979798490E-03 1.08481978399E-03 1.12197641836E-03 1.13925202113E-03 1.19766912100E-03 1.21822327574E-03 1.25553332936E-03 1.30057900745E-03 1.33730127619E-03 1.38290402031E-03 1.41230664978E-03 1.46244232138E-03 1.51546224885E-03 1.54595083230E-03 1.60181992364E-03 1.65002110532E-03 1.69944011213E-03 1.75562412071E-03 1.79807125972E-03 1.86476468403E-03 1.91243917247E-03 1.97984070994E-03 2.02772873333E-03 2.10216419256E-03 2.15759650582E-03 2.22840907218E-03 2.28763883911E-03 2.36590585707E-03 2.44260402220E-03 2.51177493841E-03 2.56991284356E-03 2.67679750112E-03 2.74178460959E-03 2.83098623913E-03 2.92278124418E-03 2.98537044827E-03 3.11277559551E-03 3.19303036359E-03 3.27214847181E-03 3.40222217216E-03 3.47828195682E-03 3.59681693772E-03 3.71363537403E-03 3.81112407379E-03 3.93284965034E-03 4.06679806150E-03 4.16474994422E-03 4.31171174491E-03 4.44248749207E-03 4.56612855420E-03 4.69448153997E-03 4.86899291098E-03 5.00495127407E-03 5.13614569069E-03 5.32829603538E-03 5.45791808997E-03 5.64672006594E-03 5.80438718099E-03 5.98766749591E-03 6.16579736094E-03 6.35611316089E-03 6.55309958042E-03 6.73810809737E-03 6.96742834292E-03 7.15783792267E-03 7.37697573753E-03 7.62103437027E-03 7.83020851707E-03 8.07903186294E-03 8.31897066710E-03 8.57860585309E-03 8.83773179914E-03 9.10463172875E-03 9.37875739588E-03 9.67498306950E-03 9.95633765958E-03 1.02655179273E-02 1.05770367269E-02 1.08958682440E-02 1.12295614843E-02 1.15725201262E-02 1.19247369074E-02 1.22766471914E-02 1.26639759983E-02 1.30410329226E-02 1.34394879650E-02 1.38458915721E-02 1.42724746586E-02 1.47015580028E-02 1.51476885301E-02 1.56082421272E-02 1.60835660083E-02 1.65743056940E-02 1.70757413958E-02 1.75936507590E-02 1.81287367436E-02 1.86809614206E-02 1.92476774197E-02 1.98293175724E-02 2.04358518417E-02 2.10553408587E-02 2.16940181818E-02 2.23528031051E-02 2.30337539072E-02 2.37305366770E-02 2.44523225726E-02 2.51938611273E-02 2.59591363829E-02 2.67469794433E-02 2.75614395830E-02 2.83940143908E-02 2.92584315065E-02 3.01457587541E-02 3.10618837196E-02 3.19996004395E-02 3.29776123215E-02 3.39734225070E-02 3.50060986488E-02 3.60669537098E-02 3.71618250307E-02 3.82883283226E-02 3.94510812471E-02 4.06462850425E-02 4.18777041432E-02 4.31494407357E-02 4.44565106762E-02 4.58061297882E-02 4.71923350557E-02 4.86244463876E-02 5.00966530343E-02 5.16157191483E-02 5.31803936134E-02 5.47900475705E-02 5.64514278930E-02 5.81605139552E-02 5.99226050906E-02 6.17372802902E-02 6.36070092540E-02 6.55321329796E-02 6.75178958473E-02 6.95594794723E-02 7.16664416612E-02 7.38342107024E-02 7.60699751012E-02 7.83704447752E-02 8.07410836538E-02 8.31843447625E-02 8.56993261260E-02 8.82914624760E-02 9.09602691956E-02 9.37105001318E-02 9.65429341621E-02 9.94607296327E-02 1.02466103221E-01 1.05561528691E-01 1.08750589416E-01 1.12034635877E-01 1.15417895845E-01 1.18902862810E-01 1.22492048766E-01 1.26188414124E-01 1.29997013630E-01 1.33918308108E-01 1.37958285090E-01 1.42118227494E-01 1.46404286245E-01 1.50816794382E-01 1.55363250750E-01 1.60044136413E-01 1.64866107344E-01 1.69831843747E-01 1.74945815947E-01 1.80213034338E-01 1.85637098129E-01 1.91223525260E-01 1.96976191053E-01 2.02900767796E-01 2.09001959990E-01 2.15284802130E-01 2.21754809785E-01 2.28417700391E-01 2.35278650735E-01 2.42343745619E-01 2.49618877862E-01 2.57110311008E-01 2.64824084360E-01 2.72767045165E-01 2.80945371040E-01 2.89366697272E-01 2.98036951910E-01 3.06964801621E-01 3.16156335643E-01 3.25620115196E-01 3.35363586035E-01 3.45395108287E-01 3.55722577222E-01 3.66355308608E-01 3.77301382759E-01 3.88569939715E-01 4.00170523461E-01 4.12112616748E-01 4.24405854766E-01 4.37060415118E-01 4.50086494064E-01 4.63495111647E-01 4.77296542661E-01 4.91502591694E-01 5.06124371747E-01 5.21174086006E-01 5.36663273039E-01 5.52605152949E-01 5.69011688891E-01 5.85896791084E-01 6.03273373430E-01 6.21155623592E-01 6.39557582823E-01 6.58493724069E-01 6.77979214215E-01 6.98029449423E-01 7.18659658676E-01 7.39886804108E-01 7.61726597047E-01 7.84196729345E-01 8.07314191146E-01 8.31097042090E-01 8.55563380693E-01 8.80732321516E-01 9.06622835875E-01 9.33254803311E-01 9.60648241919E-01 9.88824131686E-01 1.01780338632E+00 1.04760805068E+00 1.07826015319E+00 1.10978252816E+00 1.14219865321E+00 1.17553233637E+00 1.20980784474E+00 1.24505058206E+00 1.28128583977E+00 1.31853997284E+00 1.35683976543E+00 1.39621252838E+00 1.43668643677E+00 1.47828995190E+00 1.52105258863E+00 1.56500399376E+00 1.61017491909E+00 1.65659655121E+00 1.70430069742E+00 1.75331993072E+00 1.80368750010E+00 1.85543727897E+00 1.90860383598E+00 1.96322241557E+00 2.01932899455E+00 2.07696018771E+00 2.13615337981E+00 2.19694653127E+00 2.25937840035E+00 2.32348845334E+00 2.38931668577E+00 2.45690405265E+00 2.52629192554E+00 2.59752250156E+00 2.67063866443E+00 2.74568388734E+00 2.82270237260E+00 2.90173890192E+00 2.98283895793E+00 3.06604855009E+00 3.15141446478E+00 3.23898382842E+00 3.32880454454E+00 3.42092496197E+00 3.51539393899E+00 3.61226085665E+00 3.71157553060E+00 3.81338824714E+00 3.91774958038E+00 4.02471057062E+00 4.13432249492E+00 4.24663691072E+00 4.36170556035E+00 4.47958041713E+00 4.60031346771E+00 4.72395676237E+00 4.85056237712E+00 4.98018218004E+00 5.11286801420E+00 5.24867128879E+00 5.38764322884E+00 5.52983453227E+00 5.67529538566E+00 5.82407536375E+00 5.97622326093E+00 6.13178705215E+00 6.29081365704E+00 6.45334896967E+00 6.61943756395E+00 6.78912261557E+00 6.96244580821E+00 7.13944702019E+00 7.32016432425E+00 7.50463367170E+00 7.69288879435E+00 7.88496094606E+00 8.08087874710E+00 8.28066790553E+00 8.48435106235E+00 8.69194746070E+00 8.90347280361E+00 9.11893889650E+00 9.33835342383E+00 9.56171965935E+00 9.78903615658E+00 1.00202964476E+01 1.02554887279E+01 1.04945954995E+01 1.07375932541E+01 1.09844520833E+01 1.12351353223E+01 1.14895991657E+01 1.17477922480E+01 1.20096552473E+01 1.22751204682E+01 1.25441113533E+01 1.28165420995E+01 1.30923171324E+01 1.33713306643E+01 1.36534661881E+01 1.39385959707E+01 1.42265805606E+01 1.45172682409E+01 1.48104945004E+01 1.51060815058E+01 1.54038375277E+01 1.57035564004E+01 1.60050169457E+01 1.63079824131E+01 1.66121999041E+01 1.69173997966E+01 1.72232951814E+01 1.75295812838E+01 1.78359349096E+01 1.81420138742E+01 1.84474564743E+01 1.87518809373E+01 1.90548849169E+01 1.93560449916E+01 1.96549161919E+01 1.99510315560E+01 2.02439017126E+01 2.05330145122E+01 2.08178346857E+01 2.10978035580E+01 2.13723388146E+01 2.16408343258E+01 2.19026600317E+01 2.21571619072E+01 2.24036619993E+01 2.26414585548E+01 2.28698262381E+01 2.30880164552E+01 2.32952577883E+01 2.34907565479E+01 2.36736974565E+01 2.38432444688E+01 2.39985417424E+01 2.41387147627E+01 2.42628716469E+01 2.43701046101E+01 2.44594916414E+01 2.45300983612E+01 2.45809801010E+01 2.46111842111E+01 2.46197525710E+01 2.46057243822E+01 2.45681391856E+01 2.45060401378E+01 2.44184775822E+01 2.43045128696E+01 2.41632224785E+01 2.39937024286E+01 2.37950729729E+01 2.35664836095E+01 2.33071183745E+01 2.30162014439E+01 2.26930030341E+01 2.23368455860E+01 2.19471102381E+01 2.15232435766E+01 2.10647646400E+01 2.05712721647E+01 2.00424520663E+01 1.94780850994E+01 1.88780547010E+01 1.82423549556E+01 1.75710986700E+01 1.68645254798E+01 1.61230099786E+01 1.53470697802E+01 1.45373734672E+01 1.36947483713E+01 1.28201880825E+01 1.19148596436E+01 1.09801103086E+01 1.00174738120E+01 9.02867601419E+00 8.01563984892E+00 6.98048945296E+00 5.92555335840E+00 4.85336664544E+00 3.76667192117E+00 2.66841900224E+00 1.56176317938E+00 4.50061932119E-01 -6.63130042567E-01 -1.77406759228E+00 -2.87882382844E+00 -3.97330086683E+00 -5.05324277289E+00 -6.11425075613E+00 -7.15180077354E+00 -8.16126357961E+00 -9.13792735207E+00 -1.00770229171E+01 -1.09737516471E+01 -1.18233160625E+01 -1.26209531369E+01 -1.33619703112E+01 -1.40417841871E+01 -1.46559618322E+01 -1.52002646418E+01 -1.56706946222E+01 -1.60635430017E+01 -1.63754409687E+01 -1.66034123757E+01 -1.67449281764E+01 -1.67979623455E+01 -1.67610489995E+01 -1.66333403918E+01 -1.64146654400E+01 -1.61055883804E+01 -1.57074671258E+01 -1.52225108492E+01 -1.46538362633E+01 -1.40055220398E+01 -1.32826607088E+01 -1.24914073828E+01 -1.16390245096E+01 -1.07339218473E+01 -9.78569073213E+00 -8.80513165326E+00 -7.80427403855E+00 -6.79638709010E+00 -5.79598040516E+00 -4.81879305147E+00 -3.88176970429E+00 -3.00302240873E+00 -2.20177655829E+00 -1.49829953841E+00 -9.13812325675E-01 -4.70367780233E-01 -1.90842949749E-01 -9.76009086920E-02 -2.23904971594E-01 -5.00758530057E-01 -3.95604340388E-01 -2.47685850276E-01 -1.45457888864E-01 -7.50811350954E-02 -3.19405534294E-02 -9.68217857294E-03 -1.51015985669E-03 -3.51585307078E-04 -3.46671029575E-04 -3.41732389256E-04 -3.36777684208E-04 -3.31813075053E-04 -3.26845152112E-04 4 Number of nonzero Dij 1 1 1.80377526959E-02 2 2 -3.30319748411E+00 2 3 3.17137654411E+00 3 3 -3.05393097845E+00 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 1 i j (l(j)) -3.24607942830E-19 Q_int -7.64028712664E-39 7.64217509367E-38 -8.98113350966E-38 4.08947484075E-38 -8.40182478317E-38 -4.55636167320E-38 1.53605286782E-38 -1.07509744722E-37 6.42967270073E-38 -1.37052087599E-37 1.60160052563E-37 -1.10071358069E-37 7.53446441549E-38 -7.58546256619E-37 1.05922920905E-37 1.25024347089E-37 -7.96247061695E-38 -1.33869485085E-37 -6.62420811374E-37 8.61500172765E-37 5.91100562390E-37 -1.69149884779E-37 5.96249487514E-37 5.80730003208E-38 -1.15045180834E-37 2.29397601877E-37 -1.01622637119E-37 3.06980009154E-38 2.80234043666E-37 -2.98149781646E-37 3.16425117726E-38 -3.32431867395E-37 3.99670023969E-38 -3.03813152016E-37 -3.15660802988E-37 2.90603711968E-37 -3.51052727252E-37 4.15019509266E-38 1.58840823709E-37 3.11749727311E-37 9.30388113965E-38 -2.39851444473E-36 -2.81512061793E-36 3.36450049375E-38 4.46998439649E-38 2.48224531724E-36 1.92632113353E-36 -5.66561811687E-37 1.80315555750E-37 -5.86131980734E-37 -6.35305128287E-37 4.50176363061E-37 -5.82153888821E-37 5.84433597914E-37 -6.41631546311E-37 -3.98804638513E-38 7.35628389779E-37 -6.88130803938E-37 1.36185108670E-36 6.03276295416E-37 -1.21698044282E-36 8.26598833777E-37 1.03667634722E-36 2.73589523848E-37 2.04452483820E-37 5.01662365366E-37 -4.68978930525E-38 -4.57062488291E-37 -1.23435917559E-36 -2.70935107444E-37 -2.11750154588E-37 1.06046800810E-36 -2.75393636584E-37 1.02101261357E-36 1.35956333658E-37 1.81366330199E-36 -1.53484826637E-36 -7.09460292485E-37 8.45849586187E-37 1.62965225424E-37 -2.04989616680E-37 2.02334394671E-36 -1.17782408760E-36 1.42644392411E-36 2.78032816014E-36 -2.90850158127E-37 -1.94797735343E-36 1.80442244210E-36 1.03676519807E-35 -1.23840530853E-35 1.24649539193E-35 9.56590350636E-36 -4.96305483805E-37 3.51620138444E-36 -3.24111730283E-36 -5.35564350292E-37 5.12509815888E-37 -1.83522771719E-36 -2.43885832437E-36 5.92679450619E-36 5.82980607148E-36 2.13616521181E-36 5.57019116967E-36 -6.98970420800E-37 5.70142405484E-36 -4.19687220853E-36 -4.77240446332E-36 -1.68285537624E-36 -3.75284718158E-36 5.29420796241E-36 -4.37917022196E-36 1.05479921978E-35 2.69473473044E-36 1.03090387730E-35 -1.93621358604E-36 -2.21054531402E-36 -1.14394112703E-35 -7.68214583005E-36 -4.05714245803E-36 -9.02970558607E-36 1.20290546844E-35 -2.90034014300E-36 1.01000272974E-35 -7.26707242415E-36 -6.51898893001E-36 -7.03086578116E-36 5.52267522578E-35 -2.37087020624E-35 -1.39767308356E-35 1.29527454110E-35 -1.28885091860E-35 -1.65082407347E-35 1.17977784154E-35 -1.33733871585E-35 -7.95433968597E-36 -9.42424183321E-36 9.67950178851E-36 1.12329119388E-36 8.92144161389E-36 -1.88910292766E-35 -1.46519110745E-34 -2.52414532895E-36 -1.82677269298E-35 1.18271906515E-34 -4.00476195956E-36 1.16722611915E-34 -9.32996483753E-38 -3.13318867837E-35 1.23224057113E-34 -2.51351583776E-35 -3.37082078523E-35 3.21322018589E-35 1.90145014672E-35 -3.89977716183E-35 3.90900508033E-36 -1.41477449477E-34 3.38332508688E-35 -3.21226903910E-36 2.27424359966E-35 1.99525718985E-36 -2.01439460778E-35 -1.70532608692E-34 8.89034240769E-35 -8.53427421837E-36 1.62734258431E-35 4.54949121902E-35 8.94654627538E-35 7.79164190816E-35 -8.73378038536E-35 -3.94203354956E-35 9.22557570323E-35 -3.84725628680E-35 8.85009050067E-35 -1.25771686870E-35 1.99515785564E-36 -6.62021567685E-35 5.16440803075E-35 7.81056601136E-35 -5.50695660243E-35 1.14479774926E-34 -9.20808290115E-35 -7.09154254210E-35 -1.57582961563E-34 4.97554293646E-35 1.82794622281E-34 4.50730457242E-34 6.32151138777E-34 -1.07387607418E-34 9.77083976841E-35 8.59208323982E-35 6.76259731044E-35 1.86276249984E-34 -7.51426380302E-35 -9.30795754384E-35 4.14395332770E-35 7.35278535095E-34 1.34158044685E-34 4.90626217770E-35 1.75852472088E-34 -1.57015858363E-34 -3.13096694097E-34 1.54555521543E-35 2.85208953242E-35 -1.92482483651E-34 -3.08991570517E-34 -3.47644927857E-34 2.47629726698E-35 -9.03682641496E-35 2.67613292984E-34 2.12480585575E-36 -1.40958083149E-34 -2.82447197118E-34 1.39426746204E-34 1.88828151443E-34 5.47041744257E-34 -4.61139036927E-34 6.90501898813E-34 2.30573651312E-34 -6.52582174253E-34 2.13241731141E-34 3.98605221470E-34 1.99252595851E-34 -7.51754167613E-34 4.74180443400E-34 -3.55435556050E-34 -3.03824556060E-33 2.50989355493E-33 -3.55882148628E-33 2.40941200604E-33 -4.19653068167E-34 -3.78063229347E-33 4.75085338288E-34 1.19279397337E-33 -1.32431019263E-33 -6.80087024679E-35 8.73441735793E-34 8.41889502664E-34 5.11016600189E-35 1.37489132483E-33 -1.07452704398E-33 -3.18026987834E-34 -1.21550153420E-33 -1.52996082788E-33 -1.18080639489E-33 1.21451905010E-33 -1.28841172891E-33 6.74542989005E-34 6.02316243074E-34 -4.50977776875E-34 1.42321823367E-34 2.08184514294E-33 -2.54258099673E-33 1.03641019403E-33 -1.42883872654E-33 -7.53713403981E-33 2.66574189902E-33 -5.07466635565E-34 -2.21265107620E-33 7.45044982036E-35 1.13094151079E-33 2.84706142184E-33 2.81635480409E-33 -2.72452444994E-33 2.20673251454E-33 2.80600719365E-33 2.19935178043E-33 3.70949641746E-33 4.57954389311E-33 -1.60954886318E-33 -1.84866380956E-33 -1.55691869627E-33 4.07390158353E-33 1.11265855516E-33 -2.77964496799E-33 3.44114081815E-32 -1.37808105687E-33 3.70474601829E-33 -5.59087858693E-33 -6.97717899111E-34 3.06755094028E-33 -3.85306350147E-32 -3.05142721252E-32 2.47326882312E-33 -9.42618147020E-33 1.58474576968E-33 -9.74059251268E-33 2.96768718443E-33 -3.93133147560E-32 -5.20069239783E-33 -1.17109959301E-32 1.19215696186E-32 1.21309703551E-32 -7.02447279838E-33 3.05503773887E-32 6.78398869873E-33 5.44345944487E-33 4.44853390090E-33 -4.93607786560E-32 8.93932847113E-33 8.77612395213E-33 5.70645673946E-33 -1.43861103716E-32 2.45072292557E-32 -2.17865500367E-32 7.81507248796E-33 -2.36906999558E-32 8.32258127739E-33 9.74927864424E-33 3.01549556617E-33 -2.02285596835E-32 1.13872877200E-32 2.47559787475E-33 1.82396088107E-32 -5.89255336856E-33 1.89105806241E-32 -1.54796231802E-32 1.69096199976E-32 -5.12266880542E-33 1.50849877696E-33 1.52902222004E-32 -1.81141504016E-31 1.57814808547E-32 1.37083432510E-32 4.40186760474E-32 -3.27303841016E-32 1.71448839162E-31 -2.63483155535E-32 4.44279280527E-32 4.37856800081E-32 -1.81441097899E-31 6.70511093337E-33 9.93149370070E-33 -2.42576056744E-32 1.26062584980E-32 -1.22374022819E-32 6.34286477191E-33 -3.13164085372E-32 -8.59303227326E-32 -4.95612019793E-32 6.01215001058E-32 -1.20119283178E-32 -1.56927745031E-32 -1.17124153699E-32 -5.02041548937E-32 9.12247598129E-32 3.27421398044E-32 -3.37995420625E-32 3.94806844164E-32 6.00760476944E-32 -3.10519432834E-32 -8.38406181252E-32 -5.86888104918E-32 7.39500885791E-32 1.79486739004E-31 6.08492761828E-32 -7.40608376629E-32 -7.91769788213E-32 8.40692790303E-32 9.54884827115E-32 -1.75567068867E-31 -6.64300156320E-32 -1.14563782524E-31 6.09333961702E-32 -5.33231640812E-32 1.69507845913E-31 1.30977273020E-31 -1.61142641915E-31 5.41804771767E-32 1.21832333129E-31 -8.59702292545E-31 2.14073352898E-31 -3.79214736391E-31 2.81118407914E-31 -2.76997391596E-31 7.42616328645E-32 3.85908631189E-31 2.52636078055E-31 2.90543370451E-31 2.35998860587E-31 9.82346901053E-32 3.84352101459E-31 3.75352833148E-31 -3.40690255643E-31 -1.39652830366E-31 1.78143839028E-32 1.07877167842E-31 -1.12964777137E-31 1.77430832181E-32 -4.43085330185E-32 -4.57500432094E-31 -6.63252960080E-31 -6.96249710092E-31 6.52026192428E-31 1.87457313618E-32 8.94689315066E-32 -7.80928362677E-31 7.61200470317E-31 4.56703494448E-31 4.61662256689E-32 -1.96310803695E-31 7.06638070148E-31 -4.57493222446E-31 2.53745539210E-32 3.75743457194E-31 -6.44400514764E-31 -1.93701697416E-31 1.95871542287E-31 9.58644503621E-31 -3.58231698070E-31 -2.60839911293E-31 1.12985683214E-30 -1.26789499768E-30 -1.05270195159E-30 1.21892016454E-31 8.52065090024E-30 1.00082238241E-30 -1.43237193140E-30 -7.33898043633E-30 5.02996282608E-31 -1.20261050551E-30 1.41745252779E-30 -9.70975942196E-31 3.10232809217E-30 2.87269638392E-30 2.87578704676E-30 -8.03153141764E-31 -3.13593011746E-30 2.91390015109E-30 5.57142564318E-31 1.06119698722E-30 1.64881828598E-30 -2.08349780396E-30 -1.78826816279E-30 1.75785571986E-30 -6.59139818654E-31 -2.60668885443E-30 2.46644307400E-30 -1.32091606597E-30 1.23400203543E-30 1.70099161637E-30 3.30667630624E-30 3.31745408010E-30 -6.11156777517E-30 3.76461524384E-31 6.57102860466E-31 -5.12466444284E-30 5.11535908967E-30 -2.99346644910E-31 1.01031012576E-30 -5.66025092991E-30 1.94316193504E-30 -4.38995901539E-30 1.24783893557E-30 -3.66633465277E-30 5.76503874411E-30 2.28802575607E-30 3.95983887691E-29 -9.99344396006E-30 3.52810610130E-29 4.87222538415E-30 -1.12369496322E-29 4.70473467765E-29 -7.97586879111E-30 -7.92204372275E-30 -3.01896681603E-30 3.55480713823E-29 -9.24713026987E-30 1.09517451703E-29 1.39222120477E-30 6.00503618433E-30 -4.22634920322E-29 -4.72105318864E-29 1.01826679204E-29 4.99720208079E-30 -1.79189111183E-29 1.58836790196E-29 -1.37350222079E-29 -2.40221843156E-29 -1.11746238946E-29 4.45981210668E-30 2.92548683882E-30 -1.49631044117E-30 -8.23820632456E-30 -2.38716770350E-29 -1.73967288818E-29 2.07357241513E-29 -1.68016998724E-29 -5.44149820377E-30 -2.19823527804E-29 -9.45196862184E-30 -1.50890887008E-29 -3.19914293436E-29 -2.16792401950E-29 -2.03211755908E-29 -3.45104364261E-29 -1.49233913316E-29 3.13809360245E-29 1.64326601318E-29 2.49404558689E-30 -2.79533279768E-29 1.78065106541E-30 1.44390345182E-29 -5.03964995827E-29 -1.99269955302E-28 1.63302542163E-28 3.81202352228E-29 1.84332581472E-28 -1.71352521923E-28 -5.00370364127E-29 -2.73515793208E-29 2.89165786491E-29 9.23870617758E-29 -1.99267050657E-29 -4.78125989698E-30 5.32466736587E-29 9.69439003415E-29 6.83035728176E-29 -3.08605554357E-29 -8.14398453946E-29 6.67784297561E-29 2.30386056552E-29 9.07757823781E-29 -7.49828870824E-29 3.03267817947E-29 -3.88007753506E-29 -5.97581796242E-29 5.66293883008E-29 1.26534184243E-28 6.67774002158E-29 -7.13812570998E-29 -1.84154458039E-28 1.19481066328E-28 -4.51390833417E-29 -1.33323602772E-28 9.65202291287E-29 -1.23202650495E-29 -1.41360201147E-28 6.75885183055E-29 2.48660835128E-29 1.68312051516E-28 -6.53504193489E-29 -1.41217302513E-28 -1.26010132130E-28 -2.59701004739E-28 1.12311100624E-28 -1.30623886582E-28 1.68352713870E-28 -3.35931746981E-28 2.59749590726E-28 -4.01978916256E-28 -3.30542322242E-29 -2.21577055618E-28 -3.34100187795E-28 -3.36903658715E-29 -3.08454732051E-29 4.49528430510E-29 -2.32253264966E-28 7.27700877557E-30 -9.14523470607E-29 -1.85633782470E-27 -4.54748995299E-29 -2.31526766747E-28 2.81689012591E-27 -2.61101902465E-28 -3.38535108775E-28 -3.74360018204E-28 2.43537480607E-28 -8.26429897880E-29 -3.15372554434E-28 9.75289817398E-29 -1.76320517511E-28 -1.82018401736E-28 8.77183379907E-30 -2.72837501016E-28 2.61671064948E-27 3.32890329025E-27 1.70330895306E-28 5.34269136785E-28 -1.24856467882E-27 6.24812201818E-28 -1.26834058244E-27 -2.02407830632E-28 -5.06588804907E-28 2.10101752096E-28 -1.49182994336E-27 -1.56945163811E-27 -2.61450365908E-28 1.01587100682E-27 8.01918845334E-28 1.47624088683E-27 -1.21212950538E-27 1.30452555775E-27 -1.54646763895E-28 7.39326280832E-28 1.40526812400E-27 -9.13421308912E-27 5.67821168376E-28 3.08558638025E-27 8.18427648585E-27 -2.86682857944E-27 -6.59659792032E-28 3.14409171753E-27 1.44672213178E-27 -1.62951452257E-27 1.40797431614E-26 2.33278265127E-27 -1.40367527477E-26 -1.52664696714E-27 -5.92070162302E-28 -1.42288121179E-27 2.05859539823E-27 -1.44558805800E-26 -1.36340401170E-26 3.35930075034E-27 2.71970340057E-27 -2.06796664417E-27 -5.14217752877E-27 1.34467458426E-27 -2.58627087021E-28 3.16377358087E-27 -3.24455919223E-27 4.51224702868E-27 2.12525233990E-27 2.82489277559E-27 -6.19818290322E-27 -2.01442262439E-27 3.38634386294E-27 -7.56272510499E-29 3.77655409464E-27 3.64675907428E-27 1.26635530563E-26 -1.01622399200E-26 6.36369957167E-27 8.29119022022E-27 -4.25318483262E-27 -3.31157482136E-27 -5.41193228202E-27 -1.08695605015E-26 -4.13380885127E-27 -7.74238178656E-27 -1.26974003772E-26 3.47012190442E-26 -2.63154746097E-27 -3.94763392925E-27 -1.23684023515E-26 -5.56760826369E-27 6.27268338164E-26 -2.47888882405E-26 1.31443139827E-26 1.77576164883E-27 -5.71733195692E-27 -2.49077317952E-26 3.10530043848E-27 -1.15811545808E-26 2.18292221616E-26 1.90584354583E-26 7.54638651263E-27 8.94358008904E-27 -1.82635250835E-26 -2.76471629279E-27 -2.19410569421E-26 -1.05897230533E-26 -2.11374756147E-26 1.46778846112E-27 2.35760961329E-26 -2.63862351320E-26 4.07503442325E-26 4.70633024939E-27 2.35167911317E-26 -1.78437261142E-26 2.46948872368E-26 -6.69898795707E-27 -4.22980420099E-26 -2.26894034453E-26 2.18842589155E-26 1.66988570332E-26 2.58755523483E-30 3.74029933292E-26 -4.43155725940E-27 4.70659848460E-26 4.60899781969E-26 -9.27874791240E-27 7.35719637280E-26 4.54689377090E-28 5.00513599363E-26 -4.05682057726E-26 -1.01735578485E-25 5.69454633031E-26 -1.80478159022E-26 4.00339621854E-25 4.95888124672E-25 -8.64611034514E-26 3.45451395932E-26 -7.10015401205E-26 4.90945935626E-26 7.40752088103E-27 6.89077371486E-26 3.39732455466E-26 5.70789204806E-26 -8.63705143384E-26 1.34547364715E-25 1.49237419124E-25 -6.34326405427E-26 -4.77557782218E-26 1.95651889312E-25 7.29609838358E-25 -5.87040205446E-25 1.87469746626E-25 -8.45035284566E-26 -4.34025710771E-26 7.24193846159E-26 1.78329075644E-25 -1.34588463790E-25 -8.80213063265E-25 8.02330431689E-25 1.20098470916E-25 2.31684452974E-26 2.26731055639E-25 1.61631441469E-25 -2.11216798584E-25 -1.66450446987E-25 1.59647584047E-25 -4.12447231203E-25 2.21834844652E-25 -6.00051105991E-27 -2.46102909350E-25 -2.56301148535E-25 -1.76818088783E-25 2.42026586388E-25 -1.96959277600E-25 -2.22492051355E-26 1.87342449771E-25 5.68541949547E-26 3.32212479105E-25 4.65556700259E-25 -2.44409250026E-24 -1.14477826250E-25 -7.80331493379E-25 -4.37951913409E-25 6.40300806613E-25 -2.32335404612E-24 -8.05137997366E-26 6.86703456210E-25 -6.36109609996E-26 3.68868449400E-24 -1.49106911012E-25 6.22174954746E-25 -1.63163440437E-25 -3.06607522283E-24 5.71500008195E-25 5.80156677804E-26 -1.14644166147E-24 1.50045193432E-24 -1.69261148356E-25 1.32202314678E-24 1.14813862596E-24 1.02718415687E-24 -6.78089204956E-25 1.12162996230E-24 -1.35301831997E-24 -6.97860199493E-26 -1.34081852350E-24 -4.14657788020E-25 4.68022360765E-26 -6.29055542372E-25 1.19642785128E-24 1.16759282025E-24 1.51161042792E-24 1.62449568128E-24 3.05713739797E-24 1.38726733282E-25 -9.29338320108E-25 -2.30923891797E-24 1.11387875253E-24 -2.08790184345E-26 -2.56655060784E-24 1.96894852162E-24 2.74864043452E-24 -1.89995424451E-24 1.30432316669E-24 1.24261831224E-23 3.07153172394E-24 1.86848412605E-24 -1.49036955947E-23 1.03824040100E-23 1.75692671025E-24 -1.43001173305E-24 8.48323159468E-25 2.13564322597E-24 1.83503401315E-24 -4.93188689463E-24 5.69395807602E-24 -3.71996438455E-24 4.60449939411E-24 2.84838960425E-24 -2.99193204930E-24 3.36472241899E-24 3.55200910827E-24 -6.47440007362E-24 -1.50244956483E-24 -3.59835902584E-24 -6.03570242169E-24 2.20031636679E-24 -1.05901388592E-23 -4.65852096402E-24 -2.80574355065E-24 -1.12916637695E-23 3.56728946195E-24 -4.31635510149E-24 -1.99255440506E-24 1.21678188096E-23 4.14592137431E-24 9.22309195478E-25 -7.15606691861E-24 -7.75237216816E-24 4.17219707567E-24 -1.14453185279E-24 -9.72753437979E-24 1.80135115463E-24 1.31694289348E-23 7.56844273746E-25 4.22318412180E-24 1.94828856221E-23 1.42658450443E-23 -2.08712348140E-23 -2.05560871831E-23 1.63215518012E-24 -8.87602469006E-24 -9.43342109069E-24 -1.31667856692E-22 -1.01117139042E-23 -5.21235170693E-24 -1.37056255189E-23 -1.03324754446E-23 1.37671471129E-22 4.17297505142E-24 -1.01711735336E-23 5.90914806858E-24 4.14687600149E-23 -2.09415286068E-23 -2.30563550228E-25 -4.03914094234E-24 2.08794280272E-23 -3.61177269981E-23 1.35056607387E-22 -3.57806978957E-23 1.38501460749E-22 3.03806948912E-23 -1.41521501504E-22 4.37314499464E-23 -3.90774636524E-24 -3.58750549132E-23 -3.64442538031E-23 -2.41810957992E-22 6.15213930731E-24 -4.28253795488E-23 2.87600020545E-23 5.08561336305E-23 -8.80664136653E-23 -4.39463298875E-23 -7.19333827452E-23 -4.02957464643E-23 8.53934103365E-24 -1.38241765127E-23 -4.55219379311E-23 -8.11391846302E-23 2.58829454398E-23 -4.03050810501E-23 8.74234291032E-23 3.23648050884E-23 8.81367874190E-23 1.03173684678E-22 -8.08149002288E-23 -1.59990410047E-22 -5.72221492023E-22 -7.54705647665E-22 -1.14857312922E-23 -6.45855831300E-22 -7.66063523008E-22 -1.68017051306E-22 8.29334969380E-23 -1.26653540525E-22 7.95348389828E-22 7.78958692783E-22 2.01149478231E-22 9.69471120779E-22 8.51749875806E-22 -1.48431869282E-22 -5.21553099094E-23 9.77085663839E-22 -5.33368722291E-23 -1.65047516059E-22 1.44265647449E-22 -2.26137839254E-22 -6.40638102054E-23 7.18019958090E-24 -3.15250995380E-22 -8.67563709665E-24 6.58557143640E-23 1.15247459206E-23 9.53916072391E-23 -1.72863499298E-22 2.75402426022E-22 -4.18875912386E-22 -2.08371958948E-22 3.88989433852E-22 -4.30831437623E-23 3.68144867323E-22 6.30214428907E-22 -4.87934763947E-22 1.35391828603E-23 -7.51488987929E-22 9.54405475823E-23 -5.36616604684E-23 -5.58297875854E-22 2.33503693753E-22 -2.90934918605E-22 -8.04803970676E-22 -6.80397473377E-22 -7.00186371214E-22 3.98289975372E-22 -2.94838877657E-22 3.58336429477E-21 7.82952819769E-22 -3.90850049864E-22 -8.05812934152E-22 -5.83928224046E-22 1.63795205894E-21 1.61850488590E-21 -1.59756707267E-21 3.88103396702E-23 -9.99863601822E-22 1.55746335409E-22 -1.58935546283E-21 -7.65158191890E-22 -1.29155165433E-21 -2.78494787630E-22 -6.68847275575E-22 -4.41541807385E-22 -4.33102986801E-22 -9.02060557241E-22 -5.27318317212E-22 2.80630483123E-23 -2.37453377191E-21 1.91088856150E-21 -4.93583289863E-22 -2.90159471242E-21 1.24515125922E-21 1.74487473425E-21 -3.18029889044E-21 2.38730996862E-21 -1.06029737312E-20 1.23548025305E-21 -1.69897588754E-21 2.01015968017E-21 3.08288475313E-21 1.57647466515E-20 1.41258199110E-21 1.46278402321E-20 1.41550221317E-21 2.25118380301E-21 5.32555368607E-21 5.15235613803E-21 2.76726842335E-21 -5.46459394576E-21 4.95880487763E-21 -1.96297382375E-21 2.20185713949E-21 5.69205152747E-21 -3.98151676428E-21 1.81498251229E-21 5.34252053121E-21 -4.48869597749E-21 5.77182774332E-21 -6.84543392971E-22 2.25722306894E-21 8.59015747662E-22 3.87053321268E-20 6.41718115676E-21 1.46913805561E-21 -1.32815860954E-20 -1.16648549357E-20 -9.18403127502E-21 -1.94468213329E-22 -1.62373233145E-21 5.35249828027E-20 -8.03219317827E-21 3.56654510871E-20 4.69853022475E-23 -6.47561243908E-21 -1.40035037835E-21 -1.28915031475E-20 1.04780099975E-20 4.11452551849E-21 9.35904918307E-21 -8.75266925096E-21 9.45810640839E-21 5.14393792790E-21 -2.69681056163E-20 -1.48911841375E-20 -1.02071150924E-20 -6.54674632542E-21 4.28027960179E-21 2.16127563660E-20 -1.84424661856E-20 -1.90221823957E-20 -2.49658120064E-20 2.07037198251E-20 -1.58989732526E-20 -1.68988006881E-20 6.07363996334E-22 1.72613568116E-20 2.36326002320E-20 -2.38317484586E-20 -2.14061293874E-20 -2.23347962096E-20 7.38546369177E-21 -4.85623200909E-20 -2.74493852597E-20 1.44007245810E-19 2.25703894076E-22 3.40081507299E-20 2.47827281842E-20 -9.22463852178E-21 -1.93680183629E-20 -4.27685179870E-20 -5.05117122678E-20 4.60245210828E-20 -4.20578304666E-21 1.59232135085E-20 2.22662906010E-19 4.91111715930E-20 2.35313246444E-19 -2.39920328614E-20 2.40971996430E-19 9.62792851259E-20 -2.45699831297E-20 -1.87221155717E-20 5.67646569891E-20 -1.70446526831E-20 6.39144016069E-20 3.14967309967E-20 9.44154608282E-20 -5.82002517577E-20 6.18928302478E-21 -7.67513473202E-20 1.00571380896E-20 9.31075240627E-20 -4.44997572712E-21 -6.95328870623E-20 1.07751471745E-20 9.51407356659E-20 5.82167240422E-20 2.05472773369E-20 6.15727246868E-20 -3.39870540107E-20 -1.35075358871E-19 1.09345773439E-19 -2.28915783601E-20 -2.08113535766E-19 -1.86631767396E-20 1.95862180528E-19 -1.24988557363E-19 -2.01974281439E-19 7.16323377542E-20 -1.57596269753E-19 -5.05257149901E-21 -8.45440788186E-20 -1.75791232714E-19 2.03611983485E-19 -1.54072690794E-19 -1.31770628360E-19 -7.81202750289E-19 -2.59733168065E-20 -7.10756776050E-19 1.45367269139E-19 2.16004849043E-19 -4.32033731667E-19 -9.93068728851E-21 -3.16956490526E-19 -1.11995760569E-19 -3.74059415718E-19 2.30831929378E-19 -3.68638752977E-19 3.96095296425E-19 -2.55106014326E-20 -3.72707314850E-19 -6.76629201489E-20 5.90316577107E-20 -2.42264726729E-19 -1.52692000574E-19 -2.29435303563E-19 3.56555529452E-19 2.49847494793E-18 -3.50652401798E-19 -3.97532774170E-20 3.01543020793E-19 2.41418489327E-19 4.59074183306E-19 -5.41043547859E-19 -2.77574228118E-18 -5.12698752417E-19 4.14450801574E-19 1.39293518654E-19 1.98634534717E-19 8.06209472784E-19 -5.81532071745E-19 -8.66174465882E-19 1.12677971761E-19 5.95515242142E-19 -7.17364077257E-19 1.78857900611E-19 -6.52853978326E-19 7.42832108680E-19 2.41016832919E-19 7.19628758370E-19 -1.19295278927E-18 -1.39481246517E-18 -1.70512230984E-18 1.95082254795E-19 -9.41395223084E-19 3.95494602801E-20 -7.66114519472E-19 -1.13995369216E-18 -9.65670539407E-19 2.57412408625E-20 1.60749283463E-18 1.16896252153E-18 1.51537480417E-18 -4.20857384968E-19 -8.76775917481E-18 7.85321351835E-19 -2.61154512099E-19 3.05926641837E-18 -3.47037218876E-20 -8.62946025246E-18 2.93361226123E-18 -9.25594276811E-18 -7.35745716264E-18 -8.25146212081E-18 -1.46854070623E-18 -1.22642934901E-17 1.09427656743E-18 2.09631487255E-18 -1.54711774375E-18 1.24223633364E-17 -9.31101422458E-18 1.10217896709E-17 1.15916001177E-17 1.07896532984E-17 -3.89639395402E-19 1.69933212183E-18 4.54368955118E-18 -4.90650186622E-18 -1.59397574764E-18 -3.10054568263E-18 -1.49156720216E-18 -2.98097020859E-18 -4.76529603395E-18 -7.38029382468E-19 5.83992826142E-18 -3.90850188472E-18 4.32664982801E-18 -1.89188456047E-18 4.12587273899E-18 3.10067164153E-18 -5.52806711673E-18 -3.57131912842E-18 1.36846196851E-18 2.23624613118E-18 -7.45446908834E-19 9.52721045657E-19 -2.50791233946E-18 2.44198884072E-18 1.19019300017E-17 -5.52579225419E-18 -7.81493680505E-18 -6.11232348260E-18 -4.84231836762E-19 5.76362182988E-18 1.19841552257E-18 5.21181259630E-18 -7.95023728584E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 2 i j (l(j)) 0.00000000000E+00 Q_int 6.58722361838E-25 6.92495779525E-25 7.28000797365E-25 7.65326196395E-25 8.04565309556E-25 8.45816255067E-25 8.89182181781E-25 9.34771527102E-25 9.82698288139E-25 1.03308230676E-24 1.08604956925E-24 1.14173252136E-24 1.20027039948E-24 1.26180957878E-24 1.32650393927E-24 1.39451525055E-24 1.46601357633E-24 1.54117769966E-24 1.62019556999E-24 1.70326477317E-24 1.79059302546E-24 1.88239869300E-24 1.97891133775E-24 2.08037229162E-24 2.18703525982E-24 2.29916695534E-24 2.41704776583E-24 2.54097245471E-24 2.67125089825E-24 2.80820886041E-24 2.95218880745E-24 3.10355076423E-24 3.26267321447E-24 3.42995404718E-24 3.60581155159E-24 3.79068546304E-24 3.98503806261E-24 4.18935533304E-24 4.40414817392E-24 4.62995367924E-24 4.86733648037E-24 5.11689015796E-24 5.37923872619E-24 5.65503819314E-24 5.94497820112E-24 6.24978375117E-24 6.57021701594E-24 6.90707924549E-24 7.26121277085E-24 7.63350311031E-24 8.02488118361E-24 8.43632563980E-24 8.86886530433E-24 9.32358175166E-24 9.80161200976E-24 1.03041514032E-23 1.08324565424E-23 1.13878484652E-23 1.19717159407E-23 1.25855189419E-23 1.32307922958E-23 1.39091495219E-23 1.46222868668E-23 1.53719875451E-23 1.61601261990E-23 1.69886735858E-23 1.78597015055E-23 1.87753879814E-23 1.97380227069E-23 2.07500127700E-23 2.18138886731E-23 2.29323106601E-23 2.41080753684E-23 2.53441228223E-23 2.66435437842E-23 2.80095874834E-23 2.94456697405E-23 3.09553815093E-23 3.25424978555E-23 3.42109873967E-23 3.59650222257E-23 3.78089883433E-23 3.97474966253E-23 4.17853943519E-23 4.39277773290E-23 4.61800026299E-23 4.85477019910E-23 5.10367958939E-23 5.36535083699E-23 5.64043825630E-23 5.92962970917E-23 6.23364832484E-23 6.55325430821E-23 6.88924684070E-23 7.24246607866E-23 7.61379525416E-23 8.00416288354E-23 8.41454508921E-23 8.84596804042E-23 9.29951051927E-23 9.77630661819E-23 1.02775485758E-22 1.08044897580E-22 1.13584477922E-22 1.19408078621E-22 1.25530261711E-22 1.31966335840E-22 1.38732394544E-22 1.45845356495E-22 1.53323007801E-22 1.61184046488E-22 1.69448129244E-22 1.78135920582E-22 1.87269144506E-22 1.96870638831E-22 2.06964412294E-22 2.17575704588E-22 2.28731049468E-22 2.40458341109E-22 2.52786903846E-22 2.65747565508E-22 2.79372734500E-22 2.93696480841E-22 3.08754621357E-22 3.24584809243E-22 3.41226628212E-22 3.58721691481E-22 3.77113745820E-22 3.96448780944E-22 4.16775144511E-22 4.38143663017E-22 4.60607768888E-22 4.84223634088E-22 5.09050310582E-22 5.35149877989E-22 5.62587598824E-22 5.91432081678E-22 6.21755452782E-22 6.53633536357E-22 6.87146044215E-22 7.22376775081E-22 7.59413824130E-22 7.98349803275E-22 8.39282072743E-22 8.82312984528E-22 9.27550138319E-22 9.75106650562E-22 1.02510143731E-21 1.07765951156E-21 1.13291229587E-21 1.19099795099E-21 1.25206172131E-21 1.31625629805E-21 1.38374220108E-21 1.45468818032E-21 1.52927163766E-21 1.60767907059E-21 1.69010653853E-21 1.77676015308E-21 1.86785659340E-21 1.96362364804E-21 2.06430078451E-21 2.17013974808E-21 2.28140519129E-21 2.39837533570E-21 2.52134266758E-21 2.65061466930E-21 2.78651458819E-21 2.92938224483E-21 3.07957488277E-21 3.23746806181E-21 3.40345659714E-21 3.57795554654E-21 3.76140124826E-21 3.95425241209E-21 4.15699126638E-21 4.37012476385E-21 4.59418584923E-21 4.82973479193E-21 5.07736058698E-21 5.33768242781E-21 5.61135125460E-21 5.89905138194E-21 6.20150220998E-21 6.51946002328E-21 6.85371988198E-21 7.20511760977E-21 7.57453188399E-21 7.96288643269E-21 8.37115234448E-21 8.80035049675E-21 9.25155410839E-21 9.72589142340E-21 1.02245485321E-20 1.07487723368E-20 1.12998736702E-20 1.18792305725E-20 1.24882917377E-20 1.31285801358E-20 1.38016968213E-20 1.45093249364E-20 1.52532339198E-20 1.60352839314E-20 1.68574305035E-20 1.77217294305E-20 1.86303419099E-20 1.95855399460E-20 2.05897120313E-20 2.16453691188E-20 2.27551509009E-20 2.39218324100E-20 2.51483309573E-20 2.64377134279E-20 2.77932039492E-20 2.92181919533E-20 3.07162406523E-20 3.22910959478E-20 3.39466957982E-20 3.56871800649E-20 3.75169008650E-20 3.94404334531E-20 4.14625876621E-20 4.35884199303E-20 4.58232459454E-20 4.81726539358E-20 5.06425186447E-20 5.32390160199E-20 5.59686386564E-20 5.88382120321E-20 6.18549115742E-20 6.50262806023E-20 6.83602491899E-20 7.18651539941E-20 7.55497591016E-20 7.94232779433E-20 8.34953963328E-20 8.77762966860E-20 9.22766834822E-20 9.70078100312E-20 1.01981506612E-19 1.07210210056E-19 1.12706994842E-19 1.18485605795E-19 1.24560492449E-19 1.30946845183E-19 1.37660633204E-19 1.44718644475E-19 1.52138527700E-19 1.59938836447E-19 1.68139075550E-19 1.76759749872E-19 1.85822415589E-19 1.95349734079E-19 2.05365528599E-19 2.15894843847E-19 2.26964008591E-19 2.38600701504E-19 2.50834020374E-19 2.63694554865E-19 2.77214463005E-19 2.91427551600E-19 3.06369360769E-19 3.22077252809E-19 3.38590505625E-19 3.55950410941E-19 3.74200377553E-19 3.93386039875E-19 4.13555372044E-19 4.34758807886E-19 4.57049367022E-19 4.80482787447E-19 5.05117664905E-19 5.31015599405E-19 5.58241349258E-19 5.86862993001E-19 6.16952099634E-19 6.48583907577E-19 6.81837512803E-19 7.16796066623E-19 7.53546983608E-19 7.92182160165E-19 8.32798204332E-19 8.75496677344E-19 9.20384347593E-19 9.67573457599E-19 1.01718200468E-18 1.06933403600E-18 1.12415995877E-18 1.18179686629E-18 1.24238888082E-18 1.30608751389E-18 1.37305204521E-18 1.44344992093E-18 1.51745717233E-18 1.59525885603E-18 1.67704951669E-18 1.76303367347E-18 1.85342633147E-18 1.94845351933E-18 2.04835285441E-18 2.15337413698E-18 2.26377997482E-18 2.37984643993E-18 2.50186375879E-18 2.63013703810E-18 2.76498702773E-18 2.90675092274E-18 3.05578320651E-18 3.21245653721E-18 3.37716267956E-18 3.55031348450E-18 3.73234191900E-18 3.92370314871E-18 4.12487567610E-18 4.33636253701E-18 4.55869255843E-18 4.79242168090E-18 5.03813434861E-18 5.29644497084E-18 5.56799945829E-18 5.85347683819E-18 6.15359095221E-18 6.46909224147E-18 6.80076962298E-18 7.14945246240E-18 7.51601264781E-18 7.90136676996E-18 8.30647841416E-18 8.73236056978E-18 9.18007816320E-18 9.65075072076E-18 1.01455551681E-17 1.06657287729E-17 1.12125722393E-17 1.17874529595E-17 1.23918084334E-17 1.30271498633E-17 1.36950659323E-17 1.43972267768E-17 1.51353881630E-17 1.59113958773E-17 1.67271903411E-17 1.75848114635E-17 1.84864037419E-17 1.94342216242E-17 2.04306351463E-17 2.14781358584E-17 2.25793430550E-17 2.37370103246E-17 2.49540324350E-17 2.62334525718E-17 2.75784699481E-17 2.89924478037E-17 3.04789218155E-17 3.20416089380E-17 3.36844166979E-17 3.54114529649E-17 3.72270362235E-17 3.91357063713E-17 4.11422360712E-17 4.32516426854E-17 4.54692008214E-17 4.78004555216E-17 5.02512361280E-17 5.28276708594E-17 5.55362021342E-17 5.83836026808E-17 6.13769924719E-17 6.45238565285E-17 6.78320636367E-17 7.13098860227E-17 7.49660200388E-17 7.88096079077E-17 8.28502605834E-17 8.70980817831E-17 9.15636932519E-17 9.62582613228E-17 1.01193524837E-16 1.06381824500E-16 1.11836133736E-16 1.17570091129E-16 1.23598034529E-16 1.29935036900E-16 1.36596944014E-16 1.43600414070E-16 1.50962959350E-16 1.58702990008E-16 1.66839860104E-16 1.75393916002E-16 1.84386547242E-16 1.93840240028E-16 2.03778633453E-16 2.14226578611E-16 2.25210200734E-16 2.36756964521E-16 2.48895742813E-16 2.61656888790E-16 2.75072311869E-16 2.89175557491E-16 3.04001891009E-16 3.19588385860E-16 3.35974016274E-16 3.53199754726E-16 3.71308674390E-16 3.90346056842E-16 4.10359505286E-16 4.31399063590E-16 4.53517341416E-16 4.76769645773E-16 5.01214119312E-16 5.26911885714E-16 5.53927202524E-16 5.82327621834E-16 6.12184159194E-16 6.43571471183E-16 6.76568042095E-16 7.11256380183E-16 7.47723223973E-16 7.86059759155E-16 8.26361846590E-16 8.68730262012E-16 9.13270948016E-16 9.60095278968E-16 1.00932033949E-15 1.06106921726E-15 1.11547131073E-15 1.17266265275E-15 1.23278625069E-15 1.29599244402E-15 1.36243928025E-15 1.43229291012E-15 1.50572800306E-15 1.58292818395E-15 1.66408649227E-15 1.74940586478E-15 1.83909964300E-15 1.93339210662E-15 2.03251903435E-15 2.13672829347E-15 2.24628045958E-15 2.36144946824E-15 2.48252329988E-15 2.60980469991E-15 2.74361193574E-15 2.88427959261E-15 3.03215941017E-15 3.18762116204E-15 3.35105358044E-15 3.52286532812E-15 3.70348602034E-15 3.89336729899E-15 4.09298396199E-15 4.30283515051E-15 4.52344559699E-15 4.75536693731E-15 4.99917909010E-15 5.25549170679E-15 5.52494569607E-15 5.80821482644E-15 6.10600741095E-15 6.41906807832E-15 6.74817963488E-15 7.09416502189E-15 7.45788937337E-15 7.84026217926E-15 8.24223955959E-15 8.66482665525E-15 9.10908014129E-15 9.57611086906E-15 1.00670866439E-14 1.05832351452E-14 1.11258469961E-14 1.16962789906E-14 1.22959574865E-14 1.29263819712E-14 1.35891288121E-14 1.42858551973E-14 1.50183032799E-14 1.57883045339E-14 1.65977843339E-14 1.74487667692E-14 1.83433797049E-14 1.92838601028E-14 2.02725596145E-14 2.13119504615E-14 2.24046316173E-14 2.35533353053E-14 2.47609338313E-14 2.60304467647E-14 2.73650484894E-14 2.87680761407E-14 3.02430379498E-14 3.17936220157E-14 3.34237055272E-14 3.51373644573E-14 3.69388837549E-14 3.88327680590E-14 4.08237529623E-14 4.29168168518E-14 4.51171933571E-14 4.74303844363E-14 4.98621741338E-14 5.24186430417E-14 5.51061835048E-14 5.79315156031E-14 6.09017039555E-14 6.40241753832E-14 6.73067374807E-14 7.07575981369E-14 7.43853860584E-14 7.81991723447E-14 8.22084931692E-14 8.64233736232E-14 9.08543527825E-14 9.55125100590E-14 1.00409492903E-13 1.05557545927E-13 1.10969541521E-13 1.16659012037E-13 1.22640183626E-13 1.28928011811E-13 1.35538218874E-13 1.42487333174E-13 1.49792730472E-13 1.57472677371E-13 1.65546376998E-13 1.74034017009E-13 1.82956820071E-13 1.92337096923E-13 2.02198302159E-13 2.12565092875E-13 2.23463390317E-13 2.34920444692E-13 2.46964903303E-13 2.59626882175E-13 2.72938041354E-13 2.86931664068E-13 3.01642739940E-13 3.17108052478E-13 3.33366271038E-13 3.50458047513E-13 3.68426117968E-13 3.87315409497E-13 4.07173152549E-13 4.28048999014E-13 4.49995146371E-13 4.73066468187E-13 4.97320651319E-13 5.22818340140E-13 5.49623288168E-13 5.77802517458E-13 6.07426486177E-13 6.38569264758E-13 6.71308721095E-13 7.05726715225E-13 7.41909303994E-13 7.79946956212E-13 8.19934778844E-13 8.61972754790E-13 9.06165992860E-13 9.52624990558E-13 1.00146591034E-12 1.05281087005E-12 1.10678824820E-12 1.16353300497E-12 1.22318701958E-12 1.28589944504E-12 1.35182708103E-12 1.42113476590E-12 1.49399578881E-12 1.57059232291E-12 1.65111588085E-12 1.73576779353E-12 1.82475971343E-12 1.91831414376E-12 2.01666499472E-12 2.12005816829E-12 2.22875217296E-12 2.34301877000E-12 2.46314365286E-12 2.58942716142E-12 2.72218503277E-12 2.86174919059E-12 3.00846857490E-12 3.16271001439E-12 3.32485914344E-12 3.49532136621E-12 3.67452287006E-12 3.86291169097E-12 4.06095883357E-12 4.26915944856E-12 4.48803407053E-12 4.71812991917E-12 4.96002226723E-12 5.21431587855E-12 5.48164651984E-12 5.76268254996E-12 6.05812659061E-12 6.36871728272E-12 6.69523113278E-12 7.03848445392E-12 7.39933540641E-12 7.77868614274E-12 8.17748506271E-12 8.59672918400E-12 9.03746663443E-12 9.50079927171E-12 9.98788543770E-12 1.04999428537E-11 1.10382516641E-11 1.16041576364E-11 1.21990755244E-11 1.28244926048E-11 1.34819723945E-11 1.41731585581E-11 1.48997790166E-11 1.56636502657E-11 1.64666819161E-11 1.73108814663E-11 1.81983593194E-11 1.91313340585E-11 2.01121379922E-11 2.11432229761E-11 2.22271665549E-11 2.33666783967E-11 2.45646070540E-11 2.58239470992E-11 2.71478466111E-11 2.85396150018E-11 3.00027313552E-11 3.15408530708E-11 3.31578250093E-11 3.48576891078E-11 3.66446944986E-11 3.85233080924E-11 4.04982257450E-11 4.25743840398E-11 4.47569725596E-11 4.70514469009E-11 4.94635422493E-11 5.19992877916E-11 5.46650217063E-11 5.74674070603E-11 6.04134483786E-11 6.35105092308E-11 6.67663305797E-11 7.01890501390E-11 7.37872226799E-11 7.75698414329E-11 8.15463605556E-11 8.57267187188E-11 9.01213639845E-11 9.47412798496E-11 9.95980127299E-11 1.04703700797E-10 1.10071104273E-10 1.15713637312E-10 1.21645401603E-10 1.27881221370E-10 1.34436680593E-10 1.41328161990E-10 1.48572887672E-10 1.56188962417E-10 1.64195418702E-10 1.72612264294E-10 1.81460532455E-10 1.90762333945E-10 2.00540912778E-10 2.10820703960E-10 2.21627394693E-10 2.32987988291E-10 2.44930871582E-10 2.57485886433E-10 2.70684403284E-10 2.84559400345E-10 2.99145545157E-10 3.14479281985E-10 3.30598921977E-10 3.47544739495E-10 3.65359072004E-10 3.84086426659E-10 4.03773590451E-10 4.24469747501E-10 4.46226601871E-10 4.69098506342E-10 4.93142598234E-10 5.18418942362E-10 5.44990680081E-10 5.72924187664E-10 6.02289241562E-10 6.33159192840E-10 6.65611149761E-10 6.99726170600E-10 7.35589465378E-10 7.73290609482E-10 8.12923766073E-10 8.54587921161E-10 8.98387131695E-10 9.44430783077E-10 9.92833864311E-10 1.04371725309E-09 1.09720801807E-09 1.15343973565E-09 1.21255282320E-09 1.27469488912E-09 1.34002110080E-09 1.40869457195E-09 1.48088676902E-09 1.55677793873E-09 1.63655755726E-09 1.72042480321E-09 1.80858905351E-09 1.90127040621E-09 1.99870022692E-09 2.10112172921E-09 2.20879057508E-09 2.32197552106E-09 2.44095907644E-09 2.56603821705E-09 2.69752511918E-09 2.83574794164E-09 2.98105163740E-09 3.13379881981E-09 3.29437066248E-09 3.46316784549E-09 3.64061155874E-09 3.82714454868E-09 4.02323221886E-09 4.22936379235E-09 4.44605352442E-09 4.67384198708E-09 4.91329741652E-09 5.16501711859E-09 5.42962896409E-09 5.70779294958E-09 6.00020283403E-09 6.30758786906E-09 6.63071461660E-09 6.97038884646E-09 7.32745754752E-09 7.70281103312E-09 8.09738515187E-09 8.51216361840E-09 8.94818045437E-09 9.40652256260E-09 9.88833242508E-09 1.03948109460E-08 1.09272204322E-08 1.14868877304E-08 1.20752075259E-08 1.26936457997E-08 1.33437434798E-08 1.40271202551E-08 1.47454786068E-08 1.55006080311E-08 1.62943894769E-08 1.71288000220E-08 1.80059177680E-08 1.89279270072E-08 1.98971236326E-08 2.09159208339E-08 2.19868550823E-08 2.31125924218E-08 2.42959350684E-08 2.55398283669E-08 2.68473680780E-08 2.82218080558E-08 2.96665683132E-08 3.11852434674E-08 3.27816116674E-08 3.44596439338E-08 3.62235139913E-08 3.80776085890E-08 4.00265383636E-08 4.20751492380E-08 4.42285344017E-08 4.64920469132E-08 4.88713129200E-08 5.13722455692E-08 5.40010596103E-08 5.67642867588E-08 5.96687918046E-08 6.27217895805E-08 6.59308627534E-08 6.93039805438E-08 7.28495183808E-08 7.65762785507E-08 8.04935119148E-08 8.46109406889E-08 8.89387824108E-08 9.34877751126E-08 9.82692037491E-08 1.03294927990E-07 1.08577411395E-07 1.14129752087E-07 1.19965714956E-07 1.26099765503E-07 1.32547105387E-07 1.39323709778E-07 1.46446366582E-07 1.53932717664E-07 1.61801302129E-07 1.70071601809E-07 1.78764089033E-07 1.87900276810E-07 1.97502771535E-07 2.07595328356E-07 2.18202909328E-07 2.29351744502E-07 2.41069396068E-07 2.53384825758E-07 2.66328465607E-07 2.79932292292E-07 2.94229905194E-07 3.09256608394E-07 3.25049496769E-07 3.41647546427E-07 3.59091709671E-07 3.77425014715E-07 3.96692670410E-07 4.16942176231E-07 4.38223437720E-07 4.60588887771E-07 4.84093613933E-07 5.08795492110E-07 5.34755326906E-07 5.62036999027E-07 5.90707619997E-07 6.20837694614E-07 6.52501291506E-07 6.85776222174E-07 7.20744228972E-07 7.57491182412E-07 7.96107288317E-07 8.36687305252E-07 8.79330772739E-07 9.24142250852E-07 9.71231571629E-07 1.02071410302E-06 1.07271102584E-06 1.12734962450E-06 1.18476359207E-06 1.24509335039E-06 1.30848638615E-06 1.37509760329E-06 1.44508969307E-06 1.51863352213E-06 1.59590853980E-06 1.67710320540E-06 1.76241543651E-06 1.85205307928E-06 1.94623440180E-06 2.04518861168E-06 2.14915639886E-06 2.25839050515E-06 2.37315632137E-06 2.49373251387E-06 2.62041168139E-06 2.75350104406E-06 2.89332316582E-06 3.04021671200E-06 3.19453724367E-06 3.35665805044E-06 3.52697102368E-06 3.70588757185E-06 3.89383958016E-06 4.09128041641E-06 4.29868598534E-06 4.51655583373E-06 4.74541430845E-06 4.98581177023E-06 5.23832586546E-06 5.50356285878E-06 5.78215902942E-06 6.07478213403E-06 6.38213293912E-06 6.70494682639E-06 7.04399547411E-06 7.40008861828E-06 7.77407589684E-06 8.16684878108E-06 8.57934259787E-06 9.01253864706E-06 9.46746641811E-06 9.94520591056E-06 1.04468900629E-05 1.09737072948E-05 1.15269041670E-05 1.21077881659E-05 1.27177306156E-05 1.33581697257E-05 1.40306137789E-05 1.47366444650E-05 1.54779203689E-05 1.62561806164E-05 1.70732486880E-05 1.79310364049E-05 1.88315480965E-05 1.97768849562E-05 2.07692495933E-05 2.18109507904E-05 2.29044084727E-05 2.40521589003E-05 2.52568600911E-05 2.65212974846E-05 2.78483898556E-05 2.92411954884E-05 3.07029186229E-05 3.22369161805E-05 3.38467047848E-05 3.55359680854E-05 3.73085643981E-05 3.91685346738E-05 4.11201108079E-05 4.31677243040E-05 4.53160153043E-05 4.75698420016E-05 4.99342904451E-05 5.24146847563E-05 5.50165977689E-05 5.77458621072E-05 6.06085817192E-05 6.36111438812E-05 6.67602316867E-05 7.00628370407E-05 7.35262741710E-05 7.71581936788E-05 8.09665971408E-05 8.49598522846E-05 8.91467087518E-05 9.35363144694E-05 9.81382326454E-05 1.02962459408E-04 1.08019442107E-04 1.13320098293E-04 1.18875835398E-04 1.24698571128E-04 1.30800754594E-04 1.37195388194E-04 1.43896050261E-04 1.50916918501E-04 1.58272794238E-04 1.65979127469E-04 1.74052042763E-04 1.82508366007E-04 1.91365652014E-04 2.00642213009E-04 2.10357148005E-04 2.20530373071E-04 2.31182652518E-04 2.42335630989E-04 2.54011866476E-04 2.66234864256E-04 2.79029111757E-04 2.92420114338E-04 3.06434431996E-04 3.21099716982E-04 3.36444752315E-04 3.52499491186E-04 3.69295097231E-04 3.86863985647E-04 4.05239865137E-04 4.24457780629E-04 4.44554156760E-04 4.65566842060E-04 4.87535153796E-04 5.10499923423E-04 5.34503542572E-04 5.59590009506E-04 5.85804975976E-04 6.13195794368E-04 6.41811565064E-04 6.71703183905E-04 7.02923389632E-04 7.35526811182E-04 7.69570014696E-04 8.05111550098E-04 8.42211997053E-04 8.80934010150E-04 9.21342363106E-04 9.63503991768E-04 1.00748803571E-03 1.05336587816E-03 1.10121118401E-03 1.15109993561E-03 1.20311046606E-03 1.25732348971E-03 1.31382212942E-03 1.37269194038E-03 1.43402092993E-03 1.49789957310E-03 1.56442082337E-03 1.63368011821E-03 1.70577537893E-03 1.78080700424E-03 1.85887785716E-03 1.94009324450E-03 2.02456088846E-03 2.11239088974E-03 2.20369568131E-03 2.29858997247E-03 2.39719068223E-03 2.49961686138E-03 2.60598960249E-03 2.71643193705E-03 2.83106871884E-03 2.95002649292E-03 3.07343334900E-03 3.20141875869E-03 3.33411339544E-03 3.47164893641E-03 3.61415784517E-03 3.76177313441E-03 3.91462810759E-03 4.07285607868E-03 4.23659006876E-03 4.40596247881E-03 4.58110473752E-03 4.76214692317E-03 4.94921735875E-03 5.14244217931E-03 5.34194487068E-03 5.54784577876E-03 5.76026158853E-03 5.97930477215E-03 6.20508300532E-03 6.43769855154E-03 6.67724761366E-03 6.92381965224E-03 7.17749667073E-03 7.43835246711E-03 7.70645185202E-03 7.98184983373E-03 8.26459077009E-03 8.55470748817E-03 8.85222037224E-03 9.15713642112E-03 9.46944827619E-03 9.78913322148E-03 1.01161521576E-02 1.04504485519E-02 1.07919473664E-02 1.11405539681E-02 1.14961530219E-02 1.18586073729E-02 1.22277569195E-02 1.26034174825E-02 1.29853796754E-02 1.33734077805E-02 1.37672386363E-02 1.41665805431E-02 1.45711121927E-02 1.49804816299E-02 1.53943052530E-02 1.58121668614E-02 1.62336167594E-02 1.66581709249E-02 1.70853102528E-02 1.75144798831E-02 1.79450886239E-02 1.83765084816E-02 1.88080743081E-02 1.92390835773E-02 1.96687963034E-02 2.00964351137E-02 2.05211854866E-02 2.09421961700E-02 2.13585797917E-02 2.17694136745E-02 2.21737408695E-02 2.25705714200E-02 2.29588838683E-02 2.33376270173E-02 2.37057219594E-02 2.40620643814E-02 2.44055271588E-02 2.47349632451E-02 2.50492088673E-02 2.53470870326E-02 2.56274113526E-02 2.58889901886E-02 2.61306311205E-02 2.63511457392E-02 2.65493547603E-02 2.67240934560E-02 2.68742173955E-02 2.69986084882E-02 2.70961813130E-02 2.71658897206E-02 2.72067336882E-02 2.72177664039E-02 2.71981015544E-02 2.71469207843E-02 2.70634812934E-02 2.69471235317E-02 2.67972789481E-02 2.66134777454E-02 2.63953565872E-02 2.61426661994E-02 2.58552788028E-02 2.55331953097E-02 2.51765522116E-02 2.47856280796E-02 2.43608495979E-02 2.39027970422E-02 2.34122091142E-02 2.28899870368E-02 2.23371978158E-02 2.17550765662E-02 2.11450278039E-02 2.05086255997E-02 1.98476124947E-02 1.91638970757E-02 1.84595501121E-02 1.77367991596E-02 1.69980215410E-02 1.62457356198E-02 1.54825902915E-02 1.47113526262E-02 1.39348936071E-02 1.31561719204E-02 1.23782157680E-02 1.16041026850E-02 1.08369373611E-02 1.00798274770E-02 9.33585758284E-03 8.60806105529E-03 7.89939018105E-03 7.21268441997E-03 6.55063690250E-03 5.91575921169E-03 5.31034448819E-03 4.73642887608E-03 4.19575129701E-03 3.68971149815E-03 3.21932626558E-03 2.78518362735E-03 2.38739479026E-03 2.02554346097E-03 1.69863209739E-03 1.40502452160E-03 1.14281401607E-03 9.11213972114E-04 7.09520614190E-04 5.36717917921E-04 3.91478904867E-04 2.72173286428E-04 1.76882399386E-04 1.03422396897E-04 4.93766625942E-05 1.21383984025E-05 -1.10357046614E-05 -2.29598727309E-05 -2.64409928984E-05 -2.41870902042E-05 -1.87021058464E-05 -1.21667568630E-05 -6.30551118499E-06 -2.24000789203E-06 -3.29590529917E-07 -7.09430921833E-18 2.84257308358E-17 -2.48191456438E-18 2.73021655951E-18 9.78485521382E-18 -1.40384433665E-17 4.73809105544E-18 1.29021615271E-17 9.75575461644E-18 6.05635750875E-18 -1.05901349382E-17 -1.21794970631E-17 1.36541273156E-17 -1.80652835741E-18 -2.44426890757E-18 6.96237958256E-19 5.09003634801E-18 -2.05235778494E-18 -4.15193320066E-18 -1.16322473961E-17 -7.07033216605E-18 1.19597766742E-17 1.08316809959E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 2 i j (l(j)) 0.00000000000E+00 Q_int -6.92136024784E-25 -7.27622597604E-25 -7.64928605918E-25 -8.04147334179E-25 -8.45376849635E-25 -8.88720247550E-25 -9.34285908997E-25 -9.82187771861E-25 -1.03254561575E-24 -1.08548536151E-24 -1.14113938607E-24 -1.19964685349E-24 -1.26115406290E-24 -1.32581481438E-24 -1.39379079347E-24 -1.46525197554E-24 -1.54037705076E-24 -1.61935387095E-24 -1.70237991929E-24 -1.78966280416E-24 -1.88142077822E-24 -1.97788328422E-24 -2.07929152865E-24 -2.18589908495E-24 -2.29797252754E-24 -2.41579209841E-24 -2.53965240784E-24 -2.66986317113E-24 -2.80674998301E-24 -2.95065513180E-24 -3.10193845534E-24 -3.26097824074E-24 -3.42817217029E-24 -3.60393831592E-24 -3.78871618452E-24 -3.98296781703E-24 -4.18717894369E-24 -4.40186019871E-24 -4.62754839703E-24 -4.86480787670E-24 -5.11423191001E-24 -5.37644418696E-24 -5.65210037481E-24 -5.94188975762E-24 -6.24653695980E-24 -6.56680375801E-24 -6.90349098609E-24 -7.25744053746E-24 -7.62953747037E-24 -8.02071222097E-24 -8.43194292987E-24 -8.86425788806E-24 -9.31873810811E-24 -9.79652002729E-24 -1.02987983493E-23 -1.08268290314E-23 -1.13819324256E-23 -1.19654965793E-23 -1.25789807070E-23 -1.32239188384E-23 -1.39019236549E-23 -1.46146905216E-23 -1.53640017269E-23 -1.61517309393E-23 -1.69798478919E-23 -1.78504233085E-23 -1.87656340812E-23 -1.97277687134E-23 -2.07392330431E-23 -2.18025562578E-23 -2.29203972194E-23 -2.40955511126E-23 -2.53309564341E-23 -2.66297023409E-23 -2.79950363740E-23 -2.94303725799E-23 -3.09393000465E-23 -3.25255918784E-23 -3.41932146317E-23 -3.59463382316E-23 -3.77893464003E-23 -3.97268476183E-23 -4.17636866477E-23 -4.39049566470E-23 -4.61560119066E-23 -4.85224812370E-23 -5.10102820442E-23 -5.36256351261E-23 -5.63750802274E-23 -5.92654923932E-23 -6.23040991593E-23 -6.54984986252E-23 -6.88566784536E-23 -7.23870358431E-23 -7.60983985259E-23 -8.00000468420E-23 -8.41017369443E-23 -8.84137251944E-23 -9.29467938090E-23 -9.77122778205E-23 -1.02722093421E-22 -1.07988767760E-22 -1.13525470265E-22 -1.19346045576E-22 -1.25465048165E-22 -1.31897778723E-22 -1.38660322429E-22 -1.45769589163E-22 -1.53243355796E-22 -1.61100310637E-22 -1.69360100164E-22 -1.78043378155E-22 -1.87171857327E-22 -1.96768363631E-22 -2.06856893334E-22 -2.17462673012E-22 -2.28612222640E-22 -2.40333421899E-22 -2.52655579891E-22 -2.65609508430E-22 -2.79227599085E-22 -2.93543904174E-22 -3.08594221917E-22 -3.24416185948E-22 -3.41049359416E-22 -3.58535333920E-22 -3.76917833503E-22 -3.96242823987E-22 -4.16558627915E-22 -4.37916045378E-22 -4.60368481044E-22 -4.83972077694E-22 -5.08785856616E-22 -5.34871865179E-22 -5.62295331992E-22 -5.91124830006E-22 -6.21432447980E-22 -6.53293970745E-22 -6.86789068702E-22 -7.22001497042E-22 -7.59019305175E-22 -7.97935056902E-22 -8.38846061870E-22 -8.81854618899E-22 -9.27068271782E-22 -9.74600078201E-22 -1.02456889243E-21 -1.07709966252E-21 -1.13232374276E-21 -1.19037922212E-21 -1.25141126953E-21 -1.31557249689E-21 -1.38302334069E-21 -1.45393246317E-21 -1.52847717407E-21 -1.60684387398E-21 -1.68922852047E-21 -1.77583711807E-21 -1.86688623338E-21 -1.96260353660E-21 -2.06322837083E-21 -2.16901235059E-21 -2.28021999090E-21 -2.39712936878E-21 -2.52003281857E-21 -2.64923766290E-21 -2.78506698117E-21 -2.92786041742E-21 -3.07797502959E-21 -3.23578618241E-21 -3.40168848595E-21 -3.57609678235E-21 -3.75944718320E-21 -3.95219815998E-21 -4.15483169052E-21 -4.36785446417E-21 -4.59179914880E-21 -4.82722572276E-21 -5.07472287508E-21 -5.33490947754E-21 -5.60843613214E-21 -5.89598679797E-21 -6.19828050143E-21 -6.51607313422E-21 -6.85015934341E-21 -7.20137451850E-21 -7.57059688033E-21 -7.95874967709E-21 -8.36680349290E-21 -8.79577867480E-21 -9.24674788414E-21 -9.72083877877E-21 -1.02192368328E-20 -1.07431883010E-20 -1.12940033347E-20 -1.18730592585E-20 -1.24818040137E-20 -1.31217597791E-20 -1.37945267775E-20 -1.45017872766E-20 -1.52453097959E-20 -1.60269535291E-20 -1.68486729923E-20 -1.77125229122E-20 -1.86206633634E-20 -1.95753651698E-20 -2.05790155832E-20 -2.16341242521E-20 -2.27433294977E-20 -2.39094049105E-20 -2.51352662864E-20 -2.64239789170E-20 -2.77787652549E-20 -2.92030129715E-20 -3.07002834275E-20 -3.22743205787E-20 -3.39290603376E-20 -3.56686404151E-20 -3.74974106671E-20 -3.94199439715E-20 -4.14410476624E-20 -4.35657755514E-20 -4.57994405645E-20 -4.81476280271E-20 -5.06162096304E-20 -5.32113581137E-20 -5.59395626993E-20 -5.88076453190E-20 -6.18227776725E-20 -6.49924991605E-20 -6.83247357367E-20 -7.18278197276E-20 -7.55105106666E-20 -7.93820171983E-20 -8.34520201046E-20 -8.77306965113E-20 -9.22287453370E-20 -9.69574140452E-20 -1.01928526769E-19 -1.07154513878E-19 -1.12648443061E-19 -1.18424052000E-19 -1.24495782725E-19 -1.30878817721E-19 -1.37589117900E-19 -1.44643462504E-19 -1.52059491068E-19 -1.59855747521E-19 -1.68051726564E-19 -1.76667922410E-19 -1.85725880033E-19 -1.95248249041E-19 -2.05258840312E-19 -2.15782685536E-19 -2.26846099802E-19 -2.38476747404E-19 -2.50703711013E-19 -2.63557564401E-19 -2.77070448892E-19 -2.91276153728E-19 -3.06210200564E-19 -3.21909932289E-19 -3.38414606400E-19 -3.55765493173E-19 -3.74005978852E-19 -3.93181674142E-19 -4.13340528259E-19 -4.34532948828E-19 -4.56811927926E-19 -4.80233174593E-19 -5.04855254131E-19 -5.30739734548E-19 -5.57951340512E-19 -5.86558115194E-19 -6.16631590414E-19 -6.48246965503E-19 -6.81483295346E-19 -7.16423688057E-19 -7.53155512792E-19 -7.91770618219E-19 -8.32365562188E-19 -8.75041853173E-19 -9.19906204098E-19 -9.67070799174E-19 -1.01665357442E-18 -1.06877851255E-18 -1.12357595304E-18 -1.18118291796E-18 -1.24174345470E-18 -1.30540899608E-18 -1.37233873907E-18 -1.44270004282E-18 -1.51666884717E-18 -1.59443011260E-18 -1.67617828269E-18 -1.76211777038E-18 -1.85246346905E-18 -1.94744128993E-18 -2.04728872693E-18 -2.15225545054E-18 -2.26260393215E-18 -2.37861010030E-18 -2.50056403071E-18 -2.62877067158E-18 -2.76355060615E-18 -2.90524085430E-18 -3.05419571526E-18 -3.21078765360E-18 -3.37540823053E-18 -3.54846908301E-18 -3.73040295309E-18 -3.92166476997E-18 -4.12273278754E-18 -4.33410978029E-18 -4.55632430050E-18 -4.78993199989E-18 -5.03551701904E-18 -5.29369344803E-18 -5.56510686202E-18 -5.85043593547E-18 -6.15039413922E-18 -6.46573152453E-18 -6.79723659857E-18 -7.14573829613E-18 -7.51210805236E-18 -7.89726198183E-18 -8.30216316927E-18 -8.72782407778E-18 -9.17530908055E-18 -9.64573712228E-18 -1.01402845172E-17 -1.06601878903E-17 -1.12067472699E-17 -1.17813293379E-17 -1.23853708474E-17 -1.30203822157E-17 -1.36879513003E-17 -1.43897473703E-17 -1.51275252798E-17 -1.59031298559E-17 -1.67185005123E-17 -1.75756760983E-17 -1.84767999972E-17 -1.94241254857E-17 -2.04200213686E-17 -2.14669779015E-17 -2.25676130183E-17 -2.37246788770E-17 -2.49410687416E-17 -2.62198242168E-17 -2.75641428536E-17 -2.89773861446E-17 -3.04630879300E-17 -3.20249632333E-17 -3.36669175512E-17 -3.53930566196E-17 -3.72076966792E-17 -3.91153752693E-17 -4.11208625734E-17 -4.32291733471E-17 -4.54455794580E-17 -4.77756230675E-17 -5.02251304896E-17 -5.28002267592E-17 -5.55073509482E-17 -5.83532722662E-17 -6.13451069873E-17 -6.44903362442E-17 -6.77968247348E-17 -7.12728403883E-17 -7.49270750389E-17 -7.87686661602E-17 -8.28072197132E-17 -8.70528341663E-17 -9.15161257466E-17 -9.62082549862E-17 -1.01140954629E-16 -1.06326558967E-16 -1.11778034686E-16 -1.17509013287E-16 -1.23533825168E-16 -1.29867535466E-16 -1.36525981719E-16 -1.43525813472E-16 -1.50884533911E-16 -1.58620543624E-16 -1.66753186619E-16 -1.75302798688E-16 -1.84290758260E-16 -1.93739539859E-16 -2.03672770296E-16 -2.14115287754E-16 -2.25093203896E-16 -2.36633969151E-16 -2.48766441362E-16 -2.61520957940E-16 -2.74929411724E-16 -2.89025330732E-16 -3.03843961993E-16 -3.19422359688E-16 -3.35799477797E-16 -3.53016267513E-16 -3.71115779632E-16 -3.90143272207E-16 -4.10146323713E-16 -4.31174952021E-16 -4.53281739461E-16 -4.76521964312E-16 -5.00953739021E-16 -5.26638155514E-16 -5.53639437957E-16 -5.82025103348E-16 -6.11866130345E-16 -6.43237136745E-16 -6.76216566069E-16 -7.10886883709E-16 -7.47334783132E-16 -7.85651402656E-16 -8.25932553346E-16 -8.68278958583E-16 -9.12796505926E-16 -9.59596511884E-16 -1.00879600026E-15 -1.06051799477E-15 -1.11489182668E-15 -1.17205345814E-15 -1.23214582225E-15 -1.29531918038E-15 -1.36173149792E-15 -1.43154883932E-15 -1.50494578326E-15 -1.58210585923E-15 -1.66322200643E-15 -1.74849705621E-15 -1.83814423924E-15 -1.93238771872E-15 -2.03146315088E-15 -2.13561827422E-15 -2.24511352900E-15 -2.36022270845E-15 -2.48123364343E-15 -2.60844892206E-15 -2.74218664643E-15 -2.88278122795E-15 -3.03058422357E-15 -3.18596521483E-15 -3.34931273199E-15 -3.52103522553E-15 -3.70156208752E-15 -3.89134472525E-15 -4.09085769000E-15 -4.30059986362E-15 -4.52109570601E-15 -4.75289656646E-15 -4.99658206237E-15 -5.25276152846E-15 -5.52207554050E-15 -5.80519751699E-15 -6.10283540304E-15 -6.41573344056E-15 -6.74467402922E-15 -7.09047968283E-15 -7.45401508598E-15 -7.83618925617E-15 -8.23795781677E-15 -8.66032538654E-15 -9.10434809161E-15 -9.57113620632E-15 -1.00618569294E-14 -1.05777373025E-14 -1.11200672782E-14 -1.16902029460E-14 -1.22895699225E-14 -1.29196669164E-14 -1.35820694761E-14 -1.42784339290E-14 -1.50105015231E-14 -1.57801027813E-14 -1.65891620777E-14 -1.74397024505E-14 -1.83338506594E-14 -1.92738425042E-14 -2.02620284149E-14 -2.13008793290E-14 -2.23929928699E-14 -2.35410998418E-14 -2.47480710585E-14 -2.60169245209E-14 -2.73508329641E-14 -2.87531317900E-14 -3.02273274074E-14 -3.17771059998E-14 -3.34063427419E-14 -3.51191114896E-14 -3.69196949662E-14 -3.88125954707E-14 -4.08025461362E-14 -4.28945227637E-14 -4.50937562644E-14 -4.74057457388E-14 -4.98362722267E-14 -5.23914131621E-14 -5.50775575695E-14 -5.79014220384E-14 -6.08700675182E-14 -6.39909169729E-14 -6.72717739414E-14 -7.07208420496E-14 -7.43467455224E-14 -7.81585507478E-14 -8.21657889461E-14 -8.63784800017E-14 -9.08071575166E-14 -9.54628951481E-14 -1.00357334297E-13 -1.05502713217E-13 -1.10911897610E-13 -1.16598412803E-13 -1.22576477557E-13 -1.28861039626E-13 -1.35467813128E-13 -1.42413317838E-13 -1.49714920490E-13 -1.57390878205E-13 -1.65460384132E-13 -1.73943615444E-13 -1.82861783788E-13 -1.92237188313E-13 -2.02093271434E-13 -2.12454677441E-13 -2.23347314118E-13 -2.34798417520E-13 -2.46836620072E-13 -2.59492022161E-13 -2.72796267389E-13 -2.86782621700E-13 -3.01486056548E-13 -3.16943336336E-13 -3.33193110341E-13 -3.50276009343E-13 -3.68234747217E-13 -3.87114227725E-13 -4.06961656790E-13 -4.27826660519E-13 -4.49761409284E-13 -4.72820748158E-13 -4.97062334043E-13 -5.22546779822E-13 -5.49337805906E-13 -5.77502399551E-13 -6.07110982336E-13 -6.38237586235E-13 -6.70960038707E-13 -7.05360157286E-13 -7.41523954133E-13 -7.79541851085E-13 -8.19508905725E-13 -8.61525049042E-13 -9.05695335268E-13 -9.52130204540E-13 -1.00094575900E-12 -1.05226405309E-12 -1.10621339868E-12 -1.16292868586E-12 -1.22255172020E-12 -1.28523157729E-12 -1.35112497538E-12 -1.42039666726E-12 -1.49321985211E-12 -1.56977660853E-12 -1.65025834975E-12 -1.73486630213E-12 -1.82381200829E-12 -1.91731785595E-12 -2.01561763387E-12 -2.11895711639E-12 -2.22759467781E-12 -2.34180193834E-12 -2.46186444313E-12 -2.58808237617E-12 -2.72077131067E-12 -2.86026299803E-12 -3.00690619714E-12 -3.16106754631E-12 -3.32313247979E-12 -3.49350619132E-12 -3.67261464706E-12 -3.86090565048E-12 -4.05884996177E-12 -4.26694247468E-12 -4.48570345365E-12 -4.71567983441E-12 -4.95744659118E-12 -5.21160817398E-12 -5.47880001962E-12 -5.75969014016E-12 -6.05498079273E-12 -6.36541023499E-12 -6.69175457054E-12 -7.03482968900E-12 -7.39549330537E-12 -7.77464710412E-12 -8.17323899300E-12 -8.59226547248E-12 -9.03277412662E-12 -9.49586624156E-12 -9.98269955826E-12 -1.04944911664E-11 -1.10325205463E-11 -1.15981327674E-11 -1.21927418498E-11 -1.28178342988E-11 -1.34749728202E-11 -1.41658002265E-11 -1.48920435423E-11 -1.56555183214E-11 -1.64581331843E-11 -1.73018945883E-11 -1.81889118425E-11 -1.91214023794E-11 -2.01016972967E-11 -2.11322471839E-11 -2.22156282431E-11 -2.33545487380E-11 -2.45518557510E-11 -2.58105422990E-11 -2.71337548183E-11 -2.85248010286E-11 -2.99871581912E-11 -3.15244818213E-11 -3.31406147772E-11 -3.48395969082E-11 -3.66256751324E-11 -3.85033140564E-11 -4.04772071226E-11 -4.25522883170E-11 -4.47337445635E-11 -4.70270286020E-11 -4.94378726868E-11 -5.19723028520E-11 -5.46366540159E-11 -5.74375857600E-11 -6.03820990085E-11 -6.34775535120E-11 -6.67316862249E-11 -7.01526306376E-11 -7.37489370974E-11 -7.75295941949E-11 -8.15040511741E-11 -8.56822415608E-11 -9.00746080045E-11 -9.46921283318E-11 -9.95463429834E-11 -1.04649383836E-10 -1.10014004503E-10 -1.15653612238E-10 -1.21582301350E-10 -1.27814888491E-10 -1.34366949551E-10 -1.41254858672E-10 -1.48495829231E-10 -1.56107956470E-10 -1.64110263151E-10 -1.72522746646E-10 -1.81366429285E-10 -1.90663410521E-10 -2.00436922305E-10 -2.10711386982E-10 -2.21512478512E-10 -2.32867186030E-10 -2.44803882160E-10 -2.57352393023E-10 -2.70544072893E-10 -2.84411882911E-10 -2.98990472832E-10 -3.14316267935E-10 -3.30427559860E-10 -3.47364601703E-10 -3.65169709770E-10 -3.83887367537E-10 -4.03564338327E-10 -4.24249780549E-10 -4.45995371751E-10 -4.68855436642E-10 -4.92887083181E-10 -5.18150345083E-10 -5.44708331024E-10 -5.72627383301E-10 -6.01977242345E-10 -6.32831221270E-10 -6.65266388583E-10 -6.99363760797E-10 -7.35208504522E-10 -7.72890148265E-10 -8.12502806910E-10 -8.54145416045E-10 -8.97921978089E-10 -9.43941822808E-10 -9.92319880049E-10 -1.04317696476E-09 -1.09664008080E-09 -1.15284273561E-09 -1.21192527421E-09 -1.27403522936E-09 -1.33932768872E-09 -1.40796568192E-09 -1.48012058738E-09 -1.55597255940E-09 -1.63571097647E-09 -1.71953491525E-09 -1.80765364481E-09 -1.90028715003E-09 -1.99766667964E-09 -2.10003531990E-09 -2.20764860442E-09 -2.32077514866E-09 -2.43969731939E-09 -2.56471193960E-09 -2.69613102640E-09 -2.83428256825E-09 -2.97951134352E-09 -3.13217978092E-09 -3.29266885584E-09 -3.46137904654E-09 -3.63873132580E-09 -3.82516821400E-09 -4.02115487660E-09 -4.22718028687E-09 -4.44375843840E-09 -4.67142962567E-09 -4.91076179534E-09 -5.16235195028E-09 -5.42682763889E-09 -5.70484852186E-09 -5.99710800420E-09 -6.30433496667E-09 -6.62729558007E-09 -6.96679520625E-09 -7.32368040163E-09 -7.69884102659E-09 -8.09321245421E-09 -8.50777789775E-09 -8.94357085753E-09 -9.40167768161E-09 -9.88324027226E-09 -1.03894589259E-08 -1.09215953093E-08 -1.14809755965E-08 -1.20689937651E-08 -1.26871150578E-08 -1.33368796189E-08 -1.40199063217E-08 -1.47378967841E-08 -1.54926396012E-08 -1.62860147721E-08 -1.71199983743E-08 -1.79966674660E-08 -1.89182052372E-08 -1.98869064241E-08 -2.09051830023E-08 -2.19755701705E-08 -2.31007326274E-08 -2.42834711855E-08 -2.55267297094E-08 -2.68336024102E-08 -2.82073415132E-08 -2.96513653078E-08 -3.11692666254E-08 -3.27648217217E-08 -3.44419996319E-08 -3.62049719955E-08 -3.80581233780E-08 -4.00060621160E-08 -4.20536317176E-08 -4.42059228444E-08 -4.64682858876E-08 -4.88463442036E-08 -5.13460080051E-08 -5.39734889632E-08 -5.67353155552E-08 -5.96383491794E-08 -6.26898010991E-08 -6.58972502399E-08 -6.92686618912E-08 -7.28124073543E-08 -7.65372845905E-08 -8.04525399048E-08 -8.45678907437E-08 -8.88935496374E-08 -9.34402493540E-08 -9.82192693263E-08 -1.03242463432E-07 -1.08522289147E-07 -1.14071838213E-07 -1.19904868819E-07 -1.26035839433E-07 -1.32479944337E-07 -1.39253150959E-07 -1.46372239081E-07 -1.53854842033E-07 -1.61719489981E-07 -1.69985655371E-07 -1.78673800684E-07 -1.87805428592E-07 -1.97403134653E-07 -2.07490662644E-07 -2.18092962690E-07 -2.29236252331E-07 -2.40948080629E-07 -2.53257395555E-07 -2.66194614706E-07 -2.79791699613E-07 -2.94082233782E-07 -3.09101504641E-07 -3.24886589607E-07 -3.41476446484E-07 -3.58912008372E-07 -3.77236283366E-07 -3.96494459229E-07 -4.16734013302E-07 -4.38004827962E-07 -4.60359311799E-07 -4.83852526897E-07 -5.08542322467E-07 -5.34489475156E-07 -5.61757836355E-07 -5.90414486884E-07 -6.20529899367E-07 -6.52178108733E-07 -6.85436891174E-07 -7.20387952059E-07 -7.57117123172E-07 -7.95714569765E-07 -8.36275007919E-07 -8.78897932676E-07 -9.23687857530E-07 -9.70754565768E-07 -1.02021337429E-06 -1.07218541049E-06 -1.12679790285E-06 -1.18418448592E-06 -1.24448552032E-06 -1.30784842864E-06 -1.37442804782E-06 -1.44438699898E-06 -1.51789607544E-06 -1.59513464983E-06 -1.67629110125E-06 -1.76156326344E-06 -1.85115889487E-06 -1.94529617202E-06 -2.04420420670E-06 -2.14812358878E-06 -2.25730695549E-06 -2.37201958842E-06 -2.49254003980E-06 -2.61916078919E-06 -2.75218893228E-06 -2.89194690309E-06 -3.03877323134E-06 -3.19302333653E-06 -3.35507036060E-06 -3.52530604079E-06 -3.70414162485E-06 -3.89200883033E-06 -4.08936085027E-06 -4.29667340721E-06 -4.51444585798E-06 -4.74320235161E-06 -4.98349304266E-06 -5.23589536281E-06 -5.50101535315E-06 -5.77948906016E-06 -6.07198399827E-06 -6.37920068198E-06 -6.70187423085E-06 -7.04077605058E-06 -7.39671559378E-06 -7.77054220392E-06 -8.16314704634E-06 -8.57546513020E-06 -9.00847742546E-06 -9.46321307925E-06 -9.94075173598E-06 -1.04422259658E-05 -1.09688238066E-05 -1.15217914235E-05 -1.21024358932E-05 -1.27121281156E-05 -1.33523058613E-05 -1.40244769590E-05 -1.47302226294E-05 -1.54712009724E-05 -1.62491506133E-05 -1.70658945157E-05 -1.79233439681E-05 -1.88235027507E-05 -1.97684714912E-05 -2.07604522169E-05 -2.18017531114E-05 -2.28947934848E-05 -2.40421089655E-05 -2.52463569232E-05 -2.65103221333E-05 -2.78369226904E-05 -2.92292161835E-05 -3.06904061417E-05 -3.22238487617E-05 -3.38330599281E-05 -3.55217225387E-05 -3.72936941452E-05 -3.91530149235E-05 -4.11039159842E-05 -4.31508280375E-05 -4.52983904253E-05 -4.75514605349E-05 -4.99151236068E-05 -5.23947029530E-05 -5.49957705987E-05 -5.77241583641E-05 -6.05859694005E-05 -6.35875901974E-05 -6.67357030762E-05 -7.00372991873E-05 -7.34996920270E-05 -7.71305314919E-05 -8.09378184868E-05 -8.49299201056E-05 -8.91155854011E-05 -9.35039617622E-05 -9.81046119178E-05 -1.02927531584E-04 -1.07983167772E-04 -1.13282437781E-04 -1.18836748885E-04 -1.24658018737E-04 -1.30758696513E-04 -1.37151784805E-04 -1.43850862285E-04 -1.50870107155E-04 -1.58224321408E-04 -1.65928955901E-04 -1.74000136274E-04 -1.82454689707E-04 -1.91310172559E-04 -2.00584898870E-04 -2.10297969757E-04 -2.20469303719E-04 -2.31119667835E-04 -2.42270709893E-04 -2.53944991431E-04 -2.66166021710E-04 -2.78958292607E-04 -2.92347314436E-04 -3.06359652694E-04 -3.21022965711E-04 -3.36366043210E-04 -3.52418845760E-04 -3.69212545087E-04 -3.86779565250E-04 -4.05153624626E-04 -4.24369778697E-04 -4.44464463582E-04 -4.65475540285E-04 -4.87442339606E-04 -5.10405707649E-04 -5.34408051888E-04 -5.59493387692E-04 -5.85707385252E-04 -6.13097416813E-04 -6.41712604111E-04 -6.71603865924E-04 -7.02823965593E-04 -7.35427558415E-04 -7.69471238741E-04 -8.05013586645E-04 -8.42115213986E-04 -8.80838809690E-04 -9.21249184048E-04 -9.63413311832E-04 -1.00740037399E-03 -1.05328179768E-03 -1.10113129437E-03 -1.15102489579E-03 -1.20304098728E-03 -1.25726033839E-03 -1.31376613030E-03 -1.37264397968E-03 -1.43398195864E-03 -1.49787061038E-03 -1.56440296000E-03 -1.63367452016E-03 -1.70578329096E-03 -1.78082975364E-03 -1.85891685747E-03 -1.94014999936E-03 -2.02463699541E-03 -2.11248804409E-03 -2.20381568003E-03 -2.29873471802E-03 -2.39736218638E-03 -2.49981724896E-03 -2.60622111511E-03 -2.71669693662E-03 -2.83136969109E-03 -2.95036605057E-03 -3.07381423491E-03 -3.20184384864E-03 -3.33458570073E-03 -3.47217160602E-03 -3.61473416768E-03 -3.76240653942E-03 -3.91532216674E-03 -4.07361450606E-03 -4.23741672087E-03 -4.40686135379E-03 -4.58207997373E-03 -4.76320279703E-03 -4.95035828176E-03 -5.14367269417E-03 -5.34326964652E-03 -5.54926960535E-03 -5.76178936942E-03 -5.98094151670E-03 -6.20683381957E-03 -6.43956862786E-03 -6.67924221906E-03 -6.92594411553E-03 -7.17975636818E-03 -7.44075280687E-03 -7.70899825715E-03 -7.98454772392E-03 -8.26744554203E-03 -8.55772449470E-03 -8.85540490031E-03 -9.16049366868E-03 -9.47298332817E-03 -9.79285102493E-03 -1.01200574964E-02 -1.04545460210E-02 -1.07962413463E-02 -1.11450485994E-02 -1.15008521810E-02 -1.18635146487E-02 -1.22328755919E-02 -1.26087505037E-02 -1.29909296541E-02 -1.33791769698E-02 -1.37732289273E-02 -1.41727934637E-02 -1.45775489138E-02 -1.49871429795E-02 -1.54011917402E-02 -1.58192787113E-02 -1.62409539607E-02 -1.66657332919E-02 -1.70930975037E-02 -1.75224917363E-02 -1.79533249151E-02 -1.83849693034E-02 -1.88167601743E-02 -1.92479956151E-02 -1.96779364759E-02 -2.01058064746E-02 -2.05307924711E-02 -2.09520449242E-02 -2.13686785428E-02 -2.17797731455E-02 -2.21843747409E-02 -2.25814968410E-02 -2.29701220202E-02 -2.33492037321E-02 -2.37176683940E-02 -2.40744177518E-02 -2.44183315327E-02 -2.47482703967E-02 -2.50630791921E-02 -2.53615905228E-02 -2.56426286325E-02 -2.59050136063E-02 -2.61475658934E-02 -2.63691111487E-02 -2.65684853893E-02 -2.67445404617E-02 -2.68961498091E-02 -2.70222145283E-02 -2.71216697019E-02 -2.71934909860E-02 -2.72367014337E-02 -2.72503785268E-02 -2.72336613885E-02 -2.71857581412E-02 -2.71059533731E-02 -2.69936156709E-02 -2.68482051705E-02 -2.66692810760E-02 -2.64565090893E-02 -2.62096686894E-02 -2.59286601961E-02 -2.56135115477E-02 -2.52643847175E-02 -2.48815816899E-02 -2.44655499142E-02 -2.40168871477E-02 -2.35363456000E-02 -2.30248352851E-02 -2.24834264877E-02 -2.19133512492E-02 -2.13160037766E-02 -2.06929396822E-02 -2.00458739609E-02 -1.93766776181E-02 -1.86873728645E-02 -1.79801268023E-02 -1.72572435352E-02 -1.65211546459E-02 -1.57744079965E-02 -1.50196548210E-02 -1.42596350985E-02 -1.34971612092E-02 -1.27350998989E-02 -1.19763525981E-02 -1.12238341612E-02 -1.04804501180E-02 -9.74907254926E-03 -9.03251471909E-03 -8.33350461885E-03 -7.65465759015E-03 -6.99844820847E-03 -6.36718161361E-03 -5.76296447194E-03 -5.18767574436E-03 -4.64293741263E-03 -4.13008528267E-03 -3.65013993561E-03 -3.20377783445E-03 -2.79130251522E-03 -2.41261569632E-03 -2.06718802809E-03 -1.75402907909E-03 -1.47165601707E-03 -1.21839303543E-03 -9.93441165743E-04 -7.96047172913E-04 -6.25197445363E-04 -4.79624212610E-04 -3.57817054108E-04 -2.58040241249E-04 -1.78356414580E-04 -1.16657038290E-04 -7.06999915352E-05 -3.81545490906E-05 -1.66538701791E-05 -3.85495275736E-06 2.49417995591E-06 4.48051355060E-06 3.94599816843E-06 2.40240226674E-06 9.42340452623E-07 1.48071712812E-07 8.30028490081E-18 -2.06242313358E-18 1.16627739577E-18 -7.83287779750E-19 2.21953358099E-18 1.60441486636E-20 -5.86557097407E-20 -1.99660593475E-19 6.58625943375E-18 -4.46233432541E-19 -1.46155227480E-18 -1.76340411177E-18 1.77094322590E-19 1.63201480475E-18 -9.45746297575E-21 -1.59847705027E-19 -8.66115020128E-19 6.48207392416E-20 -1.26733801564E-19 -5.78860814243E-19 2.15180580117E-18 -1.20728940840E-18 -5.80404399493E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 2 i j (l(j)) 3.36454427925E-01 Q_int 5.74692190080E-28 6.10229170427E-28 6.47963634912E-28 6.88031468365E-28 7.30576958266E-28 7.75753314331E-28 8.23723220239E-28 8.74659419465E-28 9.28745337343E-28 9.86175741598E-28 1.04715744372E-27 1.11191004369E-27 1.18066672083E-27 1.25367507343E-27 1.33119801042E-27 1.41351469811E-27 1.50092156549E-27 1.59373337168E-27 1.69228433944E-27 1.79692935871E-27 1.90804526457E-27 2.02603219431E-27 2.15131502832E-27 2.28434492012E-27 2.42560092101E-27 2.57559170517E-27 2.73485740142E-27 2.90397153831E-27 3.08354310938E-27 3.27421876626E-27 3.47668514725E-27 3.69167135003E-27 3.91995155712E-27 4.16234782386E-27 4.41973303861E-27 4.69303406615E-27 4.98323508539E-27 5.29138113344E-27 5.61858186892E-27 5.96601556788E-27 6.33493336691E-27 6.72666376857E-27 7.14261742541E-27 7.58429221989E-27 8.05327865831E-27 8.55126559843E-27 9.08004633111E-27 9.64152503814E-27 1.02377236493E-26 1.08707891236E-26 1.15430011805E-26 1.22567805095E-26 1.30146974872E-26 1.38194814332E-26 1.46740304391E-26 1.55814218043E-26 1.65449231178E-26 1.75680040250E-26 1.86543487222E-26 1.98078692238E-26 2.10327194494E-26 2.23333101829E-26 2.37143249557E-26 2.51807369126E-26 2.67378267206E-26 2.83912015847E-26 3.01468154404E-26 3.20109903938E-26 3.39904394882E-26 3.60922908785E-26 3.83241134998E-26 4.06939443242E-26 4.32103173024E-26 4.58822940950E-26 4.87194967045E-26 5.17321421249E-26 5.49310791336E-26 5.83278273590E-26 6.19346187637E-26 6.57644416924E-26 6.98310876442E-26 7.41492009371E-26 7.87343314430E-26 8.36029905840E-26 8.87727107917E-26 9.42621086428E-26 1.00090951899E-25 1.06280230691E-25 1.12852233108E-25 1.19830625457E-25 1.27240537488E-25 1.35108652888E-25 1.43463305370E-25 1.52334580708E-25 1.61754425074E-25 1.71756760083E-25 1.82377604944E-25 1.93655206171E-25 2.05630175308E-25 2.18345635178E-25 2.31847375172E-25 2.46184016136E-25 2.61407185463E-25 2.77571703004E-25 2.94735778483E-25 3.12961221110E-25 3.32313662163E-25 3.52862791333E-25 3.74682607679E-25 3.97851686108E-25 4.22453460328E-25 4.48576523297E-25 4.76314946257E-25 5.05768617491E-25 5.37043602028E-25 5.70252523593E-25 6.05514970170E-25 6.42957924655E-25 6.82716222125E-25 7.24933035394E-25 7.69760390586E-25 8.17359714598E-25 8.67902416408E-25 9.21570504332E-25 9.78557241452E-25 1.03906784157E-24 1.10332020821E-24 1.17154571928E-24 1.24399006032E-24 1.32091410919E-24 1.40259487555E-24 1.48932649839E-24 1.58142130523E-24 1.67921093683E-24 1.78304754149E-24 1.89330504314E-24 2.01038048787E-24 2.13469547373E-24 2.26669766894E-24 2.40686242397E-24 2.55569448332E-24 2.71372980316E-24 2.88153748132E-24 3.05972180669E-24 3.24892443529E-24 3.44982670093E-24 3.66315206875E-24 3.88966874048E-24 4.13019242078E-24 4.38558925468E-24 4.65677894663E-24 4.94473807241E-24 5.25050359588E-24 5.57517660317E-24 5.91992626776E-24 6.28599406079E-24 6.67469822167E-24 7.08743850521E-24 7.52570122219E-24 7.99106459173E-24 8.48520442457E-24 9.00990015779E-24 9.56704126270E-24 1.01586340490E-23 1.07868088897E-23 1.14538278926E-23 1.21620930466E-23 1.29141548711E-23 1.37127216009E-23 1.45606689387E-23 1.54610504107E-23 1.64171083626E-23 1.74322856357E-23 1.85102379644E-23 1.96548471413E-23 2.08702349957E-23 2.21607782364E-23 2.35311242128E-23 2.49862076505E-23 2.65312684212E-23 2.81718704124E-23 2.99139215630E-23 3.17636951385E-23 3.37278523216E-23 3.58134661993E-23 3.80280472339E-23 4.03795703088E-23 4.28765034466E-23 4.55278383032E-23 4.83431225473E-23 5.13324942427E-23 5.45067183556E-23 5.78772255210E-23 6.14561532045E-23 6.52563894108E-23 6.92916190941E-23 7.35763734390E-23 7.81260821884E-23 8.29571292071E-23 8.80869114813E-23 9.35339017670E-23 9.93177151113E-23 1.05459179488E-22 1.11980410802E-22 1.18904892526E-22 1.26257560274E-22 1.34064891589E-22 1.42355001294E-22 1.51157742738E-22 1.60504815293E-22 1.70429878517E-22 1.80968673352E-22 1.92159150842E-22 2.04041608788E-22 2.16658836871E-22 2.30056270736E-22 2.44282155612E-22 2.59387720045E-22 2.75427360378E-22 2.92458836637E-22 3.10543480526E-22 3.29746416290E-22 3.50136795234E-22 3.71788044738E-22 3.94778132679E-22 4.19189848197E-22 4.45111099827E-22 4.72635232062E-22 5.01861361497E-22 5.32894733754E-22 5.65847102481E-22 6.00837131784E-22 6.37990823547E-22 6.77441971175E-22 7.19332641393E-22 7.63813685844E-22 8.11045284311E-22 8.61197521543E-22 9.14450999740E-22 9.70997488918E-22 1.03104061749E-21 1.09479660553E-21 1.16249504344E-21 1.23437971868E-21 1.31070949369E-21 1.39175923805E-21 1.47782081835E-21 1.56920414918E-21 1.66623830918E-21 1.76927272609E-21 1.87867843502E-21 1.99484941464E-21 2.11820400588E-21 2.24918641842E-21 2.38826833033E-21 2.53595058664E-21 2.69276500288E-21 2.85927628021E-21 3.03608403897E-21 3.22382497793E-21 3.42317516711E-21 3.63485248237E-21 3.85961919052E-21 4.09828469430E-21 4.35170844711E-21 4.62080304799E-21 4.90653752793E-21 5.20994083944E-21 5.53210556189E-21 5.87419183596E-21 6.23743154142E-21 6.62313273322E-21 7.03268435189E-21 7.46756122521E-21 7.92932937923E-21 8.41965167760E-21 8.94029380968E-21 9.49313064897E-21 1.00801530046E-20 1.07034747905E-20 1.13653406377E-20 1.20681339773E-20 1.28143856237E-20 1.36067828878E-20 1.44481792549E-20 1.53416046596E-20 1.62902763972E-20 1.72976107095E-20 1.83672350867E-20 1.95030013304E-20 2.07089994243E-20 2.19895722625E-20 2.33493312886E-20 2.47931731018E-20 2.63262970901E-20 2.79542241533E-20 2.96828165848E-20 3.15182991817E-20 3.34672816610E-20 3.55367824615E-20 3.77342540179E-20 4.00676095977E-20 4.25452517972E-20 4.51761027999E-20 4.79696365066E-20 5.09359126505E-20 5.40856130243E-20 5.74300799452E-20 6.09813571001E-20 6.47522329153E-20 6.87562866091E-20 7.30079370914E-20 7.75224948871E-20 8.23162172707E-20 8.74063668099E-20 9.28112735297E-20 9.85504009197E-20 1.04644416024E-19 1.11115263864E-19 1.17986246467E-19 1.25282106773E-19 1.33029117741E-19 1.41255176960E-19 1.49989907104E-19 1.59264762614E-19 1.69113142961E-19 1.79570512925E-19 1.90674530303E-19 2.02465181518E-19 2.14984925615E-19 2.28278847156E-19 2.42394818579E-19 2.57383672580E-19 2.73299385177E-19 2.90199270072E-19 3.08144185048E-19 3.27198751120E-19 3.47431585240E-19 3.68915547392E-19 3.91728002967E-19 4.15951101360E-19 4.41672071796E-19 4.68983537451E-19 4.97983848993E-19 5.28777438750E-19 5.61475196779E-19 5.96194870188E-19 6.33061487155E-19 6.72207807159E-19 7.13774799060E-19 7.57912148737E-19 8.04778798117E-19 8.54543517536E-19 9.07385513497E-19 9.63495073997E-19 1.02307425378E-18 1.08633760194E-18 1.15351293452E-18 1.22484215493E-18 1.30058212500E-18 1.38100559003E-18 1.46640216089E-18 1.55707935699E-18 1.65336371363E-18 1.75560195791E-18 1.86416225732E-18 1.97943554550E-18 2.10183693008E-18 2.23180718743E-18 2.36981435000E-18 2.51635539171E-18 2.67195801756E-18 2.83718256398E-18 3.01262401659E-18 3.19891415285E-18 3.39672381704E-18 3.60676533611E-18 3.82979508474E-18 4.06661620914E-18 4.31808151924E-18 4.58509655966E-18 4.86862287070E-18 5.16968145086E-18 5.48935643356E-18 5.82879899113E-18 6.18923148031E-18 6.57195184399E-18 6.97833828520E-18 7.40985423010E-18 7.86805359789E-18 8.35458639655E-18 8.87120466463E-18 9.41976878044E-18 1.00022541614E-17 1.06207583776E-17 1.12775087054E-17 1.19748701477E-17 1.27153539509E-17 1.35016266476E-17 1.43365196592E-17 1.52230394921E-17 1.61643785639E-17 1.71639266999E-17 1.82252833398E-17 1.93522704996E-17 2.05489465350E-17 2.18196207556E-17 2.31688689427E-17 2.46015498277E-17 2.61228225878E-17 2.77381654251E-17 2.94533952936E-17 3.12746888464E-17 3.32086046782E-17 3.52621069431E-17 3.74425904328E-17 3.97579072059E-17 4.22163948632E-17 4.48269065719E-17 4.75988429465E-17 5.05421859006E-17 5.36675345924E-17 5.69861435927E-17 6.05099634132E-17 6.42516835407E-17 6.82247781325E-17 7.24435545376E-17 7.69232048181E-17 8.16798604560E-17 8.67306504441E-17 9.20937629675E-17 9.77885109002E-17 1.03835401352E-16 1.10256209514E-16 1.17074057074E-16 1.24313495477E-16 1.32000594336E-16 1.40163035310E-16 1.48830211785E-16 1.58033334724E-16 1.67805545057E-16 1.78182033019E-16 1.89200164877E-16 2.00899617483E-16 2.13322521153E-16 2.26513611380E-16 2.40520389924E-16 2.55393295873E-16 2.71185887270E-16 2.87955033980E-16 3.05761122478E-16 3.24668273301E-16 3.44744571951E-16 3.66062314068E-16 3.88698265770E-16 4.12733940088E-16 4.38255890497E-16 4.65356022594E-16 4.94131925052E-16 5.24687221039E-16 5.57131941364E-16 5.91582920700E-16 6.28164218306E-16 6.67007564764E-16 7.08252836341E-16 7.52048558686E-16 7.98552441669E-16 8.47931947293E-16 9.00364892725E-16 9.56040090613E-16 1.01515802900E-15 1.07793159329E-15 1.14458683282E-15 1.21536377489E-15 1.29051728907E-15 1.37031800501E-15 1.45505328694E-15 1.54502826851E-15 1.64056695151E-15 1.74201337263E-15 1.84973284232E-15 1.96411326027E-15 2.08556651220E-15 2.21452995307E-15 2.35146798197E-15 2.49687371440E-15 2.65127075799E-15 2.81521509792E-15 2.98929709906E-15 3.17414363184E-15 3.37042032953E-15 3.57883398521E-15 3.80013509686E-15 4.03512056985E-15 4.28463658658E-15 4.54958165350E-15 4.83090983658E-15 5.12963419683E-15 5.44683043828E-15 5.78364078147E-15 6.14127807652E-15 6.52103017052E-15 6.92426454492E-15 7.35243323970E-15 7.80707808208E-15 8.28983623847E-15 8.80244610971E-15 9.34675359091E-15 9.92471871832E-15 1.05384227272E-14 1.11900755460E-14 1.18820237542E-14 1.26167590322E-14 1.33969271330E-14 1.42253374097E-14 1.51049729316E-14 1.60390012254E-14 1.70307856815E-14 1.80838976646E-14 1.92021293742E-14 2.03895074991E-14 2.16503077173E-14 2.29890700916E-14 2.44106154182E-14 2.59200625847E-14 2.75228470030E-14 2.92247401808E-14 3.10318705038E-14 3.29507453028E-14 3.49882742851E-14 3.71517944153E-14 3.94490963335E-14 4.18884524083E-14 4.44786465231E-14 4.72290057054E-14 5.01494337107E-14 5.32504466837E-14 5.65432110241E-14 6.00395835939E-14 6.37521544111E-14 6.76942919824E-14 7.18801914397E-14 7.63249256525E-14 8.10444995009E-14 8.60559075045E-14 9.13771950137E-14 9.70275231860E-14 1.03027237978E-13 1.09397943407E-13 1.16162579334E-13 1.23345504069E-13 1.30972582070E-13 1.39071277077E-13 1.47670750995E-13 1.56801968893E-13 1.66497810503E-13 1.76793188598E-13 1.87725174708E-13 1.99333132589E-13 2.11658859961E-13 2.24746739001E-13 2.38643896142E-13 2.53400371752E-13 2.69069300310E-13 2.85707101710E-13 3.03373684406E-13 3.22132661109E-13 3.42051577823E-13 3.63202157041E-13 3.85660555978E-13 4.09507640771E-13 4.34829277629E-13 4.61716641987E-13 4.90266546776E-13 5.20581790979E-13 5.52771529752E-13 5.86951667417E-13 6.23245274759E-13 6.61783032114E-13 7.02703699866E-13 7.46154618017E-13 7.92292236658E-13 8.41282679222E-13 8.93302340574E-13 9.48538522069E-13 1.00719010588E-12 1.06946827099E-12 1.13559725351E-12 1.20581515393E-12 1.28037479432E-12 1.35954462853E-12 1.44360970864E-12 1.53287271116E-12 1.62765502670E-12 1.72829791696E-12 1.83516374331E-12 1.94863727126E-12 2.06912705560E-12 2.19706691123E-12 2.33291747475E-12 2.47716786283E-12 2.63033743289E-12 2.79297765270E-12 2.96567408564E-12 3.14904849855E-12 3.34376109995E-12 3.55051291666E-12 3.77004831728E-12 4.00315769169E-12 4.25068029618E-12 4.51350727447E-12 4.79258486552E-12 5.08891780951E-12 5.40357296452E-12 5.73768314668E-12 6.09245120770E-12 6.46915436451E-12 6.86914879650E-12 7.29387452691E-12 7.74486060599E-12 8.22373061454E-12 8.73220850874E-12 9.27212481953E-12 9.84542325114E-12 1.04541676718E-11 1.11005495341E-11 1.17868957742E-11 1.25156771879E-11 1.32895172952E-11 1.41112018304E-11 1.49836887319E-11 1.59101187917E-11 1.68938269631E-11 1.79383543770E-11 1.90474610592E-11 2.02251394645E-11 2.14756288820E-11 2.28034306409E-11 2.42133243462E-11 2.57103850325E-11 2.73000014914E-11 2.89878956041E-11 3.07801429787E-11 3.26831947473E-11 3.47039008503E-11 3.68495346425E-11 3.91278190779E-11 4.15469544770E-11 4.41156480551E-11 4.68431452522E-11 4.97392629663E-11 5.28144249175E-11 5.60796990980E-11 5.95468376321E-11 6.32283190507E-11 6.71373931566E-11 7.12881286984E-11 7.56954640713E-11 8.03752608404E-11 8.53443609832E-11 9.06206475309E-11 9.62231086357E-11 1.02171906127E-10 1.08488447845E-10 1.15195464696E-10 1.22317092659E-10 1.29878959046E-10 1.37908275231E-10 1.46433934194E-10 1.55486614632E-10 1.65098891038E-10 1.75305350807E-10 1.86142719334E-10 1.97649990987E-10 2.09868570305E-10 2.22842419990E-10 2.36618219943E-10 2.51245534138E-10 2.66776989709E-10 2.83268465217E-10 3.00779292818E-10 3.19372470115E-10 3.39114887806E-10 3.60077569445E-10 3.82335927016E-10 4.05970031988E-10 4.31064903430E-10 4.57710812831E-10 4.86003609321E-10 5.16045063605E-10 5.47943234358E-10 5.81812855917E-10 6.17775750926E-10 6.55961267653E-10 6.96506746025E-10 7.39558009646E-10 7.85269890175E-10 8.33806784508E-10 8.85343243784E-10 9.40064602250E-10 9.98167641553E-10 1.05986129843E-09 1.12536741501E-09 1.19492153561E-09 1.26877375268E-09 1.34718960493E-09 1.43045103143E-09 1.51885738336E-09 1.61272649935E-09 1.71239584643E-09 1.81822373218E-09 1.93059059050E-09 2.04990034838E-09 2.17658187355E-09 2.31109051816E-09 2.45390974566E-09 2.60555287940E-09 2.76656492691E-09 2.93752455156E-09 3.11904613862E-09 3.31178200788E-09 3.51642474314E-09 3.73370968952E-09 3.96441758558E-09 4.20937735710E-09 4.46946910189E-09 4.74562724103E-09 5.03884386659E-09 5.35017230621E-09 5.68073089002E-09 6.03170696748E-09 6.40436116861E-09 6.80003190462E-09 7.22014018512E-09 7.66619470164E-09 8.13979723094E-09 8.64264837801E-09 9.17655367274E-09 9.74343003110E-09 1.03453126248E-08 1.09843621717E-08 1.16628726726E-08 1.23832796263E-08 1.31481687462E-08 1.39602852218E-08 1.48225435440E-08 1.57380379389E-08 1.67100534298E-08 1.77420776110E-08 1.88378131093E-08 2.00011908341E-08 2.12363840454E-08 2.25478232640E-08 2.39402121281E-08 2.54185442068E-08 2.69881208433E-08 2.86545701171E-08 3.04238669432E-08 3.23023544320E-08 3.42967665474E-08 3.64142521651E-08 3.86624005877E-08 4.10492686766E-08 4.35834095809E-08 4.62739033003E-08 4.91303890642E-08 5.21630997517E-08 5.53828984026E-08 5.88013169241E-08 6.24305972600E-08 6.62837350336E-08 7.03745258712E-08 7.47176145543E-08 7.93285472396E-08 8.42238268219E-08 8.94209717139E-08 9.49385782505E-08 1.00796386880E-07 1.07015352435E-07 1.13617718697E-07 1.20627097560E-07 1.28068552975E-07 1.35968690118E-07 1.44355749937E-07 1.53259709558E-07 1.62712388787E-07 1.72747563119E-07 1.83401083738E-07 1.94711004735E-07 2.06717718207E-07 2.19464097593E-07 2.32995649695E-07 2.47360676098E-07 2.62610444353E-07 2.78799369699E-07 2.95985207807E-07 3.14229259316E-07 3.33596586861E-07 3.54156245330E-07 3.75981526149E-07 3.99150216497E-07 4.23744874257E-07 4.49853119788E-07 4.77567945432E-07 5.06988043875E-07 5.38218156496E-07 5.71369442911E-07 6.06559872999E-07 6.43914642775E-07 6.83566615543E-07 7.25656789846E-07 7.70334795855E-07 8.17759421906E-07 8.68099172982E-07 9.21532863103E-07 9.78250243630E-07 1.03845266968E-06 1.10235380692E-06 1.17018038120E-06 1.24217297351E-06 1.31858686325E-06 1.39969292217E-06 1.48577856280E-06 1.57714874382E-06 1.67412703650E-06 1.77705675524E-06 1.88630215663E-06 2.00224971067E-06 2.12530944863E-06 2.25591639235E-06 2.39453206932E-06 2.54164611930E-06 2.69777799728E-06 2.86347877917E-06 3.03933307578E-06 3.22596106175E-06 3.42402062652E-06 3.63420965395E-06 3.85726843901E-06 4.09398224893E-06 4.34518403783E-06 4.61175732381E-06 4.89463923791E-06 5.19482375544E-06 5.51336511996E-06 5.85138147178E-06 6.21005869264E-06 6.59065447943E-06 6.99450266029E-06 7.42301776760E-06 7.87769988251E-06 8.36013976711E-06 8.87202430116E-06 9.41514224091E-06 9.99139031902E-06 1.06027797053E-05 1.12514428491E-05 1.19396407264E-05 1.26697705130E-05 1.34443737117E-05 1.42661447561E-05 1.51379401219E-05 1.60627879720E-05 1.70438983683E-05 1.80846740821E-05 1.91887220367E-05 2.03598654197E-05 2.16021565020E-05 2.29198902049E-05 2.43176184575E-05 2.58001653889E-05 2.73726434036E-05 2.90404701889E-05 3.08093867084E-05 3.26854762356E-05 3.46751844879E-05 3.67853409209E-05 3.90231812503E-05 4.13963712676E-05 4.39130320241E-05 4.65817664572E-05 4.94116875410E-05 5.24124480442E-05 5.55942719848E-05 5.89679878747E-05 6.25450638532E-05 6.63376448113E-05 7.03585916179E-05 7.46215225595E-05 7.91408571170E-05 8.39318622017E-05 8.90107009878E-05 9.43944844772E-05 1.00101325945E-04 1.06150398419E-04 1.12561995354E-04 1.19357594671E-04 1.26559926337E-04 1.34193043677E-04 1.42282398601E-04 1.50854920970E-04 1.59939102293E-04 1.69565083995E-04 1.79764750487E-04 1.90571827278E-04 2.02021984394E-04 2.14152945365E-04 2.27004602062E-04 2.40619135687E-04 2.55041144206E-04 2.70317776551E-04 2.86498873930E-04 3.03637118583E-04 3.21788190348E-04 3.41010931416E-04 3.61367519665E-04 3.82923650978E-04 4.05748730969E-04 4.29916076566E-04 4.55503127886E-04 4.82591670901E-04 5.11268071363E-04 5.41623520511E-04 5.73754293075E-04 6.07762018131E-04 6.43753963347E-04 6.81843333231E-04 7.22149581939E-04 7.64798741288E-04 8.09923764586E-04 8.57664886928E-04 9.08170002638E-04 9.61595060510E-04 1.01810447756E-03 1.07787157202E-03 1.14107901622E-03 1.20791931018E-03 1.27859527664E-03 1.35332057821E-03 1.43232025751E-03 1.51583130096E-03 1.60410322710E-03 1.69739870009E-03 1.79599416930E-03 1.90018053561E-03 2.01026384525E-03 2.12656601194E-03 2.24942556801E-03 2.37919844517E-03 2.51625878572E-03 2.66099978472E-03 2.81383456376E-03 2.97519707690E-03 3.14554304929E-03 3.32535094887E-03 3.51512299149E-03 3.71538617990E-03 3.92669337650E-03 4.14962441035E-03 4.38478721800E-03 4.63281901833E-03 4.89438752091E-03 5.17019216753E-03 5.46096540632E-03 5.76747399748E-03 6.09052034992E-03 6.43094388730E-03 6.78962244219E-03 7.16747367650E-03 7.56545652625E-03 7.98457266832E-03 8.42586800652E-03 8.89043417393E-03 9.37941004816E-03 9.89398327566E-03 1.04353918008E-02 1.10049253952E-02 1.16039271815E-02 1.22337951463E-02 1.28959836360E-02 1.35920048281E-02 1.43234301700E-02 1.50918917791E-02 1.58990837913E-02 1.67467636530E-02 1.76367533413E-02 1.85709405047E-02 1.95512795096E-02 2.05797923808E-02 2.16585696216E-02 2.27897708974E-02 2.39756255691E-02 2.52184330556E-02 2.65205630116E-02 2.78844552973E-02 2.93126197221E-02 3.08076355403E-02 3.23721506757E-02 3.40088806519E-02 3.57206072026E-02 3.75101765368E-02 3.93804972314E-02 4.13345377224E-02 4.33753233661E-02 4.55059330402E-02 4.77294952527E-02 5.00491837274E-02 5.24682124331E-02 5.49898300221E-02 5.76173136463E-02 6.03539621133E-02 6.32030883514E-02 6.61680111466E-02 6.92520461179E-02 7.24584958987E-02 7.57906394876E-02 7.92517207412E-02 8.28449359739E-02 8.65734206382E-02 9.04402350587E-02 9.44483491935E-02 9.86006264042E-02 1.02899806214E-01 1.07348486043E-01 1.11949101909E-01 1.16703908087E-01 1.21614955743E-01 1.26684070523E-01 1.31912829146E-01 1.37302534994E-01 1.42854192750E-01 1.48568482116E-01 1.54445730662E-01 1.60485885874E-01 1.66688486464E-01 1.73052633037E-01 1.79576958204E-01 1.86259596267E-01 1.93098152588E-01 2.00089672787E-01 2.07230611943E-01 2.14516803943E-01 2.21943431195E-01 2.29504994899E-01 2.37195286102E-01 2.45007357782E-01 2.52933498216E-01 2.60965205912E-01 2.69093166385E-01 2.77307231105E-01 2.85596398911E-01 2.93948800255E-01 3.02351684599E-01 3.10791411339E-01 3.19253444610E-01 3.27722352350E-01 3.36181809995E-01 3.44614609177E-01 3.53002671794E-01 3.61327069824E-01 3.69568051218E-01 3.77705072220E-01 3.85716836428E-01 3.93581340868E-01 4.01275929359E-01 4.08777353370E-01 4.16061840557E-01 4.23105171095E-01 4.29882761891E-01 4.36369758667E-01 4.42541135876E-01 4.48371804307E-01 4.53836726172E-01 4.58911037374E-01 4.63570176589E-01 4.67790020657E-01 4.71547025732E-01 4.74818373503E-01 4.77582121717E-01 4.79817358114E-01 4.81504356814E-01 4.82624736065E-01 4.83161616183E-01 4.83099776426E-01 4.82425809442E-01 4.81128271891E-01 4.79197829741E-01 4.76627396703E-01 4.73412264234E-01 4.69550221513E-01 4.65041663772E-01 4.59889687412E-01 4.54100170332E-01 4.47681835972E-01 4.40646299647E-01 4.33008095839E-01 4.24784685241E-01 4.15996440493E-01 4.06666609699E-01 3.96821257034E-01 3.86489179916E-01 3.75701802462E-01 3.64493045204E-01 3.52899171249E-01 3.40958609374E-01 3.28711754786E-01 3.16200748570E-01 3.03469237104E-01 2.90562112994E-01 2.77525239348E-01 2.64405159440E-01 2.51248794056E-01 2.38103129014E-01 2.25014895552E-01 2.12030246412E-01 1.99194430595E-01 1.86551469851E-01 1.74143840025E-01 1.62012160402E-01 1.50194894185E-01 1.38728063167E-01 1.27644979584E-01 1.16975997970E-01 1.06748289680E-01 9.69856424921E-02 8.77082874690E-02 7.89327549209E-02 7.06717609779E-02 6.29341258856E-02 5.57247247069E-02 4.90444706507E-02 4.28903307468E-02 3.72553730618E-02 3.21288441054E-02 2.74962745161E-02 2.33396105584E-02 1.96373684235E-02 1.63648078127E-02 1.34941208345E-02 1.09946318733E-02 8.83300383169E-03 6.97608122849E-03 5.39936343718E-03 4.07995907282E-03 2.99430440368E-03 2.11844064569E-03 1.42830021145E-03 8.99999018898E-04 5.10131880411E-04 2.36067966980E-04 5.62433729019E-05 -4.95521095024E-05 -9.98967654414E-05 -1.11469879504E-04 -9.87982178884E-05 -7.40183065242E-05 -4.66565914217E-05 -2.34294779083E-05 -8.06524904476E-06 -1.14999684089E-06 6.05789873355E-18 5.12125143744E-17 4.32483355812E-18 -7.95609522286E-19 4.45460600912E-19 -5.09592538210E-17 -1.49511596135E-18 -5.64309469476E-18 4.73747480680E-17 -1.25300014138E-17 -4.01514976987E-17 -3.48838800357E-17 4.99008047887E-18 6.85226991076E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 2 i j (l(j)) -3.36699458026E-01 Q_int -6.07630667268E-28 -6.45204449292E-28 -6.85101664236E-28 -7.27465985167E-28 -7.72449969399E-28 -8.20215607865E-28 -8.70934908455E-28 -9.24790515436E-28 -9.81976367162E-28 -1.04269839447E-27 -1.10717526224E-27 -1.17563915684E-27 -1.24833662225E-27 -1.32552944785E-27 -1.40749561121E-27 -1.49453027904E-27 -1.58694687015E-27 -1.68507818410E-27 -1.78927759960E-27 -1.89992034711E-27 -2.01740486002E-27 -2.14215420947E-27 -2.27461762787E-27 -2.41527212660E-27 -2.56462421378E-27 -2.72321171824E-27 -2.89160572630E-27 -3.07041263826E-27 -3.26027635215E-27 -3.46188058241E-27 -3.67595132202E-27 -3.90325945688E-27 -4.14462354178E-27 -4.40091274814E-27 -4.67304999392E-27 -4.96201526714E-27 -5.26884915492E-27 -5.59465659066E-27 -5.94061083304E-27 -6.30795769101E-27 -6.69802001003E-27 -7.11220243577E-27 -7.55199647232E-27 -8.01898585326E-27 -8.51485224475E-27 -9.04138130139E-27 -9.60046909651E-27 -1.01941289501E-26 -1.08244986787E-26 -1.14938482944E-26 -1.22045881787E-26 -1.29592777628E-26 -1.37606347445E-26 -1.46115448744E-26 -1.55150723481E-26 -1.64744708403E-26 -1.74931952220E-26 -1.85749140012E-26 -1.97235225340E-26 -2.09431570516E-26 -2.22382095558E-26 -2.36133436342E-26 -2.50735112549E-26 -2.66239705986E-26 -2.82703049933E-26 -3.00184430214E-26 -3.18746798677E-26 -3.38456999900E-26 -3.59386011896E-26 -3.81609201713E-26 -4.05206596839E-26 -4.30263173384E-26 -4.56869162087E-26 -4.85120373246E-26 -5.15118541734E-26 -5.46971693360E-26 -5.80794533874E-26 -6.16708862035E-26 -6.54844008215E-26 -6.95337300131E-26 -7.38334557371E-26 -7.83990616503E-26 -8.32469888652E-26 -8.83946951562E-26 -9.38607178260E-26 -9.96647404600E-26 -1.05827663809E-25 -1.12371681053E-25 -1.19320357723E-25 -1.26698716560E-25 -1.34533327625E-25 -1.42852403980E-25 -1.51685903286E-25 -1.61065635681E-25 -1.71025378332E-25 -1.81600997072E-25 -1.92830575550E-25 -2.04754552377E-25 -2.17415866750E-25 -2.30860113076E-25 -2.45135705161E-25 -2.60294050558E-25 -2.76389735682E-25 -2.93480722384E-25 -3.11628556677E-25 -3.30898590364E-25 -3.51360216381E-25 -3.73087118683E-25 -3.96157537583E-25 -4.20654551510E-25 -4.46666376171E-25 -4.74286682230E-25 -5.03614932623E-25 -5.34756740727E-25 -5.67824250687E-25 -6.02936541256E-25 -6.40220054603E-25 -6.79809051646E-25 -7.21846095533E-25 -7.66482565028E-25 -8.13879199629E-25 -8.64206678415E-25 -9.17646234667E-25 -9.74390308506E-25 -1.03464323989E-24 -1.09862200444E-24 -1.16655699482E-24 -1.23869285036E-24 -1.31528933807E-24 -1.39662228802E-24 -1.48298458668E-24 -1.57468723160E-24 -1.67206045135E-24 -1.77545489469E-24 -1.88524289329E-24 -2.00181980252E-24 -2.12560542517E-24 -2.25704552318E-24 -2.39661342285E-24 -2.54481171938E-24 -2.70217408669E-24 -2.86926719927E-24 -3.04669277278E-24 -3.23508973094E-24 -3.43513650625E-24 -3.64755348318E-24 -3.87310559226E-24 -4.11260506470E-24 -4.36691435726E-24 -4.63694925807E-24 -4.92368218441E-24 -5.22814568452E-24 -5.55143615581E-24 -5.89471779315E-24 -6.25922678120E-24 -6.64627574599E-24 -7.05725848182E-24 -7.49365497042E-24 -7.95703671047E-24 -8.44907237670E-24 -8.97153382891E-24 -9.52630249261E-24 -1.01153761341E-23 -1.07408760548E-23 -1.14050547299E-23 -1.21103039200E-23 -1.28591632839E-23 -1.36543295239E-23 -1.44986660974E-23 -1.53952135280E-23 -1.63472003546E-23 -1.73580547580E-23 -1.84314169057E-23 -1.95711520607E-23 -2.07813645005E-23 -2.20664122969E-23 -2.34309230097E-23 -2.48798103512E-23 -2.64182918806E-23 -2.80519077930E-23 -2.97865408697E-23 -3.16284376634E-23 -3.35842309917E-23 -3.56609638226E-23 -3.78661146373E-23 -4.02076243600E-23 -4.26939249546E-23 -4.53339697883E-23 -4.81372658735E-23 -5.11139081036E-23 -5.42746156052E-23 -5.76307703387E-23 -6.11944580856E-23 -6.49785119702E-23 -6.89965586730E-23 -7.32630675014E-23 -7.77934024946E-23 -8.26038777510E-23 -8.77118161762E-23 -9.31356118649E-23 -9.88947963385E-23 -1.05010108880E-22 -1.11503571220E-22 -1.18398566833E-22 -1.25719925151E-22 -1.33494010968E-22 -1.41748819390E-22 -1.50514076640E-22 -1.59821347110E-22 -1.69704147023E-22 -1.80198065133E-22 -1.91340890874E-22 -2.03172750454E-22 -2.15736251342E-22 -2.29076635708E-22 -2.43241943341E-22 -2.58283184644E-22 -2.74254524328E-22 -2.91213476461E-22 -3.09221111584E-22 -3.28342276627E-22 -3.48645828430E-22 -3.70204881704E-22 -3.93097072319E-22 -4.17404836879E-22 -4.43215709583E-22 -4.70622637441E-22 -4.99724314987E-22 -5.30625539681E-22 -5.63437589297E-22 -5.98278622640E-22 -6.35274105050E-22 -6.74557260205E-22 -7.16269549879E-22 -7.60561183349E-22 -8.07591658316E-22 -8.57530335267E-22 -9.10557047355E-22 -9.66862747993E-22 -1.02665019849E-21 -1.09013469822E-21 -1.15754485992E-21 -1.22912343295E-21 -1.30512817743E-21 -1.38583279252E-21 -1.47152790194E-21 -1.56252210061E-21 -1.65914306586E-21 -1.76173873749E-21 -1.87067857065E-21 -1.98635486636E-21 -2.10918418415E-21 -2.23960884214E-21 -2.37809850991E-21 -2.52515189975E-21 -2.68129856259E-21 -2.84710079497E-21 -3.02315566390E-21 -3.21009715693E-21 -3.40859846523E-21 -3.61937440775E-21 -3.84318400539E-21 -4.08083321427E-21 -4.33317782803E-21 -4.60112655965E-21 -4.88564431375E-21 -5.18775566131E-21 -5.50854852924E-21 -5.84917811808E-21 -6.21087106195E-21 -6.59492984579E-21 -7.00273749569E-21 -7.43576255927E-21 -7.89556439406E-21 -8.38379878285E-21 -8.90222389629E-21 -9.45270662419E-21 -1.00372292984E-20 -1.06578968312E-20 -1.13169442955E-20 -1.20167449733E-20 -1.27598189020E-20 -1.35488419495E-20 -1.43866554501E-20 -1.52762764363E-20 -1.62209085034E-20 -1.72239533459E-20 -1.82890230075E-20 -1.94199528879E-20 -2.06208155546E-20 -2.18959354087E-20 -2.32499042571E-20 -2.46875978482E-20 -2.62141934296E-20 -2.78351883921E-20 -2.95564200659E-20 -3.13840867415E-20 -3.33247699901E-20 -3.53854583645E-20 -3.75735725650E-20 -3.98969921627E-20 -4.23640839735E-20 -4.49837321885E-20 -4.77653703659E-20 -5.07190154027E-20 -5.38553036057E-20 -5.71855289940E-20 -6.07216839696E-20 -6.44765025028E-20 -6.84635059884E-20 -7.26970519371E-20 -7.71923856782E-20 -8.19656952588E-20 -8.70341697387E-20 -9.24160610893E-20 -9.81307499201E-20 -1.04198815270E-19 -1.10642108715E-19 -1.17483833053E-19 -1.24748625867E-19 -1.32462648239E-19 -1.40653678961E-19 -1.49351214570E-19 -1.58586575564E-19 -1.68393019194E-19 -1.78805859221E-19 -1.89862593086E-19 -2.01603036942E-19 -2.14069469034E-19 -2.27306781943E-19 -2.41362644253E-19 -2.56287672207E-19 -2.72135611977E-19 -2.88963533213E-19 -3.06832034551E-19 -3.25805461833E-19 -3.45952139827E-19 -3.67344618261E-19 -3.90059933088E-19 -4.14179883891E-19 -4.39791328454E-19 -4.66986495543E-19 -4.95863317025E-19 -5.26525780534E-19 -5.59084303930E-19 -5.93656132929E-19 -6.30365763311E-19 -6.69345389234E-19 -7.10735379283E-19 -7.54684781939E-19 -8.01351862321E-19 -8.50904672103E-19 -9.03521654685E-19 -9.59392287779E-19 -1.01871776573E-18 -1.08171172404E-18 -1.14860100866E-18 -1.21962649292E-18 -1.29504394489E-18 -1.37512494844E-18 -1.46015788122E-18 -1.55044895315E-18 -1.64632330908E-18 -1.74812619968E-18 -1.85622422469E-18 -1.97100665308E-18 -2.09288682484E-18 -2.22230363945E-18 -2.35972313636E-18 -2.50564017327E-18 -2.66058020810E-18 -2.82510119125E-18 -2.99979557477E-18 -3.18529244587E-18 -3.38225979224E-18 -3.59140690758E-18 -3.81348694578E-18 -4.04929963309E-18 -4.29969414798E-18 -4.56557217910E-18 -4.84789117228E-18 -5.14766777843E-18 -5.46598151448E-18 -5.80397865085E-18 -6.16287633923E-18 -6.54396699561E-18 -6.94862295434E-18 -7.37830141003E-18 -7.83454966497E-18 -8.31901070109E-18 -8.83342909640E-18 -9.37965730734E-18 -9.95966233963E-18 -1.05755328315E-17 -1.12294865751E-17 -1.19238785027E-17 -1.26612091674E-17 -1.34441337471E-17 -1.42754716065E-17 -1.51582164497E-17 -1.60955471003E-17 -1.70908389492E-17 -1.81476761091E-17 -1.92698643210E-17 -2.04614446594E-17 -2.17267080840E-17 -2.30702108917E-17 -2.44967911245E-17 -2.60115859908E-17 -2.76200503657E-17 -2.93279764335E-17 -3.11415145460E-17 -3.30671953702E-17 -3.51119534057E-17 -3.72831519559E-17 -3.95886096439E-17 -4.20366285676E-17 -4.46360241960E-17 -4.73961571142E-17 -5.03269667311E-17 -5.34390070719E-17 -5.67434847838E-17 -6.02522994911E-17 -6.39780866468E-17 -6.79342630331E-17 -7.21350750762E-17 -7.65956501478E-17 -8.13320510399E-17 -8.63613338072E-17 -9.17016091869E-17 -9.73721078160E-17 -1.03393249482E-16 -1.09786716654E-16 -1.16575532565E-16 -1.23784144115E-16 -1.31438509911E-16 -1.39566193738E-16 -1.48196463822E-16 -1.57360398226E-16 -1.67090996761E-16 -1.77423299817E-16 -1.88394514552E-16 -2.00044148869E-16 -2.12414153687E-16 -2.25549074011E-16 -2.39496209333E-16 -2.54305783966E-16 -2.70031127896E-16 -2.86728868831E-16 -3.04459136113E-16 -3.23285777250E-16 -3.43276587826E-16 -3.64503555640E-16 -3.87043119934E-16 -4.10976446650E-16 -4.36389720708E-16 -4.63374456365E-16 -4.92027826754E-16 -5.22453013808E-16 -5.54759579815E-16 -5.89063861960E-16 -6.25489391247E-16 -6.64167337343E-16 -7.05236980913E-16 -7.48846215176E-16 -7.95152078464E-16 -8.44321319719E-16 -8.96530998955E-16 -9.51969124850E-16 -1.01083533176E-15 -1.07334159862E-15 -1.13971301223E-15 -1.21018857786E-15 -1.28502207984E-15 -1.36448299547E-15 -1.44885746540E-15 -1.53844932399E-15 -1.63358119344E-15 -1.73459564554E-15 -1.84185643525E-15 -1.95574981059E-15 -2.07668590347E-15 -2.20510020661E-15 -2.34145514171E-15 -2.48624172460E-15 -2.63998133339E-15 -2.80322758593E-15 -2.97656833333E-15 -3.16062777685E-15 -3.35606871554E-15 -3.56359493300E-15 -3.78395373164E-15 -4.01793862370E-15 -4.26639218858E-15 -4.53020910700E-15 -4.81033938261E-15 -5.10779176292E-15 -5.42363737173E-15 -5.75901356617E-15 -6.11512803220E-15 -6.49326313343E-15 -6.89478052877E-15 -7.32112607566E-15 -7.77383503648E-15 -8.25453760684E-15 -8.76496478580E-15 -9.30695460900E-15 -9.88245876724E-15 -1.04935496343E-14 -1.11424277292E-14 -1.18314296404E-14 -1.25630364391E-14 -1.33398826134E-14 -1.41647655549E-14 -1.50406556317E-14 -1.59707068843E-14 -1.69582683824E-14 -1.80068962851E-14 -1.91203666459E-14 -2.03026890091E-14 -2.15581208482E-14 -2.28911828963E-14 -2.43066754240E-14 -2.58096955247E-14 -2.74056554684E-14 -2.91003021900E-14 -3.08997379828E-14 -3.28104424722E-14 -3.48392959470E-14 -3.69936041341E-14 -3.92811245047E-14 -4.17100942074E-14 -4.42892597283E-14 -4.70279083850E-14 -4.99359017678E-14 -5.30237112493E-14 -5.63024556886E-14 -5.97839414681E-14 -6.34807050045E-14 -6.74060578895E-14 -7.15741348207E-14 -7.59999444967E-14 -8.06994236594E-14 -8.56894944767E-14 -9.09881254744E-14 -9.66143962350E-14 -1.02588566097E-13 -1.08932147103E-13 -1.15667981454E-13 -1.22820323761E-13 -1.30414928373E-13 -1.38479142110E-13 -1.47042002731E-13 -1.56134343483E-13 -1.65788904124E-13 -1.76040448802E-13 -1.86925891228E-13 -1.98484427587E-13 -2.10757677665E-13 -2.23789834703E-13 -2.37627824519E-13 -2.52321474463E-13 -2.67923692823E-13 -2.84490659320E-13 -3.02082027386E-13 -3.20761138943E-13 -3.40595252465E-13 -3.61655785137E-13 -3.84018569992E-13 -4.07764128943E-13 -4.32977962693E-13 -4.59750858575E-13 -4.88179217421E-13 -5.18365400643E-13 -5.50418098770E-13 -5.84452722775E-13 -6.20591819592E-13 -6.58965513323E-13 -6.99711973729E-13 -7.42977913677E-13 -7.88919117350E-13 -8.37701001110E-13 -8.89499209038E-13 -9.44500245292E-13 -1.00290214556E-12 -1.06491519002E-12 -1.13076266042E-12 -1.20068164386E-12 -1.27492388641E-12 -1.35375669939E-12 -1.43746392170E-12 -1.52634694171E-12 -1.62072578224E-12 -1.72094025266E-12 -1.82735117222E-12 -1.94034166900E-12 -2.06031855912E-12 -2.18771381134E-12 -2.32298610203E-12 -2.46662246642E-12 -2.61914005185E-12 -2.78108797941E-12 -2.95304932073E-12 -3.13564319687E-12 -3.32952700706E-12 -3.53539879515E-12 -3.75399976244E-12 -3.98611693567E-12 -4.23258600019E-12 -4.49429430803E-12 -4.77218407207E-12 -5.06725575764E-12 -5.38057168371E-12 -5.71325984673E-12 -6.06651798090E-12 -6.44161786933E-12 -6.83990992173E-12 -7.26282803510E-12 -7.71189475482E-12 -8.18872675481E-12 -8.69504065639E-12 -9.23265920746E-12 -9.80351783906E-12 -1.04096716400E-11 -1.10533027472E-11 -1.17367281953E-11 -1.24624082639E-11 -1.32329553333E-11 -1.40511432687E-11 -1.49199174370E-11 -1.58424052713E-11 -1.68219275442E-11 -1.78620103149E-11 -1.89663976293E-11 -2.01390649760E-11 -2.13842335866E-11 -2.27063856717E-11 -2.41102804917E-11 -2.56009715321E-11 -2.71838246412E-11 -2.88645373920E-11 -3.06491595336E-11 -3.25441148013E-11 -3.45562239938E-11 -3.66927295488E-11 -3.89613215811E-11 -4.13701655605E-11 -4.39279316908E-11 -4.66438260973E-11 -4.95276239597E-11 -5.25897046769E-11 -5.58410892183E-11 -5.92934797522E-11 -6.29593017638E-11 -6.68517487529E-11 -7.09848297024E-11 -7.53734194454E-11 -8.00333122597E-11 -8.49812785180E-11 -9.02351251600E-11 -9.58137598239E-11 -1.01737258538E-10 -1.08026938298E-10 -1.14705433430E-10 -1.21796777240E-10 -1.29326488410E-10 -1.37321662583E-10 -1.45811070047E-10 -1.54825259165E-10 -1.64396666033E-10 -1.74559731500E-10 -1.85351024541E-10 -1.96809374281E-10 -2.08976009155E-10 -2.21894705572E-10 -2.35611944875E-10 -2.50177080982E-10 -2.65642517206E-10 -2.82063895508E-10 -2.99500295480E-10 -3.18014448003E-10 -3.37672959410E-10 -3.58546552106E-10 -3.80710318070E-10 -4.04243989033E-10 -4.29232223172E-10 -4.55764909118E-10 -4.83937489427E-10 -5.13851303244E-10 -5.45613950591E-10 -5.79339679335E-10 -6.15149795471E-10 -6.53173099271E-10 -6.93546347421E-10 -7.36414745773E-10 -7.81932469941E-10 -8.30263219151E-10 -8.81580805375E-10 -9.36069777097E-10 -9.93926081950E-10 -1.05535777167E-09 -1.12058574815E-09 -1.18984455785E-09 -1.26338323396E-09 -1.34146619065E-09 -1.42437417245E-09 -1.51240526313E-09 -1.60587595572E-09 -1.70512228811E-09 -1.81050105134E-09 -1.92239106884E-09 -2.04119455766E-09 -2.16733857280E-09 -2.30127653663E-09 -2.44348987174E-09 -2.59448972325E-09 -2.75481880026E-09 -2.92505331500E-09 -3.10580505791E-09 -3.29772358653E-09 -3.50149856249E-09 -3.71786222056E-09 -3.94759199678E-09 -4.19151332130E-09 -4.45050256979E-09 -4.72549021602E-09 -5.01746416421E-09 -5.32747329225E-09 -5.65663121247E-09 -6.00612026148E-09 -6.37719574473E-09 -6.77119043455E-09 -7.18951933912E-09 -7.63368478811E-09 -8.10528180432E-09 -8.60600382310E-09 -9.13764876256E-09 -9.70212546105E-09 -1.03014605150E-08 -1.09378055388E-08 -1.16134448716E-08 -1.23308037553E-08 -1.30924570225E-08 -1.39011383067E-08 -1.47597498335E-08 -1.56713728104E-08 -1.66392784523E-08 -1.76669396802E-08 -1.87580435599E-08 -1.99165044843E-08 -2.11464781734E-08 -2.24523765452E-08 -2.38388834816E-08 -2.53109715918E-08 -2.68739199722E-08 -2.85333330847E-08 -3.02951607912E-08 -3.21657196036E-08 -3.41517152601E-08 -3.62602666762E-08 -3.84989313777E-08 -4.08757324715E-08 -4.33991873162E-08 -4.60783379085E-08 -4.89227831651E-08 -5.19427131732E-08 -5.51489455490E-08 -5.85529640406E-08 -6.21669594528E-08 -6.60038731435E-08 -7.00774431613E-08 -7.44022532092E-08 -7.89937846042E-08 -8.38684714550E-08 -8.90437591967E-08 -9.45381667078E-08 -1.00371352272E-07 -1.06564183532E-07 -1.13138811773E-07 -1.20118750730E-07 -1.27528960234E-07 -1.35395934971E-07 -1.43747798692E-07 -1.52614404163E-07 -1.62027439261E-07 -1.72020539549E-07 -1.82629407707E-07 -1.93891940340E-07 -2.05848362463E-07 -2.18541370250E-07 -2.32016282502E-07 -2.46321201357E-07 -2.61507182823E-07 -2.77628417736E-07 -2.94742423747E-07 -3.12910249054E-07 -3.32196688528E-07 -3.52670513062E-07 -3.74404712895E-07 -3.97476755740E-07 -4.21968860729E-07 -4.47968288939E-07 -4.75567651705E-07 -5.04865237666E-07 -5.35965359754E-07 -5.68978723253E-07 -6.04022816286E-07 -6.41222324052E-07 -6.80709568210E-07 -7.22624973045E-07 -7.67117559865E-07 -8.14345471470E-07 -8.64476528485E-07 -9.17688819405E-07 -9.74171326463E-07 -1.03412458946E-06 -1.09776140979E-06 -1.16530759718E-06 -1.23700276164E-06 -1.31310115328E-06 -1.39387255309E-06 -1.47960321745E-06 -1.57059687988E-06 -1.66717581318E-06 -1.76968195588E-06 -1.87847810654E-06 -1.99394919022E-06 -2.11650360131E-06 -2.24657462724E-06 -2.38462195808E-06 -2.53113328687E-06 -2.68662600646E-06 -2.85164900819E-06 -3.02678458892E-06 -3.21265047238E-06 -3.40990195204E-06 -3.61923416255E-06 -3.84138448726E-06 -4.07713511016E-06 -4.32731572052E-06 -4.59280637942E-06 -4.87454055775E-06 -5.17350835572E-06 -5.49075991459E-06 -5.82740903203E-06 -6.18463699311E-06 -6.56369662944E-06 -6.96591661998E-06 -7.39270604777E-06 -7.84555922745E-06 -8.32606081947E-06 -8.83589124773E-06 -9.37683243847E-06 -9.95077389899E-06 -1.05597191562E-05 -1.12057925757E-05 -1.18912465836E-05 -1.26184693147E-05 -1.33899927111E-05 -1.42085010982E-05 -1.50768402645E-05 -1.59980270757E-05 -1.69752596524E-05 -1.80119281448E-05 -1.91116261386E-05 -2.02781627278E-05 -2.15155752922E-05 -2.28281430220E-05 -2.42204012287E-05 -2.56971564902E-05 -2.72635026758E-05 -2.89248379007E-05 -3.06868824644E-05 -3.25556978260E-05 -3.45377066774E-05 -3.66397141739E-05 -3.88689303888E-05 -4.12329940593E-05 -4.37399976969E-05 -4.63985141366E-05 -4.92176246072E-05 -5.22069484051E-05 -5.53766742606E-05 -5.87375934907E-05 -6.23011350364E-05 -6.60794024867E-05 -7.00852131997E-05 -7.43321396336E-05 -7.88345530088E-05 -8.36076694262E-05 -8.86675985755E-05 -9.40313951714E-05 -9.97171132660E-05 -1.05743863589E-04 -1.12131874078E-04 -1.18902553769E-04 -1.26078560219E-04 -1.33683870660E-04 -1.41743857061E-04 -1.50285365315E-04 -1.59336798770E-04 -1.68928206308E-04 -1.79091375225E-04 -1.89859929157E-04 -2.01269431292E-04 -2.13357493160E-04 -2.26163889258E-04 -2.39730677830E-04 -2.54102328076E-04 -2.69325854143E-04 -2.85450956202E-04 -3.02530168979E-04 -3.20619018093E-04 -3.39776184579E-04 -3.60063677985E-04 -3.81547018464E-04 -4.04295428269E-04 -4.28382033098E-04 -4.53884073757E-04 -4.80883128594E-04 -5.09465347215E-04 -5.39721695985E-04 -5.71748215838E-04 -6.05646292943E-04 -6.41522942790E-04 -6.79491108280E-04 -7.19669972408E-04 -7.62185286168E-04 -8.07169712299E-04 -8.54763185542E-04 -9.05113290060E-04 -9.58375654710E-04 -1.01471436687E-03 -1.07430240554E-03 -1.13732209442E-03 -1.20396557576E-03 -1.27443530563E-03 -1.34894457155E-03 -1.42771803304E-03 -1.51099228600E-03 -1.59901645171E-03 -1.69205279112E-03 -1.79037734532E-03 -1.89428060293E-03 -2.00406819513E-03 -2.12006161917E-03 -2.24259899101E-03 -2.37203582788E-03 -2.50874586140E-03 -2.65312188197E-03 -2.80557661493E-03 -2.96654362928E-03 -3.13647827924E-03 -3.31585867926E-03 -3.50518671290E-03 -3.70498907569E-03 -3.91581835249E-03 -4.13825412919E-03 -4.37290413899E-03 -4.62040544293E-03 -4.88142564469E-03 -5.15666413897E-03 -5.44685339310E-03 -5.75276026097E-03 -6.07518732849E-03 -6.41497428921E-03 -6.77299934881E-03 -7.15018065676E-03 -7.54747776316E-03 -7.96589309848E-03 -8.40647347361E-03 -8.87031159728E-03 -9.35854760745E-03 -9.87237061294E-03 -1.04130202411E-02 -1.09817881867E-02 -1.15800197574E-02 -1.22091154088E-02 -1.28705322647E-02 -1.35657856136E-02 -1.42964503756E-02 -1.50641625300E-02 -1.58706204963E-02 -1.67175864569E-02 -1.76068876126E-02 -1.85404173595E-02 -1.95201363733E-02 -2.05480735903E-02 -2.16263270694E-02 -2.27570647206E-02 -2.39425248840E-02 -2.51850167418E-02 -2.64869205459E-02 -2.78506876407E-02 -2.92788402619E-02 -3.07739710888E-02 -3.23387425279E-02 -3.39758857035E-02 -3.56881991317E-02 -3.74785470488E-02 -3.93498573704E-02 -4.13051192493E-02 -4.33473802054E-02 -4.54797427959E-02 -4.77053607937E-02 -5.00274348437E-02 -5.24492075609E-02 -5.49739580395E-02 -5.76049957367E-02 -6.03456536963E-02 -6.31992810779E-02 -6.61692349569E-02 -6.92588713582E-02 -7.24715354916E-02 -7.58105511533E-02 -7.92792092609E-02 -8.28807554909E-02 -8.66183769875E-02 -9.04951881156E-02 -9.45142152323E-02 -9.86783804538E-02 -1.02990484399E-01 -1.07453187895E-01 -1.12068992630E-01 -1.16840220757E-01 -1.21768993435E-01 -1.26857208325E-01 -1.32106516051E-01 -1.37518295645E-01 -1.43093629006E-01 -1.48833274417E-01 -1.54737639161E-01 -1.60806751302E-01 -1.67040230699E-01 -1.73437259341E-01 -1.79996551093E-01 -1.86716320967E-01 -1.93594254052E-01 -2.00627474228E-01 -2.07812512830E-01 -2.15145277438E-01 -2.22621020973E-01 -2.30234311316E-01 -2.37979001671E-01 -2.45848201911E-01 -2.53834251173E-01 -2.61928691974E-01 -2.70122246148E-01 -2.78404792908E-01 -2.86765349358E-01 -2.95192053810E-01 -3.03672152228E-01 -3.12191988202E-01 -3.20736996788E-01 -3.29291702615E-01 -3.37839722638E-01 -3.46363773916E-01 -3.54845686797E-01 -3.63266423891E-01 -3.71606105189E-01 -3.79844039672E-01 -3.87958763756E-01 -3.95928086853E-01 -4.03729144334E-01 -4.11338458137E-01 -4.18732005184E-01 -4.25885293781E-01 -4.32773448075E-01 -4.39371300584E-01 -4.45653492786E-01 -4.51594583614E-01 -4.57169165693E-01 -4.62351989011E-01 -4.67118091665E-01 -4.71442937204E-01 -4.75302558000E-01 -4.78673703972E-01 -4.81533995888E-01 -4.83862082359E-01 -4.85637799531E-01 -4.86842332388E-01 -4.87458376468E-01 -4.87470298695E-01 -4.86864295966E-01 -4.85628550005E-01 -4.83753376986E-01 -4.81231370302E-01 -4.78057534882E-01 -4.74229411360E-01 -4.69747188452E-01 -4.64613801867E-01 -4.58835018108E-01 -4.52419501604E-01 -4.45378863643E-01 -4.37727691707E-01 -4.29483557925E-01 -4.20667005493E-01 -4.11301512104E-01 -4.01413429597E-01 -3.91031899281E-01 -3.80188742591E-01 -3.68918327016E-01 -3.57257407485E-01 -3.45244943695E-01 -3.32921894138E-01 -3.20330987892E-01 -3.07516475527E-01 -2.94523860775E-01 -2.81399614891E-01 -2.68190875914E-01 -2.54945135269E-01 -2.41709914432E-01 -2.28532434525E-01 -2.15459281947E-01 -2.02536073265E-01 -1.89807122696E-01 -1.77315115609E-01 -1.65100791483E-01 -1.53202639762E-01 -1.41656611990E-01 -1.30495853497E-01 -1.19750457789E-01 -1.09447246560E-01 -9.96095780592E-02 -9.02571862015E-02 -8.14060525435E-02 -7.30683128220E-02 -6.52521993746E-02 -5.79620202924E-02 -5.11981756777E-02 -4.49572108562E-02 -3.92319058588E-02 -3.40113999250E-02 -2.92813492229E-02 -2.50241154173E-02 -2.12189821853E-02 -1.78423962775E-02 -1.48682292849E-02 -1.22680559136E-02 -1.00114443222E-02 -8.06625396653E-03 -6.40097139577E-03 -4.99121507156E-03 -3.81409053815E-03 -2.84645588256E-03 -2.06519936009E-03 -1.44751696817E-03 -9.71185996403E-04 -6.14830458877E-04 -3.58174249269E-04 -1.82277849444E-04 -6.97544661859E-05 -4.96156243981E-06 2.58361183243E-05 3.43357743340E-05 3.01015755052E-05 2.05088819169E-05 1.07308646399E-05 3.77060517198E-06 5.41655429633E-07 1.07216484025E-17 -1.54691427719E-17 -6.67290995624E-18 -4.69514851470E-19 -3.04490288212E-18 3.90106876009E-18 2.12525236816E-18 -2.16092400516E-18 3.19767307761E-19 -2.30402633047E-18 2.07784472441E-18 -2.14506648311E-19 -1.58558701221E-18 1.58059163577E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 2 i j (l(j)) 3.37174357487E-01 Q_int 6.42432054904E-28 6.82157834553E-28 7.24340119223E-28 7.69130810701E-28 8.16691203856E-28 8.67192567474E-28 9.20816761012E-28 9.77756889488E-28 1.03821799887E-27 1.10241781445E-27 1.17058752491E-27 1.24297261484E-27 1.31983374875E-27 1.40144770975E-27 1.48810839624E-27 1.58012788030E-27 1.67783753146E-27 1.78158921001E-27 1.89175653406E-27 2.00873622496E-27 2.13294953596E-27 2.26484376914E-27 2.40489388620E-27 2.55360421883E-27 2.71151028487E-27 2.87918071669E-27 3.05721930898E-27 3.24626719294E-27 3.44700514518E-27 3.66015603913E-27 3.88648744824E-27 4.12681441005E-27 4.38200236121E-27 4.65297025397E-27 4.94069386542E-27 5.24620931135E-27 5.57061677735E-27 5.91508448070E-27 6.28085287720E-27 6.66923912814E-27 7.08164184355E-27 7.51954611862E-27 7.98452888175E-27 8.47826457313E-27 9.00253117452E-27 9.55921661197E-27 1.01503255543E-26 1.07779866323E-26 1.14444601036E-26 1.21521459928E-26 1.29035927333E-26 1.37015063450E-26 1.45487601789E-26 1.54484052638E-26 1.64036812939E-26 1.74180282945E-26 1.84950990105E-26 1.96387720599E-26 2.08531659009E-26 2.21426536631E-26 2.35118788951E-26 2.49657722868E-26 2.65095694247E-26 2.81488296461E-26 2.98894560582E-26 3.17377167962E-26 3.37002675952E-26 3.57841757577E-26 3.79969456041E-26 4.03465454957E-26 4.28414365302E-26 4.54906030098E-26 4.83035847955E-26 5.12905116598E-26 5.44621397658E-26 5.78298904004E-26 6.14058911033E-26 6.52030193395E-26 6.92349488721E-26 7.35161990023E-26 7.80621868547E-26 8.28892828957E-26 8.80148698850E-26 9.34574054719E-26 9.92364886629E-26 1.05372930400E-25 1.11888828500E-25 1.18807647236E-25 1.26154301827E-25 1.33955248165E-25 1.42238578083E-25 1.51034120516E-25 1.60373548915E-25 1.70290495312E-25 1.80820671424E-25 1.92001997259E-25 2.03874737667E-25 2.16481647337E-25 2.29868124760E-25 2.44082375715E-25 2.59175586857E-25 2.75202110049E-25 2.92219658083E-25 3.10289512515E-25 3.29476744337E-25 3.49850448307E-25 3.71483991765E-25 3.94455278834E-25 4.18847030959E-25 4.44747084792E-25 4.72248708502E-25 5.01450937639E-25 5.32458931768E-25 5.65384353159E-25 6.00345768892E-25 6.37469077824E-25 6.76887963966E-25 7.18744377881E-25 7.63189047869E-25 8.10382022746E-25 8.60493248193E-25 9.13703178747E-25 9.70203427628E-25 1.03019745676E-24 1.09390130944E-24 1.16154438834E-24 1.23337028162E-24 1.30963764006E-24 1.39062110853E-24 1.47661231498E-24 1.56792092063E-24 1.66487573508E-24 1.76782590039E-24 1.87714214833E-24 1.99321813548E-24 2.11647186075E-24 2.24734717069E-24 2.38631535775E-24 2.53387685750E-24 2.69056305073E-24 2.85693817695E-24 3.03360136632E-24 3.22118879712E-24 3.42037598670E-24 3.63188022410E-24 3.85646315298E-24 4.09493351447E-24 4.34815005941E-24 4.61702464087E-24 4.90252549772E-24 5.20568074140E-24 5.52758205822E-24 5.86938864058E-24 6.23233136134E-24 6.61771720629E-24 7.02693398069E-24 7.46145530691E-24 7.92284593102E-24 8.41276735757E-24 8.93298383283E-24 9.48536869796E-24 1.00719111351E-23 1.06947233304E-23 1.13560480805E-23 1.20582668687E-23 1.28039084411E-23 1.35956579126E-23 1.44363664364E-23 1.53290614711E-23 1.62769576831E-23 1.72834685224E-23 1.83522185150E-23 1.94870563153E-23 2.06920685647E-23 2.19715946090E-23 2.33302421237E-23 2.47729037071E-23 2.63047744991E-23 2.79313708888E-23 2.96585503800E-23 3.14925326841E-23 3.34399221180E-23 3.55077313870E-23 3.77034068374E-23 4.00348552721E-23 4.25104724234E-23 4.51391731865E-23 4.79304237231E-23 5.08942755496E-23 5.40414017331E-23 5.73831353268E-23 6.09315101805E-23 6.46993042755E-23 6.87000857396E-23 7.29482617065E-23 7.74591301975E-23 8.22489352105E-23 8.73349252160E-23 9.27354152704E-23 9.84698529701E-23 1.04558888483E-22 1.11024448913E-22 1.17889817259E-22 1.25179716262E-22 1.32920397429E-22 1.41139735573E-22 1.49867329185E-22 1.59134607029E-22 1.68974941310E-22 1.79423767860E-22 1.90518713735E-22 2.02299732723E-22 2.14809249214E-22 2.28092310973E-22 2.42196751369E-22 2.57173361615E-22 2.73076073681E-22 2.89962154502E-22 3.07892412202E-22 3.26931415070E-22 3.47147724074E-22 3.68614139757E-22 3.91407964391E-22 4.15611280360E-22 4.41311245733E-22 4.68600408135E-22 4.97577038016E-22 5.28345482530E-22 5.61016541299E-22 5.95707865411E-22 6.32544381087E-22 6.71658739557E-22 7.13191794743E-22 7.57293110485E-22 8.04121499135E-22 8.53845593450E-22 9.06644453856E-22 9.62708213252E-22 1.02223876170E-21 1.08545047345E-21 1.15257097890E-21 1.22384198434E-21 1.29952014233E-21 1.37987797593E-21 1.46520486011E-21 1.55580806376E-21 1.65201385622E-21 1.75416868221E-21 1.86264040937E-21 1.97781965301E-21 2.10012118276E-21 2.22998541614E-21 2.36788000458E-21 2.51430151743E-21 2.66977723021E-21 2.83486702331E-21 3.01016539818E-21 3.19630361818E-21 3.39395198182E-21 3.60382223656E-21 3.82667014182E-21 4.06329819060E-21 4.31455849927E-21 4.58135587612E-21 4.86465107967E-21 5.16546427841E-21 5.48487872449E-21 5.82404465466E-21 6.18418343228E-21 6.56659194564E-21 6.97264727805E-21 7.40381166693E-21 7.86163776935E-21 8.34777425333E-21 8.86397173482E-21 9.41208908176E-21 9.99410010805E-21 1.06121006814E-20 1.12683162707E-20 1.19651099602E-20 1.27049909588E-20 1.34906236367E-20 1.43248371189E-20 1.52106354741E-20 1.61512085320E-20 1.71499433704E-20 1.82104365121E-20 1.93365068765E-20 2.05322095317E-20 2.18018502972E-20 2.31500012492E-20 2.45815171854E-20 2.61015531073E-20 2.77155827837E-20 2.94294184625E-20 3.12492318005E-20 3.31815760885E-20 3.52334098499E-20 3.74121218992E-20 3.97255579493E-20 4.21820488648E-20 4.47904406620E-20 4.75601263641E-20 5.05010798262E-20 5.36238916518E-20 5.69398073306E-20 6.04607677343E-20 6.41994521162E-20 6.81693237710E-20 7.23846785164E-20 7.68606961736E-20 8.16134952313E-20 8.66601908894E-20 9.20189566918E-20 9.77090899716E-20 1.03751081341E-19 1.10166688481E-19 1.16979014492E-19 1.24212591088E-19 1.31893466940E-19 1.40049301478E-19 1.48709464494E-19 1.57905141905E-19 1.67669448059E-19 1.78037544975E-19 1.89046768974E-19 2.00736765119E-19 2.13149629991E-19 2.26330063271E-19 2.40325528717E-19 2.55186425076E-19 2.70966267579E-19 2.87721880652E-19 3.05513602545E-19 3.24405502612E-19 3.44465612035E-19 3.65766168802E-19 3.88383877850E-19 4.12400187277E-19 4.37901581647E-19 4.64979893427E-19 4.93732633681E-19 5.24263343216E-19 5.56681965439E-19 5.91105242271E-19 6.27657134544E-19 6.66469268393E-19 7.07681409250E-19 7.51441965150E-19 7.97908521162E-19 8.47248406858E-19 8.99639298884E-19 9.55269860784E-19 1.01434042239E-18 1.07706370123E-18 1.14366556854E-18 1.21438586261E-18 1.28947925252E-18 1.36921615516E-18 1.45388370906E-18 1.54378680839E-18 1.63924920088E-18 1.74061465368E-18 1.84824819131E-18 1.96253741007E-18 2.08389387389E-18 2.21275459633E-18 2.34958361432E-18 2.49487365921E-18 2.64914793110E-18 2.81296198290E-18 2.98690572099E-18 3.17160552944E-18 3.36772652567E-18 3.57597495563E-18 3.79710073699E-18 4.03190015966E-18 4.28121875328E-18 4.54595433205E-18 4.82706022776E-18 5.12554872288E-18 5.44249469578E-18 5.77903949150E-18 6.13639503175E-18 6.51584817916E-18 6.91876537133E-18 7.34659754147E-18 7.80088534330E-18 8.28326469903E-18 8.79547269045E-18 9.33935381421E-18 9.91686662404E-18 1.05300907836E-17 1.11812345553E-17 1.18726427528E-17 1.26068051844E-17 1.33863656191E-17 1.42141313073E-17 1.50930830894E-17 1.60263861301E-17 1.70174013165E-17 1.80696973610E-17 1.91870636518E-17 2.03735238994E-17 2.16333506258E-17 2.29710805502E-17 2.43915309262E-17 2.58998168883E-17 2.75013698727E-17 2.92019571755E-17 3.10077027214E-17 3.29251091160E-17 3.49610810624E-17 3.71229502250E-17 3.94185016314E-17 4.18560017065E-17 4.44442280407E-17 4.71925009979E-17 5.01107172792E-17 5.32093855606E-17 5.64996643360E-17 5.99934020991E-17 6.37031800102E-17 6.76423572020E-17 7.18251188858E-17 7.62665274337E-17 8.09825766186E-17 8.59902492081E-17 9.13075781206E-17 9.69537113625E-17 1.02948980981E-16 1.09314976280E-16 1.16074621564E-16 1.23252258692E-16 1.30873734728E-16 1.38966495023E-16 1.47559682043E-16 1.56684240314E-16 1.66373027852E-16 1.76660934487E-16 1.87585007504E-16 1.99184585048E-16 2.11501437785E-16 2.24579919318E-16 2.38467125903E-16 2.53213066049E-16 2.68870840596E-16 2.85496833933E-16 3.03150917041E-16 3.21896663088E-16 3.41801576356E-16 3.62937335329E-16 3.85380050807E-16 4.09210539979E-16 4.34514617451E-16 4.61383404265E-16 4.89913656023E-16 5.20208111311E-16 5.52375861656E-16 5.86532744370E-16 6.22801759677E-16 6.61313513641E-16 7.02206688475E-16 7.45628541940E-16 7.91735437618E-16 8.40693407975E-16 8.92678752248E-16 9.47878671295E-16 1.00649194170E-15 1.06872963158E-15 1.13481586062E-15 1.20498860714E-15 1.27950056505E-15 1.35862005377E-15 1.44263198450E-15 1.53183888613E-15 1.62656199466E-15 1.72714240994E-15 1.83394232402E-15 1.94734632531E-15 2.06776278357E-15 2.19562532033E-15 2.33139437042E-15 2.47555883997E-15 2.62863786692E-15 2.79118269042E-15 2.96377863581E-15 3.14704722239E-15 3.34164840143E-15 3.54828293265E-15 3.76769490760E-15 4.00067442912E-15 4.24806045641E-15 4.51074382610E-15 4.78967046011E-15 5.08584477178E-15 5.40033328279E-15 5.73426846354E-15 6.08885281113E-15 6.46536317945E-15 6.86515537700E-15 7.28966904908E-15 7.74043286180E-15 8.21907000662E-15 8.72730404541E-15 9.26696511669E-15 9.83999652588E-15 1.04484617429E-14 1.10945518323E-14 1.17805933435E-14 1.25090566880E-14 1.32825650349E-14 1.41039037573E-14 1.49760304611E-14 1.59020856358E-14 1.68854039625E-14 1.79295263215E-14 1.90382125429E-14 2.02154549447E-14 2.14654927090E-14 2.27928271461E-14 2.42022379032E-14 2.56988001751E-14 2.72879029790E-14 2.89752685594E-14 3.07669729926E-14 3.26694680658E-14 3.46896045085E-14 3.68346566604E-14 3.91123486652E-14 4.15308822829E-14 4.40989664233E-14 4.68258485038E-14 4.97213477481E-14 5.27958905422E-14 5.60605479774E-14 5.95270757145E-14 6.32079563127E-14 6.71164441761E-14 7.12666132789E-14 7.56734078420E-14 8.03526961425E-14 8.53213276507E-14 9.05971937001E-14 9.61992919080E-14 1.02147794580E-13 1.08464121344E-13 1.15171016274E-13 1.22292629786E-13 1.29854605591E-13 1.37884173033E-13 1.46410245128E-13 1.55463522671E-13 1.65076604777E-13 1.75284106257E-13 1.86122782250E-13 1.97631660566E-13 2.09852182205E-13 2.22828350571E-13 2.36606889905E-13 2.51237413518E-13 2.66772602428E-13 2.83268395034E-13 3.00784188524E-13 3.19383052736E-13 3.39131957237E-13 3.60102012447E-13 3.82368725664E-13 4.06012272929E-13 4.31117787692E-13 4.57775667326E-13 4.86081898595E-13 5.16138403243E-13 5.48053404954E-13 5.81941818988E-13 6.17925665924E-13 6.56134510969E-13 6.96705930435E-13 7.39786007054E-13 7.85529855917E-13 8.34102182934E-13 8.85677877808E-13 9.40442643686E-13 9.98593665729E-13 1.06034032101E-12 1.12590493233E-12 1.19552356859E-12 1.26944689468E-12 1.34794107392E-12 1.43128872628E-12 1.51978994578E-12 1.61376338092E-12 1.71354738180E-12 1.81950121818E-12 1.93200637286E-12 2.05146791500E-12 2.17831595839E-12 2.31300720977E-12 2.45602661301E-12 2.60788909480E-12 2.76914141831E-12 2.94036415150E-12 3.12217375703E-12 3.31522481139E-12 3.52021236122E-12 3.73787442533E-12 3.96899465132E-12 4.21440513645E-12 4.47498942296E-12 4.75168567845E-12 5.04549007291E-12 5.35746036450E-12 5.68871970701E-12 6.04046069263E-12 6.41394964467E-12 6.81053117562E-12 7.23163302694E-12 7.67877120807E-12 8.15355545301E-12 8.65769501432E-12 9.19300481507E-12 9.76141198134E-12 1.03649627762E-11 1.10058299715E-11 1.16863206606E-11 1.24088845614E-11 1.31761228372E-11 1.39907974589E-11 1.48558411385E-11 1.57743679024E-11 1.67496842618E-11 1.77853011475E-11 1.88849465310E-11 2.00525788466E-11 2.12924012295E-11 2.26088766241E-11 2.40067438983E-11 2.54910348283E-11 2.70670922661E-11 2.87405893179E-11 3.05175497977E-11 3.24043698609E-11 3.44078410538E-11 3.65351747442E-11 3.87940280594E-11 4.11925314391E-11 4.37393178890E-11 4.64435540646E-11 4.93149732099E-11 5.23639101957E-11 5.56013387266E-11 5.90389107891E-11 6.26889985844E-11 6.65647390301E-11 7.06800810175E-11 7.50498356337E-11 7.96897293709E-11 8.46164607779E-11 8.98477604178E-11 9.54024547490E-11 1.01300533945E-10 1.07563223412E-10 1.14213060623E-10 1.21273975728E-10 1.28771378066E-10 1.36732247187E-10 1.45185230085E-10 1.54160744090E-10 1.63691086530E-10 1.73810550240E-10 1.84555547950E-10 1.95964742239E-10 2.08079184872E-10 2.20942464658E-10 2.34600863946E-10 2.49103525110E-10 2.64502627235E-10 2.80853573478E-10 2.98215191052E-10 3.16649941526E-10 3.36224146618E-10 3.57008225381E-10 3.79076948514E-10 4.02509706386E-10 4.27390794651E-10 4.53809717454E-10 4.81861508207E-10 5.11647072830E-10 5.43273550783E-10 5.76854700882E-10 6.12511309987E-10 6.50371627182E-10 6.90571824733E-10 7.33256486448E-10 7.78579128649E-10 8.26702750998E-10 8.77800421426E-10 9.32055899055E-10 9.89664294734E-10 1.05083276922E-09 1.11578128126E-09 1.18474337407E-09 1.25796701631E-09 1.33571549232E-09 1.41826834727E-09 1.50592239074E-09 1.59899276346E-09 1.69781406891E-09 1.80274157254E-09 1.91415248127E-09 2.03244729354E-09 2.15805124029E-09 2.29141581132E-09 2.43302037085E-09 2.58337388476E-09 2.74301674388E-09 2.91252270298E-09 3.09250094197E-09 3.28359824976E-09 3.48650134299E-09 3.70193933446E-09 3.93068634991E-09 4.17356429370E-09 4.43144581194E-09 4.70525741040E-09 4.99598278411E-09 5.30466634107E-09 5.63241695230E-09 5.98041191940E-09 6.34990120027E-09 6.74221189421E-09 7.15875298972E-09 7.60102041747E-09 8.07060241929E-09 8.56918522393E-09 9.09855910081E-09 9.66062477597E-09 1.02574002290E-08 1.08910279293E-08 1.15637825077E-08 1.22780789041E-08 1.30364810103E-08 1.38417108583E-08 1.46966583514E-08 1.56043916156E-08 1.65681679853E-08 1.75914456536E-08 1.86778960446E-08 1.98314169525E-08 2.10561464879E-08 2.23564778679E-08 2.37370751355E-08 2.52028898308E-08 2.67591787107E-08 2.84115225085E-08 3.01658459065E-08 3.20284387033E-08 3.40059782782E-08 3.61055534533E-08 3.83346898100E-08 4.07013765742E-08 4.32140951242E-08 4.58818492871E-08 4.87141974758E-08 5.17212867874E-08 5.49138892286E-08 5.83034401235E-08 6.19020789246E-08 6.57226924827E-08 6.97789609983E-08 7.40854067968E-08 7.86574460793E-08 8.35114438486E-08 8.86647722094E-08 9.41358722541E-08 9.99443197051E-08 1.06110894632E-07 1.12657655383E-07 1.19608017098E-07 1.26986835011E-07 1.34820492818E-07 1.43136996525E-07 1.51966073984E-07 1.61339280549E-07 1.71290111185E-07 1.81854119444E-07 1.93069043694E-07 2.04974941107E-07 2.17614329825E-07 2.31032339781E-07 2.45276872759E-07 2.60398772284E-07 2.76452003769E-07 2.93493845802E-07 3.11585092978E-07 3.30790271219E-07 3.51177866157E-07 3.72820565484E-07 3.95795516075E-07 4.20184596734E-07 4.46074707698E-07 4.73558077603E-07 5.02732589268E-07 5.33702125254E-07 5.66576934534E-07 6.01474021352E-07 6.38517557827E-07 6.77839321648E-07 7.19579160275E-07 7.63885483514E-07 8.10915785844E-07 8.60837200526E-07 9.13827087400E-07 9.70073656250E-07 1.02977662802E-06 1.09314793613E-06 1.16041247027E-06 1.23180886522E-06 1.30759033754E-06 1.38802557270E-06 1.47339966609E-06 1.56401512083E-06 1.66019290584E-06 1.76227357789E-06 1.87061847146E-06 1.98561096020E-06 2.10765779475E-06 2.23719052099E-06 2.37466698389E-06 2.52057292181E-06 2.67542365692E-06 2.83976588711E-06 3.01417958581E-06 3.19928001586E-06 3.39571986435E-06 3.60419150553E-06 3.82542939956E-06 4.06021263482E-06 4.30936762277E-06 4.57377095383E-06 4.85435242432E-06 5.15209824419E-06 5.46805443645E-06 5.80333043934E-06 6.15910292354E-06 6.53661983676E-06 6.93720468922E-06 7.36226109403E-06 7.81327757773E-06 8.29183267629E-06 8.79960033393E-06 9.33835562172E-06 9.90998079531E-06 1.05164717110E-05 1.11599446216E-05 1.18426433732E-05 1.25669470273E-05 1.33353779323E-05 1.41506102698E-05 1.50154791050E-05 1.59329899679E-05 1.69063289975E-05 1.79388736814E-05 1.90342042236E-05 2.01961155786E-05 2.14286301880E-05 2.27360114605E-05 2.41227780387E-05 2.55937188952E-05 2.71539093079E-05 2.88087277618E-05 3.05638738315E-05 3.24253870991E-05 3.43996671657E-05 3.64934948191E-05 3.87140544204E-05 4.10689575807E-05 4.35662681972E-05 4.62145289264E-05 4.90227891734E-05 5.20006346813E-05 5.51582188105E-05 5.85062955988E-05 6.20562547028E-05 6.58201583220E-05 6.98107802150E-05 7.40416469221E-05 7.85270813132E-05 8.32822485879E-05 8.83232048608E-05 9.36669484702E-05 9.93314741561E-05 1.05335830264E-04 1.11700179129E-04 1.18445860821E-04 1.25595460412E-04 1.33172878968E-04 1.41203408451E-04 1.49713810732E-04 1.58732400949E-04 1.68289135400E-04 1.78415704247E-04 1.89145629238E-04 2.00514366733E-04 2.12559416286E-04 2.25320435071E-04 2.38839358442E-04 2.53160526941E-04 2.68330820059E-04 2.84399797102E-04 3.01419845494E-04 3.19446336892E-04 3.38537791480E-04 3.58756050847E-04 3.80166459845E-04 4.02838057865E-04 4.26843779962E-04 4.52260668297E-04 4.79170094364E-04 5.07657992502E-04 5.37815105201E-04 5.69737240730E-04 6.03525543635E-04 6.39286778670E-04 6.77133628755E-04 7.17185007548E-04 7.59566387261E-04 8.04410142352E-04 8.51855909757E-04 9.02050966319E-04 9.55150624125E-04 1.01131864443E-03 1.07072767090E-03 1.13355968296E-03 1.20000646983E-03 1.27027012626E-03 1.34456357053E-03 1.42311108553E-03 1.50614888379E-03 1.59392569720E-03 1.68670339217E-03 1.78475761107E-03 1.88837844078E-03 1.99787110896E-03 2.11355670908E-03 2.23577295466E-03 2.36487496375E-03 2.50123607405E-03 2.64524868964E-03 2.79732515979E-03 2.95789869044E-03 3.12742428898E-03 3.30637974281E-03 3.49526663196E-03 3.69461137634E-03 3.90496631763E-03 4.12691083620E-03 4.36105250287E-03 4.60802826565E-03 4.86850567114E-03 5.14318412014E-03 5.43279615719E-03 5.73810879303E-03 6.05992485935E-03 6.39908439444E-03 6.75646605858E-03 7.13298857740E-03 7.52961221141E-03 7.94734024939E-03 8.38722052310E-03 8.85034694050E-03 9.33786103408E-03 9.85095352067E-03 1.03908658686E-02 1.09588918673E-02 1.15563791952E-02 1.21847309785E-02 1.28454073365E-02 1.35399269055E-02 1.42698683337E-02 1.50368717401E-02 1.58426401270E-02 1.66889407374E-02 1.75776063467E-02 1.85105364771E-02 1.94896985234E-02 2.05171287754E-02 2.15949333253E-02 2.27252888427E-02 2.39104432029E-02 2.51527159507E-02 2.64544985812E-02 2.78182546193E-02 2.92465194765E-02 3.07419000641E-02 3.23070741395E-02 3.39447893623E-02 3.56578620345E-02 3.74491754992E-02 3.93216781692E-02 4.12783811583E-02 4.33223554849E-02 4.54567288170E-02 4.76846817269E-02 5.00094434237E-02 5.24342869288E-02 5.49625236609E-02 5.75974973961E-02 6.03425775659E-02 6.32011518600E-02 6.61766180958E-02 6.92723753205E-02 7.24918141095E-02 7.58383060264E-02 7.93151922116E-02 8.29257710659E-02 8.66732849977E-02 9.05609062060E-02 9.45917214711E-02 9.87687159295E-02 1.03094755813E-01 1.07572570133E-01 1.12204731302E-01 1.16993634680E-01 1.21941477044E-01 1.27050233995E-01 1.32321636294E-01 1.37757145176E-01 1.43357926631E-01 1.49124824730E-01 1.55058334011E-01 1.61158570999E-01 1.67425244929E-01 1.73857627740E-01 1.80454523461E-01 1.87214237066E-01 1.94134542955E-01 2.01212653168E-01 2.08445185516E-01 2.15828131783E-01 2.23356826192E-01 2.31025914349E-01 2.38829322882E-01 2.46760230019E-01 2.54811037372E-01 2.62973343194E-01 2.71237917422E-01 2.79594678801E-01 2.88032674430E-01 2.96540062076E-01 3.05104095595E-01 3.13711113861E-01 3.22346533549E-01 3.30994846182E-01 3.39639619827E-01 3.48263505828E-01 3.56848250981E-01 3.65374715520E-01 3.73822897309E-01 3.82171962588E-01 3.90400283625E-01 3.98485483589E-01 4.06404488936E-01 4.14133589553E-01 4.21648506875E-01 4.28924470141E-01 4.35936300884E-01 4.42658505704E-01 4.49065377302E-01 4.55131103669E-01 4.60829885256E-01 4.66136059842E-01 4.71024234760E-01 4.75469425992E-01 4.79447203603E-01 4.82933842808E-01 4.85906479935E-01 4.88343272354E-01 4.90223561414E-01 4.91528037251E-01 4.92238904275E-01 4.92340046007E-01 4.91817187876E-01 4.90658056455E-01 4.88852533594E-01 4.86392803785E-01 4.83273493092E-01 4.79491797918E-01 4.75047601867E-01 4.69943578981E-01 4.64185281624E-01 4.57781211372E-01 4.50742871311E-01 4.43084798251E-01 4.34824573494E-01 4.25982810936E-01 4.16583121450E-01 4.06652052724E-01 3.96219003902E-01 3.85316114691E-01 3.73978128778E-01 3.62242231772E-01 3.50147864102E-01 3.37736509671E-01 3.25051461353E-01 3.12137564729E-01 2.99040941797E-01 2.85808696685E-01 2.72488605688E-01 2.59128794241E-01 2.45777403687E-01 2.32482250948E-01 2.19290484373E-01 2.06248239244E-01 1.93400296515E-01 1.80789748457E-01 1.68457674919E-01 1.56442833893E-01 1.44781370040E-01 1.33506544688E-01 1.22648490673E-01 1.12233995184E-01 1.02286313488E-01 9.28250161199E-02 8.38658717281E-02 7.54207673881E-02 6.74976677127E-02 6.01006136060E-02 5.32297609725E-02 4.68814591293E-02 4.10483680885E-02 3.57196132764E-02 3.08809756590E-02 2.65151146549E-02 2.26018206549E-02 1.91182934538E-02 1.60394424500E-02 1.33382041107E-02 1.09858719551E-02 8.95243420490E-03 7.20691432244E-03 5.71928132250E-03 4.46543716575E-03 3.42269920371E-03 2.56848614379E-03 1.88058404254E-03 1.33740446070E-03 9.18230437375E-04 6.03445919087E-04 3.74744331895E-04 2.15312109806E-04 1.09983192533E-04 4.53607763562E-05 9.90294021836E-06 -6.03083049502E-06 -1.01747443307E-05 -8.39544614419E-06 -4.77587384663E-06 -1.74512053477E-06 -2.54579124990E-07 -1.14444061034E-17 2.03987981112E-18 -1.79401320158E-19 -2.46529647633E-18 -1.47952386169E-18 9.18059833567E-19 -8.33493519034E-19 1.67814179957E-19 -2.72122812159E-18 2.88695413498E-19 -1.23008258513E-19 8.78111705054E-19 7.81025960927E-20 -1.83751477988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4D 2 8.00 Wavefunction 9.55932527998E-15 9.85045007624E-15 1.01504409425E-14 1.04595678908E-14 1.07781091562E-14 1.11063514475E-14 1.14445902047E-14 1.17931298657E-14 1.21522841396E-14 1.25223762895E-14 1.29037394234E-14 1.32967167938E-14 1.37016621069E-14 1.41189398408E-14 1.45489255736E-14 1.49920063215E-14 1.54485808871E-14 1.59190602184E-14 1.64038677784E-14 1.69034399267E-14 1.74182263119E-14 1.79486902766E-14 1.84953092742E-14 1.90585752986E-14 1.96389953272E-14 2.02370917773E-14 2.08534029761E-14 2.14884836452E-14 2.21429054001E-14 2.28172572646E-14 2.35121462008E-14 2.42281976557E-14 2.49660561240E-14 2.57263857281E-14 2.65098708159E-14 2.73172165770E-14 2.81491496769E-14 2.90064189117E-14 2.98897958814E-14 3.08000756852E-14 3.17380776361E-14 3.27046459992E-14 3.37006507515E-14 3.47269883642E-14 3.57845826106E-14 3.68743853970E-14 3.79973776192E-14 3.91545700463E-14 4.03470042294E-14 4.15757534398E-14 4.28419236347E-14 4.41466544529E-14 4.54911202400E-14 4.68765311061E-14 4.83041340145E-14 4.97752139041E-14 5.12910948461E-14 5.28531412358E-14 5.44627590202E-14 5.61213969641E-14 5.78305479536E-14 5.95917503399E-14 6.14065893241E-14 6.32766983837E-14 6.52037607431E-14 6.71895108885E-14 6.92357361292E-14 7.13442782059E-14 7.35170349489E-14 7.57559619858E-14 7.80630745022E-14 8.04404490549E-14 8.28902254417E-14 8.54146086266E-14 8.80158707249E-14 9.06963530480E-14 9.34584682109E-14 9.63047023039E-14 9.92376171296E-14 1.02259852509E-13 1.05374128659E-13 1.08583248637E-13 1.11890100869E-13 1.15297661744E-13 1.18808998297E-13 1.22427270969E-13 1.26155736448E-13 1.29997750606E-13 1.33956771515E-13 1.38036362559E-13 1.42240195648E-13 1.46572054514E-13 1.51035838123E-13 1.55635564181E-13 1.60375372753E-13 1.65259529985E-13 1.70292431950E-13 1.75478608597E-13 1.80822727838E-13 1.86329599739E-13 1.92004180857E-13 1.97851578699E-13 2.03877056316E-13 2.10086037045E-13 2.16484109389E-13 2.23077032044E-13 2.29870739085E-13 2.36871345308E-13 2.44085151730E-13 2.51518651264E-13 2.59178534562E-13 2.67071696035E-13 2.75205240062E-13 2.83586487381E-13 2.92222981681E-13 3.01122496389E-13 3.10293041669E-13 3.19742871631E-13 3.29480491760E-13 3.39514666571E-13 3.49854427498E-13 3.60509081025E-13 3.71488217059E-13 3.82801717563E-13 3.94459765452E-13 4.06472853754E-13 4.18851795061E-13 4.31607731255E-13 4.44752143540E-13 4.58296862774E-13 4.72254080118E-13 4.86636358011E-13 5.01456641472E-13 5.16728269758E-13 5.32464988364E-13 5.48680961399E-13 5.65390784334E-13 5.82609497137E-13 6.00352597812E-13 6.18636056346E-13 6.37476329087E-13 6.56890373551E-13 6.76895663689E-13 6.97510205612E-13 7.18752553799E-13 7.40641827797E-13 7.63197729431E-13 7.86440560533E-13 8.10391241220E-13 8.35071328722E-13 8.60503036783E-13 8.86709255656E-13 9.13713572708E-13 9.41540293645E-13 9.70214464396E-13 9.99761893647E-13 1.03020917608E-12 1.06158371631E-12 1.09391375353E-12 1.12722838696E-12 1.16155760201E-12 1.19693229731E-12 1.23338431246E-12 1.27094645673E-12 1.30965253859E-12 1.34953739613E-12 1.39063692841E-12 1.43298812778E-12 1.47662911318E-12 1.52159916444E-12 1.56793875764E-12 1.61568960155E-12 1.66489467514E-12 1.71559826630E-12 1.76784601169E-12 1.82168493779E-12 1.87716350329E-12 1.93433164263E-12 1.99324081099E-12 2.05394403060E-12 2.11649593845E-12 2.18095283549E-12 2.24737273726E-12 2.31581542617E-12 2.38634250525E-12 2.45901745363E-12 2.53390568366E-12 2.61107459982E-12 2.69059365932E-12 2.77253443469E-12 2.85697067816E-12 2.94397838803E-12 3.03363587713E-12 3.12602384324E-12 3.22122544176E-12 3.31932636055E-12 3.42041489707E-12 3.52458203780E-12 3.63192154022E-12 3.74253001711E-12 3.85650702356E-12 3.97395514657E-12 4.09498009737E-12 4.21969080658E-12 4.34819952226E-12 4.48062191092E-12 4.61707716164E-12 4.75768809335E-12 4.90258126538E-12 5.05188709136E-12 5.20573995659E-12 5.36427833905E-12 5.52764493396E-12 5.69598678228E-12 5.86945540303E-12 6.04820692967E-12 6.23240225063E-12 6.42220715413E-12 6.61779247738E-12 6.81933426035E-12 7.02701390426E-12 7.24101833479E-12 7.46154017035E-12 7.68877789548E-12 7.92293603945E-12 8.16422536038E-12 8.41286303493E-12 8.66907285379E-12 8.93308542305E-12 9.20513837185E-12 9.48547656618E-12 9.77435232932E-12 1.00720256689E-11 1.03787645111E-11 1.06948449415E-11 1.10205514537E-11 1.13561772057E-11 1.17020242832E-11 1.20584039719E-11 1.24256370376E-11 1.28040540147E-11 1.31939955041E-11 1.35958124794E-11 1.40098666030E-11 1.44365305514E-11 1.48761883511E-11 1.53292357236E-11 1.57960804422E-11 1.62771426985E-11 1.67728554810E-11 1.72836649646E-11 1.78100309123E-11 1.83524270889E-11 1.89113416875E-11 1.94872777690E-11 2.00807537146E-11 2.06923036926E-11 2.13224781393E-11 2.19718442542E-11 2.26409865103E-11 2.33305071810E-11 2.40410268813E-11 2.47731851266E-11 2.55276409089E-11 2.63050732891E-11 2.71061820088E-11 2.79316881197E-11 2.87823346330E-11 2.96588871878E-11 3.05621347405E-11 3.14928902746E-11 3.24519915329E-11 3.34403017711E-11 3.44587105350E-11 3.55081344610E-11 3.65895181013E-11 3.77038347739E-11 3.88520874390E-11 4.00353096013E-11 4.12545662403E-11 4.25109547691E-11 4.38056060219E-11 4.51396852720E-11 4.65143932806E-11 4.79309673773E-11 4.93906825742E-11 5.08948527131E-11 5.24448316485E-11 5.40420144656E-11 5.56878387365E-11 5.73837858137E-11 5.91313821637E-11 6.09322007407E-11 6.27878624027E-11 6.47000373698E-11 6.66704467282E-11 6.87008639788E-11 7.07931166336E-11 7.29490878607E-11 7.51707181792E-11 7.74600072058E-11 7.98190154543E-11 8.22498661909E-11 8.47547473445E-11 8.73359134765E-11 8.99956878098E-11 9.27364643202E-11 9.55607098906E-11 9.84709665317E-11 1.01469853670E-10 1.04560070505E-10 1.07744398440E-10 1.11025703584E-10 1.14406939332E-10 1.17891149022E-10 1.21481468677E-10 1.25181129827E-10 1.28993462414E-10 1.32921897794E-10 1.36969971822E-10 1.41141328036E-10 1.45439720937E-10 1.49869019367E-10 1.54433209990E-10 1.59136400886E-10 1.63982825240E-10 1.68976845160E-10 1.74122955599E-10 1.79425788400E-10 1.84890116469E-10 1.90520858067E-10 1.96323081238E-10 2.02302008373E-10 2.08463020905E-10 2.14811664159E-10 2.21353652339E-10 2.28094873671E-10 2.35041395707E-10 2.42199470780E-10 2.49575541638E-10 2.57176247237E-10 2.65008428721E-10 2.73079135577E-10 2.81395631980E-10 2.89965403332E-10 2.98796163002E-10 3.07895859263E-10 3.17272682448E-10 3.26935072325E-10 3.36891725691E-10 3.47151604197E-10 3.57723942419E-10 3.68618256166E-10 3.79844351049E-10 3.91412331300E-10 4.03332608874E-10 4.15615912815E-10 4.28273298914E-10 4.41316159663E-10 4.54756234505E-10 4.68605620402E-10 4.82876782723E-10 4.97582566464E-10 5.12736207808E-10 5.28351346042E-10 5.44442035827E-10 5.61022759854E-10 5.78108441875E-10 5.95714460141E-10 6.13856661235E-10 6.32551374345E-10 6.51815425950E-10 6.71666154978E-10 6.92121428398E-10 7.13199657314E-10 7.34919813529E-10 7.57301446620E-10 7.80364701542E-10 8.04130336748E-10 8.28619742883E-10 8.53854962031E-10 8.79858707559E-10 9.06654384553E-10 9.34266110895E-10 9.62718738960E-10 9.92037877991E-10 1.02224991715E-09 1.05338204925E-09 1.08546229528E-09 1.11851952957E-09 1.15258350580E-09 1.18768488379E-09 1.22385525709E-09 1.26112718142E-09 1.29953420395E-09 1.33911089352E-09 1.37989287176E-09 1.42191684512E-09 1.46522063793E-09 1.50984322644E-09 1.55582477389E-09 1.60320666669E-09 1.65203155164E-09 1.70234337433E-09 1.75418741868E-09 1.80761034771E-09 1.86266024554E-09 1.91938666067E-09 1.97784065057E-09 2.03807482762E-09 2.10014340650E-09 2.16410225296E-09 2.23000893412E-09 2.29792277026E-09 2.36790488824E-09 2.44001827649E-09 2.51432784173E-09 2.59090046737E-09 2.66980507371E-09 2.75111267999E-09 2.83489646829E-09 2.92123184943E-09 3.01019653079E-09 3.10187058632E-09 3.19633652853E-09 3.29367938284E-09 3.39398676405E-09 3.49734895522E-09 3.60385898894E-09 3.71361273103E-09 3.82670896686E-09 3.94324949025E-09 4.06333919507E-09 4.18708616971E-09 4.31460179428E-09 4.44600084093E-09 4.58140157712E-09 4.72092587207E-09 4.86469930645E-09 5.01285128543E-09 5.16551515509E-09 5.32282832253E-09 5.48493237947E-09 5.65197322971E-09 5.82410122048E-09 6.00147127771E-09 6.18424304552E-09 6.37258102988E-09 6.56665474668E-09 6.76663887431E-09 6.97271341087E-09 7.18506383618E-09 7.40388127874E-09 7.62936268771E-09 7.86171101023E-09 8.10113537404E-09 8.34785127572E-09 8.60208077467E-09 8.86405269294E-09 9.13400282118E-09 9.41217413091E-09 9.69881699314E-09 9.99418940378E-09 1.02985572158E-08 1.06121943785E-08 1.09353831843E-08 1.12684145222E-08 1.16115881405E-08 1.19652129158E-08 1.23296071314E-08 1.27050987636E-08 1.30920257772E-08 1.34907364291E-08 1.39015895824E-08 1.43249550290E-08 1.47612138224E-08 1.52107586209E-08 1.56739940410E-08 1.61513370211E-08 1.66432171976E-08 1.71500772907E-08 1.76723735035E-08 1.82105759324E-08 1.87651689900E-08 1.93366518416E-08 1.99255388537E-08 2.05323600578E-08 2.11576616268E-08 2.18020063668E-08 2.24659742239E-08 2.31501628057E-08 2.38551879195E-08 2.45816841263E-08 2.53303053122E-08 2.61017252768E-08 2.68966383396E-08 2.77157599649E-08 2.85598274058E-08 2.94296003676E-08 3.03258616919E-08 3.12494180608E-08 3.22011007231E-08 3.31817662425E-08 3.41922972684E-08 3.52336033303E-08 3.63066216566E-08 3.74123180179E-08 3.85516875964E-08 3.97257558813E-08 4.09355795921E-08 4.21822476295E-08 4.34668820553E-08 4.47906391025E-08 4.61547102159E-08 4.75603231242E-08 4.90087429453E-08 5.05012733245E-08 5.20392576083E-08 5.36240800529E-08 5.52571670705E-08 5.69399885128E-08 5.86740589940E-08 6.04609392537E-08 6.23022375621E-08 6.41996111669E-08 6.61547677851E-08 6.81694671398E-08 7.02455225442E-08 7.23848025334E-08 7.45892325459E-08 7.68607966567E-08 7.92015393631E-08 8.16135674243E-08 8.40990517578E-08 8.66602293930E-08 8.92994054848E-08 9.20189553877E-08 9.48213267940E-08 9.77090419364E-08 1.00684699858E-07 1.03750978752E-07 1.06910638371E-07 1.10166522512E-07 1.13521561572E-07 1.16978775192E-07 1.20541274969E-07 1.24212267257E-07 1.27995056056E-07 1.31893045980E-07 1.35909745328E-07 1.40048769234E-07 1.44313842926E-07 1.48708805075E-07 1.53237611253E-07 1.57904337488E-07 1.62713183937E-07 1.67668478665E-07 1.72774681535E-07 1.78036388229E-07 1.83458334380E-07 1.89045399832E-07 1.94802613035E-07 2.00735155569E-07 2.06848366806E-07 2.13147748716E-07 2.19638970819E-07 2.26327875286E-07 2.33220482194E-07 2.40322994951E-07 2.47641805869E-07 2.55183501923E-07 2.62954870677E-07 2.70962906392E-07 2.79214816319E-07 2.87718027185E-07 2.96480191877E-07 3.05509196330E-07 3.14813166620E-07 3.24400476278E-07 3.34279753827E-07 3.44459890543E-07 3.54950048458E-07 3.65759668605E-07 3.76898479512E-07 3.88376505956E-07 4.00204077986E-07 4.12391840217E-07 4.24950761407E-07 4.37892144329E-07 4.51227635941E-07 4.64969237866E-07 4.79129317190E-07 4.93720617593E-07 5.08756270813E-07 5.24249808462E-07 5.40215174205E-07 5.56666736303E-07 5.73619300540E-07 5.91088123550E-07 6.09088926540E-07 6.27637909437E-07 6.46751765465E-07 6.66447696163E-07 6.86743426863E-07 7.07657222636E-07 7.29207904731E-07 7.51414867504E-07 7.74298095867E-07 7.97878183274E-07 8.22176350245E-07 8.47214463457E-07 8.73015055420E-07 8.99601344751E-07 9.26997257055E-07 9.55227446461E-07 9.84317317793E-07 1.01429304943E-06 1.04518161686E-06 1.07701081695E-06 1.10980929292E-06 1.14360656018E-06 1.17843303280E-06 1.21432005096E-06 1.25129990903E-06 1.28940588476E-06 1.32867226907E-06 1.36913439704E-06 1.41082867956E-06 1.45379263619E-06 1.49806492886E-06 1.54368539665E-06 1.59069509163E-06 1.63913631580E-06 1.68905265911E-06 1.74048903871E-06 1.79349173931E-06 1.84810845483E-06 1.90438833132E-06 1.96238201112E-06 2.02214167844E-06 2.08372110627E-06 2.14717570479E-06 2.21256257114E-06 2.27994054084E-06 2.34937024063E-06 2.42091414307E-06 2.49463662266E-06 2.57060401378E-06 2.64888467031E-06 2.72954902711E-06 2.81266966337E-06 2.89832136785E-06 2.98658120616E-06 3.07752859004E-06 3.17124534876E-06 3.26781580271E-06 3.36732683918E-06 3.46986799053E-06 3.57553151464E-06 3.68441247784E-06 3.79660884042E-06 3.91222154465E-06 4.03135460549E-06 4.15411520412E-06 4.28061378426E-06 4.41096415138E-06 4.54528357501E-06 4.68369289404E-06 4.82631662535E-06 4.97328307562E-06 5.12472445655E-06 5.28077700329E-06 5.44158109849E-06 5.60728139398E-06 5.77802694725E-06 5.95397134871E-06 6.13527286132E-06 6.32209456767E-06 6.51460450833E-06 6.71297583844E-06 6.91738697938E-06 7.12802177603E-06 7.34506967549E-06 7.56872587487E-06 7.79919151339E-06 8.03667384714E-06 8.28138642894E-06 8.53354931124E-06 8.79338923243E-06 9.06113981907E-06 9.33704180355E-06 9.62134323450E-06 9.91429969477E-06 1.02161745376E-05 1.05272391168E-05 1.08477730298E-05 1.11780643765E-05 1.15184099972E-05 1.18691157725E-05 1.22304968633E-05 1.26028780187E-05 1.29865938598E-05 1.33819891879E-05 1.37894192878E-05 1.42092502622E-05 1.46418593609E-05 1.50876353258E-05 1.55469787458E-05 1.60203024274E-05 1.65080317799E-05 1.70106051958E-05 1.75284744638E-05 1.80621051811E-05 1.86119771998E-05 1.91785850387E-05 1.97624383707E-05 2.03640624606E-05 2.09839986682E-05 2.16228049273E-05 2.22810562419E-05 2.29593452146E-05 2.36582825587E-05 2.43784976382E-05 2.51206390232E-05 2.58853750385E-05 2.66733943459E-05 2.74854065385E-05 2.83221427406E-05 2.91843562409E-05 3.00728231543E-05 3.09883430578E-05 3.19317397247E-05 3.29038618296E-05 3.39055837060E-05 3.49378060845E-05 3.60014569554E-05 3.70974923547E-05 3.82268971921E-05 3.93906862389E-05 4.05899049290E-05 4.18256303490E-05 4.30989722194E-05 4.44110738503E-05 4.57631132237E-05 4.71563040120E-05 4.85918967078E-05 5.00711797279E-05 5.15954805468E-05 5.31661669752E-05 5.47846482828E-05 5.64523765676E-05 5.81708479776E-05 5.99416041283E-05 6.17662334351E-05 6.36463725645E-05 6.55837079138E-05 6.75799770928E-05 6.96369705297E-05 7.17565330200E-05 7.39405654307E-05 7.61910264008E-05 7.85099340385E-05 8.08993677951E-05 8.33614703033E-05 8.58984492725E-05 8.85125794888E-05 9.12062048442E-05 9.39817403833E-05 9.68416745516E-05 9.97885713037E-05 1.02825072476E-04 1.05953900091E-04 1.09177858804E-04 1.12499838393E-04 1.15922816325E-04 1.19449860420E-04 1.23084131552E-04 1.26828886487E-04 1.30687480762E-04 1.34663371678E-04 1.38760121332E-04 1.42981399854E-04 1.47330988587E-04 1.51812783488E-04 1.56430798576E-04 1.61189169490E-04 1.66092157159E-04 1.71144151565E-04 1.76349675662E-04 1.81713389365E-04 1.87240093684E-04 1.92934734968E-04 1.98802409298E-04 2.04848366994E-04 2.11078017253E-04 2.17496932949E-04 2.24110855545E-04 2.30925700182E-04 2.37947560898E-04 2.45182716024E-04 2.52637633710E-04 2.60318977664E-04 2.68233613004E-04 2.76388612337E-04 2.84791261978E-04 2.93449068384E-04 3.02369764776E-04 3.11561317929E-04 3.21031935200E-04 3.30790071767E-04 3.40844438026E-04 3.51204007286E-04 3.61878023641E-04 3.72876010087E-04 3.84207776885E-04 3.95883430184E-04 4.07913380864E-04 4.20308353666E-04 4.33079396606E-04 4.46237890633E-04 4.59795559590E-04 4.73764480472E-04 4.88157093997E-04 5.02986215438E-04 5.18265045852E-04 5.34007183582E-04 5.50226636107E-04 5.66937832263E-04 5.84155634791E-04 6.01895353301E-04 6.20172757554E-04 6.39004091184E-04 6.58406085794E-04 6.78395975498E-04 6.98991511828E-04 7.20210979155E-04 7.42073210484E-04 7.64597603776E-04 7.87804138693E-04 8.11713393855E-04 8.36346564619E-04 8.61725481323E-04 8.87872628113E-04 9.14811162271E-04 9.42564934158E-04 9.71158507665E-04 1.00061718131E-03 1.03096700994E-03 1.06223482699E-03 1.09444826753E-03 1.12763579180E-03 1.16182670953E-03 1.19705120497E-03 1.23334036254E-03 1.27072619335E-03 1.30924166232E-03 1.34892071622E-03 1.38979831244E-03 1.43191044857E-03 1.47529419283E-03 1.51998771542E-03 1.56603032065E-03 1.61346248010E-03 1.66232586661E-03 1.71266338928E-03 1.76451922950E-03 1.81793887788E-03 1.87296917234E-03 1.92965833715E-03 1.98805602315E-03 2.04821334907E-03 2.11018294397E-03 2.17401899088E-03 2.23977727168E-03 2.30751521313E-03 2.37729193430E-03 2.44916829521E-03 2.52320694681E-03 2.59947238242E-03 2.67803099044E-03 2.75895110860E-03 2.84230307968E-03 2.92815930869E-03 3.01659432161E-03 3.10768482577E-03 3.20150977181E-03 3.29815041724E-03 3.39769039189E-03 3.50021576485E-03 3.60581511341E-03 3.71457959372E-03 3.82660301331E-03 3.94198190555E-03 4.06081560606E-03 4.18320633111E-03 4.30925925804E-03 4.43908260781E-03 4.57278772962E-03 4.71048918775E-03 4.85230485063E-03 4.99835598211E-03 5.14876733515E-03 5.30366724778E-03 5.46318774151E-03 5.62746462222E-03 5.79663758352E-03 5.97085031268E-03 6.15025059918E-03 6.33499044590E-03 6.52522618299E-03 6.72111858455E-03 6.92283298808E-03 7.13053941672E-03 7.34441270451E-03 7.56463262449E-03 7.79138401982E-03 8.02485693798E-03 8.26524676798E-03 8.51275438078E-03 8.76758627279E-03 9.02995471272E-03 9.30007789151E-03 9.57818007575E-03 9.86449176429E-03 1.01592498483E-02 1.04626977746E-02 1.07750857129E-02 1.10966707256E-02 1.14277169424E-02 1.17684957370E-02 1.21192859083E-02 1.24803738651E-02 1.28520538140E-02 1.32346279511E-02 1.36284066575E-02 1.40337086980E-02 1.44508614236E-02 1.48802009777E-02 1.53220725059E-02 1.57768303693E-02 1.62448383609E-02 1.67264699264E-02 1.72221083879E-02 1.77321471710E-02 1.82569900355E-02 1.87970513092E-02 1.93527561253E-02 1.99245406624E-02 2.05128523883E-02 2.11181503057E-02 2.17409052020E-02 2.23815999007E-02 2.30407295161E-02 2.37188017102E-02 2.44163369515E-02 2.51338687767E-02 2.58719440529E-02 2.66311232433E-02 2.74119806721E-02 2.82151047929E-02 2.90410984555E-02 2.98905791757E-02 3.07641794034E-02 3.16625467915E-02 3.25863444646E-02 3.35362512860E-02 3.45129621242E-02 3.55171881172E-02 3.65496569348E-02 3.76111130385E-02 3.87023179373E-02 3.98240504407E-02 4.09771069068E-02 4.21623014851E-02 4.33804663543E-02 4.46324519529E-02 4.59191272032E-02 4.72413797269E-02 4.86001160520E-02 4.99962618102E-02 5.14307619232E-02 5.29045807773E-02 5.44187023860E-02 5.59741305381E-02 5.75718889306E-02 5.92130212864E-02 6.08985914533E-02 6.26296834849E-02 6.44074017011E-02 6.62328707263E-02 6.81072355047E-02 7.00316612903E-02 7.20073336100E-02 7.40354581982E-02 7.61172609004E-02 7.82539875446E-02 8.04469037777E-02 8.26972948648E-02 8.50064654491E-02 8.73757392702E-02 8.98064588383E-02 9.22999850611E-02 9.48576968210E-02 9.74809905004E-02 1.00171279451E-01 1.02929993406E-01 1.05758577827E-01 1.08658493194E-01 1.11631214219E-01 1.14678228992E-01 1.17801038056E-01 1.21001153396E-01 1.24280097357E-01 1.27639401467E-01 1.31080605174E-01 1.34605254499E-01 1.38214900579E-01 1.41911098122E-01 1.45695403749E-01 1.49569374238E-01 1.53534564646E-01 1.57592526324E-01 1.61744804803E-01 1.65992937566E-01 1.70338451679E-01 1.74782861302E-01 1.79327665050E-01 1.83974343221E-01 1.88724354874E-01 1.93579134750E-01 1.98540090054E-01 2.03608597055E-01 2.08785997542E-01 2.14073595098E-01 2.19472651212E-01 2.24984381206E-01 2.30609949991E-01 2.36350467635E-01 2.42206984746E-01 2.48180487669E-01 2.54271893490E-01 2.60482044842E-01 2.66811704521E-01 2.73261549900E-01 2.79832167141E-01 2.86524045206E-01 2.93337569660E-01 3.00273016267E-01 3.07330544379E-01 3.14510190108E-01 3.21811859283E-01 3.29235320197E-01 3.36780196129E-01 3.44445957647E-01 3.52231914699E-01 3.60137208485E-01 3.68160803112E-01 3.76301477060E-01 3.84557814444E-01 3.92928196114E-01 4.01410790596E-01 4.10003544916E-01 4.18704175325E-01 4.27510157983E-01 4.36418719621E-01 4.45426828246E-01 4.54531183923E-01 4.63728209689E-01 4.73014042644E-01 4.82384525265E-01 4.91835196977E-01 5.01361286038E-01 5.10957701754E-01 5.20619027079E-01 5.30339511613E-01 5.40113065056E-01 5.49933251135E-01 5.59793282054E-01 5.69686013518E-01 5.79603940361E-01 5.89539192860E-01 5.99483533781E-01 6.09428356229E-01 6.19364682384E-01 6.29283163198E-01 6.39174079135E-01 6.49027342058E-01 6.58832498336E-01 6.68578733281E-01 6.78254877012E-01 6.87849411837E-01 6.97350481252E-01 7.06745900674E-01 7.16023169976E-01 7.25169487951E-01 7.34171768786E-01 7.43016660633E-01 7.51690566380E-01 7.60179666697E-01 7.68469945441E-01 7.76547217492E-01 7.84397159082E-01 7.92005340685E-01 7.99357262505E-01 8.06438392610E-01 8.13234207719E-01 8.19730236684E-01 8.25912106624E-01 8.31765591719E-01 8.37276664611E-01 8.42431550348E-01 8.47216782791E-01 8.51619263369E-01 8.55626322044E-01 8.59225780329E-01 8.62406016137E-01 8.65156030254E-01 8.67465514141E-01 8.69324918773E-01 8.70725524154E-01 8.71659509123E-01 8.72120021003E-01 8.72101244616E-01 8.71598470130E-01 8.70608159153E-01 8.69128008456E-01 8.67157010629E-01 8.64695510966E-01 8.61745259788E-01 8.58309459401E-01 8.54392804821E-01 8.50001517376E-01 8.45143370253E-01 8.39827705017E-01 8.34065438132E-01 8.27869056467E-01 8.21252600781E-01 8.14231636152E-01 8.06823208349E-01 7.99045784947E-01 7.90919177974E-01 7.82464441969E-01 7.73703753698E-01 7.64660285475E-01 7.55358063367E-01 7.45821800582E-01 7.36076708397E-01 7.26148286146E-01 7.16062090348E-01 7.05843483034E-01 6.95517359611E-01 6.85107856835E-01 6.74638041763E-01 6.64129582872E-01 6.53602404876E-01 6.43074329158E-01 6.32560702136E-01 6.22074014314E-01 6.11623513237E-01 6.01214814071E-01 5.90849512447E-01 5.80526485090E-01 5.70248188811E-01 5.60018274884E-01 5.49840299908E-01 5.39717725987E-01 5.29653919739E-01 5.19652149918E-01 5.09715583598E-01 4.99847281189E-01 4.90050192038E-01 4.80327154405E-01 4.70680898795E-01 4.61114054088E-01 4.51623987845E-01 4.42218273081E-01 4.32899266689E-01 4.23669219918E-01 4.14530283793E-01 4.05484510900E-01 3.96533856650E-01 3.87680180551E-01 3.78925247481E-01 3.70270728986E-01 3.61718204571E-01 3.53269163002E-01 3.44925003609E-01 3.36687037589E-01 3.28556489310E-01 3.20534497608E-01 3.12622117090E-01 3.04820319423E-01 2.97129994625E-01 2.89551952351E-01 2.82086923170E-01 2.74735559845E-01 2.67498438598E-01 2.60376060384E-01 2.53368852146E-01 2.46477168081E-01 2.39701290896E-01 2.33041433062E-01 2.26497738069E-01 2.20070281685E-01 2.13759073202E-01 2.07564056704E-01 2.01485112314E-01 1.95522057469E-01 1.89674648176E-01 1.83942580289E-01 1.78325490786E-01 1.72822959051E-01 1.67434508166E-01 1.62159606208E-01 1.56997667560E-01 1.51948054224E-01 1.47010077145E-01 1.42182997550E-01 1.37466028288E-01 1.32858335190E-01 1.28359038428E-01 1.23967213895E-01 1.19681894589E-01 1.15502072006E-01 1.11426697547E-01 1.07454683932E-01 1.03584906626E-01 9.98162052665E-02 9.61473851107E-02 9.25772184813E-02 8.91044462248E-02 8.57277791758E-02 8.24458996278E-02 7.92574628104E-02 7.61610983721E-02 7.31554118678E-02 7.02389862516E-02 6.74103833720E-02 6.46681454717E-02 6.20107966885E-02 5.94368445586E-02 5.69447815199E-02 5.45330864161E-02 5.22002259985E-02 4.99446564260E-02 4.77648247727E-02 4.56591706494E-02 4.36261278462E-02 4.16641253350E-02 3.97715886486E-02 3.79469416827E-02 3.61886080679E-02 3.44950125875E-02 3.28645825909E-02 3.12957493868E-02 2.97869496165E-02 2.83366266026E-02 2.69432316732E-02 2.56052254572E-02 2.43210791505E-02 2.30892757489E-02 2.19083112469E-02 2.07766957992E-02 1.96929548442E-02 1.86556301852E-02 1.76632810302E-02 1.67144849858E-02 1.58078390056E-02 1.49419602905E-02 1.41154871396E-02 1.33270797510E-02 1.25754209707E-02 1.18592169897E-02 1.11771979874E-02 1.05281187222E-02 9.91075906720E-03 9.32392449341E-03 8.76644649746E-03 8.23718297655E-03 7.73501854975E-03 7.25886482665E-03 6.80766062396E-03 6.38037213110E-03 5.97599302574E-03 5.59354454053E-03 5.23207548240E-03 4.89066220586E-03 4.56840854191E-03 4.26444568423E-03 3.97793203449E-03 3.70805300861E-03 3.45402080587E-03 3.21507414302E-03 2.99047795521E-03 2.77952306602E-03 2.58152582856E-03 2.39582773973E-03 2.22179502986E-03 2.05881822961E-03 1.90631171631E-03 1.76371324176E-03 1.63048344329E-03 1.50610534016E-03 1.39008381704E-03 1.28194509633E-03 1.18123620108E-03 1.08752441009E-03 1.00039670672E-03 9.19459222872E-04 8.44336679656E-04 7.74671825827E-04 7.10124875433E-04 6.50372945738E-04 5.95109496549E-04 5.44043771970E-04 4.96900245561E-04 4.53418069806E-04 4.13350530762E-04 3.76464508676E-04 3.42539945343E-04 3.11369318900E-04 2.82757126737E-04 2.56519377128E-04 2.32483090176E-04 2.10485808610E-04 1.90375118921E-04 1.72008183312E-04 1.55251282872E-04 1.39979372349E-04 1.26075646881E-04 1.13431120962E-04 1.01944219916E-04 9.15203840947E-05 8.20716859860E-05 7.35164603556E-05 6.57789475383E-05 5.87889499296E-05 5.24815017020E-05 4.67965517291E-05 4.16786596634E-05 3.70767050806E-05 3.29436095661E-05 2.92360715897E-05 2.59143139811E-05 2.29418437930E-05 2.02852243100E-05 1.79138589371E-05 1.57997866804E-05 1.39174889126E-05 1.22437070958E-05 1.07572711229E-05 9.43893792236E-06 8.27123996259E-06 7.23834328193E-06 6.32591466615E-06 5.52099758905E-06 4.81189653098E-06 4.18806928902E-06 3.64002689444E-06 3.15924075599E-06 2.73805665228E-06 2.36961520251E-06 2.04777845206E-06 1.76706221902E-06 1.52257385490E-06 1.30995508071E-06 1.12532958443E-06 9.65255057431E-07 8.26679373484E-07 7.06900621694E-07 6.03530718436E-07 5.14462335936E-07 4.37838898348E-07 3.72027409136E-07 3.15593886526E-07 2.67281196557E-07 2.25989085812E-07 1.90756228188E-07 1.60744112027E-07 1.35222605496E-07 1.13557049302E-07 9.51967365806E-08 7.96646501058E-08 6.65483367660E-08 5.54918085894E-08 4.61883690161E-08 3.83742698991E-08 3.18231147733E-08 2.63409297589E-08 2.17618309812E-08 1.79442237586E-08 1.47674748344E-08 1.21290840011E-08 9.94277456517E-09 8.13473418225E-09 6.64251840726E-09 5.41347930492E-09 4.40332050773E-09 3.57485171921E-09 2.89691757566E-09 2.34347867389E-09 1.89282519103E-09 1.52690589580E-09 1.23075750441E-09 9.92021292721E-10 7.97845429623E-10 6.40259630264E-10 5.12652755099E-10 4.09553291980E-10 3.26443126516E-10 2.59599918721E-10 2.05964003683E-10 1.63026265856E-10 1.28787344417E-10 1.01495236073E-10 7.97929334917E-11 6.25775915474E-11 4.89551205617E-11 3.82024656130E-11 2.97363502813E-11 2.30874431273E-11 1.78790611447E-11 1.38096590726E-11 1.06384693773E-11 8.17375723502E-12 6.26324002457E-12 4.78629354432E-12 3.64762902807E-12 2.77217752252E-12 2.10096258597E-12 1.58777971098E-12 1.19653235548E-12 8.99100856333E-13 6.73642552616E-13 5.03239818086E-13 3.74827960978E-13 2.78347581881E-13 2.06076406342E-13 1.52104185960E-13 1.11921295519E-13 8.20974031012E-14 6.00312745784E-14 4.37565779653E-14 3.17916322936E-14 2.30235296212E-14 1.66190559769E-14 1.19564373707E-14 8.57321498491E-15 6.12657071987E-15 4.36323087200E-15 3.09671318870E-15 2.19018456525E-15 1.54359060034E-15 1.08402626636E-15 7.58556943803E-16 5.28885367049E-16 3.67404113990E-16 2.54284296187E-16 1.75336336351E-16 1.20443901591E-16 8.24217207688E-17 5.61857033870E-17 3.81522707232E-17 2.58052669756E-17 1.73849129344E-17 1.16652892204E-17 7.79578375919E-18 5.18856926824E-18 3.43907080410E-18 2.26998088914E-18 1.49201301290E-18 9.76503726989E-19 6.36366715959E-19 4.12909097080E-19 2.66744753765E-19 1.71558630113E-19 1.09846219580E-19 7.00154593548E-20 4.44241652252E-20 2.80569940537E-20 1.76375947808E-20 1.10355392487E-20 6.87200007649E-21 4.25880112537E-21 2.62654699877E-21 1.61196421651E-21 9.84411324817E-22 5.98173479796E-22 3.61647281186E-22 2.17534768314E-22 1.30177308191E-22 5S 0 1.00 Wavefunction 1.70870641564E-06 1.72587920062E-06 1.74322457496E-06 1.76074427321E-06 1.77844004736E-06 1.79631366700E-06 1.81436691950E-06 1.83260161020E-06 1.85101956259E-06 1.86962261848E-06 1.88841263819E-06 1.90739150074E-06 1.92656110403E-06 1.94592336504E-06 1.96548022000E-06 1.98523362463E-06 2.00518555427E-06 2.02533800414E-06 2.04569298950E-06 2.06625254586E-06 2.08701872920E-06 2.10799361615E-06 2.12917930422E-06 2.15057791200E-06 2.17219157936E-06 2.19402246769E-06 2.21607276010E-06 2.23834466162E-06 2.26084039949E-06 2.28356222327E-06 2.30651240518E-06 2.32969324026E-06 2.35310704660E-06 2.37675616561E-06 2.40064296221E-06 2.42476982512E-06 2.44913916703E-06 2.47375342489E-06 2.49861506017E-06 2.52372655903E-06 2.54909043265E-06 2.57470921744E-06 2.60058547530E-06 2.62672179387E-06 2.65312078681E-06 2.67978509405E-06 2.70671738203E-06 2.73392034400E-06 2.76139670029E-06 2.78914919855E-06 2.81718061406E-06 2.84549374997E-06 2.87409143764E-06 2.90297653684E-06 2.93215193612E-06 2.96162055304E-06 2.99138533448E-06 3.02144925696E-06 3.05181532687E-06 3.08248658087E-06 3.11346608609E-06 3.14475694052E-06 3.17636227327E-06 3.20828524489E-06 3.24052904771E-06 3.27309690614E-06 3.30599207699E-06 3.33921784981E-06 3.37277754719E-06 3.40667452515E-06 3.44091217340E-06 3.47549391573E-06 3.51042321036E-06 3.54570355024E-06 3.58133846343E-06 3.61733151345E-06 3.65368629964E-06 3.69040645751E-06 3.72749565911E-06 3.76495761338E-06 3.80279606655E-06 3.84101480250E-06 3.87961764314E-06 3.91860844878E-06 3.95799111853E-06 3.99776959070E-06 4.03794784316E-06 4.07852989378E-06 4.11951980079E-06 4.16092166321E-06 4.20273962128E-06 4.24497785681E-06 4.28764059368E-06 4.33073209818E-06 4.37425667951E-06 4.41821869015E-06 4.46262252635E-06 4.50747262853E-06 4.55277348174E-06 4.59852961609E-06 4.64474560724E-06 4.69142607684E-06 4.73857569295E-06 4.78619917059E-06 4.83430127215E-06 4.88288680787E-06 4.93196063634E-06 4.98152766500E-06 5.03159285059E-06 5.08216119966E-06 5.13323776909E-06 5.18482766659E-06 5.23693605119E-06 5.28956813376E-06 5.34272917757E-06 5.39642449876E-06 5.45065946690E-06 5.50543950555E-06 5.56077009275E-06 5.61665676160E-06 5.67310510082E-06 5.73012075528E-06 5.78770942662E-06 5.84587687373E-06 5.90462891341E-06 5.96397142093E-06 6.02391033056E-06 6.08445163627E-06 6.14560139222E-06 6.20736571346E-06 6.26975077645E-06 6.33276281976E-06 6.39640814465E-06 6.46069311570E-06 6.52562416147E-06 6.59120777510E-06 6.65745051503E-06 6.72435900558E-06 6.79193993766E-06 6.86020006940E-06 6.92914622690E-06 6.99878530481E-06 7.06912426711E-06 7.14017014776E-06 7.21193005139E-06 7.28441115406E-06 7.35762070395E-06 7.43156602207E-06 7.50625450300E-06 7.58169361568E-06 7.65789090406E-06 7.73485398795E-06 7.81259056371E-06 7.89110840507E-06 7.97041536388E-06 8.05051937091E-06 8.13142843662E-06 8.21315065198E-06 8.29569418929E-06 8.37906730298E-06 8.46327833041E-06 8.54833569278E-06 8.63424789588E-06 8.72102353101E-06 8.80867127580E-06 8.89719989511E-06 8.98661824187E-06 9.07693525800E-06 9.16815997527E-06 9.26030151622E-06 9.35336909511E-06 9.44737201875E-06 9.54231968752E-06 9.63822159628E-06 9.73508733528E-06 9.83292659120E-06 9.93174914804E-06 1.00315648881E-05 1.01323837931E-05 1.02342159450E-05 1.03370715272E-05 1.04409608251E-05 1.05458942279E-05 1.06518822290E-05 1.07589354273E-05 1.08670645282E-05 1.09762803446E-05 1.10865937984E-05 1.11980159208E-05 1.13105578543E-05 1.14242308531E-05 1.15390462846E-05 1.16550156305E-05 1.17721504877E-05 1.18904625699E-05 1.20099637084E-05 1.21306658534E-05 1.22525810752E-05 1.23757215654E-05 1.25000996383E-05 1.26257277316E-05 1.27526184084E-05 1.28807843578E-05 1.30102383965E-05 1.31409934701E-05 1.32730626541E-05 1.34064591556E-05 1.35411963143E-05 1.36772876042E-05 1.38147466343E-05 1.39535871509E-05 1.40938230379E-05 1.42354683192E-05 1.43785371594E-05 1.45230438655E-05 1.46690028883E-05 1.48164288238E-05 1.49653364148E-05 1.51157405521E-05 1.52676562763E-05 1.54210987791E-05 1.55760834049E-05 1.57326256523E-05 1.58907411756E-05 1.60504457865E-05 1.62117554557E-05 1.63746863143E-05 1.65392546554E-05 1.67054769360E-05 1.68733697786E-05 1.70429499726E-05 1.72142344761E-05 1.73872404178E-05 1.75619850984E-05 1.77384859924E-05 1.79167607503E-05 1.80968271995E-05 1.82787033469E-05 1.84624073804E-05 1.86479576704E-05 1.88353727721E-05 1.90246714273E-05 1.92158725659E-05 1.94089953083E-05 1.96040589669E-05 1.98010830483E-05 2.00000872550E-05 2.02010914877E-05 2.04041158469E-05 2.06091806352E-05 2.08163063594E-05 2.10255137322E-05 2.12368236746E-05 2.14502573177E-05 2.16658360050E-05 2.18835812947E-05 2.21035149615E-05 2.23256589990E-05 2.25500356217E-05 2.27766672676E-05 2.30055766000E-05 2.32367865100E-05 2.34703201190E-05 2.37062007804E-05 2.39444520825E-05 2.41850978508E-05 2.44281621499E-05 2.46736692867E-05 2.49216438119E-05 2.51721105234E-05 2.54250944680E-05 2.56806209444E-05 2.59387155054E-05 2.61994039608E-05 2.64627123797E-05 2.67286670931E-05 2.69972946968E-05 2.72686220539E-05 2.75426762972E-05 2.78194848326E-05 2.80990753412E-05 2.83814757822E-05 2.86667143960E-05 2.89548197067E-05 2.92458205253E-05 2.95397459520E-05 2.98366253796E-05 3.01364884965E-05 3.04393652892E-05 3.07452860458E-05 3.10542813586E-05 3.13663821275E-05 3.16816195628E-05 3.20000251887E-05 3.23216308461E-05 3.26464686957E-05 3.29745712219E-05 3.33059712351E-05 3.36407018757E-05 3.39787966172E-05 3.43202892693E-05 3.46652139818E-05 3.50136052474E-05 3.53654979057E-05 3.57209271462E-05 3.60799285124E-05 3.64425379048E-05 3.68087915846E-05 3.71787261777E-05 3.75523786779E-05 3.79297864509E-05 3.83109872379E-05 3.86960191595E-05 3.90849207192E-05 3.94777308076E-05 3.98744887063E-05 4.02752340914E-05 4.06800070380E-05 4.10888480238E-05 4.15017979335E-05 4.19188980624E-05 4.23401901212E-05 4.27657162394E-05 4.31955189703E-05 4.36296412946E-05 4.40681266252E-05 4.45110188110E-05 4.49583621418E-05 4.54102013526E-05 4.58665816278E-05 4.63275486061E-05 4.67931483846E-05 4.72634275240E-05 4.77384330528E-05 4.82182124722E-05 4.87028137607E-05 4.91922853792E-05 4.96866762753E-05 5.01860358889E-05 5.06904141567E-05 5.11998615170E-05 5.17144289154E-05 5.22341678093E-05 5.27591301733E-05 5.32893685044E-05 5.38249358272E-05 5.43658856991E-05 5.49122722160E-05 5.54641500172E-05 5.60215742914E-05 5.65846007818E-05 5.71532857919E-05 5.77276861911E-05 5.83078594202E-05 5.88938634975E-05 5.94857570242E-05 6.00835991907E-05 6.06874497822E-05 6.12973691845E-05 6.19134183907E-05 6.25356590066E-05 6.31641532574E-05 6.37989639935E-05 6.44401546970E-05 6.50877894881E-05 6.57419331314E-05 6.64026510423E-05 6.70700092937E-05 6.77440746228E-05 6.84249144372E-05 6.91125968220E-05 6.98071905469E-05 7.05087650723E-05 7.12173905572E-05 7.19331378653E-05 7.26560785727E-05 7.33862849749E-05 7.41238300940E-05 7.48687876859E-05 7.56212322478E-05 7.63812390256E-05 7.71488840217E-05 7.79242440021E-05 7.87073965043E-05 7.94984198454E-05 8.02973931292E-05 8.11043962549E-05 8.19195099245E-05 8.27428156512E-05 8.35743957673E-05 8.44143334328E-05 8.52627126434E-05 8.61196182390E-05 8.69851359121E-05 8.78593522165E-05 8.87423545760E-05 8.96342312930E-05 9.05350715574E-05 9.14449654555E-05 9.23640039788E-05 9.32922790338E-05 9.42298834503E-05 9.51769109911E-05 9.61334563617E-05 9.70996152192E-05 9.80754841821E-05 9.90611608400E-05 1.00056743763E-04 1.01062332514E-04 1.02078027652E-04 1.03103930752E-04 1.04140144406E-04 1.05186772239E-04 1.06243918916E-04 1.07311690157E-04 1.08390192741E-04 1.09479534523E-04 1.10579824439E-04 1.11691172523E-04 1.12813689913E-04 1.13947488865E-04 1.15092682763E-04 1.16249386129E-04 1.17417714639E-04 1.18597785130E-04 1.19789715613E-04 1.20993625286E-04 1.22209634544E-04 1.23437864992E-04 1.24678439460E-04 1.25931482008E-04 1.27197117947E-04 1.28475473846E-04 1.29766677544E-04 1.31070858169E-04 1.32388146144E-04 1.33718673204E-04 1.35062572406E-04 1.36419978148E-04 1.37791026176E-04 1.39175853602E-04 1.40574598914E-04 1.41987401995E-04 1.43414404130E-04 1.44855748029E-04 1.46311577833E-04 1.47782039131E-04 1.49267278979E-04 1.50767445907E-04 1.52282689942E-04 1.53813162615E-04 1.55359016984E-04 1.56920407641E-04 1.58497490736E-04 1.60090423985E-04 1.61699366693E-04 1.63324479763E-04 1.64965925717E-04 1.66623868710E-04 1.68298474546E-04 1.69989910699E-04 1.71698346321E-04 1.73423952270E-04 1.75166901118E-04 1.76927367171E-04 1.78705526489E-04 1.80501556902E-04 1.82315638025E-04 1.84147951281E-04 1.85998679915E-04 1.87868009014E-04 1.89756125527E-04 1.91663218281E-04 1.93589478001E-04 1.95535097329E-04 1.97500270844E-04 1.99485195080E-04 2.01490068548E-04 2.03515091754E-04 2.05560467219E-04 2.07626399499E-04 2.09713095207E-04 2.11820763035E-04 2.13949613769E-04 2.16099860316E-04 2.18271717724E-04 2.20465403200E-04 2.22681136138E-04 2.24919138135E-04 2.27179633016E-04 2.29462846855E-04 2.31769008002E-04 2.34098347099E-04 2.36451097109E-04 2.38827493334E-04 2.41227773446E-04 2.43652177501E-04 2.46100947972E-04 2.48574329768E-04 2.51072570260E-04 2.53595919308E-04 2.56144629281E-04 2.58718955087E-04 2.61319154194E-04 2.63945486663E-04 2.66598215165E-04 2.69277605014E-04 2.71983924191E-04 2.74717443372E-04 2.77478435952E-04 2.80267178076E-04 2.83083948666E-04 2.85929029448E-04 2.88802704978E-04 2.91705262677E-04 2.94636992853E-04 2.97598188733E-04 3.00589146493E-04 3.03610165286E-04 3.06661547274E-04 3.09743597657E-04 3.12856624701E-04 3.16000939775E-04 3.19176857377E-04 3.22384695167E-04 3.25624774001E-04 3.28897417958E-04 3.32202954379E-04 3.35541713893E-04 3.38914030458E-04 3.42320241386E-04 3.45760687382E-04 3.49235712579E-04 3.52745664569E-04 3.56290894438E-04 3.59871756805E-04 3.63488609853E-04 3.67141815369E-04 3.70831738776E-04 3.74558749175E-04 3.78323219375E-04 3.82125525937E-04 3.85966049209E-04 3.89845173362E-04 3.93763286433E-04 3.97720780361E-04 4.01718051026E-04 4.05755498290E-04 4.09833526037E-04 4.13952542214E-04 4.18112958869E-04 4.22315192197E-04 4.26559662577E-04 4.30846794618E-04 4.35177017198E-04 4.39550763513E-04 4.43968471111E-04 4.48430581947E-04 4.52937542417E-04 4.57489803411E-04 4.62087820353E-04 4.66732053249E-04 4.71422966733E-04 4.76161030114E-04 4.80946717421E-04 4.85780507453E-04 4.90662883826E-04 4.95594335022E-04 5.00575354437E-04 5.05606440434E-04 5.10688096387E-04 5.15820830737E-04 5.21005157040E-04 5.26241594022E-04 5.31530665626E-04 5.36872901069E-04 5.42268834895E-04 5.47719007024E-04 5.53223962813E-04 5.58784253106E-04 5.64400434292E-04 5.70073068359E-04 5.75802722952E-04 5.81589971428E-04 5.87435392918E-04 5.93339572381E-04 5.99303100664E-04 6.05326574562E-04 6.11410596880E-04 6.17555776488E-04 6.23762728390E-04 6.30032073778E-04 6.36364440100E-04 6.42760461124E-04 6.49220776995E-04 6.55746034307E-04 6.62336886165E-04 6.68993992249E-04 6.75718018886E-04 6.82509639109E-04 6.89369532734E-04 6.96298386422E-04 7.03296893749E-04 7.10365755279E-04 7.17505678634E-04 7.24717378563E-04 7.32001577015E-04 7.39359003213E-04 7.46790393729E-04 7.54296492553E-04 7.61878051175E-04 7.69535828656E-04 7.77270591706E-04 7.85083114763E-04 7.92974180070E-04 8.00944577752E-04 8.08995105901E-04 8.17126570653E-04 8.25339786271E-04 8.33635575225E-04 8.42014768279E-04 8.50478204573E-04 8.59026731708E-04 8.67661205833E-04 8.76382491730E-04 8.85191462903E-04 8.94089001667E-04 9.03075999237E-04 9.12153355816E-04 9.21321980690E-04 9.30582792320E-04 9.39936718432E-04 9.49384696116E-04 9.58927671916E-04 9.68566601930E-04 9.78302451906E-04 9.88136197342E-04 9.98068823580E-04 1.00810132591E-03 1.01823470968E-03 1.02846999038E-03 1.03880819376E-03 1.04925035592E-03 1.05979752343E-03 1.07045075345E-03 1.08121111380E-03 1.09207968310E-03 1.10305755084E-03 1.11414581757E-03 1.12534559493E-03 1.13665800579E-03 1.14808418441E-03 1.15962527647E-03 1.17128243928E-03 1.18305684182E-03 1.19494966490E-03 1.20696210129E-03 1.21909535582E-03 1.23135064550E-03 1.24372919967E-03 1.25623226011E-03 1.26886108115E-03 1.28161692986E-03 1.29450108609E-03 1.30751484269E-03 1.32065950558E-03 1.33393639393E-03 1.34734684026E-03 1.36089219060E-03 1.37457380461E-03 1.38839305575E-03 1.40235133140E-03 1.41645003299E-03 1.43069057620E-03 1.44507439103E-03 1.45960292201E-03 1.47427762833E-03 1.48909998398E-03 1.50407147793E-03 1.51919361424E-03 1.53446791228E-03 1.54989590683E-03 1.56547914827E-03 1.58121920273E-03 1.59711765227E-03 1.61317609502E-03 1.62939614538E-03 1.64577943415E-03 1.66232760874E-03 1.67904233331E-03 1.69592528897E-03 1.71297817394E-03 1.73020270375E-03 1.74760061138E-03 1.76517364749E-03 1.78292358057E-03 1.80085219715E-03 1.81896130197E-03 1.83725271820E-03 1.85572828758E-03 1.87438987068E-03 1.89323934706E-03 1.91227861546E-03 1.93150959405E-03 1.95093422057E-03 1.97055445260E-03 1.99037226773E-03 2.01038966377E-03 2.03060865899E-03 2.05103129233E-03 2.07165962359E-03 2.09249573369E-03 2.11354172488E-03 2.13479972096E-03 2.15627186751E-03 2.17796033213E-03 2.19986730469E-03 2.22199499752E-03 2.24434564571E-03 2.26692150730E-03 2.28972486358E-03 2.31275801928E-03 2.33602330287E-03 2.35952306680E-03 2.38325968776E-03 2.40723556692E-03 2.43145313023E-03 2.45591482867E-03 2.48062313853E-03 2.50558056166E-03 2.53078962578E-03 2.55625288475E-03 2.58197291884E-03 2.60795233505E-03 2.63419376737E-03 2.66069987708E-03 2.68747335309E-03 2.71451691219E-03 2.74183329938E-03 2.76942528820E-03 2.79729568099E-03 2.82544730930E-03 2.85388303409E-03 2.88260574620E-03 2.91161836654E-03 2.94092384654E-03 2.97052516842E-03 3.00042534558E-03 3.03062742290E-03 3.06113447714E-03 3.09194961728E-03 3.12307598488E-03 3.15451675446E-03 3.18627513386E-03 3.21835436461E-03 3.25075772236E-03 3.28348851720E-03 3.31655009412E-03 3.34994583336E-03 3.38367915085E-03 3.41775349858E-03 3.45217236507E-03 3.48693927574E-03 3.52205779338E-03 3.55753151854E-03 3.59336409003E-03 3.62955918529E-03 3.66612052091E-03 3.70305185306E-03 3.74035697796E-03 3.77803973235E-03 3.81610399395E-03 3.85455368201E-03 3.89339275773E-03 3.93262522481E-03 3.97225512991E-03 4.01228656325E-03 4.05272365903E-03 4.09357059604E-03 4.13483159817E-03 4.17651093496E-03 4.21861292216E-03 4.26114192228E-03 4.30410234519E-03 4.34749864868E-03 4.39133533908E-03 4.43561697181E-03 4.48034815206E-03 4.52553353535E-03 4.57117782818E-03 4.61728578870E-03 4.66386222732E-03 4.71091200738E-03 4.75844004585E-03 4.80645131397E-03 4.85495083798E-03 4.90394369983E-03 4.95343503785E-03 5.00343004753E-03 5.05393398225E-03 5.10495215402E-03 5.15648993427E-03 5.20855275459E-03 5.26114610759E-03 5.31427554766E-03 5.36794669179E-03 5.42216522043E-03 5.47693687835E-03 5.53226747547E-03 5.58816288778E-03 5.64462905820E-03 5.70167199754E-03 5.75929778539E-03 5.81751257110E-03 5.87632257471E-03 5.93573408797E-03 5.99575347534E-03 6.05638717496E-03 6.11764169976E-03 6.17952363847E-03 6.24203965671E-03 6.30519649810E-03 6.36900098539E-03 6.43346002157E-03 6.49858059105E-03 6.56436976086E-03 6.63083468186E-03 6.69798258995E-03 6.76582080735E-03 6.83435674388E-03 6.90359789828E-03 6.97355185952E-03 7.04422630820E-03 7.11562901790E-03 7.18776785663E-03 7.26065078828E-03 7.33428587407E-03 7.40868127410E-03 7.48384524886E-03 7.55978616081E-03 7.63651247601E-03 7.71403276572E-03 7.79235570812E-03 7.87149008999E-03 7.95144480848E-03 8.03222887288E-03 8.11385140645E-03 8.19632164830E-03 8.27964895529E-03 8.36384280398E-03 8.44891279259E-03 8.53486864311E-03 8.62172020331E-03 8.70947744891E-03 8.79815048574E-03 8.88774955199E-03 8.97828502045E-03 9.06976740088E-03 9.16220734239E-03 9.25561563585E-03 9.35000321641E-03 9.44538116605E-03 9.54176071621E-03 9.63915325043E-03 9.73757030714E-03 9.83702358242E-03 9.93752493291E-03 1.00390863787E-02 1.01417201065E-02 1.02454384723E-02 1.03502540053E-02 1.04561794102E-02 1.05632275714E-02 1.06714115557E-02 1.07807446163E-02 1.08912401961E-02 1.10029119312E-02 1.11157736553E-02 1.12298394027E-02 1.13451234128E-02 1.14616401341E-02 1.15794042281E-02 1.16984305738E-02 1.18187342718E-02 1.19403306491E-02 1.20632352634E-02 1.21874639079E-02 1.23130326164E-02 1.24399576676E-02 1.25682555909E-02 1.26979431711E-02 1.28290374542E-02 1.29615557525E-02 1.30955156505E-02 1.32309350103E-02 1.33678319784E-02 1.35062249908E-02 1.36461327800E-02 1.37875743810E-02 1.39305691383E-02 1.40751367123E-02 1.42212970867E-02 1.43690705753E-02 1.45184778295E-02 1.46695398462E-02 1.48222779751E-02 1.49767139268E-02 1.51328697813E-02 1.52907679963E-02 1.54504314159E-02 1.56118832793E-02 1.57751472304E-02 1.59402473270E-02 1.61072080505E-02 1.62760543161E-02 1.64468114828E-02 1.66195053641E-02 1.67941622390E-02 1.69708088629E-02 1.71494724793E-02 1.73301808316E-02 1.75129621755E-02 1.76978452908E-02 1.78848594954E-02 1.80740346576E-02 1.82654012104E-02 1.84589901651E-02 1.86548331262E-02 1.88529623060E-02 1.90534105402E-02 1.92562113035E-02 1.94613987260E-02 1.96690076098E-02 1.98790734466E-02 2.00916324351E-02 2.03067214995E-02 2.05243783085E-02 2.07446412943E-02 2.09675496731E-02 2.11931434657E-02 2.14214635182E-02 2.16525515247E-02 2.18864500492E-02 2.21232025495E-02 2.23628534004E-02 2.26054479193E-02 2.28510323909E-02 2.30996540941E-02 2.33513613287E-02 2.36062034433E-02 2.38642308643E-02 2.41254951258E-02 2.43900488995E-02 2.46579460271E-02 2.49292415521E-02 2.52039917542E-02 2.54822541832E-02 2.57640876953E-02 2.60495524897E-02 2.63387101466E-02 2.66316236667E-02 2.69283575115E-02 2.72289776451E-02 2.75335515776E-02 2.78421484090E-02 2.81548388760E-02 2.84716953986E-02 2.87927921296E-02 2.91182050046E-02 2.94480117949E-02 2.97822921603E-02 3.01211277057E-02 3.04646020379E-02 3.08128008248E-02 3.11658118569E-02 3.15237251102E-02 3.18866328116E-02 3.22546295061E-02 3.26278121263E-02 3.30062800646E-02 3.33901352471E-02 3.37794822100E-02 3.41744281794E-02 3.45750831525E-02 3.49815599823E-02 3.53939744645E-02 3.58124454282E-02 3.62370948285E-02 3.66680478428E-02 3.71054329701E-02 3.75493821338E-02 3.80000307874E-02 3.84575180244E-02 3.89219866913E-02 3.93935835043E-02 3.98724591704E-02 4.03587685121E-02 4.08526705963E-02 4.13543288673E-02 4.18639112846E-02 4.23815904650E-02 4.29075438294E-02 4.34419537545E-02 4.39850077295E-02 4.45368985178E-02 4.50978243244E-02 4.56679889683E-02 4.62476020612E-02 4.68368791909E-02 4.74360421125E-02 4.80453189439E-02 4.86649443686E-02 4.92951598455E-02 4.99362138244E-02 5.05883619692E-02 5.12518673878E-02 5.19270008698E-02 5.26140411312E-02 5.33132750673E-02 5.40249980129E-02 5.47495140115E-02 5.54871360921E-02 5.62381865548E-02 5.70029972649E-02 5.77819099564E-02 5.85752765439E-02 5.93834594444E-02 6.02068319082E-02 6.10457783592E-02 6.19006947456E-02 6.27719888998E-02 6.36600809090E-02 6.45654034953E-02 6.54884024065E-02 6.64295368170E-02 6.73892797391E-02 6.83681184450E-02 6.93665548984E-02 7.03851061976E-02 7.14243050275E-02 7.24847001233E-02 7.35668567428E-02 7.46713571491E-02 7.57988011032E-02 7.69498063648E-02 7.81250092026E-02 7.93250649127E-02 8.05506483444E-02 8.18024544334E-02 8.30811987410E-02 8.43876179991E-02 8.57224706586E-02 8.70865374422E-02 8.84806218986E-02 8.99055509567E-02 9.13621754800E-02 9.28513708163E-02 9.43740373444E-02 9.59311010117E-02 9.75235138637E-02 9.91522545601E-02 1.00818328876E-01 1.02522770185E-01 1.04266639917E-01 1.06051027993E-01 1.07877053231E-01 1.09745863707E-01 1.11658637087E-01 1.13616580906E-01 1.15620932795E-01 1.17672960648E-01 1.19773962731E-01 1.21925267701E-01 1.24128234562E-01 1.26384252509E-01 1.28694740688E-01 1.31061147835E-01 1.33484951794E-01 1.35967658898E-01 1.38510803208E-01 1.41115945587E-01 1.43784672593E-01 1.46518595195E-01 1.49319347264E-01 1.52188583853E-01 1.55127979230E-01 1.58139224647E-01 1.61224025828E-01 1.64384100165E-01 1.67621173570E-01 1.70936977006E-01 1.74333242628E-01 1.77811699545E-01 1.81374069162E-01 1.85022060079E-01 1.88757362531E-01 1.92581642333E-01 1.96496534317E-01 2.00503635227E-01 2.04604496059E-01 2.08800613817E-01 2.13093422670E-01 2.17484284485E-01 2.21974478738E-01 2.26565191762E-01 2.31257505354E-01 2.36052384716E-01 2.40950665738E-01 2.45953041635E-01 2.51060048937E-01 2.56272052872E-01 2.61589232155E-01 2.67011563229E-01 2.72538804011E-01 2.78170477194E-01 2.83905853193E-01 2.89743932796E-01 2.95683429658E-01 3.01722752715E-01 3.07859988682E-01 3.14092884758E-01 3.20418831729E-01 3.26834847627E-01 3.33337562170E-01 3.39923202177E-01 3.46587578214E-01 3.53326072712E-01 3.60133629812E-01 3.67004747238E-01 3.73933470460E-01 3.80913389451E-01 3.87937638344E-01 3.94998898261E-01 4.02089403628E-01 4.09200952236E-01 4.16324919312E-01 4.23452275836E-01 4.30573611299E-01 4.37679161061E-01 4.44758838423E-01 4.51802271461E-01 4.58798844597E-01 4.65737744828E-01 4.72608012425E-01 4.79398595827E-01 4.86098410375E-01 4.92696400391E-01 4.99181604028E-01 5.05543220189E-01 5.11770676703E-01 5.17853698832E-01 5.23782377092E-01 5.29547233256E-01 5.35139283339E-01 5.40550096276E-01 5.45771846996E-01 5.50797362509E-01 5.55620159704E-01 5.60234473538E-01 5.64635274410E-01 5.68818273652E-01 5.72779916216E-01 5.76517359941E-01 5.80028441058E-01 5.83311626016E-01 5.86365950219E-01 5.89190944843E-01 5.91786553695E-01 5.94153042890E-01 5.96290907416E-01 5.98200799054E-01 5.99883504812E-01 6.01339943834E-01 6.02571165709E-01 6.03578348791E-01 6.04362798546E-01 6.04925945916E-01 6.05269345698E-01 6.05394674933E-01 6.05303731311E-01 6.04998431566E-01 6.04480809887E-01 6.03753016304E-01 6.02817315083E-01 6.01676083081E-01 6.00331808097E-01 5.98787087180E-01 5.97044624907E-01 5.95107231609E-01 5.92977821558E-01 5.90659411081E-01 5.88155116619E-01 5.85468152707E-01 5.82601829871E-01 5.79559552438E-01 5.76344816246E-01 5.72961206251E-01 5.69412394017E-01 5.65702135090E-01 5.61834266236E-01 5.57812702550E-01 5.53641434427E-01 5.49324524372E-01 5.44866103674E-01 5.40270368915E-01 5.35541578320E-01 5.30684047949E-01 5.25702147729E-01 5.20600297324E-01 5.15382961846E-01 5.10054647421E-01 5.04619896601E-01 4.99083283643E-01 4.93449409657E-01 4.87722897645E-01 4.81908387428E-01 4.76010530499E-01 4.70033984795E-01 4.63983409435E-01 4.57863459413E-01 4.51678780293E-01 4.45434002962E-01 4.39133738251E-01 4.32782571865E-01 4.26385059239E-01 4.19945720537E-01 4.13469035796E-01 4.06959440207E-01 4.00421319587E-01 3.93859006038E-01 3.87276773821E-01 3.80678835463E-01 3.74069338104E-01 3.67452360107E-01 3.60831907925E-01 3.54211913255E-01 3.47596230459E-01 3.40988634274E-01 3.34392817803E-01 3.27812390779E-01 3.21250878111E-01 3.14711718687E-01 3.08198264442E-01 3.01713779665E-01 2.95261440529E-01 2.88844334850E-01 2.82465462025E-01 2.76127733157E-01 2.69833971326E-01 2.63586912004E-01 2.57389203572E-01 2.51243407929E-01 2.45152001165E-01 2.39117374276E-01 2.33141833906E-01 2.27227603073E-01 2.21376821889E-01 2.15591548228E-01 2.09873758349E-01 2.04225347430E-01 1.98648130034E-01 1.93143840474E-01 1.87714133071E-01 1.82360582315E-01 1.77084682913E-01 1.71887849734E-01 1.66771417650E-01 1.61736641281E-01 1.56784694663E-01 1.51916670840E-01 1.47133581390E-01 1.42436355927E-01 1.37825841560E-01 1.33302802366E-01 1.28867918864E-01 1.24521787531E-01 1.20264920369E-01 1.16097744557E-01 1.12020602181E-01 1.08033750091E-01 1.04137359878E-01 1.00331517998E-01 9.66162260521E-02 9.29914012348E-02 8.94568769593E-02 8.60124036693E-02 8.26576498388E-02 7.93922031658E-02 7.62155719587E-02 7.31271867154E-02 7.01264018912E-02 6.72124978506E-02 6.43846829979E-02 6.16420960757E-02 5.89838086248E-02 5.64088275927E-02 5.39160980810E-02 5.15045062179E-02 4.91728821432E-02 4.69200030934E-02 4.47445965708E-02 4.26453435849E-02 4.06208819509E-02 3.86698096310E-02 3.67906881058E-02 3.49820457607E-02 3.32423812762E-02 3.15701670070E-02 2.99638523398E-02 2.84218670168E-02 2.69426244146E-02 2.55245247677E-02 2.41659583273E-02 2.28653084466E-02 2.16209545837E-02 2.04312752150E-02 1.92946506529E-02 1.82094657605E-02 1.71741125594E-02 1.61869927250E-02 1.52465199656E-02 1.43511222830E-02 1.34992441101E-02 1.26893483256E-02 1.19199181435E-02 1.11894588762E-02 1.04964995716E-02 9.83959452513E-03 9.21732466538E-03 8.62829881696E-03 8.07115484058E-03 7.54456065311E-03 7.04721512979E-03 6.57784889133E-03 6.13522497892E-03 5.71813942042E-03 5.32542169123E-03 4.95593507355E-03 4.60857691800E-03 4.28227881151E-03 3.97600665581E-03 3.68876066076E-03 3.41957525678E-03 3.16751893103E-03 2.93169399153E-03 2.71123626389E-03 2.50531472509E-03 2.31313107866E-03 2.13391927581E-03 1.96694498671E-03 1.81150502638E-03 1.66692673928E-03 1.53256734672E-03 1.40781326109E-03 1.29207937092E-03 1.18480830027E-03 1.08546964637E-03 9.93559198741E-04 9.08598142556E-04 8.30132302632E-04 7.57730744980E-04 6.90988930930E-04 6.29513290916E-04 5.72952782525E-04 5.20978536478E-04 4.73267759052E-04 4.29512897611E-04 3.89425012487E-04 3.52732930175E-04 3.19182415975E-04 2.88535366733E-04 2.60569024488E-04 2.35075211756E-04 2.11859589076E-04 1.90740935342E-04 1.71550451385E-04 1.54131087167E-04 1.38336892826E-04 1.24032394632E-04 1.11091964793E-04 9.93995646738E-05 8.88460375866E-05 7.93364409888E-05 7.07721928827E-05 6.30608119792E-05 5.61236911025E-05 4.98904689721E-05 4.42964090601E-05 3.92820241620E-05 3.47927194035E-05 3.07784533753E-05 2.71934169829E-05 2.39957295672E-05 2.11471518257E-05 1.86128150352E-05 1.63609660559E-05 1.43627275807E-05 1.25918730767E-05 1.10246158568E-05 9.63941171045E-06 8.41677451883E-06 7.33910427815E-06 6.39052695484E-06 5.55674560100E-06 4.82490216373E-06 4.18344943019E-06 3.62203255979E-06 3.13137966686E-06 2.70320092993E-06 2.33009571829E-06 2.00546724205E-06 1.72344424844E-06 1.47880930428E-06 1.26693322284E-06 1.08371521123E-06 9.25528333710E-07 7.89169904951E-07 6.71816446507E-07 5.70982858602E-07 4.84485478317E-07 4.10408713805E-07 3.47074962457E-07 2.93017538814E-07 2.46956355470E-07 2.07776117043E-07 1.74506803652E-07 1.46306236004E-07 1.22444529288E-07 1.02290257418E-07 8.52981629097E-08 7.09982606677E-08 5.89861962568E-08 4.89147308669E-08 4.04862360766E-08 3.34460917649E-08 2.75768900837E-08 2.26933573189E-08 1.86379137535E-08 1.52767993175E-08 1.24966999076E-08 1.02018157861E-08 8.31131947821E-09 6.75715608162E-09 5.48214393006E-09 4.43833813035E-09 3.58562365247E-09 2.89050842282E-09 2.32509027545E-09 1.86617469180E-09 1.49452289951E-09 1.19421344434E-09 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.45323908780E-12 4.54320048492E-12 4.63497922283E-12 4.72861201423E-12 4.82413631349E-12 4.92159033161E-12 5.02101305149E-12 5.12244424354E-12 5.22592448160E-12 5.33149515913E-12 5.43919850583E-12 5.54907760446E-12 5.66117640813E-12 5.77553975786E-12 5.89221340051E-12 6.01124400709E-12 6.13267919143E-12 6.25656752924E-12 6.38295857748E-12 6.51190289428E-12 6.64345205907E-12 6.77765869328E-12 6.91457648135E-12 7.05426019222E-12 7.19676570124E-12 7.34215001251E-12 7.49047128170E-12 7.64178883929E-12 7.79616321433E-12 7.95365615862E-12 8.11433067144E-12 8.27825102474E-12 8.44548278885E-12 8.61609285870E-12 8.79014948060E-12 8.96772227951E-12 9.14888228693E-12 9.33370196928E-12 9.52225525689E-12 9.71461757359E-12 9.91086586688E-12 1.01110786387E-11 1.03153359768E-11 1.05237195869E-11 1.07363128251E-11 1.09532007317E-11 1.11744700646E-11 1.14002093346E-11 1.16305088404E-11 1.18654607048E-11 1.21051589118E-11 1.23496993437E-11 1.25991798201E-11 1.28537001365E-11 1.31133621043E-11 1.33782695919E-11 1.36485285658E-11 1.39242471331E-11 1.42055355850E-11 1.44925064406E-11 1.47852744920E-11 1.50839568505E-11 1.53886729929E-11 1.56995448097E-11 1.60166966538E-11 1.63402553903E-11 1.66703504468E-11 1.70071138659E-11 1.73506803574E-11 1.77011873524E-11 1.80587750585E-11 1.84235865155E-11 1.87957676528E-11 1.91754673480E-11 1.95628374858E-11 1.99580330196E-11 2.03612120328E-11 2.07725358024E-11 2.11921688635E-11 2.16202790747E-11 2.20570376860E-11 2.25026194067E-11 2.29572024752E-11 2.34209687310E-11 2.38941036867E-11 2.43767966027E-11 2.48692405625E-11 2.53716325503E-11 2.58841735295E-11 2.64070685236E-11 2.69405266973E-11 2.74847614411E-11 2.80399904561E-11 2.86064358414E-11 2.91843241828E-11 2.97738866431E-11 3.03753590554E-11 3.09889820165E-11 3.16150009840E-11 3.22536663736E-11 3.29052336601E-11 3.35699634791E-11 3.42481217315E-11 3.49399796895E-11 3.56458141056E-11 3.63659073230E-11 3.71005473886E-11 3.78500281682E-11 3.86146494641E-11 3.93947171351E-11 4.01905432187E-11 4.10024460558E-11 4.18307504186E-11 4.26757876398E-11 4.35378957456E-11 4.44174195907E-11 4.53147109965E-11 4.62301288914E-11 4.71640394549E-11 4.81168162636E-11 4.90888404411E-11 5.00805008100E-11 5.10921940476E-11 5.21243248448E-11 5.31773060677E-11 5.42515589229E-11 5.53475131258E-11 5.64656070729E-11 5.76062880165E-11 5.87700122443E-11 5.99572452617E-11 6.11684619775E-11 6.24041468948E-11 6.36647943041E-11 6.49509084810E-11 6.62630038886E-11 6.76016053824E-11 6.89672484211E-11 7.03604792800E-11 7.17818552702E-11 7.32319449610E-11 7.47113284078E-11 7.62205973836E-11 7.77603556164E-11 7.93312190298E-11 8.09338159904E-11 8.25687875584E-11 8.42367877443E-11 8.59384837704E-11 8.76745563379E-11 8.94456998991E-11 9.12526229352E-11 9.30960482394E-11 9.49767132067E-11 9.68953701282E-11 9.88527864923E-11 1.00849745292E-10 1.02887045337E-10 1.04965501575E-10 1.07085945416E-10 1.09249225067E-10 1.11456205868E-10 1.13707770640E-10 1.16004820041E-10 1.18348272920E-10 1.20739066690E-10 1.23178157701E-10 1.25666521621E-10 1.28205153830E-10 1.30795069815E-10 1.33437305577E-10 1.36132918044E-10 1.38882985500E-10 1.41688608006E-10 1.44550907851E-10 1.47471029992E-10 1.50450142518E-10 1.53489437113E-10 1.56590129536E-10 1.59753460105E-10 1.62980694196E-10 1.66273122745E-10 1.69632062768E-10 1.73058857885E-10 1.76554878862E-10 1.80121524153E-10 1.83760220465E-10 1.87472423324E-10 1.91259617662E-10 1.95123318408E-10 1.99065071093E-10 2.03086452472E-10 2.07189071152E-10 2.11374568234E-10 2.15644617975E-10 2.20000928451E-10 2.24445242246E-10 2.28979337144E-10 2.33605026845E-10 2.38324161686E-10 2.43138629386E-10 2.48050355796E-10 2.53061305673E-10 2.58173483465E-10 2.63388934110E-10 2.68709743861E-10 2.74138041113E-10 2.79675997257E-10 2.85325827551E-10 2.91089792003E-10 2.96970196277E-10 3.02969392613E-10 3.09089780773E-10 3.15333808992E-10 3.21703974968E-10 3.28202826851E-10 3.34832964272E-10 3.41597039375E-10 3.48497757880E-10 3.55537880170E-10 3.62720222387E-10 3.70047657567E-10 3.77523116782E-10 3.85149590317E-10 3.92930128865E-10 4.00867844748E-10 4.08965913158E-10 4.17227573433E-10 4.25656130349E-10 4.34254955444E-10 4.43027488364E-10 4.51977238241E-10 4.61107785097E-10 4.70422781275E-10 4.79925952900E-10 4.89621101370E-10 4.99512104876E-10 5.09602919953E-10 5.19897583067E-10 5.30400212221E-10 5.41115008611E-10 5.52046258301E-10 5.63198333941E-10 5.74575696513E-10 5.86182897116E-10 5.98024578791E-10 6.10105478371E-10 6.22430428382E-10 6.35004358971E-10 6.47832299884E-10 6.60919382472E-10 6.74270841748E-10 6.87892018479E-10 7.01788361321E-10 7.15965429003E-10 7.30428892547E-10 7.45184537536E-10 7.60238266432E-10 7.75596100933E-10 7.91264184384E-10 8.07248784234E-10 8.23556294544E-10 8.40193238543E-10 8.57166271238E-10 8.74482182076E-10 8.92147897661E-10 9.10170484523E-10 9.28557151947E-10 9.47315254854E-10 9.66452296746E-10 9.85975932704E-10 1.00589397245E-09 1.02621438349E-09 1.04694529425E-09 1.06809499740E-09 1.08967195311E-09 1.11168479247E-09 1.13414232091E-09 1.15705352176E-09 1.18042755982E-09 1.20427378503E-09 1.22860173622E-09 1.25342114491E-09 1.27874193922E-09 1.30457424780E-09 1.33092840396E-09 1.35781494972E-09 1.38524464008E-09 1.41322844730E-09 1.44177756531E-09 1.47090341415E-09 1.50061764457E-09 1.53093214269E-09 1.56185903474E-09 1.59341069191E-09 1.62559973531E-09 1.65843904102E-09 1.69194174524E-09 1.72612124951E-09 1.76099122613E-09 1.79656562359E-09 1.83285867217E-09 1.86988488958E-09 1.90765908687E-09 1.94619637425E-09 1.98551216719E-09 2.02562219257E-09 2.06654249499E-09 2.10828944316E-09 2.15087973647E-09 2.19433041164E-09 2.23865884959E-09 2.28388278233E-09 2.33002030010E-09 2.37708985857E-09 2.42511028627E-09 2.47410079207E-09 2.52408097289E-09 2.57507082154E-09 2.62709073471E-09 2.68016152114E-09 2.73430440993E-09 2.78954105904E-09 2.84589356395E-09 2.90338446650E-09 2.96203676391E-09 3.02187391798E-09 3.08291986448E-09 3.14519902269E-09 3.20873630522E-09 3.27355712795E-09 3.33968742018E-09 3.40715363504E-09 3.47598276003E-09 3.54620232787E-09 3.61784042745E-09 3.69092571511E-09 3.76548742610E-09 3.84155538624E-09 3.91916002390E-09 3.99833238213E-09 4.07910413112E-09 4.16150758081E-09 4.24557569389E-09 4.33134209891E-09 4.41884110379E-09 4.50810770951E-09 4.59917762413E-09 4.69208727706E-09 4.78687383364E-09 4.88357521002E-09 4.98223008829E-09 5.08287793200E-09 5.18555900191E-09 5.29031437212E-09 5.39718594647E-09 5.50621647535E-09 5.61744957275E-09 5.73092973374E-09 5.84670235227E-09 5.96481373930E-09 6.08531114136E-09 6.20824275942E-09 6.33365776819E-09 6.46160633579E-09 6.59213964382E-09 6.72530990782E-09 6.86117039817E-09 6.99977546139E-09 7.14118054191E-09 7.28544220421E-09 7.43261815545E-09 7.58276726859E-09 7.73594960592E-09 7.89222644307E-09 8.05166029356E-09 8.21431493376E-09 8.38025542844E-09 8.54954815680E-09 8.72226083899E-09 8.89846256323E-09 9.07822381343E-09 9.26161649740E-09 9.44871397561E-09 9.63959109054E-09 9.83432419661E-09 1.00329911907E-08 1.02356715434E-08 1.04424463308E-08 1.06533982666E-08 1.08686117358E-08 1.10881728278E-08 1.13121693716E-08 1.15406909699E-08 1.17738290361E-08 1.20116768300E-08 1.22543294955E-08 1.25018840985E-08 1.27544396659E-08 1.30120972252E-08 1.32749598447E-08 1.35431326748E-08 1.38167229904E-08 1.40958402333E-08 1.43805960564E-08 1.46711043680E-08 1.49674813778E-08 1.52698456431E-08 1.55783181161E-08 1.58930221927E-08 1.62140837614E-08 1.65416312543E-08 1.68757956975E-08 1.72167107647E-08 1.75645128296E-08 1.79193410211E-08 1.82813372789E-08 1.86506464100E-08 1.90274161469E-08 1.94117972064E-08 1.98039433505E-08 2.02040114472E-08 2.06121615335E-08 2.10285568798E-08 2.14533640546E-08 2.18867529917E-08 2.23288970577E-08 2.27799731219E-08 2.32401616264E-08 2.37096466588E-08 2.41886160258E-08 2.46772613280E-08 2.51757780369E-08 2.56843655729E-08 2.62032273853E-08 2.67325710334E-08 2.72726082698E-08 2.78235551250E-08 2.83856319937E-08 2.89590637233E-08 2.95440797036E-08 3.01409139586E-08 3.07498052402E-08 3.13709971238E-08 3.20047381054E-08 3.26512817016E-08 3.33108865505E-08 3.39838165152E-08 3.46703407900E-08 3.53707340072E-08 3.60852763477E-08 3.68142536527E-08 3.75579575383E-08 3.83166855119E-08 3.90907410916E-08 3.98804339273E-08 4.06860799247E-08 4.15080013720E-08 4.23465270682E-08 4.32019924553E-08 4.40747397521E-08 4.49651180915E-08 4.58734836598E-08 4.68001998394E-08 4.77456373542E-08 4.87101744180E-08 4.96941968858E-08 5.06980984079E-08 5.17222805880E-08 5.27671531433E-08 5.38331340689E-08 5.49206498049E-08 5.60301354067E-08 5.71620347198E-08 5.83168005568E-08 5.94948948786E-08 6.06967889799E-08 6.19229636770E-08 6.31739095006E-08 6.44501268923E-08 6.57521264043E-08 6.70804289042E-08 6.84355657832E-08 6.98180791688E-08 7.12285221419E-08 7.26674589579E-08 7.41354652725E-08 7.56331283725E-08 7.71610474102E-08 7.87198336439E-08 8.03101106817E-08 8.19325147319E-08 8.35876948571E-08 8.52763132340E-08 8.69990454189E-08 8.87565806174E-08 9.05496219608E-08 9.23788867870E-08 9.42451069283E-08 9.61490290038E-08 9.80914147182E-08 1.00073041167E-07 1.02094701148E-07 1.04157203477E-07 1.06261373313E-07 1.08408052489E-07 1.10598099847E-07 1.12832391583E-07 1.15111821599E-07 1.17437301858E-07 1.19809762752E-07 1.22230153471E-07 1.24699442387E-07 1.27218617439E-07 1.29788686530E-07 1.32410677928E-07 1.35085640683E-07 1.37814645041E-07 1.40598782874E-07 1.43439168122E-07 1.46336937232E-07 1.49293249618E-07 1.52309288123E-07 1.55386259495E-07 1.58525394866E-07 1.61727950249E-07 1.64995207040E-07 1.68328472531E-07 1.71729080432E-07 1.75198391408E-07 1.78737793622E-07 1.82348703291E-07 1.86032565255E-07 1.89790853555E-07 1.93625072022E-07 1.97536754880E-07 2.01527467364E-07 2.05598806340E-07 2.09752400954E-07 2.13989913275E-07 2.18313038971E-07 2.22723507978E-07 2.27223085202E-07 2.31813571222E-07 2.36496803012E-07 2.41274654676E-07 2.46149038205E-07 2.51121904234E-07 2.56195242833E-07 2.61371084298E-07 2.66651499969E-07 2.72038603059E-07 2.77534549501E-07 2.83141538814E-07 2.88861814982E-07 2.94697667355E-07 3.00651431572E-07 3.06725490488E-07 3.12922275140E-07 3.19244265715E-07 3.25693992548E-07 3.32274037136E-07 3.38987033176E-07 3.45835667620E-07 3.52822681751E-07 3.59950872288E-07 3.67223092506E-07 3.74642253382E-07 3.82211324763E-07 3.89933336557E-07 3.97811379953E-07 4.05848608660E-07 4.14048240175E-07 4.22413557075E-07 4.30947908334E-07 4.39654710671E-07 4.48537449922E-07 4.57599682441E-07 4.66845036529E-07 4.76277213894E-07 4.85899991137E-07 4.95717221274E-07 5.05732835282E-07 5.15950843683E-07 5.26375338156E-07 5.37010493185E-07 5.47860567738E-07 5.58929906981E-07 5.70222944029E-07 5.81744201730E-07 5.93498294490E-07 6.05489930124E-07 6.17723911765E-07 6.30205139789E-07 6.42938613798E-07 6.55929434632E-07 6.69182806429E-07 6.82704038724E-07 6.96498548591E-07 7.10571862832E-07 7.24929620206E-07 7.39577573711E-07 7.54521592904E-07 7.69767666276E-07 7.85321903676E-07 8.01190538776E-07 8.17379931599E-07 8.33896571093E-07 8.50747077755E-07 8.67938206317E-07 8.85476848482E-07 9.03370035720E-07 9.21624942117E-07 9.40248887291E-07 9.59249339360E-07 9.78633917978E-07 9.98410397432E-07 1.01858670981E-06 1.03917094820E-06 1.06017137004E-06 1.08159640042E-06 1.10345463557E-06 1.12575484633E-06 1.14850598173E-06 1.17171717268E-06 1.19539773566E-06 1.21955717658E-06 1.24420519462E-06 1.26935168622E-06 1.29500674916E-06 1.32118068669E-06 1.34788401176E-06 1.37512745132E-06 1.40292195080E-06 1.43127867855E-06 1.46020903047E-06 1.48972463474E-06 1.51983735657E-06 1.55055930318E-06 1.58190282875E-06 1.61388053959E-06 1.64650529933E-06 1.67979023432E-06 1.71374873907E-06 1.74839448182E-06 1.78374141027E-06 1.81980375741E-06 1.85659604748E-06 1.89413310204E-06 1.93243004625E-06 1.97150231516E-06 2.01136566030E-06 2.05203615628E-06 2.09353020759E-06 2.13586455558E-06 2.17905628558E-06 2.22312283411E-06 2.26808199638E-06 2.31395193388E-06 2.36075118212E-06 2.40849865862E-06 2.45721367103E-06 2.50691592545E-06 2.55762553494E-06 2.60936302824E-06 2.66214935864E-06 2.71600591311E-06 2.77095452163E-06 2.82701746669E-06 2.88421749305E-06 2.94257781771E-06 3.00212214012E-06 3.06287465260E-06 3.12486005101E-06 3.18810354567E-06 3.25263087252E-06 3.31846830452E-06 3.38564266334E-06 3.45418133129E-06 3.52411226354E-06 3.59546400060E-06 3.66826568108E-06 3.74254705478E-06 3.81833849605E-06 3.89567101747E-06 3.97457628391E-06 4.05508662683E-06 4.13723505903E-06 4.22105528981E-06 4.30658174042E-06 4.39384956010E-06 4.48289464248E-06 4.57375364262E-06 4.66646399452E-06 4.76106392933E-06 4.85759249425E-06 4.95608957218E-06 5.05659590224E-06 5.15915310123E-06 5.26380368614E-06 5.37059109776E-06 5.47955972553E-06 5.59075493380E-06 5.70422308941E-06 5.82001159087E-06 5.93816889916E-06 6.05874457014E-06 6.18178928866E-06 6.30735490450E-06 6.43549446983E-06 6.56626227846E-06 6.69971390654E-06 6.83590625465E-06 6.97489759102E-06 7.11674759576E-06 7.26151740553E-06 7.40926965867E-06 7.56006853992E-06 7.71397982493E-06 7.87107092364E-06 8.03141092268E-06 8.19507062637E-06 8.36212259647E-06 8.53264119081E-06 8.70670260122E-06 8.88438489160E-06 9.06576803675E-06 9.25093396302E-06 9.43996659188E-06 9.63295188712E-06 9.82997790668E-06 1.00311348596E-05 1.02365151682E-05 1.04462135365E-05 1.06603270236E-05 1.08789551231E-05 1.11021998477E-05 1.13301658194E-05 1.15629603641E-05 1.18006936124E-05 1.20434786040E-05 1.22914313984E-05 1.25446711902E-05 1.28033204299E-05 1.30675049500E-05 1.33373540976E-05 1.36130008725E-05 1.38945820719E-05 1.41822384421E-05 1.44761148368E-05 1.47763603841E-05 1.50831286598E-05 1.53965778707E-05 1.57168710458E-05 1.60441762369E-05 1.63786667296E-05 1.67205212642E-05 1.70699242678E-05 1.74270660976E-05 1.77921432973E-05 1.81653588658E-05 1.85469225393E-05 1.89370510888E-05 1.93359686324E-05 1.97439069637E-05 2.01611058975E-05 2.05878136341E-05 2.10242871424E-05 2.14707925637E-05 2.19276056370E-05 2.23950121477E-05 2.28733083999E-05 2.33628017157E-05 2.38638109604E-05 2.43766670983E-05 2.49017137777E-05 2.54393079500E-05 2.59898205222E-05 2.65536370468E-05 2.71311584496E-05 2.77228018001E-05 2.83290011241E-05 2.89502082628E-05 2.95868937816E-05 3.02395479297E-05 3.09086816553E-05 3.15948276786E-05 3.22985416272E-05 3.30204032355E-05 3.37610176145E-05 3.45210165948E-05 3.53010601464E-05 3.61018378819E-05 3.69240706465E-05 3.77685122001E-05 3.86359509981E-05 3.95272120752E-05 4.04431590396E-05 4.13846961840E-05 4.23527707192E-05 4.33483751398E-05 4.43725497274E-05 4.54263852016E-05 4.65110255261E-05 4.76276708809E-05 4.87775808081E-05 4.99620775439E-05 5.11825495472E-05 5.24404552354E-05 5.37373269425E-05 5.50747751090E-05 5.64544927217E-05 5.78782600143E-05 5.93479494476E-05 6.08655309841E-05 6.24330776752E-05 6.40527715796E-05 6.57269100330E-05 6.74579122892E-05 6.92483265562E-05 7.11008374495E-05 7.30182738874E-05 7.50036174571E-05 7.70600112756E-05 7.91907693790E-05 8.13993866684E-05 8.36895494478E-05 8.60651465884E-05 8.85302813556E-05 9.10892839406E-05 9.37467247350E-05 9.65074283963E-05 9.93764887480E-05 1.02359284567E-04 1.05461496305E-04 1.08689123812E-04 1.12048505100E-04 1.15546336232E-04 1.19189692391E-04 1.22986050189E-04 1.26943311316E-04 1.31069827577E-04 1.35374427425E-04 1.39866444062E-04 1.44555745203E-04 1.49452764610E-04 1.54568535486E-04 1.59914725853E-04 1.65503676012E-04 1.71348438229E-04 1.77462818760E-04 1.83861422359E-04 1.90559699413E-04 1.97573995856E-04 2.04921606028E-04 2.12620828646E-04 2.20691026070E-04 2.29152687054E-04 2.38027493188E-04 2.47338389240E-04 2.57109657624E-04 2.67366997240E-04 2.78137606928E-04 2.89450273806E-04 3.01335466780E-04 3.13825435504E-04 3.26954315133E-04 3.40758237162E-04 3.55275446743E-04 3.70546426807E-04 3.86614029411E-04 4.03523614705E-04 4.21323197953E-04 4.40063605073E-04 4.59798637169E-04 4.80585244562E-04 5.02483710866E-04 5.25557847663E-04 5.49875200376E-04 5.75507265969E-04 6.02529723128E-04 6.31022675632E-04 6.61070909626E-04 6.92764165592E-04 7.26197425815E-04 7.61471218202E-04 7.98691937356E-04 8.37972183859E-04 8.79431122744E-04 9.23194862221E-04 9.69396853752E-04 1.01817831463E-03 1.06968867428E-03 1.12408604560E-03 1.18153772256E-03 1.24222070570E-03 1.30632225673E-03 1.37404048403E-03 1.44558496051E-03 1.52117737566E-03 1.60105222350E-03 1.68545752838E-03 1.77465561053E-03 1.86892389352E-03 1.96855575565E-03 2.07386142774E-03 2.18516893944E-03 2.30282511681E-03 2.42719663348E-03 2.55867111835E-03 2.69765832252E-03 2.84459134836E-03 2.99992794402E-03 3.16415186632E-03 3.33777431556E-03 3.52133544574E-03 3.71540595370E-03 3.92058875111E-03 4.13752072317E-03 4.36687457820E-03 4.60936079221E-03 4.86572965311E-03 5.13677340896E-03 5.42332852509E-03 5.72627805499E-03 6.04655413015E-03 6.38514057399E-03 6.74307564544E-03 7.12145491779E-03 7.52143429853E-03 7.94423319625E-03 8.39113784071E-03 8.86350476240E-03 9.36276443813E-03 9.89042510914E-03 1.04480767789E-02 1.10373953969E-02 1.16601472365E-02 1.23181934732E-02 1.30134949710E-02 1.37481172840E-02 1.45242358824E-02 1.53441416073E-02 1.62102463654E-02 1.71250890697E-02 1.80913418326E-02 1.91118164225E-02 2.01894709884E-02 2.13274170607E-02 2.25289268378E-02 2.37974407621E-02 2.51365753956E-02 2.65501316002E-02 2.80421030296E-02 2.96166849386E-02 3.12782833155E-02 3.30315243433E-02 3.48812641930E-02 3.68325991529E-02 3.88908760989E-02 4.10617033042E-02 4.33509615935E-02 4.57648158389E-02 4.83097267975E-02 5.09924632876E-02 5.38201147008E-02 5.68001038421E-02 5.99402000927E-02 6.32485328849E-02 6.67336054777E-02 7.04043090196E-02 7.42699368819E-02 7.83401992431E-02 8.26252379040E-02 8.71356413050E-02 9.18824597211E-02 9.68772205987E-02 1.02131944000E-01 1.07659158114E-01 1.13471914791E-01 1.19583805046E-01 1.26008974482E-01 1.32762138571E-01 1.39858597728E-01 1.47314252102E-01 1.55145616012E-01 1.63369831943E-01 1.72004684001E-01 1.81068610749E-01 1.90580717289E-01 2.00560786504E-01 2.11029289320E-01 2.22007393865E-01 2.33516973377E-01 2.45580612728E-01 2.58221613391E-01 2.71463996693E-01 2.85332505167E-01 2.99852601833E-01 3.15050467196E-01 3.30952993766E-01 3.47587777879E-01 3.64983108595E-01 3.83167953445E-01 4.02171940778E-01 4.22025338448E-01 4.42759028607E-01 4.64404478308E-01 4.86993705657E-01 5.10559241238E-01 5.35134084516E-01 5.60751654935E-01 5.87445737418E-01 6.15250421981E-01 6.44200037160E-01 6.74329076980E-01 7.05672121160E-01 7.38263748299E-01 7.72138441768E-01 8.07330488052E-01 8.43873867310E-01 8.81802135934E-01 9.21148300909E-01 9.61944685811E-01 1.00422278829E+00 1.04801312897E+00 1.09334509164E+00 1.14024675479E+00 1.18874471449E+00 1.23886389864E+00 1.29062737289E+00 1.34405613823E+00 1.39916892077E+00 1.45598195380E+00 1.51450875289E+00 1.57475988425E+00 1.63674272722E+00 1.70046123143E+00 1.76591566966E+00 1.83310238715E+00 1.90201354854E+00 1.97263688354E+00 2.04495543275E+00 2.11894729488E+00 2.19458537701E+00 2.27183714965E+00 2.35066440815E+00 2.43102304269E+00 2.51286281856E+00 2.59612716916E+00 2.68075300382E+00 2.76667053281E+00 2.85380311200E+00 2.94206710968E+00 3.03137179815E+00 3.12161927258E+00 3.21270439995E+00 3.30451480063E+00 3.39693086522E+00 3.48982580935E+00 3.58306576895E+00 3.67650993845E+00 3.77001075421E+00 3.86341412548E+00 3.95655971476E+00 4.04928126940E+00 4.14140700590E+00 4.23276004797E+00 4.32315891935E+00 4.41241809141E+00 4.50034858568E+00 4.58675863052E+00 4.67145437074E+00 4.75424062841E+00 4.83492171228E+00 4.91330227300E+00 4.98918820003E+00 5.06238755617E+00 5.13271154433E+00 5.19997550094E+00 5.26399990952E+00 5.32461142736E+00 5.38164391773E+00 5.43493947935E+00 5.48434946446E+00 5.52973547654E+00 5.57097033794E+00 5.60793901804E+00 5.64053951178E+00 5.66868365888E+00 5.69229789376E+00 5.71132391660E+00 5.72571927626E+00 5.73545785615E+00 5.74053025506E+00 5.74094405532E+00 5.73672397205E+00 5.72791187784E+00 5.71456669889E+00 5.69676417945E+00 5.67459651322E+00 5.64817184172E+00 5.61761362110E+00 5.58305986079E+00 5.54466223865E+00 5.50258509933E+00 5.45700434375E+00 5.40810621951E+00 5.35608602324E+00 5.30114672736E+00 5.24349754479E+00 5.18335244641E+00 5.12092864638E+00 5.05644507163E+00 4.99012083165E+00 4.92217370520E+00 4.85281866001E+00 4.78226642160E+00 4.71072210625E+00 4.63838393237E+00 4.56544202356E+00 4.49207731475E+00 4.41846057171E+00 4.34475153206E+00 4.27109817406E+00 4.19763611717E+00 4.12448815635E+00 4.05176392930E+00 3.97955971372E+00 3.90795834892E+00 3.83702927368E+00 3.76682866958E+00 3.69739969673E+00 3.62877280621E+00 3.56096611154E+00 3.49398579932E+00 3.42782655754E+00 3.36247199903E+00 3.29789505638E+00 3.23405832375E+00 3.17091430546E+00 3.10842357909E+00 3.04661088670E+00 2.98551431169E+00 2.92516785028E+00 2.86560157285E+00 2.80684179662E+00 2.74891128128E+00 2.69182944493E+00 2.63561259533E+00 2.58027417100E+00 2.52582498549E+00 2.47227346740E+00 2.41962588820E+00 2.36788656905E+00 2.31705805740E+00 2.26714126368E+00 2.21813554834E+00 2.17003874925E+00 2.12284714005E+00 2.07655531272E+00 2.03115616218E+00 1.98664160110E+00 1.94300268279E+00 1.90022956646E+00 1.85831154132E+00 1.81723702940E+00 1.77699357008E+00 1.73756779196E+00 1.69894538196E+00 1.66111108922E+00 1.62404882923E+00 1.58774183551E+00 1.55217377552E+00 1.51731104214E+00 1.48316285260E+00 1.44971676702E+00 1.41696006098E+00 1.38487980393E+00 1.35346291006E+00 1.32269618306E+00 1.29256635821E+00 1.26306014208E+00 1.23416424970E+00 1.20586543927E+00 1.17815054443E+00 1.15100650423E+00 1.12442039063E+00 1.09837943386E+00 1.07287104537E+00 1.04788283878E+00 1.02340264857E+00 9.99418546794E-01 9.75918857803E-01 9.52892171056E-01 9.30327352100E-01 9.08213551790E-01 8.86540213841E-01 8.65297080778E-01 8.44474198369E-01 8.24061918625E-01 8.04050901446E-01 7.84432114992E-01 7.65196834863E-01 7.46336642176E-01 7.27843420596E-01 7.09709352429E-01 6.91926913832E-01 6.74488869226E-01 6.57388264979E-01 6.40618422449E-01 6.24172930427E-01 6.08045637076E-01 5.92230641421E-01 5.76722284446E-01 5.61515139873E-01 5.46604004666E-01 5.31983889333E-01 5.17650008056E-01 5.03597768719E-01 4.89822762866E-01 4.76320755651E-01 4.63087675794E-01 4.50119605609E-01 4.37412771122E-01 4.24963532320E-01 4.12768373557E-01 4.00823894152E-01 3.89126799195E-01 3.77673890595E-01 3.66462058385E-01 3.55488272300E-01 3.44749573658E-01 3.34243067551E-01 3.23965915356E-01 3.13915327589E-01 3.04088557108E-01 2.94482892671E-01 2.85095652862E-01 2.75924180395E-01 2.66965836782E-01 2.58217997402E-01 2.49678046937E-01 2.41343375202E-01 2.33211373360E-01 2.25279430619E-01 2.17544932417E-01 2.10002960328E-01 2.02653216437E-01 1.95493056396E-01 1.88519823014E-01 1.81730844298E-01 1.75123432452E-01 1.68694883297E-01 1.62442475993E-01 1.56363473053E-01 1.50455120626E-01 1.44714649034E-01 1.39139273547E-01 1.33726195380E-01 1.28472602883E-01 1.23375672914E-01 1.18432572372E-01 1.13640459869E-01 1.08996487529E-01 1.04497802874E-01 1.00141550812E-01 9.59248756709E-02 9.18449232869E-02 8.78988431204E-02 8.40837903812E-02 8.03969281497E-02 7.68354294797E-02 7.33964794675E-02 7.00772772749E-02 6.68750380949E-02 6.37869950487E-02 6.08104010059E-02 5.79425303175E-02 5.51806804579E-02 5.25221735667E-02 4.99643578889E-02 4.75046091079E-02 4.51403315709E-02 4.28689594053E-02 4.06879575258E-02 3.85948225353E-02 3.65870835206E-02 3.46623027480E-02 3.28180762627E-02 3.10520343976E-02 2.93618421985E-02 2.77451997726E-02 2.61998425680E-02 2.47235415921E-02 2.33141035787E-02 2.19693711114E-02 2.06872227126E-02 1.94655729069E-02 1.83023722672E-02 1.71956074517E-02 1.61433012389E-02 1.51435125676E-02 1.41943365878E-02 1.32939047271E-02 1.24403847770E-02 1.16319810010E-02 1.08669342677E-02 1.01435222073E-02 9.46005939295E-03 8.81489754381E-03 8.20642574802E-03 7.63307070115E-03 7.09329695639E-03 6.58560718069E-03 6.10854241158E-03 5.66068230812E-03 5.24064538979E-03 4.84708925656E-03 4.47871078365E-03 4.13424628450E-03 3.81247163579E-03 3.51220235881E-03 3.23229365172E-03 2.97164036825E-03 2.72917693854E-03 2.50387722894E-03 2.29475433814E-03 2.10086032760E-03 1.92128588554E-03 1.75515992380E-03 1.60164910830E-03 1.45995732405E-03 1.32932507653E-03 1.20902883196E-03 1.09838029924E-03 9.96725657245E-04 9.03444731198E-04 8.17950122436E-04 7.39686296154E-04 6.68128631865E-04 6.02782441520E-04 5.43181960329E-04 4.88889315345E-04 4.39493476854E-04 3.94609197554E-04 3.53875944351E-04 3.16956827489E-04 2.83537531475E-04 2.53325252061E-04 2.26047643294E-04 2.01451778328E-04 1.79303127438E-04 1.59384556348E-04 1.41495347666E-04 1.25450247926E-04 1.11078542393E-04 9.82231594992E-05 8.67398064612E-05 7.64961373362E-05 6.73709545008E-05 5.92534442588E-05 5.20424470261E-05 4.56457623748E-05 3.99794888650E-05 3.49673983062E-05 3.05403445850E-05 2.66357060040E-05 2.31968606603E-05 2.01726940246E-05 1.75171378001E-05 1.51887390497E-05 1.31502584996E-05 1.13682968711E-05 9.81294804231E-06 8.45747781013E-06 7.27802700136E-06 6.25333767002E-06 5.36450111984E-06 4.59472649887E-06 3.92912872976E-06 3.35453456381E-06 2.85930557646E-06 2.43317695552E-06 2.06711097075E-06 1.75316409373E-06 1.48436666944E-06 1.25461424775E-06 1.05856961143E-06 8.91574633153E-07 7.49571136361E-07 6.29029985008E-07 5.26894565483E-07 4.40571260526E-07 3.67745540310E-07 3.06415208435E-07 2.54857722463E-07 2.11593783172E-07 1.75355280756E-07 1.45057128747E-07 1.19772560630E-07 9.87115045451E-08 8.12016888142E-08 6.66721653573E-08 5.46389696493E-08 4.46926647708E-08 3.64875435454E-08 2.97322868581E-08 2.41818981792E-08 1.96307542138E-08 1.59066296154E-08 1.28655699688E-08 1.03871553202E-08 8.36844717674E-09 6.72744126450E-09 5.39637661940E-09 4.31909060848E-09 3.44913689751E-09 2.74819049951E-09 2.18469922022E-09 1.73274608024E-09 1.37109195277E-09 1.08237177022E-09 8.52421274359E-10 6.69714465191E-10 5.24894688006E-10 4.10384730135E-10 3.20063416347E-10 2.48998031035E-10 1.93223488003E-10 1.49560544199E-10 1.15466538305E-10 8.89131524417E-11 6.82865663552E-11 5.23061173703E-11 3.99582127627E-11 3.04427789366E-11 2.31299870044E-11 1.75253785830E-11 1.32418389661E-11 9.97713614151E-12 7.49597109512E-12 5.61567414569E-12 4.19483946981E-12 3.12432047125E-12 2.32011649565E-12 1.71777024774E-12 1.26796824656E-12 9.33096405289E-13 6.84551588356E-13 5.00649672320E-13 3.65002809683E-13 2.65264600203E-13 1.92162826039E-13 1.38756231493E-13 9.98652935387E-14 7.16376702445E-14 5.12175529345E-14 3.64949129586E-14 2.59159752151E-14 1.83404532145E-14 1.29343756267E-14 9.08990879697E-15 6.36558409203E-15 4.44189382908E-15 3.08842138509E-15 2.13959666192E-15 1.47687827507E-15 1.01570674376E-15 6.95986434782E-16 4.75167724535E-16 3.23237955270E-16 2.19108289326E-16 1.48017461793E-16 9.96734626912E-17 6.69286150830E-17 4.48386842984E-17 2.99973785266E-17 2.00675424336E-17 1.33692742930E-17 8.86964343527E-18 5.85963977467E-18 3.85463860533E-18 2.52479303390E-18 1.64656340088E-18 1.06911073727E-18 6.91097454645E-19 4.44742754572E-19 2.84912745849E-19 1.81688947560E-19 1.15329073149E-19 espresso-5.0.2/pseudo/clean_ps0000755000700200004540000000256612053145632015403 0ustar marsamoscm#!/bin/bash # # The following PPs are not on the web and are not removed. The others # are. # # HUSPBE.RRKJ3 O_US.van Rhs.pbe-rrkjus_lb.UPF # H_US.van Pt.rel-pbe-n-rrkjus.UPF Si.bhs # Ni.rel-pbe-nd-rrkjus.UPF Rh.pbe-rrkjus_lb.UPF Si.rel-pbe-rrkj.UPF # Au.pz-rrkjus_aewfc.UPF \rm -rf Al.pz-vbc.UPF >& /dev/null \rm -rf Al.pbe-rrkj.UPF >& /dev/null \rm -rf As.pz-bhs.UPF >& /dev/null \rm -rf Cu.pz-d-rrkjus.UPF >& /dev/null \rm -rf Cu.pbe-kjpaw.UPF >& /dev/null \rm -rf Ni.pz-nd-rrkjus.UPF >& /dev/null \rm -rf Ni.pbe-nd-rrkjus.UPF >& /dev/null \rm -rf Fe.pz-nd-rrkjus.UPF >& /dev/null \rm -rf Fe.rel-pbe-kjpaw.UPF >& /dev/null \rm -rf Si.pz-vbc.UPF >& /dev/null \rm -rf Si.pbe-rrkj.UPF >& /dev/null \rm -rf C.pz-rrkjus.UPF >& /dev/null \rm -rf C.pz-kjpaw.UPF >& /dev/null \rm -rf C.pz-vbc.UPF >& /dev/null \rm -rf C.pbe-rrkjus.UPF >& /dev/null \rm -rf C.tpss-mt.UPF >& /dev/null \rm -rf H.tpss-mt.UPF >& /dev/null \rm -rf H.pbe-rrkjus.UPF >& /dev/null \rm -rf H.pz-kjpaw.UPF >& /dev/null \rm -rf H.pz-vbc.UPF >& /dev/null \rm -rf O.pbe-rrkjus.UPF >& /dev/null \rm -rf O.pz-rrkjus.UPF >& /dev/null \rm -rf O.pz-van_ak.UPF >& /dev/null \rm -rf Pt.rel-pz-n-rrkjus.UPF >& /dev/null \rm -rf Au.rel-pz-kjpaw.UPF >& /dev/null \rm -rf Pb.pz-d-van.UPF >& /dev/null \rm -rf Ti.pz-sp-van_ak.UPF >& /dev/null \rm -rf vdW_kernel_table >& /dev/null espresso-5.0.2/pseudo/Ni.rel-pbe-nd-rrkjus.UPF0000644000700200004540000616425712053145632020071 0ustar marsamoscm Generated using "atomic" code by A. Dal Corso (espresso distribution) Author: anonymous Generation date: 2Sep2007 Ni 2 The Pseudo was generated with a Fully-Relativistic Calculation -1 1.7000000E+00 L component and cutoff radius for Local Potential nl pn l occ Rcut Rcut US E pseu 4S 1 0 1.00 2.00000000000 2.50000000000 -0.33011621065 4S 1 0 0.00 2.00000000000 2.50000000000 0.10000000000 4P 2 1 0.00 2.40000000000 2.60000000000 -0.05696910468 4P 2 1 0.00 2.40000000000 2.60000000000 0.30000000000 4P 2 1 0.00 2.40000000000 2.60000000000 -0.05454257888 4P 2 1 0.00 2.40000000000 2.60000000000 0.30000000000 3D 3 2 4.00 1.60000000000 2.50000000000 -0.35045629533 3D 3 2 0.00 1.60000000000 2.50000000000 -0.25000000000 3D 3 2 5.00 1.60000000000 2.50000000000 -0.33442538620 3D 3 2 0.00 1.60000000000 2.50000000000 -0.25000000000 0 Version Number Ni Element US Ultrasoft pseudopotential T Nonlinear Core Correction SLA PW PBX PBC PBE Exchange-Correlation functional 10.00000000000 Z valence -90.30524855311 Total energy 23.557 371.902 Suggested cutoff for wfc and rho 2 Max angular momentum component 1195 Number of points in mesh 3 10 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 3D 2 4.00 3D 2 5.00 4S 0 1.00 3.25672130555E-05 3.29768581668E-05 3.33916559792E-05 3.38116713058E-05 3.42369697748E-05 3.46676178400E-05 3.51036827910E-05 3.55452327639E-05 3.59923367517E-05 3.64450646154E-05 3.69034870946E-05 3.73676758187E-05 3.78377033181E-05 3.83136430357E-05 3.87955693380E-05 3.92835575269E-05 3.97776838516E-05 4.02780255203E-05 4.07846607125E-05 4.12976685909E-05 4.18171293140E-05 4.23431240486E-05 4.28757349825E-05 4.34150453373E-05 4.39611393812E-05 4.45141024426E-05 4.50740209230E-05 4.56409823109E-05 4.62150751952E-05 4.67963892790E-05 4.73850153938E-05 4.79810455137E-05 4.85845727696E-05 4.91956914638E-05 4.98144970849E-05 5.04410863225E-05 5.10755570824E-05 5.17180085021E-05 5.23685409658E-05 5.30272561206E-05 5.36942568921E-05 5.43696475004E-05 5.50535334767E-05 5.57460216797E-05 5.64472203120E-05 5.71572389373E-05 5.78761884975E-05 5.86041813298E-05 5.93413311848E-05 6.00877532434E-05 6.08435641358E-05 6.16088819588E-05 6.23838262950E-05 6.31685182310E-05 6.39630803765E-05 6.47676368834E-05 6.55823134653E-05 6.64072374172E-05 6.72425376350E-05 6.80883446361E-05 6.89447905796E-05 6.98120092868E-05 7.06901362626E-05 7.15793087160E-05 7.24796655820E-05 7.33913475432E-05 7.43144970518E-05 7.52492583517E-05 7.61957775013E-05 7.71542023962E-05 7.81246827922E-05 7.91073703289E-05 8.01024185531E-05 8.11099829431E-05 8.21302209330E-05 8.31632919371E-05 8.42093573747E-05 8.52685806957E-05 8.63411274059E-05 8.74271650929E-05 8.85268634524E-05 8.96403943143E-05 9.07679316703E-05 9.19096517003E-05 9.30657328003E-05 9.42363556104E-05 9.54217030428E-05 9.66219603105E-05 9.78373149560E-05 9.90679568811E-05 1.00314078376E-04 1.01575874150E-04 1.02853541360E-04 1.04147279646E-04 1.05457291156E-04 1.06783780583E-04 1.08126955192E-04 1.09487024858E-04 1.10864202095E-04 1.12258702088E-04 1.13670742732E-04 1.15100544662E-04 1.16548331285E-04 1.18014328822E-04 1.19498766338E-04 1.21001875780E-04 1.22523892011E-04 1.24065052849E-04 1.25625599104E-04 1.27205774615E-04 1.28805826286E-04 1.30426004130E-04 1.32066561303E-04 1.33727754144E-04 1.35409842220E-04 1.37113088358E-04 1.38837758696E-04 1.40584122715E-04 1.42352453290E-04 1.44143026726E-04 1.45956122802E-04 1.47792024820E-04 1.49651019642E-04 1.51533397741E-04 1.53439453241E-04 1.55369483968E-04 1.57323791493E-04 1.59302681181E-04 1.61306462236E-04 1.63335447755E-04 1.65389954769E-04 1.67470304300E-04 1.69576821408E-04 1.71709835238E-04 1.73869679080E-04 1.76056690412E-04 1.78271210961E-04 1.80513586749E-04 1.82784168153E-04 1.85083309954E-04 1.87411371399E-04 1.89768716253E-04 1.92155712854E-04 1.94572734176E-04 1.97020157884E-04 1.99498366393E-04 2.02007746927E-04 2.04548691582E-04 2.07121597387E-04 2.09726866363E-04 2.12364905588E-04 2.15036127262E-04 2.17740948768E-04 2.20479792741E-04 2.23253087130E-04 2.26061265267E-04 2.28904765938E-04 2.31784033443E-04 2.34699517676E-04 2.37651674186E-04 2.40640964253E-04 2.43667854961E-04 2.46732819266E-04 2.49836336077E-04 2.52978890323E-04 2.56160973036E-04 2.59383081422E-04 2.62645718942E-04 2.65949395390E-04 2.69294626972E-04 2.72681936388E-04 2.76111852911E-04 2.79584912472E-04 2.83101657745E-04 2.86662638228E-04 2.90268410332E-04 2.93919537465E-04 2.97616590124E-04 3.01360145980E-04 3.05150789973E-04 3.08989114397E-04 3.12875718999E-04 3.16811211069E-04 3.20796205535E-04 3.24831325061E-04 3.28917200142E-04 3.33054469205E-04 3.37243778706E-04 3.41485783234E-04 3.45781145610E-04 3.50130536994E-04 3.54534636986E-04 3.58994133737E-04 3.63509724051E-04 3.68082113500E-04 3.72712016528E-04 3.77400156566E-04 3.82147266147E-04 3.86954087016E-04 3.91821370248E-04 3.96749876366E-04 4.01740375459E-04 4.06793647304E-04 4.11910481484E-04 4.17091677514E-04 4.22338044968E-04 4.27650403600E-04 4.33029583478E-04 4.38476425110E-04 4.43991779575E-04 4.49576508658E-04 4.55231484986E-04 4.60957592160E-04 4.66755724895E-04 4.72626789162E-04 4.78571702326E-04 4.84591393293E-04 4.90686802650E-04 4.96858882819E-04 5.03108598199E-04 5.09436925321E-04 5.15844853000E-04 5.22333382486E-04 5.28903527625E-04 5.35556315017E-04 5.42292784173E-04 5.49113987679E-04 5.56020991364E-04 5.63014874459E-04 5.70096729774E-04 5.77267663863E-04 5.84528797199E-04 5.91881264349E-04 5.99326214150E-04 6.06864809892E-04 6.14498229495E-04 6.22227665696E-04 6.30054326236E-04 6.37979434047E-04 6.46004227442E-04 6.54129960312E-04 6.62357902319E-04 6.70689339096E-04 6.79125572447E-04 6.87667920550E-04 6.96317718164E-04 7.05076316839E-04 7.13945085123E-04 7.22925408779E-04 7.32018691001E-04 7.41226352632E-04 7.50549832389E-04 7.59990587085E-04 7.69550091856E-04 7.79229840394E-04 7.89031345181E-04 7.98956137720E-04 8.09005768782E-04 8.19181808640E-04 8.29485847323E-04 8.39919494857E-04 8.50484381522E-04 8.61182158101E-04 8.72014496144E-04 8.82983088226E-04 8.94089648213E-04 9.05335911526E-04 9.16723635417E-04 9.28254599241E-04 9.39930604735E-04 9.51753476298E-04 9.63725061279E-04 9.75847230260E-04 9.88121877357E-04 1.00055092051E-03 1.01313630178E-03 1.02587998765E-03 1.03878396936E-03 1.05185026318E-03 1.06508091075E-03 1.07847797937E-03 1.09204356237E-03 1.10577977940E-03 1.11968877677E-03 1.13377272779E-03 1.14803383310E-03 1.16247432104E-03 1.17709644795E-03 1.19190249858E-03 1.20689478640E-03 1.22207565399E-03 1.23744747338E-03 1.25301264646E-03 1.26877360531E-03 1.28473281262E-03 1.30089276205E-03 1.31725597862E-03 1.33382501911E-03 1.35060247248E-03 1.36759096023E-03 1.38479313685E-03 1.40221169021E-03 1.41984934201E-03 1.43770884815E-03 1.45579299923E-03 1.47410462092E-03 1.49264657446E-03 1.51142175707E-03 1.53043310239E-03 1.54968358101E-03 1.56917620084E-03 1.58891400764E-03 1.60890008548E-03 1.62913755724E-03 1.64962958506E-03 1.67037937086E-03 1.69139015683E-03 1.71266522595E-03 1.73420790250E-03 1.75602155256E-03 1.77810958457E-03 1.80047544981E-03 1.82312264301E-03 1.84605470282E-03 1.86927521244E-03 1.89278780012E-03 1.91659613974E-03 1.94070395141E-03 1.96511500201E-03 1.98983310584E-03 2.01486212513E-03 2.04020597074E-03 2.06586860267E-03 2.09185403078E-03 2.11816631534E-03 2.14480956769E-03 2.17178795090E-03 2.19910568040E-03 2.22676702463E-03 2.25477630574E-03 2.28313790024E-03 2.31185623968E-03 2.34093581136E-03 2.37038115902E-03 2.40019688356E-03 2.43038764375E-03 2.46095815695E-03 2.49191319987E-03 2.52325760930E-03 2.55499628286E-03 2.58713417979E-03 2.61967632170E-03 2.65262779337E-03 2.68599374352E-03 2.71977938566E-03 2.75398999887E-03 2.78863092861E-03 2.82370758761E-03 2.85922545667E-03 2.89519008552E-03 2.93160709371E-03 2.96848217148E-03 3.00582108062E-03 3.04362965542E-03 3.08191380355E-03 3.12067950698E-03 3.15993282293E-03 3.19967988482E-03 3.23992690319E-03 3.28068016674E-03 3.32194604324E-03 3.36373098056E-03 3.40604150770E-03 3.44888423575E-03 3.49226585898E-03 3.53619315585E-03 3.58067299010E-03 3.62571231179E-03 3.67131815840E-03 3.71749765595E-03 3.76425802007E-03 3.81160655716E-03 3.85955066553E-03 3.90809783654E-03 3.95725565580E-03 4.00703180430E-03 4.05743405967E-03 4.10847029737E-03 4.16014849191E-03 4.21247671812E-03 4.26546315238E-03 4.31911607394E-03 4.37344386618E-03 4.42845501791E-03 4.48415812476E-03 4.54056189043E-03 4.59767512814E-03 4.65550676193E-03 4.71406582814E-03 4.77336147672E-03 4.83340297274E-03 4.89419969781E-03 4.95576115153E-03 5.01809695303E-03 5.08121684238E-03 5.14513068219E-03 5.20984845915E-03 5.27538028553E-03 5.34173640081E-03 5.40892717327E-03 5.47696310160E-03 5.54585481657E-03 5.61561308263E-03 5.68624879966E-03 5.75777300463E-03 5.83019687336E-03 5.90353172220E-03 5.97778900989E-03 6.05298033927E-03 6.12911745914E-03 6.20621226609E-03 6.28427680633E-03 6.36332327760E-03 6.44336403109E-03 6.52441157331E-03 6.60647856812E-03 6.68957783864E-03 6.77372236931E-03 6.85892530788E-03 6.94519996749E-03 7.03255982872E-03 7.12101854173E-03 7.21058992838E-03 7.30128798437E-03 7.39312688147E-03 7.48612096968E-03 7.58028477953E-03 7.67563302429E-03 7.77218060233E-03 7.86994259940E-03 7.96893429102E-03 8.06917114483E-03 8.17066882304E-03 8.27344318489E-03 8.37751028906E-03 8.48288639627E-03 8.58958797173E-03 8.69763168778E-03 8.80703442649E-03 8.91781328224E-03 9.02998556446E-03 9.14356880029E-03 9.25858073735E-03 9.37503934649E-03 9.49296282460E-03 9.61236959747E-03 9.73327832264E-03 9.85570789236E-03 9.97967743648E-03 1.01052063255E-02 1.02323141736E-02 1.03610208416E-02 1.04913464401E-02 1.06233113329E-02 1.07569361397E-02 1.08922417397E-02 1.10292492746E-02 1.11679801521E-02 1.13084560493E-02 1.14506989157E-02 1.15947309771E-02 1.17405747388E-02 1.18882529892E-02 1.20377888033E-02 1.21892055465E-02 1.23425268777E-02 1.24977767540E-02 1.26549794332E-02 1.28141594788E-02 1.29753417628E-02 1.31385514704E-02 1.33038141034E-02 1.34711554844E-02 1.36406017609E-02 1.38121794091E-02 1.39859152385E-02 1.41618363955E-02 1.43399703684E-02 1.45203449907E-02 1.47029884466E-02 1.48879292742E-02 1.50751963711E-02 1.52648189982E-02 1.54568267842E-02 1.56512497309E-02 1.58481182172E-02 1.60474630042E-02 1.62493152399E-02 1.64537064642E-02 1.66606686137E-02 1.68702340265E-02 1.70824354476E-02 1.72973060341E-02 1.75148793599E-02 1.77351894211E-02 1.79582706418E-02 1.81841578788E-02 1.84128864275E-02 1.86444920272E-02 1.88790108666E-02 1.91164795900E-02 1.93569353021E-02 1.96004155748E-02 1.98469584523E-02 2.00966024574E-02 2.03493865975E-02 2.06053503707E-02 2.08645337718E-02 2.11269772988E-02 2.13927219590E-02 2.16618092755E-02 2.19342812937E-02 2.22101805880E-02 2.24895502683E-02 2.27724339865E-02 2.30588759439E-02 2.33489208975E-02 2.36426141675E-02 2.39400016441E-02 2.42411297947E-02 2.45460456711E-02 2.48547969171E-02 2.51674317757E-02 2.54839990967E-02 2.58045483444E-02 2.61291296052E-02 2.64577935958E-02 2.67905916704E-02 2.71275758295E-02 2.74687987274E-02 2.78143136811E-02 2.81641746779E-02 2.85184363843E-02 2.88771541543E-02 2.92403840385E-02 2.96081827922E-02 2.99806078846E-02 3.03577175080E-02 3.07395705866E-02 3.11262267856E-02 3.15177465209E-02 3.19141909682E-02 3.23156220727E-02 3.27221025590E-02 3.31336959403E-02 3.35504665291E-02 3.39724794465E-02 3.43998006329E-02 3.48324968582E-02 3.52706357319E-02 3.57142857143E-02 3.61635161265E-02 3.66183971616E-02 3.70789998958E-02 3.75453962991E-02 3.80176592471E-02 3.84958625316E-02 3.89800808730E-02 3.94703899313E-02 3.99668663183E-02 4.04695876095E-02 4.09786323561E-02 4.14940800974E-02 4.20160113732E-02 4.25445077362E-02 4.30796517650E-02 4.36215270771E-02 4.41702183416E-02 4.47258112926E-02 4.52883927425E-02 4.58580505960E-02 4.64348738632E-02 4.70189526738E-02 4.76103782915E-02 4.82092431277E-02 4.88156407562E-02 4.94296659279E-02 5.00514145854E-02 5.06809838783E-02 5.13184721781E-02 5.19639790935E-02 5.26176054864E-02 5.32794534872E-02 5.39496265110E-02 5.46282292737E-02 5.53153678084E-02 5.60111494818E-02 5.67156830113E-02 5.74290784816E-02 5.81514473623E-02 5.88829025250E-02 5.96235582610E-02 6.03735302993E-02 6.11329358245E-02 6.19018934953E-02 6.26805234629E-02 6.34689473898E-02 6.42672884689E-02 6.50756714425E-02 6.58942226222E-02 6.67230699083E-02 6.75623428098E-02 6.84121724648E-02 6.92726916609E-02 7.01440348561E-02 7.10263381994E-02 7.19197395525E-02 7.28243785113E-02 7.37403964274E-02 7.46679364304E-02 7.56071434505E-02 7.65581642405E-02 7.75211473994E-02 7.84962433953E-02 7.94836045890E-02 8.04833852576E-02 8.14957416189E-02 8.25208318556E-02 8.35588161402E-02 8.46098566598E-02 8.56741176417E-02 8.67517653787E-02 8.78429682556E-02 8.89478967750E-02 9.00667235842E-02 9.11996235022E-02 9.23467735470E-02 9.35083529630E-02 9.46845432494E-02 9.58755281883E-02 9.70814938735E-02 9.83026287397E-02 9.95391235916E-02 1.00791171634E-01 1.02058968502E-01 1.03342712292E-01 1.04642603590E-01 1.05958845509E-01 1.07291643712E-01 1.08641206454E-01 1.10007744604E-01 1.11391471689E-01 1.12792603917E-01 1.14211360220E-01 1.15647962280E-01 1.17102634569E-01 1.18575604383E-01 1.20067101877E-01 1.21577360100E-01 1.23106615032E-01 1.24655105624E-01 1.26223073829E-01 1.27810764646E-01 1.29418426156E-01 1.31046309558E-01 1.32694669212E-01 1.34363762679E-01 1.36053850756E-01 1.37765197525E-01 1.39498070386E-01 1.41252740104E-01 1.43029480851E-01 1.44828570244E-01 1.46650289397E-01 1.48494922956E-01 1.50362759148E-01 1.52254089827E-01 1.54169210518E-01 1.56108420462E-01 1.58072022664E-01 1.60060323941E-01 1.62073634969E-01 1.64112270332E-01 1.66176548572E-01 1.68266792235E-01 1.70383327927E-01 1.72526486361E-01 1.74696602409E-01 1.76894015157E-01 1.79119067954E-01 1.81372108471E-01 1.83653488748E-01 1.85963565256E-01 1.88302698950E-01 1.90671255324E-01 1.93069604469E-01 1.95498121133E-01 1.97957184776E-01 2.00447179632E-01 2.02968494767E-01 2.05521524143E-01 2.08106666675E-01 2.10724326297E-01 2.13374912024E-01 2.16058838015E-01 2.18776523639E-01 2.21528393539E-01 2.24314877702E-01 2.27136411521E-01 2.29993435867E-01 2.32886397155E-01 2.35815747416E-01 2.38781944367E-01 2.41785451483E-01 2.44826738068E-01 2.47906279328E-01 2.51024556450E-01 2.54182056668E-01 2.57379273351E-01 2.60616706068E-01 2.63894860676E-01 2.67214249393E-01 2.70575390880E-01 2.73978810322E-01 2.77425039511E-01 2.80914616927E-01 2.84448087823E-01 2.88026004311E-01 2.91648925449E-01 2.95317417324E-01 2.99032053147E-01 3.02793413337E-01 3.06602085613E-01 3.10458665090E-01 3.14363754364E-01 3.18317963614E-01 3.22321910694E-01 3.26376221228E-01 3.30481528711E-01 3.34638474605E-01 3.38847708441E-01 3.43109887922E-01 3.47425679020E-01 3.51795756088E-01 3.56220801958E-01 3.60701508053E-01 3.65238574493E-01 3.69832710203E-01 3.74484633026E-01 3.79195069835E-01 3.83964756646E-01 3.88794438730E-01 3.93684870737E-01 3.98636816806E-01 4.03651050689E-01 4.08728355869E-01 4.13869525687E-01 4.19075363460E-01 4.24346682611E-01 4.29684306794E-01 4.35089070025E-01 4.40561816808E-01 4.46103402272E-01 4.51714692299E-01 4.57396563667E-01 4.63149904177E-01 4.68975612803E-01 4.74874599823E-01 4.80847786964E-01 4.86896107551E-01 4.93020506645E-01 4.99221941197E-01 5.05501380192E-01 5.11859804806E-01 5.18298208557E-01 5.24817597457E-01 5.31418990174E-01 5.38103418190E-01 5.44871925959E-01 5.51725571076E-01 5.58665424435E-01 5.65692570404E-01 5.72808106988E-01 5.80013146004E-01 5.87308813253E-01 5.94696248700E-01 6.02176606646E-01 6.09751055912E-01 6.17420780020E-01 6.25186977382E-01 6.33050861481E-01 6.41013661065E-01 6.49076620337E-01 6.57240999152E-01 6.65508073211E-01 6.73879134259E-01 6.82355490294E-01 6.90938465762E-01 6.99629401771E-01 7.08429656298E-01 7.17340604400E-01 7.26363638430E-01 7.35500168257E-01 7.44751621482E-01 7.54119443662E-01 7.63605098540E-01 7.73210068268E-01 7.82935853643E-01 7.92783974337E-01 8.02755969141E-01 8.12853396197E-01 8.23077833251E-01 8.33430877891E-01 8.43914147801E-01 8.54529281013E-01 8.65277936165E-01 8.76161792754E-01 8.87182551406E-01 8.98341934136E-01 9.09641684622E-01 9.21083568471E-01 9.32669373502E-01 9.44400910020E-01 9.56280011102E-01 9.68308532881E-01 9.80488354838E-01 9.92821380095E-01 1.00530953571E+00 1.01795477299E+00 1.03075906777E+00 1.04372442076E+00 1.05685285781E+00 1.07014643026E+00 1.08360721528E+00 1.09723731613E+00 1.11103886253E+00 1.12501401103E+00 1.13916494525E+00 1.15349387631E+00 1.16800304313E+00 1.18269471281E+00 1.19757118094E+00 1.21263477201E+00 1.22788783973E+00 1.24333276741E+00 1.25897196838E+00 1.27480788627E+00 1.29084299549E+00 1.30707980156E+00 1.32352084150E+00 1.34016868427E+00 1.35702593112E+00 1.37409521604E+00 1.39137920612E+00 1.40888060204E+00 1.42660213842E+00 1.44454658429E+00 1.46271674350E+00 1.48111545517E+00 1.49974559415E+00 1.51861007143E+00 1.53771183462E+00 1.55705386842E+00 1.57663919505E+00 1.59647087476E+00 1.61655200629E+00 1.63688572737E+00 1.65747521517E+00 1.67832368684E+00 1.69943440001E+00 1.72081065325E+00 1.74245578667E+00 1.76437318234E+00 1.78656626491E+00 1.80903850210E+00 1.83179340524E+00 1.85483452982E+00 1.87816547606E+00 1.90178988949E+00 1.92571146146E+00 1.94993392976E+00 1.97446107920E+00 1.99929674220E+00 2.02444479939E+00 2.04990918019E+00 2.07569386348E+00 2.10180287816E+00 2.12824030381E+00 2.15501027133E+00 2.18211696360E+00 2.20956461608E+00 2.23735751753E+00 2.26550001065E+00 2.29399649275E+00 2.32285141646E+00 2.35206929044E+00 2.38165468003E+00 2.41161220801E+00 2.44194655531E+00 2.47266246172E+00 2.50376472667E+00 2.53525820995E+00 2.56714783249E+00 2.59943857710E+00 2.63213548927E+00 2.66524367797E+00 2.69876831642E+00 2.73271464291E+00 2.76708796162E+00 2.80189364345E+00 2.83713712687E+00 2.87282391873E+00 2.90895959518E+00 2.94554980248E+00 2.98260025793E+00 3.02011675074E+00 3.05810514294E+00 3.09657137028E+00 3.13552144321E+00 3.17496144773E+00 3.21489754645E+00 3.25533597944E+00 3.29628306531E+00 3.33774520211E+00 3.37972886839E+00 3.42224062418E+00 3.46528711203E+00 3.50887505805E+00 3.55301127293E+00 3.59770265305E+00 3.64295618152E+00 3.68877892932E+00 3.73517805633E+00 3.78216081250E+00 3.82973453900E+00 3.87790666931E+00 3.92668473043E+00 3.97607634403E+00 4.02608922765E+00 4.07673119589E+00 4.12801016169E+00 4.17993413746E+00 4.23251123645E+00 4.28574967394E+00 4.33965776853E+00 4.39424394347E+00 4.44951672797E+00 4.50548475851E+00 4.56215678022E+00 4.61954164820E+00 4.67764832896E+00 4.73648590179E+00 4.79606356018E+00 4.85639061325E+00 4.91747648724E+00 4.97933072694E+00 5.04196299720E+00 5.10538308443E+00 5.16960089815E+00 5.23462647253E+00 5.30046996795E+00 5.36714167258E+00 5.43465200402E+00 5.50301151090E+00 5.57223087451E+00 5.64232091054E+00 5.71329257069E+00 5.78515694443E+00 5.85792526071E+00 5.93160888973E+00 6.00621934471E+00 6.08176828368E+00 6.15826751132E+00 6.23572898078E+00 6.31416479559E+00 6.39358721149E+00 6.47400863840E+00 6.55544164233E+00 6.63789894736E+00 6.72139343760E+00 6.80593815924E+00 6.89154632256E+00 6.97823130402E+00 7.06600664832E+00 7.15488607053E+00 7.24488345825E+00 7.33601287374E+00 7.42828855618E+00 7.52172492381E+00 7.61633657627E+00 7.71213829681E+00 7.80914505465E+00 7.90737200729E+00 8.00683450290E+00 8.10754808269E+00 8.20952848336E+00 8.31279163956E+00 8.41735368636E+00 8.52323096181E+00 8.63044000943E+00 8.73899758087E+00 8.84892063845E+00 8.96022635789E+00 9.07293213092E+00 9.18705556806E+00 9.30261450133E+00 9.41962698703E+00 9.53811130862E+00 9.65808597951E+00 9.77956974597E+00 9.90258159011E+00 1.00271407328E+01 1.01532666366E+01 1.02809790089E+01 1.04102978052E+01 1.05412432317E+01 1.06738357488E+01 1.08080960745E+01 1.09440451873E+01 1.10817043293E+01 1.12210950102E+01 1.13622390100E+01 1.15051583828E+01 1.16498754600E+01 1.17964128539E+01 1.19447934614E+01 1.20950404671E+01 1.22471773475E+01 1.24012278742E+01 1.25572161181E+01 1.27151664525E+01 1.28751035576E+01 1.30370524238E+01 1.32010383559E+01 1.33670869772E+01 1.35352242329E+01 1.37054763950E+01 1.38778700657E+01 1.40524321818E+01 1.42291900191E+01 1.44081711962E+01 1.45894036793E+01 1.47729157865E+01 1.49587361919E+01 1.51468939302E+01 1.53374184015E+01 1.55303393756E+01 1.57256869968E+01 1.59234917887E+01 1.61237846585E+01 1.63265969025E+01 1.65319602104E+01 1.67399066708E+01 1.69504687757E+01 1.71636794257E+01 1.73795719357E+01 1.75981800390E+01 1.78195378939E+01 1.80436800877E+01 1.82706416433E+01 1.85004580239E+01 1.87331651386E+01 1.89687993485E+01 1.92073974719E+01 1.94489967902E+01 1.96936350539E+01 1.99413504880E+01 2.01921817988E+01 2.04461681791E+01 2.07033493147E+01 2.09637653908E+01 2.12274570979E+01 2.14944656383E+01 2.17648327327E+01 2.20386006265E+01 2.23158120965E+01 2.25965104576E+01 2.28807395694E+01 2.31685438432E+01 2.34599682492E+01 2.37550583230E+01 2.40538601730E+01 2.43564204875E+01 2.46627865423E+01 2.49730062077E+01 2.52871279561E+01 2.56052008697E+01 2.59272746480E+01 2.62533996158E+01 2.65836267306E+01 2.69180075912E+01 2.72565944453E+01 2.75994401977E+01 2.79465984188E+01 2.82981233527E+01 2.86540699260E+01 2.90144937560E+01 2.93794511597E+01 2.97489991624E+01 3.01231955067E+01 3.05020986616E+01 3.08857678316E+01 3.12742629655E+01 3.16676447667E+01 3.20659747018E+01 3.24693150107E+01 3.28777287161E+01 3.32912796335E+01 3.37100323811E+01 3.41340523899E+01 3.45634059137E+01 3.49981600401E+01 3.54383827002E+01 3.58841426797E+01 3.63355096294E+01 3.67925540765E+01 3.72553474350E+01 3.77239620174E+01 3.81984710455E+01 3.86789486625E+01 3.91654699439E+01 3.96581109096E+01 4.01569485359E+01 4.06620607671E+01 4.11735265280E+01 4.16914257362E+01 4.22158393144E+01 4.27468492035E+01 4.32845383747E+01 4.38289908431E+01 4.43802916805E+01 4.49385270288E+01 4.55037841133E+01 4.60761512567E+01 4.66557178925E+01 4.72425745791E+01 4.78368130141E+01 4.84385260484E+01 4.90478077010E+01 4.96647531734E+01 5.02894588645E+01 5.09220223858E+01 5.15625425767E+01 5.22111195198E+01 5.28678545566E+01 5.35328503032E+01 5.42062106666E+01 5.48880408606E+01 5.55784474228E+01 5.62775382304E+01 5.69854225178E+01 5.77022108935E+01 5.84280153570E+01 5.91629493168E+01 5.99071276078E+01 6.06606665093E+01 6.14236837634E+01 6.21962985931E+01 6.29786317210E+01 6.37708053881E+01 6.45729433734E+01 6.53851710125E+01 6.62076152175E+01 6.70404044972E+01 6.78836689764E+01 6.87375404170E+01 6.96021522382E+01 7.04776395372E+01 7.13641391109E+01 7.22617894764E+01 7.31707308936E+01 7.40911053863E+01 7.50230567650E+01 7.59667306490E+01 7.69222744891E+01 7.78898375912E+01 7.88695711388E+01 7.98616282174E+01 8.08661638379E+01 8.18833349610E+01 8.29133005218E+01 8.39562214545E+01 8.50122607176E+01 8.60815833194E+01 8.71643563437E+01 8.82607489761E+01 8.93709325300E+01 9.04950804740E+01 9.16333684584E+01 9.27859743430E+01 9.39530782250E+01 9.51348624665E+01 9.63315117239E+01 9.75432129759E+01 9.87701555535E+01 4.07090163194E-07 4.12210727084E-07 4.17395699740E-07 4.22645891322E-07 4.27962122185E-07 4.33345223000E-07 4.38796034888E-07 4.44315409549E-07 4.49904209397E-07 4.55563307692E-07 4.61293588682E-07 4.67095947733E-07 4.72971291477E-07 4.78920537947E-07 4.84944616725E-07 4.91044469086E-07 4.97221048145E-07 5.03475319004E-07 5.09808258906E-07 5.16220857386E-07 5.22714116425E-07 5.29289050608E-07 5.35946687282E-07 5.42688066716E-07 5.49514242265E-07 5.56426280532E-07 5.63425261538E-07 5.70512278887E-07 5.77688439940E-07 5.84954865987E-07 5.92312692423E-07 5.99763068921E-07 6.07307159620E-07 6.14946143297E-07 6.22681213561E-07 6.30513579031E-07 6.38444463530E-07 6.46475106276E-07 6.54606762073E-07 6.62840701508E-07 6.71178211151E-07 6.79620593755E-07 6.88169168459E-07 6.96825270997E-07 7.05590253900E-07 7.14465486716E-07 7.23452356218E-07 7.32552266623E-07 7.41766639810E-07 7.51096915543E-07 7.60544551698E-07 7.70111024486E-07 7.79797828688E-07 7.89606477888E-07 7.99538504706E-07 8.09595461042E-07 8.19778918316E-07 8.30090467715E-07 8.40531720437E-07 8.51104307951E-07 8.61809882245E-07 8.72650116086E-07 8.83626703283E-07 8.94741358950E-07 9.05995819775E-07 9.17391844290E-07 9.28931213147E-07 9.40615729396E-07 9.52447218767E-07 9.64427529953E-07 9.76558534903E-07 9.88842129111E-07 1.00128023191E-06 1.01387478679E-06 1.02662776166E-06 1.03954114921E-06 1.05261696718E-06 1.06585725870E-06 1.07926409257E-06 1.09283956366E-06 1.10658579315E-06 1.12050492893E-06 1.13459914588E-06 1.14887064625E-06 1.16332166000E-06 1.17795444513E-06 1.19277128804E-06 1.20777450388E-06 1.22296643695E-06 1.23834946101E-06 1.25392597970E-06 1.26969842687E-06 1.28566926700E-06 1.30184099558E-06 1.31821613945E-06 1.33479725728E-06 1.35158693990E-06 1.36858781073E-06 1.38580252618E-06 1.40323377610E-06 1.42088428416E-06 1.43875680827E-06 1.45685414106E-06 1.47517911028E-06 1.49373457923E-06 1.51252344725E-06 1.53154865013E-06 1.55081316061E-06 1.57031998880E-06 1.59007218268E-06 1.61007282858E-06 1.63032505163E-06 1.65083201629E-06 1.67159692681E-06 1.69262302774E-06 1.71391360448E-06 1.73547198369E-06 1.75730153394E-06 1.77940566613E-06 1.80178783407E-06 1.82445153503E-06 1.84740031025E-06 1.87063774553E-06 1.89416747176E-06 1.91799316551E-06 1.94211854960E-06 1.96654739366E-06 1.99128351476E-06 2.01633077795E-06 2.04169309693E-06 2.06737443461E-06 2.09337880376E-06 2.11971026759E-06 2.14637294048E-06 2.17337098850E-06 2.20070863015E-06 2.22839013701E-06 2.25641983437E-06 2.28480210191E-06 2.31354137443E-06 2.34264214249E-06 2.37210895316E-06 2.40194641067E-06 2.43215917720E-06 2.46275197355E-06 2.49372957991E-06 2.52509683659E-06 2.55685864478E-06 2.58901996734E-06 2.62158582954E-06 2.65456131985E-06 2.68795159078E-06 2.72176185961E-06 2.75599740926E-06 2.79066358912E-06 2.82576581584E-06 2.86130957422E-06 2.89730041804E-06 2.93374397095E-06 2.97064592732E-06 3.00801205316E-06 3.04584818701E-06 3.08416024083E-06 3.12295420096E-06 3.16223612904E-06 3.20201216295E-06 3.24228851777E-06 3.28307148678E-06 3.32436744238E-06 3.36618283715E-06 3.40852420485E-06 3.45139816138E-06 3.49481140590E-06 3.53877072182E-06 3.58328297785E-06 3.62835512915E-06 3.67399421831E-06 3.72020737655E-06 3.76700182476E-06 3.81438487466E-06 3.86236392996E-06 3.91094648749E-06 3.96014013836E-06 4.00995256919E-06 4.06039156326E-06 4.11146500177E-06 4.16318086506E-06 4.21554723382E-06 4.26857229042E-06 4.32226432012E-06 4.37663171242E-06 4.43168296233E-06 4.48742667171E-06 4.54387155064E-06 4.60102641875E-06 4.65890020660E-06 4.71750195708E-06 4.77684082684E-06 4.83692608769E-06 4.89776712809E-06 4.95937345457E-06 5.02175469324E-06 5.08492059130E-06 5.14888101855E-06 5.21364596893E-06 5.27922556210E-06 5.34563004500E-06 5.41286979348E-06 5.48095531387E-06 5.54989724468E-06 5.61970635823E-06 5.69039356233E-06 5.76196990200E-06 5.83444656119E-06 5.90783486453E-06 5.98214627908E-06 6.05739241616E-06 6.13358503313E-06 6.21073603524E-06 6.28885747749E-06 6.36796156652E-06 6.44806066249E-06 6.52916728107E-06 6.61129409531E-06 6.69445393771E-06 6.77865980216E-06 6.86392484599E-06 6.95026239205E-06 7.03768593074E-06 7.12620912218E-06 7.21584579829E-06 7.30660996499E-06 7.39851580436E-06 7.49157767688E-06 7.58581012365E-06 7.68122786868E-06 7.77784582120E-06 7.87567907795E-06 7.97474292559E-06 8.07505284303E-06 8.17662450390E-06 8.27947377899E-06 8.38361673870E-06 8.48906965558E-06 8.59584900687E-06 8.70397147705E-06 8.81345396049E-06 8.92431356404E-06 9.03656760973E-06 9.15023363751E-06 9.26532940790E-06 9.38187290487E-06 9.49988233856E-06 9.61937614820E-06 9.74037300493E-06 9.86289181476E-06 9.98695172150E-06 1.01125721098E-05 1.02397726080E-05 1.03685730915E-05 1.04989936857E-05 1.06310547690E-05 1.07647769763E-05 1.09001812018E-05 1.10372886028E-05 1.11761206027E-05 1.13166988941E-05 1.14590454427E-05 1.16031824905E-05 1.17491325592E-05 1.18969184537E-05 1.20465632660E-05 1.21980903783E-05 1.23515234670E-05 1.25068865063E-05 1.26642037722E-05 1.28234998456E-05 1.29847996170E-05 1.31481282898E-05 1.33135113843E-05 1.34809747421E-05 1.36505445296E-05 1.38222472425E-05 1.39961097096E-05 1.41721590974E-05 1.43504229138E-05 1.45309290130E-05 1.47137055994E-05 1.48987812323E-05 1.50861848300E-05 1.52759456749E-05 1.54680934173E-05 1.56626580807E-05 1.58596700664E-05 1.60591601578E-05 1.62611595256E-05 1.64656997327E-05 1.66728127389E-05 1.68825309059E-05 1.70948870028E-05 1.73099142106E-05 1.75276461277E-05 1.77481167751E-05 1.79713606019E-05 1.81974124903E-05 1.84263077615E-05 1.86580821808E-05 1.88927719633E-05 1.91304137799E-05 1.93710447626E-05 1.96147025104E-05 1.98614250955E-05 2.01112510686E-05 2.03642194655E-05 2.06203698133E-05 2.08797421357E-05 2.11423769603E-05 2.14083153244E-05 2.16775987813E-05 2.19502694070E-05 2.22263698071E-05 2.25059431226E-05 2.27890330376E-05 2.30756837853E-05 2.33659401556E-05 2.36598475015E-05 2.39574517468E-05 2.42587993926E-05 2.45639375252E-05 2.48729138230E-05 2.51857765642E-05 2.55025746342E-05 2.58233575334E-05 2.61481753848E-05 2.64770789417E-05 2.68101195961E-05 2.71473493863E-05 2.74888210050E-05 2.78345878079E-05 2.81847038218E-05 2.85392237530E-05 2.88982029960E-05 2.92616976420E-05 2.96297644878E-05 3.00024610445E-05 3.03798455469E-05 3.07619769619E-05 3.11489149984E-05 3.15407201163E-05 3.19374535358E-05 3.23391772474E-05 3.27459540213E-05 3.31578474171E-05 3.35749217940E-05 3.39972423208E-05 3.44248749859E-05 3.48578866077E-05 3.52963448452E-05 3.57403182084E-05 3.61898760690E-05 3.66450886714E-05 3.71060271434E-05 3.75727635077E-05 3.80453706928E-05 3.85239225444E-05 3.90084938372E-05 3.94991602866E-05 3.99959985602E-05 4.04990862899E-05 4.10085020843E-05 4.15243255405E-05 4.20466372570E-05 4.25755188462E-05 4.31110529469E-05 4.36533232372E-05 4.42024144481E-05 4.47584123763E-05 4.53214038974E-05 4.58914769800E-05 4.64687206994E-05 4.70532252508E-05 4.76450819645E-05 4.82443833191E-05 4.88512229568E-05 4.94656956975E-05 5.00878975537E-05 5.07179257459E-05 5.13558787171E-05 5.20018561489E-05 5.26559589765E-05 5.33182894048E-05 5.39889509243E-05 5.46680483272E-05 5.53556877239E-05 5.60519765595E-05 5.67570236304E-05 5.74709391017E-05 5.81938345242E-05 5.89258228517E-05 5.96670184589E-05 6.04175371592E-05 6.11774962226E-05 6.19470143942E-05 6.27262119128E-05 6.35152105297E-05 6.43141335274E-05 6.51231057394E-05 6.59422535691E-05 6.67717050101E-05 6.76115896659E-05 6.84620387701E-05 6.93231852071E-05 7.01951635329E-05 7.10781099958E-05 7.19721625579E-05 7.28774609169E-05 7.37941465275E-05 7.47223626236E-05 7.56622542408E-05 7.66139682393E-05 7.75776533261E-05 7.85534600791E-05 7.95415409700E-05 8.05420503886E-05 8.15551446664E-05 8.25809821015E-05 8.36197229830E-05 8.46715296164E-05 8.57365663486E-05 8.68149995936E-05 8.79069978590E-05 8.90127317717E-05 9.01323741048E-05 9.12660998047E-05 9.24140860184E-05 9.35765121210E-05 9.47535597441E-05 9.59454128036E-05 9.71522575291E-05 9.83742824925E-05 9.96116786377E-05 1.00864639310E-04 1.02133360288E-04 1.03418039811E-04 1.04718878613E-04 1.06036079953E-04 1.07369849647E-04 1.08720396097E-04 1.10087930331E-04 1.11472666028E-04 1.12874819556E-04 1.14294610004E-04 1.15732259217E-04 1.17187991831E-04 1.18662035308E-04 1.20154619968E-04 1.21665979033E-04 1.23196348654E-04 1.24745967956E-04 1.26315079069E-04 1.27903927170E-04 1.29512760519E-04 1.31141830502E-04 1.32791391661E-04 1.34461701747E-04 1.36153021746E-04 1.37865615932E-04 1.39599751901E-04 1.41355700616E-04 1.43133736446E-04 1.44934137214E-04 1.46757184235E-04 1.48603162365E-04 1.50472360042E-04 1.52365069331E-04 1.54281585972E-04 1.56222209425E-04 1.58187242915E-04 1.60176993485E-04 1.62191772035E-04 1.64231893380E-04 1.66297676292E-04 1.68389443555E-04 1.70507522011E-04 1.72652242614E-04 1.74823940481E-04 1.77022954944E-04 1.79249629605E-04 1.81504312384E-04 1.83787355582E-04 1.86099115928E-04 1.88439954639E-04 1.90810237477E-04 1.93210334803E-04 1.95640621636E-04 1.98101477715E-04 2.00593287552E-04 2.03116440499E-04 2.05671330803E-04 2.08258357671E-04 2.10877925331E-04 2.13530443096E-04 2.16216325427E-04 2.18935991998E-04 2.21689867764E-04 2.24478383023E-04 2.27301973486E-04 2.30161080344E-04 2.33056150340E-04 2.35987635833E-04 2.38955994875E-04 2.41961691276E-04 2.45005194685E-04 2.48086980653E-04 2.51207530717E-04 2.54367332469E-04 2.57566879634E-04 2.60806672148E-04 2.64087216235E-04 2.67409024487E-04 2.70772615943E-04 2.74178516171E-04 2.77627257350E-04 2.81119378353E-04 2.84655424831E-04 2.88235949298E-04 2.91861511219E-04 2.95532677094E-04 2.99250020552E-04 3.03014122434E-04 3.06825570889E-04 3.10684961464E-04 3.14592897196E-04 3.18549988708E-04 3.22556854304E-04 3.26614120065E-04 3.30722419947E-04 3.34882395880E-04 3.39094697868E-04 3.43359984093E-04 3.47678921014E-04 3.52052183474E-04 3.56480454803E-04 3.60964426929E-04 3.65504800481E-04 3.70102284902E-04 3.74757598558E-04 3.79471468851E-04 3.84244632333E-04 3.89077834820E-04 3.93971831511E-04 3.98927387102E-04 4.03945275909E-04 4.09026281987E-04 4.14171199254E-04 4.19380831613E-04 4.24655993081E-04 4.29997507911E-04 4.35406210727E-04 4.40882946649E-04 4.46428571429E-04 4.52043951581E-04 4.57729964520E-04 4.63487498697E-04 4.69317453739E-04 4.75220740588E-04 4.81198281645E-04 4.87251010912E-04 4.93379874141E-04 4.99585828979E-04 5.05869845119E-04 5.12232904452E-04 5.18676001218E-04 5.25200142165E-04 5.31806346702E-04 5.38495647063E-04 5.45269088464E-04 5.52127729270E-04 5.59072641157E-04 5.66104909282E-04 5.73225632450E-04 5.80435923290E-04 5.87736908423E-04 5.95129728644E-04 6.02615539096E-04 6.10195509453E-04 6.17870824099E-04 6.25642682318E-04 6.33512298479E-04 6.41480902226E-04 6.49549738669E-04 6.57720068580E-04 6.65993168590E-04 6.74370331387E-04 6.82852865921E-04 6.91442097605E-04 7.00139368522E-04 7.08946037641E-04 7.17863481020E-04 7.26893092029E-04 7.36036281563E-04 7.45294478262E-04 7.54669128741E-04 7.64161697806E-04 7.73773668691E-04 7.83506543286E-04 7.93361842372E-04 8.03341105861E-04 8.13445893031E-04 8.23677782778E-04 8.34038373854E-04 8.44529285122E-04 8.55152155810E-04 8.65908645761E-04 8.76800435701E-04 8.87829227492E-04 8.98996744406E-04 9.10304731391E-04 9.21754955342E-04 9.33349205380E-04 9.45089293131E-04 9.56977053006E-04 9.69014342493E-04 9.81203042442E-04 9.93545057363E-04 1.00604231572E-03 1.01869677024E-03 1.03151039820E-03 1.04448520175E-03 1.05762320825E-03 1.07092647052E-03 1.08439706723E-03 1.09803710320E-03 1.11184870969E-03 1.12583404480E-03 1.13999529378E-03 1.15433466934E-03 1.16885441204E-03 1.18355679062E-03 1.19844410235E-03 1.21351867342E-03 1.22878285925E-03 1.24423904490E-03 1.25988964543E-03 1.27573710628E-03 1.29178390365E-03 1.30803254488E-03 1.32448556886E-03 1.34114554640E-03 1.35801508067E-03 1.37509680755E-03 1.39239339611E-03 1.40990754897E-03 1.42764200275E-03 1.44559952850E-03 1.46378293212E-03 1.48219505479E-03 1.50083877346E-03 1.51971700125E-03 1.53883268790E-03 1.55818882030E-03 1.57778842286E-03 1.59763455808E-03 1.61773032695E-03 1.63807886947E-03 1.65868336515E-03 1.67954703348E-03 1.70067313445E-03 1.72206496906E-03 1.74372587982E-03 1.76565925130E-03 1.78786851063E-03 1.81035712806E-03 1.83312861746E-03 1.85618653694E-03 1.87953448935E-03 1.90317612284E-03 1.92711513148E-03 1.95135525577E-03 1.97590028330E-03 2.00075404926E-03 2.02592043711E-03 2.05140337915E-03 2.07720685715E-03 2.10333490294E-03 2.12979159909E-03 2.15658107951E-03 2.18370753012E-03 2.21117518946E-03 2.23898834943E-03 2.26715135588E-03 2.29566860935E-03 2.32454456571E-03 2.35378373688E-03 2.38339069155E-03 2.41337005587E-03 2.44372651416E-03 2.47446480970E-03 2.50558974540E-03 2.53710618459E-03 2.56901905179E-03 2.60133333344E-03 2.63405407871E-03 2.66718640030E-03 2.70073547518E-03 2.73470654548E-03 2.76910491924E-03 2.80393597128E-03 2.83920514402E-03 2.87491794834E-03 2.91107996443E-03 2.94769684270E-03 2.98477430459E-03 3.02231814354E-03 3.06033422585E-03 3.09882849161E-03 3.13780695562E-03 3.17727570836E-03 3.21724091688E-03 3.25770882585E-03 3.29868575845E-03 3.34017811741E-03 3.38219238600E-03 3.42473512903E-03 3.46781299389E-03 3.51143271158E-03 3.55560109778E-03 3.60032505389E-03 3.64561156811E-03 3.69146771656E-03 3.73790066434E-03 3.78491766671E-03 3.83252607017E-03 3.88073331362E-03 3.92954692955E-03 3.97897454518E-03 4.02902388368E-03 4.07970276535E-03 4.13101910889E-03 4.18298093256E-03 4.23559635552E-03 4.28887359902E-03 4.34282098775E-03 4.39744695109E-03 4.45276002447E-03 4.50876885066E-03 4.56548218116E-03 4.62290887753E-03 4.68105791282E-03 4.73993837294E-03 4.79955945807E-03 4.85993048413E-03 4.92106088422E-03 4.98296021008E-03 5.04563813361E-03 5.10910444836E-03 5.17336907108E-03 5.23844204324E-03 5.30433353263E-03 5.37105383493E-03 5.43861337531E-03 5.50702271010E-03 5.57629252840E-03 5.64643365374E-03 5.71745704583E-03 5.78937380222E-03 5.86219516004E-03 5.93593249778E-03 6.01059733705E-03 6.08620134439E-03 6.16275633307E-03 6.24027426496E-03 6.31876725240E-03 6.39824756008E-03 6.47872760696E-03 6.56021996821E-03 6.64273737718E-03 6.72629272737E-03 6.81089907449E-03 6.89656963845E-03 6.98331780544E-03 7.07115713005E-03 7.16010133735E-03 7.25016432504E-03 7.34136016567E-03 7.43370310875E-03 7.52720758308E-03 7.62188819890E-03 7.71775975025E-03 7.81483721727E-03 7.91313576851E-03 8.01267076331E-03 8.11345775422E-03 8.21551248940E-03 8.31885091513E-03 8.42348917824E-03 8.52944362867E-03 8.63673082203E-03 8.74536752214E-03 8.85537070372E-03 8.96675755499E-03 9.07954548038E-03 9.19375210321E-03 9.30939526852E-03 9.42649304578E-03 9.54506373175E-03 9.66512585335E-03 9.78669817053E-03 9.90979967922E-03 1.00344496143E-02 1.01606674525E-02 1.02884729156E-02 1.04178859736E-02 1.05489268475E-02 1.06816160127E-02 1.08159742021E-02 1.09520224094E-02 1.10897818926E-02 1.12292741767E-02 1.13705210578E-02 1.15135446059E-02 1.16583671688E-02 1.18050113753E-02 1.19535001388E-02 1.21038566610E-02 1.22561044355E-02 1.24102672512E-02 1.25663691964E-02 1.27244346624E-02 1.28844883472E-02 1.30465552595E-02 1.32106607226E-02 1.33768303783E-02 1.35450901910E-02 1.37154664516E-02 1.38879857817E-02 1.40626751378E-02 1.42395618156E-02 1.44186734538E-02 1.46000380392E-02 1.47836839101E-02 1.49696397618E-02 1.51579346501E-02 1.53485979966E-02 1.55416595927E-02 1.57371496047E-02 1.59350985784E-02 1.61355374437E-02 1.63384975195E-02 1.65440105188E-02 1.67521085534E-02 1.69628241390E-02 1.71761902005E-02 1.73922400766E-02 1.76110075255E-02 1.78325267303E-02 1.80568323036E-02 1.82839592937E-02 1.85139431897E-02 1.87468199269E-02 1.89826258929E-02 1.92213979328E-02 1.94631733552E-02 1.97079899381E-02 1.99558859345E-02 2.02069000787E-02 2.04610715921E-02 2.07184401896E-02 2.09790460855E-02 2.12429300001E-02 2.15101331657E-02 2.17806973333E-02 2.20546647793E-02 2.23320783114E-02 2.26129812763E-02 2.28974175654E-02 2.31854316227E-02 2.34770684508E-02 2.37723736186E-02 2.40713932682E-02 2.43741741219E-02 2.46807634900E-02 2.49912092775E-02 2.53055599924E-02 2.56238647524E-02 2.59461732935E-02 2.62725359769E-02 2.66030037976E-02 2.69376283917E-02 2.72764620450E-02 2.76195577011E-02 2.79669689692E-02 2.83187501331E-02 2.86749561593E-02 2.90356427058E-02 2.94008661305E-02 2.97706835004E-02 3.01451526002E-02 3.05243319413E-02 3.09082807715E-02 3.12970590833E-02 3.16907276244E-02 3.20893479061E-02 3.24929822137E-02 3.29016936159E-02 3.33155459746E-02 3.37346039552E-02 3.41589330363E-02 3.45885995202E-02 3.50236705431E-02 3.54642140858E-02 3.59102989841E-02 3.63619949397E-02 3.68193725310E-02 3.72825032241E-02 3.77514593842E-02 3.82263142867E-02 3.87071421285E-02 3.91940180401E-02 3.96870180967E-02 4.01862193306E-02 4.06916997430E-02 4.12035383164E-02 4.17218150264E-02 4.22466108549E-02 4.27780078023E-02 4.33160889004E-02 4.38609382256E-02 4.44126409116E-02 4.49712831631E-02 4.55369522691E-02 4.61097366165E-02 4.66897257041E-02 4.72770101563E-02 4.78716817375E-02 4.84738333664E-02 4.90835591304E-02 4.97009543004E-02 5.03261153456E-02 5.09591399487E-02 5.16001270211E-02 5.22491767183E-02 5.29063904557E-02 5.35718709242E-02 5.42457221066E-02 5.49280492934E-02 5.56189590996E-02 5.63185594814E-02 5.70269597527E-02 5.77442706025E-02 5.84706041120E-02 5.92060737723E-02 5.99507945022E-02 6.07048826657E-02 6.14684560906E-02 6.22416340868E-02 6.30245374649E-02 6.38172885553E-02 6.46200112269E-02 6.54328309066E-02 6.62558745994E-02 6.70892709073E-02 6.79331500503E-02 6.87876438862E-02 6.96528859314E-02 7.05290113818E-02 7.14161571337E-02 7.23144618054E-02 7.32240657589E-02 7.41451111216E-02 7.50777418089E-02 7.60221035460E-02 7.69783438915E-02 7.79466122598E-02 7.89270599448E-02 7.99198401436E-02 8.09251079800E-02 8.19430205291E-02 8.29737368419E-02 8.40174179700E-02 8.50742269905E-02 8.61443290320E-02 8.72278913002E-02 8.83250831040E-02 8.94360758816E-02 9.05610432281E-02 9.17001609218E-02 9.28536069522E-02 9.40215615476E-02 9.52042072033E-02 9.64017287101E-02 9.76143131831E-02 9.88421500912E-02 1.00085431286E-01 1.01344351034E-01 1.02619106042E-01 1.03909895494E-01 1.05216921080E-01 1.06540387023E-01 1.07880500118E-01 1.09237469761E-01 1.10611507981E-01 1.12002829474E-01 1.13411651637E-01 1.14838194601E-01 1.16282681267E-01 1.17745337338E-01 1.19226391358E-01 1.20726074744E-01 1.22244621825E-01 1.23782269876E-01 1.25339259160E-01 1.26915832957E-01 1.28512237612E-01 1.30128722565E-01 1.31765540396E-01 1.33422946860E-01 1.35101200932E-01 1.36800564841E-01 1.38521304116E-01 1.40263687628E-01 1.42027987625E-01 1.43814479785E-01 1.45623443250E-01 1.47455160674E-01 1.49309918267E-01 1.51188005838E-01 1.53089716843E-01 1.55015348428E-01 1.56965201476E-01 1.58939580657E-01 1.60938794470E-01 1.62963155297E-01 1.65012979449E-01 1.67088587214E-01 1.69190302912E-01 1.71318454938E-01 1.73473375821E-01 1.75655402273E-01 1.77864875238E-01 1.80102139952E-01 1.82367545992E-01 1.84661447332E-01 1.86984202398E-01 1.89336174127E-01 1.91717730018E-01 1.94129242195E-01 1.96571087460E-01 1.99043647358E-01 2.01547308231E-01 2.04082461281E-01 2.06649502630E-01 2.09248833385E-01 2.11880859696E-01 2.14545992822E-01 2.17244649196E-01 2.19977250488E-01 2.22744223673E-01 2.25546001097E-01 2.28383020542E-01 2.31255725298E-01 2.34164564233E-01 2.37109991856E-01 2.40092468399E-01 2.43112459878E-01 2.46170438173E-01 2.49266881100E-01 2.52402272485E-01 2.55577102238E-01 2.58791866434E-01 2.62047067385E-01 2.65343213723E-01 2.68680820479E-01 2.72060409159E-01 2.75482507832E-01 2.78947651207E-01 2.82456380720E-01 2.86009244617E-01 2.89606798041E-01 2.93249603116E-01 2.96938229038E-01 3.00673252162E-01 3.04455256094E-01 3.08284831779E-01 3.12162577596E-01 3.16089099451E-01 3.20065010871E-01 3.24090933101E-01 3.28167495197E-01 3.32295334133E-01 3.36475094890E-01 3.40707430566E-01 3.44993002471E-01 3.49332480234E-01 3.53726541909E-01 3.58175874075E-01 3.62681171950E-01 3.67243139496E-01 3.71862489530E-01 3.76539943834E-01 3.81276233271E-01 3.86072097894E-01 3.90928287069E-01 3.95845559584E-01 4.00824683773E-01 4.05866437634E-01 4.10971608951E-01 4.16140995419E-01 4.21375404764E-01 4.26675654873E-01 4.32042573922E-01 4.37477000501E-01 4.42979783752E-01 4.48551783496E-01 4.54193870368E-01 4.59906925956E-01 4.65691842938E-01 4.71549525217E-01 4.77480888069E-01 4.83486858281E-01 4.89568374298E-01 4.95726386370E-01 5.01961856699E-01 5.08275759588E-01 5.14669081600E-01 5.21142821702E-01 5.27697991431E-01 5.34335615044E-01 5.41056729684E-01 5.47862385539E-01 5.54753646007E-01 5.61731587860E-01 5.68797301417E-01 5.75951890709E-01 5.83196473656E-01 5.90532182239E-01 5.97960162676E-01 6.05481575606E-01 6.13097596263E-01 6.20809414667E-01 6.28618235806E-01 6.36525279822E-01 6.44531782209E-01 6.52638993998E-01 6.60848181957E-01 6.69160628790E-01 6.77577633332E-01 6.86100510758E-01 6.94730592784E-01 7.03469227880E-01 7.12317781473E-01 7.21277636169E-01 7.30350191962E-01 7.39536866460E-01 7.48839095097E-01 7.58258331366E-01 7.67796047043E-01 7.77453732414E-01 7.87232896512E-01 7.97135067352E-01 8.07161792168E-01 8.17314637656E-01 8.27595190219E-01 8.38005056215E-01 8.48545862205E-01 8.59219255213E-01 8.70026902977E-01 8.80970494216E-01 8.92051738886E-01 9.03272368455E-01 9.14634136170E-01 9.26138817329E-01 9.37788209563E-01 9.49584133112E-01 9.61528431114E-01 9.73622969890E-01 9.85869639235E-01 9.98270352718E-01 1.01082704797E+00 1.02354168701E+00 1.03641625652E+00 1.04945276818E+00 1.06265325897E+00 1.07601979149E+00 1.08955445430E+00 1.10325936220E+00 1.11713665663E+00 1.13118850592E+00 1.14541710573E+00 1.15982467929E+00 1.17441347781E+00 1.18918578083E+00 1.20414389655E+00 1.21929016220E+00 1.23462694442E+00 4.68109337779E+00 4.68109337778E+00 4.68109337777E+00 4.68109337776E+00 4.68109337775E+00 4.68109337774E+00 4.68109337773E+00 4.68109337772E+00 4.68109337770E+00 4.68109337769E+00 4.68109337768E+00 4.68109337767E+00 4.68109337765E+00 4.68109337764E+00 4.68109337762E+00 4.68109337761E+00 4.68109337760E+00 4.68109337758E+00 4.68109337756E+00 4.68109337755E+00 4.68109337753E+00 4.68109337751E+00 4.68109337750E+00 4.68109337748E+00 4.68109337746E+00 4.68109337744E+00 4.68109337742E+00 4.68109337740E+00 4.68109337738E+00 4.68109337736E+00 4.68109337734E+00 4.68109337732E+00 4.68109337730E+00 4.68109337728E+00 4.68109337725E+00 4.68109337723E+00 4.68109337720E+00 4.68109337718E+00 4.68109337715E+00 4.68109337713E+00 4.68109337710E+00 4.68109337707E+00 4.68109337704E+00 4.68109337701E+00 4.68109337698E+00 4.68109337695E+00 4.68109337692E+00 4.68109337689E+00 4.68109337686E+00 4.68109337682E+00 4.68109337679E+00 4.68109337675E+00 4.68109337672E+00 4.68109337668E+00 4.68109337664E+00 4.68109337660E+00 4.68109337656E+00 4.68109337652E+00 4.68109337648E+00 4.68109337643E+00 4.68109337639E+00 4.68109337634E+00 4.68109337630E+00 4.68109337625E+00 4.68109337620E+00 4.68109337615E+00 4.68109337610E+00 4.68109337604E+00 4.68109337599E+00 4.68109337593E+00 4.68109337587E+00 4.68109337582E+00 4.68109337576E+00 4.68109337569E+00 4.68109337563E+00 4.68109337557E+00 4.68109337550E+00 4.68109337543E+00 4.68109337536E+00 4.68109337529E+00 4.68109337522E+00 4.68109337514E+00 4.68109337506E+00 4.68109337498E+00 4.68109337490E+00 4.68109337482E+00 4.68109337473E+00 4.68109337464E+00 4.68109337455E+00 4.68109337446E+00 4.68109337437E+00 4.68109337427E+00 4.68109337417E+00 4.68109337407E+00 4.68109337397E+00 4.68109337386E+00 4.68109337375E+00 4.68109337364E+00 4.68109337352E+00 4.68109337340E+00 4.68109337328E+00 4.68109337316E+00 4.68109337303E+00 4.68109337290E+00 4.68109337276E+00 4.68109337263E+00 4.68109337248E+00 4.68109337234E+00 4.68109337219E+00 4.68109337204E+00 4.68109337188E+00 4.68109337172E+00 4.68109337156E+00 4.68109337139E+00 4.68109337122E+00 4.68109337104E+00 4.68109337086E+00 4.68109337068E+00 4.68109337049E+00 4.68109337029E+00 4.68109337009E+00 4.68109336989E+00 4.68109336968E+00 4.68109336946E+00 4.68109336924E+00 4.68109336901E+00 4.68109336878E+00 4.68109336854E+00 4.68109336830E+00 4.68109336805E+00 4.68109336779E+00 4.68109336753E+00 4.68109336726E+00 4.68109336698E+00 4.68109336669E+00 4.68109336640E+00 4.68109336610E+00 4.68109336580E+00 4.68109336548E+00 4.68109336516E+00 4.68109336483E+00 4.68109336449E+00 4.68109336415E+00 4.68109336379E+00 4.68109336343E+00 4.68109336305E+00 4.68109336267E+00 4.68109336228E+00 4.68109336187E+00 4.68109336146E+00 4.68109336104E+00 4.68109336060E+00 4.68109336016E+00 4.68109335970E+00 4.68109335923E+00 4.68109335875E+00 4.68109335826E+00 4.68109335775E+00 4.68109335724E+00 4.68109335671E+00 4.68109335616E+00 4.68109335560E+00 4.68109335503E+00 4.68109335445E+00 4.68109335385E+00 4.68109335323E+00 4.68109335260E+00 4.68109335195E+00 4.68109335128E+00 4.68109335060E+00 4.68109334990E+00 4.68109334919E+00 4.68109334845E+00 4.68109334770E+00 4.68109334693E+00 4.68109334614E+00 4.68109334533E+00 4.68109334449E+00 4.68109334364E+00 4.68109334277E+00 4.68109334187E+00 4.68109334095E+00 4.68109334001E+00 4.68109333904E+00 4.68109333805E+00 4.68109333703E+00 4.68109333599E+00 4.68109333492E+00 4.68109333382E+00 4.68109333270E+00 4.68109333155E+00 4.68109333037E+00 4.68109332916E+00 4.68109332792E+00 4.68109332664E+00 4.68109332534E+00 4.68109332400E+00 4.68109332263E+00 4.68109332122E+00 4.68109331978E+00 4.68109331830E+00 4.68109331678E+00 4.68109331523E+00 4.68109331364E+00 4.68109331200E+00 4.68109331033E+00 4.68109330861E+00 4.68109330685E+00 4.68109330504E+00 4.68109330319E+00 4.68109330129E+00 4.68109329934E+00 4.68109329734E+00 4.68109329530E+00 4.68109329320E+00 4.68109329105E+00 4.68109328884E+00 4.68109328658E+00 4.68109328426E+00 4.68109328188E+00 4.68109327944E+00 4.68109327694E+00 4.68109327438E+00 4.68109327175E+00 4.68109326906E+00 4.68109326629E+00 4.68109326346E+00 4.68109326056E+00 4.68109325758E+00 4.68109325453E+00 4.68109325139E+00 4.68109324818E+00 4.68109324489E+00 4.68109324152E+00 4.68109323806E+00 4.68109323451E+00 4.68109323087E+00 4.68109322714E+00 4.68109322332E+00 4.68109321940E+00 4.68109321538E+00 4.68109321126E+00 4.68109320703E+00 4.68109320270E+00 4.68109319825E+00 4.68109319370E+00 4.68109318903E+00 4.68109318424E+00 4.68109317933E+00 4.68109317429E+00 4.68109316913E+00 4.68109316384E+00 4.68109315841E+00 4.68109315285E+00 4.68109314714E+00 4.68109314129E+00 4.68109313530E+00 4.68109312915E+00 4.68109312284E+00 4.68109311638E+00 4.68109310975E+00 4.68109310295E+00 4.68109309598E+00 4.68109308884E+00 4.68109308151E+00 4.68109307400E+00 4.68109306630E+00 4.68109305840E+00 4.68109305031E+00 4.68109304201E+00 4.68109303350E+00 4.68109302477E+00 4.68109301582E+00 4.68109300665E+00 4.68109299724E+00 4.68109298760E+00 4.68109297771E+00 4.68109296757E+00 4.68109295717E+00 4.68109294651E+00 4.68109293558E+00 4.68109292438E+00 4.68109291289E+00 4.68109290111E+00 4.68109288903E+00 4.68109287664E+00 4.68109286395E+00 4.68109285093E+00 4.68109283758E+00 4.68109282389E+00 4.68109280985E+00 4.68109279547E+00 4.68109278071E+00 4.68109276558E+00 4.68109275007E+00 4.68109273417E+00 4.68109271786E+00 4.68109270115E+00 4.68109268400E+00 4.68109266643E+00 4.68109264841E+00 4.68109262993E+00 4.68109261098E+00 4.68109259156E+00 4.68109257164E+00 4.68109255122E+00 4.68109253028E+00 4.68109250881E+00 4.68109248680E+00 4.68109246423E+00 4.68109244109E+00 4.68109241736E+00 4.68109239303E+00 4.68109236808E+00 4.68109234251E+00 4.68109231628E+00 4.68109228939E+00 4.68109226183E+00 4.68109223356E+00 4.68109220457E+00 4.68109217486E+00 4.68109214439E+00 4.68109211314E+00 4.68109208111E+00 4.68109204826E+00 4.68109201459E+00 4.68109198006E+00 4.68109194465E+00 4.68109190835E+00 4.68109187113E+00 4.68109183297E+00 4.68109179383E+00 4.68109175371E+00 4.68109171257E+00 4.68109167039E+00 4.68109162714E+00 4.68109158280E+00 4.68109153733E+00 4.68109149071E+00 4.68109144291E+00 4.68109139390E+00 4.68109134364E+00 4.68109129212E+00 4.68109123928E+00 4.68109118511E+00 4.68109112957E+00 4.68109107261E+00 4.68109101422E+00 4.68109095434E+00 4.68109089295E+00 4.68109083000E+00 4.68109076546E+00 4.68109069928E+00 4.68109063143E+00 4.68109056185E+00 4.68109049051E+00 4.68109041736E+00 4.68109034236E+00 4.68109026546E+00 4.68109018661E+00 4.68109010576E+00 4.68109002286E+00 4.68108993785E+00 4.68108985070E+00 4.68108976133E+00 4.68108966970E+00 4.68108957574E+00 4.68108947940E+00 4.68108938062E+00 4.68108927933E+00 4.68108917548E+00 4.68108906899E+00 4.68108895980E+00 4.68108884784E+00 4.68108873305E+00 4.68108861534E+00 4.68108849464E+00 4.68108837088E+00 4.68108824399E+00 4.68108811387E+00 4.68108798045E+00 4.68108784365E+00 4.68108770337E+00 4.68108755954E+00 4.68108741206E+00 4.68108726083E+00 4.68108710576E+00 4.68108694676E+00 4.68108678372E+00 4.68108661655E+00 4.68108644513E+00 4.68108626935E+00 4.68108608912E+00 4.68108590431E+00 4.68108571480E+00 4.68108552048E+00 4.68108532123E+00 4.68108511691E+00 4.68108490740E+00 4.68108469257E+00 4.68108447229E+00 4.68108424640E+00 4.68108401478E+00 4.68108377727E+00 4.68108353372E+00 4.68108328398E+00 4.68108302789E+00 4.68108276528E+00 4.68108249601E+00 4.68108221988E+00 4.68108193673E+00 4.68108164638E+00 4.68108134864E+00 4.68108104332E+00 4.68108073024E+00 4.68108040919E+00 4.68108007996E+00 4.68107974236E+00 4.68107939616E+00 4.68107904114E+00 4.68107867708E+00 4.68107830375E+00 4.68107792091E+00 4.68107752831E+00 4.68107712571E+00 4.68107671285E+00 4.68107628946E+00 4.68107585527E+00 4.68107541002E+00 4.68107495340E+00 4.68107448514E+00 4.68107400493E+00 4.68107351246E+00 4.68107300743E+00 4.68107248949E+00 4.68107195834E+00 4.68107141361E+00 4.68107085497E+00 4.68107028205E+00 4.68106969449E+00 4.68106909191E+00 4.68106847391E+00 4.68106784011E+00 4.68106719010E+00 4.68106652344E+00 4.68106583972E+00 4.68106513850E+00 4.68106441931E+00 4.68106368170E+00 4.68106292518E+00 4.68106214927E+00 4.68106135345E+00 4.68106053723E+00 4.68105970006E+00 4.68105884139E+00 4.68105796068E+00 4.68105705735E+00 4.68105613080E+00 4.68105518043E+00 4.68105420562E+00 4.68105320574E+00 4.68105218012E+00 4.68105112809E+00 4.68105004896E+00 4.68104894203E+00 4.68104780656E+00 4.68104664180E+00 4.68104544699E+00 4.68104422133E+00 4.68104296401E+00 4.68104167421E+00 4.68104035106E+00 4.68103899368E+00 4.68103760117E+00 4.68103617260E+00 4.68103470702E+00 4.68103320344E+00 4.68103166086E+00 4.68103007825E+00 4.68102845453E+00 4.68102678862E+00 4.68102507940E+00 4.68102332569E+00 4.68102152633E+00 4.68101968008E+00 4.68101778570E+00 4.68101584189E+00 4.68101384732E+00 4.68101180063E+00 4.68100970043E+00 4.68100754526E+00 4.68100533364E+00 4.68100306405E+00 4.68100073492E+00 4.68099834463E+00 4.68099589153E+00 4.68099337390E+00 4.68099078998E+00 4.68098813798E+00 4.68098541602E+00 4.68098262219E+00 4.68097975453E+00 4.68097681100E+00 4.68097378951E+00 4.68097068792E+00 4.68096750401E+00 4.68096423550E+00 4.68096088005E+00 4.68095743525E+00 4.68095389859E+00 4.68095026752E+00 4.68094653941E+00 4.68094271152E+00 4.68093878106E+00 4.68093474515E+00 4.68093060080E+00 4.68092634495E+00 4.68092197445E+00 4.68091748603E+00 4.68091287634E+00 4.68090814191E+00 4.68090327918E+00 4.68089828447E+00 4.68089315398E+00 4.68088788379E+00 4.68088246987E+00 4.68087690805E+00 4.68087119403E+00 4.68086532338E+00 4.68085929151E+00 4.68085309370E+00 4.68084672507E+00 4.68084018059E+00 4.68083345505E+00 4.68082654308E+00 4.68081943915E+00 4.68081213751E+00 4.68080463226E+00 4.68079691727E+00 4.68078898622E+00 4.68078083259E+00 4.68077244963E+00 4.68076383036E+00 4.68075496756E+00 4.68074585377E+00 4.68073648129E+00 4.68072684212E+00 4.68071692803E+00 4.68070673045E+00 4.68069624057E+00 4.68068544922E+00 4.68067434696E+00 4.68066292397E+00 4.68065117012E+00 4.68063907489E+00 4.68062662741E+00 4.68061381640E+00 4.68060063020E+00 4.68058705670E+00 4.68057308337E+00 4.68055869721E+00 4.68054388477E+00 4.68052863208E+00 4.68051292466E+00 4.68049674750E+00 4.68048008503E+00 4.68046292110E+00 4.68044523895E+00 4.68042702119E+00 4.68040824978E+00 4.68038890598E+00 4.68036897036E+00 4.68034842272E+00 4.68032724210E+00 4.68030540672E+00 4.68028289397E+00 4.68025968035E+00 4.68023574145E+00 4.68021105190E+00 4.68018558533E+00 4.68015931434E+00 4.68013221042E+00 4.68010424396E+00 4.68007538413E+00 4.68004559890E+00 4.68001485492E+00 4.67998311752E+00 4.67995035060E+00 4.67991651662E+00 4.67988157649E+00 4.67984548952E+00 4.67980821335E+00 4.67976970389E+00 4.67972991520E+00 4.67968879946E+00 4.67964630684E+00 4.67960238543E+00 4.67955698116E+00 4.67951003769E+00 4.67946149627E+00 4.67941129572E+00 4.67935937223E+00 4.67930565929E+00 4.67925008754E+00 4.67919258468E+00 4.67913307529E+00 4.67907148071E+00 4.67900771890E+00 4.67894170427E+00 4.67887334751E+00 4.67880255546E+00 4.67872923088E+00 4.67865327229E+00 4.67857457377E+00 4.67849302478E+00 4.67840850988E+00 4.67832090859E+00 4.67823009510E+00 4.67813593801E+00 4.67803830015E+00 4.67793703821E+00 4.67783200255E+00 4.67772303683E+00 4.67760997774E+00 4.67749265468E+00 4.67737088940E+00 4.67724449566E+00 4.67711327885E+00 4.67697703559E+00 4.67683555336E+00 4.67668861003E+00 4.67653597343E+00 4.67637740092E+00 4.67621263882E+00 4.67604142199E+00 4.67586347323E+00 4.67567850273E+00 4.67548620752E+00 4.67528627082E+00 4.67507836142E+00 4.67486213298E+00 4.67463722338E+00 4.67440325395E+00 4.67415982869E+00 4.67390653350E+00 4.67364293534E+00 4.67336858133E+00 4.67308299785E+00 4.67278568959E+00 4.67247613851E+00 4.67215380286E+00 4.67181811602E+00 4.67146848541E+00 4.67110429125E+00 4.67072488537E+00 4.67032958987E+00 4.66991769576E+00 4.66948846157E+00 4.66904111186E+00 4.66857483565E+00 4.66808878486E+00 4.66758207257E+00 4.66705377133E+00 4.66650291127E+00 4.66592847826E+00 4.66532941184E+00 4.66470460324E+00 4.66405289316E+00 4.66337306955E+00 4.66266386525E+00 4.66192395557E+00 4.66115195578E+00 4.66034641838E+00 4.65950583047E+00 4.65862861081E+00 4.65771310687E+00 4.65675759179E+00 4.65576026108E+00 4.65471922938E+00 4.65363252697E+00 4.65249809613E+00 4.65131378750E+00 4.65007735616E+00 4.64878645762E+00 4.64743864371E+00 4.64603135822E+00 4.64456193253E+00 4.64302758089E+00 4.64142539578E+00 4.63975234286E+00 4.63800525598E+00 4.63618083184E+00 4.63427562464E+00 4.63228604041E+00 4.63020833130E+00 4.62803858959E+00 4.62577274161E+00 4.62340654145E+00 4.62093556446E+00 4.61835520066E+00 4.61566064789E+00 4.61284690487E+00 4.60990876402E+00 4.60684080418E+00 4.60363738314E+00 4.60029263001E+00 4.59680043747E+00 4.59315445386E+00 4.58934807515E+00 4.58537443681E+00 4.58122640552E+00 4.57689657086E+00 4.57237723685E+00 4.56766041352E+00 4.56273780831E+00 4.55760081758E+00 4.55224051805E+00 4.54664765829E+00 4.54081265024E+00 4.53472556088E+00 4.52837610397E+00 4.52175363194E+00 4.51484712804E+00 4.50764519867E+00 4.50013606602E+00 4.49230756106E+00 4.48414711693E+00 4.47564176275E+00 4.46677811795E+00 4.45754238722E+00 4.44792035608E+00 4.43789738718E+00 4.42745841741E+00 4.41658795590E+00 4.40527008305E+00 4.39348845057E+00 4.38122628276E+00 4.36846637906E+00 4.35519111798E+00 4.34138246258E+00 4.32702196759E+00 4.31209078823E+00 4.29656969106E+00 4.28043906674E+00 4.26367894500E+00 4.24626901199E+00 4.22818863005E+00 4.20941686008E+00 4.18993248680E+00 4.16971404679E+00 4.14873985981E+00 4.12698806321E+00 4.10443664986E+00 4.08106350968E+00 4.05684647478E+00 4.03176336861E+00 4.00579205908E+00 3.97891051585E+00 3.95109687195E+00 3.92232948980E+00 3.89258703173E+00 3.86184853516E+00 3.83009349243E+00 3.79730193540E+00 3.76345452478E+00 3.72853264426E+00 3.69251849934E+00 3.65539522087E+00 3.61714697316E+00 3.57775906650E+00 3.53721807395E+00 3.49551195219E+00 3.45263016603E+00 3.40856381636E+00 3.36330577112E+00 3.31685079879E+00 3.26919570382E+00 3.22033946363E+00 3.17028336615E+00 3.11903114749E+00 3.06658912873E+00 3.01296635090E+00 2.95817470737E+00 2.90222907224E+00 2.84514742400E+00 2.78695096280E+00 2.72766422043E+00 2.66731904824E+00 2.60596996344E+00 2.54368801178E+00 2.48055609996E+00 2.41666728319E+00 2.35212312177E+00 2.28703211217E+00 2.22150819708E+00 2.15566935845E+00 2.08963629641E+00 2.02353119646E+00 1.95747658658E+00 1.89159428489E+00 1.82600443833E+00 1.76082465169E+00 1.69616920600E+00 1.63214836486E+00 1.56886776627E+00 1.50642789782E+00 1.44492365195E+00 1.38444395822E+00 1.32507148887E+00 1.26688243387E+00 1.20994634143E+00 1.15432601973E+00 1.10007749552E+00 1.04725002530E+00 9.95886154598E-01 9.46021820916E-01 8.97686496015E-01 8.50903363219E-01 8.05689525535E-01 7.62056240503E-01 7.20009177861E-01 6.79548696210E-01 6.40670135211E-01 6.03364119695E-01 5.67616872701E-01 5.33410534365E-01 5.00723483880E-01 4.69530662008E-01 4.39803891784E-01 4.11512195308E-01 3.84622104717E-01 3.59097965649E-01 3.34902231711E-01 3.11995748656E-01 2.90338027174E-01 2.69887503378E-01 2.50601786228E-01 2.32437891325E-01 2.15352460655E-01 1.99301967892E-01 1.84242909227E-01 1.70131979612E-01 1.56926234486E-01 1.44583237156E-01 1.33061192080E-01 1.22319064389E-01 1.12316686031E-01 1.03014849017E-01 9.43753862496E-02 8.63612405122E-02 7.89365221781E-02 7.20665562645E-02 6.57179194566E-02 5.98584677440E-02 5.44573553201E-02 4.94850453960E-02 4.49133135767E-02 4.07152444387E-02 3.68652219392E-02 3.33389142667E-02 3.01132537287E-02 2.71664122474E-02 2.44777730139E-02 2.20278988217E-02 1.97984975776E-02 1.77723854568E-02 1.59334481422E-02 1.42666005561E-02 1.27577454658E-02 1.13937313120E-02 1.01623095825E-02 9.05209202199E-03 8.05250794379E-03 7.15376187911E-03 6.34679177571E-03 5.62322793114E-03 4.97535282261E-03 4.39606197255E-03 3.87882596778E-03 3.41765373021E-03 3.00705711837E-03 2.64201692178E-03 2.31795029466E-03 2.03067966040E-03 1.77640310563E-03 1.55166627045E-03 1.35333573078E-03 1.17857385952E-03 1.02481514450E-03 8.89743934410E-04 7.71273577130E-04 6.67526910198E-04 5.76818058222E-04 4.97635488879E-04 4.28626276177E-04 3.68581517678E-04 3.16422850895E-04 2.71190013276E-04 2.32029389843E-04 1.98183492702E-04 1.68981317200E-04 1.43829520390E-04 1.22204368705E-04 1.03644403174E-04 8.77437722214E-05 7.41461839484E-05 6.25394317519E-05 5.26504492680E-05 4.42408527635E-05 3.71029313135E-05 3.10560473269E-05 2.59434121998E-05 2.16292040813E-05 1.79959968933E-05 1.49424718609E-05 1.23813848546E-05 1.02377648239E-05 8.44732049906E-06 6.95503434608E-06 5.71392448774E-06 4.68395693040E-06 3.83109197622E-06 3.12645014411E-06 2.54558427368E-06 2.06784574645E-06 1.67583392801E-06 1.35491901805E-06 1.09282949408E-06 8.79296253066E-07 7.05746397035E-07 5.65040377819E-07 4.51246916022E-07 3.59450745157E-07 2.85588806983E-07 2.26311042955E-07 1.78862393361E-07 1.40983034124E-07 1.10824255163E-07 8.68777175136E-08 6.79161223973E-08 5.29435876328E-08 4.11542582758E-08 3.18978821093E-08 2.46512594002E-08 1.89946327136E-08 1.45922189395E-08 1.11762042069E-08 8.53362505162E-09 6.49564789050E-09 4.92883519540E-09 3.72805226360E-09 2.81072449107E-09 2.11220279433E-09 1.58203537385E-09 1.18097833467E-09 8.78606633004E-10 6.51411155340E-10 4.81288122255E-10 3.54344024416E-10 2.59953447882E-10 1.90018870450E-10 1.38391189768E-10 1.00417704571E-10 7.25907930962E-11 5.22758569512E-11 3.75014279703E-11 2.67978421699E-11 1.90737140628E-11 1.35217181196E-11 9.54700391818E-12 6.71302219105E-12 4.70069070879E-12 3.27773957000E-12 2.27579247681E-12 1.57330276002E-12 1.08290183856E-12 7.42059011202E-13 5.06215583881E-13 3.43759863694E-13 2.32365698371E-13 1.56336501988E-13 1.04687383200E-13 6.97666175132E-14 4.62694010309E-14 3.05355831054E-14 2.00519982354E-14 1.31014960539E-14 8.51664075872E-15 5.50772315224E-15 3.54326841940E-15 2.26743963093E-15 1.44323946111E-15 9.13656588505E-16 5.75228192455E-16 3.60147365744E-16 2.24219426627E-16 1.38799796784E-16 8.54272386508E-17 5.22714874412E-17 3.17953022956E-17 1.92246737696E-17 1.15536935954E-17 6.90106382565E-18 4.09648996663E-18 2.41643552500E-18 1.41635598221E-18 8.24819560764E-19 4.77224916476E-19 2.74295063424E-19 1.56606064433E-19 8.88095290901E-20 5.00190584365E-20 2.79769931057E-20 1.55389309966E-20 8.56963345464E-21 4.69239849239E-21 2.55087004916E-21 1.37665421129E-21 7.37645397412E-22 3.92027916268E-22 2.06115668455E-22 1.07547014315E-22 5.56848309041E-23 2.34094398404E-23 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -2.60680786686E+01 -2.60680786682E+01 -2.60680786679E+01 -2.60680786675E+01 -2.60680786671E+01 -2.60680786668E+01 -2.60680786664E+01 -2.60680786661E+01 -2.60680786657E+01 -2.60680786653E+01 -2.60680786650E+01 -2.60680786646E+01 -2.60680786643E+01 -2.60680786639E+01 -2.60680786635E+01 -2.60680786631E+01 -2.60680786628E+01 -2.60680786624E+01 -2.60680786620E+01 -2.60680786616E+01 -2.60680786612E+01 -2.60680786608E+01 -2.60680786604E+01 -2.60680786600E+01 -2.60680786596E+01 -2.60680786593E+01 -2.60680786590E+01 -2.60680786583E+01 -2.60680786579E+01 -2.60680786576E+01 -2.60680786571E+01 -2.60680786567E+01 -2.60680786561E+01 -2.60680786557E+01 -2.60680786551E+01 -2.60680786547E+01 -2.60680786543E+01 -2.60680786538E+01 -2.60680786531E+01 -2.60680786526E+01 -2.60680786521E+01 -2.60680786516E+01 -2.60680786511E+01 -2.60680786505E+01 -2.60680786500E+01 -2.60680786493E+01 -2.60680786487E+01 -2.60680786480E+01 -2.60680786474E+01 -2.60680786468E+01 -2.60680786462E+01 -2.60680786456E+01 -2.60680786447E+01 -2.60680786440E+01 -2.60680786433E+01 -2.60680786426E+01 -2.60680786419E+01 -2.60680786412E+01 -2.60680786403E+01 -2.60680786394E+01 -2.60680786386E+01 -2.60680786378E+01 -2.60680786370E+01 -2.60680786361E+01 -2.60680786352E+01 -2.60680786343E+01 -2.60680786333E+01 -2.60680786323E+01 -2.60680786313E+01 -2.60680786303E+01 -2.60680786292E+01 -2.60680786282E+01 -2.60680786271E+01 -2.60680786260E+01 -2.60680786249E+01 -2.60680786237E+01 -2.60680786224E+01 -2.60680786211E+01 -2.60680786199E+01 -2.60680786186E+01 -2.60680786173E+01 -2.60680786160E+01 -2.60680786146E+01 -2.60680786132E+01 -2.60680786117E+01 -2.60680786102E+01 -2.60680786086E+01 -2.60680786070E+01 -2.60680786054E+01 -2.60680786038E+01 -2.60680786021E+01 -2.60680786004E+01 -2.60680785986E+01 -2.60680785968E+01 -2.60680785949E+01 -2.60680785930E+01 -2.60680785910E+01 -2.60680785889E+01 -2.60680785869E+01 -2.60680785848E+01 -2.60680785826E+01 -2.60680785804E+01 -2.60680785781E+01 -2.60680785758E+01 -2.60680785734E+01 -2.60680785709E+01 -2.60680785684E+01 -2.60680785659E+01 -2.60680785632E+01 -2.60680785605E+01 -2.60680785577E+01 -2.60680785548E+01 -2.60680785519E+01 -2.60680785489E+01 -2.60680785459E+01 -2.60680785427E+01 -2.60680785395E+01 -2.60680785362E+01 -2.60680785328E+01 -2.60680785293E+01 -2.60680785258E+01 -2.60680785221E+01 -2.60680785184E+01 -2.60680785146E+01 -2.60680785106E+01 -2.60680785065E+01 -2.60680785024E+01 -2.60680784982E+01 -2.60680784938E+01 -2.60680784894E+01 -2.60680784848E+01 -2.60680784801E+01 -2.60680784753E+01 -2.60680784704E+01 -2.60680784653E+01 -2.60680784602E+01 -2.60680784549E+01 -2.60680784494E+01 -2.60680784438E+01 -2.60680784381E+01 -2.60680784323E+01 -2.60680784263E+01 -2.60680784201E+01 -2.60680784138E+01 -2.60680784072E+01 -2.60680784006E+01 -2.60680783938E+01 -2.60680783868E+01 -2.60680783796E+01 -2.60680783723E+01 -2.60680783648E+01 -2.60680783570E+01 -2.60680783491E+01 -2.60680783410E+01 -2.60680783327E+01 -2.60680783242E+01 -2.60680783154E+01 -2.60680783065E+01 -2.60680782973E+01 -2.60680782878E+01 -2.60680782782E+01 -2.60680782683E+01 -2.60680782581E+01 -2.60680782477E+01 -2.60680782370E+01 -2.60680782261E+01 -2.60680782148E+01 -2.60680782033E+01 -2.60680781915E+01 -2.60680781794E+01 -2.60680781669E+01 -2.60680781542E+01 -2.60680781412E+01 -2.60680781278E+01 -2.60680781141E+01 -2.60680781000E+01 -2.60680780856E+01 -2.60680780708E+01 -2.60680780557E+01 -2.60680780401E+01 -2.60680780242E+01 -2.60680780078E+01 -2.60680779911E+01 -2.60680779739E+01 -2.60680779563E+01 -2.60680779383E+01 -2.60680779197E+01 -2.60680779008E+01 -2.60680778813E+01 -2.60680778614E+01 -2.60680778409E+01 -2.60680778199E+01 -2.60680777984E+01 -2.60680777764E+01 -2.60680777537E+01 -2.60680777306E+01 -2.60680777068E+01 -2.60680776824E+01 -2.60680776574E+01 -2.60680776318E+01 -2.60680776055E+01 -2.60680775786E+01 -2.60680775509E+01 -2.60680775226E+01 -2.60680774936E+01 -2.60680774638E+01 -2.60680774333E+01 -2.60680774020E+01 -2.60680773699E+01 -2.60680773370E+01 -2.60680773033E+01 -2.60680772687E+01 -2.60680772333E+01 -2.60680771969E+01 -2.60680771596E+01 -2.60680771214E+01 -2.60680770822E+01 -2.60680770420E+01 -2.60680770008E+01 -2.60680769586E+01 -2.60680769153E+01 -2.60680768709E+01 -2.60680768253E+01 -2.60680767786E+01 -2.60680767308E+01 -2.60680766817E+01 -2.60680766314E+01 -2.60680765798E+01 -2.60680765269E+01 -2.60680764726E+01 -2.60680764170E+01 -2.60680763600E+01 -2.60680763015E+01 -2.60680762416E+01 -2.60680761801E+01 -2.60680761171E+01 -2.60680760525E+01 -2.60680759863E+01 -2.60680759183E+01 -2.60680758487E+01 -2.60680757773E+01 -2.60680757041E+01 -2.60680756290E+01 -2.60680755520E+01 -2.60680754731E+01 -2.60680753922E+01 -2.60680753092E+01 -2.60680752242E+01 -2.60680751369E+01 -2.60680750475E+01 -2.60680749558E+01 -2.60680748618E+01 -2.60680747654E+01 -2.60680746666E+01 -2.60680745653E+01 -2.60680744614E+01 -2.60680743548E+01 -2.60680742456E+01 -2.60680741336E+01 -2.60680740188E+01 -2.60680739010E+01 -2.60680737803E+01 -2.60680736565E+01 -2.60680735296E+01 -2.60680733995E+01 -2.60680732661E+01 -2.60680731293E+01 -2.60680729891E+01 -2.60680728453E+01 -2.60680726978E+01 -2.60680725467E+01 -2.60680723917E+01 -2.60680722328E+01 -2.60680720698E+01 -2.60680719027E+01 -2.60680717314E+01 -2.60680715558E+01 -2.60680713757E+01 -2.60680711911E+01 -2.60680710018E+01 -2.60680708077E+01 -2.60680706086E+01 -2.60680704046E+01 -2.60680701953E+01 -2.60680699808E+01 -2.60680697609E+01 -2.60680695353E+01 -2.60680693041E+01 -2.60680690670E+01 -2.60680688239E+01 -2.60680685747E+01 -2.60680683192E+01 -2.60680680571E+01 -2.60680677885E+01 -2.60680675130E+01 -2.60680672306E+01 -2.60680669410E+01 -2.60680666441E+01 -2.60680663397E+01 -2.60680660276E+01 -2.60680657075E+01 -2.60680653794E+01 -2.60680650430E+01 -2.60680646980E+01 -2.60680643443E+01 -2.60680639817E+01 -2.60680636099E+01 -2.60680632286E+01 -2.60680628377E+01 -2.60680624370E+01 -2.60680620260E+01 -2.60680616047E+01 -2.60680611727E+01 -2.60680607298E+01 -2.60680602756E+01 -2.60680598100E+01 -2.60680593325E+01 -2.60680588430E+01 -2.60680583411E+01 -2.60680578265E+01 -2.60680572989E+01 -2.60680567579E+01 -2.60680562032E+01 -2.60680556344E+01 -2.60680550513E+01 -2.60680544534E+01 -2.60680538404E+01 -2.60680532118E+01 -2.60680525674E+01 -2.60680519066E+01 -2.60680512291E+01 -2.60680505344E+01 -2.60680498222E+01 -2.60680490919E+01 -2.60680483431E+01 -2.60680475754E+01 -2.60680467883E+01 -2.60680459812E+01 -2.60680451537E+01 -2.60680443052E+01 -2.60680434353E+01 -2.60680425433E+01 -2.60680416288E+01 -2.60680406911E+01 -2.60680397297E+01 -2.60680387439E+01 -2.60680377332E+01 -2.60680366969E+01 -2.60680356343E+01 -2.60680345449E+01 -2.60680334279E+01 -2.60680322826E+01 -2.60680311083E+01 -2.60680299043E+01 -2.60680286698E+01 -2.60680274040E+01 -2.60680261062E+01 -2.60680247756E+01 -2.60680234112E+01 -2.60680220124E+01 -2.60680205781E+01 -2.60680191075E+01 -2.60680175997E+01 -2.60680160537E+01 -2.60680144685E+01 -2.60680128433E+01 -2.60680111769E+01 -2.60680094683E+01 -2.60680077164E+01 -2.60680059203E+01 -2.60680040786E+01 -2.60680021903E+01 -2.60680002542E+01 -2.60679982691E+01 -2.60679962338E+01 -2.60679941469E+01 -2.60679920072E+01 -2.60679898133E+01 -2.60679875639E+01 -2.60679852575E+01 -2.60679828928E+01 -2.60679804682E+01 -2.60679779822E+01 -2.60679754333E+01 -2.60679728198E+01 -2.60679701402E+01 -2.60679673928E+01 -2.60679645758E+01 -2.60679616875E+01 -2.60679587260E+01 -2.60679556896E+01 -2.60679525764E+01 -2.60679493843E+01 -2.60679461114E+01 -2.60679427557E+01 -2.60679393150E+01 -2.60679357872E+01 -2.60679321701E+01 -2.60679284614E+01 -2.60679246588E+01 -2.60679207600E+01 -2.60679167625E+01 -2.60679126638E+01 -2.60679084613E+01 -2.60679041524E+01 -2.60678997344E+01 -2.60678952046E+01 -2.60678905602E+01 -2.60678857981E+01 -2.60678809155E+01 -2.60678759093E+01 -2.60678707763E+01 -2.60678655135E+01 -2.60678601173E+01 -2.60678545846E+01 -2.60678489118E+01 -2.60678430954E+01 -2.60678371318E+01 -2.60678310171E+01 -2.60678247477E+01 -2.60678183196E+01 -2.60678117287E+01 -2.60678049710E+01 -2.60677980422E+01 -2.60677909380E+01 -2.60677836539E+01 -2.60677761855E+01 -2.60677685280E+01 -2.60677606766E+01 -2.60677526264E+01 -2.60677443725E+01 -2.60677359096E+01 -2.60677272324E+01 -2.60677183356E+01 -2.60677092136E+01 -2.60676998606E+01 -2.60676902708E+01 -2.60676804383E+01 -2.60676703569E+01 -2.60676600202E+01 -2.60676494218E+01 -2.60676385552E+01 -2.60676274134E+01 -2.60676159895E+01 -2.60676042765E+01 -2.60675922669E+01 -2.60675799533E+01 -2.60675673280E+01 -2.60675543830E+01 -2.60675411103E+01 -2.60675275016E+01 -2.60675135483E+01 -2.60674992418E+01 -2.60674845732E+01 -2.60674695331E+01 -2.60674541124E+01 -2.60674383012E+01 -2.60674220897E+01 -2.60674054678E+01 -2.60673884251E+01 -2.60673709509E+01 -2.60673530343E+01 -2.60673346642E+01 -2.60673158289E+01 -2.60672965169E+01 -2.60672767159E+01 -2.60672564136E+01 -2.60672355973E+01 -2.60672142540E+01 -2.60671923703E+01 -2.60671699326E+01 -2.60671469269E+01 -2.60671233387E+01 -2.60670991533E+01 -2.60670743556E+01 -2.60670489301E+01 -2.60670228609E+01 -2.60669961317E+01 -2.60669687258E+01 -2.60669406260E+01 -2.60669118147E+01 -2.60668822741E+01 -2.60668519855E+01 -2.60668209301E+01 -2.60667890885E+01 -2.60667564406E+01 -2.60667229662E+01 -2.60666886443E+01 -2.60666534534E+01 -2.60666173715E+01 -2.60665803760E+01 -2.60665424439E+01 -2.60665035515E+01 -2.60664636743E+01 -2.60664227874E+01 -2.60663808654E+01 -2.60663378819E+01 -2.60662938101E+01 -2.60662486225E+01 -2.60662022907E+01 -2.60661547859E+01 -2.60661060782E+01 -2.60660561373E+01 -2.60660049319E+01 -2.60659524299E+01 -2.60658985987E+01 -2.60658434044E+01 -2.60657868125E+01 -2.60657287878E+01 -2.60656692938E+01 -2.60656082934E+01 -2.60655457484E+01 -2.60654816197E+01 -2.60654158672E+01 -2.60653484498E+01 -2.60652793253E+01 -2.60652084504E+01 -2.60651357809E+01 -2.60650612712E+01 -2.60649848748E+01 -2.60649065439E+01 -2.60648262294E+01 -2.60647438812E+01 -2.60646594476E+01 -2.60645728760E+01 -2.60644841121E+01 -2.60643931004E+01 -2.60642997839E+01 -2.60642041043E+01 -2.60641060018E+01 -2.60640054148E+01 -2.60639022806E+01 -2.60637965345E+01 -2.60636881103E+01 -2.60635769403E+01 -2.60634629549E+01 -2.60633460827E+01 -2.60632262506E+01 -2.60631033837E+01 -2.60629774049E+01 -2.60628482354E+01 -2.60627157945E+01 -2.60625799992E+01 -2.60624407645E+01 -2.60622980032E+01 -2.60621516260E+01 -2.60620015413E+01 -2.60618476551E+01 -2.60616898710E+01 -2.60615280903E+01 -2.60613622116E+01 -2.60611921312E+01 -2.60610177424E+01 -2.60608389362E+01 -2.60606556005E+01 -2.60604676204E+01 -2.60602748784E+01 -2.60600772536E+01 -2.60598746223E+01 -2.60596668576E+01 -2.60594538292E+01 -2.60592354038E+01 -2.60590114445E+01 -2.60587818110E+01 -2.60585463594E+01 -2.60583049421E+01 -2.60580574079E+01 -2.60578036017E+01 -2.60575433644E+01 -2.60572765328E+01 -2.60570029397E+01 -2.60567224137E+01 -2.60564347788E+01 -2.60561398548E+01 -2.60558374566E+01 -2.60555273947E+01 -2.60552094746E+01 -2.60548834970E+01 -2.60545492574E+01 -2.60542065460E+01 -2.60538551481E+01 -2.60534948430E+01 -2.60531254047E+01 -2.60527466014E+01 -2.60523581954E+01 -2.60519599429E+01 -2.60515515939E+01 -2.60511328920E+01 -2.60507035745E+01 -2.60502633717E+01 -2.60498120072E+01 -2.60493491975E+01 -2.60488746519E+01 -2.60483880724E+01 -2.60478891531E+01 -2.60473775807E+01 -2.60468530337E+01 -2.60463151823E+01 -2.60457636884E+01 -2.60451982053E+01 -2.60446183776E+01 -2.60440238404E+01 -2.60434142199E+01 -2.60427891326E+01 -2.60421481851E+01 -2.60414909742E+01 -2.60408170862E+01 -2.60401260970E+01 -2.60394175713E+01 -2.60386910632E+01 -2.60379461150E+01 -2.60371822574E+01 -2.60363990092E+01 -2.60355958768E+01 -2.60347723538E+01 -2.60339279212E+01 -2.60330620464E+01 -2.60321741834E+01 -2.60312637719E+01 -2.60303302376E+01 -2.60293729912E+01 -2.60283914284E+01 -2.60273849294E+01 -2.60263528584E+01 -2.60252945635E+01 -2.60242093759E+01 -2.60230966095E+01 -2.60219555609E+01 -2.60207855083E+01 -2.60195857116E+01 -2.60183554115E+01 -2.60170938291E+01 -2.60158001657E+01 -2.60144736019E+01 -2.60131132970E+01 -2.60117183890E+01 -2.60102879934E+01 -2.60088212031E+01 -2.60073170873E+01 -2.60057746915E+01 -2.60041930364E+01 -2.60025711173E+01 -2.60009079038E+01 -2.59992023385E+01 -2.59974533370E+01 -2.59956597865E+01 -2.59938205457E+01 -2.59919344436E+01 -2.59900002786E+01 -2.59880168184E+01 -2.59859827984E+01 -2.59838969212E+01 -2.59817578558E+01 -2.59795642365E+01 -2.59773146622E+01 -2.59750076953E+01 -2.59726418606E+01 -2.59702156447E+01 -2.59677274946E+01 -2.59651758170E+01 -2.59625589767E+01 -2.59598752960E+01 -2.59571230533E+01 -2.59543004820E+01 -2.59514057692E+01 -2.59484370546E+01 -2.59453924292E+01 -2.59422699337E+01 -2.59390675576E+01 -2.59357832375E+01 -2.59324148558E+01 -2.59289602392E+01 -2.59254171570E+01 -2.59217833201E+01 -2.59180563787E+01 -2.59142339211E+01 -2.59103134719E+01 -2.59062924903E+01 -2.59021683682E+01 -2.58979384283E+01 -2.58935999227E+01 -2.58891500302E+01 -2.58845858548E+01 -2.58799044235E+01 -2.58751026842E+01 -2.58701775036E+01 -2.58651256645E+01 -2.58599438641E+01 -2.58546287113E+01 -2.58491767242E+01 -2.58435843276E+01 -2.58378478504E+01 -2.58319635232E+01 -2.58259274750E+01 -2.58197357308E+01 -2.58133842085E+01 -2.58068687157E+01 -2.58001849470E+01 -2.57933284807E+01 -2.57862947750E+01 -2.57790791654E+01 -2.57716768607E+01 -2.57640829393E+01 -2.57562923461E+01 -2.57482998881E+01 -2.57401002307E+01 -2.57316878938E+01 -2.57230572474E+01 -2.57142025075E+01 -2.57051177317E+01 -2.56957968145E+01 -2.56862334830E+01 -2.56764212916E+01 -2.56663536175E+01 -2.56560236556E+01 -2.56454244129E+01 -2.56345487035E+01 -2.56233891428E+01 -2.56119381421E+01 -2.56001879023E+01 -2.55881304079E+01 -2.55757574211E+01 -2.55630604746E+01 -2.55500308655E+01 -2.55366596477E+01 -2.55229376253E+01 -2.55088553443E+01 -2.54944030852E+01 -2.54795708545E+01 -2.54643483762E+01 -2.54487250825E+01 -2.54326901042E+01 -2.54162322610E+01 -2.53993400501E+01 -2.53820016355E+01 -2.53642048352E+01 -2.53459371089E+01 -2.53271855438E+01 -2.53079368396E+01 -2.52881772932E+01 -2.52678927809E+01 -2.52470687401E+01 -2.52256901496E+01 -2.52037415082E+01 -2.51812068111E+01 -2.51580695252E+01 -2.51343125626E+01 -2.51099182508E+01 -2.50848683026E+01 -2.50591437820E+01 -2.50327250691E+01 -2.50055918221E+01 -2.49777229371E+01 -2.49490965057E+01 -2.49196897704E+01 -2.48894790782E+01 -2.48584398324E+01 -2.48265464434E+01 -2.47937722783E+01 -2.47600896107E+01 -2.47254695713E+01 -2.46898820995E+01 -2.46532958980E+01 -2.46156783920E+01 -2.45769956928E+01 -2.45372125698E+01 -2.44962924313E+01 -2.44541973162E+01 -2.44108879008E+01 -2.43663235203E+01 -2.43204622106E+01 -2.42732607705E+01 -2.42246748490E+01 -2.41746590590E+01 -2.41231671202E+01 -2.40701520332E+01 -2.40155662862E+01 -2.39593620954E+01 -2.39014916788E+01 -2.38419075630E+01 -2.37805629210E+01 -2.37174119377E+01 -2.36524101998E+01 -2.35855151031E+01 -2.35166862725E+01 -2.34459028345E+01 -2.33732405161E+01 -2.32988363904E+01 -2.32227198770E+01 -2.31448412768E+01 -2.30651693074E+01 -2.29836788498E+01 -2.29003395080E+01 -2.28151166451E+01 -2.27279725731E+01 -2.26388678142E+01 -2.25477623670E+01 -2.24546169243E+01 -2.23593940076E+01 -2.22620589935E+01 -2.21625810174E+01 -2.20609337477E+01 -2.19570960304E+01 -2.18510524047E+01 -2.17427934948E+01 -2.16323162838E+01 -2.15196242732E+01 -2.14047275364E+01 -2.12876426694E+01 -2.11683926433E+01 -2.10470065642E+01 -2.09235193427E+01 -2.07979712765E+01 -2.06704075501E+01 -2.05408776529E+01 -2.04094347211E+01 -2.02761348047E+01 -2.01410360668E+01 -2.00041979195E+01 -1.98656801064E+01 -1.97255417428E+01 -1.95838403277E+01 -1.94406307478E+01 -1.92959643012E+01 -1.91498877701E+01 -1.90024425799E+01 -1.88536640922E+01 -1.87035810797E+01 -1.85522154382E+01 -1.83995821912E+01 -1.82456898366E+01 -1.80905410812E+01 -1.79341339884E+01 -1.77764635450E+01 -1.76175236240E+01 -1.74573092862E+01 -1.72958193268E+01 -1.71330589333E+01 -1.69690422957E+01 -1.68037949838E+01 -1.66373558918E+01 -1.64697785618E+01 -1.63011317162E+01 -1.61314988745E+01 -1.59609769860E+01 -1.57896740940E+01 -1.56177061463E+01 -1.54451931878E+01 -1.52722553067E+01 -1.50990088495E+01 -1.49255635397E+01 -1.47520212084E+01 -1.45784768065E+01 -1.44050221709E+01 -1.42317526389E+01 -1.40587760342E+01 -1.38862228854E+01 -1.37142561246E+01 -1.35430781342E+01 -1.33729330525E+01 -1.32041028013E+01 -1.30368963314E+01 -1.28716329375E+01 -1.27086537531E+01 -1.25483163901E+01 -1.23906583412E+01 -1.22352686322E+01 -1.20818417660E+01 -1.19303534633E+01 -1.17808250393E+01 -1.16332680024E+01 -1.14876784687E+01 -1.13440273856E+01 -1.12022803482E+01 -1.10624022116E+01 -1.09243567663E+01 -1.07881064598E+01 -1.06536121895E+01 -1.05208331991E+01 -1.03897271176E+01 -1.02602501897E+01 -1.01323673995E+01 -1.00060927809E+01 -9.88146317357E+00 -9.75845291611E+00 -9.63700772237E+00 -9.51709720927E+00 -9.39869955372E+00 -9.28179346386E+00 -9.16635815151E+00 -9.05237330622E+00 -8.93981907097E+00 -8.82867601939E+00 -8.71892513441E+00 -8.61054778839E+00 -8.50352572443E+00 -8.39784103908E+00 -8.29347616613E+00 -8.19041386153E+00 -8.08863718945E+00 -7.98812950913E+00 -7.88887446286E+00 -7.79085596467E+00 -7.69405818997E+00 -7.59846556587E+00 -7.50406276215E+00 -7.41083468300E+00 -7.31876645923E+00 -7.22784344111E+00 -7.13805626479E+00 -7.04938551791E+00 -6.96180647825E+00 -6.87531627243E+00 -6.78990651072E+00 -6.70555832151E+00 -6.62225842809E+00 -6.53999373127E+00 -6.45875130549E+00 -6.37851839527E+00 -6.29928241183E+00 -6.22103092989E+00 -6.14375168469E+00 -6.06743256908E+00 -5.99206163085E+00 -5.91762707011E+00 -5.84411723686E+00 -5.77152062859E+00 -5.69982588802E+00 -5.62902180097E+00 -5.55909674928E+00 -5.49003947105E+00 -5.42184101436E+00 -5.35449045708E+00 -5.28797599393E+00 -5.22228779852E+00 -5.15741560434E+00 -5.09334927283E+00 -5.03007879176E+00 -4.96759427355E+00 -4.90588595365E+00 -4.84494418897E+00 -4.78475945635E+00 -4.72532235102E+00 -4.66662358507E+00 -4.60865398606E+00 -4.55140449548E+00 -4.49486616740E+00 -4.43903016705E+00 -4.38388776938E+00 -4.32943035779E+00 -4.27564942273E+00 -4.22253656037E+00 -4.17008347132E+00 -4.11828195934E+00 -4.06712393004E+00 -4.01660138962E+00 -3.96670644367E+00 -3.91743129588E+00 -3.86876824689E+00 -3.82070969301E+00 -3.77324812512E+00 -3.72637612742E+00 -3.68008637631E+00 -3.63437163923E+00 -3.58922477355E+00 -3.54463872538E+00 -3.50060652855E+00 -3.45712130343E+00 -3.41417625592E+00 -3.37176467631E+00 -3.32987993829E+00 -3.28851549785E+00 -3.24766489227E+00 -3.20732173911E+00 -3.16747973521E+00 -3.12813265566E+00 -3.08927435288E+00 -3.05089875560E+00 -3.01299986794E+00 -2.97557176846E+00 -2.93860860925E+00 -2.90210461499E+00 -2.86605408205E+00 -2.83045137764E+00 -2.79529093888E+00 -2.76056727196E+00 -2.72627495129E+00 -2.69240861863E+00 -2.65896298228E+00 -2.62593281626E+00 -2.59331295946E+00 -2.56109831489E+00 -2.52928384885E+00 -2.49786459016E+00 -2.46683562936E+00 -2.43619211799E+00 -2.40592926782E+00 -2.37604235008E+00 -2.34652669475E+00 -2.31737768981E+00 -2.28859078055E+00 -2.26016146882E+00 -2.23208531237E+00 -2.20435792413E+00 -2.17697497153E+00 -2.14993217582E+00 -2.12322531142E+00 -2.09685020523E+00 -2.07080273601E+00 -2.04507883371E+00 -2.01967447885E+00 -1.99458570189E+00 -1.96980858260E+00 -1.94533924944E+00 -1.92117387899E+00 -1.89730869533E+00 -1.87373996943E+00 -1.85046401861E+00 -1.82747720591E+00 -1.80477593958E+00 -1.78235667249E+00 -1.76021590157E+00 -1.73835016725E+00 -1.71675605298E+00 -1.69543018461E+00 -1.67436922994E+00 -1.65356989814E+00 -1.63302893929E+00 -1.61274314381E+00 -1.59270934201E+00 -1.57292440359E+00 -1.55338523710E+00 -1.53408878954E+00 -1.51503204578E+00 -1.49621202820E+00 -1.47762579614E+00 -1.45927044548E+00 -1.44114310816E+00 -1.42324095178E+00 -1.40556117909E+00 -1.38810102761E+00 -1.37085776918E+00 -1.35382870950E+00 -1.33701118776E+00 -1.32040257640E+00 -1.30400027939E+00 -1.28780172951E+00 -1.27180443262E+00 -1.25600579041E+00 -1.24040348373E+00 -1.22499502193E+00 -1.20977789175E+00 -1.19474978958E+00 -1.17990837006E+00 -1.16525131299E+00 -1.15077632880E+00 -1.13648115575E+00 -1.12236356019E+00 -1.10842133621E+00 -1.09465230532E+00 -1.08105431607E+00 -1.06762524375E+00 -1.05436299004E+00 -1.04126548269E+00 -1.02833067519E+00 -1.01555654644E+00 -1.00294110047E+00 -9.90482366079E-01 -9.78178396570E-01 -9.66027269423E-01 -9.54027085999E-01 -9.42175971245E-01 -9.30472073400E-01 -9.18913563707E-01 -9.07498636735E-01 -8.96225507618E-01 -8.85092415560E-01 -8.74097620992E-01 -8.63239405956E-01 -8.52516073834E-01 -8.41925949083E-01 -8.31467376974E-01 -8.21138723334E-01 -8.10938374291E-01 -8.00864736018E-01 -7.90916234490E-01 -7.81091315233E-01 -7.71388443082E-01 -7.61806101946E-01 -7.52342794562E-01 -7.42997042271E-01 -7.33767384780E-01 -7.24652379935E-01 -7.15650603499E-01 -7.06760648925E-01 -6.97981127141E-01 -6.89310666328E-01 -6.80747911710E-01 -6.72291525337E-01 -6.63940185883E-01 -6.55692588434E-01 -6.47547444286E-01 -6.39503480743E-01 -6.31559440920E-01 -6.23714083545E-01 -6.15966182765E-01 -6.08314527953E-01 -6.00757923525E-01 -5.93295188744E-01 -5.85925157543E-01 -5.78646678341E-01 -5.71458613859E-01 -5.64359840948E-01 -5.57349250410E-01 -5.50425746827E-01 -5.43588248387E-01 -5.36835686716E-01 -5.30167006714E-01 -5.23581166385E-01 -5.17077136678E-01 -5.10653901326E-01 -5.04310456686E-01 -4.98045811580E-01 -4.91858987145E-01 -4.85749016678E-01 -4.79714945483E-01 -4.73755830724E-01 -4.67870741277E-01 -4.62058757586E-01 -4.56318971516E-01 -4.50650486213E-01 -4.45052415966E-01 -4.39523886064E-01 -4.34064032664E-01 -4.28672002652E-01 -4.23346953512E-01 -4.18088053195E-01 -4.12894479987E-01 -4.07765422382E-01 -4.02700078953E-01 -3.97697658232E-01 -3.92757378578E-01 -3.87878468064E-01 -3.83060164349E-01 -3.78301714565E-01 -3.73602375193E-01 -3.68961411952E-01 -3.64378099683E-01 -3.59851722233E-01 -3.55381572347E-01 -3.50966951554E-01 -3.46607170062E-01 -3.42301546645E-01 -3.38049408542E-01 -3.33850091346E-01 -3.29702938906E-01 -3.25607303221E-01 -3.21562544340E-01 -3.17568030261E-01 -3.13623136832E-01 -3.09727247656E-01 -3.05879753994E-01 -3.02080054665E-01 -2.98327555959E-01 -2.94621671540E-01 -2.90961822358E-01 -2.87347436552E-01 -2.83777949367E-01 -2.80252803065E-01 -2.76771446833E-01 -2.73333336703E-01 -2.69937935463E-01 -2.66584712574E-01 -2.63273144089E-01 -2.60002712569E-01 -2.56772907001E-01 -2.53583222722E-01 -2.50433161338E-01 -2.47322230645E-01 -2.44249944554E-01 -2.41215823013E-01 -2.38219391936E-01 -2.35260183123E-01 -2.32337734192E-01 -2.29451588505E-01 -2.26601295096E-01 -2.23786408600E-01 -2.21006489186E-01 -2.18261102485E-01 -2.15549819525E-01 -2.12872216664E-01 -2.10227875519E-01 -2.07616382908E-01 -2.05037330778E-01 -2.02490316149E-01 1 0 Beta L 911 1.41855474689E-03 1.43639796904E-03 1.45446563131E-03 1.47276055678E-03 1.49671518763E-03 1.55595464490E-03 1.58215910682E-03 1.52872306741E-03 1.62035697285E-03 1.61983366676E-03 1.61225084803E-03 1.63708189157E-03 1.63449628566E-03 1.74581483991E-03 1.69668407686E-03 1.63529683523E-03 1.66590214591E-03 1.72303876937E-03 1.75030205703E-03 1.82415225286E-03 1.78677075860E-03 1.89028798852E-03 1.88368787245E-03 1.86020905722E-03 1.90472456983E-03 2.01132544540E-03 1.86187310510E-03 1.98477729431E-03 2.01418911168E-03 2.10564036524E-03 2.00853846453E-03 2.10024482722E-03 2.17617412484E-03 2.10257261099E-03 2.12856054723E-03 2.29929737514E-03 2.18004007897E-03 2.24834038096E-03 2.30127944359E-03 2.33122328186E-03 2.37508264631E-03 2.32034398678E-03 2.44064817417E-03 2.42366570435E-03 2.42034207422E-03 2.50313944537E-03 2.48344102382E-03 2.49956813747E-03 2.69317021930E-03 2.51852252491E-03 2.70616916775E-03 2.68569618823E-03 2.75666750160E-03 2.70593877574E-03 2.83097474442E-03 2.80551878736E-03 2.83075030864E-03 2.90052527527E-03 2.86433384061E-03 3.00964153397E-03 2.96568010574E-03 3.03433560977E-03 3.09394585954E-03 3.15025583780E-03 3.17908208962E-03 3.20430806188E-03 3.23377391808E-03 3.24870943209E-03 3.32369145560E-03 3.30998805297E-03 3.44871161628E-03 3.42285992652E-03 3.47017895159E-03 3.56542263512E-03 3.61110959193E-03 3.59224825972E-03 3.71095889707E-03 3.68029143815E-03 3.76806786739E-03 3.82064475951E-03 3.85790875474E-03 3.87191933862E-03 3.96488975495E-03 4.03859496026E-03 4.03435781712E-03 4.12647916975E-03 4.09972727528E-03 4.22448104000E-03 4.28082208266E-03 4.28913596814E-03 4.39675145843E-03 4.41589611599E-03 4.49245130861E-03 4.55166077114E-03 4.59720505022E-03 4.62846829311E-03 4.74038204400E-03 4.77366519575E-03 4.84294276678E-03 4.91065073044E-03 4.94980020740E-03 5.03138501545E-03 5.05556432136E-03 5.14387402679E-03 5.18949741927E-03 5.28615371891E-03 5.32073570565E-03 5.40538481456E-03 5.44085819542E-03 5.55038975944E-03 5.60069127396E-03 5.70485897498E-03 5.76807031024E-03 5.79887355695E-03 5.88325049204E-03 6.02524188003E-03 6.04173610564E-03 6.12814026295E-03 6.22467833255E-03 6.28251226520E-03 6.35948849076E-03 6.41895651811E-03 6.54603134791E-03 6.57249609364E-03 6.67906347791E-03 6.77255382697E-03 6.86566634554E-03 6.94255745329E-03 7.01573991873E-03 7.10862023353E-03 7.20378685852E-03 7.26130350623E-03 7.36872737678E-03 7.46926730724E-03 7.57497340223E-03 7.68370056810E-03 7.75781210580E-03 7.87853265584E-03 7.95421335520E-03 8.06057522974E-03 8.17905715248E-03 8.25743531547E-03 8.35994472564E-03 8.48831593424E-03 8.58308886657E-03 8.69453512820E-03 8.78897869656E-03 8.91368320911E-03 9.00220696902E-03 9.14805624753E-03 9.25077944148E-03 9.38907419357E-03 9.46705026081E-03 9.59326202944E-03 9.72234082459E-03 9.84449392989E-03 9.96588440119E-03 1.00895309344E-02 1.02268221362E-02 1.03564076106E-02 1.04697577285E-02 1.06149304001E-02 1.07461746909E-02 1.08783427985E-02 1.10106630266E-02 1.11601343963E-02 1.12953999100E-02 1.14421866548E-02 1.15867504789E-02 1.17186092105E-02 1.18918366610E-02 1.20290508265E-02 1.21854282858E-02 1.23359195703E-02 1.24722457895E-02 1.26389037912E-02 1.28079426706E-02 1.29645199052E-02 1.31409658006E-02 1.32908563298E-02 1.34546545775E-02 1.36308439489E-02 1.37972410825E-02 1.39629211541E-02 1.41518779248E-02 1.43282285906E-02 1.45059931184E-02 1.46906665002E-02 1.48795931242E-02 1.50669191874E-02 1.52500284075E-02 1.54426519767E-02 1.56378647056E-02 1.58291548799E-02 1.60311593837E-02 1.62381168453E-02 1.64331524326E-02 1.66323996833E-02 1.68631419651E-02 1.70566043223E-02 1.72878309745E-02 1.74925823703E-02 1.77189233723E-02 1.79490508741E-02 1.81705169187E-02 1.83865896076E-02 1.86426571079E-02 1.88578010286E-02 1.90949416694E-02 1.93398500491E-02 1.95788696245E-02 1.98352707565E-02 2.00678358889E-02 2.03284008845E-02 2.05896787478E-02 2.08467489884E-02 2.11130844987E-02 2.13781010791E-02 2.16404689068E-02 2.19129933722E-02 2.21849798975E-02 2.24693256106E-02 2.27559784519E-02 2.30289044428E-02 2.33374233141E-02 2.36159658515E-02 2.39154205977E-02 2.42227734357E-02 2.45255514732E-02 2.48315598454E-02 2.51422530405E-02 2.54672163182E-02 2.57870629013E-02 2.61039139225E-02 2.64307217660E-02 2.67742940381E-02 2.70968466553E-02 2.74411265788E-02 2.77858825937E-02 2.81310084908E-02 2.84915275402E-02 2.88510603426E-02 2.92136413006E-02 2.95810319246E-02 2.99536681976E-02 3.03297155358E-02 3.07126916459E-02 3.10938336419E-02 3.14886618299E-02 3.18896170178E-02 3.22870340435E-02 3.26874670856E-02 3.31063363035E-02 3.35173352821E-02 3.39450157791E-02 3.43709392004E-02 3.48004105725E-02 3.52350313419E-02 3.56757498768E-02 3.61342765494E-02 3.65851365046E-02 3.70445420932E-02 3.75117135385E-02 3.79783268237E-02 3.84612292883E-02 3.89419379754E-02 3.94354602524E-02 3.99279877080E-02 4.04330097247E-02 4.09381025971E-02 4.14566083064E-02 4.19765972226E-02 4.25054612678E-02 4.30385142090E-02 4.35828668758E-02 4.41321900337E-02 4.46820507215E-02 4.52472542837E-02 4.58154984629E-02 4.63928448587E-02 4.69736872617E-02 4.75692071981E-02 4.81645931798E-02 4.87744729427E-02 4.93863307280E-02 5.00067126988E-02 5.06311774163E-02 5.12680674641E-02 5.19192640970E-02 5.25690613539E-02 5.32301286656E-02 5.39029658569E-02 5.45763037407E-02 5.52644131367E-02 5.59604162389E-02 5.66658362874E-02 5.73796497509E-02 5.80989112053E-02 5.88289468504E-02 5.95679491094E-02 6.03162286608E-02 6.10776439121E-02 6.18461823595E-02 6.26229084145E-02 6.34112919988E-02 6.42073606348E-02 6.50162999348E-02 6.58346098306E-02 6.66631832258E-02 6.75016476674E-02 6.83512103060E-02 6.92092450073E-02 7.00785422571E-02 7.09616820185E-02 7.18567286439E-02 7.27576880968E-02 7.36730955172E-02 7.45995231802E-02 7.55399292999E-02 7.64888418205E-02 7.74512566278E-02 7.84240684485E-02 7.94123461966E-02 8.04078380678E-02 8.14213352987E-02 8.24452869906E-02 8.34835534552E-02 8.45330665160E-02 8.55961460787E-02 8.66709331998E-02 8.77634781411E-02 8.88672475067E-02 8.99842086690E-02 9.11162384190E-02 9.22633736074E-02 9.34230299948E-02 9.45977766824E-02 9.57862155977E-02 9.69937858316E-02 9.82121405661E-02 9.94483291290E-02 1.00698432301E-01 1.01965842591E-01 1.03248705092E-01 1.04545816066E-01 1.05862068587E-01 1.07191562050E-01 1.08542418545E-01 1.09905825696E-01 1.11289583841E-01 1.12688064328E-01 1.14105723587E-01 1.15543278447E-01 1.16995971236E-01 1.18466957408E-01 1.19955988177E-01 1.21466472651E-01 1.22993696108E-01 1.24539720088E-01 1.26107261860E-01 1.27693136887E-01 1.29299783207E-01 1.30925542496E-01 1.32571647061E-01 1.34239810882E-01 1.35929600764E-01 1.37639027662E-01 1.39370067742E-01 1.41123669227E-01 1.42897799230E-01 1.44695998350E-01 1.46515697227E-01 1.48359552761E-01 1.50224842422E-01 1.52114108484E-01 1.54027661447E-01 1.55965666581E-01 1.57926761325E-01 1.59914303885E-01 1.61924113909E-01 1.63960995889E-01 1.66024475667E-01 1.68111812793E-01 1.70226503161E-01 1.72367436710E-01 1.74537290992E-01 1.76731161127E-01 1.78954753270E-01 1.81204896041E-01 1.83483710104E-01 1.85792853874E-01 1.88129399087E-01 1.90496021271E-01 1.92890749915E-01 1.95318041072E-01 1.97775100662E-01 2.00261898088E-01 2.02781277936E-01 2.05331560124E-01 2.07914962033E-01 2.10528680162E-01 2.13177219506E-01 2.15858728160E-01 2.18573882527E-01 2.21323247235E-01 2.24107178625E-01 2.26926078848E-01 2.29780108033E-01 2.32670508059E-01 2.35597295061E-01 2.38560394560E-01 2.41561356454E-01 2.44599402495E-01 2.47675622276E-01 2.50791431588E-01 2.53946016936E-01 2.57139173924E-01 2.60374813033E-01 2.63649488915E-01 2.66965205099E-01 2.70322731230E-01 2.73723215132E-01 2.77166127216E-01 2.80652264833E-01 2.84182481970E-01 2.87756626638E-01 2.91375781616E-01 2.95040755646E-01 2.98751863283E-01 3.02509402664E-01 3.06314621224E-01 3.10167279295E-01 3.14068287643E-01 3.18018556299E-01 3.22018627710E-01 3.26068885319E-01 3.30169977414E-01 3.34322739382E-01 3.38527617547E-01 3.42785658796E-01 3.47097088660E-01 3.51462565488E-01 3.55882647050E-01 3.60358939195E-01 3.64891734545E-01 3.69481292309E-01 3.74128264541E-01 3.78834409844E-01 3.83598788548E-01 3.88423843707E-01 3.93309086152E-01 3.98255253776E-01 4.03264095682E-01 4.08337057466E-01 4.13471744016E-01 4.18672346681E-01 4.23937953829E-01 4.29269996101E-01 4.34669341711E-01 4.40135875998E-01 4.45671790900E-01 4.51276883489E-01 4.56952328165E-01 4.62699685296E-01 4.68519096175E-01 4.74411249766E-01 4.80377766795E-01 4.86419399537E-01 4.92537281820E-01 4.98731631424E-01 5.05003838717E-01 5.11355101072E-01 5.17786006774E-01 5.24298303549E-01 5.30892401670E-01 5.37568779835E-01 5.44329686553E-01 5.51174959884E-01 5.58106973826E-01 5.65125572935E-01 5.72232609352E-01 5.79429216467E-01 5.86716104137E-01 5.94094739962E-01 6.01565885909E-01 6.09131314959E-01 6.16791522966E-01 6.24548103444E-01 6.32402127277E-01 6.40354963492E-01 6.48407604528E-01 6.56561572484E-01 6.64818153644E-01 6.73178524801E-01 6.81643787559E-01 6.90215279070E-01 6.98894889613E-01 7.07683504966E-01 7.16582184612E-01 7.25593206570E-01 7.34717288292E-01 7.43956074824E-01 7.53311038086E-01 7.62782988545E-01 7.72374679928E-01 7.82086357203E-01 7.91920528380E-01 8.01877856379E-01 8.11960770455E-01 8.22169986252E-01 8.32507524072E-01 8.42974982180E-01 8.53573972432E-01 8.64306228932E-01 8.75173117215E-01 8.86176541501E-01 8.97318191440E-01 9.08599892040E-01 9.20023118714E-01 9.31590056714E-01 9.43302044337E-01 9.55161217414E-01 9.67169435245E-01 9.79328335568E-01 9.91639887012E-01 1.00410609714E+00 1.01672894872E+00 1.02951013154E+00 1.04245189796E+00 1.05555616050E+00 1.06882473998E+00 1.08226015325E+00 1.09586409255E+00 1.10963881226E+00 1.12358633736E+00 1.13770900867E+00 1.15200914545E+00 1.16648833198E+00 1.18114935390E+00 1.19599450045E+00 1.21102589516E+00 1.22624571942E+00 1.24165663168E+00 1.25726089220E+00 1.27306074249E+00 1.28905883543E+00 1.30525772497E+00 1.32165957105E+00 1.33826722749E+00 1.35508322728E+00 1.37210999310E+00 1.38935034542E+00 1.40680643961E+00 1.42448187150E+00 1.44237843831E+00 1.46049956980E+00 1.47884785541E+00 1.49742578317E+00 1.51623676893E+00 1.53528324951E+00 1.55456848504E+00 1.57409524960E+00 1.59386641289E+00 1.61388527976E+00 1.63415497107E+00 1.65467833536E+00 1.67545863861E+00 1.69649905296E+00 1.71780285403E+00 1.73937327711E+00 1.76121360860E+00 1.78332715577E+00 1.80571722321E+00 1.82838754240E+00 1.85134130301E+00 1.87458209948E+00 1.89811339668E+00 1.92193897073E+00 1.94606228010E+00 1.97048687355E+00 1.99521694337E+00 2.02025568706E+00 2.04560726443E+00 2.07127539054E+00 2.09726409489E+00 2.12357701615E+00 2.15021854123E+00 2.17719237400E+00 2.20450274840E+00 2.23215380798E+00 2.26014956160E+00 2.28849452038E+00 2.31719272329E+00 2.34624860588E+00 2.37566633368E+00 2.40545062760E+00 2.43560571037E+00 2.46613628373E+00 2.49704678974E+00 2.52834194292E+00 2.56002624251E+00 2.59210474376E+00 2.62458203072E+00 2.65746279368E+00 2.69075227608E+00 2.72445502231E+00 2.75857644032E+00 2.79312123215E+00 2.82809467143E+00 2.86350202503E+00 2.89934824139E+00 2.93563887752E+00 2.97237901961E+00 3.00957426967E+00 3.04722992193E+00 3.08535168757E+00 3.12394488247E+00 3.16301532935E+00 3.20256860450E+00 3.24261042361E+00 3.28314672277E+00 3.32418333924E+00 3.36572607050E+00 3.40778105501E+00 3.45035416747E+00 3.49345163167E+00 3.53707967525E+00 3.58124429125E+00 3.62595205045E+00 3.67120907544E+00 3.71702192945E+00 3.76339695816E+00 3.81034081445E+00 3.85785994913E+00 3.90596124160E+00 3.95465111937E+00 4.00393659682E+00 4.05382440651E+00 4.10432149492E+00 4.15543477423E+00 4.20717124159E+00 4.25953804923E+00 4.31254232592E+00 4.36619120288E+00 4.42049206095E+00 4.47545211665E+00 4.53107875939E+00 4.58737943663E+00 4.64436160033E+00 4.70203287305E+00 4.76040078315E+00 4.81947295894E+00 4.87925720349E+00 4.93976122416E+00 5.00099282990E+00 5.06295982332E+00 5.12567019778E+00 5.18913188161E+00 5.25335278996E+00 5.31834113719E+00 5.38410481817E+00 5.45065210370E+00 5.51799112619E+00 5.58612994570E+00 5.65507701868E+00 5.72484051463E+00 5.79542867904E+00 5.86684990785E+00 5.93911253834E+00 6.01222486911E+00 6.08619543961E+00 6.16103247774E+00 6.23674452003E+00 6.31333996415E+00 6.39082722182E+00 6.46921472668E+00 6.54851094744E+00 6.62872422915E+00 6.70986302766E+00 6.79193571704E+00 6.87495067306E+00 6.95891622744E+00 7.04384065604E+00 7.12973224182E+00 7.21659927169E+00 7.30444976743E+00 7.39329199146E+00 7.48313381122E+00 7.57398335010E+00 7.66584840360E+00 7.75873679162E+00 7.85265616736E+00 7.94761415812E+00 8.04361822718E+00 8.14067568936E+00 8.23879371267E+00 8.33797940844E+00 8.43823957743E+00 8.53958102616E+00 8.64201017786E+00 8.74553341290E+00 8.85015684552E+00 8.95588634622E+00 9.06272746579E+00 9.17068568879E+00 9.27976607716E+00 9.38997340410E+00 9.50131223037E+00 9.61378662477E+00 9.72740042996E+00 9.84215710755E+00 9.95805967229E+00 1.00751107781E+01 1.01933125371E+01 1.03126667594E+01 1.04331745850E+01 1.05548368127E+01 1.06776535185E+01 1.08016243089E+01 1.09267482051E+01 1.10530235087E+01 1.11804479181E+01 1.13090183599E+01 1.14387310921E+01 1.15695815371E+01 1.17015643342E+01 1.18346731918E+01 1.19689010036E+01 1.21042396467E+01 1.22406800850E+01 1.23782121457E+01 1.25168245828E+01 1.26565050821E+01 1.27972400257E+01 1.29390146145E+01 1.30818126781E+01 1.32256167020E+01 1.33704077359E+01 1.35161653176E+01 1.36628673865E+01 1.38104902473E+01 1.39590085137E+01 1.41083949319E+01 1.42586204886E+01 1.44096540852E+01 1.45614626735E+01 1.47140109980E+01 1.48672616244E+01 1.50211748112E+01 1.51757083706E+01 1.53308175877E+01 1.54864551708E+01 1.56425710466E+01 1.57991122858E+01 1.59560231158E+01 1.61132445463E+01 1.62707144987E+01 1.64283674908E+01 1.65861346388E+01 1.67439434460E+01 1.69017177277E+01 1.70593774075E+01 1.72168384340E+01 1.73740126199E+01 1.75308074269E+01 1.76871259107E+01 1.78428665505E+01 1.79979230090E+01 1.81521840654E+01 1.83055334590E+01 1.84578495801E+01 1.86090055480E+01 1.87588688009E+01 1.89073010986E+01 1.90541582801E+01 1.91992900974E+01 1.93425401230E+01 1.94837454800E+01 1.96227367152E+01 1.97593377046E+01 1.98933654416E+01 2.00246298765E+01 2.01529338051E+01 2.02780726853E+01 2.03998346048E+01 2.05180000248E+01 2.06323418100E+01 2.07426249927E+01 2.08486068285E+01 2.09500365912E+01 2.10466556264E+01 2.11381972662E+01 2.12243868132E+01 2.13049415866E+01 2.13795708899E+01 2.14479761567E+01 2.15098509832E+01 2.15648812453E+01 2.16127452780E+01 2.16531140771E+01 2.16856514892E+01 2.17100145252E+01 2.17258536757E+01 2.17328132389E+01 2.17305317612E+01 2.17186425292E+01 2.16967740484E+01 2.16645506528E+01 2.16215931393E+01 2.15675194768E+01 2.15019455651E+01 2.14244861016E+01 2.13347554406E+01 2.12323685920E+01 2.11169422867E+01 2.09880960529E+01 2.08454534299E+01 2.06886432184E+01 2.05173007845E+01 2.03310694744E+01 2.01296020675E+01 1.99125622695E+01 1.96796262853E+01 1.94304844470E+01 1.91648428412E+01 1.88824250066E+01 1.85829736729E+01 1.82662524251E+01 1.79320474787E+01 1.75801693357E+01 1.72104545176E+01 1.68227671421E+01 1.64170005406E+01 1.59930787066E+01 1.55509577395E+01 1.50906270416E+01 1.46121105355E+01 1.41154675391E+01 1.36007936591E+01 1.30682213247E+01 1.25179201706E+01 1.19500972284E+01 1.13649968253E+01 1.07629002606E+01 1.01441252585E+01 9.50902517440E+00 8.85798794960E+00 8.19143498027E+00 7.50981971565E+00 6.81362628024E+00 6.10336800213E+00 5.37958605065E+00 4.64284829861E+00 3.89374847688E+00 3.13290588612E+00 2.36096579992E+00 1.57860086442E+00 7.86513700127E-01 -1.45588842092E-02 -8.23839785356E-01 -1.64050309403E+00 -2.46366280744E+00 -3.29235815808E+00 -4.12553503657E+00 -4.96202287876E+00 -5.80050623934E+00 -6.63949052012E+00 -7.47726081484E+00 -8.31183325996E+00 -9.14089793904E+00 -9.96175246296E+00 -1.07710070680E+01 -1.15640311045E+01 -1.23357286252E+01 -1.30807435795E+01 -1.37934570348E+01 -1.44679854028E+01 -1.50981798212E+01 -1.56776268707E+01 -1.61996509685E+01 -1.66573185183E+01 -1.70434442234E+01 -1.73505997277E+01 -1.75711248711E+01 -1.76971418288E+01 -1.77205723703E+01 -1.76331584625E+01 -1.74264864784E+01 -1.70920151687E+01 -1.66211076151E+01 -1.60050673449E+01 -1.52351786993E+01 -1.43027516701E+01 -1.31991711605E+01 -1.19159514912E+01 -1.04447899407E+01 -8.77767944034E+00 -6.90649761662E+00 -4.82773398316E+00 -2.49735035981E+00 -2.70152459480E-01 2.57547703116E-02 -3.51435124502E-03 -5.45507449669E-04 -7.74235917077E-04 -6.87358435618E-04 -6.33223861021E-04 -5.77331254462E-04 -5.23137449484E-04 -4.70330008200E-04 -4.18969696085E-04 2.00 2.50 4S 2 0 Beta L 911 1.66487771463E-03 1.68581929829E-03 1.70702429465E-03 1.72849601704E-03 1.75599183192E-03 1.82069747478E-03 1.85059101549E-03 1.79639364545E-03 1.89543050307E-03 1.89719383527E-03 1.89158803861E-03 1.92017171067E-03 1.91982015178E-03 2.03976975759E-03 1.99055285596E-03 1.92832612192E-03 1.96306459040E-03 2.02593956184E-03 2.05738489598E-03 2.13780541438E-03 2.10124994012E-03 2.21292617127E-03 2.20866895417E-03 2.18704576774E-03 2.23670365301E-03 2.35190962791E-03 2.19731798127E-03 2.32967509719E-03 2.36389713262E-03 2.46324071685E-03 2.36392955696E-03 2.46371734517E-03 2.54685620464E-03 2.47246401889E-03 2.50299442324E-03 2.68641002717E-03 2.56392207927E-03 2.63922473871E-03 2.69844812181E-03 2.73343765227E-03 2.78316029241E-03 2.72885013857E-03 2.85936270922E-03 2.84509592521E-03 2.84514113579E-03 2.93618495987E-03 2.91913759874E-03 2.93994829176E-03 3.14794500562E-03 2.96752682502E-03 3.16940310991E-03 3.15180931354E-03 3.23056554922E-03 3.18123967860E-03 3.31720612303E-03 3.29448814929E-03 3.32534252046E-03 3.40314520833E-03 3.36947574517E-03 3.52695205181E-03 3.48507456552E-03 3.56196836772E-03 3.62934908611E-03 3.69342188284E-03 3.72842842829E-03 3.75982487135E-03 3.79572082835E-03 3.81619795721E-03 3.90035593248E-03 3.89078018313E-03 4.04204689575E-03 4.01996156151E-03 4.07491331047E-03 4.18067872426E-03 4.23413690004E-03 4.21959280008E-03 4.35021940707E-03 4.32335550267E-03 4.42148333467E-03 4.48258057793E-03 4.52762872569E-03 4.54811795183E-03 4.65200178044E-03 4.73569251978E-03 4.73724492794E-03 4.84037453510E-03 4.81838147866E-03 4.95612198008E-03 5.02190938703E-03 5.03694263137E-03 5.15695786823E-03 5.18370762875E-03 5.27105155427E-03 5.34021295630E-03 5.39505812249E-03 5.43488993724E-03 5.55986586855E-03 5.60201503435E-03 5.68222179264E-03 5.76084948152E-03 5.80948699009E-03 5.90289535297E-03 5.93593014598E-03 6.03665756564E-03 6.09247866232E-03 6.20215704721E-03 6.24656802820E-03 6.34381589670E-03 6.38937252991E-03 6.51302744399E-03 6.57439665905E-03 6.69262356911E-03 6.76779947609E-03 6.80891180788E-03 6.90662209909E-03 7.06517053462E-03 7.09153672395E-03 7.19165014223E-03 7.30266844556E-03 7.37296031130E-03 7.46351105459E-03 7.53578080715E-03 7.67939314265E-03 7.71712612471E-03 7.83937489373E-03 7.94794890114E-03 8.05631361906E-03 8.14761126617E-03 8.23522195810E-03 8.34368345393E-03 8.45469421539E-03 8.52616881782E-03 8.65033819361E-03 8.76745168786E-03 8.89012039129E-03 9.01612782371E-03 9.10575187600E-03 9.24469756895E-03 9.33631530265E-03 9.46040684840E-03 9.59741063688E-03 9.69228830867E-03 9.81278248546E-03 9.96068209889E-03 1.00733277202E-02 1.02037007910E-02 1.03163309983E-02 1.04609913348E-02 1.05677238415E-02 1.07350211632E-02 1.08570320082E-02 1.10167297606E-02 1.11129767369E-02 1.12603216774E-02 1.14108067761E-02 1.15542017332E-02 1.16969557336E-02 1.18422712828E-02 1.20021978277E-02 1.21541278004E-02 1.22892107713E-02 1.24579913756E-02 1.26122661055E-02 1.27677767905E-02 1.29235919486E-02 1.30977226862E-02 1.32571084485E-02 1.34288052901E-02 1.35984191628E-02 1.37548098446E-02 1.39550589512E-02 1.41175541239E-02 1.43004513199E-02 1.44774436937E-02 1.46396406376E-02 1.48341030573E-02 1.50313108351E-02 1.52155823537E-02 1.54211201229E-02 1.55988007953E-02 1.57914851784E-02 1.59974338920E-02 1.61933098382E-02 1.63887247326E-02 1.66088894533E-02 1.68160833819E-02 1.70249978966E-02 1.72414698703E-02 1.74627274078E-02 1.76825225622E-02 1.78981873306E-02 1.81241957539E-02 1.83531497579E-02 1.85783448326E-02 1.88150413511E-02 1.90573355736E-02 1.92873326560E-02 1.95220592107E-02 1.97903405114E-02 2.00195832257E-02 2.02890076063E-02 2.05308119716E-02 2.07957022611E-02 2.10649479866E-02 2.13253444985E-02 2.15804371796E-02 2.18780286250E-02 2.21328019242E-02 2.24111598942E-02 2.26980081494E-02 2.29790520554E-02 2.32787799072E-02 2.35537161116E-02 2.38586007227E-02 2.41645511847E-02 2.44665140489E-02 2.47785944713E-02 2.50896807655E-02 2.53983875258E-02 2.57181961768E-02 2.60378487135E-02 2.63709389619E-02 2.67068845401E-02 2.70287990939E-02 2.73886374165E-02 2.77173328246E-02 2.80685084676E-02 2.84284516170E-02 2.87840388244E-02 2.91434688868E-02 2.95083117577E-02 2.98886626568E-02 3.02640964693E-02 3.06368527198E-02 3.10205948128E-02 3.14225071951E-02 3.18027581319E-02 3.22064052046E-02 3.26110925381E-02 3.30166619759E-02 3.34390145687E-02 3.38608258726E-02 3.42864099726E-02 3.47176090778E-02 3.51548750233E-02 3.55963159172E-02 3.60456130903E-02 3.64935552715E-02 3.69565036784E-02 3.74265027154E-02 3.78933620291E-02 3.83640084312E-02 3.88546944459E-02 3.93377058807E-02 3.98389313704E-02 4.03389308162E-02 4.08433161328E-02 4.13537741766E-02 4.18713253006E-02 4.24083119529E-02 4.29378959920E-02 4.34771655667E-02 4.40253088588E-02 4.45735728798E-02 4.51397142104E-02 4.57042607951E-02 4.62830443846E-02 4.68615139361E-02 4.74539003176E-02 4.80471154974E-02 4.86552376845E-02 4.92656937098E-02 4.98862852604E-02 5.05120993355E-02 5.11506112058E-02 5.17951875642E-02 5.24411565438E-02 5.31041237773E-02 5.37711495961E-02 5.44486199998E-02 5.51306490426E-02 5.58290240121E-02 5.65281389918E-02 5.72434422840E-02 5.79617390807E-02 5.86899373998E-02 5.94233769745E-02 6.01708637736E-02 6.09343879471E-02 6.16974037574E-02 6.24732791296E-02 6.32625610973E-02 6.40533727338E-02 6.48607773188E-02 6.56775358926E-02 6.65052651940E-02 6.73429002279E-02 6.81873449587E-02 6.90442367083E-02 6.99116792214E-02 7.07900158863E-02 7.16833200565E-02 7.25852767836E-02 7.34970184759E-02 7.44222180918E-02 7.53567022419E-02 7.63059574353E-02 7.72662969592E-02 7.82386896242E-02 7.92227519585E-02 8.02197742030E-02 8.12270061221E-02 8.22473964551E-02 8.32836935551E-02 8.43338643443E-02 8.53916110136E-02 8.64659459293E-02 8.75532687707E-02 8.86567283611E-02 8.97705588651E-02 9.09000536606E-02 9.20419546641E-02 9.32016207569E-02 9.43703764967E-02 9.55596137366E-02 9.67613874280E-02 9.79797975237E-02 9.92116195063E-02 1.00459317992E-01 1.01720961655E-01 1.03002937854E-01 1.04298386204E-01 1.05609401577E-01 1.06937976602E-01 1.08284183616E-01 1.09645304672E-01 1.11024082670E-01 1.12419061099E-01 1.13835990466E-01 1.15266103659E-01 1.16716846916E-01 1.18184118102E-01 1.19671511179E-01 1.21177098160E-01 1.22699634493E-01 1.24244298178E-01 1.25804894459E-01 1.27390015693E-01 1.28990391328E-01 1.30614277098E-01 1.32255753570E-01 1.33919553638E-01 1.35606459476E-01 1.37311475886E-01 1.39037964451E-01 1.40785683127E-01 1.42558260227E-01 1.44350748048E-01 1.46165349982E-01 1.48004964639E-01 1.49866254330E-01 1.51751827048E-01 1.53659961587E-01 1.55591986612E-01 1.57549741971E-01 1.59532799659E-01 1.61539094558E-01 1.63570744710E-01 1.65628778520E-01 1.67711087462E-01 1.69821438265E-01 1.71957151549E-01 1.74121067013E-01 1.76310346518E-01 1.78527706317E-01 1.80773505322E-01 1.83047959648E-01 1.85349663374E-01 1.87682195088E-01 1.90041188448E-01 1.92431738485E-01 1.94853391069E-01 1.97303292093E-01 1.99785164387E-01 2.02297880202E-01 2.04844301802E-01 2.07419295204E-01 2.10028921479E-01 2.12669876559E-01 2.15344436873E-01 2.18054397818E-01 2.20796710875E-01 2.23574241915E-01 2.26384956896E-01 2.29233599363E-01 2.32117267845E-01 2.35035977500E-01 2.37992770920E-01 2.40985927184E-01 2.44017828368E-01 2.47085571129E-01 2.50193949327E-01 2.53341061493E-01 2.56527671162E-01 2.59754424207E-01 2.63021747911E-01 2.66330116763E-01 2.69679752705E-01 2.73072018703E-01 2.76506984834E-01 2.79984629031E-01 2.83506638767E-01 2.87072249455E-01 2.90682667176E-01 2.94339440564E-01 2.98041773106E-01 3.01789505323E-01 3.05586820058E-01 3.09430145925E-01 3.13321654861E-01 3.17262221963E-01 3.21253118668E-01 3.25293851074E-01 3.29385321369E-01 3.33528497529E-01 3.37723285580E-01 3.41970890166E-01 3.46272235632E-01 3.50627718528E-01 3.55037723629E-01 3.59503636511E-01 3.64025274720E-01 3.68603670972E-01 3.73239856102E-01 3.77934477220E-01 3.82688012206E-01 3.87501219782E-01 3.92375056473E-01 3.97310072192E-01 4.02307447196E-01 4.07367500381E-01 4.12491003601E-01 4.17678628334E-01 4.22932148806E-01 4.28251956978E-01 4.33638411967E-01 4.39092284906E-01 4.44615516877E-01 4.50207205332E-01 4.55870013801E-01 4.61603517974E-01 4.67408584573E-01 4.73287151499E-01 4.79240835341E-01 4.85267204783E-01 4.91370776407E-01 4.97550683624E-01 5.03808534025E-01 5.10145341258E-01 5.16561085933E-01 5.23058180353E-01 5.29636513209E-01 5.36297427420E-01 5.43042673476E-01 5.49872506978E-01 5.56787763392E-01 5.63790260417E-01 5.70880902131E-01 5.78060996253E-01 5.85330887147E-01 5.92692154418E-01 6.00146178213E-01 6.07693696145E-01 6.15336671134E-01 6.23075655359E-01 6.30911278264E-01 6.38846032456E-01 6.46879874932E-01 6.55015433537E-01 6.63252675358E-01 6.71593682068E-01 6.80039781164E-01 6.88591854884E-01 6.97251585734E-01 7.06019913886E-01 7.14898848573E-01 7.23889051005E-01 7.32992345167E-01 7.42210003427E-01 7.51543615166E-01 7.60994374550E-01 7.70564035096E-01 7.80254105149E-01 7.90065977902E-01 8.00000970203E-01 8.10060649602E-01 8.20247166305E-01 8.30561616745E-01 8.41005280674E-01 8.51580723572E-01 8.62288870915E-01 8.73131624660E-01 8.84110708759E-01 8.95227150154E-01 9.06484028553E-01 9.17881779742E-01 9.29423227506E-01 9.41109252732E-01 9.52942601808E-01 9.64924214595E-01 9.77056411909E-01 9.89341068282E-01 1.00178007753E+00 1.01437546448E+00 1.02712886622E+00 1.04004249298E+00 1.05311832754E+00 1.06635850165E+00 1.07976477850E+00 1.09333967308E+00 1.10708481080E+00 1.12100265816E+00 1.13509539601E+00 1.14936497188E+00 1.16381368547E+00 1.17844388139E+00 1.19325787909E+00 1.20825769312E+00 1.22344593382E+00 1.23882485598E+00 1.25439662095E+00 1.27016412595E+00 1.28612940334E+00 1.30229507954E+00 1.31866354317E+00 1.33523751916E+00 1.35201971133E+00 1.36901205362E+00 1.38621774884E+00 1.40363947927E+00 1.42127975704E+00 1.43914115729E+00 1.45722676177E+00 1.47553923700E+00 1.49408123120E+00 1.51285583128E+00 1.53186602262E+00 1.55111437886E+00 1.57060420904E+00 1.59033848725E+00 1.61032007502E+00 1.63055225685E+00 1.65103762004E+00 1.67178027428E+00 1.69278243663E+00 1.71404804925E+00 1.73558017217E+00 1.75738176277E+00 1.77945676020E+00 1.80180807554E+00 1.82443949226E+00 1.84735428487E+00 1.87055583372E+00 1.89404798111E+00 1.91783438036E+00 1.94191840183E+00 1.96630385967E+00 1.99099447456E+00 2.01599407968E+00 2.04130647049E+00 2.06693550102E+00 2.09288505162E+00 2.11915900415E+00 2.14576169586E+00 2.17269689668E+00 2.19996880851E+00 2.22758150083E+00 2.25553937693E+00 2.28384650909E+00 2.31250707022E+00 2.34152591658E+00 2.37090686012E+00 2.40065473317E+00 2.43077390347E+00 2.46126907552E+00 2.49214454736E+00 2.52340541045E+00 2.55505604163E+00 2.58710138174E+00 2.61954628184E+00 2.65239545587E+00 2.68565415320E+00 2.71932713024E+00 2.75341956764E+00 2.78793636607E+00 2.82288301801E+00 2.85826449567E+00 2.89408628209E+00 2.93035359234E+00 2.96707193390E+00 3.00424659374E+00 3.04188344977E+00 3.07998788966E+00 3.11856541843E+00 3.15762213032E+00 3.19716338826E+00 3.23719547146E+00 3.27772392079E+00 3.31875488582E+00 3.36029451439E+00 3.40234862538E+00 3.44492368429E+00 3.48802566696E+00 3.53166109853E+00 3.57583618591E+00 3.62055758161E+00 3.66583152691E+00 3.71166480417E+00 3.75806394133E+00 3.80503561948E+00 3.85258675829E+00 3.90072417867E+00 3.94945466628E+00 3.99878537143E+00 4.04872317285E+00 4.09927532305E+00 4.15044908429E+00 4.20225147751E+00 4.25469013864E+00 4.30777223659E+00 4.36150541076E+00 4.41589707666E+00 4.47095497968E+00 4.52668665705E+00 4.58310010395E+00 4.64020284437E+00 4.69800302613E+00 4.75650850550E+00 4.81572736914E+00 4.87566767283E+00 4.93633756673E+00 4.99774536932E+00 5.05989937927E+00 5.12280790214E+00 5.18647951113E+00 5.25092261076E+00 5.31614579155E+00 5.38215770961E+00 5.44896702925E+00 5.51658259818E+00 5.58501316893E+00 5.65426760133E+00 5.72435494374E+00 5.79528414544E+00 5.86706426575E+00 5.93970435936E+00 6.01321368403E+00 6.08760143081E+00 6.16287677804E+00 6.23904922036E+00 6.31612791693E+00 6.39412242283E+00 6.47304214795E+00 6.55289642495E+00 6.63369500376E+00 6.71544733096E+00 6.79816293081E+00 6.88185148480E+00 6.96652260962E+00 7.05218587784E+00 7.13885111286E+00 7.22652780484E+00 7.31522576479E+00 7.40495465216E+00 7.49572413450E+00 7.58754389657E+00 7.68042365209E+00 7.77437297671E+00 7.86940155381E+00 7.96551897094E+00 8.06273480721E+00 8.16105858357E+00 8.26049975043E+00 8.36106775219E+00 8.46277202335E+00 8.56562170422E+00 8.66962617226E+00 8.77479437167E+00 8.88113549814E+00 8.98865838202E+00 9.09737185911E+00 9.20728456715E+00 9.31840509370E+00 9.43074182867E+00 9.54430297941E+00 9.65909657128E+00 9.77513054062E+00 9.89241246626E+00 1.00109499007E+01 1.01307499583E+01 1.02518196733E+01 1.03741657613E+01 1.04977946422E+01 1.06227123573E+01 1.07489248350E+01 1.08764375131E+01 1.10052554769E+01 1.11353835389E+01 1.12668259403E+01 1.13995866298E+01 1.15336690977E+01 1.16690763036E+01 1.18058107647E+01 1.19438743627E+01 1.20832685928E+01 1.22239941740E+01 1.23660513917E+01 1.25094396932E+01 1.26541579511E+01 1.28002043382E+01 1.29475761823E+01 1.30962700855E+01 1.32462817433E+01 1.33976060492E+01 1.35502369150E+01 1.37041673228E+01 1.38593891641E+01 1.40158933593E+01 1.41736696402E+01 1.43327066543E+01 1.44929917257E+01 1.46545109167E+01 1.48172490284E+01 1.49811893485E+01 1.51463137746E+01 1.53126026092E+01 1.54800345835E+01 1.56485867552E+01 1.58182344229E+01 1.59889510299E+01 1.61607081200E+01 1.63334752726E+01 1.65072199109E+01 1.66819074101E+01 1.68575007475E+01 1.70339606403E+01 1.72112452670E+01 1.73893102921E+01 1.75681087235E+01 1.77475907602E+01 1.79277037008E+01 1.81083918841E+01 1.82895964674E+01 1.84712553408E+01 1.86533031344E+01 1.88356708176E+01 1.90182858277E+01 1.92010717324E+01 1.93839482240E+01 1.95668308915E+01 1.97496311339E+01 1.99322559399E+01 2.01146077940E+01 2.02965844997E+01 2.04780789480E+01 2.06589790534E+01 2.08391675679E+01 2.10185218235E+01 2.11969136563E+01 2.13742092365E+01 2.15502687385E+01 2.17249464189E+01 2.18980901803E+01 2.20695415715E+01 2.22391355285E+01 2.24067001975E+01 2.25720568358E+01 2.27350195259E+01 2.28953950417E+01 2.30529827492E+01 2.32075743845E+01 2.33589538865E+01 2.35068972829E+01 2.36511724998E+01 2.37915393340E+01 2.39277491878E+01 2.40595451087E+01 2.41866615492E+01 2.43088244349E+01 2.44257509605E+01 2.45371496587E+01 2.46427203248E+01 2.47421540162E+01 2.48351331186E+01 2.49213313324E+01 2.50004138472E+01 2.50720374010E+01 2.51358504282E+01 2.51914932782E+01 2.52385984576E+01 2.52767908634E+01 2.53056881494E+01 2.53249010957E+01 2.53340339958E+01 2.53326851631E+01 2.53204474973E+01 2.52969090361E+01 2.52616536509E+01 2.52142617697E+01 2.51543111826E+01 2.50813779024E+01 2.49950371421E+01 2.48948642881E+01 2.47804360215E+01 2.46513315158E+01 2.45071336457E+01 2.43474303465E+01 2.41718160125E+01 2.39798929567E+01 2.37712729873E+01 2.35455790297E+01 2.33024467904E+01 2.30415265080E+01 2.27624847640E+01 2.24650062930E+01 2.21487958689E+01 2.18135802352E+01 2.14591099549E+01 2.10851613790E+01 2.06915384863E+01 2.02780748042E+01 1.98446351607E+01 1.93911174778E+01 1.89174543814E+01 1.84236148021E+01 1.79096053099E+01 1.73754714638E+01 1.68212987928E+01 1.62472137867E+01 1.56533844987E+01 1.50400209773E+01 1.44073754834E+01 1.37557423857E+01 1.30854578066E+01 1.23968990152E+01 1.16904835433E+01 1.09666680164E+01 1.02259468744E+01 9.46885078354E+00 8.69594505185E+00 7.90782792010E+00 7.10512894262E+00 6.28850757796E+00 5.45865206008E+00 4.61627882828E+00 3.76213265695E+00 2.89698780635E+00 2.02165041107E+00 1.13696253872E+00 2.43808214588E-01 -6.56878045816E-01 -1.56409980446E+00 -2.47678372602E+00 -3.39376050784E+00 -4.31374104778E+00 -5.23528702654E+00 -6.15677533960E+00 -7.07635527972E+00 -7.99189782052E+00 -8.90093599112E+00 -9.80059540926E+00 -1.06872873481E+01 -1.15561322103E+01 -1.24017630942E+01 -1.32185386297E+01 -1.40005400619E+01 -1.47415693949E+01 -1.54351487490E+01 -1.60745211248E+01 -1.66526529294E+01 -1.71622383507E+01 -1.75957060079E+01 -1.79452280512E+01 -1.82027320149E+01 -1.83599157054E+01 -1.84082653778E+01 -1.83390774341E+01 -1.81434839232E+01 -1.78124820085E+01 -1.73369676343E+01 -1.67077735822E+01 -1.59157120157E+01 -1.49516217408E+01 -1.38064201360E+01 -1.24711606151E+01 -1.09370891065E+01 -9.19576263168E+00 -7.23861846611E+00 -5.06193458112E+00 -2.61946694851E+00 -2.83464644371E-01 2.70192066905E-02 -3.69123472595E-03 -5.75714930591E-04 -8.15296279554E-04 -7.23743570987E-04 -6.66564371517E-04 -6.07557639121E-04 -5.50349927381E-04 -4.94612880768E-04 -4.40409772981E-04 2.00 2.50 4S 3 1 Beta L 915 -1.93018017706E-07 -1.97904292082E-07 -2.02914263082E-07 -2.08051062101E-07 -2.13317899807E-07 -2.18718068143E-07 -2.24254942391E-07 -2.29931983278E-07 -2.35752739139E-07 -2.41720848135E-07 -2.47840040530E-07 -2.54114141017E-07 -2.60547071113E-07 -2.67142851610E-07 -2.73905605084E-07 -2.80839558477E-07 -2.87949045736E-07 -2.95238510520E-07 -3.02712508983E-07 -3.10375712618E-07 -3.18232911175E-07 -3.26289015660E-07 -3.34549061401E-07 -3.43018211193E-07 -3.51701758533E-07 -3.60605130919E-07 -3.69733893249E-07 -3.79093751297E-07 -3.88690555278E-07 -3.98530303508E-07 -4.08619146148E-07 -4.18963389055E-07 -4.29569497716E-07 -4.40444101295E-07 -4.51593996772E-07 -4.63026153196E-07 -4.74747716036E-07 -4.86766011650E-07 -4.99088551864E-07 -5.11723038667E-07 -5.24677369024E-07 -5.37959639813E-07 -5.51578152886E-07 -5.65541420257E-07 -5.79858169421E-07 -5.94537348813E-07 -6.09588133398E-07 -6.25019930406E-07 -6.40842385212E-07 -6.57065387365E-07 -6.73699076769E-07 -6.90753850022E-07 -7.08240366912E-07 -7.26169557080E-07 -7.44552626855E-07 -7.63401066252E-07 -7.82726656159E-07 -8.02541475699E-07 -8.22857909779E-07 -8.43688656832E-07 -8.65046736750E-07 -8.86945499031E-07 -9.09398631111E-07 -9.32420166930E-07 -9.56024495697E-07 -9.80226370883E-07 -1.00504091945E-06 -1.03048365130E-06 -1.05657046896E-06 -1.08331767754E-06 -1.11074199493E-06 -1.13886056220E-06 -1.16769095439E-06 -1.19725119142E-06 -1.22755974940E-06 -1.25863557216E-06 -1.29049808311E-06 -1.32316719736E-06 -1.35666333415E-06 -1.39100742967E-06 -1.42622095009E-06 -1.46232590502E-06 -1.49934486120E-06 -1.53730095671E-06 -1.57621791534E-06 -1.61612006144E-06 -1.65703233516E-06 -1.69898030800E-06 -1.74199019880E-06 -1.78608889015E-06 -1.83130394516E-06 -1.87766362471E-06 -1.92519690511E-06 -1.97393349620E-06 -2.02390385994E-06 -2.07513922943E-06 -2.12767162844E-06 -2.18153389142E-06 -2.23675968405E-06 -2.29338352424E-06 -2.35144080372E-06 -2.41096781019E-06 -2.47200174995E-06 -2.53458077121E-06 -2.59874398788E-06 -2.66453150407E-06 -2.73198443909E-06 -2.80114495325E-06 -2.87205627409E-06 -2.94476272350E-06 -3.01930974537E-06 -3.09574393401E-06 -3.17411306328E-06 -3.25446611642E-06 -3.33685331671E-06 -3.42132615881E-06 -3.50793744100E-06 -3.59674129814E-06 -3.68779323552E-06 -3.78115016357E-06 -3.87687043339E-06 -3.97501387326E-06 -4.07564182602E-06 -4.17881718740E-06 -4.28460444535E-06 -4.39306972034E-06 -4.50428080670E-06 -4.61830721494E-06 -4.73522021529E-06 -4.85509288216E-06 -4.97800013985E-06 -5.10401880939E-06 -5.23322765654E-06 -5.36570744101E-06 -5.50154096697E-06 -5.64081313477E-06 -5.78361099403E-06 -5.93002379805E-06 -6.08014305958E-06 -6.23406260802E-06 -6.39187864807E-06 -6.55368981988E-06 -6.71959726066E-06 -6.88970466796E-06 -7.06411836440E-06 -7.24294736420E-06 -7.42630344127E-06 -7.61430119910E-06 -7.80705814238E-06 -8.00469475043E-06 -8.20733455253E-06 -8.41510420512E-06 -8.62813357095E-06 -8.84655580028E-06 -9.07050741405E-06 -9.30012838927E-06 -9.53556224648E-06 -9.77695613945E-06 -1.00244609472E-05 -1.02782313681E-05 -1.05384260171E-05 -1.08052075240E-05 -1.10787426361E-05 -1.13592023215E-05 -1.16467618767E-05 -1.19416010356E-05 -1.22439040822E-05 -1.25538599657E-05 -1.28716624185E-05 -1.31975100774E-05 -1.35316066078E-05 -1.38741608306E-05 -1.42253868533E-05 -1.45855042036E-05 -1.49547379663E-05 -1.53333189245E-05 -1.57214837035E-05 -1.61194749186E-05 -1.65275413274E-05 -1.69459379843E-05 -1.73749264007E-05 -1.78147747083E-05 -1.82657578263E-05 -1.87281576336E-05 -1.92022631451E-05 -1.96883706919E-05 -2.01867841068E-05 -2.06978149141E-05 -2.12217825246E-05 -2.17590144348E-05 -2.23098464318E-05 -2.28746228034E-05 -2.34536965527E-05 -2.40474296196E-05 -2.46561931060E-05 -2.52803675087E-05 -2.51008260138E-05 -2.65645269991E-05 -2.72495209223E-05 -2.79273263952E-05 -2.86434797589E-05 -2.93648017763E-05 -3.01086135845E-05 -3.08758184468E-05 -3.16543965335E-05 -3.24510951601E-05 -3.32748558737E-05 -3.41224901436E-05 -3.49819913897E-05 -3.58692007161E-05 -3.67743304278E-05 -3.77125154853E-05 -3.86662026452E-05 -3.96450233442E-05 -4.06434724342E-05 -4.16802460084E-05 -4.27219665382E-05 -4.38119260853E-05 -4.49170684120E-05 -4.60563247490E-05 -4.72230352238E-05 -4.84253456446E-05 -4.96565557469E-05 -5.09071908912E-05 -5.21869617332E-05 -5.35192826055E-05 -5.48546182027E-05 -5.62705731235E-05 -5.76607362472E-05 -5.91438763450E-05 -6.06389770373E-05 -6.21843707139E-05 -6.37414528521E-05 -6.53519178155E-05 -6.70132421040E-05 -6.87070951105E-05 -7.04502195982E-05 -7.22318028461E-05 -7.40682317422E-05 -7.59380952070E-05 -7.78761477170E-05 -7.98375332806E-05 -8.18523667126E-05 -8.39279156473E-05 -8.60561476260E-05 -8.82225496883E-05 -9.04639610945E-05 -9.27545926893E-05 -9.51024045598E-05 -9.75120342018E-05 -9.99760565358E-05 -1.02511882077E-04 -1.05106127713E-04 -1.07768483642E-04 -1.10495429419E-04 -1.13296086474E-04 -1.16158874371E-04 -1.19096955326E-04 -1.22124546624E-04 -1.25214418834E-04 -1.28383311993E-04 -1.31629820519E-04 -1.34967761851E-04 -1.38384861778E-04 -1.41883503430E-04 -1.45469292768E-04 -1.49152228346E-04 -1.52933921739E-04 -1.56802313867E-04 -1.60770006071E-04 -1.64842082080E-04 -1.69013716367E-04 -1.73292554977E-04 -1.77678656907E-04 -1.82181819033E-04 -1.86793112813E-04 -1.91520090773E-04 -1.96365804072E-04 -2.01344177518E-04 -2.06428899878E-04 -2.11671822686E-04 -2.17018673697E-04 -2.22517530866E-04 -2.28154890287E-04 -2.33926991160E-04 -2.39844889980E-04 -2.45919928297E-04 -2.52142483493E-04 -2.58531981992E-04 -2.65078714659E-04 -2.71779626759E-04 -2.78660539044E-04 -2.85718037439E-04 -2.92953016904E-04 -3.00375752230E-04 -3.07966117677E-04 -3.15765183110E-04 -3.23761576015E-04 -3.31956673458E-04 -3.40364674197E-04 -3.48980587799E-04 -3.57819947242E-04 -3.66866892691E-04 -3.76160511303E-04 -3.85681035739E-04 -3.95454856334E-04 -4.05452309039E-04 -4.15723196812E-04 -4.26243805040E-04 -4.37033915130E-04 -4.48092392886E-04 -4.59444206303E-04 -4.71068422759E-04 -4.82991512992E-04 -4.95226089714E-04 -5.07764131326E-04 -5.20602660469E-04 -5.33799804302E-04 -5.47313820409E-04 -5.61167544805E-04 -5.75372210536E-04 -5.89935556972E-04 -6.04877910025E-04 -6.20182106640E-04 -6.35889538518E-04 -6.51981580254E-04 -6.68483384639E-04 -6.85407480313E-04 -7.02756805452E-04 -7.20552355219E-04 -7.38792711331E-04 -7.57495254056E-04 -7.76670179840E-04 -7.96339708376E-04 -8.16495059508E-04 -8.37164844172E-04 -8.58350110882E-04 -8.80098475302E-04 -9.02364172259E-04 -9.25209159921E-04 -9.48630661176E-04 -9.72647105563E-04 -9.97265770250E-04 -1.02250268690E-03 -1.04839172826E-03 -1.07493353330E-03 -1.10214332266E-03 -1.13005204714E-03 -1.15865190192E-03 -1.18799581174E-03 -1.21806131774E-03 -1.24889517494E-03 -1.28051426658E-03 -1.31294235786E-03 -1.34616431472E-03 -1.38024586172E-03 -1.41518736342E-03 -1.45100939354E-03 -1.48774918419E-03 -1.52540773523E-03 -1.56402201999E-03 -1.60360725216E-03 -1.64419774860E-03 -1.68583201591E-03 -1.72850889177E-03 -1.77226281557E-03 -1.81712974804E-03 -1.86313113984E-03 -1.91029349552E-03 -1.95865189804E-03 -2.00823119802E-03 -2.05908684691E-03 -2.11120844107E-03 -2.16464690339E-03 -2.21944569336E-03 -2.27562896422E-03 -2.33322975738E-03 -2.39230509719E-03 -2.45285908469E-03 -2.51495429920E-03 -2.57862988875E-03 -2.64390276280E-03 -2.71082977108E-03 -2.77945397419E-03 -2.84981349906E-03 -2.92195743345E-03 -2.99591617664E-03 -3.07176706414E-03 -3.14953409058E-03 -3.22924769285E-03 -3.31100510303E-03 -3.39483162949E-03 -3.48076257090E-03 -3.56887129088E-03 -3.65921078896E-03 -3.75185033298E-03 -3.84683079630E-03 -3.94420999270E-03 -4.04404943297E-03 -4.14642161127E-03 -4.25139248870E-03 -4.35901268922E-03 -4.46936218636E-03 -4.58249914012E-03 -4.69850635739E-03 -4.81743006987E-03 -4.93938884583E-03 -5.06442651164E-03 -5.19262852448E-03 -5.32408694597E-03 -5.45885201545E-03 -5.59703762297E-03 -5.73872688286E-03 -5.88399621831E-03 -6.03295054731E-03 -6.18566373344E-03 -6.34224613354E-03 -6.50280220441E-03 -6.66741464287E-03 -6.83619503739E-03 -7.00923809752E-03 -7.18667625615E-03 -7.36859736597E-03 -7.55513192921E-03 -7.74638333331E-03 -7.94246535802E-03 -8.14353485350E-03 -8.34966818539E-03 -8.56103117463E-03 -8.77773750960E-03 -8.99994616683E-03 -9.22776457197E-03 -9.46135733865E-03 -9.70085830691E-03 -9.94641843703E-03 -1.01981947691E-02 -1.04563416800E-02 -1.07210341391E-02 -1.09924207512E-02 -1.12706774966E-02 -1.15559722667E-02 -1.18485009146E-02 -1.21484199176E-02 -1.24559396136E-02 -1.27712355089E-02 -1.30945114756E-02 -1.34259811133E-02 -1.37658293735E-02 -1.41142931122E-02 -1.44715593446E-02 -1.48378813363E-02 -1.52134653844E-02 -1.55985603353E-02 -1.59933991579E-02 -1.63982313100E-02 -1.68133121966E-02 -1.72389029241E-02 -1.76752632068E-02 -1.81226649742E-02 -1.85813827498E-02 -1.90517325936E-02 -1.95339685305E-02 -2.00284240241E-02 -2.05353707939E-02 -2.10551601983E-02 -2.15881086090E-02 -2.21345341836E-02 -2.26947942041E-02 -2.32692421730E-02 -2.38582114870E-02 -2.44621024380E-02 -2.50812769538E-02 -2.57161141771E-02 -2.63670104038E-02 -2.70343802773E-02 -2.77186499781E-02 -2.84202341617E-02 -2.91395670771E-02 -2.98771092795E-02 -3.06333057066E-02 -3.14086455352E-02 -3.22035980595E-02 -3.30186913801E-02 -3.38543819546E-02 -3.47112331605E-02 -3.55897631710E-02 -3.64905293906E-02 -3.74140786809E-02 -3.83609985362E-02 -3.93318792073E-02 -4.03273446436E-02 -4.13479673340E-02 -4.23944332672E-02 -4.34673760614E-02 -4.45674555279E-02 -4.56953805397E-02 -4.68518302700E-02 -4.80375536104E-02 -4.92532563704E-02 -5.04997375292E-02 -5.17777438746E-02 -5.30880851335E-02 -5.44315731768E-02 -5.58090593581E-02 -5.72213662593E-02 -5.86694308267E-02 -6.01541180240E-02 -6.16763468770E-02 -6.32371103039E-02 -6.48373357990E-02 -6.64780330042E-02 -6.81602533437E-02 -6.98850085705E-02 -7.16533869293E-02 -7.34664913054E-02 -7.53254717868E-02 -7.72314463497E-02 -7.91856283074E-02 -8.11894185247E-02 -8.32432691853E-02 -8.53499320873E-02 -8.75089006145E-02 -8.97237485948E-02 -9.19937709141E-02 -9.43201712080E-02 -9.67079738832E-02 -9.91538680021E-02 -1.01662217062E-01 -1.04234790936E-01 -1.06871896355E-01 -1.09574747788E-01 -1.12347671681E-01 -1.15188968710E-01 -1.18103484814E-01 -1.21091031965E-01 -1.24154111732E-01 -1.27294498452E-01 -1.30514799912E-01 -1.33815727335E-01 -1.37200654503E-01 -1.40670684789E-01 -1.44229055518E-01 -1.47877455440E-01 -1.51616371407E-01 -1.55451717092E-01 -1.59383198122E-01 -1.63413570986E-01 -1.67546696287E-01 -1.71783799910E-01 -1.76127336222E-01 -1.80581507762E-01 -1.85147909402E-01 -1.89829591097E-01 -1.94629385785E-01 -1.99550666552E-01 -2.04595700905E-01 -2.09768774778E-01 -2.15072463650E-01 -2.20509029246E-01 -2.26084410560E-01 -2.31799391376E-01 -2.37658986908E-01 -2.43666558719E-01 -2.49825807650E-01 -2.56139933645E-01 -2.62614285081E-01 -2.69251650334E-01 -2.76056074229E-01 -2.83032661329E-01 -2.90185190284E-01 -2.97517821883E-01 -3.05035942374E-01 -3.12743210387E-01 -3.20644997216E-01 -3.28745930301E-01 -3.37051403431E-01 -3.45565936237E-01 -3.54295398154E-01 -3.63244465768E-01 -3.72419538743E-01 -3.81825533661E-01 -3.91467982061E-01 -4.01355783746E-01 -4.11489708897E-01 -4.21879198575E-01 -4.32532180552E-01 -4.43452384035E-01 -4.54647524632E-01 -4.66125152926E-01 -4.77888340069E-01 -4.89953355361E-01 -5.02318367371E-01 -5.14992761478E-01 -5.27990168808E-01 -5.41312181137E-01 -5.54969726722E-01 -5.68971581400E-01 -5.83321860235E-01 -5.98035053326E-01 -6.13122038445E-01 -6.28577356759E-01 -6.44435732351E-01 -6.60677943177E-01 -6.77339507364E-01 -6.94410108444E-01 -7.11915553375E-01 -7.29858397835E-01 -7.48248352193E-01 -7.67106488952E-01 -7.86428870220E-01 -8.06243308480E-01 -8.26549649339E-01 -8.47364404233E-01 -8.68708289847E-01 -8.90575186755E-01 -9.12998130474E-01 -9.35978532627E-01 -9.59534429612E-01 -9.83682223454E-01 -1.00842966388E+00 -1.03379734108E+00 -1.05980251583E+00 -1.08645220915E+00 -1.11377071491E+00 -1.14176889517E+00 -1.17046906074E+00 -1.19988293462E+00 -1.23002943247E+00 -1.26093089477E+00 -1.29259937421E+00 -1.32505913120E+00 -1.35832425821E+00 -1.39241976213E+00 -1.42736289196E+00 -1.46317391384E+00 -1.49987688358E+00 -1.53749034899E+00 -1.57603866058E+00 -1.61554236553E+00 -1.65602773039E+00 -1.69751595689E+00 -1.74003267960E+00 -1.78360279912E+00 -1.82825021400E+00 -1.87400260182E+00 -1.92088808109E+00 -1.96892918655E+00 -2.01815903365E+00 -2.06860251137E+00 -2.12028992001E+00 -2.17325158480E+00 -2.22751830415E+00 -2.28311910983E+00 -2.34008911277E+00 -2.39845713044E+00 -2.45826025241E+00 -2.51952928709E+00 -2.58230157830E+00 -2.64661065623E+00 -2.71249442639E+00 -2.77998820231E+00 -2.84913255924E+00 -2.91996342233E+00 -2.99252190802E+00 -3.06684793249E+00 -3.14298369766E+00 -3.22096907752E+00 -3.30084992018E+00 -3.38266740085E+00 -3.46646928297E+00 -3.55229789849E+00 -3.64020264033E+00 -3.73023004594E+00 -3.82242854955E+00 -3.91684762413E+00 -4.01353940258E+00 -4.11255208275E+00 -4.21394140415E+00 -4.31775963012E+00 -4.42406079389E+00 -4.53290169529E+00 -4.64433749989E+00 -4.75842784100E+00 -4.87522939947E+00 -4.99480318263E+00 -5.11721027750E+00 -5.24251205050E+00 -5.37077172836E+00 -5.50205379667E+00 -5.63642295435E+00 -5.77394637019E+00 -5.91469057094E+00 -6.05872491842E+00 -6.20611871059E+00 -6.35694252204E+00 -6.51126882462E+00 -6.66916985059E+00 -6.83071969752E+00 -6.99599408195E+00 -7.16506841113E+00 -7.33802004763E+00 -7.51492734020E+00 -7.69586939396E+00 -7.88092664882E+00 -8.07017929720E+00 -8.26371101482E+00 -8.46160339023E+00 -8.66394112510E+00 -8.87080854265E+00 -9.08229131899E+00 -9.29847607880E+00 -9.51944902706E+00 -9.74529871090E+00 -9.97611337596E+00 -1.02119809156E+01 -1.04529920979E+01 -1.06992356729E+01 -1.09508025522E+01 -1.12077824878E+01 -1.14702666273E+01 -1.17383456992E+01 -1.20121101924E+01 -1.22916509415E+01 -1.25770587752E+01 -1.28684231852E+01 -1.31658347289E+01 -1.34693819971E+01 -1.37791538740E+01 -1.40952379054E+01 -1.44177208843E+01 -1.47466879615E+01 -1.50822240522E+01 -1.54244111434E+01 -1.57733308286E+01 -1.61290616328E+01 -1.64916811662E+01 -1.68612636827E+01 -1.72378813808E+01 -1.76216037114E+01 -1.80124966579E+01 -1.84106234648E+01 -1.88160428852E+01 -1.92288108865E+01 -1.96489781200E+01 -2.00765914531E+01 -2.05116925553E+01 -2.09543177371E+01 -2.14044981418E+01 -2.18622584575E+01 -2.23276173154E+01 -2.28005864138E+01 -2.32811702098E+01 -2.37693656435E+01 -2.42651614154E+01 -2.47685377008E+01 -2.52794653823E+01 -2.57979061541E+01 -2.63238111824E+01 -2.68571211009E+01 -2.73977655369E+01 -2.79456618046E+01 -2.85007155329E+01 -2.90628187840E+01 -2.96318501209E+01 -3.02076742684E+01 -3.07901404448E+01 -3.13790828482E+01 -3.19743191171E+01 -3.25756501544E+01 -3.31828593028E+01 -3.37957114424E+01 -3.44139526020E+01 -3.50373090523E+01 -3.56654867042E+01 -3.62981701245E+01 -3.69350223152E+01 -3.75756834529E+01 -3.82197706235E+01 -3.88668768394E+01 -3.95165704599E+01 -4.01683945627E+01 -4.08218662254E+01 -4.14764759617E+01 -4.21316869866E+01 -4.27869349194E+01 -4.34416267581E+01 -4.40951411980E+01 -4.47468272195E+01 -4.53960044145E+01 -4.60419624178E+01 -4.66839605761E+01 -4.73212278391E+01 -4.79529625797E+01 -4.85783326653E+01 -4.91964754039E+01 -4.98064977396E+01 -5.04074765789E+01 -5.09984590527E+01 -5.15784630660E+01 -5.21464780607E+01 -5.27014656321E+01 -5.32423604321E+01 -5.37680714546E+01 -5.42774830101E+01 -5.47694563175E+01 -5.52428310550E+01 -5.56964270558E+01 -5.61290463901E+01 -5.65394753606E+01 -5.69264870109E+01 -5.72888435867E+01 -5.76252992938E+01 -5.79346032165E+01 -5.82155027015E+01 -5.84667463171E+01 -5.86870878083E+01 -5.88752895225E+01 -5.90301265416E+01 -5.91503905822E+01 -5.92348943355E+01 -5.92824757508E+01 -5.92920024545E+01 -5.92623764000E+01 -5.91925382273E+01 -5.90814720579E+01 -5.89282098432E+01 -5.87318360060E+01 -5.84914916587E+01 -5.82063787665E+01 -5.78757642121E+01 -5.74989832092E+01 -5.70754427453E+01 -5.66046241577E+01 -5.60860856858E+01 -5.55194638439E+01 -5.49044746281E+01 -5.42409136322E+01 -5.35286553444E+01 -5.27676516858E+01 -5.19579292079E+01 -5.10995855658E+01 -5.01927844223E+01 -4.92377495067E+01 -4.82347571228E+01 -4.71841274182E+01 -4.60862145273E+01 -4.49413951895E+01 -4.37500562594E+01 -4.25125812175E+01 -4.12293355064E+01 -3.99006511244E+01 -3.85268109405E+01 -3.71080325495E+01 -3.56444525764E+01 -3.41361115544E+01 -3.25829405730E+01 -3.09847495709E+01 -2.93412190225E+01 -2.76518954610E+01 -2.59161922975E+01 -2.41333970510E+01 -2.23026868036E+01 -2.04231532936E+01 -1.84938397926E+01 -1.65137918507E+01 -1.44821240635E+01 -1.23981058918E+01 -1.02612687428E+01 -8.07153782990E+00 -5.82939169109E+00 -3.53605294734E+00 -1.19415067629E+00 1.19103822524E+00 3.61298737569E+00 6.06426126605E+00 8.53644725323E+00 1.10200848586E+01 1.35045928105E+01 1.59781942605E+01 1.84278404884E+01 2.08391338887E+01 2.31962508507E+01 2.54818652323E+01 2.76770734232E+01 2.97613218169E+01 3.17123376696E+01 3.35060645161E+01 3.51166032736E+01 3.65161600690E+01 3.76750023329E+01 3.85614243093E+01 3.91417235093E+01 3.93801897728E+01 3.92391082352E+01 3.86787784165E+01 3.76575509132E+01 3.61318839448E+01 3.40564216957E+01 3.13840984164E+01 2.80662527845E+01 2.40529316137E+01 1.92916675433E+01 1.37414267796E+01 7.23955026825E+00 7.97281934389E-01 -7.51973710434E-02 1.11193300240E-02 2.37654446955E-03 3.05790953889E-03 2.80465055003E-03 2.64395986281E-03 2.47415551537E-03 2.30552104470E-03 2.13721738831E-03 1.96953033060E-03 2.40 2.60 4P 4 1 Beta L 915 1.35341066724E-07 1.38767242136E-07 1.42280151591E-07 1.45881990772E-07 1.49575010946E-07 1.53361520370E-07 1.57243885737E-07 1.61224533650E-07 1.65305952145E-07 1.69490692241E-07 1.73781369537E-07 1.78180665844E-07 1.82691330868E-07 1.87316183920E-07 1.92058115684E-07 1.96920090022E-07 2.01905145826E-07 2.07016398918E-07 2.12257043997E-07 2.17630356638E-07 2.23139695335E-07 2.28788503605E-07 2.34580312137E-07 2.40518740998E-07 2.46607501902E-07 2.52850400521E-07 2.59251338870E-07 2.65814317745E-07 2.72543439219E-07 2.79442909214E-07 2.86517040123E-07 2.93770253508E-07 3.01207082862E-07 3.08832176447E-07 3.16650300194E-07 3.24666340684E-07 3.32885308205E-07 3.41312339878E-07 3.49952702872E-07 3.58811797695E-07 3.67895161570E-07 3.77208471894E-07 3.86757549791E-07 3.96548363743E-07 4.06587033330E-07 4.16879833044E-07 4.27433196223E-07 4.38253719059E-07 4.49348164734E-07 4.60723467636E-07 4.72386737699E-07 4.84345264847E-07 4.96606523549E-07 5.09178177489E-07 5.22068084362E-07 5.35284300777E-07 5.48835087301E-07 5.62728913616E-07 5.76974463814E-07 5.91580641829E-07 6.06556576997E-07 6.21911629765E-07 6.37655397540E-07 6.53797720689E-07 6.70348688690E-07 6.87318646435E-07 7.04718200701E-07 7.22558226774E-07 7.40849875252E-07 7.59604579009E-07 7.78834060346E-07 7.98550338314E-07 8.18765736228E-07 8.39492889369E-07 8.60744752882E-07 8.82534609873E-07 9.04876079712E-07 9.27783126543E-07 9.51270068015E-07 9.75351584232E-07 1.00004272692E-06 1.02535892886E-06 1.05131601348E-06 1.07793020482E-06 1.10521813761E-06 1.13319686769E-06 1.16188388268E-06 1.19129711290E-06 1.22145494257E-06 1.25237622131E-06 1.28408027594E-06 1.31658692251E-06 1.34991647874E-06 1.38408977668E-06 1.41912817576E-06 1.45505357611E-06 1.49188843228E-06 1.52965576724E-06 1.56837918682E-06 1.60808289440E-06 1.64879170609E-06 1.69053106623E-06 1.73332706327E-06 1.77720644610E-06 1.82219664076E-06 1.86832576759E-06 1.91562265877E-06 1.96411687642E-06 2.01383873099E-06 2.06481930026E-06 2.11709044874E-06 2.17068484759E-06 2.22563599505E-06 2.28197823738E-06 2.33974679030E-06 2.39897776105E-06 2.45970817089E-06 2.52197597831E-06 2.58582010271E-06 2.65128044874E-06 2.71839793124E-06 2.78721450082E-06 2.85777317006E-06 2.93011804043E-06 3.00429432982E-06 3.08034840081E-06 3.15832778967E-06 3.23828123604E-06 3.32025871343E-06 3.40431146042E-06 3.49049201270E-06 3.57885423591E-06 3.66945335931E-06 3.76234601029E-06 3.85759024976E-06 3.95524560848E-06 4.05537312419E-06 4.15803537985E-06 4.26329654269E-06 4.37122240435E-06 4.48188042200E-06 4.59533976047E-06 4.71167133554E-06 4.83094785821E-06 4.95324388016E-06 5.07863584038E-06 5.20720211289E-06 5.33902305579E-06 5.47418106142E-06 5.61276060793E-06 5.75484831200E-06 5.90053298306E-06 6.04990567874E-06 6.20305976181E-06 6.36009095852E-06 6.52109741845E-06 6.68617977585E-06 6.85544121252E-06 7.02898752234E-06 7.20692717736E-06 7.38937139561E-06 7.57643421063E-06 7.76823254272E-06 7.96488627203E-06 8.16651831349E-06 8.37325469364E-06 8.58522462939E-06 8.80256060879E-06 9.02539847385E-06 9.25387750540E-06 9.48814051023E-06 9.72833391025E-06 9.97460783409E-06 1.02271162109E-05 1.04860168665E-05 1.07514716222E-05 1.10236463958E-05 1.13027113052E-05 1.15888407749E-05 1.18822136452E-05 1.21830132836E-05 1.24914276993E-05 1.28076496614E-05 1.31318768188E-05 1.34643118238E-05 1.38051624590E-05 1.41546417670E-05 1.45129681836E-05 1.48803656743E-05 1.52570638742E-05 1.56432982319E-05 1.60393101562E-05 1.64453471672E-05 1.68616630511E-05 1.72885180186E-05 1.77261788677E-05 1.76416647667E-05 1.86258794618E-05 1.91056041851E-05 1.95814428107E-05 2.00831690530E-05 2.05891378351E-05 2.11106559281E-05 2.16484089845E-05 2.21944220107E-05 2.27533529094E-05 2.33308386419E-05 2.39249133998E-05 2.45278500311E-05 2.51498138305E-05 2.57846772789E-05 2.64421387777E-05 2.71108917489E-05 2.77972645788E-05 2.84975795004E-05 2.92241907159E-05 2.99553056779E-05 3.07191281369E-05 3.14942945326E-05 3.22929775772E-05 3.31110565917E-05 3.39537533108E-05 3.48167470648E-05 3.56940642193E-05 3.65917960269E-05 3.75254968133E-05 3.84627921376E-05 3.94542464434E-05 4.04307961124E-05 4.14695329627E-05 4.25180224982E-05 4.36010940123E-05 4.46937573790E-05 4.58231910932E-05 4.69877093507E-05 4.81755869682E-05 4.93976600707E-05 5.06469586706E-05 5.19342748653E-05 5.32456089972E-05 5.46038004128E-05 5.59795739729E-05 5.73926663774E-05 5.88478589037E-05 6.03399412131E-05 6.18596254316E-05 6.34308702895E-05 6.50369945501E-05 6.66832860457E-05 6.83727612298E-05 7.01007507605E-05 7.18785769669E-05 7.36976733823E-05 7.55644034825E-05 7.74765523394E-05 7.94401650808E-05 8.14477879247E-05 8.35080456767E-05 8.56303122391E-05 8.77969690797E-05 9.00189977489E-05 9.22955685622E-05 9.46357913339E-05 9.70317927106E-05 9.94852047439E-05 1.01999828511E-04 1.04582227063E-04 1.07233587466E-04 1.09946222563E-04 1.12728389045E-04 1.15583571441E-04 1.18508721597E-04 1.21508976703E-04 1.24584511240E-04 1.27741767926E-04 1.30975187684E-04 1.34289762476E-04 1.37687620747E-04 1.41178033252E-04 1.44743969277E-04 1.48419381212E-04 1.52169079187E-04 1.56024554803E-04 1.59977173666E-04 1.64024646704E-04 1.68174407248E-04 1.72433952127E-04 1.76797255818E-04 1.81277163023E-04 1.85867501973E-04 1.90566580559E-04 1.95391328388E-04 2.00339775475E-04 2.05412748063E-04 2.10617088898E-04 2.15940053942E-04 2.21408494364E-04 2.27015286880E-04 2.32761622703E-04 2.38656940132E-04 2.44698323439E-04 2.50896078212E-04 2.57240227050E-04 2.63756463236E-04 2.70432180148E-04 2.77284927926E-04 2.84295654505E-04 2.91497073928E-04 2.98874161747E-04 3.06440002483E-04 3.14194328860E-04 3.22153601049E-04 3.30304659713E-04 3.38665052846E-04 3.47243353157E-04 3.56034779449E-04 3.65037735108E-04 3.74290458229E-04 3.83766231910E-04 3.93480308592E-04 4.03440475986E-04 4.13652163801E-04 4.24129088122E-04 4.34860540276E-04 4.45874000153E-04 4.57157732287E-04 4.68728719431E-04 4.80595525878E-04 4.92760694786E-04 5.05238405981E-04 5.18028251071E-04 5.31142187487E-04 5.44587400807E-04 5.58378908192E-04 5.72511758159E-04 5.87005033181E-04 6.01860195015E-04 6.17108816251E-04 6.32721847365E-04 6.48740330762E-04 6.65163098162E-04 6.82002953552E-04 6.99265352739E-04 7.16961501258E-04 7.35114305091E-04 7.53724885951E-04 7.72804062298E-04 7.92372821645E-04 8.12426921722E-04 8.33001781306E-04 8.54083648261E-04 8.75703917765E-04 8.97874544841E-04 9.20611981653E-04 9.43907452278E-04 9.67804697826E-04 9.92305078590E-04 1.01742307294E-03 1.04318401389E-03 1.06958979300E-03 1.09666556340E-03 1.12442246961E-03 1.15288412720E-03 1.18207680590E-03 1.21200116045E-03 1.24268083098E-03 1.27414069198E-03 1.30639608017E-03 1.33946566848E-03 1.37337385444E-03 1.40813824210E-03 1.44379648889E-03 1.48034351101E-03 1.51781399003E-03 1.55623798673E-03 1.59563284366E-03 1.63602191469E-03 1.67744407989E-03 1.71990388032E-03 1.76344398349E-03 1.80809174363E-03 1.85386024806E-03 1.90078851273E-03 1.94890668287E-03 1.99824170741E-03 2.04882780684E-03 2.10068695820E-03 2.15387185932E-03 2.20840052762E-03 2.26429519576E-03 2.32162168373E-03 2.38039899224E-03 2.44065274951E-03 2.50243344863E-03 2.56577829339E-03 2.63073525948E-03 2.69733381658E-03 2.76561458041E-03 2.83562073664E-03 2.90740248039E-03 2.98100607085E-03 3.05646770035E-03 3.13384280394E-03 3.21317273883E-03 3.29451491576E-03 3.37790316274E-03 3.46341824894E-03 3.55109265335E-03 3.64098587909E-03 3.73316187183E-03 3.82765751408E-03 3.92455110673E-03 4.02390112506E-03 4.12576177468E-03 4.23020586176E-03 4.33728624936E-03 4.44707944279E-03 4.55965841064E-03 4.67508202747E-03 4.79342809665E-03 4.91476358957E-03 5.03918009253E-03 5.16674040547E-03 5.29753516563E-03 5.43163752534E-03 5.56912762257E-03 5.71011358909E-03 5.85465156438E-03 6.00285589225E-03 6.15480722849E-03 6.31061588185E-03 6.47035870138E-03 6.63415007212E-03 6.80208437859E-03 6.97426743798E-03 7.15080921859E-03 7.33181802683E-03 7.51741593000E-03 7.70770794316E-03 7.90281714444E-03 8.10286160134E-03 8.30797764331E-03 8.51827644707E-03 8.73390424271E-03 8.95498496169E-03 9.18166127117E-03 9.41408225692E-03 9.65237877423E-03 9.89671563922E-03 1.01472255526E-02 1.04040846241E-02 1.06674385561E-02 1.09374611707E-02 1.12143162089E-02 1.14981784294E-02 1.17892268099E-02 1.20876443140E-02 1.23936133770E-02 1.27073247111E-02 1.30289710334E-02 1.33587725213E-02 1.36969092264E-02 1.40436134106E-02 1.43990774376E-02 1.47635459326E-02 1.51372411547E-02 1.55203869319E-02 1.59132329480E-02 1.63160269338E-02 1.67290039206E-02 1.71524429747E-02 1.75865985923E-02 1.80317370551E-02 1.84881362528E-02 1.89560864406E-02 1.94358860893E-02 1.99278264650E-02 2.04322123516E-02 2.09493660624E-02 2.14796003535E-02 2.20232574478E-02 2.25806670688E-02 2.31521979252E-02 2.37381727760E-02 2.43389845137E-02 2.49549973562E-02 2.55866016300E-02 2.62341816412E-02 2.68981487539E-02 2.75789168413E-02 2.82769226169E-02 2.89925698506E-02 2.97263371488E-02 3.04786697704E-02 3.12500308439E-02 3.20409163505E-02 3.28518036958E-02 3.36832166688E-02 3.45356519006E-02 3.54096675357E-02 3.63057888743E-02 3.72245829693E-02 3.81666194609E-02 3.91324945742E-02 4.01227870163E-02 4.11381509218E-02 4.21791947354E-02 4.32465631907E-02 4.43409503728E-02 4.54630089126E-02 4.66134462434E-02 4.77929981082E-02 4.90023758592E-02 5.02423419460E-02 5.15136696549E-02 5.28171644691E-02 5.41536123318E-02 5.55238627485E-02 5.69288888288E-02 5.83690478183E-02 5.98461949732E-02 6.13600672825E-02 6.29130567117E-02 6.45047765799E-02 6.61360799149E-02 6.78103086205E-02 6.95253856630E-02 7.12842254370E-02 7.30880583486E-02 7.49371664546E-02 7.68324221328E-02 7.87767250636E-02 8.07690580980E-02 8.28126614455E-02 8.49075067935E-02 8.70553155269E-02 8.92573363559E-02 9.15153672467E-02 9.38299714501E-02 9.62034478606E-02 9.86366202102E-02 1.01131705662E-01 1.03689911919E-01 1.06311675442E-01 1.09000955365E-01 1.11757686109E-01 1.14583781208E-01 1.17481880976E-01 1.20452911637E-01 1.23498605746E-01 1.26621830299E-01 1.29823766382E-01 1.33106540058E-01 1.36472141636E-01 1.39922917631E-01 1.43460496857E-01 1.47087825948E-01 1.50806744208E-01 1.54618889379E-01 1.58528294711E-01 1.62535647001E-01 1.66644387824E-01 1.70856887702E-01 1.75175743479E-01 1.79603230278E-01 1.84143025330E-01 1.88797145838E-01 1.93568432289E-01 1.98460418260E-01 2.03475780548E-01 2.08617451184E-01 2.13889163277E-01 2.19293533135E-01 2.24834296659E-01 2.30514711441E-01 2.36338540408E-01 2.42308983915E-01 2.48430126980E-01 2.54705285092E-01 2.61138901606E-01 2.67734462091E-01 2.74495858898E-01 2.81429184638E-01 2.88535246877E-01 2.95820506455E-01 3.03290444763E-01 3.10947819432E-01 3.18797991848E-01 3.26846223188E-01 3.35094868299E-01 3.43554880021E-01 3.52225441189E-01 3.61113042959E-01 3.70226948790E-01 3.79568599700E-01 3.89145513378E-01 3.98963830642E-01 4.09026666802E-01 4.19343881955E-01 4.29923020880E-01 4.40760996788E-01 4.51880875964E-01 4.63270654661E-01 4.74953927927E-01 4.86924518675E-01 4.99199726569E-01 5.11781770484E-01 5.24677514149E-01 5.37901234555E-01 5.51450959113E-01 5.65345369969E-01 5.79584985695E-01 5.94181168055E-01 6.09148033436E-01 6.24482271876E-01 6.40206031243E-01 6.56320927355E-01 6.72839402235E-01 6.89772841111E-01 7.07127036963E-01 7.24916135378E-01 7.43152142376E-01 7.61840430069E-01 7.80997608429E-01 8.00631582255E-01 8.20757719680E-01 8.41384523864E-01 8.62525195502E-01 8.84195184871E-01 9.06403274240E-01 9.29166205126E-01 9.52494137921E-01 9.76404337806E-01 1.00090906692E+00 1.02602256407E+00 1.05176155810E+00 1.07813922636E+00 1.10517253879E+00 1.13287602929E+00 1.16126796488E+00 1.19036335828E+00 1.22018012803E+00 1.25073574721E+00 1.28204706257E+00 1.31413341487E+00 1.34701445652E+00 1.38070624615E+00 1.41523174960E+00 1.45060862144E+00 1.48685806552E+00 1.52400133722E+00 1.56206003224E+00 1.60105463901E+00 1.64100962891E+00 1.68194542213E+00 1.72388785384E+00 1.76685871444E+00 1.81088408198E+00 1.85598759718E+00 1.90219578242E+00 1.94953352142E+00 1.99802915566E+00 2.04770805182E+00 2.09859899197E+00 2.15073002222E+00 2.20413072353E+00 2.25882920555E+00 2.31485751150E+00 2.37224469285E+00 2.43102413273E+00 2.49122573441E+00 2.55288403783E+00 2.61603178091E+00 2.68070298378E+00 2.74693239567E+00 2.81475654546E+00 2.88420946218E+00 2.95533012651E+00 3.02815531798E+00 3.10272302242E+00 3.17907307769E+00 3.25724432061E+00 3.33727854595E+00 3.41921569060E+00 3.50309856147E+00 3.58897007592E+00 3.67687339521E+00 3.76685294814E+00 3.85895404407E+00 3.95322219134E+00 4.04970456653E+00 4.14844799029E+00 4.24950118816E+00 4.35291290718E+00 4.45873278651E+00 4.56701176149E+00 4.67780067419E+00 4.79115164222E+00 4.90711789749E+00 5.02575253383E+00 5.14710997768E+00 5.27124535801E+00 5.39821435731E+00 5.52807358512E+00 5.66087955083E+00 5.79669108642E+00 5.93556572537E+00 6.07756308184E+00 6.22274257914E+00 6.37116457445E+00 6.52289009464E+00 6.67797994390E+00 6.83649649863E+00 6.99850198597E+00 7.16405844853E+00 7.33322984045E+00 7.50607884231E+00 7.68266957779E+00 7.86306544905E+00 8.04733079558E+00 8.23552971076E+00 8.42772615439E+00 8.62398432865E+00 8.82436844555E+00 9.02894185594E+00 9.23776860703E+00 9.45091146469E+00 9.66843337740E+00 9.89039640860E+00 1.01168621108E+01 1.03478909406E+01 1.05835431639E+01 1.08238771005E+01 1.10689507595E+01 1.13188200945E+01 1.15735403921E+01 1.18331646756E+01 1.20977445400E+01 1.23673296900E+01 1.26419674618E+01 1.29217032821E+01 1.32065795184E+01 1.34966365713E+01 1.37919112177E+01 1.40924375900E+01 1.43982462423E+01 1.47093640280E+01 1.50258142081E+01 1.53476155955E+01 1.56747827944E+01 1.60073256129E+01 1.63452488396E+01 1.66885520451E+01 1.70372290888E+01 1.73912679100E+01 1.77506500063E+01 1.81153504744E+01 1.84853371152E+01 1.88605704029E+01 1.92410031499E+01 1.96265796286E+01 2.00172359492E+01 2.04128988073E+01 2.08134854954E+01 2.12189036505E+01 2.16290501365E+01 2.20438113257E+01 2.24630620637E+01 2.28866655187E+01 2.33144726088E+01 2.37463213789E+01 2.41820367082E+01 2.46214296841E+01 2.50642971703E+01 2.55104211278E+01 2.59595684310E+01 2.64114900078E+01 2.68659206266E+01 2.73225782160E+01 2.77811634477E+01 2.82413592869E+01 2.87028304852E+01 2.91652231737E+01 2.96281643462E+01 3.00912616279E+01 3.05541025709E+01 3.10162548252E+01 3.14772651866E+01 3.19366597751E+01 3.23939436353E+01 3.28486004922E+01 3.33000926547E+01 3.37478608763E+01 3.41913243813E+01 3.46298808149E+01 3.50629063580E+01 3.54897559325E+01 3.59097633698E+01 3.63222417712E+01 3.67264840136E+01 3.71217631651E+01 3.75073330958E+01 3.78824293430E+01 3.82462697830E+01 3.85980557127E+01 3.89369729134E+01 3.92621928189E+01 3.95728739449E+01 3.98681632724E+01 4.01471979776E+01 4.04091071413E+01 4.06530136649E+01 4.08780363042E+01 4.10832920183E+01 4.12678980580E+01 4.14309747155E+01 4.15716477450E+01 4.16890512589E+01 4.17823304879E+01 4.18506448439E+01 4.18931709622E+01 4.19091058478E+01 4.18976701885E+01 4.18581114952E+01 4.17897075405E+01 4.16917695236E+01 4.15636454390E+01 4.14047231854E+01 4.12144336505E+01 4.09922537448E+01 4.07377090214E+01 4.04503763243E+01 4.01298858798E+01 3.97759233763E+01 3.93882312810E+01 3.89666100464E+01 3.85109186043E+01 3.80210743205E+01 3.74970524440E+01 3.69388846709E+01 3.63466572158E+01 3.57205078395E+01 3.50606222973E+01 3.43672297423E+01 3.36405972833E+01 3.28810237613E+01 3.20888324820E+01 3.12643631649E+01 3.04079631753E+01 2.95199779170E+01 2.86007406589E+01 2.76505620899E+01 2.66697194769E+01 2.56584460089E+01 2.46169204018E+01 2.35452575334E+01 2.24435000217E+01 2.13116118771E+01 2.01494745100E+01 1.89568860401E+01 1.77335646265E+01 1.64791569964E+01 1.51932530910E+01 1.38754082214E+01 1.25251740948E+01 1.11421401127E+01 9.72598691887E+00 8.27655364224E+00 6.79392113100E+00 5.27851306569E+00 3.73121729554E+00 2.15380362422E+00 5.49708213915E-01 -1.07683608523E+00 -2.72101127158E+00 -4.37737034451E+00 -6.03979169316E+00 -7.70143200064E+00 -9.35467793565E+00 -1.09910968297E+01 -1.26013868483E+01 -1.41753270463E+01 -1.57017277588E+01 -1.71683819656E+01 -1.85620181594E+01 -1.98682553460E+01 -2.10715609346E+01 -2.21552122472E+01 -2.31012623169E+01 -2.38905109729E+01 -2.45024819560E+01 -2.49154070527E+01 -2.51062183235E+01 -2.50505492670E+01 -2.47227463510E+01 -2.40958918709E+01 -2.31418395927E+01 -2.18312644359E+01 -2.01337287589E+01 -1.80177552806E+01 -1.54510219194E+01 -1.23995744719E+01 -8.83680354745E+00 -4.65780104387E+00 -5.13224595614E-01 4.83483388218E-02 -7.20663121642E-03 -1.57675228623E-03 -2.01278228363E-03 -1.84730664312E-03 -1.74147434263E-03 -1.62983584938E-03 -1.51900857812E-03 -1.40845083652E-03 -1.29834528990E-03 2.40 2.60 4P 5 1 Beta L 915 -2.09029881309E-07 -2.14321497941E-07 -2.19747072486E-07 -2.25309996104E-07 -2.31013745803E-07 -2.36861886613E-07 -2.42858073812E-07 -2.49006055213E-07 -2.55309673503E-07 -2.61772868649E-07 -2.68399680359E-07 -2.75194250606E-07 -2.82160826216E-07 -2.89303761528E-07 -2.96627521107E-07 -3.04136682542E-07 -3.11835939303E-07 -3.19730103676E-07 -3.27824109771E-07 -3.36123016605E-07 -3.44632011265E-07 -3.53356412149E-07 -3.62301672293E-07 -3.71473382774E-07 -3.80877276211E-07 -3.90519230342E-07 -4.00405271703E-07 -4.10541579391E-07 -4.20934488929E-07 -4.31590496224E-07 -4.42516261626E-07 -4.53718614095E-07 -4.65204555465E-07 -4.76981264823E-07 -4.89056102997E-07 -5.01436617153E-07 -5.14130545515E-07 -5.27145822201E-07 -5.40490582184E-07 -5.54173166372E-07 -5.68202126825E-07 -5.82586232101E-07 -5.97334472733E-07 -6.12456066852E-07 -6.27960465946E-07 -6.43857360769E-07 -6.60156687397E-07 -6.76868633440E-07 -6.94003644408E-07 -7.11572430240E-07 -7.29585972000E-07 -7.48055528737E-07 -7.66992644524E-07 -7.86409155676E-07 -8.06317198144E-07 -8.26729215101E-07 -8.47657964723E-07 -8.69116528159E-07 -8.91118317709E-07 -9.13677085208E-07 -9.36806930619E-07 -9.60522310848E-07 -9.84838048780E-07 -1.00976934254E-06 -1.03533177500E-06 -1.06154132351E-06 -1.08841436989E-06 -1.11596771068E-06 -1.14421856759E-06 -1.17318459835E-06 -1.20288390765E-06 -1.23333505854E-06 -1.26455708397E-06 -1.29656949873E-06 -1.32939231161E-06 -1.36304603795E-06 -1.39755171241E-06 -1.43293090216E-06 -1.46920572036E-06 -1.50639883993E-06 -1.54453350779E-06 -1.58363355935E-06 -1.62372343340E-06 -1.66482818743E-06 -1.70697351325E-06 -1.75018575304E-06 -1.79449191587E-06 -1.83991969454E-06 -1.88649748287E-06 -1.93425439350E-06 -1.98322027605E-06 -2.03342573579E-06 -2.08490215277E-06 -2.13768170141E-06 -2.19179737066E-06 -2.24728298457E-06 -2.30417322344E-06 -2.36250364552E-06 -2.42231070924E-06 -2.48363179593E-06 -2.54650523329E-06 -2.61097031924E-06 -2.67706734657E-06 -2.74483762805E-06 -2.81432352233E-06 -2.88556846034E-06 -2.95861697248E-06 -3.03351471645E-06 -3.11030850577E-06 -3.18904633905E-06 -3.26977743000E-06 -3.35255223817E-06 -3.43742250051E-06 -3.52444126368E-06 -3.61366291725E-06 -3.70514322763E-06 -3.79893937300E-06 -3.89510997899E-06 -3.99371515535E-06 -4.09481653353E-06 -4.19847730516E-06 -4.30476226159E-06 -4.41373783437E-06 -4.52547213677E-06 -4.64003500636E-06 -4.75749804865E-06 -4.87793468185E-06 -5.00142018276E-06 -5.12803173384E-06 -5.25784847140E-06 -5.39095153513E-06 -5.52742411875E-06 -5.66735152206E-06 -5.81082120421E-06 -5.95792283842E-06 -6.10874836798E-06 -6.26339206373E-06 -6.42195058300E-06 -6.58452303001E-06 -6.75121101779E-06 -6.92211873175E-06 -7.09735299475E-06 -7.27702333388E-06 -7.46124204892E-06 -7.65012428254E-06 -7.84378809225E-06 -8.04235452421E-06 -8.24594768886E-06 -8.45469483854E-06 -8.66872644696E-06 -8.88817629081E-06 -9.11318153334E-06 -9.34388281012E-06 -9.58042431690E-06 -9.82295389978E-06 -1.00716231476E-05 -1.03265874867E-05 -1.05880062780E-05 -1.08560429167E-05 -1.11308649344E-05 -1.14126441037E-05 -1.17015565457E-05 -1.19977828400E-05 -1.23015081376E-05 -1.26129222767E-05 -1.29322199011E-05 -1.32596005822E-05 -1.35952689434E-05 -1.39394347884E-05 -1.42923132318E-05 -1.46541248340E-05 -1.50250957391E-05 -1.54054578157E-05 -1.57954488025E-05 -1.61953124563E-05 -1.66052987048E-05 -1.70256638027E-05 -1.74566704916E-05 -1.78985881646E-05 -1.83516930346E-05 -1.88162683065E-05 -1.92926043549E-05 -1.97809989051E-05 -2.02817572194E-05 -2.07951922880E-05 -2.13216250240E-05 -2.18613844650E-05 -2.24148079779E-05 -2.29822414702E-05 -2.35640396060E-05 -2.41605660277E-05 -2.47721935835E-05 -2.53993045603E-05 -2.60422909225E-05 -2.67015545571E-05 -2.65438710221E-05 -2.72422552484E-05 -2.87644363752E-05 -2.95056362456E-05 -3.02488821474E-05 -3.10196487716E-05 -3.17951061930E-05 -3.26100942547E-05 -3.34376436180E-05 -3.42707254939E-05 -3.51480057612E-05 -3.60270106583E-05 -3.69405631567E-05 -3.78944107998E-05 -3.88377400460E-05 -3.98241323525E-05 -4.08361914840E-05 -4.18671101203E-05 -4.29333067213E-05 -4.40135576940E-05 -4.51274886155E-05 -4.62662327206E-05 -4.74379393762E-05 -4.86436742057E-05 -4.98730520579E-05 -5.11439675187E-05 -5.24400922118E-05 -5.37696338436E-05 -5.51192813134E-05 -5.65211156888E-05 -5.79579820515E-05 -5.94111683455E-05 -6.09258460008E-05 -6.24581154790E-05 -6.40410749488E-05 -6.56777482545E-05 -6.73323386468E-05 -6.90377029678E-05 -7.07716164576E-05 -7.25751834041E-05 -7.44099679327E-05 -7.62954942941E-05 -7.82321467059E-05 -8.02024526798E-05 -8.22360734170E-05 -8.43219806164E-05 -8.64576488019E-05 -8.86443017814E-05 -9.08876092627E-05 -9.32012737556E-05 -9.55394414144E-05 -9.79646443620E-05 -1.00442259251E-04 -1.02991947889E-04 -1.05599655305E-04 -1.08278303558E-04 -1.11018130726E-04 -1.13828940259E-04 -1.16701837322E-04 -1.19659629012E-04 -1.22699865574E-04 -1.25792860242E-04 -1.28981604945E-04 -1.32249230470E-04 -1.35599959621E-04 -1.39031051535E-04 -1.42543637712E-04 -1.46159073630E-04 -1.49857034265E-04 -1.53647844081E-04 -1.57544001258E-04 -1.61515006077E-04 -1.65619572811E-04 -1.69809212772E-04 -1.74108251692E-04 -1.78507279372E-04 -1.83038569209E-04 -1.87664199614E-04 -1.92427926669E-04 -1.97291439076E-04 -2.02282395986E-04 -2.07409127764E-04 -2.12655678941E-04 -2.18041096772E-04 -2.23545335104E-04 -2.29233142957E-04 -2.35011994629E-04 -2.40977536589E-04 -2.47079848158E-04 -2.53327509723E-04 -2.59741279904E-04 -2.66324893071E-04 -2.73058231758E-04 -2.79978232854E-04 -2.87066944662E-04 -2.94317881335E-04 -3.01780818281E-04 -3.09409848100E-04 -3.17255407215E-04 -3.25289483530E-04 -3.33514618586E-04 -3.41960742048E-04 -3.50624117315E-04 -3.59495252929E-04 -3.68584883211E-04 -3.77934158965E-04 -3.87488391350E-04 -3.97301052918E-04 -4.07371110015E-04 -4.17676851399E-04 -4.28254377404E-04 -4.39095653098E-04 -4.50199872019E-04 -4.61599741340E-04 -4.73285873367E-04 -4.85275747233E-04 -4.97552684776E-04 -5.10147885337E-04 -5.23065393148E-04 -5.36299606365E-04 -5.49888743288E-04 -5.63797334909E-04 -5.78081579810E-04 -5.92718328936E-04 -6.07718638298E-04 -6.23108723356E-04 -6.38875905051E-04 -6.55046388152E-04 -6.71628444452E-04 -6.88636133224E-04 -7.06067830835E-04 -7.23936976680E-04 -7.42266221916E-04 -7.61061670184E-04 -7.80326656572E-04 -8.00076836365E-04 -8.20336486690E-04 -8.41105194952E-04 -8.62390080873E-04 -8.84229064228E-04 -9.06600947406E-04 -9.29560828785E-04 -9.53097770366E-04 -9.77222082295E-04 -1.00196043744E-03 -1.02732246300E-03 -1.05333961075E-03 -1.07999336405E-03 -1.10732537273E-03 -1.13536530254E-03 -1.16410876030E-03 -1.19357557555E-03 -1.22379157973E-03 -1.25477681607E-03 -1.28653481077E-03 -1.31910014383E-03 -1.35249507646E-03 -1.38673940970E-03 -1.42184634722E-03 -1.45783788033E-03 -1.49474666280E-03 -1.53258390104E-03 -1.57137762131E-03 -1.61116537587E-03 -1.65194505800E-03 -1.69376891306E-03 -1.73663853541E-03 -1.78058802938E-03 -1.82568787445E-03 -1.87190283708E-03 -1.91928374565E-03 -1.96786719273E-03 -2.01768405483E-03 -2.06876364321E-03 -2.12113617637E-03 -2.17483187641E-03 -2.22988556613E-03 -2.28634381973E-03 -2.34420782877E-03 -2.40356399110E-03 -2.46440065320E-03 -2.52678192457E-03 -2.59075410923E-03 -2.65633540408E-03 -2.72358375929E-03 -2.79253752413E-03 -2.86322490587E-03 -2.93570164149E-03 -3.01001941721E-03 -3.08621912178E-03 -3.16434756303E-03 -3.24444752043E-03 -3.32657704176E-03 -3.41080466092E-03 -3.49713401335E-03 -3.58566609199E-03 -3.67645520321E-03 -3.76950348389E-03 -3.86493077976E-03 -3.96276556944E-03 -4.06308504197E-03 -4.16593971159E-03 -4.27140324250E-03 -4.37952022976E-03 -4.49038698604E-03 -4.60405562673E-03 -4.72062483701E-03 -4.84010576651E-03 -4.96265020612E-03 -5.08825436867E-03 -5.21707318191E-03 -5.34913107544E-03 -5.48454684563E-03 -5.62338297136E-03 -5.76574249344E-03 -5.91169010032E-03 -6.06134104460E-03 -6.21478113117E-03 -6.37210853248E-03 -6.53341311635E-03 -6.69880453759E-03 -6.86838345103E-03 -7.04223841202E-03 -7.22051527879E-03 -7.40329067276E-03 -7.59070223309E-03 -7.78284545867E-03 -7.97987551161E-03 -8.18186776774E-03 -8.38897625021E-03 -8.60133886756E-03 -8.81907940629E-03 -9.04231382301E-03 -9.27121845917E-03 -9.50590926785E-03 -9.74653400493E-03 -9.99325560791E-03 -1.02462279616E-02 -1.05055970725E-02 -1.07715304650E-02 -1.10441880500E-02 -1.13237619875E-02 -1.16104007153E-02 -1.19043124818E-02 -1.22056452368E-02 -1.25146084508E-02 -1.28313957023E-02 -1.31562000195E-02 -1.34892320440E-02 -1.38306772451E-02 -1.41807730939E-02 -1.45397514052E-02 -1.49077887247E-02 -1.52851546233E-02 -1.56720518488E-02 -1.60687665919E-02 -1.64755060283E-02 -1.68925400521E-02 -1.73201434270E-02 -1.77585756093E-02 -1.82080788520E-02 -1.86689733444E-02 -1.91415375612E-02 -1.96260412023E-02 -2.01228351384E-02 -2.06321807883E-02 -2.11544382473E-02 -2.16898916554E-02 -2.22389003864E-02 -2.28018209023E-02 -2.33789747978E-02 -2.39707356316E-02 -2.45774728889E-02 -2.51995671444E-02 -2.58374097213E-02 -2.64913901505E-02 -2.71619197915E-02 -2.78494206675E-02 -2.85543273082E-02 -2.92770568054E-02 -3.00180989902E-02 -3.07778763690E-02 -3.15568882374E-02 -3.23556152300E-02 -3.31745371191E-02 -3.40142094589E-02 -3.48751125912E-02 -3.57578148811E-02 -3.66628280977E-02 -3.75907781282E-02 -3.85421785813E-02 -3.95176611027E-02 -4.05178336496E-02 -4.15433207043E-02 -4.25947364580E-02 -4.36727747593E-02 -4.47780731976E-02 -4.59113507178E-02 -4.70733145687E-02 -4.82646429962E-02 -4.94861454326E-02 -5.07385406084E-02 -5.20226241588E-02 -5.33391933913E-02 -5.46890710509E-02 -5.60730997262E-02 -5.74921538572E-02 -5.89470989994E-02 -6.04388482635E-02 -6.19683362974E-02 -6.35365294713E-02 -6.51443812244E-02 -6.67929148664E-02 -6.84831338845E-02 -7.02161356984E-02 -7.19929330917E-02 -7.38147195472E-02 -7.56825612463E-02 -7.75976540974E-02 -7.95611785930E-02 -8.15743794073E-02 -8.36384758709E-02 -8.57547944798E-02 -8.79246127840E-02 -9.01495254863E-02 -9.24301876632E-02 -9.47688458626E-02 -9.71668943895E-02 -9.96251037685E-02 -1.02145718622E-01 -1.04730534366E-01 -1.07379564850E-01 -1.10096499017E-01 -1.12881849035E-01 -1.15737700815E-01 -1.18665386490E-01 -1.21668134040E-01 -1.24745164075E-01 -1.27901675869E-01 -1.31136347862E-01 -1.34454447534E-01 -1.37854440618E-01 -1.41343162239E-01 -1.44916610041E-01 -1.48583472634E-01 -1.52341506417E-01 -1.56194115133E-01 -1.60145009929E-01 -1.64195735239E-01 -1.68347723308E-01 -1.72606489876E-01 -1.76971001115E-01 -1.81446415576E-01 -1.86035713821E-01 -1.90739465677E-01 -1.95563375753E-01 -2.00508507299E-01 -2.05578520596E-01 -2.10776679745E-01 -2.16106010964E-01 -2.21570423851E-01 -2.27172006061E-01 -2.32915955463E-01 -2.38804069115E-01 -2.44841176338E-01 -2.51031226221E-01 -2.57376631310E-01 -2.63882535363E-01 -2.70553105777E-01 -2.77391459482E-01 -2.84402664696E-01 -2.91590759037E-01 -2.98959890466E-01 -3.06515635005E-01 -3.14261366091E-01 -3.22202722583E-01 -3.30344494400E-01 -3.38691579649E-01 -3.47248867095E-01 -3.56022289011E-01 -3.65016826884E-01 -3.74238043353E-01 -3.83691831606E-01 -3.93383767849E-01 -4.03320201603E-01 -4.13506735887E-01 -4.23950377073E-01 -4.34655564413E-01 -4.45634044778E-01 -4.56886184196E-01 -4.68420145658E-01 -4.80248188366E-01 -4.92372470794E-01 -5.04802898046E-01 -5.17544030250E-01 -5.30606759482E-01 -5.44000103733E-01 -5.57728188634E-01 -5.71802048356E-01 -5.86231597285E-01 -6.01020030143E-01 -6.16184304549E-01 -6.31729627556E-01 -6.47662984009E-01 -6.63998489638E-01 -6.80742961374E-01 -6.97910808225E-01 -7.15507531369E-01 -7.33549253817E-01 -7.52036714854E-01 -7.70996783470E-01 -7.90429207641E-01 -8.10345925077E-01 -8.30768466892E-01 -8.51697989521E-01 -8.73153915778E-01 -8.95149180256E-01 -9.17692936749E-01 -9.40804037138E-01 -9.64492023859E-01 -9.88774547939E-01 -1.01366349731E+00 -1.03917787419E+00 -1.06532649894E+00 -1.09213332423E+00 -1.11960681259E+00 -1.14776966338E+00 -1.17663475521E+00 -1.20622185220E+00 -1.23654646009E+00 -1.26762793859E+00 -1.29948765604E+00 -1.33213863054E+00 -1.36560496194E+00 -1.39990621344E+00 -1.43506101775E+00 -1.47109092925E+00 -1.50801975862E+00 -1.54586475681E+00 -1.58465299697E+00 -1.62440368476E+00 -1.66514442447E+00 -1.70689490755E+00 -1.74968316826E+00 -1.79353197877E+00 -1.83846922641E+00 -1.88451898033E+00 -1.93171045391E+00 -1.98007034459E+00 -2.02962547891E+00 -2.08040880442E+00 -2.13244395534E+00 -2.18576623425E+00 -2.24040440350E+00 -2.29638994471E+00 -2.35375595164E+00 -2.41253520150E+00 -2.47276011211E+00 -2.53446840346E+00 -2.59769214519E+00 -2.66246869287E+00 -2.72883563316E+00 -2.79683009734E+00 -2.86648927798E+00 -2.93785580021E+00 -3.01096516061E+00 -3.08586487634E+00 -3.16258971155E+00 -3.24118805898E+00 -3.32170108013E+00 -3.40417434269E+00 -3.48865373833E+00 -3.57518439909E+00 -3.66381607888E+00 -3.75459547809E+00 -3.84757348906E+00 -3.94280008433E+00 -4.04032684166E+00 -4.14020686231E+00 -4.24249338927E+00 -4.34724120978E+00 -4.45450738142E+00 -4.56434633661E+00 -4.67681902564E+00 -4.79198269885E+00 -4.90989833960E+00 -5.03062765394E+00 -5.15423205109E+00 -5.28077723399E+00 -5.41032594791E+00 -5.54294670619E+00 -5.67870387914E+00 -5.81766872609E+00 -5.95990883672E+00 -6.10549603907E+00 -6.25450259421E+00 -6.40700059963E+00 -6.56306565843E+00 -6.72277274394E+00 -6.88619875099E+00 -7.05342165788E+00 -7.22452134935E+00 -7.39957688486E+00 -7.57867070533E+00 -7.76188561081E+00 -7.94930444843E+00 -8.14101328148E+00 -8.33709753883E+00 -8.53764440745E+00 -8.74274201299E+00 -8.95248002737E+00 -9.16694789372E+00 -9.38623724738E+00 -9.61044070916E+00 -9.83964986992E+00 -1.00739602464E+01 -1.03134651967E+01 -1.05582604588E+01 -1.08084425332E+01 -1.10641076555E+01 -1.13253533873E+01 -1.15922767979E+01 -1.18649770359E+01 -1.21435518336E+01 -1.24281002722E+01 -1.27187207673E+01 -1.30155128822E+01 -1.33185746569E+01 -1.36280054102E+01 -1.39439030053E+01 -1.42663656507E+01 -1.45954901893E+01 -1.49313739981E+01 -1.52741117772E+01 -1.56237991050E+01 -1.59805285476E+01 -1.63443929664E+01 -1.67154821053E+01 -1.70938849444E+01 -1.74796877848E+01 -1.78729752588E+01 -1.82738287990E+01 -1.86823278693E+01 -1.90985481413E+01 -1.95225627325E+01 -1.99544405055E+01 -2.03942468534E+01 -2.08420428297E+01 -2.12978850663E+01 -2.17618247801E+01 -2.22339088686E+01 -2.27141776220E+01 -2.32026655925E+01 -2.36994014881E+01 -2.42044060377E+01 -2.47176935049E+01 -2.52392699525E+01 -2.57691331979E+01 -2.63072723700E+01 -2.68536671243E+01 -2.74082874044E+01 -2.79710927109E+01 -2.85420315321E+01 -2.91210407493E+01 -2.97080451847E+01 -3.03029568453E+01 -3.09056739600E+01 -3.15160812105E+01 -3.21340478852E+01 -3.27594282818E+01 -3.33920600128E+01 -3.40317642932E+01 -3.46783442033E+01 -3.53315845363E+01 -3.59912511185E+01 -3.66570895554E+01 -3.73288247274E+01 -3.80061601426E+01 -3.86887768657E+01 -3.93763328657E+01 -4.00684621638E+01 -4.07647741611E+01 -4.14648526322E+01 -4.21682552062E+01 -4.28745122557E+01 -4.35831266251E+01 -4.42935723238E+01 -4.50052943579E+01 -4.57177076247E+01 -4.64301965240E+01 -4.71421141669E+01 -4.78527819477E+01 -4.85614890078E+01 -4.92674915890E+01 -4.99700129373E+01 -5.06682425624E+01 -5.13613364977E+01 -5.20484165731E+01 -5.27285707238E+01 -5.34008528765E+01 -5.40642830069E+01 -5.47178474060E+01 -5.53604991428E+01 -5.59911584325E+01 -5.66087132807E+01 -5.72120204274E+01 -5.77999059796E+01 -5.83711669694E+01 -5.89245721873E+01 -5.94588639864E+01 -5.99727598662E+01 -6.04649543010E+01 -6.09341209657E+01 -6.13789148574E+01 -6.17979749985E+01 -6.21899271052E+01 -6.25533866407E+01 -6.28869619235E+01 -6.31892577271E+01 -6.34588788714E+01 -6.36944341349E+01 -6.38945404456E+01 -6.40578270934E+01 -6.41829404954E+01 -6.42685486583E+01 -6.43133462653E+01 -6.43160595821E+01 -6.42754517008E+01 -6.41903277259E+01 -6.40595399910E+01 -6.38819935066E+01 -6.36566510359E+01 -6.33825384099E+01 -6.30587494551E+01 -6.26844508291E+01 -6.22588865933E+01 -6.17813823501E+01 -6.12513490733E+01 -6.06682863358E+01 -6.00317850114E+01 -5.93415292462E+01 -5.85972976889E+01 -5.77989638028E+01 -5.69464953604E+01 -5.60399526410E+01 -5.50794857416E+01 -5.40653304606E+01 -5.29978031357E+01 -5.18772937945E+01 -5.07042582613E+01 -4.94792086677E+01 -4.82027025851E+01 -4.68753308452E+01 -4.54977041508E+01 -4.40704383870E+01 -4.25941391510E+01 -4.10693854565E+01 -3.94967132384E+01 -3.78765986149E+01 -3.62094419948E+01 -3.44955532174E+01 -3.27351385128E+01 -3.09282904495E+01 -2.90749814374E+01 -2.71750624857E+01 -2.52282680498E+01 -2.32342289664E+01 -2.11924950128E+01 -1.91025689741E+01 -1.69639547406E+01 -1.47762214355E+01 -1.25390865982E+01 -1.02525210906E+01 -7.91687894762E+00 -5.53305542895E+00 -3.10267690656E+00 -6.28759160066E-01 1.88305459271E+00 4.42586942390E+00 6.99187504928E+00 9.57227926973E+00 1.21572386633E+01 1.47357872966E+01 1.72957636589E+01 1.98237363927E+01 2.23049293621E+01 2.47231469009E+01 2.70606997311E+01 2.92983328208E+01 3.14151557209E+01 3.33885765838E+01 3.51942409415E+01 3.68059763801E+01 3.81957440846E+01 3.93335990086E+01 4.01876593870E+01 4.07240876172E+01 4.09070835585E+01 4.06988920660E+01 4.00598265021E+01 3.89483097867E+01 3.73209352440E+01 3.51325488861E+01 3.23363573057E+01 2.88840448061E+01 2.47260833479E+01 1.98104777651E+01 1.40970482594E+01 7.42112955427E+00 8.20594425887E-01 -7.31329084250E-02 1.52494949369E-02 6.26064132076E-03 6.92478791090E-03 6.63127545824E-03 6.43224861245E-03 6.22355087590E-03 6.01568047294E-03 5.80774340349E-03 5.60000401715E-03 2.40 2.60 4P 6 1 Beta L 915 1.43053493563E-07 1.46674909990E-07 1.50388003010E-07 1.54195093427E-07 1.58098560796E-07 1.62100844912E-07 1.66204447333E-07 1.70411932943E-07 1.74725931558E-07 1.79149139567E-07 1.83684321621E-07 1.88334312354E-07 1.93102018162E-07 1.97990419018E-07 2.03002570330E-07 2.08141604856E-07 2.13410734659E-07 2.18813253119E-07 2.24352536984E-07 2.30032048487E-07 2.35855337508E-07 2.41826043791E-07 2.47947899223E-07 2.54224730163E-07 2.60660459834E-07 2.67259110776E-07 2.74024807361E-07 2.80961778370E-07 2.88074359636E-07 2.95366996752E-07 3.02844247856E-07 3.10510786471E-07 3.18371404434E-07 3.26431014887E-07 3.34694655349E-07 3.43167490865E-07 3.51854817231E-07 3.60762064310E-07 3.69894799421E-07 3.79258730821E-07 3.88859711271E-07 3.98703741697E-07 4.08796974938E-07 4.19145719593E-07 4.29756443965E-07 4.40635780101E-07 4.51790527940E-07 4.63227659563E-07 4.74954323550E-07 4.86977849446E-07 4.99305752347E-07 5.11945737594E-07 5.24905705587E-07 5.38193756730E-07 5.51818196485E-07 5.65787540572E-07 5.80110520285E-07 5.94796087952E-07 6.09853422531E-07 6.25291935346E-07 6.41121275969E-07 6.57351338254E-07 6.73992266517E-07 6.91054461880E-07 7.08548588770E-07 7.26485581586E-07 7.44876651531E-07 7.63733293623E-07 7.83067293875E-07 8.02890736668E-07 8.23216012298E-07 8.44055824723E-07 8.65423199504E-07 8.87331491945E-07 9.09794395442E-07 9.32825950039E-07 9.56440551208E-07 9.80652958842E-07 1.00547830648E-06 1.03093211078E-06 1.05703028119E-06 1.08378912992E-06 1.11122538212E-06 1.13935618634E-06 1.16819912524E-06 1.19777222660E-06 1.22809397457E-06 1.25918332123E-06 1.29105969844E-06 1.32374302995E-06 1.35725374393E-06 1.39161278565E-06 1.42684163063E-06 1.46296229804E-06 1.49999736449E-06 1.53796997808E-06 1.57690387293E-06 1.61682338400E-06 1.65775346228E-06 1.69971969039E-06 1.74274829860E-06 1.78686618118E-06 1.83210091324E-06 1.87848076796E-06 1.92603473425E-06 1.97479253489E-06 2.02478464510E-06 2.07604231155E-06 2.12859757197E-06 2.18248327509E-06 2.23773310123E-06 2.29438158332E-06 2.35246412851E-06 2.41201704028E-06 2.47307754113E-06 2.53568379585E-06 2.59987493538E-06 2.66569108129E-06 2.73317337078E-06 2.80236398249E-06 2.87330616279E-06 2.94604425285E-06 3.02062371634E-06 3.09709116783E-06 3.17549440199E-06 3.25588242335E-06 3.33830547706E-06 3.42281508019E-06 3.50946405399E-06 3.59830655688E-06 3.68939811829E-06 3.78279567343E-06 3.87855759878E-06 3.97674374866E-06 4.07741549259E-06 4.18063575368E-06 4.28646904793E-06 4.39498152460E-06 4.50624100749E-06 4.62031703739E-06 4.73728091552E-06 4.85720574808E-06 4.98016649199E-06 5.10624000170E-06 5.23550507723E-06 5.36804251344E-06 5.50393515052E-06 5.64326792577E-06 5.78612792669E-06 5.93260444541E-06 6.08278903449E-06 6.23677556416E-06 6.39466028098E-06 6.55654186801E-06 6.72252150648E-06 6.89270293904E-06 7.06719253458E-06 7.24609935474E-06 7.42953522208E-06 7.61761478993E-06 7.81045561411E-06 8.00817822636E-06 8.21090620971E-06 8.41876627569E-06 8.63188834355E-06 8.85040562148E-06 9.07445468983E-06 9.30417558648E-06 9.53971189443E-06 9.78121083146E-06 1.00288233422E-05 1.02827041924E-05 1.05430120659E-05 1.08099096634E-05 1.10835638045E-05 1.13641455320E-05 1.16518302183E-05 1.19467976757E-05 1.22492322684E-05 1.25593230277E-05 1.28772637703E-05 1.32032532195E-05 1.35374951290E-05 1.38801984108E-05 1.42315772655E-05 1.45918513161E-05 1.49612457456E-05 1.53399914372E-05 1.57283251193E-05 1.61264895127E-05 1.65347334831E-05 1.69533121959E-05 1.73824872763E-05 1.78225269724E-05 1.82737063232E-05 1.82040513651E-05 1.86817594929E-05 1.96849432397E-05 2.01916573398E-05 2.07004420543E-05 2.12277292407E-05 2.17588912711E-05 2.23161630133E-05 2.28824680234E-05 2.34531697266E-05 2.40531600164E-05 2.46552280739E-05 2.52803621007E-05 2.59323435350E-05 2.65785999948E-05 2.72535716577E-05 2.79460060754E-05 2.86516588891E-05 2.93810881355E-05 3.01206402865E-05 3.08830390524E-05 3.16625359910E-05 3.24643827632E-05 3.32893907189E-05 3.41307986626E-05 3.50002303660E-05 3.58871843765E-05 3.67969686029E-05 3.77212256528E-05 3.86802300669E-05 3.96633539101E-05 4.06585040017E-05 4.16946152028E-05 4.27437562364E-05 4.38269753643E-05 4.49463900853E-05 4.60791021081E-05 4.72461531683E-05 4.84334731968E-05 4.96671894166E-05 5.09230175072E-05 5.22133366048E-05 5.35384577588E-05 5.48874018968E-05 5.62789497415E-05 5.77063595457E-05 5.91678712928E-05 6.06644480467E-05 6.21997520686E-05 6.37825507319E-05 6.53837112421E-05 6.70431627559E-05 6.87388722311E-05 7.04835151221E-05 7.22681088200E-05 7.41010721881E-05 7.59761687677E-05 7.78997868106E-05 7.98663314077E-05 8.18903843623E-05 8.39705364552E-05 8.60878920770E-05 8.82699686276E-05 9.05061400766E-05 9.27991330872E-05 9.51473655714E-05 9.75515804952E-05 1.00025562490E-04 1.02556442733E-04 1.05150882691E-04 1.07817000428E-04 1.10535440104E-04 1.13343750300E-04 1.16211170657E-04 1.19153277512E-04 1.22164258423E-04 1.25264757661E-04 1.28430777739E-04 1.31690348828E-04 1.35019117295E-04 1.38434973203E-04 1.41943274140E-04 1.45534036281E-04 1.49219575690E-04 1.52987225616E-04 1.56878479882E-04 1.60834459398E-04 1.64916365013E-04 1.69092513459E-04 1.73368548917E-04 1.77757908463E-04 1.82263153328E-04 1.86871631955E-04 1.91607144929E-04 1.96458374855E-04 2.01421454899E-04 2.06528297713E-04 2.11749872560E-04 2.17118553766E-04 2.22616688089E-04 2.28246178591E-04 2.34026302264E-04 2.39954929061E-04 2.46026298606E-04 2.52247485468E-04 2.58644992285E-04 2.65184220230E-04 2.71899558229E-04 2.78790632725E-04 2.85843860886E-04 2.93082624095E-04 3.00502042320E-04 3.08101955750E-04 3.15903559123E-04 3.23901140816E-04 3.32106258135E-04 3.40508575361E-04 3.49128347205E-04 3.57968573533E-04 3.67025975988E-04 3.76325400605E-04 3.85844545927E-04 3.95619707728E-04 4.05636535408E-04 4.15902462227E-04 4.26434721885E-04 4.37225586790E-04 4.48292293607E-04 4.59640541468E-04 4.71279871737E-04 4.83209606677E-04 4.95438949074E-04 5.07982770782E-04 5.20845555218E-04 5.34030002902E-04 5.47546567815E-04 5.61411392326E-04 5.75624757168E-04 5.90191813248E-04 6.05137415591E-04 6.20448593208E-04 6.36161191136E-04 6.52268910491E-04 6.68778970322E-04 6.85709162867E-04 7.03066244745E-04 7.20871082300E-04 7.39112612199E-04 7.57818139917E-04 7.77007461030E-04 7.96678497776E-04 8.16844786553E-04 8.37523667470E-04 8.58728733730E-04 8.80463259178E-04 9.02750106256E-04 9.25604464545E-04 9.49039951513E-04 9.73065965753E-04 9.97697565485E-04 1.02295661277E-03 1.04885132756E-03 1.07540071101E-03 1.10262980568E-03 1.13053848831E-03 1.15916118875E-03 1.18850017829E-03 1.21857847735E-03 1.24944227273E-03 1.28107046527E-03 1.31349674303E-03 1.34674588469E-03 1.38083897974E-03 1.41579613852E-03 1.45163820135E-03 1.48838588381E-03 1.52606299217E-03 1.56470085469E-03 1.60430181971E-03 1.64492276049E-03 1.68655787119E-03 1.72924990056E-03 1.77303013752E-03 1.81791207365E-03 1.86393459135E-03 1.91112407245E-03 1.95950054401E-03 2.00910160238E-03 2.05996231272E-03 2.11211092505E-03 2.16557954302E-03 2.22039764994E-03 2.27660467365E-03 2.33424667855E-03 2.39332842646E-03 2.45391689671E-03 2.51604923969E-03 2.57972947423E-03 2.64503678008E-03 2.71199206023E-03 2.78064744316E-03 2.85103799817E-03 2.92321371765E-03 2.99720618131E-03 3.07307986543E-03 3.15087133070E-03 3.23064675017E-03 3.31241667131E-03 3.39628135835E-03 3.48224197757E-03 3.57040101317E-03 3.66077774751E-03 3.75345183624E-03 3.84846705823E-03 3.94589315225E-03 4.04577555850E-03 4.14819198596E-03 4.25320155129E-03 4.36087132771E-03 4.47126320025E-03 4.58445182248E-03 4.70050617643E-03 4.81948769628E-03 4.94149445926E-03 5.06658052804E-03 5.19483901477E-03 5.32633628449E-03 5.46117685930E-03 5.59941459047E-03 5.74115355816E-03 5.88648778255E-03 6.03550234877E-03 6.18827759049E-03 6.34493244744E-03 6.50554753382E-03 6.67022398310E-03 6.83907260903E-03 7.01219883226E-03 7.18970307635E-03 7.37169975926E-03 7.55829864538E-03 7.74963014339E-03 7.94579714466E-03 8.14694076924E-03 8.35316392162E-03 8.56460904161E-03 8.78140847562E-03 9.00369463095E-03 9.23161127504E-03 9.46528639193E-03 9.70488141551E-03 9.95055431977E-03 1.02024281847E-02 1.04606856426E-02 1.07254669789E-02 1.09969660363E-02 1.12753264032E-02 1.15607321125E-02 1.18533705227E-02 1.21534195468E-02 1.24610464961E-02 1.27764686036E-02 1.30998769174E-02 1.34314572060E-02 1.37714473017E-02 1.41200284893E-02 1.44774451250E-02 1.48438937528E-02 1.52196190651E-02 1.56048644058E-02 1.59998513027E-02 1.64048347592E-02 1.68200676345E-02 1.72458103604E-02 1.76823305443E-02 1.81298952803E-02 1.85887858438E-02 1.90592909879E-02 1.95417078070E-02 2.00363228179E-02 2.05434695094E-02 2.10634388448E-02 2.15965714037E-02 2.21431963870E-02 2.27036429911E-02 2.32782894257E-02 2.38674663993E-02 2.44715614977E-02 2.50909267561E-02 2.57259877115E-02 2.63770989496E-02 2.70446909157E-02 2.77291797874E-02 2.84309929283E-02 2.91505518475E-02 2.98883297553E-02 3.06447644989E-02 3.14203468511E-02 3.22155608168E-02 3.30308727345E-02 3.38668335436E-02 3.47239370838E-02 3.56027272627E-02 3.65037499141E-02 3.74275680266E-02 3.83747582942E-02 3.93459185722E-02 4.03416422196E-02 4.13625538569E-02 4.24092929381E-02 4.34825203357E-02 4.45828896350E-02 4.57111002017E-02 4.68678400669E-02 4.80538581294E-02 4.92698508087E-02 5.05166308298E-02 5.17949311557E-02 5.31055688015E-02 5.44493522682E-02 5.58271325116E-02 5.72397455729E-02 5.86880975052E-02 6.01730645697E-02 6.16957269702E-02 6.32565666910E-02 6.48570833556E-02 6.64982338226E-02 6.81805796008E-02 6.99056224288E-02 7.16745819258E-02 7.34875421344E-02 7.53469301294E-02 7.72531558078E-02 7.92076253573E-02 8.12112757986E-02 8.32662478219E-02 8.53721331449E-02 8.75323355864E-02 8.97461053530E-02 9.20168950458E-02 9.43438224145E-02 9.67313451261E-02 9.91770128200E-02 1.01686469066E-01 1.04258390402E-01 1.06895056454E-01 1.09598945044E-01 1.12371156429E-01 1.15212721706E-01 1.18127278138E-01 1.21114290603E-01 1.24177175513E-01 1.27317962489E-01 1.30537149249E-01 1.33838509616E-01 1.37222861186E-01 1.40692682220E-01 1.44250201153E-01 1.47897497760E-01 1.51637220628E-01 1.55470859378E-01 1.59401890008E-01 1.63431626721E-01 1.67563318129E-01 1.71799658361E-01 1.76142364661E-01 1.80594901627E-01 1.85160114466E-01 1.89840184567E-01 1.94638541217E-01 1.99557962636E-01 2.04601301668E-01 2.09772327250E-01 2.15073409241E-01 2.20508367532E-01 2.26080486041E-01 2.31793123665E-01 2.37649639172E-01 2.43654062661E-01 2.49809824269E-01 2.56120730864E-01 2.62590806881E-01 2.69223880568E-01 2.76024281455E-01 2.82995868217E-01 2.90143403231E-01 2.97470017021E-01 3.04983512772E-01 3.12684435240E-01 3.20578314892E-01 3.28673305716E-01 3.36971120132E-01 3.45478425604E-01 3.54198484938E-01 3.63138612909E-01 3.72304936200E-01 3.81700467180E-01 3.91332638972E-01 4.01208178116E-01 4.11329531848E-01 4.21707945817E-01 4.32347168335E-01 4.43252100411E-01 4.54432201319E-01 4.65892286736E-01 4.77642023005E-01 4.89685407478E-01 5.02033225853E-01 5.14686469010E-01 5.27662793010E-01 5.40962580808E-01 5.54593999181E-01 5.68571348666E-01 5.82895943145E-01 5.97580768994E-01 6.12634682298E-01 6.28064150125E-01 6.43881827618E-01 6.60094462215E-01 6.76713981338E-01 6.93748651287E-01 7.11211299126E-01 7.29108267203E-01 7.47455577692E-01 7.66259373514E-01 7.85534918433E-01 8.05291211663E-01 8.25541670890E-01 8.46297025795E-01 8.67570464233E-01 8.89376496036E-01 9.11724315306E-01 9.34630202536E-01 9.58107579991E-01 9.82169282321E-01 1.00683004663E+00 1.03210605516E+00 1.05800934888E+00 1.08455824189E+00 1.11176606462E+00 1.13965152529E+00 1.16822831512E+00 1.19751546983E+00 1.22752869493E+00 1.25828699217E+00 1.28980694985E+00 1.32210847039E+00 1.35520987747E+00 1.38912961298E+00 1.42389004567E+00 1.45950764510E+00 1.49600634565E+00 1.53340594962E+00 1.57172802448E+00 1.61099520041E+00 1.65122994035E+00 1.69245451410E+00 1.73469460794E+00 1.77797234265E+00 1.82231324778E+00 1.86774303740E+00 1.91428717507E+00 1.96197120471E+00 2.01082417060E+00 2.06087061856E+00 2.11214279729E+00 2.16466486758E+00 2.21846972530E+00 2.27358569771E+00 2.33004396774E+00 2.38787597249E+00 2.44711270776E+00 2.50778816717E+00 2.56993444382E+00 2.63358635421E+00 2.69877817524E+00 2.76554526271E+00 2.83392398864E+00 2.90395087496E+00 2.97566347357E+00 3.04910084363E+00 3.12430042116E+00 3.20130385374E+00 3.28015048628E+00 3.36088209937E+00 3.44354099152E+00 3.52816933062E+00 3.61481207823E+00 3.70351237150E+00 3.79431708307E+00 3.88727050444E+00 3.98242137996E+00 4.07981617525E+00 4.17950411874E+00 4.28153477868E+00 4.38595767855E+00 4.49282464166E+00 4.60218715003E+00 4.71409797645E+00 4.82861064433E+00 4.94577995814E+00 5.06566025706E+00 5.18830810113E+00 5.31378033957E+00 5.44213391677E+00 5.57342788721E+00 5.70772096423E+00 5.84507304313E+00 5.98554467611E+00 6.12919746403E+00 6.27609291763E+00 6.42629400547E+00 6.57986437897E+00 6.73686708957E+00 6.89736774491E+00 7.06143062832E+00 7.22912159118E+00 7.40050701883E+00 7.57565317475E+00 7.75462721046E+00 7.93749600541E+00 8.12432780299E+00 8.31518997874E+00 8.51015080012E+00 8.70927813871E+00 8.91264062204E+00 9.12030592699E+00 9.33234256182E+00 9.54881811725E+00 9.76980041120E+00 9.99535639045E+00 1.02255533380E+01 1.04604568183E+01 1.07001329379E+01 1.09446458580E+01 1.11940598958E+01 1.14484373405E+01 1.17078399455E+01 1.19723276997E+01 1.22419594605E+01 1.25167919692E+01 1.27968806250E+01 1.30822783112E+01 1.33730361734E+01 1.36692025234E+01 1.39708233255E+01 1.42779416311E+01 1.45905975092E+01 1.49088274011E+01 1.52326648015E+01 1.55621387842E+01 1.58972745402E+01 1.62380932907E+01 1.65846109087E+01 1.69368388643E+01 1.72947830981E+01 1.76584439719E+01 1.80278159641E+01 1.84028871465E+01 1.87836390094E+01 1.91700459695E+01 1.95620749827E+01 1.99596851384E+01 2.03628273428E+01 2.07714438106E+01 2.11854674201E+01 2.16048218312E+01 2.20294202773E+01 2.24591657895E+01 2.28939500843E+01 2.33336537124E+01 2.37781449172E+01 2.42272795015E+01 2.46809003584E+01 2.51388366346E+01 2.56009033709E+01 2.60669010518E+01 2.65366148830E+01 2.70098143360E+01 2.74862525651E+01 2.79656659383E+01 2.84477733550E+01 2.89322758738E+01 2.94188559644E+01 2.99071772922E+01 3.03968838457E+01 3.08875997885E+01 3.13789287151E+01 3.18704533639E+01 3.23617350750E+01 3.28523134809E+01 3.33417061287E+01 3.38294080344E+01 3.43148915899E+01 3.47976060614E+01 3.52769777274E+01 3.57524093919E+01 3.62232805596E+01 3.66889473462E+01 3.71487425014E+01 3.76019755694E+01 3.80479331803E+01 3.84858792846E+01 3.89150555716E+01 3.93346820832E+01 3.97439576373E+01 4.01420608472E+01 4.05281506881E+01 4.09013676894E+01 4.12608349966E+01 4.16056595979E+01 4.19349338142E+01 4.22477367335E+01 4.25431360272E+01 4.28201897563E+01 4.30779484346E+01 4.33154571405E+01 4.35317579555E+01 4.37258924110E+01 4.38969041545E+01 4.40438418083E+01 4.41657618566E+01 4.42617319015E+01 4.43308337419E+01 4.43721668651E+01 4.43848518412E+01 4.43680339479E+01 4.43208867743E+01 4.42426158612E+01 4.41324625028E+01 4.39897073265E+01 4.38136740403E+01 4.36037329448E+01 4.33593044000E+01 4.30798621341E+01 4.27649362843E+01 4.24141162498E+01 4.20270531648E+01 4.16034620394E+01 4.11431234345E+01 4.06458846627E+01 4.01116603953E+01 3.95404327392E+01 3.89322504734E+01 3.82872277006E+01 3.76055415660E+01 3.68874292810E+01 3.61331840376E+01 3.53431502168E+01 3.45177175341E+01 3.36573142535E+01 3.27623995069E+01 3.18334547749E+01 3.08709744665E+01 2.98754559200E+01 2.88473887889E+01 2.77872442063E+01 2.66954636898E+01 2.55724484773E+01 2.44185494026E+01 2.32340578084E+01 2.20191982349E+01 2.07741232388E+01 1.94989114251E+01 1.81935692159E+01 1.68580376310E+01 1.54922050593E+01 1.40959272192E+01 1.26690559215E+01 1.12114779124E+01 9.72316573360E+00 8.20424230650E+00 6.65506130834E+00 5.07630542919E+00 3.46910484571E+00 1.83544437493E+00 1.78930656704E-01 -1.49604622878E+00 -3.18451760879E+00 -4.88089409528E+00 -6.57892169793E+00 -8.27163665706E+00 -9.95131911932E+00 -1.16094460162E+01 -1.32366434825E+01 -1.48226393483E+01 -1.63562160080E+01 -1.78251644740E+01 -1.92162399508E+01 -2.05151196955E+01 -2.17063638452E+01 -2.27733799338E+01 -2.36983917158E+01 -2.44624134118E+01 -2.50452298312E+01 -2.54253836581E+01 -2.55801705684E+01 -2.54856433296E+01 -2.51166259924E+01 -2.44467391635E+01 -2.34484377959E+01 -2.20930625376E+01 -2.03509072849E+01 -1.81912926089E+01 -1.55827610036E+01 -1.24922840371E+01 -8.89428171845E+00 -4.68454525043E+00 -5.18281623446E-01 4.61290953956E-02 -9.68449965679E-03 -4.00598733286E-03 -4.42358201200E-03 -4.23641432500E-03 -4.10893683277E-03 -3.97537211023E-03 -3.84234999276E-03 -3.70930575147E-03 -3.57640650138E-03 2.40 2.60 4P 7 2 Beta L 911 -1.38384662953E-12 -1.43672617295E-12 -1.49162634933E-12 -1.54862437110E-12 -1.60780040111E-12 -1.66923766541E-12 -1.73302257027E-12 -1.79924482374E-12 -1.86799756177E-12 -1.93937747924E-12 -2.01348496590E-12 -2.09042424763E-12 -2.17030353298E-12 -2.25323516536E-12 -2.33933578103E-12 -2.42872647319E-12 -2.52153296222E-12 -2.61788577255E-12 -2.71792041619E-12 -2.82177758336E-12 -2.92960334030E-12 -3.04154933477E-12 -3.15777300925E-12 -3.27843782246E-12 -3.40371347918E-12 -3.53377616893E-12 -3.66880881383E-12 -3.80900132577E-12 -3.95455087358E-12 -4.10566216030E-12 -4.26254771110E-12 -4.42542817212E-12 -4.59453262086E-12 -4.77009888833E-12 -4.95237389352E-12 -5.14161399070E-12 -5.33808532995E-12 -5.54206423147E-12 -5.75383757421E-12 -5.97370319934E-12 -6.20197032913E-12 -6.43896000185E-12 -6.68500552330E-12 -6.94045293553E-12 -7.20566150358E-12 -7.48100422070E-12 -7.76686833298E-12 -8.06365588393E-12 -8.37178427997E-12 -8.69168687745E-12 -9.02381359210E-12 -9.36863153188E-12 -9.72662565384E-12 -1.00982994462E-11 -1.04841756366E-11 -1.08847969268E-11 -1.13007267568E-11 -1.17325500963E-11 -1.21808742681E-11 -1.26463298019E-11 -1.31295713214E-11 -1.36312784645E-11 -1.41521568397E-11 -1.46929390179E-11 -1.52543855633E-11 -1.58372861027E-11 -1.64424604359E-11 -1.70707596892E-11 -1.77230675119E-11 -1.84003013194E-11 -1.91034135834E-11 -1.98333931715E-11 -2.05912667377E-11 -2.13781001666E-11 -2.21950000725E-11 -2.30431153556E-11 -2.39236388177E-11 -2.48378088402E-11 -2.57869111252E-11 -2.67722805044E-11 -2.77953028158E-11 -2.88574168532E-11 -2.99601163897E-11 -3.11049522781E-11 -3.22935346326E-11 -3.35275350932E-11 -3.48086891765E-11 -3.61387987164E-11 -3.75197343989E-11 -3.89534383924E-11 -4.04419270796E-11 -4.19872938929E-11 -4.35917122592E-11 -4.52574386565E-11 -4.69868157870E-11 -4.87822758724E-11 -5.06463440745E-11 -5.25816420465E-11 -5.45908916203E-11 -5.66769186343E-11 -5.88426569079E-11 -6.10911523677E-11 -6.34255673311E-11 -6.58491849540E-11 -6.83654138483E-11 -7.09777928758E-11 -7.36899961252E-11 -7.65058380796E-11 -7.94292789809E-11 -8.24644303999E-11 -8.56155610189E-11 -8.88871026348E-11 -9.22836563924E-11 -9.58099992557E-11 -9.94710907256E-11 -1.03272079816E-10 -1.07218312294E-10 -1.11315338201E-10 -1.15568919654E-10 -1.19985038953E-10 -1.24569906996E-10 -1.29329972009E-10 -1.34271928617E-10 -1.39402727263E-10 -1.44729583979E-10 -1.50259990535E-10 -1.56001724978E-10 -1.61962862568E-10 -1.68151787139E-10 -1.74577202887E-10 -1.81248146612E-10 -1.88174000429E-10 -1.95364504963E-10 -2.02829773047E-10 -2.10580303945E-10 -2.18626998120E-10 -2.26981172564E-10 -2.35654576712E-10 -2.44659408969E-10 -2.54008333868E-10 -2.63714499875E-10 -2.73791557888E-10 -2.84253680433E-10 -2.95115581595E-10 -3.06392537716E-10 -3.18100408876E-10 -3.30255661200E-10 -3.42875390019E-10 -3.55977343907E-10 -3.69579949651E-10 -3.83702338159E-10 -3.98364371371E-10 -4.13586670191E-10 -4.29390643489E-10 -4.45798518212E-10 -4.62833370642E-10 -4.80519158851E-10 -4.98880756399E-10 -5.17943987314E-10 -5.37735662412E-10 -5.58283617004E-10 -5.79616750042E-10 -6.01765064769E-10 -6.24759710908E-10 -6.48633028479E-10 -6.73418593276E-10 -6.99151264093E-10 -7.25867231750E-10 -7.53604069987E-10 -7.82400788315E-10 -8.12297886876E-10 -8.43337413405E-10 -8.75563022362E-10 -9.09020036335E-10 -9.43755509778E-10 -9.79818295190E-10 -1.01725911182E-09 -1.05613061701E-09 -1.09648748023E-09 -1.13838646000E-09 -1.18188648368E-09 -1.22704873037E-09 -1.27393671694E-09 -1.32261638738E-09 -1.37315620552E-09 -1.42562725135E-09 -1.48010332094E-09 -1.53666103028E-09 -1.59537992301E-09 -1.65634258227E-09 -1.71963474690E-09 -1.78534543197E-09 -1.85356705400E-09 -1.92439556095E-09 -1.99793056713E-09 -2.07427549329E-09 -2.15353771215E-09 -2.23582869931E-09 -2.32126419010E-09 -2.40996434234E-09 -2.50205390528E-09 -2.59766239515E-09 -2.69692427721E-09 -2.79997915494E-09 -2.90697196633E-09 -3.01805318775E-09 -3.13337904559E-09 -3.25311173595E-09 -3.37741965277E-09 -3.50647762468E-09 -3.64046716085E-09 -3.77957670630E-09 -3.92400190691E-09 -4.07394588457E-09 -4.22961952288E-09 -4.39124176375E-09 -4.55903991528E-09 -4.73324997148E-09 -4.91411694418E-09 -5.10189520761E-09 -5.29684885613E-09 -5.49925207573E-09 -5.70938952957E-09 -5.92755675838E-09 -6.15406059610E-09 -6.38921960143E-09 -6.63336450584E-09 -6.88683867873E-09 -7.14999861035E-09 -7.42321441316E-09 -7.70687034238E-09 -8.00136533641E-09 -8.30711357790E-09 -8.62454507628E-09 -8.95410627251E-09 -9.29626066697E-09 -9.65148947136E-09 -1.00202922855E-08 -1.04031877998E-08 -1.08007145251E-08 -1.12134315497E-08 -1.16419193258E-08 -1.20867804862E-08 -1.25486406910E-08 -1.30281495085E-08 -1.35259813282E-08 -1.40428363095E-08 -1.45794413660E-08 -1.51365511887E-08 -1.57149493065E-08 -1.63154491888E-08 -1.69388953893E-08 -1.75861647337E-08 -1.82581675533E-08 -1.89558489649E-08 -1.96801902001E-08 -2.04322099857E-08 -2.12129659759E-08 -2.20235562402E-08 -2.28651208076E-08 -2.37388432702E-08 -2.46459524473E-08 -2.55877241142E-08 -2.65654827963E-08 -2.75806036317E-08 -2.86345143057E-08 -2.97286970582E-08 -3.08646907689E-08 -3.20440931212E-08 -3.32685628495E-08 -3.45398220717E-08 -3.58596587119E-08 -3.72299290142E-08 -3.86525601541E-08 -4.01295529485E-08 -4.16629846697E-08 -4.32550119671E-08 -4.49078739004E-08 -4.66238950885E-08 -4.84054889791E-08 -5.02551612430E-08 -5.21755132981E-08 -5.41692459679E-08 -5.62391632807E-08 -5.83881764126E-08 -6.06193077820E-08 -6.29356953008E-08 -6.53405967873E-08 -6.78373945482E-08 -7.04296001356E-08 -7.31208592860E-08 -7.59149570473E-08 -7.88158231028E-08 -8.18275372975E-08 -8.49543353766E-08 -8.82006149427E-08 -9.15709416404E-08 -9.50700555782E-08 -9.87028779947E-08 -1.02474518180E-07 -1.06390280663E-07 -1.10455672670E-07 -1.14676411869E-07 -1.19058434417E-07 -1.23607903303E-07 -1.28331217019E-07 -1.33235018557E-07 -1.38326204754E-07 -1.43611935992E-07 -1.49099646267E-07 -1.54797053646E-07 -1.60712171122E-07 -1.66853317882E-07 -1.73229131011E-07 -1.79848577637E-07 -1.86720967542E-07 -1.93855966260E-07 -2.01263608666E-07 -2.08954313094E-07 -2.16938895987E-07 -2.25228587111E-07 -2.33835045351E-07 -2.42770375103E-07 -2.52047143306E-07 -2.61678397112E-07 -2.71677682238E-07 -2.82059062015E-07 -2.92837137173E-07 -3.04027066371E-07 -3.15644587521E-07 -3.27706039921E-07 -3.40228387235E-07 -3.53229241356E-07 -3.66726887171E-07 -3.80740308283E-07 -3.95289213707E-07 -4.10394065596E-07 -4.26076108015E-07 -4.42357396823E-07 -4.59260830694E-07 -4.76810183323E-07 -4.95030136866E-07 -5.13946316651E-07 -5.33585327225E-07 -5.53974789767E-07 -5.75143380944E-07 -5.97120873239E-07 -6.19938176829E-07 -6.43627383059E-07 -6.68221809580E-07 -6.93756047210E-07 -7.20266008586E-07 -7.47788978676E-07 -7.76363667219E-07 -8.06030263175E-07 -8.36830491248E-07 -8.68807670575E-07 -9.02006775655E-07 -9.36474499604E-07 -9.72259319835E-07 -1.00941156624E-06 -1.04798349199E-06 -1.08802934701E-06 -1.12960545430E-06 -1.17277028916E-06 -1.21466600990E-06 -1.26115709436E-06 -1.30942882627E-06 -1.35954205722E-06 -1.41157971563E-06 -1.46559827628E-06 -1.52168395693E-06 -1.57991692145E-06 -1.64037093388E-06 -1.70314612688E-06 -1.76831136068E-06 -1.83597239087E-06 -1.90621819369E-06 -1.97914792094E-06 -2.05487575018E-06 -2.13348822015E-06 -2.21510759994E-06 -2.29985126655E-06 -2.38783072523E-06 -2.47917291418E-06 -2.57771836793E-06 -2.67621410843E-06 -2.77847601297E-06 -2.88464066724E-06 -2.99486584571E-06 -3.10929876509E-06 -3.22811023296E-06 -3.35145618898E-06 -3.47951861767E-06 -3.61247240047E-06 -3.75050648529E-06 -3.89381770340E-06 -4.04260241025E-06 -4.19707279117E-06 -4.35744653969E-06 -4.52394636066E-06 -4.69681178519E-06 -4.87627849374E-06 -5.06260916923E-06 -5.25605258819E-06 -5.45689257244E-06 -5.66540418753E-06 -5.88188038968E-06 -6.10663825549E-06 -6.33997701987E-06 -6.58223411815E-06 -6.83374565249E-06 -7.09487063174E-06 -7.36597209981E-06 -7.64743209694E-06 -7.93964959542E-06 -8.24303307506E-06 -8.55800725028E-06 -8.88501564895E-06 -9.22452129472E-06 -9.57700222834E-06 -9.94294783077E-06 -1.03228791924E-05 -1.07173216180E-05 -1.11268462421E-05 -1.15520165393E-05 -1.19934273174E-05 -1.24517103449E-05 -1.29275038006E-05 -1.34214748550E-05 -1.39343257797E-05 -1.44667722199E-05 -1.50195631085E-05 -1.55934748839E-05 -1.61893177037E-05 -1.68079247106E-05 -1.74501800728E-05 -1.81169640438E-05 -1.88092323003E-05 -1.95279542175E-05 -2.02741401936E-05 -2.10488318657E-05 -2.18531291555E-05 -2.26881579869E-05 -2.35550958477E-05 -2.44551584700E-05 -2.53896133462E-05 -2.63597758743E-05 -2.73670040245E-05 -2.84127262561E-05 -2.94984042174E-05 -3.06255668245E-05 -3.17957878646E-05 -3.30107405531E-05 -3.42721075111E-05 -3.55816749218E-05 -3.69412783668E-05 -3.83528404511E-05 -3.98183313450E-05 -4.13398150844E-05 -4.29194479546E-05 -4.45594249016E-05 -4.62620745388E-05 -4.80297836238E-05 -4.98650277058E-05 -5.17704095206E-05 -5.37485822077E-05 -5.58023480763E-05 -5.79345934400E-05 -6.01482954920E-05 -6.24466018425E-05 -6.48327116887E-05 -6.73100044064E-05 -6.98819448883E-05 -7.25521624548E-05 -7.53244022935E-05 -7.82025827625E-05 -8.11907158689E-05 -8.42930414197E-05 -8.75139028244E-05 -9.08578164308E-05 -9.43294983182E-05 -9.79338481055E-05 -1.01675860226E-04 -1.05561369032E-04 -1.09590259178E-04 -1.13822484953E-04 -1.17736480443E-04 -1.26462704684E-04 -1.18344040131E-04 -1.40034313320E-04 -1.33538097932E-04 -1.46669127255E-04 -1.42523103584E-04 -1.57847464766E-04 -1.59129597698E-04 -1.62984816107E-04 -1.73685779059E-04 -1.77867596806E-04 -1.81712566728E-04 -1.96661410190E-04 -1.96858897966E-04 -2.13113886367E-04 -2.15902536896E-04 -2.13184248171E-04 -2.38179110736E-04 -2.42323311202E-04 -2.48654386215E-04 -2.56163721132E-04 -2.75175032765E-04 -2.77337905528E-04 -2.93198322969E-04 -2.96099926329E-04 -3.19287243978E-04 -3.16710676218E-04 -3.41857148282E-04 -3.56660808569E-04 -3.56017921054E-04 -3.79626392311E-04 -3.90827008066E-04 -4.12449606216E-04 -4.18213309394E-04 -4.39808828511E-04 -4.57716161544E-04 -4.64921998511E-04 -5.04461078003E-04 -4.99564928546E-04 -5.33132205865E-04 -5.48901714030E-04 -5.70110857741E-04 -5.91564834671E-04 -6.15997018170E-04 -6.39820378247E-04 -6.58559504590E-04 -6.95349475927E-04 -7.10398188928E-04 -7.42417811110E-04 -7.68446163433E-04 -8.02916825156E-04 -8.25248869840E-04 -8.65247983602E-04 -8.98191036840E-04 -9.19622809823E-04 -9.73531346394E-04 -9.95078082026E-04 -1.03862901163E-03 -1.08350472170E-03 -1.11832472405E-03 -1.16851145362E-03 -1.20555072951E-03 -1.25010454121E-03 -1.30184408060E-03 -1.35364528312E-03 -1.40293059343E-03 -1.45709658410E-03 -1.51302771689E-03 -1.56580432050E-03 -1.63626219167E-03 -1.68869599696E-03 -1.75467730869E-03 -1.83283951099E-03 -1.88599720738E-03 -1.96787169636E-03 -2.04002505050E-03 -2.12277377767E-03 -2.19737048217E-03 -2.28464274333E-03 -2.37294512341E-03 -2.46378602396E-03 -2.54941127191E-03 -2.66074132886E-03 -2.75117741819E-03 -2.86154125591E-03 -2.96855277533E-03 -3.08747413546E-03 -3.19507478965E-03 -3.32477748205E-03 -3.45147628800E-03 -3.57950172376E-03 -3.72226477040E-03 -3.85537278940E-03 -4.01153560767E-03 -4.15954965306E-03 -4.32094829676E-03 -4.48431685448E-03 -4.65609262516E-03 -4.83354457965E-03 -5.01912541301E-03 -5.20919659817E-03 -5.41077422016E-03 -5.61707909198E-03 -5.82643228660E-03 -6.05434454052E-03 -6.28404151900E-03 -6.52535485489E-03 -6.77024079600E-03 -7.03272027610E-03 -7.29986097101E-03 -7.57904653503E-03 -7.86769129012E-03 -8.16933113033E-03 -8.47897065557E-03 -8.80438873816E-03 -9.14030384759E-03 -9.48862811816E-03 -9.85229824190E-03 -1.02258352569E-02 -1.06189365032E-02 -1.10219646300E-02 -1.14447809212E-02 -1.18789100512E-02 -1.23359110777E-02 -1.28029334036E-02 -1.32944570427E-02 -1.38003741721E-02 -1.43266142684E-02 -1.48748473749E-02 -1.54411224580E-02 -1.60318030581E-02 -1.66420596180E-02 -1.72770498508E-02 -1.79375045462E-02 -1.86206087205E-02 -1.93316286514E-02 -2.00693290744E-02 -2.08339068396E-02 -2.16298466368E-02 -2.24543518308E-02 -2.33107769441E-02 -2.41993950622E-02 -2.51234353002E-02 -2.60806776951E-02 -2.70755510030E-02 -2.81084205067E-02 -2.91795054030E-02 -3.02922749527E-02 -3.14478341121E-02 -3.26461476118E-02 -3.38907803768E-02 -3.51823768196E-02 -3.65243943631E-02 -3.79156858509E-02 -3.93609494254E-02 -4.08610652574E-02 -4.24181164107E-02 -4.40344651475E-02 -4.57121974870E-02 -4.74538641425E-02 -4.92615298721E-02 -5.11382671913E-02 -5.30859309921E-02 -5.51076508294E-02 -5.72064681603E-02 -5.93847746951E-02 -6.16462917445E-02 -6.39928753409E-02 -6.64291382112E-02 -6.89580307854E-02 -7.15823145896E-02 -7.43065889447E-02 -7.71344793913E-02 -8.00690667461E-02 -8.31153515230E-02 -8.62771238117E-02 -8.95586234759E-02 -9.29648654183E-02 -9.64997003069E-02 -1.00168775270E-01 -1.03977010270E-01 -1.07928951877E-01 -1.12030901548E-01 -1.16288260092E-01 -1.20706454019E-01 -1.25291803049E-01 -1.30050633820E-01 -1.34989622629E-01 -1.40115055223E-01 -1.45434242925E-01 -1.50954403943E-01 -1.56683120726E-01 -1.62628029514E-01 -1.68797324407E-01 -1.75199310680E-01 -1.81842911717E-01 -1.88736885055E-01 -1.95890619275E-01 -2.03313948422E-01 -2.11016767501E-01 -2.19009538022E-01 -2.27302994944E-01 -2.35908423906E-01 -2.44837308139E-01 -2.54101579179E-01 -2.63713937498E-01 -2.73686957980E-01 -2.84034239339E-01 -2.94769385877E-01 -3.05906927997E-01 -3.17461598543E-01 -3.29448727886E-01 -3.41884354437E-01 -3.54784861526E-01 -3.68167337711E-01 -3.82049471646E-01 -3.96449597009E-01 -4.11386531451E-01 -4.26880015003E-01 -4.42950297134E-01 -4.59618323436E-01 -4.76905901957E-01 -4.94835445834E-01 -5.13430319579E-01 -5.32714440222E-01 -5.52712803256E-01 -5.73451149292E-01 -5.94955990843E-01 -6.17254969392E-01 -6.40376418912E-01 -6.64349802093E-01 -6.89205437177E-01 -7.14974799533E-01 -7.41690199504E-01 -7.69385189690E-01 -7.98094357538E-01 -8.27853361849E-01 -8.58699065025E-01 -8.90669530937E-01 -9.23803936831E-01 -9.58142811347E-01 -9.93727862480E-01 -1.03060212385E+00 -1.06880996111E+00 -1.10839707390E+00 -1.14941052477E+00 -1.19189881148E+00 -1.23591185171E+00 -1.28150097089E+00 -1.32871905884E+00 -1.37762038242E+00 -1.42826087014E+00 -1.48069784891E+00 -1.53499028908E+00 -1.59119870516E+00 -1.64938514975E+00 -1.70961333980E+00 -1.77194851204E+00 -1.83645754178E+00 -1.90320885763E+00 -1.97227252494E+00 -2.04372012909E+00 -2.11762484157E+00 -2.19406136497E+00 -2.27310589040E+00 -2.35483608342E+00 -2.43933105349E+00 -2.52667121951E+00 -2.61693840202E+00 -2.71021555243E+00 -2.80658686285E+00 -2.90613753823E+00 -3.00895374379E+00 -3.11512249423E+00 -3.22473147866E+00 -3.33786895341E+00 -3.45462354723E+00 -3.57508407857E+00 -3.69933935879E+00 -3.82747796988E+00 -3.95958799812E+00 -4.09575677281E+00 -4.23607057792E+00 -4.38061430929E+00 -4.52947113123E+00 -4.68272209407E+00 -4.84044571082E+00 -5.00271751754E+00 -5.16960956485E+00 -5.34118992699E+00 -5.51752209159E+00 -5.69866439474E+00 -5.88466933947E+00 -6.07558289981E+00 -6.27144378888E+00 -6.47228263173E+00 -6.67812113883E+00 -6.88897117562E+00 -7.10483381218E+00 -7.32569828823E+00 -7.55154093416E+00 -7.78232401309E+00 -8.01799452275E+00 -8.25848290090E+00 -8.50370169398E+00 -8.75354414167E+00 -9.00788270059E+00 -9.26656750124E+00 -9.52942473824E+00 -9.79625499483E+00 -1.00668315132E+01 -1.03408983922E+01 -1.06181687385E+01 -1.08983227695E+01 -1.11810058546E+01 -1.14658265401E+01 -1.17523545204E+01 -1.20401186062E+01 -1.23286046699E+01 -1.26172535968E+01 -1.29054592546E+01 -1.31925664894E+01 -1.34778691783E+01 -1.37606083461E+01 -1.40399703817E+01 -1.43150853675E+01 -1.45850255588E+01 -1.48488040359E+01 -1.51053735709E+01 -1.53536257360E+01 -1.55923902947E+01 -1.58204349294E+01 -1.60364653260E+01 -1.62391256931E+01 -1.64269997388E+01 -1.65986121822E+01 -1.67524308387E+01 -1.68868693447E+01 -1.70002905891E+01 -1.70910109014E+01 -1.71573050639E+01 -1.71974122265E+01 -1.72095427645E+01 -1.71918861601E+01 -1.71426199721E+01 -1.70599199309E+01 -1.69419712454E+01 -1.67869811440E+01 -1.65931927051E+01 -1.63589000171E+01 -1.60824646764E+01 -1.57623336495E+01 -1.53970584862E+01 -1.49853158727E+01 -1.45259294805E+01 -1.40178930473E+01 -1.34603946202E+01 -1.28528418235E+01 -1.21948880366E+01 -1.14864592908E+01 -1.07277816748E+01 -9.91940901055E+00 -9.06225050567E+00 -8.15759805110E+00 -7.20715278864E+00 -6.21305053421E+00 -5.17788558250E+00 -4.10473237720E+00 -2.99716449601E+00 -1.85927033096E+00 -6.95664821818E-01 4.88503454013E-01 1.68755055835E+00 2.89526160123E+00 4.10490205735E+00 5.30923680789E+00 6.50055769396E+00 7.67072041669E+00 8.81119155315E+00 9.91310647032E+00 1.09673388583E+01 1.19645825422E+01 1.28954461822E+01 1.37506130056E+01 1.45210705527E+01 1.51980360487E+01 1.57730331001E+01 1.62380317537E+01 1.65856020575E+01 1.68090809390E+01 1.69027519759E+01 1.68620373236E+01 1.66837007616E+01 1.63660604270E+01 1.59092094028E+01 1.53152418665E+01 1.45884819903E+01 1.37357122582E+01 1.27663972578E+01 1.16928983862E+01 1.05306742698E+01 9.29846099407E+00 8.01842558795E+00 6.71628549274E+00 5.42138611363E+00 4.16672792393E+00 2.98893394204E+00 1.92814903566E+00 1.02785152703E+00 3.34660939667E-01 -1.02780113793E-01 -2.26999263042E-01 -4.30513158570E-02 4.61960258215E-03 -1.15490878537E-04 3.45499741886E-04 2.91654794409E-04 2.89162311377E-04 2.81873629262E-04 2.75342060812E-04 2.69003589622E-04 2.62901966430E-04 2.57020757630E-04 1.60 2.50 3D 8 2 Beta L 911 1.34057371033E-12 1.39179970910E-12 1.44498315559E-12 1.50019884779E-12 1.55752444186E-12 1.61704056137E-12 1.67883091067E-12 1.74298239262E-12 1.80958523082E-12 1.87873309648E-12 1.95052324019E-12 2.02505662867E-12 2.10243808678E-12 2.18277644496E-12 2.26618469224E-12 2.35278013524E-12 2.44268456307E-12 2.53602441864E-12 2.63293097651E-12 2.73354052749E-12 2.83799457036E-12 2.94644001082E-12 3.05902936816E-12 3.17592098970E-12 3.29727927355E-12 3.42327489982E-12 3.55408507061E-12 3.68989375927E-12 3.83089196918E-12 3.97727800229E-12 4.12925773810E-12 4.28704492315E-12 4.45086147169E-12 4.62093777773E-12 4.79751303911E-12 4.98083559389E-12 5.17116326964E-12 5.36876374601E-12 5.57391493125E-12 5.78690535302E-12 6.00803456421E-12 6.23761356422E-12 6.47596523636E-12 6.72342480196E-12 6.98034029180E-12 7.24707303566E-12 7.52399817041E-12 7.81150516767E-12 8.10999838155E-12 8.41989761732E-12 8.74163872186E-12 9.07567419664E-12 9.42247383410E-12 9.78252537840E-12 1.01563352114E-11 1.05444290647E-11 1.09473527593E-11 1.13656729731E-11 1.17999780378E-11 1.22508787666E-11 1.27190093128E-11 1.32050280623E-11 1.37096185589E-11 1.42334904664E-11 1.47773805658E-11 1.53420537923E-11 1.59283043108E-11 1.65369566326E-11 1.71688667754E-11 1.78249234670E-11 1.85060493952E-11 1.92132025058E-11 1.99473773492E-11 2.07096064800E-11 2.15009619085E-11 2.23225566088E-11 2.31755460837E-11 2.40611299904E-11 2.49805538272E-11 2.59351106855E-11 2.69261430682E-11 2.79550447780E-11 2.90232628776E-11 3.01322997247E-11 3.12837150853E-11 3.24791283270E-11 3.37202206968E-11 3.50087376854E-11 3.63464914823E-11 3.77353635244E-11 3.91773071419E-11 4.06743503058E-11 4.22285984798E-11 4.38422375817E-11 4.55175370576E-11 4.72568530736E-11 4.90626318295E-11 5.09374129995E-11 5.28838333038E-11 5.49046302169E-11 5.70026458176E-11 5.91808307863E-11 6.14422485548E-11 6.37900796147E-11 6.62276259907E-11 6.87583158842E-11 7.13857084953E-11 7.41134990281E-11 7.69455238879E-11 7.98857660767E-11 8.29383607950E-11 8.61076012574E-11 8.93979447311E-11 9.28140188043E-11 9.63606278946E-11 1.00042760006E-10 1.03865593744E-10 1.07834505599E-10 1.11955077508E-10 1.16233104704E-10 1.20674603871E-10 1.25285821597E-10 1.30073243169E-10 1.35043601688E-10 1.40203887541E-10 1.45561358231E-10 1.51123548585E-10 1.56898281350E-10 1.62893678198E-10 1.69118171145E-10 1.75580514410E-10 1.82289796729E-10 1.89255454140E-10 1.96487283245E-10 2.03995455000E-10 2.11790529008E-10 2.19883468379E-10 2.28285655145E-10 2.37008906267E-10 2.46065490258E-10 2.55468144432E-10 2.65230092825E-10 2.75365064787E-10 2.85887314295E-10 2.96811640001E-10 3.08153406040E-10 3.19928563644E-10 3.32153673570E-10 3.44845929400E-10 3.58023181712E-10 3.71703963195E-10 3.85907514705E-10 4.00653812332E-10 4.15963595493E-10 4.31858396099E-10 4.48360568837E-10 4.65493322615E-10 4.83280753196E-10 5.01747877093E-10 5.20920666750E-10 5.40826087070E-10 5.61492133338E-10 5.82947870596E-10 6.05223474521E-10 6.28350273860E-10 6.52360794498E-10 6.77288805197E-10 7.03169365092E-10 7.30038872999E-10 7.57935118603E-10 7.86897335614E-10 8.16966256935E-10 8.48184171959E-10 8.80594986042E-10 9.14244282251E-10 9.49179385472E-10 9.85449428973E-10 1.02310542350E-09 1.06220032903E-09 1.10278912924E-09 1.14492890884E-09 1.18867893388E-09 1.23410073506E-09 1.28125819431E-09 1.33021763462E-09 1.38104791330E-09 1.43382051885E-09 1.48860967148E-09 1.54549242751E-09 1.60454878774E-09 1.66586180996E-09 1.72951772575E-09 1.79560606181E-09 1.86421976581E-09 1.93545533713E-09 2.00941296261E-09 2.08619665742E-09 2.16591441136E-09 2.24867834074E-09 2.33460484607E-09 2.42381477574E-09 2.51643359602E-09 2.61259156751E-09 2.71242392829E-09 2.81607108421E-09 2.92367880628E-09 3.03539843573E-09 3.15138709685E-09 3.27180791796E-09 3.39683026084E-09 3.52662995895E-09 3.66138956469E-09 3.80129860616E-09 3.94655385371E-09 4.09735959670E-09 4.25392793079E-09 4.41647905625E-09 4.58524158768E-09 4.76045287547E-09 4.94235933968E-09 5.13121681658E-09 5.32729091846E-09 5.53085740721E-09 5.74220258214E-09 5.96162368265E-09 6.18942930628E-09 6.42593984269E-09 6.67148792430E-09 6.92641889410E-09 7.19109129137E-09 7.46587735586E-09 7.75116355143E-09 8.04735110949E-09 8.35485659333E-09 8.67411248399E-09 9.00556778852E-09 9.34968867143E-09 9.70695911038E-09 1.00778815768E-08 1.04629777426E-08 1.08627892138E-08 1.12778782925E-08 1.17088287673E-08 1.21562467348E-08 1.26207614516E-08 1.31030262196E-08 1.36037193049E-08 1.41235448913E-08 1.46632340711E-08 1.52235458731E-08 1.58052683303E-08 1.64092195880E-08 1.70362490546E-08 1.76872385961E-08 1.83631037766E-08 1.90647951458E-08 1.97932995758E-08 2.05496416494E-08 2.13348851008E-08 2.21501343117E-08 2.29965358645E-08 2.38752801551E-08 2.47876030671E-08 2.57347877096E-08 2.67181662223E-08 2.77391216485E-08 2.87990898808E-08 2.98995616805E-08 3.10420847738E-08 3.22282660291E-08 3.34597737166E-08 3.47383398548E-08 3.60657626465E-08 3.74439090075E-08 3.88747171929E-08 4.03601995224E-08 4.19024452113E-08 4.35036233081E-08 4.51659857454E-08 4.68918705075E-08 4.86837049180E-08 5.05440090540E-08 5.24753992904E-08 5.44805919797E-08 5.65624072722E-08 5.87237730827E-08 6.09677292080E-08 6.32974316027E-08 6.57161568174E-08 6.82273066072E-08 7.08344127162E-08 7.35411418444E-08 7.63513008049E-08 7.92688418779E-08 8.22978683695E-08 8.54426403826E-08 8.87075808086E-08 9.20972815479E-08 9.56165099682E-08 9.92702156098E-08 1.03063537147E-07 1.07001809613E-07 1.11090571909E-07 1.15335574587E-07 1.19742787946E-07 1.24318410419E-07 1.29068877301E-07 1.34000869792E-07 1.39121324401E-07 1.44437442693E-07 1.49956701428E-07 1.55686863066E-07 1.61635986695E-07 1.67812439359E-07 1.74224907827E-07 1.80882410814E-07 1.87794311659E-07 1.94970331503E-07 2.02420562955E-07 2.10155484287E-07 2.18185974176E-07 2.26523327000E-07 2.35179268726E-07 2.44165973402E-07 2.53496080278E-07 2.63182711583E-07 2.73239490984E-07 2.83680562744E-07 2.94520611618E-07 3.05774883507E-07 3.17459206898E-07 3.29590015132E-07 3.42184369512E-07 3.55259983302E-07 3.68835246644E-07 3.82929252417E-07 3.97561823096E-07 4.12753538631E-07 4.28525765394E-07 4.44900686228E-07 4.61901331651E-07 4.79551612247E-07 4.97876352295E-07 5.16901324690E-07 5.36653287185E-07 5.57160020036E-07 5.78450365069E-07 6.00554266247E-07 6.23502811791E-07 6.47328277906E-07 6.72064174173E-07 6.97745290691E-07 7.24407747003E-07 7.52089042903E-07 7.80828111184E-07 8.10665372392E-07 8.41642791688E-07 8.73803937870E-07 9.07194044655E-07 9.41860074308E-07 9.77850783691E-07 1.01521679285E-06 1.05401065621E-06 1.09428693651E-06 1.13610228153E-06 1.17656952843E-06 1.22160569789E-06 1.26836696555E-06 1.31691199326E-06 1.36732162163E-06 1.41964987955E-06 1.47398070467E-06 1.53039180577E-06 1.58895430918E-06 1.64976583030E-06 1.71289228623E-06 1.77843669891E-06 1.84648501093E-06 1.91713328820E-06 1.99049261015E-06 2.06664599832E-06 2.14571237497E-06 2.22780555254E-06 2.31303323832E-06 2.40151853239E-06 2.49723700444E-06 2.59265477162E-06 2.69172107626E-06 2.79456785721E-06 2.90134857066E-06 3.01220503208E-06 3.12730361927E-06 3.24679476856E-06 3.37085504215E-06 3.49965376603E-06 3.63337377459E-06 3.77220634581E-06 3.91634119836E-06 4.06598374862E-06 4.22134558897E-06 4.38264154202E-06 4.55010463417E-06 4.72396226116E-06 4.90446977028E-06 5.09186738037E-06 5.28643039061E-06 5.48842537451E-06 5.69813572439E-06 5.91586952064E-06 6.14191570726E-06 6.37660126456E-06 6.62025223682E-06 6.87321626864E-06 7.13584488803E-06 7.40850842732E-06 7.69159309415E-06 7.98549511798E-06 8.29062528294E-06 8.60741371392E-06 8.93630891069E-06 9.27777384465E-06 9.63228268467E-06 1.00003403187E-05 1.03824551749E-05 1.07791817627E-05 1.11910643541E-05 1.16186802460E-05 1.20626411445E-05 1.25235655154E-05 1.30020993541E-05 1.34989229475E-05 1.40147303668E-05 1.45502460874E-05 1.51062230495E-05 1.56834458812E-05 1.62827210194E-05 1.69049069114E-05 1.75508541344E-05 1.82214898415E-05 1.89177530332E-05 1.96406220934E-05 2.03911062989E-05 2.11702714462E-05 2.19792080595E-05 2.28190573249E-05 2.36909961133E-05 2.45962533269E-05 2.55361029778E-05 2.65118602646E-05 2.75249100290E-05 2.85766669110E-05 2.96686135383E-05 3.08022731110E-05 3.19792683519E-05 3.32012280884E-05 3.44698830288E-05 3.57870117482E-05 3.71544771337E-05 3.85741870596E-05 4.00481419133E-05 4.15784300843E-05 4.31671787424E-05 4.48166434695E-05 4.65291370018E-05 4.83070572557E-05 5.01529259472E-05 5.20693132397E-05 5.40589347734E-05 5.61245865239E-05 5.82691525510E-05 6.04956828619E-05 6.28072768426E-05 6.52072085178E-05 6.76988344237E-05 7.02856720000E-05 7.29713474252E-05 7.57596603558E-05 7.86544947130E-05 8.16599600648E-05 8.47802646237E-05 8.80197819504E-05 9.13830833595E-05 9.48749168172E-05 9.85001156780E-05 1.02264372914E-04 1.06167192423E-04 1.10270391467E-04 1.14032424795E-04 1.22775864608E-04 1.14030427831E-04 1.36200272749E-04 1.29113102287E-04 1.42376476146E-04 1.37700658136E-04 1.53211781723E-04 1.54137173257E-04 1.57733378300E-04 1.68255309990E-04 1.72472600035E-04 1.75812355410E-04 1.90699249938E-04 1.90599454310E-04 2.06679831171E-04 2.09254149624E-04 2.06070321073E-04 2.30956145439E-04 2.34889727695E-04 2.40770467977E-04 2.48070211476E-04 2.66799185624E-04 2.68610056803E-04 2.84215585243E-04 2.86464105910E-04 3.09771954173E-04 3.06282813794E-04 3.31513415461E-04 3.45744212467E-04 3.44573841555E-04 3.67926923879E-04 3.78495927495E-04 3.99880179614E-04 4.04975762775E-04 4.26070662411E-04 4.43626270143E-04 4.49904564460E-04 4.89588911585E-04 4.83373478061E-04 5.16662808560E-04 5.31793570780E-04 5.52296276453E-04 5.73106718096E-04 5.96847306046E-04 6.20004219183E-04 6.37695344970E-04 6.74183621872E-04 6.88045527913E-04 7.19244231962E-04 7.44460510737E-04 7.78109386333E-04 7.99260961380E-04 8.38523901490E-04 8.70351363259E-04 8.90569640888E-04 9.43698255242E-04 9.63730734737E-04 1.00631925196E-03 1.05006023595E-03 1.08335376098E-03 1.13241212616E-03 1.16797088023E-03 1.21101968732E-03 1.26140652795E-03 1.31160516144E-03 1.35938203117E-03 1.41181102188E-03 1.46607061616E-03 1.51688407080E-03 1.58575594449E-03 1.63606885750E-03 1.70000532641E-03 1.77647949229E-03 1.82698665766E-03 1.90687723329E-03 1.97664599791E-03 2.05713576418E-03 2.12907889508E-03 2.21373708183E-03 2.29953665491E-03 2.38735978521E-03 2.47017310465E-03 2.57860324141E-03 2.66571293354E-03 2.77303890389E-03 2.87652582928E-03 2.99213236659E-03 3.09590292541E-03 3.22201204705E-03 3.34475766591E-03 3.46871125733E-03 3.60736144822E-03 3.73599392712E-03 3.88773832705E-03 4.03101621128E-03 4.18755834352E-03 4.34588055793E-03 4.51240319544E-03 4.68440728228E-03 4.86436639207E-03 5.04857554149E-03 5.24412033519E-03 5.44411547886E-03 5.64684302763E-03 5.86805753240E-03 6.09070321190E-03 6.32475213862E-03 6.56196783071E-03 6.81667405282E-03 7.07563819091E-03 7.34637161418E-03 7.62624637754E-03 7.91880255275E-03 8.21896961087E-03 8.53462482199E-03 8.86037811152E-03 9.19817601734E-03 9.55093305188E-03 9.91310394345E-03 1.02945022802E-02 1.06852980827E-02 1.10955288024E-02 1.15164822437E-02 1.19599570897E-02 1.24128367735E-02 1.28897742758E-02 1.33805192467E-02 1.38910361569E-02 1.44229830144E-02 1.49723598336E-02 1.55455455914E-02 1.61376014937E-02 1.67537803546E-02 1.73947152706E-02 1.80575802649E-02 1.87476295962E-02 1.94635952182E-02 2.02056045856E-02 2.09782109226E-02 2.17785094877E-02 2.26098278909E-02 2.34724405164E-02 2.43695569569E-02 2.52988521408E-02 2.62648046230E-02 2.72677005147E-02 2.83077139929E-02 2.93883113594E-02 3.05105415127E-02 3.16743161608E-02 3.28831786298E-02 3.41377275485E-02 3.54413901911E-02 3.67929254171E-02 3.81970468307E-02 3.96545526237E-02 4.11674796264E-02 4.27381553548E-02 4.43685946890E-02 4.60613112312E-02 4.78183037232E-02 4.96426016235E-02 5.15359902655E-02 5.35015348722E-02 5.55422474467E-02 5.76604172331E-02 5.98597365537E-02 6.21419662828E-02 6.45116745599E-02 6.69717398369E-02 6.95248344913E-02 7.21755099736E-02 7.49273172358E-02 7.77832363159E-02 8.07482197148E-02 8.38259708519E-02 8.70206353859E-02 9.03371772333E-02 9.37793276554E-02 9.73526814686E-02 1.01062057968E-01 1.04911913221E-01 1.08908469451E-01 1.13057042908E-01 1.17362953279E-01 1.21832439149E-01 1.26471736111E-01 1.31287427126E-01 1.36285698779E-01 1.41473774670E-01 1.46858775732E-01 1.52448193432E-01 1.58249564857E-01 1.64270993984E-01 1.70520691578E-01 1.77007493090E-01 1.83740056173E-01 1.90727688665E-01 1.97980134266E-01 2.05507200231E-01 2.13319270212E-01 2.21426996000E-01 2.29841591224E-01 2.38574464759E-01 2.47637482332E-01 2.57043286949E-01 2.66804393533E-01 2.76934357429E-01 2.87446739205E-01 2.98356040698E-01 3.09676971034E-01 3.21424848325E-01 3.33615712584E-01 3.46265958707E-01 3.59392701309E-01 3.73013671128E-01 3.87147260860E-01 4.01812361319E-01 4.17028812131E-01 4.32816979168E-01 4.49197946327E-01 4.66193689885E-01 4.83826814568E-01 5.02120908898E-01 5.21100141575E-01 5.40789798801E-01 5.61215947314E-01 5.82405462153E-01 6.04386397066E-01 6.27187537987E-01 6.50838853017E-01 6.75371217022E-01 7.00816721228E-01 7.27208350239E-01 7.54580398424E-01 7.82968265161E-01 8.12408494576E-01 8.42938915988E-01 8.74598645820E-01 9.07428004096E-01 9.41468760693E-01 9.76763968898E-01 1.01335811727E+00 1.05129714566E+00 1.09062845233E+00 1.13140093226E+00 1.17366505756E+00 1.21747287106E+00 1.26287798270E+00 1.30993573731E+00 1.35870303553E+00 1.40923863242E+00 1.46160288095E+00 1.51585799346E+00 1.57206795165E+00 1.63029851444E+00 1.69061735874E+00 1.75309394719E+00 1.81779966321E+00 1.88480774027E+00 1.95419336232E+00 2.02603356244E+00 2.10040730758E+00 2.17739546072E+00 2.25708075717E+00 2.33954781006E+00 2.42488310011E+00 2.51317486015E+00 2.60451319154E+00 2.69898981221E+00 2.79669819155E+00 2.89773334437E+00 3.00219180210E+00 3.11017152703E+00 3.22177176096E+00 3.33709294374E+00 3.45623654403E+00 3.57930490169E+00 3.70640105771E+00 3.83762855775E+00 3.97309121174E+00 4.11289285878E+00 4.25713710472E+00 4.40592700446E+00 4.55936474342E+00 4.71755127951E+00 4.88058594257E+00 5.04856601706E+00 5.22158625424E+00 5.39973840008E+00 5.58311060222E+00 5.77178685998E+00 5.96584635507E+00 6.16536276502E+00 6.37040353726E+00 6.58102906442E+00 6.79729185574E+00 7.01923560025E+00 7.24689420462E+00 7.48029074065E+00 7.71943634274E+00 7.96432901898E+00 8.21495241511E+00 8.47127447334E+00 8.73324604541E+00 9.00079941253E+00 9.27384673302E+00 9.55227841282E+00 9.83596139683E+00 1.01247373813E+01 1.04184209593E+01 1.07167976775E+01 1.10196220321E+01 1.13266153992E+01 1.16374638873E+01 1.19518161538E+01 1.22692811503E+01 1.25894258440E+01 1.29117728966E+01 1.32357983270E+01 1.35609291708E+01 1.38865411443E+01 1.42119563419E+01 1.45364409740E+01 1.48592031828E+01 1.51793909465E+01 1.54960901118E+01 1.58083225756E+01 1.61150446610E+01 1.64151457125E+01 1.67074469566E+01 1.69907006798E+01 1.72635897486E+01 1.75247275508E+01 1.77726583845E+01 1.80058583750E+01 1.82227369624E+01 1.84216390302E+01 1.86008477479E+01 1.87585881823E+01 1.88930317508E+01 1.90023016037E+01 1.90844789823E+01 1.91376106417E+01 1.91597174116E+01 1.91488039436E+01 1.91028697380E+01 1.90199214870E+01 1.88979867983E+01 1.87351293525E+01 1.85294655128E+01 1.82791824290E+01 1.79825576316E+01 1.76379801198E+01 1.72439729119E+01 1.67992170050E+01 1.63025766875E+01 1.57531260759E+01 1.51501767750E+01 1.44933064724E+01 1.37823882724E+01 1.30176205281E+01 1.21995568861E+01 1.13291362102E+01 1.04077120063E+01 9.43708092794E+00 8.41950987831E+00 7.35776117794E+00 6.25511522914E+00 5.11539003341E+00 3.94295689099E+00 2.74275155136E+00 1.52028005153E+00 2.81618430836E-01 -9.66594504572E-01 -2.21717224328E+00 -3.46240430501E+00 -4.69408955594E+00 -5.90357994507E+00 -7.08183552198E+00 -8.21949153889E+00 -9.30693838047E+00 -1.03344150177E+01 -1.12921644671E+01 -1.21706573256E+01 -1.29605348619E+01 -1.36526913287E+01 -1.42384164154E+01 -1.47095520458E+01 -1.50586634024E+01 -1.52792238118E+01 -1.53658128060E+01 -1.53143263675E+01 -1.51221979579E+01 -1.47886285183E+01 -1.43148231495E+01 -1.37042316508E+01 -1.29627895450E+01 -1.20991555894E+01 -1.11249411234E+01 -1.00549259384E+01 -8.90725461305E+00 -7.70360657554E+00 -6.46933239543E+00 -5.23354814027E+00 -4.02917895782E+00 -2.89294235162E+00 -1.86526221070E+00 -9.90093610321E-01 -3.14741902695E-01 1.11247973002E-01 2.29266806660E-01 4.31164176317E-02 -4.63704812132E-03 1.06285826009E-04 -3.55450601432E-04 -3.01447603416E-04 -2.98875435148E-04 -2.91489564663E-04 -2.84854178257E-04 -2.78405407338E-04 -2.72188096424E-04 -2.66186691798E-04 1.60 2.50 3D 9 2 Beta L 911 -1.94188534402E-12 -2.01608866117E-12 -2.09312743527E-12 -2.17311001478E-12 -2.25614888839E-12 -2.34236084320E-12 -2.43186712898E-12 -2.52479362869E-12 -2.62127103555E-12 -2.72143503680E-12 -2.82542650459E-12 -2.93339169404E-12 -3.04548244900E-12 -3.16185641557E-12 -3.28267726382E-12 -3.40811491798E-12 -3.53834579542E-12 -3.67355305478E-12 -3.81392685355E-12 -3.95966461552E-12 -4.11097130843E-12 -4.26805973227E-12 -4.43115081851E-12 -4.60047394087E-12 -4.77626723791E-12 -4.95877794791E-12 -5.14826275665E-12 -5.34498815837E-12 -5.54923083058E-12 -5.76127802320E-12 -5.98142796255E-12 -6.20999027076E-12 -6.44728640125E-12 -6.69365009081E-12 -6.94942782898E-12 -7.21497934537E-12 -7.49067811555E-12 -7.77691188637E-12 -8.07408322123E-12 -8.38261006632E-12 -8.70292633834E-12 -9.03548253486E-12 -9.38074636784E-12 -9.73920342143E-12 -1.01113578350E-11 -1.04977330119E-11 -1.08988723561E-11 -1.13153400357E-11 -1.17477217772E-11 -1.21966256886E-11 -1.26626831150E-11 -1.31465495265E-11 -1.36489054399E-11 -1.41704573762E-11 -1.47119388536E-11 -1.52741114198E-11 -1.58577657225E-11 -1.64637226219E-11 -1.70928343446E-11 -1.77459856828E-11 -1.84240952381E-11 -1.91281167139E-11 -1.98590402565E-11 -2.06178938475E-11 -2.14057447499E-11 -2.22237010088E-11 -2.30729130101E-11 -2.39545750982E-11 -2.48699272556E-11 -2.58202568472E-11 -2.68069004306E-11 -2.78312456360E-11 -2.88947331177E-11 -2.99988585803E-11 -3.11451748822E-11 -3.23352942195E-11 -3.35708903939E-11 -3.48537011661E-11 -3.61855307001E-11 -3.75682521009E-11 -3.90038100483E-11 -4.04942235322E-11 -4.20415886924E-11 -4.36480817662E-11 -4.53159621492E-11 -4.70475755732E-11 -4.88453574049E-11 -5.07118360715E-11 -5.26496366162E-11 -5.46614843905E-11 -5.67502088870E-11 -5.89187477187E-11 -6.11701507509E-11 -6.35075843903E-11 -6.59343360383E-11 -6.84538187143E-11 -7.10695758563E-11 -7.37852863038E-11 -7.66047694726E-11 -7.95319907254E-11 -8.25710669499E-11 -8.57262723480E-11 -8.90020444473E-11 -9.24029903426E-11 -9.59338931745E-11 -9.95997188574E-11 -1.03405623063E-10 -1.07356958471E-10 -1.11459282300E-10 -1.15718364117E-10 -1.20140193959E-10 -1.24730990754E-10 -1.29497211066E-10 -1.34445558178E-10 -1.39582991519E-10 -1.44916736453E-10 -1.50454294437E-10 -1.56203453575E-10 -1.62172299570E-10 -1.68369227096E-10 -1.74802951605E-10 -1.81482521582E-10 -1.88417331274E-10 -1.95617133900E-10 -2.03092055371E-10 -2.10852608526E-10 -2.18909707925E-10 -2.27274685191E-10 -2.35959304954E-10 -2.44975781392E-10 -2.54336795411E-10 -2.64055512482E-10 -2.74145601154E-10 -2.84621252278E-10 -2.95497198965E-10 -3.06788737310E-10 -3.18511747901E-10 -3.30682718155E-10 -3.43318765506E-10 -3.56437661480E-10 -3.70057856689E-10 -3.84198506779E-10 -3.98879499371E-10 -4.14121482033E-10 -4.29945891318E-10 -4.46374982912E-10 -4.63431862935E-10 -4.81140520438E-10 -4.99525861143E-10 -5.18613742468E-10 -5.38431009896E-10 -5.59005534728E-10 -5.80366253286E-10 -6.02543207603E-10 -6.25567587682E-10 -6.49471775357E-10 -6.74289389835E-10 -7.00055334982E-10 -7.26805848412E-10 -7.54578552449E-10 -7.83412507040E-10 -8.13348264694E-10 -8.44427927511E-10 -8.76695206397E-10 -9.10195482538E-10 -9.44975871229E-10 -9.81085288132E-10 -1.01857451808E-09 -1.05749628648E-09 -1.09790533351E-09 -1.13985849105E-09 -1.18341476266E-09 -1.22863540655E-09 -1.27558402171E-09 -1.32432663737E-09 -1.37493180591E-09 -1.42747069918E-09 -1.48201720869E-09 -1.53864804948E-09 -1.59744286802E-09 -1.65848435423E-09 -1.72185835780E-09 -1.78765400888E-09 -1.85596384348E-09 -1.92688393359E-09 -2.00051402232E-09 -2.07695766412E-09 -2.15632237053E-09 -2.23871976126E-09 -2.32426572127E-09 -2.41308056371E-09 -2.50528919914E-09 -2.60102131118E-09 -2.70041153896E-09 -2.80359966641E-09 -2.91073081891E-09 -3.02195566735E-09 -3.13743064008E-09 -3.25731814288E-09 -3.38178678738E-09 -3.51101162821E-09 -3.64517440918E-09 -3.78446381890E-09 -3.92907575617E-09 -4.07921360544E-09 -4.23508852294E-09 -4.39691973355E-09 -4.56493483923E-09 -4.73937013903E-09 -4.92047096149E-09 -5.10849200962E-09 -5.30369771919E-09 -5.50636263055E-09 -5.71677177482E-09 -5.93522107472E-09 -6.16201776080E-09 -6.39748080350E-09 -6.64194136174E-09 -6.89574324872E-09 -7.15924341545E-09 -7.43281245274E-09 -7.71683511243E-09 -8.01171084851E-09 -8.31785437893E-09 -8.63569626883E-09 -8.96568353614E-09 -9.30828028025E-09 -9.66396833472E-09 -1.00332479450E-08 -1.04166384718E-08 -1.08146791218E-08 -1.12279297059E-08 -1.16569714263E-08 -1.21024076944E-08 -1.25648649790E-08 -1.30449936875E-08 -1.35434690808E-08 -1.40609922230E-08 -1.45982909670E-08 -1.51561209789E-08 -1.57352667998E-08 -1.63365429501E-08 -1.69607950746E-08 -1.76089011319E-08 -1.82817726292E-08 -1.89803559044E-08 -1.97056334566E-08 -2.04586253285E-08 -2.12403905406E-08 -2.20520285808E-08 -2.28946809507E-08 -2.37695327711E-08 -2.46778144485E-08 -2.56208034060E-08 -2.65998258795E-08 -2.76162587832E-08 -2.86715316462E-08 -2.97671286226E-08 -3.09045905792E-08 -3.20855172626E-08 -3.33115695490E-08 -3.45844717801E-08 -3.59060141884E-08 -3.72780554148E-08 -3.87025251227E-08 -4.01814267122E-08 -4.17168401374E-08 -4.33109248316E-08 -4.49659227449E-08 -4.66841614968E-08 -4.84680576502E-08 -5.03201201098E-08 -5.22429536510E-08 -5.42392625829E-08 -5.63118545524E-08 -5.84636444921E-08 -6.06976587206E-08 -6.30170391985E-08 -6.54250479474E-08 -6.79250716376E-08 -7.05206263515E-08 -7.32153625284E-08 -7.60130700986E-08 -7.89176838140E-08 -8.19332887816E-08 -8.50641262092E-08 -8.83145993704E-08 -9.16892797972E-08 -9.51929137099E-08 -9.88304286920E-08 -1.02606940621E-07 -1.06527760863E-07 -1.10598403742E-07 -1.14824594298E-07 -1.19212276338E-07 -1.23767620791E-07 -1.28497034396E-07 -1.33407168702E-07 -1.38504929434E-07 -1.43797486196E-07 -1.49292282561E-07 -1.54997046535E-07 -1.60919801430E-07 -1.67068877148E-07 -1.73452921893E-07 -1.80080914336E-07 -1.86962176245E-07 -1.94106385594E-07 -2.01523590174E-07 -2.09224221723E-07 -2.17219110602E-07 -2.25519501024E-07 -2.34137066869E-07 -2.43083928104E-07 -2.52372667827E-07 -2.62016349966E-07 -2.72028537651E-07 -2.82423312292E-07 -2.93215293383E-07 -3.04419659063E-07 -3.16052167462E-07 -3.28129178869E-07 -3.40667678736E-07 -3.53685301570E-07 -3.67200355736E-07 -3.81231849206E-07 -3.95799516292E-07 -4.10923845401E-07 -4.26626107855E-07 -4.42928387804E-07 -4.59853613288E-07 -4.77425588485E-07 -4.95669027188E-07 -5.14609587568E-07 -5.34273908261E-07 -5.54689645828E-07 -5.75885513663E-07 -5.97891322369E-07 -6.20738021691E-07 -6.44457744041E-07 -6.69083849698E-07 -6.94650973722E-07 -7.21195074671E-07 -7.48753485176E-07 -7.77364964446E-07 -8.07069752784E-07 -8.37909628185E-07 -8.69927965093E-07 -9.03169795411E-07 -9.37681871832E-07 -9.73512733604E-07 -1.01071277479E-06 -1.04933431516E-06 -1.08943167376E-06 -1.13106124533E-06 -1.17428157962E-06 -1.21915346373E-06 -1.26574000761E-06 -1.31410673283E-06 -1.36432166474E-06 -1.41645542814E-06 -1.47058134661E-06 -1.52677554567E-06 -1.58511705979E-06 -1.64000510862E-06 -1.70281804996E-06 -1.76803744549E-06 -1.83575789759E-06 -1.90605592315E-06 -1.97905927822E-06 -2.05483976638E-06 -2.13352295541E-06 -2.21522066164E-06 -2.30002623780E-06 -2.38809690761E-06 -2.47951943543E-06 -2.57444421606E-06 -2.67960702397E-06 -2.78199950264E-06 -2.88829895648E-06 -2.99866571963E-06 -3.11324973649E-06 -3.23221085716E-06 -3.35571440785E-06 -3.48394493930E-06 -3.61706710808E-06 -3.75528092732E-06 -3.89878057264E-06 -4.04775311903E-06 -4.20242589497E-06 -4.36300471980E-06 -4.52971738529E-06 -4.70280512212E-06 -4.88251054838E-06 -5.06907170802E-06 -5.26276868853E-06 -5.46386700205E-06 -5.67264571221E-06 -5.88940135264E-06 -6.11444640828E-06 -6.34808811662E-06 -6.59065637732E-06 -6.84249919471E-06 -7.10395595353E-06 -7.37540584927E-06 -7.65723143472E-06 -7.94982686457E-06 -8.25359352337E-06 -8.56898152456E-06 -8.89641304186E-06 -9.23635693955E-06 -9.58929129340E-06 -9.95570331028E-06 -1.03361350023E-05 -1.07310814639E-05 -1.11411395672E-05 -1.15668570592E-05 -1.20088382769E-05 -1.24677082663E-05 -1.29441191469E-05 -1.34387308176E-05 -1.39522428112E-05 -1.44853754946E-05 -1.50388801748E-05 -1.56135387720E-05 -1.62101468325E-05 -1.68295626754E-05 -1.74726318107E-05 -1.81402903073E-05 -1.88334526393E-05 -1.95530990839E-05 -2.03002523755E-05 -2.10759560743E-05 -2.18812827993E-05 -2.27174019879E-05 -2.35854521920E-05 -2.44866826825E-05 -2.54223452285E-05 -2.63937600157E-05 -2.74023008223E-05 -2.84493764361E-05 -2.95364627604E-05 -3.06650736670E-05 -3.18368247406E-05 -3.30533421329E-05 -3.43163428256E-05 -3.56276054273E-05 -3.69889765005E-05 -3.84023559675E-05 -3.98697535547E-05 -4.13932132646E-05 -4.29748939639E-05 -4.46169987847E-05 -4.63218481354E-05 -4.80918556505E-05 -4.99294784045E-05 -5.18373256776E-05 -5.38180781405E-05 -5.58745006671E-05 -5.80095113713E-05 -6.02260937873E-05 -6.25273674116E-05 -6.49165835793E-05 -6.73971007930E-05 -6.99723731226E-05 -7.26460615328E-05 -7.54219059870E-05 -7.83038137435E-05 -8.12958350880E-05 -8.44021889471E-05 -8.76272194539E-05 -9.09755013260E-05 -9.44517055105E-05 -9.80607258377E-05 -1.01807649932E-04 -1.05697731347E-04 -1.09736479418E-04 -1.13929517026E-04 -1.18282769379E-04 -1.22802364533E-04 -1.27494630450E-04 -1.32366172575E-04 -1.37423888049E-04 -1.42674824724E-04 -1.48126396215E-04 -1.53786308459E-04 -1.59661884294E-04 -1.65768029780E-04 -1.72048176228E-04 -1.79144641708E-04 -1.80912542679E-04 -1.91271062254E-04 -2.11408905631E-04 -1.99603194377E-04 -2.24805633933E-04 -2.14445450526E-04 -2.27207780283E-04 -2.42144603453E-04 -2.75795559380E-04 -2.36269557434E-04 -2.69795121869E-04 -2.87352241932E-04 -2.94193536116E-04 -3.00126439773E-04 -2.97923399956E-04 -3.40522568051E-04 -3.37928243966E-04 -3.52251966244E-04 -3.57698909351E-04 -3.74124257159E-04 -4.03999248490E-04 -3.95054283100E-04 -4.32603193089E-04 -4.41272041827E-04 -4.54040045106E-04 -4.65042144015E-04 -5.03727048805E-04 -4.99872449858E-04 -5.35996027255E-04 -5.47713451449E-04 -5.79880451048E-04 -5.78858796997E-04 -6.36506948230E-04 -6.17663793341E-04 -6.76501585081E-04 -6.83039258582E-04 -7.18503385167E-04 -7.43353677867E-04 -7.60514588373E-04 -8.05103965851E-04 -8.48946183564E-04 -8.50222136092E-04 -8.96087740348E-04 -9.26176289058E-04 -9.62312613983E-04 -1.02090993407E-03 -1.02557926500E-03 -1.08667865626E-03 -1.12172835065E-03 -1.16092509919E-03 -1.20798726779E-03 -1.26626724563E-03 -1.29245683826E-03 -1.35062894639E-03 -1.42861231880E-03 -1.44146010162E-03 -1.50824716045E-03 -1.57128002728E-03 -1.64273334552E-03 -1.69321251499E-03 -1.75828198447E-03 -1.81593629407E-03 -1.90945021518E-03 -1.96840253465E-03 -2.04440858279E-03 -2.11384817025E-03 -2.21017286428E-03 -2.29397718149E-03 -2.36026489835E-03 -2.46388038172E-03 -2.56968066720E-03 -2.65106653075E-03 -2.76281968457E-03 -2.86367739195E-03 -2.98110269411E-03 -3.07160877395E-03 -3.21522011641E-03 -3.32401225920E-03 -3.45762811912E-03 -3.57850458495E-03 -3.72942774568E-03 -3.86457376125E-03 -4.02182639166E-03 -4.15090965880E-03 -4.34210593524E-03 -4.47718152800E-03 -4.66867021641E-03 -4.83787462183E-03 -5.02897821395E-03 -5.21656880599E-03 -5.41706444565E-03 -5.62221075416E-03 -5.83712932453E-03 -6.06361845399E-03 -6.29026644980E-03 -6.53354466402E-03 -6.78560422484E-03 -7.03317853070E-03 -7.31657779909E-03 -7.58908822378E-03 -7.87421008765E-03 -8.18369920402E-03 -8.49132293183E-03 -8.81587903226E-03 -9.15318063261E-03 -9.50133719715E-03 -9.86532254980E-03 -1.02419734610E-02 -1.06336215894E-02 -1.10366503204E-02 -1.14611249201E-02 -1.18969728656E-02 -1.23525406085E-02 -1.28207008962E-02 -1.33138730730E-02 -1.38183295354E-02 -1.43514957995E-02 -1.48915561139E-02 -1.54669783195E-02 -1.60517834688E-02 -1.66686012015E-02 -1.73011109723E-02 -1.79622632712E-02 -1.86492178298E-02 -1.93599235384E-02 -2.00984560753E-02 -2.08654426904E-02 -2.16606061196E-02 -2.24884856817E-02 -2.33455796893E-02 -2.42348203223E-02 -2.51606716549E-02 -2.61207445179E-02 -2.71174247480E-02 -2.81496173776E-02 -2.92239070001E-02 -3.03406132015E-02 -3.14929753734E-02 -3.26979061143E-02 -3.39437815595E-02 -3.52365192198E-02 -3.65818770196E-02 -3.79751301607E-02 -3.94227536785E-02 -4.09264704276E-02 -4.24853566109E-02 -4.41051650033E-02 -4.57860342171E-02 -4.75302433174E-02 -4.93422717056E-02 -5.12214523466E-02 -5.31738888575E-02 -5.51989737748E-02 -5.73021587356E-02 -5.94840939138E-02 -6.17505225925E-02 -6.41020676770E-02 -6.65427575350E-02 -6.90768816020E-02 -7.17069860309E-02 -7.44365954044E-02 -7.72705297072E-02 -8.02109219877E-02 -8.32647027377E-02 -8.64327936340E-02 -8.97217732490E-02 -9.31350093013E-02 -9.66788946169E-02 -1.00355764707E-01 -1.04172871612E-01 -1.08134417592E-01 -1.12246149856E-01 -1.16513482306E-01 -1.20942908100E-01 -1.25539694436E-01 -1.30310865032E-01 -1.35261910508E-01 -1.40401057947E-01 -1.45734602754E-01 -1.51269639195E-01 -1.57013911528E-01 -1.62975508312E-01 -1.69162361158E-01 -1.75582952420E-01 -1.82245959051E-01 -1.89160786895E-01 -1.96336212403E-01 -2.03782747732E-01 -2.11510038953E-01 -2.19528407996E-01 -2.27849463172E-01 -2.36483824100E-01 -2.45443302271E-01 -2.54740088927E-01 -2.64386921212E-01 -2.74396267925E-01 -2.84782340418E-01 -2.95558552270E-01 -3.06739559623E-01 -3.18340366718E-01 -3.30376686046E-01 -3.42864291865E-01 -3.55820091523E-01 -3.69261514920E-01 -3.83205976962E-01 -3.97672627330E-01 -4.12680296190E-01 -4.28248946667E-01 -4.44399294938E-01 -4.61152566174E-01 -4.78530906042E-01 -4.96557098345E-01 -5.15255053770E-01 -5.34649062035E-01 -5.54764541416E-01 -5.75627761468E-01 -5.97265980237E-01 -6.19707125103E-01 -6.42980475815E-01 -6.67116007134E-01 -6.92144914215E-01 -7.18099278321E-01 -7.45012482180E-01 -7.72918948827E-01 -8.01854149291E-01 -8.31855019316E-01 -8.62959432078E-01 -8.95206715131E-01 -9.28637541384E-01 -9.63293603388E-01 -9.99218448826E-01 -1.03645663401E+00 -1.07505439328E+00 -1.11505932158E+00 -1.15652065578E+00 -1.19948902664E+00 -1.24401690865E+00 -1.29015816047E+00 -1.33796852974E+00 -1.38750534361E+00 -1.43882769832E+00 -1.49199654658E+00 -1.54707458799E+00 -1.60412645554E+00 -1.66321858131E+00 -1.72441936854E+00 -1.78779926427E+00 -1.85343049602E+00 -1.92138749477E+00 -1.99174662551E+00 -2.06458635718E+00 -2.13998718933E+00 -2.21803180411E+00 -2.29880482886E+00 -2.38239322311E+00 -2.46888582868E+00 -2.55837383535E+00 -2.65095033697E+00 -2.74671064655E+00 -2.84575214258E+00 -2.94817415791E+00 -3.05407818350E+00 -3.16356755023E+00 -3.27674755379E+00 -3.39372536234E+00 -3.51460984299E+00 -3.63951161852E+00 -3.76854285026E+00 -3.90181717984E+00 -4.03944954527E+00 -4.18155611532E+00 -4.32825403387E+00 -4.47966126376E+00 -4.63589640742E+00 -4.79707842921E+00 -4.96332642681E+00 -5.13475931961E+00 -5.31149558202E+00 -5.49365287647E+00 -5.68134766026E+00 -5.87469481396E+00 -6.07380718906E+00 -6.27879511903E+00 -6.48976588898E+00 -6.70682320601E+00 -6.93006653712E+00 -7.15959048532E+00 -7.39548408765E+00 -7.63783000585E+00 -7.88670375104E+00 -8.14217278159E+00 -8.40429557503E+00 -8.67312060123E+00 -8.94868527115E+00 -9.23101478895E+00 -9.52012091932E+00 -9.81600071756E+00 -1.01186351389E+01 -1.04279876271E+01 -1.07440025161E+01 -1.10666034986E+01 -1.13956918510E+01 -1.17311446979E+01 -1.20728131094E+01 -1.24205201655E+01 -1.27740588803E+01 -1.31331900969E+01 -1.34976402647E+01 -1.38670991278E+01 -1.42412173821E+01 -1.46196042064E+01 -1.50018247660E+01 -1.53873976423E+01 -1.57757922123E+01 -1.61664260025E+01 -1.65586619969E+01 -1.69518059482E+01 -1.73451036949E+01 -1.77377384847E+01 -1.81288283653E+01 -1.85174236276E+01 -1.89025043515E+01 -1.92829780770E+01 -1.96576776299E+01 -2.00253591476E+01 -2.03847003376E+01 -2.07342990117E+01 -2.10726719523E+01 -2.13982541439E+01 -2.17093984539E+01 -2.20043757883E+01 -2.22813758066E+01 -2.25385082656E+01 -2.27738050368E+01 -2.29852229108E+01 -2.31706472240E+01 -2.33278964203E+01 -2.34547276124E+01 -2.35488432321E+01 -2.36078988562E+01 -2.36295122871E+01 -2.36112739758E+01 -2.35507588769E+01 -2.34455397932E+01 -2.32932023107E+01 -2.30913613600E+01 -2.28376794930E+01 -2.25298868947E+01 -2.21658031806E+01 -2.17433609901E+01 -2.12606313728E+01 -2.07158509479E+01 -2.01074507930E+01 -1.94340869702E+01 -1.86946725983E+01 -1.78884113182E+01 -1.70148319649E+01 -1.60738242331E+01 -1.50656750496E+01 -1.39911053369E+01 -1.28513067926E+01 -1.16479782499E+01 -1.03833611283E+01 -9.06027342044E+00 -7.68214160160E+00 -6.25302978141E+00 -4.77766535012E+00 -3.26146032273E+00 -1.71052749682E+00 -1.31690526338E-01 1.46751310592E+00 3.07883719913E+00 4.69334111797E+00 6.30141434685E+00 7.89281240148E+00 9.45670523990E+00 1.09817392740E+01 1.24561140574E+01 1.38676747097E+01 1.52040210314E+01 1.64526342232E+01 1.76011047440E+01 1.86374692402E+01 1.95500572034E+01 2.03275773812E+01 2.09593027418E+01 2.14352742300E+01 2.17465233079E+01 2.18853129302E+01 2.18453962527E+01 2.16222919698E+01 2.12135746778E+01 2.06191781522E+01 1.98417088252E+01 1.88867660618E+01 1.77632651571E+01 1.64837581307E+01 1.50647465879E+01 1.35269799952E+01 1.18957317646E+01 1.02010445864E+01 8.47793541244E+00 6.76654954487E+00 5.11225229765E+00 3.56564563460E+00 2.18249818304E+00 1.02355865704E+00 1.54394104340E-01 -3.56275670390E-01 -4.25053805722E-01 -7.20597036261E-02 7.09075077777E-03 -7.53842362291E-04 2.63597322542E-05 -4.87618028685E-05 -3.92934359350E-05 -3.84067499700E-05 -3.68487906130E-05 -3.55232284251E-05 -3.43264123265E-05 -3.32553779588E-05 1.60 2.50 3D 10 2 Beta L 911 1.95118775467E-12 2.02574653553E-12 2.10315435631E-12 2.18352008451E-12 2.26695674770E-12 2.35358169242E-12 2.44351674927E-12 2.53688840427E-12 2.63382797668E-12 2.73447180376E-12 2.83896143247E-12 2.94744381857E-12 3.06007153331E-12 3.17700297796E-12 3.29840260664E-12 3.42444115759E-12 3.55529589329E-12 3.69115084978E-12 3.83219709549E-12 3.97863299994E-12 4.13066451275E-12 4.28850545331E-12 4.45237781144E-12 4.62251205965E-12 4.79914747729E-12 4.98253248700E-12 5.17292500419E-12 5.37059279972E-12 5.57581387649E-12 5.78887686048E-12 6.01008140661E-12 6.23973862024E-12 6.47817149468E-12 6.72571536546E-12 6.98271838193E-12 7.24954199696E-12 7.52656147522E-12 7.81416642102E-12 8.11276132621E-12 8.42276613910E-12 8.74461685504E-12 9.07876612965E-12 9.42568391542E-12 9.78585812267E-12 1.01597953057E-11 1.05480213754E-11 1.09510823386E-11 1.13695450662E-11 1.18039980905E-11 1.22550524325E-11 1.27233424618E-11 1.32095267884E-11 1.37142891892E-11 1.42383395695E-11 1.47824149616E-11 1.53472805610E-11 1.59337308032E-11 1.65425904805E-11 1.71747159022E-11 1.78309960988E-11 1.85123540725E-11 1.92197480953E-11 1.99541730567E-11 2.07166618627E-11 2.15082868890E-11 2.23301614887E-11 2.31834415585E-11 2.40693271640E-11 2.49890642281E-11 2.59439462824E-11 2.69353162873E-11 2.79645685203E-11 2.90331505370E-11 3.01425652070E-11 3.12943728275E-11 3.24901933179E-11 3.37317084979E-11 3.50206644528E-11 3.63588739894E-11 3.77482191854E-11 3.91906540367E-11 4.06882072049E-11 4.22429848711E-11 4.38571736976E-11 4.55330439037E-11 4.72729524580E-11 4.90793463938E-11 5.09547662503E-11 5.29018496458E-11 5.49233349875E-11 5.70220653222E-11 5.92009923356E-11 6.14631805029E-11 6.38118113992E-11 6.62501881739E-11 6.87817401964E-11 7.14100278789E-11 7.41387476845E-11 7.69717373251E-11 7.99129811596E-11 8.29666157971E-11 8.61369359146E-11 8.94284002975E-11 9.28456381104E-11 9.63934554072E-11 1.00076841891E-10 1.03900977932E-10 1.07871241851E-10 1.11993217487E-10 1.16272702047E-10 1.20715714263E-10 1.25328502853E-10 1.30117555311E-10 1.35089607033E-10 1.40251650785E-10 1.45610946544E-10 1.51175031702E-10 1.56951731673E-10 1.62949170892E-10 1.69175784248E-10 1.75640328942E-10 1.82351896807E-10 1.89319927093E-10 1.96554219740E-10 2.04064949166E-10 2.11862678573E-10 2.19958374804E-10 2.28363423766E-10 2.37089646448E-10 2.46149315538E-10 2.55555172690E-10 2.65320446443E-10 2.75458870823E-10 2.85984704663E-10 2.96912751653E-10 3.08258381160E-10 3.20037549850E-10 3.32266824119E-10 3.44963403405E-10 3.58145144364E-10 3.71830585997E-10 3.86038975712E-10 4.00790296402E-10 4.16105294546E-10 4.32005509388E-10 4.48513303227E-10 4.65651892874E-10 4.83445382298E-10 5.01918796530E-10 5.21098116857E-10 5.41010317364E-10 5.61683402870E-10 5.83146448312E-10 6.05429639642E-10 6.28564316275E-10 6.52583015170E-10 6.77519516586E-10 7.03408891595E-10 7.30287551404E-10 7.58193298568E-10 7.87165380150E-10 8.17244542924E-10 8.48473090678E-10 8.80894943716E-10 9.14555700622E-10 9.49502702394E-10 9.85785099025E-10 1.02345391863E-09 1.06256213920E-09 1.10316476315E-09 1.14531889460E-09 1.18908381978E-09 1.23452109035E-09 1.28169460996E-09 1.33067072418E-09 1.38151831376E-09 1.43430889153E-09 1.48911670296E-09 1.54601883060E-09 1.60509530246E-09 1.66642920460E-09 1.73010679797E-09 1.79621763970E-09 1.86485470909E-09 1.93611453838E-09 2.01009734848E-09 2.08690718996E-09 2.16665208936E-09 2.24944420113E-09 2.33539996539E-09 2.42464027164E-09 2.51729062882E-09 2.61348134185E-09 2.71334769482E-09 2.81703014132E-09 2.92467450196E-09 3.03643216944E-09 3.15246032148E-09 3.27292214189E-09 3.39798705005E-09 3.52783093920E-09 3.66263642381E-09 3.80259309644E-09 3.94789779435E-09 4.09875487634E-09 4.25537651019E-09 4.41798297103E-09 4.58680295117E-09 4.76207388168E-09 4.94404226638E-09 5.13296402849E-09 5.32910487058E-09 5.53274064826E-09 5.74415775812E-09 5.96365354057E-09 6.19153669799E-09 6.42812772891E-09 6.67375937874E-09 6.92877710781E-09 7.19353957716E-09 7.46841915300E-09 7.75380243041E-09 8.05009077709E-09 8.35770089777E-09 8.67706542035E-09 9.00863350431E-09 9.35287147244E-09 9.71026346667E-09 1.00813121290E-08 1.04665393083E-08 1.08664867946E-08 1.12817170806E-08 1.17128141531E-08 1.21603843142E-08 1.26250570341E-08 1.31074858363E-08 1.36083492167E-08 1.41283515982E-08 1.46682243208E-08 1.52287266707E-08 1.58106469480E-08 1.64148035753E-08 1.70420462488E-08 1.76932571335E-08 1.83693521036E-08 1.90712820309E-08 1.98000341216E-08 2.05566333056E-08 2.13421436773E-08 2.21576699921E-08 2.30043592208E-08 2.38834021622E-08 2.47960351178E-08 2.57435416311E-08 2.67272542922E-08 2.77485566124E-08 2.88088849698E-08 2.99097306296E-08 3.10526418412E-08 3.22392260161E-08 3.34711519881E-08 3.47501523609E-08 3.60780259445E-08 3.74566402852E-08 3.88879342924E-08 4.03739209651E-08 4.19166902233E-08 4.35184118474E-08 4.51813385295E-08 4.69078090422E-08 4.87002515273E-08 5.05611869112E-08 5.24932324502E-08 5.44991054117E-08 5.65816268956E-08 5.87437258023E-08 6.09884429515E-08 6.33189353593E-08 6.57384806784E-08 6.82504818075E-08 7.08584716774E-08 7.35661182201E-08 7.63772295271E-08 7.92957592054E-08 8.23258119381E-08 8.54716492571E-08 8.87376955369E-08 9.21285442171E-08 9.56489642627E-08 9.93039068715E-08 1.03098512437E-07 1.07038117781E-07 1.11128263653E-07 1.15374702530E-07 1.19783406703E-07 1.24360576679E-07 1.29112649898E-07 1.34046309791E-07 1.39168495178E-07 1.44486410026E-07 1.50007533583E-07 1.55739630896E-07 1.61690763731E-07 1.67869301915E-07 1.74283935104E-07 1.80943685006E-07 1.87857918070E-07 1.95036358658E-07 2.02489102724E-07 2.10226632011E-07 2.18259828794E-07 2.26599991188E-07 2.35258849033E-07 2.44248580396E-07 2.53581828696E-07 2.63271720488E-07 2.73331883925E-07 2.83776467925E-07 2.94620162070E-07 3.05878217267E-07 3.17566467199E-07 3.29701350592E-07 3.42299934337E-07 3.55379937494E-07 3.68959756214E-07 3.83058489608E-07 3.97695966617E-07 4.12892773894E-07 4.28670284761E-07 4.45050689272E-07 4.62057025417E-07 4.79713211532E-07 4.98044079934E-07 5.17075411847E-07 5.36833973667E-07 5.57347554604E-07 5.78645005770E-07 6.00756280756E-07 6.23712477761E-07 6.47545883333E-07 6.72290017778E-07 6.97979682307E-07 7.24651007983E-07 7.52341506539E-07 7.81090123139E-07 8.10937291154E-07 8.41924989031E-07 8.74096799337E-07 9.07497970056E-07 9.42175478234E-07 9.78178096048E-07 1.01555645941E-06 1.05436313918E-06 1.09465271512E-06 1.13648185265E-06 1.17990938255E-06 1.22499638372E-06 1.27180626906E-06 1.32040487469E-06 1.37086055256E-06 1.42324426655E-06 1.47762969232E-06 1.53409332090E-06 1.59271456633E-06 1.64766187979E-06 1.71077340403E-06 1.77630305253E-06 1.84434598169E-06 1.91497840090E-06 1.98832971237E-06 2.06447095413E-06 2.14352897461E-06 2.22561616521E-06 2.31082555088E-06 2.39931646806E-06 2.49117476413E-06 2.58655233539E-06 2.69255009010E-06 2.79543474054E-06 2.90224469786E-06 3.01314193780E-06 3.12827661826E-06 3.24780926972E-06 3.37190611935E-06 3.50075295716E-06 3.63451436399E-06 3.77339226629E-06 3.91758152678E-06 4.06726947142E-06 4.22268544863E-06 4.38403542873E-06 4.55154869904E-06 4.72546793901E-06 4.90603664243E-06 5.09349373464E-06 5.28812081972E-06 5.49018508327E-06 5.69996647260E-06 5.91776273578E-06 6.14388884038E-06 6.37865243947E-06 6.62238562806E-06 6.87543804514E-06 7.13815020208E-06 7.41090365814E-06 7.69408249161E-06 7.98808318174E-06 8.29330821755E-06 8.61021106832E-06 8.93921503437E-06 9.28079111667E-06 9.63542042966E-06 1.00035916783E-05 1.03858506837E-05 1.07826934107E-05 1.11947208645E-05 1.16224828611E-05 1.20665864411E-05 1.25276599817E-05 1.30063589900E-05 1.35033458984E-05 1.40193242164E-05 1.45550172950E-05 1.51111803430E-05 1.56885993188E-05 1.62880723483E-05 1.69104638012E-05 1.75566212322E-05 1.82274872459E-05 1.89239792437E-05 1.96470823128E-05 2.03978252639E-05 2.11772556773E-05 2.19864510395E-05 2.28265878559E-05 2.36988079860E-05 2.46043691618E-05 2.55445275148E-05 2.65206101446E-05 2.75339979174E-05 2.85861054305E-05 2.96784167204E-05 3.08124516720E-05 3.19898350722E-05 3.32122003645E-05 3.44812720397E-05 3.57988387077E-05 3.71667552251E-05 3.85869301211E-05 4.00613842404E-05 4.15921695221E-05 4.31814574091E-05 4.48314597728E-05 4.65445092804E-05 4.83230315807E-05 5.01694943592E-05 5.20865206944E-05 5.40768041423E-05 5.61431221624E-05 5.82884081021E-05 6.05156584323E-05 6.28280094186E-05 6.52287271912E-05 6.77211877878E-05 7.03088599170E-05 7.29954238824E-05 7.57846373813E-05 7.86804267227E-05 8.16868615776E-05 8.48081823767E-05 8.80487523651E-05 9.14131715596E-05 9.49061307956E-05 9.85325487522E-05 1.02297538533E-04 1.06206377340E-04 1.10264604900E-04 1.14477867857E-04 1.18852121852E-04 1.23393525724E-04 1.28108435745E-04 1.33003491609E-04 1.38085625608E-04 1.43361917030E-04 1.48839817434E-04 1.54527071855E-04 1.60431008498E-04 1.66566939235E-04 1.72874742782E-04 1.80031736240E-04 1.81553469022E-04 1.92126762144E-04 2.13005412149E-04 2.00163612939E-04 2.26357289188E-04 2.15013021392E-04 2.28027971315E-04 2.43548911207E-04 2.77974122697E-04 2.36586065774E-04 2.70990536404E-04 2.89057995862E-04 2.95760495855E-04 3.01525123006E-04 2.98648178916E-04 3.42893270525E-04 3.39426182577E-04 3.54140198738E-04 3.59062998255E-04 3.75804845213E-04 4.06423301004E-04 3.96399403412E-04 4.35088510002E-04 4.43566867442E-04 4.56055708194E-04 4.67016703571E-04 5.06560083598E-04 5.01941454668E-04 5.38794582519E-04 5.50295199277E-04 5.82991281608E-04 5.81136457938E-04 6.40426153751E-04 6.19774447848E-04 6.80292348075E-04 6.86105621976E-04 7.22137283092E-04 7.46999858698E-04 7.63713938093E-04 8.09204918163E-04 8.53925790215E-04 8.53715661874E-04 9.00550785345E-04 9.30409708215E-04 9.66880754024E-04 1.02676128678E-03 1.02987318835E-03 1.09220486373E-03 1.12726773143E-03 1.16633437780E-03 1.21388949904E-03 1.27284841970E-03 1.29833485652E-03 1.35719460319E-03 1.43650075127E-03 1.44799245042E-03 1.51524517944E-03 1.57895301251E-03 1.65113519682E-03 1.70154368472E-03 1.76690487959E-03 1.82443095111E-03 1.91933348172E-03 1.97812227253E-03 2.05444654606E-03 2.12391449647E-03 2.22142156156E-03 2.30553201531E-03 2.37132005229E-03 2.47604121165E-03 2.58277992242E-03 2.66388162696E-03 2.77677713639E-03 2.87779602806E-03 2.99623569631E-03 3.08617152096E-03 3.23169519669E-03 3.34039406688E-03 3.47492372767E-03 3.59603930801E-03 3.74827013229E-03 3.88386051127E-03 4.04227756318E-03 4.17108057264E-03 4.36445893370E-03 4.49912389517E-03 4.69236385880E-03 4.86210820596E-03 5.05439309620E-03 5.24287831192E-03 5.44441292284E-03 5.65055354064E-03 5.86665021733E-03 6.09444416893E-03 6.32207994491E-03 6.56677268112E-03 6.82026627138E-03 7.06870625726E-03 7.35418738231E-03 7.62785583008E-03 7.91432091917E-03 8.22585712004E-03 8.53489667817E-03 8.86120174749E-03 9.20038462311E-03 9.55036742752E-03 9.91635067329E-03 1.02950664079E-02 1.06888630436E-02 1.10940071209E-02 1.15209195593E-02 1.19590904463E-02 1.24172551110E-02 1.28878580113E-02 1.33839237845E-02 1.38910602643E-02 1.44274245968E-02 1.49702333294E-02 1.55491644270E-02 1.61370686691E-02 1.67575681449E-02 1.73935337366E-02 1.80585136403E-02 1.87494846017E-02 1.94642633642E-02 2.02070682200E-02 2.09785275458E-02 2.17783179153E-02 2.26111175646E-02 2.34732415052E-02 2.43677154758E-02 2.52991292986E-02 2.62649822645E-02 2.72676801346E-02 2.83060334006E-02 2.93868933733E-02 3.05105204666E-02 3.16697924526E-02 3.28823222377E-02 3.41359293688E-02 3.54366847919E-02 3.67905983983E-02 3.81926100883E-02 3.96494641953E-02 4.11628499382E-02 4.27317562940E-02 4.43621010523E-02 4.60539487991E-02 4.78096188972E-02 4.96336765023E-02 5.15253642412E-02 5.34909386946E-02 5.55297111035E-02 5.76472401481E-02 5.98441277214E-02 6.21262704412E-02 6.44941985799E-02 6.69520261004E-02 6.95041059626E-02 7.21529968008E-02 7.49022391454E-02 7.77567597966E-02 8.07186516300E-02 8.37950197528E-02 8.69866902497E-02 9.03003958415E-02 9.37395005125E-02 9.73105418549E-02 1.01015797379E-01 1.04862683266E-01 1.08855420516E-01 1.12999853230E-01 1.17301445980E-01 1.21766812705E-01 1.26401266790E-01 1.31211944900E-01 1.36204400652E-01 1.41387011603E-01 1.46766153511E-01 1.52349015397E-01 1.58143477574E-01 1.64157748957E-01 1.70399891835E-01 1.76878524450E-01 1.83602466884E-01 1.90581292258E-01 1.97823907178E-01 2.05341032292E-01 2.13142472908E-01 2.21238729837E-01 2.29641647106E-01 2.38362029199E-01 2.47411912197E-01 2.56803730610E-01 2.66550480298E-01 2.76664865695E-01 2.87161410252E-01 2.98053797408E-01 3.09357002216E-01 3.21086351733E-01 3.33257919177E-01 3.45887824233E-01 3.58993371375E-01 3.72592406719E-01 3.86702753203E-01 4.01344042446E-01 4.16535568091E-01 4.32297806181E-01 4.48652013863E-01 4.65619978114E-01 4.83224448239E-01 5.01488835154E-01 5.20437731040E-01 5.40096121138E-01 5.60490174029E-01 5.81646947819E-01 6.03594540122E-01 6.26361747858E-01 6.49978792686E-01 6.74476625799E-01 6.99887483890E-01 7.26244541035E-01 7.53582342435E-01 7.81936536077E-01 8.11343878885E-01 8.41842680997E-01 8.73472249564E-01 9.06273437506E-01 9.40288530134E-01 9.75560905291E-01 1.01213591592E+00 1.05006000258E+00 1.08938139956E+00 1.13014980861E+00 1.17241669226E+00 1.21623502573E+00 1.26165976578E+00 1.30874737916E+00 1.35755637473E+00 1.40814698515E+00 1.46058137263E+00 1.51492372438E+00 1.57124014940E+00 1.62959887429E+00 1.69007011772E+00 1.75272627376E+00 1.81764199766E+00 1.88489394213E+00 1.95456120537E+00 2.02672506414E+00 2.10146915828E+00 2.17887942899E+00 2.25904428738E+00 2.34205438100E+00 2.42800301041E+00 2.51698567427E+00 2.60910057000E+00 2.70444814630E+00 2.80313144851E+00 2.90525597490E+00 3.01092957941E+00 3.12026270223E+00 3.23336805788E+00 3.35036078578E+00 3.47135837538E+00 3.59648050634E+00 3.72584913225E+00 3.85958827627E+00 3.99782399614E+00 4.14068421764E+00 4.28829869188E+00 4.44079875707E+00 4.59831720212E+00 4.76098810970E+00 4.92894659532E+00 5.10232859905E+00 5.28127059217E+00 5.46590932920E+00 5.65638149832E+00 5.85282334251E+00 6.05537030552E+00 6.26415659259E+00 6.47931469319E+00 6.70097486153E+00 6.92926459597E+00 7.16430798140E+00 7.40622507003E+00 7.65513117997E+00 7.91113608135E+00 8.17434321567E+00 8.44484878236E+00 8.72274079539E+00 9.00809803511E+00 9.30098897207E+00 9.60147058648E+00 9.90958709631E+00 1.02253686423E+01 1.05488298422E+01 1.08799683195E+01 1.12187630297E+01 1.15651726522E+01 1.19191337198E+01 1.22805587823E+01 1.26493343876E+01 1.30253190188E+01 1.34083408756E+01 1.37981956151E+01 1.41946439561E+01 1.45974091806E+01 1.50061745877E+01 1.54205808019E+01 1.58402230374E+01 1.62646482682E+01 1.66933523294E+01 1.71257769721E+01 1.75613068521E+01 1.79992664999E+01 1.84389172765E+01 1.88794543132E+01 1.93200034970E+01 1.97596184885E+01 2.01972778200E+01 2.06318820998E+01 2.10622513514E+01 2.14871225348E+01 2.19051472838E+01 2.23148899047E+01 2.27148256945E+01 2.31033396142E+01 2.34787254055E+01 2.38391851791E+01 2.41828295633E+01 2.45076784876E+01 2.48116626514E+01 2.50926257955E+01 2.53483278216E+01 2.55764488760E+01 2.57745944720E+01 2.59403017491E+01 2.60710469633E+01 2.61642542997E+01 2.62173061028E+01 2.62275546289E+01 2.61923353855E+01 2.61089821755E+01 2.59748438902E+01 2.57873031572E+01 2.55437968725E+01 2.52418386836E+01 2.48790434450E+01 2.44531536567E+01 2.39620678785E+01 2.34038710870E+01 2.27768668944E+01 2.20796115475E+01 2.13109495593E+01 2.04700507954E+01 1.95564488014E+01 1.85700800879E+01 1.75113240513E+01 1.63810431513E+01 1.51806228959E+01 1.39120111298E+01 1.25777560506E+01 1.11810423115E+01 9.72572449995E+00 8.21635720458E+00 6.65822082802E+00 5.05734220990E+00 3.42050910279E+00 1.75527741600E+00 6.99701726909E-02 -1.62633299089E+00 -3.32381697075E+00 -5.01196416457E+00 -6.67960050896E+00 -8.31495579032E+00 -9.90573941475E+00 -1.14392328098E+01 -1.29023995260E+01 -1.42820140671E+01 -1.55648918556E+01 -1.67382296189E+01 -1.77894645307E+01 -1.87063681937E+01 -1.94772388956E+01 -2.00911140335E+01 -2.05380027723E+01 -2.08091386442E+01 -2.08972514282E+01 -2.07968572316E+01 -2.05045651658E+01 -2.00193984812E+01 -1.93431273862E+01 -1.84806100550E+01 -1.74401376119E+01 -1.62337779861E+01 -1.48777126762E+01 -1.33925594859E+01 -1.18036732744E+01 -1.01414157580E+01 -8.44138427579E+00 -6.74458843279E+00 -5.09756245981E+00 -3.55239999364E+00 -2.16669896223E+00 -1.00338524197E+00 -1.30560740357E-01 3.80203637029E-01 4.41952270985E-01 7.44282978033E-02 -7.33387634766E-03 7.70201147450E-04 -3.52096978513E-05 4.29002956195E-05 3.35982051915E-05 3.31326923246E-05 3.19472468199E-05 3.09770771198E-05 3.01166932431E-05 2.93645028397E-05 1.60 2.50 3D 15 Number of nonzero Dij 1 1 3.29618166167E-01 1 2 -3.03805162315E-01 2 2 2.80458726174E-01 3 3 4.32548359392E-02 3 4 6.45149604853E-02 4 4 9.63167798653E-02 5 5 4.28615146570E-02 5 6 6.50910333788E-02 6 6 9.88863495494E-02 7 7 3.70139988037E+00 7 8 4.12413793960E+00 8 8 4.58989063133E+00 9 9 3.67374243695E+00 9 10 3.98431632453E+00 10 10 4.31951278681E+00 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 0 i j (l(j)) -1.19402001602E-01 Q_int 7.27289262262E-11 7.45700677261E-11 7.64578179433E-11 7.83933567829E-11 8.03778940197E-11 8.24126700538E-11 8.44989566864E-11 8.66380579144E-11 8.88313107455E-11 9.10800860339E-11 9.33857893373E-11 9.57498617950E-11 9.81737810291E-11 1.00659062068E-10 1.03207258292E-10 1.05819962408E-10 1.08498807440E-10 1.11245467754E-10 1.14061660100E-10 1.16949144691E-10 1.19909726299E-10 1.22945255382E-10 1.26057629245E-10 1.29248793223E-10 1.32520741896E-10 1.35875520340E-10 1.39315225398E-10 1.42842006998E-10 1.46458069493E-10 1.50165673040E-10 1.53967135010E-10 1.57864831441E-10 1.61861198520E-10 1.65958734104E-10 1.70159999288E-10 1.74467619997E-10 1.78884288634E-10 1.83412765760E-10 1.88055881820E-10 1.92816538912E-10 1.97697712601E-10 2.02702453778E-10 2.07833890568E-10 2.13095230287E-10 2.18489761440E-10 2.24020855785E-10 2.29691970435E-10 2.35506650019E-10 2.41468528902E-10 2.47581333448E-10 2.53848884360E-10 2.60275099059E-10 2.66863994137E-10 2.73619687866E-10 2.80546402773E-10 2.87648468279E-10 2.94930323403E-10 3.02396519542E-10 3.10051723307E-10 3.17900719449E-10 3.25948413844E-10 3.34199836559E-10 3.42660145001E-10 3.51334627135E-10 3.60228704793E-10 3.69347937058E-10 3.78698023745E-10 3.88284808960E-10 3.98114284752E-10 4.08192594860E-10 4.18526038552E-10 4.29121074564E-10 4.39984325132E-10 4.51122580139E-10 4.62542801351E-10 4.74252126775E-10 4.86257875114E-10 4.98567550347E-10 5.11188846417E-10 5.24129652037E-10 5.37398055628E-10 5.51002350367E-10 5.64951039373E-10 5.79252841026E-10 5.93916694409E-10 6.08951764899E-10 6.24367449898E-10 6.40173384701E-10 6.56379448524E-10 6.72995770674E-10 6.90032736884E-10 7.07500995801E-10 7.25411465644E-10 7.43775341030E-10 7.62604099966E-10 7.81909511025E-10 8.01703640706E-10 8.21998860969E-10 8.42807856972E-10 8.64143635000E-10 8.86019530592E-10 9.08449216878E-10 9.31446713123E-10 9.55026393493E-10 9.79202996034E-10 1.00399163189E-09 1.02940779474E-09 1.05546737049E-09 1.08218664721E-09 1.10958232528E-09 1.13767152786E-09 1.16647181160E-09 1.19600117757E-09 1.22627808257E-09 1.25732145060E-09 1.28915068476E-09 1.32178567930E-09 1.35524683214E-09 1.38955505753E-09 1.42473179919E-09 1.46079904368E-09 1.49777933417E-09 1.53569578447E-09 1.57457209357E-09 1.61443256036E-09 1.65530209888E-09 1.69720625385E-09 1.74017121668E-09 1.78422384179E-09 1.82939166344E-09 1.87570291292E-09 1.92318653619E-09 1.97187221197E-09 2.02179037031E-09 2.07297221161E-09 2.12544972606E-09 2.17925571375E-09 2.23442380504E-09 2.29098848169E-09 2.34898509834E-09 2.40844990465E-09 2.46942006792E-09 2.53193369636E-09 2.59602986288E-09 2.66174862952E-09 2.72913107250E-09 2.79821930786E-09 2.86905651784E-09 2.94168697781E-09 3.01615608399E-09 3.09251038178E-09 3.17079759490E-09 3.25106665519E-09 3.33336773318E-09 3.41775226949E-09 3.50427300693E-09 3.59298402352E-09 3.68394076624E-09 3.77720008572E-09 3.87282027175E-09 3.97086108973E-09 4.07138381802E-09 4.17445128623E-09 4.28012791449E-09 4.38847975373E-09 4.49957452696E-09 4.61348167158E-09 4.73027238279E-09 4.85001965809E-09 4.97279834292E-09 5.09868517739E-09 5.22775884430E-09 5.36010001830E-09 5.49579141629E-09 5.63491784915E-09 5.77756627472E-09 5.92382585218E-09 6.07378799774E-09 6.22754644183E-09 6.38519728760E-09 6.54683907108E-09 6.71257282270E-09 6.88250213045E-09 7.05673320463E-09 7.23537494423E-09 7.41853900501E-09 7.60633986925E-09 7.79889491732E-09 7.99632450106E-09 8.19875201897E-09 8.40630399335E-09 8.61911014939E-09 8.83730349622E-09 9.06102041006E-09 9.29040071945E-09 9.52558779265E-09 9.76672862722E-09 1.00139739419E-08 1.02674782710E-08 1.05274000604E-08 1.07939017674E-08 1.10671499617E-08 1.13473154295E-08 1.16345732805E-08 1.19291030573E-08 1.22310888475E-08 1.25407193985E-08 1.28581882363E-08 1.31836937854E-08 1.35174394936E-08 1.38596339589E-08 1.42104910595E-08 1.45702300883E-08 1.49390758890E-08 1.53172589975E-08 1.57050157852E-08 1.61025886074E-08 1.65102259543E-08 1.69281826065E-08 1.73567197941E-08 1.77961053603E-08 1.82466139282E-08 1.87085270731E-08 1.91821334980E-08 1.96677292142E-08 2.01656177263E-08 2.06761102218E-08 2.11995257658E-08 2.17361915000E-08 2.22864428476E-08 2.28506237226E-08 2.34290867450E-08 2.40221934607E-08 2.46303145681E-08 2.52538301493E-08 2.58931299077E-08 2.65486134117E-08 2.72206903442E-08 2.79097807589E-08 2.86163153425E-08 2.93407356840E-08 3.00834945507E-08 3.08450561711E-08 3.16258965250E-08 3.24265036410E-08 3.32473779013E-08 3.40890323548E-08 3.49519930371E-08 3.58367992998E-08 3.67440041473E-08 3.76741745823E-08 3.86278919603E-08 3.96057523527E-08 4.06083669196E-08 4.16363622912E-08 4.26903809598E-08 4.37710816812E-08 4.48791398862E-08 4.60152481029E-08 4.71801163889E-08 4.83744727759E-08 4.95990637238E-08 5.08546545874E-08 5.21420300949E-08 5.34619948378E-08 5.48153737739E-08 5.62030127428E-08 5.76257789942E-08 5.90845617302E-08 6.05802726602E-08 6.21138465714E-08 6.36862419121E-08 6.52984413911E-08 6.69514525913E-08 6.86463085997E-08 7.03840686524E-08 7.21658187965E-08 7.39926725690E-08 7.58657716921E-08 7.77862867866E-08 7.97554181033E-08 8.17743962731E-08 8.38444830753E-08 8.59669722264E-08 8.81431901881E-08 9.03744969958E-08 9.26622871087E-08 9.50079902804E-08 9.74130724525E-08 9.98790366702E-08 1.02407424021E-07 1.04999814598E-07 1.07657828486E-07 1.10383126775E-07 1.13177412595E-07 1.16042432184E-07 1.18979975974E-07 1.21991879714E-07 1.25080025612E-07 1.28246343516E-07 1.31492812114E-07 1.34821460172E-07 1.38234367803E-07 1.41733667763E-07 1.45321546785E-07 1.49000246944E-07 1.52772067057E-07 1.56639364120E-07 1.60604554776E-07 1.64670116830E-07 1.68838590792E-07 1.73112581464E-07 1.77494759568E-07 1.81987863412E-07 1.86594700601E-07 1.91318149790E-07 1.96161162480E-07 2.01126764862E-07 2.06218059706E-07 2.11438228298E-07 2.16790532427E-07 2.22278316418E-07 2.27905009225E-07 2.33674126567E-07 2.39589273125E-07 2.45654144790E-07 2.51872530972E-07 2.58248316965E-07 2.64785486369E-07 2.71488123580E-07 2.78360416337E-07 2.85406658337E-07 2.92631251910E-07 3.00038710773E-07 3.07633662841E-07 3.15420853116E-07 3.23405146650E-07 3.31591531576E-07 3.39985122223E-07 3.48591162307E-07 3.57415028199E-07 3.66462232283E-07 3.75738426391E-07 3.85249405327E-07 3.95001110488E-07 4.04999633560E-07 4.15251220325E-07 4.25762274550E-07 4.36539361983E-07 4.47589214448E-07 4.58918734039E-07 4.70534997423E-07 4.82445260254E-07 4.94656961695E-07 5.07177729054E-07 5.20015382538E-07 5.33177940128E-07 5.46673622573E-07 5.60510858514E-07 5.74698289737E-07 5.89244776556E-07 6.04159403331E-07 6.19451484129E-07 6.35130568525E-07 6.51206447550E-07 6.67689159787E-07 6.84588997623E-07 7.01916513657E-07 7.19682527271E-07 7.37898131364E-07 7.56574699258E-07 7.75723891776E-07 7.95357664496E-07 8.15488275197E-07 8.36128291480E-07 8.57290598587E-07 8.78988407419E-07 9.01235262750E-07 9.24045051652E-07 9.47432012127E-07 9.71410741965E-07 9.95996207812E-07 1.02120375448E-06 1.04704911446E-06 1.07354841775E-06 1.10071820181E-06 1.12857542189E-06 1.15713746152E-06 1.18642214334E-06 1.21644774014E-06 1.24723298620E-06 1.27879708896E-06 1.31115974089E-06 1.34434113172E-06 1.37836196098E-06 1.41324345085E-06 1.44900735927E-06 1.48567599346E-06 1.52327222377E-06 1.56181949781E-06 1.60134185500E-06 1.64186394145E-06 1.68341102524E-06 1.72600901205E-06 1.76968446120E-06 1.81446460208E-06 1.86037735101E-06 1.90745132849E-06 1.95571587692E-06 2.00520107870E-06 2.05593777487E-06 2.10795758414E-06 2.16129292240E-06 2.21597702278E-06 2.27204395613E-06 2.32952865204E-06 2.38846692043E-06 2.44889547358E-06 2.51085194878E-06 2.57437493157E-06 2.63950397941E-06 2.70627964614E-06 2.77474350688E-06 2.84493818363E-06 2.91690737150E-06 2.99069586553E-06 3.06634958827E-06 3.14391561797E-06 3.22344221747E-06 3.30497886383E-06 3.38857627869E-06 3.47428645937E-06 3.56216271071E-06 3.65225967776E-06 3.74463337919E-06 3.83934124161E-06 3.93644213466E-06 4.03599640700E-06 4.13806592318E-06 4.24271410138E-06 4.35000595216E-06 4.46000811803E-06 4.57278891411E-06 4.68841836971E-06 4.80696827094E-06 4.92851220437E-06 5.05312560176E-06 5.18088578586E-06 5.31187201729E-06 5.44616554267E-06 5.58384964378E-06 5.72500968800E-06 5.86973317995E-06 6.01810981437E-06 6.17023153025E-06 6.32619256635E-06 6.48608951794E-06 6.65002139499E-06 6.81808968175E-06 6.99039839770E-06 7.16705416001E-06 7.34816624749E-06 7.53384666604E-06 7.72421021569E-06 7.91937455919E-06 8.11946029227E-06 8.32459101556E-06 8.53489340820E-06 8.75049730315E-06 8.97153576436E-06 9.19814516570E-06 9.43046527170E-06 9.66863932031E-06 9.91281410744E-06 1.01631400736E-05 1.04197713924E-05 1.06828660614E-05 1.09525859945E-05 1.12290971174E-05 1.15125694641E-05 1.18031772765E-05 1.21010991058E-05 1.24065179168E-05 1.27196211936E-05 1.30406010487E-05 1.33696543338E-05 1.37069827539E-05 1.40527929830E-05 1.44072967829E-05 1.47707111252E-05 1.51432583147E-05 1.55251661167E-05 1.59166678867E-05 1.63180027026E-05 1.67294155005E-05 1.71511572128E-05 1.75834849095E-05 1.80266619428E-05 1.84809580946E-05 1.89466497269E-05 1.94240199358E-05 1.99133587084E-05 2.04149630835E-05 2.09291373149E-05 2.14561930389E-05 2.19964494443E-05 2.25502334470E-05 2.31178798669E-05 2.36997316097E-05 2.42961398510E-05 2.49074642249E-05 2.55340730163E-05 2.61763433564E-05 2.68346614223E-05 2.75094226406E-05 2.82010318945E-05 2.89099037349E-05 2.96364625955E-05 3.03811430115E-05 3.11443898428E-05 3.19266585007E-05 3.27284151788E-05 3.35501370876E-05 3.43923126938E-05 3.52554419626E-05 3.61400366050E-05 3.70466203283E-05 3.79757290912E-05 3.89279113625E-05 3.99037283836E-05 4.09037544354E-05 4.19285771088E-05 4.29787975787E-05 4.40550308825E-05 4.51579062014E-05 4.62880671463E-05 4.74461720461E-05 4.86328942404E-05 4.98489223754E-05 5.10949607020E-05 5.23717293785E-05 5.36799647750E-05 5.50204197811E-05 5.63938641161E-05 5.78010846414E-05 5.92428856755E-05 6.07200893102E-05 6.22335357289E-05 6.37840835267E-05 6.53726100308E-05 6.70000116216E-05 6.86672040556E-05 7.03751227864E-05 7.21247232865E-05 7.39169813684E-05 7.57528935036E-05 7.76334771405E-05 7.95597710195E-05 8.15328354858E-05 8.35537527976E-05 8.56236274316E-05 8.77435863823E-05 8.99147794562E-05 9.21383795594E-05 9.44155829781E-05 9.67476096508E-05 9.91357034310E-05 1.01581132340E-04 1.04085188808E-04 1.06649189903E-04 1.09274477547E-04 1.11962418714E-04 1.14714405615E-04 1.17531855863E-04 1.20416212620E-04 1.23368944720E-04 1.26391546772E-04 1.29485539238E-04 1.32652468481E-04 1.35893906791E-04 1.39211452367E-04 1.42606729282E-04 1.46081387400E-04 1.49637102257E-04 1.53275574905E-04 1.56998531707E-04 1.60807724085E-04 1.64704928220E-04 1.68691944699E-04 1.72770598094E-04 1.76942736497E-04 1.81210230973E-04 1.85574974953E-04 1.90038883547E-04 1.94603892783E-04 1.99271958760E-04 2.04045056709E-04 2.08925179961E-04 2.13914338819E-04 2.19014559315E-04 2.24227881860E-04 2.29556359771E-04 2.35002057674E-04 2.40567049769E-04 2.46253417954E-04 2.52063249799E-04 2.57998636361E-04 2.64061669827E-04 2.70254440987E-04 2.76579036505E-04 2.83037536007E-04 2.89632008951E-04 2.96364511271E-04 3.03237081800E-04 3.10251738434E-04 3.17410474046E-04 3.24715252117E-04 3.32168002086E-04 3.39770614393E-04 3.47524935200E-04 3.55432760775E-04 3.63495831525E-04 3.71715825652E-04 3.80094352414E-04 3.88632944979E-04 3.97333052836E-04 4.06196033757E-04 4.15223145276E-04 4.24415535657E-04 4.33774234347E-04 4.43300141857E-04 4.52994019068E-04 4.62856475924E-04 4.72887959476E-04 4.83088741258E-04 4.93458903955E-04 5.03998327322E-04 5.14706673338E-04 5.25583370537E-04 5.36627597490E-04 5.47838265390E-04 5.59213999711E-04 5.70753120879E-04 5.82453623926E-04 5.94313157070E-04 6.06328999182E-04 6.18498036072E-04 6.30816735567E-04 6.43281121301E-04 6.55886745179E-04 6.68628658444E-04 6.81501381297E-04 6.94498870997E-04 7.07614488390E-04 7.20840962782E-04 7.34170355104E-04 7.47594019285E-04 7.61102561770E-04 7.74685799098E-04 7.88332713472E-04 8.02031406226E-04 8.15769049125E-04 8.29531833400E-04 8.43304916437E-04 8.57072366029E-04 8.70817102100E-04 8.84520835813E-04 8.98164005961E-04 9.11725712546E-04 9.25183647453E-04 9.38514022111E-04 9.51691492044E-04 9.64689078213E-04 9.77478085039E-04 9.90028015005E-04 1.00230647974E-03 1.01427910745E-03 1.02590944665E-03 1.03715886603E-03 1.04798645038E-03 1.05834889244E-03 1.06820038069E-03 1.07749248278E-03 1.08617402468E-03 1.09419096538E-03 1.10148626703E-03 1.10799976055E-03 1.11366800641E-03 1.11842415078E-03 1.12219777674E-03 1.12491475064E-03 1.12649706356E-03 1.12686266763E-03 1.12592530754E-03 1.12359434684E-03 1.11977458930E-03 1.11436609523E-03 1.10726399274E-03 1.09835828415E-03 1.08753364743E-03 1.07466923283E-03 1.05963845491E-03 1.04230877993E-03 1.02254150885E-03 1.00019155616E-03 9.75107224713E-04 9.47129976816E-04 9.16094201921E-04 8.81826981178E-04 8.44147849285E-04 8.02868554000E-04 7.57792813818E-04 7.08716074296E-04 6.55425263602E-04 5.97698547896E-04 5.35305087236E-04 4.68004792720E-04 3.95548085684E-04 3.17675659808E-04 2.34118247063E-04 1.44596388517E-04 4.88202110588E-05 -5.35107887937E-05 -1.62707952767E-04 -2.79093659086E-04 -4.03001509698E-04 -5.34776505003E-04 -6.74775204520E-04 -8.23365871843E-04 -9.80928602158E-04 -1.14785543050E-03 -1.32455041886E-03 -1.51142972013E-03 -1.70892161690E-03 -1.91746653287E-03 -2.13751701474E-03 -2.36953768230E-03 -2.61400514435E-03 -2.87140787812E-03 -3.14224606967E-03 -3.42703141298E-03 -3.72628686500E-03 -4.04054635442E-03 -4.37035444149E-03 -4.71626592648E-03 -5.07884540448E-03 -5.45866676389E-03 -5.85631262664E-03 -6.27237372770E-03 -6.70744823194E-03 -7.16214098650E-03 -7.63706270675E-03 -8.13282909450E-03 -8.65005988717E-03 -9.18937783680E-03 -9.75140761833E-03 -1.03367746667E-02 -1.09461039429E-02 -1.15800186291E-02 -1.22391387539E-02 -1.29240797493E-02 -1.36354509403E-02 -1.43738539700E-02 -1.51398811635E-02 -1.59341138326E-02 -1.67571205266E-02 -1.76094552324E-02 -1.84916555305E-02 -1.94042407101E-02 -2.03477098519E-02 -2.13225398829E-02 -2.23291836114E-02 -2.33680677490E-02 -2.44395909261E-02 -2.55441217104E-02 -2.66819966333E-02 -2.78535182343E-02 -2.90589531275E-02 -3.02985300986E-02 -3.15724382376E-02 -3.28808251103E-02 -3.42237949743E-02 -3.56014070377E-02 -3.70136737631E-02 -3.84605592121E-02 -3.99419774251E-02 -4.14577908276E-02 -4.30078086512E-02 -4.45917853516E-02 -4.62094190053E-02 -4.78603496565E-02 -4.95441575868E-02 -5.12603614696E-02 -5.30084163683E-02 -5.47877115312E-02 -5.65975679292E-02 -5.84372354765E-02 -6.03058898709E-02 -6.22026289801E-02 -6.41264687024E-02 -6.60763382190E-02 -6.80510745569E-02 -7.00494163781E-02 -7.20699969098E-02 -7.41113359338E-02 -7.61718307560E-02 -7.82497460847E-02 -8.03432027562E-02 -8.24501652604E-02 -8.45684280343E-02 -8.66956005178E-02 -8.88290909870E-02 -9.09660892180E-02 -9.31035480651E-02 -9.52381640851E-02 -9.73663573835E-02 -9.94842509143E-02 -1.01587649521E-01 -1.03672019072E-01 -1.05732466112E-01 -1.07763718516E-01 -1.09760107707E-01 -1.11715553083E-01 -1.13623549346E-01 -1.15477157514E-01 -1.17269000456E-01 -1.18991263827E-01 -1.20635703341E-01 -1.22193659332E-01 -1.23656079556E-01 -1.25013551183E-01 -1.26256342854E-01 -1.27374457647E-01 -1.28357697628E-01 -1.29195740562E-01 -1.29878229140E-01 -1.30394872847E-01 -1.30735562348E-01 -1.30890495894E-01 -1.30850316958E-01 -1.30606261851E-01 -1.30150315694E-01 -1.29475374623E-01 -1.28575411689E-01 -1.27445643418E-01 -1.26082693573E-01 -1.24484750238E-01 -1.22651711992E-01 -1.20585318676E-01 -1.18289262034E-01 -1.15769271499E-01 -1.13033170414E-01 -1.10090898282E-01 -1.06954494995E-01 -1.03638043653E-01 -1.00157569355E-01 -9.65308923820E-02 -9.27774353621E-02 -8.89179853996E-02 -8.49744136652E-02 -8.09693565730E-02 -7.69258643754E-02 -7.28670247148E-02 -6.88155703300E-02 -6.47934816622E-02 -6.08215964530E-02 -5.69192395255E-02 -5.31038867031E-02 -4.93908771955E-02 -4.57931887190E-02 -4.23212890641E-02 -3.89830767647E-02 -3.57839219316E-02 -3.27268161942E-02 -2.98126380515E-02 -2.70405367794E-02 -2.44084343987E-02 -2.19136410821E-02 -1.95535747911E-02 -1.73265708842E-02 -1.52327619386E-02 -1.32750020898E-02 -1.14598038616E-02 -9.79550293927E-03 -8.28261405376E-03 -6.91856222346E-03 -5.69990451176E-03 -4.62233311340E-03 -3.68068158201E-03 -2.86893431043E-03 -2.18023938399E-03 -1.60692493702E-03 -1.14051915117E-03 -7.71774043393E-04 -4.90693199211E-04 -2.86563614405E-04 -1.47991815116E-04 -6.29444322447E-05 -1.87934111779E-05 -2.36604217729E-06 1.11022302463E-16 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 0 i j (l(j)) 1.13791138321E-01 Q_int -7.52815117747E-11 -7.71872722850E-11 -7.91412773507E-11 -8.11447482883E-11 -8.31989373323E-11 -8.53051284175E-11 -8.74646379817E-11 -8.96788157887E-11 -9.19490457714E-11 -9.42767468973E-11 -9.66633740551E-11 -9.91104189644E-11 -1.01619411108E-10 -1.04191918687E-10 -1.06829549602E-10 -1.09533952458E-10 -1.12306817595E-10 -1.15149878144E-10 -1.18064911109E-10 -1.21053738481E-10 -1.24118228374E-10 -1.27260296194E-10 -1.30481905834E-10 -1.33785070906E-10 -1.37171855995E-10 -1.40644377951E-10 -1.44204807213E-10 -1.47855369165E-10 -1.51598345527E-10 -1.55436075779E-10 -1.59370958629E-10 -1.63405453504E-10 -1.67542082097E-10 -1.71783429932E-10 -1.76132147991E-10 -1.80590954362E-10 -1.85162635945E-10 -1.89850050188E-10 -1.94656126877E-10 -1.99583869966E-10 -2.04636359454E-10 -2.09816753310E-10 -2.15128289448E-10 -2.20574287750E-10 -2.26158152142E-10 -2.31883372719E-10 -2.37753527929E-10 -2.43772286810E-10 -2.49943411280E-10 -2.56270758492E-10 -2.62758283243E-10 -2.69410040444E-10 -2.76230187660E-10 -2.83222987702E-10 -2.90392811297E-10 -2.97744139817E-10 -3.05281568078E-10 -3.13009807218E-10 -3.20933687634E-10 -3.29058162009E-10 -3.37388308400E-10 -3.45929333419E-10 -3.54686575480E-10 -3.63665508144E-10 -3.72871743532E-10 -3.82311035839E-10 -3.91989284926E-10 -4.01912540011E-10 -4.12087003448E-10 -4.22519034604E-10 -4.33215153834E-10 -4.44182046558E-10 -4.55426567437E-10 -4.66955744657E-10 -4.78776784325E-10 -4.90897074970E-10 -5.03324192165E-10 -5.16065903257E-10 -5.29130172224E-10 -5.42525164653E-10 -5.56259252846E-10 -5.70341021047E-10 -5.84779270814E-10 -5.99583026516E-10 -6.14761540974E-10 -6.30324301245E-10 -6.46281034555E-10 -6.62641714371E-10 -6.79416566642E-10 -6.96616076186E-10 -7.14250993249E-10 -7.32332340215E-10 -7.50871418504E-10 -7.69879815633E-10 -7.89369412455E-10 -8.09352390590E-10 -8.29841240036E-10 -8.50848766977E-10 -8.72388101786E-10 -8.94472707233E-10 -9.17116386898E-10 -9.40333293800E-10 -9.64137939244E-10 -9.88545201889E-10 -1.01357033705E-09 -1.03922898622E-09 -1.06553718689E-09 -1.09251138249E-09 -1.12016843276E-09 -1.14852562424E-09 -1.17760068105E-09 -1.20741177603E-09 -1.23797754206E-09 -1.26931708369E-09 -1.30144998913E-09 -1.33439634246E-09 -1.36817673618E-09 -1.40281228410E-09 -1.43832463453E-09 -1.47473598379E-09 -1.51206909012E-09 -1.55034728787E-09 -1.58959450213E-09 -1.62983526361E-09 -1.67109472406E-09 -1.71339867192E-09 -1.75677354847E-09 -1.80124646436E-09 -1.84684521654E-09 -1.89359830564E-09 -1.94153495380E-09 -1.99068512290E-09 -2.04107953331E-09 -2.09274968309E-09 -2.14572786768E-09 -2.20004720008E-09 -2.25574163153E-09 -2.31284597275E-09 -2.37139591572E-09 -2.43142805593E-09 -2.49297991530E-09 -2.55608996562E-09 -2.62079765259E-09 -2.68714342047E-09 -2.75516873739E-09 -2.82491612122E-09 -2.89642916617E-09 -2.96975257006E-09 -3.04493216222E-09 -3.12201493215E-09 -3.20104905888E-09 -3.28208394110E-09 -3.36517022803E-09 -3.45035985106E-09 -3.53770605624E-09 -3.62726343753E-09 -3.71908797093E-09 -3.81323704948E-09 -3.90976951911E-09 -4.00874571544E-09 -4.11022750148E-09 -4.21427830630E-09 -4.32096316467E-09 -4.43034875771E-09 -4.54250345457E-09 -4.65749735516E-09 -4.77540233395E-09 -4.89629208492E-09 -5.02024216760E-09 -5.14733005431E-09 -5.27763517856E-09 -5.41123898470E-09 -5.54822497888E-09 -5.68867878113E-09 -5.83268817901E-09 -5.98034318234E-09 -6.13173607958E-09 -6.28696149544E-09 -6.44611645002E-09 -6.60930041949E-09 -6.77661539824E-09 -6.94816596261E-09 -7.12405933629E-09 -7.30440545731E-09 -7.48931704675E-09 -7.67890967922E-09 -7.87330185504E-09 -8.07261507437E-09 -8.27697391310E-09 -8.48650610073E-09 -8.70134260020E-09 -8.92161768975E-09 -9.14746904681E-09 -9.37903783410E-09 -9.61646878782E-09 -9.85991030811E-09 -1.01095145518E-08 -1.03654375276E-08 -1.06278391935E-08 -1.08968835566E-08 -1.11727387759E-08 -1.14555772675E-08 -1.17455758117E-08 -1.20429156644E-08 -1.23477826694E-08 -1.26603673756E-08 -1.29808651551E-08 -1.33094763259E-08 -1.36464062772E-08 -1.39918655971E-08 -1.43460702050E-08 -1.47092414859E-08 -1.50816064293E-08 -1.54633977706E-08 -1.58548541368E-08 -1.62562201958E-08 -1.66677468088E-08 -1.70896911875E-08 -1.75223170550E-08 -1.79658948100E-08 -1.84207016964E-08 -1.88870219763E-08 -1.93651471074E-08 -1.98553759259E-08 -2.03580148325E-08 -2.08733779842E-08 -2.14017874907E-08 -2.19435736157E-08 -2.24990749830E-08 -2.30686387886E-08 -2.36526210173E-08 -2.42513866654E-08 -2.48653099687E-08 -2.54947746363E-08 -2.61401740907E-08 -2.68019117132E-08 -2.74804010966E-08 -2.81760663029E-08 -2.88893421291E-08 -2.96206743785E-08 -3.03705201393E-08 -3.11393480702E-08 -3.19276386935E-08 -3.27358846955E-08 -3.35645912337E-08 -3.44142762534E-08 -3.52854708106E-08 -3.61787194045E-08 -3.70945803173E-08 -3.80336259631E-08 -3.89964432461E-08 -3.99836339266E-08 -4.09958149978E-08 -4.20336190707E-08 -4.30976947700E-08 -4.41887071388E-08 -4.53073380550E-08 -4.64542866564E-08 -4.76302697784E-08 -4.88360224014E-08 -5.00722981106E-08 -5.13398695662E-08 -5.26395289869E-08 -5.39720886445E-08 -5.53383813714E-08 -5.67392610814E-08 -5.81756033029E-08 -5.96483057262E-08 -6.11582887641E-08 -6.27064961274E-08 -6.42938954141E-08 -6.59214787147E-08 -6.75902632310E-08 -6.93012919128E-08 -7.10556341087E-08 -7.28543862346E-08 -7.46986724587E-08 -7.65896454038E-08 -7.85284868675E-08 -8.05164085604E-08 -8.25546528635E-08 -8.46444936039E-08 -8.67872368511E-08 -8.89842217325E-08 -9.12368212705E-08 -9.35464432399E-08 -9.59145310474E-08 -9.83425646336E-08 -1.00832061397E-07 -1.03384577143E-07 -1.06001707055E-07 -1.08685086689E-07 -1.11436393001E-07 -1.14257345386E-07 -1.17149706761E-07 -1.20115284661E-07 -1.23155932367E-07 -1.26273550068E-07 -1.29470086044E-07 -1.32747537886E-07 -1.36107953741E-07 -1.39553433593E-07 -1.43086130574E-07 -1.46708252307E-07 -1.50422062290E-07 -1.54229881304E-07 -1.58134088863E-07 -1.62137124706E-07 -1.66241490312E-07 -1.70449750468E-07 -1.74764534869E-07 -1.79188539761E-07 -1.83724529622E-07 -1.88375338891E-07 -1.93143873737E-07 -1.98033113872E-07 -2.03046114416E-07 -2.08186007799E-07 -2.13456005718E-07 -2.18859401147E-07 -2.24399570387E-07 -2.30079975175E-07 -2.35904164848E-07 -2.41875778556E-07 -2.47998547534E-07 -2.54276297432E-07 -2.60712950703E-07 -2.67312529050E-07 -2.74079155937E-07 -2.81017059163E-07 -2.88130573499E-07 -2.95424143397E-07 -3.02902325757E-07 -3.10569792779E-07 -3.18431334871E-07 -3.26491863643E-07 -3.34756414968E-07 -3.43230152130E-07 -3.51918369036E-07 -3.60826493528E-07 -3.69960090765E-07 -3.79324866693E-07 -3.88926671607E-07 -3.98771503800E-07 -4.08865513303E-07 -4.19215005722E-07 -4.29826446167E-07 -4.40706463291E-07 -4.51861853414E-07 -4.63299584771E-07 -4.75026801848E-07 -4.87050829840E-07 -4.99379179220E-07 -5.12019550417E-07 -5.24979838618E-07 -5.38268138689E-07 -5.51892750219E-07 -5.65862182695E-07 -5.80185160802E-07 -5.94870629862E-07 -6.09927761406E-07 -6.25365958888E-07 -6.41194863544E-07 -6.57424360397E-07 -6.74064584416E-07 -6.91125926824E-07 -7.08619041575E-07 -7.26554851982E-07 -7.44944557524E-07 -7.63799640813E-07 -7.83131874748E-07 -8.02953329839E-07 -8.23276381720E-07 -8.44113718852E-07 -8.65478350417E-07 -8.87383614413E-07 -9.09843185954E-07 -9.32871085769E-07 -9.56481688932E-07 -9.80689733795E-07 -1.00551033115E-06 -1.03095897364E-06 -1.05705154536E-06 -1.08380433177E-06 -1.11123402976E-06 -1.13935775810E-06 -1.16819306800E-06 -1.19775795406E-06 -1.22807086543E-06 -1.25915071727E-06 -1.29101690250E-06 -1.32368930382E-06 -1.35718830606E-06 -1.39153480885E-06 -1.42675023956E-06 -1.46285656659E-06 -1.49987631303E-06 -1.53783257058E-06 -1.57674901391E-06 -1.61664991529E-06 -1.65756015967E-06 -1.69950526009E-06 -1.74251137345E-06 -1.78660531677E-06 -1.83181458372E-06 -1.87816736170E-06 -1.92569254927E-06 -1.97441977398E-06 -2.02437941078E-06 -2.07560260072E-06 -2.12812127025E-06 -2.18196815095E-06 -2.23717679973E-06 -2.29378161956E-06 -2.35181788074E-06 -2.41132174262E-06 -2.47233027597E-06 -2.53488148581E-06 -2.59901433487E-06 -2.66476876757E-06 -2.73218573469E-06 -2.80130721855E-06 -2.87217625888E-06 -2.94483697932E-06 -3.01933461456E-06 -3.09571553814E-06 -3.17402729102E-06 -3.25431861072E-06 -3.33663946133E-06 -3.42104106413E-06 -3.50757592907E-06 -3.59629788695E-06 -3.68726212243E-06 -3.78052520787E-06 -3.87614513796E-06 -3.97418136523E-06 -4.07469483643E-06 -4.17774802981E-06 -4.28340499328E-06 -4.39173138356E-06 -4.50279450626E-06 -4.61666335692E-06 -4.73340866311E-06 -4.85310292751E-06 -4.97582047206E-06 -5.10163748319E-06 -5.23063205815E-06 -5.36288425246E-06 -5.49847612856E-06 -5.63749180553E-06 -5.78001751017E-06 -5.92614162920E-06 -6.07595476278E-06 -6.22954977926E-06 -6.38702187141E-06 -6.54846861377E-06 -6.71399002161E-06 -6.88368861116E-06 -7.05766946137E-06 -7.23604027707E-06 -7.41891145375E-06 -7.60639614381E-06 -7.79861032440E-06 -7.99567286692E-06 -8.19770560817E-06 -8.40483342309E-06 -8.61718429942E-06 -8.83488941392E-06 -9.05808321056E-06 -9.28690348044E-06 -9.52149144368E-06 -9.76199183313E-06 -1.00085529802E-05 -1.02613269025E-05 -1.05204693938E-05 -1.07861401157E-05 -1.10585026917E-05 -1.13377248037E-05 -1.16239782901E-05 -1.19174392466E-05 -1.22182881292E-05 -1.25267098597E-05 -1.28428939335E-05 -1.31670345295E-05 -1.34993306235E-05 -1.38399861029E-05 -1.41892098853E-05 -1.45472160383E-05 -1.49142239034E-05 -1.52904582221E-05 -1.56761492641E-05 -1.60715329600E-05 -1.64768510350E-05 -1.68923511472E-05 -1.73182870280E-05 -1.77549186256E-05 -1.82025122524E-05 -1.86613407343E-05 -1.91316835644E-05 -1.96138270595E-05 -2.01080645197E-05 -2.06146963921E-05 -2.11340304369E-05 -2.16663818981E-05 -2.22120736770E-05 -2.27714365095E-05 -2.33448091471E-05 -2.39325385418E-05 -2.45349800341E-05 -2.51524975453E-05 -2.57854637740E-05 -2.64342603953E-05 -2.70992782652E-05 -2.77809176280E-05 -2.84795883284E-05 -2.91957100274E-05 -2.99297124219E-05 -3.06820354689E-05 -3.14531296138E-05 -3.22434560229E-05 -3.30534868192E-05 -3.38837053242E-05 -3.47346063019E-05 -3.56066962088E-05 -3.65004934470E-05 -3.74165286217E-05 -3.83553448039E-05 -3.93174977958E-05 -4.03035564018E-05 -4.13141027027E-05 -4.23497323352E-05 -4.34110547740E-05 -4.44986936195E-05 -4.56132868889E-05 -4.67554873110E-05 -4.79259626254E-05 -4.91253958853E-05 -5.03544857644E-05 -5.16139468667E-05 -5.29045100407E-05 -5.42269226965E-05 -5.55819491261E-05 -5.69703708270E-05 -5.83929868289E-05 -5.98506140224E-05 -6.13440874915E-05 -6.28742608467E-05 -6.44420065617E-05 -6.60482163113E-05 -6.76938013099E-05 -6.93796926530E-05 -7.11068416577E-05 -7.28762202048E-05 -7.46888210805E-05 -7.65456583175E-05 -7.84477675359E-05 -8.03962062823E-05 -8.23920543666E-05 -8.44364141974E-05 -8.65304111134E-05 -8.86751937115E-05 -9.08719341705E-05 -9.31218285692E-05 -9.54260971990E-05 -9.77859848694E-05 -1.00202761206E-04 -1.02677720940E-04 -1.05212184187E-04 -1.07807496714E-04 -1.10465030201E-04 -1.13186182478E-04 -1.15972377759E-04 -1.18825066852E-04 -1.21745727356E-04 -1.24735863834E-04 -1.27797007974E-04 -1.30930718720E-04 -1.34138582378E-04 -1.37422212706E-04 -1.40783250959E-04 -1.44223365922E-04 -1.47744253895E-04 -1.51347638650E-04 -1.55035271350E-04 -1.58808930422E-04 -1.62670421394E-04 -1.66621576678E-04 -1.70664255309E-04 -1.74800342624E-04 -1.79031749888E-04 -1.83360413861E-04 -1.87788296293E-04 -1.92317383358E-04 -1.96949685005E-04 -2.01687234239E-04 -2.06532086316E-04 -2.11486317844E-04 -2.16552025795E-04 -2.21731326417E-04 -2.27026354036E-04 -2.32439259750E-04 -2.37972209997E-04 -2.43627385002E-04 -2.49406977088E-04 -2.55313188846E-04 -2.61348231148E-04 -2.67514321011E-04 -2.73813679285E-04 -2.80248528167E-04 -2.86821088526E-04 -2.93533577025E-04 -3.00388203043E-04 -3.07387165363E-04 -3.14532648641E-04 -3.21826819610E-04 -3.29271823044E-04 -3.36869777430E-04 -3.44622770364E-04 -3.52532853635E-04 -3.60602037989E-04 -3.68832287559E-04 -3.77225513937E-04 -3.85783569868E-04 -3.94508242557E-04 -4.03401246557E-04 -4.12464216222E-04 -4.21698697704E-04 -4.31106140466E-04 -4.40687888290E-04 -4.50445169756E-04 -4.60379088159E-04 -4.70490610845E-04 -4.80780557927E-04 -4.91249590362E-04 -5.01898197346E-04 -5.12726683002E-04 -5.23735152328E-04 -5.34923496356E-04 -5.46291376503E-04 -5.57838208064E-04 -5.69563142807E-04 -5.81465050632E-04 -5.93542500250E-04 -6.05793738834E-04 -6.18216670592E-04 -6.30808834224E-04 -6.43567379203E-04 -6.56489040829E-04 -6.69570113998E-04 -6.82806425646E-04 -6.96193305781E-04 -7.09725557070E-04 -7.23397422905E-04 -7.37202553874E-04 -7.51133972601E-04 -7.65184036840E-04 -7.79344400804E-04 -7.93605974603E-04 -8.07958881761E-04 -8.22392414701E-04 -8.36894988140E-04 -8.51454090289E-04 -8.66056231806E-04 -8.80686892375E-04 -8.95330464862E-04 -9.09970196925E-04 -9.24588130008E-04 -9.39165035609E-04 -9.53680348740E-04 -9.68112098465E-04 -9.82436835429E-04 -9.96629556277E-04 -1.01066362485E-03 -1.02451069007E-03 -1.03814060038E-03 -1.05152131473E-03 -1.06461880979E-03 -1.07739698362E-03 -1.08981755531E-03 -1.10183996083E-03 -1.11342124472E-03 -1.12451594776E-03 -1.13507599025E-03 -1.14505055111E-03 -1.15438594242E-03 -1.16302547952E-03 -1.17090934654E-03 -1.17797445714E-03 -1.18415431060E-03 -1.18937884311E-03 -1.19357427412E-03 -1.19666294783E-03 -1.19856316970E-03 -1.19918903807E-03 -1.19845027064E-03 -1.19625202613E-03 -1.19249472088E-03 -1.18707384052E-03 -1.17987974681E-03 -1.17079747961E-03 -1.15970655421E-03 -1.14648075399E-03 -1.13098791866E-03 -1.11308972827E-03 -1.09264148306E-03 -1.06949187951E-03 -1.04348278283E-03 -1.01444899616E-03 -9.82218026810E-04 -9.46609850037E-04 -9.07436670654E-04 -8.64502683024E-04 -8.17603829960E-04 -7.66527561092E-04 -7.11052591351E-04 -6.50948660264E-04 -5.85976292816E-04 -5.15886562685E-04 -4.40420858768E-04 -3.59310655917E-04 -2.72277290945E-04 -1.79031744987E-04 -7.92744334073E-05 2.73049954963E-05 1.41027851643E-04 2.62226582755E-04 3.91244940870E-04 5.28438134183E-04 6.74172962558E-04 8.28827934916E-04 9.92793366684E-04 1.16647145535E-03 1.35027633213E-03 1.54463408763E-03 1.74998276938E-03 1.96677234895E-03 2.19546465639E-03 2.43653327962E-03 2.69046342633E-03 2.95775174599E-03 3.23890610945E-03 3.53444534365E-03 3.84489891888E-03 4.17080658618E-03 4.51271796233E-03 4.87119206004E-03 5.24679676090E-03 5.64010822902E-03 6.05171026287E-03 6.48219358356E-03 6.93215505755E-03 7.40219685218E-03 7.89292552238E-03 8.40495102763E-03 8.93888567792E-03 9.49534300836E-03 1.00749365819E-02 1.06782787206E-02 1.13059791654E-02 1.19586436662E-02 1.26368725025E-02 1.33412589380E-02 1.40723876101E-02 1.48308328584E-02 1.56171569949E-02 1.64319085212E-02 1.72756202954E-02 1.81488076563E-02 1.90519665086E-02 1.99855713767E-02 2.09500734329E-02 2.19458985079E-02 2.29734450902E-02 2.40330823230E-02 2.51251480054E-02 2.62499466062E-02 2.74077472980E-02 2.85987820178E-02 2.98232435621E-02 3.10812837214E-02 3.23730114578E-02 3.36984911318E-02 3.50577407770E-02 3.64507304233E-02 3.78773804666E-02 3.93375600779E-02 4.08310856443E-02 4.23577192278E-02 4.39171670281E-02 4.55090778251E-02 4.71330413795E-02 4.87885867564E-02 5.04751805399E-02 5.21922248939E-02 5.39390554220E-02 5.57149387741E-02 5.75190699378E-02 5.93505691520E-02 6.12084783691E-02 6.30917571936E-02 6.49992782153E-02 6.69298216558E-02 6.88820692461E-02 7.08545972490E-02 7.28458685481E-02 7.48542237245E-02 7.68778710541E-02 7.89148753652E-02 8.09631457136E-02 8.30204218486E-02 8.50842594673E-02 8.71520142808E-02 8.92208249492E-02 9.12875949810E-02 9.33489737339E-02 9.54013367037E-02 9.74407653429E-02 9.94630267089E-02 1.01463553305E-01 1.03437423547E-01 1.05379343356E-01 1.07283629452E-01 1.09144194998E-01 1.10954538304E-01 1.12707735381E-01 1.14396437183E-01 1.16012872427E-01 1.17548856928E-01 1.18995810381E-01 1.20344781554E-01 1.21586482804E-01 1.22711334796E-01 1.23709522198E-01 1.24571061028E-01 1.25285878152E-01 1.25843903253E-01 1.26235173307E-01 1.26449949373E-01 1.26478845123E-01 1.26312966205E-01 1.25944059100E-01 1.25364667732E-01 1.24568295599E-01 1.23549570773E-01 1.22304410619E-01 1.20830182672E-01 1.19125857709E-01 1.17192150705E-01 1.15031645113E-01 1.12648895752E-01 1.10050505563E-01 1.07245171592E-01 1.04243695881E-01 1.01058957378E-01 9.77058416690E-02 9.42011261751E-02 9.05633195401E-02 8.68124551590E-02 8.29698402296E-02 7.90577632517E-02 7.50991645551E-02 7.11172761319E-02 6.71352387392E-02 6.31757058486E-02 5.92604454813E-02 5.54099522129E-02 5.16430825748E-02 4.79767276674E-02 4.44255369573E-02 4.10017069160E-02 3.77148473318E-02 3.45719367646E-02 3.15773767171E-02 2.87331516630E-02 2.60390991416E-02 2.34932907136E-02 2.10925207265E-02 1.88328955908E-02 1.67105116647E-02 1.47222049205E-02 1.28663503546E-02 1.11436836703E-02 9.55811215638E-03 8.11514574482E-03 6.81364812844E-03 5.64978908623E-03 4.61894144614E-03 3.71570761391E-03 2.93395161791E-03 2.26683684561E-03 1.70686963817E-03 1.24594889641E-03 8.75421834832E-04 5.86145998885E-04 3.68557634256E-04 2.12746465805E-04 1.08536906569E-04 4.55756745271E-05 1.34257459736E-05 1.66651912759E-06 -5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 1 i j (l(j)) 0.00000000000E+00 Q_int 1.48662132455E-15 1.54342809426E-15 1.60240556408E-15 1.66363668081E-15 1.72720756080E-15 1.79320761106E-15 1.86172965505E-15 1.93287006318E-15 2.00672888839E-15 2.08341000680E-15 2.16302126389E-15 2.24567462610E-15 2.33148633834E-15 2.42057708748E-15 2.51307217207E-15 2.60910167855E-15 2.70880066426E-15 2.81230934732E-15 2.91977330387E-15 3.03134367281E-15 3.14717736836E-15 3.26743730075E-15 3.39229260533E-15 3.52191888043E-15 3.65649843438E-15 3.79622054185E-15 3.94128171008E-15 4.09188595524E-15 4.24824508938E-15 4.41057901830E-15 4.57911605083E-15 4.75409321995E-15 4.93575661614E-15 5.12436173350E-15 5.32017382904E-15 5.52346829581E-15 5.73453105014E-15 5.95365893382E-15 6.18116013155E-15 6.41735460437E-15 6.66257453970E-15 6.91716481847E-15 7.18148350023E-15 7.45590232668E-15 7.74080724451E-15 8.03659894823E-15 8.34369344366E-15 8.66252263304E-15 8.99353492247E-15 9.33719585253E-15 9.69398875303E-15 1.00644154228E-14 1.04489968354E-14 1.08482738718E-14 1.12628080811E-14 1.16931824704E-14 1.21400023246E-14 1.26038960577E-14 1.30855160968E-14 1.35855397994E-14 1.41046704063E-14 1.46436380304E-14 1.52032006837E-14 1.57841453435E-14 1.63872890589E-14 1.70134801002E-14 1.76635991517E-14 1.83385605504E-14 1.90393135722E-14 1.97668437663E-14 2.05221743420E-14 2.13063676075E-14 2.21205264636E-14 2.29657959556E-14 2.38433648829E-14 2.47544674715E-14 2.57003851094E-14 2.66824481493E-14 2.77020377792E-14 2.87605879649E-14 2.98595874672E-14 3.10005819353E-14 3.21851760805E-14 3.34150359336E-14 3.46918911878E-14 3.60175376312E-14 3.73938396725E-14 3.88227329632E-14 4.03062271202E-14 4.18464085514E-14 4.34454433908E-14 4.51055805447E-14 4.68291548546E-14 4.86185903808E-14 5.04764038120E-14 5.24052080044E-14 5.44077156568E-14 5.64867431256E-14 5.86452143857E-14 6.08861651431E-14 6.32127471041E-14 6.56282324080E-14 6.81360182290E-14 7.07396315542E-14 7.34427341439E-14 7.62491276815E-14 7.91627591205E-14 8.21877262351E-14 8.53282833840E-14 8.85888474930E-14 9.19740042679E-14 9.54885146431E-14 9.91373214780E-14 1.02925556508E-13 1.06858547564E-13 1.10941826062E-13 1.15181134786E-13 1.19582435961E-13 1.24151919644E-13 1.28896012423E-13 1.33821386460E-13 1.38934968875E-13 1.44243951485E-13 1.49755800923E-13 1.55478269133E-13 1.61419404282E-13 1.67587562068E-13 1.73991417480E-13 1.80639976996E-13 1.87542591247E-13 1.94708968171E-13 2.02149186669E-13 2.09873710772E-13 2.17893404366E-13 2.26219546466E-13 2.34863847082E-13 2.43838463686E-13 2.53156018310E-13 2.62829615303E-13 2.72872859753E-13 2.83299876627E-13 2.94125330637E-13 3.05364446861E-13 3.17033032158E-13 3.29147497399E-13 3.41724880546E-13 3.54782870618E-13 3.68339832563E-13 3.82414833095E-13 3.97027667500E-13 4.12198887487E-13 4.27949830081E-13 4.44302647642E-13 4.61280339014E-13 4.78906781872E-13 4.97206766306E-13 5.16206029684E-13 5.35931292851E-13 5.56410297709E-13 5.77671846230E-13 5.99745840973E-13 6.22663327127E-13 6.46456536185E-13 6.71158931266E-13 6.96805254183E-13 7.23431574303E-13 7.51075339276E-13 7.79775427701E-13 8.09572203804E-13 8.40507574212E-13 8.72625046886E-13 9.05969792312E-13 9.40588707033E-13 9.76530479600E-13 1.01384565905E-12 1.05258672601E-12 1.09280816648E-12 1.13456654848E-12 1.17792060163E-12 1.22293129969E-12 1.26966194639E-12 1.31817826438E-12 1.36854848774E-12 1.42084345789E-12 1.47513672324E-12 1.53150464263E-12 1.59002649276E-12 1.65078457959E-12 1.71386435421E-12 1.77935453293E-12 1.84734722210E-12 1.91793804765E-12 1.99122628955E-12 2.06731502145E-12 2.14631125568E-12 2.22832609369E-12 2.31347488236E-12 2.40187737619E-12 2.49365790576E-12 2.58894555254E-12 2.68787433049E-12 2.79058337448E-12 2.89721713603E-12 3.00792558643E-12 3.12286442765E-12 3.24219531138E-12 3.36608606631E-12 3.49471093423E-12 3.62825081504E-12 3.76689352117E-12 3.91083404176E-12 4.06027481687E-12 4.21542602219E-12 4.37650586465E-12 4.54374088929E-12 4.71736629791E-12 4.89762627981E-12 5.08477435528E-12 5.27907373209E-12 5.48079767573E-12 5.69022989371E-12 5.90766493455E-12 6.13340860207E-12 6.36777838545E-12 6.61110390579E-12 6.86372737963E-12 7.12600410032E-12 7.39830293765E-12 7.68100685668E-12 7.97451345631E-12 8.27923552851E-12 8.59560163881E-12 8.92405672913E-12 9.26506274346E-12 9.61909927763E-12 9.98666425376E-12 1.03682746206E-11 1.07644670804E-11 1.11757988441E-11 1.16028484145E-11 1.20462164005E-11 1.25065263611E-11 1.29844256830E-11 1.34805864906E-11 1.39957065917E-11 1.45305104587E-11 1.50857502473E-11 1.56622068549E-11 1.62606910183E-11 1.68820444543E-11 1.75271410433E-11 1.81968880584E-11 1.88922274415E-11 1.96141371277E-11 2.03636324214E-11 2.11417674233E-11 2.19496365137E-11 2.27883758913E-11 2.36591651711E-11 2.45632290436E-11 2.55018389972E-11 2.64763151062E-11 2.74880278877E-11 2.85384002290E-11 2.96289093887E-11 3.07610890743E-11 3.19365315995E-11 3.31568901232E-11 3.44238809750E-11 3.57392860686E-11 3.71049554085E-11 3.85228096912E-11 3.99948430070E-11 4.15231256442E-11 4.31098070010E-11 4.47571186084E-11 4.64673772684E-11 4.82429883128E-11 5.00864489858E-11 5.20003519561E-11 5.39873889636E-11 5.60503546047E-11 5.81921502630E-11 6.04157881895E-11 6.27243957395E-11 6.51212197705E-11 6.76096312088E-11 7.01931297905E-11 7.28753489835E-11 7.56600610977E-11 7.85511825904E-11 8.15527795741E-11 8.46690735358E-11 8.79044472738E-11 9.12634510615E-11 9.47508090473E-11 9.83714258986E-11 1.02130393700E-10 1.06032999113E-10 1.10084730816E-10 1.14291287217E-10 1.18658584475E-10 1.23192764812E-10 1.27900205162E-10 1.32787526130E-10 1.37861601309E-10 1.43129566945E-10 1.48598831973E-10 1.54277088439E-10 1.60172322318E-10 1.66292824742E-10 1.72647203664E-10 1.79244395966E-10 1.86093680023E-10 1.93204688755E-10 2.00587423176E-10 2.08252266456E-10 2.16209998528E-10 2.24471811246E-10 2.33049324127E-10 2.41954600691E-10 2.51200165429E-10 2.60799021418E-10 2.70764668607E-10 2.81111122801E-10 2.91852935381E-10 3.03005213761E-10 3.14583642639E-10 3.26604506054E-10 3.39084710292E-10 3.52041807658E-10 3.65494021166E-10 3.79460270164E-10 3.93960196947E-10 4.09014194377E-10 4.24643434566E-10 4.40869898654E-10 4.57716407723E-10 4.75206654887E-10 4.93365238625E-10 5.12217697365E-10 5.31790545409E-10 5.52111310219E-10 5.73208571135E-10 5.95111999565E-10 6.17852400718E-10 6.41461756928E-10 6.65973272632E-10 6.91421421072E-10 7.17841992777E-10 7.45272145896E-10 7.73750458462E-10 8.03316982645E-10 8.34013301081E-10 8.65882585358E-10 8.98969656727E-10 9.33321049141E-10 9.68985074703E-10 1.00601189161E-09 1.04445357468E-09 1.08436418864E-09 1.12579986408E-09 1.16881887648E-09 1.21348172812E-09 1.25985123317E-09 1.30799260604E-09 1.35797355313E-09 1.40986436799E-09 1.46373803022E-09 1.51967030811E-09 1.57773986516E-09 1.63802837078E-09 1.70062061509E-09 1.76560462818E-09 1.83307180395E-09 1.90311702858E-09 1.97583881406E-09 2.05133943665E-09 2.12972508079E-09 2.21110598840E-09 2.29559661392E-09 2.38331578530E-09 2.47438687109E-09 2.56893795399E-09 2.66710201092E-09 2.76901710007E-09 2.87482655510E-09 2.98467918662E-09 3.09872949160E-09 3.21713787054E-09 3.34007085313E-09 3.46770133241E-09 3.60020880795E-09 3.73777963828E-09 3.88060730297E-09 4.02889267475E-09 4.18284430201E-09 4.34267870210E-09 4.50862066583E-09 4.68090357358E-09 4.85976972358E-09 5.04547067261E-09 5.23826758981E-09 5.43843162398E-09 5.64624428491E-09 5.86199783926E-09 6.08599572165E-09 6.31855296133E-09 6.55999662527E-09 6.81066627812E-09 7.07091445974E-09 7.34110718104E-09 7.62162443866E-09 7.91286074942E-09 8.21522570514E-09 8.52914454867E-09 8.85505877191E-09 9.19342673671E-09 9.54472431949E-09 9.90944558048E-09 1.02881034585E-08 1.06812304925E-08 1.10893795700E-08 1.15131247054E-08 1.19530618465E-08 1.24098097131E-08 1.28840106667E-08 1.33763316144E-08 1.38874649462E-08 1.44181295090E-08 1.49690716179E-08 1.55410661048E-08 1.61349174091E-08 1.67514607083E-08 1.73915630927E-08 1.80561247850E-08 1.87460804058E-08 1.94624002886E-08 2.02060918438E-08 2.09782009756E-08 2.17798135531E-08 2.26120569369E-08 2.34761015648E-08 2.43731625976E-08 2.53045016281E-08 2.62714284550E-08 2.72753029251E-08 2.83175368454E-08 2.93995959686E-08 3.05230020541E-08 3.16893350082E-08 3.29002351058E-08 3.41574052971E-08 3.54626136019E-08 3.68176955965E-08 3.82245569944E-08 3.96851763266E-08 4.12016077233E-08 4.27759838031E-08 4.44105186714E-08 4.61075110340E-08 4.78693474297E-08 4.96985055860E-08 5.15975579037E-08 5.35691750733E-08 5.56161298313E-08 5.77413008589E-08 5.99476768295E-08 6.22383606118E-08 6.46165736326E-08 6.70856604065E-08 6.96490932392E-08 7.23104771092E-08 7.50735547377E-08 7.79422118508E-08 8.09204826434E-08 8.40125554516E-08 8.72227786418E-08 9.05556667253E-08 9.40159067055E-08 9.76083646684E-08 1.01338092624E-07 1.05210335612E-07 1.09230539073E-07 1.13404356507E-07 1.17737657422E-07 1.22236535588E-07 1.26907317601E-07 1.31756571784E-07 1.36791117414E-07 1.42018034319E-07 1.47444672823E-07 1.53078664087E-07 1.58927930835E-07 1.65000698491E-07 1.71305506748E-07 1.77851221567E-07 1.84647047650E-07 1.91702541372E-07 1.99027624224E-07 2.06632596755E-07 2.14528153054E-07 2.22725395787E-07 2.31235851800E-07 2.40071488330E-07 2.49244729821E-07 2.58768475393E-07 2.68656116978E-07 2.78921558138E-07 2.89579233615E-07 3.00644129620E-07 3.12131804898E-07 3.24058412598E-07 3.36440722980E-07 3.49296146984E-07 3.62642760707E-07 3.76499330806E-07 3.90885340879E-07 4.05821018845E-07 4.21327365381E-07 4.37426183429E-07 4.54140108850E-07 4.71492642226E-07 4.89508181896E-07 5.08212058242E-07 5.27630569285E-07 5.47791017648E-07 5.68721748917E-07 5.90452191481E-07 6.13012897883E-07 6.36435587754E-07 6.60753192381E-07 6.85999900988E-07 7.12211208769E-07 7.39423966769E-07 7.67676433654E-07 7.97008329472E-07 8.27460891456E-07 8.59076931964E-07 8.91900898621E-07 9.25978936770E-07 9.61358954294E-07 9.98090688920E-07 1.03622577809E-06 1.07581783149E-06 1.11692250637E-06 1.15959758570E-06 1.20390305937E-06 1.24990120840E-06 1.29765669246E-06 1.34723664065E-06 1.39871074578E-06 1.45215136229E-06 1.50763360779E-06 1.56523546858E-06 1.62503790920E-06 1.68712498601E-06 1.75158396535E-06 1.81850544595E-06 1.88798348620E-06 1.96011573617E-06 2.03500357472E-06 2.11275225181E-06 2.19347103624E-06 2.27727336903E-06 2.36427702266E-06 2.45460426636E-06 2.54838203771E-06 2.64574212082E-06 2.74682133123E-06 2.85176170793E-06 2.96071071262E-06 3.07382143671E-06 3.19125281603E-06 3.31316985384E-06 3.43974385233E-06 3.57115265291E-06 3.70758088568E-06 3.84922022838E-06 3.99626967525E-06 4.14893581611E-06 4.30743312607E-06 4.47198426628E-06 4.64282039614E-06 4.82018149743E-06 5.00431671073E-06 5.19548468470E-06 5.39395393867E-06 5.60000323895E-06 5.81392198962E-06 6.03601063809E-06 6.26658109608E-06 6.50595717676E-06 6.75447504841E-06 7.01248370537E-06 7.28034545700E-06 7.55843643511E-06 7.84714712083E-06 8.14688289148E-06 8.45806458823E-06 8.78112910538E-06 9.11653000205E-06 9.46473813719E-06 9.82624232864E-06 1.02015500374E-05 1.05911880777E-05 1.09957033544E-05 1.14156636282E-05 1.18516583098E-05 1.23042992849E-05 1.27742217695E-05 1.32620851988E-05 1.37685741492E-05 1.42943992958E-05 1.48402984055E-05 1.54070373689E-05 1.59954112708E-05 1.66062455011E-05 1.72403969086E-05 1.78987549982E-05 1.85822431735E-05 1.92918200271E-05 2.00284806789E-05 2.07932581667E-05 2.15872248878E-05 2.24114940971E-05 2.32672214609E-05 2.41556066699E-05 2.50778951138E-05 2.60353796191E-05 2.70294022528E-05 2.80613561951E-05 2.91326876822E-05 3.02448980240E-05 3.13995456971E-05 3.25982485182E-05 3.38426858993E-05 3.51346011889E-05 3.64758041019E-05 3.78681732412E-05 3.93136587155E-05 4.08142848564E-05 4.23721530378E-05 4.39894446032E-05 4.56684239036E-05 4.74114414502E-05 4.92209371872E-05 5.10994438887E-05 5.30495906842E-05 5.50741067177E-05 5.71758249461E-05 5.93576860810E-05 6.16227426807E-05 6.39741633967E-05 6.64152373822E-05 6.89493788667E-05 7.15801319057E-05 7.43111753090E-05 7.71463277573E-05 8.00895531126E-05 8.31449659302E-05 8.63168371802E-05 8.96096001858E-05 9.30278567884E-05 9.65763837455E-05 1.00260139373E-04 1.04084270440E-04 1.08054119324E-04 1.12175231441E-04 1.16453362959E-04 1.20894488801E-04 1.25504810954E-04 1.30290767102E-04 1.35259039576E-04 1.40416564655E-04 1.45770542219E-04 1.51328445769E-04 1.57098032832E-04 1.63087355764E-04 1.69304772962E-04 1.75758960514E-04 1.82458924289E-04 1.89414012486E-04 1.96633928678E-04 2.04128745347E-04 2.11908917938E-04 2.19985299460E-04 2.28369155647E-04 2.37072180701E-04 2.46106513645E-04 2.55484755302E-04 2.65219985942E-04 2.75325783598E-04 2.85816243100E-04 2.96705995844E-04 3.08010230327E-04 3.19744713486E-04 3.31925812859E-04 3.44570519610E-04 3.57696472461E-04 3.71321982544E-04 3.85466059234E-04 4.00148436987E-04 4.15389603231E-04 4.31210827349E-04 4.47634190798E-04 4.64682618411E-04 4.82379910929E-04 5.00750778811E-04 5.19820877376E-04 5.39616843325E-04 5.60166332706E-04 5.81498060371E-04 6.03641840988E-04 6.26628631672E-04 6.50490576293E-04 6.75261051527E-04 7.00974714726E-04 7.27667553668E-04 7.55376938253E-04 7.84141674244E-04 8.14002059097E-04 8.44999939978E-04 8.77178774047E-04 9.10583691075E-04 9.45261558493E-04 9.81261048943E-04 1.01863271043E-03 1.05742903915E-03 1.09770455507E-03 1.13951588039E-03 1.18292182087E-03 1.22798345029E-03 1.27476419785E-03 1.32332993890E-03 1.37374908883E-03 1.42609270029E-03 1.48043456379E-03 1.53685131178E-03 1.59542252620E-03 1.65623084948E-03 1.71936209920E-03 1.78490538623E-03 1.85295323646E-03 1.92360171601E-03 1.99695055999E-03 2.07310330453E-03 2.15216742227E-03 2.23425446086E-03 2.31948018449E-03 2.40796471826E-03 2.49983269489E-03 2.59521340373E-03 2.69424094150E-03 2.79705436441E-03 2.90379784105E-03 3.01462080554E-03 3.12967811018E-03 3.24913017677E-03 3.37314314583E-03 3.50188902243E-03 3.63554581780E-03 3.77429768499E-03 3.91833504753E-03 4.06785471904E-03 4.22306001222E-03 4.38416083502E-03 4.55137377173E-03 4.72492214645E-03 4.90503606624E-03 5.09195244073E-03 5.28591497493E-03 5.48717413155E-03 5.69598705872E-03 5.91261747883E-03 6.13733553362E-03 6.37041758047E-03 6.61214593422E-03 6.86280854855E-03 7.12269863052E-03 7.39211418130E-03 7.67135745571E-03 7.96073433283E-03 8.26055358930E-03 8.57112606662E-03 8.89276372308E-03 9.22577856094E-03 9.57048141864E-03 9.92718061767E-03 1.02961804536E-02 1.06777795198E-02 1.10722688540E-02 1.14799298948E-02 1.19010322383E-02 1.23358311842E-02 1.27845650594E-02 1.32474523106E-02 1.37246883559E-02 1.42164421871E-02 1.47228527167E-02 1.52440248621E-02 1.57800253658E-02 1.63308783491E-02 1.68965606000E-02 1.74769966013E-02 1.80720533055E-02 1.86815346693E-02 1.93051759642E-02 1.99426378837E-02 2.05935004764E-02 2.12572569367E-02 2.19333072951E-02 2.26209520540E-02 2.33193858272E-02 2.40276910443E-02 2.47448317968E-02 2.54696479047E-02 2.62008492989E-02 2.69370108197E-02 2.76765675439E-02 2.84178107630E-02 2.91588847426E-02 2.98977844047E-02 3.06323540802E-02 3.13602874877E-02 3.20791290991E-02 3.27862770572E-02 3.34789878103E-02 3.41543826293E-02 3.48094561670E-02 3.54410872112E-02 3.60460517723E-02 3.66210386265E-02 3.71626674167E-02 3.76675093826E-02 3.81321107611E-02 3.85530188550E-02 3.89268107257E-02 3.92501244088E-02 3.95196924970E-02 3.97323778662E-02 3.98852112525E-02 3.99754303119E-02 4.00005197154E-02 3.99582517528E-02 3.98467268343E-02 3.96644132037E-02 3.94101850967E-02 3.90833585134E-02 3.86837237131E-02 3.82115734980E-02 3.76677263224E-02 3.70535432631E-02 3.63709379022E-02 3.56223782294E-02 3.48108797492E-02 3.39399891038E-02 3.30137576785E-02 3.20367048624E-02 3.10137708786E-02 2.99502593864E-02 2.88517703869E-02 2.77241243215E-02 2.65732786532E-02 2.54052386325E-02 2.42259643769E-02 2.30412768237E-02 2.18567655181E-02 2.06777015795E-02 1.95089595028E-02 1.83549516963E-02 1.72195798003E-02 1.61062068486E-02 1.50176542094E-02 1.39562269441E-02 1.29237707396E-02 1.19217628766E-02 1.09514387895E-02 1.00139546371E-02 9.11058494663E-03 8.24295281501E-03 7.41328837574E-03 6.62470928937E-03 5.88078121452E-03 5.18295657206E-03 4.53179087895E-03 3.92753993852E-03 3.37017991646E-03 2.85943386877E-03 2.39480455408E-03 1.97561317060E-03 1.60104344474E-03 1.27019026807E-03 9.82111834510E-04 7.35883975673E-04 5.30655135680E-04 3.65700174846E-04 2.39692834714E-04 1.48127607875E-04 8.51607730495E-05 4.42990378791E-05 1.91493754381E-05 5.81221987014E-06 7.44032829819E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 4 1 i j (l(j)) 0.00000000000E+00 Q_int 2.48076685152E-15 2.57556190720E-15 2.67397927126E-15 2.77615735935E-15 2.88223987624E-15 2.99237601796E-15 3.10672068160E-15 3.22543468319E-15 3.34868498386E-15 3.47664492466E-15 3.60949447034E-15 3.74742046248E-15 3.89061688222E-15 4.03928512313E-15 4.19363427442E-15 4.35388141504E-15 4.52025191891E-15 4.69297977200E-15 4.87230790130E-15 5.05848851654E-15 5.25178346492E-15 5.45246459929E-15 5.66081416057E-15 5.87712517469E-15 6.10170186463E-15 6.33486007839E-15 6.57692773313E-15 6.82824527639E-15 7.08916616486E-15 7.36005736156E-15 7.64129985186E-15 7.93328917938E-15 8.23643600223E-15 8.55116667057E-15 8.87792382629E-15 9.21716702547E-15 9.56937338479E-15 9.93503825246E-15 1.03146759050E-14 1.07088202704E-14 1.11180256791E-14 1.15428676437E-14 1.19839436681E-14 1.24418740883E-14 1.29173029444E-14 1.34108988866E-14 1.39233561154E-14 1.44553953583E-14 1.50077648832E-14 1.55812415507E-14 1.61766319070E-14 1.67947733178E-14 1.74365351463E-14 1.81028199760E-14 1.87945648796E-14 1.95127427374E-14 2.02583636053E-14 2.10324761357E-14 2.18361690517E-14 2.26705726791E-14 2.35368605354E-14 2.44362509807E-14 2.53700089311E-14 2.63394476374E-14 2.73459305327E-14 2.83908731494E-14 2.94757451103E-14 3.06020721952E-14 3.17714384874E-14 3.29854886009E-14 3.42459299937E-14 3.55545353692E-14 3.69131451694E-14 3.83236701632E-14 3.97880941338E-14 4.13084766689E-14 4.28869560568E-14 4.45257522943E-14 4.62271702088E-14 4.79936026994E-14 4.98275341031E-14 5.17315436881E-14 5.37083092816E-14 5.57606110360E-14 5.78913353389E-14 6.01034788724E-14 6.24001528279E-14 6.47845872816E-14 6.72601357375E-14 6.98302798434E-14 7.24986342882E-14 7.52689518849E-14 7.81451288491E-14 8.11312102788E-14 8.42313958430E-14 8.74500456885E-14 9.07916865721E-14 9.42610182270E-14 9.78629199724E-14 1.01602457576E-13 1.05484890380E-13 1.09515678693E-13 1.13700491478E-13 1.18045214315E-13 1.22555957689E-13 1.27239065574E-13 1.32101124363E-13 1.37148972128E-13 1.42389708235E-13 1.47830703335E-13 1.53479609723E-13 1.59344372103E-13 1.65433238766E-13 1.71754773182E-13 1.78317866052E-13 1.85131747806E-13 1.92206001589E-13 1.99550576734E-13 2.07175802762E-13 2.15092403903E-13 2.23311514182E-13 2.31844693076E-13 2.40703941776E-13 2.49901720058E-13 2.59450963815E-13 2.69365103244E-13 2.79658081737E-13 2.90344375491E-13 3.01439013868E-13 3.12957600531E-13 3.24916335390E-13 3.37332037387E-13 3.50222168148E-13 3.63604856544E-13 3.77498924185E-13 3.91923911894E-13 4.06900107185E-13 4.22448572802E-13 4.38591176336E-13 4.55350620982E-13 4.72750477472E-13 4.90815217220E-13 5.09570246743E-13 5.29041943391E-13 5.49257692446E-13 5.70245925636E-13 5.92036161122E-13 6.14659045012E-13 6.38146394464E-13 6.62531242433E-13 6.87847884129E-13 7.14131925251E-13 7.41420332061E-13 7.69751483377E-13 7.99165224548E-13 8.29702923495E-13 8.61407528886E-13 8.94323630546E-13 9.28497522167E-13 9.63977266412E-13 1.00081276252E-12 1.03905581647E-12 1.07876021386E-12 1.11998179554E-12 1.16277853614E-12 1.20721062565E-12 1.25334055399E-12 1.30123319898E-12 1.35095591755E-12 1.40257864045E-12 1.45617397065E-12 1.51181728540E-12 1.56958684228E-12 1.62956388925E-12 1.69183277891E-12 1.75648108713E-12 1.82359973626E-12 1.89328312294E-12 1.96562925093E-12 2.04073986886E-12 2.11872061343E-12 2.19968115789E-12 2.28373536636E-12 2.37100145389E-12 2.46160215280E-12 2.55566488524E-12 2.65332194241E-12 2.75471067065E-12 2.85997366454E-12 2.96925896750E-12 3.08272027999E-12 3.20051717566E-12 3.32281532578E-12 3.44978673228E-12 3.58160996960E-12 3.71847043587E-12 3.86056061366E-12 4.00808034067E-12 4.16123709080E-12 4.32024626596E-12 4.48533149897E-12 4.65672496812E-12 4.83466772369E-12 5.01941002698E-12 5.21121170225E-12 5.41034250219E-12 5.61708248726E-12 5.83172241959E-12 6.05456417193E-12 6.28592115216E-12 6.52611874410E-12 6.77549476517E-12 7.03439994142E-12 7.30319840087E-12 7.58226818558E-12 7.87200178337E-12 8.17280667977E-12 8.48510593118E-12 8.80933875979E-12 9.14596117137E-12 9.49544659657E-12 9.85828655676E-12 1.02349913553E-11 1.06260907953E-11 1.10321349248E-11 1.14536948099E-11 1.18913633387E-11 1.23457560545E-11 1.28175120218E-11 1.33072947250E-11 1.38157930016E-11 1.43437220108E-11 1.48918242397E-11 1.54608705472E-11 1.60516612481E-11 1.66650272390E-11 1.73018311667E-11 1.79629686413E-11 1.86493694961E-11 1.93619990951E-11 2.01018596908E-11 2.08699918337E-11 2.16674758359E-11 2.24954332903E-11 2.33550286481E-11 2.42474708564E-11 2.51740150587E-11 2.61359643601E-11 2.71346716596E-11 2.81715415534E-11 2.92480323102E-11 3.03656579216E-11 3.15259902324E-11 3.27306611502E-11 3.39813649413E-11 3.52798606131E-11 3.66279743884E-11 3.80276022733E-11 3.94807127241E-11 4.09893494159E-11 4.25556341164E-11 4.41817696705E-11 4.58700430979E-11 4.76228288100E-11 4.94425919490E-11 5.13318918553E-11 5.32933856665E-11 5.53298320547E-11 5.74440951065E-11 5.96391483505E-11 6.19180789401E-11 6.42840919947E-11 6.67405151076E-11 6.92908030260E-11 7.19385425099E-11 7.46874573764E-11 7.75414137368E-11 8.05044254343E-11 8.35806596889E-11 8.67744429581E-11 9.00902670221E-11 9.35327953006E-11 9.71068694117E-11 1.00817515981E-10 1.04669953713E-10 1.08669600726E-10 1.12822082177E-10 1.17133238173E-10 1.21609131979E-10 1.26256058551E-10 1.31080553390E-10 1.36089401727E-10 1.41289648073E-10 1.46688606122E-10 1.52293869039E-10 1.58113320138E-10 1.64155143971E-10 1.70427837836E-10 1.76940223731E-10 1.83701460758E-10 1.90721058007E-10 1.98008887929E-10 2.05575200220E-10 2.13430636236E-10 2.21586243961E-10 2.30053493543E-10 2.38844293426E-10 2.47971007101E-10 2.57446470490E-10 2.67284009998E-10 2.77497461263E-10 2.88101188604E-10 2.99110105231E-10 3.10539694216E-10 3.22406030269E-10 3.34725802344E-10 3.47516337112E-10 3.60795623331E-10 3.74582337143E-10 3.88895868339E-10 4.03756347632E-10 4.19184674970E-10 4.35202548923E-10 4.51832497209E-10 4.69097908370E-10 4.87023064668E-10 5.05633176238E-10 5.24954416539E-10 5.45013959171E-10 5.65840016084E-10 5.87461877261E-10 6.09909951912E-10 6.33215811237E-10 6.57412232830E-10 6.82533246781E-10 7.08614183529E-10 7.35691723558E-10 7.63803948979E-10 7.92990397091E-10 8.23292115985E-10 8.54751722278E-10 8.87413461043E-10 9.21323268040E-10 9.56528834316E-10 9.93079673283E-10 1.03102719035E-09 1.07042475521E-09 1.11132777692E-09 1.15379378182E-09 1.19788249443E-09 1.24365592143E-09 1.29117843893E-09 1.34051688292E-09 1.39174064334E-09 1.44492176164E-09 1.50013503209E-09 1.55745810699E-09 1.61697160587E-09 1.67875922885E-09 1.74290787442E-09 1.80950776158E-09 1.87865255676E-09 1.95043950555E-09 2.02496956946E-09 2.10234756790E-09 2.18268232563E-09 2.26608682576E-09 2.35267836871E-09 2.44257873711E-09 2.53591436712E-09 2.63281652624E-09 2.73342149792E-09 2.83787077322E-09 2.94631124980E-09 3.05889543852E-09 3.17578167792E-09 3.29713435692E-09 3.42312414601E-09 3.55392823724E-09 3.68973059348E-09 3.83072220708E-09 3.97710136853E-09 4.12907394527E-09 4.28685367129E-09 4.45066244765E-09 4.62073065460E-09 4.79729747555E-09 4.98061123347E-09 5.17092974010E-09 5.36852065856E-09 5.57366187976E-09 5.78664191320E-09 6.00776029275E-09 6.23732799789E-09 6.47566789103E-09 6.72311517161E-09 6.98001784750E-09 7.24673722440E-09 7.52364841398E-09 7.81114086141E-09 8.10961889306E-09 8.41950228512E-09 8.74122685395E-09 9.07524506897E-09 9.42202668903E-09 9.78205942300E-09 1.01558496157E-08 1.05439229599E-08 1.09468252357E-08 1.13651230781E-08 1.17994047739E-08 1.22502810887E-08 1.27183861264E-08 1.32043782204E-08 1.37089408597E-08 1.42327836502E-08 1.47766433124E-08 1.53412847176E-08 1.59275019633E-08 1.65361194905E-08 1.71679932424E-08 1.78240118687E-08 1.85050979750E-08 1.92122094202E-08 1.99463406639E-08 2.07085241643E-08 2.14998318309E-08 2.23213765310E-08 2.31743136557E-08 2.40598427438E-08 2.49792091692E-08 2.59337058920E-08 2.69246752768E-08 2.79535109806E-08 2.90216599124E-08 3.01306242679E-08 3.12819636421E-08 3.24772972223E-08 3.37183060655E-08 3.50067354616E-08 3.63443973885E-08 3.77331730595E-08 3.91750155690E-08 4.06719526391E-08 4.22260894706E-08 4.38396117037E-08 4.55147884913E-08 4.72539756898E-08 4.90596191721E-08 5.09342582667E-08 5.28805293286E-08 5.49011694463E-08 5.69990202909E-08 5.91770321116E-08 6.14382678844E-08 6.37859076189E-08 6.62232528302E-08 6.87537311808E-08 7.13809013006E-08 7.41084577907E-08 7.69402364186E-08 7.98802195110E-08 8.29325415542E-08 8.61014950070E-08 8.93915363364E-08 9.28072922836E-08 9.63535663695E-08 1.00035345649E-07 1.03857807722E-07 1.07826328015E-07 1.11946487337E-07 1.16224079728E-07 1.20665120605E-07 1.25275855218E-07 1.30062767433E-07 1.35032588848E-07 1.40192308254E-07 1.45549181465E-07 1.51110741518E-07 1.56884809262E-07 1.62879504356E-07 1.69103256682E-07 1.75564818201E-07 1.82273275248E-07 1.89238061318E-07 1.96468970319E-07 2.03976170343E-07 2.11770217962E-07 2.19862073068E-07 2.28263114278E-07 2.36985154934E-07 2.46040459704E-07 2.55441761828E-07 2.65202281014E-07 2.75335742024E-07 2.85856393963E-07 2.96779030311E-07 3.08119009717E-07 3.19892277588E-07 3.32115388499E-07 3.44805529467E-07 3.57980544104E-07 3.71658957698E-07 3.85860003253E-07 4.00603648519E-07 4.15910624057E-07 4.31802452371E-07 4.48301478166E-07 4.65430899739E-07 4.83214801591E-07 5.01678188271E-07 5.20847019514E-07 5.40748246725E-07 5.61409850850E-07 5.82860881699E-07 6.05131498766E-07 6.28253013609E-07 6.52257933845E-07 6.77180008831E-07 7.03054277085E-07 7.29917115512E-07 7.57806290519E-07 7.86761011075E-07 8.16821983799E-07 8.48031470146E-07 8.80433345783E-07 9.14073162225E-07 9.48998210827E-07 9.85257589215E-07 1.02290227026E-06 1.06198517367E-06 1.10256124032E-06 1.14468750945E-06 1.18842319873E-06 1.23382978749E-06 1.28097110301E-06 1.32991341019E-06 1.38072550459E-06 1.43347880908E-06 1.48824747408E-06 1.54510848171E-06 1.60414175391E-06 1.66543026459E-06 1.72906015620E-06 1.79512086061E-06 1.86370522471E-06 1.93490964072E-06 2.00883418155E-06 2.08558274119E-06 2.16526318063E-06 2.24798747921E-06 2.33387189177E-06 2.42303711184E-06 2.51560844101E-06 2.61171596472E-06 2.71149473488E-06 2.81508495928E-06 2.92263219839E-06 3.03428756951E-06 3.15020795880E-06 3.27055624137E-06 3.39550150973E-06 3.52521931098E-06 3.65989189300E-06 3.79970846006E-06 3.94486543813E-06 4.09556675035E-06 4.25202410291E-06 4.41445728194E-06 4.58309446155E-06 4.75817252375E-06 4.93993739050E-06 5.12864436834E-06 5.32455850624E-06 5.52795496701E-06 5.73911941290E-06 5.95834840580E-06 6.18594982278E-06 6.42224328733E-06 6.66756061710E-06 6.92224628863E-06 7.18665791978E-06 7.46116677052E-06 7.74615826274E-06 8.04203251983E-06 8.34920492688E-06 8.66810671201E-06 8.99918554996E-06 9.34290618856E-06 9.69975109901E-06 1.00702211509E-05 1.04548363128E-05 1.08541363797E-05 1.12686817279E-05 1.16990540985E-05 1.21458574109E-05 1.26097186069E-05 1.30912885274E-05 1.35912428216E-05 1.41102828914E-05 1.46491368712E-05 1.52085606453E-05 1.57893389036E-05 1.63922862375E-05 1.70182482770E-05 1.76681028719E-05 1.83427613165E-05 1.90431696221E-05 1.97703098365E-05 2.05252014142E-05 2.13089026387E-05 2.21225120983E-05 2.29671702177E-05 2.38440608483E-05 2.47544129180E-05 2.56995021442E-05 2.66806528107E-05 2.76992396130E-05 2.87566895725E-05 2.98544840240E-05 3.09941606774E-05 3.21773157584E-05 3.34056062299E-05 3.46807520965E-05 3.60045387976E-05 3.73788196902E-05 3.88055186253E-05 4.02866326222E-05 4.18242346436E-05 4.34204764759E-05 4.50775917173E-05 4.67978988801E-05 4.85838046091E-05 5.04378070220E-05 5.23624991757E-05 5.43605726634E-05 5.64348213477E-05 5.85881452340E-05 6.08235544904E-05 6.31441736193E-05 6.55532457857E-05 6.80541373095E-05 7.06503423261E-05 7.33454876240E-05 7.61433376629E-05 7.90477997828E-05 8.20629296077E-05 8.51929366538E-05 8.84421901487E-05 9.18152250691E-05 9.53167484070E-05 9.89516456706E-05 1.02724987631E-04 1.06642037321E-04 1.10708257300E-04 1.14929317192E-04 1.19311101501E-04 1.23859717732E-04 1.28581504808E-04 1.33483041806E-04 1.38571157025E-04 1.43852937390E-04 1.49335738218E-04 1.55027193339E-04 1.60935225610E-04 1.67068057820E-04 1.73434224002E-04 1.80042581176E-04 1.86902321534E-04 1.94022985079E-04 2.01414472744E-04 2.09087060007E-04 2.17051411011E-04 2.25318593229E-04 2.33900092667E-04 2.42807829654E-04 2.52054175218E-04 2.61651968085E-04 2.71614532319E-04 2.81955695629E-04 2.92689808364E-04 3.03831763233E-04 3.15397015764E-04 3.27401605543E-04 3.39862178257E-04 3.52796008565E-04 3.66221023851E-04 3.80155828862E-04 3.94619731296E-04 4.09632768355E-04 4.25215734307E-04 4.41390209106E-04 4.58178588092E-04 4.75604112834E-04 4.93690903140E-04 5.12463990304E-04 5.31949351607E-04 5.52173946157E-04 5.73165752092E-04 5.94953805210E-04 6.17568239088E-04 6.41040326741E-04 6.65402523878E-04 6.90688513838E-04 7.16933254241E-04 7.44173025452E-04 7.72445480912E-04 8.01789699413E-04 8.32246239398E-04 8.63857195358E-04 8.96666256418E-04 9.30718767193E-04 9.66061790994E-04 1.00274417550E-03 1.04081662095E-03 1.08033175102E-03 1.12134418640E-03 1.16391062125E-03 1.20808990261E-03 1.25394311289E-03 1.30153365550E-03 1.35092734384E-03 1.40219249366E-03 1.45540001905E-03 1.51062353195E-03 1.56793944562E-03 1.62742708192E-03 1.68916878273E-03 1.75325002546E-03 1.81975954296E-03 1.88878944788E-03 1.96043536149E-03 2.03479654739E-03 2.11197604987E-03 2.19208083732E-03 2.27522195063E-03 2.36151465682E-03 2.45107860784E-03 2.54403800476E-03 2.64052176732E-03 2.74066370895E-03 2.84460271727E-03 2.95248294004E-03 3.06445397657E-03 3.18067107457E-03 3.30129533228E-03 3.42649390573E-03 3.55644022108E-03 3.69131419161E-03 3.83130243926E-03 3.97659852015E-03 4.12740315385E-03 4.28392445558E-03 4.44637817105E-03 4.61498791288E-03 4.78998539792E-03 4.97161068440E-03 5.16011240778E-03 5.35574801393E-03 5.55878398817E-03 5.76949607852E-03 5.98816951112E-03 6.21509919570E-03 6.45058991870E-03 6.69495652128E-03 6.94852405919E-03 7.21162794111E-03 7.48461404176E-03 7.76783878560E-03 8.06166919659E-03 8.36648290895E-03 8.68266813343E-03 9.01062357313E-03 9.35075828216E-03 9.70349146009E-03 1.00692521744E-02 1.04484790025E-02 1.08416195840E-02 1.12491300744E-02 1.16714744877E-02 1.21091239196E-02 1.25625556362E-02 1.30322520179E-02 1.35186993440E-02 1.40223864033E-02 1.45438029169E-02 1.50834377574E-02 1.56417769466E-02 1.62193014183E-02 1.68164845252E-02 1.74337892748E-02 1.80716652763E-02 1.87305453795E-02 1.94108419891E-02 2.01129430366E-02 2.08372075933E-02 2.15839611092E-02 2.23534902620E-02 2.31460374054E-02 2.39617946047E-02 2.48008972525E-02 2.56634172597E-02 2.65493558210E-02 2.74586357577E-02 2.83910934481E-02 2.93464703584E-02 3.03244041965E-02 3.13244197174E-02 3.23459192176E-02 3.33881727654E-02 3.44503082239E-02 3.55313011357E-02 3.66299645496E-02 3.77449388827E-02 3.88746819262E-02 4.00174591156E-02 4.11713342053E-02 4.23341604980E-02 4.35035727992E-02 4.46769802831E-02 4.58515604680E-02 4.70242545193E-02 4.81917641091E-02 4.93505500753E-02 5.04968331322E-02 5.16265968952E-02 5.27355934848E-02 5.38193519763E-02 5.48731899591E-02 5.58922284598E-02 5.68714104673E-02 5.78055232783E-02 5.86892248487E-02 5.95170743009E-02 6.02835666889E-02 6.09831720640E-02 6.16103788213E-02 6.21597412240E-02 6.26259309208E-02 6.30037921692E-02 6.32884003719E-02 6.34751234198E-02 6.35596852084E-02 6.35382305717E-02 6.34073907419E-02 6.31643483192E-02 6.28069006062E-02 6.23335200448E-02 6.17434103917E-02 6.10365571791E-02 6.02137709491E-02 5.92767217169E-02 5.82279631250E-02 5.70709447981E-02 5.58100115090E-02 5.44503879175E-02 5.29981478574E-02 5.14601674267E-02 4.98440614775E-02 4.81581035128E-02 4.64111294711E-02 4.46124264153E-02 4.27716077252E-02 4.08984770195E-02 3.90028836818E-02 3.70945735200E-02 3.51830387259E-02 3.32773718913E-02 3.13861293569E-02 2.95172095748E-02 2.76777524325E-02 2.58740655702E-02 2.41115835933E-02 2.23948657033E-02 2.07276366124E-02 1.91128746468E-02 1.75529496644E-02 1.60498118056E-02 1.46052301702E-02 1.32210782817E-02 1.18996607034E-02 1.06440724505E-02 9.45857997615E-03 8.34794629312E-03 7.31371017219E-03 6.35599321060E-03 5.47437964375E-03 4.66795475456E-03 3.93535490119E-03 3.27482893193E-03 2.68431043749E-03 2.16149994024E-03 1.70395574109E-03 1.30919174409E-03 9.74780166218E-04 6.98456623952E-04 4.78224683982E-04 3.11411383004E-04 1.91231686509E-04 1.09288796941E-04 5.65406612513E-05 2.43104704207E-05 7.33866456032E-06 9.34297452015E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.37375344874E-15 1.42624731151E-15 1.48074706961E-15 1.53732937231E-15 1.59607379779E-15 1.65706296509E-15 1.72038265027E-15 1.78612190708E-15 1.85437319217E-15 1.92523249518E-15 1.99879947366E-15 2.07517759330E-15 2.15447427344E-15 2.23680103808E-15 2.32227367281E-15 2.41101238761E-15 2.50314198592E-15 2.59879204017E-15 2.69809707401E-15 2.80119675152E-15 2.90823607360E-15 3.01936558194E-15 3.13474157073E-15 3.25452630647E-15 3.37888825618E-15 3.50800232435E-15 3.64205009891E-15 3.78122010664E-15 3.92570807830E-15 4.07571722391E-15 4.23145851855E-15 4.39315099909E-15 4.56102207222E-15 4.73530783430E-15 4.91625340342E-15 5.10411326409E-15 5.29915162521E-15 5.50164279161E-15 5.71187154986E-15 5.93013356882E-15 6.15673581540E-15 6.39199698636E-15 6.63624795650E-15 6.88983224399E-15 7.15310649354E-15 7.42644097793E-15 7.71022011884E-15 8.00484302746E-15 8.31072406579E-15 8.62829342946E-15 8.95799775272E-15 9.30030073662E-15 9.65568380113E-15 1.00246467623E-14 1.04077085350E-14 1.08054078630E-14 1.12183040766E-14 1.16469778791E-14 1.20920321637E-14 1.25540928613E-14 1.30338098210E-14 1.35318577236E-14 1.40489370313E-14 1.45857749720E-14 1.51431265624E-14 1.57217756702E-14 1.63225361160E-14 1.69462528182E-14 1.75938029812E-14 1.82660973291E-14 1.89640813866E-14 1.96887368089E-14 2.04410827621E-14 2.12221773566E-14 2.20331191354E-14 2.28750486191E-14 2.37491499098E-14 2.46566523564E-14 2.55988322838E-14 2.65770147878E-14 2.75925755987E-14 2.86469430164E-14 2.97415999187E-14 3.08780858474E-14 3.20579991729E-14 3.32829993430E-14 3.45548092160E-14 3.58752174841E-14 3.72460811890E-14 3.86693283337E-14 4.01469605941E-14 4.16810561341E-14 4.32737725283E-14 4.49273497966E-14 4.66441135546E-14 4.84264782843E-14 5.02769507296E-14 5.21981334226E-14 5.41927283429E-14 5.62635407184E-14 5.84134829702E-14 6.06455788090E-14 6.29629674873E-14 6.53689082149E-14 6.78667847423E-14 7.04601101202E-14 7.31525316397E-14 7.59478359623E-14 7.88499544453E-14 8.18629686711E-14 8.49911161875E-14 8.82387964674E-14 9.16105770964E-14 9.51112001968E-14 9.87455890965E-14 1.02518855254E-13 1.06436305447E-13 1.10503449234E-13 1.14726006708E-13 1.19109916535E-13 1.23661344311E-13 1.28386691232E-13 1.33292603095E-13 1.38385979648E-13 1.43673984290E-13 1.49164054149E-13 1.54863910541E-13 1.60781569828E-13 1.66925354694E-13 1.73303905849E-13 1.79926194181E-13 1.86801533375E-13 1.93939593009E-13 2.01350412156E-13 2.09044413501E-13 2.17032418003E-13 2.25325660108E-13 2.33935803555E-13 2.42874957777E-13 2.52155694933E-13 2.61791067588E-13 2.71794627074E-13 2.82180442544E-13 2.92963120763E-13 3.04157826649E-13 3.15780304601E-13 3.27846900645E-13 3.40374585419E-13 3.53380978045E-13 3.66884370906E-13 3.80903755373E-13 3.95458848515E-13 4.10570120831E-13 4.26258825037E-13 4.42547025959E-13 4.59457631564E-13 4.77014425177E-13 4.95242098932E-13 5.14166288499E-13 5.33813609138E-13 5.54211693131E-13 5.75389228644E-13 5.97376000077E-13 6.20202929950E-13 6.43902122395E-13 6.68506908305E-13 6.94051892215E-13 7.20573000969E-13 7.48107534244E-13 7.76694217016E-13 8.06373254017E-13 8.37186386284E-13 8.69176949861E-13 9.02389936748E-13 9.36872058182E-13 9.72671810326E-13 1.00983954248E-12 1.04842752790E-12 1.08849003728E-12 1.13008341514E-12 1.17326615902E-12 1.21809900176E-12 1.26464499693E-12 1.31296960752E-12 1.36314079797E-12 1.41522912977E-12 1.46930786073E-12 1.52545304798E-12 1.58374365492E-12 1.64426166234E-12 1.70709218365E-12 1.77232358463E-12 1.84004760767E-12 1.91035950084E-12 1.98335815182E-12 2.05914622700E-12 2.13783031585E-12 2.21952108081E-12 2.30433341300E-12 2.39238659371E-12 2.48380446225E-12 2.57871559006E-12 2.67725346153E-12 2.77955666179E-12 2.88576907156E-12 2.99604006954E-12 3.11052474248E-12 3.22938410332E-12 3.35278531761E-12 3.48090193864E-12 3.61391415150E-12 3.75200902653E-12 3.89538078239E-12 4.04423105924E-12 4.19876920228E-12 4.35921255624E-12 4.52578677101E-12 4.69872611902E-12 4.87827382470E-12 5.06468240658E-12 5.25821403245E-12 5.45914088801E-12 5.66774555975E-12 5.88432143235E-12 6.10917310128E-12 6.34261680125E-12 6.58498085089E-12 6.83660611457E-12 7.09784648173E-12 7.36906936468E-12 7.65065621524E-12 7.94300306130E-12 8.24652106374E-12 8.56163709472E-12 8.88879433806E-12 9.22845291249E-12 9.58109051880E-12 9.94720311169E-12 1.03273055973E-11 1.07219325572E-11 1.11316390007E-11 1.15570011447E-11 1.19986172250E-11 1.24571083368E-11 1.29331193086E-11 1.34273196093E-11 1.39404042894E-11 1.44730949586E-11 1.50261408009E-11 1.56003196280E-11 1.61964389735E-11 1.68153372281E-11 1.74578848195E-11 1.81249854360E-11 1.88175772974E-11 1.95366344752E-11 2.02831682618E-11 2.10582285931E-11 2.18629055253E-11 2.26983307676E-11 2.35656792743E-11 2.44661708969E-11 2.54010720998E-11 2.63716977417E-11 2.73794129244E-11 2.84256349133E-11 2.95118351300E-11 3.06395412223E-11 3.18103392122E-11 3.30258757271E-11 3.42878603148E-11 3.55980678489E-11 3.69583410240E-11 3.83705929479E-11 3.98368098321E-11 4.13590537849E-11 4.29394657123E-11 4.45802683283E-11 4.62837692811E-11 4.80523643989E-11 4.98885410593E-11 5.17948816873E-11 5.37740673876E-11 5.58288817154E-11 5.79622145908E-11 6.01770663635E-11 6.24765520327E-11 6.48639056277E-11 6.73424847565E-11 6.99157753281E-11 7.25873964547E-11 7.53611055422E-11 7.82408035743E-11 8.12305405990E-11 8.43345214247E-11 8.75571115337E-11 9.09028432223E-11 9.43764219745E-11 9.79827330802E-11 1.01726848506E-10 1.05614034028E-10 1.09649756639E-10 1.13839692235E-10 1.18189733600E-10 1.22705998693E-10 1.27394839252E-10 1.32262849727E-10 1.37316876555E-10 1.42564027791E-10 1.48011683099E-10 1.53667504138E-10 1.59539445332E-10 1.65635765059E-10 1.71965037267E-10 1.78536163531E-10 1.85358385574E-10 1.92441298260E-10 1.99794863094E-10 2.07429422230E-10 2.15355713016E-10 2.23584883092E-10 2.32128506075E-10 2.40998597831E-10 2.50207633376E-10 2.59768564420E-10 2.69694837584E-10 2.80000413310E-10 2.90699785497E-10 3.01808001883E-10 3.13340685210E-10 3.25314055194E-10 3.37744951341E-10 3.50650856623E-10 3.64049922075E-10 3.77960992315E-10 3.92403632051E-10 4.07398153599E-10 4.22965645444E-10 4.39128001907E-10 4.55907953929E-10 4.73329101049E-10 4.91415944586E-10 5.10193922104E-10 5.29689443185E-10 5.49929926571E-10 5.70943838729E-10 5.92760733883E-10 6.15411295582E-10 6.38927379850E-10 6.63342059993E-10 6.88689673111E-10 7.15005868390E-10 7.42327657240E-10 7.70693465348E-10 8.00143186719E-10 8.30718239785E-10 8.62461625654E-10 8.95417988590E-10 9.29633678797E-10 9.65156817610E-10 1.00203736517E-09 1.04032719069E-09 1.08008014541E-09 1.12135213831E-09 1.16420121478E-09 1.20868763822E-09 1.25487397480E-09 1.30282518149E-09 1.35260869736E-09 1.40429453845E-09 1.45795539628E-09 1.51366674000E-09 1.57150692261E-09 1.63155729112E-09 1.69390230094E-09 1.75862963471E-09 1.82583032555E-09 1.89559888515E-09 1.96803343665E-09 2.04323585267E-09 2.12131189854E-09 2.20237138112E-09 2.28652830316E-09 2.37390102365E-09 2.46461242434E-09 2.55879008246E-09 2.65656645023E-09 2.75807904110E-09 2.86347062315E-09 2.97288941989E-09 3.08648931870E-09 3.20443008729E-09 3.32687759837E-09 3.45400406294E-09 3.58598827247E-09 3.72301585039E-09 3.86527951311E-09 4.01297934108E-09 4.16632306016E-09 4.32552633378E-09 4.49081306624E-09 4.66241571762E-09 4.84057563067E-09 5.02554337027E-09 5.21757907582E-09 5.41695282707E-09 5.62394502397E-09 5.83884678104E-09 6.06196033673E-09 6.29359947857E-09 6.53408998438E-09 6.78377008052E-09 7.04299091750E-09 7.31211706389E-09 7.59152701899E-09 7.88161374515E-09 8.18278522047E-09 8.49546501250E-09 8.82009287400E-09 9.15712536134E-09 9.50703647664E-09 9.87031833435E-09 1.02474818534E-08 1.06390574756E-08 1.10455959118E-08 1.14676689164E-08 1.19058700912E-08 1.23608157206E-08 1.28331456381E-08 1.33235241258E-08 1.38326408494E-08 1.43612118276E-08 1.49099804389E-08 1.54797184675E-08 1.60712271887E-08 1.66853384952E-08 1.73229160678E-08 1.79848565894E-08 1.86720910064E-08 1.93855858380E-08 2.01263445350E-08 2.08954088915E-08 2.16938605097E-08 2.25228223213E-08 2.33834601664E-08 2.42769844332E-08 2.52046517601E-08 2.61677668032E-08 2.71676840709E-08 2.82058098287E-08 2.92836040772E-08 3.04025826049E-08 3.15643191200E-08 3.27704474639E-08 3.40226639083E-08 3.53227295413E-08 3.66724727435E-08 3.80737917595E-08 3.95286573675E-08 4.10391156507E-08 4.26072908747E-08 4.42353884747E-08 4.59256981574E-08 4.76805971206E-08 4.95025533962E-08 5.13941293214E-08 5.33579851415E-08 5.53968827514E-08 5.75136895793E-08 5.97113826189E-08 6.19930526166E-08 6.43619084170E-08 6.68212814758E-08 6.93746305447E-08 7.20255465352E-08 7.47777575683E-08 7.76351342171E-08 8.06016949496E-08 8.36816117801E-08 8.68792161355E-08 9.01990049464E-08 9.36456469708E-08 9.72239893594E-08 1.00939064472E-07 1.04796096952E-07 1.08800511078E-07 1.12957938386E-07 1.17274225591E-07 1.21755442809E-07 1.26407892091E-07 1.31238116288E-07 1.36252908245E-07 1.41459320360E-07 1.46864674497E-07 1.52476572281E-07 1.58302905788E-07 1.64351868645E-07 1.70631967546E-07 1.77152034215E-07 1.83921237829E-07 1.90949097904E-07 1.98245497685E-07 2.05820698040E-07 2.13685351890E-07 2.21850519185E-07 2.30327682458E-07 2.39128762968E-07 2.48266137460E-07 2.57752655573E-07 2.67601657900E-07 2.77826994750E-07 2.88443045619E-07 2.99464739409E-07 3.10907575417E-07 3.22787645126E-07 3.35121654831E-07 3.47926949124E-07 3.61221535283E-07 3.75024108586E-07 3.89354078597E-07 4.04231596454E-07 4.19677583197E-07 4.35713759182E-07 4.52362674618E-07 4.69647741267E-07 4.87593265358E-07 5.06224481758E-07 5.25567589447E-07 5.45649788346E-07 5.66499317559E-07 5.88145495066E-07 6.10618758939E-07 6.33950710129E-07 6.58174156886E-07 6.83323160883E-07 7.09433085090E-07 7.36540643484E-07 7.64683952658E-07 7.93902585395E-07 8.24237626297E-07 8.55731729526E-07 8.88429178763E-07 9.22375949449E-07 9.57619773403E-07 9.94210205911E-07 1.03219869538E-06 1.07163865562E-06 1.11258554098E-06 1.15509692418E-06 1.19923257734E-06 1.24505455588E-06 1.29262728579E-06 1.34201765417E-06 1.39329510318E-06 1.44653172767E-06 1.50180237646E-06 1.55918475754E-06 1.61875954724E-06 1.68061050364E-06 1.74482458420E-06 1.81149206797E-06 1.88070668245E-06 1.95256573526E-06 2.02717025087E-06 2.10462511253E-06 2.18503920962E-06 2.26852559064E-06 2.35520162203E-06 2.44518915301E-06 2.53861468681E-06 2.63560955834E-06 2.73631011870E-06 2.84085792668E-06 2.94939994761E-06 3.06208875984E-06 3.17908276894E-06 3.30054643029E-06 3.42665047998E-06 3.55757217464E-06 3.69349554036E-06 3.83461163113E-06 3.98111879714E-06 4.13322296330E-06 4.29113791844E-06 4.45508561545E-06 4.62529648297E-06 4.80200974893E-06 4.98547377639E-06 5.17594641226E-06 5.37369534931E-06 5.57899850195E-06 5.79214439638E-06 6.01343257561E-06 6.24317401993E-06 6.48169158341E-06 6.72932044708E-06 6.98640858935E-06 7.25331727441E-06 7.53042155919E-06 7.81811081978E-06 8.11678929778E-06 8.42687666761E-06 8.74880862531E-06 9.08303750000E-06 9.43003288840E-06 9.79028231379E-06 1.01642919099E-05 1.05525871311E-05 1.09557134892E-05 1.13742373191E-05 1.18087465729E-05 1.22598516447E-05 1.27281862268E-05 1.32144081980E-05 1.37192005472E-05 1.42432723300E-05 1.47873596642E-05 1.53522267612E-05 1.59386669980E-05 1.65475040296E-05 1.71795929436E-05 1.78358214594E-05 1.85171111725E-05 1.92244188467E-05 1.99587377553E-05 2.07210990735E-05 2.15125733235E-05 2.23342718759E-05 2.31873485065E-05 2.40730010144E-05 2.49924728999E-05 2.59470551080E-05 2.69380878374E-05 2.79669624187E-05 2.90351232644E-05 3.01440698929E-05 3.12953590302E-05 3.24906067910E-05 3.37314909441E-05 3.50197532628E-05 3.63572019661E-05 3.77457142526E-05 3.91872389310E-05 4.06837991511E-05 4.22374952390E-05 4.38505076403E-05 4.55250999762E-05 4.72636222155E-05 4.90685139685E-05 5.09423079061E-05 5.28876333095E-05 5.49072197562E-05 5.70039009462E-05 5.91806186742E-05 6.14404269547E-05 6.37864963039E-05 6.62221181856E-05 6.87507096276E-05 7.13758180141E-05 7.41011260623E-05 7.69304569889E-05 7.98677798754E-05 8.29172152378E-05 8.60830408111E-05 8.93696975550E-05 9.27817958898E-05 9.63241221727E-05 1.00001645422E-04 1.03819524299E-04 1.07783114362E-04 1.11897975592E-04 1.16169880218E-04 1.20604820836E-04 1.25209018840E-04 1.29988933188E-04 1.34951269496E-04 1.40102989486E-04 1.45451320803E-04 1.51003767207E-04 1.56768119160E-04 1.62752464829E-04 1.68965201505E-04 1.75415047476E-04 1.82111054354E-04 1.89062619884E-04 1.96279501249E-04 2.03771828901E-04 2.11550120916E-04 2.19625297929E-04 2.28008698632E-04 2.36712095898E-04 2.45747713518E-04 2.55128243608E-04 2.64866864692E-04 2.74977260494E-04 2.85473639476E-04 2.96370755139E-04 3.07683927125E-04 3.19429063153E-04 3.31622681821E-04 3.44281936311E-04 3.57424639027E-04 3.71069287214E-04 3.85235089595E-04 3.99941994057E-04 4.15210716445E-04 4.31062770495E-04 4.47520498967E-04 4.64607106003E-04 4.82346690787E-04 5.00764282544E-04 5.19885876926E-04 5.39738473860E-04 5.60350116898E-04 5.81749934140E-04 6.03968180780E-04 6.27036283358E-04 6.50986885767E-04 6.75853897086E-04 7.01672541316E-04 7.28479409087E-04 7.56312511410E-04 7.85211335548E-04 8.15216903088E-04 8.46371830282E-04 8.78720390762E-04 9.12308580671E-04 9.47184186338E-04 9.83396854536E-04 1.02099816544E-03 1.06004170835E-03 1.10058316027E-03 1.14268036739E-03 1.18639342962E-03 1.23178478818E-03 1.27891931636E-03 1.32786441348E-03 1.37869010217E-03 1.43146912895E-03 1.48627706825E-03 1.54319242973E-03 1.60229676924E-03 1.66367480299E-03 1.72741452538E-03 1.79360733008E-03 1.86234813460E-03 1.93373550807E-03 2.00787180225E-03 2.08486328560E-03 2.16482028024E-03 2.24785730153E-03 2.33409320021E-03 2.42365130645E-03 2.51665957583E-03 2.61325073652E-03 2.71356243734E-03 2.81773739594E-03 2.92592354666E-03 3.03827418712E-03 3.15494812270E-03 3.27610980797E-03 3.40192948394E-03 3.53258330977E-03 3.66825348771E-03 3.80912837945E-03 3.95540261234E-03 4.10727717337E-03 4.26495948874E-03 4.42866348674E-03 4.59860964108E-03 4.77502499194E-03 4.95814314139E-03 5.14820421984E-03 5.34545481946E-03 5.55014789062E-03 5.76254259672E-03 5.98290412255E-03 6.21150343082E-03 6.44861696132E-03 6.69452626638E-03 6.94951757633E-03 7.21388128774E-03 7.48791136726E-03 7.77190466300E-03 8.06616011524E-03 8.37097785783E-03 8.68665820098E-03 9.01350048618E-03 9.35180180322E-03 9.70185555933E-03 1.00639498901E-02 1.04383659015E-02 1.08253757331E-02 1.12252404308E-02 1.16382076202E-02 1.20645089696E-02 1.25043574337E-02 1.29579442691E-02 1.34254358133E-02 1.39069700217E-02 1.44026527560E-02 1.49125538219E-02 1.54367027534E-02 1.59750843462E-02 1.65276339434E-02 1.70942324807E-02 1.76747013037E-02 1.82687967702E-02 1.88762046607E-02 1.94965344200E-02 2.01293132631E-02 2.07739801822E-02 2.14298799004E-02 2.20962568236E-02 2.27722490511E-02 2.34568825142E-02 2.41490653190E-02 2.48475823817E-02 2.55510904505E-02 2.62581136212E-02 2.69670394599E-02 2.76761158570E-02 2.83834487444E-02 2.90870008157E-02 2.97845913968E-02 3.04738976177E-02 3.11524570414E-02 3.18176719073E-02 3.24668151448E-02 3.30970383090E-02 3.37053815827E-02 3.42887859796E-02 3.48441078635E-02 3.53681358839E-02 3.58576103964E-02 3.63092454114E-02 3.67197530714E-02 3.70858706197E-02 3.74043897696E-02 3.76721883312E-02 3.78862638904E-02 3.80437692679E-02 3.81420494174E-02 3.81786793450E-02 3.81515025579E-02 3.80586694710E-02 3.78986751259E-02 3.76703955038E-02 3.73731216476E-02 3.70065907540E-02 3.65710133505E-02 3.60670956466E-02 3.54960561417E-02 3.48596355870E-02 3.41600994468E-02 3.34002320780E-02 3.25833219605E-02 3.17131374582E-02 3.07938927814E-02 2.98302040495E-02 2.88270356246E-02 2.77896371961E-02 2.67234724422E-02 2.56341404689E-02 2.45272916281E-02 2.34085397242E-02 2.22833730358E-02 2.11570669733E-02 2.00346015614E-02 1.89205872548E-02 1.78192028371E-02 1.67341493080E-02 1.56686236980E-02 1.46253166424E-02 1.36064372838E-02 1.26137686149E-02 1.16487557276E-02 1.07126285627E-02 9.80655966920E-03 8.93185616279E-03 8.09018354346E-03 7.28381729032E-03 6.51591623597E-03 5.79009726566E-03 5.10794701545E-03 4.47019673342E-03 3.87729808917E-03 3.32943862501E-03 2.82656287347E-03 2.36839900230E-03 1.95449067699E-03 1.58423364268E-03 1.25691632232E-03 9.71763510593E-04 7.27982017926E-04 5.24806890665E-04 3.61546609956E-04 2.36867325171E-04 1.46294220913E-04 8.40370112255E-05 4.36670980760E-05 1.88541719622E-05 5.71587466047E-06 7.30825774786E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 6 1 i j (l(j)) 0.00000000000E+00 Q_int 2.37574732945E-15 2.46652937945E-15 2.56078039289E-15 2.65863292577E-15 2.76022459935E-15 2.86569829367E-15 2.97520234848E-15 3.08889077192E-15 3.20692345705E-15 3.32946640681E-15 3.45669196740E-15 3.58877907074E-15 3.72591348609E-15 3.86828808132E-15 4.01610309415E-15 4.16956641383E-15 4.32889387343E-15 4.49430955344E-15 4.66604609694E-15 4.84434503673E-15 5.02945713508E-15 5.22164273640E-15 5.42117213335E-15 5.62832594702E-15 5.84339552162E-15 6.06668333417E-15 6.29850341995E-15 6.53918181418E-15 6.78905701049E-15 7.04848043707E-15 7.31781695087E-15 7.59744535074E-15 7.88775891020E-15 8.18916593054E-15 8.50209031506E-15 8.82697216523E-15 9.16426839971E-15 9.51445339691E-15 9.87801966218E-15 1.02554785205E-14 1.06473608356E-14 1.10542177566E-14 1.14766214931E-14 1.19151661199E-14 1.23704684126E-14 1.28431687153E-14 1.33339318405E-14 1.38434480048E-14 1.43724337992E-14 1.49216331973E-14 1.54918186012E-14 1.60837919280E-14 1.66983857378E-14 1.73364644045E-14 1.79989253313E-14 1.86867002130E-14 1.94007563466E-14 2.01420979909E-14 2.09117677800E-14 2.17108481888E-14 2.25404630558E-14 2.34017791637E-14 2.42960078801E-14 2.52244068615E-14 2.61882818221E-14 2.71889883698E-14 2.82279339131E-14 2.93065796404E-14 3.04264425751E-14 3.15890977089E-14 3.27961802171E-14 3.40493877586E-14 3.53504828630E-14 3.67012954095E-14 3.81037252011E-14 3.95597446357E-14 4.10714014805E-14 4.26408217522E-14 4.42702127066E-14 4.59618659433E-14 4.77181606284E-14 4.95415668407E-14 5.14346490458E-14 5.34000697024E-14 5.54405930072E-14 5.75590887823E-14 5.97585365117E-14 6.20420295311E-14 6.44127793788E-14 6.68741203126E-14 6.94295139987E-14 7.20825543806E-14 7.48369727336E-14 7.76966429123E-14 8.06655867992E-14 8.37479799610E-14 8.69481575208E-14 9.02706202559E-14 9.37200409269E-14 9.73012708500E-14 1.01019346720E-13 1.04879497694E-13 1.08887152745E-13 1.13047948299E-13 1.17367736159E-13 1.21852591740E-13 1.26508822609E-13 1.31342977358E-13 1.36361854812E-13 1.41572513597E-13 1.46982282059E-13 1.52598768577E-13 1.58429872260E-13 1.64483794059E-13 1.70769048299E-13 1.77294474655E-13 1.84069250582E-13 1.91102904226E-13 1.98405327820E-13 2.05986791603E-13 2.13857958255E-13 2.22029897904E-13 2.30514103684E-13 2.39322507909E-13 2.48467498848E-13 2.57961938152E-13 2.67819178941E-13 2.78053084583E-13 2.88678048195E-13 2.99709012883E-13 3.11161492759E-13 3.23051594758E-13 3.35396041297E-13 3.48212193788E-13 3.61518077056E-13 3.75332404693E-13 3.89674605373E-13 4.04564850178E-13 4.20024080970E-13 4.36074039838E-13 4.52737299681E-13 4.70037295956E-13 4.87998359630E-13 5.06645751411E-13 5.26005697265E-13 5.46105425305E-13 5.66973204087E-13 5.88638382361E-13 6.11131430355E-13 6.34483982624E-13 6.58728882540E-13 6.83900228491E-13 7.10033421827E-13 7.37165216658E-13 7.65333771540E-13 7.94578703145E-13 8.24941141975E-13 8.56463790213E-13 8.89190981776E-13 9.23168744668E-13 9.58444865718E-13 9.95068957780E-13 1.03309252952E-12 1.07256905785E-12 1.11355406313E-12 1.15610518730E-12 1.20028227486E-12 1.24614745714E-12 1.29376523959E-12 1.34320259258E-12 1.39452904551E-12 1.44781678468E-12 1.50314075473E-12 1.56057876413E-12 1.62021159452E-12 1.68212311441E-12 1.74640039705E-12 1.81313384298E-12 1.88241730709E-12 1.95434823065E-12 2.02902777840E-12 2.10656098072E-12 2.18705688147E-12 2.27062869127E-12 2.35739394672E-12 2.44747467577E-12 2.54099756927E-12 2.63809415920E-12 2.73890100362E-12 2.84355987877E-12 2.95221797842E-12 3.06502812092E-12 3.18214896411E-12 3.30374522846E-12 3.42998792874E-12 3.56105461454E-12 3.69712961996E-12 3.83840432290E-12 3.98507741415E-12 4.13735517692E-12 4.29545177687E-12 4.45958956338E-12 4.62999938223E-12 4.80692090029E-12 4.99060294257E-12 5.18130384219E-12 5.37929180367E-12 5.58484528018E-12 5.79825336514E-12 6.01981619879E-12 6.24984539035E-12 6.48866445622E-12 6.73660927502E-12 6.99402855997E-12 7.26128434930E-12 7.53875251546E-12 7.82682329372E-12 8.12590183101E-12 8.43640875575E-12 8.75878076940E-12 9.09347126065E-12 9.44095094308E-12 9.80170851715E-12 1.01762513576E-11 1.05651062268E-11 1.09688200161E-11 1.13879605142E-11 1.18231172066E-11 1.22749021037E-11 1.27439506026E-11 1.32309223798E-11 1.37365023194E-11 1.42614014764E-11 1.48063580766E-11 1.53721385547E-11 1.59595386327E-11 1.65693844384E-11 1.72025336679E-11 1.78598767912E-11 1.85423383053E-11 1.92508780338E-11 1.99864924772E-11 2.07502162143E-11 2.15431233570E-11 2.23663290613E-11 2.32209910955E-11 2.41083114687E-11 2.50295381207E-11 2.59859666781E-11 2.69789422755E-11 2.80098614480E-11 2.90801740951E-11 3.01913855196E-11 3.13450585453E-11 3.25428157141E-11 3.37863415689E-11 3.50773850219E-11 3.64177618151E-11 3.78093570733E-11 3.92541279558E-11 4.07541064088E-11 4.23114020230E-11 4.39282050010E-11 4.56067892373E-11 4.73495155163E-11 4.91588348327E-11 5.10372918386E-11 5.29875284222E-11 5.50122874234E-11 5.71144164916E-11 5.92968720903E-11 6.15627236556E-11 6.39151579124E-11 6.63574833570E-11 6.88931349097E-11 7.15256787458E-11 7.42588173113E-11 7.70963945299E-11 8.00424012092E-11 8.31009806533E-11 8.62764344903E-11 8.95732287217E-11 9.29960000040E-11 9.65495621692E-11 1.00238912995E-10 1.04069241235E-10 1.08045933915E-10 1.12174583907E-10 1.16460997802E-10 1.20911204069E-10 1.25531461538E-10 1.30328268200E-10 1.35308370348E-10 1.40478772064E-10 1.45846745069E-10 1.51419838951E-10 1.57205891783E-10 1.63213041144E-10 1.69449735569E-10 1.75924746425E-10 1.82647180251E-10 1.89626491566E-10 1.96872496162E-10 2.04395384913E-10 2.12205738106E-10 2.20314540321E-10 2.28733195881E-10 2.37473544887E-10 2.46547879878E-10 2.55968963110E-10 2.65750044513E-10 2.75904880321E-10 2.86447752419E-10 2.97393488432E-10 3.08757482577E-10 3.20555717313E-10 3.32804785819E-10 3.45521915332E-10 3.58724991375E-10 3.72432582909E-10 3.86663968454E-10 4.01439163195E-10 4.16778947138E-10 4.32704894332E-10 4.49239403212E-10 4.66405728099E-10 4.84228011905E-10 5.02731320089E-10 5.21941675910E-10 5.41886097023E-10 5.62592633479E-10 5.84090407176E-10 6.06409652811E-10 6.29581760408E-10 6.53639319463E-10 6.78616164777E-10 7.04547424040E-10 7.31469567240E-10 7.59420457948E-10 7.88439406575E-10 8.18567225654E-10 8.49846287241E-10 8.82320582506E-10 9.16035783604E-10 9.51039307905E-10 9.87380384686E-10 1.02511012436E-09 1.06428159038E-09 1.10494987382E-09 1.14717217090E-09 1.19100786342E-09 1.23651860226E-09 1.28376839408E-09 1.33282369137E-09 1.38375348586E-09 1.43662940562E-09 1.49152581571E-09 1.54851992284E-09 1.60769188392E-09 1.66912491879E-09 1.73290542728E-09 1.79912311069E-09 1.86787109799E-09 1.93924607674E-09 2.01334842912E-09 2.09028237308E-09 2.17015610893E-09 2.25308197148E-09 2.33917658805E-09 2.42856104250E-09 2.52136104549E-09 2.61770711132E-09 2.71773474145E-09 2.82158461507E-09 2.92940278696E-09 3.04134089290E-09 3.15755636292E-09 3.27821264271E-09 3.40347942348E-09 3.53353288063E-09 3.66855592148E-09 3.80873844256E-09 3.95427759664E-09 4.10537806999E-09 4.26225237028E-09 4.42512112544E-09 4.59421339391E-09 4.76976698682E-09 4.95202880241E-09 5.14125517331E-09 5.33771222696E-09 5.54167625995E-09 5.75343412656E-09 5.97328364222E-09 6.20153400226E-09 6.43850621687E-09 6.68453356246E-09 6.93996205039E-09 7.20515091363E-09 7.48047311191E-09 7.76631585625E-09 8.06308115355E-09 8.37118637191E-09 8.69106482762E-09 9.02316639452E-09 9.36795813674E-09 9.72592496548E-09 1.00975703210E-08 1.04834168807E-08 1.08840072940E-08 1.12999049456E-08 1.17316947479E-08 1.21799839633E-08 1.26454030585E-08 1.31286065910E-08 1.36302741296E-08 1.41511112102E-08 1.46918503278E-08 1.52532519669E-08 1.58361056709E-08 1.64412311521E-08 1.70694794452E-08 1.77217341033E-08 1.83989124410E-08 1.91019668243E-08 1.98318860099E-08 2.05896965353E-08 2.13764641633E-08 2.21932953798E-08 2.30413389505E-08 2.39217875362E-08 2.48358793699E-08 2.57848999982E-08 2.67701840892E-08 2.77931173093E-08 2.88551382718E-08 2.99577405601E-08 3.11024748280E-08 3.22909509803E-08 3.35248404368E-08 3.48058784825E-08 3.61358667082E-08 3.75166755438E-08 3.89502468885E-08 4.04385968417E-08 4.19838185378E-08 4.35880850900E-08 4.52536526461E-08 4.69828635608E-08 4.87781496899E-08 5.06420358099E-08 5.25771431680E-08 5.45861931688E-08 5.66720112003E-08 5.88375306074E-08 6.10857968166E-08 6.34199716182E-08 6.58433376126E-08 6.83593028259E-08 7.09714055022E-08 7.36833190788E-08 7.64988573518E-08 7.94219798384E-08 8.24567973447E-08 8.56075777459E-08 8.88787519876E-08 9.22749203157E-08 9.58008587453E-08 9.94615257756E-08 1.03262069362E-07 1.07207834156E-07 1.11304369017E-07 1.15557434818E-07 1.19973012541E-07 1.24557311691E-07 1.29316779025E-07 1.34258107615E-07 1.39388246259E-07 1.44714409253E-07 1.50244086532E-07 1.55985054199E-07 1.61945385464E-07 1.68133461986E-07 1.74557985665E-07 1.81227990871E-07 1.88152857148E-07 1.95342322398E-07 2.02806496576E-07 2.10555875898E-07 2.18601357602E-07 2.26954255262E-07 2.35626314699E-07 2.44629730491E-07 2.53977163115E-07 2.63681756744E-07 2.73757157730E-07 2.84217533779E-07 2.95077593877E-07 3.06352608957E-07 3.18058433372E-07 3.30211527178E-07 3.42828979271E-07 3.55928531411E-07 3.69528603157E-07 3.83648317759E-07 3.98307529036E-07 4.13526849285E-07 4.29327678247E-07 4.45732233192E-07 4.62763580137E-07 4.80445666273E-07 4.98803353614E-07 5.17862453945E-07 5.37649765092E-07 5.58193108589E-07 5.79521368773E-07 6.01664533376E-07 6.24653735669E-07 6.48521298210E-07 6.73300778267E-07 6.99027014970E-07 7.25736178271E-07 7.53465819763E-07 7.82254925449E-07 8.12143970515E-07 8.43174976206E-07 8.75391568863E-07 9.08839041217E-07 9.43564416027E-07 9.79616512135E-07 1.01704601306E-06 1.05590553819E-06 1.09624971670E-06 1.13813526432E-06 1.18162106297E-06 1.22676824349E-06 1.27364027147E-06 1.32230303647E-06 1.37282494449E-06 1.42527701406E-06 1.47973297602E-06 1.53626937704E-06 1.59496568709E-06 1.65590441111E-06 1.71917120479E-06 1.78485499491E-06 1.85304810417E-06 1.92384638082E-06 1.99734933324E-06 2.07366026965E-06 2.15288644315E-06 2.23513920227E-06 2.32053414728E-06 2.40919129246E-06 2.50123523459E-06 2.59679532778E-06 2.69600586506E-06 2.79900626683E-06 2.90594127653E-06 3.01696116374E-06 3.13222193507E-06 3.25188555304E-06 3.37612016333E-06 3.50510033066E-06 3.63900728374E-06 3.77802916944E-06 3.92236131675E-06 4.07220651074E-06 4.22777527697E-06 4.38928617675E-06 4.55696611364E-06 4.73105065162E-06 4.91178434540E-06 5.09942108328E-06 5.29422444313E-06 5.49646806183E-06 5.70643601888E-06 5.92442323455E-06 6.15073588322E-06 6.38569182246E-06 6.62962103843E-06 6.88286610824E-06 7.14578267991E-06 7.41873997061E-06 7.70212128385E-06 7.99632454632E-06 8.30176286522E-06 8.61886510678E-06 8.94807649673E-06 9.28985924367E-06 9.64469318614E-06 1.00130764643E-05 1.03955262171E-05 1.07925793062E-05 1.12047930667E-05 1.16327460877E-05 1.20770390211E-05 1.25382954221E-05 1.30171626212E-05 1.35143126298E-05 1.40304430794E-05 1.45662781972E-05 1.51225698187E-05 1.57000984383E-05 1.62996743001E-05 1.69221385302E-05 1.75683643120E-05 1.82392581056E-05 1.89357609143E-05 1.96588495986E-05 2.04095382400E-05 2.11888795571E-05 2.19979663748E-05 2.28379331498E-05 2.37099575531E-05 2.46152621138E-05 2.55551159238E-05 2.65308364082E-05 2.75437911625E-05 2.85953998589E-05 2.96871362256E-05 3.08205301008E-05 3.19971695642E-05 3.32187031497E-05 3.44868421418E-05 3.58033629586E-05 3.71701096252E-05 3.85889963412E-05 4.00620101447E-05 4.15912136773E-05 4.31787480540E-05 4.48268358414E-05 4.65377841484E-05 4.83139878345E-05 5.01579328385E-05 5.20721996338E-05 5.40594668136E-05 5.61225148128E-05 5.82642297691E-05 6.04876075309E-05 6.27957578168E-05 6.51919085317E-05 6.76794102462E-05 7.02617408452E-05 7.29425103521E-05 7.57254659350E-05 7.86144971025E-05 8.16136410948E-05 8.47270884792E-05 8.79591889567E-05 9.13144573868E-05 9.47975800415E-05 9.84134210941E-05 1.02167029353E-04 1.06063645250E-04 1.10108708094E-04 1.14307863593E-04 1.18666971670E-04 1.23192114559E-04 1.27889605227E-04 1.32765996092E-04 1.37828088085E-04 1.43082940053E-04 1.48537878508E-04 1.54200507753E-04 1.60078720390E-04 1.66180708217E-04 1.72514973550E-04 1.79090340960E-04 1.85915969459E-04 1.93001365152E-04 2.00356394359E-04 2.07991297238E-04 2.15916701925E-04 2.24143639205E-04 2.32683557743E-04 2.41548339891E-04 2.50750318094E-04 2.60302291917E-04 2.70217545723E-04 2.80509867016E-04 2.91193565487E-04 3.02283492781E-04 3.13795063017E-04 3.25744274087E-04 3.38147729774E-04 3.51022662703E-04 3.64386958175E-04 3.78259178911E-04 3.92658590740E-04 4.07605189267E-04 4.23119727572E-04 4.39223744958E-04 4.55939596810E-04 4.73290485602E-04 4.91300493089E-04 5.09994613746E-04 5.29398789485E-04 5.49539945724E-04 5.70446028834E-04 5.92146045045E-04 6.14670100848E-04 6.38049444969E-04 6.62316511963E-04 6.87504967502E-04 7.13649755424E-04 7.40787146607E-04 7.68954789745E-04 7.98191764102E-04 8.28538634318E-04 8.60037507357E-04 8.92732091667E-04 9.26667758656E-04 9.61891606563E-04 9.98452526821E-04 1.03640127301E-03 1.07579053249E-03 1.11667500087E-03 1.15911145928E-03 1.20315885480E-03 1.24887838384E-03 1.29633357891E-03 1.34559039863E-03 1.39671732131E-03 1.44978544208E-03 1.50486857371E-03 1.56204335142E-03 1.62138934149E-03 1.68298915414E-03 1.74692856057E-03 1.81329661439E-03 1.88218577754E-03 1.95369205087E-03 2.02791510943E-03 2.10495844263E-03 2.18492949938E-03 2.26793983836E-03 2.35410528336E-03 2.44354608396E-03 2.53638708153E-03 2.63275788055E-03 2.73279302542E-03 2.83663218259E-03 2.94442032821E-03 3.05630794103E-03 3.17245120060E-03 3.29301219064E-03 3.41815910734E-03 3.54806647243E-03 3.68291535069E-03 3.82289357159E-03 3.96819595463E-03 4.11902453776E-03 4.27558880847E-03 4.43810593667E-03 4.60680100856E-03 4.78190726059E-03 4.96366631237E-03 5.15232839718E-03 5.34815258875E-03 5.55140702263E-03 5.76236911023E-03 5.98132574357E-03 6.20857348818E-03 6.44441876184E-03 6.68917799590E-03 6.94317777613E-03 7.20675495947E-03 7.48025676262E-03 7.76404081808E-03 8.05847519282E-03 8.36393836431E-03 8.68081914794E-03 9.00951656962E-03 9.35043967659E-03 9.70400727892E-03 1.00706476135E-02 1.04507979220E-02 1.08449039329E-02 1.12534192377E-02 1.16768045508E-02 1.21155268404E-02 1.25700583193E-02 1.30408752821E-02 1.35284567740E-02 1.40332830790E-02 1.45558340102E-02 1.50965869871E-02 1.56560148850E-02 1.62345836369E-02 1.68327495742E-02 1.74509564859E-02 1.80896323811E-02 1.87491859359E-02 1.94300026091E-02 2.01324404100E-02 2.08568253017E-02 2.16034462283E-02 2.23725497505E-02 2.31643342814E-02 2.39789439130E-02 2.48164618290E-02 2.56769033030E-02 2.65602082838E-02 2.74662335769E-02 2.83947446349E-02 2.93454069771E-02 3.03177772654E-02 3.13112940719E-02 3.23252683829E-02 3.33588738932E-02 3.44111371565E-02 3.54809276676E-02 3.65669479685E-02 3.76677238777E-02 3.87815949639E-02 3.99067053925E-02 4.10409952950E-02 4.21821928211E-02 4.33278070540E-02 4.44751219817E-02 4.56211917319E-02 4.67628372931E-02 4.78966449572E-02 4.90189667267E-02 5.01259229418E-02 5.12134073842E-02 5.22770951181E-02 5.33124533244E-02 5.43147553773E-02 5.52790983977E-02 5.62004244965E-02 5.70735458953E-02 5.78931740725E-02 5.86539530404E-02 5.93504968030E-02 5.99774309819E-02 6.05294385202E-02 6.10013092949E-02 6.13879933694E-02 6.16846575174E-02 6.18867445376E-02 6.19900347580E-02 6.19907090072E-02 6.18854122021E-02 6.16713165739E-02 6.13461834345E-02 6.09084222658E-02 6.03571458141E-02 5.96922197843E-02 5.89143056674E-02 5.80248951986E-02 5.70263349464E-02 5.59218395748E-02 5.47154924135E-02 5.34122321102E-02 5.20178243475E-02 5.05388178652E-02 4.89824843639E-02 4.73567422550E-02 4.56700646860E-02 4.39313727819E-02 4.21499156194E-02 4.03351390562E-02 3.84965461787E-02 3.66435527742E-02 3.47853418687E-02 3.29307219589E-02 3.10879940908E-02 2.92648333558E-02 2.74681906562E-02 2.57042207011E-02 2.39782420943E-02 2.22947350288E-02 2.06573814882E-02 1.90691519342E-02 1.75324412213E-02 1.60492549161E-02 1.46214453045E-02 1.32509941669E-02 1.19403369183E-02 1.06927199923E-02 9.51258046358E-03 8.40487969749E-03 7.37141200673E-03 6.41258627429E-03 5.52829219619E-03 4.71793253802E-03 3.98046615063E-03 3.31446156147E-03 2.71816066517E-03 2.18955171366E-03 1.72645045598E-03 1.32658790836E-03 9.87702852418E-04 7.07636774958E-04 4.84428587316E-04 3.15364195220E-04 1.93569075903E-04 1.10542588732E-04 5.71293341454E-05 2.45351616487E-05 7.39769454861E-06 9.40603652411E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 7 2 i j (l(j)) 0.00000000000E+00 Q_int -4.51138142766E-18 -4.74268489904E-18 -4.98584755295E-18 -5.24147742268E-18 -5.51021371604E-18 -5.79272841374E-18 -6.08972794968E-18 -6.40195497738E-18 -6.73019022703E-18 -7.07525445773E-18 -7.43801050978E-18 -7.81936546224E-18 -8.22027290112E-18 -8.64173530384E-18 -9.08480654592E-18 -9.55059453622E-18 -1.00402639873E-17 -1.05550393279E-17 -1.10962077645E-17 -1.16651225000E-17 -1.22632061175E-17 -1.28919541376E-17 -1.35529387578E-17 -1.42478127840E-17 -1.49783137632E-17 -1.57462683282E-17 -1.65535967654E-17 -1.74023178164E-17 -1.82945537259E-17 -1.92325355484E-17 -2.02186087269E-17 -2.12552389581E-17 -2.23450183572E-17 -2.34906719405E-17 -2.46950644386E-17 -2.59612074600E-17 -2.72922670217E-17 -2.86915714658E-17 -3.01626197823E-17 -3.17090903580E-17 -3.33348501749E-17 -3.50439644792E-17 -3.68407069468E-17 -3.87295703696E-17 -4.07152778900E-17 -4.28027948109E-17 -4.49973410118E-17 -4.73044040012E-17 -4.97297526379E-17 -5.22794515569E-17 -5.49598763332E-17 -5.77777294247E-17 -6.07400569318E-17 -6.38542662158E-17 -6.71281444220E-17 -7.05698779508E-17 -7.41880729284E-17 -7.79917767267E-17 -8.19905005859E-17 -8.61942433983E-17 -9.06135167100E-17 -9.52593710058E-17 -1.00143423341E-16 -1.05277886390E-16 -1.10675598983E-16 -1.16350058214E-16 -1.22315453186E-16 -1.28586700493E-16 -1.35179481518E-16 -1.42110281647E-16 -1.49396431491E-16 -1.57056150217E-16 -1.65108591111E-16 -1.73573889470E-16 -1.82473212946E-16 -1.91828814484E-16 -2.01664087957E-16 -2.12003626673E-16 -2.22873284860E-16 -2.34300242326E-16 -2.46313072413E-16 -2.58941813453E-16 -2.72218043873E-16 -2.86174961163E-16 -3.00847464883E-16 -3.16272243932E-16 -3.32487868290E-16 -3.49534885461E-16 -3.67455921863E-16 -3.86295789419E-16 -4.06101597606E-16 -4.26922871258E-16 -4.48811674400E-16 -4.71822740435E-16 -4.96013609010E-16 -5.21444769890E-16 -5.48179814218E-16 -5.76285593525E-16 -6.05832386890E-16 -6.36894076680E-16 -6.69548333290E-16 -7.03876809362E-16 -7.39965343957E-16 -7.77904177199E-16 -8.17788175921E-16 -8.59717070883E-16 -9.03795706149E-16 -9.50134301253E-16 -9.98848726803E-16 -1.05006079422E-15 -1.10389856034E-15 -1.16049664758E-15 -1.21999658064E-15 -1.28254714032E-15 -1.34830473557E-15 -1.41743379460E-15 -1.49010717605E-15 -1.56650660119E-15 -1.64682310834E-15 -1.73125753059E-15 -1.82002099791E-15 -1.91333546518E-15 -2.01143426713E-15 -2.11456270182E-15 -2.22297864399E-15 -2.33695318992E-15 -2.45677133528E-15 -2.58273268779E-15 -2.71515221636E-15 -2.85436103873E-15 -3.00070724937E-15 -3.15455678996E-15 -3.31629436440E-15 -3.48632440077E-15 -3.66507206261E-15 -3.85298431208E-15 -4.05053102754E-15 -4.25820617857E-15 -4.47652906106E-15 -4.70604559578E-15 -4.94732969346E-15 -5.20098468983E-15 -5.46764485433E-15 -5.74797697604E-15 -6.04268203107E-15 -6.35249693531E-15 -6.67819638715E-15 -7.02059480458E-15 -7.38054836168E-15 -7.75895712952E-15 -8.15676732676E-15 -8.57497368573E-15 -9.01462193975E-15 -9.47681143802E-15 -9.96269789454E-15 -1.04734962780E-14 -1.10104838500E-14 -1.15750033584E-14 -1.21684663955E-14 -1.27923569272E-14 -1.34482350042E-14 -1.41377406625E-14 -1.48625980244E-14 -1.56246196100E-14 -1.64257108692E-14 -1.72678749463E-14 -1.81532176891E-14 -1.90839529141E-14 -2.00624079430E-14 -2.10910294216E-14 -2.21723894376E-14 -2.33091919528E-14 -2.45042795636E-14 -2.57606406097E-14 -2.70814166459E-14 -2.84699102980E-14 -2.99295935209E-14 -3.14641162802E-14 -3.30773156793E-14 -3.47732255538E-14 -3.65560865585E-14 -3.84303567710E-14 -4.04007228390E-14 -4.24721117000E-14 -4.46497029005E-14 -4.69389415478E-14 -4.93455519259E-14 -5.18755518084E-14 -5.45352675069E-14 -5.73313496894E-14 -6.02707900106E-14 -6.33609385949E-14 -6.66095224151E-14 -7.00246646140E-14 -7.36149048163E-14 -7.73892204823E-14 -8.13570493562E-14 -8.55283130647E-14 -8.99134419270E-14 -9.45234010355E-14 -9.93697176742E-14 -1.04464510143E-13 -1.09820518059E-13 -1.15451134213E-13 -1.21370438059E-13 -1.27593230917E-13 -1.34135072987E-13 -1.41012322257E-13 -1.48242175404E-13 -1.55842710799E-13 -1.63832933706E-13 -1.72232823810E-13 -1.81063385176E-13 -1.90346698767E-13 -2.00105977659E-13 -2.10365625086E-13 -2.21151295462E-13 -2.32489958527E-13 -2.44409966786E-13 -2.56941126407E-13 -2.70114771749E-13 -2.83963843715E-13 -2.98522972120E-13 -3.13828562284E-13 -3.29918886066E-13 -3.46834177556E-13 -3.64616733690E-13 -3.83311020007E-13 -4.02963781837E-13 -4.23624161191E-13 -4.45343819635E-13 -4.68177067475E-13 -4.92180999560E-13 -5.17415638044E-13 -5.43944082476E-13 -5.71832667579E-13 -6.01151129117E-13 -6.31972778277E-13 -6.64374684975E-13 -6.98437870577E-13 -7.34247510489E-13 -7.71893147138E-13 -8.11468913874E-13 -8.53073770352E-13 -8.96811749977E-13 -9.42792220042E-13 -9.91130155201E-13 -1.04194642496E-12 -1.09536809591E-12 -1.15152874948E-12 -1.21056881589E-12 -1.27263592540E-12 -1.33788527736E-12 -1.40648002833E-12 -1.47859170008E-12 -1.55440060840E-12 -1.63409631405E-12 -1.71787809675E-12 -1.80595545341E-12 -1.89854862206E-12 -1.99588913250E-12 -2.09822038526E-12 -2.20579826019E-12 -2.31889175634E-12 -2.43778366452E-12 -2.56277127448E-12 -2.69416711822E-12 -2.83229975152E-12 -2.97751457545E-12 -3.13017470005E-12 -3.29066185230E-12 -3.45937733060E-12 -3.63674300820E-12 -3.82320238811E-12 -4.01922171203E-12 -4.22529112623E-12 -4.44192590710E-12 -4.66966774959E-12 -4.90908612175E-12 -5.16077968858E-12 -5.42537780907E-12 -5.70354210982E-12 -5.99596813945E-12 -6.30338710777E-12 -6.62656771416E-12 -6.96631806969E-12 -7.32348771772E-12 -7.69896975820E-12 -8.09370308078E-12 -8.50867471249E-12 -8.94492228578E-12 -9.40353663299E-12 -9.88566451401E-12 -1.03925114836E-11 -1.09253449060E-11 -1.14854971236E-11 -1.20743687886E-11 -1.26934323654E-11 -1.33442358119E-11 -1.40284064506E-11 -1.47476550375E-11 -1.55037800393E-11 -1.62986721310E-11 -1.71343189229E-11 -1.80128099306E-11 -1.89363417998E-11 -1.99072237987E-11 -2.09278835922E-11 -2.20008733121E-11 -2.31288759383E-11 -2.43147120076E-11 -2.55613466659E-11 -2.68718970825E-11 -2.82496402444E-11 -2.96980211495E-11 -3.12206614212E-11 -3.28213683631E-11 -3.45041444794E-11 -3.62731974824E-11 -3.81329508134E-11 -4.00880547029E-11 -4.21433977981E-11 -4.43041193861E-11 -4.65756222444E-11 -4.89635861491E-11 -5.14739820773E-11 -5.41130871359E-11 -5.68875002567E-11 -5.98041586964E-11 -6.28703553817E-11 -6.60937571444E-11 -6.94824238906E-11 -7.30448287536E-11 -7.67898792790E-11 -8.07269396967E-11 -8.48658543344E-11 -8.92169722312E-11 -9.37911730136E-11 -9.85998940976E-11 -1.03655159286E-10 -1.08969608829E-10 -1.14556531034E-10 -1.20429895483E-10 -1.26604387965E-10 -1.33095447192E-10 -1.39919303401E-10 -1.47093018934E-10 -1.54634530896E-10 -1.62562696003E-10 -1.70897337728E-10 -1.79659295864E-10 -1.88870478629E-10 -1.98553917438E-10 -2.08733824490E-10 -2.19435653297E-10 -2.30686162331E-10 -2.42513481916E-10 -2.54947184564E-10 -2.68018358908E-10 -2.81759687429E-10 -2.96205528166E-10 -3.11392000616E-10 -3.27357076035E-10 -3.44140672374E-10 -3.61784754071E-10 -3.80333436971E-10 -3.99833098619E-10 -4.20332494199E-10 -4.41882878434E-10 -4.64538133718E-10 -4.88354904824E-10 -5.13392740520E-10 -5.39714242436E-10 -5.67385221568E-10 -5.96474862807E-10 -6.27055897893E-10 -6.59204787243E-10 -6.93001911095E-10 -7.28531770453E-10 -7.65883198328E-10 -8.05149581812E-10 -8.46429095532E-10 -8.89824947070E-10 -9.35445634969E-10 -9.83405219950E-10 -1.03382361005E-09 -1.08682686036E-09 -1.14254748813E-09 -1.20112480404E-09 -1.26270526040E-09 -1.32744281730E-09 -1.39549932740E-09 -1.46704494052E-09 -1.54225852899E-09 -1.62132813471E-09 -1.70445143921E-09 -1.79183625773E-09 -1.88370105873E-09 -1.98027550988E-09 -2.08180105216E-09 -2.18853150331E-09 -2.30073369223E-09 -2.41868812591E-09 -2.54268969053E-09 -2.67304838843E-09 -2.81009011299E-09 -2.95415746305E-09 -3.10561059921E-09 -3.26482814391E-09 -3.43220812773E-09 -3.60816898409E-09 -3.79315059497E-09 -3.98761539027E-09 -4.19204950335E-09 -4.40696398600E-09 -4.63289608544E-09 -4.87041058694E-09 -5.12010122515E-09 -5.38259216773E-09 -5.65853957506E-09 -5.94863323983E-09 -6.25359831064E-09 -6.57419710392E-09 -6.91123100869E-09 -7.26554248887E-09 -7.63801718828E-09 -8.02958614334E-09 -8.44122810925E-09 -8.87397200528E-09 -9.32889948538E-09 -9.80714764042E-09 -1.03099118389E-08 -1.08384487133E-08 -1.13940792989E-08 -1.19781923338E-08 -1.25922477315E-08 -1.32377802165E-08 -1.39164031723E-08 -1.46298126632E-08 -1.53797916836E-08 -1.61682145642E-08 -1.69970517287E-08 -1.78683745519E-08 -1.87843605642E-08 -1.97472988903E-08 -2.07595959268E-08 -2.18237814146E-08 -2.29425147090E-08 -2.41185914180E-08 -2.53549504363E-08 -2.66546812147E-08 -2.80210314963E-08 -2.94574154796E-08 -3.09674222336E-08 -3.25548247641E-08 -3.42235893776E-08 -3.59778856007E-08 -3.78220965349E-08 -3.97608299017E-08 -4.17989294317E-08 -4.39414870568E-08 -4.61938555119E-08 -4.85616617655E-08 -5.10508211022E-08 -5.36675516489E-08 -5.64183903432E-08 -5.93102086751E-08 -6.23502302916E-08 -6.55460487981E-08 -6.89056467497E-08 -7.24374155085E-08 -7.61501763994E-08 -8.00532023271E-08 -8.41562412110E-08 -8.84695402086E-08 -9.30038712643E-08 -9.77705578751E-08 -1.02781503553E-07 -1.08049221240E-07 -1.13586864654E-07 -1.19408261023E-07 -1.25527945519E-07 -1.31961197789E-07 -1.38724079464E-07 -1.45833474599E-07 -1.53307131698E-07 -1.61163707908E-07 -1.69422815234E-07 -1.78105069854E-07 -1.87232143218E-07 -1.96826815855E-07 -2.06913034501E-07 -2.17515971407E-07 -2.28662087033E-07 -2.40379196134E-07 -2.52696536797E-07 -2.65644843203E-07 -2.79256422343E-07 -2.93565234072E-07 -3.08606975896E-07 -3.24419171525E-07 -3.41041264313E-07 -3.58514715528E-07 -3.76883107159E-07 -3.96192250327E-07 -4.16490299555E-07 -4.37827871601E-07 -4.60258172224E-07 -4.83837127825E-07 -5.08623524496E-07 -5.34679154029E-07 -5.62068967420E-07 -5.90861236118E-07 -6.21127721435E-07 -6.52943853054E-07 -6.86388915733E-07 -7.21546246138E-07 -7.58503439930E-07 -7.97352568290E-07 -8.38190407444E-07 -8.81118677251E-07 -9.26244294499E-07 -9.73679636411E-07 -1.02354282111E-06 -1.07595799802E-06 -1.13105565705E-06 -1.18897295043E-06 -1.24985403328E-06 -1.31385041875E-06 -1.38112135502E-06 -1.45183421728E-06 -1.52616492217E-06 -1.60429836266E-06 -1.68642886550E-06 -1.77276066992E-06 -1.86350843329E-06 -1.95889776012E-06 -2.05916575980E-06 -2.16456163042E-06 -2.27534727439E-06 -2.39179794346E-06 -2.51420291734E-06 -2.64286621634E-06 -2.77810735013E-06 -2.92026210385E-06 -3.06968336514E-06 -3.22674199132E-06 -3.39182772213E-06 -3.56535013605E-06 -3.74773965816E-06 -3.93944861595E-06 -4.14095234949E-06 -4.35275037805E-06 -4.57536762390E-06 -4.80935569990E-06 -5.05529425933E-06 -5.31379241566E-06 -5.58549023273E-06 -5.87106029023E-06 -6.17120932661E-06 -6.48667996599E-06 -6.81825253100E-06 -7.16674694582E-06 -7.53302473582E-06 -7.91799112562E-06 -8.32259724432E-06 -8.74784243903E-06 -9.19477670397E-06 -9.66450323296E-06 -1.01581810967E-05 -1.06770280554E-05 -1.12223235097E-05 -1.17954116008E-05 -1.23977044626E-05 -1.30306856364E-05 -1.36959136554E-05 -1.43950258070E-05 -1.51297420809E-05 -1.59018693129E-05 -1.67133055353E-05 -1.75660445394E-05 -1.84621806674E-05 -1.94039138351E-05 -2.03935548082E-05 -2.14335307349E-05 -2.25263909505E-05 -2.36748130681E-05 -2.48816093694E-05 -2.61497335055E-05 -2.74822875288E-05 -2.88825292669E-05 -3.03538800574E-05 -3.18999328604E-05 -3.35244607631E-05 -3.52314259025E-05 -3.70249888181E-05 -3.89095182595E-05 -4.08896014678E-05 -4.29700549544E-05 -4.51559358019E-05 -4.74525535057E-05 -4.98654823888E-05 -5.24005746105E-05 -5.50639737992E-05 -5.78621293368E-05 -6.08018113271E-05 -6.38901262748E-05 -6.71345335111E-05 -7.05428623997E-05 -7.41233303563E-05 -7.78845617191E-05 -8.18356075099E-05 -8.59859661233E-05 -9.03456049876E-05 -9.49249832375E-05 -9.97350754453E-05 -1.04787396457E-04 -1.10094027382E-04 -1.15667642779E-04 -1.21521539109E-04 -1.27669664480E-04 -1.34126649772E-04 -1.40907841172E-04 -1.48029334194E-04 -1.55508009247E-04 -1.63361568808E-04 -1.71608576265E-04 -1.80268496510E-04 -1.89361738343E-04 -1.98909698762E-04 -2.08934809213E-04 -2.19460583887E-04 -2.30511670131E-04 -2.42113901061E-04 -2.54294350470E-04 -2.67081390095E-04 -2.80504749366E-04 -2.94595577694E-04 -3.09386509416E-04 -3.24911731480E-04 -3.41207053976E-04 -3.58309983606E-04 -3.76259800197E-04 -3.95097636365E-04 -4.14866560425E-04 -4.35611662665E-04 -4.57380145079E-04 -4.80221414686E-04 -5.04187180517E-04 -5.29331554410E-04 -5.55711155698E-04 -5.83385219915E-04 -6.12415711623E-04 -6.42867441466E-04 -6.74808187567E-04 -7.08308821355E-04 -7.43443437943E-04 -7.80289491145E-04 -8.18927933222E-04 -8.59443359457E-04 -9.01924157639E-04 -9.46462662527E-04 -9.93155315374E-04 -1.04210282856E-03 -1.09341035542E-03 -1.14718766521E-03 -1.20354932340E-03 -1.26261487715E-03 -1.32450904606E-03 -1.38936191814E-03 -1.45730915098E-03 -1.52849217801E-03 -1.60305841990E-03 -1.68116150078E-03 -1.76296146940E-03 -1.84862502479E-03 -1.93832574647E-03 -2.03224432880E-03 -2.13056881930E-03 -2.23349486060E-03 -2.34122593552E-03 -2.45397361520E-03 -2.57195780937E-03 -2.69540701866E-03 -2.82455858808E-03 -2.95965896111E-03 -3.10096393372E-03 -3.24873890748E-03 -3.40325914085E-03 -3.56480999774E-03 -3.73368719229E-03 -3.91019702858E-03 -4.09465663429E-03 -4.28739418658E-03 -4.48874912902E-03 -4.69907237779E-03 -4.91872651546E-03 -5.14808597049E-03 -5.38753718043E-03 -5.63747873664E-03 -5.89832150823E-03 -6.17048874279E-03 -6.45441614113E-03 -6.75055190340E-03 -7.05935674341E-03 -7.38130386807E-03 -7.71687891859E-03 -8.06657986977E-03 -8.43091688373E-03 -8.81041211400E-03 -9.20559945596E-03 -9.61702423904E-03 -1.00452428563E-02 -1.04908223264E-02 -1.09543397835E-02 -1.14363818889E-02 -1.19375441601E-02 -1.24584302117E-02 -1.29996509010E-02 -1.35618233749E-02 -1.41455700100E-02 -1.47515172406E-02 -1.53802942688E-02 -1.60325316502E-02 -1.67088597485E-02 -1.74099070541E-02 -1.81362983585E-02 -1.88886527813E-02 -1.96675816409E-02 -2.04736861659E-02 -2.13075550404E-02 -2.21697617786E-02 -2.30608619250E-02 -2.39813900751E-02 -2.49318567143E-02 -2.59127448725E-02 -2.69245065925E-02 -2.79675592121E-02 -2.90422814594E-02 -3.01490093655E-02 -3.12880319951E-02 -3.24595870024E-02 -3.36638560171E-02 -3.49009598710E-02 -3.61709536743E-02 -3.74738217553E-02 -3.88094724798E-02 -4.01777329675E-02 -4.15783437263E-02 -4.30109532305E-02 -4.44751124675E-02 -4.59702694871E-02 -4.74957639842E-02 -4.90508219570E-02 -5.06345504792E-02 -5.22459326343E-02 -5.38838226614E-02 -5.55469413659E-02 -5.72338718547E-02 -5.89430556567E-02 -6.06727892947E-02 -6.24212213794E-02 -6.41863502979E-02 -6.59660225731E-02 -6.77579319732E-02 -6.95596194530E-02 -7.13684740083E-02 -7.31817345295E-02 -7.49964927354E-02 -7.68096972718E-02 -7.86181590543E-02 -8.04185579319E-02 -8.22074507452E-02 -8.39812808422E-02 -8.57363891121E-02 -8.74690265813E-02 -8.91753686100E-02 -9.08515307085E-02 -9.24935859785E-02 -9.40975841660E-02 -9.56595722902E-02 -9.71756167899E-02 -9.86418271032E-02 -1.00054380568E-01 -1.01409548498E-01 -1.02703723268E-01 -1.03933446179E-01 -1.05095435885E-01 -1.06186617076E-01 -1.07204149115E-01 -1.08145454262E-01 -1.09008245103E-01 -1.09790550754E-01 -1.10490741387E-01 -1.11107550590E-01 -1.11640095062E-01 -1.12087891111E-01 -1.12450867439E-01 -1.12729373676E-01 -1.12924184141E-01 -1.13036496352E-01 -1.13067923820E-01 -1.13020482715E-01 -1.12896572090E-01 -1.12698947396E-01 -1.12430687148E-01 -1.12095152723E-01 -1.11695941401E-01 -1.11236832929E-01 -1.10721730058E-01 -1.10154593681E-01 -1.09539373433E-01 -1.08879934780E-01 -1.08179983875E-01 -1.07442991638E-01 -1.06672118751E-01 -1.05870143414E-01 -1.05039393888E-01 -1.04181687976E-01 -1.03298281664E-01 -1.02389829197E-01 -1.01456356794E-01 -1.00497252130E-01 -9.95112714945E-02 -9.84965662568E-02 -9.74507298741E-02 -9.63708661998E-02 -9.52536792475E-02 -9.40955838783E-02 -9.28928361000E-02 -9.16416808068E-02 -9.03385138754E-02 -8.89800545951E-02 -8.75635234677E-02 -8.60868195228E-02 -8.45486904937E-02 -8.29488885382E-02 -8.12883037288E-02 -7.95690673346E-02 -7.77946170251E-02 -7.59697166048E-02 -7.41004237796E-02 -7.21940008020E-02 -7.02587646551E-02 -6.83038757263E-02 -6.63390666576E-02 -6.43743161937E-02 -6.24194762918E-02 -6.04838643964E-02 -5.85758364557E-02 -5.67023597797E-02 -5.48686079938E-02 -5.30776028839E-02 -5.13299295955E-02 -4.96235521858E-02 -4.79537556829E-02 -4.63132383535E-02 -4.46923736626E-02 -4.30796553035E-02 -4.14623306857E-02 -3.98272184612E-02 -3.81616942649E-02 -3.64548161550E-02 -3.46985477184E-02 -3.28890230230E-02 -3.10285661256E-02 -2.91271442880E-02 -2.71969801091E-02 -2.52511602167E-02 -2.33034475671E-02 -2.13680656789E-02 -1.94594563977E-02 -1.75920135975E-02 -1.57797960883E-02 -1.40362239169E-02 -1.23737631948E-02 -1.08036055448E-02 -9.33534920666E-03 -7.97668974053E-03 -6.73312910145E-03 -5.60771256899E-03 -4.60080358397E-03 -3.70990691082E-03 -2.93040950970E-03 -2.25862925365E-03 -1.69017924247E-03 -1.21931931409E-03 -8.39067924732E-04 -5.41345825749E-04 -3.17152738732E-04 -1.56777750447E-04 -5.00435685710E-05 1.34159081090E-05 4.38460489997E-05 5.10322344759E-05 4.39341571704E-05 3.02980848427E-05 1.62527141835E-05 5.89555635824E-06 8.78172927293E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 8 2 i j (l(j)) 0.00000000000E+00 Q_int -5.06714188577E-18 -5.32693980509E-18 -5.60005784851E-18 -5.88717895341E-18 -6.18902107209E-18 -6.50633896706E-18 -6.83992609834E-18 -7.19061660749E-18 -7.55928740347E-18 -7.94686035526E-18 -8.35430459713E-18 -8.78263895189E-18 -9.23293447852E-18 -9.70631715038E-18 -1.02039706707E-17 -1.07271394325E-17 -1.12771316302E-17 -1.18553225306E-17 -1.24631579123E-17 -1.31021576802E-17 -1.37739196666E-17 -1.44801236264E-17 -1.52225354372E-17 -1.60030115153E-17 -1.68235034573E-17 -1.76860629204E-17 -1.85928467526E-17 -1.95461223857E-17 -2.05482735054E-17 -2.16018060112E-17 -2.27093542833E-17 -2.38736877692E-17 -2.50977179089E-17 -2.63845054154E-17 -2.77372679275E-17 -2.91593880562E-17 -3.06544218424E-17 -3.22261076492E-17 -3.38783755098E-17 -3.56153569542E-17 -3.74413953408E-17 -3.93610567165E-17 -4.13791412346E-17 -4.35006951575E-17 -4.57310234747E-17 -4.80757031688E-17 -5.05405971600E-17 -5.31318689672E-17 -5.58559981193E-17 -5.87197963579E-17 -6.17304246701E-17 -6.48954111947E-17 -6.82226700462E-17 -7.17205211047E-17 -7.53977108193E-17 -7.92634340794E-17 -8.33273572064E-17 -8.75996421245E-17 -9.20909717710E-17 -9.68125768090E-17 -1.01776263710E-16 -1.06994444276E-16 -1.12480166676E-16 -1.18247148073E-16 -1.24309808924E-16 -1.30683309038E-16 -1.37383585484E-16 -1.44427392443E-16 -1.51832343100E-16 -1.59616953688E-16 -1.67800689787E-16 -1.76404015000E-16 -1.85448442118E-16 -1.94956586921E-16 -2.04952224721E-16 -2.15460349818E-16 -2.26507237996E-16 -2.38120512228E-16 -2.50329211747E-16 -2.63163864659E-16 -2.76656564280E-16 -2.90841049385E-16 -3.05752788571E-16 -3.21429068952E-16 -3.37909089392E-16 -3.55234058521E-16 -3.73447297785E-16 -3.92594349764E-16 -4.12723092058E-16 -4.33883857003E-16 -4.56129557530E-16 -4.79515819471E-16 -5.04101120658E-16 -5.29946937145E-16 -5.57117896928E-16 -5.85681941555E-16 -6.15710496007E-16 -6.47278647305E-16 -6.80465332261E-16 -7.15353534867E-16 -7.52030493790E-16 -7.90587920524E-16 -8.31122228706E-16 -8.73734775210E-16 -9.18532113585E-16 -9.65626260496E-16 -1.01513497583E-15 -1.06718205714E-15 -1.12189764923E-15 -1.17941856955E-15 -1.23988865036E-15 -1.30345909833E-15 -1.37028887266E-15 -1.44054508258E-15 -1.51440340519E-15 -1.59204852472E-15 -1.67367459440E-15 -1.75948572187E-15 -1.84969647963E-15 -1.94453244150E-15 -2.04423074676E-15 -2.14904069306E-15 -2.25922435979E-15 -2.37505726347E-15 -2.49682904664E-15 -2.62484420211E-15 -2.75942283440E-15 -2.90090146011E-15 -3.04963384942E-15 -3.20599191070E-15 -3.37036662044E-15 -3.54316900096E-15 -3.72483114810E-15 -3.91580731174E-15 -4.11657503165E-15 -4.32763633158E-15 -4.54951897457E-15 -4.78277778265E-15 -5.02799602418E-15 -5.28578687231E-15 -5.55679493826E-15 -5.84169788315E-15 -6.14120811252E-15 -6.45607455772E-15 -6.78708454860E-15 -7.13506578230E-15 -7.50088839285E-15 -7.88546712701E-15 -8.28976363160E-15 -8.71478885808E-15 -9.16160559051E-15 -9.63133110304E-15 -1.01251399536E-14 -1.06442669212E-14 -1.11900100929E-14 -1.17637341104E-14 -1.23668735820E-14 -1.30009366698E-14 -1.36675088612E-14 -1.43682569329E-14 -1.51049331193E-14 -1.58793794938E-14 -1.66935325746E-14 -1.75494281675E-14 -1.84492064561E-14 -1.93951173535E-14 -2.03895261285E-14 -2.14349193195E-14 -2.25339109524E-14 -2.36892490772E-14 -2.49038226390E-14 -2.61806687026E-14 -2.75229800461E-14 -2.89341131448E-14 -3.04175965640E-14 -3.19771397825E-14 -3.36166424677E-14 -3.53402042274E-14 -3.71521348604E-14 -3.90569651337E-14 -4.10594581112E-14 -4.31646210645E-14 -4.53777179930E-14 -4.77042827870E-14 -5.01501330653E-14 -5.27213847221E-14 -5.54244672199E-14 -5.82661396664E-14 -6.12535077161E-14 -6.43940413376E-14 -6.76955934930E-14 -7.11664197735E-14 -7.48151990436E-14 -7.86510551418E-14 -8.26835796956E-14 -8.69228561052E-14 -9.13794847572E-14 -9.60646095310E-14 -1.00989945664E-13 -1.06167809047E-13 -1.11611147018E-13 -1.17333570739E-13 -1.23349389230E-13 -1.29673645151E-13 -1.36322152411E-13 -1.43311535717E-13 -1.50659272142E-13 -1.58383734825E-13 -1.66504238916E-13 -1.75041089871E-13 -1.84015634228E-13 -1.93450312984E-13 -2.03368717709E-13 -2.13795649536E-13 -2.24757181177E-13 -2.36280722117E-13 -2.48395087157E-13 -2.61130568457E-13 -2.74519011289E-13 -2.88593893664E-13 -3.03390410042E-13 -3.18945559340E-13 -3.35298237444E-13 -3.52489334473E-13 -3.70561837021E-13 -3.89560935647E-13 -4.09534137874E-13 -4.30531386984E-13 -4.52605186898E-13 -4.75810733462E-13 -5.00206052471E-13 -5.25852144755E-13 -5.52813138716E-13 -5.81156450682E-13 -6.10952953476E-13 -6.42277153644E-13 -6.75207377749E-13 -7.09825968230E-13 -7.46219489305E-13 -7.84478943414E-13 -8.24699998782E-13 -8.66983228629E-13 -9.11434362659E-13 -9.58164551433E-13 -1.00729064430E-12 -1.05893548160E-12 -1.11322820177E-12 -1.17030456433E-12 -1.23030728928E-12 -1.29338641404E-12 -1.35969966854E-12 -1.42941286968E-12 -1.50270033594E-12 -1.57974532326E-12 -1.66074048326E-12 -1.74588834497E-12 -1.83540182129E-12 -1.92950474129E-12 -2.02843240998E-12 -2.13243219665E-12 -2.24176415340E-12 -2.35670166543E-12 -2.47753213461E-12 -2.60455769815E-12 -2.73809598404E-12 -2.87848090535E-12 -3.02606349510E-12 -3.18121278405E-12 -3.34431672347E-12 -3.51578315515E-12 -3.69604083125E-12 -3.88554048637E-12 -4.08475596459E-12 -4.29418540433E-12 -4.51435248392E-12 -4.74580773101E-12 -4.98912989923E-12 -5.24492741525E-12 -5.51383990023E-12 -5.79653976909E-12 -6.09373391191E-12 -6.40616546146E-12 -6.73461565141E-12 -7.07990576975E-12 -7.44289921237E-12 -7.82450364200E-12 -8.22567325774E-12 -8.64741118103E-12 -9.09077196387E-12 -9.55686422570E-12 -1.00468534255E-11 -1.05619647758E-11 -1.11034863065E-11 -1.16727720853E-11 -1.22712456036E-11 -1.29004033360E-11 -1.35618184816E-11 -1.42571448984E-11 -1.49881212381E-11 -1.57565752940E-11 -1.65644285708E-11 -1.74137010893E-11 -1.83065164376E-11 -1.92451070806E-11 -2.02318199425E-11 -2.12691222747E-11 -2.23596078253E-11 -2.35060033242E-11 -2.47111753015E-11 -2.59781372545E-11 -2.73100571831E-11 -2.87102655109E-11 -3.01822634127E-11 -3.17297315684E-11 -3.33565393669E-11 -3.50667545806E-11 -3.68646535364E-11 -3.87547318084E-11 -4.07417154584E-11 -4.28305728530E-11 -4.50265270861E-11 -4.73350690390E-11 -4.97619711093E-11 -5.23133016440E-11 -5.49954401128E-11 -5.78150930589E-11 -6.07793108676E-11 -6.38955053951E-11 -6.71714685003E-11 -7.06153915272E-11 -7.42358857862E-11 -7.80420040850E-11 -8.20432633637E-11 -8.62496684900E-11 -9.06717372749E-11 -9.53205267701E-11 -1.00207660914E-10 -1.05345359596E-10 -1.10746469209E-10 -1.16424494767E-10 -1.22393633677E-10 -1.28668811230E-10 -1.35265717922E-10 -1.42200848686E-10 -1.49491544128E-10 -1.57156033888E-10 -1.65213482216E-10 -1.73684035889E-10 -1.82588874579E-10 -1.91950263812E-10 -2.01791610631E-10 -2.12137522125E-10 -2.23013866945E-10 -2.34447839984E-10 -2.46468030370E-10 -2.59104492942E-10 -2.72388823392E-10 -2.86354237261E-10 -3.01035652980E-10 -3.16469779174E-10 -3.32695206436E-10 -3.49752503809E-10 -3.67684320211E-10 -3.86535491067E-10 -4.06353150393E-10 -4.27186848643E-10 -4.49088676583E-10 -4.72113395523E-10 -4.96318574220E-10 -5.21764732805E-10 -5.48515494083E-10 -5.76637742589E-10 -6.06201791799E-10 -6.37281559914E-10 -6.69954754651E-10 -7.04303067510E-10 -7.40412377994E-10 -7.78372968306E-10 -8.18279749040E-10 -8.60232496454E-10 -9.04336101890E-10 -9.50700833994E-10 -9.99442614368E-10 -1.05068330735E-09 -1.10455102466E-09 -1.16118044563E-09 -1.22071315392E-09 -1.28329799137E-09 -1.34909143012E-09 -1.41825796374E-09 -1.49097051839E-09 -1.56741088509E-09 -1.64777017412E-09 -1.73224929276E-09 -1.82105944744E-09 -1.91442267168E-09 -2.01257238108E-09 -2.11575395676E-09 -2.22422535865E-09 -2.33825777031E-09 -2.45813627669E-09 -2.58416057671E-09 -2.71664573234E-09 -2.85592295600E-09 -3.00234043844E-09 -3.15626421892E-09 -3.31807910008E-09 -3.48818960967E-09 -3.66702101149E-09 -3.85502036828E-09 -4.05265765892E-09 -4.26042695304E-09 -4.47884764568E-09 -4.70846575529E-09 -4.94985528828E-09 -5.20361967337E-09 -5.47039326957E-09 -5.75084295134E-09 -6.04566977505E-09 -6.35561073073E-09 -6.68144058365E-09 -7.02397381025E-09 -7.38406663325E-09 -7.76261916102E-09 -8.16057763654E-09 -8.57893680167E-09 -9.01874238244E-09 -9.48109370175E-09 -9.96714642586E-09 -1.04781154516E-08 -1.10152779416E-08 -1.15799765147E-08 -1.21736226003E-08 -1.27976999638E-08 -1.34537684183E-08 -1.41434676995E-08 -1.48685215970E-08 -1.56307422309E-08 -1.64320346039E-08 -1.72744013112E-08 -1.81599476104E-08 -1.90908866200E-08 -2.00695448777E-08 -2.10983681569E-08 -2.21799275256E-08 -2.33169258487E-08 -2.45122044546E-08 -2.57687502710E-08 -2.70897033074E-08 -2.84783644464E-08 -2.99382036901E-08 -3.14728688646E-08 -3.30861946981E-08 -3.47822123931E-08 -3.65651596833E-08 -3.84394914355E-08 -4.04098907774E-08 -4.24812807406E-08 -4.46588365761E-08 -4.69479986914E-08 -4.93544861863E-08 -5.18843111468E-08 -5.45437936480E-08 -5.73395775616E-08 -6.02786470774E-08 -6.33683440702E-08 -6.66163867107E-08 -7.00308881679E-08 -7.36203774470E-08 -7.73938205260E-08 -8.13606422164E-08 -8.55307502352E-08 -8.99145598655E-08 -9.45230196527E-08 -9.93676388872E-08 -1.04460516290E-07 -1.09814370098E-07 -1.15442569949E-07 -1.21359170015E-07 -1.27578944065E-07 -1.34117422549E-07 -1.40990930931E-07 -1.48216630524E-07 -1.55812561419E-07 -1.63797687195E-07 -1.72191942409E-07 -1.81016281843E-07 -1.90292733230E-07 -2.00044451891E-07 -2.10295778346E-07 -2.21072298698E-07 -2.32400909135E-07 -2.44309882006E-07 -2.56828936834E-07 -2.69989313717E-07 -2.83823851843E-07 -2.98367070531E-07 -3.13655255368E-07 -3.29726548753E-07 -3.46621044307E-07 -3.64380887064E-07 -3.83050377878E-07 -4.02676084061E-07 -4.23306954671E-07 -4.44994442448E-07 -4.67792632142E-07 -4.91758373673E-07 -5.16951425125E-07 -5.43434599956E-07 -5.71273923078E-07 -6.00538795493E-07 -6.31302166786E-07 -6.63640715041E-07 -6.97635038374E-07 -7.33369854645E-07 -7.70934211080E-07 -8.10421706709E-07 -8.51930722588E-07 -8.95564666939E-07 -9.41432232240E-07 -9.89647662914E-07 -1.04033103990E-06 -1.09360857758E-06 -1.14961293661E-06 -1.20848355240E-06 -1.27036698052E-06 -1.33541725987E-06 -1.40379629272E-06 -1.47567424665E-06 -1.55122997466E-06 -1.63065145821E-06 -1.71413627072E-06 -1.80189206702E-06 -1.89413709636E-06 -1.99110074025E-06 -2.09302408077E-06 -2.20016049437E-06 -2.31277627701E-06 -2.43115130204E-06 -2.55557970920E-06 -2.68637063106E-06 -2.82384895371E-06 -2.96835611706E-06 -3.12025095619E-06 -3.27991058451E-06 -3.44773132098E-06 -3.62412966513E-06 -3.80954332154E-06 -4.00443227400E-06 -4.20927991713E-06 -4.42459424123E-06 -4.65090908011E-06 -4.88878542055E-06 -5.13881277568E-06 -5.40161063218E-06 -5.67782996485E-06 -5.96815483163E-06 -6.27330404607E-06 -6.59403293533E-06 -6.93113518537E-06 -7.28544477938E-06 -7.65783803363E-06 -8.04923573354E-06 -8.46060537990E-06 -8.89296354339E-06 -9.34737834186E-06 -9.82497203562E-06 -1.03269237578E-05 -1.08544723774E-05 -1.14089195065E-05 -1.19916326574E-05 -1.26040485562E-05 -1.32476766226E-05 -1.39241026216E-05 -1.46349924963E-05 -1.53820963929E-05 -1.61672528831E-05 -1.69923933977E-05 -1.78595468771E-05 -1.87708446560E-05 -1.97285255850E-05 -2.07349414076E-05 -2.17925624026E-05 -2.29039833023E-05 -2.40719295055E-05 -2.52992635919E-05 -2.65889921602E-05 -2.79442729980E-05 -2.93684226074E-05 -3.08649240931E-05 -3.24374354425E-05 -3.40897982039E-05 -3.58260465925E-05 -3.76504170366E-05 -3.95673581886E-05 -4.15815414231E-05 -4.36978718426E-05 -4.59214998151E-05 -4.82578330720E-05 -5.07125493851E-05 -5.32916098586E-05 -5.60012728575E-05 -5.88481086044E-05 -6.18390144764E-05 -6.49812310327E-05 -6.82823588071E-05 -7.17503759003E-05 -7.53936564075E-05 -7.92209897205E-05 -8.32416007432E-05 -8.74651710610E-05 -9.19018611063E-05 -9.65623333678E-05 -1.01457776685E-04 -1.06599931678E-04 -1.12001117370E-04 -1.17674259033E-04 -1.23632917341E-04 -1.29891318859E-04 -1.36464387944E-04 -1.43367780105E-04 -1.50617916899E-04 -1.58232022413E-04 -1.66228161406E-04 -1.74625279189E-04 -1.83443243289E-04 -1.92702887001E-04 -2.02426054889E-04 -2.12635650311E-04 -2.23355685065E-04 -2.34611331222E-04 -2.46428975247E-04 -2.58836274492E-04 -2.71862216155E-04 -2.85537178786E-04 -2.99892996463E-04 -3.14963025718E-04 -3.30782215307E-04 -3.47387178964E-04 -3.64816271199E-04 -3.83109666289E-04 -4.02309440546E-04 -4.22459657988E-04 -4.43606459530E-04 -4.65798155796E-04 -4.89085323688E-04 -5.13520906821E-04 -5.39160319946E-04 -5.66061557482E-04 -5.94285306278E-04 -6.23895062733E-04 -6.54957254377E-04 -6.87541366054E-04 -7.21720070815E-04 -7.57569365632E-04 -7.95168712064E-04 -8.34601181968E-04 -8.75953608372E-04 -9.19316741613E-04 -9.64785410829E-04 -1.01245869090E-03 -1.06244007494E-03 -1.11483765234E-03 -1.16976429255E-03 -1.22733783452E-03 -1.28768128197E-03 -1.35092300435E-03 -1.41719694367E-03 -1.48664282711E-03 -1.55940638533E-03 -1.63563957657E-03 -1.71550081630E-03 -1.79915521246E-03 -1.88677480607E-03 -1.97853881708E-03 -2.07463389529E-03 -2.17525437602E-03 -2.28060254039E-03 -2.39088887972E-03 -2.50633236386E-03 -2.62716071287E-03 -2.75361067169E-03 -2.88592828720E-03 -3.02436918706E-03 -3.16919885972E-03 -3.32069293476E-03 -3.47913746284E-03 -3.64482919418E-03 -3.81807585478E-03 -3.99919641910E-03 -4.18852137799E-03 -4.38639300072E-03 -4.59316558948E-03 -4.80920572485E-03 -5.03489250063E-03 -5.27061774604E-03 -5.51678623345E-03 -5.77381586944E-03 -6.04213786694E-03 -6.32219689589E-03 -6.61445120993E-03 -6.91937274622E-03 -7.23744719535E-03 -7.56917403826E-03 -7.91506654658E-03 -8.27565174302E-03 -8.65147031771E-03 -9.04307649664E-03 -9.45103785791E-03 -9.87593509119E-03 -1.03183616957E-02 -1.07789236120E-02 -1.12582387817E-02 -1.17569366311E-02 -1.22756574709E-02 -1.28150518089E-02 -1.33757795670E-02 -1.39585091984E-02 -1.45639166967E-02 -1.51926844925E-02 -1.58455002281E-02 -1.65230554062E-02 -1.72260439037E-02 -1.79551603443E-02 -1.87110983236E-02 -1.94945484783E-02 -2.03061963940E-02 -2.11467203441E-02 -2.20167888538E-02 -2.29170580824E-02 -2.38481690185E-02 -2.48107444829E-02 -2.58053859330E-02 -2.68326700670E-02 -2.78931452213E-02 -2.89873275611E-02 -3.01156970615E-02 -3.12786932789E-02 -3.24767109131E-02 -3.37100951639E-02 -3.49791368846E-02 -3.62840675395E-02 -3.76250539725E-02 -3.90021929976E-02 -4.04155058229E-02 -4.18649323245E-02 -4.33503251870E-02 -4.48714439324E-02 -4.64279488619E-02 -4.80193949371E-02 -4.96452256341E-02 -5.13047668036E-02 -5.29972205781E-02 -5.47216593690E-02 -5.64770200015E-02 -5.82620980404E-02 -6.00755423628E-02 -6.19158500400E-02 -6.37813615951E-02 -6.56702567053E-02 -6.75805504261E-02 -6.95100900148E-02 -7.14565524377E-02 -7.34174426462E-02 -7.53900927128E-02 -7.73716619183E-02 -7.93591378830E-02 -8.13493388387E-02 -8.33389171332E-02 -8.53243640627E-02 -8.73020161207E-02 -8.92680627516E-02 -9.12185556887E-02 -9.31494199494E-02 -9.50564665542E-02 -9.69354070182E-02 -9.87818696570E-02 -1.00591417728E-01 -1.02359569410E-01 -1.04081819606E-01 -1.05753663526E-01 -1.07370621981E-01 -1.08928268290E-01 -1.10422256678E-01 -1.11848351987E-01 -1.13202460511E-01 -1.14480661717E-01 -1.15679240557E-01 -1.16794720071E-01 -1.17823893909E-01 -1.18763858368E-01 -1.19612043499E-01 -1.20366242820E-01 -1.21024641089E-01 -1.21585839628E-01 -1.22048878592E-01 -1.22413255622E-01 -1.22678940278E-01 -1.22846383653E-01 -1.22916522600E-01 -1.22890778012E-01 -1.22771046656E-01 -1.22559686111E-01 -1.22259492436E-01 -1.21873670319E-01 -1.21405795525E-01 -1.20859769664E-01 -1.20239767397E-01 -1.19550176431E-01 -1.18795530805E-01 -1.17980438219E-01 -1.17109502360E-01 -1.16187241427E-01 -1.15218004278E-01 -1.14205885893E-01 -1.13154644007E-01 -1.12067619057E-01 -1.10947659672E-01 -1.09797056154E-01 -1.08617484418E-01 -1.07409962932E-01 -1.06174825113E-01 -1.04911709522E-01 -1.03619569963E-01 -1.02296707251E-01 -1.00940823974E-01 -9.95491030196E-02 -9.81183099440E-02 -9.66449184989E-02 -9.51252577344E-02 -9.35556781386E-02 -9.19327332492E-02 -9.02533721226E-02 -8.85151370045E-02 -8.67163595617E-02 -8.48563481612E-02 -8.29355579697E-02 -8.09557351707E-02 -7.89200264069E-02 -7.68330447288E-02 -7.47008839139E-02 -7.25310740787E-02 -7.03324730625E-02 -6.81150901445E-02 -6.58898412654E-02 -6.36682380189E-02 -6.14620162029E-02 -5.92827135760E-02 -5.71412105032E-02 -5.50472512355E-02 -5.30089674179E-02 -5.10324288303E-02 -4.91212490497E-02 -4.72762753984E-02 -4.54953929282E-02 -4.37734710033E-02 -4.21024780626E-02 -4.04717851772E-02 -3.88686719821E-02 -3.72790394496E-02 -3.56883229100E-02 -3.40825859614E-02 -3.24497618410E-02 -3.07809939725E-02 -2.90720124243E-02 -2.73251910652E-02 -2.55506304210E-02 -2.37604983808E-02 -2.19676024577E-02 -2.01851710319E-02 -1.84266108775E-02 -1.67052445561E-02 -1.50340322789E-02 -1.34252838794E-02 -1.18903675843E-02 -1.04394232762E-02 -9.08108887106E-03 -7.82224924560E-03 -6.66781777786E-03 -5.62056097079E-03 -4.68097673438E-03 -3.84723665817E-03 -3.11520194243E-03 -2.47917153720E-03 -1.93427824937E-03 -1.47518066873E-03 -1.09561878874E-03 -7.88567846744E-04 -5.46411292626E-04 -3.61130423875E-04 -2.24507440816E-04 -1.28337841293E-04 -6.46472035777E-05 -2.59065183938E-05 -5.23934906671E-06 3.38674840829E-06 4.99289243407E-06 3.45464804180E-06 1.41044079818E-06 2.22465190443E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 9 2 i j (l(j)) 0.00000000000E+00 Q_int -4.47509496102E-18 -4.70453798548E-18 -4.94574480532E-18 -5.19931856321E-18 -5.46589332563E-18 -5.74613566834E-18 -6.04074634314E-18 -6.35046203017E-18 -6.67605717998E-18 -7.01834595001E-18 -7.37818424048E-18 -7.75647183453E-18 -8.15415464818E-18 -8.57222709559E-18 -9.01173457564E-18 -9.47377608593E-18 -9.95950697090E-18 -1.04701418107E-17 -1.10069574585E-17 -1.15712962330E-17 -1.21645692749E-17 -1.27882600760E-17 -1.34439281880E-17 -1.41332131228E-17 -1.48578384517E-17 -1.56196161154E-17 -1.64204509549E-17 -1.72623454743E-17 -1.81474048484E-17 -1.90778421866E-17 -2.00559840669E-17 -2.10842763535E-17 -2.21652903125E-17 -2.33017290419E-17 -2.44964342305E-17 -2.57523932634E-17 -2.70727466924E-17 -2.84607960886E-17 -2.99200122986E-17 -3.14540441227E-17 -3.30667274396E-17 -3.47620947974E-17 -3.65443854975E-17 -3.84180561948E-17 -4.03877920421E-17 -4.24585184046E-17 -4.46354131768E-17 -4.69239197294E-17 -4.93297605206E-17 -5.18589514053E-17 -5.45178166780E-17 -5.73130048866E-17 -6.02515054572E-17 -6.33406661718E-17 -6.65882115409E-17 -7.00022621192E-17 -7.35913548111E-17 -7.73644642176E-17 -8.13310250770E-17 -8.55009558574E-17 -8.98846835572E-17 -9.44931697786E-17 -9.93379381372E-17 -1.04431103077E-16 -1.09785400162E-16 -1.15414217924E-16 -1.21331631339E-16 -1.27552437022E-16 -1.34092190225E-16 -1.40967243739E-16 -1.48194788776E-16 -1.55792897964E-16 -1.63780570532E-16 -1.72177779820E-16 -1.81005523225E-16 -1.90285874703E-16 -2.00042039963E-16 -2.10298414501E-16 -2.21080644593E-16 -2.32415691428E-16 -2.44331898526E-16 -2.56859062610E-16 -2.70028508114E-16 -2.83873165507E-16 -2.98427653642E-16 -3.13728366319E-16 -3.29813563285E-16 -3.46723465910E-16 -3.64500357752E-16 -3.83188690299E-16 -4.02835194112E-16 -4.23488995680E-16 -4.45201740260E-16 -4.68027721019E-16 -4.92024014792E-16 -5.17250624809E-16 -5.43770630726E-16 -5.71650346367E-16 -6.00959485536E-16 -6.31771336338E-16 -6.64162944442E-16 -6.98215305732E-16 -7.34013568839E-16 -7.71647248055E-16 -8.11210447171E-16 -8.52802094780E-16 -8.96526191652E-16 -9.42492070791E-16 -9.90814670821E-16 -1.04161482340E-15 -1.09501955534E-15 -1.15116240629E-15 -1.21018376258E-15 -1.27223120834E-15 -1.33745989447E-15 -1.40603292663E-15 -1.47812177311E-15 -1.55390669353E-15 -1.63357718963E-15 -1.71733247913E-15 -1.80538199384E-15 -1.89794590336E-15 -1.99525566565E-15 -2.09755460574E-15 -2.20509852423E-15 -2.31815633687E-15 -2.43701074702E-15 -2.56195895256E-15 -2.69331338902E-15 -2.83140251084E-15 -2.97657161266E-15 -3.12918369278E-15 -3.28962036079E-15 -3.45828279184E-15 -3.63559272976E-15 -3.82199354162E-15 -4.01795132643E-15 -4.22395608058E-15 -4.44052292314E-15 -4.66819338384E-15 -4.90753675727E-15 -5.15915152636E-15 -5.42366685888E-15 -5.70174418075E-15 -5.99407882990E-15 -6.30140179497E-15 -6.62448154319E-15 -6.96412594195E-15 -7.32118427885E-15 -7.69654938539E-15 -8.09115986951E-15 -8.50600246258E-15 -8.94211448677E-15 -9.40058644885E-15 -9.88256476707E-15 -1.03892546378E-14 -1.09219230490E-14 -1.14819019486E-14 -1.20705915750E-14 -1.26894639580E-14 -1.33400666004E-14 -1.40240263468E-14 -1.47430534519E-14 -1.54989458571E-14 -1.62935936862E-14 -1.71289839715E-14 -1.80072056228E-14 -1.89304546504E-14 -1.99010396564E-14 -2.09213876074E-14 -2.19940499031E-14 -2.31217087565E-14 -2.43071839001E-14 -2.55534396373E-14 -2.68635922545E-14 -2.82409178135E-14 -2.96888603430E-14 -3.12110404509E-14 -3.28112643776E-14 -3.44935335132E-14 -3.62620544036E-14 -3.81212492686E-14 -4.00757670598E-14 -4.21304950858E-14 -4.42905712323E-14 -4.65613968100E-14 -4.89486500604E-14 -5.14583003546E-14 -5.40966231195E-14 -5.68702155297E-14 -5.97860130039E-14 -6.28513065469E-14 -6.60737609812E-14 -6.94614341126E-14 -7.30227968788E-14 -7.67667545317E-14 -8.07026689045E-14 -8.48403818214E-14 -8.91902397072E-14 -9.37631194584E-14 -9.85704556416E-14 -1.03624269085E-13 -1.08937196938E-13 -1.14522524268E-13 -1.20394217283E-13 -1.26566958253E-13 -1.33056182221E-13 -1.39878115603E-13 -1.47049816758E-13 -1.54589218646E-13 -1.62515173667E-13 -1.70847500803E-13 -1.79607035175E-13 -1.88815680143E-13 -1.98496462072E-13 -2.08673587916E-13 -2.19372505739E-13 -2.30619968356E-13 -2.42444100225E-13 -2.54874467773E-13 -2.67942153326E-13 -2.81679832833E-13 -2.96121857571E-13 -3.11304340042E-13 -3.27265244269E-13 -3.44044480730E-13 -3.61684006151E-13 -3.80227928421E-13 -3.99722616884E-13 -4.20216818284E-13 -4.41761778659E-13 -4.64411371480E-13 -4.88222232363E-13 -5.13253900685E-13 -5.39568968466E-13 -5.67233236876E-13 -5.96315880775E-13 -6.26889621684E-13 -6.59030909621E-13 -6.92820114273E-13 -7.28341725951E-13 -7.65684566865E-13 -8.04942013223E-13 -8.46212228713E-13 -8.89598409969E-13 -9.35209044607E-13 -9.83158182504E-13 -1.03356572098E-12 -1.08655770458E-12 -1.14226664029E-12 -1.20083182883E-12 -1.26239971300E-12 -1.32712424384E-12 -1.39516726560E-12 -1.46669892043E-12 -1.54189807380E-12 -1.62095276177E-12 -1.70406066116E-12 -1.79142958388E-12 -1.88327799649E-12 -1.97983556652E-12 -2.08134373675E-12 -2.18805632893E-12 -2.30024017844E-12 -2.41817580154E-12 -2.54215809677E-12 -2.67249708234E-12 -2.80951867134E-12 -2.95356548669E-12 -3.10499771782E-12 -3.26419402136E-12 -3.43155246792E-12 -3.60749153752E-12 -3.79245116591E-12 -3.98689384469E-12 -4.19130577771E-12 -4.40619809683E-12 -4.63210814000E-12 -4.86960079482E-12 -5.11926991108E-12 -5.38173978562E-12 -5.65766672338E-12 -5.94774067844E-12 -6.25268697928E-12 -6.57326814241E-12 -6.91028577897E-12 -7.26458259920E-12 -7.63704451955E-12 -8.02860287792E-12 -8.44023676235E-12 -8.87297545929E-12 -9.32790102718E-12 -9.80615100215E-12 -1.03089212424E-11 -1.08374689181E-11 -1.13931156555E-11 -1.19772508408E-11 -1.25913350948E-11 -1.32369039249E-11 -1.39155715645E-11 -1.46290350092E-11 -1.53790782604E-11 -1.61675767857E-11 -1.69965022083E-11 -1.78679272373E-11 -1.87840308502E-11 -1.97471037408E-11 -2.07595540478E-11 -2.18239133752E-11 -2.29428431229E-11 -2.41191411412E-11 -2.53557487266E-11 -2.66557579760E-11 -2.80224195185E-11 -2.94591506428E-11 -3.09695438425E-11 -3.25573757979E-11 -3.42266168198E-11 -3.59814407766E-11 -3.78262355304E-11 -3.97656139086E-11 -4.18044252374E-11 -4.39477674672E-11 -4.62009999190E-11 -4.85697566851E-11 -5.10599607159E-11 -5.36778386296E-11 -5.64299362810E-11 -5.93231351282E-11 -6.23646694386E-11 -6.55621443774E-11 -6.89235550224E-11 -7.24573063548E-11 -7.61722342743E-11 -8.00776276913E-11 -8.41832517525E-11 -8.84993722568E-11 -9.30367813224E-11 -9.78068243706E-11 -1.02821428493E-10 -1.08093132271E-10 -1.13635117130E-10 -1.19461240290E-10 -1.25586069417E-10 -1.32024919047E-10 -1.38793888871E-10 -1.45909903993E-10 -1.53390757246E-10 -1.61255153673E-10 -1.69522757304E-10 -1.78214240310E-10 -1.87351334694E-10 -1.96956886624E-10 -2.07054913551E-10 -2.17670664259E-10 -2.28830681992E-10 -2.40562870815E-10 -2.52896565378E-10 -2.65862604259E-10 -2.79493407066E-10 -2.93823055485E-10 -3.08887378493E-10 -3.24724041932E-10 -3.41372642682E-10 -3.58874807648E-10 -3.77274297840E-10 -3.96617117772E-10 -4.16951630479E-10 -4.38328678426E-10 -4.60801710614E-10 -4.84426916209E-10 -5.09263365009E-10 -5.35373155120E-10 -5.62821568205E-10 -5.91677232678E-10 -6.22012295278E-10 -6.53902601429E-10 -6.87427884849E-10 -7.22671966876E-10 -7.59722966012E-10 -7.98673518210E-10 -8.39621008452E-10 -8.82667814193E-10 -9.27921561290E-10 -9.75495393045E-10 -1.02550825304E-09 -1.07808518247E-09 -1.13335763272E-09 -1.19146379394E-09 -1.25254894050E-09 -1.31676579414E-09 -1.38427490569E-09 -1.45524505642E-09 -1.52985367995E-09 -1.60828730568E-09 -1.69074202516E-09 -1.77742398212E-09 -1.86854988781E-09 -1.96434756262E-09 -2.06505650556E-09 -2.17092849286E-09 -2.28222820723E-09 -2.39923389950E-09 -2.52223808397E-09 -2.65154826958E-09 -2.78748772845E-09 -2.93039630383E-09 -3.08063125944E-09 -3.23856817239E-09 -3.40460187179E-09 -3.57914742551E-09 -3.76264117745E-09 -3.95554183806E-09 -4.15833163065E-09 -4.37151749646E-09 -4.59563236155E-09 -4.83123646847E-09 -5.07891877633E-09 -5.33929843248E-09 -5.61302631965E-09 -5.90078668238E-09 -6.20329883674E-09 -6.52131896769E-09 -6.85564201850E-09 -7.20710367700E-09 -7.57658246358E-09 -7.96500192614E-09 -8.37333294757E-09 -8.80259617134E-09 -9.25386455145E-09 -9.72826603292E-09 -1.02269863697E-08 -1.07512720869E-08 -1.13024335945E-08 -1.18818484635E-08 -1.24909648610E-08 -1.31313051593E-08 -1.38044697820E-08 -1.45121411495E-08 -1.52560879044E-08 -1.60381693083E-08 -1.68603399364E-08 -1.77246545084E-08 -1.86332730267E-08 -1.95884662030E-08 -2.05926211155E-08 -2.16482471121E-08 -2.27579821729E-08 -2.39245994434E-08 -2.51510141348E-08 -2.64402908892E-08 -2.77956513273E-08 -2.92204821628E-08 -3.07183436062E-08 -3.22929783253E-08 -3.39483207171E-08 -3.56885067639E-08 -3.75178843327E-08 -3.94410240841E-08 -4.14627307781E-08 -4.35880553954E-08 -4.58223076217E-08 -4.81710691807E-08 -5.06402076878E-08 -5.32358914413E-08 -5.59646046053E-08 -5.88331635301E-08 -6.18487337542E-08 -6.50188478064E-08 -6.83514238942E-08 -7.18547861405E-08 -7.55376846949E-08 -7.94093179985E-08 -8.34793555212E-08 -8.77579620550E-08 -9.22558228372E-08 -9.69841704117E-08 -1.01954812355E-07 -1.07180161087E-07 -1.12673264581E-07 -1.18447838774E-07 -1.24518302023E-07 -1.30899810931E-07 -1.37608298101E-07 -1.44660511704E-07 -1.52074057528E-07 -1.59867442582E-07 -1.68060121303E-07 -1.76672543968E-07 -1.85726207635E-07 -1.95243709828E-07 -2.05248804492E-07 -2.15766461438E-07 -2.26822928400E-07 -2.38445796475E-07 -2.50664068452E-07 -2.63508231434E-07 -2.77010332496E-07 -2.91204058453E-07 -3.06124819556E-07 -3.21809837923E-07 -3.38298239687E-07 -3.55631152447E-07 -3.73851807785E-07 -3.93005648566E-07 -4.13140441657E-07 -4.34306397113E-07 -4.56556292595E-07 -4.79945604745E-07 -5.04532646886E-07 -5.30378713665E-07 -5.57548234194E-07 -5.86108930357E-07 -6.16131986612E-07 -6.47692226007E-07 -6.80868295468E-07 -7.15742861686E-07 -7.52402815611E-07 -7.90939488566E-07 -8.31448877792E-07 -8.74031885426E-07 -9.18794568075E-07 -9.65848399852E-07 -1.01531054831E-06 -1.06730416500E-06 -1.12195869016E-06 -1.17941017315E-06 -1.23980160957E-06 -1.30328329466E-06 -1.37001319531E-06 -1.44015734109E-06 -1.51389023387E-06 -1.59139527990E-06 -1.67286524293E-06 -1.75850272011E-06 -1.84852064235E-06 -1.94314280041E-06 -2.04260439627E-06 -2.14715262448E-06 -2.25704728180E-06 -2.37256140571E-06 -2.49398195021E-06 -2.62161049107E-06 -2.75576396837E-06 -2.89677546759E-06 -3.04499503825E-06 -3.20079055605E-06 -3.36454862646E-06 -3.53667553497E-06 -3.71759824532E-06 -3.90776544827E-06 -4.10764866168E-06 -4.31774338794E-06 -4.53857032945E-06 -4.77067666302E-06 -5.01463738189E-06 -5.27105670157E-06 -5.54056953992E-06 -5.82384306844E-06 -6.12157834394E-06 -6.43451201951E-06 -6.76341814389E-06 -7.10911004923E-06 -7.47244233444E-06 -7.85431294662E-06 -8.25566536759E-06 -8.67749091046E-06 -9.12083112822E-06 -9.58678034537E-06 -1.00764883149E-05 -1.05911630072E-05 -1.11320735377E-05 -1.17005532421E-05 -1.22980029021E-05 -1.29258941339E-05 -1.35857729417E-05 -1.42792634521E-05 -1.50080718287E-05 -1.57739903835E-05 -1.65789018920E-05 -1.74247841203E-05 -1.83137145754E-05 -1.92478754917E-05 -2.02295590622E-05 -2.12611729263E-05 -2.23452459300E-05 -2.34844341668E-05 -2.46815273151E-05 -2.59394552891E-05 -2.72612952106E-05 -2.86502787260E-05 -3.01097996784E-05 -3.16434221537E-05 -3.32548889196E-05 -3.49481302741E-05 -3.67272733250E-05 -3.85966517168E-05 -4.05608158314E-05 -4.26245434805E-05 -4.47928511140E-05 -4.70710055681E-05 -4.94645363803E-05 -5.19792486927E-05 -5.46212367771E-05 -5.73968982043E-05 -6.03129486907E-05 -6.33764376540E-05 -6.65947645059E-05 -6.99756957203E-05 -7.35273827074E-05 -7.72583805352E-05 -8.11776675294E-05 -8.52946657994E-05 -8.96192627229E-05 -9.41618334387E-05 -9.89332643879E-05 -1.03944977950E-04 -1.09208958223E-04 -1.14737777996E-04 -1.20544626969E-04 -1.26643341264E-04 -1.33048434296E-04 -1.39775129050E-04 -1.46839391832E-04 -1.54257967545E-04 -1.62048416568E-04 -1.70229153290E-04 -1.78819486375E-04 -1.87839660830E-04 -1.97310901935E-04 -2.07255461129E-04 -2.17696663917E-04 -2.28658959878E-04 -2.40167974863E-04 -2.52250565450E-04 -2.64934875772E-04 -2.78250396772E-04 -2.92228028003E-04 -3.06900142047E-04 -3.22300651670E-04 -3.38465079776E-04 -3.55430632299E-04 -3.73236274106E-04 -3.91922808016E-04 -4.11532957060E-04 -4.32111450056E-04 -4.53705110635E-04 -4.76362949808E-04 -5.00136262186E-04 -5.25078725966E-04 -5.51246506785E-04 -5.78698365567E-04 -6.07495770441E-04 -6.37703012869E-04 -6.69387328073E-04 -7.02619019865E-04 -7.37471589983E-04 -7.74021872033E-04 -8.12350170126E-04 -8.52540402307E-04 -8.94680248842E-04 -9.38861305463E-04 -9.85179241619E-04 -1.03373396381E-03 -1.08462978404E-03 -1.13797559345E-03 -1.19388504112E-03 -1.25247671812E-03 -1.31387434672E-03 -1.37820697480E-03 -1.44560917547E-03 -1.51622125168E-03 -1.59018944591E-03 -1.66766615474E-03 -1.74881014820E-03 -1.83378679371E-03 -1.92276828444E-03 -2.01593387180E-03 -2.11347010193E-03 -2.21557105564E-03 -2.32243859174E-03 -2.43428259299E-03 -2.55132121461E-03 -2.67378113449E-03 -2.80189780469E-03 -2.93591570357E-03 -3.07608858784E-03 -3.22267974361E-03 -3.37596223578E-03 -3.53621915465E-03 -3.70374385875E-03 -3.87884021276E-03 -4.06182281927E-03 -4.25301724294E-03 -4.45276022579E-03 -4.66139989173E-03 -4.87929593891E-03 -5.10681981778E-03 -5.34435489310E-03 -5.59229658751E-03 -5.85105250457E-03 -6.12104252868E-03 -6.40269889934E-03 -6.69646625690E-03 -7.00280165679E-03 -7.32217454923E-03 -7.65506672084E-03 -8.00197219481E-03 -8.36339708579E-03 -8.73985940557E-03 -9.13188881543E-03 -9.54002632086E-03 -9.96482390395E-03 -1.04068440890E-02 -1.08666594359E-02 -1.13448519571E-02 -1.18420124513E-02 -1.23587397503E-02 -1.28956398716E-02 -1.34533250722E-02 -1.40324127968E-02 -1.46335245153E-02 -1.52572844424E-02 -1.59043181342E-02 -1.65752509545E-02 -1.72707064061E-02 -1.79913043195E-02 -1.87376588940E-02 -1.95103765852E-02 -2.03100538334E-02 -2.11372746269E-02 -2.19926078969E-02 -2.28766047376E-02 -2.37897954499E-02 -2.47326864033E-02 -2.57057567152E-02 -2.67094547450E-02 -2.77441944033E-02 -2.88103512763E-02 -2.99082585670E-02 -3.10382028574E-02 -3.22004196956E-02 -3.33950890154E-02 -3.46223303956E-02 -3.58821981718E-02 -3.71746764107E-02 -3.84996737660E-02 -3.98570182302E-02 -4.12464518059E-02 -4.26676251201E-02 -4.41200920072E-02 -4.56033040933E-02 -4.71166054149E-02 -4.86592271095E-02 -5.02302822208E-02 -5.18287606633E-02 -5.34535243958E-02 -5.51033028587E-02 -5.67766887307E-02 -5.84721340685E-02 -6.01879468939E-02 -6.19222882980E-02 -6.36731701349E-02 -6.54384533808E-02 -6.72158472373E-02 -6.90029090589E-02 -7.07970451879E-02 -7.25955127793E-02 -7.43954226983E-02 -7.61937435739E-02 -7.79873070874E-02 -7.97728145724E-02 -8.15468449990E-02 -8.33058644065E-02 -8.50462368428E-02 -8.67642368569E-02 -8.84560635809E-02 -9.01178564227E-02 -9.17457123737E-02 -9.33357049199E-02 -9.48839045199E-02 -9.63864005944E-02 -9.78393249432E-02 -9.92388764775E-02 -1.00581347128E-01 -1.01863148756E-01 -1.03080840853E-01 -1.04231158803E-01 -1.05311042406E-01 -1.06317664368E-01 -1.07248458391E-01 -1.08101146486E-01 -1.08873765082E-01 -1.09564689472E-01 -1.10172656139E-01 -1.10696782433E-01 -1.11136583094E-01 -1.11491983107E-01 -1.11763326332E-01 -1.11951379430E-01 -1.12057330570E-01 -1.12082782476E-01 -1.12029739402E-01 -1.11900587711E-01 -1.11698069800E-01 -1.11425251223E-01 -1.11085481000E-01 -1.10682345195E-01 -1.10219614069E-01 -1.09701183213E-01 -1.09131009319E-01 -1.08513041396E-01 -1.07851148480E-01 -1.07149045074E-01 -1.06410215775E-01 -1.05637840753E-01 -1.04834723900E-01 -1.04003225672E-01 -1.03145202737E-01 -1.02261956642E-01 -1.01354193734E-01 -1.00421998557E-01 -9.94648227914E-02 -9.84814916697E-02 -9.74702294654E-02 -9.64287053052E-02 -9.53541000537E-02 -9.42431944414E-02 -9.30924779217E-02 -9.18982769722E-02 -9.06569007059E-02 -8.93648007564E-02 -8.80187414687E-02 -8.66159754978E-02 -8.51544190351E-02 -8.36328200873E-02 -8.20509125761E-02 -8.04095485741E-02 -7.87108007819E-02 -7.69580274612E-02 -7.51558925042E-02 -7.33103342017E-02 -7.14284775966E-02 -6.95184871024E-02 -6.75893583272E-02 -6.56506507493E-02 -6.37121659852E-02 -6.17835798019E-02 -5.98740396172E-02 -5.79917428722E-02 -5.61435151454E-02 -5.43344100015E-02 -5.25673550842E-02 -5.08428706209E-02 -4.91588870387E-02 -4.75106875639E-02 -4.58909992570E-02 -4.42902517650E-02 -4.26970170426E-02 -4.10986353845E-02 -3.94820234151E-02 -3.78346483941E-02 -3.61456406341E-02 -3.44070024459E-02 -3.26148583716E-02 -3.07714690748E-02 -2.88867280814E-02 -2.69727939808E-02 -2.50426980958E-02 -2.31101575565E-02 -2.11893600424E-02 -1.92947217474E-02 -1.74406209302E-02 -1.56411102874E-02 -1.39096123073E-02 -1.22586027215E-02 -1.06992881415E-02 -9.24128492724E-03 -7.89230725769E-03 -6.65787321607E-03 -5.54103844450E-03 -4.54216750543E-03 -3.65875348069E-03 -2.88616413176E-03 -2.22072126038E-03 -1.65805001585E-03 -1.19242320977E-03 -8.16873130567E-04 -5.23335238782E-04 -3.02824959300E-04 -1.45648307503E-04 -4.16465052015E-05 1.95259454774E-05 4.80910608700E-05 5.38072893957E-05 4.56028056283E-05 3.11865814811E-05 1.66428613979E-05 6.01598473979E-06 8.93882290243E-07 -5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 10 2 i j (l(j)) 0.00000000000E+00 Q_int -4.88105746905E-18 -5.13131463633E-18 -5.39440276291E-18 -5.67097970612E-18 -5.96173705238E-18 -6.26740184651E-18 -6.58873840969E-18 -6.92655025070E-18 -7.28168207508E-18 -7.65502189738E-18 -8.04750326160E-18 -8.46010757557E-18 -8.89386656498E-18 -9.34986485324E-18 -9.82924267355E-18 -1.03331987202E-17 -1.08629931457E-17 -1.14199507121E-17 -1.20054641034E-17 -1.26209974080E-17 -1.32680897798E-17 -1.39483592868E-17 -1.46635069571E-17 -1.54153210322E-17 -1.62056814389E-17 -1.70365644900E-17 -1.79100478257E-17 -1.88283156095E-17 -1.97936639889E-17 -2.08085068377E-17 -2.18753817917E-17 -2.29969565938E-17 -2.41760357652E-17 -2.54155676179E-17 -2.67186516272E-17 -2.80885461817E-17 -2.95286767313E-17 -3.10426443524E-17 -3.26342347526E-17 -3.43074277368E-17 -3.60664071589E-17 -3.79155713836E-17 -3.98595442844E-17 -4.19031868062E-17 -4.40516091195E-17 -4.63101833990E-17 -4.86845572567E-17 -5.11806678639E-17 -5.38047567971E-17 -5.65633856451E-17 -5.94634524169E-17 -6.25122087897E-17 -6.57172782422E-17 -6.90866751173E-17 -7.26288246618E-17 -7.63525840944E-17 -8.02672647529E-17 -8.43826553777E-17 -8.87090465885E-17 -9.32572566165E-17 -9.80386583554E-17 -1.03065207800E-16 -1.08349473940E-16 -1.13904670195E-16 -1.19744687447E-16 -1.25884128780E-16 -1.32338345996E-16 -1.39123477999E-16 -1.46256491151E-16 -1.53755221701E-16 -1.61638420379E-16 -1.69925799287E-16 -1.78638081189E-16 -1.87797051326E-16 -1.97425611893E-16 -2.07547839305E-16 -2.18189044401E-16 -2.29375835735E-16 -2.41136186112E-16 -2.53499502530E-16 -2.66496699718E-16 -2.80160277438E-16 -2.94524401748E-16 -3.09624990438E-16 -3.25499802844E-16 -3.42188534261E-16 -3.59732915208E-16 -3.78176815773E-16 -3.97566355310E-16 -4.17950017763E-16 -4.39378772903E-16 -4.61906203773E-16 -4.85588640681E-16 -5.10485302048E-16 -5.36658442491E-16 -5.64173508487E-16 -5.93099302027E-16 -6.23508152654E-16 -6.55476098326E-16 -6.89083075550E-16 -7.24413119266E-16 -7.61554572975E-16 -8.00600309648E-16 -8.41647963953E-16 -8.84800176394E-16 -9.30164849966E-16 -9.77855419969E-16 -1.02799113765E-15 -1.08069736841E-15 -1.13610590525E-15 -1.19435529837E-15 -1.25559120155E-15 -1.31996673645E-15 -1.38764287539E-15 -1.45878884395E-15 -1.53358254409E-15 -1.61221099899E-15 -1.69487082069E-15 -1.78176870179E-15 -1.87312193221E-15 -1.96915894256E-15 -2.07011987535E-15 -2.17625718546E-15 -2.28783627140E-15 -2.40513613893E-15 -2.52845009879E-15 -2.65808650002E-15 -2.79436950109E-15 -2.93763988042E-15 -3.08825588850E-15 -3.24659414372E-15 -3.41305057410E-15 -3.58804140732E-15 -3.77200421149E-15 -3.96539898935E-15 -4.16870932845E-15 -4.38244361039E-15 -4.60713628207E-15 -4.84334919205E-15 -5.09167299547E-15 -5.35272863101E-15 -5.62716887353E-15 -5.91567996639E-15 -6.21898333737E-15 -6.53783740263E-15 -6.87303946316E-15 -7.22542769842E-15 -7.59588326225E-15 -7.98533248619E-15 -8.39474919579E-15 -8.82515714571E-15 -9.27763257959E-15 -9.75330692126E-15 -1.02533696039E-14 -1.07790710441E-14 -1.13317257687E-14 -1.19127157019E-14 -1.25234936204E-14 -1.31655867865E-14 -1.38406007668E-14 -1.45502234470E-14 -1.52962292527E-14 -1.60804835858E-14 -1.69049474898E-14 -1.77716825527E-14 -1.86828560626E-14 -1.96407464265E-14 -2.06477488678E-14 -2.17063814158E-14 -2.28192912016E-14 -2.39892610777E-14 -2.52192165762E-14 -2.65122332247E-14 -2.78715442361E-14 -2.93005485937E-14 -3.08028195500E-14 -3.23821135625E-14 -3.40423796857E-14 -3.57877694468E-14 -3.76226472257E-14 -3.95516011692E-14 -4.15794546628E-14 -4.37112783923E-14 -4.59524030230E-14 -4.83084325289E-14 -5.07852582055E-14 -5.33890734016E-14 -5.61263890052E-14 -5.90040497246E-14 -6.20292512032E-14 -6.52095580129E-14 -6.85529225689E-14 -7.20677050151E-14 -7.57626941288E-14 -7.96471292970E-14 -8.37307236197E-14 -8.80236881978E-14 -9.25367576656E-14 -9.72812170338E-14 -1.02268929907E-13 -1.07512368148E-13 -1.13024643068E-13 -1.18819538205E-13 -1.24911543795E-13 -1.31315893004E-13 -1.38048600016E-13 -1.45126500081E-13 -1.52567291608E-13 -1.60389580422E-13 -1.68612926287E-13 -1.77257891816E-13 -1.86346093890E-13 -1.95900257707E-13 -2.05944273610E-13 -2.16503256824E-13 -2.27603610256E-13 -2.39273090519E-13 -2.51540877332E-13 -2.64437646491E-13 -2.77995646567E-13 -2.92248779549E-13 -3.07232685617E-13 -3.22984832254E-13 -3.39544607941E-13 -3.56953420644E-13 -3.75254801356E-13 -3.94494512948E-13 -4.14720664596E-13 -4.35983832081E-13 -4.58337184255E-13 -4.81836615986E-13 -5.06540887927E-13 -5.32511773447E-13 -5.59814213093E-13 -5.88516476977E-13 -6.18690335483E-13 -6.50411238733E-13 -6.83758505246E-13 -7.18815520275E-13 -7.55669944316E-13 -7.94413932297E-13 -8.35144364016E-13 -8.77963086389E-13 -9.22977168113E-13 -9.70299167399E-13 -1.02004741342E-12 -1.07234630218E-12 -1.12732660760E-12 -1.18512580848E-12 -1.24588843229E-12 -1.30976641654E-12 -1.37691948871E-12 -1.44751556567E-12 -1.52173117351E-12 -1.59975188897E-12 -1.68177280347E-12 -1.76799901093E-12 -1.85864612060E-12 -1.95394079623E-12 -2.05412132277E-12 -2.15943820226E-12 -2.27015478016E-12 -2.38654790389E-12 -2.50890861504E-12 -2.63754287715E-12 -2.77277234075E-12 -2.91493514762E-12 -3.06438677635E-12 -3.22150093119E-12 -3.38667047647E-12 -3.56030841900E-12 -3.74284894072E-12 -3.93474848440E-12 -4.13648689497E-12 -4.34856861935E-12 -4.57152396780E-12 -4.80591043994E-12 -5.05231411880E-12 -5.31135113625E-12 -5.58366921367E-12 -5.86994928151E-12 -6.17090718198E-12 -6.48729545895E-12 -6.81990523967E-12 -7.16956821296E-12 -7.53715870883E-12 -7.92359588467E-12 -8.32984602359E-12 -8.75692495056E-12 -9.20590057244E-12 -9.67789554821E-12 -1.01740900962E-11 -1.06957249450E-11 -1.12441044360E-11 -1.18205997848E-11 -1.24266525099E-11 -1.30637780368E-11 -1.37335694877E-11 -1.44377016648E-11 -1.51779352378E-11 -1.59561211470E-11 -1.67742052305E-11 -1.76342330905E-11 -1.85383552077E-11 -1.94888323185E-11 -2.04880410679E-11 -2.15384799521E-11 -2.26427755655E-11 -2.38036891687E-11 -2.50241235926E-11 -2.63071304964E-11 -2.76559179985E-11 -2.90738586978E-11 -3.05644981063E-11 -3.21315635148E-11 -3.37789733123E-11 -3.55108467836E-11 -3.73315144090E-11 -3.92455286921E-11 -4.12576755431E-11 -4.33729862452E-11 -4.55967500345E-11 -4.79345273254E-11 -5.03921636134E-11 -5.29758040909E-11 -5.56919090129E-11 -5.85472698492E-11 -6.15490262659E-11 -6.47046839769E-11 -6.80221335108E-11 -7.15096699398E-11 -7.51760136202E-11 -7.90303319959E-11 -8.30822625205E-11 -8.73419367533E-11 -9.18200056918E-11 -9.65276664023E-11 -1.01476690016E-10 -1.06679451161E-10 -1.12148958899E-10 -1.17898889259E-10 -1.23943619422E-10 -1.30298263675E-10 -1.36978711196E-10 -1.44001665787E-10 -1.51384687629E-10 -1.59146237194E-10 -1.67305721400E-10 -1.75883542127E-10 -1.84901147234E-10 -1.94381084176E-10 -2.04347056383E-10 -2.14823982521E-10 -2.25838058793E-10 -2.37416824435E-10 -2.49589230569E-10 -2.62385712586E-10 -2.75838266237E-10 -2.89980527630E-10 -3.04847857325E-10 -3.20477428736E-10 -3.36908321073E-10 -3.54181617045E-10 -3.72340505565E-10 -3.91430389733E-10 -4.11499000342E-10 -4.32596515212E-10 -4.54775684636E-10 -4.78091963254E-10 -5.02603648699E-10 -5.28372027336E-10 -5.55461527480E-10 -5.83939880466E-10 -6.13878289979E-10 -6.45351610055E-10 -6.78438532217E-10 -7.13221782197E-10 -7.49788326745E-10 -7.88229591035E-10 -8.28641687221E-10 -8.71125654706E-10 -9.15787712721E-10 -9.62739525863E-10 -1.01209848323E-09 -1.06398799188E-09 -1.11853778532E-09 -1.17588424779E-09 -1.23617075523E-09 -1.29954803364E-09 -1.36617453588E-09 -1.43621683775E-09 -1.50985005435E-09 -1.58725827784E-09 -1.66863503758E-09 -1.75418378389E-09 -1.84411839656E-09 -1.93866371951E-09 -2.03805612275E-09 -2.14254409320E-09 -2.25238885578E-09 -2.36786502633E-09 -2.48926129800E-09 -2.61688116281E-09 -2.75104367017E-09 -2.89208422430E-09 -3.04035542255E-09 -3.19622793659E-09 -3.36009143882E-09 -3.53235557629E-09 -3.71345099442E-09 -3.90383041330E-09 -4.10396975908E-09 -4.31436935333E-09 -4.53555516339E-09 -4.76808011675E-09 -5.01252548283E-09 -5.26950232547E-09 -5.53965302999E-09 -5.82365290836E-09 -6.12221188672E-09 -6.43607627926E-09 -6.76603065311E-09 -7.11289978867E-09 -7.47755074049E-09 -7.86089500359E-09 -8.26389079094E-09 -8.68754542750E-09 -9.13291786696E-09 -9.60112133738E-09 -1.00933261224E-08 -1.06107624851E-08 -1.11547237409E-08 -1.17265694894E-08 -1.23277290096E-08 -1.29597048332E-08 -1.36240764894E-08 -1.43225044690E-08 -1.50567343344E-08 -1.58286011371E-08 -1.66400339523E-08 -1.74930607129E-08 -1.83898132833E-08 -1.93325327384E-08 -2.03235750806E-08 -2.13654169395E-08 -2.24606619348E-08 -2.36120470613E-08 -2.48224495695E-08 -2.60948941640E-08 -2.74325604896E-08 -2.88387911721E-08 -3.03171000655E-08 -3.18711810893E-08 -3.35049174025E-08 -3.52223911637E-08 -3.70278936467E-08 -3.89259359824E-08 -4.09212604606E-08 -4.30188523034E-08 -4.52239521220E-08 -4.75420690290E-08 -4.99789943628E-08 -5.25408161456E-08 -5.52339342377E-08 -5.80650763463E-08 -6.10413148829E-08 -6.41700844482E-08 -6.74592005137E-08 -7.09168788501E-08 -7.45517560577E-08 -7.83729109749E-08 -8.23898876667E-08 -8.66127188848E-08 -9.10519510490E-08 -9.57186709950E-08 -1.00624533213E-07 -1.05781788951E-07 -1.11203316849E-07 -1.16902655057E-07 -1.22894035122E-07 -1.29192417008E-07 -1.35813526833E-07 -1.42773895878E-07 -1.50090901834E-07 -1.57782812040E-07 -1.65868828967E-07 -1.74369138310E-07 -1.83304958937E-07 -1.92698595871E-07 -2.02573496130E-07 -2.12954306431E-07 -2.23866935381E-07 -2.35338617388E-07 -2.47397980807E-07 -2.60075118904E-07 -2.73401665122E-07 -2.87410871415E-07 -3.02137691389E-07 -3.17618867020E-07 -3.33893019955E-07 -3.51000748049E-07 -3.68984725858E-07 -3.87889810955E-07 -4.07763155546E-07 -4.28654323560E-07 -4.50615413876E-07 -4.73701190028E-07 -4.97969215962E-07 -5.23479999372E-07 -5.50297141328E-07 -5.78487495592E-07 -6.08121333403E-07 -6.39272518421E-07 -6.72018690134E-07 -7.06441456530E-07 -7.42626596409E-07 -7.80664272773E-07 -8.20649255604E-07 -8.62681157802E-07 -9.06864681825E-07 -9.53309879127E-07 -1.00213242289E-06 -1.05345389506E-06 -1.10740208726E-06 -1.16411131734E-06 -1.22372276182E-06 -1.28638480621E-06 -1.35225341057E-06 -1.42149249771E-06 -1.49427435648E-06 -1.57078006925E-06 -1.65119995921E-06 -1.73573406076E-06 -1.82459261336E-06 -1.91799658191E-06 -2.01617820084E-06 -2.11938154954E-06 -2.22786315174E-06 -2.34189261184E-06 -2.46175327638E-06 -2.58774293515E-06 -2.72017455348E-06 -2.85937704417E-06 -3.00569607652E-06 -3.15949492759E-06 -3.32115537667E-06 -3.49107864307E-06 -3.66968637337E-06 -3.85742167721E-06 -4.05475021552E-06 -4.26216134455E-06 -4.48016931602E-06 -4.70931453815E-06 -4.95016490169E-06 -5.20331717042E-06 -5.46939844331E-06 -5.74906768901E-06 -6.04301735863E-06 -6.35197507793E-06 -6.67670542630E-06 -7.01801180353E-06 -7.37673839076E-06 -7.75377220934E-06 -8.15004528405E-06 -8.56653691239E-06 -9.00427604937E-06 -9.46434380998E-06 -9.94787609854E-06 -1.04560663673E-05 -1.09901685131E-05 -1.15514999199E-05 -1.21414446507E-05 -1.27614568004E-05 -1.34130640130E-05 -1.40978711759E-05 -1.48175642964E-05 -1.55739145710E-05 -1.63687826549E-05 -1.72041231460E-05 -1.80819892873E-05 -1.90045379040E-05 -1.99740345830E-05 -2.09928591099E-05 -2.20635111712E-05 -2.31886163388E-05 -2.43709323494E-05 -2.56133556899E-05 -2.69189285091E-05 -2.82908458647E-05 -2.97324633285E-05 -3.12473049596E-05 -3.28390716697E-05 -3.45116499961E-05 -3.62691212982E-05 -3.81157714072E-05 -4.00561007387E-05 -4.20948348977E-05 -4.42369357991E-05 -4.64876133201E-05 -4.88523375208E-05 -5.13368514488E-05 -5.39471845624E-05 -5.66896667961E-05 -5.95709433019E-05 -6.25979898927E-05 -6.57781292259E-05 -6.91190477557E-05 -7.26288134920E-05 -7.63158946007E-05 -8.01891788858E-05 -8.42579941901E-05 -8.85321297584E-05 -9.30218586014E-05 -9.77379609132E-05 -1.02691748579E-04 -1.07895090829E-04 -1.13360441083E-04 -1.19100865039E-04 -1.25130070070E-04 -1.31462435960E-04 -1.38113047068E-04 -1.45097725954E-04 -1.52433068551E-04 -1.60136480926E-04 -1.68226217721E-04 -1.76721422313E-04 -1.85642168803E-04 -1.95009505870E-04 -2.04845502587E-04 -2.15173296283E-04 -2.26017142509E-04 -2.37402467217E-04 -2.49355921221E-04 -2.61905437039E-04 -2.75080288198E-04 -2.88911151108E-04 -3.03430169584E-04 -3.18671022132E-04 -3.34668992089E-04 -3.51461040723E-04 -3.69085883395E-04 -3.87584068902E-04 -4.06998062092E-04 -4.27372329874E-04 -4.48753430741E-04 -4.71190107898E-04 -4.94733386142E-04 -5.19436672576E-04 -5.45355861305E-04 -5.72549442209E-04 -6.01078613925E-04 -6.31007401145E-04 -6.62402776352E-04 -6.95334786111E-04 -7.29876682023E-04 -7.66105056451E-04 -8.04099983142E-04 -8.43945162824E-04 -8.85728073902E-04 -9.29540128331E-04 -9.75476832763E-04 -1.02363795504E-03 -1.07412769613E-03 -1.12705486751E-03 -1.18253307416E-03 -1.24068090302E-03 -1.30162211722E-03 -1.36548585576E-03 -1.43240683887E-03 -1.50252557903E-03 -1.57598859739E-03 -1.65294864575E-03 -1.73356493392E-03 -1.81800336227E-03 -1.90643675948E-03 -1.99904512510E-03 -2.09601587688E-03 -2.19754410251E-03 -2.30383281546E-03 -2.41509321466E-03 -2.53154494752E-03 -2.65341637583E-03 -2.78094484416E-03 -2.91437695003E-03 -3.05396881526E-03 -3.19998635789E-03 -3.35270556362E-03 -3.51241275624E-03 -3.67940486574E-03 -3.85398969332E-03 -4.03648617195E-03 -4.22722462135E-03 -4.42654699592E-03 -4.63480712414E-03 -4.85237093791E-03 -5.07961668992E-03 -5.31693515730E-03 -5.56472982938E-03 -5.82341707749E-03 -6.09342630436E-03 -6.37520007057E-03 -6.66919419549E-03 -6.97587782966E-03 -7.29573349558E-03 -7.62925709381E-03 -7.97695787061E-03 -8.33935834374E-03 -8.71699418237E-03 -9.11041403700E-03 -9.52017931522E-03 -9.94686389858E-03 -1.03910537960E-02 -1.08533467284E-02 -1.13343516402E-02 -1.18346881309E-02 -1.23549858029E-02 -1.28958835175E-02 -1.34580285558E-02 -1.40420756759E-02 -1.46486860613E-02 -1.52785261542E-02 -1.59322663662E-02 -1.66105796605E-02 -1.73141399989E-02 -1.80436206463E-02 -1.87996923265E-02 -1.95830212230E-02 -2.03942668168E-02 -2.12340795575E-02 -2.21030983589E-02 -2.30019479156E-02 -2.39312358343E-02 -2.48915495750E-02 -2.58834531988E-02 -2.69074839179E-02 -2.79641484466E-02 -2.90539191499E-02 -3.01772299916E-02 -3.13344722799E-02 -3.25259902158E-02 -3.37520762458E-02 -3.50129662251E-02 -3.63088343993E-02 -3.76397882142E-02 -3.90058629642E-02 -4.04070162960E-02 -4.18431225829E-02 -4.33139671908E-02 -4.48192406585E-02 -4.63585328195E-02 -4.79313268951E-02 -4.95369935919E-02 -5.11747852432E-02 -5.28438300336E-02 -5.45431263549E-02 -5.62715373427E-02 -5.80277856477E-02 -5.98104485018E-02 -6.16179531417E-02 -6.34485726582E-02 -6.53004223427E-02 -6.71714566070E-02 -6.90594665568E-02 -7.09620783008E-02 -7.28767520826E-02 -7.48007823225E-02 -7.67312986602E-02 -7.86652680893E-02 -8.05994982730E-02 -8.25306421324E-02 -8.44552037925E-02 -8.63695459711E-02 -8.82698988867E-02 -9.01523707578E-02 -9.20129599531E-02 -9.38475688465E-02 -9.56520194108E-02 -9.74220705754E-02 -9.91534373500E-02 -1.00841811698E-01 -1.02482885124E-01 -1.04072372902E-01 -1.05606039862E-01 -1.07079727602E-01 -1.08489382977E-01 -1.09831087659E-01 -1.11101088563E-01 -1.12295828841E-01 -1.13411979164E-01 -1.14446468927E-01 -1.15396517002E-01 -1.16259661601E-01 -1.17033788803E-01 -1.17717159233E-01 -1.18308432377E-01 -1.18806687991E-01 -1.19211444021E-01 -1.19522670477E-01 -1.19740798681E-01 -1.19866725331E-01 -1.19901810856E-01 -1.19847871563E-01 -1.19707165145E-01 -1.19482369199E-01 -1.19176552481E-01 -1.18793138757E-01 -1.18335863219E-01 -1.17808721620E-01 -1.17215912412E-01 -1.16561772405E-01 -1.15850706629E-01 -1.15087113332E-01 -1.14275305243E-01 -1.13419428486E-01 -1.12523380732E-01 -1.11590730411E-01 -1.10624638992E-01 -1.09627788524E-01 -1.08602316741E-01 -1.07549762149E-01 -1.06471021515E-01 -1.05366322143E-01 -1.04235211197E-01 -1.03076564113E-01 -1.01888613820E-01 -1.00669002063E-01 -9.94148536063E-02 -9.81228734219E-02 -9.67894662452E-02 -9.54108770160E-02 -9.39833498095E-02 -9.25033018769E-02 -9.09675084023E-02 -8.93732925867E-02 -8.77187147159E-02 -8.60027530246E-02 -8.42254684821E-02 -8.23881451503E-02 -8.04933975801E-02 -7.85452368593E-02 -7.65490874756E-02 -7.45117481583E-02 -7.24412913390E-02 -7.03468978646E-02 -6.82386260796E-02 -6.61271173614E-02 -6.40232435681E-02 -6.19377055537E-02 -5.98805957928E-02 -5.78609420561E-02 -5.58862527967E-02 -5.39620882014E-02 -5.20916834667E-02 -5.02756525084E-02 -4.85118007224E-02 -4.67950743217E-02 -4.51176709570E-02 -4.34693316071E-02 -4.18378270049E-02 -4.02096431480E-02 -3.85708598308E-02 -3.69082038753E-02 -3.52102451934E-02 -3.34686894882E-02 -3.16797069177E-02 -2.98459565197E-02 -2.79777683805E-02 -2.60876117048E-02 -2.41886859130E-02 -2.22947079928E-02 -2.04196744458E-02 -1.85776009277E-02 -1.67822436582E-02 -1.50468077044E-02 -1.33836482705E-02 -1.18039721498E-02 -1.03175474540E-02 -8.93243060694E-03 -7.65472031141E-03 -6.48834872980E-03 -5.43492039347E-03 -4.49360932396E-03 -3.66112444417E-03 -2.93244174045E-03 -2.30331058305E-03 -1.76887525751E-03 -1.32318247682E-03 -9.59318806202E-04 -6.69571797446E-04 -4.45613607037E-04 -2.78705167320E-04 -1.59918201325E-04 -8.03715273777E-05 -3.14771998305E-05 -5.19109220935E-06 5.73843167712E-06 7.53107011933E-06 5.15259387195E-06 2.11940243623E-06 3.39456456819E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 0 i j (l(j)) -1.08577119111E-01 Q_int 7.78004826517E-11 7.97700112131E-11 8.17893986257E-11 8.38599070722E-11 8.59828306876E-11 8.81594963682E-11 9.03912646007E-11 9.26795303129E-11 9.50257237449E-11 9.74313113440E-11 9.98977966805E-11 1.02426721388E-10 1.05019666126E-10 1.07678251570E-10 1.10404139422E-10 1.13199033449E-10 1.16064680553E-10 1.19002871855E-10 1.22015443819E-10 1.25104279402E-10 1.28271309226E-10 1.31518512787E-10 1.34847919693E-10 1.38261610931E-10 1.41761720169E-10 1.45350435088E-10 1.49029998753E-10 1.52802711009E-10 1.56670929924E-10 1.60637073261E-10 1.64703619987E-10 1.68873111827E-10 1.73148154847E-10 1.77531421088E-10 1.82025650233E-10 1.86633651323E-10 1.91358304505E-10 1.96202562843E-10 2.01169454153E-10 2.06262082905E-10 2.11483632156E-10 2.16837365543E-10 2.22326629324E-10 2.27954854465E-10 2.33725558790E-10 2.39642349175E-10 2.45708923806E-10 2.51929074489E-10 2.58306689019E-10 2.64845753612E-10 2.71550355393E-10 2.78424684957E-10 2.85473038980E-10 2.92699822914E-10 3.00109553730E-10 3.07706862750E-10 3.15496498538E-10 3.23483329868E-10 3.31672348767E-10 3.40068673636E-10 3.48677552450E-10 3.57504366036E-10 3.66554631437E-10 3.75834005360E-10 3.85348287714E-10 3.95103425232E-10 4.05105515190E-10 4.15360809216E-10 4.25875717199E-10 4.36656811296E-10 4.47710830037E-10 4.59044682540E-10 4.70665452829E-10 4.82580404257E-10 4.94796984053E-10 5.07322827972E-10 5.20165765070E-10 5.33333822595E-10 5.46835231006E-10 5.60678429116E-10 5.74872069369E-10 5.89425023246E-10 6.04346386810E-10 6.19645486391E-10 6.35331884418E-10 6.51415385391E-10 6.67906042015E-10 6.84814161477E-10 7.02150311893E-10 7.19925328912E-10 7.38150322488E-10 7.56836683825E-10 7.75996092495E-10 7.95640523741E-10 8.15782255959E-10 8.36433878374E-10 8.57608298910E-10 8.79318752253E-10 9.01578808128E-10 9.24402379780E-10 9.47803732666E-10 9.71797493376E-10 9.96398658774E-10 1.02162260537E-09 1.04748509893E-09 1.07400230433E-09 1.10119079566E-09 1.12906756661E-09 1.15765004102E-09 1.18695608385E-09 1.21700401230E-09 1.24781260728E-09 1.27940112513E-09 1.31178930968E-09 1.34499740454E-09 1.37904616585E-09 1.41395687512E-09 1.44975135267E-09 1.48645197116E-09 1.52408166963E-09 1.56266396781E-09 1.60222298086E-09 1.64278343440E-09 1.68437067997E-09 1.72701071090E-09 1.77073017854E-09 1.81555640892E-09 1.86151741982E-09 1.90864193832E-09 1.95695941868E-09 2.00650006085E-09 2.05729482924E-09 2.10937547216E-09 2.16277454163E-09 2.21752541370E-09 2.27366230936E-09 2.33122031589E-09 2.39023540881E-09 2.45074447437E-09 2.51278533258E-09 2.57639676087E-09 2.64161851833E-09 2.70849137054E-09 2.77705711506E-09 2.84735860757E-09 2.91943978863E-09 2.99334571116E-09 3.06912256858E-09 3.14681772371E-09 3.22647973837E-09 3.30815840369E-09 3.39190477129E-09 3.47777118515E-09 3.56581131432E-09 3.65608018652E-09 3.74863422246E-09 3.84353127114E-09 3.94083064603E-09 4.04059316209E-09 4.14288117382E-09 4.24775861422E-09 4.35529103475E-09 4.46554564631E-09 4.57859136121E-09 4.69449883631E-09 4.81334051710E-09 4.93519068306E-09 5.06012549402E-09 5.18822303781E-09 5.31956337903E-09 5.45422860911E-09 5.59230289761E-09 5.73387254486E-09 5.87902603584E-09 6.02785409552E-09 6.18044974558E-09 6.33690836251E-09 6.49732773725E-09 6.66180813630E-09 6.83045236439E-09 7.00336582874E-09 7.18065660492E-09 7.36243550443E-09 7.54881614392E-09 7.73991501625E-09 7.93585156326E-09 8.13674825042E-09 8.34273064339E-09 8.55392748652E-09 8.77047078326E-09 8.99249587871E-09 9.22014154420E-09 9.45355006399E-09 9.69286732425E-09 9.93824290422E-09 1.01898301697E-08 1.04477863688E-08 1.07122727305E-08 1.09834545650E-08 1.12615013676E-08 1.15465869239E-08 1.18388894191E-08 1.21385915490E-08 1.24458806344E-08 1.27609487378E-08 1.30839927839E-08 1.34152146824E-08 1.37548214541E-08 1.41030253606E-08 1.44600440368E-08 1.48261006270E-08 1.52014239239E-08 1.55862485125E-08 1.59808149157E-08 1.63853697454E-08 1.68001658564E-08 1.72254625039E-08 1.76615255066E-08 1.81086274118E-08 1.85670476664E-08 1.90370727910E-08 1.95189965596E-08 2.00131201828E-08 2.05197524960E-08 2.10392101526E-08 2.15718178219E-08 2.21179083917E-08 2.26778231770E-08 2.32519121325E-08 2.38405340718E-08 2.44440568918E-08 2.50628578019E-08 2.56973235606E-08 2.63478507167E-08 2.70148458571E-08 2.76987258611E-08 2.83999181609E-08 2.91188610086E-08 2.98560037503E-08 3.06118071067E-08 3.13867434609E-08 3.21812971541E-08 3.29959647877E-08 3.38312555342E-08 3.46876914550E-08 3.55658078267E-08 3.64661534757E-08 3.73892911212E-08 3.83357977268E-08 3.93062648609E-08 4.03012990669E-08 4.13215222414E-08 4.23675720236E-08 4.34401021933E-08 4.45397830796E-08 4.56673019799E-08 4.68233635892E-08 4.80086904404E-08 4.92240233561E-08 5.04701219112E-08 5.17477649078E-08 5.30577508617E-08 5.44008985012E-08 5.57780472793E-08 5.71900578974E-08 5.86378128439E-08 6.01222169450E-08 6.16441979305E-08 6.32047070133E-08 6.48047194838E-08 6.64452353192E-08 6.81272798085E-08 6.98519041928E-08 7.16201863226E-08 7.34332313309E-08 7.52921723236E-08 7.71981710879E-08 7.91524188177E-08 8.11561368583E-08 8.32105774691E-08 8.53170246060E-08 8.74767947239E-08 8.96912375989E-08 9.19617371715E-08 9.42897124115E-08 9.66766182043E-08 9.91239462597E-08 1.01633226044E-07 1.04206025736E-07 1.06843953205E-07 1.09548657017E-07 1.12321827465E-07 1.15165197620E-07 1.18080544422E-07 1.21069689783E-07 1.24134501728E-07 1.27276895560E-07 1.30498835059E-07 1.33802333707E-07 1.37189455947E-07 1.40662318469E-07 1.44223091536E-07 1.47874000338E-07 1.51617326382E-07 1.55455408916E-07 1.59390646391E-07 1.63425497958E-07 1.67562485006E-07 1.71804192734E-07 1.76153271766E-07 1.80612439808E-07 1.85184483343E-07 1.89872259372E-07 1.94678697199E-07 1.99606800258E-07 2.04659647989E-07 2.09840397764E-07 2.15152286852E-07 2.20598634446E-07 2.26182843734E-07 2.31908404021E-07 2.37778892911E-07 2.43797978538E-07 2.49969421856E-07 2.56297078990E-07 2.62784903637E-07 2.69436949542E-07 2.76257373020E-07 2.83250435557E-07 2.90420506466E-07 2.97772065614E-07 3.05309706221E-07 3.13038137723E-07 3.20962188714E-07 3.29086809955E-07 3.37417077469E-07 3.45958195704E-07 3.54715500781E-07 3.63694463825E-07 3.72900694378E-07 3.82339943897E-07 3.92018109344E-07 4.01941236862E-07 4.12115525551E-07 4.22547331330E-07 4.33243170904E-07 4.44209725827E-07 4.55453846670E-07 4.66982557292E-07 4.78803059222E-07 4.90922736146E-07 5.03349158515E-07 5.16090088261E-07 5.29153483639E-07 5.42547504186E-07 5.56280515807E-07 5.70361095994E-07 5.84798039164E-07 5.99600362147E-07 6.14777309803E-07 6.30338360779E-07 6.46293233419E-07 6.62651891818E-07 6.79424552030E-07 6.96621688427E-07 7.14254040230E-07 7.32332618193E-07 7.50868711461E-07 7.69873894599E-07 7.89360034802E-07 8.09339299278E-07 8.29824162828E-07 8.50827415604E-07 8.72362171078E-07 8.94441874194E-07 9.17080309741E-07 9.40291610925E-07 9.64090268164E-07 9.88491138100E-07 1.01350945284E-06 1.03916082943E-06 1.06546127956E-06 1.09242721952E-06 1.12007548042E-06 1.14842331862E-06 1.17748842650E-06 1.20728894339E-06 1.23784346691E-06 1.26917106446E-06 1.30129128511E-06 1.33422417171E-06 1.36799027335E-06 1.40261065810E-06 1.43810692611E-06 1.47450122299E-06 1.51181625357E-06 1.55007529595E-06 1.58930221600E-06 1.62952148209E-06 1.67075818030E-06 1.71303802996E-06 1.75638739959E-06 1.80083332322E-06 1.84640351715E-06 1.89312639714E-06 1.94103109594E-06 1.99014748138E-06 2.04050617481E-06 2.09213857010E-06 2.14507685300E-06 2.19935402106E-06 2.25500390404E-06 2.31206118482E-06 2.37056142080E-06 2.43054106588E-06 2.49203749299E-06 2.55508901710E-06 2.61973491892E-06 2.68601546911E-06 2.75397195311E-06 2.82364669657E-06 2.89508309148E-06 2.96832562285E-06 3.04341989615E-06 3.12041266532E-06 3.19935186160E-06 3.28028662296E-06 3.36326732435E-06 3.44834560863E-06 3.53557441828E-06 3.62500802794E-06 3.71670207771E-06 3.81071360726E-06 3.90710109080E-06 4.00592447296E-06 4.10724520544E-06 4.21112628469E-06 4.31763229040E-06 4.42682942504E-06 4.53878555429E-06 4.65357024850E-06 4.77125482517E-06 4.89191239245E-06 5.01561789371E-06 5.14244815323E-06 5.27248192292E-06 5.40579993033E-06 5.54248492765E-06 5.68262174205E-06 5.82629732718E-06 5.97360081589E-06 6.12462357434E-06 6.27945925726E-06 6.43820386475E-06 6.60095580022E-06 6.76781592996E-06 6.93888764397E-06 7.11427691837E-06 7.29409237923E-06 7.47844536801E-06 7.66745000851E-06 7.86122327543E-06 8.05988506465E-06 8.26355826506E-06 8.47236883218E-06 8.68644586357E-06 8.90592167594E-06 9.13093188414E-06 9.36161548204E-06 9.59811492528E-06 9.84057621600E-06 1.00891489896E-05 1.03439866033E-05 1.06052462273E-05 1.08730889376E-05 1.11476798110E-05 1.14291880226E-05 1.17177869453E-05 1.20136542521E-05 1.23169720198E-05 1.26279268362E-05 1.29467099088E-05 1.32735171771E-05 1.36085494259E-05 1.39520124031E-05 1.43041169383E-05 1.46650790658E-05 1.50351201486E-05 1.54144670072E-05 1.58033520494E-05 1.62020134041E-05 1.66106950582E-05 1.70296469956E-05 1.74591253402E-05 1.78993925015E-05 1.83507173237E-05 1.88133752380E-05 1.92876484179E-05 1.97738259385E-05 2.02722039383E-05 2.07830857855E-05 2.13067822472E-05 2.18436116623E-05 2.23939001181E-05 2.29579816303E-05 2.35361983276E-05 2.41289006393E-05 2.47364474865E-05 2.53592064786E-05 2.59975541121E-05 2.66518759747E-05 2.73225669527E-05 2.80100314428E-05 2.87146835679E-05 2.94369473976E-05 3.01772571721E-05 3.09360575310E-05 3.17138037462E-05 3.25109619596E-05 3.33280094241E-05 3.41654347501E-05 3.50237381561E-05 3.59034317235E-05 3.68050396560E-05 3.77290985438E-05 3.86761576319E-05 3.96467790929E-05 4.06415383049E-05 4.16610241329E-05 4.27058392154E-05 4.37766002554E-05 4.48739383154E-05 4.59984991173E-05 4.71509433462E-05 4.83319469588E-05 4.95422014959E-05 5.07824143988E-05 5.20533093303E-05 5.33556264991E-05 5.46901229888E-05 5.60575730893E-05 5.74587686334E-05 5.88945193356E-05 6.03656531350E-05 6.18730165405E-05 6.34174749796E-05 6.49999131495E-05 6.66212353708E-05 6.82823659427E-05 6.99842495013E-05 7.17278513781E-05 7.35141579610E-05 7.53441770548E-05 7.72189382432E-05 7.91394932506E-05 8.11069163029E-05 8.31223044884E-05 8.51867781159E-05 8.73014810723E-05 8.94675811763E-05 9.16862705297E-05 9.39587658639E-05 9.62863088827E-05 9.86701665987E-05 1.01111631664E-04 1.03612022692E-04 1.06172684575E-04 1.08794988788E-04 1.11480333684E-04 1.14230144777E-04 1.17045875017E-04 1.19929005042E-04 1.22881043423E-04 1.25903526889E-04 1.28998020530E-04 1.32166117985E-04 1.35409441610E-04 1.38729642611E-04 1.42128401163E-04 1.45607426499E-04 1.49168456962E-04 1.52813260032E-04 1.56543632315E-04 1.60361399496E-04 1.64268416248E-04 1.68266566104E-04 1.72357761276E-04 1.76543942430E-04 1.80827078401E-04 1.85209165863E-04 1.89692228926E-04 1.94278318673E-04 1.98969512634E-04 2.03767914174E-04 2.08675651818E-04 2.13694878478E-04 2.18827770606E-04 2.24076527237E-04 2.29443368950E-04 2.34930536707E-04 2.40540290589E-04 2.46274908412E-04 2.52136684209E-04 2.58127926591E-04 2.64250956953E-04 2.70508107539E-04 2.76901719342E-04 2.83434139840E-04 2.90107720552E-04 2.96924814404E-04 3.03887772903E-04 3.10998943094E-04 3.18260664296E-04 3.25675264612E-04 3.33245057180E-04 3.40972336176E-04 3.48859372530E-04 3.56908409365E-04 3.65121657120E-04 3.73501288359E-04 3.82049432239E-04 3.90768168621E-04 3.99659521805E-04 4.08725453876E-04 4.17967857624E-04 4.27388549039E-04 4.36989259339E-04 4.46771626519E-04 4.56737186389E-04 4.66887363085E-04 4.77223459017E-04 4.87746644227E-04 4.98457945136E-04 5.09358232640E-04 5.20448209532E-04 5.31728397205E-04 5.43199121612E-04 5.54860498451E-04 5.66712417518E-04 5.78754526212E-04 5.90986212135E-04 6.03406584753E-04 6.16014456075E-04 6.28808320299E-04 6.41786332376E-04 6.54946285458E-04 6.68285587160E-04 6.81801234594E-04 6.95489788119E-04 7.09347343748E-04 7.23369504154E-04 7.37551348214E-04 7.51887399034E-04 7.66371590375E-04 7.80997231429E-04 7.95756969874E-04 8.10642753115E-04 8.25645787674E-04 8.40756496619E-04 8.55964474976E-04 8.71258443029E-04 8.86626197443E-04 9.02054560101E-04 9.17529324599E-04 9.33035200277E-04 9.48555753729E-04 9.64073347668E-04 9.79569077077E-04 9.95022702536E-04 1.01041258063E-03 1.02571559134E-03 1.04090706233E-03 1.05596068997E-03 1.07084845712E-03 1.08554054740E-03 1.10000525599E-03 1.11420889680E-03 1.12811570587E-03 1.14168774094E-03 1.15488477713E-03 1.16766419856E-03 1.17998088575E-03 1.19178709894E-03 1.20303235697E-03 1.21366331176E-03 1.22362361838E-03 1.23285380037E-03 1.24129111061E-03 1.24886938730E-03 1.25551890523E-03 1.26116622225E-03 1.26573402076E-03 1.26914094442E-03 1.27130142981E-03 1.27212553323E-03 1.27151875255E-03 1.26938184419E-03 1.26561063513E-03 1.26009583025E-03 1.25272281485E-03 1.24337145260E-03 1.23191587895E-03 1.21822429026E-03 1.20215872870E-03 1.18357486326E-03 1.16232176701E-03 1.13824169098E-03 1.11116983492E-03 1.08093411528E-03 1.04735493092E-03 1.01024492683E-03 9.69408756505E-04 9.24642843442E-04 8.75735142370E-04 8.22464900876E-04 7.64602422135E-04 7.01908829526E-04 6.34135833974E-04 5.61025504922E-04 4.82310045923E-04 3.97711575898E-04 3.06941917190E-04 2.09702391623E-04 1.05683625851E-04 -5.43463263217E-06 -1.23983687376E-04 -2.50306051206E-04 -3.84755589183E-04 -5.27697644596E-04 -6.79509146171E-04 -8.40578694640E-04 -1.01130662670E-03 -1.19210505429E-03 -1.38339787718E-03 -1.58562076646E-03 -1.79922111688E-03 -2.02465796565E-03 -2.26240187517E-03 -2.51293477750E-03 -2.77674977789E-03 -3.05435091499E-03 -3.34625287509E-03 -3.65298065811E-03 -3.97506919247E-03 -4.31306289674E-03 -4.66751518539E-03 -5.03898791632E-03 -5.42805077800E-03 -5.83528061396E-03 -6.26126068269E-03 -6.70657985104E-03 -7.17183171955E-03 -7.65761367817E-03 -8.16452589145E-03 -8.69317021199E-03 -9.24414902192E-03 -9.81806400202E-03 -1.04155148288E-02 -1.10370978003E-02 -1.16834043908E-02 -1.23550197381E-02 -1.30525210624E-02 -1.37764760227E-02 -1.45274410107E-02 -1.53059593891E-02 -1.61125596755E-02 -1.69477536797E-02 -1.78120345970E-02 -1.87058750664E-02 -1.96297251978E-02 -2.05840105761E-02 -2.15691302506E-02 -2.25854547151E-02 -2.36333238889E-02 -2.47130451052E-02 -2.58248911160E-02 -2.69690981201E-02 -2.81458638227E-02 -2.93553455329E-02 -3.05976583055E-02 -3.18728731308E-02 -3.31810151771E-02 -3.45220620879E-02 -3.58959423309E-02 -3.73025336000E-02 -3.87416612607E-02 -4.02130968329E-02 -4.17165564967E-02 -4.32516996064E-02 -4.48181271900E-02 -4.64153804094E-02 -4.80429389503E-02 -4.97002193049E-02 -5.13865729054E-02 -5.31012840602E-02 -5.48435676394E-02 -5.66125664483E-02 -5.84073482256E-02 -6.02269021934E-02 -6.20701350851E-02 -6.39358665725E-02 -6.58228240088E-02 -6.77296364064E-02 -6.96548275658E-02 -7.15968082772E-02 -7.35538675188E-02 -7.55241625860E-02 -7.75057080963E-02 -7.94963638287E-02 -8.14938213761E-02 -8.34955896136E-02 -8.54989790118E-02 -8.75010848598E-02 -8.94987694992E-02 -9.14886437164E-02 -9.34670474892E-02 -9.54300303380E-02 -9.73733315933E-02 -9.92923609539E-02 -1.01182179779E-01 -1.03037483630E-01 -1.04852586638E-01 -1.06621408373E-01 -1.08337463918E-01 -1.09993857951E-01 -1.11583283684E-01 -1.13098027544E-01 -1.14529980526E-01 -1.15870657163E-01 -1.17111223044E-01 -1.18242531784E-01 -1.19255172300E-01 -1.20139527132E-01 -1.20885842442E-01 -1.21484310146E-01 -1.21925162414E-01 -1.22198778547E-01 -1.22295803904E-01 -1.22207280268E-01 -1.21924786592E-01 -1.21440588738E-01 -1.20747796299E-01 -1.19840524211E-01 -1.18714056353E-01 -1.17365007893E-01 -1.15791482717E-01 -1.13993221895E-01 -1.11971738794E-01 -1.09730436252E-01 -1.07274701072E-01 -1.04611971125E-01 -1.01751770499E-01 -9.87057084771E-02 -9.54874386256E-02 -9.21125750277E-02 -8.85985635745E-02 -8.49645073678E-02 -8.12309465744E-02 -7.74195945293E-02 -7.35530334711E-02 -6.96543749577E-02 -6.57468917054E-02 -6.18536292605E-02 -5.79970074645E-02 -5.41984230627E-02 -5.04778659262E-02 -4.68535621579E-02 -4.33416577535E-02 -3.99559564269E-02 -3.67077246494E-02 -3.36055758488E-02 -3.06554440660E-02 -2.78606551678E-02 -2.52221009974E-02 -2.27385186358E-02 -2.04068733142E-02 -1.82228394994E-02 -1.61813703613E-02 -1.42773412607E-02 -1.25062481640E-02 -1.08649370426E-02 -9.35233544866E-03 -7.97015266956E-03 -6.72153282586E-03 -5.60399388722E-03 -4.61272973172E-03 -3.74223387480E-03 -2.98634605318E-03 -2.33830522436E-03 -1.79080895581E-03 -1.33607912080E-03 -9.65933753535E-04 -6.71864843855E-04 -4.45121770524E-04 -2.76799983354E-04 -1.57934446998E-04 -7.95972544033E-05 -3.29987057826E-05 -9.59103058221E-06 -1.17380626216E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 1 i j (l(j)) 0.00000000000E+00 Q_int -1.45823135368E-15 -1.51395328590E-15 -1.57180446444E-15 -1.63186625204E-15 -1.69422312049E-15 -1.75896276941E-15 -1.82617624962E-15 -1.89595809113E-15 -1.96840643616E-15 -2.04362317714E-15 -2.12171410001E-15 -2.20278903300E-15 -2.28696200108E-15 -2.37435138638E-15 -2.46508009461E-15 -2.55927572798E-15 -2.65707076461E-15 -2.75860274489E-15 -2.86401446491E-15 -2.97345417726E-15 -3.08707579958E-15 -3.20503913100E-15 -3.32751007690E-15 -3.45466088222E-15 -3.58667037374E-15 -3.72372421156E-15 -3.86601515023E-15 -4.01374330983E-15 -4.16711645744E-15 -4.32635029931E-15 -4.49166878428E-15 -4.66330441871E-15 -4.84149859350E-15 -5.02650192357E-15 -5.21857460035E-15 -5.41798675769E-15 -5.62501885180E-15 -5.83996205568E-15 -6.06311866864E-15 -6.29480254143E-15 -6.53533951769E-15 -6.78506789218E-15 -7.04433888659E-15 -7.31351714347E-15 -7.59298123911E-15 -7.88312421594E-15 -8.18435413536E-15 -8.49709465157E-15 -8.82178560746E-15 -9.15888365321E-15 -9.50886288849E-15 -9.87221552927E-15 -1.02494526001E-14 -1.06411046528E-14 -1.10477225125E-14 -1.14698780527E-14 -1.19081649991E-14 -1.23631997651E-14 -1.28356223182E-14 -1.33260970805E-14 -1.38353138630E-14 -1.43639888356E-14 -1.49128655348E-14 -1.54827159087E-14 -1.60743414035E-14 -1.66885740899E-14 -1.73262778339E-14 -1.79883495115E-14 -1.86757202700E-14 -1.93893568380E-14 -2.01302628844E-14 -2.08994804304E-14 -2.16980913150E-14 -2.25272187164E-14 -2.33880287315E-14 -2.42817320164E-14 -2.52095854886E-14 -2.61728940949E-14 -2.71730126468E-14 -2.82113477258E-14 -2.92893596618E-14 -3.04085645867E-14 -3.15705365668E-14 -3.27769098167E-14 -3.40293809977E-14 -3.53297116037E-14 -3.66797304390E-14 -3.80813361899E-14 -3.95365000956E-14 -4.10472687202E-14 -4.26157668308E-14 -4.42442003866E-14 -4.59348596406E-14 -4.76901223609E-14 -4.95124571749E-14 -5.14044270415E-14 -5.33686928549E-14 -5.54080171876E-14 -5.75252681756E-14 -5.97234235520E-14 -6.20055748350E-14 -6.43749316759E-14 -6.68348263733E-14 -6.93887185594E-14 -7.20402000661E-14 -7.47929999760E-14 -7.76509898677E-14 -8.06181892605E-14 -8.36987712676E-14 -8.68970684649E-14 -9.02175789849E-14 -9.36649728429E-14 -9.72440985045E-14 -1.00959989705E-13 -1.04817872528E-13 -1.08823172759E-13 -1.12981523509E-13 -1.17298773146E-13 -1.21780993512E-13 -1.26434488469E-13 -1.31265802762E-13 -1.36281731221E-13 -1.41489328323E-13 -1.46895918109E-13 -1.52509104487E-13 -1.58336781926E-13 -1.64387146557E-13 -1.70668707703E-13 -1.77190299844E-13 -1.83961095043E-13 -1.90990615847E-13 -1.98288748678E-13 -2.05865757738E-13 -2.13732299445E-13 -2.21899437418E-13 -2.30378658042E-13 -2.39181886618E-13 -2.48321504136E-13 -2.57810364690E-13 -2.67661813553E-13 -2.77889705949E-13 -2.88508426537E-13 -2.99532909642E-13 -3.10978660259E-13 -3.22861775863E-13 -3.35198969042E-13 -3.48007591007E-13 -3.61305655993E-13 -3.75111866596E-13 -3.89445640073E-13 -4.04327135655E-13 -4.19777282899E-13 -4.35817811118E-13 -4.52471279949E-13 -4.69761111076E-13 -4.87711621173E-13 -5.06348056102E-13 -5.25696626421E-13 -5.45784544245E-13 -5.66640061518E-13 -5.88292509746E-13 -6.10772341254E-13 -6.34111172007E-13 -6.58341826083E-13 -6.83498381829E-13 -7.09616219798E-13 -7.36732072503E-13 -7.64884076077E-13 -7.94111823916E-13 -8.24456422353E-13 -8.55960548481E-13 -8.88668510167E-13 -9.22626308370E-13 -9.57881701838E-13 -9.94484274278E-13 -1.03248550409E-12 -1.07193883675E-12 -1.11289976002E-12 -1.15542588195E-12 -1.19957701189E-12 -1.24541524465E-12 -1.29300504779E-12 -1.34241335232E-12 -1.39370964680E-12 -1.44696607509E-12 -1.50225753782E-12 -1.55966179772E-12 -1.61925958898E-12 -1.68113473081E-12 -1.74537424533E-12 -1.81206847993E-12 -1.88131123437E-12 -1.95319989267E-12 -2.02783556010E-12 -2.10532320536E-12 -2.18577180822E-12 -2.26929451277E-12 -2.35600878657E-12 -2.44603658585E-12 -2.53950452704E-12 -2.63654406480E-12 -2.73729167699E-12 -2.84188905651E-12 -2.95048331067E-12 -3.06322716800E-12 -3.18027919314E-12 -3.30180400975E-12 -3.42797253214E-12 -3.55896220555E-12 -3.69495725579E-12 -3.83614894829E-12 -3.98273585711E-12 -4.13492414424E-12 -4.29292784950E-12 -4.45696919162E-12 -4.62727888074E-12 -4.80409644292E-12 -4.98767055694E-12 -5.17825940414E-12 -5.37613103145E-12 -5.58156372843E-12 -5.79484641861E-12 -6.01627906590E-12 -6.24617309640E-12 -6.48485183643E-12 -6.73265096725E-12 -6.98991899718E-12 -7.25701775173E-12 -7.53432288248E-12 -7.82222439541E-12 -8.12112719939E-12 -8.43145167568E-12 -8.75363426915E-12 -9.08812810208E-12 -9.43540361145E-12 -9.79594921061E-12 -1.01702719761E-11 -1.05588983609E-11 -1.09623749348E-11 -1.13812691532E-11 -1.18161701548E-11 -1.22676895908E-11 -1.27364624847E-11 -1.32231481255E-11 -1.37284309948E-11 -1.42530217298E-11 -1.47976581225E-11 -1.53631061573E-11 -1.59501610887E-11 -1.65596485590E-11 -1.71924257603E-11 -1.78493826394E-11 -1.85314431501E-11 -1.92395665521E-11 -1.99747487602E-11 -2.07380237453E-11 -2.15304649883E-11 -2.23531869898E-11 -2.32073468380E-11 -2.40941458354E-11 -2.50148311889E-11 -2.59706977635E-11 -2.69630899035E-11 -2.79934033235E-11 -2.90630870709E-11 -3.01736455642E-11 -3.13266407086E-11 -3.25236940928E-11 -3.37664892699E-11 -3.50567741244E-11 -3.63963633313E-11 -3.77871409078E-11 -3.92310628632E-11 -4.07301599496E-11 -4.22865405183E-11 -4.39023934849E-11 -4.55799914076E-11 -4.73216936839E-11 -4.91299498680E-11 -5.10073031169E-11 -5.29563937665E-11 -5.49799630449E-11 -5.70808569283E-11 -5.92620301430E-11 -6.15265503214E-11 -6.38776023160E-11 -6.63184926789E-11 -6.88526543120E-11 -7.14836512953E-11 -7.42151838991E-11 -7.70510937884E-11 -7.99953694257E-11 -8.30521516808E-11 -8.62257396538E-11 -8.95205967221E-11 -9.29413568177E-11 -9.64928309438E-11 -1.00180013942E-10 -1.04008091516E-10 -1.07982447526E-10 -1.12108671559E-10 -1.16392566792E-10 -1.20840158154E-10 -1.25457700795E-10 -1.30251688889E-10 -1.35228864765E-10 -1.40396228388E-10 -1.45761047207E-10 -1.51330866373E-10 -1.57113519354E-10 -1.63117138947E-10 -1.69350168722E-10 -1.75821374893E-10 -1.82539858646E-10 -1.89515068946E-10 -1.96756815816E-10 -2.04275284142E-10 -2.12081047994E-10 -2.20185085496E-10 -2.28598794270E-10 -2.37334007461E-10 -2.46403010382E-10 -2.55818557791E-10 -2.65593891832E-10 -2.75742760655E-10 -2.86279437753E-10 -2.97218742037E-10 -3.08576058678E-10 -3.20367360742E-10 -3.32609231659E-10 -3.45318888542E-10 -3.58514206403E-10 -3.72213743292E-10 -3.86436766399E-10 -4.01203279147E-10 -4.16534049333E-10 -4.32450638325E-10 -4.48975431397E-10 -4.66131669203E-10 -4.83943480469E-10 -5.02435915924E-10 -5.21634983532E-10 -5.41567685073E-10 -5.62262054114E-10 -5.83747195436E-10 -6.06053325971E-10 -6.29211817295E-10 -6.53255239751E-10 -6.78217408257E-10 -7.04133429860E-10 -7.31039753113E-10 -7.58974219338E-10 -7.87976115841E-10 -8.18086231171E-10 -8.49346912482E-10 -8.81802125091E-10 -9.15497514311E-10 -9.50480469645E-10 -9.86800191438E-10 -1.02450776007E-09 -1.06365620779E-09 -1.10430059331E-09 -1.14649807924E-09 -1.19030801247E-09 -1.23579200764E-09 -1.28301403380E-09 -1.33204050439E-09 -1.38294037058E-09 -1.43578521834E-09 -1.49064936903E-09 -1.54760998398E-09 -1.60674717299E-09 -1.66814410698E-09 -1.73188713500E-09 -1.79806590564E-09 -1.86677349310E-09 -1.93810652814E-09 -2.01216533393E-09 -2.08905406715E-09 -2.16888086452E-09 -2.25175799482E-09 -2.33780201681E-09 -2.42713394318E-09 -2.51987941071E-09 -2.61616885696E-09 -2.71613770374E-09 -2.81992654756E-09 -2.92768135733E-09 -3.03955367970E-09 -3.15570085215E-09 -3.27628622429E-09 -3.40147938757E-09 -3.53145641382E-09 -3.66640010285E-09 -3.80650023953E-09 -3.95195386073E-09 -4.10296553240E-09 -4.25974763727E-09 -4.42252067354E-09 -4.59151356499E-09 -4.76696398294E-09 -4.94911868048E-09 -5.13823383949E-09 -5.33457543096E-09 -5.53841958904E-09 -5.75005299932E-09 -5.96977330212E-09 -6.19788951098E-09 -6.43472244732E-09 -6.68060519156E-09 -6.93588355163E-09 -7.20091654922E-09 -7.47607692475E-09 -7.76175166155E-09 -8.05834253009E-09 -8.36626665301E-09 -8.68595709177E-09 -9.01786345565E-09 -9.36245253405E-09 -9.72020895300E-09 -1.00916358567E-08 -1.04772556149E-08 -1.08776105581E-08 -1.12932637396E-08 -1.17247997276E-08 -1.21728254273E-08 -1.26379709347E-08 -1.31208904220E-08 -1.36222630584E-08 -1.41427939646E-08 -1.46832152047E-08 -1.52442868159E-08 -1.58267978768E-08 -1.64315676177E-08 -1.70594465724E-08 -1.77113177740E-08 -1.83880979976E-08 -1.90907390484E-08 -1.98202291015E-08 -2.05775940902E-08 -2.13638991500E-08 -2.21802501157E-08 -2.30277950769E-08 -2.39077259922E-08 -2.48212803658E-08 -2.57697429877E-08 -2.67544477401E-08 -2.77767794738E-08 -2.88381759552E-08 -2.99401298882E-08 -3.10841910136E-08 -3.22719682883E-08 -3.35051321478E-08 -3.47854168554E-08 -3.61146229409E-08 -3.74946197325E-08 -3.89273479856E-08 -4.04148226122E-08 -4.19591355138E-08 -4.35624585235E-08 -4.52270464598E-08 -4.69552402974E-08 -4.87494704594E-08 -5.06122602344E-08 -5.25462293253E-08 -5.45540975326E-08 -5.66386885793E-08 -5.88029340814E-08 -6.10498776702E-08 -6.33826792723E-08 -6.58046195528E-08 -6.83191045286E-08 -7.09296703576E-08 -7.36399883108E-08 -7.64538699352E-08 -7.93752724129E-08 -8.24083041253E-08 -8.55572304302E-08 -8.88264796589E-08 -9.22206493435E-08 -9.57445126808E-08 -9.94030252441E-08 -1.03201331951E-07 -1.07144774298E-07 -1.11238897869E-07 -1.15489460135E-07 -1.19902438550E-07 -1.24484038950E-07 -1.29240704285E-07 -1.34179123674E-07 -1.39306241811E-07 -1.44629268731E-07 -1.50155689941E-07 -1.55893276952E-07 -1.61850098201E-07 -1.68034530395E-07 -1.74455270287E-07 -1.81121346909E-07 -1.88042134256E-07 -1.95227364475E-07 -2.02687141537E-07 -2.10431955453E-07 -2.18472697010E-07 -2.26820673092E-07 -2.35487622566E-07 -2.44485732792E-07 -2.53827656751E-07 -2.63526530837E-07 -2.73595993318E-07 -2.84050203510E-07 -2.94903861685E-07 -3.06172229728E-07 -3.17871152598E-07 -3.30017080594E-07 -3.42627092483E-07 -3.55718919505E-07 -3.69310970297E-07 -3.83422356765E-07 -3.98072920952E-07 -4.13283262922E-07 -4.29074769720E-07 -4.45469645426E-07 -4.62490942364E-07 -4.80162593503E-07 -4.98509446094E-07 -5.17557296586E-07 -5.37332926885E-07 -5.57864141989E-07 -5.79179809068E-07 -6.01309898024E-07 -6.24285523615E-07 -6.48138989175E-07 -6.72903832008E-07 -6.98614870515E-07 -7.25308253120E-07 -7.53021509065E-07 -7.81793601139E-07 -8.11664980427E-07 -8.42677643142E-07 -8.74875189637E-07 -9.08302885653E-07 -9.43007725922E-07 -9.79038500188E-07 -1.01644586175E-06 -1.05528239861E-06 -1.09560270738E-06 -1.13746346994E-06 -1.18092353308E-06 -1.22604399114E-06 -1.27288827188E-06 -1.32152222548E-06 -1.37201421712E-06 -1.42443522293E-06 -1.47885892971E-06 -1.53536183841E-06 -1.59402337154E-06 -1.65492598475E-06 -1.71815528256E-06 -1.78380013862E-06 -1.85195282047E-06 -1.92270911908E-06 -1.99616848340E-06 -2.07243415991E-06 -2.15161333764E-06 -2.23381729858E-06 -2.31916157396E-06 -2.40776610639E-06 -2.49975541821E-06 -2.59525878631E-06 -2.69441042354E-06 -2.79734966710E-06 -2.90422117407E-06 -3.01517512440E-06 -3.13036743168E-06 -3.24995996191E-06 -3.37412076059E-06 -3.50302428854E-06 -3.63685166660E-06 -3.77579092979E-06 -3.92003729101E-06 -4.06979341493E-06 -4.22526970223E-06 -4.38668458466E-06 -4.55426483146E-06 -4.72824586727E-06 -4.90887210235E-06 -5.09639727524E-06 -5.29108480850E-06 -5.49320817809E-06 -5.70305129666E-06 -5.92090891162E-06 -6.14708701823E-06 -6.38190328847E-06 -6.62568751626E-06 -6.87878207963E-06 -7.14154242042E-06 -7.41433754238E-06 -7.69755052807E-06 -7.99157907556E-06 -8.29683605549E-06 -8.61375008940E-06 -8.94276614997E-06 -9.28434618419E-06 -9.63896976024E-06 -1.00071347389E-05 -1.03893579705E-05 -1.07861760188E-05 -1.11981459115E-05 -1.16258459202E-05 -1.20698763697E-05 -1.25308604778E-05 -1.30094452278E-05 -1.35063022729E-05 -1.40221288764E-05 -1.45576488867E-05 -1.51136137497E-05 -1.56908035599E-05 -1.62900281508E-05 -1.69121282274E-05 -1.75579765413E-05 -1.82284791111E-05 -1.89245764880E-05 -1.96472450710E-05 -2.03974984704E-05 -2.11763889249E-05 -2.19850087707E-05 -2.28244919683E-05 -2.36960156852E-05 -2.46008019408E-05 -2.55401193121E-05 -2.65152847052E-05 -2.75276651937E-05 -2.85786799269E-05 -2.96698021104E-05 -3.08025610622E-05 -3.19785443464E-05 -3.31993999883E-05 -3.44668387737E-05 -3.57826366348E-05 -3.71486371275E-05 -3.85667540020E-05 -4.00389738720E-05 -4.15673589837E-05 -4.31540500916E-05 -4.48012694423E-05 -4.65113238721E-05 -4.82866080219E-05 -5.01296076744E-05 -5.20429032181E-05 -5.40291732425E-05 -5.60911982700E-05 -5.82318646296E-05 -6.04541684778E-05 -6.27612199716E-05 -6.51562476011E-05 -6.76426026860E-05 -7.02237640427E-05 -7.29033428299E-05 -7.56850875774E-05 -7.85728894062E-05 -8.15707874478E-05 -8.46829744690E-05 -8.79138027109E-05 -9.12677899504E-05 -9.47496257922E-05 -9.83641782003E-05 -1.02116500279E-04 -1.06011837311E-04 -1.10055634066E-04 -1.14253542385E-04 -1.18611429060E-04 -1.23135384003E-04 -1.27831728741E-04 -1.32707025228E-04 -1.37768084992E-04 -1.43021978638E-04 -1.48476045708E-04 -1.54137904929E-04 -1.60015464841E-04 -1.66116934842E-04 -1.72450836654E-04 -1.79026016230E-04 -1.85851656116E-04 -1.92937288296E-04 -2.00292807521E-04 -2.07928485161E-04 -2.15854983590E-04 -2.24083371120E-04 -2.32625137520E-04 -2.41492210134E-04 -2.50696970616E-04 -2.60252272327E-04 -2.70171458398E-04 -2.80468380492E-04 -2.91157418308E-04 -3.02253499835E-04 -3.13772122396E-04 -3.25729374520E-04 -3.38141958659E-04 -3.51027214806E-04 -3.64403145025E-04 -3.78288438952E-04 -3.92702500294E-04 -4.07665474366E-04 -4.23198276718E-04 -4.39322622883E-04 -4.56061059300E-04 -4.73436995453E-04 -4.91474737284E-04 -5.10199521922E-04 -5.29637553782E-04 -5.49816042098E-04 -5.70763239933E-04 -5.92508484734E-04 -6.15082240494E-04 -6.38516141575E-04 -6.62843038268E-04 -6.88097044150E-04 -7.14313585311E-04 -7.41529451518E-04 -7.69782849392E-04 -7.99113457681E-04 -8.29562484686E-04 -8.61172727940E-04 -8.93988636208E-04 -9.28056373895E-04 -9.63423887936E-04 -1.00014097726E-03 -1.03825936493E-03 -1.07783277296E-03 -1.11891700005E-03 -1.16157000213E-03 -1.20585197595E-03 -1.25182544571E-03 -1.29955535286E-03 -1.34910914903E-03 -1.40055689234E-03 -1.45397134700E-03 -1.50942808624E-03 -1.56700559878E-03 -1.62678539869E-03 -1.68885213873E-03 -1.75329372719E-03 -1.82020144823E-03 -1.88967008555E-03 -1.96179804958E-03 -2.03668750782E-03 -2.11444451843E-03 -2.19517916684E-03 -2.27900570516E-03 -2.36604269421E-03 -2.45641314786E-03 -2.55024467934E-03 -2.64766964913E-03 -2.74882531398E-03 -2.85385397641E-03 -2.96290313420E-03 -3.07612562908E-03 -3.19367979374E-03 -3.31572959624E-03 -3.44244478088E-03 -3.57400100404E-03 -3.71057996389E-03 -3.85236952233E-03 -3.99956381743E-03 -4.15236336450E-03 -4.31097514368E-03 -4.47561267167E-03 -4.64649605511E-03 -4.82385202251E-03 -5.00791393195E-03 -5.19892175076E-03 -5.39712200365E-03 -5.60276768503E-03 -5.81611813115E-03 -6.03743884720E-03 -6.26700128401E-03 -6.50508255888E-03 -6.75196511421E-03 -7.00793630766E-03 -7.27328792656E-03 -7.54831561936E-03 -7.83331823613E-03 -8.12859706960E-03 -8.43445498817E-03 -8.75119545142E-03 -9.07912139849E-03 -9.41853399940E-03 -9.76973125876E-03 -1.01330064613E-02 -1.05086464484E-02 -1.08969297144E-02 -1.12981243119E-02 -1.17124855555E-02 -1.21402535120E-02 -1.25816502687E-02 -1.30368769688E-02 -1.35061106052E-02 -1.39895005659E-02 -1.44871649235E-02 -1.49991864648E-02 -1.55256084575E-02 -1.60664301534E-02 -1.66216020314E-02 -1.71910207844E-02 -1.77745240617E-02 -1.83718849776E-02 -1.89828064071E-02 -1.96069150908E-02 -2.02437555782E-02 -2.08927840465E-02 -2.15533620363E-02 -2.22247501559E-02 -2.29061018108E-02 -2.35964570287E-02 -2.42947364529E-02 -2.49997355923E-02 -2.57101194222E-02 -2.64244174423E-02 -2.71410193065E-02 -2.78581711505E-02 -2.85739727509E-02 -2.92863756604E-02 -2.99931824689E-02 -3.06920473497E-02 -3.13804780525E-02 -3.20558395101E-02 -3.27153592249E-02 -3.33561345998E-02 -3.39751423719E-02 -3.45692502991E-02 -3.51352312353E-02 -3.56697797109E-02 -3.61695311134E-02 -3.66310835313E-02 -3.70510222899E-02 -3.74259471671E-02 -3.77525022260E-02 -3.80274081499E-02 -3.82474969007E-02 -3.84097484565E-02 -3.85113293113E-02 -3.85496323423E-02 -3.85223175691E-02 -3.84273532481E-02 -3.82630566607E-02 -3.80281338767E-02 -3.77217176962E-02 -3.73434029055E-02 -3.68932779299E-02 -3.63719519181E-02 -3.57805762760E-02 -3.51208596638E-02 -3.43950754957E-02 -3.36060610432E-02 -3.27572073295E-02 -3.18524391355E-02 -3.08961846073E-02 -2.98933341679E-02 -2.88491886908E-02 -2.77693971943E-02 -2.66598846490E-02 -2.55267708688E-02 -2.43762818570E-02 -2.32146554006E-02 -2.20480431409E-02 -2.08824117722E-02 -1.97234464292E-02 -1.85764596859E-02 -1.74463098971E-02 -1.63373328335E-02 -1.52532906761E-02 -1.41973424232E-02 -1.31720395908E-02 -1.21793507437E-02 -1.12207178551E-02 -1.02971467374E-02 -9.40933281576E-03 -8.55782231111E-03 -7.74320747509E-03 -6.96635287694E-03 -6.22864790946E-03 -5.53227868549E-03 -4.87988212301E-03 -4.27232904239E-03 -3.70969197404E-03 -3.19174987709E-03 -2.71801048296E-03 -2.28773774996E-03 -1.89998387596E-03 -1.55362510099E-03 -1.24740030833E-03 -9.79951204548E-04 -7.49862636540E-04 -5.55701393035E-04 -3.96051651984E-04 -2.69545083767E-04 -1.74317151222E-04 -1.06181410265E-04 -6.00995380536E-05 -3.07425271610E-05 -1.30544120581E-05 -3.88798812104E-06 -4.87795722592E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 4 1 i j (l(j)) 0.00000000000E+00 Q_int -2.43441166210E-15 -2.52743539341E-15 -2.62401374727E-15 -2.72428255290E-15 -2.82838282984E-15 -2.93646098626E-15 -3.04866902487E-15 -3.16516475673E-15 -3.28611202315E-15 -3.41168092616E-15 -3.54204806772E-15 -3.67739679811E-15 -3.81791747380E-15 -3.96380772513E-15 -4.11527273431E-15 -4.27252552398E-15 -4.43578725679E-15 -4.60528754646E-15 -4.78126478069E-15 -4.96396645649E-15 -5.15364952818E-15 -5.35058076885E-15 -5.55503714551E-15 -5.76730620863E-15 -5.98768649657E-15 -6.21648795542E-15 -6.45403237495E-15 -6.70065384114E-15 -6.95669920606E-15 -7.22252857572E-15 -7.49851581647E-15 -7.78504908086E-15 -8.08253135349E-15 -8.39138101785E-15 -8.71203244468E-15 -9.04493660289E-15 -9.39056169380E-15 -9.74939380967E-15 -1.01219376173E-14 -1.05087170678E-14 -1.09102761335E-14 -1.13271795731E-14 -1.17600137257E-14 -1.22093873356E-14 -1.26759324085E-14 -1.31603051005E-14 -1.36631866403E-14 -1.41852842880E-14 -1.47273323295E-14 -1.52900931091E-14 -1.58743581020E-14 -1.64809490271E-14 -1.71107190028E-14 -1.77645537469E-14 -1.84433728224E-14 -1.91481309303E-14 -1.98798192530E-14 -2.06394668477E-14 -2.14281420940E-14 -2.22469541965E-14 -2.30970547446E-14 -2.39796393324E-14 -2.48959492398E-14 -2.58472731786E-14 -2.68349491050E-14 -2.78603661009E-14 -2.89249663280E-14 -3.00302470558E-14 -3.11777627675E-14 -3.23691273462E-14 -3.36060163445E-14 -3.48901693416E-14 -3.62233923892E-14 -3.76075605518E-14 -3.90446205442E-14 -4.05365934687E-14 -4.20855776581E-14 -4.36937516267E-14 -4.53633771342E-14 -4.70968023665E-14 -4.88964652386E-14 -5.07648968230E-14 -5.27047249095E-14 -5.47186777009E-14 -5.68095876504E-14 -5.89803954445E-14 -6.12341541395E-14 -6.35740334550E-14 -6.60033242317E-14 -6.85254430603E-14 -7.11439370860E-14 -7.38624889974E-14 -7.66849222061E-14 -7.96152062241E-14 -8.26574622461E-14 -8.58159689459E-14 -8.90951684941E-14 -9.24996728055E-14 -9.60342700251E-14 -9.97039312630E-14 -1.03513817585E-13 -1.07469287271E-13 -1.11575903353E-13 -1.15839441436E-13 -1.20265897823E-13 -1.24861497948E-13 -1.29632705130E-13 -1.34586229667E-13 -1.39729038268E-13 -1.45068363855E-13 -1.50611715736E-13 -1.56366890161E-13 -1.62341981293E-13 -1.68545392589E-13 -1.74985848618E-13 -1.81672407333E-13 -1.88614472808E-13 -1.95821808467E-13 -2.03304550815E-13 -2.11073223689E-13 -2.19138753066E-13 -2.27512482427E-13 -2.36206188707E-13 -2.45232098864E-13 -2.54602907072E-13 -2.64331792573E-13 -2.74432438215E-13 -2.84919049697E-13 -2.95806375543E-13 -3.07109727849E-13 -3.18845003817E-13 -3.31028708112E-13 -3.43677976077E-13 -3.56810597828E-13 -3.70445043278E-13 -3.84600488114E-13 -3.99296840761E-13 -4.14554770388E-13 -4.30395735972E-13 -4.46842016480E-13 -4.63916742204E-13 -4.81643927292E-13 -5.00048503516E-13 -5.19156355347E-13 -5.38994356347E-13 -5.59590406975E-13 -5.80973473820E-13 -6.03173630343E-13 -6.26222099172E-13 -6.50151296014E-13 -6.74994875243E-13 -7.00787777237E-13 -7.27566277513E-13 -7.55368037749E-13 -7.84232158751E-13 -8.14199235443E-13 -8.45311413966E-13 -8.77612450945E-13 -9.11147775036E-13 -9.45964550811E-13 -9.82111745099E-13 -1.01964019585E-12 -1.05860268362E-12 -1.09905400583E-12 -1.14105105382E-12 -1.18465289286E-12 -1.22992084521E-12 -1.27691857639E-12 -1.32571218470E-12 -1.37637029419E-12 -1.42896415117E-12 -1.48356772441E-12 -1.54025780919E-12 -1.59911413527E-12 -1.66021947906E-12 -1.72365978001E-12 -1.78952426150E-12 -1.85790555629E-12 -1.92889983685E-12 -2.00260695059E-12 -2.07913056026E-12 -2.15857828979E-12 -2.24106187565E-12 -2.32669732396E-12 -2.41560507366E-12 -2.50791016594E-12 -2.60374242001E-12 -2.70323661578E-12 -2.80653268334E-12 -2.91377589980E-12 -3.02511709358E-12 -3.14071285659E-12 -3.26072576438E-12 -3.38532460489E-12 -3.51468461573E-12 -3.64898773074E-12 -3.78842283577E-12 -3.93318603441E-12 -4.08348092373E-12 -4.23951888066E-12 -4.40151935929E-12 -4.56971019943E-12 -4.74432794717E-12 -4.92561818744E-12 -5.11383588950E-12 -5.30924576547E-12 -5.51212264266E-12 -5.72275185006E-12 -5.94142961968E-12 -6.16846350311E-12 -6.40417280413E-12 -6.64888902773E-12 -6.90295634638E-12 -7.16673208406E-12 -7.44058721881E-12 -7.72490690447E-12 -8.02009101240E-12 -8.32655469381E-12 -8.64472896369E-12 -8.97506130695E-12 -9.31801630780E-12 -9.67407630314E-12 -1.00437420609E-11 -1.04275334844E-11 -1.08259903434E-11 -1.12396730335E-11 -1.16691633639E-11 -1.21150653761E-11 -1.25780061931E-11 -1.30586369017E-11 -1.35576334677E-11 -1.40756976871E-11 -1.46135581730E-11 -1.51719713801E-11 -1.57517226687E-11 -1.63536274094E-11 -1.69785321298E-11 -1.76273157048E-11 -1.83008905930E-11 -1.90002041197E-11 -1.97262398096E-11 -2.04800187696E-11 -2.12626011253E-11 -2.20750875116E-11 -2.29186206212E-11 -2.37943868110E-11 -2.47036177711E-11 -2.56475922568E-11 -2.66276378874E-11 -2.76451330129E-11 -2.87015086531E-11 -2.97982505096E-11 -3.09369010557E-11 -3.21190617057E-11 -3.33463950671E-11 -3.46206272788E-11 -3.59435504392E-11 -3.73170251259E-11 -3.87429830132E-11 -4.02234295883E-11 -4.17604469720E-11 -4.33561968473E-11 -4.50129234991E-11 -4.67329569709E-11 -4.85187163420E-11 -5.03727131292E-11 -5.22975548194E-11 -5.42959485368E-11 -5.63707048501E-11 -5.85247417254E-11 -6.07610886299E-11 -6.30828907929E-11 -6.54934136289E-11 -6.79960473306E-11 -7.05943116362E-11 -7.32918607806E-11 -7.60924886336E-11 -7.90001340366E-11 -8.20188863417E-11 -8.51529911633E-11 -8.84068563490E-11 -9.17850581788E-11 -9.52923478014E-11 -9.89336579164E-11 -1.02714109711E-10 -1.06639020064E-10 -1.10713909021E-10 -1.14944507561E-10 -1.19336765653E-10 -1.23896860628E-10 -1.28631205864E-10 -1.33546459807E-10 -1.38649535333E-10 -1.43947609476E-10 -1.49448133516E-10 -1.55158843461E-10 -1.61087770930E-10 -1.67243254440E-10 -1.73633951145E-10 -1.80268849002E-10 -1.87157279416E-10 -1.94308930363E-10 -2.01733860016E-10 -2.09442510890E-10 -2.17445724528E-10 -2.25754756751E-10 -2.34381293484E-10 -2.43337467196E-10 -2.52635873961E-10 -2.62289591171E-10 -2.72312195932E-10 -2.82717784158E-10 -2.93520990394E-10 -3.04737008398E-10 -3.16381612513E-10 -3.28471179847E-10 -3.41022713312E-10 -3.54053865530E-10 -3.67582963666E-10 -3.81629035200E-10 -3.96211834688E-10 -4.11351871546E-10 -4.27070438892E-10 -4.43389643497E-10 -4.60332436871E-10 -4.77922647547E-10 -4.96185014587E-10 -5.15145222385E-10 -5.34829936779E-10 -5.55266842563E-10 -5.76484682414E-10 -5.98513297325E-10 -6.21383668567E-10 -6.45127961263E-10 -6.69779569627E-10 -6.95373163926E-10 -7.21944739243E-10 -7.49531666100E-10 -7.78172743015E-10 -8.07908251071E-10 -8.38780010563E-10 -8.70831439817E-10 -9.04107616253E-10 -9.38655339783E-10 -9.74523198626E-10 -1.01176163765E-09 -1.05042302930E-09 -1.09056174729E-09 -1.13223424304E-09 -1.17549912507E-09 -1.22041724145E-09 -1.26705176535E-09 -1.31546828393E-09 -1.36573489051E-09 -1.41792228042E-09 -1.47210385035E-09 -1.52835580162E-09 -1.58675724734E-09 -1.64739032366E-09 -1.71034030530E-09 -1.77569572549E-09 -1.84354850045E-09 -1.91399405868E-09 -1.98713147517E-09 -2.06306361074E-09 -2.14189725669E-09 -2.22374328501E-09 -2.30871680426E-09 -2.39693732155E-09 -2.48852891050E-09 -2.58362038582E-09 -2.68234548445E-09 -2.78484305361E-09 -2.89125724614E-09 -3.00173772315E-09 -3.11643986458E-09 -3.23552498767E-09 -3.35916057386E-09 -3.48752050431E-09 -3.62078530448E-09 -3.75914239795E-09 -3.90278637010E-09 -4.05191924167E-09 -4.20675075295E-09 -4.36749865874E-09 -4.53438903454E-09 -4.70765659457E-09 -4.88754502182E-09 -5.07430731077E-09 -5.26820612318E-09 -5.46951415752E-09 -5.67851453242E-09 -5.89550118492E-09 -6.12077928380E-09 -6.35466565873E-09 -6.59748924593E-09 -6.84959155068E-09 -7.11132712766E-09 -7.38306407956E-09 -7.66518457474E-09 -7.95808538473E-09 -8.26217844218E-09 -8.57789142024E-09 -8.90566833397E-09 -9.24597016477E-09 -9.59927550872E-09 -9.96608124962E-09 -1.03469032578E-08 -1.07422771155E-08 -1.11527588702E-08 -1.15789258167E-08 -1.20213773087E-08 -1.24807356018E-08 -1.29576467288E-08 -1.34527814079E-08 -1.39668359862E-08 -1.45005334189E-08 -1.50546242859E-08 -1.56298878475E-08 -1.62271331401E-08 -1.68472001143E-08 -1.74909608158E-08 -1.81593206116E-08 -1.88532194639E-08 -1.95736332512E-08 -2.03215751411E-08 -2.10980970151E-08 -2.19042909475E-08 -2.27412907417E-08 -2.36102735242E-08 -2.45124614001E-08 -2.54491231717E-08 -2.64215761230E-08 -2.74311878717E-08 -2.84793782929E-08 -2.95676215153E-08 -3.06974479948E-08 -3.18704466662E-08 -3.30882671777E-08 -3.43526222111E-08 -3.56652898896E-08 -3.70281162790E-08 -3.84430179827E-08 -3.99119848381E-08 -4.14370827135E-08 -4.30204564141E-08 -4.46643326974E-08 -4.63710234050E-08 -4.81429287130E-08 -4.99825405074E-08 -5.18924458881E-08 -5.38753308068E-08 -5.59339838437E-08 -5.80713001293E-08 -6.02902854147E-08 -6.25940602986E-08 -6.49858646151E-08 -6.74690619896E-08 -7.00471445682E-08 -7.27237379282E-08 -7.55026061762E-08 -7.83876572409E-08 -8.13829483677E-08 -8.44926918239E-08 -8.77212608214E-08 -9.10731956658E-08 -9.45532101402E-08 -9.81661981335E-08 -1.01917240521E-07 -1.05811612309E-07 -1.09854790050E-07 -1.14052459545E-07 -1.18410523838E-07 -1.22935111511E-07 -1.27632585307E-07 -1.32509551074E-07 -1.37572867050E-07 -1.42829653507E-07 -1.48287302763E-07 -1.53953489575E-07 -1.59836181926E-07 -1.65943652231E-07 -1.72284488966E-07 -1.78867608741E-07 -1.85702268839E-07 -1.92798080225E-07 -2.00165021065E-07 -2.07813450745E-07 -2.15754124442E-07 -2.23998208240E-07 -2.32557294827E-07 -2.41443419793E-07 -2.50669078548E-07 -2.60247243889E-07 -2.70191384232E-07 -2.80515482551E-07 -2.91234056028E-07 -3.02362176463E-07 -3.13915491456E-07 -3.25910246408E-07 -3.38363307347E-07 -3.51292184643E-07 -3.64715057615E-07 -3.78650800084E-07 -3.93119006904E-07 -4.08140021495E-07 -4.23734964444E-07 -4.39925763185E-07 -4.56735182814E-07 -4.74186858089E-07 -4.92305326642E-07 -5.11116063464E-07 -5.30645516707E-07 -5.50921144850E-07 -5.71971455287E-07 -5.93826044387E-07 -6.16515639084E-07 -6.40072140050E-07 -6.64528666527E-07 -6.89919602861E-07 -7.16280646814E-07 -7.43648859721E-07 -7.72062718567E-07 -8.01562170044E-07 -8.32188686671E-07 -8.63985325067E-07 -8.96996786436E-07 -9.31269479366E-07 -9.66851585025E-07 -1.00379312484E-06 -1.04214603078E-06 -1.08196421828E-06 -1.12330366199E-06 -1.16622247439E-06 -1.21078098741E-06 -1.25704183718E-06 -1.30507005199E-06 -1.35493314361E-06 -1.40670120211E-06 -1.46044699430E-06 -1.51624606589E-06 -1.57417684758E-06 -1.63432076519E-06 -1.69676235401E-06 -1.76158937745E-06 -1.82889295029E-06 -1.89876766658E-06 -1.97131173248E-06 -2.04662710403E-06 -2.12481963037E-06 -2.20599920226E-06 -2.29027990634E-06 -2.37778018523E-06 -2.46862300380E-06 -2.56293602172E-06 -2.66085177259E-06 -2.76250784992E-06 -2.86804710023E-06 -2.97761782345E-06 -3.09137398095E-06 -3.20947541161E-06 -3.33208805599E-06 -3.45938418911E-06 -3.59154266212E-06 -3.72874915312E-06 -3.87119642758E-06 -4.01908460867E-06 -4.17262145788E-06 -4.33202266637E-06 -4.49751215732E-06 -4.66932239995E-06 -4.84769473532E-06 -5.03287971469E-06 -5.22513745071E-06 -5.42473798193E-06 -5.63196165125E-06 -5.84709949878E-06 -6.07045366964E-06 -6.30233783724E-06 -6.54307764275E-06 -6.79301115123E-06 -7.05248932514E-06 -7.32187651591E-06 -7.60155097410E-06 -7.89190537910E-06 -8.19334738887E-06 -8.50630021069E-06 -8.83120319351E-06 -9.16851244289E-06 -9.51870145934E-06 -9.88226180084E-06 -1.02597037707E-05 -1.06515571312E-05 -1.10583718452E-05 -1.14807188446E-05 -1.19191908293E-05 -1.23744030957E-05 -1.28469943971E-05 -1.33376278365E-05 -1.38469917935E-05 -1.43758008861E-05 -1.49247969695E-05 -1.54947501725E-05 -1.60864599732E-05 -1.67007563156E-05 -1.73385007687E-05 -1.80005877293E-05 -1.86879456707E-05 -1.94015384386E-05 -2.01423665962E-05 -2.09114688206E-05 -2.17099233510E-05 -2.25388494936E-05 -2.33994091821E-05 -2.42928085977E-05 -2.52202998509E-05 -2.61831827265E-05 -2.71828064948E-05 -2.82205717918E-05 -2.92979325701E-05 -3.04163981235E-05 -3.15775351893E-05 -3.27829701288E-05 -3.40343911910E-05 -3.53335508622E-05 -3.66822683038E-05 -3.80824318831E-05 -3.95360017986E-05 -4.10450128061E-05 -4.26115770465E-05 -4.42378869812E-05 -4.59262184385E-05 -4.76789337742E-05 -4.94984851528E-05 -5.13874179520E-05 -5.33483742954E-05 -5.53840967196E-05 -5.74974319786E-05 -5.96913349928E-05 -6.19688729463E-05 -6.43332295389E-05 -6.67877093993E-05 -6.93357426637E-05 -7.19808897276E-05 -7.47268461771E-05 -7.75774479056E-05 -8.05366764235E-05 -8.36086643686E-05 -8.67977012238E-05 -9.01082392502E-05 -9.35448996440E-05 -9.71124789257E-05 -1.00815955569E-04 -1.04660496882E-04 -1.08651466145E-04 -1.12794430015E-04 -1.17095166220E-04 -1.21559671528E-04 -1.26194170028E-04 -1.31005121718E-04 -1.35999231418E-04 -1.41183458016E-04 -1.46565024067E-04 -1.52151425753E-04 -1.57950443213E-04 -1.63970151270E-04 -1.70218930556E-04 -1.76705479062E-04 -1.83438824120E-04 -1.90428334835E-04 -1.97683734996E-04 -2.05215116462E-04 -2.13032953060E-04 -2.21148115008E-04 -2.29571883880E-04 -2.38315968142E-04 -2.47392519266E-04 -2.56814148467E-04 -2.66593944057E-04 -2.76745489475E-04 -2.87282881981E-04 -2.98220752074E-04 -3.09574283638E-04 -3.21359234854E-04 -3.33591959911E-04 -3.46289431534E-04 -3.59469264378E-04 -3.73149739304E-04 -3.87349828588E-04 -4.02089222082E-04 -4.17388354383E-04 -4.33268433033E-04 -4.49751467801E-04 -4.66860301082E-04 -4.84618639462E-04 -5.03051086496E-04 -5.22183176743E-04 -5.42041411101E-04 -5.62653293514E-04 -5.84047369084E-04 -6.06253263652E-04 -6.29301724909E-04 -6.53224665091E-04 -6.78055205332E-04 -7.03827721722E-04 -7.30577893157E-04 -7.58342751043E-04 -7.87160730923E-04 -8.17071726118E-04 -8.48117143439E-04 -8.80339961077E-04 -9.13784788740E-04 -9.48497930121E-04 -9.84527447813E-04 -1.02192323073E-03 -1.06073706419E-03 -1.10102270264E-03 -1.14283594533E-03 -1.18623471480E-03 -1.23127913851E-03 -1.27803163358E-03 -1.32655699478E-03 -1.37692248603E-03 -1.42919793525E-03 -1.48345583299E-03 -1.53977143478E-03 -1.59822286733E-03 -1.65889123883E-03 -1.72186075331E-03 -1.78721882938E-03 -1.85505622329E-03 -1.92546715655E-03 -1.99854944824E-03 -2.07440465201E-03 -2.15313819808E-03 -2.23485954010E-03 -2.31968230724E-03 -2.40772446134E-03 -2.49910845936E-03 -2.59396142117E-03 -2.69241530263E-03 -2.79460707410E-03 -2.90067890425E-03 -3.01077834924E-03 -3.12505854716E-03 -3.24367841762E-03 -3.36680286632E-03 -3.49460299443E-03 -3.62725631251E-03 -3.76494695872E-03 -3.90786592069E-03 -4.05621126094E-03 -4.21018834494E-03 -4.37001007136E-03 -4.53589710365E-03 -4.70807810201E-03 -4.88678995481E-03 -5.07227800816E-03 -5.26479629229E-03 -5.46460774323E-03 -5.67198441793E-03 -5.88720770092E-03 -6.11056850026E-03 -6.34236743018E-03 -6.58291497776E-03 -6.83253165043E-03 -7.09154810077E-03 -7.36030522502E-03 -7.63915423073E-03 -7.92845666911E-03 -8.22858442691E-03 -8.53991967217E-03 -8.86285474763E-03 -9.19779200527E-03 -9.54514357449E-03 -9.90533105621E-03 -1.02787851342E-02 -1.06659450943E-02 -1.10672582422E-02 -1.14831792083E-02 -1.19141691286E-02 -1.23606946901E-02 -1.28232270273E-02 -1.33022404554E-02 -1.37982110281E-02 -1.43116149028E-02 -1.48429264988E-02 -1.53926164314E-02 -1.59611492066E-02 -1.65489806576E-02 -1.71565551059E-02 -1.77843022315E-02 -1.84326336306E-02 -1.91019390478E-02 -1.97925822627E-02 -2.05048966161E-02 -2.12391801608E-02 -2.19956904228E-02 -2.27746387615E-02 -2.35761843192E-02 -2.44004275530E-02 -2.52474033467E-02 -2.61170737022E-02 -2.70093200161E-02 -2.79239349530E-02 -2.88606139314E-02 -2.98189462466E-02 -3.07984058622E-02 -3.17983419108E-02 -3.28179689542E-02 -3.38563570634E-02 -3.49124217918E-02 -3.59849141249E-02 -3.70724105061E-02 -3.81733030506E-02 -3.92857900735E-02 -4.04078670762E-02 -4.15373183486E-02 -4.26717093618E-02 -4.38083801417E-02 -4.49444398294E-02 -4.60767626494E-02 -4.72019855203E-02 -4.83165075539E-02 -4.94164917009E-02 -5.04978688048E-02 -5.15563443337E-02 -5.25874080556E-02 -5.35863469208E-02 -5.45482614011E-02 -5.54680855218E-02 -5.63406107951E-02 -5.71605142328E-02 -5.79223905751E-02 -5.86207888215E-02 -5.92502530891E-02 -5.98053677545E-02 -6.02808067531E-02 -6.06713868183E-02 -6.09721243424E-02 -6.11782954290E-02 -6.12854985891E-02 -6.12897194051E-02 -6.11873963581E-02 -6.09754868812E-02 -6.06515325696E-02 -6.02137223524E-02 -5.96609523137E-02 -5.89928807493E-02 -5.82099769599E-02 -5.73135622291E-02 -5.63058414051E-02 -5.51899235225E-02 -5.39698299581E-02 -5.26504887251E-02 -5.12377136777E-02 -4.97381676269E-02 -4.81593086633E-02 -4.65093193436E-02 -4.47970188275E-02 -4.30317585429E-02 -4.12233025122E-02 -3.93816940716E-02 -3.75171113576E-02 -3.56397145926E-02 -3.37594888669E-02 -3.18860867484E-02 -3.00286756394E-02 -2.81957953049E-02 -2.63952313787E-02 -2.46339108909E-02 -2.29178259006E-02 -2.12519911372E-02 -1.96404411117E-02 -1.80862714298E-02 -1.65917279997E-02 -1.51583464598E-02 -1.37871424573E-02 -1.24788513907E-02 -1.12342139143E-02 -1.00543009271E-02 -8.94086898909E-03 -7.89673419970E-03 -6.92523917231E-03 -6.02703258196E-03 -5.20151138988E-03 -4.44756807444E-03 -3.76363469076E-03 -3.14773623484E-03 -2.59755239715E-03 -2.11048643096E-03 -1.68373948591E-03 -1.31438837872E-03 -9.99464403137E-04 -7.36030434724E-04 -5.21253280994E-04 -3.52467982165E-04 -2.26469836955E-04 -1.37078515772E-04 -7.71270771465E-05 -3.92379360239E-05 -1.65728067333E-05 -4.90907798953E-06 -6.12535203309E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 5 1 i j (l(j)) 0.00000000000E+00 Q_int -1.34689559922E-15 -1.39836316992E-15 -1.45179741929E-15 -1.50727349803E-15 -1.56486942854E-15 -1.62466621457E-15 -1.68674795522E-15 -1.75120196315E-15 -1.81811888745E-15 -1.88759284107E-15 -1.95972153320E-15 -2.03460640670E-15 -2.11235278077E-15 -2.19306999906E-15 -2.27687158345E-15 -2.36387539375E-15 -2.45420379339E-15 -2.54798382157E-15 -2.64534737191E-15 -2.74643137796E-15 -2.85137800575E-15 -2.96033485377E-15 -3.07345516055E-15 -3.19089802016E-15 -3.31282860598E-15 -3.43941840299E-15 -3.57084544896E-15 -3.70729458481E-15 -3.84895771465E-15 -3.99603407559E-15 -4.14873051801E-15 -4.30726179643E-15 -4.47185087161E-15 -4.64272922404E-15 -4.82013717957E-15 -5.00432424738E-15 -5.19554947089E-15 -5.39408179208E-15 -5.60020042974E-15 -5.81419527219E-15 -6.03636728492E-15 -6.26702893396E-15 -6.50650462525E-15 -6.75513116095E-15 -7.01325821311E-15 -7.28124881544E-15 -7.55947987387E-15 -7.84834269669E-15 -8.14824354485E-15 -8.45960420334E-15 -8.78286257440E-15 -9.11847329338E-15 -9.46690836818E-15 -9.82865784303E-15 -1.02042304878E-14 -1.05941545133E-14 -1.09989783145E-14 -1.14192712417E-14 -1.18556244009E-14 -1.23086514858E-14 -1.27789896403E-14 -1.32673003550E-14 -1.37742703973E-14 -1.43006127774E-14 -1.48470677509E-14 -1.54144038603E-14 -1.60034190154E-14 -1.66149416159E-14 -1.72498317163E-14 -1.79089822352E-14 -1.85933202119E-14 -1.93038081093E-14 -2.00414451682E-14 -2.08072688121E-14 -2.16023561069E-14 -2.24278252751E-14 -2.32848372687E-14 -2.41745974021E-14 -2.50983570471E-14 -2.60574153929E-14 -2.70531212733E-14 -2.80868750640E-14 -2.91601306514E-14 -3.02743974782E-14 -3.14312426657E-14 -3.26322932181E-14 -3.38792383106E-14 -3.51738316654E-14 -3.65178940176E-14 -3.79133156764E-14 -3.93620591835E-14 -4.08661620732E-14 -4.24277397381E-14 -4.40489884041E-14 -4.57321882193E-14 -4.74797064609E-14 -4.92940008643E-14 -5.11776230802E-14 -5.31332222625E-14 -5.51635487950E-14 -5.72714581590E-14 -5.94599149492E-14 -6.17319970439E-14 -6.40908999328E-14 -6.65399412119E-14 -6.90825652491E-14 -7.17223480284E-14 -7.44630021794E-14 -7.73083821987E-14 -8.02624898708E-14 -8.33294798965E-14 -8.65136657359E-14 -8.98195256750E-14 -9.32517091243E-14 -9.68150431573E-14 -1.00514539300E-13 -1.04355400578E-13 -1.08343028835E-13 -1.12483032332E-13 -1.16781233630E-13 -1.21243677783E-13 -1.25876640838E-13 -1.30686638664E-13 -1.35680436112E-13 -1.40865056534E-13 -1.46247791655E-13 -1.51836211835E-13 -1.57638176710E-13 -1.63661846249E-13 -1.69915692230E-13 -1.76408510155E-13 -1.83149431619E-13 -1.90147937153E-13 -1.97413869560E-13 -2.04957447754E-13 -2.12789281134E-13 -2.20920384509E-13 -2.29362193580E-13 -2.38126581034E-13 -2.47225873235E-13 -2.56672867562E-13 -2.66480850407E-13 -2.76663615862E-13 -2.87235485120E-13 -2.98211326614E-13 -3.09606576929E-13 -3.21437262514E-13 -3.33720022220E-13 -3.46472130702E-13 -3.59711522714E-13 -3.73456818333E-13 -3.87727349146E-13 -4.02543185438E-13 -4.17925164420E-13 -4.33894919535E-13 -4.50474910883E-13 -4.67688456809E-13 -4.85559766698E-13 -5.04113975025E-13 -5.23377176702E-13 -5.43376463781E-13 -5.64139963555E-13 -5.85696878117E-13 -6.08077525430E-13 -6.31313381968E-13 -6.55437126982E-13 -6.80482688464E-13 -7.06485290862E-13 -7.33481504620E-13 -7.61509297611E-13 -7.90608088539E-13 -8.20818802372E-13 -8.52183927906E-13 -8.84747577515E-13 -9.18555549198E-13 -9.53655390985E-13 -9.90096467813E-13 -1.02793003095E-12 -1.06720929008E-12 -1.10798948813E-12 -1.15032797897E-12 -1.19428430809E-12 -1.23992029631E-12 -1.28730012676E-12 -1.33649043513E-12 -1.38756040341E-12 -1.44058185714E-12 -1.49562936648E-12 -1.55278035107E-12 -1.61211518889E-12 -1.67371732932E-12 -1.73767341054E-12 -1.80407338132E-12 -1.87301062755E-12 -1.94458210360E-12 -2.01888846865E-12 -2.09603422826E-12 -2.17612788137E-12 -2.25928207287E-12 -2.34561375205E-12 -2.43524433705E-12 -2.52829988565E-12 -2.62491127254E-12 -2.72521437340E-12 -2.82935025599E-12 -2.93746537856E-12 -3.04971179579E-12 -3.16624737272E-12 -3.28723600668E-12 -3.41284785789E-12 -3.54325958869E-12 -3.67865461206E-12 -3.81922334956E-12 -3.96516349913E-12 -4.11668031315E-12 -4.27398688710E-12 -4.43730445925E-12 -4.60686272183E-12 -4.78290014410E-12 -4.96566430766E-12 -5.15541225473E-12 -5.35241084961E-12 -5.55693715401E-12 -5.76927881675E-12 -5.98973447825E-12 -6.21861419060E-12 -6.45623985359E-12 -6.70294566744E-12 -6.95907860284E-12 -7.22499888890E-12 -7.50108051981E-12 -7.78771178085E-12 -8.08529579442E-12 -8.39425108703E-12 -8.71501217796E-12 -9.04803019030E-12 -9.39377348547E-12 -9.75272832190E-12 -1.01253995389E-11 -1.05123112669E-11 -1.09140076640E-11 -1.13310536819E-11 -1.17640358604E-11 -1.22135631519E-11 -1.26802677782E-11 -1.31648061193E-11 -1.36678596373E-11 -1.41901358338E-11 -1.47323692458E-11 -1.52953224783E-11 -1.58797872769E-11 -1.64865856414E-11 -1.71165709819E-11 -1.77706293190E-11 -1.84496805298E-11 -1.91546796419E-11 -1.98866181764E-11 -2.06465255422E-11 -2.14354704840E-11 -2.22545625857E-11 -2.31049538301E-11 -2.39878402200E-11 -2.49044634596E-11 -2.58561127010E-11 -2.68441263577E-11 -2.78698939864E-11 -2.89348582415E-11 -3.00405169042E-11 -3.11884249889E-11 -3.23801969302E-11 -3.36175088533E-11 -3.49021009316E-11 -3.62357798341E-11 -3.76204212660E-11 -3.90579726069E-11 -4.05504556500E-11 -4.20999694447E-11 -4.37086932497E-11 -4.53788895974E-11 -4.71129074758E-11 -4.89131856327E-11 -5.07822560051E-11 -5.27227472805E-11 -5.47373885936E-11 -5.68290133649E-11 -5.90005632854E-11 -6.12550924540E-11 -6.35957716728E-11 -6.60258929065E-11 -6.85488739122E-11 -7.11682630465E-11 -7.38877442556E-11 -7.67111422565E-11 -7.96424279164E-11 -8.26857238370E-11 -8.58453101530E-11 -8.91256305513E-11 -9.25312985210E-11 -9.60671038416E-11 -9.97380193198E-11 -1.03549207783E-10 -1.07506029340E-10 -1.11614048921E-10 -1.15879044101E-10 -1.20307013231E-10 -1.24904183868E-10 -1.29677021537E-10 -1.34632238824E-10 -1.39776804816E-10 -1.45117954901E-10 -1.50663200948E-10 -1.56420341868E-10 -1.62397474583E-10 -1.68603005416E-10 -1.75045661911E-10 -1.81734505109E-10 -1.88678942292E-10 -1.95888740211E-10 -2.03374038824E-10 -2.11145365559E-10 -2.19213650116E-10 -2.27590239839E-10 -2.36286915679E-10 -2.45315908758E-10 -2.54689917576E-10 -2.64422125863E-10 -2.74526221130E-10 -2.85016413911E-10 -2.95907457755E-10 -3.07214669972E-10 -3.18953953174E-10 -3.31141817647E-10 -3.43795404565E-10 -3.56932510099E-10 -3.70571610449E-10 -3.84731887823E-10 -3.99433257422E-10 -4.14696395444E-10 -4.30542768166E-10 -4.46994662130E-10 -4.64075215493E-10 -4.81808450566E-10 -5.00219307598E-10 -5.19333679853E-10 -5.39178450028E-10 -5.59781528059E-10 -5.81171890375E-10 -6.03379620650E-10 -6.26435952114E-10 -6.50373311479E-10 -6.75225364543E-10 -7.01027063540E-10 -7.27814696297E-10 -7.55625937266E-10 -7.84499900515E-10 -8.14477194734E-10 -8.45599980350E-10 -8.77912028818E-10 -9.11458784188E-10 -9.46287427011E-10 -9.82446940699E-10 -1.01998818041E-09 -1.05896394458E-09 -1.09942904917E-09 -1.14144040476E-09 -1.18505709660E-09 -1.23034046770E-09 -1.27735420508E-09 -1.32616442938E-09 -1.37683978785E-09 -1.42945155085E-09 -1.48407371213E-09 -1.54078309288E-09 -1.59965944976E-09 -1.66078558710E-09 -1.72424747333E-09 -1.79013436189E-09 -1.85853891676E-09 -1.92955734280E-09 -2.00328952100E-09 -2.07983914903E-09 -2.15931388701E-09 -2.24182550896E-09 -2.32749006000E-09 -2.41642801953E-09 -2.50876447071E-09 -2.60462927633E-09 -2.70415726150E-09 -2.80748840323E-09 -2.91476802730E-09 -3.02614701266E-09 -3.14178200362E-09 -3.26183563014E-09 -3.38647673658E-09 -3.51588061912E-09 -3.65022927234E-09 -3.78971164516E-09 -3.93452390656E-09 -4.08486972148E-09 -4.24096053728E-09 -4.40301588107E-09 -4.57126366849E-09 -4.74594052423E-09 -4.92729211482E-09 -5.11557349414E-09 -5.31104946211E-09 -5.51399493712E-09 -5.72469534264E-09 -5.94344700869E-09 -6.17055758855E-09 -6.40634649143E-09 -6.65114533174E-09 -6.90529839540E-09 -7.16916312409E-09 -7.44311061792E-09 -7.72752615735E-09 -8.02280974502E-09 -8.32937666836E-09 -8.64765808358E-09 -8.97810162206E-09 -9.32117201991E-09 -9.67735177154E-09 -1.00471418082E-08 -1.04310622026E-08 -1.08296529002E-08 -1.12434744785E-08 -1.16731089357E-08 -1.21191605090E-08 -1.25822565243E-08 -1.30630482787E-08 -1.35622119563E-08 -1.40804495791E-08 -1.46184899945E-08 -1.51770899002E-08 -1.57570349085E-08 -1.63591406507E-08 -1.69842539250E-08 -1.76332538867E-08 -1.83070532848E-08 -1.90065997456E-08 -1.97328771059E-08 -2.04869067957E-08 -2.12697492756E-08 -2.20825055274E-08 -2.29263186031E-08 -2.38023752320E-08 -2.47119074900E-08 -2.56561945320E-08 -2.66365643908E-08 -2.76543958452E-08 -2.87111203585E-08 -2.98082240919E-08 -3.09472499947E-08 -3.21297999738E-08 -3.33575371466E-08 -3.46321881801E-08 -3.59555457190E-08 -3.73294709068E-08 -3.87558960031E-08 -4.02368271009E-08 -4.17743469480E-08 -4.33706178757E-08 -4.50278848401E-08 -4.67484785788E-08 -4.85348188888E-08 -5.03894180296E-08 -5.23148842558E-08 -5.43139254855E-08 -5.63893531082E-08 -5.85440859383E-08 -6.07811543201E-08 -6.31037043890E-08 -6.55150024963E-08 -6.80184398019E-08 -7.06175370437E-08 -7.33159494888E-08 -7.61174720732E-08 -7.90260447389E-08 -8.20457579746E-08 -8.51808585674E-08 -8.84357555755E-08 -9.18150265277E-08 -9.53234238614E-08 -9.89658816045E-08 -1.02747522315E-07 -1.06673664284E-07 -1.10749829013E-07 -1.14981748981E-07 -1.19375375704E-07 -1.23936888104E-07 -1.28672701197E-07 -1.33589475118E-07 -1.38694124479E-07 -1.43993828100E-07 -1.49496039099E-07 -1.55208495373E-07 -1.61139230479E-07 -1.67296584933E-07 -1.73689217934E-07 -1.80326119542E-07 -1.87216623321E-07 -1.94370419459E-07 -2.01797568400E-07 -2.09508514982E-07 -2.17514103132E-07 -2.25825591106E-07 -2.34454667327E-07 -2.43413466814E-07 -2.52714588246E-07 -2.62371111679E-07 -2.72396616935E-07 -2.82805202699E-07 -2.93611506338E-07 -3.04830724485E-07 -3.16478634407E-07 -3.28571616183E-07 -3.41126675740E-07 -3.54161468763E-07 -3.67694325513E-07 -3.81744276605E-07 -3.96331079765E-07 -4.11475247602E-07 -4.27198076454E-07 -4.43521676329E-07 -4.60469001984E-07 -4.78063885206E-07 -4.96331068309E-07 -5.15296238927E-07 -5.34986066120E-07 -5.55428237872E-07 -5.76651500015E-07 -5.98685696641E-07 -6.21561812057E-07 -6.45312014342E-07 -6.69969700572E-07 -6.95569543766E-07 -7.22147541629E-07 -7.49741067157E-07 -7.78388921171E-07 -8.08131386862E-07 -8.39010286415E-07 -8.71069039801E-07 -9.04352725808E-07 -9.38908145407E-07 -9.74783887537E-07 -1.01203039740E-06 -1.05070004738E-06 -1.09084721062E-06 -1.13252833749E-06 -1.17580203491E-06 -1.22072914872E-06 -1.26737284920E-06 -1.31579871986E-06 -1.36607484960E-06 -1.41827192842E-06 -1.47246334677E-06 -1.52872529867E-06 -1.58713688881E-06 -1.64778024370E-06 -1.71074062711E-06 -1.77610655986E-06 -1.84396994423E-06 -1.91442619310E-06 -1.98757436404E-06 -2.06351729846E-06 -2.14236176617E-06 -2.22421861536E-06 -2.30920292839E-06 -2.39743418346E-06 -2.48903642248E-06 -2.58413842537E-06 -2.68287389097E-06 -2.78538162489E-06 -2.89180573451E-06 -3.00229583145E-06 -3.11700724172E-06 -3.23610122394E-06 -3.35974519589E-06 -3.48811296965E-06 -3.62138499577E-06 -3.75974861674E-06 -3.90339833015E-06 -4.05253606186E-06 -4.20737144962E-06 -4.36812213749E-06 -4.53501408157E-06 -4.70828186728E-06 -4.88816903884E-06 -5.07492844127E-06 -5.26882257550E-06 -5.47012396695E-06 -5.67911554826E-06 -5.89609105652E-06 -6.12135544578E-06 -6.35522531521E-06 -6.59802935360E-06 -6.85010880090E-06 -7.11181792723E-06 -7.38352453031E-06 -7.66561045180E-06 -7.95847211330E-06 -8.26252107288E-06 -8.57818460277E-06 -8.90590628916E-06 -9.24614665478E-06 -9.59938380537E-06 -9.96611410066E-06 -1.03468528510E-05 -1.07421350408E-05 -1.11525160789E-05 -1.15785725784E-05 -1.20209031659E-05 -1.24801293211E-05 -1.29568962492E-05 -1.34518737864E-05 -1.39657573395E-05 -1.44992688615E-05 -1.50531578652E-05 -1.56282024740E-05 -1.62252105144E-05 -1.68450206487E-05 -1.74885035517E-05 -1.81565631327E-05 -1.88501378028E-05 -1.95702017920E-05 -2.03177665152E-05 -2.10938819917E-05 -2.18996383176E-05 -2.27361671952E-05 -2.36046435201E-05 -2.45062870298E-05 -2.54423640141E-05 -2.64141890916E-05 -2.74231270536E-05 -2.84705947785E-05 -2.95580632192E-05 -3.06870594664E-05 -3.18591688907E-05 -3.30760373665E-05 -3.43393735807E-05 -3.56509514295E-05 -3.70126125073E-05 -3.84262686897E-05 -3.98939048162E-05 -4.14175814745E-05 -4.29994378918E-05 -4.46416949366E-05 -4.63466582348E-05 -4.81167214054E-05 -4.99543694195E-05 -5.18621820885E-05 -5.38428376849E-05 -5.58991167024E-05 -5.80339057593E-05 -6.02502016520E-05 -6.25511155633E-05 -6.49398774318E-05 -6.74198404897E-05 -6.99944859734E-05 -7.26674280155E-05 -7.54424187239E-05 -7.83233534571E-05 -8.13142763003E-05 -8.44193857534E-05 -8.76430406365E-05 -9.09897662236E-05 -9.44642606111E-05 -9.80714013325E-05 -1.01816252227E-04 -1.05704070573E-04 -1.09740314498E-04 -1.13930650672E-04 -1.18280962300E-04 -1.22797357421E-04 -1.27486177531E-04 -1.32354006540E-04 -1.37407680067E-04 -1.42654295110E-04 -1.48101220079E-04 -1.53756105221E-04 -1.59626893457E-04 -1.65721831629E-04 -1.72049482194E-04 -1.78618735371E-04 -1.85438821758E-04 -1.92519325447E-04 -1.99870197649E-04 -2.07501770849E-04 -2.15424773523E-04 -2.23650345423E-04 -2.32190053468E-04 -2.41055908255E-04 -2.50260381227E-04 -2.59816422505E-04 -2.69737479435E-04 -2.80037515859E-04 -2.90731032149E-04 -3.01833086040E-04 -3.13359314275E-04 -3.25325955122E-04 -3.37749871776E-04 -3.50648576692E-04 -3.64040256888E-04 -3.77943800257E-04 -3.92378822919E-04 -4.07365697674E-04 -4.22925583584E-04 -4.39080456741E-04 -4.55853142260E-04 -4.73267347555E-04 -4.91347696946E-04 -5.10119767647E-04 -5.29610127200E-04 -5.49846372401E-04 -5.70857169790E-04 -5.92672297751E-04 -6.15322690306E-04 -6.38840482647E-04 -6.63259058488E-04 -6.88613099305E-04 -7.14938635529E-04 -7.42273099768E-04 -7.70655382142E-04 -8.00125887788E-04 -8.30726596637E-04 -8.62501125519E-04 -8.95494792693E-04 -9.29754684879E-04 -9.65329726863E-04 -1.00227075378E-03 -1.04063058611E-03 -1.08046410753E-03 -1.12182834568E-03 -1.16478255582E-03 -1.20938830765E-03 -1.25570957515E-03 -1.30381282970E-03 -1.35376713634E-03 -1.40564425337E-03 -1.45951873527E-03 -1.51546803900E-03 -1.57357263363E-03 -1.63391611337E-03 -1.69658531399E-03 -1.76167043250E-03 -1.82926515017E-03 -1.89946675870E-03 -1.97237628946E-03 -2.04809864569E-03 -2.12674273740E-03 -2.20842161882E-03 -2.29325262809E-03 -2.38135752886E-03 -2.47286265343E-03 -2.56789904693E-03 -2.66660261215E-03 -2.76911425418E-03 -2.87558002439E-03 -2.98615126285E-03 -3.10098473823E-03 -3.22024278430E-03 -3.34409343170E-03 -3.47271053382E-03 -3.60627388524E-03 -3.74496933110E-03 -3.88898886570E-03 -4.03853071811E-03 -4.19379942273E-03 -4.35500587225E-03 -4.52236735032E-03 -4.69610754086E-03 -4.87645651091E-03 -5.06365066322E-03 -5.25793265486E-03 -5.45955127746E-03 -5.66876129461E-03 -5.88582323131E-03 -6.11100311019E-03 -6.34457212866E-03 -6.58680627084E-03 -6.83798584759E-03 -7.09839495764E-03 -7.36832086227E-03 -7.64805326561E-03 -7.93788349233E-03 -8.23810355372E-03 -8.54900509322E-03 -8.87087820180E-03 -9.20401009337E-03 -9.54868363011E-03 -9.90517568751E-03 -1.02737553487E-02 -1.06546819175E-02 -1.10482027402E-02 -1.14545508256E-02 -1.18739422542E-02 -1.23065733663E-02 -1.27526177223E-02 -1.32122228260E-02 -1.36855066067E-02 -1.41725536540E-02 -1.46734112031E-02 -1.51880848715E-02 -1.57165341464E-02 -1.62586676316E-02 -1.68143380589E-02 -1.73833370803E-02 -1.79653898543E-02 -1.85601494517E-02 -1.91671911060E-02 -1.97860063432E-02 -2.04159970307E-02 -2.10564693924E-02 -2.17066280456E-02 -2.23655701218E-02 -2.30322795439E-02 -2.37056215400E-02 -2.43843374830E-02 -2.50670401569E-02 -2.57522095559E-02 -2.64381893366E-02 -2.71231840484E-02 -2.78052572776E-02 -2.84823308485E-02 -2.91521852295E-02 -2.98124612983E-02 -3.04606636240E-02 -3.10941654223E-02 -3.17102153415E-02 -3.23059462280E-02 -3.28783860164E-02 -3.34244708721E-02 -3.39410606992E-02 -3.44249571068E-02 -3.48729238934E-02 -3.52817100840E-02 -3.56480755072E-02 -3.59688188621E-02 -3.62408081673E-02 -3.64610134298E-02 -3.66265413097E-02 -3.67346714841E-02 -3.67828943448E-02 -3.67689495862E-02 -3.66908651616E-02 -3.65469960090E-02 -3.63360618696E-02 -3.60571834508E-02 -3.57099161198E-02 -3.52942802592E-02 -3.48107873755E-02 -3.42604610243E-02 -3.36448516182E-02 -3.29660441999E-02 -3.22266583199E-02 -3.14298392365E-02 -3.05792397804E-02 -2.96789923819E-02 -2.87336709589E-02 -2.77482426020E-02 -2.67280092801E-02 -2.56785401010E-02 -2.46055950267E-02 -2.35150413187E-02 -2.24127644002E-02 -2.13045752334E-02 -2.01961167265E-02 -1.90927720780E-02 -1.79995783254E-02 -1.69211486707E-02 -1.58616073800E-02 -1.48245411797E-02 -1.38129710775E-02 -1.28293483865E-02 -1.18755784227E-02 -1.09530748350E-02 -1.00628468240E-02 -9.20562057115E-03 -8.38199504867E-03 -7.59263100079E-03 -6.83847029094E-03 -6.12098101862E-03 -5.44242184867E-03 -4.80550690608E-03 -4.21125157620E-03 -3.65990638230E-03 -3.15144293423E-03 -2.68557157298E-03 -2.26176358517E-03 -1.87927751722E-03 -1.53718892909E-03 -1.23442272931E-03 -9.69787031732E-04 -7.42007276757E-04 -5.49759173706E-04 -3.91698855960E-04 -2.66488506428E-04 -1.72263799432E-04 -1.04867478524E-04 -5.93064948652E-05 -3.03039752761E-05 -1.28531674886E-05 -3.82353959030E-06 -4.79137038878E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 6 1 i j (l(j)) 0.00000000000E+00 Q_int -2.33103846516E-15 -2.42011210018E-15 -2.51258941667E-15 -2.60860047611E-15 -2.70828030987E-15 -2.81176910915E-15 -2.91921242213E-15 -3.03076135866E-15 -3.14657280283E-15 -3.26680963356E-15 -3.39164095372E-15 -3.52124232792E-15 -3.65579602945E-15 -3.79549129663E-15 -3.94052459894E-15 -4.09109991338E-15 -4.24742901130E-15 -4.40973175624E-15 -4.57823641320E-15 -4.75317996961E-15 -4.93480846869E-15 -5.12337735545E-15 -5.31915183594E-15 -5.52240725032E-15 -5.73342945999E-15 -5.95251524972E-15 -6.17997274500E-15 -6.41612184542E-15 -6.66129467457E-15 -6.91583604715E-15 -7.18010395391E-15 -7.45447006515E-15 -7.73932025342E-15 -8.03505513625E-15 -8.34209063955E-15 -8.66085858260E-15 -8.99180728535E-15 -9.33540219895E-15 -9.69212656038E-15 -1.00624820721E-14 -1.04469896075E-14 -1.08461899437E-14 -1.12606445220E-14 -1.16909362374E-14 -1.21376702585E-14 -1.26014748788E-14 -1.30830023998E-14 -1.35829300491E-14 -1.41019609322E-14 -1.46408250219E-14 -1.52002801846E-14 -1.57811132463E-14 -1.63841410993E-14 -1.70102118508E-14 -1.76602060159E-14 -1.83350377563E-14 -1.90356561650E-14 -1.97630466024E-14 -2.05182320809E-14 -2.13022747048E-14 -2.21162771630E-14 -2.29613842808E-14 -2.38387846292E-14 -2.47497121972E-14 -2.56954481267E-14 -2.66773225147E-14 -2.76967162839E-14 -2.87550631248E-14 -2.98538515120E-14 -3.09946267978E-14 -3.21789933855E-14 -3.34086169856E-14 -3.46852269591E-14 -3.60106187491E-14 -3.73866564062E-14 -3.88152752102E-14 -4.02984843916E-14 -4.18383699579E-14 -4.34370976268E-14 -4.50969158726E-14 -4.68201590882E-14 -4.86092508684E-14 -5.04667074184E-14 -5.23951410925E-14 -5.43972640683E-14 -5.64758921613E-14 -5.86339487847E-14 -6.08744690613E-14 -6.32006040920E-14 -6.56156253875E-14 -6.81229294694E-14 -7.07260426473E-14 -7.34286259782E-14 -7.62344804150E-14 -7.91475521532E-14 -8.21719381798E-14 -8.53118920360E-14 -8.85718297995E-14 -9.19563362949E-14 -9.54701715422E-14 -9.91182774512E-14 -1.02905784772E-13 -1.06838020311E-13 -1.10920514423E-13 -1.15159008787E-13 -1.19559464485E-13 -1.24128070382E-13 -1.28871251834E-13 -1.33795679721E-13 -1.38908279831E-13 -1.44216242601E-13 -1.49727033228E-13 -1.55448402169E-13 -1.61388396043E-13 -1.67555368944E-13 -1.73957994195E-13 -1.80605276541E-13 -1.87506564820E-13 -1.94671565106E-13 -2.02110354360E-13 -2.09833394605E-13 -2.17851547640E-13 -2.26176090314E-13 -2.34818730386E-13 -2.43791622994E-13 -2.53107387746E-13 -2.62779126470E-13 -2.72820441645E-13 -2.83245455523E-13 -2.94068829998E-13 -3.05305787224E-13 -3.16972131024E-13 -3.29084269116E-13 -3.41659236190E-13 -3.54714717865E-13 -3.68269075564E-13 -3.82341372335E-13 -3.96951399665E-13 -4.12119705313E-13 -4.27867622206E-13 -4.44217298448E-13 -4.61191728466E-13 -4.78814785347E-13 -4.97111254420E-13 -5.16106868109E-13 -5.35828342126E-13 -5.56303413042E-13 -5.77560877300E-13 -5.99630631712E-13 -6.22543715505E-13 -6.46332353979E-13 -6.71030003826E-13 -6.96671400186E-13 -7.23292605497E-13 -7.50931060214E-13 -7.79625635469E-13 -8.09416687735E-13 -8.40346115587E-13 -8.72457418630E-13 -9.05795758673E-13 -9.40408023250E-13 -9.76342891560E-13 -1.01365090293E-12 -1.05238452790E-12 -1.09259824201E-12 -1.13434860242E-12 -1.17769432746E-12 -1.22269637918E-12 -1.26941804914E-12 -1.31792504739E-12 -1.36828559487E-12 -1.42057051941E-12 -1.47485335530E-12 -1.53121044671E-12 -1.58972105509E-12 -1.65046747061E-12 -1.71353512794E-12 -1.77901272635E-12 -1.84699235450E-12 -1.91756961995E-12 -1.99084378358E-12 -2.06691789928E-12 -2.14589895879E-12 -2.22789804223E-12 -2.31303047433E-12 -2.40141598659E-12 -2.49317888568E-12 -2.58844822831E-12 -2.68735800267E-12 -2.79004731693E-12 -2.89666059484E-12 -3.00734777888E-12 -3.12226454114E-12 -3.24157250223E-12 -3.36543945863E-12 -3.49403961864E-12 -3.62755384740E-12 -3.76616992130E-12 -3.91008279201E-12 -4.05949486070E-12 -4.21461626269E-12 -4.37566516299E-12 -4.54286806315E-12 -4.71646011976E-12 -4.89668547524E-12 -5.08379760117E-12 -5.27805965477E-12 -5.47974484904E-12 -5.68913683699E-12 -5.90653011057E-12 -6.13223041485E-12 -6.36655517805E-12 -6.60983395794E-12 -6.86240890533E-12 -7.12463524533E-12 -7.39688177688E-12 -7.67953139148E-12 -7.97298161166E-12 -8.27764515010E-12 -8.59395049003E-12 -8.92234248788E-12 -9.26328299894E-12 -9.61725152692E-12 -9.98474589829E-12 -1.03662829625E-11 -1.07623993188E-11 -1.11736520709E-11 -1.16006196108E-11 -1.20439024318E-11 -1.25041239732E-11 -1.29819314973E-11 -1.34779969996E-11 -1.39930181537E-11 -1.45277192928E-11 -1.50828524284E-11 -1.56591983077E-11 -1.62575675118E-11 -1.68788015960E-11 -1.75237742727E-11 -1.81933926408E-11 -1.88885984612E-11 -1.96103694815E-11 -2.03597208107E-11 -2.11377063474E-11 -2.19454202615E-11 -2.27839985336E-11 -2.36546205521E-11 -2.45585107722E-11 -2.54969404383E-11 -2.64712293711E-11 -2.74827478246E-11 -2.85329184127E-11 -2.96232181103E-11 -3.07551803305E-11 -3.19303970811E-11 -3.31505212036E-11 -3.44172686979E-11 -3.57324211357E-11 -3.70978281660E-11 -3.85154101167E-11 -3.99871606949E-11 -4.15151497916E-11 -4.31015263922E-11 -4.47485215991E-11 -4.64584517695E-11 -4.82337217732E-11 -5.00768283750E-11 -5.19903637458E-11 -5.39770191086E-11 -5.60395885232E-11 -5.81809728160E-11 -6.04041836599E-11 -6.27123478094E-11 -6.51087114987E-11 -6.75966450069E-11 -7.01796473982E-11 -7.28613514430E-11 -7.56455287266E-11 -7.85360949545E-11 -8.15371154588E-11 -8.46528109158E-11 -8.78875632823E-11 -9.12459219583E-11 -9.47326101853E-11 -9.83525316889E-11 -1.02110777576E-10 -1.06012633495E-10 -1.10063587068E-10 -1.14269335610E-10 -1.18635794145E-10 -1.23169103717E-10 -1.27875640033E-10 -1.32762022429E-10 -1.37835123178E-10 -1.43102077157E-10 -1.48570291880E-10 -1.54247457915E-10 -1.60141559703E-10 -1.66260886787E-10 -1.72614045469E-10 -1.79209970912E-10 -1.86057939714E-10 -1.93167582945E-10 -2.00548899699E-10 -2.08212271155E-10 -2.16168475176E-10 -2.24428701470E-10 -2.33004567323E-10 -2.41908133942E-10 -2.51151923414E-10 -2.60748936320E-10 -2.70712670020E-10 -2.81057137632E-10 -2.91796887743E-10 -3.02947024869E-10 -3.14523230699E-10 -3.26541786151E-10 -3.39019594265E-10 -3.51974203981E-10 -3.65423834816E-10 -3.79387402492E-10 -3.93884545535E-10 -4.08935652895E-10 -4.24561892627E-10 -4.40785241655E-10 -4.57628516682E-10 -4.75115406283E-10 -4.93270504217E-10 -5.12119344018E-10 -5.31688434903E-10 -5.52005299059E-10 -5.73098510345E-10 -5.94997734483E-10 -6.17733770777E-10 -6.41338595430E-10 -6.65845406517E-10 -6.91288670671E-10 -7.17704171564E-10 -7.45129060224E-10 -7.73601907292E-10 -8.03162757264E-10 -8.33853184811E-10 -8.65716353248E-10 -8.98797075241E-10 -9.33141875831E-10 -9.68799057866E-10 -1.00581876993E-09 -1.04425307689E-09 -1.08415603310E-09 -1.12558375841E-09 -1.16859451714E-09 -1.21324879998E-09 -1.25960940909E-09 -1.30774154641E-09 -1.35771290535E-09 -1.40959376602E-09 -1.46345709406E-09 -1.51937864325E-09 -1.57743706207E-09 -1.63771400427E-09 -1.70029424378E-09 -1.76526579384E-09 -1.83272003087E-09 -1.90275182293E-09 -1.97545966314E-09 -2.05094580824E-09 -2.12931642235E-09 -2.21068172634E-09 -2.29515615276E-09 -2.38285850687E-09 -2.47391213366E-09 -2.56844509133E-09 -2.66659033144E-09 -2.76848588581E-09 -2.87427506070E-09 -2.98410663836E-09 -3.09813508623E-09 -3.21652077423E-09 -3.33943020026E-09 -3.46703622438E-09 -3.59951831192E-09 -3.73706278586E-09 -3.87986308890E-09 -4.02812005547E-09 -4.18204219420E-09 -4.34184598120E-09 -4.50775616443E-09 -4.68000607983E-09 -4.85883797948E-09 -5.04450337226E-09 -5.23726337760E-09 -5.43738909271E-09 -5.64516197379E-09 -5.86087423193E-09 -6.08482924403E-09 -6.31734197945E-09 -6.55873944300E-09 -6.80936113479E-09 -7.06955952772E-09 -7.33970056317E-09 -7.62016416566E-09 -7.91134477710E-09 -8.21365191162E-09 -8.52751073138E-09 -8.85336264456E-09 -9.19166592614E-09 -9.54289636236E-09 -9.90754791983E-09 -1.02861334403E-08 -1.06791853617E-08 -1.10872564673E-08 -1.15109206626E-08 -1.19507737829E-08 -1.24074344309E-08 -1.28815448469E-08 -1.33737718118E-08 -1.38848075852E-08 -1.44153708783E-08 -1.49662078653E-08 -1.55380932322E-08 -1.61318312667E-08 -1.67482569891E-08 -1.73882373264E-08 -1.80526723320E-08 -1.87424964508E-08 -1.94586798339E-08 -2.02022297024E-08 -2.09741917643E-08 -2.17756516849E-08 -2.26077366135E-08 -2.34716167685E-08 -2.43685070832E-08 -2.52996689143E-08 -2.62664118155E-08 -2.72700953796E-08 -2.83121311497E-08 -2.93939846052E-08 -3.05171772216E-08 -3.16832886108E-08 -3.28939587424E-08 -3.41508902496E-08 -3.54558508237E-08 -3.68106756999E-08 -3.82172702382E-08 -3.96776126026E-08 -4.11937565429E-08 -4.27678342829E-08 -4.44020595186E-08 -4.60987305314E-08 -4.78602334195E-08 -4.96890454538E-08 -5.15877385612E-08 -5.35589829411E-08 -5.56055508205E-08 -5.77303203521E-08 -5.99362796617E-08 -6.22265310497E-08 -6.46042953537E-08 -6.70729164777E-08 -6.96358660937E-08 -7.22967485238E-08 -7.50593058083E-08 -7.79274229673E-08 -8.09051334640E-08 -8.39966248758E-08 -8.72062447828E-08 -9.05385068810E-08 -9.39980973288E-08 -9.75898813363E-08 -1.01318910006E-07 -1.05190427437E-07 -1.09209878093E-07 -1.13382914465E-07 -1.17715405015E-07 -1.22213442426E-07 -1.26883352171E-07 -1.31731701406E-07 -1.36765308204E-07 -1.41991251140E-07 -1.47416879246E-07 -1.53049822338E-07 -1.58898001751E-07 -1.64969641470E-07 -1.71273279696E-07 -1.77817780849E-07 -1.84612348028E-07 -1.91666535956E-07 -1.98990264408E-07 -2.06593832158E-07 -2.14487931458E-07 -2.22683663072E-07 -2.31192551878E-07 -2.40026563074E-07 -2.49198118996E-07 -2.58720116583E-07 -2.68605945507E-07 -2.78869506994E-07 -2.89525233370E-07 -3.00588108346E-07 -3.12073688080E-07 -3.23998123047E-07 -3.36378180741E-07 -3.49231269243E-07 -3.62575461692E-07 -3.76429521690E-07 -3.90812929675E-07 -4.05745910301E-07 -4.21249460869E-07 -4.37345380838E-07 -4.54056302464E-07 -4.71405722610E-07 -4.89418035773E-07 -5.08118568366E-07 -5.27533614315E-07 -5.47690472010E-07 -5.68617482676E-07 -5.90344070194E-07 -6.12900782461E-07 -6.36319334309E-07 -6.60632652084E-07 -6.85874919908E-07 -7.12081627717E-07 -7.39289621135E-07 -7.67537153243E-07 -7.96863938333E-07 -8.27311207710E-07 -8.58921767626E-07 -8.91740059421E-07 -9.25812221965E-07 -9.61186156484E-07 -9.97911593854E-07 -1.03604016447E-06 -1.07562547078E-06 -1.11672316258E-06 -1.15939101520E-06 -1.20368901066E-06 -1.24967942192E-06 -1.29742690035E-06 -1.34699856657E-06 -1.39846410467E-06 -1.45189586014E-06 -1.50736894145E-06 -1.56496132551E-06 -1.62475396724E-06 -1.68683091320E-06 -1.75127941964E-06 -1.81819007504E-06 -1.88765692726E-06 -1.95977761567E-06 -2.03465350818E-06 -2.11238984357E-06 -2.19309587928E-06 -2.27688504473E-06 -2.36387510061E-06 -2.45418830416E-06 -2.54795158080E-06 -2.64529670224E-06 -2.74636047148E-06 -2.85128491481E-06 -2.96021748108E-06 -3.07331124866E-06 -3.19072514028E-06 -3.31262414595E-06 -3.43917955452E-06 -3.57056919399E-06 -3.70697768099E-06 -3.84859667977E-06 -3.99562517107E-06 -4.14826973122E-06 -4.30674482189E-06 -4.47127309090E-06 -4.64208568442E-06 -4.81942257115E-06 -5.00353287877E-06 -5.19467524332E-06 -5.39311817172E-06 -5.59914041830E-06 -5.81303137547E-06 -6.03509147942E-06 -6.26563263119E-06 -6.50497863379E-06 -6.75346564600E-06 -7.01144265335E-06 -7.27927195717E-06 -7.55732968210E-06 -7.84600630306E-06 -8.14570719216E-06 -8.45685318651E-06 -8.77988117755E-06 -9.11524472291E-06 -9.46341468141E-06 -9.82487987238E-06 -1.02001477599E-05 -1.05897451631E-05 -1.09942189937E-05 -1.14141370211E-05 -1.18500886671E-05 -1.23026858305E-05 -1.27725637432E-05 -1.32603818586E-05 -1.37668247742E-05 -1.42926031886E-05 -1.48384548958E-05 -1.54051458164E-05 -1.59934710682E-05 -1.66042560778E-05 -1.72383577342E-05 -1.78966655860E-05 -1.85801030844E-05 -1.92896288732E-05 -2.00262381277E-05 -2.07909639448E-05 -2.15848787852E-05 -2.24090959712E-05 -2.32647712401E-05 -2.41531043581E-05 -2.50753407938E-05 -2.60327734567E-05 -2.70267445000E-05 -2.80586471936E-05 -2.91299278662E-05 -3.02420879224E-05 -3.13966859360E-05 -3.25953398220E-05 -3.38397290912E-05 -3.51315971911E-05 -3.64727539338E-05 -3.78650780173E-05 -3.93105196417E-05 -4.08111032240E-05 -4.23689302172E-05 -4.39861820340E-05 -4.56651230829E-05 -4.74081039186E-05 -4.92175645112E-05 -5.10960376401E-05 -5.30461524150E-05 -5.50706379314E-05 -5.71723270633E-05 -5.93541604003E-05 -6.16191903325E-05 -6.39705852911E-05 -6.64116341483E-05 -6.89457507843E-05 -7.15764788260E-05 -7.43074965664E-05 -7.71426220681E-05 -8.00858184613E-05 -8.31411994410E-05 -8.63130349724E-05 -8.96057572120E-05 -9.30239666522E-05 -9.65724384983E-05 -1.00256129287E-04 -1.04080183753E-04 -1.08049941959E-04 -1.12170946690E-04 -1.16448951135E-04 -1.20889926846E-04 -1.25500072015E-04 -1.30285820047E-04 -1.35253848470E-04 -1.40411088177E-04 -1.45764733016E-04 -1.51322249743E-04 -1.57091388357E-04 -1.63080192821E-04 -1.69297012187E-04 -1.75750512151E-04 -1.82449687038E-04 -1.89403872239E-04 -1.96622757131E-04 -2.04116398477E-04 -2.11895234334E-04 -2.19970098497E-04 -2.28352235483E-04 -2.37053316089E-04 -2.46085453541E-04 -2.55461220254E-04 -2.65193665231E-04 -2.75296332131E-04 -2.85783278014E-04 -2.96669092807E-04 -3.07968919517E-04 -3.19698475206E-04 -3.31874072775E-04 -3.44512643576E-04 -3.57631760895E-04 -3.71249664332E-04 -3.85385285112E-04 -4.00058272374E-04 -4.15289020466E-04 -4.31098697290E-04 -4.47509273740E-04 -4.64543554271E-04 -4.82225208652E-04 -5.00578804939E-04 -5.19629843727E-04 -5.39404793727E-04 -5.59931128722E-04 -5.81237365951E-04 -6.03353105987E-04 -6.26309074168E-04 -6.50137163635E-04 -6.74870480044E-04 -7.00543388029E-04 -7.27191559467E-04 -7.54852023637E-04 -7.83563219334E-04 -8.13365049021E-04 -8.44298935100E-04 -8.76407878386E-04 -9.09736518869E-04 -9.44331198860E-04 -9.80240028601E-04 -1.01751295446E-03 -1.05620182976E-03 -1.09636048844E-03 -1.13804482152E-03 -1.18131285663E-03 -1.22622484055E-03 -1.27284332504E-03 -1.32123325596E-03 -1.37146206587E-03 -1.42359977013E-03 -1.47771906682E-03 -1.53389544035E-03 -1.59220726912E-03 -1.65273593721E-03 -1.71556595026E-03 -1.78078505575E-03 -1.84848436762E-03 -1.91875849561E-03 -1.99170567916E-03 -2.06742792622E-03 -2.14603115690E-03 -2.22762535222E-03 -2.31232470787E-03 -2.40024779319E-03 -2.49151771543E-03 -2.58626228920E-03 -2.68461421133E-03 -2.78671124095E-03 -2.89269638487E-03 -3.00271808820E-03 -3.11693043006E-03 -3.23549332427E-03 -3.35857272481E-03 -3.48634083582E-03 -3.61897632591E-03 -3.75666454618E-03 -3.89959775180E-03 -4.04797532636E-03 -4.20200400847E-03 -4.36189811987E-03 -4.52787979407E-03 -4.70017920469E-03 -4.87903479218E-03 -5.06469348768E-03 -5.25741093255E-03 -5.45745169178E-03 -5.66508945947E-03 -5.88060725412E-03 -6.10429760138E-03 -6.33646270159E-03 -6.57741457896E-03 -6.82747520923E-03 -7.08697662195E-03 -7.35626097343E-03 -7.63568058571E-03 -7.92559794668E-03 -8.22638566594E-03 -8.53842638036E-03 -8.86211260295E-03 -9.19784650796E-03 -9.54603964454E-03 -9.90711257077E-03 -1.02814943990E-02 -1.06696222430E-02 -1.10719405567E-02 -1.14889003532E-02 -1.19209582930E-02 -1.23685756277E-02 -1.28322169880E-02 -1.33123490000E-02 -1.38094387166E-02 -1.43239518487E-02 -1.48563507800E-02 -1.54070923489E-02 -1.59766253823E-02 -1.65653879620E-02 -1.71738044087E-02 -1.78022819652E-02 -1.84512071620E-02 -1.91209418494E-02 -1.98118188789E-02 -2.05241374213E-02 -2.12581579054E-02 -2.20140965673E-02 -2.27921196007E-02 -2.35923369003E-02 -2.44147953955E-02 -2.52594719742E-02 -2.61262660019E-02 -2.70149914447E-02 -2.79253686131E-02 -2.88570155484E-02 -2.98094390822E-02 -3.07820256061E-02 -3.17740316009E-02 -3.27845739822E-02 -3.38126203317E-02 -3.48569790953E-02 -3.59162898418E-02 -3.69890136903E-02 -3.80734240274E-02 -3.91675976524E-02 -4.02694065013E-02 -4.13765101190E-02 -4.24863490618E-02 -4.35961394303E-02 -4.47028687438E-02 -4.58032933857E-02 -4.68939378561E-02 -4.79710960816E-02 -4.90308350378E-02 -5.00690009449E-02 -5.10812282962E-02 -5.20629519759E-02 -5.30094227123E-02 -5.39157260959E-02 -5.47768053705E-02 -5.55874881744E-02 -5.63425173684E-02 -5.70365860424E-02 -5.76643767319E-02 -5.82206048096E-02 -5.87000659404E-02 -5.90976873979E-02 -5.94085829464E-02 -5.96281108803E-02 -5.97519347040E-02 -5.97760858074E-02 -5.96970273703E-02 -5.95117185960E-02 -5.92176782500E-02 -5.88130463528E-02 -5.82966427622E-02 -5.76680212773E-02 -5.69275178160E-02 -5.60762911555E-02 -5.51163546999E-02 -5.40505977480E-02 -5.28827947844E-02 -5.16176014220E-02 -5.02605357791E-02 -4.88179442914E-02 -4.72969512402E-02 -4.57053916258E-02 -4.40517274258E-02 -4.23449477563E-02 -4.05944539887E-02 -3.88099314610E-02 -3.70012100485E-02 -3.51781165046E-02 -3.33503221401E-02 -3.15271900356E-02 -2.97176265740E-02 -2.79299425858E-02 -2.61717297971E-02 -2.44497585255E-02 -2.27699026316E-02 -2.11370975894E-02 -1.95553371286E-02 -1.80277132185E-02 -1.65565031639E-02 -1.51433062620E-02 -1.37892308186E-02 -1.24951303373E-02 -1.12618854126E-02 -1.00907252968E-02 -8.98358033462E-03 -7.94345353714E-03 -6.97389387653E-03 -6.07580084909E-03 -5.24884509866E-03 -4.49220320297E-03 -3.80459559229E-03 -3.18433321931E-03 -2.62937217462E-03 -2.13737510965E-03 -1.70577798231E-03 -1.33186028994E-03 -1.01281661041E-03 -7.45826950298E-04 -5.28123113702E-04 -3.57048075898E-04 -2.29346816706E-04 -1.38754443151E-04 -7.80119261251E-05 -3.96464616556E-05 -1.67259820619E-05 -4.94856512151E-06 -6.16669614456E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 7 2 i j (l(j)) 0.00000000000E+00 Q_int 4.51367614370E-18 4.74509726769E-18 4.98838360638E-18 5.24414350234E-18 5.51301648852E-18 5.79567488743E-18 6.09282549229E-18 6.40521133438E-18 6.73361354102E-18 7.07885328877E-18 7.44179385681E-18 7.82334278561E-18 8.22445414621E-18 8.64613092593E-18 9.08942753636E-18 9.55545244989E-18 1.00453709716E-17 1.05604081528E-17 1.11018518549E-17 1.16710559690E-17 1.22694438020E-17 1.28985116350E-17 1.35598324653E-17 1.42550599394E-17 1.49859324881E-17 1.57542776734E-17 1.65620167585E-17 1.74111695117E-17 1.83038592573E-17 1.92423181846E-17 2.02288929295E-17 2.12660504429E-17 2.23563841587E-17 2.35026204790E-17 2.47076255917E-17 2.59744126371E-17 2.73061492426E-17 2.87061654433E-17 3.01779620089E-17 3.17252191973E-17 3.33518059573E-17 3.50617896031E-17 3.68594459842E-17 3.87492701779E-17 4.07359877288E-17 4.28245664657E-17 4.50202289230E-17 4.73284654004E-17 4.97550476913E-17 5.23060435152E-17 5.49878316900E-17 5.78071180831E-17 6.07709523786E-17 6.38867457057E-17 6.71622891706E-17 7.06057733377E-17 7.42258087108E-17 7.80314472635E-17 8.20322050742E-17 8.62380861209E-17 9.06596072965E-17 9.53078247066E-17 1.00194361315E-16 1.05331436009E-16 1.10731894150E-16 1.16409239695E-16 1.22377668966E-16 1.28652106142E-16 1.35248240586E-16 1.42182566067E-16 1.49472422011E-16 1.57136036853E-16 1.65192573621E-16 1.73662177854E-16 1.82566027971E-16 1.91926388235E-16 2.01766664420E-16 2.12111462341E-16 2.22986649379E-16 2.34419419166E-16 2.46438359578E-16 2.59073524225E-16 2.72356507598E-16 2.86320524071E-16 3.01000490958E-16 3.16433115819E-16 3.32656988251E-16 3.49712676383E-16 3.67642828316E-16 3.86492278766E-16 4.06308161173E-16 4.27140025560E-16 4.49039962434E-16 4.72062733040E-16 4.96265906292E-16 5.21710002723E-16 5.48458645821E-16 5.76578721121E-16 6.06140543450E-16 6.37218032754E-16 6.69888898936E-16 7.04234836170E-16 7.40341727180E-16 7.78299857988E-16 8.18204143683E-16 8.60154365752E-16 9.04255421588E-16 9.50617586788E-16 9.99356790897E-16 1.05059490730E-15 1.10446005795E-15 1.16108693377E-15 1.22061713143E-15 1.28319950739E-15 1.34899055018E-15 1.41815477165E-15 1.49086511834E-15 1.56730340397E-15 1.64766076404E-15 1.73213813376E-15 1.82094675053E-15 1.91430868210E-15 2.01245738189E-15 2.11563827273E-15 2.22410936053E-15 2.33814187946E-15 2.45802097017E-15 2.58404639274E-15 2.71653327632E-15 2.85581290704E-15 3.00223355646E-15 3.15616135238E-15 3.31798119437E-15 3.48809771622E-15 3.66693629775E-15 3.85494412845E-15 4.05259132568E-15 4.26037211028E-15 4.47880604227E-15 4.70843932011E-15 4.94984614643E-15 5.20363016387E-15 5.47042596446E-15 5.75090067646E-15 6.04575563252E-15 6.35572812335E-15 6.68159324140E-15 7.02416581889E-15 7.38430246541E-15 7.76290370982E-15 8.16091625209E-15 8.57933533050E-15 9.01920721028E-15 9.48163179981E-15 9.96776540093E-15 1.04788236004E-14 1.10160843092E-14 1.15808909585E-14 1.21746558585E-14 1.27988637299E-14 1.34550754168E-14 1.41449317894E-14 1.48701578471E-14 1.56325670319E-14 1.64340657627E-14 1.72766582030E-14 1.81624512713E-14 1.90936599106E-14 2.00726126261E-14 2.11017573079E-14 2.21836673524E-14 2.33210480963E-14 2.45167435822E-14 2.57737436695E-14 2.70951915111E-14 2.84843914126E-14 2.99448170947E-14 3.14801203798E-14 3.30941403228E-14 3.47909128111E-14 3.65746806564E-14 3.84499042038E-14 4.04212724850E-14 4.24937149433E-14 4.46724137597E-14 4.69628168112E-14 4.93706512932E-14 5.19019380402E-14 5.45630065816E-14 5.73605109681E-14 6.03014464106E-14 6.33931667720E-14 6.66434029552E-14 7.00602822346E-14 7.36523485787E-14 7.74285840137E-14 8.13984310841E-14 8.55718164632E-14 8.99591757753E-14 9.45714796897E-14 9.94202613537E-14 1.04517645231E-13 1.09876377418E-13 1.15509857517E-13 1.21432172144E-13 1.27658130147E-13 1.34203299641E-13 1.41084046932E-13 1.48317577446E-13 1.55921978746E-13 1.63916265766E-13 1.72320428351E-13 1.81155481248E-13 1.90443516653E-13 2.00207759446E-13 2.10472625276E-13 2.21263781603E-13 2.32608211883E-13 2.44534283045E-13 2.57071816414E-13 2.70252162286E-13 2.84108278318E-13 2.98674811940E-13 3.13988186986E-13 3.30086694779E-13 3.47010589876E-13 3.64802190722E-13 3.83505985473E-13 4.03168743233E-13 4.23839631006E-13 4.45570336634E-13 4.68415198044E-13 4.92431339124E-13 5.17678812555E-13 5.44220749976E-13 5.72123519848E-13 6.01456893404E-13 6.32294219112E-13 6.64712606089E-13 6.98793116904E-13 7.34620970283E-13 7.72285754192E-13 8.11881649855E-13 8.53507667256E-13 8.97267892708E-13 9.43271749127E-13 9.91634269637E-13 1.04247638522E-12 1.09592522708E-12 1.15211444458E-12 1.21118453938E-12 1.27328321679E-12 1.33856575509E-12 1.40719539384E-12 1.47934374201E-12 1.55519120711E-12 1.63492744629E-12 1.71875184061E-12 1.80687399353E-12 1.89951425507E-12 1.99690427277E-12 2.09928757094E-12 2.20692015956E-12 2.32007117446E-12 2.43902355027E-12 2.56407472791E-12 2.69553739832E-12 2.83374028433E-12 2.97902896267E-12 3.13176672803E-12 3.29233550149E-12 3.46113678551E-12 3.63859266786E-12 3.82514687707E-12 4.02126589193E-12 4.22744010793E-12 4.44418506346E-12 4.67204272893E-12 4.91158286193E-12 5.16340443189E-12 5.42813711777E-12 5.70644288260E-12 5.99901762865E-12 6.30659293751E-12 6.62993789942E-12 6.96986103630E-12 7.32721232345E-12 7.70288531490E-12 8.09781937765E-12 8.51300204057E-12 8.94947146362E-12 9.40831903375E-12 9.89069209384E-12 1.03977968116E-11 1.09309011955E-11 1.14913382652E-11 1.20805093852E-11 1.26998877682E-11 1.33510221591E-11 1.40355407078E-11 1.47551550396E-11 1.55116645358E-11 1.63069608322E-11 1.71430325496E-11 1.80219702657E-11 1.89459717426E-11 1.99173474226E-11 2.09385262042E-11 2.20120615166E-11 2.31406377033E-11 2.43270767345E-11 2.55743452633E-11 2.68855620434E-11 2.82640057268E-11 2.97131230626E-11 3.12365375145E-11 3.28380583210E-11 3.45216900203E-11 3.62916424629E-11 3.81523413378E-11 4.01084392386E-11 4.21648272965E-11 4.43266474101E-11 4.65993051018E-11 4.89884830338E-11 5.15001552166E-11 5.41406019464E-11 5.69164255077E-11 5.98345666813E-11 6.29023220989E-11 6.61273624870E-11 6.95177518460E-11 7.30819676132E-11 7.68289218587E-11 8.07679835690E-11 8.49090020716E-11 8.92623316619E-11 9.38388574918E-11 9.86500227859E-11 1.03707857453E-10 1.09025008162E-10 1.14614769969E-10 1.20491119547E-10 1.26668750144E-10 1.33163108310E-10 1.39990432522E-10 1.47167793783E-10 1.54713138305E-10 1.62645332376E-10 1.70984209531E-10 1.79750620142E-10 1.88966483545E-10 1.98654842844E-10 2.08839922525E-10 2.19547189019E-10 2.30803414373E-10 2.42636743186E-10 2.55076762975E-10 2.68154578143E-10 2.81902887752E-10 2.96356067270E-10 3.11550254515E-10 3.27523440002E-10 3.44315561925E-10 3.61968606006E-10 3.80526710459E-10 4.00036276342E-10 4.20546083563E-10 4.42107412825E-10 4.64774173837E-10 4.88603040086E-10 5.13653590518E-10 5.39988458490E-10 5.67673488347E-10 5.96777900034E-10 6.27374462140E-10 6.59539673817E-10 6.93353956018E-10 7.28901852543E-10 7.66272241394E-10 8.05558556949E-10 8.46859023542E-10 8.90276901005E-10 9.35920742801E-10 9.83904667383E-10 1.03434864347E-09 1.08737878993E-09 1.14312769107E-09 1.20173472802E-09 1.26334642720E-09 1.32811682652E-09 1.39620786051E-09 1.46778976501E-09 1.54304150276E-09 1.62215121070E-09 1.70531667026E-09 1.79274580168E-09 1.88465718377E-09 1.98128060021E-09 2.08285761389E-09 2.18964217071E-09 2.30190123428E-09 2.41991545314E-09 2.54397986226E-09 2.67440462041E-09 2.81151578532E-09 2.95565612860E-09 3.10718599242E-09 3.26648419010E-09 3.43394895278E-09 3.60999892470E-09 3.79507420942E-09 3.98963746968E-09 4.19417508362E-09 4.40919836022E-09 4.63524481704E-09 4.87287952347E-09 5.12269651274E-09 5.38532026631E-09 5.66140727435E-09 5.95164767613E-09 6.25676698450E-09 6.57752789867E-09 6.91473220992E-09 7.26922280493E-09 7.64188577178E-09 8.03365261375E-09 8.44550257665E-09 8.87846509533E-09 9.33362236552E-09 9.81211204742E-09 1.03151301078E-08 1.08439338078E-08 1.13998448433E-08 1.19842526465E-08 1.25986178606E-08 1.32444759762E-08 1.39234411822E-08 1.46372103893E-08 1.53875674809E-08 1.61763877219E-08 1.70056425176E-08 1.78774042743E-08 1.87938516059E-08 1.97572747755E-08 2.07700813760E-08 2.18348024049E-08 2.29540985377E-08 2.41307667698E-08 2.53677474528E-08 2.66681315685E-08 2.80351684684E-08 2.94722740402E-08 3.09830391280E-08 3.25712386018E-08 3.42408407266E-08 3.59960170861E-08 3.78411529430E-08 3.97808582883E-08 4.18199792371E-08 4.39636102250E-08 4.62171066175E-08 4.85860981451E-08 5.10765029939E-08 5.36945423379E-08 5.64467563145E-08 5.93400197745E-08 6.23815598940E-08 6.55789739845E-08 6.89402484929E-08 7.24737788680E-08 7.61883907255E-08 8.00933614759E-08 8.41984437691E-08 8.85138897300E-08 9.30504765174E-08 9.78195331033E-08 1.02832968747E-07 1.08103302425E-07 1.13643694188E-07 1.19467977913E-07 1.25590695752E-07 1.32027134677E-07 1.38793364005E-07 1.45906275862E-07 1.53383627220E-07 1.61244084113E-07 1.69507267872E-07 1.78193804461E-07 1.87325375598E-07 1.96924772586E-07 2.07015953463E-07 2.17624102340E-07 2.28775692117E-07 2.40498550599E-07 2.52821929559E-07 2.65776577538E-07 2.79394816584E-07 2.93710622343E-07 3.08759708882E-07 3.24579617274E-07 3.41209809082E-07 3.58691764662E-07 3.77069086016E-07 3.96387605243E-07 4.16695498854E-07 4.38043406657E-07 4.60484558562E-07 4.84074906283E-07 5.08873262433E-07 5.34941446593E-07 5.62344438869E-07 5.91150541208E-07 6.21431546859E-07 6.53262918960E-07 6.86723977297E-07 7.21898095219E-07 7.58872906785E-07 7.97740523379E-07 8.38597763301E-07 8.81546390447E-07 9.26693367685E-07 9.74151120448E-07 1.02403781730E-06 1.07647766041E-06 1.13160119485E-06 1.18954563055E-06 1.25045518295E-06 1.31448142823E-06 1.38178368044E-06 1.45252938365E-06 1.52689452638E-06 1.60506407675E-06 1.68723243995E-06 1.77360393713E-06 1.86439331114E-06 1.95982625572E-06 2.06013997335E-06 2.16558375924E-06 2.27641961703E-06 2.39292290406E-06 2.51538301007E-06 2.64410406999E-06 2.77940571292E-06 2.92162384833E-06 3.07111149330E-06 3.22823963983E-06 3.39339816775E-06 3.56699680122E-06 3.74946611672E-06 3.94125859904E-06 4.14284975162E-06 4.35473926330E-06 4.57745223226E-06 4.81154045381E-06 5.05758377030E-06 5.31619149105E-06 5.58800388265E-06 5.87369373456E-06 6.17396800207E-06 6.48956953334E-06 6.82127888233E-06 7.16991621179E-06 7.53634329300E-06 7.92146560380E-06 8.32623453379E-06 8.75164969778E-06 9.19876136482E-06 9.66867301048E-06 1.01625439940E-05 1.06815923706E-05 1.12270978424E-05 1.18004048574E-05 1.24029258623E-05 1.30361447156E-05 1.37016202722E-05 1.44009901449E-05 1.51359746513E-05 1.59083809572E-05 1.67201074253E-05 1.75731481772E-05 1.84695978835E-05 1.94116567851E-05 2.04016359676E-05 2.14419628923E-05 2.25351871986E-05 2.36839867919E-05 2.48911742322E-05 2.61597034315E-05 2.74926766829E-05 2.88933520305E-05 3.03651510004E-05 3.19116667085E-05 3.35366723600E-05 3.52441301678E-05 3.70382006978E-05 3.89232526710E-05 4.09038732370E-05 4.29848787459E-05 4.51713260395E-05 4.74685242839E-05 4.98820473744E-05 5.24177469318E-05 5.50817659242E-05 5.78805529367E-05 6.08208771257E-05 6.39098438816E-05 6.71549112369E-05 7.05639070531E-05 7.41450470193E-05 7.79069534999E-05 8.18586752715E-05 8.60097081846E-05 9.03700167957E-05 9.49500570081E-05 9.97607997689E-05 1.04813755867E-04 1.10121001883E-04 1.15695207331E-04 1.21549663060E-04 1.27698310957E-04 1.34155775001E-04 1.40937393747E-04 1.48059254281E-04 1.55538227710E-04 1.63392006259E-04 1.71639142034E-04 1.80299087521E-04 1.89392237891E-04 1.98939975186E-04 2.08964714454E-04 2.19489951919E-04 2.30540315260E-04 2.42141616078E-04 2.54320904645E-04 2.67106527009E-04 2.80528184550E-04 2.94616996078E-04 3.09405562560E-04 3.24928034581E-04 3.41220182618E-04 3.58319470251E-04 3.76265130383E-04 3.95098244592E-04 4.14861825707E-04 4.35600903721E-04 4.57362615138E-04 4.80196295860E-04 5.04153577739E-04 5.29288488871E-04 5.55657557769E-04 5.83319921502E-04 6.12337437915E-04 6.42774802036E-04 6.74699666760E-04 7.08182767932E-04 7.43298053910E-04 7.80122819705E-04 8.18737845800E-04 8.59227541708E-04 9.01680094380E-04 9.46187621507E-04 9.92846329796E-04 1.04175667827E-03 1.09302354663E-03 1.14675640875E-03 1.20306951123E-03 1.26208205716E-03 1.32391839495E-03 1.38870821227E-03 1.45658673502E-03 1.52769493129E-03 1.60217972020E-03 1.68019418552E-03 1.76189779386E-03 1.84745661737E-03 1.93704356058E-03 2.03083859131E-03 2.12902897518E-03 2.23180951357E-03 2.33938278445E-03 2.45195938589E-03 2.56975818146E-03 2.69300654737E-03 2.82194062031E-03 2.95680554569E-03 3.09785572530E-03 3.24535506369E-03 3.39957721232E-03 3.56080581043E-03 3.72933472172E-03 3.90546826547E-03 4.08952144090E-03 4.28182014339E-03 4.48270137096E-03 4.69251341951E-03 4.91161606489E-03 5.14038073000E-03 5.37919063487E-03 5.62844092743E-03 5.88853879278E-03 6.15990353830E-03 6.44296665189E-03 6.73817183072E-03 7.04597497712E-03 7.36684415871E-03 7.70125952904E-03 8.04971320543E-03 8.41270910000E-03 8.79076269993E-03 9.18440079284E-03 9.59416113271E-03 1.00205920419E-02 1.04642519443E-02 1.09257088249E-02 1.14055396099E-02 1.19043294631E-02 1.24226709919E-02 1.29611633576E-02 1.35204112852E-02 1.41010239642E-02 1.47036138378E-02 1.53287952707E-02 1.59771830925E-02 1.66493910085E-02 1.73460298728E-02 1.80677058166E-02 1.88150182278E-02 1.95885575732E-02 2.03889030612E-02 2.12166201364E-02 2.20722578050E-02 2.29563457836E-02 2.38693914696E-02 2.48118767298E-02 2.57842545049E-02 2.67869452293E-02 2.78203330646E-02 2.88847619498E-02 2.99805314693E-02 3.11078925424E-02 3.22670429407E-02 3.34581226400E-02 3.46812090168E-02 3.59363118993E-02 3.72233684890E-02 3.85422381671E-02 3.98926972069E-02 4.12744334123E-02 4.26870407093E-02 4.41300137177E-02 4.56027423359E-02 4.71045063744E-02 4.86344702760E-02 5.01916779688E-02 5.17750478959E-02 5.33833682763E-02 5.50152926504E-02 5.66693357704E-02 5.83438698999E-02 6.00371215887E-02 6.17471689954E-02 6.34719398317E-02 6.52092100059E-02 6.69566030475E-02 6.87115903927E-02 7.04714926180E-02 7.22334817034E-02 7.39945844120E-02 7.57516868681E-02 7.75015404139E-02 7.92407688238E-02 8.09658769456E-02 8.26732608355E-02 8.43592194425E-02 8.60199678881E-02 8.76516523740E-02 8.92503667380E-02 9.08121706581E-02 9.23331094878E-02 9.38092356827E-02 9.52366317552E-02 9.66114346663E-02 9.79298615355E-02 9.91882365188E-02 1.00383018670E-01 1.01510830567E-01 1.02568487452E-01 1.03553026585E-01 1.04461736489E-01 1.05292185720E-01 1.06042250753E-01 1.06710142546E-01 1.07294431327E-01 1.07794069087E-01 1.08208409275E-01 1.08537223162E-01 1.08780712321E-01 1.08939516695E-01 1.09014717721E-01 1.09007836012E-01 1.08920823131E-01 1.08756047052E-01 1.08516270971E-01 1.08204625223E-01 1.07824572154E-01 1.07379863943E-01 1.06874493496E-01 1.06312638700E-01 1.05698600508E-01 1.05036735520E-01 1.04331383908E-01 1.03586793780E-01 1.02807043262E-01 1.01995961810E-01 1.01157052449E-01 1.00293416851E-01 9.94076852846E-02 9.85019536300E-02 9.75777297204E-02 9.66358912859E-02 9.56766577526E-02 9.46995780175E-02 9.37035361266E-02 9.26867764808E-02 9.16469498011E-02 9.05811805883E-02 8.94861562066E-02 8.83582370289E-02 8.71935862899E-02 8.59883174348E-02 8.47386558404E-02 8.34411108436E-02 8.20926530903E-02 8.06908913331E-02 7.92342420308E-02 7.77220844684E-02 7.61548936879E-02 7.45343433578E-02 7.28633708598E-02 7.11461973942E-02 6.93882968473E-02 6.75963085453E-02 6.57778908767E-02 6.39415150712E-02 6.20962011675E-02 6.02512013181E-02 5.84156389705E-02 5.65981160175E-02 5.48063035514E-02 5.30465352050E-02 5.13234249872E-02 4.96395337831E-02 4.79951100316E-02 4.63879302660E-02 4.48132639659E-02 4.32639843277E-02 4.17308419643E-02 4.02029121303E-02 3.86682178609E-02 3.71145215405E-02 3.55302661517E-02 3.39056351695E-02 3.22336872791E-02 3.05115094304E-02 2.87420372119E-02 2.69353152261E-02 2.51034816065E-02 2.32594650844E-02 2.14167912340E-02 1.95893620781E-02 1.77912110442E-02 1.60362360839E-02 1.43379146481E-02 1.27090051194E-02 1.11612402395E-02 9.70501899004E-03 8.34910427875E-03 7.10033460758E-03 5.96335862283E-03 4.94040203011E-03 4.03107675467E-03 3.23224239591E-03 2.53866531476E-03 1.94572385639E-03 1.44815224931E-03 1.03954303708E-03 7.12487321469E-04 4.58742301832E-04 2.69425316935E-04 1.35232830173E-04 4.66819383283E-05 -5.62896739228E-06 -3.07447910206E-05 -3.70690723238E-05 -3.20767202144E-05 -2.20319412895E-05 -1.17203103385E-05 -4.20501812441E-06 -6.18315868867E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 8 2 i j (l(j)) 0.00000000000E+00 Q_int 5.07008535288E-18 5.33003418698E-18 5.60331088275E-18 5.89059877427E-18 6.19261623090E-18 6.51011845360E-18 6.84389936328E-18 7.19479358608E-18 7.56367854031E-18 7.95147663049E-18 8.35915755384E-18 8.78774072499E-18 9.23829782511E-18 9.71195548161E-18 1.02098980853E-17 1.07333707522E-17 1.12836824364E-17 1.18622092038E-17 1.24703976728E-17 1.31097686311E-17 1.37819208393E-17 1.44885350279E-17 1.52313781005E-17 1.60123075515E-17 1.68332761115E-17 1.76963366293E-17 1.86036472057E-17 1.95574765899E-17 2.05602098520E-17 2.16143543473E-17 2.27225459863E-17 2.38875558252E-17 2.51122969953E-17 2.63998319874E-17 2.77533803096E-17 2.91763265377E-17 3.06722287783E-17 3.22448275661E-17 3.38980552172E-17 3.56360456617E-17 3.74631447809E-17 3.93839212741E-17 4.14031780830E-17 4.35259644012E-17 4.57575883001E-17 4.81036300017E-17 5.05699558320E-17 5.31627328902E-17 5.58884444692E-17 5.87539062675E-17 6.17662834320E-17 6.49331084743E-17 6.82623001063E-17 7.17621830410E-17 7.54415088083E-17 7.93094776389E-17 8.33757614692E-17 8.76505281265E-17 9.21444667536E-17 9.68688145374E-17 1.01835384808E-16 1.07056596577E-16 1.12545505593E-16 1.18315836987E-16 1.24382019593E-16 1.30759222026E-16 1.37463390613E-16 1.44511289267E-16 1.51920541405E-16 1.59709674016E-16 1.67898163987E-16 1.76506486807E-16 1.85556167766E-16 1.95069835779E-16 2.05071279970E-16 2.15585509158E-16 2.26638814391E-16 2.38258834687E-16 2.50474626148E-16 2.63316734613E-16 2.76817272042E-16 2.91009996806E-16 3.05930398109E-16 3.21615784722E-16 3.38105378280E-16 3.55440411352E-16 3.73664230547E-16 3.92822404902E-16 4.12962839828E-16 4.34135896899E-16 4.56394519781E-16 4.79794366621E-16 5.04393949219E-16 5.30254779340E-16 5.57441522522E-16 5.86022159779E-16 6.16068157583E-16 6.47654646572E-16 6.80860609413E-16 7.15769078300E-16 7.52467342578E-16 7.91047167014E-16 8.31605021253E-16 8.74242321045E-16 9.19065681834E-16 9.66187185357E-16 1.01572465990E-15 1.06780197494E-15 1.12254935087E-15 1.18010368463E-15 1.24060889201E-15 1.30421626753E-15 1.37108486273E-15 1.44138188390E-15 1.51528311019E-15 1.59297333312E-15 1.67464681870E-15 1.76050779314E-15 1.85077095356E-15 1.94566200484E-15 2.04541822399E-15 2.15028905348E-15 2.26053672496E-15 2.37643691497E-15 2.49827943431E-15 2.62636895267E-15 2.76102576050E-15 2.90258656990E-15 3.05140535653E-15 3.20785424481E-15 3.37232443835E-15 3.54522719820E-15 3.72699487123E-15 3.91808197119E-15 4.11896631522E-15 4.33015021871E-15 4.55216175126E-15 4.78555605720E-15 5.03091674369E-15 5.28885734008E-15 5.56002283203E-15 5.84509127430E-15 6.14477548626E-15 6.45982483431E-15 6.79102710565E-15 7.13921047820E-15 7.50524559147E-15 7.89004772355E-15 8.29457907988E-15 8.71985119918E-15 9.16692748286E-15 9.63692585407E-15 1.01310215531E-14 1.06504500760E-14 1.11965102641E-14 1.17705675518E-14 1.23740573806E-14 1.30084887887E-14 1.36754481845E-14 1.43766033130E-14 1.51137074264E-14 1.58886036680E-14 1.67032296810E-14 1.75596224537E-14 1.84599234130E-14 1.94063837790E-14 2.04013701942E-14 2.14473706415E-14 2.25470006653E-14 2.37030099118E-14 2.49182890043E-14 2.61958767717E-14 2.75389678468E-14 2.89509206546E-14 3.04352658101E-14 3.19957149467E-14 3.36361699972E-14 3.53607329507E-14 3.71737161096E-14 3.90796528725E-14 4.10833090702E-14 4.31896948828E-14 4.54040773676E-14 4.77319936294E-14 5.01792646662E-14 5.27520099247E-14 5.54566626023E-14 5.82999857328E-14 6.12890890982E-14 6.44314470064E-14 6.77349169807E-14 7.12077594081E-14 7.48586581941E-14 7.86967424772E-14 8.27316094564E-14 8.69733483889E-14 9.14325658189E-14 9.61204120989E-14 1.01048609272E-13 1.06229480381E-13 1.11675980286E-13 1.17401728056E-13 1.23421041021E-13 1.29748970579E-13 1.36401339825E-13 1.43394783124E-13 1.50746787700E-13 1.58475737363E-13 1.66600958484E-13 1.75142768313E-13 1.84122525787E-13 1.93562684940E-13 2.03486851042E-13 2.13919839634E-13 2.24887738573E-13 2.36417973265E-13 2.48539375246E-13 2.61282254274E-13 2.74678474117E-13 2.88761532232E-13 3.03566643522E-13 3.19130828394E-13 3.35493005328E-13 3.52694088193E-13 3.70777088552E-13 3.89787223212E-13 4.09772027292E-13 4.30781473082E-13 4.52868094999E-13 4.76087120952E-13 5.00496610436E-13 5.26157599714E-13 5.53134254436E-13 5.81494030088E-13 6.11307840659E-13 6.42650235970E-13 6.75599588078E-13 7.10238287251E-13 7.46652947982E-13 7.84934625572E-13 8.25179043810E-13 8.67486834331E-13 9.11963788249E-13 9.58721120685E-13 1.00787574886E-12 1.05955058444E-12 1.11387484090E-12 1.17098435659E-12 1.23102193441E-12 1.29413769891E-12 1.36048947165E-12 1.43024316583E-12 1.50357320117E-12 1.58066294004E-12 1.66170514596E-12 1.74690246559E-12 1.83646793547E-12 1.93062551469E-12 2.02961064491E-12 2.13367083908E-12 2.24306630036E-12 2.35807057270E-12 2.47897122489E-12 2.60607056961E-12 2.73968641934E-12 2.88015288105E-12 3.02782119163E-12 3.18306059617E-12 3.34625927123E-12 3.51782529547E-12 3.69818767003E-12 3.88779739128E-12 4.08712857849E-12 4.29667965936E-12 4.51697461631E-12 4.74856429674E-12 4.99202779034E-12 5.24797387714E-12 5.51704254971E-12 5.79990661345E-12 6.09727336895E-12 6.40988638052E-12 6.73852733547E-12 7.08401799871E-12 7.44722226751E-12 7.82904833164E-12 8.23045094430E-12 8.65243380940E-12 9.09605209128E-12 9.56241505312E-12 1.00526888306E-11 1.05680993477E-11 1.11099353822E-11 1.16795517880E-11 1.22783728831E-11 1.29078960107E-11 1.35696952837E-11 1.42654255201E-11 1.49968263813E-11 1.57657267215E-11 1.65740491611E-11 1.74238148937E-11 1.83171487403E-11 1.92562844620E-11 2.02435703453E-11 2.12814750741E-11 2.23725939021E-11 2.35196551423E-11 2.47255269888E-11 2.59932246882E-11 2.73259180796E-11 2.87269395197E-11 3.01997922156E-11 3.17481589839E-11 3.33759114594E-11 3.50871197756E-11 3.68860627415E-11 3.87772385406E-11 4.07653759778E-11 4.28554463032E-11 4.50526756421E-11 4.73625580627E-11 4.97908693125E-11 5.23436812603E-11 5.50273770780E-11 5.78486672008E-11 6.08146061052E-11 6.39326099486E-11 6.72104751110E-11 7.06563976898E-11 7.42789939919E-11 7.80873220776E-11 8.20909044088E-11 8.62997516580E-11 9.07243877382E-11 9.53758761161E-11 1.00265847474E-10 1.05406528789E-10 1.10810773906E-10 1.16492095675E-10 1.22464699736E-10 1.28743520039E-10 1.35344256180E-10 1.42283412658E-10 1.49578340137E-10 1.57247278829E-10 1.65309404098E-10 1.73784874402E-10 1.82694881698E-10 1.92061704419E-10 2.01908763182E-10 2.12260679342E-10 2.23143336548E-10 2.34583945459E-10 2.46611111775E-10 2.59254907759E-10 2.72546947415E-10 2.86520465538E-10 3.01210400796E-10 3.16653483088E-10 3.32888325371E-10 3.49955520197E-10 3.67897741197E-10 3.86759849772E-10 4.06589007248E-10 4.27434792784E-10 4.49349327321E-10 4.72387403889E-10 4.96606624591E-10 5.22067544608E-10 5.48833823588E-10 5.76972384800E-10 6.06553582433E-10 6.37651377484E-10 6.70343522658E-10 7.04711756745E-10 7.40842008957E-10 7.78824613751E-10 8.18754536649E-10 8.60731611644E-10 9.04860790773E-10 9.51252406476E-10 1.00002244742E-09 1.05129284842E-09 1.10519179531E-09 1.16185404530E-09 1.22142126392E-09 1.28404237907E-09 1.34987395335E-09 1.41908057541E-09 1.49183527135E-09 1.56831993725E-09 1.64872579382E-09 1.73325386441E-09 1.82211547745E-09 1.91553279472E-09 2.01373936660E-09 2.11698071589E-09 2.22551495146E-09 2.33961341339E-09 2.45956135117E-09 2.58565863667E-09 2.71822051361E-09 2.85757838549E-09 3.00408064386E-09 3.15809353905E-09 3.32000209557E-09 3.49021107432E-09 3.66914598420E-09 3.85725414552E-09 4.05500580793E-09 4.26289532559E-09 4.48144239264E-09 4.71119334186E-09 4.95272251003E-09 5.20663367310E-09 5.47356155503E-09 5.75417341383E-09 6.04917070895E-09 6.35929085410E-09 6.68530905981E-09 7.02804027047E-09 7.38834120059E-09 7.76711247538E-09 8.16530088103E-09 8.58390173025E-09 9.02396134900E-09 9.48657969065E-09 9.97291308403E-09 1.04841771223E-08 1.10216496998E-08 1.15866742043E-08 1.21806628733E-08 1.28051003214E-08 1.34615472541E-08 1.41516443447E-08 1.48771163684E-08 1.56397764807E-08 1.64415307723E-08 1.72843829819E-08 1.81704395684E-08 1.91019149127E-08 2.00811368790E-08 2.11105526345E-08 2.21927347117E-08 2.33303875143E-08 2.45263539874E-08 2.57836227576E-08 2.71053356191E-08 2.84947953297E-08 2.99554738617E-08 3.14910211112E-08 3.31052739809E-08 3.48022659583E-08 3.65862371770E-08 3.84616450254E-08 4.04331752804E-08 4.25057537564E-08 4.46845586275E-08 4.69750333724E-08 4.93829003165E-08 5.19141749344E-08 5.45751808605E-08 5.73725657052E-08 6.03133175855E-08 6.34047825006E-08 6.66546829536E-08 7.00711366638E-08 7.36626774150E-08 7.74382762042E-08 8.14073631140E-08 8.55798513969E-08 8.99661621491E-08 9.45772500207E-08 9.94246307124E-08 1.04520409676E-07 1.09877312218E-07 1.15508715398E-07 1.21428681178E-07 1.27651991511E-07 1.34194185435E-07 1.41071597434E-07 1.48301398287E-07 1.55901638025E-07 1.63891290660E-07 1.72290301701E-07 1.81119637426E-07 1.90401337633E-07 2.00158570309E-07 2.10415689267E-07 2.21198294557E-07 2.32533297008E-07 2.44448984330E-07 2.56975092167E-07 2.70142877532E-07 2.83985197360E-07 2.98536589590E-07 3.13833359345E-07 3.29913669516E-07 3.46817635221E-07 3.64587424043E-07 3.83267360490E-07 4.02904036676E-07 4.23546427676E-07 4.45246013511E-07 4.68056907537E-07 4.92035989668E-07 5.17243049436E-07 5.43740933267E-07 5.71595700636E-07 6.00876788769E-07 6.31657185222E-07 6.64013607871E-07 6.98026696533E-07 7.33781212764E-07 7.71366249571E-07 8.10875453946E-07 8.52407257189E-07 8.96065120145E-07 9.41957790410E-07 9.90199570123E-07 1.04091060066E-06 1.09421715967E-06 1.15025197405E-06 1.20915454854E-06 1.27107151127E-06 1.33615697707E-06 1.40457292765E-06 1.47648961369E-06 1.55208597513E-06 1.63155008434E-06 1.71507960979E-06 1.80288230572E-06 1.89517652526E-06 1.99219175848E-06 2.09416920096E-06 2.20136234764E-06 2.31403761832E-06 2.43247501564E-06 2.55696881433E-06 2.68782828789E-06 2.82537846948E-06 2.96996095245E-06 3.12193473197E-06 3.28167708834E-06 3.44958451457E-06 3.62607369159E-06 3.81158251296E-06 4.00657115937E-06 4.21152323043E-06 4.42694692988E-06 4.65337631360E-06 4.89137259941E-06 5.14152554066E-06 5.40445487375E-06 5.68081183294E-06 5.97128074560E-06 6.27658070501E-06 6.59746732855E-06 6.93473460318E-06 7.28921682407E-06 7.66179063064E-06 8.05337714294E-06 8.46494420795E-06 8.89750875429E-06 9.35213926970E-06 9.82995839638E-06 1.03321456614E-05 1.08599403400E-05 1.14146444624E-05 1.19976259714E-05 1.26103220353E-05 1.32542425281E-05 1.39309736807E-05 1.46421819131E-05 1.53896178596E-05 1.61751205903E-05 1.70006220443E-05 1.78681516794E-05 1.87798413559E-05 1.97379304574E-05 2.07447712667E-05 2.18028346064E-05 2.29147157564E-05 2.40831406645E-05 2.53109724592E-05 2.66012182853E-05 2.79570364720E-05 2.93817440546E-05 3.08788246608E-05 3.24519367861E-05 3.41049224691E-05 3.58418163922E-05 3.76668554238E-05 3.95844886239E-05 4.15993877357E-05 4.37164581850E-05 4.59408506112E-05 4.82779729564E-05 5.07335031341E-05 5.33134023114E-05 5.60239288269E-05 5.88716527758E-05 6.18634712939E-05 6.50066245716E-05 6.83087126305E-05 7.17777128996E-05 7.54219986238E-05 7.92503581463E-05 8.32720151026E-05 8.74966495652E-05 9.19344201834E-05 9.65959873643E-05 1.01492537536E-04 1.06635808544E-04 1.12038116236E-04 1.17712382269E-04 1.23672163219E-04 1.29931681019E-04 1.36505854815E-04 1.43410334266E-04 1.50661534378E-04 1.58276671923E-04 1.66273803514E-04 1.74671865393E-04 1.83490715028E-04 1.92751174564E-04 2.02475076229E-04 2.12685309750E-04 2.23405871882E-04 2.34661918123E-04 2.46479816690E-04 2.58887204875E-04 2.71913047835E-04 2.85587699936E-04 2.99942968739E-04 3.15012181722E-04 3.30830255844E-04 3.47433770055E-04 3.64861040845E-04 3.83152200965E-04 4.02349281399E-04 4.22496296714E-04 4.43639333915E-04 4.65826644881E-04 4.89108742542E-04 5.13538500879E-04 5.39171258887E-04 5.66064928607E-04 5.94280107354E-04 6.23880194252E-04 6.54931511197E-04 6.87503428369E-04 7.21668494399E-04 7.57502571311E-04 7.95084974349E-04 8.34498616789E-04 8.75830159847E-04 9.19170167777E-04 9.64613268247E-04 1.01225831808E-03 1.06220857445E-03 1.11457187156E-03 1.16946080291E-03 1.22699290917E-03 1.28729087171E-03 1.35048271175E-03 1.41670199520E-03 1.48608804316E-03 1.55878614800E-03 1.63494779494E-03 1.71473088923E-03 1.79829998848E-03 1.88582654036E-03 1.97748912526E-03 2.07347370372E-03 2.17397386855E-03 2.27919110110E-03 2.38933503155E-03 2.50462370272E-03 2.62528383702E-03 2.75155110601E-03 2.88367040197E-03 3.02189611100E-03 3.16649238679E-03 3.31773342435E-03 3.47590373292E-03 3.64129840694E-03 3.81422339426E-03 3.99499576032E-03 4.18394394699E-03 4.38140802498E-03 4.58773993806E-03 4.80330373768E-03 5.02847580615E-03 5.26364506662E-03 5.50921317775E-03 5.76559471091E-03 6.03321730769E-03 6.31252181504E-03 6.60396239552E-03 6.90800660971E-03 7.22513546777E-03 7.55584344688E-03 7.90063847119E-03 8.26004185042E-03 8.63458817351E-03 9.02482515306E-03 9.43131341622E-03 9.85462623761E-03 1.02953492095E-02 1.07540798439E-02 1.12314271024E-02 1.17280108465E-02 1.22444612048E-02 1.27814178498E-02 1.33395291786E-02 1.39194513916E-02 1.45218474624E-02 1.51473859922E-02 1.57967399424E-02 1.64705852387E-02 1.71695992388E-02 1.78944590580E-02 1.86458397453E-02 1.94244123026E-02 2.02308415413E-02 2.10657837685E-02 2.19298842979E-02 2.28237747776E-02 2.37480703303E-02 2.47033665008E-02 2.56902360053E-02 2.67092252788E-02 2.77608508184E-02 2.88455953187E-02 2.99639035996E-02 3.11161783257E-02 3.23027755185E-02 3.35239998652E-02 3.47800998280E-02 3.60712625608E-02 3.73976086418E-02 3.87591866321E-02 4.01559674755E-02 4.15878387531E-02 4.30545988139E-02 4.45559508022E-02 4.60914966063E-02 4.76607307607E-02 4.92630343300E-02 5.08976688153E-02 5.25637701204E-02 5.42603426260E-02 5.59862534183E-02 5.77402267281E-02 5.95208386382E-02 6.13265121223E-02 6.31555124833E-02 6.50059432629E-02 6.68757427004E-02 6.87626808194E-02 7.06643572295E-02 7.25781997295E-02 7.45014638035E-02 7.64312331036E-02 7.83644210137E-02 8.02977733904E-02 8.22278725755E-02 8.41511427748E-02 8.60638568932E-02 8.79621449132E-02 8.98420038960E-02 9.16993096802E-02 9.35298303374E-02 9.53292414388E-02 9.70931431663E-02 9.88170792888E-02 1.00496558004E-01 1.02127074625E-01 1.03704136058E-01 1.05223287008E-01 1.06680137801E-01 1.08070393685E-01 1.09389885440E-01 1.10634601084E-01 1.11800718434E-01 1.12884638217E-01 1.13883017415E-01 1.14792802455E-01 1.15611261838E-01 1.16336017749E-01 1.16965076146E-01 1.17496854803E-01 1.17930208755E-01 1.18264452540E-01 1.18499378658E-01 1.18635271630E-01 1.18672917049E-01 1.18613605042E-01 1.18459127575E-01 1.18211769094E-01 1.17874290047E-01 1.17449902923E-01 1.16942240534E-01 1.16355316398E-01 1.15693477216E-01 1.14961347609E-01 1.14163767448E-01 1.13305722327E-01 1.12392267939E-01 1.11428449343E-01 1.10419216351E-01 1.09369336504E-01 1.08283307336E-01 1.07165269871E-01 1.06018925473E-01 1.04847458371E-01 1.03653466300E-01 1.02438901791E-01 1.01205026654E-01 9.99523821569E-02 9.86807772363E-02 9.73892968680E-02 9.60763323553E-02 9.47396348528E-02 9.33763928688E-02 9.19833338046E-02 9.05568488021E-02 8.90931392783E-02 8.75883825600E-02 8.60389130107E-02 8.44414139931E-02 8.27931149832E-02 8.10919871848E-02 7.93369301373E-02 7.75279411369E-02 7.56662588431E-02 7.37544723027E-02 7.17965868394E-02 6.97980388973E-02 6.77656530276E-02 6.57075358149E-02 6.36329036604E-02 6.15518439687E-02 5.94750123823E-02 5.74132722105E-02 5.53772859911E-02 5.33770730630E-02 5.14215509379E-02 4.95180819084E-02 4.76720494812E-02 4.58864915947E-02 4.41618188982E-02 4.24956463459E-02 4.08827647509E-02 3.93152755288E-02 3.77829065003E-02 3.62735192557E-02 3.47738092602E-02 3.32701887757E-02 3.17498301042E-02 3.02018330792E-02 2.86184667285E-02 2.69964213338E-02 2.53386572313E-02 2.36553184279E-02 2.19584654803E-02 2.02607385936E-02 1.85751352173E-02 1.69147654513E-02 1.52925891488E-02 1.37211396056E-02 1.22122397433E-02 1.07767176929E-02 9.42412963282E-03 8.16249858191E-03 6.99807855323E-03 5.93515397840E-03 4.97588456211E-03 4.12020565941E-03 3.36579382511E-03 2.70810630604E-03 2.14105847076E-03 1.65916544431E-03 1.25654164460E-03 9.26566146468E-04 6.62047203770E-04 4.55400476729E-04 2.98837445981E-04 1.84559776598E-04 1.04954693983E-04 5.27857773789E-05 2.13729986927E-05 4.75537233097E-06 -2.17072220658E-06 -3.54458349807E-06 -2.47248384216E-06 -1.00365077402E-06 -1.56564297464E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 9 2 i j (l(j)) 0.00000000000E+00 Q_int 4.47739961243E-18 4.70696079889E-18 4.94829183901E-18 5.20199618611E-18 5.46870823319E-18 5.74909489927E-18 6.04385729708E-18 6.35373248612E-18 6.67949531578E-18 7.02196036280E-18 7.38198396816E-18 7.76046637840E-18 8.15835399668E-18 8.57664174927E-18 9.01637557344E-18 9.47865503276E-18 9.96463606666E-18 1.04755338808E-17 1.10126259859E-17 1.15772553920E-17 1.21708339665E-17 1.27948459652E-17 1.34508517430E-17 1.41404916560E-17 1.48654901632E-17 1.56276601385E-17 1.64289074038E-17 1.72712354945E-17 1.81567506697E-17 1.90876671784E-17 2.00663127967E-17 2.10951346485E-17 2.21767053241E-17 2.33137293137E-17 2.45090497693E-17 2.57656556146E-17 2.70866890187E-17 2.84754532532E-17 2.99354209520E-17 3.14702427946E-17 3.30837566350E-17 3.47799970982E-17 3.65632056687E-17 3.84378412967E-17 4.04085915476E-17 4.24803843235E-17 4.46584001851E-17 4.69480853066E-17 4.93551650932E-17 5.18856584980E-17 5.45458930724E-17 5.73425207882E-17 6.02825346712E-17 6.33732862873E-17 6.66225041251E-17 7.00383129213E-17 7.36292539770E-17 7.74043065148E-17 8.13729101321E-17 8.55449884046E-17 8.99309737009E-17 9.45418332681E-17 9.93890966565E-17 1.04484884549E-16 1.09841939069E-16 1.15473655642E-16 1.21394116493E-16 1.27618125856E-16 1.34161246997E-16 1.41039841126E-16 1.48271108310E-16 1.55873130483E-16 1.63864916659E-16 1.72266450464E-16 1.81098740109E-16 1.90383870916E-16 2.00145060548E-16 2.10406717063E-16 2.21194499943E-16 2.32535384265E-16 2.44457728144E-16 2.56991343648E-16 2.70167571342E-16 2.84019358656E-16 2.98581342271E-16 3.13889934729E-16 3.29983415481E-16 3.46902026609E-16 3.64688073450E-16 3.83386030382E-16 4.03042652032E-16 4.23707090190E-16 4.45431016708E-16 4.68268752715E-16 4.92277404441E-16 5.17517006015E-16 5.44050669581E-16 5.71944743112E-16 6.01268976315E-16 6.32096695039E-16 6.64504984630E-16 6.98574882683E-16 7.34391581681E-16 7.72044642017E-16 8.11628215942E-16 8.53241282998E-16 8.96987897514E-16 9.42977448800E-16 9.91324934673E-16 1.04215124901E-15 1.09558348407E-15 1.15175524823E-15 1.21080700016E-15 1.27288639996E-15 1.33814867845E-15 1.40675702529E-15 1.47888299706E-15 1.55470694622E-15 1.63441847212E-15 1.71821689505E-15 1.80631175468E-15 1.89892333401E-15 1.99628321018E-15 2.09863483354E-15 2.20623413643E-15 2.31935017308E-15 2.43826579245E-15 2.56327834546E-15 2.69470042855E-15 2.83286066530E-15 2.97810452820E-15 3.13079520247E-15 3.29131449423E-15 3.46006378523E-15 3.63746503649E-15 3.82396184341E-15 4.02002054505E-15 4.22613139014E-15 4.44280976301E-15 4.67059747230E-15 4.91006410576E-15 5.16180845453E-15 5.42646001042E-15 5.70468053996E-15 5.99716573916E-15 6.30464697313E-15 6.62789310485E-15 6.96771241774E-15 7.32495463678E-15 7.70051305328E-15 8.09532675853E-15 8.51038299207E-15 8.94671961026E-15 9.40542768149E-15 9.88765421438E-15 1.03946050259E-14 1.09275477567E-14 1.14878150405E-14 1.20768078367E-14 1.26959989334E-14 1.33469366301E-14 1.40312486094E-14 1.47506460067E-14 1.55069276893E-14 1.63019847543E-14 1.71378052575E-14 1.80164791842E-14 1.89402036758E-14 1.99112885231E-14 2.09321619428E-14 2.20053766485E-14 2.31336162342E-14 2.43197018848E-14 2.55665994302E-14 2.68774267617E-14 2.82554616279E-14 2.97041498315E-14 3.12271138447E-14 3.28281618681E-14 3.45112973524E-14 3.62807290099E-14 3.81408813376E-14 4.00964056814E-14 4.21521918666E-14 4.43133804248E-14 4.65853754484E-14 4.89738581030E-14 5.14848008337E-14 5.41244822991E-14 5.68995030713E-14 5.98168021405E-14 6.28836742662E-14 6.61077882181E-14 6.94972059514E-14 7.30604027663E-14 7.68062885007E-14 8.07442298087E-14 8.48840735829E-14 8.92361715761E-14 9.38114062862E-14 9.86212181681E-14 1.03677634241E-13 1.08993298160E-13 1.14581501837E-13 1.20456218670E-13 1.26632138489E-13 1.33124704289E-13 1.39950150839E-13 1.47125545283E-13 1.54668829817E-13 1.62598866547E-13 1.70935484664E-13 1.79699530016E-13 1.88912917243E-13 1.98598684569E-13 2.08781051410E-13 2.19485478939E-13 2.30738733745E-13 2.42568954769E-13 2.55005723664E-13 2.68080138761E-13 2.81824892837E-13 2.96274354857E-13 3.11464655919E-13 3.27433779597E-13 3.44221656919E-13 3.61870266218E-13 3.80423738096E-13 3.99928465774E-13 4.20433221097E-13 4.41989276493E-13 4.64650533175E-13 4.88473655920E-13 5.13518214768E-13 5.39846833967E-13 5.67525348572E-13 5.96622969063E-13 6.27212454406E-13 6.59370293988E-13 6.93176898878E-13 7.28716802896E-13 7.66078873986E-13 8.05356536439E-13 8.46648004489E-13 8.90056527908E-13 9.35690650176E-13 9.83664479893E-13 1.03409797611E-12 1.08711724829E-12 1.14285487164E-12 1.20145021860E-12 1.26304980738E-12 1.32780766830E-12 1.39588572892E-12 1.46745421901E-12 1.54269209614E-12 1.62178749318E-12 1.70493818874E-12 1.79235210172E-12 1.88424781117E-12 1.98085510287E-12 2.08241554393E-12 2.18918308676E-12 2.30142470414E-12 2.41942105676E-12 2.54346719498E-12 2.67387329665E-12 2.81096544265E-12 2.95508643230E-12 3.10659664046E-12 3.26587491873E-12 3.43331954267E-12 3.60934920773E-12 3.79440407617E-12 3.98894687769E-12 4.19346406646E-12 4.40846703748E-12 4.63449340532E-12 4.87210834842E-12 5.12190602227E-12 5.38451104511E-12 5.66058005974E-12 5.95080337545E-12 6.25590669409E-12 6.57665292471E-12 6.91384409111E-12 7.26832333735E-12 7.64097703591E-12 8.03273700410E-12 8.44458283398E-12 8.87754434181E-12 9.33270414304E-12 9.81120035933E-12 1.03142294644E-11 1.08430492756E-11 1.13989820994E-11 1.19834180371E-11 1.25978184614E-11 1.32437196699E-11 1.39227367268E-11 1.46365675014E-11 1.53869969130E-11 1.61759013945E-11 1.70052535840E-11 1.78771272572E-11 1.87937025129E-11 1.97572712241E-11 2.07702427683E-11 2.18351500527E-11 2.29546558467E-11 2.41315594403E-11 2.53688036436E-11 2.66694821446E-11 2.80368472451E-11 2.94743179922E-11 3.09854887278E-11 3.25741380758E-11 3.42442383896E-11 3.59999656851E-11 3.78457100821E-11 3.97860867810E-11 4.18259476030E-11 4.39703931211E-11 4.62247854135E-11 4.85947614708E-11 5.10862472902E-11 5.37054726931E-11 5.64589869012E-11 5.93536749123E-11 6.23967747150E-11 6.55958953858E-11 6.89590361149E-11 7.24946062061E-11 7.62114461032E-11 8.01188494939E-11 8.42265865466E-11 8.85449283390E-11 9.30846725390E-11 9.78571704018E-11 1.02874355151E-10 1.08148771817E-10 1.13693608598E-10 1.19522729842E-10 1.25650710703E-10 1.32092873589E-10 1.38865326468E-10 1.45985003143E-10 1.53469705592E-10 1.61338148475E-10 1.69610005923E-10 1.78305960735E-10 1.87447756081E-10 1.97058249867E-10 2.07161471887E-10 2.17782683897E-10 2.28948442779E-10 2.40686666932E-10 2.53026706077E-10 2.65999414633E-10 2.79637228860E-10 2.93974247948E-10 3.09046319276E-10 3.24891128029E-10 3.41548291419E-10 3.59059457726E-10 3.77468410428E-10 3.96821177657E-10 4.17166147275E-10 4.38554187844E-10 4.61038775801E-10 4.84676129147E-10 5.09525347993E-10 5.35648562311E-10 5.63111087257E-10 5.91981586454E-10 6.22332243652E-10 6.54238943178E-10 6.87781459644E-10 7.23043657372E-10 7.60113700051E-10 7.99084271129E-10 8.40052805512E-10 8.83121733136E-10 9.28398735018E-10 9.75997012443E-10 1.02603556994E-09 1.07863951278E-09 1.13394035966E-09 1.19207637154E-09 1.25319289719E-09 1.31744273653E-09 1.38498652261E-09 1.45599312311E-09 1.53064006244E-09 1.60911396548E-09 1.69161102411E-09 1.77833748751E-09 1.86951017780E-09 1.96535703187E-09 2.06611767119E-09 2.17204400071E-09 2.28340083844E-09 2.40046657738E-09 2.52353388132E-09 2.65291041627E-09 2.78891961947E-09 2.93190150769E-09 3.08221352704E-09 3.24023144633E-09 3.40635029614E-09 3.58098535609E-09 3.76457319266E-09 3.95757275018E-09 4.16046649780E-09 4.37376163514E-09 4.59799135978E-09 4.83371619966E-09 5.08152541381E-09 5.34203846479E-09 5.61590656659E-09 5.90381431190E-09 6.20648138265E-09 6.52466434831E-09 6.85915855623E-09 7.21080011889E-09 7.58046800294E-09 7.96908622526E-09 8.37762616155E-09 8.80710897319E-09 9.25860815841E-09 9.73325223414E-09 1.02322275553E-08 1.07567812785E-08 1.13082244775E-08 1.18879354204E-08 1.24973630071E-08 1.31380303798E-08 1.38115387713E-08 1.45195714519E-08 1.52638979575E-08 1.60463784881E-08 1.68689686052E-08 1.77337240643E-08 1.86428059568E-08 1.95984861377E-08 2.06031528872E-08 2.16593168155E-08 2.27696172292E-08 2.39368286675E-08 2.51638678053E-08 2.64538008229E-08 2.78098509567E-08 2.92354066179E-08 3.07340298000E-08 3.23094650439E-08 3.39656487145E-08 3.57067188609E-08 3.75370255211E-08 3.94611416363E-08 4.14838743621E-08 4.36102771953E-08 4.58456624640E-08 4.81956146678E-08 5.06660043371E-08 5.32630028320E-08 5.59930975319E-08 5.88631081642E-08 6.18802038134E-08 6.50519207326E-08 6.83861810398E-08 7.18913129648E-08 7.55760709689E-08 7.94496580212E-08 8.35217483455E-08 8.78025117255E-08 9.23026386391E-08 9.70333671323E-08 1.02006510558E-07 1.07234487399E-07 1.12730351997E-07 1.18507826969E-07 1.24581337687E-07 1.30966048116E-07 1.37677898587E-07 1.44733645382E-07 1.52150902800E-07 1.59948186783E-07 1.68144961144E-07 1.76761685996E-07 1.85819868718E-07 1.95342117665E-07 2.05352198147E-07 2.15875091895E-07 2.26937059150E-07 2.38565704129E-07 2.50790043384E-07 2.63640578453E-07 2.77149371550E-07 2.91350125370E-07 3.06278266816E-07 3.21971035466E-07 3.38467575762E-07 3.55809034502E-07 3.74038663391E-07 3.93201926395E-07 4.13346612493E-07 4.34522954925E-07 4.56783755644E-07 4.80184516753E-07 5.04783578254E-07 5.30642262748E-07 5.57825028632E-07 5.86399628472E-07 6.16437278861E-07 6.48012836507E-07 6.81204983582E-07 7.16096423689E-07 7.52774086421E-07 7.91329343558E-07 8.31858234690E-07 8.74461706276E-07 9.19245861306E-07 9.66322222425E-07 1.01580800796E-06 1.06782642258E-06 1.12250696206E-06 1.17998573384E-06 1.24040579428E-06 1.30391750211E-06 1.37067889055E-06 1.44085605854E-06 1.51462358039E-06 1.59216493804E-06 1.67367297429E-06 1.75935036881E-06 1.84941013869E-06 1.94407616461E-06 2.04358374239E-06 2.14818016448E-06 2.25812532973E-06 2.37369238208E-06 2.49516838650E-06 2.62285503439E-06 2.75706938630E-06 2.89814465317E-06 3.04643101514E-06 3.20229648384E-06 3.36612780617E-06 3.53833141471E-06 3.71933442613E-06 3.90958569003E-06 4.10955688937E-06 4.31974369786E-06 4.54066699575E-06 4.77287414429E-06 5.01694032794E-06 5.27346996033E-06 5.54309816449E-06 5.82649232422E-06 6.12435371593E-06 6.43741921964E-06 6.76646311844E-06 7.11229898637E-06 7.47578167168E-06 7.85780937840E-06 8.25932585275E-06 8.68132267973E-06 9.12484169155E-06 9.59097749921E-06 1.00808801492E-05 1.05957579124E-05 1.11368802110E-05 1.17055806941E-05 1.23032604621E-05 1.29313914556E-05 1.35915200077E-05 1.42852705779E-05 1.50143496662E-05 1.57805499233E-05 1.65857544645E-05 1.74319413962E-05 1.83211885642E-05 1.92556785396E-05 2.02377038474E-05 2.12696724529E-05 2.23541135196E-05 2.34936834484E-05 2.46911722111E-05 2.59495099999E-05 2.72717741948E-05 2.86611966777E-05 3.01211715003E-05 3.16552629258E-05 3.32672138633E-05 3.49609547107E-05 3.67406126287E-05 3.86105212611E-05 4.05752309285E-05 4.26395193127E-05 4.48084026571E-05 4.70871475051E-05 4.94812830051E-05 5.19966138027E-05 5.46392335533E-05 5.74155390787E-05 6.03322451984E-05 6.33964002701E-05 6.66154024649E-05 6.99970168161E-05 7.35493930738E-05 7.72810844030E-05 8.12010669598E-05 8.53187603907E-05 8.96440492882E-05 9.41873056525E-05 9.89594123985E-05 1.03971787955E-04 1.09236412004E-04 1.14765852413E-04 1.20573293400E-04 1.26672565002E-04 1.33078173886E-04 1.39805335564E-04 1.46870008083E-04 1.54288927226E-04 1.62079643319E-04 1.70260559676E-04 1.78850972782E-04 1.87871114253E-04 1.97342194672E-04 2.07286449354E-04 2.17727186134E-04 2.28688835239E-04 2.40197001341E-04 2.52278517867E-04 2.64961503643E-04 2.78275421981E-04 2.92251142279E-04 3.06921004231E-04 3.22318884745E-04 3.38480267667E-04 3.55442316396E-04 3.73243949503E-04 3.91925919447E-04 4.11530894496E-04 4.32103543949E-04 4.53690626777E-04 4.76341083766E-04 5.00106133300E-04 5.25039370858E-04 5.51196872355E-04 5.78637301421E-04 6.07422020730E-04 6.37615207473E-04 6.69283973091E-04 7.02498487361E-04 7.37332106923E-04 7.73861508360E-04 8.12166825910E-04 8.52331793887E-04 8.94443893909E-04 9.38594506981E-04 9.84879070516E-04 1.03339724034E-03 1.08425305772E-03 1.13755512149E-03 1.19341676516E-03 1.25195623927E-03 1.31329689870E-03 1.37756739505E-03 1.44490187409E-03 1.51544017806E-03 1.58932805290E-03 1.66671736015E-03 1.74776629343E-03 1.83263959939E-03 1.92150880274E-03 2.01455243536E-03 2.11195626897E-03 2.21391355119E-03 2.32062524450E-03 2.43230026781E-03 2.54915573998E-03 2.67141722495E-03 2.79931897772E-03 2.93310419056E-03 3.07302523881E-03 3.21934392529E-03 3.37233172252E-03 3.53227001179E-03 3.69945031793E-03 3.87417453864E-03 4.05675516713E-03 4.24751550664E-03 4.44678987536E-03 4.65492380012E-03 4.87227419707E-03 5.09920953752E-03 5.33610999683E-03 5.58336758425E-03 5.84138625133E-03 6.11058197633E-03 6.39138282219E-03 6.68422896495E-03 6.98957268981E-03 7.30787835151E-03 7.63962229572E-03 7.98529273781E-03 8.34538959523E-03 8.72042426958E-03 9.11091937406E-03 9.51740840210E-03 9.94043533246E-03 1.03805541661E-02 1.08383283896E-02 1.13143303609E-02 1.18091406102E-02 1.23233470525E-02 1.28575441052E-02 1.34123317045E-02 1.39883142159E-02 1.45860992314E-02 1.52062962484E-02 1.58495152237E-02 1.65163649969E-02 1.72074515757E-02 1.79233762795E-02 1.86647337330E-02 1.94321097061E-02 2.02260787927E-02 2.10472019254E-02 2.18960237198E-02 2.27730696450E-02 2.36788430161E-02 2.46138218067E-02 2.55784552787E-02 2.65731604270E-02 2.75983182420E-02 2.86542697876E-02 2.97413120986E-02 3.08596939021E-02 3.20096111663E-02 3.31912024853E-02 3.44045443094E-02 3.56496460313E-02 3.69264449420E-02 3.82348010738E-02 3.95744919480E-02 4.09452072499E-02 4.23465434563E-02 4.37779984430E-02 4.52389661045E-02 4.67287310215E-02 4.82464632146E-02 4.97912130278E-02 5.13619061885E-02 5.29573390946E-02 5.45761743848E-02 5.62169368497E-02 5.78780097485E-02 5.95576315973E-02 6.12538934994E-02 6.29647370929E-02 6.46879531916E-02 6.64211811996E-02 6.81619093817E-02 6.99074760728E-02 7.16550719096E-02 7.34017431705E-02 7.51443963042E-02 7.68798037285E-02 7.86046109762E-02 8.03153452583E-02 8.20084255107E-02 8.36801739793E-02 8.53268293912E-02 8.69445617429E-02 8.85294887266E-02 9.00776937961E-02 9.15852458538E-02 9.30482205222E-02 9.44627229358E-02 9.58249119647E-02 9.71310257524E-02 9.83774084187E-02 9.95605377464E-02 1.00677053636E-01 1.01723787073E-01 1.02697789329E-01 1.03596361052E-01 1.04417080899E-01 1.05157833309E-01 1.05816834970E-01 1.06392659531E-01 1.06884260057E-01 1.07290988718E-01 1.07612613177E-01 1.07849329145E-01 1.08001768562E-01 1.08071002884E-01 1.08058540978E-01 1.07966321161E-01 1.07796696983E-01 1.07552416407E-01 1.07236594151E-01 1.06852677039E-01 1.06404402344E-01 1.05895749244E-01 1.05330883680E-01 1.04714097068E-01 1.04049739516E-01 1.03342148397E-01 1.02595573350E-01 1.01814098966E-01 1.01001566663E-01 1.00161497426E-01 9.92970172962E-02 9.84107876257E-02 9.75049422787E-02 9.65810339988E-02 9.56399922165E-02 9.46820945201E-02 9.37069539006E-02 9.27135236795E-02 9.17001217407E-02 9.06644752930E-02 8.96037869004E-02 8.85148219246E-02 8.73940168320E-02 8.62376070430E-02 8.50417721471E-02 8.38027954072E-02 8.25172335481E-02 8.11820919025E-02 7.97949991223E-02 7.83543748837E-02 7.68595833925E-02 7.53110650656E-02 7.37104386008E-02 7.20605657949E-02 7.03655719818E-02 6.86308158908E-02 6.68628040884E-02 6.50690469993E-02 6.32578557828E-02 6.14380820515E-02 5.96188054981E-02 5.78089778532E-02 5.60170351085E-02 5.42504934483E-02 5.25155476428E-02 5.08166935559E-02 4.91563986617E-02 4.75348457988E-02 4.59497755652E-02 4.43964515430E-02 4.28677697336E-02 4.13545290442E-02 3.98458733276E-02 3.83299073524E-02 3.67944793235E-02 3.52281114179E-02 3.36210476448E-02 3.19663756798E-02 3.02611667765E-02 2.85082916561E-02 2.67177215469E-02 2.49015313439E-02 2.30725958201E-02 2.12443966484E-02 1.94308025137E-02 1.76458242600E-02 1.59033478479E-02 1.42168487808E-02 1.25990925777E-02 1.10618268150E-02 9.61547119464E-03 8.26881300373E-03 7.02871617325E-03 5.89985288528E-03 4.88446728249E-03 3.98218125263E-03 3.18985245216E-03 2.50223758477E-03 1.91472420027E-03 1.42206268042E-03 1.01786263283E-03 6.94733059952E-04 4.44449893945E-04 2.58150111529E-04 1.26550876864E-04 4.01912972890E-05 -1.03065770547E-05 -3.39619137155E-05 -3.91499236226E-05 -3.33140037757E-05 -2.26830143693E-05 -1.20026587254E-05 -4.29102994129E-06 -6.29380054212E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 10 2 i j (l(j)) 0.00000000000E+00 Q_int 4.88375519887E-18 5.13415068171E-18 5.39738421543E-18 5.67411402097E-18 5.96503206699E-18 6.27086580012E-18 6.59237996398E-18 6.93037851146E-18 7.28570661496E-18 7.65925277982E-18 8.05195106600E-18 8.46478342377E-18 8.89878214903E-18 9.35503246465E-18 9.83467523405E-18 1.03389098140E-17 1.08689970535E-17 1.14262624468E-17 1.20120994476E-17 1.26279729536E-17 1.32754229693E-17 1.39560684569E-17 1.46716113847E-17 1.54238409827E-17 1.62146382166E-17 1.70459804914E-17 1.79199465959E-17 1.88387219003E-17 1.98046038216E-17 2.08200075676E-17 2.18874721766E-17 2.30096668659E-17 2.41893977068E-17 2.54296146408E-17 2.67334188563E-17 2.81040705427E-17 2.95449970432E-17 3.10598014245E-17 3.26522714865E-17 3.43263892338E-17 3.60863408325E-17 3.79365270783E-17 3.98815744004E-17 4.19263464302E-17 4.40759561626E-17 4.63357787415E-17 4.87114649003E-17 5.12089550917E-17 5.38344943418E-17 5.65946478661E-17 5.94963174860E-17 6.25467588866E-17 6.57535997601E-17 6.91248588789E-17 7.26689661463E-17 7.63947836764E-17 8.03116279533E-17 8.44292931275E-17 8.87580755064E-17 9.33087993002E-17 9.80928436884E-17 1.03122171273E-16 1.08409357993E-16 1.13967624568E-16 1.19810869559E-16 1.25953704121E-16 1.32411488540E-16 1.39200370640E-16 1.46337326161E-16 1.53840201209E-16 1.61727756879E-16 1.70019716166E-16 1.78736813288E-16 1.87900845526E-16 1.97534727734E-16 2.07662549632E-16 2.18309636051E-16 2.29502610249E-16 2.41269460491E-16 2.53639610030E-16 2.66643990682E-16 2.80315120168E-16 2.94687183431E-16 3.09796118113E-16 3.25679704419E-16 3.42377659583E-16 3.59931737189E-16 3.78385831570E-16 3.97786087571E-16 4.18181015933E-16 4.39621614596E-16 4.62161496220E-16 4.85857022245E-16 5.10767443822E-16 5.36955049976E-16 5.64485323354E-16 5.93427103975E-16 6.23852761358E-16 6.55838375486E-16 6.89463927046E-16 7.24813497423E-16 7.61975478947E-16 8.01042795917E-16 8.42113136962E-16 8.85289199318E-16 9.30678945614E-16 9.78395873845E-16 1.02855930117E-15 1.08129466227E-15 1.13673382301E-15 1.19501541012E-15 1.25628515794E-15 1.32069627270E-15 1.38840981574E-15 1.45959510614E-15 1.53443014419E-15 1.61310205643E-15 1.69580756359E-15 1.78275347247E-15 1.87415719311E-15 1.97024728237E-15 2.07126401548E-15 2.17745998685E-15 2.28910074166E-15 2.40646543990E-15 2.52984755440E-15 2.65955560463E-15 2.79591392821E-15 2.93926349191E-15 3.08996274423E-15 3.24838851170E-15 3.41493694117E-15 3.59002449036E-15 3.77408896924E-15 3.96759063476E-15 4.17101334175E-15 4.38486575280E-15 4.60968261018E-15 4.84602607299E-15 5.09448712280E-15 5.35568704149E-15 5.63027896471E-15 5.91894951507E-15 6.22242051909E-15 6.54145081210E-15 6.87683813575E-15 7.22942113274E-15 7.60008144391E-15 7.98974591279E-15 8.39938890314E-15 8.83003473543E-15 9.28276024813E-15 9.75869749040E-15 1.02590365527E-14 1.07850285429E-14 1.13379887143E-14 1.19192997548E-14 1.25304152441E-14 1.31728632885E-14 1.38482503420E-14 1.45582652233E-14 1.53046833384E-14 1.60893711205E-14 1.69142906968E-14 1.77815047948E-14 1.86931819002E-14 1.96516016794E-14 2.06591606796E-14 2.17183783217E-14 2.28319031999E-14 2.40025197047E-14 2.52331549851E-14 2.65268862685E-14 2.78869485546E-14 2.93167427053E-14 3.08198439483E-14 3.24000108167E-14 3.40611945479E-14 3.58075489633E-14 3.76434408553E-14 3.95734609061E-14 4.16024351671E-14 4.37354371267E-14 4.59778003961E-14 4.83351320466E-14 5.08133266298E-14 5.34185809171E-14 5.61574093952E-14 5.90366605552E-14 6.20635340173E-14 6.52455985342E-14 6.85908109161E-14 7.21075359275E-14 7.58045672029E-14 7.96911492357E-14 8.37770004940E-14 8.80723377220E-14 9.25879014870E-14 9.73349830362E-14 1.02325452531E-13 1.07571788728E-13 1.13087110182E-13 1.18885208051E-13 1.24980580579E-13 1.31388469350E-13 1.38124897400E-13 1.45206709282E-13 1.52651613185E-13 1.60478225219E-13 1.68706115957E-13 1.77355859377E-13 1.86449084305E-13 1.96008528500E-13 2.06058095508E-13 2.16622914433E-13 2.27729402776E-13 2.39405332487E-13 2.51679899413E-13 2.64583796302E-13 2.78149289549E-13 2.92410299878E-13 3.07402487165E-13 3.23163339601E-13 3.39732267433E-13 3.57150701513E-13 3.75462196890E-13 3.94712541725E-13 4.14949871783E-13 4.36224790794E-13 4.58590496994E-13 4.82102916141E-13 5.06820841361E-13 5.32806080161E-13 5.60123608976E-13 5.88841735648E-13 6.19032270223E-13 6.50770704519E-13 6.84136400888E-13 7.19212790665E-13 7.56087582790E-13 7.94852983117E-13 8.35605924983E-13 8.78448311585E-13 9.23487270791E-13 9.70835423011E-13 1.02061116281E-12 1.07293895493E-12 1.12794964557E-12 1.18578078950E-12 1.24657699404E-12 1.31049028068E-12 1.37768046517E-12 1.44831555716E-12 1.52257218028E-12 1.60063601383E-12 1.68270225703E-12 1.76897611715E-12 1.85967332257E-12 1.95502066228E-12 2.05525655293E-12 2.16063163495E-12 2.27140939935E-12 2.38786684650E-12 2.51029517884E-12 2.63900052896E-12 2.77430472511E-12 2.91654609594E-12 3.06608031645E-12 3.22328129739E-12 3.38854212016E-12 3.56227601977E-12 3.74491741807E-12 3.93692301004E-12 4.13877290574E-12 4.35097183081E-12 4.57405038852E-12 4.80856638653E-12 5.05510623168E-12 5.31428639627E-12 5.58675495956E-12 5.87319322821E-12 6.17431743993E-12 6.49088055438E-12 6.82367413589E-12 7.17353033280E-12 7.54132395814E-12 7.92797467713E-12 8.33444930672E-12 8.76176423308E-12 9.21098795306E-12 9.68324374586E-12 1.01797124818E-11 1.07016355749E-11 1.12503180871E-11 1.18271319916E-11 1.24335196031E-11 1.30709971843E-11 1.37411587374E-11 1.44456799898E-11 1.51863225839E-11 1.59649384822E-11 1.67834745978E-11 1.76439776628E-11 1.85485993457E-11 1.94996016316E-11 2.04993624784E-11 2.15503817621E-11 2.26552875279E-11 2.38168425616E-11 2.50379512972E-11 2.63216670794E-11 2.76711997984E-11 2.90899239157E-11 3.05813869013E-11 3.21493181046E-11 3.37976380784E-11 3.55304683823E-11 3.73521418879E-11 3.92672136130E-11 4.12804721103E-11 4.33969514413E-11 4.56219437627E-11 4.79610125591E-11 5.04200065535E-11 5.30050743315E-11 5.57226797146E-11 5.85796179223E-11 6.15830325625E-11 6.47404334928E-11 6.80597155978E-11 7.15491785288E-11 7.52175474561E-11 7.90739948841E-11 8.31281635860E-11 8.73901907136E-11 9.18707331431E-11 9.65809941212E-11 1.01532751275E-10 1.06738386063E-10 1.12210914727E-10 1.17964020840E-10 1.24012089520E-10 1.30370243393E-10 1.37054380406E-10 1.44081213574E-10 1.51468312770E-10 1.59234148651E-10 1.67398138840E-10 1.75980696473E-10 1.85003281239E-10 1.94488453033E-10 2.04459928358E-10 2.14942639626E-10 2.25962797485E-10 2.37547956362E-10 2.49727083343E-10 2.62530630603E-10 2.75990611536E-10 2.90140680796E-10 3.05016218438E-10 3.20654418371E-10 3.37094381349E-10 3.54377212726E-10 3.72546125222E-10 3.91646546962E-10 4.11726235044E-10 4.32835394940E-10 4.55026806011E-10 4.78355953454E-10 5.02881167020E-10 5.28663766839E-10 5.55768216717E-10 5.84262285299E-10 6.14217215485E-10 6.45707902538E-10 6.78813081313E-10 7.13615523095E-10 7.50202242514E-10 7.88664715078E-10 8.29099105848E-10 8.71606509838E-10 9.16293204741E-10 9.63270916599E-10 1.01265709911E-09 1.06457522721E-09 1.11915510579E-09 1.17653319410E-09 1.23685294694E-09 1.30026517319E-09 1.36692841283E-09 1.43700933325E-09 1.51068314580E-09 1.58813404382E-09 1.66955566303E-09 1.75515156552E-09 1.84513574860E-09 1.93973317969E-09 2.03918035861E-09 2.14372590873E-09 2.25363119840E-09 2.36917099419E-09 2.49063414771E-09 2.61832431751E-09 2.75256072805E-09 2.89367896753E-09 3.04203182668E-09 3.19799018041E-09 3.36194391476E-09 3.53430290128E-09 3.71549802141E-09 3.90598224326E-09 4.10623175366E-09 4.31674714817E-09 4.53805468210E-09 4.77070758557E-09 5.01528744610E-09 5.27240566183E-09 5.54270496944E-09 5.82686105015E-09 6.12558421818E-09 6.43962119557E-09 6.76975697811E-09 7.11681679666E-09 7.48166817919E-09 7.86522311828E-09 8.26844034975E-09 8.69232774805E-09 9.13794484432E-09 9.60640547348E-09 1.00988805569E-08 1.06166010278E-08 1.11608609059E-08 1.17330205308E-08 1.23345099593E-08 1.29668325402E-08 1.36315686615E-08 1.43303797165E-08 1.50650122155E-08 1.58373022067E-08 1.66491798122E-08 1.75026740649E-08 1.83999179852E-08 1.93431538625E-08 2.03347389755E-08 2.13771512945E-08 2.24729958481E-08 2.36250111114E-08 2.48360758901E-08 2.61092165226E-08 2.74476143705E-08 2.88546138632E-08 3.03337307495E-08 3.18886609396E-08 3.35232896836E-08 3.52417013371E-08 3.70481894818E-08 3.89472676734E-08 4.09436807482E-08 4.30424166039E-08 4.52487186619E-08 4.75680989869E-08 5.00063520181E-08 5.25695690344E-08 5.52641533172E-08 5.80968361666E-08 6.10746937681E-08 6.42051646857E-08 6.74960685535E-08 7.09556255139E-08 7.45924767584E-08 7.84157059466E-08 8.24348622065E-08 8.66599836067E-08 9.11016221499E-08 9.57708705340E-08 1.00679389405E-07 1.05839436474E-07 1.11263897166E-07 1.16966316756E-07 1.22960934271E-07 1.29262717527E-07 1.35887400886E-07 1.42851524283E-07 1.50172474491E-07 1.57868528385E-07 1.65958898445E-07 1.74463780869E-07 1.83404405551E-07 1.92803089082E-07 2.02683290625E-07 2.13069669637E-07 2.23988148099E-07 2.35465974446E-07 2.47531791754E-07 2.60215708735E-07 2.73549375035E-07 2.87566059606E-07 3.02300733885E-07 3.17790158553E-07 3.34072974875E-07 3.51189801282E-07 3.69183333909E-07 3.88098452959E-07 4.07982334366E-07 4.28884566941E-07 4.50857275649E-07 4.73955251370E-07 4.98236086723E-07 5.23760319449E-07 5.50591582118E-07 5.78796761500E-07 6.08446163430E-07 6.39613687812E-07 6.72377012114E-07 7.06817784114E-07 7.43021824291E-07 7.81079339304E-07 8.21085144858E-07 8.63138901738E-07 9.07345362536E-07 9.53814631202E-07 1.00266243586E-06 1.05401041600E-06 1.10798642341E-06 1.16472483896E-06 1.22436690507E-06 1.28706107620E-06 1.35296338454E-06 1.42223782833E-06 1.49505677528E-06 1.57160139025E-06 1.65206208261E-06 1.73663897686E-06 1.82554240661E-06 1.91899343510E-06 2.01722439950E-06 2.12047948651E-06 2.22901533186E-06 2.34310165690E-06 2.46302193022E-06 2.58907406894E-06 2.72157117123E-06 2.86084228842E-06 3.00723323425E-06 3.16110743629E-06 3.32284683073E-06 3.49285280025E-06 3.67154716161E-06 3.85937320158E-06 4.05679676543E-06 4.26430740117E-06 4.48241955993E-06 4.71167385721E-06 4.95263839916E-06 5.20591017322E-06 5.47211651059E-06 5.75191662086E-06 6.04600320503E-06 6.35510414788E-06 6.67998429715E-06 7.02144733045E-06 7.38033771638E-06 7.75754277355E-06 8.15399483389E-06 8.57067351207E-06 9.00860809029E-06 9.46888002086E-06 9.95262555555E-06 1.04610385041E-05 1.09953731307E-05 1.15569471969E-05 1.21471451525E-05 1.27674214889E-05 1.34193042555E-05 1.41043987542E-05 1.48243914143E-05 1.55810538626E-05 1.63762471913E-05 1.72119264415E-05 1.80901453042E-05 1.90130610573E-05 1.99829397429E-05 2.10021616034E-05 2.20732267817E-05 2.31987613045E-05 2.43815233589E-05 2.56244098763E-05 2.69304634407E-05 2.83028795332E-05 2.97450141343E-05 3.12603916930E-05 3.28527134882E-05 3.45258663973E-05 3.62839320882E-05 3.81311966632E-05 4.00721607654E-05 4.21115501776E-05 4.42543269353E-05 4.65057009711E-05 4.88711423265E-05 5.13563939468E-05 5.39674850940E-05 5.67107454004E-05 5.95928195970E-05 6.26206829435E-05 6.58016573962E-05 6.91434285439E-05 7.26540633486E-05 7.63420287256E-05 8.02162110046E-05 8.42859363060E-05 8.85609918789E-05 9.30516484368E-05 9.77686835445E-05 1.02723406093E-04 1.07927681915E-04 1.13393960594E-04 1.19135303510E-04 1.25165413182E-04 1.31498663966E-04 1.38150134154E-04 1.45135639546E-04 1.52471768557E-04 1.60175918907E-04 1.68266335982E-04 1.76762152926E-04 1.85683432523E-04 1.95051210966E-04 2.04887543569E-04 2.15215552508E-04 2.26059476674E-04 2.37444723716E-04 2.49397924356E-04 2.61946989084E-04 2.75121167289E-04 2.88951108955E-04 3.03468928990E-04 3.18708274299E-04 3.34704393698E-04 3.51494210766E-04 3.69116399750E-04 3.87611464610E-04 4.07021821333E-04 4.27391883614E-04 4.48768152010E-04 4.71199306692E-04 4.94736303899E-04 5.19432476210E-04 5.45343636754E-04 5.72528187461E-04 6.01047231482E-04 6.30964689886E-04 6.62347422746E-04 6.95265354726E-04 7.29791605286E-04 7.66002623598E-04 8.03978328297E-04 8.43802252142E-04 8.85561691705E-04 9.29347862164E-04 9.75256057290E-04 1.02338581469E-03 1.07384108640E-03 1.12673041485E-03 1.18216711427E-03 1.24026945756E-03 1.30116086865E-03 1.36497012036E-03 1.43183153770E-03 1.50188520665E-03 1.57527718827E-03 1.65215973818E-03 1.73269153120E-03 1.81703789103E-03 1.90537102489E-03 1.99787026282E-03 2.09472230144E-03 2.19612145194E-03 2.30226989184E-03 2.41337792042E-03 2.52966421703E-03 2.65135610217E-03 2.77868980056E-03 2.91191070572E-03 3.05127364534E-03 3.19704314678E-03 3.34949370178E-03 3.50891002954E-03 3.67558733715E-03 3.84983157639E-03 4.03195969553E-03 4.22229988494E-03 4.42119181520E-03 4.62898686594E-03 4.84604834399E-03 5.07275168890E-03 5.30948466399E-03 5.55664753077E-03 5.81465320456E-03 6.08392738893E-03 6.36490868628E-03 6.65804868194E-03 6.96381199882E-03 7.28267631952E-03 7.61513237248E-03 7.96168387888E-03 8.32284745633E-03 8.69915247559E-03 9.09114086611E-03 9.49936686613E-03 9.92439671252E-03 1.03668082659E-02 1.08271905659E-02 1.13061433110E-02 1.18042762583E-02 1.23222085364E-02 1.28605678673E-02 1.34199896893E-02 1.40011161762E-02 1.46045951455E-02 1.52310788506E-02 1.58812226483E-02 1.65556835368E-02 1.72551185567E-02 1.79801830487E-02 1.87315287606E-02 1.95098017981E-02 2.03156404129E-02 2.11496726210E-02 2.20125136461E-02 2.29047631829E-02 2.38270024747E-02 2.47797912004E-02 2.57636641684E-02 2.67791278132E-02 2.78266564927E-02 2.89066885856E-02 3.00196223877E-02 3.11658118099E-02 3.23455618795E-02 3.35591240492E-02 3.48066913209E-02 3.60883931915E-02 3.74042904310E-02 3.87543697068E-02 4.01385380681E-02 4.15566173088E-02 4.30083382312E-02 4.44933348323E-02 4.60111384434E-02 4.75611718516E-02 4.91427434394E-02 5.07550413821E-02 5.23971279443E-02 5.40679339247E-02 5.57662533000E-02 5.74907381236E-02 5.92398937408E-02 6.10120743846E-02 6.28054792221E-02 6.46181489243E-02 6.64479628375E-02 6.82926368373E-02 7.01497219504E-02 7.20166038298E-02 7.38905031756E-02 7.57684771909E-02 7.76474221646E-02 7.95240772739E-02 8.13950296950E-02 8.32567211114E-02 8.51054557002E-02 8.69374096776E-02 8.87486424695E-02 9.05351095718E-02 9.22926771454E-02 9.40171383849E-02 9.57042316774E-02 9.73496605534E-02 9.89491154086E-02 1.00498296953E-01 1.01992941317E-01 1.03428846711E-01 1.04801901515E-01 1.06108113624E-01 1.07343640860E-01 1.08504822193E-01 1.09588209516E-01 1.10590599636E-01 1.11509066133E-01 1.12340990682E-01 1.13084093405E-01 1.13736461765E-01 1.14296577512E-01 1.14763341127E-01 1.15136093199E-01 1.15414632183E-01 1.15599227914E-01 1.15690630325E-01 1.15690072793E-01 1.15599269558E-01 1.15420406740E-01 1.15156126504E-01 1.14809504013E-01 1.14384016912E-01 1.13883507199E-01 1.13312135462E-01 1.12674327643E-01 1.11974714641E-01 1.11218065271E-01 1.10409213309E-01 1.09552979560E-01 1.08654090122E-01 1.07717092257E-01 1.06746269505E-01 1.05745557869E-01 1.04718465159E-01 1.03667995680E-01 1.02596582639E-01 1.01506030692E-01 1.00397471102E-01 9.92713318945E-02 9.81273253089E-02 9.69644545688E-02 9.57810417123E-02 9.45747777605E-02 9.33427959727E-02 9.20817682812E-02 9.07880242388E-02 8.94576909663E-02 8.80868516555E-02 8.66717192045E-02 8.52088205550E-02 8.36951863110E-02 8.21285392868E-02 8.05074748032E-02 7.88316248973E-02 7.71017981718E-02 7.53200868643E-02 7.34899329109E-02 7.16161453794E-02 6.97048626908E-02 6.77634545755E-02 6.58003607332E-02 6.38248656757E-02 6.18468122020E-02 5.98762593024E-02 5.79230939339E-02 5.59966098941E-02 5.41050707799E-02 5.22552775433E-02 5.04521642011E-02 4.86984475646E-02 4.69943581525E-02 4.53374794750E-02 4.37227213684E-02 4.21424498328E-02 4.05867907138E-02 3.90441175330E-02 3.75017248439E-02 3.59466778317E-02 3.43668167987E-02 3.27518820928E-02 3.10947115301E-02 2.93924491057E-02 2.76483652648E-02 2.58728636731E-02 2.40783315399E-02 2.22778194748E-02 2.04848239382E-02 1.87130457753E-02 1.69761282696E-02 1.52873791278E-02 1.36594818182E-02 1.21042026879E-02 1.06321012534E-02 9.25225195416E-03 7.97198643370E-03 6.79666602493E-03 5.72949449870E-03 4.77138124669E-03 3.92086483939E-03 3.17410627795E-03 2.52555034056E-03 1.97016286936E-03 1.50237577123E-03 1.11571517936E-03 8.02956489765E-04 5.56298127092E-04 3.67551445089E-04 2.28343413164E-04 1.30327961045E-04 6.54010713032E-05 2.59139497791E-05 4.87789832035E-06 -3.84610093038E-06 -5.38056377936E-06 -3.69522418948E-06 -1.50915351801E-06 -2.38933329143E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 1 i j (l(j)) -1.20454377485E-02 Q_int -2.22972450665E-20 -2.34404492668E-20 -2.46422667998E-20 -2.59057028353E-20 -2.72339166215E-20 -2.86302293848E-20 -3.00981326342E-20 -3.16412968926E-20 -3.32635808743E-20 -3.49690411343E-20 -3.67619422117E-20 -3.86467672929E-20 -4.06282294224E-20 -4.27112832877E-20 -4.49011376084E-20 -4.72032681609E-20 -4.96234314707E-20 -5.21676792068E-20 -5.48423733136E-20 -5.76542019196E-20 -6.06101960609E-20 -6.37177472627E-20 -6.69846260214E-20 -7.04190012356E-20 -7.40294606323E-20 -7.78250322405E-20 -8.18152069662E-20 -8.60099623247E-20 -9.04197873891E-20 -9.50557090192E-20 -9.99293194337E-20 -1.05052805197E-19 -1.10438977693E-19 -1.16101305157E-19 -1.22053946358E-19 -1.28311785999E-19 -1.34890471940E-19 -1.41806454321E-19 -1.49077026700E-19 -1.56720369296E-19 -1.64755594447E-19 -1.73202794399E-19 -1.82083091554E-19 -1.91418691280E-19 -2.01232937438E-19 -2.11550370756E-19 -2.22396790191E-19 -2.33799317442E-19 -2.45786464765E-19 -2.58388206272E-19 -2.71636052882E-19 -2.85563131110E-19 -3.00204265908E-19 -3.15596067737E-19 -3.31777024119E-19 -3.48787595874E-19 -3.66670318290E-19 -3.85469907489E-19 -4.05233372236E-19 -4.26010131486E-19 -4.47852137959E-19 -4.70814008049E-19 -4.94953158390E-19 -5.20329949431E-19 -5.47007836368E-19 -5.75053527814E-19 -6.04537152605E-19 -6.35532435159E-19 -6.68116879828E-19 -7.02371964695E-19 -7.38383345314E-19 -7.76241068894E-19 -8.16039799461E-19 -8.57879054573E-19 -9.01863454158E-19 -9.48102982126E-19 -9.96713261380E-19 -1.04781584294E-18 -1.10153850987E-18 -1.15801559682E-18 -1.21738832594E-18 -1.27980515995E-18 -1.34542217347E-18 -1.41440344319E-18 -1.48692145823E-18 -1.56315755139E-18 -1.64330235261E-18 -1.72755626564E-18 -1.81612996914E-18 -1.90924494351E-18 -2.00713402468E-18 -2.11004198634E-18 -2.21822615199E-18 -2.33195703839E-18 -2.45151903200E-18 -2.57721110007E-18 -2.70934753824E-18 -2.84825875642E-18 -2.99429210502E-18 -3.14781274346E-18 -3.30920455329E-18 -3.47887109811E-18 -3.65723663264E-18 -3.84474716361E-18 -4.04187156502E-18 -4.24910275054E-18 -4.46695890607E-18 -4.69598478545E-18 -4.93675307268E-18 -5.18986581386E-18 -5.45595592269E-18 -5.73568876301E-18 -6.02976381262E-18 -6.33891641230E-18 -6.66391960458E-18 -7.00558606668E-18 -7.36477014273E-18 -7.74236997997E-18 -8.13932977467E-18 -8.55664213304E-18 -8.99535055332E-18 -9.45655203506E-18 -9.94139982215E-18 -1.04511062866E-17 -1.09869459599E-17 -1.15502587205E-17 -1.21424531436E-17 -1.27650100236E-17 -1.34194860770E-17 -1.41075178347E-17 -1.48308257345E-17 -1.55912184228E-17 -1.63905972774E-17 -1.72309611617E-17 -1.81144114230E-17 -1.90431571471E-17 -2.00195206820E-17 -2.10459434449E-17 -2.21249920273E-17 -2.32593646127E-17 -2.44518977232E-17 -2.57055733126E-17 -2.70235262228E-17 -2.84090520224E-17 -2.98656152474E-17 -3.13968580644E-17 -3.30066093779E-17 -3.46988944043E-17 -3.64779447375E-17 -3.83482089298E-17 -4.03143636156E-17 -4.23813252055E-17 -4.45542621797E-17 -4.68386080122E-17 -4.92400747571E-17 -5.17646673317E-17 -5.44186985322E-17 -5.72088048184E-17 -6.01419629090E-17 -6.32255072264E-17 -6.64671482372E-17 -6.98749917316E-17 -7.34575590929E-17 -7.72238086050E-17 -8.11831578525E-17 -8.53455072702E-17 -8.97212648988E-17 -9.43213724107E-17 -9.91573324698E-17 -1.04241237494E-16 -1.09585799893E-16 -1.15204383856E-16 -1.21111038767E-16 -1.27320534338E-16 -1.33848397543E-16 -1.40710951437E-16 -1.47925355978E-16 -1.55509650933E-16 -1.63482800987E-16 -1.71864743168E-16 -1.80676436693E-16 -1.89939915384E-16 -1.99678342759E-16 -2.09916069958E-16 -2.20678696626E-16 -2.31993134933E-16 -2.43887676865E-16 -2.56392064968E-16 -2.69537566721E-16 -2.83357052721E-16 -2.97885078875E-16 -3.13157972812E-16 -3.29213924715E-16 -3.46093082820E-16 -3.63837653809E-16 -3.82492008343E-16 -4.02102792018E-16 -4.22719041999E-16 -4.44392309640E-16 -4.67176789389E-16 -4.91129454303E-16 -5.16310198509E-16 -5.42781986970E-16 -5.70611012933E-16 -5.99866863443E-16 -6.30622693350E-16 -6.62955408231E-16 -6.96945856696E-16 -7.32679032552E-16 -7.70244287330E-16 -8.09735553710E-16 -8.51251580404E-16 -8.94896179076E-16 -9.40778483928E-16 -9.89013224590E-16 -1.03972101300E-15 -1.09302864502E-15 -1.14906941744E-15 -1.20798346135E-15 -1.26991809250E-15 -1.33502817967E-15 -1.40347653196E-15 -1.47543430582E-15 -1.55108143313E-15 -1.63060707104E-15 -1.71421007499E-15 -1.80209949596E-15 -1.89449510320E-15 -1.99162793377E-15 -2.09374087025E-15 -2.20108924805E-15 -2.31394149394E-15 -2.43257979718E-15 -2.55730081520E-15 -2.68841641537E-15 -2.82625445484E-15 -2.97115960034E-15 -3.12349419004E-15 -3.28363913956E-15 -3.45199489451E-15 -3.62898243174E-15 -3.81504431204E-15 -4.01064578679E-15 -4.21627596127E-15 -4.43244901774E-15 -4.65970550111E-15 -4.89861367064E-15 -5.14977092081E-15 -5.41380527518E-15 -5.69137695674E-15 -5.98318003879E-15 -6.28994418056E-15 -6.61243645163E-15 -6.95146325009E-15 -7.30787231890E-15 -7.68255486571E-15 -8.07644779132E-15 -8.49053603243E-15 -8.92585502451E-15 -9.38349329085E-15 -9.86459516454E-15 -1.03703636498E-14 -1.09020634301E-14 -1.14610240307E-14 -1.20486431429E-14 -1.26663901191E-14 -1.33158096470E-14 -1.39985256120E-14 -1.47162451579E-14 -1.54707629555E-14 -1.62639656902E-14 -1.70978367797E-14 -1.79744613338E-14 -1.88960313678E-14 -1.98648512841E-14 -2.08833436340E-14 -2.19540551757E-14 -2.30796632423E-14 -2.42629824365E-14 -2.55069716685E-14 -2.68147415550E-14 -2.81895621971E-14 -2.96348713576E-14 -3.11542830567E-14 -3.27515966091E-14 -3.44308061242E-14 -3.61961104938E-14 -3.80519238908E-14 -4.00028868074E-14 -4.20538776584E-14 -4.42100249801E-14 -4.64767202538E-14 -4.88596313876E-14 -5.13647168889E-14 -5.39982407638E-14 -5.67667881802E-14 -5.96772819342E-14 -6.27369997604E-14 -6.59535925304E-14 -6.93351033832E-14 -7.28899878376E-14 -7.66271349354E-14 -8.05558894680E-14 -8.46860753435E-14 -8.90280201515E-14 -9.35925809870E-14 -9.83911715988E-14 -1.03435790930E-13 -1.08739053120E-13 -1.14314219049E-13 -1.20175229494E-13 -1.26336739988E-13 -1.32814157470E-13 -1.39623678805E-13 -1.46782331287E-13 -1.54308015215E-13 -1.62219548654E-13 -1.70536714488E-13 -1.79280309889E-13 -1.88472198317E-13 -1.98135364194E-13 -2.08293970372E-13 -2.18973418556E-13 -2.30200412819E-13 -2.42003026375E-13 -2.54410771779E-13 -2.67454674718E-13 -2.81167351596E-13 -2.95583091086E-13 -3.10737939874E-13 -3.26669792789E-13 -3.43418487560E-13 -3.61025904433E-13 -3.79536070887E-13 -3.98995271729E-13 -4.19452164824E-13 -4.40957902770E-13 -4.63566260798E-13 -4.87333771240E-13 -5.12319864885E-13 -5.38587019589E-13 -5.66200916494E-13 -5.95230604267E-13 -6.25748671756E-13 -6.57831429492E-13 -6.91559100508E-13 -7.27016020929E-13 -7.64290850858E-13 -8.03476796068E-13 -8.44671841057E-13 -8.87978994061E-13 -9.33506544618E-13 -9.81368334351E-13 -1.03168404162E-12 -1.08457948076E-12 -1.14018691673E-12 -1.19864539576E-12 -1.26010109308E-12 -1.32470767843E-12 -1.39262670029E-12 -1.46402798982E-12 -1.53909008552E-12 -1.61800067969E-12 -1.70095708769E-12 -1.78816674137E-12 -1.87984770772E-12 -1.97622923413E-12 -2.07755232163E-12 -2.18407032750E-12 -2.29604959877E-12 -2.41377013819E-12 -2.53752630439E-12 -2.66762754791E-12 -2.80439918494E-12 -2.94818321075E-12 -3.09933915486E-12 -3.25824497999E-12 -3.42529802715E-12 -3.60091600915E-12 -3.78553805506E-12 -3.97962580825E-12 -4.18366458066E-12 -4.39816456628E-12 -4.62366211688E-12 -4.86072108311E-12 -5.10993422433E-12 -5.37192469076E-12 -5.64734758166E-12 -5.93689158327E-12 -6.24128069084E-12 -6.56127601893E-12 -6.89767770444E-12 -7.25132690733E-12 -7.62310791381E-12 -8.01395034740E-12 -8.42483149335E-12 -8.85677874224E-12 -9.31087215883E-12 -9.78824718263E-12 -1.02900974669E-11 -1.08176778632E-11 -1.13723075591E-11 -1.19553733765E-11 -1.25683332392E-11 -1.32127198180E-11 -1.38901443635E-11 -1.46023007342E-11 -1.53509696319E-11 -1.61380230542E-11 -1.69654289747E-11 -1.78352562642E-11 -1.87496798628E-11 -1.97109862185E-11 -2.07215790037E-11 -2.17839851254E-11 -2.29008610429E-11 -2.40749994098E-11 -2.53093360564E-11 -2.66069573305E-11 -2.79711078133E-11 -2.94051984326E-11 -3.09128149902E-11 -3.24977271280E-11 -3.41638977526E-11 -3.59154929435E-11 -3.77568923695E-11 -3.96927002387E-11 -4.17277568101E-11 -4.38671504951E-11 -4.61162305797E-11 -4.84806205986E-11 -5.09662323954E-11 -5.35792809027E-11 -5.63262996810E-11 -5.92141572531E-11 -6.22500742772E-11 -6.54416415986E-11 -6.87968392284E-11 -7.23240562946E-11 -7.60321120152E-11 -7.99302777478E-11 -8.40283001682E-11 -8.83364256384E-11 -9.28654258228E-11 -9.76266246181E-11 -1.02631926463E-10 -1.07893846102E-10 -1.13425539868E-10 -1.19240838577E-10 -1.25354282105E-10 -1.31781155733E-10 -1.38537528368E-10 -1.45640292704E-10 -1.53107207462E-10 -1.60956941779E-10 -1.69209121883E-10 -1.77884380154E-10 -1.87004406704E-10 -1.96592003599E-10 -2.06671141858E-10 -2.17267021381E-10 -2.28406133940E-10 -2.40116329405E-10 -2.52426885360E-10 -2.65368580292E-10 -2.78973770529E-10 -2.93276471119E-10 -3.08312440860E-10 -3.24119271684E-10 -3.40736482621E-10 -3.58205618588E-10 -3.76570354230E-10 -3.95876603087E-10 -4.16172632365E-10 -4.37509183572E-10 -4.59939599353E-10 -4.83519956818E-10 -5.08309207703E-10 -5.34369325716E-10 -5.61765461434E-10 -5.90566105141E-10 -6.20843258003E-10 -6.52672612030E-10 -6.86133739242E-10 -7.21310290548E-10 -7.58290204803E-10 -7.97165928586E-10 -8.38034647237E-10 -8.80998527735E-10 -9.26164974021E-10 -9.73646895407E-10 -1.02356298874E-09 -1.07603803500E-09 -1.13120321118E-09 -1.18919641798E-09 -1.25016262452E-09 -1.31425423050E-09 -1.38163144704E-09 -1.45246269701E-09 -1.52692503587E-09 -1.60520459403E-09 -1.68749704196E-09 -1.77400807903E-09 -1.86495394750E-09 -1.96056197274E-09 -2.06107113117E-09 -2.16673264735E-09 -2.27781062156E-09 -2.39458268959E-09 -2.51734071634E-09 -2.64639152487E-09 -2.78205766290E-09 -2.92467820853E-09 -3.07460961715E-09 -3.23222661191E-09 -3.39792311960E-09 -3.57211325462E-09 -3.75523235324E-09 -3.94773806090E-09 -4.15011147517E-09 -4.36285834721E-09 -4.58651034484E-09 -4.82162638021E-09 -5.06879400546E-09 -5.32863087997E-09 -5.60178631253E-09 -5.88894288271E-09 -6.19081814500E-09 -6.50816642046E-09 -6.84178067985E-09 -7.19249452337E-09 -7.56118426163E-09 -7.94877110319E-09 -8.35622345409E-09 -8.78455933505E-09 -9.23484892247E-09 -9.70821721937E-09 -1.02058468632E-08 -1.07289810771E-08 -1.12789267726E-08 -1.18570578106E-08 -1.24648184296E-08 -1.31037268492E-08 -1.37753790581E-08 -1.44814527956E-08 -1.52237117372E-08 -1.60040098940E-08 -1.68242962376E-08 -1.76866195610E-08 -1.85931335884E-08 -1.95461023465E-08 -2.05479058105E-08 -2.16010458383E-08 -2.27081524092E-08 -2.38719901802E-08 -2.50954653792E-08 -2.63816330490E-08 -2.77337046628E-08 -2.91550561283E-08 -3.06492362017E-08 -3.22199753307E-08 -3.38711949503E-08 -3.56070172533E-08 -3.74317754602E-08 -3.93500246137E-08 -4.13665529249E-08 -4.34863936986E-08 -4.57148378685E-08 -4.80574471723E-08 -5.05200679995E-08 -5.31088459464E-08 -5.58302411149E-08 -5.86910441911E-08 -6.16983933464E-08 -6.48597919995E-08 -6.81831274867E-08 -7.16766906835E-08 -7.53491966283E-08 -7.92098061980E-08 -8.32681488897E-08 -8.75343467638E-08 -9.20190396088E-08 -9.67334113890E-08 -1.01689218041E-07 -1.06898816687E-07 -1.12375196335E-07 -1.18132010152E-07 -1.24183609368E-07 -1.30545078918E-07 -1.37232274899E-07 -1.44261863927E-07 -1.51651364507E-07 -1.59419190506E-07 -1.67584696835E-07 -1.76168227462E-07 -1.85191165867E-07 -1.94675988059E-07 -2.04646318296E-07 -2.15126987635E-07 -2.26144095461E-07 -2.37725074141E-07 -2.49898756964E-07 -2.62695449540E-07 -2.76147004814E-07 -2.90286901899E-07 -3.05150328908E-07 -3.20774269994E-07 -3.37197596798E-07 -3.54461164550E-07 -3.72607913031E-07 -3.91682972664E-07 -4.11733775978E-07 -4.32810174722E-07 -4.54964562911E-07 -4.78252006106E-07 -5.02730377237E-07 -5.28460499300E-07 -5.55506295276E-07 -5.83934945631E-07 -6.13817053778E-07 -6.45226819905E-07 -6.78242223580E-07 -7.12945215582E-07 -7.49421919414E-07 -7.87762842988E-07 -8.28063100979E-07 -8.70422648400E-07 -9.14946525944E-07 -9.61745117678E-07 -1.01093442173E-06 -1.06263633456E-06 -1.11697894960E-06 -1.17409687081E-06 -1.23413154211E-06 -1.29723159321E-06 -1.36355320295E-06 -1.43326048077E-06 -1.50652586732E-06 -1.58353055517E-06 -1.66446493056E-06 -1.74952903729E-06 -1.83893306378E-06 -1.93289785446E-06 -2.03165544674E-06 -2.13544963478E-06 -2.24453656131E-06 -2.35918533903E-06 -2.47967870290E-06 -2.60631369488E-06 -2.73940238274E-06 -2.87927261461E-06 -3.02626881086E-06 -3.18075279537E-06 -3.34310466791E-06 -3.51372371975E-06 -3.69302939450E-06 -3.88146229639E-06 -4.07948524843E-06 -4.28758440255E-06 -4.50627040455E-06 -4.73607961626E-06 -4.97757539781E-06 -5.23134945274E-06 -5.49802323913E-06 -5.77824944965E-06 -6.07271356414E-06 -6.38213547783E-06 -6.70727120901E-06 -7.04891468981E-06 -7.40789964396E-06 -7.78510155582E-06 -8.18143973465E-06 -8.59787947884E-06 -9.03543434467E-06 -9.49516852435E-06 -9.97819933863E-06 -1.04856998490E-05 -1.10189015953E-05 -1.15790974640E-05 -1.21676446939E-05 -1.27859680248E-05 -1.34355629955E-05 -1.41179993990E-05 -1.48349249008E-05 -1.55880688280E-05 -1.63792461366E-05 -1.72103615661E-05 -1.80834139876E-05 -1.90005009554E-05 -1.99638234713E-05 -2.09756909690E-05 -2.20385265300E-05 -2.31548723404E-05 -2.43273953977E-05 -2.55588934803E-05 -2.68523013890E-05 -2.82106974726E-05 -2.96373104493E-05 -3.11355265361E-05 -3.27088968988E-05 -3.43611454348E-05 -3.60961769036E-05 -3.79180854169E-05 -3.98311633045E-05 -4.18399103678E-05 -4.39490435388E-05 -4.61635069579E-05 -4.84884824865E-05 -5.09294006711E-05 -5.34919521744E-05 -5.61820996908E-05 -5.90060903627E-05 -6.19704687151E-05 -6.50820901264E-05 -6.83481348521E-05 -7.17761226201E-05 -7.53739278159E-05 -7.91497952742E-05 -8.31123566966E-05 -8.72706477136E-05 -9.16341256059E-05 -9.62126877076E-05 -1.01016690503E-04 -1.06056969440E-04 -1.11344859469E-04 -1.16892216333E-04 -1.22711438614E-04 -1.28815490555E-04 -1.35217925672E-04 -1.41932911163E-04 -1.48975253126E-04 -1.56360422596E-04 -1.64104582408E-04 -1.72224614884E-04 -1.80738150357E-04 -1.89663596514E-04 -1.99020168575E-04 -2.08827920281E-04 -2.19107775690E-04 -2.29881561759E-04 -2.41172041700E-04 -2.53002949069E-04 -2.65399022570E-04 -2.78386041529E-04 -2.91990861986E-04 -3.06241453366E-04 -3.21166935651E-04 -3.36797616993E-04 -3.53165031684E-04 -3.70301978381E-04 -3.88242558498E-04 -4.07022214630E-04 -4.26677768898E-04 -4.47247461043E-04 -4.68770986130E-04 -4.91289531670E-04 -5.14845813959E-04 -5.39484113426E-04 -5.65250308731E-04 -5.92191909372E-04 -6.20358086491E-04 -6.49799701575E-04 -6.80569332708E-04 -7.12721298001E-04 -7.46311675787E-04 -7.81398321160E-04 -8.18040878369E-04 -8.56300788563E-04 -8.96241292335E-04 -9.37927426485E-04 -9.81426014353E-04 -1.02680564905E-03 -1.07413666888E-03 -1.12349112414E-03 -1.17494273452E-03 -1.22856683622E-03 -1.28444031783E-03 -1.34264154401E-03 -1.40325026598E-03 -1.46634751769E-03 -1.53201549650E-03 -1.60033742725E-03 -1.67139740844E-03 -1.74528023921E-03 -1.82207122583E-03 -1.90185596617E-03 -1.98472011095E-03 -2.07074910009E-03 -2.16002787275E-03 -2.25264054956E-03 -2.34867008551E-03 -2.44819789188E-03 -2.55130342580E-03 -2.65806374586E-03 -2.76855303234E-03 -2.88284207064E-03 -3.00099769656E-03 -3.12308220229E-03 -3.24915270183E-03 -3.37926045508E-03 -3.51345014967E-03 -3.65175914010E-03 -3.79421664377E-03 -3.94084289401E-03 -4.09164825033E-03 -4.24663226669E-03 -4.40578271886E-03 -4.56907459257E-03 -4.73646903457E-03 -4.90791226934E-03 -5.08333448498E-03 -5.26264869230E-03 -5.44574956213E-03 -5.63251224656E-03 -5.82279119084E-03 -6.01641894357E-03 -6.21320497394E-03 -6.41293450565E-03 -6.61536737864E-03 -6.82023695057E-03 -7.02724905145E-03 -7.23608100609E-03 -7.44638073999E-03 -7.65776598603E-03 -7.86982361009E-03 -8.08210907521E-03 -8.29414606490E-03 -8.50542628734E-03 -8.71540948288E-03 -8.92352365825E-03 -9.12916557132E-03 -9.33170149043E-03 -9.53046825252E-03 -9.72477464375E-03 -9.91390312583E-03 -1.00971119299E-02 -1.02736375384E-02 -1.04426975729E-02 -1.06034941036E-02 -1.07552173922E-02 -1.08970500763E-02 -1.10281717992E-02 -1.11477642810E-02 -1.12550168246E-02 -1.13491322395E-02 -1.14293331610E-02 -1.14948687319E-02 -1.15450216061E-02 -1.15791152241E-02 -1.15965212970E-02 -1.15966674297E-02 -1.15790447980E-02 -1.15432157886E-02 -1.14888214951E-02 -1.14155889573E-02 -1.13233380195E-02 -1.12119876753E-02 -1.10815617600E-02 -1.09321938483E-02 -1.07641312095E-02 -1.05777376756E-02 -1.03734952798E-02 -1.01520045310E-02 -9.91398319989E-03 -9.66026351074E-03 -9.39178765064E-03 -9.10960153677E-03 -8.81484681211E-03 -8.50875107748E-03 -8.19261641028E-03 -7.86780626826E-03 -7.53573092929E-03 -7.19783167622E-03 -6.85556399685E-03 -6.51038013436E-03 -6.16371138969E-03 -5.81695064525E-03 -5.47143564600E-03 -5.12843363812E-03 -4.78912802569E-03 -4.45460775894E-03 -4.12586021206E-03 -3.80376834154E-03 -3.48911293393E-03 -3.18258075310E-03 -2.88477937635E-03 -2.59625946402E-03 -2.31754513358E-03 -2.04917300246E-03 -1.79174032015E-03 -1.54596242338E-03 -1.31273951464E-03 -1.09323247818E-03 -8.88947104447E-04 -7.01825689310E-04 -5.34344505750E-04 -3.89615110815E-04 -2.70532052900E-04 -1.76567215313E-04 -1.05892455225E-04 -5.61815833053E-05 -2.45578118221E-05 -7.53828612898E-06 -9.76058964736E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 4 1 i j (l(j)) -1.87535507948E-02 Q_int -3.65410628159E-20 -3.84145631685E-20 -4.03841199382E-20 -4.24546580428E-20 -4.46313549060E-20 -4.69196534038E-20 -4.93252754744E-20 -5.18542364259E-20 -5.45128599781E-20 -5.73077940745E-20 -6.02460275062E-20 -6.33349073872E-20 -6.65821575262E-20 -6.99958977400E-20 -7.35846641571E-20 -7.73574305628E-20 -8.13236308385E-20 -8.54931825505E-20 -8.98765117500E-20 -9.44845790432E-20 -9.93289069985E-20 -1.04421608959E-19 -1.09775419332E-19 -1.15403725433E-19 -1.21320600958E-19 -1.27540841178E-19 -1.34079999933E-19 -1.40954428527E-19 -1.48181316611E-19 -1.55778735170E-19 -1.63765681708E-19 -1.72162127752E-19 -1.80989068789E-19 -1.90268576770E-19 -2.00023855299E-19 -2.10279297652E-19 -2.21060547778E-19 -2.32394564418E-19 -2.44309688516E-19 -2.56835714089E-19 -2.70003962726E-19 -2.83847361907E-19 -2.98400527340E-19 -3.13699849520E-19 -3.29783584720E-19 -3.46691950656E-19 -3.64467227051E-19 -3.83153861353E-19 -4.02798579881E-19 -4.23450504665E-19 -4.45161276272E-19 -4.67985182941E-19 -4.91979296326E-19 -5.17203614208E-19 -5.43721210521E-19 -5.71598393067E-19 -6.00904869323E-19 -6.31713920744E-19 -6.64102586006E-19 -6.98151853642E-19 -7.33946864557E-19 -7.71577124921E-19 -8.11136729987E-19 -8.52724599370E-19 -8.96444724408E-19 -9.42406428183E-19 -9.90724638896E-19 -1.04152017724E-18 -1.09492005852E-18 -1.15105781025E-18 -1.21007380605E-18 -1.27211561665E-18 -1.33733837888E-18 -1.40590518364E-18 -1.47798748364E-18 -1.55376552217E-18 -1.63342878381E-18 -1.71717646820E-18 -1.80521798817E-18 -1.89777349338E-18 -1.99507442079E-18 -2.09736407342E-18 -2.20489822866E-18 -2.31794577791E-18 -2.43678939893E-18 -2.56172626266E-18 -2.69306877635E-18 -2.83114536469E-18 -2.97630129106E-18 -3.12889952088E-18 -3.28932162921E-18 -3.45796875488E-18 -3.63526260353E-18 -3.82164650213E-18 -4.01758650750E-18 -4.22357257172E-18 -4.44011976722E-18 -4.66776957479E-18 -4.90709123751E-18 -5.15868318418E-18 -5.42317452571E-18 -5.70122662821E-18 -5.99353476676E-18 -6.30082986395E-18 -6.62388031756E-18 -6.96349392200E-18 -7.32051988814E-18 -7.69585096686E-18 -8.09042568133E-18 -8.50523067385E-18 -8.94130317294E-18 -9.39973358696E-18 -9.88166823071E-18 -1.03883121918E-17 -1.09209323440E-17 -1.14808605151E-17 -1.20694968171E-17 -1.26883131475E-17 -1.33388568692E-17 -1.40227546803E-17 -1.47417166817E-17 -1.54975406528E-17 -1.62921165471E-17 -1.71274312181E-17 -1.80055733876E-17 -1.89287388684E-17 -1.98992360550E-17 -2.09194916956E-17 -2.19920569609E-17 -2.31196138225E-17 -2.43049817598E-17 -2.55511248100E-17 -2.68611589796E-17 -2.82383600365E-17 -2.96861717003E-17 -3.12082142544E-17 -3.28082935976E-17 -3.44904107617E-17 -3.62587719156E-17 -3.81177988830E-17 -4.00721401995E-17 -4.21266827362E-17 -4.42865639193E-17 -4.65571845766E-17 -4.89442224421E-17 -5.14536463536E-17 -5.40917311776E-17 -5.68650735000E-17 -5.97806081207E-17 -6.28456253947E-17 -6.60677894611E-17 -6.94551574079E-17 -7.30161994190E-17 -7.67598199538E-17 -8.06953800129E-17 -8.48327205458E-17 -8.91821870583E-17 -9.37546554814E-17 -9.85615593671E-17 -1.03614918478E-16 -1.08927368843E-16 -1.14512194355E-16 -1.20383359985E-16 -1.26555546704E-16 -1.33044188193E-16 -1.39865509434E-16 -1.47036567282E-16 -1.54575293115E-16 -1.62500537672E-16 -1.70832118192E-16 -1.79590867964E-16 -1.88798688422E-16 -1.98478603911E-16 -2.08654819260E-16 -2.19352780305E-16 -2.30599237518E-16 -2.42422312897E-16 -2.54851570286E-16 -2.67918089299E-16 -2.81654543036E-16 -2.96095279782E-16 -3.11276408896E-16 -3.27235891104E-16 -3.44013633420E-16 -3.61651588933E-16 -3.80193861713E-16 -3.99686817094E-16 -4.20179197611E-16 -4.41722244881E-16 -4.64369827737E-16 -4.88178576924E-16 -5.13208026707E-16 -5.39520763737E-16 -5.67182583553E-16 -5.96262655100E-16 -6.26833693692E-16 -6.58972142837E-16 -6.92758365382E-16 -7.28276844467E-16 -7.65616394774E-16 -8.04870384610E-16 -8.46136969375E-16 -8.89519337007E-16 -9.35125965998E-16 -9.83070896652E-16 -1.03347401624E-15 -1.08646135879E-15 -1.14216542023E-15 -1.20072548969E-15 -1.26228799782E-15 -1.32700688290E-15 -1.39504397583E-15 -1.46656940473E-15 -1.54176202038E-15 -1.62080984343E-15 -1.70391053457E-15 -1.79127188874E-15 -1.88311235477E-15 -1.97966158159E-15 -2.08116099248E-15 -2.18786438876E-15 -2.30003858441E-15 -2.41796407326E-15 -2.54193573035E-15 -2.67226354929E-15 -2.80927341739E-15 -2.95330793057E-15 -3.10472724998E-15 -3.26391000266E-15 -3.43125422823E-15 -3.60717837427E-15 -3.79212234258E-15 -3.98654858922E-15 -4.19094328086E-15 -4.40581751046E-15 -4.63170857528E-15 -4.86918132037E-15 -5.11882955098E-15 -5.38127751743E-15 -5.65718147600E-15 -5.94723132993E-15 -6.25215235455E-15 -6.57270701081E-15 -6.90969685189E-15 -7.26396452741E-15 -7.63639589058E-15 -8.02792221322E-15 -8.43952251445E-15 -8.87222600878E-15 -9.32711467960E-15 -9.80532598476E-15 -1.03080557008E-14 -1.08365609129E-14 -1.13921631586E-14 -1.19762517317E-14 -1.25902871568E-14 -1.32358048411E-14 -1.39144189137E-14 -1.46278262620E-14 -1.53778107743E-14 -1.61662478010E-14 -1.69951088436E-14 -1.78664664845E-14 -1.87824995696E-14 -1.97454986566E-14 -2.07578717425E-14 -2.18221502848E-14 -2.29409955313E-14 -2.41172051751E-14 -2.53537203497E-14 -2.66536329837E-14 -2.80201935321E-14 -2.94568191040E-14 -3.09671020073E-14 -3.25548187314E-14 -3.42239393901E-14 -3.59786376489E-14 -3.78233011617E-14 -3.97625425419E-14 -4.18012108963E-14 -4.39444039502E-14 -4.61974807950E-14 -4.85660752877E-14 -5.10561101392E-14 -5.36738117239E-14 -5.64257256485E-14 -5.93187331199E-14 -6.23600681513E-14 -6.55573356512E-14 -6.89185304393E-14 -7.24520572381E-14 -7.61667516884E-14 -8.00719024432E-14 -8.41772743943E-14 -8.84931330891E-14 -9.30302703999E-14 -9.78000315091E-14 -1.02814343278E-13 -1.08085744069E-13 -1.13627415101E-13 -1.19453213404E-13 -1.25577706473E-13 -1.32016208694E-13 -1.38784819635E-13 -1.45900464304E-13 -1.53380935473E-13 -1.61244938163E-13 -1.69512136424E-13 -1.78203202496E-13 -1.87339868509E-13 -1.96944980817E-13 -2.07042557130E-13 -2.17657846567E-13 -2.28817392794E-13 -2.40549100398E-13 -2.52882304656E-13 -2.65847844895E-13 -2.79478141602E-13 -2.93807277494E-13 -3.08871082736E-13 -3.24707224543E-13 -3.41355301360E-13 -3.58856941880E-13 -3.77255909137E-13 -3.96598209937E-13 -4.16932209891E-13 -4.38308754363E-13 -4.60781295601E-13 -4.84406026395E-13 -5.09242020592E-13 -5.35351380804E-13 -5.62799393696E-13 -5.91654693237E-13 -6.21989432319E-13 -6.53879463172E-13 -6.87404527032E-13 -7.22648453535E-13 -7.59699370332E-13 -7.98649923448E-13 -8.39597508947E-13 -8.82644516464E-13 -9.27898585233E-13 -9.75472873235E-13 -1.02548634015E-12 -1.07806404481E-12 -1.13333745791E-12 -1.19144479074E-12 -1.25253134079E-12 -1.31674985506E-12 -1.38426091200E-12 -1.45523332302E-12 -1.52984455463E-12 -1.60828117215E-12 -1.69073930624E-12 -1.77742514331E-12 -1.86855544109E-12 -1.96435807061E-12 -2.06507258600E-12 -2.17095082348E-12 -2.28225753105E-12 -2.39927103053E-12 -2.52228391344E-12 -2.65160377265E-12 -2.78755397149E-12 -2.93047445229E-12 -3.08072258642E-12 -3.23867406787E-12 -3.40472385264E-12 -3.57928714633E-12 -3.76280044232E-12 -3.95572261322E-12 -4.15853605822E-12 -4.37174790936E-12 -4.59589129952E-12 -4.83152669552E-12 -5.07924329953E-12 -5.33966052233E-12 -5.61342953210E-12 -5.90123488262E-12 -6.20379622494E-12 -6.52187010685E-12 -6.85625186451E-12 -7.20777761119E-12 -7.57732632785E-12 -7.96582206097E-12 -8.37423623308E-12 -8.80359007167E-12 -9.25495716269E-12 -9.72946613497E-12 -1.02283034822E-11 -1.07527165297E-11 -1.13040165532E-11 -1.18835820574E-11 -1.24928622231E-11 -1.31333805304E-11 -1.38067385681E-11 -1.45146200383E-11 -1.52587949661E-11 -1.60411241257E-11 -1.68635636928E-11 -1.77281701355E-11 -1.86371053566E-11 -1.95926420990E-11 -2.05971696283E-11 -2.16531997069E-11 -2.27633728741E-11 -2.39304650483E-11 -2.51573944682E-11 -2.64472289887E-11 -2.78031937519E-11 -2.92286792511E-11 -3.07272498076E-11 -3.23026524832E-11 -3.39588264486E-11 -3.56999128326E-11 -3.75302650760E-11 -3.94544598168E-11 -4.14773083327E-11 -4.36038685708E-11 -4.58394577938E-11 -4.81896658746E-11 -5.06603692721E-11 -5.32577457242E-11 -5.59882896936E-11 -5.88588286050E-11 -6.18765399158E-11 -6.50489690609E-11 -6.83840483183E-11 -7.18901166408E-11 -7.55759405057E-11 -7.94507358319E-11 -8.35241910222E-11 -8.78064911852E-11 -9.23083436000E-11 -9.70410044861E-11 -1.02016307146E-10 -1.07246691548E-10 -1.12745235430E-10 -1.18525686996E-10 -1.24602499285E-10 -1.30990866306E-10 -1.37706761025E-10 -1.44766975300E-10 -1.52189161857E-10 -1.59991878428E-10 -1.68194634142E-10 -1.76817938300E-10 -1.85883351650E-10 -1.95413540284E-10 -2.05432332309E-10 -2.15964777412E-10 -2.27037209483E-10 -2.38677312454E-10 -2.50914189498E-10 -2.63778435793E-10 -2.77302215001E-10 -2.91519339674E-10 -3.06465355785E-10 -3.22177631583E-10 -3.38695451008E-10 -3.56060111895E-10 -3.74315029212E-10 -3.93505843582E-10 -4.13680535379E-10 -4.34889544664E-10 -4.57185897271E-10 -4.80625337357E-10 -5.05266466743E-10 -5.31170891400E-10 -5.58403375439E-10 -5.87032003001E-10 -6.17128348432E-10 -6.48767655195E-10 -6.82029023943E-10 -7.16995610226E-10 -7.53754832348E-10 -7.92398589858E-10 -8.33023493251E-10 -8.75731105435E-10 -9.20628195580E-10 -9.67827005968E-10 -1.01744553253E-09 -1.06960781973E-09 -1.12444427062E-09 -1.18209197273E-09 -1.24269504067E-09 -1.30640497630E-09 -1.37338104737E-09 -1.44379068552E-09 -1.51780990472E-09 -1.59562374112E-09 -1.67742671548E-09 -1.76342331923E-09 -1.85382852549E-09 -1.94886832628E-09 -2.04878029721E-09 -2.15381419112E-09 -2.26423256219E-09 -2.38031142193E-09 -2.50234092889E-09 -2.63062611359E-09 -2.76548764071E-09 -2.90726261022E-09 -3.05630539967E-09 -3.21298854949E-09 -3.37770369379E-09 -3.55086253873E-09 -3.73289789109E-09 -3.92426473947E-09 -4.12544139092E-09 -4.33693066576E-09 -4.55926115365E-09 -4.79298853394E-09 -5.03869696368E-09 -5.29700053674E-09 -5.56854481764E-09 -5.85400845395E-09 -6.15410487124E-09 -6.46958405492E-09 -6.80123442322E-09 -7.14988479617E-09 -7.51640646539E-09 -7.90171536987E-09 -8.30677438316E-09 -8.73259571769E-09 -9.18024345218E-09 -9.65083618848E-09 -1.01455498444E-08 -1.06656205897E-08 -1.12123479319E-08 -1.17870979611E-08 -1.23913067593E-08 -1.30264839860E-08 -1.36942166462E-08 -1.43961730515E-08 -1.51341069842E-08 -1.59098620743E-08 -1.67253764008E-08 -1.75826873277E-08 -1.84839365889E-08 -1.94313756316E-08 -2.04273712348E-08 -2.14744114139E-08 -2.25751116283E-08 -2.37322213060E-08 -2.49486307027E-08 -2.62273781111E-08 -2.75716574394E-08 -2.89848261772E-08 -3.04704137691E-08 -3.20321304165E-08 -3.36738763292E-08 -3.53997514505E-08 -3.72140656799E-08 -3.91213496175E-08 -4.11263658585E-08 -4.32341208654E-08 -4.54498774461E-08 -4.77791678708E-08 -5.02278076589E-08 -5.28019100706E-08 -5.55079013392E-08 -5.83525366815E-08 -6.13429171266E-08 -6.44865072046E-08 -6.77911535384E-08 -7.12651043859E-08 -7.49170301800E-08 -7.87560451174E-08 -8.27917298508E-08 -8.70341553387E-08 -9.14939079138E-08 -9.61821156308E-08 -1.01110475959E-07 -1.06291284889E-07 -1.11737467524E-07 -1.17462610232E-07 -1.23480994442E-07 -1.29807632156E-07 -1.36458303284E-07 -1.43449594873E-07 -1.50798942342E-07 -1.58524672818E-07 -1.66646050681E-07 -1.75183325433E-07 -1.84157782002E-07 -1.93591793614E-07 -2.03508877360E-07 -2.13933752584E-07 -2.24892402260E-07 -2.36412137481E-07 -2.48521665239E-07 -2.61251159655E-07 -2.74632336832E-07 -2.88698533517E-07 -3.03484789772E-07 -3.19027935840E-07 -3.35366683436E-07 -3.52541721678E-07 -3.70595817896E-07 -3.89573923564E-07 -4.09523285610E-07 -4.30493563394E-07 -4.52536951610E-07 -4.75708309444E-07 -5.00065296281E-07 -5.25668514300E-07 -5.52581658307E-07 -5.80871673165E-07 -6.10608919209E-07 -6.41867346049E-07 -6.74724675179E-07 -7.09262591842E-07 -7.45566946602E-07 -7.83727967143E-07 -8.23840480765E-07 -8.66004148162E-07 -9.10323709005E-07 -9.56909239957E-07 -1.00587642573E-06 -1.05734684381E-06 -1.11144826363E-06 -1.16831496077E-06 -1.22808804707E-06 -1.29091581734E-06 -1.35695411367E-06 -1.42636670792E-06 -1.49932570367E-06 -1.57601195828E-06 -1.65661552626E-06 -1.74133612493E-06 -1.83038362346E-06 -1.92397855657E-06 -2.02235266395E-06 -2.12574945680E-06 -2.23442481282E-06 -2.34864760100E-06 -2.46870033773E-06 -2.59487987578E-06 -2.72749812779E-06 -2.86688282590E-06 -3.01337831940E-06 -3.16734641222E-06 -3.32916724222E-06 -3.49924020434E-06 -3.67798491979E-06 -3.86584225350E-06 -4.06327538220E-06 -4.27077091564E-06 -4.48884007355E-06 -4.71801992095E-06 -4.95887466481E-06 -5.21199701496E-06 -5.47800961236E-06 -5.75756652806E-06 -6.05135483616E-06 -6.36009626453E-06 -6.68454892683E-06 -7.02550913992E-06 -7.38381333067E-06 -7.76034003652E-06 -8.15601200419E-06 -8.57179839138E-06 -9.00871707619E-06 -9.46783707960E-06 -9.95028110619E-06 -1.04572282088E-05 -1.09899165829E-05 -1.15496464972E-05 -1.21377833659E-05 -1.27557609708E-05 -1.34050848385E-05 -1.40873357814E-05 -1.48041736093E-05 -1.55573410197E-05 -1.63486676756E-05 -1.71800744777E-05 -1.80535780430E-05 -1.89712953958E-05 -1.99354488833E-05 -2.09483713249E-05 -2.20125114059E-05 -2.31304393269E-05 -2.43048527199E-05 -2.55385828436E-05 -2.68346010698E-05 -2.81960256741E-05 -2.96261289444E-05 -3.11283446201E-05 -3.27062756782E-05 -3.43637024798E-05 -3.61045912932E-05 -3.79331032095E-05 -3.98536034671E-05 -4.18706712036E-05 -4.39891096512E-05 -4.62139567951E-05 -4.85504965142E-05 -5.10042702235E-05 -5.35810890376E-05 -5.62870464784E-05 -5.91285317465E-05 -6.21122435798E-05 -6.52452047212E-05 -6.85347770206E-05 -7.19886771924E-05 -7.56149932564E-05 -7.94222016849E-05 -8.34191852828E-05 -8.76152518275E-05 -9.20201534936E-05 -9.66441070927E-05 -1.01497815152E-04 -1.06592487864E-04 -1.11939865931E-04 -1.17552244340E-04 -1.23442497086E-04 -1.29624102882E-04 -1.36111171883E-04 -1.42918473446E-04 -1.50061464962E-04 -1.57556321784E-04 -1.65419968279E-04 -1.73670110026E-04 -1.82325267199E-04 -1.91404809143E-04 -2.00928990174E-04 -2.10918986626E-04 -2.21396935160E-04 -2.32385972353E-04 -2.43910275589E-04 -2.55995105243E-04 -2.68666848196E-04 -2.81953062657E-04 -2.95882524310E-04 -3.10485273776E-04 -3.25792665372E-04 -3.41837417168E-04 -3.58653662298E-04 -3.76277001510E-04 -3.94744556912E-04 -4.14095026867E-04 -4.34368741966E-04 -4.55607722041E-04 -4.77855734099E-04 -5.01158351119E-04 -5.25563011573E-04 -5.51119079574E-04 -5.77877905491E-04 -6.05892886881E-04 -6.35219529556E-04 -6.65915508591E-04 -6.98040729034E-04 -7.31657386089E-04 -7.66830024477E-04 -8.03625596681E-04 -8.42113519735E-04 -8.82365730188E-04 -9.24456736827E-04 -9.68463670731E-04 -1.01446633215E-03 -1.06254723372E-03 -1.11279163933E-03 -1.16528759820E-03 -1.22012597330E-03 -1.27740046351E-03 -1.33720761863E-03 -1.39964684650E-03 -1.46482041120E-03 -1.53283342142E-03 -1.60379380793E-03 -1.67781228896E-03 -1.75500232244E-03 -1.83548004360E-03 -1.91936418674E-03 -2.00677598971E-03 -2.09783907943E-03 -2.19267933698E-03 -2.29142474051E-03 -2.39420518418E-03 -2.50115227116E-03 -2.61239907893E-03 -2.72807989462E-03 -2.84832991844E-03 -2.97328493281E-03 -3.10308093512E-03 -3.23785373168E-03 -3.37773849043E-03 -3.52286925008E-03 -3.67337838319E-03 -3.82939601072E-03 -3.99104936550E-03 -4.15846210240E-03 -4.33175355248E-03 -4.51103791918E-03 -4.69642341404E-03 -4.88801133002E-03 -5.08589505055E-03 -5.29015899258E-03 -5.50087748230E-03 -5.71811356240E-03 -5.94191773029E-03 -6.17232660687E-03 -6.40936153627E-03 -6.65302711731E-03 -6.90330966825E-03 -7.16017562701E-03 -7.42356988994E-03 -7.69341409325E-03 -7.96960484195E-03 -8.25201189256E-03 -8.54047629687E-03 -8.83480851548E-03 -9.13478651117E-03 -9.44015383382E-03 -9.75061770999E-03 -1.00658471524E-02 -1.03854711059E-02 -1.07090766486E-02 -1.10362072696E-02 -1.13663612441E-02 -1.16989901337E-02 -1.20334974352E-02 -1.23692374097E-02 -1.27055141209E-02 -1.30415807166E-02 -1.33766389870E-02 -1.37098392362E-02 -1.40402805051E-02 -1.43670111826E-02 -1.46890300463E-02 -1.50052877707E-02 -1.53146889429E-02 -1.56160946247E-02 -1.59083254971E-02 -1.61901656232E-02 -1.64603668607E-02 -1.67176539523E-02 -1.69607303168E-02 -1.71882845579E-02 -1.73989977005E-02 -1.75915511558E-02 -1.77646354082E-02 -1.79169594030E-02 -1.80472606060E-02 -1.81543156890E-02 -1.82369517835E-02 -1.82940582270E-02 -1.83245987117E-02 -1.83276237273E-02 -1.83022831707E-02 -1.82478389801E-02 -1.81636776303E-02 -1.80493223098E-02 -1.79044445851E-02 -1.77288753400E-02 -1.75226147674E-02 -1.72858411806E-02 -1.70189184030E-02 -1.67224014949E-02 -1.63970405772E-02 -1.60437825198E-02 -1.56637702775E-02 -1.52583396768E-02 -1.48290134867E-02 -1.43774926434E-02 -1.39056445437E-02 -1.34154883769E-02 -1.29091775290E-02 -1.23889791622E-02 -1.18572511546E-02 -1.13164166721E-02 -1.07689367372E-02 -1.02172812579E-02 -9.66389908354E-03 -9.11118775526E-03 -8.56146372115E-03 -8.01693388433E-03 -7.47966944149E-03 -6.95158304887E-03 -6.43441041767E-03 -5.92969748613E-03 -5.43879433838E-03 -4.96285703502E-03 -4.50285848212E-03 -4.05960939015E-03 -3.63379025570E-03 -3.22599513236E-03 -2.83678773720E-03 -2.46677016013E-03 -2.11666410094E-03 -1.78740414671E-03 -1.48024211751E-03 -1.19686094777E-03 -9.39495931456E-04 -7.11060444909E-04 -5.15272473678E-04 -3.55500346010E-04 -2.30494570821E-04 -1.37293746936E-04 -7.23297588713E-05 -3.13869105243E-05 -9.56231124988E-06 -1.22856410306E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 5 1 i j (l(j)) 0.00000000000E+00 Q_int -2.10119874124E-20 -2.20892950436E-20 -2.32218374183E-20 -2.44124464821E-20 -2.56640993780E-20 -2.69799258901E-20 -2.83632162700E-20 -2.98174294643E-20 -3.13462017634E-20 -3.29533558943E-20 -3.46429105795E-20 -3.64190905857E-20 -3.82863372881E-20 -4.02493197761E-20 -4.23129465284E-20 -4.44823776867E-20 -4.67630379589E-20 -4.91606301836E-20 -5.16811495902E-20 -5.43308987902E-20 -5.71165035366E-20 -6.00449292923E-20 -6.31234986470E-20 -6.63599096277E-20 -6.97622549475E-20 -7.33390422419E-20 -7.70992153422E-20 -8.10521766397E-20 -8.52078105967E-20 -8.95765084626E-20 -9.41691942575E-20 -9.89973520882E-20 -1.04073054864E-19 -1.09408994486E-19 -1.15018513582E-19 -1.20915638871E-19 -1.27115116240E-19 -1.33632447610E-19 -1.40483929704E-19 -1.47686694796E-19 -1.55258753551E-19 -1.63219040059E-19 -1.71587459184E-19 -1.80384936332E-19 -1.89633469777E-19 -1.99356185671E-19 -2.09577395869E-19 -2.20322658718E-19 -2.31618842973E-19 -2.43494194979E-19 -2.55978409302E-19 -2.69102702978E-19 -2.82899893579E-19 -2.97404481268E-19 -3.12652735069E-19 -3.28682783558E-19 -3.45534710207E-19 -3.63250653609E-19 -3.81874912850E-19 -4.01454058279E-19 -4.22037047959E-19 -4.43675350083E-19 -4.66423071679E-19 -4.90337093897E-19 -5.15477214251E-19 -5.41906296134E-19 -5.69690426018E-19 -5.98899078699E-19 -6.29605291022E-19 -6.61885844512E-19 -6.95821457365E-19 -7.31496986291E-19 -7.69001638693E-19 -8.08429195735E-19 -8.49878246849E-19 -8.93452436249E-19 -9.39260722105E-19 -9.87417648992E-19 -1.03804363431E-18 -1.09126526939E-18 -1.14721563604E-18 -1.20603463932E-18 -1.26786935737E-18 -1.33287440920E-18 -1.40121234129E-18 -1.47305403407E-18 -1.54857912918E-18 -1.62797647871E-18 -1.71144461738E-18 -1.79919225901E-18 -1.89143881840E-18 -1.98841496001E-18 -2.09036317470E-18 -2.19753838609E-18 -2.31020858805E-18 -2.42865551476E-18 -2.55317534523E-18 -2.68407944389E-18 -2.82169513917E-18 -2.96636654198E-18 -3.11845540617E-18 -3.27834203313E-18 -3.44642622269E-18 -3.62312827287E-18 -3.80889003084E-18 -4.00417599773E-18 -4.20947449017E-18 -4.42529886132E-18 -4.65218878452E-18 -4.89071160275E-18 -5.14146374727E-18 -5.40507222906E-18 -5.68219620660E-18 -5.97352863417E-18 -6.27979799458E-18 -6.60177012073E-18 -6.94025011064E-18 -7.29608434055E-18 -7.67016258138E-18 -8.06342022354E-18 -8.47684061597E-18 -8.91145752494E-18 -9.36835771909E-18 -9.84868368686E-18 -1.03536364933E-17 -1.08844787835E-17 -1.14425379395E-17 -1.20292094000E-17 -1.26459601490E-17 -1.32943323847E-17 -1.39759473754E-17 -1.46925095134E-17 -1.54458105773E-17 -1.62377342121E-17 -1.70702606393E-17 -1.79454716086E-17 -1.88655556030E-17 -1.98328133119E-17 -2.08496633831E-17 -2.19186484714E-17 -2.30424415963E-17 -2.42238528257E-17 -2.54658363030E-17 -2.67714976337E-17 -2.81441016510E-17 -2.95870805797E-17 -3.11040426186E-17 -3.26987809628E-17 -3.43752832886E-17 -3.61377417248E-17 -3.79905633354E-17 -3.99383811390E-17 -4.19860656947E-17 -4.41387372799E-17 -4.64017786948E-17 -4.87808487211E-17 -5.12818962728E-17 -5.39111752712E-17 -5.66752602827E-17 -5.95810629593E-17 -6.26358493206E-17 -6.58472579232E-17 -6.92233189608E-17 -7.27724743437E-17 -7.65035988085E-17 -8.04260221090E-17 -8.45495523459E-17 -8.88845004916E-17 -9.34417061735E-17 -9.82325647787E-17 -1.03269055948E-16 -1.08563773532E-16 -1.14129957080E-16 -1.19981524950E-16 -1.26133109108E-16 -1.32600091717E-16 -1.39398643600E-16 -1.46545764677E-16 -1.54059326470E-16 -1.61958116796E-16 -1.70261886743E-16 -1.78991400059E-16 -1.88168485070E-16 -1.97816089267E-16 -2.07958336682E-16 -2.18620588214E-16 -2.29829505042E-16 -2.41613115291E-16 -2.54000884122E-16 -2.67023787405E-16 -2.80714389176E-16 -2.95106923065E-16 -3.10237377899E-16 -3.26143587689E-16 -3.42865326240E-16 -3.60444406599E-16 -3.78924785617E-16 -3.98352673860E-16 -4.18776651158E-16 -4.40247788084E-16 -4.62819773654E-16 -4.86549049578E-16 -5.11494951394E-16 -5.37719856837E-16 -5.65289341818E-16 -5.94272344393E-16 -6.24741337151E-16 -6.56772508425E-16 -6.90445952811E-16 -7.25845871439E-16 -7.63060782523E-16 -8.02183742701E-16 -8.43312579727E-16 -8.86550137090E-16 -9.32004531176E-16 -9.79789421613E-16 -1.03002429549E-15 -1.08283476611E-15 -1.13835288712E-15 -1.19671748271E-15 -1.25807449471E-15 -1.32257734757E-15 -1.39038733196E-15 -1.46167400811E-15 -1.53661562978E-15 -1.61539958999E-15 -1.69822288960E-15 -1.78529262993E-15 -1.87682653060E-15 -1.97305347395E-15 -2.07421407736E-15 -2.18056129493E-15 -2.29236104999E-15 -2.40989290003E-15 -2.53345073576E-15 -2.66334351600E-15 -2.79989604021E-15 -2.94344976064E-15 -3.09436363622E-15 -3.25301503003E-15 -3.41980065300E-15 -3.59513755584E-15 -3.77946417189E-15 -3.97324141346E-15 -4.17695382430E-15 -4.39111079125E-15 -4.61624781795E-15 -4.85292786390E-15 -5.10174275212E-15 -5.36331464902E-15 -5.63829762016E-15 -5.92737926574E-15 -6.23128243994E-15 -6.55076705845E-15 -6.88663199863E-15 -7.23971709716E-15 -7.61090525001E-15 -8.00112462018E-15 -8.41135095855E-15 -8.84261004379E-15 -9.29598024734E-15 -9.77259522986E-15 -1.02736467760E-14 -1.08003877745E-14 -1.13541353509E-14 -1.19362741612E-14 -1.25482598544E-14 -1.31916227118E-14 -1.38679714740E-14 -1.45789973635E-14 -1.53264783132E-14 -1.61122834130E-14 -1.69383775825E-14 -1.78068264851E-14 -1.87198016927E-14 -1.96795861161E-14 -2.06885797132E-14 -2.17493054902E-14 -2.28644158107E-14 -2.40366990273E-14 -2.52690864547E-14 -2.65646596989E-14 -2.79266583630E-14 -2.93584881480E-14 -3.08637293685E-14 -3.24461459058E-14 -3.41096946189E-14 -3.58585352392E-14 -3.76970407716E-14 -3.96298084295E-14 -4.16616711301E-14 -4.37977095790E-14 -4.60432649750E-14 -4.84039523651E-14 -5.08856746858E-14 -5.34946375228E-14 -5.62373646285E-14 -5.91207142346E-14 -6.21518962011E-14 -6.53384900445E-14 -6.86884638910E-14 -7.22101944000E-14 -7.59124877110E-14 -7.98046014624E-14 -8.38962679411E-14 -8.81977184176E-14 -9.27197087297E-14 -9.74735461774E-14 -1.02471117797E-13 -1.07724920084E-13 -1.13248090242E-13 -1.19054439031E-13 -1.25158485302E-13 -1.31575492302E-13 -1.38321505836E-13 -1.45413394398E-13 -1.52868891339E-13 -1.60706639221E-13 -1.68946236424E-13 -1.77608286156E-13 -1.86714447971E-13 -1.96287491927E-13 -2.06351355525E-13 -2.16931203561E-13 -2.28053491056E-13 -2.39746029401E-13 -2.52038055902E-13 -2.64960306888E-13 -2.78545094568E-13 -2.92826387823E-13 -3.07839897151E-13 -3.23623163957E-13 -3.40215654425E-13 -3.57658858204E-13 -3.75996392154E-13 -3.95274109407E-13 -4.15540214021E-13 -4.36845381519E-13 -4.59242885598E-13 -4.82788731341E-13 -5.07541795255E-13 -5.33563972494E-13 -5.60920331625E-13 -5.89679277331E-13 -6.19912721456E-13 -6.51696262818E-13 -6.85109376245E-13 -7.20235611297E-13 -7.57162801184E-13 -7.95983282387E-13 -8.36794125544E-13 -8.79697378176E-13 -9.24800319848E-13 -9.72215730427E-13 -1.02206217208E-12 -1.07446428572E-12 -1.12955310271E-12 -1.18746637246E-12 -1.24834890687E-12 -1.31235294245E-12 -1.37963852097E-12 -1.45037388964E-12 -1.52473592178E-12 -1.60291055913E-12 -1.68509327677E-12 -1.77148957186E-12 -1.86231547756E-12 -1.95779810312E-12 -2.05817620182E-12 -2.16370076792E-12 -2.27463566429E-12 -2.39125828216E-12 -2.51386023474E-12 -2.64274808636E-12 -2.77824411903E-12 -2.92068713831E-12 -3.07043332042E-12 -3.22785710287E-12 -3.39335212069E-12 -3.56733219075E-12 -3.75023234637E-12 -3.94250992521E-12 -4.14464571270E-12 -4.35714514428E-12 -4.58053956917E-12 -4.81538757895E-12 -5.06227640430E-12 -5.32182338329E-12 -5.59467750500E-12 -5.88152103223E-12 -6.18307120746E-12 -6.50008204618E-12 -6.83334622233E-12 -7.18369705017E-12 -7.55201056801E-12 -7.93920772854E-12 -8.34625670163E-12 -8.77417529509E-12 -9.22403349957E-12 -9.69695616395E-12 -1.01941258079E-11 -1.07167855784E-11 -1.12662423585E-11 -1.18438700344E-11 -1.24511129313E-11 -1.30894894241E-11 -1.37605957342E-11 -1.44661099206E-11 -1.52077960753E-11 -1.59875087347E-11 -1.68071975157E-11 -1.76689119913E-11 -1.85748068143E-11 -1.95271471052E-11 -2.05283141154E-11 -2.15808111812E-11 -2.26872699827E-11 -2.38504571237E-11 -2.50732810493E-11 -2.63587993175E-11 -2.77102262441E-11 -2.91309409390E-11 -3.06244957553E-11 -3.21946251706E-11 -3.38452551246E-11 -3.55805128343E-11 -3.74047371132E-11 -3.93224892196E-11 -4.13385642599E-11 -4.34580031784E-11 -4.56861053596E-11 -4.80284418782E-11 -5.04908694280E-11 -5.30795449638E-11 -5.58009410956E-11 -5.86618622705E-11 -6.16694617851E-11 -6.48312596698E-11 -6.81551614891E-11 -7.16494781072E-11 -7.53229464656E-11 -7.91847514260E-11 -8.32445487339E-11 -8.75124891577E-11 -9.19992438669E-11 -9.67160311101E-11 -1.01674644261E-10 -1.06887481303E-10 -1.12367575822E-10 -1.18128629592E-10 -1.24185046831E-10 -1.30551970206E-10 -1.37245318694E-10 -1.44281827375E-10 -1.51679089271E-10 -1.59455599325E-10 -1.67630800639E-10 -1.76225133074E-10 -1.85260084354E-10 -1.94758243776E-10 -2.04743358681E-10 -2.15240393822E-10 -2.26275593762E-10 -2.37876548489E-10 -2.50072262378E-10 -2.62893226694E-10 -2.76371495817E-10 -2.90540767361E-10 -3.05436466414E-10 -3.21095834081E-10 -3.37558020580E-10 -3.54864183098E-10 -3.73057588666E-10 -3.92183722313E-10 -4.12290400751E-10 -4.33427891897E-10 -4.55649040515E-10 -4.79009400303E-10 -5.03567372741E-10 -5.29384353063E-10 -5.56524883704E-10 -5.85056815618E-10 -6.15051477856E-10 -6.46583855838E-10 -6.79732778761E-10 -7.14581116614E-10 -7.51215987278E-10 -7.89728974256E-10 -8.30216355548E-10 -8.72779344254E-10 -9.17524341518E-10 -9.64563202421E-10 -1.01401351550E-09 -1.06599889662E-09 -1.12064929783E-09 -1.17810133213E-09 -1.23849861484E-09 -1.30199212246E-09 -1.36874056988E-09 -1.43891080704E-09 -1.51267823572E-09 -1.59022724791E-09 -1.67175168642E-09 -1.75745532926E-09 -1.84755239873E-09 -1.94226809666E-09 -2.04183916701E-09 -2.14651448731E-09 -2.25655569047E-09 -2.37223781830E-09 -2.49385000867E-09 -2.62169621771E-09 -2.75609597914E-09 -2.89738520242E-09 -3.04591701179E-09 -3.20206262829E-09 -3.36621229698E-09 -3.53877626163E-09 -3.72018578928E-09 -3.91089424740E-09 -4.11137823605E-09 -4.32213877819E-09 -4.54370257078E-09 -4.77662330009E-09 -5.02148302425E-09 -5.27889362669E-09 -5.54949834392E-09 -5.83397337158E-09 -6.13302955270E-09 -6.44741415244E-09 -6.77791272359E-09 -7.12535106771E-09 -7.49059729654E-09 -7.87456399902E-09 -8.27821051916E-09 -8.70254535062E-09 -9.14862865370E-09 -9.61757490133E-09 -1.01105556603E-08 -1.06288025150E-08 -1.11736101405E-08 -1.17463395335E-08 -1.23484214077E-08 -1.29813597638E-08 -1.36467356414E-08 -1.43462110635E-08 -1.50815331823E-08 -1.58545386374E-08 -1.66671581370E-08 -1.75214212727E-08 -1.84194615817E-08 -1.93635218671E-08 -2.03559597905E-08 -2.13992537506E-08 -2.24960090625E-08 -2.36489644526E-08 -2.48609988862E-08 -2.61351387436E-08 -2.74745653629E-08 -2.88826229694E-08 -3.03628270088E-08 -3.19188729075E-08 -3.35546452802E-08 -3.52742276075E-08 -3.70819124089E-08 -3.89822119349E-08 -4.09798694055E-08 -4.30798708226E-08 -4.52874573864E-08 -4.76081385447E-08 -5.00477057101E-08 -5.26122466764E-08 -5.53081607714E-08 -5.81421747838E-08 -6.11213597020E-08 -6.42531483086E-08 -6.75453536715E-08 -7.10061885792E-08 -7.46442859679E-08 -7.84687203904E-08 -8.24890305796E-08 -8.67152431637E-08 -9.11578975903E-08 -9.58280723211E-08 -1.00737412362E-07 -1.05898158198E-07 -1.11323176200E-07 -1.17025990581E-07 -1.23020816987E-07 -1.29322597789E-07 -1.35947039179E-07 -1.42910650156E-07 -1.50230783489E-07 -1.57925678776E-07 -1.66014507688E-07 -1.74517421515E-07 -1.83455601132E-07 -1.92851309510E-07 -2.02727946893E-07 -2.13110108782E-07 -2.24023646866E-07 -2.35495733053E-07 -2.47554926748E-07 -2.60231245557E-07 -2.73556239574E-07 -2.87563069443E-07 -3.02286588388E-07 -3.17763428393E-07 -3.34032090772E-07 -3.51133041314E-07 -3.69108810267E-07 -3.88004097383E-07 -4.07865882291E-07 -4.28743540459E-07 -4.50688965024E-07 -4.73756694805E-07 -4.98004048780E-07 -5.23491267374E-07 -5.50281660896E-07 -5.78441765470E-07 -6.08041506864E-07 -6.39154372583E-07 -6.71857592653E-07 -7.06232329545E-07 -7.42363877669E-07 -7.80341872938E-07 -8.20260512896E-07 -8.62218787945E-07 -9.06320724212E-07 -9.52675638650E-07 -1.00139840698E-06 -1.05260974512E-06 -1.10643650471E-06 -1.16301198359E-06 -1.22247625178E-06 -1.28497649383E-06 -1.35066736844E-06 -1.41971138597E-06 -1.49227930499E-06 -1.56855054861E-06 -1.64871364170E-06 -1.73296666993E-06 -1.82151776178E-06 -1.91458559463E-06 -2.01239992612E-06 -2.11520215195E-06 -2.22324589158E-06 -2.33679760299E-06 -2.45613722812E-06 -2.58155887037E-06 -2.71337150573E-06 -2.85189972926E-06 -2.99748453855E-06 -3.15048415599E-06 -3.31127489183E-06 -3.48025204978E-06 -3.65783087749E-06 -3.84444756384E-06 -4.04056028542E-06 -4.24665030462E-06 -4.46322312160E-06 -4.69080968301E-06 -4.92996764991E-06 -5.18128272790E-06 -5.44537006239E-06 -5.72287570198E-06 -6.01447813345E-06 -6.32088989141E-06 -6.64285924649E-06 -6.98117197547E-06 -7.33665321744E-06 -7.71016941981E-06 -8.10263037861E-06 -8.51499137723E-06 -8.94825542836E-06 -9.40347562388E-06 -9.88175759754E-06 -1.03842621059E-05 -1.09122077326E-05 -1.14668737221E-05 -1.20496029481E-05 -1.26618050234E-05 -1.33049595577E-05 -1.39806195683E-05 -1.46904150539E-05 -1.54360567347E-05 -1.62193399701E-05 -1.70421488586E-05 -1.79064605299E-05 -1.88143496372E-05 -1.97679930582E-05 -2.07696748130E-05 -2.18217912105E-05 -2.29268562305E-05 -2.40875071534E-05 -2.53065104464E-05 -2.65867679184E-05 -2.79313231540E-05 -2.93433682378E-05 -3.08262507810E-05 -3.23834812639E-05 -3.40187407044E-05 -3.57358886678E-05 -3.75389716299E-05 -3.94322317080E-05 -4.14201157726E-05 -4.35072849567E-05 -4.56986245746E-05 -4.79992544671E-05 -5.04145397892E-05 -5.29501022540E-05 -5.56118318506E-05 -5.84058990520E-05 -6.13387675291E-05 -6.44172073887E-05 -6.76483089504E-05 -7.10394970827E-05 -7.45985461120E-05 -7.83335953242E-05 -8.22531650757E-05 -8.63661735291E-05 -9.06819540332E-05 -9.52102731617E-05 -9.99613494278E-05 -1.04945872691E-04 -1.10175024270E-04 -1.15660497775E-04 -1.21414520682E-04 -1.27449876644E-04 -1.33779928569E-04 -1.40418642463E-04 -1.47380612054E-04 -1.54681084195E-04 -1.62335985057E-04 -1.70361947117E-04 -1.78776336930E-04 -1.87597283692E-04 -1.96843708579E-04 -2.06535354862E-04 -2.16692818772E-04 -2.27337581103E-04 -2.38492039533E-04 -2.50179541617E-04 -2.62424418442E-04 -2.75252018877E-04 -2.88688744384E-04 -3.02762084330E-04 -3.17500651734E-04 -3.32934219367E-04 -3.49093756130E-04 -3.66011463609E-04 -3.83720812699E-04 -4.02256580168E-04 -4.21654885044E-04 -4.41953224650E-04 -4.63190510143E-04 -4.85407101351E-04 -5.08644840728E-04 -5.32947086175E-04 -5.58358742510E-04 -5.84926291297E-04 -6.12697818755E-04 -6.41723041414E-04 -6.72053329187E-04 -7.03741725466E-04 -7.36842963844E-04 -7.71413481019E-04 -8.07511425402E-04 -8.45196660913E-04 -8.84530765431E-04 -9.25577023283E-04 -9.68400411156E-04 -1.01306757675E-03 -1.05964680944E-03 -1.10820800223E-03 -1.15882260406E-03 -1.21156356177E-03 -1.26650525067E-03 -1.32372339278E-03 -1.38329496180E-03 -1.44529807360E-03 -1.50981186127E-03 -1.57691633342E-03 -1.64669221458E-03 -1.71922076644E-03 -1.79458358865E-03 -1.87286239767E-03 -1.95413878255E-03 -2.03849393598E-03 -2.12600835935E-03 -2.21676154022E-03 -2.31083160091E-03 -2.40829491661E-03 -2.50922570169E-03 -2.61369556268E-03 -2.72177301677E-03 -2.83352297433E-03 -2.94900618439E-03 -3.06827864200E-03 -3.19139095641E-03 -3.31838767947E-03 -3.44930659347E-03 -3.58417795825E-03 -3.72302371736E-03 -3.86585666360E-03 -4.01267956441E-03 -4.16348424821E-03 -4.31825065295E-03 -4.47694583897E-03 -4.63952296849E-03 -4.80592025486E-03 -4.97605988533E-03 -5.14984692174E-03 -5.32716818448E-03 -5.50789112573E-03 -5.69186269903E-03 -5.87890823307E-03 -6.06883031884E-03 -6.26140771996E-03 -6.45639431753E-03 -6.65351810175E-03 -6.85248022373E-03 -7.05295412217E-03 -7.25458474084E-03 -7.45698785372E-03 -7.65974951605E-03 -7.86242566055E-03 -8.06454185883E-03 -8.26559326931E-03 -8.46504479327E-03 -8.66233146147E-03 -8.85685907410E-03 -9.04800511670E-03 -9.23511997467E-03 -9.41752846834E-03 -9.59453172956E-03 -9.76540943943E-03 -9.92942244476E-03 -1.00858157686E-02 -1.02338220270E-02 -1.03726652604E-02 -1.05015651842E-02 -1.06197418573E-02 -1.07264207625E-02 -1.08208382858E-02 -1.09022475737E-02 -1.09699247424E-02 -1.10231754006E-02 -1.10613414413E-02 -1.10838080477E-02 -1.10900108485E-02 -1.10794431462E-02 -1.10516631353E-02 -1.10063010128E-02 -1.09430658776E-02 -1.08617523047E-02 -1.07622464713E-02 -1.06445317083E-02 -1.05086933416E-02 -1.03549226895E-02 -1.01835200783E-02 -9.99489674325E-03 -9.78957548748E-03 -9.56818998185E-03 -9.33148260165E-03 -9.08030071631E-03 -8.81559137063E-03 -8.53839432516E-03 -8.24983345691E-03 -7.95110656057E-03 -7.64347363473E-03 -7.32824378618E-03 -7.00676093926E-03 -6.68038859442E-03 -6.35049394049E-03 -6.01843168827E-03 -5.68552805618E-03 -5.35306540262E-03 -5.02226806036E-03 -4.69428998623E-03 -4.37020489078E-03 -4.05099955583E-03 -3.73757108095E-03 -3.43072881868E-03 -3.13120176147E-03 -2.83965212600E-03 -2.55669584060E-03 -2.28293057345E-03 -2.01897184112E-03 -1.76549760190E-03 -1.52330156413E-03 -1.29335521957E-03 -1.07687834264E-03 -8.75417372403E-04 -6.90930712825E-04 -5.25879544268E-04 -3.83322235319E-04 -2.66077865583E-04 -1.73602949875E-04 -1.04079381867E-04 -5.52004210130E-05 -2.41203337014E-05 -7.40130506144E-06 -9.57965279130E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 6 1 i j (l(j)) 0.00000000000E+00 Q_int -3.52008275623E-20 -3.70056125841E-20 -3.89029309126E-20 -4.08975268320E-20 -4.29943878709E-20 -4.51987572742E-20 -4.75161471135E-20 -4.99523520705E-20 -5.25134639266E-20 -5.52058867954E-20 -5.80363531365E-20 -6.10119405900E-20 -6.41400896746E-20 -6.74286223922E-20 -7.08857617876E-20 -7.45201525100E-20 -7.83408824292E-20 -8.23575053602E-20 -8.65800649524E-20 -9.10191198042E-20 -9.56857698650E-20 -1.00591684191E-19 -1.05749130122E-19 -1.11171003961E-19 -1.16870863215E-19 -1.22862960503E-19 -1.29162279187E-19 -1.35784570847E-19 -1.42746394660E-19 -1.50065158813E-19 -1.57759164027E-19 -1.65847649324E-19 -1.74350840129E-19 -1.83289998849E-19 -1.92687478037E-19 -2.02566776285E-19 -2.12952596985E-19 -2.23870910099E-19 -2.35349017096E-19 -2.47415619222E-19 -2.60100889267E-19 -2.73436547015E-19 -2.87455938555E-19 -3.02194119669E-19 -3.17687943486E-19 -3.33976152636E-19 -3.51099476125E-19 -3.69100731182E-19 -3.88024930320E-19 -4.07919393894E-19 -4.28833868426E-19 -4.50820650995E-19 -4.73934720010E-19 -4.98233872682E-19 -5.23778869551E-19 -5.50633586413E-19 -5.78865174048E-19 -6.08544226131E-19 -6.39744955749E-19 -6.72545380980E-19 -7.07027519969E-19 -7.43277596026E-19 -7.81386253221E-19 -8.21448783047E-19 -8.63565362695E-19 -9.07841305551E-19 -9.54387324534E-19 -1.00331980894E-18 -1.05476111545E-18 -1.10883987415E-18 -1.16569131008E-18 -1.22545758146E-18 -1.28828813508E-18 -1.35434008007E-18 -1.42377858068E-18 -1.49677726934E-18 -1.57351868078E-18 -1.65419470851E-18 -1.73900708462E-18 -1.82816788422E-18 -1.92190005576E-18 -2.02043797847E-18 -2.12402804850E-18 -2.23292929496E-18 -2.34741402771E-18 -2.46776851819E-18 -2.59429371533E-18 -2.72730599801E-18 -2.86713796622E-18 -3.01413927272E-18 -3.16867749733E-18 -3.33113906611E-18 -3.50193021759E-18 -3.68147801862E-18 -3.87023143220E-18 -4.06866244018E-18 -4.27726722344E-18 -4.49656740258E-18 -4.72711134228E-18 -4.96947552244E-18 -5.22426597977E-18 -5.49211982310E-18 -5.77370682655E-18 -6.06973110430E-18 -6.38093287121E-18 -6.70809029378E-18 -7.05202143597E-18 -7.41358630476E-18 -7.79368900063E-18 -8.19327997830E-18 -8.61335842333E-18 -9.05497475061E-18 -9.51923323096E-18 -1.00072947524E-17 -1.05203797229E-17 -1.10597711221E-17 -1.16268177095E-17 -1.22229373968E-17 -1.28496207937E-17 -1.35084349352E-17 -1.42010271996E-17 -1.49291294283E-17 -1.56945622562E-17 -1.64992396639E-17 -1.73451737641E-17 -1.82344798325E-17 -1.91693815974E-17 -2.01522168003E-17 -2.11854430408E-17 -2.22716439229E-17 -2.34135355142E-17 -2.46139731386E-17 -2.58759585152E-17 -2.72026472647E-17 -2.85973567999E-17 -3.00635746209E-17 -3.16049670360E-17 -3.32253883289E-17 -3.49288903966E-17 -3.67197328815E-17 -3.86023938224E-17 -4.05815808520E-17 -4.26622429688E-17 -4.48495829114E-17 -4.71490701688E-17 -4.95664546566E-17 -5.21077810949E-17 -5.47794041232E-17 -5.75880041903E-17 -6.05406042589E-17 -6.36445873667E-17 -6.69077150879E-17 -7.03381469410E-17 -7.39444607919E-17 -7.77356743031E-17 -8.17212674826E-17 -8.59112063887E-17 -9.03159680505E-17 -9.49465666656E-17 -9.98145811419E-17 -1.04932184050E-16 -1.10312172063E-16 -1.15967997950E-16 -1.21913804223E-16 -1.28164458492E-16 -1.34735590648E-16 -1.41643631943E-16 -1.48905856077E-16 -1.56540422390E-16 -1.64566421275E-16 -1.73003921906E-16 -1.81874022428E-16 -1.91198902712E-16 -2.01001879812E-16 -2.11307466274E-16 -2.22141431431E-16 -2.33530865835E-16 -2.45504249002E-16 -2.58091520623E-16 -2.71324155430E-16 -2.85235241899E-16 -2.99859564988E-16 -3.15233693117E-16 -3.31396069609E-16 -3.48387108821E-16 -3.66249297194E-16 -3.85027299497E-16 -4.04768070510E-16 -4.25520972437E-16 -4.47337898335E-16 -4.70273401873E-16 -4.94384833749E-16 -5.19732485092E-16 -5.46379738223E-16 -5.74393225144E-16 -6.03842994151E-16 -6.34802684995E-16 -6.67349713015E-16 -7.01565462719E-16 -7.37535491287E-16 -7.75349742509E-16 -8.15102771692E-16 -8.56893982095E-16 -9.00827873491E-16 -9.47014303468E-16 -9.95568762134E-16 -1.04661266090E-15 -1.10027363607E-15 -1.15668586800E-15 -1.21599041663E-15 -1.27833557417E-15 -1.34387723596E-15 -1.41277929024E-15 -1.48521402800E-15 -1.56136257377E-15 -1.64141533850E-15 -1.72557249577E-15 -1.81404448223E-15 -1.90705252388E-15 -2.00482918917E-15 -2.10761897064E-15 -2.21567889619E-15 -2.32927917184E-15 -2.44870385734E-15 -2.57425157652E-15 -2.70623626394E-15 -2.84498794996E-15 -2.99085358594E-15 -3.14419791180E-15 -3.30540436808E-15 -3.47487605472E-15 -3.65303673903E-15 -3.84033191535E-15 -4.03722991895E-15 -4.24422309720E-15 -4.46182904061E-15 -4.69059187713E-15 -4.93108363273E-15 -5.18390566177E-15 -5.44969015070E-15 -5.72910169883E-15 -6.02283898018E-15 -6.33163649058E-15 -6.65626638419E-15 -6.99754040439E-15 -7.35631191348E-15 -7.73347802656E-15 -8.12998185480E-15 -8.54681486365E-15 -8.98501935207E-15 -9.44569105881E-15 -9.92998190230E-15 -1.04391028610E-14 -1.09743270017E-14 -1.15369926625E-14 -1.21285067994E-14 -1.27503485049E-14 -1.34040727059E-14 -1.40913140520E-14 -1.48137910032E-14 -1.55733101265E-14 -1.63717706137E-14 -1.72111690302E-14 -1.80936043072E-14 -1.90212829906E-14 -1.99965247578E-14 -2.10217682190E-14 -2.20995770142E-14 -2.32326462239E-14 -2.44238091083E-14 -2.56760441917E-14 -2.69924827107E-14 -2.83764164433E-14 -2.98313059406E-14 -3.13607891799E-14 -3.29686906609E-14 -3.46590309699E-14 -3.64360368325E-14 -3.83041516830E-14 -4.02680467750E-14 -4.23326328624E-14 -4.45030724782E-14 -4.67847928438E-14 -4.91834994401E-14 -5.17051902735E-14 -5.43561708745E-14 -5.71430700644E-14 -6.00728565312E-14 -6.31528562544E-14 -6.63907708239E-14 -6.97946966979E-14 -7.33731454483E-14 -7.71350650438E-14 -8.10898622244E-14 -8.52474260232E-14 -8.96181524937E-14 -9.42129707057E-14 -9.90433700730E-14 -1.04121429083E-13 -1.09459845501E-13 -1.15071968115E-13 -1.20971830122E-13 -1.27174184215E-13 -1.33694539470E-13 -1.40549200129E-13 -1.47755306369E-13 -1.55330877160E-13 -1.63294855323E-13 -1.71667154894E-13 -1.80468710922E-13 -1.89721531815E-13 -1.99448754374E-13 -2.09674701646E-13 -2.20424943742E-13 -2.31726361778E-13 -2.43607215089E-13 -2.56097211895E-13 -2.69227583580E-13 -2.83031162794E-13 -2.97542465544E-13 -3.12797777506E-13 -3.28835244756E-13 -3.45694969153E-13 -3.63419108614E-13 -3.82051982532E-13 -4.01640182593E-13 -4.22232689282E-13 -4.43880994354E-13 -4.66639229595E-13 -4.90564302171E-13 -5.15716036931E-13 -5.42157325993E-13 -5.69954286009E-13 -5.99176423486E-13 -6.29896808591E-13 -6.62192257857E-13 -6.96143526265E-13 -7.31835509169E-13 -7.69357454581E-13 -8.08803186325E-13 -8.50271338651E-13 -8.93865602864E-13 -9.39694986605E-13 -9.87874086420E-13 -1.03852337431E-12 -1.09176949896E-12 -1.14774560243E-12 -1.20659165309E-12 -1.26845479557E-12 -1.33348971872E-12 -1.40185904240E-12 -1.47373372409E-12 -1.54929348639E-12 -1.62872726642E-12 -1.71223368821E-12 -1.80002155937E-12 -1.89231039323E-12 -1.98933095770E-12 -2.09132585232E-12 -2.19855011485E-12 -2.31127185897E-12 -2.42977294475E-12 -2.55434968335E-12 -2.68531357800E-12 -2.82299210286E-12 -2.96772952187E-12 -3.11988774956E-12 -3.27984725602E-12 -3.44800801821E-12 -3.62479052011E-12 -3.81063680411E-12 -4.00601157633E-12 -4.21140336856E-12 -4.42732575980E-12 -4.65431866050E-12 -4.89294966248E-12 -5.14381545822E-12 -5.40754333284E-12 -5.68479273257E-12 -5.97625691363E-12 -6.28266467572E-12 -6.60478218428E-12 -6.94341488625E-12 -7.29940952400E-12 -7.67365625257E-12 -8.06709086542E-12 -8.48069713426E-12 -8.91550926895E-12 -9.37261450336E-12 -9.85315581398E-12 -1.03583347777E-11 -1.08894145764E-11 -1.14477231553E-11 -1.20346565432E-11 -1.26516823434E-11 -1.33003434029E-11 -1.39822616706E-11 -1.46991422523E-11 -1.54527776743E-11 -1.62450523654E-11 -1.70779473686E-11 -1.79535452944E-11 -1.88740355282E-11 -1.98417197045E-11 -2.08590174615E-11 -2.19284724916E-11 -2.30527589009E-11 -2.42346878958E-11 -2.54772148114E-11 -2.67834465017E-11 -2.81566491069E-11 -2.96002562199E-11 -3.11178774719E-11 -3.27133075569E-11 -3.43905357201E-11 -3.61537557317E-11 -3.80073763729E-11 -3.99560324591E-11 -4.20045964279E-11 -4.41581905218E-11 -4.64221995951E-11 -4.88022845773E-11 -5.13043966269E-11 -5.39347920108E-11 -5.67000477463E-11 -5.96070780456E-11 -6.26631516020E-11 -6.58759097642E-11 -6.92533856403E-11 -7.28040241830E-11 -7.65367033029E-11 -8.04607560654E-11 -8.45859940248E-11 -8.89227317544E-11 -9.34818126354E-11 -9.82746359661E-11 -1.03313185462E-10 -1.08610059217E-10 -1.14178501200E-10 -1.20032434364E-10 -1.26186495460E-10 -1.32656071625E-10 -1.39457338852E-10 -1.46607302435E-10 -1.54123839476E-10 -1.62025743587E-10 -1.70332771866E-10 -1.79065694296E-10 -1.88246345668E-10 -1.97897680168E-10 -2.08043828761E-10 -2.18710159519E-10 -2.29923341039E-10 -2.41711409111E-10 -2.54103836810E-10 -2.67131608169E-10 -2.80827295643E-10 -2.95225141531E-10 -3.10361143576E-10 -3.26273144959E-10 -3.43000928894E-10 -3.60586318082E-10 -3.79073279258E-10 -3.98508033096E-10 -4.18939169753E-10 -4.40417770324E-10 -4.62997534537E-10 -4.86734914982E-10 -5.11689258225E-10 -5.37922953150E-10 -5.65501586913E-10 -5.94494108878E-10 -6.24973002965E-10 -6.57014468827E-10 -6.90698612310E-10 -7.26109645681E-10 -7.63336098113E-10 -8.02471036960E-10 -8.43612300370E-10 -8.86862741823E-10 -9.32330487199E-10 -9.80129205021E-10 -1.03037839055E-09 -1.08320366442E-09 -1.13873708662E-09 -1.19711748654E-09 -1.25849080990E-09 -1.32301048351E-09 -1.39083779871E-09 -1.46214231443E-09 -1.53710228093E-09 -1.61590508525E-09 -1.69874771949E-09 -1.78583727308E-09 -1.87739145022E-09 -1.97363911398E-09 -2.07482085811E-09 -2.18118960824E-09 -2.29301125390E-09 -2.41056531283E-09 -2.53414562945E-09 -2.66406110900E-09 -2.80063648939E-09 -2.94421315251E-09 -3.09514997714E-09 -3.25382423562E-09 -3.42063253630E-09 -3.59599181447E-09 -3.78034037384E-09 -3.97413898156E-09 -4.17787201923E-09 -4.39204869288E-09 -4.61720430493E-09 -4.85390159137E-09 -5.10273212728E-09 -5.36431780454E-09 -5.63931238502E-09 -5.92840313350E-09 -6.23231253406E-09 -6.55180009453E-09 -6.88766424322E-09 -7.24074432283E-09 -7.61192268650E-09 -8.00212690116E-09 -8.41233206369E-09 -8.84356323571E-09 -9.29689800303E-09 -9.77346916613E-09 -1.02744675684E-08 -1.08011450693E-08 -1.13548176693E-08 -1.19368687954E-08 -1.25487527547E-08 -1.31919983639E-08 -1.38682127663E-08 -1.45790854423E-08 -1.53263924265E-08 -1.61120007401E-08 -1.69378730501E-08 -1.78060725672E-08 -1.87187681941E-08 -1.96782399375E-08 -2.06868845969E-08 -2.17472217440E-08 -2.28619000092E-08 -2.40337036886E-08 -2.52655596892E-08 -2.65605448301E-08 -2.79218935165E-08 -2.93530058062E-08 -3.08574558891E-08 -3.24390009998E-08 -3.41015907869E-08 -3.58493771603E-08 -3.76867246429E-08 -3.96182212508E-08 -4.16486899309E-08 -4.37832005819E-08 -4.60270826907E-08 -4.83859386145E-08 -5.08656575412E-08 -5.34724301645E-08 -5.62127641075E-08 -5.90935001356E-08 -6.21218291969E-08 -6.53053103338E-08 -6.86518895091E-08 -7.21699193944E-08 -7.58681801686E-08 -7.97559013784E-08 -8.38427849161E-08 -8.81390291696E-08 -9.26553544058E-08 -9.74030294499E-08 -1.02393899726E-07 -1.07640416730E-07 -1.13155669004E-07 -1.18953414694E-07 -1.25048115770E-07 -1.31454973982E-07 -1.38189968665E-07 -1.45269896461E-07 -1.52712413068E-07 -1.60536077122E-07 -1.68760396313E-07 -1.77405875848E-07 -1.86494069394E-07 -1.96047632604E-07 -2.06090379380E-07 -2.16647340998E-07 -2.27744828241E-07 -2.39410496704E-07 -2.51673415415E-07 -2.64564138954E-07 -2.78114783242E-07 -2.92359105185E-07 -3.07332586371E-07 -3.23072521019E-07 -3.39618108413E-07 -3.57010550019E-07 -3.75293151550E-07 -3.94511430216E-07 -4.14713227419E-07 -4.35948827176E-07 -4.58271080554E-07 -4.81735536424E-07 -5.06400578851E-07 -5.32327571458E-07 -5.59581009105E-07 -5.88228677277E-07 -6.18341819533E-07 -6.49995313460E-07 -6.83267855535E-07 -7.18242155350E-07 -7.55005139678E-07 -7.93648166864E-07 -8.34267252072E-07 -8.76963303922E-07 -9.21842373098E-07 -9.69015913520E-07 -1.01860105672E-06 -1.07072090008E-06 -1.12550480961E-06 -1.18308873802E-06 -1.24361555887E-06 -1.30723541750E-06 -1.37410609972E-06 -1.44439341905E-06 -1.51827162349E-06 -1.59592382268E-06 -1.67754243671E-06 -1.76332966733E-06 -1.85349799298E-06 -1.94827068865E-06 -2.04788237177E-06 -2.15257957565E-06 -2.26262135152E-06 -2.37827990086E-06 -2.49984123941E-06 -2.62760589429E-06 -2.76188963621E-06 -2.90302424810E-06 -3.05135833230E-06 -3.20725815791E-06 -3.37110855059E-06 -3.54331382654E-06 -3.72429877321E-06 -3.91450967864E-06 -4.11441541219E-06 -4.32450855884E-06 -4.54530660993E-06 -4.77735321290E-06 -5.02121948304E-06 -5.27750538019E-06 -5.54684115359E-06 -5.82988885810E-06 -6.12734394534E-06 -6.43993693334E-06 -6.76843515838E-06 -7.11364461320E-06 -7.47641187548E-06 -7.85762613111E-06 -8.25822129661E-06 -8.67917824567E-06 -9.12152714451E-06 -9.58634990141E-06 -1.00747827358E-05 -1.05880188724E-05 -1.11273113667E-05 -1.16939760675E-05 -1.22893947231E-05 -1.29150182386E-05 -1.35723700893E-05 -1.42630499006E-05 -1.49887371991E-05 -1.57511953448E-05 -1.65522756514E-05 -1.73939217053E-05 -1.82781738896E-05 -1.92071741253E-05 -2.01831708372E-05 -2.12085241568E-05 -2.22857113710E-05 -2.34173326290E-05 -2.46061169182E-05 -2.58549283215E-05 -2.71667725684E-05 -2.85448038922E-05 -2.99923322080E-05 -3.15128306246E-05 -3.31099433043E-05 -3.47874936873E-05 -3.65494930948E-05 -3.84001497272E-05 -4.03438780748E-05 -4.23853087575E-05 -4.45292988122E-05 -4.67809424451E-05 -4.91455822700E-05 -5.16288210503E-05 -5.42365339661E-05 -5.69748814272E-05 -5.98503224535E-05 -6.28696286451E-05 -6.60398987643E-05 -6.93685739539E-05 -7.28634536148E-05 -7.65327119677E-05 -8.03849153247E-05 -8.44290400951E-05 -8.86744915524E-05 -9.31311233892E-05 -9.78092580858E-05 -1.02719708121E-04 -1.07873798054E-04 -1.13283387499E-04 -1.18960895030E-04 -1.24919323037E-04 -1.31172283563E-04 -1.37734025154E-04 -1.44619460740E-04 -1.51844196585E-04 -1.59424562330E-04 -1.67377642151E-04 -1.75721307056E-04 -1.84474248359E-04 -1.93656012335E-04 -2.03287036089E-04 -2.13388684658E-04 -2.23983289359E-04 -2.35094187399E-04 -2.46745762763E-04 -2.58963488386E-04 -2.71773969611E-04 -2.85204988941E-04 -2.99285552078E-04 -3.14045935238E-04 -3.29517733738E-04 -3.45733911814E-04 -3.62728853672E-04 -3.80538415703E-04 -3.99199979850E-04 -4.18752508046E-04 -4.39236597681E-04 -4.60694538007E-04 -4.83170367400E-04 -5.06709931379E-04 -5.31360941263E-04 -5.57173033329E-04 -5.84197828333E-04 -6.12488991210E-04 -6.42102290779E-04 -6.73095659219E-04 -7.05529251109E-04 -7.39465501739E-04 -7.74969184428E-04 -8.12107466504E-04 -8.50949963623E-04 -8.91568792002E-04 -9.34038618184E-04 -9.78436705833E-04 -1.02484295908E-03 -1.07333996187E-03 -1.12401301266E-03 -1.17695015392E-03 -1.23224219567E-03 -1.28998273223E-03 -1.35026815155E-03 -1.41319763606E-03 -1.47887315419E-03 -1.54739944154E-03 -1.61888397057E-03 -1.69343690776E-03 -1.77117105683E-03 -1.85220178696E-03 -1.93664694435E-03 -2.02462674584E-03 -2.11626365297E-03 -2.21168222484E-03 -2.31100894799E-03 -2.41437204162E-03 -2.52190123614E-03 -2.63372752308E-03 -2.74998287442E-03 -2.87079992904E-03 -2.99631164421E-03 -3.12665090990E-03 -3.26195012336E-03 -3.40234072196E-03 -3.54795267158E-03 -3.69891390830E-03 -3.85534973102E-03 -4.01738214249E-03 -4.18512913648E-03 -4.35870392885E-03 -4.53821413022E-03 -4.72376085832E-03 -4.91543778805E-03 -5.11333013755E-03 -5.31751358896E-03 -5.52805314262E-03 -5.74500190404E-03 -5.96839980316E-03 -6.19827224620E-03 -6.43462870058E-03 -6.67746121437E-03 -6.92674287209E-03 -7.18242618987E-03 -7.44444145343E-03 -7.71269500352E-03 -7.98706747471E-03 -8.26741199408E-03 -8.55355234821E-03 -8.84528112769E-03 -9.14235786030E-03 -9.44450714526E-03 -9.75141680273E-03 -1.00627360545E-02 -1.03780737535E-02 -1.06969966819E-02 -1.10190279396E-02 -1.13436454458E-02 -1.16702805802E-02 -1.19983169915E-02 -1.23270896009E-02 -1.26558838347E-02 -1.29839351168E-02 -1.33104286570E-02 -1.36344995710E-02 -1.39552333689E-02 -1.42716668507E-02 -1.45827894467E-02 -1.48875450414E-02 -1.51848343185E-02 -1.54735176625E-02 -1.57524186532E-02 -1.60203281824E-02 -1.62760092226E-02 -1.65182022708E-02 -1.67456314844E-02 -1.69570115218E-02 -1.71510550894E-02 -1.73264811916E-02 -1.74820240657E-02 -1.76164427758E-02 -1.77285314254E-02 -1.78171299349E-02 -1.78811353154E-02 -1.79195133550E-02 -1.79313106155E-02 -1.79156666230E-02 -1.78718261160E-02 -1.77991511983E-02 -1.76971332283E-02 -1.75654042577E-02 -1.74037478204E-02 -1.72121088586E-02 -1.69906025625E-02 -1.67395218944E-02 -1.64593435638E-02 -1.61507322222E-02 -1.58145426515E-02 -1.54518197357E-02 -1.50637960222E-02 -1.46518867063E-02 -1.42176819078E-02 -1.37629361509E-02 -1.32895550082E-02 -1.27995789313E-02 -1.22951643571E-02 -1.17785622549E-02 -1.12520943630E-02 -1.07181274529E-02 -1.01790460540E-02 -9.63722417016E-03 -9.09499661788E-03 -8.55463071723E-03 -8.01829915897E-03 -7.48805496197E-03 -6.96580951295E-03 -6.45331474505E-03 -5.95215055941E-03 -5.46371861819E-03 -4.98924363601E-03 -4.52978326339E-03 -4.08624758595E-03 -3.65942915171E-03 -3.25004428062E-03 -2.85878619979E-03 -2.48639027992E-03 -2.13371131769E-03 -1.80181241080E-03 -1.49206450302E-03 -1.20625513266E-03 -9.46704298845E-04 -7.16384666264E-04 -5.19042566311E-04 -3.58039937455E-04 -2.32098692152E-04 -1.38222508117E-04 -7.28042589586E-05 -3.15860873468E-05 -9.62081887315E-06 -1.23574606217E-06 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 7 2 i j (l(j)) 0.00000000000E+00 Q_int 9.82540637497E-24 1.04590906427E-23 1.11336440345E-23 1.18517023822E-23 1.26160715145E-23 1.34297382205E-23 1.42958819204E-23 1.52178870895E-23 1.61993564831E-23 1.72441252143E-23 1.83562757394E-23 1.95401538108E-23 2.08003854579E-23 2.21418950632E-23 2.35699246046E-23 2.50900541386E-23 2.67082236043E-23 2.84307560341E-23 3.02643822610E-23 3.22162672192E-23 3.42940379417E-23 3.65058133626E-23 3.88602360425E-23 4.13665059392E-23 4.40344163568E-23 4.68743922131E-23 4.98975307757E-23 5.31156450240E-23 5.65413098095E-23 6.01879109917E-23 6.40696977439E-23 6.82018382324E-23 7.26004788858E-23 7.72828074880E-23 8.22671203399E-23 8.75728937522E-23 9.32208601497E-23 9.92330890840E-23 1.05633073470E-22 1.12445821386E-22 1.19697953793E-22 1.27417808555E-22 1.35635551173E-22 1.44383292654E-22 1.53695214989E-22 1.63607704716E-22 1.74159495104E-22 1.85391817504E-22 1.97348562459E-22 2.10076451211E-22 2.23625218260E-22 2.38047805709E-22 2.53400570131E-22 2.69743502787E-22 2.87140464042E-22 3.05659432899E-22 3.25372772632E-22 3.46357513544E-22 3.68695653967E-22 3.92474480668E-22 4.17786909931E-22 4.44731850622E-22 4.73414590683E-22 5.03947208543E-22 5.36449011072E-22 5.71046999767E-22 6.07876367021E-22 6.47081024388E-22 6.88814164918E-22 7.33238861764E-22 7.80528705393E-22 8.30868481899E-22 8.84454895051E-22 9.41497334922E-22 1.00221869609E-21 1.06685624858E-21 1.13566256505E-21 1.20890650766E-21 1.28687427872E-21 1.36987053899E-21 1.45821959815E-21 1.55226668207E-21 1.65237928177E-21 1.75894858943E-21 1.87239102691E-21 1.99314987301E-21 2.12169699554E-21 2.25853469518E-21 2.40419766821E-21 2.55925509586E-21 2.72431286840E-21 2.90001595267E-21 3.08705091227E-21 3.28614859038E-21 3.49808696550E-21 3.72369419144E-21 3.96385183333E-21 4.21949831237E-21 4.49163257273E-21 4.78131798495E-21 5.08968650107E-21 5.41794307776E-21 5.76737038473E-21 6.13933381677E-21 6.53528682906E-21 6.95677661661E-21 7.40545015991E-21 7.88306066059E-21 8.39147439203E-21 8.93267799195E-21 9.50878622517E-21 1.01220502471E-20 1.07748664003E-20 1.14697855779E-20 1.22095231919E-20 1.29969697829E-20 1.38352023157E-20 1.47274962020E-20 1.56773380996E-20 1.66884395364E-20 1.77647514131E-20 1.89104794419E-20 2.01301005797E-20 2.14283805228E-20 2.28103923282E-20 2.42815362370E-20 2.58475607760E-20 2.75145852201E-20 2.92891235035E-20 3.11781096731E-20 3.31889249833E-20 3.53294267386E-20 3.76079789961E-20 4.00334852482E-20 4.26154232133E-20 4.53638818700E-20 4.82896008801E-20 5.14040125543E-20 5.47192865236E-20 5.82483772932E-20 6.20050748618E-20 6.60040586066E-20 7.02609546436E-20 7.47923968862E-20 7.96160920435E-20 8.47508888090E-20 9.02168515124E-20 9.60353385215E-20 1.02229085701E-19 1.08822295252E-19 1.15840730283E-19 1.23311815483E-19 1.31264744279E-19 1.39730592912E-19 1.48742441869E-19 1.58335505147E-19 1.68547267847E-19 1.79417632655E-19 1.90989075755E-19 2.03306812814E-19 2.16418975656E-19 2.30376800342E-19 2.45234827374E-19 2.61051114815E-19 2.77887465151E-19 2.95809666787E-19 3.14887751113E-19 3.35196266158E-19 3.56814567885E-19 3.79827130277E-19 4.04323875419E-19 4.30400524874E-19 4.58158973716E-19 4.87707688684E-19 5.19162132023E-19 5.52645212652E-19 5.88287766434E-19 6.26229067420E-19 6.66617372065E-19 7.09610498545E-19 7.55376443433E-19 8.04094038150E-19 8.55953647753E-19 9.11157914788E-19 9.69922551125E-19 1.03247718085E-18 1.09906623754E-18 1.16994991937E-18 1.24540520586E-18 1.32572694018E-18 1.41122898124E-18 1.50224543012E-18 1.59913193556E-18 1.70226708368E-18 1.81205387730E-18 1.92892131068E-18 2.05332604587E-18 2.18575419703E-18 2.32672323005E-18 2.47678398447E-18 2.63652282592E-18 2.80656393738E-18 2.98757175817E-18 3.18025358026E-18 3.38536231204E-18 3.60369942030E-18 3.83611806200E-18 4.08352641802E-18 4.34689124183E-18 4.62724163719E-18 4.92567307930E-18 5.24335169547E-18 5.58151882175E-18 5.94149585347E-18 6.32468940864E-18 6.73259682436E-18 7.16681200765E-18 7.62903166368E-18 8.12106192572E-18 8.64482541263E-18 9.20236874152E-18 9.79587052495E-18 1.04276498839E-17 1.11001755098E-17 1.18160753111E-17 1.25781466816E-17 1.33893674316E-17 1.42529074236E-17 1.51721409587E-17 1.61506599617E-17 1.71922880166E-17 1.83010953074E-17 1.94814145225E-17 2.07378577844E-17 2.20753346723E-17 2.34990714056E-17 2.50146312664E-17 2.66279363371E-17 2.83452906420E-17 3.01734047798E-17 3.21194221457E-17 3.41909468441E-17 3.63960734021E-17 3.87434183990E-17 4.12421541355E-17 4.39020444750E-17 4.67334829957E-17 4.97475336042E-17 5.29559737675E-17 5.63713405341E-17 6.00069795224E-17 6.38770970693E-17 6.79968157416E-17 7.23822334277E-17 7.70504862405E-17 8.20198154774E-17 8.73096388978E-17 9.29406265993E-17 9.89347817859E-17 1.05315526746E-16 1.12107794376E-16 1.19338125607E-16 1.27034773109E-16 1.35227811697E-16 1.43949255841E-16 1.53233184770E-16 1.63115875632E-16 1.73635945250E-16 1.84834501018E-16 1.96755301529E-16 2.09444927562E-16 2.22952964097E-16 2.37332194073E-16 2.52638804631E-16 2.68932606674E-16 2.86277268576E-16 3.04740564967E-16 3.24394641563E-16 3.45316297080E-16 3.67587283324E-16 3.91294624640E-16 4.16530957957E-16 4.43394894774E-16 4.71991406483E-16 5.02432234548E-16 5.34836327137E-16 5.69330303914E-16 6.06048950807E-16 6.45135746689E-16 6.86743424023E-16 7.31034565666E-16 7.78182240167E-16 8.28370678035E-16 8.81795991622E-16 9.38666941436E-16 9.99205751881E-16 1.06364897960E-15 1.13224843781E-15 1.20527218030E-15 1.28300554884E-15 1.36575228813E-15 1.45383573275E-15 1.54760007053E-15 1.64741168752E-15 1.75366059963E-15 1.86676197662E-15 1.98715776439E-15 2.11531841191E-15 2.25174470946E-15 2.39696974553E-15 2.55156098984E-15 2.71612251075E-15 2.89129733567E-15 3.07776996369E-15 3.27626904028E-15 3.48757020450E-15 3.71249911979E-15 3.95193470029E-15 4.20681254522E-15 4.47812859470E-15 4.76694302147E-15 5.07438437350E-15 5.40165398380E-15 5.75003066465E-15 6.12087570463E-15 6.51563818781E-15 6.93586065611E-15 7.38318513680E-15 7.85935955873E-15 8.36624458243E-15 8.90582087062E-15 9.48019682775E-15 1.00916168385E-14 1.07424700380E-14 1.14352996470E-14 1.21728129100E-14 1.29578916736E-14 1.37936036471E-14 1.46832143905E-14 1.56302000735E-14 1.66382610598E-14 1.77113363656E-14 1.88536190516E-14 2.00695726076E-14 2.13639483934E-14 2.27418042049E-14 2.42085240374E-14 2.57698391240E-14 2.74318503299E-14 2.92010519921E-14 3.10843572959E-14 3.30891252882E-14 3.52231896331E-14 3.74948892221E-14 3.99131007585E-14 4.24872734428E-14 4.52274658962E-14 4.81443854641E-14 5.12494300557E-14 5.45547326810E-14 5.80732088611E-14 6.18186070953E-14 6.58055625839E-14 7.00496544149E-14 7.45674664398E-14 7.93766520750E-14 8.44960032827E-14 8.99455240004E-14 9.57465083069E-14 1.01921623629E-13 1.08494999313E-13 1.15492320913E-13 1.22940930556E-13 1.30869933781E-13 1.39310313270E-13 1.48295049910E-13 1.57859251672E-13 1.68040290789E-13 1.78877949793E-13 1.90414576960E-13 2.02695251793E-13 2.15767961165E-13 2.29683786828E-13 2.44497105018E-13 2.60265798927E-13 2.77051484884E-13 2.94919753117E-13 3.13940424053E-13 3.34187821135E-13 3.55741061242E-13 3.78684363842E-13 4.03107380073E-13 4.29105543059E-13 4.56780440813E-13 4.86240213190E-13 5.17599974445E-13 5.50982263041E-13 5.86517520463E-13 6.24344600922E-13 6.64611313925E-13 7.07475001837E-13 7.53103154696E-13 8.01674064677E-13 8.53377522768E-13 9.08415560375E-13 9.67003238756E-13 1.02936948937E-12 1.09575800842E-12 1.16642820909E-12 1.24165623522E-12 1.32173604028E-12 1.40698053606E-12 1.49772281529E-12 1.59431745324E-12 1.69714189321E-12 1.80659792137E-12 1.92311323672E-12 2.04714312232E-12 2.17917222430E-12 2.31971644562E-12 2.46932496188E-12 2.62858236727E-12 2.79811095883E-12 2.97857316803E-12 3.17067414922E-12 3.37516453500E-12 3.59284336927E-12 3.82456122945E-12 4.07122355011E-12 4.33379416085E-12 4.61329905251E-12 4.91083038609E-12 5.22755076035E-12 5.56469775462E-12 5.92358876423E-12 6.30562615055E-12 6.71230271386E-12 7.14520753501E-12 7.60603217989E-12 8.09657731702E-12 8.61875972488E-12 9.17461982738E-12 9.76632962857E-12 1.03962012184E-11 1.10666958079E-11 1.17804333213E-11 1.25402026736E-11 1.33489726381E-11 1.42099034443E-11 1.51263591626E-11 1.61019208033E-11 1.71404003233E-11 1.82458555595E-11 1.94226060087E-11 2.06752497799E-11 2.20086815229E-11 2.34281115668E-11 2.49390862391E-11 2.65475096158E-11 2.82596665074E-11 3.00822470946E-11 3.20223729876E-11 3.40876251087E-11 3.62860733484E-11 3.86263079063E-11 4.11174732277E-11 4.37693032657E-11 4.65921598971E-11 4.95970732275E-11 5.27957847296E-11 5.62007930730E-11 5.98254031611E-11 6.36837777753E-11 6.77909931877E-11 7.21630979945E-11 7.68171758188E-11 8.17714119730E-11 8.70451647325E-11 9.26590407247E-11 9.86349755916E-11 1.04996319644E-10 1.11767929067E-10 1.18976263352E-10 1.26649488098E-10 1.34817585488E-10 1.43512471395E-10 1.52768120057E-10 1.62620696539E-10 1.73108698536E-10 1.84273106526E-10 1.96157543701E-10 2.08808446853E-10 2.22275247467E-10 2.36610564869E-10 2.51870412075E-10 2.68114414409E-10 2.85406042464E-10 3.03812860368E-10 3.23406789319E-10 3.44264389146E-10 3.66467156814E-10 3.90101845141E-10 4.15260802091E-10 4.42042330939E-10 4.70551074761E-10 5.00898425615E-10 5.33202958286E-10 5.67590895511E-10 6.04196599944E-10 6.43163099464E-10 6.84642645621E-10 7.28797309108E-10 7.75799612400E-10 8.25833203913E-10 8.79093576088E-10 9.35788828344E-10 9.96140480257E-10 1.06038433742E-09 1.12877141223E-09 1.20156890549E-09 1.27906124870E-09 1.36155121718E-09 1.44936111068E-09 1.54283401538E-09 1.64233514127E-09 1.74825325143E-09 1.86100217879E-09 1.98102244511E-09 2.10878297835E-09 2.24478294959E-09 2.38955371896E-09 2.54366091278E-09 2.70770663327E-09 2.88233181199E-09 3.06821871068E-09 3.26609358955E-09 3.47672954222E-09 3.70094951736E-09 3.93962953215E-09 4.19370209528E-09 4.46415984917E-09 4.75205944742E-09 5.05852568260E-09 5.38475588132E-09 5.73202457720E-09 6.10168849478E-09 6.49519184515E-09 6.91407196921E-09 7.35996534001E-09 7.83461395833E-09 8.33987215575E-09 8.87771383595E-09 9.45024018649E-09 1.00596878830E-08 1.07084378303E-08 1.13990244557E-08 1.21341456114E-08 1.29166731102E-08 1.37496639420E-08 1.46363722133E-08 1.55802618541E-08 1.65850201488E-08 1.76545721354E-08 1.87930959326E-08 2.00050390573E-08 2.12951357939E-08 2.26684256825E-08 2.41302731934E-08 2.56863886835E-08 2.73428506860E-08 2.91061296572E-08 3.09831132256E-08 3.29811331024E-08 3.51079936995E-08 3.73720026011E-08 3.97820030031E-08 4.23474082434E-08 4.50782385435E-08 4.79851601334E-08 5.10795268979E-08 5.43734246902E-08 5.78797185284E-08 6.16121027934E-08 6.55851547079E-08 6.98143912265E-08 7.43163296068E-08 7.91085518736E-08 8.42097734530E-08 8.96399162060E-08 9.54201861880E-08 1.01573156401E-07 1.08122854890E-07 1.15094858509E-07 1.22516392712E-07 1.30416437807E-07 1.38825842015E-07 1.47777441842E-07 1.57306190175E-07 1.67449292650E-07 1.78246352794E-07 1.89739526508E-07 2.01973686502E-07 2.14996597321E-07 2.28859101630E-07 2.43615318494E-07 2.59322854435E-07 2.76043028056E-07 2.93841109136E-07 3.12786573104E-07 3.32953371905E-07 3.54420222271E-07 3.77270912575E-07 4.01594629391E-07 4.27486305107E-07 4.55046987848E-07 4.84384235246E-07 5.15612533496E-07 5.48853743379E-07 5.84237574980E-07 6.21902092899E-07 6.61994253968E-07 7.04670479523E-07 7.50097264444E-07 7.98451825384E-07 8.49922790596E-07 9.04710934114E-07 9.63029957092E-07 1.02510731932E-06 1.09118512416E-06 1.16152106030E-06 1.23638940392E-06 1.31608208527E-06 1.40090982364E-06 1.49120333515E-06 1.58731461809E-06 1.68961832059E-06 1.79851319609E-06 1.91442365206E-06 2.03780139802E-06 2.16912719914E-06 2.30891274222E-06 2.45770262107E-06 2.61607644919E-06 2.78465110748E-06 2.96408313595E-06 3.15507127832E-06 3.35835918935E-06 3.57473831531E-06 3.80505095845E-06 4.05019353723E-06 4.31112005478E-06 4.58884578869E-06 4.88445121620E-06 5.19908618978E-06 5.53397437876E-06 5.89041799405E-06 6.26980281364E-06 6.67360352796E-06 7.10338942525E-06 7.56083043840E-06 8.04770357590E-06 8.56589976110E-06 9.11743110550E-06 9.70443864312E-06 1.03292005550E-05 1.09941409142E-05 1.17018389845E-05 1.24550391061E-05 1.32566612066E-05 1.41098119740E-05 1.50177967354E-05 1.59841320825E-05 1.70125592917E-05 1.81070585885E-05 1.92718643054E-05 2.05114809920E-05 2.18307005321E-05 2.32346203328E-05 2.47286626485E-05 2.63185951097E-05 2.80105525311E-05 2.98110600743E-05 3.17270578491E-05 3.37659270382E-05 3.59355176381E-05 3.82441779124E-05 4.07007856600E-05 4.33147814045E-05 4.60962036213E-05 4.90557261194E-05 5.22046977066E-05 5.55551842701E-05 5.91200134142E-05 6.29128218008E-05 6.69481053504E-05 7.12412724662E-05 7.58087004526E-05 8.06677953095E-05 8.58370550910E-05 9.13361370271E-05 9.71859286171E-05 1.03408622911E-04 1.10027798209E-04 1.17068502413E-04 1.24557342282E-04 1.32522577852E-04 1.40994222280E-04 1.50004147407E-04 1.59586195318E-04 1.69776296208E-04 1.80612592865E-04 1.92135572093E-04 2.04388203400E-04 2.17416085317E-04 2.31267599662E-04 2.45994074148E-04 2.61649953679E-04 2.78292980712E-04 2.95984385071E-04 3.14789083594E-04 3.34775889993E-04 3.56017735325E-04 3.78591899444E-04 4.02580253823E-04 4.28069516116E-04 4.55151516813E-04 4.83923478340E-04 5.14488306929E-04 5.46954897553E-04 5.81438452201E-04 6.18060811718E-04 6.56950801416E-04 6.98244590578E-04 7.42086065939E-04 7.88627219155E-04 8.38028548185E-04 8.90459472427E-04 9.46098761328E-04 1.00513497610E-03 1.06776692400E-03 1.13420412450E-03 1.20466728659E-03 1.27938879598E-03 1.35861321122E-03 1.44259776709E-03 1.53161288356E-03 1.62594267837E-03 1.72588548084E-03 1.83175434425E-03 1.94387755379E-03 2.06259912657E-03 2.18827929983E-03 2.32129500300E-03 2.46204030859E-03 2.61092685661E-03 2.76838424638E-03 2.93486038899E-03 3.11082181304E-03 3.29675391558E-03 3.49316114924E-03 3.70056713590E-03 3.91951469631E-03 4.15056578402E-03 4.39430131146E-03 4.65132085450E-03 4.92224222125E-03 5.20770086963E-03 5.50834915723E-03 5.82485540614E-03 6.15790276402E-03 6.50818784212E-03 6.87641910971E-03 7.26331502357E-03 7.66960187048E-03 8.09601129968E-03 8.54327752210E-03 9.01213415233E-03 9.50331066932E-03 1.00175284719E-02 1.05554965057E-02 1.11179064372E-02 1.17054273554E-02 1.23186999777E-02 1.29583303437E-02 1.36248829801E-02 1.43188735231E-02 1.50407607915E-02 1.57909383034E-02 1.65697252403E-02 1.73773568635E-02 1.82139744000E-02 1.90796144193E-02 1.99741977348E-02 2.08975178722E-02 2.18492291604E-02 2.28288345136E-02 2.38356729852E-02 2.48689071924E-02 2.59275107257E-02 2.70102556741E-02 2.81157004177E-02 2.92421778565E-02 3.03877842660E-02 3.15503689884E-02 3.27275251920E-02 3.39165819472E-02 3.51145978892E-02 3.63183567559E-02 3.75243651023E-02 3.87288525088E-02 3.99277746088E-02 4.11168192660E-02 4.22914162339E-02 4.34467506204E-02 4.45777804697E-02 4.56792587498E-02 4.67457600029E-02 4.77717118734E-02 4.87514316741E-02 4.96791680845E-02 5.05491479939E-02 5.13556284096E-02 5.20929532381E-02 5.27556146282E-02 5.33383184219E-02 5.38360531144E-02 5.42441615567E-02 5.45584144651E-02 5.47750846253E-02 5.48910204943E-02 5.49037177281E-02 5.48113869912E-02 5.46130162496E-02 5.43084256150E-02 5.38983127067E-02 5.33842864391E-02 5.27688871316E-02 5.20555908915E-02 5.12487963500E-02 5.03537920375E-02 4.93767029915E-02 4.83244155980E-02 4.72044801793E-02 4.60249914740E-02 4.47944478903E-02 4.35215912665E-02 4.22152298121E-02 4.08840479302E-02 3.95364076974E-02 3.81801478779E-02 3.68223874211E-02 3.54693414004E-02 3.41261582114E-02 3.27967875131E-02 3.14838887685E-02 3.01887902529E-02 2.89115079447E-02 2.76508327265E-02 2.64044926999E-02 2.51693951043E-02 2.39419492470E-02 2.27184679904E-02 2.14956406807E-02 2.02710649829E-02 1.90438190056E-02 1.78154169053E-02 1.65905410832E-02 1.53745657095E-02 1.41729391167E-02 1.29911380019E-02 1.18346175198E-02 1.07087575043E-02 9.61880515443E-03 8.56981461996E-03 7.56658403557E-03 6.61359067193E-03 5.71492499930E-03 4.87422459281E-03 4.09460894723E-03 3.37861641090E-03 2.72814459155E-03 2.14439572849E-03 1.62782866339E-03 1.17811917173E-03 7.94130535209E-04 4.73896337654E-04 2.14617547170E-04 1.26760007222E-05 -1.36333573769E-04 -2.37550884959E-04 -2.96774714216E-04 -3.20362949570E-04 -3.15106304885E-04 -2.88074288048E-04 -2.46432347355E-04 -1.97229590611E-04 -1.47157048064E-04 -1.01921295492E-04 -6.48071322113E-05 -3.72969880562E-05 -1.90697343823E-05 -8.08251185586E-06 -2.40586907856E-06 -3.02103237579E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.07964261210E-23 1.14927357819E-23 1.22339535576E-23 1.30229757727E-23 1.38628855486E-23 1.47569648510E-23 1.57087073143E-23 1.67218318928E-23 1.78002973927E-23 1.89483179416E-23 2.01703794545E-23 2.14712571635E-23 2.28560342765E-23 2.43301218400E-23 2.58992798834E-23 2.75696399257E-23 2.93477289351E-23 3.12404948331E-23 3.32553336435E-23 3.54001183927E-23 3.76832298739E-23 4.01135893947E-23 4.27006936377E-23 4.54546517690E-23 4.83862249398E-23 5.15068683360E-23 5.48287759396E-23 5.83649281765E-23 6.21291426386E-23 6.61361280756E-23 7.04015418703E-23 7.49420512196E-23 7.97753982626E-23 8.49204694078E-23 9.03973691326E-23 9.62274985416E-23 1.02433638992E-22 1.09040041113E-22 1.16072519564E-22 1.23558553907E-22 1.31527395985E-22 1.40010184221E-22 1.49040065293E-22 1.58652323660E-22 1.68884519429E-22 1.79776635127E-22 1.91371231934E-22 2.03713615987E-22 2.16852015422E-22 2.30837768819E-22 2.45725525814E-22 2.61573460640E-22 2.78443499448E-22 2.96401562280E-22 3.15517820658E-22 3.35866971776E-22 3.57528530384E-22 3.80587139493E-22 4.05132901120E-22 4.31261728361E-22 4.59075720176E-22 4.88683560343E-22 5.20200942141E-22 5.53751020424E-22 5.89464892851E-22 6.27482112156E-22 6.67951231448E-22 7.11030384690E-22 7.56887904611E-22 8.05702980465E-22 8.57666358221E-22 9.12981085908E-22 9.71863307025E-22 1.03454310513E-21 1.10126540290E-21 1.17229091916E-21 1.24789718766E-21 1.32837964153E-21 1.41405276771E-21 1.50525133581E-21 1.60233170620E-21 1.70567322256E-21 1.81567969409E-21 1.93278097347E-21 2.05743463651E-21 2.19012777008E-21 2.33137887551E-21 2.48173989454E-21 2.64179836613E-21 2.81217972223E-21 2.99354973170E-21 3.18661710178E-21 3.39213624742E-21 3.61091023915E-21 3.84379394108E-21 4.09169735135E-21 4.35558915792E-21 4.63650052375E-21 4.93552911610E-21 5.25384339570E-21 5.59268718251E-21 5.95338451598E-21 6.33734482879E-21 6.74606845419E-21 7.18115248863E-21 7.64429703243E-21 8.13731183294E-21 8.66212335622E-21 9.22078231468E-21 9.81547168035E-21 1.04485152148E-20 1.11223865495E-20 1.18397188512E-20 1.26033151115E-20 1.34161590994E-20 1.42814270204E-20 1.52024999277E-20 1.61829769337E-20 1.72266892735E-20 1.83377152759E-20 1.95203962991E-20 2.07793536948E-20 2.21195068664E-20 2.35460924915E-20 2.50646849844E-20 2.66812182783E-20 2.84020090122E-20 3.02337812131E-20 3.21836925707E-20 3.42593624061E-20 3.64689014441E-20 3.88209435065E-20 4.13246792487E-20 4.39898920726E-20 4.68269963550E-20 4.98470781427E-20 5.30619384706E-20 5.64841394754E-20 6.01270534817E-20 6.40049152552E-20 6.81328776248E-20 7.25270706932E-20 7.72046648652E-20 8.21839379414E-20 8.74843465396E-20 9.31266021214E-20 9.91327519228E-20 1.05526265105E-19 1.12332124459E-19 1.19576924027E-19 1.27288973023E-19 1.35498406444E-19 1.44237302829E-19 1.53539809606E-19 1.63442276523E-19 1.73983397682E-19 1.85204362745E-19 1.97149017875E-19 2.09864037071E-19 2.23399104547E-19 2.37807108873E-19 2.53144349637E-19 2.69470757441E-19 2.86850128078E-19 3.05350371815E-19 3.25043778756E-19 3.46007301316E-19 3.68322854913E-19 3.92077638057E-19 4.17364473078E-19 4.44282168833E-19 4.72935906801E-19 5.03437652084E-19 5.35906590914E-19 5.70469596372E-19 6.07261724152E-19 6.46426740291E-19 6.88117682937E-19 7.32497460352E-19 7.79739487479E-19 8.30028363562E-19 8.83560593474E-19 9.40545355562E-19 1.00120531902E-18 1.06577751397E-18 1.13451425766E-18 1.20768414040E-18 1.28557307510E-18 1.36848541446E-18 1.45674514023E-18 1.55069712921E-18 1.65070850083E-18 1.75717005168E-18 1.87049778259E-18 1.99113452410E-18 2.11955166690E-18 2.25625100376E-18 2.40176669028E-18 2.55666733217E-18 2.72155820702E-18 2.89708362951E-18 3.08392946901E-18 3.28282582968E-18 3.49454990335E-18 3.71992900641E-18 3.95984381259E-18 4.21523179416E-18 4.48709088519E-18 4.77648338094E-18 5.08454008885E-18 5.41246474716E-18 5.76153872853E-18 6.13312604711E-18 6.52867868835E-18 6.94974228273E-18 7.39796214533E-18 7.87508970495E-18 8.38298934781E-18 8.92364570271E-18 9.49917139603E-18 1.01118153068E-17 1.07639713543E-17 1.14581878524E-17 1.21971774670E-17 1.29838278159E-17 1.38212127523E-17 1.47126043758E-17 1.56614858185E-17 1.66715648550E-17 1.77467883908E-17 1.88913578850E-17 2.01097457676E-17 2.14067129153E-17 2.27873272553E-17 2.42569835676E-17 2.58214245659E-17 2.74867633370E-17 2.92595072279E-17 3.11465832733E-17 3.31553652635E-17 3.52937025570E-17 3.75699507528E-17 3.99930043394E-17 4.25723314506E-17 4.53180108624E-17 4.82407713758E-17 5.13520337401E-17 5.46639552794E-17 5.81894773981E-17 6.19423761492E-17 6.59373160647E-17 7.01899074576E-17 7.47167674196E-17 7.95355847525E-17 8.46651890879E-17 9.01256244640E-17 9.59382276483E-17 1.02125711512E-16 1.08712253779E-16 1.15723591504E-16 1.23187121638E-16 1.31132008084E-16 1.39589295654E-16 1.48592031379E-16 1.58175393639E-16 1.68376829626E-16 1.79236201667E-16 1.90795942989E-16 2.03101223524E-16 2.16200126416E-16 2.30143835906E-16 2.44986837333E-16 2.60787130037E-16 2.77606453996E-16 2.95510531073E-16 3.14569321824E-16 3.34857298876E-16 3.56453737925E-16 3.79443027510E-16 4.03914998762E-16 4.29965276422E-16 4.57695652495E-16 4.87214484006E-16 5.18637116404E-16 5.52086334283E-16 5.87692841158E-16 6.25595770196E-16 6.65943227882E-16 7.08892872744E-16 7.54612531411E-16 8.03280854397E-16 8.55088014183E-16 9.10236448316E-16 9.68941650441E-16 1.03143301235E-15 1.09795472032E-15 1.16876670929E-15 1.24414567858E-15 1.32438617304E-15 1.40980173406E-15 1.50072612467E-15 1.59751463381E-15 1.70054546453E-15 1.81022121190E-15 1.92697043614E-15 2.05124933721E-15 2.18354353742E-15 2.32436997904E-15 2.47427894423E-15 2.63385620528E-15 2.80372531355E-15 2.98455003599E-15 3.17703694880E-15 3.38193819845E-15 3.60005444064E-15 3.83223796893E-15 4.07939604505E-15 4.34249444407E-15 4.62256122816E-15 4.92069076381E-15 5.23804799801E-15 5.57587301037E-15 5.93548585871E-15 6.31829173723E-15 6.72578646731E-15 7.15956234251E-15 7.62131435040E-15 8.11284679583E-15 8.63608035124E-15 9.19305956173E-15 9.78596083415E-15 1.04171009415E-14 1.10889460755E-14 1.18041214838E-14 1.25654217277E-14 1.33758216021E-14 1.42384877594E-14 1.51567910838E-14 1.61343198622E-14 1.71748938064E-14 1.82825789780E-14 1.94617036769E-14 2.07168753542E-14 2.20529986157E-14 2.34752943870E-14 2.49893203140E-14 2.66009924799E-14 2.83166085220E-14 3.01428722398E-14 3.20869197906E-14 3.41563475737E-14 3.63592419137E-14 3.87042106575E-14 4.12004168103E-14 4.38576143394E-14 4.66861862884E-14 4.96971853490E-14 5.29023770492E-14 5.63142857278E-14 5.99462434729E-14 6.38124422174E-14 6.79279891941E-14 7.23089659672E-14 7.69724912716E-14 8.19367879040E-14 8.72212539290E-14 9.28465384770E-14 9.88346224310E-14 1.05208904317E-13 1.11994291734E-13 1.19217298681E-13 1.26906149160E-13 1.35090887460E-13 1.43803495560E-13 1.53078018094E-13 1.62950695382E-13 1.73460105040E-13 1.84647312723E-13 1.96556032587E-13 2.09232798103E-13 2.22727143886E-13 2.37091799256E-13 2.52382894271E-13 2.68660179062E-13 2.85987257300E-13 3.04431834735E-13 3.24065983750E-13 3.44966424986E-13 3.67214827129E-13 3.90898126030E-13 4.16108864404E-13 4.42945553443E-13 4.71513057750E-13 5.01923005092E-13 5.34294222590E-13 5.68753201030E-13 6.05434589132E-13 6.44481719684E-13 6.86047169613E-13 7.30293356185E-13 7.77393171639E-13 8.27530658773E-13 8.80901730080E-13 9.37714933279E-13 9.98192266211E-13 1.06257004430E-12 1.13109982392E-12 1.20404938542E-12 1.28170377939E-12 1.36436644053E-12 1.45236037333E-12 1.54602941417E-12 1.64573957488E-12 1.75188047291E-12 1.86486685378E-12 1.98514021163E-12 2.11317051442E-12 2.24945804026E-12 2.39453533226E-12 2.54896927944E-12 2.71336333180E-12 2.88835985831E-12 3.07464265695E-12 3.27293962659E-12 3.48402561129E-12 3.70872542793E-12 3.94791708916E-12 4.20253523422E-12 4.47357478099E-12 4.76209481360E-12 5.06922272076E-12 5.39615860096E-12 5.74417995182E-12 6.11464666187E-12 6.50900632690E-12 6.92879989434E-12 7.37566770461E-12 7.85135588390E-12 8.35772318232E-12 8.89674820824E-12 9.47053720002E-12 1.00813322207E-11 1.07315199369E-11 1.14236409496E-11 1.21603996893E-11 1.29446750362E-11 1.37795315159E-11 1.46682312997E-11 1.56142469678E-11 1.66212750460E-11 1.76932504517E-11 1.88343618975E-11 2.00490682385E-11 2.13421158943E-11 2.27185573893E-11 2.41837711125E-11 2.57434823387E-11 2.74037855651E-11 2.91711683451E-11 3.10525366537E-11 3.30552418392E-11 3.51871093646E-11 3.74564693832E-11 3.98721893190E-11 4.24437084691E-11 4.51810748359E-11 4.80949846335E-11 5.11968236169E-11 5.44987120735E-11 5.80135520724E-11 6.17550774334E-11 6.57379078794E-11 6.99776061254E-11 7.44907384356E-11 7.92949395143E-11 8.44089813993E-11 8.98528467333E-11 9.56478070096E-11 1.01816505498E-10 1.08383045743E-10 1.15373086001E-10 1.22813939124E-10 1.30734679416E-10 1.39166256413E-10 1.48141615553E-10 1.57695827163E-10 1.67866223037E-10 1.78692542862E-10 1.90217089253E-10 2.02484892990E-10 2.15543888561E-10 2.29445102669E-10 2.44242852181E-10 2.59994957412E-10 2.76762967090E-10 2.94612400027E-10 3.13613000017E-10 3.33839008748E-10 3.55369456212E-10 3.78288468975E-10 4.02685599129E-10 4.28656173994E-10 4.56301669026E-10 4.85730103658E-10 5.17056463699E-10 5.50403151055E-10 5.85900460375E-10 6.23687090508E-10 6.63910684454E-10 7.06728406520E-10 7.52307557040E-10 8.00826226436E-10 8.52473989127E-10 9.07452645764E-10 9.65977011834E-10 1.02827575490E-09 1.09459229158E-09 1.16518573439E-09 1.24033190652E-09 1.32032442046E-09 1.40547582189E-09 1.49611881374E-09 1.59260755423E-09 1.69531904121E-09 1.80465458495E-09 1.92104137552E-09 2.04493415395E-09 2.17681698404E-09 2.31720514849E-09 2.46664715923E-09 2.62572690169E-09 2.79506591381E-09 2.97532581617E-09 3.16721089670E-09 3.37147085892E-09 3.58890375652E-09 3.82035910541E-09 4.06674120425E-09 4.32901266888E-09 4.60819818987E-09 4.90538853775E-09 5.22174482341E-09 5.55850303192E-09 5.91697885310E-09 6.29857282135E-09 6.70477578310E-09 7.13717472417E-09 7.59745896809E-09 8.08742677115E-09 8.60899235335E-09 9.16419336902E-09 9.75519886950E-09 1.03843177770E-08 1.10540078967E-08 1.17668855257E-08 1.25257356637E-08 1.33335228961E-08 1.41934029696E-08 1.51087351220E-08 1.60830951973E-08 1.71202896141E-08 1.82243702359E-08 1.93996501842E-08 2.06507206972E-08 2.19824690494E-08 2.34000976480E-08 2.49091443378E-08 2.65155040371E-08 2.82254517578E-08 3.00456671011E-08 3.19832603538E-08 3.40458002435E-08 3.62413434966E-08 3.85784663029E-08 4.10662977913E-08 4.37145556893E-08 4.65335842527E-08 4.95343946671E-08 5.27287080262E-08 5.61290011042E-08 5.97485550627E-08 6.36015072973E-08 6.77029066357E-08 7.20687720790E-08 7.67161553405E-08 8.16632074040E-08 8.69292493785E-08 9.25348479108E-08 9.85018954686E-08 1.04853695779E-07 1.11615054789E-07 1.18812377470E-07 1.26473770873E-07 1.34629153812E-07 1.43310373617E-07 1.52551330408E-07 1.62388109366E-07 1.72859121539E-07 1.84005253702E-07 1.95870027867E-07 2.08499771080E-07 2.21943796139E-07 2.36254593950E-07 2.51488038274E-07 2.67703603651E-07 2.84964597356E-07 3.03338406287E-07 3.22896759741E-07 3.43716009115E-07 3.65877425598E-07 3.89467517029E-07 4.14578365131E-07 4.41307984475E-07 4.69760704507E-07 5.00047576168E-07 5.32286804681E-07 5.66604210156E-07 6.03133717837E-07 6.42017879875E-07 6.83408430643E-07 7.27466877759E-07 7.74365131121E-07 8.24286172359E-07 8.77424767322E-07 9.33988224359E-07 9.94197201313E-07 1.05828656436E-06 1.12650630207E-06 1.19912249806E-06 1.27641836625E-06 1.35869535248E-06 1.44627430693E-06 1.53949673167E-06 1.63872610846E-06 1.74434931152E-06 1.85677811108E-06 1.97645077332E-06 2.10383376284E-06 2.23942355434E-06 2.38374856033E-06 2.53737118241E-06 2.70088999395E-06 2.87494206242E-06 3.06020542054E-06 3.25740169550E-06 3.46729890637E-06 3.69071444051E-06 3.92851822011E-06 4.18163607133E-06 4.45105330844E-06 4.73781854704E-06 5.04304776057E-06 5.36792859574E-06 5.71372496312E-06 6.08178192039E-06 6.47353086681E-06 6.89049506837E-06 7.33429553469E-06 7.80665726977E-06 8.30941592013E-06 8.84452484535E-06 9.41406263760E-06 1.00202411183E-05 1.06654138416E-05 1.13520851375E-05 1.20829197261E-05 1.28607529418E-05 1.36886016022E-05 1.45696755643E-05 1.55073900100E-05 1.65053785053E-05 1.75675068825E-05 1.86978879955E-05 1.99008974020E-05 2.11811900305E-05 2.25437178918E-05 2.39937488995E-05 2.55368868670E-05 2.71790927539E-05 2.89267072360E-05 3.07864746815E-05 3.27655686166E-05 3.48716187716E-05 3.71127398025E-05 3.94975617884E-05 4.20352626105E-05 4.47356023258E-05 4.76089596531E-05 5.06663706963E-05 5.39195700366E-05 5.73810343334E-05 6.10640285780E-05 6.49826551569E-05 6.91519058841E-05 7.35877171755E-05 7.83070285420E-05 8.33278445924E-05 8.86693007412E-05 9.43517328308E-05 1.00396750884E-04 1.06827317216E-04 1.13667829142E-04 1.20944206533E-04 1.28683984472E-04 1.36916411301E-04 1.45672552309E-04 1.54985399392E-04 1.64889986967E-04 1.75423514459E-04 1.86625475707E-04 1.98537795603E-04 2.11204974342E-04 2.24674239628E-04 2.38995707207E-04 2.54222550126E-04 2.70411177087E-04 2.87621420308E-04 3.05916733291E-04 3.25364398910E-04 3.46035748223E-04 3.68006390437E-04 3.91356454425E-04 4.16170842213E-04 4.42539494846E-04 4.70557671009E-04 5.00326238803E-04 5.31951981021E-04 5.65547914269E-04 6.01233622244E-04 6.39135603427E-04 6.79387633442E-04 7.22131142235E-04 7.67515606220E-04 8.15698955415E-04 8.66847995565E-04 9.21138845103E-04 9.78757386744E-04 1.03989973336E-03 1.10477270763E-03 1.17359433489E-03 1.24659434829E-03 1.32401470534E-03 1.40611011463E-03 1.49314857114E-03 1.58541189866E-03 1.68319629715E-03 1.78681289268E-03 1.89658828749E-03 2.01286510683E-03 2.13600253937E-03 2.26637686696E-03 2.40438197958E-03 2.55042987027E-03 2.70495110457E-03 2.86839525833E-03 3.04123131691E-03 3.22394802821E-03 3.41705420128E-03 3.62107894113E-03 3.83657180991E-03 4.06410290333E-03 4.30426283054E-03 4.55766258444E-03 4.82493328858E-03 5.10672580558E-03 5.40371019097E-03 5.71657497510E-03 6.04602625506E-03 6.39278657672E-03 6.75759358666E-03 7.14119843210E-03 7.54436388621E-03 7.96786217519E-03 8.41247248255E-03 8.87897810542E-03 9.36816323708E-03 9.88080934959E-03 1.04176911502E-02 1.09795720852E-02 1.15671993662E-02 1.21812984927E-02 1.28225672495E-02 1.34916691546E-02 1.41892263407E-02 1.49158118523E-02 1.56719413466E-02 1.64580641900E-02 1.72745539466E-02 1.81216982637E-02 1.89996881643E-02 1.99086067654E-02 2.08484174527E-02 2.18189515502E-02 2.28198955359E-02 2.38507778716E-02 2.49109555231E-02 2.59996002708E-02 2.71156849207E-02 2.82579695506E-02 2.94249879430E-02 3.06150343759E-02 3.18261509691E-02 3.30561158002E-02 3.43024320314E-02 3.55623183084E-02 3.68327007153E-02 3.81102065915E-02 3.93911605326E-02 4.06715829181E-02 4.19471913198E-02 4.32134051542E-02 4.44653539490E-02 4.56978895897E-02 4.69056029040E-02 4.80828449256E-02 4.92237531511E-02 5.03222830643E-02 5.13722451551E-02 5.23673475941E-02 5.33012446471E-02 5.41675908214E-02 5.49601006255E-02 5.56726137002E-02 5.62991649360E-02 5.68340590381E-02 5.72719488246E-02 5.76079163657E-02 5.78375558728E-02 5.79570570500E-02 5.79632874175E-02 5.78538719181E-02 5.76272679315E-02 5.72828336498E-02 5.68208876263E-02 5.62427572033E-02 5.55508134667E-02 5.47484903773E-02 5.38402858003E-02 5.28317423130E-02 5.17294059204E-02 5.05407611681E-02 4.92741416132E-02 4.79386152106E-02 4.65438448917E-02 4.50999254537E-02 4.36171988428E-02 4.21060509770E-02 4.05766944020E-02 3.90389422792E-02 3.75019804179E-02 3.59741452495E-02 3.44627167305E-02 3.29737360862E-02 3.15118589909E-02 3.00802551356E-02 2.86805650631E-02 2.73129245602E-02 2.59760656977E-02 2.46675016978E-02 2.33838001269E-02 2.21209453903E-02 2.08747871230E-02 1.96415658308E-02 1.84185010971E-02 1.72044209372E-02 1.60007440179E-02 1.48120490227E-02 1.36434803257E-02 1.25001226658E-02 1.13869504118E-02 1.03087744912E-02 9.27018752793E-03 8.27550782693E-03 7.32872294852E-03 6.43343371719E-03 5.59279961024E-03 4.80948657019E-03 4.08561837725E-03 3.42273280084E-03 2.82174382071E-03 2.28291126216E-03 1.80581922468E-03 1.38936469243E-03 1.03175769461E-03 7.30534327942E-04 4.82583857565E-04 2.84190969656E-04 1.31094054599E-04 1.85601466441E-05 -5.85231701950E-05 -1.05538965119E-04 -1.28015805481E-04 -1.31487311129E-04 -1.21338098307E-04 -1.02638484301E-04 -7.99710906077E-05 -5.72533189013E-05 -3.74239335836E-05 -2.19500649650E-05 -1.12750546334E-05 -4.93889187627E-06 -1.71631107720E-06 -3.92020118048E-07 -3.34108211791E-08 -8.67361737988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 9 2 i j (l(j)) 0.00000000000E+00 Q_int 9.72781085425E-24 1.03552007517E-23 1.10230538211E-23 1.17339797129E-23 1.24907563854E-23 1.32963409599E-23 1.41538812756E-23 1.50667281900E-23 1.60384486722E-23 1.70728397411E-23 1.81739433023E-23 1.93460619419E-23 2.05937757390E-23 2.19219601622E-23 2.33358051212E-23 2.48408352458E-23 2.64429314739E-23 2.81483540313E-23 2.99637668938E-23 3.18962638266E-23 3.39533961034E-23 3.61432020133E-23 3.84742382704E-23 4.09556134497E-23 4.35970235785E-23 4.64087900243E-23 4.94018998256E-23 5.25880486239E-23 5.59796863651E-23 5.95900659471E-23 6.34332950068E-23 6.75243910451E-23 7.18793401087E-23 7.65151592557E-23 8.14499630502E-23 8.67030343453E-23 9.22948996311E-23 9.82474092428E-23 1.04583822741E-22 1.11328899799E-22 1.18508996952E-22 1.26152170586E-22 1.34288286568E-22 1.42949136948E-22 1.52168564187E-22 1.61982593396E-22 1.72429573109E-22 1.83550325126E-22 1.95388304027E-22 2.07989766972E-22 2.21403954450E-22 2.35683282692E-22 2.50883548481E-22 2.67064147188E-22 2.84288304854E-22 3.02623325247E-22 3.22140852860E-22 3.42917152856E-22 3.65033409077E-22 3.88576041276E-22 4.13637042800E-22 4.40314340056E-22 4.68712175164E-22 4.98941513280E-22 5.31120476201E-22 5.65374803923E-22 6.01838345977E-22 6.40653584444E-22 6.81972190713E-22 7.25955618135E-22 7.72775732908E-22 8.22615485649E-22 8.75669626274E-22 9.32145464990E-22 9.92263682364E-22 1.05625919164E-21 1.12438205665E-21 1.19689846898E-21 1.27409178808E-21 1.35626364853E-21 1.44373513866E-21 1.53684805520E-21 1.63596623891E-21 1.74147699625E-21 1.85379261278E-21 1.97335196423E-21 2.10062223135E-21 2.23610072548E-21 2.38031683178E-21 2.53383407781E-21 2.69725233555E-21 2.87121016539E-21 3.05638731134E-21 3.25350735710E-21 3.46334055355E-21 3.68670682846E-21 3.92447899039E-21 4.17758613923E-21 4.44701729668E-21 4.73382527082E-21 5.03913077004E-21 5.36412678223E-21 5.71008323634E-21 6.07835196475E-21 6.47037198551E-21 6.88767512536E-21 7.33189200539E-21 7.80475841271E-21 8.30812208307E-21 8.84394992094E-21 9.41433568525E-21 1.00215081707E-20 1.06678399171E-20 1.13558564797E-20 1.20882462981E-20 1.28678712015E-20 1.36977775912E-20 1.45812083443E-20 1.55216154858E-20 1.65226736768E-20 1.75882945742E-20 1.87226421146E-20 1.99301487858E-20 2.12155329462E-20 2.25838172624E-20 2.40403483350E-20 2.55908175908E-20 2.72412835222E-20 2.89981953606E-20 3.08684182771E-20 3.28592602084E-20 3.49785004126E-20 3.72344198668E-20 3.96358336251E-20 4.21921252641E-20 4.49132835488E-20 4.78099414642E-20 5.08934177641E-20 5.41757611990E-20 5.76697975971E-20 6.13891799815E-20 6.53484419197E-20 6.95630543135E-20 7.40494858524E-20 7.88252673650E-20 8.39090603211E-20 8.93207297522E-20 9.50814218739E-20 1.01213646716E-19 1.07741366079E-19 1.14690087170E-19 1.22086962265E-19 1.29960894816E-19 1.38342652384E-19 1.47264986870E-19 1.56762762488E-19 1.66873092002E-19 1.77635481746E-19 1.89091985989E-19 2.01287371272E-19 2.14269291326E-19 2.28088473286E-19 2.42798915905E-19 2.58458100556E-19 2.75127215843E-19 2.92871396695E-19 3.11759978885E-19 3.31866769956E-19 3.53270337630E-19 3.76054316813E-19 4.00307736396E-19 4.26125367143E-19 4.53608092005E-19 4.82863300325E-19 5.14005307464E-19 5.47155801489E-19 5.82444318676E-19 6.20008749668E-19 6.59995878294E-19 7.02561955125E-19 7.47873308029E-19 7.96106992099E-19 8.47451481500E-19 9.02107405936E-19 9.60288334615E-19 1.02222161078E-18 1.08814924004E-18 1.15832883604E-18 1.23303462707E-18 1.31255852762E-18 1.39721127907E-18 1.48732366386E-18 1.58324779808E-18 1.68535850738E-18 1.79405479155E-18 1.90976138368E-18 2.03293040978E-18 2.16404315548E-18 2.30361194667E-18 2.45218215142E-18 2.61033431101E-18 2.77868640844E-18 2.95789628315E-18 3.14866420161E-18 3.35173559359E-18 3.56790396492E-18 3.79801399820E-18 4.04296485334E-18 4.30371368111E-18 4.58127936317E-18 4.87674649343E-18 5.19126961606E-18 5.52607773697E-18 5.88247912610E-18 6.26186642958E-18 6.66572211147E-18 7.09562424656E-18 7.55325268671E-18 8.04039562491E-18 8.55895658271E-18 9.11096184820E-18 9.69856839386E-18 1.03240723049E-17 1.09899177514E-17 1.16987065386E-17 1.24532082742E-17 1.32563711897E-17 1.41113336617E-17 1.50214364743E-17 1.59902358738E-17 1.70215174647E-17 1.81193110021E-17 1.92879061377E-17 2.05318691820E-17 2.18560609476E-17 2.32656557419E-17 2.47661615871E-17 2.63634417418E-17 2.80637376125E-17 2.98736931417E-17 3.18003807695E-17 3.38513290690E-17 3.60345521647E-17 3.83585810474E-17 4.08324969099E-17 4.34659666312E-17 4.62692805505E-17 4.92533926769E-17 5.24299634924E-17 5.58114055150E-17 5.94109318018E-17 6.32426075784E-17 6.73214051997E-17 7.16632626543E-17 7.62851458426E-17 8.12051148716E-17 8.64423946249E-17 9.20174498847E-17 9.79520652977E-17 1.04269430500E-16 1.10994230730E-16 1.18152743287E-16 1.25772940211E-16 1.33884597583E-16 1.42519411875E-16 1.51711123808E-16 1.61495650190E-16 1.71911224265E-16 1.82998545108E-16 1.94800936660E-16 2.07364517015E-16 2.20738378626E-16 2.34974780141E-16 2.50129350597E-16 2.66261306798E-16 2.83433684700E-16 3.01713585731E-16 3.21172438987E-16 3.41886280345E-16 3.63936049574E-16 3.87407906607E-16 4.12393568216E-16 4.38990666395E-16 4.67303129859E-16 4.97441590150E-16 5.29523813926E-16 5.63675163143E-16 6.00029084908E-16 6.38727632923E-16 6.79922022565E-16 7.23773221762E-16 7.70452579982E-16 8.20142497777E-16 8.73037139526E-16 9.29343192127E-16 9.89280672638E-16 1.05308378799E-15 1.12100185017E-15 1.19330025038E-15 1.27026149610E-15 1.35218631497E-15 1.43939482988E-15 1.53222780988E-15 1.63104800170E-15 1.73624154726E-15 1.84821949245E-15 1.96741939336E-15 2.09430702598E-15 2.22937820629E-15 2.37316072764E-15 2.52621642308E-15 2.68914336082E-15 2.86257818109E-15 3.04719858390E-15 3.24372597713E-15 3.45292829544E-15 3.67562300101E-15 3.91268027778E-15 4.16502643171E-15 4.43364751032E-15 4.71959315570E-15 5.02398070602E-15 5.34799956153E-15 5.69291583215E-15 6.06007728486E-15 6.45091861007E-15 6.86696702774E-15 7.30984825497E-15 7.78129285857E-15 8.28314301725E-15 8.81735971995E-15 9.38603042846E-15 9.99137723422E-15 1.06357655411E-14 1.13217133084E-14 1.20519008897E-14 1.28291815063E-14 1.36565923965E-14 1.45373666834E-14 1.54749460084E-14 1.64729939798E-14 1.75354104877E-14 1.86663469436E-14 1.98702225019E-14 2.11517413275E-14 2.25159109775E-14 2.39680619688E-14 2.55138686064E-14 2.71593711564E-14 2.89109994481E-14 3.07755979986E-14 3.27604527584E-14 3.48733195805E-14 3.71224545271E-14 3.95166461300E-14 4.20652497320E-14 4.47782240430E-14 4.76661700536E-14 5.07403724587E-14 5.40128437528E-14 5.74963711685E-14 6.12045666429E-14 6.51519200067E-14 6.93538556028E-14 7.38267925575E-14 7.85882089380E-14 8.36567100484E-14 8.90521011300E-14 9.47954647504E-14 1.00909243184E-13 1.07417326104E-13 1.14345143934E-13 1.21719767215E-13 1.29570012386E-13 1.37926554381E-13 1.46822046497E-13 1.56291247979E-13 1.66371159851E-13 1.77101169490E-13 1.88523204536E-13 2.00681896724E-13 2.13624756282E-13 2.27402357578E-13 2.42068536738E-13 2.57680602011E-13 2.74299557705E-13 2.91990342553E-13 3.10822083470E-13 3.30868365661E-13 3.52207520154E-13 3.74922929882E-13 3.99103355502E-13 4.24843282221E-13 4.52243289004E-13 4.81410441577E-13 5.12458710797E-13 5.45509417981E-13 5.80691708974E-13 6.18143058787E-13 6.58009808773E-13 7.00447738460E-13 7.45622674257E-13 7.93711137413E-13 8.44901033782E-13 8.99392388052E-13 9.57398125345E-13 1.01914490322E-12 1.08487399732E-12 1.15484224417E-12 1.22932304477E-12 1.30860743286E-12 1.39300521217E-12 1.48284616695E-12 1.57848135063E-12 1.68028445749E-12 1.78865328292E-12 1.90401127776E-12 2.02680920293E-12 2.15752689080E-12 2.29667512006E-12 2.44479761161E-12 2.60247315313E-12 2.77031786067E-12 2.94898758609E-12 3.13918047979E-12 3.34163971872E-12 3.55715641027E-12 3.78657268354E-12 4.03078497989E-12 4.29074755576E-12 4.56747621137E-12 4.86205225994E-12 5.17562675282E-12 5.50942497723E-12 5.86475124522E-12 6.24299398702E-12 6.64563117119E-12 7.07423610509E-12 7.53048355219E-12 8.01615628983E-12 8.53315206226E-12 9.08349102750E-12 9.66932361980E-12 1.02929389564E-11 1.09567738020E-11 1.16634220831E-11 1.24156449848E-11 1.32163818032E-11 1.40687613955E-11 1.49761143892E-11 1.59419862544E-11 1.69701510877E-11 1.80646264067E-11 1.92296888127E-11 2.04698907526E-11 2.17900782569E-11 2.31954098995E-11 2.46913769364E-11 2.62838248049E-11 2.79789758862E-11 2.97834539180E-11 3.17043097823E-11 3.37490491202E-11 3.59256615991E-11 3.82426522531E-11 4.07090745461E-11 4.33345658627E-11 4.61293851632E-11 4.91044530068E-11 5.22713941290E-11 5.56425832904E-11 5.92311930576E-11 6.30512456603E-11 6.71176675993E-11 7.14463481343E-11 7.60542011614E-11 8.09592315046E-11 8.61806049995E-11 9.17387237373E-11 9.76553055649E-11 1.03953468820E-10 1.10657822928E-10 1.17794564459E-10 1.25391579458E-10 1.33478552268E-10 1.42087081840E-10 1.51250804936E-10 1.61005527656E-10 1.71389365292E-10 1.82442891254E-10 1.94209295769E-10 2.06734554276E-10 2.20067607395E-10 2.34260552022E-10 2.49368845007E-10 2.65451519410E-10 2.82571415677E-10 3.00795426916E-10 3.20194760346E-10 3.40845215074E-10 3.62827479370E-10 3.86227444532E-10 4.11136541200E-10 4.37652096774E-10 4.65877715455E-10 4.95923682652E-10 5.27907396460E-10 5.61953825897E-10 5.98195999680E-10 6.36775525428E-10 6.77843142923E-10 7.21559314134E-10 7.68094848005E-10 8.17631569896E-10 8.70363031336E-10 9.26495265236E-10 9.86247592391E-10 1.04985347679E-09 1.11756143968E-09 1.18963602790E-09 1.26635884987E-09 1.34802967433E-09 1.43496760253E-09 1.52751231340E-09 1.62602539257E-09 1.73089174301E-09 1.84252108995E-09 1.96134958150E-09 2.08784149201E-09 2.22249103612E-09 2.36582430010E-09 2.51840129552E-09 2.68081814850E-09 2.85370942834E-09 3.03775062534E-09 3.23366079075E-09 3.44220534566E-09 3.66419906996E-09 3.90050928656E-09 4.15205925062E-09 4.41983175079E-09 4.70487295554E-09 5.00829649491E-09 5.33128781249E-09 5.67510879585E-09 6.04110270327E-09 6.43069941760E-09 6.84542102307E-09 7.28688775569E-09 7.75682433021E-09 8.25706668041E-09 8.78956912484E-09 9.35641200322E-09 9.95980980193E-09 1.06021198030E-08 1.12858512920E-08 1.20136753567E-08 1.27884353218E-08 1.36131578514E-08 1.44910647754E-08 1.54255856644E-08 1.64203712281E-08 1.74793075749E-08 1.86065313865E-08 1.98064460703E-08 2.10837389587E-08 2.24433996168E-08 2.38907393195E-08 2.54314117977E-08 2.70714353146E-08 2.88172161690E-08 3.06755737028E-08 3.26537669382E-08 3.47595229133E-08 3.70010668637E-08 3.93871543181E-08 4.19271053110E-08 4.46308407440E-08 4.75089211344E-08 5.05725878379E-08 5.38338069428E-08 5.73053159721E-08 6.10006736171E-08 6.49343126644E-08 6.91215963278E-08 7.35788782276E-08 7.83235662177E-08 8.33741903271E-08 8.87504750983E-08 9.44734165467E-08 1.00565364122E-07 1.07050107923E-07 1.13952971532E-07 1.21300910839E-07 1.29122619226E-07 1.37448639529E-07 1.46311483201E-07 1.55745757163E-07 1.65788298819E-07 1.76478319766E-07 1.87857558757E-07 1.99970444509E-07 2.12864269005E-07 2.26589371949E-07 2.41199337092E-07 2.56751201193E-07 2.73305676455E-07 2.90927387243E-07 3.09685122076E-07 3.29652101793E-07 3.50906265032E-07 3.73530572016E-07 3.97613327946E-07 4.23248527155E-07 4.50536219425E-07 4.79582899866E-07 5.10501923867E-07 5.43413948731E-07 5.78447403729E-07 6.15738990351E-07 6.55434214744E-07 6.97687954374E-07 7.42665061088E-07 7.90541002973E-07 8.41502547437E-07 8.95748488192E-07 9.53490418921E-07 1.01495355667E-06 1.08037761811E-06 1.15001775205E-06 1.22414553184E-06 1.30305001152E-06 1.38703884961E-06 1.47643950521E-06 1.57160051071E-06 1.67289282610E-06 1.78071128028E-06 1.89547610464E-06 2.01763456501E-06 2.14766269817E-06 2.28606715960E-06 2.43338718964E-06 2.59019670544E-06 2.75710652698E-06 2.93476674536E-06 3.12386924275E-06 3.32515037343E-06 3.53939381622E-06 3.76743360930E-06 4.01015737873E-06 4.26850977337E-06 4.54349611884E-06 4.83618630482E-06 5.14771892010E-06 5.47930565139E-06 5.83223596226E-06 6.20788207021E-06 6.60770424038E-06 7.03325641616E-06 7.48619220768E-06 7.96827126089E-06 8.48136603101E-06 9.02746898587E-06 9.60870026597E-06 1.02273158300E-05 1.08857161162E-05 1.15864552515E-05 1.23322508429E-05 1.31259943878E-05 1.39707623403E-05 1.48698278763E-05 1.58266733985E-05 1.68450038291E-05 1.79287607375E-05 1.90821373550E-05 2.03095945309E-05 2.16158776881E-05 2.30060348387E-05 2.44854357258E-05 2.60597921576E-05 2.77351796098E-05 2.95180601695E-05 3.14153069045E-05 3.34342297421E-05 3.55826029496E-05 3.78686943105E-05 4.03012960993E-05 4.28897579612E-05 4.56440218085E-05 4.85746588540E-05 5.16929089066E-05 5.50107220596E-05 5.85408029138E-05 6.22966574784E-05 6.62926429077E-05 7.05440202319E-05 7.50670102553E-05 7.98788527992E-05 8.49978694779E-05 9.04435302042E-05 9.62365236305E-05 1.02398831743E-04 1.08953808831E-04 1.15926265073E-04 1.23342554981E-04 1.31230670958E-04 1.39620342248E-04 1.48543139538E-04 1.58032585516E-04 1.68124271680E-04 1.78855981702E-04 1.90267821676E-04 2.02402357579E-04 2.15304760273E-04 2.29022958417E-04 2.43607799631E-04 2.59113220282E-04 2.75596424268E-04 2.93118071165E-04 3.11742474136E-04 3.31537807970E-04 3.52576327637E-04 3.74934597753E-04 3.98693733310E-04 4.23939652063E-04 4.50763338920E-04 4.79261122668E-04 5.09534965393E-04 5.41692764844E-04 5.75848670063E-04 6.12123410471E-04 6.50644638624E-04 6.91547286775E-04 7.34973937317E-04 7.81075207121E-04 8.30010145702E-04 8.81946647051E-04 9.37061874875E-04 9.95542700861E-04 1.05758615545E-03 1.12339989049E-03 1.19320265282E-03 1.26722476803E-03 1.34570863280E-03 1.42890921476E-03 1.51709455781E-03 1.61054629122E-03 1.70956013992E-03 1.81444643362E-03 1.92553061148E-03 2.04315371920E-03 2.16767289439E-03 2.29946183611E-03 2.43891125362E-03 2.58642928897E-03 2.74244190744E-03 2.90739324915E-03 3.08174593452E-03 3.26598131563E-03 3.46059966448E-03 3.66612028864E-03 3.88308156381E-03 4.11204087179E-03 4.35357443164E-03 4.60827701080E-03 4.87676150170E-03 5.15965834881E-03 5.45761480975E-03 5.77129403303E-03 6.10137393433E-03 6.44854585169E-03 6.81351295965E-03 7.19698842096E-03 7.59969325390E-03 8.02235389272E-03 8.46569941772E-03 8.93045843147E-03 9.41735555720E-03 9.92710753570E-03 1.04604188970E-02 1.10179771843E-02 1.16004477074E-02 1.22084678074E-02 1.28426406106E-02 1.35035282599E-02 1.41916446076E-02 1.49074473620E-02 1.56513296833E-02 1.64236112296E-02 1.72245286600E-02 1.80542256100E-02 1.89127421609E-02 1.98000038364E-02 2.07158101686E-02 2.16598228869E-02 2.26315537988E-02 2.36303524421E-02 2.46553936057E-02 2.57056648320E-02 2.67799540310E-02 2.78768373550E-02 2.89946675020E-02 3.01315626351E-02 3.12853961267E-02 3.24537873550E-02 3.36340938009E-02 3.48234047126E-02 3.60185366216E-02 3.72160310121E-02 3.84121544549E-02 3.96029015307E-02 4.07840008695E-02 4.19509246357E-02 4.30989017798E-02 4.42229353664E-02 4.53178242650E-02 4.63781894594E-02 4.73985051895E-02 4.83731350858E-02 4.92963733916E-02 5.01624912870E-02 5.09657882367E-02 5.17006481755E-02 5.23616002228E-02 5.29433834817E-02 5.34410153290E-02 5.38498624423E-02 5.41657136388E-02 5.43848534258E-02 5.45041349826E-02 5.45210511174E-02 5.44338015733E-02 5.42413549037E-02 5.39435030054E-02 5.35409062957E-02 5.30351274617E-02 5.24286516987E-02 5.17248914060E-02 5.09281734365E-02 5.00437071986E-02 4.90775322139E-02 4.80364441325E-02 4.69278987192E-02 4.57598939425E-02 4.45408310324E-02 4.32793562083E-02 4.19841857156E-02 4.06639178189E-02 3.93268364684E-02 3.79807124425E-02 3.66326088345E-02 3.52886987463E-02 3.39541039086E-02 3.26327636037E-02 3.13273436417E-02 3.00391951498E-02 2.87683724945E-02 2.75137186761E-02 2.62730249356E-02 2.50432690228E-02 2.38209335307E-02 2.26024018774E-02 2.13844249063E-02 2.01646457157E-02 1.89421643005E-02 1.77184896911E-02 1.64982917409E-02 1.52869335727E-02 1.40898531288E-02 1.29125174647E-02 1.17603729257E-02 1.06387914418E-02 9.55301327311E-03 8.50808664021E-03 7.50880478365E-03 6.55964112034E-03 5.66468328885E-03 4.82756701102E-03 4.05141083569E-03 3.33875297280E-03 2.69149156964E-03 2.11082992359E-03 1.59722826427E-03 1.15036386872E-03 7.69101393106E-04 4.51475407423E-04 1.94687202279E-04 -4.88200867829E-06 -1.51639345771E-04 -2.50727855122E-04 -3.07951380185E-04 -3.29674785738E-04 -3.22697802827E-04 -2.94101037194E-04 -2.51063046706E-04 -2.00647856644E-04 -1.49562856470E-04 -1.03526579771E-04 -6.58126075048E-05 -3.78798342357E-05 -1.93742990985E-05 -8.21469795588E-06 -2.44615240157E-06 -3.07280910758E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.04899491579E-23 1.11664927529E-23 1.18866696610E-23 1.26532939890E-23 1.34693613383E-23 1.43380605098E-23 1.52627859642E-23 1.62471510865E-23 1.72950023047E-23 1.84104341202E-23 1.95978051072E-23 2.08617549434E-23 2.22072225405E-23 2.36394653422E-23 2.51640798684E-23 2.67870235835E-23 2.85146381754E-23 3.03536743356E-23 3.23113181379E-23 3.43952191179E-23 3.66135201640E-23 3.89748893359E-23 4.14885537347E-23 4.41643355588E-23 4.70126904838E-23 5.00447485185E-23 5.32723574955E-23 5.67081293671E-23 6.03654894864E-23 6.42587290677E-23 6.84030610291E-23 7.28146794380E-23 7.75108227890E-23 8.25098413643E-23 8.78312689378E-23 9.34958991032E-23 9.95258665260E-23 1.05944733435E-22 1.12777581692E-22 1.20051110800E-22 1.27793742232E-22 1.36035730489E-22 1.44809281319E-22 1.54148677563E-22 1.64090413113E-22 1.74673335519E-22 1.85938797778E-22 1.97930819930E-22 2.10696261062E-22 2.24285002413E-22 2.38750142284E-22 2.54148203524E-22 2.70539354391E-22 2.87987643665E-22 3.06561250914E-22 3.26332752912E-22 3.47379407233E-22 3.69783454137E-22 3.93632437922E-22 4.19019549011E-22 4.46043988094E-22 4.74811353752E-22 5.05434055091E-22 5.38031750984E-22 5.72731817634E-22 6.09669846306E-22 6.48990173150E-22 6.90846443197E-22 7.35402210732E-22 7.82831578384E-22 8.33319877438E-22 8.87064392020E-22 9.44275129988E-22 1.00517564354E-21 1.07000390277E-21 1.13901322549E-21 1.21247326714E-21 1.29067107442E-21 1.37391220697E-21 1.46252193133E-21 1.55684649190E-21 1.65725446397E-21 1.76413819386E-21 1.87791533208E-21 1.99903046525E-21 2.12795685341E-21 2.26519827920E-21 2.41129101648E-21 2.56680592580E-21 2.73235068504E-21 2.90857216394E-21 3.09615895177E-21 3.29584404797E-21 3.50840772639E-21 3.73468058423E-21 3.97554678759E-21 4.23194752639E-21 4.50488469208E-21 4.79542479259E-21 5.10470311965E-21 5.43392818505E-21 5.78438644288E-21 6.15744731640E-21 6.55456854908E-21 6.97730190075E-21 7.42729921118E-21 7.90631885462E-21 8.41623261074E-21 8.95903297861E-21 9.53684096247E-21 1.01519143596E-20 1.08066565825E-20 1.15036260509E-20 1.22455461879E-20 1.30353160626E-20 1.38760217180E-20 1.47709482296E-20 1.57235925424E-20 1.67376771345E-20 1.78171645635E-20 1.89662729501E-20 2.01894924602E-20 2.14916028507E-20 2.28776921460E-20 2.43531765203E-20 2.59238214608E-20 2.75957642966E-20 2.93755381808E-20 3.12700976185E-20 3.32868456417E-20 3.54336627371E-20 3.77189376392E-20 4.01516001093E-20 4.27411558287E-20 4.54977235428E-20 4.84320745995E-20 5.15556750395E-20 5.48807303993E-20 5.84202334048E-20 6.21880147408E-20 6.61987970948E-20 7.04682526858E-20 7.50130645042E-20 7.98509915009E-20 8.50009379806E-20 9.04830274709E-20 9.63186813556E-20 1.02530702579E-19 1.09143364748E-19 1.16182506985E-19 1.23675634889E-19 1.31652028022E-19 1.40142854312E-19 1.49181291848E-19 1.58802658519E-19 1.69044550026E-19 1.79946986780E-19 1.91552570292E-19 2.03906649629E-19 2.17057498625E-19 2.31056504507E-19 2.45958368695E-19 2.61821320546E-19 2.78707344889E-19 2.96682424229E-19 3.15816796580E-19 3.36185229916E-19 3.57867314331E-19 3.80947773042E-19 4.05516793440E-19 4.31670379506E-19 4.59510726944E-19 4.89146622515E-19 5.20693869124E-19 5.54275738320E-19 5.90023451985E-19 6.28076695085E-19 6.68584161492E-19 7.11704135009E-19 7.57605107866E-19 8.06466439109E-19 8.58479055449E-19 9.13846197310E-19 9.72784213000E-19 1.03552340409E-18 1.10230892533E-18 1.17340174258E-18 1.24907965258E-18 1.32963836839E-18 1.41539267494E-18 1.50667765904E-18 1.60385001874E-18 1.70728945714E-18 1.81740016607E-18 1.93461240553E-18 2.05938418487E-18 2.19220305251E-18 2.33358800106E-18 2.48409149526E-18 2.64430163077E-18 2.81484443216E-18 2.99638629910E-18 3.18963661038E-18 3.39535049575E-18 3.61433178667E-18 3.84743615727E-18 4.09557446791E-18 4.35971632439E-18 4.64089386673E-18 4.94020580225E-18 5.25882169880E-18 5.59798655486E-18 5.95902566444E-18 6.34334979564E-18 6.75246070331E-18 7.18795699714E-18 7.65154038828E-18 8.14502233884E-18 8.67033114018E-18 9.22951944776E-18 9.82477230194E-18 1.04584156661E-17 1.11329255153E-17 1.18509375113E-17 1.26152573014E-17 1.34288714818E-17 1.42949592672E-17 1.52169049144E-17 1.61983109458E-17 1.72430122266E-17 1.83550909494E-17 1.95388925859E-17 2.07990428663E-17 2.21404658549E-17 2.35684031909E-17 2.50884345700E-17 2.67064995476E-17 2.84289207471E-17 3.02624285664E-17 3.22141874766E-17 3.42918240175E-17 3.65034565983E-17 3.88577272208E-17 4.13638352478E-17 4.40315733501E-17 4.68713657713E-17 4.98943090611E-17 5.31122154350E-17 5.65376589310E-17 6.01840245425E-17 6.40655605212E-17 6.81974340516E-17 7.25957905178E-17 7.72778165913E-17 8.22618073888E-17 8.75672379605E-17 9.32148393894E-17 9.92266797980E-17 1.05626250581E-16 1.12438558196E-16 1.19690221882E-16 1.27409577666E-16 1.35626789097E-16 1.44373965101E-16 1.53685285454E-16 1.63597134338E-16 1.74148242513E-16 1.85379838655E-16 1.97335810465E-16 2.10062876155E-16 2.23610767003E-16 2.38032421677E-16 2.53384193097E-16 2.69726068633E-16 2.87121904508E-16 3.05639675316E-16 3.25351739635E-16 3.46335122770E-16 3.68671817730E-16 3.92449105618E-16 4.17759896685E-16 4.44703093376E-16 4.73383976794E-16 5.03914618089E-16 5.36414316378E-16 5.71010064909E-16 6.07837047288E-16 6.47039165714E-16 6.88769603278E-16 7.33191422528E-16 7.80478202642E-16 8.30814717692E-16 8.84397658648E-16 9.41436401956E-16 1.00215382768E-15 1.06678719041E-15 1.13558904633E-15 1.20882824011E-15 1.28679095540E-15 1.36978183310E-15 1.45812516175E-15 1.55216614471E-15 1.65227224903E-15 1.75883464135E-15 1.87226971638E-15 1.99302072395E-15 2.12155950108E-15 2.25838831562E-15 2.40404182891E-15 2.55908918498E-15 2.72413623447E-15 2.89982790203E-15 3.08685070635E-15 3.28593544275E-15 3.49786003879E-15 3.72345259403E-15 3.96359461582E-15 4.21922446384E-15 4.49134101674E-15 4.78100757529E-15 5.08935601720E-15 5.41759122004E-15 5.76699576921E-15 6.13893496977E-15 6.53486218131E-15 6.95632449702E-15 7.40496878899E-15 7.88254814335E-15 8.39092871053E-15 8.93209699723E-15 9.50816762877E-15 1.01213916120E-14 1.07741651311E-14 1.14690389108E-14 1.22087281833E-14 1.29961232982E-14 1.38343010164E-14 1.47265365327E-14 1.56763162737E-14 1.66873515210E-14 1.77635929131E-14 1.89092458827E-14 2.01287870892E-14 2.14269819116E-14 2.28089030692E-14 2.42799504433E-14 2.58458721772E-14 2.75127871373E-14 2.92872088227E-14 3.11760708166E-14 3.31867538794E-14 3.53271147893E-14 3.76055170425E-14 4.00308635340E-14 4.26126313452E-14 4.53609087764E-14 4.82864347665E-14 5.14006408554E-14 5.47156958536E-14 5.82445533909E-14 6.20010025338E-14 6.59997216658E-14 7.02563358437E-14 7.47874778522E-14 7.96108531973E-14 8.47453092901E-14 9.02109090937E-14 9.60290095189E-14 1.02222344877E-13 1.08815115714E-13 1.15833083375E-13 1.23303670664E-13 1.31256069005E-13 1.39721352499E-13 1.48732599355E-13 1.58325021137E-13 1.68536100355E-13 1.79405736929E-13 1.90976404099E-13 2.03293314387E-13 2.16404596264E-13 2.30361482217E-13 2.45218508936E-13 2.61033730417E-13 2.77868944810E-13 2.95789935891E-13 3.14866730116E-13 3.35173870249E-13 3.56790706636E-13 3.79801707267E-13 4.04296787834E-13 4.30371663078E-13 4.58128220793E-13 4.87674919950E-13 5.19127214505E-13 5.52608004528E-13 5.88248116440E-13 6.26186814213E-13 6.66572343545E-13 7.09562511126E-13 7.55325301268E-13 8.04039532304E-13 8.55895555313E-13 9.11095997920E-13 9.69856556058E-13 1.03240683680E-12 1.09899125554E-12 1.16986999104E-12 1.24532000210E-12 1.32563610973E-12 1.41113214917E-12 1.50214219623E-12 1.59902187263E-12 1.70214973563E-12 1.81192875720E-12 1.92878789865E-12 2.05318378676E-12 2.18560249807E-12 2.32656145816E-12 2.47661146355E-12 2.63633883383E-12 2.80636770279E-12 2.98736245709E-12 3.18003033242E-12 3.38512417695E-12 3.60344539308E-12 3.83584706886E-12 4.08323731144E-12 4.34658279542E-12 4.62691254011E-12 4.92532193037E-12 5.24297699681E-12 5.58111897192E-12 5.94106914021E-12 6.32423400199E-12 6.73211076486E-12 7.16629320456E-12 7.62847787039E-12 8.12047074838E-12 8.64419428933E-12 9.20169492993E-12 9.79515109451E-12 1.04268816790E-11 1.10993551870E-11 1.18151992597E-11 1.25772110556E-11 1.33883681063E-11 1.42518399800E-11 1.51710006764E-11 1.61494417651E-11 1.71909864891E-11 1.82997046360E-11 1.94799284851E-11 2.07362697017E-11 2.20736374038E-11 2.34972572904E-11 2.50126920816E-11 2.66258632855E-11 2.83430742889E-11 3.01710349972E-11 3.21168880781E-11 3.41882368521E-11 3.63931750059E-11 3.87403181875E-11 4.12388377009E-11 4.38984964020E-11 4.67296867131E-11 4.97434713398E-11 5.29516264400E-11 5.63666876675E-11 6.00019990342E-11 6.38717653534E-11 6.79911074411E-11 7.23761211545E-11 7.70439406950E-11 8.20128051872E-11 8.73021299778E-11 9.29325825837E-11 9.89261634549E-11 1.05306292079E-10 1.12097898035E-10 1.19327518848E-10 1.27023403493E-10 1.35215622825E-10 1.43936187007E-10 1.53219170548E-10 1.63100845705E-10 1.73619823854E-10 1.84817206480E-10 1.96736746100E-10 2.09425016434E-10 2.22931595282E-10 2.37309257607E-10 2.52614182140E-10 2.68906170354E-10 2.86248880822E-10 3.04710077174E-10 3.24361893585E-10 3.45281116312E-10 3.67549483263E-10 3.91254004268E-10 4.16487300233E-10 4.43347965453E-10 4.71940952736E-10 5.02377983345E-10 5.34777983475E-10 5.69267549511E-10 6.05981441620E-10 6.45063111307E-10 6.86665260320E-10 7.30950439703E-10 7.78091682823E-10 8.28273181949E-10 8.81691008360E-10 9.38553877990E-10 9.99083966440E-10 1.06351777833E-09 1.13210706950E-09 1.20511983226E-09 1.28284134165E-09 1.36557526989E-09 1.45364487256E-09 1.54739425235E-09 1.64718970286E-09 1.75342113931E-09 1.86650362229E-09 1.98687898007E-09 2.11501753210E-09 2.25141993025E-09 2.39661911066E-09 2.55118237898E-09 2.71571362545E-09 2.89085568293E-09 3.07729283967E-09 3.27575351243E-09 3.48701309074E-09 3.71189696969E-09 3.95128376669E-09 4.20610876364E-09 4.47736755211E-09 4.76611992727E-09 5.07349402653E-09 5.40069073669E-09 5.74898838369E-09 6.11974772744E-09 6.51441727798E-09 6.93453895118E-09 7.38175409260E-09 7.85780989085E-09 8.36456619946E-09 8.90400280459E-09 9.47822715513E-09 1.00894825939E-08 1.07401571241E-08 1.14327927324E-08 1.21700953191E-08 1.29549452665E-08 1.37904086913E-08 1.46797494143E-08 1.56264417124E-08 1.66341838873E-08 1.77069127072E-08 1.88488187809E-08 2.00643629301E-08 2.13582936010E-08 2.27356654160E-08 2.42018589062E-08 2.57626015333E-08 2.74239900448E-08 2.91925142860E-08 3.10750825453E-08 3.30790485262E-08 3.52122400642E-08 3.74829896887E-08 3.99001671606E-08 4.24732141042E-08 4.52121808726E-08 4.81277657843E-08 5.12313568956E-08 5.45350764564E-08 5.80518282425E-08 6.17953479225E-08 6.57802566871E-08 7.00221183234E-08 7.45374999658E-08 7.93440367700E-08 8.44605007463E-08 8.99068740334E-08 9.57044268832E-08 1.01875800691E-07 1.08445096342E-07 1.15437968281E-07 1.22881724633E-07 1.30805433749E-07 1.39240037653E-07 1.48218472774E-07 1.57775798450E-07 1.67949333731E-07 1.78778802961E-07 1.90306490764E-07 2.02577406993E-07 2.15639462309E-07 2.29543655056E-07 2.44344270185E-07 2.60099090957E-07 2.76869624310E-07 2.94721340704E-07 3.13723929418E-07 3.33951570275E-07 3.55483222861E-07 3.78402934344E-07 4.02800167127E-07 4.28770147537E-07 4.56414237005E-07 4.85840327085E-07 5.17163259893E-07 5.50505275598E-07 5.85996488680E-07 6.23775394837E-07 6.63989410457E-07 7.06795446795E-07 7.52360521063E-07 8.00862406789E-07 8.52490325985E-07 9.07445685786E-07 9.65942862422E-07 1.02821003558E-06 1.09449007631E-06 1.16504149201E-06 1.24013943206E-06 1.32007675805E-06 1.40516518266E-06 1.49573648168E-06 1.59214378379E-06 1.69476294307E-06 1.80399399960E-06 1.92026273361E-06 2.04402231945E-06 2.17575508537E-06 2.31597438627E-06 2.46522659629E-06 2.62409322907E-06 2.79319319381E-06 2.97318519569E-06 3.16477028993E-06 3.36869459923E-06 3.58575220503E-06 3.81678822354E-06 4.06270207843E-06 4.32445098249E-06 4.60305364173E-06 4.89959419583E-06 5.21522641004E-06 5.55117813441E-06 5.90875604725E-06 6.28935070089E-06 6.69444188865E-06 7.12560435346E-06 7.58451385963E-06 8.07295365054E-06 8.59282131674E-06 9.14613609999E-06 9.73504666088E-06 1.03618393389E-05 1.10289469359E-05 1.17389580555E-05 1.24946270339E-05 1.32988844973E-05 1.41548485873E-05 1.50658368938E-05 1.60353791401E-05 1.70672306672E-05 1.81653867661E-05 1.93340979108E-05 2.05778859471E-05 2.19015612966E-05 2.33102412377E-05 2.48093693298E-05 2.64047360501E-05 2.81025007173E-05 2.99092147806E-05 3.18318465555E-05 3.38778074950E-05 3.60549800887E-05 3.83717474861E-05 4.08370249490E-05 4.34602932408E-05 4.62516340677E-05 4.92217676942E-05 5.23820928599E-05 5.57447291327E-05 5.93225618405E-05 6.31292897321E-05 6.71794755230E-05 7.14885994944E-05 7.60731163165E-05 8.09505152829E-05 8.61393841451E-05 9.16594767507E-05 9.75317846966E-05 1.03778613218E-04 1.10423661544E-04 1.17492107969E-04 1.25010699879E-04 1.33007849013E-04 1.41513732225E-04 1.50560398035E-04 1.60181879268E-04 1.70414312092E-04 1.81296061768E-04 1.92867855457E-04 2.05172922411E-04 2.18257141913E-04 2.32169199325E-04 2.46960750610E-04 2.62686595729E-04 2.79404861272E-04 2.97177192747E-04 3.16068956913E-04 3.36149454561E-04 3.57492144158E-04 3.80174876748E-04 4.04280142529E-04 4.29895329478E-04 4.57112994445E-04 4.86031147056E-04 5.16753546809E-04 5.49390013683E-04 5.84056752575E-04 6.20876691835E-04 6.59979836132E-04 7.01503633846E-04 7.45593359090E-04 7.92402508459E-04 8.42093212459E-04 8.94836661539E-04 9.50813546503E-04 1.01021451300E-03 1.07324062965E-03 1.14010386917E-03 1.21102760182E-03 1.28624710015E-03 1.36601005398E-03 1.45057709411E-03 1.54022232334E-03 1.63523385266E-03 1.73591434057E-03 1.84258153292E-03 1.95556880030E-03 2.07522566974E-03 2.20191834686E-03 2.33603022428E-03 2.47796237153E-03 2.62813400101E-03 2.78698290425E-03 2.95496585170E-03 3.13255894885E-03 3.32025794069E-03 3.51857845558E-03 3.72805617900E-03 3.94924694652E-03 4.18272674469E-03 4.42909160723E-03 4.68895739328E-03 4.96295943312E-03 5.25175202590E-03 5.55600777267E-03 5.87641672721E-03 6.21368534556E-03 6.56853521467E-03 6.94170153903E-03 7.33393136347E-03 7.74598150922E-03 8.17861619951E-03 8.63260435034E-03 9.10871650133E-03 9.60772136147E-03 1.01303819439E-02 1.06774512646E-02 1.12496675800E-02 1.18477491386E-02 1.24723884247E-02 1.31242458722E-02 1.38039430289E-02 1.45120551564E-02 1.52491032513E-02 1.60155454805E-02 1.68117680263E-02 1.76380753444E-02 1.84946798446E-02 1.93816910112E-02 2.02991039906E-02 2.12467876831E-02 2.22244723875E-02 2.32317370596E-02 2.42679962623E-02 2.53324868955E-02 2.64242548162E-02 2.75421414732E-02 2.86847707020E-02 2.98505358439E-02 3.10375873761E-02 3.22438212590E-02 3.34668682306E-02 3.47040842983E-02 3.59525426997E-02 3.72090276254E-02 3.84700300146E-02 3.97317457494E-02 4.09900765913E-02 4.22406342071E-02 4.34787476419E-02 4.46994745912E-02 4.58976168192E-02 4.70677400520E-02 4.82041986519E-02 4.93011653395E-02 5.03526661859E-02 5.13526210368E-02 5.22948894534E-02 5.31733221718E-02 5.39818179725E-02 5.47143857392E-02 5.53652113435E-02 5.59287288510E-02 5.63996953719E-02 5.67732687111E-02 5.70450867813E-02 5.72113475553E-02 5.72688881365E-02 5.72152613379E-02 5.70488079797E-02 5.67687229482E-02 5.63751129250E-02 5.58690435874E-02 5.52525740283E-02 5.45287761364E-02 5.37017367506E-02 5.27765405456E-02 5.17592318445E-02 5.06567538941E-02 4.94768645899E-02 4.82280282020E-02 4.69192833439E-02 4.55600882292E-02 4.41601451844E-02 4.27292074041E-02 4.12768720365E-02 3.98123648445E-02 3.83443228546E-02 3.68805825478E-02 3.54279821995E-02 3.39921878707E-02 3.25775532208E-02 3.11870236666E-02 2.98220953556E-02 2.84828388776E-02 2.71679964955E-02 2.58751598670E-02 2.46010326629E-02 2.33417791213E-02 2.20934553780E-02 2.08525153794E-02 1.96163773793E-02 1.83840305311E-02 1.71570001241E-02 1.59399611348E-02 1.47382018675E-02 1.35570060012E-02 1.24016032037E-02 1.12771166512E-02 1.01885078832E-02 9.14051952476E-03 8.13761651416E-03 7.18392658054E-03 6.28318083272E-03 5.43865543108E-03 4.65311542816E-03 3.92876197256E-03 3.26718417293E-03 2.66931701207E-03 2.13540677975E-03 1.66498555474E-03 1.25685630498E-03 9.09090186030E-04 6.19037595506E-04 3.83354479562E-04 1.98045279487E-04 5.85237460618E-05 -4.03073710790E-05 -1.03957039007E-04 -1.38226702968E-04 -1.49071176121E-04 -1.42440267612E-04 -1.24102377720E-04 -9.94520016546E-05 -7.33038915413E-05 -4.94981929827E-05 -3.01978882983E-05 -1.63392235599E-05 -7.69267592605E-06 -2.95681679437E-06 -7.84349473718E-07 -8.57393631370E-08 -3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 4 1 i j (l(j)) -2.92456326189E-02 Q_int -5.98725395111E-20 -6.29422702535E-20 -6.61693894565E-20 -6.95619665991E-20 -7.31284848913E-20 -7.68778624864E-20 -8.08194747814E-20 -8.49631778601E-20 -8.93193331387E-20 -9.38988332741E-20 -9.87131294022E-20 -1.03774259771E-19 -1.09094879842E-19 -1.14688293938E-19 -1.20568488507E-19 -1.26750167097E-19 -1.33248787127E-19 -1.40080598530E-19 -1.47262684393E-19 -1.54813003673E-19 -1.62750436099E-19 -1.71094829389E-19 -1.79867048870E-19 -1.89089029661E-19 -1.98783831518E-19 -2.08975696495E-19 -2.19690109563E-19 -2.30953862335E-19 -2.42795120060E-19 -2.55243492051E-19 -2.68330105721E-19 -2.82087684421E-19 -2.96550629263E-19 -3.11755105144E-19 -3.27739131171E-19 -3.44542675737E-19 -3.62207756454E-19 -3.80778545226E-19 -4.00301478698E-19 -4.20825374371E-19 -4.42401552676E-19 -4.65083965297E-19 -4.88929330080E-19 -5.13997272856E-19 -5.40350476540E-19 -5.68054837868E-19 -5.97179632173E-19 -6.27797686611E-19 -6.59985562267E-19 -6.93823745594E-19 -7.29396849676E-19 -7.66793825803E-19 -8.06108185893E-19 -8.47438236323E-19 -8.90887323748E-19 -9.36564093518E-19 -9.84582761346E-19 -1.03506339892E-18 -1.08813223411E-18 -1.14392196667E-18 -1.20257209997E-18 -1.26422928990E-18 -1.32904771155E-18 -1.39718944474E-18 -1.46882487928E-18 -1.54413314109E-18 -1.62330254003E-18 -1.70653104084E-18 -1.79402675813E-18 -1.88600847675E-18 -1.98270619892E-18 -2.08436171931E-18 -2.19122922967E-18 -2.30357595442E-18 -2.42168281891E-18 -2.54584515182E-18 -2.67637342363E-18 -2.81359402302E-18 -2.95785007296E-18 -3.10950228871E-18 -3.26892987980E-18 -3.43653149825E-18 -3.61272623539E-18 -3.79795466983E-18 -3.99267996915E-18 -4.19738904802E-18 -4.41259378574E-18 -4.63883230626E-18 -4.87667032371E-18 -5.12670255701E-18 -5.38955421698E-18 -5.66588256967E-18 -5.95637857988E-18 -6.26176863894E-18 -6.58281638107E-18 -6.92032459282E-18 -7.27513722053E-18 -7.64814148055E-18 -8.04027007781E-18 -8.45250353804E-18 -8.88587265960E-18 -9.34146109101E-18 -9.82040804063E-18 -1.03239111253E-17 -1.08532293649E-17 -1.14096863308E-17 -1.19946734553E-17 -1.26096535107E-17 -1.32561642675E-17 -1.39358223394E-17 -1.46503272255E-17 -1.54014655602E-17 -1.61911155804E-17 -1.70212518226E-17 -1.78939500596E-17 -1.88113924917E-17 -1.97758732026E-17 -2.07898038965E-17 -2.18557199281E-17 -2.29762866428E-17 -2.41543060409E-17 -2.53927237843E-17 -2.66946365626E-17 -2.80632998355E-17 -2.95021359742E-17 -3.10147428182E-17 -3.26049026726E-17 -3.42765917650E-17 -3.60339901889E-17 -3.78814923554E-17 -3.98237179823E-17 -4.18655236450E-17 -4.40120149211E-17 -4.62685591566E-17 -4.86407988872E-17 -5.11346659478E-17 -5.37563963046E-17 -5.65125456490E-17 -5.94100057896E-17 -6.24560218857E-17 -6.56582105638E-17 -6.90245789631E-17 -7.25635447578E-17 -7.62839572052E-17 -8.01951192740E-17 -8.43068109060E-17 -8.86293134715E-17 -9.31734354778E-17 -9.79505395963E-17 -1.02972571075E-16 -1.08252087607E-16 -1.13802290734E-16 -1.19637058854E-16 -1.25770981924E-16 -1.32219397947E-16 -1.38998431321E-16 -1.46125033159E-16 -1.53617023677E-16 -1.61493136751E-16 -1.69773066766E-16 -1.78477517858E-16 -1.87628255688E-16 -1.97248161863E-16 -2.07361291159E-16 -2.17992931665E-16 -2.29169668018E-16 -2.40919447877E-16 -2.53271651810E-16 -2.66257166759E-16 -2.79908463271E-16 -2.94259676695E-16 -3.09346692536E-16 -3.25207236190E-16 -3.41880967272E-16 -3.59409578791E-16 -3.77836901401E-16 -3.97209013002E-16 -4.17574353959E-16 -4.38983848226E-16 -4.61491030684E-16 -4.85152181005E-16 -5.10026464384E-16 -5.36176079477E-16 -5.63666413934E-16 -5.92566207901E-16 -6.22947725907E-16 -6.54886937562E-16 -6.88463707519E-16 -7.23761995180E-16 -7.60870064638E-16 -7.99880705381E-16 -8.40891464315E-16 -8.84004889683E-16 -9.29328787486E-16 -9.76976491059E-16 -1.02706714446E-15 -1.07972600039E-15 -1.13508473339E-15 -1.19328176910E-15 -1.25446263041E-15 -1.31878030130E-15 -1.38639560941E-15 -1.45747762821E-15 -1.53220409972E-15 -1.61076187901E-15 -1.69334740140E-15 -1.78016717367E-15 -1.87143829041E-15 -1.96738897692E-15 -2.06825915982E-15 -2.17430106704E-15 -2.28577985853E-15 -2.40297428925E-15 -2.52617740625E-15 -2.65569728140E-15 -2.79185778176E-15 -2.93499937942E-15 -3.08548000281E-15 -3.24367593175E-15 -3.40998273835E-15 -3.58481627612E-15 -3.76861371982E-15 -3.96183465863E-15 -4.16496224539E-15 -4.37850440468E-15 -4.60299510293E-15 -4.83899568361E-15 -5.08709627087E-15 -5.34791724516E-15 -5.62211079452E-15 -5.91036254534E-15 -6.21339327685E-15 -6.53196072338E-15 -6.86686146912E-15 -7.21893294001E-15 -7.58905549768E-15 -7.97815464087E-15 -8.38720331964E-15 -8.81722436822E-15 -9.26929306266E-15 -9.74453980957E-15 -1.02441529727E-14 -1.07693818445E-14 -1.13215397700E-14 -1.19020074308E-14 -1.25122362975E-14 -1.31537522591E-14 -1.38281594388E-14 -1.45371442047E-14 -1.52824793867E-14 -1.60660287098E-14 -1.68897514540E-14 -1.77557073539E-14 -1.86660617485E-14 -1.96230909963E-14 -2.06291881672E-14 -2.16868690260E-14 -2.27987783237E-14 -2.39676964103E-14 -2.51965461875E-14 -2.64884004170E-14 -2.78464894044E-14 -2.92742090765E-14 -3.07751294727E-14 -3.23530036720E-14 -3.40117771781E-14 -3.57555977844E-14 -3.75888259461E-14 -3.95160456837E-14 -4.15420760450E-14 -4.36719831555E-14 -4.59110928863E-14 -4.82650041713E-14 -5.07396030076E-14 -5.33410771736E-14 -5.60759317015E-14 -5.89510051430E-14 -6.19734866697E-14 -6.51509340493E-14 -6.84912925441E-14 -7.20029147781E-14 -7.56945816230E-14 -7.95755241546E-14 -8.36554467357E-14 -8.79445512815E-14 -9.24535627698E-14 -9.71937560590E-14 -1.02176984081E-13 -1.07415707479E-13 -1.12923025767E-13 -1.18712710083E-13 -1.24799237627E-13 -1.31197827857E-13 -1.37924480550E-13 -1.44996015808E-13 -1.52430116113E-13 -1.60245370549E-13 -1.68461321280E-13 -1.77098512414E-13 -1.86178541379E-13 -1.95724112922E-13 -2.05759095886E-13 -2.16308582891E-13 -2.27398953083E-13 -2.39057938090E-13 -2.51314691368E-13 -2.64199861100E-13 -2.77745666830E-13 -2.91985980030E-13 -3.06956408792E-13 -3.22694386872E-13 -3.39239267288E-13 -3.56632420727E-13 -3.74917338986E-13 -3.94139743731E-13 -4.14347700819E-13 -4.35591740488E-13 -4.57924983709E-13 -4.81403275013E-13 -5.06085322132E-13 -5.32032842796E-13 -5.59310719061E-13 -5.87987159543E-13 -6.18133869975E-13 -6.49826232507E-13 -6.83143494200E-13 -7.18168965181E-13 -7.54990226958E-13 -7.93699351424E-13 -8.34393131073E-13 -8.77173321036E-13 -9.22146893516E-13 -9.69426305272E-13 -1.01912977881E-12 -1.07138159802E-12 -1.12631241890E-12 -1.18405959633E-12 -1.24476752743E-12 -1.30858801274E-12 -1.37568063569E-12 -1.44621316170E-12 -1.52036195764E-12 -1.59831243285E-12 -1.68025950278E-12 -1.76640807629E-12 -1.85697356812E-12 -1.95218243745E-12 -2.05227275420E-12 -2.15749479432E-12 -2.26811166557E-12 -2.38439996544E-12 -2.50665047276E-12 -2.63516887479E-12 -2.77027653160E-12 -2.91231127957E-12 -3.06162827621E-12 -3.21860088816E-12 -3.38362162481E-12 -3.55710311975E-12 -3.73947916254E-12 -3.93120578341E-12 -4.13276239349E-12 -4.34465298363E-12 -4.56740738455E-12 -4.80158259167E-12 -5.04776415789E-12 -5.30656765768E-12 -5.57864022633E-12 -5.86466217808E-12 -6.16534870718E-12 -6.48145167624E-12 -6.81376149617E-12 -7.16310910260E-12 -7.53036803354E-12 -7.91645661366E-12 -8.32234025046E-12 -8.74903384821E-12 -9.19760434568E-12 -9.66917338390E-12 -1.01649201108E-11 -1.06860841294E-11 -1.12339685978E-11 -1.18099434869E-11 -1.24154490067E-11 -1.30519992066E-11 -1.37211857620E-11 -1.44246819534E-11 -1.51642468506E-11 -1.59417297113E-11 -1.67590746046E-11 -1.76183252720E-11 -1.85216302377E-11 -1.94712481809E-11 -2.04695535830E-11 -2.15190426648E-11 -2.26223396283E-11 -2.37822032177E-11 -2.50015336179E-11 -2.62833797055E-11 -2.76309466722E-11 -2.90476040393E-11 -3.05368940822E-11 -3.21025406878E-11 -3.37484586651E-11 -3.54787635338E-11 -3.72977818146E-11 -3.92100618466E-11 -4.12203851602E-11 -4.33337784318E-11 -4.55555260525E-11 -4.78911833409E-11 -5.03465904328E-11 -5.29278868834E-11 -5.56415270180E-11 -5.84942960701E-11 -6.14933271456E-11 -6.46461190586E-11 -6.79605550796E-11 -7.14449226465E-11 -7.51079340849E-11 -7.89587483914E-11 -8.30069941333E-11 -8.72627935225E-11 -9.17367877232E-11 -9.64401634573E-11 -1.01384680974E-10 -1.06582703452E-10 -1.12047227912E-10 -1.17791917710E-10 -1.23831136698E-10 -1.30179985138E-10 -1.36854337453E-10 -1.43870881920E-10 -1.51247162388E-10 -1.59001622142E-10 -1.67153650016E-10 -1.75723628865E-10 -1.84732986525E-10 -1.94204249387E-10 -2.04161098711E-10 -2.14628429835E-10 -2.25632414413E-10 -2.37200565849E-10 -2.49361808076E-10 -2.62146547874E-10 -2.75586750881E-10 -2.89716021513E-10 -3.04569686974E-10 -3.20184885572E-10 -3.36600659562E-10 -3.53858052757E-10 -3.72000213129E-10 -3.91072500678E-10 -4.11122600831E-10 -4.32200643646E-10 -4.54359329136E-10 -4.77654059009E-10 -5.02143075168E-10 -5.27887605302E-10 -5.54952015947E-10 -5.83403973390E-10 -6.13314612820E-10 -6.44758716147E-10 -6.77814898940E-10 -7.12565806947E-10 -7.49098322679E-10 -7.87503782596E-10 -8.27878205412E-10 -8.70322532113E-10 -9.14942878266E-10 -9.61850799270E-10 -1.01116356920E-09 -1.06300447392E-09 -1.11750311927E-09 -1.17479575500E-09 -1.23502561532E-09 -1.29834327691E-09 -1.36490703527E-09 -1.43488330040E-09 -1.50844701265E-09 -1.58578208002E-09 -1.66708183776E-09 -1.75254953161E-09 -1.84239882571E-09 -1.93685433664E-09 -2.03615219475E-09 -2.14054063429E-09 -2.25028061377E-09 -2.36564646815E-09 -2.48692659436E-09 -2.61442417205E-09 -2.74845792118E-09 -2.88936289853E-09 -3.03749133493E-09 -3.19321351546E-09 -3.35691870467E-09 -3.52901611932E-09 -3.70993595083E-09 -3.90013044025E-09 -4.10007500819E-09 -4.31026944270E-09 -4.53123914803E-09 -4.76353645731E-09 -5.00774201252E-09 -5.26446621513E-09 -5.53435075110E-09 -5.81807019397E-09 -6.11633369006E-09 -6.42988673002E-09 -6.75951301115E-09 -7.10603639506E-09 -7.47032296566E-09 -7.85328319253E-09 -8.25587420510E-09 -8.67910218334E-09 -9.12402487089E-09 -9.59175421686E-09 -1.00834591530E-08 -1.06003685130E-08 -1.11437741016E-08 -1.17150339200E-08 -1.23155755581E-08 -1.29468997582E-08 -1.36105841636E-08 -1.43082872571E-08 -1.50417525022E-08 -1.58128126965E-08 -1.66233945472E-08 -1.74755234816E-08 -1.83713287033E-08 -1.93130485078E-08 -2.03030358698E-08 -2.13437643165E-08 -2.24378341020E-08 -2.35879786973E-08 -2.47970716122E-08 -2.60681335675E-08 -2.74043400331E-08 -2.88090291522E-08 -3.02857100714E-08 -3.18380716967E-08 -3.34699918974E-08 -3.51855471815E-08 -3.69890228656E-08 -3.88849237652E-08 -4.08779854321E-08 -4.29731859668E-08 -4.51757584344E-08 -4.74912039163E-08 -4.99253052293E-08 -5.24841413461E-08 -5.51741025533E-08 -5.80019063849E-08 -6.09746143704E-08 -6.40996496384E-08 -6.73848154219E-08 -7.08383145077E-08 -7.44687696817E-08 -7.82852452182E-08 -8.22972694680E-08 -8.65148586008E-08 -9.09485415606E-08 -9.56093862973E-08 -1.00509027337E-07 -1.05659694762E-07 -1.11074244672E-07 -1.16766191198E-07 -1.22749740156E-07 -1.29039824414E-07 -1.35652141072E-07 -1.42603190532E-07 -1.49910317571E-07 -1.57591754503E-07 -1.65666666552E-07 -1.74155199533E-07 -1.83078529972E-07 -1.92458917779E-07 -2.02319761616E-07 -2.12685657078E-07 -2.23582457848E-07 -2.35037339978E-07 -2.47078869430E-07 -2.59737073078E-07 -2.73043513320E-07 -2.87031366496E-07 -3.01735505301E-07 -3.17192585401E-07 -3.33441136455E-07 -3.50521657778E-07 -3.68476718881E-07 -3.87351065117E-07 -4.07191728721E-07 -4.28048145490E-07 -4.49972277410E-07 -4.73018741515E-07 -4.97244945311E-07 -5.22711229076E-07 -5.49481015409E-07 -5.77620966373E-07 -6.07201148629E-07 -6.38295206967E-07 -6.70980546639E-07 -7.05338524976E-07 -7.41454652716E-07 -7.79418805561E-07 -8.19325446480E-07 -8.61273859276E-07 -9.05368394021E-07 -9.51718724925E-07 -1.00044012128E-06 -1.05165373216E-06 -1.10548688551E-06 -1.16207340240E-06 -1.22155392725E-06 -1.28407627464E-06 -1.34979579385E-06 -1.41887575166E-06 -1.49148773465E-06 -1.56781207177E-06 -1.64803827828E-06 -1.73236552213E-06 -1.82100311386E-06 -1.91417102125E-06 -2.01210040997E-06 -2.11503421142E-06 -2.22322771927E-06 -2.33694921605E-06 -2.45648063122E-06 -2.58211823253E-06 -2.71417335198E-06 -2.85297314846E-06 -2.99886140864E-06 -3.15219938807E-06 -3.31336669463E-06 -3.48276221623E-06 -3.66080509506E-06 -3.84793575069E-06 -4.04461695445E-06 -4.25133495753E-06 -4.46860067566E-06 -4.69695093288E-06 -4.93694976758E-06 -5.18918980368E-06 -5.45429369031E-06 -5.73291561320E-06 -6.02574288146E-06 -6.33349759328E-06 -6.65693838459E-06 -6.99686226454E-06 -7.35410654224E-06 -7.72955084907E-06 -8.12411926121E-06 -8.53878252741E-06 -8.97456040689E-06 -9.43252412291E-06 -9.91379893744E-06 -1.04195668530E-05 -1.09510694474E-05 -1.15096108483E-05 -1.20965608539E-05 -1.27133582072E-05 -1.33615140299E-05 -1.40426154264E-05 -1.47583292619E-05 -1.55104061271E-05 -1.63006844952E-05 -1.71310950820E-05 -1.80036654181E-05 -1.89205246430E-05 -1.98839085322E-05 -2.08961647677E-05 -2.19597584631E-05 -2.30772779560E-05 -2.42514408790E-05 -2.54851005231E-05 -2.67812525066E-05 -2.81430417633E-05 -2.95737698657E-05 -3.10769026971E-05 -3.26560784893E-05 -3.43151162420E-05 -3.60580245424E-05 -3.78890108010E-05 -3.98124909235E-05 -4.18330994385E-05 -4.39557001000E-05 -4.61853969866E-05 -4.85275461193E-05 -5.09877676197E-05 -5.35719584327E-05 -5.62863056379E-05 -5.91373003749E-05 -6.21317524090E-05 -6.52768053639E-05 -6.85799526491E-05 -7.20490541129E-05 -7.56923534480E-05 -7.95184963838E-05 -8.35365496946E-05 -8.77560210585E-05 -9.21868798006E-05 -9.68395785544E-05 -1.01725075879E-04 -1.06854859867E-04 -1.12240972786E-04 -1.17896036780E-04 -1.23833280692E-04 -1.30066568023E-04 -1.36610426092E-04 -1.43480076421E-04 -1.50691466404E-04 -1.58261302286E-04 -1.66207083518E-04 -1.74547138511E-04 -1.83300661851E-04 -1.92487753009E-04 -2.02129456603E-04 -2.12247804245E-04 -2.22865858031E-04 -2.34007755705E-04 -2.45698757561E-04 -2.57965295104E-04 -2.70835021535E-04 -2.84336864078E-04 -2.98501078214E-04 -3.13359303838E-04 -3.28944623384E-04 -3.45291621948E-04 -3.62436449443E-04 -3.80416884800E-04 -3.99272402240E-04 -4.19044239641E-04 -4.39775468995E-04 -4.61511068964E-04 -4.84297999533E-04 -5.08185278745E-04 -5.33224061495E-04 -5.59467720344E-04 -5.86971928332E-04 -6.15794743699E-04 -6.45996696478E-04 -6.77640876852E-04 -7.10793025180E-04 -7.45521623574E-04 -7.81897988879E-04 -8.19996366902E-04 -8.59894027700E-04 -9.01671361701E-04 -9.45411976444E-04 -9.91202793639E-04 -1.03913414625E-03 -1.08929987528E-03 -1.14179742582E-03 -1.19672794203E-03 -1.25419636049E-03 -1.31431150144E-03 -1.37718615740E-03 -1.44293717842E-03 -1.51168555341E-03 -1.58355648668E-03 -1.65867946894E-03 -1.73718834193E-03 -1.81922135551E-03 -1.90492121646E-03 -1.99443512750E-03 -2.08791481567E-03 -2.18551654848E-03 -2.28740113647E-03 -2.39373392079E-03 -2.50468474392E-03 -2.62042790201E-03 -2.74114207680E-03 -2.86701024520E-03 -2.99821956433E-03 -3.13496122996E-03 -3.27743030558E-03 -3.42582552001E-03 -3.58034903051E-03 -3.74120614884E-03 -3.90860502709E-03 -4.08275630045E-03 -4.26387268343E-03 -4.45216851634E-03 -4.64785925855E-03 -4.85116092482E-03 -5.06228946105E-03 -5.28146005576E-03 -5.50888638319E-03 -5.74477977435E-03 -5.98934831184E-03 -6.24279584459E-03 -6.50532091853E-03 -6.77711561930E-03 -7.05836432322E-03 -7.34924235285E-03 -7.64991453375E-03 -7.96053364918E-03 -8.28123879002E-03 -8.61215359725E-03 -8.95338439518E-03 -9.30501821397E-03 -9.66712070065E-03 -1.00397339186E-02 -1.04228740368E-02 -1.08165289098E-02 -1.12206555528E-02 -1.16351775148E-02 -1.20599821565E-02 -1.24949178399E-02 -1.29397910382E-02 -1.33943633780E-02 -1.38583486256E-02 -1.43314096331E-02 -1.48131552624E-02 -1.53031373062E-02 -1.58008474301E-02 -1.63057141602E-02 -1.68170999469E-02 -1.73342983352E-02 -1.78565312769E-02 -1.83829466246E-02 -1.89126158475E-02 -1.94445320160E-02 -1.99776081025E-02 -2.05106756498E-02 -2.10424838642E-02 -2.15716991872E-02 -2.20969054094E-02 -2.26166043863E-02 -2.31292174202E-02 -2.36330873728E-02 -2.41264815734E-02 -2.46075955850E-02 -2.50745578923E-02 -2.55254355696E-02 -2.59582409836E-02 -2.63709395810E-02 -2.67614588029E-02 -2.71276981593E-02 -2.74675404866E-02 -2.77788643978E-02 -2.80595579224E-02 -2.83075333124E-02 -2.85207429774E-02 -2.86971964861E-02 -2.88349785517E-02 -2.89322678935E-02 -2.89873568389E-02 -2.89986715052E-02 -2.89647923687E-02 -2.88844750003E-02 -2.87566707188E-02 -2.85805468792E-02 -2.83555064908E-02 -2.80812068287E-02 -2.77575766832E-02 -2.73848318685E-02 -2.69634886013E-02 -2.64943743482E-02 -2.59786357425E-02 -2.54177431769E-02 -2.48134916962E-02 -2.41679978424E-02 -2.34836921439E-02 -2.27633069938E-02 -2.20098597280E-02 -2.12266307942E-02 -2.04171369976E-02 -1.95850999160E-02 -1.87344097015E-02 -1.78690846171E-02 -1.69932268031E-02 -1.61109749205E-02 -1.52264544782E-02 -1.43437268126E-02 -1.34667378464E-02 -1.25992679084E-02 -1.17448840385E-02 -1.09068963255E-02 -1.00883199280E-02 -9.29184450088E-03 -8.51981278233E-03 -7.77421008960E-03 -7.05666640849E-03 -6.36847264359E-03 -5.71061241009E-03 -5.08381049048E-03 -4.48859874215E-03 -3.92539981940E-03 -3.39462856165E-03 -2.89681029257E-03 -2.43271457249E-03 -2.00350214617E-03 -1.61088193394E-03 -1.25727393136E-03 -9.45972822124E-04 -6.81305988692E-04 -4.67070352944E-04 -3.00849173341E-04 -1.77987602798E-04 -9.31124699314E-05 -4.01132608541E-05 -1.21295258783E-05 -1.54638332456E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 5 1 i j (l(j)) 0.00000000000E+00 Q_int -3.44417955664E-20 -3.62076641856E-20 -3.80640708249E-20 -4.00156574678E-20 -4.20673040976E-20 -4.42241408993E-20 -4.64915610886E-20 -4.88752343968E-20 -5.13811212488E-20 -5.40154876671E-20 -5.67849209398E-20 -5.96963460926E-20 -6.27570432049E-20 -6.59746656137E-20 -6.93572590510E-20 -7.29132817623E-20 -7.66516256566E-20 -8.05816385408E-20 -8.47131474942E-20 -8.90564834412E-20 -9.36225069839E-20 -9.84226355594E-20 -1.03468871990E-19 -1.08773834494E-19 -1.14350788242E-19 -1.20213678522E-19 -1.26377165615E-19 -1.32856661449E-19 -1.39668368137E-19 -1.46829318495E-19 -1.54357418629E-19 -1.62271492709E-19 -1.70591330044E-19 -1.79337734560E-19 -1.88532576825E-19 -1.98198848733E-19 -2.08360720999E-19 -2.19043603597E-19 -2.30274209297E-19 -2.42080620463E-19 -2.54492359273E-19 -2.67540461539E-19 -2.81257554313E-19 -2.95677937471E-19 -3.10837669483E-19 -3.26774657574E-19 -3.43528752517E-19 -3.61141848274E-19 -3.79657986760E-19 -3.99123467965E-19 -4.19586965731E-19 -4.41099649461E-19 -4.63715312070E-19 -4.87490504493E-19 -5.12484677097E-19 -5.38760328329E-19 -5.66383161006E-19 -5.95422246596E-19 -6.25950197938E-19 -6.58043350812E-19 -6.91781954816E-19 -7.27250374033E-19 -7.64537297985E-19 -8.03735963404E-19 -8.44944387371E-19 -8.88265612408E-19 -9.33807964143E-19 -9.81685322176E-19 -1.03201740484E-18 -1.08493006856E-18 -1.14055562255E-18 -1.19903315967E-18 -1.26050890422E-18 -1.32513657758E-18 -1.39307778261E-18 -1.46450240769E-18 -1.53958905159E-18 -1.61852547004E-18 -1.70150904519E-18 -1.78874727920E-18 -1.88045831310E-18 -1.97687147223E-18 -2.07822783972E-18 -2.18478085927E-18 -2.29679696894E-18 -2.41455626733E-18 -2.53835321403E-18 -2.66849736588E-18 -2.80531415106E-18 -2.94914568278E-18 -3.10035161478E-18 -3.25931004066E-18 -3.42641843927E-18 -3.60209466864E-18 -3.78677801084E-18 -3.98093027043E-18 -4.18503692917E-18 -4.39960836002E-18 -4.62518110331E-18 -4.86231920839E-18 -5.11161564403E-18 -5.37369378116E-18 -5.64920895162E-18 -5.93885008684E-18 -6.24334144052E-18 -6.56344439961E-18 -6.89995938825E-18 -7.25372786916E-18 -7.62563444781E-18 -8.01660908434E-18 -8.42762941897E-18 -8.85972321661E-18 -9.31397093679E-18 -9.79150843540E-18 -1.02935298049E-17 -1.08212903602E-17 -1.13761097775E-17 -1.19593753943E-17 -1.25725456784E-17 -1.32171538750E-17 -1.38948118402E-17 -1.46072140718E-17 -1.53561419465E-17 -1.61434681740E-17 -1.69711614799E-17 -1.78412915286E-17 -1.87560340982E-17 -1.97176765217E-17 -2.07286234059E-17 -2.17914026446E-17 -2.29086717393E-17 -2.40832244445E-17 -2.53179977539E-17 -2.66160792436E-17 -2.79807147935E-17 -2.94153167031E-17 -3.09234722242E-17 -3.25089525312E-17 -3.41757221503E-17 -3.59279488738E-17 -3.77700141809E-17 -3.97065241941E-17 -4.17423211970E-17 -4.38824957422E-17 -4.61323993806E-17 -4.84976580430E-17 -5.09841861077E-17 -5.35982011897E-17 -5.63462396880E-17 -5.92351731298E-17 -6.22722253531E-17 -6.54649905700E-17 -6.88214523561E-17 -7.23500036137E-17 -7.60594675583E-17 -7.99591197813E-17 -8.40587114440E-17 -8.83684936601E-17 -9.28992431294E-17 -9.76622890847E-17 -1.02669541621E-16 -1.07933521477E-16 -1.13467391343E-16 -1.19284988776E-16 -1.25400860797E-16 -1.31830300271E-16 -1.38589384146E-16 -1.45695013649E-16 -1.53164956553E-16 -1.61017891607E-16 -1.69273455235E-16 -1.77952290644E-16 -1.87076099443E-16 -1.96667695904E-16 -2.06751064010E-16 -2.17351417431E-16 -2.28495262571E-16 -2.40210464844E-16 -2.52526318353E-16 -2.65473619145E-16 -2.79084742211E-16 -2.93393722444E-16 -3.08436339745E-16 -3.24250208487E-16 -3.40874871574E-16 -3.58351899317E-16 -3.76724993383E-16 -3.96040096071E-16 -4.16345505193E-16 -4.37691994838E-16 -4.60132942343E-16 -4.83724461757E-16 -5.08525544158E-16 -5.34598205158E-16 -5.62007639982E-16 -5.90822386480E-16 -6.21114496516E-16 -6.52959716130E-16 -6.86437674943E-16 -7.21632085276E-16 -7.58630951467E-16 -7.97526789937E-16 -8.38416860522E-16 -8.81403409675E-16 -9.26593926138E-16 -9.74101409716E-16 -1.02404465384E-15 -1.07654854259E-15 -1.13174436303E-15 -1.18977013341E-15 -1.25077094835E-15 -1.31489934162E-15 -1.38231566757E-15 -1.45318850208E-15 -1.52769506410E-15 -1.60602165881E-15 -1.68836414341E-15 -1.77492841697E-15 -1.86593093518E-15 -1.96159925167E-15 -2.06217258698E-15 -2.16790242677E-15 -2.27905315061E-15 -2.39590269311E-15 -2.51874323889E-15 -2.64788195320E-15 -2.78364174995E-15 -2.92636209923E-15 -3.07639987611E-15 -3.23413025304E-15 -3.39994763795E-15 -3.57426666051E-15 -3.75752320888E-15 -3.95017551969E-15 -4.15270532384E-15 -4.36561905110E-15 -4.58944909644E-15 -4.82475515128E-15 -5.07212560305E-15 -5.33217900639E-15 -5.60556562994E-15 -5.89296908227E-15 -6.19510802134E-15 -6.51273795144E-15 -6.84665311238E-15 -7.19768846548E-15 -7.56672178146E-15 -7.95467583524E-15 -8.36252071340E-15 -8.79127623992E-15 -9.24201452621E-15 -9.71586265199E-15 -1.02140054836E-14 -1.07376886366E-14 -1.12882215907E-14 -1.18669809640E-14 -1.24754139552E-14 -1.31150419627E-14 -1.37874643881E-14 -1.44943626364E-14 -1.52375043200E-14 -1.60187476784E-14 -1.68400462252E-14 -1.77034536326E-14 -1.86111288669E-14 -1.95653415866E-14 -2.05684778183E-14 -2.16230459224E-14 -2.27316828657E-14 -2.38971608149E-14 -2.51223940689E-14 -2.64104463454E-14 -2.77645384424E-14 -2.91880562912E-14 -3.06845594237E-14 -3.22577898724E-14 -3.39116815279E-14 -3.56503699753E-14 -3.74782028354E-14 -3.93997506361E-14 -4.14198182411E-14 -4.35434568640E-14 -4.57759766996E-14 -4.81229602019E-14 -5.05902760427E-14 -5.31840937870E-14 -5.59108993194E-14 -5.87775110624E-14 -6.17910970261E-14 -6.49591927316E-14 -6.82897200540E-14 -7.17910070305E-14 -7.54718086856E-14 -7.93413289226E-14 -8.34092435378E-14 -8.76857244157E-14 -9.21814649632E-14 -9.69077068488E-14 -1.01876268113E-13 -1.07099572718E-13 -1.12590681615E-13 -1.18363325404E-13 -1.24431938665E-13 -1.30811696055E-13 -1.37518550247E-13 -1.44569271827E-13 -1.51981491223E-13 -1.59773742792E-13 -1.67965511165E-13 -1.76577279971E-13 -1.85630583053E-13 -1.95148058312E-13 -2.05153504320E-13 -2.15671939822E-13 -2.26729666297E-13 -2.38354333726E-13 -2.50575009732E-13 -2.63422252260E-13 -2.76928185990E-13 -2.91126582662E-13 -3.06052945527E-13 -3.21744598119E-13 -3.38240777582E-13 -3.55582732785E-13 -3.73813827463E-13 -3.92979648650E-13 -4.13128120664E-13 -4.34309624948E-13 -4.56577126046E-13 -4.79986304037E-13 -5.04595693770E-13 -5.30466831222E-13 -5.57664407375E-13 -5.86256429970E-13 -6.16314393564E-13 -6.47913458298E-13 -6.81132637836E-13 -7.16054996937E-13 -7.52767859159E-13 -7.91363025207E-13 -8.31937002484E-13 -8.74591246401E-13 -9.19432414069E-13 -9.66572630992E-13 -1.01612977143E-12 -1.06822775316E-12 -1.12299684729E-12 -1.18057400406E-12 -1.24110319521E-12 -1.30473577404E-12 -1.37163085384E-12 -1.44195570575E-12 -1.51588617700E-12 -1.59360713065E-12 -1.67531290780E-12 -1.76120781355E-12 -1.85150662787E-12 -1.94643514261E-12 -2.04623072613E-12 -2.15114291680E-12 -2.26143404697E-12 -2.37737989896E-12 -2.49927039455E-12 -2.62741032003E-12 -2.76212008822E-12 -2.90373653968E-12 -3.05261378497E-12 -3.20912409008E-12 -3.37365880725E-12 -3.54662935356E-12 -3.72846823960E-12 -3.91963015100E-12 -4.12059308532E-12 -4.33185954723E-12 -4.55395780504E-12 -4.78744321155E-12 -5.03289959272E-12 -5.29094070747E-12 -5.56221178232E-12 -5.84739112476E-12 -6.14719181930E-12 -6.46236351049E-12 -6.79369427732E-12 -7.14201260377E-12 -7.50818945037E-12 -7.89314043193E-12 -8.29782810699E-12 -8.72326438459E-12 -9.17051305443E-12 -9.64069244683E-12 -1.01349782289E-11 -1.06546063444E-11 -1.12008761037E-11 -1.17751534329E-11 -1.23788742890E-11 -1.30135482506E-11 -1.36807622919E-11 -1.43821847512E-11 -1.51195695023E-11 -1.58947603396E-11 -1.67096955885E-11 -1.75664129516E-11 -1.84670546042E-11 -1.94138725498E-11 -2.04092342518E-11 -2.14556285518E-11 -2.25556718937E-11 -2.37121148649E-11 -2.49278490740E-11 -2.62059143808E-11 -2.75495064965E-11 -2.89619849748E-11 -3.04468816109E-11 -3.20079092726E-11 -3.36489711835E-11 -3.53741706821E-11 -3.71878214815E-11 -3.90944584545E-11 -4.10988489725E-11 -4.32060048250E-11 -4.54211947503E-11 -4.77499576088E-11 -5.01981162316E-11 -5.27717919786E-11 -5.54774200438E-11 -5.83217655447E-11 -6.13119404362E-11 -6.44554212924E-11 -6.77600679993E-11 -7.12341434062E-11 -7.48863339843E-11 -7.87257715445E-11 -8.27620560684E-11 -8.70052797100E-11 -9.14660520274E-11 -9.61555265083E-11 -1.01085428455E-10 -1.06268084300E-10 -1.11716452423E-10 -1.17444155546E-10 -1.23465514796E-10 -1.29795585505E-10 -1.36450194851E-10 -1.43445981426E-10 -1.50800436836E-10 -1.58531949428E-10 -1.66659850259E-10 -1.75204461432E-10 -1.84187146891E-10 -1.93630365839E-10 -2.03557728881E-10 -2.13994057050E-10 -2.24965443860E-10 -2.36499320534E-10 -2.48624524585E-10 -2.61371371904E-10 -2.74771732545E-10 -2.88859110398E-10 -3.03668726943E-10 -3.19237609298E-10 -3.35604682779E-10 -3.52810868207E-10 -3.70899184201E-10 -3.89914854711E-10 -4.09905422073E-10 -4.30920865843E-10 -4.53013727738E-10 -4.76239242970E-10 -5.00655478316E-10 -5.26323477265E-10 -5.53307412601E-10 -5.81674746813E-10 -6.11496400716E-10 -6.42846930726E-10 -6.75804715212E-10 -7.10452150406E-10 -7.46875856347E-10 -7.85166893382E-10 -8.25420989766E-10 -8.67738780924E-10 -9.12226060972E-10 -9.58994047136E-10 -1.00815965771E-09 -1.05984580428E-09 -1.11418169889E-09 -1.17130317698E-09 -1.23135303687E-09 -1.29448139661E-09 -1.36084606917E-09 -1.43061295678E-09 -1.50395646559E-09 -1.58105994145E-09 -1.66211612810E-09 -1.74732764884E-09 -1.83690751284E-09 -1.93107964740E-09 -2.03007945754E-09 -2.13415441416E-09 -2.24356467247E-09 -2.35858372193E-09 -2.47949906969E-09 -2.60661295886E-09 -2.74024312373E-09 -2.88072358357E-09 -3.02840547718E-09 -3.18365794012E-09 -3.34686902696E-09 -3.51844668069E-09 -3.69881975186E-09 -3.88843906992E-09 -4.08777856935E-09 -4.29733647364E-09 -4.51763653972E-09 -4.74922936634E-09 -4.99269376925E-09 -5.24863822702E-09 -5.51770240073E-09 -5.80055873165E-09 -6.09791412062E-09 -6.41051169354E-09 -6.73913265716E-09 -7.08459825003E-09 -7.44777179325E-09 -7.82956084632E-09 -8.23091947330E-09 -8.65285062508E-09 -9.09640864359E-09 -9.56270189419E-09 -1.00528955330E-08 -1.05682144155E-08 -1.11099461548E-08 -1.16794443356E-08 -1.22781318930E-08 -1.29075046649E-08 -1.35691351250E-08 -1.42646763079E-08 -1.49958659350E-08 -1.57645307506E-08 -1.65725910813E-08 -1.74220656279E-08 -1.83150765022E-08 -1.92538545228E-08 -2.02407447806E-08 -2.12782124895E-08 -2.23688491368E-08 -2.35153789477E-08 -2.47206656810E-08 -2.59877197719E-08 -2.73197058408E-08 -2.87199505854E-08 -3.01919510773E-08 -3.17393834822E-08 -3.33661122266E-08 -3.50761996326E-08 -3.68739160458E-08 -3.87637504814E-08 -4.07504218135E-08 -4.28388905374E-08 -4.50343711326E-08 -4.73423450584E-08 -4.97685744125E-08 -5.23191162888E-08 -5.50003378684E-08 -5.78189322819E-08 -6.07819352815E-08 -6.38967427661E-08 -6.71711292002E-08 -7.06132669746E-08 -7.42317467557E-08 -7.80355988740E-08 -8.20343158044E-08 -8.62378757948E-08 -9.06567677008E-08 -9.53020170883E-08 -1.00185213668E-07 -1.05318540130E-07 -1.10714802452E-07 -1.16387461750E-07 -1.22350667754E-07 -1.28619294001E-07 -1.35208974805E-07 -1.42136144132E-07 -1.49418076441E-07 -1.57072929618E-07 -1.65119790093E-07 -1.73578720258E-07 -1.82470808304E-07 -1.91818220591E-07 -2.01644256692E-07 -2.11973407240E-07 -2.22831414716E-07 -2.34245337339E-07 -2.46243616204E-07 -2.58856145837E-07 -2.72114348344E-07 -2.86051251332E-07 -3.00701569789E-07 -3.16101792136E-07 -3.32290270650E-07 -3.49307316480E-07 -3.67195299508E-07 -3.85998753261E-07 -4.05764485176E-07 -4.26541692451E-07 -4.48382083782E-07 -4.71340007285E-07 -4.95472584906E-07 -5.20839853650E-07 -5.47504913981E-07 -5.75534085739E-07 -6.04997071966E-07 -6.35967131041E-07 -6.68521257523E-07 -7.02740372169E-07 -7.38709521565E-07 -7.76518087863E-07 -8.16260009137E-07 -8.58034010880E-07 -9.01943849208E-07 -9.48098566366E-07 -9.96612759130E-07 -1.04760686078E-06 -1.10120743731E-06 -1.15754749858E-06 -1.21676682517E-06 -1.27901231170E-06 -1.34443832752E-06 -1.41320709547E-06 -1.48548908981E-06 -1.56146345414E-06 -1.64131844034E-06 -1.72525186956E-06 -1.81347161650E-06 -1.90619611784E-06 -2.00365490635E-06 -2.10608917171E-06 -2.21375234950E-06 -2.32691073971E-06 -2.44584415619E-06 -2.57084660869E-06 -2.70222701891E-06 -2.84030997248E-06 -2.98543650841E-06 -3.13796494799E-06 -3.29827176506E-06 -3.46675249962E-06 -3.64382271700E-06 -3.82991901479E-06 -4.02550007975E-06 -4.23104779737E-06 -4.44706841644E-06 -4.67409377146E-06 -4.91268256552E-06 -5.16342171690E-06 -5.42692777207E-06 -5.70384838873E-06 -5.99486389190E-06 -6.30068890687E-06 -6.62207407257E-06 -6.95980783927E-06 -7.31471835461E-06 -7.68767544229E-06 -8.07959267775E-06 -8.49142956559E-06 -8.92419382338E-06 -9.37894377715E-06 -9.85679087368E-06 -1.03589023152E-05 -1.08865038222E-05 -1.14408825307E-05 -1.20233900294E-05 -1.26354455447E-05 -1.32785392789E-05 -1.39542359103E-05 -1.46641782611E-05 -1.54100911420E-05 -1.61937853816E-05 -1.70171620485E-05 -1.78822168751E-05 -1.87910448926E-05 -1.97458452870E-05 -2.07489264848E-05 -2.18027114811E-05 -2.29097434180E-05 -2.40726914273E-05 -2.52943567476E-05 -2.65776791281E-05 -2.79257435326E-05 -2.93417871559E-05 -3.08292067669E-05 -3.23915663915E-05 -3.40326053519E-05 -3.57562466754E-05 -3.75666058899E-05 -3.94680002216E-05 -4.14649582122E-05 -4.35622297732E-05 -4.57647966949E-05 -4.80778836290E-05 -5.05069695639E-05 -5.30577998125E-05 -5.57363985337E-05 -5.85490818073E-05 -6.15024712844E-05 -6.46035084369E-05 -6.78594694263E-05 -7.12779806171E-05 -7.48670347588E-05 -7.86350078592E-05 -8.25906767758E-05 -8.67432375499E-05 -9.11023245086E-05 -9.56780301630E-05 -1.00480925927E-04 -1.05522083683E-04 -1.10813098229E-04 -1.16366110620E-04 -1.22193832444E-04 -1.28309571060E-04 -1.34727255810E-04 -1.41461465253E-04 -1.48527455432E-04 -1.55941189204E-04 -1.63719366667E-04 -1.71879456690E-04 -1.80439729595E-04 -1.89419290981E-04 -1.98838116748E-04 -2.08717089304E-04 -2.19078034998E-04 -2.29943762779E-04 -2.41338104099E-04 -2.53285954067E-04 -2.65813313857E-04 -2.78947334369E-04 -2.92716361154E-04 -3.07149980570E-04 -3.22279067179E-04 -3.38135832345E-04 -3.54753874020E-04 -3.72168227678E-04 -3.90415418347E-04 -4.09533513699E-04 -4.29562178126E-04 -4.50542727731E-04 -4.72518186147E-04 -4.95533341085E-04 -5.19634801501E-04 -5.44871055241E-04 -5.71292527033E-04 -5.98951636643E-04 -6.27902857029E-04 -6.58202772261E-04 -6.89910135004E-04 -7.23085923284E-04 -7.57793396264E-04 -7.94098148718E-04 -8.32068163855E-04 -8.71773864117E-04 -9.13288159538E-04 -9.56686493201E-04 -1.00204688332E-03 -1.04944996141E-03 -1.09897900588E-03 -1.15071997062E-03 -1.20476150762E-03 -1.26119498314E-03 -1.32011448646E-03 -1.38161683043E-03 -1.44580154291E-03 -1.51277084808E-03 -1.58262963655E-03 -1.65548542323E-03 -1.73144829164E-03 -1.81063082349E-03 -1.89314801213E-03 -1.97911715838E-03 -2.06865774739E-03 -2.16189130473E-03 -2.25894123014E-03 -2.35993260721E-03 -2.46499198704E-03 -2.57424714407E-03 -2.68782680198E-03 -2.80586032764E-03 -2.92847739099E-03 -3.05580758861E-03 -3.18798002874E-03 -3.32512287545E-03 -3.46736284967E-03 -3.61482468468E-03 -3.76763053380E-03 -3.92589932782E-03 -4.08974608010E-03 -4.25928113687E-03 -4.43460937089E-03 -4.61582931618E-03 -4.80303224223E-03 -4.99630116598E-03 -5.19570980005E-03 -5.40132143641E-03 -5.61318776439E-03 -5.83134762308E-03 -6.05582568784E-03 -6.28663109188E-03 -6.52375598405E-03 -6.76717402478E-03 -7.01683882286E-03 -7.27268231672E-03 -7.53461310456E-03 -7.80251472900E-03 -8.07624392280E-03 -8.35562882358E-03 -8.64046716684E-03 -8.93052446768E-03 -9.22553220366E-03 -9.52518601234E-03 -9.82914391912E-03 -1.01370246125E-02 -1.04484057858E-02 -1.07628225667E-02 -1.10797660568E-02 -1.13986820068E-02 -1.17189696535E-02 -1.20399807475E-02 -1.23610188023E-02 -1.26813385966E-02 -1.30001459641E-02 -1.33165979045E-02 -1.36298030544E-02 -1.39388225522E-02 -1.42426713360E-02 -1.45403199119E-02 -1.48306966273E-02 -1.51126904876E-02 -1.53851545473E-02 -1.56469099073E-02 -1.58967503459E-02 -1.61334476066E-02 -1.63557573594E-02 -1.65624258475E-02 -1.67521972228E-02 -1.69238215642E-02 -1.70760635652E-02 -1.72077118625E-02 -1.73175889692E-02 -1.74045617592E-02 -1.74675524372E-02 -1.75055499128E-02 -1.75176214813E-02 -1.75029246957E-02 -1.74607193009E-02 -1.73903790802E-02 -1.72914034505E-02 -1.71634286273E-02 -1.70062381630E-02 -1.68197726539E-02 -1.66041383983E-02 -1.63596147831E-02 -1.60866601701E-02 -1.57859160601E-02 -1.54582093118E-02 -1.51045522118E-02 -1.47261402055E-02 -1.43243471270E-02 -1.39007177981E-02 -1.34569579076E-02 -1.29949211331E-02 -1.25165935216E-02 -1.20240752143E-02 -1.15195596732E-02 -1.10053106474E-02 -1.04836372037E-02 -9.95686724087E-03 -9.42731999814E-03 -8.89727816897E-03 -8.36896032647E-03 -7.84449445945E-03 -7.32589350573E-03 -6.81503384614E-03 -6.31363778706E-03 -5.82326110635E-03 -5.34528676315E-03 -4.88092587228E-03 -4.43122701335E-03 -3.99709487921E-03 -3.57931916207E-03 -3.17861442401E-03 -2.79567149627E-03 -2.43122069303E-03 -2.08610680574E-03 -1.76137545859E-03 -1.45836995041E-03 -1.17883717989E-03 -9.25040648751E-04 -6.99877862000E-04 -5.06998700548E-04 -3.49673928633E-04 -2.26638196329E-04 -1.34948716928E-04 -7.10685754042E-05 -3.08282818399E-05 -9.38862146327E-06 -1.20579189247E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 6 1 i j (l(j)) 0.00000000000E+00 Q_int -5.76801946510E-20 -6.06375214688E-20 -6.37464736748E-20 -6.70148252690E-20 -7.04507488326E-20 -7.40628359642E-20 -7.78601187632E-20 -8.18520924144E-20 -8.60487389313E-20 -9.04605521160E-20 -9.50985637996E-20 -9.99743714271E-20 -1.05100167057E-19 -1.10488767849E-19 -1.16153648111E-19 -1.22108972994E-19 -1.28369633913E-19 -1.34951285782E-19 -1.41870386157E-19 -1.49144236394E-19 -1.56791024908E-19 -1.64829872652E-19 -1.73280880933E-19 -1.82165181674E-19 -1.91504990253E-19 -2.01323661058E-19 -2.11645745880E-19 -2.22497055307E-19 -2.33904723264E-19 -2.45897274864E-19 -2.58504697733E-19 -2.71758516993E-19 -2.85691874098E-19 -3.00339609696E-19 -3.15738350757E-19 -3.31926602154E-19 -3.48944842948E-19 -3.66835627604E-19 -3.85643692403E-19 -4.05416067304E-19 -4.26202193542E-19 -4.48054047260E-19 -4.71026269475E-19 -4.95176302707E-19 -5.20564534618E-19 -5.47254449012E-19 -5.75312784577E-19 -6.04809701767E-19 -6.35818958237E-19 -6.68418093282E-19 -7.02688621718E-19 -7.38716237717E-19 -7.76591029085E-19 -8.16407702527E-19 -8.58265820466E-19 -9.02270049999E-19 -9.48530424621E-19 -9.97162619363E-19 -1.04828824004E-18 -1.10203512734E-18 -1.15853767647E-18 -1.21793717324E-18 -1.28038214732E-18 -1.34602874368E-18 -1.41504111299E-18 -1.48759182214E-18 -1.56386228567E-18 -1.64404321948E-18 -1.72833511766E-18 -1.81694875387E-18 -1.91010570834E-18 -2.00803892199E-18 -2.11099327886E-18 -2.21922621846E-18 -2.33300837952E-18 -2.45262427671E-18 -2.57837301207E-18 -2.71056902293E-18 -2.84954286818E-18 -2.99564205481E-18 -3.14923190690E-18 -3.31069647906E-18 -3.48043951682E-18 -3.65888546620E-18 -3.84648053500E-18 -4.04369380861E-18 -4.25101842293E-18 -4.46897279749E-18 -4.69810193173E-18 -4.93897876784E-18 -5.19220562336E-18 -5.45841569733E-18 -5.73827465358E-18 -6.03248228527E-18 -6.34177426471E-18 -6.66692398295E-18 -7.00874448363E-18 -7.36809049603E-18 -7.74586057235E-18 -8.14299933454E-18 -8.56049983634E-18 -8.99940604646E-18 -9.46081545903E-18 -9.94588183788E-18 -1.04558181016E-17 -1.09918993565E-17 -1.15554660848E-17 -1.21479274970E-17 -1.27707650550E-17 -1.34255361773E-17 -1.41138781326E-17 -1.48375121343E-17 -1.55982476443E-17 -1.63979868976E-17 -1.72387296589E-17 -1.81225782229E-17 -1.90517426713E-17 -2.00285463992E-17 -2.10554319247E-17 -2.21349669964E-17 -2.32698510142E-17 -2.44629217792E-17 -2.57171625896E-17 -2.70357097008E-17 -2.84218601672E-17 -2.98790800868E-17 -3.14110132684E-17 -3.30214903428E-17 -3.47145383414E-17 -3.64943907659E-17 -3.83654981743E-17 -4.03325393096E-17 -4.24004327991E-17 -4.45743494533E-17 -4.68597251961E-17 -4.92622746570E-17 -5.17880054608E-17 -5.44432332500E-17 -5.72345974766E-17 -6.01690780051E-17 -6.32540125648E-17 -6.64971150987E-17 -6.99064950521E-17 -7.34906776502E-17 -7.72586252161E-17 -8.12197595808E-17 -8.53839856431E-17 -8.97617161365E-17 -9.43638976671E-17 -9.92020380851E-17 -1.04288235261E-16 -1.09635207336E-16 -1.15256324526E-16 -1.21165642549E-16 -1.27377937778E-16 -1.33908744186E-16 -1.40774392191E-16 -1.47992049486E-16 -1.55579763973E-16 -1.63556508890E-16 -1.71942230252E-16 -1.80757896729E-16 -1.90025552077E-16 -1.99768370261E-16 -2.10010713399E-16 -2.20778192681E-16 -2.32097732411E-16 -2.43997637334E-16 -2.56507663407E-16 -2.69659092208E-16 -2.83484809158E-16 -2.98019385745E-16 -3.13299165980E-16 -3.29362357268E-16 -3.46249125949E-16 -3.64001697738E-16 -3.82664463305E-16 -4.02284089281E-16 -4.22909634944E-16 -4.44592674897E-16 -4.67387428026E-16 -4.91350893080E-16 -5.16542991198E-16 -5.43026715738E-16 -5.70868289798E-16 -6.00137331806E-16 -6.30907029601E-16 -6.63254323446E-16 -6.97260098412E-16 -7.33009386636E-16 -7.70591579947E-16 -8.10100653389E-16 -8.51635400209E-16 -8.95299678892E-16 -9.41202672860E-16 -9.89459163488E-16 -1.04018981712E-15 -1.09352148678E-15 -1.14958752941E-15 -1.20852813929E-15 -1.27049069862E-15 -1.33563014603E-15 -1.40410936404E-15 -1.47609958634E-15 -1.55178082593E-15 -1.63134232530E-15 -1.71498302958E-15 -1.80291208406E-15 -1.89534935713E-15 -1.99252599005E-15 -2.09468497496E-15 -2.20208176248E-15 -2.31498490045E-15 -2.43367670543E-15 -2.55845396869E-15 -2.68962869829E-15 -2.82752889928E-15 -2.97249939389E-15 -3.12490268376E-15 -3.28511985638E-15 -3.45355153800E-15 -3.63061889542E-15 -3.81676468913E-15 -4.01245438039E-15 -4.21817729519E-15 -4.43444784780E-15 -4.66180682703E-15 -4.90082274855E-15 -5.15209327643E-15 -5.41624671761E-15 -5.69394359301E-15 -5.98587828918E-15 -6.29278079460E-15 -6.61541852505E-15 -6.95459824256E-15 -7.31116807267E-15 -7.68601962528E-15 -8.08009022405E-15 -8.49436525026E-15 -8.92988060671E-15 -9.38772530807E-15 -9.86904420395E-15 -1.03750408416E-14 -1.09069804756E-14 -1.14661932311E-14 -1.20540774306E-14 -1.26721030899E-14 -1.33218155940E-14 -1.40048395615E-14 -1.47228829072E-14 -1.54777411120E-14 -1.62713017134E-14 -1.71055490248E-14 -1.79825690975E-14 -1.89045549369E-14 -1.98738119860E-14 -2.08927638905E-14 -2.19639585586E-14 -2.30900745329E-14 -2.42739276875E-14 -2.55184782693E-14 -2.68268383003E-14 -2.82022793589E-14 -2.96482407611E-14 -3.11683381601E-14 -3.27663725873E-14 -3.44463399572E-14 -3.62124410589E-14 -3.80690920604E-14 -4.00209355511E-14 -4.20728521510E-14 -4.42299727145E-14 -4.64976911604E-14 -4.88816779589E-14 -5.13878943115E-14 -5.40226070567E-14 -5.67924043399E-14 -5.97042120880E-14 -6.27653113270E-14 -6.59833563887E-14 -6.93663940505E-14 -7.29228836561E-14 -7.66617182687E-14 -8.05922469076E-14 -8.47242979263E-14 -8.90682035877E-14 -9.36348259005E-14 -9.84355837796E-14 -1.03482481599E-13 -1.08788139210E-13 -1.14365823495E-13 -1.20229481543E-13 -1.26393775526E-13 -1.32874119360E-13 -1.39686717245E-13 -1.46848604189E-13 -1.54377688602E-13 -1.62292797076E-13 -1.70613721459E-13 -1.79361268348E-13 -1.88557311116E-13 -1.98224844603E-13 -2.08388042618E-13 -2.19072318386E-13 -2.30304388090E-13 -2.42112337681E-13 -2.54525693101E-13 -2.67575494117E-13 -2.81294371934E-13 -2.95716630791E-13 -3.10878333738E-13 -3.26817392811E-13 -3.43573663832E-13 -3.61189046070E-13 -3.79707587006E-13 -3.99175592481E-13 -4.19641742475E-13 -4.41157212838E-13 -4.63775803254E-13 -4.87554071764E-13 -5.12551476192E-13 -5.38830522820E-13 -5.66456922682E-13 -5.95499755877E-13 -6.26031644302E-13 -6.58128933242E-13 -6.91871882276E-13 -7.27344865958E-13 -7.64636584801E-13 -8.03840287070E-13 -8.45054001949E-13 -8.88380784662E-13 -9.33928974163E-13 -9.81812464033E-13 -1.03215098727E-12 -1.08507041570E-12 -1.14070307468E-12 -1.19918807399E-12 -1.26067165571E-12 -1.32530755986E-12 -1.39325740880E-12 -1.46469111145E-12 -1.53978728805E-12 -1.61873371686E-12 -1.70172780367E-12 -1.78897707539E-12 -1.88069969904E-12 -1.97712502718E-12 -2.07849417145E-12 -2.18506060549E-12 -2.29709079866E-12 -2.41486488244E-12 -2.53867735082E-12 -2.66883779670E-12 -2.80567168600E-12 -2.94952117153E-12 -3.10074594847E-12 -3.25972415379E-12 -3.42685331181E-12 -3.60255132814E-12 -3.78725753466E-12 -3.98143378809E-12 -4.18556562476E-12 -4.40016347474E-12 -4.62576393815E-12 -4.86293112686E-12 -5.11225807505E-12 -5.37436822207E-12 -5.64991697132E-12 -5.93959332901E-12 -6.24412162706E-12 -6.56426333416E-12 -6.90081895988E-12 -7.25463005619E-12 -7.62658132179E-12 -8.01760281420E-12 -8.42867227534E-12 -8.86081757626E-12 -9.31511928730E-12 -9.79271337997E-12 -1.02947940674E-11 -1.08226167901E-11 -1.13775013557E-11 -1.19608352384E-11 -1.25740770485E-11 -1.32187601794E-11 -1.38964966420E-11 -1.46089810952E-11 -1.53579950830E-11 -1.61454114894E-11 -1.69731992214E-11 -1.78434281317E-11 -1.87582741944E-11 -1.97200249457E-11 -2.07310852036E-11 -2.17939830811E-11 -2.29113763069E-11 -2.40860588714E-11 -2.53209680120E-11 -2.66191915578E-11 -2.79839756502E-11 -2.94187328593E-11 -3.09270507164E-11 -3.25127006845E-11 -3.41796475877E-11 -3.59320595253E-11 -3.77743182927E-11 -3.97110303380E-11 -4.17470382793E-11 -4.38874330128E-11 -4.61375664417E-11 -4.85030648576E-11 -5.09898430081E-11 -5.36041188853E-11 -5.63524292727E-11 -5.92416460889E-11 -6.22789935697E-11 -6.54720663302E-11 -6.88288483539E-11 -7.23577329544E-11 -7.60675437612E-11 -7.99675567807E-11 -8.40675235887E-11 -8.83776957114E-11 -9.29088502570E-11 -9.76723168608E-11 -1.02680006011E-10 -1.07944438829E-10 -1.13478778373E-10 -1.19296862550E-10 -1.25413238710E-10 -1.31843200022E-10 -1.38602823703E-10 -1.45709011221E-10 -1.53179530544E-10 -1.61033060567E-10 -1.69289237812E-10 -1.77968705519E-10 -1.87093165255E-10 -1.96685431177E-10 -2.06769487061E-10 -2.17370546271E-10 -2.28515114788E-10 -2.40231057480E-10 -2.52547667765E-10 -2.65495740842E-10 -2.79107650686E-10 -2.93417430977E-10 -3.08460860189E-10 -3.24275551031E-10 -3.40901044481E-10 -3.58378908636E-10 -3.76752842626E-10 -3.96068785866E-10 -4.16375032892E-10 -4.37722354098E-10 -4.60164122653E-10 -4.83756447929E-10 -5.08558315763E-10 -5.34631735913E-10 -5.62041897070E-10 -5.90857329816E-10 -6.21150077937E-10 -6.52995878510E-10 -6.86474351233E-10 -7.21669197445E-10 -7.58668409355E-10 -7.97564489999E-10 -8.38454684457E-10 -8.81441222939E-10 -9.26631576312E-10 -9.74138724739E-10 -1.02408144008E-09 -1.07658458275E-09 -1.13177941384E-09 -1.18980392318E-09 -1.25080317425E-09 -1.31492966673E-09 -1.38234371771E-09 -1.45321386233E-09 -1.52771727504E-09 -1.60604021241E-09 -1.68837847862E-09 -1.77493791486E-09 -1.86593491374E-09 -1.96159696012E-09 -2.06216319962E-09 -2.16788503628E-09 -2.27902676083E-09 -2.39586621117E-09 -2.51869546671E-09 -2.64782157825E-09 -2.78356733528E-09 -2.92627207263E-09 -3.07629251836E-09 -3.23400368521E-09 -3.39979980765E-09 -3.57409532698E-09 -3.75732592687E-09 -3.94994962196E-09 -4.15244790231E-09 -4.36532693634E-09 -4.58911883555E-09 -4.82438298396E-09 -5.07170743563E-09 -5.33171038384E-09 -5.60504170551E-09 -5.89238458473E-09 -6.19445721944E-09 -6.51201461562E-09 -6.84585047324E-09 -7.19679916899E-09 -7.56573784040E-09 -7.95358857687E-09 -8.36132072279E-09 -8.78995329867E-09 -9.24055754635E-09 -9.71425960444E-09 -1.02122433208E-08 -1.07357532093E-08 -1.12860975574E-08 -1.18646516938E-08 -1.24728614222E-08 -1.31122466324E-08 -1.37844050946E-08 -1.44910164497E-08 -1.52338464024E-08 -1.60147511301E-08 -1.68356819169E-08 -1.76986900250E-08 -1.86059318156E-08 -1.95596741319E-08 -2.05622999577E-08 -2.16163143651E-08 -2.27243507680E-08 -2.38891774940E-08 -2.51137046939E-08 -2.64009916043E-08 -2.77542541818E-08 -2.91768731285E-08 -3.06724023273E-08 -3.22445777096E-08 -3.38973265761E-08 -3.56347773952E-08 -3.74612701021E-08 -3.93813669249E-08 -4.13998637649E-08 -4.35218021589E-08 -4.57524818528E-08 -4.80974740193E-08 -5.05626351506E-08 -5.31541216626E-08 -5.58784052451E-08 -5.87422889973E-08 -6.17529243884E-08 -6.49178290851E-08 -6.82449056905E-08 -7.17424614415E-08 -7.54192289121E-08 -7.92843877760E-08 -8.33475876805E-08 -8.76189722896E-08 -9.21092045563E-08 -9.68294932855E-08 -1.01791621054E-07 -1.07007973558E-07 -1.12491570457E-07 -1.18256097797E-07 -1.24315942086E-07 -1.30686226114E-07 -1.37382846593E-07 -1.44422513734E-07 -1.51822792825E-07 -1.59602147953E-07 -1.67779987935E-07 -1.76376714615E-07 -1.85413773606E-07 -1.94913707635E-07 -2.04900212602E-07 -2.15398196503E-07 -2.26433841352E-07 -2.38034668268E-07 -2.50229605873E-07 -2.63049062188E-07 -2.76525000179E-07 -2.90691017165E-07 -3.05582428270E-07 -3.21236354122E-07 -3.37691813023E-07 -3.54989817816E-07 -3.73173477680E-07 -3.92288105111E-07 -4.12381328347E-07 -4.33503209515E-07 -4.55706368796E-07 -4.79046114896E-07 -5.03580582164E-07 -5.29370874679E-07 -5.56481217662E-07 -5.84979116587E-07 -6.14935524380E-07 -6.46425017109E-07 -6.79525978605E-07 -7.14320794453E-07 -7.50896055841E-07 -7.89342773747E-07 -8.29756604008E-07 -8.72238083796E-07 -9.16892880097E-07 -9.63832050788E-07 -1.01317231894E-06 -1.06503636106E-06 -1.11955310984E-06 -1.17685807240E-06 -1.23709366448E-06 -1.30040956161E-06 -1.36696306814E-06 -1.43691950474E-06 -1.51045261570E-06 -1.58774499666E-06 -1.66898854403E-06 -1.75438492710E-06 -1.84414608397E-06 -1.93849474249E-06 -2.03766496754E-06 -2.14190273581E-06 -2.25146653966E-06 -2.36662802131E-06 -2.48767263900E-06 -2.61490036670E-06 -2.74862642894E-06 -2.88918207272E-06 -3.03691537806E-06 -3.19219210935E-06 -3.35539660945E-06 -3.52693273860E-06 -3.70722486039E-06 -3.89671887724E-06 -4.09588331760E-06 -4.30521047770E-06 -4.52521762030E-06 -4.75644823340E-06 -4.99947335184E-06 -5.25489294484E-06 -5.52333737273E-06 -5.80546891636E-06 -6.10198338256E-06 -6.41361178963E-06 -6.74112213650E-06 -7.08532125989E-06 -7.44705678358E-06 -7.82721916443E-06 -8.22674383971E-06 -8.64661348072E-06 -9.08786035796E-06 -9.55156882302E-06 -1.00388779131E-05 -1.05509840837E-05 -1.10891440762E-05 -1.16546779266E-05 -1.22489721212E-05 -1.28734829083E-05 -1.35297397718E-05 -1.42193490746E-05 -1.49439978802E-05 -1.57054579612E-05 -1.65055900034E-05 -1.73463480134E-05 -1.82297839422E-05 -1.91580525318E-05 -2.01334163977E-05 -2.11582513566E-05 -2.22350520118E-05 -2.33664376081E-05 -2.45551581680E-05 -2.58041009236E-05 -2.71162970558E-05 -2.84949287571E-05 -2.99433366314E-05 -3.14650274460E-05 -3.30636822530E-05 -3.47431648959E-05 -3.65075309184E-05 -3.83610368951E-05 -4.03081502003E-05 -4.23535592369E-05 -4.45021841447E-05 -4.67591880082E-05 -4.91299885876E-05 -5.16202705945E-05 -5.42359985361E-05 -5.69834301528E-05 -5.98691304734E-05 -6.28999865159E-05 -6.60832226588E-05 -6.94264167134E-05 -7.29375167242E-05 -7.66248585284E-05 -8.04971841048E-05 -8.45636607451E-05 -8.88339010796E-05 -9.33179839909E-05 -9.80264764519E-05 -1.02970456323E-04 -1.08161536144E-04 -1.13611887962E-04 -1.19334269230E-04 -1.25342049820E-04 -1.31649240184E-04 -1.38270520711E-04 -1.45221272326E-04 -1.52517608353E-04 -1.60176407711E-04 -1.68215349474E-04 -1.76652948834E-04 -1.85508594522E-04 -1.94802587733E-04 -2.04556182579E-04 -2.14791628149E-04 -2.25532212183E-04 -2.36802306440E-04 -2.48627413765E-04 -2.61034216935E-04 -2.74050629298E-04 -2.87705847249E-04 -3.02030404597E-04 -3.17056228833E-04 -3.32816699349E-04 -3.49346707631E-04 -3.66682719448E-04 -3.84862839070E-04 -4.03926875516E-04 -4.23916410851E-04 -4.44874870536E-04 -4.66847595833E-04 -4.89881918238E-04 -5.14027235952E-04 -5.39335092323E-04 -5.65859256262E-04 -5.93655804544E-04 -6.22783205955E-04 -6.53302407192E-04 -6.85276920424E-04 -7.18772912409E-04 -7.53859295020E-04 -7.90607817042E-04 -8.29093157052E-04 -8.69393017194E-04 -9.11588217603E-04 -9.55762791244E-04 -1.00200407885E-03 -1.05040282367E-03 -1.10105326560E-03 -1.15405323442E-03 -1.20950424150E-03 -1.26751156972E-03 -1.32818436083E-03 -1.39163569982E-03 -1.45798269561E-03 -1.52734655721E-03 -1.59985266488E-03 -1.67563063504E-03 -1.75481437835E-03 -1.83754214978E-03 -1.92395658961E-03 -2.01420475422E-03 -2.10843813539E-03 -2.20681266675E-03 -2.30948871585E-03 -2.41663106047E-03 -2.52840884718E-03 -2.64499553066E-03 -2.76656879169E-03 -2.89331043175E-03 -3.02540624217E-03 -3.16304584544E-03 -3.30642250625E-03 -3.45573290976E-03 -3.61117690428E-03 -3.77295720557E-03 -3.94127905987E-03 -4.11634986233E-03 -4.29837872782E-03 -4.48757601059E-03 -4.68415276944E-03 -4.88832017464E-03 -5.10028885309E-03 -5.32026816781E-03 -5.54846542804E-03 -5.78508502607E-03 -6.03032749682E-03 -6.28438849647E-03 -6.54745769618E-03 -6.81971758732E-03 -7.10134219443E-03 -7.39249569267E-03 -7.69333092652E-03 -8.00398782684E-03 -8.32459172379E-03 -8.65525155359E-03 -8.99605795756E-03 -9.34708127255E-03 -9.70836941253E-03 -1.00799456421E-02 -1.04618062434E-02 -1.08539180792E-02 -1.12562160556E-02 -1.16686004908E-02 -1.20909343945E-02 -1.25230406691E-02 -1.29646992396E-02 -1.34156441275E-02 -1.38755604809E-02 -1.43440815774E-02 -1.48207858205E-02 -1.53051937490E-02 -1.57967650855E-02 -1.62948958496E-02 -1.67989155685E-02 -1.73080846159E-02 -1.78215917179E-02 -1.83385516645E-02 -1.88580032708E-02 -1.93789076339E-02 -1.99001467350E-02 -2.04205224398E-02 -2.09387559514E-02 -2.14534877750E-02 -2.19632782528E-02 -2.24666087311E-02 -2.29618834223E-02 -2.34474320240E-02 -2.39215131581E-02 -2.43823186889E-02 -2.48279789814E-02 -2.52565691509E-02 -2.56661163558E-02 -2.60546081748E-02 -2.64200021036E-02 -2.67602361957E-02 -2.70732408603E-02 -2.73569518160E-02 -2.76093241837E-02 -2.78283476850E-02 -2.80120628926E-02 -2.81585784551E-02 -2.82660891998E-02 -2.83328949874E-02 -2.83574201686E-02 -2.83382334633E-02 -2.82740680568E-02 -2.81638416751E-02 -2.80066763768E-02 -2.78019177688E-02 -2.75491533294E-02 -2.72482294967E-02 -2.68992671648E-02 -2.65026752102E-02 -2.60591616666E-02 -2.55697421596E-02 -2.50357452224E-02 -2.44588141240E-02 -2.38409048708E-02 -2.31842800750E-02 -2.24914984346E-02 -2.17653996284E-02 -2.10090845082E-02 -2.02258905545E-02 -1.94193626675E-02 -1.85932194800E-02 -1.77513155052E-02 -1.68975995711E-02 -1.60360701408E-02 -1.51707282709E-02 -1.43055291147E-02 -1.34443330347E-02 -1.25908575378E-02 -1.17486313855E-02 -1.09209523585E-02 -1.01108502546E-02 -9.32105677712E-03 -8.55398400630E-03 -7.81171314913E-03 -7.09599520690E-03 -6.40826509548E-03 -5.74967058021E-03 -5.12111714624E-03 -4.52332960584E-03 -3.95693084247E-03 -3.42253760045E-03 -2.92087264686E-03 -2.45289195372E-03 -2.01992477542E-03 -1.62382362927E-03 -1.26712023293E-03 -9.53182421686E-04 -6.86365977842E-04 -4.70448185630E-04 -3.02963320611E-04 -1.79200405996E-04 -9.37263714396E-05 -4.03685873321E-05 -1.22038487773E-05 -1.55542649516E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 7 2 i j (l(j)) 0.00000000000E+00 Q_int 1.51041167632E-23 1.60782486013E-23 1.71152065452E-23 1.82190425306E-23 1.93940698207E-23 2.06448798600E-23 2.19763602160E-23 2.33937136771E-23 2.49024785828E-23 2.65085504648E-23 2.82182050837E-23 3.00381229522E-23 3.19754154390E-23 3.40376525564E-23 3.62328925409E-23 3.85697133404E-23 4.10572461329E-23 4.37052110069E-23 4.65239549428E-23 4.95244922436E-23 5.27185475740E-23 5.61186017748E-23 5.97379406316E-23 6.35907067895E-23 6.76919550162E-23 7.20577110281E-23 7.67050341118E-23 8.16520837832E-23 8.69181907465E-23 9.25239324289E-23 9.84912133879E-23 1.04843350904E-22 1.11605166091E-22 1.18803080891E-22 1.26465221311E-22 1.34621527332E-22 1.43303869896E-22 1.52546175446E-22 1.62384558491E-22 1.72857462728E-22 1.84005811257E-22 1.95873166492E-22 2.08505900382E-22 2.21953375609E-22 2.36268138474E-22 2.51506124225E-22 2.67726875622E-22 2.84993775603E-22 3.03374294956E-22 3.22940255959E-22 3.43768113031E-22 3.65939251475E-22 3.89540305496E-22 4.14663496727E-22 4.41406994582E-22 4.69875299861E-22 5.00179653086E-22 5.32438469175E-22 5.66777800153E-22 6.03331827702E-22 6.42243387479E-22 6.83664527249E-22 7.27757101018E-22 7.74693401473E-22 8.24656833231E-22 8.77842629486E-22 9.34458614892E-22 9.94726017644E-22 1.05888033393E-21 1.12717224813E-21 1.19986861238E-21 1.27725348931E-21 1.35962926201E-21 1.44731781560E-21 1.54066179500E-21 1.64002594385E-21 1.74579852972E-21 1.85839286128E-21 1.97824890333E-21 2.10583499596E-21 2.24164968461E-21 2.38622366811E-21 2.54012187245E-21 2.70394565822E-21 2.87833517040E-21 3.06397183981E-21 3.26158104578E-21 3.47193495056E-21 3.69585551661E-21 3.93421771841E-21 4.18795296145E-21 4.45805272169E-21 4.74557241983E-21 5.05163554533E-21 5.37743804651E-21 5.72425300372E-21 6.09343560394E-21 6.48642843621E-21 6.90476712855E-21 7.35008634851E-21 7.82412619061E-21 8.32873897584E-21 8.86589648962E-21 9.43769768661E-21 1.00463768924E-20 1.06943125343E-20 1.13840364347E-20 1.21182437050E-20 1.28998032759E-20 1.37317691084E-20 1.46173921272E-20 1.55601329234E-20 1.65636752771E-20 1.76319405519E-20 1.87691030177E-20 1.99796061614E-20 2.12681800504E-20 2.26398598151E-20 2.41000053241E-20 2.56543221277E-20 2.73088837525E-20 2.90701554341E-20 3.09450193799E-20 3.29408016614E-20 3.50653008413E-20 3.73268184463E-20 3.97341914057E-20 4.22968265815E-20 4.50247375264E-20 4.79285836117E-20 5.10197116792E-20 5.43102003789E-20 5.78129073669E-20 6.15415195470E-20 6.55106065522E-20 6.97356776763E-20 7.42332424765E-20 7.90208752851E-20 8.41172838813E-20 8.95423825924E-20 9.53173701097E-20 1.01464812322E-19 1.08008730494E-19 1.14974695128E-19 1.22389925882E-19 1.30283397932E-19 1.38685955190E-19 1.47630430833E-19 1.57151775593E-19 1.67287194332E-19 1.78076291418E-19 1.89561225484E-19 2.01786874158E-19 2.14801009429E-19 2.28654484313E-19 2.43401431565E-19 2.59099475200E-19 2.75809955667E-19 2.93598169530E-19 3.12533624623E-19 3.32690311647E-19 3.54146993294E-19 3.76987512016E-19 4.01301117636E-19 4.27182816095E-19 4.54733740694E-19 4.84061547268E-19 5.15280834861E-19 5.48513593516E-19 5.83889680961E-19 6.21547330027E-19 6.61633688795E-19 7.04305395585E-19 7.49729191017E-19 7.98082569561E-19 8.49554473094E-19 9.04346029198E-19 9.62671337070E-19 1.02475830412E-18 1.09084953652E-18 1.16120328719E-18 1.23609446496E-18 1.31581570872E-18 1.40067853096E-18 1.49101453502E-18 1.58717671078E-18 1.68954081405E-18 1.79850683477E-18 1.91450056006E-18 2.03797523791E-18 2.16941334830E-18 2.30932848852E-18 2.45826738002E-18 2.61681200475E-18 2.78558187928E-18 2.96523647557E-18 3.15647779786E-18 3.36005312578E-18 3.57675793434E-18 3.80743900230E-18 4.05299772095E-18 4.31439361632E-18 4.59264809856E-18 4.88884845311E-18 5.20415208930E-18 5.53979106294E-18 5.89707689063E-18 6.27740567450E-18 6.68226355756E-18 7.11323253078E-18 7.57199661481E-18 8.06034844029E-18 8.58019625258E-18 9.13357136834E-18 9.72263611287E-18 1.03496922695E-17 1.10171900737E-17 1.17277377878E-17 1.24841118923E-17 1.32892679357E-17 1.41463520825E-17 1.50587134078E-17 1.60299169833E-17 1.70637578082E-17 1.81642756378E-17 1.93357707697E-17 2.05828208465E-17 2.19102987435E-17 2.33233916096E-17 2.48276211358E-17 2.64288651318E-17 2.81333804933E-17 2.99478276512E-17 3.18792965973E-17 3.39353345885E-17 3.61239756382E-17 3.84537719087E-17 4.09338271298E-17 4.35738321712E-17 4.63841029102E-17 4.93756205408E-17 5.25600744833E-17 5.59499080610E-17 5.95583671222E-17 6.33995517995E-17 6.74884716055E-17 7.18411040835E-17 7.64744572398E-17 8.14066360028E-17 8.66569129683E-17 9.22458037082E-17 9.81951469347E-17 1.04528189836E-16 1.11269678916E-16 1.18445956689E-16 1.26085064618E-16 1.34216852682E-16 1.42873096023E-16 1.52087619098E-16 1.61896427858E-16 1.72337850437E-16 1.83452686921E-16 1.95284368777E-16 2.07879128559E-16 2.21286180566E-16 2.35557913145E-16 2.50750093405E-16 2.66922085120E-16 2.84137080701E-16 3.02462348119E-16 3.21969493756E-16 3.42734742210E-16 3.64839234142E-16 3.88369343339E-16 4.13417014214E-16 4.40080121089E-16 4.68462850636E-16 4.98676108992E-16 5.30837955123E-16 5.65074062147E-16 6.01518208399E-16 6.40312800178E-16 6.81609428199E-16 7.25569459939E-16 7.72364670183E-16 8.22177912240E-16 8.75203832441E-16 9.31649630731E-16 9.91735870302E-16 1.05569733945E-15 1.12378396901E-15 1.19626180899E-15 1.27341406813E-15 1.35554222057E-15 1.44296718387E-15 1.53603057299E-15 1.63509603516E-15 1.74055067084E-15 1.85280654634E-15 1.97230230395E-15 2.09950487597E-15 2.23491130924E-15 2.37905070736E-15 2.53248629820E-15 2.69581763470E-15 2.86968293765E-15 3.05476158953E-15 3.25177678925E-15 3.46149837802E-15 3.68474584758E-15 3.92239154231E-15 4.17536406800E-15 4.44465192035E-15 4.73130734759E-15 5.03645046210E-15 5.36127361732E-15 5.70704606690E-15 6.07511892431E-15 6.46693044234E-15 6.88401163316E-15 7.32799225071E-15 7.80060715907E-15 8.30370311143E-15 8.83924596633E-15 9.40932836932E-15 1.00161779300E-14 1.06621659265E-14 1.13498165711E-14 1.20818168740E-14 1.28610271426E-14 1.36904921583E-14 1.45734530740E-14 1.55133600791E-14 1.65138858811E-14 1.75789400567E-14 1.87126843289E-14 1.99195488286E-14 2.12042494057E-14 2.25718060563E-14 2.40275625384E-14 2.55772072529E-14 2.72267954712E-14 2.89827729960E-14 3.08520013487E-14 3.28417845808E-14 3.49598978149E-14 3.72146176258E-14 3.96147543816E-14 4.21696866705E-14 4.48893979478E-14 4.77845155463E-14 5.08663522030E-14 5.41469502640E-14 5.76391287400E-14 6.13565333971E-14 6.53136900777E-14 6.95260614608E-14 7.40101074828E-14 7.87833496548E-14 8.38644395287E-14 8.92732315781E-14 9.50308607807E-14 1.01159825203E-13 1.07684073913E-13 1.14629100561E-13 1.22022042997E-13 1.29891789311E-13 1.38269090717E-13 1.47186681712E-13 1.56679407987E-13 1.66784362586E-13 1.77541030852E-13 1.88991444713E-13 2.01180346925E-13 2.14155365903E-13 2.27967201834E-13 2.42669824785E-13 2.58320685596E-13 2.74980940367E-13 2.92715689432E-13 3.11594231733E-13 3.31690335615E-13 3.53082527071E-13 3.75854396590E-13 4.00094925785E-13 4.25898835091E-13 4.53366953890E-13 4.82606614502E-13 5.13732071590E-13 5.46864948613E-13 5.82134713071E-13 6.19679182406E-13 6.59645062524E-13 7.02188521052E-13 7.47475797570E-13 7.95683853194E-13 8.47001062057E-13 9.01627947386E-13 9.59777965051E-13 1.02167833765E-12 1.08757094238E-12 1.15771325621E-12 1.23237936192E-12 1.31186101915E-12 1.39646880441E-12 1.48653332471E-12 1.58240650937E-12 1.68446298522E-12 1.79310154047E-12 1.90874668297E-12 2.03185029900E-12 2.16289341900E-12 2.30238809725E-12 2.45087941271E-12 2.60894759895E-12 2.77721031140E-12 2.95632504088E-12 3.14699168276E-12 3.34995527182E-12 3.56600889351E-12 3.79599678291E-12 4.04081762365E-12 4.30142805952E-12 4.57884643261E-12 4.87415676246E-12 5.18851298197E-12 5.52314344635E-12 5.87935573303E-12 6.25854175101E-12 6.66218317980E-12 7.09185725913E-12 7.54924295209E-12 8.03612750568E-12 8.55441343457E-12 9.10612595478E-12 9.69342090088E-12 1.03185931396E-11 1.09840855503E-11 1.16924985635E-11 1.24466003342E-11 1.32493375142E-11 1.41038468370E-11 1.50134673160E-11 1.59817533208E-11 1.70124884675E-11 1.81097003643E-11 1.92776764130E-11 2.05209805148E-11 2.18444709013E-11 2.32533191742E-11 2.47530304422E-11 2.63494648549E-11 2.80488605619E-11 2.98578579698E-11 3.17835258064E-11 3.38333886825E-11 3.60154565153E-11 3.83382557658E-11 4.08108628782E-11 4.34429396169E-11 4.62447709422E-11 4.92273050726E-11 5.24021963515E-11 5.57818508424E-11 5.93794745074E-11 6.32091253889E-11 6.72857678137E-11 7.16253314604E-11 7.62447733220E-11 8.11621440286E-11 8.63966583057E-11 9.19687703691E-11 9.79002533181E-11 1.04214284642E-10 1.10935536670E-10 1.18090272977E-10 1.25706450866E-10 1.33813830961E-10 1.42444093101E-10 1.51630960367E-10 1.61410330766E-10 1.71820417460E-10 1.82901898572E-10 1.94698075230E-10 2.07255041434E-10 2.20621864101E-10 2.34850774760E-10 2.49997373208E-10 2.66120845539E-10 2.83284195013E-10 3.01554487938E-10 3.21003116443E-10 3.41706076890E-10 3.63744266869E-10 3.87203801694E-10 4.12176350555E-10 4.38759494697E-10 4.67057109175E-10 4.97179768041E-10 5.29245177308E-10 5.63378633892E-10 5.99713515703E-10 6.38391803373E-10 6.79564634021E-10 7.23392892511E-10 7.70047840616E-10 8.19711783932E-10 8.72578787332E-10 9.28855431410E-10 9.88761620267E-10 1.05253144021E-09 1.12041407549E-09 1.19267478110E-09 1.26959591947E-09 1.35147806472E-09 1.43864117592E-09 1.53142584760E-09 1.63019464123E-09 1.73533350134E-09 1.84725326495E-09 1.96639126451E-09 2.09321303972E-09 2.22821415322E-09 2.37192213135E-09 2.52489852100E-09 2.68774108772E-09 2.86108614836E-09 3.04561106113E-09 3.24203686678E-09 3.45113111390E-09 3.67371085168E-09 3.91064582479E-09 4.16286187190E-09 4.43134454561E-09 4.71714295889E-09 5.02137388932E-09 5.34522613966E-09 5.68996518552E-09 6.05693811851E-09 6.44757891133E-09 6.86341402057E-09 7.30606835108E-09 7.77727160588E-09 8.27886504725E-09 8.81280868496E-09 9.38118894393E-09 9.98622681068E-09 1.06302865152E-08 1.13158847651E-08 1.20457005857E-08 1.28225857861E-08 1.36495761007E-08 1.45299030541E-08 1.54670065844E-08 1.64645484932E-08 1.75264267440E-08 1.86567907003E-08 1.98600573372E-08 2.11409285012E-08 2.25044092832E-08 2.39558275733E-08 2.55008548829E-08 2.71455285053E-08 2.88962751040E-08 3.07599358253E-08 3.27437930326E-08 3.48555987615E-08 3.71036050019E-08 3.94965959562E-08 4.20439223481E-08 4.47555379784E-08 4.76420385907E-08 5.07147033010E-08 5.39855386534E-08 5.74673255329E-08 6.11736691093E-08 6.51190520028E-08 6.93188908550E-08 7.37895965734E-08 7.85486384609E-08 8.36146124533E-08 8.90073138032E-08 9.47478143850E-08 1.00858545060E-07 1.07363383298E-07 1.14287746472E-07 1.21658691154E-07 1.29505018840E-07 1.37857388461E-07 1.46748436170E-07 1.56212902841E-07 1.66287769797E-07 1.77012403293E-07 1.88428708277E-07 2.00581292130E-07 2.13517638907E-07 2.27288294844E-07 2.41947065793E-07 2.57551227418E-07 2.74161748929E-07 2.91843531229E-07 3.10665660429E-07 3.30701677694E-07 3.52029866483E-07 3.74733558303E-07 3.98901458192E-07 4.24627991140E-07 4.52013670876E-07 4.81165492389E-07 5.12197349780E-07 5.45230481004E-07 5.80393941304E-07 6.17825107115E-07 6.57670212496E-07 7.00084920038E-07 7.45234928634E-07 7.93296620357E-07 8.44457749005E-07 8.98918173045E-07 9.56890635701E-07 1.01860159534E-06 1.08429210928E-06 1.15421877456E-06 1.22865472926E-06 1.30789071828E-06 1.39223622776E-06 1.48202069250E-06 1.57759478107E-06 1.67933176370E-06 1.78762896813E-06 1.90290932913E-06 2.02562303774E-06 2.15624929658E-06 2.29529818806E-06 2.44331266271E-06 2.60087065537E-06 2.76858733740E-06 2.94711751368E-06 3.13715817363E-06 3.33945120614E-06 3.55478628887E-06 3.78400396317E-06 4.02799890642E-06 4.28772341440E-06 4.56419110721E-06 4.85848087297E-06 5.17174106445E-06 5.50519396490E-06 5.86014054008E-06 6.23796549493E-06 6.64014265420E-06 7.06824068766E-06 7.52392920186E-06 8.00898522181E-06 8.52530008725E-06 9.07488678999E-06 9.65988778021E-06 1.02825832715E-05 1.09454000762E-05 1.16509210049E-05 1.24018948653E-05 1.32012470988E-05 1.40520910945E-05 1.49577402241E-05 1.59217206427E-05 1.69477849031E-05 1.80399264364E-05 1.92023949508E-05 2.04397128089E-05 2.17566924422E-05 2.31584548701E-05 2.46504493893E-05 2.62384745097E-05 2.79287002118E-05 2.97276916096E-05 3.16424341034E-05 3.36803601182E-05 3.58493775219E-05 3.81578998289E-05 4.06148782985E-05 4.32298360430E-05 4.60129042692E-05 4.89748607832E-05 5.21271708952E-05 5.54820308707E-05 5.90524140807E-05 6.28521200139E-05 6.68958263219E-05 7.11991440789E-05 7.57786764471E-05 8.06520809483E-05 8.58381355558E-05 9.13568088298E-05 9.72293343325E-05 1.03478289572E-04 1.10127679733E-04 1.17203026480E-04 1.24731462101E-04 1.32741829324E-04 1.41264787097E-04 1.50332922681E-04 1.59980870404E-04 1.70245437441E-04 1.81165736997E-04 1.92783329301E-04 2.05142370830E-04 2.18289772181E-04 2.32275365070E-04 2.47152078901E-04 2.62976127417E-04 2.79807205922E-04 2.97708699602E-04 3.16747903499E-04 3.36996254664E-04 3.58529577098E-04 3.81428340039E-04 4.05777930208E-04 4.31668938629E-04 4.59197462629E-04 4.88465423668E-04 5.19580901616E-04 5.52658486114E-04 5.87819645666E-04 6.25193115072E-04 6.64915301829E-04 7.07130712090E-04 7.51992396774E-04 7.99662418352E-04 8.50312338833E-04 9.04123729408E-04 9.61288702155E-04 1.02201046414E-03 1.08650389418E-03 1.15499614240E-03 1.22772725266E-03 1.30495080780E-03 1.38693459739E-03 1.47396130772E-03 1.56632923329E-03 1.66435300918E-03 1.76836436316E-03 1.87871288622E-03 1.99576681993E-03 2.11991385881E-03 2.25156196508E-03 2.39114019340E-03 2.53909952218E-03 2.69591368778E-03 2.86208001746E-03 3.03812025606E-03 3.22458138103E-03 3.42203639945E-03 3.63108512010E-03 3.85235489257E-03 4.08650130487E-03 4.33420882949E-03 4.59619140732E-03 4.87319295731E-03 5.16598779890E-03 5.47538097269E-03 5.80220844368E-03 6.14733716992E-03 6.51166501794E-03 6.89612050480E-03 7.30166234509E-03 7.72927877943E-03 8.17998665960E-03 8.65483026332E-03 9.15487981066E-03 9.68122965166E-03 1.02349960938E-02 1.08173148357E-02 1.14293379729E-02 1.20722305389E-02 1.27471665450E-02 1.34553244805E-02 1.41978822339E-02 1.49760113975E-02 1.57908709149E-02 1.66436000326E-02 1.75353105203E-02 1.84670781224E-02 1.94399332070E-02 2.04548505846E-02 2.15127384680E-02 2.26144265543E-02 2.37606532143E-02 2.49520517819E-02 2.61891359459E-02 2.74722842575E-02 2.88017237762E-02 3.01775128948E-02 3.15995233941E-02 3.30674218020E-02 3.45806501440E-02 3.61384061986E-02 3.77396233920E-02 3.93829504919E-02 4.10667312874E-02 4.27889844702E-02 4.45473839640E-02 4.63392399789E-02 4.81614811007E-02 5.00106377579E-02 5.18828274431E-02 5.37737420949E-02 5.56786380815E-02 5.75923292507E-02 5.95091835400E-02 6.14231236600E-02 6.33276323758E-02 6.52157629259E-02 6.70801551072E-02 6.89130575531E-02 7.07063566990E-02 7.24516128986E-02 7.41401040967E-02 7.57628773953E-02 7.73108087601E-02 7.87746710005E-02 8.01452100296E-02 8.14132292477E-02 8.25696817205E-02 8.36057696178E-02 8.45130501529E-02 8.52835470229E-02 8.59098660790E-02 8.63853136876E-02 8.67040159471E-02 8.68610366444E-02 8.68524915439E-02 8.66756563391E-02 8.63290653479E-02 8.58125978350E-02 8.51275486886E-02 8.42766801009E-02 8.32642509031E-02 8.20960203139E-02 8.07792230863E-02 7.93225134003E-02 7.77358753668E-02 7.60304986845E-02 7.42186188483E-02 7.23133223374E-02 7.03283184185E-02 6.82776805702E-02 6.61755620518E-02 6.40358917704E-02 6.18720583003E-02 5.96965916252E-02 5.75208538283E-02 5.53547514716E-02 5.32064836716E-02 5.10823407918E-02 4.89865690985E-02 4.69213165437E-02 4.48866739016E-02 4.28808236726E-02 4.09003063528E-02 3.89404097563E-02 3.69956819931E-02 3.50605624310E-02 3.31301175298E-02 3.12008599250E-02 2.92716197377E-02 2.73449918972E-02 2.54284206158E-02 2.35303663536E-02 2.16593491657E-02 1.98238724935E-02 1.80323411557E-02 1.62929740961E-02 1.46137126040E-02 1.30021248947E-02 1.14653081185E-02 1.00097890526E-02 8.64142492718E-03 7.36530602796E-03 6.18566191453E-03 5.10577327861E-03 4.12789164362E-03 3.25316926555E-03 2.48160173070E-03 1.81198585045E-03 1.24189551936E-03 7.67678221108E-04 3.84474829174E-04 8.62652441219E-05 -1.34057771302E-04 -2.84584466546E-04 -3.74251959827E-04 -4.12674822971E-04 -4.09941731061E-04 -3.76378229803E-04 -3.22276522786E-04 -2.57594168069E-04 -1.91624701104E-04 -1.32166469627E-04 -8.36184001296E-05 -4.78614001525E-05 -2.43394765097E-05 -1.02608915905E-05 -3.03771476959E-06 -3.79357299560E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.65683755344E-23 1.76369439497E-23 1.87744291067E-23 1.99852757535E-23 2.12742152995E-23 2.26462843042E-23 2.41068441569E-23 2.56616020271E-23 2.73166331648E-23 2.90784046403E-23 3.09538006138E-23 3.29501492359E-23 3.50752512822E-23 3.73374106351E-23 3.97454667315E-23 4.23088291028E-23 4.50375141433E-23 4.79421842491E-23 5.10341894816E-23 5.43256119187E-23 5.78293128648E-23 6.15589831078E-23 6.55291964149E-23 6.97554664812E-23 7.42543075486E-23 7.90432989364E-23 8.41411537326E-23 8.95677919155E-23 9.53444181917E-23 1.01493604854E-22 1.08039379983E-22 1.15007321337E-22 1.22424656299E-22 1.30320368265E-22 1.38725309903E-22 1.47672323703E-22 1.57196370318E-22 1.67334665166E-22 1.78126823855E-22 1.89615016979E-22 2.01844134902E-22 2.14861963169E-22 2.28719369226E-22 2.43470501189E-22 2.59172999427E-22 2.75888221792E-22 2.93681483379E-22 3.12622311745E-22 3.32784718588E-22 3.54247488950E-22 3.77094489075E-22 4.01414994110E-22 4.27304036958E-22 4.54862779617E-22 4.84198908473E-22 5.15427055085E-22 5.48669244117E-22 5.84055370144E-22 6.21723705222E-22 6.61821439190E-22 7.04505254814E-22 7.49941940032E-22 7.98309039678E-22 8.49795549246E-22 9.04602653390E-22 9.62944512061E-22 1.02504909734E-21 1.09115908424E-21 1.16153279898E-21 1.23644522838E-21 1.31618909437E-21 1.40107599785E-21 1.49143763625E-21 1.58762709962E-21 1.69002025038E-21 1.79901719200E-21 1.91504383240E-21 2.03855354819E-21 2.17002895627E-21 2.30998379966E-21 2.45896495495E-21 2.61755456923E-21 2.78637233489E-21 2.96607791100E-21 3.15737350100E-21 3.36100659658E-21 3.57777289848E-21 3.80851942573E-21 4.05414782541E-21 4.31561789583E-21 4.59395133696E-21 4.89023574279E-21 5.20562885106E-21 5.54136306719E-21 5.89875027994E-21 6.27918698761E-21 6.68415975490E-21 7.11525102170E-21 7.57414528651E-21 8.06263568863E-21 8.58263101493E-21 9.13616315845E-21 9.72539505807E-21 1.03526291503E-20 1.10203163658E-20 1.17310657071E-20 1.24876544426E-20 1.32930389593E-20 1.41503663145E-20 1.50629865337E-20 1.60344657002E-20 1.70685998898E-20 1.81694300045E-20 1.93412575619E-20 2.05886615035E-20 2.19165160874E-20 2.33300099343E-20 2.48346663021E-20 2.64363646682E-20 2.81413637038E-20 2.99563257297E-20 3.18883427495E-20 3.39449641617E-20 3.61342262592E-20 3.84646836311E-20 4.09454425903E-20 4.35861967564E-20 4.63972649337E-20 4.93896314322E-20 5.25749889890E-20 5.59657844580E-20 5.95752674462E-20 6.34175420869E-20 6.75076221517E-20 7.18614897174E-20 7.64961576161E-20 8.14297359135E-20 8.66815026739E-20 9.22719792902E-20 9.82230106712E-20 1.04557850601E-19 1.11301252606E-19 1.18479566674E-19 1.26120842224E-19 1.34254937707E-19 1.42913637277E-19 1.52130774991E-19 1.61942367016E-19 1.72386752360E-19 1.83504742686E-19 1.95339781784E-19 2.07938115325E-19 2.21348971572E-19 2.35624753737E-19 2.50821244749E-19 2.66997825228E-19 2.84217705514E-19 3.02548172662E-19 3.22060853372E-19 3.42831993869E-19 3.64942757835E-19 3.88479543560E-19 4.13534321548E-19 4.40204993888E-19 4.68595776813E-19 4.98817607922E-19 5.30988579680E-19 5.65234400858E-19 6.01688887746E-19 6.40494487045E-19 6.81802832478E-19 7.25775337303E-19 7.72583825040E-19 8.22411200871E-19 8.75452166352E-19 9.31913980209E-19 9.92017268207E-19 1.05599688525E-18 1.12410283309E-18 1.19660123719E-18 1.27377538664E-18 1.35592684112E-18 1.44337660922E-18 1.53646640281E-18 1.63555997228E-18 1.74104452791E-18 1.85333225289E-18 1.97286191397E-18 2.10010057587E-18 2.23554542646E-18 2.37972571942E-18 2.53320484239E-18 2.69658251838E-18 2.87049714921E-18 3.05562831009E-18 3.25269940506E-18 3.46248049371E-18 3.68579130021E-18 3.92350441640E-18 4.17654871145E-18 4.44591296144E-18 4.73264971306E-18 5.03787939639E-18 5.36279470308E-18 5.70866524674E-18 6.07684252407E-18 6.46876519579E-18 6.88596470826E-18 7.33007127768E-18 7.80282026011E-18 8.30605893252E-18 8.84175371097E-18 9.41199783446E-18 1.00190195443E-17 1.06651907911E-17 1.13530365031E-17 1.20852444523E-17 1.28646757573E-17 1.36943760628E-17 1.45775874410E-17 1.55177610594E-17 1.65185706669E-17 1.75839269491E-17 1.87179928086E-17 1.99251996326E-17 2.12102646080E-17 2.25782091543E-17 2.40343785446E-17 2.55844627924E-17 2.72345188859E-17 2.89909944551E-17 3.08607529666E-17 3.28511005426E-17 3.49698145097E-17 3.72251737888E-17 3.96259912456E-17 4.21816481266E-17 4.49021307168E-17 4.77980693613E-17 5.08807800035E-17 5.41623084026E-17 5.76554772024E-17 6.13739360361E-17 6.53322148629E-17 6.95457807436E-17 7.40310982790E-17 7.88056939452E-17 8.38882245791E-17 8.92985502801E-17 9.50578120141E-17 1.01188514222E-16 1.07714612757E-16 1.14661608491E-16 1.22056646963E-16 1.29928624446E-16 1.38308300864E-16 1.47228419987E-16 1.56723837375E-16 1.66831656580E-16 1.77591374125E-16 1.89045033842E-16 2.01237391158E-16 2.14216087976E-16 2.28031838836E-16 2.42738629090E-16 2.58393925840E-16 2.75058902503E-16 2.92798677839E-16 3.11682570410E-16 3.31784369439E-16 3.53182623147E-16 3.75960945679E-16 4.00208343830E-16 4.26019564840E-16 4.53495466622E-16 4.82743411865E-16 5.13877687556E-16 5.47019951562E-16 5.82299708006E-16 6.19854813313E-16 6.59832014881E-16 7.02387524505E-16 7.47687628773E-16 7.95909338839E-16 8.47241082096E-16 9.01883438461E-16 9.60049924143E-16 1.02196782597E-15 1.08787908950E-15 1.15804126445E-15 1.23272851106E-15 1.31223267141E-15 1.39686440974E-15 1.48695442645E-15 1.58285475026E-15 1.68494011381E-15 1.79360941790E-15 1.90928729026E-15 2.03242574471E-15 2.16350594749E-15 2.30304009741E-15 2.45157342723E-15 2.60968633423E-15 2.77799664811E-15 2.95716204514E-15 3.14788261809E-15 3.35090361183E-15 3.56701833540E-15 3.79707126188E-15 4.04196132820E-15 4.30264544774E-15 4.58014224949E-15 4.87553605840E-15 5.18998113234E-15 5.52470617247E-15 5.88101912433E-15 6.26031228874E-15 6.66406776221E-15 7.09386322829E-15 7.55137812238E-15 8.03840019415E-15 8.55683249327E-15 9.10870080558E-15 9.69616156887E-15 1.03215102993E-14 1.09871905610E-14 1.16958035147E-14 1.24501180814E-14 1.32530817622E-14 1.41078321559E-14 1.50177092190E-14 1.59862683165E-14 1.70172941150E-14 1.81148153713E-14 1.92831206745E-14 2.05267752041E-14 2.18506385683E-14 2.32598837935E-14 2.47600175373E-14 2.63569016065E-14 2.80567758621E-14 2.98662826016E-14 3.17924925139E-14 3.38429323084E-14 3.60256141254E-14 3.83490668445E-14 4.08223694103E-14 4.34551863098E-14 4.62578053355E-14 4.92411777860E-14 5.24169612582E-14 5.57975651994E-14 5.93961993980E-14 6.32269256006E-14 6.73047124590E-14 7.16454940205E-14 7.62662319901E-14 8.11849820097E-14 8.64209642100E-14 9.19946383145E-14 9.79277835857E-14 1.04243583928E-13 1.10966718482E-13 1.18123458053E-13 1.25741767771E-13 1.33851416363E-13 1.42484092473E-13 1.51673528488E-13 1.61455632351E-13 1.71868627865E-13 1.82953204062E-13 1.94752674189E-13 2.07313144960E-13 2.20683696720E-13 2.34916575223E-13 2.50067395787E-13 2.66195360615E-13 2.83363490121E-13 3.01638869195E-13 3.21092909328E-13 3.41801627662E-13 3.63845944026E-13 3.87311997134E-13 4.12291481171E-13 4.38882004095E-13 4.67187469041E-13 4.97318480324E-13 5.29392775630E-13 5.63535686079E-13 5.99880625963E-13 6.38569614058E-13 6.79753828576E-13 7.23594197893E-13 7.70262029381E-13 8.19939678800E-13 8.72821262855E-13 9.29113417716E-13 9.89036106453E-13 1.05282347855E-12 1.12072478485E-12 1.19300535150E-12 1.26994761675E-12 1.35185223456E-12 1.43903924944E-12 1.53184934699E-12 1.63064518520E-12 1.73581281151E-12 1.84776317129E-12 1.96693371368E-12 2.09379010087E-12 2.22882802774E-12 2.37257515876E-12 2.52559318993E-12 2.68848004352E-12 2.86187220457E-12 3.04644720793E-12 3.24292628576E-12 3.45207718576E-12 3.67471717119E-12 3.91171621436E-12 4.16400039603E-12 4.43255552419E-12 4.71843098605E-12 5.02274384863E-12 5.34668322370E-12 5.69151491432E-12 6.05858636096E-12 6.44933190672E-12 6.86527840208E-12 7.30805117111E-12 7.77938036250E-12 8.28110771020E-12 8.81519373005E-12 9.38372538060E-12 9.98892422215E-12 1.06331550789E-11 1.13189353110E-11 1.20489446250E-11 1.28260355688E-11 1.36532446339E-11 1.45338041830E-11 1.54711550257E-11 1.64689598927E-11 1.75311177546E-11 1.86617790090E-11 1.98653617793E-11 2.11465690962E-11 2.25104073155E-11 2.39622057065E-11 2.55076372255E-11 2.71527406879E-11 2.89039444081E-11 3.07680912881E-11 3.27524655558E-11 3.48648212193E-11 3.71134123929E-11 3.95070255606E-11 4.20550138551E-11 4.47673336380E-11 4.76545834294E-11 5.07280452719E-11 5.39997288414E-11 5.74824183745E-11 6.11897226713E-11 6.51361282024E-11 6.93370556360E-11 7.38089204774E-11 7.85691964907E-11 8.36364847610E-11 8.90305862102E-11 9.47725782812E-11 1.00884898060E-10 1.07391429896E-10 1.14317598339E-10 1.21690467743E-10 1.29538847997E-10 1.37893406992E-10 1.46786790709E-10 1.56253750498E-10 1.66331278912E-10 1.77058754652E-10 1.88478095868E-10 2.00633924180E-10 2.13573739306E-10 2.27348104278E-10 2.42010843426E-10 2.57619251998E-10 2.74234320919E-10 2.91920974755E-10 3.10748325331E-10 3.30789941156E-10 3.52124136821E-10 3.74834276774E-10 3.99009102742E-10 4.24743079000E-10 4.52136763380E-10 4.81297198475E-10 5.12338330572E-10 5.45381455439E-10 5.80555691511E-10 6.17998484799E-10 6.57856145729E-10 7.00284421540E-10 7.45449103910E-10 7.93526677367E-10 8.44705009622E-10 8.99184083239E-10 9.57176780802E-10 1.01890971373E-09 1.08462410828E-09 1.15457674924E-09 1.22904098397E-09 1.30830778763E-09 1.39268690260E-09 1.48250804920E-09 1.57812221088E-09 1.67990301136E-09 1.78824816813E-09 1.90358105037E-09 2.02635233497E-09 2.15704176256E-09 2.29616001686E-09 2.44425071745E-09 2.60189254521E-09 2.76970150347E-09 2.94833332441E-09 3.13848603504E-09 3.34090267731E-09 3.55637421961E-09 3.78574264340E-09 4.02990423546E-09 4.28981308729E-09 4.56648482646E-09 4.86100058539E-09 5.17451122120E-09 5.50824182208E-09 5.86349648567E-09 6.24166341825E-09 6.64422036216E-09 7.07274036587E-09 7.52889793471E-09 8.01447557349E-09 8.53137074894E-09 9.08160330834E-09 9.66732337296E-09 1.02908197348E-08 1.09545288067E-08 1.16610441415E-08 1.24131265614E-08 1.32137149573E-08 1.40659377624E-08 1.49731251833E-08 1.59388222158E-08 1.69668024875E-08 1.80610830188E-08 1.92259399060E-08 2.04659250414E-08 2.17858838942E-08 2.31909744527E-08 2.46866873718E-08 2.62788674337E-08 2.79737363940E-08 2.97779172752E-08 3.16984602718E-08 3.37428702812E-08 3.59191362475E-08 3.82357623606E-08 4.07018013032E-08 4.33268896257E-08 4.61212853880E-08 4.90959082663E-08 5.22623822062E-08 5.56330808512E-08 5.92211759027E-08 6.30406885717E-08 6.71065443902E-08 7.14346315142E-08 7.60418628290E-08 8.09462420168E-08 8.61669339249E-08 9.17243394464E-08 9.76401752323E-08 1.03937558561E-07 1.10641097658E-07 1.17776987860E-07 1.25373113967E-07 1.33459159204E-07 1.42066721195E-07 1.51229435443E-07 1.60983106738E-07 1.71365849070E-07 1.82418234538E-07 1.94183451876E-07 2.06707475209E-07 2.20039243664E-07 2.34230852589E-07 2.49337757079E-07 2.65418988649E-07 2.82537385855E-07 3.00759839789E-07 3.20157555416E-07 3.40806329742E-07 3.62786847921E-07 3.86184998458E-07 4.11092208717E-07 4.37605802078E-07 4.65829378093E-07 4.95873217159E-07 5.27854711282E-07 5.61898822590E-07 5.98138571414E-07 6.36715555793E-07 6.77780504515E-07 7.21493865738E-07 7.68026433579E-07 8.17560015063E-07 8.70288140052E-07 9.26416816901E-07 9.86165336822E-07 1.04976713003E-06 1.11747067707E-06 1.18954047881E-06 1.26625808895E-06 1.34792321299E-06 1.43485487800E-06 1.52739267763E-06 1.62589809739E-06 1.73075592518E-06 1.84237575262E-06 1.96119357299E-06 2.08767348209E-06 2.22230948842E-06 2.36562743993E-06 2.51818707468E-06 2.68058420335E-06 2.85345303218E-06 3.03746863525E-06 3.23334958570E-06 3.44186075605E-06 3.66381629849E-06 3.90008281677E-06 4.15158274167E-06 4.41929792337E-06 4.70427345451E-06 5.00762173862E-06 5.33052681964E-06 5.67424898931E-06 6.04012969003E-06 6.42959673214E-06 6.84416984565E-06 7.28546658779E-06 7.75520862895E-06 8.25522844117E-06 8.78747641491E-06 9.35402843106E-06 9.95709391744E-06 1.05990244203E-05 1.12823227234E-05 1.20096525504E-05 1.27838488851E-05 1.36079289523E-05 1.44851038968E-05 1.54187912085E-05 1.64126279377E-05 1.74704847526E-05 1.85964808902E-05 1.97950000581E-05 2.10707073462E-05 2.24285672116E-05 2.38738626044E-05 2.54122153049E-05 2.70496075483E-05 2.87924050175E-05 3.06473812876E-05 3.26217438139E-05 3.47231615582E-05 3.69597943540E-05 3.93403241191E-05 4.18739880286E-05 4.45706137687E-05 4.74406569982E-05 5.04952411533E-05 5.37461997384E-05 5.72061212528E-05 6.08883969137E-05 6.48072713437E-05 6.89778964012E-05 7.34163883423E-05 7.81398885116E-05 8.31666277731E-05 8.85159949014E-05 9.42086091667E-05 1.00266397360E-04 1.06712675515E-04 1.13572235603E-04 1.20871437486E-04 1.28638306424E-04 1.36902636464E-04 1.45696100034E-04 1.55052364090E-04 1.65007213195E-04 1.75598679893E-04 1.86867182795E-04 1.98855672784E-04 2.11609787791E-04 2.25178016576E-04 2.39611872008E-04 2.54966074339E-04 2.71298744959E-04 2.88671611205E-04 3.07150222738E-04 3.26804180084E-04 3.47707375907E-04 3.69938249640E-04 3.93580056075E-04 4.18721148567E-04 4.45455277483E-04 4.73881904578E-04 5.04106533957E-04 5.36241060294E-04 5.70404135020E-04 6.06721551119E-04 6.45326647250E-04 6.86360731839E-04 7.29973527802E-04 7.76323638542E-04 8.25579035812E-04 8.77917570025E-04 9.33527503530E-04 9.92608067329E-04 1.05537004163E-03 1.12203636058E-03 1.19284274137E-03 1.26803833790E-03 1.34788641887E-03 1.43266507036E-03 1.52266792232E-03 1.61820489867E-03 1.71960299018E-03 1.82720704916E-03 1.94138060481E-03 2.06250669748E-03 2.19098873021E-03 2.32725133505E-03 2.47174125152E-03 2.62492821415E-03 2.78730584519E-03 2.95939254849E-03 3.14173239946E-03 3.33489602559E-03 3.53948147137E-03 3.75611504027E-03 3.98545210597E-03 4.22817788373E-03 4.48500815215E-03 4.75668991402E-03 5.04400198425E-03 5.34775549124E-03 5.66879427690E-03 6.00799517916E-03 6.36626817921E-03 6.74455639419E-03 7.14383589439E-03 7.56511532247E-03 8.00943529026E-03 8.47786752702E-03 8.97151375122E-03 9.49150423597E-03 1.00389960366E-02 1.06151708468E-02 1.12212324479E-02 1.18584037151E-02 1.25279231414E-02 1.32310408395E-02 1.39690139815E-02 1.47431016333E-02 1.55545589414E-02 1.64046306301E-02 1.72945437653E-02 1.82254997444E-02 1.91986654709E-02 2.02151636756E-02 2.12760623495E-02 2.23823632575E-02 2.35349895039E-02 2.47347721329E-02 2.59824357481E-02 2.72785831481E-02 2.86236789842E-02 3.00180324581E-02 3.14617790914E-02 3.29548616154E-02 3.44970100448E-02 3.60877210226E-02 3.77262365408E-02 3.94115221713E-02 4.11422449601E-02 4.29167511753E-02 4.47330441218E-02 4.65887622724E-02 4.84811579988E-02 5.04070772185E-02 5.23629403133E-02 5.43447247081E-02 5.63479495393E-02 5.83676628721E-02 6.03984319661E-02 6.24343371117E-02 6.44689695948E-02 6.64954343608E-02 6.85063579689E-02 7.04939024316E-02 7.24497855304E-02 7.43653081823E-02 7.62313894036E-02 7.80386093688E-02 7.97772610008E-02 8.14374104441E-02 8.30089666665E-02 8.44817603079E-02 8.58456317387E-02 8.70905281144E-02 8.82066090039E-02 8.91843599424E-02 9.00147130006E-02 9.06891731872E-02 9.11999491994E-02 9.15400867304E-02 9.17036022148E-02 9.16856145744E-02 9.14824722109E-02 9.10918721953E-02 9.05129683409E-02 8.97464646255E-02 8.87946902788E-02 8.76616527671E-02 8.63530649392E-02 8.48763427293E-02 8.32405700996E-02 8.14564283296E-02 7.95360873705E-02 7.74930577695E-02 7.53420026517E-02 7.30985104318E-02 7.07788302976E-02 6.83995740640E-02 6.59773897034E-02 6.35286136880E-02 6.10689111732E-02 5.86129149499E-02 5.61738759128E-02 5.37633394293E-02 5.13908633430E-02 4.90637942762E-02 4.67871192671E-02 4.45634094440E-02 4.23928712611E-02 4.02735186440E-02 3.82014761019E-02 3.61714183528E-02 3.41771462098E-02 3.22122913820E-02 3.02711344963E-02 2.83495111771E-02 2.64457706483E-02 2.45622622068E-02 2.27061682348E-02 2.08854912887E-02 1.91080877214E-02 1.73815863357E-02 1.57133042567E-02 1.41101610124E-02 1.25785919647E-02 1.11244623808E-02 9.75298358432E-03 8.46863276084E-03 7.27507812144E-03 6.17511123321E-03 5.17058841327E-03 4.26238313855E-03 3.45035144607E-03 2.73331227850E-03 2.10904466266E-03 1.57430348611E-03 1.12485545351E-03 7.55536553297E-04 4.60332041142E-04 2.32479544384E-04 6.45954084017E-05 -5.11761610756E-05 -1.22992255555E-04 -1.59120547724E-04 -1.67731333609E-04 -1.56675835899E-04 -1.33255194624E-04 -1.03985528311E-04 -7.43654157493E-05 -4.84695588415E-05 -2.83095277224E-05 -1.44679939070E-05 -6.30370829487E-06 -2.17888723368E-06 -4.94975106163E-07 -4.19546609311E-08 8.67361737988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 9 2 i j (l(j)) 0.00000000000E+00 Q_int 1.49518819009E-23 1.59161954340E-23 1.69427018465E-23 1.80354122347E-23 1.91985963882E-23 2.04367994742E-23 2.17548597984E-23 2.31579277099E-23 2.46514857272E-23 2.62413699608E-23 2.79337929177E-23 2.97353677774E-23 3.16531342330E-23 3.36945859984E-23 3.58677000909E-23 3.81809680009E-23 4.06434288731E-23 4.32647048269E-23 4.60550385550E-23 4.90253333471E-23 5.21871956947E-23 5.55529806435E-23 5.91358400715E-23 6.29497740796E-23 6.70096856980E-23 7.13314391194E-23 7.59319216893E-23 8.08291098934E-23 8.60421396009E-23 9.15913808387E-23 9.74985173876E-23 1.03786631512E-22 1.10480294154E-22 1.17605660947E-22 1.25190574416E-22 1.33264672775E-22 1.41859505738E-22 1.51008657803E-22 1.60747879481E-22 1.71115226990E-22 1.82151210968E-22 1.93898954761E-22 2.06404362933E-22 2.19716300640E-22 2.33886784565E-22 2.48971186184E-22 2.65028448124E-22 2.82121314484E-22 3.00316576012E-22 3.19685331086E-22 3.40303263540E-22 3.62250938390E-22 3.85614116655E-22 4.10484090461E-22 4.36958039771E-22 4.65139412117E-22 4.95138326824E-22 5.27072005304E-22 5.61065229098E-22 5.97250827468E-22 6.35770196426E-22 6.76773851243E-22 7.20422014591E-22 7.66885242617E-22 8.16345091394E-22 8.68994826357E-22 9.25040177488E-22 9.84700143216E-22 1.04820784615E-21 1.11581144403E-21 1.18777509937E-21 1.26438001173E-21 1.34592551645E-21 1.43273025439E-21 1.52513341693E-21 1.62349607144E-21 1.72820257213E-21 1.83966206192E-21 1.95831007121E-21 2.08461021965E-21 2.21905602784E-21 2.36217284567E-21 2.51451990524E-21 2.67669250598E-21 2.84932434086E-21 3.03308997252E-21 3.22870746917E-21 3.43694121041E-21 3.65860487413E-21 3.89456461591E-21 4.14574245356E-21 4.41311986995E-21 4.69774164813E-21 5.00071995390E-21 5.32323868156E-21 5.66655808006E-21 6.03201967740E-21 6.42105152273E-21 6.83517376643E-21 7.27600460016E-21 7.74526657999E-21 8.24479335732E-21 8.77653684386E-21 9.34257483886E-21 9.94511914808E-21 1.05865242265E-20 1.12692963784E-20 1.19961035509E-20 1.27697857586E-20 1.35933661818E-20 1.44700629787E-20 1.54033018612E-20 1.63967294804E-20 1.74542276765E-20 1.85799286465E-20 1.97782310916E-20 2.10538174044E-20 2.24116719664E-20 2.38571006236E-20 2.53957514200E-20 2.70336366670E-20 2.87771564368E-20 3.06331235709E-20 3.26087903010E-20 3.47118765880E-20 3.69506002871E-20 3.93337092599E-20 4.18705155566E-20 4.45709318027E-20 4.74455099336E-20 5.05054824258E-20 5.37628061882E-20 5.72302092842E-20 6.09212406669E-20 6.48503231216E-20 6.90328096233E-20 7.34850433291E-20 7.82244214388E-20 8.32694631754E-20 8.86398821492E-20 9.43566633891E-20 1.00442145342E-19 1.06920107161E-19 1.13815861622E-19 1.21156354037E-19 1.28970267538E-19 1.37288135163E-19 1.46142459160E-19 1.55567837993E-19 1.65601101534E-19 1.76281454979E-19 1.87650632041E-19 1.99753058026E-19 2.12636023427E-19 2.26349868712E-19 2.40948181028E-19 2.56488003599E-19 2.73030058620E-19 2.90638984529E-19 3.09383588588E-19 3.29337115744E-19 3.50577534839E-19 3.73187843272E-19 3.97256391314E-19 4.22877227341E-19 4.50150465326E-19 4.79182676039E-19 5.10087303475E-19 5.42985108139E-19 5.78004638915E-19 6.15282735383E-19 6.54965062515E-19 6.97206679867E-19 7.42172647477E-19 7.90038670841E-19 8.40991787487E-19 8.95231097825E-19 9.52968543139E-19 1.01442973375E-18 1.07985483061E-18 1.14949948369E-18 1.22363583099E-18 1.30255356191E-18 1.38656104918E-18 1.47598655391E-18 1.57117950818E-18 1.67251188054E-18 1.78037962944E-18 1.89520425045E-18 2.01743442328E-18 2.14754776498E-18 2.28605269626E-18 2.43349042817E-18 2.59043707683E-18 2.75750591470E-18 2.93534976689E-18 3.12466356213E-18 3.32618704818E-18 3.54070768245E-18 3.76906370899E-18 4.01214743393E-18 4.27090871222E-18 4.54635865918E-18 4.83957360148E-18 5.15169928287E-18 5.48395534125E-18 5.83764007440E-18 6.21413551310E-18 6.61491282147E-18 7.04153804557E-18 7.49567823274E-18 7.97910794564E-18 8.49371619639E-18 9.04151382794E-18 9.62464137145E-18 1.02453774105E-17 1.09061474846E-17 1.16095335673E-17 1.23582841550E-17 1.31553250068E-17 1.40037705773E-17 1.49069361861E-17 1.58683509723E-17 1.68917716852E-17 1.79811973635E-17 1.91408849617E-17 2.03753659845E-17 2.16894641932E-17 2.30883144552E-17 2.45773828085E-17 2.61624878199E-17 2.78498233219E-17 2.96459826146E-17 3.15579842297E-17 3.35932993550E-17 3.57598810288E-17 3.80661952162E-17 4.05212538900E-17 4.31346502455E-17 4.59165961860E-17 4.88779622257E-17 5.20303199670E-17 5.53859873166E-17 5.89580766176E-17 6.27605458868E-17 6.68082533559E-17 7.11170155300E-17 7.57036689911E-17 8.05861361877E-17 8.57834954668E-17 9.13160556231E-17 9.72054352560E-17 1.03474647245E-16 1.10148188672E-16 1.17252136547E-16 1.24814249700E-16 1.32864077254E-16 1.41433074086E-16 1.50554723737E-16 1.60264669252E-16 1.70600852456E-16 1.81603662210E-16 1.93316092233E-16 2.05783909102E-16 2.19055831083E-16 2.33183718501E-16 2.48222776384E-16 2.64231770180E-16 2.81273255381E-16 2.99413821964E-16 3.18724354589E-16 3.39280309584E-16 3.61162009792E-16 3.84454958435E-16 4.09250173220E-16 4.35644541989E-16 4.63741201317E-16 4.93649939515E-16 5.25487625630E-16 5.59378666119E-16 5.95455490963E-16 6.33859071146E-16 6.74739469497E-16 7.18256427069E-16 7.64579987325E-16 8.13891160593E-16 8.66382631362E-16 9.22259511204E-16 9.81740140253E-16 1.04505694037E-15 1.11245732334E-15 1.18420465764E-15 1.26057929754E-15 1.34187967864E-15 1.42842348396E-15 1.52054888530E-15 1.61861586472E-15 1.72300762107E-15 1.83413206744E-15 1.95242342504E-15 2.07834391997E-15 2.21238558931E-15 2.35507220385E-15 2.50696131466E-15 2.66864643179E-15 2.84075934340E-15 3.02397258447E-15 3.21900206479E-15 3.42660986634E-15 3.64760722119E-15 3.88285768138E-15 4.13328049326E-15 4.39985418951E-15 4.68362041272E-15 4.98568798569E-15 5.30723724412E-15 5.64952464886E-15 6.01388769550E-15 6.40175014072E-15 6.81462756560E-15 7.25413329782E-15 7.72198471578E-15 8.22000995925E-15 8.75015507292E-15 9.31449161059E-15 9.91522472980E-15 1.05547018086E-14 1.12354216178E-14 1.19600440852E-14 1.27314006894E-14 1.35525055232E-14 1.44265670723E-14 1.53570007515E-14 1.63474422513E-14 1.74017617438E-14 1.85240790061E-14 1.97187795180E-14 2.09905315984E-14 2.23443046469E-14 2.37853885623E-14 2.53194144120E-14 2.69523764366E-14 2.86906554718E-14 3.05410438821E-14 3.25107721016E-14 3.46075368878E-14 3.68395313963E-14 3.92154771959E-14 4.17446583485E-14 4.44369576866E-14 4.73028954306E-14 5.03536702972E-14 5.36012032583E-14 5.70581841225E-14 6.07381211210E-14 6.46553936913E-14 6.88253086650E-14 7.32641600800E-14 7.79892928492E-14 8.30191705368E-14 8.83734475049E-14 9.40730457132E-14 1.00140236472E-13 1.06598727469E-13 1.13473755406E-13 1.20792184613E-13 1.28582612019E-13 1.36875478901E-13 1.45703189827E-13 1.55100239282E-13 1.65103346454E-13 1.75751598716E-13 1.87086604363E-13 1.99152655192E-13 2.11996899578E-13 2.25669526706E-13 2.40223962688E-13 2.55717079322E-13 2.72209416326E-13 2.89765417895E-13 3.08453684519E-13 3.28347241040E-13 3.49523822004E-13 3.72066175400E-13 3.96062386013E-13 4.21606219605E-13 4.48797489317E-13 4.77742445686E-13 5.08554191822E-13 5.41353125365E-13 5.76267408938E-13 6.13433470948E-13 6.52996538681E-13 6.95111205786E-13 7.39942036349E-13 7.87664207936E-13 8.38464196100E-13 8.92540503042E-13 9.50104433262E-13 1.01138091924E-12 1.07660940036E-12 1.14604475853E-12 1.21995831415E-12 1.29863888628E-12 1.38239392123E-12 1.47155069391E-12 1.56645758666E-12 1.66748545056E-12 1.77502905456E-12 1.88950862805E-12 2.01137150288E-12 2.14109386137E-12 2.27918259699E-12 2.42617729504E-12 2.58265234114E-12 2.74921916562E-12 2.92652863271E-12 3.11527358382E-12 3.31619154485E-12 3.53006760806E-12 3.75773749989E-12 4.00009084655E-12 4.25807465026E-12 4.53269698973E-12 4.82503095921E-12 5.13621886170E-12 5.46747667246E-12 5.82009879055E-12 6.19546309670E-12 6.59503633740E-12 7.02037985631E-12 7.47315569524E-12 7.95513308865E-12 8.46819537695E-12 9.01434736779E-12 9.59572316485E-12 1.02145944991E-11 1.08733796451E-11 1.15746528235E-11 1.23211542812E-11 1.31158009786E-11 1.39616980369E-11 1.48621508229E-11 1.58206778715E-11 1.68410246652E-11 1.79271782584E-11 1.90833827975E-11 2.03141562025E-11 2.16243077675E-11 2.30189569267E-11 2.45035533502E-11 2.60838981292E-11 2.77661665193E-11 2.95569320147E-11 3.14631921150E-11 3.34923955895E-11 3.56524716229E-11 3.79518607696E-11 4.03995480032E-11 4.30050977045E-11 4.57786911889E-11 4.87311663454E-11 5.18740600861E-11 5.52196533333E-11 5.87810191982E-11 6.25720738011E-11 6.66076308295E-11 7.09034594211E-11 7.54763456856E-11 8.03441581532E-11 8.55259182603E-11 9.10418737885E-11 9.69135785870E-11 1.03163976513E-10 1.09817491342E-10 1.16900121888E-10 1.24439543903E-10 1.32465217820E-10 1.41008504414E-10 1.50102787019E-10 1.59783601777E-10 1.70088776924E-10 1.81058580436E-10 1.92735877356E-10 2.05166297064E-10 2.18398412101E-10 2.32483927547E-10 2.47477883229E-10 2.63438868710E-10 2.80429252239E-10 2.98515424719E-10 3.17768058579E-10 3.38262384451E-10 3.60078484948E-10 3.83301607783E-10 4.08022498224E-10 4.34337754502E-10 4.62350204893E-10 4.92169309660E-10 5.23911588070E-10 5.57701075509E-10 5.93669805911E-10 6.31958328882E-10 6.72716259177E-10 7.16102861003E-10 7.62287669747E-10 8.11451155357E-10 8.63785426876E-10 9.19494983932E-10 9.78797514970E-10 1.04192474791E-09 1.10912335733E-09 1.18065592503E-09 1.25680196940E-09 1.33785903664E-09 1.42414386196E-09 1.51599360966E-09 1.61376718817E-09 1.71784665561E-09 1.82863870864E-09 1.94657627546E-09 2.07212020526E-09 2.20576107073E-09 2.34802108255E-09 2.49945613324E-09 2.66065796612E-09 2.83225648957E-09 3.01492223835E-09 3.20936899297E-09 3.41635656929E-09 3.63669378853E-09 3.87124163543E-09 4.12091662504E-09 4.38669438377E-09 4.66961345992E-09 4.97077938380E-09 5.29136898749E-09 5.63263500176E-09 5.99591095325E-09 6.38261637716E-09 6.79426235594E-09 7.23245743519E-09 7.69891390162E-09 8.19545447688E-09 8.72401943966E-09 9.28667420362E-09 9.88561739929E-09 1.05231894515E-08 1.12018817333E-08 1.19243462980E-08 1.26934062482E-08 1.35120667586E-08 1.43835268238E-08 1.53111917585E-08 1.62986865034E-08 1.73498697913E-08 1.84688492221E-08 1.96599973174E-08 2.09279686021E-08 2.22777178010E-08 2.37145191875E-08 2.52439871989E-08 2.68720983786E-08 2.86052147272E-08 3.04501085569E-08 3.24139889599E-08 3.45045299827E-08 3.67299005993E-08 3.90987966412E-08 4.16204747739E-08 4.43047886709E-08 4.71622275040E-08 5.02039569447E-08 5.34418627797E-08 5.68885973710E-08 6.05576290619E-08 6.44632948482E-08 6.86208563540E-08 7.30465594889E-08 7.77576979160E-08 8.27726806355E-08 8.81111038939E-08 9.37938277665E-08 9.98430576587E-08 1.06282431056E-07 1.13137109894E-07 1.20433878860E-07 1.28201250038E-07 1.36469574326E-07 1.45271159983E-07 1.54640398884E-07 1.64613900879E-07 1.75230636810E-07 1.86532090772E-07 1.98562422176E-07 2.11368638273E-07 2.25000777780E-07 2.39512106361E-07 2.54959324718E-07 2.71402790073E-07 2.88906751952E-07 3.07539603152E-07 3.27374146890E-07 3.48487881190E-07 3.70963301571E-07 3.94888223262E-07 4.20356124201E-07 4.47466510100E-07 4.76325303091E-07 5.07045255358E-07 5.39746389495E-07 5.74556467171E-07 6.11611488057E-07 6.51056220856E-07 6.93044768569E-07 7.37741170186E-07 7.85320041124E-07 8.35967254928E-07 8.89880668900E-07 9.47270896437E-07 1.00836212915E-06 1.07339301189E-06 1.14261757418E-06 1.21630622152E-06 1.29474679067E-06 1.37824567273E-06 1.46712900861E-06 1.56174396137E-06 1.66246007059E-06 1.76967069367E-06 1.88379454012E-06 2.00527730437E-06 2.13459340376E-06 2.27224782819E-06 2.41877810883E-06 2.57475641332E-06 2.74079177582E-06 2.91753247019E-06 3.10566853590E-06 3.30593446614E-06 3.51911206860E-06 3.74603351007E-06 3.98758455652E-06 4.24470802118E-06 4.51840743396E-06 4.80975094635E-06 5.11987548674E-06 5.44999118241E-06 5.80138606485E-06 6.17543107681E-06 6.57358540008E-06 6.99740212466E-06 7.44853428076E-06 7.92874125707E-06 8.43989562953E-06 8.98399042690E-06 9.56314686084E-06 1.01796225498E-05 1.08358202684E-05 1.15342972549E-05 1.22777751129E-05 1.30691503445E-05 1.39115055542E-05 1.48081213667E-05 1.57624891038E-05 1.67783242663E-05 1.78595808744E-05 1.90104667175E-05 2.02354595732E-05 2.15393244533E-05 2.29271319440E-05 2.44042777058E-05 2.59765032074E-05 2.76499177694E-05 2.94310219988E-05 3.13267327014E-05 3.33444093631E-05 3.54918822962E-05 3.77774825539E-05 4.02100737221E-05 4.27990857016E-05 4.55545506047E-05 4.84871408931E-05 5.16082098941E-05 5.49298348391E-05 5.84648625765E-05 6.22269581196E-05 6.62306562004E-05 7.04914160074E-05 7.50256792980E-05 7.98509320845E-05 8.49857701052E-05 9.04499683019E-05 9.62645545384E-05 1.02451887806E-04 1.09035741176E-04 1.16041389769E-04 1.23495704034E-04 1.31427248629E-04 1.39866387225E-04 1.48845393567E-04 1.58398569129E-04 1.68562367736E-04 1.79375527526E-04 1.90879210655E-04 2.03117151150E-04 2.16135811347E-04 2.29984547370E-04 2.44715784099E-04 2.60385200126E-04 2.77051923205E-04 2.94778736692E-04 3.13632297545E-04 3.33683366404E-04 3.55007050338E-04 3.77683058843E-04 4.01795973667E-04 4.27435533099E-04 4.54696931308E-04 4.83681133382E-04 5.14495206684E-04 5.47252669153E-04 5.82073855192E-04 6.19086299751E-04 6.58425141239E-04 7.00233543829E-04 7.44663139767E-04 7.91874492201E-04 8.42037579048E-04 8.95332298364E-04 9.51948995610E-04 1.01208901316E-03 1.07596526231E-03 1.14380281792E-03 1.21583953583E-03 1.29232669285E-03 1.37352964920E-03 1.45972853299E-03 1.55121894623E-03 1.64831269141E-03 1.75133851790E-03 1.86064288659E-03 1.97659075145E-03 2.09956635587E-03 2.22997404165E-03 2.36823906779E-03 2.51480843604E-03 2.67015171951E-03 2.83476189009E-03 3.00915613993E-03 3.19387669147E-03 3.38949158988E-03 3.59659547095E-03 3.81581029661E-03 4.04778604938E-03 4.29320137618E-03 4.55276417067E-03 4.82721208236E-03 5.11731293948E-03 5.42386507135E-03 5.74769751465E-03 6.08967008664E-03 6.45067330682E-03 6.83162814721E-03 7.23348558950E-03 7.65722596622E-03 8.10385806081E-03 8.57441794036E-03 9.06996749289E-03 9.59159263911E-03 1.01404011876E-02 1.07175203002E-02 1.13240935334E-02 1.19612774194E-02 1.26302375511E-02 1.33321441318E-02 1.40681669522E-02 1.48394697552E-02 1.56472039503E-02 1.64925016382E-02 1.73764679106E-02 1.83001723865E-02 1.92646399552E-02 2.02708406934E-02 2.13196789321E-02 2.24119814522E-02 2.35484847935E-02 2.47298216717E-02 2.59565065038E-02 2.72289200549E-02 2.85472932295E-02 2.99116900461E-02 3.13219898471E-02 3.27778688143E-02 3.42787808787E-02 3.58239381362E-02 3.74122909002E-02 3.90425075515E-02 4.07129543679E-02 4.24216755490E-02 4.41663736779E-02 4.59443908955E-02 4.77526910922E-02 4.95878434593E-02 5.14460077692E-02 5.33229217900E-02 5.52138912689E-02 5.71137829463E-02 5.90170210899E-02 6.09175880547E-02 6.28090293938E-02 6.46844640498E-02 6.65366001554E-02 6.83577569628E-02 7.01398933957E-02 7.18746436812E-02 7.35533604686E-02 7.51671657667E-02 7.67070099502E-02 7.81637389671E-02 7.95281697572E-02 8.07911737303E-02 8.19437679805E-02 8.29772137113E-02 8.38831211253E-02 8.46535597866E-02 8.52811732085E-02 8.57592961390E-02 8.60820727363E-02 8.62445735385E-02 8.62429088499E-02 8.60743359000E-02 8.57373568903E-02 8.52318048408E-02 8.45589139986E-02 8.37213714885E-02 8.27233468883E-02 8.15704965157E-02 8.02699394366E-02 7.88302025610E-02 7.72611327053E-02 7.55737741651E-02 7.37802111919E-02 7.18933757820E-02 6.99268223796E-02 6.78944724545E-02 6.58103334102E-02 6.36881978965E-02 6.15413312795E-02 5.93821567223E-02 5.72219489701E-02 5.50705494305E-02 5.29361164004E-02 5.08249251934E-02 4.87412333492E-02 4.66872259271E-02 4.46630549655E-02 4.26669853971E-02 4.06956569315E-02 3.87444675461E-02 3.68080792030E-02 3.48810402027E-02 3.29585112213E-02 3.10370736613E-02 2.91155896360E-02 2.71966442868E-02 2.52876606408E-02 2.33970803313E-02 2.15334056580E-02 1.97051235317E-02 1.79206236059E-02 1.61881111497E-02 1.45155153730E-02 1.29103940885E-02 1.13798357741E-02 9.93036028843E-03 8.56781968450E-03 7.29730076360E-03 6.12303120401E-03 5.04829128818E-03 4.07533342806E-03 3.20531184893E-03 2.43822492843E-03 1.77287279378E-03 1.20683284767E-03 7.36455913905E-04 3.56885657675E-04 6.21038330745E-05 -1.54996268229E-04 -3.02506059030E-04 -3.89365844309E-04 -4.25195680516E-04 -4.20092220486E-04 -3.84391572429E-04 -3.28399049182E-04 -2.62087670125E-04 -1.94768405532E-04 -1.34251322303E-04 -8.49163169066E-05 -4.86093719463E-05 -2.47282048270E-05 -1.04287041798E-05 -3.08857757270E-06 -3.85859011132E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.61089825246E-23 1.71479226362E-23 1.82538686282E-23 1.94311420086E-23 2.06843429986E-23 2.20183685084E-23 2.34384312716E-23 2.49500802144E-23 2.65592221378E-23 2.82721447989E-23 3.00955414802E-23 3.20365371438E-23 3.41027162726E-23 3.63021525063E-23 3.86434401897E-23 4.11357279556E-23 4.37887544723E-23 4.66128864987E-23 4.96191593921E-23 5.28193202292E-23 5.62258737078E-23 5.98521310099E-23 6.37122618146E-23 6.78213496668E-23 7.21954509168E-23 7.68516574601E-23 8.18081635251E-23 8.70843367668E-23 9.27007939470E-23 9.86794814940E-23 1.05043761259E-22 1.11818501805E-22 1.19030175576E-22 1.26706962345E-22 1.34878859323E-22 1.43577798374E-22 1.52837770794E-22 1.62694960123E-22 1.73187883546E-22 1.84357542386E-22 1.96247582331E-22 2.08904463967E-22 2.22377644337E-22 2.36719770185E-22 2.51986883678E-22 2.68238641396E-22 2.85538547435E-22 3.03954201553E-22 3.23557563319E-22 3.44425233295E-22 3.66638752355E-22 3.90284920307E-22 4.15456135068E-22 4.42250753704E-22 4.70773476772E-22 5.01135757431E-22 5.33456236953E-22 5.67861208314E-22 6.04485109686E-22 6.43471049762E-22 6.84971366948E-22 7.29148224637E-22 7.76174244859E-22 8.26233182810E-22 8.79520644879E-22 9.36244852982E-22 9.96627458194E-22 1.06090440686E-21 1.12932686255E-21 1.20216218749E-21 1.27969498731E-21 1.36222822311E-21 1.45008439529E-21 1.54360680376E-21 1.64316088935E-21 1.74913566184E-21 1.86194521993E-21 1.98203036944E-21 2.10986034569E-21 2.24593464709E-21 2.39078498693E-21 2.54497737107E-21 2.70911430959E-21 2.88383717116E-21 3.06982868914E-21 3.26781562944E-21 3.47857163033E-21 3.70292022546E-21 3.94173806185E-21 4.19595832538E-21 4.46657438725E-21 4.75464368561E-21 5.06129185751E-21 5.38771713733E-21 5.73519503895E-21 6.10508333984E-21 6.49882738655E-21 6.91796574251E-21 7.36413619996E-21 7.83908217965E-21 8.34465954333E-21 8.88284384553E-21 9.45573805310E-21 1.00655807626E-20 1.07147549477E-20 1.14057972706E-20 1.21414079943E-20 1.29244615335E-20 1.37580176871E-20 1.46453335938E-20 1.55898764598E-20 1.65953371069E-20 1.76656443945E-20 1.88049805714E-20 2.00177976186E-20 2.13088346451E-20 2.26831364060E-20 2.41460730155E-20 2.57033609300E-20 2.73610852860E-20 2.91257236775E-20 3.10041714672E-20 3.30037687307E-20 3.51323289379E-20 3.73981694840E-20 3.98101441902E-20 4.23776779000E-20 4.51108033073E-20 4.80202001590E-20 5.11172369865E-20 5.44140155285E-20 5.79234180188E-20 6.16591575241E-20 6.56358315275E-20 6.98689789692E-20 7.43751409648E-20 7.91719254403E-20 8.42780759353E-20 8.97135448438E-20 9.54995713787E-20 1.01658764565E-19 1.08215191583E-19 1.15194471814E-19 1.22623876947E-19 1.30532437546E-19 1.38951056481E-19 1.47912629690E-19 1.57452174714E-19 1.67606967533E-19 1.78416688222E-19 1.89923575997E-19 2.02172594274E-19 2.15211606358E-19 2.29091562472E-19 2.43866698846E-19 2.59594749647E-19 2.76337172575E-19 2.94159389012E-19 3.13131039656E-19 3.33326256645E-19 3.54823953226E-19 3.77708132119E-19 4.02068213749E-19 4.27999385664E-19 4.55602974483E-19 4.84986841830E-19 5.16265805804E-19 5.49562089637E-19 5.85005799284E-19 6.22735431809E-19 6.62898416572E-19 7.05651691310E-19 7.51162315373E-19 7.99608122514E-19 8.51178415778E-19 9.06074707208E-19 9.64511505256E-19 1.02671715298E-18 1.09293472030E-18 1.16342295381E-18 1.23845728780E-18 1.31833092058E-18 1.40335596009E-18 1.49386464353E-18 1.59021063554E-18 1.69277041020E-18 1.80194472204E-18 1.91816017206E-18 2.04187087467E-18 2.17356023212E-18 2.31374282344E-18 2.46296641517E-18 2.62181410172E-18 2.79090658389E-18 2.97090459423E-18 3.16251147889E-18 3.36647594593E-18 3.58359499094E-18 3.81471701133E-18 4.06074512140E-18 4.32264068136E-18 4.60142705380E-18 4.89819360254E-18 5.21409994932E-18 5.55038050508E-18 5.90834929339E-18 6.28940508509E-18 6.69503686399E-18 7.12682964507E-18 7.58647066803E-18 8.07575599018E-18 8.59659750456E-18 9.15103041072E-18 9.74122116732E-18 1.03694759576E-17 1.10382497008E-17 1.17501556448E-17 1.25079755778E-17 1.33146706975E-17 1.41733931827E-17 1.50874985102E-17 1.60605585665E-17 1.70963756049E-17 1.81989971031E-17 1.93727315786E-17 2.06221654244E-17 2.19521808305E-17 2.33679748611E-17 2.48750797621E-17 2.64793845789E-17 2.81871581674E-17 3.00050736901E-17 3.19402346915E-17 3.40002028555E-17 3.61930275526E-17 3.85272772929E-17 4.10120732083E-17 4.36571246930E-17 4.64727673432E-17 4.94700033441E-17 5.26605444606E-17 5.60568578018E-17 5.96722145360E-17 6.35207417486E-17 6.76174776435E-17 7.19784303057E-17 7.66206402528E-17 8.15622470214E-17 8.68225600478E-17 9.24221341199E-17 9.83828496956E-17 1.04727998401E-16 1.11482374044E-16 1.18672369493E-16 1.26326079814E-16 1.34473412046E-16 1.43146202069E-16 1.52378338998E-16 1.62205897610E-16 1.72667279306E-16 1.83803362162E-16 1.95657660666E-16 2.08276495749E-16 2.21709175784E-16 2.36008189261E-16 2.51229409890E-16 2.67432314922E-16 2.84680217563E-16 3.03040514370E-16 3.22584948605E-16 3.43389890571E-16 3.65536636036E-16 3.89111723890E-16 4.14207274308E-16 4.40921348700E-16 4.69358332899E-16 4.99629345042E-16 5.31852669773E-16 5.66154220440E-16 6.02668031103E-16 6.41536780278E-16 6.82912348455E-16 7.26956411575E-16 7.73841072779E-16 8.23749534911E-16 8.76876816382E-16 9.33430513210E-16 9.93631610208E-16 1.05771534448E-15 1.12593212464E-15 1.19854850924E-15 1.27584824841E-15 1.35813339257E-15 1.44572547274E-15 1.53896675690E-15 1.63822158742E-15 1.74387780472E-15 1.85634826282E-15 1.97607244251E-15 2.10351816864E-15 2.23918343822E-15 2.38359836627E-15 2.53732725730E-15 2.70097081037E-15 2.87516846625E-15 3.06060090615E-15 3.25799271141E-15 3.46811519488E-15 3.69178941482E-15 3.92988938318E-15 4.18334548086E-15 4.45314809319E-15 4.74035147984E-15 5.04607789442E-15 5.37152196967E-15 5.71795538554E-15 6.08673183829E-15 6.47929233011E-15 6.89717079985E-15 7.34200011691E-15 7.81551846176E-15 8.31957611787E-15 8.85614270176E-15 9.42731485933E-15 1.00353244585E-14 1.06825473104E-14 1.13715124527E-14 1.21049120322E-14 1.28856118241E-14 1.37166624304E-14 1.46013111998E-14 1.55430149173E-14 1.65454533113E-14 1.76125434323E-14 1.87484549589E-14 1.99576264911E-14 2.12447828937E-14 2.26149537595E-14 2.40734930619E-14 2.56261000762E-14 2.72788416495E-14 2.90381759067E-14 3.09109774863E-14 3.29045644030E-14 3.50267266427E-14 3.72857566028E-14 3.96904814940E-14 4.22502978336E-14 4.49752081623E-14 4.78758601294E-14 5.09635880986E-14 5.42504574376E-14 5.77493116635E-14 6.14738226296E-14 6.54385439478E-14 6.96589678578E-14 7.41515857632E-14 7.89339526720E-14 8.40247557933E-14 8.94438875579E-14 9.52125233487E-14 1.01353204244E-13 1.07889925096E-13 1.14848228295E-13 1.22255303572E-13 1.30140094246E-13 1.38533410322E-13 1.47468048879E-13 1.56978922226E-13 1.67103194325E-13 1.77880426007E-13 1.89352729559E-13 2.01564933279E-13 2.14564756642E-13 2.28402996767E-13 2.43133726905E-13 2.58814507737E-13 2.75506612289E-13 2.93275265357E-13 3.12189898382E-13 3.32324420746E-13 3.53757508582E-13 3.76572912198E-13 4.00859783338E-13 4.26713023541E-13 4.54233654972E-13 4.83529215173E-13 5.14714177262E-13 5.47910397245E-13 5.83247590171E-13 6.20863836993E-13 6.60906124130E-13 7.03530917815E-13 7.48904775492E-13 7.97204996647E-13 8.48620315607E-13 9.03351639026E-13 9.61612830935E-13 1.02363154842E-12 1.08965013120E-12 1.15992654858E-12 1.23473540745E-12 1.31436902537E-12 1.39913857275E-12 1.48937528880E-12 1.58543177584E-12 1.68768337711E-12 1.79652964344E-12 1.91239589447E-12 2.03573488067E-12 2.16702855239E-12 2.30678994319E-12 2.45556517446E-12 2.61393558942E-12 2.78252002478E-12 2.96197722883E-12 3.15300843549E-12 3.35636010450E-12 3.57282683812E-12 3.80325448615E-12 4.04854345108E-12 4.30965220646E-12 4.58760104215E-12 4.88347605113E-12 5.19843337351E-12 5.53370371409E-12 5.89059715146E-12 6.27050825715E-12 6.67492154498E-12 7.10541727182E-12 7.56367761256E-12 8.05149323320E-12 8.57077028800E-12 9.12353786785E-12 9.71195593049E-12 1.03383237339E-11 1.10050888373E-11 1.17148566305E-11 1.24704005674E-11 1.32746729588E-11 1.41308165230E-11 1.50421766748E-11 1.60123145537E-11 1.70450210566E-11 1.81443314706E-11 1.93145414164E-11 2.05602235184E-11 2.18862453177E-11 2.32977883075E-11 2.48003681109E-11 2.63998561402E-11 2.81025024359E-11 2.99149601578E-11 3.18443115301E-11 3.38980955893E-11 3.60843375600E-11 3.84115802464E-11 4.08889174626E-11 4.35260294940E-11 4.63332209396E-11 4.93214610171E-11 5.25024263968E-11 5.58885468364E-11 5.94930537033E-11 6.33300317246E-11 6.74144741177E-11 7.17623409710E-11 7.63906217802E-11 8.13174017467E-11 8.65619324947E-11 9.21447071118E-11 9.80875407005E-11 1.04413655152E-10 1.11147769823E-10 1.18316198760E-10 1.25946952959E-10 1.34069849862E-10 1.42716630012E-10 1.51921081090E-10 1.61719170168E-10 1.72149183543E-10 1.83251877049E-10 1.95070635015E-10 2.07651639884E-10 2.21044052564E-10 2.35300204481E-10 2.50475802476E-10 2.66630145934E-10 2.83826358703E-10 3.02131636259E-10 3.21617507076E-10 3.42360113525E-10 3.64440508444E-10 3.87944972475E-10 4.12965350391E-10 4.39599411096E-10 4.67951228453E-10 4.98131589105E-10 5.30258424919E-10 5.64457273096E-10 6.00861768160E-10 6.39614162888E-10 6.80865884863E-10 7.24778128028E-10 7.71522482397E-10 8.21281604511E-10 8.74249932156E-10 9.30634442509E-10 9.90655462591E-10 1.05454752775E-09 1.12256030196E-09 1.19495955021E-09 1.27202817784E-09 1.35406733675E-09 1.44139760163E-09 1.53436022188E-09 1.63331845724E-09 1.73865899443E-09 1.85079346078E-09 1.97016003152E-09 2.09722514190E-09 2.23248530957E-09 2.37646907594E-09 2.52973907087E-09 2.69289421061E-09 2.86657203887E-09 3.05145121928E-09 3.24825418342E-09 3.45774995968E-09 3.68075717206E-09 3.91814724424E-09 4.17084780291E-09 4.43984630067E-09 4.72619387726E-09 5.03100946659E-09 5.35548416742E-09 5.70088590329E-09 6.06856436525E-09 6.45995630157E-09 6.87659111884E-09 7.32009686569E-09 7.79220659276E-09 8.29476512523E-09 8.82973626973E-09 9.39921049046E-09 1.00054130790E-08 1.06507128463E-08 1.13376313801E-08 1.20688529027E-08 1.28472347544E-08 1.36758185647E-08 1.45578421328E-08 1.54967520794E-08 1.64962173213E-08 1.75601434021E-08 1.86926877555E-08 1.98982759514E-08 2.11816189929E-08 2.25477317168E-08 2.40019523964E-08 2.55499636025E-08 2.71978144040E-08 2.89519440052E-08 3.08192069174E-08 3.28068997286E-08 3.49227896287E-08 3.71751447485E-08 3.95727664859E-08 4.21250238794E-08 4.48418902257E-08 4.77339820557E-08 5.08126006132E-08 5.40897760181E-08 5.75783142701E-08 6.12918472909E-08 6.52448861927E-08 6.94528779796E-08 7.39322659029E-08 7.87005537172E-08 8.37763740675E-08 8.91795613057E-08 9.49312289767E-08 1.01053852329E-07 1.07571356129E-07 1.14509208138E-07 1.21894518625E-07 1.29756146293E-07 1.38124811040E-07 1.47033213971E-07 1.56516165192E-07 1.66610719789E-07 1.77356322614E-07 1.88794962414E-07 2.00971335839E-07 2.13933022105E-07 2.27730668860E-07 2.42418190052E-07 2.58052976565E-07 2.74696120415E-07 2.92412653417E-07 3.11271801227E-07 3.31347253772E-07 3.52717453099E-07 3.75465899804E-07 3.99681479172E-07 4.25458808397E-07 4.52898606130E-07 4.82108085885E-07 5.13201374762E-07 5.46299959204E-07 5.81533159436E-07 6.19038634528E-07 6.58962919935E-07 7.01461999757E-07 7.46701915821E-07 7.94859416003E-07 8.46122644357E-07 9.00691875666E-07 9.58780297348E-07 1.02061484170E-06 1.08643707174E-06 1.15650412416E-06 1.23108971295E-06 1.31048519765E-06 1.39500072040E-06 1.48496641625E-06 1.58073370127E-06 1.68267664371E-06 1.79119342328E-06 1.90670788448E-06 2.02967118976E-06 2.16056357913E-06 2.29989624294E-06 2.44821331514E-06 2.60609399467E-06 2.77415480339E-06 2.95305198903E-06 3.14348408274E-06 3.34619462092E-06 3.56197504202E-06 3.79166776942E-06 4.03616949232E-06 4.29643465733E-06 4.57347918430E-06 4.86838442053E-06 5.18230134888E-06 5.51645506573E-06 5.87214954624E-06 6.25077271508E-06 6.65380184222E-06 7.08280928447E-06 7.53946859475E-06 8.02556102268E-06 8.54298243110E-06 9.09375065521E-06 9.68001333243E-06 1.03040562327E-05 1.09683121211E-05 1.16753701867E-05 1.24279860728E-05 1.32290925481E-05 1.40818108568E-05 1.49894627938E-05 1.59555835476E-05 1.69839353610E-05 1.80785220614E-05 1.92436045133E-05 2.04837170535E-05 2.18036849685E-05 2.32086430806E-05 2.47040555110E-05 2.62957366945E-05 2.79898737226E-05 2.97930500982E-05 3.17122709892E-05 3.37549900747E-05 3.59291380808E-05 3.82431531107E-05 4.07060128810E-05 4.33272689783E-05 4.61170832626E-05 4.90862665470E-05 5.22463196924E-05 5.56094772643E-05 5.91887539069E-05 6.29979935976E-05 6.70519219553E-05 7.13662017865E-05 7.59574920605E-05 8.08435105191E-05 8.60431001347E-05 9.15762996445E-05 9.74644183990E-05 1.03730115776E-04 1.10397485428E-04 1.17492144636E-04 1.25041329069E-04 1.33073993252E-04 1.41620917071E-04 1.50714818651E-04 1.60390473959E-04 1.70684843510E-04 1.81637206571E-04 1.93289303253E-04 2.05685484933E-04 2.18872873444E-04 2.32901529496E-04 2.47824630803E-04 2.63698660433E-04 2.80583605874E-04 2.98543169383E-04 3.17644990147E-04 3.37960878847E-04 3.59567065205E-04 3.82544459131E-04 4.06978926078E-04 4.32961577253E-04 4.60589075319E-04 4.89963956261E-04 5.21194968054E-04 5.54397426831E-04 5.89693591193E-04 6.27213055349E-04 6.67093161719E-04 7.09479433669E-04 7.54526028990E-04 8.02396214713E-04 8.53262863850E-04 9.07308974553E-04 9.64728212186E-04 1.02572547471E-03 1.09051748170E-03 1.15933338726E-03 1.23241541697E-03 1.31001952885E-03 1.39241609824E-03 1.47989062638E-03 1.57274447208E-03 1.67129560594E-03 1.77587938618E-03 1.88684935480E-03 2.00457805285E-03 2.12945785277E-03 2.26190180574E-03 2.40234450152E-03 2.55124293768E-03 2.70907739476E-03 2.87635231323E-03 3.05359716772E-03 3.24136733299E-03 3.44024493586E-03 3.65083968606E-03 3.87378967847E-03 4.10976215816E-03 4.35945423864E-03 4.62359356275E-03 4.90293889439E-03 5.19828062823E-03 5.51044120308E-03 5.84027540328E-03 6.18867053127E-03 6.55654643256E-03 6.94485535315E-03 7.35458160752E-03 7.78674103385E-03 8.24238021121E-03 8.72257541178E-03 9.22843125932E-03 9.76107906341E-03 1.03216747971E-02 1.09113966842E-02 1.15314423597E-02 1.21830255678E-02 1.28673723567E-02 1.35857167328E-02 1.43392957320E-02 1.51293438669E-02 1.59570869093E-02 1.68237349658E-02 1.77304748061E-02 1.86784614038E-02 1.96688086541E-02 2.07025792312E-02 2.17807735567E-02 2.29043178509E-02 2.40740512473E-02 2.52907119564E-02 2.65549224737E-02 2.78671738358E-02 2.92278089419E-02 3.06370049686E-02 3.20947549232E-02 3.36008483959E-02 3.51548515916E-02 3.67560867412E-02 3.84036110183E-02 4.00961951090E-02 4.18323016123E-02 4.36100634763E-02 4.54272627079E-02 4.72813096242E-02 4.91692229506E-02 5.10876111022E-02 5.30326550230E-02 5.50000929919E-02 5.69852078367E-02 5.89828170336E-02 6.09872661961E-02 6.29924264853E-02 6.49916964932E-02 6.69780091676E-02 6.89438443494E-02 7.08812474958E-02 7.27818551425E-02 7.46369276350E-02 7.64373896123E-02 7.81738786692E-02 7.98368025423E-02 8.14164050643E-02 8.29028410118E-02 8.42862598218E-02 8.55568979840E-02 8.67051797208E-02 8.77218253427E-02 8.85979664274E-02 8.93252667017E-02 8.98960472201E-02 9.03034141367E-02 9.05413870571E-02 9.06050256463E-02 9.04905518671E-02 9.01954649370E-02 8.97186458356E-02 8.90604479847E-02 8.82227705675E-02 8.72091108802E-02 8.60245921238E-02 8.46759631786E-02 8.31715671576E-02 8.15212759539E-02 7.97363885630E-02 7.78294917174E-02 7.58142823068E-02 7.37053521856E-02 7.15179372819E-02 6.92676344109E-02 6.69700908312E-02 6.46406733391E-02 6.22941255129E-02 5.99442235499E-02 5.76034428862E-02 5.52826493768E-02 5.29908301215E-02 5.07348799294E-02 4.85194597960E-02 4.63469434673E-02 4.42174670608E-02 4.21290946478E-02 4.00781095714E-02 3.80594369592E-02 3.60671973469E-02 3.40953845206E-02 3.21386526714E-02 3.01931888444E-02 2.82576366681E-02 2.63345572642E-02 2.44313306859E-02 2.25562316979E-02 2.07174738583E-02 1.89231292370E-02 1.71810440657E-02 1.54987511512E-02 1.38833800428E-02 1.23415661106E-02 1.08793598524E-02 9.50213791456E-03 8.21451746662E-03 7.02027571986E-03 5.92227651135E-03 4.92240598948E-03 4.02151952248E-03 3.21940200565E-03 2.51474375637E-03 1.90513415275E-03 1.38707508288E-03 9.56016121068E-04 6.06413125621E-04 3.31811654113E-04 1.24956208556E-04 -2.20741506194E-05 -1.17703851292E-04 -1.70673212767E-04 -1.89826665375E-04 -1.83879107301E-04 -1.61163670567E-04 -1.29365199964E-04 -9.52448467895E-05 -6.41214333530E-05 -3.89505709120E-05 -2.09665559021E-05 -9.81847472258E-06 -3.75373115701E-06 -9.90340664031E-07 -1.07664696103E-07 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 5 1 i j (l(j)) -1.10932516964E-02 Q_int -1.97965169028E-20 -2.08115060285E-20 -2.18785347594E-20 -2.30002712232E-20 -2.41795203453E-20 -2.54192308627E-20 -2.67225026976E-20 -2.80925947082E-20 -2.95329328383E-20 -3.10471186835E-20 -3.26389384969E-20 -3.43123726574E-20 -3.60716056220E-20 -3.79210363894E-20 -3.98652894998E-20 -4.19092265987E-20 -4.40579585936E-20 -4.63168584335E-20 -4.86915745448E-20 -5.11880449545E-20 -5.38125121391E-20 -5.65715386336E-20 -5.94720234412E-20 -6.25212192848E-20 -6.57267507422E-20 -6.90966333117E-20 -7.26392934551E-20 -7.63635896679E-20 -8.02788346306E-20 -8.43948184948E-20 -8.87218333642E-20 -9.32706990298E-20 -9.80527900250E-20 -1.03080064068E-19 -1.08365091963E-19 -1.13921089032E-19 -1.19761948162E-19 -1.25902274543E-19 -1.32357422189E-19 -1.39143532332E-19 -1.46277573781E-19 -1.53777385356E-19 -1.61661720493E-19 -1.69950294136E-19 -1.78663832037E-19 -1.87824122578E-19 -1.97454071258E-19 -2.07577757963E-19 -2.18220497185E-19 -2.29408901313E-19 -2.41170947187E-19 -2.53536046048E-19 -2.66535117083E-19 -2.80200664740E-19 -2.94566860007E-19 -3.09669625854E-19 -3.25546727063E-19 -3.42237864656E-19 -3.59784775171E-19 -3.78231335025E-19 -3.97623670224E-19 -4.18010271708E-19 -4.39442116599E-19 -4.61972795672E-19 -4.85658647360E-19 -5.10558898630E-19 -5.36735813078E-19 -5.64254846626E-19 -5.93184811192E-19 -6.23598046754E-19 -6.55570602243E-19 -6.89182425701E-19 -7.24517564193E-19 -7.61664373971E-19 -8.00715741406E-19 -8.41769315258E-19 -8.84927750844E-19 -9.30298966732E-19 -9.77996414594E-19 -1.02813936289E-18 -1.08085319512E-18 -1.13626972330E-18 -1.19452751763E-18 -1.25577225294E-18 -1.32015707296E-18 -1.38784297327E-18 -1.45899920389E-18 -1.53380369245E-18 -1.61244348913E-18 -1.69511523439E-18 -1.78202565065E-18 -1.87339205921E-18 -1.96944292369E-18 -2.07041842126E-18 -2.17657104328E-18 -2.28816622658E-18 -2.40548301725E-18 -2.52881476835E-18 -2.65846987352E-18 -2.79477253804E-18 -2.93806358956E-18 -3.08870133035E-18 -3.24706243321E-18 -3.41354288338E-18 -3.58855896869E-18 -3.77254832052E-18 -3.96597100807E-18 -4.16931068879E-18 -4.38307581780E-18 -4.60780091925E-18 -4.84404792294E-18 -5.09240756942E-18 -5.35350088717E-18 -5.62798074544E-18 -5.91653348686E-18 -6.21988064356E-18 -6.53878074141E-18 -6.87403119675E-18 -7.22647031032E-18 -7.59697936346E-18 -7.98648482177E-18 -8.39596065176E-18 -8.82643075625E-18 -9.27897153471E-18 -9.75471457476E-18 -1.02548494818E-17 -1.07806268535E-17 -1.13333614071E-17 -1.19144352670E-17 -1.25253014204E-17 -1.31674873507E-17 -1.38425988573E-17 -1.45523240705E-17 -1.52984376730E-17 -1.60828053374E-17 -1.69073883912E-17 -1.77742487216E-17 -1.86855539308E-17 -1.96435827564E-17 -2.06507307694E-17 -2.17095163644E-17 -2.28225870567E-17 -2.39927261027E-17 -2.52228594593E-17 -2.65160631006E-17 -2.78755707091E-17 -2.93047817618E-17 -3.08072700305E-17 -3.23867925185E-17 -3.40472988544E-17 -3.57929411687E-17 -3.76280844764E-17 -3.95573175912E-17 -4.15854646005E-17 -4.37175969280E-17 -4.59590460148E-17 -4.83154166508E-17 -5.07926009894E-17 -5.33967932816E-17 -5.61345053639E-17 -5.90125829423E-17 -6.20382227091E-17 -6.52189903393E-17 -6.85628394081E-17 -7.20781312794E-17 -7.57736560130E-17 -7.96586543451E-17 -8.37428407942E-17 -8.80364279529E-17 -9.25501520247E-17 -9.72952996698E-17 -1.02283736228E-16 -1.07527935387E-16 -1.13041010377E-16 -1.18836746754E-16 -1.24929636876E-16 -1.31334916142E-16 -1.38068601084E-16 -1.45147529420E-16 -1.52589402156E-16 -1.60412827848E-16 -1.68637369133E-16 -1.77283591646E-16 -1.86373115443E-16 -1.95928669067E-16 -2.05974146375E-16 -2.16534666290E-16 -2.27636635608E-16 -2.39307815032E-16 -2.51577388585E-16 -2.64476036588E-16 -2.78036012374E-16 -2.92291222941E-16 -3.07277313735E-16 -3.23031757781E-16 -3.39593949391E-16 -3.57005302663E-16 -3.75309355041E-16 -3.94551876182E-16 -4.14780982404E-16 -4.36047256999E-16 -4.58403876720E-16 -4.81906744750E-16 -5.06614630491E-16 -5.32589316512E-16 -5.59895753045E-16 -5.88602220390E-16 -6.18780499650E-16 -6.50506052226E-16 -6.83858208505E-16 -7.18920366231E-16 -7.55780199039E-16 -7.94529875686E-16 -8.35266290523E-16 -8.78091305777E-16 -9.23112006265E-16 -9.70440967156E-16 -1.02019653547E-15 -1.07250312601E-15 -1.12749153245E-15 -1.18529925441E-15 -1.24607084127E-15 -1.30995825358E-15 -1.37712124311E-15 -1.44772775226E-15 -1.52195433401E-15 -1.59998659342E-15 -1.68201965169E-15 -1.76825863414E-15 -1.85891918305E-15 -1.95422799693E-15 -2.05442339736E-15 -2.15975592492E-15 -2.27048896568E-15 -2.38689940980E-15 -2.50927834389E-15 -2.63793177890E-15 -2.77318141526E-15 -2.91536544735E-15 -3.06483940914E-15 -3.22197706318E-15 -3.38717133527E-15 -3.56083529689E-15 -3.74340319818E-15 -3.93533155372E-15 -4.13710028409E-15 -4.34921391591E-15 -4.57220284342E-15 -4.80662465473E-15 -5.05306552611E-15 -5.31214168769E-15 -5.58450096438E-15 -5.87082439576E-15 -6.17182793904E-15 -6.48826425932E-15 -6.82092461163E-15 -7.17064081947E-15 -7.53828735486E-15 -7.92478352486E-15 -8.33109577044E-15 -8.75824008298E-15 -9.20728454481E-15 -9.67935200000E-15 -1.01756228620E-14 -1.06973380652E-14 -1.12458021683E-14 -1.18223866157E-14 -1.24285331675E-14 -1.30657575041E-14 -1.37356530167E-14 -1.44398947912E-14 -1.51802437968E-14 -1.59585512895E-14 -1.67767634413E-14 -1.76369262062E-14 -1.85411904364E-14 -1.94918172608E-14 -2.04911837384E-14 -2.15417888027E-14 -2.26462595099E-14 -2.38073576084E-14 -2.50279864438E-14 -2.63111982197E-14 -2.76602016290E-14 -2.90783698777E-14 -3.05692491195E-14 -3.21365673229E-14 -3.37842435933E-14 -3.55163979727E-14 -3.73373617415E-14 -3.92516882496E-14 -4.12641643014E-14 -4.33798221259E-14 -4.56039519594E-14 -4.79421152739E-14 -5.04001586836E-14 -5.29842285647E-14 -5.57007864238E-14 -5.85566250559E-14 -6.15588855288E-14 -6.47150750403E-14 -6.80330856894E-14 -7.15212142109E-14 -7.51881827214E-14 -7.90431605286E-14 -8.30957870599E-14 -8.73561959654E-14 -9.18350404571E-14 -9.65435199476E-14 -1.01493408054E-13 -1.06697082039E-13 -1.12167553757E-13 -1.17918502195E-13 -1.23964307674E-13 -1.30320087807E-13 -1.37001735301E-13 -1.44025957698E-13 -1.51410319151E-13 -1.59173284342E-13 -1.67334264657E-13 -1.75913666719E-13 -1.84932943419E-13 -1.94414647555E-13 -2.04382488230E-13 -2.14861390133E-13 -2.25877555863E-13 -2.37458531451E-13 -2.49633275238E-13 -2.62432230282E-13 -2.75887400485E-13 -2.90032430618E-13 -3.04902690445E-13 -3.20535363171E-13 -3.36969538414E-13 -3.54246309951E-13 -3.72408878471E-13 -3.91502659597E-13 -4.11575397449E-13 -4.32677284029E-13 -4.54861084721E-13 -4.78182270234E-13 -5.02699155303E-13 -5.28473044508E-13 -5.55568385560E-13 -5.84052930455E-13 -6.13997904887E-13 -6.45478186343E-13 -6.78572491335E-13 -7.13363572230E-13 -7.49938424167E-13 -7.88388502592E-13 -8.28809951934E-13 -8.71303846014E-13 -9.15976440778E-13 -9.62939439988E-13 -1.01231027453E-12 -1.06421239606E-12 -1.11877558565E-12 -1.17613627837E-12 -1.23643790438E-12 -1.29983124759E-12 -1.36647482270E-12 -1.43653527154E-12 -1.51018777979E-12 -1.58761651496E-12 -1.66901508695E-12 -1.75458703215E-12 -1.84454632236E-12 -1.93911789981E-12 -2.03853823965E-12 -2.14305594120E-12 -2.25293234961E-12 -2.36844220929E-12 -2.48987435091E-12 -2.61753241363E-12 -2.75173560430E-12 -2.89281949560E-12 -3.04113686517E-12 -3.19705857769E-12 -3.36097451214E-12 -3.53329453677E-12 -3.71444953384E-12 -3.90489247710E-12 -4.10509956434E-12 -4.31557140812E-12 -4.53683428752E-12 -4.76944146400E-12 -5.01397456486E-12 -5.27104503748E-12 -5.54129567821E-12 -5.82540223962E-12 -6.12407512014E-12 -6.43806114035E-12 -6.76814541030E-12 -7.11515329263E-12 -7.47995246626E-12 -7.86345509591E-12 -8.26662011291E-12 -8.69045561281E-12 -9.13602137608E-12 -9.60443151785E-12 -1.00968572737E-11 -1.06145299281E-11 -1.11587438931E-11 -1.17308599448E-11 -1.23323086256E-11 -1.29645938216E-11 -1.36292965219E-11 -1.43280787726E-11 -1.50626878315E-11 -1.58349605378E-11 -1.66468279040E-11 -1.75003199441E-11 -1.83975707500E-11 -1.93408238263E-11 -2.03324377005E-11 -2.13748918199E-11 -2.24707927505E-11 -2.36228806947E-11 -2.48340363421E-11 -2.61072880723E-11 -2.74458195264E-11 -2.88529775670E-11 -3.03322806465E-11 -3.18874276034E-11 -3.35223069109E-11 -3.52410063986E-11 -3.70478234729E-11 -3.89472758618E-11 -4.09441129099E-11 -4.30433274526E-11 -4.52501682992E-11 -4.75701533559E-11 -5.00090834215E-11 -5.25730566901E-11 -5.52684839979E-11 -5.81021048509E-11 -6.10810042747E-11 -6.42126305276E-11 -6.75048137226E-11 -7.09657854031E-11 -7.46041991227E-11 -7.84291520796E-11 -8.24502078602E-11 -8.66774203490E-11 -9.11213588632E-11 -9.57931345769E-11 -1.00704428299E-10 -1.05867519674E-10 -1.11295317885E-10 -1.17001393922E-10 -1.23000014511E-10 -1.29306177779E-10 -1.35935650751E-10 -1.42905008765E-10 -1.50231676906E-10 -1.57933973572E-10 -1.66031156263E-10 -1.74543469727E-10 -1.83492196564E-10 -1.92899710431E-10 -2.02789531973E-10 -2.13186387618E-10 -2.24116271388E-10 -2.35606509878E-10 -2.47685830565E-10 -2.60384433618E-10 -2.73734067392E-10 -2.87768107785E-10 -3.02521641667E-10 -3.18031554587E-10 -3.34336622968E-10 -3.51477611038E-10 -3.69497372716E-10 -3.88440958732E-10 -4.08355729229E-10 -4.29291472141E-10 -4.51300527637E-10 -4.74437918939E-10 -4.98761489847E-10 -5.24332049317E-10 -5.51213523440E-10 -5.79473115216E-10 -6.09181472513E-10 -6.40412864633E-10 -6.73245367931E-10 -7.07761060941E-10 -7.44046229503E-10 -7.82191582403E-10 -8.22292478065E-10 -8.64449162851E-10 -9.08767021586E-10 -9.55356840906E-10 -1.00433508611E-09 -1.05582419220E-09 -1.10995286982E-09 -1.16685642689E-09 -1.22667710669E-09 -1.28956444332E-09 -1.35567563531E-09 -1.42517593843E-09 -1.49823907856E-09 -1.57504768579E-09 -1.65579375068E-09 -1.74067910398E-09 -1.82991592085E-09 -1.92372725096E-09 -2.02234757572E-09 -2.12602339407E-09 -2.23501383829E-09 -2.34959132131E-09 -2.47004221723E-09 -2.59666757669E-09 -2.72978387882E-09 -2.86972382181E-09 -3.01683715390E-09 -3.17149154692E-09 -3.33407351466E-09 -3.50498937816E-09 -3.68466628054E-09 -3.87355325372E-09 -4.07212233981E-09 -4.28086976995E-09 -4.50031720344E-09 -4.73101303041E-09 -4.97353374113E-09 -5.22848536547E-09 -5.49650498604E-09 -5.77826232880E-09 -6.07446143516E-09 -6.38584241961E-09 -6.71318331735E-09 -7.05730202658E-09 -7.41905835011E-09 -7.79935614154E-09 -8.19914556127E-09 -8.61942544803E-09 -9.06124581171E-09 -9.52571045383E-09 -1.00139797221E-08 -1.05272734060E-08 -1.10668737805E-08 -1.16341288052E-08 -1.22304554880E-08 -1.28573434202E-08 -1.35163584920E-08 -1.42091467997E-08 -1.49374387511E-08 -1.57030533817E-08 -1.65079028917E-08 -1.73539974148E-08 -1.82434500310E-08 -1.91784820361E-08 -2.01614284799E-08 -2.11947439882E-08 -2.22810088825E-08 -2.34229356122E-08 -2.46233755163E-08 -2.58853259295E-08 -2.72119376533E-08 -2.86065228073E-08 -3.00725630830E-08 -3.16137184186E-08 -3.32338361177E-08 -3.49369604330E-08 -3.67273426413E-08 -3.86094516310E-08 -4.05879850325E-08 -4.26678809156E-08 -4.48543300856E-08 -4.71527890059E-08 -4.95689933815E-08 -5.21089724362E-08 -5.47790639174E-08 -5.75859298681E-08 -6.05365732036E-08 -6.36383551337E-08 -6.68990134740E-08 -7.03266818926E-08 -7.39299101368E-08 -7.77176852930E-08 -8.16994541306E-08 -8.58851465847E-08 -9.02852004369E-08 -9.49105872542E-08 -9.97728396494E-08 -1.04884079932E-07 -1.10257050218E-07 -1.15905144075E-07 -1.21842439777E-07 -1.28083735257E-07 -1.34644584836E-07 -1.41541337823E-07 -1.48791179079E-07 -1.56412171651E-07 -1.64423301566E-07 -1.72844524915E-07 -1.81696817322E-07 -1.91002225934E-07 -2.00783924058E-07 -2.11066268565E-07 -2.21874860224E-07 -2.33236607090E-07 -2.45179791125E-07 -2.57734138185E-07 -2.70930891585E-07 -2.84802889370E-07 -2.99384645535E-07 -3.14712435344E-07 -3.30824384991E-07 -3.47760565800E-07 -3.65563093205E-07 -3.84276230740E-07 -4.03946499309E-07 -4.24622791976E-07 -4.46356494579E-07 -4.69201612443E-07 -4.93214903506E-07 -5.18456018178E-07 -5.44987646274E-07 -5.72875671373E-07 -6.02189332975E-07 -6.33001396845E-07 -6.65388333967E-07 -6.99430508520E-07 -7.35212375341E-07 -7.72822687342E-07 -8.12354713382E-07 -8.53906467122E-07 -8.97580947391E-07 -9.43486390662E-07 -9.91736536225E-07 -1.04245090469E-06 -1.09575509050E-06 -1.15178106909E-06 -1.21066751958E-06 -1.27256016348E-06 -1.33761212056E-06 -1.40598428244E-06 -1.47784570494E-06 -1.55337402003E-06 -1.63275586844E-06 -1.71618735383E-06 -1.80387451972E-06 -1.89603385017E-06 -1.99289279544E-06 -2.09469032390E-06 -2.20167750136E-06 -2.31411809929E-06 -2.43228923325E-06 -2.55648203307E-06 -2.68700234625E-06 -2.82417147631E-06 -2.96832695768E-06 -3.11982336901E-06 -3.27903318661E-06 -3.44634768018E-06 -3.62217785265E-06 -3.80695542644E-06 -4.00113387824E-06 -4.20518952474E-06 -4.41962266171E-06 -4.64495875899E-06 -4.88174971405E-06 -5.13057516694E-06 -5.39204387959E-06 -5.66679518240E-06 -5.95550049137E-06 -6.25886489921E-06 -6.57762884374E-06 -6.91256985727E-06 -7.26450440093E-06 -7.63428978757E-06 -8.02282619781E-06 -8.43105879313E-06 -8.85997993083E-06 -9.31063148542E-06 -9.78410728136E-06 -1.02815556423E-05 -1.08041820621E-05 -1.13532520031E-05 -1.19300938281E-05 -1.25361018704E-05 -1.31727396504E-05 -1.38415432437E-05 -1.45441248079E-05 -1.52821762751E-05 -1.60574732180E-05 -1.68718788963E-05 -1.77273484922E-05 -1.86259335424E-05 -1.95697865755E-05 -2.05611659644E-05 -2.16024410011E-05 -2.26960972053E-05 -2.38447418750E-05 -2.50511098909E-05 -2.63180697832E-05 -2.76486300735E-05 -2.90459459020E-05 -3.05133259518E-05 -3.20542396819E-05 -3.36723248823E-05 -3.53713955622E-05 -3.71554501858E-05 -3.90286802683E-05 -4.09954793457E-05 -4.30604523331E-05 -4.52284252853E-05 -4.75044555746E-05 -4.98938425003E-05 -5.24021383465E-05 -5.50351599022E-05 -5.77990004602E-05 -6.07000423110E-05 -6.37449697471E-05 -6.69407825947E-05 -7.02948102887E-05 -7.38147265079E-05 -7.75085643857E-05 -8.13847323142E-05 -8.54520303562E-05 -8.97196672824E-05 -9.41972782480E-05 -9.88949431253E-05 -1.03823205506E-04 -1.08993092385E-04 -1.14416134549E-04 -1.20104387662E-04 -1.26070454082E-04 -1.32327505404E-04 -1.38889305739E-04 -1.45770235744E-04 -1.52985317400E-04 -1.60550239538E-04 -1.68481384128E-04 -1.76795853311E-04 -1.85511497176E-04 -1.94646942282E-04 -2.04221620895E-04 -2.14255800931E-04 -2.24770616595E-04 -2.35788099667E-04 -2.47331211420E-04 -2.59423875128E-04 -2.72091009113E-04 -2.85358560286E-04 -2.99253538118E-04 -3.13804048974E-04 -3.29039330724E-04 -3.44989787553E-04 -3.61687024863E-04 -3.79163884157E-04 -3.97454477774E-04 -4.16594223347E-04 -4.36619877812E-04 -4.57569570820E-04 -4.79482837334E-04 -5.02400649235E-04 -5.26365445679E-04 -5.51421161978E-04 -5.77613256722E-04 -6.04988736845E-04 -6.33596180314E-04 -6.63485756092E-04 -6.94709240991E-04 -7.27320033002E-04 -7.61373160669E-04 -7.96925288017E-04 -8.34034714526E-04 -8.72761369596E-04 -9.13166800919E-04 -9.55314156115E-04 -9.99268156971E-04 -1.04509506554E-03 -1.09286264139E-03 -1.14264008910E-03 -1.19449799526E-03 -1.24850825396E-03 -1.30474397993E-03 -1.36327940816E-03 -1.42418977919E-03 -1.48755120872E-03 -1.55344054054E-03 -1.62193518160E-03 -1.69311291793E-03 -1.76705171011E-03 -1.84382946713E-03 -1.92352379709E-03 -2.00621173367E-03 -2.09196943664E-03 -2.18087186537E-03 -2.27299242375E-03 -2.36840257524E-03 -2.46717142663E-03 -2.56936527941E-03 -2.67504714724E-03 -2.78427623861E-03 -2.89710740346E-03 -3.01359054300E-03 -3.13376998173E-03 -3.25768380129E-03 -3.38536313551E-03 -3.51683142677E-03 -3.65210364357E-03 -3.79118545990E-03 -3.93407239716E-03 -4.08074892995E-03 -4.23118755728E-03 -4.38534784152E-03 -4.54317541775E-03 -4.70460097695E-03 -4.86953922703E-03 -5.03788783642E-03 -5.20952636595E-03 -5.38431519513E-03 -5.56209445036E-03 -5.74268294323E-03 -5.92587712802E-03 -6.11145008887E-03 -6.29915056774E-03 -6.48870204576E-03 -6.67980189146E-03 -6.87212059051E-03 -7.06530107279E-03 -7.25895815368E-03 -7.45267810731E-03 -7.64601839081E-03 -7.83850753900E-03 -8.02964525015E-03 -8.21890268366E-03 -8.40572299096E-03 -8.58952210125E-03 -8.76968978326E-03 -8.94559100391E-03 -9.11656760405E-03 -9.28194030989E-03 -9.44101109752E-03 -9.59306592521E-03 -9.73737784598E-03 -9.87321050937E-03 -9.99982205735E-03 -1.01164694151E-02 -1.02224129719E-02 -1.03169216414E-02 -1.03992782848E-02 -1.04687854718E-02 -1.05247715481E-02 -1.05665969682E-02 -1.05936608451E-02 -1.06054076577E-02 -1.06013340483E-02 -1.05809956328E-02 -1.05440137362E-02 -1.04900819584E-02 -1.04189724646E-02 -1.03305418892E-02 -1.02247367341E-02 -1.01015981384E-02 -9.96126589235E-03 -9.80398157008E-03 -9.63009065401E-03 -9.44004353294E-03 -9.23439526145E-03 -9.01380398229E-03 -8.77902792951E-03 -8.53092095147E-03 -8.27042651870E-03 -7.99857021235E-03 -7.71645072463E-03 -7.42522944335E-03 -7.12611873754E-03 -6.82036911100E-03 -6.50925544374E-03 -6.19406259777E-03 -5.87607072237E-03 -5.55654065378E-03 -5.23669986414E-03 -4.91772947238E-03 -4.60075288486E-03 -4.28682668265E-03 -3.97693441504E-03 -3.67198399040E-03 -3.37280937585E-03 -3.08017732111E-03 -2.79479980797E-03 -2.51735289048E-03 -2.24850252903E-03 -1.98893793031E-03 -1.73941277936E-03 -1.50079458675E-03 -1.27412216767E-03 -1.06067101626E-03 -8.62026034383E-04 -6.80160714622E-04 -5.17521461462E-04 -3.77115260524E-04 -2.61688605713E-04 -1.70684401443E-04 -1.02295661021E-04 -5.42358189917E-05 -2.36905076469E-05 -7.26679394997E-06 -9.40206400762E-07 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 6 1 i j (l(j)) -1.76573173350E-02 Q_int -3.31763372987E-20 -3.48773244851E-20 -3.66655231495E-20 -3.85454047198E-20 -4.05216698793E-20 -4.25992603201E-20 -4.47833711006E-20 -4.70794636354E-20 -4.94932793517E-20 -5.20308540462E-20 -5.46985329773E-20 -5.75029867318E-20 -6.04512279050E-20 -6.35506286354E-20 -6.68089390393E-20 -7.02343065898E-20 -7.38352964899E-20 -7.76209130901E-20 -8.16006224037E-20 -8.57843757768E-20 -9.01826347722E-20 -9.48063973283E-20 -9.96672252597E-20 -1.04777273168E-19 -1.10149318835E-19 -1.15796795173E-19 -1.21733823815E-19 -1.27975250423E-19 -1.34536681817E-19 -1.41434524991E-19 -1.48686028147E-19 -1.56309323820E-19 -1.64323474220E-19 -1.72748518896E-19 -1.81605524850E-19 -1.90916639209E-19 -2.00705144609E-19 -2.10995517412E-19 -2.21813488910E-19 -2.33186109666E-19 -2.45141817157E-19 -2.57710506877E-19 -2.70923607099E-19 -2.84814157455E-19 -2.99416891555E-19 -3.14768323841E-19 -3.30906840891E-19 -3.47872797402E-19 -3.65708617102E-19 -3.84458898832E-19 -4.04170528062E-19 -4.24892794132E-19 -4.46677513500E-19 -4.69579159313E-19 -4.93654997613E-19 -5.18965230536E-19 -5.45573146847E-19 -5.73545280198E-19 -6.02951575489E-19 -6.33865563778E-19 -6.66364546135E-19 -7.00529786945E-19 -7.36446717104E-19 -7.74205147647E-19 -8.13899494316E-19 -8.55629013653E-19 -8.99498051191E-19 -9.45616302375E-19 -9.94099086853E-19 -1.04506763684E-18 -1.09864940026E-18 -1.15497835942E-18 -1.21419536607E-18 -1.27644849356E-18 -1.34189340714E-18 -1.41069375319E-18 -1.48302156839E-18 -1.55905770996E-18 -1.63899230786E-18 -1.72302524022E-18 -1.81136663313E-18 -1.90423738610E-18 -2.00186972437E-18 -2.10450777964E-18 -2.21240820052E-18 -2.32584079425E-18 -2.44508920140E-18 -2.57045160509E-18 -2.70224147664E-18 -2.84078835935E-18 -2.98643869261E-18 -3.13955667810E-18 -3.30052519054E-18 -3.46974673505E-18 -3.64764445363E-18 -3.83466318324E-18 -4.03127056809E-18 -4.23795822906E-18 -4.45524299295E-18 -4.68366818484E-18 -4.92380498668E-18 -5.17625386555E-18 -5.44164607513E-18 -5.72064523417E-18 -6.01394898588E-18 -6.32229074240E-18 -6.64644151872E-18 -6.98721186059E-18 -7.34545387137E-18 -7.72206334266E-18 -8.11798199429E-18 -8.53419982909E-18 -8.97175760842E-18 -9.43174945462E-18 -9.91532558689E-18 -1.04236951974E-17 -1.09581294750E-17 -1.15199647836E-17 -1.21106060042E-17 -1.27315300474E-17 -1.33842895467E-17 -1.40705167409E-17 -1.47919275553E-17 -1.55503258926E-17 -1.63476081438E-17 -1.71857679295E-17 -1.80669010859E-17 -1.89932109047E-17 -1.99670136429E-17 -2.09907443144E-17 -2.20669627791E-17 -2.31983601437E-17 -2.43877654907E-17 -2.56381529531E-17 -2.69526491505E-17 -2.83345410081E-17 -2.97872839752E-17 -3.13145106657E-17 -3.29200399417E-17 -3.46078864626E-17 -3.63822707236E-17 -3.82476296094E-17 -4.02086274886E-17 -4.22701678771E-17 -4.44374056995E-17 -4.67157601790E-17 -4.91109283881E-17 -5.16288994948E-17 -5.42759697379E-17 -5.70587581716E-17 -5.99842232159E-17 -6.30596800571E-17 -6.62928189385E-17 -6.96917243911E-17 -7.32648954484E-17 -7.70212668985E-17 -8.09702316262E-17 -8.51216640996E-17 -8.94859450615E-17 -9.40739874868E-17 -9.88972638706E-17 -1.03967834915E-16 -1.09298379689E-16 -1.14902227329E-16 -1.20793390371E-16 -1.26986599792E-16 -1.33497341840E-16 -1.40341896758E-16 -1.47537379499E-16 -1.55101782516E-16 -1.63054020754E-16 -1.71413978950E-16 -1.80202561351E-16 -1.89441743989E-16 -1.99154629631E-16 -2.09365505547E-16 -2.20099904244E-16 -2.31384667307E-16 -2.43248012518E-16 -2.55719604415E-16 -2.68830628472E-16 -2.82613869074E-16 -2.97103791498E-16 -3.12336628092E-16 -3.28350468877E-16 -3.45185356792E-16 -3.62883387819E-16 -3.81488816249E-16 -4.01048165337E-16 -4.21610343636E-16 -4.43226767296E-16 -4.65951488625E-16 -4.89841331257E-16 -5.14956032231E-16 -5.41358391371E-16 -5.69114428317E-16 -5.98293547605E-16 -6.28968712220E-16 -6.61216626038E-16 -6.95117925625E-16 -7.30757381873E-16 -7.68224111967E-16 -8.07611802232E-16 -8.49018942386E-16 -8.92549071828E-16 -9.38311038531E-16 -9.86419271223E-16 -1.03699406552E-15 -1.09016188471E-15 -1.14605567602E-15 -1.20481520299E-15 -1.26658739502E-15 -1.33152671472E-15 -1.39979554418E-15 -1.47156459097E-15 -1.54701331505E-15 -1.62633037748E-15 -1.70971411217E-15 -1.79737302183E-15 -1.88952629931E-15 -1.98640437575E-15 -2.08824949671E-15 -2.19531632797E-15 -2.30787259228E-15 -2.42619973882E-15 -2.55059364701E-15 -2.68136536627E-15 -2.81884189392E-15 -2.96336699273E-15 -3.11530205060E-15 -3.27502698416E-15 -3.44294118877E-15 -3.61946453722E-15 -3.80503842964E-15 -4.00012689722E-15 -4.20521776252E-15 -4.42082385929E-15 -4.64748431481E-15 -4.88576589800E-15 -5.13626443664E-15 -5.39960630722E-15 -5.67645000124E-15 -5.96748777175E-15 -6.27344736438E-15 -6.59509383703E-15 -6.93323147294E-15 -7.28870579182E-15 -7.66240566408E-15 -8.05526553346E-15 -8.46826775361E-15 -8.90244504453E-15 -9.35888307486E-15 -9.83872317661E-15 -1.03431651991E-14 -1.08734705092E-14 -1.14309651455E-14 -1.20170431338E-14 -1.26331699732E-14 -1.32808863004E-14 -1.39618117424E-14 -1.46776489659E-14 -1.54301879353E-14 -1.62213103882E-14 -1.70529945412E-14 -1.79273200357E-14 -1.88464731389E-14 -1.98127522099E-14 -2.08285734473E-14 -2.18964769306E-14 -2.30191329720E-14 -2.41993487931E-14 -2.54400755450E-14 -2.67444156872E-14 -2.81156307456E-14 -2.95571494680E-14 -3.10725763974E-14 -3.26657008857E-14 -3.43405065687E-14 -3.61011813274E-14 -3.79521277597E-14 -3.98979741892E-14 -4.19435862385E-14 -4.40940789957E-14 -4.63548298046E-14 -4.87314917109E-14 -5.12300075979E-14 -5.38566250463E-14 -5.66179119570E-14 -5.95207729736E-14 -6.25724667478E-14 -6.57806240897E-14 -6.91532670489E-14 -7.26988289733E-14 -7.64261755972E-14 -8.03446272101E-14 -8.44639819617E-14 -8.87945403629E-14 -9.33471310421E-14 -9.81331378219E-14 -1.03164528185E-13 -1.08453883199E-13 -1.14014428975E-13 -1.19860069739E-13 -1.26005422602E-13 -1.32465854106E-13 -1.39257518654E-13 -1.46397398899E-13 -1.53903348209E-13 -1.61794135316E-13 -1.70089491238E-13 -1.78810158626E-13 -1.87977943622E-13 -1.97615770392E-13 -2.07747738446E-13 -2.18399182898E-13 -2.29596737816E-13 -2.41368402823E-13 -2.53743613108E-13 -2.66753313030E-13 -2.80430033493E-13 -2.94807973291E-13 -3.09923084620E-13 -3.25813162980E-13 -3.42517941679E-13 -3.60079191186E-13 -3.78540823583E-13 -3.97949002359E-13 -4.18352257850E-13 -4.39801608582E-13 -4.62350688846E-13 -4.86055882810E-13 -5.10976465506E-13 -5.37174751050E-13 -5.64716248451E-13 -5.93669825425E-13 -6.24107880590E-13 -6.56106524501E-13 -6.89745769967E-13 -7.25109732115E-13 -7.62286838726E-13 -8.01370051340E-13 -8.42457097713E-13 -8.85650716178E-13 -9.31058912542E-13 -9.78795230153E-13 -1.02897903381E-12 -1.08173580825E-12 -1.13719747187E-12 -1.19550270667E-12 -1.25679730494E-12 -1.32123453385E-12 -1.38897551870E-12 -1.46018964578E-12 -1.53505498596E-12 -1.61375873988E-12 -1.69649770611E-12 -1.78347877322E-12 -1.87491943707E-12 -1.97104834467E-12 -2.07210586593E-12 -2.17834469463E-12 -2.29003048035E-12 -2.40744249266E-12 -2.53087431943E-12 -2.66063460098E-12 -2.79704780174E-12 -2.94045502164E-12 -3.09121484897E-12 -3.24970425701E-12 -3.41631954664E-12 -3.59147733730E-12 -3.77561560867E-12 -3.96919479586E-12 -4.17269894066E-12 -4.38663690189E-12 -4.61154362777E-12 -4.84798149349E-12 -5.09654170744E-12 -5.35784578943E-12 -5.63254712480E-12 -5.92133259814E-12 -6.22492431082E-12 -6.54408138651E-12 -6.87960186932E-12 -7.23232471926E-12 -7.60313190997E-12 -7.99295063402E-12 -8.40275562127E-12 -8.83357157610E-12 -9.28647573957E-12 -9.76260058294E-12 -1.02631366394E-11 -1.07893354806E-11 -1.13425128464E-11 -1.19240519346E-11 -1.25354068594E-11 -1.31781062872E-11 -1.38537572591E-11 -1.45640492088E-11 -1.53107581870E-11 -1.60957513020E-11 -1.69209913884E-11 -1.77885419146E-11 -1.87005721425E-11 -1.96593625512E-11 -2.06673105388E-11 -2.17269364174E-11 -2.28408897139E-11 -2.40119557952E-11 -2.52430628323E-11 -2.65372891219E-11 -2.78978707829E-11 -2.93282098478E-11 -3.08318827686E-11 -3.24126493595E-11 -3.40744621970E-11 -3.58214765028E-11 -3.76580605330E-11 -3.95888064997E-11 -4.16185420532E-11 -4.37523423520E-11 -4.59955427522E-11 -4.83537521472E-11 -5.08328669914E-11 -5.34390860424E-11 -5.61789258598E-11 -5.90592370975E-11 -6.20872216325E-11 -6.52704505702E-11 -6.86168831746E-11 -7.21348867672E-11 -7.58332576474E-11 -7.97212430845E-11 -8.38085644372E-11 -8.81054414591E-11 -9.26226178492E-11 -9.73713881123E-11 -1.02363625798E-10 -1.07611813183E-10 -1.13129072483E-10 -1.18929198655E-10 -1.25026693888E-10 -1.31436803859E-10 -1.38175555848E-10 -1.45259798808E-10 -1.52707245487E-10 -1.60536516711E-10 -1.68767187937E-10 -1.77419838190E-10 -1.86516101510E-10 -1.96078721041E-10 -2.06131605883E-10 -2.16699890864E-10 -2.27809999380E-10 -2.39489709445E-10 -2.51768223140E-10 -2.64676239609E-10 -2.78246031806E-10 -2.92511527172E-10 -3.07508392450E-10 -3.23274122842E-10 -3.39848135743E-10 -3.57271869274E-10 -3.75588885868E-10 -3.94844981166E-10 -4.15088298494E-10 -4.36369449206E-10 -4.58741639196E-10 -4.82260801897E-10 -5.06985738094E-10 -5.32978262905E-10 -5.60303360292E-10 -5.89029345494E-10 -6.19228035785E-10 -6.50974929985E-10 -6.84349397166E-10 -7.19434875038E-10 -7.56319078493E-10 -7.95094218845E-10 -8.35857234299E-10 -8.78710032242E-10 -9.23759743936E-10 -9.71118992280E-10 -1.02090617328E-09 -1.07324575195E-09 -1.12826857339E-09 -1.18611218976E-09 -1.24692120409E-09 -1.31084763162E-09 -1.37805127971E-09 -1.44870014720E-09 -1.52297084427E-09 -1.60104903375E-09 -1.68312989507E-09 -1.76941861202E-09 -1.86013088548E-09 -1.95549347237E-09 -2.05574475229E-09 -2.16113532316E-09 -2.27192862739E-09 -2.38840161009E-09 -2.51084541107E-09 -2.63956609227E-09 -2.77488540239E-09 -2.91714158081E-09 -3.06669020262E-09 -3.22390506694E-09 -3.38917913080E-09 -3.56292549081E-09 -3.74557841510E-09 -3.93759442821E-09 -4.13945345148E-09 -4.35166000186E-09 -4.57474445214E-09 -4.80926435575E-09 -5.05580583936E-09 -5.31498506686E-09 -5.58744977830E-09 -5.87388090766E-09 -6.17499428340E-09 -6.49154241626E-09 -6.82431637840E-09 -7.17414777898E-09 -7.54191084075E-09 -7.92852458305E-09 -8.33495511661E-09 -8.76221805572E-09 -9.21138105413E-09 -9.68356647053E-09 -1.01799541707E-08 -1.07017844731E-08 -1.12503612449E-08 -1.18270551573E-08 -1.24333071065E-08 -1.30706318106E-08 -1.37406215901E-08 -1.44449503421E-08 -1.51853777181E-08 -1.59637535151E-08 -1.67820222918E-08 -1.76422282211E-08 -1.85465201906E-08 -1.94971571645E-08 -2.04965138191E-08 -2.15470864679E-08 -2.26514992884E-08 -2.38125108683E-08 -2.50330210867E-08 -2.63160783467E-08 -2.76648871783E-08 -2.90828162303E-08 -3.05734066705E-08 -3.21403810157E-08 -3.37876524136E-08 -3.55193343986E-08 -3.73397511473E-08 -3.92534482571E-08 -4.12652040774E-08 -4.33800416184E-08 -4.56032410701E-08 -4.79403529600E-08 -5.03972119841E-08 -5.29799515440E-08 -5.56950190273E-08 -5.85491918688E-08 -6.15495944318E-08 -6.47037157521E-08 -6.80194281883E-08 -7.15050070249E-08 -7.51691510762E-08 -7.90210043421E-08 -8.30701787709E-08 -8.73267781823E-08 -9.18014234136E-08 -9.65052787481E-08 -1.01450079693E-07 -1.06648162174E-07 -1.12112493223E-07 -1.17856703223E-07 -1.23895119811E-07 -1.30242803495E-07 -1.36915585103E-07 -1.43930105127E-07 -1.51303855085E-07 -1.59055220982E-07 -1.67203528995E-07 -1.75769093479E-07 -1.84773267421E-07 -1.94238495469E-07 -2.04188369656E-07 -2.14647687966E-07 -2.25642515880E-07 -2.37200251056E-07 -2.49349691305E-07 -2.62121106019E-07 -2.75546311241E-07 -2.89658748550E-07 -3.04493567959E-07 -3.20087715030E-07 -3.36480022416E-07 -3.53711306060E-07 -3.71824466277E-07 -3.90864593976E-07 -4.10879082278E-07 -4.31917743801E-07 -4.54032933900E-07 -4.77279680161E-07 -5.01715818470E-07 -5.27402135981E-07 -5.54402521339E-07 -5.82784122517E-07 -6.12617512654E-07 -6.43976864296E-07 -6.76940132469E-07 -7.11589247015E-07 -7.48010314673E-07 -7.86293831380E-07 -8.26534905321E-07 -8.68833491251E-07 -9.13294636673E-07 -9.60028740446E-07 -1.00915182447E-06 -1.06078581908E-06 -1.11505886286E-06 -1.17210561756E-06 -1.23206759894E-06 -1.29509352421E-06 -1.36133967713E-06 -1.43097029132E-06 -1.50415795297E-06 -1.58108402385E-06 -1.66193908547E-06 -1.74692340572E-06 -1.83624742882E-06 -1.93013228996E-06 -2.02881035574E-06 -2.13252579174E-06 -2.24153515850E-06 -2.35610803742E-06 -2.47652768792E-06 -2.60309173761E-06 -2.73611290682E-06 -2.87591976945E-06 -3.02285755176E-06 -3.17728897109E-06 -3.33959511628E-06 -3.51017637210E-06 -3.68945338963E-06 -3.87786810490E-06 -4.07588480825E-06 -4.28399126673E-06 -4.50269990219E-06 -4.73254902790E-06 -4.97410414626E-06 -5.22795931084E-06 -5.49473855575E-06 -5.77509739556E-06 -6.06972439930E-06 -6.37934284194E-06 -6.70471243727E-06 -7.04663115596E-06 -7.40593713290E-06 -7.78351066815E-06 -8.18027632595E-06 -8.59720513639E-06 -9.03531690475E-06 -9.49568263352E-06 -9.97942706245E-06 -1.04877313323E-05 -1.10218357778E-05 -1.15830428567E-05 -1.21727202200E-05 -1.27923039308E-05 -1.34433018395E-05 -1.41272971201E-05 -1.48459519783E-05 -1.56010115362E-05 -1.63943079043E-05 -1.72277644475E-05 -1.81034002556E-05 -1.90233348260E-05 -1.99897929691E-05 -2.10051099467E-05 -2.20717368535E-05 -2.31922462518E-05 -2.43693380728E-05 -2.56058457940E-05 -2.69047429058E-05 -2.82691496814E-05 -2.97023402601E-05 -3.12077500609E-05 -3.27889835388E-05 -3.44498222984E-05 -3.61942335810E-05 -3.80263791412E-05 -3.99506245270E-05 -4.19715487841E-05 -4.40939545979E-05 -4.63228788949E-05 -4.86636039188E-05 -5.11216688036E-05 -5.37028816609E-05 -5.64133322034E-05 -5.92594049256E-05 -6.22477928616E-05 -6.53855119446E-05 -6.86799159887E-05 -7.21387123170E-05 -7.57699780604E-05 -7.95821771502E-05 -8.35841780299E-05 -8.77852721113E-05 -9.21951930005E-05 -9.68241365197E-05 -1.01682781551E-04 -1.06782311727E-04 -1.12134438001E-04 -1.17751422115E-04 -1.23646100996E-04 -1.29831912112E-04 -1.36322919805E-04 -1.43133842635E-04 -1.50280081755E-04 -1.57777750351E-04 -1.65643704154E-04 -1.73895573069E-04 -1.82551793924E-04 -1.91631644376E-04 -2.01155277979E-04 -2.11143760436E-04 -2.21619107058E-04 -2.32604321429E-04 -2.44123435290E-04 -2.56201549662E-04 -2.68864877182E-04 -2.82140785679E-04 -2.96057842966E-04 -3.10645862838E-04 -3.25935952264E-04 -3.41960559738E-04 -3.58753524776E-04 -3.76350128489E-04 -3.94787145217E-04 -4.14102895141E-04 -4.34337297813E-04 -4.55531926528E-04 -4.77730063431E-04 -5.00976755269E-04 -5.25318869651E-04 -5.50805151690E-04 -5.77486280853E-04 -6.05414927868E-04 -6.34645811468E-04 -6.65235754763E-04 -6.97243741007E-04 -7.30730968464E-04 -7.65760904106E-04 -8.02399335792E-04 -8.40714422582E-04 -8.80776742781E-04 -9.22659339299E-04 -9.66437761828E-04 -1.01219010536E-03 -1.05999704444E-03 -1.10994186264E-03 -1.16211047645E-03 -1.21659145306E-03 -1.27347602112E-03 -1.33285807374E-03 -1.39483416286E-03 -1.45950348396E-03 -1.52696785018E-03 -1.59733165476E-03 -1.67070182059E-03 -1.74718773574E-03 -1.82690117357E-03 -1.90995619612E-03 -1.99646903924E-03 -2.08655797804E-03 -2.18034317092E-03 -2.27794648051E-03 -2.37949126987E-03 -2.48510217186E-03 -2.59490482995E-03 -2.70902560836E-03 -2.82759126956E-03 -2.95072861680E-03 -3.07856409973E-03 -3.21122338073E-03 -3.34883085969E-03 -3.49150915506E-03 -3.63937853873E-03 -3.79255632265E-03 -3.95115619476E-03 -4.11528750223E-03 -4.28505447980E-03 -4.46055542123E-03 -4.64188179214E-03 -4.82911728249E-03 -5.02233679727E-03 -5.22160538440E-03 -5.42697709881E-03 -5.63849380241E-03 -5.85618389990E-03 -6.08006101092E-03 -6.31012257957E-03 -6.54634842305E-03 -6.78869922190E-03 -7.03711495496E-03 -7.29151328335E-03 -7.55178788842E-03 -7.81780676996E-03 -8.08941051210E-03 -8.36641052531E-03 -8.64858727470E-03 -8.93568850602E-03 -9.22742748225E-03 -9.52348124546E-03 -9.82348892032E-03 -1.01270500773E-02 -1.04337231753E-02 -1.07430241062E-02 -1.10544248637E-02 -1.13673523636E-02 -1.16811874419E-02 -1.19952640594E-02 -1.23088687457E-02 -1.26212403129E-02 -1.29315698733E-02 -1.32390011974E-02 -1.35426314452E-02 -1.38415123098E-02 -1.41346516072E-02 -1.44210153495E-02 -1.46995303351E-02 -1.49690872895E-02 -1.52285445872E-02 -1.54767325820E-02 -1.57124585691E-02 -1.59345123966E-02 -1.61416727406E-02 -1.63327140462E-02 -1.65064141344E-02 -1.66615624607E-02 -1.67969690025E-02 -1.69114737429E-02 -1.70039567010E-02 -1.70733484502E-02 -1.71186410487E-02 -1.71388992896E-02 -1.71332721668E-02 -1.71010044322E-02 -1.70414481044E-02 -1.69540737759E-02 -1.68384815465E-02 -1.66944114003E-02 -1.65217528283E-02 -1.63205534910E-02 -1.60910267068E-02 -1.58335575486E-02 -1.55487073311E-02 -1.52372162784E-02 -1.49000041684E-02 -1.45381687716E-02 -1.41529819225E-02 -1.37458830934E-02 -1.33184703797E-02 -1.28724888500E-02 -1.24098162697E-02 -1.19324462700E-02 -1.14424691011E-02 -1.09420501892E-02 -1.04334067950E-02 -9.91878316496E-03 -9.40042465422E-03 -8.88055139632E-03 -8.36133218675E-03 -7.84485933892E-03 -7.33312535584E-03 -6.82800233674E-03 -6.33122510198E-03 -5.84437906724E-03 -5.36889392518E-03 -4.90604419575E-03 -4.45695767958E-03 -4.02263278853E-03 -3.60396562729E-03 -3.20178755626E-03 -2.81691377227E-03 -2.45020319557E-03 -2.10262964385E-03 -1.77536390212E-03 -1.46986585736E-03 -1.18798535593E-03 -9.32069859036E-04 -7.05076318100E-04 -5.10683972207E-04 -3.52158933731E-04 -2.28209243887E-04 -1.35859013041E-04 -7.15339184443E-05 -3.10236970878E-05 -9.44603712721E-06 -1.21283985774E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 7 2 i j (l(j)) 0.00000000000E+00 Q_int 9.86889122704E-24 1.05053800268E-23 1.11829188272E-23 1.19041551260E-23 1.26719071696E-23 1.34891749658E-23 1.43591520064E-23 1.52852377454E-23 1.62710508831E-23 1.73204435056E-23 1.84375161375E-23 1.96266337644E-23 2.08924428892E-23 2.22398896885E-23 2.36742393401E-23 2.52010965963E-23 2.68264276851E-23 2.85565836230E-23 3.03983250320E-23 3.23588485565E-23 3.44458149849E-23 3.66673791838E-23 3.90322219636E-23 4.15495839989E-23 4.42293019365E-23 4.70818468325E-23 5.01183650681E-23 5.33507219041E-23 5.67915478453E-23 6.04542879936E-23 6.43532545859E-23 6.85036829188E-23 7.29217908812E-23 7.76248423260E-23 8.26312145288E-23 8.79604699978E-23 9.36334329146E-23 9.96722705050E-23 1.06100579658E-22 1.12943479132E-22 1.20227707704E-22 1.27981728656E-22 1.36235840994E-22 1.45022297841E-22 1.54375432467E-22 1.64331792450E-22 1.74930282483E-22 1.86212316395E-22 1.98221978979E-22 2.11006198253E-22 2.24614928831E-22 2.39101347124E-22 2.54522059126E-22 2.70937321604E-22 2.88411277552E-22 3.07012206834E-22 3.26812792984E-22 3.47890407223E-22 3.70327410786E-22 3.94211476753E-22 4.19635932630E-22 4.46700125031E-22 4.75509807875E-22 5.06177555624E-22 5.38823203169E-22 5.73574314086E-22 6.10566679096E-22 6.49944846669E-22 6.91862687850E-22 7.36483997515E-22 7.83983134399E-22 8.34545702413E-22 8.88369275888E-22 9.45664171607E-22 1.00665427062E-21 1.07157789306E-21 1.14068872940E-21 1.21425683173E-21 1.29256966901E-21 1.37593325034E-21 1.46467332074E-21 1.55913663396E-21 1.65969230744E-21 1.76673326466E-21 1.88067777049E-21 2.00197106556E-21 2.13108710606E-21 2.26853041570E-21 2.41483805722E-21 2.57058173091E-21 2.73637000853E-21 2.91285071140E-21 3.10071344169E-21 3.30069227709E-21 3.51356863925E-21 3.74017434718E-21 3.98139486760E-21 4.23817277494E-21 4.51151143443E-21 4.80247892283E-21 5.11221220191E-21 5.44192156119E-21 5.79289534714E-21 6.16650499746E-21 6.56421039996E-21 6.98756559714E-21 7.43822485862E-21 7.91794914525E-21 8.42861299008E-21 8.97221182319E-21 9.55086976880E-21 1.01668479454E-20 1.08225533011E-20 1.15205480187E-20 1.22635595279E-20 1.30544911622E-20 1.38964335041E-20 1.47926764615E-20 1.57467221234E-20 1.67622984438E-20 1.78433738092E-20 1.89941725451E-20 2.02191914225E-20 2.15232172293E-20 2.29113454745E-20 2.43890002994E-20 2.59619556723E-20 2.76363579504E-20 2.94187498969E-20 3.13160962471E-20 3.33358109230E-20 3.54857860034E-20 3.77744225625E-20 4.02106634975E-20 4.28040284725E-20 4.55646511174E-20 4.85033186251E-20 5.16315139026E-20 5.49614604407E-20 5.85061700777E-20 6.22794938433E-20 6.62961760820E-20 7.05719120666E-20 7.51234093282E-20 7.99684529409E-20 8.51259750177E-20 9.06161286878E-20 9.64603668455E-20 1.02681525978E-19 1.09303915400E-19 1.16353412241E-19 1.23857562562E-19 1.31845688994E-19 1.40349005314E-19 1.49400738414E-19 1.59036258137E-19 1.69293215486E-19 1.80211689742E-19 1.91834345081E-19 2.04206597280E-19 2.17376791182E-19 2.31396389604E-19 2.46320174432E-19 2.62206460676E-19 2.79117324344E-19 2.97118845002E-19 3.16281363980E-19 3.36679759237E-19 3.58393737941E-19 3.81508147936E-19 4.06113309277E-19 4.32305367164E-19 4.60186667628E-19 4.89866157455E-19 5.21459809892E-19 5.55091077817E-19 5.90891376137E-19 6.29000595290E-19 6.69567647873E-19 7.12751050519E-19 7.58719543306E-19 8.07652749112E-19 8.59741875493E-19 9.15190461835E-19 9.74215174685E-19 1.03704665438E-18 1.10393041628E-18 1.17512781013E-18 1.25091704128E-18 1.33159425778E-18 1.41747470759E-18 1.50889397042E-18 1.60620926901E-18 1.70980086498E-18 1.82007354472E-18 1.93745820110E-18 2.06241351719E-18 2.19542775857E-18 2.33702068125E-18 2.48774556262E-18 2.64819136339E-18 2.81898502897E-18 3.00079393928E-18 3.19432851653E-18 3.40034500125E-18 3.61964840725E-18 3.85309566731E-18 4.10159898160E-18 4.36612938213E-18 4.64772052713E-18 4.94747274001E-18 5.26655730896E-18 5.60622106377E-18 5.96779124781E-18 6.35268070432E-18 6.76239339707E-18 7.19853028715E-18 7.66279558879E-18 8.15700342854E-18 8.68308493409E-18 9.24309578013E-18 9.83922422099E-18 1.04737996412E-17 1.11493016578E-17 1.18683698093E-17 1.26338138697E-17 1.34486248280E-17 1.43159865753E-17 1.52392883461E-17 1.62221379615E-17 1.72683759274E-17 1.83820904408E-17 1.95676333646E-17 2.08296372330E-17 2.21730333528E-17 2.36030710727E-17 2.51253382952E-17 2.67457833117E-17 2.84707380453E-17 3.03069427929E-17 3.22615725632E-17 3.43422651132E-17 3.65571507928E-17 3.89148843142E-17 4.14246785707E-17 4.40963406359E-17 4.69403100854E-17 4.99676997892E-17 5.31903393359E-17 5.66208212568E-17 6.02725502316E-17 6.41597954674E-17 6.82977464559E-17 7.27025723265E-17 7.73914850279E-17 8.23828065837E-17 8.76960406864E-17 9.33519489081E-17 9.93726318271E-17 1.05781615386E-16 1.12603942821E-16 1.19866272516E-16 1.27596982174E-16 1.35826279701E-16 1.44586321247E-16 1.53911336853E-16 1.63837764208E-16 1.74404391030E-16 1.85652506628E-16 1.97626063242E-16 2.10371847787E-16 2.23939664677E-16 2.38382530428E-16 2.53756880831E-16 2.70122791469E-16 2.87544212468E-16 3.06089218380E-16 3.25830274186E-16 3.46844518456E-16 3.69214064769E-16 3.93026322573E-16 4.18374338736E-16 4.45357161135E-16 4.74080225679E-16 5.04655768311E-16 5.37203263562E-16 5.71849891410E-16 6.08731034228E-16 6.47990805801E-16 6.89782614449E-16 7.34269762474E-16 7.81626084265E-16 8.32036625562E-16 8.85698366522E-16 9.42820991423E-16 1.00362770801E-15 1.06835611968E-15 1.13725915394E-15 1.21060605067E-15 1.28868341427E-15 1.37179633348E-15 1.46026957359E-15 1.55444884542E-15 1.65470215622E-15 1.76142124764E-15 1.87502312648E-15 1.99595169416E-15 2.12467948123E-15 2.26170949386E-15 2.40757717926E-15 2.56285251803E-15 2.72814225129E-15 2.90409225161E-15 3.09139004669E-15 3.29076750593E-15 3.50300370020E-15 3.72892794608E-15 3.96942304643E-15 4.22542873993E-15 4.49794537314E-15 4.78803780936E-15 5.09683958961E-15 5.42555736193E-15 5.77547559638E-15 6.14796160413E-15 6.54447088024E-15 6.96655279102E-15 7.41585662819E-15 7.89413805351E-15 8.40326595904E-15 8.94522976988E-15 9.52214721782E-15 1.01362726164E-14 1.07900056698E-14 1.14859008494E-14 1.22266773756E-14 1.30152298434E-14 1.38546395326E-14 1.47481864483E-14 1.56993621371E-14 1.67118833310E-14 1.77897064699E-14 1.89370431619E-14 2.01583766398E-14 2.14584792795E-14 2.28424312482E-14 2.43156403551E-14 2.58838631822E-14 2.75532275786E-14 2.93302566046E-14 3.12218940209E-14 3.32355314214E-14 3.53790371154E-14 3.76607868737E-14 4.00896966561E-14 4.26752574514E-14 4.54275723626E-14 4.83573960855E-14 5.14761769318E-14 5.47961015643E-14 5.83301426153E-14 6.20921093777E-14 6.60967017647E-14 7.03595677493E-14 7.48973645088E-14 7.97278235127E-14 8.48698198083E-14 9.03434457744E-14 9.61700896325E-14 1.02372519021E-13 1.08974969958E-13 1.16003241548E-13 1.23484796784E-13 1.31448869865E-13 1.39926580427E-13 1.48951055139E-13 1.58557557150E-13 1.68783623875E-13 1.79669213673E-13 1.91256861986E-13 2.03591847540E-13 2.16722369276E-13 2.30699734684E-13 2.45578560285E-13 2.61416985043E-13 2.78276897546E-13 2.96224177828E-13 3.15328954798E-13 3.35665880262E-13 3.57314420628E-13 3.80359167414E-13 4.04890167788E-13 4.31003276424E-13 4.58800530051E-13 4.88390546155E-13 5.19888947403E-13 5.53418813427E-13 5.89111161756E-13 6.27105459761E-13 6.67550169616E-13 7.10603328408E-13 7.56433165656E-13 8.05218760663E-13 8.57150742256E-13 9.12432033658E-13 9.71278645399E-13 1.03392051936E-12 1.10060242727E-12 1.17158492712E-12 1.24714538127E-12 1.32757904026E-12 1.41320019643E-12 1.50434341204E-12 1.60136482651E-12 1.70464354804E-12 1.81458313491E-12 1.93161317238E-12 2.05619095123E-12 2.18880325462E-12 2.32996826010E-12 2.48023756439E-12 2.64019833866E-12 2.81047562285E-12 2.99173476795E-12 3.18468403577E-12 3.39007736643E-12 3.60871732427E-12 3.84145823378E-12 4.08920951776E-12 4.35293925081E-12 4.63367794191E-12 4.93252256105E-12 5.25064082543E-12 5.58927576220E-12 5.94975056511E-12 6.33347376699E-12 6.74194473670E-12 7.17675954628E-12 7.63961720253E-12 8.13232629353E-12 8.65681202690E-12 9.21512379767E-12 9.80944315807E-12 1.04420923603E-11 1.11155434311E-11 1.18324278060E-11 1.25955466514E-11 1.34078817793E-11 1.42726072968E-11 1.51931020435E-11 1.61729627483E-11 1.72160180970E-11 1.83263437305E-11 1.95082780936E-11 2.07664394608E-11 2.21057439429E-11 2.35314247087E-11 2.50490523928E-11 2.66645569390E-11 2.83842506872E-11 3.02148531150E-11 3.21635170106E-11 3.42378564762E-11 3.64459767117E-11 3.87965054929E-11 4.12986272518E-11 4.39621184952E-11 4.67973863832E-11 4.98155092097E-11 5.30282797268E-11 5.64482511724E-11 6.00887865162E-11 6.39641103302E-11 6.80893646376E-11 7.24806679998E-11 7.71551784887E-11 8.21311606364E-11 8.74280570120E-11 9.30665639366E-11 9.90687124896E-11 1.05457954530E-10 1.12259254293E-10 1.19499186233E-10 1.27206038271E-10 1.35409922739E-10 1.44142893980E-10 1.53439073560E-10 1.63334783295E-10 1.73868687645E-10 1.85081944516E-10 1.97018365860E-10 2.09724589291E-10 2.23250259937E-10 2.37648224412E-10 2.52974737523E-10 2.69289681817E-10 2.86656801519E-10 3.05143951838E-10 3.24823363619E-10 3.45771926059E-10 3.68071486494E-10 3.91809170428E-10 4.17077722237E-10 4.43975866851E-10 4.72608695821E-10 5.03088078209E-10 5.35533096159E-10 5.70070511993E-10 6.06835262248E-10 6.45970985127E-10 6.87630581274E-10 7.31976811649E-10 7.79182932797E-10 8.29433373748E-10 8.82924457032E-10 9.39865164744E-10 1.00047795504E-09 1.06499963149E-09 1.13368226760E-09 1.20679419236E-09 1.28462103679E-09 1.36746685147E-09 1.45565529187E-09 1.54953088550E-09 1.64946037448E-09 1.75583415063E-09 1.86906777815E-09 1.98960361900E-09 2.11791255715E-09 2.25449584255E-09 2.39988704478E-09 2.55465413828E-09 2.71940172066E-09 2.89477337521E-09 3.08145418149E-09 3.28017339375E-09 3.49170728689E-09 3.71688218953E-09 3.95657770971E-09 4.21173017087E-09 4.48333626782E-09 4.77245695870E-09 5.08022160824E-09 5.40783239911E-09 5.75656902233E-09 6.12779367939E-09 6.52295639735E-09 6.94360069275E-09 7.39136959561E-09 7.86801206817E-09 8.37538983221E-09 8.91548463632E-09 9.49040599498E-09 1.01023994217E-08 1.07538552004E-08 1.14473177115E-08 1.21854953681E-08 1.29712711880E-08 1.38077140485E-08 1.46980906656E-08 1.56458783443E-08 1.66547785540E-08 1.77287313750E-08 1.88719308762E-08 2.00888414851E-08 2.13842154128E-08 2.27631112012E-08 2.42309134593E-08 2.57933538847E-08 2.74565336226E-08 2.92269470840E-08 3.11115072722E-08 3.31175727723E-08 3.52529764543E-08 3.75260560328E-08 3.99456865997E-08 4.25213152518E-08 4.52629979355E-08 4.81814386791E-08 5.12880313517E-08 5.45949040950E-08 5.81149666430E-08 6.18619606508E-08 6.58505133069E-08 7.00961943663E-08 7.46155768677E-08 7.94263017527E-08 8.45471466595E-08 8.99980991236E-08 9.58004345103E-08 1.01976798948E-07 1.08551297609E-07 1.15549588673E-07 1.22998983316E-07 1.30928552167E-07 1.39369238589E-07 1.48353979263E-07 1.57917832511E-07 1.68098114896E-07 1.78934546597E-07 1.90469406138E-07 2.02747695059E-07 2.15817313198E-07 2.29729245216E-07 2.44537759136E-07 2.60300617648E-07 2.77079302976E-07 2.94939256226E-07 3.13950132093E-07 3.34186069965E-07 3.55725982414E-07 3.78653862253E-07 4.03059109299E-07 4.29036878149E-07 4.56688448260E-07 4.86121617826E-07 5.17451122936E-07 5.50799083625E-07 5.86295478602E-07 6.24078650398E-07 6.64295842966E-07 7.07103773766E-07 7.52669242527E-07 8.01169779115E-07 8.52794332881E-07 9.07744006255E-07 9.66232835353E-07 1.02848862062E-06 1.09475381068E-06 1.16528644289E-06 1.24036114399E-06 1.32027019499E-06 1.40532466418E-06 1.49585561261E-06 1.59221537675E-06 1.69477893328E-06 1.80394535100E-06 1.92013933575E-06 2.04381287399E-06 2.17544698140E-06 2.31555356322E-06 2.46467739337E-06 2.62339821991E-06 2.79233300488E-06 2.97213830699E-06 3.16351281628E-06 3.36720005030E-06 3.58399122211E-06 3.81472829093E-06 4.06030720700E-06 4.32168136284E-06 4.59986526408E-06 4.89593843361E-06 5.21104956372E-06 5.54642093194E-06 5.90335309712E-06 6.28322989329E-06 6.68752374011E-06 7.11780128966E-06 7.57572943075E-06 8.06308167292E-06 8.58174493408E-06 9.13372675687E-06 9.72116298041E-06 1.03463258959E-05 1.10116329160E-05 1.17196557901E-05 1.24731303991E-05 1.32749671655E-05 1.41282621171E-05 1.50363086441E-05 1.60026099932E-05 1.70308925427E-05 1.81251199074E-05 1.92895079238E-05 2.05285405691E-05 2.18469868713E-05 2.32499188701E-05 2.47427306925E-05 2.63311588107E-05 2.80213035527E-05 2.98196519421E-05 3.17331019454E-05 3.37689882117E-05 3.59351093934E-05 3.82397571409E-05 4.06917468719E-05 4.33004504170E-05 4.60758306547E-05 4.90284782486E-05 5.21696506115E-05 5.55113132237E-05 5.90661834404E-05 6.28477769323E-05 6.68704569072E-05 7.11494862702E-05 7.57010828889E-05 8.05424781348E-05 8.56919788835E-05 9.11690331633E-05 9.69942996525E-05 1.03189721231E-04 1.09778602805E-04 1.16785693634E-04 1.24237274393E-04 1.32161249213E-04 1.40587242968E-04 1.49546704064E-04 1.59073013004E-04 1.69201597026E-04 1.79970051096E-04 1.91418265576E-04 2.03588560859E-04 2.16525829317E-04 2.30277684874E-04 2.44894620549E-04 2.60430174316E-04 2.76941103621E-04 2.94487568912E-04 3.13133326550E-04 3.32945931435E-04 3.53996949723E-04 3.76362181978E-04 4.00121897098E-04 4.25361077371E-04 4.52169674960E-04 4.80642880155E-04 5.10881401651E-04 5.42991759137E-04 5.77086588411E-04 6.13284959226E-04 6.51712706017E-04 6.92502771596E-04 7.35795563871E-04 7.81739325550E-04 8.30490516720E-04 8.82214210109E-04 9.37084498724E-04 9.95284915453E-04 1.05700886407E-03 1.12246006098E-03 1.19185298679E-03 1.26541334675E-03 1.34337853872E-03 1.42599812729E-03 1.51353432229E-03 1.60626245965E-03 1.70447148251E-03 1.80846441970E-03 1.91855885886E-03 2.03508741065E-03 2.15839816043E-03 2.28885510298E-03 2.42683855577E-03 2.57274554517E-03 2.72699016014E-03 2.89000386658E-03 3.06223577552E-03 3.24415285719E-03 3.43624009244E-03 3.63900055227E-03 3.85295539533E-03 4.07864377236E-03 4.31662262585E-03 4.56746637199E-03 4.83176645140E-03 5.11013073391E-03 5.40318276178E-03 5.71156081489E-03 6.03591678027E-03 6.37691480773E-03 6.73522973212E-03 7.11154524219E-03 7.50655177520E-03 7.92094411575E-03 8.35541867683E-03 8.81067044076E-03 9.28738953761E-03 9.78625743849E-03 1.03079427418E-02 1.08530965311E-02 1.14223472841E-02 1.20162953138E-02 1.26355067250E-02 1.32805068719E-02 1.39517733039E-02 1.46497281945E-02 1.53747302465E-02 1.61270660784E-02 1.69069410981E-02 1.77144698792E-02 1.85496660629E-02 1.94124318176E-02 2.03025468963E-02 2.12196573480E-02 2.21632639450E-02 2.31327104072E-02 2.41271715157E-02 2.51456412243E-02 2.61869208963E-02 2.72496078063E-02 2.83320840724E-02 2.94325061954E-02 3.05487954065E-02 3.16786290410E-02 3.28194331755E-02 3.39683767833E-02 3.51223676798E-02 3.62780505456E-02 3.74318073238E-02 3.85797603014E-02 3.97177781851E-02 4.08414854862E-02 4.19462755184E-02 4.30273273026E-02 4.40796266515E-02 4.50979916739E-02 4.60771029025E-02 4.70115381949E-02 4.78958124938E-02 4.87244224602E-02 4.94918958994E-02 5.01928457991E-02 5.08220286823E-02 5.13744068462E-02 5.18452139168E-02 5.22300229953E-02 5.25248165089E-02 5.27260567114E-02 5.28307556055E-02 5.28365428932E-02 5.27417303941E-02 5.25453712272E-02 5.22473119251E-02 5.18482355477E-02 5.13496938113E-02 5.07541262326E-02 5.00648643384E-02 4.92861191106E-02 4.84229500310E-02 4.74812143782E-02 4.64674958121E-02 4.53890117671E-02 4.42534997716E-02 4.30690835107E-02 4.18441202543E-02 4.05870321717E-02 3.93061250261E-02 3.80093987752E-02 3.67043556506E-02 3.53978123275E-02 3.40957237575E-02 3.28030270835E-02 3.15235147002E-02 3.02597459096E-02 2.90130066513E-02 2.77833263907E-02 2.65695603303E-02 2.53695435960E-02 2.41803218611E-02 2.29984599568E-02 2.18204263348E-02 2.06430467968E-02 1.94640157054E-02 1.82824470327E-02 1.70997960049E-02 1.59205677914E-02 1.47499360184E-02 1.35931485264E-02 1.24554833473E-02 1.13422006452E-02 1.02584908417E-02 9.20941923905E-03 8.19986755211E-03 7.23447287372E-03 6.31756471317E-03 5.45310087476E-03 4.64460307551E-03 3.89509333918E-03 3.20703234557E-03 2.58226105764E-03 2.02194709177E-03 1.52653743604E-03 1.09571925328E-03 7.28390626931E-04 4.22643213189E-04 1.75758846959E-04 -1.57777932708E-05 -1.56248333198E-04 -2.50649552295E-04 -3.04619891600E-04 -3.24341701673E-04 -3.16417506378E-04 -2.87718830177E-04 -2.45206497701E-04 -1.95721775563E-04 -1.45748298548E-04 -1.00798701764E-04 -6.40194234751E-05 -3.68056248712E-05 -1.87976985827E-05 -7.95791324418E-06 -2.36598862566E-06 -2.96740713335E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.08615901717E-23 1.15621025527E-23 1.23077941007E-23 1.31015786216E-23 1.39465578457E-23 1.48460335476E-23 1.58035204481E-23 1.68227599483E-23 1.79077347485E-23 1.90626844113E-23 2.02921219277E-23 2.16008513515E-23 2.29939865714E-23 2.44769712934E-23 2.60556003126E-23 2.77360421562E-23 2.95248631873E-23 3.14290532628E-23 3.34560530468E-23 3.56137830851E-23 3.79106747547E-23 4.03557032097E-23 4.29584224519E-23 4.57290026632E-23 4.86782699461E-23 5.18177486266E-23 5.51597062857E-23 5.87172016958E-23 6.25041358473E-23 6.65353062678E-23 7.08264648433E-23 7.53943793691E-23 8.02568990705E-23 8.54330243489E-23 9.09429810263E-23 9.68082993781E-23 1.03051898263E-22 1.09698174680E-22 1.16773099098E-22 1.24304316938E-22 1.32321256597E-22 1.40855244441E-22 1.49939627214E-22 1.59609902337E-22 1.69903856623E-22 1.80861713919E-22 1.92526292292E-22 2.04943171336E-22 2.18160870274E-22 2.32231037553E-22 2.47208652657E-22 2.63152240943E-22 2.80124102327E-22 2.98190554727E-22 3.17422193199E-22 3.37894165787E-22 3.59686467170E-22 3.82884251237E-22 4.07578163835E-22 4.33864696963E-22 4.61846565820E-22 4.91633110168E-22 5.23340721575E-22 5.57093298221E-22 5.93022729032E-22 6.31269409042E-22 6.71982787981E-22 7.15321954263E-22 7.61456256622E-22 8.10565965846E-22 8.62842979191E-22 9.18491570221E-22 9.77729187016E-22 1.04078730185E-21 1.10791231567E-21 1.17936652094E-21 1.25542912651E-21 1.33639734866E-21 1.42258757248E-21 1.51433658814E-21 1.61200290692E-21 1.71596816207E-21 1.82663860009E-21 1.94444666811E-21 2.06985270373E-21 2.20334673375E-21 2.34545038899E-21 2.49671894257E-21 2.65774347965E-21 2.82915320710E-21 3.01161791216E-21 3.20585057962E-21 3.41261017785E-21 3.63270462447E-21 3.86699394331E-21 4.11639362497E-21 4.38187820412E-21 4.66448506751E-21 4.96531850761E-21 5.28555403761E-21 5.62644298479E-21 5.98931738013E-21 6.37559516319E-21 6.78678572281E-21 7.22449579501E-21 7.69043574141E-21 8.18642623247E-21 8.71440536179E-21 9.27643621928E-21 9.87471495272E-21 1.05115793492E-20 1.11895179703E-20 1.19111798758E-20 1.26793849752E-20 1.34971350467E-20 1.43676254665E-20 1.52942576946E-20 1.62806525668E-20 1.73306644422E-20 1.84483962652E-20 1.96382155971E-20 2.09047716827E-20 2.22530136174E-20 2.36882096858E-20 2.52159679477E-20 2.68422581517E-20 2.85734350620E-20 3.04162632899E-20 3.23779437267E-20 3.44661416813E-20 3.66890168324E-20 3.90552551130E-20 4.15741026503E-20 4.42554018959E-20 4.71096300846E-20 5.01479401749E-20 5.33822044295E-20 5.68250608060E-20 6.04899623404E-20 6.43912297148E-20 6.85441072161E-20 7.29648223031E-20 7.76706490159E-20 8.26799754743E-20 8.80123757300E-20 9.36886862526E-20 9.97310873484E-20 1.06163189831E-19 1.13010127279E-19 1.20298654250E-19 1.28057250821E-19 1.36316233875E-19 1.45107875569E-19 1.54466529431E-19 1.64428764606E-19 1.75033508742E-19 1.86322200107E-19 1.98338949507E-19 2.11130712650E-19 2.24747473627E-19 2.39242440227E-19 2.54672251845E-19 2.71097200804E-19 2.88581467948E-19 3.07193373428E-19 3.27005643668E-19 3.48095695542E-19 3.70545938885E-19 3.94444098506E-19 4.19883556982E-19 4.46963719547E-19 4.75790402520E-19 5.06476246790E-19 5.39141157954E-19 5.73912774860E-19 6.10926968351E-19 6.50328372188E-19 6.92270948207E-19 7.36918587930E-19 7.84445752972E-19 8.35038156757E-19 8.88893490195E-19 9.46222194162E-19 1.00724828181E-18 1.07221021388E-18 1.14136183054E-18 1.21497334321E-18 1.29333239046E-18 1.37674516197E-18 1.46553759494E-18 1.56005664770E-18 1.66067165549E-18 1.76777577363E-18 1.88178751376E-18 2.00315237920E-18 2.13234460579E-18 2.26986901492E-18 2.41626298618E-18 2.57209855716E-18 2.73798465871E-18 2.91456949433E-18 3.10254307305E-18 3.30263990568E-18 3.51564187489E-18 3.74238129043E-18 3.98374414144E-18 4.24067355845E-18 4.51417349864E-18 4.80531266890E-18 5.11522870179E-18 5.44513260082E-18 5.79631347256E-18 6.17014356377E-18 6.56808362353E-18 6.99168861114E-18 7.44261377214E-18 7.92262110623E-18 8.43358625233E-18 8.97750581764E-18 9.55650517947E-18 1.01728467902E-17 1.08289390178E-17 1.15273455566E-17 1.22707954450E-17 1.30621937294E-17 1.39046328153E-17 1.48014045514E-17 1.57560130923E-17 1.67721885912E-17 1.78539017754E-17 1.90053794620E-17 2.02311210746E-17 2.15359162246E-17 2.29248634264E-17 2.44033900209E-17 2.59772733818E-17 2.76526634917E-17 2.94361069729E-17 3.13345726682E-17 3.33554788725E-17 3.55067223194E-17 3.77967090379E-17 4.02343871992E-17 4.28292820820E-17 4.55915332926E-17 4.85319343855E-17 5.16619750396E-17 5.49938859543E-17 5.85406866412E-17 6.23162362981E-17 6.63352879642E-17 7.06135461676E-17 7.51677282914E-17 8.00156298971E-17 8.51761942610E-17 9.06695863954E-17 9.65172718440E-17 1.02742100559E-16 1.09368396187E-16 1.16422051116E-16 1.23930627647E-16 1.31923465699E-16 1.40431797449E-16 1.49488869381E-16 1.59130072187E-16 1.69393079065E-16 1.80317992926E-16 1.91947503092E-16 2.04327052112E-16 2.17505013327E-16 2.31532879886E-16 2.46465465964E-16 2.62361120943E-16 2.79281957415E-16 2.97294093892E-16 3.16467913159E-16 3.36878337301E-16 3.58605120458E-16 3.81733160471E-16 4.06352830619E-16 4.32560332752E-16 4.60458073207E-16 4.90155062958E-16 5.21767343579E-16 5.55418440682E-16 5.91239846590E-16 6.29371534151E-16 6.69962503680E-16 7.13171365184E-16 7.59166958129E-16 8.08129011189E-16 8.60248844534E-16 9.15730117418E-16 9.74789623981E-16 1.03765814038E-15 1.10458132654E-15 1.17582068609E-15 1.25165458817E-15 1.33237935519E-15 1.41831042071E-15 1.50978356196E-15 1.60715621196E-15 1.71080885615E-15 1.82114651915E-15 1.93860034743E-15 2.06362929396E-15 2.19672191164E-15 2.33839826231E-15 2.48921194885E-15 2.64975227847E-15 2.82064656538E-15 3.00256258205E-15 3.19621116854E-15 3.40234901011E-15 3.62178159398E-15 3.85536635680E-15 4.10401603507E-15 4.36870223167E-15 4.65045921244E-15 4.95038794756E-15 5.26966041359E-15 5.60952417304E-15 5.97130724917E-15 6.35642331532E-15 6.76637721878E-15 7.20277086106E-15 7.66730945733E-15 8.16180819951E-15 8.68819934924E-15 9.24853978813E-15 9.84501905509E-15 1.04799679020E-14 1.11558674010E-14 1.18753586395E-14 1.26412530403E-14 1.34565433467E-14 1.43244153175E-14 1.52482601746E-14 1.62316878550E-14 1.72785411157E-14 1.83929105503E-14 1.95791505723E-14 2.08418964302E-14 2.21860823199E-14 2.36169606650E-14 2.51401226406E-14 2.67615200209E-14 2.84874884358E-14 3.03247721272E-14 3.22805503027E-14 3.43624651874E-14 3.65786518871E-14 3.89377701750E-14 4.14490383308E-14 4.41222691606E-14 4.69679083405E-14 4.99970752330E-14 5.32216063361E-14 5.66541015343E-14 6.03079733326E-14 6.41974992655E-14 6.83378776871E-14 7.27452871580E-14 7.74369496630E-14 8.24311979063E-14 8.77475469458E-14 9.34067704487E-14 9.94309818637E-14 1.05843720830E-13 1.12670045157E-13 1.19936628738E-13 1.27671865780E-13 1.35905981750E-13 1.44671151482E-13 1.54001624903E-13 1.63933860858E-13 1.74506669578E-13 1.85761364327E-13 1.97741922834E-13 2.10495159135E-13 2.24070906497E-13 2.38522212142E-13 2.53905544527E-13 2.70281013991E-13 2.87712607642E-13 3.06268439373E-13 3.26021016029E-13 3.47047520712E-13 3.69430114384E-13 3.93256256897E-13 4.18619048749E-13 4.45617594866E-13 4.74357391851E-13 5.04950740212E-13 5.37517183166E-13 5.72183973755E-13 6.09086572079E-13 6.48369174601E-13 6.90185277588E-13 7.34698276894E-13 7.82082106415E-13 8.32521917733E-13 8.86214803583E-13 9.43370567984E-13 1.00421254604E-12 1.06897847659E-12 1.13792143120E-12 1.21131080298E-12 1.28943335924E-12 1.37259436202E-12 1.46111876086E-12 1.55535246257E-12 1.65566368275E-12 1.76244438464E-12 1.87611181066E-12 1.99711011275E-12 2.12591208785E-12 2.26302102533E-12 2.40897267354E-12 2.56433733321E-12 2.72972208581E-12 2.90577316573E-12 3.09317848530E-12 3.29267032281E-12 3.50502818375E-12 3.73108184667E-12 3.97171460547E-12 4.22786672073E-12 4.50053909368E-12 4.79079717710E-12 5.09977513848E-12 5.42868029155E-12 5.77879781378E-12 6.15149576799E-12 6.54823045058E-12 6.97055206975E-12 7.42011082283E-12 7.89866332750E-12 8.40807950065E-12 8.95034983631E-12 9.52759322345E-12 1.01420651899E-11 1.07961667340E-11 1.14924537100E-11 1.22336467841E-11 1.30226421164E-11 1.38625226244E-11 1.47565700548E-11 1.57082778223E-11 1.67213646278E-11 1.77997889901E-11 1.89477647415E-11 2.01697774725E-11 2.14706020573E-11 2.28553213054E-11 2.43293458377E-11 2.58984352340E-11 2.75687205021E-11 2.93467280530E-11 3.12394052177E-11 3.32541473588E-11 3.53988267824E-11 3.76818234958E-11 4.01120579806E-11 4.26990260009E-11 4.54528356545E-11 4.83842471111E-11 5.15047141911E-11 5.48264296182E-11 5.83623725497E-11 6.21263588458E-11 6.61330955372E-11 7.03982382512E-11 7.49384521305E-11 7.97714771044E-11 8.49161971891E-11 9.03927141926E-11 9.62224264190E-11 1.02428112085E-10 1.09034018341E-10 1.16065956256E-10 1.23551401298E-10 1.31519600814E-10 1.40001688475E-10 1.49030805661E-10 1.58642231198E-10 1.68873518738E-10 1.79764644045E-10 1.91358160931E-10 2.03699367462E-10 2.16836482538E-10 2.30820835465E-10 2.45707065103E-10 2.61553334356E-10 2.78421556473E-10 2.96377638099E-10 3.15491735674E-10 3.35838529921E-10 3.57497517936E-10 3.80553323238E-10 4.05096026647E-10 4.31221517984E-10 4.59031871134E-10 4.88635742178E-10 5.20148794219E-10 5.53694149687E-10 5.89402869735E-10 6.27414468601E-10 6.67877456688E-10 7.10949920998E-10 7.56800143376E-10 8.05607258285E-10 8.57561950691E-10 9.12867202520E-10 9.71739085691E-10 1.03440760420E-09 1.10111759604E-09 1.17212968557E-09 1.24772130384E-09 1.32818777339E-09 1.41384345859E-09 1.50502299649E-09 1.60208260217E-09 1.70540146086E-09 1.81538320886E-09 1.93245750972E-09 2.05708173458E-09 2.18974274401E-09 2.33095879437E-09 2.48128155940E-09 2.64129828625E-09 2.81163408697E-09 2.99295438201E-09 3.18596749901E-09 3.39142743610E-09 3.61013681220E-09 3.84294999623E-09 4.09077644543E-09 4.35458425880E-09 4.63540395489E-09 4.93433249854E-09 5.25253758383E-09 5.59126219225E-09 5.95182944877E-09 6.33564778873E-09 6.74421645434E-09 7.17913135229E-09 7.64209128468E-09 8.13490457842E-09 8.65949615241E-09 9.21791502698E-09 9.81234232737E-09 1.04450998009E-08 1.11186588754E-08 1.18356503161E-08 1.25988744887E-08 1.34113122968E-08 1.42761368152E-08 1.51967256812E-08 1.61766742743E-08 1.72198097540E-08 1.83302060019E-08 1.95121995120E-08 2.07704063316E-08 2.21097400654E-08 2.35354310646E-08 2.50530468270E-08 2.66685137353E-08 2.83881401845E-08 3.02186411914E-08 3.21671646109E-08 3.42413190181E-08 3.64492034006E-08 3.87994387637E-08 4.13012017568E-08 4.39642604884E-08 4.67990126237E-08 4.98165259603E-08 5.30285815910E-08 5.64477198713E-08 6.00872893305E-08 6.39614987346E-08 6.80854725114E-08 7.24753097299E-08 7.71481468915E-08 8.21222247514E-08 8.74169594514E-08 9.30530182233E-08 9.90523999782E-08 1.05438521066E-07 1.12236306571E-07 1.19472287473E-07 1.27174704062E-07 1.35373616021E-07 1.44101019571E-07 1.53390972175E-07 1.63279725244E-07 1.73805865405E-07 1.85010464839E-07 1.96937241293E-07 2.09632728387E-07 2.23146456881E-07 2.37531147581E-07 2.52842916670E-07 2.69141494230E-07 2.86490456817E-07 3.04957474989E-07 3.24614576737E-07 3.45538427863E-07 3.67810630366E-07 3.91518040008E-07 4.16753104272E-07 4.43614222060E-07 4.72206126468E-07 5.02640292162E-07 5.35035368918E-07 5.69517642991E-07 6.06221528120E-07 6.45290088040E-07 6.86875592542E-07 7.31140109205E-07 7.78256133121E-07 8.28407256994E-07 8.81788884242E-07 9.38608987820E-07 9.99088917707E-07 1.06346426015E-06 1.13198575199E-06 1.20492025362E-06 1.28255178416E-06 1.36518262310E-06 1.45313448239E-06 1.54674975355E-06 1.64639283475E-06 1.75245154264E-06 1.86533861463E-06 1.98549330718E-06 2.11338309635E-06 2.24950548700E-06 2.39438993758E-06 2.54859990802E-06 2.71273503819E-06 2.88743346558E-06 3.07337429088E-06 3.27128020075E-06 3.48192025789E-06 3.70611286900E-06 3.94472894176E-06 4.19869524289E-06 4.46899797003E-06 4.75668655081E-06 5.06287768363E-06 5.38875963511E-06 5.73559681082E-06 6.10473461595E-06 6.49760462469E-06 6.91573007721E-06 7.36073172527E-06 7.83433404790E-06 8.33837186067E-06 8.87479734287E-06 9.44568750901E-06 1.00532521520E-05 1.06998422879E-05 1.13879591326E-05 1.21202636449E-05 1.28995866693E-05 1.37289397174E-05 1.46115264261E-05 1.55507547349E-05 1.65502498274E-05 1.76138678819E-05 1.87457106829E-05 1.99501411456E-05 2.12317998084E-05 2.25956223535E-05 2.40468582172E-05 2.55910903574E-05 2.72342562464E-05 2.89826701652E-05 3.08430468756E-05 3.28225267542E-05 3.49287024748E-05 3.71696473326E-05 3.95539453069E-05 4.20907229650E-05 4.47896833173E-05 4.76611417361E-05 5.07160640613E-05 5.39661070183E-05 5.74236610826E-05 6.11018959334E-05 6.50148086428E-05 6.91772747585E-05 7.36051024434E-05 7.83150898432E-05 8.33250858658E-05 8.86540545594E-05 9.43221432894E-05 1.00350754923E-04 1.06762624236E-04 1.13581898776E-04 1.20834224413E-04 1.28546835829E-04 1.36748652203E-04 1.45470378363E-04 1.54744611685E-04 1.64605955025E-04 1.75091135986E-04 1.86239132837E-04 1.98091307394E-04 2.10691545210E-04 2.24086403394E-04 2.38325266432E-04 2.53460510349E-04 2.69547675583E-04 2.86645648952E-04 3.04816855074E-04 3.24127457634E-04 3.44647570877E-04 3.66451481701E-04 3.89617882747E-04 4.14230116843E-04 4.40376433183E-04 4.68150255587E-04 4.97650463196E-04 5.28981683902E-04 5.62254600837E-04 5.97586272156E-04 6.35100464376E-04 6.74927999434E-04 7.17207115608E-04 7.62083842388E-04 8.09712389284E-04 8.60255548515E-04 9.13885111419E-04 9.70782298308E-04 1.03113820138E-03 1.09515424023E-03 1.16304262915E-03 1.23502685564E-03 1.31134216882E-03 1.39223607675E-03 1.47796885112E-03 1.56881403756E-03 1.66505896970E-03 1.76700528457E-03 1.87496943679E-03 1.98928320849E-03 2.11029421169E-03 2.23836637904E-03 2.37388043892E-03 2.51723436983E-03 2.66884382877E-03 2.82914254771E-03 2.99858269135E-03 3.17763516899E-03 3.36678989255E-03 3.56655597165E-03 3.77746183653E-03 4.00005527794E-03 4.23490339292E-03 4.48259242397E-03 4.74372747837E-03 5.01893211348E-03 5.30884777243E-03 5.61413305409E-03 5.93546279986E-03 6.27352697868E-03 6.62902935100E-03 7.00268589103E-03 7.39522294602E-03 7.80737511022E-03 8.23988279040E-03 8.69348943943E-03 9.16893843339E-03 9.66696956812E-03 1.01883151502E-02 1.07336956583E-02 1.13038149507E-02 1.18993549963E-02 1.25209701069E-02 1.31692806514E-02 1.38448662332E-02 1.45482583173E-02 1.52799322946E-02 1.60402989778E-02 1.68296955260E-02 1.76483758025E-02 1.84965001782E-02 1.93741247978E-02 2.02811903394E-02 2.12175103046E-02 2.21827588900E-02 2.31764585026E-02 2.41979669964E-02 2.52464647213E-02 2.63209414943E-02 2.74201836174E-02 2.85427610883E-02 2.96870151678E-02 3.08510464892E-02 3.20327039148E-02 3.32295743678E-02 3.44389738874E-02 3.56579401750E-02 3.68832269223E-02 3.81113002258E-02 3.93383374108E-02 4.05602285998E-02 4.17725813697E-02 4.29707288447E-02 4.41497415718E-02 4.53044435166E-02 4.64294324997E-02 4.75191053702E-02 4.85676881741E-02 4.95692715314E-02 5.05178513710E-02 5.14073751042E-02 5.22317932247E-02 5.29851162233E-02 5.36614765860E-02 5.42551955102E-02 5.47608538270E-02 5.51733664538E-02 5.54880595295E-02 5.57007491999E-02 5.58078208337E-02 5.58063072546E-02 5.56939643912E-02 5.54693425662E-02 5.51318514831E-02 5.46818168363E-02 5.41205263655E-02 5.34502631210E-02 5.26743237041E-02 5.17970193165E-02 5.08236575941E-02 4.97605034411E-02 4.86147174150E-02 4.73942706573E-02 4.61078359306E-02 4.47646550004E-02 4.33743834014E-02 4.19469145388E-02 4.04921860910E-02 3.90199727702E-02 3.75396706471E-02 3.60600794142E-02 3.45891900917E-02 3.31339867390E-02 3.17002716287E-02 3.02925240172E-02 2.89138030073E-02 2.75657049619E-02 2.62483853985E-02 2.49606541783E-02 2.37001510211E-02 2.24636058376E-02 2.12471850382E-02 2.00469207990E-02 1.88592152576E-02 1.76814058152E-02 1.65123712343E-02 1.53534790054E-02 1.42091373659E-02 1.30843002137E-02 1.19838652172E-02 1.09126248317E-02 9.87521500578E-03 8.87606209923E-03 7.91932862964E-03 7.00885856643E-03 6.14812299118E-03 5.34016704427E-03 4.58755917552E-03 3.89234380842E-03 3.25599861110E-03 2.67939763866E-03 2.16278166673E-03 1.70573707189E-03 1.30718462474E-03 9.65379542693E-04 6.77924095086E-04 4.41793958403E-04 2.53379378009E-04 1.08541999054E-04 2.68797736748E-06 -6.91423345332E-05 -1.12168215533E-04 -1.31746464930E-04 -1.33234433002E-04 -1.21839885554E-04 -1.02460084180E-04 -7.95132276830E-05 -5.67662318911E-05 -3.70305866755E-05 -2.16869019809E-05 -1.11267307193E-05 -4.86843701971E-06 -1.68985272103E-06 -3.85521867582E-07 -3.28177578932E-08 8.67361737988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 9 2 i j (l(j)) 0.00000000000E+00 Q_int 9.77221192647E-24 1.04024654470E-23 1.10733668273E-23 1.17875376292E-23 1.25477684904E-23 1.33570300297E-23 1.42184844541E-23 1.51354979154E-23 1.61116536638E-23 1.71507660489E-23 1.82568954251E-23 1.94343640169E-23 2.06877728083E-23 2.20220195216E-23 2.34423177546E-23 2.49542173537E-23 2.65636260993E-23 2.82768327911E-23 3.01005318215E-23 3.20418493341E-23 3.41083710691E-23 3.63081720053E-23 3.86498479125E-23 4.11425489403E-23 4.37960153721E-23 4.66206156856E-23 4.96273870679E-23 5.28280785435E-23 5.62351968839E-23 5.98620554780E-23 6.37228263547E-23 6.78325955600E-23 7.22074221063E-23 7.68644007235E-23 8.18217286567E-23 8.70987767724E-23 9.27161652509E-23 9.86958441597E-23 1.05061179224E-22 1.11837043129E-22 1.19049912710E-22 1.26727972412E-22 1.34901224419E-22 1.43601605892E-22 1.52863113760E-22 1.62721937566E-22 1.73216600879E-22 1.84388111823E-22 1.96280123321E-22 2.08939103665E-22 2.22414518097E-22 2.36759022090E-22 2.52028667106E-22 2.68283119615E-22 2.85585894242E-22 3.04004601956E-22 3.23611214257E-22 3.44482344409E-22 3.66699546806E-22 3.90349635649E-22 4.15525024173E-22 4.42324085758E-22 4.70851538317E-22 5.01218853492E-22 5.33544692226E-22 5.67955368436E-22 6.04585342588E-22 6.43577747100E-22 6.85084945640E-22 7.29269128489E-22 7.76302946300E-22 8.26370184739E-22 8.79666482626E-22 9.36400096404E-22 9.96792713901E-22 1.06108032058E-21 1.12951412166E-21 1.20236152371E-21 1.27990717954E-21 1.36245410047E-21 1.45032484039E-21 1.54386275613E-21 1.64343334913E-21 1.74942569364E-21 1.86225395704E-21 1.98235901823E-21 2.11021019035E-21 2.24630705462E-21 2.39118141250E-21 2.54539936368E-21 2.70956351816E-21 2.88431535094E-21 3.07033770860E-21 3.26835747754E-21 3.47914842431E-21 3.70353421911E-21 3.94239165430E-21 4.19665407051E-21 4.46731500363E-21 4.75543206715E-21 5.06213108474E-21 5.38861048948E-21 5.73614600672E-21 6.10609563905E-21 6.49990497268E-21 6.91911282614E-21 7.36535726321E-21 7.84038199372E-21 8.34604318711E-21 8.88431672547E-21 9.45730592434E-21 1.00672497514E-20 1.07165315755E-20 1.14076884794E-20 1.21434211737E-20 1.29266045498E-20 1.37602989139E-20 1.46477619447E-20 1.55924614233E-20 1.65980887833E-20 1.76685735356E-20 1.88080986225E-20 2.00211167630E-20 2.13123678519E-20 2.26868974806E-20 2.41500766537E-20 2.57076227755E-20 2.73656219912E-20 2.91305529687E-20 3.10093122140E-20 3.30092410198E-20 3.51381541512E-20 3.74043703823E-20 3.98167450023E-20 4.23847044173E-20 4.51182829845E-20 4.80281622212E-20 5.11257125438E-20 5.44230376972E-20 5.79330220510E-20 6.16693809452E-20 6.56467142830E-20 6.98805635807E-20 7.43874726962E-20 7.91850524746E-20 8.42920495628E-20 8.97284196625E-20 9.55154055077E-20 1.01675619871E-19 1.08233133923E-19 1.15213571293E-19 1.22644208190E-19 1.30554079990E-19 1.38974094687E-19 1.47937153671E-19 1.57478280289E-19 1.67634756701E-19 1.78446269557E-19 1.89955065078E-19 2.02206114132E-19 2.15247287958E-19 2.29129545224E-19 2.43907131152E-19 2.59637789479E-19 2.76382988091E-19 2.94208159215E-19 3.13182955092E-19 3.33381520147E-19 3.54882780711E-19 3.77770753423E-19 4.02134873532E-19 4.28070344364E-19 4.55678509330E-19 4.85067247934E-19 5.16351397304E-19 5.49653200932E-19 5.85102786333E-19 6.22838673528E-19 6.63008316311E-19 7.05768678428E-19 7.51286846917E-19 7.99740685004E-19 8.51319527106E-19 9.06224918662E-19 9.64671403672E-19 1.02688736304E-18 1.09311590696E-18 1.16361582491E-18 1.23866259682E-18 1.31854946958E-18 1.40358860287E-18 1.49411228892E-18 1.59047425099E-18 1.69305102553E-18 1.80224343348E-18 1.91847814652E-18 2.04220935431E-18 2.17392053919E-18 2.31412636545E-18 2.46337469038E-18 2.62224870500E-18 2.79136921294E-18 2.97139705621E-18 3.16303569749E-18 3.36703396887E-18 3.58418899797E-18 3.81534932274E-18 4.06141820708E-18 4.32335717044E-18 4.60218974494E-18 4.89900547483E-18 5.21496417392E-18 5.55130045759E-18 5.90932856707E-18 6.29044750486E-18 6.69614650134E-18 7.12801083401E-18 7.58772802197E-18 8.07709441996E-18 8.59802223760E-18 9.15254701146E-18 9.74283555891E-18 1.03711944450E-17 1.10400789955E-17 1.17521028910E-17 1.25100483801E-17 1.33168771508E-17 1.41757419037E-17 1.50899986710E-17 1.60632199305E-17 1.70992085650E-17 1.82020127219E-17 1.93759416318E-17 2.06255824469E-17 2.19558181650E-17 2.33718467103E-17 2.48792012443E-17 2.64837717867E-17 2.81918282306E-17 3.00100448427E-17 3.19455263427E-17 3.40058356652E-17 3.61990235123E-17 3.85336598115E-17 4.10188672032E-17 4.36643566874E-17 4.64804655697E-17 4.94781978545E-17 5.26692672434E-17 5.60661429068E-17 5.96820982070E-17 6.35312625650E-17 6.76286766705E-17 7.19903512545E-17 7.66333296511E-17 8.15757543946E-17 8.68369381123E-17 9.24374389884E-17 9.83991410961E-17 1.04745339909E-16 1.11500833331E-16 1.18692018591E-16 1.26346995393E-16 1.34495675716E-16 1.43169900697E-16 1.52403565047E-16 1.62232749497E-16 1.72695861788E-16 1.83833786743E-16 1.95690046031E-16 2.08310968226E-16 2.21745869837E-16 2.36047248015E-16 2.51270985684E-16 2.67476569905E-16 2.84727324324E-16 3.03090656613E-16 3.22638321858E-16 3.43446702954E-16 3.65597109065E-16 3.89176093343E-16 4.14275791139E-16 4.40994280018E-16 4.69435963004E-16 4.99711976535E-16 5.31940624729E-16 5.66247841660E-16 6.02767683451E-16 6.41642852095E-16 6.83025253071E-16 7.27076588912E-16 7.73968991066E-16 8.23885692497E-16 8.77021743675E-16 9.33584774739E-16 9.93795806811E-16 1.05789011564E-15 1.12611815096E-15 1.19874651511E-15 1.27605900478E-15 1.35835771997E-15 1.44596424445E-15 1.53922090234E-15 1.63849209575E-15 1.74416572871E-15 1.85665472288E-15 1.97639863104E-15 2.10386535469E-15 2.23955297236E-15 2.38399168586E-15 2.53774589204E-15 2.70141638820E-15 2.87564271968E-15 3.06110567896E-15 3.25852996577E-15 3.46868701895E-15 3.69239803082E-15 3.93053715598E-15 4.18403492713E-15 4.45388189108E-15 4.74113247939E-15 5.04690912850E-15 5.37240666574E-15 5.71889697806E-15 6.08773398201E-15 6.48035891411E-15 6.89830596257E-15 7.34320826211E-15 7.81680427543E-15 8.32094458632E-15 8.85759913079E-15 9.42886489466E-15 1.00369741075E-14 1.06843029651E-14 1.13733809145E-14 1.21069005378E-14 1.28877280734E-14 1.37189146161E-14 1.46037080388E-14 1.55455656840E-14 1.65481678734E-14 1.76154322882E-14 1.87515292784E-14 1.99608981575E-14 2.12482645499E-14 2.26186588558E-14 2.40774359078E-14 2.56302958946E-14 2.72833066351E-14 2.90429272877E-14 3.09160335900E-14 3.29099447253E-14 3.50324519229E-14 3.72918489017E-14 3.96969642786E-14 4.22571960654E-14 4.49825483924E-14 4.78836705991E-14 5.09718988465E-14 5.42593004129E-14 5.77587208473E-14 6.14838341629E-14 6.54491962682E-14 6.96703018443E-14 7.41636448904E-14 7.89467831735E-14 8.40384068357E-14 8.94584114256E-14 9.52279756399E-14 1.01369644079E-13 1.07907415340E-13 1.14866835790E-13 1.22275099389E-13 1.30161153951E-13 1.38555814255E-13 1.47491882454E-13 1.57004276250E-13 1.67130165331E-13 1.77909116618E-13 1.89383248862E-13 2.01597397231E-13 2.14599288497E-13 2.28439727529E-13 2.43172795814E-13 2.58856062774E-13 2.75550810723E-13 2.93322274321E-13 3.12239895477E-13 3.32377594697E-13 3.53814059918E-13 3.76633053983E-13 4.00923741941E-13 4.26781039458E-13 4.54305983690E-13 4.83606128090E-13 5.14795962664E-13 5.47997361335E-13 5.83340058166E-13 6.20962154282E-13 6.61010657500E-13 7.03642056753E-13 7.49022933561E-13 7.97330612943E-13 8.48753856302E-13 9.03493599000E-13 9.61763735504E-13 1.02379195516E-12 1.08982063189E-12 1.16010777123E-12 1.23492801849E-12 1.31457373188E-12 1.39935612495E-12 1.48960648254E-12 1.58567745532E-12 1.68794443771E-12 1.79680703474E-12 1.91269062343E-12 2.03604801493E-12 2.16736122385E-12 2.30714335170E-12 2.45594059175E-12 2.61433436323E-12 2.78294358322E-12 2.96242708495E-12 3.15348619213E-12 3.35686745932E-12 3.57336558900E-12 3.80382653674E-12 4.04915081674E-12 4.31029702042E-12 4.58828556201E-12 4.88420266571E-12 5.19920460993E-12 5.53452224532E-12 5.89146580539E-12 6.27143002289E-12 6.67589957445E-12 7.10645490702E-12 7.56477838308E-12 8.05266086781E-12 8.57200871370E-12 9.12485124058E-12 9.71334863386E-12 1.03398003891E-11 1.10066543170E-11 1.17165160998E-11 1.24721594351E-11 1.32765369352E-11 1.41327916302E-11 1.50442692314E-11 1.60145312625E-11 1.70473689052E-11 1.81468178606E-11 1.93171740822E-11 2.05630106124E-11 2.18891954005E-11 2.33009103476E-11 2.48036715356E-11 2.64033508219E-11 2.81061987052E-11 2.99188688463E-11 3.18484439718E-11 3.39024636119E-11 3.60889534992E-11 3.84164570474E-11 4.08940685641E-11 4.35314688985E-11 4.63389632646E-11 4.93275214427E-11 5.25088205481E-11 5.58952910793E-11 5.95001649168E-11 6.33375274073E-11 6.74223722154E-11 7.17706600700E-11 7.63993809176E-11 8.13266205056E-11 8.65716307796E-11 9.21549054559E-11 9.80982598757E-11 1.04424916115E-10 1.11159593981E-10 1.18328607489E-10 1.25959967651E-10 1.34083491768E-10 1.42730920262E-10 1.51936040410E-10 1.61734818457E-10 1.72165540078E-10 1.83268959959E-10 1.95088461187E-10 2.07670224383E-10 2.21063408459E-10 2.35320342542E-10 2.50496730541E-10 2.66651868346E-10 2.83848876004E-10 3.02154944062E-10 3.21641596145E-10 3.42384967956E-10 3.64466105786E-10 3.87971281793E-10 4.12992331734E-10 4.39627013915E-10 4.67979390879E-10 4.98160235545E-10 5.30287464532E-10 5.64486598363E-10 6.00891252300E-10 6.39643657795E-10 6.80895218082E-10 7.24807100713E-10 7.71550864990E-10 8.21309134244E-10 8.74276308564E-10 9.30659323221E-10 9.90678458525E-10 1.05456819877E-09 1.12257815005E-09 1.19497401272E-09 1.27203862162E-09 1.35407304946E-09 1.44139778379E-09 1.53435397736E-09 1.63330478261E-09 1.73863676813E-09 1.85076142971E-09 1.97011679755E-09 2.09716914652E-09 2.23241481762E-09 2.37638215713E-09 2.52963357859E-09 2.69276776082E-09 2.86642198591E-09 3.05127462704E-09 3.24804779878E-09 3.45751017727E-09 3.68048000092E-09 3.91782826725E-09 4.17048213527E-09 4.43942854103E-09 4.72571805864E-09 5.03046899810E-09 5.35487177380E-09 5.70019355291E-09 6.06778320102E-09 6.45907655554E-09 6.87560202416E-09 7.31898655730E-09 7.79096199888E-09 8.29337185154E-09 8.82817846908E-09 9.39747072089E-09 1.00034721473E-08 1.06485496396E-08 1.13352226817E-08 1.20661731835E-08 1.28442559532E-08 1.36725098389E-08 1.45541695958E-08 1.54926785066E-08 1.64917018247E-08 1.75551410832E-08 1.86871493216E-08 1.98921472920E-08 2.11748407164E-08 2.25402386548E-08 2.39936730462E-08 2.55408195226E-08 2.71877195561E-08 2.89408040366E-08 3.08069183589E-08 3.27933491421E-08 3.49078526529E-08 3.71586850785E-08 3.95546347194E-08 4.21050563023E-08 4.48199074490E-08 4.77097875354E-08 5.07859790328E-08 5.40604915235E-08 5.75461085326E-08 6.12564373958E-08 6.52059623274E-08 6.94101009001E-08 7.38852641774E-08 7.86489207026E-08 8.37196646069E-08 8.91172881229E-08 9.48628587264E-08 1.00978801286E-07 1.07488985475E-07 1.14418818811E-07 1.21795345687E-07 1.29647352777E-07 1.38005481226E-07 1.46902346040E-07 1.56372663183E-07 1.66453384833E-07 1.77183843344E-07 1.88605904471E-07 2.00764130438E-07 2.13705953509E-07 2.27481860709E-07 2.42145590429E-07 2.57754341663E-07 2.74368996712E-07 2.92054358178E-07 3.10879401226E-07 3.30917542021E-07 3.52246923446E-07 3.74950719153E-07 3.99117457175E-07 4.24841364298E-07 4.52222732574E-07 4.81368309364E-07 5.12391712424E-07 5.45413871648E-07 5.80563499170E-07 6.17977589624E-07 6.57801952537E-07 7.00191778866E-07 7.45312243867E-07 7.93339148674E-07 8.44459602992E-07 8.98872751582E-07 9.56790547310E-07 1.01843857375E-06 1.08405692054E-06 1.15390111472E-06 1.22824311185E-06 1.30737235055E-06 1.39159687454E-06 1.48124452650E-06 1.57666421842E-06 1.67822728308E-06 1.78632891213E-06 1.90138968597E-06 2.02385720157E-06 2.15420780422E-06 2.29294842993E-06 2.44061856554E-06 2.59779233390E-06 2.76508071219E-06 2.94313389171E-06 3.13264378815E-06 3.33434671195E-06 3.54902620875E-06 3.77751608074E-06 4.02070360046E-06 4.27953292896E-06 4.55500875152E-06 4.84820014436E-06 5.16024468713E-06 5.49235283650E-06 5.84581257736E-06 6.22199436903E-06 6.62235640500E-06 7.04845020589E-06 7.50192656653E-06 7.98454187915E-06 8.49816485645E-06 9.04478367930E-06 9.62651359558E-06 1.02456049983E-05 1.09044520129E-05 1.16056016249E-05 1.23517633818E-05 1.31458197051E-05 1.39908368488E-05 1.48900765459E-05 1.58470083839E-05 1.68653229554E-05 1.79489458293E-05 1.91020523957E-05 2.03290836343E-05 2.16347628664E-05 2.30241135465E-05 2.45024781595E-05 2.60755382884E-05 2.77493359239E-05 2.95302960906E-05 3.14252508679E-05 3.34414648897E-05 3.55866624102E-05 3.78690560299E-05 4.02973771776E-05 4.28809084543E-05 4.56295179463E-05 4.85536956232E-05 5.16645919414E-05 5.49740587811E-05 5.84946928506E-05 6.22398816988E-05 6.62238524851E-05 7.04617236616E-05 7.49695597313E-05 7.97644292552E-05 8.48644662862E-05 9.02889354204E-05 9.60583006615E-05 1.02194298306E-04 1.08720014062E-04 1.15659964633E-04 1.23040183993E-04 1.30888314602E-04 1.39233703815E-04 1.48107505751E-04 1.57542788889E-04 1.67574649683E-04 1.78240332478E-04 1.89579356041E-04 2.01633647012E-04 2.14447680594E-04 2.28068628809E-04 2.42546516661E-04 2.57934386542E-04 2.74288471228E-04 2.91668375815E-04 3.10137268953E-04 3.29762083730E-04 3.50613728555E-04 3.72767308395E-04 3.96302356712E-04 4.21303078429E-04 4.47858604250E-04 4.76063256649E-04 5.06016827802E-04 5.37824869733E-04 5.71598996900E-04 6.07457201423E-04 6.45524181095E-04 6.85931680280E-04 7.28818843748E-04 7.74332583409E-04 8.22627957845E-04 8.73868564450E-04 9.28226943875E-04 9.85884996377E-04 1.04703440953E-03 1.11187709659E-03 1.18062564474E-03 1.25350377209E-03 1.33074679227E-03 1.41260208514E-03 1.49932957201E-03 1.59120219320E-03 1.68850638589E-03 1.79154255963E-03 1.90062556645E-03 2.01608516234E-03 2.13826645645E-03 2.26753034353E-03 2.40425391523E-03 2.54883084488E-03 2.70167173989E-03 2.86320445563E-03 3.03387436349E-03 3.21414456554E-03 3.40449604727E-03 3.60542775932E-03 3.81745661794E-03 4.04111741356E-03 4.27696261562E-03 4.52556206098E-03 4.78750251247E-03 5.06338707297E-03 5.35383443958E-03 5.65947798160E-03 5.98096462470E-03 6.31895352336E-03 6.67411450216E-03 7.04712624614E-03 7.43867421944E-03 7.84944829098E-03 8.28014004529E-03 8.73143975639E-03 9.20403300225E-03 9.69859689777E-03 1.02157959242E-02 1.07562773338E-02 1.13206661096E-02 1.19095594613E-02 1.25235208402E-02 1.31630734593E-02 1.38286933067E-02 1.45208016437E-02 1.52397569858E-02 1.59858465665E-02 1.67592772934E-02 1.75601662088E-02 1.83885304799E-02 1.92442769476E-02 2.01271912769E-02 2.10369267598E-02 2.19729928366E-02 2.29347434118E-02 2.39213650584E-02 2.49318652170E-02 2.59650605148E-02 2.70195653452E-02 2.80937808683E-02 2.91858846102E-02 3.02938208585E-02 3.14152920699E-02 3.25477515254E-02 3.36883974853E-02 3.48341691128E-02 3.59817444510E-02 3.71275407487E-02 3.82677174402E-02 3.93981820885E-02 4.05145996024E-02 4.16124050304E-02 4.26868202227E-02 4.37328746325E-02 4.47454304948E-02 4.57192125864E-02 4.66488427153E-02 4.75288790291E-02 4.83538601531E-02 4.91183540847E-02 4.98170116651E-02 5.04446243355E-02 5.09961857570E-02 5.14669567300E-02 5.18525326993E-02 5.21489129688E-02 5.23525705823E-02 5.24605216590E-02 5.24703928021E-02 5.23804850408E-02 5.21898326173E-02 5.18982548057E-02 5.15063988536E-02 5.10157720752E-02 5.04287611197E-02 4.97486364799E-02 4.89795404270E-02 4.81264567490E-02 4.71951609513E-02 4.61921499609E-02 4.51245508520E-02 4.40000086995E-02 4.28265543617E-02 4.16124537865E-02 4.03660413249E-02 3.90955404999E-02 3.78088766963E-02 3.65134872775E-02 3.52161356597E-02 3.39227368298E-02 3.26382026276E-02 3.13663157562E-02 3.01096418658E-02 2.88694890882E-02 2.76459240108E-02 2.64378521721E-02 2.52431696648E-02 2.40589902703E-02 2.28819496661E-02 2.17085846049E-02 2.05357805591E-02 1.93612761812E-02 1.81842071289E-02 1.70060243332E-02 1.58312215117E-02 1.46649622599E-02 1.35124849894E-02 1.23790589843E-02 1.12699364151E-02 1.01903005254E-02 9.14521030402E-03 8.13954205116E-03 7.17792836050E-03 6.26469515452E-03 5.40379753824E-03 4.59875536833E-03 3.85258957325E-03 3.16776040201E-03 2.54610892381E-03 1.98880324372E-03 1.49629104025E-03 1.06826016372E-03 7.03609156243E-04 4.00429661636E-04 1.56002778541E-04 -3.31885302606E-05 -1.71428834325E-04 -2.63719315349E-04 -3.15704472865E-04 -3.33574521724E-04 -3.23941738719E-04 -2.93689285402E-04 -2.49791393168E-04 -1.99104255897E-04 -1.48127546076E-04 -1.02385298491E-04 -6.50124981513E-05 -3.73807823950E-05 -1.90979185868E-05 -8.08806158605E-06 -2.40560419945E-06 -3.01826479518E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.05465828625E-23 1.12267790176E-23 1.19508440556E-23 1.27216072765E-23 1.35420804542E-23 1.44154696056E-23 1.53451875177E-23 1.63348670835E-23 1.73883754974E-23 1.85098293664E-23 1.97036107958E-23 2.09743845126E-23 2.23271160926E-23 2.37670913640E-23 2.52999370612E-23 2.69316428124E-23 2.86685845430E-23 3.05175493906E-23 3.24857622257E-23 3.45809138825E-23 3.68111912117E-23 3.91853090705E-23 4.17125443760E-23 4.44027723549E-23 4.72665051317E-23 5.03149328044E-23 5.35599671702E-23 5.70142882716E-23 6.06913939433E-23 6.46056525556E-23 6.87723591590E-23 7.32077952502E-23 7.79292923920E-23 8.29552999371E-23 8.83054571193E-23 9.40006697939E-23 1.00063192128E-22 1.06516713560E-22 1.13386451364E-22 1.20699249191E-22 1.28483681957E-22 1.36770167501E-22 1.45591085447E-22 1.54980903722E-22 1.64976313246E-22 1.75616371299E-22 1.86942654138E-22 1.98999419460E-22 2.11833779338E-22 2.25495884310E-22 2.40039119350E-22 2.55520312465E-22 2.71999956752E-22 2.89542446779E-22 3.08216330208E-22 3.28094575644E-22 3.49254857763E-22 3.71779860826E-22 3.95757601773E-22 4.21281774147E-22 4.48452114206E-22 4.77374790645E-22 5.08162819449E-22 5.40936505510E-22 5.75823912719E-22 6.12961364377E-22 6.52493975882E-22 6.94576221774E-22 7.39372539341E-22 7.87057971169E-22 8.37818849118E-22 8.91853522420E-22 9.49373132736E-22 1.01060243919E-21 1.07578069663E-21 1.14516259052E-21 1.21901923210E-21 1.29763921781E-21 1.38132975696E-21 1.47041787213E-21 1.56525167708E-21 1.66620173697E-21 1.77366251633E-21 1.88805392050E-21 2.00982293638E-21 2.13944537903E-21 2.27742775098E-21 2.42430922133E-21 2.58066373262E-21 2.74710224350E-21 2.92427511606E-21 3.11287465716E-21 3.31363782358E-21 3.52734910177E-21 3.75484357318E-21 3.99701017741E-21 4.25479518571E-21 4.52920589860E-21 4.82131458191E-21 5.13226265665E-21 5.46326515917E-21 5.81561548895E-21 6.19069046254E-21 6.58995569355E-21 7.01497131953E-21 7.46739809828E-21 7.94900389724E-21 8.46167060153E-21 9.00740146743E-21 9.58832895014E-21 1.02067230364E-20 1.08650001146E-20 1.15657324166E-20 1.23116580691E-20 1.31056917928E-20 1.39509362917E-20 1.48506943770E-20 1.58084818730E-20 1.68280413552E-20 1.79133567742E-20 1.90686690236E-20 2.02984925112E-20 2.16076327988E-20 2.30012053807E-20 2.44846556718E-20 2.60637802863E-20 2.77447496880E-20 2.95341323012E-20 3.14389201773E-20 3.34665563163E-20 3.56249637503E-20 3.79225765032E-20 4.03683725467E-20 4.29719088818E-20 4.57433588832E-20 4.86935520519E-20 5.18340163317E-20 5.51770231549E-20 5.87356353929E-20 6.25237584004E-20 6.65561943501E-20 7.08487000729E-20 7.54180486278E-20 8.02820948435E-20 8.54598450859E-20 9.09715315263E-20 9.68386911988E-20 1.03084250157E-19 1.09732613058E-19 1.16809758523E-19 1.24343340653E-19 1.32362797082E-19 1.40899464009E-19 1.49986698647E-19 1.59660009560E-19 1.69957195421E-19 1.80918492706E-19 1.92586732923E-19 2.05007509971E-19 2.18229358306E-19 2.32303942588E-19 2.47286259557E-19 2.63234852943E-19 2.80212042218E-19 2.98284166117E-19 3.17521841856E-19 3.38000241067E-19 3.59799383539E-19 3.83004449892E-19 4.07706114425E-19 4.34000899426E-19 4.61991552335E-19 4.91787447234E-19 5.23505012226E-19 5.57268184380E-19 5.93208894022E-19 6.31467580250E-19 6.72193739708E-19 7.15546510742E-19 7.61695295241E-19 8.10820420576E-19 8.63113844236E-19 9.18779903900E-19 9.78036115897E-19 1.04111402515E-18 1.10826010996E-18 1.17973674510E-18 1.25582322704E-18 1.33681686538E-18 1.42303414448E-18 1.51481196024E-18 1.61250893642E-18 1.71650682609E-18 1.82721200322E-18 1.94505705068E-18 2.07050245054E-18 2.20403838337E-18 2.34618664373E-18 2.49750267898E-18 2.65857775978E-18 2.83004129049E-18 3.01256326852E-18 3.20685690242E-18 3.41368139875E-18 3.63384492865E-18 3.86820778584E-18 4.11768574822E-18 4.38325365626E-18 4.66594922227E-18 4.96687708522E-18 5.28721312718E-18 5.62820906809E-18 5.99119735689E-18 6.37759637807E-18 6.78891599409E-18 7.22676344512E-18 7.69284962944E-18 8.18899578876E-18 8.71714062480E-18 9.27934787476E-18 9.87781437547E-18 1.05148786475E-17 1.11930300332E-17 1.19149184233E-17 1.26833646123E-17 1.35013713199E-17 1.43721349247E-17 1.52990579541E-17 1.62857623793E-17 1.73361037690E-17 1.84541863543E-17 1.96443790667E-17 2.09113326095E-17 2.22599976303E-17 2.36956440663E-17 2.52238817363E-17 2.68506822613E-17 2.85824023986E-17 3.04258088812E-17 3.23881048589E-17 3.44769580445E-17 3.67005306757E-17 3.90675114093E-17 4.15871492724E-17 4.42692898027E-17 4.71244135207E-17 5.01636768820E-17 5.33989558719E-17 5.68428924107E-17 6.05089437523E-17 6.44114350690E-17 6.85656154268E-17 7.29877173720E-17 7.76950203601E-17 8.27059182751E-17 8.80399913048E-17 9.37180824501E-17 9.97623789697E-17 1.06196499077E-16 1.13045584230E-16 1.20336397369E-16 1.28097427498E-16 1.36359001001E-16 1.45153400146E-16 1.54514989228E-16 1.64480348848E-16 1.75088418853E-16 1.86380650493E-16 1.98401168394E-16 2.11196942972E-16 2.24817973979E-16 2.39317485867E-16 2.54752135775E-16 2.71182234907E-16 2.88671984207E-16 3.07289725224E-16 3.27108207153E-16 3.48204871110E-16 3.70662152732E-16 3.94567804294E-16 4.20015237606E-16 4.47103889019E-16 4.75939607976E-16 5.06635070617E-16 5.39310220069E-16 5.74092735120E-16 6.11118529131E-16 6.50532281116E-16 6.92488001079E-16 7.37149631813E-16 7.84691689505E-16 8.35299945665E-16 8.89172153029E-16 9.46518818282E-16 1.00756402462E-15 1.07254630734E-15 1.14171958596E-15 1.21535415638E-15 1.29373774706E-15 1.37717664336E-15 1.46599688433E-15 1.56054553671E-15 1.66119205113E-15 1.76832970571E-15 1.88237714278E-15 2.00378000482E-15 2.13301267571E-15 2.27058013447E-15 2.41701992842E-15 2.57290427369E-15 2.73884229115E-15 2.91548238654E-15 3.10351478417E-15 3.30367422393E-15 3.51674283232E-15 3.74355317865E-15 3.98499152823E-15 4.24200130557E-15 4.51558678075E-15 4.80681699362E-15 5.11682993114E-15 5.44683697402E-15 5.79812763024E-15 6.17207457378E-15 6.57013900842E-15 6.99387637735E-15 7.44494244110E-15 7.92509974746E-15 8.43622451864E-15 8.98031398261E-15 9.55949417732E-15 1.01760282582E-14 1.08323253414E-14 1.15309499176E-14 1.22746318726E-14 1.30662771544E-14 1.39089791283E-14 1.48060306642E-14 1.57609370035E-14 1.67774294559E-14 1.78594799794E-14 1.90113167008E-14 2.02374404374E-14 2.15426422835E-14 2.29320223319E-14 2.44110096023E-14 2.59853832558E-14 2.76612951763E-14 2.94452940092E-14 3.13443507506E-14 3.33658859860E-14 3.55177988866E-14 3.78084980750E-14 4.02469344823E-14 4.28426363233E-14 4.56057463287E-14 4.85470613771E-14 5.16780746843E-14 5.50110207126E-14 5.85589229775E-14 6.23356449362E-14 6.63559441598E-14 7.06355299979E-14 7.51911249631E-14 8.00405300740E-14 8.52026944123E-14 9.06977891666E-14 9.65472864510E-14 1.02774043207E-13 1.09402390517E-13 1.16458228677E-13 1.23969128404E-13 1.31964438564E-13 1.40475400858E-13 1.49535271891E-13 1.59179453131E-13 1.69445629230E-13 1.80373915283E-13 1.92007013576E-13 2.04390380440E-13 2.17572403875E-13 2.31604592625E-13 2.46541777444E-13 2.62442325349E-13 2.79368367687E-13 2.97386042910E-13 3.16565755009E-13 3.36982448621E-13 3.58715901864E-13 3.81851038076E-13 4.06478257645E-13 4.32693791245E-13 4.60600075858E-13 4.90306155041E-13 5.21928105006E-13 5.55589488189E-13 5.91421836061E-13 6.29565163082E-13 6.70168513803E-13 7.13390545249E-13 7.59400146866E-13 8.08377100442E-13 8.60512782603E-13 9.16010912603E-13 9.75088348344E-13 1.03797593374E-12 1.10491940072E-12 1.17618032941E-12 1.25203717026E-12 1.33278633204E-12 1.41874334006E-12 1.51024406904E-12 1.60764605556E-12 1.71132989505E-12 1.82170072898E-12 1.93918982790E-12 2.06425627660E-12 2.19738876793E-12 2.33910751235E-12 2.48996627059E-12 2.65055451740E-12 2.82149974491E-12 3.00346991446E-12 3.19717606658E-12 3.40337509935E-12 3.62287272585E-12 3.85652662241E-12 4.10524977992E-12 4.37001407114E-12 4.65185404828E-12 4.95187098530E-12 5.27123718104E-12 5.61120053981E-12 5.97308944737E-12 6.35831796244E-12 6.76839133758E-12 7.20491191124E-12 7.66958534667E-12 8.16422733025E-12 8.69077063750E-12 9.25127269427E-12 9.84792362110E-12 1.04830547629E-11 1.11591478729E-11 1.18788446946E-11 1.26449573962E-11 1.34604794842E-11 1.43285975296E-11 1.52527036281E-11 1.62364086098E-11 1.72835562162E-11 1.83982380521E-11 1.95848096168E-11 2.08479072882E-11 2.21924664860E-11 2.36237409020E-11 2.51473230482E-11 2.67691661394E-11 2.84956073072E-11 3.03333923705E-11 3.22897022178E-11 3.43721808464E-11 3.65889652335E-11 3.89487170982E-11 4.14606567752E-11 4.41345992999E-11 4.69809926254E-11 5.00109585538E-11 5.32363361337E-11 5.66697279475E-11 6.03245492319E-11 6.42150805960E-11 6.83565235163E-11 7.27650596866E-11 7.74579146514E-11 8.24534247381E-11 8.77711087319E-11 9.34317442213E-11 9.94574487865E-11 1.05871766554E-10 1.12699759733E-10 1.19968106978E-10 1.27705207440E-10 1.35941291770E-10 1.44708540165E-10 1.54041208059E-10 1.63975760220E-10 1.74551012861E-10 1.85808285420E-10 1.97791562312E-10 2.10547663997E-10 2.24126430804E-10 2.38580917015E-10 2.53967598536E-10 2.70346593031E-10 2.87781895461E-10 3.06341627358E-10 3.26098303656E-10 3.47129115684E-10 3.69516232315E-10 3.93347121839E-10 4.18714892899E-10 4.45718658639E-10 4.74463923820E-10 5.05062996863E-10 5.37635428560E-10 5.72308479684E-10 6.09217617151E-10 6.48507044209E-10 6.90330262248E-10 7.34850672827E-10 7.82242213964E-10 8.32690040134E-10 8.86391245989E-10 9.43555635901E-10 1.00440654308E-09 1.06918170325E-09 1.13813418157E-09 1.21153336273E-09 1.28966600246E-09 1.37283734761E-09 1.46137232817E-09 1.55561682733E-09 1.65593903190E-09 1.76273087020E-09 1.87640954322E-09 1.99741915495E-09 2.12623244444E-09 2.26335263594E-09 2.40931540034E-09 2.56469095059E-09 2.73008626752E-09 2.90614746938E-09 3.09356233666E-09 3.29306299814E-09 3.50542878887E-09 3.73148929732E-09 3.97212759781E-09 4.22828370874E-09 4.50095825527E-09 4.79121638162E-09 5.10019190913E-09 5.42909176419E-09 5.77920068989E-09 6.15188626410E-09 6.54860424029E-09 6.97090422941E-09 7.42043575150E-09 7.89895467823E-09 8.40833008609E-09 8.95055155694E-09 9.52773694316E-09 1.01421406359E-08 1.07961623703E-08 1.14923565908E-08 1.22334424247E-08 1.30223142971E-08 1.38620532327E-08 1.47559388777E-08 1.57074623065E-08 1.67203396490E-08 1.77985265943E-08 1.89462338292E-08 2.01679434802E-08 2.14684265977E-08 2.28527617847E-08 2.43263550106E-08 2.58949607190E-08 2.75647042740E-08 2.93421058676E-08 3.12341059664E-08 3.32480923898E-08 3.53919291399E-08 3.76739870819E-08 4.01031766064E-08 4.26889823938E-08 4.54415004177E-08 4.83714773278E-08 5.14903523767E-08 5.48103020368E-08 5.83442875032E-08 6.21061052394E-08 6.61104407945E-08 7.03729260746E-08 7.49102003017E-08 7.97399749045E-08 8.48811025793E-08 9.03536508028E-08 9.61789800675E-08 1.02379827172E-07 1.08980393844E-07 1.16006441091E-07 1.23485389624E-07 1.31446426710E-07 1.39920619952E-07 1.48941038345E-07 1.58542881144E-07 1.68763615024E-07 1.79643120043E-07 1.91223845023E-07 2.03550972899E-07 2.16672596720E-07 2.30639906959E-07 2.45507390879E-07 2.61333044694E-07 2.78178599407E-07 2.96109761130E-07 3.15196466879E-07 3.35513156786E-07 3.57139063832E-07 3.80158522173E-07 4.04661295301E-07 4.30742925253E-07 4.58505104297E-07 4.88056070459E-07 5.19511028456E-07 5.52992597666E-07 5.88631288854E-07 6.26566011512E-07 6.66944613739E-07 7.09924456791E-07 7.55673026486E-07 8.04368583835E-07 8.56200857412E-07 9.11371780110E-07 9.70096273152E-07 1.03260308037E-06 1.09913565595E-06 1.16995310904E-06 1.24533120891E-06 1.32556345452E-06 1.41096221250E-06 1.50185992807E-06 1.59861041342E-06 1.70159021859E-06 1.81120008996E-06 1.92786652213E-06 2.05204340895E-06 2.18421380013E-06 2.32489177005E-06 2.47462440600E-06 2.63399392339E-06 2.80361991591E-06 2.98416174940E-06 3.17632110833E-06 3.38084470469E-06 3.59852715962E-06 3.83021406845E-06 4.07680526119E-06 4.33925827034E-06 4.61859201952E-06 4.91589074658E-06 5.23230817613E-06 5.56907195709E-06 5.92748838213E-06 6.30894740640E-06 6.71492798475E-06 7.14700374713E-06 7.60684903346E-06 8.09624531051E-06 8.61708799471E-06 9.17139370616E-06 9.76130798079E-06 1.03891134692E-05 1.10572386527E-05 1.17682671080E-05 1.25249473557E-05 1.33302033274E-05 1.41871454912E-05 1.50990826748E-05 1.60695346300E-05 1.71022453842E-05 1.82011974270E-05 1.93706267831E-05 2.06150390254E-05 2.19392262869E-05 2.33482853298E-05 2.48476367390E-05 2.64430453050E-05 2.81406416711E-05 2.99469453178E-05 3.18688889675E-05 3.39138444931E-05 3.60896504202E-05 3.84046411177E-05 4.08676777776E-05 4.34881812888E-05 4.62761671153E-05 4.92422822990E-05 5.23978447074E-05 5.57548846589E-05 5.93261890618E-05 6.31253482118E-05 6.71668053990E-05 7.14659094852E-05 7.60389706177E-05 8.09033192565E-05 8.60773686992E-05 9.15806812961E-05 9.74340385599E-05 1.03659515379E-04 1.10280558561E-04 1.17322069928E-04 1.24810494221E-04 1.32773912047E-04 1.41242138144E-04 1.50246825230E-04 1.59821573719E-04 1.70002047602E-04 1.80826096790E-04 1.92333886231E-04 2.04568032134E-04 2.17573745623E-04 2.31398984165E-04 2.46094611122E-04 2.61714563784E-04 2.78316030248E-04 2.95959635503E-04 3.14709637108E-04 3.34634130822E-04 3.55805266575E-04 3.78299475141E-04 4.02197705892E-04 4.27585675989E-04 4.54554131359E-04 4.83199119805E-04 5.13622276557E-04 5.45931122564E-04 5.80239375793E-04 6.16667275774E-04 6.55341921564E-04 6.96397623305E-04 7.39976267422E-04 7.86227695527E-04 8.35310096932E-04 8.87390414659E-04 9.42644764699E-04 1.00125886816E-03 1.06342849584E-03 1.12935992458E-03 1.19927040467E-03 1.27338863727E-03 1.35195526076E-03 1.43522334460E-03 1.52345888915E-03 1.61694132938E-03 1.71596404058E-03 1.82083484325E-03 1.93187650454E-03 2.04942723286E-03 2.17384116200E-03 2.30548882074E-03 2.44475758311E-03 2.59205209440E-03 2.74779466695E-03 2.91242563952E-03 3.08640369317E-03 3.27020611591E-03 3.46432900777E-03 3.66928741686E-03 3.88561539660E-03 4.11386597287E-03 4.35461100949E-03 4.60844095912E-03 4.87596448572E-03 5.15780794411E-03 5.45461470042E-03 5.76704427708E-03 6.09577130428E-03 6.44148425909E-03 6.80488397266E-03 7.18668188459E-03 7.58759802307E-03 8.00835868841E-03 8.44969381700E-03 8.91233400224E-03 9.39700714878E-03 9.90443473590E-03 1.04353276666E-02 1.09903816790E-02 1.15702722973E-02 1.21756493013E-02 1.28071306949E-02 1.34652961557E-02 1.41506799511E-02 1.48637633098E-02 1.56049662406E-02 1.63746387979E-02 1.71730517948E-02 1.80003869757E-02 1.88567266657E-02 1.97420429221E-02 2.06561862260E-02 2.15988737594E-02 2.25696773283E-02 2.35680110037E-02 2.45931185686E-02 2.56440608734E-02 2.67197032197E-02 2.78187029107E-02 2.89394971252E-02 3.00802912912E-02 3.12390481562E-02 3.24134777709E-02 3.36010286248E-02 3.47988801904E-02 3.60039371532E-02 3.72128256209E-02 3.84218916219E-02 3.96272022149E-02 4.08245495400E-02 4.20094581473E-02 4.31771959355E-02 4.43227890282E-02 4.54410408975E-02 4.65265560225E-02 4.75737683343E-02 4.85769746568E-02 4.95303732926E-02 5.04281078360E-02 5.12643162097E-02 5.20331848245E-02 5.27290076477E-02 5.33462498398E-02 5.38796154749E-02 5.43241187098E-02 5.46751575942E-02 5.49285895452E-02 5.50808073228E-02 5.51288141627E-02 5.50702965390E-02 5.49036928604E-02 5.46282562452E-02 5.42441093889E-02 5.37522894408E-02 5.31547807457E-02 5.24545333091E-02 5.16554648997E-02 5.07624448449E-02 4.97812577963E-02 4.87185460588E-02 4.75817295070E-02 4.63789026436E-02 4.51187090053E-02 4.38101938893E-02 4.24626372418E-02 4.10853695248E-02 3.96875744233E-02 3.82780833603E-02 3.68651679067E-02 3.54563372663E-02 3.40581490354E-02 3.26760423036E-02 3.13142028227E-02 2.99754703297E-02 2.86612980882E-02 2.73717742209E-02 2.61057133514E-02 2.48608253733E-02 2.36339657485E-02 2.24214685420E-02 2.12195593994E-02 2.00248408650E-02 1.88348368633E-02 1.76485769184E-02 1.64675271498E-02 1.52961847985E-02 1.41396389999E-02 1.30029760919E-02 1.18912320348E-02 1.08093417875E-02 9.76208605192E-03 8.75403589372E-03 7.78949585381E-03 6.87244627016E-03 6.00648564241E-03 5.19477398366E-03 4.43997821550E-03 3.74422077103E-03 3.10903267289E-03 2.53531244641E-03 2.02329230742E-03 1.57251312689E-03 1.18180971396E-03 8.49307971644E-04 5.72435458556E-04 3.47946829787E-04 1.71965523845E-04 4.00429038837E-05 -5.27641573230E-05 -1.11796544526E-04 -1.42676674296E-04 -1.51172870669E-04 -1.43044961336E-04 -1.23872328789E-04 -9.88663590196E-05 -7.26700320522E-05 -4.89735626084E-05 -2.98347319777E-05 -1.61241939252E-05 -7.58293746800E-06 -2.91123501558E-06 -7.71347846769E-07 -8.42174350153E-08 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 6 1 i j (l(j)) -2.81519024405E-02 Q_int -5.55669807340E-20 -5.84159607575E-20 -6.14110111103E-20 -6.45596209782E-20 -6.78696635261E-20 -7.13494155843E-20 -7.50075783455E-20 -7.88532991221E-20 -8.28961942192E-20 -8.71463729803E-20 -9.16144630661E-20 -9.63116370291E-20 -1.01249640251E-19 -1.06440820312E-19 -1.11898157865E-19 -1.17635299099E-19 -1.23666589853E-19 -1.30007111496E-19 -1.36672718635E-19 -1.43680078760E-19 -1.51046713921E-19 -1.58791044543E-19 -1.66932435486E-19 -1.75491244469E-19 -1.84488872971E-19 -1.93947819751E-19 -2.03891737103E-19 -2.14345489999E-19 -2.25335218266E-19 -2.36888401950E-19 -2.49033930027E-19 -2.61802172645E-19 -2.75225057059E-19 -2.89336147473E-19 -3.04170728962E-19 -3.19765895708E-19 -3.36160643750E-19 -3.53395968498E-19 -3.71514967240E-19 -3.90562946912E-19 -4.10587537385E-19 -4.31638810563E-19 -4.53769405596E-19 -4.77034660498E-19 -5.01492750525E-19 -5.27204833640E-19 -5.54235203444E-19 -5.82651449941E-19 -6.12524628549E-19 -6.43929437773E-19 -6.76944405994E-19 -7.11652087830E-19 -7.48139270563E-19 -7.86497191154E-19 -8.26821764384E-19 -8.69213822691E-19 -9.13779368300E-19 -9.60629838287E-19 -1.00988238323E-18 -1.06166016015E-18 -1.11609264045E-18 -1.17331593369E-18 -1.23347312790E-18 -1.29671464740E-18 -1.36319862894E-18 -1.43309131710E-18 -1.50656747999E-18 -1.58381084631E-18 -1.66501456469E-18 -1.75038168673E-18 -1.84012567469E-18 -1.93447093530E-18 -2.03365338085E-18 -2.13792101909E-18 -2.24753457346E-18 -2.36276813491E-18 -2.48390984737E-18 -2.61126262823E-18 -2.74514492576E-18 -2.88589151544E-18 -3.03385433706E-18 -3.18940337474E-18 -3.35292758209E-18 -3.52483585479E-18 -3.70555805307E-18 -3.89554607656E-18 -4.09527499427E-18 -4.30524423251E-18 -4.52597882375E-18 -4.75803071944E-18 -5.00198017017E-18 -5.25843717664E-18 -5.52804301493E-18 -5.81147184006E-18 -6.10943237173E-18 -6.42266966643E-18 -6.75196698057E-18 -7.09814772893E-18 -7.46207754370E-18 -7.84466643895E-18 -8.24687108620E-18 -8.66969720654E-18 -9.11420208549E-18 -9.58149721677E-18 -1.00727510816E-17 -1.05891920705E-17 -1.11321115549E-17 -1.17028671162E-17 -1.23028859408E-17 -1.29336683881E-17 -1.35967917427E-17 -1.42939141585E-17 -1.50267788045E-17 -1.57972182241E-17 -1.66071589170E-17 -1.74586261569E-17 -1.83537490552E-17 -1.92947658855E-17 -2.02840296799E-17 -2.13240141131E-17 -2.24173196878E-17 -2.35666802374E-17 -2.47749697618E-17 -2.60452096142E-17 -2.73805760557E-17 -2.87844081978E-17 -3.02602163521E-17 -3.18116908075E-17 -3.34427110582E-17 -3.51573555043E-17 -3.69599116497E-17 -3.88548868237E-17 -4.08470194511E-17 -4.29412909008E-17 -4.51429379423E-17 -4.74574658396E-17 -4.98906621178E-17 -5.24486110349E-17 -5.51377087952E-17 -5.79646795436E-17 -6.09365921790E-17 -6.40608780308E-17 -6.73453494407E-17 -7.07982192974E-17 -7.44281215739E-17 -7.82441329161E-17 -8.22557953394E-17 -8.64731400892E-17 -9.09067127233E-17 -9.55675994822E-17 -1.00467455010E-16 -1.05618531497E-16 -1.11033709316E-16 -1.16726529232E-16 -1.22711226260E-16 -1.29002765257E-16 -1.35616878348E-16 -1.42570104260E-16 -1.49879829678E-16 -1.57564332721E-16 -1.65642828649E-16 -1.74135517907E-16 -1.83063636642E-16 -1.92449509798E-16 -2.02316606946E-16 -2.12689600965E-16 -2.23594429742E-16 -2.35058361027E-16 -2.47110060617E-16 -2.59779664035E-16 -2.73098851886E-16 -2.87100929075E-16 -3.01820908084E-16 -3.17295596525E-16 -3.33563689175E-16 -3.50665864735E-16 -3.68644887549E-16 -3.87545714532E-16 -4.07415607592E-16 -4.28304251807E-16 -4.50263879659E-16 -4.73349401652E-16 -4.97618543608E-16 -5.23131991014E-16 -5.49953540771E-16 -5.78150260715E-16 -6.07792657323E-16 -6.38954852016E-16 -6.71714766502E-16 -7.06154317619E-16 -7.42359622170E-16 -7.80421212261E-16 -8.20434261679E-16 -8.62498823871E-16 -9.06720082137E-16 -9.53208612637E-16 -1.00208066089E-15 -1.05345843246E-15 -1.10747039850E-15 -1.16425161704E-15 -1.22394407068E-15 -1.28669702161E-15 -1.35266738486E-15 -1.42202012068E-15 -1.49492864698E-15 -1.57157527302E-15 -1.65215165524E-15 -1.73685927653E-15 -1.82590995001E-15 -1.91952634870E-15 -2.01794256229E-15 -2.12140468252E-15 -2.23017141852E-15 -2.34451474370E-15 -2.46472057586E-15 -2.59108949210E-15 -2.72393748046E-15 -2.86359673000E-15 -3.01041646148E-15 -3.16476380060E-15 -3.32702469597E-15 -3.49760488422E-15 -3.67693090452E-15 -3.86545116519E-15 -4.06363706490E-15 -4.27198417145E-15 -4.49101346095E-15 -4.72127262049E-15 -4.96333741769E-15 -5.21781314038E-15 -5.48533611017E-15 -5.76657527354E-15 -6.06223387459E-15 -6.37305121349E-15 -6.69980449515E-15 -7.04331077259E-15 -7.40442899002E-15 -7.78406213063E-15 -8.18315947456E-15 -8.60271897252E-15 -9.04378974126E-15 -9.50747468685E-15 -9.99493326253E-15 -1.05073843680E-14 -1.10461093971E-14 -1.16124554423E-14 -1.22078386628E-14 -1.28337478259E-14 -1.34917480295E-14 -1.41834846157E-14 -1.49106872852E-14 -1.56751744222E-14 -1.64788576413E-14 -1.73237465678E-14 -1.82119538625E-14 -1.91457005046E-14 -2.01273213453E-14 -2.11592709459E-14 -2.22441297158E-14 -2.33846103649E-14 -2.45835646862E-14 -2.58439906875E-14 -2.71690400874E-14 -2.85620261964E-14 -3.00264322023E-14 -3.15659198790E-14 -3.31843387439E-14 -3.48857356829E-14 -3.66743650701E-14 -3.85546994058E-14 -4.05314405000E-14 -4.26095312295E-14 -4.47941678974E-14 -4.70908132269E-14 -4.95052100204E-14 -5.20433955200E-14 -5.47117165033E-14 -5.75168451538E-14 -6.04657957447E-14 -6.35659421783E-14 -6.68250364245E-14 -7.02512279045E-14 -7.38530838689E-14 -7.76396108197E-14 -8.16202770318E-14 -8.58050362281E-14 -9.02043524690E-14 -9.48292263179E-14 -9.96912223483E-14 -1.04802498061E-13 -1.10175834284E-13 -1.15824667132E-13 -1.21763121603E-13 -1.28006046895E-13 -1.34569053543E-13 -1.41468552447E-13 -1.48721795913E-13 -1.56346920787E-13 -1.64362993810E-13 -1.72790059295E-13 -1.81649189245E-13 -1.90962536047E-13 -2.00753387860E-13 -2.11046226852E-13 -2.21866790415E-13 -2.33242135523E-13 -2.45200706384E-13 -2.57772405573E-13 -2.70988668794E-13 -2.84882543493E-13 -2.99488771488E-13 -3.14843875844E-13 -3.30986252200E-13 -3.47956264772E-13 -3.65796347290E-13 -3.84551109099E-13 -4.04267446710E-13 -4.24994661058E-13 -4.46784580784E-13 -4.69691691833E-13 -4.93773273691E-13 -5.19089542618E-13 -5.45703802214E-13 -5.73682601713E-13 -6.03095902389E-13 -6.34017252489E-13 -6.66523971149E-13 -7.00697341720E-13 -7.36622815027E-13 -7.74390223027E-13 -8.14094003445E-13 -8.55833435904E-13 -8.99712890182E-13 -9.45842087182E-13 -9.94336373289E-13 -1.04531700879E-12 -1.09891147111E-12 -1.15525377350E-12 -1.21448480022E-12 -1.27675265877E-12 -1.34221305023E-12 -1.41102965861E-12 -1.48337456011E-12 -1.55942865343E-12 -1.63938211207E-12 -1.72343485987E-12 -1.81179707093E-12 -1.90468969513E-12 -2.00234501058E-12 -2.10500720450E-12 -2.21293298374E-12 -2.32639221669E-12 -2.44566860808E-12 -2.57106040839E-12 -2.70288115959E-12 -2.84146047915E-12 -2.98714488426E-12 -3.14029865825E-12 -3.30130476149E-12 -3.47056578897E-12 -3.64850497696E-12 -3.83556726131E-12 -4.03222039000E-12 -4.23895609269E-12 -4.45629131031E-12 -4.68476948761E-12 -4.92496193206E-12 -5.17746924235E-12 -5.44292281015E-12 -5.72198639889E-12 -6.01535780348E-12 -6.32377059505E-12 -6.64799595526E-12 -6.98884460459E-12 -7.34716882945E-12 -7.72386461332E-12 -8.11987387707E-12 -8.53618683417E-12 -8.97384446668E-12 -9.43394112810E-12 -9.91762727976E-12 -1.04261123674E-11 -1.09606678455E-11 -1.15226303561E-11 -1.21134050712E-11 -1.27344692063E-11 -1.33873757138E-11 -1.40737571664E-11 -1.47953298388E-11 -1.55538979992E-11 -1.63513584210E-11 -1.71897051250E-11 -1.80710343653E-11 -1.89975498714E-11 -1.99715683573E-11 -2.09955253152E-11 -2.20719811045E-11 -2.32036273537E-11 -2.43932936911E-11 -2.56439548189E-11 -2.69587379518E-11 -2.83409306362E-11 -2.97939889696E-11 -3.13215462425E-11 -3.29274220229E-11 -3.46156317066E-11 -3.63903965565E-11 -3.82561542580E-11 -4.02175700138E-11 -4.22795482094E-11 -4.44472446745E-11 -4.67260795751E-11 -4.91217509654E-11 -5.16402490341E-11 -5.42878710824E-11 -5.70712372688E-11 -5.99973071612E-11 -6.30733971380E-11 -6.63071986810E-11 -6.97067976062E-11 -7.32806942805E-11 -7.70378248744E-11 -8.09875837053E-11 -8.51398467251E-11 -8.95049962124E-11 -9.40939467307E-11 -9.89181724174E-11 -1.03989735671E-10 -1.09321317310E-10 -1.14926248278E-10 -1.20818542972E-10 -1.27012934282E-10 -1.33524910426E-10 -1.40370753672E-10 -1.47567581048E-10 -1.55133387135E-10 -1.63087089056E-10 -1.71448573773E-10 -1.80238747805E-10 -1.89479589497E-10 -1.99194203969E-10 -2.09406880878E-10 -2.20143155147E-10 -2.31429870800E-10 -2.43295248079E-10 -2.55768953991E-10 -2.68882176477E-10 -2.82667702383E-10 -2.97159999428E-10 -3.12395302370E-10 -3.28411703596E-10 -3.45249248347E-10 -3.62950034832E-10 -3.81558319469E-10 -4.01120627523E-10 -4.21685869414E-10 -4.43305462987E-10 -4.66033462051E-10 -4.89926691505E-10 -5.15044889391E-10 -5.41450856225E-10 -5.69210611993E-10 -5.98393561177E-10 -6.29072666258E-10 -6.61324630098E-10 -6.95230087678E-10 -7.30873807663E-10 -7.68344904293E-10 -8.07737060139E-10 -8.49148760281E-10 -8.92683538475E-10 -9.38450235950E-10 -9.86563273465E-10 -1.03714293730E-09 -1.09031567994E-09 -1.14621443610E-09 -1.20497895502E-09 -1.26675614978E-09 -1.33170046444E-09 -1.39997426010E-09 -1.47174822069E-09 -1.54720177957E-09 -1.62652356795E-09 -1.70991188640E-09 -1.79757520037E-09 -1.88973266127E-09 -1.98661465407E-09 -2.08846337318E-09 -2.19553342761E-09 -2.30809247732E-09 -2.42642190209E-09 -2.55081750469E-09 -2.68159025007E-09 -2.81906704244E-09 -2.96359154215E-09 -3.11552502446E-09 -3.27524728229E-09 -3.44315757520E-09 -3.61967562702E-09 -3.80524267465E-09 -4.00032257044E-09 -4.20540294126E-09 -4.42099640674E-09 -4.64764186011E-09 -4.88590581450E-09 -5.13638381836E-09 -5.39970194324E-09 -5.67651834794E-09 -5.96752492264E-09 -6.27344901740E-09 -6.59505525905E-09 -6.93314746128E-09 -7.28857063248E-09 -7.66221308650E-09 -8.05500866142E-09 -8.46793905210E-09 -8.90203626206E-09 -9.35838518104E-09 -9.83812629452E-09 -1.03424585320E-08 -1.08726422612E-08 -1.14300024354E-08 -1.20159319024E-08 -1.26318948823E-08 -1.32794306241E-08 -1.39601572485E-08 -1.46757757888E-08 -1.54280744374E-08 -1.62189330106E-08 -1.70503276417E-08 -1.79243357143E-08 -1.88431410479E-08 -1.98090393497E-08 -2.08244439450E-08 -2.18918918004E-08 -2.30140498566E-08 -2.41937216841E-08 -2.54338544801E-08 -2.67375464234E-08 -2.81080544059E-08 -2.95488021595E-08 -3.10633887984E-08 -3.26555978000E-08 -3.43294064433E-08 -3.60889957319E-08 -3.79387608237E-08 -3.98833219947E-08 -4.19275361630E-08 -4.40765090030E-08 -4.63356076788E-08 -4.87104742290E-08 -5.12070396357E-08 -5.38315386138E-08 -5.65905251555E-08 -5.94908888707E-08 -6.25398721615E-08 -6.57450882766E-08 -6.91145402868E-08 -7.26566410316E-08 -7.63802340854E-08 -8.02946157943E-08 -8.44095584402E-08 -8.87353345883E-08 -9.32827426779E-08 -9.80631339222E-08 -1.03088440581E-07 -1.08371205677E-07 -1.13924614236E-07 -1.19762526109E-07 -1.25899510490E-07 -1.32350882176E-07 -1.39132739694E-07 -1.46262005367E-07 -1.53756467427E-07 -1.61634824275E-07 -1.69916731007E-07 -1.78622848305E-07 -1.87774893828E-07 -1.97395696225E-07 -2.07509251902E-07 -2.18140784681E-07 -2.29316808511E-07 -2.41065193365E-07 -2.53415234504E-07 -2.66397725269E-07 -2.80045033586E-07 -2.94391182367E-07 -3.09471934005E-07 -3.25324879182E-07 -3.41989530190E-07 -3.59507419014E-07 -3.77922200402E-07 -3.97279760188E-07 -4.17628329122E-07 -4.39018602501E-07 -4.61503865880E-07 -4.85140127180E-07 -5.09986255518E-07 -5.36104127093E-07 -5.63558778487E-07 -5.92418567764E-07 -6.22755343752E-07 -6.54644623923E-07 -6.88165781313E-07 -7.23402240927E-07 -7.60441686124E-07 -7.99376275468E-07 -8.40302870589E-07 -8.83323275595E-07 -9.28544488640E-07 -9.76078966224E-07 -1.02604490091E-06 -1.07856651310E-06 -1.13377435760E-06 -1.19180564570E-06 -1.25280458354E-06 -1.31692272765E-06 -1.38431935845E-06 -1.45516187257E-06 -1.52962619515E-06 -1.60789721282E-06 -1.69016922866E-06 -1.77664644005E-06 -1.86754344072E-06 -1.96308574806E-06 -2.06351035708E-06 -2.16906632220E-06 -2.28001536850E-06 -2.39663253360E-06 -2.51920684197E-06 -2.64804201306E-06 -2.78345720518E-06 -2.92578779661E-06 -3.07538620606E-06 -3.23262275430E-06 -3.39788656900E-06 -3.57158653498E-06 -3.75415229204E-06 -3.94603528286E-06 -4.14770985326E-06 -4.35967440759E-06 -4.58245262180E-06 -4.81659471718E-06 -5.06267879766E-06 -5.32131225388E-06 -5.59313323715E-06 -5.87881220696E-06 -6.17905355541E-06 -6.49459731254E-06 -6.82622093632E-06 -7.17474119154E-06 -7.54101612193E-06 -7.92594712002E-06 -8.33048109948E-06 -8.75561277495E-06 -9.20238705451E-06 -9.67190155029E-06 -1.01653092129E-05 -1.06838210958E-05 -1.12287092551E-05 -1.18013097931E-05 -1.24030260498E-05 -1.30353319519E-05 -1.36997755260E-05 -1.43979825824E-05 -1.51316605802E-05 -1.59026026802E-05 -1.67126919955E-05 -1.75639060487E-05 -1.84583214455E-05 -1.93981187754E-05 -2.03855877491E-05 -2.14231325843E-05 -2.25132776519E-05 -2.36586733933E-05 -2.48621025230E-05 -2.61264865283E-05 -2.74548924805E-05 -2.88505401715E-05 -3.03168095913E-05 -3.18572487606E-05 -3.34755819357E-05 -3.51757182029E-05 -3.69617604775E-05 -3.88380149286E-05 -4.08090008464E-05 -4.28794609727E-05 -4.50543723139E-05 -4.73389574593E-05 -4.97386964253E-05 -5.22593390486E-05 -5.49069179525E-05 -5.76877621102E-05 -6.06085110314E-05 -6.36761295970E-05 -6.68979235705E-05 -7.02815558138E-05 -7.38350632360E-05 -7.75668745058E-05 -8.14858285580E-05 -8.56011939268E-05 -8.99226889372E-05 -9.44605027903E-05 -9.92253175758E-05 -1.04228331248E-04 -1.09481281603E-04 -1.14996471291E-04 -1.20786793907E-04 -1.26865761197E-04 -1.33247531414E-04 -1.39946938884E-04 -1.46979524790E-04 -1.54361569255E-04 -1.62110124732E-04 -1.70243050771E-04 -1.78779050189E-04 -1.87737706694E-04 -1.97139524006E-04 -2.07005966516E-04 -2.17359501534E-04 -2.28223643154E-04 -2.39622997800E-04 -2.51583311472E-04 -2.64131518747E-04 -2.77295793569E-04 -2.91105601868E-04 -3.05591756033E-04 -3.20786471286E-04 -3.36723423977E-04 -3.53437811826E-04 -3.70966416135E-04 -3.89347665993E-04 -4.08621704476E-04 -4.28830456858E-04 -4.50017700822E-04 -4.72229138678E-04 -4.95512471557E-04 -5.19917475562E-04 -5.45496079850E-04 -5.72302446573E-04 -6.00393052651E-04 -6.29826773280E-04 -6.60664967087E-04 -6.92971562851E-04 -7.26813147632E-04 -7.62259056190E-04 -7.99381461524E-04 -8.38255466327E-04 -8.78959195163E-04 -9.21573887109E-04 -9.66183988591E-04 -1.01287724611E-03 -1.06174479851E-03 -1.11288126841E-03 -1.16638485239E-03 -1.22235740943E-03 -1.28090454713E-03 -1.34213570510E-03 -1.40616423492E-03 -1.47310747604E-03 -1.54308682675E-03 -1.61622780950E-03 -1.69266012977E-03 -1.77251772727E-03 -1.85593881874E-03 -1.94306593102E-03 -2.03404592325E-03 -2.12902999690E-03 -2.22817369221E-03 -2.33163686957E-03 -2.43958367414E-03 -2.55218248207E-03 -2.66960582647E-03 -2.79203030110E-03 -2.91963643973E-03 -3.05260856906E-03 -3.19113463258E-03 -3.33540598328E-03 -3.48561714219E-03 -3.64196552039E-03 -3.80465110128E-03 -3.97387608039E-03 -4.14984445936E-03 -4.33276159102E-03 -4.52283367207E-03 -4.72026717994E-03 -4.92526825029E-03 -5.13804199139E-03 -5.35879173178E-03 -5.58771819741E-03 -5.82501861437E-03 -6.07088573366E-03 -6.32550677401E-03 -6.58906227934E-03 -6.86172488705E-03 -7.14365800402E-03 -7.43501438700E-03 -7.73593462451E-03 -8.04654551779E-03 -8.36695835867E-03 -8.69726710258E-03 -9.03754643589E-03 -9.38784973702E-03 -9.74820693181E-03 -1.01186222445E-02 -1.04990718464E-02 -1.08895014064E-02 -1.12898235469E-02 -1.16999152125E-02 -1.21196149582E-02 -1.25487201676E-02 -1.29869842112E-02 -1.34341135591E-02 -1.38897648628E-02 -1.43535420254E-02 -1.48249932786E-02 -1.53036082914E-02 -1.57888153356E-02 -1.62799785358E-02 -1.67763952388E-02 -1.72772935332E-02 -1.77818299607E-02 -1.82890874587E-02 -1.87980735785E-02 -1.93077190276E-02 -1.98168765853E-02 -2.03243204451E-02 -2.08287460405E-02 -2.13287704098E-02 -2.18229331611E-02 -2.23096980970E-02 -2.27874555602E-02 -2.32545255602E-02 -2.37091617413E-02 -2.41495562474E-02 -2.45738455400E-02 -2.49801172155E-02 -2.53664178670E-02 -2.57307620258E-02 -2.60711422079E-02 -2.63855400813E-02 -2.66719387574E-02 -2.69283361923E-02 -2.71527596709E-02 -2.73432813246E-02 -2.74980346160E-02 -2.76152316986E-02 -2.76931815377E-02 -2.77303086531E-02 -2.77251723160E-02 -2.76764860069E-02 -2.75831369129E-02 -2.74442052142E-02 -2.72589828860E-02 -2.70269917121E-02 -2.67480001882E-02 -2.64220389710E-02 -2.60494145136E-02 -2.56307205199E-02 -2.51668468436E-02 -2.46589854653E-02 -2.41086331895E-02 -2.35175907298E-02 -2.28879578789E-02 -2.22221245088E-02 -2.15227572008E-02 -2.07927813754E-02 -2.00353588771E-02 -1.92538610615E-02 -1.84518375462E-02 -1.76329809037E-02 -1.68010877094E-02 -1.59600164964E-02 -1.51136433166E-02 -1.42658157586E-02 -1.34203064230E-02 -1.25807670017E-02 -1.17506842461E-02 -1.09333392305E-02 -1.01317714240E-02 -9.34874915549E-03 -8.58674810536E-03 -7.84793945932E-03 -7.13418931696E-03 -6.44707085166E-03 -5.78789055965E-03 -5.15772970984E-03 -4.55750180439E-03 -3.98802647791E-03 -3.45011979402E-03 -2.94470033892E-03 -2.47290985881E-03 -2.03624644142E-03 -1.63670740359E-03 -1.27693812229E-03 -9.60382046546E-04 -6.91426069127E-04 -4.73830455663E-04 -3.05082718306E-04 -1.80417469754E-04 -9.43429628918E-05 -4.06252068763E-05 -1.22785825449E-05 -1.56452129246E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 7 2 i j (l(j)) 0.00000000000E+00 Q_int 1.48649999505E-23 1.58237100791E-23 1.68442516987E-23 1.79306125979E-23 1.90870377554E-23 2.03180459278E-23 2.16284473061E-23 2.30233623123E-23 2.45082416071E-23 2.60888873886E-23 2.77714760644E-23 2.95625823865E-23 3.14692051417E-23 3.34987944999E-23 3.56592811255E-23 3.79591071670E-23 4.04072592447E-23 4.30133035660E-23 4.57874233057E-23 4.87404583970E-23 5.18839478886E-23 5.52301750341E-23 5.87922152888E-23 6.25839874023E-23 6.66203078067E-23 7.09169485115E-23 7.54906987337E-23 8.03594305017E-23 8.55421684907E-23 9.10591643620E-23 9.69319758969E-23 1.03183551234E-22 1.09838318540E-22 1.16922281462E-22 1.24463120740E-22 1.32490302367E-22 1.41035192730E-22 1.50131181173E-22 1.59813810469E-22 1.70120915703E-22 1.81092772111E-22 1.92772252462E-22 2.05204994578E-22 2.18439579670E-22 2.32527722167E-22 2.47524471791E-22 2.63488428667E-22 2.80481972304E-22 2.98571505343E-22 3.17827713028E-22 3.38325839407E-22 3.60145981357E-22 3.83373401554E-22 4.08098861650E-22 4.34418976915E-22 4.62436593773E-22 4.92261191671E-22 5.24009310872E-22 5.57805007842E-22 5.93780340002E-22 6.32075881744E-22 6.72841273730E-22 7.16235807613E-22 7.62429048480E-22 8.11601497421E-22 8.63945296850E-22 9.19664981301E-22 9.78978276651E-22 1.04211695089E-21 1.10932771976E-21 1.18087321080E-21 1.25703298958E-21 1.33810465208E-21 1.42440498758E-21 1.51627121652E-21 1.61406230820E-21 1.71816038341E-21 1.82897220766E-21 1.94693078056E-21 2.07249702779E-21 2.20616160219E-21 2.34844680099E-21 2.49990860670E-21 2.66113885962E-21 2.83276757045E-21 3.01546538213E-21 3.20994619031E-21 3.41696993298E-21 3.63734555991E-21 3.87193419367E-21 4.12165249442E-21 4.38747624185E-21 4.67044414804E-21 4.97166191623E-21 5.29230656139E-21 5.63363100944E-21 5.99696899308E-21 6.38374026337E-21 6.79545613745E-21 7.23372540406E-21 7.70026060987E-21 8.19688475133E-21 8.72553839808E-21 9.28828727572E-21 9.88733033772E-21 1.05250083579E-20 1.12038130769E-20 1.19263969389E-20 1.26955834562E-20 1.35143782416E-20 1.43859807537E-20 1.53137967982E-20 1.63014518364E-20 1.73528051519E-20 1.84719649306E-20 1.96633043137E-20 2.09314784856E-20 2.22814428645E-20 2.37184724655E-20 2.52481825131E-20 2.68765503824E-20 2.86099389564E-20 3.04551214885E-20 3.24193080695E-20 3.45101738012E-20 3.67358887869E-20 3.91051500563E-20 4.16272155492E-20 4.43119402913E-20 4.71698149029E-20 5.02120065911E-20 5.34504027861E-20 5.68976575913E-20 6.05672412298E-20 6.44734926794E-20 6.86316757025E-20 7.30580384896E-20 7.77698771494E-20 8.27856032939E-20 8.81248159819E-20 9.38083783030E-20 9.98584989006E-20 1.06298818752E-19 1.13154503547E-19 1.20452342024E-19 1.28220850644E-19 1.36490385023E-19 1.45293258548E-19 1.54663868636E-19 1.64638831152E-19 1.75257123477E-19 1.86560236820E-19 1.98592338341E-19 2.11400443739E-19 2.25034600963E-19 2.39548085779E-19 2.54997609945E-19 2.71443542811E-19 2.88950147218E-19 3.07585830602E-19 3.27423412301E-19 3.48540408097E-19 3.71019333109E-19 3.94948024224E-19 4.20419983324E-19 4.47534742642E-19 4.76398253688E-19 5.07123301259E-19 5.39829944145E-19 5.74645984265E-19 6.11707466050E-19 6.51159208046E-19 6.93155368792E-19 7.37860049197E-19 7.85447933772E-19 8.36104973208E-19 8.90029110988E-19 9.47431056850E-19 1.00853511014E-18 1.07358003629E-18 1.14281999974E-18 1.21652555716E-18 1.29498471462E-18 1.37850405297E-18 1.46740992585E-18 1.56204973488E-18 1.66279328718E-18 1.77003424036E-18 1.88419164076E-18 2.00571156093E-18 2.13506884257E-18 2.27276895208E-18 2.41934995562E-18 2.57538462165E-18 2.74148265901E-18 2.91829309938E-18 3.10650683341E-18 3.30685931034E-18 3.52013341183E-18 3.74716251105E-18 3.98883372913E-18 4.24609140162E-18 4.51994076844E-18 4.81145190194E-18 5.12176388820E-18 5.45208927803E-18 5.80371882508E-18 6.17802652942E-18 6.57647500653E-18 7.00062120247E-18 7.45212247772E-18 7.93274308330E-18 8.44436105465E-18 8.98897555009E-18 9.56871466258E-18 1.01858437353E-17 1.08427742134E-17 1.15420730671E-17 1.22864728217E-17 1.30788822355E-17 1.39223976655E-17 1.48203151663E-17 1.57761433703E-17 1.67936171967E-17 1.78767124467E-17 1.90296613384E-17 2.02569690445E-17 2.15634312966E-17 2.29541531243E-17 2.44345688031E-17 2.60104630895E-17 2.76879938245E-17 2.94737159959E-17 3.13746073517E-17 3.33980956660E-17 3.55520877633E-17 3.78450004144E-17 4.02857932251E-17 4.28840036463E-17 4.56497842413E-17 4.85939423578E-17 5.17279823573E-17 5.50641505691E-17 5.86154831425E-17 6.23958569867E-17 6.64200439941E-17 7.07037687625E-17 7.52637700393E-17 8.01178661281E-17 8.52850245144E-17 9.07854359814E-17 9.66405935059E-17 1.02873376242E-16 1.09508138924E-16 1.16570807031E-16 1.24088978089E-16 1.32092029516E-16 1.40611233408E-16 1.49679878738E-16 1.59333401434E-16 1.69609522844E-16 1.80548397135E-16 1.92192768194E-16 2.04588136653E-16 2.17782937682E-16 2.31828730250E-16 2.46780398595E-16 2.62696366684E-16 2.79638826506E-16 2.97673981088E-16 3.16872303185E-16 3.37308810656E-16 3.59063359593E-16 3.82220956366E-16 4.06872089784E-16 4.33113084681E-16 4.61046478311E-16 4.90781421010E-16 5.22434102708E-16 5.56128206940E-16 5.91995394144E-16 6.30175816125E-16 6.70818663703E-16 7.14082749681E-16 7.60137129404E-16 8.09161761352E-16 8.61348210326E-16 9.16900395998E-16 9.76035389728E-16 1.03898426277E-15 1.10599298920E-15 1.17732340706E-15 1.25325424148E-15 1.33408219382E-15 1.42012310105E-15 1.51171316984E-15 1.60921029037E-15 1.71299543471E-15 1.82347414554E-15 1.94107812079E-15 2.06626690050E-15 2.19952966251E-15 2.34138713391E-15 2.49239362579E-15 2.65313919926E-15 2.82425197108E-15 3.00640056804E-15 3.20029673968E-15 3.40669813941E-15 3.62641128512E-15 3.86029471060E-15 4.10926232030E-15 4.37428696046E-15 4.65640422049E-15 4.95671647959E-15 5.27639721429E-15 5.61669558384E-15 5.97894131134E-15 6.36454987965E-15 6.77502806243E-15 7.21197981185E-15 7.67711252614E-15 8.17224372119E-15 8.69930813263E-15 9.26036527577E-15 9.85760749323E-15 1.04933685216E-14 1.11701326104E-14 1.18905442296E-14 1.26574184029E-14 1.34737517070E-14 1.43427339816E-14 1.52677607930E-14 1.62524467031E-14 1.73006393925E-14 1.84164346962E-14 1.96041926075E-14 2.08685543154E-14 2.22144603396E-14 2.36471698359E-14 2.51722811465E-14 2.67957536755E-14 2.85239311756E-14 3.03635665361E-14 3.23218481704E-14 3.44064281045E-14 3.66254518774E-14 3.89875903705E-14 4.15020736885E-14 4.41787272268E-14 4.70280100640E-14 5.00610558313E-14 5.32897162171E-14 5.67266072781E-14 6.03851587362E-14 6.42796664558E-14 6.84253483051E-14 7.28384036202E-14 7.75360765043E-14 8.25367232093E-14 8.78598838632E-14 9.35263588238E-14 9.95582899560E-14 1.05979247152E-13 1.12814320431E-13 1.20090217977E-13 1.27835370508E-13 1.36080042359E-13 1.44856449750E-13 1.54198886668E-13 1.64143858868E-13 1.74730226527E-13 1.85999356084E-13 1.97995281884E-13 2.10764878242E-13 2.24358042606E-13 2.38827890528E-13 2.54230963221E-13 2.70627448490E-13 2.88081415916E-13 3.06661067213E-13 3.26439002725E-13 3.47492505111E-13 3.69903841334E-13 3.93760584115E-13 4.19155954125E-13 4.46189184252E-13 4.74965907349E-13 5.05598568999E-13 5.38206866895E-13 5.72918218567E-13 6.09868259259E-13 6.49201371933E-13 6.91071251446E-13 7.35641505113E-13 7.83086292003E-13 8.33591003477E-13 8.87352987597E-13 9.44582320272E-13 1.00550262613E-12 1.07035195234E-12 1.13938369878E-12 1.21286760820E-12 1.29109082023E-12 1.37435899342E-12 1.46299749958E-12 1.55735269517E-12 1.65779327470E-12 1.76471171140E-12 1.87852579084E-12 1.99968024339E-12 2.12864848205E-12 2.26593445229E-12 2.41207460123E-12 2.56763997382E-12 2.73323844419E-12 2.90951709094E-12 3.09716472557E-12 3.29691458408E-12 3.50954719205E-12 3.73589341455E-12 3.97683770276E-12 4.23332154999E-12 4.50634717054E-12 4.79698141589E-12 5.10635994339E-12 5.43569165390E-12 5.78626341552E-12 6.15944509209E-12 6.55669489590E-12 6.97956508567E-12 7.42970803201E-12 7.90888267409E-12 8.41896139265E-12 8.96193732591E-12 9.53993216132E-12 1.01552044158E-11 1.08101582741E-11 1.15073529758E-11 1.22495128274E-11 1.30395378045E-11 1.38805149526E-11 1.47757303917E-11 1.57286821861E-11 1.67430940139E-11 1.78229296790E-11 1.89724086623E-11 2.01960225625E-11 2.14985526448E-11 2.28850885778E-11 2.43610482524E-11 2.59321989735E-11 2.76046800551E-11 2.93850266930E-11 3.12801956157E-11 3.32975922089E-11 3.54450994721E-11 3.77311087618E-11 4.01645526992E-11 4.27549399472E-11 4.55123924858E-11 4.84476850386E-11 5.15722872598E-11 5.48984086053E-11 5.84390457489E-11 6.22080339331E-11 6.62201003167E-11 7.04909221023E-11 7.50371875172E-11 7.98766610832E-11 8.50282529574E-11 9.05120931290E-11 9.63496095550E-11 1.02563612307E-10 1.09178382589E-10 1.16219767606E-10 1.23715281430E-10 1.31694212841E-10 1.40187739393E-10 1.49229049460E-10 1.58853471838E-10 1.69098613746E-10 1.80004508246E-10 1.91613769783E-10 2.03971761353E-10 2.17126771686E-10 2.31130203899E-10 2.46036775912E-10 2.61904735015E-10 2.78796085064E-10 2.96776828467E-10 3.15917224763E-10 3.36292064624E-10 3.57980962120E-10 3.81068666185E-10 4.05645391423E-10 4.31807170595E-10 4.59656230294E-10 4.89301389698E-10 5.20858486633E-10 5.54450829227E-10 5.90209678195E-10 6.28274760262E-10 6.68794813123E-10 7.11928167273E-10 7.57843365168E-10 8.06719817528E-10 8.58748507368E-10 9.14132734421E-10 9.73088910038E-10 1.03584740222E-09 1.10265343677E-09 1.17376805453E-09 1.24946913163E-09 1.33005246610E-09 1.41583293242E-09 1.50714571206E-09 1.60434760377E-09 1.70781841708E-09 1.81796245765E-09 1.93521010458E-09 2.06001949501E-09 2.19287831069E-09 2.33430568783E-09 2.48485424105E-09 2.64511222637E-09 2.81570583664E-09 2.99730165164E-09 3.19060923721E-09 3.39638392522E-09 3.61542975851E-09 3.84860263466E-09 4.09681365008E-09 4.36103266200E-09 4.64229207328E-09 4.94169087094E-09 5.26039891682E-09 5.59966152079E-09 5.96080430456E-09 6.34523838241E-09 6.75446587402E-09 7.19008577317E-09 7.65380019566E-09 8.14742103176E-09 8.67287701911E-09 9.23222128690E-09 9.82763937149E-09 1.04614577586E-08 1.11361529690E-08 1.18543612397E-08 1.26188888222E-08 1.34327229437E-08 1.42990434815E-08 1.52212353822E-08 1.62029018948E-08 1.72478786387E-08 1.83602485952E-08 1.95443580573E-08 2.08048336107E-08 2.21466002095E-08 2.35749004145E-08 2.50953148785E-08 2.67137841472E-08 2.84366318661E-08 3.02705894850E-08 3.22228225591E-08 3.43009587412E-08 3.65131175729E-08 3.88679422172E-08 4.13746332101E-08 4.40429844205E-08 4.68834212833E-08 4.99070415531E-08 5.31256586415E-08 5.65518477640E-08 6.01989950677E-08 6.40813499273E-08 6.82140805911E-08 7.26133334384E-08 7.72962960576E-08 8.22812643649E-08 8.75877140940E-08 9.32363768318E-08 9.92493210276E-08 1.05650038172E-07 1.12463534556E-07 1.19716428927E-07 1.27437056468E-07 1.35655579450E-07 1.44404105038E-07 1.53716810675E-07 1.63630077560E-07 1.74182632737E-07 1.85415700295E-07 1.97373162388E-07 2.10101730570E-07 2.23651128209E-07 2.38074284626E-07 2.53427541778E-07 2.69770874241E-07 2.87168123371E-07 3.05687246555E-07 3.25400582531E-07 3.46385133782E-07 3.68722867145E-07 3.92501033790E-07 4.17812509789E-07 4.44756158653E-07 4.73437217199E-07 5.03967706299E-07 5.36466868056E-07 5.71061631164E-07 6.07887106210E-07 6.47087112930E-07 6.88814741329E-07 7.33232949022E-07 7.80515196979E-07 8.30846126210E-07 8.84422278047E-07 9.41452860741E-07 1.00216056544E-06 1.06678243467E-06 1.13557078667E-06 1.20879419933E-06 1.28673855723E-06 1.36970816626E-06 1.45802693978E-06 1.55203966116E-06 1.65211332746E-06 1.75863857956E-06 1.87203122420E-06 1.99273385389E-06 2.12121757094E-06 2.25798382225E-06 2.40356635202E-06 2.55853327994E-06 2.72348931279E-06 2.89907809811E-06 3.08598472903E-06 3.28493840982E-06 3.49671529254E-06 3.72214149571E-06 3.96209631666E-06 4.21751564978E-06 4.48939562411E-06 4.77879647393E-06 5.08684665745E-06 5.41474723938E-06 5.76377655411E-06 6.13529516739E-06 6.53075115563E-06 6.95168572290E-06 7.39973917706E-06 7.87665728802E-06 8.38429805219E-06 8.92463888894E-06 9.49978429664E-06 1.01119739970E-05 1.07635915988E-05 1.14571738143E-05 1.21954202622E-05 1.29812038949E-05 1.38175820900E-05 1.47078084454E-05 1.56553453261E-05 1.66638772060E-05 1.77373248568E-05 1.88798604375E-05 2.00959235384E-05 2.13902382413E-05 2.27678312595E-05 2.42340512227E-05 2.57945891796E-05 2.74555003941E-05 2.92232275134E-05 3.11046251945E-05 3.31069862782E-05 3.52380696060E-05 3.75061295804E-05 3.99199475762E-05 4.24888653149E-05 4.52228203225E-05 4.81323835969E-05 5.12287996184E-05 5.45240288460E-05 5.80307928474E-05 6.17626222219E-05 6.57339074825E-05 6.99599530737E-05 7.44570347107E-05 7.92424602353E-05 8.43346341968E-05 8.97531263746E-05 9.55187444717E-05 1.01653611221E-04 1.08181246160E-04 1.15126652334E-04 1.22516408222E-04 1.30378765165E-04 1.38743750612E-04 1.47643277513E-04 1.57111260187E-04 1.67183737031E-04 1.77899000430E-04 1.89297734271E-04 2.01423159444E-04 2.14321187772E-04 2.28040584796E-04 2.42633141875E-04 2.58153858067E-04 2.74661132293E-04 2.92216966277E-04 3.10887178794E-04 3.30741631755E-04 3.51854468690E-04 3.74304366196E-04 3.98174798914E-04 4.23554318647E-04 4.50536848208E-04 4.79221990591E-04 5.09715354105E-04 5.42128894048E-04 5.76581271564E-04 6.13198230255E-04 6.52112991160E-04 6.93466666666E-04 7.37408693907E-04 7.84097288171E-04 8.33699916799E-04 8.86393794025E-04 9.42366397118E-04 1.00181600417E-03 1.06495225374E-03 1.13199672653E-03 1.20318354909E-03 1.27876001948E-03 1.35898725472E-03 1.44414085952E-03 1.53451161577E-03 1.63040619211E-03 1.73214787231E-03 1.84007730146E-03 1.95455324821E-03 2.07595338118E-03 2.20467505737E-03 2.34113611977E-03 2.48577570113E-03 2.63905503033E-03 2.80145823704E-03 2.97349315021E-03 3.15569208472E-03 3.34861261036E-03 3.55283829624E-03 3.76897942295E-03 3.99767365401E-03 4.23958665714E-03 4.49541266479E-03 4.76587496252E-03 5.05172629227E-03 5.35374915686E-03 5.67275601024E-03 6.00958931698E-03 6.36512146307E-03 6.74025449838E-03 7.13591968986E-03 7.55307686288E-03 7.99271350643E-03 8.45584361647E-03 8.94350624988E-03 9.45676376000E-03 9.99669968314E-03 1.05644162439E-02 1.11610314456E-02 1.17876757113E-02 1.24454880394E-02 1.31356116363E-02 1.38591889896E-02 1.46173563435E-02 1.54112375387E-02 1.62419371793E-02 1.71105330913E-02 1.80180680370E-02 1.89655406538E-02 1.99538955885E-02 2.09840128013E-02 2.20566960198E-02 2.31726603286E-02 2.43325188889E-02 2.55367687880E-02 2.67857760331E-02 2.80797597105E-02 2.94187753491E-02 3.08026975376E-02 3.22312018666E-02 3.37037462794E-02 3.52195519422E-02 3.67775837612E-02 3.83765307020E-02 4.00147860915E-02 4.16904281102E-02 4.34012007124E-02 4.51444952414E-02 4.69173330408E-02 4.87163493907E-02 5.05377791338E-02 5.23774443843E-02 5.42307447457E-02 5.60926504864E-02 5.79576991529E-02 5.98199961141E-02 6.16732195497E-02 6.35106304001E-02 6.53250877967E-02 6.71090704789E-02 6.88547046826E-02 7.05537989499E-02 7.21978862560E-02 7.37782737850E-02 7.52861005967E-02 7.67124033221E-02 7.80481898958E-02 7.92845211872E-02 8.04126002139E-02 8.14238684323E-02 8.23101083784E-02 8.30635516975E-02 8.36769913449E-02 8.41438964714E-02 8.44585282291E-02 8.46160544511E-02 8.46126608821E-02 8.44456563741E-02 8.41135692225E-02 8.36162316184E-02 8.29548490402E-02 8.21320513250E-02 8.11519221592E-02 8.00200038215E-02 7.87432742285E-02 7.73300936758E-02 7.57901191616E-02 7.41341848327E-02 7.23741479136E-02 7.05227004772E-02 6.85931485824E-02 6.65991616330E-02 6.45544962897E-02 6.24727008527E-02 6.03668076961E-02 5.82490230177E-02 5.61304247959E-02 5.40206813443E-02 5.19278041206E-02 4.98579493720E-02 4.78152836572E-02 4.58019281580E-02 4.38179958313E-02 4.18617337402E-02 3.99297802109E-02 3.80175426912E-02 3.61196972670E-02 3.42308046849E-02 3.23460304649E-02 3.04619483430E-02 2.85773970263E-02 2.66949049821E-02 2.48217629052E-02 2.29662666274E-02 2.11367788245E-02 1.93416544208E-02 1.75891601344E-02 1.58873886891E-02 1.42441683797E-02 1.26669688456E-02 1.11628040906E-02 9.73813397491E-03 8.39876560227E-03 7.14975622361E-03 5.99531947585E-03 4.93873696930E-03 3.98227741910E-03 3.12712568444E-03 2.37332422385E-03 1.71972959064E-03 1.16398666989E-03 7.02523388989E-04 3.30568608432E-04 4.21958073296E-05 -1.69604991014E-04 -3.12824865160E-04 -3.96301381053E-04 -4.29550350595E-04 -4.22563182574E-04 -3.85569759967E-04 -3.28767629146E-04 -2.62019280224E-04 -1.94520436462E-04 -1.33967059054E-04 -8.46629036505E-05 -4.84117220613E-05 -2.45928868830E-05 -1.03557286008E-05 -3.06214922435E-06 -3.81917836551E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.63156448962E-23 1.73679135857E-23 1.84880477749E-23 1.96804244126E-23 2.09497027363E-23 2.23008424788E-23 2.37391232479E-23 2.52701651569E-23 2.68999507855E-23 2.86348485563E-23 3.04816376201E-23 3.24475343453E-23 3.45402205161E-23 3.67678733492E-23 3.91391974464E-23 4.16634588081E-23 4.43505210405E-23 4.72108838978E-23 5.02557243097E-23 5.34969400566E-23 5.69471962592E-23 6.06199748688E-23 6.45296273476E-23 6.86914307474E-23 7.31216474057E-23 7.78375884903E-23 8.28576816434E-23 8.82015429881E-23 9.38900537787E-23 9.99454419948E-23 1.06391369197E-22 1.13253022987E-22 1.20557215426E-22 1.28332487803E-22 1.36609222165E-22 1.45419760032E-22 1.54798528771E-22 1.64782176125E-22 1.75409713413E-22 1.86722667969E-22 1.98765245407E-22 2.11584502361E-22 2.25230530355E-22 2.39756651542E-22 2.55219627055E-22 2.71679878807E-22 2.89201725589E-22 3.07853634398E-22 3.27708487974E-22 3.48843869588E-22 3.71342366204E-22 3.95291891185E-22 4.20786027820E-22 4.47924395004E-22 4.76813036495E-22 5.07564835288E-22 5.40299954705E-22 5.75146307936E-22 6.12240057863E-22 6.51726149122E-22 6.93758874470E-22 7.38502477697E-22 7.86131795404E-22 8.36832940185E-22 8.90804027865E-22 9.48255951642E-22 1.00941320616E-21 1.07451476471E-21 1.14381501306E-21 1.21758474342E-21 1.29611221263E-21 1.37970426848E-21 1.46868754874E-21 1.56340975751E-21 1.66424102388E-21 1.77157534822E-21 1.88583214173E-21 2.00745786531E-21 2.13692777413E-21 2.27474777466E-21 2.42145640155E-21 2.57762692196E-21 2.74386957557E-21 2.92083395918E-21 3.10921156495E-21 3.30973848248E-21 3.52319827505E-21 3.75042504145E-21 3.99230667519E-21 4.24978833402E-21 4.52387613312E-21 4.81564107652E-21 5.12622324207E-21 5.45683623633E-21 5.80877193677E-21 6.18340553978E-21 6.58220093430E-21 7.00671642201E-21 7.45861080640E-21 7.93964987459E-21 8.45171329720E-21 8.99680197319E-21 9.57704584838E-21 1.01947122383E-20 1.08522146879E-20 1.15521224022E-20 1.22971702858E-20 1.30902696295E-20 1.39345194863E-20 1.48332187807E-20 1.57898791999E-20 1.68082389151E-20 1.78922771892E-20 1.90462299251E-20 2.02746062184E-20 2.15822059761E-20 2.29741386726E-20 2.44558433151E-20 2.60331096969E-20 2.77121010205E-20 2.94993779810E-20 3.14019244020E-20 3.34271745250E-20 3.55830420588E-20 3.78779511026E-20 4.03208690635E-20 4.29213416964E-20 4.56895304046E-20 4.86362519457E-20 5.17730206981E-20 5.51120936539E-20 5.86665183133E-20 6.24501836677E-20 6.64778744718E-20 7.07653290150E-20 7.53293006189E-20 8.01876231019E-20 8.53592804645E-20 9.08644810704E-20 9.67247366104E-20 1.02962946161E-19 1.09603485660E-19 1.16672303161E-19 1.24197020222E-19 1.32207039839E-19 1.40733661336E-19 1.49810202672E-19 1.59472130631E-19 1.69757199406E-19 1.80705598125E-19 1.92360107896E-19 2.04766268968E-19 2.17972558685E-19 2.32030580912E-19 2.46995267674E-19 2.62925093813E-19 2.79882305468E-19 2.97933163312E-19 3.17148201466E-19 3.37602503108E-19 3.59375993867E-19 3.82553754129E-19 4.07226351498E-19 4.33490194683E-19 4.61447910223E-19 4.91208743497E-19 5.22888985609E-19 5.56612427794E-19 5.92510845133E-19 6.30724511473E-19 6.71402747545E-19 7.14704504440E-19 7.60798984714E-19 8.09866303550E-19 8.62098192563E-19 9.17698748992E-19 9.76885233222E-19 1.03988891772E-18 1.10695599076E-18 1.17834851838E-18 1.25434546844E-18 1.33524380067E-18 1.42135962705E-18 1.51302944706E-18 1.61061146250E-18 1.71448697722E-18 1.82506188705E-18 1.94276826585E-18 2.06806605386E-18 2.20144485489E-18 2.34342584952E-18 2.49456383156E-18 2.65544937597E-18 2.82671114649E-18 3.00901835223E-18 3.20308336253E-18 3.40966449066E-18 3.62956895684E-18 3.86365604257E-18 4.11284044820E-18 4.37809586722E-18 4.66045879094E-18 4.96103255862E-18 5.28099166877E-18 5.62158636857E-18 5.98414753921E-18 6.37009189633E-18 6.78092752588E-18 7.21825977702E-18 7.68379753501E-18 8.17935989875E-18 8.70688328893E-18 9.26842901465E-18 9.86619132803E-18 1.05025059983E-17 1.11798594388E-17 1.19008984229E-17 1.26684404260E-17 1.34854846351E-17 1.43552236684E-17 1.52810560498E-17 1.62665994895E-17 1.73157050200E-17 1.84324720438E-17 1.96212643523E-17 2.08867271773E-17 2.22338053422E-17 2.36677625843E-17 2.51942021225E-17 2.68190885525E-17 2.85487711532E-17 3.03900086969E-17 3.23499958594E-17 3.44363913330E-17 3.66573477532E-17 3.90215435555E-17 4.15382168863E-17 4.42172017011E-17 4.70689661914E-17 5.01046536886E-17 5.33361262076E-17 5.67760107973E-17 6.04377488814E-17 6.43356487808E-17 6.84849416239E-17 7.29018408626E-17 7.76036056263E-17 8.26086081630E-17 8.79364056284E-17 9.36078165067E-17 9.96450019590E-17 1.06071552418E-16 1.12912579770E-16 1.20194815476E-16 1.27946715031E-16 1.36198569150E-16 1.44982622133E-16 1.54333197856E-16 1.64286833897E-16 1.74882424304E-16 1.86161371576E-16 1.98167748445E-16 2.10948470088E-16 2.24553477451E-16 2.39035932397E-16 2.54452425430E-16 2.70863196832E-16 2.88332372047E-16 3.06928212255E-16 3.26723381106E-16 3.47795228649E-16 3.70226093585E-16 3.94103625005E-16 4.19521124879E-16 4.46577912638E-16 4.75379713266E-16 5.06039070421E-16 5.38675786207E-16 5.73417389294E-16 6.10399633249E-16 6.49767026990E-16 6.91673399460E-16 7.36282500714E-16 7.83768641780E-16 8.34317375782E-16 8.88126222989E-16 9.45405442635E-16 1.00637885451E-15 1.07128471353E-15 1.14037664076E-15 1.21392461438E-15 1.29221602469E-15 1.37555679706E-15 1.46427258737E-15 1.55871005449E-15 1.65923821484E-15 1.76624988438E-15 1.88016321353E-15 2.00142332108E-15 2.13050403350E-15 2.26790973647E-15 2.41417734573E-15 2.56987840512E-15 2.73562131988E-15 2.91205373402E-15 3.09986506101E-15 3.29978917763E-15 3.51260729169E-15 3.73915099455E-15 3.98030551059E-15 4.23701315628E-15 4.51027702226E-15 4.80116489297E-15 5.11081341901E-15 5.44043255865E-15 5.79131030576E-15 6.16481772267E-15 6.56241429764E-15 6.98565364781E-15 7.43618959002E-15 7.91578260313E-15 8.42630670713E-15 8.96975678590E-15 9.54825638225E-15 1.01640659958E-14 1.08195919157E-14 1.15173956235E-14 1.22602038023E-14 1.30509189908E-14 1.38926309255E-14 1.47886286138E-14 1.57424131859E-14 1.67577115752E-14 1.78384910819E-14 1.89889748750E-14 2.02136584944E-14 2.15173274175E-14 2.29050757584E-14 2.43823261732E-14 2.59548510493E-14 2.76287950612E-14 2.94106991807E-14 3.13075262360E-14 3.33266881189E-14 3.54760747476E-14 3.77640848956E-14 4.01996590113E-14 4.27923141520E-14 4.55521811725E-14 4.84900443117E-14 5.16173833317E-14 5.49464183759E-14 5.84901577189E-14 6.22624485970E-14 6.62780313162E-14 7.05525968505E-14 7.51028481546E-14 7.99465654313E-14 8.51026756073E-14 9.05913262915E-14 9.64339645014E-14 1.02653420468E-13 1.09273996846E-13 1.16321563676E-13 1.23823659472E-13 1.31809598830E-13 1.40310586974E-13 1.49359841693E-13 1.58992723138E-13 1.69246871993E-13 1.80162356556E-13 1.91781829311E-13 2.04150693587E-13 2.17317280977E-13 2.31333040193E-13 2.46252738103E-13 2.62134673734E-13 2.79040906075E-13 2.97037496576E-13 3.16194767284E-13 3.36587575625E-13 3.58295606914E-13 3.81403685727E-13 4.06002107352E-13 4.32186990620E-13 4.60060653496E-13 4.89732012879E-13 5.21317010208E-13 5.54939064497E-13 5.90729554598E-13 6.28828332572E-13 6.69384270157E-13 7.12555840490E-13 7.58511737344E-13 8.07431534302E-13 8.59506386442E-13 9.14939777280E-13 9.73948313888E-13 1.03676257329E-12 1.10362800343E-12 1.17480588229E-12 1.25057433884E-12 1.33122943978E-12 1.41708634650E-12 1.50848054653E-12 1.60576916446E-12 1.70933235744E-12 1.81957480065E-12 1.93692726854E-12 2.06184831811E-12 2.19482608074E-12 2.33638016956E-12 2.48706370983E-12 2.64746550033E-12 2.81821231404E-12 2.99997134734E-12 3.19345282700E-12 3.39941278549E-12 3.61865601513E-12 3.85203921286E-12 4.10047432776E-12 4.36493212456E-12 4.64644597686E-12 4.94611590508E-12 5.26511287482E-12 5.60468337239E-12 5.96615427549E-12 6.35093803802E-12 6.76053820921E-12 7.19655530883E-12 7.66069308119E-12 8.15476515254E-12 8.68070211788E-12 9.24055908474E-12 9.83652370768E-12 1.04709247182E-11 1.11462410549E-11 1.18651115248E-11 1.26303451373E-11 1.34449320371E-11 1.43120552496E-11 1.52351030653E-11 1.62176823067E-11 1.72636324298E-11 1.83770404783E-11 1.95622571340E-11 2.08239136357E-11 2.21669399156E-11 2.35965838881E-11 2.51184319069E-11 2.67384305971E-11 2.84629101353E-11 3.02986089537E-11 3.22527000704E-11 3.43328191090E-11 3.65470941610E-11 3.89041775560E-11 4.14132796176E-11 4.40842046838E-11 4.69273894421E-11 4.99539436612E-11 5.31756936270E-11 5.66052283538E-11 6.02559488215E-11 6.41421202712E-11 6.82789278691E-11 7.26825364166E-11 7.73701528053E-11 8.23600940201E-11 8.76718585472E-11 9.33262018874E-11 9.93452184049E-11 1.05752427606E-10 1.12572865661E-10 1.19833183474E-10 1.27561750806E-10 1.35788767017E-10 1.44546379314E-10 1.53868808090E-10 1.63792480671E-10 1.74356174046E-10 1.85601165825E-10 1.97571395746E-10 2.10313637627E-10 2.23877681754E-10 2.38316529827E-10 2.53686601371E-10 2.70047955062E-10 2.87464523030E-10 3.06004360606E-10 3.25739911622E-10 3.46748293355E-10 3.69111595676E-10 3.92917203429E-10 4.18258136430E-10 4.45233414774E-10 4.73948444048E-10 5.04515427848E-10 5.37053806719E-10 5.71690724086E-10 6.08561523437E-10 6.47810276905E-10 6.89590348896E-10 7.34064994393E-10 7.81407997414E-10 8.31804350749E-10 8.85450976407E-10 9.42557498710E-10 1.00334706040E-09 1.06805719505E-09 1.13694075621E-09 1.21026690607E-09 1.28832216428E-09 1.37141152995E-09 1.45985967363E-09 1.55401220282E-09 1.65423701792E-09 1.76092574340E-09 1.87449526171E-09 1.99538934380E-09 2.12408037823E-09 2.26107122147E-09 2.40689716005E-09 2.56212800329E-09 2.72737030953E-09 2.90326975555E-09 3.09051366294E-09 3.28983367632E-09 3.50200862989E-09 3.72786758649E-09 3.96829307907E-09 4.22422455607E-09 4.49666205510E-09 4.78667011056E-09 5.09538190822E-09 5.42400372196E-09 5.77381961834E-09 6.14619647695E-09 6.54258933379E-09 6.96454706217E-09 7.41371842823E-09 7.89185853214E-09 8.40083566289E-09 8.94263860182E-09 9.51938439376E-09 1.01333266136E-08 1.07868641773E-08 1.14825507137E-08 1.22231045366E-08 1.30114192757E-08 1.38505751727E-08 1.47438511218E-08 1.56947374830E-08 1.67069497097E-08 1.77844428792E-08 1.89314271321E-08 2.01523841316E-08 2.14520845667E-08 2.28356067994E-08 2.43083566974E-08 2.58760887598E-08 2.75449286055E-08 2.93213968874E-08 3.12124347920E-08 3.32254311389E-08 3.53682512647E-08 3.76492677338E-08 4.00773930625E-08 4.26621145394E-08 4.54135312755E-08 4.83423936801E-08 5.14601454431E-08 5.47789682480E-08 5.83118293696E-08 6.20725323147E-08 6.60757707674E-08 7.03371859721E-08 7.48734278558E-08 7.97022200508E-08 8.48424291480E-08 9.03141383906E-08 9.61387261211E-08 1.02338949303E-07 1.08939032402E-07 1.15964762026E-07 1.23443587638E-07 1.31404728786E-07 1.39879289223E-07 1.48900378414E-07 1.58503240840E-07 1.68725393674E-07 1.79606773291E-07 1.91189891263E-07 2.03520000389E-07 2.16645271423E-07 2.30616981205E-07 2.45489712905E-07 2.61321569192E-07 2.78174399127E-07 2.96114039674E-07 3.15210572795E-07 3.35538599104E-07 3.57177529145E-07 3.80211893458E-07 4.04731672616E-07 4.30832648526E-07 4.58616778372E-07 4.88192592638E-07 5.19675618793E-07 5.53188832257E-07 5.88863136425E-07 6.26837873592E-07 6.67261368835E-07 7.10291508870E-07 7.56096358223E-07 8.04854815082E-07 8.56757309367E-07 9.12006545762E-07 9.70818294589E-07 1.03342223359E-06 1.10006284390E-06 1.17100036369E-06 1.24651180324E-06 1.32689202524E-06 1.41245489471E-06 1.50353450286E-06 1.60048646965E-06 1.70368933028E-06 1.81354601071E-06 1.93048539815E-06 2.05496401253E-06 2.18746778547E-06 2.32851395350E-06 2.47865307317E-06 2.63847116543E-06 2.80859199797E-06 2.98967951412E-06 3.18244041777E-06 3.38762692425E-06 3.60603968792E-06 3.83853091760E-06 4.08600769201E-06 4.34943548783E-06 4.62984193421E-06 4.92832080797E-06 5.24603628487E-06 5.58422746354E-06 5.94421317911E-06 6.32739712520E-06 6.73527330394E-06 7.16943182484E-06 7.63156507458E-06 8.12347428161E-06 8.64707650035E-06 9.20441204173E-06 9.79765237852E-06 1.04291085553E-05 1.11012401352E-05 1.18166647172E-05 1.25781680608E-05 1.33887148548E-05 1.42514601724E-05 1.51697616559E-05 1.61471924751E-05 1.71875551102E-05 1.82948960099E-05 1.94735211797E-05 2.07280127587E-05 2.20632466466E-05 2.34844112475E-05 2.49970273978E-05 2.66069695550E-05 2.83204883229E-05 3.01442343980E-05 3.20852840244E-05 3.41511660497E-05 3.63498906828E-05 3.86899800549E-05 4.11805006980E-05 4.38310980554E-05 4.66520331499E-05 4.96542215404E-05 5.28492747067E-05 5.62495440073E-05 5.98681673693E-05 6.37191188697E-05 6.78172613866E-05 7.21784024991E-05 7.68193538325E-05 8.17579940502E-05 8.70133357098E-05 9.26055962074E-05 9.85562730524E-05 1.04888223721E-04 1.11625750354E-04 1.18794689582E-04 1.26422507761E-04 1.34538401935E-04 1.43173406844E-04 1.52360508316E-04 1.62134763401E-04 1.72533427607E-04 1.83596089646E-04 1.95364814080E-04 2.07884292288E-04 2.21202002216E-04 2.35368377349E-04 2.50436985392E-04 2.66464717157E-04 2.83511986172E-04 3.01642939544E-04 3.20925680621E-04 3.41432504037E-04 3.63240143703E-04 3.86430034366E-04 4.11088587335E-04 4.37307481007E-04 4.65183966832E-04 4.94821191362E-04 5.26328535037E-04 5.59821968368E-04 5.95424426164E-04 6.33266200472E-04 6.73485352847E-04 7.16228146606E-04 7.61649499653E-04 8.09913458466E-04 8.61193693788E-04 9.15674018518E-04 9.73548928252E-04 1.03502416485E-03 1.10031730335E-03 1.16965836238E-03 1.24329043829E-03 1.32147036284E-03 1.40446938437E-03 1.49257387219E-03 1.58608604345E-03 1.68532471210E-03 1.79062605863E-03 1.90234441968E-03 2.02085309580E-03 2.14654517552E-03 2.27983437367E-03 2.42115588104E-03 2.57096722258E-03 2.72974912028E-03 2.89800635680E-03 3.07626863498E-03 3.26509142782E-03 3.46505681291E-03 3.67677428426E-03 3.90088153386E-03 4.13804519426E-03 4.38896153252E-03 4.65435708484E-03 4.93498921988E-03 5.23164661795E-03 5.54514965139E-03 5.87635065078E-03 6.22613403946E-03 6.59541631809E-03 6.98514587860E-03 7.39630262609E-03 7.82989738473E-03 8.28697106268E-03 8.76859354877E-03 9.27586231227E-03 9.80990067503E-03 1.03718557237E-02 1.09628958278E-02 1.15842077288E-02 1.22369931612E-02 1.29224649693E-02 1.36418426787E-02 1.43963474819E-02 1.51871965974E-02 1.60155969608E-02 1.68827382065E-02 1.77897848995E-02 1.87378679795E-02 1.97280753778E-02 2.07614417756E-02 2.18389374715E-02 2.29614563332E-02 2.41298028128E-02 2.53446780149E-02 2.66066648108E-02 2.79162120063E-02 2.92736175804E-02 3.06790110240E-02 3.21323348268E-02 3.36333251730E-02 3.51814919297E-02 3.67760980294E-02 3.84161383748E-02 4.01003184165E-02 4.18270325831E-02 4.35943427731E-02 4.53999571474E-02 4.72412094967E-02 4.91150394885E-02 5.10179741379E-02 5.29461108782E-02 5.48951026432E-02 5.68601454107E-02 5.88359686841E-02 6.08168294223E-02 6.27965099549E-02 6.47683204369E-02 6.67251064155E-02 6.86592620852E-02 7.05627498059E-02 7.24271264410E-02 7.42435770494E-02 7.60029564135E-02 7.76958388330E-02 7.93125765276E-02 8.08433668931E-02 8.22783287315E-02 8.36075874277E-02 8.48213688726E-02 8.59101017341E-02 8.68645274559E-02 8.76758171156E-02 8.83356940048E-02 8.88365605068E-02 8.91716275415E-02 8.93350445394E-02 8.93220275879E-02 8.91289830887E-02 8.87536239763E-02 8.81950752846E-02 8.74539656368E-02 8.65325010764E-02 8.54345175768E-02 8.41655085859E-02 8.27326240879E-02 8.11446379298E-02 7.94118805691E-02 7.75461349807E-02 7.55604942163E-02 7.34691800612E-02 7.12873233700E-02 6.90307079962E-02 6.67154817367E-02 6.43578393731E-02 6.19736846766E-02 5.95782800930E-02 5.71858946883E-02 5.48094627237E-02 5.24602668533E-02 5.01476612869E-02 4.78788512083E-02 4.56587451479E-02 4.34898967449E-02 4.13725512386E-02 3.93048099695E-02 3.72829230210E-02 3.53017157796E-02 3.33551495761E-02 3.14370096631E-02 2.95417056296E-02 2.76651600651E-02 2.58057510668E-02 2.39657757791E-02 2.21522762865E-02 2.03731057276E-02 1.86359800736E-02 1.69483981084E-02 1.53175585274E-02 1.37502751241E-02 1.22528911809E-02 1.08311943362E-02 9.49033334717E-03 8.23473830950E-03 7.06804602595E-03 5.99303232691E-03 5.01155323800E-03 4.12449695184E-03 3.33174858852E-03 2.63216971611E-03 2.02359454013E-03 1.50284455420E-03 1.06576326409E-03 7.07272349583E-04 4.21450305311E-04 2.01634198566E-04 4.05446955209E-05 -6.95660660006E-05 -1.36744838165E-04 -1.69147683323E-04 -1.74833098127E-04 -1.61541377055E-04 -1.36464695803E-04 -1.06013376143E-04 -7.55847863095E-05 -4.91593448160E-05 -2.86688121695E-05 -1.46346885063E-05 -6.36933933142E-06 -2.19902575176E-06 -4.98956535543E-07 -4.22378410928E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 9 2 i j (l(j)) 0.00000000000E+00 Q_int 1.47159172020E-23 1.56650123194E-23 1.66753188129E-23 1.77507844770E-23 1.88956117172E-23 2.01142739708E-23 2.14115331870E-23 2.27924584345E-23 2.42624457086E-23 2.58272390166E-23 2.74929528223E-23 2.92660959386E-23 3.11535969608E-23 3.31628313401E-23 3.53016502035E-23 3.75784110322E-23 4.00020103187E-23 4.25819183298E-23 4.53282161121E-23 4.82516348839E-23 5.13635979676E-23 5.46762654265E-23 5.82025815807E-23 6.19563255873E-23 6.59521652825E-23 7.02057144968E-23 7.47335940660E-23 7.95534967782E-23 8.46842565078E-23 9.01459218100E-23 9.59598342606E-23 1.02148711849E-22 1.08736737749E-22 1.15749654814E-22 1.23214866171E-22 1.31161542295E-22 1.39620734996E-22 1.48625498753E-22 1.58211019876E-22 1.68414753997E-22 1.79276572430E-22 1.90838917965E-22 2.03146970719E-22 2.16248824676E-22 2.30195675614E-22 2.45042021158E-22 2.60845873724E-22 2.77668987210E-22 2.95577098297E-22 3.14640183320E-22 3.34932731696E-22 3.56534037000E-22 3.79528506801E-22 4.04005992489E-22 4.30062140373E-22 4.57798765416E-22 4.87324249083E-22 5.18753962844E-22 5.52210718987E-22 5.87825250515E-22 6.25736721983E-22 6.66093273290E-22 7.09052598537E-22 7.54782562221E-22 8.03461855169E-22 8.55280692775E-22 9.10441558275E-22 9.69159993948E-22 1.03166544336E-21 1.09820214791E-21 1.16903010121E-21 1.24442606504E-21 1.32468465077E-21 1.41011947055E-21 1.50106436280E-21 1.59787469667E-21 1.70092876064E-21 1.81062924071E-21 1.92740479388E-21 2.05171172317E-21 2.18403576059E-21 2.32489396522E-21 2.47483674353E-21 2.63445000020E-21 2.80435742749E-21 2.98522294237E-21 3.17775328076E-21 3.38270075915E-21 3.60086621427E-21 3.83310213237E-21 4.08031598034E-21 4.34347375167E-21 4.62360374108E-21 4.92180056257E-21 5.23922942671E-21 5.57713069368E-21 5.93682472003E-21 6.31971701799E-21 6.72730374751E-21 7.16117756262E-21 7.62303383466E-21 8.11467727706E-21 8.63802899725E-21 9.19513400345E-21 9.78816919557E-21 1.04194518715E-20 1.10914487821E-20 1.18067857698E-20 1.25682580294E-20 1.33788410304E-20 1.42417021434E-20 1.51602130170E-20 1.61379627524E-20 1.71787719279E-20 1.82867075280E-20 1.94660988352E-20 2.07215543465E-20 2.20579797817E-20 2.34805972522E-20 2.49949656666E-20 2.66070024525E-20 2.83230066787E-20 3.01496836689E-20 3.20941712031E-20 3.41640674086E-20 3.63674604499E-20 3.87129601331E-20 4.12097315493E-20 4.38675308868E-20 4.66967435545E-20 4.97084247623E-20 5.29143427199E-20 5.63270246214E-20 5.99598055954E-20 6.38268808127E-20 6.79433609535E-20 7.23253312536E-20 7.69899143570E-20 8.19553372235E-20 8.72410023509E-20 9.28675635906E-20 9.88570068527E-20 1.05232736017E-19 1.12019664384E-19 1.19244312023E-19 1.26934909402E-19 1.35121507698E-19 1.43836096220E-19 1.53112727414E-19 1.62987649916E-19 1.73499450202E-19 1.84689203359E-19 1.96600633591E-19 2.09280285070E-19 2.22777703809E-19 2.37145631266E-19 2.52440210429E-19 2.68721205199E-19 2.86052233917E-19 3.04501017953E-19 3.24139646331E-19 3.45044857420E-19 3.67298338785E-19 3.90987046388E-19 4.16203544369E-19 4.43046366741E-19 4.71620402416E-19 5.02037305058E-19 5.34415929376E-19 5.68882795548E-19 6.05572583601E-19 6.44628659679E-19 6.86203636248E-19 7.30459968431E-19 7.77570588808E-19 8.27719583152E-19 8.81102909746E-19 9.37929165099E-19 9.98420399038E-19 1.06281298237E-18 1.13135853052E-18 1.20432488670E-18 1.28199716853E-18 1.36467888215E-18 1.45269310813E-18 1.54638376399E-18 1.64611694799E-18 1.75228236972E-18 1.86529487286E-18 1.98559605623E-18 2.11365599932E-18 2.24997509912E-18 2.39508602548E-18 2.54955580251E-18 2.71398802420E-18 2.88902521303E-18 3.07535133061E-18 3.27369445031E-18 3.48482960215E-18 3.70958180134E-18 3.94882927196E-18 4.20350687871E-18 4.47460977985E-18 4.76319731587E-18 5.07039714882E-18 5.39740966871E-18 5.74551268407E-18 6.11606641497E-18 6.51051880818E-18 6.93041119496E-18 7.37738431395E-18 7.85318472229E-18 8.35967162040E-18 8.89882411684E-18 9.47274896168E-18 1.00836887787E-17 1.07340308285E-17 1.14263163367E-17 1.21632504241E-17 1.29477126764E-17 1.37827683970E-17 1.46716805842E-17 1.56179226817E-17 1.66251921510E-17 1.76974249194E-17 1.88388107597E-17 2.00538096618E-17 2.13471692602E-17 2.27239433857E-17 2.41895118130E-17 2.57496012825E-17 2.74103078775E-17 2.91781208452E-17 3.10599479530E-17 3.30631424812E-17 3.51955319557E-17 3.74654487346E-17 3.98817625671E-17 4.24539152516E-17 4.51919575306E-17 4.81065883636E-17 5.12091967337E-17 5.45119061503E-17 5.80276220220E-17 6.17700820848E-17 6.57539100823E-17 6.99946729088E-17 7.45089414368E-17 7.93143552683E-17 8.44296916620E-17 8.98749389054E-17 9.56713744201E-17 1.01841647903E-16 1.08409869832E-16 1.15401705676E-16 1.22844476184E-16 1.30767264145E-16 1.39201028022E-16 1.48178722930E-16 1.57735429408E-16 1.67908490491E-16 1.78737657636E-16 1.90265246048E-16 2.02536300028E-16 2.15598768984E-16 2.29503694796E-16 2.44305411262E-16 2.60061756408E-16 2.76834298495E-16 2.94688576591E-16 3.13694356675E-16 3.33925904243E-16 3.55462274503E-16 3.78387621286E-16 4.02791525881E-16 4.28769347070E-16 4.56422593751E-16 4.85859321580E-16 5.17194555208E-16 5.50550737735E-16 5.86058209162E-16 6.23855715700E-16 6.64090951920E-16 7.06921137873E-16 7.52513633435E-16 8.01046592262E-16 8.52709657937E-16 9.07704704999E-16 9.66246627779E-16 1.02856418010E-15 1.09490086913E-15 1.16551590692E-15 1.24068522324E-15 1.32070254381E-15 1.40588053803E-15 1.49655204074E-15 1.59307135279E-15 1.69581562544E-15 1.80518633417E-15 1.92161084735E-15 2.04554409627E-15 2.17747035275E-15 2.31790512146E-15 2.46739715428E-15 2.62653059452E-15 2.79592725950E-15 2.97624907031E-15 3.16820063830E-15 3.37253201830E-15 3.59004163955E-15 3.82157942555E-15 4.06805011513E-15 4.33041679778E-15 4.60970467689E-15 4.90700507581E-15 5.22347970218E-15 5.56036518734E-15 5.91897791849E-15 6.30071918252E-15 6.70708064152E-15 7.13965016153E-15 7.60011801713E-15 8.09028349624E-15 8.61206193086E-15 9.16749218130E-15 9.75874460301E-15 1.03881295273E-14 1.10581062892E-14 1.17712928370E-14 1.25304759622E-14 1.33386221888E-14 1.41988893654E-14 1.51146390039E-14 1.60894494156E-14 1.71271296924E-14 1.82317345920E-14 1.94075803811E-14 2.06592617019E-14 2.19916695254E-14 2.34100102631E-14 2.49198261111E-14 2.65270167063E-14 2.82378621797E-14 3.00590476955E-14 3.19976895743E-14 3.40613630994E-14 3.62581321181E-14 3.85965805510E-14 4.10858459339E-14 4.37356551228E-14 4.65563623021E-14 4.95589894433E-14 5.27552693740E-14 5.61576916240E-14 5.97795512282E-14 6.36350006776E-14 6.77391052201E-14 7.21079017283E-14 7.67584613639E-14 8.17089562840E-14 8.69787306483E-14 9.25883762077E-14 9.85598127662E-14 1.04916373834E-13 1.11682897801E-13 1.18885824997E-13 1.26553301007E-13 1.34715286646E-13 1.43403675038E-13 1.52652416235E-13 1.62497649879E-13 1.72977846416E-13 1.84133957424E-13 1.96009575629E-13 2.08651105244E-13 2.22107943297E-13 2.36432672649E-13 2.51681267461E-13 2.67913311917E-13 2.85192233050E-13 3.03585548582E-13 3.23165130751E-13 3.44007487156E-13 3.66194059708E-13 3.89811542867E-13 4.14952222405E-13 4.41714336009E-13 4.70202457149E-13 5.00527903702E-13 5.32809172927E-13 5.67172404494E-13 6.03751873378E-13 6.42690514541E-13 6.84140481452E-13 7.28263740627E-13 7.75232704522E-13 8.25230905229E-13 8.78453711638E-13 9.35109092838E-13 9.95418430762E-13 1.05961738524E-12 1.12795681485E-12 1.20070375713E-12 1.27814247207E-12 1.36057555280E-12 1.44832510805E-12 1.54173402075E-12 1.64116728784E-12 1.74701344654E-12 1.85968609254E-12 1.97962549612E-12 2.10730032255E-12 2.24320946335E-12 2.38788398576E-12 2.54188920788E-12 2.70582690766E-12 2.88033767432E-12 3.06610341152E-12 3.26385000185E-12 3.47435014326E-12 3.69842636836E-12 3.93695425850E-12 4.19086586510E-12 4.46115335162E-12 4.74887287052E-12 5.05514869010E-12 5.38117758766E-12 5.72823352586E-12 6.09767263079E-12 6.49093849100E-12 6.90956779834E-12 7.35519635262E-12 7.82956545348E-12 8.33452870455E-12 8.87205925836E-12 9.44425752153E-12 1.00533593544E-11 1.07017448465E-11 1.13919475703E-11 1.21266645025E-11 1.29087665421E-11 1.37413097769E-11 1.46275473776E-11 1.55709423155E-11 1.65751809253E-11 1.76441872970E-11 1.87821385521E-11 1.99934812605E-11 2.12829487634E-11 2.26555796426E-11 2.41167374988E-11 2.56721318017E-11 2.73278402742E-11 2.90903325858E-11 3.09664957120E-11 3.29636607682E-11 3.50896316940E-11 3.73527157185E-11 3.97617558872E-11 4.23261654970E-11 4.50559650300E-11 4.79618211660E-11 5.10550885605E-11 5.43478541209E-11 5.78529844222E-11 6.15841757252E-11 6.55560076702E-11 6.97840002453E-11 7.42846743347E-11 7.90756161329E-11 8.41755465130E-11 8.96043933071E-11 9.53833697648E-11 1.01535057167E-10 1.08083493313E-10 1.15054266133E-10 1.22474613984E-10 1.30373531673E-10 1.38781884303E-10 1.47732527541E-10 1.57260435819E-10 1.67402839402E-10 1.78199369708E-10 1.89692214134E-10 2.01926280686E-10 2.14949373964E-10 2.28812381544E-10 2.43569472984E-10 2.59278311407E-10 2.76000278821E-10 2.93800716227E-10 3.12749178383E-10 3.32919706103E-10 3.54391115374E-10 3.77247305514E-10 4.01577586360E-10 4.27477028037E-10 4.55046832061E-10 4.84394726909E-10 5.15635388274E-10 5.48890888904E-10 5.84291173408E-10 6.21974567156E-10 6.62088317045E-10 7.04789166526E-10 7.50243967466E-10 7.98630333004E-10 8.50137330894E-10 9.04966223055E-10 9.63331251145E-10 1.02546047369E-09 1.09159665886E-09 1.16199822980E-09 1.23694027757E-09 1.31671563511E-09 1.40163601990E-09 1.49203325436E-09 1.58826056001E-09 1.69069394060E-09 1.79973364734E-09 1.91580574652E-09 2.03936378206E-09 2.17089054935E-09 2.31089997927E-09 2.45993914943E-09 2.61859041865E-09 2.78747370432E-09 2.96724890448E-09 3.15861847542E-09 3.36233017685E-09 3.57917999452E-09 3.81001524799E-09 4.05573790369E-09 4.31730809879E-09 4.59574789098E-09 4.89214525363E-09 5.20765832660E-09 5.54351993969E-09 5.90104243153E-09 6.28162277890E-09 6.68674804687E-09 7.11800120997E-09 7.57706732971E-09 8.06574014118E-09 8.58592906110E-09 9.13966664435E-09 9.72911653615E-09 1.03565819122E-08 1.10245144854E-08 1.17355240822E-08 1.24923888444E-08 1.32980660757E-08 1.41557038001E-08 1.50686530614E-08 1.60404810151E-08 1.70749848663E-08 1.81762067024E-08 1.93484492884E-08 2.05962928741E-08 2.19246130965E-08 2.33386000165E-08 2.48437784019E-08 2.64460293148E-08 2.81516130851E-08 2.99671937635E-08 3.18998651614E-08 3.39571785690E-08 3.61471722431E-08 3.84784028195E-08 4.09599787380E-08 4.36015958298E-08 4.64135751823E-08 4.94069034737E-08 5.25932758798E-08 5.59851417769E-08 5.95957533438E-08 6.34392173736E-08 6.75305503364E-08 7.18857370625E-08 7.65217931729E-08 8.14568315573E-08 8.67101331064E-08 9.23022220391E-08 9.82549460673E-08 1.04591561722E-07 1.11336825204E-07 1.18517089073E-07 1.26160405162E-07 1.34296634166E-07 1.42957562229E-07 1.52177025113E-07 1.61991040339E-07 1.72437947833E-07 1.83558559667E-07 1.95396319430E-07 2.07997471888E-07 2.21411243554E-07 2.35690034919E-07 2.50889625064E-07 2.67069389453E-07 2.84292531773E-07 3.02626330694E-07 3.22142402547E-07 3.42916980931E-07 3.65031214316E-07 3.88571482829E-07 4.13629735470E-07 4.40303849011E-07 4.68698010068E-07 4.98923121724E-07 5.31097236409E-07 5.65346016604E-07 6.01803225265E-07 6.40611247793E-07 6.81921647642E-07 7.25895757705E-07 7.72705309759E-07 8.22533104460E-07 8.75573724465E-07 9.32034293441E-07 9.92135283970E-07 1.05611137743E-06 1.12421237918E-06 1.19670419275E-06 1.27386985655E-06 1.35601064746E-06 1.44344725525E-06 1.53652103266E-06 1.63559532582E-06 1.74105689022E-06 1.85331739781E-06 1.97281504083E-06 2.10001623890E-06 2.23541745571E-06 2.37954713252E-06 2.53296774581E-06 2.69627799719E-06 2.87011514386E-06 3.05515747882E-06 3.25212697021E-06 3.46179207009E-06 3.68497070352E-06 3.92253344924E-06 4.17540692455E-06 4.44457738713E-06 4.73109456771E-06 5.03607574846E-06 5.36071010263E-06 5.70626331208E-06 6.07408248053E-06 6.46560136122E-06 6.88234591905E-06 7.32594024841E-06 7.79811286948E-06 8.30070342664E-06 8.83566981498E-06 9.40509576173E-06 1.00111988914E-05 1.06563393054E-05 1.13430287090E-05 1.20739401188E-05 1.28519181895E-05 1.36799901971E-05 1.45613777212E-05 1.54995090689E-05 1.64980324884E-05 1.75608302215E-05 1.86920334463E-05 1.98960381676E-05 2.11775221126E-05 2.25414626960E-05 2.39931561201E-05 2.55382376807E-05 2.71827033536E-05 2.89329327416E-05 3.07957134648E-05 3.27782670848E-05 3.48882766557E-05 3.71339160028E-05 3.95238808349E-05 4.20674218008E-05 4.47743796104E-05 4.76552223449E-05 5.07210850879E-05 5.39838120197E-05 5.74560011208E-05 6.11510516425E-05 6.50832145096E-05 6.92676458300E-05 7.37204636947E-05 7.84588084635E-05 8.35009067408E-05 8.88661392572E-05 9.45751128846E-05 1.00649737024E-04 1.07113304619E-04 1.13990578055E-04 1.21307880232E-04 1.29093191090E-04 1.37376249906E-04 1.46188663674E-04 1.55564021910E-04 1.65538018234E-04 1.76148579092E-04 1.87436000010E-04 1.99443089769E-04 2.12215322940E-04 2.25801001185E-04 2.40251423801E-04 2.55621067962E-04 2.71967779147E-04 2.89352972263E-04 3.07841843970E-04 3.27503596746E-04 3.48411675253E-04 3.70644015543E-04 3.94283307699E-04 4.19417272487E-04 4.46138952619E-04 4.74547019220E-04 5.04746094121E-04 5.36847088566E-04 5.70967558958E-04 6.07232080222E-04 6.45772637395E-04 6.86729036000E-04 7.30249331751E-04 7.76490280126E-04 8.25617806275E-04 8.77807495710E-04 9.33245106152E-04 9.92127100863E-04 1.05466120369E-03 1.12106697599E-03 1.19157641541E-03 1.26643457659E-03 1.34590021336E-03 1.43024644220E-03 1.51976142638E-03 1.61474907997E-03 1.71552979067E-03 1.82244116036E-03 1.93583876158E-03 2.05609690836E-03 2.18360943880E-03 2.31879050711E-03 2.46207538182E-03 2.61392124662E-03 2.77480799982E-03 2.94523904776E-03 3.12574208664E-03 3.31686986717E-03 3.51920093489E-03 3.73334033886E-03 3.95992030018E-03 4.19960083104E-03 4.45307029380E-03 4.72104588885E-03 5.00427405838E-03 5.30353079254E-03 5.61962182267E-03 5.95338268531E-03 6.30567863904E-03 6.67740441496E-03 7.06948377979E-03 7.48286888946E-03 7.91853940896E-03 8.37750137301E-03 8.86078576030E-03 9.36944675246E-03 9.90455964749E-03 1.04672183956E-02 1.10585327245E-02 1.16796248191E-02 1.23316255203E-02 1.30156700066E-02 1.37328929205E-02 1.44844229026E-02 1.52713764962E-02 1.60948513851E-02 1.69559189282E-02 1.78556159573E-02 1.87949358057E-02 1.97748185388E-02 2.07961403606E-02 2.18597021779E-02 2.29662173067E-02 2.41162983138E-02 2.53104429966E-02 2.65490195109E-02 2.78322506719E-02 2.91601974614E-02 3.05327417957E-02 3.19495686192E-02 3.34101474094E-02 3.49137132020E-02 3.64592472609E-02 3.80454575493E-02 3.96707591765E-02 4.13332550288E-02 4.30307168188E-02 4.47605668162E-02 4.65198605595E-02 4.83052708733E-02 5.01130735526E-02 5.19391351037E-02 5.37789029621E-02 5.56273986352E-02 5.74792142407E-02 5.93285129350E-02 6.11690337351E-02 6.29941012507E-02 6.47966408397E-02 6.65691996888E-02 6.83039743031E-02 6.99928448475E-02 7.16274167386E-02 7.31990698124E-02 7.46990153142E-02 7.61183608467E-02 7.74481832883E-02 7.86796095466E-02 7.98039048390E-02 8.08125680015E-02 8.16974331100E-02 8.24507764660E-02 8.30654277445E-02 8.35348838362E-02 8.38534236393E-02 8.40162217796E-02 8.40194589599E-02 8.38604263824E-02 8.35376214488E-02 8.30508317439E-02 8.24012041584E-02 8.15912959238E-02 8.06251043254E-02 7.95080719591E-02 7.82470646029E-02 7.68503191172E-02 7.53273592721E-02 7.36888780461E-02 7.19465857522E-02 7.01130243299E-02 6.82013492993E-02 6.62250821848E-02 6.41978376775E-02 6.21330313753E-02 6.00435755862E-02 5.79415723417E-02 5.58380143861E-02 5.37425063854E-02 5.16630198600E-02 4.96056962591E-02 4.75747130566E-02 4.55722276203E-02 4.35984127626E-02 4.16515961870E-02 3.97285133884E-02 3.78246798350E-02 3.59348833964E-02 3.40537919434E-02 3.21766638528E-02 3.03001408980E-02 2.84230938420E-02 2.65480422379E-02 2.46822566506E-02 2.28340150515E-02 2.10116632543E-02 1.92235404612E-02 1.74778989364E-02 1.57828183315E-02 1.41461153450E-02 1.25752495658E-02 1.10772265379E-02 9.65849926602E-03 8.32486958435E-03 7.08139100486E-03 5.93227486341E-03 4.88080177443E-03 3.92924058938E-03 3.07877722289E-03 2.32945585666E-03 1.68013514812E-03 1.12846214994E-03 6.70866679053E-04 3.02578850304E-04 1.76723999889E-05 -1.90863742281E-04 -3.31023429723E-04 -4.11648972490E-04 -4.42263123211E-04 -4.32866570919E-04 -3.93700853216E-04 -3.34977446549E-04 -2.66574787368E-04 -1.97706115518E-04 -1.36078742622E-04 -8.59767535137E-05 -4.91682786022E-05 -2.49856624438E-05 -1.05250922096E-05 -3.11342115239E-06 -3.88463432532E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.58595759729E-23 1.68824307439E-23 1.79712539799E-23 1.91303002814E-23 2.03640986470E-23 2.16774701706E-23 2.30755468799E-23 2.45637917901E-23 2.61480202506E-23 2.78344226684E-23 2.96295886977E-23 3.15405329887E-23 3.35747225977E-23 3.57401061649E-23 3.80451449737E-23 4.04988460132E-23 4.31107971735E-23 4.58912047107E-23 4.88509331276E-23 5.20015476272E-23 5.53553593043E-23 5.89254732507E-23 6.27258397644E-23 6.67713088601E-23 7.10776882962E-23 7.56618053439E-23 8.05415725402E-23 8.57360576815E-23 9.12655583313E-23 9.71516811336E-23 1.03417426241E-22 1.10087277189E-22 1.17187296565E-22 1.24745227849E-22 1.32790603821E-22 1.41354861964E-22 1.50471467301E-22 1.60176043167E-22 1.70506510403E-22 1.81503235533E-22 1.93209188500E-22 2.05670110570E-22 2.18934693066E-22 2.33054767633E-22 2.48085508770E-22 2.64085649423E-22 2.81117710490E-22 2.99248245119E-22 3.18548098770E-22 3.39092686038E-22 3.60962285346E-22 3.84242352629E-22 4.09023855254E-22 4.35403627482E-22 4.63484748846E-22 4.93376946938E-22 5.25197026172E-22 5.59069324199E-22 5.95126197759E-22 6.33508539870E-22 6.74366330366E-22 7.17859221954E-22 7.64157164050E-22 8.13441066871E-22 8.65903508338E-22 9.21749486580E-22 9.81197220972E-22 1.04447900483E-21 1.11184211309E-21 1.18354976857E-21 1.25988217049E-21 1.34113758937E-21 1.42763353253E-21 1.51970798474E-21 1.61772072892E-21 1.72205475200E-21 1.83311774145E-21 1.95134367831E-21 2.07719453300E-21 2.21116207046E-21 2.35376977176E-21 2.50557487960E-21 2.66717057572E-21 2.83918829883E-21 3.02230021191E-21 3.21722182875E-21 3.42471480980E-21 3.64558993838E-21 3.88071028887E-21 4.13099459914E-21 4.39742086058E-21 4.68103013959E-21 4.98293064558E-21 5.30430206136E-21 5.64640015271E-21 6.01056167535E-21 6.39820959835E-21 6.81085866438E-21 7.25012130866E-21 7.71771395949E-21 8.21546374532E-21 8.74531563426E-21 9.30934003408E-21 9.90974088238E-21 1.05488642585E-20 1.12292075510E-20 1.19534292159E-20 1.27243591653E-20 1.35450098246E-20 1.44185879041E-20 1.53485069292E-20 1.63384005787E-20 1.73921368834E-20 1.85138333409E-20 1.97078730045E-20 2.09789216101E-20 2.23319458077E-20 2.37722325689E-20 2.53054098454E-20 2.69374685607E-20 2.86747860198E-20 3.05241508283E-20 3.24927894195E-20 3.45883942913E-20 3.68191540654E-20 3.91937854841E-20 4.17215674712E-20 4.44123773898E-20 4.72767296381E-20 5.03258167346E-20 5.35715530536E-20 5.70266213802E-20 6.07045224690E-20 6.46196277983E-20 6.87872357274E-20 7.32236312747E-20 7.79461497522E-20 8.29732445036E-20 8.83245590107E-20 9.40210036512E-20 1.00084837406E-19 1.06539754839E-19 1.13410978678E-19 1.20725358380E-19 1.28511475043E-19 1.36799753087E-19 1.45622579139E-19 1.55014428583E-19 1.65012000275E-19 1.75654359943E-19 1.86983092839E-19 1.99042466232E-19 2.11879602387E-19 2.25544662692E-19 2.40091043667E-19 2.55575585612E-19 2.72058794709E-19 2.89605079459E-19 3.08283002348E-19 3.28165547766E-19 3.49330407193E-19 3.71860282774E-19 3.95843210490E-19 4.21372904151E-19 4.48549121589E-19 4.77478054465E-19 5.08272743212E-19 5.41053518745E-19 5.75948472657E-19 6.13093957738E-19 6.52635120779E-19 6.94726469732E-19 7.39532477457E-19 7.87228224404E-19 8.38000082740E-19 8.92046444603E-19 9.49578497327E-19 1.01082104866E-18 1.07601340519E-18 1.14541030748E-18 1.21928292543E-18 1.29791991790E-18 1.38162856064E-18 1.47073594699E-18 1.56559026600E-18 1.66656216298E-18 1.77404618781E-18 1.88846233666E-18 2.01025769311E-18 2.13990817515E-18 2.27792039487E-18 2.42483363801E-18 2.58122197125E-18 2.74769648541E-18 2.92490768327E-18 3.11354802142E-18 3.31435461608E-18 3.52811212339E-18 3.75565580545E-18 3.99787479412E-18 4.25571556538E-18 4.53018563763E-18 4.82235750864E-18 5.13337284633E-18 5.46444694989E-18 5.81687349858E-18 6.19202960677E-18 6.59138120510E-18 7.01648876861E-18 7.46901341434E-18 7.95072339217E-18 8.46350099427E-18 9.00934991027E-18 9.59040305666E-18 1.02089309112E-17 1.08673503849E-17 1.15682342662E-17 1.23143212740E-17 1.31085267595E-17 1.39539540979E-17 1.48539068149E-17 1.58119014951E-17 1.68316815237E-17 1.79172317132E-17 1.90727938745E-17 2.03028833918E-17 2.16123068666E-17 2.30061808996E-17 2.44899520837E-17 2.60694182870E-17 2.77507513081E-17 2.95405209921E-17 3.14457209028E-17 3.34737956504E-17 3.56326699807E-17 3.79307797421E-17 4.03771048483E-17 4.29812043677E-17 4.57532538756E-17 4.87040852155E-17 5.18452288250E-17 5.51889587907E-17 5.87483408099E-17 6.25372832450E-17 6.65705914708E-17 7.08640257264E-17 7.54343626994E-17 8.02994610803E-17 8.54783313467E-17 9.09912100461E-17 9.68596388717E-17 1.03106548836E-16 1.09756349875E-16 1.16835026231E-16 1.24370237984E-16 1.32391429137E-16 1.40929942670E-16 1.50019143007E-16 1.59694546397E-16 1.69993959687E-16 1.80957628058E-16 1.92628392281E-16 2.05051856120E-16 2.18276564529E-16 2.32354193341E-16 2.47339751197E-16 2.63291794486E-16 2.80272656165E-16 2.98348689315E-16 3.17590526429E-16 3.38073355401E-16 3.59877213327E-16 3.83087299253E-16 4.07794307092E-16 4.34094780011E-16 4.62091487675E-16 4.91893827826E-16 5.23618253749E-16 5.57388729325E-16 5.93337213417E-16 6.31604175501E-16 6.72339144557E-16 7.15701293357E-16 7.61860060433E-16 8.10995812161E-16 8.63300547552E-16 9.18978648487E-16 9.78247678346E-16 1.04133923214E-15 1.10849984147E-15 1.17999193788E-15 1.25609487826E-15 1.33710603649E-15 1.42334196542E-15 1.51513963380E-15 1.61285774299E-15 1.71687812861E-15 1.82760725254E-15 1.94547779123E-15 2.07095032633E-15 2.20451514448E-15 2.34669415306E-15 2.49804291962E-15 2.65915284269E-15 2.83065346278E-15 3.01321492222E-15 3.20755058384E-15 3.41441981840E-15 3.63463097188E-15 3.86904452407E-15 4.11857645095E-15 4.38420180386E-15 4.66695851956E-15 4.96795147597E-15 5.28835680950E-15 5.62942651084E-15 5.99249331714E-15 6.37897591970E-15 6.79038450754E-15 7.22832666850E-15 7.69451367092E-15 8.19076715044E-15 8.71902622812E-15 9.28135508755E-15 9.87995104073E-15 1.05171531141E-14 1.11954511882E-14 1.19174957274E-14 1.26861081359E-14 1.35042917830E-14 1.43752437387E-14 1.53023672663E-14 1.62892851206E-14 1.73398537039E-14 1.84581781354E-14 1.96486282912E-14 2.09158558807E-14 2.22648126223E-14 2.37007695931E-14 2.52293378250E-14 2.68564902308E-14 2.85885849427E-14 3.04323901572E-14 3.23951105821E-14 3.44844155885E-14 3.67084691796E-14 3.90759618914E-14 4.15961447514E-14 4.42788654268E-14 4.71346067047E-14 5.01745274538E-14 5.34105062279E-14 5.68551876814E-14 6.05220319789E-14 6.44253673908E-14 6.85804462811E-14 7.30035047070E-14 7.77118258608E-14 8.27238076049E-14 8.80590343617E-14 9.37383536398E-14 9.97839574963E-14 1.06219469253E-13 1.13070035804E-13 1.20362425879E-13 1.28125134642E-13 1.36388495035E-13 1.45184796310E-13 1.54548410192E-13 1.64515925193E-13 1.75126289581E-13 1.86420963571E-13 1.98444081328E-13 2.11242623431E-13 2.24866600439E-13 2.39369248319E-13 2.54807236457E-13 2.71240889102E-13 2.88734421082E-13 3.07356188722E-13 3.27178956950E-13 3.48280183628E-13 3.70742322216E-13 3.94653143968E-13 4.20106080889E-13 4.47200590834E-13 4.76042546132E-13 5.06744647288E-13 5.39426863363E-13 5.74216900751E-13 6.11250702201E-13 6.50672978007E-13 6.92637771475E-13 7.37309060842E-13 7.84861400027E-13 8.35480600706E-13 8.89364458368E-13 9.46723525210E-13 1.00778193287E-12 1.07277826823E-12 1.14196650568E-12 1.21561699956E-12 1.29401754054E-12 1.37747448019E-12 1.46631392803E-12 1.56088302585E-12 1.66155130412E-12 1.76871212597E-12 1.88278422424E-12 2.00421333772E-12 2.13347395284E-12 2.27107115776E-12 2.41754261599E-12 2.57346066733E-12 2.73943456430E-12 2.91611285278E-12 3.10418590623E-12 3.30438862336E-12 3.51750329967E-12 3.74436268438E-12 3.98585323434E-12 4.24291857790E-12 4.51656320215E-12 4.80785637795E-12 5.11793633812E-12 5.44801472510E-12 5.79938132547E-12 6.17340910979E-12 6.57155959748E-12 6.99538856777E-12 7.44655213887E-12 7.92681323928E-12 8.43804849649E-12 8.98225556986E-12 9.56156095801E-12 1.01782283015E-11 1.08346672442E-11 1.15334428151E-11 1.22772855032E-11 1.30691018828E-11 1.39119859855E-11 1.48092313981E-11 1.57643440894E-11 1.67810562248E-11 1.78633405731E-11 1.90154262020E-11 2.02418148897E-11 2.15472987608E-11 2.29369790261E-11 2.44162858476E-11 2.59909996620E-11 2.76672736656E-11 2.94516579255E-11 3.13511249227E-11 3.33730968689E-11 3.55254746275E-11 3.78166686182E-11 4.02556317279E-11 4.28518942233E-11 4.56156010053E-11 4.85575512892E-11 5.16892407741E-11 5.50229065696E-11 5.85715749655E-11 6.23491123790E-11 6.63702796291E-11 7.06507894122E-11 7.52073678675E-11 8.00578198470E-11 8.52210985344E-11 9.07173793221E-11 9.65681391104E-11 1.02796239768E-10 1.09426017397E-10 1.16483378056E-10 1.23995898420E-10 1.31992933589E-10 1.40505731922E-10 1.49567557155E-10 1.59213818592E-10 1.69482208778E-10 1.80412851465E-10 1.92048458108E-10 2.04434494848E-10 2.17619360056E-10 2.31654573407E-10 2.46594977592E-10 2.62498952072E-10 2.79428641388E-10 2.97450198495E-10 3.16634042056E-10 3.37055132984E-10 3.58793266392E-10 3.81933384000E-10 4.06565905236E-10 4.32787081624E-10 4.60699371703E-10 4.90411842489E-10 5.22040595193E-10 5.55709218186E-10 5.91549271308E-10 6.29700798708E-10 6.70312876721E-10 7.13544196213E-10 7.59563682494E-10 8.08551155328E-10 8.60698032504E-10 9.16208076197E-10 9.75298190767E-10 1.03819926789E-09 1.10515709248E-09 1.17643329995E-09 1.25230639931E-09 1.33307286218E-09 1.41904828059E-09 1.51056859946E-09 1.60799143131E-09 1.71169745086E-09 1.82209188498E-09 1.93960609489E-09 2.06469926159E-09 2.19786017972E-09 2.33960916863E-09 2.49050010477E-09 2.65112258532E-09 2.82210423261E-09 3.00411314763E-09 3.19786051665E-09 3.40410339578E-09 3.62364766292E-09 3.85735117158E-09 4.10612710094E-09 4.37094752209E-09 4.65284719864E-09 4.95292762948E-09 5.27236135089E-09 5.61239652339E-09 5.97436179704E-09 6.35967151795E-09 6.76983124163E-09 7.20644362272E-09 7.67121467496E-09 8.16596043742E-09 8.69261406805E-09 9.25323339911E-09 9.85000897847E-09 1.04852726247E-08 1.11615065392E-08 1.18813530077E-08 1.26476247198E-08 1.34633157629E-08 1.43316133163E-08 1.52559101025E-08 1.62398176497E-08 1.72871803960E-08 1.84020907114E-08 1.95889048873E-08 2.08522601595E-08 2.21970928179E-08 2.36286574990E-08 2.51525477155E-08 2.67747177062E-08 2.85015056975E-08 3.03396586759E-08 3.22963587323E-08 3.43792511344E-08 3.65964741827E-08 3.89566910226E-08 4.14691234707E-08 4.41435880490E-08 4.69905343393E-08 5.00210857998E-08 5.32470832240E-08 5.66811309925E-08 6.03366463153E-08 6.42279116474E-08 6.83701304827E-08 7.27794867412E-08 7.74732079939E-08 8.24696327527E-08 8.77882821156E-08 9.34499360066E-08 9.94767143580E-08 1.05892163509E-07 1.12721348174E-07 1.19990949351E-07 1.27729368532E-07 1.35966838640E-07 1.44735542100E-07 1.54069736557E-07 1.64005888648E-07 1.74582816436E-07 1.85841841028E-07 1.97826947917E-07 2.10584958785E-07 2.24165714348E-07 2.38622268971E-07 2.54011097873E-07 2.70392317629E-07 2.87829920933E-07 3.06392026455E-07 3.26151144818E-07 3.47184461705E-07 3.69574139223E-07 3.93407636654E-07 4.18778051915E-07 4.45784484985E-07 4.74532424763E-07 5.05134160829E-07 5.37709221762E-07 5.72384841661E-07 6.09296456750E-07 6.48588233912E-07 6.90413633338E-07 7.34936007356E-07 7.82329237835E-07 8.32778414640E-07 8.86480557768E-07 9.43645385985E-07 1.00449613492E-06 1.06927042784E-06 1.13822120250E-06 1.21161769756E-06 1.28974650259E-06 1.37291267556E-06 1.46144093225E-06 1.55567691220E-06 1.65598852608E-06 1.76276738967E-06 1.87643035017E-06 1.99742111054E-06 2.12621195830E-06 2.26330560553E-06 2.40923714704E-06 2.56457614437E-06 2.72992884382E-06 2.90594053676E-06 3.09329807170E-06 3.29273252761E-06 3.50502205883E-06 3.73099492263E-06 3.97153270107E-06 4.22757372950E-06 4.50011674499E-06 4.79022476876E-06 5.09902923739E-06 5.42773439890E-06 5.77762199041E-06 6.15005621539E-06 6.54648903960E-06 6.96846582601E-06 7.41763133019E-06 7.89573607921E-06 8.40464315828E-06 8.94633543113E-06 9.52292322150E-06 1.01366524852E-05 1.07899135036E-05 1.14852501315E-05 1.22253696346E-05 1.30131531542E-05 1.38516668370E-05 1.47441736747E-05 1.56941460956E-05 1.67052793564E-05 1.77815057850E-05 1.89270099266E-05 2.01462446505E-05 2.14439482778E-05 2.28251627923E-05 2.42952532041E-05 2.58599281367E-05 2.75252617133E-05 2.92977168232E-05 3.11841698545E-05 3.31919369822E-05 3.53288021089E-05 3.76030465590E-05 4.00234806345E-05 4.25994771457E-05 4.53410070385E-05 4.82586772447E-05 5.13637708911E-05 5.46682900104E-05 5.81850009040E-05 6.19274823168E-05 6.59101765925E-05 7.01484439878E-05 7.46586203324E-05 7.94580782338E-05 8.45652920356E-05 8.99999067507E-05 9.57828111998E-05 1.01936215602E-04 1.08483733871E-04 1.15450470897E-04 1.22863115081E-04 1.30750036446E-04 1.39141390611E-04 1.48069228979E-04 1.57567615473E-04 1.67672750186E-04 1.78423100316E-04 1.89859538787E-04 2.02025490975E-04 2.14967089948E-04 2.28733340691E-04 2.43376293769E-04 2.58951228911E-04 2.75516849028E-04 2.93135485173E-04 3.11873312984E-04 3.31800581169E-04 3.52991852595E-04 3.75526258573E-04 3.99487766936E-04 4.24965464528E-04 4.52053854715E-04 4.80853170567E-04 5.11469704338E-04 5.44016153892E-04 5.78611986720E-04 6.15383822182E-04 6.54465832607E-04 6.96000163877E-04 7.40137376082E-04 7.87036904823E-04 8.36867543712E-04 8.89807948550E-04 9.46047163649E-04 1.00578517066E-03 1.06923346026E-03 1.13661562683E-03 1.20816798641E-03 1.28414021771E-03 1.36479602629E-03 1.45041383141E-03 1.54128747520E-03 1.63772695352E-03 1.74005916745E-03 1.84862869443E-03 1.96379857758E-03 2.08595113132E-03 2.21548876138E-03 2.35283479653E-03 2.49843432917E-03 2.65275506130E-03 2.81628815200E-03 2.98954906183E-03 3.17307838892E-03 3.36744269106E-03 3.57323528694E-03 3.79107702939E-03 4.02161704198E-03 4.26553341003E-03 4.52353381551E-03 4.79635610456E-03 5.08476877506E-03 5.38957137043E-03 5.71159476459E-03 6.05170132160E-03 6.41078491191E-03 6.78977076594E-03 7.18961514377E-03 7.61130479832E-03 8.05585620769E-03 8.52431455048E-03 9.01775239636E-03 9.53726808239E-03 1.00839837438E-02 1.06590429662E-02 1.12636080254E-02 1.18988566777E-02 1.25659784644E-02 1.32661704921E-02 1.40006326487E-02 1.47705622158E-02 1.55771478370E-02 1.64215628023E-02 1.73049576095E-02 1.82284517634E-02 1.91931247781E-02 2.02000063471E-02 2.12500656530E-02 2.23441997898E-02 2.34832212786E-02 2.46678446624E-02 2.58986721768E-02 2.71761784986E-02 2.85006945892E-02 2.98723906602E-02 3.12912583037E-02 3.27570918471E-02 3.42694690072E-02 3.58277309437E-02 3.74309618304E-02 3.90779680871E-02 4.07672574450E-02 4.24970180420E-02 4.42650977773E-02 4.60689841854E-02 4.79057851223E-02 4.97722105908E-02 5.16645560657E-02 5.35786877127E-02 5.55100299315E-02 5.74535556806E-02 5.94037800737E-02 6.13547577615E-02 6.33000846350E-02 6.52329043976E-02 6.71459205640E-02 6.90314144382E-02 7.08812696116E-02 7.26870034940E-02 7.44398063506E-02 7.61305882601E-02 7.77500343334E-02 7.92886684356E-02 8.07369255372E-02 8.20852326795E-02 8.33240983741E-02 8.44442100690E-02 8.54365390995E-02 8.62924523062E-02 8.70038292462E-02 8.75631836453E-02 8.79637874505E-02 8.81997955414E-02 8.82663688569E-02 8.81597934004E-02 8.78775923037E-02 8.74186278832E-02 8.67831904087E-02 8.59730701558E-02 8.49916092320E-02 8.38437296767E-02 8.25359344568E-02 8.10762782234E-02 7.94743050870E-02 7.77409512156E-02 7.58884107840E-02 7.39299647046E-02 7.18797726605E-02 6.97526302314E-02 6.75636943481E-02 6.53281819018E-02 6.30610480448E-02 6.07766524990E-02 5.84884239800E-02 5.62085345664E-02 5.39475974184E-02 5.17144025513E-02 4.95157063007E-02 4.73560905287E-02 4.52379073858E-02 4.31613244188E-02 4.11244828649E-02 3.91237789679E-02 3.71542740011E-02 3.52102333026E-02 3.32857880074E-02 3.13757053306E-02 2.94762443174E-02 2.75860641311E-02 2.57076624138E-02 2.38482682494E-02 2.20159954205E-02 2.02189046286E-02 1.84649247039E-02 1.67617696711E-02 1.51168524765E-02 1.35371963434E-02 1.20293448860E-02 1.05992722768E-02 9.25229493237E-03 7.99298633780E-03 6.82509678767E-03 5.75147995448E-03 4.77402831665E-03 3.89361956950E-03 3.11007620251E-03 2.42214044678E-03 1.82746676932E-03 1.32263400852E-03 9.03179099885E-04 5.63654124177E-04 2.97708114508E-04 9.81946772248E-05 -4.26939929042E-05 -1.33266694005E-04 -1.82147057741E-04 -1.98063085283E-04 -1.89614687076E-04 -1.65022500919E-04 -1.31862312441E-04 -9.67905201126E-05 -6.50271207647E-05 -3.94431751680E-05 -2.12079901946E-05 -9.92069973733E-06 -3.78842528051E-06 -9.98306663468E-07 -1.08391397385E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 7 2 i j (l(j)) 7.64381749930E-01 Q_int 8.22070354174E-26 8.86096605576E-26 9.55109487193E-26 1.02949737848E-25 1.10967890751E-25 1.19610530682E-25 1.28926295285E-25 1.38967610302E-25 1.49790984610E-25 1.61457328235E-25 1.74032295124E-25 1.87586652629E-25 2.02196679756E-25 2.17944596437E-25 2.34919026234E-25 2.53215495078E-25 2.72936968858E-25 2.94194432873E-25 3.17107516418E-25 3.41805166012E-25 3.68426371068E-25 3.97120946069E-25 4.28050373670E-25 4.61388713469E-25 4.97323581545E-25 5.36057206298E-25 5.77807566514E-25 6.22809618072E-25 6.71316616190E-25 7.23601540652E-25 7.79958632042E-25 8.40705047623E-25 9.06182646179E-25 9.76759911878E-25 1.05283402796E-24 1.13483311195E-24 1.22321862494E-24 1.31848796852E-24 1.42117728400E-24 1.53186446957E-24 1.65117243256E-24 1.77977259489E-24 1.91838867160E-24 2.06780074369E-24 2.22884964807E-24 2.40244170955E-24 2.58955384125E-24 2.79123904234E-24 3.00863232397E-24 3.24295709663E-24 3.49553205512E-24 3.76777859963E-24 4.06122883494E-24 4.37753419249E-24 4.71847472403E-24 5.08596911917E-24 5.48208550299E-24 5.90905307476E-24 6.36927465303E-24 6.86534019782E-24 7.40004138601E-24 7.97638732183E-24 8.59762147106E-24 9.26723991402E-24 9.98901102032E-24 1.07669966558E-23 1.16055750412E-23 1.25094653915E-23 1.34837544734E-23 1.45339252323E-23 1.56658876481E-23 1.68860119945E-23 1.82011646884E-23 1.96187469318E-23 2.11467363632E-23 2.27937319524E-23 2.45690023930E-23 2.64825382624E-23 2.85451082461E-23 3.07683197394E-23 3.31646841694E-23 3.57476874055E-23 3.85318656521E-23 4.15328872540E-23 4.47676408713E-23 4.82543305232E-23 5.20125780333E-23 5.60635334543E-23 6.04299940929E-23 6.51365328044E-23 7.02096362800E-23 7.56778541045E-23 8.15719594225E-23 8.79251221191E-23 9.47730954872E-23 1.02154417435E-22 1.10110627362E-22 1.18686499930E-22 1.27930297035E-22 1.37894039412E-22 1.48633799384E-22 1.60210016421E-22 1.72687837269E-22 1.86137482574E-22 2.00634642054E-22 2.16260900460E-22 2.33104196698E-22 2.51259318724E-22 2.70828436970E-22 2.91921679328E-22 3.14657750905E-22 3.39164602054E-22 3.65580148433E-22 3.94053047142E-22 4.24743533313E-22 4.57824321855E-22 4.93481579429E-22 5.31915972127E-22 5.73343794751E-22 6.17998188037E-22 6.66130450686E-22 7.18011453587E-22 7.73933164174E-22 8.34210289517E-22 8.99182047376E-22 9.69214075196E-22 1.04470048778E-21 1.12606609523E-21 1.21376879362E-21 1.30830214185E-21 1.41019813926E-21 1.52003021949E-21 1.63841647756E-21 1.76602314830E-21 1.90356835567E-21 2.05182615410E-21 2.21163088457E-21 2.38388187001E-21 2.56954847635E-21 2.76967556773E-21 2.98538938666E-21 3.21790389206E-21 3.46852759101E-21 3.73867090255E-21 4.02985409498E-21 4.34371584140E-21 4.68202244154E-21 5.04667776189E-21 5.43973394992E-21 5.86340298285E-21 6.32006911585E-21 6.81230229975E-21 7.34287264376E-21 7.91476600471E-21 8.53120079026E-21 9.19564607101E-21 9.91184110313E-21 1.06838163715E-20 1.15159162719E-20 1.24128235596E-20 1.33795857021E-20 1.44216432848E-20 1.55448606280E-20 1.67555587900E-20 1.80605511389E-20 1.94671816961E-20 2.09833664660E-20 2.26176379838E-20 2.43791933340E-20 2.62779459081E-20 2.83245811934E-20 3.05306169070E-20 3.29084678135E-20 3.54715155907E-20 3.82341841367E-20 4.12120207422E-20 4.44217835853E-20 4.78815360400E-20 5.16107483305E-20 5.56304071026E-20 5.99631335284E-20 6.46333106103E-20 6.96672203996E-20 7.50931919021E-20 8.09417605033E-20 8.72458398106E-20 9.40409068788E-20 1.01365201862E-19 1.09259943214E-19 1.17769559654E-19 1.26941940191E-19 1.36828703628E-19 1.47485489052E-19 1.58972268952E-19 1.71353686722E-19 1.84699420448E-19 1.99084575032E-19 2.14590104857E-19 2.31303269364E-19 2.49318124119E-19 2.68736050121E-19 2.89666324340E-19 3.12226734683E-19 3.36544242865E-19 3.62755698900E-19 3.91008611241E-19 4.21461976909E-19 4.54287176260E-19 4.89668937460E-19 5.27806376060E-19 5.68914115544E-19 6.13223495157E-19 6.60983871789E-19 7.12464023266E-19 7.67953660932E-19 8.27765060037E-19 8.92234817102E-19 9.61725744165E-19 1.03662891055E-18 1.11736584364E-18 1.20439090113E-18 1.29819382791E-18 1.39930251222E-18 1.50828595638E-18 1.62575747894E-18 1.75237816619E-18 1.88886059252E-18 2.03597283052E-18 2.19454277338E-18 2.36546279399E-18 2.54969476688E-18 2.74827548126E-18 2.96232247570E-18 3.19304032721E-18 3.44172743015E-18 3.70978330309E-18 3.99871646478E-18 4.31015292351E-18 4.64584532769E-18 5.00768282906E-18 5.39770171416E-18 5.81809686371E-18 6.27123410464E-18 6.75966352398E-18 7.28613381986E-18 7.85360777004E-18 8.46527890538E-18 9.12458948174E-18 9.83524985169E-18 1.06012593450E-17 1.14269287751E-17 1.23169046991E-17 1.32761955665E-17 1.43101999048E-17 1.54247367003E-17 1.66260781455E-17 1.79209849359E-17 1.93167443172E-17 2.08212110946E-17 2.24428518369E-17 2.41907925226E-17 2.60748698980E-17 2.81056868340E-17 3.02946719948E-17 3.26541441545E-17 3.51973815217E-17 3.79386964643E-17 4.08935160538E-17 4.40784688825E-17 4.75114786429E-17 5.12118649949E-17 5.52004522889E-17 5.94996867574E-17 6.41337628329E-17 6.91287593044E-17 7.45127860786E-17 8.03161423708E-17 8.65714872166E-17 9.33140232635E-17 1.00581694877E-16 1.08415401677E-16 1.16859228701E-16 1.25960694500E-16 1.35771018552E-16 1.46345409503E-16 1.57743375859E-16 1.70029060875E-16 1.83271603525E-16 1.97545527591E-16 2.12931161047E-16 2.29515088111E-16 2.47390636507E-16 2.66658402673E-16 2.87426817872E-16 3.09812758398E-16 3.33942203306E-16 3.59950943368E-16 3.87985345241E-16 4.18203175157E-16 4.50774486763E-16 4.85882578104E-16 5.23725023149E-16 5.64514783641E-16 6.08481407560E-16 6.55872320908E-16 7.06954220114E-16 7.62014572880E-16 8.21363235919E-16 8.85334198683E-16 9.54287462907E-16 1.02861106852E-15 1.10872327738E-15 1.19507492702E-15 1.28815196777E-15 1.38847819744E-15 1.49661820904E-15 1.61318056800E-15 1.73882123688E-15 1.87424726685E-15 2.02022077659E-15 2.17756324111E-15 2.34716011466E-15 2.52996581356E-15 2.72700908721E-15 2.93939880738E-15 3.16833020835E-15 3.41509161306E-15 3.68107168318E-15 3.96776723373E-15 4.27679165639E-15 4.60988399879E-15 4.96891875096E-15 5.35591639395E-15 5.77305477002E-15 6.22268133828E-15 6.70732638498E-15 7.22971726250E-15 7.79279373736E-15 8.39972453357E-15 9.05392516441E-15 9.75907715296E-15 1.05191487496E-14 1.13384172628E-14 1.22214931296E-14 1.31733458602E-14 1.41993320032E-14 1.53052252895E-14 1.64972491225E-14 1.77821116003E-14 1.91670432642E-14 2.06598377876E-14 2.22688958340E-14 2.40032723303E-14 2.58727274219E-14 2.78877813965E-14 3.00597738849E-14 3.24009276729E-14 3.49244174828E-14 3.76444441112E-14 4.05763143415E-14 4.37365270790E-14 4.71428661952E-14 5.08145006021E-14 5.47720921209E-14 5.90379117508E-14 6.36359649936E-14 6.85921269376E-14 7.39342878630E-14 7.96925101854E-14 8.58991976239E-14 9.25892775419E-14 9.98003974898E-14 1.07573137054E-13 1.15951236203E-13 1.24981841422E-13 1.34715771005E-13 1.45207801023E-13 1.56516973548E-13 1.68706928892E-13 1.81846263711E-13 1.96008917008E-13 2.11274586185E-13 2.27729175507E-13 2.45465279481E-13 2.64582703892E-13 2.85189027398E-13 3.07400206883E-13 3.31341229928E-13 3.57146818117E-13 3.84962185094E-13 4.14943853673E-13 4.47260536563E-13 4.82094085698E-13 5.19640515480E-13 5.60111105719E-13 6.03733590460E-13 6.50753439387E-13 7.01435239024E-13 7.56064181485E-13 8.14947669169E-13 8.78417044412E-13 9.46829453835E-13 1.02056985788E-12 1.10005319682E-12 1.18572672546E-12 1.27807252965E-12 1.37761023872E-12 1.48489994919E-12 1.60054537616E-12 1.72519725002E-12 1.85955697777E-12 2.00438058935E-12 2.16048299139E-12 2.32874255207E-12 2.51010604308E-12 2.70559396639E-12 2.91630629580E-12 3.14342866557E-12 3.38823904098E-12 3.65211490827E-12 3.93654102443E-12 4.24311777052E-12 4.57357015531E-12 4.92975752011E-12 5.31368399920E-12 5.72750979477E-12 6.17356332980E-12 6.65435434719E-12 7.17258802881E-12 7.73118021395E-12 8.33327380269E-12 8.98225643642E-12 9.68177955505E-12 1.04357789380E-11 1.12484968435E-11 1.21245058802E-11 1.30687347080E-11 1.40864957902E-11 1.51835152616E-11 1.63659651654E-11 1.76404980747E-11 1.90142846664E-11 2.04950539278E-11 2.20911366940E-11 2.38115125118E-11 2.56658600565E-11 2.76646117164E-11 2.98190121618E-11 3.21411815820E-11 3.46441839878E-11 3.73421005171E-11 4.02501086806E-11 4.33845678750E-11 4.67631110901E-11 5.04047443692E-11 5.43299535469E-11 5.85608195085E-11 6.31211422012E-11 6.80365747999E-11 7.33347676166E-11 7.90455239231E-11 8.52009671886E-11 9.18357219540E-11 9.89871086894E-11 1.06695352771E-10 1.15003812360E-10 1.23959220036E-10 1.33611947316E-10 1.44016287015E-10 1.55230758685E-10 1.67318437375E-10 1.80347309236E-10 1.94390652027E-10 2.09527448421E-10 2.25842829643E-10 2.43428554009E-10 2.62383522248E-10 2.82814334592E-10 3.04835888631E-10 3.28572025906E-10 3.54156227668E-10 3.81732364915E-10 4.11455508758E-10 4.43492798601E-10 4.78024383851E-10 5.15244436053E-10 5.55362239907E-10 5.98603367526E-10 6.45210948932E-10 6.95447036581E-10 7.49594076471E-10 8.07956497846E-10 8.70862421275E-10 9.38665502048E-10 1.01174691853E-09 1.09051751183E-09 1.17542009346E-09 1.26693193447E-09 1.36556744323E-09 1.47188105679E-09 1.58647035287E-09 1.70997940630E-09 1.84310240717E-09 1.98658755663E-09 2.14124126745E-09 2.30793269601E-09 2.48759861351E-09 2.68124867368E-09 2.88997107532E-09 3.11493867106E-09 3.35741555071E-09 3.61876413495E-09 3.90045282176E-09 4.20406422461E-09 4.53130405767E-09 4.88401069962E-09 5.26416550873E-09 5.67390394275E-09 6.11552752545E-09 6.59151677525E-09 7.10454509619E-09 7.65749378736E-09 8.25346817647E-09 8.89581506506E-09 9.58814145464E-09 1.03343347967E-08 1.11385847626E-08 1.20054067427E-08 1.29396671247E-08 1.39466106001E-08 1.50318895180E-08 1.62015955590E-08 1.74622938622E-08 1.88210598068E-08 2.02855186085E-08 2.18638880448E-08 2.35650244445E-08 2.53984722907E-08 2.73745176150E-08 2.95042455923E-08 3.17996025532E-08 3.42734628333E-08 3.69397007927E-08 3.98132684195E-08 4.29102789461E-08 4.62480969592E-08 4.98454354626E-08 5.37224605068E-08 5.79009038460E-08 6.24041844241E-08 6.72575391764E-08 7.24881640055E-08 7.81253656796E-08 8.42007254396E-08 9.07482753381E-08 9.78046881477E-08 1.05409482025E-07 1.13605240977E-07 1.22437852403E-07 1.31956762938E-07 1.42215254172E-07 1.53270739627E-07 1.65185084672E-07 1.78024951218E-07 1.91862168954E-07 2.06774135369E-07 2.22844246568E-07 2.40162361365E-07 2.58825301264E-07 2.78937388954E-07 3.00611028359E-07 3.23967329485E-07 3.49136781367E-07 3.76259976966E-07 4.05488393892E-07 4.36985235310E-07 4.70926335630E-07 5.07501135924E-07 5.46913734408E-07 5.89384017874E-07 6.35148880053E-07 6.84463533832E-07 7.37602924190E-07 7.94863249892E-07 8.56563602143E-07 9.23047728911E-07 9.94685934869E-07 1.07187712731E-06 1.15505101871E-06 1.24467049848E-06 1.34123418660E-06 1.44527918268E-06 1.55738402601E-06 1.67817188183E-06 1.80831397194E-06 1.94853326741E-06 2.09960846392E-06 2.26237826078E-06 2.43774596691E-06 2.62668445871E-06 2.83024151594E-06 3.04954556507E-06 3.28581186007E-06 3.54034913452E-06 3.81456675994E-06 4.10998244931E-06 4.42823054627E-06 4.77107094439E-06 5.14039868434E-06 5.53825427926E-06 5.96683482372E-06 6.42850594480E-06 6.92581465870E-06 7.46150320045E-06 8.03852390028E-06 8.66005518378E-06 9.32951878137E-06 1.00505982361E-05 1.08272588071E-05 1.16637688729E-05 1.25647229459E-05 1.35350664171E-05 1.45801221613E-05 1.57056191385E-05 1.69177231407E-05 1.82230698423E-05 1.96288003237E-05 2.11425992511E-05 2.27727359072E-05 2.45281082834E-05 2.64182904559E-05 2.84535834890E-05 3.06450701216E-05 3.30046735130E-05 3.55452203447E-05 3.82805085942E-05 4.12253803197E-05 4.43957998196E-05 4.78089375541E-05 5.14832602451E-05 5.54386275988E-05 5.96963961272E-05 6.42795305761E-05 6.92127235036E-05 7.45225235906E-05 8.02374733039E-05 8.63882565742E-05 9.30078572003E-05 1.00131728732E-04 1.07797976641E-04 1.16047553647E-04 1.24924469100E-04 1.34476013426E-04 1.44752998660E-04 1.55810016182E-04 1.67705712858E-04 1.80503086831E-04 1.94269804317E-04 2.09078538839E-04 2.25007334418E-04 2.42139994338E-04 2.60566497219E-04 2.80383442210E-04 3.01694525258E-04 3.24611048506E-04 3.49252465009E-04 3.75746961091E-04 4.04232078798E-04 4.34855381040E-04 4.67775162194E-04 5.03161207070E-04 5.41195601325E-04 5.82073596577E-04 6.26004533660E-04 6.73212827635E-04 7.23939018390E-04 7.78440890840E-04 8.36994668967E-04 8.99896288155E-04 9.67462750482E-04 1.04003356789E-03 1.11797229835E-03 1.20166818046E-03 1.29153787200E-03 1.38802729844E-03 1.49161361747E-03 1.60280730590E-03 1.72215437563E-03 1.85023872558E-03 1.98768463662E-03 2.13515941706E-03 2.29337620605E-03 2.46309694307E-03 2.64513551120E-03 2.84036106273E-03 3.04970153533E-03 3.27414736742E-03 3.51475542147E-03 3.77265312389E-03 4.04904283046E-03 4.34520642606E-03 4.66251016741E-03 5.00240977756E-03 5.36645580047E-03 5.75629922403E-03 6.17369737912E-03 6.62052012230E-03 7.09875630878E-03 7.61052056188E-03 8.15806034414E-03 8.74376333447E-03 9.37016511444E-03 1.00399571654E-02 1.07559951770E-02 1.15213076649E-02 1.23391048948E-02 1.32127881071E-02 1.41459590326E-02 1.51424296895E-02 1.62062324461E-02 1.73416303316E-02 1.85531275728E-02 1.98454803307E-02 2.12237076048E-02 2.26931022697E-02 2.42592422008E-02 2.59280014408E-02 2.77055613514E-02 2.95984216871E-02 3.16134115205E-02 3.37576999389E-02 3.60388064228E-02 3.84646108085E-02 4.10433627244E-02 4.37836903794E-02 4.66946085717E-02 4.97855257713E-02 5.30662501186E-02 5.65469941639E-02 6.02383781634E-02 6.41514317269E-02 6.82975936005E-02 7.26887093502E-02 7.73370266970E-02 8.22551882359E-02 8.74562212582E-02 9.29535243774E-02 9.87608506437E-02 1.04892286819E-01 1.11362228469E-01 1.18185350509E-01 1.25376572851E-01 1.32951020748E-01 1.40923979479E-01 1.49310842959E-01 1.58127055898E-01 1.67388049112E-01 1.77109167603E-01 1.87305591042E-01 1.97992246291E-01 2.09183711640E-01 2.20894112462E-01 2.33137008017E-01 2.45925269188E-01 2.59270947011E-01 2.73185131880E-01 2.87677803442E-01 3.02757671231E-01 3.18432006250E-01 3.34706463766E-01 3.51584897762E-01 3.69069167598E-01 3.87158937614E-01 4.05851470556E-01 4.25141415915E-01 4.45020594452E-01 4.65477780401E-01 4.86498483055E-01 5.08064729700E-01 5.30154852070E-01 5.52743278775E-01 5.75800336384E-01 5.99292062108E-01 6.23180031279E-01 6.47421203038E-01 6.71967787884E-01 6.96767140940E-01 7.21761684952E-01 7.46888867177E-01 7.72081154427E-01 7.97266070564E-01 8.22366280722E-01 8.47299726467E-01 8.71979815909E-01 8.96315672564E-01 9.20212446370E-01 9.43571689862E-01 9.66291801873E-01 9.88268540521E-01 1.00939560636E+00 1.02956529572E+00 1.04866922307E+00 1.06659911030E+00 1.08324763921E+00 1.09850936240E+00 1.11228166608E+00 1.12446577685E+00 1.13496780292E+00 1.14369979865E+00 1.15058083952E+00 1.15553809365E+00 1.15850787383E+00 1.15943665350E+00 1.15828202875E+00 1.15501360752E+00 1.14961380718E+00 1.14207854120E+00 1.13241777613E+00 1.12065594116E+00 1.10683217351E+00 1.09100038497E+00 1.07322913755E+00 1.05360131870E+00 1.03221361050E+00 1.00917575084E+00 9.84609589253E-01 9.58647944451E-01 9.31433275678E-01 9.03116184791E-01 8.73853770811E-01 8.43807863206E-01 8.13143164202E-01 7.82025333853E-01 7.50619054144E-01 7.19086110001E-01 6.87583525563E-01 6.56261793280E-01 6.25263231440E-01 5.94720502444E-01 5.64755319763E-01 5.35477366111E-01 5.06983439181E-01 4.79356834670E-01 4.52666969511E-01 4.26969241731E-01 4.02305117443E-01 3.78702430644E-01 3.56175877914E-01 3.34727688189E-01 3.14348447417E-01 2.95018059204E-01 2.76706825222E-01 2.59376632724E-01 2.42982240451E-01 2.27472657782E-01 2.12792614353E-01 1.98884117689E-01 1.85688094064E-01 1.73146102188E-01 1.61202100363E-01 1.49804235684E-01 1.38906609391E-01 1.28470957007E-01 1.18468167060E-01 1.08879550032E-01 9.96993771499E-02 9.09357575755E-02 8.25980277137E-02 7.46938914873E-02 6.72292867539E-02 6.02082617603E-02 5.36328646109E-02 4.75030487830E-02 4.18165977110E-02 3.65690713802E-02 3.17537777071E-02 2.73617712292E-02 2.33818812872E-02 1.98007714464E-02 1.66030313808E-02 1.37713018327E-02 1.12864325833E-02 9.12767262350E-03 7.27289094075E-03 5.69882553684E-03 4.38135751347E-03 3.29580632107E-03 2.41724160660E-03 1.72080654529E-03 1.18204713530E-03 7.77241699275E-04 4.83724795187E-04 2.80199900271E-04 1.47035594682E-04 6.65405146822E-05 2.32130299410E-05 3.96236356270E-06 -1.70136760040E-06 -1.51006822940E-06 -3.15003403417E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 8 2 i j (l(j)) 8.32146576965E-01 Q_int 9.27978164657E-26 1.00025295594E-25 1.07815680796E-25 1.16212813532E-25 1.25263949821E-25 1.35020026172E-25 1.45535946245E-25 1.56870889820E-25 1.69088645850E-25 1.82257971431E-25 1.96452978749E-25 2.11753552157E-25 2.28245797730E-25 2.46022527841E-25 2.65183783479E-25 2.85837397238E-25 3.08099600162E-25 3.32095675852E-25 3.57960665516E-25 3.85840127931E-25 4.15890958596E-25 4.48282272683E-25 4.83196356755E-25 5.20829694609E-25 5.61394073016E-25 6.05117773580E-25 6.52246857422E-25 7.03046549926E-25 7.57802733331E-25 8.16823555568E-25 8.80441164409E-25 9.49013576675E-25 1.02292669302E-24 1.10259646965E-24 1.18847125914E-24 1.28103433367E-24 1.38080660463E-24 1.48834955415E-24 1.60426839494E-24 1.72921547616E-24 1.86389395466E-24 2.00906175204E-24 2.16553581998E-24 2.33419673778E-24 2.51599366786E-24 2.71194969739E-24 2.92316759579E-24 3.15083602075E-24 3.39623620755E-24 3.66074917940E-24 3.94586351932E-24 4.25318374734E-24 4.58443935020E-24 4.94149451421E-24 5.32635861628E-24 5.74119753190E-24 6.18834582396E-24 6.67031988077E-24 7.18983207742E-24 7.74980604002E-24 8.35339309883E-24 9.00399002276E-24 9.70525813519E-24 1.04611439186E-23 1.12759012238E-23 1.21541152092E-23 1.31007281445E-23 1.41210672236E-23 1.52208745447E-23 1.64063394242E-23 1.76841332281E-23 1.90614469162E-23 2.05460315102E-23 2.21462417132E-23 2.38710829275E-23 2.57302619335E-23 2.77342415157E-23 2.98942993439E-23 3.22225914395E-23 3.47322205853E-23 3.74373100634E-23 4.03530831352E-23 4.34959487134E-23 4.68835937045E-23 5.05350825449E-23 5.44709644884E-23 5.87133892496E-23 6.32862316552E-23 6.82152260023E-23 7.35281108815E-23 7.92547852805E-23 8.54274768436E-23 9.20809232382E-23 9.92525676449E-23 1.06982769475E-22 1.15315031498E-22 1.24296244658E-22 1.33976951964E-22 1.44411632921E-22 1.55659010124E-22 1.67782379729E-22 1.80849967657E-22 1.94935313549E-22 2.10117684617E-22 2.26482521732E-22 2.44121920254E-22 2.63135148314E-22 2.83629205452E-22 3.05719424782E-22 3.29530122033E-22 3.55195295164E-22 3.82859378446E-22 4.12678055294E-22 4.44819134389E-22 4.79463494051E-22 5.16806100151E-22 5.57057103313E-22 6.00443021560E-22 6.47208015081E-22 6.97615260268E-22 7.51948430787E-22 8.10513293981E-22 8.73639431621E-22 9.41682094676E-22 1.01502420253E-21 1.09407849791E-21 1.17928986968E-21 1.27113785646E-21 1.37013934535E-21 1.47685148074E-21 1.59187479976E-21 1.71585661183E-21 1.84949464154E-21 1.99354095512E-21 2.14880619289E-21 2.31616413115E-21 2.49655659953E-21 2.69099878127E-21 2.90058492627E-21 3.12649450914E-21 3.36999886688E-21 3.63246835346E-21 3.91538005170E-21 4.22032608575E-21 4.54902258097E-21 4.90331932168E-21 5.28521016106E-21 5.69684424182E-21 6.14053809083E-21 6.61878865563E-21 7.13428735639E-21 7.68993523220E-21 8.28885926711E-21 8.93442998761E-21 9.63028043075E-21 1.03803265895E-20 1.11887894507E-20 1.20602187489E-20 1.29995185709E-20 1.40119749541E-20 1.51032856344E-20 1.62795921107E-20 1.75475142075E-20 1.89141873285E-20 2.03873026121E-20 2.19751502144E-20 2.36866659631E-20 2.55314816452E-20 2.75199792108E-20 2.96633491996E-20 3.19736537163E-20 3.44638943125E-20 3.71480851542E-20 4.00413318885E-20 4.31599166529E-20 4.65213897046E-20 5.01446681877E-20 5.40501425913E-20 5.82597915001E-20 6.27973052817E-20 6.76882194070E-20 7.29600581551E-20 7.86424895094E-20 8.47674921180E-20 9.13695352582E-20 9.84857728167E-20 1.06156252378E-19 1.14424140598E-19 1.23335966128E-19 1.32941881465E-19 1.43295945187E-19 1.54456426177E-19 1.66486131539E-19 1.79452760054E-19 1.93429283160E-19 2.08494355613E-19 2.24732758124E-19 2.42235874475E-19 2.61102205793E-19 2.81437924876E-19 3.03357473699E-19 3.26984207446E-19 3.52451088709E-19 3.79901435756E-19 4.09489729066E-19 4.41382480695E-19 4.75759171340E-19 5.12813260391E-19 5.52753274650E-19 5.95803981839E-19 6.42207655513E-19 6.92225438485E-19 7.46138812439E-19 8.04251182005E-19 8.66889582207E-19 9.34406518896E-19 1.00718195252E-18 1.08562543640E-18 1.17017842155E-18 1.26131674098E-18 1.35955328753E-18 1.46544090023E-18 1.57957547544E-18 1.70259932040E-18 1.83520476784E-18 1.97813807218E-18 2.13220360918E-18 2.29826840265E-18 2.47726700376E-18 2.67020675030E-18 2.87817343565E-18 3.10233741918E-18 3.34396021259E-18 3.60440157924E-18 3.88512718638E-18 4.18771685336E-18 4.51387344227E-18 4.86543244098E-18 5.24437229260E-18 5.65282552937E-18 6.09309077377E-18 6.56764567428E-18 7.07916084865E-18 7.63051491309E-18 8.22481068205E-18 8.86539262967E-18 9.55586571118E-18 1.03001156502E-17 1.11023308062E-17 1.19670257447E-17 1.28990666440E-17 1.39036986794E-17 1.49865755420E-17 1.61537912545E-17 1.74119144667E-17 1.87680254210E-17 2.02297557972E-17 2.18053316608E-17 2.35036197562E-17 2.53341774047E-17 2.73073062900E-17 2.94341104317E-17 3.17265586745E-17 3.41975520438E-17 3.68609963482E-17 3.97318804353E-17 4.28263605432E-17 4.61618512216E-17 4.97571233334E-17 5.36324096904E-17 5.78095189147E-17 6.23119581694E-17 6.71650654473E-17 7.23961521627E-17 7.80346568495E-17 8.41123108286E-17 9.06633167799E-17 9.77245412199E-17 1.05335721972E-16 1.13539691796E-16 1.22382619430E-16 1.31914269411E-16 1.42188282132E-16 1.53262475701E-16 1.65199171325E-16 1.78065544021E-16 1.91934000654E-16 2.06882587410E-16 2.22995429006E-16 2.40363202112E-16 2.59083645636E-16 2.79262110762E-16 3.01012153818E-16 3.24456175322E-16 3.49726108802E-16 3.76964163260E-16 4.06323623460E-16 4.37969712550E-16 4.72080521867E-16 5.08848013153E-16 5.48479098833E-16 5.91196806428E-16 6.37241533650E-16 6.86872401255E-16 7.40368711261E-16 7.98031518727E-16 8.60185325959E-16 9.27179908660E-16 9.99392284303E-16 1.07722883382E-15 1.16112758851E-15 1.25156069509E-15 1.34903707272E-15 1.45410527692E-15 1.56735658665E-15 1.68942833165E-15 1.82100747914E-15 1.96283449962E-15 2.11570753399E-15 2.28048688500E-15 2.45809985867E-15 2.64954598270E-15 2.85590263127E-15 3.07833108803E-15 3.31808308114E-15 3.57650782742E-15 3.85505962501E-15 4.15530603743E-15 4.47893671499E-15 4.82777290325E-15 5.20377769205E-15 5.60906706272E-15 6.04592179566E-15 6.51680030536E-15 7.02435247501E-15 7.57143456856E-15 8.16112530418E-15 8.79674317960E-15 9.48186514666E-15 1.02203467404E-14 1.10163437758E-14 1.18743357342E-14 1.27991509712E-14 1.37959938880E-14 1.48704742182E-14 1.60286385965E-14 1.72770045849E-14 1.86225973500E-14 2.00729891959E-14 2.16363421767E-14 2.33214540269E-14 2.51378076697E-14 2.70956245803E-14 2.92059223064E-14 3.14805764665E-14 3.39323875789E-14 3.65751530935E-14 3.94237450348E-14 4.24941936911E-14 4.58037778213E-14 4.93711218879E-14 5.32163008614E-14 5.73609531881E-14 6.18284025544E-14 6.66437891356E-14 7.18342110651E-14 7.74288769220E-14 8.34592700940E-14 8.99593259407E-14 9.69656227544E-14 1.04517587593E-13 1.12657718143E-13 1.21431821861E-13 1.30889273736E-13 1.41083294134E-13 1.52071248272E-13 1.63914969019E-13 1.76681104836E-13 1.90441494812E-13 2.05273572908E-13 2.21260803680E-13 2.38493151939E-13 2.57067588986E-13 2.77088638265E-13 2.98668963524E-13 3.21930002764E-13 3.47002651567E-13 3.74027999641E-13 4.03158124717E-13 4.34556948278E-13 4.68401157925E-13 5.04881201580E-13 5.44202359098E-13 5.86585897350E-13 6.32270315247E-13 6.81512685720E-13 7.34590102210E-13 7.91801237805E-13 8.53468025785E-13 9.19937471046E-13 9.91583602583E-13 1.06880957802E-12 1.15204995203E-12 1.24177312138E-12 1.33848396043E-12 1.44272666182E-12 1.55508779837E-12 1.67619962341E-12 1.80674362819E-12 1.94745437618E-12 2.09912363603E-12 2.26260483639E-12 2.43881786753E-12 2.62875425698E-12 2.83348274807E-12 3.05415531300E-12 3.29201363401E-12 3.54839608930E-12 3.82474528292E-12 4.12261616100E-12 4.44368475994E-12 4.78975763579E-12 5.16278202789E-12 5.56485681390E-12 5.99824431783E-12 6.46538303747E-12 6.96890136293E-12 7.51163236326E-12 8.09662972444E-12 8.72718492833E-12 9.40684576923E-12 1.01394363122E-11 1.09290784051E-11 1.17802148663E-11 1.26976344803E-11 1.36864989217E-11 1.47523718109E-11 1.59012499992E-11 1.71395973187E-11 1.84743809090E-11 1.99131104206E-11 2.14638802843E-11 2.31354151990E-11 2.49371192518E-11 2.68791287604E-11 2.89723693282E-11 3.12286172841E-11 3.36605659035E-11 3.62818968275E-11 3.91073570294E-11 4.21528416625E-11 4.54354835409E-11 4.89737495440E-11 5.27875443052E-11 5.68983223078E-11 6.13292084907E-11 6.61051283413E-11 7.12529479021E-11 7.68016250780E-11 8.27823723162E-11 8.92288322439E-11 9.61772666827E-11 1.03666760687E-10 1.11739442479E-10 1.20440719740E-10 1.29819535763E-10 1.39928643999E-10 1.50824904566E-10 1.62569604647E-10 1.75228802927E-10 1.88873699756E-10 2.03581039180E-10 2.19433539357E-10 2.36520357708E-10 2.54937592306E-10 2.74788822048E-10 2.96185688418E-10 3.19248524133E-10 3.44107028259E-10 3.70900995712E-10 3.99781103519E-10 4.30909756554E-10 4.64462001660E-10 5.00626510033E-10 5.39606638150E-10 5.81621571171E-10 6.26907553211E-10 6.75719215519E-10 7.28331008242E-10 7.85038741355E-10 8.46161245206E-10 9.12042165973E-10 9.83051892145E-10 1.05958963735E-09 1.14208568188E-09 1.23100379156E-09 1.32684382020E-09 1.43014451906E-09 1.54148656230E-09 1.66149580719E-09 1.79084681036E-09 1.93026661390E-09 2.08053883110E-09 2.24250804285E-09 2.41708454051E-09 2.60524944154E-09 2.80806018603E-09 3.02665648695E-09 3.26226671839E-09 3.51621481044E-09 3.78992768397E-09 4.08494325938E-09 4.40291908016E-09 4.74564162038E-09 5.11503630874E-09 5.51317832483E-09 5.94230425066E-09 6.40482460782E-09 6.90333737886E-09 7.44064259528E-09 8.01975801661E-09 8.64393607286E-09 9.31668208481E-09 1.00417739379E-08 1.08232832394E-08 1.16655981620E-08 1.25734480296E-08 1.35519298262E-08 1.46065367523E-08 1.57431890220E-08 1.69682670208E-08 1.82886470421E-08 1.97117398182E-08 2.12455320317E-08 2.28986310149E-08 2.46803129788E-08 2.66005749263E-08 2.86701906256E-08 3.09007709075E-08 3.33048286480E-08 3.58958487939E-08 3.86883637993E-08 4.16980349218E-08 4.49417398259E-08 4.84376669653E-08 5.22054172843E-08 5.62661137873E-08 6.06425196350E-08 6.53591653150E-08 7.04424857611E-08 7.59209679912E-08 8.18253102470E-08 8.81885934406E-08 9.50464658127E-08 1.02437341997E-07 1.10402617360E-07 1.18986899021E-07 1.28238254692E-07 1.38208480794E-07 1.48953391258E-07 1.60533128708E-07 1.73012499681E-07 1.86461335716E-07 2.00954882423E-07 2.16574218484E-07 2.33406707193E-07 2.51546482674E-07 2.71094973763E-07 2.92161468288E-07 3.14863720888E-07 3.39328607716E-07 3.65692831669E-07 3.94103681978E-07 4.24719852355E-07 4.57712322181E-07 4.93265305635E-07 5.31577273888E-07 5.72862056059E-07 6.17350024822E-07 6.65289373438E-07 7.16947490856E-07 7.72612442703E-07 8.32594566067E-07 8.97228186879E-07 9.66873469366E-07 1.04191840732E-06 1.12278096850E-06 1.20991140351E-06 1.30379473182E-06 1.40495341849E-06 1.51395025615E-06 1.63139146768E-06 1.75793004679E-06 1.89426935413E-06 2.04116698884E-06 2.19943895620E-06 2.36996415395E-06 2.55368920144E-06 2.75163363780E-06 2.96489551696E-06 3.19465742955E-06 3.44219298428E-06 3.70887378327E-06 3.99617692890E-06 4.30569310213E-06 4.63913525581E-06 4.99834796902E-06 5.38531751226E-06 5.80218267750E-06 6.25124643011E-06 6.73498844467E-06 7.25607859110E-06 7.81739144246E-06 8.42202188073E-06 9.07330188328E-06 9.77481857777E-06 1.05304336608E-05 1.13443042819E-05 1.22209055018E-05 1.31650544429E-05 1.41819362572E-05 1.52771320473E-05 1.64566488841E-05 1.77269520791E-05 1.90949998747E-05 2.05682807344E-05 2.21548534226E-05 2.38633900806E-05 2.57032225186E-05 2.76843919608E-05 2.98177024952E-05 3.21147785016E-05 3.45881263461E-05 3.72512006557E-05 4.01184755042E-05 4.32055208686E-05 4.65290847368E-05 5.01071812759E-05 5.39591855005E-05 5.81059349071E-05 6.25698385780E-05 6.73749942894E-05 7.25473141982E-05 7.81146597185E-05 8.41069862444E-05 9.05564984183E-05 9.74978166913E-05 1.04968155977E-04 1.13007517245E-04 1.21658892973E-04 1.30968487422E-04 1.40985952764E-04 1.51764642186E-04 1.63361881128E-04 1.75839257918E-04 1.89262935142E-04 2.03703983165E-04 2.19238737333E-04 2.35949180450E-04 2.53923352258E-04 2.73255787740E-04 2.94047986182E-04 3.16408913060E-04 3.40455536929E-04 3.66313403641E-04 3.94117250351E-04 4.24011661922E-04 4.56151772492E-04 4.90704015132E-04 5.27846922701E-04 5.67771983162E-04 6.10684552836E-04 6.56804831255E-04 7.06368901464E-04 7.59629839866E-04 8.16858899886E-04 8.78346773991E-04 9.44404938817E-04 1.01536708840E-03 1.09159066077E-03 1.17345846342E-03 1.26138040341E-03 1.35579532817E-03 1.45717298328E-03 1.56601609385E-03 1.68286257642E-03 1.80828788843E-03 1.94290752279E-03 2.08737965521E-03 2.24240795240E-03 2.40874454919E-03 2.58719320336E-03 2.77861263672E-03 2.98392007162E-03 3.20409497197E-03 3.44018299829E-03 3.69330018627E-03 3.96463735865E-03 4.25546478000E-03 4.56713706445E-03 4.90109834603E-03 5.25888772135E-03 5.64214497436E-03 6.05261659223E-03 6.49216208183E-03 6.96276059497E-03 7.46651787087E-03 8.00567350302E-03 8.58260853725E-03 9.19985340653E-03 9.86009620711E-03 1.05661913192E-02 1.13211683739E-02 1.21282415660E-02 1.29908193110E-02 1.39125142418E-02 1.48971535372E-02 1.59487895739E-02 1.70717108872E-02 1.82704534241E-02 1.95498120685E-02 2.09148524115E-02 2.23709227381E-02 2.39236661927E-02 2.55790330831E-02 2.73432932727E-02 2.92230486073E-02 3.12252453109E-02 3.33571862804E-02 3.56265431966E-02 3.80413683628E-02 4.06101061670E-02 4.33416040571E-02 4.62451229041E-02 4.93303466151E-02 5.26073908458E-02 5.60868106474E-02 5.97796068676E-02 6.36972311093E-02 6.78515890356E-02 7.22550417927E-02 7.69204053014E-02 8.18609471574E-02 8.70903808535E-02 9.26228570271E-02 9.84729514115E-02 1.04655649155E-01 1.11186325157E-01 1.18080720042E-01 1.25354911394E-01 1.33025279843E-01 1.41108469597E-01 1.49621342983E-01 1.58580928584E-01 1.68004362506E-01 1.77908822374E-01 1.88311453586E-01 1.99229287421E-01 2.10679150588E-01 2.22677565802E-01 2.35240643057E-01 2.48383961231E-01 2.62122439770E-01 2.76470200199E-01 2.91440417306E-01 3.07045159910E-01 3.23295221212E-01 3.40199938836E-01 3.57767004774E-01 3.76002265597E-01 3.94909513418E-01 4.14490268280E-01 4.34743552792E-01 4.55665660065E-01 4.77249916168E-01 4.99486438600E-01 5.22361892457E-01 5.45859246276E-01 5.69957529767E-01 5.94631595941E-01 6.19851890405E-01 6.45584230885E-01 6.71789600313E-01 6.98423957107E-01 7.25438066506E-01 7.52777357101E-01 7.80381806900E-01 8.08185863466E-01 8.36118402817E-01 8.64102731869E-01 8.92056639248E-01 9.19892499269E-01 9.47517433766E-01 9.74833536261E-01 1.00173816267E+00 1.02812429230E+00 1.05388096247E+00 1.07889377918E+00 1.10304550589E+00 1.12621673109E+00 1.14828661449E+00 1.16913371062E+00 1.18863686690E+00 1.20667619209E+00 1.22313408938E+00 1.23789634657E+00 1.25085327427E+00 1.26190088099E+00 1.27094207255E+00 1.27788786106E+00 1.28265856736E+00 1.28518499922E+00 1.28540958594E+00 1.28328744934E+00 1.27878738994E+00 1.27189276682E+00 1.26260224976E+00 1.25093042249E+00 1.23690821712E+00 1.22058316131E+00 1.20201942199E+00 1.18129763206E+00 1.15851449027E+00 1.13378212818E+00 1.10722724261E+00 1.07898999725E+00 1.04922270197E+00 1.01808828427E+00 9.85758572464E-01 9.52412415966E-01 9.18233672747E-01 8.83409098831E-01 8.48126178305E-01 8.12570935182E-01 7.76925770152E-01 7.41367365635E-01 7.06064701605E-01 6.71177222234E-01 6.36853189653E-01 6.03228255987E-01 5.70424278675E-01 5.38548396985E-01 5.07692380059E-01 4.77932249124E-01 4.49328169061E-01 4.21924597832E-01 3.95750676729E-01 3.70820840345E-01 3.47135622814E-01 3.24682636439E-01 3.03437700022E-01 2.83366097028E-01 2.64423947456E-01 2.46559681407E-01 2.29715606046E-01 2.13829559912E-01 1.98836648719E-01 1.84671053879E-01 1.71267898736E-01 1.58565147634E-01 1.46505499953E-01 1.35038226000E-01 1.24120875700E-01 1.13720776354E-01 1.03816224638E-01 9.43987991661E-02 8.54735668653E-02 7.70462565102E-02 6.91204415879E-02 6.16974332864E-02 5.47761925627E-02 4.83532644473E-02 4.24227376111E-02 3.69762320038E-02 3.20029170555E-02 2.74895625250E-02 2.34206235640E-02 1.97783609627E-02 1.65429968408E-02 1.36929052728E-02 1.12048364920E-02 9.05417242304E-03 7.21521037880E-03 5.66147083855E-03 4.36602433647E-03 3.30183166157E-03 2.44209083163E-03 1.76058368502E-03 1.23201446172E-03 8.32332439327E-04 5.39030565079E-04 3.31412086218E-04 1.90817421626E-04 1.00803920736E-04 4.72716915934E-05 1.85293092448E-05 5.29389093860E-06 6.20695324065E-07 -2.41978633242E-07 -7.62872809715E-08 -3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 9 2 i j (l(j)) 0.00000000000E+00 Q_int 8.15817785442E-26 8.79357060839E-26 9.47845038737E-26 1.02166714463E-25 1.10123882254E-25 1.18700787301E-25 1.27945697312E-25 1.37910639289E-25 1.48651692308E-25 1.60229303119E-25 1.72708626315E-25 1.86159890999E-25 2.00658796008E-25 2.16286935920E-25 2.33132260235E-25 2.51289568327E-25 2.70861042937E-25 2.91956825225E-25 3.14695634598E-25 3.39205436826E-25 3.65624164182E-25 3.94100491679E-25 4.24794673756E-25 4.57879446132E-25 4.93540997903E-25 5.31980019341E-25 5.73412831315E-25 6.18072602654E-25 6.66210662349E-25 7.18097913933E-25 7.74026360032E-25 8.34310745645E-25 8.99290329424E-25 9.69330792886E-25 1.04482629835E-24 1.12620170712E-24 1.21391497047E-24 1.30845970683E-24 1.41036797966E-24 1.52021329175E-24 1.63861381265E-24 1.76623585753E-24 1.90379763696E-24 2.05207329871E-24 2.21189728440E-24 2.38416902543E-24 2.56985800465E-24 2.77000921225E-24 2.98574902660E-24 3.21829155308E-24 3.46894545666E-24 3.73912132654E-24 4.03033961449E-24 4.34423919134E-24 4.68258657000E-24 5.04728584675E-24 5.44038941677E-24 5.86410952429E-24 6.32083071232E-24 6.81312324195E-24 7.34375755690E-24 7.91571987452E-24 8.53222899116E-24 9.19675439640E-24 9.91303579805E-24 1.06851041679E-23 1.15173044265E-23 1.24143198950E-23 1.33811986507E-23 1.44233819365E-23 1.55467347817E-23 1.67575790083E-23 1.80627288082E-23 1.94695290908E-23 2.09858968175E-23 2.26203655554E-23 2.43821335014E-23 2.62811152461E-23 2.83279975694E-23 3.05342995822E-23 3.29124375512E-23 3.54757947738E-23 3.82387968940E-23 4.12169930848E-23 4.44271435533E-23 4.78873138610E-23 5.16169765904E-23 5.56371209295E-23 5.99703707911E-23 6.46411121325E-23 6.96756301904E-23 7.51022574047E-23 8.09515328633E-23 8.72563741649E-23 9.40522626674E-23 1.01377443164E-22 1.09273139111E-22 1.17783784619E-22 1.26957274510E-22 1.36845233854E-22 1.47503308498E-22 1.58991478214E-22 1.71374394251E-22 1.84721743163E-22 1.99108638984E-22 2.14616045939E-22 2.31331234083E-22 2.49348270424E-22 2.68768548300E-22 2.89701357982E-22 3.12264501721E-22 3.36584956694E-22 3.62799589590E-22 3.91055926841E-22 4.21512984848E-22 4.54342164873E-22 4.89728217616E-22 5.27870282926E-22 5.68983010491E-22 6.13297767808E-22 6.61063942231E-22 7.12550344436E-22 7.68046721189E-22 8.27865385935E-22 8.92342976384E-22 9.61842348987E-22 1.03675462096E-21 1.11750137134E-21 1.20453701351E-21 1.29835135242E-21 1.39947234108E-21 1.50846905165E-21 1.62595487802E-21 1.75259098771E-21 1.88909004271E-21 2.03622021007E-21 2.19480948491E-21 2.36575034999E-21 2.55000479836E-21 2.74860974705E-21 2.96268287251E-21 3.19342890044E-21 3.44214638556E-21 3.71023501944E-21 3.99920350739E-21 4.31067805897E-21 4.64641153964E-21 5.00829333531E-21 5.39835998506E-21 5.81880664209E-21 6.27199942721E-21 6.76048874449E-21 7.28702363404E-21 7.85456724261E-21 8.46631349906E-21 9.12570508863E-21 9.83645282717E-21 1.06025565442E-20 1.14283275925E-20 1.23184131108E-20 1.32778221764E-20 1.43119539939E-20 1.54266282807E-20 1.66281180176E-20 1.79231847512E-20 1.93191166450E-20 2.08237694953E-20 2.24456109399E-20 2.41937681114E-20 2.60780790011E-20 2.81091478237E-20 3.02984046943E-20 3.26581699520E-20 3.52017234952E-20 3.79433795156E-20 4.08985670530E-20 4.40839168249E-20 4.75173548175E-20 5.12182031668E-20 5.52072888965E-20 5.95070611250E-20 6.41417174004E-20 6.91373398759E-20 7.45220420903E-20 8.03261271807E-20 8.65822584174E-20 9.33256430211E-20 1.00594230296E-19 1.08428925193E-19 1.16873818512E-19 1.25976435024E-19 1.35788000926E-19 1.46363732120E-19 1.57763144951E-19 1.70050391145E-19 1.83294618823E-19 1.97570361650E-19 2.12957958278E-19 2.29544004464E-19 2.47421840398E-19 2.66692075989E-19 2.87463157058E-19 3.09851975633E-19 3.33984527771E-19 3.59996622623E-19 3.88034646711E-19 4.18256387741E-19 4.50831922575E-19 4.85944574356E-19 5.23791944186E-19 5.64587023151E-19 6.08559390955E-19 6.55956507911E-19 7.07045107553E-19 7.62112697716E-19 8.21469178522E-19 8.85448586380E-19 9.54410973823E-19 1.02874443574E-18 1.10886729346E-18 1.19523044885E-18 1.28831992187E-18 1.38865958572E-18 1.49681411494E-18 1.61339216327E-18 1.73904978885E-18 1.87449414632E-18 2.02048746638E-18 2.17785134540E-18 2.34747136897E-18 2.53030209572E-18 2.72737242917E-18 2.93979140803E-18 3.16875444745E-18 3.41555006634E-18 3.68156713872E-18 3.96830270973E-18 4.27737042043E-18 4.61050958880E-18 4.96959499794E-18 5.35664744661E-18 5.77384512157E-18 6.22353585554E-18 6.70825033991E-18 7.23071636653E-18 7.79387417866E-18 8.40089301754E-18 9.05518895766E-18 9.76044413109E-18 1.05206274492E-17 1.13400169379E-17 1.22232238132E-17 1.31752184309E-17 1.42013582579E-17 1.53074180221E-17 1.64996222105E-17 1.77846800975E-17 1.91698235030E-17 2.06628474895E-17 2.22721542299E-17 2.40068002921E-17 2.58765476049E-17 2.78919183951E-17 3.00642544023E-17 3.24057807051E-17 3.49296745199E-17 3.76501393564E-17 4.05824849498E-17 4.37432134175E-17 4.71501121264E-17 5.08223537935E-17 5.47806043821E-17 5.90471394011E-17 6.36459692633E-17 6.86029744058E-17 7.39460509348E-17 7.97052676135E-17 8.59130350770E-17 9.26042882260E-17 9.98166828260E-17 1.07590807419E-16 1.15970411738E-16 1.25002652914E-16 1.34738360856E-16 1.45232324299E-16 1.56543599136E-16 1.68735840756E-16 1.81877662272E-16 1.96043020646E-16 2.11311632888E-16 2.27769424668E-16 2.45509013872E-16 2.64630231813E-16 2.85240685041E-16 3.07456360903E-16 3.31402280275E-16 3.57213201120E-16 3.85034376850E-16 4.15022373748E-16 4.47345952055E-16 4.82187015675E-16 5.19741635855E-16 5.60221154579E-16 6.03853373916E-16 6.50883837976E-16 7.01577214733E-16 7.56218785446E-16 8.15116050099E-16 8.78600457867E-16 9.47029272355E-16 1.02078758212E-15 1.10029046777E-15 1.18598533782E-15 1.27835444654E-15 1.37791760782E-15 1.48523512042E-15 1.60091092111E-15 1.72559598331E-15 1.85999198043E-15 2.00485523459E-15 2.16100097278E-15 2.32930791460E-15 2.51072321722E-15 2.70626780552E-15 2.91704211732E-15 3.14423229612E-15 3.38911686609E-15 3.65307392690E-15 3.93758890903E-15 4.24426293291E-15 4.57482181923E-15 4.93112580093E-15 5.31517999156E-15 5.72914566903E-15 6.17535243802E-15 6.65631133978E-15 7.17472898286E-15 7.73352277433E-15 8.33583733738E-15 8.98506220739E-15 9.68485090632E-15 1.04391415026E-14 1.12521787722E-14 1.21285380859E-14 1.30731511565E-14 1.40913337915E-14 1.51888158077E-14 1.63717732743E-14 1.76468632686E-14 1.90212613375E-14 2.05027018771E-14 2.20995216566E-14 2.38207067328E-14 2.56759430168E-14 2.76756707807E-14 2.98311434080E-14 3.21544907200E-14 3.46587872342E-14 3.73581257383E-14 4.02676965948E-14 4.34038732212E-14 4.67843042279E-14 5.04280127314E-14 5.43555034025E-14 5.85888778514E-14 6.31519589978E-14 6.80704251290E-14 7.33719543965E-14 7.90863805667E-14 8.52458609017E-14 9.18850571138E-14 9.90413304131E-14 1.06754951745E-13 1.15069328401E-13 1.24031248277E-13 1.33691143154E-13 1.44103372487E-13 1.55326529286E-13 1.67423769825E-13 1.80463169030E-13 1.94518103537E-13 2.09667664587E-13 2.25997103072E-13 2.43598309248E-13 2.62570329795E-13 2.83019925153E-13 3.05062170260E-13 3.28821102070E-13 3.54430417503E-13 3.82034225742E-13 4.11787859121E-13 4.43858747160E-13 4.78427358667E-13 5.15688217204E-13 5.55850995638E-13 5.99141695920E-13 6.45803920754E-13 6.96100244279E-13 7.50313689511E-13 8.08749320820E-13 8.71735960438E-13 9.39628038620E-13 1.01280758790E-12 1.09168639262E-12 1.17670830589E-12 1.26835174693E-12 1.36713239293E-12 1.47360608047E-12 1.58837193295E-12 1.71207573150E-12 1.84541354841E-12 1.98913566350E-12 2.14405078545E-12 2.31103060183E-12 2.49101468349E-12 2.68501577077E-12 2.89412547143E-12 3.11952040217E-12 3.36246880849E-12 3.62433769992E-12 3.90660054090E-12 4.21084554053E-12 4.53878458778E-12 4.89226288246E-12 5.27326931612E-12 5.68394766127E-12 6.12660863176E-12 6.60374288233E-12 7.11803502030E-12 7.67237870823E-12 8.26989294254E-12 8.91393959962E-12 9.60814234803E-12 1.03564070333E-11 1.11629436514E-11 1.20322900301E-11 1.29693373363E-11 1.39793576449E-11 1.50680335385E-11 1.62414901081E-11 1.75063293366E-11 1.88696673646E-11 2.03391744020E-11 2.19231179089E-11 2.36304091361E-11 2.54706531909E-11 2.74542030645E-11 2.95922179228E-11 3.18967258047E-11 3.43806913056E-11 3.70580885214E-11 3.99439795325E-11 4.30545992834E-11 4.64074466694E-11 5.00213831986E-11 5.39167388914E-11 5.81154266874E-11 6.26410655560E-11 6.75191135718E-11 7.27770107381E-11 7.84443336700E-11 8.45529615338E-11 9.11372555666E-11 9.82342522361E-11 1.05883871337E-10 1.14129140913E-10 1.23016438376E-10 1.32595752146E-10 1.42920962135E-10 1.54050142538E-10 1.66045889253E-10 1.78975670897E-10 1.92912208207E-10 2.07933883079E-10 2.24125179435E-10 2.41577157601E-10 2.60387966470E-10 2.80663395078E-10 3.02517467522E-10 3.26073083678E-10 3.51462709469E-10 3.78829122022E-10 4.08326212715E-10 4.40119850345E-10 4.74388814046E-10 5.11325798834E-10 5.51138497583E-10 5.94050767543E-10 6.40303889525E-10 6.90157922827E-10 7.43893166308E-10 8.01811733466E-10 8.64239249688E-10 9.31526681208E-10 1.00405230792E-09 1.08222384615E-09 1.16648074051E-09 1.25729663233E-09 1.35518201857E-09 1.46068711972E-09 1.57440496997E-09 1.69697474659E-09 1.82908535997E-09 1.97147932217E-09 2.12495691494E-09 2.29038068368E-09 2.46868027825E-09 2.66085767412E-09 2.86799279553E-09 3.09124957715E-09 3.33188249550E-09 3.59124361486E-09 3.87079016474E-09 4.17209272676E-09 4.49684404544E-09 4.84686852006E-09 5.22413244504E-09 5.63075503978E-09 6.06902033308E-09 6.54138997835E-09 7.05051705530E-09 7.59926095350E-09 8.19070339549E-09 8.82816573194E-09 9.51522754462E-09 1.02557467275E-08 1.10538810991E-08 1.19141117187E-08 1.28412679814E-08 1.38405546998E-08 1.49175812548E-08 1.60783930152E-08 1.73295052110E-08 1.86779394300E-08 2.01312629239E-08 2.16976309955E-08 2.33858326543E-08 2.52053398193E-08 2.71663603361E-08 2.92798951185E-08 3.15577996777E-08 3.40128504914E-08 3.66588164600E-08 3.95105359146E-08 4.25839996156E-08 4.58964401584E-08 4.94664283170E-08 5.33139768628E-08 5.74606523830E-08 6.19296958245E-08 6.67461523204E-08 7.19370110803E-08 7.75313561346E-08 8.35605287291E-08 9.00583022702E-08 9.70610708488E-08 1.04608052301E-07 1.12741507038E-07 1.21506973753E-07 1.30953523356E-07 1.41134032565E-07 1.52105478649E-07 1.63929256911E-07 1.76671522758E-07 1.90403560137E-07 2.05202178484E-07 2.21150140312E-07 2.38336621759E-07 2.56857708770E-07 2.76816931522E-07 2.98325840063E-07 3.21504624398E-07 3.46482782363E-07 3.73399838992E-07 4.02406121347E-07 4.33663593010E-07 4.67346752928E-07 5.03643603410E-07 5.42756692651E-07 5.84904237579E-07 6.30321333000E-07 6.79261253792E-07 7.31996857215E-07 7.88822093035E-07 8.50053629680E-07 9.16032605297E-07 9.87126513271E-07 1.06373123250E-06 1.14627321344E-06 1.23521183182E-06 1.33104192281E-06 1.43429650944E-06 1.54554974005E-06 1.66542005056E-06 1.79457356895E-06 1.93372778016E-06 2.08365547113E-06 2.24518897755E-06 2.41922475495E-06 2.60672829896E-06 2.80873944086E-06 3.02637804739E-06 3.26085015482E-06 3.51345457066E-06 3.78558997788E-06 4.07876258008E-06 4.39459432800E-06 4.73483177139E-06 5.10135558346E-06 5.49619080828E-06 5.92151788574E-06 6.37968451221E-06 6.87321840004E-06 7.40484100278E-06 7.97748227898E-06 8.59429657174E-06 9.25867968796E-06 9.97428726644E-06 1.07450545311E-05 1.15752175328E-05 1.24693359896E-05 1.34323178458E-05 1.44694456751E-05 1.55864050673E-05 1.67893151429E-05 1.80847613541E-05 1.94798307409E-05 2.09821498232E-05 2.25999253221E-05 2.43419879201E-05 2.62178392807E-05 2.82377025682E-05 3.04125767226E-05 3.27542947637E-05 3.52755864177E-05 3.79901453821E-05 4.09127015625E-05 4.40590986455E-05 4.74463773892E-05 5.10928650464E-05 5.50182713619E-05 5.92437916139E-05 6.37922172066E-05 6.86880543516E-05 7.39576514169E-05 7.96293355582E-05 8.57335592908E-05 9.23030577078E-05 9.93730170914E-05 1.06981255723E-04 1.15168417742E-04 1.23978180974E-04 1.33457479693E-04 1.43656743357E-04 1.54630152426E-04 1.66435912439E-04 1.79136547603E-04 1.92799215228E-04 2.07496042434E-04 2.23304486640E-04 2.40307721440E-04 2.58595049580E-04 2.78262344849E-04 2.99412524807E-04 3.22156056412E-04 3.46611496694E-04 3.72906070804E-04 4.01176289854E-04 4.31568611147E-04 4.64240143529E-04 4.99359400750E-04 5.37107105906E-04 5.77677050174E-04 6.21277009273E-04 6.68129721232E-04 7.18473929272E-04 7.72565493783E-04 8.30678577615E-04 8.93106909091E-04 9.60165127392E-04 1.03219021518E-03 1.10954302358E-03 1.19260989480E-03 1.28180438814E-03 1.37756911499E-03 1.48037768912E-03 1.59073679847E-03 1.70918840513E-03 1.83631208023E-03 1.97272748093E-03 2.11909697683E-03 2.27612843333E-03 2.44457815969E-03 2.62525402997E-03 2.81901878482E-03 3.02679352261E-03 3.24956138847E-03 3.48837146969E-03 3.74434290642E-03 4.01866922634E-03 4.31262291196E-03 4.62756020952E-03 4.96492618785E-03 5.32626005569E-03 5.71320074562E-03 6.12749277247E-03 6.57099237332E-03 7.04567393618E-03 7.55363672316E-03 8.09711189362E-03 8.67846983141E-03 9.30022777947E-03 9.96505778361E-03 1.06757949456E-02 1.14354459842E-02 1.22471981009E-02 1.31144281443E-02 1.40407120647E-02 1.50298346482E-02 1.60857995164E-02 1.72128393724E-02 1.84154264727E-02 1.96982832980E-02 2.10663933930E-02 2.25250123371E-02 2.40796788069E-02 2.57362256789E-02 2.75007911207E-02 2.93798296059E-02 3.13801227832E-02 3.35087901214E-02 3.57732992400E-02 3.81814758300E-02 4.07415130536E-02 4.34619803045E-02 4.63518311964E-02 4.94204106355E-02 5.26774608185E-02 5.61331259864E-02 5.97979557464E-02 6.36829067624E-02 6.77993425972E-02 7.21590314750E-02 7.67741417163E-02 8.16572345796E-02 8.68212542323E-02 9.22795145515E-02 9.80456824446E-02 1.04133757362E-01 1.10558046659E-01 1.17333136457E-01 1.24473857631E-01 1.31995246554E-01 1.39912500213E-01 1.48240925304E-01 1.56995880925E-01 1.66192714470E-01 1.75846690354E-01 1.85972911186E-01 1.96586231047E-01 2.07701160544E-01 2.19331763332E-01 2.31491543854E-01 2.44193326080E-01 2.57449123081E-01 2.71269997357E-01 2.85665911899E-01 3.00645572056E-01 3.16216258387E-01 3.32383650780E-01 3.49151644269E-01 3.66522157083E-01 3.84494931671E-01 4.03067329552E-01 4.22234121091E-01 4.41987271440E-01 4.62315724126E-01 4.83205183997E-01 5.04637901428E-01 5.26592459980E-01 5.49043569921E-01 5.71961870275E-01 5.95313742312E-01 6.19061137649E-01 6.43161424353E-01 6.67567254658E-01 6.92226458135E-01 7.17081964276E-01 7.42071758647E-01 7.67128876828E-01 7.92181440395E-01 8.17152739225E-01 8.41961364270E-01 8.66521394822E-01 8.90742644026E-01 9.14530966045E-01 9.37788627860E-01 9.60414748094E-01 9.82305804581E-01 1.00335621163E+00 1.02345896697E+00 1.04250636732E+00 1.06039079044E+00 1.07700554005E+00 1.09224574893E+00 1.10600933370E+00 1.11819799353E+00 1.12871824326E+00 1.13748246997E+00 1.14441000038E+00 1.14942816501E+00 1.15247334357E+00 1.15349197503E+00 1.15244151438E+00 1.14929131795E+00 1.14402343801E+00 1.13663330794E+00 1.12713029922E+00 1.11553813247E+00 1.10189512605E+00 1.08625426767E+00 1.06868309671E+00 1.04926338805E+00 1.02809063154E+00 1.00527330515E+00 9.80931944277E-01 9.55198014184E-01 9.28212597286E-01 9.00124912110E-01 8.71090685255E-01 8.41270402309E-01 8.10827467658E-01 7.79926306508E-01 7.48730445032E-01 7.17400606126E-01 6.86092858744E-01 6.54956858084E-01 6.24134211914E-01 5.93757005145E-01 5.63946510444E-01 5.34812107333E-01 5.06450426147E-01 4.78944726671E-01 4.52364514568E-01 4.26765392266E-01 4.02189135155E-01 3.78663979132E-01 3.56205102015E-01 3.34815279394E-01 3.14485695152E-01 2.95196888136E-01 2.76919819057E-01 2.59617045220E-01 2.43243994563E-01 2.27750333941E-01 2.13081428938E-01 1.99179892734E-01 1.85987219217E-01 1.73445489900E-01 1.61499135289E-01 1.50096719310E-01 1.39192701040E-01 1.28749112530E-01 1.18737076755E-01 1.09138077568E-01 9.99465152400E-02 9.11706464352E-02 8.28199644501E-02 7.49023291918E-02 6.74238324644E-02 6.03886732489E-02 5.37990459623E-02 4.76550447424E-02 4.19545867953E-02 3.66933577647E-02 3.18647819172E-02 2.74600196876E-02 2.34679947911E-02 1.98754526705E-02 1.66670515269E-02 1.38254865727E-02 1.13316474650E-02 9.16480813610E-03 7.30284745735E-03 5.72249837516E-03 4.39962237489E-03 3.30950538531E-03 2.42717057307E-03 1.72770292194E-03 1.18658008174E-03 7.80003731668E-04 4.85225656552E-04 2.80862890696E-04 1.47196641081E-04 6.64502394695E-05 2.30420516831E-05 3.81003021103E-06 -1.79465150615E-06 -1.54680563021E-06 -3.20800553219E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 10 2 i j (l(j)) 0.00000000000E+00 Q_int 8.92156036204E-26 9.61640851431E-26 1.03653743248E-25 1.11726727014E-25 1.20428468263E-25 1.29807937240E-25 1.39917918192E-25 1.50815306424E-25 1.62561428484E-25 1.75222387284E-25 1.88869434106E-25 2.03579369580E-25 2.19434975885E-25 2.36525482620E-25 2.54947068956E-25 2.74803404898E-25 2.96206234700E-25 3.19276005722E-25 3.44142546266E-25 3.70945796200E-25 3.99836594488E-25 4.30977528062E-25 4.64543846796E-25 5.00724449754E-25 5.39722948242E-25 5.81758811659E-25 6.27068602591E-25 6.75907308104E-25 7.28549774710E-25 7.85292255112E-25 8.46454075399E-25 9.12379432106E-25 9.83439329218E-25 1.06003366605E-24 1.14259348775E-24 1.23158341102E-24 1.32750423887E-24 1.43089577891E-24 1.54233988122E-24 1.66246371275E-24 1.79194328686E-24 1.93150726759E-24 2.08194107040E-24 2.24409128213E-24 2.41887042535E-24 2.60726209364E-24 2.81032648695E-24 3.02920637802E-24 3.26513354342E-24 3.51943569565E-24 3.79354395494E-24 4.08900090310E-24 4.40746926461E-24 4.75074126386E-24 5.12074871109E-24 5.51957387393E-24 5.94946119568E-24 6.41282992618E-24 6.91228773649E-24 7.45064539392E-24 8.03093257999E-24 8.65641494040E-24 9.33061246288E-24 1.00573192864E-23 1.08406250533E-23 1.16849379241E-23 1.25950093852E-23 1.35759609885E-23 1.46333131737E-23 1.57730163351E-23 1.70014843084E-23 1.83256304656E-23 1.97529066206E-23 2.12913449657E-23 2.29496032734E-23 2.47370136196E-23 2.66636349011E-23 2.87403094431E-23 3.09787240162E-23 3.33914756051E-23 3.59921423000E-23 3.87953597090E-23 4.18169033223E-23 4.50737772905E-23 4.85843101181E-23 5.23682578095E-23 5.64469150488E-23 6.08432350382E-23 6.55819586708E-23 7.06897537630E-23 7.61953651312E-23 8.21297763574E-23 8.85263841538E-23 9.54211863067E-23 1.02852984259E-22 1.10863601473E-22 1.19498118792E-22 1.28805128145E-22 1.38837006003E-22 1.49650208130E-22 1.61305587303E-22 1.73868735763E-22 1.87410354348E-22 2.02006650370E-22 2.17739766483E-22 2.34698242951E-22 2.52977515922E-22 2.72680454505E-22 2.93917939684E-22 3.16809488312E-22 3.41483925711E-22 3.68080110653E-22 3.96747716808E-22 4.27648075050E-22 4.60955081372E-22 4.96856175507E-22 5.35553395772E-22 5.77264516067E-22 6.22224271422E-22 6.70685679010E-22 7.22921462025E-22 7.79225584478E-22 8.39914905513E-22 9.05330962578E-22 9.75841893473E-22 1.05184450810E-21 1.13376652155E-21 1.22206896115E-21 1.31724876094E-21 1.41984155824E-21 1.53042470804E-21 1.64962053209E-21 1.77809982119E-21 1.91658561006E-21 2.06585724639E-21 2.22675477669E-21 2.40018367375E-21 2.58711993236E-21 2.78861556182E-21 3.00580450627E-21 3.23990902611E-21 3.49224657644E-21 3.76423722125E-21 4.05741162494E-21 4.37341966645E-21 4.71403972409E-21 5.08118868363E-21 5.47693272586E-21 5.90349895428E-21 6.36328792841E-21 6.85888717332E-21 7.39308574120E-21 7.96888990721E-21 8.58954008761E-21 9.25852907574E-21 9.97962169810E-21 1.07568760015E-20 1.15946660901E-20 1.24977067416E-20 1.34710799399E-20 1.45202634749E-20 1.56511617694E-20 1.68701391072E-20 1.81840554486E-20 1.96003050361E-20 2.11268580065E-20 2.27723052435E-20 2.45459067247E-20 2.64576436326E-20 2.85182745259E-20 3.07393958839E-20 3.31335073678E-20 3.57140821640E-20 3.84956428065E-20 4.14938429039E-20 4.47255552328E-20 4.82089666910E-20 5.19636806471E-20 5.60108272611E-20 6.03731823969E-20 6.50752957967E-20 7.01436292379E-20 7.56067054503E-20 8.14952686316E-20 8.78424574643E-20 9.46839916081E-20 1.02058372717E-19 1.10007101113E-19 1.18574909334E-19 1.27810013871E-19 1.37764386516E-19 1.48494046837E-19 1.60059377437E-19 1.72525463765E-19 1.85962460391E-19 2.00445985813E-19 2.16057548010E-19 2.32885003135E-19 2.51023049941E-19 2.70573762710E-19 2.91647165687E-19 3.14361852257E-19 3.38845652348E-19 3.65236351805E-19 3.93682467801E-19 4.24344084637E-19 4.57393754635E-19 4.93017469201E-19 5.31415705515E-19 5.72804554740E-19 6.17416938105E-19 6.65503917700E-19 7.17336109359E-19 7.73205205582E-19 8.33425617080E-19 8.98336242152E-19 9.68302373887E-19 1.04371775589E-18 1.12500679813E-18 1.21262696536E-18 1.30707135155E-18 1.40887145485E-18 1.51860016864E-18 1.63687500560E-18 1.76436157278E-18 1.90177731745E-18 2.04989556459E-18 2.20954986886E-18 2.38163870556E-18 2.56713052692E-18 2.76706921214E-18 2.98257994198E-18 3.21487553085E-18 3.46526325207E-18 3.73515219471E-18 4.02606119340E-18 4.33962737579E-18 4.67761537562E-18 5.04192726348E-18 5.43461325089E-18 5.85788322814E-18 6.31411920070E-18 6.80588869422E-18 7.33595920363E-18 7.90731376749E-18 8.52316775544E-18 9.18698696302E-18 9.90250711587E-18 1.06737548929E-17 1.15050705871E-17 1.24011325307E-17 1.33669834233E-17 1.44080587099E-17 1.55302171701E-17 1.67397738883E-17 1.80435357931E-17 1.94488399636E-17 2.09635949202E-17 2.25963251300E-17 2.43562189796E-17 2.62531804837E-17 2.82978850209E-17 3.05018394104E-17 3.28774466683E-17 3.54380758063E-17 3.81981370676E-17 4.11731630220E-17 4.43798959769E-17 4.78363821964E-17 5.15620734585E-17 5.55779365217E-17 5.99065711179E-17 6.45723371345E-17 6.96014917016E-17 7.50223369570E-17 8.08653793192E-17 8.71635011647E-17 9.39521458771E-17 1.01269517307E-16 1.09156794771E-16 1.17658364785E-16 1.26822070861E-16 1.36699482746E-16 1.47346186637E-16 1.58822097996E-16 1.71191798730E-16 1.84524900629E-16 1.98896437115E-16 2.14387285498E-16 2.31084622116E-16 2.49082412929E-16 2.68481942322E-16 2.89392383083E-16 3.11931410788E-16 3.36225866024E-16 3.62412468197E-16 3.90638584923E-16 4.21063061354E-16 4.53857114089E-16 4.89205294703E-16 5.27306528322E-16 5.68375233088E-16 6.12642526805E-16 6.60357527571E-16 7.11788755697E-16 7.67225644823E-16 8.26980170715E-16 8.91388606927E-16 9.60813417188E-16 1.03564529518E-15 1.11630536320E-15 1.20324754200E-15 1.29696110528E-15 1.39797343308E-15 1.50685297959E-15 1.62421247219E-15 1.75071235956E-15 1.88706452836E-15 2.03403630938E-15 2.19245479573E-15 2.36321149729E-15 2.54726735768E-15 2.74565816198E-15 2.95950036560E-15 3.18999737714E-15 3.43844633056E-15 3.70624538475E-15 3.99490159169E-15 4.30603937732E-15 4.64140968296E-15 5.00289981869E-15 5.39254408411E-15 5.81253521632E-15 6.26523672938E-15 6.75319621494E-15 7.27915967865E-15 7.84608699318E-15 8.45716855464E-15 9.11584323643E-15 9.82581774118E-15 1.05910874599E-14 1.14159589559E-14 1.23050741993E-14 1.32634366894E-14 1.42964396117E-14 1.54098961868E-14 1.66100723844E-14 1.79037221836E-14 1.92981255805E-14 2.08011295556E-14 2.24211922309E-14 2.41674304675E-14 2.60496711688E-14 2.80785065801E-14 3.02653538948E-14 3.26225195022E-14 3.51632682400E-14 3.79018980392E-14 4.08538203831E-14 4.40356470321E-14 4.74652835029E-14 5.11620298276E-14 5.51466891603E-14 5.94416848414E-14 6.40711865797E-14 6.90612464608E-14 7.44399455482E-14 8.02375519012E-14 8.64866908998E-14 9.32225288340E-14 1.00482970791E-13 1.08308873953E-13 1.16744277507E-13 1.25836650463E-13 1.35637158763E-13 1.46200953202E-13 1.57587479766E-13 1.69860814141E-13 1.83090022272E-13 1.97349549001E-13 2.12719636973E-13 2.29286778164E-13 2.47144200575E-13 2.66392392822E-13 2.87139669591E-13 3.09502781117E-13 3.33607570136E-13 3.59589679994E-13 3.87595317900E-13 4.17782077623E-13 4.50319826252E-13 4.85391660017E-13 5.23194934545E-13 5.63942375345E-13 6.07863274774E-13 6.55204782215E-13 7.06233294733E-13 7.61235956020E-13 8.20522272071E-13 8.84425852686E-13 9.53306288581E-13 1.02755117468E-12 1.10757829096E-12 1.19383795315E-12 1.28681554643E-12 1.38703425654E-12 1.49505801340E-12 1.61149466414E-12 1.73699939309E-12 1.87227840814E-12 2.01809291413E-12 2.17526339571E-12 2.34467423362E-12 2.52727868052E-12 2.72410422423E-12 2.93625836862E-12 3.16493486466E-12 3.41142042666E-12 3.67710197147E-12 3.96347442142E-12 4.27214911484E-12 4.60486287143E-12 4.96348776356E-12 5.35004164845E-12 5.76669952037E-12 6.21580574679E-12 6.69988725738E-12 7.22166775977E-12 7.78408306241E-12 8.39029759036E-12 9.04372218705E-12 9.74803330220E-12 1.05071936737E-11 1.13254746195E-11 1.22074800669E-11 1.31581724480E-11 1.41829006200E-11 1.52874299329E-11 1.64779747071E-11 1.77612331579E-11 1.91444250350E-11 2.06353323266E-11 2.22423429132E-11 2.39744979146E-11 2.58415423428E-11 2.78539800645E-11 3.00231328290E-11 3.23612039400E-11 3.48813469073E-11 3.75977394161E-11 4.05256631033E-11 4.36815894055E-11 4.70832723634E-11 5.07498482428E-11 5.47019434097E-11 5.89617901408E-11 6.35533517218E-11 6.85024571843E-11 7.38369466371E-11 7.95868276519E-11 8.57844442429E-11 9.24646585138E-11 9.96650468313E-11 1.07426111136E-10 1.15791506274E-10 1.24808286522E-10 1.34527168680E-10 1.45002818440E-10 1.56294157144E-10 1.68464693229E-10 1.81582878851E-10 1.95722496014E-10 2.10963069695E-10 2.27390315516E-10 2.45096622455E-10 2.64181571246E-10 2.84752493966E-10 3.06925078196E-10 3.30824016601E-10 3.56583708610E-10 3.84349014398E-10 4.14276070194E-10 4.46533166241E-10 4.81301690943E-10 5.18777151338E-10 5.59170271541E-10 6.02708177607E-10 6.49635671784E-10 7.00216610053E-10 7.54735384840E-10 8.13498519767E-10 8.76836396249E-10 9.45105106176E-10 1.01868845368E-09 1.09800011105E-09 1.18348594280E-09 1.27562650876E-09 1.37493976568E-09 1.48198397384E-09 1.59736083326E-09 1.72171886375E-09 1.85575704509E-09 2.00022874343E-09 2.15594594088E-09 2.32378379363E-09 2.50468554789E-09 2.69966783163E-09 2.90982636533E-09 3.13634211084E-09 3.38048789720E-09 3.64363557186E-09 3.92726369267E-09 4.23296582830E-09 4.56245949936E-09 4.91759581832E-09 5.30036987061E-09 5.71293191135E-09 6.15759942474E-09 6.63687012280E-09 7.15343596298E-09 7.71019823318E-09 8.31028383061E-09 8.95706278605E-09 9.65416717460E-09 1.04055114593E-08 1.12153144477E-08 1.20881229366E-08 1.30288371886E-08 1.40427383999E-08 1.51355182941E-08 1.63133110060E-08 1.75827274477E-08 1.89508923436E-08 2.04254841330E-08 2.20147779701E-08 2.37276920567E-08 2.55738375859E-08 2.75635725288E-08 2.97080596312E-08 3.20193288632E-08 3.45103447584E-08 3.71950789331E-08 4.00885882581E-08 4.32070990633E-08 4.65680978842E-08 5.01904292544E-08 5.40944010308E-08 5.83018979375E-08 6.28365038374E-08 6.77236335412E-08 7.29906747833E-08 7.86671411953E-08 8.47848371296E-08 9.13780352403E-08 9.84836678093E-08 1.06141532867E-07 1.14394516266E-07 1.23288830947E-07 1.32874274690E-07 1.43204507796E-07 1.54337352256E-07 1.66335114038E-07 1.79264930253E-07 1.93199143212E-07 2.08215703294E-07 2.24398603012E-07 2.41838344540E-07 2.60632443351E-07 2.80885970762E-07 3.02712138276E-07 3.26232927079E-07 3.51579766044E-07 3.78894262038E-07 4.08328986509E-07 4.40048322732E-07 4.74229378285E-07 5.11062967894E-07 5.50754671849E-07 5.93525976020E-07 6.39615499526E-07 6.89280316904E-07 7.42797381974E-07 8.00465061152E-07 8.62604784630E-07 9.29562824486E-07 1.00171220930E-06 1.07945478575E-06 1.16322343865E-06 1.25348448104E-06 1.35074022783E-06 1.45553176660E-06 1.56844194083E-06 1.69009856166E-06 1.82117786545E-06 1.96240823621E-06 2.11457421252E-06 2.27852080110E-06 2.45515811996E-06 2.64546639612E-06 2.85050134528E-06 3.07139996164E-06 3.30938674965E-06 3.56578043064E-06 3.84200116061E-06 4.13957829734E-06 4.46015875899E-06 4.80551601817E-06 5.17755977962E-06 5.57834639320E-06 6.01009005723E-06 6.47517487169E-06 6.97616780530E-06 7.51583264465E-06 8.09714499955E-06 8.72330844335E-06 9.39777187295E-06 1.01242481803E-05 1.09067343328E-05 1.17495329675E-05 1.26572756124E-05 1.36349476558E-05 1.46879151925E-05 1.58219538885E-05 1.70432800103E-05 1.83585837831E-05 1.97750652458E-05 2.13004727911E-05 2.29431445846E-05 2.47120530784E-05 2.66168528435E-05 2.86679319667E-05 3.08764672710E-05 3.32544836410E-05 3.58149177506E-05 3.85716865155E-05 4.15397606135E-05 4.47352434387E-05 4.81754558860E-05 5.18790273844E-05 5.58659936309E-05 6.01579015079E-05 6.47779216980E-05 6.97509695486E-05 7.51038347756E-05 8.08653206363E-05 8.70663932439E-05 9.37403417434E-05 1.00922950117E-04 1.08652681437E-04 1.16970875446E-04 1.25921960393E-04 1.35553680120E-04 1.45917337477E-04 1.57068055171E-04 1.69065055284E-04 1.81971958726E-04 1.95857106002E-04 2.10793900752E-04 2.26861177600E-04 2.44143595991E-04 2.62732061743E-04 2.82724178188E-04 3.04224728898E-04 3.27346194070E-04 3.52209302836E-04 3.78943623839E-04 4.07688196603E-04 4.38592206357E-04 4.71815705113E-04 5.07530382018E-04 5.45920386089E-04 5.87183204709E-04 6.31530601374E-04 6.79189616435E-04 7.30403634737E-04 7.85433524311E-04 8.44558850447E-04 9.08079169753E-04 9.76315409003E-04 1.04961133383E-03 1.12833511257E-03 1.21288098084E-03 1.30367101261E-03 1.40115700393E-03 1.50582247558E-03 1.61818480139E-03 1.73879746897E-03 1.86825248012E-03 2.00718289837E-03 2.15626555130E-03 2.31622389560E-03 2.48783105319E-03 2.67191302672E-03 2.86935210324E-03 3.08109045487E-03 3.30813394561E-03 3.55155615342E-03 3.81250261706E-03 4.09219531696E-03 4.39193739983E-03 4.71311815623E-03 5.05721826072E-03 5.42581528371E-03 5.82058948417E-03 6.24332989188E-03 6.69594068756E-03 7.18044788890E-03 7.69900634940E-03 8.25390707686E-03 8.84758487668E-03 9.48262632468E-03 1.01617780726E-02 1.08879554878E-02 1.16642516275E-02 1.24939465452E-02 1.33805169258E-02 1.43276460420E-02 1.53392340234E-02 1.64194084250E-02 1.75725350796E-02 1.88032292138E-02 2.01163668032E-02 2.15170961383E-02 2.30108495660E-02 2.46033553674E-02 2.63006497244E-02 2.81090887232E-02 3.00353603331E-02 3.20864962912E-02 3.42698838168E-02 3.65932770678E-02 3.90648082411E-02 4.16929982105E-02 4.44867665812E-02 4.74554410308E-02 5.06087657893E-02 5.39569091028E-02 5.75104695050E-02 6.12804807106E-02 6.52784149260E-02 6.95161843567E-02 7.40061406762E-02 7.87610722013E-02 8.37941985027E-02 8.91191621628E-02 9.47500173727E-02 1.00701215047E-01 1.06987584113E-01 1.13624308619E-01 1.20626900290E-01 1.28011166144E-01 1.35793170768E-01 1.43989192846E-01 1.52615675531E-01 1.61689170222E-01 1.71226273340E-01 1.81243555675E-01 1.91757483890E-01 2.02784333797E-01 2.14340095000E-01 2.26440366586E-01 2.39100243510E-01 2.52334193420E-01 2.66155923693E-01 2.80578238515E-01 2.95612885914E-01 3.11270394755E-01 3.27559901777E-01 3.44488968884E-01 3.62063391023E-01 3.80286995120E-01 3.99161430696E-01 4.18685952972E-01 4.38857199442E-01 4.59668961096E-01 4.81111949705E-01 5.03173562799E-01 5.25837648203E-01 5.49084270281E-01 5.72889480265E-01 5.97225093329E-01 6.22058475356E-01 6.47352342592E-01 6.73064577652E-01 6.99148065618E-01 7.25550554175E-01 7.52214541976E-01 7.79077199585E-01 8.06070327514E-01 8.33120355956E-01 8.60148390854E-01 8.87070310945E-01 9.13796920268E-01 9.40234160510E-01 9.66283387200E-01 9.91841713444E-01 1.01680242434E+00 1.04105546465E+00 1.06448800138E+00 1.08698506242E+00 1.10843025082E+00 1.12870653362E+00 1.14769710265E+00 1.16528630326E+00 1.18136062557E+00 1.19580975109E+00 1.20852764602E+00 1.21941369069E+00 1.22837383295E+00 1.23532175153E+00 1.24018001403E+00 1.24288121227E+00 1.24336905676E+00 1.24159941097E+00 1.23754124485E+00 1.23117748734E+00 1.22250575681E+00 1.21153894938E+00 1.19830566582E+00 1.18285045910E+00 1.16523388703E+00 1.14553235686E+00 1.12383775215E+00 1.10025683585E+00 1.07491042806E+00 1.04793236156E+00 1.01946822315E+00 9.89673894556E-01 9.58713911336E-01 9.26759663986E-01 8.93987469984E-01 8.60576549987E-01 8.26706945017E-01 7.92557414236E-01 7.58303354530E-01 7.24114783592E-01 6.90154427311E-01 6.56575949993E-01 6.23522362422E-01 5.91124637857E-01 5.59500560231E-01 5.28753822017E-01 4.98973382044E-01 4.70233086109E-01 4.42591546170E-01 4.16092267477E-01 3.90764007660E-01 3.66621347930E-01 3.43665454277E-01 3.21885006100E-01 3.01257270894E-01 2.81749306290E-01 2.63319274332E-01 2.45917856869E-01 2.29489764424E-01 2.13975333192E-01 1.99312204851E-01 1.85437081168E-01 1.72287539251E-01 1.59803883760E-01 1.47930999727E-01 1.36620154789E-01 1.25830683970E-01 1.15531475668E-01 1.05702166324E-01 9.63354856642E-02 8.74376424663E-02 7.90156587427E-02 7.10745593441E-02 6.36172541573E-02 5.66444364791E-02 5.01545007255E-02 4.41434825758E-02 3.86050245038E-02 3.35303694163E-02 2.89083847891E-02 2.47256192656E-02 2.09663931552E-02 1.76129236532E-02 1.46454848940E-02 1.20426021660E-02 9.78127877044E-03 7.83725312080E-03 6.18528277179E-03 4.79945117139E-03 3.65349207217E-03 2.72112575080E-03 1.97640049990E-03 1.39403230369E-03 9.49735214384E-04 6.20534729816E-04 3.85056446609E-04 2.23782428568E-04 1.19268075681E-04 5.63127813309E-05 2.20782859887E-05 6.14932442253E-06 5.31860354036E-07 -4.15157938256E-07 -1.18068983687E-07 -6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8 8 2 i j (l(j)) 9.07271437760E-01 Q_int 1.04749311629E-25 1.12907622808E-25 1.21701337125E-25 1.31179942413E-25 1.41396780823E-25 1.52409349016E-25 1.64279621730E-25 1.77074400553E-25 1.90865689857E-25 2.05731102016E-25 2.21754294176E-25 2.39025439047E-25 2.57641732369E-25 2.77707939884E-25 2.99336986929E-25 3.22650593932E-25 3.47779961415E-25 3.74866508341E-25 4.04062667967E-25 4.35532745688E-25 4.69453843683E-25 5.06016857582E-25 5.45427550763E-25 5.87907712307E-25 6.33696405151E-25 6.83051311443E-25 7.36250182688E-25 7.93592402832E-25 8.55400673084E-25 9.22022827962E-25 9.93833792780E-25 1.07123769359E-24 1.15467013147E-24 1.24460063389E-24 1.34153529711E-24 1.44601963422E-24 1.55864164516E-24 1.68003512576E-24 1.81088323447E-24 1.95192233696E-24 2.10394615013E-24 2.26781020884E-24 2.44443668054E-24 2.63481955494E-24 2.84003023776E-24 3.06122358027E-24 3.29964437833E-24 3.55663437767E-24 3.83363982477E-24 4.13221960576E-24 4.45405401929E-24 4.80095423267E-24 5.17487247441E-24 5.57791302068E-24 6.01234403743E-24 6.48061034476E-24 6.98534717552E-24 7.52939500544E-24 8.11581553827E-24 8.74790893596E-24 9.42923239075E-24 1.01636201438E-23 1.09552050629E-23 1.18084419006E-23 1.27281323643E-23 1.37194521381E-23 1.47879800099E-23 1.59397292669E-23 1.71811815357E-23 1.85193232592E-23 1.99616850135E-23 2.15163838869E-23 2.31921691604E-23 2.49984715454E-23 2.69454562561E-23 2.90440802157E-23 3.13061537183E-23 3.37444068924E-23 3.63725613419E-23 3.92054073661E-23 4.22588871941E-23 4.55501847022E-23 4.90978221180E-23 5.29217642571E-23 5.70435308778E-23 6.14863177864E-23 6.62751273750E-23 7.14369093255E-23 7.70007122729E-23 8.29978472804E-23 8.94620640467E-23 9.64297408371E-23 1.03940089207E-22 1.12035374670E-22 1.20761154555E-22 1.30166534382E-22 1.40304444214E-22 1.51231936527E-22 1.63010507280E-22 1.75706441992E-22 1.89391188775E-22 2.04141760415E-22 2.20041167771E-22 2.37178886937E-22 2.55651362771E-22 2.75562551660E-22 2.97024506544E-22 3.20158007512E-22 3.45093241505E-22 3.71970534965E-22 4.00941143537E-22 4.32168103286E-22 4.65827148198E-22 5.02107699154E-22 5.41213929915E-22 5.83365916144E-22 6.28800873907E-22 6.77774494643E-22 7.30562384098E-22 7.87461613337E-22 8.48792390551E-22 9.14899863072E-22 9.86156059737E-22 1.06296198453E-21 1.14574987329E-21 1.23498562617E-21 1.33117142957E-21 1.43484858223E-21 1.54660054149E-21 1.66705620676E-21 1.79689345874E-21 1.93684297432E-21 2.08769233847E-21 2.25029047661E-21 2.42555243194E-21 2.61446451503E-21 2.81808985442E-21 3.03757437947E-21 3.27415326930E-21 3.52915790388E-21 3.80402335656E-21 4.10029647015E-21 4.41964456200E-21 4.76386480702E-21 5.13489435155E-21 5.53482121492E-21 5.96589604003E-21 6.43054475917E-21 6.93138224630E-21 7.47122703257E-21 8.05311716800E-21 8.68032731853E-21 9.35638719465E-21 1.00851014153E-20 1.08705709188E-20 1.17172160417E-20 1.26298013945E-20 1.36134626753E-20 1.46737355716E-20 1.58165869133E-20 1.70484482514E-20 1.83762520530E-20 1.98074707143E-20 2.13501586123E-20 2.30129974327E-20 2.48053450265E-20 2.67372880728E-20 2.88196988429E-20 3.10642963858E-20 3.34837124781E-20 3.60915627116E-20 3.89025231167E-20 4.19324127534E-20 4.51982827355E-20 4.87185121882E-20 5.25129116787E-20 5.66028347027E-20 6.10112978548E-20 6.57631103567E-20 7.08850136745E-20 7.64058320104E-20 8.23566345142E-20 8.87709101293E-20 9.56847560559E-20 1.03137080893E-19 1.11169823603E-19 1.19828189525E-19 1.29160904779E-19 1.39220490473E-19 1.50063558279E-19 1.61751129016E-19 1.74348976057E-19 1.87927995477E-19 2.02564605026E-19 2.18341174188E-19 2.35346487716E-19 2.53676245289E-19 2.73433600067E-19 2.94729739207E-19 3.17684509573E-19 3.42427092201E-19 3.69096729274E-19 3.97843507728E-19 4.28829203886E-19 4.62228193877E-19 4.98228434958E-19 5.37032523268E-19 5.78858833964E-19 6.23942750156E-19 6.72537987557E-19 7.24918022300E-19 7.81377629956E-19 8.42234544429E-19 9.07831246038E-19 9.78536888873E-19 1.05474937825E-18 1.13689760999E-18 1.22544388407E-18 1.32088650626E-18 1.42376259244E-18 1.53465109127E-18 1.65417604229E-18 1.78301008777E-18 1.92187825812E-18 2.07156205209E-18 2.23290383470E-18 2.40681157781E-18 2.59426396982E-18 2.79631592338E-18 3.01410451201E-18 3.24885536913E-18 3.50188958550E-18 3.77463114377E-18 4.06861493213E-18 4.38549538212E-18 4.72705577909E-18 5.09521829787E-18 5.49205482007E-18 5.91979859381E-18 6.38085680161E-18 6.87782410707E-18 7.41349725670E-18 7.99089081889E-18 8.61325414878E-18 9.28408967436E-18 1.00071726069E-17 1.07865721861E-17 1.16266745806E-17 1.25322075715E-17 1.35082671582E-17 1.45603462374E-17 1.56943655140E-17 1.69167068217E-17 1.82342490365E-17 1.96544067889E-17 2.11851721905E-17 2.28351598101E-17 2.46136551538E-17 2.65306669197E-17 2.85969833229E-17 3.08242328078E-17 3.32249494879E-17 3.58126436832E-17 3.86018779510E-17 4.16083490377E-17 4.48489762146E-17 4.83419964923E-17 5.21070672517E-17 5.61653768674E-17 6.05397639481E-17 6.52548458628E-17 7.03371572771E-17 7.58152994804E-17 8.17201013417E-17 8.80847928027E-17 9.49451918818E-17 1.02339906244E-16 1.10310550467E-16 1.18901980236E-16 1.28162544768E-16 1.38144358902E-16 1.48903596383E-16 1.60500805982E-16 1.73001252240E-16 1.86475282750E-16 2.00998724042E-16 2.16653308308E-16 2.33527133350E-16 2.51715158360E-16 2.71319738313E-16 2.92451199973E-16 3.15228462767E-16 3.39779708012E-16 3.66243100266E-16 3.94767564857E-16 4.25513625969E-16 4.58654310007E-16 4.94376119308E-16 5.32880081700E-16 5.74382881793E-16 6.19118080390E-16 6.67337428858E-16 7.19312285873E-16 7.75335144511E-16 8.35721278258E-16 9.00810515234E-16 9.70969150587E-16 1.04659200784E-15 1.12810466076E-15 1.21596582831E-15 1.31066995611E-15 1.41274999891E-15 1.52278041985E-15 1.64138042325E-15 1.76921743919E-15 1.90701087949E-15 2.05553618625E-15 2.21562919558E-15 2.38819084137E-15 2.57419222525E-15 2.77468008148E-15 2.99078266746E-15 3.22371611298E-15 3.47479126401E-15 3.74542105946E-15 4.03712848247E-15 4.35155513100E-15 4.69047045587E-15 5.05578171831E-15 5.44954472303E-15 5.87397538719E-15 6.33146221038E-15 6.82457971583E-15 7.35610293843E-15 7.92902304109E-15 8.54656414734E-15 9.21220148491E-15 9.92968094237E-15 1.07030401488E-14 1.15366311954E-14 1.24351451264E-14 1.34036383374E-14 1.44475610301E-14 1.55727878826E-14 1.67856511086E-14 1.80929760912E-14 1.95021197920E-14 2.10210121515E-14 2.26582007139E-14 2.44228987271E-14 2.63250369893E-14 2.83753197327E-14 3.05852848601E-14 3.29673688728E-14 3.55349768544E-14 3.83025579061E-14 4.12856864558E-14 4.45011499006E-14 4.79670430745E-14 5.17028700728E-14 5.57296540077E-14 6.00700553108E-14 6.47484992492E-14 6.97913133728E-14 7.52268756662E-14 8.10857742373E-14 8.74009794446E-14 9.42080294274E-14 1.01545230087E-13 1.09453870640E-13 1.17978455962E-13 1.27166957023E-13 1.37071080827E-13 1.47746561375E-13 1.59253473290E-13 1.71656569860E-13 1.85025647414E-13 1.99435938073E-13 2.14968533085E-13 2.31710839134E-13 2.49757070175E-13 2.69208777590E-13 2.90175421608E-13 3.12774987247E-13 3.37134648210E-13 3.63391482489E-13 3.91693243697E-13 4.22199192467E-13 4.55080992601E-13 4.90523677003E-13 5.28726688841E-13 5.69905003782E-13 6.14290339631E-13 6.62132460163E-13 7.13700580499E-13 7.69284881915E-13 8.29198144630E-13 8.93777507734E-13 9.63386366173E-13 1.03841641547E-12 1.11928985564E-12 1.20646176681E-12 1.30042266972E-12 1.40170128574E-12 1.51086751171E-12 1.62853562651E-12 1.75536774733E-12 1.89207755502E-12 2.03943430959E-12 2.19826717844E-12 2.36946990150E-12 2.55400581984E-12 2.75291329563E-12 2.96731155439E-12 3.19840698194E-12 3.44749991190E-12 3.71599194153E-12 4.00539381740E-12 4.31733393501E-12 4.65356750027E-12 5.01598640437E-12 5.40662986752E-12 5.82769591161E-12 6.28155372600E-12 6.77075699635E-12 7.29805827118E-12 7.86642444714E-12 8.47905345994E-12 9.13939227500E-12 9.85115627879E-12 1.06183501801E-11 1.14452905386E-11 1.23366300476E-11 1.32973837076E-11 1.43329570470E-11 1.54491764867E-11 1.66523221876E-11 1.79491633174E-11 1.93469961847E-11 2.08536851737E-11 2.24777071336E-11 2.42281989268E-11 2.61150088919E-11 2.81487522586E-11 3.03408707289E-11 3.27036970436E-11 3.52505241338E-11 3.79956799908E-11 4.09546083249E-11 4.41439552893E-11 4.75816631110E-11 5.12870711228E-11 5.52810244444E-11 5.95859912124E-11 6.42261889119E-11 6.92277206482E-11 7.46187219755E-11 8.04295189579E-11 8.66927988008E-11 9.34437937436E-11 1.00720479024E-10 1.08563786499E-10 1.17017834801E-10 1.26130177576E-10 1.35952070641E-10 1.46538759910E-10 1.57949793306E-10 1.70249353113E-10 1.83506619492E-10 1.97796158900E-10 2.13198340840E-10 2.29799792375E-10 2.47693884968E-10 2.66981257962E-10 2.87770385227E-10 3.10178184862E-10 3.34330675965E-10 3.60363687980E-10 3.88423623046E-10 4.18668278996E-10 4.51267737874E-10 4.86405319530E-10 5.24278612753E-10 5.65100586838E-10 6.09100786776E-10 6.56526624899E-10 7.07644768130E-10 7.62742640205E-10 8.22130035106E-10 8.86140857150E-10 9.55134995285E-10 1.02950035087E-09 1.10965501040E-09 1.19604959879E-09 1.28916980617E-09 1.38953912235E-09 1.49772177157E-09 1.61432588345E-09 1.74000691099E-09 1.87547130682E-09 2.02148049575E-09 2.17885514563E-09 2.34847978082E-09 2.53130774341E-09 2.72836654814E-09 2.94076365673E-09 3.16969267967E-09 3.41644009731E-09 3.68239246651E-09 3.96904420245E-09 4.27800597480E-09 4.61101374913E-09 4.96993851218E-09 5.35679678700E-09 5.77376194152E-09 6.22317637550E-09 6.70756468125E-09 7.22964777828E-09 7.79235819082E-09 8.39885650765E-09 9.05254907880E-09 9.75710713934E-09 1.05164873855E-08 1.13349541613E-08 1.22171033609E-08 1.31678881981E-08 1.41926469704E-08 1.52971329619E-08 1.64875467030E-08 1.77705707010E-08 1.91534068960E-08 2.06438169775E-08 2.22501658870E-08 2.39814686666E-08 2.58474409155E-08 2.78585532309E-08 3.00260898061E-08 3.23622115892E-08 3.48800243738E-08 3.75936521153E-08 4.05183160012E-08 4.36704195754E-08 4.70676405026E-08 5.07290294568E-08 5.46751166519E-08 5.89280266216E-08 6.35116019020E-08 6.84515363246E-08 7.37755185628E-08 7.95133868929E-08 8.56972958281E-08 9.23618957562E-08 9.95445264431E-08 1.07285425444E-07 1.15627952815E-07 1.24618833012E-07 1.34308415661E-07 1.44750956412E-07 1.56004919543E-07 1.68133303964E-07 1.81203994414E-07 1.95290139821E-07 2.10470560868E-07 2.26830189114E-07 2.44460539909E-07 2.63460222050E-07 2.83935486516E-07 3.06000817822E-07 3.29779570839E-07 3.55404656834E-07 3.83019282418E-07 4.12777745463E-07 4.44846292461E-07 4.79404041886E-07 5.16643978737E-07 5.56774025782E-07 6.00018197197E-07 6.46617841177E-07 6.96832978004E-07 7.50943741356E-07 8.09251930261E-07 8.72082680498E-07 9.39786264582E-07 1.01274002991E-06 1.09135048607E-06 1.17605555219E-06 1.26732697705E-06 1.36567294481E-06 1.47164088078E-06 1.58582047212E-06 1.70884692044E-06 1.84140444335E-06 1.98423004440E-06 2.13811757158E-06 2.30392208636E-06 2.48256456709E-06 2.67503697191E-06 2.88240768854E-06 3.10582740055E-06 3.34653540110E-06 3.60586638894E-06 3.88525778240E-06 4.18625759097E-06 4.51053288647E-06 4.85987891936E-06 5.23622892854E-06 5.64166469734E-06 6.07842791147E-06 6.54893237985E-06 7.05577718307E-06 7.60176081875E-06 8.18989641941E-06 8.82342812283E-06 9.50584868142E-06 1.02409184033E-05 1.10326855252E-05 1.18855081227E-05 1.28040776749E-05 1.37934444046E-05 1.48590445272E-05 1.60067295509E-05 1.72427977783E-05 1.85740281763E-05 2.00077167860E-05 2.15517158629E-05 2.32144759482E-05 2.50050910878E-05 2.69333474305E-05 2.90097754540E-05 3.12457060857E-05 3.36533310024E-05 3.62457674162E-05 3.90371276744E-05 4.20425940226E-05 4.52784989090E-05 4.87624112316E-05 5.25132289597E-05 5.65512785894E-05 6.08984219300E-05 6.55781707454E-05 7.06158098194E-05 7.60385290464E-05 8.18755651947E-05 8.81583540334E-05 9.49206935602E-05 1.02198919119E-04 1.10032091251E-04 1.18462197177E-04 1.27534366870E-04 1.37297104751E-04 1.47802538092E-04 1.59106683300E-04 1.71269731318E-04 1.84356353483E-04 1.98436029240E-04 2.13583397223E-04 2.29878631315E-04 2.47407843372E-04 2.66263514454E-04 2.86544956470E-04 3.08358806308E-04 3.31819554620E-04 3.57050111594E-04 3.84182412152E-04 4.13358063215E-04 4.44729035777E-04 4.78458404747E-04 5.14721139654E-04 5.53704949521E-04 5.95611185391E-04 6.40655804189E-04 6.89070397827E-04 7.41103291651E-04 7.97020716599E-04 8.57108059626E-04 9.21671197240E-04 9.91037917226E-04 1.06555943390E-03 1.14561200254E-03 1.23159863882E-03 1.32395094955E-03 1.42313108107E-03 1.52963379221E-03 1.64398865883E-03 1.76676241731E-03 1.89856145481E-03 2.04003445421E-03 2.19187520221E-03 2.35482556903E-03 2.52967866893E-03 2.71728221055E-03 2.91854204684E-03 3.13442593423E-03 3.36596751115E-03 3.61427050629E-03 3.88051318699E-03 4.16595305852E-03 4.47193182500E-03 4.79988062289E-03 5.15132553806E-03 5.52789341710E-03 5.93131798401E-03 6.36344627262E-03 6.82624538519E-03 7.32180958723E-03 7.85236774796E-03 8.42029113524E-03 9.02810157320E-03 9.67847996967E-03 1.03742752195E-02 1.11185134883E-02 1.19144078809E-02 1.27653684937E-02 1.36750128538E-02 1.46471767382E-02 1.56859253714E-02 1.67955649893E-02 1.79806547610E-02 1.92460190504E-02 2.05967599991E-02 2.20382704071E-02 2.35762468791E-02 2.52167032051E-02 2.69659839309E-02 2.88307780717E-02 3.08181329134E-02 3.29354678376E-02 3.51905880974E-02 3.75916984632E-02 4.01474166449E-02 4.28667863871E-02 4.57592901236E-02 4.88348610610E-02 5.21038945508E-02 5.55772585947E-02 5.92663033099E-02 6.31828691692E-02 6.73392938099E-02 7.17484171912E-02 7.64235848584E-02 8.13786490562E-02 8.66279674113E-02 9.21863988870E-02 9.80692966889E-02 1.04292497785E-01 1.10872308680E-01 1.17825487059E-01 1.25169218916E-01 1.32921090731E-01 1.41099056271E-01 1.49721397569E-01 1.58806679601E-01 1.68373698205E-01 1.78441420733E-01 1.89028918975E-01 2.00155293842E-01 2.11839591334E-01 2.24100709324E-01 2.36957294680E-01 2.50427630319E-01 2.64529511764E-01 2.79280112868E-01 2.94695840375E-01 3.10792177092E-01 3.27583513488E-01 3.45082967640E-01 3.63302193554E-01 3.82251177985E-01 4.01938026035E-01 4.22368735942E-01 4.43546963655E-01 4.65473777952E-01 4.88147407090E-01 5.11562978162E-01 5.35712250614E-01 5.60583345582E-01 5.86160473037E-01 6.12423658946E-01 6.39348475020E-01 6.66905773878E-01 6.95061432790E-01 7.23776109486E-01 7.53005013812E-01 7.82697699339E-01 8.12797879323E-01 8.43243271665E-01 8.73965477799E-01 9.04889900612E-01 9.35935706676E-01 9.67015838174E-01 9.98037079918E-01 1.02890018685E+00 1.05950007724E+00 1.08972609656E+00 1.11946235677E+00 1.14858815501E+00 1.17697847540E+00 1.20450457677E+00 1.23103466798E+00 1.25643467199E+00 1.28056907799E+00 1.30330188007E+00 1.32449759895E+00 1.34402238195E+00 1.36174517437E+00 1.37753895370E+00 1.39128201604E+00 1.40285930207E+00 1.41216374800E+00 1.41909764481E+00 1.42357398733E+00 1.42551779298E+00 1.42486736839E+00 1.42157550099E+00 1.41561055179E+00 1.40695742504E+00 1.39561839069E+00 1.38161373604E+00 1.36498222410E+00 1.34578133839E+00 1.32408729607E+00 1.29999481483E+00 1.27361662267E+00 1.24508270451E+00 1.21453928453E+00 1.18214754882E+00 1.14808211903E+00 1.11252929380E+00 1.07568508104E+00 1.03775305019E+00 9.98942039311E-01 9.59463756770E-01 9.19530321585E-01 8.79351789462E-01 8.39133713400E-01 7.99074788040E-01 7.59364625704E-01 7.20181709233E-01 6.81691562314E-01 6.44045172107E-01 6.07377691867E-01 5.71807443197E-01 5.37435228879E-01 5.04343958510E-01 4.72598580670E-01 4.42246307778E-01 4.13317113444E-01 3.85824477499E-01 3.59766351118E-01 3.35126313788E-01 3.11874895112E-01 2.89971037286E-01 2.69363678053E-01 2.49993438252E-01 2.31794401842E-01 2.14695978548E-01 1.98624839144E-01 1.83506910006E-01 1.69269406563E-01 1.55842874506E-01 1.43163193735E-01 1.31173484019E-01 1.19825835100E-01 1.09082769754E-01 9.89183386036E-02 8.93201846407E-02 8.02890887865E-02 7.18259557182E-02 6.39290611265E-02 5.65939936267E-02 4.98136249988E-02 4.35781115621E-02 3.78749291094E-02 3.26889433419E-02 2.80025171574E-02 2.37956554560E-02 2.00461873478E-02 1.67299847863E-02 1.38212157276E-02 1.12926289472E-02 9.11586666428E-03 7.26180014667E-03 5.70088254542E-03 4.40351235287E-03 3.34040014487E-03 2.48293067996E-03 1.80351202576E-03 1.27590319365E-03 8.75511812085E-04 5.79653675910E-04 3.67766584017E-04 2.21571722532E-04 1.25176960164E-04 6.51177814902E-05 3.03331733643E-05 1.20755758407E-05 3.75598898985E-06 7.27472249345E-07 1.25741491767E-08 -1.73084575292E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8 9 2 i j (l(j)) 0.00000000000E+00 Q_int 9.20917202089E-26 9.92642056296E-26 1.06995313986E-25 1.15328553151E-25 1.24310819570E-25 1.33992662181E-25 1.44428566882E-25 1.55677263156E-25 1.67802054586E-25 1.80871175100E-25 1.94958172964E-25 2.10142324693E-25 2.26509081183E-25 2.44150548601E-25 2.63166006725E-25 2.83662467655E-25 3.05755278036E-25 3.29568768188E-25 3.55236951795E-25 3.82904280080E-25 4.12726454729E-25 4.44871304120E-25 4.79519727803E-25 5.16866714534E-25 5.57122439603E-25 6.00513447626E-25 6.47283927453E-25 6.97697086372E-25 7.52036631351E-25 8.10608365633E-25 8.73741909686E-25 9.41792556188E-25 1.01514326949E-24 1.09420684078E-24 1.17942821116E-24 1.27128697558E-24 1.37030008183E-24 1.47702473975E-24 1.59206155698E-24 1.71605791900E-24 1.84971163234E-24 1.99377485159E-24 2.14905831228E-24 2.31643589338E-24 2.49684953519E-24 2.69131454021E-24 2.90092528692E-24 3.12686138855E-24 3.37039433150E-24 3.63289463078E-24 3.91583954284E-24 4.22082137897E-24 4.54955646626E-24 4.90389480649E-24 5.28583048727E-24 5.69751290400E-24 6.14125885592E-24 6.61956558424E-24 7.13512482562E-24 7.69083796041E-24 8.28983234043E-24 8.93547888870E-24 9.63141106968E-24 1.03815453371E-23 1.11901031744E-23 1.20616348517E-23 1.30010450329E-23 1.40136203777E-23 1.51050592924E-23 1.62815039994E-23 1.75495751023E-23 1.89164088452E-23 2.03896972723E-23 2.19777315160E-23 2.36894484569E-23 2.55344810164E-23 2.75232123683E-23 2.96668343708E-23 3.19774105503E-23 3.44679439910E-23 3.71524505112E-23 4.00460375389E-23 4.31649891319E-23 4.65268576174E-23 5.01505623709E-23 5.40564962875E-23 5.82666405453E-23 6.28046883079E-23 6.76961780608E-23 7.29686373325E-23 7.86517376098E-23 8.47774613180E-23 9.13802818061E-23 9.84973573507E-23 1.06168740269E-22 1.14437602319E-22 1.23350477655E-22 1.32957524702E-22 1.43312808434E-22 1.54474604626E-22 1.66505727817E-22 1.79473884797E-22 1.93452055646E-22 2.08518904434E-22 2.24759221915E-22 2.42264402697E-22 2.61132959582E-22 2.81471077955E-22 3.03393213361E-22 3.27022735616E-22 3.52492623090E-22 3.79946211058E-22 4.09537998343E-22 4.41434516776E-22 4.75815268376E-22 5.12873735526E-22 5.52818469817E-22 5.95874265704E-22 6.42283425565E-22 6.92307123293E-22 7.46226874084E-22 8.04346118707E-22 8.66991931155E-22 9.34516859299E-22 1.00730090890E-21 1.08575368214E-21 1.17031668272E-21 1.26146580049E-21 1.35971398954E-21 1.46561415498E-21 1.57976226446E-21 1.70280070205E-21 1.83542188335E-21 1.97837215216E-21 2.13245598064E-21 2.29854049657E-21 2.47756036320E-21 2.67052303928E-21 2.87851444858E-21 3.10270509114E-21 3.34435663036E-21 3.60482899323E-21 3.88558802349E-21 4.18821373085E-21 4.51440918272E-21 4.86601008847E-21 5.24499513009E-21 5.65349709752E-21 6.09381489122E-21 6.56842645954E-21 7.08000274370E-21 7.63142270885E-21 8.22578954590E-21 8.86644813509E-21 9.55700386977E-21 1.03013429463E-20 1.11036542339E-20 1.19684528486E-20 1.29006055620E-20 1.39053581902E-20 1.49883651151E-20 1.61557211052E-20 1.74139956148E-20 1.87702697546E-20 2.02321761413E-20 2.18079418514E-20 2.35064347201E-20 2.53372132463E-20 2.73105803843E-20 2.94376415251E-20 3.17303669933E-20 3.42016594119E-20 3.68654263135E-20 3.97366584068E-20 4.28315139388E-20 4.61674096273E-20 4.97631186764E-20 5.36388764244E-20 5.78164942215E-20 6.23194821759E-20 6.71731814599E-20 7.24049069210E-20 7.80441007995E-20 8.41224984190E-20 9.06743067809E-20 9.77363970688E-20 1.05348512146E-19 1.13553490215E-19 1.22397505892E-19 1.31930330064E-19 1.42205609979E-19 1.53281171153E-19 1.65219342795E-19 1.78087308564E-19 1.91957484663E-19 2.06907927364E-19 2.23022772285E-19 2.40392707872E-19 2.59115485757E-19 2.79296470874E-19 3.01049234412E-19 3.24496192946E-19 3.49769297363E-19 3.77010775423E-19 4.06373932168E-19 4.38024012669E-19 4.72139131958E-19 5.08911277398E-19 5.48547389115E-19 5.91270524581E-19 6.37321113897E-19 6.86958312848E-19 7.40461461329E-19 7.98131655374E-19 8.60293441606E-19 9.27296643669E-19 9.99518330901E-19 1.07736494034E-18 1.16127456402E-18 1.25171941434E-18 1.34920848156E-18 1.45429039815E-18 1.56755652635E-18 1.68964428607E-18 1.82124074212E-18 1.96308647067E-18 2.11597972701E-18 2.28078093780E-18 2.45841754323E-18 2.64988921629E-18 2.85627348857E-18 3.07873181422E-18 3.31851610613E-18 3.57697578127E-18 3.85556535464E-18 4.15585262481E-18 4.47952749683E-18 4.82841149240E-18 5.20446800069E-18 5.60981332759E-18 6.04672860540E-18 6.51767263026E-18 7.02529569925E-18 7.57245452528E-18 8.16222831357E-18 8.79793609023E-18 9.48315538051E-18 1.02217423417E-17 1.10178534640E-17 1.18759689620E-17 1.28009179870E-17 1.37979058044E-17 1.48725430861E-17 1.60308774858E-17 1.72794276726E-17 1.86252200154E-17 2.00758281249E-17 2.16394154747E-17 2.33247813422E-17 2.51414103276E-17 2.70995257293E-17 2.92101470767E-17 3.14851521438E-17 3.39373437927E-17 3.65805220230E-17 3.94295616326E-17 4.25004959273E-17 4.58106069499E-17 4.93785227365E-17 5.32243221480E-17 5.73696478654E-17 6.18378281864E-17 6.66540083078E-17 7.18452918323E-17 7.74408932968E-17 8.34723025797E-17 8.99734621134E-17 9.69809578987E-17 1.04534225395E-16 1.12675771449E-16 1.21451413501E-16 1.30910537435E-16 1.41106375491E-16 1.52096305845E-16 1.63942175501E-16 1.76710648345E-16 1.90473580301E-16 2.05308423702E-16 2.21298663166E-16 2.38534285404E-16 2.57112285635E-16 2.77137213426E-16 2.98721761062E-16 3.21987397717E-16 3.47065053044E-16 3.74095853979E-16 4.03231918948E-16 4.34637213924E-16 4.68488475152E-16 5.04976203743E-16 5.44305737735E-16 5.86698407638E-16 6.32392781988E-16 6.81646009902E-16 7.34735268197E-16 7.91959321216E-16 8.53640202140E-16 9.20125025240E-16 9.91787939281E-16 1.06903223305E-15 1.15229260490E-15 1.24203760899E-15 1.33877229212E-15 1.44304103591E-15 1.55543062026E-15 1.67657352553E-15 1.80715149181E-15 1.94789935541E-15 2.09960918419E-15 2.26313473491E-15 2.43939625776E-15 2.62938567505E-15 2.83417216330E-15 3.05490816998E-15 3.29283589892E-15 3.54929430081E-15 3.82572660810E-15 4.12368845679E-15 4.44485664071E-15 4.79103854767E-15 5.16418233044E-15 5.56638786995E-15 5.99991859227E-15 6.46721420592E-15 6.97090443127E-15 7.51382379909E-15 8.09902760177E-15 8.72980908674E-15 9.40971798902E-15 1.01425805071E-14 1.09325208345E-14 1.17839843686E-14 1.27017627262E-14 1.36910207085E-14 1.47573253650E-14 1.59066773219E-14 1.71455445494E-14 1.84808987602E-14 1.99202546411E-14 2.14717121415E-14 2.31440020547E-14 2.49465351488E-14 2.68894551246E-14 2.89836956978E-14 3.12410421263E-14 3.36741975301E-14 3.62968543752E-14 3.91237715259E-14 4.21708572972E-14 4.54552589752E-14 4.89954593102E-14 5.28113805239E-14 5.69244964170E-14 6.13579532081E-14 6.61366997827E-14 7.12876280867E-14 7.68397244536E-14 8.28242327165E-14 8.92748300236E-14 9.62278163465E-14 1.03722318746E-13 1.11800511547E-13 1.20507853661E-13 1.29893344389E-13 1.40009799147E-13 1.50914146665E-13 1.62667749333E-13 1.75336748490E-13 1.88992436609E-13 2.03711658463E-13 2.19577243535E-13 2.36678472105E-13 2.55111577627E-13 2.74980288242E-13 2.96396410449E-13 3.19480458242E-13 3.44362331235E-13 3.71182045600E-13 4.00090521928E-13 4.31250434444E-13 4.64837126357E-13 5.01039596492E-13 5.40061562761E-13 5.82122608443E-13 6.27459417745E-13 6.76327107565E-13 7.29000662982E-13 7.85776484523E-13 8.46974055926E-13 9.12937741782E-13 9.84038725158E-13 1.06067709611E-12 1.14328410287E-12 1.23232457824E-12 1.32829955508E-12 1.43174908537E-12 1.54325527878E-12 1.66344557797E-12 1.79299628884E-12 1.93263638569E-12 2.08315161278E-12 2.24538890517E-12 2.42026115389E-12 2.60875234213E-12 2.81192308140E-12 3.03091657877E-12 3.26696506880E-12 3.52139674627E-12 3.79564323882E-12 4.09124766133E-12 4.40987329766E-12 4.75331295823E-12 5.12349906632E-12 5.52251452978E-12 5.95260445919E-12 6.41618879848E-12 6.91587593908E-12 7.45447739402E-12 8.03502361465E-12 8.66078103894E-12 9.33527046712E-12 1.00622868681E-11 1.08459207280E-11 1.16905810611E-11 1.26010202185E-11 1.35823605974E-11 1.46401234776E-11 1.57802601004E-11 1.70091851150E-11 1.83338126385E-11 1.97615951905E-11 2.13005656145E-11 2.29593822332E-11 2.47473775648E-11 2.66746108015E-11 2.87519244671E-11 3.09910052287E-11 3.34044498027E-11 3.60058357657E-11 3.88097978226E-11 4.18321102462E-11 4.50897754961E-11 4.86011199099E-11 5.23858966899E-11 5.64653970977E-11 6.08625701140E-11 6.56021515668E-11 7.07108031233E-11 7.62172623647E-11 8.21525042392E-11 8.85499154143E-11 9.54454818241E-11 1.02877991178E-10 1.10889250979E-10 1.19524323818E-10 1.28831780193E-10 1.38863972467E-10 1.49677328139E-10 1.61332668103E-10 1.73895548107E-10 1.87436627406E-10 2.02032065606E-10 2.17763951826E-10 2.34720765039E-10 2.52997872332E-10 2.72698064370E-10 2.93932133606E-10 3.16819496685E-10 3.41488866253E-10 3.68078973823E-10 3.96739349824E-10 4.27631163845E-10 4.60928130480E-10 4.96817486049E-10 5.35501039606E-10 5.77196308894E-10 6.22137740412E-10 6.70578028846E-10 7.22789536064E-10 7.79065821207E-10 8.39723289907E-10 9.05102973211E-10 9.75572441855E-10 1.05152787277E-09 1.13339627307E-09 1.22163787981E-09 1.31674874465E-09 1.41926351991E-09 1.52975846262E-09 1.64885466846E-09 1.77722156309E-09 1.91558065793E-09 2.06470960402E-09 2.22544655771E-09 2.39869488674E-09 2.58542824296E-09 2.78669602449E-09 3.00362927344E-09 3.23744701967E-09 3.48946312244E-09 3.76109364659E-09 4.05386481731E-09 4.36942156586E-09 4.70953677904E-09 5.07612123932E-09 5.47123433977E-09 5.89709565119E-09 6.35609735770E-09 6.85081768532E-09 7.38403536189E-09 7.95874519525E-09 8.57817487376E-09 9.24580306157E-09 9.96537890340E-09 1.07409430421E-08 1.15768502723E-08 1.24777939475E-08 1.34488322828E-08 1.44954167044E-08 1.56234223923E-08 1.68391812100E-08 1.81495171526E-08 1.95617845918E-08 2.10839094660E-08 2.27244336508E-08 2.44925628072E-08 2.63982179172E-08 2.84520908055E-08 3.06657040106E-08 3.30514752565E-08 3.56227869314E-08 3.83940609832E-08 4.13808395787E-08 4.45998720350E-08 4.80692085039E-08 5.18083008788E-08 5.58381115508E-08 6.01812305909E-08 6.48620019720E-08 6.99066596254E-08 7.53434739774E-08 8.12029098629E-08 8.75177966688E-08 9.43235116233E-08 1.01658177287E-07 1.09562874327E-07 1.18081870729E-07 1.27262868791E-07 1.37157271160E-07 1.47820467488E-07 1.59312143204E-07 1.71696612214E-07 1.85043175244E-07 1.99426505946E-07 2.14927066736E-07 2.31631556863E-07 2.49633394985E-07 2.69033239047E-07 2.89939546268E-07 3.12469176368E-07 3.36748041290E-07 3.62911805052E-07 3.91106637612E-07 4.21490026768E-07 4.54231652691E-07 4.89514329816E-07 5.27535021304E-07 5.68505931621E-07 6.12655683157E-07 6.60230583567E-07 7.11495990463E-07 7.66737781085E-07 8.26263935092E-07 8.90406238872E-07 9.59522120887E-07 1.03399662797E-06 1.11424455343E-06 1.20071272826E-06 1.29388248859E-06 1.39427233186E-06 1.50244077708E-06 1.61898944397E-06 1.74456636815E-06 1.87986957012E-06 2.02565089733E-06 2.18272016034E-06 2.35194958508E-06 2.53427860545E-06 2.73071902216E-06 2.94236055520E-06 3.17037682031E-06 3.41603176121E-06 3.68068657205E-06 3.96580714747E-06 4.27297209984E-06 4.60388138662E-06 4.96036559398E-06 5.34439592587E-06 5.75809495200E-06 6.20374817173E-06 6.68381645502E-06 7.20094942655E-06 7.75799986385E-06 8.35803918508E-06 9.00437410854E-06 9.70056457127E-06 1.04504430008E-05 1.12581350414E-05 1.21280818428E-05 1.30650640282E-05 1.40742274660E-05 1.51611109800E-05 1.63316761413E-05 1.75923392956E-05 1.89500059931E-05 2.04121079969E-05 2.19866430604E-05 2.36822176787E-05 2.55080930321E-05 2.74742343555E-05 2.95913639861E-05 3.18710183589E-05 3.43256092363E-05 3.69684894842E-05 3.98140237221E-05 4.28776642041E-05 4.61760323092E-05 4.97270060471E-05 5.35498140145E-05 5.76651362659E-05 6.20952125984E-05 6.68639587802E-05 7.19970912941E-05 7.75222612022E-05 8.34691977835E-05 8.98698626374E-05 9.67586149971E-05 1.04172389043E-04 1.12150884067E-04 1.20736768378E-04 1.29975897938E-04 1.39917550719E-04 1.50614677918E-04 1.62124173170E-04 1.74507161006E-04 1.87829305908E-04 2.02161143342E-04 2.17578434291E-04 2.34162544886E-04 2.52000852843E-04 2.71187182495E-04 2.91822270376E-04 3.14014263372E-04 3.37879251626E-04 3.63541838494E-04 3.91135750001E-04 4.20804486378E-04 4.52702018438E-04 4.86993531692E-04 5.23856221275E-04 5.63480140952E-04 6.06069109634E-04 6.51841679042E-04 7.01032166348E-04 7.53891755852E-04 8.10689673954E-04 8.71714441897E-04 9.37275211035E-04 1.00770318556E-03 1.08335313794E-03 1.16460502247E-03 1.25186569281E-03 1.34557072929E-03 1.44618638251E-03 1.55421163956E-03 1.67018041984E-03 1.79466390755E-03 1.92827302816E-03 2.07166107666E-03 2.22552650547E-03 2.39061588016E-03 2.56772701159E-03 2.75771227304E-03 2.96148211141E-03 3.18000876150E-03 3.41433017293E-03 3.66555415899E-03 3.93486277717E-03 4.22351695108E-03 4.53286134357E-03 4.86432949065E-03 5.21944920609E-03 5.59984826604E-03 6.00726038314E-03 6.44353147902E-03 6.91062626382E-03 7.41063513076E-03 7.94578137318E-03 8.51842873072E-03 9.13108927016E-03 9.78643160560E-03 1.04872894612E-02 1.12366705779E-02 1.20377659649E-02 1.28939594922E-02 1.38088378222E-02 1.47862006712E-02 1.58300713922E-02 1.69447078660E-02 1.81346136834E-02 1.94045495976E-02 2.07595452227E-02 2.22049109469E-02 2.37462500254E-02 2.53894708121E-02 2.71407990802E-02 2.90067903792E-02 3.09943423626E-02 3.31107070179E-02 3.53635027156E-02 3.77607259905E-02 4.03107629518E-02 4.30224002121E-02 4.59048352118E-02 4.89676858016E-02 5.22209989343E-02 5.56752583017E-02 5.93413907384E-02 6.32307711975E-02 6.73552260883E-02 7.17270347487E-02 7.63589288079E-02 8.12640891773E-02 8.64561403884E-02 9.19491419821E-02 9.77575766295E-02 1.03896334654E-01 1.10380694598E-01 1.17226299474E-01 1.24449128306E-01 1.32065462569E-01 1.40091847117E-01 1.48545045173E-01 1.57441986954E-01 1.66799711496E-01 1.76635301245E-01 1.86965808984E-01 1.97808176659E-01 2.09179145714E-01 2.21095158527E-01 2.33572250591E-01 2.46625933116E-01 2.60271065761E-01 2.74521719266E-01 2.89391027832E-01 3.04891031140E-01 3.21032506019E-01 3.37824787872E-01 3.55275582048E-01 3.73390765544E-01 3.92174179491E-01 4.11627413100E-01 4.31749579890E-01 4.52537087217E-01 4.73983400331E-01 4.96078802422E-01 5.18810152337E-01 5.42160641922E-01 5.66109555166E-01 5.90632031659E-01 6.15698837083E-01 6.41276143780E-01 6.67325324722E-01 6.93802764437E-01 7.20659690774E-01 7.47842031568E-01 7.75290300541E-01 8.02939516927E-01 8.30719163474E-01 8.58553187582E-01 8.86360050356E-01 9.14052828349E-01 9.41539372643E-01 9.68722529742E-01 9.95500428439E-01 1.02176683642E+00 1.04741158986E+00 1.07232109861E+00 1.09637892874E+00 1.11946646345E+00 1.14146364210E+00 1.16224977600E+00 1.18170443841E+00 1.19970842444E+00 1.21614477537E+00 1.23089985980E+00 1.24386450281E+00 1.25493515203E+00 1.26401506814E+00 1.27101552538E+00 1.27585700596E+00 1.27847037083E+00 1.27879798781E+00 1.27679479699E+00 1.27242929265E+00 1.26568440008E+00 1.25655822634E+00 1.24506466369E+00 1.23123382612E+00 1.21511230048E+00 1.19676319602E+00 1.17626597920E+00 1.15371608341E+00 1.12922428788E+00 1.10291586390E+00 1.07492949190E+00 1.04541595773E+00 1.01453664230E+00 9.82461823937E-01 9.49368818334E-01 9.15439985977E-01 8.80860641301E-01 8.45816901727E-01 8.10493517463E-01 7.75071724635E-01 7.39727164799E-01 7.04627912894E-01 6.69932653404E-01 6.35789040751E-01 6.02332274938E-01 5.69683917364E-01 5.37950964744E-01 5.07225191604E-01 4.77582764200E-01 4.49084121339E-01 4.21774111028E-01 3.95682366296E-01 3.70823899597E-01 3.47199892826E-01 3.24798659493E-01 3.03596756861E-01 2.83560228506E-01 2.64645961495E-01 2.46803146397E-01 2.29974831946E-01 2.14099568411E-01 1.99113133806E-01 1.84950334191E-01 1.71546863018E-01 1.58841194699E-01 1.46776474580E-01 1.35302352359E-01 1.24376690091E-01 1.13967061288E-01 1.04051946501E-01 9.46230649874E-02 8.56856420102E-02 7.72455714087E-02 6.93065880399E-02 6.18701595137E-02 5.49353970033E-02 4.84989883047E-02 4.25551561905E-02 3.70956448867E-02 3.21097371860E-02 2.75843043037E-02 2.35038900681E-02 1.98508304340E-02 1.66054086061E-02 1.37460452826E-02 1.12495226820E-02 9.09124012270E-03 7.24549800242E-03 5.68580610610E-03 4.38521127607E-03 3.31663864556E-03 2.45323989169E-03 1.76874133884E-03 1.23778426329E-03 8.36249436612E-04 5.41557812777E-04 3.32939316418E-04 1.91661922289E-04 1.01213610324E-04 4.74303083048E-05 1.85635552836E-05 5.28228629159E-06 6.03802005169E-07 -2.50401589560E-07 -7.77451041878E-08 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.00707128307E-25 1.08550617470E-25 1.17004990126E-25 1.26117824417E-25 1.35940404066E-25 1.46528006989E-25 1.57940216374E-25 1.70241255994E-25 1.83500351638E-25 1.97792120685E-25 2.13196992026E-25 2.29801658687E-25 2.47699565709E-25 2.66991436018E-25 2.87785837260E-25 3.10199792781E-25 3.34359440191E-25 3.60400741220E-25 3.88470246860E-25 4.18725922106E-25 4.51338034920E-25 4.86490114441E-25 5.24379983817E-25 5.65220873486E-25 6.09242621156E-25 6.56692965251E-25 7.07838939091E-25 7.62968373659E-25 8.22391517410E-25 8.86442782235E-25 9.55482625412E-25 1.02989957813E-24 1.11011243199E-24 1.19657259584E-24 1.28976663611E-24 1.39021901503E-24 1.49849504215E-24 1.61520405566E-24 1.74100285154E-24 1.87659937977E-24 2.02275672840E-24 2.18029741797E-24 2.35010803029E-24 2.53314419790E-24 2.73043598191E-24 2.94309366890E-24 3.17231401916E-24 3.41938700165E-24 3.68570305347E-24 3.97276090470E-24 4.28217601277E-24 4.61568965363E-24 4.97517872102E-24 5.36266628897E-24 5.78033299689E-24 6.23052932144E-24 6.71578880418E-24 7.23884230938E-24 7.80263339234E-24 8.41033486468E-24 9.06536664976E-24 9.77141502875E-24 1.05324533857E-23 1.13527645683E-23 1.22369649902E-23 1.31900306104E-23 1.42173249364E-23 1.53246292078E-23 1.65181749313E-23 1.78046789489E-23 1.91913812383E-23 2.06860856568E-23 2.22972038584E-23 2.40338026314E-23 2.59056549236E-23 2.79232948402E-23 3.00980769264E-23 3.24422400664E-23 3.49689763595E-23 3.76925053604E-23 4.06281541018E-23 4.37924433492E-23 4.72031805739E-23 5.08795601670E-23 5.48422714582E-23 5.91136151484E-23 6.37176288092E-23 6.86802221583E-23 7.40293228695E-23 7.97950337398E-23 8.60098020969E-23 9.27086024008E-23 9.99291330679E-23 1.07712028623E-22 1.16101088377E-22 1.25143522913E-22 1.34890219769E-22 1.45396029816E-22 1.56720075939E-22 1.68926085757E-22 1.82082750262E-22 1.96264110385E-22 2.11549973670E-22 2.28026363407E-22 2.45786002733E-22 2.64928836449E-22 2.85562593472E-22 3.07803393093E-22 3.31776398456E-22 3.57616520927E-22 3.85469179333E-22 4.15491118318E-22 4.47851290450E-22 4.82731807026E-22 5.20328962923E-22 5.60854341277E-22 6.04536004198E-22 6.51619776216E-22 7.02370627697E-22 7.57074165995E-22 8.16038242751E-22 8.79594686366E-22 9.48101169414E-22 1.02194322149E-21 1.10153639883E-21 1.18732862293E-21 1.27980270123E-21 1.37947904425E-21 1.48691859423E-21 1.60272598190E-21 1.72755292915E-21 1.86210191668E-21 2.00713013728E-21 2.16345375706E-21 2.33195250853E-21 2.51357464141E-21 2.70934225903E-21 2.92035707037E-21 3.14780659007E-21 3.39297082132E-21 3.65722945927E-21 3.94206965544E-21 4.24909438686E-21 4.58003147706E-21 4.93674331962E-21 5.32123735904E-21 5.73567738790E-21 6.18239572394E-21 6.66390633541E-21 7.18291898885E-21 7.74235449863E-21 8.34536116421E-21 8.99533248768E-21 9.69592627107E-21 1.04510852012E-20 1.12650590377E-20 1.21424285289E-20 1.30881311910E-20 1.41074890941E-20 1.52062388134E-20 1.63905637122E-20 1.76671287397E-20 1.90431179388E-20 2.05262748756E-20 2.21249462169E-20 2.38481287026E-20 2.57055197758E-20 2.77075721565E-20 2.98655526660E-20 3.21916056317E-20 3.46988212319E-20 3.74013091618E-20 4.03142780381E-20 4.34541209871E-20 4.68385078998E-20 5.04864848710E-20 5.44185813844E-20 5.86569258441E-20 6.32253701060E-20 6.81496237069E-20 7.34573985484E-20 7.91785648493E-20 8.53453192443E-20 9.19923659748E-20 9.91571121916E-20 1.06879878469E-19 1.15204125712E-19 1.24176699744E-19 1.33848094929E-19 1.44272738345E-19 1.55509296072E-19 1.67621003346E-19 1.80676020425E-19 1.94747816168E-19 2.09915581490E-19 2.26264675022E-19 2.43887103476E-19 2.62882039424E-19 2.83356379406E-19 3.05425345507E-19 3.29213133777E-19 3.54853613167E-19 3.82491078892E-19 4.12281064471E-19 4.44391217012E-19 4.79002240668E-19 5.16308913572E-19 5.56521183977E-19 5.99865351770E-19 6.46585341998E-19 6.96944077591E-19 7.51224958995E-19 8.09733459042E-19 8.72798842041E-19 9.40776016753E-19 1.01404753368E-18 1.09302573794E-18 1.17815508974E-18 1.26991466571E-18 1.36882085488E-18 1.47543026480E-18 1.59034285387E-18 1.71420530771E-18 1.84771467845E-18 1.99162230747E-18 2.14673805370E-18 2.31393485116E-18 2.49415362154E-18 2.68840856934E-18 2.89779288942E-18 3.12348491912E-18 3.36675476945E-18 3.62897147285E-18 3.91161068755E-18 4.21626300203E-18 4.54464288624E-18 4.89859834001E-18 5.28012129288E-18 5.69135881390E-18 6.13462519456E-18 6.61241497271E-18 7.12741697089E-18 7.68252942798E-18 8.28087630941E-18 8.92582488759E-18 9.62100469168E-18 1.03703279332E-17 1.11780115223E-17 1.20486007993E-17 1.29869951136E-17 1.39984753956E-17 1.50887338759E-17 1.62639061185E-17 1.75306055501E-17 1.88959606770E-17 2.03676552024E-17 2.19539712666E-17 2.36638360563E-17 2.55068720428E-17 2.74934511338E-17 2.96347530422E-17 3.19428282013E-17 3.44306655802E-17 3.71122657797E-17 4.00027198232E-17 4.31182940822E-17 4.64765218175E-17 5.00963018491E-17 5.39980049115E-17 5.82035882917E-17 6.27367193965E-17 6.76229089428E-17 7.28896545215E-17 7.85665953436E-17 8.46856790368E-17 9.12813414345E-17 9.83907003663E-17 1.06053764542E-16 1.14313658705E-16 1.23216866318E-16 1.32813491158E-16 1.43157539275E-16 1.54307222917E-16 1.66325288126E-16 1.79279367843E-16 1.93242362522E-16 2.08292850383E-16 2.24515529613E-16 2.42001695016E-16 2.60849751779E-16 2.81165769256E-16 3.03064077882E-16 3.26667912574E-16 3.52110106242E-16 3.79533837322E-16 4.09093435515E-16 4.40955250294E-16 4.75298587041E-16 5.12316716101E-16 5.52217960424E-16 5.95226867912E-16 6.41585475076E-16 6.91554669110E-16 7.45415656045E-16 8.03471543255E-16 8.66049045200E-16 9.33500322034E-16 1.00620496140E-15 1.08457211456E-15 1.16904279895E-15 1.26009237996E-15 1.35823324612E-15 1.46401769257E-15 1.57804102909E-15 1.70094493025E-15 1.83342104645E-15 1.97621489617E-15 2.13013006139E-15 2.29603270979E-15 2.47485646908E-15 2.66760768102E-15 2.87537106460E-15 3.09931582029E-15 3.34070220974E-15 3.60088864785E-15 3.88133934727E-15 4.18363255822E-15 4.50946945006E-15 4.86068368461E-15 5.23925173498E-15 5.64730400817E-15 6.08713683382E-15 6.56122538674E-15 7.07223761582E-15 7.62304925781E-15 8.21676002038E-15 8.85671102550E-15 9.54650361145E-15 1.02900195991E-14 1.10914431364E-14 1.19552842448E-14 1.28864041985E-14 1.38900428810E-14 1.49718482723E-14 1.61379082319E-14 1.73947847580E-14 1.87495509142E-14 2.02098306322E-14 2.17838416148E-14 2.34804415796E-14 2.53091781049E-14 2.72803423570E-14 2.94050270024E-14 3.16951886299E-14 3.41637150342E-14 3.68244977397E-14 3.96925101727E-14 4.27838919212E-14 4.61160395574E-14 4.97077045331E-14 5.35790986996E-14 5.77520080449E-14 6.22499152897E-14 6.70981320304E-14 7.23239411735E-14 7.79567504631E-14 8.40282579647E-14 9.05726304374E-14 9.76266955965E-14 1.05230149351E-13 1.13425779178E-13 1.22259704898E-13 1.31781638195E-13 1.42045162354E-13 1.53108033780E-13 1.65032506999E-13 1.77885684975E-13 1.91739896700E-13 2.06673104197E-13 2.22769341218E-13 2.40119186105E-13 2.58820271479E-13 2.78977833618E-13 3.00705304627E-13 3.24124950714E-13 3.49368560181E-13 3.76578184992E-13 4.05906940089E-13 4.37519864958E-13 4.71594852292E-13 5.08323648969E-13 5.47912934989E-13 5.90585486431E-13 6.36581428970E-13 6.86159589026E-13 7.39598950116E-13 7.97200222632E-13 8.59287535862E-13 9.26210261769E-13 9.98344980806E-13 1.07609760081E-12 1.15990564088E-12 1.25024069319E-12 1.34761107636E-12 1.45256469564E-12 1.56569212564E-12 1.68762993325E-12 1.81906425928E-12 1.96073467897E-12 2.11343836320E-12 2.27803456363E-12 2.45544944722E-12 2.64668130713E-12 2.85280617939E-12 3.07498389701E-12 3.31446461547E-12 3.57259584627E-12 3.85083003832E-12 4.15073274957E-12 4.47399145494E-12 4.82242504019E-12 5.19799403488E-12 5.60281164236E-12 6.03915562836E-12 6.50948113551E-12 7.01643449549E-12 7.56286811679E-12 8.15185653155E-12 8.78671369198E-12 9.47101161344E-12 1.02086004691E-11 1.10036302494E-11 1.18605741076E-11 1.27842535230E-11 1.37798654307E-11 1.48530114265E-11 1.60097293320E-11 1.72565270887E-11 1.86004194555E-11 2.00489673635E-11 2.16103205357E-11 2.32932632753E-11 2.51072638545E-11 2.70625279298E-11 2.91700556556E-11 3.14417038826E-11 3.38902525952E-11 3.65294769015E-11 3.93742245660E-11 4.24404993588E-11 4.57455512154E-11 4.93079731691E-11 5.31478059739E-11 5.72866507390E-11 6.17477905037E-11 6.65563210943E-11 7.17392923169E-11 7.73258600713E-11 8.33474502458E-11 8.98379354968E-11 9.68338257119E-11 1.04374473306E-10 1.12502294512E-10 1.21263007883E-10 1.30705891332E-10 1.40884059228E-10 1.51854761320E-10 1.63679703725E-10 1.76425396991E-10 1.90163529863E-10 2.04971370806E-10 2.20932204534E-10 2.38135799315E-10 2.56678910783E-10 2.76665827477E-10 2.98208955989E-10 3.21429452692E-10 3.46457905482E-10 3.73435067293E-10 4.02512647727E-10 4.33854165096E-10 4.67635865739E-10 5.04047714368E-10 5.43294462388E-10 5.85596797528E-10 6.31192584715E-10 6.80338202149E-10 7.33309982547E-10 7.90405765505E-10 8.51946571861E-10 9.18278403757E-10 9.89774194671E-10 1.06683589894E-09 1.14989675349E-09 1.23942370818E-09 1.33592005308E-09 1.43992824129E-09 1.55203293811E-09 1.67286430493E-09 1.80310153557E-09 1.94347667516E-09 2.09477872633E-09 2.25785808290E-09 2.43363130290E-09 2.62308625493E-09 2.82728766723E-09 3.04738309847E-09 3.28460938836E-09 3.54029959444E-09 3.81589047026E-09 4.11293054142E-09 4.43308878955E-09 4.77816401328E-09 5.15009492960E-09 5.55097104923E-09 5.98304439512E-09 6.44874214962E-09 6.95068025065E-09 7.49167807898E-09 8.07477427463E-09 8.70324376337E-09 9.38061613166E-09 1.01106954171E-08 1.08975814345E-08 1.17456927601E-08 1.26597914998E-08 1.36450099915E-08 1.47068795442E-08 1.58513614673E-08 1.70848804457E-08 1.84143605563E-08 1.98472640396E-08 2.13916331139E-08 2.30561350082E-08 2.48501105017E-08 2.67836262250E-08 2.88675310352E-08 3.11135167088E-08 3.35341834345E-08 3.61431102737E-08 3.89549311972E-08 4.19854169196E-08 4.52515631381E-08 4.87716855854E-08 5.25655224577E-08 5.66543447854E-08 6.10610753259E-08 6.58104167197E-08 7.09289895100E-08 7.64454809117E-08 8.23908050569E-08 8.87982756751E-08 9.57037921243E-08 1.03146039816E-07 1.11166706196E-07 1.19810713370E-07 1.29126468782E-07 1.39166135257E-07 1.49985921922E-07 1.61646397658E-07 1.74212828740E-07 1.87755542607E-07 2.02350319720E-07 2.18078815748E-07 2.35029016269E-07 2.53295726724E-07 2.72981100056E-07 2.94195205223E-07 3.17056639498E-07 3.41693188022E-07 3.68242534306E-07 3.96853025438E-07 4.27684496402E-07 4.60909157825E-07 4.96712552238E-07 5.35294583952E-07 5.76870628313E-07 6.21672726317E-07 6.69950871232E-07 7.21974394226E-07 7.78033456592E-07 8.38440656711E-07 9.03532760674E-07 9.73672565750E-07 1.04925090719E-06 1.13068881910E-06 1.21843986120E-06 1.31299262418E-06 1.41487342735E-06 1.52464922304E-06 1.64293072377E-06 1.77037576898E-06 1.90769294976E-06 2.05564551086E-06 2.21505555170E-06 2.38680854835E-06 2.57185822155E-06 2.77123177669E-06 2.98603554392E-06 3.21746104903E-06 3.46679154756E-06 3.73540905719E-06 4.02480192626E-06 4.33657297885E-06 4.67244827995E-06 5.03428656779E-06 5.42408940333E-06 5.84401209119E-06 6.29637542997E-06 6.78367835463E-06 7.30861153761E-06 7.87407202108E-06 8.48317895719E-06 9.13929054017E-06 9.84602221858E-06 1.06072662842E-05 1.14272129402E-05 1.23103729584E-05 1.32616020456E-05 1.42861270446E-05 1.53895741068E-05 1.65779989841E-05 1.78579195950E-05 1.92363510358E-05 2.07208432161E-05 2.23195213131E-05 2.40411292527E-05 2.58950764402E-05 2.78914879800E-05 3.00412586396E-05 3.23561108340E-05 3.48486569228E-05 3.75324661367E-05 4.04221364708E-05 4.35333719047E-05 4.68830653396E-05 5.04893876641E-05 5.43718833934E-05 5.85515733572E-05 6.30510649439E-05 6.78946704442E-05 7.31085340757E-05 7.87207683105E-05 8.47616001686E-05 9.12635281890E-05 9.82614908352E-05 1.05793047147E-04 1.13898570506E-04 1.22621456427E-04 1.32008345386E-04 1.42109361707E-04 1.52978369653E-04 1.64673247907E-04 1.77256183722E-04 1.90793988101E-04 2.05358433453E-04 2.21026615265E-04 2.37881339441E-04 2.56011537044E-04 2.75512708312E-04 2.96487397906E-04 3.19045703511E-04 3.43305820002E-04 3.69394621556E-04 3.97448284218E-04 4.27612951585E-04 4.60045446439E-04 4.94914031321E-04 5.32399221220E-04 5.72694651721E-04 6.16008006185E-04 6.62562005684E-04 7.12595465677E-04 7.66364423594E-04 8.24143341744E-04 8.86226390195E-04 9.52928814519E-04 1.02458839354E-03 1.10156699253E-03 1.18425221746E-03 1.27305917636E-03 1.36843235397E-03 1.47084760622E-03 1.58081428136E-03 1.69887747492E-03 1.82562042588E-03 1.96166706177E-03 2.10768470083E-03 2.26438691943E-03 2.43253659351E-03 2.61294912287E-03 2.80649584758E-03 3.01410766592E-03 3.23677886359E-03 3.47557116414E-03 3.73161801072E-03 4.00612908946E-03 4.30039510495E-03 4.61579281835E-03 4.95379035861E-03 5.31595281736E-03 5.70394813807E-03 6.11955330943E-03 6.56466087333E-03 7.04128575685E-03 7.55157243756E-03 8.09780245077E-03 8.68240224651E-03 9.30795140338E-03 9.97719120503E-03 1.06930335842E-02 1.14585704372E-02 1.22770833112E-02 1.31520534622E-02 1.40871722838E-02 1.50863520987E-02 1.61537373076E-02 1.72937158817E-02 1.85109311873E-02 1.98102941205E-02 2.11969955309E-02 2.26765189061E-02 2.42546532822E-02 2.59375063426E-02 2.77315176573E-02 2.96434720114E-02 3.16805127604E-02 3.38501551434E-02 3.61602994755E-02 3.86192441320E-02 4.12356982230E-02 4.40187938497E-02 4.69780978199E-02 5.01236226843E-02 5.34658369470E-02 5.70156742840E-02 6.07845415904E-02 6.47843256595E-02 6.90273982832E-02 7.35266195392E-02 7.82953390202E-02 8.33473947343E-02 8.86971093910E-02 9.43592837666E-02 1.00349186822E-01 1.06682542229E-01 1.13375510936E-01 1.20444669398E-01 1.27906983054E-01 1.35779774653E-01 1.44080686977E-01 1.52827639523E-01 1.62038778681E-01 1.71732420948E-01 1.81926988696E-01 1.92640938033E-01 2.03892678280E-01 2.15700482611E-01 2.28082389414E-01 2.41056093946E-01 2.54638829904E-01 2.68847240551E-01 2.83697239105E-01 2.99203858145E-01 3.15381087874E-01 3.32241703141E-01 3.49797079245E-01 3.68056996644E-01 3.87029434823E-01 4.06720355706E-01 4.27133477193E-01 4.48270037516E-01 4.70128551386E-01 4.92704559025E-01 5.15990369486E-01 5.39974799849E-01 5.64642912176E-01 5.89975750362E-01 6.15950079328E-01 6.42538129268E-01 6.69707347987E-01 6.97420164672E-01 7.25633768713E-01 7.54299907536E-01 7.83364707645E-01 8.12768523358E-01 8.42445817958E-01 8.72325082185E-01 9.02328795125E-01 9.32373432682E-01 9.62369528855E-01 9.92221794976E-01 1.02182930196E+00 1.05108573043E+00 1.07987969307E+00 1.10809513352E+00 1.13561180489E+00 1.16230583096E+00 1.18805035176E+00 1.21271625442E+00 1.23617298896E+00 1.25828946743E+00 1.27893504329E+00 1.29798056630E+00 1.31529950658E+00 1.33076913960E+00 1.34427178191E+00 1.35569606569E+00 1.36493823800E+00 1.37190346889E+00 1.37650715071E+00 1.37867616909E+00 1.37835012500E+00 1.37548248562E+00 1.37004164135E+00 1.36201184562E+00 1.35139401411E+00 1.33820636086E+00 1.32248484955E+00 1.30428344029E+00 1.28367411444E+00 1.26074666330E+00 1.23560823010E+00 1.20838259909E+00 1.17920923070E+00 1.14824204666E+00 1.11564797533E+00 1.08160527295E+00 1.04630164271E+00 1.00993217952E+00 9.72697173548E-01 9.34799810609E-01 8.96443811527E-01 8.57831055528E-01 8.19159234497E-01 7.80619585316E-01 7.42394746359E-01 7.04656781539E-01 6.67565411156E-01 6.31266483169E-01 5.95890711770E-01 5.61552702411E-01 5.28350274199E-01 4.96364082138E-01 4.65657533656E-01 4.36276986535E-01 4.08252209298E-01 3.81597080665E-01 3.56310502007E-01 3.32377496122E-01 3.09770466775E-01 2.88450596240E-01 2.68369361829E-01 2.49470156576E-01 2.31690002824E-01 2.14961349668E-01 1.99213945040E-01 1.84376769956E-01 1.70380015625E-01 1.57157073693E-01 1.44646496341E-01 1.32793867336E-01 1.21553509194E-01 1.10889937449E-01 1.00778963217E-01 9.12097968939E-02 8.21847738630E-02 7.37064934011E-02 6.57750653247E-02 5.83880338682E-02 5.15403270031E-02 4.52242341821E-02 3.94294152034E-02 3.41429424891E-02 2.93493785757E-02 2.50308900137E-02 2.11673981713E-02 1.77367666538E-02 1.47150241821E-02 1.20766208537E-02 9.79471474628E-03 7.84148485353E-03 6.18846538812E-03 4.80689558170E-03 3.66807829366E-03 2.74374003992E-03 2.00638450830E-03 1.42963126716E-03 9.88531228466E-04 6.59850515772E-04 4.22314727154E-04 2.56806177427E-04 1.46507550966E-04 7.69864828235E-05 3.62168917228E-05 1.45343880181E-05 4.52474417588E-06 8.46218416284E-07 -1.15556807768E-08 -2.73661730950E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 9 9 2 i j (l(j)) 7.58445792022E-01 Q_int 8.09612550265E-26 8.72668536190E-26 9.40635584026E-26 1.01389618766E-25 1.09286263119E-25 1.17797930910E-25 1.26972522719E-25 1.36861669819E-25 1.47521024741E-25 1.59010574469E-25 1.71394978019E-25 1.84743930321E-25 1.99132554436E-25 2.14641824319E-25 2.31359020514E-25 2.49378221337E-25 2.68800832310E-25 2.89736156843E-25 3.12302011345E-25 3.36625388259E-25 3.62843170724E-25 3.91102902907E-25 4.21563620328E-25 4.54396744853E-25 4.89787049392E-25 5.27933697740E-25 5.69051365392E-25 6.13371447662E-25 6.61143361894E-25 7.12635951086E-25 7.68138996847E-25 8.27964850180E-25 8.92450189280E-25 9.61957914238E-25 1.03687918931E-24 1.11763564424E-24 1.20468174707E-24 1.29850736166E-24 1.39964050454E-24 1.50865031634E-24 1.62615026473E-24 1.75280159677E-24 1.88931706021E-24 2.03646491454E-24 2.19507325449E-24 2.36603467024E-24 2.55031127061E-24 2.74894009743E-24 2.96303896167E-24 3.19381273404E-24 3.44256012560E-24 3.71068099639E-24 3.99968423338E-24 4.31119624192E-24 4.64697009854E-24 5.00889541667E-24 5.39900898066E-24 5.81950620807E-24 6.27275350472E-24 6.76130158189E-24 7.28789981087E-24 7.85551169540E-24 8.46733154917E-24 9.12680247228E-24 9.83763572777E-24 1.06038316272E-23 1.14297020431E-23 1.23198946743E-23 1.32794192020E-23 1.43136754820E-23 1.54284839331E-23 1.66301182929E-23 1.79253409233E-23 1.93214408673E-23 2.08262748685E-23 2.24483115866E-23 2.41966792555E-23 2.60812170539E-23 2.81125304764E-23 3.03020510178E-23 3.26621005048E-23 3.52059604394E-23 3.79479467418E-23 4.09034903158E-23 4.40892238876E-23 4.75230756095E-23 5.12243699524E-23 5.52139364572E-23 5.95142269561E-23 6.41494419228E-23 6.91456666644E-23 7.45310181201E-23 8.03358030928E-23 8.65926888049E-23 9.33368867375E-23 1.00606350788E-22 1.08441990861E-22 1.16887903095E-22 1.25991618015E-22 1.35804368025E-22 1.46381375719E-22 1.57782164655E-22 1.70070894334E-22 1.83316721265E-22 1.97594188151E-22 2.12983643391E-22 2.29571693251E-22 2.47451689252E-22 2.66724253518E-22 2.87497845040E-22 3.09889370049E-22 3.34024839914E-22 3.60040080293E-22 3.88081495511E-22 4.18306892467E-22 4.50886368717E-22 4.86003269718E-22 5.23855220632E-22 5.64655238491E-22 6.08632930971E-22 6.56035788550E-22 7.07130577288E-22 7.62204840093E-22 8.21568514907E-22 8.85555678920E-22 9.54526428643E-22 1.02886890639E-21 1.10900148462E-21 1.19537512035E-21 1.28847589302E-21 1.38882773994E-21 1.49699540483E-21 1.61358761600E-21 1.73926051203E-21 1.87472133430E-21 2.02073240707E-21 2.17811542757E-21 2.34775609024E-21 2.53060907104E-21 2.72770340006E-21 2.94014825252E-21 3.16913919080E-21 3.41596489263E-21 3.68201440328E-21 3.96878495263E-21 4.27789038105E-21 4.61107022143E-21 4.97019948871E-21 5.35729923177E-21 5.77454790712E-21 6.22429363848E-21 6.70906743117E-21 7.23159741570E-21 7.79482420064E-21 8.40191742135E-21 9.05629357749E-21 9.76163525986E-21 1.05219118747E-20 1.13414019819E-20 1.22247173734E-20 1.31768290267E-20 1.42030950793E-20 1.53092909828E-20 1.65016420047E-20 1.77868582623E-20 1.91721724845E-20 2.06653807147E-20 2.22748861850E-20 2.40097466053E-20 2.58797251379E-20 2.78953453401E-20 3.00679503877E-20 3.24097669096E-20 3.49339737952E-20 3.76547763602E-20 4.05874862889E-20 4.37486078029E-20 4.71559305406E-20 5.08286296709E-20 5.47873738041E-20 5.90544413070E-20 6.36538456775E-20 6.86114706841E-20 7.39552160295E-20 7.97151543607E-20 8.59237005061E-20 9.26157938948E-20 9.98290951827E-20 1.07604198192E-19 1.15984858361E-19 1.25018238980E-19 1.34755176610E-19 1.45250467175E-19 1.56563174330E-19 1.68756961850E-19 1.81900451908E-19 1.96067611252E-19 2.11338167468E-19 2.27798057652E-19 2.45539912033E-19 2.64663575267E-19 2.85276668319E-19 3.07495194118E-19 3.31444190378E-19 3.57258433262E-19 3.85083195856E-19 4.15075065708E-19 4.47402826048E-19 4.82248405637E-19 5.19807902593E-19 5.60292687958E-19 6.03930595220E-19 6.50967202469E-19 7.01667214424E-19 7.56315952093E-19 8.15220958448E-19 8.78713729168E-19 9.47151578171E-19 1.02091964844E-18 1.10043307948E-18 1.18613934354E-18 1.27852076384E-18 1.37809722890E-18 1.48542911829E-18 1.60112045622E-18 1.72582231075E-18 1.86023645779E-18 2.00511933043E-18 2.16128627581E-18 2.32961614365E-18 2.51105623206E-18 2.70662761856E-18 2.91743090633E-18 3.14465241803E-18 3.38957087190E-18 3.65356457796E-18 3.93811919460E-18 4.24483608930E-18 4.57544135052E-18 4.93179550146E-18 5.31590397040E-18 5.72992837647E-18 6.17619869441E-18 6.65722636681E-18 7.17571843753E-18 7.73459278587E-18 8.33699454737E-18 8.98631381332E-18 9.68620470896E-18 1.04406059575E-17 1.12537630456E-17 1.21302521156E-17 1.30750057180E-17 1.40933405701E-17 1.51909874764E-17 1.63741235793E-17 1.76494071217E-17 1.90240149169E-17 2.05056827373E-17 2.21027488475E-17 2.38242009297E-17 2.56797266622E-17 2.76797682380E-17 2.98355811298E-17 3.21592974304E-17 3.46639941284E-17 3.73637666996E-17 4.02738084308E-17 4.34104959219E-17 4.67914812466E-17 5.04357912914E-17 5.43639348310E-17 5.85980179437E-17 6.31618684154E-17 6.80811698329E-17 7.33836061203E-17 7.90990173337E-17 8.52595675878E-17 9.18999260634E-17 9.90574621109E-17 1.06772455550E-16 1.15088323346E-16 1.24051863947E-16 1.33713520640E-16 1.44127665433E-16 1.55352905027E-16 1.67452410642E-16 1.80494273508E-16 1.94551888060E-16 2.09704364968E-16 2.26036976341E-16 2.43641635598E-16 2.62617414721E-16 2.83071101789E-16 3.05117801934E-16 3.28881585104E-16 3.54496184273E-16 3.82105748036E-16 4.11865651810E-16 4.43943372221E-16 4.78519429587E-16 5.15788403808E-16 5.55960029372E-16 5.99260375652E-16 6.45933119117E-16 6.96240914636E-16 7.50466873582E-16 8.08916157048E-16 8.71917693161E-16 9.39826028130E-16 1.01302332148E-15 1.09192149664E-15 1.17696455910E-15 1.26863109501E-15 1.36743696450E-15 1.47393820462E-15 1.58873415852E-15 1.71247084821E-15 1.84584461009E-15 1.98960601358E-15 2.14456408496E-15 2.31159086015E-15 2.49162629213E-15 2.68568354048E-15 2.89485467295E-15 3.12031681108E-15 3.36333875439E-15 3.62528812057E-15 3.90763904170E-15 4.21198045990E-15 4.54002506903E-15 4.89361895285E-15 5.27475197378E-15 5.68556897074E-15 6.12838182916E-15 6.60568249100E-15 7.12015697797E-15 7.67470050701E-15 8.27243378289E-15 8.91672055977E-15 9.61118657047E-15 1.03597399300E-14 1.11665931280E-14 1.20362867345E-14 1.29737149509E-14 1.39841531524E-14 1.50732875738E-14 1.62472473085E-14 1.75126387993E-14 1.88765830150E-14 2.03467555231E-14 2.19314296824E-14 2.36395232005E-14 2.54806483166E-14 2.74651658928E-14 2.96042437182E-14 3.19099193534E-14 3.43951678695E-14 3.70739748631E-14 3.99614151573E-14 4.30737376314E-14 4.64284566588E-14 5.00444506642E-14 5.39420683580E-14 5.81432432430E-14 6.26716170398E-14 6.75526727239E-14 7.28138779241E-14 7.84848394887E-14 8.45974700884E-14 9.11861677955E-14 9.82880096473E-14 1.05942960285E-13 1.14194096840E-13 1.23087851336E-13 1.32674271967E-13 1.43007304724E-13 1.54145096952E-13 1.66150324558E-13 1.79090544682E-13 1.93038575853E-13 2.08072907737E-13 2.24278142805E-13 2.41745472386E-13 2.60573189806E-13 2.80867243479E-13 3.02741833076E-13 3.26320052118E-13 3.51734580620E-13 3.79128431661E-13 4.08655756111E-13 4.40482710013E-13 4.74788389521E-13 5.11765838643E-13 5.51623135464E-13 5.94584562959E-13 6.40891870979E-13 6.90805636517E-13 7.44606729909E-13 8.02597895197E-13 8.65105453585E-13 9.32481139524E-13 1.00510407980E-12 1.08338292673E-12 1.16775815746E-12 1.25870455237E-12 1.35673386639E-12 1.46239770842E-12 1.57629064493E-12 1.69905354525E-12 1.83137718735E-12 1.97400614444E-12 2.12774297418E-12 2.29345273412E-12 2.47206784876E-12 2.66459335558E-12 2.87211255960E-12 3.09579312826E-12 3.33689366084E-12 3.59677076948E-12 3.87688671154E-12 4.17881761632E-12 4.50426235228E-12 4.85505208482E-12 5.23316057813E-12 5.64071529940E-12 6.08000938741E-12 6.55351455326E-12 7.06389498544E-12 7.61402233767E-12 8.20699188368E-12 8.84613992986E-12 9.53506258369E-12 1.02776359834E-11 1.10780381069E-11 1.19407722644E-11 1.28706924135E-11 1.38730305465E-11 1.49534260236E-11 1.61179573389E-11 1.73731762682E-11 1.87261448286E-11 2.01844748973E-11 2.17563710394E-11 2.34506767267E-11 2.52769240549E-11 2.72453872198E-11 2.93671405301E-11 3.16541205713E-11 3.41191932764E-11 3.67762265094E-11 3.96401677943E-11 4.27271285655E-11 4.60544746386E-11 4.96409240810E-11 5.35066522780E-11 5.76734054950E-11 6.21646230935E-11 6.70055695245E-11 7.22234760749E-11 7.78476944183E-11 8.39098612679E-11 9.04440765497E-11 9.74870948800E-11 1.05078532784E-10 1.13261090685E-10 1.22080793518E-10 1.31587249505E-10 1.41833928782E-10 1.52878463557E-10 1.64782974203E-10 1.77614415722E-10 1.91444956045E-10 2.06352380838E-10 2.22420531619E-10 2.39739776007E-10 2.58407516752E-10 2.78528737834E-10 3.00216596469E-10 3.23593057994E-10 3.48789580688E-10 3.75947856090E-10 4.05220604774E-10 4.36772434545E-10 4.70780764638E-10 5.07436824716E-10 5.46946727875E-10 5.89532629480E-10 6.35433975132E-10 6.84908846054E-10 7.38235410217E-10 7.95713482904E-10 8.57666213205E-10 9.24441898648E-10 9.96415942601E-10 1.07399296025E-09 1.15760905478E-09 1.24773426531E-09 1.34487520694E-09 1.44957791557E-09 1.56243091621E-09 1.68406852564E-09 1.81517441452E-09 1.95648544889E-09 2.10879582585E-09 2.27296152990E-09 2.44990514340E-09 2.64062102171E-09 2.84618087713E-09 3.06773979384E-09 3.30654270784E-09 3.56393140539E-09 3.84135203206E-09 4.14036322866E-09 4.46264486821E-09 4.81000747639E-09 5.18440239779E-09 5.58793273630E-09 6.02286515816E-09 6.49164259458E-09 6.99689795468E-09 7.54146888437E-09 8.12841367957E-09 8.76102843276E-09 9.44286551339E-09 1.01777534816E-08 1.09698185440E-08 1.18235076888E-08 1.27436135983E-08 1.37353015079E-08 1.48041381555E-08 1.59561229485E-08 1.71977215855E-08 1.85359022696E-08 1.99781747276E-08 2.15326322599E-08 2.32079970660E-08 2.50136690502E-08 2.69597784632E-08 2.90572425955E-08 3.13178268259E-08 3.37542105146E-08 3.63800579001E-08 3.92100945165E-08 4.22601895783E-08 4.55474446887E-08 4.90902894673E-08 5.29085845664E-08 5.70237326554E-08 6.14587980306E-08 6.62386354738E-08 7.13900290651E-08 7.69418417821E-08 8.29251766901E-08 8.93735505066E-08 9.63230807478E-08 1.03812687200E-07 1.11884309130E-07 1.20583139156E-07 1.29957875310E-07 1.40060992497E-07 1.50949035034E-07 1.62682931711E-07 1.75328335262E-07 1.88955988018E-07 2.03642115808E-07 2.19468852347E-07 2.36524696258E-07 2.54905003486E-07 2.74712517690E-07 2.96057941497E-07 3.19060551866E-07 3.43848862928E-07 3.70561339866E-07 3.99347167886E-07 4.30367080361E-07 4.63794250869E-07 4.99815253833E-07 5.38631099137E-07 5.80458346473E-07 6.25530305310E-07 6.74098327168E-07 7.26433197366E-07 7.82826633663E-07 8.43592900018E-07 9.09070544478E-07 9.79624270381E-07 1.05564695110E-06 1.13756179975E-06 1.22582470487E-06 1.32092674545E-06 1.42339689873E-06 1.53380495525E-06 1.65276465733E-06 1.78093707763E-06 1.91903425635E-06 2.06782311631E-06 2.22812967768E-06 2.40084359431E-06 2.58692303680E-06 2.78739994792E-06 3.00338569935E-06 3.23607717920E-06 3.48676334384E-06 3.75683226838E-06 4.04777873387E-06 4.36121239168E-06 4.69886654842E-06 5.06260761824E-06 5.45444529286E-06 5.87654348309E-06 6.33123208986E-06 6.82101966727E-06 7.34860704408E-06 7.91690197589E-06 8.52903490487E-06 9.18837590984E-06 9.89855293571E-06 1.06634713976E-05 1.14873352622E-05 1.23746697158E-05 1.33303455375E-05 1.43596053042E-05 1.54680915620E-05 1.66618771112E-05 1.79474975603E-05 1.93319863157E-05 2.08229121887E-05 2.24284198100E-05 2.41572730597E-05 2.60189017335E-05 2.80234516819E-05 3.01818386766E-05 3.25058062755E-05 3.50079879794E-05 3.77019739892E-05 4.06023829018E-05 4.37249386982E-05 4.70865534090E-05 5.07054158666E-05 5.46010869805E-05 5.87946020063E-05 6.33085803082E-05 6.81673431505E-05 7.33970400922E-05 7.90257845934E-05 8.50837994906E-05 9.16035730366E-05 9.86200262507E-05 1.06170692375E-04 1.14295909287E-04 1.23039025769E-04 1.32446622609E-04 1.42568749556E-04 1.53459179227E-04 1.65175679137E-04 1.77780303104E-04 1.91339703338E-04 2.05925464643E-04 2.21614462222E-04 2.38489244685E-04 2.56638443953E-04 2.76157213870E-04 2.97147699424E-04 3.19719538619E-04 3.43990399147E-04 3.70086552149E-04 3.98143485490E-04 4.28306559105E-04 4.60731705136E-04 4.95586175739E-04 5.33049341583E-04 5.73313544269E-04 6.16585006036E-04 6.63084800343E-04 7.13049887083E-04 7.66734216409E-04 8.24409905328E-04 8.86368491466E-04 9.52922268619E-04 1.02440570890E-03 1.10117697661E-03 1.18361953902E-03 1.27214387982E-03 1.36718932080E-03 1.46922595798E-03 1.57875671841E-03 1.69631954418E-03 1.82248971052E-03 1.95788228491E-03 2.10315473456E-03 2.25900968984E-03 2.42619787116E-03 2.60552118763E-03 2.79783601522E-03 3.00405666312E-03 3.22515903645E-03 3.46218450417E-03 3.71624398066E-03 3.98852222981E-03 4.28028240030E-03 4.59287080068E-03 4.92772192298E-03 5.28636372295E-03 5.67042316528E-03 6.08163204146E-03 6.52183306757E-03 6.99298626879E-03 7.49717565676E-03 8.03661620496E-03 8.61366112642E-03 9.23080945702E-03 9.89071394608E-03 1.05961892547E-02 1.13502204604E-02 1.21559718645E-02 1.30167960971E-02 1.39362435106E-02 1.49180718520E-02 1.59662561991E-02 1.70849991424E-02 1.82787411924E-02 1.95521713859E-02 2.09102380601E-02 2.23581597594E-02 2.39014362335E-02 2.55458594780E-02 2.72975247644E-02 2.91628415966E-02 3.11485445247E-02 3.32617037374E-02 3.55097353460E-02 3.79004112622E-02 4.04418685628E-02 4.31426182205E-02 4.60115530729E-02 4.90579548834E-02 5.22915003406E-02 5.57222658235E-02 5.93607307503E-02 6.32177793105E-02 6.73047003657E-02 7.16331852905E-02 7.62153235049E-02 8.10635954389E-02 8.61908626487E-02 9.16103547922E-02 9.73356531526E-02 1.03380670386E-01 1.09759626155E-01 1.16487018292E-01 1.23577589139E-01 1.31046286674E-01 1.38908220062E-01 1.47178609233E-01 1.55872728094E-01 1.65005841018E-01 1.74593132188E-01 1.84649627471E-01 1.95190108442E-01 2.06229018240E-01 2.17780358962E-01 2.29857580327E-01 2.42473459405E-01 2.55639971235E-01 2.69368150267E-01 2.83667942580E-01 2.98548048968E-01 3.14015759064E-01 3.30076776770E-01 3.46735037420E-01 3.63992517228E-01 3.81849035703E-01 4.00302051933E-01 4.19346455780E-01 4.38974355226E-01 4.59174861355E-01 4.79933872625E-01 5.01233860366E-01 5.23053657626E-01 5.45368253785E-01 5.68148597563E-01 5.91361411322E-01 6.14969019790E-01 6.38929196577E-01 6.63195032078E-01 6.87714826540E-01 7.12432012256E-01 7.37285108993E-01 7.62207716837E-01 7.87128550700E-01 8.11971520714E-01 8.36655862662E-01 8.61096322419E-01 8.85203398149E-01 9.08883643671E-01 9.32040035915E-01 9.54572408913E-01 9.76377956012E-01 9.97351801290E-01 1.01738764017E+00 1.03637844826E+00 1.05421725617E+00 1.07079798704E+00 1.08601635180E+00 1.09977079604E+00 1.11196349063E+00 1.12250135687E+00 1.13129711514E+00 1.13827034468E+00 1.14334854054E+00 1.14646815231E+00 1.14757558820E+00 1.14662816678E+00 1.14359499820E+00 1.13845777590E+00 1.13121146029E+00 1.12186483557E+00 1.11044092229E+00 1.09697722909E+00 1.08152582921E+00 1.06415324945E+00 1.04494016245E+00 1.02398087631E+00 1.00138261959E+00 9.77264623964E-01 9.51757011320E-01 9.24999496915E-01 8.97139925011E-01 8.68332658110E-01 8.38736845362E-01 8.08514599733E-01 7.77829116883E-01 7.46842771255E-01 7.15715226509E-01 6.84601597884E-01 6.53650703456E-01 6.23003439276E-01 5.92791310299E-01 5.63135144724E-01 5.34144014129E-01 5.05914375788E-01 4.78529447077E-01 4.52058815270E-01 4.26558279653E-01 4.02069917116E-01 3.78622357652E-01 3.56231252670E-01 3.34899917113E-01 3.14620126006E-01 2.95373047290E-01 2.77130295329E-01 2.59855092937E-01 2.43503533593E-01 2.28025938879E-01 2.13368308459E-01 1.99473860129E-01 1.86284655096E-01 1.73743298005E-01 1.61794692384E-01 1.50387820134E-01 1.39477499452E-01 1.29026060143E-01 1.19004860583E-01 1.09395558472E-01 1.00192682993E-01 9.14046380458E-02 8.30410736276E-02 7.51100054875E-02 6.76176792845E-02 6.05684446893E-02 5.39646424318E-02 4.78065073523E-02 4.20920905093E-02 3.68172033192E-02 3.19753865423E-02 2.75579066791E-02 2.35537820065E-02 1.99498400450E-02 1.67308077308E-02 1.38794349552E-02 1.13766514561E-02 9.20175630169E-03 7.33263842576E-03 5.74602587761E-03 4.41776065980E-03 3.32309528510E-03 2.43700651544E-03 1.73452118802E-03 1.19104861920E-03 7.82713832271E-04 4.86685803828E-04 2.81495074364E-04 1.47335420438E-04 6.63448177561E-05 2.28615973388E-05 3.65244860211E-06 -1.89033138021E-06 -1.58431154196E-06 -3.26701902947E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 9 10 2 i j (l(j)) 8.06622422380E-01 Q_int 8.85368717696E-26 9.54324908386E-26 1.02865169342E-25 1.10876735699E-25 1.19512276097E-25 1.28820388225E-25 1.38853454761E-25 1.49667938163E-25 1.61324698419E-25 1.73889335549E-25 1.87432558769E-25 2.02030584428E-25 2.17765564916E-25 2.34726050995E-25 2.53007490128E-25 2.72712763620E-25 2.93952765602E-25 3.16847027097E-25 3.41524388704E-25 3.68123725659E-25 3.96794729380E-25 4.27698749874E-25 4.61009703754E-25 4.96915052983E-25 5.35616859838E-25 5.77332924047E-25 6.22298008483E-25 6.70765160325E-25 7.23007135119E-25 7.79317931744E-25 8.40014446930E-25 9.05438258643E-25 9.75957548356E-25 1.05196917304E-24 1.13390089855E-24 1.22221380690E-24 1.31740489109E-24 1.42000985201E-24 1.53060611314E-24 1.64981607012E-24 1.77831059332E-24 1.91681280330E-24 2.06610214024E-24 2.22701875035E-24 2.40046821393E-24 2.58742664162E-24 2.78894616761E-24 3.00616087066E-24 3.24029315630E-24 3.49266063609E-24 3.76468354261E-24 4.05789272207E-24 4.37393824933E-24 4.71459871394E-24 5.08179122938E-24 5.47758222186E-24 5.90419905946E-24 6.36404258694E-24 6.85970063679E-24 7.39396259264E-24 7.96983508689E-24 8.59055892096E-24 9.25962730333E-24 9.98080550803E-24 1.07581520643E-23 1.15960415964E-23 1.24991894426E-23 1.34726781911E-23 1.45219862834E-23 1.56530188445E-23 1.68721409153E-23 1.81862132722E-23 1.96026310376E-23 2.11293652966E-23 2.27750079555E-23 2.45488200938E-23 2.64607840825E-23 2.85216597609E-23 3.07430449893E-23 3.31374409176E-23 3.57183223368E-23 3.85002135108E-23 4.14987699133E-23 4.47308663314E-23 4.82146918305E-23 5.19698521158E-23 5.60174798663E-23 6.03803536617E-23 6.50830261719E-23 7.01519623306E-23 7.56156882704E-23 8.15049518573E-23 8.78528957288E-23 9.46952438084E-23 1.02070502347E-22 1.10020176622E-22 1.18589004514E-22 1.27825208275E-22 1.37780765907E-22 1.48511703673E-22 1.60078411395E-22 1.72545982303E-22 1.85984579360E-22 2.00469830111E-22 2.16083252285E-22 2.32912712555E-22 2.51052921010E-22 2.70605964156E-22 2.91681879420E-22 3.14399274397E-22 3.38885994336E-22 3.65279841605E-22 3.93729351188E-22 4.24394626594E-22 4.57448240852E-22 4.93076207700E-22 5.31479028391E-22 5.72872820051E-22 6.17490531902E-22 6.65583256219E-22 7.17421641381E-22 7.73297414987E-22 8.33525025591E-22 8.98443412301E-22 9.68417912212E-22 1.04384231638E-21 1.12514108595E-21 1.21277174085E-21 1.30722743456E-21 1.40903972940E-21 1.51878158796E-21 1.63707059754E-21 1.76457244568E-21 1.90200466645E-21 2.05014067842E-21 2.20981413722E-21 2.38192362702E-21 2.56743771747E-21 2.76740041442E-21 2.98293703521E-21 3.21526054158E-21 3.46567836574E-21 3.73559976813E-21 4.02654376824E-21 4.34014769308E-21 4.67817639149E-21 5.04253216600E-21 5.43526547837E-21 5.85858648881E-21 6.31487749395E-21 6.80670633354E-21 7.33684084132E-21 7.90826442137E-21 8.52419283765E-21 9.18809231110E-21 9.90369902629E-21 1.06750401573E-20 1.15064565313E-20 1.24026270567E-20 1.33685950552E-20 1.44097966427E-20 1.55320913226E-20 1.67417949605E-20 1.80457153280E-20 1.94511904138E-20 2.09661297196E-20 2.25990587718E-20 2.43591671001E-20 2.62563599525E-20 2.83013140390E-20 3.05055376156E-20 3.28814352491E-20 3.54423776248E-20 3.82027767926E-20 4.11781672721E-20 4.43852934756E-20 4.78422039393E-20 5.15683528939E-20 5.55847097459E-20 5.99138770856E-20 6.45802178865E-20 6.96099926109E-20 7.50315069943E-20 8.08752713394E-20 8.71741722173E-20 9.39636575409E-20 1.01281936052E-19 1.09170192349E-19 1.17672818653E-19 1.26837664637E-19 1.36716306702E-19 1.47364338232E-19 1.58841682454E-19 1.71212929661E-19 1.84547700704E-19 1.98921038794E-19 2.14413831813E-19 2.31113267527E-19 2.49113324242E-19 2.68515299682E-19 2.89428381052E-19 3.11970259509E-19 3.36267792477E-19 3.62457717560E-19 3.90687422046E-19 4.21115772350E-19 4.53914008059E-19 4.89266705597E-19 5.27372816960E-19 5.68446789339E-19 6.12719771953E-19 6.60440916868E-19 7.11878781136E-19 7.67322838128E-19 8.27085106590E-19 8.91501906563E-19 9.60935752068E-19 1.03577739120E-18 1.11644800512E-18 1.20340157828E-18 1.29712745332E-18 1.39815308487E-18 1.50704700787E-18 1.62442203710E-18 1.75093871584E-18 1.88730903318E-18 2.03430043080E-18 2.19274012190E-18 2.36351974639E-18 2.54760038871E-18 2.74601798648E-18 2.95988916035E-18 3.19041749792E-18 3.43890032708E-18 3.70673601687E-18 3.99543184698E-18 4.30661249016E-18 4.64202915524E-18 5.00356944230E-18 5.39326796531E-18 5.81331780224E-18 6.26608283681E-18 6.75411106154E-18 7.28014891688E-18 7.84715674714E-18 8.45832546016E-18 9.11709448453E-18 9.82717112535E-18 1.05925514275E-17 1.14175426640E-17 1.23067875755E-17 1.32652904977E-17 1.42984455243E-17 1.54120668625E-17 1.66124215530E-17 1.79062647388E-17 1.93008776805E-17 2.08041087320E-17 2.24244175084E-17 2.41709224932E-17 2.60534523536E-17 2.80826012524E-17 3.02697884678E-17 3.26273226563E-17 3.51684711216E-17 3.79075344771E-17 4.08599271243E-17 4.40422639992E-17 4.74724540740E-17 5.11698011421E-17 5.51551124520E-17 5.94508158022E-17 6.40810857554E-17 6.90719796840E-17 7.44515844097E-17 8.02501742653E-17 8.65003814659E-17 9.32373797501E-17 1.00499082323E-16 1.08326355218E-16 1.16763247269E-16 1.25857238007E-16 1.35659504847E-16 1.46225211100E-16 1.57613816406E-16 1.69889411346E-16 1.83121078123E-16 1.97383279321E-16 2.12756276954E-16 2.29326584144E-16 2.47187451980E-16 2.66439394299E-16 2.87190753329E-16 3.09558309399E-16 3.33667938123E-16 3.59655318777E-16 3.87666697840E-16 4.17859712009E-16 4.50404275308E-16 4.85483535286E-16 5.23294903697E-16 5.64051167439E-16 6.07981686030E-16 6.55333682334E-16 7.06373633828E-16 7.61388772209E-16 8.20688699808E-16 8.84607131889E-16 9.53503774646E-16 1.02776634946E-15 1.10781277483E-15 1.19409351819E-15 1.28709413097E-15 1.38733798101E-15 1.49538919787E-15 1.61185584744E-15 1.73739335386E-15 1.87270818793E-15 2.01856184280E-15 2.17577511923E-15 2.34523274473E-15 2.52788835229E-15 2.72476984700E-15 2.93698519056E-15 3.16572863633E-15 3.41228745000E-15 3.67804915362E-15 3.96450933389E-15 4.27328005852E-15 4.60609894812E-15 4.96483895459E-15 5.35151890111E-15 5.76831484295E-15 6.21757231319E-15 6.70181952204E-15 7.22378158425E-15 7.78639585451E-15 8.39282845725E-15 9.04649210379E-15 9.75106529711E-15 1.05105130324E-14 1.13291091096E-14 1.22114601840E-14 1.31625316897E-14 1.41876757821E-14 1.52926614564E-14 1.64837070124E-14 1.77675150468E-14 1.91513101715E-14 2.06428796691E-14 2.22506173145E-14 2.39835706102E-14 2.58514916991E-14 2.78648922437E-14 3.00351025784E-14 3.23743354688E-14 3.48957548374E-14 3.76135498404E-14 4.05430147149E-14 4.37006348436E-14 4.71041795228E-14 5.07728019557E-14 5.47271470314E-14 5.89894675003E-14 6.35837491947E-14 6.85358460033E-14 7.38736253568E-14 7.96271250440E-14 8.58287222404E-14 9.25133157011E-14 9.97185221421E-14 1.07484887917E-13 1.15856117175E-13 1.24879317796E-13 1.34605266466E-13 1.45088694410E-13 1.56388595368E-13 1.68568557557E-13 1.81697121488E-13 1.95848165651E-13 2.11101322230E-13 2.27542425196E-13 2.45263993301E-13 2.64365750675E-13 2.84955187981E-13 3.07148167255E-13 3.31069573863E-13 3.56854019220E-13 3.84646598237E-13 4.14603705763E-13 4.46893916595E-13 4.81698934027E-13 5.19214612273E-13 5.59652058496E-13 6.03238820677E-13 6.50220167972E-13 7.00860470791E-13 7.55444688335E-13 8.14279971990E-13 8.77697393572E-13 9.46053808159E-13 1.01973386199E-12 1.09915215674E-12 1.18475558229E-12 1.27702583121E-12 1.37648210901E-12 1.48368405547E-12 1.59923489345E-12 1.72378482290E-12 1.85803467914E-12 2.00273987609E-12 2.15871465646E-12 2.32683667301E-12 2.50805192642E-12 2.70338008783E-12 2.91392023568E-12 3.14085703939E-12 3.38546742451E-12 3.64912775682E-12 3.93332158597E-12 4.23964799191E-12 4.56983058142E-12 4.92572718501E-12 5.30934030898E-12 5.72282840124E-12 6.16851799447E-12 6.64891679464E-12 7.16672778877E-12 7.72486445112E-12 8.32646713340E-12 8.97492073108E-12 9.67387372536E-12 1.04272587076E-11 1.12393145020E-11 1.21146100144E-11 1.30580699212E-11 1.40750023803E-11 1.51711288991E-11 1.63526165212E-11 1.76261124940E-11 1.89987816506E-11 2.04783467784E-11 2.20731319544E-11 2.37921095025E-11 2.56449502986E-11 2.76420783493E-11 2.97947292166E-11 3.21150133874E-11 3.46159843398E-11 3.73117118416E-11 4.02173613333E-11 4.33492789492E-11 4.67250836344E-11 5.03637660921E-11 5.42857957921E-11 5.85132358714E-11 6.30698673071E-11 6.79813226751E-11 7.32752302987E-11 7.89813694550E-11 8.51318381174E-11 9.17612331934E-11 9.89068452275E-11 1.06608867871E-10 1.14910624253E-10 1.23858810301E-10 1.33503757273E-10 1.43899715002E-10 1.55105156615E-10 1.67183107103E-10 1.80201498495E-10 1.94233551002E-10 2.09358184939E-10 2.25660463775E-10 2.43232073826E-10 2.62171838144E-10 2.82586272671E-10 3.04590184423E-10 3.28307317870E-10 3.53871050242E-10 3.81425139555E-10 4.11124534622E-10 4.43136245063E-10 4.77640280012E-10 5.14830659050E-10 5.54916503492E-10 5.98123211436E-10 6.44693723612E-10 6.94889888651E-10 7.48993935366E-10 8.07310056624E-10 8.70166120054E-10 9.37915508982E-10 1.01093910852E-09 1.08964744462E-09 1.17448298978E-09 1.26592264901E-09 1.36448043895E-09 1.47071037394E-09 1.58520957690E-09 1.70862163553E-09 1.84164021324E-09 1.98501294497E-09 2.13954563728E-09 2.30610679098E-09 2.48563247601E-09 2.67913158997E-09 2.88769151851E-09 3.11248424132E-09 3.35477290687E-09 3.61591892723E-09 3.89738961825E-09 4.20076642508E-09 4.52775380758E-09 4.88018879951E-09 5.26005131148E-09 5.66947524663E-09 6.11076046221E-09 6.58638567925E-09 7.09902237706E-09 7.65154978120E-09 8.24707100592E-09 8.88893045828E-09 9.58073258629E-09 1.03263620885E-08 1.11300056877E-08 1.19961756037E-08 1.29297348330E-08 1.39359244158E-08 1.50203927867E-08 1.61892274384E-08 1.74489890111E-08 1.88067480528E-08 2.02701246117E-08 2.18473309220E-08 2.35472173687E-08 2.53793220695E-08 2.73539242273E-08 2.94821017160E-08 3.17757930409E-08 3.42478641505E-08 3.69121804363E-08 3.97836842924E-08 4.28784786744E-08 4.62139171739E-08 4.98087010486E-08 5.36829837648E-08 5.78584836630E-08 6.23586053174E-08 6.72085703238E-08 7.24355582160E-08 7.80688582616E-08 8.41400330327E-08 9.06830946698E-08 9.77346946968E-08 1.05334328637E-07 1.13524556348E-07 1.22351239511E-07 1.31863797389E-07 1.42115482439E-07 1.53163677168E-07 1.65070213996E-07 1.77901719786E-07 1.91729987046E-07 2.06632373761E-07 2.22692234124E-07 2.39999382557E-07 2.58650593503E-07 2.78750139842E-07 3.00410372826E-07 3.23752346777E-07 3.48906491929E-07 3.76013339231E-07 4.05224300925E-07 4.36702511398E-07 4.70623732699E-07 5.07177329949E-07 5.46567321713E-07 5.89013511360E-07 6.34752705437E-07 6.84040025812E-07 7.37150322672E-07 7.94379696301E-07 8.56047135697E-07 9.22496283118E-07 9.94097334304E-07 1.07124908442E-06 1.15438113109E-06 1.24395624663E-06 1.34047293199E-06 1.44446816659E-06 1.55652036900E-06 1.67725258424E-06 1.80733591529E-06 1.94749321714E-06 2.09850307354E-06 2.26120407766E-06 2.43649944028E-06 2.62536194955E-06 2.82883930992E-06 3.04805988809E-06 3.28423889766E-06 3.53868505490E-06 3.81280774191E-06 4.10812471503E-06 4.42627040002E-06 4.76900481817E-06 5.13822319083E-06 5.53596627343E-06 5.96443147424E-06 6.42598481637E-06 6.92317380672E-06 7.45874127982E-06 8.03564028958E-06 8.65705012767E-06 9.32639355244E-06 1.00473553193E-05 1.08239021091E-05 1.16603039600E-05 1.25611573128E-05 1.35314097917E-05 1.45763868486E-05 1.57018204089E-05 1.69138796679E-05 1.82192041962E-05 1.96249395254E-05 2.11387753964E-05 2.27689868675E-05 2.45244784916E-05 2.64148317890E-05 2.84503562564E-05 3.06421441721E-05 3.30021294741E-05 3.55431510092E-05 3.82790204695E-05 4.12245953601E-05 4.43958573596E-05 4.78099964673E-05 5.14855013524E-05 5.54422563537E-05 5.97016456089E-05 6.42866648245E-05 6.92220412330E-05 7.45343623238E-05 8.02522139726E-05 8.64063286365E-05 9.30297443299E-05 1.00157975143E-04 1.07829194117E-04 1.16084429343E-04 1.24967774214E-04 1.34526612818E-04 1.44811861528E-04 1.55878227910E-04 1.67784488147E-04 1.80593784263E-04 1.94373942498E-04 2.09197814281E-04 2.25143641354E-04 2.42295446661E-04 2.60743452772E-04 2.80584529676E-04 3.01922673906E-04 3.24869521106E-04 3.49544894232E-04 3.76077389755E-04 4.04605004357E-04 4.35275804748E-04 4.68248643429E-04 5.03693923331E-04 5.41794414493E-04 5.82746126063E-04 6.26759237146E-04 6.74059090166E-04 7.24887250660E-04 7.79502637596E-04 8.38182728537E-04 9.01224844211E-04 9.68947517257E-04 1.04169195018E-03 1.11982356775E-03 1.20373366946E-03 1.29384118767E-03 1.39059455762E-03 1.49447370555E-03 1.60599216154E-03 1.72569930389E-03 1.85418274214E-03 1.99207084623E-03 2.14003542931E-03 2.29879459222E-03 2.46911573775E-03 2.65181876313E-03 2.84777943931E-03 3.05793298597E-03 3.28327785117E-03 3.52487970487E-03 3.78387565561E-03 4.06147869982E-03 4.35898241295E-03 4.67776589219E-03 5.01929895978E-03 5.38514763639E-03 5.77697989346E-03 6.19657169325E-03 6.64581332487E-03 7.12671604419E-03 7.64141902479E-03 8.19219662635E-03 8.78146598611E-03 9.41179493775E-03 1.00859102610E-02 1.08067062636E-02 1.15772536960E-02 1.24008089961E-02 1.32808238616E-02 1.42209551415E-02 1.52250750388E-02 1.62972816119E-02 1.74419095583E-02 1.86635412609E-02 1.99670180736E-02 2.13574518165E-02 2.28402364470E-02 2.44210598681E-02 2.61059158258E-02 2.79011158451E-02 2.98133011429E-02 3.18494544504E-02 3.40169116673E-02 3.63233732624E-02 3.87769153239E-02 4.13860001522E-02 4.41594862767E-02 4.71066377664E-02 5.02371326901E-02 5.35610705695E-02 5.70889786528E-02 6.08318168238E-02 6.48009809426E-02 6.90083044017E-02 7.34660576601E-02 7.81869455066E-02 8.31841017805E-02 8.84710812637E-02 9.40618484419E-02 9.99707628104E-02 1.06212560389E-01 1.12802331090E-01 1.19755491572E-01 1.27087753192E-01 1.34815084663E-01 1.42953669013E-01 1.51519854424E-01 1.60530098545E-01 1.70000905840E-01 1.79948757577E-01 1.90390034028E-01 2.01340928495E-01 2.12817352784E-01 2.24834833765E-01 2.37408400713E-01 2.50552463147E-01 2.64280678944E-01 2.78605812560E-01 2.93539583276E-01 3.09092503461E-01 3.25273706932E-01 3.42090767632E-01 3.59549508935E-01 3.77653804048E-01 3.96405368142E-01 4.15803542976E-01 4.35845075016E-01 4.56523888196E-01 4.77830852733E-01 4.99753551592E-01 5.22276046479E-01 5.45378645448E-01 5.69037674512E-01 5.93225255892E-01 6.17909095795E-01 6.43052284921E-01 6.68613115123E-01 6.94544915916E-01 7.20795914770E-01 7.47309125327E-01 7.74022267875E-01 8.00867726536E-01 8.27772547769E-01 8.54658484765E-01 8.81442092358E-01 9.08034876921E-01 9.34343505573E-01 9.60270078707E-01 9.85712469513E-01 1.01056473362E+00 1.03471759140E+00 1.05805898475E+00 1.08047470920E+00 1.10184912131E+00 1.12206592011E+00 1.14100900003E+00 1.15856337148E+00 1.17461614361E+00 1.18905756227E+00 1.20178209459E+00 1.21268954970E+00 1.22168622353E+00 1.22868605405E+00 1.23361177134E+00 1.23639602588E+00 1.23698247670E+00 1.23532682013E+00 1.23139773924E+00 1.22517775327E+00 1.21666394665E+00 1.20586855749E+00 1.19281940622E+00 1.17756014696E+00 1.16015032564E+00 1.14066523223E+00 1.11919553697E+00 1.09584670490E+00 1.07073818668E+00 1.04400238893E+00 1.01578343183E+00 9.86235707427E-01 9.55522256910E-01 9.23812990651E-01 8.91282779381E-01 8.58109449329E-01 8.24471717753E-01 7.90547107999E-01 7.56509884948E-01 7.22529052105E-01 6.88766450786E-01 6.55374999664E-01 6.22497109380E-01 5.90263302222E-01 5.58791061000E-01 5.28183924664E-01 4.98530841003E-01 4.69905779523E-01 4.42367600552E-01 4.15960170286E-01 3.90712706238E-01 3.66640333658E-01 3.43744831291E-01 3.22015544351E-01 3.01430443735E-01 2.81957313146E-01 2.63555049277E-01 2.46175064156E-01 2.29762782158E-01 2.14259226358E-01 1.99602688988E-01 1.85730477917E-01 1.72580725022E-01 1.60094232780E-01 1.48216322807E-01 1.36898635272E-01 1.26100812534E-01 1.15791985885E-01 1.05951973118E-01 9.65736421423E-02 8.76633578631E-02 7.92283060692E-02 7.12736727279E-02 6.38025249583E-02 5.68157081614E-02 5.03117624816E-02 4.42868617139E-02 3.87347776309E-02 3.36468724673E-02 2.90121219752E-02 2.48171710376E-02 2.10464232999E-02 1.76821656659E-02 1.47047277911E-02 1.20926759247E-02 9.82303960382E-03 7.87156881214E-03 6.21301830942E-03 4.82145493508E-03 3.67058282956E-03 2.73408072358E-03 1.98594475534E-03 1.40082971653E-03 9.54381226260E-04 6.23551108484E-04 3.86888214588E-04 2.24797090010E-04 1.19757221596E-04 5.64960963126E-05 2.21099144416E-05 6.12648091666E-06 5.05487160005E-07 -4.27972886824E-07 -1.20298548567E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 10 10 2 i j (l(j)) 8.58613719791E-01 Q_int 9.68204110041E-26 1.04361186492E-25 1.12489268874E-25 1.21250400049E-25 1.30693884485E-25 1.40872866687E-25 1.51844630272E-25 1.63670920345E-25 1.76418290977E-25 1.90158479744E-25 2.04968811443E-25 2.20932633248E-25 2.38139783755E-25 2.56687098565E-25 2.76678955237E-25 2.98227860685E-25 3.21455084331E-25 3.46491340563E-25 3.73477524347E-25 4.02565504133E-25 4.33918976519E-25 4.67714387470E-25 5.04141925298E-25 5.43406590968E-25 5.85729351772E-25 6.31348384853E-25 6.80520417575E-25 7.33522172298E-25 7.90651923666E-25 8.52231177190E-25 9.18606478568E-25 9.90151363910E-25 1.06726846187E-24 1.15039175950E-24 1.23998904455E-24 1.33656453804E-24 1.44066173179E-24 1.55286644705E-24 1.67381013124E-24 1.80417341152E-24 1.94468992514E-24 2.09615044804E-24 2.25940734510E-24 2.43537936689E-24 2.62505682008E-24 2.82950714057E-24 3.04988090057E-24 3.28741828363E-24 3.54345606395E-24 3.81943512925E-24 4.11690858956E-24 4.43755051756E-24 4.78316536968E-24 5.15569814089E-24 5.55724531044E-24 5.99006664007E-24 6.45659789118E-24 6.95946453233E-24 7.50149651449E-24 8.08574419697E-24 8.71549551369E-24 9.39429447653E-24 1.01259611197E-23 1.09146129976E-23 1.17646883566E-23 1.26809711126E-23 1.36686177722E-23 1.47331864524E-23 1.58806681595E-23 1.71175205039E-23 1.84507040418E-23 1.98877214463E-23 2.14366597298E-23 2.31062357548E-23 2.49058452892E-23 2.68456158822E-23 2.89364638587E-23 3.11901557522E-23 3.36193745228E-23 3.62377909318E-23 3.90601404764E-23 4.21023063155E-23 4.53814086541E-23 4.89159010899E-23 5.27256744633E-23 5.68321687960E-23 6.12584939473E-23 6.60295596684E-23 7.11722157853E-23 7.67154032996E-23 8.26903172584E-23 8.91305823083E-23 9.60724419231E-23 1.03554962368E-22 1.11620252552E-22 1.20313701001E-22 1.29684231284E-22 1.39784577346E-22 1.50671580266E-22 1.62406508143E-22 1.75055400892E-22 1.88689441887E-22 2.03385358560E-22 2.19225854195E-22 2.36300073348E-22 2.54704103525E-22 2.74541515925E-22 2.95923948299E-22 3.18971733212E-22 3.43814575228E-22 3.70592280839E-22 3.99455545247E-22 4.30566800419E-22 4.64101129202E-22 5.00247250616E-22 5.39208581903E-22 5.81204383283E-22 6.26470991872E-22 6.75263151697E-22 7.27855447310E-22 7.84543849044E-22 8.45647378628E-22 9.11509904527E-22 9.82502077106E-22 1.05902341452E-21 1.14150455105E-21 1.23040966055E-21 1.32623906869E-21 1.42953206853E-21 1.54086995556E-21 1.66087929892E-21 1.79023546759E-21 1.92966643107E-21 2.07995685613E-21 2.24195252267E-21 2.41656508339E-21 2.60477719432E-21 2.80764804478E-21 3.02631931816E-21 3.26202161688E-21 3.51608138778E-21 3.78992838684E-21 4.08510372540E-21 4.40326854290E-21 4.74621335523E-21 5.11586813104E-21 5.51431315295E-21 5.94379072458E-21 6.40671778948E-21 6.90569953273E-21 7.44354404201E-21 8.02327811052E-21 8.64816427062E-21 9.32171915419E-21 1.00477332830E-20 1.08302924002E-20 1.16738004637E-20 1.25830044297E-20 1.35630209672E-20 1.46193652524E-20 1.57579820062E-20 1.69852789490E-20 1.83081628610E-20 1.97340784509E-20 2.12710502523E-20 2.29277277824E-20 2.47134342187E-20 2.66382188662E-20 2.87129137114E-20 3.09491943807E-20 3.33596458463E-20 3.59578332504E-20 3.87583782441E-20 4.17770412734E-20 4.50308102727E-20 4.85379962670E-20 5.23183364196E-20 5.63931051053E-20 6.07852336352E-20 6.55194393055E-20 7.06223644976E-20 7.61227266112E-20 8.20514796756E-20 8.84419885477E-20 9.53302166771E-20 1.02754928495E-19 1.10757907566E-19 1.19384191731E-19 1.28682326565E-19 1.38704638570E-19 1.49507529653E-19 1.61151794534E-19 1.73702962875E-19 1.87231668059E-19 2.01814044687E-19 2.17532157036E-19 2.34474460887E-19 2.52736301320E-19 2.72420449283E-19 2.93637679947E-19 3.16507396111E-19 3.41158300151E-19 3.67729118316E-19 3.96369381422E-19 4.27240266363E-19 4.60515503148E-19 4.96382352592E-19 5.35042660152E-19 5.76713991837E-19 6.21630858588E-19 6.70046036018E-19 7.22231986945E-19 7.78482394702E-19 8.39113815886E-19 9.04467461817E-19 9.74911118747E-19 1.05084121763E-18 1.13268506508E-18 1.22090324809E-18 1.31599222606E-18 1.41848712469E-18 1.52896474741E-18 1.64804682151E-18 1.77640349688E-18 1.91475711747E-18 2.06388628628E-18 2.22463024710E-18 2.39789360745E-18 2.58465142936E-18 2.78595471663E-18 3.00293632955E-18 3.23681736016E-18 3.48891400408E-18 3.76064496763E-18 4.05353945169E-18 4.36924575753E-18 4.70954056280E-18 5.07633891998E-18 5.47170503361E-18 5.89786387680E-18 6.35721371259E-18 6.85233959040E-18 7.38602789374E-18 7.96128202090E-18 8.58133928694E-18 9.24968914205E-18 9.97009280881E-18 1.07466044490E-17 1.15835939787E-17 1.24857716607E-17 1.34582146118E-17 1.45063953752E-17 1.56362127175E-17 1.68540248250E-17 1.81666850846E-17 1.95815806527E-17 2.11066740267E-17 2.27505478551E-17 2.45224532371E-17 2.64323617843E-17 2.84910217372E-17 3.07100184514E-17 3.31018395965E-17 3.56799454306E-17 3.84588445503E-17 4.14541755388E-17 4.46827949736E-17 4.81628722891E-17 5.19139920265E-17 5.59572640478E-17 6.03154423339E-17 6.50130530347E-17 7.00765324923E-17 7.55343760146E-17 8.14172982347E-17 8.77584059606E-17 9.45933844874E-17 1.01960698419E-16 1.09901808131E-16 1.18461403093E-16 1.27687653364E-16 1.37632480670E-16 1.48351850603E-16 1.59906087568E-16 1.72360214264E-16 1.85784317607E-16 2.00253943149E-16 2.15850520216E-16 2.32661820157E-16 2.50782450286E-16 2.70314386291E-16 2.91367546110E-16 3.14060408501E-16 3.38520679790E-16 3.64886012549E-16 3.93304780243E-16 4.23936912212E-16 4.56954793683E-16 4.92544235882E-16 5.30905521691E-16 5.72254532758E-16 6.16823964379E-16 6.64864635008E-16 7.16646897743E-16 7.72462161761E-16 8.32624532228E-16 8.97472577948E-16 9.67371236667E-16 1.04271386878E-15 1.12392447097E-15 1.21146006229E-15 1.30581325603E-15 1.40751503190E-15 1.51713772419E-15 1.63529824253E-15 1.76266154358E-15 1.89994437314E-15 2.04791929957E-15 2.20741906146E-15 2.37934125391E-15 2.56465337969E-15 2.76439829391E-15 2.97970007266E-15 3.21177033878E-15 3.46191508021E-15 3.73154199947E-15 4.02216843544E-15 4.33542990221E-15 4.67308929284E-15 5.03704680005E-15 5.42935060944E-15 5.85220842566E-15 6.30799989608E-15 6.79929000225E-15 7.32884349414E-15 7.89964044868E-15 8.51489303992E-15 9.17806361536E-15 9.89288418009E-15 1.06633773984E-14 1.14938792308E-14 1.23890633347E-14 1.33539673647E-14 1.43940213213E-14 1.55150781083E-14 1.67234464688E-14 1.80259264872E-14 1.94298478559E-14 2.09431111222E-14 2.25742321475E-14 2.43323900290E-14 2.62274787541E-14 2.82701628770E-14 3.04719375319E-14 3.28451931198E-14 3.54032850335E-14 3.81606088124E-14 4.11326811508E-14 4.43362272147E-14 4.77892747597E-14 5.15112555778E-14 5.55231148455E-14 5.98474289879E-14 6.45085327222E-14 6.95326559946E-14 7.49480715828E-14 8.07852541931E-14 8.70770519483E-14 9.38588712303E-14 1.01168875919E-13 1.09048202148E-13 1.17541189782E-13 1.26695631929E-13 1.36563043874E-13 1.47198952965E-13 1.58663211073E-13 1.71020331381E-13 1.84339851411E-13 1.98696724312E-13 2.14171740633E-13 2.30851982926E-13 2.48831315773E-13 2.68210913957E-13 2.89099831776E-13 3.11615616689E-13 3.35884970755E-13 3.62044463577E-13 3.90241300773E-13 4.20634152290E-13 4.53394045224E-13 4.88705326172E-13 5.26766698521E-13 5.67792340527E-13 6.12013110456E-13 6.59677845581E-13 7.11054762331E-13 7.66432965487E-13 8.26124074898E-13 8.90463978877E-13 9.59814724145E-13 1.03456655295E-12 1.11514009881E-12 1.20198875328E-12 1.29560121699E-12 1.39650424936E-12 1.50526563241E-12 1.62249736546E-12 1.74885910844E-12 1.88506189353E-12 2.03187212568E-12 2.19011589471E-12 2.36068362323E-12 2.54453507642E-12 2.74270476195E-12 2.95630775046E-12 3.18654594912E-12 3.43471486388E-12 3.70221088811E-12 3.99053915898E-12 4.30132202539E-12 4.63630817545E-12 4.99738247458E-12 5.38657656971E-12 5.80608031915E-12 6.25825411246E-12 6.74564214966E-12 7.27098675428E-12 7.83724380105E-12 8.44759934468E-12 9.10548754351E-12 9.81460997865E-12 1.05789564774E-11 1.14028275581E-11 1.22908586221E-11 1.32480460334E-11 1.42797752095E-11 1.53918509529E-11 1.65905300262E-11 1.78825564671E-11 1.92751994235E-11 2.07762940742E-11 2.23942857221E-11 2.41382771919E-11 2.60180803168E-11 2.80442706870E-11 3.02282475654E-11 3.25822977175E-11 3.51196646315E-11 3.78546230467E-11 4.08025590571E-11 4.39800569299E-11 4.74049921023E-11 5.10966318985E-11 5.50757437465E-11 5.93647121767E-11 6.39876644759E-11 6.89706064619E-11 7.43415688727E-11 8.01307647880E-11 8.63707595722E-11 9.30966541181E-11 1.00346282143E-10 1.08160422950E-10 1.16583030585E-10 1.25661481120E-10 1.35446839354E-10 1.45994145259E-10 1.57362723998E-10 1.69616519183E-10 1.82824452538E-10 1.97060810740E-10 2.12405664689E-10 2.28945318039E-10 2.46772792091E-10 2.65988351003E-10 2.86700063365E-10 3.09024409839E-10 3.33086938372E-10 3.59022969949E-10 3.86978360058E-10 4.17110315745E-10 4.49588281863E-10 4.84594892251E-10 5.22326996471E-10 5.62996765625E-10 6.06832884431E-10 6.54081838014E-10 7.05009294626E-10 7.59901599238E-10 8.19067384656E-10 8.82839300277E-10 9.51575887337E-10 1.02566358842E-09 1.10551892116E-09 1.19159081583E-09 1.28436313964E-09 1.38435741175E-09 1.49213573556E-09 1.60830395345E-09 1.73351504876E-09 1.86847281678E-09 2.01393581264E-09 2.17072161223E-09 2.33971140405E-09 2.52185493522E-09 2.71817584396E-09 2.92977740795E-09 3.15784873537E-09 3.40367144179E-09 3.66862683656E-09 3.95420369095E-09 4.26200657867E-09 4.59376488618E-09 4.95134251652E-09 5.33674834795E-09 5.75214750203E-09 6.19987349713E-09 6.68244132660E-09 7.20256157853E-09 7.76315563384E-09 8.36737204773E-09 9.01860420513E-09 9.72050935526E-09 1.04770291108E-08 1.12924115481E-08 1.21712350143E-08 1.31184338074E-08 1.41393257969E-08 1.52396422700E-08 1.64255600031E-08 1.77037358946E-08 1.90813442505E-08 2.05661169750E-08 2.21663868583E-08 2.38911342721E-08 2.57500374133E-08 2.77535265420E-08 2.99128423033E-08 3.22400987217E-08 3.47483509159E-08 3.74516682188E-08 4.03652128479E-08 4.35053247538E-08 4.68896129862E-08 5.05370541763E-08 5.44680986666E-08 5.87047847999E-08 6.32708621354E-08 6.81919241530E-08 7.34955512618E-08 7.92114649015E-08 8.53716935334E-08 9.20107514863E-08 9.91658317016E-08 1.06877013318E-07 1.15187485387E-07 1.24143787831E-07 1.33796071110E-07 1.44198375900E-07 1.55408934471E-07 1.67490495291E-07 1.80510672781E-07 1.94542324051E-07 2.09663954809E-07 2.25960156552E-07 2.43522077568E-07 2.62447930295E-07 2.82843537864E-07 3.04822922829E-07 3.28508941246E-07 3.54033965823E-07 3.81540621598E-07 4.11182578483E-07 4.43125404774E-07 4.77547486583E-07 5.14641017959E-07 5.54613067444E-07 5.97686726543E-07 6.44102346877E-07 6.94118872269E-07 7.48015273536E-07 8.06092093479E-07 8.68673110816E-07 9.36107131837E-07 1.00876991981E-06 1.08706627265E-06 1.17143225995E-06 1.26233763186E-06 1.36028841266E-06 1.46582969344E-06 1.57954863856E-06 1.70207772280E-06 1.83409821639E-06 1.97634393669E-06 2.12960528738E-06 2.29473360622E-06 2.47264584549E-06 2.66432961030E-06 2.87084858120E-06 3.09334835155E-06 3.33306270966E-06 3.59132040061E-06 3.86955240317E-06 4.16929976127E-06 4.49222201169E-06 4.84010625322E-06 5.21487690536E-06 5.61860620888E-06 6.05352552377E-06 6.52203748498E-06 7.02672908005E-06 7.57038571824E-06 8.15600636493E-06 8.78681982229E-06 9.46630224068E-06 1.01981959538E-05 1.09865297363E-05 1.18356405897E-05 1.27501971711E-05 1.37352249866E-05 1.47961334806E-05 1.59387451621E-05 1.71693269198E-05 1.84946236860E-05 1.99218946260E-05 2.14589520366E-05 2.31142031568E-05 2.48966951021E-05 2.68161631542E-05 2.88830826519E-05 3.11087247477E-05 3.35052163115E-05 3.60856042871E-05 3.88639248236E-05 4.18552775315E-05 4.50759052345E-05 4.85432796163E-05 5.22761931894E-05 5.62948580417E-05 6.06210118501E-05 6.52780316844E-05 7.02910561590E-05 7.56871165319E-05 8.14952773879E-05 8.77467875917E-05 9.44752422380E-05 1.01716756380E-04 1.09510151366E-04 1.17897154680E-04 1.26922614223E-04 1.36634728056E-04 1.47085290690E-04 1.58329957053E-04 1.70428525389E-04 1.83445240375E-04 1.97449117861E-04 2.12514292712E-04 2.28720391340E-04 2.46152930587E-04 2.64903744780E-04 2.85071442823E-04 3.06761897368E-04 3.30088768216E-04 3.55174062202E-04 3.82148732009E-04 4.11153316464E-04 4.42338625035E-04 4.75866469411E-04 5.11910445229E-04 5.50656767157E-04 5.92305160767E-04 6.37069814799E-04 6.85180397638E-04 7.36883142014E-04 7.92442002195E-04 8.52139888122E-04 9.16279981214E-04 9.85187136793E-04 1.05920937834E-03 1.13871948904E-03 1.22411670638E-03 1.31582852583E-03 1.41431261974E-03 1.52005887834E-03 1.63359157938E-03 1.75547169378E-03 1.88629933466E-03 2.02671635752E-03 2.17740911957E-03 2.33911140661E-03 2.51260753593E-03 2.69873564422E-03 2.89839116960E-03 3.11253053700E-03 3.34217505673E-03 3.58841504572E-03 3.85241418164E-03 4.13541409980E-03 4.43873924306E-03 4.76380197491E-03 5.11210796598E-03 5.48526186394E-03 5.88497325685E-03 6.31306293960E-03 6.77146949280E-03 7.26225618309E-03 7.78761819310E-03 8.34989018893E-03 8.95155423174E-03 9.59524803946E-03 1.02837736031E-02 1.10201061609E-02 1.18074035321E-02 1.26490158100E-02 1.35484954116E-02 1.45096074797E-02 1.55363406297E-02 1.66329180302E-02 1.78038088040E-02 1.90537397310E-02 2.03877072320E-02 2.18109896054E-02 2.33291594857E-02 2.49480964852E-02 2.66739999763E-02 2.85134019624E-02 3.04731799788E-02 3.25605699590E-02 3.47831789882E-02 3.71489978628E-02 3.96664133572E-02 4.23442200950E-02 4.51916319046E-02 4.82182925303E-02 5.14342855547E-02 5.48501433749E-02 5.84768550591E-02 6.23258728973E-02 6.64091174396E-02 7.07389808010E-02 7.53283279955E-02 8.01904960392E-02 8.53392905495E-02 9.07889795442E-02 9.65542841276E-02 1.02650365732E-01 1.09092809560E-01 1.15897603868E-01 1.23081114690E-01 1.30660055608E-01 1.38651452155E-01 1.47072600409E-01 1.55941019343E-01 1.65274396477E-01 1.75090526389E-01 1.85407241610E-01 1.96242335471E-01 2.07613476446E-01 2.19538113567E-01 2.32033372510E-01 2.45115941970E-01 2.58801949978E-01 2.73106829886E-01 2.88045175770E-01 3.03630587085E-01 3.19875502497E-01 3.36791022881E-01 3.54386723618E-01 3.72670456416E-01 3.91648141028E-01 4.11323547402E-01 4.31698068949E-01 4.52770487827E-01 4.74536733303E-01 4.96989634523E-01 5.20118669212E-01 5.43909710106E-01 5.68344771157E-01 5.93401755850E-01 6.19054210243E-01 6.45271083629E-01 6.72016500019E-01 6.99249543943E-01 7.26924064335E-01 7.54988500554E-01 7.83385734849E-01 8.12052975797E-01 8.40921677443E-01 8.69917499022E-01 8.98960310249E-01 9.27964247193E-01 9.56837823715E-01 9.85484103354E-01 1.01380093630E+00 1.04168126580E+00 1.06901350793E+00 1.09568200804E+00 1.12156757660E+00 1.14654810621E+00 1.17049927075E+00 1.19329530633E+00 1.21480987253E+00 1.23491699120E+00 1.25349205803E+00 1.27041292128E+00 1.28556101933E+00 1.29882256786E+00 1.31008978480E+00 1.31926213990E+00 1.32624761359E+00 1.33096394820E+00 1.33333987301E+00 1.33331628310E+00 1.33084735091E+00 1.32590154856E+00 1.31846255846E+00 1.30853004992E+00 1.29612029989E+00 1.28126663685E+00 1.26401968908E+00 1.24444742015E+00 1.22263493798E+00 1.19868406723E+00 1.17271267867E+00 1.14485377445E+00 1.11525433281E+00 1.08407392168E+00 1.05148309617E+00 1.01766160063E+00 9.82796401918E-01 9.47079585286E-01 9.10706149386E-01 8.73871740630E-01 8.36770370040E-01 7.99592157525E-01 7.62521148866E-01 7.25733249713E-01 6.89394318339E-01 6.53658454997E-01 6.18666520362E-01 5.84544909141E-01 5.51404597536E-01 5.19340475389E-01 4.88430965784E-01 4.58737927148E-01 4.30306825921E-01 4.03167162020E-01 3.77333125063E-01 3.52804456742E-01 3.29567494142E-01 3.07596369868E-01 2.86854347516E-01 2.67295274638E-01 2.48865139330E-01 2.31503720056E-01 2.15146320401E-01 1.99725580283E-01 1.85173351990E-01 1.71422622783E-01 1.58409455669E-01 1.46074906764E-01 1.34366862413E-01 1.23241723547E-01 1.12665850756E-01 1.02616673574E-01 9.30848317816E-02 8.40740801681E-02 7.55885817285E-02 6.76301559185E-02 6.01981867808E-02 5.32895535905E-02 4.68985871299E-02 4.10170544910E-02 3.56341749897E-02 3.07366693701E-02 2.63088439580E-02 2.23327108133E-02 1.87881442175E-02 1.56530730386E-02 1.29037076456E-02 1.05147991218E-02 8.45992756960E-03 6.71181533746E-03 5.24266006384E-03 4.02448154880E-03 3.02947567744E-03 2.23036795396E-03 1.60075870175E-03 1.11545166971E-03 7.50757685849E-04 4.84765132562E-04 2.97569396147E-04 1.71454065514E-04 9.10175133573E-05 4.32395683263E-05 1.74842518968E-05 5.43597581317E-06 9.68140408206E-07 -5.52909056144E-08 -4.29625839748E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3D 2 4.00 Wavefunction 1.25174178928E-14 1.29957334286E-14 1.34923263563E-14 1.40078950915E-14 1.45431647377E-14 1.50988881062E-14 1.56758467744E-14 1.62748521856E-14 1.68967467899E-14 1.75424052291E-14 1.82127355666E-14 1.89086805651E-14 1.96312190119E-14 2.03813670958E-14 2.11601798361E-14 2.19687525666E-14 2.28082224759E-14 2.36797702071E-14 2.45846215176E-14 2.55240490038E-14 2.64993738904E-14 2.75119678887E-14 2.85632551260E-14 2.96547141482E-14 3.07878799994E-14 3.19643463808E-14 3.31857678922E-14 3.44538623589E-14 3.57704132476E-14 3.71372721752E-14 3.85563615121E-14 4.00296770866E-14 4.15592909916E-14 4.31473544987E-14 4.47961010839E-14 4.65078495689E-14 4.82850073820E-14 5.01300739442E-14 5.20456441846E-14 5.40344121895E-14 5.60991749916E-14 5.82428365038E-14 6.04684116035E-14 6.27790303724E-14 6.51779424990E-14 6.76685218488E-14 7.02542712094E-14 7.29388272170E-14 7.57259654709E-14 7.86196058436E-14 8.16238179938E-14 8.47428270898E-14 8.79810197523E-14 9.13429502232E-14 9.48333467715E-14 9.84571183423E-14 1.02219361462E-13 1.06125367404E-13 1.10180629634E-13 1.14390851533E-13 1.18761954418E-13 1.23300085874E-13 1.28011628395E-13 1.32903208365E-13 1.37981705375E-13 1.43254261897E-13 1.48728293334E-13 1.54411498443E-13 1.60311870170E-13 1.66437706883E-13 1.72797624050E-13 1.79400566353E-13 1.86255820268E-13 1.93373027124E-13 2.00762196668E-13 2.08433721136E-13 2.16398389874E-13 2.24667404511E-13 2.33252394709E-13 2.42165434527E-13 2.51419059396E-13 2.61026283750E-13 2.71000619332E-13 2.81356094195E-13 2.92107272432E-13 3.03269274659E-13 3.14857799282E-13 3.26889144571E-13 3.39380231591E-13 3.52348627989E-13 3.65812572711E-13 3.79791001647E-13 3.94303574266E-13 4.09370701266E-13 4.25013573276E-13 4.41254190663E-13 4.58115394471E-13 4.75620898547E-13 4.93795322890E-13 5.12664228279E-13 5.32254152222E-13 5.52592646277E-13 5.73708314803E-13 5.95630855189E-13 6.18391099619E-13 6.42021058436E-13 6.66553965166E-13 6.92024323249E-13 7.18467954574E-13 7.45922049855E-13 7.74425220936E-13 8.04017555100E-13 8.34740671441E-13 8.66637779404E-13 8.99753739554E-13 9.34135126665E-13 9.69830295229E-13 1.00688944746E-12 1.04536470389E-12 1.08531017669E-12 1.12678204577E-12 1.16983863777E-12 1.21454050812E-12 1.26095052620E-12 1.30913396372E-12 1.35915858660E-12 1.41109475021E-12 1.46501549831E-12 1.52099666587E-12 1.57911698560E-12 1.63945819880E-12 1.70210517022E-12 1.76714600750E-12 1.83467218503E-12 1.90477867261E-12 1.97756406906E-12 2.05313074082E-12 2.13158496597E-12 2.21303708369E-12 2.29760164945E-12 2.38539759608E-12 2.47654840112E-12 2.57118226038E-12 2.66943226833E-12 2.77143660522E-12 2.87733873146E-12 2.98728758935E-12 3.10143781258E-12 3.21994994372E-12 3.34299065996E-12 3.47073300759E-12 3.60335664531E-12 3.74104809697E-12 3.88400101385E-12 4.03241644702E-12 4.18650313014E-12 4.34647777299E-12 4.51256536626E-12 4.68499949797E-12 4.86402268202E-12 5.04988669926E-12 5.24285295155E-12 5.44319282948E-12 5.65118809399E-12 5.86713127268E-12 6.09132607119E-12 6.32408780039E-12 6.56574381977E-12 6.81663399792E-12 7.07711119046E-12 7.34754173633E-12 7.62830597301E-12 7.91979877143E-12 8.22243009135E-12 8.53662555787E-12 8.86282706011E-12 9.20149337262E-12 9.55310080066E-12 9.91814385007E-12 1.02971359227E-11 1.06906100386E-11 1.10991195855E-11 1.15232390971E-11 1.19635650614E-11 1.24207167592E-11 1.28953371354E-11 1.33880937028E-11 1.38996794817E-11 1.44308139736E-11 1.49822441738E-11 1.55547456219E-11 1.61491234921E-11 1.67662137263E-11 1.74068842089E-11 1.80720359884E-11 1.87626045438E-11 1.94795611008E-11 2.02239139976E-11 2.09967101027E-11 2.17990362879E-11 2.26320209563E-11 2.34968356297E-11 2.43946965959E-11 2.53268666195E-11 2.62946567180E-11 2.72994280053E-11 2.83425936064E-11 2.94256206442E-11 3.05500323038E-11 3.17174099738E-11 3.29293954710E-11 3.41876933492E-11 3.54940732968E-11 3.68503726252E-11 3.82584988532E-11 3.97204323899E-11 4.12382293194E-11 4.28140242932E-11 4.44500335318E-11 4.61485579420E-11 4.79119863528E-11 4.97427988752E-11 5.16435703898E-11 5.36169741690E-11 5.56657856357E-11 5.77928862677E-11 6.00012676494E-11 6.22940356798E-11 6.46744149402E-11 6.71457532298E-11 6.97115262738E-11 7.23753426114E-11 7.51409486716E-11 7.80122340418E-11 8.09932369380E-11 8.40881498846E-11 8.73013256106E-11 9.06372831714E-11 9.41007143043E-11 9.76964900273E-11 1.01429667489E-10 1.05305497084E-10 1.09329429830E-10 1.13507125044E-10 1.17844458294E-10 1.22347529666E-10 1.27022672341E-10 1.31876461503E-10 1.36915723590E-10 1.42147545889E-10 1.47579286505E-10 1.53218584714E-10 1.59073371701E-10 1.65151881719E-10 1.71462663666E-10 1.78014593112E-10 1.84816884779E-10 1.91879105502E-10 1.99211187683E-10 2.06823443261E-10 2.14726578214E-10 2.22931707617E-10 2.31450371272E-10 2.40294549942E-10 2.49476682197E-10 2.59009681908E-10 2.68906956412E-10 2.79182425365E-10 2.89850540323E-10 3.00926305059E-10 3.12425296674E-10 3.24363687499E-10 3.36758267839E-10 3.49626469593E-10 3.62986390764E-10 3.76856820915E-10 3.91257267595E-10 4.06207983775E-10 4.21729996329E-10 4.37845135612E-10 4.54576066155E-10 4.71946318547E-10 4.89980322525E-10 5.08703441335E-10 5.28142007400E-10 5.48323359355E-10 5.69275880497E-10 5.91029038705E-10 6.13613427880E-10 6.37060810975E-10 6.61404164668E-10 6.86677725735E-10 7.12917039208E-10 7.40159008362E-10 7.68441946614E-10 7.97805631411E-10 8.28291360173E-10 8.59942008370E-10 8.92802089828E-10 9.26917819327E-10 9.62337177604E-10 9.99109978828E-10 1.03728794066E-09 1.07692475700E-09 1.11807617348E-09 1.16080006588E-09 1.20515652152E-09 1.25120792379E-09 1.29901903983E-09 1.34865711167E-09 1.40019195080E-09 1.45369603630E-09 1.50924461684E-09 1.56691581648E-09 1.62679074451E-09 1.68895360960E-09 1.75349183816E-09 1.82049619733E-09 1.89006092263E-09 1.96228385049E-09 2.03726655584E-09 2.11511449498E-09 2.19593715389E-09 2.27984820220E-09 2.36696565305E-09 2.45741202911E-09 2.55131453481E-09 2.64880523533E-09 2.75002124228E-09 2.85510490653E-09 2.96420401846E-09 3.07747201576E-09 3.19506819925E-09 3.31715795690E-09 3.44391299647E-09 3.57551158693E-09 3.71213880926E-09 3.85398681667E-09 4.00125510490E-09 4.15415079273E-09 4.31288891332E-09 4.47769271662E-09 4.64879398332E-09 4.82643335085E-09 5.01086065178E-09 5.20233526521E-09 5.40112648155E-09 5.60751388123E-09 5.82178772791E-09 6.04424937668E-09 6.27521169791E-09 6.51499951724E-09 6.76395007244E-09 7.02241348763E-09 7.29075326575E-09 7.56934679975E-09 7.85858590335E-09 8.15887736208E-09 8.47064350536E-09 8.79432280047E-09 9.13037046916E-09 9.47925912791E-09 9.84147945256E-09 1.02175408684E-08 1.06079722666E-08 1.10133227480E-08 1.14341623954E-08 1.18710830752E-08 1.23246992700E-08 1.27956489424E-08 1.32845944326E-08 1.37922233897E-08 1.43192497386E-08 1.48664146846E-08 1.54344877551E-08 1.60242678821E-08 1.66365845259E-08 1.72722988417E-08 1.79323048903E-08 1.86175308955E-08 1.93289405498E-08 2.00675343697E-08 2.08343511022E-08 2.16304691863E-08 2.24570082691E-08 2.33151307808E-08 2.42060435693E-08 2.51309995973E-08 2.60912997044E-08 2.70882944367E-08 2.81233859460E-08 2.91980299615E-08 3.03137378371E-08 3.14720786770E-08 3.26746815421E-08 3.39232377411E-08 3.52195032088E-08 3.65653009759E-08 3.79625237320E-08 3.94131364882E-08 4.09191793394E-08 4.24827703343E-08 4.41061084533E-08 4.57914767009E-08 4.75412453167E-08 4.93578751081E-08 5.12439209110E-08 5.32020351829E-08 5.52349717324E-08 5.73455895921E-08 5.95368570389E-08 6.18118557686E-08 6.41737852289E-08 6.66259671191E-08 6.91718500606E-08 7.18150144472E-08 7.45591774794E-08 7.74081983918E-08 8.03660838797E-08 8.34369937341E-08 8.66252466905E-08 8.99353265020E-08 9.33718882447E-08 9.69397648634E-08 1.00643973968E-07 1.04489724887E-07 1.08482425997E-07 1.12627692323E-07 1.16931353439E-07 1.21399461659E-07 1.26038300553E-07 1.30854393781E-07 1.35854514264E-07 1.41045693710E-07 1.46435232502E-07 1.52030709960E-07 1.57839995000E-07 1.63871257199E-07 1.70132978282E-07 1.76633964047E-07 1.83383356748E-07 1.90390647948E-07 1.97665691866E-07 2.05218719230E-07 2.13060351665E-07 2.21201616627E-07 2.29653962903E-07 2.38429276716E-07 2.47539898428E-07 2.56998639898E-07 2.66818802492E-07 2.77014195781E-07 2.87599156963E-07 2.98588571015E-07 3.09997891623E-07 3.21843162906E-07 3.34141041977E-07 3.46908822354E-07 3.60164458279E-07 3.73926589956E-07 3.88214569757E-07 4.03048489427E-07 4.18449208331E-07 4.34438382777E-07 4.51038496461E-07 4.68272892073E-07 4.86165804111E-07 5.04742392950E-07 5.24028780207E-07 5.44052085465E-07 5.64840464388E-07 5.86423148306E-07 6.08830485299E-07 6.32093982855E-07 6.56246352159E-07 6.81321554072E-07 7.07354846862E-07 7.34382835763E-07 7.62443524425E-07 7.91576368329E-07 8.21822330235E-07 8.53223937760E-07 8.85825343145E-07 9.19672385305E-07 9.54812654253E-07 9.91295557976E-07 1.02917239187E-06 1.06849641085E-06 1.10932290412E-06 1.15170927295E-06 1.19571511129E-06 1.24140228951E-06 1.28883504135E-06 1.33808005419E-06 1.38920656269E-06 1.44228644616E-06 1.49739432947E-06 1.55460768793E-06 1.61400695745E-06 1.67567564142E-06 1.73970043824E-06 1.80617135749E-06 1.87518184289E-06 1.94682891213E-06 2.02121328256E-06 2.09843951879E-06 2.17861618746E-06 2.26185599292E-06 2.34827594697E-06 2.43799752810E-06 2.53114686040E-06 2.62785487671E-06 2.72825751542E-06 2.83249590497E-06 2.94071656249E-06 3.05307160092E-06 3.16971894277E-06 3.29082254434E-06 3.41655261196E-06 3.54708586154E-06 3.68260575557E-06 3.82330276049E-06 3.96937461190E-06 4.12102660266E-06 4.27847185809E-06 4.44193164337E-06 4.61163567367E-06 4.78782242985E-06 4.97073950485E-06 5.16064393683E-06 5.35780258142E-06 5.56249247988E-06 5.77500125191E-06 5.99562749476E-06 6.22468120725E-06 6.46248421832E-06 6.70937064199E-06 6.96568735102E-06 7.23179445011E-06 7.50806579530E-06 7.79488950742E-06 8.09266852477E-06 8.40182116410E-06 8.72278169460E-06 9.05600098012E-06 9.40194707227E-06 9.76110588881E-06 1.01339818948E-05 1.05210988021E-05 1.09230003067E-05 1.13402508403E-05 1.17734363765E-05 1.22231652464E-05 1.26900689937E-05 1.31748032423E-05 1.36780486371E-05 1.42005117818E-05 1.47429262344E-05 1.53060535382E-05 1.58906842687E-05 1.64976391658E-05 1.71277702670E-05 1.77819620947E-05 1.84611329127E-05 1.91662359920E-05 1.98982609541E-05 2.06582351468E-05 2.14472250975E-05 2.22663379770E-05 2.31167231820E-05 2.39995738862E-05 2.49161287905E-05 2.58676737696E-05 2.68555437150E-05 2.78811243963E-05 2.89458543843E-05 3.00512270492E-05 3.11987926801E-05 3.23901606237E-05 3.36270015212E-05 3.49110496690E-05 3.62441053941E-05 3.76280376241E-05 3.90647864301E-05 4.05563657758E-05 4.21048662961E-05 4.37124582282E-05 4.53813944245E-05 4.71140134924E-05 4.89127430432E-05 5.07801030871E-05 5.27187095219E-05 5.47312777679E-05 5.68206265774E-05 5.89896819143E-05 6.12414810404E-05 6.35791767223E-05 6.60060416334E-05 6.85254728730E-05 7.11409966954E-05 7.38562733933E-05 7.66751023872E-05 7.96014274760E-05 8.26393423243E-05 8.57930961187E-05 8.90670994531E-05 9.24659304486E-05 9.59943410655E-05 9.96572637066E-05 1.03459818008E-04 1.07407317937E-04 1.11505279117E-04 1.15759426468E-04 1.20175702063E-04 1.24760273384E-04 1.29519541776E-04 1.34460151294E-04 1.39588997863E-04 1.44913238738E-04 1.50440302389E-04 1.56177898691E-04 1.62134029529E-04 1.68316999804E-04 1.74735428800E-04 1.81398262041E-04 1.88314783538E-04 1.95494628513E-04 2.02947796596E-04 2.10684665494E-04 2.18716005196E-04 2.27052992674E-04 2.35707227159E-04 2.44690745943E-04 2.54016040803E-04 2.63696075014E-04 2.73744300978E-04 2.84174678532E-04 2.95001693907E-04 3.06240379382E-04 3.17906333681E-04 3.30015743095E-04 3.42585403407E-04 3.55632742581E-04 3.69175844312E-04 3.83233472432E-04 3.97825096193E-04 4.12970916481E-04 4.28691892988E-04 4.45009772361E-04 4.61947117380E-04 4.79527337195E-04 4.97774718646E-04 5.16714458737E-04 5.36372698255E-04 5.56776556626E-04 5.77954168010E-04 5.99934718683E-04 6.22748485789E-04 6.46426877458E-04 6.71002474350E-04 6.96509072703E-04 7.22981728901E-04 7.50456805618E-04 7.78972019614E-04 8.08566491205E-04 8.39280795498E-04 8.71157015410E-04 9.04238796563E-04 9.38571404097E-04 9.74201781484E-04 1.01117861136E-03 1.04955237851E-03 1.08937543504E-03 1.13070206774E-03 1.17358856785E-03 1.21809330319E-03 1.26427679277E-03 1.31220178392E-03 1.36193333210E-03 1.41353888338E-03 1.46708835973E-03 1.52265424717E-03 1.58031168690E-03 1.64013856945E-03 1.70221563200E-03 1.76662655888E-03 1.83345808547E-03 1.90280010545E-03 1.97474578153E-03 2.04939165992E-03 2.12683778835E-03 2.20718783802E-03 2.29054922940E-03 2.37703326201E-03 2.46675524844E-03 2.55983465243E-03 2.65639523139E-03 2.75656518333E-03 2.86047729829E-03 2.96826911444E-03 3.08008307896E-03 3.19606671373E-03 3.31637278601E-03 3.44115948422E-03 3.57059059882E-03 3.70483570854E-03 3.84407037198E-03 3.98847632464E-03 4.13824168159E-03 4.29356114577E-03 4.45463622207E-03 4.62167543723E-03 4.79489456572E-03 4.97451686155E-03 5.16077329622E-03 5.35390280278E-03 5.55415252608E-03 5.76177807928E-03 5.97704380661E-03 6.20022305247E-03 6.43159843685E-03 6.67146213705E-03 6.92011617578E-03 7.17787271550E-03 7.44505435907E-03 7.72199445656E-03 8.00903741823E-03 8.30653903351E-03 8.61486679591E-03 8.93440023372E-03 9.26553124626E-03 9.60866444560E-03 9.96421750343E-03 1.03326215028E-02 1.07143212947E-02 1.11097758585E-02 1.15194586669E-02 1.19438580540E-02 1.23834775862E-02 1.28388364365E-02 1.33104697598E-02 1.37989290700E-02 1.43047826181E-02 1.48286157697E-02 1.53710313815E-02 1.59326501772E-02 1.65141111190E-02 1.71160717770E-02 1.77392086925E-02 1.83842177357E-02 1.90518144563E-02 1.97427344247E-02 2.04577335633E-02 2.11975884657E-02 2.19630967021E-02 2.27550771091E-02 2.35743700625E-02 2.44218377290E-02 2.52983642974E-02 2.62048561841E-02 2.71422422125E-02 2.81114737613E-02 2.91135248812E-02 3.01493923747E-02 3.12200958373E-02 3.23266776553E-02 3.34702029574E-02 3.46517595155E-02 3.58724575912E-02 3.71334297229E-02 3.84358304495E-02 3.97808359649E-02 4.11696437000E-02 4.26034718239E-02 4.40835586618E-02 4.56111620215E-02 4.71875584232E-02 4.88140422258E-02 5.04919246432E-02 5.22225326431E-02 5.40072077220E-02 5.58473045472E-02 5.77441894592E-02 5.96992388259E-02 6.17138372395E-02 6.37893755490E-02 6.59272487171E-02 6.81288534943E-02 7.03955858989E-02 7.27288384953E-02 7.51299974584E-02 7.76004394156E-02 8.01415280563E-02 8.27546104972E-02 8.54410133945E-02 8.82020387918E-02 9.10389596940E-02 9.39530153559E-02 9.69454062768E-02 1.00017288890E-01 1.03169769937E-01 1.06403900524E-01 1.09720669834E-01 1.13120998515E-01 1.16605731708E-01 1.20175631725E-01 1.23831370368E-01 1.27573520887E-01 1.31402549561E-01 1.35318806922E-01 1.39322518602E-01 1.43413775815E-01 1.47592525477E-01 1.51858559969E-01 1.56211506548E-01 1.60650816429E-01 1.65175753535E-01 1.69785382953E-01 1.74478559100E-01 1.79253913638E-01 1.84109843160E-01 1.89044496685E-01 1.94055762999E-01 1.99141257898E-01 2.04298311363E-01 2.09523954745E-01 2.14814908016E-01 2.20167567151E-01 2.25577991726E-01 2.31041892820E-01 2.36554621300E-01 2.42111156611E-01 2.47706096167E-01 2.53333645463E-01 2.58987609048E-01 2.64661382481E-01 2.70347945431E-01 2.76039856063E-01 2.81729246893E-01 2.87407822272E-01 2.93066857684E-01 2.98697201064E-01 3.04289276314E-01 3.09833089245E-01 3.15318236139E-01 3.20733915165E-01 3.26068940856E-01 3.31311761885E-01 3.36450482347E-01 3.41472886781E-01 3.46366469136E-01 3.51118465907E-01 3.55715893614E-01 3.60145590823E-01 3.64394264872E-01 3.68448543427E-01 3.72295030999E-01 3.75920370480E-01 3.79311309752E-01 3.82454773343E-01 3.85337939085E-01 3.87948319636E-01 3.90273848686E-01 3.92302971570E-01 3.94024739949E-01 3.95428910100E-01 3.96506044287E-01 3.97247614535E-01 3.97646108053E-01 3.97695133383E-01 3.97389526266E-01 3.96725454008E-01 3.95700517061E-01 3.94313846299E-01 3.92566194393E-01 3.90460019455E-01 3.87999559028E-01 3.85190892314E-01 3.82041988384E-01 3.78562738006E-01 3.74764966574E-01 3.70662425557E-01 3.66270759780E-01 3.61607447840E-01 3.56691712922E-01 3.51544401358E-01 3.46187826339E-01 3.40645574356E-01 3.34942272182E-01 3.29103312484E-01 3.23154536593E-01 3.17121873384E-01 3.11030933875E-01 3.04906561824E-01 2.98772341423E-01 2.92650064172E-01 2.86559158059E-01 2.80516083421E-01 2.74533701162E-01 2.68620620519E-01 2.62780535113E-01 2.57012662107E-01 2.51316600156E-01 2.45692512413E-01 2.40140541519E-01 2.34660810952E-01 2.29253426275E-01 2.23918476283E-01 2.18656034050E-01 2.13466157874E-01 2.08348892123E-01 2.03304574649E-01 1.98332921663E-01 1.93433940023E-01 1.88607625001E-01 1.83853960587E-01 1.79172919693E-01 1.74564464247E-01 1.70028545164E-01 1.65565102214E-01 1.61174063773E-01 1.56855346464E-01 1.52608854695E-01 1.48434480095E-01 1.44332100850E-01 1.40301580953E-01 1.36342769374E-01 1.32455499168E-01 1.28639586512E-01 1.24894829717E-01 1.21221008200E-01 1.17617881451E-01 1.14085188014E-01 1.10622644480E-01 1.07229944533E-01 1.03906758046E-01 1.00652730267E-01 9.74674810875E-02 9.43506044263E-02 9.13016677328E-02 8.83202116233E-02 8.54057496604E-02 8.25577682803E-02 7.97757268756E-02 7.70590580323E-02 7.44071679225E-02 7.18194368496E-02 6.92952199395E-02 6.68338479724E-02 6.44346283431E-02 6.20968461405E-02 5.98197653326E-02 5.76026300414E-02 5.54446658945E-02 5.33450814349E-02 5.13030695736E-02 4.93178090664E-02 4.73884659994E-02 4.55141952646E-02 4.36941420103E-02 4.19274430502E-02 4.02132282174E-02 3.85506216493E-02 3.69387429933E-02 3.53767085220E-02 3.38636321519E-02 3.23986263586E-02 3.09808029865E-02 2.96092739509E-02 2.82831518351E-02 2.70015503841E-02 2.57635849029E-02 2.45683725639E-02 2.34150326362E-02 2.23026866434E-02 2.12304584654E-02 2.01974743928E-02 1.92028631503E-02 1.82457558992E-02 1.73252862327E-02 1.64405901761E-02 1.55908062026E-02 1.47750752740E-02 1.39925409167E-02 1.32423493386E-02 1.25236495930E-02 1.18355937940E-02 1.11773373855E-02 1.05480394656E-02 9.94686316425E-03 9.37297607557E-03 8.82555073846E-03 8.30376516445E-03 7.80680340661E-03 7.33385616466E-03 6.88412142024E-03 6.45680509605E-03 6.05112173239E-03 5.66629517446E-03 5.30155926388E-03 4.95615852798E-03 4.62934886063E-03 4.32039818885E-03 4.02858711957E-03 3.75320956150E-03 3.49357331756E-03 3.24900064358E-03 3.01882876992E-03 2.80241038262E-03 2.59911406166E-03 2.40832467420E-03 2.22944372115E-03 2.06188963601E-03 1.90509803519E-03 1.75852191959E-03 1.62163182759E-03 1.49391593980E-03 1.37488013651E-03 1.26404800889E-03 1.16096082526E-03 1.06517745411E-03 9.76274245615E-04 8.93844873742E-04 8.17500140916E-04 7.46867747652E-04 6.81592029440E-04 6.21333663304E-04 5.65769346526E-04 5.14591450030E-04 4.67507648929E-04 4.24240532733E-04 3.84527197695E-04 3.48118823728E-04 3.14780238253E-04 2.84289469305E-04 2.56437290121E-04 2.31026757352E-04 2.07872744959E-04 1.86801475739E-04 1.67650052324E-04 1.50265989392E-04 1.34506748707E-04 1.20239278484E-04 1.07339558476E-04 9.56921520425E-05 8.51897663429E-05 7.57328216863E-05 6.72290309475E-05 5.95929897738E-05 5.27457785665E-05 4.66148420206E-05 4.11357212179E-05 3.62465457475E-05 3.18902723730E-05 2.80146568247E-05 2.45719223957E-05 2.15184448645E-05 1.88144534681E-05 1.64237476156E-05 1.43134289995E-05 1.24536487314E-05 1.08173690986E-05 9.38013951561E-06 8.11988621890E-06 7.01671523866E-06 6.05272816151E-06 5.21185018783E-06 4.47966997675E-06 3.84329076495E-06 3.29119224173E-06 2.81310266104E-06 2.39988067263E-06 2.04340635818E-06 1.73648096364E-06 1.47273482751E-06 1.24654301409E-06 1.05294817283E-06 8.87590157004E-07 7.46641950450E-07 6.26751465801E-07 5.24988794588E-07 4.38798506738E-07 3.65956615007E-07 3.04531838265E-07 2.52850816313E-07 2.09466947786E-07 1.73132541694E-07 1.42773991976E-07 1.17469703212E-07 9.64305140520E-08 7.89823830977E-08 6.45511197355E-08 5.26489598441E-08 4.28628033393E-08 3.48439472545E-08 2.82991645710E-08 2.29829954488E-08 1.86163085134E-08 1.50390259038E-08 1.21163037408E-08 9.73486244099E-09 7.79979951612E-09 6.23182941773E-09 4.96490018850E-09 3.94414155453E-09 3.12410363871E-09 2.46724969491E-09 1.94267016179E-09 1.52498892315E-09 1.19343594781E-09 9.31063479566E-10 7.24085669494E-10 5.61324004516E-10 4.33743102078E-10 3.34063428132E-10 2.56439269778E-10 1.96191871398E-10 1.49589039821E-10 1.13663755498E-10 8.60654078594E-11 6.49382183252E-11 4.88222374996E-11 3.65730165944E-11 2.72966691840E-11 2.02975689594E-11 1.50363824809E-11 1.10965223232E-11 8.15743394272E-12 5.97340670686E-12 4.35683268439E-12 3.16503210211E-12 2.28992726570E-12 1.64998199117E-12 1.18393539209E-12 8.45950866578E-13 6.01876490918E-13 4.26374479980E-13 3.00727255586E-13 2.11167963491E-13 1.47615686370E-13 1.02721536647E-13 7.11524724106E-14 4.90560565375E-14 3.36622983396E-14 2.29888586923E-14 1.56238215314E-14 1.05663917816E-14 7.11064123009E-15 4.76108724599E-15 3.17169331163E-15 2.10201551723E-15 1.38583649958E-15 9.08846892271E-16 5.92847590384E-16 3.84626831622E-16 2.48170695603E-16 1.59237615036E-16 1.01600195254E-16 6.44564253288E-17 4.06564432575E-17 2.54948432375E-17 1.58928949982E-17 9.84801934354E-18 6.06536696261E-18 3.71273768287E-18 2.25853443278E-18 1.36527544145E-18 8.20050072161E-19 4.89386494652E-19 2.90148047031E-19 1.70886394895E-19 9.99721749384E-20 5.80895224479E-20 3.35217142596E-20 1.92099683411E-20 1.09310250276E-20 6.17575777613E-21 3.46398158903E-21 1.92875556129E-21 1.06599445119E-21 5.84747227311E-22 3.18328630163E-22 1.71963328562E-22 9.21735653385E-23 4.90167587825E-23 2.58587290703E-23 1.35316364961E-23 7.02311305764E-24 3.61493305730E-24 1.84508606896E-24 9.33754501903E-25 4.68491650446E-25 2.33011225019E-25 1.14870854927E-25 5.61244975982E-26 3D 2 5.00 Wavefunction 1.25715806928E-14 1.30519658974E-14 1.35507075800E-14 1.40685071783E-14 1.46060929335E-14 1.51642209140E-14 1.57436760793E-14 1.63452733837E-14 1.69698589226E-14 1.76183111223E-14 1.82915419757E-14 1.89904983245E-14 1.97161631913E-14 2.04695571619E-14 2.12517398207E-14 2.20638112411E-14 2.29069135322E-14 2.37822324457E-14 2.46909990430E-14 2.56344914268E-14 2.66140365390E-14 2.76310120261E-14 2.86868481777E-14 2.97830299372E-14 3.09210989909E-14 3.21026559361E-14 3.33293625318E-14 3.46029440364E-14 3.59251916338E-14 3.72979649526E-14 3.87231946814E-14 4.02028852845E-14 4.17391178207E-14 4.33340528701E-14 4.49899335729E-14 4.67090887844E-14 4.84939363498E-14 5.03469865052E-14 5.22708454078E-14 5.42682188011E-14 5.63419158208E-14 5.84948529449E-14 6.07300580961E-14 6.30506749000E-14 6.54599671065E-14 6.79613231798E-14 7.05582610640E-14 7.32544331310E-14 7.60536313172E-14 7.89597924563E-14 8.19770038163E-14 8.51095088480E-14 8.83617131527E-14 9.17381906788E-14 9.52436901542E-14 9.88831417653E-14 1.02661664091E-13 1.06584571300E-13 1.10657380628E-13 1.14885820134E-13 1.19275836758E-13 1.23833604684E-13 1.28565534025E-13 1.33478279835E-13 1.38578751474E-13 1.43874122320E-13 1.49371839862E-13 1.55079636169E-13 1.61005538772E-13 1.67157881948E-13 1.73545318443E-13 1.80176831642E-13 1.87061748203E-13 1.94209751176E-13 2.01630893617E-13 2.09335612730E-13 2.17334744547E-13 2.25639539165E-13 2.34261676570E-13 2.43213283064E-13 2.52506948318E-13 2.62155743080E-13 2.72173237559E-13 2.82573520506E-13 2.93371219034E-13 3.04581519185E-13 3.16220187291E-13 3.28303592148E-13 3.40848728034E-13 3.53873238614E-13 3.67395441752E-13 3.81434355275E-13 3.96009723719E-13 4.11142046096E-13 4.26852604730E-13 4.43163495181E-13 4.60097657328E-13 4.77678907626E-13 4.95931972606E-13 5.14882523648E-13 5.34557213087E-13 5.54983711698E-13 5.76190747609E-13 5.98208146709E-13 6.21066874595E-13 6.44799080118E-13 6.69438140603E-13 6.95018708790E-13 7.21576761566E-13 7.49149650571E-13 7.77776154721E-13 8.07496534756E-13 8.38352589858E-13 8.70387716437E-13 9.03646969170E-13 9.38177124359E-13 9.74026745726E-13 1.01124625271E-12 1.04988799137E-12 1.09000630802E-12 1.13165762565E-12 1.17490052330E-12 1.21979581841E-12 1.26640665238E-12 1.31479857938E-12 1.36503965854E-12 1.41720054965E-12 1.47135461254E-12 1.52757801031E-12 1.58594981636E-12 1.64655212566E-12 1.70947017020E-12 1.77479243883E-12 1.84261080177E-12 1.91302063976E-12 1.98612097822E-12 2.06201462657E-12 2.14080832273E-12 2.22261288334E-12 2.30754335952E-12 2.39571919875E-12 2.48726441283E-12 2.58230775230E-12 2.68098288751E-12 2.78342859663E-12 2.88978896080E-12 3.00021356681E-12 3.11485771746E-12 3.23388264996E-12 3.35745576273E-12 3.48575085082E-12 3.61894835032E-12 3.75723559216E-12 3.90080706555E-12 4.04986469152E-12 4.20461810690E-12 4.36528495918E-12 4.53209121258E-12 4.70527146587E-12 4.88506928230E-12 5.07173753215E-12 5.26553874840E-12 5.46674549593E-12 5.67564075485E-12 5.89251831853E-12 6.11768320675E-12 6.35145209472E-12 6.59415375843E-12 6.84612953706E-12 7.10773381304E-12 7.37933451045E-12 7.66131361251E-12 7.95406769874E-12 8.25800850279E-12 8.57356349145E-12 8.90117646587E-12 9.24130818574E-12 9.59443701728E-12 9.96105960605E-12 1.03416915754E-11 1.07368682518E-11 1.11471454173E-11 1.15731000919E-11 1.20153313443E-11 1.24744611351E-11 1.29511351911E-11 1.34460239137E-11 1.39598233216E-11 1.44932560296E-11 1.50470722655E-11 1.56220509244E-11 1.62190006646E-11 1.68387610449E-11 1.74822037054E-11 1.81502335932E-11 1.88437902352E-11 1.95638490596E-11 2.03114227674E-11 2.10875627573E-11 2.18933606038E-11 2.27299495926E-11 2.35985063146E-11 2.45002523206E-11 2.54364558392E-11 2.64084335605E-11 2.74175524880E-11 2.84652318613E-11 2.95529451516E-11 3.06822221347E-11 3.18546510419E-11 3.30718807942E-11 3.43356233210E-11 3.56476559680E-11 3.70098239967E-11 3.84240431798E-11 3.98923024955E-11 4.14166669248E-11 4.29992803555E-11 4.46423685978E-11 4.63482425147E-11 4.81193012714E-11 4.99580357104E-11 5.18670318539E-11 5.38489745414E-11 5.59066512053E-11 5.80429557911E-11 6.02608928282E-11 6.25635816545E-11 6.49542608043E-11 6.74362925626E-11 7.00131676939E-11 7.26885103519E-11 7.54660831761E-11 7.83497925841E-11 8.13436942654E-11 8.44519988854E-11 8.76790780073E-11 9.10294702405E-11 9.45078876233E-11 9.81192222507E-11 1.01868553154E-10 1.05761153444E-10 1.09802497729E-10 1.13998269811E-10 1.18354370681E-10 1.22876926822E-10 1.27572298817E-10 1.32447090303E-10 1.37508157254E-10 1.42762617623E-10 1.48217861356E-10 1.53881560783E-10 1.59761681407E-10 1.65866493110E-10 1.72204581782E-10 1.78784861398E-10 1.85616586550E-10 1.92709365471E-10 2.00073173539E-10 2.07718367314E-10 2.15655699097E-10 2.23896332059E-10 2.32451855936E-10 2.41334303329E-10 2.50556166631E-10 2.60130415591E-10 2.70070515561E-10 2.80390446426E-10 2.91104722272E-10 3.02228411797E-10 3.13777159502E-10 3.25767207696E-10 3.38215419336E-10 3.51139301748E-10 3.64557031245E-10 3.78487478693E-10 3.92950236050E-10 4.07965643922E-10 4.23554820166E-10 4.39739689596E-10 4.56543014813E-10 4.73988428224E-10 4.92100465272E-10 5.10904598951E-10 5.30427275622E-10 5.50695952216E-10 5.71739134846E-10 5.93586418896E-10 6.16268530648E-10 6.39817370493E-10 6.64266057798E-10 6.89648977484E-10 7.16001828385E-10 7.43361673455E-10 7.71766991896E-10 8.01257733271E-10 8.31875373694E-10 8.63662974157E-10 8.96665241096E-10 9.30928589265E-10 9.66501207012E-10 1.00343312405E-09 1.04177628184E-09 1.08158460658E-09 1.12291408514E-09 1.16582284373E-09 1.21037122966E-09 1.25662189625E-09 1.30463989089E-09 1.35449274657E-09 1.40625057685E-09 1.45998617444E-09 1.51577511360E-09 1.57369585643E-09 1.63382986319E-09 1.69626170691E-09 1.76107919230E-09 1.82837347926E-09 1.89823921105E-09 1.97077464745E-09 2.04608180290E-09 2.12426659002E-09 2.20543896852E-09 2.28971309990E-09 2.37720750793E-09 2.46804524543E-09 2.56235406727E-09 2.66026661006E-09 2.76192057868E-09 2.86745893998E-09 2.97703012382E-09 3.09078823181E-09 3.20889325407E-09 3.33151129422E-09 3.45881480297E-09 3.59098282070E-09 3.72820122921E-09 3.87066301317E-09 4.01856853154E-09 4.17212579930E-09 4.33155078008E-09 4.49706768981E-09 4.66890931212E-09 4.84731732567E-09 5.03254264406E-09 5.22484576874E-09 5.42449715534E-09 5.63177759402E-09 5.84697860444E-09 6.07040284565E-09 6.30236454182E-09 6.54318992412E-09 6.79321768954E-09 7.05279947722E-09 7.32230036297E-09 7.60209937272E-09 7.89259001560E-09 8.19418083729E-09 8.50729599466E-09 8.83237585222E-09 9.16987760151E-09 9.52027590402E-09 9.88406355876E-09 1.02617521953E-08 1.06538729934E-08 1.10609774298E-08 1.14836380541E-08 1.19224492937E-08 1.23780282901E-08 1.28510157664E-08 1.33420769288E-08 1.38519024019E-08 1.43812091997E-08 1.49307417348E-08 1.55012728642E-08 1.60936049772E-08 1.67085711231E-08 1.73470361833E-08 1.80098980871E-08 1.86980890751E-08 1.94125770096E-08 2.01543667363E-08 2.09245014970E-08 2.17240643971E-08 2.25541799287E-08 2.34160155516E-08 2.43107833359E-08 2.52397416659E-08 2.62041970102E-08 2.72055057587E-08 2.82450761303E-08 2.93243701534E-08 3.04449057215E-08 3.16082587285E-08 3.28160652843E-08 3.40700240161E-08 3.53718984567E-08 3.67235195252E-08 3.81267881012E-08 3.95836776982E-08 4.10962372391E-08 4.26665939375E-08 4.42969562888E-08 4.59896171766E-08 4.77469570964E-08 4.95714475040E-08 5.14656542903E-08 5.34322413901E-08 5.54739745282E-08 5.75937251084E-08 5.97944742518E-08 6.20793169890E-08 6.44514666121E-08 6.69142591936E-08 6.94711582778E-08 7.21257597512E-08 7.48817968991E-08 7.77431456554E-08 8.07138300532E-08 8.37980278832E-08 8.70000765689E-08 9.03244792652E-08 9.37759111914E-08 9.73592262053E-08 1.01079463628E-07 1.04941855332E-07 1.08951833094E-07 1.13115036238E-07 1.17437319562E-07 1.21924761571E-07 1.26583673025E-07 1.31420605812E-07 1.36442362162E-07 1.41656004210E-07 1.47068863930E-07 1.52688553437E-07 1.58522975701E-07 1.64580335648E-07 1.70869151707E-07 1.77398267780E-07 1.84176865681E-07 1.91214478046E-07 1.98521001735E-07 2.06106711749E-07 2.13982275674E-07 2.22158768685E-07 2.30647689112E-07 2.39460974612E-07 2.48611018948E-07 2.58110689420E-07 2.67973344952E-07 2.78212854874E-07 2.88843618427E-07 2.99880584999E-07 3.11339275149E-07 3.23235802427E-07 3.35586896023E-07 3.48409924295E-07 3.61722919178E-07 3.75544601539E-07 3.89894407496E-07 4.04792515739E-07 4.20259875900E-07 4.36318238005E-07 4.52990183045E-07 4.70299154725E-07 4.88269492417E-07 5.06926465377E-07 5.26296308264E-07 5.46406258019E-07 5.67284592152E-07 5.88960668492E-07 6.11464966451E-07 6.34829129868E-07 6.59086011489E-07 6.84269719141E-07 7.10415663678E-07 7.37560608747E-07 7.65742722463E-07 7.95001631056E-07 8.25378474562E-07 8.56915964642E-07 8.89658444614E-07 9.23651951772E-07 9.58944282085E-07 9.95585057367E-07 1.03362579501E-06 1.07311998040E-06 1.11412314202E-06 1.15669292958E-06 1.20088919493E-06 1.24677407621E-06 1.29441208516E-06 1.34387019777E-06 1.39521794836E-06 1.44852752731E-06 1.50387388248E-06 1.56133482450E-06 1.62099113447E-06 1.68292668674E-06 1.74722854485E-06 1.81398711090E-06 1.88329623492E-06 1.95525335120E-06 2.02995961503E-06 2.10752004572E-06 2.18804367549E-06 2.27164370052E-06 2.35843763561E-06 2.44854748869E-06 2.54209992435E-06 2.63922644820E-06 2.74006358343E-06 2.84475307113E-06 2.95344206145E-06 3.06628332770E-06 3.18343547226E-06 3.30506316292E-06 3.43133734370E-06 3.56243549692E-06 3.69854187553E-06 3.83984777311E-06 3.98655177920E-06 4.13886007860E-06 4.29698671422E-06 4.46115391527E-06 4.63159238610E-06 4.80854164393E-06 4.99225034917E-06 5.18297665534E-06 5.38098857424E-06 5.58656434769E-06 5.79999283815E-06 6.02157393443E-06 6.25161897970E-06 6.49045119497E-06 6.73840614432E-06 6.99583219584E-06 7.26309102104E-06 7.54055808842E-06 7.82862320496E-06 8.12769104839E-06 8.43818175050E-06 8.76053146267E-06 9.09519299080E-06 9.44263643149E-06 9.80334978756E-06 1.01778397183E-05 1.05666322010E-05 1.09702732903E-05 1.13893298591E-05 1.18243904194E-05 1.22760659344E-05 1.27449906884E-05 1.32318231437E-05 1.37372468932E-05 1.42619715981E-05 1.48067339973E-05 1.53722989314E-05 1.59594603981E-05 1.65690426911E-05 1.72019015471E-05 1.78589253202E-05 1.85410362437E-05 1.92491917272E-05 1.99843856780E-05 2.07476498918E-05 2.15400555150E-05 2.23627145225E-05 2.32167812841E-05 2.41034541572E-05 2.50239771955E-05 2.59796418530E-05 2.69717888143E-05 2.80018098327E-05 2.90711497385E-05 3.01813083609E-05 3.13338427156E-05 3.25303691155E-05 3.37725654608E-05 3.50621735469E-05 3.64010015271E-05 3.77909264136E-05 3.92338966965E-05 4.07319350711E-05 4.22871412402E-05 4.39016948516E-05 4.55778585289E-05 4.73179810095E-05 4.91245004528E-05 5.09999477904E-05 5.29469502615E-05 5.49682350810E-05 5.70666332181E-05 5.92450833359E-05 6.15066358699E-05 6.38544572737E-05 6.62918344192E-05 6.88221791499E-05 7.14490330248E-05 7.41760722208E-05 7.70071126530E-05 7.99461152473E-05 8.29971914347E-05 8.61646088494E-05 8.94527972458E-05 9.28663546144E-05 9.64100535717E-05 1.00088847924E-04 1.03907879564E-04 1.07872485535E-04 1.11988205432E-04 1.16260789037E-04 1.20696204264E-04 1.25300645388E-04 1.30080541584E-04 1.35042565794E-04 1.40193643914E-04 1.45540964327E-04 1.51091987808E-04 1.56854457765E-04 1.62836410891E-04 1.69046188212E-04 1.75492446525E-04 1.82184170278E-04 1.89130683888E-04 1.96341664520E-04 2.03827155340E-04 2.11597579237E-04 2.19663753115E-04 2.28036902628E-04 2.36728677531E-04 2.45751167574E-04 2.55116918971E-04 2.64838951496E-04 2.74930776210E-04 2.85406413813E-04 2.96280413715E-04 3.07567873775E-04 3.19284460769E-04 3.31446431635E-04 3.44070655457E-04 3.57174636300E-04 3.70776536825E-04 3.84895202826E-04 3.99550188613E-04 4.14761783356E-04 4.30551038367E-04 4.46939795374E-04 4.63950715839E-04 4.81607311317E-04 4.99933974931E-04 5.18956013974E-04 5.38699683692E-04 5.59192222291E-04 5.80461887186E-04 6.02537992570E-04 6.25450948320E-04 6.49232300308E-04 6.73914772122E-04 6.99532308321E-04 7.26120119188E-04 7.53714727093E-04 7.82354014503E-04 8.12077273677E-04 8.42925258124E-04 8.74940235875E-04 9.08166044615E-04 9.42648148767E-04 9.78433698561E-04 1.01557159116E-03 1.05411253391E-03 1.09410910981E-03 1.13561584521E-03 1.17868927991E-03 1.22338803953E-03 1.26977291056E-03 1.31790691782E-03 1.36785540461E-03 1.41968611560E-03 1.47346928248E-03 1.52927771259E-03 1.58718688038E-03 1.64727502206E-03 1.70962323338E-03 1.77431557055E-03 1.84143915468E-03 1.91108427947E-03 1.98334452256E-03 2.05831686043E-03 2.13610178704E-03 2.21680343637E-03 2.30052970875E-03 2.38739240136E-03 2.47750734278E-03 2.57099453181E-03 2.66797828067E-03 2.76858736256E-03 2.87295516394E-03 2.98121984131E-03 3.09352448287E-03 3.21001727507E-03 3.33085167409E-03 3.45618658247E-03 3.58618653093E-03 3.72102186550E-03 3.86086894005E-03 4.00591031436E-03 4.15633495775E-03 4.31233845848E-03 4.47412323888E-03 4.64189877637E-03 4.81588183052E-03 4.99629667606E-03 5.18337534202E-03 5.37735785708E-03 5.57849250115E-03 5.78703606320E-03 6.00325410543E-03 6.22742123381E-03 6.45982137495E-03 6.70074805939E-03 6.95050471123E-03 7.20940494411E-03 7.47777286350E-03 7.75594337526E-03 8.04426250034E-03 8.34308769563E-03 8.65278818069E-03 8.97374527036E-03 9.30635271303E-03 9.65101703434E-03 1.00081578861E-02 1.03782084004E-02 1.07616155480E-02 1.11588405012E-02 1.15703590013E-02 1.19966617286E-02 1.24382546763E-02 1.28956595266E-02 1.33694140291E-02 1.38600723803E-02 1.43682056042E-02 1.48944019328E-02 1.54392671853E-02 1.60034251466E-02 1.65875179420E-02 1.71922064093E-02 1.78181704653E-02 1.84661094666E-02 1.91367425630E-02 1.98308090421E-02 2.05490686638E-02 2.12923019827E-02 2.20613106569E-02 2.28569177411E-02 2.36799679623E-02 2.45313279761E-02 2.54118866000E-02 2.63225550234E-02 2.72642669897E-02 2.82379789489E-02 2.92446701770E-02 3.02853428601E-02 3.13610221386E-02 3.24727561084E-02 3.36216157765E-02 3.48086949650E-02 3.60351101608E-02 3.73020003063E-02 3.86105265264E-02 3.99618717863E-02 4.13572404760E-02 4.27978579155E-02 4.42849697749E-02 4.58198414039E-02 4.74037570642E-02 4.90380190582E-02 5.07239467475E-02 5.24628754542E-02 5.42561552367E-02 5.61051495344E-02 5.80112336701E-02 5.99757932063E-02 6.20002221418E-02 6.40859209448E-02 6.62342944095E-02 6.84467493291E-02 7.07246919756E-02 7.30695253752E-02 7.54826463715E-02 7.79654424639E-02 8.05192884140E-02 8.31455426063E-02 8.58455431559E-02 8.86206037501E-02 9.14720092160E-02 9.44010108015E-02 9.74088211613E-02 1.00496609037E-01 1.03665493620E-01 1.06916538597E-01 1.10250745849E-01 1.13669048825E-01 1.17172305553E-01 1.20761291302E-01 1.24436690886E-01 1.28199090591E-01 1.32048969748E-01 1.35986691923E-01 1.40012495741E-01 1.44126485344E-01 1.48328620478E-01 1.52618706223E-01 1.56996382379E-01 1.61461112498E-01 1.66012172611E-01 1.70648639632E-01 1.75369379487E-01 1.80173034983E-01 1.85058013444E-01 1.90022474155E-01 1.95064315657E-01 2.00181162922E-01 2.05370354479E-01 2.10628929536E-01 2.15953615165E-01 2.21340813618E-01 2.26786589858E-01 2.32286659384E-01 2.37836376449E-01 2.43430722767E-01 2.49064296829E-01 2.54731303932E-01 2.60425547068E-01 2.66140418801E-01 2.71868894271E-01 2.77603525502E-01 2.83336437166E-01 2.89059323971E-01 2.94763449885E-01 3.00439649351E-01 3.06078330725E-01 3.11669482126E-01 3.17202679923E-01 3.22667100059E-01 3.28051532462E-01 3.33344398739E-01 3.38533773396E-01 3.43607408798E-01 3.48552764084E-01 3.53357038251E-01 3.58007207602E-01 3.62490067743E-01 3.66792280294E-01 3.70900424444E-01 3.74801053487E-01 3.78480756385E-01 3.81926224426E-01 3.85124322950E-01 3.88062168090E-01 3.90727208406E-01 3.93107311217E-01 3.95190853376E-01 3.96966816126E-01 3.98424883599E-01 3.99555544417E-01 4.00350195726E-01 4.00801248905E-01 4.00902236035E-01 4.00647916095E-01 4.00034379704E-01 3.99059151085E-01 3.97721285759E-01 3.96021462345E-01 3.93962066657E-01 3.91547266151E-01 3.88783072612E-01 3.85677390835E-01 3.82240050901E-01 3.78482821553E-01 3.74419402049E-01 3.70065389828E-01 3.65438221237E-01 3.60557082621E-01 3.55442789049E-01 3.50117628116E-01 3.44605166348E-01 3.38930016009E-01 3.33117560396E-01 3.27193636092E-01 3.21184171141E-01 3.15114778712E-01 3.09010306500E-01 3.02894342959E-01 2.96788682411E-01 2.90712752138E-01 2.84683005808E-01 2.78712288907E-01 2.72809183334E-01 2.66977339902E-01 2.61215928040E-01 2.55524541681E-01 2.49903352527E-01 2.44352512634E-01 2.38872155783E-01 2.33462398763E-01 2.28123342546E-01 2.22855073360E-01 2.17657663667E-01 2.12531173032E-01 2.07475957692E-01 2.02491746606E-01 1.97578565166E-01 1.92736428291E-01 1.87965340764E-01 1.83265297440E-01 1.78636283359E-01 1.74078273726E-01 1.69591233778E-01 1.65175118545E-01 1.60829872481E-01 1.56555428999E-01 1.52351709890E-01 1.48218624643E-01 1.44156069673E-01 1.40163927461E-01 1.36242065624E-01 1.32390335920E-01 1.28608573208E-01 1.24896594374E-01 1.21254197243E-01 1.17681159494E-01 1.14177237601E-01 1.10742165800E-01 1.07375655128E-01 1.04077392523E-01 1.00847040032E-01 9.76842341105E-02 9.45885850580E-02 9.15596765773E-02 8.85970654826E-02 8.57002815569E-02 8.28688275669E-02 8.01021794368E-02 7.73997865801E-02 7.47610723900E-02 7.21854348795E-02 6.96722474672E-02 6.72208598980E-02 6.48305992868E-02 6.25007712735E-02 6.02306612746E-02 5.80195358139E-02 5.58666439184E-02 5.37712185597E-02 5.17324781243E-02 4.97496278948E-02 4.78218615248E-02 4.59483624892E-02 4.41283054947E-02 4.23608578354E-02 4.06451806786E-02 3.89804302694E-02 3.73657590434E-02 3.58003166385E-02 3.42832508016E-02 3.28137081831E-02 3.13908350210E-02 3.00137777133E-02 2.86816832829E-02 2.73936997398E-02 2.61489763493E-02 2.49466638145E-02 2.37859143838E-02 2.26658818964E-02 2.15857217784E-02 2.05445910029E-02 1.95416480270E-02 1.85760527209E-02 1.76469663000E-02 1.67535512729E-02 1.58949714166E-02 1.50703917874E-02 1.42789787765E-02 1.35199002159E-02 1.27923255412E-02 1.20954260118E-02 1.14283749931E-02 1.07903482989E-02 1.01805245935E-02 9.59808585065E-03 9.04221786603E-03 8.51211081889E-03 8.00695987665E-03 7.52596583732E-03 7.06833580295E-03 6.63328387743E-03 6.22003188184E-03 5.82781008037E-03 5.45585791008E-03 5.10342470790E-03 4.76977042851E-03 4.45416634717E-03 4.15589574185E-03 3.87425454980E-03 3.60855199360E-03 3.35811117284E-03 3.12226961776E-03 2.90037980169E-03 2.69180960986E-03 2.49594276243E-03 2.31217919016E-03 2.13993536168E-03 1.97864456158E-03 1.82775711923E-03 1.68674058821E-03 1.55507987710E-03 1.43227733221E-03 1.31785277352E-03 1.21134348505E-03 1.11230416137E-03 1.02030681193E-03 9.34940625310E-04 8.55811795365E-04 7.82543311588E-04 7.14774715994E-04 6.52161828919E-04 5.94376446173E-04 5.41106010047E-04 4.92053256629E-04 4.46935841932E-04 4.05485949265E-04 3.67449880276E-04 3.32587632028E-04 3.00672462391E-04 2.71490445999E-04 2.44840022897E-04 2.20531541935E-04 1.98386800867E-04 1.78238584998E-04 1.59930206135E-04 1.43315043463E-04 1.28256087870E-04 1.14625491130E-04 1.02304121215E-04 9.11811249319E-05 8.11534988982E-05 7.21256697496E-05 6.40090847369E-05 5.67221361392E-05 5.01923364209E-05 4.43496839641E-05 3.91294375430E-05 3.44721375816E-05 3.03232557106E-05 2.66328604945E-05 2.33552991308E-05 2.04488948937E-05 1.78756600546E-05 1.56010239766E-05 1.35935760480E-05 1.18248230892E-05 1.02689608418E-05 8.90265912238E-06 7.70486020508E-06 6.65658997735E-06 5.74078139948E-06 4.94210978565E-06 4.24683941588E-06 3.64268098160E-06 3.11865936409E-06 2.66499124419E-06 2.27297204283E-06 1.93487169613E-06 1.64383877426E-06 1.39381246178E-06 1.17944192604E-06 9.96012612309E-07 8.39379016743E-07 7.05903502554E-07 5.92400739724E-07 4.96087364905E-07 4.14536474964E-07 3.45636585093E-07 2.87554700399E-07 2.38703168112E-07 1.97709996007E-07 1.63392341165E-07 1.34732891708E-07 1.10858882555E-07 9.10235045403E-08 7.45894843397E-08 6.10146306340E-08 4.98391597962E-08 4.06746322841E-08 3.31943489767E-08 2.70200207459E-08 2.19368275153E-08 1.77629061947E-08 1.43447024361E-08 1.15529119410E-08 9.27894657644E-09 7.43186624544E-09 5.93572283099E-09 4.72726759317E-09 3.75397813385E-09 2.97236545869E-09 2.34652576217E-09 1.84690534445E-09 1.44925054730E-09 1.13371778148E-09 8.84121620645E-10 6.87301572024E-10 5.32590515175E-10 4.11369943458E-10 3.16699063120E-10 2.43006518791E-10 1.85835037082E-10 1.41630627688E-10 1.07569168956E-10 8.14142470490E-11 6.14010285038E-11 4.61417384203E-11 3.45490032182E-11 2.57739093838E-11 1.91561387149E-11 1.41839761200E-11 1.04623570590E-11 7.68743643961E-12 5.62642658944E-12 4.10167543755E-12 2.97814317326E-12 2.15359162928E-12 1.55093007682E-12 1.11226805507E-12 7.94313803913E-13 5.64828869370E-13 3.99908129872E-13 2.81902091038E-13 1.97836730979E-13 1.38217066041E-13 9.61253130204E-14 6.65441912441E-14 4.58514887784E-14 3.14443006883E-14 2.14609839279E-14 1.45763961798E-14 9.85182912233E-15 6.62556231357E-15 4.43343592814E-15 2.95149644713E-15 1.95479038968E-15 1.28791097638E-15 8.44054470218E-16 5.50205574935E-16 3.56713806775E-16 2.29998731920E-16 1.47472604178E-16 9.40258050325E-17 5.96075963735E-17 3.75702118562E-17 2.35418949935E-17 1.46643490432E-17 9.07977760682E-18 5.58786276328E-18 3.41775543953E-18 2.07743374847E-18 1.25478732216E-18 7.53069685648E-19 4.49042289081E-19 2.66005639850E-19 1.56534480195E-19 9.14973150202E-20 5.31188893856E-20 3.06263047785E-20 1.75350657860E-20 9.96894313172E-21 5.62705307142E-21 3.15328950764E-21 1.75411433702E-21 9.68552009628E-22 5.30784539117E-22 2.88670638744E-22 1.55788085018E-22 8.34201300200E-23 4.43169306973E-23 2.33554010027E-23 1.22089955051E-23 6.32999037476E-24 3.25470534203E-24 1.65943502134E-24 8.38885403619E-25 4.20428473983E-25 2.08872565430E-25 4S 0 1.00 Wavefunction -1.39227959157E-05 -1.40979231294E-05 -1.42752531723E-05 -1.44548137525E-05 -1.46366329268E-05 -1.48207391047E-05 -1.50071610533E-05 -1.51959279013E-05 -1.53870691440E-05 -1.55806146475E-05 -1.57765946538E-05 -1.59750397851E-05 -1.61759810488E-05 -1.63794498425E-05 -1.65854779586E-05 -1.67940975893E-05 -1.70053413319E-05 -1.72192421937E-05 -1.74358335972E-05 -1.76551493851E-05 -1.78772238260E-05 -1.81020916195E-05 -1.83297879017E-05 -1.85603482504E-05 -1.87938086914E-05 -1.90302057032E-05 -1.92695762234E-05 -1.95119576540E-05 -1.97573878677E-05 -2.00059052135E-05 -2.02575485227E-05 -2.05123571150E-05 -2.07703708048E-05 -2.10316299074E-05 -2.12961752449E-05 -2.15640481531E-05 -2.18352904877E-05 -2.21099446308E-05 -2.23880534978E-05 -2.26696605436E-05 -2.29548097701E-05 -2.32435457322E-05 -2.35359135457E-05 -2.38319588935E-05 -2.41317280334E-05 -2.44352678049E-05 -2.47426256367E-05 -2.50538495541E-05 -2.53689881864E-05 -2.56880907747E-05 -2.60112071795E-05 -2.63383878883E-05 -2.66696840238E-05 -2.70051473516E-05 -2.73448302887E-05 -2.76887859111E-05 -2.80370679627E-05 -2.83897308631E-05 -2.87468297167E-05 -2.91084203210E-05 -2.94745591751E-05 -2.98453034890E-05 -3.02207111924E-05 -3.06008409433E-05 -3.09857521378E-05 -3.13755049192E-05 -3.17701601870E-05 -3.21697796069E-05 -3.25744256203E-05 -3.29841614540E-05 -3.33990511301E-05 -3.38191594757E-05 -3.42445521339E-05 -3.46752955729E-05 -3.51114570974E-05 -3.55531048585E-05 -3.60003078645E-05 -3.64531359918E-05 -3.69116599958E-05 -3.73759515217E-05 -3.78460831161E-05 -3.83221282379E-05 -3.88041612701E-05 -3.92922575315E-05 -3.97864932880E-05 -4.02869457650E-05 -4.07936931592E-05 -4.13068146510E-05 -4.18263904165E-05 -4.23525016405E-05 -4.28852305291E-05 -4.34246603221E-05 -4.39708753066E-05 -4.45239608298E-05 -4.50840033124E-05 -4.56510902621E-05 -4.62253102876E-05 -4.68067531118E-05 -4.73955095863E-05 -4.79916717055E-05 -4.85953326210E-05 -4.92065866561E-05 -4.98255293203E-05 -5.04522573248E-05 -5.10868685971E-05 -5.17294622964E-05 -5.23801388294E-05 -5.30389998655E-05 -5.37061483532E-05 -5.43816885358E-05 -5.50657259677E-05 -5.57583675313E-05 -5.64597214531E-05 -5.71698973211E-05 -5.78890061018E-05 -5.86171601574E-05 -5.93544732633E-05 -6.01010606264E-05 -6.08570389023E-05 -6.16225262142E-05 -6.23976421710E-05 -6.31825078863E-05 -6.39772459968E-05 -6.47819806820E-05 -6.55968376833E-05 -6.64219443238E-05 -6.72574295280E-05 -6.81034238423E-05 -6.89600594549E-05 -6.98274702168E-05 -7.07057916629E-05 -7.15951610326E-05 -7.24957172915E-05 -7.34076011536E-05 -7.43309551025E-05 -7.52659234141E-05 -7.62126521790E-05 -7.71712893257E-05 -7.81419846431E-05 -7.91248898042E-05 -8.01201583901E-05 -8.11279459134E-05 -8.21484098429E-05 -8.31817096283E-05 -8.42280067247E-05 -8.52874646182E-05 -8.63602488512E-05 -8.74465270483E-05 -8.85464689428E-05 -8.96602464028E-05 -9.07880334582E-05 -9.19300063282E-05 -9.30863434482E-05 -9.42572254982E-05 -9.54428354310E-05 -9.66433585005E-05 -9.78589822908E-05 -9.90898967456E-05 -1.00336294198E-04 -1.01598369399E-04 -1.02876319552E-04 -1.04170344339E-04 -1.05480645953E-04 -1.06807429132E-04 -1.08150901188E-04 -1.09511272042E-04 -1.10888754254E-04 -1.12283563059E-04 -1.13695916398E-04 -1.15126034954E-04 -1.16574142187E-04 -1.18040464365E-04 -1.19525230605E-04 -1.21028672905E-04 -1.22551026180E-04 -1.24092528301E-04 -1.25653420131E-04 -1.27233945562E-04 -1.28834351555E-04 -1.30454888176E-04 -1.32095808637E-04 -1.33757369336E-04 -1.35439829894E-04 -1.37143453200E-04 -1.38868505448E-04 -1.40615256181E-04 -1.42383978332E-04 -1.44174948267E-04 -1.45988445830E-04 -1.47824754382E-04 -1.49684160851E-04 -1.51566955773E-04 -1.53473433337E-04 -1.55403891436E-04 -1.57358631707E-04 -1.59337959581E-04 -1.61342184334E-04 -1.63371619128E-04 -1.65426581068E-04 -1.67507391245E-04 -1.69614374789E-04 -1.71747860922E-04 -1.73908183004E-04 -1.76095678591E-04 -1.78310689482E-04 -1.80553561778E-04 -1.82824645931E-04 -1.85124296804E-04 -1.87452873721E-04 -1.89810740527E-04 -1.92198265643E-04 -1.94615822124E-04 -1.97063787719E-04 -1.99542544928E-04 -2.02052481060E-04 -2.04593988298E-04 -2.07167463758E-04 -2.09773309550E-04 -2.12411932843E-04 -2.15083745927E-04 -2.17789166278E-04 -2.20528616622E-04 -2.23302525005E-04 -2.26111324856E-04 -2.28955455053E-04 -2.31835359999E-04 -2.34751489684E-04 -2.37704299759E-04 -2.40694251606E-04 -2.43721812411E-04 -2.46787455237E-04 -2.49891659095E-04 -2.53034909024E-04 -2.56217696162E-04 -2.59440517826E-04 -2.62703877588E-04 -2.66008285355E-04 -2.69354257446E-04 -2.72742316675E-04 -2.76172992434E-04 -2.79646820773E-04 -2.83164344482E-04 -2.86726113183E-04 -2.90332683407E-04 -2.93984618689E-04 -2.97682489651E-04 -3.01426874091E-04 -3.05218357076E-04 -3.09057531034E-04 -3.12944995841E-04 -3.16881358922E-04 -3.20867235341E-04 -3.24903247897E-04 -3.28990027227E-04 -3.33128211895E-04 -3.37318448502E-04 -3.41561391779E-04 -3.45857704694E-04 -3.50208058554E-04 -3.54613133110E-04 -3.59073616661E-04 -3.63590206168E-04 -3.68163607354E-04 -3.72794534823E-04 -3.77483712164E-04 -3.82231872071E-04 -3.87039756451E-04 -3.91908116545E-04 -3.96837713043E-04 -4.01829316203E-04 -4.06883705971E-04 -4.12001672105E-04 -4.17184014296E-04 -4.22431542293E-04 -4.27745076033E-04 -4.33125445762E-04 -4.38573492174E-04 -4.44090066535E-04 -4.49676030819E-04 -4.55332257842E-04 -4.61059631399E-04 -4.66859046402E-04 -4.72731409018E-04 -4.78677636814E-04 -4.84698658898E-04 -4.90795416063E-04 -4.96968860939E-04 -5.03219958135E-04 -5.09549684395E-04 -5.15959028750E-04 -5.22448992669E-04 -5.29020590218E-04 -5.35674848220E-04 -5.42412806414E-04 -5.49235517614E-04 -5.56144047880E-04 -5.63139476680E-04 -5.70222897060E-04 -5.77395415814E-04 -5.84658153659E-04 -5.92012245408E-04 -5.99458840148E-04 -6.06999101420E-04 -6.14634207399E-04 -6.22365351082E-04 -6.30193740470E-04 -6.38120598758E-04 -6.46147164530E-04 -6.54274691946E-04 -6.62504450943E-04 -6.70837727430E-04 -6.79275823493E-04 -6.87820057593E-04 -6.96471764777E-04 -7.05232296886E-04 -7.14103022761E-04 -7.23085328464E-04 -7.32180617489E-04 -7.41390310986E-04 -7.50715847978E-04 -7.60158685590E-04 -7.69720299274E-04 -7.79402183043E-04 -7.89205849699E-04 -7.99132831074E-04 -8.09184678268E-04 -8.19362961891E-04 -8.29669272307E-04 -8.40105219885E-04 -8.50672435251E-04 -8.61372569540E-04 -8.72207294654E-04 -8.83178303527E-04 -8.94287310386E-04 -9.05536051019E-04 -9.16926283049E-04 -9.28459786204E-04 -9.40138362601E-04 -9.51963837022E-04 -9.63938057202E-04 -9.76062894117E-04 -9.88340242276E-04 -1.00077202002E-03 -1.01336016981E-03 -1.02610665856E-03 -1.03901347790E-03 -1.05208264452E-03 -1.06531620049E-03 -1.07871621354E-03 -1.09228477743E-03 -1.10602401223E-03 -1.11993606472E-03 -1.13402310863E-03 -1.14828734507E-03 -1.16273100282E-03 -1.17735633869E-03 -1.19216563789E-03 -1.20716121436E-03 -1.22234541115E-03 -1.23772060078E-03 -1.25328918561E-03 -1.26905359822E-03 -1.28501630180E-03 -1.30117979048E-03 -1.31754658981E-03 -1.33411925708E-03 -1.35090038174E-03 -1.36789258583E-03 -1.38509852436E-03 -1.40252088572E-03 -1.42016239214E-03 -1.43802580007E-03 -1.45611390064E-03 -1.47442952008E-03 -1.49297552017E-03 -1.51175479870E-03 -1.53077028987E-03 -1.55002496483E-03 -1.56952183206E-03 -1.58926393791E-03 -1.60925436702E-03 -1.62949624286E-03 -1.64999272816E-03 -1.67074702544E-03 -1.69176237748E-03 -1.71304206788E-03 -1.73458942151E-03 -1.75640780508E-03 -1.77850062763E-03 -1.80087134108E-03 -1.82352344078E-03 -1.84646046601E-03 -1.86968600061E-03 -1.89320367344E-03 -1.91701715906E-03 -1.94113017820E-03 -1.96554649841E-03 -1.99026993462E-03 -2.01530434973E-03 -2.04065365525E-03 -2.06632181186E-03 -2.09231283006E-03 -2.11863077080E-03 -2.14527974609E-03 -2.17226391968E-03 -2.19958750765E-03 -2.22725477915E-03 -2.25527005698E-03 -2.28363771833E-03 -2.31236219545E-03 -2.34144797630E-03 -2.37089960532E-03 -2.40072168408E-03 -2.43091887203E-03 -2.46149588722E-03 -2.49245750703E-03 -2.52380856893E-03 -2.55555397123E-03 -2.58769867383E-03 -2.62024769903E-03 -2.65320613226E-03 -2.68657912294E-03 -2.72037188521E-03 -2.75458969882E-03 -2.78923790990E-03 -2.82432193181E-03 -2.85984724600E-03 -2.89581940284E-03 -2.93224402252E-03 -2.96912679587E-03 -3.00647348533E-03 -3.04428992578E-03 -3.08258202547E-03 -3.12135576698E-03 -3.16061720808E-03 -3.20037248275E-03 -3.24062780210E-03 -3.28138945533E-03 -3.32266381075E-03 -3.36445731672E-03 -3.40677650271E-03 -3.44962798030E-03 -3.49301844418E-03 -3.53695467325E-03 -3.58144353163E-03 -3.62649196978E-03 -3.67210702552E-03 -3.71829582518E-03 -3.76506558471E-03 -3.81242361078E-03 -3.86037730191E-03 -3.90893414969E-03 -3.95810173988E-03 -4.00788775361E-03 -4.05829996860E-03 -4.10934626036E-03 -4.16103460342E-03 -4.21337307256E-03 -4.26636984410E-03 -4.32003319714E-03 -4.37437151487E-03 -4.42939328588E-03 -4.48510710549E-03 -4.54152167705E-03 -4.59864581336E-03 -4.65648843799E-03 -4.71505858670E-03 -4.77436540882E-03 -4.83441816873E-03 -4.89522624725E-03 -4.95679914313E-03 -5.01914647451E-03 -5.08227798045E-03 -5.14620352243E-03 -5.21093308586E-03 -5.27647678170E-03 -5.34284484797E-03 -5.41004765140E-03 -5.47809568898E-03 -5.54699958967E-03 -5.61677011601E-03 -5.68741816578E-03 -5.75895477377E-03 -5.83139111339E-03 -5.90473849854E-03 -5.97900838524E-03 -6.05421237351E-03 -6.13036220914E-03 -6.20746978551E-03 -6.28554714545E-03 -6.36460648312E-03 -6.44466014591E-03 -6.52572063633E-03 -6.60780061402E-03 -6.69091289762E-03 -6.77507046689E-03 -6.86028646459E-03 -6.94657419866E-03 -7.03394714417E-03 -7.12241894550E-03 -7.21200341843E-03 -7.30271455225E-03 -7.39456651203E-03 -7.48757364070E-03 -7.58175046139E-03 -7.67711167961E-03 -7.77367218555E-03 -7.87144705644E-03 -7.97045155881E-03 -8.07070115094E-03 -8.17221148519E-03 -8.27499841049E-03 -8.37907797475E-03 -8.48446642739E-03 -8.59118022181E-03 -8.69923601801E-03 -8.80865068511E-03 -8.91944130399E-03 -9.03162516996E-03 -9.14521979540E-03 -9.26024291248E-03 -9.37671247594E-03 -9.49464666584E-03 -9.61406389038E-03 -9.73498278875E-03 -9.85742223403E-03 -9.98140133606E-03 -1.01069394445E-02 -1.02340561516E-02 -1.03627712956E-02 -1.04931049635E-02 -1.06250774940E-02 -1.07587094813E-02 -1.08940217776E-02 -1.10310354966E-02 -1.11697720168E-02 -1.13102529847E-02 -1.14525003182E-02 -1.15965362099E-02 -1.17423831307E-02 -1.18900638329E-02 -1.20396013543E-02 -1.21910190210E-02 -1.23443404516E-02 -1.24995895607E-02 -1.26567905621E-02 -1.28159679734E-02 -1.29771466189E-02 -1.31403516340E-02 -1.33056084687E-02 -1.34729428918E-02 -1.36423809945E-02 -1.38139491948E-02 -1.39876742413E-02 -1.41635832173E-02 -1.43417035451E-02 -1.45220629898E-02 -1.47046896641E-02 -1.48896120324E-02 -1.50768589147E-02 -1.52664594918E-02 -1.54584433090E-02 -1.56528402812E-02 -1.58496806968E-02 -1.60489952232E-02 -1.62508149105E-02 -1.64551711970E-02 -1.66620959135E-02 -1.68716212883E-02 -1.70837799522E-02 -1.72986049432E-02 -1.75161297117E-02 -1.77363881254E-02 -1.79594144747E-02 -1.81852434776E-02 -1.84139102849E-02 -1.86454504860E-02 -1.88799001135E-02 -1.91172956493E-02 -1.93576740297E-02 -1.96010726512E-02 -1.98475293758E-02 -2.00970825371E-02 -2.03497709456E-02 -2.06056338947E-02 -2.08647111668E-02 -2.11270430388E-02 -2.13926702884E-02 -2.16616342003E-02 -2.19339765718E-02 -2.22097397196E-02 -2.24889664859E-02 -2.27717002443E-02 -2.30579849071E-02 -2.33478649309E-02 -2.36413853237E-02 -2.39385916515E-02 -2.42395300446E-02 -2.45442472049E-02 -2.48527904124E-02 -2.51652075322E-02 -2.54815470215E-02 -2.58018579370E-02 -2.61261899411E-02 -2.64545933104E-02 -2.67871189419E-02 -2.71238183611E-02 -2.74647437288E-02 -2.78099478493E-02 -2.81594841776E-02 -2.85134068269E-02 -2.88717705769E-02 -2.92346308811E-02 -2.96020438751E-02 -2.99740663843E-02 -3.03507559320E-02 -3.07321707477E-02 -3.11183697752E-02 -3.15094126809E-02 -3.19053598622E-02 -3.23062724560E-02 -3.27122123469E-02 -3.31232421763E-02 -3.35394253508E-02 -3.39608260511E-02 -3.43875092406E-02 -3.48195406744E-02 -3.52569869086E-02 -3.56999153090E-02 -3.61483940602E-02 -3.66024921752E-02 -3.70622795045E-02 -3.75278267452E-02 -3.79992054510E-02 -3.84764880412E-02 -3.89597478104E-02 -3.94490589386E-02 -3.99444965001E-02 -4.04461364741E-02 -4.09540557541E-02 -4.14683321580E-02 -4.19890444381E-02 -4.25162722909E-02 -4.30500963676E-02 -4.35905982842E-02 -4.41378606315E-02 -4.46919669854E-02 -4.52530019178E-02 -4.58210510062E-02 -4.63962008448E-02 -4.69785390546E-02 -4.75681542943E-02 -4.81651362705E-02 -4.87695757487E-02 -4.93815645636E-02 -5.00011956300E-02 -5.06285629538E-02 -5.12637616421E-02 -5.19068879146E-02 -5.25580391141E-02 -5.32173137173E-02 -5.38848113458E-02 -5.45606327768E-02 -5.52448799539E-02 -5.59376559980E-02 -5.66390652181E-02 -5.73492131221E-02 -5.80682064276E-02 -5.87961530726E-02 -5.95331622263E-02 -6.02793442997E-02 -6.10348109563E-02 -6.17996751227E-02 -6.25740509988E-02 -6.33580540689E-02 -6.41518011113E-02 -6.49554102092E-02 -6.57690007606E-02 -6.65926934882E-02 -6.74266104498E-02 -6.82708750479E-02 -6.91256120391E-02 -6.99909475441E-02 -7.08670090569E-02 -7.17539254539E-02 -7.26518270032E-02 -7.35608453729E-02 -7.44811136403E-02 -7.54127662997E-02 -7.63559392711E-02 -7.73107699074E-02 -7.82773970026E-02 -7.92559607986E-02 -8.02466029924E-02 -8.12494667428E-02 -8.22646966763E-02 -8.32924388934E-02 -8.43328409740E-02 -8.53860519824E-02 -8.64522224718E-02 -8.75315044888E-02 -8.86240515770E-02 -8.97300187798E-02 -9.08495626437E-02 -9.19828412195E-02 -9.31300140645E-02 -9.42912422429E-02 -9.54666883261E-02 -9.66565163920E-02 -9.78608920239E-02 -9.90799823082E-02 -1.00313955832E-01 -1.01562982678E-01 -1.02827234423E-01 -1.04106884129E-01 -1.05402106338E-01 -1.06713077064E-01 -1.08039973787E-01 -1.09382975441E-01 -1.10742262401E-01 -1.12118016477E-01 -1.13510420894E-01 -1.14919660284E-01 -1.16345920664E-01 -1.17789389422E-01 -1.19250255297E-01 -1.20728708359E-01 -1.22224939988E-01 -1.23739142847E-01 -1.25271510858E-01 -1.26822239177E-01 -1.28391524161E-01 -1.29979563338E-01 -1.31586555373E-01 -1.33212700036E-01 -1.34858198158E-01 -1.36523251596E-01 -1.38208063186E-01 -1.39912836704E-01 -1.41637776810E-01 -1.43383089005E-01 -1.45148979572E-01 -1.46935655524E-01 -1.48743324540E-01 -1.50572194906E-01 -1.52422475448E-01 -1.54294375461E-01 -1.56188104638E-01 -1.58103872991E-01 -1.60041890774E-01 -1.62002368394E-01 -1.63985516324E-01 -1.65991545013E-01 -1.68020664781E-01 -1.70073085725E-01 -1.72149017606E-01 -1.74248669742E-01 -1.76372250884E-01 -1.78519969100E-01 -1.80692031646E-01 -1.82888644827E-01 -1.85110013863E-01 -1.87356342743E-01 -1.89627834067E-01 -1.91924688893E-01 -1.94247106571E-01 -1.96595284567E-01 -1.98969418285E-01 -2.01369700881E-01 -2.03796323065E-01 -2.06249472898E-01 -2.08729335585E-01 -2.11236093248E-01 -2.13769924701E-01 -2.16331005213E-01 -2.18919506257E-01 -2.21535595254E-01 -2.24179435307E-01 -2.26851184922E-01 -2.29550997720E-01 -2.32279022136E-01 -2.35035401110E-01 -2.37820271766E-01 -2.40633765073E-01 -2.43476005502E-01 -2.46347110664E-01 -2.49247190938E-01 -2.52176349086E-01 -2.55134679849E-01 -2.58122269536E-01 -2.61139195593E-01 -2.64185526159E-01 -2.67261319607E-01 -2.70366624065E-01 -2.73501476927E-01 -2.76665904343E-01 -2.79859920693E-01 -2.83083528043E-01 -2.86336715583E-01 -2.89619459044E-01 -2.92931720106E-01 -2.96273445771E-01 -2.99644567729E-01 -3.03045001698E-01 -3.06474646742E-01 -3.09933384576E-01 -3.13421078836E-01 -3.16937574341E-01 -3.20482696321E-01 -3.24056249629E-01 -3.27658017928E-01 -3.31287762851E-01 -3.34945223143E-01 -3.38630113772E-01 -3.42342125017E-01 -3.46080921534E-01 -3.49846141391E-01 -3.53637395079E-01 -3.57454264496E-01 -3.61296301908E-01 -3.65163028873E-01 -3.69053935150E-01 -3.72968477569E-01 -3.76906078879E-01 -3.80866126566E-01 -3.84847971644E-01 -3.88850927414E-01 -3.92874268194E-01 -3.96917228026E-01 -4.00978999344E-01 -4.05058731622E-01 -4.09155529986E-01 -4.13268453798E-01 -4.17396515214E-01 -4.21538677707E-01 -4.25693854567E-01 -4.29860907362E-01 -4.34038644383E-01 -4.38225819047E-01 -4.42421128282E-01 -4.46623210873E-01 -4.50830645791E-01 -4.55041950483E-01 -4.59255579145E-01 -4.63469920956E-01 -4.67683298296E-01 -4.71893964929E-01 -4.76100104170E-01 -4.80299827011E-01 -4.84491170238E-01 -4.88672094515E-01 -4.92840482443E-01 -4.96994136599E-01 -5.01130777549E-01 -5.05248041844E-01 -5.09343479984E-01 -5.13414554370E-01 -5.17458637229E-01 -5.21473008519E-01 -5.25454853819E-01 -5.29401262189E-01 -5.33309224019E-01 -5.37175628851E-01 -5.40997263194E-01 -5.44770808300E-01 -5.48492837941E-01 -5.52159816155E-01 -5.55768094971E-01 -5.59313912125E-01 -5.62793388745E-01 -5.66202527021E-01 -5.69537207855E-01 -5.72793188485E-01 -5.75966100094E-01 -5.79051445391E-01 -5.82044596173E-01 -5.84940790863E-01 -5.87735132021E-01 -5.90422583842E-01 -5.92997969613E-01 -5.95455969167E-01 -5.97791116299E-01 -5.99997796170E-01 -6.02070242687E-01 -6.04002535865E-01 -6.05788599186E-01 -6.07422196932E-01 -6.08896931534E-01 -6.10206240909E-01 -6.11343395823E-01 -6.12301497270E-01 -6.13073473893E-01 -6.13652079459E-01 -6.14029890408E-01 -6.14199303494E-01 -6.14152533554E-01 -6.13881611426E-01 -6.13378382064E-01 -6.12634502872E-01 -6.11641442329E-01 -6.10390478940E-01 -6.08874668564E-01 -6.07094882888E-01 -6.05054141432E-01 -6.02755676820E-01 -6.00202934092E-01 -5.97399569773E-01 -5.94349450689E-01 -5.91056652495E-01 -5.87525457894E-01 -5.83760354555E-01 -5.79766032678E-01 -5.75547382152E-01 -5.71109489329E-01 -5.66457633332E-01 -5.61597281909E-01 -5.56534086818E-01 -5.51273878687E-01 -5.45822661321E-01 -5.40186605440E-01 -5.34372041819E-01 -5.28385453817E-01 -5.22233469274E-01 -5.15922851777E-01 -5.09460491284E-01 -5.02853394115E-01 -4.96108672332E-01 -4.89233532519E-01 -4.82235264006E-01 -4.75121226580E-01 -4.67898837595E-01 -4.60576444264E-01 -4.53160664243E-01 -4.45659008241E-01 -4.38078990522E-01 -4.30428114991E-01 -4.22713861323E-01 -4.14943671230E-01 -4.07124934980E-01 -3.99264978254E-01 -3.91371049450E-01 -3.83450307518E-01 -3.75509810412E-01 -3.67556504239E-01 -3.59597213161E-01 -3.51638630121E-01 -3.43687308419E-01 -3.35749654178E-01 -3.27831919719E-01 -3.19940197845E-01 -3.12080417023E-01 -3.04258337456E-01 -2.96479547993E-01 -2.88749463846E-01 -2.81073325050E-01 -2.73456195612E-01 -2.65902963253E-01 -2.58418339692E-01 -2.51006861356E-01 -2.43672890449E-01 -2.36420616275E-01 -2.29254056722E-01 -2.22177059832E-01 -2.15193305347E-01 -2.08306306174E-01 -2.01519409677E-01 -1.94835798746E-01 -1.88258492589E-01 -1.81790347201E-01 -1.75434055491E-01 -1.69192147059E-01 -1.63066987612E-01 -1.57060778057E-01 -1.51175553283E-01 -1.45413180690E-01 -1.39775358512E-01 -1.34263614005E-01 -1.28879301569E-01 -1.23623600877E-01 -1.18497515107E-01 -1.13501869341E-01 -1.08637309221E-01 -1.03904299940E-01 -9.93031256269E-02 -9.48338892076E-02 -9.04965127813E-02 -8.62907385662E-02 -8.22161304500E-02 -7.82720761689E-02 -7.44577901316E-02 -7.07723168918E-02 -6.72145352651E-02 -6.37831630752E-02 -6.04767625063E-02 -5.72937460307E-02 -5.42323828755E-02 -5.12908059832E-02 -4.84670194208E-02 -4.57589061840E-02 -4.31642363439E-02 -4.06806754789E-02 -3.83057933367E-02 -3.60370726685E-02 -3.38719181787E-02 -3.18076655367E-02 -2.98415903958E-02 -2.79709173689E-02 -2.61928289131E-02 -2.45044740763E-02 -2.29029770651E-02 -2.13854455943E-02 -1.99489789822E-02 -1.85906759609E-02 -1.73076421727E-02 -1.60969973279E-02 -1.49558820040E-02 -1.38814640671E-02 -1.28709447032E-02 -1.19215640470E-02 -1.10306064011E-02 -1.01954050411E-02 -9.41334660395E-03 -8.68187506046E-03 -7.99849527519E-03 -7.36077615877E-03 -6.76635342009E-03 -6.21293192775E-03 -5.69828769139E-03 -5.22026947565E-03 -4.77680006025E-03 -4.36587716114E-03 -3.98557402858E-03 -3.63403973875E-03 -3.30949919613E-03 -3.01025286442E-03 -2.73467624416E-03 -2.48121911523E-03 -2.24840456272E-03 -2.03482780438E-03 -1.83915483802E-03 -1.66012092652E-03 -1.49652893831E-03 -1.34724756021E-03 -1.21120939937E-03 -1.08740899033E-03 -9.74900722515E-04 -8.72796702916E-04 -7.80264567786E-04 -6.96525255747E-04 -6.20850758078E-04 -5.52565001091E-04 -4.91066545287E-04 -4.35765420357E-04 -3.86111302498E-04 -3.41594909188E-04 -3.01745690662E-04 -2.66129585548E-04 -2.34346844378E-04 -2.06029924180E-04 -1.80841456894E-04 -1.58472293807E-04 -1.38639627717E-04 -1.21085194072E-04 -1.05573551881E-04 -9.18904447344E-05 -7.98412419036E-05 -6.92494590863E-05 -5.99553580172E-05 -5.18146238418E-05 -4.46971188552E-05 -3.84857109375E-05 -3.30751747847E-05 -2.83711638215E-05 -2.42892505040E-05 -2.07540325661E-05 -1.76983026402E-05 -1.50622785831E-05 -1.27928917577E-05 -1.08431304787E-05 -9.17143579374E-06 -7.74114676897E-06 -6.51999245275E-06 -5.47962772348E-06 -4.59521026873E-06 -3.84501600099E-06 -3.21009028520E-06 -2.67393243373E-06 -2.22221101404E-06 -1.84250761121E-06 -1.52408679094E-06 -1.25769011594E-06 -1.03535217981E-06 -8.50236735337E-07 -6.96491107987E-07 -5.69117199081E-07 -4.63857495541E-07 -3.77094613858E-07 -3.05763013810E-07 -2.47271622145E-07 -1.99436207348E-07 -1.60420443232E-07 -1.28684691197E-07 -1.02941618298E-07 -8.21178505275E-08 -6.53209379610E-08 -5.18109805266E-08 -4.09763301582E-08 -3.23128471309E-08 -2.54062455001E-08 -1.99171149885E-08 -1.55682545647E-08 -1.21339965715E-08 -9.43123983997E-09 -7.31194605453E-09 -5.65688601287E-09 -4.37045168777E-09 -3.37637651018E-09 -2.59975451443E-09 -1.99504444272E-09 -1.52578443887E-09 -1.16288170935E-09 -8.83203526721E-10 -6.68420642780E-10 -5.04061334364E-10 -3.78740555983E-10 -2.83534111133E-10 -2.11472462287E-10 -1.57132858233E-10 -1.16311940508E-10 -8.57639663769E-11 -6.29923166402E-11 -4.60840993948E-11 -3.35794669016E-11 -2.43687780639E-11 -1.76120046186E-11 -1.26758313273E-11 -9.08477118489E-12 -6.48333388866E-12 -4.60687383213E-12 -3.25922372907E-12 -2.29560967260E-12 -1.60965842653E-12 -1.12356112782E-12 -7.80660416396E-13 -5.39889591823E-13 -3.71620484227E-13 -2.54577759087E-13 -1.73556668579E-13 -1.17743180136E-13 -7.94835168341E-14 -5.33873242613E-14 -3.56772664153E-14 -2.37197195010E-14 -1.56878693057E-14 -1.03211082706E-14 -6.75410528495E-15 -4.39601575648E-15 -2.84558137617E-15 -1.83177950785E-15 -1.17256110717E-15 -7.46323608289E-16 -4.72299187835E-16 -2.97148860325E-16 -1.85851436173E-16 -1.15547482279E-16 -7.14044189907E-17 -4.38557602157E-17 -2.67689690960E-17 -1.62370143274E-17 -9.78624030820E-18 -5.86038259851E-18 -3.48659286001E-18 -2.06065843993E-18 -1.20977383111E-18 -7.05438555609E-19 -4.08539455499E-19 -2.34958486146E-19 -1.34181492586E-19 -7.60851699838E-20 -4.28325965033E-20 -2.39373663184E-20 -1.32790191810E-20 -7.31143945912E-21 -3.99526984296E-21 -2.16647784106E-21 -1.16569608078E-21 -6.22295828350E-22 -3.29568651296E-22 -1.73136563797E-22 -9.02155667435E-23 -4.66207545240E-23 -2.38911481142E-23 -1.21397252920E-23 -6.11573201726E-24 -3.05427989989E-24 2.66576884431E-10 2.73325310356E-10 2.80244573494E-10 2.87338998610E-10 2.94613019952E-10 3.02071184019E-10 3.09718152405E-10 3.17558704716E-10 3.25597741551E-10 3.33840287570E-10 3.42291494632E-10 3.50956645017E-10 3.59841154725E-10 3.68950576865E-10 3.78290605120E-10 3.87867077314E-10 3.97685979051E-10 4.07753447466E-10 4.18075775053E-10 4.28659413603E-10 4.39510978234E-10 4.50637251527E-10 4.62045187765E-10 4.73741917278E-10 4.85734750904E-10 4.98031184553E-10 5.10638903896E-10 5.23565789167E-10 5.36819920091E-10 5.50409580930E-10 5.64343265664E-10 5.78629683298E-10 5.93277763309E-10 6.08296661223E-10 6.23695764339E-10 6.39484697597E-10 6.55673329594E-10 6.72271778751E-10 6.89290419639E-10 7.06739889460E-10 7.24631094702E-10 7.42975217948E-10 7.61783724872E-10 7.81068371402E-10 8.00841211070E-10 8.21114602541E-10 8.41901217345E-10 8.63214047792E-10 8.85066415093E-10 9.07471977687E-10 9.30444739780E-10 9.53999060093E-10 9.78149660843E-10 1.00291163694E-09 1.02830046542E-09 1.05433201513E-09 1.08102255663E-09 1.10838877238E-09 1.13644776716E-09 1.16521707873E-09 1.19471468886E-09 1.22495903452E-09 1.25596901940E-09 1.28776402574E-09 1.32036392646E-09 1.35378909756E-09 1.38806043085E-09 1.42319934703E-09 1.45922780906E-09 1.49616833590E-09 1.53404401657E-09 1.57287852461E-09 1.61269613285E-09 1.65352172857E-09 1.69538082911E-09 1.73829959775E-09 1.78230486013E-09 1.82742412095E-09 1.87368558122E-09 1.92111815585E-09 1.96975149173E-09 2.01961598629E-09 2.07074280644E-09 2.12316390810E-09 2.17691205616E-09 2.23202084496E-09 2.28852471928E-09 2.34645899585E-09 2.40585988550E-09 2.46676451569E-09 2.52921095379E-09 2.59323823085E-09 2.65888636598E-09 2.72619639141E-09 2.79521037806E-09 2.86597146193E-09 2.93852387096E-09 3.01291295278E-09 3.08918520295E-09 3.16738829411E-09 3.24757110571E-09 3.32978375460E-09 3.41407762635E-09 3.50050540735E-09 3.58912111775E-09 3.67998014525E-09 3.77313927965E-09 3.86865674844E-09 3.96659225312E-09 4.06700700653E-09 4.16996377114E-09 4.27552689824E-09 4.38376236821E-09 4.49473783169E-09 4.60852265193E-09 4.72518794812E-09 4.84480663981E-09 4.96745349255E-09 5.09320516458E-09 5.22214025473E-09 5.35433935159E-09 5.48988508385E-09 5.62886217196E-09 5.77135748105E-09 5.91746007530E-09 6.06726127350E-09 6.22085470623E-09 6.37833637432E-09 6.53980470886E-09 6.70536063276E-09 6.87510762377E-09 7.04915177920E-09 7.22760188225E-09 7.41056946994E-09 7.59816890288E-09 7.79051743672E-09 7.98773529547E-09 8.18994574658E-09 8.39727517806E-09 8.60985317744E-09 8.82781261276E-09 9.05128971563E-09 9.28042416638E-09 9.51535918136E-09 9.75624160243E-09 1.00032219888E-08 1.02564547111E-08 1.05160980478E-08 1.07823142842E-08 1.10552698141E-08 1.13351352432E-08 1.16220854964E-08 1.19162999267E-08 1.22179624275E-08 1.25272615473E-08 1.28443906079E-08 1.31695478250E-08 1.35029364323E-08 1.38447648080E-08 1.41952466058E-08 1.45546008878E-08 1.49230522619E-08 1.53008310216E-08 1.56881732908E-08 1.60853211704E-08 1.64925228903E-08 1.69100329646E-08 1.73381123500E-08 1.77770286096E-08 1.82270560798E-08 1.86884760419E-08 1.91615768977E-08 1.96466543502E-08 2.01440115878E-08 2.06539594743E-08 2.11768167431E-08 2.17129101961E-08 2.22625749085E-08 2.28261544377E-08 2.34040010385E-08 2.39964758828E-08 2.46039492857E-08 2.52268009368E-08 2.58654201377E-08 2.65202060450E-08 2.71915679199E-08 2.78799253844E-08 2.85857086828E-08 2.93093589514E-08 3.00513284937E-08 3.08120810632E-08 3.15920921535E-08 3.23918492952E-08 3.32118523608E-08 3.40526138771E-08 3.49146593453E-08 3.57985275699E-08 3.67047709952E-08 3.76339560505E-08 3.85866635043E-08 3.95634888274E-08 4.05650425646E-08 4.15919507168E-08 4.26448551323E-08 4.37244139074E-08 4.48313017982E-08 4.59662106425E-08 4.71298497914E-08 4.83229465537E-08 4.95462466498E-08 5.08005146778E-08 5.20865345917E-08 5.34051101912E-08 5.47570656243E-08 5.61432459020E-08 5.75645174267E-08 5.90217685339E-08 6.05159100471E-08 6.20478758470E-08 6.36186234558E-08 6.52291346349E-08 6.68804159991E-08 6.85734996455E-08 7.03094437985E-08 7.20893334712E-08 7.39142811441E-08 7.57854274594E-08 7.77039419349E-08 7.96710236944E-08 8.16879022173E-08 8.37558381070E-08 8.58761238789E-08 8.80500847682E-08 9.02790795582E-08 9.25645014293E-08 9.49077788301E-08 9.73103763702E-08 9.97737957351E-08 1.02299576625E-07 1.04889297719E-07 1.07544577656E-07 1.10267076055E-07 1.13058494544E-07 1.15920577831E-07 1.18855114786E-07 1.21863939568E-07 1.24948932764E-07 1.28112022570E-07 1.31355185992E-07 1.34680450084E-07 1.38089893213E-07 1.41585646359E-07 1.45169894450E-07 1.48844877720E-07 1.52612893116E-07 1.56476295732E-07 1.60437500279E-07 1.64498982594E-07 1.68663281191E-07 1.72932998844E-07 1.77310804215E-07 1.81799433522E-07 1.86401692249E-07 1.91120456897E-07 1.95958676788E-07 2.00919375901E-07 2.06005654767E-07 2.11220692403E-07 2.16567748303E-07 2.22050164472E-07 2.27671367515E-07 2.33434870780E-07 2.39344276551E-07 2.45403278302E-07 2.51615663007E-07 2.57985313500E-07 2.64516210908E-07 2.71212437137E-07 2.78078177422E-07 2.85117722943E-07 2.92335473509E-07 2.99735940304E-07 3.07323748711E-07 3.15103641195E-07 3.23080480278E-07 3.31259251565E-07 3.39645066871E-07 3.48243167409E-07 3.57058927067E-07 3.66097855767E-07 3.75365602907E-07 3.84867960894E-07 3.94610868762E-07 4.04600415881E-07 4.14842845770E-07 4.25344559989E-07 4.36112122148E-07 4.47152262003E-07 4.58471879663E-07 4.70078049905E-07 4.81978026590E-07 4.94179247200E-07 5.06689337483E-07 5.19516116222E-07 5.32667600117E-07 5.46152008794E-07 5.59977769947E-07 5.74153524599E-07 5.88688132502E-07 6.03590677678E-07 6.18870474089E-07 6.34537071461E-07 6.50600261250E-07 6.67070082761E-07 6.83956829420E-07 7.01271055208E-07 7.19023581252E-07 7.37225502591E-07 7.55888195104E-07 7.75023322622E-07 7.94642844213E-07 8.14759021656E-07 8.35384427103E-07 8.56531950932E-07 8.78214809801E-07 9.00446554910E-07 9.23241080461E-07 9.46612632346E-07 9.70575817042E-07 9.95145610739E-07 1.02033736870E-06 1.04616683484E-06 1.07265015160E-06 1.09980386997E-06 1.12764495988E-06 1.15619082080E-06 1.18545929258E-06 1.21546866661E-06 1.24623769726E-06 1.27778561358E-06 1.31013213130E-06 1.34329746519E-06 1.37730234163E-06 1.41216801162E-06 1.44791626400E-06 1.48456943909E-06 1.52215044264E-06 1.56068276014E-06 1.60019047145E-06 1.64069826594E-06 1.68223145778E-06 1.72481600187E-06 1.76847850997E-06 1.81324626736E-06 1.85914724988E-06 1.90621014137E-06 1.95446435162E-06 2.00394003475E-06 2.05466810797E-06 2.10668027099E-06 2.16000902571E-06 2.21468769660E-06 2.27075045146E-06 2.32823232280E-06 2.38716922966E-06 2.44759800009E-06 2.50955639411E-06 2.57308312731E-06 2.63821789501E-06 2.70500139705E-06 2.77347536320E-06 2.84368257922E-06 2.91566691354E-06 2.98947334470E-06 3.06514798939E-06 3.14273813123E-06 3.22229225034E-06 3.30386005353E-06 3.38749250541E-06 3.47324186010E-06 3.56116169395E-06 3.65130693890E-06 3.74373391682E-06 3.83850037460E-06 3.93566552027E-06 4.03529005985E-06 4.13743623532E-06 4.24216786343E-06 4.34955037549E-06 4.45965085824E-06 4.57253809568E-06 4.68828261200E-06 4.80695671558E-06 4.92863454409E-06 5.05339211075E-06 5.18130735173E-06 5.31246017478E-06 5.44693250908E-06 5.58480835632E-06 5.72617384310E-06 5.87111727466E-06 6.01972918991E-06 6.17210241795E-06 6.32833213589E-06 6.48851592823E-06 6.65275384773E-06 6.82114847772E-06 6.99380499612E-06 7.17083124099E-06 7.35233777772E-06 7.53843796799E-06 7.72924804042E-06 7.92488716298E-06 8.12547751731E-06 8.33114437480E-06 8.54201617470E-06 8.75822460415E-06 8.97990468018E-06 9.20719483389E-06 9.44023699666E-06 9.67917668856E-06 9.92416310900E-06 1.01753492297E-05 1.04328918898E-05 1.06969518939E-05 1.09676941118E-05 1.12452875813E-05 1.15299056134E-05 1.18217259006E-05 1.21209306269E-05 1.24277065816E-05 1.27422452754E-05 1.30647430599E-05 1.33954012493E-05 1.37344262462E-05 1.40820296696E-05 1.44384284870E-05 1.48038451490E-05 1.51785077278E-05 1.55626500595E-05 1.59565118889E-05 1.63603390190E-05 1.67743834639E-05 1.71989036052E-05 1.76341643534E-05 1.80804373117E-05 1.85380009454E-05 1.90071407553E-05 1.94881494546E-05 1.99813271511E-05 2.04869815339E-05 2.10054280645E-05 2.15369901732E-05 2.20819994595E-05 2.26407958987E-05 2.32137280530E-05 2.38011532883E-05 2.44034379959E-05 2.50209578206E-05 2.56540978938E-05 2.63032530731E-05 2.69688281873E-05 2.76512382882E-05 2.83509089085E-05 2.90682763262E-05 2.98037878355E-05 3.05579020250E-05 3.13310890624E-05 3.21238309870E-05 3.29366220092E-05 3.37699688173E-05 3.46243908929E-05 3.55004208335E-05 3.63986046840E-05 3.73195022756E-05 3.82636875745E-05 3.92317490385E-05 4.02242899833E-05 4.12419289577E-05 4.22853001286E-05 4.33550536757E-05 4.44518561961E-05 4.55763911201E-05 4.67293591361E-05 4.79114786278E-05 4.91234861220E-05 5.03661367479E-05 5.16402047080E-05 5.29464837618E-05 5.42857877213E-05 5.56589509596E-05 5.70668289325E-05 5.85102987141E-05 5.99902595452E-05 6.15076333976E-05 6.30633655516E-05 6.46584251893E-05 6.62938060038E-05 6.79705268233E-05 6.96896322531E-05 7.14521933333E-05 7.32593082145E-05 7.51121028517E-05 7.70117317162E-05 7.89593785268E-05 8.09562570009E-05 8.30036116256E-05 8.51027184493E-05 8.72548858963E-05 8.94614556016E-05 9.17238032704E-05 9.40433395608E-05 9.64215109901E-05 9.88598008683E-05 1.01359730256E-04 1.03922858950E-04 1.06550786497E-04 1.09245153238E-04 1.12007641377E-04 1.14839976091E-04 1.17743926659E-04 1.20721307639E-04 1.23773980066E-04 1.26903852695E-04 1.30112883281E-04 1.33403079892E-04 1.36776502268E-04 1.40235263221E-04 1.43781530077E-04 1.47417526166E-04 1.51145532357E-04 1.54967888647E-04 1.58886995794E-04 1.62905317016E-04 1.67025379734E-04 1.71249777383E-04 1.75581171279E-04 1.80022292558E-04 1.84575944174E-04 1.89245002979E-04 1.94032421863E-04 1.98941231988E-04 2.03974545096E-04 2.09135555906E-04 2.14427544596E-04 2.19853879395E-04 2.25418019263E-04 2.31123516684E-04 2.36974020567E-04 2.42973279274E-04 2.49125143766E-04 2.55433570884E-04 2.61902626770E-04 2.68536490442E-04 2.75339457515E-04 2.82315944099E-04 2.89470490870E-04 2.96807767331E-04 3.04332576265E-04 3.12049858409E-04 3.19964697348E-04 3.28082324646E-04 3.36408125237E-04 3.44947643083E-04 3.53706587120E-04 3.62690837512E-04 3.71906452236E-04 3.81359674008E-04 3.91056937591E-04 4.01004877491E-04 4.11210336088E-04 4.21680372211E-04 4.32422270202E-04 4.43443549497E-04 4.54751974763E-04 4.66355566622E-04 4.78262613012E-04 4.90481681228E-04 5.03021630686E-04 5.15891626461E-04 5.29101153669E-04 5.42660032725E-04 5.56578435574E-04 5.70866902930E-04 5.85536362629E-04 6.00598149146E-04 6.16064024383E-04 6.31946199811E-04 6.48257360064E-04 6.65010688091E-04 6.82219891987E-04 6.99899233612E-04 7.18063559147E-04 7.36728331711E-04 7.55909666210E-04 7.75624366563E-04 7.95889965492E-04 8.16724767073E-04 8.38147892229E-04 8.60179327405E-04 8.82839976652E-04 9.06151717373E-04 9.30137460003E-04 9.54821211917E-04 9.80228145877E-04 1.00638467336E-03 1.03331852313E-03 1.06105882544E-03 1.08963620226E-03 1.11908286408E-03 1.14943271358E-03 1.18072145693E-03 1.21298672305E-03 1.24626819161E-03 1.28060773027E-03 1.31604954195E-03 1.35264032287E-03 1.39042943206E-03 1.42946907331E-03 1.46981449043E-03 1.51152417677E-03 1.55466010016E-03 1.59928794429E-03 1.64547736785E-03 1.69330228262E-03 1.74284115206E-03 1.79417731176E-03 1.84739931353E-03 1.90260129463E-03 1.95988337424E-03 2.01935207899E-03 2.08112079974E-03 2.14531028195E-03 2.21204915192E-03 2.28147448175E-03 2.35373239564E-03 2.42897872061E-03 2.50737968491E-03 2.58911266743E-03 2.67436700196E-03 2.76334484011E-03 2.85626207724E-03 2.95334934577E-03 3.05485308080E-03 3.16103666324E-03 3.27218164581E-03 3.38858906798E-03 3.51058086599E-03 3.63850138484E-03 3.77271899927E-03 3.91362785153E-03 4.06164971399E-03 4.21723598540E-03 4.38086983014E-03 4.55306847019E-03 4.73438564059E-03 4.92541421957E-03 5.12678904525E-03 5.33918993180E-03 5.56334489855E-03 5.80003362651E-03 6.05009115762E-03 6.31441185307E-03 6.59395362799E-03 6.88974248091E-03 7.20287733748E-03 7.53453522912E-03 7.88597682861E-03 8.25855236577E-03 8.65370794782E-03 9.07299231058E-03 9.51806402776E-03 9.99069920775E-03 1.04927997083E-02 1.10264019017E-02 1.15936860244E-02 1.21969861475E-02 1.28388008052E-02 1.35218043214E-02 1.42488588774E-02 1.50230273619E-02 1.58475870524E-02 1.67260441739E-02 1.76621493865E-02 1.86599142539E-02 1.97236287488E-02 2.08578798505E-02 2.20675712966E-02 2.33579445481E-02 2.47346010343E-02 2.62035257417E-02 2.77711122171E-02 2.94441890538E-02 3.12300479341E-02 3.31364733024E-02 3.51717737441E-02 3.73448151476E-02 3.96650557289E-02 4.21425829950E-02 4.47881527298E-02 4.76132300781E-02 5.06300328098E-02 5.38515768411E-02 5.72917240899E-02 6.09652327397E-02 6.48878099833E-02 6.90761673131E-02 7.35480784218E-02 7.83224397679E-02 8.34193338566E-02 8.88600952755E-02 9.46673795157E-02 1.00865234596E-01 1.07479175499E-01 1.14536261395E-01 1.22065175649E-01 1.30096308535E-01 1.38661842608E-01 1.47795840617E-01 1.57534335856E-01 1.67915424776E-01 1.78979361673E-01 1.90768655226E-01 2.03328166600E-01 2.16705208805E-01 2.30949646928E-01 2.46113998816E-01 2.62253535717E-01 2.79426382328E-01 2.97693615611E-01 3.17119361694E-01 3.37770890041E-01 3.59718704042E-01 3.83036627036E-01 4.07801882697E-01 4.34095168619E-01 4.62000721781E-01 4.91606374517E-01 5.23003599432E-01 5.56287541608E-01 5.91557036315E-01 6.28914610272E-01 6.68466464406E-01 7.10322435866E-01 7.54595936939E-01 8.01403868364E-01 8.50866504369E-01 9.03107346651E-01 9.58252944369E-01 1.01643267708E+00 1.07777849745E+00 1.14242463046E+00 1.21050722571E+00 1.28216395947E+00 1.35753358286E+00 1.43675541281E+00 1.51996876220E+00 1.60731230588E+00 1.69892337916E+00 1.79493720564E+00 1.89548605141E+00 2.00069830303E+00 2.11069746679E+00 2.22560108748E+00 2.34551958509E+00 2.47055500885E+00 2.60079970818E+00 2.73633492150E+00 2.87722928423E+00 3.02353725879E+00 3.17529749006E+00 3.33253109170E+00 3.49523986926E+00 3.66340448845E+00 3.83698259785E+00 4.01590691749E+00 4.20008330660E+00 4.38938882573E+00 4.58366981040E+00 4.78273997606E+00 4.98637857577E+00 5.19432863465E+00 5.40629528732E+00 5.62194424656E+00 5.84090043387E+00 6.06274680413E+00 6.28702339894E+00 6.51322666413E+00 6.74080906877E+00 6.96917906331E+00 7.19770141540E+00 7.42569796134E+00 7.65244881066E+00 7.87719403965E+00 8.09913590761E+00 8.31744162626E+00 8.53124670897E+00 8.73965892096E+00 8.94176284618E+00 9.13662507865E+00 9.32330003834E+00 9.50083640181E+00 9.66828412762E+00 9.82470204478E+00 9.96916596025E+00 1.01007772283E+01 1.02186717103E+01 1.03220290405E+01 1.04100820967E+01 1.04821265643E+01 1.05375304647E+01 1.05757435090E+01 1.05963061269E+01 1.05988580098E+01 1.05831460019E+01 1.05490311681E+01 1.04964948678E+01 1.04256436654E+01 1.03367129182E+01 1.02300688909E+01 1.01062092661E+01 9.96576193919E+00 9.80948201335E+00 9.63824694226E+00 9.45304980133E+00 9.25499070891E+00 9.04526645978E+00 8.82515847651E+00 8.59601922843E+00 8.35925731087E+00 8.11632141784E+00 7.86868347782E+00 7.61782125335E+00 7.36520072832E+00 7.11225862187E+00 6.86038537270E+00 6.61090893148E+00 6.36507968248E+00 6.12405678713E+00 5.88889620420E+00 5.66054059435E+00 5.43981126238E+00 5.22740223296E+00 5.02387649541E+00 4.82966439654E+00 4.64506410833E+00 4.47024405477E+00 4.30524715097E+00 4.14999669022E+00 4.00430371176E+00 3.86787569306E+00 3.74032643340E+00 3.62118702627E+00 3.50991785188E+00 3.40592155119E+00 3.30855696125E+00 3.21715399264E+00 3.13102940534E+00 3.04950338643E+00 2.97191674926E+00 2.89764846198E+00 2.82613308038E+00 2.75687751727E+00 2.68947644353E+00 2.62362550332E+00 2.55914613422E+00 2.49599587751E+00 2.43415650017E+00 2.37360979403E+00 2.31433788075E+00 2.25632344050E+00 2.19954985138E+00 2.14400122864E+00 2.08966235443E+00 2.03651849185E+00 1.98455508006E+00 1.93375731083E+00 1.88410959115E+00 1.83559490110E+00 1.78819406105E+00 1.74188492805E+00 1.69664154705E+00 1.65243328880E+00 1.60922675928E+00 1.56699551742E+00 1.52571541620E+00 1.48536245234E+00 1.44591283402E+00 1.40734304468E+00 1.36962990267E+00 1.33275061690E+00 1.29668283832E+00 1.26140470719E+00 1.22689489612E+00 1.19313264893E+00 1.16009781522E+00 1.12777088083E+00 1.09613299404E+00 1.06516598771E+00 1.03485239738E+00 1.00517547542E+00 9.76119201263E-01 9.47668287893E-01 9.19808184709E-01 8.92525076815E-01 8.65805880922E-01 8.39638237983E-01 8.14010502689E-01 7.88911729977E-01 7.64331658668E-01 7.40260692499E-01 7.16691018041E-01 6.93613117582E-01 6.71019252478E-01 6.48902249148E-01 6.27255468984E-01 6.06072776625E-01 5.85348506696E-01 5.65077429210E-01 5.45254713854E-01 5.25875893342E-01 5.06936826074E-01 4.88433658301E-01 4.70362786043E-01 4.52720816978E-01 4.35504532561E-01 4.18710850612E-01 4.02336788607E-01 3.86379427948E-01 3.70835879421E-01 3.55703249970E-01 3.40979426904E-01 3.26660584613E-01 3.12743637444E-01 2.99225382386E-01 2.86102476216E-01 2.73371415168E-01 2.61028517188E-01 2.49069906874E-01 2.37491503100E-01 2.26289009347E-01 2.15457906696E-01 2.04993449424E-01 1.94890663114E-01 1.85144345165E-01 1.75749067560E-01 1.66699181730E-01 1.57988825350E-01 1.49611930862E-01 1.41562235543E-01 1.33833292911E-01 1.26418485259E-01 1.19311037117E-01 1.12504029456E-01 1.05990414422E-01 9.97630304361E-02 9.38146174956E-02 8.81378325066E-02 8.27252645287E-02 7.75694498012E-02 7.26628864517E-02 6.79980488008E-02 6.35674011955E-02 5.93634113218E-02 5.53785629597E-02 5.16053681636E-02 4.80363788603E-02 4.46641978703E-02 4.14814893676E-02 3.84809888001E-02 3.56555122987E-02 3.29979656042E-02 3.05013525462E-02 2.81587831012E-02 2.59634810597E-02 2.39087913244E-02 2.19881868567E-02 2.01952752830E-02 1.85238051652E-02 1.69676719322E-02 1.55209234632E-02 1.41777653083E-02 1.29325655251E-02 1.17798591076E-02 1.07143519808E-02 9.73092453133E-03 8.82463464788E-03 7.99072024232E-03 7.22460122897E-03 6.52188094058E-03 5.87834696528E-03 5.28997139423E-03 4.75291047519E-03 4.26350367393E-03 3.81827215154E-03 3.41391667219E-03 3.04731496171E-03 2.71551854341E-03 2.41574908223E-03 2.14539427333E-03 1.90200331451E-03 1.68328200540E-03 1.48708751826E-03 1.31142288706E-03 1.15443126203E-03 1.01438997703E-03 8.89704476640E-04 7.78902148285E-04 6.80626103395E-04 5.93628949037E-04 5.16766589091E-04 4.48992091023E-04 3.89349651206E-04 3.36968688433E-04 2.91058091847E-04 2.50900646088E-04 2.15847653046E-04 1.85313766233E-04 1.58772050583E-04 1.35749277390E-04 1.15821461181E-04 9.86096426336E-05 8.37759191510E-05 7.10197224531E-05 6.00743405348E-05 5.07036795565E-05 4.26992596966E-05 3.58774376832E-05 3.00768476390E-05 2.51560509934E-05 2.09913855414E-05 1.74750032344E-05 1.45130859598E-05 1.20242283953E-05 9.93797698205E-06 8.19351414361E-06 6.73847705957E-06 5.52790057409E-06 4.52327416378E-06 3.69170329217E-06 3.00516592685E-06 2.43985547916E-06 1.97560193326E-06 1.59536345275E-06 1.28478128018E-06 1.03179127001E-06 8.26285913463E-07 6.59821218067E-07 5.25363290798E-07 4.17069947076E-07 3.30106858058E-07 2.60511295318E-07 2.04981222232E-07 1.60805460217E-07 1.25768007319E-07 9.80630784982E-08 7.62236764723E-08 5.90617280947E-08 4.56180741123E-08 3.51208256424E-08 2.69508011171E-08 2.06129348191E-08 1.57127044982E-08 1.19367628495E-08 9.03707770169E-09 6.81799033539E-09 5.12569206390E-09 3.83969758275E-09 2.86596102515E-09 2.13133844456E-09 1.57914975636E-09 1.16563507715E-09 8.57135866425E-10 6.27861164131E-10 4.58124301644E-10 3.32956423867E-10 2.41020601426E-10 1.73764760957E-10 1.24763581006E-10 8.92092897869E-11 6.35193050112E-11 4.50351712841E-11 3.17925303323E-11 2.23461184213E-11 1.56372054339E-11 1.08936237766E-11 7.55471018046E-12 5.21520565465E-12 3.58351610780E-12 2.45080068301E-12 1.66818575430E-12 1.13004791637E-12 7.61808113877E-13 5.11062668902E-13 3.41170498177E-13 2.26639275588E-13 1.49822544140E-13 9.85276959904E-14 6.44540663259E-14 4.19396242493E-14 2.71426412335E-14 1.74704461099E-14 1.11828138173E-14 7.11810549023E-15 4.50521397415E-15 2.83515309180E-15 1.77387067661E-15 1.10339074123E-15 6.82310591036E-16 4.19443923666E-16 2.56339702747E-16 1.55757653064E-16 9.41169786716E-17 5.65790046732E-17 3.38650161429E-17 2.02100185034E-17 1.20553748230E-17 7.14349189952E-18 4.20455343071E-18 2.45794334511E-18 1.42701738930E-18 8.22724311223E-19 4.70986929373E-19 2.67703561518E-19 1.51060542086E-19 8.46174353931E-20 4.70479217888E-20 2.59628359434E-20 1.42184984317E-20 7.72686928792E-21 4.16638504936E-21 2.22883799154E-21 1.18281704348E-21 6.22633940904E-22 3.25072158677E-22 1.68311422210E-22 8.64149203659E-23 4.39905240993E-23 2.22012867021E-23 1.11070448242E-23 5.50772748593E-24 2.70677073413E-24 1.31821597369E-24 6.36103933987E-25 3.04106516971E-25 1.44021919723E-25 6.75592991186E-26 3.13865187110E-26 1.44394209609E-26 6.57735838202E-27 2.96615703936E-27 1.32410616647E-27 5.85035131239E-28 2.55808689829E-28 1.10679166875E-28 4.73779238503E-29 2.00626047031E-29 8.40312085055E-30 3.48077553337E-30 1.42571559562E-30 5.77364204143E-31 2.31134463370E-31 9.14564832316E-32 3.57631266974E-32 1.38185701523E-32 5.27511601384E-33 1.98918887344E-33 7.40846289840E-34 2.72471086951E-34 9.89428126838E-35 3.54690877277E-35 1.25501025167E-35 4.38232599398E-36 1.50990633703E-36 5.13227729322E-37 1.72072288654E-37 5.68954428089E-38 1.85495687621E-38 5.96215211487E-39 1.88889287349E-39 5.89749809075E-40 1.81428147855E-40 5.49840936446E-41 1.64128186710E-41 4.82458644356E-42 1.39631663869E-42 3.97804470459E-43 1.11540166165E-43 3.07738385438E-44 8.35280974397E-45 2.22994787659E-45 5.85433518869E-46 1.51108750691E-46 3.83387598689E-47 9.55936428673E-48 3D 3 2 1.50 4.00 3D 3 2 2.50 5.00 4S 1 0 0.50 1.00 0 0.50 0 0.50 1 0.50 1 0.50 1 1.50 1 1.50 2 1.50 2 1.50 2 2.50 2 2.50 -7.00000000 100.00000000 28.00000000 0.01250000 espresso-5.0.2/pseudo/O_US.van0000644000700200004540000073630512053145632015211 0ustar marsamoscm 7 3 2 3 9 2002 oxygen 8.000000000 6.000000000 5.000000000 2 737 -3.15835075432E+01 200 2.000000000 -1.757644159 210 4.000000000 -0.664248934 3 0 0.700000000 2 2 0.00000 3 8 10.00000 7.00000000000E-01 7.00000000000E-01 7.00000000000E-01 0 1.20000000000E+00 1.20000000000E+00 4 519 0 -1.75764529391E+00 0.00000000000E+00 1.88218263298E-05 3.79655050950E-05 5.74376636052E-05 7.72408401877E-05 9.73826948028E-05 1.17871399910E-04 1.38706412890E-04 1.59900174232E-04 1.81452999228E-04 2.03390164875E-04 2.25661438685E-04 2.48378117906E-04 2.71408496979E-04 2.94904406597E-04 3.18730844697E-04 3.43037403341E-04 3.67706087116E-04 3.92799833210E-04 4.18369010284E-04 4.44313374063E-04 4.70760291247E-04 4.97589632922E-04 5.24945134266E-04 5.52750320332E-04 5.80982059271E-04 6.09786301756E-04 6.38987203506E-04 6.68744121964E-04 6.99025336006E-04 7.29757250544E-04 7.61075675417E-04 7.92892221780E-04 8.25304885540E-04 8.58183881788E-04 8.91705977621E-04 9.25775236013E-04 9.60395021200E-04 9.95667923341E-04 1.03148660284E-03 1.06794303822E-03 1.10502217129E-03 1.14274987178E-03 1.18108073140E-03 1.22009946584E-03 1.25979001667E-03 1.30012594020E-03 1.34119663504E-03 1.38292189359E-03 1.42540372405E-03 1.46857416870E-03 1.51249672746E-03 1.55719893899E-03 1.60261572034E-03 1.64884419722E-03 1.69585189496E-03 1.74365594902E-03 1.79226884391E-03 1.84176623041E-03 1.89203336768E-03 1.94321988289E-03 1.99525081127E-03 2.04818355642E-03 2.10201372011E-03 2.15675014912E-03 2.21247083096E-03 2.26910254488E-03 2.32669485097E-03 2.38530201598E-03 2.44490713497E-03 2.50550366615E-03 2.56715961688E-03 2.62986784366E-03 2.69363243606E-03 2.75852153210E-03 2.82447328399E-03 2.89159244411E-03 2.95983363141E-03 3.02925832039E-03 3.09984363400E-03 3.17167307244E-03 3.24470633719E-03 3.31898701699E-03 3.39454916361E-03 3.47138054848E-03 3.54956408499E-03 3.62904289762E-03 3.70991430082E-03 3.79213494740E-03 3.87579606126E-03 3.96085658521E-03 4.04738428096E-03 4.13539981630E-03 4.22491321485E-03 4.31593394278E-03 4.40854971699E-03 4.50272821958E-03 4.59851249076E-03 4.69594084928E-03 4.79503725854E-03 4.89582463078E-03 4.99832637066E-03 5.10258600408E-03 5.20864707077E-03 5.31649025990E-03 5.42619456042E-03 5.53776652004E-03 5.65124707998E-03 5.76668438470E-03 5.88405973982E-03 6.00347316661E-03 6.12491411764E-03 6.24843060276E-03 6.37406153691E-03 6.50184489152E-03 6.63179558564E-03 6.76399194442E-03 6.89842914678E-03 7.03516529870E-03 7.17424245624E-03 7.31571641265E-03 7.45956039826E-03 7.60592370900E-03 7.75474660334E-03 7.90610637202E-03 8.06010064405E-03 8.21667839163E-03 8.37596297246E-03 8.53795117910E-03 8.70273092941E-03 8.87029236902E-03 9.04076373668E-03 9.21410993249E-03 9.39043879319E-03 9.56976719150E-03 9.75217972427E-03 9.93769871995E-03 1.01263899879E-02 1.03183072940E-02 1.05135073071E-02 1.07120396164E-02 1.09139659738E-02 1.11193515908E-02 1.13282399646E-02 1.15406967383E-02 1.17567888031E-02 1.19765859369E-02 1.22001190673E-02 1.24274872221E-02 1.26587318074E-02 1.28939453707E-02 1.31331620232E-02 1.33764743575E-02 1.36239511688E-02 1.38756453130E-02 1.41316592016E-02 1.43920333464E-02 1.46568609474E-02 1.49262206386E-02 1.52001857175E-02 1.54788245912E-02 1.57622374737E-02 1.60504813184E-02 1.63436640267E-02 1.66418532179E-02 1.69451383044E-02 1.72536109765E-02 1.75673484883E-02 1.78864566526E-02 1.82110202380E-02 1.85411200738E-02 1.88768778970E-02 1.92183603738E-02 1.95656856568E-02 1.99189507890E-02 2.02782507911E-02 2.06436880296E-02 2.10153806078E-02 2.13934156628E-02 2.17779221634E-02 2.21689931327E-02 2.25667505096E-02 2.29713083827E-02 2.33827815962E-02 2.38012822457E-02 2.42269390385E-02 2.46598736172E-02 2.51002023951E-02 2.55480632689E-02 2.60035726695E-02 2.64668684567E-02 2.69380908502E-02 2.74173547682E-02 2.79048153781E-02 2.84006094086E-02 2.89048773808E-02 2.94177530325E-02 2.99394124888E-02 3.04699722869E-02 3.10096032480E-02 3.15584643892E-02 3.21166940003E-02 3.26844723141E-02 3.32619511440E-02 3.38493006078E-02 3.44466829634E-02 3.50542813819E-02 3.56722615329E-02 3.63007978109E-02 3.69400810534E-02 3.75902880319E-02 3.82516031602E-02 3.89242227842E-02 3.96083358752E-02 4.03041400878E-02 4.10118324431E-02 4.17316199268E-02 4.24637057668E-02 4.32083041503E-02 4.39656223189E-02 4.47358829742E-02 4.55193056179E-02 4.63161127227E-02 4.71265393710E-02 4.79508070070E-02 4.87891626296E-02 4.96418394635E-02 5.05090884310E-02 5.13911538088E-02 5.22882881679E-02 5.32007487204E-02 5.41288036262E-02 5.50727053750E-02 5.60327412785E-02 5.70091738650E-02 5.80022878602E-02 5.90123634992E-02 6.00397042201E-02 6.10845800948E-02 6.21473159350E-02 6.32281975200E-02 6.43275460679E-02 6.54456705632E-02 6.65828903134E-02 6.77395369199E-02 6.89159373783E-02 7.01124252496E-02 7.13293517802E-02 7.25670582972E-02 7.38258991034E-02 7.51062391910E-02 7.64084410419E-02 7.77328779242E-02 7.90799290054E-02 8.04499794932E-02 8.18434205532E-02 8.32606507064E-02 8.47020772328E-02 8.61681073386E-02 8.76591645329E-02 8.91756735761E-02 9.07180640878E-02 9.22867821663E-02 9.38822719453E-02 9.55049892006E-02 9.71553980730E-02 9.88339700607E-02 1.00541181270E-01 1.02277518958E-01 1.04043482956E-01 1.05839568817E-01 1.07666295604E-01 1.09524177520E-01 1.11413748893E-01 1.13335543604E-01 1.15290110446E-01 1.17278005122E-01 1.19299794080E-01 1.21356048527E-01 1.23447356001E-01 1.25574311330E-01 1.27737515240E-01 1.29937582604E-01 1.32175140229E-01 1.34450819639E-01 1.36765264940E-01 1.39119136910E-01 1.41513097084E-01 1.43947824595E-01 1.46424008252E-01 1.48942348127E-01 1.51503556309E-01 1.54108354305E-01 1.56757477829E-01 1.59451675172E-01 1.62191703552E-01 1.64978336374E-01 1.67812356541E-01 1.70694560878E-01 1.73625760524E-01 1.76606776400E-01 1.79638447120E-01 1.82721618586E-01 1.85857158185E-01 1.89045940335E-01 1.92288856676E-01 1.95586811722E-01 1.98940727545E-01 2.02351534663E-01 2.05820185655E-01 2.09347640298E-01 2.12934882031E-01 2.16582901329E-01 2.20292708949E-01 2.24065330880E-01 2.27901807662E-01 2.31803195736E-01 2.35770570251E-01 2.39805016734E-01 2.43907646100E-01 2.48079577180E-01 2.52321951016E-01 2.56635923452E-01 2.61022668044E-01 2.65483374380E-01 2.70019251617E-01 2.74631524388E-01 2.79321435638E-01 2.84090245371E-01 2.88939232646E-01 2.93869691920E-01 2.98882939128E-01 3.03980304252E-01 3.09163137804E-01 3.14432806491E-01 3.19790697090E-01 3.25238212570E-01 3.30776773292E-01 3.36407820212E-01 3.42132807924E-01 3.47953213278E-01 3.53870524950E-01 3.59886255414E-01 3.66001927632E-01 3.72219085780E-01 3.78539288674E-01 3.84964111222E-01 3.91495145275E-01 3.98133994611E-01 4.04882282523E-01 4.11741642087E-01 4.18713722541E-01 4.25800184402E-01 4.33002700859E-01 4.40322956722E-01 4.47762645317E-01 4.55323471008E-01 4.63007144674E-01 4.70815384254E-01 4.78749913605E-01 4.86812459096E-01 4.95004750911E-01 5.03328516655E-01 5.11785485851E-01 5.20377381136E-01 5.29105920266E-01 5.37972812106E-01 5.46979753440E-01 5.56128428036E-01 5.65420498506E-01 5.74857610498E-01 5.84441380681E-01 5.94173398240E-01 6.04055218597E-01 6.14088356624E-01 6.24274286152E-01 6.34614428034E-01 6.45110149573E-01 6.55762754616E-01 6.66573477492E-01 6.77543474880E-01 6.88673817219E-01 6.99965481299E-01 7.11419337035E-01 7.23036141430E-01 7.34816522971E-01 7.46760972175E-01 7.58869826910E-01 7.71143258794E-01 7.83581257939E-01 7.96183615115E-01 8.08949905876E-01 8.21879469591E-01 8.34971389765E-01 8.48224471129E-01 8.61637216129E-01 8.75207798581E-01 8.88934036707E-01 9.02813361800E-01 9.16842787875E-01 9.31018875606E-01 9.45337696512E-01 9.59794791494E-01 9.74385129637E-01 9.89103061406E-01 1.00394226949E+00 1.01889571591E+00 1.03395558527E+00 1.04911322495E+00 1.06435907859E+00 1.07968261784E+00 1.09507226801E+00 1.11051532810E+00 1.12599788662E+00 1.14150473151E+00 1.15701925360E+00 1.17252334479E+00 1.18799728962E+00 1.20341964964E+00 1.21876714202E+00 1.23401451110E+00 1.24913439122E+00 1.26409716595E+00 1.27887081618E+00 1.29342076451E+00 1.30770971122E+00 1.32169746529E+00 1.33534076772E+00 1.34859311217E+00 1.36140456054E+00 1.37372155572E+00 1.38548673427E+00 1.39663873978E+00 1.40711204013E+00 1.41683675157E+00 1.42573847382E+00 1.43373813940E+00 1.44075188583E+00 1.44669095120E+00 1.45146160830E+00 1.45496513920E+00 1.45709786432E+00 1.45775123670E+00 1.45681201555E+00 1.45416253350E+00 1.44968107696E+00 1.44324239736E+00 1.43471837865E+00 1.42397888385E+00 1.41089280974E+00 1.39532938022E+00 1.37715971351E+00 1.35625869608E+00 1.33250720811E+00 1.30579473599E+00 1.27602242061E+00 1.24310658185E+00 1.20698276741E+00 1.16761036795E+00 1.12497784198E+00 1.07910858713E+00 1.03006749212E+00 9.77968190874E-01 9.22981037342E-01 8.65341798839E-01 8.05361061288E-01 7.43434319784E-01 6.80052718437E-01 6.15814396383E-01 5.51436398642E-01 4.87767128985E-01 4.25799368929E-01 3.66683975776E-01 3.11744523423E-01 2.62493399434E-01 2.20650249242E-01 1.88164242649E-01 1.67245150032E-01 1.49722461024E-01 1.33583583339E-01 1.18209948265E-01 1.02896563568E-01 8.69403884432E-02 6.97821693153E-02 5.12618091845E-02 3.20120183110E-02 1.40284315729E-02 2.00317257640E-03 -1.71702638303E-04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.37093114382E+00 6.37001146400E+00 -2.81423698376E-01 0.00000000000E+00 -3.73129097873E-10 -1.51813790066E-09 -3.47461464800E-09 -6.28373433413E-09 -9.98831720896E-09 -1.46328893611E-08 -2.02637454555E-08 -2.69290137016E-08 -3.46787231289E-08 -4.35648732527E-08 -5.36415062113E-08 -6.49647814624E-08 -7.75930531285E-08 -9.15869500825E-08 -1.07009458871E-07 -1.23926009571E-07 -1.42404564689E-07 -1.62515711203E-07 -1.84332755855E-07 -2.07931823816E-07 -2.33391960837E-07 -2.60795239002E-07 -2.90226866217E-07 -3.21775299562E-07 -3.55532362640E-07 -3.91593367066E-07 -4.30057238227E-07 -4.71026645486E-07 -5.14608136965E-07 -5.60912279065E-07 -6.10053800909E-07 -6.62151743855E-07 -7.17329616274E-07 -7.75715553762E-07 -8.37442484986E-07 -9.02648303353E-07 -9.71476044714E-07 -1.04407407130E-06 -1.12059626210E-06 -1.20120220996E-06 -1.28605742554E-06 -1.37533354848E-06 -1.46920856591E-06 -1.56786703865E-06 -1.67150033535E-06 -1.78030687476E-06 -1.89449237661E-06 -2.01427012112E-06 -2.13986121770E-06 -2.27149488303E-06 -2.40940872879E-06 -2.55384905961E-06 -2.70507118125E-06 -2.86333971968E-06 -3.02892895129E-06 -3.20212314458E-06 -3.38321691384E-06 -3.57251558514E-06 -3.77033557517E-06 -3.97700478319E-06 -4.19286299674E-06 -4.41826231150E-06 -4.65356756576E-06 -4.89915679007E-06 -5.15542167254E-06 -5.42276804041E-06 -5.70161635835E-06 -5.99240224414E-06 -6.29557700236E-06 -6.61160817659E-06 -6.94098012094E-06 -7.28419459138E-06 -7.64177135772E-06 -8.01424883690E-06 -8.40218474827E-06 -8.80615679173E-06 -9.22676334942E-06 -9.66462421181E-06 -1.01203813291E-05 -1.05946995888E-05 -1.10882676201E-05 -1.16017986264E-05 -1.21360312469E-05 -1.26917304477E-05 -1.32696884447E-05 -1.38707256572E-05 -1.44956916960E-05 -1.51454663854E-05 -1.58209608200E-05 -1.65231184590E-05 -1.72529162584E-05 -1.80113658423E-05 -1.87995147146E-05 -1.96184475135E-05 -2.04692873089E-05 -2.13531969447E-05 -2.22713804285E-05 -2.32250843688E-05 -2.42155994620E-05 -2.52442620316E-05 -2.63124556199E-05 -2.74216126360E-05 -2.85732160595E-05 -2.97688012049E-05 -3.10099575457E-05 -3.22983306024E-05 -3.36356238963E-05 -3.50236009701E-05 -3.64640874789E-05 -3.79589733542E-05 -3.95102150419E-05 -4.11198378182E-05 -4.27899381863E-05 -4.45226863548E-05 -4.63203288032E-05 -4.81851909356E-05 -5.01196798262E-05 -5.21262870598E-05 -5.42075916711E-05 -5.63662631852E-05 -5.86050647637E-05 -6.09268564589E-05 -6.33345985816E-05 -6.58313551849E-05 -6.84202976682E-05 -7.11047085063E-05 -7.38879851074E-05 -7.67736438042E-05 -7.97653239833E-05 -8.28667923572E-05 -8.60819473840E-05 -8.94148238400E-05 -9.28695975498E-05 -9.64505902807E-05 -1.00162274806E-04 -1.04009280141E-04 -1.07996396965E-04 -1.12128583225E-04 -1.16410969937E-04 -1.20848867185E-04 -1.25447770327E-04 -1.30213366421E-04 -1.35151540862E-04 -1.40268384260E-04 -1.45570199545E-04 -1.51063509327E-04 -1.56755063502E-04 -1.62651847122E-04 -1.68761088540E-04 -1.75090267837E-04 -1.81647125529E-04 -1.88439671588E-04 -1.95476194766E-04 -2.02765272242E-04 -2.10315779601E-04 -2.18136901162E-04 -2.26238140652E-04 -2.34629332259E-04 -2.43320652056E-04 -2.52322629826E-04 -2.61646161292E-04 -2.71302520763E-04 -2.81303374227E-04 -2.91660792881E-04 -3.02387267137E-04 -3.13495721108E-04 -3.24999527586E-04 -3.36912523547E-04 -3.49249026177E-04 -3.62023849460E-04 -3.75252321326E-04 -3.88950301398E-04 -4.03134199346E-04 -4.17820993867E-04 -4.33028252323E-04 -4.48774151051E-04 -4.65077496374E-04 -4.81957746325E-04 -4.99435033129E-04 -5.17530186443E-04 -5.36264757409E-04 -5.55661043516E-04 -5.75742114325E-04 -5.96531838076E-04 -6.18054909201E-04 -6.40336876783E-04 -6.63404173992E-04 -6.87284148529E-04 -7.12005094106E-04 -7.37596283010E-04 -7.64087999779E-04 -7.91511576034E-04 -8.19899426489E-04 -8.49285086209E-04 -8.79703249129E-04 -9.11189807893E-04 -9.43781895051E-04 -9.77517925664E-04 -1.01243764136E-03 -1.04858215590E-03 -1.08599400228E-03 -1.12471718144E-03 -1.16479721268E-03 -1.20628118570E-03 -1.24921781449E-03 -1.29365749302E-03 -1.33965235280E-03 -1.38725632246E-03 -1.43652518928E-03 -1.48751666285E-03 -1.54029044086E-03 -1.59490827718E-03 -1.65143405212E-03 -1.70993384520E-03 -1.77047601033E-03 -1.83313125347E-03 -1.89797271302E-03 -1.96507604282E-03 -2.03451949801E-03 -2.10638402376E-03 -2.18075334698E-03 -2.25771407109E-03 -2.33735577403E-03 -2.41977110953E-03 -2.50505591170E-03 -2.59330930324E-03 -2.68463380718E-03 -2.77913546239E-03 -2.87692394293E-03 -2.97811268136E-03 -3.08281899616E-03 -3.19116422341E-03 -3.30327385279E-03 -3.41927766808E-03 -3.53930989239E-03 -3.66350933806E-03 -3.79201956160E-03 -3.92498902366E-03 -4.06257125431E-03 -4.20492502369E-03 -4.35221451826E-03 -4.50460952280E-03 -4.66228560836E-03 -4.82542432631E-03 -4.99421340864E-03 -5.16884697481E-03 -5.34952574523E-03 -5.53645726165E-03 -5.72985611457E-03 -5.92994417801E-03 -6.13695085167E-03 -6.35111331094E-03 -6.57267676469E-03 -6.80189472132E-03 -7.03902926317E-03 -7.28435132953E-03 -7.53814100848E-03 -7.80068783790E-03 -8.07229111578E-03 -8.35326022008E-03 -8.64391493850E-03 -8.94458580831E-03 -9.25561446654E-03 -9.57735401076E-03 -9.91016937082E-03 -1.02544376916E-02 -1.06105487273E-02 -1.09789052472E-02 -1.13599234539E-02 -1.17540334128E-02 -1.21616794950E-02 -1.25833208324E-02 -1.30194317860E-02 -1.34705024275E-02 -1.39370390340E-02 -1.44195645969E-02 -1.49186193448E-02 -1.54347612800E-02 -1.59685667302E-02 -1.65206309145E-02 -1.70915685240E-02 -1.76820143179E-02 -1.82926237346E-02 -1.89240735175E-02 -1.95770623577E-02 -2.02523115504E-02 -2.09505656686E-02 -2.16725932512E-02 -2.24191875072E-02 -2.31911670361E-02 -2.39893765625E-02 -2.48146876873E-02 -2.56679996537E-02 -2.65502401281E-02 -2.74623659956E-02 -2.84053641704E-02 -2.93802524195E-02 -3.03880802002E-02 -3.14299295102E-02 -3.25069157496E-02 -3.36201885948E-02 -3.47709328822E-02 -3.59603695013E-02 -3.71897562963E-02 -3.84603889740E-02 -3.97736020176E-02 -4.11307696038E-02 -4.25333065218E-02 -4.39826690922E-02 -4.54803560835E-02 -4.70279096236E-02 -4.86269161034E-02 -5.02790070698E-02 -5.19858601051E-02 -5.37491996880E-02 -5.55707980335E-02 -5.74524759065E-02 -5.93961034047E-02 -6.14036007060E-02 -6.34769387737E-02 -6.56181400143E-02 -6.78292788816E-02 -7.01124824181E-02 -7.24699307285E-02 -7.49038573738E-02 -7.74165496803E-02 -8.00103489502E-02 -8.26876505656E-02 -8.54509039735E-02 -8.83026125389E-02 -9.12453332537E-02 -9.42816762863E-02 -9.74143043568E-02 -1.00645931921E-01 -1.03979324144E-01 -1.07417295652E-01 -1.10962709026E-01 -1.14618473034E-01 -1.18387540567E-01 -1.22272906255E-01 -1.26277603743E-01 -1.30404702590E-01 -1.34657304768E-01 -1.39038540726E-01 -1.43551564987E-01 -1.48199551244E-01 -1.52985686906E-01 -1.57913167078E-01 -1.62985187906E-01 -1.68204939263E-01 -1.73575596724E-01 -1.79100312777E-01 -1.84782207230E-01 -1.90624356754E-01 -1.96629783510E-01 -2.02801442809E-01 -2.09142209745E-01 -2.15654864738E-01 -2.22342077938E-01 -2.29206392422E-01 -2.36250206123E-01 -2.43475752440E-01 -2.50885079462E-01 -2.58480027742E-01 -2.66262206589E-01 -2.74232968792E-01 -2.82393383761E-01 -2.90744209014E-01 -2.99285859995E-01 -3.08018378180E-01 -3.16941397461E-01 -3.26054108795E-01 -3.35355223135E-01 -3.44842932647E-01 -3.54514870274E-01 -3.64368067696E-01 -3.74398911778E-01 -3.84603099607E-01 -3.94975592280E-01 -4.05510567594E-01 -4.16201371866E-01 -4.27040471138E-01 -4.38019402038E-01 -4.49128722670E-01 -4.60357963899E-01 -4.71695581498E-01 -4.83128909632E-01 -4.94644116256E-01 -5.06226161032E-01 -5.17858756432E-01 -5.29524332758E-01 -5.41204007855E-01 -5.52877562335E-01 -5.64523421175E-01 -5.76118642572E-01 -5.87638914951E-01 -5.99058563014E-01 -6.10350563678E-01 -6.21486572706E-01 -6.32436962722E-01 -6.43170873168E-01 -6.53656272590E-01 -6.63860033392E-01 -6.73748018901E-01 -6.83285182228E-01 -6.92435675979E-01 -7.01162971343E-01 -7.09429984540E-01 -7.17199207899E-01 -7.24432842154E-01 -7.31092925743E-01 -7.37141456062E-01 -7.42540496816E-01 -7.47252264782E-01 -7.51239188594E-01 -7.54463931577E-01 -7.56889370320E-01 -7.58478520722E-01 -7.59194403714E-01 -7.58999844011E-01 -7.57857197238E-01 -7.55728003753E-01 -7.52572571798E-01 -7.48349498386E-01 -7.43015143903E-01 -7.36523085956E-01 -7.28823589728E-01 -7.19863146091E-01 -7.09584144950E-01 -6.97924769478E-01 -6.84819216447E-01 -6.70198367834E-01 -6.53991057655E-01 -6.36126093269E-01 -6.16535198990E-01 -5.95157047307E-01 -5.71942523755E-01 -5.46861328282E-01 -5.19909940163E-01 -4.91120855294E-01 -4.60572833230E-01 -4.28401656414E-01 -3.94810597930E-01 -3.60079415171E-01 -3.24570245525E-01 -2.88728308078E-01 -2.53074879454E-01 -2.18189735750E-01 -1.84680347829E-01 -1.53135930401E-01 -1.24066524428E-01 -9.78314847631E-02 -7.45693351999E-02 -5.41538609669E-02 -3.62223667529E-02 -2.03551231036E-02 -6.38380720246E-03 5.70705345492E-03 1.59437787217E-02 2.43697115215E-02 3.10451417491E-02 3.60471027754E-02 3.94690343423E-02 4.14203003858E-02 4.20255376917E-02 4.14237993904E-02 3.97674375506E-02 3.72206511264E-02 3.39576017192E-02 3.01599815679E-02 2.60139012208E-02 2.17059628205E-02 1.74183991444E-02 1.33232064636E-02 9.57528739354E-03 6.30476863361E-03 3.60887727559E-03 1.54406211022E-03 1.19428108262E-04 -7.07011338955E-04 -1.02734265848E-03 -9.75851860679E-04 -7.12252172520E-04 -3.95221172163E-04 -1.48317705473E-04 -2.62515986934E-05 -3.58101321517E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -1.33016518940E+01 6.59065692713E+01 1.01249551289E+02 -2.34357956744E+03 1.11381377834E+04 -2.58527841297E+04 2.98820075593E+04 -1.37203195181E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -9.64748461868E-02 2.43523082944E+00 -1.75201418198E-01 0.00000000000E+00 -2.69995676405E-10 -1.09852239271E-09 -2.51422614211E-09 -4.54690109128E-09 -7.22753191166E-09 -1.05883376173E-08 -1.46628169618E-08 -1.94857954489E-08 -2.50934740136E-08 -3.15234794317E-08 -3.88149165182E-08 -4.70084221782E-08 -5.61462213731E-08 -6.62721850710E-08 -7.74318902497E-08 -8.96726820233E-08 -1.03043737969E-07 -1.17596134726E-07 -1.33382916954E-07 -1.50459168727E-07 -1.68882087442E-07 -1.88711060350E-07 -2.10007743781E-07 -2.32836145163E-07 -2.57262707936E-07 -2.83356399460E-07 -3.11188802023E-07 -3.40834207046E-07 -3.72369712616E-07 -4.05875324446E-07 -4.41434060391E-07 -4.79132058635E-07 -5.19058689688E-07 -5.61306672319E-07 -6.05972193560E-07 -6.53155032925E-07 -7.02958690998E-07 -7.55490522524E-07 -8.10861874183E-07 -8.69188227189E-07 -9.30589344892E-07 -9.95189425560E-07 -1.06311726051E-06 -1.13450639777E-06 -1.20949531153E-06 -1.28822757744E-06 -1.37085205409E-06 -1.45752307090E-06 -1.54840062246E-06 -1.64365056977E-06 -1.74344484850E-06 -1.84796168450E-06 -1.95738581686E-06 -2.07190872878E-06 -2.19172888651E-06 -2.31705198658E-06 -2.44809121177E-06 -2.58506749591E-06 -2.72820979798E-06 -2.87775538581E-06 -3.03395012957E-06 -3.19704880564E-06 -3.36731541095E-06 -3.54502348839E-06 -3.73045646348E-06 -3.92390799284E-06 -4.12568232475E-06 -4.33609467235E-06 -4.55547159976E-06 -4.78415142169E-06 -5.02248461699E-06 -5.27083425655E-06 -5.52957644614E-06 -5.79910078463E-06 -6.07981083822E-06 -6.37212463108E-06 -6.67647515312E-06 -6.99331088546E-06 -7.32309634405E-06 -7.66631264237E-06 -8.02345807351E-06 -8.39504871265E-06 -8.78161904035E-06 -9.18372258762E-06 -9.60193260329E-06 -1.00368427447E-05 -1.04890677921E-05 -1.09592443886E-05 -1.14480318045E-05 -1.19561127297E-05 -1.24841940923E-05 -1.30330079069E-05 -1.36033121506E-05 -1.41958916717E-05 -1.48115591275E-05 -1.54511559566E-05 -1.61155533840E-05 -1.68056534610E-05 -1.75223901416E-05 -1.82667303959E-05 -1.90396753623E-05 -1.98422615397E-05 -2.06755620207E-05 -2.15406877679E-05 -2.24387889343E-05 -2.33710562294E-05 -2.43387223328E-05 -2.53430633568E-05 -2.63854003593E-05 -2.74671009094E-05 -2.85895807078E-05 -2.97543052617E-05 -3.09627916198E-05 -3.22166101655E-05 -3.35173864737E-05 -3.48668032305E-05 -3.62666022209E-05 -3.77185863835E-05 -3.92246219380E-05 -4.07866405856E-05 -4.24066417849E-05 -4.40866951080E-05 -4.58289426767E-05 -4.76356016839E-05 -4.95089670020E-05 -5.14514138811E-05 -5.34654007412E-05 -5.55534720603E-05 -5.77182613627E-05 -5.99624943111E-05 -6.22889919041E-05 -6.47006737862E-05 -6.72005616706E-05 -6.97917828811E-05 -7.24775740164E-05 -7.52612847403E-05 -7.81463817040E-05 -8.11364526029E-05 -8.42352103739E-05 -8.74464975380E-05 -9.07742906923E-05 -9.42227051574E-05 -9.77959997855E-05 -1.01498581934E-04 -1.05335012611E-04 -1.09310011799E-04 -1.13428463962E-04 -1.17695423741E-04 -1.22116121849E-04 -1.26695971167E-04 -1.31440573052E-04 -1.36355723863E-04 -1.41447421706E-04 -1.46721873425E-04 -1.52185501815E-04 -1.57844953103E-04 -1.63707104677E-04 -1.69779073076E-04 -1.76068222271E-04 -1.82582172217E-04 -1.89328807705E-04 -1.96316287522E-04 -2.03553053922E-04 -2.11047842423E-04 -2.18809691946E-04 -2.26847955301E-04 -2.35172310028E-04 -2.43792769623E-04 -2.52719695139E-04 -2.61963807193E-04 -2.71536198385E-04 -2.81448346140E-04 -2.91712126000E-04 -3.02339825361E-04 -3.13344157698E-04 -3.24738277261E-04 -3.36535794295E-04 -3.48750790763E-04 -3.61397836628E-04 -3.74492006680E-04 -3.88048897951E-04 -4.02084647717E-04 -4.16615952132E-04 -4.31660085485E-04 -4.47234920132E-04 -4.63358947106E-04 -4.80051297426E-04 -4.97331764155E-04 -5.15220825190E-04 -5.33739666858E-04 -5.52910208296E-04 -5.72755126685E-04 -5.93297883337E-04 -6.14562750677E-04 -6.36574840149E-04 -6.59360131075E-04 -6.82945500502E-04 -7.07358754064E-04 -7.32628657906E-04 -7.58784971693E-04 -7.85858482741E-04 -8.13881041324E-04 -8.42885597172E-04 -8.72906237224E-04 -9.03978224657E-04 -9.36138039255E-04 -9.69423419138E-04 -1.00387340392E-03 -1.03952837935E-03 -1.07643012341E-03 -1.11462185406E-03 -1.15414827855E-03 -1.19505564441E-03 -1.23739179219E-03 -1.28120620997E-03 -1.32655008968E-03 -1.37347638544E-03 -1.42203987371E-03 -1.47229721561E-03 -1.52430702128E-03 -1.57812991638E-03 -1.63382861093E-03 -1.69146797035E-03 -1.75111508899E-03 -1.81283936603E-03 -1.87671258405E-03 -1.94280899009E-03 -2.01120537959E-03 -2.08198118295E-03 -2.15521855516E-03 -2.23100246831E-03 -2.30942080721E-03 -2.39056446822E-03 -2.47452746133E-03 -2.56140701565E-03 -2.65130368838E-03 -2.74432147743E-03 -2.84056793769E-03 -2.94015430121E-03 -3.04319560129E-03 -3.14981080066E-03 -3.26012292388E-03 -3.37425919407E-03 -3.49235117411E-03 -3.61453491245E-03 -3.74095109364E-03 -3.87174519380E-03 -4.00706764109E-03 -4.14707398135E-03 -4.29192504915E-03 -4.44178714427E-03 -4.59683221386E-03 -4.75723804044E-03 -4.92318843586E-03 -5.09487344149E-03 -5.27248953463E-03 -5.45623984155E-03 -5.64633435719E-03 -5.84299017168E-03 -6.04643170403E-03 -6.25689094299E-03 -6.47460769540E-03 -6.69982984220E-03 -6.93281360221E-03 -7.17382380404E-03 -7.42313416620E-03 -7.68102758561E-03 -7.94779643481E-03 -8.22374286805E-03 -8.50917913629E-03 -8.80442791165E-03 -9.10982262114E-03 -9.42570779013E-03 -9.75243939570E-03 -1.00903852300E-02 -1.04399252737E-02 -1.08014520803E-02 -1.11753711704E-02 -1.15621014376E-02 -1.19620755642E-02 -1.23757404490E-02 -1.28035576462E-02 -1.32460038148E-02 -1.37035711808E-02 -1.41767680096E-02 -1.46661190913E-02 -1.51721662371E-02 -1.56954687871E-02 -1.62366041306E-02 -1.67961682380E-02 -1.73747762037E-02 -1.79730628013E-02 -1.85916830501E-02 -1.92313127930E-02 -1.98926492846E-02 -2.05764117917E-02 -2.12833422025E-02 -2.20142056470E-02 -2.27697911267E-02 -2.35509121531E-02 -2.43584073944E-02 -2.51931413307E-02 -2.60560049150E-02 -2.69479162407E-02 -2.78698212135E-02 -2.88226942272E-02 -2.98075388415E-02 -3.08253884610E-02 -3.18773070122E-02 -3.29643896191E-02 -3.40877632728E-02 -3.52485874947E-02 -3.64480549897E-02 -3.76873922867E-02 -3.89678603644E-02 -4.02907552576E-02 -4.16574086414E-02 -4.30691883882E-02 -4.45274990950E-02 -4.60337825734E-02 -4.75895183003E-02 -4.91962238201E-02 -5.08554550953E-02 -5.25688067969E-02 -5.43379125277E-02 -5.61644449699E-02 -5.80501159504E-02 -5.99966764111E-02 -6.20059162772E-02 -6.40796642105E-02 -6.62197872363E-02 -6.84281902319E-02 -7.07068152612E-02 -7.30576407423E-02 -7.54826804307E-02 -7.79839822018E-02 -8.05636266136E-02 -8.32237252297E-02 -8.59664186824E-02 -8.87938744521E-02 -9.17082843387E-02 -9.47118616003E-02 -9.78068377307E-02 -1.00995458847E-01 -1.04279981653E-01 -1.07662668958E-01 -1.11145784690E-01 -1.14731588402E-01 -1.18422329201E-01 -1.22220239078E-01 -1.26127525590E-01 -1.30146363852E-01 -1.34278887792E-01 -1.38527180616E-01 -1.42893264451E-01 -1.47379089093E-01 -1.51986519825E-01 -1.56717324251E-01 -1.61573158081E-01 -1.66555549835E-01 -1.71665884399E-01 -1.76905385384E-01 -1.82275096254E-01 -1.87775860154E-01 -1.93408298424E-01 -1.99172787737E-01 -2.05069435855E-01 -2.11098055962E-01 -2.17258139576E-01 -2.23548828030E-01 -2.29968882541E-01 -2.36516652900E-01 -2.43190044812E-01 -2.49986485986E-01 -2.56902891036E-01 -2.63935625337E-01 -2.71080467977E-01 -2.78332573990E-01 -2.85686436106E-01 -2.93135846273E-01 -3.00673857267E-01 -3.08292744757E-01 -3.15983970242E-01 -3.23738145329E-01 -3.31544997889E-01 -3.39393340696E-01 -3.47271043195E-01 -3.55165007136E-01 -3.63061146865E-01 -3.70944375111E-01 -3.78798595179E-01 -3.86606700503E-01 -3.94350582536E-01 -4.02011147990E-01 -4.09568346431E-01 -4.17001209198E-01 -4.24287900572E-01 -4.31405782028E-01 -4.38331490237E-01 -4.45041029301E-01 -4.51509877465E-01 -4.57713108173E-01 -4.63625524955E-01 -4.69221809119E-01 -4.74476678606E-01 -4.79365055670E-01 -4.83862240215E-01 -4.87944084700E-01 -4.91587165471E-01 -4.94768944272E-01 -4.97467912446E-01 -4.99663709120E-01 -5.01337203385E-01 -5.02470529321E-01 -5.03047061658E-01 -5.03051319071E-01 -5.02468781749E-01 -5.01285609981E-01 -4.99488251490E-01 -4.97062927152E-01 -4.93994987953E-01 -4.90268140905E-01 -4.85863548384E-01 -4.80758814469E-01 -4.74926883646E-01 -4.68334891982E-01 -4.60943028960E-01 -4.52703489485E-01 -4.43559620278E-01 -4.33445392222E-01 -4.22285359549E-01 -4.09995296208E-01 -3.96483727109E-01 -3.81654593314E-01 -3.65411300901E-01 -3.47662396151E-01 -3.28329076429E-01 -3.07354675542E-01 -2.84716141572E-01 -2.60437339174E-01 -2.34603741418E-01 -2.07377713576E-01 -1.79013122498E-01 -1.49867430173E-01 -1.20408768034E-01 -9.12147927336E-02 -6.29595039326E-02 -3.63838590295E-02 -1.22462865220E-02 8.74937187354E-03 2.60475047383E-02 3.93481589553E-02 4.87082596906E-02 5.45960571618E-02 5.78248546973E-02 5.92401170887E-02 5.92090038022E-02 5.78193505473E-02 5.51651294971E-02 5.13570619038E-02 4.65222785212E-02 4.08037840526E-02 3.43596862402E-02 2.73621313823E-02 1.99958677042E-02 1.24563309332E-02 4.94712128763E-03 -2.32328771243E-03 -9.14578620359E-03 -1.53159999445E-02 -2.06409693099E-02 -2.49472624979E-02 -2.80905455431E-02 -2.99664642738E-02 -3.05224235233E-02 -2.97694740733E-02 -2.77930057267E-02 -2.47603177967E-02 -2.09224198590E-02 -1.66067296895E-02 -1.21968938648E-02 -8.09618657235E-03 -4.67256349497E-03 -2.18766091930E-03 -7.20765731276E-04 -1.15017753586E-04 -1.43041396745E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -9.62505610220E+00 4.24577280197E+01 2.81236775166E+02 -3.68612459850E+03 1.69243235417E+04 -3.92452953110E+04 4.55663845493E+04 -2.10378506803E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.54454871531E-15 -3.72965722521E-14 -1.29140378371E-13 -3.14071701822E-13 -6.29420049707E-13 -1.11608485729E-12 -1.81878625334E-12 -2.78633127853E-12 -4.07189644727E-12 -5.73332759275E-12 -7.83345798704E-12 -1.04404457829E-11 -1.36281318823E-11 -1.74764193960E-11 -2.20716759266E-11 -2.75071599694E-11 -3.38834728032E-11 -4.13090373135E-11 -4.99006052728E-11 -5.97837946847E-11 -7.10936588884E-11 -8.39752892102E-11 -9.85844530505E-11 -1.15088269393E-10 -1.33665923839E-10 -1.54509425371E-10 -1.77824407189E-10 -2.03830974070E-10 -2.32764598859E-10 -2.64877070806E-10 -3.00437498656E-10 -3.39733371518E-10 -3.83071680723E-10 -4.30780106051E-10 -4.83208269900E-10 -5.40729063129E-10 -6.03740046561E-10 -6.72664932304E-10 -7.47955149296E-10 -8.30091497707E-10 -9.19585897083E-10 -1.01698323340E-09 -1.12286331042E-09 -1.23784291113E-09 -1.36257797522E-09 -1.49776589903E-09 -1.64414796455E-09 -1.80251190474E-09 -1.97369461230E-09 -2.15858500001E-09 -2.35812702074E-09 -2.57332285587E-09 -2.80523628124E-09 -3.05499622038E-09 -3.32380049511E-09 -3.61291978422E-09 -3.92370180163E-09 -4.25757570577E-09 -4.61605675282E-09 -5.00075120700E-09 -5.41336152175E-09 -5.85569180650E-09 -6.32965359453E-09 -6.83727192793E-09 -7.38069177713E-09 -7.96218481271E-09 -8.58415654865E-09 -9.24915387710E-09 -9.95987301543E-09 -1.07191678882E-08 -1.15300589668E-08 -1.23957425926E-08 -1.33196008071E-08 -1.43052117201E-08 -1.53563604405E-08 -1.64770506035E-08 -1.76715165234E-08 -1.89442360082E-08 -2.02999438683E-08 -2.17436461600E-08 -2.32806351993E-08 -2.49165053910E-08 -2.66571699133E-08 -2.85088783061E-08 -3.04782350101E-08 -3.25722189073E-08 -3.47982039167E-08 -3.71639807021E-08 -3.96777795496E-08 -4.23482944791E-08 -4.51847086542E-08 -4.81967211596E-08 -5.13945752201E-08 -5.47890879365E-08 -5.83916816196E-08 -6.22144168074E-08 -6.62700270548E-08 -7.05719555900E-08 -7.51343939371E-08 -7.99723226080E-08 -8.51015539757E-08 -9.05387774422E-08 -9.63016070251E-08 -1.02408631489E-07 -1.08879467157E-07 -1.15734813549E-07 -1.22996511986E-07 -1.30687607328E-07 -1.38832413007E-07 -1.47456579532E-07 -1.56587166641E-07 -1.66252719304E-07 -1.76483347779E-07 -1.87310811924E-07 -1.98768610010E-07 -2.10892072248E-07 -2.23718459300E-07 -2.37287066033E-07 -2.51639330776E-07 -2.66818950401E-07 -2.82872001502E-07 -2.99847068018E-07 -3.17795375632E-07 -3.36770933300E-07 -3.56830682289E-07 -3.78034653120E-07 -4.00446130834E-07 -4.24131829011E-07 -4.49162073019E-07 -4.75610992960E-07 -5.03556726841E-07 -5.33081634489E-07 -5.64272522801E-07 -5.97220882896E-07 -6.32023139817E-07 -6.68780915438E-07 -7.07601305256E-07 -7.48597169823E-07 -7.91887441562E-07 -8.37597447791E-07 -8.85859250805E-07 -9.36812005899E-07 -9.90602338293E-07 -1.04738473993E-06 -1.10732198723E-06 -1.17058558079E-06 -1.23735620841E-06 -1.30782423232E-06 -1.38219020227E-06 -1.46066539552E-06 -1.54347238530E-06 -1.63084563919E-06 -1.72303214902E-06 -1.82029209387E-06 -1.92289953797E-06 -2.03114316528E-06 -2.14532705276E-06 -2.26577148416E-06 -2.39281380668E-06 -2.52680933262E-06 -2.66813228831E-06 -2.81717681297E-06 -2.97435800993E-06 -3.14011305307E-06 -3.31490235125E-06 -3.49921077390E-06 -3.69354894084E-06 -3.89845457969E-06 -4.11449395448E-06 -4.34226336912E-06 -4.58239074957E-06 -4.83553730898E-06 -5.10239929987E-06 -5.38370985819E-06 -5.68024094373E-06 -5.99280538214E-06 -6.32225901374E-06 -6.66950295466E-06 -7.03548597614E-06 -7.42120700826E-06 -7.82771777438E-06 -8.25612556324E-06 -8.70759614569E-06 -9.18335684377E-06 -9.68469975984E-06 -1.02129851742E-05 -1.07696451200E-05 -1.13561871439E-05 -1.19741982637E-05 -1.26253491315E-05 -1.33113984133E-05 -1.40341973976E-05 -1.47956948429E-05 -1.55979420777E-05 -1.64430983660E-05 -1.73334365511E-05 -1.82713489928E-05 -1.92593538135E-05 -2.03001014679E-05 -2.13963816538E-05 -2.25511305816E-05 -2.37674386203E-05 -2.50485583404E-05 -2.63979129723E-05 -2.78191053043E-05 -2.93159270390E-05 -3.08923686357E-05 -3.25526296597E-05 -3.43011296683E-05 -3.61425196567E-05 -3.80816940968E-05 -4.01238035955E-05 -4.22742682059E-05 -4.45387914245E-05 -4.69233749089E-05 -4.94343339524E-05 -5.20783137547E-05 -5.48623065283E-05 -5.77936694831E-05 -6.08801437338E-05 -6.41298741767E-05 -6.75514303844E-05 -7.11538285700E-05 -7.49465546746E-05 -7.89395886342E-05 -8.31434298859E-05 -8.75691241742E-05 -9.22282917237E-05 -9.71331568455E-05 -1.02296579049E-04 -1.07732085735E-04 -1.13453906546E-04 -1.19477009456E-04 -1.25817138697E-04 -1.32490854585E-04 -1.39515575377E-04 -1.46909621223E-04 -1.54692260344E-04 -1.62883757520E-04 -1.71505425028E-04 -1.80579676118E-04 -1.90130081183E-04 -2.00181426722E-04 -2.10759777256E-04 -2.21892540325E-04 -2.33608534719E-04 -2.45938062091E-04 -2.58912982126E-04 -2.72566791424E-04 -2.86934706269E-04 -3.02053749490E-04 -3.17962841568E-04 -3.34702896230E-04 -3.52316920708E-04 -3.70850120886E-04 -3.90350011572E-04 -4.10866532117E-04 -4.32452167630E-04 -4.55162076047E-04 -4.79054221306E-04 -5.04189512919E-04 -5.30631952215E-04 -5.58448785547E-04 -5.87710664785E-04 -6.18491815396E-04 -6.50870212454E-04 -6.84927764908E-04 -7.20750508476E-04 -7.58428807522E-04 -7.98057566291E-04 -8.39736449897E-04 -8.83570115463E-04 -9.29668453832E-04 -9.78146842259E-04 -1.02912640855E-03 -1.08273430707E-03 -1.13910400711E-03 -1.19837559403E-03 -1.26069608377E-03 -1.32621975112E-03 -1.39510847227E-03 -1.46753208223E-03 -1.54366874757E-03 -1.62370535501E-03 -1.70783791651E-03 -1.79627199119E-03 -1.88922312490E-03 -1.98691730777E-03 -2.08959145040E-03 -2.19749387926E-03 -2.31088485180E-03 -2.43003709183E-03 -2.55523634583E-03 -2.68678196045E-03 -2.82498748214E-03 -2.97018127900E-03 -3.12270718564E-03 -3.28292517142E-03 -3.45121203249E-03 -3.62796210817E-03 -3.81358802192E-03 -4.00852144738E-03 -4.21321389977E-03 -4.42813755289E-03 -4.65378608195E-03 -4.89067553251E-03 -5.13934521549E-03 -5.40035862844E-03 -5.67430440298E-03 -5.96179727834E-03 -6.26347910089E-03 -6.58001984934E-03 -6.91211868534E-03 -7.26050502910E-03 -7.62593965939E-03 -8.00921583753E-03 -8.41116045452E-03 -8.83263520063E-03 -9.27453775656E-03 -9.73780300523E-03 -1.02234042633E-02 -1.07323545309E-02 -1.12657077596E-02 -1.18245601353E-02 -1.24100513780E-02 -1.30233660538E-02 -1.36657349009E-02 -1.43384361671E-02 -1.50427969583E-02 -1.57801945975E-02 -1.65520579932E-02 -1.73598690182E-02 -1.82051638982E-02 -1.90895346118E-02 -2.00146303024E-02 -2.09821587054E-02 -2.19938875932E-02 -2.30516462427E-02 -2.41573269298E-02 -2.53128864599E-02 -2.65203477415E-02 -2.77818014134E-02 -2.90994075411E-02 -3.04753973947E-02 -3.19120753290E-02 -3.34118207876E-02 -3.49770904558E-02 -3.66104205928E-02 -3.83144295771E-02 -4.00918207066E-02 -4.19453852956E-02 -4.38780061235E-02 -4.58926612920E-02 -4.79924285574E-02 -5.01804902109E-02 -5.24601385914E-02 -5.48347823202E-02 -5.73079533611E-02 -5.98833150163E-02 -6.25646709795E-02 -6.53559755817E-02 -6.82613453697E-02 -7.12850721755E-02 -7.44316378379E-02 -7.77057307544E-02 -8.11122644432E-02 -8.46563983090E-02 -8.83435608047E-02 -9.21794751900E-02 -9.61701880813E-02 -1.00322100985E-01 -1.04642004996E-01 -1.09137118818E-01 -1.13815130252E-01 -1.18684241251E-01 -1.23753216588E-01 -1.29031436155E-01 -1.34528950796E-01 -1.40256541509E-01 -1.46225781747E-01 -1.52449102387E-01 -1.58939858806E-01 -1.65712399290E-01 -1.72782133807E-01 -1.80165601910E-01 -1.87880538246E-01 -1.95945933844E-01 -2.04382090958E-01 -2.13210668876E-01 -2.22454717637E-01 -2.32138696126E-01 -2.42288470523E-01 -2.52931288517E-01 -2.64095724168E-01 -2.75811587747E-01 -2.88109794315E-01 -3.01022184334E-01 -3.14581289168E-01 -3.28820033977E-01 -3.43771370369E-01 -3.59467831173E-01 -3.75941000017E-01 -3.93220889008E-01 -4.11335218912E-01 -4.30308597804E-01 -4.50161596400E-01 -4.70909721251E-01 -4.92562290855E-01 -5.15121224561E-01 -5.38579760117E-01 -5.62921122895E-01 -5.88117178307E-01 -6.14127108742E-01 -6.40896167502E-01 -6.68354574580E-01 -6.96416632421E-01 -7.24980153807E-01 -7.53926307972E-01 -7.83120004243E-01 -8.12410943846E-01 -8.41635478412E-01 -8.70619416401E-01 -8.99181913700E-01 -9.27140569214E-01 -9.54317817034E-01 -9.80548659786E-01 -1.00568971900E+00 -1.02962948322E+00 -1.05229950908E+00 -1.07368617092E+00 -1.09384235894E+00 -1.11289829444E+00 -1.13107036812E+00 -1.14866662369E+00 -1.16608722317E+00 -1.18381797148E+00 -1.20241479206E+00 -1.22247699390E+00 -1.24460734043E+00 -1.26935743139E+00 -1.29715787604E+00 -1.32823432661E+00 -1.36251282023E+00 -1.39952119370E+00 -1.43829766850E+00 -1.47732298131E+00 -1.51449828872E+00 -1.54719660998E+00 -1.57241900882E+00 -1.58708483505E+00 -1.58847264690E+00 -1.57479587007E+00 -1.54583035337E+00 -1.50338711329E+00 -1.45120787514E+00 -1.39350607647E+00 -1.33218466289E+00 -1.26766546657E+00 -1.20033218415E+00 -1.13058470901E+00 -1.05883623379E+00 -9.85511285407E-01 -9.11045030752E-01 -8.35884152302E-01 -7.60489493235E-01 -6.85340515076E-01 -6.10941366055E-01 -5.37828035199E-01 -4.66575644032E-01 -3.97804433964E-01 -3.32182452618E-01 -2.70422401488E-01 -2.13269656969E-01 -1.61478277766E-01 -1.15772053089E-01 -7.67886126523E-02 -4.50066305061E-02 -2.06595784575E-02 -3.64461571592E-03 6.55787935660E-03 1.09303989672E-02 1.08983117917E-02 8.20796732160E-03 4.67386678947E-03 1.79619984105E-03 3.25313996275E-04 4.57193474971E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -3.05886600741E+01 4.64716019018E+02 -6.45773770577E+03 4.77056526325E+04 -1.87591618563E+05 4.01190153463E+05 -4.41589272676E+05 1.96182846645E+05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.75767267671E-15 3.08387739465E-14 1.06780079163E-13 2.59691055781E-13 5.20437710297E-13 9.22837854407E-13 1.50386845111E-12 2.30388573824E-12 3.36685886563E-12 4.74061782298E-12 6.47711647846E-12 8.63271159375E-12 1.12684587286E-11 1.44504259987E-11 1.82500267045E-11 2.27443719027E-11 2.80166440533E-11 3.41564929369E-11 4.12604551012E-11 4.94323981664E-11 5.87839913908E-11 6.94352039766E-11 8.15148326745E-11 9.51610603318E-11 1.10522047120E-10 1.27756556272E-10 1.47034616253E-10 1.68538221408E-10 1.92462073226E-10 2.19014364481E-10 2.48417608639E-10 2.80909517047E-10 3.16743926542E-10 3.56191780299E-10 3.99542164837E-10 4.47103406309E-10 4.99204229341E-10 5.56194981870E-10 6.18448929630E-10 6.86363624101E-10 7.60362347978E-10 8.40895642420E-10 9.28442920550E-10 1.02351417196E-09 1.12665176318E-09 1.23843233943E-09 1.35946883303E-09 1.49041258456E-09 1.63195558267E-09 1.78483282915E-09 1.94982483605E-09 2.12776026207E-09 2.31951869573E-09 2.52603359343E-09 2.74829538061E-09 2.98735472511E-09 3.24432599187E-09 3.52039088892E-09 3.81680231498E-09 4.13488841957E-09 4.47605688718E-09 4.84179945755E-09 5.23369669486E-09 5.65342301927E-09 6.10275201495E-09 6.58356202949E-09 7.09784208045E-09 7.64769808559E-09 8.23535943408E-09 8.86318591724E-09 9.53367503799E-09 1.02494697194E-08 1.10133664338E-08 1.18283237751E-08 1.26974714978E-08 1.36241200480E-08 1.46117706129E-08 1.56641257165E-08 1.67851003897E-08 1.79788339480E-08 1.92497024062E-08 2.06023315670E-08 2.20416108176E-08 2.35727076728E-08 2.52010831048E-08 2.69325077010E-08 2.87730786949E-08 3.07292379149E-08 3.28077907026E-08 3.50159258502E-08 3.73612366111E-08 3.98517428431E-08 4.24959143419E-08 4.53026954302E-08 4.82815308673E-08 5.14423931516E-08 5.47958112885E-08 5.83529011015E-08 6.21253971697E-08 6.61256864768E-08 7.03668438634E-08 7.48626693773E-08 7.96277276233E-08 8.46773892185E-08 9.00278744644E-08 9.56962993529E-08 1.01700724031E-07 1.08060203853E-07 1.14794843159E-07 1.21925851923E-07 1.29475605420E-07 1.37467707076E-07 1.45927054671E-07 1.54879910062E-07 1.64353972624E-07 1.74378456596E-07 1.84984172549E-07 1.96203613183E-07 2.08071043683E-07 2.20622596884E-07 2.33896373492E-07 2.47932547621E-07 2.62773477944E-07 2.78463824733E-07 2.95050673119E-07 3.12583662884E-07 3.31115125140E-07 3.50700226245E-07 3.71397119359E-07 3.93267104013E-07 4.16374794143E-07 4.40788295013E-07 4.66579389499E-07 4.93823734242E-07 5.22601066164E-07 5.52995419913E-07 5.85095356797E-07 6.18994205828E-07 6.54790317492E-07 6.92587330930E-07 7.32494455223E-07 7.74626765536E-07 8.19105514885E-07 8.66058462358E-07 9.15620218651E-07 9.67932609824E-07 1.02314506025E-06 1.08141499571E-06 1.14290826782E-06 1.20779960068E-06 1.27627306120E-06 1.34852255409E-06 1.42475234295E-06 1.50517759876E-06 1.59002497731E-06 1.67953322687E-06 1.77395382797E-06 1.87355166675E-06 1.97860574367E-06 2.08940991955E-06 2.20627370077E-06 2.32952306571E-06 2.45950133465E-06 2.59657008525E-06 2.74111011622E-06 2.89352246143E-06 3.05422945736E-06 3.22367586643E-06 3.40233005937E-06 3.59068525946E-06 3.78926085211E-06 3.99860376295E-06 4.21928990830E-06 4.45192572143E-06 4.69714975887E-06 4.95563439084E-06 5.22808758004E-06 5.51525475368E-06 5.81792077334E-06 6.13691200793E-06 6.47309851498E-06 6.82739633607E-06 7.20076991209E-06 7.59423462484E-06 8.00885947126E-06 8.44576987741E-06 8.90615065932E-06 9.39124913833E-06 9.90237841908E-06 1.04409208384E-05 1.10083315939E-05 1.16061425623E-05 1.22359663157E-05 1.28995003484E-05 1.35985315226E-05 1.43349407464E-05 1.51107078947E-05 1.59279169868E-05 1.67887616327E-05 1.76955507623E-05 1.86507146536E-05 1.96568112725E-05 2.07165329429E-05 2.18327133627E-05 2.30083349839E-05 2.42465367753E-05 2.55506223881E-05 2.69240687441E-05 2.83705350692E-05 2.98938723945E-05 3.14981335490E-05 3.31875836692E-05 3.49667112523E-05 3.68402397800E-05 3.88131399433E-05 4.08906424980E-05 4.30782517830E-05 4.53817599363E-05 4.78072618434E-05 5.03611708549E-05 5.30502353136E-05 5.58815559314E-05 5.88626040595E-05 6.20012408965E-05 6.53057376830E-05 6.87847969314E-05 7.24475747436E-05 7.63037042724E-05 8.03633203822E-05 8.46370855711E-05 8.91362172171E-05 9.38725162146E-05 9.88583970709E-05 1.04106919536E-04 1.09631821842E-04 1.15447555633E-04 1.21569322665E-04 1.28013113375E-04 1.34795747398E-04 1.41934916137E-04 1.49449227484E-04 1.57358252801E-04 1.65682576268E-04 1.74443846720E-04 1.83664832084E-04 1.93369476556E-04 2.03582960639E-04 2.14331764199E-04 2.25643732654E-04 2.37548146489E-04 2.50075794210E-04 2.63259048952E-04 2.77131948866E-04 2.91730281511E-04 3.07091672402E-04 3.23255677940E-04 3.40263882915E-04 3.58160002803E-04 3.76989991074E-04 3.96802151757E-04 4.17647257496E-04 4.39578673348E-04 4.62652486605E-04 4.86927642889E-04 5.12466088830E-04 5.39332921605E-04 5.67596545663E-04 5.97328836949E-04 6.28605314961E-04 6.61505322985E-04 6.96112216871E-04 7.32513562725E-04 7.70801343886E-04 8.11072177611E-04 8.53427541862E-04 8.97974012630E-04 9.44823512237E-04 9.94093569070E-04 1.04590758922E-03 1.10039514049E-03 1.15769224933E-03 1.21794171110E-03 1.28129341433E-03 1.34790467942E-03 1.41794061229E-03 1.49157447376E-03 1.56898806495E-03 1.65037212954E-03 1.73592677338E-03 1.82586190199E-03 1.92039767684E-03 2.01976499073E-03 2.12420596309E-03 2.23397445590E-03 2.34933661070E-03 2.47057140752E-03 2.59797124633E-03 2.73184255170E-03 2.87250640126E-03 3.02029917870E-03 3.17557325201E-03 3.33869767742E-03 3.51005892993E-03 3.69006166083E-03 3.87912948298E-03 4.07770578433E-03 4.28625457037E-03 4.50526133589E-03 4.73523396675E-03 4.97670367201E-03 5.23022594689E-03 5.49638156708E-03 5.77577761459E-03 6.06904853560E-03 6.37685723062E-03 6.69989617697E-03 7.03888858410E-03 7.39458958152E-03 7.76778743969E-03 8.15930482378E-03 8.57000008025E-03 9.00076855623E-03 9.45254395163E-03 9.92629970364E-03 1.04230504038E-02 1.09438532468E-02 1.14898095121E-02 1.20620660762E-02 1.26618169576E-02 1.32903048928E-02 1.39488229444E-02 1.46387161404E-02 1.53613831461E-02 1.61182779691E-02 1.69109116971E-02 1.77408542715E-02 1.86097362965E-02 1.95192508878E-02 2.04711555627E-02 2.14672741744E-02 2.25094988971E-02 2.35997922647E-02 2.47401892714E-02 2.59327995416E-02 2.71798095781E-02 2.84834850998E-02 2.98461734823E-02 3.12703063159E-02 3.27584020988E-02 3.43130690865E-02 3.59370083186E-02 3.76330168520E-02 3.94039912288E-02 4.12529312130E-02 4.31829438346E-02 4.51972477839E-02 4.72991782018E-02 4.94921919203E-02 5.17798732095E-02 5.41659400944E-02 5.66542513097E-02 5.92488139668E-02 6.19537920111E-02 6.47735155552E-02 6.77124911740E-02 7.07754132572E-02 7.39671765105E-02 7.72928897049E-02 8.07578907675E-02 8.43677633089E-02 8.81283546732E-02 9.20457955913E-02 9.61265215020E-02 1.00377295590E-01 1.04805233565E-01 1.09417830176E-01 1.14222987412E-01 1.19229044306E-01 1.24444808178E-01 1.29879587104E-01 1.35543223302E-01 1.41446127023E-01 1.47599310432E-01 1.54014420818E-01 1.60703772311E-01 1.67680375126E-01 1.74957961141E-01 1.82551004387E-01 1.90474734804E-01 1.98745143321E-01 2.07378976046E-01 2.16393715034E-01 2.25807542776E-01 2.35639287214E-01 2.45908343768E-01 2.56634570518E-01 2.67838152400E-01 2.79539430012E-01 2.91758688448E-01 3.04515901463E-01 3.17830426331E-01 3.31720644942E-01 3.46203547091E-01 3.61294252594E-01 3.77005469881E-01 3.93346890083E-01 4.10324517487E-01 4.27939939651E-01 4.46189543417E-01 4.65063686791E-01 4.84545841060E-01 5.04611722761E-01 5.25228441138E-01 5.46353693612E-01 5.67935049342E-01 5.89909369181E-01 6.12202418873E-01 6.34728740927E-01 6.57391858700E-01 6.80084893153E-01 7.02691677577E-01 7.25088457258E-01 7.47146257935E-01 7.68733997520E-01 7.89722397579E-01 8.09988722346E-01 8.29422330951E-01 8.47930970365E-01 8.65447659817E-01 8.81937919910E-01 8.97406980138E-01 9.11906457235E-01 9.25539836619E-01 9.38465916221E-01 9.50899198031E-01 9.63106055701E-01 9.75395394231E-01 9.88102488678E-01 1.00156479523E+00 1.01608883734E+00 1.03190786487E+00 1.04913096090E+00 1.06768572999E+00 1.08725873361E+00 1.10724048995E+00 1.12668508254E+00 1.14429799441E+00 1.15846915372E+00 1.16737024604E+00 1.16913414259E+00 1.16212643304E+00 1.14529898709E+00 1.11857432657E+00 1.08313348677E+00 1.04134761837E+00 9.95875845186E-01 9.47951037512E-01 8.97895623588E-01 8.46011629029E-01 7.92613828959E-01 7.38027562134E-01 6.82587150673E-01 6.26635146687E-01 5.70522592909E-01 5.14610410337E-01 4.59271907483E-01 4.04896230173E-01 3.51892336530E-01 3.00692785464E-01 2.51756280346E-01 2.05567534376E-01 1.62632664513E-01 1.23468048789E-01 8.85805027176E-02 5.84368972249E-02 3.34221453116E-02 1.37860676442E-02 -4.17748884425E-04 -9.39415996376E-03 -1.36577473955E-02 -1.40553153409E-02 -1.17363171240E-02 -8.04575096677E-03 -4.32052167673E-03 -1.59498216257E-03 -2.80522915195E-04 -3.85127548216E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.52923181969E+01 -3.13650333545E+02 3.99933362859E+03 -2.91838976865E+04 1.14605192755E+05 -2.45167084910E+05 2.70001118653E+05 -1.20019531504E+05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0 -6.64264385250E-01 0.00000000000E+00 4.49737645399E-05 9.07153891932E-05 1.37235457249E-04 1.84556096700E-04 2.32686154899E-04 2.81628921525E-04 3.31422650147E-04 3.82058640773E-04 4.33570085228E-04 4.85912652456E-04 5.39276522665E-04 5.93353210251E-04 6.48583724795E-04 7.04537274566E-04 7.61664960762E-04 8.19548839249E-04 8.78581612228E-04 9.38615141166E-04 9.99531345259E-04 1.06168145032E-03 1.12471238748E-03 1.18902722334E-03 1.25424491164E-03 1.32062281141E-03 1.38829251008E-03 1.45684198447E-03 1.52684786091E-03 1.59788897866E-03 1.67008591765E-03 1.74373230078E-03 1.81843873585E-03 1.89454119201E-03 1.97179290411E-03 2.05061619263E-03 2.13055356538E-03 2.21193144151E-03 2.29479356428E-03 2.37889420097E-03 2.46459605723E-03 2.55169541048E-03 2.64027362937E-03 2.73033250125E-03 2.82205149292E-03 2.91523900289E-03 3.01000744400E-03 3.10649208023E-03 3.20449623655E-03 3.30430943520E-03 3.40570418459E-03 3.50894533776E-03 3.61390599364E-03 3.72057789848E-03 3.82921321192E-03 3.93961016386E-03 4.05192369090E-03 4.16617295276E-03 4.28240850505E-03 4.40046407714E-03 4.52076778331E-03 4.64295064065E-03 4.76731363345E-03 4.89375813003E-03 5.02239145021E-03 5.15326864430E-03 5.28623003865E-03 5.42159483581E-03 5.55928892604E-03 5.69925143448E-03 5.84161647455E-03 5.98649419173E-03 6.13378213652E-03 6.28358874168E-03 6.43600483535E-03 6.59092277137E-03 6.74862458762E-03 6.90891110080E-03 7.07200097274E-03 7.23783493154E-03 7.40658238585E-03 7.57809623707E-03 7.75262128626E-03 7.93012451088E-03 8.11063169966E-03 8.29429029398E-03 8.48096793105E-03 8.67096863553E-03 8.86410805024E-03 9.06064570465E-03 9.26044593505E-03 9.46374715618E-03 9.67048713163E-03 9.88073038873E-03 1.00945928730E-02 1.03121728869E-02 1.05333597997E-02 1.07583850481E-02 1.09872703536E-02 1.12200452640E-02 1.14567959710E-02 1.16975968756E-02 1.19425406615E-02 1.21916539439E-02 1.24449693695E-02 1.27027019298E-02 1.29647919038E-02 1.32313806626E-02 1.35025225516E-02 1.37782495018E-02 1.40587916751E-02 1.43440374675E-02 1.46341954440E-02 1.49293165471E-02 1.52294710743E-02 1.55347399883E-02 1.58452809329E-02 1.61610514346E-02 1.64822778557E-02 1.68089915797E-02 1.71412780413E-02 1.74791842941E-02 1.78230104046E-02 1.81725317644E-02 1.85281549912E-02 1.88898726213E-02 1.92576347720E-02 1.96318254968E-02 2.00123215123E-02 2.03993784835E-02 2.07929795147E-02 2.11934140572E-02 2.16005532443E-02 2.20147707629E-02 2.24360023808E-02 2.28644813925E-02 2.33002226922E-02 2.37434478494E-02 2.41942412561E-02 2.46527368183E-02 2.51190616960E-02 2.55933650065E-02 2.60757760671E-02 2.65664045815E-02 2.70654392269E-02 2.75730107375E-02 2.80892409839E-02 2.86142605130E-02 2.91483117159E-02 2.96914460084E-02 3.02438912682E-02 3.08057245747E-02 3.13772099459E-02 3.19584425404E-02 3.25495820858E-02 3.31508647241E-02 3.37623646794E-02 3.43843597378E-02 3.50169714253E-02 3.56603735381E-02 3.63147644913E-02 3.69803588885E-02 3.76572904033E-02 3.83458260267E-02 3.90460835483E-02 3.97583195229E-02 4.04827220351E-02 4.12194859431E-02 4.19688571951E-02 4.27310028651E-02 4.35061610111E-02 4.42945903965E-02 4.50964370706E-02 4.59120210955E-02 4.67415104960E-02 4.75851559685E-02 4.84432155843E-02 4.93159381692E-02 5.02035326883E-02 5.11063124460E-02 5.20244748417E-02 5.29583326134E-02 5.39081261034E-02 5.48741253831E-02 5.58566098000E-02 5.68558802070E-02 5.78721958216E-02 5.89058458262E-02 5.99571526250E-02 6.10263792516E-02 6.21138688892E-02 6.32199079881E-02 6.43447946572E-02 6.54889044155E-02 6.66525165810E-02 6.78359690049E-02 6.90396049744E-02 7.02637999104E-02 7.15088158214E-02 7.27751076269E-02 7.40629774075E-02 7.53727814331E-02 7.67049493154E-02 7.80597973487E-02 7.94377469315E-02 8.08391740750E-02 8.22644960744E-02 8.37140821541E-02 8.51883690792E-02 8.66877834708E-02 8.82127193742E-02 8.97636271410E-02 9.13409544225E-02 9.29451242167E-02 9.45766051568E-02 9.62358524042E-02 9.79233424451E-02 9.96395397033E-02 1.01384938013E-01 1.03160016070E-01 1.04965293658E-01 1.06801261264E-01 1.08668441031E-01 1.10567361650E-01 1.12498539592E-01 1.14462547180E-01 1.16459904062E-01 1.18491191161E-01 1.20556956522E-01 1.22657791955E-01 1.24794283942E-01 1.26967029025E-01 1.29176613262E-01 1.31423690851E-01 1.33708837704E-01 1.36032725687E-01 1.38395985174E-01 1.40799283071E-01 1.43243242866E-01 1.45728612887E-01 1.48256001843E-01 1.50826162365E-01 1.53439766715E-01 1.56097550585E-01 1.58800245021E-01 1.61548572512E-01 1.64343296493E-01 1.67185190199E-01 1.70074998743E-01 1.73013530855E-01 1.76001582724E-01 1.79039948755E-01 1.82129460721E-01 1.85270949223E-01 1.88465258736E-01 1.91713245197E-01 1.95015779775E-01 1.98373743849E-01 2.01788024214E-01 2.05259541586E-01 2.08789201494E-01 2.12377938214E-01 2.16026707320E-01 2.19736448364E-01 2.23508142017E-01 2.27342770195E-01 2.31241325169E-01 2.35204811440E-01 2.39234260179E-01 2.43330702572E-01 2.47495170944E-01 2.51728747622E-01 2.56032483135E-01 2.60407479850E-01 2.64854819672E-01 2.69375623951E-01 2.73971009008E-01 2.78642110369E-01 2.83390070433E-01 2.88216058444E-01 2.93121234457E-01 2.98106777487E-01 3.03173889961E-01 3.08323772482E-01 3.13557631718E-01 3.18876700741E-01 3.24282217858E-01 3.29775410320E-01 3.35357547958E-01 3.41029887178E-01 3.46793698010E-01 3.52650257838E-01 3.58600849898E-01 3.64646770623E-01 3.70789314569E-01 3.77029780017E-01 3.83369479098E-01 3.89809715671E-01 3.96351805114E-01 4.02997060841E-01 4.09746791927E-01 4.16602317088E-01 4.23564939336E-01 4.30635977181E-01 4.37816720535E-01 4.45108473935E-01 4.52512524740E-01 4.60030153684E-01 4.67662622778E-01 4.75411197763E-01 4.83277108020E-01 4.91261589439E-01 4.99365831969E-01 5.07591029624E-01 5.15938337002E-01 5.24408883522E-01 5.33003772273E-01 5.41724074498E-01 5.50570817360E-01 5.59545006933E-01 5.68647579965E-01 5.77879452654E-01 5.87241474719E-01 5.96734447856E-01 6.06359112379E-01 6.16116149519E-01 6.26006163780E-01 6.36029693985E-01 6.46187195704E-01 6.56479042649E-01 6.66905513523E-01 6.77466796721E-01 6.88162966334E-01 6.98993997100E-01 7.09959737481E-01 7.21059915327E-01 7.32294117488E-01 7.43661793660E-01 7.55162242395E-01 7.66794592759E-01 7.78557814415E-01 7.90450681031E-01 8.02471790207E-01 8.14619515144E-01 8.26892032183E-01 8.39287274949E-01 8.51802939494E-01 8.64436466073E-01 8.77185019316E-01 8.90045487860E-01 9.03014443454E-01 9.16088151989E-01 9.29262534978E-01 9.42533163616E-01 9.55895233590E-01 9.69343545356E-01 9.82872490109E-01 9.96476017246E-01 1.01014762207E+00 1.02388031663E+00 1.03766660490E+00 1.05149846256E+00 1.06536730207E+00 1.07926395877E+00 1.09317864284E+00 1.10710093025E+00 1.12101971811E+00 1.13492319866E+00 1.14879882663E+00 1.16263327981E+00 1.17641243857E+00 1.19012132667E+00 1.20374409882E+00 1.21726398565E+00 1.23066325980E+00 1.24392320196E+00 1.25702404533E+00 1.26994495263E+00 1.28266395688E+00 1.29515792768E+00 1.30740252431E+00 1.31937215218E+00 1.33103991925E+00 1.34237758601E+00 1.35335553151E+00 1.36394269484E+00 1.37410654477E+00 1.38381302734E+00 1.39302652864E+00 1.40170983218E+00 1.40982407976E+00 1.41732873890E+00 1.42418156333E+00 1.43033856797E+00 1.43575399940E+00 1.44038031640E+00 1.44416817186E+00 1.44706640481E+00 1.44902203457E+00 1.44998027115E+00 1.44988452390E+00 1.44867643178E+00 1.44629589604E+00 1.44268113567E+00 1.43776874764E+00 1.43149379108E+00 1.42378988782E+00 1.41458934263E+00 1.40382328754E+00 1.39142184777E+00 1.37731434260E+00 1.36142950819E+00 1.34369575764E+00 1.32404147894E+00 1.30239536890E+00 1.27868681135E+00 1.25284630327E+00 1.22480592890E+00 1.19449988853E+00 1.16186508748E+00 1.12684178358E+00 1.08937430167E+00 1.04941182249E+00 1.00690923539E+00 9.61828080513E-01 9.14137561561E-01 8.63815647880E-01 8.10850257282E-01 7.55240532129E-01 6.96998195465E-01 6.36148996728E-01 5.72734241262E-01 5.06812396491E-01 4.38460770835E-01 3.67777254454E-01 2.94882109086E-01 2.19919788844E-01 1.43060774605E-01 6.45033858347E-02 -1.55244447453E-02 -9.67634959798E-02 -1.78921707712E-01 -2.61672821752E-01 -3.44655273859E-01 -4.27471412356E-01 -5.09687123981E-01 -5.90831966875E-01 -6.70399911304E-01 -7.47850814185E-01 -8.22612750371E-01 -8.94085343876E-01 -9.61644247183E-01 -1.02464692943E+00 -1.08243992122E+00 -1.13436769208E+00 -1.17978329324E+00 -1.21806091803E+00 -1.24861047922E+00 -1.27089428661E+00 -1.28444584241E+00 -1.28889071272E+00 -1.28396933818E+00 -1.26956154725E+00 -1.24571238794E+00 -1.21265876206E+00 -1.17085614223E+00 -1.12100449084E+00 -1.06407228612E+00 -1.00131738899E+00 -9.34303347995E-01 -8.64909685778E-01 -7.95334806392E-01 -7.28090499037E-01 -6.65987716138E-01 -6.12114544029E-01 -5.69809329531E-01 -5.42635073356E-01 -5.34365970946E-01 -5.49010343125E-01 -5.64886850880E-01 -5.74052899970E-01 -5.71346699082E-01 -5.51120375979E-01 -5.07968794091E-01 -4.37961107502E-01 -3.40691862822E-01 -2.22472356002E-01 -1.00827449008E-01 -1.46089546787E-02 1.18840449676E-03 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -2.38780785780E-01 1.57282325446E+00 -1.51915733511E-01 0.00000000000E+00 -1.65807149783E-10 -6.74614013642E-10 -1.54401239381E-09 -2.79229919794E-09 -4.43850243526E-09 -6.50240813781E-09 -9.00458823925E-09 -1.19664294446E-08 -1.54101631260E-08 -1.93588962792E-08 -2.38366435801E-08 -2.88683605773E-08 -3.44799780618E-08 -4.06984376551E-08 -4.75517286578E-08 -5.50689262019E-08 -6.32802307549E-08 -7.22170090196E-08 -8.19118362814E-08 -9.23985402507E-08 -1.03712246456E-07 -1.15889425237E-07 -1.28967940401E-07 -1.42987099589E-07 -1.57987706428E-07 -1.74012114509E-07 -1.91104283281E-07 -2.09309835903E-07 -2.28676119139E-07 -2.49252265361E-07 -2.71089256727E-07 -2.94239991633E-07 -3.18759353477E-07 -3.44704281868E-07 -3.72133846310E-07 -4.01109322500E-07 -4.31694271281E-07 -4.63954620391E-07 -4.97958749056E-07 -5.33777575575E-07 -5.71484647958E-07 -6.11156237752E-07 -6.52871437152E-07 -6.96712259521E-07 -7.42763743421E-07 -7.91114060295E-07 -8.41854625921E-07 -8.95080215762E-07 -9.50889084354E-07 -1.00938308887E-06 -1.07066781702E-06 -1.13485271940E-06 -1.20205124647E-06 -1.27238099035E-06 -1.34596383154E-06 -1.42292609078E-06 -1.50339868620E-06 -1.58751729598E-06 -1.67542252666E-06 -1.76726008736E-06 -1.86318097005E-06 -1.96334163612E-06 -2.06790420947E-06 -2.17703667629E-06 -2.29091309188E-06 -2.40971379463E-06 -2.53362562744E-06 -2.66284216691E-06 -2.79756396048E-06 -2.93799877184E-06 -3.08436183488E-06 -3.23687611650E-06 -3.39577258857E-06 -3.56129050933E-06 -3.73367771461E-06 -3.91319091916E-06 -4.10009602853E-06 -4.29466846169E-06 -4.49719348497E-06 -4.70796655757E-06 -4.92729368908E-06 -5.15549180946E-06 -5.39288915183E-06 -5.63982564865E-06 -5.89665334153E-06 -6.16373680544E-06 -6.44145358756E-06 -6.73019466137E-06 -7.03036489656E-06 -7.34238354524E-06 -7.66668474503E-06 -8.00371803957E-06 -8.35394891721E-06 -8.71785936831E-06 -9.09594846188E-06 -9.48873294227E-06 -9.89674784657E-06 -1.03205471434E-05 -1.07607043937E-05 -1.12178134351E-05 -1.16924890889E-05 -1.21853678925E-05 -1.26971088570E-05 -1.32283942510E-05 -1.37799304112E-05 -1.43524485819E-05 -1.49467057829E-05 -1.55634857079E-05 -1.62035996536E-05 -1.68678874815E-05 -1.75572186126E-05 -1.82724930570E-05 -1.90146424785E-05 -1.97846312966E-05 -2.05834578269E-05 -2.14121554599E-05 -2.22717938821E-05 -2.31634803381E-05 -2.40883609368E-05 -2.50476220035E-05 -2.60424914775E-05 -2.70742403594E-05 -2.81441842075E-05 -2.92536846861E-05 -3.04041511683E-05 -3.15970423930E-05 -3.28338681798E-05 -3.41161912035E-05 -3.54456288294E-05 -3.68238550123E-05 -3.82526022614E-05 -3.97336636727E-05 -4.12688950323E-05 -4.28602169915E-05 -4.45096173179E-05 -4.62191532241E-05 -4.79909537764E-05 -4.98272223877E-05 -5.17302393955E-05 -5.37023647298E-05 -5.57460406724E-05 -5.78637947125E-05 -6.00582425000E-05 -6.23320909013E-05 -6.46881411608E-05 -6.71292921709E-05 -6.96585438555E-05 -7.22790006703E-05 -7.49938752238E-05 -7.78064920228E-05 -8.07202913486E-05 -8.37388332654E-05 -8.68658017677E-05 -9.01050090711E-05 -9.34604000510E-05 -9.69360568339E-05 -1.00536203548E-04 -1.04265211236E-04 -1.08127602940E-04 -1.12128058961E-04 -1.16271422295E-04 -1.20562704264E-04 -1.25007090339E-04 -1.29609946158E-04 -1.34376823759E-04 -1.39313468024E-04 -1.44425823344E-04 -1.49720040519E-04 -1.55202483887E-04 -1.60879738710E-04 -1.66758618800E-04 -1.72846174423E-04 -1.79149700464E-04 -1.85676744876E-04 -1.92435117422E-04 -1.99432898718E-04 -2.06678449583E-04 -2.14180420714E-04 -2.21947762693E-04 -2.29989736341E-04 -2.38315923421E-04 -2.46936237715E-04 -2.55860936484E-04 -2.65100632311E-04 -2.74666305362E-04 -2.84569316067E-04 -2.94821418226E-04 -3.05434772581E-04 -3.16421960840E-04 -3.27796000190E-04 -3.39570358310E-04 -3.51758968888E-04 -3.64376247685E-04 -3.77437109137E-04 -3.90956983534E-04 -4.04951834788E-04 -4.19438178803E-04 -4.34433102480E-04 -4.49954283376E-04 -4.66020010023E-04 -4.82649202959E-04 -4.99861436467E-04 -5.17676961061E-04 -5.36116726742E-04 -5.55202407046E-04 -5.74956423919E-04 -5.95401973433E-04 -6.16563052390E-04 -6.38464485824E-04 -6.61131955449E-04 -6.84592029072E-04 -7.08872191012E-04 -7.34000873553E-04 -7.60007489464E-04 -7.86922465636E-04 -8.14777277856E-04 -8.43604486757E-04 -8.73437775007E-04 -9.04311985741E-04 -9.36263162312E-04 -9.69328589380E-04 -1.00354683540E-03 -1.03895779655E-03 -1.07560274214E-03 -1.11352436154E-03 -1.15276681276E-03 -1.19337577256E-03 -1.23539848836E-03 -1.27888383186E-03 -1.32388235441E-03 -1.37044634433E-03 -1.41862988611E-03 -1.46848892160E-03 -1.52008131329E-03 -1.57346690962E-03 -1.62870761260E-03 -1.68586744759E-03 -1.74501263544E-03 -1.80621166709E-03 -1.86953538054E-03 -1.93505704050E-03 -2.00285242062E-03 -2.07299988843E-03 -2.14558049316E-03 -2.22067805640E-03 -2.29837926580E-03 -2.37877377178E-03 -2.46195428753E-03 -2.54801669221E-03 -2.63706013753E-03 -2.72918715785E-03 -2.82450378388E-03 -2.92311966002E-03 -3.02514816552E-03 -3.13070653965E-03 -3.23991601075E-03 -3.35290192961E-03 -3.46979390699E-03 -3.59072595560E-03 -3.71583663662E-03 -3.84526921083E-03 -3.97917179460E-03 -4.11769752068E-03 -4.26100470419E-03 -4.40925701367E-03 -4.56262364756E-03 -4.72127951606E-03 -4.88540542872E-03 -5.05518828765E-03 -5.23082128671E-03 -5.41250411677E-03 -5.60044317709E-03 -5.79485179307E-03 -5.99595044047E-03 -6.20396697631E-03 -6.41913687644E-03 -6.64170348012E-03 -6.87191824156E-03 -7.11004098874E-03 -7.35634018946E-03 -7.61109322487E-03 -7.87458667059E-03 -8.14711658550E-03 -8.42898880826E-03 -8.72051926180E-03 -9.02203426573E-03 -9.33387085684E-03 -9.65637711771E-03 -9.98991251340E-03 -1.03348482365E-02 -1.06915675601E-02 -1.10604661995E-02 -1.14419526812E-02 -1.18364487210E-02 -1.22443896092E-02 -1.26662246045E-02 -1.31024173346E-02 -1.35534462056E-02 -1.40198048176E-02 -1.45020023874E-02 -1.50005641787E-02 -1.55160319373E-02 -1.60489643325E-02 -1.65999374043E-02 -1.71695450136E-02 -1.77583992980E-02 -1.83671311290E-02 -1.89963905722E-02 -1.96468473480E-02 -2.03191912923E-02 -2.10141328156E-02 -2.17324033593E-02 -2.24747558473E-02 -2.32419651306E-02 -2.40348284247E-02 -2.48541657352E-02 -2.57008202708E-02 -2.65756588404E-02 -2.74795722315E-02 -2.84134755661E-02 -2.93783086315E-02 -3.03750361809E-02 -3.14046482006E-02 -3.24681601383E-02 -3.35666130871E-02 -3.47010739206E-02 -3.58726353723E-02 -3.70824160527E-02 -3.83315603959E-02 -3.96212385306E-02 -4.09526460627E-02 -4.23270037645E-02 -4.37455571573E-02 -4.52095759781E-02 -4.67203535178E-02 -4.82792058193E-02 -4.98874707203E-02 -5.15465067278E-02 -5.32576917067E-02 -5.50224213675E-02 -5.68421075332E-02 -5.87181761670E-02 -6.06520651398E-02 -6.26452217159E-02 -6.46990997320E-02 -6.68151564465E-02 -6.89948490319E-02 -7.12396306819E-02 -7.35509463046E-02 -7.59302277716E-02 -7.83788886896E-02 -8.08983186616E-02 -8.34898770032E-02 -8.61548858781E-02 -8.88946228147E-02 -9.17103125676E-02 -9.46031182855E-02 -9.75741319453E-02 -1.00624364017E-01 -1.03754732317E-01 -1.06966050021E-01 -1.10259012791E-01 -1.13634184992E-01 -1.17091984968E-01 -1.20632669347E-01 -1.24256316360E-01 -1.27962808166E-01 -1.31751812160E-01 -1.35622761295E-01 -1.39574833403E-01 -1.43606929575E-01 -1.47717651625E-01 -1.51905278700E-01 -1.56167743135E-01 -1.60502605644E-01 -1.64907029985E-01 -1.69377757263E-01 -1.73911080066E-01 -1.78502816662E-01 -1.83148285529E-01 -1.87842280535E-01 -1.92579047129E-01 -1.97352259949E-01 -2.02155002320E-01 -2.06979748148E-01 -2.11818346805E-01 -2.16662011616E-01 -2.21501312658E-01 -2.26326174611E-01 -2.31125880444E-01 -2.35889081809E-01 -2.40603816975E-01 -2.45257537243E-01 -2.49837142712E-01 -2.54329028303E-01 -2.58719140867E-01 -2.62993048145E-01 -2.67136020236E-01 -2.71133124023E-01 -2.74969330836E-01 -2.78629637300E-01 -2.82099198966E-01 -2.85363475872E-01 -2.88408388640E-01 -2.91220483058E-01 -2.93787100353E-01 -2.96096549484E-01 -2.98138276813E-01 -2.99903027412E-01 -3.01382991079E-01 -3.02571924888E-01 -3.03465242759E-01 -3.04060061274E-01 -3.04355189675E-01 -3.04351050948E-01 -3.04049520024E-01 -3.03453664767E-01 -3.02567375519E-01 -3.01394869977E-01 -2.99940062131E-01 -2.98205787313E-01 -2.96192880380E-01 -2.93899111017E-01 -2.91317989500E-01 -2.88437468365E-01 -2.85238580638E-01 -2.81694073795E-01 -2.77767120655E-01 -2.73410213745E-01 -2.68564377923E-01 -2.63158866218E-01 -2.57111534342E-01 -2.50330117604E-01 -2.42714656408E-01 -2.34161327894E-01 -2.24567934886E-01 -2.13841270152E-01 -2.01906502957E-01 -1.88718612787E-01 -1.74275706629E-01 -1.58633785330E-01 -1.41922156112E-01 -1.24358211886E-01 -1.06259713133E-01 -8.80520346342E-02 -7.02671312063E-02 -5.35303454809E-02 -3.85308290996E-02 -2.59716208450E-02 -1.64968808560E-02 -1.05973010244E-02 -8.50165666477E-03 -1.00748878222E-02 -1.47640640450E-02 -2.16676052610E-02 -2.98560068058E-02 -3.88933022427E-02 -4.86294869876E-02 -5.89073982548E-02 -6.95517528165E-02 -8.03695437115E-02 -9.11507542021E-02 -1.01669497176E-01 -1.11685723741E-01 -1.20947687233E-01 -1.29195391641E-01 -1.36165298431E-01 -1.41596597647E-01 -1.45239369307E-01 -1.46864939811E-01 -1.46278675755E-01 -1.43335303527E-01 -1.37956599205E-01 -1.30150883602E-01 -1.20033196757E-01 -1.07844222292E-01 -9.39650507440E-02 -7.89236523000E-02 -6.33876965854E-02 -4.81372353960E-02 -3.40104041221E-02 -2.18164039828E-02 -1.22143096243E-02 -5.56590543853E-03 -1.78993353376E-03 -2.79493137142E-04 -3.28780712547E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -5.91084694393E+00 1.92624280245E+01 3.45331104594E+02 -3.84281887077E+03 1.73462185904E+04 -4.00902204526E+04 4.65003640751E+04 -2.14595346532E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.52545867507E-15 -3.71399025725E-14 -1.28597905514E-13 -3.12752398501E-13 -6.26776081218E-13 -1.11139658600E-12 -1.81114618998E-12 -2.77462691546E-12 -4.05479190507E-12 -5.70924400762E-12 -7.80055256225E-12 -1.03965894233E-11 -1.35708853258E-11 -1.74030077524E-11 -2.19789615265E-11 -2.73916134231E-11 -3.37411421626E-11 -4.11355152233E-11 -4.96909939924E-11 -5.95326688544E-11 -7.07950259059E-11 -8.36225470789E-11 -9.81703455479E-11 -1.14604838406E-10 -1.33104458695E-10 -1.53860408998E-10 -1.77077458909E-10 -2.02974788846E-10 -2.31786882770E-10 -2.63764472552E-10 -2.99175536849E-10 -3.38306357526E-10 -3.81462636809E-10 -4.28970678538E-10 -4.81178637073E-10 -5.38457837579E-10 -6.01204171655E-10 -6.69839572444E-10 -7.44813573615E-10 -8.26604956829E-10 -9.15723492563E-10 -1.01271177942E-09 -1.11814718731E-09 -1.23264391025E-09 -1.35685513474E-09 -1.49147533004E-09 -1.63724266707E-09 -1.79494157287E-09 -1.96540542817E-09 -2.14951941568E-09 -2.34822352748E-09 -2.56251574009E-09 -2.79345536635E-09 -3.04216659382E-09 -3.30984221966E-09 -3.59774759277E-09 -3.90722477452E-09 -4.23969692968E-09 -4.59667296022E-09 -4.97975239513E-09 -5.39063054993E-09 -5.83110397068E-09 -6.30307617772E-09 -6.80856372529E-09 -7.34970259426E-09 -7.92875493577E-09 -8.54811618470E-09 -9.21032256298E-09 -9.91805899370E-09 -1.06741674480E-08 -1.14816557484E-08 -1.23437068522E-08 -1.32636886421E-08 -1.42451642502E-08 -1.52919029439E-08 -1.64078916052E-08 -1.75973468332E-08 -1.88647277051E-08 -2.02147492298E-08 -2.16523965313E-08 -2.31829398013E-08 -2.48119500623E-08 -2.65453157836E-08 -2.83892603967E-08 -3.03503607577E-08 -3.24355666077E-08 -3.46522210832E-08 -3.70080823346E-08 -3.95113463098E-08 -4.21706707663E-08 -4.49952005764E-08 -4.79945943956E-08 -5.11790527651E-08 -5.45593477263E-08 -5.81468540261E-08 -6.19535819997E-08 -6.59922122181E-08 -7.02761319948E-08 -7.48194738510E-08 -7.96371560422E-08 -8.47449252571E-08 -9.01594016024E-08 -9.58981259961E-08 -1.01979610096E-07 -1.08423388900E-07 -1.15250076156E-07 -1.22481422731E-07 -1.30140378105E-07 -1.38251155140E-07 -1.46839298306E-07 -1.55931755551E-07 -1.65556954000E-07 -1.75744879687E-07 -1.86527161539E-07 -1.97937159827E-07 -2.10010059332E-07 -2.22782967465E-07 -2.36295017605E-07 -2.50587477939E-07 -2.65703866078E-07 -2.81690069775E-07 -2.98594474041E-07 -3.16468095028E-07 -3.35364721006E-07 -3.55341060826E-07 -3.76456900260E-07 -3.98775266631E-07 -4.22362602169E-07 -4.47288946560E-07 -4.73628129161E-07 -5.01457971400E-07 -5.30860499894E-07 -5.61922170844E-07 -5.94734106309E-07 -6.29392342983E-07 -6.65998094121E-07 -7.04658025324E-07 -7.45484544897E-07 -7.88596109555E-07 -8.34117546275E-07 -8.82180391156E-07 -9.32923246164E-07 -9.86492154718E-07 -1.04304099709E-06 -1.10273190669E-06 -1.16573570827E-06 -1.23223237927E-06 -1.30241153550E-06 -1.37647294239E-06 -1.45462705318E-06 -1.53709557554E-06 -1.62411206791E-06 -1.71592256737E-06 -1.81278625051E-06 -1.91497612906E-06 -2.02277978218E-06 -2.13650012728E-06 -2.25645623132E-06 -2.38298416487E-06 -2.51643790099E-06 -2.65719026146E-06 -2.80563391260E-06 -2.96218241357E-06 -3.12727131959E-06 -3.30135934328E-06 -3.48492957676E-06 -3.67849077811E-06 -3.88257872523E-06 -4.09775764078E-06 -4.32462169190E-06 -4.56379656852E-06 -4.81594114451E-06 -5.08174922593E-06 -5.36195139079E-06 -5.65731692540E-06 -5.96865586202E-06 -6.29682112335E-06 -6.64271077923E-06 -7.00727042161E-06 -7.39149566368E-06 -7.79643476997E-06 -8.22319142389E-06 -8.67292764014E-06 -9.14686682938E-06 -9.64629702314E-06 -1.01725742673E-05 -1.07271261929E-05 -1.13114557734E-05 -1.19271452785E-05 -1.25758604339E-05 -1.32593547989E-05 -1.39794743716E-05 -1.47381624350E-05 -1.55374646561E-05 -1.63795344499E-05 -1.72666386241E-05 -1.82011633172E-05 -1.91856202466E-05 -2.02226532816E-05 -2.13150453587E-05 -2.24657257577E-05 -2.36777777548E-05 -2.49544466755E-05 -2.62991483651E-05 -2.77154780998E-05 -2.92072199615E-05 -3.07783566982E-05 -3.24330800981E-05 -3.41758019006E-05 -3.60111652748E-05 -3.79440568921E-05 -3.99796196258E-05 -4.21232659078E-05 -4.43806917782E-05 -4.67578916615E-05 -4.92611739081E-05 -5.18971771391E-05 -5.46728874371E-05 -5.75956564246E-05 -6.06732202767E-05 -6.39137197149E-05 -6.73257210329E-05 -7.09182382066E-05 -7.47007561434E-05 -7.86832551292E-05 -8.28762365342E-05 -8.72907498402E-05 -9.19384210587E-05 -9.68314826076E-05 -1.01982804723E-04 -1.07405928483E-04 -1.13115100522E-04 -1.19125309525E-04 -1.25452324593E-04 -1.32112735565E-04 -1.39123995404E-04 -1.46504464747E-04 -1.54273458726E-04 -1.62451296181E-04 -1.71059351367E-04 -1.80120108309E-04 -1.89657217899E-04 -1.99695557909E-04 -2.10261296036E-04 -2.21381956145E-04 -2.33086487864E-04 -2.45405339693E-04 -2.58370535803E-04 -2.72015756709E-04 -2.86376424000E-04 -3.01489789332E-04 -3.17395027883E-04 -3.34133336497E-04 -3.51748036736E-04 -3.70284683082E-04 -3.89791176535E-04 -4.10317883871E-04 -4.31917762823E-04 -4.54646493479E-04 -4.78562616179E-04 -5.03727676234E-04 -5.30206375782E-04 -5.58066733111E-04 -5.87380249820E-04 -6.18222086152E-04 -6.50671244915E-04 -6.84810764358E-04 -7.20727920432E-04 -7.58514438863E-04 -7.98266717485E-04 -8.40086059285E-04 -8.84078916674E-04 -9.30357147448E-04 -9.79038282997E-04 -1.03024580928E-03 -1.08410946114E-03 -1.14076553051E-03 -1.20035718921E-03 -1.26303482678E-03 -1.32895640424E-03 -1.39828782418E-03 -1.47120331807E-03 -1.54788585144E-03 -1.62852754762E-03 -1.71333013086E-03 -1.80250538955E-03 -1.89627566040E-03 -1.99487433438E-03 -2.09854638523E-03 -2.20754892142E-03 -2.32215176251E-03 -2.44263804070E-03 -2.56930482855E-03 -2.70246379385E-03 -2.84244188251E-03 -2.98958203043E-03 -3.14424390547E-03 -3.30680468029E-03 -3.47765983728E-03 -3.65722400637E-03 -3.84593183689E-03 -4.04423890434E-03 -4.25262265322E-03 -4.47158337666E-03 -4.70164523412E-03 -4.94335730785E-03 -5.19729469915E-03 -5.46405966530E-03 -5.74428279804E-03 -6.03862424428E-03 -6.34777496999E-03 -6.67245806781E-03 -7.01343010901E-03 -7.37148254041E-03 -7.74744312668E-03 -8.14217743833E-03 -8.55659038568E-03 -8.99162779887E-03 -9.44827805396E-03 -9.92757374482E-03 -1.04305934006E-02 -1.09584632482E-02 -1.15123590188E-02 -1.20935077985E-02 -1.27031899197E-02 -1.33427408951E-02 -1.40135533892E-02 -1.47170792281E-02 -1.54548314438E-02 -1.62283863511E-02 -1.70393856540E-02 -1.78895385784E-02 -1.87806240280E-02 -1.97144927587E-02 -2.06930695674E-02 -2.17183554918E-02 -2.27924300134E-02 -2.39174532612E-02 -2.50956682076E-02 -2.63294028523E-02 -2.76210723860E-02 -2.89731813269E-02 -3.03883256236E-02 -3.18691947153E-02 -3.34185735409E-02 -3.50393444898E-02 -3.67344892838E-02 -3.85070907818E-02 -4.03603346981E-02 -4.22975112232E-02 -4.43220165392E-02 -4.64373542180E-02 -4.86471364938E-02 -5.09550853985E-02 -5.33650337502E-02 -5.58809259851E-02 -5.85068188220E-02 -6.12468817492E-02 -6.41053973236E-02 -6.70867612712E-02 -7.01954823788E-02 -7.34361821638E-02 -7.68135943116E-02 -8.03325638660E-02 -8.39980461576E-02 -8.78151054528E-02 -9.17889133020E-02 -9.59247465627E-02 -1.00227985067E-01 -1.04704108896E-01 -1.09358695217E-01 -1.14197414618E-01 -1.19226026890E-01 -1.24450376140E-01 -1.29876385158E-01 -1.35510048884E-01 -1.41357426828E-01 -1.47424634247E-01 -1.53717831836E-01 -1.60243213658E-01 -1.67006992972E-01 -1.74015385560E-01 -1.81274590065E-01 -1.88790764793E-01 -1.96570000316E-01 -2.04618287114E-01 -2.12941477371E-01 -2.21545239916E-01 -2.30435007146E-01 -2.39615912620E-01 -2.49092717844E-01 -2.58869726593E-01 -2.68950684938E-01 -2.79338664965E-01 -2.90035930007E-01 -3.01043779023E-01 -3.12362367655E-01 -3.23990503360E-01 -3.35925411958E-01 -3.48162472976E-01 -3.60694921231E-01 -3.73513512337E-01 -3.86606150166E-01 -3.99957474839E-01 -4.13548410567E-01 -4.27355673682E-01 -4.41351242513E-01 -4.55501792426E-01 -4.69768101430E-01 -4.84104434248E-01 -4.98457915786E-01 -5.12767908447E-01 -5.26965411803E-01 -5.40972507760E-01 -5.54701879429E-01 -5.68056437425E-01 -5.80929093093E-01 -5.93202723976E-01 -6.04750382396E-01 -6.15435802896E-01 -6.25114267877E-01 -6.33633892433E-01 -6.40837388089E-01 -6.46564359939E-01 -6.50654181153E-01 -6.52949471539E-01 -6.53300181129E-01 -6.51568244015E-01 -6.47632720004E-01 -6.41395280914E-01 -6.32785823393E-01 -6.21767901163E-01 -6.08343568034E-01 -5.92557112546E-01 -5.74497052675E-01 -5.54295655564E-01 -5.32125169474E-01 -5.08189926741E-01 -4.82713529456E-01 -4.55920505410E-01 -4.28012171952E-01 -3.99137028771E-01 -3.69356881340E-01 -3.38611130529E-01 -3.06683284443E-01 -2.73175730316E-01 -2.37501013573E-01 -1.98899976787E-01 -1.56498450638E-01 -1.09413561636E-01 -5.69160668683E-02 1.35694244828E-03 6.51695376261E-02 1.33511471948E-01 2.04637233626E-01 2.76609538356E-01 3.48340490238E-01 4.19276467883E-01 4.88859150495E-01 5.56501246561E-01 6.21582580721E-01 6.83444518373E-01 7.41382889809E-01 7.94639896370E-01 8.42395908261E-01 8.83762617593E-01 9.17779671237E-01 9.43417670003E-01 9.59591207793E-01 9.65186364182E-01 9.59107572065E-01 9.40348859084E-01 9.08093748017E-01 8.61846207712E-01 8.01591400163E-01 7.27979012899E-01 6.42513064048E-01 5.47719876565E-01 4.47250548270E-01 3.45857078185E-01 2.49165889511E-01 1.63166458097E-01 9.33505018021E-02 4.35043336290E-02 1.43168351964E-02 2.28884018384E-03 2.90120329990E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -3.04601679382E+01 3.07806023941E+02 -2.79490546192E+03 1.86829333356E+04 -7.19646396707E+04 1.52912374973E+05 -1.67717135171E+05 7.43182957789E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.51407365252E-15 2.88395856572E-14 9.98578363170E-14 2.42856037964E-13 4.86699243698E-13 8.63012955090E-13 1.40637702674E-12 2.15453151994E-12 3.14859519397E-12 4.43329736170E-12 6.05722387634E-12 8.07307805895E-12 1.05379574207E-11 1.35136470810E-11 1.70669308332E-11 2.12699208606E-11 2.62004071612E-11 3.19422277997E-11 3.85856611629E-11 4.62278414625E-11 5.49731987969E-11 6.49339251538E-11 7.62304678124E-11 8.89920516844E-11 1.03357232215E-10 1.19474480556E-10 1.37502802814E-10 1.57612395277E-10 1.79985337629E-10 2.04816326256E-10 2.32313449891E-10 2.62699009940E-10 2.96210387961E-10 3.33100962927E-10 3.73641081016E-10 4.18119080831E-10 4.66842377123E-10 5.20138606234E-10 5.78356836669E-10 6.41868848374E-10 7.11070484511E-10 7.86383079701E-10 8.68254968947E-10 9.57163081644E-10 1.05361462536E-09 1.15814886425E-09 1.27133899743E-09 1.39379414246E-09 1.52616143012E-09 1.66912821611E-09 1.82342441633E-09 1.98982497240E-09 2.16915245441E-09 2.36227980857E-09 2.57013325736E-09 2.79369536072E-09 3.03400824686E-09 3.29217702191E-09 3.56937336819E-09 3.86683934112E-09 4.18589137576E-09 4.52792451414E-09 4.89441686534E-09 5.28693431092E-09 5.70713546900E-09 6.15677693073E-09 6.63771878412E-09 7.15193044042E-09 7.70149677958E-09 8.28862463183E-09 8.91564961342E-09 9.58504333567E-09 1.02994210073E-08 1.10615494513E-08 1.18743555580E-08 1.27409351992E-08 1.36645626255E-08 1.46487003762E-08 1.56970097254E-08 1.68133616965E-08 1.80018486729E-08 1.92667966383E-08 2.06127780794E-08 2.20446255872E-08 2.35674461934E-08 2.51866364813E-08 2.69078985139E-08 2.87372566198E-08 3.06810750860E-08 3.27460768037E-08 3.49393629184E-08 3.72684335388E-08 3.97412095588E-08 4.23660556542E-08 4.51518045147E-08 4.81077823779E-08 5.12438359342E-08 5.45703606754E-08 5.80983307644E-08 6.18393305048E-08 6.58055874984E-08 7.00100075773E-08 7.44662116061E-08 7.91885742538E-08 8.41922648385E-08 8.94932903560E-08 9.51085408075E-08 1.01055836948E-07 1.07353980583E-07 1.14022807554E-07 1.21083243540E-07 1.28557362847E-07 1.36468450322E-07 1.44841066569E-07 1.53701116637E-07 1.63075922365E-07 1.72994298583E-07 1.83486633351E-07 1.94584972484E-07 2.06323108559E-07 2.18736674652E-07 2.31863243059E-07 2.45742429259E-07 2.60416001390E-07 2.75927995543E-07 2.92324837170E-07 3.09655468926E-07 3.27971485295E-07 3.47327274351E-07 3.67780167026E-07 3.89390594289E-07 4.12222252647E-07 4.36342278407E-07 4.61821431164E-07 4.88734286988E-07 5.17159441842E-07 5.47179725749E-07 5.78882428281E-07 6.12359535968E-07 6.47707982250E-07 6.85029910633E-07 7.24432951740E-07 7.66030514992E-07 8.09942095685E-07 8.56293598266E-07 9.05217676673E-07 9.56854092618E-07 1.01135009277E-06 1.06886080580E-06 1.12954966041E-06 1.19358882530E-06 1.26115967242E-06 1.33245326451E-06 1.40767086840E-06 1.48702449530E-06 1.57073746952E-06 1.65904502712E-06 1.75219494608E-06 1.85044820958E-06 1.95407970417E-06 2.06337895468E-06 2.17865089772E-06 2.30021669583E-06 2.42841459444E-06 2.56360082382E-06 2.70615054839E-06 2.85645886594E-06 3.01494185920E-06 3.18203770268E-06 3.35820782761E-06 3.54393814790E-06 3.73974035049E-06 3.94615325334E-06 4.16374423462E-06 4.39311073678E-06 4.63488184952E-06 4.88971997564E-06 5.15832258414E-06 5.44142405523E-06 5.73979762181E-06 6.05425741270E-06 6.38566060275E-06 6.73490967548E-06 7.10295480406E-06 7.49079635684E-06 7.89948753393E-06 8.33013714150E-06 8.78391251122E-06 9.26204257214E-06 9.76582108312E-06 1.02966100340E-05 1.08558432244E-05 1.14450300295E-05 1.20657593617E-05 1.27197038402E-05 1.34086241767E-05 1.41343737905E-05 1.48989036644E-05 1.57042674529E-05 1.65526268576E-05 1.74462572813E-05 1.83875537777E-05 1.93790373101E-05 2.04233613361E-05 2.15233187343E-05 2.26818490924E-05 2.39020463728E-05 2.51871669773E-05 2.65406382308E-05 2.79660673057E-05 2.94672506088E-05 3.10481836560E-05 3.27130714595E-05 3.44663394526E-05 3.63126449818E-05 3.82568893938E-05 4.03042307481E-05 4.24600971885E-05 4.47302010061E-05 4.71205534290E-05 4.96374801775E-05 5.22876378226E-05 5.50780309886E-05 5.80160304451E-05 6.11093921303E-05 6.43662771571E-05 6.77952728483E-05 7.14054148566E-05 7.52062104215E-05 7.92076628237E-05 8.34202970959E-05 8.78551870537E-05 9.25239837152E-05 9.74389451770E-05 1.02612968023E-04 1.08059620340E-04 1.13793176425E-04 1.19828653266E-04 1.26181848887E-04 1.32869382650E-04 1.39908737612E-04 1.47318305045E-04 1.55117431213E-04 1.63326466540E-04 1.71966817264E-04 1.81060999722E-04 1.90632697379E-04 2.00706820755E-04 2.11309570371E-04 2.22468502884E-04 2.34212600557E-04 2.46572344226E-04 2.59579789943E-04 2.73268649467E-04 2.87674374797E-04 3.02834246942E-04 3.18787469123E-04 3.35575264643E-04 3.53240979626E-04 3.71830190878E-04 3.91390819105E-04 4.11973247742E-04 4.33630447674E-04 4.56418108110E-04 4.80394773915E-04 5.05621989694E-04 5.32164450953E-04 5.60090162664E-04 5.89470605571E-04 6.20380910607E-04 6.52900041788E-04 6.87110987977E-04 7.23100963911E-04 7.60961620932E-04 8.00789267834E-04 8.42685102298E-04 8.86755453383E-04 9.33112035550E-04 9.81872214744E-04 1.03315928704E-03 1.08710277044E-03 1.14383871027E-03 1.20350999896E-03 1.26626671061E-03 1.33226645104E-03 1.40167472403E-03 1.47466531430E-03 1.55142068799E-03 1.63213241133E-03 1.71700158813E-03 1.80623931702E-03 1.90006716901E-03 1.99871768620E-03 2.10243490256E-03 2.21147488734E-03 2.32610631224E-03 2.44661104288E-03 2.57328475565E-03 2.70643758072E-03 2.84639477205E-03 2.99349740538E-03 3.14810310493E-03 3.31058679990E-03 3.48134151154E-03 3.66077917165E-03 3.84933147346E-03 4.04745075578E-03 4.25561092117E-03 4.47430838907E-03 4.70406308458E-03 4.94541946383E-03 5.19894757652E-03 5.46524416639E-03 5.74493381027E-03 6.03867009627E-03 6.34713684164E-03 6.67104935067E-03 7.01115571312E-03 7.36823814319E-03 7.74311435948E-03 8.13663900560E-03 8.54970511164E-03 8.98324559595E-03 9.43823480701E-03 9.91569010467E-03 1.04166734799E-02 1.09422932123E-02 1.14937055635E-02 1.20721165063E-02 1.26787834854E-02 1.33150172110E-02 1.39821834795E-02 1.46817050211E-02 1.54150633706E-02 1.61838007571E-02 1.69895220104E-02 1.78338964786E-02 1.87186599536E-02 1.96456165981E-02 2.06166408699E-02 2.16336794364E-02 2.26987530737E-02 2.38139585435E-02 2.49814704386E-02 2.62035429910E-02 2.74825118333E-02 2.88207957028E-02 3.02208980806E-02 3.16854087542E-02 3.32170052916E-02 3.48184544175E-02 3.64926132768E-02 3.82424305736E-02 4.00709475721E-02 4.19812989434E-02 4.39767134451E-02 4.60605144144E-02 4.82361200615E-02 5.05070435406E-02 5.28768927837E-02 5.53493700724E-02 5.79282713294E-02 6.06174851025E-02 6.34209912181E-02 6.63428590736E-02 6.93872455391E-02 7.25583924338E-02 7.58606235369E-02 7.92983410924E-02 8.28760217550E-02 8.65982119237E-02 9.04695223970E-02 9.44946222746E-02 9.86782320204E-02 1.03025115585E-01 1.07540071472E-01 1.12227922608E-01 1.17093504865E-01 1.22141654042E-01 1.27377191089E-01 1.32804905334E-01 1.38429535408E-01 1.44255747538E-01 1.50288110818E-01 1.56531069013E-01 1.62988908374E-01 1.69665720900E-01 1.76565362358E-01 1.83691404338E-01 1.91047079479E-01 1.98635218953E-01 2.06458181142E-01 2.14517770389E-01 2.22815144559E-01 2.31350710084E-01 2.40124003043E-01 2.49133554791E-01 2.58376740558E-01 2.67849609459E-01 2.77546694353E-01 2.87460800086E-01 2.97582768786E-01 3.07901221138E-01 3.18402272919E-01 3.29069226539E-01 3.39882238010E-01 3.50817960581E-01 3.61849167337E-01 3.72944356348E-01 3.84067343547E-01 3.95176850375E-01 4.06226095425E-01 4.17162401852E-01 4.27926835158E-01 4.38453889118E-01 4.48671241018E-01 4.58499600929E-01 4.67852683382E-01 4.76637333186E-01 4.84753840235E-01 4.92096480349E-01 4.98554320302E-01 5.04012324498E-01 5.08352797662E-01 5.11457191618E-01 5.13208293847E-01 5.13492800006E-01 5.12204250996E-01 5.09246286401E-01 5.04536129328E-01 4.98008172392E-01 4.89617480642E-01 4.79342965798E-01 4.67189919103E-01 4.53191521991E-01 4.37408890849E-01 4.19929164752E-01 4.00861127402E-01 3.80327885824E-01 3.58456233829E-01 3.35362538975E-01 3.11135342942E-01 2.85815396214E-01 2.59374591567E-01 2.31696238031E-01 2.02560311611E-01 1.71638650542E-01 1.38506330570E-01 1.02676258824E-01 6.36636380030E-02 2.10841289164E-02 -2.52177672054E-02 -7.50286574887E-02 -1.27661063949E-01 -1.81978406198E-01 -2.36725417468E-01 -2.91159766585E-01 -3.44858602041E-01 -3.97391442360E-01 -4.48305154921E-01 -4.97121251418E-01 -5.43332082762E-01 -5.86396081184E-01 -6.25732432113E-01 -6.60715871986E-01 -6.90672708169E-01 -7.14879636123E-01 -7.32567471148E-01 -7.42932473151E-01 -7.45158453018E-01 -7.38453191280E-01 -7.22102703842E-01 -6.95546320469E-01 -6.58474082525E-01 -6.10945241637E-01 -5.53522202601E-01 -4.87407703973E-01 -4.14564072402E-01 -3.37782203301E-01 -2.60655477623E-01 -1.87402861900E-01 -1.22481505115E-01 -6.99429718466E-02 -3.25375334165E-02 -1.06896090404E-02 -1.70620067545E-03 -2.15523707042E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.36526905415E+01 -2.16618937616E+02 1.75886609060E+03 -1.13775210409E+04 4.35525864462E+04 -9.24275347828E+04 1.01350037186E+05 -4.49088864014E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 -1.75764529391E+00 0.00000000000E+00 -2.82474453422E-10 3.67025650284E-09 1.84110939846E-09 -6.72987250548E-11 -2.64944734622E-09 -5.88062310563E-09 -9.79882099019E-09 -1.44357553257E-08 -1.98287172883E-08 -2.60107783789E-08 -3.30231961413E-08 -4.09010678781E-08 -4.96862455622E-08 -5.94260217741E-08 -7.01551077082E-08 -8.19237331617E-08 -9.47847754554E-08 -1.08777441715E-07 -1.23953718716E-07 -1.40376718747E-07 -1.58091188486E-07 -1.77158632722E-07 -1.97634554230E-07 -2.19586967821E-07 -2.43076479109E-07 -2.68167834573E-07 -2.94924578567E-07 -3.23437886382E-07 -3.53755882242E-07 -3.85982738766E-07 -4.20159654855E-07 -4.56426354793E-07 -4.94804574995E-07 -5.35438199380E-07 -5.78383819688E-07 -6.23753042109E-07 -6.71641579759E-07 -7.22158266021E-07 -7.75401662526E-07 -8.31478208719E-07 -8.90530829596E-07 -9.52645205362E-07 -1.01795910718E-06 -1.08660825516E-06 -1.15871315974E-06 -1.23442339303E-06 -1.31386742960E-06 -1.39721167100E-06 -1.48459803441E-06 -1.57617849328E-06 -1.67215329055E-06 -1.77264465212E-06 -1.87785915332E-06 -1.98798872923E-06 -2.10321555929E-06 -2.22369120831E-06 -2.34972119874E-06 -2.48143057589E-06 -2.61905899838E-06 -2.76287198621E-06 -2.91305987631E-06 -3.06989030205E-06 -3.23361270723E-06 -3.40448966205E-06 -3.58281004816E-06 -3.76880829713E-06 -3.96284775353E-06 -4.16517070236E-06 -4.37610280264E-06 -4.59600660952E-06 -4.82517686374E-06 -5.06400415704E-06 -5.31277445593E-06 -5.57195745417E-06 -5.84187813752E-06 -6.12295902199E-06 -6.41562332947E-06 -6.72025789362E-06 -7.03741344509E-06 -7.36740517551E-06 -7.71084788131E-06 -8.06813552714E-06 -8.43988752011E-06 -8.82651922428E-06 -9.22865275319E-06 -9.64686666425E-06 -1.00817150411E-05 -1.05338143633E-05 -1.10038404230E-05 -1.14923832883E-05 -1.20001697850E-05 -1.25279109533E-05 -1.30762936743E-05 -1.36461065657E-05 -1.42381297130E-05 -1.48531367028E-05 -1.54920111659E-05 -1.61556052194E-05 -1.68447993994E-05 -1.75605310598E-05 -1.83037990343E-05 -1.90755170405E-05 -1.98768626378E-05 -2.07086870047E-05 -2.15723250826E-05 -2.24687871102E-05 -2.33992131266E-05 -2.43650128147E-05 -2.53673414776E-05 -2.64074108264E-05 -2.74868329623E-05 -2.86067841039E-05 -2.97688675102E-05 -3.09744893527E-05 -3.22253417743E-05 -3.35228887371E-05 -3.48689126926E-05 -3.62651547958E-05 -3.77133170085E-05 -3.92153597558E-05 -4.07731294709E-05 -4.23886251912E-05 -4.40640185453E-05 -4.58012285495E-05 -4.76026787802E-05 -4.94704979398E-05 -5.14071694041E-05 -5.34150233514E-05 -5.54967025814E-05 -5.76547470503E-05 -5.98918874198E-05 -6.22109739321E-05 -6.46148958780E-05 -6.71065727064E-05 -6.96892732068E-05 -7.23660671771E-05 -7.51404313435E-05 -7.80157104859E-05 -8.09954884905E-05 -8.40834870650E-05 -8.72835335469E-05 -9.05996076405E-05 -9.40357014323E-05 -9.75961780714E-05 -1.01285368675E-04 -1.05107815386E-04 -1.09068171020E-04 -1.13171439392E-04 -1.17422455665E-04 -1.21826585832E-04 -1.26389099305E-04 -1.31115730584E-04 -1.36012021316E-04 -1.41084175007E-04 -1.46338172874E-04 -1.51780582450E-04 -1.57417843458E-04 -1.63256966895E-04 -1.69304907769E-04 -1.75569086348E-04 -1.82056993496E-04 -1.88776617548E-04 -1.95735856169E-04 -2.02943426844E-04 -2.10407685483E-04 -2.18137917357E-04 -2.26143215776E-04 -2.34433353698E-04 -2.43018213892E-04 -2.51908214233E-04 -2.61113848077E-04 -2.70646367941E-04 -2.80517039434E-04 -2.90737794882E-04 -3.01320719779E-04 -3.12278683187E-04 -3.23624586690E-04 -3.35372052667E-04 -3.47535164656E-04 -3.60128315306E-04 -3.73166563644E-04 -3.86665460828E-04 -4.00641048529E-04 -4.15109906849E-04 -4.30089389131E-04 -4.45597092729E-04 -4.61651550453E-04 -4.78271744477E-04 -4.95477518536E-04 -5.13289056248E-04 -5.31727651082E-04 -5.50815014480E-04 -5.70573749839E-04 -5.91027313286E-04 -6.12199683531E-04 -6.34116114457E-04 -6.56802266606E-04 -6.80285086953E-04 -7.04592103878E-04 -7.29752164561E-04 -7.55794707141E-04 -7.82750614106E-04 -8.10651446758E-04 -8.39530093401E-04 -8.69420554481E-04 -9.00357968305E-04 -9.32378594342E-04 -9.65520123880E-04 -9.99821513260E-04 -1.03532285462E-03 -1.07206588977E-03 -1.11009380728E-03 -1.14945089578E-03 -1.19018354238E-03 -1.23233928015E-03 -1.27596752208E-03 -1.32111924080E-03 -1.36784739602E-03 -1.41620643880E-03 -1.46625298535E-03 -1.51804550878E-03 -1.57164444667E-03 -1.62711235108E-03 -1.68451406076E-03 -1.74391636041E-03 -1.80538864460E-03 -1.86900246913E-03 -1.93483206301E-03 -2.00295399543E-03 -2.07344761706E-03 -2.14639497913E-03 -2.22188090756E-03 -2.29999323925E-03 -2.38082277025E-03 -2.46446343311E-03 -2.55101237519E-03 -2.64057012152E-03 -2.73324063494E-03 -2.82913150390E-03 -2.92835382071E-03 -3.03102283959E-03 -3.13725741298E-03 -3.24718074531E-03 -3.36092004780E-03 -3.47860717272E-03 -3.60037818944E-03 -3.72637416513E-03 -3.85674057584E-03 -3.99162846129E-03 -4.13119341348E-03 -4.27559690437E-03 -4.42500556456E-03 -4.57959188916E-03 -4.73953431812E-03 -4.90501726289E-03 -5.07623161715E-03 -5.25337460585E-03 -5.43665038320E-03 -5.62626996205E-03 -5.82245165932E-03 -6.02542115920E-03 -6.23541186406E-03 -6.45266524898E-03 -6.67743086699E-03 -6.90996693574E-03 -7.15054032065E-03 -7.39942716268E-03 -7.65691271942E-03 -7.92329235784E-03 -8.19887114528E-03 -8.48396464326E-03 -8.77889913844E-03 -9.08401211301E-03 -9.39965219388E-03 -9.72618014672E-03 -1.00639689034E-02 -1.04134037298E-02 -1.07748834767E-02 -1.11488199057E-02 -1.15356391045E-02 -1.19357814408E-02 -1.23497019431E-02 -1.27778714113E-02 -1.32207759864E-02 -1.36789186256E-02 -1.41528188634E-02 -1.46430139854E-02 -1.51500589918E-02 -1.56745278072E-02 -1.62170133447E-02 -1.67781284097E-02 -1.73585064543E-02 -1.79588018223E-02 -1.85796908183E-02 -1.92218722381E-02 -1.98860682259E-02 -2.05730245814E-02 -2.12835123107E-02 -2.20183275220E-02 -2.27782929344E-02 -2.35642582835E-02 -2.43771013840E-02 -2.52177288055E-02 -2.60870772259E-02 -2.69861136095E-02 -2.79158368513E-02 -2.88772783522E-02 -2.98715033659E-02 -3.08996112589E-02 -3.19627379013E-02 -3.30620550412E-02 -3.41987730678E-02 -3.53741408651E-02 -3.65894477796E-02 -3.78460242376E-02 -3.91452434487E-02 -4.04885222630E-02 -4.18773226465E-02 -4.33131528188E-02 -4.47975687034E-02 -4.63321751502E-02 -4.79186275848E-02 -4.95586326660E-02 -5.12539509445E-02 -5.30063968120E-02 -5.48178411738E-02 -5.66902124630E-02 -5.86254979812E-02 -6.06257456505E-02 -6.26930654994E-02 -6.48296314019E-02 -6.70376820800E-02 -6.93195234807E-02 -7.16775296617E-02 -7.41141448929E-02 -7.66318848931E-02 -7.92333387674E-02 -8.19211701357E-02 -8.46981195485E-02 -8.75670049831E-02 -9.05307243939E-02 -9.35922566193E-02 -9.67546632734E-02 -1.00021090056E-01 -1.03394768276E-01 -1.06879016040E-01 -1.10477240253E-01 -1.14192937035E-01 -1.18029693534E-01 -1.21991188937E-01 -1.26081195573E-01 -1.30303579559E-01 -1.34662302303E-01 -1.39161420279E-01 -1.43805086678E-01 -1.48597550938E-01 -1.53543159485E-01 -1.58646355797E-01 -1.63911679964E-01 -1.69343768622E-01 -1.74947354537E-01 -1.80727265075E-01 -1.86688421824E-01 -1.92835838697E-01 -1.99174620174E-01 -2.05709959445E-01 -2.12447135505E-01 -2.19391510477E-01 -2.26548525878E-01 -2.33923699282E-01 -2.41522619015E-01 -2.49350940280E-01 -2.57414378499E-01 -2.65718703849E-01 -2.74269733918E-01 -2.83073326383E-01 -2.92135370395E-01 -3.01461777217E-01 -3.11058470706E-01 -3.20931375554E-01 -3.31086405622E-01 -3.41529451020E-01 -3.52266363733E-01 -3.63302942414E-01 -3.74644915724E-01 -3.86297924991E-01 -3.98267504217E-01 -4.10559060667E-01 -4.23177851865E-01 -4.36128962284E-01 -4.49417278782E-01 -4.63047462699E-01 -4.77023922226E-01 -4.91350781301E-01 -5.06031847648E-01 -5.21070578437E-01 -5.36470043825E-01 -5.52232888881E-01 -5.68361292478E-01 -5.84856925353E-01 -6.01720903733E-01 -6.18953743211E-01 -6.36555307697E-01 -6.54524757384E-01 -6.72860493744E-01 -6.91560101389E-01 -7.10620287649E-01 -7.30036819143E-01 -7.49804454955E-01 -7.69916877415E-01 -7.90366618635E-01 -8.11144984576E-01 -8.32241974489E-01 -8.53646197085E-01 -8.75344782246E-01 -8.97323288046E-01 -9.19565602912E-01 -9.42053842386E-01 -9.64768239483E-01 -9.87687028561E-01 -1.01078632202E+00 -1.03403997724E+00 -1.05741945594E+00 -1.08089367052E+00 -1.10442882061E+00 -1.12798821370E+00 -1.15153207227E+00 -1.17501732163E+00 -1.19839736043E+00 -1.22162180734E+00 -1.24463622554E+00 -1.26738181952E+00 -1.28979510387E+00 -1.31180754108E+00 -1.33334514594E+00 -1.35432805638E+00 -1.37467006924E+00 -1.39427814123E+00 -1.41305185770E+00 -1.43088287277E+00 -1.44765432655E+00 -1.46324025086E+00 -1.47750497506E+00 -1.49030255344E+00 -1.50147623660E+00 -1.51085802265E+00 -1.51826832762E+00 -1.52351582815E+00 -1.52639754258E+00 -1.52669922617E+00 -1.52419617709E+00 -1.51865456388E+00 -1.50983340283E+00 -1.49748733546E+00 -1.48137037138E+00 -1.46124078273E+00 -1.43686734482E+00 -1.40803713237E+00 -1.37456507342E+00 -1.33630545504E+00 -1.29316553915E+00 -1.24512139911E+00 -1.19223599342E+00 -1.13467938340E+00 -1.07275081910E+00 -1.00690220924E+00 -9.37762198776E-01 -8.66159743662E-01 -7.93145663747E-01 -7.20010230744E-01 -6.48294395987E-01 -5.79791911116E-01 -5.16539414380E-01 -4.60791763801E-01 -4.14980809042E-01 -3.81657825136E-01 -3.63426768040E-01 -3.50658047054E-01 -3.39878394764E-01 -3.28449816743E-01 -3.12879097053E-01 -2.89058723842E-01 -2.52882023019E-01 -2.01523358923E-01 -1.35772387080E-01 -6.37870815708E-02 -9.56896679976E-03 7.53803734834E-04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.87513710425E+01 9.76916513986E+00 3.45427100924E+00 0.00000000000E+00 1.65599506018E-09 6.73769180370E-09 1.54207879464E-08 2.78880234276E-08 4.43294400459E-08 6.49426503346E-08 8.99331160003E-08 1.19514436259E-07 1.53908646417E-07 1.93346527054E-07 2.38067924178E-07 2.88322080742E-07 3.44367979909E-07 4.06474700485E-07 4.74921784944E-07 5.49999620474E-07 6.32009833523E-07 7.21265698284E-07 8.18092559634E-07 9.22828271018E-07 1.03582364780E-06 1.15744293661E-06 1.28806430130E-06 1.42808032598E-06 1.57789853586E-06 1.73794193640E-06 1.90864957148E-06 2.09047710129E-06 2.28389740043E-06 2.48940117723E-06 2.70749761471E-06 2.93871503424E-06 3.18360158237E-06 3.44272594195E-06 3.71667806814E-06 4.00606995033E-06 4.31153640082E-06 4.63373587108E-06 4.97335129685E-06 5.33109097272E-06 5.70768945742E-06 6.10390851096E-06 6.52053806445E-06 6.95839722406E-06 7.41833531002E-06 7.90123293213E-06 8.40800310285E-06 8.93959238935E-06 9.49698210594E-06 1.00811895481E-05 1.06932692700E-05 1.13343144059E-05 1.20054580391E-05 1.27078746170E-05 1.34427814175E-05 1.42114400647E-05 1.50151580993E-05 1.58552906027E-05 1.67332418779E-05 1.76504671900E-05 1.86084745660E-05 1.96088266587E-05 2.06531426746E-05 2.17431003699E-05 2.28804381156E-05 2.40669570345E-05 2.53045232131E-05 2.65950699902E-05 2.79406003255E-05 2.93431892505E-05 3.08049864050E-05 3.23282186617E-05 3.39151928422E-05 3.55682985280E-05 3.72900109685E-05 3.90828940907E-05 4.09496036140E-05 4.28928902725E-05 4.49156031501E-05 4.70206931308E-05 4.92112164704E-05 5.14903384903E-05 5.38613374018E-05 5.63276082617E-05 5.88926670665E-05 6.15601549882E-05 6.43338427573E-05 6.72176351983E-05 7.02155759227E-05 7.33318521847E-05 7.65707999061E-05 7.99369088745E-05 8.34348281235E-05 8.70693714984E-05 9.08455234155E-05 9.47684448214E-05 9.88434793588E-05 1.03076159746E-04 1.07472214380E-04 1.12037574162E-04 1.16778379570E-04 1.21700987966E-04 1.26811981166E-04 1.32118173264E-04 1.37626618732E-04 1.43344620801E-04 1.49279740132E-04 1.55439803783E-04 1.61832914495E-04 1.68467460294E-04 1.75352124423E-04 1.82495895629E-04 1.89908078792E-04 1.97598305934E-04 2.05576547604E-04 2.13853124655E-04 2.22438720436E-04 2.31344393395E-04 2.40581590134E-04 2.50162158896E-04 2.60098363540E-04 2.70402897980E-04 2.81088901139E-04 2.92169972411E-04 3.03660187663E-04 3.15574115786E-04 3.27926835823E-04 3.40733954687E-04 3.54011625493E-04 3.67776566520E-04 3.82046080838E-04 3.96838076599E-04 4.12171088046E-04 4.28064297234E-04 4.44537556511E-04 4.61611411774E-04 4.79307126522E-04 4.97646706752E-04 5.16652926705E-04 5.36349355507E-04 5.56760384729E-04 5.77911256895E-04 5.99828094984E-04 6.22537932941E-04 6.46068747248E-04 6.70449489582E-04 6.95710120600E-04 7.21881644894E-04 7.48996147152E-04 7.77086829560E-04 8.06188050506E-04 8.36335364610E-04 8.67565564143E-04 8.99916721867E-04 9.33428235361E-04 9.68140872869E-04 1.00409682073E-03 1.04133973247E-03 1.07991477951E-03 1.11986870373E-03 1.16124987177E-03 1.20410833122E-03 1.24849586874E-03 1.29446607021E-03 1.34207438294E-03 1.39137818000E-03 1.44243682681E-03 1.49531174994E-03 1.55006650844E-03 1.60676686741E-03 1.66548087432E-03 1.72627893776E-03 1.78923390908E-03 1.85442116670E-03 1.92191870339E-03 1.99180721656E-03 2.06417020158E-03 2.13909404843E-03 2.21666814157E-03 2.29698496328E-03 2.38014020056E-03 2.46623285569E-03 2.55536536063E-03 2.64764369525E-03 2.74317750975E-03 2.84208025118E-03 2.94446929437E-03 3.05046607730E-03 3.16019624117E-03 3.27378977523E-03 3.39138116662E-03 3.51310955529E-03 3.63911889430E-03 3.76955811554E-03 3.90458130122E-03 4.04434786114E-03 4.18902271608E-03 4.33877648749E-03 4.49378569359E-03 4.65423295228E-03 4.82030719091E-03 4.99220386328E-03 5.17012517400E-03 5.35428031055E-03 5.54488568328E-03 5.74216517358E-03 5.94635039049E-03 6.15768093613E-03 6.37640468011E-03 6.60277804337E-03 6.83706629161E-03 7.07954383877E-03 7.33049456079E-03 7.59021212008E-03 7.85900030103E-03 8.13717335685E-03 8.42505636829E-03 8.72298561445E-03 9.03130895620E-03 9.35038623262E-03 9.68058967083E-03 1.00223043097E-02 1.03759284380E-02 1.07418740471E-02 1.11205672992E-02 1.15124490116E-02 1.19179751564E-02 1.23376173781E-02 1.27718635283E-02 1.32212182176E-02 1.36862033876E-02 1.41673589004E-02 1.46652431494E-02 1.51804336893E-02 1.57135278883E-02 1.62651436013E-02 1.68359198657E-02 1.74265176212E-02 1.80376204522E-02 1.86699353566E-02 1.93241935384E-02 2.00011512282E-02 2.07015905297E-02 2.14263202950E-02 2.21761770284E-02 2.29520258204E-02 2.37547613120E-02 2.45853086914E-02 2.54446247224E-02 2.63336988080E-02 2.72535540874E-02 2.82052485695E-02 2.91898763033E-02 3.02085685867E-02 3.12624952135E-02 3.23528657622E-02 3.34809309251E-02 3.46479838813E-02 3.58553617135E-02 3.71044468699E-02 3.83966686734E-02 3.97335048783E-02 4.11164832778E-02 4.25471833607E-02 4.40272380219E-02 4.55583353262E-02 4.71422203277E-02 4.87806969457E-02 5.04756299000E-02 5.22289467052E-02 5.40426397278E-02 5.59187683056E-02 5.78594609332E-02 5.98669175135E-02 6.19434116779E-02 6.40912931766E-02 6.63129903410E-02 6.86110126201E-02 7.09879531914E-02 7.34464916505E-02 7.59893967786E-02 7.86195293917E-02 8.13398452723E-02 8.41533981855E-02 8.70633429820E-02 9.00729387889E-02 9.31855522903E-02 9.64046611003E-02 9.97338572288E-02 1.03176850643E-01 1.06737472926E-01 1.10419681034E-01 1.14227561150E-01 1.18165332648E-01 1.22237352149E-01 1.26448117693E-01 1.30802273005E-01 1.35304611879E-01 1.39960082660E-01 1.44773792847E-01 1.49751013790E-01 1.54897185515E-01 1.60217921645E-01 1.65719014442E-01 1.71406439955E-01 1.77286363284E-01 1.83365143950E-01 1.89649341378E-01 1.96145720491E-01 2.02861257407E-01 2.09803145252E-01 2.16978800067E-01 2.24395866823E-01 2.32062225542E-01 2.39985997501E-01 2.48175551542E-01 2.56639510463E-01 2.65386757500E-01 2.74426442881E-01 2.83767990458E-01 2.93421104409E-01 3.03395775989E-01 3.13702290342E-01 3.24351233351E-01 3.35353498523E-01 3.46720293894E-01 3.58463148945E-01 3.70593921518E-01 3.83124804708E-01 3.96068333736E-01 4.09437392765E-01 4.23245221649E-01 4.37505422607E-01 4.52231966786E-01 4.67439200691E-01 4.83141852475E-01 4.99355038044E-01 5.16094266954E-01 5.33375448081E-01 5.51214895016E-01 5.69629331159E-01 5.88635894474E-01 6.08252141866E-01 6.28496053129E-01 6.49386034427E-01 6.70940921263E-01 6.93179980860E-01 7.16122913924E-01 7.39789855710E-01 7.64201376328E-01 7.89378480219E-01 8.15342604717E-01 8.42115617625E-01 8.69719813700E-01 8.98177909957E-01 9.27513039689E-01 9.57748745071E-01 9.88908968241E-01 1.02101804071E+00 1.05410067097E+00 1.08818193008E+00 1.12328723515E+00 1.15944233044E+00 1.19667326587E+00 1.23500637282E+00 1.27446823679E+00 1.31508566673E+00 1.35688566082E+00 1.39989536814E+00 1.44414204608E+00 1.48965301299E+00 1.53645559551E+00 1.58457707037E+00 1.63404459978E+00 1.68488516006E+00 1.73712546280E+00 1.79079186773E+00 1.84591028668E+00 1.90250607768E+00 1.96060392830E+00 2.02022772721E+00 2.08140042298E+00 2.14414386879E+00 2.20847865189E+00 2.27442390654E+00 2.34199710887E+00 2.41121385230E+00 2.48208760183E+00 2.55462942577E+00 2.62884770302E+00 2.70474780444E+00 2.78233174650E+00 2.86159781566E+00 2.94254016200E+00 3.02514836057E+00 3.10940693950E+00 3.19529487384E+00 3.28278504472E+00 3.37184366392E+00 3.46242966431E+00 3.55449405781E+00 3.64797926305E+00 3.74281840632E+00 3.83893460047E+00 3.93624020824E+00 4.03463609803E+00 4.13401090205E+00 4.23424028940E+00 4.33518626859E+00 4.43669653694E+00 4.53860389704E+00 4.64072576326E+00 4.74286378406E+00 4.84480360887E+00 4.94631483027E+00 5.04715113431E+00 5.14705069276E+00 5.24573683083E+00 5.34291900219E+00 5.43829409932E+00 5.53154812059E+00 5.62235820599E+00 5.71039503933E+00 5.79532559680E+00 5.87681619769E+00 5.95453578363E+00 6.02815931667E+00 6.09737114370E+00 6.16186812649E+00 6.22136228246E+00 6.27558262472E+00 6.32427583382E+00 6.36720534279E+00 6.40414837992E+00 6.43489050014E+00 6.45921715956E+00 6.47690196708E+00 6.48769140329E+00 6.49128605676E+00 6.48731882044E+00 6.47533104666E+00 6.45474840573E+00 6.42485914715E+00 6.38479861822E+00 6.33354520369E+00 6.26993419026E+00 6.19269719014E+00 6.10053524534E+00 5.99223285534E+00 5.86681675421E+00 5.72375547648E+00 5.56318078408E+00 5.38608564249E+00 5.19440933828E+00 4.99084926896E+00 4.77812807003E+00 4.55785719741E+00 4.33101561455E+00 4.09860145567E+00 3.86164467101E+00 3.62119662544E+00 3.37832174040E+00 3.13409236516E+00 2.88958807737E+00 2.64590047512E+00 2.40414423038E+00 2.16547464299E+00 1.93111117336E+00 1.70236536969E+00 1.48067027911E+00 1.26760681648E+00 1.06492076281E+00 8.74522164177E-01 6.98457170817E-01 5.38841164347E-01 3.97742073900E-01 2.77005114262E-01 1.78016385340E-01 1.01414897322E-01 4.67828815321E-02 1.23740505018E-02 -5.02306671265E-03 -9.95385035068E-03 -7.75519134109E-03 -3.52095682183E-03 -7.09003838548E-04 -1.07360283220E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.90344466663E+01 -2.13815380307E+02 1.06002745565E+03 -7.77795068645E+03 3.39206853881E+04 -7.86789537932E+04 9.20243505013E+04 -4.28358340376E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.03645134451E+01 1.04549846251E+04 -1.59981287965E+05 1.07956334049E+06 -3.90370497406E+06 7.81076901974E+06 -8.15459582836E+06 3.47155454705E+06 -3.65943725563E+01 -1.41089989620E+01 -1.86761883227E+00 0.00000000000E+00 -1.10123979470E-09 -4.48057757943E-09 -1.02548526613E-08 -1.85455874388E-08 -2.94791600595E-08 -4.31869832232E-08 -5.98056893435E-08 -7.94773222924E-08 -1.02349535956E-07 -1.28575799843E-07 -1.58315611987E-07 -1.91734719406E-07 -2.29005346374E-07 -2.70306430786E-07 -3.15823868890E-07 -3.65750768691E-07 -4.20287712317E-07 -4.79643027667E-07 -5.44033069664E-07 -6.13682511446E-07 -6.88824645849E-07 -7.69701697526E-07 -8.56565146095E-07 -9.49676060673E-07 -1.04930544623E-06 -1.15573460211E-06 -1.26925549327E-06 -1.39017113448E-06 -1.51879598816E-06 -1.65545637617E-06 -1.80049090606E-06 -1.95425091240E-06 -2.11710091355E-06 -2.28941908452E-06 -2.47159774643E-06 -2.66404387319E-06 -2.86717961597E-06 -3.08144284603E-06 -3.30728771665E-06 -3.54518524482E-06 -3.79562391318E-06 -4.05911029324E-06 -4.33616969033E-06 -4.62734681121E-06 -4.93320645502E-06 -5.25433422847E-06 -5.59133728606E-06 -5.94484509620E-06 -6.31551023416E-06 -6.70400920272E-06 -7.11104328161E-06 -7.53733940651E-06 -7.98365107899E-06 -8.45075930800E-06 -8.93947358449E-06 -9.45063288993E-06 -9.98510674012E-06 -1.05437962654E-05 -1.11276353287E-05 -1.17375916824E-05 -1.23746681657E-05 -1.30399039439E-05 -1.37343757904E-05 -1.44591994143E-05 -1.52155308332E-05 -1.60045677947E-05 -1.68275512473E-05 -1.76857668620E-05 -1.85805466077E-05 -1.95132703808E-05 -2.04853676924E-05 -2.14983194128E-05 -2.25536595788E-05 -2.36529772616E-05 -2.47979185020E-05 -2.59901883109E-05 -2.72315527408E-05 -2.85238410288E-05 -2.98689478142E-05 -3.12688354333E-05 -3.27255362937E-05 -3.42411553318E-05 -3.58178725549E-05 -3.74579456723E-05 -3.91637128175E-05 -4.09375953651E-05 -4.27821008455E-05 -4.46998259607E-05 -4.66934597056E-05 -4.87657865963E-05 -5.09196900120E-05 -5.31581556517E-05 -5.54842751118E-05 -5.79012495872E-05 -6.04123937014E-05 -6.30211394688E-05 -6.57310403955E-05 -6.85457757211E-05 -7.14691548089E-05 -7.45051216871E-05 -7.76577597491E-05 -8.09312966146E-05 -8.43301091614E-05 -8.78587287306E-05 -9.15218465117E-05 -9.53243191157E-05 -9.92711743402E-05 -1.03367617135E-04 -1.07619035773E-04 -1.12031008237E-04 -1.16609308829E-04 -1.21359914999E-04 -1.26289014426E-04 -1.31403012331E-04 -1.36708539047E-04 -1.42212457854E-04 -1.47921873085E-04 -1.53844138505E-04 -1.59986865993E-04 -1.66357934511E-04 -1.72965499395E-04 -1.79818001956E-04 -1.86924179427E-04 -1.94293075241E-04 -2.01934049670E-04 -2.09856790836E-04 -2.18071326096E-04 -2.26588033821E-04 -2.35417655594E-04 -2.44571308809E-04 -2.54060499725E-04 -2.63897136963E-04 -2.74093545467E-04 -2.84662480952E-04 -2.95617144850E-04 -3.06971199773E-04 -3.18738785509E-04 -3.30934535572E-04 -3.43573594323E-04 -3.56671634680E-04 -3.70244876446E-04 -3.84310105266E-04 -3.98884692234E-04 -4.13986614188E-04 -4.29634474696E-04 -4.45847525770E-04 -4.62645690333E-04 -4.80049585453E-04 -4.98080546386E-04 -5.16760651450E-04 -5.36112747749E-04 -5.56160477789E-04 -5.76928307017E-04 -5.98441552302E-04 -6.20726411403E-04 -6.43809993450E-04 -6.67720350480E-04 -6.92486510055E-04 -7.18138509011E-04 -7.44707428365E-04 -7.72225429426E-04 -8.00725791151E-04 -8.30242948791E-04 -8.60812533860E-04 -8.92471415493E-04 -9.25257743214E-04 -9.59210991191E-04 -9.94372004002E-04 -1.03078304399E-03 -1.06848784022E-03 -1.10753163919E-03 -1.14796125717E-03 -1.18982513445E-03 -1.23317339142E-03 -1.27805788656E-03 -1.32453227643E-03 -1.37265207772E-03 -1.42247473147E-03 -1.47405966946E-03 -1.52746838286E-03 -1.58276449331E-03 -1.64001382635E-03 -1.69928448748E-03 -1.76064694070E-03 -1.82417408990E-03 -1.88994136285E-03 -1.95802679830E-03 -2.02851113586E-03 -2.10147790906E-03 -2.17701354164E-03 -2.25520744703E-03 -2.33615213132E-03 -2.41994329974E-03 -2.50667996676E-03 -2.59646456999E-03 -2.68940308795E-03 -2.78560516189E-03 -2.88518422178E-03 -2.98825761657E-03 -3.09494674893E-03 -3.20537721459E-03 -3.31967894643E-03 -3.43798636350E-03 -3.56043852511E-03 -3.68717929017E-03 -3.81835748197E-03 -3.95412705859E-03 -4.09464728907E-03 -4.24008293563E-03 -4.39060444204E-03 -4.54638812843E-03 -4.70761639269E-03 -4.87447791874E-03 -5.04716789185E-03 -5.22588822127E-03 -5.41084777040E-03 -5.60226259476E-03 -5.80035618807E-03 -6.00535973653E-03 -6.21751238185E-03 -6.43706149303E-03 -6.66426294744E-03 -6.89938142126E-03 -7.14269068980E-03 -7.39447393793E-03 -7.65502408085E-03 -7.92464409582E-03 -8.20364736485E-03 -8.49235802904E-03 -8.79111135466E-03 -9.10025411163E-03 -9.42014496456E-03 -9.75115487685E-03 -1.00936675284E-02 -1.04480797470E-02 -1.08148019545E-02 -1.11942586272E-02 -1.15868887721E-02 -1.19931464189E-02 -1.24135011277E-02 -1.28484385141E-02 -1.32984607915E-02 -1.37640873312E-02 -1.42458552406E-02 -1.47443199615E-02 -1.52600558864E-02 -1.57936569962E-02 -1.63457375184E-02 -1.69169326068E-02 -1.75078990429E-02 -1.81193159606E-02 -1.87518855941E-02 -1.94063340503E-02 -2.00834121054E-02 -2.07838960278E-02 -2.15085884273E-02 -2.22583191312E-02 -2.30339460882E-02 -2.38363563019E-02 -2.46664667929E-02 -2.55252255918E-02 -2.64136127635E-02 -2.73326414636E-02 -2.82833590281E-02 -2.92668480962E-02 -3.02842277693E-02 -3.13366548047E-02 -3.24253248467E-02 -3.35514736953E-02 -3.47163786136E-02 -3.59213596747E-02 -3.71677811503E-02 -3.84570529393E-02 -3.97906320414E-02 -4.11700240722E-02 -4.25967848253E-02 -4.40725218787E-02 -4.55988962489E-02 -4.71776240929E-02 -4.88104784594E-02 -5.04992910894E-02 -5.22459542692E-02 -5.40524227343E-02 -5.59207156269E-02 -5.78529185082E-02 -5.98511854253E-02 -6.19177410339E-02 -6.40548827789E-02 -6.62649831326E-02 -6.85504918915E-02 -7.09139385334E-02 -7.33579346342E-02 -7.58851763465E-02 -7.84984469395E-02 -8.12006194022E-02 -8.39946591086E-02 -8.68836265467E-02 -8.98706801116E-02 -9.29590789620E-02 -9.61521859413E-02 -9.94534705627E-02 -1.02866512058E-01 -1.06395002492E-01 -1.10042749936E-01 -1.13813681710E-01 -1.17711847683E-01 -1.21741423632E-01 -1.25906714670E-01 -1.30212158722E-01 -1.34662330064E-01 -1.39261942917E-01 -1.44015855088E-01 -1.48929071670E-01 -1.54006748779E-01 -1.59254197348E-01 -1.64676886948E-01 -1.70280449653E-01 -1.76070683939E-01 -1.82053558606E-01 -1.88235216719E-01 -1.94621979578E-01 -2.01220350682E-01 -2.08037019704E-01 -2.15078866463E-01 -2.22352964876E-01 -2.29866586895E-01 -2.37627206406E-01 -2.45642503090E-01 -2.53920366225E-01 -2.62468898433E-01 -2.71296419332E-01 -2.80411469111E-01 -2.89822811984E-01 -2.99539439529E-01 -3.09570573877E-01 -3.19925670747E-01 -3.30614422296E-01 -3.41646759771E-01 -3.53032855931E-01 -3.64783127225E-01 -3.76908235691E-01 -3.89419090556E-01 -4.02326849496E-01 -4.15642919539E-01 -4.29378957564E-01 -4.43546870367E-01 -4.58158814249E-01 -4.73227194099E-01 -4.88764661897E-01 -5.04784114630E-01 -5.21298691532E-01 -5.38321770618E-01 -5.55866964435E-01 -5.73948114985E-01 -5.92579287732E-01 -6.11774764625E-01 -6.31549036067E-01 -6.51916791722E-01 -6.72892910084E-01 -6.94492446688E-01 -7.16730620870E-01 -7.39622800930E-01 -7.63184487577E-01 -7.87431295517E-01 -8.12378932998E-01 -8.38043179158E-01 -8.64439858974E-01 -8.91584815595E-01 -9.19493879826E-01 -9.48182836510E-01 -9.77667387518E-01 -1.00796311103E+00 -1.03908541679E+00 -1.07104949688E+00 -1.10387027173E+00 -1.13756233076E+00 -1.17213986729E+00 -1.20761660701E+00 -1.24400572957E+00 -1.28131978263E+00 -1.31957058743E+00 -1.35876913550E+00 -1.39892547532E+00 -1.44004858832E+00 -1.48214625303E+00 -1.52522489665E+00 -1.56928943274E+00 -1.61434308409E+00 -1.66038718950E+00 -1.70742099349E+00 -1.75544141753E+00 -1.80444281190E+00 -1.85441668678E+00 -1.90535142183E+00 -1.95723195310E+00 -2.01003943673E+00 -2.06375088880E+00 -2.11833880121E+00 -2.17377073381E+00 -2.23000888342E+00 -2.28700963115E+00 -2.34472306999E+00 -2.40309251565E+00 -2.46205400462E+00 -2.52153578462E+00 -2.58145780399E+00 -2.64173120821E+00 -2.70225785337E+00 -2.76292984843E+00 -2.82362914025E+00 -2.88422715734E+00 -2.94458453086E+00 -3.00455091351E+00 -3.06396491906E+00 -3.12265420748E+00 -3.18043574170E+00 -3.23711624348E+00 -3.29249287535E+00 -3.34635417472E+00 -3.39848126313E+00 -3.44864934907E+00 -3.49662953495E+00 -3.54219092870E+00 -3.58510304598E+00 -3.62513847074E+00 -3.66207571878E+00 -3.69570222075E+00 -3.72581730751E+00 -3.75223504235E+00 -3.77478670201E+00 -3.79332266239E+00 -3.80771339970E+00 -3.81784927500E+00 -3.82363873771E+00 -3.82500456795E+00 -3.82187778936E+00 -3.81418893794E+00 -3.80185648358E+00 -3.78477239105E+00 -3.76278509812E+00 -3.73568060471E+00 -3.70316293006E+00 -3.66483591983E+00 -3.62018926905E+00 -3.56859263686E+00 -3.50930277624E+00 -3.44148950803E+00 -3.36428681348E+00 -3.27687475933E+00 -3.17859552913E+00 -3.06910113150E+00 -2.94851927462E+00 -2.81760423418E+00 -2.67780653757E+00 -2.53114193347E+00 -2.37965691141E+00 -2.22458799001E+00 -2.06671037620E+00 -1.90681808450E+00 -1.74573711634E+00 -1.58432207402E+00 -1.42345462903E+00 -1.26404441157E+00 -1.10703274302E+00 -9.53399355269E-01 -8.04171812091E-01 -6.60436737348E-01 -5.23351163634E-01 -3.94151345945E-01 -2.74155285837E-01 -1.64754061267E-01 -6.73859979288E-02 1.65130295217E-02 8.55899881999E-02 1.38691577679E-01 1.75020618275E-01 1.94329387023E-01 1.97137908845E-01 1.84950596096E-01 1.60424011758E-01 1.27412640786E-01 9.07931313274E-02 5.59534110785E-02 2.78591639276E-02 9.72822092493E-03 1.64056749689E-03 2.18349099060E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -3.92580168208E+01 1.62591288441E+02 -8.56230115972E+02 6.15070978530E+03 -2.65169678166E+04 6.10747765628E+04 -7.10276058184E+04 3.29002912635E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -7.54769901270E+00 -6.90388837093E+03 1.05217388491E+05 -7.09853067180E+05 2.56682363756E+06 -5.13591934979E+06 5.36208913173E+06 -2.28278000670E+06 1 -6.64264385250E-01 0.00000000000E+00 -1.22204435567E-10 -5.27088716479E-09 -4.75836525926E-09 -4.80089361196E-09 -4.78615235215E-09 -4.77437938464E-09 -4.75950451394E-09 -4.74167466821E-09 -4.72139537172E-09 -4.69774592352E-09 -4.67117356344E-09 -4.64129889781E-09 -4.60747419443E-09 -4.57091218062E-09 -4.53004670584E-09 -4.48466735325E-09 -4.43665276596E-09 -4.38339588866E-09 -4.32497258590E-09 -4.26280732387E-09 -4.19534598319E-09 -4.12310446822E-09 -4.04463652385E-09 -3.96201075901E-09 -3.87212440642E-09 -3.77657775335E-09 -3.67483360546E-09 -3.56612118032E-09 -3.45127447403E-09 -3.32859930855E-09 -3.19722281627E-09 -3.06249228233E-09 -2.91161994529E-09 -2.76133530106E-09 -2.59550138143E-09 -2.42379665217E-09 -2.24108719592E-09 -2.04859681002E-09 -1.84643098834E-09 -1.63166328403E-09 -1.40886911123E-09 -1.17126449850E-09 -9.22605177096E-10 -6.61769733399E-10 -3.85332359014E-10 -1.00731019401E-10 2.06526908985E-10 5.20853689748E-10 8.53437587419E-10 1.20560750070E-09 1.56602391738E-09 1.95368290338E-09 2.35234293655E-09 2.77105690044E-09 3.21138406219E-09 3.67045493711E-09 4.15211549509E-09 4.65089094732E-09 5.17728373936E-09 5.72506674679E-09 6.30041835788E-09 6.89410326823E-09 7.51976857963E-09 8.17360564158E-09 8.84928394837E-09 9.56528277826E-09 1.02996077871E-08 1.10721942857E-08 1.18802943285E-08 1.27192274118E-08 1.35929221468E-08 1.45017884354E-08 1.54547682107E-08 1.64442868843E-08 1.74730912157E-08 1.85532799787E-08 1.96619906934E-08 2.08342701449E-08 2.20409097882E-08 2.33033521067E-08 2.46213830354E-08 2.59838138556E-08 2.74047323304E-08 2.88870658576E-08 3.04237075545E-08 3.20283421327E-08 3.36917197490E-08 3.54191677828E-08 3.72259159691E-08 3.90943916541E-08 4.10462867684E-08 4.30644705698E-08 4.51725102404E-08 4.73558280786E-08 4.96308540085E-08 5.19906948512E-08 5.44472490693E-08 5.69955816739E-08 5.96472090967E-08 6.24033302473E-08 6.52570379104E-08 6.82336316135E-08 7.13172317489E-08 7.45268343886E-08 7.78546255626E-08 8.13101072952E-08 8.49097635731E-08 8.86361986400E-08 9.25040680974E-08 9.65410963500E-08 1.00703482025E-07 1.05048201961E-07 1.09547263119E-07 1.14226726692E-07 1.19080179589E-07 1.24117348734E-07 1.29352665984E-07 1.34780387965E-07 1.40424676680E-07 1.46274240425E-07 1.52350423182E-07 1.58661388354E-07 1.65207735399E-07 1.72004710863E-07 1.79060328748E-07 1.86385387677E-07 1.93984078385E-07 2.01882549061E-07 2.10065297393E-07 2.18574608017E-07 2.27399781982E-07 2.36565914776E-07 2.46066390433E-07 2.55945995623E-07 2.66191180731E-07 2.76836829290E-07 2.87873617052E-07 2.99339998645E-07 3.11245995337E-07 3.23599325611E-07 3.36435003746E-07 3.49751164470E-07 3.63580182088E-07 3.77942762591E-07 3.92849574766E-07 4.08338762075E-07 4.24415208422E-07 4.41109691757E-07 4.58455931496E-07 4.76466512315E-07 4.95173081013E-07 5.14611171427E-07 5.34787103521E-07 5.55763835636E-07 5.77550089003E-07 6.00189327034E-07 6.23708515919E-07 6.48151453331E-07 6.73562161892E-07 6.99952214014E-07 7.27408595499E-07 7.55932812652E-07 7.85594520838E-07 8.16426580963E-07 8.48503576354E-07 8.81841636337E-07 9.16533519255E-07 9.52614018275E-07 9.90148962294E-07 1.02918858624E-06 1.06983906852E-06 1.11212867658E-06 1.15613871434E-06 1.20196377429E-06 1.24967534195E-06 1.29934923514E-06 1.35108763829E-06 1.40497804410E-06 1.46111782254E-06 1.51961021863E-06 1.58057724254E-06 1.64411345798E-06 1.71033947063E-06 1.77941562727E-06 1.85142921814E-06 1.92655204464E-06 2.00492747056E-06 2.08670666272E-06 2.17205016837E-06 2.26114497425E-06 2.35417990120E-06 2.45130094385E-06 2.55278680037E-06 2.65879396700E-06 2.76958856450E-06 2.88537270724E-06 3.00644611068E-06 3.13304253481E-06 3.26546435264E-06 3.40400476602E-06 3.54899853076E-06 3.70074377375E-06 3.85964407516E-06 4.02605564069E-06 4.20037404622E-06 4.38302532397E-06 4.57447461686E-06 4.77517163041E-06 4.98563363799E-06 5.20640659104E-06 5.43805043718E-06 5.68113330769E-06 5.93635834670E-06 6.20435251409E-06 6.48584925770E-06 6.78161849464E-06 7.09246948026E-06 7.41924721105E-06 7.76289610979E-06 8.12435712073E-06 8.50469332043E-06 8.90496103548E-06 9.32639000867E-06 9.77015140293E-06 1.02376253593E-05 1.07301784438E-05 1.12493282511E-05 1.17966405443E-05 1.23738270367E-05 1.29826824590E-05 1.36251346398E-05 1.43031911750E-05 1.50190741849E-05 1.57750563089E-05 1.65736330603E-05 1.74174204498E-05 1.83092040656E-05 1.92519982679E-05 2.02489407745E-05 2.13034670701E-05 2.24191373915E-05 2.35998470714E-05 2.48496630924E-05 2.61729988395E-05 2.75744785207E-05 2.90591436188E-05 3.06322036044E-05 3.22994272613E-05 3.40667872813E-05 3.59407717258E-05 3.79282251993E-05 4.00364838522E-05 4.22734229965E-05 4.46473499363E-05 4.71672069113E-05 4.98425099836E-05 5.26834302485E-05 5.57007893390E-05 5.89062092707E-05 6.23120073396E-05 6.59314155582E-05 6.97785209486E-05 7.38683559768E-05 7.82170134973E-05 8.28416524290E-05 8.77605517855E-05 9.29933432812E-05 9.85609040425E-05 1.04485550524E-04 1.10791115783E-04 1.17503087846E-04 1.24648653234E-04 1.32256851223E-04 1.40358744105E-04 1.48987455069E-04 1.58178392697E-04 1.67969410413E-04 1.78400861627E-04 1.89515965898E-04 2.01360795010E-04 2.13984612326E-04 2.27440039928E-04 2.41783280001E-04 2.57074383504E-04 2.73377518133E-04 2.90761149778E-04 3.09298535461E-04 3.29067857875E-04 3.50152628816E-04 3.72642098875E-04 3.96631573393E-04 4.22222860103E-04 4.49524722403E-04 4.78653312303E-04 5.09732707386E-04 5.42895420394E-04 5.78283000816E-04 6.16046588423E-04 6.56347633305E-04 6.99358535716E-04 7.45263404631E-04 7.94258818172E-04 8.46554731214E-04 9.02375246753E-04 9.61959730860E-04 1.02556360438E-03 1.09345972404E-03 1.16593918440E-03 1.24331283336E-03 1.32591238727E-03 1.41409192863E-03 1.50822930414E-03 1.60872772901E-03 1.71601744862E-03 1.83055752672E-03 1.95283767356E-03 2.08338033986E-03 2.22274272342E-03 2.37151917882E-03 2.53034345316E-03 2.69989137088E-03 2.88088344400E-03 3.07408779239E-03 3.28032315443E-03 3.50046206359E-03 3.73543445991E-03 3.98623097514E-03 4.25390704912E-03 4.53958687560E-03 4.84446762196E-03 5.16982405997E-03 5.51701331119E-03 5.88747984947E-03 6.28276093562E-03 6.70449211244E-03 7.15441327502E-03 7.63437477356E-03 8.14634411557E-03 8.69241273237E-03 9.27480340878E-03 9.89587776968E-03 1.05581443468E-02 1.12642669618E-02 1.20170735011E-02 1.28195649908E-02 1.36749254954E-02 1.45865316397E-02 1.55579634676E-02 1.65930150532E-02 1.76957057630E-02 1.88702919974E-02 2.01212792193E-02 2.14534343775E-02 2.28717988757E-02 2.43817015777E-02 2.59887725585E-02 2.76989567224E-02 2.95185280127E-02 3.14541036809E-02 3.35126586461E-02 3.57015400552E-02 3.80284818438E-02 4.05016189996E-02 4.31295019486E-02 4.59211102345E-02 4.88858661343E-02 5.20336472566E-02 5.53747986065E-02 5.89201434824E-02 6.26809931878E-02 6.66691552397E-02 7.08969396716E-02 7.53771633789E-02 8.01231518650E-02 8.51487381396E-02 9.04682582984E-02 9.60965433074E-02 1.02048906485E-01 1.08341125955E-01 1.14989421648E-01 1.22010426083E-01 1.29421147950E-01 1.37238928094E-01 1.45481386524E-01 1.54166360161E-01 1.63311829237E-01 1.72935832650E-01 1.83056369642E-01 1.93691287836E-01 2.04858155339E-01 2.16574116132E-01 2.28855727089E-01 2.41718775031E-01 2.55178072570E-01 2.69247230723E-01 2.83938407207E-01 2.99262028254E-01 3.15226482955E-01 3.31837788069E-01 3.49099222133E-01 3.67010927689E-01 3.85569479924E-01 4.04767421610E-01 4.24592762797E-01 4.45028446000E-01 4.66051775982E-01 4.87633815883E-01 5.09738750364E-01 5.32323218368E-01 5.55335618320E-01 5.78715390232E-01 6.02392279848E-01 6.26285591846E-01 6.50303440659E-01 6.74342008951E-01 6.98284826498E-01 7.22002083968E-01 7.45349998890E-01 7.68170254115E-01 7.90289531495E-01 8.11519167643E-01 8.31654961445E-01 8.50477166854E-01 8.67750708592E-01 8.83225661708E-01 8.96638040125E-01 9.07710942693E-01 9.16156108906E-01 9.21675938328E-01 9.23966031053E-01 9.22718306006E-01 9.17624754504E-01 9.08381883175E-01 8.94695896221E-01 8.76288658988E-01 8.52904473514E-01 8.24317681200E-01 7.90341087311E-01 7.50835174658E-01 7.05718040987E-01 6.54975952582E-01 5.98674356416E-01 5.36969133682E-01 4.70117806258E-01 3.98490328169E-01 3.22578999880E-01 2.43006943181E-01 1.60534461065E-01 7.60624894158E-02 -9.36777406688E-03 -9.45800978839E-02 -1.78274444489E-01 -2.59045428841E-01 -3.35409292800E-01 -4.05840680919E-01 -4.68820429094E-01 -5.22895398206E-01 -5.66751069331E-01 -5.99297119900E-01 -6.19765479392E-01 -6.27819360638E-01 -6.23670426403E-01 -6.08199517624E-01 -5.83074191992E-01 -5.50853653067E-01 -5.15068482969E-01 -4.80258954354E-01 -4.51951700710E-01 -4.36550386066E-01 -4.41112142217E-01 -4.72978568428E-01 -5.39229047097E-01 -6.45926536668E-01 -7.97134121119E-01 -9.93697689665E-01 -1.23182083162E+00 -1.50150808845E+00 -1.78824517725E+00 -2.06637885645E+00 -2.30031899708E+00 -2.44603514921E+00 -2.45465710038E+00 -2.28033476517E+00 -1.89474541704E+00 -1.31201105534E+00 -6.26451873932E-01 -9.47079653140E-02 7.46743726970E-03 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.73113452874E+01 1.49777277851E+01 9.13952296225E-01 0.00000000000E+00 7.33568450440E-10 2.98464545840E-09 6.83106114712E-09 1.23537651852E-08 1.96369417994E-08 2.87681288801E-08 3.98383413231E-08 5.29421987561E-08 6.81780578031E-08 8.56481490448E-08 1.05458718841E-07 1.27720176183E-07 1.52547244754E-07 1.80059120377E-07 2.10379634037E-07 2.43637420685E-07 2.79966094003E-07 3.19504427358E-07 3.62396541154E-07 4.08792096801E-07 4.58846497543E-07 5.12721096368E-07 5.70583411266E-07 6.32607348073E-07 6.98973431184E-07 7.69869042387E-07 8.45488668126E-07 9.26034155467E-07 1.01171497708E-06 1.10274850553E-06 1.19936029729E-06 1.30178438661E-06 1.41026358989E-06 1.52504982058E-06 1.64640441529E-06 1.77459847128E-06 1.90991319577E-06 2.05264026764E-06 2.20308221168E-06 2.36155278603E-06 2.52837738326E-06 2.70389344543E-06 2.88845089370E-06 3.08241257312E-06 3.28615471280E-06 3.50006740240E-06 3.72455508514E-06 3.96003706816E-06 4.20694805075E-06 4.46573867098E-06 4.73687607150E-06 5.02084448516E-06 5.31814584102E-06 5.62930039161E-06 5.95484736209E-06 6.29534562206E-06 6.65137438088E-06 7.02353390721E-06 7.41244627375E-06 7.81875612789E-06 8.24313148935E-06 8.68626457551E-06 9.14887265568E-06 9.63169893508E-06 1.01355134696E-05 1.06611141126E-05 1.12093274946E-05 1.17810100368E-05 1.23770490011E-05 1.29983635746E-05 1.36459059942E-05 1.43206627086E-05 1.50236555818E-05 1.57559431379E-05 1.65186218494E-05 1.73128274706E-05 1.81397364169E-05 1.90005671926E-05 1.98965818677E-05 2.08290876071E-05 2.17994382516E-05 2.28090359552E-05 2.38593328781E-05 2.49518329400E-05 2.60880936324E-05 2.72697278959E-05 2.84984060611E-05 2.97758578579E-05 3.11038744941E-05 3.24843108065E-05 3.39190874863E-05 3.54101933821E-05 3.69596878828E-05 3.85697033827E-05 4.02424478333E-05 4.19802073822E-05 4.37853491045E-05 4.56603238290E-05 4.76076690616E-05 4.96300120110E-05 5.17300727189E-05 5.39106672987E-05 5.61747112866E-05 5.85252231087E-05 6.09653276686E-05 6.34982600590E-05 6.61273694023E-05 6.88561228236E-05 7.16881095621E-05 7.46270452246E-05 7.76767761861E-05 8.08412841433E-05 8.41246908256E-05 8.75312628689E-05 9.10654168585E-05 9.47317245467E-05 9.85349182508E-05 1.02479896438E-04 1.06571729502E-04 1.10815665746E-04 1.15217137560E-04 1.19781767827E-04 1.24515376539E-04 1.29423987649E-04 1.34513836154E-04 1.39791375430E-04 1.45263284815E-04 1.50936477455E-04 1.56818108427E-04 1.62915583131E-04 1.69236565987E-04 1.75788989420E-04 1.82581063162E-04 1.89621283873E-04 1.96918445098E-04 2.04481647563E-04 2.12320309830E-04 2.20444179318E-04 2.28863343708E-04 2.37588242739E-04 2.46629680410E-04 2.55998837610E-04 2.65707285174E-04 2.75766997398E-04 2.86190366020E-04 2.96990214677E-04 3.08179813867E-04 3.19772896427E-04 3.31783673538E-04 3.44226851298E-04 3.57117647844E-04 3.70471811086E-04 3.84305637040E-04 3.98635988797E-04 4.13480316144E-04 4.28856675866E-04 4.44783752744E-04 4.61280881275E-04 4.78368068146E-04 4.96066015477E-04 5.14396144869E-04 5.33380622277E-04 5.53042383741E-04 5.73405162004E-04 5.94493514044E-04 6.16332849555E-04 6.38949460412E-04 6.62370551141E-04 6.86624270445E-04 7.11739743816E-04 7.37747107259E-04 7.64677542185E-04 7.92563311501E-04 8.21437796936E-04 8.51335537660E-04 8.82292270218E-04 9.14344969846E-04 9.47531893200E-04 9.81892622552E-04 1.01746811151E-03 1.05430073230E-03 1.09243432468E-03 1.13191424650E-03 1.17278742607E-03 1.21510241622E-03 1.25890945031E-03 1.30426050008E-03 1.35120933558E-03 1.39981158703E-03 1.45012480887E-03 1.50220854605E-03 1.55612440245E-03 1.61193611178E-03 1.66970961084E-03 1.72951311525E-03 1.79141719785E-03 1.85549486973E-03 1.92182166402E-03 1.99047572255E-03 2.06153788549E-03 2.13509178402E-03 2.21122393613E-03 2.29002384579E-03 2.37158410535E-03 2.45600050154E-03 2.54337212506E-03 2.63380148381E-03 2.72739462011E-03 2.82426123174E-03 2.92451479726E-03 3.02827270541E-03 3.13565638905E-03 3.24679146352E-03 3.36180786978E-03 3.48084002229E-03 3.60402696200E-03 3.73151251443E-03 3.86344545312E-03 3.99997966858E-03 4.14127434296E-03 4.28749413059E-03 4.43880934454E-03 4.59539614956E-03 4.75743676144E-03 4.92511965300E-03 5.09863976714E-03 5.27819873685E-03 5.46400511272E-03 5.65627459796E-03 5.85523029129E-03 6.06110293798E-03 6.27413118915E-03 6.49456186976E-03 6.72265025551E-03 6.95866035884E-03 7.20286522449E-03 7.45554723480E-03 7.71699842505E-03 7.98752080927E-03 8.26742671669E-03 8.55703913928E-03 8.85669209072E-03 9.16673097705E-03 9.48751297946E-03 9.81940744957E-03 1.01627963175E-02 1.05180745135E-02 1.08856504024E-02 1.12659462334E-02 1.16593986032E-02 1.20664589343E-02 1.24875939695E-02 1.29232862806E-02 1.33740347949E-02 1.38403553377E-02 1.43227811917E-02 1.48218636750E-02 1.53381727362E-02 1.58722975693E-02 1.64248472468E-02 1.69964513734E-02 1.75877607593E-02 1.81994481148E-02 1.88322087662E-02 1.94867613932E-02 2.01638487895E-02 2.08642386460E-02 2.15887243578E-02 2.23381258555E-02 2.31132904614E-02 2.39150937711E-02 2.47444405609E-02 2.56022657224E-02 2.64895352238E-02 2.74072470997E-02 2.83564324686E-02 2.93381565800E-02 3.03535198914E-02 3.14036591746E-02 3.24897486542E-02 3.36130011762E-02 3.47746694097E-02 3.59760470804E-02 3.72184702372E-02 3.85033185532E-02 3.98320166598E-02 4.12060355157E-02 4.26268938113E-02 4.40961594077E-02 4.56154508118E-02 4.71864386883E-02 4.88108474061E-02 5.04904566236E-02 5.22271029088E-02 5.40226813977E-02 5.58791474886E-02 5.77985185739E-02 5.97828758085E-02 6.18343659146E-02 6.39552030233E-02 6.61476705515E-02 6.84141231145E-02 7.07569884732E-02 7.31787695160E-02 7.56820462727E-02 7.82694779611E-02 8.09438050647E-02 8.37078514394E-02 8.65645264483E-02 8.95168271224E-02 9.25678403463E-02 9.57207450645E-02 9.89788145081E-02 1.02345418438E-01 1.05824025403E-01 1.09418205005E-01 1.13131630176E-01 1.16968079452E-01 1.20931439253E-01 1.25025706150E-01 1.29254989125E-01 1.33623511813E-01 1.38135614722E-01 1.42795757423E-01 1.47608520707E-01 1.52578608695E-01 1.57710850900E-01 1.63010204228E-01 1.68481754912E-01 1.74130720362E-01 1.79962450934E-01 1.85982431589E-01 1.92196283453E-01 1.98609765235E-01 2.05228774523E-01 2.12059348916E-01 2.19107666990E-01 2.26380049085E-01 2.33882957880E-01 2.41622998754E-01 2.49606919904E-01 2.57841612206E-01 2.66334108782E-01 2.75091584275E-01 2.84121353772E-01 2.93430871389E-01 3.03027728451E-01 3.12919651264E-01 3.23114498430E-01 3.33620257683E-01 3.44445042200E-01 3.55597086346E-01 3.67084740825E-01 3.78916467172E-01 3.91100831553E-01 4.03646497811E-01 4.16562219702E-01 4.29856832272E-01 4.43539242283E-01 4.57618417642E-01 4.72103375743E-01 4.87003170629E-01 5.02326878895E-01 5.18083584221E-01 5.34282360423E-01 5.50932252901E-01 5.68042258351E-01 5.85621302584E-01 6.03678216301E-01 6.22221708627E-01 6.41260338226E-01 6.60802481752E-01 6.80856299426E-01 7.01429697436E-01 7.22530286905E-01 7.44165339073E-01 7.66341736363E-01 7.89065918923E-01 8.12343826246E-01 8.36180833374E-01 8.60581681214E-01 8.85550400404E-01 9.11090228144E-01 9.37203517371E-01 9.63891637594E-01 9.91154866681E-01 1.01899227285E+00 1.04740158607E+00 1.07637905807E+00 1.10591931017E+00 1.13601516801E+00 1.16665748249E+00 1.19783493605E+00 1.22953383371E+00 1.26173787811E+00 1.29442792822E+00 1.32758174138E+00 1.36117369869E+00 1.39517451398E+00 1.42955092710E+00 1.46426538270E+00 1.49927569613E+00 1.53453470906E+00 1.56998993799E+00 1.60558321980E+00 1.64125035977E+00 1.67692078848E+00 1.71251723551E+00 1.74795542944E+00 1.78314383521E+00 1.81798344154E+00 1.85236761320E+00 1.88618202453E+00 1.91930469230E+00 1.95160612776E+00 1.98294962883E+00 2.01319173419E+00 2.04218286109E+00 2.06976814792E+00 2.09578852036E+00 2.12008199624E+00 2.14248523875E+00 2.16283535922E+00 2.18097196006E+00 2.19673939402E+00 2.20998919788E+00 2.22058263682E+00 2.22839326940E+00 2.23330941264E+00 2.23523635301E+00 2.23409811257E+00 2.22983854268E+00 2.22242148289E+00 2.21182969467E+00 2.19806226424E+00 2.18113017360E+00 2.16104977532E+00 2.13783398651E+00 2.11148115703E+00 2.08196178409E+00 2.04920355801E+00 2.01307565091E+00 1.97337371217E+00 1.92980771278E+00 1.88199556082E+00 1.82946622807E+00 1.77167685104E+00 1.70804865877E+00 1.63802622651E+00 1.56116279956E+00 1.47723023014E+00 1.38634382133E+00 1.28907764677E+00 1.18652109999E+00 1.08018719479E+00 9.71620423956E-01 8.61771459218E-01 7.51252647724E-01 6.40693706251E-01 5.30754157940E-01 4.22123763590E-01 3.15524546981E-01 2.11714616427E-01 1.11493772559E-01 1.57105635096E-02 -7.47300117525E-02 -1.58859554532E-01 -2.35642212722E-01 -3.03976507959E-01 -3.62706916910E-01 -4.10649902023E-01 -4.46639673340E-01 -4.69599064203E-01 -4.78640167410E-01 -4.73197326534E-01 -4.53191075907E-01 -4.19214894502E-01 -3.72726301171E-01 -3.16209139682E-01 -2.53254790967E-01 -1.88488294660E-01 -1.27246731021E-01 -7.49154237132E-02 -3.58700884438E-02 -1.21101257124E-02 -1.98334730623E-03 -2.57333067441E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.61509279865E+01 -1.24046259224E+02 6.87081211992E+02 -4.85122463130E+03 2.07143367901E+04 -4.74259869712E+04 5.48851446325E+04 -2.53150947827E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.72471281731E+00 4.56099308048E+03 -6.91795491975E+04 4.66595889364E+05 -1.68719963512E+06 3.37594037790E+06 -3.52467439133E+06 1.50057961032E+06 2 2 2 2 8 10.000000000 1.00000000000E+00 0.00000000000E+00 -1.53885128729E-04 -3.10400708802E-04 -4.69591704243E-04 -6.31503847547E-04 -7.96183652808E-04 -9.63678429341E-04 -1.13403629510E-03 -1.30730619055E-03 -1.48353789273E-03 -1.66278202953E-03 -1.84509009425E-03 -2.03051446042E-03 -2.21910839677E-03 -2.41092608261E-03 -2.60602262337E-03 -2.80445406641E-03 -3.00627741713E-03 -3.21155065537E-03 -3.42033275203E-03 -3.63268368604E-03 -3.84866446157E-03 -4.06833712557E-03 -4.29176478558E-03 -4.51901162788E-03 -4.75014293589E-03 -4.98522510898E-03 -5.22432568149E-03 -5.46751334217E-03 -5.71485795387E-03 -5.96643057366E-03 -6.22230347321E-03 -6.48255015957E-03 -6.74724539624E-03 -7.01646522473E-03 -7.29028698631E-03 -7.56878934430E-03 -7.85205230664E-03 -8.14015724886E-03 -8.43318693748E-03 -8.73122555378E-03 -9.03435871795E-03 -9.34267351375E-03 -9.65625851346E-03 -9.97520380336E-03 -1.02996010096E-02 -1.06295433245E-02 -1.09651255334E-02 -1.13064440418E-02 -1.16535969029E-02 -1.20066838463E-02 -1.23658063061E-02 -1.27310674501E-02 -1.31025722097E-02 -1.34804273100E-02 -1.38647413003E-02 -1.42556245851E-02 -1.46531894565E-02 -1.50575501256E-02 -1.54688227560E-02 -1.58871254967E-02 -1.63125785163E-02 -1.67453040374E-02 -1.71854263719E-02 -1.76330719563E-02 -1.80883693885E-02 -1.85514494643E-02 -1.90224452154E-02 -1.95014919471E-02 -1.99887272776E-02 -2.04842911775E-02 -2.09883260096E-02 -2.15009765704E-02 -2.20223901309E-02 -2.25527164799E-02 -2.30921079659E-02 -2.36407195420E-02 -2.41987088093E-02 -2.47662360630E-02 -2.53434643381E-02 -2.59305594562E-02 -2.65276900731E-02 -2.71350277276E-02 -2.77527468901E-02 -2.83810250133E-02 -2.90200425830E-02 -2.96699831696E-02 -3.03310334815E-02 -3.10033834179E-02 -3.16872261239E-02 -3.23827580459E-02 -3.30901789878E-02 -3.38096921686E-02 -3.45415042804E-02 -3.52858255483E-02 -3.60428697902E-02 -3.68128544786E-02 -3.75960008029E-02 -3.83925337328E-02 -3.92026820831E-02 -4.00266785792E-02 -4.08647599240E-02 -4.17171668660E-02 -4.25841442681E-02 -4.34659411783E-02 -4.43628109006E-02 -4.52750110685E-02 -4.62028037183E-02 -4.71464553646E-02 -4.81062370769E-02 -4.90824245571E-02 -5.00752982189E-02 -5.10851432682E-02 -5.21122497848E-02 -5.31569128061E-02 -5.42194324113E-02 -5.53001138077E-02 -5.63992674182E-02 -5.75172089707E-02 -5.86542595882E-02 -5.98107458815E-02 -6.09870000423E-02 -6.21833599391E-02 -6.34001692136E-02 -6.46377773799E-02 -6.58965399241E-02 -6.71768184067E-02 -6.84789805663E-02 -6.98034004248E-02 -7.11504583950E-02 -7.25205413896E-02 -7.39140429320E-02 -7.53313632693E-02 -7.67729094871E-02 -7.82390956260E-02 -7.97303428007E-02 -8.12470793204E-02 -8.27897408115E-02 -8.43587703430E-02 -8.59546185527E-02 -8.75777437774E-02 -8.92286121829E-02 -9.09076978990E-02 -9.26154831542E-02 -9.43524584146E-02 -9.61191225240E-02 -9.79159828471E-02 -9.97435554142E-02 -1.01602365070E-01 -1.03492945623E-01 -1.05415839999E-01 -1.07371600395E-01 -1.09360788440E-01 -1.11383975354E-01 -1.13441742110E-01 -1.15534679604E-01 -1.17663388821E-01 -1.19828481008E-01 -1.22030577848E-01 -1.24270311640E-01 -1.26548325477E-01 -1.28865273431E-01 -1.31221820742E-01 -1.33618644003E-01 -1.36056431360E-01 -1.38535882703E-01 -1.41057709868E-01 -1.43622636840E-01 -1.46231399963E-01 -1.48884748142E-01 -1.51583443066E-01 -1.54328259420E-01 -1.57119985106E-01 -1.59959421471E-01 -1.62847383531E-01 -1.65784700206E-01 -1.68772214558E-01 -1.71810784026E-01 -1.74901280675E-01 -1.78044591440E-01 -1.81241618385E-01 -1.84493278950E-01 -1.87800506222E-01 -1.91164249192E-01 -1.94585473032E-01 -1.98065159361E-01 -2.01604306533E-01 -2.05203929911E-01 -2.08865062164E-01 -2.12588753552E-01 -2.16376072230E-01 -2.20228104545E-01 -2.24145955352E-01 -2.28130748315E-01 -2.32183626238E-01 -2.36305751374E-01 -2.40498305770E-01 -2.44762491583E-01 -2.49099531436E-01 -2.53510668749E-01 -2.57997168103E-01 -2.62560315580E-01 -2.67201419144E-01 -2.71921808990E-01 -2.76722837938E-01 -2.81605881791E-01 -2.86572339743E-01 -2.91623634751E-01 -2.96761213956E-01 -3.01986549064E-01 -3.07301136782E-01 -3.12706499211E-01 -3.18204184300E-01 -3.23795766245E-01 -3.29482845964E-01 -3.35267051504E-01 -3.41150038533E-01 -3.47133490760E-01 -3.53219120444E-01 -3.59408668824E-01 -3.65703906649E-01 -3.72106634614E-01 -3.78618683913E-01 -3.85241916690E-01 -3.91978226603E-01 -3.98829539290E-01 -4.05797812957E-01 -4.12885038850E-01 -4.20093241866E-01 -4.27424481038E-01 -4.34880850167E-01 -4.42464478315E-01 -4.50177530463E-01 -4.58022208014E-01 -4.66000749476E-01 -4.74115430973E-01 -4.82368566954E-01 -4.90762510712E-01 -4.99299655124E-01 -5.07982433172E-01 -5.16813318717E-01 -5.25794827025E-01 -5.34929515568E-01 -5.44219984559E-01 -5.53668877787E-01 -5.63278883149E-01 -5.73052733526E-01 -5.82993207314E-01 -5.93103129334E-01 -6.03385371368E-01 -6.13842853104E-01 -6.24478542671E-01 -6.35295457624E-01 -6.46296665473E-01 -6.57485284715E-01 -6.68864485353E-01 -6.80437489972E-01 -6.92207574251E-01 -7.04178068087E-01 -7.16352356090E-01 -7.28733878759E-01 -7.41326132964E-01 -7.54132673170E-01 -7.67157111901E-01 -7.80403121019E-01 -7.93874432164E-01 -8.07574838092E-01 -8.21508193082E-01 -8.35678414343E-01 -8.50089482377E-01 -8.64745442463E-01 -8.79650404965E-01 -8.94808546897E-01 -9.10224112177E-01 -9.25901413267E-01 -9.41844831373E-01 -9.58058818159E-01 -9.74547895884E-01 -9.91316659205E-01 -1.00836977523E+00 -1.02571198541E+00 -1.04334810551E+00 -1.06128302762E+00 -1.07952171998E+00 -1.09806922910E+00 -1.11693067953E+00 -1.13611127604E+00 -1.15561630323E+00 -1.17545112790E+00 -1.19562119850E+00 -1.21613204757E+00 -1.23698929108E+00 -1.25819863100E+00 -1.27976585440E+00 -1.30169683626E+00 -1.32399753827E+00 -1.34667401186E+00 -1.36973239672E+00 -1.39317892403E+00 -1.41701991468E+00 -1.44126178274E+00 -1.46591103331E+00 -1.49097426624E+00 -1.51645817363E+00 -1.54236954376E+00 -1.56871525821E+00 -1.59550229604E+00 -1.62273773048E+00 -1.65042873335E+00 -1.67858257128E+00 -1.70720661046E+00 -1.73630831225E+00 -1.76589523828E+00 -1.79597504546E+00 -1.82655549141E+00 -1.85764442881E+00 -1.88924981120E+00 -1.92137968654E+00 -1.95404220352E+00 -1.98724560415E+00 -2.02099823064E+00 -2.05530851697E+00 -2.09018499632E+00 -2.12563629154E+00 -2.16167112319E+00 -2.19829829882E+00 -2.23552672161E+00 -2.27336537830E+00 -2.31182334862E+00 -2.35090979162E+00 -2.39063395601E+00 -2.43100516471E+00 -2.47203282610E+00 -2.51372641679E+00 -2.55609549372E+00 -2.59914967490E+00 -2.64289865268E+00 -2.68735217208E+00 -2.73252004527E+00 -2.77841212738E+00 -2.82503833234E+00 -2.87240860575E+00 -2.92053294229E+00 -2.96942135540E+00 -3.01908389634E+00 -3.06953062035E+00 -3.12077160757E+00 -3.17281692534E+00 -3.22567665112E+00 -3.27936083047E+00 -3.33387950234E+00 -3.38924265220E+00 -3.44546023993E+00 -3.50254214762E+00 -3.56049821041E+00 -3.61933815835E+00 -3.67907165051E+00 -3.73970821036E+00 -3.80125726352E+00 -3.86372806593E+00 -3.92712974573E+00 -3.99147122352E+00 -4.05676125885E+00 -4.12300836173E+00 -4.19022084437E+00 -4.25840672302E+00 -4.32757377572E+00 -4.39772943338E+00 -4.46888084436E+00 -4.54103475384E+00 -4.61419757600E+00 -4.68837526055E+00 -4.76357337357E+00 -4.83979694987E+00 -4.91705058374E+00 -4.99533826571E+00 -5.07466348445E+00 -5.15502904651E+00 -5.23643719079E+00 -5.31888938954E+00 -5.40238647697E+00 -5.48692842974E+00 -5.57251451140E+00 -5.65914303017E+00 -5.74681150116E+00 -5.83551637895E+00 -5.92525323957E+00 -6.01601648513E+00 -6.10779954743E+00 -6.20059456153E+00 -6.29439259284E+00 -6.38918327611E+00 -6.48495506767E+00 -6.58169484571E+00 -6.67938818944E+00 -6.77801893589E+00 -6.87756948772E+00 -6.97802032135E+00 -7.07935032507E+00 -7.18153625343E+00 -7.28455309748E+00 -7.38837348063E+00 -7.49296806391E+00 -7.59830487946E+00 -7.70434977538E+00 -7.81106568525E+00 -7.91841311967E+00 -8.02634937357E+00 -8.13482907519E+00 -8.24380333730E+00 -8.35322037848E+00 -8.46302462890E+00 -8.57315744231E+00 -8.68355617014E+00 -8.79415498306E+00 -8.90488392639E+00 -9.01566986509E+00 -9.12643552572E+00 -9.23710056539E+00 -9.34758058910E+00 -9.45778832156E+00 -9.56763256511E+00 -9.67701942699E+00 -9.78585115903E+00 -9.89402737169E+00 -1.00014436839E+01 -1.01079928520E+01 -1.02135631693E+01 -1.03180394624E+01 -1.04213012213E+01 -1.05232234665E+01 -1.06236746491E+01 -1.07225174504E+01 -1.08196065457E+01 -1.09147894275E+01 -1.10079041521E+01 -1.10987802802E+01 -1.11872367502E+01 -1.12730830960E+01 -1.13561178232E+01 -1.14361305188E+01 -1.15129020272E+01 -1.15862095398E+01 -1.16558321251E+01 -1.17215637171E+01 -1.17832305380E+01 -1.18407184770E+01 -1.18940065943E+01 -1.19432050565E+01 -1.19885862333E+01 -1.20305913438E+01 -1.20697886639E+01 -1.21067491526E+01 -1.21418165755E+01 -1.21746422391E+01 -1.22033757856E+01 -1.22259268885E+01 -1.22426149183E+01 -1.22548285694E+01 -1.22628645940E+01 -1.22666518141E+01 -1.22662884713E+01 -1.22619056383E+01 -1.22536802927E+01 -1.22418376694E+01 -1.22266606978E+01 -1.22084928156E+01 -1.21877492103E+01 -1.21649208378E+01 -1.21405878135E+01 -1.21154250879E+01 -1.20902183964E+01 -1.20658721196E+01 -1.20434282557E+01 -1.20240770491E+01 -1.20091794628E+01 -1.20002811532E+01 -1.19991409702E+01 -1.19992263265E+01 -1.19992999752E+01 -1.19993642711E+01 -1.19994217656E+01 -1.19994750008E+01 -1.19995262487E+01 -1.19995769907E+01 -1.19996273387E+01 -1.19996746464E+01 -1.19997114699E+01 -1.19997498702E+01 -1.19997835197E+01 -1.19997858807E+01 -1.19997895016E+01 -1.19998063994E+01 -1.19998176267E+01 -1.19998277027E+01 -1.19998365825E+01 -1.19998444510E+01 -1.19998514669E+01 -1.19998577633E+01 -1.19998634534E+01 -1.19998686316E+01 -1.19998733777E+01 -1.19998777577E+01 -1.19998818270E+01 -1.19998856315E+01 -1.19998892095E+01 -1.19998925927E+01 -1.19998958080E+01 -1.19998988776E+01 -1.19999018206E+01 -1.19999046532E+01 -1.19999073895E+01 -1.19999100419E+01 -1.19999126212E+01 -1.19999151375E+01 -1.19999175996E+01 -1.19999200157E+01 -1.19999223932E+01 -1.19999247390E+01 -1.19999270587E+01 -1.19999293578E+01 -1.19999316404E+01 -1.19999339098E+01 -1.19999361683E+01 -1.19999384170E+01 -1.19999406558E+01 -1.19999428834E+01 -1.19999450970E+01 -1.19999472927E+01 -1.19999494653E+01 -1.19999516083E+01 -1.19999537141E+01 -1.19999557744E+01 -1.19999577798E+01 -1.19999597205E+01 -1.19999615865E+01 -1.19999633675E+01 -1.19999650533E+01 -1.19999666345E+01 -1.19999681022E+01 -1.19999694486E+01 -1.19999706670E+01 -1.19999717523E+01 -1.19999727010E+01 -1.19999735116E+01 -1.19999741842E+01 -1.19999747211E+01 -1.19999751265E+01 -1.19999754066E+01 -1.19999755693E+01 -1.19999756243E+01 -1.19999755827E+01 -1.19999754566E+01 -1.19999752594E+01 -1.19999750048E+01 -1.19999747069E+01 -1.19999743799E+01 -1.19999740374E+01 -1.19999736929E+01 -1.19999733585E+01 -1.19999730457E+01 -1.19999727646E+01 -1.19999725240E+01 -1.19999723312E+01 -1.19999721922E+01 -1.19999721115E+01 -1.19999720923E+01 -1.19999721364E+01 -1.19999722444E+01 -1.19999724159E+01 -1.19999726494E+01 -1.19999729428E+01 -1.19999732931E+01 -1.19999736968E+01 -1.19999741501E+01 -1.19999746487E+01 -1.19999751883E+01 -1.19999757644E+01 -1.19999763725E+01 -1.19999770080E+01 -1.19999776668E+01 -1.19999783445E+01 -1.19999790372E+01 -1.19999797410E+01 -1.19999804525E+01 -1.19999811682E+01 -1.19999818852E+01 -1.19999826007E+01 -1.19999833121E+01 -1.19999840171E+01 -1.19999847136E+01 -1.19999853998E+01 -1.19999860740E+01 -1.19999867349E+01 -1.19999873812E+01 -1.19999880117E+01 -1.19999886257E+01 -1.19999892223E+01 -1.19999898010E+01 -1.19999903611E+01 -1.19999909025E+01 -1.19999914247E+01 -1.19999919276E+01 -1.19999924111E+01 -1.19999928752E+01 -1.19999933200E+01 -1.19999937455E+01 -1.19999941521E+01 -1.19999945399E+01 -1.19999949091E+01 -1.19999952603E+01 -1.19999955936E+01 -1.19999959095E+01 -1.19999962085E+01 -1.19999964910E+01 -1.19999967574E+01 -1.19999970084E+01 -1.19999972443E+01 -1.19999974657E+01 -1.19999976733E+01 -1.19999978674E+01 -1.19999980489E+01 -1.19999982180E+01 -1.19999983757E+01 -1.19999985224E+01 -1.19999986586E+01 -1.19999987849E+01 -1.19999989015E+01 -1.19999990092E+01 -1.19999991082E+01 -1.19999991992E+01 -1.19999992825E+01 -1.19999993586E+01 -1.19999994280E+01 -1.19999994912E+01 -1.19999995484E+01 -1.19999996003E+01 -1.19999996470E+01 -1.19999996891E+01 -1.19999997269E+01 -1.19999997608E+01 -1.19999997910E+01 -1.19999998179E+01 -1.19999998418E+01 -1.19999998629E+01 -1.19999998816E+01 -1.19999998980E+01 -1.19999999125E+01 -1.19999999251E+01 -1.19999999360E+01 -1.19999999456E+01 -1.19999999510E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 0.00000000000E+00 -9.43177621460E-05 -1.90247754779E-04 -2.87817536701E-04 -3.87055137791E-04 -4.87989067058E-04 -5.90648320828E-04 -6.95062391078E-04 -8.01261273905E-04 -9.09275478144E-04 -1.01913603413E-03 -1.13087450263E-03 -1.24452298387E-03 -1.36011412679E-03 -1.47768113842E-03 -1.59725779341E-03 -1.71887844374E-03 -1.84257802857E-03 -1.96839208431E-03 -2.09635675478E-03 -2.22650880165E-03 -2.35888561497E-03 -2.49352522390E-03 -2.63046630766E-03 -2.76974820661E-03 -2.91141093360E-03 -3.05549518540E-03 -3.20204235447E-03 -3.35109454076E-03 -3.50269456387E-03 -3.65688597534E-03 -3.81371307114E-03 -3.97322090439E-03 -4.13545529835E-03 -4.30046285952E-03 -4.46829099107E-03 -4.63898790646E-03 -4.81260264325E-03 -4.98918507722E-03 -5.16878593670E-03 -5.35145681710E-03 -5.53725019581E-03 -5.72621944717E-03 -5.91841885789E-03 -6.11390364260E-03 -6.31272995974E-03 -6.51495492764E-03 -6.72063664097E-03 -6.92983418744E-03 -7.14260766472E-03 -7.35901819773E-03 -7.57912795623E-03 -7.80300017262E-03 -8.03069916013E-03 -8.26229033130E-03 -8.49784021675E-03 -8.73741648433E-03 -8.98108795848E-03 -9.22892464008E-03 -9.48099772650E-03 -9.73737963210E-03 -9.99814400895E-03 -1.02633657681E-02 -1.05331211009E-02 -1.08074875012E-02 -1.10865437873E-02 -1.13703701248E-02 -1.16590480493E-02 -1.19526604902E-02 -1.22512917946E-02 -1.25550277508E-02 -1.28639556138E-02 -1.31781641300E-02 -1.34977435623E-02 -1.38227857168E-02 -1.41533839686E-02 -1.44896332887E-02 -1.48316302715E-02 -1.51794731624E-02 -1.55332618857E-02 -1.58930980740E-02 -1.62590850966E-02 -1.66313280900E-02 -1.70099339873E-02 -1.73950115493E-02 -1.77866713958E-02 -1.81850260372E-02 -1.85901899069E-02 -1.90022793941E-02 -1.94214128771E-02 -1.98477107575E-02 -2.02812954948E-02 -2.07222916413E-02 -2.11708258780E-02 -2.16270270511E-02 -2.20910262088E-02 -2.25629566388E-02 -2.30429539070E-02 -2.35311558960E-02 -2.40277028449E-02 -2.45327373895E-02 -2.50464046031E-02 -2.55688520385E-02 -2.61002297700E-02 -2.66406904365E-02 -2.71903892854E-02 -2.77494842174E-02 -2.83181358314E-02 -2.88965074706E-02 -2.94847652698E-02 -3.00830782026E-02 -3.06916181302E-02 -3.13105598505E-02 -3.19400811484E-02 -3.25803628466E-02 -3.32315888578E-02 -3.38939462372E-02 -3.45676252362E-02 -3.52528193571E-02 -3.59497254083E-02 -3.66585435611E-02 -3.73794774069E-02 -3.81127340157E-02 -3.88585239954E-02 -3.96170615519E-02 -4.03885645513E-02 -4.11732545815E-02 -4.19713570162E-02 -4.27831010795E-02 -4.36087199112E-02 -4.44484506342E-02 -4.53025344222E-02 -4.61712165684E-02 -4.70547465566E-02 -4.79533781318E-02 -4.88673693737E-02 -4.97969827701E-02 -5.07424852922E-02 -5.17041484710E-02 -5.26822484754E-02 -5.36770661907E-02 -5.46888872995E-02 -5.57180023633E-02 -5.67647069056E-02 -5.78293014965E-02 -5.89120918389E-02 -6.00133888556E-02 -6.11335087785E-02 -6.22727732391E-02 -6.34315093603E-02 -6.46100498498E-02 -6.58087330957E-02 -6.70279032627E-02 -6.82679103908E-02 -6.95291104952E-02 -7.08118656679E-02 -7.21165441814E-02 -7.34435205934E-02 -7.47931758542E-02 -7.61658974152E-02 -7.75620793396E-02 -7.89821224145E-02 -8.04264342657E-02 -8.18954294735E-02 -8.33895296912E-02 -8.49091637651E-02 -8.64547678568E-02 -8.80267855673E-02 -8.96256680635E-02 -9.12518742064E-02 -9.29058706819E-02 -9.45881321335E-02 -9.62991412974E-02 -9.80393891393E-02 -9.98093749945E-02 -1.01609606709E-01 -1.03440600786E-01 -1.05302882527E-01 -1.07196986189E-01 -1.09123455129E-01 -1.11082841960E-01 -1.13075708710E-01 -1.15102626978E-01 -1.17164178099E-01 -1.19260953304E-01 -1.21393553892E-01 -1.23562591397E-01 -1.25768687761E-01 -1.28012475510E-01 -1.30294597934E-01 -1.32615709266E-01 -1.34976474867E-01 -1.37377571412E-01 -1.39819687085E-01 -1.42303521768E-01 -1.44829787237E-01 -1.47399207367E-01 -1.50012518331E-01 -1.52670468806E-01 -1.55373820183E-01 -1.58123346785E-01 -1.60919836074E-01 -1.63764088879E-01 -1.66656919617E-01 -1.69599156517E-01 -1.72591641855E-01 -1.75635232185E-01 -1.78730798578E-01 -1.81879226865E-01 -1.85081417879E-01 -1.88338287707E-01 -1.91650767943E-01 -1.95019805944E-01 -1.98446365091E-01 -2.01931425056E-01 -2.05475982067E-01 -2.09081049187E-01 -2.12747656586E-01 -2.16476851826E-01 -2.20269700145E-01 -2.24127284748E-01 -2.28050707102E-01 -2.32041087233E-01 -2.36099564031E-01 -2.40227295558E-01 -2.44425459356E-01 -2.48695252771E-01 -2.53037893269E-01 -2.57454618760E-01 -2.61946687936E-01 -2.66515380600E-01 -2.71161998006E-01 -2.75887863208E-01 -2.80694321404E-01 -2.85582740294E-01 -2.90554510437E-01 -2.95611045613E-01 -3.00753783196E-01 -3.05984184522E-01 -3.11303735272E-01 -3.16713945850E-01 -3.22216351774E-01 -3.27812514067E-01 -3.33504019655E-01 -3.39292481767E-01 -3.45179540346E-01 -3.51166862455E-01 -3.57256142698E-01 -3.63449103637E-01 -3.69747496221E-01 -3.76153100211E-01 -3.82667724620E-01 -3.89293208148E-01 -3.96031419626E-01 -4.02884258464E-01 -4.09853655101E-01 -4.16941571462E-01 -4.24150001416E-01 -4.31480971241E-01 -4.38936540089E-01 -4.46518800454E-01 -4.54229878651E-01 -4.62071935288E-01 -4.70047165746E-01 -4.78157800663E-01 -4.86406106414E-01 -4.94794385605E-01 -5.03324977551E-01 -5.12000258775E-01 -5.20822643495E-01 -5.29794584117E-01 -5.38918571724E-01 -5.48197136576E-01 -5.57632848595E-01 -5.67228317859E-01 -5.76986195095E-01 -5.86909172163E-01 -5.96999982543E-01 -6.07261401823E-01 -6.17696248171E-01 -6.28307382817E-01 -6.39097710518E-01 -6.50070180027E-01 -6.61227784550E-01 -6.72573562195E-01 -6.84110596417E-01 -6.95842016452E-01 -7.07770997737E-01 -7.19900762323E-01 -7.32234579277E-01 -7.44775765066E-01 -7.57527683927E-01 -7.70493748222E-01 -7.83677418778E-01 -7.97082205198E-01 -8.10711666165E-01 -8.24569409712E-01 -8.38659093473E-01 -8.52984424906E-01 -8.67549161491E-01 -8.82357110892E-01 -8.97412131092E-01 -9.12718130491E-01 -9.28279067965E-01 -9.44098952886E-01 -9.60181845104E-01 -9.76531854876E-01 -9.93153142749E-01 -1.01004991939E+00 -1.02722644538E+00 -1.04468703091E+00 -1.06243603543E+00 -1.08047786727E+00 -1.09881698314E+00 -1.11745788756E+00 -1.13640513225E+00 -1.15566331540E+00 -1.17523708085E+00 -1.19513111718E+00 -1.21535015674E+00 -1.23589897450E+00 -1.25678238683E+00 -1.27800525019E+00 -1.29957245962E+00 -1.32148894718E+00 -1.34375968014E+00 -1.36638965917E+00 -1.38938391625E+00 -1.41274751245E+00 -1.43648553557E+00 -1.46060309754E+00 -1.48510533168E+00 -1.50999738973E+00 -1.53528443866E+00 -1.56097165725E+00 -1.58706423245E+00 -1.61356735550E+00 -1.64048621774E+00 -1.66782600618E+00 -1.69559189879E+00 -1.72378905941E+00 -1.75242263244E+00 -1.78149773714E+00 -1.81101946152E+00 -1.84099285598E+00 -1.87142292648E+00 -1.90231462726E+00 -1.93367285327E+00 -1.96550243197E+00 -1.99780811485E+00 -2.03059456825E+00 -2.06386636387E+00 -2.09762796855E+00 -2.13188373364E+00 -2.16663788368E+00 -2.20189450446E+00 -2.23765753054E+00 -2.27393073194E+00 -2.31071770024E+00 -2.34802183392E+00 -2.38584632290E+00 -2.42419413231E+00 -2.46306798540E+00 -2.50247034567E+00 -2.54240339795E+00 -2.58286902868E+00 -2.62386880515E+00 -2.66540395373E+00 -2.70747533707E+00 -2.75008343022E+00 -2.79322829558E+00 -2.83690955672E+00 -2.88112637098E+00 -2.92587740083E+00 -2.97116078393E+00 -3.01697410188E+00 -3.06331434754E+00 -3.11017789108E+00 -3.15756044437E+00 -3.20545702411E+00 -3.25386191325E+00 -3.30276862099E+00 -3.35216984107E+00 -3.40205740849E+00 -3.45242225459E+00 -3.50325436043E+00 -3.55454270840E+00 -3.60627523222E+00 -3.65843876508E+00 -3.71101898614E+00 -3.76400036513E+00 -3.81736610537E+00 -3.87109808488E+00 -3.92517679587E+00 -3.97958128248E+00 -4.03428907685E+00 -4.08927613362E+00 -4.14451676281E+00 -4.19998356123E+00 -4.25564734256E+00 -4.31147706605E+00 -4.36743976409E+00 -4.42350046874E+00 -4.47962213748E+00 -4.53576557812E+00 -4.59188937342E+00 -4.64794980539E+00 -4.70390077964E+00 -4.75969375013E+00 -4.81527764456E+00 -4.87059879084E+00 -4.92560084498E+00 -4.98022472101E+00 -5.03440852325E+00 -5.08808748155E+00 -5.14119389017E+00 -5.19365705090E+00 -5.24540322113E+00 -5.29635556763E+00 -5.34643412705E+00 -5.39555577385E+00 -5.44363419685E+00 -5.49057988528E+00 -5.53630012578E+00 -5.58069901136E+00 -5.62367746376E+00 -5.66513327077E+00 -5.70496113994E+00 -5.74305277047E+00 -5.77929694504E+00 -5.81357964352E+00 -5.84578418072E+00 -5.87579137026E+00 -5.90347971715E+00 -5.92872564142E+00 -5.95140373576E+00 -5.97138705992E+00 -5.98854747518E+00 -6.00275602224E+00 -6.01388334607E+00 -6.02180017197E+00 -6.02637783671E+00 -6.02748887974E+00 -6.02500769929E+00 -6.01881127894E+00 -6.00877999067E+00 -5.99479848094E+00 -5.97675664730E+00 -5.95455071334E+00 -5.92808441119E+00 -5.89727028164E+00 -5.86203110301E+00 -5.82230146157E+00 -5.77802947784E+00 -5.72917870498E+00 -5.67573021770E+00 -5.61768491261E+00 -5.55506604387E+00 -5.48792202143E+00 -5.41632950274E+00 -5.34039681342E+00 -5.26026773712E+00 -5.17612572047E+00 -5.08819854516E+00 -4.99676352601E+00 -4.90215330176E+00 -4.80476229299E+00 -4.70505391082E+00 -4.60356860898E+00 -4.50093288118E+00 -4.39786931503E+00 -4.29520782218E+00 -4.19389817158E+00 -4.09502395772E+00 -3.99981813676E+00 -3.90968025960E+00 -3.82619551917E+00 -3.75115786815E+00 -3.67807060774E+00 -3.60572762254E+00 -3.53416292368E+00 -3.46340587062E+00 -3.39348643922E+00 -3.32442988650E+00 -3.25626195682E+00 -3.18900368279E+00 -3.12267645370E+00 -3.05729702847E+00 -2.99288239318E+00 -2.92944505969E+00 -2.86699764374E+00 -2.80554851851E+00 -2.74510605047E+00 -2.68567467188E+00 -2.62725871802E+00 -2.56985897587E+00 -2.51347607421E+00 -2.45810755734E+00 -2.40375078789E+00 -2.35040058506E+00 -2.29805160838E+00 -2.24669658912E+00 -2.19632817125E+00 -2.14693775242E+00 -2.09851676551E+00 -2.05105613171E+00 -2.00454697160E+00 -1.95898065785E+00 -1.91434894874E+00 -1.87064461174E+00 -1.82786097543E+00 -1.78599307929E+00 -1.74503664257E+00 -1.70498968170E+00 -1.66585089882E+00 -1.62762169869E+00 -1.59030400710E+00 -1.55390261587E+00 -1.51842245403E+00 -1.48387119404E+00 -1.45025601659E+00 -1.41758642286E+00 -1.38587055554E+00 -1.35511817880E+00 -1.32533664007E+00 -1.29653399727E+00 -1.26871472393E+00 -1.24188297763E+00 -1.21603816151E+00 -1.19117833590E+00 -1.16729574967E+00 -1.14438039792E+00 -1.12241562793E+00 -1.10138184042E+00 -1.08125225969E+00 -1.06199676787E+00 -1.04357791041E+00 -1.02595484428E+00 -1.00907963190E+00 -9.92901277598E-01 -9.77362345840E-01 -9.62403055137E-01 -9.47958240292E-01 -9.33961467469E-01 -9.20342342331E-01 -9.07030601820E-01 -8.93953749270E-01 -8.81041065762E-01 -8.68221529040E-01 -8.55427671247E-01 -8.42593713657E-01 -8.29659182446E-01 -8.16567171693E-01 -8.03267621477E-01 -7.89715614576E-01 -7.75874228408E-01 -7.61712781793E-01 -7.47209197462E-01 -7.32348144610E-01 -7.17122889251E-01 -7.01533320145E-01 -6.85587311666E-01 -6.69298664420E-01 -6.52688048109E-01 -6.35780922423E-01 -6.18608155778E-01 -6.01204009194E-01 -5.83606535951E-01 -5.65855709402E-01 -5.47993699871E-01 -5.30063210483E-01 -5.12107706699E-01 -4.94169999194E-01 -4.76292475599E-01 -4.58515943224E-01 -4.40879888176E-01 -4.23421568539E-01 -4.06176306903E-01 -3.89176809104E-01 -3.72453483752E-01 -3.56033953112E-01 -3.39943387003E-01 -3.24204169758E-01 -3.08836234395E-01 -2.93856851153E-01 -2.79280949396E-01 -2.65120997259E-01 -2.51387301809E-01 -2.38087954473E-01 -2.25229103467E-01 -2.12814944919E-01 -2.00847964785E-01 -1.89328960362E-01 -1.78257251482E-01 -1.67630721176E-01 -1.57445997741E-01 -1.47698506578E-01 -1.38382625853E-01 -1.29491743993E-01 -1.21018392215E-01 -1.12954303994E-01 -1.05290527812E-01 -9.80174862003E-02 -9.11250718676E-02 -8.46027047875E-02 -7.84394144830E-02 -7.26238941919E-02 -6.71445716361E-02 -6.19896596426E-02 -5.71472172530E-02 -5.26051963936E-02 -4.83514947410E-02 -4.43739981585E-02 -4.06606263593E-02 -3.71993709022E-02 -3.39783343945E-02 -3.09857638921E-02 -2.82100841633E-02 -2.56399263876E-02 -2.32641558472E-02 -2.10718958742E-02 -1.90840502120E-02 -1.72230548655E-02 -1.55117909870E-02 -1.39415389212E-02 -1.25037740891E-02 -1.11901909866E-02 -9.99272481557E-03 -8.90357039122E-03 -7.91519857201E-03 -7.02037004276E-03 -6.21214662463E-03 -5.48390006490E-03 -4.82931845441E-03 -4.24241030852E-03 -3.71750645662E-03 -3.24925983362E-03 -2.83264332480E-03 -2.46294579474E-03 -2.13576646216E-03 -1.84700777373E-03 -1.59286694444E-03 -1.36982632819E-03 -1.17464278808E-03 -1.00433622943E-03 -8.56177459784E-04 -7.27675531905E-04 -6.16564720314E-04 -5.20791275027E-04 -4.38500085393E-04 -3.68021376759E-04 -3.28114468179E-04 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 0.00000000000E+00 3.20190559074E-10 1.30274863602E-09 2.98164580113E-09 5.39221525656E-09 8.57120203775E-09 1.25568150014E-08 1.73887806624E-08 2.31083989447E-08 2.97586009128E-08 3.73840085535E-08 4.60309966792E-08 5.57477570275E-08 6.65843646327E-08 7.85928465508E-08 9.18272530175E-08 1.06343731126E-07 1.22200601115E-07 1.39458435346E-07 1.58180140088E-07 1.78431040179E-07 2.00278966683E-07 2.23794347646E-07 2.49050302050E-07 2.76122737085E-07 3.05090448852E-07 3.36035226609E-07 3.69041960705E-07 4.04198754304E-07 4.41597039046E-07 4.81331694784E-07 5.23501173526E-07 5.68207627750E-07 6.15557043216E-07 6.65659376457E-07 7.18628697099E-07 7.74583335179E-07 8.33646033636E-07 8.95944106161E-07 9.61609600579E-07 1.03077946797E-06 1.10359573772E-06 1.18020569870E-06 1.26076208682E-06 1.34542327913E-06 1.43435349474E-06 1.52772300277E-06 1.62570833755E-06 1.72849252145E-06 1.83626529536E-06 1.94922335741E-06 2.06757060985E-06 2.19151841473E-06 2.32128585844E-06 2.45710002547E-06 2.59919628182E-06 2.74781856822E-06 2.90321970368E-06 3.06566169957E-06 3.23541608471E-06 3.41276424178E-06 3.59799775548E-06 3.79141877286E-06 3.99334037620E-06 4.20408696885E-06 4.42399467464E-06 4.65341175111E-06 4.89269901718E-06 5.14223029574E-06 5.40239287165E-06 5.67358796568E-06 5.95623122499E-06 6.25075323066E-06 6.55760002295E-06 6.87723364475E-06 7.21013270406E-06 7.55679295593E-06 7.91772790479E-06 8.29346942759E-06 8.68456841871E-06 9.09159545731E-06 9.51514149780E-06 9.95581858444E-06 1.04142605907E-05 1.08911239842E-05 1.13870886188E-05 1.19028585533E-05 1.24391628992E-05 1.29967566984E-05 1.35764218297E-05 1.41789679489E-05 1.48052334601E-05 1.54560865210E-05 1.61324260836E-05 1.68351829706E-05 1.75653209892E-05 1.83238380837E-05 1.91117675280E-05 1.99301791594E-05 2.07801806558E-05 2.16629188562E-05 2.25795811276E-05 2.35313967799E-05 2.45196385285E-05 2.55456240086E-05 2.66107173422E-05 2.77163307585E-05 2.88639262712E-05 3.00550174140E-05 3.12911710355E-05 3.25740091575E-05 3.39052108965E-05 3.52865144528E-05 3.67197191676E-05 3.82066876523E-05 3.97493479911E-05 4.13496960195E-05 4.30097976829E-05 4.47317914757E-05 4.65178909654E-05 4.83703874046E-05 5.02916524322E-05 5.22841408697E-05 5.43503936133E-05 5.64930406259E-05 5.87148040342E-05 6.10185013311E-05 6.34070486906E-05 6.58834643964E-05 6.84508723895E-05 7.11125059389E-05 7.38717114393E-05 7.67319523394E-05 7.96968132074E-05 8.27700039363E-05 8.59553640952E-05 8.92568674311E-05 9.26786265261E-05 9.62248976161E-05 9.99000855765E-05 1.03708749080E-04 1.07655605931E-04 1.11745538591E-04 1.15983599886E-04 1.20375018917E-04 1.24925207175E-04 1.29639764868E-04 1.34524487460E-04 1.39585372446E-04 1.44828626355E-04 1.50260671996E-04 1.55888155960E-04 1.61717956370E-04 1.67757190911E-04 1.74013225132E-04 1.80493681034E-04 1.87206445957E-04 1.94159681777E-04 2.01361834414E-04 2.08821643675E-04 2.16548153436E-04 2.24550722173E-04 2.32839033859E-04 2.41423109243E-04 2.50313317507E-04 2.59520388339E-04 2.69055424414E-04 2.78929914312E-04 2.89155745880E-04 2.99745220056E-04 3.10711065174E-04 3.22066451756E-04 3.33825007828E-04 3.46000834752E-04 3.58608523615E-04 3.71663172178E-04 3.85180402418E-04 3.99176378670E-04 4.13667826399E-04 4.28672051622E-04 4.44206961001E-04 4.60291082628E-04 4.76943587532E-04 4.94184311930E-04 5.12033780244E-04 5.30513228915E-04 5.49644631045E-04 5.69450721885E-04 5.89955025208E-04 6.11181880589E-04 6.33156471639E-04 6.55904855205E-04 6.79453991583E-04 7.03831775779E-04 7.29067069850E-04 7.55189736358E-04 7.82230672993E-04 8.10221848380E-04 8.39196339138E-04 8.69188368210E-04 9.00233344527E-04 9.32367904040E-04 9.65629952177E-04 1.00005870776E-03 1.03569474845E-03 1.07258005777E-03 1.11075807375E-03 1.15027373921E-03 1.19117355392E-03 1.23350562837E-03 1.27731973960E-03 1.32266738879E-03 1.36960186100E-03 1.41817828682E-03 1.46845370632E-03 1.52048713510E-03 1.57433963264E-03 1.63007437309E-03 1.68775671844E-03 1.74745429424E-03 1.80923706801E-03 1.87317743025E-03 1.93935027837E-03 2.00783310348E-03 2.07870608019E-03 2.15205215955E-03 2.22795716517E-03 2.30650989275E-03 2.38780221298E-03 2.47192917808E-03 2.55898913201E-03 2.64908382452E-03 2.74231852912E-03 2.83880216526E-03 2.93864742461E-03 3.04197090184E-03 3.14889322993E-03 3.25953922013E-03 3.37403800686E-03 3.49252319765E-03 3.61513302821E-03 3.74201052303E-03 3.87330366151E-03 4.00916554983E-03 4.14975459894E-03 4.29523470864E-03 4.44577545814E-03 4.60155230329E-03 4.76274678060E-03 4.92954671852E-03 5.10214645601E-03 5.28074706879E-03 5.46555660348E-03 5.65679031995E-03 5.85467094218E-03 6.05942891785E-03 6.27130268709E-03 6.49053896058E-03 6.71739300751E-03 6.95212895352E-03 7.19502008926E-03 7.44634918964E-03 7.70640884441E-03 7.97550180038E-03 8.25394131558E-03 8.54205152605E-03 8.84016782548E-03 9.14863725822E-03 9.46781892630E-03 9.79808441067E-03 1.01398182075E-02 1.04934181798E-02 1.08592960252E-02 1.12378777601E-02 1.16296042211E-02 1.20349315847E-02 1.24543319044E-02 1.28882936682E-02 1.33373223752E-02 1.38019411328E-02 1.42826912754E-02 1.47801330058E-02 1.52948460580E-02 1.58274303857E-02 1.63785068741E-02 1.69487180780E-02 1.75387289861E-02 1.81492278130E-02 1.87809268201E-02 1.94345631655E-02 2.01108997853E-02 2.08107263068E-02 2.15348599943E-02 2.22841467298E-02 2.30594620300E-02 2.38617120988E-02 2.46918349202E-02 2.55508013899E-02 2.64396164893E-02 2.73593205017E-02 2.83109902746E-02 2.92957405278E-02 3.03147252100E-02 3.13691389058E-02 3.24602182953E-02 3.35892436677E-02 3.47575404917E-02 3.59664810445E-02 3.72174861017E-02 3.85120266919E-02 3.98516259158E-02 4.12378608355E-02 4.26723644347E-02 4.41568276532E-02 4.56930015000E-02 4.72826992459E-02 4.89277987007E-02 5.06302445777E-02 5.23920509498E-02 5.42153037997E-02 5.61021636692E-02 5.80548684117E-02 6.00757360515E-02 6.21671677548E-02 6.43316509177E-02 6.65717623744E-02 6.88901717325E-02 7.12896448400E-02 7.37730473888E-02 7.63433486622E-02 7.90036254306E-02 8.17570660029E-02 8.46069744396E-02 8.75567749350E-02 9.06100163740E-02 9.37703770732E-02 9.70416697122E-02 1.00427846463E-01 1.03933004328E-01 1.07561390689E-01 1.11317409085E-01 1.15205625223E-01 1.19230773224E-01 1.23397762129E-01 1.27711682663E-01 1.32177814270E-01 1.36801632428E-01 1.41588816259E-01 1.46545256441E-01 1.51677063429E-01 1.56990575996E-01 1.62492370118E-01 1.68189268191E-01 1.74088348601E-01 1.80196955663E-01 1.86522709919E-01 1.93073518828E-01 1.99857587824E-01 2.06883431781E-01 2.14159886860E-01 2.21696122763E-01 2.29501655378E-01 2.37586359827E-01 2.45960483899E-01 2.54634661875E-01 2.63619928721E-01 2.72927734638E-01 2.82569959949E-01 2.92558930300E-01 3.02907432130E-01 3.13628728388E-01 3.24736574431E-01 3.36245234057E-01 3.48169495606E-01 3.60524688041E-01 3.73326696926E-01 3.86591980192E-01 4.00337583570E-01 4.14581155555E-01 4.29340961744E-01 4.44635898370E-01 4.60485504838E-01 4.76909975043E-01 4.93930167213E-01 5.11567612032E-01 5.29844518710E-01 5.48783778707E-01 5.68408966728E-01 5.88744338625E-01 6.09814825772E-01 6.31646025487E-01 6.54264187017E-01 6.77696192596E-01 7.01969533060E-01 7.27112277476E-01 7.53153036246E-01 7.80120917137E-01 8.08045473692E-01 8.36956645486E-01 8.66884689757E-01 8.97860103947E-01 9.29913538777E-01 9.63075701577E-01 9.97377249687E-01 1.03284867390E+00 1.06952017206E+00 1.10742151320E+00 1.14658189272E+00 1.18702977944E+00 1.22879275577E+00 1.27189735218E+00 1.31636887801E+00 1.36223125052E+00 1.40950682474E+00 1.45821622671E+00 1.50837819330E+00 1.56000942145E+00 1.61312443023E+00 1.66773543852E+00 1.72385226077E+00 1.78148222286E+00 1.84063009829E+00 1.90129806389E+00 1.96348567143E+00 2.02718982874E+00 2.09240478011E+00 2.15912207077E+00 2.22733047486E+00 2.29701585930E+00 2.36816094860E+00 2.44074494741E+00 2.51474296892E+00 2.59012520889E+00 2.66685579810E+00 2.74489126092E+00 2.82417850702E+00 2.90465228915E+00 2.98623207425E+00 3.06881830337E+00 3.15228806028E+00 3.23649023555E+00 3.32124036610E+00 3.40631545541E+00 3.49144923823E+00 3.57632854691E+00 3.66059165495E+00 3.74382970017E+00 3.82559248605E+00 3.90540005819E+00 3.98276134014E+00 4.05720060496E+00 4.12829136851E+00 4.19569497552E+00 4.25919704528E+00 4.31872805958E+00 4.37434325749E+00 4.42611936124E+00 4.47398635391E+00 4.51778673856E+00 4.55737091291E+00 4.59260124145E+00 4.62335282344E+00 4.64951419992E+00 4.67098799036E+00 4.68769145721E+00 4.69955698924E+00 4.70653250409E+00 4.70858176138E+00 4.70568458901E+00 4.69783701471E+00 4.68505130797E+00 4.66735592528E+00 4.64479536650E+00 4.61742993680E+00 4.58533542507E+00 4.54860269527E+00 4.50733720520E+00 4.46165845171E+00 4.41169935982E+00 4.35760561087E+00 4.29953493689E+00 4.23765637777E+00 4.17214951189E+00 4.10320364538E+00 4.03101695221E+00 3.95579552559E+00 3.87775230642E+00 3.79710582569E+00 3.71407871083E+00 3.62889652861E+00 3.54178891692E+00 3.45298217860E+00 3.36270537804E+00 3.27118690051E+00 3.17865349464E+00 3.08532934528E+00 2.99143518754E+00 2.89718746082E+00 2.80279751190E+00 2.70847084598E+00 2.61440643272E+00 2.52079606618E+00 2.42782378375E+00 2.33566534306E+00 2.24448775991E+00 2.15444890642E+00 2.06569717049E+00 1.97837117583E+00 1.89259956221E+00 1.80850082507E+00 1.72618321277E+00 1.64574468071E+00 1.56727289945E+00 1.49084531610E+00 1.41652926509E+00 1.34438212767E+00 1.27445153556E+00 1.20677561804E+00 1.14138328720E+00 1.07829456074E+00 1.01752091663E+00 9.59065678701E-01 9.02924427290E-01 8.49085433904E-01 7.97530113670E-01 7.48233494516E-01 7.01164696693E-01 6.56287421484E-01 6.13560442812E-01 5.72938100512E-01 5.34370789297E-01 4.97805442216E-01 4.63186003133E-01 4.30453887221E-01 3.99548424672E-01 3.70407286926E-01 3.42966891462E-01 3.17162784881E-01 2.92930001209E-01 2.70203395671E-01 2.48917951785E-01 2.29009062513E-01 2.10412784235E-01 1.93066064728E-01 1.76906944716E-01 1.61874734562E-01 1.47910166325E-01 1.34955523038E-01 1.22954745925E-01 1.11853521592E-01 1.01599350230E-01 9.21415969126E-02 8.34315272050E-02 7.54223290885E-02 6.80691224544E-02 6.13289579866E-02 5.51608066176E-02 4.95255411152E-02 4.43859108253E-02 3.97065108319E-02 3.54537463501E-02 3.15957933129E-02 2.81025557487E-02 2.49456206352E-02 2.20982106317E-02 1.95351351509E-02 1.72327400214E-02 1.51688560394E-02 1.33227465651E-02 1.16750543616E-02 1.02077477867E-02 8.90406648811E-03 7.74846670665E-03 6.72656632915E-03 5.82508981215E-03 5.03181313143E-03 4.33550890324E-03 3.72589185061E-03 3.19356478292E-03 2.72996527412E-03 2.32731321896E-03 1.97855945303E-03 1.67733561205E-03 1.41790540263E-03 1.19511744167E-03 1.00435981016E-03 8.41516448183E-04 7.02925501191E-04 5.85339706042E-04 4.85888885695E-04 4.02044599508E-04 3.31586975748E-04 2.72573732295E-04 2.23311372572E-04 1.82328525686E-04 1.48351383648E-04 1.20281174000E-04 9.71735937253E-05 7.82201197544E-05 6.27311029129E-05 5.01205456004E-05 3.98924589012E-05 3.16286919870E-05 2.49781255217E-05 1.96471211112E-05 1.53911205179E-05 1.20072911750E-05 9.32811832236E-06 7.21584866076E-06 5.55769560286E-06 4.26172183121E-06 3.25332079980E-06 2.47222489832E-06 1.86997411664E-06 1.40778509477E-06 1.05476633213E-06 7.86430986807E-07 5.83464063576E-07 4.30705826809E-07 3.16317951503E-07 2.31103226295E-07 1.67953536140E-07 1.21404379351E-07 8.72774395607E-08 6.23952743525E-08 4.43549669408E-08 3.13495724522E-08 2.20280880030E-08 1.53862861094E-08 1.06821208306E-08 7.37057539990E-09 5.05379391102E-09 3.44315044192E-09 2.33057617321E-09 1.56704737082E-09 1.04652462472E-09 6.94054280043E-10 4.57013080251E-10 2.98708924245E-10 1.93736358851E-10 1.24629554163E-10 7.94676828700E-11 5.01742440442E-11 3.13182293293E-11 1.92754594089E-11 1.16464375852E-11 6.85550153120E-12 3.87715599390E-12 2.05102000576E-12 9.58225759449E-13 3.40473374668E-13 4.91757476273E-14 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.29635113499E-06 1.06832360010E-05 1.61622021457E-05 2.17348235702E-05 2.74027011807E-05 3.31674632488E-05 3.90307658791E-05 4.49942934849E-05 5.10597592724E-05 5.72289057325E-05 6.35035051415E-05 6.98853600706E-05 7.63763039030E-05 8.29782013614E-05 8.96929490432E-05 9.65224759654E-05 1.03468744119E-04 1.10533749032E-04 1.17719520345E-04 1.25028122389E-04 1.32461654785E-04 1.40022253043E-04 1.47712089177E-04 1.55533372328E-04 1.63488349398E-04 1.71579305700E-04 1.79808565607E-04 1.88178493228E-04 1.96691493080E-04 2.05350010784E-04 2.14156533764E-04 2.23113591964E-04 2.32223758573E-04 2.41489650766E-04 2.50913930455E-04 2.60499305052E-04 2.70248528251E-04 2.80164400814E-04 2.90249771379E-04 3.00507537280E-04 3.10940645372E-04 3.21552092887E-04 3.32344928287E-04 3.43322252146E-04 3.54487218036E-04 3.65843033437E-04 3.77392960653E-04 3.89140317755E-04 4.01088479533E-04 4.13240878461E-04 4.25601005689E-04 4.38172412041E-04 4.50958709041E-04 4.63963569943E-04 4.77190730792E-04 4.90643991496E-04 5.04327216916E-04 5.18244337978E-04 5.32399352802E-04 5.46796327850E-04 5.61439399093E-04 5.76332773203E-04 5.91480728758E-04 6.06887617473E-04 6.22557865448E-04 6.38495974442E-04 6.54706523167E-04 6.71194168598E-04 6.87963647318E-04 7.05019776872E-04 7.22367457158E-04 7.40011671827E-04 7.57957489721E-04 7.76210066327E-04 7.94774645257E-04 8.13656559754E-04 8.32861234228E-04 8.52394185810E-04 8.72261025938E-04 8.92467461973E-04 9.13019298830E-04 9.33922440657E-04 9.55182892520E-04 9.76806762136E-04 9.98800261625E-04 1.02116970929E-03 1.04392153145E-03 1.06706226425E-03 1.09059855559E-03 1.11453716698E-03 1.13888497552E-03 1.16364897587E-03 1.18883628224E-03 1.21445413047E-03 1.24050988005E-03 1.26701101631E-03 1.29396515252E-03 1.32138003206E-03 1.34926353070E-03 1.37762365885E-03 1.40646856380E-03 1.43580653215E-03 1.46564599212E-03 1.49599551601E-03 1.52686382266E-03 1.55825977993E-03 1.59019240728E-03 1.62267087832E-03 1.65570452350E-03 1.68930283274E-03 1.72347545819E-03 1.75823221697E-03 1.79358309404E-03 1.82953824502E-03 1.86610799913E-03 1.90330286214E-03 1.94113351943E-03 1.97961083901E-03 2.01874587466E-03 2.05854986914E-03 2.09903425735E-03 2.14021066967E-03 2.18209093530E-03 2.22468708561E-03 2.26801135767E-03 2.31207619770E-03 2.35689426467E-03 2.40247843395E-03 2.44884180098E-03 2.49599768506E-03 2.54395963318E-03 2.59274142386E-03 2.64235707117E-03 2.69282082872E-03 2.74414719379E-03 2.79635091143E-03 2.84944697877E-03 2.90345064928E-03 2.95837743717E-03 3.01424312185E-03 3.07106375243E-03 3.12885565239E-03 3.18763542423E-03 3.24741995424E-03 3.30822641735E-03 3.37007228208E-03 3.43297531556E-03 3.49695358861E-03 3.56202548094E-03 3.62820968646E-03 3.69552521861E-03 3.76399141583E-03 3.83362794714E-03 3.90445481777E-03 3.97649237491E-03 4.04976131354E-03 4.12428268243E-03 4.20007789012E-03 4.27716871110E-03 4.35557729208E-03 4.43532615832E-03 4.51643822013E-03 4.59893677943E-03 4.68284553647E-03 4.76818859661E-03 4.85499047726E-03 4.94327611491E-03 5.03307087233E-03 5.12440054580E-03 5.21729137258E-03 5.31177003841E-03 5.40786368517E-03 5.50559991872E-03 5.60500681678E-03 5.70611293702E-03 5.80894732528E-03 5.91353952390E-03 6.01991958018E-03 6.12811805506E-03 6.23816603186E-03 6.35009512524E-03 6.46393749026E-03 6.57972583163E-03 6.69749341310E-03 6.81727406702E-03 6.93910220405E-03 7.06301282306E-03 7.18904152117E-03 7.31722450399E-03 7.44759859600E-03 7.58020125116E-03 7.71507056366E-03 7.85224527882E-03 7.99176480430E-03 8.13366922135E-03 8.27799929636E-03 8.42479649258E-03 8.57410298199E-03 8.72596165747E-03 8.88041614507E-03 9.03751081658E-03 9.19729080225E-03 9.35980200378E-03 9.52509110751E-03 9.69320559778E-03 9.86419377064E-03 1.00381047477E-02 1.02149884902E-02 1.03948958134E-02 1.05778784012E-02 1.07639888209E-02 1.09532805386E-02 1.11458079340E-02 1.13416263165E-02 1.15407919410E-02 1.17433620239E-02 1.19493947596E-02 1.21589493374E-02 1.23720859583E-02 1.25888658522E-02 1.28093512959E-02 1.30336056306E-02 1.32616932801E-02 1.34936797696E-02 1.37296317445E-02 1.39696169890E-02 1.42137044464E-02 1.44619642382E-02 1.47144676847E-02 1.49712873252E-02 1.52324969390E-02 1.54981715666E-02 1.57683875312E-02 1.60432224606E-02 1.63227553096E-02 1.66070663825E-02 1.68962373564E-02 1.71903513045E-02 1.74894927201E-02 1.77937475407E-02 1.81032031729E-02 1.84179485172E-02 1.87380739939E-02 1.90636715688E-02 1.93948347799E-02 1.97316587639E-02 2.00742402838E-02 2.04226777567E-02 2.07770712820E-02 2.11375226699E-02 2.15041354713E-02 2.18770150068E-02 2.22562683976E-02 2.26420045959E-02 2.30343344161E-02 2.34333705670E-02 2.38392276841E-02 2.42520223621E-02 2.46718731891E-02 2.50989007800E-02 2.55332278116E-02 2.59749790577E-02 2.64242814248E-02 2.68812639888E-02 2.73460580319E-02 2.78187970806E-02 2.82996169435E-02 2.87886557510E-02 2.92860539943E-02 2.97919545665E-02 3.03065028029E-02 3.08298465233E-02 3.13621360742E-02 3.19035243721E-02 3.24541669474E-02 3.30142219890E-02 3.35838503899E-02 3.41632157934E-02 3.47524846399E-02 3.53518262149E-02 3.59614126977E-02 3.65814192106E-02 3.72120238697E-02 3.78534078352E-02 3.85057553646E-02 3.91692538645E-02 3.98440939453E-02 4.05304694755E-02 4.12285776375E-02 4.19386189841E-02 4.26607974967E-02 4.33953206431E-02 4.41423994375E-02 4.49022485013E-02 4.56750861243E-02 4.64611343280E-02 4.72606189287E-02 4.80737696029E-02 4.89008199529E-02 4.97420075745E-02 5.05975741245E-02 5.14677653907E-02 5.23528313620E-02 5.32530263010E-02 5.41686088161E-02 5.50998419365E-02 5.60469931874E-02 5.70103346672E-02 5.79901431250E-02 5.89867000411E-02 6.00002917068E-02 6.10312093074E-02 6.20797490057E-02 6.31462120267E-02 6.42309047447E-02 6.53341387710E-02 6.64562310432E-02 6.75975039168E-02 6.87582852574E-02 6.99389085350E-02 7.11397129198E-02 7.23610433798E-02 7.36032507795E-02 7.48666919810E-02 7.61517299466E-02 7.74587338427E-02 7.87880791465E-02 8.01401477529E-02 8.15153280852E-02 8.29140152060E-02 8.43366109312E-02 8.57835239449E-02 8.72551699172E-02 8.87519716236E-02 9.02743590662E-02 9.18227695974E-02 9.33976480457E-02 9.49994468432E-02 9.66286261556E-02 9.82856540146E-02 9.99710064523E-02 1.01685167638E-01 1.03428630017E-01 1.05201894451E-01 1.07005470367E-01 1.08839875896E-01 1.10705638027E-01 1.12603292758E-01 1.14533385248E-01 1.16496469976E-01 1.18493110897E-01 1.20523881608E-01 1.22589365511E-01 1.24690155978E-01 1.26826856526E-01 1.29000080988E-01 1.31210453690E-01 1.33458609628E-01 1.35745194654E-01 1.38070865660E-01 1.40436290766E-01 1.42842149513E-01 1.45289133057E-01 1.47777944370E-01 1.50309298440E-01 1.52883922474E-01 1.55502556113E-01 1.58165951639E-01 1.60874874195E-01 1.63630102002E-01 1.66432426582E-01 1.69282652990E-01 1.72181600041E-01 1.75130100546E-01 1.78129001552E-01 1.81179164585E-01 1.84281465899E-01 1.87436796724E-01 1.90646063526E-01 1.93910188265E-01 1.97230108660E-01 2.00606778462E-01 2.04041167722E-01 2.07534263072E-01 2.11087068013E-01 2.14700603196E-01 2.18375906719E-01 2.22114034428E-01 2.25916060212E-01 2.29783076321E-01 2.33716193673E-01 2.37716542178E-01 2.41785271057E-01 2.45923549178E-01 2.50132565388E-01 2.54413528856E-01 2.58767669420E-01 2.63196237940E-01 2.67700506659E-01 2.72281769565E-01 2.76941342767E-01 2.81680564869E-01 2.86500797360E-01 2.91403424997E-01 2.96389856212E-01 3.01461523510E-01 3.06619883881E-01 3.11866419224E-01 3.17202636767E-01 3.22630069502E-01 3.28150276624E-01 3.33764843983E-01 3.39475384535E-01 3.45283538809E-01 3.51190975373E-01 3.57199391322E-01 3.63310512755E-01 3.69526095281E-01 3.75847924515E-01 3.82277816597E-01 3.88817618711E-01 3.95469209615E-01 4.02234500182E-01 4.09115433950E-01 4.16113987677E-01 4.23232171914E-01 4.30472031575E-01 4.37835646533E-01 4.45325132213E-01 4.52942640197E-01 4.60690358849E-01 4.68570513939E-01 4.76585369283E-01 4.84737227393E-01 4.93028430141E-01 5.01461359428E-01 5.10038437872E-01 5.18762129502E-01 5.27634940466E-01 5.36659419750E-01 5.45838159912E-01 5.55173797828E-01 5.64669015445E-01 5.74326540555E-01 5.84149147579E-01 5.94139658362E-01 6.04300942983E-01 6.14635920584E-01 6.25147560203E-01 6.35838881632E-01 6.46712956279E-01 6.57772908056E-01 6.69021914274E-01 6.80463206553E-01 6.92100071757E-01 7.03935852930E-01 7.15973950265E-01 7.28217822073E-01 7.40670985782E-01 7.53337018944E-01 7.66219560267E-01 7.79322310655E-01 7.92649034274E-01 8.06203559634E-01 8.19989780688E-01 8.34011657951E-01 8.48273219637E-01 8.62778562816E-01 8.77531854593E-01 8.92537333304E-01 9.07799309730E-01 9.23322168344E-01 9.39110368562E-01 9.55168446029E-01 9.71501013919E-01 9.88112764263E-01 1.00500846930E+00 1.02219298283E+00 1.03967124163E+00 1.05744826688E+00 1.07552916556E+00 1.09391913198E+00 1.11262344920E+00 1.13164749062E+00 1.15099672148E+00 1.17067670044E+00 1.19069308118E+00 1.21105161400E+00 1.23175814753E+00 1.25281863036E+00 1.27423911275E+00 1.29602574838E+00 1.31818479615E+00 1.34072262192E+00 1.36364570036E+00 1.38696061684E+00 1.41067406927E+00 1.43479287008E+00 1.45932394813E+00 1.48427435072E+00 1.50965124562E+00 1.53546192313E+00 1.56171379815E+00 1.58841441233E+00 1.61557143624E+00 1.64319267158E+00 1.67128605339E+00 1.69985965236E+00 1.72892167712E+00 1.75848047663E+00 1.78854454257E+00 1.81912251176E+00 1.85022316866E+00 1.88185544788E+00 1.91402843677E+00 1.94675137801E+00 1.98003367225E+00 2.01388488087E+00 2.04831472865E+00 2.08333310664E+00 2.11895007492E+00 2.15517586556E+00 2.19202088554E+00 2.22949571972E+00 2.26761113389E+00 2.30637807786E+00 2.34580768864E+00 2.38591129359E+00 2.42670041369E+00 2.46818676688E+00 2.51038227138E+00 2.55329904913E+00 2.59694942931E+00 2.64134595182E+00 2.68650137092E+00 2.73242865889E+00 2.77914100975E+00 2.82665184305E+00 2.87497480775E+00 2.92412378608E+00 2.97411289761E+00 3.02495650323E+00 3.07666920934E+00 3.12926587198E+00 3.18276160117E+00 3.23717176519E+00 3.29251199502E+00 3.34879818885E+00 3.40604651661E+00 3.46427342464E+00 3.52349564040E+00 3.58373017729E+00 3.64499433952E+00 3.70730572710E+00 3.77068224089E+00 3.83514208773E+00 3.90070378570E+00 3.96738616939E+00 4.03520839537E+00 4.10418994764E+00 4.17435064329E+00 4.24571063811E+00 4.31829043244E+00 4.39211087707E+00 4.46719317918E+00 4.54355890845E+00 4.62123000329E+00 4.70022877710E+00 4.78057792469E+00 4.86230052882E+00 4.94542006682E+00 5.02996041732E+00 5.11594586712E+00 5.20340111819E+00 5.29235129472E+00 5.38282195038E+00 5.47483907563E+00 5.56842910522E+00 5.66361892575E+00 5.76043588341E+00 5.85890779185E+00 5.95906294013E+00 6.06093010089E+00 6.16453853860E+00 6.26991801796E+00 6.37709881244E+00 6.48611171303E+00 6.59698803701E+00 6.70975963701E+00 6.82445891012E+00 6.94111880723E+00 7.05977284247E+00 7.18045510285E+00 7.30320025805E+00 7.42804357036E+00 7.55502090487E+00 7.68416873970E+00 7.81552417653E+00 7.94912495123E+00 8.08500944471E+00 8.22321669397E+00 8.36378640327E+00 8.50675895557E+00 8.65217542412E+00 8.80007758426E+00 8.95050792540E+00 9.10350966329E+00 9.25912675235E+00 9.41740389837E+00 9.57838657131E+00 9.74212101837E+00 9.90865427729E+00 1.00780341899E+01 1.02503094156E+01 1.04255294460E+01 1.06037446182E+01 1.07850061301E+01 1.09693660545E+01 1.11568773546E+01 1.13475938986E+01 1.15415704758E+01 1.17388628119E+01 1.19395275851E+01 1.21436224425E+01 1.23512060167E+01 1.25623379424E+01 1.27770788737E+01 1.29954905016E+01 1.32176355714E+01 1.34435779011E+01 1.36733823996E+01 1.39071150853E+01 1.41448431051E+01 1.43866347536E+01 1.46325594929E+01 1.48826879724E+01 1.51370920491E+01 1.53958448085E+01 1.56590205852E+01 1.59266949846E+01 1.61989449042E+01 1.64758485562E+01 1.67574854897E+01 1.70439366135E+01 1.73352842195E+01 1.76316120062E+01 1.79330051029E+01 1.82395500940E+01 1.85513350438E+01 1.88684495222E+01 1.91909846301E+01 1.95190330255E+01 1.98526889504E+01 2.01920482577E+01 2.05372084387E+01 2.08882686513E+01 2.12453297483E+01 2.16084943064E+01 2.19778666558E+01 2.23535529101E+01 2.27356609965E+01 2.31243006874E+01 2.35195836314E+01 2.39216233857E+01 2.43305354485E+01 2.47464372923E+01 2.51694483977E+01 2.55996902876E+01 2.60372865621E+01 2.64823629342E+01 2.69350472658E+01 2.73954696042E+01 2.78637622200E+01 2.83400596445E+01 2.88244987087E+01 2.93172185826E+01 2.98183608151E+01 3.03280693747E+01 3.08464906907E+01 3.13737736956E+01 3.19100698676E+01 3.24555332743E+01 3.30103206165E+01 3.35745912742E+01 3.41485073512E+01 3.47322337226E+01 3.53259380817E+01 3.59297909882E+01 3.65439659174E+01 3.71686393098E+01 3.78039906221E+01 3.84502023784E+01 3.91074602228E+01 3.97759529727E+01 4.04558726733E+01 4.11474146522E+01 4.18507775762E+01 4.25661635077E+01 4.32937779633E+01 4.40338299725E+01 4.47865321380E+01 4.55521006966E+01 4.63307555812E+01 4.71227204844E+01 4.79282229223E+01 4.87474943003E+01 4.95807699790E+01 5.04282893426E+01 5.12902958668E+01 5.21670371896E+01 5.30587651817E+01 5.39657360193E+01 5.48882102576E+01 5.58264529055E+01 5.67807335021E+01 5.77513261938E+01 5.87385098129E+01 5.97425679582E+01 6.07637890763E+01 6.18024665441E+01 6.28588987537E+01 6.39333891975E+01 6.50262465558E+01 6.61377847856E+01 6.72683232100E+01 6.84181866111E+01 6.95877053222E+01 7.07772153235E+01 7.19870583381E+01 7.32175819307E+01 7.44691396067E+01 7.57420909145E+01 7.70368015483E+01 7.83536434535E+01 7.96929949333E+01 8.10552407574E+01 5.25159359463E-06 5.34136225794E-06 5.43266539126E-06 5.52552922422E-06 5.61998043481E-06 5.71604615702E-06 5.81375398868E-06 5.91313199936E-06 6.01420873844E-06 6.11701324332E-06 6.22157504773E-06 6.32792419025E-06 6.43609122295E-06 6.54610722011E-06 6.65800378720E-06 6.77181306994E-06 6.88756776354E-06 7.00530112207E-06 7.12504696806E-06 7.24683970217E-06 7.37071431309E-06 7.49670638760E-06 7.62485212079E-06 7.75518832645E-06 7.88775244764E-06 8.02258256748E-06 8.15971742005E-06 8.29919640153E-06 8.44105958155E-06 8.58534771463E-06 8.73210225199E-06 8.88136535335E-06 9.03317989911E-06 9.18758950265E-06 9.34463852288E-06 9.50437207692E-06 9.66683605315E-06 9.83207712431E-06 1.00001427610E-05 1.01710812451E-05 1.03449416841E-05 1.05217740247E-05 1.07016290673E-05 1.08845584809E-05 1.10706148174E-05 1.12598515275E-05 1.14523229749E-05 1.16480844532E-05 1.18471922007E-05 1.20497034172E-05 1.22556762804E-05 1.24651699622E-05 1.26782446462E-05 1.28949615445E-05 1.31153829157E-05 1.33395720826E-05 1.35675934505E-05 1.37995125254E-05 1.40353959333E-05 1.42753114387E-05 1.45193279650E-05 1.47675156132E-05 1.50199456828E-05 1.52766906922E-05 1.55378243993E-05 1.58034218226E-05 1.60735592631E-05 1.63483143263E-05 1.66277659438E-05 1.69119943966E-05 1.72010813382E-05 1.74951098176E-05 1.77941643036E-05 1.80983307086E-05 1.84076964137E-05 1.87223502939E-05 1.90423827430E-05 1.93678857002E-05 1.96989526762E-05 2.00356787800E-05 2.03781607467E-05 2.07264969646E-05 2.10807875041E-05 2.14411341458E-05 2.18076404105E-05 2.21804115883E-05 2.25595547691E-05 2.29451788735E-05 2.33373946837E-05 2.37363148758E-05 2.41420540519E-05 2.45547287729E-05 2.49744575924E-05 2.54013610903E-05 2.58355619076E-05 2.62771847820E-05 2.67263565830E-05 2.71832063491E-05 2.76478653244E-05 2.81204669964E-05 2.86011471344E-05 2.90900438285E-05 2.95872975293E-05 3.00930510881E-05 3.06074497982E-05 3.11306414363E-05 3.16627763054E-05 3.22040072773E-05 3.27544898374E-05 3.33143821285E-05 3.38838449970E-05 3.44630420385E-05 3.50521396450E-05 3.56513070530E-05 3.62607163916E-05 3.68805427324E-05 3.75109641394E-05 3.81521617206E-05 3.88043196795E-05 3.94676253686E-05 4.01422693427E-05 4.08284454140E-05 4.15263507077E-05 4.22361857183E-05 4.29581543677E-05 4.36924640637E-05 4.44393257590E-05 4.51989540128E-05 4.59715670513E-05 4.67573868315E-05 4.75566391042E-05 4.83695534790E-05 4.91963634905E-05 5.00373066653E-05 5.08926245900E-05 5.17625629809E-05 5.26473717545E-05 5.35473050993E-05 5.44626215486E-05 5.53935840552E-05 5.63404600666E-05 5.73035216019E-05 5.82830453301E-05 5.92793126494E-05 6.02926097682E-05 6.13232277870E-05 6.23714627825E-05 6.34376158923E-05 6.45219934015E-05 6.56249068310E-05 6.67466730262E-05 6.78876142491E-05 6.90480582698E-05 7.02283384615E-05 7.14287938959E-05 7.26497694405E-05 7.38916158581E-05 7.51546899071E-05 7.64393544441E-05 7.77459785285E-05 7.90749375281E-05 8.04266132271E-05 8.18013939358E-05 8.31996746020E-05 8.46218569247E-05 8.60683494694E-05 8.75395677854E-05 8.90359345253E-05 9.05578795663E-05 9.21058401337E-05 9.36802609266E-05 9.52815942457E-05 9.69103001230E-05 9.85668464543E-05 1.00251709133E-04 1.01965372188E-04 1.03708327921E-04 1.05481077051E-04 1.07284128852E-04 1.09118001307E-04 1.10983221253E-04 1.12880324531E-04 1.14809856141E-04 1.16772370402E-04 1.18768431105E-04 1.20798611680E-04 1.22863495358E-04 1.24963675341E-04 1.27099754970E-04 1.29272347900E-04 1.31482078273E-04 1.33729580903E-04 1.36015501453E-04 1.38340496625E-04 1.40705234345E-04 1.43110393956E-04 1.45556666414E-04 1.48044754486E-04 1.50575372950E-04 1.53149248806E-04 1.55767121477E-04 1.58429743028E-04 1.61137878378E-04 1.63892305523E-04 1.66693815756E-04 1.69543213896E-04 1.72441318521E-04 1.75388962199E-04 1.78386991733E-04 1.81436268397E-04 1.84537668191E-04 1.87692082085E-04 1.90900416283E-04 1.94163592476E-04 1.97482548112E-04 2.00858236663E-04 2.04291627898E-04 2.07783708165E-04 2.11335480670E-04 2.14947965769E-04 2.18622201260E-04 2.22359242678E-04 2.26160163604E-04 2.30026055969E-04 2.33958030368E-04 2.37957216382E-04 2.42024762900E-04 2.46161838449E-04 2.50369631530E-04 2.54649350962E-04 2.59002226225E-04 2.63429507815E-04 2.67932467605E-04 2.72512399209E-04 2.77170618351E-04 2.81908463249E-04 2.86727294993E-04 2.91628497940E-04 2.96613480112E-04 3.01683673597E-04 3.06840534963E-04 3.12085545677E-04 3.17420212530E-04 3.22846068067E-04 3.28364671032E-04 3.33977606813E-04 3.39686487898E-04 3.45492954338E-04 3.51398674217E-04 3.57405344136E-04 3.63514689695E-04 3.69728465989E-04 3.76048458117E-04 3.82476481690E-04 3.89014383355E-04 3.95664041325E-04 4.02427365917E-04 4.09306300105E-04 4.16302820072E-04 4.23418935783E-04 4.30656691561E-04 4.38018166673E-04 4.45505475928E-04 4.53120770285E-04 4.60866237472E-04 4.68744102610E-04 4.76756628859E-04 4.84906118061E-04 4.93194911408E-04 5.01625390109E-04 5.10199976078E-04 5.18921132627E-04 5.27791365176E-04 5.36813221970E-04 5.45989294816E-04 5.55322219821E-04 5.64814678154E-04 5.74469396814E-04 5.84289149415E-04 5.94276756982E-04 6.04435088762E-04 6.14767063047E-04 6.25275648012E-04 6.35963862572E-04 6.46834777243E-04 6.57891515028E-04 6.69137252315E-04 6.80575219787E-04 6.92208703349E-04 7.04041045077E-04 7.16075644173E-04 7.28315957945E-04 7.40765502799E-04 7.53427855247E-04 7.66306652938E-04 7.79405595702E-04 7.92728446612E-04 8.06279033064E-04 8.20061247880E-04 8.34079050424E-04 8.48336467739E-04 8.62837595705E-04 8.77586600216E-04 8.92587718375E-04 9.07845259713E-04 9.23363607427E-04 9.39147219637E-04 9.55200630670E-04 9.71528452360E-04 9.88135375375E-04 1.00502617056E-03 1.02220569032E-03 1.03967886999E-03 1.05745072928E-03 1.07552637371E-03 1.09391099605E-03 1.11260987785E-03 1.13162839094E-03 1.15097199896E-03 1.17064625897E-03 1.19065682300E-03 1.21100943969E-03 1.23170995596E-03 1.25276431867E-03 1.27417857632E-03 1.29595888082E-03 1.31811148923E-03 1.34064276557E-03 1.36355918263E-03 1.38686732385E-03 1.41057388522E-03 1.43468567717E-03 1.45920962656E-03 1.48415277863E-03 1.50952229908E-03 1.53532547607E-03 1.56156972236E-03 1.58826257742E-03 1.61541170958E-03 1.64302491827E-03 1.67111013622E-03 1.69967543177E-03 1.72872901119E-03 1.75827922099E-03 1.78833455040E-03 1.81890363371E-03 1.84999525285E-03 1.88161833981E-03 1.91378197932E-03 1.94649541136E-03 1.97976803386E-03 2.01360940541E-03 2.04802924797E-03 2.08303744971E-03 2.11864406780E-03 2.15485933133E-03 2.19169364425E-03 2.22915758834E-03 2.26726192627E-03 2.30601760467E-03 2.34543575732E-03 2.38552770827E-03 2.42630497516E-03 2.46777927253E-03 2.50996251513E-03 2.55286682139E-03 2.59650451688E-03 2.64088813788E-03 2.68603043494E-03 2.73194437656E-03 2.77864315294E-03 2.82614017973E-03 2.87444910190E-03 2.92358379768E-03 2.97355838251E-03 3.02438721312E-03 3.07608489165E-03 3.12866626985E-03 3.18214645332E-03 3.23654080590E-03 3.29186495401E-03 3.34813479123E-03 3.40536648278E-03 3.46357647023E-03 3.52278147617E-03 3.58299850907E-03 3.64424486810E-03 3.70653814816E-03 3.76989624491E-03 3.83433735990E-03 3.89988000581E-03 3.96654301179E-03 4.03434552881E-03 4.10330703524E-03 4.17344734238E-03 4.24478660017E-03 4.31734530302E-03 4.39114429563E-03 4.46620477903E-03 4.54254831663E-03 4.62019684046E-03 4.69917265744E-03 4.77949845579E-03 4.86119731155E-03 4.94429269524E-03 5.02880847855E-03 5.11476894121E-03 5.20219877802E-03 5.29112310587E-03 5.38156747101E-03 5.47355785633E-03 5.56712068892E-03 5.66228284754E-03 5.75907167046E-03 5.85751496323E-03 5.95764100670E-03 6.05947856515E-03 6.16305689453E-03 6.26840575089E-03 6.37555539893E-03 6.48453662067E-03 6.59538072429E-03 6.70811955317E-03 6.82278549499E-03 6.93941149105E-03 7.05803104575E-03 7.17867823620E-03 7.30138772198E-03 7.42619475518E-03 7.55313519042E-03 7.68224549524E-03 7.81356276053E-03 7.94712471121E-03 8.08296971704E-03 8.22113680365E-03 8.36166566377E-03 8.50459666864E-03 8.64997087956E-03 8.79783005973E-03 8.94821668623E-03 9.10117396223E-03 9.25674582939E-03 9.41497698051E-03 9.57591287232E-03 9.73959973860E-03 9.90608460341E-03 1.00754152946E-02 1.02476404577E-02 1.04228095696E-02 1.06009729530E-02 1.07821817907E-02 1.09664881407E-02 1.11539449505E-02 1.13446060728E-02 1.15385262809E-02 1.17357612844E-02 1.19363677450E-02 1.21404032930E-02 1.23479265440E-02 1.25589971153E-02 1.27736756435E-02 1.29920238015E-02 1.32141043166E-02 1.34399809881E-02 1.36697187060E-02 1.39033834697E-02 1.41410424063E-02 1.43827637908E-02 1.46286170651E-02 1.48786728579E-02 1.51330030055E-02 1.53916805721E-02 1.56547798706E-02 1.59223764845E-02 1.61945472890E-02 1.64713704736E-02 1.67529255642E-02 1.70392934461E-02 1.73305563873E-02 1.76267980619E-02 1.79281035746E-02 1.82345594845E-02 1.85462538305E-02 1.88632761563E-02 1.91857175364E-02 1.95136706018E-02 1.98472295672E-02 2.01864902576E-02 2.05315501360E-02 2.08825083315E-02 2.12394656675E-02 2.16025246910E-02 2.19717897018E-02 2.23473667826E-02 2.27293638295E-02 2.31178905827E-02 2.35130586586E-02 2.39149815812E-02 2.43237748153E-02 2.47395557992E-02 2.51624439787E-02 2.55925608415E-02 2.60300299517E-02 2.64749769859E-02 2.69275297686E-02 2.73878183096E-02 2.78559748408E-02 2.83321338545E-02 2.88164321421E-02 2.93090088329E-02 2.98100054349E-02 3.03195658745E-02 3.08378365388E-02 3.13649663167E-02 3.19011066425E-02 3.24464115389E-02 3.30010376615E-02 3.35651443437E-02 3.41388936422E-02 3.47224503844E-02 3.53159822146E-02 3.59196596430E-02 3.65336560947E-02 3.71581479588E-02 3.77933146397E-02 3.84393386086E-02 3.90964054556E-02 3.97647039434E-02 4.04444260612E-02 4.11357670799E-02 4.18389256085E-02 4.25541036508E-02 4.32815066636E-02 4.40213436158E-02 4.47738270481E-02 4.55391731346E-02 4.63176017442E-02 4.71093365046E-02 4.79146048657E-02 4.87336381656E-02 4.95666716967E-02 5.04139447734E-02 5.12757008009E-02 5.21521873451E-02 5.30436562034E-02 5.39503634778E-02 5.48725696476E-02 5.58105396448E-02 5.67645429301E-02 5.77348535701E-02 5.87217503163E-02 5.97255166851E-02 6.07464410391E-02 6.17848166701E-02 6.28409418834E-02 6.39151200832E-02 6.50076598602E-02 6.61188750800E-02 6.72490849730E-02 6.83986142269E-02 6.95677930791E-02 7.07569574120E-02 7.19664488496E-02 7.31966148554E-02 7.44478088321E-02 7.57203902237E-02 7.70147246182E-02 7.83311838528E-02 7.96701461207E-02 8.10319960799E-02 8.24171249635E-02 8.38259306923E-02 8.52588179889E-02 8.67161984940E-02 8.81984908850E-02 8.97061209956E-02 9.12395219390E-02 9.27991342314E-02 9.43854059194E-02 9.59987927080E-02 9.76397580921E-02 9.93087734893E-02 1.01006318375E-01 1.02732880422E-01 1.04488955638E-01 1.06275048508E-01 1.08091672144E-01 1.09939348425E-01 1.11818608153E-01 1.13729991204E-01 1.15674046680E-01 1.17651333072E-01 1.19662418415E-01 1.21707880456E-01 1.23788306815E-01 1.25904295159E-01 1.28056453371E-01 1.30245399724E-01 1.32471763060E-01 1.34736182970E-01 1.37039309979E-01 1.39381805729E-01 1.41764343174E-01 1.44187606773E-01 1.46652292680E-01 1.49159108954E-01 1.51708775753E-01 1.54302025548E-01 1.56939603328E-01 1.59622266820E-01 1.62350786701E-01 1.65125946820E-01 1.67948544429E-01 1.70819390405E-01 1.73739309486E-01 1.76709140509E-01 1.79729736648E-01 1.82801965663E-01 1.85926710145E-01 1.89104867773E-01 1.92337351570E-01 1.95625090167E-01 1.98969028066E-01 2.02370125917E-01 2.05829360789E-01 2.09347726453E-01 2.12926233669E-01 2.16565910470E-01 2.20267802468E-01 2.24032973142E-01 2.27862504154E-01 2.31757495655E-01 2.35719066599E-01 2.39748355070E-01 2.43846518604E-01 2.48014734524E-01 2.52254200278E-01 2.56566133782E-01 2.60951773772E-01 2.65412380157E-01 2.69949234383E-01 2.74563639800E-01 2.79256922037E-01 2.84030429385E-01 2.88885533178E-01 2.93823628195E-01 2.98846133055E-01 3.03954490626E-01 3.09150168440E-01 3.14434659116E-01 3.19809480784E-01 3.25276177527E-01 3.30836319822E-01 3.36491504990E-01 3.42243357656E-01 3.48093530216E-01 3.54043703311E-01 3.60095586310E-01 3.66250917804E-01 3.72511466099E-01 3.78879029730E-01 3.85355437975E-01 3.91942551380E-01 3.98642262295E-01 4.05456495418E-01 4.12387208347E-01 4.19436392141E-01 4.26606071893E-01 4.33898307315E-01 4.41315193324E-01 4.48858860648E-01 4.56531476438E-01 4.64335244886E-01 4.72272407865E-01 4.80345245567E-01 4.88556077164E-01 4.96907261468E-01 5.05401197612E-01 5.14040325740E-01 5.22827127707E-01 5.31764127791E-01 5.40853893418E-01 5.50099035903E-01 5.59502211196E-01 5.69066120648E-01 5.78793511784E-01 5.88687179096E-01 5.98749964842E-01 6.08984759868E-01 6.19394504430E-01 6.29982189048E-01 6.40750855358E-01 6.51703596990E-01 6.62843560454E-01 6.74173946047E-01 6.85698008768E-01 6.97419059259E-01 7.09340464749E-01 7.21465650029E-01 7.33798098429E-01 7.46341352823E-01 7.59099016645E-01 7.72074754926E-01 7.85272295343E-01 7.98695429296E-01 8.12348012989E-01 8.26233968547E-01 8.40357285136E-01 8.54722020112E-01 8.69332300184E-01 8.84192322604E-01 8.99306356368E-01 9.14678743446E-01 9.30313900027E-01 9.46216317789E-01 9.62390565189E-01 9.78841288776E-01 9.95573214523E-01 1.01259114919E+00 1.02989998170E+00 1.04750468454E+00 1.06541031521E+00 1.08362201765E+00 1.10214502373E+00 1.12098465474E+00 1.14014632295E+00 1.15963553314E+00 1.17945788417E+00 1.19961907064E+00 1.22012488444E+00 1.24098121652E+00 1.26219405849E+00 1.28376950438E+00 1.30571375241E+00 1.32803310674E+00 1.35073397928E+00 1.37382289155E+00 2 0.00000000000E+00 9.82324719653E-06 1.98144090899E-05 2.99763559494E-05 4.03120071042E-05 5.08243317854E-05 6.15163499785E-05 7.23911332914E-05 8.34518058370E-05 9.47015451299E-05 1.06143583000E-04 1.17781206521E-04 1.29617758953E-04 1.41656640706E-04 1.53901310315E-04 1.66355285431E-04 1.79022143837E-04 1.91905524473E-04 2.05009128478E-04 2.18336720260E-04 2.31892128573E-04 2.45679247617E-04 2.59702038159E-04 2.73964528668E-04 2.88470816474E-04 3.03225068946E-04 3.18231524687E-04 3.33494494752E-04 3.49018363887E-04 3.64807591790E-04 3.80866714389E-04 3.97200345149E-04 4.13813176392E-04 4.30709980652E-04 4.47895612038E-04 4.65375007635E-04 4.83153188920E-04 5.01235263203E-04 5.19626425097E-04 5.38331958006E-04 5.57357235649E-04 5.76707723597E-04 5.96388980849E-04 6.16406661425E-04 6.36766515990E-04 6.57474393510E-04 6.78536242928E-04 6.99958114874E-04 7.21746163404E-04 7.43906647769E-04 7.66445934210E-04 7.89370497788E-04 8.12686924244E-04 8.36401911893E-04 8.60522273544E-04 8.85054938461E-04 9.10006954351E-04 9.35385489388E-04 9.61197834277E-04 9.87451404341E-04 1.01415374166E-03 1.04131251722E-03 1.06893553314E-03 1.09703072490E-03 1.12560616363E-03 1.15467005840E-03 1.18423075862E-03 1.21429675639E-03 1.24487668901E-03 1.27597934138E-03 1.30761364856E-03 1.33978869838E-03 1.37251373395E-03 1.40579815641E-03 1.43965152759E-03 1.47408357275E-03 1.50910418338E-03 1.54472342006E-03 1.58095151532E-03 1.61779887660E-03 1.65527608922E-03 1.69339391946E-03 1.73216331759E-03 1.77159542107E-03 1.81170155774E-03 1.85249324903E-03 1.89398221332E-03 1.93618036930E-03 1.97909983936E-03 2.02275295311E-03 2.06715225087E-03 2.11231048734E-03 2.15824063521E-03 2.20495588892E-03 2.25246966840E-03 2.30079562299E-03 2.34994763531E-03 2.39993982527E-03 2.45078655412E-03 2.50250242855E-03 2.55510230494E-03 2.60860129358E-03 2.66301476300E-03 2.71835834445E-03 2.77464793631E-03 2.83189970871E-03 2.89013010812E-03 2.94935586214E-03 3.00959398427E-03 3.07086177875E-03 3.13317684562E-03 3.19655708570E-03 3.26102070575E-03 3.32658622372E-03 3.39327247404E-03 3.46109861303E-03 3.53008412441E-03 3.60024882489E-03 3.67161286984E-03 3.74419675913E-03 3.81802134294E-03 3.89310782779E-03 3.96947778264E-03 4.04715314505E-03 4.12615622748E-03 4.20650972371E-03 4.28823671534E-03 4.37136067841E-03 4.45590549018E-03 4.54189543590E-03 4.62935521588E-03 4.71830995247E-03 4.80878519738E-03 4.90080693891E-03 4.99440160948E-03 5.08959609318E-03 5.18641773348E-03 5.28489434108E-03 5.38505420191E-03 5.48692608521E-03 5.59053925181E-03 5.69592346249E-03 5.80310898655E-03 5.91212661047E-03 6.02300764674E-03 6.13578394286E-03 6.25048789043E-03 6.36715243448E-03 6.48581108290E-03 6.60649791603E-03 6.72924759645E-03 6.85409537890E-03 6.98107712041E-03 7.11022929054E-03 7.24158898185E-03 7.37519392053E-03 7.51108247722E-03 7.64929367797E-03 7.78986721544E-03 7.93284346027E-03 8.07826347264E-03 8.22616901403E-03 8.37660255917E-03 8.52960730820E-03 8.68522719904E-03 8.84350691999E-03 9.00449192246E-03 9.16822843405E-03 9.33476347172E-03 9.50414485527E-03 9.67642122099E-03 9.85164203561E-03 1.00298576104E-02 1.02111191156E-02 1.03954785951E-02 1.05829889809E-02 1.07737041091E-02 1.09676787344E-02 1.11649685460E-02 1.13656301840E-02 1.15697212548E-02 1.17773003482E-02 1.19884270535E-02 1.22031619771E-02 1.24215667595E-02 1.26437040927E-02 1.28696377387E-02 1.30994325468E-02 1.33331544729E-02 1.35708705976E-02 1.38126491459E-02 1.40585595062E-02 1.43086722504E-02 1.45630591534E-02 1.48217932144E-02 1.50849486769E-02 1.53526010500E-02 1.56248271300E-02 1.59017050222E-02 1.61833141630E-02 1.64697353423E-02 1.67610507267E-02 1.70573438827E-02 1.73586998003E-02 1.76652049172E-02 1.79769471430E-02 1.82940158846E-02 1.86165020709E-02 1.89444981789E-02 1.92780982598E-02 1.96173979653E-02 1.99624945749E-02 2.03134870232E-02 2.06704759276E-02 2.10335636172E-02 2.14028541608E-02 2.17784533970E-02 2.21604689633E-02 2.25490103266E-02 2.29441888141E-02 2.33461176441E-02 2.37549119581E-02 2.41706888527E-02 2.45935674128E-02 2.50236687442E-02 2.54611160082E-02 2.59060344551E-02 2.63585514600E-02 2.68187965574E-02 2.72869014777E-02 2.77630001836E-02 2.82472289074E-02 2.87397261883E-02 2.92406329114E-02 2.97500923460E-02 3.02682501854E-02 3.07952545869E-02 3.13312562127E-02 3.18764082711E-02 3.24308665587E-02 3.29947895027E-02 3.35683382047E-02 3.41516764841E-02 3.47449709229E-02 3.53483909111E-02 3.59621086924E-02 3.65862994111E-02 3.72211411590E-02 3.78668150237E-02 3.85235051371E-02 3.91913987248E-02 3.98706861562E-02 4.05615609954E-02 4.12642200524E-02 4.19788634358E-02 4.27056946051E-02 4.34449204250E-02 4.41967512194E-02 4.49614008266E-02 4.57390866554E-02 4.65300297413E-02 4.73344548042E-02 4.81525903063E-02 4.89846685108E-02 4.98309255418E-02 5.06916014443E-02 5.15669402451E-02 5.24571900150E-02 5.33626029310E-02 5.42834353393E-02 5.52199478197E-02 5.61724052497E-02 5.71410768704E-02 5.81262363519E-02 5.91281618606E-02 6.01471361261E-02 6.11834465097E-02 6.22373850726E-02 6.33092486456E-02 6.43993388989E-02 6.55079624127E-02 6.66354307479E-02 6.77820605186E-02 6.89481734634E-02 7.01340965187E-02 7.13401618912E-02 7.25667071325E-02 7.38140752119E-02 7.50826145918E-02 7.63726793016E-02 7.76846290133E-02 7.90188291162E-02 8.03756507927E-02 8.17554710934E-02 8.31586730134E-02 8.45856455671E-02 8.60367838645E-02 8.75124891864E-02 8.90131690595E-02 9.05392373317E-02 9.20911142468E-02 9.36692265184E-02 9.52740074042E-02 9.69058967782E-02 9.85653412040E-02 1.00252794005E-01 1.01968715338E-01 1.03713572256E-01 1.05487838785E-01 1.07291995984E-01 1.09126532013E-01 1.10991942197E-01 1.12888729086E-01 1.14817402515E-01 1.16778479664E-01 1.18772485108E-01 1.20799950873E-01 1.22861416487E-01 1.24957429020E-01 1.27088543133E-01 1.29255321115E-01 1.31458332919E-01 1.33698156190E-01 1.35975376297E-01 1.38290586352E-01 1.40644387226E-01 1.43037387562E-01 1.45470203778E-01 1.47943460069E-01 1.50457788395E-01 1.53013828471E-01 1.55612227740E-01 1.58253641343E-01 1.60938732082E-01 1.63668170369E-01 1.66442634166E-01 1.69262808922E-01 1.72129387486E-01 1.75043070020E-01 1.78004563895E-01 1.81014583572E-01 1.84073850472E-01 1.87183092832E-01 1.90343045542E-01 1.93554449971E-01 1.96818053770E-01 2.00134610660E-01 2.03504880199E-01 2.06929627535E-01 2.10409623127E-01 2.13945642450E-01 2.17538465680E-01 2.21188877345E-01 2.24897665956E-01 2.28665623608E-01 2.32493545555E-01 2.36382229750E-01 2.40332476353E-01 2.44345087215E-01 2.48420865310E-01 2.52560614145E-01 2.56765137124E-01 2.61035236870E-01 2.65371714508E-01 2.69775368900E-01 2.74246995837E-01 2.78787387174E-01 2.83397329924E-01 2.88077605288E-01 2.92828987634E-01 2.97652243416E-01 3.02548130029E-01 3.07517394602E-01 3.12560772722E-01 3.17678987084E-01 3.22872746078E-01 3.28142742284E-01 3.33489650898E-01 3.38914128067E-01 3.44416809144E-01 3.49998306842E-01 3.55659209301E-01 3.61400078051E-01 3.67221445875E-01 3.73123814558E-01 3.79107652535E-01 3.85173392407E-01 3.91321428352E-01 3.97552113396E-01 4.03865756558E-01 4.10262619861E-01 4.16742915196E-01 4.23306801040E-01 4.29954379021E-01 4.36685690324E-01 4.43500711929E-01 4.50399352680E-01 4.57381449174E-01 4.64446761468E-01 4.71594968588E-01 4.78825663845E-01 4.86138349948E-01 4.93532433892E-01 5.01007221638E-01 5.08561912560E-01 5.16195593651E-01 5.23907233502E-01 5.31695676006E-01 5.39559633828E-01 5.47497681592E-01 5.55508248800E-01 5.63589612474E-01 5.71739889505E-01 5.79957028715E-01 5.88238802613E-01 5.96582798855E-01 6.04986411393E-01 6.13446831317E-01 6.21961037388E-01 6.30525786263E-01 6.39137602414E-01 6.47792767760E-01 6.56487311001E-01 6.65216996686E-01 6.73977314034E-01 6.82763465519E-01 6.91570355263E-01 7.00392577271E-01 7.09224403555E-01 7.18059772205E-01 7.26892275469E-01 7.35715147926E-01 7.44521254847E-01 7.53303080840E-01 7.62052718915E-01 7.70761860104E-01 7.79421783792E-01 7.88023348944E-01 7.96556986429E-01 8.05012692654E-01 8.13380024763E-01 8.21648097645E-01 8.29805583058E-01 8.37840711145E-01 8.45741274662E-01 8.53494636239E-01 8.61087738985E-01 8.68507120756E-01 8.75738932354E-01 8.82768959930E-01 8.89582651772E-01 8.96165149605E-01 9.02501324414E-01 9.08575816697E-01 9.14373080866E-01 9.19877433344E-01 9.25073103655E-01 9.29944287582E-01 9.34475201114E-01 9.38650133653E-01 9.42453498576E-01 9.45869878935E-01 9.48884065815E-01 9.51481086606E-01 9.53646220399E-01 9.55364997763E-01 9.56623182553E-01 9.57406734101E-01 9.57701749402E-01 9.57494386725E-01 9.56770774752E-01 9.55516914890E-01 9.53718589055E-01 9.51361290974E-01 9.48430205928E-01 9.44910271583E-01 9.40786360575E-01 9.36043632795E-01 9.30668110065E-01 9.24647525412E-01 9.17972486309E-01 9.10637963209E-01 9.02645056959E-01 8.94002896212E-01 8.84730345509E-01 8.74856932570E-01 8.64421981748E-01 8.53470301738E-01 8.42041974389E-01 8.30162732378E-01 8.17853843525E-01 8.05137017965E-01 7.92034495521E-01 7.78568965406E-01 7.64763511346E-01 7.50641555837E-01 7.36226804398E-01 7.21543189313E-01 7.06614813624E-01 6.91465894959E-01 6.76120709822E-01 6.60603538047E-01 6.44938607906E-01 6.29150041668E-01 6.13261801984E-01 5.97297639002E-01 5.81281038449E-01 5.65235170705E-01 5.49182840990E-01 5.33146440793E-01 5.17147900560E-01 5.01208643883E-01 4.85349543124E-01 4.69590876801E-01 4.53952288623E-01 4.38452748580E-01 4.23110515920E-01 4.07943104514E-01 3.92967250386E-01 3.78198881975E-01 3.63653092872E-01 3.49344117637E-01 3.35285310392E-01 3.21489126829E-01 3.07967109260E-01 2.94729875342E-01 2.81787110055E-01 2.69147561506E-01 2.56819040100E-01 2.44808421557E-01 2.33121653271E-01 2.21763764402E-01 2.10738879141E-01 2.00050233453E-01 1.89700194682E-01 1.79690284259E-01 1.70021202859E-01 1.60692858166E-01 1.51704394619E-01 1.43054225204E-01 1.34740064714E-01 1.26758964483E-01 1.19107348073E-01 1.11781047884E-01 1.04775342225E-01 9.80849928283E-02 9.17042823827E-02 8.56270520950E-02 7.98467389264E-02 7.43564125233E-02 6.91488115624E-02 6.42163795495E-02 5.95512998575E-02 5.51455300587E-02 5.09908353925E-02 4.70788214331E-02 4.34009658377E-02 3.99486492394E-02 3.67131851914E-02 3.36858492105E-02 3.08579068412E-02 2.82206407635E-02 2.57653768664E-02 2.34835092848E-02 2.13665243139E-02 1.94060231768E-02 1.75937435529E-02 1.59215798243E-02 1.43816019508E-02 1.29660729223E-02 1.16674647080E-02 1.04784726573E-02 9.39202829093E-03 8.40131045076E-03 7.49975477537E-03 6.68106149309E-03 5.93920152965E-03 5.26842095156E-03 4.66324377383E-03 4.11847318217E-03 3.62919122822E-03 3.19075707392E-03 2.79880386913E-03 2.44923435933E-03 2.13821532637E-03 1.86217097380E-03 1.61777537102E-03 1.40194407539E-03 1.21182505092E-03 1.04478900308E-03 8.98419246312E-04 7.70501218183E-04 6.59011748997E-04 5.62108190382E-04 4.78117499556E-04 4.05525368861E-04 3.42965482142E-04 2.89208971435E-04 2.43154138841E-04 2.03816499949E-04 1.70319196627E-04 1.41883818659E-04 1.17821665617E-04 9.75254726727E-05 8.04616168067E-05 6.61628131407E-05 5.42213049572E-05 4.42825454132E-05 3.60393640091E-05 2.92266065711E-05 2.36162338188E-05 1.90128605261E-05 1.52497148062E-05 1.21849951344E-05 9.69860133564E-06 7.68921485062E-06 6.07170312092E-06 4.77482284653E-06 3.73919711345E-06 2.91554191744E-06 2.26311836547E-06 1.74838774964E-06 1.34384765990E-06 1.02702902980E-06 7.79633664229E-07 5.86794352434E-07 4.36439773788E-07 3.18747076285E-07 2.25665167036E-07 1.50491242568E-07 8.74816081323E-08 3.14749174573E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.61916611148E-11 2.28625135240E-10 5.23262243731E-10 9.46303766628E-10 1.50419825270E-09 2.20365114301E-09 3.05163421902E-09 4.05539538644E-09 5.22246880684E-09 6.56068538895E-09 8.07818365228E-09 9.78342097619E-09 1.16851852478E-08 1.37926069225E-08 1.61151715121E-08 1.86627325147E-08 2.14455248022E-08 2.44741784815E-08 2.77597332459E-08 3.13136532332E-08 3.51478424092E-08 3.92746604944E-08 4.37069394521E-08 4.84580005594E-08 5.35416720794E-08 5.89723075566E-08 6.47648047574E-08 7.09346252772E-08 7.74978148386E-08 8.44710243035E-08 9.18715314252E-08 9.97172633652E-08 1.08026820002E-07 1.16819498059E-07 1.26115316081E-07 1.35935040286E-07 1.46300211328E-07 1.57233171999E-07 1.68757095897E-07 1.80896017110E-07 1.93674860934E-07 2.07119475666E-07 2.21256665525E-07 2.36114224706E-07 2.51720972646E-07 2.68106790514E-07 2.85302658982E-07 3.03340697318E-07 3.22254203850E-07 3.42077697839E-07 3.62846962823E-07 3.84599091474E-07 4.07372532021E-07 4.31207136305E-07 4.56144209497E-07 4.82226561570E-07 5.09498560559E-07 5.38006187682E-07 5.67797094387E-07 5.98920661390E-07 6.31428059774E-07 6.65372314218E-07 7.00808368434E-07 7.37793152883E-07 7.76385654854E-07 8.16646990989E-07 8.58640482331E-07 9.02431731989E-07 9.48088705513E-07 9.95681814063E-07 1.04528400048E-06 1.09697082834E-06 1.15082057415E-06 1.20691432270E-06 1.26533606575E-06 1.32617280419E-06 1.38951465371E-06 1.45545495414E-06 1.52409038265E-06 1.59552107084E-06 1.66985072589E-06 1.74718675599E-06 1.82764040003E-06 1.91132686190E-06 1.99836544939E-06 2.08887971794E-06 2.18299761938E-06 2.28085165586E-06 2.38257903908E-06 2.48832185508E-06 2.59822723476E-06 2.71244753031E-06 2.83114049777E-06 2.95446948588E-06 3.08260363159E-06 3.21571806226E-06 3.35399410491E-06 3.49761950272E-06 3.64678863907E-06 3.80170276932E-06 3.96257026065E-06 4.12960684022E-06 4.30303585188E-06 4.48308852188E-06 4.67000423371E-06 4.86403081250E-06 5.06542481929E-06 5.27445185547E-06 5.49138687778E-06 5.71651452425E-06 5.95012945143E-06 6.19253668324E-06 6.44405197198E-06 6.70500217186E-06 6.97572562537E-06 7.25657256311E-06 7.54790551747E-06 7.85009975060E-06 8.16354369720E-06 8.48863942266E-06 8.82580309707E-06 9.17546548560E-06 9.53807245587E-06 9.91408550294E-06 1.03039822923E-05 1.07082572220E-05 1.11274220036E-05 1.15620062641E-05 1.20125581679E-05 1.24796450606E-05 1.29638541351E-05 1.34657931209E-05 1.39860909968E-05 1.45253987285E-05 1.50843900319E-05 1.56637621623E-05 1.62642367315E-05 1.68865605527E-05 1.75315065145E-05 1.81998744858E-05 1.88924922514E-05 1.96102164797E-05 2.03539337247E-05 2.11245614621E-05 2.19230491609E-05 2.27503793929E-05 2.36075689795E-05 2.44956701790E-05 2.54157719145E-05 2.63690010441E-05 2.73565236756E-05 2.83795465257E-05 2.94393183267E-05 3.05371312819E-05 3.16743225710E-05 3.28522759075E-05 3.40724231499E-05 3.53362459684E-05 3.66452775696E-05 3.80011044803E-05 3.94053683928E-05 4.08597680744E-05 4.23660613423E-05 4.39260671069E-05 4.55416674855E-05 4.72148099891E-05 4.89475097844E-05 5.07418520343E-05 5.25999943183E-05 5.45241691375E-05 5.65166865049E-05 5.85799366259E-05 6.07163926708E-05 6.29286136429E-05 6.52192473457E-05 6.75910334523E-05 7.00468066804E-05 7.25895000773E-05 7.52221484175E-05 7.79478917178E-05 8.07699788732E-05 8.36917714185E-05 8.67167474193E-05 8.98485054968E-05 9.30907689918E-05 9.64473902714E-05 9.99223551849E-05 1.03519787672E-04 1.07243954531E-04 1.11099270350E-04 1.15090302608E-04 1.19221776954E-04 1.23498582661E-04 1.27925778279E-04 1.32508597470E-04 1.37252455051E-04 1.42162953245E-04 1.47245888146E-04 1.52507256401E-04 1.57953262132E-04 1.63590324087E-04 1.69425083041E-04 1.75464409449E-04 1.81715411366E-04 1.88185442636E-04 1.94882111359E-04 2.01813288658E-04 2.08987117735E-04 2.16412023250E-04 2.24096721013E-04 2.32050228012E-04 2.40281872786E-04 2.48801306148E-04 2.57618512286E-04 2.66743820234E-04 2.76187915742E-04 2.85961853550E-04 2.96077070087E-04 3.06545396599E-04 3.17379072726E-04 3.28590760553E-04 3.40193559130E-04 3.52201019495E-04 3.64627160213E-04 3.77486483435E-04 3.90793991521E-04 4.04565204218E-04 4.18816176433E-04 4.33563516603E-04 4.48824405708E-04 4.64616616910E-04 4.80958535883E-04 4.97869181823E-04 5.15368229175E-04 5.33476030105E-04 5.52213637728E-04 5.71602830139E-04 5.91666135245E-04 6.12426856453E-04 6.33909099223E-04 6.56137798528E-04 6.79138747241E-04 7.02938625482E-04 7.27565030968E-04 7.53046510382E-04 7.79412591804E-04 8.06693818246E-04 8.34921782309E-04 8.64129162017E-04 8.94349757858E-04 9.25618531074E-04 9.57971643239E-04 9.91446497168E-04 1.02608177921E-03 1.06191750293E-03 1.09899505432E-03 1.13735723847E-03 1.17704832778E-03 1.21811411189E-03 1.26060194916E-03 1.30456081995E-03 1.35004138163E-03 1.39709602543E-03 1.44577893523E-03 1.49614614821E-03 1.54825561759E-03 1.60216727741E-03 1.65794310950E-03 1.71564721255E-03 1.77534587363E-03 1.83710764189E-03 1.90100340478E-03 1.96710646677E-03 2.03549263062E-03 2.10624028132E-03 2.17943047274E-03 2.25514701715E-03 2.33347657763E-03 2.41450876344E-03 2.49833622856E-03 2.58505477328E-03 2.67476344923E-03 2.76756466763E-03 2.86356431108E-03 2.96287184893E-03 3.06560045630E-03 3.17186713689E-03 3.28179284969E-03 3.39550263967E-03 3.51312577259E-03 3.63479587407E-03 3.76065107295E-03 3.89083414919E-03 4.02549268627E-03 4.16477922837E-03 4.30885144237E-03 4.45787228481E-03 4.61201017393E-03 4.77143916700E-03 4.93633914289E-03 5.10689599026E-03 5.28330180135E-03 5.46575507145E-03 5.65446090440E-03 5.84963122404E-03 6.05148499193E-03 6.26024843131E-03 6.47615525760E-03 6.69944691545E-03 6.93037282261E-03 7.16919062061E-03 7.41616643250E-03 7.67157512782E-03 7.93570059473E-03 8.20883601973E-03 8.49128417487E-03 8.78335771261E-03 9.08537946866E-03 9.39768277255E-03 9.72061176649E-03 1.00545217322E-02 1.03997794261E-02 1.07567634231E-02 1.11258644682E-02 1.15074858377E-02 1.19020437077E-02 1.23099675327E-02 1.27317004320E-02 1.31676995849E-02 1.36184366357E-02 1.40843981060E-02 1.45660858173E-02 1.50640173218E-02 1.55787263418E-02 1.61107632180E-02 1.66606953672E-02 1.72291077477E-02 1.78166033333E-02 1.84238035965E-02 1.90513489991E-02 1.96998994911E-02 2.03701350179E-02 2.10627560344E-02 2.17784840269E-02 2.25180620426E-02 2.32822552247E-02 2.40718513552E-02 2.48876614028E-02 2.57305200772E-02 2.66012863882E-02 2.75008442098E-02 2.84301028483E-02 2.93899976144E-02 3.03814903982E-02 3.14055702471E-02 3.24632539450E-02 3.35555865938E-02 3.46836421937E-02 3.58485242254E-02 3.70513662298E-02 3.82933323867E-02 3.95756180905E-02 4.08994505237E-02 4.22660892245E-02 4.36768266511E-02 4.51329887394E-02 4.66359354538E-02 4.81870613314E-02 4.97877960169E-02 5.14396047893E-02 5.31439890781E-02 5.49024869694E-02 5.67166737001E-02 5.85881621411E-02 6.05186032667E-02 6.25096866122E-02 6.45631407168E-02 6.66807335537E-02 6.88642729445E-02 7.11156069603E-02 7.34366243070E-02 7.58292546961E-02 7.82954692003E-02 8.08372805938E-02 8.34567436769E-02 8.61559555856E-02 8.89370560853E-02 9.18022278478E-02 9.47536967119E-02 9.77937319268E-02 1.00924646375E-01 1.04148796776E-01 1.07468583865E-01 1.10886452546E-01 1.14404892013E-01 1.18026435834E-01 1.21753661990E-01 1.25589192861E-01 1.29535695145E-01 1.33595879701E-01 1.37772501284E-01 1.42068358177E-01 1.46486291661E-01 1.51029185324E-01 1.55699964144E-01 1.60501593325E-01 1.65437076826E-01 1.70509455516E-01 1.75721804898E-01 1.81077232319E-01 1.86578873569E-01 1.92229888766E-01 1.98033457415E-01 2.03992772491E-01 2.10111033412E-01 2.16391437717E-01 2.22837171276E-01 2.29451396801E-01 2.36237240462E-01 2.43197776329E-01 2.50336008393E-01 2.57654849870E-01 2.65157099490E-01 2.72845414452E-01 2.80722279715E-01 2.88789973306E-01 2.97050527299E-01 3.05505684165E-01 3.14156848189E-01 3.23005031703E-01 3.32050795924E-01 3.41294186274E-01 3.50734662140E-01 3.60371021165E-01 3.70201318303E-01 3.80222780077E-01 3.90431714671E-01 4.00823418787E-01 4.11392082476E-01 4.22130693535E-01 4.33030943413E-01 4.44083137070E-01 4.55276109640E-01 4.66597153324E-01 4.78031958387E-01 4.89564572715E-01 5.01177384825E-01 5.12851135659E-01 5.24564964807E-01 5.36296496945E-01 5.48021974176E-01 5.59716439568E-01 5.71353976377E-01 5.82908006078E-01 5.94351646388E-01 6.05658127707E-01 6.16801262768E-01 6.27755959651E-01 6.38498762558E-01 6.49008397836E-01 6.59266294700E-01 6.69257041101E-01 6.78968725430E-01 6.88393104916E-01 6.97525532310E-01 7.06364565078E-01 7.14911177509E-01 7.23167498039E-01 7.31135004810E-01 7.38812135443E-01 7.46191306720E-01 7.53255401186E-01 7.59973865638E-01 7.66298685763E-01 7.72160654528E-01 7.77466538138E-01 7.82097954079E-01 7.85912989522E-01 7.88751762398E-01 7.90447191784E-01 7.90842063176E-01 7.89812851535E-01 7.87299378501E-01 7.83336738462E-01 7.78081290034E-01 7.71814771711E-01 7.64898139688E-01 7.57629417843E-01 7.50092695218E-01 7.42296958715E-01 7.34249777775E-01 7.25959381657E-01 7.17434253799E-01 7.08683116668E-01 6.99714916212E-01 6.90538806616E-01 6.81164134763E-01 6.71600424994E-01 6.61857363663E-01 6.51944783958E-01 6.41872650586E-01 6.31651044651E-01 6.21290148436E-01 6.10800230293E-01 6.00191629443E-01 5.89474740773E-01 5.78659999536E-01 5.67757865935E-01 5.56778809575E-01 5.45733293694E-01 5.34631759249E-01 5.23484608677E-01 5.12302189528E-01 5.01094777709E-01 4.89872560661E-01 4.78645620143E-01 4.67423915067E-01 4.56217264010E-01 4.45035327962E-01 4.33887592915E-01 4.22783352927E-01 4.11731693260E-01 4.00741474308E-01 3.89821315872E-01 3.78979582560E-01 3.68224369848E-01 3.57563491575E-01 3.47004468398E-01 3.36554517954E-01 3.26220546208E-01 3.16009140699E-01 3.05926565111E-01 2.95978755822E-01 2.86171319804E-01 2.76509534450E-01 2.66998348667E-01 2.57642385722E-01 2.48445947159E-01 2.39413018175E-01 2.30547273792E-01 2.21852086116E-01 2.13330532035E-01 2.04985401601E-01 1.96819206452E-01 1.88834188505E-01 1.81032328310E-01 1.73415353266E-01 1.65984745189E-01 1.58741747402E-01 1.51687370925E-01 1.44822399982E-01 1.38147396474E-01 1.31662703669E-01 1.25368448877E-01 1.19264545399E-01 1.13350693612E-01 1.07626381506E-01 1.02090884645E-01 9.67432658826E-02 9.15823748542E-02 8.66068475872E-02 8.18151062921E-02 7.72053596407E-02 7.27756036019E-02 6.85236230946E-02 6.44469945075E-02 6.05430892785E-02 5.68090785467E-02 5.32419389965E-02 4.98384598617E-02 4.65952511351E-02 4.35087529098E-02 4.05752458322E-02 3.77908625570E-02 3.51516001349E-02 3.26533331968E-02 3.02918278316E-02 2.80627560090E-02 2.59617104240E-02 2.39842196141E-02 2.21257632210E-02 2.03817872533E-02 1.87477192301E-02 1.72189830754E-02 1.57910136558E-02 1.44592708515E-02 1.32192530718E-02 1.20665101249E-02 1.09966553754E-02 1.00053771217E-02 9.08844914758E-03 8.24174040235E-03 7.46122378418E-03 6.74298400332E-03 6.08322451626E-03 5.47827352838E-03 4.92458907188E-03 4.41876317301E-03 3.95752512967E-03 3.53774392671E-03 3.15642982188E-03 2.81073514007E-03 2.49795431787E-03 2.21552324383E-03 1.96101794285E-03 1.73215265495E-03 1.52677736087E-03 1.34287480729E-03 1.17855708561E-03 1.03206181743E-03 9.01748000197E-04 7.86091564602E-04 6.83680694698E-04 5.93210959446E-04 5.13480302574E-04 4.43383935202E-04 3.81909173088E-04 3.28130257596E-04 2.81203196491E-04 2.40360657649E-04 2.04906943813E-04 1.74213064629E-04 1.47711991744E-04 1.24894013789E-04 1.05302277165E-04 8.85285144825E-05 7.42089698298E-05 6.20205293962E-05 5.16770634320E-05 4.29259830899E-05 3.55450134752E-05 2.93391821774E-05 2.41380207048E-05 1.97929745836E-05 1.61750164231E-05 1.31724549756E-05 1.06889321314E-05 8.64159887362E-06 6.95946044841E-06 5.58188037796E-06 4.45723240653E-06 3.54168900615E-06 2.79813461714E-06 2.19519130242E-06 1.70634386849E-06 1.30915063439E-06 9.84524757882E-07 7.16069131896E-07 4.89445032627E-07 2.91750481924E-07 1.10878027183E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 espresso-5.0.2/pseudo/Rhs.pbe-rrkjus_lb.UPF0000644000700200004540000145227412053145632017547 0ustar marsamoscm Generated using Andrea Dal Corso code (rrkj3) Author: Laura Bianchettin Generation date: before Mar 13 2001 Info: Rh 1 The Pseudo was generated with a Scalar-Relativistic Calculation 2.40000000000E+00 Local Potential cutoff radius nl pn l occ Rcut Rcut US E pseu 5P 2 1 0.00 2.50000000000 2.50000000000 0.00000000000 4D 3 2 9.00 1.80000000000 2.20000000000 0.00000000000 4D 3 2 0.00 1.80000000000 2.20000000000 0.00000000000 5S 1 0 1.00 2.40000000000 2.40000000000 0.00000000000 0 Version Number Rh Element US Ultrasoft pseudopotential F Nonlinear Core Correction SLA PW PBE PBE PBE Exchange-Correlation functional 10.00000000000 Z valence -56.77536160300 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 1491 Number of points in mesh 2 3 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 4D 2 9.00 5S 0 1.00 2.02640436790E-05 2.04677007038E-05 2.06734045157E-05 2.08811756852E-05 2.10910349898E-05 2.13030034154E-05 2.15171021591E-05 2.17333526310E-05 2.19517764562E-05 2.21723954774E-05 2.23952317566E-05 2.26203075777E-05 2.28476454483E-05 2.30772681026E-05 2.33091985028E-05 2.35434598424E-05 2.37800755475E-05 2.40190692801E-05 2.42604649395E-05 2.45042866657E-05 2.47505588410E-05 2.49993060928E-05 2.52505532960E-05 2.55043255756E-05 2.57606483090E-05 2.60195471287E-05 2.62810479248E-05 2.65451768476E-05 2.68119603102E-05 2.70814249912E-05 2.73535978372E-05 2.76285060658E-05 2.79061771681E-05 2.81866389113E-05 2.84699193419E-05 2.87560467881E-05 2.90450498630E-05 2.93369574671E-05 2.96317987914E-05 2.99296033203E-05 3.02304008344E-05 3.05342214138E-05 3.08410954408E-05 3.11510536030E-05 3.14641268966E-05 3.17803466291E-05 3.20997444227E-05 3.24223522175E-05 3.27482022745E-05 3.30773271791E-05 3.34097598439E-05 3.37455335126E-05 3.40846817628E-05 3.44272385095E-05 3.47732380088E-05 3.51227148608E-05 3.54757040136E-05 3.58322407664E-05 3.61923607731E-05 3.65561000460E-05 3.69234949594E-05 3.72945822531E-05 3.76693990361E-05 3.80479827903E-05 3.84303713746E-05 3.88166030280E-05 3.92067163741E-05 3.96007504245E-05 3.99987445829E-05 4.04007386491E-05 4.08067728229E-05 4.12168877079E-05 4.16311243161E-05 4.20495240713E-05 4.24721288141E-05 4.28989808051E-05 4.33301227299E-05 4.37655977031E-05 4.42054492726E-05 4.46497214238E-05 4.50984585843E-05 4.55517056284E-05 4.60095078809E-05 4.64719111226E-05 4.69389615941E-05 4.74107060008E-05 4.78871915177E-05 4.83684657937E-05 4.88545769565E-05 4.93455736177E-05 4.98415048775E-05 5.03424203292E-05 5.08483700649E-05 5.13594046800E-05 5.18755752784E-05 5.23969334776E-05 5.29235314137E-05 5.34554217471E-05 5.39926576672E-05 5.45352928981E-05 5.50833817037E-05 5.56369788934E-05 5.61961398273E-05 5.67609204221E-05 5.73313771562E-05 5.79075670757E-05 5.84895478003E-05 5.90773775284E-05 5.96711150434E-05 6.02708197197E-05 6.08765515282E-05 6.14883710426E-05 6.21063394453E-05 6.27305185337E-05 6.33609707262E-05 6.39977590686E-05 6.46409472403E-05 6.52905995605E-05 6.59467809951E-05 6.66095571628E-05 6.72789943417E-05 6.79551594761E-05 6.86381201830E-05 6.93279447592E-05 7.00247021877E-05 7.07284621447E-05 7.14392950068E-05 7.21572718580E-05 7.28824644965E-05 7.36149454422E-05 7.43547879438E-05 7.51020659861E-05 7.58568542977E-05 7.66192283578E-05 7.73892644047E-05 7.81670394425E-05 7.89526312494E-05 7.97461183852E-05 8.05475801992E-05 8.13570968385E-05 8.21747492552E-05 8.30006192153E-05 8.38347893065E-05 8.46773429465E-05 8.55283643913E-05 8.63879387439E-05 8.72561519623E-05 8.81330908687E-05 8.90188431576E-05 8.99134974049E-05 9.08171430770E-05 9.17298705390E-05 9.26517710645E-05 9.35829368444E-05 9.45234609959E-05 9.54734375723E-05 9.64329615720E-05 9.74021289482E-05 9.83810366185E-05 9.93697824744E-05 1.00368465391E-04 1.01377185239E-04 1.02396042889E-04 1.03425140229E-04 1.04464580169E-04 1.05514466654E-04 1.06574904673E-04 1.07646000272E-04 1.08727860561E-04 1.09820593726E-04 1.10924309042E-04 1.12039116882E-04 1.13165128727E-04 1.14302457178E-04 1.15451215971E-04 1.16611519982E-04 1.17783485242E-04 1.18967228948E-04 1.20162869476E-04 1.21370526392E-04 1.22590320461E-04 1.23822373665E-04 1.25066809209E-04 1.26323751538E-04 1.27593326348E-04 1.28875660596E-04 1.30170882519E-04 1.31479121637E-04 1.32800508778E-04 1.34135176080E-04 1.35483257011E-04 1.36844886382E-04 1.38220200354E-04 1.39609336462E-04 1.41012433620E-04 1.42429632139E-04 1.43861073740E-04 1.45306901568E-04 1.46767260207E-04 1.48242295695E-04 1.49732155535E-04 1.51236988716E-04 1.52756945722E-04 1.54292178550E-04 1.55842840724E-04 1.57409087312E-04 1.58991074940E-04 1.60588961808E-04 1.62202907706E-04 1.63833074030E-04 1.65479623798E-04 1.67142721667E-04 1.68822533946E-04 1.70519228620E-04 1.72232975359E-04 1.73963945538E-04 1.75712312258E-04 1.77478250355E-04 1.79261936424E-04 1.81063548837E-04 1.82883267756E-04 1.84721275154E-04 1.86577754833E-04 1.88452892443E-04 1.90346875500E-04 1.92259893403E-04 1.94192137455E-04 1.96143800883E-04 1.98115078854E-04 2.00106168499E-04 2.02117268927E-04 2.04148581250E-04 2.06200308601E-04 2.08272656156E-04 2.10365831149E-04 2.12480042901E-04 2.14615502834E-04 2.16772424497E-04 2.18951023582E-04 2.21151517952E-04 2.23374127659E-04 2.25619074964E-04 2.27886584365E-04 2.30176882614E-04 2.32490198743E-04 2.34826764086E-04 2.37186812301E-04 2.39570579394E-04 2.41978303746E-04 2.44410226129E-04 2.46866589739E-04 2.49347640213E-04 2.51853625659E-04 2.54384796678E-04 2.56941406388E-04 2.59523710453E-04 2.62131967106E-04 2.64766437173E-04 2.67427384105E-04 2.70115073998E-04 2.72829775624E-04 2.75571760454E-04 2.78341302691E-04 2.81138679289E-04 2.83964169990E-04 2.86818057344E-04 2.89700626743E-04 2.92612166446E-04 2.95552967610E-04 2.98523324317E-04 3.01523533604E-04 3.04553895497E-04 3.07614713033E-04 3.10706292296E-04 3.13828942448E-04 3.16982975756E-04 3.20168707625E-04 3.23386456631E-04 3.26636544553E-04 3.29919296402E-04 3.33235040455E-04 3.36584108290E-04 3.39966834816E-04 3.43383558309E-04 3.46834620444E-04 3.50320366330E-04 3.53841144545E-04 3.57397307169E-04 3.60989209821E-04 3.64617211695E-04 3.68281675595E-04 3.71982967968E-04 3.75721458949E-04 3.79497522389E-04 3.83311535897E-04 3.87163880878E-04 3.91054942569E-04 3.94985110081E-04 3.98954776433E-04 4.02964338596E-04 4.07014197527E-04 4.11104758218E-04 4.15236429727E-04 4.19409625226E-04 4.23624762036E-04 4.27882261675E-04 4.32182549897E-04 4.36526056735E-04 4.40913216542E-04 4.45344468037E-04 4.49820254351E-04 4.54341023065E-04 4.58907226260E-04 4.63519320560E-04 4.68177767179E-04 4.72883031964E-04 4.77635585446E-04 4.82435902886E-04 4.87284464317E-04 4.92181754601E-04 4.97128263470E-04 5.02124485580E-04 5.07170920558E-04 5.12268073049E-04 5.17416452775E-04 5.22616574578E-04 5.27868958473E-04 5.33174129705E-04 5.38532618793E-04 5.43944961592E-04 5.49411699341E-04 5.54933378717E-04 5.60510551894E-04 5.66143776593E-04 5.71833616141E-04 5.77580639528E-04 5.83385421460E-04 5.89248542420E-04 5.95170588725E-04 6.01152152586E-04 6.07193832162E-04 6.13296231628E-04 6.19459961228E-04 6.25685637340E-04 6.31973882537E-04 6.38325325650E-04 6.44740601827E-04 6.51220352601E-04 6.57765225953E-04 6.64375876376E-04 6.71052964940E-04 6.77797159360E-04 6.84609134061E-04 6.91489570246E-04 6.98439155964E-04 7.05458586179E-04 7.12548562841E-04 7.19709794953E-04 7.26942998645E-04 7.34248897242E-04 7.41628221341E-04 7.49081708879E-04 7.56610105213E-04 7.64214163188E-04 7.71894643216E-04 7.79652313352E-04 7.87487949369E-04 7.95402334837E-04 8.03396261201E-04 8.11470527861E-04 8.19625942250E-04 8.27863319916E-04 8.36183484604E-04 8.44587268337E-04 8.53075511501E-04 8.61649062927E-04 8.70308779977E-04 8.79055528631E-04 8.87890183570E-04 8.96813628267E-04 9.05826755075E-04 9.14930465313E-04 9.24125669359E-04 9.33413286743E-04 9.42794246234E-04 9.52269485934E-04 9.61839953377E-04 9.71506605617E-04 9.81270409327E-04 9.91132340895E-04 1.00109338652E-03 1.01115454232E-03 1.02131681442E-03 1.03158121905E-03 1.04194878267E-03 1.05242054203E-03 1.06299754432E-03 1.07368084725E-03 1.08447151916E-03 1.09537063912E-03 1.10637929706E-03 1.11749859386E-03 1.12872964144E-03 1.14007356293E-03 1.15153149273E-03 1.16310457663E-03 1.17479397196E-03 1.18660084767E-03 1.19852638445E-03 1.21057177487E-03 1.22273822348E-03 1.23502694692E-03 1.24743917409E-03 1.25997614622E-03 1.27263911701E-03 1.28542935277E-03 1.29834813254E-03 1.31139674821E-03 1.32457650464E-03 1.33788871983E-03 1.35133472500E-03 1.36491586478E-03 1.37863349727E-03 1.39248899427E-03 1.40648374133E-03 1.42061913793E-03 1.43489659763E-03 1.44931754818E-03 1.46388343170E-03 1.47859570478E-03 1.49345583866E-03 1.50846531937E-03 1.52362564787E-03 1.53893834021E-03 1.55440492766E-03 1.57002695690E-03 1.58580599014E-03 1.60174360531E-03 1.61784139617E-03 1.63410097251E-03 1.65052396032E-03 1.66711200190E-03 1.68386675606E-03 1.70078989831E-03 1.71788312096E-03 1.73514813336E-03 1.75258666201E-03 1.77020045080E-03 1.78799126110E-03 1.80596087202E-03 1.82411108053E-03 1.84244370167E-03 1.86096056872E-03 1.87966353337E-03 1.89855446594E-03 1.91763525554E-03 1.93690781027E-03 1.95637405739E-03 1.97603594354E-03 1.99589543494E-03 2.01595451754E-03 2.03621519728E-03 2.05667950023E-03 2.07734947285E-03 2.09822718214E-03 2.11931471590E-03 2.14061418290E-03 2.16212771310E-03 2.18385745787E-03 2.20580559021E-03 2.22797430495E-03 2.25036581898E-03 2.27298237146E-03 2.29582622407E-03 2.31889966122E-03 2.34220499026E-03 2.36574454176E-03 2.38952066968E-03 2.41353575167E-03 2.43779218923E-03 2.46229240805E-03 2.48703885816E-03 2.51203401423E-03 2.53728037580E-03 2.56278046751E-03 2.58853683941E-03 2.61455206715E-03 2.64082875228E-03 2.66736952248E-03 2.69417703185E-03 2.72125396118E-03 2.74860301817E-03 2.77622693775E-03 2.80412848233E-03 2.83231044211E-03 2.86077563528E-03 2.88952690841E-03 2.91856713663E-03 2.94789922400E-03 2.97752610375E-03 3.00745073859E-03 3.03767612101E-03 3.06820527358E-03 3.09904124922E-03 3.13018713158E-03 3.16164603526E-03 3.19342110617E-03 3.22551552186E-03 3.25793249179E-03 3.29067525768E-03 3.32374709384E-03 3.35715130747E-03 3.39089123904E-03 3.42497026256E-03 3.45939178596E-03 3.49415925141E-03 3.52927613571E-03 3.56474595056E-03 3.60057224298E-03 3.63675859562E-03 3.67330862715E-03 3.71022599260E-03 3.74751438375E-03 3.78517752945E-03 3.82321919607E-03 3.86164318779E-03 3.90045334704E-03 3.93965355489E-03 3.97924773137E-03 4.01923983594E-03 4.05963386784E-03 4.10043386651E-03 4.14164391199E-03 4.18326812531E-03 4.22531066892E-03 4.26777574713E-03 4.31066760646E-03 4.35399053615E-03 4.39774886852E-03 4.44194697945E-03 4.48658928877E-03 4.53168026076E-03 4.57722440455E-03 4.62322627460E-03 4.66969047113E-03 4.71662164059E-03 4.76402447616E-03 4.81190371813E-03 4.86026415449E-03 4.90911062132E-03 4.95844800330E-03 5.00828123421E-03 5.05861529742E-03 5.10945522637E-03 5.16080610511E-03 5.21267306875E-03 5.26506130405E-03 5.31797604986E-03 5.37142259771E-03 5.42540629230E-03 5.47993253204E-03 5.53500676959E-03 5.59063451244E-03 5.64682132340E-03 5.70357282119E-03 5.76089468102E-03 5.81879263512E-03 5.87727247333E-03 5.93634004369E-03 5.99600125299E-03 6.05626206742E-03 6.11712851311E-03 6.17860667674E-03 6.24070270619E-03 6.30342281111E-03 6.36677326356E-03 6.43076039865E-03 6.49539061513E-03 6.56067037609E-03 6.62660620955E-03 6.69320470916E-03 6.76047253482E-03 6.82841641336E-03 6.89704313923E-03 6.96635957517E-03 7.03637265287E-03 7.10708937370E-03 7.17851680938E-03 7.25066210273E-03 7.32353246834E-03 7.39713519329E-03 7.47147763793E-03 7.54656723655E-03 7.62241149819E-03 7.69901800733E-03 7.77639442469E-03 7.85454848797E-03 7.93348801265E-03 8.01322089274E-03 8.09375510159E-03 8.17509869270E-03 8.25725980049E-03 8.34024664114E-03 8.42406751341E-03 8.50873079945E-03 8.59424496566E-03 8.68061856352E-03 8.76786023048E-03 8.85597869077E-03 8.94498275630E-03 9.03488132757E-03 9.12568339450E-03 9.21739803737E-03 9.31003442773E-03 9.40360182928E-03 9.49810959886E-03 9.59356718731E-03 9.68998414048E-03 9.78737010013E-03 9.88573480495E-03 9.98508809149E-03 1.00854398952E-02 1.01868002512E-02 1.02891792958E-02 1.03925872669E-02 1.04970345054E-02 1.06025314560E-02 1.07090886687E-02 1.08167167991E-02 1.09254266102E-02 1.10352289731E-02 1.11461348681E-02 1.12581553859E-02 1.13713017286E-02 1.14855852109E-02 1.16010172614E-02 1.17176094232E-02 1.18353733557E-02 1.19543208354E-02 1.20744637572E-02 1.21958141354E-02 1.23183841052E-02 1.24421859237E-02 1.25672319711E-02 1.26935347522E-02 1.28211068973E-02 1.29499611639E-02 1.30801104373E-02 1.32115677327E-02 1.33443461958E-02 1.34784591047E-02 1.36139198708E-02 1.37507420401E-02 1.38889392952E-02 1.40285254557E-02 1.41695144805E-02 1.43119204685E-02 1.44557576605E-02 1.46010404403E-02 1.47477833364E-02 1.48960010230E-02 1.50457083222E-02 1.51969202047E-02 1.53496517919E-02 1.55039183571E-02 1.56597353271E-02 1.58171182836E-02 1.59760829652E-02 1.61366452683E-02 1.62988212494E-02 1.64626271263E-02 1.66280792795E-02 1.67951942546E-02 1.69639887630E-02 1.71344796845E-02 1.73066840683E-02 1.74806191348E-02 1.76563022779E-02 1.78337510658E-02 1.80129832438E-02 1.81940167351E-02 1.83768696432E-02 1.85615602536E-02 1.87481070355E-02 1.89365286437E-02 1.91268439206E-02 1.93190718978E-02 1.95132317982E-02 1.97093430382E-02 1.99074252288E-02 2.01074981786E-02 2.03095818949E-02 2.05136965864E-02 2.07198626646E-02 2.09281007463E-02 2.11384316556E-02 2.13508764256E-02 2.15654563011E-02 2.17821927402E-02 2.20011074166E-02 2.22222222222E-02 2.24455592685E-02 2.26711408895E-02 2.28989896434E-02 2.31291283154E-02 2.33615799195E-02 2.35963677010E-02 2.38335151390E-02 2.40730459483E-02 2.43149840823E-02 2.45593537350E-02 2.48061793435E-02 2.50554855907E-02 2.53072974072E-02 2.55616399746E-02 2.58185387273E-02 2.60780193554E-02 2.63401078071E-02 2.66048302916E-02 2.68722132813E-02 2.71422835147E-02 2.74150679990E-02 2.76905940131E-02 2.79688891095E-02 2.82499811183E-02 2.85338981486E-02 2.88206685926E-02 2.91103211274E-02 2.94028847186E-02 2.96983886228E-02 2.99968623906E-02 3.02983358696E-02 3.06028392075E-02 3.09104028548E-02 3.12210575681E-02 3.15348344132E-02 3.18517647680E-02 3.21718803259E-02 3.24952130985E-02 3.28217954196E-02 3.31516599476E-02 3.34848396692E-02 3.38213679026E-02 3.41612783011E-02 3.45046048558E-02 3.48513818998E-02 3.52016441110E-02 3.55554265159E-02 3.59127644932E-02 3.62736937768E-02 3.66382504600E-02 3.70064709988E-02 3.73783922155E-02 3.77540513026E-02 3.81334858263E-02 3.85167337304E-02 3.89038333399E-02 3.92948233652E-02 3.96897429056E-02 4.00886314533E-02 4.04915288976E-02 4.08984755285E-02 4.13095120410E-02 4.17246795392E-02 4.21440195401E-02 4.25675739781E-02 4.29953852089E-02 4.34274960141E-02 4.38639496051E-02 4.43047896276E-02 4.47500601660E-02 4.51998057477E-02 4.56540713476E-02 4.61129023928E-02 4.65763447665E-02 4.70444448136E-02 4.75172493444E-02 4.79948056397E-02 4.84771614555E-02 4.89643650279E-02 4.94564650776E-02 4.99535108150E-02 5.04555519452E-02 5.09626386725E-02 5.14748217062E-02 5.19921522650E-02 5.25146820824E-02 5.30424634117E-02 5.35755490315E-02 5.41139922509E-02 5.46578469146E-02 5.52071674086E-02 5.57620086653E-02 5.63224261693E-02 5.68884759629E-02 5.74602146515E-02 5.80376994094E-02 5.86209879856E-02 5.92101387095E-02 5.98052104967E-02 6.04062628546E-02 6.10133558893E-02 6.16265503103E-02 6.22459074378E-02 6.28714892078E-02 6.35033581792E-02 6.41415775393E-02 6.47862111106E-02 6.54373233570E-02 6.60949793903E-02 6.67592449766E-02 6.74301865430E-02 6.81078711843E-02 6.87923666694E-02 6.94837414486E-02 7.01820646598E-02 7.08874061359E-02 7.15998364117E-02 7.23194267309E-02 7.30462490530E-02 7.37803760608E-02 7.45218811678E-02 7.52708385249E-02 7.60273230287E-02 7.67914103281E-02 7.75631768325E-02 7.83426997192E-02 7.91300569412E-02 7.99253272349E-02 8.07285901278E-02 8.15399259471E-02 8.23594158269E-02 8.31871417169E-02 8.40231863904E-02 8.48676334526E-02 8.57205673488E-02 8.65820733732E-02 8.74522376771E-02 8.83311472777E-02 8.92188900665E-02 9.01155548188E-02 9.10212312016E-02 9.19360097834E-02 9.28599820427E-02 9.37932403777E-02 9.47358781149E-02 9.56879895188E-02 9.66496698014E-02 9.76210151315E-02 9.86021226445E-02 9.95930904520E-02 1.00594017651E-01 1.01605004336E-01 1.02626151607E-01 1.03657561578E-01 1.04699337391E-01 1.05751583225E-01 1.06814404306E-01 1.07887906916E-01 1.08972198407E-01 1.10067387209E-01 1.11173582841E-01 1.12290895924E-01 1.13419438190E-01 1.14559322494E-01 1.15710662826E-01 1.16873574321E-01 1.18048173271E-01 1.19234577136E-01 1.20432904558E-01 1.21643275372E-01 1.22865810614E-01 1.24100632539E-01 1.25347864632E-01 1.26607631615E-01 1.27880059467E-01 1.29165275431E-01 1.30463408031E-01 1.31774587080E-01 1.33098943697E-01 1.34436610320E-01 1.35787720716E-01 1.37152409997E-01 1.38530814634E-01 1.39923072467E-01 1.41329322724E-01 1.42749706032E-01 1.44184364429E-01 1.45633441382E-01 1.47097081801E-01 1.48575432051E-01 1.50068639967E-01 1.51576854873E-01 1.53100227591E-01 1.54638910459E-01 1.56193057346E-01 1.57762823670E-01 1.59348366408E-01 1.60949844115E-01 1.62567416940E-01 1.64201246643E-01 1.65851496607E-01 1.67518331859E-01 1.69201919084E-01 1.70902426642E-01 1.72620024585E-01 1.74354884674E-01 1.76107180397E-01 1.77877086984E-01 1.79664781429E-01 1.81470442502E-01 1.83294250769E-01 1.85136388615E-01 1.86997040254E-01 1.88876391753E-01 1.90774631048E-01 1.92691947966E-01 1.94628534239E-01 1.96584583527E-01 1.98560291438E-01 2.00555855543E-01 2.02571475401E-01 2.04607352575E-01 2.06663690655E-01 2.08740695277E-01 2.10838574141E-01 2.12957537039E-01 2.15097795868E-01 2.17259564656E-01 2.19443059582E-01 2.21648498996E-01 2.23876103445E-01 2.26126095691E-01 2.28398700734E-01 2.30694145838E-01 2.33012660550E-01 2.35354476721E-01 2.37719828536E-01 2.40108952532E-01 2.42522087623E-01 2.44959475125E-01 2.47421358779E-01 2.49907984775E-01 2.52419601778E-01 2.54956460951E-01 2.57518815983E-01 2.60106923111E-01 2.62721041148E-01 2.65361431508E-01 2.68028358232E-01 2.70722088016E-01 2.73442890234E-01 2.76191036968E-01 2.78966803037E-01 2.81770466019E-01 2.84602306281E-01 2.87462607012E-01 2.90351654243E-01 2.93269736881E-01 2.96217146738E-01 2.99194178556E-01 3.02201130041E-01 3.05238301891E-01 3.08305997825E-01 3.11404524616E-01 3.14534192119E-01 3.17695313304E-01 3.20888204285E-01 3.24113184353E-01 3.27370576010E-01 3.30660704997E-01 3.33983900331E-01 3.37340494332E-01 3.40730822665E-01 3.44155224363E-01 3.47614041871E-01 3.51107621072E-01 3.54636311329E-01 3.58200465512E-01 3.61800440040E-01 3.65436594913E-01 3.69109293751E-01 3.72818903825E-01 3.76565796101E-01 3.80350345270E-01 3.84172929790E-01 3.88033931924E-01 3.91933737774E-01 3.95872737325E-01 3.99851324479E-01 4.03869897099E-01 4.07928857045E-01 4.12028610217E-01 4.16169566593E-01 4.20352140272E-01 4.24576749516E-01 4.28843816789E-01 4.33153768801E-01 4.37507036550E-01 4.41904055368E-01 4.46345264960E-01 4.50831109450E-01 4.55362037427E-01 4.59938501986E-01 4.64560960780E-01 4.69229876056E-01 4.73945714712E-01 4.78708948333E-01 4.83520053249E-01 4.88379510573E-01 4.93287806254E-01 4.98245431128E-01 5.03252880959E-01 5.08310656499E-01 5.13419263527E-01 5.18579212910E-01 5.23791020646E-01 5.29055207921E-01 5.34372301157E-01 5.39742832069E-01 5.45167337714E-01 5.50646360546E-01 5.56180448474E-01 5.61770154910E-01 5.67416038830E-01 5.73118664827E-01 5.78878603167E-01 5.84696429850E-01 5.90572726664E-01 5.96508081242E-01 6.02503087126E-01 6.08558343820E-01 6.14674456856E-01 6.20852037850E-01 6.27091704565E-01 6.33394080973E-01 6.39759797317E-01 6.46189490173E-01 6.52683802518E-01 6.59243383786E-01 6.65868889942E-01 6.72560983542E-01 6.79320333801E-01 6.86147616659E-01 6.93043514851E-01 7.00008717972E-01 7.07043922548E-01 7.14149832106E-01 7.21327157241E-01 7.28576615694E-01 7.35898932415E-01 7.43294839643E-01 7.50765076974E-01 7.58310391439E-01 7.65931537575E-01 7.73629277502E-01 7.81404381002E-01 7.89257625592E-01 7.97189796601E-01 8.05201687255E-01 8.13294098748E-01 8.21467840329E-01 8.29723729379E-01 8.38062591493E-01 8.46485260564E-01 8.54992578867E-01 8.63585397141E-01 8.72264574673E-01 8.81030979391E-01 8.89885487940E-01 8.98828985779E-01 9.07862367266E-01 9.16986535747E-01 9.26202403645E-01 9.35510892555E-01 9.44912933335E-01 9.54409466195E-01 9.64001440797E-01 9.73689816346E-01 9.83475561689E-01 9.93359655407E-01 1.00334308592E+00 1.01342685157E+00 1.02361196076E+00 1.03389943200E+00 1.04429029404E+00 1.05478558597E+00 1.06538635735E+00 1.07609366825E+00 1.08690858942E+00 1.09783220235E+00 1.10886559941E+00 1.12000988396E+00 1.13126617043E+00 1.14263558446E+00 1.15411926300E+00 1.16571835442E+00 1.17743401866E+00 1.18926742728E+00 1.20121976363E+00 1.21329222296E+00 1.22548601252E+00 1.23780235171E+00 1.25024247216E+00 1.26280761790E+00 1.27549904545E+00 1.28831802398E+00 1.30126583538E+00 1.31434377444E+00 1.32755314898E+00 1.34089527994E+00 1.35437150155E+00 1.36798316143E+00 1.38173162077E+00 1.39561825443E+00 1.40964445107E+00 1.42381161333E+00 1.43812115794E+00 1.45257451587E+00 1.46717313245E+00 1.48191846758E+00 1.49681199578E+00 1.51185520643E+00 1.52704960386E+00 1.54239670753E+00 1.55789805215E+00 1.57355518787E+00 1.58936968043E+00 1.60534311127E+00 1.62147707777E+00 1.63777319332E+00 1.65423308756E+00 1.67085840649E+00 1.68765081265E+00 1.70461198530E+00 1.72174362056E+00 1.73904743162E+00 1.75652514888E+00 1.77417852011E+00 1.79200931068E+00 1.81001930367E+00 1.82821030009E+00 1.84658411907E+00 1.86514259801E+00 1.88388759275E+00 1.90282097783E+00 1.92194464659E+00 1.94126051141E+00 1.96077050390E+00 1.98047657508E+00 2.00038069557E+00 2.02048485579E+00 2.04079106618E+00 2.06130135738E+00 2.08201778043E+00 2.10294240700E+00 2.12407732956E+00 2.14542466162E+00 2.16698653793E+00 2.18876511471E+00 2.21076256982E+00 2.23298110303E+00 2.25542293621E+00 2.27809031357E+00 2.30098550185E+00 2.32411079060E+00 2.34746849237E+00 2.37106094294E+00 2.39489050159E+00 2.41895955128E+00 2.44327049894E+00 2.46782577568E+00 2.49262783706E+00 2.51767916330E+00 2.54298225956E+00 2.56853965616E+00 2.59435390887E+00 2.62042759913E+00 2.64676333433E+00 2.67336374807E+00 2.70023150042E+00 2.72736927816E+00 2.75477979511E+00 2.78246579233E+00 2.81043003845E+00 2.83867532991E+00 2.86720449128E+00 2.89602037548E+00 2.92512586413E+00 2.95452386781E+00 2.98421732633E+00 3.01420920908E+00 3.04450251525E+00 3.07510027422E+00 3.10600554578E+00 3.13722142048E+00 3.16875101993E+00 3.20059749713E+00 3.23276403675E+00 3.26525385546E+00 3.29807020228E+00 3.33121635887E+00 3.36469563987E+00 3.39851139324E+00 3.43266700058E+00 3.46716587748E+00 3.50201147385E+00 3.53720727430E+00 3.57275679841E+00 3.60866360119E+00 3.64493127333E+00 3.68156344164E+00 3.71856376936E+00 3.75593595655E+00 3.79368374047E+00 3.83181089593E+00 3.87032123567E+00 3.90921861076E+00 3.94850691096E+00 3.98819006515E+00 4.02827204167E+00 4.06875684875E+00 4.10964853490E+00 4.15095118934E+00 4.19266894235E+00 4.23480596575E+00 4.27736647327E+00 4.32035472101E+00 4.36377500782E+00 4.40763167576E+00 4.45192911055E+00 4.49667174196E+00 4.54186404429E+00 4.58751053681E+00 4.63361578420E+00 4.68018439704E+00 4.72722103221E+00 4.77473039343E+00 4.82271723167E+00 4.87118634564E+00 4.92014258232E+00 4.96959083735E+00 5.01953605560E+00 5.06998323164E+00 5.12093741024E+00 5.17240368684E+00 5.22438720812E+00 5.27689317247E+00 5.32992683054E+00 5.38349348573E+00 5.43759849476E+00 5.49224726817E+00 5.54744527088E+00 5.60319802274E+00 5.65951109908E+00 5.71639013124E+00 5.77384080718E+00 5.83186887201E+00 5.89048012858E+00 5.94968043808E+00 6.00947572058E+00 6.06987195566E+00 6.13087518300E+00 6.19249150296E+00 6.25472707723E+00 6.31758812942E+00 6.38108094569E+00 6.44521187537E+00 6.50998733161E+00 6.57541379201E+00 6.64149779927E+00 6.70824596184E+00 6.77566495460E+00 6.84376151950E+00 6.91254246625E+00 6.98201467302E+00 7.05218508706E+00 7.12306072550E+00 7.19464867594E+00 7.26695609724E+00 7.33999022021E+00 7.41375834832E+00 7.48826785845E+00 7.56352620159E+00 7.63954090367E+00 7.71631956619E+00 7.79386986711E+00 7.87219956151E+00 7.95131648242E+00 8.03122854161E+00 8.11194373034E+00 8.19347012021E+00 8.27581586392E+00 8.35898919611E+00 8.44299843418E+00 8.52785197914E+00 8.61355831640E+00 8.70012601666E+00 8.78756373678E+00 8.87588022060E+00 8.96508429984E+00 9.05518489498E+00 9.14619101615E+00 9.23811176404E+00 9.33095633082E+00 9.42473400099E+00 9.51945415243E+00 9.61512625721E+00 9.71175988263E+00 9.80936469213E+00 9.90795044628E+00 1.00075270037E+01 1.01081043222E+01 1.02096924596E+01 1.03123015747E+01 1.04159419285E+01 1.05206238852E+01 1.06263579131E+01 1.07331545856E+01 1.08410245825E+01 1.09499786910E+01 1.10600278064E+01 1.11711829338E+01 1.12834551888E+01 1.13968557987E+01 1.15113961037E+01 1.16270875580E+01 1.17439417306E+01 1.18619703072E+01 1.19811850908E+01 1.21015980028E+01 1.22232210847E+01 1.23460664989E+01 1.24701465301E+01 1.25954735863E+01 1.27220602003E+01 1.28499190310E+01 1.29790628643E+01 1.31095046146E+01 1.32412573264E+01 1.33743341749E+01 1.35087484680E+01 1.36445136472E+01 1.37816432892E+01 1.39201511069E+01 1.40600509514E+01 1.42013568127E+01 1.43440828214E+01 1.44882432505E+01 1.46338525159E+01 1.47809251788E+01 1.49294759465E+01 1.50795196742E+01 1.52310713665E+01 1.53841461786E+01 1.55387594181E+01 1.56949265466E+01 1.58526631807E+01 1.60119850944E+01 1.61729082200E+01 1.63354486498E+01 1.64996226381E+01 1.66654466025E+01 1.68329371254E+01 1.70021109560E+01 1.71729850119E+01 1.73455763806E+01 1.75199023214E+01 1.76959802670E+01 1.78738278254E+01 1.80534627815E+01 1.82349030989E+01 1.84181669218E+01 1.86032725768E+01 1.87902385745E+01 1.89790836117E+01 1.91698265731E+01 1.93624865331E+01 1.95570827580E+01 1.97536347073E+01 1.99521620367E+01 2.01526845988E+01 2.03552224462E+01 2.05597958329E+01 2.07664252162E+01 2.09751312594E+01 2.11859348331E+01 2.13988570180E+01 2.16139191065E+01 2.18311426049E+01 2.20505492357E+01 2.22721609398E+01 2.24959998786E+01 2.27220884361E+01 2.29504492213E+01 2.31811050707E+01 2.34140790498E+01 2.36493944564E+01 2.38870748221E+01 2.41271439152E+01 2.43696257429E+01 2.46145445533E+01 2.48619248388E+01 2.51117913375E+01 2.53641690362E+01 2.56190831730E+01 2.58765592394E+01 2.61366229833E+01 2.63993004113E+01 2.66646177914E+01 2.69326016554E+01 2.72032788020E+01 2.74766762992E+01 2.77528214870E+01 2.80317419800E+01 2.83134656705E+01 2.85980207312E+01 2.88854356179E+01 2.91757390721E+01 2.94689601246E+01 2.97651280977E+01 3.00642726083E+01 3.03664235713E+01 3.06716112019E+01 3.09798660193E+01 3.12912188490E+01 3.16057008267E+01 3.19233434008E+01 3.22441783359E+01 3.25682377156E+01 3.28955539463E+01 3.32261597598E+01 3.35600882170E+01 3.38973727109E+01 3.42380469704E+01 3.45821450630E+01 3.49297013991E+01 3.52807507343E+01 3.56353281741E+01 3.59934691763E+01 3.63552095555E+01 3.67205854859E+01 3.70896335054E+01 3.74623905193E+01 3.78388938034E+01 3.82191810084E+01 3.86032901633E+01 3.89912596794E+01 3.93831283540E+01 3.97789353743E+01 4.01787203212E+01 4.05825231737E+01 4.09903843123E+01 4.14023445235E+01 4.18184450036E+01 4.22387273631E+01 4.26632336305E+01 4.30920062569E+01 4.35250881197E+01 4.39625225277E+01 4.44043532245E+01 4.48506243937E+01 4.53013806627E+01 4.57566671075E+01 4.62165292571E+01 4.66810130982E+01 4.71501650795E+01 4.76240321166E+01 4.81026615966E+01 4.85861013828E+01 4.90743998197E+01 4.95676057375E+01 5.00657684571E+01 5.05689377953E+01 5.10771640694E+01 5.15904981025E+01 5.21089912284E+01 5.26326952968E+01 5.31616626786E+01 5.36959462710E+01 5.42355995028E+01 5.47806763397E+01 5.53312312899E+01 5.58873194093E+01 5.64489963073E+01 5.70163181519E+01 5.75893416758E+01 5.81681241819E+01 5.87527235489E+01 5.93431982373E+01 5.99396072949E+01 2.02640436790E-07 2.04677007038E-07 2.06734045157E-07 2.08811756852E-07 2.10910349898E-07 2.13030034154E-07 2.15171021591E-07 2.17333526310E-07 2.19517764562E-07 2.21723954774E-07 2.23952317566E-07 2.26203075777E-07 2.28476454483E-07 2.30772681026E-07 2.33091985028E-07 2.35434598424E-07 2.37800755475E-07 2.40190692801E-07 2.42604649395E-07 2.45042866657E-07 2.47505588410E-07 2.49993060928E-07 2.52505532960E-07 2.55043255756E-07 2.57606483090E-07 2.60195471287E-07 2.62810479248E-07 2.65451768476E-07 2.68119603102E-07 2.70814249912E-07 2.73535978372E-07 2.76285060658E-07 2.79061771681E-07 2.81866389113E-07 2.84699193419E-07 2.87560467881E-07 2.90450498630E-07 2.93369574671E-07 2.96317987914E-07 2.99296033203E-07 3.02304008344E-07 3.05342214138E-07 3.08410954408E-07 3.11510536030E-07 3.14641268966E-07 3.17803466291E-07 3.20997444227E-07 3.24223522175E-07 3.27482022745E-07 3.30773271791E-07 3.34097598439E-07 3.37455335126E-07 3.40846817628E-07 3.44272385095E-07 3.47732380088E-07 3.51227148608E-07 3.54757040136E-07 3.58322407664E-07 3.61923607731E-07 3.65561000460E-07 3.69234949594E-07 3.72945822531E-07 3.76693990361E-07 3.80479827903E-07 3.84303713746E-07 3.88166030280E-07 3.92067163741E-07 3.96007504245E-07 3.99987445829E-07 4.04007386491E-07 4.08067728229E-07 4.12168877079E-07 4.16311243161E-07 4.20495240713E-07 4.24721288141E-07 4.28989808051E-07 4.33301227299E-07 4.37655977031E-07 4.42054492726E-07 4.46497214238E-07 4.50984585843E-07 4.55517056284E-07 4.60095078809E-07 4.64719111226E-07 4.69389615941E-07 4.74107060008E-07 4.78871915177E-07 4.83684657937E-07 4.88545769565E-07 4.93455736177E-07 4.98415048775E-07 5.03424203292E-07 5.08483700649E-07 5.13594046800E-07 5.18755752784E-07 5.23969334776E-07 5.29235314137E-07 5.34554217471E-07 5.39926576672E-07 5.45352928981E-07 5.50833817037E-07 5.56369788934E-07 5.61961398273E-07 5.67609204221E-07 5.73313771562E-07 5.79075670757E-07 5.84895478003E-07 5.90773775284E-07 5.96711150434E-07 6.02708197197E-07 6.08765515282E-07 6.14883710426E-07 6.21063394453E-07 6.27305185337E-07 6.33609707262E-07 6.39977590686E-07 6.46409472403E-07 6.52905995605E-07 6.59467809951E-07 6.66095571628E-07 6.72789943417E-07 6.79551594761E-07 6.86381201830E-07 6.93279447592E-07 7.00247021877E-07 7.07284621447E-07 7.14392950068E-07 7.21572718580E-07 7.28824644965E-07 7.36149454422E-07 7.43547879438E-07 7.51020659861E-07 7.58568542977E-07 7.66192283578E-07 7.73892644047E-07 7.81670394425E-07 7.89526312494E-07 7.97461183852E-07 8.05475801992E-07 8.13570968385E-07 8.21747492552E-07 8.30006192153E-07 8.38347893065E-07 8.46773429465E-07 8.55283643913E-07 8.63879387439E-07 8.72561519623E-07 8.81330908687E-07 8.90188431576E-07 8.99134974049E-07 9.08171430770E-07 9.17298705390E-07 9.26517710645E-07 9.35829368444E-07 9.45234609959E-07 9.54734375723E-07 9.64329615720E-07 9.74021289482E-07 9.83810366185E-07 9.93697824744E-07 1.00368465391E-06 1.01377185239E-06 1.02396042889E-06 1.03425140229E-06 1.04464580169E-06 1.05514466654E-06 1.06574904673E-06 1.07646000272E-06 1.08727860561E-06 1.09820593726E-06 1.10924309042E-06 1.12039116882E-06 1.13165128727E-06 1.14302457178E-06 1.15451215971E-06 1.16611519982E-06 1.17783485242E-06 1.18967228948E-06 1.20162869476E-06 1.21370526392E-06 1.22590320461E-06 1.23822373665E-06 1.25066809209E-06 1.26323751538E-06 1.27593326348E-06 1.28875660596E-06 1.30170882519E-06 1.31479121637E-06 1.32800508778E-06 1.34135176080E-06 1.35483257011E-06 1.36844886382E-06 1.38220200354E-06 1.39609336462E-06 1.41012433620E-06 1.42429632139E-06 1.43861073740E-06 1.45306901568E-06 1.46767260207E-06 1.48242295695E-06 1.49732155535E-06 1.51236988716E-06 1.52756945722E-06 1.54292178550E-06 1.55842840724E-06 1.57409087312E-06 1.58991074940E-06 1.60588961808E-06 1.62202907706E-06 1.63833074030E-06 1.65479623798E-06 1.67142721667E-06 1.68822533946E-06 1.70519228620E-06 1.72232975359E-06 1.73963945538E-06 1.75712312258E-06 1.77478250355E-06 1.79261936424E-06 1.81063548837E-06 1.82883267756E-06 1.84721275154E-06 1.86577754833E-06 1.88452892443E-06 1.90346875500E-06 1.92259893403E-06 1.94192137455E-06 1.96143800883E-06 1.98115078854E-06 2.00106168499E-06 2.02117268927E-06 2.04148581250E-06 2.06200308601E-06 2.08272656156E-06 2.10365831149E-06 2.12480042901E-06 2.14615502834E-06 2.16772424497E-06 2.18951023582E-06 2.21151517952E-06 2.23374127659E-06 2.25619074964E-06 2.27886584365E-06 2.30176882614E-06 2.32490198743E-06 2.34826764086E-06 2.37186812301E-06 2.39570579394E-06 2.41978303746E-06 2.44410226129E-06 2.46866589739E-06 2.49347640213E-06 2.51853625659E-06 2.54384796678E-06 2.56941406388E-06 2.59523710453E-06 2.62131967106E-06 2.64766437173E-06 2.67427384105E-06 2.70115073998E-06 2.72829775624E-06 2.75571760454E-06 2.78341302691E-06 2.81138679289E-06 2.83964169990E-06 2.86818057344E-06 2.89700626743E-06 2.92612166446E-06 2.95552967610E-06 2.98523324317E-06 3.01523533604E-06 3.04553895497E-06 3.07614713033E-06 3.10706292296E-06 3.13828942448E-06 3.16982975756E-06 3.20168707625E-06 3.23386456631E-06 3.26636544553E-06 3.29919296402E-06 3.33235040455E-06 3.36584108290E-06 3.39966834816E-06 3.43383558309E-06 3.46834620444E-06 3.50320366330E-06 3.53841144545E-06 3.57397307169E-06 3.60989209821E-06 3.64617211695E-06 3.68281675595E-06 3.71982967968E-06 3.75721458949E-06 3.79497522389E-06 3.83311535897E-06 3.87163880878E-06 3.91054942569E-06 3.94985110081E-06 3.98954776433E-06 4.02964338596E-06 4.07014197527E-06 4.11104758218E-06 4.15236429727E-06 4.19409625226E-06 4.23624762036E-06 4.27882261675E-06 4.32182549897E-06 4.36526056735E-06 4.40913216542E-06 4.45344468037E-06 4.49820254351E-06 4.54341023065E-06 4.58907226260E-06 4.63519320560E-06 4.68177767179E-06 4.72883031964E-06 4.77635585446E-06 4.82435902886E-06 4.87284464317E-06 4.92181754601E-06 4.97128263470E-06 5.02124485580E-06 5.07170920558E-06 5.12268073049E-06 5.17416452775E-06 5.22616574578E-06 5.27868958473E-06 5.33174129705E-06 5.38532618793E-06 5.43944961592E-06 5.49411699341E-06 5.54933378717E-06 5.60510551894E-06 5.66143776593E-06 5.71833616141E-06 5.77580639528E-06 5.83385421460E-06 5.89248542420E-06 5.95170588725E-06 6.01152152586E-06 6.07193832162E-06 6.13296231628E-06 6.19459961228E-06 6.25685637340E-06 6.31973882537E-06 6.38325325650E-06 6.44740601827E-06 6.51220352601E-06 6.57765225953E-06 6.64375876376E-06 6.71052964940E-06 6.77797159360E-06 6.84609134061E-06 6.91489570246E-06 6.98439155964E-06 7.05458586179E-06 7.12548562841E-06 7.19709794953E-06 7.26942998645E-06 7.34248897242E-06 7.41628221341E-06 7.49081708879E-06 7.56610105213E-06 7.64214163188E-06 7.71894643216E-06 7.79652313352E-06 7.87487949369E-06 7.95402334837E-06 8.03396261201E-06 8.11470527861E-06 8.19625942250E-06 8.27863319916E-06 8.36183484604E-06 8.44587268337E-06 8.53075511501E-06 8.61649062927E-06 8.70308779977E-06 8.79055528631E-06 8.87890183570E-06 8.96813628267E-06 9.05826755075E-06 9.14930465313E-06 9.24125669359E-06 9.33413286743E-06 9.42794246234E-06 9.52269485934E-06 9.61839953377E-06 9.71506605617E-06 9.81270409327E-06 9.91132340895E-06 1.00109338652E-05 1.01115454232E-05 1.02131681442E-05 1.03158121905E-05 1.04194878267E-05 1.05242054203E-05 1.06299754432E-05 1.07368084725E-05 1.08447151916E-05 1.09537063912E-05 1.10637929706E-05 1.11749859386E-05 1.12872964144E-05 1.14007356293E-05 1.15153149273E-05 1.16310457663E-05 1.17479397196E-05 1.18660084767E-05 1.19852638445E-05 1.21057177487E-05 1.22273822348E-05 1.23502694692E-05 1.24743917409E-05 1.25997614622E-05 1.27263911701E-05 1.28542935277E-05 1.29834813254E-05 1.31139674821E-05 1.32457650464E-05 1.33788871983E-05 1.35133472500E-05 1.36491586478E-05 1.37863349727E-05 1.39248899427E-05 1.40648374133E-05 1.42061913793E-05 1.43489659763E-05 1.44931754818E-05 1.46388343170E-05 1.47859570478E-05 1.49345583866E-05 1.50846531937E-05 1.52362564787E-05 1.53893834021E-05 1.55440492766E-05 1.57002695690E-05 1.58580599014E-05 1.60174360531E-05 1.61784139617E-05 1.63410097251E-05 1.65052396032E-05 1.66711200190E-05 1.68386675606E-05 1.70078989831E-05 1.71788312096E-05 1.73514813336E-05 1.75258666201E-05 1.77020045080E-05 1.78799126110E-05 1.80596087202E-05 1.82411108053E-05 1.84244370167E-05 1.86096056872E-05 1.87966353337E-05 1.89855446594E-05 1.91763525554E-05 1.93690781027E-05 1.95637405739E-05 1.97603594354E-05 1.99589543494E-05 2.01595451754E-05 2.03621519728E-05 2.05667950023E-05 2.07734947285E-05 2.09822718214E-05 2.11931471590E-05 2.14061418290E-05 2.16212771310E-05 2.18385745787E-05 2.20580559021E-05 2.22797430495E-05 2.25036581898E-05 2.27298237146E-05 2.29582622407E-05 2.31889966122E-05 2.34220499026E-05 2.36574454176E-05 2.38952066968E-05 2.41353575167E-05 2.43779218923E-05 2.46229240805E-05 2.48703885816E-05 2.51203401423E-05 2.53728037580E-05 2.56278046751E-05 2.58853683941E-05 2.61455206715E-05 2.64082875228E-05 2.66736952248E-05 2.69417703185E-05 2.72125396118E-05 2.74860301817E-05 2.77622693775E-05 2.80412848233E-05 2.83231044211E-05 2.86077563528E-05 2.88952690841E-05 2.91856713663E-05 2.94789922400E-05 2.97752610375E-05 3.00745073859E-05 3.03767612101E-05 3.06820527358E-05 3.09904124922E-05 3.13018713158E-05 3.16164603526E-05 3.19342110617E-05 3.22551552186E-05 3.25793249179E-05 3.29067525768E-05 3.32374709384E-05 3.35715130747E-05 3.39089123904E-05 3.42497026256E-05 3.45939178596E-05 3.49415925141E-05 3.52927613571E-05 3.56474595056E-05 3.60057224298E-05 3.63675859562E-05 3.67330862715E-05 3.71022599260E-05 3.74751438375E-05 3.78517752945E-05 3.82321919607E-05 3.86164318779E-05 3.90045334704E-05 3.93965355489E-05 3.97924773137E-05 4.01923983594E-05 4.05963386784E-05 4.10043386651E-05 4.14164391199E-05 4.18326812531E-05 4.22531066892E-05 4.26777574713E-05 4.31066760646E-05 4.35399053615E-05 4.39774886852E-05 4.44194697945E-05 4.48658928877E-05 4.53168026076E-05 4.57722440455E-05 4.62322627460E-05 4.66969047113E-05 4.71662164059E-05 4.76402447616E-05 4.81190371813E-05 4.86026415449E-05 4.90911062132E-05 4.95844800330E-05 5.00828123421E-05 5.05861529742E-05 5.10945522637E-05 5.16080610511E-05 5.21267306875E-05 5.26506130405E-05 5.31797604986E-05 5.37142259771E-05 5.42540629230E-05 5.47993253204E-05 5.53500676959E-05 5.59063451244E-05 5.64682132340E-05 5.70357282119E-05 5.76089468102E-05 5.81879263512E-05 5.87727247333E-05 5.93634004369E-05 5.99600125299E-05 6.05626206742E-05 6.11712851311E-05 6.17860667674E-05 6.24070270619E-05 6.30342281111E-05 6.36677326356E-05 6.43076039865E-05 6.49539061513E-05 6.56067037609E-05 6.62660620955E-05 6.69320470916E-05 6.76047253482E-05 6.82841641336E-05 6.89704313923E-05 6.96635957517E-05 7.03637265287E-05 7.10708937370E-05 7.17851680938E-05 7.25066210273E-05 7.32353246834E-05 7.39713519329E-05 7.47147763793E-05 7.54656723655E-05 7.62241149819E-05 7.69901800733E-05 7.77639442469E-05 7.85454848797E-05 7.93348801265E-05 8.01322089274E-05 8.09375510159E-05 8.17509869270E-05 8.25725980049E-05 8.34024664114E-05 8.42406751341E-05 8.50873079945E-05 8.59424496566E-05 8.68061856352E-05 8.76786023048E-05 8.85597869077E-05 8.94498275630E-05 9.03488132757E-05 9.12568339450E-05 9.21739803737E-05 9.31003442773E-05 9.40360182928E-05 9.49810959886E-05 9.59356718731E-05 9.68998414048E-05 9.78737010013E-05 9.88573480495E-05 9.98508809149E-05 1.00854398952E-04 1.01868002512E-04 1.02891792958E-04 1.03925872669E-04 1.04970345054E-04 1.06025314560E-04 1.07090886687E-04 1.08167167991E-04 1.09254266102E-04 1.10352289731E-04 1.11461348681E-04 1.12581553859E-04 1.13713017286E-04 1.14855852109E-04 1.16010172614E-04 1.17176094232E-04 1.18353733557E-04 1.19543208354E-04 1.20744637572E-04 1.21958141354E-04 1.23183841052E-04 1.24421859237E-04 1.25672319711E-04 1.26935347522E-04 1.28211068973E-04 1.29499611639E-04 1.30801104373E-04 1.32115677327E-04 1.33443461958E-04 1.34784591047E-04 1.36139198708E-04 1.37507420401E-04 1.38889392952E-04 1.40285254557E-04 1.41695144805E-04 1.43119204685E-04 1.44557576605E-04 1.46010404403E-04 1.47477833364E-04 1.48960010230E-04 1.50457083222E-04 1.51969202047E-04 1.53496517919E-04 1.55039183571E-04 1.56597353271E-04 1.58171182836E-04 1.59760829652E-04 1.61366452683E-04 1.62988212494E-04 1.64626271263E-04 1.66280792795E-04 1.67951942546E-04 1.69639887630E-04 1.71344796845E-04 1.73066840683E-04 1.74806191348E-04 1.76563022779E-04 1.78337510658E-04 1.80129832438E-04 1.81940167351E-04 1.83768696432E-04 1.85615602536E-04 1.87481070355E-04 1.89365286437E-04 1.91268439206E-04 1.93190718978E-04 1.95132317982E-04 1.97093430382E-04 1.99074252288E-04 2.01074981786E-04 2.03095818949E-04 2.05136965864E-04 2.07198626646E-04 2.09281007463E-04 2.11384316556E-04 2.13508764256E-04 2.15654563011E-04 2.17821927402E-04 2.20011074166E-04 2.22222222222E-04 2.24455592685E-04 2.26711408895E-04 2.28989896434E-04 2.31291283154E-04 2.33615799195E-04 2.35963677010E-04 2.38335151390E-04 2.40730459483E-04 2.43149840823E-04 2.45593537350E-04 2.48061793435E-04 2.50554855907E-04 2.53072974072E-04 2.55616399746E-04 2.58185387273E-04 2.60780193554E-04 2.63401078071E-04 2.66048302916E-04 2.68722132813E-04 2.71422835147E-04 2.74150679990E-04 2.76905940131E-04 2.79688891095E-04 2.82499811183E-04 2.85338981486E-04 2.88206685926E-04 2.91103211274E-04 2.94028847186E-04 2.96983886228E-04 2.99968623906E-04 3.02983358696E-04 3.06028392075E-04 3.09104028548E-04 3.12210575681E-04 3.15348344132E-04 3.18517647680E-04 3.21718803259E-04 3.24952130985E-04 3.28217954196E-04 3.31516599476E-04 3.34848396692E-04 3.38213679026E-04 3.41612783011E-04 3.45046048558E-04 3.48513818998E-04 3.52016441110E-04 3.55554265159E-04 3.59127644932E-04 3.62736937768E-04 3.66382504600E-04 3.70064709988E-04 3.73783922155E-04 3.77540513026E-04 3.81334858263E-04 3.85167337304E-04 3.89038333399E-04 3.92948233652E-04 3.96897429056E-04 4.00886314533E-04 4.04915288976E-04 4.08984755285E-04 4.13095120410E-04 4.17246795392E-04 4.21440195401E-04 4.25675739781E-04 4.29953852089E-04 4.34274960141E-04 4.38639496051E-04 4.43047896276E-04 4.47500601660E-04 4.51998057477E-04 4.56540713476E-04 4.61129023928E-04 4.65763447665E-04 4.70444448136E-04 4.75172493444E-04 4.79948056397E-04 4.84771614555E-04 4.89643650279E-04 4.94564650776E-04 4.99535108150E-04 5.04555519452E-04 5.09626386725E-04 5.14748217062E-04 5.19921522650E-04 5.25146820824E-04 5.30424634117E-04 5.35755490315E-04 5.41139922509E-04 5.46578469146E-04 5.52071674086E-04 5.57620086653E-04 5.63224261693E-04 5.68884759629E-04 5.74602146515E-04 5.80376994094E-04 5.86209879856E-04 5.92101387095E-04 5.98052104967E-04 6.04062628546E-04 6.10133558893E-04 6.16265503103E-04 6.22459074378E-04 6.28714892078E-04 6.35033581792E-04 6.41415775393E-04 6.47862111106E-04 6.54373233570E-04 6.60949793903E-04 6.67592449766E-04 6.74301865430E-04 6.81078711843E-04 6.87923666694E-04 6.94837414486E-04 7.01820646598E-04 7.08874061359E-04 7.15998364117E-04 7.23194267309E-04 7.30462490530E-04 7.37803760608E-04 7.45218811678E-04 7.52708385249E-04 7.60273230287E-04 7.67914103281E-04 7.75631768325E-04 7.83426997192E-04 7.91300569412E-04 7.99253272349E-04 8.07285901278E-04 8.15399259471E-04 8.23594158269E-04 8.31871417169E-04 8.40231863904E-04 8.48676334526E-04 8.57205673488E-04 8.65820733732E-04 8.74522376771E-04 8.83311472777E-04 8.92188900665E-04 9.01155548188E-04 9.10212312016E-04 9.19360097834E-04 9.28599820427E-04 9.37932403777E-04 9.47358781149E-04 9.56879895188E-04 9.66496698014E-04 9.76210151315E-04 9.86021226445E-04 9.95930904520E-04 1.00594017651E-03 1.01605004336E-03 1.02626151607E-03 1.03657561578E-03 1.04699337391E-03 1.05751583225E-03 1.06814404306E-03 1.07887906916E-03 1.08972198407E-03 1.10067387209E-03 1.11173582841E-03 1.12290895924E-03 1.13419438190E-03 1.14559322494E-03 1.15710662826E-03 1.16873574321E-03 1.18048173271E-03 1.19234577136E-03 1.20432904558E-03 1.21643275372E-03 1.22865810614E-03 1.24100632539E-03 1.25347864632E-03 1.26607631615E-03 1.27880059467E-03 1.29165275431E-03 1.30463408031E-03 1.31774587080E-03 1.33098943697E-03 1.34436610320E-03 1.35787720716E-03 1.37152409997E-03 1.38530814634E-03 1.39923072467E-03 1.41329322724E-03 1.42749706032E-03 1.44184364429E-03 1.45633441382E-03 1.47097081801E-03 1.48575432051E-03 1.50068639967E-03 1.51576854873E-03 1.53100227591E-03 1.54638910459E-03 1.56193057346E-03 1.57762823670E-03 1.59348366408E-03 1.60949844115E-03 1.62567416940E-03 1.64201246643E-03 1.65851496607E-03 1.67518331859E-03 1.69201919084E-03 1.70902426642E-03 1.72620024585E-03 1.74354884674E-03 1.76107180397E-03 1.77877086984E-03 1.79664781429E-03 1.81470442502E-03 1.83294250769E-03 1.85136388615E-03 1.86997040254E-03 1.88876391753E-03 1.90774631048E-03 1.92691947966E-03 1.94628534239E-03 1.96584583527E-03 1.98560291438E-03 2.00555855543E-03 2.02571475401E-03 2.04607352575E-03 2.06663690655E-03 2.08740695277E-03 2.10838574141E-03 2.12957537039E-03 2.15097795868E-03 2.17259564656E-03 2.19443059582E-03 2.21648498996E-03 2.23876103445E-03 2.26126095691E-03 2.28398700734E-03 2.30694145838E-03 2.33012660550E-03 2.35354476721E-03 2.37719828536E-03 2.40108952532E-03 2.42522087623E-03 2.44959475125E-03 2.47421358779E-03 2.49907984775E-03 2.52419601778E-03 2.54956460951E-03 2.57518815983E-03 2.60106923111E-03 2.62721041148E-03 2.65361431508E-03 2.68028358232E-03 2.70722088016E-03 2.73442890234E-03 2.76191036968E-03 2.78966803037E-03 2.81770466019E-03 2.84602306281E-03 2.87462607012E-03 2.90351654243E-03 2.93269736881E-03 2.96217146738E-03 2.99194178556E-03 3.02201130041E-03 3.05238301891E-03 3.08305997825E-03 3.11404524616E-03 3.14534192119E-03 3.17695313304E-03 3.20888204285E-03 3.24113184353E-03 3.27370576010E-03 3.30660704997E-03 3.33983900331E-03 3.37340494332E-03 3.40730822665E-03 3.44155224363E-03 3.47614041871E-03 3.51107621072E-03 3.54636311329E-03 3.58200465512E-03 3.61800440040E-03 3.65436594913E-03 3.69109293751E-03 3.72818903825E-03 3.76565796101E-03 3.80350345270E-03 3.84172929790E-03 3.88033931924E-03 3.91933737774E-03 3.95872737325E-03 3.99851324479E-03 4.03869897099E-03 4.07928857045E-03 4.12028610217E-03 4.16169566593E-03 4.20352140272E-03 4.24576749516E-03 4.28843816789E-03 4.33153768801E-03 4.37507036550E-03 4.41904055368E-03 4.46345264960E-03 4.50831109450E-03 4.55362037427E-03 4.59938501986E-03 4.64560960780E-03 4.69229876056E-03 4.73945714712E-03 4.78708948333E-03 4.83520053249E-03 4.88379510573E-03 4.93287806254E-03 4.98245431128E-03 5.03252880959E-03 5.08310656499E-03 5.13419263527E-03 5.18579212910E-03 5.23791020646E-03 5.29055207921E-03 5.34372301157E-03 5.39742832069E-03 5.45167337714E-03 5.50646360546E-03 5.56180448474E-03 5.61770154910E-03 5.67416038830E-03 5.73118664827E-03 5.78878603167E-03 5.84696429850E-03 5.90572726664E-03 5.96508081242E-03 6.02503087126E-03 6.08558343820E-03 6.14674456856E-03 6.20852037850E-03 6.27091704565E-03 6.33394080973E-03 6.39759797317E-03 6.46189490173E-03 6.52683802518E-03 6.59243383786E-03 6.65868889942E-03 6.72560983542E-03 6.79320333801E-03 6.86147616659E-03 6.93043514851E-03 7.00008717972E-03 7.07043922548E-03 7.14149832106E-03 7.21327157241E-03 7.28576615694E-03 7.35898932415E-03 7.43294839643E-03 7.50765076974E-03 7.58310391439E-03 7.65931537575E-03 7.73629277502E-03 7.81404381002E-03 7.89257625592E-03 7.97189796601E-03 8.05201687255E-03 8.13294098748E-03 8.21467840329E-03 8.29723729379E-03 8.38062591493E-03 8.46485260564E-03 8.54992578867E-03 8.63585397141E-03 8.72264574673E-03 8.81030979391E-03 8.89885487940E-03 8.98828985779E-03 9.07862367266E-03 9.16986535747E-03 9.26202403645E-03 9.35510892555E-03 9.44912933335E-03 9.54409466195E-03 9.64001440797E-03 9.73689816346E-03 9.83475561689E-03 9.93359655407E-03 1.00334308592E-02 1.01342685157E-02 1.02361196076E-02 1.03389943200E-02 1.04429029404E-02 1.05478558597E-02 1.06538635735E-02 1.07609366825E-02 1.08690858942E-02 1.09783220235E-02 1.10886559941E-02 1.12000988396E-02 1.13126617043E-02 1.14263558446E-02 1.15411926300E-02 1.16571835442E-02 1.17743401866E-02 1.18926742728E-02 1.20121976363E-02 1.21329222296E-02 1.22548601252E-02 1.23780235171E-02 1.25024247216E-02 1.26280761790E-02 1.27549904545E-02 1.28831802398E-02 1.30126583538E-02 1.31434377444E-02 1.32755314898E-02 1.34089527994E-02 1.35437150155E-02 1.36798316143E-02 1.38173162077E-02 1.39561825443E-02 1.40964445107E-02 1.42381161333E-02 1.43812115794E-02 1.45257451587E-02 1.46717313245E-02 1.48191846758E-02 1.49681199578E-02 1.51185520643E-02 1.52704960386E-02 1.54239670753E-02 1.55789805215E-02 1.57355518787E-02 1.58936968043E-02 1.60534311127E-02 1.62147707777E-02 1.63777319332E-02 1.65423308756E-02 1.67085840649E-02 1.68765081265E-02 1.70461198530E-02 1.72174362056E-02 1.73904743162E-02 1.75652514888E-02 1.77417852011E-02 1.79200931068E-02 1.81001930367E-02 1.82821030009E-02 1.84658411907E-02 1.86514259801E-02 1.88388759275E-02 1.90282097783E-02 1.92194464659E-02 1.94126051141E-02 1.96077050390E-02 1.98047657508E-02 2.00038069557E-02 2.02048485579E-02 2.04079106618E-02 2.06130135738E-02 2.08201778043E-02 2.10294240700E-02 2.12407732956E-02 2.14542466162E-02 2.16698653793E-02 2.18876511471E-02 2.21076256982E-02 2.23298110303E-02 2.25542293621E-02 2.27809031357E-02 2.30098550185E-02 2.32411079060E-02 2.34746849237E-02 2.37106094294E-02 2.39489050159E-02 2.41895955128E-02 2.44327049894E-02 2.46782577568E-02 2.49262783706E-02 2.51767916330E-02 2.54298225956E-02 2.56853965616E-02 2.59435390887E-02 2.62042759913E-02 2.64676333433E-02 2.67336374807E-02 2.70023150042E-02 2.72736927816E-02 2.75477979511E-02 2.78246579233E-02 2.81043003845E-02 2.83867532991E-02 2.86720449128E-02 2.89602037548E-02 2.92512586413E-02 2.95452386781E-02 2.98421732633E-02 3.01420920908E-02 3.04450251525E-02 3.07510027422E-02 3.10600554578E-02 3.13722142048E-02 3.16875101993E-02 3.20059749713E-02 3.23276403675E-02 3.26525385546E-02 3.29807020228E-02 3.33121635887E-02 3.36469563987E-02 3.39851139324E-02 3.43266700058E-02 3.46716587748E-02 3.50201147385E-02 3.53720727430E-02 3.57275679841E-02 3.60866360119E-02 3.64493127333E-02 3.68156344164E-02 3.71856376936E-02 3.75593595655E-02 3.79368374047E-02 3.83181089593E-02 3.87032123567E-02 3.90921861076E-02 3.94850691096E-02 3.98819006515E-02 4.02827204167E-02 4.06875684875E-02 4.10964853490E-02 4.15095118934E-02 4.19266894235E-02 4.23480596575E-02 4.27736647327E-02 4.32035472101E-02 4.36377500782E-02 4.40763167576E-02 4.45192911055E-02 4.49667174196E-02 4.54186404429E-02 4.58751053681E-02 4.63361578420E-02 4.68018439704E-02 4.72722103221E-02 4.77473039343E-02 4.82271723167E-02 4.87118634564E-02 4.92014258232E-02 4.96959083735E-02 5.01953605560E-02 5.06998323164E-02 5.12093741024E-02 5.17240368684E-02 5.22438720812E-02 5.27689317247E-02 5.32992683054E-02 5.38349348573E-02 5.43759849476E-02 5.49224726817E-02 5.54744527088E-02 5.60319802274E-02 5.65951109908E-02 5.71639013124E-02 5.77384080718E-02 5.83186887201E-02 5.89048012858E-02 5.94968043808E-02 6.00947572058E-02 6.06987195566E-02 6.13087518300E-02 6.19249150296E-02 6.25472707723E-02 6.31758812942E-02 6.38108094569E-02 6.44521187537E-02 6.50998733161E-02 6.57541379201E-02 6.64149779927E-02 6.70824596184E-02 6.77566495460E-02 6.84376151950E-02 6.91254246625E-02 6.98201467302E-02 7.05218508706E-02 7.12306072550E-02 7.19464867594E-02 7.26695609724E-02 7.33999022021E-02 7.41375834832E-02 7.48826785845E-02 7.56352620159E-02 7.63954090367E-02 7.71631956619E-02 7.79386986711E-02 7.87219956151E-02 7.95131648242E-02 8.03122854161E-02 8.11194373034E-02 8.19347012021E-02 8.27581586392E-02 8.35898919611E-02 8.44299843418E-02 8.52785197914E-02 8.61355831640E-02 8.70012601666E-02 8.78756373678E-02 8.87588022060E-02 8.96508429984E-02 9.05518489498E-02 9.14619101615E-02 9.23811176404E-02 9.33095633082E-02 9.42473400099E-02 9.51945415243E-02 9.61512625721E-02 9.71175988263E-02 9.80936469213E-02 9.90795044628E-02 1.00075270037E-01 1.01081043222E-01 1.02096924596E-01 1.03123015747E-01 1.04159419285E-01 1.05206238852E-01 1.06263579131E-01 1.07331545856E-01 1.08410245825E-01 1.09499786910E-01 1.10600278064E-01 1.11711829338E-01 1.12834551888E-01 1.13968557987E-01 1.15113961037E-01 1.16270875580E-01 1.17439417306E-01 1.18619703072E-01 1.19811850908E-01 1.21015980028E-01 1.22232210847E-01 1.23460664989E-01 1.24701465301E-01 1.25954735863E-01 1.27220602003E-01 1.28499190310E-01 1.29790628643E-01 1.31095046146E-01 1.32412573264E-01 1.33743341749E-01 1.35087484680E-01 1.36445136472E-01 1.37816432892E-01 1.39201511069E-01 1.40600509514E-01 1.42013568127E-01 1.43440828214E-01 1.44882432505E-01 1.46338525159E-01 1.47809251788E-01 1.49294759465E-01 1.50795196742E-01 1.52310713665E-01 1.53841461786E-01 1.55387594181E-01 1.56949265466E-01 1.58526631807E-01 1.60119850944E-01 1.61729082200E-01 1.63354486498E-01 1.64996226381E-01 1.66654466025E-01 1.68329371254E-01 1.70021109560E-01 1.71729850119E-01 1.73455763806E-01 1.75199023214E-01 1.76959802670E-01 1.78738278254E-01 1.80534627815E-01 1.82349030989E-01 1.84181669218E-01 1.86032725768E-01 1.87902385745E-01 1.89790836117E-01 1.91698265731E-01 1.93624865331E-01 1.95570827580E-01 1.97536347073E-01 1.99521620367E-01 2.01526845988E-01 2.03552224462E-01 2.05597958329E-01 2.07664252162E-01 2.09751312594E-01 2.11859348331E-01 2.13988570180E-01 2.16139191065E-01 2.18311426049E-01 2.20505492357E-01 2.22721609398E-01 2.24959998786E-01 2.27220884361E-01 2.29504492213E-01 2.31811050707E-01 2.34140790498E-01 2.36493944564E-01 2.38870748221E-01 2.41271439152E-01 2.43696257429E-01 2.46145445533E-01 2.48619248388E-01 2.51117913375E-01 2.53641690362E-01 2.56190831730E-01 2.58765592394E-01 2.61366229833E-01 2.63993004113E-01 2.66646177914E-01 2.69326016554E-01 2.72032788020E-01 2.74766762992E-01 2.77528214870E-01 2.80317419800E-01 2.83134656705E-01 2.85980207312E-01 2.88854356179E-01 2.91757390721E-01 2.94689601246E-01 2.97651280977E-01 3.00642726083E-01 3.03664235713E-01 3.06716112019E-01 3.09798660193E-01 3.12912188490E-01 3.16057008267E-01 3.19233434008E-01 3.22441783359E-01 3.25682377156E-01 3.28955539463E-01 3.32261597598E-01 3.35600882170E-01 3.38973727109E-01 3.42380469704E-01 3.45821450630E-01 3.49297013991E-01 3.52807507343E-01 3.56353281741E-01 3.59934691763E-01 3.63552095555E-01 3.67205854859E-01 3.70896335054E-01 3.74623905193E-01 3.78388938034E-01 3.82191810084E-01 3.86032901633E-01 3.89912596794E-01 3.93831283540E-01 3.97789353743E-01 4.01787203212E-01 4.05825231737E-01 4.09903843123E-01 4.14023445235E-01 4.18184450036E-01 4.22387273631E-01 4.26632336305E-01 4.30920062569E-01 4.35250881197E-01 4.39625225277E-01 4.44043532245E-01 4.48506243937E-01 4.53013806627E-01 4.57566671075E-01 4.62165292571E-01 4.66810130982E-01 4.71501650795E-01 4.76240321166E-01 4.81026615966E-01 4.85861013828E-01 4.90743998197E-01 4.95676057375E-01 5.00657684571E-01 5.05689377953E-01 5.10771640694E-01 5.15904981025E-01 5.21089912284E-01 5.26326952968E-01 5.31616626786E-01 5.36959462710E-01 5.42355995028E-01 5.47806763397E-01 5.53312312899E-01 5.58873194093E-01 5.64489963073E-01 5.70163181519E-01 5.75893416758E-01 5.81681241819E-01 5.87527235489E-01 5.93431982373E-01 5.99396072949E-01 -1.10906234580E+01 -1.10906233149E+01 -1.10906231855E+01 -1.10906230343E+01 -1.10906230965E+01 -1.10906232050E+01 -1.10906232377E+01 -1.10906231994E+01 -1.10906231423E+01 -1.10906231423E+01 -1.10906230904E+01 -1.10906230326E+01 -1.10906230989E+01 -1.10906231549E+01 -1.10906231488E+01 -1.10906231069E+01 -1.10906230881E+01 -1.10906231867E+01 -1.10906232209E+01 -1.10906231145E+01 -1.10906230956E+01 -1.10906231213E+01 -1.10906230682E+01 -1.10906230560E+01 -1.10906231430E+01 -1.10906232236E+01 -1.10906232525E+01 -1.10906232002E+01 -1.10906230974E+01 -1.10906230958E+01 -1.10906231364E+01 -1.10906231484E+01 -1.10906231572E+01 -1.10906231405E+01 -1.10906231544E+01 -1.10906231996E+01 -1.10906231743E+01 -1.10906231812E+01 -1.10906232162E+01 -1.10906231482E+01 -1.10906231288E+01 -1.10906231761E+01 -1.10906231554E+01 -1.10906231343E+01 -1.10906231632E+01 -1.10906231892E+01 -1.10906232119E+01 -1.10906231958E+01 -1.10906231163E+01 -1.10906231107E+01 -1.10906231626E+01 -1.10906231828E+01 -1.10906231585E+01 -1.10906230883E+01 -1.10906230913E+01 -1.10906231593E+01 -1.10906231713E+01 -1.10906231477E+01 -1.10906231487E+01 -1.10906231579E+01 -1.10906231529E+01 -1.10906231601E+01 -1.10906231675E+01 -1.10906231720E+01 -1.10906231872E+01 -1.10906231588E+01 -1.10906231368E+01 -1.10906231497E+01 -1.10906231299E+01 -1.10906231131E+01 -1.10906231117E+01 -1.10906231153E+01 -1.10906231368E+01 -1.10906231465E+01 -1.10906231629E+01 -1.10906231691E+01 -1.10906231550E+01 -1.10906231461E+01 -1.10906231420E+01 -1.10906231536E+01 -1.10906231657E+01 -1.10906231724E+01 -1.10906231645E+01 -1.10906231427E+01 -1.10906231297E+01 -1.10906231403E+01 -1.10906231465E+01 -1.10906231324E+01 -1.10906231386E+01 -1.10906231502E+01 -1.10906231446E+01 -1.10906231432E+01 -1.10906231406E+01 -1.10906231276E+01 -1.10906231272E+01 -1.10906231439E+01 -1.10906231534E+01 -1.10906231445E+01 -1.10906231367E+01 -1.10906231407E+01 -1.10906231443E+01 -1.10906231465E+01 -1.10906231432E+01 -1.10906231437E+01 -1.10906231442E+01 -1.10906231372E+01 -1.10906231349E+01 -1.10906231264E+01 -1.10906231176E+01 -1.10906231282E+01 -1.10906231383E+01 -1.10906231294E+01 -1.10906231259E+01 -1.10906231314E+01 -1.10906231238E+01 -1.10906231140E+01 -1.10906231148E+01 -1.10906231286E+01 -1.10906231355E+01 -1.10906231166E+01 -1.10906231089E+01 -1.10906231220E+01 -1.10906231244E+01 -1.10906231151E+01 -1.10906231178E+01 -1.10906231278E+01 -1.10906231263E+01 -1.10906231204E+01 -1.10906231147E+01 -1.10906231105E+01 -1.10906231123E+01 -1.10906231138E+01 -1.10906231124E+01 -1.10906231113E+01 -1.10906231106E+01 -1.10906231056E+01 -1.10906230987E+01 -1.10906230982E+01 -1.10906231019E+01 -1.10906231021E+01 -1.10906230928E+01 -1.10906230878E+01 -1.10906230951E+01 -1.10906230996E+01 -1.10906230961E+01 -1.10906230926E+01 -1.10906230926E+01 -1.10906230908E+01 -1.10906230843E+01 -1.10906230788E+01 -1.10906230815E+01 -1.10906230817E+01 -1.10906230750E+01 -1.10906230766E+01 -1.10906230777E+01 -1.10906230752E+01 -1.10906230726E+01 -1.10906230647E+01 -1.10906230626E+01 -1.10906230666E+01 -1.10906230659E+01 -1.10906230627E+01 -1.10906230608E+01 -1.10906230589E+01 -1.10906230563E+01 -1.10906230511E+01 -1.10906230477E+01 -1.10906230496E+01 -1.10906230499E+01 -1.10906230444E+01 -1.10906230405E+01 -1.10906230395E+01 -1.10906230327E+01 -1.10906230260E+01 -1.10906230277E+01 -1.10906230300E+01 -1.10906230269E+01 -1.10906230234E+01 -1.10906230217E+01 -1.10906230166E+01 -1.10906230114E+01 -1.10906230081E+01 -1.10906230039E+01 -1.10906230019E+01 -1.10906230011E+01 -1.10906229958E+01 -1.10906229881E+01 -1.10906229861E+01 -1.10906229843E+01 -1.10906229807E+01 -1.10906229789E+01 -1.10906229742E+01 -1.10906229689E+01 -1.10906229635E+01 -1.10906229570E+01 -1.10906229542E+01 -1.10906229538E+01 -1.10906229508E+01 -1.10906229455E+01 -1.10906229403E+01 -1.10906229351E+01 -1.10906229314E+01 -1.10906229266E+01 -1.10906229211E+01 -1.10906229165E+01 -1.10906229103E+01 -1.10906229034E+01 -1.10906228973E+01 -1.10906228928E+01 -1.10906228889E+01 -1.10906228842E+01 -1.10906228774E+01 -1.10906228707E+01 -1.10906228661E+01 -1.10906228610E+01 -1.10906228537E+01 -1.10906228462E+01 -1.10906228395E+01 -1.10906228332E+01 -1.10906228267E+01 -1.10906228205E+01 -1.10906228150E+01 -1.10906228072E+01 -1.10906227979E+01 -1.10906227908E+01 -1.10906227839E+01 -1.10906227764E+01 -1.10906227687E+01 -1.10906227601E+01 -1.10906227520E+01 -1.10906227448E+01 -1.10906227362E+01 -1.10906227257E+01 -1.10906227168E+01 -1.10906227087E+01 -1.10906226999E+01 -1.10906226898E+01 -1.10906226790E+01 -1.10906226696E+01 -1.10906226595E+01 -1.10906226483E+01 -1.10906226382E+01 -1.10906226283E+01 -1.10906226172E+01 -1.10906226052E+01 -1.10906225937E+01 -1.10906225828E+01 -1.10906225711E+01 -1.10906225587E+01 -1.10906225466E+01 -1.10906225340E+01 -1.10906225207E+01 -1.10906225071E+01 -1.10906224934E+01 -1.10906224798E+01 -1.10906224661E+01 -1.10906224516E+01 -1.10906224372E+01 -1.10906224230E+01 -1.10906224082E+01 -1.10906223921E+01 -1.10906223754E+01 -1.10906223592E+01 -1.10906223429E+01 -1.10906223262E+01 -1.10906223092E+01 -1.10906222920E+01 -1.10906222750E+01 -1.10906222567E+01 -1.10906222374E+01 -1.10906222184E+01 -1.10906221995E+01 -1.10906221802E+01 -1.10906221596E+01 -1.10906221390E+01 -1.10906221183E+01 -1.10906220967E+01 -1.10906220746E+01 -1.10906220521E+01 -1.10906220297E+01 -1.10906220069E+01 -1.10906219830E+01 -1.10906219586E+01 -1.10906219342E+01 -1.10906219093E+01 -1.10906218831E+01 -1.10906218565E+01 -1.10906218301E+01 -1.10906218031E+01 -1.10906217750E+01 -1.10906217465E+01 -1.10906217174E+01 -1.10906216877E+01 -1.10906216576E+01 -1.10906216268E+01 -1.10906215951E+01 -1.10906215632E+01 -1.10906215308E+01 -1.10906214972E+01 -1.10906214631E+01 -1.10906214281E+01 -1.10906213920E+01 -1.10906213555E+01 -1.10906213183E+01 -1.10906212805E+01 -1.10906212421E+01 -1.10906212026E+01 -1.10906211622E+01 -1.10906211212E+01 -1.10906210794E+01 -1.10906210364E+01 -1.10906209926E+01 -1.10906209479E+01 -1.10906209023E+01 -1.10906208556E+01 -1.10906208081E+01 -1.10906207599E+01 -1.10906207105E+01 -1.10906206598E+01 -1.10906206080E+01 -1.10906205552E+01 -1.10906205014E+01 -1.10906204463E+01 -1.10906203903E+01 -1.10906203332E+01 -1.10906202747E+01 -1.10906202150E+01 -1.10906201541E+01 -1.10906200918E+01 -1.10906200283E+01 -1.10906199633E+01 -1.10906198970E+01 -1.10906198293E+01 -1.10906197601E+01 -1.10906196895E+01 -1.10906196174E+01 -1.10906195440E+01 -1.10906194689E+01 -1.10906193921E+01 -1.10906193137E+01 -1.10906192337E+01 -1.10906191520E+01 -1.10906190684E+01 -1.10906189831E+01 -1.10906188958E+01 -1.10906188068E+01 -1.10906187158E+01 -1.10906186229E+01 -1.10906185280E+01 -1.10906184311E+01 -1.10906183321E+01 -1.10906182311E+01 -1.10906181278E+01 -1.10906180221E+01 -1.10906179143E+01 -1.10906178042E+01 -1.10906176917E+01 -1.10906175767E+01 -1.10906174592E+01 -1.10906173391E+01 -1.10906172162E+01 -1.10906170907E+01 -1.10906169627E+01 -1.10906168318E+01 -1.10906166979E+01 -1.10906165612E+01 -1.10906164215E+01 -1.10906162785E+01 -1.10906161324E+01 -1.10906159832E+01 -1.10906158306E+01 -1.10906156746E+01 -1.10906155151E+01 -1.10906153522E+01 -1.10906151855E+01 -1.10906150151E+01 -1.10906148409E+01 -1.10906146628E+01 -1.10906144806E+01 -1.10906142944E+01 -1.10906141041E+01 -1.10906139093E+01 -1.10906137100E+01 -1.10906135064E+01 -1.10906132980E+01 -1.10906130848E+01 -1.10906128669E+01 -1.10906126438E+01 -1.10906124157E+01 -1.10906121823E+01 -1.10906119435E+01 -1.10906116992E+01 -1.10906114492E+01 -1.10906111934E+01 -1.10906109316E+01 -1.10906106637E+01 -1.10906103895E+01 -1.10906101089E+01 -1.10906098217E+01 -1.10906095277E+01 -1.10906092267E+01 -1.10906089186E+01 -1.10906086031E+01 -1.10906082800E+01 -1.10906079492E+01 -1.10906076104E+01 -1.10906072635E+01 -1.10906069082E+01 -1.10906065444E+01 -1.10906061715E+01 -1.10906057897E+01 -1.10906053985E+01 -1.10906049976E+01 -1.10906045869E+01 -1.10906041661E+01 -1.10906037348E+01 -1.10906032928E+01 -1.10906028397E+01 -1.10906023752E+01 -1.10906018990E+01 -1.10906014109E+01 -1.10906009104E+01 -1.10906003972E+01 -1.10905998708E+01 -1.10905993310E+01 -1.10905987772E+01 -1.10905982092E+01 -1.10905976265E+01 -1.10905970286E+01 -1.10905964151E+01 -1.10905957855E+01 -1.10905951394E+01 -1.10905944761E+01 -1.10905937952E+01 -1.10905930962E+01 -1.10905923785E+01 -1.10905916415E+01 -1.10905908845E+01 -1.10905901071E+01 -1.10905893084E+01 -1.10905884879E+01 -1.10905876449E+01 -1.10905867786E+01 -1.10905858883E+01 -1.10905849731E+01 -1.10905840323E+01 -1.10905830650E+01 -1.10905820704E+01 -1.10905810476E+01 -1.10905799956E+01 -1.10905789134E+01 -1.10905778000E+01 -1.10905766544E+01 -1.10905754753E+01 -1.10905742618E+01 -1.10905730127E+01 -1.10905717266E+01 -1.10905704023E+01 -1.10905690385E+01 -1.10905676337E+01 -1.10905661865E+01 -1.10905646954E+01 -1.10905631588E+01 -1.10905615751E+01 -1.10905599426E+01 -1.10905582594E+01 -1.10905565238E+01 -1.10905547337E+01 -1.10905528872E+01 -1.10905509822E+01 -1.10905490165E+01 -1.10905469877E+01 -1.10905448936E+01 -1.10905427315E+01 -1.10905404989E+01 -1.10905381930E+01 -1.10905358111E+01 -1.10905333501E+01 -1.10905308070E+01 -1.10905281784E+01 -1.10905254611E+01 -1.10905226515E+01 -1.10905197458E+01 -1.10905167402E+01 -1.10905136305E+01 -1.10905104128E+01 -1.10905070823E+01 -1.10905036346E+01 -1.10905000646E+01 -1.10904963673E+01 -1.10904925375E+01 -1.10904885693E+01 -1.10904844571E+01 -1.10904801946E+01 -1.10904757754E+01 -1.10904711927E+01 -1.10904664395E+01 -1.10904615083E+01 -1.10904563912E+01 -1.10904510801E+01 -1.10904455664E+01 -1.10904398410E+01 -1.10904338945E+01 -1.10904277167E+01 -1.10904212974E+01 -1.10904146254E+01 -1.10904076892E+01 -1.10904004767E+01 -1.10903929749E+01 -1.10903851705E+01 -1.10903770492E+01 -1.10903685962E+01 -1.10903597958E+01 -1.10903506314E+01 -1.10903410856E+01 -1.10903311402E+01 -1.10903207758E+01 -1.10903099721E+01 -1.10902987076E+01 -1.10902869598E+01 -1.10902747048E+01 -1.10902619176E+01 -1.10902485714E+01 -1.10902346386E+01 -1.10902200895E+01 -1.10902048931E+01 -1.10901890163E+01 -1.10901724247E+01 -1.10901550814E+01 -1.10901369479E+01 -1.10901179831E+01 -1.10900981439E+01 -1.10900773846E+01 -1.10900556569E+01 -1.10900329099E+01 -1.10900090894E+01 -1.10899841385E+01 -1.10899579967E+01 -1.10899306001E+01 -1.10899018810E+01 -1.10898717680E+01 -1.10898401851E+01 -1.10898070523E+01 -1.10897722843E+01 -1.10897357914E+01 -1.10896974781E+01 -1.10896572434E+01 -1.10896149803E+01 -1.10895705753E+01 -1.10895239081E+01 -1.10894748513E+01 -1.10894232694E+01 -1.10893690194E+01 -1.10893119491E+01 -1.10892518971E+01 -1.10891886924E+01 -1.10891221534E+01 -1.10890520875E+01 -1.10889782902E+01 -1.10889005447E+01 -1.10888186205E+01 -1.10887322731E+01 -1.10886412431E+01 -1.10885452550E+01 -1.10884440162E+01 -1.10883372161E+01 -1.10882245249E+01 -1.10881055924E+01 -1.10879800467E+01 -1.10878474927E+01 -1.10877075112E+01 -1.10875596568E+01 -1.10874034567E+01 -1.10872384086E+01 -1.10870639793E+01 -1.10868796029E+01 -1.10866846784E+01 -1.10864785679E+01 -1.10862605942E+01 -1.10860300387E+01 -1.10857861391E+01 -1.10855280865E+01 -1.10852550229E+01 -1.10849660385E+01 -1.10846601689E+01 -1.10843363918E+01 -1.10839936241E+01 -1.10836307188E+01 -1.10832464616E+01 -1.10828395674E+01 -1.10824086769E+01 -1.10819523532E+01 -1.10814690781E+01 -1.10809572484E+01 -1.10804151729E+01 -1.10798410683E+01 -1.10792330561E+01 -1.10785891595E+01 -1.10779073001E+01 -1.10771852949E+01 -1.10764208548E+01 -1.10756115823E+01 -1.10747549698E+01 -1.10738483995E+01 -1.10728891437E+01 -1.10718743659E+01 -1.10708011239E+01 -1.10696663736E+01 -1.10684669751E+01 -1.10671997006E+01 -1.10658612453E+01 -1.10644482407E+01 -1.10629572710E+01 -1.10613848942E+01 -1.10597276673E+01 -1.10579821765E+01 -1.10561450732E+01 -1.10542131175E+01 -1.10521832296E+01 -1.10500525482E+01 -1.10478185058E+01 -1.10454789027E+01 -1.10430320035E+01 -1.10404766615E+01 -1.10378124236E+01 -1.10350396864E+01 -1.10321598726E+01 -1.10291756148E+01 -1.10260909804E+01 -1.10229117022E+01 -1.10196454978E+01 -1.10163023686E+01 -1.10128949494E+01 -1.10094389773E+01 -1.10059537099E+01 -1.10024624392E+01 -1.09989931169E+01 -1.09955789823E+01 -1.09922592963E+01 -1.09890801681E+01 -1.09860954298E+01 -1.09833676534E+01 -1.09809692441E+01 -1.09789836329E+01 -1.09775066142E+01 -1.09766477571E+01 -1.09765319842E+01 -1.09773012258E+01 -1.09791162281E+01 -1.09821584755E+01 -1.09866321768E+01 -1.09927664220E+01 -1.10008173513E+01 -1.10110703965E+01 -1.10238425492E+01 -1.10394845796E+01 -1.10583832093E+01 -1.10809630826E+01 -1.11076885466E+01 -1.11390650565E+01 -1.11756401358E+01 -1.12180039121E+01 -1.12667885072E+01 -1.13226668155E+01 -1.13863501353E+01 -1.14585843504E+01 -1.15401445711E+01 -1.16318275270E+01 -1.17344428209E+01 -1.18488005461E+01 -1.19756969509E+01 -1.21158980452E+01 -1.22701181156E+01 -1.24389965925E+01 -1.26230722999E+01 -1.28227527612E+01 -1.30382818946E+01 -1.32697055308E+01 -1.35168341000E+01 -1.37792063664E+01 -1.40560506105E+01 -1.43462492841E+01 -1.46483078926E+01 -1.49603268565E+01 -1.52799824108E+01 -1.56045144017E+01 -1.59307307609E+01 -1.62550217597E+01 -1.65733891035E+01 -1.68814979343E+01 -1.71747405455E+01 -1.74483215372E+01 -1.76973600422E+01 -1.79170066335E+01 -1.81025716805E+01 -1.82496626481E+01 -1.83543261908E+01 -1.84131821081E+01 -1.84235532868E+01 -1.83835771959E+01 -1.82922935838E+01 -1.81497097636E+01 -1.79568295273E+01 -1.77156482889E+01 -1.74291157221E+01 -1.71010622773E+01 -1.67360942720E+01 -1.63394639505E+01 -1.59169192667E+01 -1.54745399148E+01 -1.50185680157E+01 -1.45552414169E+01 -1.40906361991E+01 -1.36305235998E+01 -1.31802468689E+01 -1.27446222002E+01 -1.23278634509E+01 -1.19335337081E+01 -1.15645217953E+01 -1.12230382740E+01 -1.09106358464E+01 -1.06282454544E+01 -1.03762218564E+01 -1.01544036685E+01 -9.96217866087E+00 -9.79855104972E+00 -9.66220820713E+00 -9.55158910133E+00 -9.46494801997E+00 -9.40040911390E+00 -9.35602291184E+00 -9.32981150851E+00 -9.31980504641E+00 -9.32407848153E+00 -9.34077724048E+00 -9.36813693155E+00 -9.40450081246E+00 -9.44832948954E+00 -9.49820795550E+00 -9.55284906076E+00 -9.61109294576E+00 -9.67190516251E+00 -9.73437231956E+00 -9.79769633566E+00 -9.86118784387E+00 -9.92425814899E+00 -9.98641149270E+00 -1.00472372028E+01 -1.01064007509E+01 -1.01636362670E+01 -1.02187390540E+01 -1.02715576446E+01 -1.03219870762E+01 -1.03699630867E+01 -1.04154556569E+01 -1.04584636239E+01 -1.04990104787E+01 -1.05371395298E+01 -1.05729101445E+01 -1.06063945585E+01 -1.06376748097E+01 -1.06668401836E+01 -1.06939850244E+01 -1.07192068829E+01 -1.07426048858E+01 -1.07642784568E+01 -1.07843262109E+01 -1.08028450445E+01 -1.08199294683E+01 -1.08356710362E+01 -1.08501578882E+01 -1.08634744862E+01 -1.08757014100E+01 -1.08869152009E+01 -1.08971883032E+01 -1.09065890687E+01 -1.09151818045E+01 -1.09230268376E+01 -1.09301806231E+01 -1.09366958766E+01 -1.09426217172E+01 -1.09480038272E+01 -1.09528846109E+01 -1.09573033657E+01 -1.09612964523E+01 -1.09648974628E+01 -1.09681373890E+01 -1.09710447843E+01 -1.09736459208E+01 -1.09759649440E+01 -1.09780240147E+01 -1.09798434501E+01 -1.09814418560E+01 -1.09828362497E+01 -1.09840421799E+01 -1.09850738341E+01 -1.09859441445E+01 -1.09866648841E+01 -1.09872467563E+01 -1.09876994805E+01 -1.09880318692E+01 -1.09882519006E+01 -1.09883667864E+01 -1.09883830340E+01 -1.09883065038E+01 -1.09881424627E+01 -1.09878956327E+01 -1.09875702367E+01 -1.09871700400E+01 -1.09866983884E+01 -1.09861582438E+01 -1.09855522165E+01 -1.09848825951E+01 -1.09841513740E+01 -1.09833602782E+01 -1.09825107871E+01 -1.09816041553E+01 -1.09806414322E+01 -1.09796234798E+01 -1.09785509898E+01 -1.09774244980E+01 -1.09762443985E+01 -1.09750109569E+01 -1.09737243215E+01 -1.09723845343E+01 -1.09709915416E+01 -1.09695452024E+01 -1.09680452972E+01 -1.09664915362E+01 -1.09648835660E+01 -1.09632209768E+01 -1.09615033082E+01 -1.09597300552E+01 -1.09579006736E+01 -1.09560145846E+01 -1.09540711797E+01 -1.09520698248E+01 -1.09500098642E+01 -1.09478906243E+01 -1.09457114171E+01 -1.09434715430E+01 -1.09411702943E+01 -1.09388069576E+01 -1.09363808164E+01 -1.09338911538E+01 -1.09313372541E+01 -1.09287184056E+01 -1.09260339022E+01 -1.09232830449E+01 -1.09204651442E+01 -1.09175795210E+01 -1.09146255087E+01 -1.09116024539E+01 -1.09085097183E+01 -1.09053466796E+01 -1.09021127329E+01 -1.08988072917E+01 -1.08954297886E+01 -1.08919796771E+01 -1.08884564319E+01 -1.08848595502E+01 -1.08811885525E+01 -1.08774429835E+01 -1.08736224135E+01 -1.08697264385E+01 -1.08657546818E+01 -1.08617067951E+01 -1.08575824588E+01 -1.08533813839E+01 -1.08491033125E+01 -1.08447480193E+01 -1.08403153126E+01 -1.08358050362E+01 -1.08312170699E+01 -1.08265513318E+01 -1.08218077796E+01 -1.08169864123E+01 -1.08120872721E+01 -1.08071104464E+01 -1.08020560699E+01 -1.07969243271E+01 -1.07917154542E+01 -1.07864297424E+01 -1.07810675402E+01 -1.07756292565E+01 -1.07701153641E+01 -1.07645264026E+01 -1.07588629824E+01 -1.07531257885E+01 -1.07473155845E+01 -1.07414332172E+01 -1.07354796208E+01 -1.07294558223E+01 -1.07233629465E+01 -1.07172022215E+01 -1.07109749843E+01 -1.07046826876E+01 -1.06983269054E+01 -1.06919093405E+01 -1.06854318314E+01 -1.06788963599E+01 -1.06723050590E+01 -1.06656602210E+01 -1.06589643067E+01 -1.06522199539E+01 -1.06454299873E+01 -1.06385974280E+01 -1.06317255042E+01 -1.06248176616E+01 -1.06178775748E+01 -1.06109091584E+01 -1.06039165792E+01 -1.05969042681E+01 -1.05898769332E+01 -1.05828395725E+01 -1.05757974868E+01 -1.05687562939E+01 -1.05617219417E+01 -1.05547007225E+01 -1.05476992868E+01 -1.05407246577E+01 -1.05337842444E+01 -1.05268858570E+01 -1.05200377190E+01 -1.05132484820E+01 -1.05065272375E+01 -1.04998835297E+01 -1.04933273669E+01 -1.04868692315E+01 -1.04805200900E+01 -1.04742914001E+01 -1.04681951172E+01 -1.04622436980E+01 -1.04564501028E+01 -1.04508277941E+01 -1.04453907331E+01 -1.04401533716E+01 -1.04351306412E+01 -1.04303379374E+01 -1.04257910988E+01 -1.04215063812E+01 -1.04175004253E+01 -1.04137902181E+01 -1.04103930465E+01 -1.04073264435E+01 -1.04046081257E+01 -1.04022559207E+01 -1.04002876857E+01 -1.03987212139E+01 -1.03975741306E+01 -1.03968637768E+01 -1.03966070794E+01 -1.03968204088E+01 -1.03975194221E+01 -1.03987188927E+01 -1.04004325241E+01 -1.04026727500E+01 -1.04054505197E+01 -1.04087750677E+01 -1.04126536712E+01 -1.04170913931E+01 -1.04220908129E+01 -1.04276517475E+01 -1.04337709626E+01 -1.04404418773E+01 -1.04476542652E+01 -1.04553939540E+01 -1.04636425284E+01 -1.04723770396E+01 -1.04815697272E+01 -1.04911877567E+01 -1.05011929811E+01 -1.05115417306E+01 -1.05221846372E+01 -1.05330665032E+01 -1.05441262175E+01 -1.05552967300E+01 -1.05665050901E+01 -1.05776725563E+01 -1.05887147848E+01 -1.05995421024E+01 -1.06100598707E+01 -1.06201689447E+01 -1.06297662311E+01 -1.06387453480E+01 -1.06469973851E+01 -1.06544117661E+01 -1.06608772071E+01 -1.06662827669E+01 -1.06705189811E+01 -1.06734790689E+01 -1.06750602002E+01 -1.06751648060E+01 -1.06737019146E+01 -1.06705884930E+01 -1.06657507678E+01 -1.06591255036E+01 -1.06506612090E+01 -1.06403192433E+01 -1.06280747944E+01 -1.06139177005E+01 -1.05978530857E+01 -1.05799017866E+01 -1.05601005453E+01 -1.05385019519E+01 -1.05151741237E+01 -1.04902001145E+01 -1.04636770567E+01 -1.04357150450E+01 -1.04064357814E+01 -1.03759710094E+01 -1.03444607727E+01 -1.03120515429E+01 -1.02788942658E+01 -1.02451423800E+01 -1.02109498634E+01 -1.01764693615E+01 -1.01418504500E+01 -1.01072380746E+01 -1.00727712069E+01 -1.00385817411E+01 -1.00047936490E+01 -9.97152239664E+00 -9.93887461725E+00 -9.90694802282E+00 -9.87583153042E+00 -9.84560557112E+00 -9.81634254541E+00 -9.78810738622E+00 -9.76095818974E+00 -9.73494687513E+00 -9.71011983634E+00 -9.68651855205E+00 -9.66418012352E+00 -9.64313771376E+00 -9.62342086547E+00 -9.60505567902E+00 -9.58806483560E+00 -9.57246745429E+00 -9.55827877622E+00 -9.54550967291E+00 -9.53416598152E+00 -9.52424767556E+00 -9.51574788724E+00 -9.50865180651E+00 -9.50293549215E+00 -9.49856464263E+00 -9.49549338685E+00 -9.49366316863E+00 -9.49300181112E+00 -9.49342285785E+00 -9.49482529349E+00 -9.49709374773E+00 -9.50009927821E+00 -9.50370081082E+00 -9.50774728774E+00 -9.51208053394E+00 -9.51653880436E+00 -9.52096091855E+00 -9.52519083196E+00 -9.52908243997E+00 -9.53250436795E+00 -9.53534447513E+00 -9.53751379690E+00 -9.53894967226E+00 -9.53961784964E+00 -9.53951343283E+00 -9.53866061085E+00 -9.53711120388E+00 -9.53494214108E+00 -9.53225205684E+00 -9.52915724235E+00 -9.52578721547E+00 -9.52228017351E+00 -9.51877857231E+00 -9.51542503694E+00 -9.51235875948E+00 -9.50971248550E+00 -9.50761013777E+00 -9.50616507874E+00 -9.50547897530E+00 -9.50564120158E+00 -9.50672869802E+00 -9.50880619723E+00 -9.51192672657E+00 -9.51613230319E+00 -9.52145474668E+00 -9.52791654596E+00 -9.53553172952E+00 -9.54430670031E+00 -9.55424100741E+00 -9.56532803655E+00 -9.57755560931E+00 -9.59090648762E+00 -9.60535878472E+00 -9.62088628766E+00 -9.63745869857E+00 -9.65504180377E+00 -9.67359758024E+00 -9.69308424926E+00 -9.71345628717E+00 -9.73466440197E+00 -9.75665548448E+00 -9.77937254148E+00 -9.80275461747E+00 -9.82673671077E+00 -9.85124968873E+00 -9.87622020598E+00 -9.90157062893E+00 -9.92721896900E+00 -9.95307882671E+00 -9.97905934833E+00 -1.00050651968E+01 -1.00309965385E+01 -1.00567490480E+01 -1.00822139333E+01 -1.01072779839E+01 -1.01318236463E+01 -1.01557291307E+01 -1.01788685532E+01 -1.02011121200E+01 -1.02223263574E+01 -1.02423743937E+01 -1.02611162967E+01 -1.02784094703E+01 -1.02941091117E+01 -1.03080687282E+01 -1.03201407118E+01 -1.03301769666E+01 -1.03380295813E+01 -1.03435515395E+01 -1.03465974576E+01 -1.03470243418E+01 -1.03446923558E+01 -1.03394655951E+01 -1.03312128670E+01 -1.03198084816E+01 -1.03051330689E+01 -1.02870744453E+01 -1.02656160938E+01 -1.02411131010E+01 -1.02138775824E+01 -1.01835234385E+01 -1.01495576750E+01 -1.01118453255E+01 -1.00703584496E+01 -1.00250897385E+01 -9.97605394629E+00 -9.92328920435E+00 -9.86685818316E+00 -9.80684906611E+00 -9.74337629424E+00 -9.67658103783E+00 -9.60663134611E+00 -9.53372192152E+00 -9.45807345924E+00 -9.37993148623E+00 -9.29956462625E+00 -9.21726220817E+00 -9.13333112432E+00 -9.04809183330E+00 -8.96187338358E+00 -8.87500731809E+00 -8.78782030326E+00 -8.70062529747E+00 -8.61371104493E+00 -8.52732965367E+00 -8.44168197929E+00 -8.35690048434E+00 -8.27303247167E+00 -8.19006929564E+00 -8.10799682632E+00 -8.02668283432E+00 -7.94623024872E+00 -7.86687593986E+00 -7.78836062915E+00 -7.71054689918E+00 -7.63354701895E+00 -7.55734939195E+00 -7.48194274379E+00 -7.40731611307E+00 -7.33345884234E+00 -7.26036056886E+00 -7.18801121544E+00 -7.11640098123E+00 -7.04552033246E+00 -6.97535999324E+00 -6.90591093632E+00 -6.83716437390E+00 -6.76911174853E+00 -6.70174472406E+00 -6.63505517663E+00 -6.56903518588E+00 -6.50367702619E+00 -6.43897315816E+00 -6.37491622018E+00 -6.31149902023E+00 -6.24871452792E+00 -6.18655586663E+00 -6.12501630601E+00 -6.06408925466E+00 -6.00376825302E+00 -5.94404696656E+00 -5.88491917927E+00 -5.82637878731E+00 -5.76841979304E+00 -5.71103629923E+00 -5.65422250364E+00 -5.59797269376E+00 -5.54228124193E+00 -5.48714260070E+00 -5.43255129843E+00 -5.37850193518E+00 -5.32498917894E+00 -5.27200776204E+00 -5.21955247786E+00 -5.16761817780E+00 -5.11619976853E+00 -5.06529220950E+00 -5.01489051035E+00 -4.96498972968E+00 -4.91558497320E+00 -4.86667139061E+00 -4.81824417554E+00 -4.77029856484E+00 -4.72282983674E+00 -4.67583331028E+00 -4.62930434476E+00 -4.58323833914E+00 -4.53763073176E+00 -4.49247700002E+00 -4.44777266024E+00 -4.40351326756E+00 -4.35969441589E+00 -4.31631173798E+00 -4.27336090541E+00 -4.23083762869E+00 -4.18873765735E+00 -4.14705677998E+00 -4.10579082433E+00 -4.06493565736E+00 -4.02448718523E+00 -3.98444135336E+00 -3.94479414633E+00 -3.90554158786E+00 -3.86667974070E+00 -3.82820470647E+00 -3.79011262554E+00 -3.75239967677E+00 -3.71506207733E+00 -3.67809608241E+00 -3.64149798496E+00 -3.60526411535E+00 -3.56939084108E+00 -3.53387456641E+00 -3.49871173203E+00 -3.46389881468E+00 -3.42943232678E+00 -3.39530881606E+00 -3.36152486517E+00 -3.32807709129E+00 -3.29496214578E+00 -3.26217671378E+00 -3.22971751381E+00 -3.19758129745E+00 -3.16576484894E+00 -3.13426498480E+00 -3.10307855354E+00 -3.07220243521E+00 -3.04163354116E+00 -3.01136881362E+00 -2.98140522543E+00 -2.95173977966E+00 -2.92236950931E+00 -2.89329147702E+00 -2.86450277473E+00 -2.83600052337E+00 -2.80778187258E+00 -2.77984400042E+00 -2.75218411304E+00 -2.72479944444E+00 -2.69768725616E+00 -2.67084483700E+00 -2.64426950277E+00 -2.61795859598E+00 -2.59190948560E+00 -2.56611956677E+00 -2.54058626059E+00 -2.51530701377E+00 -2.49027929847E+00 -2.46550061197E+00 -2.44096847649E+00 -2.41668043886E+00 -2.39263407034E+00 -2.36882696636E+00 -2.34525674626E+00 -2.32192105306E+00 -2.29881755325E+00 -2.27594393651E+00 -2.25329791554E+00 -2.23087722575E+00 -2.20867962512E+00 -2.18670289392E+00 -2.16494483450E+00 -2.14340327107E+00 -2.12207604951E+00 -2.10096103711E+00 -2.08005612238E+00 -2.05935921485E+00 -2.03886824484E+00 -2.01858116325E+00 -1.99849594139E+00 -1.97861057074E+00 -1.95892306277E+00 -1.93943144872E+00 -1.92013377944E+00 -1.90102812515E+00 -1.88211257529E+00 -1.86338523830E+00 -1.84484424144E+00 -1.82648773060E+00 -1.80831387012E+00 -1.79032084262E+00 -1.77250684878E+00 -1.75487010719E+00 -1.73740885416E+00 -1.72012134357E+00 -1.70300584664E+00 -1.68606065182E+00 -1.66928406457E+00 -1.65267440723E+00 -1.63623001882E+00 -1.61994925487E+00 -1.60383048731E+00 -1.58787210425E+00 -1.57207250983E+00 -1.55643012407E+00 -1.54094338274E+00 -1.52561073713E+00 -1.51043065397E+00 -1.49540161524E+00 -1.48052211802E+00 -1.46579067434E+00 -1.45120581105E+00 -1.43676606965E+00 -1.42247000615E+00 -1.40831619093E+00 -1.39430320859E+00 -1.38042965782E+00 -1.36669415126E+00 -1.35309531533E+00 -1.33963179014E+00 -1.32630222933E+00 -1.31310529992E+00 -1.30003968221E+00 -1.28710406963E+00 -1.27429716859E+00 -1.26161769840E+00 -1.24906439109E+00 -1.23663599132E+00 -1.22433125502E+00 -1.21214895375E+00 -1.20008634267E+00 -1.18814544282E+00 -1.17632451443E+00 -1.16461988995E+00 -1.15303172882E+00 -1.14155887143E+00 -1.13020017091E+00 -1.11895449132E+00 -1.10782070810E+00 -1.09679770788E+00 -1.08588438834E+00 -1.07507965815E+00 -1.06438243682E+00 -1.05379165462E+00 -1.04330625246E+00 -1.03292518180E+00 -1.02264740452E+00 -1.01247189283E+00 -1.00239762917E+00 -9.92423606084E-01 -9.82548826212E-01 -9.72772299562E-01 -9.63093057110E-01 -9.53510121065E-01 -9.44022535914E-01 -9.34629354626E-01 -9.25329637163E-01 -9.16122453334E-01 -9.07006882617E-01 -8.97982013344E-01 -8.89046943021E-01 -8.80200778133E-01 -8.71442634057E-01 -8.62771634970E-01 -8.54186913765E-01 -8.45687611964E-01 -8.37272879629E-01 -8.28941875279E-01 -8.20693765808E-01 -8.12527726397E-01 -8.04442940436E-01 -7.96438599439E-01 -7.88513902966E-01 -7.80668058540E-01 -7.72900281571E-01 -7.65209795274E-01 -7.57595830594E-01 -7.50057626129E-01 -7.42594428051E-01 -7.35205490035E-01 -7.27890073181E-01 -7.20647445940E-01 -7.13476884045E-01 -7.06377670433E-01 -6.99349095176E-01 -6.92390455411E-01 -6.85501055270E-01 -6.78680205804E-01 -6.71927224926E-01 -6.65241437329E-01 -6.58622174431E-01 -6.52068774299E-01 -6.45580581587E-01 -6.39156947472E-01 -6.32797229584E-01 -6.26500791947E-01 -6.20267004911E-01 -6.14095245092E-01 -6.07984895309E-01 -6.01935344523E-01 -5.95945987773E-01 -5.90016226118E-01 -5.84145466577E-01 -5.78333122070E-01 -5.72578611357E-01 -5.66881358983E-01 -5.61240795216E-01 -5.55656355997E-01 -5.50127482876E-01 -5.44653622963E-01 -5.39234228865E-01 -5.33868758640E-01 -5.28556675735E-01 -5.23297448938E-01 -5.18090552323E-01 -5.12935465194E-01 -5.07831672040E-01 -5.02778662475E-01 -4.97775931196E-01 -4.92822977925E-01 -4.87919307363E-01 -4.83064429137E-01 -4.78257857758E-01 -4.73499112562E-01 -4.68787717673E-01 -4.64123201945E-01 -4.59505098925E-01 -4.54932946798E-01 -4.50406288344E-01 -4.45924670895E-01 -4.41487646284E-01 -4.37094770806E-01 -4.32745605169E-01 -4.28439714453E-01 -4.24176668066E-01 -4.19956039699E-01 -4.15777407286E-01 -4.11640352960E-01 -4.07544463012E-01 -4.03489327851E-01 -3.99474541958E-01 -3.95499703853E-01 -3.91564416047E-01 -3.87668285010E-01 -3.83810921124E-01 -3.79991938650E-01 -3.76210955686E-01 -3.72467594132E-01 -3.68761479647E-01 -3.65092241617E-01 -3.61459513116E-01 -3.57862930868E-01 -3.54302135211E-01 -3.50776770063E-01 -3.47286482883E-01 -3.43830924642E-01 -3.40409749780E-01 -3.37022616176E-01 -3.33669185115E-01 1 1 Beta L 1183 6.65205468145E-09 6.78643509995E-09 6.92353018297E-09 7.06339477039E-09 7.20608480989E-09 7.35165737940E-09 7.50017070989E-09 7.65168420866E-09 7.80625848314E-09 7.96395536510E-09 8.12483793539E-09 8.28897054919E-09 8.45641886173E-09 8.62724985457E-09 8.80153186239E-09 8.97933460030E-09 9.16072919178E-09 9.34578819709E-09 9.53458564228E-09 9.72719704886E-09 9.92369946396E-09 1.01241714912E-08 1.03286933220E-08 1.05373467678E-08 1.07502152928E-08 1.09673840473E-08 1.11889399017E-08 1.14149714812E-08 1.16455692015E-08 1.18808253048E-08 1.21208338966E-08 1.23656909835E-08 1.26154945118E-08 1.28703444060E-08 1.31303426096E-08 1.33955931254E-08 1.36662020570E-08 1.39422776516E-08 1.42239303432E-08 1.45112727966E-08 1.48044199527E-08 1.51034890740E-08 1.54085997924E-08 1.57198741562E-08 1.60374366793E-08 1.63614143908E-08 1.66919368863E-08 1.70291363790E-08 1.73731477534E-08 1.77241086186E-08 1.80821593635E-08 1.84474432132E-08 1.88201062862E-08 1.92002976527E-08 1.95881693943E-08 1.99838766647E-08 2.03875777523E-08 2.07994341429E-08 2.12196105844E-08 2.16482751531E-08 2.20855993206E-08 2.25317580222E-08 2.29869297275E-08 2.34512965111E-08 2.39250441261E-08 2.44083620777E-08 2.49014436996E-08 2.54044862310E-08 2.59176908957E-08 2.64412629823E-08 2.69754119266E-08 2.75203513954E-08 2.80762993717E-08 2.86434782421E-08 2.92221148857E-08 2.98124407649E-08 3.04146920180E-08 3.10291095534E-08 3.16559391463E-08 3.22954315370E-08 3.29478425310E-08 3.36134331012E-08 3.42924694930E-08 3.49852233297E-08 3.56919717223E-08 3.64129973794E-08 3.71485887211E-08 3.78990399936E-08 3.86646513874E-08 3.94457291573E-08 4.02425857448E-08 4.10555399033E-08 4.18849168251E-08 4.27310482721E-08 4.35942727082E-08 4.44749354347E-08 4.53733887284E-08 4.62899919826E-08 4.72251118508E-08 4.81791223934E-08 4.91524052275E-08 5.01453496790E-08 5.11583529390E-08 5.21918202223E-08 5.32461649297E-08 5.43218088130E-08 5.54191821441E-08 5.65387238871E-08 5.76808818735E-08 5.88461129818E-08 6.00348833200E-08 6.12476684120E-08 6.24849533880E-08 6.37472331786E-08 6.50350127125E-08 6.63488071186E-08 6.76891419323E-08 6.90565533053E-08 7.04515882205E-08 7.18748047104E-08 7.33267720805E-08 7.48080711373E-08 7.63192944200E-08 7.78610464381E-08 7.94339439131E-08 8.10386160248E-08 8.26757046635E-08 8.43458646865E-08 8.60497641800E-08 8.77880847267E-08 8.95615216779E-08 9.13707844319E-08 9.32165967182E-08 9.50996968861E-08 9.70208382008E-08 9.89807891446E-08 1.00980333724E-07 1.03020271783E-07 1.05101419325E-07 1.07224608836E-07 1.09390689620E-07 1.11600528139E-07 1.13855008357E-07 1.16155032097E-07 1.18501519399E-07 1.20895408888E-07 1.23337658153E-07 1.25829244127E-07 1.28371163475E-07 1.30964433001E-07 1.33610090047E-07 1.36309192910E-07 1.39062821268E-07 1.41872076609E-07 1.44738082672E-07 1.47661985899E-07 1.50644955889E-07 1.53688185870E-07 1.56792893175E-07 1.59960319728E-07 1.63191732542E-07 1.66488424226E-07 1.69851713499E-07 1.73282945723E-07 1.76783493436E-07 1.80354756903E-07 1.83998164679E-07 1.87715174174E-07 1.91507272242E-07 1.95375975773E-07 1.99322832299E-07 2.03349420617E-07 2.07457351414E-07 2.11648267919E-07 2.15923846554E-07 2.20285797606E-07 2.24735865916E-07 2.29275831569E-07 2.33907510612E-07 2.38632755778E-07 2.43453457230E-07 2.48371543311E-07 2.53388981322E-07 2.58507778304E-07 2.63729981846E-07 2.69057680897E-07 2.74493006609E-07 2.80038133185E-07 2.85695278748E-07 2.91466706233E-07 2.97354724288E-07 3.03361688199E-07 3.09490000830E-07 3.15742113590E-07 3.22120527406E-07 3.28627793729E-07 3.35266515553E-07 3.42039348454E-07 3.48949001657E-07 3.55998239114E-07 3.63189880615E-07 3.70526802913E-07 3.78011940873E-07 3.85648288652E-07 3.93438900890E-07 4.01386893936E-07 4.09495447093E-07 4.17767803891E-07 4.26207273383E-07 4.34817231469E-07 4.43601122248E-07 4.52562459392E-07 4.61704827556E-07 4.71031883811E-07 4.80547359101E-07 4.90255059746E-07 5.00158868953E-07 5.10262748380E-07 5.20570739713E-07 5.31086966286E-07 5.41815634730E-07 5.52761036656E-07 5.63927550369E-07 5.75319642626E-07 5.86941870415E-07 5.98798882781E-07 6.10895422689E-07 6.23236328916E-07 6.35826537989E-07 6.48671086159E-07 6.61775111417E-07 6.75143855549E-07 6.88782666230E-07 7.02696999168E-07 7.16892420279E-07 7.31374607924E-07 7.46149355170E-07 7.61222572113E-07 7.76600288241E-07 7.92288654846E-07 8.08293947484E-07 8.24622568486E-07 8.41281049519E-07 8.58276054197E-07 8.75614380749E-07 8.93302964736E-07 9.11348881830E-07 9.29759350638E-07 9.48541735593E-07 9.67703549900E-07 9.87252458540E-07 1.00719628134E-06 1.02754299609E-06 1.04830074176E-06 1.06947782171E-06 1.09108270706E-06 1.11312404006E-06 1.13561063753E-06 1.15855149441E-06 1.18195578735E-06 1.20583287838E-06 1.23019231866E-06 1.25504385229E-06 1.28039742021E-06 1.30626316419E-06 1.33265143087E-06 1.35957277591E-06 1.38703796822E-06 1.41505799422E-06 1.44364406232E-06 1.47280760731E-06 1.50256029502E-06 1.53291402689E-06 1.56388094485E-06 1.59547343607E-06 1.62770413796E-06 1.66224632039E-06 1.69593050347E-06 1.73009565046E-06 1.76500134580E-06 1.80054222185E-06 1.83696709104E-06 1.87405541581E-06 1.91187785111E-06 1.95040587039E-06 1.98975875514E-06 2.02998838570E-06 2.07093699256E-06 2.11277582966E-06 2.15528684283E-06 2.19898529930E-06 2.24325931222E-06 2.28859417411E-06 2.33468444582E-06 2.38194001118E-06 2.42992267377E-06 2.47906266227E-06 2.52893580516E-06 2.58024245388E-06 2.63221021041E-06 2.68528367600E-06 2.73961580775E-06 2.79483418667E-06 2.85134363239E-06 2.90881619364E-06 2.96761914159E-06 3.02751264001E-06 3.08865459839E-06 3.15098769177E-06 3.21457960065E-06 3.27955512341E-06 3.34564114405E-06 3.41334017119E-06 3.48211257458E-06 3.55255276665E-06 3.62423104956E-06 3.69742606434E-06 3.77203891894E-06 3.84827496489E-06 3.92588670330E-06 4.00526689236E-06 4.08602260496E-06 4.16865970577E-06 4.25274524994E-06 4.33872254501E-06 4.42626174162E-06 4.51569048310E-06 4.60682498638E-06 4.69989033105E-06 4.79477170460E-06 4.89167395245E-06 4.99036352981E-06 5.09122035135E-06 5.19398240662E-06 5.29881995658E-06 5.40596735844E-06 5.51497463337E-06 5.62642595126E-06 5.74010796524E-06 5.85597025686E-06 5.97424410194E-06 6.09492241467E-06 6.21797053630E-06 6.34360485717E-06 6.47165712602E-06 6.60238952964E-06 6.73566355456E-06 6.87183954613E-06 7.01048672943E-06 7.15219330028E-06 7.29653412724E-06 7.44396460692E-06 7.59422865687E-06 7.74774227450E-06 7.90410728652E-06 8.06380881049E-06 8.22658775638E-06 8.39285370981E-06 8.56230715546E-06 8.73518240480E-06 8.91174896799E-06 9.09161219476E-06 9.27534717036E-06 9.46261072976E-06 9.65378975072E-06 9.84869964926E-06 1.00477510657E-05 1.02505331214E-05 1.04577117371E-05 1.06688557545E-05 1.08844025889E-05 1.11041811495E-05 1.13285722878E-05 1.15572698950E-05 1.17908084977E-05 1.20288564224E-05 1.22719185127E-05 1.25197456858E-05 1.27726362329E-05 1.30306050465E-05 1.32938139061E-05 1.35623309146E-05 1.38363066548E-05 1.41157243712E-05 1.44008497075E-05 1.46918212383E-05 1.49885033114E-05 1.52912516582E-05 1.56001621767E-05 1.59152032725E-05 1.62367327329E-05 1.65647253811E-05 1.68992559223E-05 1.72406709873E-05 1.75888990078E-05 1.79442189546E-05 1.83066464606E-05 1.86764384622E-05 1.90536567348E-05 1.94385795639E-05 1.98311868241E-05 2.02318050383E-05 2.06404437382E-05 2.10574101904E-05 2.14826994268E-05 2.19167192170E-05 2.23593441606E-05 2.28111422142E-05 2.32717253352E-05 2.37419742483E-05 2.42214769621E-05 2.47107529594E-05 2.52099646911E-05 2.57190823940E-05 2.62387368031E-05 2.67687155023E-05 2.73094439470E-05 2.78610447336E-05 2.84239378018E-05 2.89980585485E-05 2.95838348772E-05 3.01813712482E-05 3.07911282487E-05 3.14130232376E-05 3.20476862005E-05 3.26949303076E-05 3.33554695826E-05 3.40292246979E-05 3.47166662847E-05 3.54178840502E-05 3.61333969672E-05 3.68632907109E-05 3.76079619072E-05 3.83676160811E-05 3.91427501026E-05 3.99333738673E-05 4.07400187476E-05 4.15630166514E-05 4.24025781399E-05 4.32591679014E-05 4.41329703809E-05 4.50245681660E-05 4.59340486498E-05 4.68619253262E-05 4.78085971002E-05 4.87743193664E-05 4.97596150978E-05 5.07647931978E-05 5.17902472558E-05 5.28364738220E-05 5.39038017194E-05 5.49927154402E-05 5.61035495190E-05 5.72369140169E-05 5.83930802202E-05 5.95727861636E-05 6.07760959132E-05 6.20038868015E-05 6.32563231510E-05 6.45342503947E-05 6.58378022290E-05 6.71677694934E-05 6.85247506739E-05 6.99088832893E-05 7.13211275125E-05 7.27619056527E-05 7.42317235513E-05 7.57312273288E-05 7.72611760731E-05 7.88217653883E-05 8.04141721658E-05 8.20385025130E-05 8.36958264922E-05 8.53864192841E-05 8.71114848876E-05 8.88710578965E-05 9.06664109723E-05 9.24979369537E-05 9.43664953054E-05 9.62727742760E-05 9.82176110205E-05 1.00201656409E-04 1.02225810451E-04 1.04290889148E-04 1.06397695145E-04 1.08546943840E-04 1.10739822257E-04 1.12976741264E-04 1.15259011856E-04 1.17587407169E-04 1.19962689426E-04 1.22386188108E-04 1.24858363953E-04 1.27380772693E-04 1.29953901854E-04 1.32579133361E-04 1.35257303974E-04 1.37989765783E-04 1.40777142751E-04 1.43621134920E-04 1.46522309535E-04 1.49482222978E-04 1.52501972461E-04 1.55582593977E-04 1.58725581665E-04 1.61931973477E-04 1.65203145549E-04 1.68540506703E-04 1.71945108121E-04 1.75418611703E-04 1.78962298272E-04 1.82577423766E-04 1.86265754124E-04 1.90028468381E-04 1.93867309112E-04 1.97783572587E-04 2.01779048267E-04 2.05855164350E-04 2.10013691040E-04 2.14256161575E-04 2.18584352544E-04 2.22999993869E-04 2.27504831590E-04 2.32100660534E-04 2.36789305667E-04 2.41572739062E-04 2.46452697274E-04 2.51431433701E-04 2.56510491774E-04 2.61692396114E-04 2.66978756282E-04 2.72372036589E-04 2.77874246303E-04 2.83487589418E-04 2.89214344175E-04 2.95056702428E-04 3.01017253087E-04 3.07098023549E-04 3.13301874645E-04 3.19630785773E-04 3.26087689680E-04 3.32674997970E-04 3.39395338584E-04 3.46251565232E-04 3.53246133589E-04 3.60382130208E-04 3.67662157672E-04 3.75089305528E-04 3.82666556415E-04 3.90396812966E-04 3.98283175408E-04 4.06328896300E-04 4.14537141622E-04 4.22911232262E-04 4.31454483832E-04 4.40170238449E-04 4.49062164434E-04 4.58133663549E-04 4.67388385724E-04 4.76830127543E-04 4.86462570598E-04 4.96289560823E-04 5.06315110214E-04 5.16543146659E-04 5.26977877275E-04 5.37623281278E-04 5.48483785116E-04 5.59563706121E-04 5.70867331514E-04 5.82399478379E-04 5.94164476830E-04 6.06167132584E-04 6.18412267398E-04 6.30904747593E-04 6.43649647449E-04 6.56651861615E-04 6.69916907225E-04 6.83449758402E-04 6.97256071513E-04 7.11341249563E-04 7.25710978136E-04 7.40370960165E-04 7.55327025002E-04 7.70585363232E-04 7.86151717651E-04 8.02032725973E-04 8.18234420940E-04 8.34763417352E-04 8.51626340437E-04 8.68829767573E-04 8.86380880906E-04 9.04286439775E-04 9.22553736556E-04 9.41189969291E-04 9.60202790162E-04 9.79599462389E-04 9.99388186112E-04 1.01957643890E-03 1.04017268553E-03 1.06118481286E-03 1.08262146196E-03 1.10449120115E-03 1.12680256270E-03 1.14956473617E-03 1.17278669002E-03 1.19647765876E-03 1.22064721692E-03 1.24530498973E-03 1.27046086585E-03 1.29612486715E-03 1.32230732721E-03 1.34901853694E-03 1.37626952347E-03 1.40407071682E-03 1.43243371312E-03 1.46136943387E-03 1.49088980823E-03 1.52100640354E-03 1.55173136422E-03 1.58307690558E-03 1.61505570484E-03 1.64768031386E-03 1.68096407228E-03 1.71492011634E-03 1.74956193543E-03 1.78490358811E-03 1.82095912866E-03 1.85774291143E-03 1.89526969454E-03 1.93355446443E-03 1.97261263518E-03 2.01245964489E-03 2.05311161953E-03 2.09458463746E-03 2.13689543323E-03 2.18006076000E-03 2.22409810309E-03 2.26902484696E-03 2.31485909502E-03 2.36161901894E-03 2.40932358808E-03 2.45799164253E-03 2.50764270856E-03 2.55829665364E-03 2.60997374026E-03 2.66269459272E-03 2.71648029539E-03 2.77135248115E-03 2.82733283502E-03 2.88444392008E-03 2.94270853972E-03 3.00215000623E-03 3.06279202240E-03 3.12465887233E-03 3.18777528157E-03 3.25216650539E-03 3.31785826097E-03 3.38487682626E-03 3.45324900475E-03 3.52300209113E-03 3.59416400171E-03 3.66676317612E-03 3.74082860528E-03 3.81638996874E-03 3.89347741145E-03 3.97212176033E-03 4.05235453272E-03 4.13420765985E-03 4.21771353182E-03 4.30290697078E-03 4.38982062321E-03 4.47848786498E-03 4.56894913766E-03 4.66123417979E-03 4.75538431864E-03 4.85143662122E-03 4.94942764667E-03 5.04939802686E-03 5.15138816473E-03 5.25543512292E-03 5.36158749360E-03 5.46988112115E-03 5.58036104670E-03 5.69307474427E-03 5.80806088544E-03 5.92537331374E-03 6.04505219013E-03 6.16714853461E-03 6.29170970966E-03 6.41878814606E-03 6.54843031101E-03 6.68069239718E-03 6.81562480572E-03 6.95328114570E-03 7.09371781126E-03 7.23699027818E-03 7.38315696987E-03 7.53227305981E-03 7.68440076267E-03 7.83960049042E-03 7.99793533289E-03 8.15946536938E-03 8.32425726379E-03 8.49237780315E-03 8.66389094410E-03 8.83886908313E-03 9.01737920056E-03 9.19949299613E-03 9.38528497478E-03 9.57482776110E-03 9.76819701713E-03 9.96547033702E-03 1.01667290136E-02 1.03720425848E-02 1.05815149223E-02 1.07952029756E-02 1.10132126746E-02 1.12356249075E-02 1.14625153129E-02 1.16940094553E-02 1.19301448219E-02 1.21710790612E-02 1.24168541336E-02 1.26676025426E-02 1.29234073209E-02 1.31843795280E-02 1.34506123276E-02 1.37222323580E-02 1.39993214756E-02 1.42820098262E-02 1.45704049112E-02 1.48646209587E-02 1.51647714898E-02 1.54709822650E-02 1.57833752990E-02 1.61020702161E-02 1.64271985401E-02 1.67588880532E-02 1.70972731625E-02 1.74424857387E-02 1.77946658739E-02 1.81539506685E-02 1.85204881018E-02 1.88944210557E-02 1.92759014704E-02 1.96650787914E-02 2.00621032637E-02 2.04671497068E-02 2.08803572213E-02 2.13019119426E-02 2.17319655643E-02 2.21706964699E-02 2.26182819419E-02 2.30748947332E-02 2.35407192338E-02 2.40159416257E-02 2.45007500457E-02 2.49953402806E-02 2.54999038380E-02 2.60146454977E-02 2.65397743193E-02 2.70754878981E-02 2.76220124121E-02 2.81795564764E-02 2.87483461557E-02 2.93286046908E-02 2.99205670579E-02 3.05244682492E-02 3.11405424035E-02 3.17690443469E-02 3.24102160556E-02 3.30643169886E-02 3.37316044252E-02 3.44123475330E-02 3.51068125513E-02 3.58152803732E-02 3.65380259406E-02 3.72753450305E-02 3.80275235763E-02 3.87948637400E-02 3.95776693517E-02 4.03762541879E-02 4.11909298763E-02 4.20220259772E-02 4.28698678013E-02 4.37347949731E-02 4.46171501924E-02 4.55172824012E-02 4.64355511348E-02 4.73723171998E-02 4.83279571266E-02 4.93028458254E-02 5.02973709075E-02 5.13119276711E-02 5.23469194530E-02 5.34027535324E-02 5.44798491539E-02 5.55786349437E-02 5.66995439479E-02 5.78430240191E-02 5.90095202690E-02 6.01995046558E-02 6.14134384533E-02 6.26518096366E-02 6.39151043724E-02 6.52038220100E-02 6.65184756994E-02 6.78595807936E-02 6.92276708969E-02 7.06232844815E-02 7.20469747454E-02 7.34993027188E-02 7.49808426540E-02 7.64921789560E-02 7.80339090102E-02 7.96066396917E-02 8.12109932437E-02 8.28476010438E-02 8.45171083435E-02 8.62201748113E-02 8.79574690440E-02 8.97296767791E-02 9.15374962159E-02 9.33816375198E-02 9.52628291534E-02 9.71818027722E-02 9.91393386690E-02 1.01136155175E-01 1.03173099636E-01 1.05250929310E-01 1.07370455519E-01 1.09532571437E-01 1.11738032136E-01 1.13987787823E-01 1.16282656738E-01 1.18623594247E-01 1.21011461171E-01 1.23447240000E-01 1.25931854437E-01 1.28466303538E-01 1.31051527715E-01 1.33688607364E-01 1.36378518620E-01 1.39122326866E-01 1.41921115766E-01 1.44775966375E-01 1.47687989555E-01 1.50658318329E-01 1.53688124636E-01 1.56778566944E-01 1.59930872236E-01 1.63146238675E-01 1.66425942090E-01 1.69771227477E-01 1.73183425040E-01 1.76663835386E-01 1.80213808050E-01 1.83834741822E-01 1.87528007279E-01 1.91295050009E-01 1.95137324076E-01 1.99056317198E-01 2.03053535751E-01 2.07130525246E-01 2.11288848367E-01 2.15530125422E-01 2.19855969822E-01 2.24268062533E-01 2.28768073904E-01 2.33357759818E-01 2.38038860578E-01 2.42813181370E-01 2.47682541295E-01 2.52648811993E-01 2.57713881548E-01 2.62879697731E-01 2.68148211811E-01 2.73521448397E-01 2.79001449102E-01 2.84590283743E-01 2.90290099814E-01 2.96103040418E-01 3.02031311941E-01 3.08077167138E-01 3.14242887712E-01 3.20530792960E-01 3.26943273840E-01 3.33482729077E-01 3.40151626626E-01 3.46952476726E-01 3.53887821261E-01 3.60960264475E-01 3.68172459858E-01 3.75527090018E-01 3.83026908145E-01 3.90674710197E-01 3.98473332396E-01 4.06425679137E-01 4.14534700212E-01 4.22803392771E-01 4.31234811315E-01 4.39832086403E-01 4.48598356519E-01 4.57536865323E-01 4.66650887375E-01 4.75943758899E-01 4.85418887362E-01 4.95079715848E-01 5.04929776058E-01 5.14972639630E-01 5.25211955772E-01 5.35651424541E-01 5.46294819440E-01 5.57145967556E-01 5.68208783694E-01 5.79487219013E-01 5.90985322778E-01 6.02707188335E-01 6.14656988122E-01 6.26838970024E-01 6.39257445924E-01 6.51916794593E-01 6.64821480177E-01 6.77976030926E-01 6.91385053477E-01 7.05053223089E-01 7.18985298131E-01 7.33186110409E-01 7.47660569437E-01 7.62413660100E-01 7.77450447074E-01 7.92776077493E-01 8.08395774845E-01 8.24314843251E-01 8.40538670603E-01 8.57072720808E-01 8.73922550205E-01 8.91093783503E-01 9.08592144039E-01 9.26423427100E-01 9.44593516537E-01 9.63108382244E-01 9.81974074972E-01 1.00119673026E+00 1.02078257454E+00 1.04073791247E+00 1.06106913567E+00 1.08178272466E+00 1.10288524225E+00 1.12438332995E+00 1.14628372949E+00 1.16859325030E+00 1.19131879571E+00 1.21446734795E+00 1.23804597750E+00 1.26206182720E+00 1.28652213088E+00 1.31143419808E+00 1.33680541438E+00 1.36264325146E+00 1.38895524941E+00 1.41574902588E+00 1.44303227560E+00 1.47081275840E+00 1.49909830735E+00 1.52789682213E+00 1.55721626673E+00 1.58706466785E+00 1.61745010975E+00 1.64838073664E+00 1.67986473902E+00 1.71191036741E+00 1.74452590559E+00 1.77771968802E+00 1.81150008181E+00 1.84587548999E+00 1.88085433743E+00 1.91644507703E+00 1.95265617487E+00 1.98949610699E+00 2.02697335722E+00 2.06509639859E+00 2.10387370311E+00 2.14331371750E+00 2.18342486588E+00 2.22421553547E+00 2.26569407170E+00 2.30786876076E+00 2.35074783291E+00 2.39433943227E+00 2.43865162606E+00 2.48369237560E+00 2.52946953295E+00 2.57599082388E+00 2.62326383362E+00 2.67129599261E+00 2.72009455941E+00 2.76966660434E+00 2.82001899230E+00 2.87115836276E+00 2.92309111162E+00 2.97582336814E+00 3.02936097617E+00 3.08370946883E+00 3.13887404486E+00 3.19485954468E+00 3.25167042130E+00 3.30931071459E+00 3.36778401984E+00 3.42709346044E+00 3.48724164881E+00 3.54823066123E+00 3.61006199376E+00 3.67273653067E+00 3.73625450240E+00 3.80061544472E+00 3.86581815649E+00 3.93186065416E+00 3.99874012279E+00 4.06645286944E+00 4.13499426876E+00 4.20435871026E+00 4.27453953921E+00 4.34552900090E+00 4.41731817352E+00 4.48989690823E+00 4.56325375648E+00 4.63737590222E+00 4.71224908564E+00 4.78785752693E+00 4.86418384390E+00 4.94120896817E+00 5.01891205789E+00 5.09727040302E+00 5.17625933230E+00 5.25585211084E+00 5.33601983810E+00 5.41673133700E+00 5.49795304341E+00 5.57964888597E+00 5.66178016645E+00 5.74430543108E+00 5.82718033884E+00 5.91035752490E+00 5.99378645861E+00 6.07741329550E+00 6.16118072425E+00 6.24502781186E+00 6.32888983502E+00 6.41269811586E+00 6.49637984562E+00 6.57985790428E+00 6.66305067681E+00 6.74587186255E+00 6.82823027713E+00 6.91002965473E+00 6.99116844002E+00 7.07153957851E+00 7.15103030065E+00 7.22952190510E+00 7.30688953305E+00 7.38300194424E+00 7.45772128894E+00 7.53090287628E+00 7.60239494458E+00 7.67203842790E+00 7.73966672782E+00 7.80510548221E+00 7.86817234154E+00 7.92867674769E+00 7.98641971870E+00 8.04119364528E+00 8.09278209169E+00 8.14095961570E+00 8.18549159900E+00 8.22613409779E+00 8.26263371404E+00 8.29472748995E+00 8.32214283411E+00 8.34459747418E+00 8.36179945323E+00 8.37344716085E+00 8.37922941712E+00 8.37882560404E+00 8.37190585951E+00 8.35813133445E+00 8.33715452295E+00 8.30861967267E+00 8.27216328335E+00 8.22741470099E+00 8.17399682112E+00 8.11152690245E+00 8.03961751206E+00 7.95787760279E+00 7.86591373863E+00 7.76333148108E+00 7.64973694339E+00 7.52473852776E+00 7.38794885875E+00 7.23898692095E+00 7.07748041686E+00 6.90306835440E+00 6.71540387745E+00 6.51415734533E+00 6.29901967911E+00 6.06970597270E+00 5.82595938600E+00 5.56755531524E+00 5.29430585193E+00 5.00606452283E+00 4.70273131196E+00 4.38425795469E+00 4.05065349383E+00 3.70199007930E+00 3.33840898903E+00 2.96012684203E+00 2.56744196831E+00 2.16074088893E+00 1.74050485616E+00 1.30731638836E+00 8.61865730929E-01 4.04957154931E-01 -6.24849953673E-02 -5.39410620226E-01 -1.02463865735E+00 -1.51685249268E+00 -2.01459612203E+00 -2.51627123260E+00 -3.02013536150E+00 -3.52430132130E+00 -4.02673807817E+00 -4.52527328104E+00 -5.01759765018E+00 -5.50127142960E+00 -5.97373311666E+00 -6.43231067098E+00 -6.87423540197E+00 -7.29665871776E+00 -7.69667189990E+00 -8.07132904255E+00 -8.41767325746E+00 -8.73276620641E+00 -9.01372096988E+00 -9.25773819648E+00 -9.46214540986E+00 -9.62443925633E+00 -9.74233039086E+00 -9.81379057986E+00 -9.83710148358E+00 -9.81090443619E+00 -9.73425040015E+00 -9.60664909174E+00 -9.42811610381E+00 -9.19921663741E+00 -8.92110424443E+00 -8.59555273311E+00 -8.22497912618E+00 -7.81245526904E+00 -7.36170535724E+00 -6.87708629917E+00 -6.36354742597E+00 -5.82656561583E+00 -5.27205140220E+00 -4.70622107902E+00 -4.13542919963E+00 -3.56595516644E+00 -3.00373697055E+00 -2.45404322381E+00 -1.92108441796E+00 -1.40752158168E+00 -9.15655267137E-01 -4.40917455124E-01 -4.40216403186E-02 4.59577515649E-03 -2.54301578645E-04 2.17118529872E-04 1.59531569956E-04 1.55131915113E-04 1.45955106030E-04 1.37744690119E-04 1.29904871775E-04 1.22471995025E-04 1.15420513356E-04 2 2 Beta L 1174 6.48040722081E-13 6.67776500254E-13 6.88113322353E-13 7.09069492892E-13 7.30663873837E-13 7.52915901591E-13 7.75845604479E-13 7.99473620782E-13 8.23821217310E-13 8.48910308543E-13 8.74763476357E-13 9.01403990348E-13 9.28855828776E-13 9.57143700150E-13 9.86293065464E-13 1.01633016111E-12 1.04728202251E-12 1.07917650842E-12 1.11204232604E-12 1.14590905681E-12 1.18080718309E-12 1.21676811554E-12 1.25382422142E-12 1.29200885374E-12 1.33135638125E-12 1.37190221936E-12 1.41368286208E-12 1.45673591480E-12 1.50110012817E-12 1.54681543299E-12 1.59392297611E-12 1.64246515750E-12 1.69248566841E-12 1.74402953066E-12 1.79714313721E-12 1.85187429390E-12 1.90827226246E-12 1.96638780486E-12 2.02627322902E-12 2.08798243587E-12 2.15157096785E-12 2.21709605894E-12 2.28461668614E-12 2.35419362258E-12 2.42588949218E-12 2.49976882608E-12 2.57589812066E-12 2.65434589743E-12 2.73518276468E-12 2.81848148105E-12 2.90431702100E-12 2.99276664232E-12 3.08390995564E-12 3.17782899608E-12 3.27460829713E-12 3.37433496669E-12 3.47709876549E-12 3.58299218789E-12 3.69211054512E-12 3.80455205107E-12 3.92041791067E-12 4.03981241103E-12 4.16284301525E-12 4.28962045918E-12 4.42025885109E-12 4.55487577434E-12 4.69359239324E-12 4.83653356213E-12 4.98382793769E-12 5.13560809482E-12 5.29201064589E-12 5.45317636376E-12 5.61925030846E-12 5.79038195775E-12 5.96672534166E-12 6.14843918114E-12 6.33568703091E-12 6.52863742668E-12 6.72746403683E-12 6.93234581872E-12 7.14346717980E-12 7.36101814354E-12 7.58519452048E-12 7.81619808451E-12 8.05423675441E-12 8.29952478107E-12 8.55228294027E-12 8.81273873140E-12 9.08112658226E-12 9.35768806004E-12 9.64267208873E-12 9.93633517320E-12 1.02389416300E-11 1.05507638255E-11 1.08720824206E-11 1.12031866237E-11 1.15443744511E-11 1.18959529947E-11 1.22582386990E-11 1.26315576455E-11 1.30162458466E-11 1.34126495476E-11 1.38211255386E-11 1.42420414754E-11 1.46757762110E-11 1.51227201358E-11 1.55832755295E-11 1.60578569231E-11 1.65468914718E-11 1.70508193398E-11 1.75700940962E-11 1.81051831232E-11 1.86565680372E-11 1.92247451218E-11 1.98102257746E-11 2.04135369679E-11 2.10352217224E-11 2.16758395963E-11 2.23359671891E-11 2.30161986599E-11 2.37171462633E-11 2.44394408991E-11 2.51837326815E-11 2.59506915232E-11 2.67410077390E-11 2.75553926668E-11 2.83945793080E-11 2.92593229873E-11 3.01504020323E-11 3.10686184743E-11 3.20147987701E-11 3.29897945458E-11 3.39944833634E-11 3.50297695107E-11 3.60965848151E-11 3.71958894824E-11 3.83286729610E-11 3.94959548325E-11 4.06987857293E-11 4.19382482805E-11 4.32154580860E-11 4.45315647209E-11 4.58877527699E-11 4.72852428938E-11 4.87252929282E-11 5.02091990152E-11 5.17382967704E-11 5.33139624851E-11 5.49376143647E-11 5.66107138056E-11 5.83347667102E-11 6.01113248424E-11 6.19419872245E-11 6.38284015762E-11 6.57722657978E-11 6.77753294983E-11 6.98393955701E-11 7.19663218122E-11 7.41580226016E-11 7.64164706170E-11 7.87436986141E-11 8.11418012552E-11 8.36129369944E-11 8.61593300209E-11 8.87832722601E-11 9.14871254372E-11 9.42733232025E-11 9.71443733222E-11 1.00102859935E-10 1.03151445879E-10 1.06292875087E-10 1.09529975057E-10 1.12865659397E-10 1.16302930450E-10 1.19844881991E-10 1.23494702014E-10 1.27255675606E-10 1.31131187895E-10 1.35124727104E-10 1.39239887689E-10 1.43480373571E-10 1.47850001474E-10 1.52352704358E-10 1.56992534960E-10 1.61773669440E-10 1.66700411142E-10 1.71777194467E-10 1.77008588861E-10 1.82399302933E-10 1.87954188689E-10 1.93678245901E-10 1.99576626608E-10 2.05654639750E-10 2.11917755950E-10 2.18371612433E-10 2.25022018108E-10 2.31874958787E-10 2.38936602580E-10 2.46213305444E-10 2.53711616901E-10 2.61438285938E-10 2.69400267080E-10 2.77604726645E-10 2.86059049202E-10 2.94770844212E-10 3.03747952878E-10 3.12998455203E-10 3.22530677265E-10 3.32353198706E-10 3.42474860459E-10 3.52904772702E-10 3.63652323060E-10 3.74727185055E-10 3.86139326809E-10 3.97899020020E-10 4.10016849206E-10 4.22503721231E-10 4.35370875122E-10 4.48629892187E-10 4.62292706435E-10 4.76371615322E-10 4.90879290816E-10 5.05828790804E-10 5.21233570844E-10 5.37107496279E-10 5.53464854713E-10 5.70320368872E-10 5.87689209857E-10 6.05587010797E-10 6.24029880920E-10 6.43034420054E-10 6.62617733568E-10 6.82797447765E-10 7.03591725749E-10 7.25019283775E-10 7.47099408090E-10 7.69851972297E-10 7.93297455239E-10 8.17456959433E-10 8.42352230062E-10 8.68005674552E-10 8.94440382732E-10 9.21680147625E-10 9.49749486856E-10 9.78673664727E-10 1.00847871495E-09 1.03919146408E-09 1.07083955566E-09 1.10345147511E-09 1.13705657537E-09 1.17168510328E-09 1.20736822687E-09 1.24413806334E-09 1.28202770804E-09 1.32107126420E-09 1.36130387365E-09 1.40276174847E-09 1.44548220353E-09 1.48950369013E-09 1.53486583057E-09 1.58160945384E-09 1.62977663237E-09 1.67941071985E-09 1.73055639032E-09 1.78325967833E-09 1.83756802040E-09 1.89353029769E-09 1.95119688004E-09 2.01061967127E-09 2.07185215588E-09 2.13494944725E-09 2.19996833721E-09 2.26696734713E-09 2.33600678064E-09 2.40714877791E-09 2.48045737151E-09 2.55599854414E-09 2.63384028794E-09 2.71405266574E-09 2.79670787409E-09 2.88188030825E-09 2.96964662916E-09 3.06008583244E-09 3.15327931945E-09 3.24931097064E-09 3.34826722096E-09 3.45023713772E-09 3.55531250071E-09 3.66358788487E-09 3.77516074533E-09 3.89013150519E-09 4.00860364591E-09 4.13068380039E-09 4.25648184900E-09 4.38611101849E-09 4.51968798385E-09 4.65733297335E-09 4.79916987677E-09 4.94532635690E-09 5.09593396442E-09 5.25112825633E-09 5.41104891797E-09 5.57583988873E-09 5.74564949158E-09 5.92063056663E-09 6.10094060865E-09 6.28674190882E-09 6.47820170087E-09 6.67549231150E-09 6.87879131558E-09 7.08828169592E-09 7.30415200798E-09 7.52659654962E-09 7.75581553591E-09 7.99201527941E-09 8.23540837580E-09 8.48621389530E-09 8.74465757977E-09 9.01097204596E-09 9.28539699485E-09 9.56817942740E-09 9.85957386686E-09 1.01598425879E-08 1.04692558525E-08 1.07880921536E-08 1.11166384654E-08 1.14551905015E-08 1.18040529818E-08 1.21635399059E-08 1.25339748363E-08 1.29156911895E-08 1.33090325358E-08 1.37143529091E-08 1.41320171249E-08 1.45624011091E-08 1.50058922365E-08 1.54628896789E-08 1.59338047648E-08 1.64190613495E-08 1.69190961966E-08 1.74343593713E-08 1.79653146450E-08 1.85124399133E-08 1.90762276259E-08 1.96571852296E-08 2.02558356254E-08 2.08727176391E-08 2.15083865059E-08 2.21634143708E-08 2.28383908028E-08 2.35339233264E-08 2.42506379675E-08 2.49891798177E-08 2.57502136143E-08 2.65344243391E-08 2.73425178345E-08 2.81752214390E-08 2.90332846421E-08 2.99174797583E-08 3.08286026228E-08 3.17674733076E-08 3.27349368594E-08 3.37318640606E-08 3.47591522129E-08 3.58177259446E-08 3.69085380435E-08 3.80325703137E-08 3.91908344602E-08 4.03843729984E-08 4.16142601935E-08 4.28816030267E-08 4.41875421918E-08 4.55332531220E-08 4.69199470476E-08 4.83488720864E-08 5.00907901388E-08 5.16116196033E-08 5.31775787708E-08 5.45467900990E-08 5.62073771934E-08 5.79183627720E-08 5.96816009035E-08 6.14980090631E-08 6.33707097961E-08 6.52999835680E-08 6.72876748450E-08 6.93360504244E-08 7.14477410137E-08 7.36220009980E-08 7.58637399734E-08 7.81734226130E-08 8.05532384791E-08 8.30053342597E-08 8.55327410066E-08 8.81365582345E-08 9.08205317069E-08 9.35852496476E-08 9.64344248842E-08 9.93706923161E-08 1.02396100265E-07 1.05513739447E-07 1.08726144510E-07 1.12036052257E-07 1.15447737361E-07 1.18962313329E-07 1.22584786291E-07 1.26316930239E-07 1.30162639370E-07 1.34125859974E-07 1.38209741100E-07 1.42418083183E-07 1.46754787070E-07 1.51222768375E-07 1.55827249098E-07 1.60571887539E-07 1.65460312108E-07 1.70499763111E-07 1.75690405744E-07 1.81040284606E-07 1.86552176352E-07 1.92232532802E-07 1.98085891188E-07 2.04117342150E-07 2.10333286638E-07 2.16737075778E-07 2.23336887961E-07 2.30137634158E-07 2.37144894431E-07 2.44365807729E-07 2.51806927563E-07 2.59474647534E-07 2.67375314833E-07 2.75517336579E-07 2.83906524859E-07 2.92550993489E-07 3.01459628277E-07 3.10639711144E-07 3.20099041796E-07 3.29845325687E-07 3.39890436402E-07 3.50240031514E-07 3.60905087068E-07 3.71895271280E-07 3.83219297088E-07 3.94889162465E-07 4.06912755951E-07 4.19305025608E-07 4.32073505279E-07 4.45229748164E-07 4.58788077397E-07 4.72758629910E-07 4.87154986235E-07 5.01989593463E-07 5.17276038635E-07 5.33027092467E-07 5.49259689496E-07 5.65985280527E-07 5.83220345400E-07 6.00981138679E-07 6.19280493277E-07 6.38139260403E-07 6.57573557148E-07 6.77595418612E-07 6.98231874964E-07 7.19493359239E-07 7.41403418422E-07 7.63981315266E-07 7.87245735295E-07 8.11219560577E-07 8.35923076796E-07 8.61378285710E-07 8.87610311919E-07 9.14639985177E-07 9.42493256370E-07 9.71194198721E-07 1.00076927580E-06 1.03124528091E-06 1.06265040915E-06 1.09501028124E-06 1.12835593180E-06 1.16271733961E-06 1.19812384003E-06 1.23461179461E-06 1.27220887794E-06 1.31095043478E-06 1.35087337611E-06 1.39201176435E-06 1.43440212928E-06 1.47808395822E-06 1.52309551184E-06 1.56947798678E-06 1.61727388483E-06 1.66652477321E-06 1.71727397894E-06 1.76957063550E-06 1.82346155613E-06 1.87899040794E-06 1.93621323226E-06 1.99517549946E-06 2.05593543116E-06 2.11854525706E-06 2.18305973872E-06 2.24954248847E-06 2.31804757776E-06 2.38864123652E-06 2.46138247822E-06 2.53633880792E-06 2.61357903493E-06 2.69317096452E-06 2.77518585197E-06 2.85970134469E-06 2.94678800557E-06 3.03652767080E-06 3.12899992268E-06 3.22428849513E-06 3.32248006399E-06 3.42365862105E-06 3.52792191929E-06 3.63535823927E-06 3.74606771836E-06 3.86014695512E-06 3.97770280838E-06 4.09883731411E-06 4.22366033131E-06 4.35228745759E-06 4.48482793739E-06 4.62140768887E-06 4.76214546229E-06 4.90716884541E-06 5.05660872374E-06 5.21059950603E-06 5.36928302469E-06 5.53279347692E-06 5.70128734770E-06 5.87491281795E-06 6.05382092596E-06 6.23818205191E-06 6.42815793602E-06 6.62391477582E-06 6.82564125154E-06 7.03350144432E-06 7.24769792693E-06 7.46841548726E-06 7.69585392985E-06 7.93021923541E-06 8.17172283708E-06 8.42057870825E-06 8.67701784855E-06 8.94125881676E-06 9.21355439886E-06 9.49413553748E-06 9.78326561628E-06 1.00811979634E-05 1.03882069990E-05 1.07045629510E-05 1.10305549551E-05 1.13664705102E-05 1.17126208224E-05 1.20693090182E-05 1.24368597680E-05 1.28156029375E-05 1.32058831541E-05 1.36080455175E-05 1.40224567975E-05 1.44494864932E-05 1.48895196220E-05 1.53429582116E-05 1.58102011452E-05 1.62916729025E-05 1.67878097582E-05 1.72990480683E-05 1.78258641621E-05 1.83687191423E-05 1.89281038583E-05 1.95045250416E-05 2.00985037415E-05 2.07105611115E-05 2.13412672469E-05 2.19911719424E-05 2.26608743915E-05 2.33509680238E-05 2.40620765907E-05 2.47948355258E-05 2.55499143034E-05 2.63279848331E-05 2.71297543985E-05 2.79559301645E-05 2.88072733847E-05 2.96845385941E-05 3.05885162232E-05 3.15200251869E-05 3.24798990010E-05 3.34690046614E-05 3.44882288785E-05 3.55384846595E-05 3.66207284070E-05 3.77359276923E-05 3.88850911882E-05 4.00692390690E-05 4.12894535430E-05 4.25468207554E-05 4.38424771457E-05 4.51775913474E-05 4.65533633418E-05 4.79710185515E-05 4.94318517410E-05 5.09371625619E-05 5.24883262810E-05 5.40867059336E-05 5.57337727427E-05 5.74309829434E-05 5.91798774981E-05 6.09820243191E-05 6.28390565608E-05 6.47526301784E-05 6.67244775716E-05 6.87563635880E-05 7.08501201335E-05 7.30076310814E-05 7.52308469034E-05 7.75217478847E-05 7.98824166604E-05 8.23149648014E-05 8.48215777404E-05 8.74045229391E-05 9.00661125553E-05 9.28087450269E-05 9.56348990901E-05 9.85470974482E-05 1.01547970316E-04 1.04640221372E-04 1.07826623982E-04 1.11110045690E-04 1.14493452585E-04 1.17979874549E-04 1.21572455279E-04 1.25274420306E-04 1.29089103735E-04 1.33019935825E-04 1.37070453268E-04 1.41244300394E-04 1.45545238497E-04 1.49977121633E-04 1.54543942912E-04 1.59249815674E-04 1.64098964139E-04 1.69095754121E-04 1.74244688365E-04 1.79550384219E-04 1.85017623952E-04 1.90651317440E-04 1.96456531327E-04 2.02438495284E-04 2.08602581135E-04 2.14954338813E-04 2.21499476176E-04 2.28243890739E-04 2.35193626956E-04 2.42354955808E-04 2.49734300292E-04 2.57338348211E-04 2.65173550259E-04 2.73250559346E-04 2.81541638429E-04 2.90395457945E-04 2.96720412675E-04 3.11254765130E-04 3.15537051380E-04 3.30276975803E-04 3.32766730724E-04 3.49916078309E-04 3.57211858880E-04 3.68951424048E-04 3.80594228818E-04 3.91611006091E-04 4.02167586201E-04 4.14688821881E-04 4.30313955473E-04 4.42300561964E-04 4.55996200564E-04 4.63650284354E-04 4.91743014985E-04 4.90216004511E-04 5.13160501893E-04 5.33310703398E-04 5.41069711837E-04 5.63177911150E-04 5.78094632483E-04 5.95785950411E-04 6.11643530066E-04 6.35310847407E-04 6.52255651746E-04 6.72823958054E-04 6.90205509599E-04 7.13474444604E-04 7.36749601529E-04 7.55260399413E-04 7.81914192838E-04 8.04925187561E-04 8.28661340877E-04 8.53759338788E-04 8.78621662174E-04 9.09225051176E-04 9.33327102348E-04 9.64237745939E-04 9.90414627213E-04 1.02301346636E-03 1.05411191949E-03 1.08507747394E-03 1.11660409782E-03 1.15897843802E-03 1.18121029230E-03 1.22624208681E-03 1.26124555554E-03 1.30039056190E-03 1.33551029703E-03 1.38163260162E-03 1.42684897956E-03 1.46280241580E-03 1.50847664569E-03 1.55548575149E-03 1.59956022328E-03 1.65885788711E-03 1.69883781821E-03 1.75353479527E-03 1.80658267598E-03 1.86261294479E-03 1.92225354563E-03 1.97718474617E-03 2.03320365759E-03 2.10280779427E-03 2.15909885928E-03 2.23619558770E-03 2.29334206966E-03 2.36883590760E-03 2.43647506592E-03 2.51235024393E-03 2.58962058704E-03 2.67438171519E-03 2.74273011871E-03 2.83581459441E-03 2.92106857427E-03 3.00573191745E-03 3.10406550478E-03 3.18794676544E-03 3.29642146505E-03 3.38899754896E-03 3.49760088334E-03 3.59714723768E-03 3.71358350770E-03 3.82173660779E-03 3.93902237820E-03 4.06163085741E-03 4.18277698625E-03 4.30768026715E-03 4.44369585384E-03 4.57455335145E-03 4.71648725847E-03 4.85950059063E-03 5.00437598573E-03 5.16195490547E-03 5.31282169749E-03 5.47964004834E-03 5.64350298745E-03 5.81459172968E-03 5.99414695264E-03 6.17400280696E-03 6.36159260144E-03 6.55548881175E-03 6.75552901650E-03 6.96201452088E-03 7.16941954344E-03 7.39190456897E-03 7.61466674574E-03 7.84476495006E-03 8.08544861202E-03 8.33003989678E-03 8.58307492686E-03 8.84522654233E-03 9.11227481533E-03 9.39062318499E-03 9.67464770587E-03 9.96890670191E-03 1.02741156587E-02 1.05820308565E-02 1.09072141712E-02 1.12366571012E-02 1.15788361362E-02 1.19299663201E-02 1.22920840289E-02 1.26665340816E-02 1.30506609178E-02 1.34467974154E-02 1.38545912945E-02 1.42767728817E-02 1.47087046852E-02 1.51575227789E-02 1.56149611910E-02 1.60911004970E-02 1.65783404715E-02 1.70821302257E-02 1.76001309707E-02 1.81351489177E-02 1.86846162467E-02 1.92520764360E-02 1.98361753536E-02 2.04382326412E-02 2.10574296998E-02 2.16979212107E-02 2.23547156654E-02 2.30333555308E-02 2.37314689732E-02 2.44519661820E-02 2.51924726852E-02 2.59572917946E-02 2.67437487719E-02 2.75545638590E-02 2.83900596107E-02 2.92501526637E-02 3.01373403805E-02 3.10503022968E-02 3.19907378376E-02 3.29607872958E-02 3.39591077903E-02 3.49876150323E-02 3.60474161745E-02 3.71390879124E-02 3.82639828922E-02 3.94222590665E-02 4.06160849909E-02 4.18455957976E-02 4.31118163549E-02 4.44168877641E-02 4.57608281367E-02 4.71454686281E-02 4.85717951289E-02 5.00407760791E-02 5.15543677454E-02 5.31133020830E-02 5.47191888834E-02 5.63736818395E-02 5.80770849217E-02 5.98329959450E-02 6.16405907357E-02 6.35026856834E-02 6.54214171480E-02 6.73970506578E-02 6.94322224809E-02 7.15284593895E-02 7.36880459737E-02 7.59117301904E-02 7.82024954311E-02 8.05619149932E-02 8.29919386420E-02 8.54950267454E-02 8.80726228552E-02 9.07280116459E-02 9.34623733377E-02 9.62787239098E-02 9.91794496077E-02 1.02166766566E-01 1.05243391218E-01 1.08411770622E-01 1.11675211850E-01 1.15035605198E-01 1.18496472982E-01 1.22060765922E-01 1.25730989315E-01 1.29510849626E-01 1.33403049422E-01 1.37411419820E-01 1.41538925820E-01 1.45789267708E-01 1.50165877878E-01 1.54672718516E-01 1.59313364651E-01 1.64091729658E-01 1.69011875965E-01 1.74078006820E-01 1.79294207769E-01 1.84665004673E-01 1.90194710067E-01 1.95888191613E-01 2.01749778209E-01 2.07784831491E-01 2.13997988270E-01 2.20394510096E-01 2.26979795718E-01 2.33759043814E-01 2.40738074441E-01 2.47922516097E-01 2.55318271652E-01 2.62931380656E-01 2.70768031779E-01 2.78834779019E-01 2.87138020348E-01 2.95684517341E-01 3.04481285716E-01 3.13535362076E-01 3.22854070078E-01 3.32444906675E-01 3.42315524862E-01 3.52473950628E-01 3.62928187630E-01 3.73686506424E-01 3.84757630615E-01 3.96150238038E-01 4.07873233385E-01 4.19936012645E-01 4.32348009341E-01 4.45118773223E-01 4.58258565832E-01 4.71777323530E-01 4.85685765144E-01 4.99994433238E-01 5.14714510167E-01 5.29857263257E-01 5.45434155608E-01 5.61457239802E-01 5.77938530784E-01 5.94890584091E-01 6.12326113094E-01 6.30258256292E-01 6.48700362225E-01 6.67666162429E-01 6.87169721230E-01 7.07225359018E-01 7.27847921117E-01 7.49052359810E-01 7.70854128195E-01 7.93268978796E-01 8.16313088928E-01 8.40002909822E-01 8.64355339027E-01 8.89387594917E-01 9.15117301374E-01 9.41562520669E-01 9.68741565369E-01 9.96673327300E-01 1.02537690032E+00 1.05487195239E+00 1.08517844243E+00 1.11631677188E+00 1.14830781129E+00 1.18117270848E+00 1.21493318030E+00 1.24961126166E+00 1.28522942878E+00 1.32181060785E+00 1.35937806780E+00 1.39795562816E+00 1.43756739159E+00 1.47823791866E+00 1.51999225250E+00 1.56285576959E+00 1.60685424905E+00 1.65201395465E+00 1.69836143715E+00 1.74592376026E+00 1.79472823895E+00 1.84480267514E+00 1.89617517595E+00 1.94887421263E+00 2.00292860989E+00 2.05836749692E+00 2.11522035121E+00 2.17351691943E+00 2.23328723095E+00 2.29456156496E+00 2.35737047904E+00 2.42174468507E+00 2.48771512733E+00 2.55531288560E+00 2.62456918265E+00 2.69551533758E+00 2.76818271913E+00 2.84260275436E+00 2.91880681547E+00 2.99682625567E+00 3.07669231268E+00 3.15843605968E+00 3.24208839926E+00 3.32767995683E+00 3.41524103989E+00 3.50480159999E+00 3.59639112476E+00 3.69003859446E+00 3.78577241768E+00 3.88362030549E+00 3.98360925976E+00 4.08576540946E+00 4.19011398580E+00 4.29667917862E+00 4.40548404929E+00 4.51655043239E+00 4.62989880882E+00 4.74554819241E+00 4.86351599744E+00 4.98381793350E+00 5.10646782054E+00 5.23147750019E+00 5.35885664219E+00 5.48861260894E+00 5.62075028197E+00 5.75527190479E+00 5.89217687662E+00 6.03146159994E+00 6.17311926156E+00 6.31713963809E+00 6.46350889609E+00 6.61220935812E+00 6.76321929823E+00 6.91651268112E+00 7.07205895565E+00 7.22982276704E+00 7.38976373746E+00 7.55183616899E+00 7.71598878781E+00 7.88216445824E+00 8.05029989104E+00 8.22032535303E+00 8.39216435532E+00 8.56573334787E+00 8.74094140105E+00 8.91768988065E+00 9.09587211903E+00 9.27537308151E+00 9.45606902394E+00 9.63782715618E+00 9.82050528678E+00 1.00039514841E+01 1.01880037193E+01 1.03724895224E+01 1.05572256287E+01 1.07420176385E+01 1.09266596693E+01 1.11109340233E+01 1.12946108555E+01 1.14774478560E+01 1.16591899356E+01 1.18395689374E+01 1.20183033500E+01 1.21950980473E+01 1.23696440497E+01 1.25416183050E+01 1.27106834959E+01 1.28764878859E+01 1.30386651869E+01 1.31968344752E+01 1.33506001415E+01 1.34995518914E+01 1.36432647932E+01 1.37812993808E+01 1.39132018190E+01 1.40385041269E+01 1.41567244777E+01 1.42673675721E+01 1.43699250869E+01 1.44638762191E+01 1.45486883160E+01 1.46238176051E+01 1.46887100323E+01 1.47428022049E+01 1.47855224578E+01 1.48162920405E+01 1.48345264332E+01 1.48396368025E+01 1.48310315945E+01 1.48081182808E+01 1.47703052552E+01 1.47170038882E+01 1.46476307511E+01 1.45616100010E+01 1.44583759417E+01 1.43373757597E+01 1.41980724361E+01 1.40399478376E+01 1.38625059844E+01 1.36652764987E+01 1.34478182277E+01 1.32097230344E+01 1.29506197633E+01 1.26701783525E+01 1.23681141093E+01 1.20441921138E+01 1.16982317530E+01 1.13301113625E+01 1.09397729598E+01 1.05272270442E+01 1.00925574465E+01 9.63592619187E+00 9.15757835468E+00 8.65784686512E+00 8.13715723515E+00 7.59603216006E+00 7.03509595497E+00 6.45507877949E+00 5.85682059651E+00 5.24127481764E+00 4.60951157251E+00 3.96272054832E+00 3.30221333271E+00 2.62942519868E+00 1.94591626540E+00 1.25337196071E+00 5.53602729369E-01 -1.51457099797E-01 -8.59751341498E-01 -1.56910495705E+00 -2.27722809304E+00 -2.98172122302E+00 -3.68008145732E+00 -4.36971007349E+00 -5.04792132708E+00 -5.71195258592E+00 -6.35897583040E+00 -6.98611055879E+00 -7.59043811243E+00 -8.16901745207E+00 -8.71890237746E+00 -9.23716020102E+00 -9.72089184950E+00 -1.01672533790E+01 -1.05734788569E+01 -1.09369045705E+01 -1.12549944946E+01 -1.15253669529E+01 -1.17458223812E+01 -1.19143721039E+01 -1.20292680118E+01 -1.20890330230E+01 -1.20924921993E+01 -1.20388043714E+01 -1.19274941236E+01 -1.17584839652E+01 -1.15321265117E+01 -1.12492364731E+01 -1.09111222373E+01 -1.05196168038E+01 -1.00771078103E+01 -9.58656635191E+00 -9.05157426850E+00 -8.47634952914E+00 -7.86576929704E+00 -7.22539020989E+00 -6.56146535357E+00 -5.88095734256E+00 -5.19154686588E+00 -4.50163599043E+00 -3.82034546343E+00 -3.15750520249E+00 -2.52363714357E+00 -1.92992959774E+00 -1.38820232257E+00 -9.10861484016E-01 -5.10844681567E-01 -2.01548142850E-01 3.19097371617E-03 8.97691406255E-02 3.92013555926E-02 -1.17053123729E-01 -9.90588583870E-02 -5.55036434428E-02 -2.92903824002E-02 -1.31394516352E-02 -4.68398245396E-03 -1.17331866220E-03 -2.45384737304E-04 -1.66320398621E-04 -1.63783528344E-04 -1.61247017623E-04 -1.58713716511E-04 -1.56185858757E-04 -1.53665602080E-04 3 2 Beta L 1174 6.34290556588E-13 6.53607579879E-13 6.73512894112E-13 6.94024415413E-13 7.15160605536E-13 7.36940488479E-13 7.59383667606E-13 7.82510343294E-13 8.06341331111E-13 8.30898080557E-13 8.56202694362E-13 8.82277948387E-13 9.09147312121E-13 9.36834969806E-13 9.65365842201E-13 9.94765609018E-13 1.02506073203E-12 1.05627847890E-12 1.08844694770E-12 1.12159509222E-12 1.15575274804E-12 1.19095065934E-12 1.22722050663E-12 1.26459493522E-12 1.30310758461E-12 1.34279311878E-12 1.38368725741E-12 1.42582680797E-12 1.46924969890E-12 1.51399501374E-12 1.56010302629E-12 1.60761523687E-12 1.65657440968E-12 1.70702461128E-12 1.75901125026E-12 1.81258111811E-12 1.86778243131E-12 1.92466487478E-12 1.98327964655E-12 2.04367950388E-12 2.10591881071E-12 2.17005358663E-12 2.23614155726E-12 2.30424220624E-12 2.37441682874E-12 2.44672858666E-12 2.52124256547E-12 2.59802583278E-12 2.67714749871E-12 2.75867877810E-12 2.84269305461E-12 2.92926594675E-12 3.01847537597E-12 3.11040163679E-12 3.20512746904E-12 3.30273813236E-12 3.40332148294E-12 3.50696805258E-12 3.61377113020E-12 3.72382684577E-12 3.83723425687E-12 3.95409543782E-12 4.07451557157E-12 4.19860304437E-12 4.32646954333E-12 4.45823015692E-12 4.59400347859E-12 4.73391171349E-12 4.87808078848E-12 5.02664046546E-12 5.17972445817E-12 5.33747055252E-12 5.50002073067E-12 5.66752129873E-12 5.84012301853E-12 6.01798124326E-12 6.20125605733E-12 6.39011242045E-12 6.58472031610E-12 6.78525490450E-12 6.99189668034E-12 7.20483163515E-12 7.42425142477E-12 7.65035354183E-12 7.88334149348E-12 8.12342498461E-12 8.37082010658E-12 8.62574953168E-12 8.88844271362E-12 9.15913609398E-12 9.43807331507E-12 9.72550543924E-12 1.00216911748E-11 1.03268971089E-11 1.06413979474E-11 1.09654767625E-11 1.12994252468E-11 1.16435439765E-11 1.19981426818E-11 1.23635405254E-11 1.27400663900E-11 1.31280591744E-11 1.35278680981E-11 1.39398530163E-11 1.43643847432E-11 1.48018453860E-11 1.52526286887E-11 1.57171403869E-11 1.61957985723E-11 1.66890340696E-11 1.71972908242E-11 1.77210263014E-11 1.82607118984E-11 1.88168333687E-11 1.93898912592E-11 1.99804013607E-11 2.05888951722E-11 2.12159203790E-11 2.18620413463E-11 2.25278396266E-11 2.32139144831E-11 2.39208834297E-11 2.46493827860E-11 2.54000682507E-11 2.61736154913E-11 2.69707207527E-11 2.77921014832E-11 2.86384969811E-11 2.95106690594E-11 3.04094027319E-11 3.13355069195E-11 3.22898151784E-11 3.32731864507E-11 3.42865058367E-11 3.53306853923E-11 3.64066649497E-11 3.75154129629E-11 3.86579273802E-11 3.98352365415E-11 4.10484001047E-11 4.22985099987E-11 4.35866914069E-11 4.49141037795E-11 4.62819418773E-11 4.76914368467E-11 4.91438573286E-11 5.06405105993E-11 5.21827437478E-11 5.37719448880E-11 5.54095444082E-11 5.70970162586E-11 5.88358792777E-11 6.06276985596E-11 6.24740868626E-11 6.43767060607E-11 6.63372686398E-11 6.83575392385E-11 7.04393362366E-11 7.25845333919E-11 7.47950615268E-11 7.70729102658E-11 7.94201298264E-11 8.18388328647E-11 8.43311963767E-11 8.68994636579E-11 8.95459463220E-11 9.22730263821E-11 9.50831583944E-11 9.79788716673E-11 1.00962772538E-10 1.04037546720E-10 1.07205961715E-10 1.10470869313E-10 1.13835208150E-10 1.17302006358E-10 1.20874384289E-10 1.24555557326E-10 1.28348838771E-10 1.32257642834E-10 1.36285487704E-10 1.40435998712E-10 1.44712911597E-10 1.49120075871E-10 1.53661458279E-10 1.58341146372E-10 1.63163352184E-10 1.68132416026E-10 1.73252810391E-10 1.78529143980E-10 1.83966165849E-10 1.89568769685E-10 1.95341998210E-10 2.01291047717E-10 2.07421272755E-10 2.13738190939E-10 2.20247487921E-10 2.26955022509E-10 2.33866831936E-10 2.40989137297E-10 2.48328349149E-10 2.55891073276E-10 2.63684116641E-10 2.71714493509E-10 2.79989431761E-10 2.88516379401E-10 2.97303011256E-10 3.06357235888E-10 3.15687202711E-10 3.25301309325E-10 3.35208209073E-10 3.45416818836E-10 3.55936327049E-10 3.66776201982E-10 3.77946200252E-10 3.89456375613E-10 4.01317087999E-10 4.13539012851E-10 4.26133150727E-10 4.39110837201E-10 4.52483753067E-10 4.66263934851E-10 4.80463785648E-10 4.95096086280E-10 5.10174006807E-10 5.25711118375E-10 5.41721405432E-10 5.58219278317E-10 5.75219586230E-10 5.92737630594E-10 6.10789178833E-10 6.29390478557E-10 6.48558272193E-10 6.68309812047E-10 6.88662875839E-10 7.09635782699E-10 7.31247409660E-10 7.53517208644E-10 7.76465223973E-10 8.00112110410E-10 8.24479151748E-10 8.49588279969E-10 8.75462094982E-10 9.02123884968E-10 9.29597647337E-10 9.57908110329E-10 9.87080755271E-10 1.01714183951E-09 1.04811842006E-09 1.08003837792E-09 1.11293044321E-09 1.14682422102E-09 1.18175021803E-09 1.21773986998E-09 1.25482557001E-09 1.29304069774E-09 1.33241964936E-09 1.37299786859E-09 1.41481187856E-09 1.45789931471E-09 1.50229895863E-09 1.54805077301E-09 1.59519593755E-09 1.64377688609E-09 1.69383734477E-09 1.74542237136E-09 1.79857839589E-09 1.85335326235E-09 1.90979627182E-09 1.96795822682E-09 2.02789147704E-09 2.08964996643E-09 2.15328928182E-09 2.21886670287E-09 2.28644125369E-09 2.35607375594E-09 2.42782688356E-09 2.50176521922E-09 2.57795531240E-09 2.65646573933E-09 2.73736716469E-09 2.82073240521E-09 2.90663649525E-09 2.99515675427E-09 3.08637285649E-09 3.18036690254E-09 3.27722349342E-09 3.37702980658E-09 3.47987567445E-09 3.58585366524E-09 3.69505916629E-09 3.80759046992E-09 3.92354886189E-09 4.04303871259E-09 4.16616757093E-09 4.29304626120E-09 4.42378898278E-09 4.55851341293E-09 4.69734081272E-09 4.84039613619E-09 4.98780814278E-09 5.13970951322E-09 5.29623696901E-09 5.45753139541E-09 5.62373796828E-09 5.79500628475E-09 5.97149049786E-09 6.15334945529E-09 6.34074684238E-09 6.53385132942E-09 6.73283672346E-09 6.93788212478E-09 7.14917208806E-09 7.36689678854E-09 7.59125219311E-09 7.82244023677E-09 8.06066900435E-09 8.30615291781E-09 8.55911292921E-09 8.81977671964E-09 9.08837890407E-09 9.36516124259E-09 9.65037285795E-09 9.94427045985E-09 1.02471185759E-08 1.05591897899E-08 1.08807649870E-08 1.12121336064E-08 1.15535939024E-08 1.19054532121E-08 1.22680282327E-08 1.26416453062E-08 1.30266407130E-08 1.34233609751E-08 1.38321631674E-08 1.42534152393E-08 1.46874963463E-08 1.51347971904E-08 1.55957203727E-08 1.60706807551E-08 1.65601058338E-08 1.70644361246E-08 1.75841255585E-08 1.81196418912E-08 1.86714671234E-08 1.92400979349E-08 1.98260461320E-08 2.04298391073E-08 2.10520203152E-08 2.16931497609E-08 2.23538045038E-08 2.30345791779E-08 2.37360865262E-08 2.44589579526E-08 2.52038440899E-08 2.59714153861E-08 2.67623627067E-08 2.75773979579E-08 2.84172547261E-08 2.92826889390E-08 3.01744795457E-08 3.10934292177E-08 3.20403650718E-08 3.30161394137E-08 3.40216305063E-08 3.50577433591E-08 3.61254105435E-08 3.72255930318E-08 3.83592810623E-08 3.95274950305E-08 4.07312864076E-08 4.19717386869E-08 4.32499683589E-08 4.45671259163E-08 4.59243968896E-08 4.73230029139E-08 4.90134090224E-08 5.05017780264E-08 5.20343774078E-08 5.33905288459E-08 5.50158799842E-08 5.66905882337E-08 5.84164129064E-08 6.01943314201E-08 6.20272649166E-08 6.39156123219E-08 6.58611646048E-08 6.78660839077E-08 6.99329427672E-08 7.20611267237E-08 7.42552931682E-08 7.65159775119E-08 7.88453210393E-08 8.12454182637E-08 8.37191981557E-08 8.62677837680E-08 8.88947961009E-08 9.16008752097E-08 9.43896317638E-08 9.72635843205E-08 1.00224820335E-07 1.03276315839E-07 1.06420584096E-07 1.09660295822E-07 1.12999581236E-07 1.16439613215E-07 1.19985225035E-07 1.23638201364E-07 1.27402351518E-07 1.31281476730E-07 1.35278736989E-07 1.39397774615E-07 1.43642458833E-07 1.48015687785E-07 1.52522466623E-07 1.57166467030E-07 1.61951211172E-07 1.66883688999E-07 1.71964235587E-07 1.77200624683E-07 1.82595595434E-07 1.88155453394E-07 1.93884615577E-07 1.99788133260E-07 2.05872146375E-07 2.12140138186E-07 2.18599893311E-07 2.25256368666E-07 2.32114969421E-07 2.39182709284E-07 2.46465937975E-07 2.53970979888E-07 2.61704035419E-07 2.69673314645E-07 2.77884526065E-07 2.86345641217E-07 2.95065247345E-07 3.04050530898E-07 3.13309175889E-07 3.22848721148E-07 3.32680671340E-07 3.42810691680E-07 3.53249496891E-07 3.64006477106E-07 3.75090301892E-07 3.86512529324E-07 3.98281118011E-07 4.10410381737E-07 4.22907969202E-07 4.35785129703E-07 4.49055782724E-07 4.62729933385E-07 4.76820858723E-07 4.91340701789E-07 5.06302851404E-07 5.21719744528E-07 5.37607913979E-07 5.53978642700E-07 5.70848076891E-07 5.88231981739E-07 6.06143213588E-07 6.24601818967E-07 6.43623670133E-07 6.63220932104E-07 6.83419380666E-07 7.04229861616E-07 7.25675046320E-07 7.47773918090E-07 7.70544737500E-07 7.94009926885E-07 8.18189286772E-07 8.43104485780E-07 8.68779866687E-07 8.95236105848E-07 9.22498376740E-07 9.50590427001E-07 9.79538003862E-07 1.00936742376E-06 1.04010615494E-06 1.07177951350E-06 1.10441767058E-06 1.13805007110E-06 1.17270541531E-06 1.20841912117E-06 1.24521852076E-06 1.28313816598E-06 1.32221398749E-06 1.36247956486E-06 1.40397053020E-06 1.44672556278E-06 1.49078216058E-06 1.53618053484E-06 1.58296233802E-06 1.63116824249E-06 1.68084083672E-06 1.73202785454E-06 1.78477527808E-06 1.83912601581E-06 1.89513469812E-06 1.95284599796E-06 2.01231679123E-06 2.07359820783E-06 2.13674400070E-06 2.20181610910E-06 2.26886776287E-06 2.33796354464E-06 2.40916147182E-06 2.48252750471E-06 2.55812890197E-06 2.63603214958E-06 2.71630699050E-06 2.79902920299E-06 2.88426818988E-06 2.97210387149E-06 3.06261410682E-06 3.15588100162E-06 3.25198915238E-06 3.35102113990E-06 3.45307222311E-06 3.55822912619E-06 3.66658965447E-06 3.77824857027E-06 3.89331016734E-06 4.01187462245E-06 4.13404930482E-06 4.25994725437E-06 4.38967571862E-06 4.52335759966E-06 4.66110938881E-06 4.80305583251E-06 4.94932511207E-06 5.10004873935E-06 5.25536531917E-06 5.41540679225E-06 5.58032569745E-06 5.75026731107E-06 5.92537976892E-06 6.10582928800E-06 6.29177440345E-06 6.48337812534E-06 6.68082431742E-06 6.88427465829E-06 7.09392650929E-06 7.30996117455E-06 7.53257419501E-06 7.76196705222E-06 7.99834674634E-06 8.24192283021E-06 8.49292100644E-06 8.75155596075E-06 9.01807419458E-06 9.29270257856E-06 9.57569829790E-06 9.86730967096E-06 1.01678049734E-05 1.04774490519E-05 1.07965245928E-05 1.11253133861E-05 1.14641195443E-05 1.18132401819E-05 1.21729929280E-05 1.25437006872E-05 1.29257005208E-05 1.33193306102E-05 1.37249496434E-05 1.41429194846E-05 1.45736169652E-05 1.50174351736E-05 1.54747651650E-05 1.59460220370E-05 1.64316328562E-05 1.69320250185E-05 1.74476640573E-05 1.79790019425E-05 1.85265189715E-05 1.90907110128E-05 1.96720877783E-05 2.02711603484E-05 2.08884853608E-05 2.15246022020E-05 2.21800963948E-05 2.28555493762E-05 2.35515714833E-05 2.42687849093E-05 2.50078444323E-05 2.57694080357E-05 2.65541677050E-05 2.73628163131E-05 2.81960980172E-05 2.90547520070E-05 2.99395518958E-05 3.08512988731E-05 3.17908091168E-05 3.27589309672E-05 3.37565326265E-05 3.47845078608E-05 3.58437922106E-05 3.69353330869E-05 3.80601173743E-05 3.92191445760E-05 4.04134728528E-05 4.16441661235E-05 4.29123362422E-05 4.42191270920E-05 4.55657131967E-05 4.69532946997E-05 4.83831379118E-05 4.98565156065E-05 5.13747728317E-05 5.29392454947E-05 5.45513718045E-05 5.62125786263E-05 5.79243732491E-05 5.96882909493E-05 6.15059293373E-05 6.33789102295E-05 6.53089286685E-05 6.72977125830E-05 6.93470549084E-05 7.14587994603E-05 7.36348548353E-05 7.58771605608E-05 7.81877537870E-05 8.05687020915E-05 8.30221446800E-05 8.55503003840E-05 8.81554327730E-05 9.08398893922E-05 9.36060957953E-05 9.64565222536E-05 9.93937425583E-05 1.02420403090E-04 1.05539218643E-04 1.08752996186E-04 1.12064637945E-04 1.15477110545E-04 1.18993490603E-04 1.22616935645E-04 1.26350708827E-04 1.30198167812E-04 1.34162774225E-04 1.38248095297E-04 1.42457811991E-04 1.46795697642E-04 1.51265660330E-04 1.55871725931E-04 1.60618029603E-04 1.65508844421E-04 1.70548577231E-04 1.75741748323E-04 1.81093038006E-04 1.86607252710E-04 1.92289351465E-04 1.98144452949E-04 2.04177815340E-04 2.10394870947E-04 2.16801206735E-04 2.23402594720E-04 2.30204952472E-04 2.37214416817E-04 2.44437275963E-04 2.51880072891E-04 2.59549142703E-04 2.67454717865E-04 2.75571539902E-04 2.84222457106E-04 2.90548826770E-04 3.04481624331E-04 3.08948472571E-04 3.23101777734E-04 3.25942250524E-04 3.42356021052E-04 3.49674297216E-04 3.61119281222E-04 3.72494803625E-04 3.83289399552E-04 3.93729202218E-04 4.05985098666E-04 4.21052165362E-04 4.32892779279E-04 4.46244644424E-04 4.54140546579E-04 4.80790556310E-04 4.80284651028E-04 5.02259768466E-04 5.21726821693E-04 5.29795928662E-04 5.51148724825E-04 5.65819567871E-04 5.83182066124E-04 5.98807708625E-04 6.21707059439E-04 6.38396004222E-04 6.58503591711E-04 6.75706414123E-04 6.98342855803E-04 7.21041898590E-04 7.39370658659E-04 7.65277762104E-04 7.87795968293E-04 8.11118869466E-04 8.35679493719E-04 8.60078367216E-04 8.89808061722E-04 9.13601251996E-04 9.43726270646E-04 9.69522261175E-04 1.00130162130E-03 1.03172230325E-03 1.06211062453E-03 1.09306347854E-03 1.13403363228E-03 1.15656506807E-03 1.20010115980E-03 1.23451971323E-03 1.27278357284E-03 1.30740227090E-03 1.35224943238E-03 1.39634659330E-03 1.43192153808E-03 1.47658970947E-03 1.52251289650E-03 1.56587300698E-03 1.62332228964E-03 1.66300216847E-03 1.71641234296E-03 1.76832472139E-03 1.82313531620E-03 1.88133971028E-03 1.93529915854E-03 1.99036650057E-03 2.05806664548E-03 2.11362441645E-03 2.18840049647E-03 2.24496151390E-03 2.31855541265E-03 2.38499750473E-03 2.45921764328E-03 2.53475984515E-03 2.61735267255E-03 2.68506291674E-03 2.77561433297E-03 2.85908958688E-03 2.94224833966E-03 3.03805953536E-03 3.12081813110E-03 3.22630223377E-03 3.31738110073E-03 3.42337513883E-03 3.52117948729E-03 3.63478700195E-03 3.74090295903E-03 3.85568396120E-03 3.97550331875E-03 4.09423705855E-03 4.21663734911E-03 4.34948484756E-03 4.47784735474E-03 4.61658537062E-03 4.75661932352E-03 4.89860703586E-03 5.05252033694E-03 5.20059163159E-03 5.36354136954E-03 5.52411745910E-03 5.69164258085E-03 5.86720769235E-03 6.04344750659E-03 6.22704344597E-03 6.41685009318E-03 6.61260161227E-03 6.81467130105E-03 7.01795406377E-03 7.23545984116E-03 7.45365032996E-03 7.67897591539E-03 7.91443579269E-03 8.15393705996E-03 8.40166506295E-03 8.65817733964E-03 8.91972357156E-03 9.19211296650E-03 9.47022071204E-03 9.75827158488E-03 1.00568973187E-02 1.03585882442E-02 1.06767010344E-02 1.09993084827E-02 1.13342376073E-02 1.16780055787E-02 1.20325216190E-02 1.23990060621E-02 1.27751032703E-02 1.31628961721E-02 1.35621569879E-02 1.39753602077E-02 1.43983053771E-02 1.48375479410E-02 1.52855332252E-02 1.57515397556E-02 1.62286071405E-02 1.67217816092E-02 1.72289265018E-02 1.77526565332E-02 1.82906359929E-02 1.88461530072E-02 1.94179998241E-02 2.00074041708E-02 2.06136673502E-02 2.12406154973E-02 2.18837213724E-02 2.25480957506E-02 2.32316071914E-02 2.39369505532E-02 2.46620040039E-02 2.54107434259E-02 2.61807670120E-02 2.69745991065E-02 2.77925993351E-02 2.86347145031E-02 2.95033098958E-02 3.03971936725E-02 3.13179971707E-02 3.22677252914E-02 3.32452029281E-02 3.42522367065E-02 3.52899081665E-02 3.63587928014E-02 3.74602033465E-02 3.85943335557E-02 3.97632505499E-02 4.09671299604E-02 4.22069894259E-02 4.34848567244E-02 4.48008216442E-02 4.61566371220E-02 4.75532850798E-02 4.89917304260E-02 5.04738447222E-02 5.20003931371E-02 5.35729222486E-02 5.51930503100E-02 5.68611404262E-02 5.85805818840E-02 6.03507274765E-02 6.21742437184E-02 6.40532045481E-02 6.59879530185E-02 6.79810147003E-02 7.00339022952E-02 7.21488263539E-02 7.43265898932E-02 7.65700528562E-02 7.88807789668E-02 8.12606904808E-02 8.37121737027E-02 8.62366889005E-02 8.88373920814E-02 9.15155065308E-02 9.42739522815E-02 9.71150675148E-02 1.00041044011E-01 1.03054537039E-01 1.06157957143E-01 1.09354511283E-01 1.12646109073E-01 1.16036164911E-01 1.19527573326E-01 1.23122825045E-01 1.26825519946E-01 1.30638341376E-01 1.34565014122E-01 1.38608475067E-01 1.42772343138E-01 1.47059994468E-01 1.51475302621E-01 1.56021788784E-01 1.60703293145E-01 1.65523803021E-01 1.70487434220E-01 1.75598213987E-01 1.80860569674E-01 1.86278749258E-01 1.91857514593E-01 1.97601143906E-01 2.03514869143E-01 2.09603269238E-01 2.15871503297E-01 2.22324867860E-01 2.28968484315E-01 2.35808054610E-01 2.42849116445E-01 2.50097467877E-01 2.57559045873E-01 2.65239933558E-01 2.73146560717E-01 2.81285228541E-01 2.89662580698E-01 2.98285509101E-01 3.07160936120E-01 3.16296061566E-01 3.25698258273E-01 3.35375054871E-01 3.45334338207E-01 3.55583987636E-01 3.66132144307E-01 3.76987379412E-01 3.88158237674E-01 3.99653490250E-01 4.11482373534E-01 4.23654177069E-01 4.36178314226E-01 4.49064869365E-01 4.62323647585E-01 4.75965190316E-01 4.89999897252E-01 5.04438775224E-01 5.19292928673E-01 5.34573664201E-01 5.50292849378E-01 5.66462339918E-01 5.83094510790E-01 6.00201903601E-01 6.17797475418E-01 6.35894398700E-01 6.54506223685E-01 6.73646830543E-01 6.93330360769E-01 7.13571464523E-01 7.34384916755E-01 7.55785980714E-01 7.77790222929E-01 8.00413627781E-01 8.23672462942E-01 8.47583434348E-01 8.72163574826E-01 8.97430320554E-01 9.23401543104E-01 9.50095376693E-01 9.77530521418E-01 1.00572589746E+00 1.03470098715E+00 1.06447557626E+00 1.09506989363E+00 1.12650463588E+00 1.15880079296E+00 1.19197991586E+00 1.22606388742E+00 1.26107503628E+00 1.29703614508E+00 1.33397035349E+00 1.37190134902E+00 1.41085312275E+00 1.45085013056E+00 1.49191731583E+00 1.53407997391E+00 1.57736381622E+00 1.62179504607E+00 1.66740017786E+00 1.71420624568E+00 1.76224056314E+00 1.81153094068E+00 1.86210551929E+00 1.91399282534E+00 1.96722176092E+00 2.02182155997E+00 2.07782182867E+00 2.13525247332E+00 2.19414371330E+00 2.25452605124E+00 2.31643029933E+00 2.37988746632E+00 2.44492882873E+00 2.51158584267E+00 2.57989015036E+00 2.64987353783E+00 2.72156789163E+00 2.79500520696E+00 2.87021748339E+00 2.94723675785E+00 3.02609501519E+00 3.10682414318E+00 3.18945592608E+00 3.27402194615E+00 3.36055354549E+00 3.44908179029E+00 3.53963737021E+00 3.63225055794E+00 3.72695114799E+00 3.82376834033E+00 3.92273072737E+00 4.02386614219E+00 4.12720163325E+00 4.23276333051E+00 4.34057636276E+00 4.45066476464E+00 4.56305135713E+00 4.67775764021E+00 4.79480366765E+00 4.91420794667E+00 5.03598726405E+00 5.16015660030E+00 5.28672894710E+00 5.41571517796E+00 5.54712388337E+00 5.68096122069E+00 5.81723071862E+00 5.95593313048E+00 6.09706622628E+00 6.24062460648E+00 6.38659951069E+00 6.53497859420E+00 6.68574573148E+00 6.83888076708E+00 6.99435931603E+00 7.15215248906E+00 7.31222667997E+00 7.47454328106E+00 7.63905843599E+00 7.80572276403E+00 7.97448107870E+00 8.14527210654E+00 8.31802818602E+00 8.49267497107E+00 8.66913112222E+00 8.84730799089E+00 9.02710929929E+00 9.20843081531E+00 9.39116001828E+00 9.57517576960E+00 9.76034796497E+00 9.94653720122E+00 1.01335944252E+01 1.03213605943E+01 1.05096663269E+01 1.06983315644E+01 1.08871652251E+01 1.10759648718E+01 1.12645163788E+01 1.14525936110E+01 1.16399581058E+01 1.18263587770E+01 1.20115316207E+01 1.21951994440E+01 1.23770716131E+01 1.25568438183E+01 1.27341978641E+01 1.29088014924E+01 1.30803082266E+01 1.32483572589E+01 1.34125733692E+01 1.35725668894E+01 1.37279337127E+01 1.38782553509E+01 1.40230990528E+01 1.41620179728E+01 1.42945514127E+01 1.44202251308E+01 1.45385517212E+01 1.46490310817E+01 1.47511509627E+01 1.48443876087E+01 1.49282065016E+01 1.50020632023E+01 1.50654043078E+01 1.51176685222E+01 1.51582878496E+01 1.51866889180E+01 1.52022944346E+01 1.52045247838E+01 1.51927997707E+01 1.51665405125E+01 1.51251714927E+01 1.50681227680E+01 1.49948323443E+01 1.49047487198E+01 1.47973335972E+01 1.46720647687E+01 1.45284391714E+01 1.43659761182E+01 1.41842206982E+01 1.39827473411E+01 1.37611635521E+01 1.35191137941E+01 1.32562835289E+01 1.29724033899E+01 1.26672534852E+01 1.23406678133E+01 1.19925387744E+01 1.16228217569E+01 1.12315397820E+01 1.08187881742E+01 1.03847392365E+01 9.92964689569E+00 9.45385128480E+00 8.95778322496E+00 8.44196856676E+00 7.90703234855E+00 7.35370272098E+00 6.78281459326E+00 6.19531294228E+00 5.59225573418E+00 4.97481639525E+00 4.34428577437E+00 3.70207353423E+00 3.04970890128E+00 2.38884072047E+00 1.72123673303E+00 1.04878202491E+00 3.73476569276E-01 -3.02568195267E-01 -9.77133815674E-01 -1.64790036780E+00 -2.31245314346E+00 -2.96829053948E+00 -3.61283319191E+00 -4.24343439747E+00 -4.85739186187E+00 -5.45196079134E+00 -6.02436835962E+00 -6.57182954564E+00 -7.09156435470E+00 -7.58081640125E+00 -8.03687284181E+00 -8.45708561710E+00 -8.83889396635E+00 -9.17984815408E+00 -9.47763434712E+00 -9.73010055761E+00 -9.93528357033E+00 -1.00914367478E+01 -1.01970586026E+01 -1.02509220168E+01 -1.02521039706E+01 -1.02000156357E+01 -1.00944326745E+01 -9.93552557297E+00 -9.72388981897E+00 -9.46057572329E+00 -9.14711765452E+00 -8.78556244496E+00 -8.37849668725E+00 -7.92907261815E+00 -7.44103224463E+00 -6.91872932648E+00 -6.36714878477E+00 -5.79192305515E+00 -5.19934484579E+00 -4.59637571078E+00 -3.99064978903E+00 -3.39047201341E+00 -2.80481004610E+00 -2.24327917997E+00 -1.71611942749E+00 -1.23416406893E+00 -8.08798903553E-01 -4.51912353882E-01 -1.75829246110E-01 6.70549130928E-03 8.31398760712E-02 3.60153618476E-02 -1.06327838199E-01 -9.00479561094E-02 -5.04956951571E-02 -2.66682021807E-02 -1.19737790268E-02 -4.27403938030E-03 -1.07448475174E-03 -2.28061485650E-04 -1.55786962775E-04 -1.53354761786E-04 -1.50925447816E-04 -1.48501683671E-04 -1.46085553819E-04 -1.43679058350E-04 4 Number of nonzero Dij 1 1 1.78632433765E-02 2 2 -3.47670229969E+00 2 3 3.82419517109E+00 3 3 -4.24274587148E+00 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 1 i j (l(j)) -3.58228713765E-19 Q_int -4.33836454136E-38 -2.29101131825E-38 3.04758439626E-38 2.10442155731E-38 -4.01919416938E-39 -8.27592300184E-38 -5.96960687298E-38 2.43053305068E-38 1.13053842121E-38 1.14196644831E-38 -6.62068934256E-38 2.13503900413E-38 6.28406879193E-38 -6.41742546244E-38 -6.27676612154E-38 6.47729846256E-38 -6.56161425604E-38 -6.02862899343E-38 4.87003127132E-38 -4.12118828255E-38 -1.41335883386E-38 9.36562620144E-38 4.87183433393E-37 1.30537557814E-37 3.13815394012E-38 3.98701169685E-37 -1.83727574733E-37 5.28481978158E-38 -5.56702891437E-38 -1.70422613964E-37 -1.86420270443E-37 3.92620108999E-39 -1.80909152319E-38 -6.36642829665E-37 -1.38538106628E-37 -1.19839173150E-37 -9.09787768659E-38 7.75657723582E-37 -1.06354468952E-37 -7.62945892857E-38 -3.89864962147E-38 -2.48090871436E-37 1.91254104942E-37 -9.95342960674E-38 4.25461407646E-39 -3.34537285588E-37 -3.11309511542E-37 1.81075641336E-37 2.24142675648E-37 1.80728281016E-37 5.85990123751E-38 2.96606457862E-37 -5.06396746913E-38 2.86016739483E-37 3.28797202412E-37 -2.80119373460E-37 2.88094420344E-37 -2.84974821536E-38 -4.54817149373E-37 -6.57950456953E-37 -5.95448872835E-37 4.99859902147E-37 1.64140268867E-36 -2.49365709994E-36 2.28429182307E-36 2.79816522811E-36 -2.08551142140E-37 5.28807097344E-37 3.36580792428E-36 4.42066124449E-37 -5.91867737145E-37 4.32293172965E-37 -1.75853785523E-37 -2.67020854189E-37 9.83109836350E-37 8.06170247092E-37 -3.00085286535E-37 1.42957625308E-36 -2.54000097340E-37 2.87826580848E-38 -1.31784943443E-36 1.17333558173E-36 2.15081894581E-37 8.13963470565E-37 -9.90244364129E-37 1.38969114141E-36 4.57920683799E-37 1.04578148938E-36 -5.22143080526E-38 -9.23253159962E-37 5.58631480868E-37 -1.17269040389E-36 2.35959967018E-36 3.87141786484E-37 -1.07335743367E-36 7.04745758848E-37 -1.86379128074E-37 -1.48254027622E-36 -2.81249085039E-36 9.59675510102E-37 3.53627531699E-37 -1.11471268998E-36 -4.04718354258E-38 -7.93406590198E-38 -1.15749852567E-36 -1.33469445988E-36 1.22763530019E-36 -2.40634643433E-36 -1.19504233325E-35 -5.00111362155E-36 -3.92594166125E-36 4.19116119351E-36 -1.16288313845E-36 5.43717034112E-36 -4.56100764179E-38 -5.59028478674E-36 -2.47086707975E-35 -4.32495412292E-36 1.00570294501E-36 2.79011425395E-36 -3.08667218418E-37 -5.90863975644E-36 -2.86260101708E-36 -3.29133428932E-36 -4.27269361501E-36 -7.55096045134E-37 4.49092895628E-37 -8.57603638951E-36 7.41211790196E-36 1.78907857954E-36 4.81752640139E-36 2.61490152625E-36 -1.12394101004E-35 4.33348700054E-35 7.82232684448E-36 3.07180193843E-35 7.94083060347E-36 3.11452655795E-36 -1.79664959986E-36 4.92384826753E-37 -4.52700857649E-35 1.16649465477E-35 -2.04796272800E-37 -8.29967425105E-36 1.77689377123E-35 1.95309354577E-35 -1.20835763427E-35 -1.19341967956E-35 -5.93045695739E-36 -1.34344327917E-35 1.97774378751E-35 1.48427381626E-35 -3.50474713498E-36 2.02951193120E-35 -2.36192899642E-35 6.30479422071E-36 1.10548389231E-35 2.29377762551E-35 1.76025695679E-35 1.28825772989E-34 -1.36330277451E-34 -2.28469043088E-36 -1.44739306833E-34 9.27474760923E-36 -5.13665445224E-36 1.55643471319E-34 -2.02500759411E-35 -3.18662328586E-35 -1.88604027287E-34 2.95785667920E-35 1.85301419735E-34 1.25509368925E-35 4.17683292762E-35 -4.28174539226E-35 -3.74703587212E-38 -1.90557630898E-34 -2.93898603425E-35 -2.17526358378E-34 5.10785457196E-35 -6.59821847664E-35 -2.10919420649E-35 2.62595532339E-35 -1.86759132301E-36 -3.44426702687E-35 -7.86086453614E-35 1.86155863485E-35 3.46796851133E-35 8.55685222841E-35 -3.68983675137E-36 -7.50723409796E-35 -6.12270283608E-35 -6.74325848547E-35 7.97255000436E-35 -2.06856113138E-35 -3.19116818932E-35 8.49635234146E-35 7.31894799369E-35 2.80833803630E-35 1.86153028972E-35 1.50328932658E-34 6.36396315231E-35 -6.49359587717E-34 1.06299972958E-35 -4.20218353049E-35 9.18293742496E-35 -1.56121811350E-34 7.83501609293E-34 -2.12105076262E-35 -6.34536187178E-34 -8.01884878099E-34 -1.30775079640E-34 8.99541474758E-34 9.48842460811E-34 4.08687049504E-35 -2.68759062032E-34 9.65734499836E-35 -1.70450534974E-34 -1.78641311301E-34 -1.09638377086E-34 -1.06679381682E-34 -1.16360789838E-34 -1.37086932709E-34 1.53853009399E-34 -3.57384493787E-34 2.75057779680E-34 3.23055125820E-34 -2.25684419290E-34 -1.81094394248E-34 -1.50525353968E-34 3.43068954928E-34 1.40985319161E-34 1.19599802231E-34 6.86721384267E-34 -6.69392110462E-34 3.72703231131E-34 -1.45165019480E-34 7.10996936004E-34 6.37916062381E-35 5.75137587747E-34 4.12003191846E-34 -2.96458823746E-34 -4.08828484693E-34 -4.60017650422E-34 -9.01016799153E-35 -1.38646405834E-34 6.22587653146E-34 1.28602048771E-34 -7.55052412310E-34 -4.29455589033E-34 -1.77039699633E-34 -6.04722582398E-34 1.35185677081E-33 -9.64944839827E-34 -1.11998684453E-33 1.24037850631E-33 1.50728292157E-33 -7.98304882097E-35 -3.94900259845E-34 -1.52557256368E-34 1.07145583449E-33 8.29435609212E-34 -4.97801284749E-34 8.69083940941E-34 -8.21321217978E-34 -1.10499213679E-33 -8.63557629004E-34 2.00591663809E-33 -2.41617556419E-34 -2.82928038106E-33 2.64651806348E-33 -1.05079315234E-33 1.31015044427E-33 -1.15710534293E-33 1.74070591304E-33 3.03946871842E-33 -1.14200866305E-33 1.34576563984E-33 8.68695591464E-33 -1.09818611323E-33 2.74443578322E-33 -1.02410325355E-32 2.53976415457E-33 -1.20333540080E-33 -4.15378795652E-33 3.82620342033E-33 5.47443021473E-33 -1.32895874271E-33 -5.53637020297E-33 3.54704823131E-34 -3.98311993603E-33 -8.74570643393E-34 -8.96477062742E-35 6.16088681283E-33 -3.77070017266E-33 -5.29580550407E-33 2.79993197527E-32 -3.47296202708E-32 -7.15736526946E-34 1.77324691443E-33 -3.20374473101E-32 -3.19244554114E-33 -5.05891349653E-33 9.74327130317E-33 7.82241205279E-33 -9.96486559520E-33 -3.08353882953E-32 -4.02270071282E-32 9.69312237614E-33 -5.03876247161E-32 -1.20773771726E-32 1.37478377050E-34 5.35916652770E-32 -1.07742697416E-33 -5.27126142701E-33 1.04996436495E-32 -8.21957608335E-33 -7.42996425090E-33 9.27874063042E-33 4.52351153310E-33 -1.72917465841E-33 2.45961235000E-32 1.06324805293E-32 -9.29672063404E-33 -1.88586886931E-32 -2.01995578100E-32 -9.95757841666E-33 1.71980272850E-32 7.47346560282E-33 1.60768665895E-32 2.35249393127E-32 6.59936465883E-33 1.86183972572E-32 -6.79164482052E-33 -9.86494732359E-33 2.27901888728E-32 -4.34014626675E-32 2.23211287982E-32 -2.58820983082E-32 -3.52195861477E-32 1.20787744628E-31 -2.56132975331E-32 -4.38772569535E-32 -1.78880146954E-31 1.95385502763E-32 2.05273851622E-33 -2.03994673831E-32 -2.14513806409E-33 1.45368248433E-31 -1.90801299998E-33 -4.60544967989E-32 -2.42146020797E-31 7.02186534896E-33 -9.66038292679E-32 -4.30289984575E-32 -9.79066264446E-32 9.04531593757E-32 2.63016145545E-32 6.01005929034E-32 -8.41827827618E-33 -4.83424393238E-32 1.00407735693E-32 -4.34380127750E-32 -2.51735023177E-32 2.90676532816E-32 7.49093906548E-32 8.39985855920E-32 1.13357644516E-32 -1.48164609927E-32 7.59777795978E-32 1.24030654733E-31 1.04290232485E-31 -1.70533208831E-31 -1.64818089944E-31 1.89496060055E-31 1.33330843458E-31 -5.20145751054E-32 -3.74349274754E-32 8.68414212884E-33 1.40890200055E-31 -5.34846246177E-32 1.45619168692E-31 -6.17980752394E-32 1.86735961841E-31 -6.27838697282E-32 -1.79246798232E-31 -5.49507245575E-32 2.90231870248E-31 5.05195868580E-32 2.24867915364E-31 1.77944378052E-30 3.93506212608E-31 -2.31859099622E-31 3.52577162966E-31 -1.74616894784E-31 -3.46233875593E-31 3.87863305903E-31 -1.33365619390E-31 -3.53455150458E-31 -1.12898651683E-31 -2.68096270116E-32 2.83981298640E-31 -4.52553610697E-32 -2.84082290253E-31 -1.33862058268E-31 -1.03114951306E-31 5.55451425128E-31 -4.53154954474E-31 -3.15137263921E-31 -2.06333747824E-31 -3.50820142734E-31 -5.98798141902E-31 -6.92967251749E-31 6.08895912638E-32 2.50598238153E-30 3.88177342100E-31 7.17175800653E-31 2.18310530125E-30 -2.90091990485E-31 1.36196796223E-31 -1.25001011752E-31 -7.66767818871E-31 -6.28996318995E-31 -6.03701906301E-31 -1.05728696513E-31 -9.75688879783E-31 9.42765463783E-31 -3.32273975176E-31 4.92500700897E-31 6.87162634104E-31 1.38731945935E-30 -2.94543716900E-31 1.25135636920E-30 -1.41060123611E-30 -7.18646396679E-30 -1.53908562058E-30 -8.44914203818E-30 9.31682893004E-30 -2.25165950220E-31 5.28646373283E-31 1.19578673852E-30 -2.22491076423E-30 2.74414629342E-30 1.02346974528E-29 -1.01027902791E-31 -1.19887865990E-29 2.09213814508E-30 6.57754973255E-31 9.94281099979E-30 1.06367719822E-30 4.45583898852E-31 -1.35021063090E-29 8.82484368894E-30 -3.71185332842E-31 -4.46401186152E-31 -6.04639846912E-31 2.10025162006E-30 3.81721841003E-31 5.52238163267E-30 1.21522512088E-30 -1.84013262792E-30 5.72894350161E-30 -1.40894954038E-30 3.01191282332E-30 -6.65854711939E-31 -5.67721365761E-30 5.59239306900E-30 4.21732130212E-30 5.54136937407E-30 -3.06375731757E-30 1.28567789567E-30 3.24293262775E-30 9.92142738149E-31 1.90130538090E-30 -1.25196173064E-29 2.87632616868E-30 4.88110676985E-30 -9.44574277530E-31 7.93215313955E-30 1.13332907151E-29 1.23412498212E-29 -4.67380276615E-29 -7.23453204826E-30 -5.47911954902E-29 4.35324985397E-29 6.02212344299E-30 -1.25463444536E-29 1.03155968030E-29 5.10663365981E-29 -4.27895307611E-29 4.87458631488E-29 -2.22047397517E-29 -5.32299437027E-30 1.89916972011E-29 2.50209631447E-29 1.80204359113E-29 -6.67254072596E-30 2.19799876106E-29 -3.87267615934E-30 -1.63260584542E-29 1.66573830666E-29 1.23806957110E-29 -1.00138368707E-29 -1.41620038247E-30 1.18339811327E-29 -5.29919323484E-30 -2.09753069986E-29 -2.12478540124E-29 -2.12817148389E-29 -3.54213751928E-29 -3.97288492170E-29 1.65872902825E-29 1.70895065339E-29 2.97445965334E-29 4.00122435756E-29 2.94257716552E-29 3.91192188480E-29 -4.73342006194E-29 -3.90696443643E-29 3.31902406784E-29 -4.43746714089E-29 -3.51629610857E-29 -2.97722643311E-29 -2.85337194093E-29 -3.08745257125E-30 2.48018919311E-28 -4.88014329695E-29 -8.26229572362E-29 1.53138587384E-29 -8.98661587230E-29 -2.27868636148E-29 8.01588658578E-29 -8.94000552706E-29 3.98820244052E-29 6.88712649980E-29 -3.74726639429E-30 8.03065738752E-29 2.32601205534E-29 -2.44748742057E-29 -4.18620543165E-29 5.52858274798E-28 -4.75296768197E-28 5.64129471451E-28 4.96565611637E-28 -1.28928314470E-28 -1.80031598458E-28 -1.00373185989E-28 -1.61249189237E-28 -5.11170754069E-29 -7.40048651594E-29 -1.25480537393E-28 -1.39088913564E-28 1.23274967762E-29 1.78537232619E-29 -8.19141534312E-29 -8.82310323684E-28 6.89943610932E-28 -7.60731611409E-28 -3.17914666919E-29 1.97087896644E-28 1.81895155052E-29 3.19050657659E-28 -2.40593701932E-28 -7.07196649310E-29 1.70631232289E-28 -2.99107428229E-28 -1.00029881242E-29 1.36225155723E-28 7.23208340760E-29 1.37874885578E-29 -6.99484952044E-29 2.40464519675E-28 -2.64020541505E-28 -3.51097158426E-28 -3.03419344474E-29 -1.83911661625E-27 -3.76333719408E-28 -2.54837564044E-28 4.95406932194E-28 1.96943005163E-27 -7.73254944750E-28 2.59025924879E-28 -2.84197826488E-28 -4.16983820438E-28 -7.76387381030E-28 2.73545878380E-27 3.94033921230E-29 1.97683961229E-28 2.61244505132E-27 8.06018751600E-28 2.53570454250E-27 -3.23527817271E-28 3.83776799145E-27 2.53989490099E-27 6.02015543801E-28 7.10096374649E-28 -9.59192611046E-28 -1.52852235189E-27 1.30549668298E-27 -5.99869617265E-28 -8.72221965131E-28 -1.29575024720E-27 -6.58119568008E-28 1.05990127855E-27 1.52985836936E-27 5.56348983123E-28 -1.19120093620E-27 -5.03625109920E-28 5.77062831805E-28 -1.40278795584E-27 1.13311789737E-27 -1.41081725927E-28 -1.55974840053E-27 2.46408664037E-27 3.08617817654E-27 -8.72484368012E-28 1.62241674487E-28 -1.02396937116E-27 -1.20028239197E-26 -2.29379909293E-27 -2.62848798708E-27 -1.43819859281E-27 -1.28919266987E-27 1.29626971097E-26 -6.40422730851E-28 -2.90372811267E-27 2.94314482594E-27 -9.42704439754E-27 1.53579875141E-26 2.32880470082E-27 -2.81163143405E-27 2.78529761891E-27 5.75588687663E-27 -3.62930759886E-27 1.25405179878E-27 -5.93904264415E-27 -6.39207443659E-27 -1.52288703233E-27 -4.42951960502E-27 -3.44738841731E-27 -3.83858744970E-27 1.07719094819E-27 2.08132725846E-27 -4.69934829151E-27 -4.77067953241E-27 -4.14333937601E-27 1.01549873486E-27 -2.90763433519E-27 -4.72651972557E-27 -6.60865931246E-27 -5.92731903898E-27 -1.03719211229E-26 -8.14546392034E-27 1.23373831019E-26 -2.47166039533E-27 1.02774375804E-26 5.54130022830E-29 1.13816491534E-26 -1.12096578043E-26 -7.01849145063E-27 -2.09375285336E-27 1.00232462921E-26 -8.01271185150E-27 -6.35243499707E-27 4.16799162931E-27 1.43843670354E-26 2.26692076872E-26 2.30539479441E-26 -2.33357452845E-26 -6.81038191228E-27 -2.36205615313E-27 -2.04954442191E-26 1.26692264029E-26 -1.99520852051E-26 -2.44051571355E-26 -6.71318622761E-27 1.66616241812E-27 2.08290330582E-27 1.30156612001E-25 6.32928155630E-27 -2.21750897848E-26 -5.33123511314E-27 5.00931090997E-26 6.96391053044E-27 -4.54247756597E-26 -3.09977144349E-27 -3.57415287249E-26 -7.15712040403E-27 -2.43203040246E-26 -1.26099699373E-27 -1.22482961929E-25 2.54207697728E-26 -1.41904010013E-25 2.13158553416E-26 3.58686441327E-26 -4.47928433483E-26 -6.43668706485E-27 -2.30053658734E-26 1.17084263448E-26 -1.16883620493E-26 -7.18116962759E-26 -3.54317833383E-26 -9.22485930594E-26 -6.24598565109E-26 6.56289534455E-26 9.29236914989E-26 -7.77664657920E-26 -7.59518750758E-26 5.45889058762E-26 -3.12557613135E-26 2.20082274700E-26 9.59875308918E-26 3.76348736151E-26 -1.47254009862E-27 6.87994401703E-27 1.83410958890E-26 -5.47664144619E-26 -1.43859550522E-25 -7.87488560177E-26 -7.43135291693E-25 -1.10473919342E-25 -1.14924312196E-25 -7.45553610667E-25 -7.62652976823E-25 -9.18249459687E-26 -8.58025114186E-26 6.00054477102E-26 1.68002409612E-25 9.22487720684E-26 6.87670546293E-26 1.38536228892E-25 3.88847579513E-26 9.32131586600E-26 -1.67248860873E-25 1.30054927074E-25 -2.99407771255E-26 2.60439785538E-25 2.01602182376E-26 -2.76867298478E-25 1.19033275592E-25 -2.25542778571E-25 -3.02979025625E-25 -4.07602568236E-25 1.30952539662E-25 3.43683042397E-25 -1.52892991116E-25 -1.88122233493E-25 -3.97444775083E-25 2.13307572618E-25 4.01105992535E-25 3.65534740424E-25 -1.59342793613E-25 -3.46907810480E-25 -6.92025329878E-25 5.90546945773E-25 8.18080325978E-25 3.09258781929E-24 2.97408869340E-25 -6.44927420450E-25 -3.36934532344E-24 -3.51841473591E-24 -2.59085858414E-24 -6.40643972833E-25 3.59103656690E-24 3.47400397697E-24 -7.36862872912E-25 -6.37011306313E-25 1.27755072793E-25 3.02467825858E-25 -1.16473349478E-24 -6.72956486053E-25 9.75467370317E-25 2.37241802106E-25 -6.66828026066E-25 1.01067519535E-24 1.27687527364E-24 -1.16270785258E-25 -1.39385887990E-24 -9.30542013135E-25 -1.45717959543E-24 -6.95154335344E-25 -1.12669965750E-24 -4.76839026474E-25 2.21297882728E-25 1.27240037095E-24 3.39083344296E-25 -1.58707458158E-24 -1.56063791568E-24 -2.82865580869E-24 -7.45265438906E-25 -1.19798469884E-24 -2.40517896206E-24 7.25090426353E-25 -7.59344915896E-26 2.68842344055E-24 -1.67341877997E-24 -1.68179426609E-24 2.65507903882E-24 1.49930217791E-24 -1.29819239130E-24 -4.16369878769E-26 -2.26154938466E-24 -1.90634417798E-24 2.00864133214E-24 2.40760904827E-24 -5.22009429084E-24 1.90717206026E-25 1.59058441774E-24 5.38833883082E-25 -2.96562508612E-24 5.86655506754E-24 -1.11333394606E-24 -3.20210845323E-24 -4.13426411448E-24 -5.47600788626E-24 3.38565262533E-24 5.01313398378E-24 -6.07738168049E-24 -3.48821943509E-23 -5.34723171757E-24 2.07968688494E-24 1.23740427941E-23 7.76508613241E-24 4.90822820878E-24 -8.35247475484E-24 9.24431773074E-24 -2.17878246419E-24 1.04115935827E-24 2.53770368248E-24 -3.79215412654E-23 7.22633400502E-24 4.02198573315E-24 -7.70186952442E-24 -4.53181371586E-24 -5.80768921258E-24 5.86931750499E-23 2.46435266753E-24 1.05751755237E-23 1.55594012127E-23 -4.61571572573E-24 -2.36459080437E-23 4.16724691820E-25 -6.85281792705E-24 6.66455559296E-24 2.53740633311E-24 1.64434141155E-23 -2.00200445037E-23 8.12369227849E-24 1.81848756403E-23 -1.19161593782E-23 5.52944610974E-24 -1.82065763940E-23 1.15552341988E-23 -2.36359406462E-23 -1.66760113844E-23 1.62867103971E-22 2.71824390492E-23 1.85169271821E-22 1.88276734685E-22 -4.01395295993E-23 1.56698276276E-22 7.46603899066E-24 2.65951844358E-23 -4.55272187572E-23 -1.81158714131E-22 1.58246163510E-22 4.47074480314E-23 -1.76632799244E-23 -1.34342665686E-25 1.91944684039E-22 -3.36776828153E-23 2.24913105357E-23 2.26039893657E-23 8.84838270999E-23 2.59452128765E-23 3.95689076623E-23 -1.85327276539E-23 -1.55084886249E-23 -7.01746203780E-24 -2.22573227582E-23 -1.28864596318E-23 -5.60852754457E-23 4.19172072282E-23 1.00753891907E-22 8.69149714901E-23 -1.48176876225E-23 -1.01419234974E-22 -8.32065973900E-23 7.72406816441E-23 -3.96615247736E-23 -1.47785357968E-22 -1.14521840163E-22 -1.00941822395E-22 -1.82433370849E-22 -3.52765538742E-23 8.40059102414E-22 -1.81813864504E-22 5.16991722171E-22 -7.97390498800E-22 8.91606892952E-22 1.41008539882E-22 1.46375579913E-22 1.48732357129E-22 7.10842780810E-23 -8.83999385410E-23 7.74418913932E-22 -8.90029542879E-22 2.98874503740E-22 1.05039458346E-22 6.44873887067E-23 -3.29085367188E-22 -1.98678989057E-22 -5.12513153303E-23 -3.69998708010E-22 -4.05743546904E-22 -1.64656392083E-22 3.22656613963E-22 -3.38514372649E-22 -1.62456124634E-22 -3.87012425630E-23 3.43848801707E-22 -4.23513935411E-23 -1.95750186305E-22 -3.06320788129E-22 1.50502901076E-22 6.47452644314E-22 1.15110080960E-22 -3.75068516465E-22 -4.70828647464E-22 -1.30389951177E-22 -7.40122318983E-22 -4.79192823679E-22 -4.70963486374E-22 7.69463765653E-22 -8.90094242051E-23 8.36207603956E-22 -6.58206109438E-22 5.26844562996E-22 1.23412051498E-22 5.07775051457E-22 -6.24585990362E-22 7.14995296804E-22 -5.00495087151E-22 -1.32238767122E-21 4.90908941960E-22 -1.92980461870E-22 1.39999618310E-21 -1.23183569427E-21 3.87502908161E-22 -1.43127060333E-21 8.28544937077E-22 3.38821040939E-22 4.18867363769E-22 -1.05844666742E-21 5.37559895631E-23 4.62068236713E-22 -4.41482140911E-22 -4.53225864163E-22 -1.10876140981E-21 -1.89220797516E-21 -1.13542656304E-20 -2.72690157532E-21 -8.92436670113E-22 -3.32426573383E-21 -2.94673799941E-21 -2.40654845062E-21 -2.81512820525E-21 4.41000582345E-22 3.20033024047E-21 1.39148545201E-20 -1.33769286458E-20 2.04515297564E-21 -3.30874287477E-21 1.34918546319E-21 6.12562990532E-22 2.23311187730E-21 1.82160926749E-22 6.84835152945E-22 5.16408943488E-21 -1.78328650785E-21 -2.26528041373E-21 -4.38691125366E-21 2.92255405677E-21 3.32733130195E-21 3.87501023717E-22 6.42843394243E-21 6.26500657258E-21 2.13097095680E-21 -4.81562081619E-21 -6.18678351950E-21 3.90231461525E-22 6.76889145545E-21 1.15424021296E-21 -5.78758475201E-21 -2.84720913004E-20 2.60475138104E-21 9.24509939767E-21 -4.13703414967E-21 4.67237455437E-21 -7.76031508312E-21 6.04419641989E-21 1.10571865788E-20 -3.88575793938E-21 -6.40699321566E-21 1.03706463676E-20 1.29993399796E-20 5.11244311993E-21 -2.23376507180E-21 -1.02418185905E-20 -1.77035226477E-21 1.04733173591E-20 -3.02965112697E-21 1.85023392136E-20 1.79722735821E-20 2.50350467307E-20 -1.27922827291E-20 1.73721817663E-20 1.05718446590E-20 2.27522257018E-20 1.05223185455E-20 -1.74623109329E-20 1.54180724517E-20 2.50305402470E-20 -1.49062568298E-20 -1.61038956200E-20 -9.88106703475E-22 -6.77363024995E-21 -1.43842237002E-20 -1.84383649451E-20 -4.38852596078E-21 4.83315707737E-20 -1.93531271787E-21 5.12890918541E-20 -3.64009486639E-21 -4.96133767674E-21 -6.01718489305E-21 -3.53929167295E-20 -1.25786959099E-20 -4.51950001774E-20 -3.78496392548E-20 -2.43673551012E-19 1.05962201574E-20 1.72949043320E-20 1.71276586716E-20 4.75391327674E-20 1.09060781108E-20 -2.47179673156E-19 8.30246681739E-20 5.24843262326E-20 9.90136761215E-20 -2.01172431259E-20 -4.83659306975E-20 7.55857166558E-20 1.18459994121E-20 -5.51057990369E-20 -2.29610765213E-20 -3.27608515485E-20 -1.96262876664E-20 -7.34946859334E-20 -2.77661433488E-20 -4.69521421915E-20 3.37111250998E-20 -4.80992940689E-20 7.37807293854E-20 -6.01243341430E-20 -1.85481963469E-19 -7.55508190722E-20 -7.04513823023E-20 -1.45614007598E-19 -1.06894474307E-19 6.33940326866E-20 6.65783921340E-20 -7.09538682297E-20 8.49209803862E-20 1.14571512605E-19 -1.19385204626E-19 -1.65213386636E-19 1.97993611498E-19 -1.57434179860E-19 -1.82493417709E-19 6.74150797174E-20 -1.83795956572E-19 -3.61247144737E-19 -4.33167255656E-19 3.72261368884E-19 -1.97494042867E-19 -3.98714754743E-19 -3.28995841712E-19 2.85078307064E-20 -3.50824815677E-19 3.64369487941E-19 2.45033986095E-19 -1.18612927656E-19 1.56890813576E-19 2.01026238512E-19 5.77637541055E-21 1.61523614096E-19 2.79693123848E-19 -1.40924735371E-20 7.17790295425E-19 -1.90298085142E-19 -1.23372180924E-19 -6.79474226648E-19 -7.32264207132E-19 1.48730661134E-19 -2.06171823533E-18 2.97183132531E-20 -2.83541427657E-19 -8.98974088650E-20 4.67717087935E-19 -3.71840235472E-19 6.80482276152E-19 -2.86621894784E-18 -1.62092967325E-19 1.46561142939E-20 -4.22054149405E-20 4.68755437903E-20 -1.70467494076E-18 8.56604447753E-19 1.36326831634E-19 1.59367769038E-18 1.63366026458E-18 -1.65045915363E-18 -2.06956365682E-19 6.82355047135E-19 6.96329571080E-19 -1.48739124040E-18 1.50647140975E-18 -9.51383042058E-18 -6.73677166950E-20 -8.86986166881E-18 9.44006059971E-18 -1.39214051229E-18 1.09370323605E-17 -3.12266333786E-18 -7.71491433746E-19 2.71444209301E-18 -1.86890327521E-18 8.42285526006E-19 -1.38845416845E-17 -2.90939354290E-18 -1.18710889500E-17 1.95364185388E-18 -5.08454914083E-19 -9.03297679041E-19 -3.15454690803E-18 2.40425135178E-18 1.31492185676E-17 1.24460370209E-17 1.07438075357E-17 2.09273509370E-18 1.42090726275E-17 -1.83546256425E-18 1.64833766538E-18 -2.38360033670E-18 -6.26662321263E-18 -2.97813043192E-19 -3.91830581868E-18 4.04648736849E-18 -6.73929167037E-18 -6.27006530010E-18 -3.73847168052E-18 -6.63403221861E-18 -3.26375806740E-18 2.42703495958E-19 5.11467059385E-18 -4.39411977276E-18 8.34354886471E-20 -3.04418889047E-19 -6.73849599066E-18 -9.91079566850E-19 4.67622781530E-18 -3.08765157460E-18 -9.13695427841E-19 -2.37427024374E-18 -4.66751886231E-18 9.51575916680E-18 6.51655555684E-18 7.89077933342E-18 -3.05113997262E-18 -4.05172101034E-18 -3.70030937513E-18 -9.77925197091E-20 6.32464817453E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 2 i j (l(j)) 0.00000000000E+00 Q_int 5.50480089586E-25 5.78703807304E-25 6.08374585973E-25 6.39566617993E-25 6.72357899693E-25 7.06830426357E-25 7.43070397256E-25 7.81168431195E-25 8.21219793104E-25 8.63324632247E-25 9.07588232655E-25 9.54121276385E-25 1.00304012028E-24 1.05446708694E-24 1.10853077056E-24 1.16536635851E-24 1.22511596937E-24 1.28792900828E-24 1.35396254056E-24 1.42338168444E-24 1.49636002393E-24 1.57308004290E-24 1.65373358135E-24 1.73852231514E-24 1.82765826027E-24 1.92136430303E-24 2.01987475733E-24 2.12343595063E-24 2.23230683985E-24 2.34675965892E-24 2.46708059950E-24 2.59357052662E-24 2.72654573098E-24 2.86633871984E-24 3.01329904851E-24 3.16779419435E-24 3.33021047569E-24 3.50095401784E-24 3.68045176859E-24 3.86915256580E-24 4.06752825977E-24 4.27607489305E-24 4.49531394086E-24 4.72579361501E-24 4.96809023473E-24 5.22280966778E-24 5.49058884541E-24 5.77209735506E-24 6.06803911462E-24 6.37915413264E-24 6.70622035872E-24 7.05005562878E-24 7.41151971008E-24 7.79151645112E-24 8.19099604166E-24 8.61095738877E-24 9.05245061455E-24 9.51657968203E-24 1.00045051556E-23 1.05174471032E-23 1.10566881467E-23 1.16235766697E-23 1.22195301888E-23 1.28460388982E-23 1.35046693959E-23 1.41970686013E-23 1.49249678730E-23 1.56901873384E-23 1.64946404447E-23 1.73403387436E-23 1.82293969215E-23 1.91640380869E-23 2.01465993294E-23 2.11795375640E-23 2.22654356742E-23 2.34070089711E-23 2.46071119823E-23 2.58687455906E-23 2.71950645371E-23 2.85893853100E-23 3.00551944375E-23 3.15961572058E-23 3.32161268246E-23 3.49191540617E-23 3.67094973723E-23 3.85916335470E-23 4.05702689067E-23 4.26503510704E-23 4.48370813270E-23 4.71359276410E-23 4.95526383257E-23 5.20932564164E-23 5.47641347819E-23 5.75719520090E-23 6.05237291035E-23 6.36268470454E-23 6.68890652460E-23 7.03185409499E-23 7.39238496326E-23 7.77140064437E-23 8.16984887494E-23 8.58872598308E-23 9.02907937973E-23 9.49201017776E-23 9.97867594526E-23 1.04902936002E-22 1.10281424531E-22 1.15935674062E-22 1.21879823166E-22 1.28128735310E-22 1.34698036029E-22 1.41604151998E-22 1.48864352103E-22 1.56496790625E-22 1.64520552638E-22 1.72955701724E-22 1.81823330150E-22 1.91145611605E-22 2.00945856650E-22 2.11248571001E-22 2.22079516809E-22 2.33465777082E-22 2.45435823400E-22 2.58019587113E-22 2.71248534186E-22 2.85155743875E-22 2.99775991449E-22 3.15145835142E-22 3.31303707568E-22 3.48290011825E-22 3.66147222519E-22 3.84919991978E-22 4.04655261904E-22 4.25402380751E-22 4.47213227122E-22 4.70142339493E-22 4.94247052586E-22 5.19587640740E-22 5.46227468624E-22 5.74233149681E-22 6.03674712702E-22 6.34625776927E-22 6.67163736139E-22 7.01369952182E-22 7.37329958411E-22 7.75133673573E-22 8.14875626643E-22 8.56655193204E-22 9.00576843933E-22 9.46750405831E-22 9.95291336852E-22 1.04632101461E-21 1.09996703986E-21 1.15636355563E-21 1.21565158257E-21 1.27797937162E-21 1.34350277472E-21 1.41238563451E-21 1.48480019401E-21 1.56092752733E-21 1.64095799245E-21 1.72509170723E-21 1.81353904976E-21 1.90652118446E-21 2.00427061511E-21 2.10703176618E-21 2.21506159407E-21 2.32863022962E-21 2.44802165356E-21 2.57353440663E-21 2.70548233609E-21 2.84419538047E-21 2.99002039463E-21 3.14332201705E-21 3.30448358162E-21 3.47390807620E-21 3.65201915024E-21 3.83926217421E-21 4.03610535317E-21 4.24304089759E-21 4.46058625409E-21 4.68928539936E-21 4.92971020038E-21 5.18246184435E-21 5.44817234201E-21 5.72750610799E-21 6.02116162216E-21 6.32987317626E-21 6.65441270992E-21 6.99559174101E-21 7.35426339477E-21 7.73132453712E-21 8.12771801728E-21 8.54443502538E-21 8.98251757096E-21 9.44306108850E-21 9.92721717665E-21 1.04361964777E-20 1.09712717051E-20 1.15337808254E-20 1.21251304044E-20 1.27467991240E-20 1.34003414797E-20 1.40873916678E-20 1.48096676714E-20 1.55689755567E-20 1.63672139888E-20 1.72063789795E-20 1.80885688783E-20 1.90159896191E-20 1.99909602369E-20 2.10159186658E-20 2.20934278357E-20 2.32261820805E-20 2.44170138757E-20 2.56689009209E-20 2.69849735854E-20 2.83685227364E-20 2.98230079669E-20 3.13520662476E-20 3.29595210202E-20 3.46493917586E-20 3.64259040196E-20 3.82935000088E-20 4.02568496886E-20 4.23208624554E-20 4.44906994158E-20 4.67717862921E-20 4.91698269889E-20 5.16908178567E-20 5.43410626851E-20 5.71271884660E-20 6.00561619644E-20 6.31353071391E-20 6.63723234560E-20 6.97753051412E-20 7.33527614205E-20 7.71136377972E-20 8.10673384201E-20 8.52237495990E-20 8.95932645258E-20 9.41868092625E-20 9.90158700622E-20 1.04092522091E-19 1.09429459621E-19 1.15040027776E-19 1.20938255895E-19 1.27138892619E-19 1.33657442769E-19 1.40510206113E-19 1.47714318125E-19 1.55287792836E-19 1.63249567876E-19 1.71619551825E-19 1.80418674001E-19 1.89668936788E-19 1.99393470658E-19 2.09616592008E-19 2.20363863961E-19 2.31662160292E-19 2.43539732621E-19 2.56026281060E-19 2.69153028480E-19 2.82952798581E-19 2.97460097969E-19 3.12711202442E-19 3.28744247700E-19 3.45599324698E-19 3.63318579900E-19 3.81946320664E-19 4.01529126037E-19 4.22115963220E-19 4.43758310020E-19 4.66510283565E-19 4.90428775627E-19 5.15573594882E-19 5.42007616459E-19 5.69796939167E-19 5.99011050771E-19 6.29723001748E-19 6.62009587954E-19 6.95951542651E-19 7.31633738384E-19 7.69145399204E-19 8.08580323777E-19 8.50037119927E-19 8.93619451211E-19 9.39436296126E-19 9.87602220615E-19 1.03823766454E-18 1.09146924285E-18 1.14743006218E-18 1.20626005368E-18 1.26810632292E-18 1.33312351774E-18 1.40147421493E-18 1.47332932679E-18 1.54886852846E-18 1.62828070722E-18 1.71176443480E-18 1.79952846395E-18 1.89179225035E-18 1.98878650145E-18 2.09075375330E-18 2.19794897703E-18 2.31064021644E-18 2.42910925819E-18 2.55365233648E-18 2.68458087374E-18 2.82222225936E-18 2.96692066834E-18 3.11903792191E-18 3.27895439226E-18 3.44706995367E-18 3.62380498239E-18 3.80960140784E-18 4.00492381762E-18 4.21026061924E-18 4.42612526137E-18 4.65305751779E-18 4.89162483700E-18 5.14242376124E-18 5.40608141809E-18 5.68325708864E-18 5.97464385601E-18 6.28097033847E-18 6.60300251129E-18 6.94154562213E-18 7.29744620455E-18 7.67159419480E-18 8.06492515710E-18 8.47842262306E-18 8.91312055100E-18 9.37010591137E-18 9.85052140476E-18 1.03555683193E-17 1.08865095342E-17 1.14446726783E-17 1.20314534488E-17 1.26483191023E-17 1.32968121228E-17 1.39785540793E-17 1.46952496804E-17 1.54486910368E-17 1.62407621427E-17 1.70734435865E-17 1.79488175037E-17 1.88690727829E-17 1.98365105394E-17 2.08535498691E-17 2.19227338976E-17 2.30467361390E-17 2.42283671816E-17 2.54705817151E-17 2.67764859195E-17 2.81493452320E-17 2.95925925119E-17 3.11098366251E-17 3.27048714676E-17 3.43816854525E-17 3.61444714830E-17 3.79976374368E-17 3.99458171882E-17 4.19938821947E-17 4.41469536790E-17 4.64104154337E-17 4.87899272846E-17 5.12914392420E-17 5.39212063798E-17 5.66858044760E-17 5.95921464553E-17 6.26474996753E-17 6.58595040986E-17 6.92361913964E-17 7.27860050319E-17 7.65178213735E-17 8.04409718900E-17 8.45652664840E-17 8.89010180221E-17 9.34590681218E-17 9.82508142616E-17 1.03288238280E-16 1.08583936338E-16 1.14151150411E-16 1.20003801408E-16 1.26156523974E-16 1.32624703089E-16 1.39424512536E-16 1.46572955343E-16 1.54087906301E-16 1.61988156659E-16 1.70293461113E-16 1.79024587203E-16 1.88203367237E-16 1.97852752892E-16 2.07996872598E-16 2.18661091874E-16 2.29872076753E-16 2.41657860463E-16 2.54047913522E-16 2.67073217432E-16 2.80766342147E-16 2.95161527511E-16 3.10294768881E-16 3.26203907131E-16 3.42928723273E-16 3.60511037927E-16 3.78994815900E-16 3.98426276116E-16 4.18854007186E-16 4.40329088906E-16 4.62905219984E-16 4.86638852308E-16 5.11589332110E-16 5.37819048359E-16 5.65393588763E-16 5.94381903776E-16 6.24856479005E-16 6.56893516460E-16 6.90573125100E-16 7.25979521145E-16 7.63201238655E-16 8.02331350916E-16 8.43467703164E-16 8.86713157248E-16 9.32175848839E-16 9.79969457821E-16 1.03021349255E-15 1.08303358867E-15 1.13856182329E-15 1.19693704523E-15 1.25830522219E-15 1.32281980579E-15 1.39064211523E-15 1.46194174070E-15 1.53689696740E-15 1.61569522138E-15 1.69853353819E-15 1.78561905555E-15 1.87716953131E-15 1.97341388794E-15 2.07459278496E-15 2.18095922071E-15 2.29277916494E-15 2.41033222392E-15 2.53391233952E-15 2.66382852428E-15 2.80040563403E-15 2.94398518025E-15 3.09492618394E-15 3.25360607343E-15 3.42042162805E-15 3.59578997035E-15 3.78014960903E-15 3.97396153550E-15 4.17771037651E-15 4.39190560599E-15 4.61708281899E-15 4.85380507089E-15 5.10266428532E-15 5.36428273426E-15 5.63931459400E-15 5.92844758091E-15 6.23240467107E-15 6.55194590798E-15 6.88787030313E-15 7.24101783383E-15 7.61227154356E-15 8.00255975005E-15 8.41285836641E-15 8.84419334147E-15 9.29764322506E-15 9.77434186491E-15 1.02754812418E-14 1.08023144501E-14 1.13561588309E-14 1.19383992664E-14 1.25504916421E-14 1.31939664878E-14 1.38704328043E-14 1.45815820867E-14 1.53291925540E-14 1.61151335951E-14 1.69413704436E-14 1.78099690916E-14 1.87231014553E-14 1.96830508063E-14 2.06922174802E-14 2.17531248792E-14 2.28684257810E-14 2.40409089724E-14 2.52735062223E-14 2.65692996125E-14 2.79315292442E-14 2.93636013396E-14 3.08690967590E-14 3.24517799544E-14 3.41156083826E-14 3.58647424000E-14 3.77035556656E-14 3.96366460768E-14 4.16688472663E-14 4.38052406883E-14 4.60511683237E-14 4.84122460377E-14 5.08943776220E-14 5.35037695560E-14 5.62469465263E-14 5.91307677406E-14 6.21624440784E-14 6.53495561216E-14 6.87000731085E-14 7.22223728604E-14 7.59252627290E-14 7.98180016188E-14 8.39103231377E-14 8.82124599345E-14 9.27351692849E-14 9.74897599886E-14 1.02488120646E-13 1.07742749382E-13 1.13266785100E-13 1.19074040331E-13 1.25179035770E-13 1.31597036583E-13 1.38344090579E-13 1.45437068330E-13 1.52893705356E-13 1.60732646470E-13 1.68973492397E-13 1.77636848780E-13 1.86744377705E-13 1.96318851859E-13 2.06384211475E-13 2.16965624184E-13 2.28089547946E-13 2.39783797203E-13 2.52077612425E-13 2.65001733216E-13 2.78588475177E-13 2.92871810705E-13 3.07887453928E-13 3.23672950009E-13 3.40267769014E-13 3.57713404602E-13 3.76053477766E-13 3.95333845904E-13 4.15602717471E-13 4.36910772512E-13 4.59311289379E-13 4.82860277936E-13 5.07616619602E-13 5.33642214566E-13 5.61002136554E-13 5.89764795528E-13 6.20002108724E-13 6.51789680465E-13 6.85206991187E-13 7.20337596155E-13 7.57269334369E-13 7.96094548180E-13 8.36910314161E-13 8.79818685818E-13 9.24926948743E-13 9.72347888843E-13 1.02220007432E-12 1.07460815213E-12 1.12970315959E-12 1.18762285200E-12 1.24851204706E-12 1.31252298693E-12 1.37981571884E-12 1.45055849523E-12 1.52492819441E-12 1.60311076277E-12 1.68530167963E-12 1.77170644600E-12 1.86254109832E-12 1.95803274856E-12 2.05842015203E-12 2.16395430425E-12 2.27489906847E-12 2.39153183531E-12 2.51414421628E-12 2.64304277275E-12 2.77854978240E-12 2.92100404486E-12 3.07076172874E-12 3.22819726202E-12 3.39370426809E-12 3.56769654978E-12 3.75060912385E-12 3.94289930847E-12 4.14504786648E-12 4.35756020723E-12 4.58096765007E-12 4.81582875250E-12 5.06273070657E-12 5.32229080667E-12 5.59515799269E-12 5.88201447227E-12 6.18357742612E-12 6.50060080081E-12 6.83387719350E-12 7.18423983319E-12 7.55256466354E-12 7.93977253252E-12 8.34683149424E-12 8.77475922872E-12 9.22462558579E-12 9.69755525933E-12 1.01947305985E-11 1.07173945634E-11 1.12668538314E-11 1.18444820640E-11 1.24517233398E-11 1.30900957643E-11 1.37611952641E-11 1.44666995763E-11 1.52083724418E-11 1.59880680136E-11 1.68077354927E-11 1.76694239921E-11 1.85752876746E-11 1.95275911196E-11 2.05287149872E-11 2.15811619839E-11 2.26875630895E-11 2.38506841679E-11 2.50734328340E-11 2.63588657678E-11 2.77101963244E-11 2.91308025604E-11 3.06242357099E-11 3.21942290290E-11 3.38447071219E-11 3.55797957770E-11 3.74038322498E-11 3.93213761173E-11 4.13372206692E-11 4.34564048829E-11 4.56842260086E-11 4.80262528357E-11 5.04883395542E-11 5.30766404544E-11 5.57976252270E-11 5.86580952009E-11 6.16652002861E-11 6.48264568531E-11 6.81497665496E-11 7.16434359584E-11 7.53161974576E-11 7.91772309527E-11 8.32361868547E-11 8.75032101869E-11 9.19889658950E-11 9.67046655318E-11 1.01662095304E-10 1.06873645448E-10 1.12352341112E-10 1.18111875179E-10 1.24166641992E-10 1.30531773847E-10 1.37223178498E-10 1.44257578840E-10 1.51652554929E-10 1.59426587512E-10 1.67599104736E-10 1.76190530075E-10 1.85222333773E-10 1.94717086392E-10 2.04698514838E-10 2.15191562164E-10 2.26222449472E-10 2.37818741529E-10 2.50009415503E-10 2.62824933666E-10 2.76297318919E-10 2.90460235235E-10 3.05349071361E-10 3.21001029453E-10 3.37455218025E-10 3.54752749012E-10 3.72936841358E-10 3.92052927887E-10 4.12148769604E-10 4.33274574473E-10 4.55483122645E-10 4.78829898785E-10 5.03373229809E-10 5.29174431240E-10 5.56297959598E-10 5.84811573723E-10 6.14786503711E-10 6.46297628755E-10 6.79423664087E-10 7.14247356965E-10 7.50855693914E-10 7.89340117232E-10 8.29796753096E-10 8.72326652277E-10 9.17036041098E-10 9.64036587188E-10 1.01344567791E-09 1.06538671325E-09 1.11998941353E-09 1.17739014316E-09 1.23773225072E-09 1.30116642624E-09 1.36785107751E-09 1.43795272489E-09 1.51164641664E-09 1.58911616566E-09 1.67055540755E-09 1.75616748348E-09 1.84616614878E-09 1.94077610194E-09 2.04023354821E-09 2.14478678868E-09 2.25469683573E-09 2.37023806646E-09 2.49169890744E-09 2.61938254975E-09 2.75360770775E-09 2.89470941230E-09 3.04303984618E-09 3.19896922044E-09 3.36288669593E-09 3.53520135811E-09 3.71634322641E-09 3.90676433574E-09 4.10693985607E-09 4.31736927681E-09 4.53857765006E-09 4.77111690264E-09 5.01556720213E-09 5.27253841029E-09 5.54267159342E-09 5.82664062266E-09 6.12515384867E-09 6.43895586860E-09 6.76882937284E-09 7.11559709658E-09 7.48012386639E-09 7.86331875001E-09 8.26613732062E-09 8.68958402705E-09 9.13471470194E-09 9.60263917596E-09 1.00945240448E-08 1.06115955679E-08 1.11551427149E-08 1.17265203688E-08 1.23271526952E-08 1.29585366831E-08 1.36222458534E-08 1.43199341856E-08 1.50533402090E-08 1.58242913296E-08 1.66347083647E-08 1.74866103152E-08 1.83821193710E-08 1.93234661877E-08 2.03129954128E-08 2.13531715106E-08 2.24465848744E-08 2.35959582493E-08 2.48041534899E-08 2.60741786517E-08 2.74091954550E-08 2.88125271141E-08 3.02876665803E-08 3.18382851992E-08 3.34682417973E-08 3.51815922511E-08 3.69825995239E-08 3.88757442252E-08 4.08657357027E-08 4.29575236986E-08 4.51563105944E-08 4.74675642883E-08 4.98970317175E-08 5.24507530667E-08 5.51350767094E-08 5.79566748904E-08 6.09225602286E-08 6.40401030265E-08 6.73170494908E-08 7.07615408492E-08 7.43821334612E-08 7.81878199273E-08 8.21880512793E-08 8.63927603076E-08 9.08123860363E-08 9.54578994862E-08 1.00340830688E-07 1.05473297118E-07 1.10868033531E-07 1.16538423332E-07 1.22498531517E-07 1.28763139286E-07 1.35347780416E-07 1.42268779459E-07 1.49543291877E-07 1.57189346211E-07 1.65225888369E-07 1.73672828160E-07 1.82551088174E-07 1.91882655131E-07 2.01690633815E-07 2.11999303738E-07 2.22834178655E-07 2.34222069079E-07 2.46191147948E-07 2.58771019597E-07 2.71992792214E-07 2.85889153922E-07 3.00494452706E-07 3.15844780363E-07 3.31978060651E-07 3.48934141889E-07 3.66754894206E-07 3.85484311661E-07 4.05168619490E-07 4.25856386759E-07 4.47598644629E-07 4.70449010577E-07 4.94463818818E-07 5.19702257276E-07 5.46226511408E-07 5.74101915213E-07 6.03397109796E-07 6.34184209860E-07 6.66538978508E-07 7.00541010777E-07 7.36273926315E-07 7.73825571688E-07 8.13288232748E-07 8.54758857587E-07 8.98339290588E-07 9.44136518107E-07 9.92262926388E-07 1.04283657229E-06 1.09598146739E-06 1.15182787632E-06 1.21051262973E-06 1.27217945288E-06 1.33697931044E-06 1.40507076833E-06 1.47662037355E-06 1.55180305259E-06 1.63080252971E-06 1.71381176568E-06 1.80103341821E-06 1.89268032506E-06 1.98897601087E-06 2.09015521895E-06 2.19646446908E-06 2.30816264282E-06 2.42552159736E-06 2.54882680953E-06 2.67837805123E-06 2.81449009792E-06 2.95749347166E-06 3.10773522038E-06 3.26557973511E-06 3.43140960697E-06 3.60562652580E-06 3.78865222242E-06 3.98092945653E-06 4.18292305250E-06 4.39512098522E-06 4.61803551839E-06 4.85220439772E-06 5.09819210163E-06 5.35659115207E-06 5.62802348831E-06 5.91314190669E-06 6.21263156925E-06 6.52721158454E-06 6.85763666389E-06 7.20469885670E-06 7.56922936826E-06 7.95210046393E-06 8.35422746375E-06 8.77657083136E-06 9.22013836176E-06 9.68598747224E-06 1.01752276012E-05 1.06890227198E-05 1.12285939611E-05 1.17952223729E-05 1.23902517984E-05 1.30150918916E-05 1.36712212733E-05 1.43601908324E-05 1.50836271814E-05 1.58432362706E-05 1.66408071691E-05 1.74782160196E-05 1.83574301745E-05 1.92805125212E-05 2.02496260042E-05 2.12670383535E-05 2.23351270267E-05 2.34563843749E-05 2.46334230414E-05 2.58689816027E-05 2.71659304628E-05 2.85272780094E-05 2.99561770451E-05 3.14559315032E-05 3.30300034604E-05 3.46820204572E-05 3.64157831408E-05 3.82352732400E-05 4.01446618885E-05 4.21483183074E-05 4.42508188626E-05 4.64569565113E-05 4.87717506517E-05 5.12004573918E-05 5.37485802526E-05 5.64218813224E-05 5.92263928778E-05 6.21684294893E-05 6.52546006277E-05 6.84918237910E-05 7.18873381671E-05 7.54487188538E-05 7.91838916529E-05 8.31011484587E-05 8.72091632600E-05 9.15170087757E-05 9.60341737443E-05 1.00770580888E-04 1.05736605569E-04 1.10943095168E-04 1.16401389191E-04 1.22123340138E-04 1.28121335153E-04 1.34408318470E-04 1.40997814681E-04 1.47903952846E-04 1.55141491463E-04 1.62725844329E-04 1.70673107291E-04 1.79000085929E-04 1.87724324172E-04 1.96864133882E-04 2.06438625402E-04 2.16467739104E-04 2.26972277939E-04 2.37973941012E-04 2.49495358181E-04 2.61560125704E-04 2.74192842935E-04 2.87419150075E-04 3.01265766985E-04 3.15760533058E-04 3.30932448154E-04 3.46811714581E-04 3.63429780131E-04 3.80819382145E-04 3.99014592588E-04 4.18050864128E-04 4.37965077176E-04 4.58795587866E-04 4.80582276926E-04 5.03366599412E-04 5.27191635239E-04 5.52102140453E-04 5.78144599183E-04 6.05367276198E-04 6.33820269974E-04 6.63555566186E-04 6.94627091519E-04 7.27090767680E-04 7.61004565481E-04 7.96428558852E-04 8.33424978634E-04 8.72058265978E-04 9.12395125165E-04 9.54504575646E-04 9.98458003089E-04 1.04432920919E-03 1.09219445998E-03 1.14213253241E-03 1.19422475880E-03 1.24855506899E-03 1.30521002968E-03 1.36427888077E-03 1.42585356808E-03 1.49002877234E-03 1.55690193363E-03 1.62657327115E-03 1.69914579753E-03 1.77472532735E-03 1.85342047915E-03 1.93534267038E-03 2.02060610471E-03 2.10932775095E-03 2.20162731284E-03 2.29762718911E-03 2.39745242284E-03 2.50123063946E-03 2.60909197245E-03 2.72116897582E-03 2.83759652248E-03 2.95851168757E-03 3.08405361558E-03 3.21436337041E-03 3.34958376712E-03 3.48985918437E-03 3.63533535628E-03 3.78615914264E-03 3.94247827620E-03 4.10444108579E-03 4.27219619403E-03 4.44589218837E-03 4.62567726410E-03 4.81169883813E-03 5.00410313210E-03 5.20303472368E-03 5.40863606462E-03 5.62104696440E-03 5.84040403813E-03 6.06684011758E-03 6.30048362416E-03 6.54145790275E-03 6.78988051537E-03 7.04586249374E-03 7.30950754993E-03 7.58091124444E-03 7.86016011100E-03 8.14733073790E-03 8.44248880539E-03 8.74568807932E-03 9.05696936114E-03 9.37635939461E-03 9.70386973019E-03 1.00394955478E-02 1.03832144398E-02 1.07349851550E-02 1.10947463071E-02 1.14624150489E-02 1.18378857163E-02 1.22210284438E-02 1.26116877586E-02 1.30096811542E-02 1.34147976515E-02 1.38267963518E-02 1.42454049887E-02 1.46703184850E-02 1.51011975248E-02 1.55376671463E-02 1.59793153674E-02 1.64256918531E-02 1.68763066355E-02 1.73306288994E-02 1.77880858453E-02 1.82480616438E-02 1.87098964960E-02 1.91728858158E-02 1.96362795489E-02 2.00992816470E-02 2.05610497148E-02 2.10206948481E-02 2.14772816817E-02 2.19298286688E-02 2.23773086104E-02 2.28186494567E-02 2.32527354012E-02 2.36784082883E-02 2.40944693571E-02 2.44996813398E-02 2.48927709380E-02 2.52724316944E-02 2.56373272807E-02 2.59860952176E-02 2.63173510439E-02 2.66296929490E-02 2.69217068803E-02 2.71919721340E-02 2.74390674375E-02 2.76615775232E-02 2.78581001949E-02 2.80272538784E-02 2.81676856477E-02 2.82780797085E-02 2.83571663176E-02 2.84037311090E-02 2.84166247906E-02 2.83947731688E-02 2.83371874483E-02 2.82429747492E-02 2.81113487721E-02 2.79416405338E-02 2.77333090888E-02 2.74859521388E-02 2.71993164285E-02 2.68733078118E-02 2.65080008673E-02 2.61036479325E-02 2.56606874202E-02 2.51797512708E-02 2.46616713928E-02 2.41074849378E-02 2.35184382536E-02 2.28959893599E-02 2.22418087920E-02 2.15577786623E-02 2.08459897968E-02 2.01087368110E-02 1.93485110073E-02 1.85679909853E-02 1.77700308810E-02 1.69576461708E-02 1.61339970006E-02 1.53023690308E-02 1.44661518176E-02 1.36288147824E-02 1.27938808576E-02 1.19648979307E-02 1.11454082404E-02 1.03389159136E-02 9.54885285973E-03 8.77854326069E-03 8.03116691480E-03 7.30972169849E-03 6.61698540763E-03 5.95547722406E-03 5.32741902063E-03 4.73469666936E-03 4.17882144813E-03 3.66089155151E-03 3.18155359964E-03 2.74096390428E-03 2.33874909500E-03 1.97396553163E-03 1.64505673513E-03 1.35021839954E-03 1.08871396429E-03 8.59845585456E-04 6.62571900593E-04 4.95511124199E-04 3.56950972169E-04 2.44866295621E-04 1.56945308615E-04 9.06252819917E-05 4.31385437859E-05 1.15695727020E-05 -7.07610789592E-06 -1.57906348741E-05 -1.74696457333E-05 -1.48049611423E-05 -1.01640208967E-05 -5.45622544493E-06 -1.98661296901E-06 -2.97616918042E-07 5.56723964118E-18 8.19259347842E-19 -3.54144949624E-18 -1.23211324965E-17 -2.20775284226E-17 1.42639502372E-17 7.17757598375E-18 -8.58203054545E-18 -4.77530026717E-18 1.05079841184E-17 -1.82953453560E-18 -4.15913980608E-18 -3.82007551296E-18 1.50005822625E-18 1.21729852264E-17 -2.56015891175E-18 3.08114129956E-18 -5.81440337003E-19 6.55512775501E-19 5.73357965256E-18 2.94171830466E-18 2.75137394365E-18 3.90462506868E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 2 i j (l(j)) 0.00000000000E+00 Q_int -6.53537308065E-25 -6.87044882362E-25 -7.22270426729E-25 -7.59302023376E-25 -7.98232270582E-25 -8.39158514245E-25 -8.82183091289E-25 -9.27413585568E-25 -9.74963096878E-25 -1.02495052376E-24 -1.07750086083E-24 -1.13274551129E-24 -1.19082261555E-24 -1.25187739661E-24 -1.31606252324E-24 -1.38353849168E-24 -1.45447402699E-24 -1.52904650498E-24 -1.60744239566E-24 -1.68985772962E-24 -1.77649858809E-24 -1.86758161838E-24 -1.96333457548E-24 -2.06399689167E-24 -2.16982027517E-24 -2.28106933956E-24 -2.39802226545E-24 -2.52097149607E-24 -2.65022446854E-24 -2.78610438261E-24 -2.92895100885E-24 -3.07912153823E-24 -3.23699147528E-24 -3.40295557708E-24 -3.57742884033E-24 -3.76084753907E-24 -3.95367031559E-24 -4.15637932725E-24 -4.36948145218E-24 -4.59350955668E-24 -4.82902382771E-24 -5.07661317362E-24 -5.33689669672E-24 -5.61052524142E-24 -5.89818302159E-24 -6.20058933151E-24 -6.51850034448E-24 -6.85271100361E-24 -7.20405700964E-24 -7.57341691059E-24 -7.96171429859E-24 -8.36992011938E-24 -8.79905510012E-24 -9.25019230179E-24 -9.72445980238E-24 -1.02230435177E-23 -1.07471901666E-23 -1.12982103889E-23 -1.18774820221E-23 -1.24864535470E-23 -1.31266477096E-23 -1.37996653287E-23 -1.45071892990E-23 -1.52509887989E-23 -1.60329237146E-23 -1.68549492907E-23 -1.77191210192E-23 -1.86275997797E-23 -1.95826572421E-23 -2.05866815477E-23 -2.16421832801E-23 -2.27518017435E-23 -2.39183115619E-23 -2.51446296176E-23 -2.64338223444E-23 -2.77891133956E-23 -2.92138917048E-23 -3.07117199598E-23 -3.22863435115E-23 -3.39416997390E-23 -3.56819278949E-23 -3.75113794561E-23 -3.94346290045E-23 -4.14564856655E-23 -4.35820051341E-23 -4.58165023160E-23 -4.81655646180E-23 -5.06350659193E-23 -5.32311812596E-23 -5.59604022794E-23 -5.88295534527E-23 -6.18458091520E-23 -6.50167115876E-23 -6.83501896671E-23 -7.18545788220E-23 -7.55386418505E-23 -7.94115908291E-23 -8.34831101475E-23 -8.77633807246E-23 -9.22631054664E-23 -9.69935360283E-23 -1.01966500951E-22 -1.07194435236E-22 -1.12690411443E-22 -1.18468172375E-22 -1.24542165444E-22 -1.30927578796E-22 -1.37640379289E-22 -1.44697352423E-22 -1.52116144305E-22 -1.59915305779E-22 -1.68114338811E-22 -1.76733745255E-22 -1.85795078115E-22 -1.95320995443E-22 -2.05335316995E-22 -2.15863083790E-22 -2.26930620729E-22 -2.38565602419E-22 -2.50797122373E-22 -2.63655765763E-22 -2.77173685895E-22 -2.91384684609E-22 -3.06324296804E-22 -3.22029879292E-22 -3.38540704209E-22 -3.55898057218E-22 -3.74145340741E-22 -3.93328182491E-22 -4.13494549564E-22 -4.34694868381E-22 -4.56982150781E-22 -4.80412126579E-22 -5.05043382916E-22 -5.30937510764E-22 -5.58159258927E-22 -5.86776695956E-22 -6.16861380347E-22 -6.48488539482E-22 -6.81737257729E-22 -7.16690674203E-22 -7.53436190648E-22 -7.92065689996E-22 -8.32675766114E-22 -8.75367965342E-22 -9.20249040416E-22 -9.67431217397E-22 -1.01703247630E-21 -1.06917684611E-21 -1.12399471491E-21 -1.18162315593E-21 -1.24220627026E-21 -1.30589554727E-21 -1.37285024331E-21 -1.44323777999E-21 -1.51723416281E-21 -1.59502442128E-21 -1.67680307154E-21 -1.76277460282E-21 -1.85315398873E-21 -1.94816722479E-21 -2.04805189359E-21 -2.15305775881E-21 -2.26344738982E-21 -2.37949681817E-21 -2.50149622787E-21 -2.62975068100E-21 -2.76458088049E-21 -2.90632397204E-21 -3.05533438721E-21 -3.21198472964E-21 -3.37666670678E-21 -3.54979210933E-21 -3.73179384097E-21 -3.92312700080E-21 -4.12427002137E-21 -4.33572586500E-21 -4.55802328141E-21 -4.79171812992E-21 -5.03739476935E-21 -5.29566751925E-21 -5.56718219599E-21 -5.85261772768E-21 -6.15268785178E-21 -6.46814289989E-21 -6.79977167391E-21 -7.14840341846E-21 -7.51490989449E-21 -7.90020755903E-21 -8.30525985692E-21 -8.73107962982E-21 -9.17873164893E-21 -9.64933527741E-21 -1.01440672694E-20 -1.06641647126E-20 -1.12109281213E-20 -1.17857246889E-20 -1.23899917060E-20 -1.30252401550E-20 -1.36930584877E-20 -1.43951165977E-20 -1.51331699959E-20 -1.59090642002E-20 -1.67247393500E-20 -1.75822350580E-20 -1.84836955101E-20 -1.94313748266E-20 -2.04276426995E-20 -2.14749903172E-20 -2.25760365940E-20 -2.37335347191E-20 -2.49503790405E-20 -2.62296123026E-20 -2.75744332546E-20 -2.89882046492E-20 -3.04744616510E-20 -3.20369206764E-20 -3.36794886866E-20 -3.54062729569E-20 -3.72215913469E-20 -3.91299830980E-20 -4.11362201832E-20 -4.32453192396E-20 -4.54625541133E-20 -4.77934690457E-20 -5.02438925378E-20 -5.28199519242E-20 -5.55280886946E-20 -5.83750746008E-20 -6.13680285900E-20 -6.45144346054E-20 -6.78221603000E-20 -7.12994767103E-20 -7.49550789377E-20 -7.87981078909E-20 -8.28381731430E-20 -8.70853769604E-20 -9.15503395638E-20 -9.62442256842E-20 -1.01178772480E-19 -1.06366318888E-19 -1.11819836475E-19 -1.17552961872E-19 -1.23580030879E-19 -1.29916114305E-19 -1.36577055656E-19 -1.43579510755E-19 -1.50940989383E-19 -1.58679899069E-19 -1.66815591116E-19 -1.75368408989E-19 -1.84359739183E-19 -1.93812064705E-19 -2.03749021289E-19 -2.14195456498E-19 -2.25177491856E-19 -2.36722588170E-19 -2.48859614187E-19 -2.61618918791E-19 -2.75032406882E-19 -2.89133619163E-19 -3.03957816003E-19 -3.19542065609E-19 -3.35925336716E-19 -3.53148596026E-19 -3.71254910651E-19 -3.90289555800E-19 -4.10300127992E-19 -4.31336664069E-19 -4.53451766319E-19 -4.76700734004E-19 -5.01141701641E-19 -5.26835784366E-19 -5.53847230756E-19 -5.82243583481E-19 -6.12095848196E-19 -6.43478671095E-19 -6.76470525563E-19 -7.11153908400E-19 -7.47615546107E-19 -7.85946611747E-19 -8.26242952925E-19 -8.68605331455E-19 -9.13139675322E-19 -9.59957343549E-19 -1.00917540466E-18 -1.06091692941E-18 -1.11531129853E-18 -1.17249452622E-18 -1.23260960029E-18 -1.29580683971E-18 -1.36224427043E-18 -1.43208802058E-18 -1.50551273586E-18 -1.58270201623E-18 -1.66384887505E-18 -1.74915622165E-18 -1.83883736875E-18 -1.93311656586E-18 -2.03222955998E-18 -2.13642418514E-18 -2.24596098205E-18 -2.36111384967E-18 -2.48217073002E-18 -2.60943432823E-18 -2.74322286946E-18 -2.88387089459E-18 -3.03173009680E-18 -3.18717020094E-18 -3.35057988805E-18 -3.52236776729E-18 -3.70296339761E-18 -3.89281836195E-18 -4.09240739636E-18 -4.30222957715E-18 -4.52280956878E-18 -4.75469893584E-18 -4.99847752220E-18 -5.25475490100E-18 -5.52417189879E-18 -5.80740219802E-18 -6.10515402154E-18 -6.41817190358E-18 -6.74723855139E-18 -7.09317680249E-18 -7.45685168215E-18 -7.83917256641E-18 -8.24109545599E-18 -8.66362536679E-18 -9.10781884294E-18 -9.57478659873E-18 -1.00656962960E-17 -1.05817754636E-17 -1.11243145676E-17 -1.16946702371E-17 -1.22942686573E-17 -1.29246091355E-17 -1.35872678498E-17 -1.42839017908E-17 -1.50162529049E-17 -1.57861524496E-17 -1.65955255733E-17 -1.74463961283E-17 -1.83408917325E-17 -1.92812490887E-17 -2.02698195779E-17 -2.13090751387E-17 -2.24016144490E-17 -2.35501694232E-17 -2.47576120442E-17 -2.60269615442E-17 -2.73613919548E-17 -2.87642400434E-17 -3.02390136572E-17 -3.17894004941E-17 -3.34192773243E-17 -3.51327196840E-17 -3.69340120665E-17 -3.88276586355E-17 -4.08183944877E-17 -4.29111974934E-17 -4.51113007434E-17 -4.74242056345E-17 -4.98556956258E-17 -5.24118507003E-17 -5.50990625682E-17 -5.79240506492E-17 -6.08938788745E-17 -6.40159733504E-17 -6.72981409276E-17 -7.07485887217E-17 -7.43759446356E-17 -7.81892789340E-17 -8.21981269229E-17 -8.64125127936E-17 -9.08429746876E-17 -9.55005910481E-17 -1.00397008321E-16 -1.05544470077E-16 -1.10955847629E-16 -1.16644672213E-16 -1.22625168825E-16 -1.28912291793E-16 -1.35521762167E-16 -1.42470107033E-16 -1.49774700833E-16 -1.57453808820E-16 -1.65526632719E-16 -1.74013358752E-16 -1.82935208105E-16 -1.92314489996E-16 -2.02174657461E-16 -2.12540365993E-16 -2.23437535200E-16 -2.34893413612E-16 -2.46936646819E-16 -2.59597349096E-16 -2.72907178711E-16 -2.86899417078E-16 -3.01609051985E-16 -3.17072865076E-16 -3.33329523826E-16 -3.50419678230E-16 -3.68386062446E-16 -3.87273601655E-16 -4.07129524395E-16 -4.28003480655E-16 -4.49947666029E-16 -4.73016952227E-16 -4.97269024283E-16 -5.22764524802E-16 -5.49567205586E-16 -5.77744087058E-16 -6.07365625837E-16 -6.38505890922E-16 -6.71242748895E-16 -7.05658058634E-16 -7.41837875996E-16 -7.79872668999E-16 -8.19857544042E-16 -8.61892483717E-16 -9.06082596812E-16 -9.52538381140E-16 -1.00137599984E-15 -1.05271757183E-15 -1.10669147718E-15 -1.16343267812E-15 -1.22308305653E-15 -1.28579176867E-15 -1.35171561819E-15 -1.42101944820E-15 -1.49387655345E-15 -1.57046911368E-15 -1.65098864914E-15 -1.73563649946E-15 -1.82462432715E-15 -1.91817464684E-15 -2.01652138165E-15 -2.11991044817E-15 -2.22860037129E-15 -2.34286293072E-15 -2.46298384054E-15 -2.58926346361E-15 -2.72201756264E-15 -2.86157808975E-15 -3.00829401651E-15 -3.16253220654E-15 -3.32467833285E-15 -3.49513784220E-15 -3.67433696892E-15 -3.86272380071E-15 -4.06076939906E-15 -4.26896897713E-15 -4.48784313805E-15 -4.71793917664E-15 -4.95983244794E-15 -5.21412780585E-15 -5.48146111556E-15 -5.76250084353E-15 -6.05794972898E-15 -6.36854654102E-15 -6.69506792599E-15 -7.03833034941E-15 -7.39919213753E-15 -7.77855562356E-15 -8.17736940391E-15 -8.59663071016E-15 -9.03738790256E-15 -9.50074309147E-15 -9.98785489311E-15 -1.04999413267E-14 -1.10382828599E-14 -1.16042256109E-14 -1.21991847140E-14 -1.28246478583E-14 -1.34821790074E-14 -1.41734223104E-14 -1.49001062127E-14 -1.56640477779E-14 -1.64671572316E-14 -1.73114427373E-14 -1.81990154182E-14 -1.91320946359E-14 -2.01130135396E-14 -2.11442248999E-14 -2.22283072424E-14 -2.33679712944E-14 -2.45660667635E-14 -2.58255894631E-14 -2.71496888027E-14 -2.85416756635E-14 -3.00050306766E-14 -3.15434129262E-14 -3.31606690990E-14 -3.48608431024E-14 -3.66481861763E-14 -3.85271675226E-14 -4.05024854803E-14 -4.25790792737E-14 -4.47621413618E-14 -4.70571304224E-14 -4.94697850004E-14 -5.20061378571E-14 -5.46725310542E-14 -5.74756318119E-14 -6.04224491792E-14 -6.35203515601E-14 -6.67770851369E-14 -7.02007932390E-14 -7.38000367048E-14 -7.75838152866E-14 -8.15615901541E-14 -8.57433075507E-14 -9.01394236631E-14 -9.47609307658E-14 -9.96193847061E-14 -1.04726933798E-13 -1.10096349197E-13 -1.15741056835E-13 -1.21675170988E-13 -1.27913529566E-13 -1.34471731216E-13 -1.41366174324E-13 -1.48614098014E-13 -1.56233625257E-13 -1.64243808178E-13 -1.72664675699E-13 -1.81517283617E-13 -1.90823767248E-13 -2.00607396775E-13 -2.10892635432E-13 -2.21705200667E-13 -2.33072128450E-13 -2.45021840864E-13 -2.57584217175E-13 -2.70790668539E-13 -2.84674216538E-13 -2.99269575744E-13 -3.14613240518E-13 -3.30743576255E-13 -3.47700915311E-13 -3.65527657844E-13 -3.84268377825E-13 -4.03969934489E-13 -4.24681589494E-13 -4.46455130091E-13 -4.69344998600E-13 -4.93408428537E-13 -5.18705587710E-13 -5.45299728652E-13 -5.73257346769E-13 -6.02648346595E-13 -6.33546216571E-13 -6.66028212779E-13 -7.00175552104E-13 -7.36073615292E-13 -7.73812160417E-13 -8.13485547301E-13 -8.55192973426E-13 -8.99038721951E-13 -9.45132422437E-13 -9.93589324941E-13 -1.04453058816E-12 -1.09808358236E-12 -1.15438220779E-12 -1.21356722949E-12 -1.27578662920E-12 -1.34119597534E-12 -1.40995881197E-12 -1.48224706763E-12 -1.55824148520E-12 -1.63813207381E-12 -1.72211858381E-12 -1.81041100623E-12 -1.90323009774E-12 -2.00080793255E-12 -2.10338848265E-12 -2.21122822769E-12 -2.32459679625E-12 -2.44377763988E-12 -2.56906874177E-12 -2.70078336164E-12 -2.83925081901E-12 -2.98481731635E-12 -3.13784680472E-12 -3.29872189353E-12 -3.46784480708E-12 -3.64563839015E-12 -3.83254716499E-12 -4.02903844267E-12 -4.23560349127E-12 -4.45275876404E-12 -4.68104719043E-12 -4.92103953336E-12 -5.17333581607E-12 -5.43856682205E-12 -5.71739567193E-12 -6.01051948111E-12 -6.31867110248E-12 -6.64262095833E-12 -6.98317896628E-12 -7.34119656385E-12 -7.71756883687E-12 -8.11323675691E-12 -8.52918953346E-12 -8.96646708668E-12 -9.42616264680E-12 -9.90942548690E-12 -1.04174637956E-11 -1.09515476973E-11 -1.15130124265E-11 -1.21032616660E-11 -1.27237710551E-11 -1.33760918779E-11 -1.40618549413E-11 -1.47827746507E-11 -1.55406532955E-11 -1.63373855538E-11 -1.71749632278E-11 -1.80554802239E-11 -1.89811377799E-11 -1.99542499771E-11 -2.09772495142E-11 -2.20526937991E-11 -2.31832713211E-11 -2.43718083988E-11 -2.56212762058E-11 -2.69347982416E-11 -2.83156580896E-11 -2.97673076731E-11 -3.12933758440E-11 -3.28976774600E-11 -3.45842229393E-11 -3.63572282359E-11 -3.82211254552E-11 -4.01805738417E-11 -4.22404714726E-11 -4.44059674871E-11 -4.66824749661E-11 -4.90756844275E-11 -5.15915780760E-11 -5.42364447355E-11 -5.70168955743E-11 -5.99398806159E-11 -6.30127061157E-11 -6.62430527882E-11 -6.96389950625E-11 -7.32090211591E-11 -7.69620544040E-11 -8.09074754429E-11 -8.50551457315E-11 -8.94154321216E-11 -9.39992328343E-11 -9.88180045755E-11 -1.03883791363E-10 -1.09209254326E-10 -1.14807703524E-10 -1.20693131292E-10 -1.26880246949E-10 -1.33384513687E-10 -1.40222187127E-10 -1.47410356092E-10 -1.54966985084E-10 -1.62910959262E-10 -1.71262131560E-10 -1.80041372446E-10 -1.89270621820E-10 -1.98972943946E-10 -2.09172584853E-10 -2.19895033512E-10 -2.31167084403E-10 -2.43016905734E-10 -2.55474108530E-10 -2.68569821686E-10 -2.82336768929E-10 -2.96809350765E-10 -3.12023730507E-10 -3.28017924568E-10 -3.44831897204E-10 -3.62507660313E-10 -3.81089378612E-10 -4.00623479528E-10 -4.21158769549E-10 -4.42746555566E-10 -4.65440773315E-10 -4.89298122020E-10 -5.14378205617E-10 -5.40743682148E-10 -5.68460419183E-10 -5.97597659563E-10 -6.28228192939E-10 -6.60428538134E-10 -6.94279134303E-10 -7.29864540964E-10 -7.67273649796E-10 -8.06599905861E-10 -8.47941541173E-10 -8.91401819670E-10 -9.37089294801E-10 -9.85118080924E-10 -1.03560813690E-09 -1.08868556654E-09 -1.14448293253E-09 -1.20313958762E-09 -1.26480202142E-09 -1.32962422694E-09 -1.39776808366E-09 -1.46940376227E-09 -1.54471014705E-09 -1.62387528621E-09 -1.70709685484E-09 -1.79458265405E-09 -1.88655112372E-09 -1.98323189172E-09 -2.08486634328E-09 -2.19170822351E-09 -2.30402427097E-09 -2.42209488122E-09 -2.54621480857E-09 -2.67669389493E-09 -2.81385784773E-09 -2.95804905049E-09 -3.10962741318E-09 -3.26897127302E-09 -3.43647833403E-09 -3.61256665754E-09 -3.79767570683E-09 -3.99226744140E-09 -4.19682746318E-09 -4.41186623167E-09 -4.63792033043E-09 -4.87555380968E-09 -5.12535958212E-09 -5.38796090703E-09 -5.66401293622E-09 -5.95420435151E-09 -6.25925906992E-09 -6.57993805522E-09 -6.91704120411E-09 -7.27140934097E-09 -7.64392630812E-09 -8.03552116668E-09 -8.44717050586E-09 -8.87990087352E-09 -9.33479132708E-09 -9.81297612245E-09 -1.03156475273E-08 -1.08440587911E-08 -1.13995272617E-08 -1.19834376502E-08 -1.25972454861E-08 -1.32424807264E-08 -1.39207515607E-08 -1.46337484010E-08 -1.53832480915E-08 -1.61711183118E-08 -1.69993222233E-08 -1.78699233384E-08 -1.87850906474E-08 -1.97471040054E-08 -2.07583597834E-08 -2.18213768242E-08 -2.29388026883E-08 -2.41134202227E-08 -2.53481544656E-08 -2.66460799031E-08 -2.80104280876E-08 -2.94445956573E-08 -3.09521527487E-08 -3.25368518566E-08 -3.42026371191E-08 -3.59536541044E-08 -3.77942600673E-08 -3.97290347524E-08 -4.17627917265E-08 -4.39005902995E-08 -4.61477480478E-08 -4.85098539713E-08 -5.09927823292E-08 -5.36027071591E-08 -5.63461175595E-08 -5.92298337281E-08 -6.22610238170E-08 -6.54472216627E-08 -6.87963453868E-08 -7.23167169648E-08 -7.60170827784E-08 -7.99066352044E-08 -8.39950353127E-08 -8.82924367024E-08 -9.28095105598E-08 -9.75574719636E-08 -1.02548107558E-07 -1.07793804586E-07 -1.13307581436E-07 -1.19103119699E-07 -1.25194797869E-07 -1.31597726749E-07 -1.38327786632E-07 -1.45401666388E-07 -1.52836904502E-07 -1.60651932209E-07 -1.68866118787E-07 -1.77499819164E-07 -1.86574423903E-07 -1.96112411734E-07 -2.06137404722E-07 -2.16674226224E-07 -2.27748961781E-07 -2.39389023055E-07 -2.51623215012E-07 -2.64481806494E-07 -2.77996604312E-07 -2.92201031114E-07 -3.07130207147E-07 -3.22821036137E-07 -3.39312295493E-07 -3.56644731043E-07 -3.74861156534E-07 -3.94006558134E-07 -4.14128204176E-07 -4.35275760408E-07 -4.57501411039E-07 -4.80859985848E-07 -5.05409093654E-07 -5.31209262502E-07 -5.58324086838E-07 -5.86820382073E-07 -6.16768346870E-07 -6.48241733554E-07 -6.81318027036E-07 -7.16078632667E-07 -7.52609073486E-07 -7.90999197298E-07 -8.31343394098E-07 -8.73740824295E-07 -9.18295658349E-07 -9.65117328306E-07 -1.01432079187E-06 -1.06602680957E-06 -1.12036223574E-06 -1.17746032395E-06 -1.23746104753E-06 -1.30051143604E-06 -1.36676592843E-06 -1.43638674365E-06 -1.50954426958E-06 -1.58641747126E-06 -1.66719431924E-06 -1.75207223903E-06 -1.84125858285E-06 -1.93497112450E-06 -2.03343857868E-06 -2.13690114578E-06 -2.24561108359E-06 -2.35983330691E-06 -2.47984601674E-06 -2.60594136021E-06 -2.73842612287E-06 -2.87762245487E-06 -3.02386863259E-06 -3.17751985746E-06 -3.33894909380E-06 -3.50854794741E-06 -3.68672758697E-06 -3.87391971018E-06 -4.07057755689E-06 -4.27717697125E-06 -4.49421751547E-06 -4.72222363727E-06 -4.96174589391E-06 -5.21336223520E-06 -5.47767934834E-06 -5.75533406752E-06 -6.04699485121E-06 -6.35336333039E-06 -6.67517593094E-06 -7.01320557366E-06 -7.36826345555E-06 -7.74120091595E-06 -8.13291139165E-06 -8.54433246491E-06 -8.97644800865E-06 -9.43029043335E-06 -9.90694304014E-06 -1.04075424850E-05 -1.09332813591E-05 -1.14854108905E-05 -1.20652437725E-05 -1.26741571248E-05 -1.33135955926E-05 -1.39850745910E-05 -1.46901836992E-05 -1.54305902141E-05 -1.62080428663E-05 -1.70243757102E-05 -1.78815121916E-05 -1.87814694037E-05 -1.97263625371E-05 -2.07184095351E-05 -2.17599359598E-05 -2.28533800804E-05 -2.40012981927E-05 -2.52063701788E-05 -2.64714053176E-05 -2.77993483570E-05 -2.91932858580E-05 -3.06564528222E-05 -3.21922396151E-05 -3.38041991953E-05 -3.54960546648E-05 -3.72717071514E-05 -3.91352440365E-05 -4.10909475435E-05 -4.31433036996E-05 -4.52970116863E-05 -4.75569935940E-05 -4.99284045954E-05 -5.24166435542E-05 -5.50273640864E-05 -5.77664860896E-05 -6.06402077588E-05 -6.36550181062E-05 -6.68177100038E-05 -7.01353937668E-05 -7.36155112976E-05 -7.72658508100E-05 -8.10945621534E-05 -8.51101727580E-05 -8.93216042212E-05 -9.37381895574E-05 -9.83696911312E-05 -1.03226319298E-04 -1.08318751774E-04 -1.13658153752E-04 -1.19256198799E-04 -1.25125090545E-04 -1.31277585189E-04 -1.37727014855E-04 -1.44487311805E-04 -1.51573033547E-04 -1.58999388851E-04 -1.66782264694E-04 -1.74938254174E-04 -1.83484685383E-04 -1.92439651299E-04 -2.01822040676E-04 -2.11651569994E-04 -2.21948816451E-04 -2.32735252037E-04 -2.44033278702E-04 -2.55866264630E-04 -2.68258581629E-04 -2.81235643658E-04 -2.94823946500E-04 -3.09051108573E-04 -3.23945912905E-04 -3.39538350262E-04 -3.55859663426E-04 -3.72942392630E-04 -3.90820422128E-04 -4.09529027900E-04 -4.29104926461E-04 -4.49586324766E-04 -4.71012971174E-04 -4.93426207441E-04 -5.16869021699E-04 -5.41386102382E-04 -5.67023893038E-04 -5.93830647966E-04 -6.21856488611E-04 -6.51153460633E-04 -6.81775591565E-04 -7.13778948955E-04 -7.47221698884E-04 -7.82164164734E-04 -8.18668886067E-04 -8.56800677476E-04 -8.96626687224E-04 -9.38216455508E-04 -9.81641972140E-04 -1.02697773343E-03 -1.07430079806E-03 -1.12369084164E-03 -1.17523020973E-03 -1.22900396905E-03 -1.28509995641E-03 -1.34360882528E-03 -1.40462408933E-03 -1.46824216281E-03 -1.53456239716E-03 -1.60368711351E-03 -1.67572163054E-03 -1.75077428716E-03 -1.82895645959E-03 -1.91038257207E-03 -1.99517010073E-03 -2.08343956999E-03 -2.17531454060E-03 -2.27092158888E-03 -2.37039027613E-03 -2.47385310761E-03 -2.58144548012E-03 -2.69330561734E-03 -2.80957449198E-03 -2.93039573383E-03 -3.05591552262E-03 -3.18628246467E-03 -3.32164745225E-03 -3.46216350452E-03 -3.60798558881E-03 -3.75927042116E-03 -3.91617624468E-03 -4.07886258464E-03 -4.24748997887E-03 -4.42221968211E-03 -4.60321334303E-03 -4.79063265243E-03 -4.98463896131E-03 -5.18539286729E-03 -5.39305376808E-03 -5.60777938047E-03 -5.82972522354E-03 -6.05904406454E-03 -6.29588532634E-03 -6.54039445488E-03 -6.79271224549E-03 -7.05297412687E-03 -7.32130940158E-03 -7.59784044201E-03 -7.88268184099E-03 -8.17593951614E-03 -8.47770976745E-03 -8.78807828752E-03 -9.10711912426E-03 -9.43489359593E-03 -9.77144915882E-03 -1.01168182279E-02 -1.04710169511E-02 -1.08340439388E-02 -1.12058789491E-02 -1.15864815319E-02 -1.19757896323E-02 -1.23737181579E-02 -1.27801575123E-02 -1.31949720980E-02 -1.36179987941E-02 -1.40490454130E-02 -1.44878891418E-02 -1.49342749747E-02 -1.53879141436E-02 -1.58484825533E-02 -1.63156192324E-02 -1.67889248062E-02 -1.72679600040E-02 -1.77522442111E-02 -1.82412540767E-02 -1.87344221927E-02 -1.92311358542E-02 -1.97307359201E-02 -2.02325157859E-02 -2.07357204880E-02 -2.12395459566E-02 -2.17431384343E-02 -2.22455940817E-02 -2.27459587890E-02 -2.32432282145E-02 -2.37363480728E-02 -2.42242146926E-02 -2.47056758692E-02 -2.51795320327E-02 -2.56445377556E-02 -2.60994036225E-02 -2.65427984854E-02 -2.69733521254E-02 -2.73896583429E-02 -2.77902784975E-02 -2.81737455146E-02 -2.85385683780E-02 -2.88832371222E-02 -2.92062283379E-02 -2.95060111999E-02 -2.97810540233E-02 -3.00298313521E-02 -3.02508315752E-02 -3.04425650660E-02 -3.06035728300E-02 -3.07324356445E-02 -3.08277836634E-02 -3.08883064549E-02 -3.09127634332E-02 -3.08999946343E-02 -3.08489317798E-02 -3.07586095618E-02 -3.06281770741E-02 -3.04569093034E-02 -3.02442185840E-02 -2.99896659131E-02 -2.96929720078E-02 -2.93540279807E-02 -2.89729054976E-02 -2.85498662744E-02 -2.80853707624E-02 -2.75800858610E-02 -2.70348914968E-02 -2.64508858996E-02 -2.58293894052E-02 -2.51719466176E-02 -2.44803267624E-02 -2.37565220721E-02 -2.30027440522E-02 -2.22214174887E-02 -2.14151720768E-02 -2.05868315678E-02 -1.97394003587E-02 -1.88760474771E-02 -1.80000879467E-02 -1.71149615577E-02 -1.62242091055E-02 -1.53314462090E-02 -1.44403348645E-02 -1.35545529419E-02 -1.26777618821E-02 -1.18135729014E-02 -1.09655120613E-02 -1.01369846025E-02 -9.33123898541E-03 -8.55133110673E-03 -7.80008918426E-03 -7.08007980937E-03 -6.39357565691E-03 -5.74252531519E-03 -5.12852564946E-03 -4.55279703815E-03 -4.01616172147E-03 -3.51902537299E-03 -3.06136184724E-03 -2.64270086919E-03 -2.26211821565E-03 -1.91822769834E-03 -1.60917399527E-03 -1.33295109300E-03 -1.08843921938E-03 -8.74543408589E-04 -6.89894294039E-04 -5.32864084460E-04 -4.01588234153E-04 -2.93993019246E-04 -2.07829127315E-04 -1.40711241544E-04 -9.01634518480E-05 -5.36701533377E-05 -2.87318972467E-05 -1.29254414732E-05 -3.96700854513E-06 2.22499703529E-07 1.45185606330E-06 1.19524225386E-06 5.31468326531E-07 8.90747847442E-08 1.25388815674E-18 -1.54172013488E-18 1.64264983647E-18 7.12674545535E-19 2.09978242738E-19 -3.78506851711E-19 -3.49844146586E-19 -1.41194175516E-19 -2.55785320245E-19 7.51991493633E-19 3.02624703593E-18 -1.82239466576E-19 2.44265533815E-18 6.12572683440E-19 -3.27744983072E-18 -5.70776070157E-20 6.08744320434E-18 -6.26482012422E-18 7.39997227327E-18 -4.36896119497E-18 -4.54784724911E-18 -4.94892466767E-19 -8.20638238891E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 2 i j (l(j)) 3.90821846769E-01 Q_int 7.25784365668E-28 7.70664364359E-28 8.18319587176E-28 8.68921644396E-28 9.22652758081E-28 9.79706418276E-28 1.04028807978E-27 1.10461590202E-27 1.17292153463E-27 1.24545095166E-27 1.32246533737E-27 1.40424202672E-27 1.49107550412E-27 1.58327846388E-27 1.68118293626E-27 1.78514148309E-27 1.89552846744E-27 2.01274140168E-27 2.13720237897E-27 2.26935959328E-27 2.40968895331E-27 2.55869579634E-27 2.71691670795E-27 2.88492145432E-27 3.06331503399E-27 3.25273985655E-27 3.45387805595E-27 3.66745394697E-27 3.89423663351E-27 4.13504277818E-27 4.39073954322E-27 4.66224771315E-27 4.95054501065E-27 5.25666961739E-27 5.58172391260E-27 5.92687844285E-27 6.29337613724E-27 6.68253678335E-27 7.09576177985E-27 7.53453918304E-27 8.00044906551E-27 8.49516920608E-27 9.02048113162E-27 9.57827653245E-27 1.01705640745E-26 1.07994766327E-26 1.14672789715E-26 1.21763759006E-26 1.29293209349E-26 1.37288254899E-26 1.45777686454E-26 1.54792075137E-26 1.64363882486E-26 1.74527577343E-26 1.85319759991E-26 1.96779293941E-26 2.08947445895E-26 2.21868034343E-26 2.35587587358E-26 2.50155510150E-26 2.65624262976E-26 2.82049550055E-26 2.99490520161E-26 3.18009979625E-26 3.37674618503E-26 3.58555250737E-26 3.80727069155E-26 4.04269916252E-26 4.29268571706E-26 4.55813057678E-26 4.83998962989E-26 5.13927787343E-26 5.45707306832E-26 5.79451962053E-26 6.15283270212E-26 6.53330262721E-26 6.93729949847E-26 7.36627814100E-26 7.82178334127E-26 8.30545540997E-26 8.81903608899E-26 9.36437482349E-26 9.94343542194E-26 1.05583031279E-25 1.12111921293E-25 1.19044535317E-25 1.26405838250E-25 1.34222338733E-25 1.42522184610E-25 1.51335264291E-25 1.60693314383E-25 1.70630033973E-25 1.81181205984E-25 1.92384826032E-25 2.04281239250E-25 2.16913285576E-25 2.30326454019E-25 2.44569046474E-25 2.59692351657E-25 2.75750829801E-25 2.92802308772E-25 3.10908192312E-25 3.30133681158E-25 3.50548007835E-25 3.72224685969E-25 3.95241775013E-25 4.19682161348E-25 4.45633856764E-25 4.73190315395E-25 5.02450770254E-25 5.33520590583E-25 5.66511661293E-25 6.01542785874E-25 6.38740114209E-25 6.78237596856E-25 7.20177467416E-25 7.64710754719E-25 8.11997826700E-25 8.62208967892E-25 9.15524992636E-25 9.72137896207E-25 1.03225154620E-24 1.09608241669E-24 1.16386036775E-24 1.23582947321E-24 1.31224889958E-24 1.39339383933E-24 1.47955650190E-24 1.57104716592E-24 1.66819529661E-24 1.77135073215E-24 1.88088494355E-24 1.99719237225E-24 2.12069185063E-24 2.25182811020E-24 2.39107338311E-24 2.53892910276E-24 2.69592770943E-24 2.86263456766E-24 3.03965000220E-24 3.22761145980E-24 3.42719580473E-24 3.63912175617E-24 3.86415247646E-24 4.10309831922E-24 4.35681974757E-24 4.62623043268E-24 4.91230054399E-24 5.21606024287E-24 5.53860339232E-24 5.88109149603E-24 6.24475788107E-24 6.63091213921E-24 7.04094484284E-24 7.47633255254E-24 7.93864313430E-24 8.42954140553E-24 8.95079513018E-24 9.50428138464E-24 1.00919933172E-23 1.07160473256E-23 1.13786906781E-23 1.20823096067E-23 1.28294378993E-23 1.36227660246E-23 1.44651508208E-23 1.53596257829E-23 1.63094119868E-23 1.73179296886E-23 1.83888106413E-23 1.95259111728E-23 2.07333260730E-23 2.20154033398E-23 2.33767598357E-23 2.48222979146E-23 2.63572230746E-23 2.79870627040E-23 2.97176859856E-23 3.15553250324E-23 3.35065973295E-23 3.55785295644E-23 3.77785829309E-23 4.01146799971E-23 4.25952332353E-23 4.52291753160E-23 4.80259912753E-23 5.09957526710E-23 5.41491538515E-23 5.74975504664E-23 6.10530003596E-23 6.48283069904E-23 6.88370655398E-23 7.30937118678E-23 7.76135744979E-23 8.24129298167E-23 8.75090606864E-23 9.29203186813E-23 9.86661901741E-23 1.04767366507E-22 1.11245818503E-22 1.18124875587E-22 1.25429309791E-22 1.33185424967E-22 1.41421151506E-22 1.50166146917E-22 1.59451902625E-22 1.69311857381E-22 1.79781517667E-22 1.90898585566E-22 2.02703094529E-22 2.15237553534E-22 2.28547100168E-22 2.42679663172E-22 2.57686135034E-22 2.73620555256E-22 2.90540304957E-22 3.08506313506E-22 3.27583277934E-22 3.47839895912E-22 3.69349113138E-22 3.92188386019E-22 4.16439960597E-22 4.42191168729E-22 4.69534742569E-22 4.98569148505E-22 5.29398941751E-22 5.62135142849E-22 5.96895637469E-22 6.33805600924E-22 6.72997948934E-22 7.14613816269E-22 7.58803064984E-22 8.05724824083E-22 8.55548062561E-22 9.08452197868E-22 9.64627742010E-22 1.02427698760E-21 1.08761473631E-21 1.15486907243E-21 1.22628218417E-21 1.30211123584E-21 1.38262929388E-21 1.46812631023E-21 1.55891016645E-21 1.65530778244E-21 1.75766629366E-21 1.86635430127E-21 1.98176319943E-21 2.10430858475E-21 2.23443175291E-21 2.37260128778E-21 2.51931474885E-21 2.67510046293E-21 2.84051942677E-21 3.01616732720E-21 3.20267668626E-21 3.40071913896E-21 3.61100785189E-21 3.83430009142E-21 4.07139995060E-21 4.32316124486E-21 4.59049058659E-21 4.87435064995E-21 5.17576363754E-21 5.49581496143E-21 5.83565715181E-21 6.19651400734E-21 6.57968500216E-21 6.98654996536E-21 7.41857404991E-21 7.87731300874E-21 8.36441879716E-21 8.88164552166E-21 9.43085575662E-21 1.00140272515E-20 1.06332600530E-20 1.12907840674E-20 1.19889670907E-20 1.27303233350E-20 1.35175224829E-20 1.43533993004E-20 1.52409638462E-20 1.61834123102E-20 1.71841385236E-20 1.82467461805E-20 1.93750618148E-20 2.05731485802E-20 2.18453208813E-20 2.31961599110E-20 2.46305301469E-20 2.61535968691E-20 2.77708447609E-20 2.94880976589E-20 3.13115395260E-20 3.32477367197E-20 3.53036616381E-20 3.74867178283E-20 3.98047666472E-20 4.22661555703E-20 4.48797482523E-20 4.76549564454E-20 5.06017738916E-20 5.37308123116E-20 5.70533396176E-20 6.05813204905E-20 6.43274594654E-20 6.83052466816E-20 7.25290064617E-20 7.70139488947E-20 8.17762246083E-20 8.68329829290E-20 9.22024336377E-20 9.79039125451E-20 1.03957951121E-19 1.10386350429E-19 1.17212259635E-19 1.24460259370E-19 1.32156450243E-19 1.40328546836E-19 1.49005977502E-19 1.58219990343E-19 1.68003765733E-19 1.78392535804E-19 1.89423711323E-19 2.01137016404E-19 2.13574631565E-19 2.26781345619E-19 2.40804716962E-19 2.55695244836E-19 2.71506551179E-19 2.88295573722E-19 3.06122771027E-19 3.25052340202E-19 3.45152448078E-19 3.66495476687E-19 3.89158283911E-19 4.13222480254E-19 4.38774722729E-19 4.65907026913E-19 4.94717098307E-19 5.25308684175E-19 5.57791947150E-19 5.92283861934E-19 6.28908636537E-19 6.67798159553E-19 7.09092475107E-19 7.52940287159E-19 7.99499495000E-19 8.48937761859E-19 9.01433118669E-19 9.57174605170E-19 1.01636295066E-18 1.07921129681E-18 1.14594596525E-18 1.21680727253E-18 1.29205039553E-18 1.37194629036E-18 1.45678266811E-18 1.54686503091E-18 1.64251777207E-18 1.74408534421E-18 1.85193349971E-18 1.96645060778E-18 2.08804905300E-18 2.21716672037E-18 2.35426857213E-18 2.49984832216E-18 2.65443021384E-18 2.81857090790E-18 2.99286148703E-18 3.17792958433E-18 3.37444164354E-18 3.58310531889E-18 3.80467202346E-18 4.03993963502E-18 4.28975536928E-18 4.55501883074E-18 4.83668525225E-18 5.13576893485E-18 5.45334690034E-18 5.79056276971E-18 6.14863088139E-18 6.52884066417E-18 6.93256128048E-18 7.36124655687E-18 7.81644021934E-18 8.29978145235E-18 8.81301080166E-18 9.35797644215E-18 9.93664083317E-18 1.05510877855E-17 1.12035299654E-17 1.18963168623E-17 1.26319432496E-17 1.34130581686E-17 1.42424744678E-17 1.51231789318E-17 1.60583430376E-17 1.70513343744E-17 1.81057287714E-17 1.92253231737E-17 2.04141493159E-17 2.16764882406E-17 2.30168857142E-17 2.44401685970E-17 2.59514622245E-17 2.75562088646E-17 2.92601873150E-17 3.10695337131E-17 3.29907636327E-17 3.50307955468E-17 3.71969757413E-17 3.94971047697E-17 4.19394655428E-17 4.45328531564E-17 4.72866065624E-17 5.02106421993E-17 5.33154897011E-17 5.66123298160E-17 6.01130346680E-17 6.38302105090E-17 6.77772431152E-17 7.19683459891E-17 7.64186115435E-17 8.11440654494E-17 8.61617243459E-17 9.14896571171E-17 9.71470499593E-17 1.03154275471E-16 1.09532966017E-16 1.16306091624E-16 1.23498042699E-16 1.31134717862E-16 1.39243617203E-16 1.47853941314E-16 1.56996696442E-16 1.66704806141E-16 1.77013229832E-16 1.87959088695E-16 1.99581799340E-16 2.11923215750E-16 2.25027779997E-16 2.38942682281E-16 2.53718030860E-16 2.69407032495E-16 2.86066184046E-16 3.03755475920E-16 3.22538608098E-16 3.42483219518E-16 3.63661131647E-16 3.86148607111E-16 4.10026624316E-16 4.35381169054E-16 4.62303544139E-16 4.90890698193E-16 5.21245574753E-16 5.53477482976E-16 5.87702491262E-16 6.24043845218E-16 6.62632411464E-16 7.03607148887E-16 7.47115609032E-16 7.93314467433E-16 8.42370087806E-16 8.94459121123E-16 9.49769141732E-16 1.00849932281E-15 1.07086115359E-15 1.13707920092E-15 1.20739191795E-15 1.28205250276E-15 1.36132981018E-15 1.44550931987E-15 1.53489416437E-15 1.62980622068E-15 1.73058726928E-15 1.83760022495E-15 1.95123044354E-15 2.07188710969E-15 2.20000471026E-15 2.33604459891E-15 2.48049665742E-15 2.63388105974E-15 2.79675014511E-15 2.96969040703E-15 3.15332460516E-15 3.34831400792E-15 3.55536077360E-15 3.77521047887E-15 4.00865480352E-15 4.25653438127E-15 4.51974182686E-15 4.79922495026E-15 5.09599016972E-15 5.41110613580E-15 5.74570757950E-15 6.10099939834E-15 6.47826099513E-15 6.87885088498E-15 7.30421158722E-15 7.75587481977E-15 8.23546701474E-15 8.74471517506E-15 9.28545309324E-15 9.85962795471E-15 1.04693073494E-14 1.11166867170E-14 1.18040972522E-14 1.25340142997E-14 1.33090662669E-14 1.41320440889E-14 1.50059112782E-14 1.59338145960E-14 1.69190953832E-14 1.79653015922E-14 1.90762005623E-14 2.02557925857E-14 2.15083253119E-14 2.28383090424E-14 2.42505329722E-14 2.57500824344E-14 2.73423572119E-14 2.90330909811E-14 3.08283719574E-14 3.27346648185E-14 3.47588339818E-14 3.69081683220E-14 3.91904074171E-14 4.16137694167E-14 4.41869806341E-14 4.69193069677E-14 4.98205872652E-14 5.29012687515E-14 5.61724446463E-14 5.96458941082E-14 6.33341246484E-14 6.72504171672E-14 7.14088737751E-14 7.58244685702E-14 8.05131015564E-14 8.54916558943E-14 9.07780586927E-14 9.63913455588E-14 1.02351729139E-13 1.08680671901E-13 1.15400963407E-13 1.22536802378E-13 1.30113883823E-13 1.38159491556E-13 1.46702596436E-13 1.55773960682E-13 1.65406248636E-13 1.75634144372E-13 1.86494476583E-13 1.98026351184E-13 2.10271292119E-13 2.23273390867E-13 2.37079465200E-13 2.51739227751E-13 2.67305465009E-13 2.83834227375E-13 3.01385030976E-13 3.20021071952E-13 3.39809453994E-13 3.60821429950E-13 3.83132658371E-13 4.06823475914E-13 4.31979186594E-13 4.58690368911E-13 4.87053201979E-13 5.17169811802E-13 5.49148638974E-13 5.83104829108E-13 6.19160647398E-13 6.57445918823E-13 6.98098495558E-13 7.41264753290E-13 7.87100118213E-13 8.35769626614E-13 8.87448519045E-13 9.42322871240E-13 1.00059026403E-12 1.06246049469E-12 1.12815633223E-12 1.19791431945E-12 1.27198562450E-12 1.35063694513E-12 1.43415146886E-12 1.52282989249E-12 1.61699150461E-12 1.71697533510E-12 1.82314137565E-12 1.93587187573E-12 2.05557271874E-12 2.18267488315E-12 2.31763599401E-12 2.46094197045E-12 2.61310877486E-12 2.77468427041E-12 2.94625019321E-12 3.12842424655E-12 3.32186232449E-12 3.52726087299E-12 3.74535939696E-12 3.97694312228E-12 4.22284582247E-12 4.48395281997E-12 4.76120417305E-12 5.05559805971E-12 5.36819437072E-12 5.70011852485E-12 6.05256551983E-12 6.42680423383E-12 6.82418199280E-12 7.24612942010E-12 7.69416558601E-12 8.16990347541E-12 8.67505579360E-12 9.21144113083E-12 9.78099050804E-12 1.03857543271E-11 1.10279097524E-11 1.17097685385E-11 1.24337853677E-11 1.32025666668E-11 1.40188799916E-11 1.48856640052E-11 1.58060390229E-11 1.67833182817E-11 1.78210198133E-11 1.89228791578E-11 2.00928627745E-11 2.13351823121E-11 2.26543098028E-11 2.40549937218E-11 2.55422760709E-11 2.71215105554E-11 2.87983818175E-11 3.05789259112E-11 3.24695520190E-11 3.44770655108E-11 3.66086924237E-11 3.88721055000E-11 4.12754517269E-11 4.38273817420E-11 4.65370808588E-11 4.94143022087E-11 5.24694017661E-11 5.57133756261E-11 5.91578996168E-11 6.28153711902E-11 6.66989541710E-11 7.08226259963E-11 7.52012280607E-11 7.98505191032E-11 8.47872318460E-11 9.00291332465E-11 9.55950884669E-11 1.01505128634E-10 1.07780522789E-10 1.14443854819E-10 1.21519103961E-10 1.29031731871E-10 1.37008773760E-10 1.45478935532E-10 1.54472697436E-10 1.64022423063E-10 1.74162476643E-10 1.84929345642E-10 1.96361772695E-10 2.08500894812E-10 2.21390390723E-10 2.35076638862E-10 2.49608883491E-10 2.65039411975E-10 2.81423742654E-10 2.98820824948E-10 3.17293250456E-10 3.36907478950E-10 3.57734076340E-10 3.79847969174E-10 4.03328713818E-10 4.28260781817E-10 4.54733864620E-10 4.82843194778E-10 5.12689889495E-10 5.44381313170E-10 5.78031463200E-10 6.13761380946E-10 6.51699584787E-10 6.91982533970E-10 7.34755117429E-10 7.80171175452E-10 8.28394051896E-10 8.79597181324E-10 9.33964712509E-10 9.91692168827E-10 1.05298715237E-09 1.11807008850E-09 1.18717501784E-09 1.26055043818E-09 1.33846019516E-09 1.42118443124E-09 1.50902059163E-09 1.60228449240E-09 1.70131145438E-09 1.80645750783E-09 1.91810067060E-09 2.03664230501E-09 2.16250855949E-09 2.29615189824E-09 2.43805272620E-09 2.58872111245E-09 2.74869862119E-09 2.91856025513E-09 3.09891652436E-09 3.29041562668E-09 3.49374578267E-09 3.70963770587E-09 3.93886721532E-09 4.18225802615E-09 4.44068470825E-09 4.71507581109E-09 5.00641720534E-09 5.31575561477E-09 5.64420237165E-09 5.99293740021E-09 6.36321344311E-09 6.75636057064E-09 7.17379091903E-09 7.61700378431E-09 8.08759097809E-09 8.58724253389E-09 9.11775276629E-09 9.68102670931E-09 1.02790869202E-08 1.09140807542E-08 1.15882880297E-08 1.23041292148E-08 1.30641740840E-08 1.38711509289E-08 1.47279563195E-08 1.56376654813E-08 1.66035433004E-08 1.76290560140E-08 1.87178836143E-08 1.98739330095E-08 2.11013520257E-08 2.24045442160E-08 2.37881846358E-08 2.52572365603E-08 2.68169692275E-08 2.84729766763E-08 3.02311977609E-08 3.20979373800E-08 3.40798889719E-08 3.61841585091E-08 3.84182898118E-08 4.07902915482E-08 4.33086658125E-08 4.59824385121E-08 4.88211915720E-08 5.18350971641E-08 5.50349540032E-08 5.84322258904E-08 6.20390826198E-08 6.58684433917E-08 6.99340228920E-08 7.42503802040E-08 7.88329707231E-08 8.36982012289E-08 8.88634883787E-08 9.43473207733E-08 1.00169324799E-07 1.06350334548E-07 1.12912465994E-07 1.19879195742E-07 1.27275444572E-07 1.35127666125E-07 1.43463941009E-07 1.52314076671E-07 1.61709713401E-07 1.71684436777E-07 1.82273897060E-07 1.93515935819E-07 2.05450720389E-07 2.18120886452E-07 2.31571689450E-07 2.45851165131E-07 2.61010300041E-07 2.77103212300E-07 2.94187343518E-07 3.12323662428E-07 3.31576880852E-07 3.52015683034E-07 3.73712968730E-07 3.96746111380E-07 4.21197231828E-07 4.47153488841E-07 4.74707387323E-07 5.03957105263E-07 5.35006840668E-07 5.67967179584E-07 6.02955486532E-07 6.40096318737E-07 6.79521865507E-07 7.21372414382E-07 7.65796845631E-07 8.12953156779E-07 8.63009019015E-07 9.16142367410E-07 9.72542026968E-07 1.03240837666E-06 1.09595405380E-06 1.16340470100E-06 1.23499975867E-06 1.31099330524E-06 1.39165494849E-06 1.47727077080E-06 1.56814433153E-06 1.66459773015E-06 1.76697273360E-06 1.87563197180E-06 1.99096020530E-06 2.11336566968E-06 2.24328150084E-06 2.38116724648E-06 2.52751046851E-06 2.68282844216E-06 2.84766995739E-06 3.02261722872E-06 3.20828791992E-06 3.40533729043E-06 3.61446047089E-06 3.83639487513E-06 4.07192275697E-06 4.32187392048E-06 4.58712859260E-06 4.86862046779E-06 5.16733993500E-06 5.48433749764E-06 5.82072739801E-06 6.17769145823E-06 6.55648315034E-06 6.95843190931E-06 7.38494770306E-06 7.83752587445E-06 8.31775227179E-06 8.82730868393E-06 9.36797859862E-06 9.94165330242E-06 1.05503383425E-05 1.11961603711E-05 1.18813743958E-05 1.26083714573E-05 1.33796867625E-05 1.41980082963E-05 1.50661859418E-05 1.59872411380E-05 1.69643771052E-05 1.80009896719E-05 1.91006787377E-05 2.02672604077E-05 2.15047798389E-05 2.28175248372E-05 2.42100402505E-05 2.56871432004E-05 2.72539392036E-05 2.89158392307E-05 3.06785777575E-05 3.25482318652E-05 3.45312414471E-05 3.66344305865E-05 3.88650301701E-05 4.12307018078E-05 4.37395631315E-05 4.64002145492E-05 4.92217675385E-05 5.22138745620E-05 5.53867606973E-05 5.87512570754E-05 6.23188362282E-05 6.61016494499E-05 7.01125662840E-05 7.43652162510E-05 7.88740329419E-05 8.36543006036E-05 8.87222033547E-05 9.40948771714E-05 9.97904647964E-05 1.05828173726E-04 1.12228337439E-04 1.19012480048E-04 1.26203384550E-04 1.33825164857E-04 1.41903341840E-04 1.50464923553E-04 1.59538489892E-04 1.69154281906E-04 1.79344296001E-04 1.90142383295E-04 2.01584354392E-04 2.13708089838E-04 2.26553656575E-04 2.40163430672E-04 2.54582226663E-04 2.69857433831E-04 2.86039159761E-04 3.03180381553E-04 3.21337105050E-04 3.40568532486E-04 3.60937238965E-04 3.82509358185E-04 4.05354777873E-04 4.29547345377E-04 4.55165083900E-04 4.82290419887E-04 5.11010422062E-04 5.41417052682E-04 5.73607431541E-04 6.07684113319E-04 6.43755378867E-04 6.81935541055E-04 7.22345265813E-04 7.65111909038E-04 8.10369870035E-04 8.58260962206E-04 9.08934801709E-04 9.62549214811E-04 1.01927066473E-03 1.07927469871E-03 1.14274641616E-03 1.20988095864E-03 1.28088402259E-03 1.35597239554E-03 1.43537451679E-03 1.51933106334E-03 1.60809556199E-03 1.70193502853E-03 1.80113063480E-03 1.90597840474E-03 2.01678994006E-03 2.13389317662E-03 2.25763317240E-03 2.38837292773E-03 2.52649423899E-03 2.67239858624E-03 2.82650805587E-03 2.98926629889E-03 3.16113952566E-03 3.34261753773E-03 3.53421479739E-03 3.73647153553E-03 3.94995489826E-03 4.17526013273E-03 4.41301181240E-03 4.66386510198E-03 4.92850706214E-03 5.20765799383E-03 5.50207282208E-03 5.81254251886E-03 6.13989556440E-03 6.48499944621E-03 6.84876219478E-03 7.23213395474E-03 7.63610858992E-03 8.06172532051E-03 8.51007039026E-03 8.98227876108E-03 9.47953583241E-03 1.00030791819E-02 1.05542003241E-02 1.11342464822E-02 1.17446223696E-02 1.23867919743E-02 1.30622803424E-02 1.37726753524E-02 1.45196294750E-02 1.53048615096E-02 1.61301582895E-02 1.69973763467E-02 1.79084435267E-02 1.88653605412E-02 1.98702024488E-02 2.09251200491E-02 2.20323411784E-02 2.31941718910E-02 2.44129975110E-02 2.56912835375E-02 2.70315763852E-02 2.84365039418E-02 2.99087759206E-02 3.14511839878E-02 3.30666016410E-02 3.47579838149E-02 3.65283661884E-02 3.83808641664E-02 4.03186715080E-02 4.23450585718E-02 4.44633701469E-02 4.66770228387E-02 4.89895019742E-02 5.14043579941E-02 5.39252022950E-02 5.65557024856E-02 5.92995770177E-02 6.21605891560E-02 6.51425402454E-02 6.82492622362E-02 7.14846094289E-02 7.48524493959E-02 7.83566530417E-02 8.20010837610E-02 8.57895856563E-02 8.97259707754E-02 9.38140053338E-02 9.80573948862E-02 1.02459768413E-01 1.07024661295E-01 1.11755497142E-01 1.16655568467E-01 1.21728016162E-01 1.26975807792E-01 1.32401714669E-01 1.38008287731E-01 1.43797832202E-01 1.49772381076E-01 1.55933667424E-01 1.62283095558E-01 1.68821711107E-01 1.75550170039E-01 1.82468706705E-01 1.89577100980E-01 1.96874644586E-01 2.04360106712E-01 2.12031699047E-01 2.19887040367E-01 2.27923120826E-01 2.36136266126E-01 2.44522101769E-01 2.53075517577E-01 2.61790632739E-01 2.70660761611E-01 2.79678380556E-01 2.88835096102E-01 2.98121614738E-01 3.07527714672E-01 3.17042219891E-01 3.26652976912E-01 3.36346834573E-01 3.46109627293E-01 3.55926162184E-01 3.65780210455E-01 3.75654503521E-01 3.85530734269E-01 3.95389563891E-01 4.05210634738E-01 4.14972589616E-01 4.24653097932E-01 4.34228889096E-01 4.43675793554E-01 4.52968791801E-01 4.62082071687E-01 4.70989094303E-01 4.79662668651E-01 4.88075035300E-01 4.96197959115E-01 5.04002831124E-01 5.11460779468E-01 5.18542789339E-01 5.25219831692E-01 5.31463000426E-01 5.37243657638E-01 5.42533586442E-01 5.47305150718E-01 5.51531461070E-01 5.55186546128E-01 5.58245528226E-01 5.60684802367E-01 5.62482217260E-01 5.63617257119E-01 5.64071222792E-01 5.63827410699E-01 5.62871287954E-01 5.61190661992E-01 5.58775842926E-01 5.55619796843E-01 5.51718288185E-01 5.47070009384E-01 5.41676695895E-01 5.35543224837E-01 5.28677695489E-01 5.21091489979E-01 5.12799312623E-01 5.03819206487E-01 4.94172545933E-01 4.83884004082E-01 4.72981494347E-01 4.61496085435E-01 4.49461889445E-01 4.36915923017E-01 4.23897941723E-01 4.10450248234E-01 3.96617475095E-01 3.82446343236E-01 3.67985397708E-01 3.53284722371E-01 3.38395635626E-01 3.23370369511E-01 3.08261734767E-01 2.93122774704E-01 2.78006410908E-01 2.62965084001E-01 2.48050392797E-01 2.33312735316E-01 2.18800955145E-01 2.04561996692E-01 1.90640572822E-01 1.77078848319E-01 1.63916142492E-01 1.51188654116E-01 1.38929211672E-01 1.27167051657E-01 1.15927627421E-01 1.05232450707E-01 9.50989676929E-02 8.55404709533E-02 7.65660483212E-02 6.81805691582E-02 6.03847080301E-02 5.31750052368E-02 4.65439630645E-02 4.04801760141E-02 3.49684926259E-02 2.99902058739E-02 2.55232684512E-02 2.15425286410E-02 1.80199818711E-02 1.49250325212E-02 1.22247601174E-02 9.88418373858E-03 7.86892354171E-03 6.15281443148E-03 4.71121343613E-03 3.51890753179E-03 2.55039886580E-03 1.78019652813E-03 1.18311175435E-03 7.34553386729E-04 4.10820427743E-04 1.89388591249E-04 4.91878871321E-05 -2.91315422429E-05 -6.29478938013E-05 -6.74327999469E-05 -5.53351214815E-05 -3.67852927224E-05 -1.91219157729E-05 -6.74223582155E-06 -9.78195295648E-07 9.45057769829E-18 -7.36471297381E-18 1.12948080812E-17 1.10582397457E-17 -6.20265413476E-17 5.07632544047E-17 1.14185829055E-17 3.97339711603E-18 -1.01796198192E-17 3.03089381528E-17 -7.64824969053E-18 -1.32696108517E-17 7.81036944170E-18 -1.33056975445E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 2 i j (l(j)) -4.38140525515E-01 Q_int -8.82805023219E-28 -9.37394637105E-28 -9.95359884190E-28 -1.05690950197E-27 -1.12226513555E-27 -1.19166213581E-27 -1.26535040691E-27 -1.34359530620E-27 -1.42667859985E-27 -1.51489947746E-27 -1.60857562946E-27 -1.70804439119E-27 -1.81366395763E-27 -1.92581467331E-27 -2.04490040193E-27 -2.17134998074E-27 -2.30561876482E-27 -2.44819026680E-27 -2.59957789810E-27 -2.76032681770E-27 -2.93101589534E-27 -3.11225979606E-27 -3.30471119368E-27 -3.50906312110E-27 -3.72605146597E-27 -3.95645762072E-27 -4.20111129637E-27 -4.46089351041E-27 -4.73673975940E-27 -5.02964338780E-27 -5.34065916502E-27 -5.67090708381E-27 -6.02157639338E-27 -6.39392988201E-27 -6.78930842445E-27 -7.20913581051E-27 -7.65492387223E-27 -8.12827792815E-27 -8.63090256415E-27 -9.16460777181E-27 -9.73131546635E-27 -1.03330664076E-26 -1.09720275488E-26 -1.16504998404E-26 -1.23709265154E-26 -1.31359018879E-26 -1.39481806955E-26 -1.48106880194E-26 -1.57265298175E-26 -1.66990041095E-26 -1.77316128533E-26 -1.88280745556E-26 -1.99923376628E-26 -2.12285947798E-26 -2.25412977674E-26 -2.39351737743E-26 -2.54152422596E-26 -2.69868330686E-26 -2.86556056256E-26 -3.04275693142E-26 -3.23091051179E-26 -3.43069885976E-26 -3.64284142918E-26 -3.86810216245E-26 -4.10729224151E-26 -4.36127300900E-26 -4.63095907000E-26 -4.91732158564E-26 -5.22139177026E-26 -5.54426460497E-26 -5.88710278071E-26 -6.25114088521E-26 -6.63768984886E-26 -7.04814166543E-26 -7.48397440480E-26 -7.94675753558E-26 -8.43815757690E-26 -8.95994409966E-26 -9.51399609895E-26 -1.01023087604E-25 -1.07270006450E-25 -1.13903213183E-25 -1.20946594512E-25 -1.28425514217E-25 -1.36366904487E-25 -1.44799362905E-25 -1.53753255428E-25 -1.63260825742E-25 -1.73356311368E-25 -1.84076066959E-25 -1.95458695213E-25 -2.07545185887E-25 -2.20379063402E-25 -2.34006543577E-25 -2.48476700063E-25 -2.63841641050E-25 -2.80156696922E-25 -2.97480619502E-25 -3.15875793622E-25 -3.35408461780E-25 -3.56148962675E-25 -3.78171984515E-25 -4.01556833965E-25 -4.26387721739E-25 -4.52754065855E-25 -4.80750813628E-25 -5.10478783591E-25 -5.42045028543E-25 -5.75563221062E-25 -6.11154062842E-25 -6.48945719356E-25 -6.89074281386E-25 -7.31684255097E-25 -7.76929082417E-25 -8.24971693592E-25 -8.75985093914E-25 -9.30152986722E-25 -9.87670434936E-25 -1.04874456349E-24 -1.11359530522E-24 -1.18245619284E-24 -1.25557519991E-24 -1.33321563383E-24 -1.41565708404E-24 -1.50319642878E-24 -1.59614890425E-24 -1.69484923976E-24 -1.79965286312E-24 -1.91093718057E-24 -2.02910293585E-24 -2.15457565329E-24 -2.28780717022E-24 -2.42927726398E-24 -2.57949537970E-24 -2.73900246487E-24 -2.90837291724E-24 -3.08821665340E-24 -3.27918130502E-24 -3.48195455111E-24 -3.69726659436E-24 -3.92589279068E-24 -4.16865644130E-24 -4.42643175757E-24 -4.70014700902E-24 -4.99078786620E-24 -5.29940095010E-24 -5.62709760113E-24 -5.97505788118E-24 -6.34453482305E-24 -6.73685894279E-24 -7.15344303096E-24 -7.59578724020E-24 -8.06548448742E-24 -8.56422619000E-24 -9.09380835672E-24 -9.65613805535E-24 -1.02532402801E-23 -1.08872652440E-23 -1.15604961215E-23 -1.22753572710E-23 -1.30344229647E-23 -1.38404266588E-23 -1.46962708371E-23 -1.56050374631E-23 -1.65699990781E-23 -1.75946305860E-23 -1.86826217669E-23 -1.98378905641E-23 -2.10645971929E-23 -2.23671591221E-23 -2.37502669813E-23 -2.52189014526E-23 -2.67783512063E-23 -2.84342319456E-23 -3.01925066295E-23 -3.20595069457E-23 -3.40419561119E-23 -3.61469930859E-23 -3.83821982742E-23 -4.07556208296E-23 -4.32758076363E-23 -4.59518340887E-23 -4.87933367720E-23 -5.18105481646E-23 -5.50143334859E-23 -5.84162298230E-23 -6.20284876766E-23 -6.58641150761E-23 -6.99369244222E-23 -7.42615822272E-23 -7.88536619293E-23 -8.37296999747E-23 -8.89072553661E-23 -9.44049728943E-23 -1.00242650279E-22 -1.06441309464E-22 -1.13023272316E-22 -1.20012241009E-22 -1.27433383377E-22 -1.35313423547E-22 -1.43680738174E-22 -1.52565458626E-22 -1.61999579491E-22 -1.72017073791E-22 -1.82654015325E-22 -1.93948708567E-22 -2.05941826610E-22 -2.18676557631E-22 -2.32198760411E-22 -2.46557129484E-22 -2.61803370483E-22 -2.77992386338E-22 -2.95182474988E-22 -3.13435539314E-22 -3.32817310059E-22 -3.53397582524E-22 -3.75250467914E-22 -3.98454660213E-22 -4.23093719569E-22 -4.49256373199E-22 -4.77036834908E-22 -5.06535144353E-22 -5.37857527300E-22 -5.71116778148E-22 -6.06432666111E-22 -6.43932366518E-22 -6.83750918780E-22 -7.26031712678E-22 -7.70927004721E-22 -8.18598466434E-22 -8.69217766550E-22 -9.22967189203E-22 -9.80040290346E-22 -1.04064259476E-21 -1.10499233618E-21 -1.17332124314E-21 -1.24587537349E-21 -1.32291600041E-21 -1.40472055335E-21 -1.49158361701E-21 -1.58381799219E-21 -1.68175582223E-21 -1.78574978904E-21 -1.89617438318E-21 -2.01342725238E-21 -2.13793063356E-21 -2.27013287331E-21 -2.41051004238E-21 -2.55956765014E-21 -2.71784246488E-21 -2.88590444678E-21 -3.06435880040E-21 -3.25384815405E-21 -3.45505487394E-21 -3.66870352145E-21 -3.89556346233E-21 -4.13645163723E-21 -4.39223550361E-21 -4.66383615946E-21 -4.95223166030E-21 -5.25846054121E-21 -5.58362555669E-21 -5.92889765173E-21 -6.29552017853E-21 -6.68481337388E-21 -7.09817911342E-21 -7.53710595994E-21 -8.00317452379E-21 -8.49806315478E-21 -9.02355398605E-21 -9.58153935169E-21 -1.01740286012E-20 -1.08031553351E-20 -1.14711850888E-20 -1.21805234900E-20 -1.29337249225E-20 -1.37335017242E-20 -1.45827339545E-20 -1.54844797659E-20 -1.64419864161E-20 -1.74587019622E-20 -1.85382876771E-20 -1.96846312342E-20 -2.09018607071E-20 -2.21943594351E-20 -2.35667818080E-20 -2.50240700268E-20 -2.65714719013E-20 -2.82145597475E-20 -2.99592504541E-20 -3.18118267895E-20 -3.37789600269E-20 -3.58677339678E-20 -3.80856704513E-20 -4.04407564410E-20 -4.29414727864E-20 -4.55968247635E-20 -4.84163745031E-20 -5.14102754250E-20 -5.45893088012E-20 -5.79649225800E-20 -6.15492726110E-20 -6.53552664194E-20 -6.93966096868E-20 -7.36878556064E-20 -7.82444572902E-20 -8.30828234172E-20 -8.82203773215E-20 -9.36756197360E-20 -9.94681954141E-20 -1.05618963873E-19 -1.12150074508E-19 -1.19085046359E-19 -1.26448852799E-19 -1.34268011467E-19 -1.42570679762E-19 -1.51386756238E-19 -1.60747988271E-19 -1.70688086384E-19 -1.81242845642E-19 -1.92450274549E-19 -2.04350731927E-19 -2.16987072243E-19 -2.30404799936E-19 -2.44652233280E-19 -2.59780678384E-19 -2.75844613946E-19 -2.92901887436E-19 -3.11013923411E-19 -3.30245944707E-19 -3.50667207311E-19 -3.72351249761E-19 -3.95376157959E-19 -4.19824846365E-19 -4.45785356581E-19 -4.73351174393E-19 -5.02621566419E-19 -5.33701937580E-19 -5.66704210666E-19 -6.01747229379E-19 -6.38957186302E-19 -6.78468077323E-19 -7.20422184165E-19 -7.64970586755E-19 -8.12273707271E-19 -8.62501887838E-19 -9.15836003935E-19 -9.72468115750E-19 -1.03260215980E-18 -1.09645468330E-18 -1.16425562401E-18 -1.23624913823E-18 -1.31269447999E-18 -1.39386693473E-18 -1.48005881053E-18 -1.57158049078E-18 -1.66876155191E-18 -1.77195195016E-18 -1.88152328186E-18 -1.99787012151E-18 -2.12141144274E-18 -2.25259212700E-18 -2.39188456565E-18 -2.53979036108E-18 -2.69684213295E-18 -2.86360543628E-18 -3.04068079799E-18 -3.22870587945E-18 -3.42835777277E-18 -3.64035543901E-18 -3.86546229726E-18 -4.10448897370E-18 -4.35829622079E-18 -4.62779801684E-18 -4.91396485732E-18 -5.21782724972E-18 -5.54047942442E-18 -5.88308327510E-18 -6.24687254283E-18 -6.63315725881E-18 -7.04332846188E-18 -7.47886320779E-18 -7.94132988811E-18 -8.43239387813E-18 -8.95382353401E-18 -9.50749656072E-18 -1.00954067737E-17 -1.07196712790E-17 -1.13825380966E-17 -1.20863942562E-17 -1.28337743928E-17 -1.36273698739E-17 -1.44700384918E-17 -1.53648147541E-17 -1.63149208117E-17 -1.73237780612E-17 -1.83950194666E-17 -1.95325026408E-17 -2.07403237376E-17 -2.20228322024E-17 -2.33846464341E-17 -2.48306704170E-17 -2.63661113797E-17 -2.79964985471E-17 -2.97277030510E-17 -3.15659590728E-17 -3.35178862927E-17 -3.55905137281E-17 -3.77913050447E-17 -4.01281854344E-17 -4.26095701535E-17 -4.52443948272E-17 -4.80421476269E-17 -5.10129034373E-17 -5.41673601373E-17 -5.75168771229E-17 -6.10735162134E-17 -6.48500850863E-17 -6.88601833984E-17 -7.31182517590E-17 -7.76396237311E-17 -8.24405810481E-17 -8.75384122454E-17 -9.29514749167E-17 -9.86992618209E-17 -1.04802471076E-16 -1.11283080695E-16 -1.18164427728E-16 -1.25471292301E-16 -1.33229986848E-16 -1.41468450868E-16 -1.50216351531E-16 -1.59505190513E-16 -1.69368417433E-16 -1.79841550310E-16 -1.90962303462E-16 -2.02770723314E-16 -2.15309332611E-16 -2.28623283544E-16 -2.42760520338E-16 -2.57771951908E-16 -2.73711635180E-16 -2.90636969751E-16 -3.08608904589E-16 -3.27692157508E-16 -3.47955448223E-16 -3.69471745808E-16 -3.92318531458E-16 -4.16578077507E-16 -4.42337743684E-16 -4.69690291703E-16 -4.98734219297E-16 -5.29574114909E-16 -5.62321034322E-16 -5.97092900563E-16 -6.34014928554E-16 -6.73220076009E-16 -7.14849522214E-16 -7.59053176417E-16 -8.05990217653E-16 -8.55829667947E-16 -9.08751000961E-16 -9.64944788284E-16 -1.02461338568E-15 -1.08797166175E-15 -1.15524777173E-15 -1.22668397899E-15 -1.30253752752E-15 -1.38308156818E-15 -1.46860614236E-15 -1.55941922640E-15 -1.65584784063E-15 -1.75823922692E-15 -1.86696209915E-15 -1.98240797089E-15 -2.10499256527E-15 -2.23515731195E-15 -2.37337093675E-15 -2.52013114946E-15 -2.67596643612E-15 -2.84143796209E-15 -3.01714159272E-15 -3.20371003913E-15 -3.40181513650E-15 -3.61217026337E-15 -3.83553291047E-15 -4.07270740840E-15 -4.32454782400E-15 -4.59196103580E-15 -4.87590999962E-15 -5.17741721614E-15 -5.49756841287E-15 -5.83751645377E-15 -6.19848549062E-15 -6.58177537117E-15 -6.98876631973E-15 -7.42092390731E-15 -7.87980432898E-15 -8.36706000763E-15 -8.88444554424E-15 -9.43382403595E-15 -1.00171737850E-14 -1.06365954224E-14 -1.12943194720E-14 -1.19927143825E-14 -1.27342950559E-14 -1.35217319036E-14 -1.43578604618E-14 -1.52456916024E-14 -1.61884223745E-14 -1.71894475170E-14 -1.82523716818E-14 -1.93810224145E-14 -2.05794639365E-14 -2.18520117798E-14 -2.32032483264E-14 -2.46380393089E-14 -2.61615513315E-14 -2.77792704735E-14 -2.94970220445E-14 -3.13209915598E-14 -3.32577470136E-14 -3.53142625293E-14 -3.74979434715E-14 -3.98166531121E-14 -4.22787409438E-14 -4.48930727449E-14 -4.76690625038E-14 -5.06167063160E-14 -5.37466183784E-14 -5.70700692082E-14 -6.05990262260E-14 -6.43461968470E-14 -6.83250742378E-14 -7.25499859017E-14 -7.70361452685E-14 -8.17997064739E-14 -8.68578225262E-14 -9.22287070697E-14 -9.79316999666E-14 -1.03987336935E-13 -1.10417423489E-13 -1.17245113459E-13 -1.24494992357E-13 -1.32193165901E-13 -1.40367354016E-13 -1.49046990641E-13 -1.58263329714E-13 -1.68049557702E-13 -1.78440913096E-13 -1.89474813291E-13 -2.01190989313E-13 -2.13631628873E-13 -2.26841528266E-13 -2.40868253671E-13 -2.55762312408E-13 -2.71577334801E-13 -2.88370267272E-13 -3.06201577379E-13 -3.25135471536E-13 -3.45240126186E-13 -3.66587933272E-13 -3.89255760886E-13 -4.13325230028E-13 -4.38883008487E-13 -4.66021122879E-13 -4.94837289989E-13 -5.25435268592E-13 -5.57925233032E-13 -5.92424169891E-13 -6.29056299194E-13 -6.67953521642E-13 -7.09255893511E-13 -7.53112130899E-13 -7.99680145161E-13 -8.49127611438E-13 -9.01632572342E-13 -9.57384078963E-13 -1.01658287151E-12 -1.07944210201E-12 -1.14618810176E-12 -1.21706119610E-12 -1.29231656970E-12 -1.37222518525E-12 -1.45707475895E-12 -1.54717079640E-12 -1.64283769241E-12 -1.74441989888E-12 -1.85228316486E-12 -1.96681585330E-12 -2.08843033916E-12 -2.21756449397E-12 -2.35468326222E-12 -2.50028033515E-12 -2.65487992798E-12 -2.81903866714E-12 -2.99334759406E-12 -3.17843429285E-12 -3.37496514957E-12 -3.58364775110E-12 -3.80523343239E-12 -4.04051998107E-12 -4.29035450938E-12 -4.55563650354E-12 -4.83732106167E-12 -5.13642233192E-12 -5.45401716301E-12 -5.79124898057E-12 -6.14933190304E-12 -6.52955511203E-12 -6.93328749277E-12 -7.36198256152E-12 -7.81718369750E-12 -8.30052969825E-12 -8.81376067840E-12 -9.35872433302E-12 -9.93738258827E-12 -1.05518186629E-11 -1.12042445667E-11 -1.18970090622E-11 -1.26326061163E-11 -1.34136838818E-11 -1.42430542192E-11 -1.51237028329E-11 -1.60587999961E-11 -1.70517119783E-11 -1.81060131507E-11 -1.92254988557E-11 -2.04141990636E-11 -2.16763928727E-11 -2.30166239195E-11 -2.44397167153E-11 -2.59507940171E-11 -2.75552952592E-11 -2.92589961533E-11 -3.10680294184E-11 -3.29889068994E-11 -3.50285429735E-11 -3.71942794510E-11 -3.94939119719E-11 -4.19357180734E-11 -4.45284869602E-11 -4.72815511584E-11 -5.02048200488E-11 -5.33088155842E-11 -5.66047100674E-11 -6.01043664484E-11 -6.38203809002E-11 -6.77661282198E-11 -7.19558099240E-11 -7.64045053070E-11 -8.11282257444E-11 -8.61439722729E-11 -9.14697967093E-11 -9.71248667335E-11 -1.03129534604E-10 -1.09505410537E-10 -1.16275440552E-10 -1.23463988768E-10 -1.31096925084E-10 -1.39201718435E-10 -1.47807535282E-10 -1.56945344854E-10 -1.66648030345E-10 -1.76950507082E-10 -1.87889848478E-10 -1.99505418822E-10 -2.11839015434E-10 -2.24935018325E-10 -2.38840550619E-10 -2.53605647176E-10 -2.69283435059E-10 -2.85930324247E-10 -3.03606210918E-10 -3.22374692308E-10 -3.42303295511E-10 -3.63463720618E-10 -3.85932098017E-10 -4.09789262553E-10 -4.35121043454E-10 -4.62018573769E-10 -4.90578617417E-10 -5.20903916995E-10 -5.53103563539E-10 -5.87293387923E-10 -6.23596378065E-10 -6.62143120295E-10 -7.03072268867E-10 -7.46531044465E-10 -7.92675763046E-10 -8.41672397796E-10 -8.93697174972E-10 -9.48937208322E-10 -1.00759116999E-09 -1.06987000549E-09 -1.13599769100E-09 -1.20621203780E-09 -1.28076554756E-09 -1.35992631822E-09 -1.44397900821E-09 -1.53322585794E-09 -1.62798777583E-09 -1.72860549086E-09 -1.83544077652E-09 -1.94887774923E-09 -2.06932424856E-09 -2.19721330122E-09 -2.33300467641E-09 -2.47718653430E-09 -2.63027718377E-09 -2.79282693576E-09 -2.96542008652E-09 -3.14867700837E-09 -3.34325638093E-09 -3.54985755166E-09 -3.76922304970E-09 -4.00214124550E-09 -4.24944918225E-09 -4.51203558432E-09 -4.79084403325E-09 -5.08687636296E-09 -5.40119625544E-09 -5.73493304397E-09 -6.08928577533E-09 -6.46552750615E-09 -6.86500986459E-09 -7.28916790292E-09 -7.73952523801E-09 -8.21769951862E-09 -8.72540821500E-09 -9.26447478653E-09 -9.83683521412E-09 -1.04445449287E-08 -1.10897861874E-08 -1.17748758925E-08 -1.25022738849E-08 -1.32745917630E-08 -1.40946022328E-08 -1.49652490417E-08 -1.58896575179E-08 -1.68711457651E-08 -1.79132365370E-08 -1.90196698540E-08 -2.01944163872E-08 -2.14416916686E-08 -2.27659711873E-08 -2.41720063811E-08 -2.56648416651E-08 -2.72498324546E-08 -2.89326643226E-08 -3.07193733454E-08 -3.26163676781E-08 -3.46304504602E-08 -3.67688441388E-08 -3.90392163000E-08 -4.14497070275E-08 -4.40089580450E-08 -4.67261435354E-08 -4.96110029465E-08 -5.26738757601E-08 -5.59257384122E-08 -5.93782434798E-08 -6.30437612822E-08 -6.69354240196E-08 -7.10671726372E-08 -7.54538065648E-08 -8.01110364938E-08 -8.50555404142E-08 -9.03050230727E-08 -9.58782791027E-08 -1.01795259974E-07 -1.08077145126E-07 -1.14746417396E-07 -1.21826943109E-07 -1.29344057054E-07 -1.37324652684E-07 -1.45797277847E-07 -1.54792236356E-07 -1.64341695818E-07 -1.74479802021E-07 -1.85242800374E-07 -1.96669164754E-07 -2.08799734212E-07 -2.21677858126E-07 -2.35349550126E-07 -2.49863651544E-07 -2.65272004757E-07 -2.81629637216E-07 -2.98994956645E-07 -3.17429958242E-07 -3.37000444487E-07 -3.57776258364E-07 -3.79831530920E-07 -4.03244943776E-07 -4.28100007854E-07 -4.54485358903E-07 -4.82495071239E-07 -5.12228990486E-07 -5.43793086656E-07 -5.77299828762E-07 -6.12868582207E-07 -6.50626030416E-07 -6.90706622118E-07 -7.33253045880E-07 -7.78416733482E-07 -8.26358393940E-07 -8.77248579979E-07 -9.31268288967E-07 -9.88609600356E-07 -1.04947635182E-06 -1.11408485647E-06 -1.18266466363E-06 -1.25545936571E-06 -1.33272745407E-06 -1.41474322674E-06 -1.50179775122E-06 -1.59419988546E-06 -1.69227736082E-06 -1.79637793047E-06 -1.90687058736E-06 -2.02414685568E-06 -2.14862216060E-06 -2.28073728056E-06 -2.42095988737E-06 -2.56978617922E-06 -2.72774261226E-06 -2.89538773646E-06 -3.07331414220E-06 -3.26215052408E-06 -3.46256386896E-06 -3.67526177563E-06 -3.90099491391E-06 -4.14055963159E-06 -4.39480071795E-06 -4.66461433303E-06 -4.95095111264E-06 -5.25481945960E-06 -5.57728903199E-06 -5.91949444031E-06 -6.28263916572E-06 -6.66799971261E-06 -7.07693000916E-06 -7.51086607072E-06 -7.97133094104E-06 -8.45993992844E-06 -8.97840615350E-06 -9.52854642700E-06 -1.01122874775E-05 -1.07316725485E-05 -1.13888683878E-05 -1.20861726510E-05 -1.28260217436E-05 -1.36109991279E-05 -1.44438441204E-05 -1.53274612100E-05 -1.62649299255E-05 -1.72595152855E-05 -1.83146788636E-05 -1.94340905052E-05 -2.06216407328E-05 -2.18814538797E-05 -2.32179019947E-05 -2.46356195610E-05 -2.61395190765E-05 -2.77348075453E-05 -2.94270039315E-05 -3.12219576308E-05 -3.31258680184E-05 -3.51453051324E-05 -3.72872315605E-05 -3.95590255940E-05 -4.19685057242E-05 -4.45239565552E-05 -4.72341562132E-05 -5.01084053357E-05 -5.31565577306E-05 -5.63890527966E-05 -5.98169498053E-05 -6.34519641463E-05 -6.73065056456E-05 -7.13937190721E-05 -7.57275269522E-05 -8.03226748201E-05 -8.51947790375E-05 -9.03603773231E-05 -9.58369821395E-05 -1.01643137095E-04 -1.07798476518E-04 -1.14323788387E-04 -1.21241080783E-04 -1.28573652062E-04 -1.36346164948E-04 -1.44584724747E-04 -1.53316961913E-04 -1.62572119186E-04 -1.72381143542E-04 -1.82776783226E-04 -1.93793690103E-04 -2.05468527637E-04 -2.17840084759E-04 -2.30949395956E-04 -2.44839867874E-04 -2.59557412793E-04 -2.75150589297E-04 -2.91670750529E-04 -3.09172200390E-04 -3.27712358095E-04 -3.47351931495E-04 -3.68155099591E-04 -3.90189704707E-04 -4.13527454781E-04 -4.38244136266E-04 -4.64419838152E-04 -4.92139187648E-04 -5.21491598059E-04 -5.52571529447E-04 -5.85478762667E-04 -6.20318687392E-04 -6.57202604775E-04 -6.96248045403E-04 -7.37579103243E-04 -7.81326786277E-04 -8.27629384570E-04 -8.76632856528E-04 -9.28491234123E-04 -9.83367047896E-04 -1.04143177257E-03 -1.10286629410E-03 -1.16786139909E-03 -1.23661828740E-03 -1.30934910894E-03 -1.38627752548E-03 -1.46763929857E-03 -1.55368290443E-03 -1.64467017685E-03 -1.74087697910E-03 -1.84259390582E-03 -1.95012701602E-03 -2.06379859811E-03 -2.18394796800E-03 -2.31093230141E-03 -2.44512750129E-03 -2.58692910145E-03 -2.73675320735E-03 -2.89503747513E-03 -3.06224212966E-03 -3.23885102278E-03 -3.42537273240E-03 -3.62234170345E-03 -3.83031943132E-03 -4.04989568873E-03 -4.28168979644E-03 -4.52635193847E-03 -4.78456452234E-03 -5.05704358451E-03 -5.34454024143E-03 -5.64784218617E-03 -5.96777523052E-03 -6.30520489244E-03 -6.66103802823E-03 -7.03622450894E-03 -7.43175893998E-03 -7.84868242283E-03 -8.28808435746E-03 -8.75110428360E-03 -9.23893375884E-03 -9.75281827118E-03 -1.02940591830E-02 -1.08640157035E-02 -1.14641068852E-02 -1.20958136417E-02 -1.27606807796E-02 -1.34603190422E-02 -1.41964071560E-02 -1.49706938761E-02 -1.57850000211E-02 -1.66412204909E-02 -1.75413262575E-02 -1.84873663205E-02 -1.94814696148E-02 -2.05258468609E-02 -2.16227923442E-02 -2.27746856108E-02 -2.39839930632E-02 -2.52532694431E-02 -2.65851591820E-02 -2.79823976023E-02 -2.94478119497E-02 -3.09843222359E-02 -3.25949418697E-02 -3.42827780521E-02 -3.60510319120E-02 -3.79029983544E-02 -3.98420655946E-02 -4.18717143471E-02 -4.39955166406E-02 -4.62171342242E-02 -4.85403165322E-02 -5.09688981711E-02 -5.35067958922E-02 -5.61580050110E-02 -5.89265952330E-02 -6.18167058462E-02 -6.48325402355E-02 -6.79783596775E-02 -7.12584763697E-02 -7.46772456501E-02 -7.82390573592E-02 -8.19483263002E-02 -8.58094817493E-02 -8.98269559700E-02 -9.40051716851E-02 -9.83485284617E-02 -1.02861387964E-01 -1.07548058032E-01 -1.12412775545E-01 -1.17459688030E-01 -1.22692833986E-01 -1.28116121882E-01 -1.33733307815E-01 -1.39547971791E-01 -1.45563492626E-01 -1.51783021445E-01 -1.58209453792E-01 -1.64845400330E-01 -1.71693156180E-01 -1.78754668892E-01 -1.86031505101E-01 -1.93524815911E-01 -2.01235301069E-01 -2.09163171995E-01 -2.17308113770E-01 -2.25669246182E-01 -2.34245083948E-01 -2.43033496259E-01 -2.52031665808E-01 -2.61236047481E-01 -2.70642326905E-01 -2.80245379091E-01 -2.90039227401E-01 -3.00017003118E-01 -3.10170905907E-01 -3.20492165480E-01 -3.30971004808E-01 -3.41596605238E-01 -3.52357073900E-01 -3.63239413814E-01 -3.74229497113E-01 -3.85312041850E-01 -3.96470592826E-01 -4.07687506945E-01 -4.18943943568E-01 -4.30219860386E-01 -4.41494015302E-01 -4.52743974856E-01 -4.63946129675E-01 -4.75075717480E-01 -4.86106854109E-01 -4.97012573047E-01 -5.07764873904E-01 -5.18334780245E-01 -5.28692407155E-01 -5.38807038865E-01 -5.48647216698E-01 -5.58180837563E-01 -5.67375263102E-01 -5.76197439581E-01 -5.84614028450E-01 -5.92591547468E-01 -6.00096522141E-01 -6.07095647110E-01 -6.13555957038E-01 -6.19445006357E-01 -6.24731057180E-01 -6.29383274464E-01 -6.33371927435E-01 -6.36668596108E-01 -6.39246381605E-01 -6.41080118820E-01 -6.42146589875E-01 -6.42424736638E-01 -6.41895870494E-01 -6.40543877419E-01 -6.38355416324E-01 -6.35320108562E-01 -6.31430716414E-01 -6.26683308340E-01 -6.21077408766E-01 -6.14616130183E-01 -6.07306285373E-01 -5.99158477659E-01 -5.90187167144E-01 -5.80410711083E-01 -5.69851376653E-01 -5.58535324616E-01 -5.46492562584E-01 -5.33756866876E-01 -5.20365672227E-01 -5.06359928950E-01 -4.91783927492E-01 -4.76685090676E-01 -4.61113734326E-01 -4.45122797349E-01 -4.28767542749E-01 -4.12105231445E-01 -3.95194771169E-01 -3.78096343087E-01 -3.60871009154E-01 -3.43580303546E-01 -3.26285811834E-01 -3.09048741803E-01 -2.91929490087E-01 -2.74987208939E-01 -2.58279377600E-01 -2.41861382816E-01 -2.25786113058E-01 -2.10103570969E-01 -1.94860508486E-01 -1.80100088901E-01 -1.65861579933E-01 -1.52180081615E-01 -1.39086292467E-01 -1.26606317039E-01 -1.14761517498E-01 -1.03568411422E-01 -9.30386174367E-02 -8.31788497766E-02 -7.39909621793E-02 -6.54720409097E-02 -5.76145459818E-02 -5.04064989340E-02 -4.38317147701E-02 -3.78700749268E-02 -3.24978373846E-02 -2.76879793247E-02 -2.34105670589E-02 -1.96331473655E-02 -1.63211538659E-02 -1.34383217182E-02 -1.09471037165E-02 -8.80908090421E-03 -6.98726578938E-03 -5.45205507225E-03 -4.17561235858E-03 -3.13024943522E-03 -2.28874203695E-03 -1.62463720350E-03 -1.11254727155E-03 -7.28425484040E-04 -4.49818201813E-04 -2.56088769594E-04 -1.28608214455E-04 -5.09081330276E-05 -8.79134515614E-06 9.60385491213E-06 1.37897448187E-05 1.09691304772E-05 6.13254456924E-06 2.21574796032E-06 3.20335879476E-07 -2.15297268357E-18 5.19526898617E-19 6.21994850047E-18 -2.05955596539E-18 3.31990085701E-18 -3.97929304798E-18 -6.75917521891E-19 -4.81009317863E-20 -1.00278677297E-19 1.80701505647E-18 1.35225451312E-18 -1.59525545867E-18 7.70789562934E-19 -4.10392039885E-20 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 2 i j (l(j)) 4.92186023555E-01 Q_int 1.07318050821E-27 1.13954228462E-27 1.21000764412E-27 1.28483033809E-27 1.36427980906E-27 1.44864216093E-27 1.53822118930E-27 1.63333947543E-27 1.73433954788E-27 1.84158511600E-27 1.95546237968E-27 2.07638142008E-27 2.20477767634E-27 2.34111351367E-27 2.48587988835E-27 2.63959811569E-27 2.80282174733E-27 2.97613856467E-27 3.16017269544E-27 3.35558686129E-27 3.56308476430E-27 3.78341362104E-27 4.01736685336E-27 4.26578694562E-27 4.52956847845E-27 4.80966135031E-27 5.10707419806E-27 5.42287802919E-27 5.75821007861E-27 6.11427790389E-27 6.49236373380E-27 6.89382908570E-27 7.32011966850E-27 7.77277058874E-27 8.25341187864E-27 8.76377436600E-27 9.30569590704E-27 9.88112800463E-27 1.04921428359E-26 1.11409407141E-26 1.18298580125E-26 1.25613755774E-26 1.33381276622E-26 1.41629114134E-26 1.50386969434E-26 1.59686380260E-26 1.69560834535E-26 1.80045890961E-26 1.91179307066E-26 2.03001175172E-26 2.15554066775E-26 2.28883185843E-26 2.43036531601E-26 2.58065071382E-26 2.74022924161E-26 2.90967555444E-26 3.08959984206E-26 3.28065002626E-26 3.48351409404E-26 3.69892257516E-26 3.92765117283E-26 4.17052355705E-26 4.42841433074E-26 4.70225217922E-26 4.99302321453E-26 5.30177452647E-26 5.62961795324E-26 5.97773408529E-26 6.34737651669E-26 6.73987635946E-26 7.15664703697E-26 7.59918937381E-26 8.06909700041E-26 8.56806209176E-26 9.09788146114E-26 9.66046303053E-26 1.02578327012E-25 1.08921416493E-25 1.15656740720E-25 1.22808554137E-25 1.30402610995E-25 1.38466258103E-25 1.47028533298E-25 1.56120270021E-25 1.65774208344E-25 1.76025112871E-25 1.86909897930E-25 1.98467760506E-25 2.10740321387E-25 2.23771775047E-25 2.37609048796E-25 2.52301971763E-25 2.67903454343E-25 2.84469678723E-25 3.02060301204E-25 3.20738667027E-25 3.40572038484E-25 3.61631837132E-25 3.83993900996E-25 4.07738757656E-25 4.32951914245E-25 4.59724165358E-25 4.88151920017E-25 5.18337548841E-25 5.50389752700E-25 5.84423954145E-25 6.20562713063E-25 6.58936168018E-25 6.99682504895E-25 7.42948454517E-25 7.88889821034E-25 8.37672042985E-25 8.89470789058E-25 9.44472590687E-25 1.00287551377E-24 1.06488987189E-24 1.13073898374E-24 1.20065997724E-24 1.27490464348E-24 1.35374034346E-24 1.43745097083E-24 1.52633797428E-24 1.62072144302E-24 1.72094125948E-24 1.82735832325E-24 1.94035585069E-24 2.06034075494E-24 2.18774511126E-24 2.32302771294E-24 2.46667572345E-24 2.61920643078E-24 2.78116911023E-24 2.95314700236E-24 3.13575941334E-24 3.32966394508E-24 3.53555886333E-24 3.75418561217E-24 3.98633148402E-24 4.23283245476E-24 4.49457619412E-24 4.77250526225E-24 5.06762050398E-24 5.38098465292E-24 5.71372615845E-24 6.06704324938E-24 6.44220824883E-24 6.84057215600E-24 7.26356951119E-24 7.71272356176E-24 8.18965174737E-24 8.69607152461E-24 9.23380655163E-24 9.80479325529E-24 1.04110878044E-23 1.10548735142E-23 1.17384687085E-23 1.24643350683E-23 1.32350864966E-23 1.40534985307E-23 1.49225183381E-23 1.58452753284E-23 1.68250924236E-23 1.78654980234E-23 1.89702387115E-23 2.01432927476E-23 2.13888843931E-23 2.27114991232E-23 2.41158997794E-23 2.56071437208E-23 2.71906010360E-23 2.88719738817E-23 3.06573170158E-23 3.25530596018E-23 3.45660283605E-23 3.67034721532E-23 3.89730880862E-23 4.13830492278E-23 4.39420340409E-23 4.66592576345E-23 4.95445049480E-23 5.26081659877E-23 5.58612732420E-23 5.93155414102E-23 6.29834095883E-23 6.68780860627E-23 7.10135958749E-23 7.54048313262E-23 8.00676056067E-23 8.50187097393E-23 9.02759730456E-23 9.58583273510E-23 1.01785875160E-22 1.08079962045E-22 1.14763253517E-22 1.21859816642E-22 1.29395206711E-22 1.37396559266E-22 1.45892687817E-22 1.54914187601E-22 1.64493545760E-22 1.74665258328E-22 1.85465954454E-22 1.96934528309E-22 2.09112279142E-22 2.22043060006E-22 2.35773435677E-22 2.50352850334E-22 2.65833805612E-22 2.82272049668E-22 2.99726777932E-22 3.18260846273E-22 3.37940997351E-22 3.58838100961E-22 3.81027409240E-22 4.04588827659E-22 4.29607202766E-22 4.56172627727E-22 4.84380766755E-22 5.14333199610E-22 5.46137787392E-22 5.79909060960E-22 6.15768633362E-22 6.53845637778E-22 6.94277192539E-22 7.37208894897E-22 7.82795345335E-22 8.31200704296E-22 8.82599283334E-22 9.37176172832E-22 9.95127908516E-22 1.05666317921E-21 1.12200357831E-21 1.19138440182E-21 1.26505549561E-21 1.34328215514E-21 1.42634608086E-21 1.51454639256E-21 1.60820070661E-21 1.70764627963E-21 1.81324122306E-21 1.92536579269E-21 2.04442375801E-21 2.17084385624E-21 2.30508133620E-21 2.44761959774E-21 2.59897193248E-21 2.75968337221E-21 2.93033265159E-21 3.11153429226E-21 3.30394081572E-21 3.50824509315E-21 3.72518284050E-21 3.95553526782E-21 4.20013189251E-21 4.45985352643E-21 4.73563544780E-21 5.02847076923E-21 5.33941401395E-21 5.66958491326E-21 6.02017243875E-21 6.39243908394E-21 6.78772541051E-21 7.20745487589E-21 7.65313895916E-21 8.12638260401E-21 8.62888999832E-21 9.16247071102E-21 9.72904620853E-21 1.03306567741E-20 1.09694688549E-20 1.16477828639E-20 1.23680414636E-20 1.31328383620E-20 1.39449276533E-20 1.48072337352E-20 1.57228618402E-20 1.66951092174E-20 1.77274770064E-20 1.88236828450E-20 1.99876742572E-20 2.12236428679E-20 2.25360394975E-20 2.39295901899E-20 2.54093132309E-20 2.69805372200E-20 2.86489202584E-20 3.04204703250E-20 3.23015669111E-20 3.42989839935E-20 3.64199144283E-20 3.86719958530E-20 4.10633381897E-20 4.36025528503E-20 4.62987837462E-20 4.91617402167E-20 5.22017319928E-20 5.54297063234E-20 5.88572873974E-20 6.24968182029E-20 6.63614049756E-20 7.04649643954E-20 7.48222737009E-20 7.94490239040E-20 8.43618762942E-20 8.95785224370E-20 9.51177478830E-20 1.00999499816E-19 1.07244958883E-19 1.13876615470E-19 1.20918350690E-19 1.28395522379E-19 1.36335056417E-19 1.44765543682E-19 1.53717343016E-19 1.63222690544E-19 1.73315815762E-19 1.84033064796E-19 1.95413031293E-19 2.07496695395E-19 2.20327571313E-19 2.33951864024E-19 2.48418635663E-19 2.63779982191E-19 2.80091221007E-19 2.97411090140E-19 3.15801959776E-19 3.35330056854E-19 3.56065703559E-19 3.78083570548E-19 4.01462945857E-19 4.26288020413E-19 4.52648191215E-19 4.80638383261E-19 5.10359391380E-19 5.41918243198E-19 5.75428584556E-19 6.11011088754E-19 6.48793891109E-19 6.88913050375E-19 7.31513038703E-19 7.76747261894E-19 8.24778611828E-19 8.75780053045E-19 9.29935245606E-19 9.87439206466E-19 1.04849901174E-18 1.11333454241E-18 1.18217927612E-18 1.25528112795E-18 1.33290334318E-18 1.41532544525E-18 1.50284424233E-18 1.59577489620E-18 1.69445205710E-18 1.79923106888E-18 1.91048924859E-18 2.02862724524E-18 2.15407048257E-18 2.28727069100E-18 2.42870753439E-18 2.57889033731E-18 2.73835991914E-18 2.90769054165E-18 3.08749197692E-18 3.27841170315E-18 3.48113723634E-18 3.69639860601E-18 3.92497098413E-18 4.16767747657E-18 4.42539208712E-18 4.69904286488E-18 4.98961524621E-18 5.29815560333E-18 5.62577501243E-18 5.97365325467E-18 6.34304306469E-18 6.73527464179E-18 7.15176044001E-18 7.59400025457E-18 8.06358662262E-18 8.56221055814E-18 9.09166764139E-18 9.65386448485E-18 1.02508255991E-17 1.08847006833E-17 1.15577723661E-17 1.22724644260E-17 1.30313505189E-17 1.38371634467E-17 1.46928049978E-17 1.56013563965E-17 1.65660893994E-17 1.75904780765E-17 1.86782113215E-17 1.98332061365E-17 2.10596217364E-17 2.23618745272E-17 2.37446540093E-17 2.52129396648E-17 2.67720188891E-17 2.84275060307E-17 3.01853626093E-17 3.20519187830E-17 3.40338961440E-17 3.61384319233E-17 3.83731046920E-17 4.07459616527E-17 4.32655476172E-17 4.59409357776E-17 4.87817603785E-17 5.17982514113E-17 5.50012714521E-17 5.84023547791E-17 6.20137489075E-17 6.58484586938E-17 6.99202931669E-17 7.42439152549E-17 7.88348945872E-17 8.37097635613E-17 8.88860768768E-17 9.43824747507E-17 1.00218750042E-16 1.06415919525E-16 1.12996299575E-16 1.19983586527E-16 1.27402942009E-16 1.35281083549E-16 1.43646380789E-16 1.52528957640E-16 1.61960800763E-16 1.71975874755E-16 1.82610244454E-16 1.93902204810E-16 2.05892418789E-16 2.18624063800E-16 2.32142987178E-16 2.46497871282E-16 2.61740408803E-16 2.77925488909E-16 2.95111394904E-16 3.13360014107E-16 3.32737060712E-16 3.53312312423E-16 3.75159861727E-16 3.98358382704E-16 4.22991414334E-16 4.49147661321E-16 4.76921313521E-16 5.06412385124E-16 5.37727074803E-16 5.70978148140E-16 6.06285343698E-16 6.43775804196E-16 6.83584534358E-16 7.25854887063E-16 7.70739079559E-16 8.18398741604E-16 8.69005497490E-16 9.22741584069E-16 9.79800506984E-16 1.04038773749E-15 1.10472145234E-15 1.17303331946E-15 1.24556933218E-15 1.32259069505E-15 1.40437476443E-15 1.49121604727E-15 1.58342726160E-15 1.68134046265E-15 1.78530823856E-15 1.89570498005E-15 2.01292822860E-15 2.13740010799E-15 2.26956884435E-15 2.40991038021E-15 2.55893008839E-15 2.71716459180E-15 2.88518369581E-15 3.06359244011E-15 3.25303327745E-15 3.45418838706E-15 3.66778213120E-15 3.89458366349E-15 4.13540969868E-15 4.39112745354E-15 4.66265776972E-15 4.95097842959E-15 5.25712767727E-15 5.58220795722E-15 5.92738988411E-15 6.29391645814E-15 6.68310754098E-15 7.09636460853E-15 7.53517579755E-15 8.00112126430E-15 8.49587887458E-15 9.02123024562E-15 9.57906716150E-15 1.01713983853E-14 1.08003568927E-14 1.14682075521E-14 1.21773552808E-14 1.29303537047E-14 1.37299143531E-14 1.45789164237E-14 1.54804171493E-14 1.64376628071E-14 1.74541004078E-14 1.85333901083E-14 1.96794183912E-14 2.08963120594E-14 2.21884530967E-14 2.35604944461E-14 2.50173767647E-14 2.65643462144E-14 2.82069733523E-14 2.99511731894E-14 3.18032264901E-14 3.37698023874E-14 3.58579823982E-14 3.80752859219E-14 4.04296973167E-14 4.29296946499E-14 4.55842802257E-14 4.84030130007E-14 5.13960430039E-14 5.45741478846E-14 5.79487717211E-14 6.15320662273E-14 6.53369345093E-14 6.93770775260E-14 7.36670434229E-14 7.82222799169E-14 8.30591899194E-14 8.81951905989E-14 9.36487760958E-14 9.94395841150E-14 1.05588466635E-13 1.12117564992E-13 1.19050389602E-13 1.26411904615E-13 1.34228617805E-13 1.42528676016E-13 1.51341966508E-13 1.60700224572E-13 1.70637147799E-13 1.81188517411E-13 1.92392327099E-13 2.04288919824E-13 2.16921133076E-13 2.30334453114E-13 2.44577178748E-13 2.59700595241E-13 2.75759158968E-13 2.92810693486E-13 3.10916597738E-13 3.30142067120E-13 3.50556328220E-13 3.72232888071E-13 3.95249798817E-13 4.19689938738E-13 4.45641310657E-13 4.73197358789E-13 5.02457305189E-13 5.33526506998E-13 5.66516835772E-13 6.01547080275E-13 6.38743374165E-13 6.78239650132E-13 7.20178122106E-13 7.64709797286E-13 8.11995019818E-13 8.62204048097E-13 9.15517667756E-13 9.72127842549E-13 1.03223840549E-12 1.09606579270E-12 1.16383982266E-12 1.23580452360E-12 1.31221901207E-12 1.39335842582E-12 1.47951491437E-12 1.57099869078E-12 1.66813914849E-12 1.77128604721E-12 1.88081077206E-12 1.99710767066E-12 2.12059547278E-12 2.25171879784E-12 2.39094975553E-12 2.53878964549E-12 2.69577076192E-12 2.86245830995E-12 3.03945244026E-12 3.22739040968E-12 3.42694887526E-12 3.63884633015E-12 3.86384569013E-12 4.10275704003E-12 4.35644054986E-12 4.62580957129E-12 4.91183392556E-12 5.21554339457E-12 5.53803142787E-12 5.88045907875E-12 6.24405918366E-12 6.63014080006E-12 7.04009391847E-12 7.47539446595E-12 7.93760961878E-12 8.42840344359E-12 8.94954288720E-12 9.50290413667E-12 1.00904793726E-11 1.07143839398E-11 1.13768639612E-11 1.20803044224E-11 1.28272377562E-11 1.36203529571E-11 1.44625052617E-11 1.53567264179E-11 1.63062356085E-11 1.73144510265E-11 1.83850021912E-11 1.95217429864E-11 2.07287655677E-11 2.20104150399E-11 2.33713051546E-11 2.48163348501E-11 2.63507059487E-11 2.79799418257E-11 2.97099072968E-11 3.15468297538E-11 3.34973215078E-11 3.55684036981E-11 3.77675314322E-11 4.01026206845E-11 4.25820767658E-11 4.52148245881E-11 4.80103407324E-11 5.09786875922E-11 5.41305495570E-11 5.74772714724E-11 6.10308994461E-11 6.48042242084E-11 6.88108270848E-11 7.30651289657E-11 7.75824420306E-11 8.23790250113E-11 8.74721415532E-11 9.28801224114E-11 9.86224313098E-11 1.04719735085E-10 1.11193977842E-10 1.18068460250E-10 1.25367922857E-10 1.33118635414E-10 1.41348491541E-10 1.50087108630E-10 1.59365934624E-10 1.69218361006E-10 1.79679843213E-10 1.90788027771E-10 2.02582887882E-10 2.15106867096E-10 2.28405032284E-10 2.42525235306E-10 2.57518285202E-10 2.73438130775E-10 2.90342055557E-10 3.08290881909E-10 3.27349191969E-10 3.47585557684E-10 3.69072789438E-10 3.91888196299E-10 4.16113864508E-10 4.41836952733E-10 4.69150005502E-10 4.98151285609E-10 5.28945127129E-10 5.61642311447E-10 5.96360464373E-10 6.33224479861E-10 6.72366968356E-10 7.13928733526E-10 7.58059278599E-10 8.04917343367E-10 8.54671475275E-10 9.07500633734E-10 9.63594835586E-10 1.02315583549E-09 1.08639785181E-09 1.15354833772E-09 1.22484879585E-09 1.30055564835E-09 1.38094115633E-09 1.46629439897E-09 1.55692231203E-09 1.65315078927E-09 1.75532585576E-09 1.86381490640E-09 1.97900802961E-09 2.10131940604E-09 2.23118879712E-09 2.36908312259E-09 2.51549813942E-09 2.67096021998E-09 2.83602824369E-09 3.01129559845E-09 3.19739232277E-09 3.39498734973E-09 3.60479092634E-09 3.82755714818E-09 4.06408667718E-09 4.31522960691E-09 4.58188851541E-09 4.86502170765E-09 5.16564664682E-09 5.48484361620E-09 5.82375957775E-09 6.18361230080E-09 6.56569472927E-09 6.97137960793E-09 7.40212441786E-09 7.85947659945E-09 8.34507909048E-09 8.86067623399E-09 9.40812002699E-09 9.98937674515E-09 1.06065340132E-08 1.12618082679E-08 1.19575527213E-08 1.26962657675E-08 1.34805999582E-08 1.43133714917E-08 1.51975703168E-08 1.61363708171E-08 1.71331432098E-08 1.81914655935E-08 1.93151367710E-08 2.05081898477E-08 2.17749066702E-08 2.31198331549E-08 2.45477955568E-08 2.60639177334E-08 2.76736395048E-08 2.93827360760E-08 3.11973387322E-08 3.31239567628E-08 3.51695007102E-08 3.73413071184E-08 3.96471647538E-08 4.20953424396E-08 4.46946185983E-08 4.74543126660E-08 5.03843183462E-08 5.34951389836E-08 5.67979250661E-08 6.03045140598E-08 6.40274726867E-08 6.79801417565E-08 7.21766838230E-08 7.66321337140E-08 8.13624521791E-08 8.63845828349E-08 9.17165126122E-08 9.73773358786E-08 1.03387322546E-07 1.09767990306E-07 1.16542181358E-07 1.23734143745E-07 1.31369617812E-07 1.39475927825E-07 1.48082079321E-07 1.57218862343E-07 1.66918961047E-07 1.77217070016E-07 1.88150017672E-07 1.99756897305E-07 2.12079206037E-07 2.25160992392E-07 2.39049012826E-07 2.53792897834E-07 2.69445328311E-07 2.86062222557E-07 3.03702934853E-07 3.22430466091E-07 3.42311687305E-07 3.63417576868E-07 3.85823472169E-07 4.09609336710E-07 4.34860043381E-07 4.61665675227E-07 4.90121844372E-07 5.20330030558E-07 5.52397940235E-07 5.86439887591E-07 6.22577198821E-07 6.60938640975E-07 7.01660877033E-07 7.44888948609E-07 7.90776788096E-07 8.39487761939E-07 8.91195247065E-07 9.46083242233E-07 1.00434701670E-06 1.06619379825E-06 1.13184350298E-06 1.20152950959E-06 1.27549948051E-06 1.35401623290E-06 1.43735866269E-06 1.52582272433E-06 1.61972247028E-06 1.71939115330E-06 1.82518239554E-06 1.93747142847E-06 2.05665640787E-06 2.18315980826E-06 2.31742990188E-06 2.45994232677E-06 2.61120174988E-06 2.77174363040E-06 2.94213608965E-06 3.12298189363E-06 3.31492055537E-06 3.51863056363E-06 3.73483174612E-06 3.96428777483E-06 4.20780882220E-06 4.46625437688E-06 4.74053622881E-06 5.03162163349E-06 5.34053666629E-06 5.66836977789E-06 6.01627556278E-06 6.38547875368E-06 6.77727845499E-06 7.19305262960E-06 7.63426285371E-06 8.10245935603E-06 8.59928635759E-06 9.12648773019E-06 9.68591299197E-06 1.02795236604E-05 1.09093999830E-05 1.15777480687E-05 1.22869074424E-05 1.30393590484E-05 1.38377337289E-05 1.46848212037E-05 1.55835795831E-05 1.65371454422E-05 1.75488444914E-05 1.86222028769E-05 1.97609591467E-05 2.09690769228E-05 2.22507583186E-05 2.36104581456E-05 2.50528989539E-05 2.65830869556E-05 2.82063288812E-05 2.99282498224E-05 3.17548121181E-05 3.36923353432E-05 3.57475174631E-05 3.79274572201E-05 4.02396778221E-05 4.26921520071E-05 4.52933285620E-05 4.80521603769E-05 5.09781341228E-05 5.40813016426E-05 5.73723131536E-05 6.08624523605E-05 6.45636735876E-05 6.84886410427E-05 7.26507703298E-05 7.70642723374E-05 8.17441996321E-05 8.67064954977E-05 9.19680457630E-05 9.75467335743E-05 1.03461497271E-04 1.09732391537E-04 1.16380652001E-04 1.23428763480E-04 1.30900532056E-04 1.38821161197E-04 1.47217332137E-04 1.56117288749E-04 1.65550927135E-04 1.75549890209E-04 1.86147667509E-04 1.97379700539E-04 2.09283493909E-04 2.21898732601E-04 2.35267405648E-04 2.49433936596E-04 2.64445321066E-04 2.80351271798E-04 2.97204371557E-04 3.15060234299E-04 3.33977675014E-04 3.54018888681E-04 3.75249638799E-04 3.97739455959E-04 4.21561846961E-04 4.46794514988E-04 4.73519591385E-04 5.01823879596E-04 5.31799111845E-04 5.63542219187E-04 5.97155615525E-04 6.32747496300E-04 6.70432152488E-04 7.10330300654E-04 7.52569429769E-04 7.97284165567E-04 8.44616653227E-04 8.94716959194E-04 9.47743492981E-04 1.00386344983E-03 1.06325327510E-03 1.12609915138E-03 1.19259750917E-03 1.26295556216E-03 1.33739186822E-03 1.41613691689E-03 1.49943374460E-03 1.58753857873E-03 1.68072151143E-03 1.77926720443E-03 1.88347562605E-03 1.99366282137E-03 2.11016171686E-03 2.23332296067E-03 2.36351579963E-03 2.50112899425E-03 2.64657177293E-03 2.80027482642E-03 2.96269134385E-03 3.13429809144E-03 3.31559653496E-03 3.50711400713E-03 3.70940492094E-03 3.92305203007E-03 4.14866773713E-03 4.38689545088E-03 4.63841099307E-03 4.90392405573E-03 5.18417970961E-03 5.47995996407E-03 5.79208537914E-03 6.12141672975E-03 6.46885672232E-03 6.83535176365E-03 7.22189378174E-03 7.62952209815E-03 8.05932535097E-03 8.51244346755E-03 8.99006968558E-03 9.49345262080E-03 1.00238983795E-02 1.05827727134E-02 1.11715032137E-02 1.17915815420E-02 1.24445656928E-02 1.31320822853E-02 1.38558288779E-02 1.46175763002E-02 1.54191709980E-02 1.62625373820E-02 1.71496801749E-02 1.80826867462E-02 1.90637294282E-02 2.00950678008E-02 2.11790509345E-02 2.23181195806E-02 2.35148082939E-02 2.47717474745E-02 2.60916653127E-02 2.74773896206E-02 2.89318495322E-02 3.04580770522E-02 3.20592084328E-02 3.37384853570E-02 3.54992559023E-02 3.73449752625E-02 3.92792061972E-02 4.13056191827E-02 4.34279922325E-02 4.56502103559E-02 4.79762646196E-02 5.04102507784E-02 5.29563674353E-02 5.56189136932E-02 5.84022862568E-02 6.13109759412E-02 6.43495635433E-02 6.75227150301E-02 7.08351759956E-02 7.42917653377E-02 7.78973681040E-02 8.16569274569E-02 8.55754357023E-02 8.96579243324E-02 9.39094530255E-02 9.83350975517E-02 1.02939936528E-01 1.07729036971E-01 1.12707438596E-01 1.17880136807E-01 1.23252064330E-01 1.28828071447E-01 1.34612904777E-01 1.40611184569E-01 1.46827380477E-01 1.53265785764E-01 1.59930489933E-01 1.66825349752E-01 1.73953958662E-01 1.81319614571E-01 1.88925286028E-01 1.96773576806E-01 2.04866688915E-01 2.13206384082E-01 2.21793943766E-01 2.30630127756E-01 2.39715131461E-01 2.49048541978E-01 2.58629293072E-01 2.68455619192E-01 2.78525008717E-01 2.88834156580E-01 2.99378916514E-01 3.10154253121E-01 3.21154194055E-01 3.32371782577E-01 3.43799030804E-01 3.55426873997E-01 3.67245126242E-01 3.79242437929E-01 3.91406255437E-01 4.03722783491E-01 4.16176950645E-01 4.28752378404E-01 4.41431354499E-01 4.54194810859E-01 4.67022306841E-01 4.79892018295E-01 4.92780733054E-01 5.05663853434E-01 5.18515406360E-01 5.31308061702E-01 5.44013159415E-01 5.56600746055E-01 5.69039621231E-01 5.81297394504E-01 5.93340553238E-01 6.05134541824E-01 6.16643852681E-01 6.27832129343E-01 6.38662281881E-01 6.49096614829E-01 6.59096967670E-01 6.68624867849E-01 6.77641696162E-01 6.86108864232E-01 6.93988003669E-01 7.01241166340E-01 7.07831035056E-01 7.13721143799E-01 7.18876106452E-01 7.23261852844E-01 7.26845870726E-01 7.29597452149E-01 7.31487942523E-01 7.32490990491E-01 7.32582796591E-01 7.31742358512E-01 7.29951710659E-01 7.27196155568E-01 7.23464484668E-01 7.18749185780E-01 7.13046634684E-01 7.06357268102E-01 6.98685735412E-01 6.90041026484E-01 6.80436573086E-01 6.69890321447E-01 6.58424773716E-01 6.46066996238E-01 6.32848592855E-01 6.18805641666E-01 6.03978594049E-01 5.88412135077E-01 5.72155004874E-01 5.55259780871E-01 5.37782621375E-01 5.19782971351E-01 5.01323231793E-01 4.82468394555E-01 4.63285645043E-01 4.43843935617E-01 4.24213533077E-01 4.04465544038E-01 3.84671422422E-01 3.64902463723E-01 3.45229290977E-01 3.25721337719E-01 3.06446333411E-01 2.87469796960E-01 2.68854544100E-01 2.50660214344E-01 2.32942823225E-01 2.15754345352E-01 1.99142333587E-01 1.83149579383E-01 1.67813818871E-01 1.53167488892E-01 1.39237536575E-01 1.26045285486E-01 1.13606360680E-01 1.01930674256E-01 9.10224722100E-02 8.08804425457E-02 7.14978836882E-02 6.28629313569E-02 5.49588410803E-02 4.77643226023E-02 4.12539214811E-02 3.53984422804E-02 3.01654068955E-02 2.55195407954E-02 2.14232793123E-02 1.78372856196E-02 1.47209717423E-02 1.20330138828E-02 9.73185356303E-03 7.77617662021E-03 6.12687131310E-03 4.75164900466E-03 3.62032405277E-03 2.70355341849E-03 1.97314365013E-03 1.40233351372E-03 9.66047015703E-04 6.41111853848E-04 4.06438735222E-04 2.43157514561E-04 1.34706731419E-04 6.68738561159E-05 2.77843885160E-05 7.83888505704E-06 -4.01986456663E-07 -2.38315181641E-06 -1.76918270584E-06 -7.02996524778E-07 -1.04125480698E-07 -4.00366648458E-19 5.39578431869E-19 -2.60993842391E-18 8.34414800168E-19 -2.60848937704E-19 2.09802171190E-19 -2.40818134907E-20 4.14180331251E-21 -1.04366385275E-20 9.92046190770E-20 8.17057306907E-19 -2.97113349190E-19 -5.56759221493E-19 2.75149170376E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4D 2 9.00 Wavefunction 1.00960786366E-14 1.04035500062E-14 1.07203852731E-14 1.10468696103E-14 1.13832968759E-14 1.17299698771E-14 1.20872006430E-14 1.24553107053E-14 1.28346313881E-14 1.32255041055E-14 1.36282806694E-14 1.40433236058E-14 1.44710064814E-14 1.49117142396E-14 1.53658435473E-14 1.58338031514E-14 1.63160142471E-14 1.68129108570E-14 1.73249402216E-14 1.78525632019E-14 1.83962546942E-14 1.89565040575E-14 1.95338155541E-14 2.01287088032E-14 2.07417192490E-14 2.13733986422E-14 2.20243155370E-14 2.26950558025E-14 2.33862231501E-14 2.40984396772E-14 2.48323464267E-14 2.55886039643E-14 2.63678929727E-14 2.71709148647E-14 2.79983924141E-14 2.88510704067E-14 2.97297163102E-14 3.06351209652E-14 3.15680992969E-14 3.25294910490E-14 3.35201615388E-14 3.45410024367E-14 3.55929325684E-14 3.66768987420E-14 3.77938766003E-14 3.89448714986E-14 4.01309194102E-14 4.13530878581E-14 4.26124768766E-14 4.39102200006E-14 4.52474852867E-14 4.66254763639E-14 4.80454335171E-14 4.95086348036E-14 5.10163972034E-14 5.25700778044E-14 5.41710750239E-14 5.58208298677E-14 5.75208272263E-14 5.92725972122E-14 6.10777165366E-14 6.29378099288E-14 6.48545515983E-14 6.68296667420E-14 6.88649330969E-14 7.09621825401E-14 7.31233027376E-14 7.53502388436E-14 7.76449952508E-14 8.00096373948E-14 8.24462936133E-14 8.49571570613E-14 8.75444876853E-14 9.02106142577E-14 9.29579364722E-14 9.57889271044E-14 9.87061342368E-14 1.01712183553E-13 1.04809780700E-13 1.08001713724E-13 1.11290855581E-13 1.14680166720E-13 1.18172697750E-13 1.21771592185E-13 1.25480089273E-13 1.29301526911E-13 1.33239344651E-13 1.37297086796E-13 1.41478405586E-13 1.45787064490E-13 1.50226941594E-13 1.54802033086E-13 1.59516456856E-13 1.64374456205E-13 1.69380403660E-13 1.74538804912E-13 1.79854302869E-13 1.85331681840E-13 1.90975871833E-13 1.96791953003E-13 2.02785160213E-13 2.08960887756E-13 2.15324694203E-13 2.21882307409E-13 2.28639629668E-13 2.35602743027E-13 2.42777914758E-13 2.50171603000E-13 2.57790462571E-13 2.65641350959E-13 2.73731334494E-13 2.82067694706E-13 2.90657934883E-13 2.99509786821E-13 3.08631217783E-13 3.18030437673E-13 3.27715906424E-13 3.37696341612E-13 3.47980726301E-13 3.58578317131E-13 3.69498652651E-13 3.80751561899E-13 3.92347173252E-13 4.04295923545E-13 4.16608567457E-13 4.29296187201E-13 4.42370202490E-13 4.55842380820E-13 4.69724848061E-13 4.84030099371E-13 4.98771010440E-13 5.13960849086E-13 5.29613287186E-13 5.45742412992E-13 5.62362743806E-13 5.79489239047E-13 5.97137313716E-13 6.15322852273E-13 6.34062222929E-13 6.53372292383E-13 6.73270441000E-13 6.93774578457E-13 7.14903159862E-13 7.36675202363E-13 7.59110302269E-13 7.82228652684E-13 8.06051061683E-13 8.30598971042E-13 8.55894475536E-13 8.81960342827E-13 9.08820033954E-13 9.36497724452E-13 9.65018326110E-13 9.94407509395E-13 1.02469172655E-12 1.05589823543E-12 1.08805512398E-12 1.12119133558E-12 1.15533669506E-12 1.19052193553E-12 1.22677872611E-12 1.26413970033E-12 1.30263848560E-12 1.34230973343E-12 1.38318915062E-12 1.42531353139E-12 1.46872079054E-12 1.51344999752E-12 1.55954141165E-12 1.60703651831E-12 1.65597806628E-12 1.70641010629E-12 1.75837803055E-12 1.81192861371E-12 1.86711005491E-12 1.92397202117E-12 1.98256569210E-12 2.04294380595E-12 2.10516070709E-12 2.16927239495E-12 2.23533657437E-12 2.30341270755E-12 2.37356206763E-12 2.44584779375E-12 2.52033494794E-12 2.59709057368E-12 2.67618375620E-12 2.75768568470E-12 2.84166971642E-12 2.92821144266E-12 3.01738875680E-12 3.10928192445E-12 3.20397365565E-12 3.30154917936E-12 3.40209632013E-12 3.50570557717E-12 3.61247020580E-12 3.72248630139E-12 3.83585288584E-12 3.95267199674E-12 4.07304877917E-12 4.19709158034E-12 4.32491204715E-12 4.45662522664E-12 4.59234966956E-12 4.73220753706E-12 4.87632471067E-12 5.02483090555E-12 5.17785978730E-12 5.33554909224E-12 5.49804075137E-12 5.66548101816E-12 5.83802060014E-12 6.01581479457E-12 6.19902362821E-12 6.38781200138E-12 6.58234983635E-12 6.78281223028E-12 6.98937961286E-12 7.20223790866E-12 7.42157870450E-12 7.64759942189E-12 7.88050349473E-12 8.12050055238E-12 8.36780660839E-12 8.62264425487E-12 8.88524286291E-12 9.15583878895E-12 9.43467558758E-12 9.72200423072E-12 1.00180833335E-11 1.03231793871E-11 1.06375669986E-11 1.09615291380E-11 1.12953573930E-11 1.16393522316E-11 1.19938232724E-11 1.23590895631E-11 1.27354798682E-11 1.31233329641E-11 1.35229979449E-11 1.39348345360E-11 1.43592134181E-11 1.47965165607E-11 1.52471375663E-11 1.57114820240E-11 1.61899678752E-11 1.66830257894E-11 1.71910995520E-11 1.77146464635E-11 1.82541377516E-11 1.88100589946E-11 1.93829105593E-11 1.99732080506E-11 2.05814827760E-11 2.12082822238E-11 2.18541705557E-11 2.25197291148E-11 2.32055569485E-11 2.39122713482E-11 2.46405084045E-11 2.53909235797E-11 2.61641922980E-11 2.69610105535E-11 2.77820955361E-11 2.86281862777E-11 2.95000443170E-11 3.03984543850E-11 3.13242251111E-11 3.22781897514E-11 3.32612069384E-11 3.42741614536E-11 3.53179650244E-11 3.63935571443E-11 3.75019059186E-11 3.86440089358E-11 3.98208941656E-11 4.10336208838E-11 4.22832806263E-11 4.35709981707E-11 4.48979325497E-11 4.62652780936E-11 4.76742655052E-11 4.91261629681E-11 5.06222772878E-11 5.21639550677E-11 5.37525839217E-11 5.53895937226E-11 5.70764578894E-11 5.88146947133E-11 6.06058687243E-11 6.24515920996E-11 6.43535261144E-11 6.63133826372E-11 6.83329256706E-11 7.04139729393E-11 7.25583975256E-11 7.47681295559E-11 7.70451579376E-11 7.93915321493E-11 8.18093640855E-11 8.43008299575E-11 8.68681722521E-11 8.95137017497E-11 9.22397996047E-11 9.50489194884E-11 9.79435897974E-11 1.00926415929E-10 1.04000082628E-10 1.07167356401E-10 1.10431088006E-10 1.13794215020E-10 1.17259764486E-10 1.20830855628E-10 1.24510702670E-10 1.28302617720E-10 1.32210013756E-10 1.36236407698E-10 1.40385423570E-10 1.44660795764E-10 1.49066372403E-10 1.53606118800E-10 1.58284121032E-10 1.63104589615E-10 1.68071863294E-10 1.73190412947E-10 1.78464845613E-10 1.83899908635E-10 1.89500493933E-10 1.95271642409E-10 2.01218548484E-10 2.07346564772E-10 2.13661206897E-10 2.20168158461E-10 2.26873276154E-10 2.33782595033E-10 2.40902333946E-10 2.48238901134E-10 2.55798900000E-10 2.63589135047E-10 2.71616618008E-10 2.79888574156E-10 2.88412448802E-10 2.97195914004E-10 3.06246875467E-10 3.15573479662E-10 3.25184121156E-10 3.35087450166E-10 3.45292380352E-10 3.55808096830E-10 3.66644064449E-10 3.77810036300E-10 3.89316062505E-10 4.01172499253E-10 4.13390018129E-10 4.25979615714E-10 4.38952623484E-10 4.52320718011E-10 4.66095931470E-10 4.80290662470E-10 4.94917687215E-10 5.09990171000E-10 5.25521680062E-10 5.41526193794E-10 5.58018117321E-10 5.75012294471E-10 5.92524021132E-10 6.10569059022E-10 6.29163649873E-10 6.48324530051E-10 6.68068945620E-10 6.88414667863E-10 7.09380009280E-10 7.30983840067E-10 7.53245605104E-10 7.76185341454E-10 7.99823696398E-10 8.24181946020E-10 8.49282014356E-10 8.75146493127E-10 9.01798662074E-10 9.29262509909E-10 9.57562755910E-10 9.86724872166E-10 1.01677510651E-09 1.04774050612E-09 1.07964894192E-09 1.11252913359E-09 1.14641067546E-09 1.18132406317E-09 1.21730072105E-09 1.25437303046E-09 1.29257435892E-09 1.33193909014E-09 1.37250265494E-09 1.41430156321E-09 1.45737343671E-09 1.50175704293E-09 1.54749233004E-09 1.59462046279E-09 1.64318385957E-09 1.69322623062E-09 1.74479261735E-09 1.79792943286E-09 1.85268450376E-09 1.90910711319E-09 1.96724804516E-09 2.02715963030E-09 2.08889579293E-09 2.15251209961E-09 2.21806580916E-09 2.28561592416E-09 2.35522324409E-09 2.42695042007E-09 2.50086201118E-09 2.57702454263E-09 2.65550656564E-09 2.73637871909E-09 2.81971379314E-09 2.90558679471E-09 2.99407501504E-09 3.08525809923E-09 3.17921811790E-09 3.27603964111E-09 3.37580981443E-09 3.47861843741E-09 3.58455804440E-09 3.69372398780E-09 3.80621452394E-09 3.92213090147E-09 4.04157745253E-09 4.16466168659E-09 4.29149438729E-09 4.42218971212E-09 4.55686529515E-09 4.69564235292E-09 4.83864579357E-09 4.98600432921E-09 5.13785059181E-09 5.29432125258E-09 5.45555714494E-09 5.62170339130E-09 5.79290953372E-09 5.96932966841E-09 6.15112258454E-09 6.33845190705E-09 6.53148624400E-09 6.73039933830E-09 6.93537022406E-09 7.14658338779E-09 7.36422893438E-09 7.58850275827E-09 7.81960671970E-09 8.05774882644E-09 8.30314342101E-09 8.55601137356E-09 8.81658028070E-09 9.08508467033E-09 9.36176621275E-09 9.64687393813E-09 9.94066446069E-09 1.02434022097E-08 1.05553596673E-08 1.08768176140E-08 1.12080653812E-08 1.15494011118E-08 1.19011320283E-08 1.22635747094E-08 1.26370553751E-08 1.30219101801E-08 1.34184855164E-08 1.38271383251E-08 1.42482364179E-08 1.46821588075E-08 1.51292960495E-08 1.55900505934E-08 1.60648371449E-08 1.65540830394E-08 1.70582286264E-08 1.75777276657E-08 1.81130477363E-08 1.86646706566E-08 1.92330929187E-08 1.98188261346E-08 2.04223974972E-08 2.10443502546E-08 2.16852441991E-08 2.23456561707E-08 2.30261805768E-08 2.37274299269E-08 2.44500353839E-08 2.51946473322E-08 2.59619359629E-08 2.67525918773E-08 2.75673267084E-08 2.84068737611E-08 2.92719886724E-08 3.01634500916E-08 3.10820603808E-08 3.20286463376E-08 3.30040599385E-08 3.40091791062E-08 3.50449084998E-08 3.61121803285E-08 3.72119551913E-08 3.83452229410E-08 3.95130035753E-08 4.07163481549E-08 4.19563397494E-08 4.32340944120E-08 4.45507621840E-08 4.59075281300E-08 4.73056134044E-08 4.87462763501E-08 5.02308136318E-08 5.17605614023E-08 5.33368965052E-08 5.49612377145E-08 5.66350470108E-08 5.83598308979E-08 6.01371417578E-08 6.19685792487E-08 6.38557917439E-08 6.58004778160E-08 6.78043877651E-08 6.98693251946E-08 7.19971486339E-08 7.41897732113E-08 7.64491723778E-08 7.87773796828E-08 8.11764906045E-08 8.36486644360E-08 8.61961262282E-08 8.88211687925E-08 9.15261547646E-08 9.43135187302E-08 9.71857694168E-08 1.00145491951E-07 1.03195350185E-07 1.06338089095E-07 1.09576537249E-07 1.12913609357E-07 1.16352308888E-07 1.19895730780E-07 1.23547064219E-07 1.27309595514E-07 1.31186711050E-07 1.35181900341E-07 1.39298759165E-07 1.43540992804E-07 1.47912419376E-07 1.52416973274E-07 1.57058708703E-07 1.61841803332E-07 1.66770562052E-07 1.71849420848E-07 1.77082950798E-07 1.82475862179E-07 1.88033008709E-07 1.93759391917E-07 1.99660165640E-07 2.05740640664E-07 2.12006289505E-07 2.18462751326E-07 2.25115837023E-07 2.31971534443E-07 2.39036013782E-07 2.46315633132E-07 2.53816944204E-07 2.61546698223E-07 2.69511852008E-07 2.77719574225E-07 2.86177251843E-07 2.94892496783E-07 3.03873152762E-07 3.13127302356E-07 3.22663274271E-07 3.32489650840E-07 3.42615275743E-07 3.53049261968E-07 3.63801000010E-07 3.74880166321E-07 3.86296732018E-07 3.98060971854E-07 4.10183473466E-07 4.22675146901E-07 4.35547234431E-07 4.48811320675E-07 4.62479343015E-07 4.76563602347E-07 4.91076774139E-07 5.06031919847E-07 5.21442498658E-07 5.37322379608E-07 5.53685854060E-07 5.70547648557E-07 5.87922938082E-07 6.05827359706E-07 6.24277026658E-07 6.43288542825E-07 6.62879017694E-07 6.83066081739E-07 7.03867902290E-07 7.25303199878E-07 7.47391265078E-07 7.70151975863E-07 7.93605815491E-07 8.17773890937E-07 8.42677951876E-07 8.68340410256E-07 8.94784360463E-07 9.22033600096E-07 9.50112651376E-07 9.79046783212E-07 1.00886203393E-06 1.03958523471E-06 1.07124403370E-06 1.10386692093E-06 1.13748325388E-06 1.17212328397E-06 1.20781818370E-06 1.24460007475E-06 1.28250205684E-06 1.32155823753E-06 1.36180376287E-06 1.40327484906E-06 1.44600881500E-06 1.49004411587E-06 1.53542037771E-06 1.58217843307E-06 1.63036035778E-06 1.68000950871E-06 1.73117056285E-06 1.78388955747E-06 1.83821393151E-06 1.89419256827E-06 1.95187583938E-06 2.01131565010E-06 2.07256548598E-06 2.13568046101E-06 2.20071736715E-06 2.26773472544E-06 2.33679283857E-06 2.40795384520E-06 2.48128177574E-06 2.55684261001E-06 2.63470433653E-06 2.71493701365E-06 2.79761283255E-06 2.88280618216E-06 2.97059371602E-06 3.06105442118E-06 3.15426968924E-06 3.25032338945E-06 3.34930194414E-06 3.45129440637E-06 3.55639253993E-06 3.66469090182E-06 3.77628692716E-06 3.89128101674E-06 4.00977662714E-06 4.13188036371E-06 4.25770207616E-06 4.38735495726E-06 4.52095564434E-06 4.65862432398E-06 4.80048484014E-06 4.94666480360E-06 5.09729570927E-06 5.25251305083E-06 5.41245644569E-06 5.57726975550E-06 5.74710121921E-06 5.92210358331E-06 6.10243423929E-06 6.28825536589E-06 6.47973406861E-06 6.67704253482E-06 6.88035819209E-06 7.08986385238E-06 7.30574789061E-06 7.52820439966E-06 7.75743338093E-06 7.99364090220E-06 8.23703930391E-06 8.48784737648E-06 8.74629055919E-06 9.01260114239E-06 9.28701848600E-06 9.56978921811E-06 9.86116747547E-06 1.01614151234E-05 1.04708020015E-05 1.07896061604E-05 1.11181141201E-05 1.14566211369E-05 1.18054314680E-05 1.21648586547E-05 1.25352258072E-05 1.29168659136E-05 1.33101221274E-05 1.37153481037E-05 1.41329083174E-05 1.45631784011E-05 1.50065454880E-05 1.54634085676E-05 1.59341788530E-05 1.64192801514E-05 1.69191492512E-05 1.74342363039E-05 1.79650052304E-05 1.85119341345E-05 1.90755157013E-05 1.96562576481E-05 2.02546831374E-05 2.08713312414E-05 2.15067573968E-05 2.21615338767E-05 2.28362502811E-05 2.35315140582E-05 2.42479510121E-05 2.49862058690E-05 2.57469428226E-05 2.65308461424E-05 2.73386207847E-05 2.81709930014E-05 2.90287110201E-05 2.99125456930E-05 3.08232912100E-05 3.17617658103E-05 3.27288125192E-05 3.37252999103E-05 3.47521228848E-05 3.58102035053E-05 3.69004917907E-05 3.80239665916E-05 3.91816364798E-05 4.03745406368E-05 4.16037498319E-05 4.28703673566E-05 4.41755299877E-05 4.55204090781E-05 4.69062115802E-05 4.83341811073E-05 4.98055991072E-05 5.13217859491E-05 5.28841021803E-05 5.44939496854E-05 5.61527729841E-05 5.78620605214E-05 5.96233459827E-05 6.14382096955E-05 6.33082800181E-05 6.52352348378E-05 6.72208030270E-05 6.92667660129E-05 7.13749593750E-05 7.35472744610E-05 7.57856601210E-05 7.80921243952E-05 8.04687363337E-05 8.29176278573E-05 8.54409956043E-05 8.80411029689E-05 9.07202820415E-05 9.34809357190E-05 9.63255398750E-05 9.92566454918E-05 1.02276881016E-04 1.05388954625E-04 1.08595656694E-04 1.11899862237E-04 1.15304533477E-04 1.18812722511E-04 1.22427573967E-04 1.26152327841E-04 1.29990322383E-04 1.33944997033E-04 1.38019895481E-04 1.42218668864E-04 1.46545078927E-04 1.51003001435E-04 1.55596429584E-04 1.60329477540E-04 1.65206384119E-04 1.70231516492E-04 1.75409374126E-04 1.80744592732E-04 1.86241948382E-04 1.91906361745E-04 1.97742902442E-04 2.03756793561E-04 2.09953416228E-04 2.16338314435E-04 2.22917199889E-04 2.29695957115E-04 2.36680648614E-04 2.43877520262E-04 2.51293006791E-04 2.58933737508E-04 2.66806542130E-04 2.74918456812E-04 2.83276730362E-04 2.91888830636E-04 3.00762451113E-04 3.09905517687E-04 3.19326195631E-04 3.29032896809E-04 3.39034287055E-04 3.49339293830E-04 3.59957114028E-04 3.70897222095E-04 3.82169378329E-04 3.93783637476E-04 4.05750357519E-04 4.18080208796E-04 4.30784183323E-04 4.43873604459E-04 4.57360136788E-04 4.71255796359E-04 4.85572961166E-04 5.00324381997E-04 5.15523193547E-04 5.31182925914E-04 5.47317516379E-04 5.63941321576E-04 5.81069129994E-04 5.98716174866E-04 6.16898147417E-04 6.35631210514E-04 6.54932012710E-04 6.74817702708E-04 6.95305944228E-04 7.16414931344E-04 7.38163404236E-04 7.60570665417E-04 7.83656596430E-04 8.07441675033E-04 8.31946992896E-04 8.57194273774E-04 8.83205892271E-04 9.10004893089E-04 9.37615010857E-04 9.66060690576E-04 9.95367108556E-04 1.02556019408E-03 1.05666665158E-03 1.08871398357E-03 1.12173051411E-03 1.15574541305E-03 1.19078872092E-03 1.22689137458E-03 1.26408523349E-03 1.30240310692E-03 1.34187878177E-03 1.38254705123E-03 1.42444374434E-03 1.46760575628E-03 1.51207107957E-03 1.55787883617E-03 1.60506931047E-03 1.65368398319E-03 1.70376556632E-03 1.75535803893E-03 1.80850668409E-03 1.86325812675E-03 1.91966037278E-03 1.97776284896E-03 2.03761644425E-03 2.09927355205E-03 2.16278811381E-03 2.22821566369E-03 2.29561337453E-03 2.36504010513E-03 2.43655644878E-03 2.51022478312E-03 2.58610932140E-03 2.66427616516E-03 2.74479335830E-03 2.82773094267E-03 2.91316101512E-03 3.00115778620E-03 3.09179764029E-03 3.18515919754E-03 3.28132337729E-03 3.38037346336E-03 3.48239517093E-03 3.58747671536E-03 3.69570888270E-03 3.80718510214E-03 3.92200152039E-03 4.04025707794E-03 4.16205358741E-03 4.28749581386E-03 4.41669155726E-03 4.54975173707E-03 4.68679047896E-03 4.82792520384E-03 4.97327671914E-03 5.12296931233E-03 5.27713084695E-03 5.43589286101E-03 5.59939066776E-03 5.76776345916E-03 5.94115441180E-03 6.11971079545E-03 6.30358408431E-03 6.49293007099E-03 6.68790898319E-03 6.88868560330E-03 7.09542939080E-03 7.30831460756E-03 7.52752044620E-03 7.75323116139E-03 7.98563620422E-03 8.22493035972E-03 8.47131388751E-03 8.72499266569E-03 8.98617833792E-03 9.25508846387E-03 9.53194667295E-03 9.81698282145E-03 1.01104331531E-02 1.04125404631E-02 1.07235542655E-02 1.10437309645E-02 1.13733340287E-02 1.17126341695E-02 1.20619095229E-02 1.24214458347E-02 1.27915366500E-02 1.31724835055E-02 1.35645961262E-02 1.39681926255E-02 1.43835997091E-02 1.48111528823E-02 1.52511966614E-02 1.57040847885E-02 1.61701804500E-02 1.66498564991E-02 1.71434956810E-02 1.76514908626E-02 1.81742452654E-02 1.87121727013E-02 1.92656978129E-02 1.98352563162E-02 2.04212952465E-02 2.10242732084E-02 2.16446606277E-02 2.22829400067E-02 2.29396061826E-02 2.36151665878E-02 2.43101415133E-02 2.50250643741E-02 2.57604819767E-02 2.65169547887E-02 2.72950572100E-02 2.80953778450E-02 2.89185197767E-02 2.97651008414E-02 3.06357539036E-02 3.15311271318E-02 3.24518842737E-02 3.33987049312E-02 3.43722848343E-02 3.53733361143E-02 3.64025875744E-02 3.74607849585E-02 3.85486912177E-02 3.96670867723E-02 4.08167697714E-02 4.19985563465E-02 4.32132808615E-02 4.44617961553E-02 4.57449737788E-02 4.70637042244E-02 4.84188971470E-02 4.98114815760E-02 5.12424061175E-02 5.27126391452E-02 5.42231689796E-02 5.57750040543E-02 5.73691730668E-02 5.90067251159E-02 6.06887298204E-02 6.24162774207E-02 6.41904788610E-02 6.60124658501E-02 6.78833908996E-02 6.98044273380E-02 7.17767692991E-02 7.38016316823E-02 7.58802500833E-02 7.80138806927E-02 8.02038001621E-02 8.24513054325E-02 8.47577135257E-02 8.71243612950E-02 8.95526051323E-02 9.20438206297E-02 9.45994021937E-02 9.72207626072E-02 9.99093325384E-02 1.02666559993E-01 1.05493909707E-01 1.08392862474E-01 1.11364914414E-01 1.14411576161E-01 1.17534371990E-01 1.20734838863E-01 1.24014525392E-01 1.27374990726E-01 1.30817803348E-01 1.34344539781E-01 1.37956783198E-01 1.41656121942E-01 1.45444147933E-01 1.49322454979E-01 1.53292636965E-01 1.57356285939E-01 1.61514990070E-01 1.65770331488E-01 1.70123883990E-01 1.74577210619E-01 1.79131861101E-01 1.83789369141E-01 1.88551249577E-01 1.93418995371E-01 1.98394074457E-01 2.03477926420E-01 2.08671959014E-01 2.13977544507E-01 2.19396015859E-01 2.24928662714E-01 2.30576727221E-01 2.36341399656E-01 2.42223813871E-01 2.48225042539E-01 2.54346092208E-01 2.60587898157E-01 2.66951319050E-01 2.73437131383E-01 2.80046023726E-01 2.86778590757E-01 2.93635327073E-01 3.00616620799E-01 3.07722746965E-01 3.14953860670E-01 3.22309990016E-01 3.29791028820E-01 3.37396729091E-01 3.45126693288E-01 3.52980366334E-01 3.60957027422E-01 3.69055781582E-01 3.77275551047E-01 3.85615066412E-01 3.94072857606E-01 4.02647244705E-01 4.11336328596E-01 4.20137981544E-01 4.29049837673E-01 4.38069283419E-01 4.47193447987E-01 4.56419193854E-01 4.65743107363E-01 4.75161489454E-01 4.84670346567E-01 4.94265381754E-01 5.03941986045E-01 5.13695230095E-01 5.23519856145E-01 5.33410270340E-01 5.43360535416E-01 5.53364363825E-01 5.63415111310E-01 5.73505770986E-01 5.83628967990E-01 5.93776954727E-01 6.03941606815E-01 6.14114419758E-01 6.24286506449E-01 6.34448595579E-01 6.44591031024E-01 6.54703772314E-01 6.64776396271E-01 6.74798099904E-01 6.84757704677E-01 6.94643662229E-01 7.04444061658E-01 7.14146638471E-01 7.23738785291E-01 7.33207564433E-01 7.42539722439E-01 7.51721706676E-01 7.60739684084E-01 7.69579562176E-01 7.78227012369E-01 7.86667495725E-01 7.94886291194E-01 8.02868526413E-01 8.10599211125E-01 8.18063273276E-01 8.25245597831E-01 8.32131068322E-01 8.38704611164E-01 8.44951242730E-01 8.50856119163E-01 8.56404588892E-01 8.61582247803E-01 8.66374996976E-01 8.70769102879E-01 8.74751259910E-01 8.78308655094E-01 8.81429034775E-01 8.84100773049E-01 8.86312941698E-01 8.88055381300E-01 8.89318773199E-01 8.90094711925E-01 8.90375777649E-01 8.90155608189E-01 8.89428970042E-01 8.88191827874E-01 8.86441411838E-01 8.84176282052E-01 8.81396389517E-01 8.78103132711E-01 8.74299409043E-01 8.69989660325E-01 8.65179911353E-01 8.59877800693E-01 8.54092602698E-01 8.47835239789E-01 8.41118283990E-01 8.33955946708E-01 8.26364055746E-01 8.18360018523E-01 8.09962770509E-01 8.01192707684E-01 7.92071599714E-01 7.82622477577E-01 7.72869502800E-01 7.62837831040E-01 7.52553460271E-01 7.42043053283E-01 7.31333737352E-01 7.20452882951E-01 7.09427861684E-01 6.98285783686E-01 6.87053214961E-01 6.75755875433E-01 6.64418318743E-01 6.53063595200E-01 6.41712899635E-01 6.30385206283E-01 6.19096893262E-01 6.07861359657E-01 5.96688638655E-01 5.85585010761E-01 5.74552622001E-01 5.63590704955E-01 5.52701649208E-01 5.41888927411E-01 5.31155899037E-01 5.20505808813E-01 5.09941784417E-01 4.99466833568E-01 4.89083841044E-01 4.78795566503E-01 4.68604644110E-01 4.58513583911E-01 4.48524774821E-01 4.38640487545E-01 4.28856627734E-01 4.19181467260E-01 4.09616972914E-01 4.00164992609E-01 3.90827263829E-01 3.81605416145E-01 3.72500972903E-01 3.63515352914E-01 3.54649872165E-01 3.45905745535E-01 3.37284088534E-01 3.28785919046E-01 3.20412159087E-01 3.12163636563E-01 3.04041087040E-01 2.96045155512E-01 2.88176398179E-01 2.80435284219E-01 2.72822197563E-01 2.65337438670E-01 2.57981226296E-01 2.50753699266E-01 2.43654918239E-01 2.36684867465E-01 2.29843456544E-01 2.23130522178E-01 2.16545829912E-01 2.10089075876E-01 2.03759888518E-01 1.97557830328E-01 1.91482399565E-01 1.85533031967E-01 1.79709102460E-01 1.74009926866E-01 1.68434763595E-01 1.62982815343E-01 1.57653230775E-01 1.52445106208E-01 1.47357487292E-01 1.42389370680E-01 1.37539705698E-01 1.32807396011E-01 1.28191301280E-01 1.23690238824E-01 1.19302985269E-01 1.15028278202E-01 1.10864817807E-01 1.06811268516E-01 1.02866260641E-01 9.90283920049E-02 9.52962295749E-02 9.16683110810E-02 8.81431466370E-02 8.47192203528E-02 8.13949919425E-02 7.81688983257E-02 7.50393552240E-02 7.20047587493E-02 6.90634869873E-02 6.62139015717E-02 6.34543492525E-02 6.07831634552E-02 5.81986658322E-02 5.56991678043E-02 5.32829720938E-02 5.09483742461E-02 4.86936641412E-02 4.65171274930E-02 4.44170473366E-02 4.23917055009E-02 4.04393840619E-02 3.85583667558E-02 3.67469406893E-02 3.50033976494E-02 3.33260351399E-02 3.17131578637E-02 3.01630791364E-02 2.86741222086E-02 2.72446215563E-02 2.58729241420E-02 2.45573906445E-02 2.32963966569E-02 2.20883338484E-02 2.09316110905E-02 1.98246555432E-02 1.87659137017E-02 1.77538523991E-02 1.67869597662E-02 1.58637461438E-02 1.49827449487E-02 1.41425134899E-02 1.33416337347E-02 1.25787130235E-02 1.18523847323E-02 1.11613088817E-02 1.05041726927E-02 9.87969108754E-03 9.28660713707E-03 8.72369245280E-03 8.18974752504E-03 7.68360200689E-03 7.20411494461E-03 6.75017495516E-03 6.32070035159E-03 5.91463921740E-03 5.53096943084E-03 5.16869864066E-03 4.82686419451E-03 4.50453302160E-03 4.20080147142E-03 3.91479510999E-03 3.64566847579E-03 3.39260479714E-03 3.15481567301E-03 2.93154071947E-03 2.72204718372E-03 2.52562952802E-03 2.34160898551E-03 2.16933309026E-03 2.00817518357E-03 1.85753389891E-03 1.71683262737E-03 1.58551896601E-03 1.46306415103E-03 1.34896247777E-03 1.24273070966E-03 1.14390747788E-03 1.05205267366E-03 9.66746834904E-04 8.87590528943E-04 8.14203732876E-04 7.46225213133E-04 6.83311905637E-04 6.25138297925E-04 5.71395814502E-04 5.21792206585E-04 4.76050947366E-04 4.33910633788E-04 3.95124395790E-04 3.59459313886E-04 3.26695845880E-04 2.96627263448E-04 2.69059099250E-04 2.43808605188E-04 2.20704222345E-04 1.99585063117E-04 1.80300405955E-04 1.62709203122E-04 1.46679601798E-04 1.32088478827E-04 1.18820989348E-04 1.06770129516E-04 9.58363134740E-05 8.59269646871E-05 7.69561217162E-05 6.88440584733E-05 6.15169189508E-05 5.49063663892E-05 4.89492468070E-05 4.35872667837E-05 3.87666853543E-05 3.44380198388E-05 3.05557654059E-05 2.70781281351E-05 2.39667713210E-05 2.11865747360E-05 1.87054065453E-05 1.64939075498E-05 1.45252874116E-05 1.27751325042E-05 1.12212250119E-05 9.84337289506E-06 8.62325032579E-06 7.54424819268E-06 6.59133426757E-06 5.75092262447E-06 5.01075189909E-06 4.35977197835E-06 3.78803871141E-06 3.28661623773E-06 2.84748653306E-06 2.46346578110E-06 2.12812718672E-06 1.83572985556E-06 1.58115337531E-06 1.35983774474E-06 1.16772830848E-06 1.00122536792E-06 8.57138154250E-07 7.32642878155E-07 6.25244459493E-07 5.32741825913E-07 4.53196458898E-07 3.84903860102E-07 3.26367777095E-07 2.76276952338E-07 2.33484184611E-07 1.96987507364E-07 1.65913301063E-07 1.39501168818E-07 1.17090416398E-07 9.81079890622E-08 8.20577285099E-08 6.85108236351E-08 5.70973386228E-08 4.74987112901E-08 3.94411234070E-08 3.26896530522E-08 2.70431268749E-08 2.23295974414E-08 1.84023776680E-08 1.51365706771E-08 1.24260393247E-08 1.01807650457E-08 8.32455071465E-09 6.79302681663E-09 5.53192445250E-09 4.49558256752E-09 3.64568452580E-09 2.95034035371E-09 2.38266133869E-09 1.92019692457E-09 1.54426417605E-09 1.23934958962E-09 9.92600355656E-10 7.93392719868E-10 6.32966670382E-10 5.04117580277E-10 4.00936685475E-10 3.18593390353E-10 2.53153385577E-10 2.00685922947E-10 1.58717922278E-10 1.25227731494E-10 9.85666582566E-11 7.73933979266E-11 6.06193730264E-11 4.73632814999E-11 3.69133970005E-11 2.87075632049E-11 2.22687923982E-11 1.72295437523E-11 1.32958559929E-11 1.02332308202E-11 7.85509772844E-12 6.01341348451E-12 4.59102199776E-12 3.49546191241E-12 2.65396145816E-12 2.00940420925E-12 1.51708656702E-12 1.14211899559E-12 8.57349178903E-13 6.41707086342E-13 4.78890092834E-13 3.56321363222E-13 2.64327169161E-13 1.95489077175E-13 1.44135386557E-13 1.05943109288E-13 7.76274289503E-14 5.67001695272E-14 4.12825313702E-14 2.99603643244E-14 2.16726755866E-14 1.56260193984E-14 1.12289759972E-14 8.04217178183E-15 5.74028190663E-15 4.08324011848E-15 2.89449918134E-15 2.04467174219E-15 1.43926279631E-15 1.00950268614E-15 7.05521272702E-16 4.91283552743E-16 3.40845747451E-16 2.35597665711E-16 1.62239006793E-16 1.11299790941E-16 7.60626774554E-17 5.17809853161E-17 3.51134526793E-17 2.37172426964E-17 1.59560371552E-17 1.06914996980E-17 7.13489126904E-18 4.74191156192E-18 3.13847692541E-18 2.06854840720E-18 1.35761107760E-18 8.87216249255E-19 5.77310344550E-19 3.74021054611E-19 2.41251794040E-19 1.54922174160E-19 9.90388735907E-20 6.30270863649E-20 3.99262345658E-20 2.51755529008E-20 1.58004325272E-20 9.86978701646E-21 6.13585064589E-21 3.79620023391E-21 2.33727442281E-21 1.43197449705E-21 8.72980107357E-22 5.29535631745E-22 3.19584625501E-22 1.91890850788E-22 1.14624641038E-22 6.81136955778E-23 4.02625069598E-23 2.36730406936E-23 1.38442953965E-23 8.05244440728E-24 4.65801547250E-24 5S 0 1.00 Wavefunction 1.68405811068E-06 1.70098317608E-06 1.71807834122E-06 1.73534531562E-06 1.75278582600E-06 1.77040161642E-06 1.78819444849E-06 1.80616610148E-06 1.82431837260E-06 1.84265307707E-06 1.86117204838E-06 1.87987713845E-06 1.89877021781E-06 1.91785317576E-06 1.93712792064E-06 1.95659637992E-06 1.97626050046E-06 1.99612224871E-06 2.01618361085E-06 2.03644659302E-06 2.05691322156E-06 2.07758554313E-06 2.09846562499E-06 2.11955555515E-06 2.14085744265E-06 2.16237341767E-06 2.18410563183E-06 2.20605625838E-06 2.22822749240E-06 2.25062155102E-06 2.27324067367E-06 2.29608712229E-06 2.31916318153E-06 2.34247115902E-06 2.36601338559E-06 2.38979221546E-06 2.41381002655E-06 2.43806922065E-06 2.46257222371E-06 2.48732148604E-06 2.51231948260E-06 2.53756871320E-06 2.56307170279E-06 2.58883100168E-06 2.61484918583E-06 2.64112885708E-06 2.66767264343E-06 2.69448319925E-06 2.72156320565E-06 2.74891537064E-06 2.77654242945E-06 2.80444714482E-06 2.83263230725E-06 2.86110073527E-06 2.88985527575E-06 2.91889880417E-06 2.94823422490E-06 2.97786447151E-06 3.00779250705E-06 3.03802132436E-06 3.06855394633E-06 3.09939342625E-06 3.13054284810E-06 3.16200532685E-06 3.19378400876E-06 3.22588207175E-06 3.25830272563E-06 3.29104921250E-06 3.32412480703E-06 3.35753281682E-06 3.39127658269E-06 3.42535947905E-06 3.45978491422E-06 3.49455633076E-06 3.52967720585E-06 3.56515105161E-06 3.60098141545E-06 3.63717188043E-06 3.67372606563E-06 3.71064762651E-06 3.74794025525E-06 3.78560768113E-06 3.82365367095E-06 3.86208202932E-06 3.90089659912E-06 3.94010126183E-06 3.97969993796E-06 4.01969658741E-06 4.06009520986E-06 4.10089984523E-06 4.14211457400E-06 4.18374351769E-06 4.22579083922E-06 4.26826074336E-06 4.31115747714E-06 4.35448533027E-06 4.39824863556E-06 4.44245176939E-06 4.48709915210E-06 4.53219524848E-06 4.57774456817E-06 4.62375166613E-06 4.67022114312E-06 4.71715764612E-06 4.76456586883E-06 4.81245055211E-06 4.86081648445E-06 4.90966850251E-06 4.95901149152E-06 5.00885038581E-06 5.05919016933E-06 5.11003587609E-06 5.16139259071E-06 5.21326544890E-06 5.26565963799E-06 5.31858039744E-06 5.37203301938E-06 5.42602284910E-06 5.48055528565E-06 5.53563578230E-06 5.59126984715E-06 5.64746304367E-06 5.70422099121E-06 5.76154936561E-06 5.81945389977E-06 5.87794038418E-06 5.93701466754E-06 5.99668265733E-06 6.05695032041E-06 6.11782368358E-06 6.17930883423E-06 6.24141192093E-06 6.30413915405E-06 6.36749680635E-06 6.43149121366E-06 6.49612877547E-06 6.56141595559E-06 6.62735928280E-06 6.69396535148E-06 6.76124082230E-06 6.82919242285E-06 6.89782694837E-06 6.96715126235E-06 7.03717229729E-06 7.10789705535E-06 7.17933260906E-06 7.25148610205E-06 7.32436474972E-06 7.39797584000E-06 7.47232673405E-06 7.54742486704E-06 7.62327774884E-06 7.69989296480E-06 7.77727817650E-06 7.85544112255E-06 7.93438961928E-06 8.01413156163E-06 8.09467492385E-06 8.17602776035E-06 8.25819820648E-06 8.34119447935E-06 8.42502487867E-06 8.50969778754E-06 8.59522167333E-06 8.68160508850E-06 8.76885667146E-06 8.85698514744E-06 8.94599932938E-06 9.03590811875E-06 9.12672050652E-06 9.21844557401E-06 9.31109249380E-06 9.40467053065E-06 9.49918904246E-06 9.59465748115E-06 9.69108539366E-06 9.78848242284E-06 9.88685830850E-06 9.98622288830E-06 1.00865860988E-05 1.01879579764E-05 1.02903486583E-05 1.03937683838E-05 1.04982274948E-05 1.06037364375E-05 1.07103057627E-05 1.08179461275E-05 1.09266682960E-05 1.10364831406E-05 1.11474016428E-05 1.12594348945E-05 1.13725940992E-05 1.14868905729E-05 1.16023357454E-05 1.17189411612E-05 1.18367184810E-05 1.19556794827E-05 1.20758360624E-05 1.21972002359E-05 1.23197841397E-05 1.24436000324E-05 1.25686602955E-05 1.26949774354E-05 1.28225640837E-05 1.29514329992E-05 1.30815970690E-05 1.32130693096E-05 1.33458628683E-05 1.34799910246E-05 1.36154671914E-05 1.37523049165E-05 1.38905178837E-05 1.40301199145E-05 1.41711249692E-05 1.43135471484E-05 1.44574006944E-05 1.46026999928E-05 1.47494595736E-05 1.48976941129E-05 1.50474184343E-05 1.51986475103E-05 1.53513964640E-05 1.55056805704E-05 1.56615152581E-05 1.58189161107E-05 1.59778988683E-05 1.61384794294E-05 1.63006738523E-05 1.64644983564E-05 1.66299693245E-05 1.67971033037E-05 1.69659170075E-05 1.71364273176E-05 1.73086512851E-05 1.74826061325E-05 1.76583092555E-05 1.78357782245E-05 1.80150307867E-05 1.81960848674E-05 1.83789585722E-05 1.85636701887E-05 1.87502381881E-05 1.89386812275E-05 1.91290181512E-05 1.93212679933E-05 1.95154499788E-05 1.97115835262E-05 1.99096882489E-05 2.01097839576E-05 2.03118906621E-05 2.05160285732E-05 2.07222181049E-05 2.09304798763E-05 2.11408347139E-05 2.13533036533E-05 2.15679079416E-05 2.17846690394E-05 2.20036086230E-05 2.22247485867E-05 2.24481110446E-05 2.26737183331E-05 2.29015930132E-05 2.31317578727E-05 2.33642359281E-05 2.35990504275E-05 2.38362248527E-05 2.40757829212E-05 2.43177485892E-05 2.45621460533E-05 2.48089997537E-05 2.50583343758E-05 2.53101748535E-05 2.55645463709E-05 2.58214743656E-05 2.60809845305E-05 2.63431028170E-05 2.66078554371E-05 2.68752688663E-05 2.71453698462E-05 2.74181853873E-05 2.76937427713E-05 2.79720695543E-05 2.82531935692E-05 2.85371429287E-05 2.88239460280E-05 2.91136315478E-05 2.94062284569E-05 2.97017660152E-05 3.00002737768E-05 3.03017815929E-05 3.06063196145E-05 3.09139182957E-05 3.12246083968E-05 3.15384209870E-05 3.18553874480E-05 3.21755394767E-05 3.24989090886E-05 3.28255286212E-05 3.31554307367E-05 3.34886484256E-05 3.38252150101E-05 3.41651641472E-05 3.45085298322E-05 3.48553464020E-05 3.52056485388E-05 3.55594712730E-05 3.59168499874E-05 3.62778204203E-05 3.66424186690E-05 3.70106811938E-05 3.73826448214E-05 3.77583467486E-05 3.81378245460E-05 3.85211161619E-05 3.89082599258E-05 3.92992945525E-05 3.96942591461E-05 4.00931932033E-05 4.04961366182E-05 4.09031296855E-05 4.13142131050E-05 4.17294279856E-05 4.21488158493E-05 4.25724186353E-05 4.30002787045E-05 4.34324388434E-05 4.38689422686E-05 4.43098326310E-05 4.47551540201E-05 4.52049509687E-05 4.56592684570E-05 4.61181519174E-05 4.65816472389E-05 4.70498007716E-05 4.75226593314E-05 4.80002702048E-05 4.84826811537E-05 4.89699404196E-05 4.94620967293E-05 4.99591992991E-05 5.04612978398E-05 5.09684425620E-05 5.14806841811E-05 5.19980739217E-05 5.25206635237E-05 5.30485052467E-05 5.35816518758E-05 5.41201567264E-05 5.46640736497E-05 5.52134570382E-05 5.57683618312E-05 5.63288435200E-05 5.68949581535E-05 5.74667623443E-05 5.80443132735E-05 5.86276686971E-05 5.92168869517E-05 5.98120269601E-05 6.04131482372E-05 6.10203108961E-05 6.16335756541E-05 6.22530038388E-05 6.28786573939E-05 6.35105988860E-05 6.41488915102E-05 6.47935990970E-05 6.54447861183E-05 6.61025176939E-05 6.67668595982E-05 6.74378782666E-05 6.81156408022E-05 6.88002149826E-05 6.94916692664E-05 7.01900728003E-05 7.08954954262E-05 7.16080076877E-05 7.23276808373E-05 7.30545868439E-05 7.37887983996E-05 7.45303889269E-05 7.52794325866E-05 7.60360042844E-05 7.68001796793E-05 7.75720351904E-05 7.83516480050E-05 7.91390960860E-05 7.99344581800E-05 8.07378138250E-05 8.15492433585E-05 8.23688279253E-05 8.31966494858E-05 8.40327908240E-05 8.48773355562E-05 8.57303681390E-05 8.65919738776E-05 8.74622389348E-05 8.83412503394E-05 8.92290959948E-05 9.01258646878E-05 9.10316460977E-05 9.19465308051E-05 9.28706103010E-05 9.38039769958E-05 9.47467242289E-05 9.56989462776E-05 9.66607383670E-05 9.76321966791E-05 9.86134183625E-05 9.96045015424E-05 1.00605545330E-04 1.01616649833E-04 1.02637916165E-04 1.03669446456E-04 1.04711343862E-04 1.05763712577E-04 1.06826657841E-04 1.07900285951E-04 1.08984704275E-04 1.10080021258E-04 1.11186346435E-04 1.12303790444E-04 1.13432465033E-04 1.14572483073E-04 1.15723958570E-04 1.16887006677E-04 1.18061743702E-04 1.19248287125E-04 1.20446755604E-04 1.21657268991E-04 1.22879948342E-04 1.24114915931E-04 1.25362295260E-04 1.26622211071E-04 1.27894789362E-04 1.29180157397E-04 1.30478443718E-04 1.31789778161E-04 1.33114291864E-04 1.34452117285E-04 1.35803388214E-04 1.37168239784E-04 1.38546808488E-04 1.39939232189E-04 1.41345650137E-04 1.42766202981E-04 1.44201032784E-04 1.45650283037E-04 1.47114098674E-04 1.48592626084E-04 1.50086013128E-04 1.51594409154E-04 1.53117965011E-04 1.54656833063E-04 1.56211167207E-04 1.57781122886E-04 1.59366857105E-04 1.60968528449E-04 1.62586297096E-04 1.64220324832E-04 1.65870775072E-04 1.67537812874E-04 1.69221604951E-04 1.70922319696E-04 1.72640127193E-04 1.74375199236E-04 1.76127709345E-04 1.77897832784E-04 1.79685746580E-04 1.81491629540E-04 1.83315662265E-04 1.85158027175E-04 1.87018908522E-04 1.88898492410E-04 1.90796966814E-04 1.92714521599E-04 1.94651348537E-04 1.96607641330E-04 1.98583595625E-04 2.00579409038E-04 2.02595281168E-04 2.04631413624E-04 2.06688010040E-04 2.08765276096E-04 2.10863419541E-04 2.12982650213E-04 2.15123180057E-04 2.17285223152E-04 2.19468995725E-04 2.21674716179E-04 2.23902605113E-04 2.26152885343E-04 2.28425781924E-04 2.30721522175E-04 2.33040335698E-04 2.35382454406E-04 2.37748112541E-04 2.40137546701E-04 2.42550995863E-04 2.44988701404E-04 2.47450907132E-04 2.49937859302E-04 2.52449806646E-04 2.54987000397E-04 2.57549694314E-04 2.60138144707E-04 2.62752610461E-04 2.65393353066E-04 2.68060636641E-04 2.70754727958E-04 2.73475896475E-04 2.76224414354E-04 2.79000556499E-04 2.81804600573E-04 2.84636827033E-04 2.87497519157E-04 2.90386963068E-04 2.93305447768E-04 2.96253265165E-04 2.99230710100E-04 3.02238080381E-04 3.05275676809E-04 3.08343803209E-04 3.11442766462E-04 3.14572876535E-04 3.17734446510E-04 3.20927792619E-04 3.24153234274E-04 3.27411094096E-04 3.30701697954E-04 3.34025374990E-04 3.37382457660E-04 3.40773281759E-04 3.44198186461E-04 3.47657514351E-04 3.51151611458E-04 3.54680827291E-04 3.58245514876E-04 3.61846030785E-04 3.65482735180E-04 3.69155991844E-04 3.72866168216E-04 3.76613635435E-04 3.80398768368E-04 3.84221945656E-04 3.88083549745E-04 3.91983966931E-04 3.95923587393E-04 3.99902805234E-04 4.03922018523E-04 4.07981629331E-04 4.12082043775E-04 4.16223672056E-04 4.20406928501E-04 4.24632231606E-04 4.28900004074E-04 4.33210672864E-04 4.37564669228E-04 4.41962428755E-04 4.46404391418E-04 4.50891001616E-04 4.55422708219E-04 4.59999964611E-04 4.64623228740E-04 4.69292963161E-04 4.74009635080E-04 4.78773716408E-04 4.83585683802E-04 4.88446018714E-04 4.93355207444E-04 4.98313741181E-04 5.03322116060E-04 5.08380833208E-04 5.13490398794E-04 5.18651324081E-04 5.23864125477E-04 5.29129324589E-04 5.34447448271E-04 5.39819028681E-04 5.45244603334E-04 5.50724715153E-04 5.56259912527E-04 5.61850749366E-04 5.67497785152E-04 5.73201585004E-04 5.78962719726E-04 5.84781765871E-04 5.90659305794E-04 5.96595927715E-04 6.02592225775E-04 6.08648800098E-04 6.14766256849E-04 6.20945208299E-04 6.27186272884E-04 6.33490075264E-04 6.39857246395E-04 6.46288423583E-04 6.52784250554E-04 6.59345377519E-04 6.65972461235E-04 6.72666165077E-04 6.79427159099E-04 6.86256120109E-04 6.93153731728E-04 7.00120684469E-04 7.07157675799E-04 7.14265410213E-04 7.21444599304E-04 7.28695961836E-04 7.36020223815E-04 7.43418118565E-04 7.50890386798E-04 7.58437776694E-04 7.66061043973E-04 7.73760951971E-04 7.81538271721E-04 7.89393782027E-04 7.97328269546E-04 8.05342528865E-04 8.13437362584E-04 8.21613581395E-04 8.29872004166E-04 8.38213458022E-04 8.46638778432E-04 8.55148809289E-04 8.63744403001E-04 8.72426420574E-04 8.81195731700E-04 8.90053214846E-04 8.98999757343E-04 9.08036255474E-04 9.17163614570E-04 9.26382749098E-04 9.35694582754E-04 9.45100048560E-04 9.54600088955E-04 9.64195655895E-04 9.73887710946E-04 9.83677225385E-04 9.93565180297E-04 1.00355256668E-03 1.01364038553E-03 1.02382964797E-03 1.03412137534E-03 1.04451659927E-03 1.05501636186E-03 1.06562171570E-03 1.07633372404E-03 1.08715346089E-03 1.09808201108E-03 1.10912047045E-03 1.12026994589E-03 1.13153155550E-03 1.14290642869E-03 1.15439570630E-03 1.16600054068E-03 1.17772209588E-03 1.18956154771E-03 1.20152008389E-03 1.21359890414E-03 1.22579922037E-03 1.23812225671E-03 1.25056924974E-03 1.26314144851E-03 1.27584011477E-03 1.28866652303E-03 1.30162196072E-03 1.31470772832E-03 1.32792513949E-03 1.34127552122E-03 1.35476021394E-03 1.36838057169E-03 1.38213796223E-03 1.39603376722E-03 1.41006938233E-03 1.42424621737E-03 1.43856569651E-03 1.45302925836E-03 1.46763835612E-03 1.48239445779E-03 1.49729904626E-03 1.51235361950E-03 1.52755969070E-03 1.54291878844E-03 1.55843245685E-03 1.57410225577E-03 1.58992976088E-03 1.60591656394E-03 1.62206427288E-03 1.63837451201E-03 1.65484892221E-03 1.67148916104E-03 1.68829690296E-03 1.70527383951E-03 1.72242167948E-03 1.73974214907E-03 1.75723699210E-03 1.77490797018E-03 1.79275686291E-03 1.81078546807E-03 1.82899560179E-03 1.84738909875E-03 1.86596781239E-03 1.88473361513E-03 1.90368839848E-03 1.92283407336E-03 1.94217257023E-03 1.96170583929E-03 1.98143585076E-03 2.00136459501E-03 2.02149408284E-03 2.04182634566E-03 2.06236343571E-03 2.08310742630E-03 2.10406041203E-03 2.12522450902E-03 2.14660185511E-03 2.16819461014E-03 2.19000495616E-03 2.21203509768E-03 2.23428726188E-03 2.25676369889E-03 2.27946668205E-03 2.30239850810E-03 2.32556149749E-03 2.34895799462E-03 2.37259036808E-03 2.39646101094E-03 2.42057234101E-03 2.44492680109E-03 2.46952685928E-03 2.49437500920E-03 2.51947377035E-03 2.54482568831E-03 2.57043333507E-03 2.59629930932E-03 2.62242623675E-03 2.64881677031E-03 2.67547359056E-03 2.70239940593E-03 2.72959695308E-03 2.75706899716E-03 2.78481833217E-03 2.81284778126E-03 2.84116019705E-03 2.86975846199E-03 2.89864548866E-03 2.92782422013E-03 2.95729763029E-03 2.98706872422E-03 3.01714053851E-03 3.04751614164E-03 3.07819863435E-03 3.10919114996E-03 3.14049685483E-03 3.17211894863E-03 3.20406066480E-03 3.23632527092E-03 3.26891606908E-03 3.30183639630E-03 3.33508962493E-03 3.36867916307E-03 3.40260845494E-03 3.43688098136E-03 3.47150026016E-03 3.50646984659E-03 3.54179333377E-03 3.57747435317E-03 3.61351657500E-03 3.64992370873E-03 3.68669950351E-03 3.72384774868E-03 3.76137227422E-03 3.79927695126E-03 3.83756569254E-03 3.87624245296E-03 3.91531123006E-03 3.95477606454E-03 3.99464104077E-03 4.03491028737E-03 4.07558797769E-03 4.11667833041E-03 4.15818561007E-03 4.20011412766E-03 4.24246824115E-03 4.28525235615E-03 4.32847092642E-03 4.37212845454E-03 4.41622949248E-03 4.46077864227E-03 4.50578055657E-03 4.55123993938E-03 4.59716154666E-03 4.64355018697E-03 4.69041072222E-03 4.73774806829E-03 4.78556719576E-03 4.83387313060E-03 4.88267095494E-03 4.93196580776E-03 4.98176288564E-03 5.03206744355E-03 5.08288479562E-03 5.13422031589E-03 5.18607943917E-03 5.23846766180E-03 5.29139054252E-03 5.34485370331E-03 5.39886283023E-03 5.45342367433E-03 5.50854205249E-03 5.56422384840E-03 5.62047501342E-03 5.67730156756E-03 5.73470960044E-03 5.79270527223E-03 5.85129481471E-03 5.91048453223E-03 5.97028080277E-03 6.03069007897E-03 6.09171888926E-03 6.15337383889E-03 6.21566161109E-03 6.27858896819E-03 6.34216275278E-03 6.40638988892E-03 6.47127738331E-03 6.53683232654E-03 6.60306189434E-03 6.66997334887E-03 6.73757404005E-03 6.80587140682E-03 6.87487297859E-03 6.94458637658E-03 7.01501931522E-03 7.08617960368E-03 7.15807514724E-03 7.23071394889E-03 7.30410411082E-03 7.37825383602E-03 7.45317142988E-03 7.52886530181E-03 7.60534396695E-03 7.68261604789E-03 7.76069027639E-03 7.83957549517E-03 7.91928065979E-03 7.99981484045E-03 8.08118722395E-03 8.16340711564E-03 8.24648394141E-03 8.33042724971E-03 8.41524671369E-03 8.50095213329E-03 8.58755343746E-03 8.67506068638E-03 8.76348407375E-03 8.85283392914E-03 8.94312072037E-03 9.03435505597E-03 9.12654768772E-03 9.21970951316E-03 9.31385157825E-03 9.40898508010E-03 9.50512136966E-03 9.60227195459E-03 9.70044850213E-03 9.79966284208E-03 9.89992696982E-03 1.00012530494E-02 1.01036534169E-02 1.02071405832E-02 1.03117272381E-02 1.04174262530E-02 1.05242506848E-02 1.06322137795E-02 1.07413289758E-02 1.08516099089E-02 1.09630704144E-02 1.10757245321E-02 1.11895865106E-02 1.13046708108E-02 1.14209921108E-02 1.15385653098E-02 1.16574055331E-02 1.17775281362E-02 1.18989487102E-02 1.20216830860E-02 1.21457473400E-02 1.22711577985E-02 1.23979310439E-02 1.25260839190E-02 1.26556335336E-02 1.27865972697E-02 1.29189927874E-02 1.30528380309E-02 1.31881512349E-02 1.33249509308E-02 1.34632559532E-02 1.36030854469E-02 1.37444588732E-02 1.38873960177E-02 1.40319169969E-02 1.41780422665E-02 1.43257926280E-02 1.44751892377E-02 1.46262536142E-02 1.47790076466E-02 1.49334736038E-02 1.50896741427E-02 1.52476323174E-02 1.54073715888E-02 1.55689158337E-02 1.57322893554E-02 1.58975168932E-02 1.60646236331E-02 1.62336352186E-02 1.64045777617E-02 1.65774778542E-02 1.67523625797E-02 1.69292595251E-02 1.71081967938E-02 1.72892030175E-02 1.74723073703E-02 1.76575395814E-02 1.78449299497E-02 1.80345093576E-02 1.82263092860E-02 1.84203618297E-02 1.86166997127E-02 1.88153563042E-02 1.90163656359E-02 1.92197624183E-02 1.94255820588E-02 1.96338606798E-02 1.98446351371E-02 2.00579430393E-02 2.02738227680E-02 2.04923134978E-02 2.07134552172E-02 2.09372887512E-02 2.11638557826E-02 2.13931988759E-02 2.16253615006E-02 2.18603880559E-02 2.20983238960E-02 2.23392153559E-02 2.25831097788E-02 2.28300555432E-02 2.30801020918E-02 2.33332999609E-02 2.35897008109E-02 2.38493574573E-02 2.41123239035E-02 2.43786553736E-02 2.46484083473E-02 2.49216405952E-02 2.51984112153E-02 2.54787806710E-02 2.57628108299E-02 2.60505650040E-02 2.63421079915E-02 2.66375061194E-02 2.69368272878E-02 2.72401410155E-02 2.75475184872E-02 2.78590326021E-02 2.81747580242E-02 2.84947712338E-02 2.88191505816E-02 2.91479763435E-02 2.94813307777E-02 2.98192981839E-02 3.01619649638E-02 3.05094196842E-02 3.08617531419E-02 3.12190584305E-02 3.15814310098E-02 3.19489687772E-02 3.23217721416E-02 3.26999440999E-02 3.30835903153E-02 3.34728191993E-02 3.38677419954E-02 3.42684728660E-02 3.46751289824E-02 3.50878306175E-02 3.55067012414E-02 3.59318676206E-02 3.63634599202E-02 3.68016118096E-02 3.72464605719E-02 3.76981472162E-02 3.81568165949E-02 3.86226175236E-02 3.90957029059E-02 3.95762298618E-02 4.00643598607E-02 4.05602588587E-02 4.10640974406E-02 4.15760509660E-02 4.20962997213E-02 4.26250290758E-02 4.31624296434E-02 4.37086974496E-02 4.42640341041E-02 4.48286469787E-02 4.54027493912E-02 4.59865607961E-02 4.65803069799E-02 4.71842202645E-02 4.77985397164E-02 4.84235113620E-02 4.90593884114E-02 4.97064314884E-02 5.03649088676E-02 5.10350967200E-02 5.17172793656E-02 5.24117495345E-02 5.31188086354E-02 5.38387670339E-02 5.45719443375E-02 5.53186696910E-02 5.60792820800E-02 5.68541306439E-02 5.76435749978E-02 5.84479855646E-02 5.92677439164E-02 6.01032431255E-02 6.09548881259E-02 6.18230960846E-02 6.27082967836E-02 6.36109330112E-02 6.45314609652E-02 6.54703506655E-02 6.64280863775E-02 6.74051670462E-02 6.84021067407E-02 6.94194351089E-02 7.04576978429E-02 7.15174571546E-02 7.25992922602E-02 7.37037998761E-02 7.48315947227E-02 7.59833100375E-02 7.71595980974E-02 7.83611307478E-02 7.95885999395E-02 8.08427182722E-02 8.21242195434E-02 8.34338593017E-02 8.47724154040E-02 8.61406885743E-02 8.75395029642E-02 8.89697067114E-02 9.04321724963E-02 9.19277980936E-02 9.34575069173E-02 9.50222485558E-02 9.66229992953E-02 9.82607626278E-02 9.99365697413E-02 1.01651479987E-01 1.03406581320E-01 1.05202990713E-01 1.07041854529E-01 1.08924348860E-01 1.10851679813E-01 1.12825083751E-01 1.14845827469E-01 1.16915208305E-01 1.19034554185E-01 1.21205223570E-01 1.23428605330E-01 1.25706118502E-01 1.28039211944E-01 1.30429363867E-01 1.32878081228E-01 1.35386898978E-01 1.37957379148E-01 1.40591109765E-01 1.43289703566E-01 1.46054796516E-01 1.48888046096E-01 1.51791129350E-01 1.54765740675E-01 1.57813589320E-01 1.60936396599E-01 1.64135892767E-01 1.67413813559E-01 1.70771896361E-01 1.74211875991E-01 1.77735480060E-01 1.81344423900E-01 1.85040405033E-01 1.88825097141E-01 1.92700143539E-01 1.96667150109E-01 2.00727677676E-01 2.04883233811E-01 2.09135264041E-01 2.13485142438E-01 2.17934161588E-01 2.22483521921E-01 2.27134320388E-01 2.31887538498E-01 2.36744029700E-01 2.41704506133E-01 2.46769524743E-01 2.51939472807E-01 2.57214552878E-01 2.62594767203E-01 2.68079901662E-01 2.73669509288E-01 2.79362893440E-01 2.85159090724E-01 2.91056853764E-01 2.97054633926E-01 3.03150564153E-01 3.09342442031E-01 3.15627713277E-01 3.22003455817E-01 3.28466364659E-01 3.35012737780E-01 3.41638463250E-01 3.48339007852E-01 3.55109407452E-01 3.61944259389E-01 3.68837717170E-01 3.75783487755E-01 3.82774831710E-01 3.89804566535E-01 3.96865073417E-01 4.03948307686E-01 4.11045813225E-01 4.18148741027E-01 4.25247872106E-01 4.32333644881E-01 4.39396187139E-01 4.46425352590E-01 4.53410761989E-01 4.60341848701E-01 4.67207908515E-01 4.73998153410E-01 4.80701768896E-01 4.87307974426E-01 4.93806086287E-01 5.00185582270E-01 5.06436167302E-01 5.12547839124E-01 5.18510953013E-01 5.24316284446E-01 5.29955088540E-01 5.35419155045E-01 5.40700857645E-01 5.45793196303E-01 5.50689831428E-01 5.55385108714E-01 5.59874073592E-01 5.64152474445E-01 5.68216753911E-01 5.72064027938E-01 5.75692052614E-01 5.79099179269E-01 5.82284298920E-01 5.85246777835E-01 5.87986386836E-01 5.90503227976E-01 5.92797663430E-01 5.94870252864E-01 5.96721706783E-01 5.98352864519E-01 5.99764689297E-01 6.00958265880E-01 6.01934798793E-01 6.02695610552E-01 6.03242139924E-01 6.03575940184E-01 6.03698677392E-01 6.03612128671E-01 6.03318180497E-01 6.02818826980E-01 6.02116168158E-01 6.01212408269E-01 6.00109854027E-01 5.98810912877E-01 5.97318091231E-01 5.95633992689E-01 5.93761316223E-01 5.91702854332E-01 5.89461491165E-01 5.87040200586E-01 5.84442044209E-01 5.81670169363E-01 5.78727807006E-01 5.75618269570E-01 5.72344948738E-01 5.68911313139E-01 5.65320905966E-01 5.61577342505E-01 5.57684307568E-01 5.53645552832E-01 5.49464894075E-01 5.45146208305E-01 5.40693430779E-01 5.36110551911E-01 5.31401614059E-01 5.26570708206E-01 5.21621970515E-01 5.16559578771E-01 5.11387748706E-01 5.06110730219E-01 5.00732803475E-01 4.95258274917E-01 4.89691473168E-01 4.84036744856E-01 4.78298450349E-01 4.72480959436E-01 4.66588646939E-01 4.60625888290E-01 4.54597055078E-01 4.48506510581E-01 4.42358605309E-01 4.36157672548E-01 4.29908023965E-01 4.23613945254E-01 4.17279691859E-01 4.10909484787E-01 4.04507506530E-01 3.98077897115E-01 3.91624750288E-01 3.85152109867E-01 3.78663966252E-01 3.72164253131E-01 3.65656844378E-01 3.59145551151E-01 3.52634119214E-01 3.46126226467E-01 3.39625480710E-01 3.33135417627E-01 3.26659498999E-01 3.20201111140E-01 3.13763563559E-01 3.07350087828E-01 3.00963836666E-01 2.94607883214E-01 2.88285220499E-01 2.81998761072E-01 2.75751336801E-01 2.69545698809E-01 2.63384517536E-01 2.57270382911E-01 2.51205804606E-01 2.45193212374E-01 2.39234956424E-01 2.33333307835E-01 2.27490458989E-01 2.21708523989E-01 2.15989539069E-01 2.10335462960E-01 2.04748177216E-01 1.99229486473E-01 1.93781118638E-01 1.88404725008E-01 1.83101880302E-01 1.77874082604E-01 1.72722753228E-01 1.67649236500E-01 1.62654799461E-01 1.57740631498E-01 1.52907843918E-01 1.48157469477E-01 1.43490461863E-01 1.38907695174E-01 1.34409963375E-01 1.29997979784E-01 1.25672376577E-01 1.21433704350E-01 1.17282431737E-01 1.13218945123E-01 1.09243548447E-01 1.05356463125E-01 1.01557828103E-01 9.78477000479E-02 9.42260536959E-02 9.06927823626E-02 8.72476986221E-02 8.38905351635E-02 8.06209458264E-02 7.74385068186E-02 7.43427181151E-02 7.13330050366E-02 6.84087200054E-02 6.55691444714E-02 6.28134910042E-02 6.01409055410E-02 5.75504697834E-02 5.50412037321E-02 5.26120683483E-02 5.02619683312E-02 4.79897549988E-02 4.57942292590E-02 4.36741446598E-02 4.16282105028E-02 3.96550950101E-02 3.77534285289E-02 3.59218067626E-02 3.41587940152E-02 3.24629264363E-02 3.08327152562E-02 2.92666499983E-02 2.77632016587E-02 2.63208258422E-02 2.49379658464E-02 2.36130556825E-02 2.23445230268E-02 2.11307920932E-02 1.99702864219E-02 1.88614315746E-02 1.78026577345E-02 1.67924022029E-02 1.58291117892E-02 1.49112450908E-02 1.40372746599E-02 1.32056890537E-02 1.24149947672E-02 1.16637180464E-02 1.09504065823E-02 1.02736310840E-02 9.63198673168E-03 9.02409451084E-03 8.44860242768E-03 7.90418660784E-03 7.38955228027E-03 6.90343464825E-03 6.44459965028E-03 6.01184461343E-03 5.60399880250E-03 5.21992386794E-03 4.85851419638E-03 4.51869716709E-03 4.19943331849E-03 3.89971642855E-03 3.61857351304E-03 3.35506474600E-03 3.10828330636E-03 2.87735515523E-03 2.66143874785E-03 2.45972468472E-03 2.27143530596E-03 2.09582423319E-03 1.93217586313E-03 1.77980481702E-03 1.63805534978E-03 1.50630072302E-03 1.38394254565E-03 1.27041008582E-03 1.16515955787E-03 1.06767338767E-03 9.77459459931E-04 8.94050349024E-04 8.17002594781E-04 7.45895325107E-04 6.80333410799E-04 6.19932277828E-04 5.64348956467E-04 5.13262085617E-04 4.66356088231E-04 4.23330197149E-04 3.83901784467E-04 3.47805540688E-04 3.14792672422E-04 2.84630119284E-04 2.57099790821E-04 2.31997824169E-04 2.09133863078E-04 1.88330358835E-04 1.69421893543E-04 1.52254526121E-04 1.36685161300E-04 1.22580942643E-04 1.09818638901E-04 9.82843992130E-05 8.78710832653E-05 7.84855242901E-05 7.00308717553E-05 6.24162341327E-05 5.55643779270E-05 4.94061666979E-05 4.38779735835E-05 3.89213150495E-05 3.44825025155E-05 3.05123115576E-05 2.69656682956E-05 2.38013525435E-05 2.09817172730E-05 1.84724239154E-05 1.62421930041E-05 1.42625696422E-05 1.25077032662E-05 1.09541411647E-05 9.58063520192E-06 8.36796119306E-06 7.29875037509E-06 6.35733241643E-06 5.52958941306E-06 4.80282032322E-06 4.16561529998E-06 3.60773939031E-06 3.12002508014E-06 2.69427317685E-06 2.32316153491E-06 2.00016114436E-06 1.71945911843E-06 1.47588813234E-06 1.26486188330E-06 1.08231615866E-06 9.24655117828E-07 7.88702411569E-07 6.71656780546E-07 5.71051793625E-07 4.84719404428E-07 4.10757022774E-07 3.47497815312E-07 2.93483967025E-07 2.47442652164E-07 2.08264479600E-07 1.74984193443E-07 1.46763425066E-07 1.22875307322E-07 1.02690775798E-07 8.56663952896E-08 7.13335624084E-08 5.92889472347E-08 4.91860482971E-08 4.07277458318E-08 3.36597482950E-08 2.77648364762E-08 2.28578182941E-08 1.87811154860E-08 1.54009109327E-08 1.26037923278E-08 1.02938343188E-08 8.39006715112E-09 6.82428525782E-09 5.53915418465E-09 4.48657874943E-09 3.62629943726E-09 2.92468774796E-09 2.35371458086E-09 1.89006862502E-09 1.51440577215E-09 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.44864942431E-12 4.53851810406E-12 4.63020225158E-12 4.72373854174E-12 4.81916439030E-12 4.91651796888E-12 5.01583822021E-12 5.11716487371E-12 5.22053846140E-12 5.32600033408E-12 5.43359267792E-12 5.54335853129E-12 5.65534180199E-12 5.76958728482E-12 5.88614067950E-12 6.00504860894E-12 6.12635863791E-12 6.25011929202E-12 6.37638007719E-12 6.50519149943E-12 6.63660508501E-12 6.77067340112E-12 6.90745007688E-12 7.04698982478E-12 7.18934846259E-12 7.33458293565E-12 7.48275133969E-12 7.63391294405E-12 7.78812821539E-12 7.94545884187E-12 8.10596775784E-12 8.26971916902E-12 8.43677857814E-12 8.60721281119E-12 8.78109004416E-12 8.95847983024E-12 9.13945312772E-12 9.32408232833E-12 9.51244128621E-12 9.70460534746E-12 9.90065138027E-12 1.01006578057E-11 1.03047046289E-11 1.05128734714E-11 1.07252476034E-11 1.09419119776E-11 1.11629532624E-11 1.13884598775E-11 1.16185220283E-11 1.18532317429E-11 1.20926829083E-11 1.23369713082E-11 1.25861946610E-11 1.28404526596E-11 1.30998470105E-11 1.33644814749E-11 1.36344619102E-11 1.39098963120E-11 1.41908948579E-11 1.44775699510E-11 1.47700362651E-11 1.50684107907E-11 1.53728128816E-11 1.56833643027E-11 1.60001892787E-11 1.63234145438E-11 1.66531693924E-11 1.69895857309E-11 1.73327981302E-11 1.76829438800E-11 1.80401630432E-11 1.84045985122E-11 1.87763960661E-11 1.91557044288E-11 1.95426753289E-11 1.99374635597E-11 2.03402270418E-11 2.07511268861E-11 2.11703274579E-11 2.15979964430E-11 2.20343049149E-11 2.24794274025E-11 2.29335419610E-11 2.33968302422E-11 2.38694775675E-11 2.43516730023E-11 2.48436094311E-11 2.53454836351E-11 2.58574963706E-11 2.63798524495E-11 2.69127608214E-11 2.74564346565E-11 2.80110914318E-11 2.85769530173E-11 2.91542457653E-11 2.97432006004E-11 3.03440531126E-11 3.09570436508E-11 3.15824174195E-11 3.22204245764E-11 3.28713203331E-11 3.35353650563E-11 3.42128243730E-11 3.49039692759E-11 3.56090762322E-11 3.63284272940E-11 3.70623102114E-11 3.78110185474E-11 3.85748517953E-11 3.93541154986E-11 4.01491213731E-11 4.09601874318E-11 4.17876381121E-11 4.26318044052E-11 4.34930239888E-11 4.43716413624E-11 4.52680079846E-11 4.61824824140E-11 4.71154304526E-11 4.80672252922E-11 4.90382476632E-11 5.00288859877E-11 5.10395365342E-11 5.20706035765E-11 5.31224995550E-11 5.41956452424E-11 5.52904699110E-11 5.64074115056E-11 5.75469168175E-11 5.87094416643E-11 5.98954510712E-11 6.11054194580E-11 6.23398308281E-11 6.35991789627E-11 6.48839676177E-11 6.61947107259E-11 6.75319326019E-11 6.88961681524E-11 7.02879630898E-11 7.17078741508E-11 7.31564693186E-11 7.46343280508E-11 7.61420415106E-11 7.76802128036E-11 7.92494572187E-11 8.08504024748E-11 8.24836889714E-11 8.41499700448E-11 8.58499122299E-11 8.75841955261E-11 8.93535136701E-11 9.11585744127E-11 9.30000998023E-11 9.48788264739E-11 9.67955059430E-11 9.87509049073E-11 1.00745805552E-10 1.02781005865E-10 1.04857319953E-10 1.06975578370E-10 1.09136628446E-10 1.11341334632E-10 1.13590578839E-10 1.15885260795E-10 1.18226298404E-10 1.20614628111E-10 1.23051205281E-10 1.25537004577E-10 1.28073020353E-10 1.30660267047E-10 1.33299779595E-10 1.35992613836E-10 1.38739846939E-10 1.41542577836E-10 1.44401927655E-10 1.47319040175E-10 1.50295082281E-10 1.53331244428E-10 1.56428741123E-10 1.59588811406E-10 1.62812719346E-10 1.66101754551E-10 1.69457232679E-10 1.72880495965E-10 1.76372913762E-10 1.79935883083E-10 1.83570829163E-10 1.87279206030E-10 1.91062497084E-10 1.94922215693E-10 1.98859905796E-10 2.02877142521E-10 2.06975532817E-10 2.11156716096E-10 2.15422364886E-10 2.19774185505E-10 2.24213918739E-10 2.28743340542E-10 2.33364262742E-10 2.38078533771E-10 2.42888039400E-10 2.47794703497E-10 2.52800488792E-10 2.57907397668E-10 2.63117472957E-10 2.68432798759E-10 2.73855501275E-10 2.79387749659E-10 2.85031756886E-10 2.90789780635E-10 2.96664124191E-10 3.02657137373E-10 3.08771217465E-10 3.15008810182E-10 3.21372410645E-10 3.27864564380E-10 3.34487868337E-10 3.41244971926E-10 3.48138578079E-10 3.55171444332E-10 3.62346383927E-10 3.69666266935E-10 3.77134021410E-10 3.84752634553E-10 3.92525153913E-10 4.00454688602E-10 4.08544410542E-10 4.16797555730E-10 4.25217425537E-10 4.33807388023E-10 4.42570879291E-10 4.51511404854E-10 4.60632541045E-10 4.69937936441E-10 4.79431313327E-10 4.89116469181E-10 4.98997278198E-10 5.09077692834E-10 5.19361745393E-10 5.29853549635E-10 5.40557302424E-10 5.51477285405E-10 5.62617866722E-10 5.73983502757E-10 5.85578739919E-10 5.97408216461E-10 6.09476664335E-10 6.21788911082E-10 6.34349881771E-10 6.47164600959E-10 6.60238194710E-10 6.73575892639E-10 6.87183030006E-10 7.01065049852E-10 7.15227505175E-10 7.29676061150E-10 7.44416497397E-10 7.59454710291E-10 7.74796715323E-10 7.90448649505E-10 8.06416773825E-10 8.22707475750E-10 8.39327271786E-10 8.56282810078E-10 8.73580873073E-10 8.91228380235E-10 9.09232390808E-10 9.27600106644E-10 9.46338875082E-10 9.65456191886E-10 9.84959704247E-10 1.00485721384E-09 1.02515667993E-09 1.04586622261E-09 1.06699412596E-09 1.08854884143E-09 1.11053899122E-09 1.13297337169E-09 1.15586095690E-09 1.17921090220E-09 1.20303254789E-09 1.22733542296E-09 1.25212924890E-09 1.27742394359E-09 1.30322962524E-09 1.32955661650E-09 1.35641544852E-09 1.38381686522E-09 1.41177182754E-09 1.44029151786E-09 1.46938734444E-09 1.49907094604E-09 1.52935419650E-09 1.56024920955E-09 1.59176834363E-09 1.62392420683E-09 1.65672966195E-09 1.69019783164E-09 1.72434210363E-09 1.75917613611E-09 1.79471386318E-09 1.83096950045E-09 1.86795755068E-09 1.90569280960E-09 1.94419037187E-09 1.98346563704E-09 2.02353431579E-09 2.06441243616E-09 2.10611634997E-09 2.14866273939E-09 2.19206862358E-09 2.23635136551E-09 2.28152867892E-09 2.32761863537E-09 2.37463967152E-09 2.42261059645E-09 2.47155059923E-09 2.52147925655E-09 2.57241654061E-09 2.62438282706E-09 2.67739890316E-09 2.73148597611E-09 2.78666568152E-09 2.84296009210E-09 2.90039172641E-09 2.95898355795E-09 3.01875902432E-09 3.07974203657E-09 3.14195698880E-09 3.20542876792E-09 3.27018276357E-09 3.33624487830E-09 3.40364153795E-09 3.47239970216E-09 3.54254687524E-09 3.61411111709E-09 3.68712105448E-09 3.76160589248E-09 3.83759542614E-09 3.91512005241E-09 3.99421078232E-09 4.07489925334E-09 4.15721774209E-09 4.24119917721E-09 4.32687715256E-09 4.41428594063E-09 4.50346050626E-09 4.59443652066E-09 4.68725037563E-09 4.78193919813E-09 4.87854086517E-09 4.97709401890E-09 5.07763808211E-09 5.18021327401E-09 5.28486062626E-09 5.39162199944E-09 5.50054009979E-09 5.61165849627E-09 5.72502163799E-09 5.84067487199E-09 5.95866446143E-09 6.07903760402E-09 6.20184245095E-09 6.32712812612E-09 6.45494474583E-09 6.58534343881E-09 6.71837636664E-09 6.85409674467E-09 6.99255886326E-09 7.13381810955E-09 7.27793098957E-09 7.42495515084E-09 7.57494940549E-09 7.72797375372E-09 7.88408940782E-09 8.04335881670E-09 8.20584569081E-09 8.37161502766E-09 8.54073313781E-09 8.71326767140E-09 8.88928764521E-09 9.06886347028E-09 9.25206698006E-09 9.43897145914E-09 9.62965167260E-09 9.82418389589E-09 1.00226459453E-08 1.02251172093E-08 1.04316786799E-08 1.06424129854E-08 1.08574044234E-08 1.10767389944E-08 1.13005044362E-08 1.15287902590E-08 1.17616877816E-08 1.19992901670E-08 1.22416924609E-08 1.24889916286E-08 1.27412865945E-08 1.29986782814E-08 1.32612696509E-08 1.35291657446E-08 1.38024737261E-08 1.40813029240E-08 1.43657648754E-08 1.46559733708E-08 1.49520444993E-08 1.52540966953E-08 1.55622507858E-08 1.58766300386E-08 1.61973602120E-08 1.65245696046E-08 1.68583891070E-08 1.71989522539E-08 1.75463952778E-08 1.79008571633E-08 1.82624797027E-08 1.86314075529E-08 1.90077882931E-08 1.93917724837E-08 1.97835137270E-08 2.01831687281E-08 2.05908973581E-08 2.10068627177E-08 2.14312312025E-08 2.18641725696E-08 2.23058600059E-08 2.27564701964E-08 2.32161833961E-08 2.36851835012E-08 2.41636581231E-08 2.46517986632E-08 2.51498003898E-08 2.56578625159E-08 2.61761882791E-08 2.67049850229E-08 2.72444642794E-08 2.77948418544E-08 2.83563379131E-08 2.89291770688E-08 2.95135884725E-08 3.01098059044E-08 3.07180678677E-08 3.13386176839E-08 3.19717035902E-08 3.26175788388E-08 3.32765017981E-08 3.39487360562E-08 3.46345505264E-08 3.53342195546E-08 3.60480230293E-08 3.67762464932E-08 3.75191812581E-08 3.82771245207E-08 3.90503794818E-08 3.98392554681E-08 4.06440680549E-08 4.14651391936E-08 4.23027973393E-08 4.31573775832E-08 4.40292217861E-08 4.49186787154E-08 4.58261041846E-08 4.67518611956E-08 4.76963200839E-08 4.86598586672E-08 4.96428623958E-08 5.06457245076E-08 5.16688461850E-08 5.27126367154E-08 5.37775136553E-08 5.48639029969E-08 5.59722393392E-08 5.71029660610E-08 5.82565354993E-08 5.94334091294E-08 6.06340577504E-08 6.18589616728E-08 6.31086109111E-08 6.43835053801E-08 6.56841550943E-08 6.70110803726E-08 6.83648120461E-08 6.97458916708E-08 7.11548717441E-08 7.25923159261E-08 7.40587992649E-08 7.55549084269E-08 7.70812419317E-08 7.86384103912E-08 8.02270367543E-08 8.18477565562E-08 8.35012181725E-08 8.51880830790E-08 8.69090261161E-08 8.86647357592E-08 9.04559143938E-08 9.22832785972E-08 9.41475594248E-08 9.60495027029E-08 9.79898693272E-08 9.99694355672E-08 1.01988993377E-07 1.04049350713E-07 1.06151331855E-07 1.08295777740E-07 1.10483546295E-07 1.12715512781E-07 1.14992570146E-07 1.17315629381E-07 1.19685619884E-07 1.22103489831E-07 1.24570206558E-07 1.27086756949E-07 1.29654147826E-07 1.32273406359E-07 1.34945580470E-07 1.37671739260E-07 1.40452973431E-07 1.43290395725E-07 1.46185141370E-07 1.49138368534E-07 1.52151258788E-07 1.55225017581E-07 1.58360874722E-07 1.61560084870E-07 1.64823928040E-07 1.68153710115E-07 1.71550763365E-07 1.75016446988E-07 1.78552147645E-07 1.82159280026E-07 1.85839287406E-07 1.89593642230E-07 1.93423846704E-07 1.97331433389E-07 2.01317965821E-07 2.05385039139E-07 2.09534280718E-07 2.13767350825E-07 2.18085943284E-07 2.22491786153E-07 2.26986642418E-07 2.31572310700E-07 2.36250625972E-07 2.41023460301E-07 2.45892723593E-07 2.50860364357E-07 2.55928370495E-07 2.61098770088E-07 2.66373632216E-07 2.71755067786E-07 2.77245230377E-07 2.82846317105E-07 2.88560569504E-07 2.94390274424E-07 3.00337764948E-07 3.06405421330E-07 3.12595671947E-07 3.18910994275E-07 3.25353915883E-07 3.31927015446E-07 3.38632923781E-07 3.45474324901E-07 3.52453957096E-07 3.59574614026E-07 3.66839145850E-07 3.74250460365E-07 3.81811524174E-07 3.89525363881E-07 3.97395067302E-07 4.05423784710E-07 4.13614730095E-07 4.21971182461E-07 4.30496487141E-07 4.39194057142E-07 4.48067374516E-07 4.57119991763E-07 4.66355533255E-07 4.75777696699E-07 4.85390254618E-07 4.95197055878E-07 5.05202027226E-07 5.15409174880E-07 5.25822586136E-07 5.36446431016E-07 5.47284963948E-07 5.58342525478E-07 5.69623544022E-07 5.81132537648E-07 5.92874115900E-07 6.04852981653E-07 6.17073933016E-07 6.29541865263E-07 6.42261772810E-07 6.55238751235E-07 6.68477999328E-07 6.81984821202E-07 6.95764628428E-07 7.09822942226E-07 7.24165395698E-07 7.38797736108E-07 7.53725827207E-07 7.68955651609E-07 7.84493313211E-07 8.00345039672E-07 8.16517184933E-07 8.33016231799E-07 8.49848794568E-07 8.67021621718E-07 8.84541598645E-07 9.02415750469E-07 9.20651244888E-07 9.39255395091E-07 9.58235662747E-07 9.77599661034E-07 9.97355157752E-07 1.01751007849E-06 1.03807250986E-06 1.05905070281E-06 1.08045307600E-06 1.10228821921E-06 1.12456489693E-06 1.14729205189E-06 1.17047880876E-06 1.19413447789E-06 1.21826855916E-06 1.24289074583E-06 1.26801092862E-06 1.29363919971E-06 1.31978585695E-06 1.34646140812E-06 1.37367657525E-06 1.40144229909E-06 1.42976974363E-06 1.45867030076E-06 1.48815559497E-06 1.51823748825E-06 1.54892808497E-06 1.58023973701E-06 1.61218504885E-06 1.64477688293E-06 1.67802836497E-06 1.71195288957E-06 1.74656412577E-06 1.78187602287E-06 1.81790281630E-06 1.85465903365E-06 1.89215950081E-06 1.93041934831E-06 1.96945401772E-06 2.00927926822E-06 2.04991118339E-06 2.09136617799E-06 2.13366100511E-06 2.17681276324E-06 2.22083890373E-06 2.26575723821E-06 2.31158594635E-06 2.35834358365E-06 2.40604908952E-06 2.45472179542E-06 2.50438143334E-06 2.55504814427E-06 2.60674248702E-06 2.65948544718E-06 2.71329844623E-06 2.76820335089E-06 2.82422248273E-06 2.88137862788E-06 2.93969504703E-06 2.99919548564E-06 3.05990418440E-06 3.12184588988E-06 3.18504586548E-06 3.24952990265E-06 3.31532433233E-06 3.38245603681E-06 3.45095246178E-06 3.52084162884E-06 3.59215214833E-06 3.66491323261E-06 3.73915470980E-06 3.81490703801E-06 3.89220132012E-06 3.97106931926E-06 4.05154347485E-06 4.13365691945E-06 4.21744349646E-06 4.30293777862E-06 4.39017508756E-06 4.47919151432E-06 4.57002394100E-06 4.66271006355E-06 4.75728841574E-06 4.85379839448E-06 4.95228028622E-06 5.05277529483E-06 5.15532557054E-06 5.25997424021E-06 5.36676543866E-06 5.47574434109E-06 5.58695719633E-06 5.70045136088E-06 5.81627533334E-06 5.93447878924E-06 6.05511261571E-06 6.17822894588E-06 6.30388119252E-06 6.43212408082E-06 6.56301367993E-06 6.69660743316E-06 6.83296418693E-06 6.97214421872E-06 7.11420926435E-06 7.25922254553E-06 7.40724879815E-06 7.55835430263E-06 7.71260691704E-06 7.87007611370E-06 8.03083302022E-06 8.19495046512E-06 8.36250302809E-06 8.53356709537E-06 8.70822091952E-06 8.88654468369E-06 9.06862057007E-06 9.25453283220E-06 9.44436787125E-06 9.63821431570E-06 9.83616310505E-06 1.00383075769E-05 1.02447435582E-05 1.04555694599E-05 1.06708863768E-05 1.08907981904E-05 1.11154116777E-05 1.13448366240E-05 1.15791859413E-05 1.18185757918E-05 1.20631257180E-05 1.23129587775E-05 1.25682016859E-05 1.28289849651E-05 1.30954430994E-05 1.33677146995E-05 1.36459426738E-05 1.39302744085E-05 1.42208619566E-05 1.45178622367E-05 1.48214372407E-05 1.51317542536E-05 1.54489860830E-05 1.57733113013E-05 1.61049145003E-05 1.64439865589E-05 1.67907249249E-05 1.71453339118E-05 1.75080250114E-05 1.78790172230E-05 1.82585374007E-05 1.86468206194E-05 1.90441105604E-05 1.94506599190E-05 1.98667308335E-05 2.02925953394E-05 2.07285358472E-05 2.11748456484E-05 2.16318294489E-05 2.20998039331E-05 2.25790983592E-05 2.30700551886E-05 2.35730307512E-05 2.40883959484E-05 2.46165369960E-05 2.51578562100E-05 2.57127728372E-05 2.62817239340E-05 2.68651652949E-05 2.74635724355E-05 2.80774416321E-05 2.87072910209E-05 2.93536617618E-05 3.00171192694E-05 3.06982545152E-05 3.13976854072E-05 3.21160582476E-05 3.28540492783E-05 3.36123663150E-05 3.43917504776E-05 3.51929780225E-05 3.60168622819E-05 3.68642557178E-05 3.77360520961E-05 3.86331887899E-05 3.95566492171E-05 4.05074654240E-05 4.14867208196E-05 4.24955530725E-05 4.35351571798E-05 4.46067887167E-05 4.57117672795E-05 4.68514801324E-05 4.80273860715E-05 4.92410195172E-05 5.04939948508E-05 5.17880110086E-05 5.31248563492E-05 5.45064138105E-05 5.59346663741E-05 5.74117028547E-05 5.89397240352E-05 6.05210491664E-05 6.21581228557E-05 6.38535223649E-05 6.56099653453E-05 6.74303180323E-05 6.93176039309E-05 7.12750130181E-05 7.33059114957E-05 7.54138521241E-05 7.76025851747E-05 7.98760700343E-05 8.22384875031E-05 8.46942528278E-05 8.72480295112E-05 8.99047439468E-05 9.26696009266E-05 9.55481000746E-05 9.85460532613E-05 1.01669603056E-04 1.04925242279E-04 1.08319834725E-04 1.11860637112E-04 1.15555322350E-04 1.19412004184E-04 1.23439263319E-04 1.27646175084E-04 1.32042338758E-04 1.36637908629E-04 1.41443626909E-04 1.46470858599E-04 1.51731628428E-04 1.57238659989E-04 1.63005417191E-04 1.69046148178E-04 1.75375931844E-04 1.82010727115E-04 1.88967425137E-04 1.96263904565E-04 2.03919090111E-04 2.11953014564E-04 2.20386884461E-04 2.29243149647E-04 2.38545576927E-04 2.48319328063E-04 2.58591042368E-04 2.69388924148E-04 2.80742835298E-04 2.92684393327E-04 3.05247075138E-04 3.18466326898E-04 3.32379680331E-04 3.47026875826E-04 3.62449992739E-04 3.78693587298E-04 3.95804838559E-04 4.13833702858E-04 4.32833077260E-04 4.52858972503E-04 4.73970695981E-04 4.96231045347E-04 5.19706513314E-04 5.44467504314E-04 5.70588563659E-04 5.98148619929E-04 6.27231241315E-04 6.57924906706E-04 6.90323292343E-04 7.24525574911E-04 7.60636751979E-04 7.98767980757E-04 8.39036936180E-04 8.81568189392E-04 9.26493607749E-04 9.73952777527E-04 1.02409345058E-03 1.07707201625E-03 1.13305399992E-03 1.19221458964E-03 1.25473919236E-03 1.32082402136E-03 1.39067671654E-03 1.46451699940E-03 1.54257736448E-03 1.62510380920E-03 1.71235660428E-03 1.80461110664E-03 1.90215861728E-03 2.00530728627E-03 2.11438306750E-03 2.22973072562E-03 2.35171489796E-03 2.48072121426E-03 2.61715747712E-03 2.76145490634E-03 2.91406945031E-03 3.07548316791E-03 3.24620568445E-03 3.42677572527E-03 3.61776273094E-03 3.81976855807E-03 4.03342926991E-03 4.25941702112E-03 4.49844204122E-03 4.75125472160E-03 5.01864781084E-03 5.30145872365E-03 5.60057196860E-03 5.91692170030E-03 6.25149440175E-03 6.60533170273E-03 6.97953334057E-03 7.37526026950E-03 7.79373792532E-03 8.23625965223E-03 8.70419029878E-03 9.19896999022E-03 9.72211808494E-03 1.02752373224E-02 1.08600181707E-02 1.14782433820E-02 1.21317927637E-02 1.28226481747E-02 1.35528987546E-02 1.43247463954E-02 1.51405114643E-02 1.60026387876E-02 1.69137039039E-02 1.78764195974E-02 1.88936427196E-02 1.99683813103E-02 2.11038020261E-02 2.23032378883E-02 2.35701963572E-02 2.49083677445E-02 2.63216339722E-02 2.78140776880E-02 2.93899917459E-02 3.10538890606E-02 3.28105128454E-02 3.46648472398E-02 3.66221283367E-02 3.86878556141E-02 4.08678037797E-02 4.31680350319E-02 4.55949117443E-02 4.81551095759E-02 5.08556310101E-02 5.37038193243E-02 5.67073729900E-02 5.98743605020E-02 6.32132356338E-02 6.67328531132E-02 7.04424847131E-02 7.43518357463E-02 7.84710619530E-02 8.28107867677E-02 8.73821189464E-02 9.21966705347E-02 9.72665751531E-02 1.02604506571E-01 1.08223697536E-01 1.14137958829E-01 1.20361698497E-01 1.26909941221E-01 1.33798347767E-01 1.41043234470E-01 1.48661592678E-01 1.56671108097E-01 1.65090179949E-01 1.73937939879E-01 1.83234270501E-01 1.92999823496E-01 2.03256037153E-01 2.14025153232E-01 2.25330233040E-01 2.37195172559E-01 2.49644716508E-01 2.62704471170E-01 2.76400915819E-01 2.90761412574E-01 3.05814214489E-01 3.21588471681E-01 3.38114235282E-01 3.55422458989E-01 3.73544997982E-01 3.92514604953E-01 4.12364922985E-01 4.33130475019E-01 4.54846649598E-01 4.77549682621E-01 5.01276634763E-01 5.26065364266E-01 5.51954494759E-01 5.78983377759E-01 6.07192049509E-01 6.36621181792E-01 6.67312026359E-01 6.99306352584E-01 7.32646378000E-01 7.67374691305E-01 8.03534167498E-01 8.41167874738E-01 8.80318972591E-01 9.21030601285E-01 9.63345761631E-01 1.00730718529E+00 1.05295719507E+00 1.10033755494E+00 1.14948930956E+00 1.20045261307E+00 1.25326654689E+00 1.30796892650E+00 1.36459609709E+00 1.42318271791E+00 1.48376153551E+00 1.54636314592E+00 1.61101574588E+00 1.67774487348E+00 1.74657313842E+00 1.81751994254E+00 1.89060119098E+00 1.96582899475E+00 2.04321136549E+00 2.12275190330E+00 2.20444947879E+00 2.28829791040E+00 2.37428563855E+00 2.46239539792E+00 2.55260388966E+00 2.64488145531E+00 2.73919175446E+00 2.83549144822E+00 2.93372989092E+00 3.03384883251E+00 3.13578213426E+00 3.23945550062E+00 3.34478623009E+00 3.45168298837E+00 3.56004560671E+00 3.66976490907E+00 3.78072257127E+00 3.89279101567E+00 4.00583334494E+00 4.11970331836E+00 4.23424537429E+00 4.34929470216E+00 4.46467736754E+00 4.58021049353E+00 4.69570250154E+00 4.81095341454E+00 4.92575522542E+00 5.03989233280E+00 5.15314204634E+00 5.26527516314E+00 5.37605661631E+00 5.48524619626E+00 5.59259934458E+00 5.69786801977E+00 5.80080163337E+00 5.90114805410E+00 5.99865467699E+00 6.09306955345E+00 6.18414257754E+00 6.27162672250E+00 6.35527932105E+00 6.43486338166E+00 6.51014893258E+00 6.58091438400E+00 6.64694789837E+00 6.70804875785E+00 6.76402871732E+00 6.81471333059E+00 6.85994323719E+00 6.89957539647E+00 6.93348425568E+00 6.96156283848E+00 6.98372374055E+00 6.99990001882E+00 7.01004596195E+00 7.01413772947E+00 7.01217384863E+00 7.00417555849E+00 6.99018699215E+00 6.97027518978E+00 6.94452993611E+00 6.91306341855E+00 6.87600970351E+00 6.83352403082E+00 6.78578192845E+00 6.73297815172E+00 6.67532545370E+00 6.61305319590E+00 6.54640581020E+00 6.47564112579E+00 6.40102857636E+00 6.32284730503E+00 6.24138418624E+00 6.15693178494E+00 6.06978627505E+00 5.98024533971E+00 5.88860607651E+00 5.79516293114E+00 5.70020568262E+00 5.60401750297E+00 5.50687311300E+00 5.40903705508E+00 5.31076210183E+00 5.21228781801E+00 5.11383929079E+00 5.01562604103E+00 4.91784112569E+00 4.82066043855E+00 4.72424221370E+00 4.62872673259E+00 4.53423623297E+00 4.44087501383E+00 4.34872972778E+00 4.25786984841E+00 4.16834829694E+00 4.08020220879E+00 3.99345381752E+00 3.90811143023E+00 3.82417046521E+00 3.74161452013E+00 3.66041643636E+00 3.58053932321E+00 3.50193750483E+00 3.42455735029E+00 3.34833793095E+00 3.27322992330E+00 3.19925180758E+00 3.12643548696E+00 3.05480819842E+00 2.98439277844E+00 2.91520793622E+00 2.84726854660E+00 2.78058595808E+00 2.71516830941E+00 2.65102084692E+00 2.58814623421E+00 2.52654484508E+00 2.46621502982E+00 2.40715334481E+00 2.34935473499E+00 2.29281265864E+00 2.23751914437E+00 2.18346477017E+00 2.13063855568E+00 2.07902776264E+00 2.02861783564E+00 1.97939324012E+00 1.93133747925E+00 1.88443298618E+00 1.83866112174E+00 1.79400216487E+00 1.75043530453E+00 1.70793864561E+00 1.66648924445E+00 1.62606318870E+00 1.58663571172E+00 1.54818132281E+00 1.51067488922E+00 1.47406975674E+00 1.43837098828E+00 1.40355762831E+00 1.36960855098E+00 1.33650256584E+00 1.30421847872E+00 1.27273514343E+00 1.24203151030E+00 1.21208667144E+00 1.18287990306E+00 1.15439070465E+00 1.12659883524E+00 1.09948434672E+00 1.07302761430E+00 1.04720936422E+00 1.02201069879E+00 9.97413118697E-01 9.73398542926E-01 9.49949326101E-01 9.27048273538E-01 9.04678654004E-01 8.82824210291E-01 8.61469167708E-01 8.40598240584E-01 8.20196636870E-01 8.00250060936E-01 7.80744714673E-01 7.61667296974E-01 7.43005001712E-01 7.24745514283E-01 7.06877006843E-01 6.89388132293E-01 6.72268017137E-01 6.55506253281E-01 6.39092888868E-01 6.23018418239E-01 6.07273771104E-01 5.91850300991E-01 5.76739773075E-01 5.61934351443E-01 5.47426585885E-01 5.33209398270E-01 5.19276068584E-01 5.05620220692E-01 4.92235807887E-01 4.79117098285E-01 4.66258660127E-01 4.53655347034E-01 4.41302283269E-01 4.29194849062E-01 4.17328666029E-01 4.05699582737E-01 3.94303660451E-01 3.83137159104E-01 3.72196523514E-01 3.61478369898E-01 3.50979472695E-01 3.40696751736E-01 3.30627259786E-01 3.20768170480E-01 3.11116766669E-01 3.01670429212E-01 2.92426626212E-01 2.83382902727E-01 2.74536870964E-01 2.65886200969E-01 2.57428611825E-01 2.49161863360E-01 2.41083748386E-01 2.33192085456E-01 2.25484712091E-01 2.17959478285E-01 2.10612081291E-01 2.03442578759E-01 1.96448830984E-01 1.89628690570E-01 1.82979999659E-01 1.76500586874E-01 1.70188264691E-01 1.64040827250E-01 1.58056048627E-01 1.52231681510E-01 1.46565456288E-01 1.41055080516E-01 1.35698238738E-01 1.30492592639E-01 1.25435781504E-01 1.20525422970E-01 1.15759114019E-01 1.11134432215E-01 1.06648937137E-01 1.02300172003E-01 9.80856654344E-02 9.40029333672E-02 9.00494810559E-02 8.62228051695E-02 8.25203959469E-02 7.89397393936E-02 7.54783194991E-02 7.21336204583E-02 6.89031288781E-02 6.57843359537E-02 6.27747396010E-02 5.98718465315E-02 5.70731742581E-02 5.43762530225E-02 5.17786276349E-02 4.92778592195E-02 4.68715268599E-02 4.45572291403E-02 4.23325855801E-02 4.01952379596E-02 3.81428515380E-02 3.61731161642E-02 3.42837472826E-02 3.24724868387E-02 3.07371040876E-02 2.90753963124E-02 2.74851894577E-02 2.59643386862E-02 2.45107288667E-02 2.31222749994E-02 2.17969225899E-02 2.05326479783E-02 1.93274586331E-02 1.81793934180E-02 1.70865228391E-02 1.60469492811E-02 1.50588072381E-02 1.41202635465E-02 1.32295176234E-02 1.23848017168E-02 1.15843811682E-02 1.08265546928E-02 1.01096546750E-02 9.43204748169E-03 8.79213379026E-03 8.18834893028E-03 7.61916323502E-03 7.08308239913E-03 6.57864783768E-03 6.10443704123E-03 5.65906392124E-03 5.24117913978E-03 4.84947041724E-03 4.48266281192E-03 4.13951896527E-03 3.81883930689E-03 3.51946221379E-03 3.24026411887E-03 2.98015956385E-03 2.73810119308E-03 2.51307968450E-03 2.30412361572E-03 2.11029926292E-03 1.93071033179E-03 1.76449762014E-03 1.61083861245E-03 1.46894700753E-03 1.33807218106E-03 1.21749858527E-03 1.10654508869E-03 1.00456425944E-03 9.10941595754E-04 8.25094708011E-04 7.46472456787E-04 6.74554051565E-04 6.08848115062E-04 5.48891718133E-04 4.94249390315E-04 4.44512111014E-04 3.99296286312E-04 3.58242716251E-04 3.21015557284E-04 2.87301284411E-04 2.56807657279E-04 2.29262694299E-04 2.04413658532E-04 1.82026058838E-04 1.61882669456E-04 1.43782570895E-04 1.27540214696E-04 1.12984514309E-04 9.99579640324E-05 8.83157876437E-05 7.79251180817E-05 6.86642092319E-05 6.04216806215E-05 5.30957959294E-05 4.65937775460E-05 4.08311447339E-05 3.57310956218E-05 3.12239250358E-05 2.72464677159E-05 2.37415762265E-05 2.06576307634E-05 1.79480797088E-05 1.55710099837E-05 1.34887461626E-05 1.16674772557E-05 1.00769100101E-05 8.68994754351E-06 7.48239210265E-06 6.43267071955E-06 5.52158253999E-06 4.73206660071E-06 4.04898884695E-06 3.45894720260E-06 2.95009353184E-06 2.51197136392E-06 2.13536828926E-06 1.81218197371E-06 1.53529878685E-06 1.29848407661E-06 1.09628317642E-06 9.23932276865E-07 7.77278341481E-07 6.52707295853E-07 5.47087010429E-07 4.57759416100E-07 3.82348999838E-07 3.18799257356E-07 2.65339727754E-07 2.20448921826E-07 1.82821663380E-07 1.51340371203E-07 1.25049853448E-07 1.03135226687E-07 8.49026091832E-08 6.97622723713E-08 5.72139661587E-08 4.68341626934E-08 3.82649897826E-08 3.12046493850E-08 2.53991386624E-08 2.06351111221E-08 1.67337335386E-08 1.35454107653E-08 1.09449001565E-08 8.82501850110E-09 7.10035069696E-09 5.70026288590E-09 4.56616226892E-09 3.64955180406E-09 2.91038020556E-09 2.31564562174E-09 1.83821672072E-09 1.45583965496E-09 1.15030356598E-09 9.06740983586E-10 7.13042720236E-10 5.59369706425E-10 4.37746700210E-10 3.41724972469E-10 2.66102954473E-10 2.06695468665E-10 1.60143576414E-10 1.23758294642E-10 9.53924803776E-11 7.33360800503E-11 5.62307077260E-11 4.30001706039E-11 3.27941160547E-11 2.49424456310E-11 1.89185395949E-11 1.43096709345E-11 1.07932695953E-11 8.11793363481E-12 6.08828105375E-12 4.55290009590E-12 3.39479195328E-12 2.52381246293E-12 1.87071230209E-12 1.38245159682E-12 1.01852749321E-12 7.48104420892E-13 5.47778467774E-13 3.99841132562E-13 2.90935115824E-13 2.11016907586E-13 1.52558696536E-13 1.09936363558E-13 7.89616938130E-14 5.65259932191E-14 4.03294758404E-14 2.86764656268E-14 2.03209285223E-14 1.43503624645E-14 1.00988200539E-14 7.08198040771E-15 4.94885043189E-15 3.44596348048E-15 2.39093647644E-15 1.65300964015E-15 1.13877713321E-15 7.81762451433E-16 5.34830917628E-16 3.64687856931E-16 2.47904244567E-16 1.68056736832E-16 1.13677574786E-16 7.67907688673E-17 5.18710395466E-17 3.48968262728E-17 2.33816043066E-17 1.56017118145E-17 1.03672068054E-17 6.86000847198E-18 4.52004286923E-18 2.96549307699E-18 1.93717562227E-18 1.25991100261E-18 8.15812616444E-19 5.25897773428E-19 3.37483939014E-19 2.15588727981E-19 1.37088257722E-19 espresso-5.0.2/pseudo/Pt.rel-pbe-n-rrkjus.UPF0000644000700200004540000313240412053145632017724 0ustar marsamoscm Generated using "atomic" code by A. Dal Corso (espresso distribution) Author: anonymous Generation date: 2Sep2007 Pt 2 The Pseudo was generated with a Fully-Relativistic Calculation 0 2.6000000E+00 L component and cutoff radius for Local Potential nl pn l occ Rcut Rcut US E pseu 5D 3 2 4.00 2.10000000000 2.40000000000 -0.64797028262 5D 3 2 0.00 2.10000000000 2.40000000000 -0.20000000000 5D 3 2 4.00 2.10000000000 2.40000000000 -0.54452487475 5D 3 2 0.00 2.10000000000 2.40000000000 -0.20000000000 6P 2 1 0.00 3.30000000000 3.30000000000 -0.11873242514 6P 2 1 0.00 3.40000000000 3.40000000000 -0.07447049527 6S 1 0 2.00 2.60000000000 2.60000000000 -0.47650100725 0 Version Number Pt Element US Ultrasoft pseudopotential T Nonlinear Core Correction SLA PW PBX PBC PBE Exchange-Correlation functional 10.00000000000 Z valence -89.74702787920 Total energy 27.476 227.928 Suggested cutoff for wfc and rho 2 Max angular momentum component 1277 Number of points in mesh 3 6 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 5D 2 4.00 5D 2 4.00 6S 0 2.00 1.16907944302E-05 1.18378465214E-05 1.19867483002E-05 1.21375230328E-05 1.22901942781E-05 1.24447858913E-05 1.26013220275E-05 1.27598271460E-05 1.29203260134E-05 1.30828437081E-05 1.32474056237E-05 1.34140374734E-05 1.35827652937E-05 1.37536154487E-05 1.39266146342E-05 1.41017898815E-05 1.42791685621E-05 1.44587783919E-05 1.46406474353E-05 1.48248041095E-05 1.50112771896E-05 1.52000958123E-05 1.53912894809E-05 1.55848880698E-05 1.57809218291E-05 1.59794213896E-05 1.61804177672E-05 1.63839423680E-05 1.65900269932E-05 1.67987038437E-05 1.70100055260E-05 1.72239650562E-05 1.74406158660E-05 1.76599918075E-05 1.78821271587E-05 1.81070566286E-05 1.83348153629E-05 1.85654389495E-05 1.87989634236E-05 1.90354252741E-05 1.92748614484E-05 1.95173093591E-05 1.97628068891E-05 2.00113923979E-05 2.02631047274E-05 2.05179832083E-05 2.07760676658E-05 2.10373984261E-05 2.13020163227E-05 2.15699627028E-05 2.18412794334E-05 2.21160089083E-05 2.23941940546E-05 2.26758783393E-05 2.29611057762E-05 2.32499209325E-05 2.35423689363E-05 2.38384954831E-05 2.41383468433E-05 2.44419698694E-05 2.47494120029E-05 2.50607212825E-05 2.53759463507E-05 2.56951364622E-05 2.60183414910E-05 2.63456119386E-05 2.66769989417E-05 2.70125542801E-05 2.73523303851E-05 2.76963803474E-05 2.80447579254E-05 2.83975175540E-05 2.87547143524E-05 2.91164041334E-05 2.94826434119E-05 2.98534894133E-05 3.02290000832E-05 3.06092340959E-05 3.09942508636E-05 3.13841105462E-05 3.17788740598E-05 3.21786030872E-05 3.25833600868E-05 3.29932083027E-05 3.34082117745E-05 3.38284353473E-05 3.42539446820E-05 3.46848062653E-05 3.51210874201E-05 3.55628563163E-05 3.60101819811E-05 3.64631343101E-05 3.69217840781E-05 3.73862029499E-05 3.78564634920E-05 3.83326391835E-05 3.88148044279E-05 3.93030345645E-05 3.97974058801E-05 4.02979956214E-05 4.08048820065E-05 4.13181442375E-05 4.18378625125E-05 4.23641180387E-05 4.28969930445E-05 4.34365707928E-05 4.39829355936E-05 4.45361728175E-05 4.50963689091E-05 4.56636114001E-05 4.62379889233E-05 4.68195912263E-05 4.74085091857E-05 4.80048348211E-05 4.86086613096E-05 4.92200830003E-05 4.98391954292E-05 5.04660953337E-05 5.11008806683E-05 5.17436506195E-05 5.23945056213E-05 5.30535473713E-05 5.37208788460E-05 5.43966043172E-05 5.50808293686E-05 5.57736609117E-05 5.64752072027E-05 5.71855778597E-05 5.79048838796E-05 5.86332376555E-05 5.93707529940E-05 6.01175451335E-05 6.08737307617E-05 6.16394280342E-05 6.24147565927E-05 6.31998375839E-05 6.39947936783E-05 6.47997490895E-05 6.56148295932E-05 6.64401625476E-05 6.72758769126E-05 6.81221032702E-05 6.89789738450E-05 6.98466225248E-05 7.07251848815E-05 7.16147981923E-05 7.25156014609E-05 7.34277354399E-05 7.43513426518E-05 7.52865674123E-05 7.62335558522E-05 7.71924559403E-05 7.81634175066E-05 7.91465922660E-05 8.01421338414E-05 8.11501977883E-05 8.21709416187E-05 8.32045248259E-05 8.42511089094E-05 8.53108574000E-05 8.63839358857E-05 8.74705120371E-05 8.85707556340E-05 8.96848385917E-05 9.08129349878E-05 9.19552210899E-05 9.31118753822E-05 9.42830785946E-05 9.54690137298E-05 9.66698660926E-05 9.78858233187E-05 9.91170754038E-05 1.00363814734E-04 1.01626236114E-04 1.02904536800E-04 1.04198916529E-04 1.05509577552E-04 1.06836724660E-04 1.08180565224E-04 1.09541309221E-04 1.10919169271E-04 1.12314360666E-04 1.13727101409E-04 1.15157612243E-04 1.16606116688E-04 1.18072841077E-04 1.19558014586E-04 1.21061869279E-04 1.22584640135E-04 1.24126565091E-04 1.25687885075E-04 1.27268844046E-04 1.28869689034E-04 1.30490670172E-04 1.32132040744E-04 1.33794057215E-04 1.35476979280E-04 1.37181069899E-04 1.38906595339E-04 1.40653825217E-04 1.42423032542E-04 1.44214493755E-04 1.46028488776E-04 1.47865301045E-04 1.49725217569E-04 1.51608528963E-04 1.53515529497E-04 1.55446517146E-04 1.57401793629E-04 1.59381664463E-04 1.61386439006E-04 1.63416430508E-04 1.65471956160E-04 1.67553337142E-04 1.69660898674E-04 1.71794970066E-04 1.73955884772E-04 1.76143980439E-04 1.78359598961E-04 1.80603086533E-04 1.82874793705E-04 1.85175075436E-04 1.87504291149E-04 1.89862804789E-04 1.92250984878E-04 1.94669204575E-04 1.97117841731E-04 1.99597278951E-04 2.02107903652E-04 2.04650108124E-04 2.07224289592E-04 2.09830850277E-04 2.12470197458E-04 2.15142743541E-04 2.17848906115E-04 2.20589108024E-04 2.23363777429E-04 2.26173347880E-04 2.29018258376E-04 2.31898953441E-04 2.34815883189E-04 2.37769503397E-04 2.40760275573E-04 2.43788667032E-04 2.46855150966E-04 2.49960206520E-04 2.53104318865E-04 2.56287979275E-04 2.59511685203E-04 2.62775940359E-04 2.66081254791E-04 2.69428144960E-04 2.72817133825E-04 2.76248750923E-04 2.79723532449E-04 2.83242021347E-04 2.86804767387E-04 2.90412327255E-04 2.94065264640E-04 2.97764150321E-04 3.01509562257E-04 3.05302085674E-04 3.09142313164E-04 3.13030844770E-04 3.16968288081E-04 3.20955258333E-04 3.24992378496E-04 3.29080279380E-04 3.33219599728E-04 3.37410986315E-04 3.41655094056E-04 3.45952586100E-04 3.50304133940E-04 3.54710417513E-04 3.59172125311E-04 3.63689954484E-04 3.68264610952E-04 3.72896809515E-04 3.77587273963E-04 3.82336737191E-04 3.87145941312E-04 3.92015637774E-04 3.96946587477E-04 4.01939560891E-04 4.06995338180E-04 4.12114709319E-04 4.17298474219E-04 4.22547442855E-04 4.27862435389E-04 4.33244282298E-04 4.38693824509E-04 4.44211913521E-04 4.49799411549E-04 4.55457191650E-04 4.61186137864E-04 4.66987145351E-04 4.72861120529E-04 4.78808981219E-04 4.84831656786E-04 4.90930088286E-04 4.97105228612E-04 5.03358042641E-04 5.09689507387E-04 5.16100612157E-04 5.22592358697E-04 5.29165761356E-04 5.35821847243E-04 5.42561656383E-04 5.49386241885E-04 5.56296670106E-04 5.63294020813E-04 5.70379387357E-04 5.77553876840E-04 5.84818610292E-04 5.92174722842E-04 5.99623363897E-04 6.07165697322E-04 6.14802901623E-04 6.22536170128E-04 6.30366711177E-04 6.38295748306E-04 6.46324520445E-04 6.54454282105E-04 6.62686303578E-04 6.71021871134E-04 6.79462287223E-04 6.88008870676E-04 6.96662956915E-04 7.05425898159E-04 7.14299063635E-04 7.23283839792E-04 7.32381630521E-04 7.41593857370E-04 7.50921959767E-04 7.60367395249E-04 7.69931639683E-04 7.79616187503E-04 7.89422551938E-04 7.99352265252E-04 8.09406878985E-04 8.19587964189E-04 8.29897111679E-04 8.40335932282E-04 8.50906057084E-04 8.61609137689E-04 8.72446846474E-04 8.83420876855E-04 8.94532943544E-04 9.05784782826E-04 9.17178152823E-04 9.28714833772E-04 9.40396628304E-04 9.52225361722E-04 9.64202882290E-04 9.76331061521E-04 9.88611794466E-04 1.00104700001E-03 1.01363862119E-03 1.02638862547E-03 1.03929900506E-03 1.05237177723E-03 1.06560898463E-03 1.07901269561E-03 1.09258500451E-03 1.10632803204E-03 1.12024392558E-03 1.13433485951E-03 1.14860303558E-03 1.16305068320E-03 1.17768005986E-03 1.19249345142E-03 1.20749317251E-03 1.22268156687E-03 1.23806100770E-03 1.25363389809E-03 1.26940267133E-03 1.28536979132E-03 1.30153775295E-03 1.31790908250E-03 1.33448633803E-03 1.35127210977E-03 1.36826902052E-03 1.38547972609E-03 1.40290691568E-03 1.42055331234E-03 1.43842167334E-03 1.45651479065E-03 1.47483549136E-03 1.49338663812E-03 1.51217112958E-03 1.53119190086E-03 1.55045192398E-03 1.56995420837E-03 1.58970180130E-03 1.60969778837E-03 1.62994529400E-03 1.65044748189E-03 1.67120755557E-03 1.69222875882E-03 1.71351437626E-03 1.73506773380E-03 1.75689219921E-03 1.77899118260E-03 1.80136813698E-03 1.82402655880E-03 1.84696998848E-03 1.87020201098E-03 1.89372625634E-03 1.91754640029E-03 1.94166616476E-03 1.96608931852E-03 1.99081967774E-03 2.01586110658E-03 2.04121751783E-03 2.06689287346E-03 2.09289118531E-03 2.11921651566E-03 2.14587297791E-03 2.17286473717E-03 2.20019601097E-03 2.22787106988E-03 2.25589423817E-03 2.28426989452E-03 2.31300247270E-03 2.34209646221E-03 2.37155640907E-03 2.40138691644E-03 2.43159264539E-03 2.46217831565E-03 2.49314870628E-03 2.52450865646E-03 2.55626306626E-03 2.58841689737E-03 2.62097517388E-03 2.65394298309E-03 2.68732547630E-03 2.72112786957E-03 2.75535544462E-03 2.79001354955E-03 2.82510759979E-03 2.86064307883E-03 2.89662553917E-03 2.93306060314E-03 2.96995396381E-03 3.00731138582E-03 3.04513870635E-03 3.08344183600E-03 3.12222675972E-03 3.16149953771E-03 3.20126630644E-03 3.24153327955E-03 3.28230674882E-03 3.32359308520E-03 3.36539873977E-03 3.40773024473E-03 3.45059421448E-03 3.49399734659E-03 3.53794642290E-03 3.58244831053E-03 3.62750996300E-03 3.67313842128E-03 3.71934081492E-03 3.76612436312E-03 3.81349637592E-03 3.86146425528E-03 3.91003549630E-03 3.95921768831E-03 4.00901851614E-03 4.05944576127E-03 4.11050730306E-03 4.16221111998E-03 4.21456529085E-03 4.26757799613E-03 4.32125751915E-03 4.37561224745E-03 4.43065067406E-03 4.48638139886E-03 4.54281312988E-03 4.59995468469E-03 4.65781499178E-03 4.71640309194E-03 4.77572813968E-03 4.83579940466E-03 4.89662627313E-03 4.95821824942E-03 5.02058495739E-03 5.08373614199E-03 5.14768167069E-03 5.21243153514E-03 5.27799585261E-03 5.34438486767E-03 5.41160895375E-03 5.47967861473E-03 5.54860448664E-03 5.61839733929E-03 5.68906807796E-03 5.76062774509E-03 5.83308752203E-03 5.90645873076E-03 5.98075283568E-03 6.05598144540E-03 6.13215631454E-03 6.20928934558E-03 6.28739259072E-03 6.36647825374E-03 6.44655869194E-03 6.52764641805E-03 6.60975410219E-03 6.69289457386E-03 6.77708082392E-03 6.86232600665E-03 6.94864344178E-03 7.03604661659E-03 7.12454918799E-03 7.21416498470E-03 7.30490800937E-03 7.39679244078E-03 7.48983263605E-03 7.58404313291E-03 7.67943865194E-03 7.77603409888E-03 7.87384456697E-03 7.97288533930E-03 8.07317189117E-03 8.17471989259E-03 8.27754521061E-03 8.38166391192E-03 8.48709226527E-03 8.59384674405E-03 8.70194402886E-03 8.81140101014E-03 8.92223479075E-03 9.03446268870E-03 9.14810223983E-03 9.26317120054E-03 9.37968755060E-03 9.49766949592E-03 9.61713547142E-03 9.73810414391E-03 9.86059441498E-03 9.98462542399E-03 1.01102165510E-02 1.02373874200E-02 1.03661579016E-02 1.04965481164E-02 1.06285784382E-02 1.07622694970E-02 1.08976421824E-02 1.10347176465E-02 1.11735173077E-02 1.13140628536E-02 1.14563762450E-02 1.16004797184E-02 1.17463957904E-02 1.18941472606E-02 1.20437572156E-02 1.21952490321E-02 1.23486463810E-02 1.25039732311E-02 1.26612538525E-02 1.28205128205E-02 1.29817750198E-02 1.31450656477E-02 1.33104102190E-02 1.34778345689E-02 1.36473648579E-02 1.38190275754E-02 1.39928495441E-02 1.41688579240E-02 1.43470802168E-02 1.45275442701E-02 1.47102782817E-02 1.48953108042E-02 1.50826707493E-02 1.52723873925E-02 1.54644903772E-02 1.56590097200E-02 1.58559758149E-02 1.60554194384E-02 1.62573717537E-02 1.64618643165E-02 1.66689290791E-02 1.68785983957E-02 1.70909050277E-02 1.73058821484E-02 1.75235633484E-02 1.77439826408E-02 1.79671744666E-02 1.81931736999E-02 1.84220156537E-02 1.86537360848E-02 1.88883712002E-02 1.91259576621E-02 1.93665325937E-02 1.96101335854E-02 1.98567987004E-02 2.01065664806E-02 2.03594759528E-02 2.06155666344E-02 2.08748785403E-02 2.11374521885E-02 2.14033286065E-02 2.16725493382E-02 2.19451564498E-02 2.22211925368E-02 2.25007007303E-02 2.27837247040E-02 2.30703086811E-02 2.33604974409E-02 2.36543363259E-02 2.39518712491E-02 2.42531487009E-02 2.45582157566E-02 2.48671200834E-02 2.51799099483E-02 2.54966342254E-02 2.58173424035E-02 2.61420845938E-02 2.64709115380E-02 2.68038746160E-02 2.71410258540E-02 2.74824179325E-02 2.78281041947E-02 2.81781386547E-02 2.85325760063E-02 2.88914716309E-02 2.92548816068E-02 2.96228627174E-02 2.99954724606E-02 3.03727690574E-02 3.07548114611E-02 3.11416593667E-02 3.15333732200E-02 3.19300142269E-02 3.23316443636E-02 3.27383263854E-02 3.31501238374E-02 3.35671010636E-02 3.39893232177E-02 3.44168562727E-02 3.48497670315E-02 3.52881231373E-02 3.57319930842E-02 3.61814462276E-02 3.66365527957E-02 3.70973838996E-02 3.75640115453E-02 3.80365086442E-02 3.85149490250E-02 3.89994074449E-02 3.94899596015E-02 3.99866821447E-02 4.04896526883E-02 4.09989498226E-02 4.15146531261E-02 4.20368431787E-02 4.25656015735E-02 4.31010109302E-02 4.36431549076E-02 4.41921182167E-02 4.47479866341E-02 4.53108470155E-02 4.58807873090E-02 4.64578965688E-02 4.70422649695E-02 4.76339838198E-02 4.82331455769E-02 4.88398438612E-02 4.94541734705E-02 5.00762303950E-02 5.07061118323E-02 5.13439162028E-02 5.19897431647E-02 5.26436936297E-02 5.33058697789E-02 5.39763750788E-02 5.46553142970E-02 5.53427935194E-02 5.60389201658E-02 5.67438030075E-02 5.74575521838E-02 5.81802792196E-02 5.89120970424E-02 5.96531200002E-02 6.04034638794E-02 6.11632459227E-02 6.19325848476E-02 6.27116008649E-02 6.35004156974E-02 6.42991525990E-02 6.51079363741E-02 6.59268933967E-02 6.67561516305E-02 6.75958406488E-02 6.84460916548E-02 6.93070375018E-02 7.01788127145E-02 7.10615535094E-02 7.19553978166E-02 7.28604853011E-02 7.37769573847E-02 7.47049572680E-02 7.56446299528E-02 7.65961222650E-02 7.75595828771E-02 7.85351623318E-02 7.95230130654E-02 8.05232894317E-02 8.15361477257E-02 8.25617462086E-02 8.36002451324E-02 8.46518067646E-02 8.57165954138E-02 8.67947774555E-02 8.78865213577E-02 8.89919977077E-02 9.01113792383E-02 9.12448408553E-02 9.23925596644E-02 9.35547149988E-02 9.47314884478E-02 9.59230638846E-02 9.71296274953E-02 9.83513678080E-02 9.95884757219E-02 1.00841144538E-01 1.02109569988E-01 1.03393950266E-01 1.04694486059E-01 1.06011380578E-01 1.07344839591E-01 1.08695071454E-01 1.10062287143E-01 1.11446700289E-01 1.12848527208E-01 1.14267986938E-01 1.15705301275E-01 1.17160694800E-01 1.18634394922E-01 1.20126631909E-01 1.21637638928E-01 1.23167652074E-01 1.24716910417E-01 1.26285656031E-01 1.27874134036E-01 1.29482592634E-01 1.31111283151E-01 1.32760460073E-01 1.34430381086E-01 1.36121307120E-01 1.37833502386E-01 1.39567234416E-01 1.41322774111E-01 1.43100395777E-01 1.44900377170E-01 1.46722999543E-01 1.48568547682E-01 1.50437309960E-01 1.52329578373E-01 1.54245648593E-01 1.56185820009E-01 1.58150395777E-01 1.60139682867E-01 1.62153992107E-01 1.64193638239E-01 1.66258939961E-01 1.68350219981E-01 1.70467805065E-01 1.72612026090E-01 1.74783218095E-01 1.76981720334E-01 1.79207876327E-01 1.81462033915E-01 1.83744545315E-01 1.86055767174E-01 1.88396060625E-01 1.90765791345E-01 1.93165329607E-01 1.95595050344E-01 1.98055333207E-01 2.00546562618E-01 2.03069127837E-01 2.05623423021E-01 2.08209847283E-01 2.10828804758E-01 2.13480704662E-01 2.16165961360E-01 2.18884994430E-01 2.21638228725E-01 2.24426094445E-01 2.27249027198E-01 2.30107468074E-01 2.33001863711E-01 2.35932666362E-01 2.38900333973E-01 2.41905330247E-01 2.44948124721E-01 2.48029192838E-01 2.51149016020E-01 2.54308081748E-01 2.57506883631E-01 2.60745921488E-01 2.64025701426E-01 2.67346735916E-01 2.70709543879E-01 2.74114650758E-01 2.77562588609E-01 2.81053896179E-01 2.84589118993E-01 2.88168809435E-01 2.91793526840E-01 2.95463837577E-01 2.99180315140E-01 3.02943540236E-01 3.06754100877E-01 3.10612592469E-01 3.14519617912E-01 3.18475787684E-01 3.22481719946E-01 3.26538040633E-01 3.30645383554E-01 3.34804390488E-01 3.39015711289E-01 3.43280003985E-01 3.47597934880E-01 3.51970178660E-01 3.56397418496E-01 3.60880346154E-01 3.65419662100E-01 3.70016075611E-01 3.74670304888E-01 3.79383077161E-01 3.84155128813E-01 3.88987205485E-01 3.93880062199E-01 3.98834463474E-01 4.03851183445E-01 4.08931005986E-01 4.14074724828E-01 4.19283143689E-01 4.24557076393E-01 4.29897347005E-01 4.35304789952E-01 4.40780250158E-01 4.46324583174E-01 4.51938655315E-01 4.57623343790E-01 4.63379536844E-01 4.69208133893E-01 4.75110045668E-01 4.81086194354E-01 4.87137513736E-01 4.93264949347E-01 4.99469458609E-01 5.05752010990E-01 5.12113588152E-01 5.18555184103E-01 5.25077805358E-01 5.31682471088E-01 5.38370213285E-01 5.45142076924E-01 5.51999120121E-01 5.58942414304E-01 5.65973044376E-01 5.73092108888E-01 5.80300720208E-01 5.87600004697E-01 5.94991102881E-01 6.02475169636E-01 6.10053374361E-01 6.17726901168E-01 6.25496949060E-01 6.33364732122E-01 6.41331479713E-01 6.49398436652E-01 6.57566863418E-01 6.65838036344E-01 6.74213247818E-01 6.82693806484E-01 6.91281037446E-01 6.99976282476E-01 7.08780900225E-01 7.17696266431E-01 7.26723774140E-01 7.35864833916E-01 7.45120874070E-01 7.54493340876E-01 7.63983698802E-01 7.73593430735E-01 7.83324038216E-01 7.93177041671E-01 8.03153980653E-01 8.13256414079E-01 8.23485920473E-01 8.33844098218E-01 8.44332565800E-01 8.54952962063E-01 8.65706946466E-01 8.76596199340E-01 8.87622422155E-01 8.98787337778E-01 9.10092690752E-01 9.21540247560E-01 9.33131796906E-01 9.44869149995E-01 9.56754140810E-01 9.68788626407E-01 9.80974487197E-01 9.93313627247E-01 1.00580797457E+00 1.01845948144E+00 1.03127012467E+00 1.04424190596E+00 1.05737685217E+00 1.07067701567E+00 1.08414447462E+00 1.09778133336E+00 1.11158972267E+00 1.12557180013E+00 1.13972975047E+00 1.15406578590E+00 1.16858214647E+00 1.18328110037E+00 1.19816494435E+00 1.21323600404E+00 1.22849663432E+00 1.24394921970E+00 1.25959617468E+00 1.27543994413E+00 1.29148300366E+00 1.30772786003E+00 1.32417705155E+00 1.34083314842E+00 1.35769875321E+00 1.37477650118E+00 1.39206906078E+00 1.40957913400E+00 1.42730945683E+00 1.44526279967E+00 1.46344196776E+00 1.48184980163E+00 1.50048917755E+00 1.51936300796E+00 1.53847424193E+00 1.55782586562E+00 1.57742090278E+00 1.59726241517E+00 1.61735350306E+00 1.63769730572E+00 1.65829700192E+00 1.67915581040E+00 1.70027699039E+00 1.72166384211E+00 1.74331970732E+00 1.76524796978E+00 1.78745205583E+00 1.80993543489E+00 1.83270162005E+00 1.85575416857E+00 1.87909668245E+00 1.90273280901E+00 1.92666624144E+00 1.95090071939E+00 1.97544002955E+00 2.00028800624E+00 2.02544853199E+00 2.05092553820E+00 2.07672300569E+00 2.10284496538E+00 2.12929549888E+00 2.15607873913E+00 2.18319887106E+00 2.21066013227E+00 2.23846681361E+00 2.26662325995E+00 2.29513387079E+00 2.32400310096E+00 2.35323546135E+00 2.38283551956E+00 2.41280790068E+00 2.44315728793E+00 2.47388842348E+00 2.50500610914E+00 2.53651520709E+00 2.56842064070E+00 2.60072739527E+00 2.63344051878E+00 2.66656512273E+00 2.70010638291E+00 2.73406954020E+00 2.76845990142E+00 2.80328284013E+00 2.83854379749E+00 2.87424828309E+00 2.91040187584E+00 2.94701022480E+00 2.98407905010E+00 3.02161414382E+00 3.05962137091E+00 3.09810667005E+00 3.13707605467E+00 3.17653561380E+00 3.21649151309E+00 3.25694999572E+00 3.29791738341E+00 3.33940007740E+00 3.38140455945E+00 3.42393739284E+00 3.46700522341E+00 3.51061478061E+00 3.55477287850E+00 3.59948641689E+00 3.64476238236E+00 3.69060784936E+00 3.73702998135E+00 3.78403603188E+00 3.83163334573E+00 3.87982936009E+00 3.92863160568E+00 3.97804770796E+00 4.02808538828E+00 4.07875246514E+00 4.13005685537E+00 4.18200657538E+00 4.23460974243E+00 4.28787457587E+00 4.34180939843E+00 4.39642263755E+00 4.45172282665E+00 4.50771860650E+00 4.56441872655E+00 4.62183204631E+00 4.67996753673E+00 4.73883428161E+00 4.79844147898E+00 4.85879844259E+00 4.91991460335E+00 4.98179951077E+00 5.04446283450E+00 5.10791436581E+00 5.17216401914E+00 5.23722183361E+00 5.30309797465E+00 5.36980273554E+00 5.43734653904E+00 5.50573993899E+00 5.57499362200E+00 5.64511840912E+00 5.71612525747E+00 5.78802526202E+00 5.86082965729E+00 5.93454981913E+00 6.00919726644E+00 6.08478366306E+00 6.16132081950E+00 6.23882069485E+00 6.31729539863E+00 6.39675719267E+00 6.47721849304E+00 6.55869187197E+00 6.64119005985E+00 6.72472594719E+00 6.80931258664E+00 6.89496319504E+00 6.98169115546E+00 7.06951001933E+00 7.15843350853E+00 7.24847551752E+00 7.33965011556E+00 7.43197154886E+00 7.52545424284E+00 7.62011280436E+00 7.71596202400E+00 7.81301687841E+00 7.91129253260E+00 8.01080434235E+00 8.11156785657E+00 8.21359881977E+00 8.31691317450E+00 8.42152706383E+00 8.52745683390E+00 8.63471903645E+00 8.74333043142E+00 8.85330798955E+00 8.96466889508E+00 9.07743054835E+00 9.19161056862E+00 9.30722679673E+00 9.42429729797E+00 9.54284036484E+00 9.66287451993E+00 9.78441851882E+00 9.90749135301E+00 1.00321122529E+01 1.01583006907E+01 1.02860763837E+01 1.04154592970E+01 1.05464696471E+01 1.06791279044E+01 1.08134547973E+01 1.09494713144E+01 1.10871987088E+01 1.12266585004E+01 1.13678724804E+01 1.15108627135E+01 1.16556515423E+01 1.18022615904E+01 1.19507157659E+01 1.21010372650E+01 1.22532495758E+01 1.24073764819E+01 1.25634420657E+01 1.27214707129E+01 1.28814871158E+01 1.30435162772E+01 1.32075835146E+01 1.33737144639E+01 1.35419350832E+01 1.37122716574E+01 1.38847508019E+01 1.40593994670E+01 1.42362449419E+01 1.44153148590E+01 1.45966371984E+01 1.47802402921E+01 1.49661528284E+01 1.51544038565E+01 1.53450227910E+01 1.55380394166E+01 1.57334838924E+01 1.59313867571E+01 1.61317789334E+01 1.63346917330E+01 1.65401568614E+01 1.67482064229E+01 1.69588729258E+01 1.71721892871E+01 1.73881888379E+01 1.76069053286E+01 1.78283729340E+01 1.80526262590E+01 1.82797003436E+01 1.85096306686E+01 1.87424531610E+01 1.89782041998E+01 1.92169206217E+01 1.94586397265E+01 1.97033992833E+01 1.99512375364E+01 2.02021932109E+01 2.04563055192E+01 2.07136141669E+01 2.09741593589E+01 2.12379818060E+01 2.15051227310E+01 2.17756238751E+01 2.20495275048E+01 2.23268764180E+01 2.26077139511E+01 2.28920839855E+01 2.31800309546E+01 2.34715998506E+01 2.37668362319E+01 2.40657862298E+01 2.43684965556E+01 2.46750145087E+01 2.49853879829E+01 2.52996654749E+01 2.56178960911E+01 2.59401295556E+01 2.62664162182E+01 2.65968070618E+01 2.69313537105E+01 2.72701084381E+01 2.76131241756E+01 2.79604545199E+01 2.83121537421E+01 2.86682767960E+01 2.90288793264E+01 2.93940176783E+01 2.97637489053E+01 3.01381307785E+01 3.05172217961E+01 3.09010811916E+01 3.12897689439E+01 3.16833457863E+01 3.20818732159E+01 3.24854135035E+01 3.28940297030E+01 3.33077856616E+01 3.37267460295E+01 3.41509762700E+01 3.45805426701E+01 3.50155123503E+01 3.54559532756E+01 3.59019342657E+01 3.63535250061E+01 3.68107960587E+01 3.72738188731E+01 3.77426657975E+01 3.82174100903E+01 3.86981259311E+01 3.91848884328E+01 3.96777736531E+01 4.01768586063E+01 4.06822212753E+01 4.11939406242E+01 4.17120966101E+01 4.22367701959E+01 4.27680433631E+01 4.33059991240E+01 4.38507215354E+01 4.44022957113E+01 4.49608078362E+01 4.55263451788E+01 4.60989961054E+01 4.66788500940E+01 4.72659977479E+01 4.78605308101E+01 4.84625421776E+01 4.90721259159E+01 4.96893772737E+01 5.03143926978E+01 5.09472698482E+01 5.15881076131E+01 5.22370061248E+01 5.28940667750E+01 5.35593922307E+01 5.42330864504E+01 5.49152547002E+01 5.56060035703E+01 5.63054409916E+01 5.70136762526E+01 5.77308200165E+01 5.84569843384E+01 5.91922826831E+01 5.99368299425E+01 6.06907424534E+01 6.14541380163E+01 6.22271359133E+01 6.30098569269E+01 6.38024233588E+01 6.46049590492E+01 6.54175893959E+01 6.62404413741E+01 6.70736435559E+01 6.79173261310E+01 6.87716209265E+01 6.96366614277E+01 7.05125827990E+01 7.13995219047E+01 7.22976173310E+01 7.32070094071E+01 7.41278402274E+01 7.50602536735E+01 7.60043954369E+01 7.69604130418E+01 7.79284558678E+01 7.89086751736E+01 7.99012241204E+01 8.09062577960E+01 8.19239332390E+01 8.29544094633E+01 8.39978474828E+01 8.50544103369E+01 8.61242631156E+01 8.72075729857E+01 8.83045092165E+01 8.94152432065E+01 9.05399485102E+01 9.16788008650E+01 9.28319782190E+01 9.39996607584E+01 9.51820309361E+01 9.63792734998E+01 9.75915755210E+01 9.88191264245E+01 1.46134930377E-07 1.47973081517E-07 1.49834353753E-07 1.51719037910E-07 1.53627428477E-07 1.55559823641E-07 1.57516525344E-07 1.59497839325E-07 1.61504075168E-07 1.63535546351E-07 1.65592570296E-07 1.67675468417E-07 1.69784566171E-07 1.71920193109E-07 1.74082682927E-07 1.76272373518E-07 1.78489607026E-07 1.80734729899E-07 1.83008092941E-07 1.85310051369E-07 1.87640964870E-07 1.90001197654E-07 1.92391118511E-07 1.94811100872E-07 1.97261522864E-07 1.99742767371E-07 2.02255222090E-07 2.04799279600E-07 2.07375337414E-07 2.09983798047E-07 2.12625069075E-07 2.15299563203E-07 2.18007698325E-07 2.20749897594E-07 2.23526589483E-07 2.26338207857E-07 2.29185192037E-07 2.32067986868E-07 2.34987042795E-07 2.37942815926E-07 2.40935768105E-07 2.43966366989E-07 2.47035086114E-07 2.50142404973E-07 2.53288809092E-07 2.56474790103E-07 2.59700845822E-07 2.62967480326E-07 2.66275204034E-07 2.69624533785E-07 2.73015992917E-07 2.76450111354E-07 2.79927425683E-07 2.83448479242E-07 2.87013822202E-07 2.90624011656E-07 2.94279611703E-07 2.97981193539E-07 3.01729335542E-07 3.05524623367E-07 3.09367650036E-07 3.13259016031E-07 3.17199329384E-07 3.21189205777E-07 3.25229268637E-07 3.29320149232E-07 3.33462486771E-07 3.37656928501E-07 3.41904129814E-07 3.46204754342E-07 3.50559474068E-07 3.54968969424E-07 3.59433929405E-07 3.63955051668E-07 3.68533042648E-07 3.73168617666E-07 3.77862501040E-07 3.82615426198E-07 3.87428135796E-07 3.92301381827E-07 3.97235925748E-07 4.02232538590E-07 4.07292001085E-07 4.12415103783E-07 4.17602647181E-07 4.22855441842E-07 4.28174308526E-07 4.33560078316E-07 4.39013592751E-07 4.44535703953E-07 4.50127274764E-07 4.55789178876E-07 4.61522300976E-07 4.67327536873E-07 4.73205793650E-07 4.79157989794E-07 4.85185055349E-07 4.91287932056E-07 4.97467573501E-07 5.03724945268E-07 5.10061025082E-07 5.16476802968E-07 5.22973281406E-07 5.29551475484E-07 5.36212413056E-07 5.42957134909E-07 5.49786694920E-07 5.56702160219E-07 5.63704611364E-07 5.70795142501E-07 5.77974861541E-07 5.85244890329E-07 5.92606364821E-07 6.00060435264E-07 6.07608266370E-07 6.15251037504E-07 6.22989942865E-07 6.30826191671E-07 6.38761008354E-07 6.46795632744E-07 6.54931320267E-07 6.63169342141E-07 6.71510985574E-07 6.79957553966E-07 6.88510367108E-07 6.97170761396E-07 7.05940090033E-07 7.14819723246E-07 7.23811048496E-07 7.32915470694E-07 7.42134412425E-07 7.51469314169E-07 7.60921634521E-07 7.70492850427E-07 7.80184457409E-07 7.89997969799E-07 7.99934920979E-07 8.09996863618E-07 8.20185369915E-07 8.30502031845E-07 8.40948461407E-07 8.51526290877E-07 8.62237173063E-07 8.73082781561E-07 8.84064811019E-07 8.95184977404E-07 9.06445018262E-07 9.17846692998E-07 9.29391783148E-07 9.41082092654E-07 9.52919448153E-07 9.64905699253E-07 9.77042718833E-07 9.89332403325E-07 1.00177667302E-06 1.01437747235E-06 1.02713677023E-06 1.04005656032E-06 1.05313886137E-06 1.06638571750E-06 1.07979919857E-06 1.09338140046E-06 1.10713444543E-06 1.12106048240E-06 1.13516168735E-06 1.14944026362E-06 1.16389844228E-06 1.17853848243E-06 1.19336267162E-06 1.20837332616E-06 1.22357279148E-06 1.23896344255E-06 1.25454768417E-06 1.27032795142E-06 1.28630671000E-06 1.30248645662E-06 1.31886971939E-06 1.33545905825E-06 1.35225706530E-06 1.36926636526E-06 1.38648961588E-06 1.40392950833E-06 1.42158876762E-06 1.43947015304E-06 1.45757645861E-06 1.47591051346E-06 1.49447518233E-06 1.51327336599E-06 1.53230800169E-06 1.55158206363E-06 1.57109856343E-06 1.59086055058E-06 1.61087111292E-06 1.63113337715E-06 1.65165050929E-06 1.67242571519E-06 1.69346224100E-06 1.71476337374E-06 1.73633244174E-06 1.75817281521E-06 1.78028790677E-06 1.80268117193E-06 1.82535610970E-06 1.84831626307E-06 1.87156521961E-06 1.89510661203E-06 1.91894411872E-06 1.94308146433E-06 1.96752242036E-06 1.99227080578E-06 2.01733048757E-06 2.04270538135E-06 2.06839945200E-06 2.09441671427E-06 2.12076123342E-06 2.14743712582E-06 2.17444855965E-06 2.20179975548E-06 2.22949498701E-06 2.25753858166E-06 2.28593492131E-06 2.31468844295E-06 2.34380363936E-06 2.37328505986E-06 2.40313731097E-06 2.43336505719E-06 2.46397302164E-06 2.49496598689E-06 2.52634879565E-06 2.55812635155E-06 2.59030361990E-06 2.62288562846E-06 2.65587746823E-06 2.68928429426E-06 2.72311132644E-06 2.75736385030E-06 2.79204721787E-06 2.82716684850E-06 2.86272822970E-06 2.89873691801E-06 2.93519853986E-06 2.97211879246E-06 3.00950344466E-06 3.04735833790E-06 3.08568938708E-06 3.12450258151E-06 3.16380398582E-06 3.20359974094E-06 3.24389606503E-06 3.28469925449E-06 3.32601568489E-06 3.36785181200E-06 3.41021417282E-06 3.45310938653E-06 3.49654415562E-06 3.54052526684E-06 3.58505959233E-06 3.63015409069E-06 3.67581580800E-06 3.72205187901E-06 3.76886952821E-06 3.81627607093E-06 3.86427891455E-06 3.91288555962E-06 3.96210360102E-06 4.01194072916E-06 4.06240473121E-06 4.11350349226E-06 4.16524499660E-06 4.21763732894E-06 4.27068867570E-06 4.32440732625E-06 4.37880167425E-06 4.43388021891E-06 4.48965156638E-06 4.54612443104E-06 4.60330763690E-06 4.66121011893E-06 4.71984092454E-06 4.77920921489E-06 4.83932426640E-06 4.90019547217E-06 4.96183234346E-06 5.02424451114E-06 5.08744172725E-06 5.15143386649E-06 5.21623092774E-06 5.28184303569E-06 5.34828044236E-06 5.41555352873E-06 5.48367280636E-06 5.55264891902E-06 5.62249264437E-06 5.69321489563E-06 5.76482672331E-06 5.83733931689E-06 5.91076400661E-06 5.98511226523E-06 6.06039570983E-06 6.13662610358E-06 6.21381535765E-06 6.29197553301E-06 6.37111884234E-06 6.45125765196E-06 6.53240448371E-06 6.61457201695E-06 6.69777309053E-06 6.78202070478E-06 6.86732802356E-06 6.95370837632E-06 7.04117526016E-06 7.12974234196E-06 7.21942346051E-06 7.31023262866E-06 7.40218403553E-06 7.49529204871E-06 7.58957121653E-06 7.68503627029E-06 7.78170212660E-06 7.87958388971E-06 7.97869685382E-06 8.07905650556E-06 8.18067852631E-06 8.28357879472E-06 8.38777338917E-06 8.49327859028E-06 8.60011088345E-06 8.70828696144E-06 8.81782372699E-06 8.92873829543E-06 9.04104799740E-06 9.15477038151E-06 9.26992321712E-06 9.38652449709E-06 9.50459244062E-06 9.62414549604E-06 9.74520234378E-06 9.86778189922E-06 9.99190331565E-06 1.01175859873E-05 1.02448495524E-05 1.03737138960E-05 1.05041991535E-05 1.06363257136E-05 1.07701142211E-05 1.09055855809E-05 1.10427609607E-05 1.11816617943E-05 1.13223097853E-05 1.14647269103E-05 1.16089354222E-05 1.17549578538E-05 1.19028170215E-05 1.20525360286E-05 1.22041382690E-05 1.23576474308E-05 1.25130875002E-05 1.26704827649E-05 1.28298578184E-05 1.29912375632E-05 1.31546472154E-05 1.33201123079E-05 1.34876586951E-05 1.36573125564E-05 1.38291004005E-05 1.40030490698E-05 1.41791857439E-05 1.43575379447E-05 1.45381335400E-05 1.47210007482E-05 1.49061681427E-05 1.50936646564E-05 1.52835195858E-05 1.54757625963E-05 1.56704237262E-05 1.58675333916E-05 1.60671223915E-05 1.62692219119E-05 1.64738635313E-05 1.66810792254E-05 1.68909013721E-05 1.71033627565E-05 1.73184965761E-05 1.75363364460E-05 1.77569164042E-05 1.79802709167E-05 1.82064348831E-05 1.84354436420E-05 1.86673329765E-05 1.89021391198E-05 1.91398987607E-05 1.93806490497E-05 1.96244276046E-05 1.98712725163E-05 2.01212223547E-05 2.03743161750E-05 2.06305935237E-05 2.08900944446E-05 2.11528594852E-05 2.14189297032E-05 2.16883466725E-05 2.19611524902E-05 2.22373897825E-05 2.25171017123E-05 2.28003319850E-05 2.30871248560E-05 2.33775251372E-05 2.36715782043E-05 2.39693300036E-05 2.42708270595E-05 2.45761164816E-05 2.48852459718E-05 2.51982638323E-05 2.55152189728E-05 2.58361609182E-05 2.61611398163E-05 2.64902064458E-05 2.68234122238E-05 2.71608092147E-05 2.75024501372E-05 2.78483883735E-05 2.81986779771E-05 2.85533736816E-05 2.89125309087E-05 2.92762057777E-05 2.96444551134E-05 3.00173364554E-05 3.03949080674E-05 3.07772289456E-05 3.11643588285E-05 3.15563582058E-05 3.19532883283E-05 3.23552112171E-05 3.27621896735E-05 3.31742872886E-05 3.35915684537E-05 3.40140983697E-05 3.44419430577E-05 3.48751693694E-05 3.53138449973E-05 3.57580384853E-05 3.62078192396E-05 3.66632575393E-05 3.71244245476E-05 3.75913923227E-05 3.80642338294E-05 3.85430229501E-05 3.90278344965E-05 3.95187442214E-05 4.00158288305E-05 4.05191659944E-05 4.10288343603E-05 4.15449135650E-05 4.20674842471E-05 4.25966280591E-05 4.31324276810E-05 4.36749668324E-05 4.42243302862E-05 4.47806038816E-05 4.53438745375E-05 4.59142302661E-05 4.64917601865E-05 4.70765545390E-05 4.76687046990E-05 4.82683031911E-05 4.88754437037E-05 4.94902211038E-05 5.01127314517E-05 5.07430720159E-05 5.13813412882E-05 5.20276389997E-05 5.26820661357E-05 5.33447249516E-05 5.40157189894E-05 5.46951530931E-05 5.53831334258E-05 5.60797674858E-05 5.67851641235E-05 5.74994335586E-05 5.82226873973E-05 5.89550386493E-05 5.96966017460E-05 6.04474925582E-05 6.12078284141E-05 6.19777281177E-05 6.27573119674E-05 6.35467017748E-05 6.43460208837E-05 6.51553941892E-05 6.59749481576E-05 6.68048108459E-05 6.76451119218E-05 6.84959826841E-05 6.93575560830E-05 7.02299667412E-05 7.11133509745E-05 7.20078468137E-05 7.29135940253E-05 7.38307341344E-05 7.47594104460E-05 7.56997680675E-05 7.66519539317E-05 7.76161168198E-05 7.85924073840E-05 7.95809781717E-05 8.05819836492E-05 8.15955802256E-05 8.26219262774E-05 8.36611821732E-05 8.47135102990E-05 8.57790750832E-05 8.68580430223E-05 8.79505827074E-05 8.90568648499E-05 9.01770623088E-05 9.13113501171E-05 9.24599055097E-05 9.36229079506E-05 9.48005391613E-05 9.59929831492E-05 9.72004262360E-05 9.84230570871E-05 9.96610667412E-05 1.00914648640E-04 1.02183998657E-04 1.03469315133E-04 1.04770798899E-04 1.06088653316E-04 1.07423084301E-04 1.08774300361E-04 1.10142512627E-04 1.11527934884E-04 1.12930783609E-04 1.14351277998E-04 1.15789640007E-04 1.17246094382E-04 1.18720868699E-04 1.20214193393E-04 1.21726301799E-04 1.23257430187E-04 1.24807817800E-04 1.26377706888E-04 1.27967342750E-04 1.29576973769E-04 1.31206851455E-04 1.32857230478E-04 1.34528368713E-04 1.36220527280E-04 1.37933970581E-04 1.39668966346E-04 1.41425785671E-04 1.43204703062E-04 1.45005996480E-04 1.46829947380E-04 1.48676840758E-04 1.50546965194E-04 1.52440612901E-04 1.54358079763E-04 1.56299665389E-04 1.58265673156E-04 1.60256410256E-04 1.62272187747E-04 1.64313320597E-04 1.66380127737E-04 1.68472932112E-04 1.70592060724E-04 1.72737844693E-04 1.74910619302E-04 1.77110724051E-04 1.79338502710E-04 1.81594303376E-04 1.83878478521E-04 1.86191385053E-04 1.88533384367E-04 1.90904842406E-04 1.93306129715E-04 1.95737621500E-04 1.98199697687E-04 2.00692742979E-04 2.03217146922E-04 2.05773303956E-04 2.08361613489E-04 2.10982479947E-04 2.13636312847E-04 2.16323526855E-04 2.19044541855E-04 2.21799783010E-04 2.24589680832E-04 2.27414671249E-04 2.30275195671E-04 2.33171701061E-04 2.36104640003E-04 2.39074470776E-04 2.42081657421E-04 2.45126669818E-04 2.48209983755E-04 2.51332081008E-04 2.54493449410E-04 2.57694582930E-04 2.60935981754E-04 2.64218152356E-04 2.67541607581E-04 2.70906866727E-04 2.74314455623E-04 2.77764906710E-04 2.81258759128E-04 2.84796558800E-04 2.88378858514E-04 2.92006218011E-04 2.95679204074E-04 2.99398390614E-04 3.03164358762E-04 3.06977696957E-04 3.10839001043E-04 3.14748874354E-04 3.18707927818E-04 3.22716780043E-04 3.26776057422E-04 3.30886394225E-04 3.35048432701E-04 3.39262823175E-04 3.43530224156E-04 3.47851302433E-04 3.52226733184E-04 3.56657200079E-04 3.61143395387E-04 3.65686020085E-04 3.70285783968E-04 3.74943405757E-04 3.79659613217E-04 3.84435143264E-04 3.89270742084E-04 3.94167165250E-04 3.99125177837E-04 4.04145554545E-04 4.09229079818E-04 4.14376547967E-04 4.19588763295E-04 4.24866540222E-04 4.30210703409E-04 4.35622087894E-04 4.41101539217E-04 4.46649913552E-04 4.52268077845E-04 4.57956909946E-04 4.63717298745E-04 4.69550144316E-04 4.75456358052E-04 4.81436862812E-04 4.87492593061E-04 4.93624495019E-04 4.99833526809E-04 5.06120658604E-04 5.12486872782E-04 5.18933164077E-04 5.25460539734E-04 5.32070019669E-04 5.38762636628E-04 5.45539436345E-04 5.52401477708E-04 5.59349832927E-04 5.66385587694E-04 5.73509841362E-04 5.80723707110E-04 5.88028312118E-04 5.95424797747E-04 6.02914319712E-04 6.10498048265E-04 6.18177168381E-04 6.25952879937E-04 6.33826397904E-04 6.41798952535E-04 6.49871789558E-04 6.58046170371E-04 6.66323372237E-04 6.74704688485E-04 6.83191428713E-04 6.91784918992E-04 7.00486502072E-04 7.09297537593E-04 7.18219402298E-04 7.27253490245E-04 7.36401213030E-04 7.45664000002E-04 7.55043298492E-04 7.64540574033E-04 7.74157310595E-04 7.83895010811E-04 7.93755196217E-04 8.03739407488E-04 8.13849204676E-04 8.24086167459E-04 8.34451895381E-04 8.44948008110E-04 8.55576145685E-04 8.66337968773E-04 8.77235158931E-04 8.88269418867E-04 8.99442472707E-04 9.10756066264E-04 9.22211967309E-04 9.33811965850E-04 9.45557874410E-04 9.57451528312E-04 9.69494785964E-04 9.81689529148E-04 9.94037663318E-04 1.00654111790E-03 1.01920184657E-03 1.03202182761E-03 1.04500306416E-03 1.05814758456E-03 1.07145744267E-03 1.08493471819E-03 1.09858151697E-03 1.11239997135E-03 1.12639224048E-03 1.14056051069E-03 1.15490699580E-03 1.16943393749E-03 1.18414360560E-03 1.19903829856E-03 1.21412034369E-03 1.22939209760E-03 1.24485594652E-03 1.26051430672E-03 1.27636962485E-03 1.29242437832E-03 1.30868107573E-03 1.32514225723E-03 1.34181049489E-03 1.35868839318E-03 1.37577858929E-03 1.39308375361E-03 1.41060659009E-03 1.42834983673E-03 1.44631626593E-03 1.46450868500E-03 1.48292993652E-03 1.50158289887E-03 1.52047048660E-03 1.53959565093E-03 1.55896138022E-03 1.57857070039E-03 1.59842667545E-03 1.61853240793E-03 1.63889103939E-03 1.65950575091E-03 1.68037976358E-03 1.70151633900E-03 1.72291877982E-03 1.74459043020E-03 1.76653467638E-03 1.78875494721E-03 1.81125471463E-03 1.83403749428E-03 1.85710684603E-03 1.88046637450E-03 1.90411972966E-03 1.92807060741E-03 1.95232275011E-03 1.97687994722E-03 2.00174603583E-03 2.02692490134E-03 2.05242047799E-03 2.07823674951E-03 2.10437774976E-03 2.13084756331E-03 2.15765032612E-03 2.18479022619E-03 2.21227150418E-03 2.24009845409E-03 2.26827542394E-03 2.29680681644E-03 2.32569708968E-03 2.35495075782E-03 2.38457239181E-03 2.41456662008E-03 2.44493812930E-03 2.47569166508E-03 2.50683203272E-03 2.53836409797E-03 2.57029278777E-03 2.60262309104E-03 2.63536005947E-03 2.66850880827E-03 2.70207451700E-03 2.73606243037E-03 2.77047785907E-03 2.80532618056E-03 2.84061283998E-03 2.87634335093E-03 2.91252329639E-03 2.94915832953E-03 2.98625417466E-03 3.02381662809E-03 3.06185155901E-03 3.10036491047E-03 3.13936270026E-03 3.17885102185E-03 3.21883604538E-03 3.25932401860E-03 3.30032126782E-03 3.34183419896E-03 3.38386929848E-03 3.42643313447E-03 3.46953235761E-03 3.51317370224E-03 3.55736398741E-03 3.60211011794E-03 3.64741908550E-03 3.69329796972E-03 3.73975393925E-03 3.78679425295E-03 3.83442626096E-03 3.88265740587E-03 3.93149522390E-03 3.98094734605E-03 4.03102149933E-03 4.08172550792E-03 4.13306729442E-03 4.18505488110E-03 4.23769639112E-03 4.29100004982E-03 4.34497418600E-03 4.39962723325E-03 4.45496773120E-03 4.51100432692E-03 4.56774577624E-03 4.62520094514E-03 4.68337881110E-03 4.74228846452E-03 4.80193911016E-03 4.86234006856E-03 4.92350077748E-03 4.98543079342E-03 5.04813979307E-03 5.11163757483E-03 5.17593406035E-03 5.24103929611E-03 5.30696345492E-03 5.37371683756E-03 5.44130987440E-03 5.50975312697E-03 5.57905728968E-03 5.64923319144E-03 5.72029179738E-03 5.79224421055E-03 5.86510167367E-03 5.93887557085E-03 6.01357742942E-03 6.08921892171E-03 6.16581186683E-03 6.24336823261E-03 6.32190013737E-03 6.40141985189E-03 6.48193980129E-03 6.56347256697E-03 6.64603088859E-03 6.72962766606E-03 6.81427596155E-03 6.89998900152E-03 6.98678017880E-03 7.07466305471E-03 7.16365136111E-03 7.25375900261E-03 7.34500005871E-03 7.43738878601E-03 7.53093962045E-03 7.62566717952E-03 7.72158626460E-03 7.81871186325E-03 7.91705915153E-03 8.01664349641E-03 8.11748045815E-03 8.21958579272E-03 8.32297545430E-03 8.42766559773E-03 8.53367258105E-03 8.64101296807E-03 8.74970353095E-03 8.85976125281E-03 8.97120333039E-03 9.08404717674E-03 9.19831042395E-03 9.31401092587E-03 9.43116676095E-03 9.54979623503E-03 9.66991788419E-03 9.79155047770E-03 9.91471302089E-03 1.00394247582E-02 1.01657051760E-02 1.02935740059E-02 1.04230512277E-02 1.05541570725E-02 1.06869120258E-02 1.08213368308E-02 1.09574524918E-02 1.10952802769E-02 1.12348417222E-02 1.13761586344E-02 1.15192530945E-02 1.16641474613E-02 1.18108643749E-02 1.19594267601E-02 1.21098578301E-02 1.22621810900E-02 1.24164203406E-02 1.25725996821E-02 1.27307435180E-02 1.28908765584E-02 1.30530238245E-02 1.32172106521E-02 1.33834626958E-02 1.35518059328E-02 1.37222666670E-02 1.38948715333E-02 1.40696475016E-02 1.42466218809E-02 1.44258223238E-02 1.46072768308E-02 1.47910137546E-02 1.49770618043E-02 1.51654500505E-02 1.53562079290E-02 1.55493652463E-02 1.57449521835E-02 1.59429993016E-02 1.61435375457E-02 1.63465982504E-02 1.65522131444E-02 1.67604143553E-02 1.69712344151E-02 1.71847062648E-02 1.74008632597E-02 1.76197391750E-02 1.78413682104E-02 1.80657849958E-02 1.82930245970E-02 1.85231225204E-02 1.87561147194E-02 1.89920375995E-02 1.92309280241E-02 1.94728233203E-02 1.97177612848E-02 1.99657801896E-02 2.02169187882E-02 2.04712163215E-02 2.07287125240E-02 2.09894476299E-02 2.12534623798E-02 2.15207980264E-02 2.17914963415E-02 2.20655996223E-02 2.23431506978E-02 2.26241929361E-02 2.29087702506E-02 2.31969271071E-02 2.34887085306E-02 2.37841601126E-02 2.40833280180E-02 2.43862589924E-02 2.46930003694E-02 2.50036000779E-02 2.53181066499E-02 2.56365692275E-02 2.59590375712E-02 2.62855620673E-02 2.66161937360E-02 2.69509842391E-02 2.72899858883E-02 2.76332516533E-02 2.79808351702E-02 2.83327907494E-02 2.86891733849E-02 2.90500387620E-02 2.94154432669E-02 2.97854439945E-02 3.01600987584E-02 3.05394660991E-02 3.09236052935E-02 3.13125763642E-02 3.17064400886E-02 3.21052580088E-02 3.25090924408E-02 3.29180064847E-02 3.33320640341E-02 3.37513297863E-02 3.41758692525E-02 3.46057487677E-02 3.50410355016E-02 3.54817974686E-02 3.59281035387E-02 3.63800234480E-02 3.68376278099E-02 3.73009881262E-02 3.77701767978E-02 3.82452671363E-02 3.87263333757E-02 3.92134506834E-02 3.97066951725E-02 4.02061439136E-02 4.07118749464E-02 4.12239672926E-02 4.17425009675E-02 4.22675569931E-02 4.27992174105E-02 4.33375652927E-02 4.38826847576E-02 4.44346609813E-02 4.49935802111E-02 4.55595297795E-02 4.61325981170E-02 4.67128747669E-02 4.73004503985E-02 4.78954168216E-02 4.84978670012E-02 4.91078950711E-02 4.97255963495E-02 5.03510673535E-02 5.09844058142E-02 5.16257106921E-02 5.22750821923E-02 5.29326217804E-02 5.35984321984E-02 5.42726174804E-02 5.49552829694E-02 5.56465353331E-02 5.63464825812E-02 5.70552340819E-02 5.77729005789E-02 5.84995942092E-02 5.92354285201E-02 5.99805184872E-02 6.07349805324E-02 6.14989325418E-02 6.22724938846E-02 6.30557854313E-02 6.38489295727E-02 6.46520502392E-02 6.54652729202E-02 6.62887246832E-02 6.71225341943E-02 6.79668317379E-02 6.88217492373E-02 6.96874202751E-02 7.05639801140E-02 7.14515657184E-02 7.23503157752E-02 7.32603707162E-02 7.41818727391E-02 7.51149658305E-02 7.60597957882E-02 7.70165102437E-02 7.79852586856E-02 7.89661924829E-02 7.99594649084E-02 8.09652311630E-02 8.19836483996E-02 8.30148757481E-02 8.40590743399E-02 8.51164073330E-02 8.61870399380E-02 8.72711394433E-02 8.83688752416E-02 8.94804188566E-02 9.06059439690E-02 9.17456264445E-02 9.28996443608E-02 9.40681780355E-02 9.52514100545E-02 9.64495253000E-02 9.76627109801E-02 9.88911566575E-02 1.00135054279E-01 1.01394598207E-01 1.02669985247E-01 1.03961414681E-01 1.05269088298E-01 1.06593210424E-01 1.07933987956E-01 1.09291630393E-01 1.10666349869E-01 1.12058361188E-01 1.13467881854E-01 1.14895132108E-01 1.16340334959E-01 1.17803716225E-01 1.19285504561E-01 1.20785931499E-01 1.22305231485E-01 1.23843641913E-01 1.25401403161E-01 1.26978758634E-01 1.28575954796E-01 1.30193241213E-01 1.31830870588E-01 1.33489098806E-01 1.35168184966E-01 1.36868391430E-01 1.38589983860E-01 1.40333231256E-01 1.42098406004E-01 1.43885783918E-01 1.45695644279E-01 1.47528269880E-01 1.49383947074E-01 1.51262965813E-01 1.53165619698E-01 1.55092206023E-01 1.57043025821E-01 1.59018383911E-01 1.61018588947E-01 1.63043953465E-01 1.65094793933E-01 1.67171430798E-01 1.69274188539E-01 1.71403395717E-01 1.73559385024E-01 1.75742493338E-01 1.77953061774E-01 1.80191435738E-01 1.82457964980E-01 1.84753003651E-01 1.87076910355E-01 1.89430048206E-01 1.91812784888E-01 1.94225492707E-01 1.96668548655E-01 1.99142334464E-01 2.01647236668E-01 2.04183646662E-01 2.06751960767E-01 2.09352580287E-01 2.11985911573E-01 2.14652366089E-01 2.17352360474E-01 2.20086316607E-01 2.22854661675E-01 2.25657828238E-01 2.28496254295E-01 2.31370383357E-01 2.34280664512E-01 2.37227552498E-01 2.40211507771E-01 2.43232996581E-01 2.46292491041E-01 2.49390469205E-01 2.52527415136E-01 2.55703818990E-01 2.58920177086E-01 2.62176991987E-01 2.65474772575E-01 2.68814034137E-01 2.72195298439E-01 2.75619093810E-01 2.79085955225E-01 2.82596424389E-01 2.86151049819E-01 2.89750386932E-01 2.93394998133E-01 2.97085452899E-01 3.00822327872E-01 3.04606206945E-01 3.08437681358E-01 3.12317349787E-01 3.16245818436E-01 3.20223701138E-01 3.24251619445E-01 3.28330202728E-01 3.32460088272E-01 3.36641921381E-01 3.40876355476E-01 3.45164052195E-01 3.49505681499E-01 3.53901921777E-01 3.58353459950E-01 3.62860991580E-01 3.67425220979E-01 3.72046861316E-01 3.76726634732E-01 3.81465272451E-01 3.86263514895E-01 3.91122111799E-01 3.96041822329E-01 4.01023415199E-01 4.06067668793E-01 4.11175371288E-01 4.16347320770E-01 4.21584325368E-01 4.26887203375E-01 4.32256783376E-01 4.37693904379E-01 4.43199415945E-01 4.48774178321E-01 4.54419062576E-01 4.60134950734E-01 4.65922735914E-01 4.71783322469E-01 4.77717626128E-01 4.83726574139E-01 4.89811105411E-01 4.95972170664E-01 5.02210732578E-01 5.08527765941E-01 5.14924257802E-01 5.21401207626E-01 5.27959627449E-01 5.34600542039E-01 5.41324989050E-01 5.48134019193E-01 5.55028696391E-01 5.62010097952E-01 5.69079314735E-01 5.76237451318E-01 5.83485626175E-01 5.90824971849E-01 5.98256635126E-01 6.05781777220E-01 6.13401573949E-01 6.21117215922E-01 6.28929908723E-01 6.36840873102E-01 6.44851345164E-01 6.52962576560E-01 6.61175834687E-01 6.69492402883E-01 6.77913580630E-01 6.86440683753E-01 6.95075044629E-01 7.03818012395E-01 7.12670953157E-01 7.21635250206E-01 7.30712304230E-01 7.39903533539E-01 7.49210374281E-01 7.58634280667E-01 7.68176725204E-01 7.77839198916E-01 7.87623211586E-01 7.97530291986E-01 8.07561988116E-01 8.17719867449E-01 8.28005517176E-01 8.38420544449E-01 8.48966576638E-01 8.59645261582E-01 8.70458267847E-01 8.81407284987E-01 8.92494023809E-01 9.03720216637E-01 9.15087617589E-01 9.26598002842E-01 9.38253170918E-01 9.50054942962E-01 9.62005163023E-01 9.74105698348E-01 9.86358439670E-01 9.98765301505E-01 1.01132822245E+00 1.02404916549E+00 1.03693011829E+00 1.04997309354E+00 1.06318012921E+00 1.07655328895E+00 1.09009466232E+00 1.10380636521E+00 1.11769054008E+00 1.13174935638E+00 1.14598501081E+00 1.16039972774E+00 1.17499575948E+00 1.18977538670E+00 1.20474091875E+00 1.21989469401E+00 1.23523908031E+00 8.61945391287E+00 8.61945391281E+00 8.61945391275E+00 8.61945391269E+00 8.61945391263E+00 8.61945391256E+00 8.61945391250E+00 8.61945391243E+00 8.61945391236E+00 8.61945391229E+00 8.61945391222E+00 8.61945391214E+00 8.61945391207E+00 8.61945391199E+00 8.61945391191E+00 8.61945391183E+00 8.61945391174E+00 8.61945391166E+00 8.61945391157E+00 8.61945391148E+00 8.61945391138E+00 8.61945391129E+00 8.61945391119E+00 8.61945391109E+00 8.61945391099E+00 8.61945391088E+00 8.61945391077E+00 8.61945391066E+00 8.61945391055E+00 8.61945391043E+00 8.61945391031E+00 8.61945391019E+00 8.61945391007E+00 8.61945390994E+00 8.61945390980E+00 8.61945390967E+00 8.61945390953E+00 8.61945390939E+00 8.61945390924E+00 8.61945390909E+00 8.61945390894E+00 8.61945390878E+00 8.61945390862E+00 8.61945390845E+00 8.61945390828E+00 8.61945390811E+00 8.61945390793E+00 8.61945390775E+00 8.61945390756E+00 8.61945390737E+00 8.61945390717E+00 8.61945390697E+00 8.61945390676E+00 8.61945390655E+00 8.61945390633E+00 8.61945390611E+00 8.61945390588E+00 8.61945390565E+00 8.61945390541E+00 8.61945390516E+00 8.61945390491E+00 8.61945390465E+00 8.61945390438E+00 8.61945390411E+00 8.61945390383E+00 8.61945390354E+00 8.61945390325E+00 8.61945390295E+00 8.61945390264E+00 8.61945390232E+00 8.61945390199E+00 8.61945390166E+00 8.61945390132E+00 8.61945390097E+00 8.61945390061E+00 8.61945390024E+00 8.61945389986E+00 8.61945389948E+00 8.61945389908E+00 8.61945389867E+00 8.61945389826E+00 8.61945389783E+00 8.61945389739E+00 8.61945389694E+00 8.61945389648E+00 8.61945389601E+00 8.61945389552E+00 8.61945389502E+00 8.61945389451E+00 8.61945389399E+00 8.61945389346E+00 8.61945389291E+00 8.61945389234E+00 8.61945389177E+00 8.61945389117E+00 8.61945389057E+00 8.61945388994E+00 8.61945388931E+00 8.61945388865E+00 8.61945388798E+00 8.61945388729E+00 8.61945388659E+00 8.61945388587E+00 8.61945388512E+00 8.61945388436E+00 8.61945388358E+00 8.61945388278E+00 8.61945388197E+00 8.61945388112E+00 8.61945388026E+00 8.61945387938E+00 8.61945387847E+00 8.61945387755E+00 8.61945387659E+00 8.61945387562E+00 8.61945387462E+00 8.61945387359E+00 8.61945387254E+00 8.61945387146E+00 8.61945387035E+00 8.61945386922E+00 8.61945386806E+00 8.61945386686E+00 8.61945386564E+00 8.61945386439E+00 8.61945386310E+00 8.61945386179E+00 8.61945386043E+00 8.61945385905E+00 8.61945385763E+00 8.61945385617E+00 8.61945385468E+00 8.61945385315E+00 8.61945385158E+00 8.61945384997E+00 8.61945384832E+00 8.61945384663E+00 8.61945384489E+00 8.61945384311E+00 8.61945384129E+00 8.61945383942E+00 8.61945383750E+00 8.61945383554E+00 8.61945383352E+00 8.61945383145E+00 8.61945382934E+00 8.61945382716E+00 8.61945382494E+00 8.61945382265E+00 8.61945382031E+00 8.61945381791E+00 8.61945381545E+00 8.61945381292E+00 8.61945381033E+00 8.61945380768E+00 8.61945380496E+00 8.61945380217E+00 8.61945379931E+00 8.61945379638E+00 8.61945379337E+00 8.61945379029E+00 8.61945378713E+00 8.61945378389E+00 8.61945378056E+00 8.61945377716E+00 8.61945377366E+00 8.61945377008E+00 8.61945376641E+00 8.61945376264E+00 8.61945375878E+00 8.61945375482E+00 8.61945375076E+00 8.61945374660E+00 8.61945374234E+00 8.61945373796E+00 8.61945373347E+00 8.61945372888E+00 8.61945372416E+00 8.61945371932E+00 8.61945371437E+00 8.61945370928E+00 8.61945370407E+00 8.61945369873E+00 8.61945369325E+00 8.61945368763E+00 8.61945368187E+00 8.61945367597E+00 8.61945366991E+00 8.61945366370E+00 8.61945365734E+00 8.61945365081E+00 8.61945364412E+00 8.61945363726E+00 8.61945363022E+00 8.61945362301E+00 8.61945361561E+00 8.61945360803E+00 8.61945360026E+00 8.61945359228E+00 8.61945358411E+00 8.61945357573E+00 8.61945356714E+00 8.61945355833E+00 8.61945354930E+00 8.61945354003E+00 8.61945353054E+00 8.61945352080E+00 8.61945351082E+00 8.61945350058E+00 8.61945349009E+00 8.61945347933E+00 8.61945346829E+00 8.61945345698E+00 8.61945344538E+00 8.61945343349E+00 8.61945342130E+00 8.61945340879E+00 8.61945339598E+00 8.61945338283E+00 8.61945336936E+00 8.61945335554E+00 8.61945334137E+00 8.61945332685E+00 8.61945331195E+00 8.61945329668E+00 8.61945328103E+00 8.61945326497E+00 8.61945324851E+00 8.61945323164E+00 8.61945321434E+00 8.61945319659E+00 8.61945317840E+00 8.61945315975E+00 8.61945314063E+00 8.61945312102E+00 8.61945310092E+00 8.61945308031E+00 8.61945305917E+00 8.61945303750E+00 8.61945301528E+00 8.61945299250E+00 8.61945296915E+00 8.61945294520E+00 8.61945292064E+00 8.61945289547E+00 8.61945286965E+00 8.61945284319E+00 8.61945281605E+00 8.61945278823E+00 8.61945275970E+00 8.61945273045E+00 8.61945270046E+00 8.61945266971E+00 8.61945263818E+00 8.61945260585E+00 8.61945257271E+00 8.61945253872E+00 8.61945250388E+00 8.61945246815E+00 8.61945243152E+00 8.61945239396E+00 8.61945235545E+00 8.61945231597E+00 8.61945227548E+00 8.61945223398E+00 8.61945219142E+00 8.61945214778E+00 8.61945210304E+00 8.61945205716E+00 8.61945201013E+00 8.61945196190E+00 8.61945191246E+00 8.61945186176E+00 8.61945180978E+00 8.61945175648E+00 8.61945170183E+00 8.61945164580E+00 8.61945158835E+00 8.61945152945E+00 8.61945146905E+00 8.61945140713E+00 8.61945134364E+00 8.61945127854E+00 8.61945121180E+00 8.61945114336E+00 8.61945107319E+00 8.61945100125E+00 8.61945092748E+00 8.61945085185E+00 8.61945077430E+00 8.61945069479E+00 8.61945061326E+00 8.61945052968E+00 8.61945044397E+00 8.61945035610E+00 8.61945026600E+00 8.61945017362E+00 8.61945007891E+00 8.61944998179E+00 8.61944988222E+00 8.61944978012E+00 8.61944967544E+00 8.61944956811E+00 8.61944945807E+00 8.61944934524E+00 8.61944922955E+00 8.61944911093E+00 8.61944898931E+00 8.61944886461E+00 8.61944873676E+00 8.61944860567E+00 8.61944847126E+00 8.61944833344E+00 8.61944819214E+00 8.61944804726E+00 8.61944789872E+00 8.61944774641E+00 8.61944759025E+00 8.61944743013E+00 8.61944726596E+00 8.61944709764E+00 8.61944692505E+00 8.61944674810E+00 8.61944656666E+00 8.61944638064E+00 8.61944618990E+00 8.61944599433E+00 8.61944579382E+00 8.61944558822E+00 8.61944537743E+00 8.61944516129E+00 8.61944493969E+00 8.61944471247E+00 8.61944447951E+00 8.61944424064E+00 8.61944399573E+00 8.61944374462E+00 8.61944348715E+00 8.61944322316E+00 8.61944295250E+00 8.61944267497E+00 8.61944239043E+00 8.61944209868E+00 8.61944179954E+00 8.61944149283E+00 8.61944117836E+00 8.61944085593E+00 8.61944052533E+00 8.61944018637E+00 8.61943983882E+00 8.61943948248E+00 8.61943911712E+00 8.61943874250E+00 8.61943835840E+00 8.61943796458E+00 8.61943756079E+00 8.61943714678E+00 8.61943672229E+00 8.61943628705E+00 8.61943584079E+00 8.61943538324E+00 8.61943491410E+00 8.61943443309E+00 8.61943393990E+00 8.61943343422E+00 8.61943291574E+00 8.61943238414E+00 8.61943183908E+00 8.61943128022E+00 8.61943070722E+00 8.61943011971E+00 8.61942951732E+00 8.61942889969E+00 8.61942826642E+00 8.61942761712E+00 8.61942695139E+00 8.61942626880E+00 8.61942556893E+00 8.61942485134E+00 8.61942411559E+00 8.61942336121E+00 8.61942258773E+00 8.61942179468E+00 8.61942098154E+00 8.61942014783E+00 8.61941929300E+00 8.61941841654E+00 8.61941751789E+00 8.61941659649E+00 8.61941565177E+00 8.61941468313E+00 8.61941368997E+00 8.61941267166E+00 8.61941162758E+00 8.61941055707E+00 8.61940945946E+00 8.61940833406E+00 8.61940718017E+00 8.61940599707E+00 8.61940478402E+00 8.61940354026E+00 8.61940226502E+00 8.61940095750E+00 8.61939961687E+00 8.61939824231E+00 8.61939683295E+00 8.61939538791E+00 8.61939390629E+00 8.61939238716E+00 8.61939082958E+00 8.61938923256E+00 8.61938759512E+00 8.61938591623E+00 8.61938419483E+00 8.61938242986E+00 8.61938062021E+00 8.61937876475E+00 8.61937686231E+00 8.61937491172E+00 8.61937291175E+00 8.61937086114E+00 8.61936875863E+00 8.61936660289E+00 8.61936439258E+00 8.61936212632E+00 8.61935980269E+00 8.61935742023E+00 8.61935497746E+00 8.61935247286E+00 8.61934990485E+00 8.61934727183E+00 8.61934457216E+00 8.61934180414E+00 8.61933896605E+00 8.61933605612E+00 8.61933307253E+00 8.61933001340E+00 8.61932687683E+00 8.61932366087E+00 8.61932036349E+00 8.61931698263E+00 8.61931351620E+00 8.61930996201E+00 8.61930631784E+00 8.61930258143E+00 8.61929875043E+00 8.61929482245E+00 8.61929079503E+00 8.61928666567E+00 8.61928243176E+00 8.61927809068E+00 8.61927363971E+00 8.61926907606E+00 8.61926439688E+00 8.61925959925E+00 8.61925468017E+00 8.61924963657E+00 8.61924446529E+00 8.61923916310E+00 8.61923372669E+00 8.61922815266E+00 8.61922243753E+00 8.61921657772E+00 8.61921056957E+00 8.61920440933E+00 8.61919809314E+00 8.61919161707E+00 8.61918497705E+00 8.61917816895E+00 8.61917118851E+00 8.61916403136E+00 8.61915669303E+00 8.61914916894E+00 8.61914145438E+00 8.61913354453E+00 8.61912543446E+00 8.61911711908E+00 8.61910859320E+00 8.61909985150E+00 8.61909088850E+00 8.61908169862E+00 8.61907227611E+00 8.61906261507E+00 8.61905270947E+00 8.61904255312E+00 8.61903213968E+00 8.61902146263E+00 8.61901051530E+00 8.61899929085E+00 8.61898778226E+00 8.61897598235E+00 8.61896388374E+00 8.61895147887E+00 8.61893875998E+00 8.61892571913E+00 8.61891234817E+00 8.61889863874E+00 8.61888458228E+00 8.61887016999E+00 8.61885539288E+00 8.61884024171E+00 8.61882470702E+00 8.61880877908E+00 8.61879244796E+00 8.61877570344E+00 8.61875853506E+00 8.61874093210E+00 8.61872288355E+00 8.61870437813E+00 8.61868540429E+00 8.61866595016E+00 8.61864600358E+00 8.61862555211E+00 8.61860458294E+00 8.61858308299E+00 8.61856103881E+00 8.61853843664E+00 8.61851526235E+00 8.61849150145E+00 8.61846713911E+00 8.61844216010E+00 8.61841654881E+00 8.61839028924E+00 8.61836336498E+00 8.61833575921E+00 8.61830745469E+00 8.61827843371E+00 8.61824867817E+00 8.61821816945E+00 8.61818688850E+00 8.61815481579E+00 8.61812193126E+00 8.61808821437E+00 8.61805364406E+00 8.61801819873E+00 8.61798185624E+00 8.61794459388E+00 8.61790638837E+00 8.61786721585E+00 8.61782705184E+00 8.61778587125E+00 8.61774364835E+00 8.61770035678E+00 8.61765596948E+00 8.61761045872E+00 8.61756379609E+00 8.61751595242E+00 8.61746689784E+00 8.61741660170E+00 8.61736503259E+00 8.61731215830E+00 8.61725794579E+00 8.61720236121E+00 8.61714536985E+00 8.61708693609E+00 8.61702702346E+00 8.61696559453E+00 8.61690261093E+00 8.61683803333E+00 8.61677182141E+00 8.61670393380E+00 8.61663432812E+00 8.61656296090E+00 8.61648978757E+00 8.61641476244E+00 8.61633783867E+00 8.61625896821E+00 8.61617810182E+00 8.61609518901E+00 8.61601017801E+00 8.61592301575E+00 8.61583364780E+00 8.61574201837E+00 8.61564807026E+00 8.61555174482E+00 8.61545298191E+00 8.61535171988E+00 8.61524789552E+00 8.61514144403E+00 8.61503229895E+00 8.61492039217E+00 8.61480565384E+00 8.61468801235E+00 8.61456739427E+00 8.61444372435E+00 8.61431692539E+00 8.61418691827E+00 8.61405362188E+00 8.61391695303E+00 8.61377682645E+00 8.61363315472E+00 8.61348584821E+00 8.61333481501E+00 8.61317996090E+00 8.61302118929E+00 8.61285840114E+00 8.61269149491E+00 8.61252036651E+00 8.61234490921E+00 8.61216501358E+00 8.61198056745E+00 8.61179145580E+00 8.61159756071E+00 8.61139876130E+00 8.61119493362E+00 8.61098595061E+00 8.61077168199E+00 8.61055199420E+00 8.61032675032E+00 8.61009580997E+00 8.60985902923E+00 8.60961626055E+00 8.60936735266E+00 8.60911215047E+00 8.60885049501E+00 8.60858222328E+00 8.60830716816E+00 8.60802515834E+00 8.60773601820E+00 8.60743956768E+00 8.60713562219E+00 8.60682399249E+00 8.60650448458E+00 8.60617689956E+00 8.60584103355E+00 8.60549667751E+00 8.60514361717E+00 8.60478163284E+00 8.60441049931E+00 8.60402998571E+00 8.60363985537E+00 8.60323986566E+00 8.60282976784E+00 8.60240930694E+00 8.60197822157E+00 8.60153624376E+00 8.60108309883E+00 8.60061850519E+00 8.60014217417E+00 8.59965380986E+00 8.59915310892E+00 8.59863976041E+00 8.59811344556E+00 8.59757383762E+00 8.59702060166E+00 8.59645339431E+00 8.59587186364E+00 8.59527564886E+00 8.59466438016E+00 8.59403767847E+00 8.59339515521E+00 8.59273641208E+00 8.59206104082E+00 8.59136862294E+00 8.59065872949E+00 8.58993092079E+00 8.58918474617E+00 8.58841974370E+00 8.58763543990E+00 8.58683134948E+00 8.58600697502E+00 8.58516180670E+00 8.58429532196E+00 8.58340698524E+00 8.58249624760E+00 8.58156254644E+00 8.58060530514E+00 8.57962393271E+00 8.57861782348E+00 8.57758635670E+00 8.57652889616E+00 8.57544478989E+00 8.57433336967E+00 8.57319395073E+00 8.57202583128E+00 8.57082829213E+00 8.56960059626E+00 8.56834198840E+00 8.56705169455E+00 8.56572892157E+00 8.56437285671E+00 8.56298266711E+00 8.56155749933E+00 8.56009647889E+00 8.55859870969E+00 8.55706327357E+00 8.55548922972E+00 8.55387561419E+00 8.55222143928E+00 8.55052569302E+00 8.54878733858E+00 8.54700531369E+00 8.54517852998E+00 8.54330587244E+00 8.54138619874E+00 8.53941833861E+00 8.53740109316E+00 8.53533323422E+00 8.53321350365E+00 8.53104061265E+00 8.52881324103E+00 8.52653003647E+00 8.52418961379E+00 8.52179055420E+00 8.51933140449E+00 8.51681067623E+00 8.51422684502E+00 8.51157834958E+00 8.50886359100E+00 8.50608093177E+00 8.50322869500E+00 8.50030516347E+00 8.49730857874E+00 8.49423714020E+00 8.49108900416E+00 8.48786228283E+00 8.48455504339E+00 8.48116530694E+00 8.47769104752E+00 8.47413019105E+00 8.47048061426E+00 8.46674014365E+00 8.46290655435E+00 8.45897756904E+00 8.45495085681E+00 8.45082403198E+00 8.44659465298E+00 8.44226022111E+00 8.43781817934E+00 8.43326591112E+00 8.42860073909E+00 8.42381992383E+00 8.41892066258E+00 8.41390008792E+00 8.40875526649E+00 8.40348319759E+00 8.39808081189E+00 8.39254497003E+00 8.38687246119E+00 8.38106000176E+00 8.37510423387E+00 8.36900172397E+00 8.36274896137E+00 8.35634235677E+00 8.34977824080E+00 8.34305286255E+00 8.33616238799E+00 8.32910289855E+00 8.32187038954E+00 8.31446076863E+00 8.30686985435E+00 8.29909337450E+00 8.29112696462E+00 8.28296616645E+00 8.27460642638E+00 8.26604309388E+00 8.25727141998E+00 8.24828655570E+00 8.23908355055E+00 8.22965735096E+00 8.22000279879E+00 8.21011462984E+00 8.19998747232E+00 8.18961584545E+00 8.17899415797E+00 8.16811670672E+00 8.15697767529E+00 8.14557113264E+00 8.13389103180E+00 8.12193120858E+00 8.10968538035E+00 8.09714714487E+00 8.08430997916E+00 8.07116723841E+00 8.05771215506E+00 8.04393783779E+00 8.02983727071E+00 8.01540331263E+00 8.00062869631E+00 7.98550602798E+00 7.97002778677E+00 7.95418632446E+00 7.93797386513E+00 7.92138250515E+00 7.90440421318E+00 7.88703083030E+00 7.86925407042E+00 7.85106552075E+00 7.83245664245E+00 7.81341877157E+00 7.79394312004E+00 7.77402077703E+00 7.75364271037E+00 7.73279976838E+00 7.71148268181E+00 7.68968206614E+00 7.66738842407E+00 7.64459214843E+00 7.62128352524E+00 7.59745273727E+00 7.57308986783E+00 7.54818490491E+00 7.52272774582E+00 7.49670820209E+00 7.47011600488E+00 7.44294081079E+00 7.41517220813E+00 7.38679972369E+00 7.35781282998E+00 7.32820095302E+00 7.29795348066E+00 7.26705977147E+00 7.23550916424E+00 7.20329098809E+00 7.17039457318E+00 7.13680926215E+00 7.10252442223E+00 7.06752945805E+00 7.03181382518E+00 6.99536704452E+00 6.95817871737E+00 6.92023854143E+00 6.88153632757E+00 6.84206201751E+00 6.80180570239E+00 6.76075764230E+00 6.71890828666E+00 6.67624829571E+00 6.63276856291E+00 6.58846023835E+00 6.54331475325E+00 6.49732384554E+00 6.45047958640E+00 6.40277440804E+00 6.35420113253E+00 6.30475300169E+00 6.25442370824E+00 6.20320742798E+00 6.15109885316E+00 6.09809322701E+00 6.04418637935E+00 5.98937476338E+00 5.93365549359E+00 5.87702638471E+00 5.81948599182E+00 5.76103365143E+00 5.70166952363E+00 5.64139463514E+00 5.58021092334E+00 5.51812128112E+00 5.45512960250E+00 5.39124082902E+00 5.32646099668E+00 5.26079728341E+00 5.19425805704E+00 5.12685292345E+00 5.05859277489E+00 4.98948983841E+00 4.91955772399E+00 4.84881147242E+00 4.77726760265E+00 4.70494415838E+00 4.63186075366E+00 4.55803861737E+00 4.48350063616E+00 4.40827139562E+00 4.33237721948E+00 4.25584620636E+00 4.17870826390E+00 4.10099513969E+00 4.02274044891E+00 3.94397969801E+00 3.86475030412E+00 3.78509160986E+00 3.70504489286E+00 3.62465336970E+00 3.54396219373E+00 3.46301844617E+00 3.38187112010E+00 3.30057109674E+00 3.21917111340E+00 3.13772572270E+00 3.05629124235E+00 2.97492569497E+00 2.89368873752E+00 2.81264157949E+00 2.73184688963E+00 2.65136869050E+00 2.57127224036E+00 2.49162390197E+00 2.41249099788E+00 2.33394165169E+00 2.25604461512E+00 2.17886908049E+00 2.10248447841E+00 2.02696026068E+00 1.95236566820E+00 1.87876948410E+00 1.80623977226E+00 1.73484360155E+00 1.66464675623E+00 1.59571343322E+00 1.52810592703E+00 1.46188430332E+00 1.39710606233E+00 1.33382579360E+00 1.27209482357E+00 1.21196085813E+00 1.15346762199E+00 1.09665449756E+00 1.04155616585E+00 9.88202252485E-01 9.36616981955E-01 8.86818843790E-01 8.38820274394E-01 7.92627358695E-01 7.48239555985E-01 7.05649454579E-01 6.64842560194E-01 6.25797123096E-01 5.88484009294E-01 5.52866621160E-01 5.18900872939E-01 4.86535226647E-01 4.55710793799E-01 4.26366995685E-01 3.98460427959E-01 3.71952274967E-01 3.46803280318E-01 3.22973686411E-01 3.00423212498E-01 2.79111065958E-01 2.58995981758E-01 2.40036285328E-01 2.22189974406E-01 2.05414815732E-01 1.89668452906E-01 1.74908521791E-01 1.61092770578E-01 1.48179181689E-01 1.36126093118E-01 1.24892317145E-01 1.14437254651E-01 1.04721003529E-01 9.57044601337E-02 8.73494125305E-02 7.96186251464E-02 7.24759141616E-02 6.58862133823E-02 5.98156304636E-02 5.42314935110E-02 4.91023882171E-02 4.43981858057E-02 4.00900621511E-02 3.61505085158E-02 3.25533344156E-02 2.92736631654E-02 2.62879206942E-02 2.35738182395E-02 2.11103295423E-02 1.88776631638E-02 1.68572305400E-02 1.50316103733E-02 1.33845099428E-02 1.19007238869E-02 1.05660909836E-02 9.36744942163E-03 8.29259102031E-03 7.33021481975E-03 6.46988042594E-03 5.70196145826E-03 5.01759940959E-03 4.40865819307E-03 3.86767961446E-03 3.38783997526E-03 2.96290797981E-03 2.58720408940E-03 2.25556143837E-03 1.96328840114E-03 1.70613287522E-03 1.48024832381E-03 1.28216160177E-03 1.10874257165E-03 9.57175501044E-04 8.24932219104E-04 7.09746998605E-04 6.09593120227E-04 5.22661067533E-04 4.47338294551E-04 3.82190502657E-04 3.25944359440E-04 2.77471589466E-04 2.35774364988E-04 1.99971923764E-04 1.69288341021E-04 1.43041383126E-04 1.20632371713E-04 1.01536988616E-04 8.52969540149E-05 7.15125125883E-05 5.98356650900E-05 4.99640856258E-05 4.16356678756E-05 3.46236465926E-05 2.87322438290E-05 2.37927924793E-05 1.96602928403E-05 1.62103609523E-05 1.33365304732E-05 1.09478727323E-05 8.96690239482E-06 7.32773883772E-06 5.97449586655E-06 4.85987480804E-06 3.94393826891E-06 3.19304397116E-06 2.57892005027E-06 2.07786503993E-06 1.67005746757E-06 1.33896155266E-06 1.07081694022E-06 8.54201720100E-07 6.79659184861E-07 5.39379871304E-07 4.26931420580E-07 3.37029684558E-07 2.65345309704E-07 2.08340749987E-07 1.63133303975E-07 1.27380344567E-07 9.91834186266E-08 7.70083439370E-08 5.96188278330E-08 4.60214806017E-08 3.54204021868E-08 2.71797872724E-08 2.07932256472E-08 1.58585756623E-08 1.20574621181E-08 9.13859924870E-09 6.90426753621E-09 5.19938251611E-09 3.90268691045E-09 2.91967647188E-09 2.17693674180E-09 1.61762420396E-09 1.19787254248E-09 8.83944199486E-10 6.49980321185E-10 4.76229480508E-10 3.47658137558E-10 2.52864394496E-10 1.83231862590E-10 1.32272936761E-10 9.51209361773E-11 6.81388159033E-11 4.86188202170E-11 3.45528151852E-11 2.44573425737E-11 1.72408759843E-11 1.21034964288E-11 8.46137316667E-12 5.89014737533E-12 4.08266179795E-12 2.81753288484E-12 1.93588309353E-12 1.32418842327E-12 9.01688911550E-13 6.11188928410E-13 4.12364547956E-13 2.76916794208E-13 1.85077739655E-13 1.23103533349E-13 8.14840379107E-14 5.36703258630E-14 3.51746087382E-14 2.29367068270E-14 1.48803342105E-14 9.60388427894E-15 6.16603832800E-15 3.93788220106E-15 2.50142919686E-15 1.58035318008E-15 9.92959743648E-16 6.20428043150E-16 3.85481788417E-16 2.38143636145E-16 1.46273750356E-16 8.93213651863E-17 5.42218951583E-17 3.27184291089E-17 1.96235491615E-17 1.16976104862E-17 6.92976406139E-18 4.07951205666E-18 2.38634280218E-18 1.38694168568E-18 8.00847513714E-19 4.59380742384E-19 2.61752979222E-19 1.48139475198E-19 8.32671801568E-20 4.64795007875E-20 2.57630370329E-20 1.41791192895E-20 7.74762758215E-21 4.19627270564E-21 2.25991728670E-21 1.20808459155E-21 6.40974108071E-22 3.37564931508E-22 1.76452085840E-22 9.13481784069E-23 4.69203273548E-23 2.39092242939E-23 1.20855931135E-23 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -5.62107712295E+00 -5.62107710571E+00 -5.62107708890E+00 -5.62107707249E+00 -5.62107705649E+00 -5.62107704088E+00 -5.62107702564E+00 -5.62107701078E+00 -5.62107699629E+00 -5.62107698214E+00 -5.62107696834E+00 -5.62107695488E+00 -5.62107694174E+00 -5.62107692893E+00 -5.62107691643E+00 -5.62107690423E+00 -5.62107689233E+00 -5.62107688072E+00 -5.62107686939E+00 -5.62107685834E+00 -5.62107684756E+00 -5.62107683704E+00 -5.62107682678E+00 -5.62107681677E+00 -5.62107680700E+00 -5.62107679747E+00 -5.62107678818E+00 -5.62107677911E+00 -5.62107677026E+00 -5.62107676163E+00 -5.62107675321E+00 -5.62107674499E+00 -5.62107673697E+00 -5.62107672915E+00 -5.62107672152E+00 -5.62107671408E+00 -5.62107670682E+00 -5.62107669974E+00 -5.62107669283E+00 -5.62107668608E+00 -5.62107667951E+00 -5.62107667309E+00 -5.62107666683E+00 -5.62107666073E+00 -5.62107665477E+00 -5.62107664896E+00 -5.62107664329E+00 -5.62107663776E+00 -5.62107663237E+00 -5.62107662711E+00 -5.62107662213E+00 -5.62107661426E+00 -5.62107661137E+00 -5.62107660844E+00 -5.62107659803E+00 -5.62107659515E+00 -5.62107659518E+00 -5.62107659227E+00 -5.62107658232E+00 -5.62107658236E+00 -5.62107657949E+00 -5.62107656993E+00 -5.62107656997E+00 -5.62107656716E+00 -5.62107656432E+00 -5.62107655803E+00 -5.62107655528E+00 -5.62107655249E+00 -5.62107654654E+00 -5.62107654385E+00 -5.62107654390E+00 -5.62107654118E+00 -5.62107653556E+00 -5.62107653293E+00 -5.62107653299E+00 -5.62107653033E+00 -5.62107652505E+00 -5.62107652249E+00 -5.62107652255E+00 -5.62107651996E+00 -5.62107651501E+00 -5.62107651253E+00 -5.62107651260E+00 -5.62107651008E+00 -5.62107650547E+00 -5.62107650554E+00 -5.62107650313E+00 -5.62107650321E+00 -5.62107650077E+00 -5.62107649649E+00 -5.62107649657E+00 -5.62107649425E+00 -5.62107649434E+00 -5.62107648796E+00 -5.62107648805E+00 -5.62107648814E+00 -5.62107648590E+00 -5.62107648600E+00 -5.62107648225E+00 -5.62107648013E+00 -5.62107648023E+00 -5.62107648034E+00 -5.62107647820E+00 -5.62107647479E+00 -5.62107647490E+00 -5.62107647289E+00 -5.62107647301E+00 -5.62107647313E+00 -5.62107647325E+00 -5.62107646802E+00 -5.62107646815E+00 -5.62107646829E+00 -5.62107646638E+00 -5.62107646652E+00 -5.62107646365E+00 -5.62107646379E+00 -5.62107646202E+00 -5.62107646218E+00 -5.62107646233E+00 -5.62107646250E+00 -5.62107645802E+00 -5.62107645819E+00 -5.62107645836E+00 -5.62107645854E+00 -5.62107645873E+00 -5.62107645709E+00 -5.62107645728E+00 -5.62107645496E+00 -5.62107645516E+00 -5.62107645366E+00 -5.62107645388E+00 -5.62107645410E+00 -5.62107645433E+00 -5.62107645456E+00 -5.62107645086E+00 -5.62107645110E+00 -5.62107645135E+00 -5.62107645161E+00 -5.62107645188E+00 -5.62107645215E+00 -5.62107645081E+00 -5.62107644906E+00 -5.62107644935E+00 -5.62107644965E+00 -5.62107644996E+00 -5.62107645027E+00 -5.62107644911E+00 -5.62107644944E+00 -5.62107644978E+00 -5.62107644826E+00 -5.62107644862E+00 -5.62107644898E+00 -5.62107644800E+00 -5.62107644838E+00 -5.62107644878E+00 -5.62107644918E+00 -5.62107644960E+00 -5.62107645002E+00 -5.62107644875E+00 -5.62107644797E+00 -5.62107644843E+00 -5.62107644890E+00 -5.62107644938E+00 -5.62107644987E+00 -5.62107645038E+00 -5.62107645090E+00 -5.62107645143E+00 -5.62107645073E+00 -5.62107644990E+00 -5.62107645047E+00 -5.62107645106E+00 -5.62107645166E+00 -5.62107645228E+00 -5.62107645292E+00 -5.62107645357E+00 -5.62107645423E+00 -5.62107645380E+00 -5.62107645450E+00 -5.62107645522E+00 -5.62107645473E+00 -5.62107645549E+00 -5.62107645626E+00 -5.62107645705E+00 -5.62107645787E+00 -5.62107645870E+00 -5.62107645956E+00 -5.62107645946E+00 -5.62107646035E+00 -5.62107646128E+00 -5.62107646222E+00 -5.62107646319E+00 -5.62107646418E+00 -5.62107646414E+00 -5.62107646518E+00 -5.62107646625E+00 -5.62107646735E+00 -5.62107646848E+00 -5.62107646963E+00 -5.62107646998E+00 -5.62107647119E+00 -5.62107647244E+00 -5.62107647371E+00 -5.62107647502E+00 -5.62107647636E+00 -5.62107647774E+00 -5.62107647915E+00 -5.62107648059E+00 -5.62107648117E+00 -5.62107648269E+00 -5.62107648425E+00 -5.62107648585E+00 -5.62107648749E+00 -5.62107648847E+00 -5.62107649019E+00 -5.62107649195E+00 -5.62107649377E+00 -5.62107649562E+00 -5.62107649753E+00 -5.62107649948E+00 -5.62107650148E+00 -5.62107650353E+00 -5.62107650564E+00 -5.62107650780E+00 -5.62107651001E+00 -5.62107651228E+00 -5.62107651460E+00 -5.62107651624E+00 -5.62107651869E+00 -5.62107652119E+00 -5.62107652377E+00 -5.62107652584E+00 -5.62107652854E+00 -5.62107653131E+00 -5.62107653415E+00 -5.62107653707E+00 -5.62107654005E+00 -5.62107654312E+00 -5.62107654626E+00 -5.62107654947E+00 -5.62107655278E+00 -5.62107655616E+00 -5.62107655963E+00 -5.62107656319E+00 -5.62107656684E+00 -5.62107657058E+00 -5.62107657441E+00 -5.62107657834E+00 -5.62107658238E+00 -5.62107658651E+00 -5.62107659016E+00 -5.62107659451E+00 -5.62107659896E+00 -5.62107660311E+00 -5.62107660780E+00 -5.62107661260E+00 -5.62107661753E+00 -5.62107662258E+00 -5.62107662775E+00 -5.62107663306E+00 -5.62107663851E+00 -5.62107664409E+00 -5.62107664981E+00 -5.62107665568E+00 -5.62107666169E+00 -5.62107666786E+00 -5.62107667418E+00 -5.62107668067E+00 -5.62107668732E+00 -5.62107669413E+00 -5.62107670112E+00 -5.62107670829E+00 -5.62107671563E+00 -5.62107672317E+00 -5.62107673089E+00 -5.62107673881E+00 -5.62107674693E+00 -5.62107675526E+00 -5.62107676379E+00 -5.62107677255E+00 -5.62107678152E+00 -5.62107679072E+00 -5.62107680016E+00 -5.62107680940E+00 -5.62107681932E+00 -5.62107682922E+00 -5.62107683965E+00 -5.62107685034E+00 -5.62107686130E+00 -5.62107687254E+00 -5.62107688406E+00 -5.62107689588E+00 -5.62107690799E+00 -5.62107692042E+00 -5.62107693315E+00 -5.62107694621E+00 -5.62107695960E+00 -5.62107697333E+00 -5.62107698740E+00 -5.62107700183E+00 -5.62107701663E+00 -5.62107703180E+00 -5.62107704736E+00 -5.62107706331E+00 -5.62107707966E+00 -5.62107709643E+00 -5.62107711362E+00 -5.62107713125E+00 -5.62107714932E+00 -5.62107716785E+00 -5.62107718685E+00 -5.62107720633E+00 -5.62107722631E+00 -5.62107724679E+00 -5.62107726779E+00 -5.62107728932E+00 -5.62107731139E+00 -5.62107733402E+00 -5.62107735723E+00 -5.62107738102E+00 -5.62107740542E+00 -5.62107743044E+00 -5.62107745608E+00 -5.62107748238E+00 -5.62107750934E+00 -5.62107753699E+00 -5.62107756533E+00 -5.62107759439E+00 -5.62107762419E+00 -5.62107765474E+00 -5.62107768607E+00 -5.62107771819E+00 -5.62107775112E+00 -5.62107778488E+00 -5.62107781950E+00 -5.62107785500E+00 -5.62107789140E+00 -5.62107792871E+00 -5.62107796697E+00 -5.62107800597E+00 -5.62107804608E+00 -5.62107808732E+00 -5.62107812961E+00 -5.62107817297E+00 -5.62107821742E+00 -5.62107826300E+00 -5.62107830974E+00 -5.62107835766E+00 -5.62107840679E+00 -5.62107845716E+00 -5.62107850881E+00 -5.62107856177E+00 -5.62107861607E+00 -5.62107867174E+00 -5.62107872882E+00 -5.62107878735E+00 -5.62107884736E+00 -5.62107890889E+00 -5.62107897197E+00 -5.62107903666E+00 -5.62107910298E+00 -5.62107917098E+00 -5.62107924070E+00 -5.62107931218E+00 -5.62107938548E+00 -5.62107946063E+00 -5.62107953768E+00 -5.62107961668E+00 -5.62107969769E+00 -5.62107978074E+00 -5.62107986590E+00 -5.62107995321E+00 -5.62108004273E+00 -5.62108013452E+00 -5.62108022864E+00 -5.62108032513E+00 -5.62108042407E+00 -5.62108052551E+00 -5.62108062952E+00 -5.62108073617E+00 -5.62108084551E+00 -5.62108095762E+00 -5.62108107257E+00 -5.62108119043E+00 -5.62108131127E+00 -5.62108143518E+00 -5.62108156222E+00 -5.62108169247E+00 -5.62108182602E+00 -5.62108196296E+00 -5.62108210336E+00 -5.62108224731E+00 -5.62108239491E+00 -5.62108254624E+00 -5.62108270141E+00 -5.62108286050E+00 -5.62108302362E+00 -5.62108319087E+00 -5.62108336236E+00 -5.62108353818E+00 -5.62108371846E+00 -5.62108390330E+00 -5.62108409282E+00 -5.62108428714E+00 -5.62108448638E+00 -5.62108469066E+00 -5.62108490011E+00 -5.62108511486E+00 -5.62108533505E+00 -5.62108556082E+00 -5.62108579230E+00 -5.62108602964E+00 -5.62108627299E+00 -5.62108652250E+00 -5.62108677832E+00 -5.62108704062E+00 -5.62108730956E+00 -5.62108758531E+00 -5.62108786804E+00 -5.62108815793E+00 -5.62108845516E+00 -5.62108875991E+00 -5.62108907238E+00 -5.62108939275E+00 -5.62108972124E+00 -5.62109005804E+00 -5.62109040337E+00 -5.62109075744E+00 -5.62109112047E+00 -5.62109149270E+00 -5.62109187434E+00 -5.62109226565E+00 -5.62109266686E+00 -5.62109307824E+00 -5.62109350002E+00 -5.62109393248E+00 -5.62109437589E+00 -5.62109483053E+00 -5.62109529667E+00 -5.62109577462E+00 -5.62109626466E+00 -5.62109676711E+00 -5.62109728228E+00 -5.62109781049E+00 -5.62109835208E+00 -5.62109890737E+00 -5.62109947672E+00 -5.62110006048E+00 -5.62110065903E+00 -5.62110127272E+00 -5.62110190195E+00 -5.62110254711E+00 -5.62110320860E+00 -5.62110388684E+00 -5.62110458225E+00 -5.62110529526E+00 -5.62110602632E+00 -5.62110677589E+00 -5.62110754443E+00 -5.62110833243E+00 -5.62110914038E+00 -5.62110996878E+00 -5.62111081815E+00 -5.62111168903E+00 -5.62111258195E+00 -5.62111349748E+00 -5.62111443618E+00 -5.62111539864E+00 -5.62111638548E+00 -5.62111739729E+00 -5.62111843472E+00 -5.62111949841E+00 -5.62112058903E+00 -5.62112170725E+00 -5.62112285379E+00 -5.62112402935E+00 -5.62112523467E+00 -5.62112647050E+00 -5.62112773762E+00 -5.62112903682E+00 -5.62113036891E+00 -5.62113173471E+00 -5.62113313510E+00 -5.62113457093E+00 -5.62113604312E+00 -5.62113755257E+00 -5.62113910024E+00 -5.62114068708E+00 -5.62114231410E+00 -5.62114398231E+00 -5.62114569274E+00 -5.62114744648E+00 -5.62114924461E+00 -5.62115108827E+00 -5.62115297860E+00 -5.62115491678E+00 -5.62115690403E+00 -5.62115894158E+00 -5.62116103072E+00 -5.62116317275E+00 -5.62116536900E+00 -5.62116762085E+00 -5.62116992971E+00 -5.62117229701E+00 -5.62117472425E+00 -5.62117721293E+00 -5.62117976462E+00 -5.62118238091E+00 -5.62118506342E+00 -5.62118781385E+00 -5.62119063390E+00 -5.62119352535E+00 -5.62119648999E+00 -5.62119952969E+00 -5.62120264634E+00 -5.62120584189E+00 -5.62120911834E+00 -5.62121247773E+00 -5.62121592217E+00 -5.62121945380E+00 -5.62122307484E+00 -5.62122678755E+00 -5.62123059426E+00 -5.62123449733E+00 -5.62123849921E+00 -5.62124260240E+00 -5.62124680947E+00 -5.62125112304E+00 -5.62125554581E+00 -5.62126008055E+00 -5.62126473010E+00 -5.62126949735E+00 -5.62127438528E+00 -5.62127939696E+00 -5.62128453552E+00 -5.62128980416E+00 -5.62129520618E+00 -5.62130074497E+00 -5.62130642397E+00 -5.62131224674E+00 -5.62131821693E+00 -5.62132433825E+00 -5.62133061454E+00 -5.62133704974E+00 -5.62134364784E+00 -5.62135041298E+00 -5.62135734938E+00 -5.62136446139E+00 -5.62137175346E+00 -5.62137923014E+00 -5.62138689610E+00 -5.62139475612E+00 -5.62140281514E+00 -5.62141107818E+00 -5.62141955042E+00 -5.62142823715E+00 -5.62143714379E+00 -5.62144627592E+00 -5.62145563924E+00 -5.62146523962E+00 -5.62147508305E+00 -5.62148517568E+00 -5.62149552382E+00 -5.62150613395E+00 -5.62151701270E+00 -5.62152816686E+00 -5.62153960341E+00 -5.62155132950E+00 -5.62156335247E+00 -5.62157567982E+00 -5.62158831927E+00 -5.62160127872E+00 -5.62161456626E+00 -5.62162819021E+00 -5.62164215909E+00 -5.62165648162E+00 -5.62167116677E+00 -5.62168622370E+00 -5.62170166185E+00 -5.62171749086E+00 -5.62173372063E+00 -5.62175036131E+00 -5.62176742327E+00 -5.62178491723E+00 -5.62180285411E+00 -5.62182124511E+00 -5.62184010174E+00 -5.62185943580E+00 -5.62187925935E+00 -5.62189958482E+00 -5.62192042490E+00 -5.62194179263E+00 -5.62196370136E+00 -5.62198616479E+00 -5.62200919699E+00 -5.62203281234E+00 -5.62205702560E+00 -5.62208185193E+00 -5.62210730686E+00 -5.62213340629E+00 -5.62216016655E+00 -5.62218760438E+00 -5.62221573692E+00 -5.62224458179E+00 -5.62227415701E+00 -5.62230448109E+00 -5.62233557298E+00 -5.62236745213E+00 -5.62240013850E+00 -5.62243365250E+00 -5.62246801512E+00 -5.62250324783E+00 -5.62253937267E+00 -5.62257641226E+00 -5.62261438975E+00 -5.62265332888E+00 -5.62269325404E+00 -5.62273419019E+00 -5.62277616292E+00 -5.62281919851E+00 -5.62286332387E+00 -5.62290856661E+00 -5.62295495505E+00 -5.62300251817E+00 -5.62305128576E+00 -5.62310128832E+00 -5.62315255714E+00 -5.62320512429E+00 -5.62325902267E+00 -5.62331428600E+00 -5.62337094886E+00 -5.62342904669E+00 -5.62348861588E+00 -5.62354969368E+00 -5.62361231833E+00 -5.62367652900E+00 -5.62374236589E+00 -5.62380987021E+00 -5.62387908419E+00 -5.62395005117E+00 -5.62402281556E+00 -5.62409742291E+00 -5.62417391992E+00 -5.62425235448E+00 -5.62433277568E+00 -5.62441523387E+00 -5.62449978069E+00 -5.62458646905E+00 -5.62467535325E+00 -5.62476648892E+00 -5.62485993315E+00 -5.62495574443E+00 -5.62505398278E+00 -5.62515470971E+00 -5.62525798831E+00 -5.62536388326E+00 -5.62547246089E+00 -5.62558378921E+00 -5.62569793796E+00 -5.62581497865E+00 -5.62593498460E+00 -5.62605803099E+00 -5.62618419492E+00 -5.62631355545E+00 -5.62644619363E+00 -5.62658219259E+00 -5.62672163756E+00 -5.62686461593E+00 -5.62701121732E+00 -5.62716153364E+00 -5.62731565910E+00 -5.62747369034E+00 -5.62763572643E+00 -5.62780186898E+00 -5.62797222216E+00 -5.62814689282E+00 -5.62832599049E+00 -5.62850962752E+00 -5.62869791909E+00 -5.62889098332E+00 -5.62908894134E+00 -5.62929191736E+00 -5.62950003875E+00 -5.62971343610E+00 -5.62993224337E+00 -5.63015659788E+00 -5.63038664048E+00 -5.63062251559E+00 -5.63086437131E+00 -5.63111235952E+00 -5.63136663595E+00 -5.63162736032E+00 -5.63189469641E+00 -5.63216881216E+00 -5.63244987980E+00 -5.63273807597E+00 -5.63303358177E+00 -5.63333658296E+00 -5.63364727002E+00 -5.63396583827E+00 -5.63429248805E+00 -5.63462742477E+00 -5.63497085912E+00 -5.63532300714E+00 -5.63568409040E+00 -5.63605433612E+00 -5.63643397733E+00 -5.63682325300E+00 -5.63722240821E+00 -5.63763169431E+00 -5.63805136906E+00 -5.63848169682E+00 -5.63892294871E+00 -5.63937540276E+00 -5.63983934415E+00 -5.64031506532E+00 -5.64080286621E+00 -5.64130305443E+00 -5.64181594549E+00 -5.64234186294E+00 -5.64288113863E+00 -5.64343411293E+00 -5.64400113491E+00 -5.64458256260E+00 -5.64517876320E+00 -5.64579011331E+00 -5.64641699924E+00 -5.64705981715E+00 -5.64771897340E+00 -5.64839488478E+00 -5.64908797878E+00 -5.64979869385E+00 -5.65052747972E+00 -5.65127479767E+00 -5.65204112084E+00 -5.65282693453E+00 -5.65363273652E+00 -5.65445903738E+00 -5.65530636085E+00 -5.65617524411E+00 -5.65706623819E+00 -5.65797990830E+00 -5.65891683422E+00 -5.65987761066E+00 -5.66086284764E+00 -5.66187317092E+00 -5.66290922239E+00 -5.66397166050E+00 -5.66506116067E+00 -5.66617841577E+00 -5.66732413653E+00 -5.66849905203E+00 -5.66970391020E+00 -5.67093947826E+00 -5.67220654326E+00 -5.67350591259E+00 -5.67483841449E+00 -5.67620489863E+00 -5.67760623664E+00 -5.67904332268E+00 -5.68051707406E+00 -5.68202843180E+00 -5.68357836127E+00 -5.68516785282E+00 -5.68679792242E+00 -5.68846961236E+00 -5.69018399189E+00 -5.69194215793E+00 -5.69374523581E+00 -5.69559438000E+00 -5.69749077484E+00 -5.69943563533E+00 -5.70143020793E+00 -5.70347577137E+00 -5.70557363746E+00 -5.70772515198E+00 -5.70993169552E+00 -5.71219468438E+00 -5.71451557150E+00 -5.71689584741E+00 -5.71933704113E+00 -5.72184072123E+00 -5.72440849678E+00 -5.72704201839E+00 -5.72974297928E+00 -5.73251311636E+00 -5.73535421129E+00 -5.73826809163E+00 -5.74125663202E+00 -5.74432175529E+00 -5.74746543371E+00 -5.75068969020E+00 -5.75399659957E+00 -5.75738828982E+00 -5.76086694339E+00 -5.76443479856E+00 -5.76809415074E+00 -5.77184735389E+00 -5.77569682189E+00 -5.77964502999E+00 -5.78369451625E+00 -5.78784788303E+00 -5.79210779849E+00 -5.79647699812E+00 -5.80095828626E+00 -5.80555453771E+00 -5.81026869932E+00 -5.81510379158E+00 -5.82006291028E+00 -5.82514922815E+00 -5.83036599656E+00 -5.83571654716E+00 -5.84120429365E+00 -5.84683273345E+00 -5.85260544948E+00 -5.85852611185E+00 -5.86459847965E+00 -5.87082640271E+00 -5.87721382336E+00 -5.88376477821E+00 -5.89048339987E+00 -5.89737391878E+00 -5.90444066496E+00 -5.91168806971E+00 -5.91912066741E+00 -5.92674309722E+00 -5.93456010480E+00 -5.94257654396E+00 -5.95079737839E+00 -5.95922768322E+00 -5.96787264666E+00 -5.97673757153E+00 -5.98582787682E+00 -5.99514909910E+00 -6.00470689399E+00 -6.01450703748E+00 -6.02455542725E+00 -6.03485808393E+00 -6.04542115218E+00 -6.05625090188E+00 -6.06735372905E+00 -6.07873615681E+00 -6.09040483620E+00 -6.10236654689E+00 -6.11462819784E+00 -6.12719682784E+00 -6.14007960585E+00 -6.15328383139E+00 -6.16681693468E+00 -6.18068647669E+00 -6.19490014915E+00 -6.20946577428E+00 -6.22439130451E+00 -6.23968482205E+00 -6.25535453829E+00 -6.27140879307E+00 -6.28785605386E+00 -6.30470491474E+00 -6.32196409528E+00 -6.33964243926E+00 -6.35774891330E+00 -6.37629260526E+00 -6.39528272257E+00 -6.41472859038E+00 -6.43463964956E+00 -6.45502545457E+00 -6.47589567113E+00 -6.49726007372E+00 -6.51912854289E+00 -6.54151106241E+00 -6.56441771606E+00 -6.58785868433E+00 -6.61184424062E+00 -6.63638474724E+00 -6.66149065090E+00 -6.68717247778E+00 -6.71344082791E+00 -6.74030636903E+00 -6.76777982946E+00 -6.79587199013E+00 -6.82459367542E+00 -6.85395574267E+00 -6.88396907009E+00 -6.91464454284E+00 -6.94599303689E+00 -6.97802540044E+00 -7.01075243225E+00 -7.04418485674E+00 -7.07833329508E+00 -7.11320823183E+00 -7.14881997646E+00 -7.18517861918E+00 -7.22229398004E+00 -7.26017555092E+00 -7.29883242914E+00 -7.33827324205E+00 -7.37850606159E+00 -7.41953830772E+00 -7.46137663997E+00 -7.50402683588E+00 -7.54749365551E+00 -7.59178069112E+00 -7.63689020117E+00 -7.68282292792E+00 -7.72957789821E+00 -7.77715220703E+00 -7.82554078395E+00 -7.87473614263E+00 -7.92472811430E+00 -7.97550356627E+00 -8.02704610742E+00 -8.07933578327E+00 -8.13234876371E+00 -8.18605702793E+00 -8.24042805177E+00 -8.29542450392E+00 -8.35100395906E+00 -8.40711863715E+00 -8.46371517996E+00 -8.52073447827E+00 -8.57811156555E+00 -8.63577559870E+00 -8.69364995315E+00 -8.75165247217E+00 -8.80980150859E+00 -8.86860764149E+00 -8.92868646940E+00 -8.98986554957E+00 -9.05168762606E+00 -9.11398724140E+00 -9.17668028921E+00 -9.23967061833E+00 -9.30284904659E+00 -9.36609238694E+00 -9.42926250670E+00 -9.49220544672E+00 -9.55475062272E+00 -9.61671013550E+00 -9.67787822815E+00 -9.73803091159E+00 -9.79692578819E+00 -9.85430210791E+00 -9.90988108048E+00 -9.96336647465E+00 -1.00144455197E+01 -1.00627901279E+01 -1.01080584689E+01 -1.01498968945E+01 -1.01879422220E+01 -1.02218243941E+01 -1.02511695156E+01 -1.02756032734E+01 -1.02947547453E+01 -1.03082606021E+01 -1.03157697049E+01 -1.03169480916E+01 -1.03114843397E+01 -1.02990952729E+01 -1.02795319588E+01 -1.02525859151E+01 -1.02180954134E+01 -1.01759517347E+01 -1.01261052040E+01 -1.00685708115E+01 -1.00034332173E+01 -9.93085094416E+00 -9.85105957945E+00 -9.76437384105E+00 -9.67125190711E+00 -9.57250555484E+00 -9.46901451555E+00 -9.36121518376E+00 -9.24949840850E+00 -9.13455355734E+00 -9.01718725098E+00 -8.89824699050E+00 -8.77860433562E+00 -8.65913373231E+00 -8.54068621240E+00 -8.42405702004E+00 -8.30994602253E+00 -8.19890953294E+00 -8.09130191207E+00 -7.98720503267E+00 -7.88634327028E+00 -7.78797989064E+00 -7.69109467842E+00 -7.59543023773E+00 -7.50097054098E+00 -7.40771193707E+00 -7.31562483886E+00 -7.22466463132E+00 -7.13484395657E+00 -7.04616153057E+00 -6.95858811857E+00 -6.87210897806E+00 -6.78670966532E+00 -6.70237601929E+00 -6.61909414689E+00 -6.53685040950E+00 -6.45563141041E+00 -6.37542398371E+00 -6.29621518389E+00 -6.21799227642E+00 -6.14074272904E+00 -6.06445420383E+00 -5.98911455005E+00 -5.91471179761E+00 -5.84123415094E+00 -5.76866998341E+00 -5.69700783234E+00 -5.62623639433E+00 -5.55634452097E+00 -5.48732121488E+00 -5.41915562606E+00 -5.35183704854E+00 -5.28535491725E+00 -5.21969880510E+00 -5.15485842027E+00 -5.09082360369E+00 -5.02758432663E+00 -4.96513068845E+00 -4.90345291449E+00 -4.84254135406E+00 -4.78238647848E+00 -4.72297887925E+00 -4.66430926632E+00 -4.60636846632E+00 -4.54914742099E+00 -4.49263718552E+00 -4.43682892704E+00 -4.38171392312E+00 -4.32728356027E+00 -4.27352933250E+00 -4.22044283995E+00 -4.16801578746E+00 -4.11623998324E+00 -4.06510733752E+00 -4.01460986127E+00 -3.96473966484E+00 -3.91548895675E+00 -3.86685004241E+00 -3.81881532288E+00 -3.77137729367E+00 -3.72452854352E+00 -3.67826175323E+00 -3.63256969450E+00 -3.58744522875E+00 -3.54288130606E+00 -3.49887096397E+00 -3.45540732645E+00 -3.41248360281E+00 -3.37009308661E+00 -3.32822915463E+00 -3.28688526585E+00 -3.24605496040E+00 -3.20573185860E+00 -3.16590965993E+00 -3.12658214209E+00 -3.08774316001E+00 -3.04938664489E+00 -3.01150660332E+00 -2.97409711627E+00 -2.93715233824E+00 -2.90066649631E+00 -2.86463388929E+00 -2.82904888678E+00 -2.79390592833E+00 -2.75919952258E+00 -2.72492424639E+00 -2.69107474400E+00 -2.65764572617E+00 -2.62463196942E+00 -2.59202831514E+00 -2.55982966884E+00 -2.52803099932E+00 -2.49662733789E+00 -2.46561377761E+00 -2.43498547250E+00 -2.40473763680E+00 -2.37486554420E+00 -2.34536452713E+00 -2.31622997601E+00 -2.28745733851E+00 -2.25904211888E+00 -2.23097987722E+00 -2.20326622880E+00 -2.17589684333E+00 -2.14886744436E+00 -2.12217380855E+00 -2.09581176500E+00 -2.06977719467E+00 -2.04406602966E+00 -2.01867425261E+00 -1.99359789608E+00 -1.96883304189E+00 -1.94437582056E+00 -1.92022241064E+00 -1.89636903820E+00 -1.87281197615E+00 -1.84954754372E+00 -1.82657210585E+00 -1.80388207264E+00 -1.78147389878E+00 -1.75934408300E+00 -1.73748916753E+00 -1.71590573754E+00 -1.69459042063E+00 -1.67353988628E+00 -1.65275084534E+00 -1.63222004953E+00 -1.61194429091E+00 -1.59192040138E+00 -1.57214525222E+00 -1.55261575354E+00 -1.53332885385E+00 -1.51428153958E+00 -1.49547083455E+00 -1.47689379958E+00 -1.45854753215E+00 -1.44042916479E+00 -1.42253586376E+00 -1.40486486828E+00 -1.38741332765E+00 -1.37017862307E+00 -1.35315798023E+00 -1.33634878183E+00 -1.31974839063E+00 -1.30335421270E+00 -1.28716368664E+00 -1.27117428252E+00 -1.25538350198E+00 -1.23978887765E+00 -1.22438797287E+00 -1.20917838119E+00 -1.19415772610E+00 -1.17932366058E+00 -1.16467386679E+00 -1.15020605565E+00 -1.13591796655E+00 -1.12180736695E+00 -1.10787205202E+00 -1.09410984437E+00 -1.08051859360E+00 -1.06709617605E+00 -1.05384049446E+00 -1.04074947759E+00 -1.02782107994E+00 -1.01505328143E+00 -1.00244408706E+00 -9.89991526612E-01 -9.77693654357E-01 -9.65548548726E-01 -9.53554312020E-01 -9.41709070115E-01 -9.30010972168E-01 -9.18458190314E-01 -9.07048919436E-01 -8.95781376797E-01 -8.84653801821E-01 -8.73664455801E-01 -8.62811621629E-01 -8.52093603529E-01 -8.41508726788E-01 -8.31055337498E-01 -8.20731802295E-01 -8.10536508106E-01 -8.00467861895E-01 -7.90524290417E-01 -7.80704239967E-01 -7.71006176142E-01 -7.61428583602E-01 -7.51969965827E-01 -7.42628844889E-01 -7.33403761218E-01 -7.24293273378E-01 -7.15295957835E-01 -7.06410408741E-01 -6.97635237711E-01 -6.88969073605E-01 -6.80410562319E-01 -6.71958366568E-01 -6.63611165679E-01 -6.55367655384E-01 -6.47226547619E-01 -6.39186570319E-01 -6.31246467221E-01 -6.23404997668E-01 -6.15660936414E-01 -6.08013073433E-01 -6.00460213733E-01 -5.93001177162E-01 -5.85634798232E-01 -5.78359925931E-01 -5.71175423545E-01 -5.64080168480E-01 -5.57073052090E-01 -5.50152979498E-01 -5.43318869427E-01 -5.36569654036E-01 -5.29904278745E-01 -5.23321702075E-01 -5.16820895486E-01 -5.10400843213E-01 -5.04060542111E-01 -4.97799001493E-01 -4.91615242983E-01 -4.85508300354E-01 -4.79477219385E-01 -4.73521057708E-01 -4.67638884658E-01 -4.61829781136E-01 -4.56092839457E-01 -4.50427163212E-01 -4.44831867128E-01 -4.39306076928E-01 -4.33848929196E-01 -4.28459571242E-01 -4.23137160968E-01 -4.17880866736E-01 -4.12689867239E-01 -4.07563351374E-01 -4.02500518112E-01 -3.97500576375E-01 -3.92562744911E-01 -3.87686252175E-01 -3.82870336205E-01 -3.78114244504E-01 -3.73417233922E-01 -3.68778570544E-01 -3.64197529567E-01 -3.59673395195E-01 -3.55205460523E-01 -3.50793027426E-01 -3.46435406454E-01 -3.42131916719E-01 -3.37881885792E-01 -3.33684649598E-01 -3.29539552308E-01 -3.25445946244E-01 -3.21403191772E-01 -3.17410657202E-01 -3.13467718692E-01 -3.09573760152E-01 -3.05728173142E-01 -3.01930356780E-01 -2.98179717651E-01 -2.94475669710E-01 -2.90817634191E-01 -2.87205039519E-01 -2.83637321219E-01 -2.80113921828E-01 -2.76634290806E-01 -2.73197884456E-01 -2.69804165830E-01 -2.66452604655E-01 -2.63142677241E-01 -2.59873866406E-01 -2.56645661391E-01 -2.53457557783E-01 -2.50309057433E-01 -2.47199668384E-01 -2.44128904785E-01 -2.41096286825E-01 -2.38101340650E-01 -2.35143598293E-01 -2.32222597603E-01 -2.29337882166E-01 -2.26489001239E-01 -2.23675509680E-01 -2.20896967874E-01 -2.18152941669E-01 -2.15443002304E-01 -2.12766726348E-01 -2.10123695625E-01 -2.07513497157E-01 -2.04935723095E-01 -2.02389970656E-01 1 2 Beta L 990 -9.34190325327E-14 -9.69887603312E-14 -1.00694894558E-13 -1.04542647575E-13 -1.08537430919E-13 -1.12684862912E-13 -1.16990776565E-13 -1.21461227778E-13 -1.26102503859E-13 -1.30921132368E-13 -1.35923890296E-13 -1.41117813595E-13 -1.46510207077E-13 -1.52108654682E-13 -1.57921030151E-13 -1.63955508094E-13 -1.70220575490E-13 -1.76725043624E-13 -1.83478060475E-13 -1.90489123587E-13 -1.97768093421E-13 -2.05325207230E-13 -2.13171093449E-13 -2.21316786649E-13 -2.29773743055E-13 -2.38553856654E-13 -2.47669475928E-13 -2.57133421219E-13 -2.66959002760E-13 -2.77160039394E-13 -2.87750878010E-13 -2.98746413721E-13 -3.10162110810E-13 -3.22014024482E-13 -3.34318823446E-13 -3.47093813351E-13 -3.60356961134E-13 -3.74126920280E-13 -3.88423057066E-13 -4.03265477788E-13 -4.18675057048E-13 -4.34673467106E-13 -4.51283208362E-13 -4.68527641002E-13 -4.86431017852E-13 -5.05018518486E-13 -5.24316284640E-13 -5.44351456977E-13 -5.65152213262E-13 -5.86747807985E-13 -6.09168613510E-13 -6.32446162791E-13 -6.56613193716E-13 -6.81703695157E-13 -7.07752954766E-13 -7.34797608607E-13 -7.62875692681E-13 -7.92026696422E-13 -8.22291618232E-13 -8.53713023146E-13 -8.86335102694E-13 -9.20203737049E-13 -9.55366559561E-13 -9.91873023745E-13 -1.02977447283E-12 -1.06912421198E-12 -1.10997758324E-12 -1.15239204341E-12 -1.19642724481E-12 -1.24214511919E-12 -1.28960996486E-12 -1.33888853707E-12 -1.39005014194E-12 -1.44316673390E-12 -1.49831301692E-12 -1.55556654954E-12 -1.61500785399E-12 -1.67672052939E-12 -1.74079136936E-12 -1.80731048408E-12 -1.87637142701E-12 -1.94807132650E-12 -2.02251102233E-12 -2.09979520761E-12 -2.18003257594E-12 -2.26333597436E-12 -2.34982256200E-12 -2.43961397487E-12 -2.53283649695E-12 -2.62962123777E-12 -2.73010431682E-12 -2.83442705499E-12 -2.94273617333E-12 -3.05518399938E-12 -3.17192868143E-12 -3.29313441093E-12 -3.41897165341E-12 -3.54961738823E-12 -3.68525535749E-12 -3.82607632443E-12 -3.97227834175E-12 -4.12406703013E-12 -4.28165586742E-12 -4.44526648890E-12 -4.61512899897E-12 -4.79148229478E-12 -4.97457440221E-12 -5.16466282471E-12 -5.36201490545E-12 -5.56690820333E-12 -5.77963088330E-12 -6.00048212170E-12 -6.22977252697E-12 -6.46782457653E-12 -6.71497307032E-12 -6.97156560162E-12 -7.23796304598E-12 -7.51454006870E-12 -7.80168565180E-12 -8.09980364107E-12 -8.40931331408E-12 -8.73064996980E-12 -9.06426554087E-12 -9.41062922916E-12 -9.77022816569E-12 -1.01435680957E-11 -1.05311740901E-11 -1.09335912835E-11 -1.13513856416E-11 -1.17851447565E-11 -1.22354786733E-11 -1.27030207485E-11 -1.31884285401E-11 -1.36923847328E-11 -1.42155980981E-11 -1.47588044909E-11 -1.53227678848E-11 -1.59082814462E-11 -1.65161686501E-11 -1.71472844381E-11 -1.78025164207E-11 -1.84827861259E-11 -1.91890502951E-11 -1.99223022286E-11 -2.06835731828E-11 -2.14739338205E-11 -2.22944957165E-11 -2.31464129213E-11 -2.40308835838E-11 -2.49491516366E-11 -2.59025085456E-11 -2.68922951259E-11 -2.79199034282E-11 -2.89867786958E-11 -3.00944213980E-11 -3.12443893399E-11 -3.24382998533E-11 -3.36778320717E-11 -3.49647292917E-11 -3.63008014243E-11 -3.76879275413E-11 -3.91280585174E-11 -4.06232197741E-11 -4.21755141283E-11 -4.37871247497E-11 -4.54603182314E-11 -4.71974477774E-11 -4.90009565125E-11 -5.08733809180E-11 -5.28173543993E-11 -5.48356109894E-11 -5.69309891944E-11 -5.91064359851E-11 -6.13650109421E-11 -6.37098905586E-11 -6.61443727079E-11 -6.86718812819E-11 -7.12959710060E-11 -7.40203324387E-11 -7.68487971623E-11 -7.97853431715E-11 -8.28341004679E-11 -8.59993568690E-11 -8.92855640383E-11 -9.26973437459E-11 -9.62394943695E-11 -9.99169976421E-11 -1.03735025659E-10 -1.07698948150E-10 -1.11814340036E-10 -1.16086989264E-10 -1.20522904952E-10 -1.25128325836E-10 -1.29909729049E-10 -1.34873839228E-10 -1.40027637969E-10 -1.45378373653E-10 -1.50933571632E-10 -1.56701044819E-10 -1.62688904674E-10 -1.68905572611E-10 -1.75359791845E-10 -1.82060639685E-10 -1.89017540301E-10 -1.96240277983E-10 -2.03739010895E-10 -2.11524285365E-10 -2.19607050720E-10 -2.27998674680E-10 -2.36710959349E-10 -2.45756157812E-10 -2.55146991371E-10 -2.64896667434E-10 -2.75018898087E-10 -2.85527919387E-10 -2.96438511376E-10 -3.07766018872E-10 -3.19526373049E-10 -3.31736113844E-10 -3.44412413215E-10 -3.57573099298E-10 -3.71236681476E-10 -3.85422376414E-10 -4.00150135082E-10 -4.15440670817E-10 -4.31315488456E-10 -4.47796914576E-10 -4.64908128899E-10 -4.82673196888E-10 -5.01117103599E-10 -5.20265788814E-10 -5.40146183528E-10 -5.60786247820E-10 -5.82215010183E-10 -6.04462608343E-10 -6.27560331653E-10 -6.51540665091E-10 -6.76437334952E-10 -7.02285356281E-10 -7.29121082117E-10 -7.56982254620E-10 -7.85908058155E-10 -8.15939174399E-10 -8.47117839559E-10 -8.79487903768E-10 -9.13094892762E-10 -9.47986071909E-10 -9.84210512676E-10 -1.02181916165E-09 -1.06086491220E-09 -1.10140267883E-09 -1.14348947446E-09 -1.18718449059E-09 -1.23254918052E-09 -1.27964734582E-09 -1.32854522606E-09 -1.37931159193E-09 -1.43201784200E-09 -1.48673810311E-09 -1.54354933464E-09 -1.60253143676E-09 -1.66376736275E-09 -1.72734323573E-09 -1.79334846975E-09 -1.86187589553E-09 -1.93302189105E-09 -2.00688651711E-09 -2.08357365798E-09 -2.16319116761E-09 -2.24585102122E-09 -2.33166947285E-09 -2.42076721884E-09 -2.51326956756E-09 -2.60930661569E-09 -2.70901343115E-09 -2.81253024305E-09 -2.92000263898E-09 -3.03158176970E-09 -3.14742456172E-09 -3.26769393807E-09 -3.39255904736E-09 -3.52219550172E-09 -3.65678562375E-09 -3.79651870300E-09 -3.94159126211E-09 -4.09220733327E-09 -4.24857874513E-09 -4.41092542074E-09 -4.57947568685E-09 -4.75446659503E-09 -4.93614425506E-09 -5.12476418108E-09 -5.32059165091E-09 -5.52390207918E-09 -5.73498140466E-09 -5.95412649241E-09 -6.18164555130E-09 -6.41785856746E-09 -6.66309775434E-09 -6.91770801994E-09 -7.18204745184E-09 -7.45648782092E-09 -7.74141510411E-09 -8.03723002731E-09 -8.34434862898E-09 -8.66320284520E-09 -8.99424111720E-09 -9.33792902205E-09 -9.69474992744E-09 -1.00652056715E-08 -1.04498172686E-08 -1.08491256421E-08 -1.12636923852E-08 -1.16941005505E-08 -1.21409554704E-08 -1.26048856081E-08 -1.30865434418E-08 -1.35866063821E-08 -1.41057777247E-08 -1.46447876397E-08 -1.52043941987E-08 -1.57853844403E-08 -1.63885754777E-08 -1.70148156476E-08 -1.76649857031E-08 -1.83400000530E-08 -1.90408080472E-08 -1.97683953122E-08 -2.05237851372E-08 -2.13080399136E-08 -2.21222626285E-08 -2.29675984165E-08 -2.38452361702E-08 -2.47564102120E-08 -2.57024020301E-08 -2.66845420812E-08 -2.77042116612E-08 -2.87628448480E-08 -2.98619305187E-08 -3.10030144432E-08 -3.21877014582E-08 -3.34176577247E-08 -3.46946130708E-08 -3.60203634248E-08 -3.73967733411E-08 -3.88257786223E-08 -4.03093890418E-08 -4.18496911706E-08 -4.34488513117E-08 -4.51091185466E-08 -4.68328278989E-08 -4.86224036181E-08 -5.04803625888E-08 -5.24093178711E-08 -5.44119823750E-08 -5.64911726763E-08 -5.86498129778E-08 -6.08909392218E-08 -6.32177033598E-08 -6.56333777860E-08 -6.81413599389E-08 -7.07451770799E-08 -7.34484912541E-08 -7.62551044407E-08 -7.91689638998E-08 -8.21941677243E-08 -8.53349706031E-08 -8.85957898054E-08 -9.19812113927E-08 -9.54959966694E-08 -9.91450888782E-08 -1.02933620153E-07 -1.06866918737E-07 -1.10950516476E-07 -1.15190156598E-07 -1.19591801792E-07 -1.24161642591E-07 -1.28906106083E-07 -1.33831864947E-07 -1.38945846837E-07 -1.44255244127E-07 -1.49767524026E-07 -1.55490439080E-07 -1.62125474602E-07 -1.68303052995E-07 -1.74715025387E-07 -1.81374068481E-07 -1.87667719056E-07 -1.94835551385E-07 -2.02278486294E-07 -2.10004333249E-07 -2.18026675327E-07 -2.26354367835E-07 -2.35001286592E-07 -2.43977633834E-07 -2.53297883692E-07 -2.62973387845E-07 -2.73018721097E-07 -2.83448404712E-07 -2.94275826225E-07 -3.05517965685E-07 -3.17188585224E-07 -3.29305922488E-07 -3.41886050110E-07 -3.54946656583E-07 -3.68505965697E-07 -3.82584128605E-07 -3.97198910137E-07 -4.12373374600E-07 -4.28128020545E-07 -4.44482851685E-07 -4.61463834332E-07 -4.79093694608E-07 -4.97396570747E-07 -5.16399363616E-07 -5.36128012351E-07 -5.56610582306E-07 -5.77874657034E-07 -5.99953460517E-07 -6.22874128982E-07 -6.46670766463E-07 -6.71376702597E-07 -6.97026920858E-07 -7.23657415173E-07 -7.51304939110E-07 -7.80009537135E-07 -8.09810805778E-07 -8.40749889796E-07 -8.72872784609E-07 -9.06221666101E-07 -9.40844970995E-07 -9.76791425879E-07 -1.01411146119E-06 -1.05285783310E-06 -1.09308371514E-06 -1.13484776553E-06 -1.17820649563E-06 -1.22322289235E-06 -1.26995960423E-06 -1.31848081052E-06 -1.36885728649E-06 -1.42115794627E-06 -1.47545759262E-06 -1.53183123267E-06 -1.59036053430E-06 -1.65112394794E-06 -1.71421129388E-06 -1.77970733581E-06 -1.84770639235E-06 -1.91830515549E-06 -1.99160074471E-06 -2.06769688968E-06 -2.14670090610E-06 -2.22872313107E-06 -2.31387977563E-06 -2.40228951821E-06 -2.49407886978E-06 -2.58937396464E-06 -2.68831280770E-06 -2.79103038710E-06 -2.89767247050E-06 -3.00839087970E-06 -3.12333783481E-06 -3.24267896800E-06 -3.36657929138E-06 -3.49521352925E-06 -3.62876270866E-06 -3.76741675093E-06 -3.91136684368E-06 -4.06081963543E-06 -4.21597904039E-06 -4.37707084430E-06 -4.54431832164E-06 -4.71795310842E-06 -4.89822544676E-06 -5.08538479681E-06 -5.27969501593E-06 -5.48143142674E-06 -5.69087456910E-06 -5.90832132127E-06 -6.13407654612E-06 -6.36845903155E-06 -6.61179685767E-06 -6.86443064708E-06 -7.12672193600E-06 -7.39903109506E-06 -7.68174985227E-06 -7.97526736563E-06 -8.28000210882E-06 -8.59637979165E-06 -8.92484576244E-06 -9.26586429208E-06 -9.61991146798E-06 -9.98748885140E-06 -1.03691101433E-05 -1.07653118770E-05 -1.11766554495E-05 -1.16037141593E-05 -1.20470910863E-05 -1.25074103875E-05 -1.29853172557E-05 -1.34814825857E-05 -1.39966107750E-05 -1.45314193098E-05 -1.50866641487E-05 -1.56631234087E-05 -1.62616087929E-05 -1.68829619700E-05 -1.75280588106E-05 -1.81978026855E-05 -1.88931364692E-05 -1.96150389226E-05 -2.03645260251E-05 -2.11426461030E-05 -2.19505027266E-05 -2.27892246373E-05 -2.36599917567E-05 -2.45640334669E-05 -2.55026143458E-05 -2.64770577421E-05 -2.74887312701E-05 -2.85390643298E-05 -2.96295267394E-05 -3.07616550228E-05 -3.19370389489E-05 -3.31573313181E-05 -3.44242503927E-05 -3.57395768625E-05 -3.71051567935E-05 -3.85229156843E-05 -3.99948366693E-05 -4.15230063227E-05 -4.31095575719E-05 -4.47567289791E-05 -4.64668355337E-05 -4.82422802324E-05 -5.00855584183E-05 -5.19992639953E-05 -5.39860854265E-05 -5.60488160300E-05 -5.81903623142E-05 -6.04137226162E-05 -6.27220340906E-05 -6.51185402149E-05 -6.76065988374E-05 -7.01897242508E-05 -7.28715355847E-05 -7.56558114961E-05 -7.85464595074E-05 -8.15475477409E-05 -8.46632867846E-05 -8.78980746246E-05 -9.12564362531E-05 -9.47431103077E-05 -9.83629915844E-05 -1.02121162717E-04 -1.06022917120E-04 -1.10073730657E-04 -1.14279305018E-04 -1.18645547941E-04 -1.23178532489E-04 -1.27885352931E-04 -1.32765563300E-04 -1.37894598967E-04 -1.42613493599E-04 -1.50569433463E-04 -1.50193021271E-04 -1.64791778960E-04 -1.62626727333E-04 -1.75584919109E-04 -1.77096225066E-04 -1.86329591363E-04 -1.93229359790E-04 -2.02879132739E-04 -2.02863576296E-04 -2.21700323223E-04 -2.23312347138E-04 -2.30295667810E-04 -2.43456416364E-04 -2.53316665707E-04 -2.58743915989E-04 -2.67997796040E-04 -2.83554116690E-04 -2.94766189707E-04 -2.96701721178E-04 -3.18668706485E-04 -3.25709422115E-04 -3.37745588046E-04 -3.53752570415E-04 -3.65984231493E-04 -3.77398518742E-04 -3.94101962622E-04 -4.09976801002E-04 -4.23443798408E-04 -4.41083156585E-04 -4.56863513618E-04 -4.75237425482E-04 -4.93922598153E-04 -5.12669134194E-04 -5.29927609062E-04 -5.50107285349E-04 -5.75813521639E-04 -5.93889672638E-04 -6.21300700693E-04 -6.33753894888E-04 -6.72377357848E-04 -6.88173312464E-04 -7.14319843911E-04 -7.48880163465E-04 -7.73260287729E-04 -8.02109093509E-04 -8.31922861439E-04 -8.70005748051E-04 -8.93382814743E-04 -9.34742822493E-04 -9.64917025215E-04 -1.01078338195E-03 -1.03895586672E-03 -1.08953326557E-03 -1.11880277966E-03 -1.16999791138E-03 -1.21055007660E-03 -1.26366148120E-03 -1.30512798734E-03 -1.35447120583E-03 -1.40928092053E-03 -1.46055539388E-03 -1.52027505002E-03 -1.57878573834E-03 -1.63483606192E-03 -1.69403564846E-03 -1.76825604508E-03 -1.83183454272E-03 -1.89644574341E-03 -1.97808616426E-03 -2.04504906443E-03 -2.12987843517E-03 -2.20656934877E-03 -2.29371783100E-03 -2.37933721828E-03 -2.46997466858E-03 -2.56705905178E-03 -2.66008648274E-03 -2.76843077538E-03 -2.86839542602E-03 -2.98125491442E-03 -3.09185883973E-03 -3.21224335617E-03 -3.33468755873E-03 -3.46219899254E-03 -3.59285046934E-03 -3.73008068187E-03 -3.87397684144E-03 -4.01917975578E-03 -4.17820165608E-03 -4.33080178374E-03 -4.49946635602E-03 -4.67013865648E-03 -4.84966091587E-03 -5.03292732098E-03 -5.22575187522E-03 -5.42752224009E-03 -5.62960780019E-03 -5.84776112709E-03 -6.06979480284E-03 -6.30193781156E-03 -6.54160690877E-03 -6.79135888655E-03 -7.04986099611E-03 -7.31992755361E-03 -7.59741248208E-03 -7.88842842886E-03 -8.18888716072E-03 -8.50030959221E-03 -8.82575926839E-03 -9.16078749455E-03 -9.51106628835E-03 -9.87233087673E-03 -1.02499193087E-02 -1.06395130741E-02 -1.10459987924E-02 -1.14661964080E-02 -1.19028878702E-02 -1.23573513021E-02 -1.28267572440E-02 -1.33166785132E-02 -1.38231127779E-02 -1.43502467581E-02 -1.48959310401E-02 -1.54639642438E-02 -1.60528481253E-02 -1.66632484070E-02 -1.72980840001E-02 -1.79569510308E-02 -1.86398599142E-02 -1.93497254849E-02 -2.00859594425E-02 -2.08503893247E-02 -2.16433457814E-02 -2.24672219025E-02 -2.33218428093E-02 -2.42084393810E-02 -2.51298342886E-02 -2.60848445680E-02 -2.70767171174E-02 -2.81064852521E-02 -2.91746360720E-02 -3.02833351054E-02 -3.14346131033E-02 -3.26284404858E-02 -3.38686156937E-02 -3.51546610710E-02 -3.64901059293E-02 -3.78757561235E-02 -3.93138395048E-02 -4.08062333687E-02 -4.23550280232E-02 -4.39623682143E-02 -4.56304150537E-02 -4.73615874501E-02 -4.91576507143E-02 -5.10219672794E-02 -5.29564641300E-02 -5.49636177225E-02 -5.70468927704E-02 -5.92082726497E-02 -6.14513873093E-02 -6.37785879330E-02 -6.61937637271E-02 -6.86996053841E-02 -7.12997126360E-02 -7.39974793800E-02 -7.67968821365E-02 -7.97011596952E-02 -8.27146243481E-02 -8.58411477849E-02 -8.90849181337E-02 -9.24502944373E-02 -9.59418726819E-02 -9.95641283400E-02 -1.03322092925E-01 -1.07220476893E-01 -1.11264806184E-01 -1.15460325406E-01 -1.19812315619E-01 -1.24326996555E-01 -1.29010078711E-01 -1.33867612806E-01 -1.38906341132E-01 -1.44132554577E-01 -1.49553224030E-01 -1.55175640342E-01 -1.61006710090E-01 -1.67054557844E-01 -1.73326583780E-01 -1.79831316095E-01 -1.86576874002E-01 -1.93572222530E-01 -2.00826246211E-01 -2.08348337858E-01 -2.16148106205E-01 -2.24235647436E-01 -2.32621129215E-01 -2.41315465198E-01 -2.50329473631E-01 -2.59674757275E-01 -2.69363002112E-01 -2.79406537979E-01 -2.89817880956E-01 -3.00610124704E-01 -3.11796756989E-01 -3.23391672665E-01 -3.35409251020E-01 -3.47864424192E-01 -3.60772366267E-01 -3.74149150201E-01 -3.88010921943E-01 -4.02374690114E-01 -4.17257802166E-01 -4.32678330564E-01 -4.48654698540E-01 -4.65206139025E-01 -4.82352353190E-01 -5.00113639028E-01 -5.18511047549E-01 -5.37566114482E-01 -5.57301194488E-01 -5.77739130539E-01 -5.98903643339E-01 -6.20819018777E-01 -6.43510315845E-01 -6.67003298653E-01 -6.91324521116E-01 -7.16501237185E-01 -7.42561483817E-01 -7.69534141258E-01 -7.97448788785E-01 -8.26335903500E-01 -8.56226723442E-01 -8.87153332466E-01 -9.19148682291E-01 -9.52246526994E-01 -9.86481484690E-01 -1.02188908885E+00 -1.05850566517E+00 -1.09636845968E+00 -1.13551557290E+00 -1.17598599756E+00 -1.21781957516E+00 -1.26105702617E+00 -1.30573994807E+00 -1.35191079633E+00 -1.39961282354E+00 -1.44889019545E+00 -1.49978783599E+00 -1.55235148270E+00 -1.60662764463E+00 -1.66266359581E+00 -1.72050729558E+00 -1.78020741496E+00 -1.84181324114E+00 -1.90537467124E+00 -1.97094214508E+00 -2.03856658821E+00 -2.10829934379E+00 -2.18019212850E+00 -2.25429693128E+00 -2.33066592126E+00 -2.40935140778E+00 -2.49040565604E+00 -2.57388087745E+00 -2.65982901268E+00 -2.74830168198E+00 -2.83934999239E+00 -2.93302441683E+00 -3.02937462175E+00 -3.12844928071E+00 -3.23029590933E+00 -3.33496064166E+00 -3.44248802111E+00 -3.55292077098E+00 -3.66629953814E+00 -3.78266263674E+00 -3.90204575440E+00 -4.02448166418E+00 -4.14999988623E+00 -4.27862637314E+00 -4.41038311721E+00 -4.54528779672E+00 -4.68335335711E+00 -4.82458758082E+00 -4.96899265347E+00 -5.11656466601E+00 -5.26729313747E+00 -5.42116047116E+00 -5.57814142077E+00 -5.73820250137E+00 -5.90130139460E+00 -6.06738631202E+00 -6.23639534643E+00 -6.40825578346E+00 -6.58288339492E+00 -6.76018170399E+00 -6.94004122321E+00 -7.12233867209E+00 -7.30693616801E+00 -7.49368039623E+00 -7.68240176028E+00 -7.87291351536E+00 -8.06501088021E+00 -8.25847014819E+00 -8.45304777250E+00 -8.64847946303E+00 -8.84447926738E+00 -9.04073866476E+00 -9.23692566677E+00 -9.43268392972E+00 -9.62763189715E+00 -9.82136196364E+00 -1.00134396853E+01 -1.02034030333E+01 -1.03907617072E+01 -1.05749965189E+01 -1.07555588576E+01 -1.09318702504E+01 -1.11033220323E+01 -1.12692751426E+01 -1.14290600595E+01 -1.15819769001E+01 -1.17272956910E+01 -1.18642568439E+01 -1.19920718460E+01 -1.21099241916E+01 -1.22169705810E+01 -1.23123424010E+01 -1.23951475241E+01 -1.24644724392E+01 -1.25193847470E+01 -1.25589360448E+01 -1.25821652197E+01 -1.25881021850E+01 -1.25757720756E+01 -1.25441999282E+01 -1.24924158698E+01 -1.24194608273E+01 -1.23243927818E+01 -1.22062935725E+01 -1.20642762650E+01 -1.18974930827E+01 -1.17051439017E+01 -1.14864852975E+01 -1.12408401294E+01 -1.09676076360E+01 -1.06662740044E+01 -1.03364233744E+01 -9.97774921071E+00 -9.59006598318E+00 -9.17332106674E+00 -8.72760676189E+00 -8.25317233240E+00 -7.75043591865E+00 -7.21999619803E+00 -6.66264362116E+00 -6.07937105325E+00 -5.47138363283E+00 -4.84010763560E+00 -4.18719813377E+00 -3.51454521723E+00 -2.82427853681E+00 -2.11876993524E+00 -1.40063390765E+00 -6.72725657053E-01 6.18634964739E-02 7.99813584358E-01 1.53758653494E+00 2.27143999654E+00 2.99744458537E+00 3.71150468809E+00 4.40938290435E+00 5.08672815869E+00 5.73910747639E+00 6.36204135174E+00 6.95104258041E+00 7.50165837969E+00 8.00951554838E+00 8.47036837787E+00 8.88014896877E+00 9.23501957084E+00 9.53142653285E+00 9.76615542972E+00 9.93638693138E+00 1.00397529867E+01 1.00743929218E+01 1.00390090904E+01 9.93292176366E+00 9.75612300171E+00 9.50932930950E+00 9.19403292286E+00 8.81255161490E+00 8.36807690349E+00 7.86472052512E+00 7.30755894671E+00 6.70267554972E+00 6.05719991986E+00 5.37934339363E+00 4.67842969096E+00 3.96491907643E+00 3.25042410575E+00 2.54771465065E+00 1.87070962135E+00 1.23445272066E+00 6.55069754726E-01 1.49705543453E-01 -2.63559448377E-01 -5.65819665752E-01 -7.37399574643E-01 -7.58609454686E-01 -6.03766643969E-01 -3.00570874253E-01 -1.76550042952E-01 -1.08341994675E-01 -5.29491244223E-02 -1.80485576339E-02 -2.36792829575E-03 2.77254405324E-04 2.70628279912E-04 2.64103828993E-04 2.57725661104E-04 2.51487671186E-04 2.45388578827E-04 2.10 2.40 5D 2 2 Beta L 990 5.71773961381E-14 5.93622586324E-14 6.16306090860E-14 6.39856377405E-14 6.64306567431E-14 6.89691048047E-14 7.16045520362E-14 7.43407049696E-14 7.71814117709E-14 8.01306676522E-14 8.31926204906E-14 8.63715766620E-14 8.96720070973E-14 9.30985535708E-14 9.66560352281E-14 1.00349455364E-13 1.04184008460E-13 1.08165087487E-13 1.12298291494E-13 1.16589433481E-13 1.21044548573E-13 1.25669902509E-13 1.30472000457E-13 1.35457596158E-13 1.40633701427E-13 1.46007596015E-13 1.51586837848E-13 1.57379273653E-13 1.63393049998E-13 1.69636624748E-13 1.76118778958E-13 1.82848629225E-13 1.89835640511E-13 1.97089639452E-13 2.04620828179E-13 2.12439798668E-13 2.20557547635E-13 2.28985492001E-13 2.37735484953E-13 2.46819832610E-13 2.56251311333E-13 2.66043185694E-13 2.76209227129E-13 2.86763733309E-13 2.97721548249E-13 3.09098083181E-13 3.20909338233E-13 3.33171924929E-13 3.45903089551E-13 3.59120737399E-13 3.72843457968E-13 3.87090551095E-13 4.01882054103E-13 4.17238769981E-13 4.33182296641E-13 4.49735057295E-13 4.66920331991E-13 4.84762290354E-13 5.03286025577E-13 5.22517589717E-13 5.42484030329E-13 5.63213428511E-13 5.84734938397E-13 6.07078828155E-13 6.30276522563E-13 6.54360647202E-13 6.79365074342E-13 7.05324970578E-13 7.32276846293E-13 7.60258607005E-13 7.89309606674E-13 8.19470703059E-13 8.50784315170E-13 8.83294482936E-13 9.17046929137E-13 9.52089123714E-13 9.88470350527E-13 1.02624177667E-12 1.06545652444E-12 1.10616974604E-12 1.14843870115E-12 1.19232283744E-12 1.23788387422E-12 1.28518588920E-12 1.33429540864E-12 1.38528150090E-12 1.43821587356E-12 1.49317297432E-12 1.55023009565E-12 1.60946748353E-12 1.67096845031E-12 1.73481949185E-12 1.80111040920E-12 1.86993443489E-12 1.94138836405E-12 2.01557269054E-12 2.09259174829E-12 2.17255385806E-12 2.25557147973E-12 2.34176137052E-12 2.43124474916E-12 2.52414746640E-12 2.62060018200E-12 2.72073854849E-12 2.82470340195E-12 2.93264096008E-12 3.04470302787E-12 3.16104721106E-12 3.28183713784E-12 3.40724268894E-12 3.53744023660E-12 3.67261289257E-12 3.81295076567E-12 3.95865122916E-12 4.10991919834E-12 4.26696741872E-12 4.43001676523E-12 4.59929655289E-12 4.77504485930E-12 4.95750885947E-12 5.14694517349E-12 5.34362022738E-12 5.54781062786E-12 5.75980355131E-12 5.97989714774E-12 6.20840096002E-12 6.44563635931E-12 6.69193699698E-12 6.94764927389E-12 7.21313282757E-12 7.48876103803E-12 7.77492155285E-12 8.07201683243E-12 8.38046471595E-12 8.70069900909E-12 9.03317009410E-12 9.37834556322E-12 9.73671087636E-12 1.01087700438E-11 1.04950463350E-11 1.08960830148E-11 1.13124441069E-11 1.17447151879E-11 1.21935042102E-11 1.26594423572E-11 1.31431849314E-11 1.36454122753E-11 1.41668307291E-11 1.47081736233E-11 1.52702023105E-11 1.58537072363E-11 1.64595090505E-11 1.70884597619E-11 1.77414439361E-11 1.84193799395E-11 1.91232212315E-11 1.98539577049E-11 2.06126170783E-11 2.14002663413E-11 2.22180132557E-11 2.30670079127E-11 2.39484443510E-11 2.48635622359E-11 2.58136486028E-11 2.68000396670E-11 2.78241227036E-11 2.88873379982E-11 2.99911808725E-11 3.11372037874E-11 3.23270185265E-11 3.35622984628E-11 3.48447809124E-11 3.61762695776E-11 3.75586370836E-11 3.89938276126E-11 4.04838596379E-11 4.20308287624E-11 4.36369106665E-11 4.53043641675E-11 4.70355343967E-11 4.88328560975E-11 5.06988570498E-11 5.26361616248E-11 5.46474944764E-11 5.67356843729E-11 5.89036681754E-11 6.11544949685E-11 6.34913303482E-11 6.59174608743E-11 6.84362986929E-11 7.10513863345E-11 7.37664016972E-11 7.65851632186E-11 7.95116352469E-11 8.25499336153E-11 8.57043314318E-11 8.89792650881E-11 9.23793404993E-11 9.59093395818E-11 9.95742269784E-11 1.03379157041E-10 1.07329481080E-10 1.11430754888E-10 1.15688746559E-10 1.20109444595E-10 1.24699066330E-10 1.29464066677E-10 1.34411147203E-10 1.39547265554E-10 1.44879645244E-10 1.50415785810E-10 1.56163473362E-10 1.62130791534E-10 1.68326132849E-10 1.74758210526E-10 1.81436070736E-10 1.88369105320E-10 1.95567064999E-10 2.03040073092E-10 2.10798639746E-10 2.18853676724E-10 2.27216512751E-10 2.35898909441E-10 2.44913077846E-10 2.54271695626E-10 2.63987924879E-10 2.74075430653E-10 2.84548400165E-10 2.95421562756E-10 3.06710210600E-10 3.18430220220E-10 3.30598074810E-10 3.43230887420E-10 3.56346425025E-10 3.69963133510E-10 3.84100163617E-10 3.98777397871E-10 4.14015478553E-10 4.29835836725E-10 4.46260722371E-10 4.63313235694E-10 4.81017359599E-10 4.99397993429E-10 5.18480987978E-10 5.38293181852E-10 5.58862439211E-10 5.80217688964E-10 6.02388965450E-10 6.25407450677E-10 6.49305518185E-10 6.74116778567E-10 6.99876126747E-10 7.26619791052E-10 7.54385384165E-10 7.83211956028E-10 8.13140048755E-10 8.44211753658E-10 8.76470770440E-10 9.09962468660E-10 9.44733951534E-10 9.80834122190E-10 1.01831375244E-09 1.05722555419E-09 1.09762425356E-09 1.13956666790E-09 1.18311178562E-09 1.22832084922E-09 1.27525744139E-09 1.32398757445E-09 1.37457978318E-09 1.42710522121E-09 1.48163776107E-09 1.53825409815E-09 1.59703385848E-09 1.65805971080E-09 1.72141748275E-09 1.78719628165E-09 1.85548861975E-09 1.92639054442E-09 2.00000177316E-09 2.07642583388E-09 2.15577021051E-09 2.23814649414E-09 2.32367054000E-09 2.41246263035E-09 2.50464764371E-09 2.60035523042E-09 2.69971999504E-09 2.80288168563E-09 2.90998539032E-09 3.02118174133E-09 3.13662712683E-09 3.25648391091E-09 3.38092066191E-09 3.51011238950E-09 3.64424079083E-09 3.78349450604E-09 3.92806938359E-09 4.07816875573E-09 4.23400372439E-09 4.39579345817E-09 4.56376550051E-09 4.73815608976E-09 4.91921049139E-09 5.10718334297E-09 5.30233901225E-09 5.50495196903E-09 5.71530717112E-09 5.93370046517E-09 6.16043900270E-09 6.39584167208E-09 6.64023954707E-09 6.89397635241E-09 7.15740894725E-09 7.43090782702E-09 7.71485764454E-09 8.00965775098E-09 8.31572275748E-09 8.63348311834E-09 8.96338573636E-09 9.30589459136E-09 9.66149139279E-09 1.00306762572E-08 1.04139684114E-08 1.08119069232E-08 1.12250514591E-08 1.16539830714E-08 1.20993050159E-08 1.25616435998E-08 1.30416490628E-08 1.35399964915E-08 1.40573867689E-08 1.45945475601E-08 1.51522343360E-08 1.57312314353E-08 1.63323531677E-08 1.69564449596E-08 1.76043845427E-08 1.82770831885E-08 1.89754869901E-08 1.97005781926E-08 2.04533765748E-08 2.12349408831E-08 2.20463703207E-08 2.28888060936E-08 2.37634330156E-08 2.46714811745E-08 2.56142276623E-08 2.65929983710E-08 2.76091698577E-08 2.86641712806E-08 2.97594864086E-08 3.08966557085E-08 3.20772785115E-08 3.33030152622E-08 3.45755898541E-08 3.58967920542E-08 3.72684800200E-08 3.86925829128E-08 4.01711036112E-08 4.17061215273E-08 4.32997955321E-08 4.49543669911E-08 4.66721629169E-08 4.84555992418E-08 5.03071842156E-08 5.22295219333E-08 5.42253159976E-08 5.62973733211E-08 5.84486080740E-08 6.06820457830E-08 6.30008275857E-08 6.54082146492E-08 6.79075927557E-08 7.05024770654E-08 7.31965170592E-08 7.59935016721E-08 7.88973646217E-08 8.19121899407E-08 8.50422177206E-08 8.82918500753E-08 9.16656573321E-08 9.51683844593E-08 9.92031215054E-08 1.02983788208E-07 1.06907966506E-07 1.10983276270E-07 1.14865472410E-07 1.19252621936E-07 1.23808103180E-07 1.28536788602E-07 1.33446901591E-07 1.38543954597E-07 1.43836343463E-07 1.49330411733E-07 1.55034900416E-07 1.60956884486E-07 1.67105215756E-07 1.73488757356E-07 1.80115782753E-07 1.86996573491E-07 1.94139680661E-07 2.01556158880E-07 2.09255907692E-07 2.17249737478E-07 2.25548805083E-07 2.34165424536E-07 2.43110525372E-07 2.52398135271E-07 2.62040838655E-07 2.72050936035E-07 2.82444248299E-07 2.93234693661E-07 3.04437085867E-07 3.16067855876E-07 3.28142865417E-07 3.40679346949E-07 3.53694170630E-07 3.67207580845E-07 3.81236326608E-07 3.95801183153E-07 4.10922602107E-07 4.26621952979E-07 4.42921279503E-07 4.59843118746E-07 4.77411878885E-07 4.95651896183E-07 5.14588343872E-07 5.34249284009E-07 5.54660656371E-07 5.75852021273E-07 5.97853239024E-07 6.20695147001E-07 6.44410039627E-07 6.69030518467E-07 6.94592359684E-07 7.21130318729E-07 7.48682805001E-07 7.77288212921E-07 8.06985883654E-07 8.37818999094E-07 8.69829881972E-07 9.03064213358E-07 9.37567980256E-07 9.73391071617E-07 1.01058161865E-06 1.04919448816E-06 1.08928167366E-06 1.13090081067E-06 1.17411108903E-06 1.21897194214E-06 1.26554693860E-06 1.31390168151E-06 1.36410376197E-06 1.41622426335E-06 1.47033585201E-06 1.52651590244E-06 1.58484172689E-06 1.64539760321E-06 1.70826636957E-06 1.77353710987E-06 1.84130277259E-06 1.91165658040E-06 1.98469980083E-06 2.06053355019E-06 2.13926467680E-06 2.22100406062E-06 2.30586782435E-06 2.39397310990E-06 2.48544628186E-06 2.58041232651E-06 2.67900923059E-06 2.78137370576E-06 2.88764767249E-06 2.99798411877E-06 3.11253575995E-06 3.23146420518E-06 3.35493783659E-06 3.48312842202E-06 3.61621768315E-06 3.75439212674E-06 3.89784692065E-06 4.04678288843E-06 4.20140858298E-06 4.36194500743E-06 4.52861307553E-06 4.70165224356E-06 4.88130096841E-06 5.06781518158E-06 5.26145560193E-06 5.46249462542E-06 5.67121654090E-06 5.88791273649E-06 6.11289006790E-06 6.34646312753E-06 6.58896021575E-06 6.84072486664E-06 7.10210813786E-06 7.37347901741E-06 7.65521958584E-06 7.94772466491E-06 8.25140511727E-06 8.56669166899E-06 8.89402378440E-06 9.23386403577E-06 9.58668865976E-06 9.95299455834E-06 1.03332968574E-05 1.07281314405E-05 1.11380515350E-05 1.15636340183E-05 1.20054780484E-05 1.24642053863E-05 1.29404578867E-05 1.34349106084E-05 1.39482546473E-05 1.44812123104E-05 1.50345357292E-05 1.56089992035E-05 1.62054125683E-05 1.68246129055E-05 1.74674749652E-05 1.81348985064E-05 1.88278239123E-05 1.95472243410E-05 2.02941112421E-05 2.10695363898E-05 2.18745895754E-05 2.27104008712E-05 2.35781486597E-05 2.44790469077E-05 2.54143723991E-05 2.63854309483E-05 2.73935925245E-05 2.84402740741E-05 2.95269462910E-05 3.06551367399E-05 3.18264328072E-05 3.30424801077E-05 3.43049884230E-05 3.56157362182E-05 3.69765594837E-05 3.83893777021E-05 3.98561761723E-05 4.13790106868E-05 4.29600313069E-05 4.46014540196E-05 4.63055909901E-05 4.80748342144E-05 4.99116735849E-05 5.18186863723E-05 5.37985639533E-05 5.58540766946E-05 5.79881242086E-05 6.02037028362E-05 6.25039235637E-05 6.48920260384E-05 6.73713621376E-05 6.99454213663E-05 7.26178199795E-05 7.53922772015E-05 7.82731081998E-05 8.12603073664E-05 8.43974489012E-05 8.73064317704E-05 9.20817111151E-05 9.20805552467E-05 1.00686193740E-04 9.96747612832E-05 1.07355784725E-04 1.08473323870E-04 1.14034302396E-04 1.18265521898E-04 1.24083516853E-04 1.24387068702E-04 1.35449491845E-04 1.36725342413E-04 1.41079949617E-04 1.48950169369E-04 1.54924333267E-04 1.58475862770E-04 1.64147426889E-04 1.73438783094E-04 1.80268120875E-04 1.81905222533E-04 1.94833664770E-04 1.99394588896E-04 2.06776029932E-04 2.16440659747E-04 2.23976349274E-04 2.31075297047E-04 2.41197099760E-04 2.50883467192E-04 2.59232313891E-04 2.69943565218E-04 2.79658284285E-04 2.90858736400E-04 3.02284912322E-04 3.13755509489E-04 3.24415810280E-04 3.36776987441E-04 3.52310558833E-04 3.63545623331E-04 3.80118888635E-04 3.88191402626E-04 4.11274478995E-04 4.21318477198E-04 4.37316633753E-04 4.58235309672E-04 4.73260225946E-04 4.90987985773E-04 5.09244089968E-04 5.32323458194E-04 5.47005379890E-04 5.72041586565E-04 5.90722622669E-04 6.18455985533E-04 6.36104033252E-04 6.66608220635E-04 6.85060951098E-04 7.16018766364E-04 7.41044253852E-04 7.73191379099E-04 7.98931027559E-04 8.29149498890E-04 8.62520630018E-04 8.94068032317E-04 9.30421615929E-04 9.66181842165E-04 1.00073666800E-03 1.03709401333E-03 1.08209285358E-03 1.12117645594E-03 1.16096447677E-03 1.21054668431E-03 1.25189643354E-03 1.30351374873E-03 1.35067969149E-03 1.40387135434E-03 1.45638917583E-03 1.51186122572E-03 1.57117400528E-03 1.62831471223E-03 1.69435243810E-03 1.75579656564E-03 1.82470208012E-03 1.89256964279E-03 1.96614091746E-03 2.04110055968E-03 2.11914097652E-03 2.19917686870E-03 2.28317333817E-03 2.37118582983E-03 2.46018780580E-03 2.55726675689E-03 2.65098666227E-03 2.75407476657E-03 2.85859403355E-03 2.96842279253E-03 3.08068156676E-03 3.19868659870E-03 3.32207451356E-03 3.44600569835E-03 3.57939468833E-03 3.71535375186E-03 3.85742605135E-03 4.00417013464E-03 4.15703743893E-03 4.31530861932E-03 4.48056463193E-03 4.65050685006E-03 4.82859106670E-03 5.01253142466E-03 5.20320434777E-03 5.40237302328E-03 5.60752413951E-03 5.82190500057E-03 6.04311914593E-03 6.27420514257E-03 6.51275432876E-03 6.76154670235E-03 7.01881752861E-03 7.28615731546E-03 7.56433926853E-03 7.85175972050E-03 8.15163311035E-03 8.46170472451E-03 8.78439282655E-03 9.11849594080E-03 9.46621863072E-03 9.82674136393E-03 1.02004716122E-02 1.05891159579E-02 1.09924736968E-02 1.14105967039E-02 1.18451853364E-02 1.22959423795E-02 1.27639543112E-02 1.32494605566E-02 1.37538578744E-02 1.42771127000E-02 1.48199633581E-02 1.53840747383E-02 1.59688299955E-02 1.65761316825E-02 1.72066296608E-02 1.78606601513E-02 1.85395232666E-02 1.92444360979E-02 1.99754579168E-02 2.07348127806E-02 2.15223137468E-02 2.23400359128E-02 2.31885265019E-02 2.40691301043E-02 2.49830039635E-02 2.59314297610E-02 2.69157142064E-02 2.79371888862E-02 2.89973260809E-02 3.00972396633E-02 3.12389427730E-02 3.24236501516E-02 3.36528838471E-02 3.49287344391E-02 3.62524583039E-02 3.76262465517E-02 3.90515746133E-02 4.05307911548E-02 4.20655740445E-02 4.36581210782E-02 4.53105169594E-02 4.70251870838E-02 4.88041400283E-02 5.06500042851E-02 5.25651608716E-02 5.45521813192E-02 5.66137361459E-02 5.87526445516E-02 6.09716574656E-02 6.32738561060E-02 6.56621426616E-02 6.81398935890E-02 7.07103334561E-02 7.33767163633E-02 7.61428397008E-02 7.90122207003E-02 8.19885793607E-02 8.50760411097E-02 8.82784822133E-02 9.16001806794E-02 9.50456031612E-02 9.86190146910E-02 1.02325380384E-01 1.06169269376E-01 1.10155903577E-01 1.14290287630E-01 1.18577918686E-01 1.23024264694E-01 1.27635097301E-01 1.32416325602E-01 1.37374152908E-01 1.42514839304E-01 1.47845086406E-01 1.53371559560E-01 1.59101388313E-01 1.65041769042E-01 1.71200283072E-01 1.77584638947E-01 1.84202894311E-01 1.91063352346E-01 1.98174570214E-01 2.05545404642E-01 2.13185049230E-01 2.21102861464E-01 2.29308733953E-01 2.37812628713E-01 2.46625024438E-01 2.55756621564E-01 2.65218560865E-01 2.75022213437E-01 2.85179441019E-01 2.95702404067E-01 3.06603635152E-01 3.17896128415E-01 3.29593189618E-01 3.41708625270E-01 3.54256557261E-01 3.67251644586E-01 3.80708907151E-01 3.94643845085E-01 4.09072400923E-01 4.24011009671E-01 4.39476548516E-01 4.55486385010E-01 4.72058413450E-01 4.89210973585E-01 5.06962964731E-01 5.25333769951E-01 5.44343305274E-01 5.64012033515E-01 5.84360928692E-01 6.05411512407E-01 6.27185884145E-01 6.49706653235E-01 6.72997012607E-01 6.97080702934E-01 7.21982035704E-01 7.47725869668E-01 7.74337629528E-01 8.01843306261E-01 8.30269447669E-01 8.59643125079E-01 8.89992000799E-01 9.21344241062E-01 9.53728549159E-01 9.87174142463E-01 1.02171074995E+00 1.05736856821E+00 1.09417827711E+00 1.13217098695E+00 1.17137823550E+00 1.21183195060E+00 1.25356441859E+00 1.29660824621E+00 1.34099633562E+00 1.38676182773E+00 1.43393804950E+00 1.48255849140E+00 1.53265670252E+00 1.58426628433E+00 1.63742076715E+00 1.69215358062E+00 1.74849794324E+00 1.80648679207E+00 1.86615268299E+00 1.92752768281E+00 1.99064327275E+00 2.05553021873E+00 2.12221844910E+00 2.19073692062E+00 2.26111346844E+00 2.33337465581E+00 2.40754560180E+00 2.48364981166E+00 2.56170897807E+00 2.64174279508E+00 2.72376872702E+00 2.80780179883E+00 2.89385434841E+00 2.98193577198E+00 3.07205226609E+00 3.16420653259E+00 3.25839749402E+00 3.35461997031E+00 3.45286435983E+00 3.55311628802E+00 3.65535625134E+00 3.75955923633E+00 3.86569433013E+00 3.97372430738E+00 4.08360520481E+00 4.19528587856E+00 4.30870754431E+00 4.42380330401E+00 4.54049765587E+00 4.65870599041E+00 4.77833407368E+00 4.89927751875E+00 5.02142124302E+00 5.14463892302E+00 5.26879243250E+00 5.39373128485E+00 5.51929206462E+00 5.64529786404E+00 5.77155772131E+00 5.89786606346E+00 6.02400216395E+00 6.14972961071E+00 6.27479579825E+00 6.39893144275E+00 6.52185012881E+00 6.64324789514E+00 6.76280286441E+00 6.88017492619E+00 6.99500548114E+00 7.10691725583E+00 7.21551419597E+00 7.32038145304E+00 7.42108546859E+00 7.51717417511E+00 7.60817732070E+00 7.69360693214E+00 7.77295793273E+00 7.84570892263E+00 7.91132314466E+00 7.96924964310E+00 8.01892463511E+00 8.05977311014E+00 8.09121066943E+00 8.11264562558E+00 8.12348137357E+00 8.12311904824E+00 8.11096048349E+00 8.08641148175E+00 8.04888540861E+00 7.99780711698E+00 7.93261721089E+00 7.85277664944E+00 7.75777169330E+00 7.64711918830E+00 7.52037218006E+00 7.37712584545E+00 7.21702372222E+00 7.03976421478E+00 6.84510734019E+00 6.63288168134E+00 6.40299149688E+00 6.15542393328E+00 5.89025627936E+00 5.60766318333E+00 5.30792375808E+00 4.99142847623E+00 4.65868575636E+00 4.31032813096E+00 3.94711787260E+00 3.56995195507E+00 3.17986621234E+00 2.77803855330E+00 2.36579109306E+00 1.94459104663E+00 1.51605024396E+00 1.08192312004E+00 6.44103039203E-01 2.04616829959E-01 -2.34382594585E-01 -6.70625625720E-01 -1.10173744294E+00 -1.52525165279E+00 -1.93862611088E+00 -2.33926093511E+00 -2.72451867962E+00 -3.09174660584E+00 -3.43830095792E+00 -3.76157310752E+00 -4.05901740741E+00 -4.32818055855E+00 -4.56673227134E+00 -4.77249698110E+00 -4.94348636310E+00 -5.07793238757E+00 -5.17432065638E+00 -5.23142377427E+00 -5.24833452668E+00 -5.22449865998E+00 -5.15974709195E+00 -5.05432740906E+00 -4.90893453479E+00 -4.72474047672E+00 -4.50342305701E+00 -4.24719352497E+00 -3.95882290125E+00 -3.64166683023E+00 -3.29968860944E+00 -2.93747991107E+00 -2.56027853566E+00 -2.17398232506E+00 -1.78515814996E+00 -1.40104468630E+00 -1.02954754401E+00 -6.79225265441E-01 -3.59264819813E-01 -7.94455128726E-02 1.49908598998E-01 3.17991636693E-01 4.13547761328E-01 4.25296180291E-01 3.38577182282E-01 1.68669032284E-01 9.91950683107E-02 6.09388127247E-02 2.98135863207E-02 1.01712055815E-02 1.33349630182E-03 -1.59066703475E-04 -1.55306061581E-04 -1.51597362101E-04 -1.47966431128E-04 -1.44410553679E-04 -1.40929645271E-04 2.10 2.40 5D 3 2 Beta L 990 -1.90208147444E-13 -1.97476380619E-13 -2.05022347499E-13 -2.12856660843E-13 -2.20990338946E-13 -2.29434821133E-13 -2.38201983848E-13 -2.47304157360E-13 -2.56754143099E-13 -2.66565231666E-13 -2.76751221520E-13 -2.87326438389E-13 -2.98305755414E-13 -3.09704614069E-13 -3.21539045878E-13 -3.33825694961E-13 -3.46581841442E-13 -3.59825425756E-13 -3.73575073874E-13 -3.87850123507E-13 -4.02670651294E-13 -4.18057501046E-13 -4.34032313056E-13 -4.50617554535E-13 -4.67836551214E-13 -4.85713520143E-13 -5.04273603757E-13 -5.23542905232E-13 -5.43548525198E-13 -5.64318599856E-13 -5.85882340547E-13 -6.08270074834E-13 -6.31513289158E-13 -6.55644673119E-13 -6.80698165455E-13 -7.06709001766E-13 -7.33713764078E-13 -7.61750432289E-13 -7.90858437584E-13 -8.21078717892E-13 -8.52453775463E-13 -8.85027736643E-13 -9.18846413932E-13 -9.53957370418E-13 -9.90409986671E-13 -1.02825553019E-12 -1.06754722751E-12 -1.10834033905E-12 -1.15069223685E-12 -1.19466248524E-12 -1.24031292464E-12 -1.28770775850E-12 -1.33691364360E-12 -1.38799978385E-12 -1.44103802754E-12 -1.49610296844E-12 -1.55327205070E-12 -1.61262567777E-12 -1.67424732546E-12 -1.73822365937E-12 -1.80464465676E-12 -1.87360373312E-12 -1.94519787350E-12 -2.01952776896E-12 -2.09669795817E-12 -2.17681697442E-12 -2.25999749829E-12 -2.34635651609E-12 -2.43601548443E-12 -2.52910050101E-12 -2.62574248197E-12 -2.72607734602E-12 -2.83024620560E-12 -2.93839556535E-12 -3.05067752811E-12 -3.16725000890E-12 -3.28827695699E-12 -3.41392858646E-12 -3.54438161563E-12 -3.67981951558E-12 -3.82043276816E-12 -3.96641913393E-12 -4.11798393029E-12 -4.27534032020E-12 -4.43870961203E-12 -4.60832157075E-12 -4.78441474115E-12 -4.96723678326E-12 -5.15704482070E-12 -5.35410580232E-12 -5.55869687759E-12 -5.77110578643E-12 -5.99163126388E-12 -6.22058346022E-12 -6.45828437722E-12 -6.70506832097E-12 -6.96128237205E-12 -7.22728687370E-12 -7.50345593859E-12 -7.79017797498E-12 -8.08785623299E-12 -8.39690937172E-12 -8.71777204808E-12 -9.05089552809E-12 -9.39674832154E-12 -9.75581684093E-12 -1.01286060855E-11 -1.05156403516E-11 -1.09174639700E-11 -1.13346420713E-11 -1.17677613810E-11 -1.22174310444E-11 -1.26842834838E-11 -1.31689752871E-11 -1.36721881323E-11 -1.41946297452E-11 -1.47370348955E-11 -1.53001664298E-11 -1.58848163446E-11 -1.64918069003E-11 -1.71219917773E-11 -1.77762572769E-11 -1.84555235680E-11 -1.91607459805E-11 -1.98929163498E-11 -2.06530644111E-11 -2.14422592479E-11 -2.22616107955E-11 -2.31122714020E-11 -2.39954374491E-11 -2.49123510347E-11 -2.58643017194E-11 -2.68526283409E-11 -2.78787208964E-11 -2.89440224976E-11 -3.00500314004E-11 -3.11983031122E-11 -3.23904525793E-11 -3.36281564583E-11 -3.49131554742E-11 -3.62472568688E-11 -3.76323369420E-11 -3.90703436908E-11 -4.05632995493E-11 -4.21133042326E-11 -4.37225376904E-11 -4.53932631723E-11 -4.71278304114E-11 -4.89286789287E-11 -5.07983414642E-11 -5.27394475391E-11 -5.47547271535E-11 -5.68470146266E-11 -5.90192525825E-11 -6.12744960888E-11 -6.36159169532E-11 -6.60468081848E-11 -6.85705886249E-11 -7.11908077558E-11 -7.39111506923E-11 -7.67354433651E-11 -7.96676579012E-11 -8.27119182104E-11 -8.58725057856E-11 -8.91538657238E-11 -9.25606129782E-11 -9.60975388486E-11 -9.97696177199E-11 -1.03582014058E-10 -1.07540089674E-10 -1.11649411263E-10 -1.15915758237E-10 -1.20345130849E-10 -1.24943758634E-10 -1.29718109170E-10 -1.34674897174E-10 -1.39821093947E-10 -1.45163937176E-10 -1.50710941114E-10 -1.56469907151E-10 -1.62448934780E-10 -1.68656432995E-10 -1.75101132114E-10 -1.81792096055E-10 -1.88738735091E-10 -1.95950819077E-10 -2.03438491195E-10 -2.11212282217E-10 -2.19283125319E-10 -2.27662371453E-10 -2.36361805315E-10 -2.45393661918E-10 -2.54770643797E-10 -2.64505938881E-10 -2.74613239031E-10 -2.85106759303E-10 -2.96001257941E-10 -3.07312057128E-10 -3.19055064539E-10 -3.31246795713E-10 -3.43904397283E-10 -3.57045671085E-10 -3.70689099202E-10 -3.84853869953E-10 -3.99559904881E-10 -4.14827886771E-10 -4.30679288738E-10 -4.47136404429E-10 -4.64222379374E-10 -4.81961243542E-10 -5.00377945134E-10 -5.19498385670E-10 -5.39349456421E-10 -5.59959076228E-10 -5.81356230762E-10 -6.03571013301E-10 -6.26634667041E-10 -6.50579629046E-10 -6.75439575866E-10 -7.01249470897E-10 -7.28045613557E-10 -7.55865690338E-10 -7.84748827805E-10 -8.14735647632E-10 -8.45868323725E-10 -8.78190641540E-10 -9.11748059661E-10 -9.46587773740E-10 -9.82758782863E-10 -1.02031195847E-09 -1.05930011591E-09 -1.09977808870E-09 -1.14180280566E-09 -1.18543337096E-09 -1.23073114729E-09 -1.27775984211E-09 -1.32658559726E-09 -1.37727708202E-09 -1.42990558962E-09 -1.48454513759E-09 -1.54127257179E-09 -1.60016767453E-09 -1.66131327674E-09 -1.72479537450E-09 -1.79070324998E-09 -1.85912959698E-09 -1.93017065134E-09 -2.00392632622E-09 -2.08050035272E-09 -2.16000042566E-09 -2.24253835513E-09 -2.32823022369E-09 -2.41719654965E-09 -2.50956245655E-09 -2.60545784919E-09 -2.70501759624E-09 -2.80838172002E-09 -2.91569559335E-09 -3.02711014404E-09 -3.14278206717E-09 -3.26287404542E-09 -3.38755497795E-09 -3.51700021784E-09 -3.65139181879E-09 -3.79091879113E-09 -3.93577736766E-09 -4.08617127960E-09 -4.24231204319E-09 -4.40441925709E-09 -4.57272091127E-09 -4.74745370767E-09 -4.92886339306E-09 -5.11720510471E-09 -5.31274372916E-09 -5.51575427483E-09 -5.72652225873E-09 -5.94534410807E-09 -6.17252757712E-09 -6.40839218004E-09 -6.65326964031E-09 -6.90750435718E-09 -7.17145389010E-09 -7.44548946158E-09 -7.72999647928E-09 -8.02537507807E-09 -8.33204068274E-09 -8.65042459232E-09 -8.98097458662E-09 -9.32415555602E-09 -9.68045015528E-09 -1.00503594824E-08 -1.04344037832E-08 -1.08331231833E-08 -1.12470784475E-08 -1.16768517686E-08 -1.21230475861E-08 -1.25862934364E-08 -1.30672408352E-08 -1.35665661939E-08 -1.40849717712E-08 -1.46231866602E-08 -1.51819678143E-08 -1.57621011114E-08 -1.63644024595E-08 -1.69897189442E-08 -1.76389300196E-08 -1.83129487457E-08 -1.90127230723E-08 -1.97392371724E-08 -2.04935128260E-08 -2.12766108573E-08 -2.20896326270E-08 -2.29337215808E-08 -2.38100648576E-08 -2.47198949596E-08 -2.56644914850E-08 -2.66451829283E-08 -2.76633485481E-08 -2.87204203076E-08 -2.98178848878E-08 -3.09572857790E-08 -3.21402254512E-08 -3.33683676080E-08 -3.46434395264E-08 -3.59672344863E-08 -3.73416142920E-08 -3.87685118914E-08 -4.02499340941E-08 -4.17879643937E-08 -4.33847658985E-08 -4.50425843733E-08 -4.67637513981E-08 -4.85506876472E-08 -5.04059062937E-08 -5.23320165441E-08 -5.43317273076E-08 -5.64078510066E-08 -5.85633075314E-08 -6.08011283473E-08 -6.31244607580E-08 -6.55365723317E-08 -6.80408554970E-08 -7.06408323139E-08 -7.33401594274E-08 -7.61426332100E-08 -7.90521951013E-08 -8.20729371511E-08 -8.52091077745E-08 -8.84651177269E-08 -9.18455463076E-08 -9.53551477999E-08 -9.89988581578E-08 -1.02781801948E-07 -1.06709299556E-07 -1.10786874672E-07 -1.15020262054E-07 -1.19415415601E-07 -1.23978516718E-07 -1.28715983017E-07 -1.33634477336E-07 -1.38740917117E-07 -1.44042484130E-07 -1.49546634573E-07 -1.55261109562E-07 -1.61193946015E-07 -1.67353487958E-07 -1.73748398258E-07 -1.80387670807E-07 -1.87280643171E-07 -1.94437009725E-07 -2.01866835283E-07 -2.09580569255E-07 -2.17589060347E-07 -2.25903571811E-07 -2.34535797295E-07 -2.43497877279E-07 -2.52802416159E-07 -2.62462499968E-07 -2.72491714783E-07 -2.82904165830E-07 -2.93714497325E-07 -3.04937913068E-07 -3.16590197827E-07 -3.28687739535E-07 -3.41247552343E-07 -3.54287300542E-07 -3.70710394174E-07 -3.84800302384E-07 -3.96722260022E-07 -4.11877578921E-07 -4.27607041194E-07 -4.43941724903E-07 -4.60899326349E-07 -4.78503287542E-07 -4.96781814572E-07 -5.15757300725E-07 -5.35459293655E-07 -5.55913331230E-07 -5.77148167700E-07 -5.99194743795E-07 -6.22082757356E-07 -6.45848577306E-07 -6.70518245023E-07 -6.96133549465E-07 -7.22724534831E-07 -7.50333472509E-07 -7.78999523782E-07 -8.08755991290E-07 -8.39651517490E-07 -8.71730172302E-07 -9.05031188036E-07 -9.39604419856E-07 -9.75502419484E-07 -1.01276631382E-06 -1.05145951000E-06 -1.09162803080E-06 -1.13333638660E-06 -1.17662847281E-06 -1.22158387454E-06 -1.26825279679E-06 -1.31670443756E-06 -1.36700739350E-06 -1.41923300476E-06 -1.47345885382E-06 -1.52975131493E-06 -1.58819423485E-06 -1.64887410663E-06 -1.71186687578E-06 -1.77727166880E-06 -1.84517437473E-06 -1.91566970879E-06 -1.98886091843E-06 -2.06484793554E-06 -2.14373817102E-06 -2.22564179036E-06 -2.31067852892E-06 -2.39895858068E-06 -2.49061865678E-06 -2.58577839111E-06 -2.68456972444E-06 -2.78714028886E-06 -2.89362856529E-06 -3.00418701110E-06 -3.11897030608E-06 -3.23814137515E-06 -3.36186210622E-06 -3.49031072897E-06 -3.62366757046E-06 -3.76211619367E-06 -3.90586515857E-06 -4.05509838403E-06 -4.21003641339E-06 -4.37089591147E-06 -4.53789860215E-06 -4.71128451806E-06 -4.89130200095E-06 -5.07818271316E-06 -5.27221940700E-06 -5.47366424122E-06 -5.68280479957E-06 -5.89993529204E-06 -6.12537163551E-06 -6.35940650930E-06 -6.60239746242E-06 -6.85467130926E-06 -7.11657874330E-06 -7.38850159743E-06 -7.67080671020E-06 -7.96390481443E-06 -8.26820064252E-06 -8.58411558946E-06 -8.91211306913E-06 -9.25264289195E-06 -9.60617955552E-06 -9.97323183759E-06 -1.03542941152E-05 -1.07499306852E-05 -1.11606843734E-05 -1.15871263369E-05 -1.20298648294E-05 -1.24895234566E-05 -1.29667436674E-05 -1.34622011345E-05 -1.39765836120E-05 -1.45106275810E-05 -1.50650737668E-05 -1.56407097850E-05 -1.62383379187E-05 -1.68587955988E-05 -1.75029726584E-05 -1.81717541613E-05 -1.88660923920E-05 -1.95869638699E-05 -2.03353863666E-05 -2.11123955516E-05 -2.19190957680E-05 -2.27566196888E-05 -2.36261486441E-05 -2.45288970264E-05 -2.54661459641E-05 -2.64392058594E-05 -2.74494368890E-05 -2.84982779612E-05 -2.95871920183E-05 -3.07177165314E-05 -3.18914381583E-05 -3.31099997036E-05 -3.43751292641E-05 -3.56885928445E-05 -3.70522606853E-05 -3.84680055823E-05 -3.99378639184E-05 -4.14638827785E-05 -4.30481941304E-05 -4.46930554995E-05 -4.64007625210E-05 -4.81737198184E-05 -5.00144233320E-05 -5.19254572962E-05 -5.39095031388E-05 -5.59693485882E-05 -5.81079261586E-05 -6.03281732188E-05 -6.26333053533E-05 -6.50264749033E-05 -6.75110970709E-05 -7.00906546981E-05 -7.27687616814E-05 -7.55491975556E-05 -7.84358806584E-05 -8.14328313044E-05 -8.45443129436E-05 -8.77746629492E-05 -9.11284511926E-05 -9.46103849943E-05 -9.82253428521E-05 -1.01978408022E-04 -1.05874891559E-04 -1.09920210718E-04 -1.14120126219E-04 -1.18480503443E-04 -1.23007452702E-04 -1.27707375822E-04 -1.32586870482E-04 -1.37652788467E-04 -1.42912248072E-04 -1.48372677576E-04 -1.54041691580E-04 -1.59927330704E-04 -1.66037796417E-04 -1.72381737340E-04 -1.78968047567E-04 -1.85805981374E-04 -1.92905165042E-04 -2.00275572930E-04 -2.07927577155E-04 -2.15871891104E-04 -2.24119736549E-04 -2.32682672634E-04 -2.41572735688E-04 -2.50802452296E-04 -2.60384767191E-04 -2.70333142406E-04 -2.80661618969E-04 -2.91384484146E-04 -3.02518766061E-04 -3.14061158849E-04 -3.26211837383E-04 -3.37201154484E-04 -3.55430413965E-04 -3.56649988175E-04 -3.88285853964E-04 -3.86569053448E-04 -4.08486342848E-04 -4.31171220270E-04 -4.33561396590E-04 -4.63353482554E-04 -4.63882078409E-04 -5.07058280061E-04 -4.96009068112E-04 -5.39287036902E-04 -5.52457335279E-04 -5.71835311136E-04 -5.83496989598E-04 -6.36674337075E-04 -6.23992846854E-04 -6.64910317141E-04 -6.87799979811E-04 -7.29935865921E-04 -7.40172815584E-04 -7.69184338645E-04 -8.02948462239E-04 -8.31557221988E-04 -8.64859582744E-04 -8.91915202072E-04 -9.38830202475E-04 -9.68881741398E-04 -9.94830492411E-04 -1.04734602295E-03 -1.08821204031E-03 -1.11789876515E-03 -1.16629106785E-03 -1.21193190814E-03 -1.25484653336E-03 -1.31019859420E-03 -1.34916109116E-03 -1.40536607337E-03 -1.48757215081E-03 -1.47151126005E-03 -1.61827410348E-03 -1.59517365497E-03 -1.72253710386E-03 -1.75422635497E-03 -1.83647366620E-03 -1.88256143778E-03 -1.99060404487E-03 -2.03783617237E-03 -2.12458111704E-03 -2.19856229862E-03 -2.31278841182E-03 -2.36902728053E-03 -2.44975749870E-03 -2.58124562340E-03 -2.66062074413E-03 -2.75970826946E-03 -2.85786581139E-03 -2.99349136058E-03 -3.08621938147E-03 -3.20368464391E-03 -3.34226045820E-03 -3.43293597324E-03 -3.62172392861E-03 -3.70487454792E-03 -3.89749612626E-03 -3.99980897279E-03 -4.17229392932E-03 -4.33878966187E-03 -4.48786405092E-03 -4.67014411617E-03 -4.84255824530E-03 -5.04288289637E-03 -5.21379681740E-03 -5.42278865300E-03 -5.63359147025E-03 -5.84058375845E-03 -6.07037648990E-03 -6.29909926212E-03 -6.53608339551E-03 -6.78965225767E-03 -7.05147003072E-03 -7.31281063070E-03 -7.60654006255E-03 -7.88293624822E-03 -8.17697183715E-03 -8.51070628373E-03 -8.81647973205E-03 -9.16761887445E-03 -9.50589697750E-03 -9.87396909761E-03 -1.02538811273E-02 -1.06372981176E-02 -1.10458360538E-02 -1.14725433918E-02 -1.19027584344E-02 -1.23572187518E-02 -1.28372989883E-02 -1.33166925700E-02 -1.38287671462E-02 -1.43580280568E-02 -1.49024043930E-02 -1.54709552710E-02 -1.60661246448E-02 -1.66707651492E-02 -1.73097189094E-02 -1.79718709741E-02 -1.86544803953E-02 -1.93649167707E-02 -2.01075600974E-02 -2.08683122059E-02 -2.16680446526E-02 -2.24884471915E-02 -2.33518858590E-02 -2.42392773754E-02 -2.51606751257E-02 -2.61226064824E-02 -2.71145274507E-02 -2.81502219363E-02 -2.92214081337E-02 -3.03338044145E-02 -3.14904631504E-02 -3.26881174488E-02 -3.39350962967E-02 -3.52233051574E-02 -3.65682346289E-02 -3.79592971880E-02 -3.94038963736E-02 -4.09022630213E-02 -4.24614554656E-02 -4.40754787767E-02 -4.57532903937E-02 -4.74922407798E-02 -4.93019870491E-02 -5.11747948056E-02 -5.31219620962E-02 -5.51426256606E-02 -5.72375990481E-02 -5.94154259174E-02 -6.16736635956E-02 -6.40163717415E-02 -6.64512967346E-02 -6.89738124779E-02 -7.15963921347E-02 -7.43157505217E-02 -7.71370654726E-02 -8.00678065480E-02 -8.31074115542E-02 -8.62617626513E-02 -8.95368948955E-02 -9.29341507344E-02 -9.64611286736E-02 -1.00119509527E-01 -1.03917546229E-01 -1.07858503792E-01 -1.11947473656E-01 -1.16191448627E-01 -1.20594922938E-01 -1.25164878729E-01 -1.29905547298E-01 -1.34826721468E-01 -1.39931859802E-01 -1.45229155937E-01 -1.50725985752E-01 -1.56429609028E-01 -1.62347491169E-01 -1.68486833013E-01 -1.74857932711E-01 -1.81467472681E-01 -1.88324858298E-01 -1.95439953228E-01 -2.02820808432E-01 -2.10479161716E-01 -2.18422920058E-01 -2.26665408367E-01 -2.35215250002E-01 -2.44084618117E-01 -2.53285356920E-01 -2.62830174925E-01 -2.72730274990E-01 -2.82999951702E-01 -2.93652236019E-01 -3.04701454186E-01 -3.16161281251E-01 -3.28047647131E-01 -3.40375858757E-01 -3.53161483802E-01 -3.66421904472E-01 -3.80173586171E-01 -3.94435065839E-01 -4.09224579601E-01 -4.24560651128E-01 -4.40463729938E-01 -4.56954269399E-01 -4.74052730513E-01 -4.91781478224E-01 -5.10163133907E-01 -5.29220730759E-01 -5.48978768780E-01 -5.69462074870E-01 -5.90696422273E-01 -6.12708777025E-01 -6.35526195502E-01 -6.59177747602E-01 -6.83692498284E-01 -7.09101059237E-01 -7.35434806633E-01 -7.62726109427E-01 -7.91008430647E-01 -8.20316595222E-01 -8.50686209428E-01 -8.82153821031E-01 -9.14757920186E-01 -9.48537423523E-01 -9.83532870679E-01 -1.01978601013E+00 -1.05733976556E+00 -1.09623866375E+00 -1.13652831067E+00 -1.17825563652E+00 -1.22146956121E+00 -1.26621964889E+00 -1.31255765137E+00 -1.36053635018E+00 -1.41021027107E+00 -1.46163567046E+00 -1.51487000673E+00 -1.56997274015E+00 -1.62700478042E+00 -1.68602883198E+00 -1.74710916293E+00 -1.81031198448E+00 -1.87570503879E+00 -1.94335795254E+00 -2.01334224472E+00 -2.08573097206E+00 -2.16059927633E+00 -2.23802398467E+00 -2.31808374586E+00 -2.40085924896E+00 -2.48643273744E+00 -2.57488847099E+00 -2.66631258805E+00 -2.76079289089E+00 -2.85841907888E+00 -2.95928262441E+00 -3.06347674551E+00 -3.17109632742E+00 -3.28223808555E+00 -3.39700005839E+00 -3.51548220731E+00 -3.63778568268E+00 -3.76401328895E+00 -3.89426896332E+00 -4.02865803345E+00 -4.16728682644E+00 -4.31026281954E+00 -4.45769415679E+00 -4.60968990037E+00 -4.76635949639E+00 -4.92781289102E+00 -5.09416009777E+00 -5.26551114857E+00 -5.44197577271E+00 -5.62366314229E+00 -5.81068163249E+00 -6.00313849342E+00 -6.20113951257E+00 -6.40478869570E+00 -6.61418786466E+00 -6.82943624460E+00 -7.05063002931E+00 -7.27786196343E+00 -7.51122072238E+00 -7.75079049750E+00 -7.99665036021E+00 -8.24887363524E+00 -8.50752729290E+00 -8.77267123703E+00 -9.04435754979E+00 -9.32262973478E+00 -9.60752187719E+00 -9.89905777438E+00 -1.01972499948E+01 -1.05020989442E+01 -1.08135917599E+01 -1.11317013033E+01 -1.14563849962E+01 -1.17875836044E+01 -1.21252200226E+01 -1.24691979384E+01 -1.28194004886E+01 -1.31756888179E+01 -1.35379006157E+01 -1.39058485504E+01 -1.42793187105E+01 -1.46580689251E+01 -1.50418270735E+01 -1.54302893361E+01 -1.58231183904E+01 -1.62199415650E+01 -1.66203489645E+01 -1.70238915530E+01 -1.74300792130E+01 -1.78383787830E+01 -1.82482120897E+01 -1.86589539820E+01 -1.90699303555E+01 -1.94804162349E+01 -1.98896338595E+01 -2.02967508435E+01 -2.07008783962E+01 -2.11010696441E+01 -2.14963180432E+01 -2.18855559570E+01 -2.22676533604E+01 -2.26414167635E+01 -2.30055883327E+01 -2.33588452750E+01 -2.36997995088E+01 -2.40269976473E+01 -2.43389213700E+01 -2.46339881780E+01 -2.49105526262E+01 -2.51669080361E+01 -2.54012887822E+01 -2.56118731644E+01 -2.57967869589E+01 -2.59541076641E+01 -2.60818695426E+01 -2.61780694749E+01 -2.62406737158E+01 -2.62676255930E+01 -2.62568542183E+01 -2.62062842462E+01 -2.61138467654E+01 -2.59774913238E+01 -2.57951991893E+01 -2.55649978154E+01 -2.52849766019E+01 -2.49533039230E+01 -2.45682454442E+01 -2.41281837275E+01 -2.36316390810E+01 -2.30772916297E+01 -2.24640045166E+01 -2.17908481801E+01 -2.10571255621E+01 -2.02623981249E+01 -1.94065124923E+01 -1.84896275187E+01 -1.75122415362E+01 -1.64752195032E+01 -1.53798197485E+01 -1.42277199296E+01 -1.30210418437E+01 -1.17623746179E+01 -1.04547958366E+01 -9.10189007323E+00 -7.70776429763E+00 -6.27705956787E+00 -4.81495844348E+00 -3.32718746160E+00 -1.82001411126E+00 -3.00237642667E-01 1.22482685486E+00 2.74737169289E+00 4.25912767765E+00 5.75140351678E+00 7.21513393711E+00 8.64093684700E+00 1.00191796967E+01 1.13400551600E+01 1.25936660446E+01 1.37701192239E+01 1.48596282290E+01 1.58526239316E+01 1.67398726312E+01 1.75126006438E+01 1.81626243514E+01 1.86824845449E+01 1.90655836989E+01 1.93063248127E+01 1.94002502804E+01 1.93441792897E+01 1.91363422064E+01 1.87765104446E+01 1.82661203956E+01 1.76083900684E+01 1.68084272089E+01 1.58733277889E+01 1.48122638345E+01 1.36365596737E+01 1.23597556925E+01 1.09976586646E+01 9.56837766357E+00 8.09234435000E+00 6.59231630573E+00 5.09336179442E+00 3.62282423810E+00 2.21026468296E+00 8.87380837468E-01 -3.12097873444E-01 -1.35253818217E+00 -2.19655029179E+00 -2.80514395058E+00 -3.13790536588E+00 -3.15291705846E+00 -2.80886386147E+00 -2.04520378109E+00 -9.74191848956E-01 -5.75062695722E-01 -3.54741525324E-01 -1.74573270732E-01 -6.03646929523E-02 -8.76409620115E-03 4.78744676293E-08 3.14209160257E-06 5.72038066728E-06 7.95298869306E-06 9.84567391332E-06 1.14205425145E-05 2.10 2.40 5D 4 2 Beta L 990 1.54072382518E-13 1.59959795950E-13 1.66072179206E-13 1.72418128833E-13 1.79006569868E-13 1.85846768394E-13 1.92948344565E-13 2.00321286144E-13 2.07975962546E-13 2.15923139420E-13 2.24173993793E-13 2.32740129790E-13 2.41633594950E-13 2.50866897175E-13 2.60453022317E-13 2.70405452446E-13 2.80738184805E-13 2.91465751504E-13 3.02603239949E-13 3.14166314071E-13 3.26171236347E-13 3.38634890679E-13 3.51574806133E-13 3.65009181599E-13 3.78956911380E-13 3.93437611772E-13 4.08471648644E-13 4.24080166090E-13 4.40285116159E-13 4.57109289732E-13 4.74576348577E-13 4.92710858623E-13 5.11538324515E-13 5.31085225478E-13 5.51379052564E-13 5.72448347311E-13 5.94322741887E-13 6.17033000765E-13 6.40611063989E-13 6.65090092096E-13 6.90504512753E-13 7.16890069179E-13 7.44283870409E-13 7.72724443492E-13 8.02251787671E-13 8.32907430639E-13 8.64734486947E-13 8.97777718638E-13 9.32083598201E-13 9.67700373934E-13 1.00467813780E-12 1.04306889587E-12 1.08292664147E-12 1.12430743113E-12 1.16726946341E-12 1.21187316073E-12 1.25818125441E-12 1.30625887283E-12 1.35617363307E-12 1.40799573597E-12 1.46179806492E-12 1.51765628831E-12 1.57564896597E-12 1.63585765966E-12 1.69836704777E-12 1.76326504444E-12 1.83064292317E-12 1.90059544520E-12 1.97322099280E-12 2.04862170762E-12 2.12690363432E-12 2.20817686979E-12 2.29255571789E-12 2.38015885028E-12 2.47110947331E-12 2.56553550129E-12 2.66356973637E-12 2.76535005536E-12 2.87101960359E-12 2.98072699630E-12 3.09462652757E-12 3.21287838740E-12 3.33564888696E-12 3.46311069248E-12 3.59544306814E-12 3.73283212816E-12 3.87547109853E-12 4.02356058882E-12 4.17730887429E-12 4.33693218878E-12 4.50265502891E-12 4.67471046971E-12 4.85334049252E-12 5.03879632523E-12 5.23133879568E-12 5.43123869845E-12 5.63877717572E-12 5.85424611268E-12 6.07794854802E-12 6.31019910017E-12 6.55132440974E-12 6.80166359893E-12 7.06156874848E-12 7.33140539285E-12 7.61155303429E-12 7.90240567657E-12 8.20437237918E-12 8.51787783253E-12 8.84336295536E-12 9.18128551474E-12 9.53212076997E-12 9.89636214095E-12 1.02745219021E-11 1.06671319030E-11 1.10747443161E-11 1.14979324135E-11 1.19372913732E-11 1.23934391162E-11 1.28670171755E-11 1.33586915981E-11 1.38691538823E-11 1.43991219499E-11 1.49493411557E-11 1.55205853362E-11 1.61136578976E-11 1.67293929460E-11 1.73686564602E-11 1.80323475100E-11 1.87213995203E-11 1.94367815839E-11 2.01794998248E-11 2.09505988130E-11 2.17511630335E-11 2.25823184116E-11 2.34452338965E-11 2.43411231054E-11 2.52712460302E-11 2.62369108094E-11 2.72394755683E-11 2.82803503289E-11 2.93609989927E-11 3.04829414001E-11 3.16477554674E-11 3.28570794065E-11 3.41126140283E-11 3.54161251355E-11 3.67694460052E-11 3.81744799680E-11 3.96332030844E-11 4.11476669243E-11 4.27200014520E-11 4.43524180220E-11 4.60472124891E-11 4.78067684374E-11 4.96335605324E-11 5.15301580016E-11 5.34992282476E-11 5.55435406001E-11 5.76659702102E-11 5.98695020942E-11 6.21572353320E-11 6.45323874256E-11 6.69982988239E-11 6.95584376213E-11 7.22164044349E-11 7.49759374684E-11 7.78409177700E-11 8.08153746904E-11 8.39034915499E-11 8.71096115216E-11 9.04382437401E-11 9.38940696431E-11 9.74819495552E-11 1.01206929524E-10 1.05074248416E-10 1.09089345286E-10 1.13257867026E-10 1.17585676306E-10 1.22078859821E-10 1.26743736852E-10 1.31586868149E-10 1.36615065166E-10 1.41835399631E-10 1.47255213502E-10 1.52882129284E-10 1.58724060755E-10 1.64789224094E-10 1.71086149437E-10 1.77623692871E-10 1.84411048896E-10 1.91457763349E-10 1.98773746833E-10 2.06369288656E-10 2.14255071301E-10 2.22442185448E-10 2.30942145576E-10 2.39766906155E-10 2.48928878459E-10 2.58440948020E-10 2.68316492755E-10 2.78569401776E-10 2.89214094924E-10 3.00265543056E-10 3.11739289089E-10 3.23651469871E-10 3.36018838869E-10 3.48858789734E-10 3.62189380762E-10 3.76029360293E-10 3.90398193080E-10 4.05316087662E-10 4.20804024785E-10 4.36883786915E-10 4.53577988865E-10 4.70910109610E-10 4.88904525299E-10 5.07586543544E-10 5.26982439014E-10 5.47119490381E-10 5.68026018692E-10 5.89731427199E-10 6.12266242708E-10 6.35662158518E-10 6.59952078989E-10 6.85170165826E-10 7.11351886119E-10 7.38534062225E-10 7.66754923560E-10 7.96054160359E-10 8.26472979503E-10 8.58054162468E-10 8.90842125497E-10 9.24882982066E-10 9.60224607738E-10 9.96916707498E-10 1.03501088566E-09 1.07456071843E-09 1.11562182929E-09 1.15825196718E-09 1.20251108777E-09 1.24846143773E-09 1.29616764232E-09 1.34569679624E-09 1.39711855803E-09 1.45050524801E-09 1.50593195002E-09 1.56347661699E-09 1.62322018058E-09 1.68524666502E-09 1.74964330529E-09 1.81650066976E-09 1.88591278762E-09 1.95797728110E-09 2.03279550277E-09 2.11047267807E-09 2.19111805333E-09 2.27484504940E-09 2.36177142117E-09 2.45201942315E-09 2.54571598149E-09 2.64299287239E-09 2.74398690751E-09 2.84884012636E-09 2.95769999604E-09 3.07071961869E-09 3.18805794677E-09 3.30988000663E-09 3.43635713062E-09 3.56766719802E-09 3.70399488525E-09 3.84553192559E-09 3.99247737881E-09 4.14503791116E-09 4.30342808602E-09 4.46787066568E-09 4.63859692459E-09 4.81584697468E-09 4.99987010304E-09 5.19092512250E-09 5.38928073566E-09 5.59521591277E-09 5.80902028410E-09 6.03099454725E-09 6.26145089012E-09 6.50071342988E-09 6.74911866889E-09 7.00701596793E-09 7.27476803757E-09 7.55275144825E-09 7.84135715993E-09 8.14099107192E-09 8.45207459376E-09 8.77504523790E-09 9.11035723498E-09 9.45848217274E-09 9.81990965920E-09 1.01951480113E-08 1.05847249697E-08 1.09891884412E-08 1.14091072693E-08 1.18450720337E-08 1.22976958819E-08 1.27676153907E-08 1.32554914616E-08 1.37620102509E-08 1.42878841339E-08 1.48338527073E-08 1.54006838294E-08 1.59891746998E-08 1.66001529806E-08 1.72344779607E-08 1.78930417640E-08 1.85767706042E-08 1.92866260876E-08 2.00236065653E-08 2.07887485375E-08 2.15831281109E-08 2.24078625127E-08 2.32641116613E-08 2.41530797981E-08 2.50760171807E-08 2.60342218419E-08 2.70290414146E-08 2.80618750275E-08 2.91341752730E-08 3.02474502496E-08 3.14032656836E-08 3.26032471306E-08 3.38490822618E-08 3.51425232381E-08 3.64853891736E-08 3.78795686944E-08 3.93270225949E-08 4.08297865952E-08 4.23899742044E-08 4.40097796930E-08 4.56914811790E-08 4.74374438316E-08 4.92501231980E-08 5.11320686567E-08 5.30859270030E-08 5.51144461714E-08 5.72204791008E-08 5.94069877461E-08 6.16770472446E-08 6.40338502408E-08 6.64807113764E-08 6.90210719520E-08 7.16585047673E-08 7.43967191458E-08 7.72395661514E-08 8.01910440050E-08 8.32553037073E-08 8.64366548772E-08 8.97395718124E-08 9.31686997825E-08 9.67288615622E-08 1.00425064214E-07 1.04262506129E-07 1.08246584342E-07 1.12382902116E-07 1.16677276828E-07 1.21135748146E-07 1.25764586529E-07 1.30570302041E-07 1.35559653507E-07 1.40739658022E-07 1.46117600818E-07 1.51701045510E-07 1.57497844732E-07 1.63516151184E-07 1.69764429099E-07 1.76251466140E-07 1.82986385769E-07 1.89978660070E-07 1.97238123076E-07 2.04774984596E-07 2.12599844579E-07 2.20723708015E-07 2.29158000420E-07 2.37914583898E-07 2.47005773831E-07 2.56444356194E-07 2.66243605538E-07 2.76417303663E-07 2.86979758999E-07 3.00209825143E-07 3.11622056641E-07 3.21356512404E-07 3.33632617905E-07 3.46373900704E-07 3.59605328183E-07 3.73341358565E-07 3.87600997802E-07 4.02407001486E-07 4.17777571235E-07 4.33736607264E-07 4.50304829974E-07 4.67505533193E-07 4.85363758353E-07 5.03903574436E-07 5.23154351607E-07 5.43137379838E-07 5.63886313349E-07 5.85425647217E-07 6.07789476518E-07 6.31009549848E-07 6.55113000144E-07 6.80139065296E-07 7.06123428474E-07 7.33097972632E-07 7.61103090880E-07 7.90181178555E-07 8.20365819784E-07 8.51708099808E-07 8.84245458462E-07 9.18030028324E-07 9.53097683332E-07 9.89512439620E-07 1.02731528922E-06 1.06656216734E-06 1.10730866468E-06 1.14961254690E-06 1.19353651673E-06 1.23913465481E-06 1.28647467790E-06 1.33562660452E-06 1.38665217337E-06 1.43963138958E-06 1.49463401362E-06 1.55173673599E-06 1.61102314548E-06 1.67257422359E-06 1.73647698334E-06 1.80282066648E-06 1.87170211833E-06 1.94321091982E-06 2.01745740824E-06 2.09453877122E-06 2.17456192832E-06 2.25764618415E-06 2.34390395341E-06 2.43345859709E-06 2.52643542572E-06 2.62296643467E-06 2.72318279749E-06 2.82722889346E-06 2.93525073154E-06 3.04739708961E-06 3.16383662400E-06 3.28471867270E-06 3.41022170828E-06 3.54052121588E-06 3.67579691502E-06 3.81624311872E-06 3.96206081969E-06 4.11343831680E-06 4.27061190692E-06 4.43378639176E-06 4.60319462937E-06 4.77907486643E-06 4.96168283479E-06 5.15125614436E-06 5.34808373848E-06 5.55243073272E-06 5.76458123010E-06 5.98484425253E-06 6.21351736266E-06 6.45093279794E-06 6.69741873047E-06 6.95331651776E-06 7.21900119578E-06 7.49483732042E-06 7.78120934006E-06 8.07852919806E-06 8.38719774123E-06 8.70767146948E-06 9.04039038831E-06 9.38581727002E-06 9.74444470036E-06 1.01167776137E-05 1.05033359010E-05 1.09046666647E-05 1.13213272692E-05 1.17539139069E-05 1.22030268260E-05 1.26693039181E-05 1.31533950994E-05 1.36559788780E-05 1.41777755844E-05 1.47195025484E-05 1.52819310516E-05 1.58658519372E-05 1.64720895544E-05 1.71014832968E-05 1.77549273130E-05 1.84333392430E-05 1.91376758449E-05 1.98689209848E-05 2.06281122232E-05 2.14163109922E-05 2.22346195259E-05 2.30842027659E-05 2.39662460398E-05 2.48819946433E-05 2.58327337199E-05 2.68197943744E-05 2.78445759797E-05 2.89085092431E-05 3.00131086905E-05 3.11598922907E-05 3.23505085508E-05 3.35866161147E-05 3.48699422488E-05 3.62023148952E-05 3.75855938736E-05 3.90217270850E-05 4.05127361472E-05 4.20607144103E-05 4.36678341426E-05 4.53363533739E-05 4.70686467481E-05 4.88670953401E-05 5.07343013030E-05 5.26728206918E-05 5.46854181988E-05 5.67749157124E-05 5.89442406418E-05 6.11964542427E-05 6.35347302863E-05 6.59623260257E-05 6.84826941952E-05 7.10993486818E-05 7.38159906751E-05 7.66364334600E-05 7.95646289802E-05 8.26046951048E-05 8.57609328002E-05 8.90377318501E-05 9.24397566869E-05 9.59717592866E-05 9.96386899977E-05 1.03445733314E-04 1.07398233741E-04 1.11501741745E-04 1.15762023269E-04 1.20185094750E-04 1.24777125742E-04 1.29544627385E-04 1.34494245305E-04 1.39632983134E-04 1.44968046526E-04 1.50506931420E-04 1.56257435156E-04 1.62227637443E-04 1.68425939469E-04 1.74861020877E-04 1.81541969944E-04 1.88478150886E-04 1.95679313666E-04 2.03155603951E-04 2.10917508680E-04 2.18975932390E-04 2.27342247199E-04 2.36028032309E-04 2.45047031234E-04 2.54397046058E-04 2.64235570545E-04 2.73174338296E-04 2.87806538156E-04 2.89103246440E-04 3.14281475329E-04 3.13300379092E-04 3.30879597652E-04 3.49075947218E-04 3.51359011536E-04 3.75154322198E-04 3.76049640412E-04 4.10328333048E-04 4.02200544381E-04 4.36616685540E-04 4.47441582011E-04 4.63219759231E-04 4.72942219470E-04 5.15180993612E-04 5.05905171269E-04 5.38560056681E-04 5.57230209817E-04 5.90882470476E-04 5.99667828914E-04 6.23137521401E-04 6.50397543641E-04 6.73583315972E-04 7.00558431336E-04 7.22615416280E-04 7.60285019430E-04 7.84768514983E-04 8.06090192102E-04 8.48254606061E-04 8.81295814590E-04 9.05704175174E-04 9.44719142084E-04 9.81691425616E-04 1.01651852021E-03 1.06117932517E-03 1.09300900146E-03 1.13841410313E-03 1.20431127194E-03 1.19309867962E-03 1.30973192114E-03 1.29314357583E-03 1.39466843107E-03 1.42114458665E-03 1.48743363159E-03 1.52534244982E-03 1.61195664344E-03 1.65093090493E-03 1.72100705191E-03 1.78108318676E-03 1.87283879705E-03 1.91922367361E-03 1.98490423878E-03 2.09039000715E-03 2.15518183619E-03 2.23553232785E-03 2.31522418322E-03 2.42442135754E-03 2.50005030735E-03 2.59523825103E-03 2.70707246457E-03 2.78148299850E-03 2.93289406208E-03 3.00170703253E-03 3.15638146563E-03 3.24047930309E-03 3.37968800144E-03 3.51436751429E-03 3.63554610393E-03 3.78294527145E-03 3.92275701480E-03 4.08458993278E-03 4.22363866962E-03 4.39265102257E-03 4.56333901453E-03 4.73120210651E-03 4.91715559715E-03 5.10253025213E-03 5.29460427335E-03 5.49988331597E-03 5.71188781716E-03 5.92381790304E-03 6.16135089690E-03 6.38562099902E-03 6.62398874179E-03 6.89375765605E-03 7.14195891970E-03 7.42601552798E-03 7.70034207086E-03 7.99836404706E-03 8.30602482260E-03 8.61684052761E-03 8.94769461240E-03 9.29322767934E-03 9.64192946533E-03 1.00100648919E-02 1.03987224719E-02 1.07873494940E-02 1.12020643626E-02 1.16307370293E-02 1.20718261786E-02 1.25323865209E-02 1.30143793528E-02 1.35044069450E-02 1.40219232856E-02 1.45582689484E-02 1.51113031879E-02 1.56868490862E-02 1.62883344955E-02 1.69047676359E-02 1.75525135351E-02 1.82172645655E-02 1.89165650740E-02 1.96355056353E-02 2.03819991632E-02 2.11611740020E-02 2.19648282761E-02 2.28037837023E-02 2.36715921468E-02 2.45727837471E-02 2.55097761969E-02 2.64800638171E-02 2.74902108182E-02 2.85339286324E-02 2.96233918887E-02 3.07503626882E-02 3.19206897222E-02 3.31346162411E-02 3.43977092867E-02 3.57053505041E-02 3.70646035920E-02 3.84734655804E-02 3.99395502437E-02 4.14568913129E-02 4.30343826745E-02 4.46714392531E-02 4.63687648115E-02 4.81331349507E-02 4.99627092299E-02 5.18607663840E-02 5.38334415789E-02 5.58772245440E-02 5.80019607758E-02 6.02051856968E-02 6.24910520755E-02 6.48655182989E-02 6.73282505529E-02 6.98839728943E-02 7.25375271274E-02 7.52900897316E-02 7.81477357260E-02 8.11119164899E-02 8.41892316680E-02 8.73823758248E-02 9.06954926539E-02 9.41342039579E-02 9.77021903159E-02 1.01405085729E-01 1.05246375690E-01 1.09233899994E-01 1.13370560185E-01 1.17662957747E-01 1.22117069081E-01 1.26738782981E-01 1.31534161397E-01 1.36509063876E-01 1.41671780858E-01 1.47027788259E-01 1.52584695246E-01 1.58350481501E-01 1.64331718883E-01 1.70537873228E-01 1.76975422887E-01 1.83655096973E-01 1.90583956751E-01 1.97771852786E-01 2.05228390654E-01 2.12963863129E-01 2.20987399619E-01 2.29310561453E-01 2.37943934183E-01 2.46899131792E-01 2.56187273864E-01 2.65821260256E-01 2.75813515794E-01 2.86176691630E-01 2.96924869706E-01 3.08071437522E-01 3.19631416217E-01 3.31619616241E-01 3.44051088550E-01 3.56942412086E-01 3.70310190937E-01 3.84171055194E-01 3.98543149097E-01 4.13444837754E-01 4.28894836173E-01 4.44913028198E-01 4.61519582198E-01 4.78735431458E-01 4.96582470810E-01 5.15082694082E-01 5.34259699580E-01 5.54137112585E-01 5.74739799107E-01 5.96093256441E-01 6.18223791230E-01 6.41158601639E-01 6.64925986446E-01 6.89554892054E-01 7.15075041003E-01 7.41517713538E-01 7.68914564120E-01 7.97298559873E-01 8.26703655590E-01 8.57164770862E-01 8.88718124836E-01 9.21400829085E-01 9.55251078755E-01 9.90308677309E-01 1.02661398312E+00 1.06420911959E+00 1.10313707137E+00 1.14344224310E+00 1.18517045284E+00 1.22836851813E+00 1.27308488481E+00 1.31936919567E+00 1.36727256313E+00 1.41684738988E+00 1.46814766729E+00 1.52122865547E+00 1.57614716113E+00 1.63296154621E+00 1.69173145154E+00 1.75251822802E+00 1.81538462455E+00 1.88039489821E+00 1.94761498571E+00 2.01711212615E+00 2.08895522411E+00 2.16321474375E+00 2.23996254312E+00 2.31927205781E+00 2.40121820666E+00 2.48587737152E+00 2.57332733783E+00 2.66364742427E+00 2.75691808716E+00 2.85322139189E+00 2.95264044002E+00 3.05525973458E+00 3.16116477402E+00 3.27044225447E+00 3.38317976559E+00 3.49946590904E+00 3.61938992141E+00 3.74304187151E+00 3.87051224285E+00 4.00189202485E+00 4.13727237438E+00 4.27674457715E+00 4.42039979625E+00 4.56832887202E+00 4.72062213370E+00 4.87736914069E+00 5.03865841739E+00 5.20457720056E+00 5.37521112238E+00 5.55064388422E+00 5.73095691271E+00 5.91622902879E+00 6.10653595754E+00 6.30194999808E+00 6.50253951993E+00 6.70836846552E+00 6.91949586700E+00 7.13597528050E+00 7.35785418556E+00 7.58517338259E+00 7.81796632402E+00 8.05625842153E+00 8.30006629582E+00 8.54939703088E+00 8.80424729259E+00 9.06460252248E+00 9.33043600806E+00 9.60170791032E+00 9.87836429041E+00 1.01603360403E+01 1.04475378054E+01 1.07398668289E+01 1.10372017771E+01 1.13394014824E+01 1.16463036894E+01 1.19577237044E+01 1.22734530344E+01 1.25932579764E+01 1.29168781634E+01 1.32440250726E+01 1.35743805100E+01 1.39075950582E+01 1.42432865042E+01 1.45810382448E+01 1.49203976880E+01 1.52608746500E+01 1.56019397437E+01 1.59430228084E+01 1.62835113397E+01 1.66227489740E+01 1.69600340176E+01 1.72946180529E+01 1.76257046117E+01 1.79524479758E+01 1.82739520740E+01 1.85892695486E+01 1.88974009747E+01 1.91972942831E+01 1.94878444066E+01 1.97678931704E+01 2.00362294847E+01 2.02915898389E+01 2.05326591691E+01 2.07580721036E+01 2.09664146587E+01 2.11562263976E+01 2.13260031228E+01 2.14742001189E+01 2.15992360236E+01 2.16994973423E+01 2.17733436777E+01 2.18191137075E+01 2.18351319665E+01 2.18197164616E+01 2.17711871902E+01 2.16878755620E+01 2.15681348084E+01 2.14103513558E+01 2.12129572363E+01 2.09744435172E+01 2.06933747664E+01 2.03684045571E+01 1.99982919802E+01 1.95819191466E+01 1.91183096115E+01 1.86066476817E+01 1.80462984917E+01 1.74368287560E+01 1.67780280546E+01 1.60699304991E+01 1.53128365838E+01 1.45073350065E+01 1.36543242186E+01 1.27550334048E+01 1.18110426073E+01 1.08243016236E+01 9.79714732480E+00 8.73231897573E+00 7.63297113624E+00 6.50268367467E+00 5.34546844466E+00 4.16577210115E+00 2.96847460297E+00 1.75888287183E+00 5.42719151570E-01 -6.73896405025E-01 -1.88446935579E+00 -3.08216117011E+00 -4.25982633848E+00 -5.41005666815E+00 -6.52523290106E+00 -7.59758376645E+00 -8.61925241028E+00 -9.58237005313E+00 -1.04791366058E+01 -1.13019078059E+01 -1.20432883448E+01 -1.26962302818E+01 -1.32541359291E+01 -1.37109642892E+01 -1.40613399689E+01 -1.43006634851E+01 -1.44252217392E+01 -1.44322974600E+01 -1.43202763766E+01 -1.40887509127E+01 -1.37386192461E+01 -1.32721786390E+01 -1.26932120291E+01 -1.20070669756E+01 -1.12207261080E+01 -1.03428683257E+01 -9.38392000225E+00 -8.35609544040E+00 -7.27342578965E+00 -6.15177547762E+00 -5.00884512701E+00 -3.86415971051E+00 -2.73904064004E+00 -1.65656048347E+00 -6.41479253962E-01 2.79838103609E-01 1.07952214111E+00 1.72831445918E+00 2.19568998283E+00 2.44999526976E+00 2.45838631086E+00 2.18846841010E+00 1.59285262515E+00 7.58699518057E-01 4.48046185353E-01 2.76491643578E-01 1.36114356307E-01 4.70802353832E-02 6.83455764305E-03 -3.49346663795E-06 -5.70110159848E-06 -7.51700062631E-06 -9.07330291704E-06 -1.03740509153E-05 -1.14360297139E-05 2.10 2.40 5D 5 1 Beta L 1017 1.26759593980E-09 1.29968528379E-09 1.33258697339E-09 1.36632157322E-09 1.40091016852E-09 1.43637437828E-09 1.47273636878E-09 1.51001886746E-09 1.54824517708E-09 1.58743919033E-09 1.62762540476E-09 1.66882893805E-09 1.71107554374E-09 1.75439162736E-09 1.79880426285E-09 1.84434120956E-09 1.89103092956E-09 1.93890260545E-09 1.98798615859E-09 2.03831226779E-09 2.08991238851E-09 2.14281877251E-09 2.19706448799E-09 2.25268344030E-09 2.30971039308E-09 2.36818099006E-09 2.42813177724E-09 2.48960022582E-09 2.55262475558E-09 2.61724475892E-09 2.68350062542E-09 2.75143376717E-09 2.82108664460E-09 2.89250279300E-09 2.96572684982E-09 3.04080458245E-09 3.11778291693E-09 3.19670996723E-09 3.27763506532E-09 3.36060879202E-09 3.44568300862E-09 3.53291088925E-09 3.62234695420E-09 3.71404710391E-09 3.80806865396E-09 3.90447037088E-09 4.00331250889E-09 4.10465684753E-09 4.20856673031E-09 4.31510710431E-09 4.42434456070E-09 4.53634737647E-09 4.65118555703E-09 4.76893087996E-09 4.88965693993E-09 5.01343919465E-09 5.14035501208E-09 5.27048371871E-09 5.40390664924E-09 5.54070719733E-09 5.68097086779E-09 5.82478532996E-09 5.97224047257E-09 6.12342845989E-09 6.27844378933E-09 6.43738335051E-09 6.60034648584E-09 6.76743505258E-09 6.93875348652E-09 7.11440886726E-09 7.29451098513E-09 7.47917240982E-09 7.66850856073E-09 7.86263777912E-09 8.06168140206E-09 8.26576383830E-09 8.47501264601E-09 8.68955861250E-09 8.90953583598E-09 9.13508180939E-09 9.36633750629E-09 9.60344746903E-09 9.84655989904E-09 1.00958267495E-08 1.03514038203E-08 1.06134508555E-08 1.08821316430E-08 1.11576141169E-08 1.14400704629E-08 1.17296772253E-08 1.20266154178E-08 1.23310706364E-08 1.26432331756E-08 1.29632981471E-08 1.32914656018E-08 1.36279406553E-08 1.39729336152E-08 1.43266601135E-08 1.46893412408E-08 1.50612036844E-08 1.54424798707E-08 1.58334081095E-08 1.62342327438E-08 1.66452043020E-08 1.70665796547E-08 1.74986221753E-08 1.79416019042E-08 1.83957957185E-08 1.88614875038E-08 1.93389683328E-08 1.98285366465E-08 2.03304984410E-08 2.08451674589E-08 2.13728653849E-08 2.19139220475E-08 2.24686756247E-08 2.30374728555E-08 2.36206692568E-08 2.42186293452E-08 2.48317268653E-08 2.54603450229E-08 2.61048767250E-08 2.67657248247E-08 2.74433023737E-08 2.81380328799E-08 2.88503505726E-08 2.95807006735E-08 3.03295396751E-08 3.10973356263E-08 3.18845684245E-08 3.26917301157E-08 3.35193252024E-08 3.43678709584E-08 3.52378977525E-08 3.61299493795E-08 3.70445834010E-08 3.79823714929E-08 3.89438998032E-08 3.99297693185E-08 4.09405962394E-08 4.19770123654E-08 4.30396654905E-08 4.41292198074E-08 4.52463563231E-08 4.63917732842E-08 4.75661866135E-08 4.87703303577E-08 5.00049571458E-08 5.12708386596E-08 5.25687661164E-08 5.38995507630E-08 5.52640243832E-08 5.66630398173E-08 5.80974714956E-08 5.95682159845E-08 6.10761925471E-08 6.26223437180E-08 6.42076358918E-08 6.58330599279E-08 6.74996317691E-08 6.92083930770E-08 7.09604118831E-08 7.27567832561E-08 7.45986299866E-08 7.64871032888E-08 7.84233835198E-08 8.04086809179E-08 8.24442363585E-08 8.45313221300E-08 8.66712427289E-08 8.88653356753E-08 9.11149723485E-08 9.34215588448E-08 9.57865368556E-08 9.82113845693E-08 1.00697617595E-07 1.03246789908E-07 1.05860494825E-07 1.08540365996E-07 1.11288078429E-07 1.14105349531E-07 1.16993940191E-07 1.19955655871E-07 1.22992347739E-07 1.26105913827E-07 1.29298300214E-07 1.32571502247E-07 1.35927565782E-07 1.39368588470E-07 1.42896721060E-07 1.46514168751E-07 1.50223192565E-07 1.54026110762E-07 1.57925300290E-07 1.61923198270E-07 1.66022303517E-07 1.70225178106E-07 1.74534448970E-07 1.78952809544E-07 1.83483021446E-07 1.88127916206E-07 1.92890397035E-07 1.97773440637E-07 2.02780099075E-07 2.07913501672E-07 2.13176856971E-07 2.18573454742E-07 2.24106668033E-07 2.29779955282E-07 2.35596862478E-07 2.41561025378E-07 2.47676171777E-07 2.53946123840E-07 2.60374800492E-07 2.66966219863E-07 2.73724501806E-07 2.80653870467E-07 2.87758656926E-07 2.95043301905E-07 3.02512358544E-07 3.10170495247E-07 3.18022498597E-07 3.26073276353E-07 3.34327860511E-07 3.42791410456E-07 3.51469216180E-07 3.60366701595E-07 3.69489427917E-07 3.78843097147E-07 3.88433555633E-07 3.98266797722E-07 4.08348969510E-07 4.18686372681E-07 4.29285468450E-07 4.40152881594E-07 4.51295404599E-07 4.62720001905E-07 4.74433814256E-07 4.86444163165E-07 4.98758555490E-07 5.11384688125E-07 5.24330452814E-07 5.37603941080E-07 5.51213449283E-07 5.65167483808E-07 5.79474766380E-07 5.94144239514E-07 6.09185072107E-07 6.24606665167E-07 6.40418657691E-07 6.56630932686E-07 6.73253623351E-07 6.90297119406E-07 7.07772073588E-07 7.25689408312E-07 7.44060322492E-07 7.62896298544E-07 7.82209109565E-07 8.02010826688E-07 8.22313826627E-07 8.43130799416E-07 8.64474756337E-07 8.86359038054E-07 9.08797322953E-07 9.31803635689E-07 9.55392355951E-07 9.79578227454E-07 1.00437636715E-06 1.02980227468E-06 1.05587184206E-06 1.08260136362E-06 1.11000754616E-06 1.13810751944E-06 1.16691884685E-06 1.19645953641E-06 1.22674805200E-06 1.25780332491E-06 1.28836451554E-06 1.32100857654E-06 1.35448718064E-06 1.38880200106E-06 1.42399423358E-06 1.46005690094E-06 1.49708976723E-06 1.53499758979E-06 1.57389688275E-06 1.61377877526E-06 1.65464399886E-06 1.69658417646E-06 1.73954840475E-06 1.78364060669E-06 1.82879628571E-06 1.87512780274E-06 1.92266381956E-06 1.97132387545E-06 2.02130262147E-06 2.07247851809E-06 2.12497120905E-06 2.17878540493E-06 2.23401031384E-06 2.29058297885E-06 2.34860218178E-06 2.40810578316E-06 2.46907629246E-06 2.53160796690E-06 2.59573725856E-06 2.66152024949E-06 2.72885954540E-06 2.79801742436E-06 2.86889146600E-06 2.94151884988E-06 3.01602696305E-06 3.09241237223E-06 3.17073835394E-06 3.25102305520E-06 3.33336282864E-06 3.41778070916E-06 3.50433964348E-06 3.59308173849E-06 3.68405854279E-06 3.77736807223E-06 3.87303274048E-06 3.97109713929E-06 4.07165611890E-06 4.17478014831E-06 4.28049104380E-06 4.38887327959E-06 4.50001679712E-06 4.61395635346E-06 4.73081865871E-06 4.85058372531E-06 4.97342372710E-06 5.09937512678E-06 5.22845916994E-06 5.36088729336E-06 5.49662301278E-06 5.63578639009E-06 5.77849212941E-06 5.92479683668E-06 6.07485581885E-06 6.22864523722E-06 6.38635490046E-06 6.54807605314E-06 6.71384681799E-06 6.88386237188E-06 7.05816103921E-06 7.23685418033E-06 7.42011382858E-06 7.60796264768E-06 7.80060046697E-06 7.99811524247E-06 8.20061036364E-06 8.40825071965E-06 8.62111892416E-06 8.83941219760E-06 9.06321894406E-06 9.29268571202E-06 9.52795440419E-06 9.76916773827E-06 1.00165730539E-05 1.02701338808E-05 1.05301453345E-05 1.07967579592E-05 1.10701146730E-05 1.13503829829E-05 1.16377682165E-05 1.19323784954E-05 1.22344994205E-05 1.25442322684E-05 1.28618643497E-05 1.31874645563E-05 1.35213345251E-05 1.38636829714E-05 1.42146609720E-05 1.45745535548E-05 1.49435116631E-05 1.53218762860E-05 1.57097445031E-05 1.61074851964E-05 1.65152973064E-05 1.69333881209E-05 1.73620936673E-05 1.78016889190E-05 1.82523247832E-05 1.87144187953E-05 1.91882296517E-05 1.96739840834E-05 2.01721035573E-05 2.06827403713E-05 2.12063863989E-05 2.17432680919E-05 2.22937224966E-05 2.28581201107E-05 2.34368204258E-05 2.40301226161E-05 2.46385273963E-05 2.52622554589E-05 2.59018130778E-05 2.65575604844E-05 2.72298516395E-05 2.79192576014E-05 2.86260351808E-05 2.93507268096E-05 3.00938014289E-05 3.08556311164E-05 3.16367893442E-05 3.24376872283E-05 3.32589069484E-05 3.41008888777E-05 3.49641386922E-05 3.58493485609E-05 3.67568594335E-05 3.76874053740E-05 3.86415098238E-05 3.96197166896E-05 4.06227462038E-05 4.16511188954E-05 4.27055642744E-05 4.37866564197E-05 4.48951635760E-05 4.60317187391E-05 4.71970446306E-05 4.83918364722E-05 4.96169417357E-05 5.08729922388E-05 5.21608810370E-05 5.34813592199E-05 5.48352593571E-05 5.62234583025E-05 5.76467254523E-05 5.91061246946E-05 6.06024071278E-05 6.21365863881E-05 6.37095708048E-05 6.53224152823E-05 6.69760930538E-05 6.86715844867E-05 7.04100375673E-05 7.21924833124E-05 7.40200295964E-05 7.58939127729E-05 7.78151468633E-05 7.97850386878E-05 8.18048435434E-05 8.38757001302E-05 8.59990730566E-05 8.81761020891E-05 9.04083201620E-05 9.26969997426E-05 9.50436079606E-05 9.74496803315E-05 9.99165761588E-05 1.02445994228E-04 1.05039377619E-04 1.07698452541E-04 1.10424858301E-04 1.13220217813E-04 1.16086402477E-04 1.19025072037E-04 1.22038183651E-04 1.25127584225E-04 1.28295125597E-04 1.31542903724E-04 1.34872873807E-04 1.38287131097E-04 1.41787841830E-04 1.45377165898E-04 1.49057330910E-04 1.52830665814E-04 1.56699505813E-04 1.60666285601E-04 1.64733502514E-04 1.68903625880E-04 1.73179366746E-04 1.77563300721E-04 1.82058238407E-04 1.86666932258E-04 1.91392282742E-04 1.96237280579E-04 2.01204871802E-04 2.06298260708E-04 2.11520549681E-04 2.16875025623E-04 2.22365070237E-04 2.27994054292E-04 2.33765546732E-04 2.39683131280E-04 2.45750471098E-04 2.51971447156E-04 2.58349835406E-04 2.64889750712E-04 2.71595150315E-04 2.78470278019E-04 2.85519469483E-04 2.92747067231E-04 3.00157648155E-04 3.07755748574E-04 3.15546215315E-04 3.23533872398E-04 3.31723691416E-04 3.40120837853E-04 3.48730518887E-04 3.57558130986E-04 3.66609187665E-04 3.75889303323E-04 3.85404409136E-04 3.95160264094E-04 4.05163075346E-04 4.15419111870E-04 4.25934682362E-04 4.36716482530E-04 4.47771116831E-04 4.59105571278E-04 4.70726917598E-04 4.82642398120E-04 4.94859502220E-04 5.07385797503E-04 5.20229128958E-04 5.33397560366E-04 5.46899233709E-04 5.60742714099E-04 5.74936512807E-04 5.89489533326E-04 6.04410952029E-04 6.19709956028E-04 6.35396238273E-04 6.51479471133E-04 6.67969775687E-04 6.84877413382E-04 7.02212971529E-04 7.19987331684E-04 7.38211415957E-04 7.56896783062E-04 7.76055060127E-04 7.95698112871E-04 8.15838390008E-04 8.36488296060E-04 8.57660806067E-04 8.79369131719E-04 9.01626841391E-04 9.24447803883E-04 9.47846309068E-04 9.71836913267E-04 9.96434647743E-04 1.02165480632E-03 1.04751323142E-03 1.07402598155E-03 1.10120964125E-03 1.12908117362E-03 1.15765799330E-03 1.18695791610E-03 1.21699926711E-03 1.24780074984E-03 1.27938163636E-03 1.31176158727E-03 1.34496088218E-03 1.37900017821E-03 1.41390075022E-03 1.44968437548E-03 1.48637335641E-03 1.52399065417E-03 1.56255969407E-03 1.60210449414E-03 1.64264986672E-03 1.68422092767E-03 1.72684381758E-03 1.77054492971E-03 1.81535168077E-03 1.86129192575E-03 1.90839434453E-03 1.95668837176E-03 2.00620401087E-03 2.05697226987E-03 2.10902472439E-03 2.16239386761E-03 2.21711301563E-03 2.27321619939E-03 2.33073848063E-03 2.38971564650E-03 2.45018452386E-03 2.51218283552E-03 2.57574913616E-03 2.64092308499E-03 2.70774533897E-03 2.77625742041E-03 2.84650259970E-03 2.91852230169E-03 2.99236720489E-03 3.06807417145E-03 3.14569928736E-03 3.22528852893E-03 3.30688470167E-03 3.39054664198E-03 3.47632754176E-03 3.56426990602E-03 3.65444183168E-03 3.74689114485E-03 3.84167739476E-03 3.93885976407E-03 4.03849845234E-03 4.14065771697E-03 4.24539557659E-03 4.35278463375E-03 4.46288555267E-03 4.57576655928E-03 4.69150999743E-03 4.81016417790E-03 4.93182654047E-03 5.05656679382E-03 5.18444464529E-03 5.31556725749E-03 5.44999364807E-03 5.58782664330E-03 5.72912457269E-03 5.87401140254E-03 6.02254379567E-03 6.17483798393E-03 6.33096580775E-03 6.49105371835E-03 6.65516779505E-03 6.82344023166E-03 6.99594952267E-03 7.17282416095E-03 7.35416013641E-03 7.54007608386E-03 7.73067930263E-03 7.92610583261E-03 8.12645056786E-03 8.33186126501E-03 8.54245654459E-03 8.75835878144E-03 8.97971550484E-03 9.20665677402E-03 9.43931723058E-03 9.67785557520E-03 9.92240421861E-03 1.01731217829E-02 1.04301666622E-02 1.06936897366E-02 1.09638558410E-02 1.12408394862E-02 1.15247996959E-02 1.18159187598E-02 1.21143789129E-02 1.24203563998E-02 1.27340445766E-02 1.30556383488E-02 1.33853335045E-02 1.37233307478E-02 1.40698432702E-02 1.44250810560E-02 1.47892625833E-02 1.51626144452E-02 1.55453632764E-02 1.59377460927E-02 1.63400019623E-02 1.67523802459E-02 1.71751327635E-02 1.76085164356E-02 1.80528031577E-02 1.85082594963E-02 1.89751650591E-02 1.94538090352E-02 1.99444804616E-02 2.04474814533E-02 2.09631189284E-02 2.14917068657E-02 2.20335709801E-02 2.25890366195E-02 2.31584481744E-02 2.37421468371E-02 2.43404943840E-02 2.49538480149E-02 2.55825858098E-02 2.62270882038E-02 2.68877452159E-02 2.75649591990E-02 2.82591396392E-02 2.89707089261E-02 2.97000940613E-02 3.04477402800E-02 3.12140937206E-02 3.19996285648E-02 3.28048051330E-02 3.36301101241E-02 3.44760512753E-02 3.53431281162E-02 3.62318588157E-02 3.71428029920E-02 3.80764475525E-02 3.90334278222E-02 4.00142535097E-02 4.10195496002E-02 4.20498893327E-02 4.31059178241E-02 4.41882227348E-02 4.52974905367E-02 4.64343444685E-02 4.75994861634E-02 4.87935820937E-02 5.00173652109E-02 5.12715291762E-02 5.25568413763E-02 5.38740165975E-02 5.52238918633E-02 5.66072062211E-02 5.80247831303E-02 5.94774738996E-02 6.09660984928E-02 6.24915434628E-02 6.40546764295E-02 6.56564267007E-02 6.72977176835E-02 6.89794716749E-02 7.07027166246E-02 7.24683780013E-02 7.42775199913E-02 7.61311518673E-02 7.80303582801E-02 7.99761870043E-02 8.19697906523E-02 8.40122652211E-02 8.61047757272E-02 8.82485266180E-02 9.04446894351E-02 9.26945236639E-02 9.49992830321E-02 9.73602480845E-02 9.97787409718E-02 1.02256098802E-01 1.04793696360E-01 1.07392923026E-01 1.10055222284E-01 1.12782035188E-01 1.15574856635E-01 1.18435205570E-01 1.21364625564E-01 1.24364695435E-01 1.27437030995E-01 1.30583267613E-01 1.33805082818E-01 1.37104182988E-01 1.40482307411E-01 1.43941226491E-01 1.47482745764E-01 1.51108713135E-01 1.54820984747E-01 1.58621487481E-01 1.62512146294E-01 1.66494946387E-01 1.70571896092E-01 1.74745038565E-01 1.79016459749E-01 1.83388262635E-01 1.87862613255E-01 1.92441676689E-01 1.97127689555E-01 2.01922895356E-01 2.06829579314E-01 2.11850073107E-01 2.16986722302E-01 2.22241918532E-01 2.27618087778E-01 2.33117674145E-01 2.38743173230E-01 2.44497092430E-01 2.50381986313E-01 2.56400423197E-01 2.62555011320E-01 2.68848383949E-01 2.75283193325E-01 2.81862125517E-01 2.88587883007E-01 2.95463198679E-01 3.02490811499E-01 3.09673493493E-01 3.17014020137E-01 3.24515192110E-01 3.32179811126E-01 3.40010694139E-01 3.48010664176E-01 3.56182541253E-01 3.64529156214E-01 3.73053320655E-01 3.81757858472E-01 3.90645563625E-01 3.99719228322E-01 4.08981614937E-01 4.18435472332E-01 4.28083505723E-01 4.37928398741E-01 4.47972784791E-01 4.58219253448E-01 4.68670341263E-01 4.79328523574E-01 4.90196206458E-01 5.01275722297E-01 5.12569319268E-01 5.24079151866E-01 5.35807273326E-01 5.47755626246E-01 5.59926028904E-01 5.72320171458E-01 5.84939593797E-01 5.97785684675E-01 6.10859663702E-01 6.24162563047E-01 6.37695227042E-01 6.51458280059E-01 6.65452127355E-01 6.79676926081E-01 6.94132576439E-01 7.08818699017E-01 7.23734617822E-01 7.38879339533E-01 7.54251536345E-01 7.69849517812E-01 7.85671214289E-01 8.01714150192E-01 8.17975419077E-01 8.34451662413E-01 8.51139033462E-01 8.68033179540E-01 8.85129207648E-01 9.02421651533E-01 9.19904447377E-01 9.37570894191E-01 9.55413623512E-01 9.73424563224E-01 9.91594900569E-01 1.00991504465E+00 1.02837458722E+00 1.04696226340E+00 1.06566590591E+00 1.08447241020E+00 1.10336767852E+00 1.12233658853E+00 1.14136293256E+00 1.16042938192E+00 1.17951742866E+00 1.19860734393E+00 1.21767811945E+00 1.23670742248E+00 1.25567153923E+00 1.27454532452E+00 1.29330214552E+00 1.31191383268E+00 1.33035062087E+00 1.34858109925E+00 1.36657215735E+00 1.38428893056E+00 1.40169475156E+00 1.41875109773E+00 1.43541754174E+00 1.45165170819E+00 1.46740922517E+00 1.48264368588E+00 1.49730661020E+00 1.51134741036E+00 1.52471336330E+00 1.53734958662E+00 1.54919902227E+00 1.56020242608E+00 1.57029836610E+00 1.57942323102E+00 1.58751124585E+00 1.59449450142E+00 1.60030299643E+00 1.60486469082E+00 1.60810557779E+00 1.60994977035E+00 1.61031960598E+00 1.60913577469E+00 1.60631746577E+00 1.60178253852E+00 1.59544772289E+00 1.58722884327E+00 1.57704107696E+00 1.56479924255E+00 1.55041812560E+00 1.53381284199E+00 1.51489923957E+00 1.49359434769E+00 1.46981686739E+00 1.44348771534E+00 1.41453061590E+00 1.38287274925E+00 1.34844545758E+00 1.31118500924E+00 1.27103342666E+00 1.22793937958E+00 1.18185914348E+00 1.13275762973E+00 1.08060948273E+00 1.02540025128E+00 9.67127630590E-01 9.05802774854E-01 8.41451684083E-01 7.74116654018E-01 7.03857798683E-01 6.30754628430E-01 5.54907688833E-01 4.76440246896E-01 3.95500017201E-01 3.12260919653E-01 2.26924852204E-01 1.39723466037E-01 5.09199248425E-02 -3.91893752071E-02 -1.30273143685E-01 -2.21963625416E-01 -3.13855148385E-01 -4.05502824547E-01 -4.96421446316E-01 -5.86084615903E-01 -6.73924159775E-01 -7.59329876933E-01 -8.41649676355E-01 -9.20190168076E-01 -9.94217764141E-01 -1.06296036708E+00 -1.12560970816E+00 -1.18132441311E+00 -1.22923387325E+00 -1.26844298986E+00 -1.29803787682E+00 -1.31709258702E+00 -1.32467693400E+00 -1.31986547295E+00 -1.30174768921E+00 -1.26943944164E+00 -1.22209568135E+00 -1.15892445438E+00 -1.07920217499E+00 -9.82290117967E-01 -8.67652063355E-01 -7.34872972222E-01 -5.83678541610E-01 -4.13955438278E-01 -2.25771950206E-01 -1.93987528599E-02 2.04670587911E-01 4.45699807986E-01 7.02691331560E-01 9.74369423323E-01 1.25916573080E+00 1.55520791402E+00 1.86031210686E+00 2.17197999978E+00 2.48740137268E+00 2.80346291018E+00 3.11676413898E+00 3.42364128544E+00 3.72019979420E+00 4.00235615663E+00 4.26588955406E+00 4.50650365454E+00 4.71989867303E+00 4.90185353376E+00 5.04831766393E+00 5.15551156970E+00 5.22003494537E+00 5.23898060678E+00 5.21005205334E+00 5.13168194844E+00 5.00314826557E+00 4.82468430253E+00 4.59757820979E+00 4.32425712326E+00 4.00835045019E+00 3.65472629475E+00 3.26949446108E+00 2.85996887298E+00 2.43458160059E+00 2.00273994013E+00 1.57461709083E+00 1.16086588303E+00 7.72243657153E-01 4.19134744240E-01 1.10955022224E-01 -1.44579278641E-01 -3.42338920864E-01 -4.80848316516E-01 -5.63557487227E-01 -6.00348120561E-01 -6.05421205161E-01 -5.83963784368E-01 -5.38479673325E-01 -4.71852256592E-01 -3.87339064022E-01 -2.88560395945E-01 -1.79481395994E-01 -6.43869984376E-02 5.21507734458E-02 1.65313614950E-01 2.70086221584E-01 3.61314301514E-01 4.33771434786E-01 4.82234787054E-01 5.01568931441E-01 4.86822316915E-01 4.33287291293E-01 3.36992847777E-01 1.91061470967E-01 2.23009623422E-02 -2.25780418558E-03 1.81177224673E-04 -5.68059000914E-05 -2.96662412909E-05 -2.90774210197E-05 -2.61066668833E-05 -2.36076103107E-05 -2.12840221612E-05 -1.91521263194E-05 -1.71976529397E-05 -1.54100758754E-05 -1.37787083243E-05 3.30 3.30 6P 6 1 Beta L 1017 1.21766554672E-09 1.24849089679E-09 1.28009659431E-09 1.31250239388E-09 1.34572855017E-09 1.37979583061E-09 1.41472552836E-09 1.45053947561E-09 1.48726005726E-09 1.52491022486E-09 1.56351351099E-09 1.60309404396E-09 1.64367656289E-09 1.68528643318E-09 1.72794966235E-09 1.77169291631E-09 1.81654353602E-09 1.86252955457E-09 1.90967971472E-09 1.95802348686E-09 2.00759108741E-09 2.05841349775E-09 2.11052248353E-09 2.16395061457E-09 2.21873128518E-09 2.27489873507E-09 2.33248807072E-09 2.39153528735E-09 2.45207729138E-09 2.51415192354E-09 2.57779798250E-09 2.64305524911E-09 2.70996451128E-09 2.77856758950E-09 2.84890736290E-09 2.92102779615E-09 2.99497396686E-09 3.07079209379E-09 3.14852956574E-09 3.22823497116E-09 3.30995812852E-09 3.39375011747E-09 3.47966331071E-09 3.56775140680E-09 3.65806946365E-09 3.75067393299E-09 3.84562269564E-09 3.94297509766E-09 4.04279198747E-09 4.14513575387E-09 4.25007036505E-09 4.35766140856E-09 4.46797613231E-09 4.58108348658E-09 4.69705416715E-09 4.81596065948E-09 4.93787728400E-09 5.06288024255E-09 5.19104766607E-09 5.32245966336E-09 5.45719837120E-09 5.59534800566E-09 5.73699491477E-09 5.88222763245E-09 6.03113693389E-09 6.18381589223E-09 6.34035993681E-09 6.50086691274E-09 6.66543714211E-09 6.83417348667E-09 7.00718141212E-09 7.18456905406E-09 7.36644728553E-09 7.55292978635E-09 7.74413311415E-09 7.94017677723E-09 8.14118330928E-09 8.34727834590E-09 8.55859070321E-09 8.77525245831E-09 8.99739903185E-09 9.22516927267E-09 9.45870554459E-09 9.69815381537E-09 9.94366374798E-09 1.01953887941E-08 1.04534862901E-08 1.07181175554E-08 1.09894479930E-08 1.12676471933E-08 1.15528890399E-08 1.18453518182E-08 1.21452183270E-08 1.24526759926E-08 1.27679169861E-08 1.30911383433E-08 1.34225420881E-08 1.37623353586E-08 1.41107305367E-08 1.44679453808E-08 1.48342031616E-08 1.52097328023E-08 1.55947690211E-08 1.59895524782E-08 1.63943299261E-08 1.68093543638E-08 1.72348851952E-08 1.76711883909E-08 1.81185366545E-08 1.85772095933E-08 1.90474938929E-08 1.95296834961E-08 2.00240797873E-08 2.05309917801E-08 2.10507363111E-08 2.15836382375E-08 2.21300306404E-08 2.26902550328E-08 2.32646615732E-08 2.38536092844E-08 2.44574662778E-08 2.50766099838E-08 2.57114273873E-08 2.63623152698E-08 2.70296804575E-08 2.77139400753E-08 2.84155218078E-08 2.91348641663E-08 2.98724167634E-08 3.06286405932E-08 3.14040083205E-08 3.21990045751E-08 3.30141262557E-08 3.38498828398E-08 3.47067967026E-08 3.55854034430E-08 3.64862522188E-08 3.74099060900E-08 3.83569423701E-08 3.93279529878E-08 4.03235448561E-08 4.13443402526E-08 4.23909772075E-08 4.34641099029E-08 4.45644090818E-08 4.56925624669E-08 4.68492751908E-08 4.80352702367E-08 4.92512888900E-08 5.04980912019E-08 5.17764564645E-08 5.30871836976E-08 5.44310921486E-08 5.58090218038E-08 5.72218339141E-08 5.86704115331E-08 6.01556600690E-08 6.16785078505E-08 6.32399067069E-08 6.48408325633E-08 6.64822860505E-08 6.81652931304E-08 6.98909057372E-08 7.16602024348E-08 7.34742890914E-08 7.53342995700E-08 7.72413964378E-08 7.91967716925E-08 8.12016475070E-08 8.32572769942E-08 8.53649449892E-08 8.75259688532E-08 8.97416992965E-08 9.20135212225E-08 9.43428545941E-08 9.67311553203E-08 9.91799161668E-08 1.01589165598E-07 1.04157312207E-07 1.06797089559E-07 1.09515323965E-07 1.12276138963E-07 1.15118996550E-07 1.18052419384E-07 1.21034028773E-07 1.24100914072E-07 1.27239010820E-07 1.30471155070E-07 1.33776869385E-07 1.37156574173E-07 1.40641355141E-07 1.44203475200E-07 1.47851832761E-07 1.51606431426E-07 1.55427546855E-07 1.59388523901E-07 1.63418767970E-07 1.67546354367E-07 1.71800844762E-07 1.76145634082E-07 1.80623618807E-07 1.85179390343E-07 1.89885700830E-07 1.94686110792E-07 1.99616303805E-07 2.04675419667E-07 2.09857769164E-07 2.15172930728E-07 2.20631761421E-07 2.26204436924E-07 2.31942823966E-07 2.37820349745E-07 2.43830360612E-07 2.50024560133E-07 2.56340641950E-07 2.62833226098E-07 2.69501298667E-07 2.76313284552E-07 2.83324503726E-07 2.90484293132E-07 2.97853991346E-07 3.05390642210E-07 3.13120055149E-07 3.21062774882E-07 3.29178034057E-07 3.37524685631E-07 3.46062946997E-07 3.54832876698E-07 3.63820107264E-07 3.73020618663E-07 3.82480890771E-07 3.92155455960E-07 4.02091544251E-07 4.12273853887E-07 4.22706587544E-07 4.33418140088E-07 4.44384610511E-07 4.55645005299E-07 4.67178893254E-07 4.78999455269E-07 4.91146519777E-07 5.03569251429E-07 5.16323951335E-07 5.29395704511E-07 5.42795100847E-07 5.56551078639E-07 5.70641785149E-07 5.85075636599E-07 5.99906000747E-07 6.15081748554E-07 6.30660810001E-07 6.46636508251E-07 6.62995039308E-07 6.79796194596E-07 6.96993179718E-07 7.14653097314E-07 7.32739581649E-07 7.51291864886E-07 7.70316236230E-07 7.89823249504E-07 8.09811369021E-07 8.30314039017E-07 8.51348026636E-07 8.72889422288E-07 8.95002024053E-07 9.17646219725E-07 9.40897115085E-07 9.64706369844E-07 9.89129681646E-07 1.01418107200E-06 1.03985020287E-06 1.06618009020E-06 1.09317583146E-06 1.12084878366E-06 1.14922061233E-06 1.17833200653E-06 1.20814921199E-06 1.23873741981E-06 1.27010511744E-06 1.30225720173E-06 1.33523138897E-06 1.36902573203E-06 1.40369982090E-06 1.43921944229E-06 1.47567010893E-06 1.51302245051E-06 1.55133487773E-06 1.59060309993E-06 1.63086491418E-06 1.67217492871E-06 1.71448716817E-06 1.75790481201E-06 1.80239898208E-06 1.84804740714E-06 1.89480716564E-06 1.94280168608E-06 1.99197571943E-06 2.04240672924E-06 2.09411151549E-06 2.14712659359E-06 2.20148947390E-06 2.25721464816E-06 2.31436697223E-06 2.37295426861E-06 2.43302709941E-06 2.49462308381E-06 2.55778476059E-06 2.62252450796E-06 2.68892978159E-06 2.75698942902E-06 2.82680350719E-06 2.89834045238E-06 2.97174365875E-06 3.04695290830E-06 3.12410832528E-06 3.20319576171E-06 3.28427203449E-06 3.36743173589E-06 3.45266921359E-06 3.54008759877E-06 3.62969995555E-06 3.72159579991E-06 3.81580667467E-06 3.91241063347E-06 4.01144765877E-06 4.11301078153E-06 4.21712747553E-06 4.32389804462E-06 4.43334392492E-06 4.54559029081E-06 4.66066090733E-06 4.77864941383E-06 4.89961876154E-06 5.02366886417E-06 5.15082603057E-06 5.28123769537E-06 5.41493619418E-06 5.55200788526E-06 5.69257228965E-06 5.83667006459E-06 5.98444194572E-06 6.13592978838E-06 6.29127168372E-06 6.45053697384E-06 6.61383678940E-06 6.78125732271E-06 6.95294705896E-06 7.12895381369E-06 7.30942405201E-06 7.49447353887E-06 7.68419733302E-06 7.87871926035E-06 8.07818053804E-06 8.28268115112E-06 8.49235552985E-06 8.70735311668E-06 8.92777363123E-06 9.15378967269E-06 9.38551796519E-06 9.62311378773E-06 9.86672953725E-06 1.01165075790E-05 1.03726171282E-05 1.06351897655E-05 1.09044446932E-05 1.11804681090E-05 1.14635287234E-05 1.17537160508E-05 1.20512693375E-05 1.23563504105E-05 1.26691597951E-05 1.29898792030E-05 1.33187241283E-05 1.36558790857E-05 1.40016098622E-05 1.43560265172E-05 1.47194867214E-05 1.50920970395E-05 1.54741498660E-05 1.58659044457E-05 1.62675374489E-05 1.66793578512E-05 1.71015999980E-05 1.75345306564E-05 1.79784187898E-05 1.84335457738E-05 1.89002007409E-05 1.93786531390E-05 1.98692444628E-05 2.03722182819E-05 2.08879611084E-05 2.14167279262E-05 2.19589088978E-05 2.25148004624E-05 2.30847609720E-05 2.36691615043E-05 2.42683407685E-05 2.48827047943E-05 2.55126194061E-05 2.61584653678E-05 2.68206723990E-05 2.74996449494E-05 2.81957995129E-05 2.89095793878E-05 2.96414268152E-05 3.03918086650E-05 3.11611793030E-05 3.19500241134E-05 3.27588454519E-05 3.35881381187E-05 3.44384177044E-05 3.53102429431E-05 3.62041124488E-05 3.71206286165E-05 3.80603401030E-05 3.90238395213E-05 4.00117303925E-05 4.10246258309E-05 4.20631670143E-05 4.31280037988E-05 4.42197881871E-05 4.53392073596E-05 4.64869814953E-05 4.76637958335E-05 4.88704071827E-05 5.01075556983E-05 5.13760354131E-05 5.26766242532E-05 5.40101217606E-05 5.53773975163E-05 5.67792679891E-05 5.82166427047E-05 5.96903913094E-05 6.12014438349E-05 6.27507781734E-05 6.43392834896E-05 6.59680540679E-05 6.76380189472E-05 6.93502725721E-05 7.11058676014E-05 7.29059166426E-05 7.47515186292E-05 7.66438485803E-05 7.85840806128E-05 8.05734159621E-05 8.26131458217E-05 8.47044774687E-05 8.68487575624E-05 8.90473226332E-05 9.13015542666E-05 9.36128197567E-05 9.59826385542E-05 9.84124027878E-05 1.00903713012E-04 1.03458054786E-04 1.06077093423E-04 1.08762402266E-04 1.11515705364E-04 1.14338697284E-04 1.17233155046E-04 1.20200891272E-04 1.23243741750E-04 1.26363628018E-04 1.29562483544E-04 1.32842331680E-04 1.36205194824E-04 1.39653180352E-04 1.43188470374E-04 1.46813225538E-04 1.50529759666E-04 1.54340374388E-04 1.58247434031E-04 1.62253410885E-04 1.66360803176E-04 1.70572148974E-04 1.74890116608E-04 1.79317384740E-04 1.83856720898E-04 1.88510973365E-04 1.93283041144E-04 1.98175900588E-04 2.03192629683E-04 2.08336340112E-04 2.13610265010E-04 2.19017685656E-04 2.24561997637E-04 2.30246649831E-04 2.36075196641E-04 2.42051298962E-04 2.48178666712E-04 2.54461138400E-04 2.60902654934E-04 2.67507222723E-04 2.74278951213E-04 2.81222143979E-04 2.88341045967E-04 2.95640162063E-04 3.03124063915E-04 3.10797391482E-04 3.18664940566E-04 3.26731664391E-04 3.35002577170E-04 3.43482849904E-04 3.52177766977E-04 3.61092804290E-04 3.70233493006E-04 3.79605560136E-04 3.89214840038E-04 3.99067393376E-04 4.09169312195E-04 4.19526946678E-04 4.30146751887E-04 4.41035375669E-04 4.52199614295E-04 4.63646444805E-04 4.75383011263E-04 4.87416677289E-04 4.99754902324E-04 5.12405465298E-04 5.25376237521E-04 5.38675280526E-04 5.52311007565E-04 5.66291822607E-04 5.80626543881E-04 5.95324081611E-04 6.10393647440E-04 6.25844626402E-04 6.41686700049E-04 6.57929756917E-04 6.74583909947E-04 6.91659631290E-04 7.09167526351E-04 7.27118574864E-04 7.45523955900E-04 7.64395187381E-04 7.83744068887E-04 8.03582651832E-04 8.23923363085E-04 8.44778893058E-04 8.66162256401E-04 8.88086851358E-04 9.10566326230E-04 9.33614745552E-04 9.57246495630E-04 9.81476350476E-04 1.00631942472E-03 1.03179126577E-03 1.05790774117E-03 1.08468518246E-03 1.11214032399E-03 1.14029029274E-03 1.16915268275E-03 1.19874550548E-03 1.22908725360E-03 1.26019685662E-03 1.29209376605E-03 1.32479788704E-03 1.35832962659E-03 1.39270994508E-03 1.42796030501E-03 1.46410269022E-03 1.50115970786E-03 1.53915447378E-03 1.57811068271E-03 1.61805270711E-03 1.65900544297E-03 1.70099446962E-03 1.74404600446E-03 1.78818690282E-03 1.83344473560E-03 1.87984775579E-03 1.92742489389E-03 1.97620588797E-03 2.02622114830E-03 2.07750192120E-03 2.13008017780E-03 2.18398873810E-03 2.23926127914E-03 2.29593222088E-03 2.35403698885E-03 2.41361181358E-03 2.47469384006E-03 2.53732123321E-03 2.60153299644E-03 2.66736924424E-03 2.73487102717E-03 2.80408041065E-03 2.87504080962E-03 2.94779398549E-03 3.02239500595E-03 3.09887122722E-03 3.17729364622E-03 3.25769368534E-03 3.34012377333E-03 3.42465060442E-03 3.51129754541E-03 3.60016150081E-03 3.69124377250E-03 3.78465239758E-03 3.88041340663E-03 3.97859622958E-03 4.07926478017E-03 4.18247776614E-03 4.28830199114E-03 4.39680045826E-03 4.50804116777E-03 4.62210223432E-03 4.73903958878E-03 4.85893396815E-03 4.98186557572E-03 5.10790096537E-03 5.23712440116E-03 5.36961025082E-03 5.50545314353E-03 5.64472737729E-03 5.78751662010E-03 5.93392436850E-03 6.08402411331E-03 6.23792695843E-03 6.39571183058E-03 6.55748864391E-03 6.72335207588E-03 6.89340997044E-03 7.06776298274E-03 7.24652209067E-03 7.42979932517E-03 7.61770720401E-03 7.81036205801E-03 8.00788444436E-03 8.21039860779E-03 8.41802619065E-03 8.63090262859E-03 8.84915261124E-03 9.07291445352E-03 9.30233220959E-03 9.53754229061E-03 9.77868938171E-03 1.00259304957E-02 1.02794109592E-02 1.05392961880E-02 1.08057380948E-02 1.10789070505E-02 1.13589772765E-02 1.16461104291E-02 1.19404957511E-02 1.22423062156E-02 1.25517389678E-02 1.28689758513E-02 1.31942207379E-02 1.35276673680E-02 1.38695324183E-02 1.42200152804E-02 1.45793426691E-02 1.49477313907E-02 1.53254114061E-02 1.57126137786E-02 1.61095819017E-02 1.65165551858E-02 1.69337904985E-02 1.73615416580E-02 1.78000727310E-02 1.82496584678E-02 1.87105695144E-02 1.91830947144E-02 1.96675236792E-02 2.01641546665E-02 2.06732941105E-02 2.11952539557E-02 2.17303570678E-02 2.22789323028E-02 2.28413133245E-02 2.34178527944E-02 2.40088982837E-02 2.46148147775E-02 2.52359745099E-02 2.58727587853E-02 2.65255573779E-02 2.71947690730E-02 2.78808065367E-02 2.85840870878E-02 2.93050422222E-02 3.00441118562E-02 3.08017498609E-02 3.15784152096E-02 3.23745849334E-02 3.31907444304E-02 3.40273892889E-02 3.48850320255E-02 3.57641909403E-02 3.66654060811E-02 3.75892174448E-02 3.85361990983E-02 3.95069099681E-02 4.05019538548E-02 4.15219231202E-02 4.25674409376E-02 4.36391351634E-02 4.47376633739E-02 4.58636822841E-02 4.70178672640E-02 4.82009226626E-02 4.94135612706E-02 5.06565067099E-02 5.19305062515E-02 5.32363380528E-02 5.45747706453E-02 5.59466124505E-02 5.73526841180E-02 5.87938349277E-02 6.02709049158E-02 6.17848051883E-02 6.33364135298E-02 6.49266579293E-02 6.65564982215E-02 6.82268881546E-02 6.99388232450E-02 7.16933173435E-02 7.34914023073E-02 7.53341529025E-02 7.72226435306E-02 7.91579909984E-02 8.11413289876E-02 8.31738296781E-02 8.52566751743E-02 8.73910899232E-02 8.95783112893E-02 9.18196267842E-02 9.41163324166E-02 9.64697557704E-02 9.88812748135E-02 1.01352274549E-01 1.03884180274E-01 1.06478453973E-01 1.09136583993E-01 1.11860099532E-01 1.14650548243E-01 1.17509530899E-01 1.20438671061E-01 1.23439632392E-01 1.26514116299E-01 1.29663856228E-01 1.32890628115E-01 1.36196241396E-01 1.39582552603E-01 1.43051449728E-01 1.46604857985E-01 1.50244761376E-01 1.53973160595E-01 1.57792117988E-01 1.61703729352E-01 1.65710134296E-01 1.69813519746E-01 1.74016113512E-01 1.78320189306E-01 1.82728069138E-01 1.87242115762E-01 1.91864744540E-01 1.96598414402E-01 2.01445630098E-01 2.06408952747E-01 2.11490978845E-01 2.16694369578E-01 2.22021822813E-01 2.27476089055E-01 2.33059977806E-01 2.38776334500E-01 2.44628067930E-01 2.50618128218E-01 2.56749525179E-01 2.63025312236E-01 2.69448598058E-01 2.76022543325E-01 2.82750354491E-01 2.89635296636E-01 2.96680680724E-01 3.03889865934E-01 3.11266269539E-01 3.18813352040E-01 3.26534624673E-01 3.34433646122E-01 3.42514028047E-01 3.50779420201E-01 3.59233526852E-01 3.67880092263E-01 3.76722904012E-01 3.85765794638E-01 3.95012635328E-01 4.04467334741E-01 4.14133842888E-01 4.24016139840E-01 4.34118241394E-01 4.44444192130E-01 4.54998064704E-01 4.65783956675E-01 4.76805984742E-01 4.88068287906E-01 4.99575014634E-01 5.11330328236E-01 5.23338394163E-01 5.35603383683E-01 5.48129460950E-01 5.60920783502E-01 5.73981495926E-01 5.87315720324E-01 6.00927554350E-01 6.14821061625E-01 6.29000265825E-01 6.43469142644E-01 6.58231611843E-01 6.73291527635E-01 6.88652671501E-01 7.04318740585E-01 7.20293338161E-01 7.36579963018E-01 7.53181998077E-01 7.70102697195E-01 7.87345172769E-01 8.04912384931E-01 8.22807121651E-01 8.41031989107E-01 8.59589393851E-01 8.78481524921E-01 8.97710339384E-01 9.17277542142E-01 9.37184565107E-01 9.57432551785E-01 9.78022331305E-01 9.98954400771E-01 1.02022889661E+00 1.04184557732E+00 1.06380379238E+00 1.08610245967E+00 1.10874003587E+00 1.13171448961E+00 1.15502327148E+00 1.17866328092E+00 1.20263083885E+00 1.22692164892E+00 1.25153076844E+00 1.27645256841E+00 1.30168069864E+00 1.32720805145E+00 1.35302671759E+00 1.37912795196E+00 1.40550212687E+00 1.43213869315E+00 1.45902613429E+00 1.48615192313E+00 1.51350247602E+00 1.54106310580E+00 1.56881797682E+00 1.59675005412E+00 1.62484105868E+00 1.65307141658E+00 1.68142021170E+00 1.70986513670E+00 1.73838244457E+00 1.76694690211E+00 1.79553174096E+00 1.82410861384E+00 1.85264754904E+00 1.88111690786E+00 1.90948334514E+00 1.93771177097E+00 1.96576531668E+00 1.99360530420E+00 2.02119122019E+00 2.04848069496E+00 2.07542948631E+00 2.10199147296E+00 2.12811865046E+00 2.15376114092E+00 2.17886720774E+00 2.20338328303E+00 2.22725400627E+00 2.25042227489E+00 2.27282930987E+00 2.29441473650E+00 2.31511668195E+00 2.33487189106E+00 2.35361586369E+00 2.37128301120E+00 2.38780684035E+00 2.40312015874E+00 2.41715531112E+00 2.42984444310E+00 2.44111979715E+00 2.45091404274E+00 2.45916064078E+00 2.46579424818E+00 2.47075116000E+00 2.47396979532E+00 2.47539122685E+00 2.47495975525E+00 2.47262353278E+00 2.46833523455E+00 2.46205278014E+00 2.45374010775E+00 2.44336799737E+00 2.43091494828E+00 2.41636810528E+00 2.39972423635E+00 2.38099075698E+00 2.36018679966E+00 2.33734432483E+00 2.31250926674E+00 2.28574270910E+00 2.25712208340E+00 2.22674237693E+00 2.19471734474E+00 2.16118070640E+00 2.12628731707E+00 2.09021429245E+00 2.05316206739E+00 2.01535536791E+00 1.97704406736E+00 1.93850390096E+00 1.90003700684E+00 1.86197225669E+00 1.82466534253E+00 1.78849857460E+00 1.75388034988E+00 1.72124424496E+00 1.69104768231E+00 1.66377012410E+00 1.63991073790E+00 1.61998548551E+00 1.60452358313E+00 1.59406328107E+00 1.58914692069E+00 1.59031522244E+00 1.59810077274E+00 1.61302068239E+00 1.63556839936E+00 1.66620467760E+00 1.70534771247E+00 1.75336248094E+00 1.81054934267E+00 1.87713198414E+00 1.95324482461E+00 2.03892002489E+00 2.13407428831E+00 2.23849567449E+00 2.35183069091E+00 2.47357197485E+00 2.60304691503E+00 2.73940761580E+00 2.88162264251E+00 3.02847102758E+00 3.17853905509E+00 3.33022035848E+00 3.48171989165E+00 3.63106232916E+00 3.77610543815E+00 3.91455893729E+00 4.04400929282E+00 4.16195082996E+00 4.26582342389E+00 4.35305689373E+00 4.42112205674E+00 4.46758818667E+00 4.49018638780E+00 4.48687812043E+00 4.45592781000E+00 4.39597814356E+00 4.30612629359E+00 4.18599893528E+00 4.03582352106E+00 3.85649285920E+00 3.64961961665E+00 3.41757690639E+00 3.16352064799E+00 2.89138886648E+00 2.60587251962E+00 2.31235178205E+00 2.01679093310E+00 1.72558406560E+00 1.44534270366E+00 1.18261506423E+00 9.43525091833E-01 7.33317528480E-01 5.55793178747E-01 4.12616238088E-01 3.02473141844E-01 2.20059929363E-01 1.57298701694E-01 1.11639087044E-01 8.22094956279E-02 6.79177328845E-02 6.74472565570E-02 7.92561830748E-02 1.01579421255E-01 1.32434310087E-01 1.69630130022E-01 2.10781839435E-01 2.53328360866E-01 2.94555702053E-01 3.31625146802E-01 3.61606681663E-01 3.81517742492E-01 3.88367309791E-01 3.79204893835E-01 3.51177399431E-01 3.01562002608E-01 2.28080232367E-01 1.26522118783E-01 1.45373050181E-02 -1.43677064937E-03 1.47556125994E-04 -9.02120411457E-06 6.91376935955E-06 5.66311847810E-06 6.03951900278E-06 6.18351565946E-06 6.28520444003E-06 6.33145346319E-06 6.32940491556E-06 3.40 3.40 6P 8 Number of nonzero Dij 1 1 -2.76801641410E+00 1 2 -4.81511968938E+00 2 2 -8.53110063635E+00 3 3 -2.60411026024E+00 3 4 -3.35334485262E+00 4 4 -4.33249127866E+00 5 5 3.98477616209E-02 6 6 5.26500399833E-02 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 2 i j (l(j)) 3.64379416709E-01 Q_int 1.06215238861E-29 1.14487722550E-29 1.23404501606E-29 1.33015756428E-29 1.43375575671E-29 1.54542260638E-29 1.66578653382E-29 1.79552490355E-29 1.93536783603E-29 2.08610231657E-29 2.24857662414E-29 2.42370510518E-29 2.61247331927E-29 2.81594358542E-29 3.03526096048E-29 3.27165968307E-29 3.52647011943E-29 3.80112625025E-29 4.09717374061E-29 4.41627863838E-29 4.76023675014E-29 5.13098374737E-29 5.53060605966E-29 5.96135261642E-29 6.42564750299E-29 6.92610360255E-29 7.46553730046E-29 8.04698433389E-29 8.67371687579E-29 9.34926194953E-29 1.00774212777E-28 1.08622926769E-28 1.17082931185E-28 1.26201835861E-28 1.36030958685E-28 1.46625614393E-28 1.58045425865E-28 1.70354659657E-28 1.83622587670E-28 1.97923876990E-28 2.13339010085E-28 2.29954737731E-28 2.47864567216E-28 2.67169288562E-28 2.87977541738E-28 3.10406428043E-28 3.34582169113E-28 3.60640817247E-28 3.88729021063E-28 4.19004850782E-28 4.51638687790E-28 4.86814183482E-28 5.24729292787E-28 5.65597388184E-28 6.09648460488E-28 6.57130413152E-28 7.08310457380E-28 7.63476615892E-28 8.22939343815E-28 8.87033275810E-28 9.56119109271E-28 1.03058563421E-27 1.11085192120E-27 1.19736967980E-27 1.29062580056E-27 1.39114509509E-27 1.49949324952E-27 1.61628000796E-27 1.74216260390E-27 1.87784945893E-27 2.02410416944E-27 2.18174980388E-27 2.35167353470E-27 2.53483163099E-27 2.73225484008E-27 2.94505418815E-27 3.17442723275E-27 3.42166480215E-27 3.68815825968E-27 3.97540733385E-27 4.28502855824E-27 4.61876436875E-27 4.97849290947E-27 5.36623860209E-27 5.78418353871E-27 6.23467976180E-27 6.72026250066E-27 7.24366443877E-27 7.80783109236E-27 8.41593738666E-27 9.07140552329E-27 9.77792423910E-27 1.05394695651E-26 1.13603272021E-26 1.22451166391E-26 1.31988171499E-26 1.42267958152E-26 1.53348377258E-26 1.65291785396E-26 1.78165395734E-26 1.92041656280E-26 2.06998657595E-26 2.23120572255E-26 2.40498128547E-26 2.59229121052E-26 2.79418961002E-26 3.01181269489E-26 3.24638516891E-26 3.49922712085E-26 3.77176145348E-26 4.06552189116E-26 4.38216161103E-26 4.72346254658E-26 5.09134541562E-26 5.48788052947E-26 5.91529944390E-26 6.37600751746E-26 6.87259744804E-26 7.40786386361E-26 7.98481904934E-26 8.60670989970E-26 9.27703619073E-26 9.99957027562E-26 1.07783783140E-25 1.16178431550E-25 1.25226890022E-25 1.34980079996E-25 1.45492888887E-25 1.56824478969E-25 1.69038620320E-25 1.82204049696E-25 1.96394857356E-25 2.11690904017E-25 2.28178270279E-25 2.45949741059E-25 2.65105327744E-25 2.85752831027E-25 3.08008447565E-25 3.31997423892E-25 3.57854761262E-25 3.85725975389E-25 4.15767915352E-25 4.48149646289E-25 4.83053400833E-25 5.20675604648E-25 5.61227981847E-25 6.04938746494E-25 6.52053886912E-25 7.02838550016E-25 7.57578533461E-25 8.16581894012E-25 8.80180681172E-25 9.48732805837E-25 1.02262405449E-24 1.10227026027E-24 1.18811964311E-24 1.28065533220E-24 1.38039808480E-24 1.48790921695E-24 1.60379376228E-24 1.72870387695E-24 1.86334250977E-24 2.00846735810E-24 2.16489513192E-24 2.33350614999E-24 2.51524929392E-24 2.71114734817E-24 2.92230275590E-24 3.14990382313E-24 3.39523140605E-24 3.65966611927E-24 3.94469610540E-24 4.25192540976E-24 4.58308300736E-24 4.94003253300E-24 5.32478276906E-24 5.73949895022E-24 6.18651494865E-24 6.66834640815E-24 7.18770490130E-24 7.74751318921E-24 8.35092166973E-24 9.00132610680E-24 9.70238674052E-24 1.04580488857E-23 1.12725651346E-23 1.21505192890E-23 1.30968521563E-23 1.41168893543E-23 1.52163712821E-23 1.64014854250E-23 1.76789011751E-23 1.90558073646E-23 2.05399527218E-23 2.21396894778E-23 2.38640203706E-23 2.57226493084E-23 2.77260359801E-23 2.98854547187E-23 3.22130579489E-23 3.47219445766E-23 3.74262337050E-23 4.03411440915E-23 4.34830797935E-23 4.68697224844E-23 5.05201309596E-23 5.44548483927E-23 5.86960179448E-23 6.32675073781E-23 6.81950433754E-23 7.35063563199E-23 7.92313363523E-23 8.54022015813E-23 9.20536793957E-23 9.92232018971E-23 1.06951116555E-22 1.15280913265E-22 1.24259469100E-22 1.33937312110E-22 1.44368905682E-22 1.55612955034E-22 1.67732737593E-22 1.80796459093E-22 1.94877637413E-22 2.10055516311E-22 2.26415511374E-22 2.44049690713E-22 2.63057293082E-22 2.83545286363E-22 3.05628969538E-22 3.29432621553E-22 3.55090200712E-22 3.82746098550E-22 4.12555952409E-22 4.44687521316E-22 4.79321630064E-22 5.16653186831E-22 5.56892280052E-22 6.00265360718E-22 6.47016516766E-22 6.97408846707E-22 7.51725940259E-22 8.10273474279E-22 8.73380933006E-22 9.41403462276E-22 1.01472386815E-21 1.09375477123E-21 1.17894092868E-21 1.27076173723E-21 1.36973393101E-21 1.47641448953E-21 1.59140377216E-21 1.71534889678E-21 1.84894738146E-21 1.99295106988E-21 2.14817036241E-21 2.31547877677E-21 2.49581786383E-21 2.69020250636E-21 2.89972663040E-21 3.12556936147E-21 3.36900166027E-21 3.63139347518E-21 3.91422145183E-21 4.21907724310E-21 4.54767646641E-21 4.90186835856E-21 5.28364618253E-21 5.69515844491E-21 6.13872098683E-21 6.61683001672E-21 7.13217615805E-21 7.68765959117E-21 8.28640637445E-21 8.93178603663E-21 9.62743053925E-21 1.03772547160E-20 1.11854783042E-20 1.20566496914E-20 1.29956715126E-20 1.40078282402E-20 1.50988159232E-20 1.62747742424E-20 1.75423210621E-20 1.89085896736E-20 2.03812689379E-20 2.19686465566E-20 2.36796557116E-20 2.55239253378E-20 2.75118343112E-20 2.96545698579E-20 3.19641905107E-20 3.44536939711E-20 3.71370902552E-20 4.00294805365E-20 4.31471421307E-20 4.65076200974E-20 5.01298259781E-20 5.40341442230E-20 5.82425469070E-20 6.27787173810E-20 6.76681835526E-20 7.29384615479E-20 7.86192105622E-20 8.47423997711E-20 9.13424882408E-20 9.84566188516E-20 1.06124827324E-19 1.14390267525E-19 1.23299454321E-19 1.32902525349E-19 1.43253523172E-19 1.54410699405E-19 1.66436842544E-19 1.79399631306E-19 1.93372015507E-19 2.08432626593E-19 2.24666220149E-19 2.42164152873E-19 2.61024896697E-19 2.81354592949E-19 3.03267649682E-19 3.26887385512E-19 3.52346723617E-19 3.79788939774E-19 4.09368468664E-19 4.41251772973E-19 4.75618280179E-19 5.12661392308E-19 5.52589574324E-19 5.95627527292E-19 6.42017452914E-19 6.92020416548E-19 7.45917816386E-19 8.04012967058E-19 8.66632806573E-19 9.34129736200E-19 1.00688360366E-18 1.08530384074E-18 1.16983176747E-18 1.26094307565E-18 1.35915050589E-18 1.46500673313E-18 1.57910747688E-18 1.70209485368E-18 1.83466099072E-18 1.97755192085E-18 2.13157178099E-18 2.29758733747E-18 2.47653286390E-18 2.66941539888E-18 2.87732041326E-18 3.10141791871E-18 3.34296905212E-18 3.60333317281E-18 3.88397551246E-18 4.18647542090E-18 4.51253525404E-18 4.86398995410E-18 5.24281737597E-18 5.65114941778E-18 6.09128401842E-18 6.56569808945E-18 7.07706145419E-18 7.62825187243E-18 8.22237123537E-18 8.86276302186E-18 9.55303111414E-18 1.02970600791E-17 1.10990370293E-17 1.19634751858E-17 1.28952392776E-17 1.38995729178E-17 1.49821281128E-17 1.61489970696E-17 1.74067464803E-17 1.87624544766E-17 2.02237504632E-17 2.17988580524E-17 2.34966413438E-17 2.53266548078E-17 2.72991970540E-17 2.94253687881E-17 3.17171352818E-17 3.41873937085E-17 3.68500457237E-17 3.97200756975E-17 4.28136350405E-17 4.61481330975E-17 4.97423351203E-17 5.36164678700E-17 5.77923334460E-17 6.22934319780E-17 6.71450938757E-17 7.23746223776E-17 7.80114472021E-17 8.40872901653E-17 9.06363436986E-17 9.76954632686E-17 1.05304374784E-16 1.13505898158E-16 1.22346188276E-16 1.31874994740E-16 1.42145941835E-16 1.53216830306E-16 1.65149962632E-16 1.78012493638E-16 1.91876808417E-16 2.06820929673E-16 2.22928956809E-16 2.40291539189E-16 2.59006386284E-16 2.79178817528E-16 3.00922355010E-16 3.24359362331E-16 3.49621733201E-16 3.76851633683E-16 4.06202302237E-16 4.37838912073E-16 4.71939500670E-16 5.08695971688E-16 5.48315174909E-16 5.91020070294E-16 6.37050982692E-16 6.86666954272E-16 7.40147202290E-16 7.97792690386E-16 8.59927822263E-16 9.26902267268E-16 9.99092928160E-16 1.07690606213E-15 1.16077956701E-15 1.25118544555E-15 1.34863246160E-15 1.45366900316E-15 1.56688616846E-15 1.68892109232E-15 1.82046053163E-15 1.96224473003E-15 2.11507158363E-15 2.27980113115E-15 2.45736039371E-15 2.64874859164E-15 2.85504276753E-15 3.07740384720E-15 3.31708317278E-15 3.57542954454E-15 3.85389681116E-15 4.15405205115E-15 4.47758439148E-15 4.82631451298E-15 5.20220489605E-15 5.60737086432E-15 6.04409248843E-15 6.51482741688E-15 7.02222470612E-15 7.56913972784E-15 8.15865023716E-15 8.79407369232E-15 9.47898592314E-15 1.02172412535E-14 1.10129941911E-14 1.18707228058E-14 1.27952539297E-14 1.37917903190E-14 1.48659399316E-14 1.60237474847E-14 1.72717284704E-14 1.86169058199E-14 2.00668494238E-14 2.16297187296E-14 2.33143086576E-14 2.51300990912E-14 2.70873082232E-14 2.91969500557E-14 3.14708963783E-14 3.39219435729E-14 3.65638846218E-14 3.94115867231E-14 4.24810749514E-14 4.57896224330E-14 4.93558475448E-14 5.31998186821E-14 5.73431671863E-14 6.18092090670E-14 6.66230762030E-14 7.18118577619E-14 7.74047526329E-14 8.34332337302E-14 8.99312250929E-14 9.69352927763E-14 1.04484850609E-13 1.12622381977E-13 1.21393678871E-13 1.30848099564E-13 1.41038846342E-13 1.52023264871E-13 1.63863166877E-13 1.76625177952E-13 1.90381112451E-13 2.05208377577E-13 2.21190408943E-13 2.38417140042E-13 2.56985508293E-13 2.77000000480E-13 2.98573240672E-13 3.21826623933E-13 3.46890999374E-13 3.73907406396E-13 4.03027868276E-13 4.34416247543E-13 4.68249167967E-13 5.04717008349E-13 5.44024973699E-13 5.86394249823E-13 6.32063247829E-13 6.81288945537E-13 7.34348333352E-13 7.91539972723E-13 8.53185675964E-13 9.19632316885E-13 9.91253782405E-13 1.06845307615E-12 1.15166458587E-12 1.24135652733E-12 1.33803357868E-12 1.44223971975E-12 1.55456129257E-12 1.67563030018E-12 1.80612796228E-12 1.94678854775E-12 2.09840350560E-12 2.26182591763E-12 2.43797529765E-12 2.62784276458E-12 2.83249661820E-12 3.05308834907E-12 3.29085911651E-12 3.54714673499E-12 3.82339317748E-12 4.12115273690E-12 4.44210071646E-12 4.78804287720E-12 5.16092560039E-12 5.56284683106E-12 5.99606787963E-12 6.46302613425E-12 6.96634878965E-12 7.50886760392E-12 8.09363484945E-12 8.72394045704E-12 9.40333054656E-12 1.01356273480E-11 1.09249507264E-11 1.17757413369E-11 1.26927855808E-11 1.36812426018E-11 1.47466732068E-11 1.58950712031E-11 1.71328971095E-11 1.84671144325E-11 1.99052289170E-11 2.14553306919E-11 2.31261397839E-11 2.49270551832E-11 2.68682076401E-11 2.89605167254E-11 3.12157520547E-11 3.36465998667E-11 3.62667339141E-11 3.90908924434E-11 4.21349612843E-11 4.54160631973E-11 4.89526537712E-11 5.27646253543E-11 5.68734194244E-11 6.13021460808E-11 6.60757151447E-11 7.12209752829E-11 7.67668655323E-11 8.27445775603E-11 8.91877311564E-11 9.61325639381E-11 1.03618133553E-10 1.11686538680E-10 1.20383154946E-10 1.29756889821E-10 1.39860458217E-10 1.50750678456E-10 1.62488791087E-10 1.75140803503E-10 1.88777861473E-10 2.03476647901E-10 2.19319814399E-10 2.36396445624E-10 2.54802559972E-10 2.74641648736E-10 2.96025257976E-10 3.19073615289E-10 3.43916304620E-10 3.70692995392E-10 3.99554226155E-10 4.30662250944E-10 4.64191949544E-10 5.00331811854E-10 5.39284994829E-10 5.81270464327E-10 6.26524224133E-10 6.75300642220E-10 7.27873879178E-10 7.84539426963E-10 8.45615769254E-10 9.11446167959E-10 9.82400592509E-10 1.05887779510E-09 1.14130754990E-09 1.23015306739E-09 1.32591358950E-09 1.42912719779E-09 1.54037382794E-09 1.66027852763E-09 1.78951496541E-09 1.92880920405E-09 2.07894378068E-09 2.24076209633E-09 2.41517314478E-09 2.60315661196E-09 2.80576837211E-09 3.02414640719E-09 3.25951719443E-09 3.51320257406E-09 3.78662717690E-09 4.08132638687E-09 4.39895496952E-09 4.74129634316E-09 5.11027256855E-09 5.50795512266E-09 5.93657650593E-09 6.39854275831E-09 6.89644692578E-09 7.43308359992E-09 8.01146455737E-09 8.63483563164E-09 9.30669489828E-09 1.00308122443E-08 1.08112504925E-08 1.16523881153E-08 1.25589437701E-08 1.35360026822E-08 1.45890451119E-08 1.57239770102E-08 1.69471630445E-08 1.82654622017E-08 1.96862661430E-08 2.12175405290E-08 2.28678695397E-08 2.46465038612E-08 2.65634123731E-08 2.86293378481E-08 3.08558569458E-08 3.32554448964E-08 3.58415451242E-08 3.86286443331E-08 4.16323533326E-08 4.48694941820E-08 4.83581940143E-08 5.21179861798E-08 5.61699191518E-08 6.05366738850E-08 6.52426902621E-08 7.03143032618E-08 7.57798897024E-08 8.16700262822E-08 8.80176598519E-08 9.48582908345E-08 1.02230170777E-07 1.10174515214E-07 1.18735732870E-07 1.27961672641E-07 1.37903889556E-07 1.48617931266E-07 1.60163646664E-07 1.72605518209E-07 1.86013019946E-07 2.00461003060E-07 2.16030111099E-07 2.32807227245E-07 2.50885955896E-07 2.70367141466E-07 2.91359426882E-07 3.13979855236E-07 3.38354517549E-07 3.64619250344E-07 3.92920386870E-07 4.23415565891E-07 4.56274602700E-07 4.91680426870E-07 5.29830091958E-07 5.70935862660E-07 6.15226385304E-07 6.62947947875E-07 7.14365836757E-07 7.69765797176E-07 8.29455605389E-07 8.93766761183E-07 9.63056309705E-07 1.03770880249E-06 1.11813840822E-06 1.20479118470E-06 1.29814752393E-06 1.39872478394E-06 1.50708012077E-06 1.62381353654E-06 1.74957115920E-06 1.88504877200E-06 2.03099561109E-06 2.18821845183E-06 2.35758600521E-06 2.54003364791E-06 2.73656851098E-06 2.94827495417E-06 3.17632045464E-06 3.42196194117E-06 3.68655260747E-06 3.97154923991E-06 4.27852009851E-06 4.60915339225E-06 4.96526639304E-06 5.34881523586E-06 5.76190545609E-06 6.20680331871E-06 6.68594799811E-06 7.20196467149E-06 7.75767859334E-06 8.35613022344E-06 9.00059148615E-06 9.69458324403E-06 1.04418940753E-05 1.12466004507E-05 1.21130884120E-05 1.30460768623E-05 1.40506425861E-05 1.51322471242E-05 1.62967656390E-05 1.75505179149E-05 1.89003016481E-05 2.03534281911E-05 2.19177609297E-05 2.36017564812E-05 2.54145089178E-05 2.73657972297E-05 2.94661362625E-05 3.17268313739E-05 3.41600370759E-05 3.67788199454E-05 3.95972261042E-05 4.26303535912E-05 4.58944299723E-05 4.94068955528E-05 5.31864925870E-05 5.72533609009E-05 6.16291403747E-05 6.63370807600E-05 7.14021593369E-05 7.68512069517E-05 8.27130430069E-05 8.90186200163E-05 9.58011783734E-05 1.03096412025E-04 1.10942645786E-04 1.19381025070E-04 1.28455718870E-04 1.38214136872E-04 1.48707161624E-04 1.59989396760E-04 1.72119432321E-04 1.85160128294E-04 1.99178917531E-04 2.14248129307E-04 2.30445334819E-04 2.47853716031E-04 2.66562459316E-04 2.86667175462E-04 3.08270347648E-04 3.31481809148E-04 3.56419252528E-04 3.83208772276E-04 4.11985442841E-04 4.42893934190E-04 4.76089167072E-04 5.11737010306E-04 5.50015022480E-04 5.91113240603E-04 6.35235018301E-04 6.82597916327E-04 7.33434648191E-04 7.87994083886E-04 8.46542314760E-04 9.09363782690E-04 9.76762476843E-04 1.04906320136E-03 1.12661291746E-03 1.20978216344E-03 1.29896655625E-03 1.39458837836E-03 1.49709825345E-03 1.60697691503E-03 1.72473707148E-03 1.85092537152E-03 1.98612447371E-03 2.13095522397E-03 2.28607894441E-03 2.45219983746E-03 2.63006750823E-03 2.82047960872E-03 3.02428460659E-03 3.24238468125E-03 3.47573874959E-03 3.72536562331E-03 3.99234729919E-03 4.27783238321E-03 4.58303964871E-03 4.90926172801E-03 5.25786893621E-03 5.63031322455E-03 6.02813226018E-03 6.45295362739E-03 6.90649914436E-03 7.39058928782E-03 7.90714771642E-03 8.45820588143E-03 9.04590771187E-03 9.67251435834E-03 1.03404089777E-02 1.10521015378E-02 1.18102336192E-02 1.26175831856E-02 1.34770692950E-02 1.43917567152E-02 1.53648604072E-02 1.63997498331E-02 1.74999530428E-02 1.86691604863E-02 1.99112284951E-02 2.12301823706E-02 2.26302190100E-02 2.41157089968E-02 2.56911980735E-02 2.73614079102E-02 2.91312360746E-02 3.10057551018E-02 3.29902105560E-02 3.50900179683E-02 3.73107585269E-02 3.96581733911E-02 4.21381564895E-02 4.47567456596E-02 4.75201119767E-02 5.04345471156E-02 5.35064485813E-02 5.67423026408E-02 6.01486647847E-02 6.37321375426E-02 6.74993454759E-02 7.14569071719E-02 7.56114040629E-02 7.99693458983E-02 8.45371327066E-02 8.93210130861E-02 9.43270386827E-02 9.95610147210E-02 1.05028446478E-01 1.10734481607E-01 1.16683848254E-01 1.22880788923E-01 1.29328990110E-01 1.36031507736E-01 1.42990688483E-01 1.50208087174E-01 1.57684380407E-01 1.65419276711E-01 1.73411423568E-01 1.81658311728E-01 1.90156177319E-01 1.98899902360E-01 2.07882914360E-01 2.17097085815E-01 2.26532634508E-01 2.36178025620E-01 2.46019876796E-01 2.56042867411E-01 2.66229653398E-01 2.76560789115E-01 2.87014657850E-01 2.97567412643E-01 3.08192929225E-01 3.18862772945E-01 3.29546181615E-01 3.40210066286E-01 3.50819031959E-01 3.61335420254E-01 3.71719376053E-01 3.81928940024E-01 3.91920168890E-01 4.01647285117E-01 4.11062857546E-01 4.20118014236E-01 4.28762688504E-01 4.36945898809E-01 4.44616062737E-01 4.51721344857E-01 4.58210037770E-01 4.64030975041E-01 4.69133974149E-01 4.73470306893E-01 4.76993194029E-01 4.79658320159E-01 4.81424364173E-01 4.82253539792E-01 4.82112140013E-01 4.80971078574E-01 4.78806420853E-01 4.75599896064E-01 4.71339382070E-01 4.66019353745E-01 4.59641285558E-01 4.52213998926E-01 4.43753944974E-01 4.34285413552E-01 4.23840659895E-01 4.12459940935E-01 4.00191454270E-01 3.87091173894E-01 3.73222578222E-01 3.58656267548E-01 3.43469469873E-01 3.27745436054E-01 3.11572727346E-01 2.95044400650E-01 2.78257099097E-01 2.61310057863E-01 2.44304037407E-01 2.27340198412E-01 2.10518934696E-01 1.93938682079E-01 1.77694722604E-01 1.61878004573E-01 1.46573999583E-01 1.31861617895E-01 1.17812203325E-01 1.04488628044E-01 9.19445065050E-02 8.02235459527E-02 6.93590488071E-02 5.93735795110E-02 5.02788053604E-02 4.20755173417E-02 3.47538331779E-02 2.82935806728E-02 2.26648551177E-02 1.78287400571E-02 1.37381761957E-02 1.03389587801E-02 7.57083952835E-03 5.36870527920E-03 3.66380215019E-03 2.38497136114E-03 1.45986120848E-03 8.16079228894E-04 3.86178907659E-04 1.20677793354E-04 -2.23596612958E-05 -8.03596596240E-05 -8.54895577174E-05 -6.39916705887E-05 -3.56102154177E-05 -1.31196824012E-05 -1.96200842198E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 2 i j (l(j)) 5.98936341010E-01 Q_int 1.98339591139E-29 2.13787101780E-29 2.30437728670E-29 2.48385175498E-29 2.67730443981E-29 2.88582402274E-29 3.11058397633E-29 3.35284916805E-29 3.61398297852E-29 3.89545497407E-29 4.19884917700E-29 4.52587297979E-29 4.87836675379E-29 5.25831420605E-29 5.66785354301E-29 6.10928950348E-29 6.58510632890E-29 7.09798174372E-29 7.65080202474E-29 8.24667824392E-29 8.88896377645E-29 9.58127317230E-29 1.03275024976E-28 1.11318512602E-28 1.19988460432E-28 1.29333659787E-28 1.39406702058E-28 1.50264274674E-28 1.61967480112E-28 1.74582179769E-28 1.88179364597E-28 2.02835554619E-28 2.18633229556E-28 2.35661292991E-28 2.54015572688E-28 2.73799359873E-28 2.95123990524E-28 3.18109471926E-28 3.42885158028E-28 3.69590477405E-28 3.98375717904E-28 4.29402872417E-28 4.62846550513E-28 4.98894961078E-28 5.37750971490E-28 5.79633249279E-28 6.24777492708E-28 6.73437757203E-28 7.25887885078E-28 7.82423046624E-28 8.43361401221E-28 9.09045887819E-28 9.79846154880E-28 1.05616064062E-27 1.13841881528E-27 1.22708359802E-27 1.32265396208E-27 1.42566774278E-27 1.53670466432E-27 1.65638960221E-27 1.78539609985E-27 1.92445015901E-27 2.07433432549E-27 2.23589209300E-27 2.41003265004E-27 2.59773599650E-27 2.80005845869E-27 3.01813863406E-27 3.25320379869E-27 3.50657681405E-27 3.77968357156E-27 4.07406101696E-27 4.39136579972E-27 4.73338359603E-27 5.10203915797E-27 5.49940714529E-27 5.92772380087E-27 6.38939953545E-27 6.88703249256E-27 7.42342316995E-27 8.00159017975E-27 8.62478723613E-27 9.29652146603E-27 1.00205731460E-26 1.08010169762E-26 1.16422450113E-26 1.25489913776E-26 1.35263589146E-26 1.45798478922E-26 1.57153869642E-26 1.69393665325E-26 1.82586747101E-26 1.96807360846E-26 2.12135535017E-26 2.28657531016E-26 2.46466328643E-26 2.65662149348E-26 2.86353020248E-26 3.08655382056E-26 3.32694744373E-26 3.58606392009E-26 3.86536146316E-26 4.16641185818E-26 4.49090930754E-26 4.84067996516E-26 5.21769221340E-26 5.62406774041E-26 6.06209348022E-26 6.53423448277E-26 7.04314778633E-26 7.59169737032E-26 8.18297027278E-26 8.82029396308E-26 9.50725506773E-26 1.02477195546E-25 1.10458544891E-25 1.19061514851E-25 1.28334519820E-25 1.38329744906E-25 1.49103439607E-25 1.60716234371E-25 1.73233481791E-25 1.86725624395E-25 2.01268591066E-25 2.16944224345E-25 2.33840741006E-25 2.52053228517E-25 2.71684180149E-25 2.92844071773E-25 3.15651983585E-25 3.40236270235E-25 3.66735283168E-25 3.95298149216E-25 4.26085609823E-25 4.59270925649E-25 4.95040851609E-25 5.33596687868E-25 5.75155412683E-25 6.19950903478E-25 6.68235253021E-25 7.20280188113E-25 7.76378598762E-25 8.36846186470E-25 9.02023240879E-25 9.72276554803E-25 1.04800148840E-24 1.12962419412E-24 1.21760401493E-24 1.31243606934E-24 1.41465403775E-24 1.52483316578E-24 1.64359350159E-24 1.77160338526E-24 1.90958320996E-24 2.05830947608E-24 2.21861916106E-24 2.39141442966E-24 2.57766771093E-24 2.77842717077E-24 2.99482261054E-24 3.22807182527E-24 3.47948745690E-24 3.75048438135E-24 4.04258767099E-24 4.35744117712E-24 4.69681678102E-24 5.06262436543E-24 5.45692256268E-24 5.88193033993E-24 6.34003948672E-24 6.83382807507E-24 7.36607496796E-24 7.93977545774E-24 8.55815812256E-24 9.22470299563E-24 9.94316114960E-24 1.07175758062E-23 1.15523050901E-23 1.24520465547E-23 1.34218636184E-23 1.44672140597E-23 1.55939807314E-23 1.68085046675E-23 1.81176207678E-23 1.95286962626E-23 2.10496721725E-23 2.26891079980E-23 2.44562298888E-23 2.63609825655E-23 2.84140852847E-23 3.06270921633E-23 3.30124572008E-23 3.55836043656E-23 3.83550031406E-23 4.13422499522E-23 4.45621559410E-23 4.80328415690E-23 5.17738385949E-23 5.58061999920E-23 6.01526184262E-23 6.48375539626E-23 6.98873717174E-23 7.53304902318E-23 8.11975414004E-23 8.75215428570E-23 9.43380837858E-23 1.01685525204E-22 1.09605215844E-22 1.18141724850E-22 1.27343092594E-22 1.37261101033E-22 1.47951565116E-22 1.59474646894E-22 1.71895194086E-22 1.85283105022E-22 1.99713722002E-22 2.15268255297E-22 2.32034240173E-22 2.50106029502E-22 2.69585324751E-22 2.90581748319E-22 3.13213460452E-22 3.37607824204E-22 3.63902122193E-22 3.92244329178E-22 4.22793944804E-22 4.55722891208E-22 4.91216480539E-22 5.29474457822E-22 5.70712125054E-22 6.15161552843E-22 6.63072886417E-22 7.14715753354E-22 7.70380780943E-22 8.30381231730E-22 8.95054766449E-22 9.64765344250E-22 1.03990527093E-21 1.12089740668E-21 1.20819754581E-21 1.30229698177E-21 1.40372527198E-21 1.51305321798E-21 1.63089607771E-21 1.75791702794E-21 1.89483089639E-21 2.04240818454E-21 2.20147940370E-21 2.37293974885E-21 2.55775413646E-21 2.75696263468E-21 2.97168631650E-21 3.20313356868E-21 3.45260689218E-21 3.72151023210E-21 4.01135687862E-21 4.32377798320E-21 4.66053173815E-21 5.02351327107E-21 5.41476530991E-21 5.83648967877E-21 6.29105968890E-21 6.78103349486E-21 7.30916849085E-21 7.87843682836E-21 8.49204214234E-21 9.15343758004E-21 9.86634523415E-21 1.06347770893E-20 1.14630576001E-20 1.23558480275E-20 1.33181726709E-20 1.43554471426E-20 1.54735088455E-20 1.66786498233E-20 1.79776521703E-20 1.93778261982E-20 2.08870515759E-20 2.25138216737E-20 2.42672913604E-20 2.61573285240E-20 2.81945696043E-20 3.03904794509E-20 3.27574158432E-20 3.53086990357E-20 3.80586867191E-20 4.10228548203E-20 4.42178845953E-20 4.76617565051E-20 5.13738514033E-20 5.53750596042E-20 5.96878984459E-20 6.43366390098E-20 6.93474427089E-20 7.47485085152E-20 8.05702316525E-20 8.68453746502E-20 9.36092517183E-20 1.00899927483E-19 1.08758431200E-19 1.17228987653E-19 1.26359266032E-19 1.36200648204E-19 1.46808517862E-19 1.58242572212E-19 1.70567157924E-19 1.83851633249E-19 1.98170758345E-19 2.13605115999E-19 2.30241565117E-19 2.48173729530E-19 2.67502524881E-19 2.88336726536E-19 3.10793581733E-19 3.34999469407E-19 3.61090611400E-19 3.89213839073E-19 4.19527419613E-19 4.52201946705E-19 4.87421300569E-19 5.25383682770E-19 5.66302731620E-19 6.10408724460E-19 6.57949873571E-19 7.09193723020E-19 7.64428654302E-19 8.23965509239E-19 8.88139339286E-19 9.57311291070E-19 1.03187063880E-18 1.11223697493E-18 1.19886257150E-18 1.29223492534E-18 1.39287950152E-18 1.50136269045E-18 1.61829499535E-18 1.74433446792E-18 1.88019041158E-18 2.02662737319E-18 2.18446944563E-18 2.35460490548E-18 2.53799121189E-18 2.73566039483E-18 2.94872486293E-18 3.17838366370E-18 3.42592923135E-18 3.69275466007E-18 3.98036154387E-18 4.29036842695E-18 4.62451991228E-18 4.98469647953E-18 5.37292506771E-18 5.79139048202E-18 6.24244768904E-18 6.72863506965E-18 7.25268870401E-18 7.81755776920E-18 8.42642113602E-18 9.08270525848E-18 9.79010345652E-18 1.05525967006E-17 1.13744760152E-17 1.22603666267E-17 1.32152539926E-17 1.42445118579E-17 1.53539324959E-17 1.65497593055E-17 1.78387219461E-17 1.92280742097E-17 2.07256348423E-17 2.23398315448E-17 2.40797484009E-17 2.59551769983E-17 2.79766715324E-17 3.01556082007E-17 3.25042492238E-17 3.50358118519E-17 3.77645427469E-17 4.07057981560E-17 4.38761303311E-17 4.72933806783E-17 5.09767801614E-17 5.49470575269E-17 5.92265559562E-17 6.38393588042E-17 6.88114251310E-17 7.41707357881E-17 7.99474508838E-17 8.61740795113E-17 9.28856626971E-17 1.00119970597E-16 1.07917715050E-16 1.16322778689E-16 1.25382461895E-16 1.35147748979E-16 1.45673595105E-16 1.57019235553E-16 1.69248519069E-16 1.82430267180E-16 1.96638661491E-16 2.11953661147E-16 2.28461452811E-16 2.46254935683E-16 2.65434244296E-16 2.86107312032E-16 3.08390478520E-16 3.32409144350E-16 3.58298476766E-16 3.86204170330E-16 4.16283266827E-16 4.48705039024E-16 4.83651943264E-16 5.21320646242E-16 5.61923131761E-16 6.05687893681E-16 6.52861221770E-16 7.03708587717E-16 7.58516139080E-16 8.17592309592E-16 8.81269554879E-16 9.49906223366E-16 1.02388857289E-15 1.10363294438E-15 1.18958810481E-15 1.28223777266E-15 1.38210334004E-15 1.48974680681E-15 1.60577394330E-15 1.73083769919E-15 1.86564187808E-15 2.01094509808E-15 2.16756506094E-15 2.33638315369E-15 2.51834940859E-15 2.71448784944E-15 2.92590225426E-15 3.15378236677E-15 3.39941059161E-15 3.66416921105E-15 3.94954816375E-15 4.25715342928E-15 4.58871606575E-15 4.94610195118E-15 5.33132228368E-15 5.74654489934E-15 6.19410647153E-15 6.67652566042E-15 7.19651728653E-15 7.75700760813E-15 8.36115078853E-15 9.01234664583E-15 9.71425978504E-15 1.04708402203E-14 1.12863456031E-14 1.21653651816E-14 1.31128456265E-14 1.41341188671E-14 1.52349320965E-14 1.64214801130E-14 1.77004401802E-14 1.90790096025E-14 2.05649462264E-14 2.21666120967E-14 2.38930205125E-14 2.57538867472E-14 2.77596827199E-14 2.99216959239E-14 3.22520929441E-14 3.47639879222E-14 3.74715163534E-14 4.03899146303E-14 4.35356057818E-14 4.69262918897E-14 5.05810537019E-14 5.45204580040E-14 5.87666733532E-14 6.33435948244E-14 6.82769784728E-14 7.35945862672E-14 7.93263423113E-14 8.55045012309E-14 9.21638296753E-14 9.93418019528E-14 1.07078810904E-13 1.15418395194E-13 1.24407484312E-13 1.34096662641E-13 1.44540454105E-13 1.55797628972E-13 1.67931534561E-13 1.81010451691E-13 1.95107978903E-13 2.10303446596E-13 2.26682363413E-13 2.44336897395E-13 2.63366394605E-13 2.83877938136E-13 3.05986950659E-13 3.29817843889E-13 3.55504718631E-13 3.83192119345E-13 4.13035847466E-13 4.45203838069E-13 4.79877104801E-13 5.17250758395E-13 5.57535104508E-13 6.00956827044E-13 6.47760263635E-13 6.98208780440E-13 7.52586254010E-13 8.11198668547E-13 8.74375837548E-13 9.42473259514E-13 1.01587411817E-12 1.09499143846E-12 1.18027041038E-12 1.27219089384E-12 1.37127011856E-12 1.47806559415E-12 1.59317824689E-12 1.71725580072E-12 1.85099642148E-12 1.99515264501E-12 2.15053561101E-12 2.31801962669E-12 2.49854708573E-12 2.69313377025E-12 2.90287456567E-12 3.12894962055E-12 3.37263098607E-12 3.63528977249E-12 3.91840386286E-12 4.22356622736E-12 4.55249388504E-12 4.90703756329E-12 5.28919210962E-12 5.70110771363E-12 6.14510200285E-12 6.62367308755E-12 7.13951358607E-12 7.69552582731E-12 8.29483811937E-12 8.94082237453E-12 9.63711307535E-12 1.03876277217E-11 1.11965888706E-11 1.20685478612E-11 1.30084104517E-11 1.40214643969E-11 1.51134091939E-11 1.62903881339E-11 1.75590228712E-11 1.89264506545E-11 2.04003644756E-11 2.19890563528E-11 2.37014639188E-11 2.55472207666E-11 2.75367105871E-11 2.96811255353E-11 3.19925292644E-11 3.44839246627E-11 3.71693270808E-11 4.00638431448E-11 4.31837556088E-11 4.65466149916E-11 5.01713383112E-11 5.40783154616E-11 5.82895236112E-11 6.28286514463E-11 6.77212315703E-11 7.29947844823E-11 7.86789733436E-11 8.48057707811E-11 9.14096384969E-11 9.85277210192E-11 1.06200054913E-10 1.14469793209E-10 1.23383448790E-10 1.32991155201E-10 1.43346949064E-10 1.54509073252E-10 1.66540304811E-10 1.79508307812E-10 1.93486013239E-10 2.08552029596E-10 2.24791084140E-10 2.42294499440E-10 2.61160706820E-10 2.81495799169E-10 3.03414127596E-10 3.27038943428E-10 3.52503091673E-10 3.79949757508E-10 4.09533269697E-10 4.41419969500E-10 4.75789143921E-10 5.12834034108E-10 5.52762920365E-10 5.95800292989E-10 6.42188111975E-10 6.92187168969E-10 7.46078549726E-10 8.04165214110E-10 8.66773697452E-10 9.34255945272E-10 1.00699129105E-09 1.08538858312E-09 1.16988848276E-09 1.26096594111E-09 1.35913286117E-09 1.46494097725E-09 1.57898494902E-09 1.70190570100E-09 1.83439402423E-09 1.97719444755E-09 2.13110942202E-09 2.29700382437E-09 2.47580981053E-09 2.66853204463E-09 2.87625334131E-09 3.10014073834E-09 3.34145204977E-09 3.60154291492E-09 3.88187441063E-09 4.18402124707E-09 4.50968059748E-09 4.86068161614E-09 5.23899570436E-09 5.64674755478E-09 6.08622707784E-09 6.55990222717E-09 7.07043285320E-09 7.62068559261E-09 8.21374994753E-09 8.85295560644E-09 9.54189109933E-09 1.02844238956E-08 1.10847220849E-08 1.19472777313E-08 1.28769320147E-08 1.38789023780E-08 1.49588117110E-08 1.61227198597E-08 1.73771575465E-08 1.87291629333E-08 2.01863210143E-08 2.17568060554E-08 2.34494273565E-08 2.52736785175E-08 2.72397905689E-08 2.93587891786E-08 3.16425563200E-08 3.41038967073E-08 3.67566093885E-08 3.96155648710E-08 4.26967882287E-08 4.60175486493E-08 4.95964559116E-08 5.34535643385E-08 5.76104847709E-08 6.20905052663E-08 6.69187210724E-08 7.21221747193E-08 7.77300068821E-08 8.37736189932E-08 9.02868483559E-08 9.73061568597E-08 1.04870834243E-07 1.13023217079E-07 1.21808924719E-07 1.31277113402E-07 1.41480750067E-07 1.52476907249E-07 1.64327080795E-07 1.77097532083E-07 1.90859656660E-07 2.05690381342E-07 2.21672591931E-07 2.38895593922E-07 2.57455608774E-07 2.77456308353E-07 2.99009390699E-07 3.22235200004E-07 3.47263394489E-07 3.74233665612E-07 4.03296512665E-07 4.34614077073E-07 4.68361040709E-07 5.04725593531E-07 5.43910475369E-07 5.86134098027E-07 6.31631753445E-07 6.80656914697E-07 7.33482636987E-07 7.90403065993E-07 8.51735062119E-07 9.17819949259E-07 9.89025397589E-07 1.06574745071E-06 1.14841270811E-06 1.23748067460E-06 1.33344628973E-06 1.43684265068E-06 1.54824394324E-06 1.66826859700E-06 1.79758268141E-06 1.93690356131E-06 2.08700383124E-06 2.24871555012E-06 2.42293479839E-06 2.61062658282E-06 2.81283011434E-06 3.03066448796E-06 3.26533479437E-06 3.51813869636E-06 3.79047350451E-06 4.08384379030E-06 4.39986957659E-06 4.74029514908E-06 5.10699853526E-06 5.50200170093E-06 5.92748151813E-06 6.38578156186E-06 6.87942479804E-06 7.41112722872E-06 7.98381256643E-06 8.60062801375E-06 9.26496123098E-06 9.98045857947E-06 1.07510447360E-05 1.15809437790E-05 1.24747018568E-05 1.34372115528E-05 1.44737380752E-05 1.55899474034E-05 1.67919365376E-05 1.80862660033E-05 1.94799947779E-05 2.09807178167E-05 2.25966063676E-05 2.43364512782E-05 2.62097095131E-05 2.82265541160E-05 3.03979278641E-05 3.27356008848E-05 3.52522325196E-05 3.79614377407E-05 4.08778584506E-05 4.40172400120E-05 4.73965133851E-05 5.10338832713E-05 5.49489226931E-05 5.91626744657E-05 6.36977600506E-05 6.85784963125E-05 7.38310207373E-05 7.94834257048E-05 8.55659024524E-05 9.21108954059E-05 9.91532675999E-05 1.06730477958E-04 1.14882771250E-04 1.23653381609E-04 1.33088750525E-04 1.43238760323E-04 1.54156984159E-04 1.65900953683E-04 1.78532445536E-04 1.92117787959E-04 2.06728188869E-04 2.22440086815E-04 2.39335526349E-04 2.57502559408E-04 2.77035674421E-04 2.98036254956E-04 3.20613069805E-04 3.44882796554E-04 3.70970580773E-04 3.99010633093E-04 4.29146866571E-04 4.61533576857E-04 4.96336167858E-04 5.33731925671E-04 5.73910843782E-04 6.17076502618E-04 6.63447006741E-04 7.13255983114E-04 7.66753644049E-04 8.24207918619E-04 8.85905656483E-04 9.52153908264E-04 1.02328128681E-03 1.09963941379E-03 1.18160445644E-03 1.26957875914E-03 1.36399257502E-03 1.46530590289E-03 1.57401043464E-03 1.69063161904E-03 1.81573084742E-03 1.94990776727E-03 2.09380272978E-03 2.24809937746E-03 2.41352737810E-03 2.59086531151E-03 2.78094371537E-03 2.98464829665E-03 3.20292331504E-03 3.43677514480E-03 3.68727602129E-03 3.95556797830E-03 4.24286698218E-03 4.55046726836E-03 4.87974588561E-03 5.23216745301E-03 5.60928913371E-03 6.01276582958E-03 6.44435559943E-03 6.90592530309E-03 7.39945647231E-03 7.92705140859E-03 8.49093950638E-03 9.09348379892E-03 9.73718772187E-03 1.04247020885E-02 1.11588322674E-02 1.19425455518E-02 1.27789787072E-02 1.36714456788E-02 1.46234454411E-02 1.56386699645E-02 1.67210122708E-02 1.78745745475E-02 1.91036762821E-02 2.04128623760E-02 2.18069111896E-02 2.32908424657E-02 2.48699250707E-02 2.65496844872E-02 2.83359099818E-02 3.02346613687E-02 3.22522752741E-02 3.43953708044E-02 3.66708545072E-02 3.90859245053E-02 4.16480736741E-02 4.43650917201E-02 4.72450660099E-02 5.02963809821E-02 5.35277159694E-02 5.69480412387E-02 6.05666120502E-02 6.43929605202E-02 6.84368850630E-02 7.27084371713E-02 7.72179052867E-02 8.19757954975E-02 8.69928087930E-02 9.22798145917E-02 9.78478202545E-02 1.03707936287E-01 1.09871336931E-01 1.16349215842E-01 1.23152736547E-01 1.30292977395E-01 1.37780870697E-01 1.45627135777E-01 1.53842205687E-01 1.62436147314E-01 1.71418574696E-01 1.80798555340E-01 1.90584509418E-01 2.00784101734E-01 2.11404126438E-01 2.22450384506E-01 2.33927554095E-01 2.45839053957E-01 2.58186900195E-01 2.70971556748E-01 2.84191780119E-01 2.97844458960E-01 3.11924449309E-01 3.26424406380E-01 3.41334614008E-01 3.56642812992E-01 3.72334029774E-01 3.88390407081E-01 4.04791038343E-01 4.21511807916E-01 4.38525239307E-01 4.55800353857E-01 4.73302542459E-01 4.90993453152E-01 5.08830897564E-01 5.26768779341E-01 5.44757047872E-01 5.62741680685E-01 5.80664698013E-01 5.98464213024E-01 6.16074521247E-01 6.33426232617E-01 6.50446449476E-01 6.67058993645E-01 6.83184685432E-01 6.98741677097E-01 7.13645842816E-01 7.27811226713E-01 7.41150549853E-01 7.53575776387E-01 7.64998738194E-01 7.75331816465E-01 7.84488677616E-01 7.92385059850E-01 7.98939605460E-01 8.04074732750E-01 8.07717540126E-01 8.09800733586E-01 8.10263567528E-01 8.09052787446E-01 8.06123561881E-01 8.01440389799E-01 7.94977968545E-01 7.86722006681E-01 7.76669965318E-01 7.64831711195E-01 7.51230064623E-01 7.35901225632E-01 7.18895062256E-01 7.00275245884E-01 6.80119219959E-01 6.58517990223E-01 6.35575726896E-01 6.11409171942E-01 5.86146847658E-01 5.59928066330E-01 5.32901744485E-01 5.05225029392E-01 4.77061749664E-01 4.48580706209E-01 4.19953824084E-01 3.91354190020E-01 3.62954004315E-01 3.34922479409E-01 3.07423720488E-01 2.80614625940E-01 2.54642847213E-01 2.29644848513E-01 2.05744106765E-01 1.83049491273E-01 1.61653860532E-01 1.41632910612E-01 1.23044305522E-01 1.05927114982E-01 9.03015791181E-02 7.61692129422E-02 6.35132560608E-02 5.22994651509E-02 4.24772384180E-02 3.39810527343E-02 2.67321856532E-02 2.06406862268E-02 1.56075507960E-02 1.15270529491E-02 8.28917098536E-03 5.78205180505E-03 3.89444754682E-03 2.51806087030E-03 1.54973689445E-03 8.93444777113E-04 4.65388273984E-04 2.04571477974E-04 6.17842197853E-05 -3.58178766310E-06 -2.33992186517E-05 -2.10075647546E-05 -1.17775611279E-05 -4.06010096227E-06 -5.38611387824E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 2 i j (l(j)) 0.00000000000E+00 Q_int 9.66356489479E-30 1.04162034411E-29 1.12274606014E-29 1.21019018369E-29 1.30444481854E-29 1.40604039560E-29 1.51554865791E-29 1.63358587824E-29 1.76081632724E-29 1.89795601174E-29 2.04577670411E-29 2.20511028559E-29 2.37685342776E-29 2.56197263874E-29 2.76150970227E-29 2.97658754055E-29 3.20841653365E-29 3.45830133102E-29 3.72764819365E-29 4.01797290796E-29 4.33090931612E-29 4.66821851070E-29 5.03179874549E-29 5.42369611814E-29 5.84611608487E-29 6.30143587203E-29 6.79221785418E-29 7.32122397428E-29 7.89143128683E-29 8.50604871174E-29 9.16853509290E-29 9.88261866331E-29 1.06523180262E-28 1.14819647705E-28 1.23762278469E-28 1.33401398437E-28 1.43791253078E-28 1.54990312726E-28 1.67061601625E-28 1.80073052609E-28 1.94097889405E-28 2.09215038706E-28 2.25509574343E-28 2.43073196052E-28 2.62004745523E-28 2.82410762650E-28 3.04406085093E-28 3.28114494546E-28 3.53669413338E-28 3.81214655281E-28 4.10905235002E-28 4.42908240312E-28 4.77403772516E-28 5.14585959953E-28 5.54664050486E-28 5.97863589067E-28 6.44427687027E-28 6.94618390216E-28 7.48718153704E-28 8.07031431331E-28 8.69886389069E-28 9.37636751817E-28 1.01066379404E-27 1.08937848543E-27 1.17422380371E-27 1.26567722757E-27 1.36425342368E-27 1.47050714311E-27 1.58503634326E-27 1.70848555291E-27 1.84154949942E-27 1.98497701841E-27 2.13957526792E-27 2.30621427081E-27 2.48583181093E-27 2.67943871064E-27 2.88812451932E-27 3.11306364500E-27 3.35552196347E-27 3.61686394218E-27 3.89856031897E-27 4.20219637886E-27 4.52948087542E-27 4.88225564706E-27 5.26250598222E-27 5.67237179183E-27 6.11415965195E-27 6.59035578439E-27 7.10364004822E-27 7.65690102105E-27 8.25325225491E-27 8.89604979818E-27 9.58891108224E-27 1.03357352790E-26 1.11407252441E-26 1.20084111691E-26 1.29436760754E-26 1.39517832947E-26 1.50384060887E-26 1.62096595761E-26 1.74721351468E-26 1.88329375551E-26 2.02997249034E-26 2.18807517386E-26 2.35849155061E-26 2.54218066215E-26 2.74017624413E-26 2.95359254386E-26 3.18363059085E-26 3.43158495577E-26 3.69885103582E-26 3.98693290752E-26 4.29745179114E-26 4.63215517429E-26 4.99292664618E-26 5.38179649775E-26 5.80095314744E-26 6.25275545680E-26 6.73974600530E-26 7.26466539906E-26 7.83046769398E-26 8.44033702008E-26 9.09770550067E-26 9.80627256703E-26 1.05700257775E-25 1.13932632582E-25 1.22806178907E-25 1.32370833852E-25 1.42680423823E-25 1.53792967452E-25 1.65771002102E-25 1.78681935808E-25 1.92598426619E-25 2.07598791495E-25 2.23767447049E-25 2.41195384607E-25 2.59980682277E-25 2.80229056900E-25 3.02054458980E-25 3.25579713962E-25 3.50937213444E-25 3.78269660233E-25 4.07730871422E-25 4.39486644017E-25 4.73715687985E-25 5.10610631965E-25 5.50379107313E-25 5.93244916580E-25 6.39449292985E-25 6.89252257994E-25 7.42934084623E-25 8.00796874712E-25 8.63166259048E-25 9.30393229894E-25 1.00285611625E-24 1.08096271294E-24 1.16515257556E-24 1.25589949409E-24 1.35371415927E-24 1.45914703654E-24 1.57279146387E-24 1.69528699086E-24 1.82732297788E-24 1.96964247555E-24 2.12304640637E-24 2.28839807199E-24 2.46662801157E-24 2.65873923853E-24 2.86581288515E-24 3.08901428676E-24 3.32959953985E-24 3.58892257092E-24 3.86844275586E-24 4.16973313284E-24 4.49448925476E-24 4.84453873122E-24 5.22185151362E-24 5.62855098137E-24 6.06692589147E-24 6.53944325881E-24 7.04876223964E-24 7.59774909634E-24 8.18949332768E-24 8.82732505543E-24 9.51483376503E-24 1.02558885060E-23 1.10546596654E-23 1.19156424374E-23 1.28436821206E-23 1.38440013854E-23 1.49222296655E-23 1.60844348384E-23 1.73371573728E-23 1.86874471366E-23 2.01429030702E-23 2.17117159514E-23 2.34027144895E-23 2.52254150106E-23 2.71900750113E-23 2.93077508851E-23 3.15903601428E-23 3.40507484809E-23 3.67027620714E-23 3.95613254842E-23 4.26425256763E-23 4.59637025237E-23 4.95435464039E-23 5.34022033784E-23 5.75613885676E-23 6.20445083557E-23 6.68767921129E-23 7.20854341776E-23 7.76997468959E-23 8.37513255811E-23 9.02742263205E-23 9.73051576307E-23 1.04883687040E-22 1.13052463759E-22 1.21857458697E-22 1.31348223168E-22 1.41578167746E-22 1.52604862845E-22 1.64490362699E-22 1.77301554585E-22 1.91110535237E-22 2.05995016582E-22 2.22038763073E-22 2.39332063089E-22 2.57972237039E-22 2.78064185050E-22 2.99720977305E-22 3.23064490365E-22 3.48226093037E-22 3.75347385680E-22 4.04580997074E-22 4.36091443361E-22 4.70056053881E-22 5.06665969120E-22 5.46127216376E-22 5.88661869206E-22 6.34509297177E-22 6.83927512948E-22 7.37194624276E-22 7.94610399100E-22 8.56497952528E-22 9.23205565211E-22 9.95108643341E-22 1.07261183130E-21 1.15615128885E-21 1.24619714567E-21 1.34325614711E-21 1.44787450593E-21 1.56064097620E-21 1.68219016661E-21 1.81320611177E-21 1.95442612178E-21 2.10664493148E-21 2.27071917295E-21 2.44757219631E-21 2.63819926604E-21 2.84367316192E-21 3.06515021626E-21 3.30387682130E-21 3.56119644350E-21 3.83855718402E-21 4.13751992813E-21 4.45976712932E-21 4.80711227749E-21 5.18151010467E-21 5.58506758548E-21 6.02005579444E-21 6.48892268675E-21 6.99430687447E-21 7.53905247570E-21 8.12622512020E-21 8.75912920164E-21 9.44132647354E-21 1.01766560935E-20 1.09692562286E-20 1.18235873434E-20 1.27444573019E-20 1.37370484245E-20 1.48069466519E-20 1.59601729812E-20 1.72032173495E-20 1.85430751569E-20 1.99872866342E-20 2.15439792765E-20 2.32219135818E-20 2.50305323519E-20 2.69800138327E-20 2.90813289941E-20 3.13463032703E-20 3.37876831092E-20 3.64192077044E-20 3.92556863146E-20 4.23130816048E-20 4.56085994778E-20 4.91607859034E-20 5.29896312875E-20 5.71166829714E-20 6.15651664920E-20 6.63601162866E-20 7.15285165775E-20 7.70994532294E-20 8.31042774337E-20 8.95767821415E-20 9.65533922380E-20 1.04073369528E-19 1.12179033687E-19 1.20916000422E-19 1.30333438176E-19 1.40484344835E-19 1.51425845976E-19 1.63219516352E-19 1.75931726409E-19 1.89634015796E-19 2.04403495964E-19 2.20323284120E-19 2.37482970979E-19 2.55979124947E-19 2.75915835575E-19 2.97405299334E-19 3.20568451015E-19 3.45535644304E-19 3.72447385368E-19 4.01455123567E-19 4.32722103755E-19 4.66424284966E-19 5.02751330638E-19 5.41907675974E-19 5.84113678424E-19 6.29606857775E-19 6.78643232825E-19 7.31498762155E-19 7.88470897129E-19 8.49880255832E-19 9.16072427389E-19 9.87419916812E-19 1.06432424132E-18 1.14721818992E-18 1.23656825899E-18 1.33287727753E-18 1.43668723691E-18 1.54858234097E-18 1.66919229375E-18 1.79919584314E-18 1.93932460069E-18 2.09036715881E-18 2.25317352867E-18 2.42865992375E-18 2.61781391592E-18 2.82169999315E-18 3.04146554999E-18 3.27834734472E-18 3.53367845932E-18 3.80889580155E-18 4.10554819133E-18 4.42530507688E-18 4.76996592973E-18 5.14147037149E-18 5.54190908921E-18 5.97353560107E-18 6.43877893820E-18 6.94025731437E-18 7.48079286029E-18 8.06342750544E-18 8.69144009687E-18 9.36836485124E-18 1.00980112441E-17 1.08844854479E-17 1.17322134403E-17 1.26459659113E-17 1.36308851113E-17 1.46925137895E-17 1.58368263860E-17 1.70702626539E-17 1.83997638996E-17 1.98328120457E-17 2.13774717361E-17 2.30424357209E-17 2.48370737752E-17 2.67714854291E-17 2.88565568032E-17 3.11040218715E-17 3.35265284953E-17 3.61377096004E-17 3.89522598977E-17 4.19860185785E-17 4.52560584517E-17 4.87807820219E-17 5.25800250513E-17 5.66751681874E-17 6.10892572839E-17 6.58471330936E-17 7.09755710613E-17 7.65034320052E-17 8.24618245332E-17 8.88842801088E-17 9.58069417523E-17 1.03268767438E-16 1.11311749333E-16 1.19981150112E-16 1.29325757674E-16 1.39398159702E-16 1.50255039601E-16 1.61957495490E-16 1.74571384034E-16 1.88167691056E-16 2.02822931016E-16 2.18619577596E-16 2.35646527830E-16 2.53999602374E-16 2.73782084741E-16 2.95105302535E-16 3.18089253952E-16 3.42863283075E-16 3.69566807762E-16 3.98350104226E-16 4.29375152719E-16 4.62816549083E-16 4.98862487290E-16 5.37715818513E-16 5.79595192670E-16 6.24736288887E-16 6.73393141783E-16 7.25839571056E-16 7.82370722404E-16 8.43304728463E-16 9.08984499096E-16 9.79779651126E-16 1.05608858835E-15 1.13834074355E-15 1.22699899513E-15 1.32256227195E-15 1.42556836107E-15 1.53659693409E-15 1.65627280926E-15 1.78526946765E-15 1.92431284311E-15 2.07418540744E-15 2.23573057374E-15 2.40985744267E-15 2.59754591835E-15 2.79985222277E-15 3.01791483954E-15 3.25296092071E-15 3.50631319241E-15 3.77939739848E-15 4.07375032366E-15 4.39102844172E-15 4.73301723717E-15 5.10164125284E-15 5.49897492009E-15 5.92725423244E-15 6.38888932834E-15 6.88647805396E-15 7.42282058226E-15 8.00093517051E-15 8.62407514521E-15 9.29574720961E-15 1.00197311772E-14 1.08001012420E-14 1.16412489053E-14 1.25479076882E-14 1.35251797685E-14 1.45785646923E-14 1.57139903214E-14 1.69378461915E-14 1.82570194673E-14 1.96789336990E-14 2.12115905964E-14 2.28636150563E-14 2.46443036971E-14 2.65636771731E-14 2.86325365627E-14 3.08625241488E-14 3.32661889315E-14 3.58570572447E-14 3.86497088703E-14 4.16598590816E-14 4.49044470754E-14 4.84017312913E-14 5.21713921544E-14 5.62346428192E-14 6.06143485384E-14 6.53351553277E-14 7.04236286508E-14 7.59084029049E-14 8.18203425480E-14 8.81927157742E-14 9.50613817143E-14 1.02464992215E-13 1.10445209333E-13 1.19046939767E-13 1.28318587541E-13 1.38312326376E-13 1.49084393268E-13 1.60695404919E-13 1.73210698833E-13 1.86700700948E-13 2.01241321923E-13 2.16914384265E-13 2.33808082735E-13 2.52017480596E-13 2.71645044510E-13 2.92801221098E-13 3.15605058383E-13 3.40184875641E-13 3.66678985413E-13 3.95236471732E-13 4.26018028971E-13 4.59196866000E-13 4.94959680754E-13 5.33507710702E-13 5.75057865109E-13 6.19843945468E-13 6.68117960981E-13 7.20151546461E-13 7.76237490659E-13 8.36691383599E-13 9.01853392190E-13 9.72090174107E-13 1.04779694070E-12 1.12939968053E-12 1.21735755610E-12 1.31216548712E-12 1.41435693503E-12 1.52450690426E-12 1.64323517723E-12 1.77120980129E-12 1.90915084704E-12 2.05783445947E-12 2.21809722439E-12 2.39084087494E-12 2.57703736454E-12 2.77773433483E-12 2.99406100937E-12 3.22723454893E-12 3.47856688461E-12 3.74947212728E-12 4.04147449644E-12 4.35621689455E-12 4.69547017216E-12 5.06114306632E-12 5.45529294807E-12 5.88013739191E-12 6.33806665806E-12 6.83165712090E-12 7.36368578230E-12 7.93714587524E-12 8.55526370733E-12 9.22151680750E-12 9.93965349010E-12 1.07137139303E-11 1.15480528778E-11 1.24473641984E-11 1.34167072025E-11 1.44615351600E-11 1.55877259475E-11 1.68016150952E-11 1.81100314406E-11 1.95203355251E-11 2.10404609777E-11 2.26789591624E-11 2.44450472170E-11 2.63486599428E-11 2.84005056266E-11 3.06121263033E-11 3.29959626679E-11 3.55654238892E-11 3.83349631581E-11 4.13201591047E-11 4.45378028851E-11 4.80059931977E-11 5.17442375946E-11 5.57735623890E-11 6.01166308666E-11 6.47978705262E-11 6.98436106933E-11 7.52822303282E-11 8.11443173695E-11 8.74628413879E-11 9.42733382626E-11 1.01614110021E-10 1.09526440582E-10 1.18054826988E-10 1.27247230629E-10 1.37155345963E-10 1.47834891233E-10 1.59345921657E-10 1.71753167228E-10 1.85126396169E-10 1.99540806927E-10 2.15077451019E-10 2.31823688498E-10 2.49873678534E-10 2.69328908847E-10 2.90298765679E-10 3.12901148298E-10 3.37263131803E-10 3.63521680718E-10 3.91824418145E-10 4.22330455564E-10 4.55211286395E-10 4.90651749463E-10 5.28851066332E-10 5.70023961225E-10 6.14401866652E-10 6.62234222534E-10 7.13789878072E-10 7.69358600407E-10 8.29252701047E-10 8.93808791802E-10 9.63389671343E-10 1.03838636591E-09 1.11922031981E-09 1.20634576367E-09 1.30025226488E-09 1.40146747286E-09 1.51056008111E-09 1.62814302109E-09 1.75487689573E-09 1.89147369175E-09 2.03870077116E-09 2.19738517903E-09 2.36841827761E-09 2.55276074983E-09 2.75144798877E-09 2.96559590063E-09 3.19640716399E-09 3.44517797600E-09 3.71330531270E-09 4.00229476490E-09 4.31376898453E-09 4.64947676677E-09 5.01130285657E-09 5.40127851391E-09 5.82159289363E-09 6.27460530484E-09 6.76285843540E-09 7.28909258995E-09 7.85626103502E-09 8.46754654569E-09 9.12637921833E-09 9.83645568182E-09 1.06017597777E-08 1.14265848736E-08 1.23155578779E-08 1.32736651377E-08 1.43062803312E-08 1.54191945284E-08 1.66186485794E-08 1.79113680147E-08 1.93046006506E-08 2.08061571000E-08 2.24244544378E-08 2.41685632316E-08 2.60482582254E-08 2.80740729418E-08 3.02573585149E-08 3.26103470802E-08 3.51462200705E-08 3.78791817821E-08 4.08245386647E-08 4.39987847069E-08 4.74196934628E-08 5.11064171654E-08 5.50795935273E-08 5.93614607826E-08 6.39759816287E-08 6.89489767391E-08 7.43082685968E-08 8.00838364415E-08 8.63079831844E-08 9.30155151822E-08 1.00243935949E-07 1.08033654753E-07 1.16428211358E-07 1.25474518074E-07 1.35223120484E-07 1.45728478286E-07 1.57049267756E-07 1.69248707555E-07 1.82394909604E-07 1.96561257012E-07 2.11826811092E-07 2.28276749679E-07 2.46002839266E-07 2.65103943345E-07 2.85686569933E-07 3.07865461156E-07 3.31764228146E-07 3.57516034725E-07 3.85264333588E-07 4.15163659020E-07 4.47380480437E-07 4.82094121419E-07 5.19497749196E-07 5.59799440053E-07 6.03223326259E-07 6.50010830956E-07 7.00421997518E-07 7.54736920666E-07 8.13257287037E-07 8.76308033566E-07 9.44239132569E-07 1.01742751316E-06 1.09627912942E-06 1.18123118623E-06 1.27275453507E-06 1.37135625219E-06 1.47758241332E-06 1.59202107958E-06 1.71530551062E-06 1.84811762198E-06 1.99119170532E-06 2.14531843114E-06 2.31134915516E-06 2.49020055155E-06 2.68285959705E-06 2.89038893277E-06 3.11393263164E-06 3.35472240204E-06 3.61408426030E-06 3.89344570686E-06 4.19434344382E-06 4.51843167441E-06 4.86749102726E-06 5.24343815237E-06 5.64833603846E-06 6.08440510512E-06 6.55403512739E-06 7.05979805412E-06 7.60446178624E-06 8.19100498578E-06 8.82263299129E-06 9.50279492153E-06 1.02352020540E-05 1.10238475726E-05 1.18730277832E-05 1.27873649067E-05 1.37718315615E-05 1.48317770616E-05 1.59729556592E-05 1.72015568755E-05 1.85242380684E-05 1.99481594007E-05 2.14810213801E-05 2.31311051571E-05 2.49073157776E-05 2.68192286031E-05 2.88771391221E-05 3.10921163977E-05 3.34760604066E-05 3.60417635460E-05 3.88029766044E-05 4.17744795081E-05 4.49721571812E-05 4.84130808750E-05 5.21155953510E-05 5.60994123219E-05 6.03857105871E-05 6.49972433230E-05 6.99584530230E-05 7.52955946092E-05 8.10368672764E-05 8.72125556612E-05 9.38551809683E-05 1.00999662727E-04 1.08683491889E-04 1.16946916028E-04 1.25833137448E-04 1.35388525051E-04 1.45662840866E-04 1.56709482218E-04 1.68585740527E-04 1.81353077842E-04 1.95077422232E-04 2.09829483242E-04 2.25685088702E-04 2.42725544215E-04 2.61038016757E-04 2.80715943888E-04 3.01859470143E-04 3.24575912270E-04 3.48980255060E-04 3.75195679617E-04 4.03354125969E-04 4.33596892075E-04 4.66075271322E-04 5.00951230736E-04 5.38398132225E-04 5.78601499268E-04 6.21759831572E-04 6.68085470316E-04 7.17805516703E-04 7.71162806654E-04 8.28416944555E-04 8.89845399092E-04 9.55744664272E-04 1.02643148885E-03 1.10224417745E-03 1.18354396667E-03 1.27071647975E-03 1.36417326313E-03 1.46435340844E-03 1.57172526363E-03 1.68678823656E-03 1.81007469479E-03 1.94215196500E-03 2.08362443547E-03 2.23513576508E-03 2.39737120195E-03 2.57106001490E-03 2.75697804049E-03 2.95595034841E-03 3.16885402734E-03 3.39662109341E-03 3.64024152262E-03 3.90076640836E-03 4.17931124437E-03 4.47705933296E-03 4.79526531746E-03 5.13525883705E-03 5.49844830115E-03 5.88632477941E-03 6.30046600214E-03 6.74254046461E-03 7.21431162725E-03 7.71764220188E-03 8.25449851246E-03 8.82695491662E-03 9.43719827218E-03 1.00875324301E-02 1.07803827332E-02 1.15183004960E-02 1.23039674397E-02 1.31402000507E-02 1.40299538291E-02 1.49763273891E-02 1.59825663689E-02 1.70520671032E-02 1.81883800072E-02 1.93952126149E-02 2.06764322107E-02 2.20360679857E-02 2.34783126461E-02 2.50075233947E-02 2.66282221982E-02 2.83450952495E-02 3.01629915261E-02 3.20869203371E-02 3.41220477488E-02 3.62736917676E-02 3.85473161550E-02 4.09485227411E-02 4.34830420986E-02 4.61567224309E-02 4.89755165245E-02 5.19454666094E-02 5.50726869682E-02 5.83633441299E-02 6.18236344854E-02 6.54597591559E-02 6.92778959520E-02 7.32841682590E-02 7.74846106917E-02 8.18851313678E-02 8.64914706590E-02 9.13091562899E-02 9.63434546745E-02 1.01599318395E-01 1.07081329752E-01 1.12793640350E-01 1.18739906694E-01 1.24923221846E-01 1.31346043182E-01 1.38010116396E-01 1.44916395894E-01 1.52064961830E-01 1.59454934057E-01 1.67084383383E-01 1.74950240544E-01 1.83048203457E-01 1.91372643339E-01 1.99916510410E-01 2.08671240004E-01 2.17626659970E-01 2.26770900415E-01 2.36090306881E-01 2.45569358228E-01 2.55190590528E-01 2.64934528446E-01 2.74779625652E-01 2.84702215891E-01 2.94676476460E-01 3.04674405869E-01 3.14665817549E-01 3.24618351497E-01 3.34497505748E-01 3.44266689577E-01 3.53887300261E-01 3.63318825191E-01 3.72518970960E-01 3.81443820953E-01 3.90048022716E-01 3.98285006164E-01 4.06107233374E-01 4.13466480369E-01 4.20314150886E-01 4.26601621678E-01 4.32280618387E-01 4.37303620465E-01 4.41624293036E-01 4.45197942937E-01 4.47981995526E-01 4.49936488121E-01 4.51024575284E-01 4.51213040406E-01 4.50472807414E-01 4.48779445756E-01 4.46113661216E-01 4.42461764617E-01 4.37816110016E-01 4.32175493699E-01 4.25545505103E-01 4.17938820759E-01 4.09375432523E-01 3.99882801695E-01 3.89495931160E-01 3.78257348493E-01 3.66216993902E-01 3.53432008120E-01 3.39966416777E-01 3.25890709381E-01 3.11281312854E-01 2.96219961524E-01 2.80792967544E-01 2.65090397860E-01 2.49205166056E-01 2.33232049550E-01 2.17266644724E-01 2.01404274526E-01 1.85738864846E-01 1.70361807495E-01 1.55360828812E-01 1.40818883794E-01 1.26813096078E-01 1.13413764142E-01 1.00683453630E-01 8.86761947753E-02 7.74368024991E-02 6.70003348308E-02 5.73917029574E-02 4.86254433742E-02 4.07056593944E-02 3.36261356849E-02 2.73706255980E-02 2.19133069286E-02 1.72193974232E-02 1.32459169935E-02 9.94257925959E-03 7.25279088544E-03 5.11473334165E-03 3.46249839670E-03 2.22724601016E-03 1.33835159453E-03 7.24509067582E-04 3.18856263874E-04 7.26710296683E-05 -5.52356167852E-05 -1.01665259678E-04 -9.82592669319E-05 -7.08034067141E-05 -3.86202287514E-05 -1.40582108380E-05 -2.08595773538E-06 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 4 2 i j (l(j)) 0.00000000000E+00 Q_int 1.35234123334E-29 1.45766718199E-29 1.57119635272E-29 1.69356764651E-29 1.82546972461E-29 1.96764488406E-29 2.12089323508E-29 2.28607720379E-29 2.46412638564E-29 2.65604277684E-29 2.86290641320E-29 3.08588144822E-29 3.32622270451E-29 3.58528273547E-29 3.86451943696E-29 4.16550425184E-29 4.48993101345E-29 4.83962547791E-29 5.21655559880E-29 5.62284260208E-29 6.06077292363E-29 6.53281107641E-29 7.04161351990E-29 7.59004360965E-29 8.18118771125E-29 8.81837256925E-29 9.50518402886E-29 1.02454872158E-28 1.10434482878E-28 1.19035578804E-28 1.28306563782E-28 1.38299611553E-28 1.49070959364E-28 1.60681224453E-28 1.73195745179E-28 1.86684948726E-28 2.01224747437E-28 2.16896966024E-28 2.33789802048E-28 2.51998322261E-28 2.71624997609E-28 2.92780279901E-28 3.15583223390E-28 3.40162154769E-28 3.66655395348E-28 3.95212039473E-28 4.25992793577E-28 4.59170880577E-28 4.94933014709E-28 5.33480452291E-28 5.75030124316E-28 6.19815857265E-28 6.68089688995E-28 7.20123287117E-28 7.76209477844E-28 8.36663893910E-28 9.01826750836E-28 9.72064761539E-28 1.04777320006E-27 1.12937812603E-27 1.21733878237E-27 1.31215017973E-27 1.41434588226E-27 1.52450101030E-27 1.64323547695E-27 1.77121747671E-27 1.90916724584E-27 2.05786111559E-27 2.21813588113E-27 2.39089351068E-27 2.57710622150E-27 2.77782195118E-27 2.99417025503E-27 3.22736866279E-27 3.47872953052E-27 3.74966742598E-27 4.04170708935E-27 4.35649201391E-27 4.69579369500E-27 5.06152159939E-27 5.45573391105E-27 5.88064911383E-27 6.33865847634E-27 6.83233950912E-27 7.36447046989E-27 7.93804599866E-27 8.55629397040E-27 9.22269366040E-27 9.94099532434E-27 1.07152413034E-26 1.15497887730E-26 1.24493342636E-26 1.34189400908E-26 1.44640628444E-26 1.55905840962E-26 1.68048434990E-26 1.81136744642E-26 1.95244426176E-26 2.10450872505E-26 2.26841659993E-26 2.44509030045E-26 2.63552408209E-26 2.84078963709E-26 3.06204212551E-26 3.30052667610E-26 3.55758539338E-26 3.83466491054E-26 4.13332453057E-26 4.45524500147E-26 4.80223797485E-26 5.17625620126E-26 5.57940451960E-26 6.01395170231E-26 6.48234322329E-26 6.98721502008E-26 7.53140832797E-26 8.11798566947E-26 8.75024808901E-26 9.43175373011E-26 1.01663378593E-25 1.09581344494E-25 1.18115994444E-25 1.27315358358E-25 1.37231206916E-25 1.47919342917E-25 1.59439915312E-25 1.71857757704E-25 1.85242753202E-25 1.99670227707E-25 2.15221373808E-25 2.31983707715E-25 2.50051561760E-25 2.69526615271E-25 2.90518466782E-25 3.13145250817E-25 3.37534302707E-25 3.63822875186E-25 3.92158910803E-25 4.22701874484E-25 4.55623650946E-25 4.91109512001E-25 5.29359159201E-25 5.70587847681E-25 6.15027597539E-25 6.62928499563E-25 7.14560122649E-25 7.70213030837E-25 8.30200418500E-25 8.94859872890E-25 9.64555273953E-25 1.03967884212E-24 1.12065334556E-24 1.20793447942E-24 1.30201343023E-24 1.40341964019E-24 1.51272378666E-24 1.63054099370E-24 1.75753429382E-24 1.89441835921E-24 2.04196352373E-24 2.20100011802E-24 2.37242314232E-24 2.55719730320E-24 2.75636244260E-24 2.97103938964E-24 3.20243626827E-24 3.45185529615E-24 3.72070011307E-24 4.01048368008E-24 4.32283679394E-24 4.65951726462E-24 5.02241980762E-24 5.41358670675E-24 5.83521930736E-24 6.28969040471E-24 6.77955759720E-24 7.30757767960E-24 7.87672215730E-24 8.49019396886E-24 9.15144551099E-24 9.86419806737E-24 1.06324627507E-23 1.14605630758E-23 1.23531592907E-23 1.33152746029E-23 1.43523234482E-23 1.54701419612E-23 1.66750208186E-23 1.79737406413E-23 1.93736101531E-23 2.08825073115E-23 2.25089236419E-23 2.42620120251E-23 2.61516382062E-23 2.81884363153E-23 3.03838687129E-23 3.27502904954E-23 3.53010190257E-23 3.80504088779E-23 4.10139326200E-23 4.42082678877E-23 4.76513912402E-23 5.13626793257E-23 5.53630179262E-23 5.96749194950E-23 6.43226498484E-23 6.93323647255E-23 7.47322569826E-23 8.05527152526E-23 8.68264949614E-23 9.35889026629E-23 1.00877994732E-22 1.08734791533E-22 1.17203508264E-22 1.26331803787E-22 1.36171048836E-22 1.46776615108E-22 1.58208186878E-22 1.70530096880E-22 1.83811688349E-22 1.98127705258E-22 2.13558712950E-22 2.30191551531E-22 2.48119824576E-22 2.67444425892E-22 2.88274107316E-22 3.10726090729E-22 3.34926727736E-22 3.61012210731E-22 3.89129339335E-22 4.19436346533E-22 4.52103789148E-22 4.87315507679E-22 5.25269660883E-22 5.66179840943E-22 6.10276275485E-22 6.57807123218E-22 7.09039870480E-22 7.64262836552E-22 8.23786796216E-22 8.87946728682E-22 9.57103702728E-22 1.03164690867E-21 1.11199584856E-21 1.19860269703E-21 1.29195484594E-21 1.39257764724E-21 1.50103736947E-21 1.61794438450E-21 1.74395660250E-21 1.87978317442E-21 2.02618848279E-21 2.18399644345E-21 2.35409514220E-21 2.53744183263E-21 2.73506832323E-21 2.94808678399E-21 3.17769600529E-21 3.42518814430E-21 3.69195599670E-21 3.97950083490E-21 4.28944085659E-21 4.62352029141E-21 4.98361921680E-21 5.37176413843E-21 5.79013939461E-21 6.24109944895E-21 6.72718214044E-21 7.25112296543E-21 7.81587047208E-21 8.42460285365E-21 9.08074583424E-21 9.78799194750E-21 1.05503213169E-20 1.13720240543E-20 1.22577244033E-20 1.32124067626E-20 1.42414437366E-20 1.53506263701E-20 1.65461967387E-20 1.78348830765E-20 1.92239376401E-20 2.07211775220E-20 2.23350286420E-20 2.40745731656E-20 2.59496006144E-20 2.79706629587E-20 3.01491339996E-20 3.24972733770E-20 3.50282955619E-20 3.77564442228E-20 4.06970723840E-20 4.38667288267E-20 4.72832512191E-20 5.09658665008E-20 5.49352990847E-20 5.92138874862E-20 6.38257100365E-20 6.87967203864E-20 7.41548935637E-20 7.99303834068E-20 8.61556922591E-20 9.28658538804E-20 1.00098630604E-19 1.07894725848E-19 1.16298013181E-19 1.25355783227E-19 1.35119009795E-19 1.45642636746E-19 1.56985887195E-19 1.69212596796E-19 1.82391572983E-19 1.96596982201E-19 2.11908767278E-19 2.28413097319E-19 2.46202852632E-19 2.65378147425E-19 2.86046893211E-19 3.08325406092E-19 3.32339061348E-19 3.58222998996E-19 3.86122884313E-19 4.16195727584E-19 4.48610767696E-19 4.83550424555E-19 5.21211325672E-19 5.61805412717E-19 6.05561134238E-19 6.52724731292E-19 7.03561623194E-19 7.58357901199E-19 8.17421938515E-19 8.81086125713E-19 9.49708741297E-19 1.02367596796E-18 1.10340406587E-18 1.18934171524E-18 1.28197254133E-18 1.38181783606E-18 1.48943949175E-18 1.60544316311E-18 1.73048167573E-18 1.86525869991E-18 2.01053271063E-18 2.16712125598E-18 2.33590555801E-18 2.51783547189E-18 2.71393483138E-18 2.92530721053E-18 3.15314213420E-18 3.39872177225E-18 3.66342815508E-18 3.94875095121E-18 4.25629585054E-18 4.58779360053E-18 4.94510974625E-18 5.33025512889E-18 5.74539720201E-18 6.19287222918E-18 6.67519843150E-18 7.19509015922E-18 7.75547316706E-18 8.35950107918E-18 9.01057313658E-18 9.71235332671E-18 1.04687910029E-17 1.12841431100E-17 1.21629981404E-17 1.31103019567E-17 1.41313856248E-17 1.52319954150E-17 1.64183251400E-17 1.76970510113E-17 1.90753692096E-17 2.05610363830E-17 2.21624132975E-17 2.38885118886E-17 2.57490459767E-17 2.77544859326E-17 2.99161176004E-17 3.22461058099E-17 3.47575628353E-17 3.74646221858E-17 4.03825181432E-17 4.35276714943E-17 4.69177819402E-17 5.05719277035E-17 5.45106728920E-17 5.87561832258E-17 6.33323507763E-17 6.82649284210E-17 7.35816747702E-17 7.93125103809E-17 8.54896861369E-17 9.21479647438E-17 9.93248163584E-17 1.07060629455E-16 1.15398938115E-16 1.24386667019E-16 1.34074395516E-16 1.44516642265E-16 1.55772172043E-16 1.67904326446E-16 1.80981380348E-16 1.95076926125E-16 2.10270287798E-16 2.26646967433E-16 2.44299126315E-16 2.63326103583E-16 2.83834975272E-16 3.05941156887E-16 3.29769052911E-16 3.55452756895E-16 3.83136806081E-16 4.12976994784E-16 4.45141251138E-16 4.79810582116E-16 5.17180092153E-16 5.57460081104E-16 6.00877227713E-16 6.47675865253E-16 6.98119356523E-16 7.52491575923E-16 8.11098506966E-16 8.74269964209E-16 9.42361449282E-16 1.01575615149E-15 1.09486710419E-15 1.18013950918E-15 1.27205324204E-15 1.37112555264E-15 1.47791397596E-15 1.59301946962E-15 1.71708979577E-15 1.85082316634E-15 1.99497217223E-15 2.15034801850E-15 2.31782508941E-15 2.49834586895E-15 2.69292624470E-15 2.90266122466E-15 3.12873109936E-15 3.37240808387E-15 3.63506347720E-15 3.91817537911E-15 4.22333700808E-15 4.55226566703E-15 4.90681240731E-15 5.28897244535E-15 5.70089639058E-15 6.14490234779E-15 6.62348896203E-15 7.13934947951E-15 7.69538690353E-15 8.29473033082E-15 8.94075256017E-15 9.63708907240E-15 1.03876584885E-14 1.11966846214E-14 1.20687202444E-14 1.30086727115E-14 1.40218315728E-14 1.51138983405E-14 1.62910185728E-14 1.75598164575E-14 1.89274320880E-14 2.04015616428E-14 2.19905006939E-14 2.37031908889E-14 2.55492702675E-14 2.75391274977E-14 2.96839603353E-14 3.19958386364E-14 3.44877722773E-14 3.71737843642E-14 4.00689901440E-14 4.31896820611E-14 4.65534214377E-14 5.01791372952E-14 5.40872328704E-14 5.82997004280E-14 6.28402450144E-14 6.77344178490E-14 7.30097601041E-14 7.86959578820E-14 8.48250092612E-14 9.14314043529E-14 9.85523193784E-14 1.06227825862E-13 1.14501116115E-13 1.23418746280E-13 1.33030898302E-13 1.43391662301E-13 1.54559340939E-13 1.66596777482E-13 1.79571709420E-13 1.93557149616E-13 2.08631797147E-13 2.24880480130E-13 2.42394633043E-13 2.61272811209E-13 2.81621245353E-13 3.03554439339E-13 3.27195814462E-13 3.52678403908E-13 3.80145601295E-13 4.09751967517E-13 4.41664100402E-13 4.76061572110E-13 5.13137939516E-13 5.53101833290E-13 5.96178131770E-13 6.42609226261E-13 6.92656384856E-13 7.46601222469E-13 8.04747285339E-13 8.67421758913E-13 9.34977308742E-13 1.00779406471E-12 1.08628175978E-12 1.17088203532E-12 1.26207092585E-12 1.36036153741E-12 1.46630693437E-12 1.58050325108E-12 1.70359304584E-12 1.83626891599E-12 1.97927739456E-12 2.13342315026E-12 2.29957351454E-12 2.47866336123E-12 2.67170036601E-12 2.87977067549E-12 3.10404501771E-12 3.34578528837E-12 3.60635164997E-12 3.88721018364E-12 4.18994113715E-12 4.51624781591E-12 4.86796615328E-12 5.24707506540E-12 5.65570756064E-12 6.09616273550E-12 6.57091872776E-12 7.08264664208E-12 7.63422558233E-12 8.22875883567E-12 8.86959134571E-12 9.56032851898E-12 1.03048565008E-11 1.11073640417E-11 1.19723660555E-11 1.29047290134E-11 1.39096983199E-11 1.49929278169E-11 1.61605115606E-11 1.74190181535E-11 1.87755276203E-11 2.02376712679E-11 2.18136746168E-11 2.35124035984E-11 2.53434145101E-11 2.73170076824E-11 2.94442854455E-11 3.17372145512E-11 3.42086934550E-11 3.68726249346E-11 3.97439940090E-11 4.28389527258E-11 4.61749104479E-11 4.97706318804E-11 5.36463428610E-11 5.78238438468E-11 6.23266324037E-11 6.71800355760E-11 7.24113522424E-11 7.80500062526E-11 8.41277125096E-11 9.06786544908E-11 9.77396772307E-11 1.05350493739E-10 1.13553908553E-10 1.22396058698E-10 1.31926672486E-10 1.42199349195E-10 1.53271860836E-10 1.65206475726E-10 1.78070310093E-10 1.91935704100E-10 2.06880628654E-10 2.22989123596E-10 2.40351770608E-10 2.59066201487E-10 2.79237646979E-10 3.00979528404E-10 3.24414094783E-10 3.49673109880E-10 3.76898591930E-10 4.06243612800E-10 4.37873156616E-10 4.71965047633E-10 5.08710948763E-10 5.48317438447E-10 5.91007170680E-10 6.37020125921E-10 6.86614959147E-10 7.40070453649E-10 7.97687082410E-10 8.59788702049E-10 9.26724365645E-10 9.98870287397E-10 1.07663194977E-09 1.16044638651E-09 1.25078462994E-09 1.34815436217E-09 1.45310275620E-09 1.56621955742E-09 1.68814038476E-09 1.81955030482E-09 1.96118767210E-09 2.11384827497E-09 2.27838980317E-09 2.45573665103E-09 2.64688511674E-09 2.85290898119E-09 3.07496553814E-09 3.31430208289E-09 3.57226290509E-09 3.85029683364E-09 4.14996536056E-09 4.47295139020E-09 4.82106868810E-09 5.19627202802E-09 5.60066817109E-09 6.03652766838E-09 6.50629757666E-09 7.01261518251E-09 7.55832277528E-09 8.14648357332E-09 8.78039888521E-09 9.46362659905E-09 1.02000011106E-08 1.09936547967E-08 1.18490411560E-08 1.27709597397E-08 1.37645830249E-08 1.48354853554E-08 1.59896741493E-08 1.72336235098E-08 1.85743104457E-08 2.00192539071E-08 2.15765568336E-08 2.32549514676E-08 2.50638481848E-08 2.70133881060E-08 2.91144997701E-08 3.13789602169E-08 3.38194607973E-08 3.64496780644E-08 3.92843501590E-08 4.23393591461E-08 4.56318196503E-08 4.91801744184E-08 5.30042972487E-08 5.71256038754E-08 6.15671714529E-08 6.63538672611E-08 7.15124873758E-08 7.70719060414E-08 8.30632366285E-08 8.95200049802E-08 9.64783361901E-08 1.03977155794E-07 1.12058406500E-07 1.20767281669E-07 1.30152476787E-07 1.40266460392E-07 1.51165765862E-07 1.62911305759E-07 1.75568710370E-07 1.89208692396E-07 2.03907439728E-07 2.19747038501E-07 2.36815928751E-07 2.55209395174E-07 2.75030095625E-07 2.96388630412E-07 3.19404155262E-07 3.44205041590E-07 3.70929587413E-07 3.99726783050E-07 4.30757135586E-07 4.64193556724E-07 5.00222318835E-07 5.39044084365E-07 5.80875014344E-07 6.25947961866E-07 6.74513757111E-07 7.26842590936E-07 7.83225504452E-07 8.43975992661E-07 9.09431730993E-07 9.79956433884E-07 1.05594185558E-06 1.13780994389E-06 1.22601515858E-06 1.32104696693E-06 1.42343252961E-06 1.53373959182E-06 1.65257959469E-06 1.78061102402E-06 1.91854301404E-06 2.06713922568E-06 2.22722201985E-06 2.39967694823E-06 2.58545758529E-06 2.78559072736E-06 3.00118198639E-06 3.23342180795E-06 3.48359194544E-06 3.75307242479E-06 4.04334903621E-06 4.35602139270E-06 4.69281159753E-06 5.05557356638E-06 5.44630305285E-06 5.86714842975E-06 6.32042228268E-06 6.80861387615E-06 7.33440255698E-06 7.90067216474E-06 8.51052652371E-06 9.16730609635E-06 9.87460588420E-06 1.06362946683E-05 1.14565356874E-05 1.23398088607E-05 1.32909346670E-05 1.43150998037E-05 1.54178847537E-05 1.66052934020E-05 1.78837848494E-05 1.92603075847E-05 2.07423361864E-05 2.23379107367E-05 2.40556791454E-05 2.59049425934E-05 2.78957043200E-05 3.00387219954E-05 3.23455639355E-05 3.48286694342E-05 3.75014135071E-05 4.03781763604E-05 4.34744179224E-05 4.68067577951E-05 5.03930610087E-05 5.42525299901E-05 5.84058031796E-05 6.28750607630E-05 6.76841380169E-05 7.28586467945E-05 7.84261057204E-05 8.44160796933E-05 9.08603293401E-05 9.77929711042E-05 1.05250648693E-04 1.13272716664E-04 1.21901436964E-04 1.31182189303E-04 1.41163696296E-04 1.51898264345E-04 1.63442041335E-04 1.75855292231E-04 1.89202693779E-04 2.03553649548E-04 2.18982626648E-04 2.35569515526E-04 2.53400014330E-04 2.72566039406E-04 2.93166163602E-04 3.15306084125E-04 3.39099121810E-04 3.64666753754E-04 3.92139181374E-04 4.21655936060E-04 4.53366524709E-04 4.87431117528E-04 5.24021280635E-04 5.63320756098E-04 6.05526292179E-04 6.50848526680E-04 6.99512926422E-04 7.51760786022E-04 8.07850289261E-04 8.68057636470E-04 9.32678241519E-04 1.00202800209E-03 1.07644464706E-03 1.15628916503E-03 1.24194731794E-03 1.33383124411E-03 1.43238115499E-03 1.53806713000E-03 1.65139101394E-03 1.77288842167E-03 1.90313085457E-03 2.04272793358E-03 2.19232975339E-03 2.35262936256E-03 2.52436537426E-03 2.70832471203E-03 2.90534549530E-03 3.11632006872E-03 3.34219817956E-03 3.58399030704E-03 3.84277114703E-03 4.11968325532E-03 4.41594085219E-03 4.73283379028E-03 5.07173168733E-03 5.43408822455E-03 5.82144561046E-03 6.23543920905E-03 6.67780233024E-03 7.15037117892E-03 7.65508995792E-03 8.19401611822E-03 8.76932574838E-03 9.38331909279E-03 1.00384261864E-02 1.07372125912E-02 1.14823852167E-02 1.22767982046E-02 1.31234588536E-02 1.40255335569E-02 1.49863537229E-02 1.60094216431E-02 1.70984162679E-02 1.82571988466E-02 1.94898183825E-02 2.08005168471E-02 2.21937340954E-02 2.36741124122E-02 2.52465006185E-02 2.69159576571E-02 2.86877555685E-02 3.05673817630E-02 3.25605404857E-02 3.46731533608E-02 3.69113588978E-02 3.92815108276E-02 4.17901751331E-02 4.44441256244E-02 4.72503379058E-02 5.02159815655E-02 5.33484104176E-02 5.66551506111E-02 6.01438864170E-02 6.38224434934E-02 6.76987694260E-02 7.17809113314E-02 7.60769903082E-02 8.05951725182E-02 8.53436366776E-02 9.03305377383E-02 9.55639665440E-02 1.01051905249E-01 1.06802178300E-01 1.12822398786E-01 1.19119909988E-01 1.25701721971E-01 1.32574443082E-01 1.39744206273E-01 1.47216590161E-01 1.54996534819E-01 1.63088252313E-01 1.71495132073E-01 1.80219641225E-01 1.89263220113E-01 1.98626173280E-01 2.08307556293E-01 2.18305058871E-01 2.28614884890E-01 2.39231629928E-01 2.50148157162E-01 2.61355472518E-01 2.72842600136E-01 2.84596459315E-01 2.96601744293E-01 3.08840808306E-01 3.21293553548E-01 3.33937328801E-01 3.46746836629E-01 3.59694052171E-01 3.72748155707E-01 3.85875481271E-01 3.99039483693E-01 4.12200726524E-01 4.25316893367E-01 4.38342825140E-01 4.51230585808E-01 4.63929559066E-01 4.76386578346E-01 4.88546092420E-01 5.00350368622E-01 5.11739735495E-01 5.22652866339E-01 5.33027104739E-01 5.42798832713E-01 5.51903881583E-01 5.60277985079E-01 5.67857273518E-01 5.74578807164E-01 5.80381146080E-01 5.85204952929E-01 5.88993624297E-01 5.91693945147E-01 5.93256760122E-01 5.93637654397E-01 5.92797635920E-01 5.90703809921E-01 5.87330035815E-01 5.82657555831E-01 5.76675584145E-01 5.69381844788E-01 5.60783046347E-01 5.50895281398E-01 5.39744338767E-01 5.27365917128E-01 5.13805729168E-01 4.99119486507E-01 4.83372756905E-01 4.66640686840E-01 4.49007584498E-01 4.30566360363E-01 4.11417825095E-01 3.91669847011E-01 3.71436374401E-01 3.50836330866E-01 3.29992394927E-01 3.09029678218E-01 2.88074319502E-01 2.67252014578E-01 2.46686504645E-01 2.26498047919E-01 2.06801901042E-01 1.87706838115E-01 1.69313735898E-01 1.51714253788E-01 1.34989636627E-01 1.19209667092E-01 1.04431792455E-01 9.07004477819E-02 7.80465942727E-02 6.64874874336E-02 5.60266851259E-02 4.66543004264E-02 3.83474986632E-02 3.10712321094E-02 2.47791997468E-02 1.94150133967E-02 1.49135455261E-02 1.12024283770E-02 8.20366895271E-03 5.83534007328E-03 4.01330446033E-03 2.65292691204E-03 1.67072938300E-03 9.85945479151E-04 5.25412803669E-04 2.34968428862E-04 6.94901974790E-05 -9.95538335158E-06 -3.56112297530E-05 -3.27351734992E-05 -1.95343459379E-05 -7.34771310959E-06 -1.09394445472E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.39342924021E-26 1.48329770509E-26 1.57896218800E-26 1.68079649996E-26 1.78919856078E-26 1.90459195385E-26 2.02742758137E-26 2.15818542623E-26 2.29737642753E-26 2.44554447716E-26 2.60326854497E-26 2.77116494119E-26 2.94988972465E-26 3.14014126630E-26 3.34266297820E-26 3.55824621832E-26 3.78773338286E-26 4.03202119791E-26 4.29206422342E-26 4.56887858314E-26 4.86354593522E-26 5.17721769873E-26 5.51111955291E-26 5.86655622650E-26 6.24491659604E-26 6.64767911288E-26 7.07641758032E-26 7.53280730324E-26 8.01863163438E-26 8.53578894290E-26 9.08630003220E-26 9.67231603633E-26 1.02961268256E-25 1.09601699541E-25 1.16670401850E-25 1.24194996288E-25 1.32204885374E-25 1.40731367923E-25 1.49807761349E-25 1.59469531859E-25 1.69754433030E-25 1.80702653337E-25 1.92356973189E-25 2.04762932094E-25 2.17969006605E-25 2.32026799747E-25 2.46991242651E-25 2.62920809202E-25 2.79877744530E-25 2.97928308226E-25 3.17143033261E-25 3.37597001590E-25 3.59370137540E-25 3.82547520111E-25 4.07219715430E-25 4.33483130637E-25 4.61440390597E-25 4.91200738910E-25 5.22880464786E-25 5.56603357440E-25 5.92501189809E-25 6.30714233452E-25 6.71391806670E-25 7.14692857961E-25 7.60786587126E-25 8.09853106414E-25 8.62084144313E-25 9.17683794740E-25 9.76869314538E-25 1.03987197241E-24 1.10693795261E-24 1.17832931692E-24 1.25432502864E-24 1.33522204266E-24 1.42133646584E-24 1.51300479214E-24 1.61058521754E-24 1.71445903968E-24 1.82503214778E-24 1.94273660865E-24 2.06803235504E-24 2.20140898280E-24 2.34338766400E-24 2.49452318341E-24 2.65540610638E-24 2.82666508641E-24 3.00896932169E-24 3.20303116998E-24 3.40960893217E-24 3.62950981536E-24 3.86359308702E-24 4.11277343264E-24 4.37802452981E-24 4.66038285297E-24 4.96095172340E-24 5.28090562050E-24 5.62149477107E-24 5.98405003461E-24 6.36998810370E-24 6.78081703973E-24 7.21814216570E-24 7.68367233903E-24 8.17922662900E-24 8.70674142476E-24 9.26827800184E-24 9.86603057661E-24 1.05023348803E-23 1.11796772857E-23 1.19007045230E-23 1.26682340219E-23 1.34852649205E-23 1.43549897848E-23 1.52808070837E-23 1.62663344683E-23 1.73154229083E-23 1.84321717395E-23 1.96209446824E-23 2.08863868930E-23 2.22334431143E-23 2.36673769976E-23 2.51937916709E-23 2.68186516326E-23 2.85483060583E-23 3.03895136103E-23 3.23494688471E-23 3.44358303364E-23 3.66567505810E-23 3.90209078751E-23 4.15375402146E-23 4.42164813951E-23 4.70681994374E-23 5.01038374919E-23 5.33352573801E-23 5.67750859455E-23 6.04367643929E-23 6.43346008104E-23 6.84838260786E-23 7.29006533853E-23 7.76023415792E-23 8.26072626091E-23 8.79349733127E-23 9.36062918352E-23 9.96433789771E-23 1.06069824788E-22 1.12910740743E-22 1.20192857872E-22 1.27944631204E-22 1.36196350963E-22 1.44980260923E-22 1.54330684402E-22 1.64284158384E-22 1.74879576285E-22 1.86158339931E-22 1.98164521334E-22 2.10945034910E-22 2.24549820794E-22 2.39032039982E-22 2.54448282060E-22 2.70858786328E-22 2.88327677190E-22 3.06923214715E-22 3.26718061370E-22 3.47789565949E-22 3.70220065814E-22 3.94097208630E-22 4.19514294852E-22 4.46570642296E-22 4.75371974228E-22 5.06030832478E-22 5.38667017200E-22 5.73408054996E-22 6.10389697225E-22 6.49756450458E-22 6.91662141139E-22 7.36270516664E-22 7.83755885230E-22 8.34303796946E-22 8.88111768875E-22 9.45390056836E-22 1.00636247698E-21 1.07126728038E-21 1.14035808394E-21 1.21390486149E-21 1.29219499866E-21 1.37553441587E-21 1.46424876368E-21 1.55868469536E-21 1.65921122134E-21 1.76622115122E-21 1.88013262861E-21 2.00139076510E-21 2.13046937948E-21 2.26787284925E-21 2.41413808144E-21 2.56983661063E-21 2.73557683221E-21 2.91200637968E-21 3.09981465534E-21 3.29973552410E-21 3.51255018111E-21 3.73909020425E-21 3.98024080359E-21 4.23694428033E-21 4.51020370887E-21 4.80108685639E-21 5.11073035508E-21 5.44034414365E-21 5.79121619513E-21 6.16471754969E-21 6.56230767197E-21 6.98554015402E-21 7.43606878595E-21 7.91565401817E-21 8.42616984039E-21 8.96961110428E-21 9.54810131837E-21 1.01639009457E-20 1.08194162368E-20 1.15172086318E-20 1.22600047696E-20 1.30507071423E-20 1.38924054366E-20 1.47883886069E-20 1.57421577268E-20 1.67574396698E-20 1.78382016723E-20 1.89886668352E-20 2.02133306260E-20 2.15169784452E-20 2.29047043249E-20 2.43819308341E-20 2.59544302675E-20 2.76283472006E-20 2.94102225003E-20 3.13070188830E-20 3.33261481217E-20 3.54755000076E-20 3.77634731801E-20 4.01990079438E-20 4.27916212038E-20 4.55514436525E-20 4.84892593562E-20 5.16165478934E-20 5.49455292118E-20 5.84892113784E-20 6.22614414079E-20 6.62769593711E-20 7.05514559916E-20 7.51016339575E-20 7.99452731881E-20 8.51013003086E-20 9.05898626069E-20 9.64324067591E-20 1.02651762633E-19 1.09272232498E-19 1.16319685981E-19 1.23821661162E-19 1.31807472170E-19 1.40308323735E-19 1.49357433119E-19 1.58990159913E-19 1.69244144206E-19 1.80159453663E-19 1.91778740094E-19 2.04147406111E-19 2.17313782545E-19 2.31329317298E-19 2.46248776374E-19 2.62130457885E-19 2.79036419843E-19 2.97032722663E-19 3.16189687286E-19 3.36582169968E-19 3.58289854776E-19 3.81397564958E-19 4.05995594393E-19 4.32180060413E-19 4.60053279386E-19 4.89724166519E-19 5.21308661445E-19 5.54930181262E-19 5.90720102787E-19 6.28818275912E-19 6.69373570073E-19 7.12544455960E-19 7.58499624743E-19 8.07418647238E-19 8.59492675584E-19 9.14925190173E-19 9.73932794754E-19 1.03674606282E-18 1.10361043857E-18 1.17478719600E-18 1.25055445982E-18 1.33120829227E-18 1.41706384992E-18 1.50845661523E-18 1.60574370741E-18 1.70930527786E-18 1.81954599566E-18 1.93689662879E-18 2.06181572739E-18 2.19479141552E-18 2.33634329857E-18 2.48702449356E-18 2.64742379053E-18 2.81816795317E-18 2.99992416798E-18 3.19340265131E-18 3.39935942448E-18 3.61859926802E-18 3.85197886636E-18 4.10041015530E-18 4.36486388544E-18 4.64637341544E-18 4.94603874985E-18 5.26503083739E-18 5.60459614653E-18 5.96606153601E-18 6.35083943961E-18 6.76043338526E-18 7.19644387012E-18 7.66057461451E-18 8.15463921929E-18 8.68056825251E-18 9.24041679316E-18 9.83637246143E-18 1.04707639669E-17 1.11460702079E-17 1.18649299582E-17 1.26301521775E-17 1.34447269881E-17 1.43118373586E-17 1.52348715412E-17 1.62174363118E-17 1.72633710632E-17 1.83767628079E-17 1.95619621479E-17 2.08236002749E-17 2.21666070669E-17 2.35962303515E-17 2.51180564123E-17 2.67380318171E-17 2.84624866542E-17 3.02981592677E-17 3.22522225874E-17 3.43323121574E-17 3.65465559719E-17 3.89036062356E-17 4.14126731726E-17 4.40835610152E-17 4.69267063144E-17 4.99532187207E-17 5.31749243955E-17 5.66044122219E-17 6.02550829964E-17 6.41412017921E-17 6.82779537005E-17 7.26815031670E-17 7.73690571541E-17 8.23589323780E-17 8.76706268812E-17 9.33248962220E-17 9.93438345768E-17 1.05750961074E-16 1.12571311695E-16 1.19831537102E-16 1.27560006780E-16 1.35786919884E-16 1.44544423252E-16 1.53866737009E-16 1.63790288292E-16 1.74353853585E-16 1.85598710239E-16 1.97568797766E-16 2.10310889532E-16 2.23874775526E-16 2.38313456914E-16 2.53683353142E-16 2.70044522399E-16 2.87460896291E-16 3.06000529660E-16 3.25735866506E-16 3.46744023064E-16 3.69107089139E-16 3.92912448869E-16 4.18253122187E-16 4.45228128294E-16 4.73942872577E-16 5.04509558485E-16 5.37047625969E-16 5.71684218187E-16 6.08554678330E-16 6.47803078467E-16 6.89582782517E-16 7.34057045518E-16 7.81399651549E-16 8.31795592798E-16 8.85441792417E-16 9.42547874008E-16 1.00333698073E-15 1.06804664722E-15 1.13692972780E-15 1.21025538447E-15 1.28831013870E-15 1.37139899097E-15 1.45984661262E-15 1.55399861447E-15 1.65422289731E-15 1.76091108949E-15 1.87448007721E-15 1.99537363350E-15 2.12406415226E-15 2.26105449421E-15 2.40687995173E-15 2.56211034061E-15 2.72735222657E-15 2.90325129543E-15 3.09049487615E-15 3.28981462658E-15 3.50198939240E-15 3.72784825051E-15 3.96827374863E-15 4.22420535388E-15 4.49664312377E-15 4.78665161393E-15 5.09536403788E-15 5.42398669508E-15 5.77380368457E-15 6.14618192260E-15 6.54257648386E-15 6.96453628723E-15 7.41371014821E-15 7.89185322165E-15 8.40083386007E-15 8.94264091428E-15 9.51939150483E-15 1.01333392947E-14 1.07868832954E-14 1.14825772414E-14 1.22231395687E-14 1.30114640371E-14 1.38506310377E-14 1.47439196296E-14 1.56948203526E-14 1.67070488672E-14 1.77845604725E-14 1.89315655627E-14 2.01525460786E-14 2.14522730208E-14 2.28358250928E-14 2.43086085459E-14 2.58763783041E-14 2.75452604517E-14 2.93217761709E-14 3.12128672233E-14 3.32259230752E-14 3.53688097715E-14 3.76499006730E-14 4.00781091747E-14 4.26629235354E-14 4.54144439529E-14 4.83434220308E-14 5.14613027900E-14 5.47802693910E-14 5.83132907389E-14 6.20741721595E-14 6.60776093443E-14 7.03392457733E-14 7.48757338423E-14 7.97047999321E-14 8.48453136742E-14 9.03173616845E-14 9.61423260508E-14 1.02342967884E-13 1.08943516258E-13 1.15969762882E-13 1.23449162886E-13 1.31410942095E-13 1.39886211238E-13 1.48908087504E-13 1.58511823954E-13 1.68734947267E-13 1.79617404381E-13 1.91201718579E-13 2.03533155654E-13 2.16659900783E-13 2.30633246808E-13 2.45507794665E-13 2.61341666737E-13 2.78196733963E-13 2.96138857603E-13 3.15238146587E-13 3.35569231464E-13 3.57211556025E-13 3.80249687721E-13 4.04773648116E-13 4.30879264640E-13 4.58668545036E-13 4.88250075952E-13 5.19739447243E-13 5.53259703634E-13 5.88941825516E-13 6.26925240747E-13 6.67358369467E-13 7.10399204045E-13 7.56215926427E-13 8.04987565305E-13 8.56904695669E-13 9.12170183468E-13 9.70999978308E-13 1.03362395726E-12 1.10028682312E-12 1.17124906054E-12 1.24678795389E-12 1.32719867073E-12 1.41279541517E-12 1.50391265559E-12 1.60090643160E-12 1.70415574521E-12 1.81406404177E-12 1.93106078644E-12 2.05560314229E-12 2.18817775664E-12 2.32930266258E-12 2.47952930323E-12 2.63944468640E-12 2.80967367834E-12 2.99088144531E-12 3.18377605275E-12 3.38911123196E-12 3.60768932524E-12 3.84036442102E-12 4.08804569114E-12 4.35170094336E-12 4.63236040302E-12 4.93112073856E-12 5.24914934664E-12 5.58768891804E-12 5.94806226972E-12 6.33167756540E-12 6.74003376217E-12 7.17472649214E-12 7.63745430138E-12 8.13002528127E-12 8.65436413355E-12 9.21251968349E-12 9.80667290293E-12 1.04391454119E-11 1.11124085711E-11 1.18290931155E-11 1.25919994573E-11 1.34041086047E-11 1.42685938338E-11 1.51888330717E-11 1.61684220780E-11 1.72111885589E-11 1.83212070416E-11 1.95028148472E-11 2.07606290380E-11 2.20995644102E-11 2.35248527691E-11 2.50420633170E-11 2.66571244280E-11 2.83763468320E-11 3.02064482263E-11 3.21545795923E-11 3.42283530012E-11 3.64358716466E-11 3.87857611759E-11 4.12872034653E-11 4.39499726498E-11 4.67844733234E-11 4.98017809303E-11 5.30136851564E-11 5.64327363581E-11 6.00722938230E-11 6.39465788653E-11 6.80707297080E-11 7.24608609764E-11 7.71341264172E-11 8.21087861276E-11 8.74042781524E-11 9.30412935631E-11 9.90418582447E-11 1.05429418609E-10 1.12228932740E-10 1.19466968777E-10 1.27171808258E-10 1.35373556356E-10 1.44104259822E-10 1.53398032489E-10 1.63291187895E-10 1.73822381608E-10 1.85032762199E-10 1.96966131925E-10 2.09669117859E-10 2.23191354132E-10 2.37585675955E-10 2.52908325650E-10 2.69219173010E-10 2.86581948665E-10 3.05064493355E-10 3.24739022630E-10 3.45682409695E-10 3.67976485197E-10 3.91708357016E-10 4.16970750482E-10 4.43862370882E-10 4.72488289310E-10 5.02960352337E-10 5.35397620158E-10 5.69926830393E-10 6.06682894484E-10 6.45809423900E-10 6.87459291390E-10 7.31795229147E-10 7.78990462465E-10 8.29229389056E-10 8.82708296878E-10 9.39636133353E-10 1.00023532056E-09 1.06474262315E-09 1.13341007411E-09 1.20650596158E-09 1.28431587369E-09 1.36714381466E-09 1.45531339449E-09 1.54916909014E-09 1.64907759443E-09 1.75542924643E-09 1.86863955935E-09 1.98915083548E-09 2.11743390334E-09 2.25398995440E-09 2.39935249760E-09 2.55408944631E-09 2.71880533418E-09 2.89414368166E-09 3.08078950280E-09 3.27947198793E-09 3.49096734586E-09 3.71610183809E-09 3.95575500933E-09 4.21086311711E-09 4.48242279635E-09 4.77149494106E-09 5.07920886031E-09 5.40676667919E-09 5.75544804027E-09 6.12661509984E-09 6.52171784608E-09 6.94229976356E-09 7.39000386158E-09 7.86657909213E-09 8.37388717497E-09 8.91390987728E-09 9.48875674471E-09 1.01006733450E-08 1.07520500318E-08 1.14454312882E-08 1.21835256529E-08 1.29692163045E-08 1.38055723177E-08 1.46958606474E-08 1.56435588834E-08 1.66523688344E-08 1.77262309780E-08 1.88693398459E-08 2.00861604073E-08 2.13814454929E-08 2.27602543608E-08 2.42279724404E-08 2.57903323624E-08 2.74534363400E-08 2.92237799854E-08 3.11082776771E-08 3.31142895399E-08 3.52496501878E-08 3.75226992961E-08 3.99423141596E-08 4.25179443428E-08 4.52596485596E-08 4.81781339357E-08 5.12847977973E-08 5.45917721474E-08 5.81119710178E-08 6.18591408576E-08 6.58479141893E-08 7.00938666899E-08 7.46135779802E-08 7.94246963116E-08 8.45460074205E-08 8.99975078272E-08 9.58004828371E-08 1.01977589590E-07 1.08552945437E-07 1.15552222015E-07 1.23002745379E-07 1.30933602595E-07 1.39375755157E-07 1.48362159754E-07 1.57927896787E-07 1.68110307146E-07 1.78949137825E-07 1.90486696879E-07 2.02768018375E-07 2.15841037940E-07 2.29756779632E-07 2.44569554796E-07 2.60337173770E-07 2.77121171147E-07 2.94987045591E-07 3.14004515031E-07 3.34247788301E-07 3.55795854232E-07 3.78732789347E-07 4.03148085337E-07 4.29136997590E-07 4.56800916132E-07 4.86247760409E-07 5.17592399458E-07 5.50957099047E-07 5.86471997592E-07 6.24275612624E-07 6.64515379802E-07 7.07348226545E-07 7.52941182519E-07 8.01472029308E-07 8.53129991811E-07 9.08116474025E-07 9.66645842047E-07 1.02894625732E-06 1.09526056338E-06 1.16584722940E-06 1.24098135436E-06 1.32095573557E-06 1.40608200561E-06 1.49669184230E-06 1.59313825609E-06 1.69579695998E-06 1.80506782715E-06 1.92137644197E-06 2.04517575031E-06 2.17694781537E-06 2.31720568599E-06 2.46649538436E-06 2.62539802084E-06 2.79453204400E-06 2.97455563439E-06 3.16616925124E-06 3.37011834172E-06 3.58719622318E-06 3.81824714926E-06 4.06416957147E-06 4.32591960876E-06 4.60451473810E-06 4.90103772013E-06 5.21664077463E-06 5.55255002162E-06 5.91007020496E-06 6.29058971593E-06 6.69558593599E-06 7.12663091858E-06 7.58539743133E-06 8.07366538119E-06 8.59332864659E-06 9.14640234202E-06 9.73503054193E-06 1.03614944929E-05 1.10282213441E-05 1.17377934287E-05 1.24929581300E-05 1.32966383691E-05 1.41519437516E-05 1.50621824156E-05 1.60308736225E-05 1.70617611374E-05 1.81588274478E-05 1.93263088703E-05 2.05687116023E-05 2.18908287734E-05 2.32977585598E-05 2.47949234243E-05 2.63880905515E-05 2.80833935487E-05 2.98873554908E-05 3.18069133872E-05 3.38494441577E-05 3.60227922065E-05 3.83352986888E-05 4.07958325699E-05 4.34138235834E-05 4.61992971986E-05 4.91629117137E-05 5.23159976007E-05 5.56705992281E-05 5.92395191023E-05 6.30363647669E-05 6.70755985147E-05 7.13725900687E-05 7.59436723979E-05 8.08062008446E-05 8.59786157432E-05 9.14805087231E-05 9.73326928951E-05 1.03557277130E-04 1.10177744647E-04 1.17219036141E-04 1.24707637681E-04 1.32671673628E-04 1.41141004832E-04 1.50147332361E-04 1.59724307050E-04 1.69907645140E-04 1.80735250309E-04 1.92247342386E-04 2.04486593066E-04 2.17498268929E-04 2.31330382099E-04 2.46033848856E-04 2.61662656545E-04 2.78274039108E-04 2.95928661583E-04 3.14690813903E-04 3.34628614328E-04 3.55814222843E-04 3.78324064846E-04 4.02239065433E-04 4.27644894583E-04 4.54632223520E-04 4.83296992513E-04 5.13740690345E-04 5.46070645643E-04 5.80400330233E-04 6.16849674629E-04 6.55545395711E-04 6.96621336599E-04 7.40218818618E-04 7.86487005227E-04 8.35583277628E-04 8.87673621712E-04 9.42933025839E-04 1.00154588886E-03 1.06370643756E-03 1.12961915265E-03 1.19949920210E-03 1.27357288050E-03 1.35207805287E-03 1.43526460112E-03 1.52339487089E-03 1.61674411659E-03 1.71560094156E-03 1.82026773044E-03 1.93106107007E-03 2.04831215494E-03 2.17236717270E-03 2.30358766479E-03 2.44235085649E-03 2.58904995037E-03 2.74409437632E-03 2.90790999051E-03 3.08093921531E-03 3.26364111098E-03 3.45649136942E-03 3.65998221923E-03 3.87462223071E-03 4.10093600799E-03 4.33946375517E-03 4.59076070180E-03 4.85539637223E-03 5.13395368256E-03 5.42702784734E-03 5.73522507779E-03 6.05916105178E-03 6.39945913526E-03 6.75674833353E-03 7.13166095043E-03 7.52482993218E-03 7.93688587265E-03 8.36845365603E-03 8.82014871263E-03 9.29257286392E-03 9.78630973276E-03 1.03019196957E-02 1.08399343555E-02 1.14008505119E-02 1.19851236144E-02 1.25931606771E-02 1.32253126466E-02 1.38818662097E-02 1.45630350396E-02 1.52689504790E-02 1.59996516684E-02 1.67550751343E-02 1.75350438593E-02 1.83392558681E-02 1.91672723714E-02 2.00185055248E-02 2.08922058695E-02 2.17874495405E-02 2.27031253394E-02 2.36379217907E-02 2.45903143151E-02 2.55585526750E-02 2.65406488683E-02 2.75343656668E-02 2.85372060179E-02 2.95464035526E-02 3.05589144622E-02 3.15714110303E-02 3.25802771281E-02 3.35816059973E-02 3.45712006677E-02 3.55445773649E-02 3.64969722793E-02 3.74233520702E-02 3.83184284813E-02 3.91766774342E-02 3.99923629567E-02 4.07595662739E-02 4.14722203594E-02 4.21241501983E-02 4.27091189529E-02 4.32208801532E-02 4.36532359452E-02 4.40001013311E-02 4.42555742130E-02 4.44140109231E-02 4.44701067704E-02 4.44189809717E-02 4.42562651542E-02 4.39781944322E-02 4.35816998566E-02 4.30645008382E-02 4.24251959369E-02 4.16633502153E-02 4.07795771603E-02 3.97756130137E-02 3.86543812042E-02 3.74200444671E-02 3.60780421758E-02 3.46351103993E-02 3.30992822560E-02 3.14798662657E-02 2.97874006136E-02 2.80335815447E-02 2.62311645061E-02 2.43938371554E-02 2.25360639487E-02 2.06729027162E-02 1.88197944100E-02 1.69923280553E-02 1.52059838372E-02 1.34758581727E-02 1.18163755300E-02 1.02409926145E-02 8.76190130378E-03 7.38973732874E-03 6.13330210857E-03 4.99930530449E-03 3.99213549982E-03 3.11366589852E-03 2.36310101872E-03 1.73686901594E-03 1.22856249504E-03 8.28928475215E-04 5.25905602403E-04 3.04703834559E-04 1.49438783418E-04 4.83948186090E-05 -9.29153419574E-06 -3.45980554670E-05 -3.81281886254E-05 -2.95592053864E-05 -1.70328434066E-05 -6.49649211804E-06 -1.00553047613E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 6 1 i j (l(j)) 0.00000000000E+00 Q_int 1.50206711000E-27 1.59894211556E-27 1.70206502220E-27 1.81183878491E-27 1.92869234705E-27 2.05308231647E-27 2.18549474966E-27 2.32644705109E-27 2.47648999494E-27 2.63620987728E-27 2.80623080701E-27 2.98721714463E-27 3.17987609817E-27 3.38496048669E-27 3.60327168189E-27 3.83566273952E-27 4.08304173268E-27 4.34637530016E-27 4.62669242362E-27 4.92508844830E-27 5.24272936315E-27 5.58085635697E-27 5.94079066832E-27 6.32393874835E-27 6.73179775653E-27 7.16596141078E-27 7.62812621503E-27 8.12009808831E-27 8.64379942140E-27 9.20127658865E-27 9.79470794421E-27 1.04264123340E-26 1.10988581567E-26 1.18146730089E-26 1.25766539528E-26 1.33877784455E-26 1.42512159735E-26 1.51703404377E-26 1.61487433371E-26 1.71902478022E-26 1.82989235344E-26 1.94791027082E-26 2.07353968993E-26 2.20727151047E-26 2.34962829244E-26 2.50116629805E-26 2.66247766536E-26 2.83419272204E-26 3.01698244842E-26 3.21156109932E-26 3.41868899506E-26 3.63917549240E-26 3.87388214712E-26 4.12372608058E-26 4.38968356338E-26 4.67279383017E-26 4.97416314049E-26 5.29496910147E-26 5.63646526938E-26 5.99998604792E-26 6.38695190246E-26 6.79887491048E-26 7.23736467011E-26 7.70413458962E-26 8.20100858263E-26 8.72992819508E-26 9.29296019187E-26 9.89230463277E-26 1.05303034692E-25 1.12094496956E-25 1.19323970906E-25 1.27019705868E-25 1.35211773094E-25 1.43932183266E-25 1.53215011576E-25 1.63096530878E-25 1.73615353423E-25 1.84812581740E-25 1.96731969242E-25 2.09420091196E-25 2.22926526713E-25 2.37304052486E-25 2.52608849009E-25 2.68900720108E-25 2.86243326625E-25 3.04704435171E-25 3.24356182931E-25 3.45275359537E-25 3.67543707128E-25 3.91248239757E-25 4.16481583401E-25 4.43342337901E-25 4.71935462241E-25 5.02372684677E-25 5.34772939319E-25 5.69262830868E-25 6.05977129328E-25 6.45059296620E-25 6.86662047165E-25 7.30947944617E-25 7.78090037087E-25 8.28272533330E-25 8.81691522543E-25 9.38555740593E-25 9.99087385651E-25 1.06352298644E-24 1.13211432648E-24 1.20512942793E-24 1.28285359888E-24 1.36559054824E-24 1.45366357243E-24 1.54741681873E-24 1.64721662999E-24 1.75345297615E-24 1.86654097806E-24 1.98692252954E-24 2.11506802415E-24 2.25147819321E-24 2.39668606242E-24 2.55125903472E-24 2.71580110736E-24 2.89095523210E-24 3.07740582750E-24 3.27588145335E-24 3.48715765749E-24 3.71206000631E-24 3.95146731066E-24 4.20631505982E-24 4.47759907694E-24 4.76637941027E-24 5.07378447526E-24 5.40101546396E-24 5.74935103860E-24 6.12015232808E-24 6.51486824656E-24 6.93504115513E-24 7.38231288866E-24 7.85843117123E-24 8.36525644549E-24 8.90476914230E-24 9.47907741936E-24 1.00904253989E-23 1.07412019365E-23 1.14339499557E-23 1.21713763848E-23 1.29563627337E-23 1.37919763537E-23 1.46814824234E-23 1.56283567075E-23 1.66362991378E-23 1.77092482718E-23 1.88513966816E-23 2.00672073374E-23 2.13614310461E-23 2.27391250152E-23 2.42056726144E-23 2.57668044107E-23 2.74286205610E-23 2.91976146485E-23 3.10806990567E-23 3.30852319795E-23 3.52190461735E-23 3.74904795647E-23 3.99084078295E-23 4.24822790758E-23 4.52221507625E-23 4.81387289989E-23 5.12434103788E-23 5.45483265137E-23 5.80663914365E-23 6.18113520638E-23 6.57978419123E-23 7.00414382796E-23 7.45587231127E-23 7.93673478024E-23 8.44861021565E-23 8.99349878214E-23 9.57352964391E-23 1.01909692845E-22 1.08482303630E-22 1.15478811417E-22 1.22926555217E-22 1.30854637255E-22 1.39294036688E-22 1.48277730658E-22 1.57840823150E-22 1.68020682163E-22 1.78857085723E-22 1.90392377320E-22 2.02671631364E-22 2.15742829316E-22 2.29657047177E-22 2.44468655065E-22 2.60235529670E-22 2.77019280412E-22 2.94885490173E-22 3.13903971572E-22 3.34149039754E-22 3.55699802781E-22 3.78640470746E-22 4.03060684830E-22 4.29055867573E-22 4.56727595740E-22 4.86183997239E-22 5.17540173628E-22 5.50918649880E-22 5.86449853153E-22 6.24272622433E-22 6.64534751056E-22 7.07393564211E-22 7.53016533692E-22 8.01581932298E-22 8.53279530440E-22 9.08311337672E-22 9.66892392047E-22 1.02925160039E-21 1.09563263274E-21 1.16629487452E-21 1.24151444008E-21 1.32158525162E-21 1.40682018768E-21 1.49755230578E-21 1.59413614377E-21 1.69694910527E-21 1.80639293431E-21 1.92289528523E-21 2.04691139371E-21 2.17892585560E-21 2.31945452052E-21 2.46904650756E-21 2.62828635093E-21 2.79779628412E-21 2.97823867121E-21 3.17031859512E-21 3.37478661275E-21 3.59244168776E-21 3.82413431258E-21 4.07076983171E-21 4.33331197939E-21 4.61278664540E-21 4.91028588376E-21 5.22697217998E-21 5.56408299346E-21 5.92293559295E-21 6.30493220375E-21 6.71156548700E-21 7.14442437227E-21 7.60520026634E-21 8.09569366243E-21 8.61782117567E-21 9.17362303234E-21 9.76527104208E-21 1.03950770843E-20 1.10655021421E-20 1.17791659182E-20 1.25388570719E-20 1.33475441157E-20 1.42083870150E-20 1.51247495354E-20 1.61002123870E-20 1.71385872161E-20 1.82439314994E-20 1.94205643983E-20 2.06730836367E-20 2.20063834665E-20 2.34256737918E-20 2.49365005272E-20 2.65447672684E-20 2.82567583608E-20 3.00791634554E-20 3.20191036495E-20 3.40841593119E-20 3.62823997039E-20 3.86224145101E-20 4.11133474029E-20 4.37649317716E-20 4.65875287558E-20 4.95921677324E-20 5.27905894127E-20 5.61952917201E-20 5.98195786259E-20 6.36776121350E-20 6.77844676246E-20 7.21561927517E-20 7.68098701600E-20 8.17636842307E-20 8.70369921388E-20 9.26503994921E-20 9.86258408480E-20 1.04986665424E-19 1.11757728336E-19 1.18965487720E-19 1.26638108117E-19 1.34805570531E-19 1.43499789576E-19 1.52754738189E-19 1.62606580374E-19 1.73093812523E-19 1.84257413832E-19 1.96141006439E-19 2.08791025872E-19 2.22256902502E-19 2.36591254692E-19 2.51850094406E-19 2.68093046082E-19 2.85383579610E-19 3.03789258349E-19 3.23382003135E-19 3.44238373310E-19 3.66439865884E-19 3.90073233990E-19 4.15230825875E-19 4.42010945754E-19 4.70518237940E-19 5.00864095748E-19 5.33167096770E-19 5.67553466220E-19 6.04157570172E-19 6.43122440596E-19 6.84600334270E-19 7.28753327725E-19 7.75753950576E-19 8.25785859687E-19 8.79044556819E-19 9.35738152572E-19 9.96088179583E-19 1.06033045818E-18 1.12871601788E-18 1.20151207827E-18 1.27900309321E-18 1.36149186236E-18 1.44930071437E-18 1.54277276642E-18 1.64227326496E-18 1.74819101294E-18 1.86093988911E-18 1.98096046523E-18 2.10872172769E-18 2.24472291007E-18 2.38949544399E-18 2.54360503564E-18 2.70765387638E-18 2.88228299587E-18 3.06817476687E-18 3.26605557176E-18 3.47669864086E-18 3.70092707397E-18 3.93961705665E-18 4.19370128403E-18 4.46417260540E-18 4.75208790384E-18 5.05857222612E-18 5.38482317893E-18 5.73211560865E-18 6.10180658291E-18 6.49534069354E-18 6.91425570140E-18 7.36018854543E-18 7.83488173908E-18 8.34019017945E-18 8.87808839550E-18 9.45067826376E-18 1.00601972216E-17 1.07090270105E-17 1.13997029828E-17 1.21349240088E-17 1.29175630235E-17 1.37506782524E-17 1.46375251621E-17 1.55815691817E-17 1.65864992443E-17 1.76562422020E-17 1.87949781709E-17 2.00071568652E-17 2.12975149855E-17 2.26710947278E-17 2.41332634874E-17 2.56897348321E-17 2.73465908295E-17 2.91103058134E-17 3.09877716839E-17 3.29863248381E-17 3.51137748389E-17 3.73784349324E-17 3.97891545332E-17 4.23553538056E-17 4.50870604745E-17 4.79949490112E-17 5.10903823458E-17 5.43854562706E-17 5.78930467071E-17 6.16268600215E-17 6.56014865856E-17 6.98324577922E-17 7.43363067476E-17 7.91306328794E-17 8.42341707101E-17 8.96668630676E-17 9.54499390173E-17 1.01605996820E-16 1.08159092241E-16 1.15134832556E-16 1.22560476617E-16 1.30465041378E-16 1.38879415282E-16 1.47836478973E-16 1.57371233786E-16 1.67520938524E-16 1.78325255064E-16 1.89826403343E-16 2.02069326354E-16 2.15101865774E-16 2.28974948922E-16 2.43742787780E-16 2.59463090844E-16 2.76197288647E-16 2.94010773819E-16 3.12973156642E-16 3.33158537076E-16 3.54645794342E-16 3.77518895175E-16 4.01867221965E-16 4.27785922057E-16 4.55376279590E-16 4.84746111312E-16 5.16010187931E-16 5.49290682636E-16 5.84717648559E-16 6.22429527028E-16 6.62573688600E-16 7.05307008998E-16 7.50796482196E-16 7.99219873045E-16 8.50766412002E-16 9.05637534664E-16 9.64047669008E-16 1.02622507341E-15 1.09241272872E-15 1.16286928788E-15 1.23787008679E-15 1.31770822039E-15 1.40269568812E-15 1.49316461334E-15 1.58946854134E-15 1.69198382109E-15 1.80111107615E-15 1.91727677044E-15 2.04093487500E-15 2.17256864231E-15 2.31269249502E-15 2.46185403654E-15 2.62063619131E-15 2.78965948316E-15 2.96958446061E-15 3.16111427866E-15 3.36499744708E-15 3.58203075604E-15 3.81306239043E-15 4.05899524511E-15 4.32079045401E-15 4.59947114689E-15 4.89612644847E-15 5.21191573557E-15 5.54807316879E-15 5.90591251667E-15 6.28683229095E-15 6.69232121322E-15 7.12396403416E-15 7.58344772825E-15 8.07256808813E-15 8.59323674437E-15 9.14748863811E-15 9.73748997590E-15 1.03655466976E-14 1.10341134908E-14 1.17458033865E-14 1.25033979746E-14 1.33098582773E-14 1.41683363253E-14 1.50821874800E-14 1.60549835515E-14 1.70905267619E-14 1.81928646108E-14 1.93663056992E-14 2.06154365743E-14 2.19451396619E-14 2.33606123553E-14 2.48673873360E-14 2.64713542059E-14 2.81787825150E-14 2.99963462755E-14 3.19311500572E-14 3.39907567673E-14 3.61832172226E-14 3.85171016304E-14 4.10015331004E-14 4.36462233195E-14 4.64615105291E-14 4.94583999530E-14 5.26486068346E-14 5.60446022512E-14 5.96596618857E-14 6.35079179453E-14 6.76044144322E-14 7.19651659804E-14 7.66072204905E-14 8.15487258077E-14 8.68090007031E-14 9.24086104365E-14 9.83694471971E-14 1.04714815737E-13 1.11469524530E-13 1.18659982821E-13 1.26314303932E-13 1.34462415242E-13 1.43136175271E-13 1.52369498312E-13 1.62198487119E-13 1.72661574156E-13 1.83799671971E-13 1.95656333274E-13 2.08277921350E-13 2.21713791484E-13 2.36016484089E-13 2.51241930315E-13 2.67449670928E-13 2.84703089330E-13 3.03069659622E-13 3.22621210690E-13 3.43434207345E-13 3.65590049623E-13 3.89175391416E-13 4.14282479680E-13 4.41009515557E-13 4.69461038824E-13 4.99748337175E-13 5.31989881943E-13 5.66311791974E-13 6.02848327937E-13 6.41742415521E-13 6.83146210738E-13 7.27221689805E-13 7.74141286180E-13 8.24088566403E-13 8.77258948514E-13 9.33860467575E-13 9.94114589834E-13 1.05825708226E-12 1.12653893409E-12 1.19922734252E-12 1.27660675729E-12 1.35897999784E-12 1.44666943771E-12 1.54001827048E-12 1.63939185330E-12 1.74517913726E-12 1.85779419905E-12 1.97767785560E-12 2.10529939815E-12 2.24115843244E-12 2.38578683283E-12 2.53975083602E-12 2.70365325617E-12 2.87813585104E-12 3.06388184184E-12 3.26161858889E-12 3.47212045303E-12 3.69621181990E-12 3.93477036668E-12 4.18873047154E-12 4.45908688936E-12 4.74689867384E-12 5.05329333703E-12 5.37947124862E-12 5.72671036316E-12 6.09637127897E-12 6.48990249951E-12 6.90884622144E-12 7.35484432103E-12 7.82964484415E-12 8.33510885095E-12 8.87321775449E-12 9.44608113846E-12 1.00559449593E-11 1.07052004817E-11 1.13963936476E-11 1.21322350434E-11 1.29156106595E-11 1.37495931998E-11 1.46374541481E-11 1.55826766833E-11 1.65889694275E-11 1.76602809824E-11 1.88008155317E-11 2.00150494008E-11 2.13077486901E-11 2.26839880604E-11 2.41491707500E-11 2.57090498929E-11 2.73697511708E-11 2.91377970487E-11 3.10201324566E-11 3.30241522345E-11 3.51577302923E-11 3.74292507841E-11 3.98476411689E-11 4.24224074983E-11 4.51636719794E-11 4.80822130213E-11 5.11895078868E-11 5.44977780096E-11 5.80200374850E-11 6.17701444422E-11 6.57628560555E-11 7.00138869075E-11 7.45399712776E-11 7.93589295745E-11 8.44897387723E-11 8.99526079640E-11 9.57690582774E-11 1.01962008564E-10 1.08555866294E-10 1.15576624418E-10 1.23051964751E-10 1.31011368284E-10 1.39486232098E-10 1.48509994353E-10 1.58118267639E-10 1.68348980494E-10 1.79242528898E-10 1.90841937097E-10 2.03193029547E-10 2.16344612893E-10 2.30348671862E-10 2.45260576666E-10 2.61139303958E-10 2.78047673011E-10 2.96052596808E-10 3.15225350497E-10 3.35641856179E-10 3.57382987989E-10 3.80534895821E-10 4.05189351334E-10 4.31444116859E-10 4.59403337626E-10 4.89177961413E-10 5.20886183798E-10 5.54653925482E-10 5.90615338641E-10 6.28913348627E-10 6.69700230601E-10 7.13138224366E-10 7.59400190288E-10 8.08670308609E-10 8.61144825255E-10 9.17032846438E-10 9.76557187662E-10 1.03995527722E-09 1.10748012134E-09 1.17940133244E-09 1.25600622737E-09 1.33760099689E-09 1.42451195506E-09 1.51708687103E-09 1.61569639001E-09 1.72073554911E-09 1.83262539541E-09 1.95181471143E-09 2.07878185659E-09 2.21403673312E-09 2.35812288218E-09 2.51161972296E-09 2.67514494050E-09 2.84935703572E-09 3.03495804678E-09 3.23269645347E-09 3.44337027930E-09 3.66783040093E-09 3.90698408418E-09 4.16179875700E-09 4.43330603997E-09 4.72260604971E-09 5.03087199434E-09 5.35935508211E-09 5.70938976394E-09 6.08239933267E-09 6.47990190557E-09 6.90351681391E-09 7.35497143193E-09 7.83610846982E-09 8.34889377020E-09 8.89542463750E-09 9.47793874002E-09 1.00988236252E-08 1.07606268886E-08 1.14660670467E-08 1.22180451584E-08 1.30196572506E-08 1.38742076045E-08 1.47852229640E-08 1.57564677261E-08 1.67919601935E-08 1.78959899538E-08 1.90731364710E-08 2.03282889761E-08 2.16666677470E-08 2.30938468774E-08 2.46157786424E-08 2.62388195752E-08 2.79697583743E-08 2.98158457799E-08 3.17848265509E-08 3.38849737063E-08 3.61251251815E-08 3.85147230872E-08 4.10638557470E-08 4.37833027257E-08 4.66845830593E-08 4.97800069213E-08 5.30827309780E-08 5.66068176989E-08 6.03672989150E-08 6.43802439308E-08 6.86628325325E-08 7.32334332445E-08 7.81116872237E-08 8.33185982074E-08 8.88766289634E-08 9.48098047187E-08 1.01143824087E-07 1.07906178052E-07 1.15126277606E-07 1.22835590677E-07 1.31067789054E-07 1.39858906049E-07 1.49247505683E-07 1.59274864293E-07 1.69985165450E-07 1.81425709222E-07 1.93647136842E-07 2.06703671937E-07 2.20653379579E-07 2.35558444498E-07 2.51485469897E-07 2.68505798434E-07 2.86695857057E-07 3.06137527474E-07 3.26918544242E-07 3.49132922539E-07 3.72881417894E-07 3.98272020306E-07 4.25420485371E-07 4.54450905233E-07 4.85496322421E-07 5.18699389819E-07 5.54213080320E-07 5.92201449954E-07 6.32840458595E-07 6.76318852644E-07 7.22839114455E-07 7.72618483618E-07 8.25890055606E-07 8.82903963752E-07 9.43928650913E-07 1.00925223776E-06 1.07918399508E-06 1.15405592813E-06 1.23422448158E-06 1.32007237442E-06 1.41201057472E-06 1.51048042506E-06 1.61595593020E-06 1.72894621939E-06 1.84999819684E-06 1.97969939470E-06 2.11868104414E-06 2.26762138125E-06 2.42724920569E-06 2.59834771157E-06 2.78175861126E-06 2.97838657454E-06 3.18920400726E-06 3.41525619521E-06 3.65766684125E-06 3.91764402537E-06 4.19648661986E-06 4.49559119425E-06 4.81645944671E-06 5.16070620209E-06 5.53006801889E-06 5.92641245123E-06 6.35174801483E-06 6.80823490955E-06 7.29819655522E-06 7.82413200097E-06 8.38872927295E-06 8.99487972995E-06 9.64569350088E-06 1.03445160838E-05 1.10949461914E-05 1.19008549331E-05 1.27664064324E-05 1.36960799804E-05 1.46946938385E-05 1.57674308067E-05 1.69198656829E-05 1.81579947485E-05 1.94882674198E-05 2.09176202199E-05 2.24535132293E-05 2.41039691872E-05 2.58776154250E-05 2.77837288226E-05 2.98322839929E-05 3.20340049080E-05 3.44004201954E-05 3.69439223438E-05 3.96778310712E-05 4.26164611228E-05 4.57751947768E-05 4.91705593537E-05 5.28203100360E-05 5.67435183212E-05 6.09606664439E-05 6.54937481180E-05 7.03663759631E-05 7.56038959943E-05 8.12335095641E-05 8.72844031629E-05 9.37878864900E-05 1.00777539222E-04 1.08289366910E-04 1.16361966449E-04 1.25036701562E-04 1.34357888746E-04 1.44372994126E-04 1.55132841660E-04 1.66691833127E-04 1.79108180316E-04 1.92444149818E-04 2.06766320796E-04 2.22145856076E-04 2.38658786865E-04 2.56386311343E-04 2.75415107338E-04 2.95837659193E-04 3.17752598878E-04 3.41265061297E-04 3.66487053608E-04 3.93537838284E-04 4.22544329456E-04 4.53641501938E-04 4.86972812143E-04 5.22690629862E-04 5.60956679673E-04 6.01942490458E-04 6.45829851202E-04 6.92811270946E-04 7.43090440364E-04 7.96882692071E-04 8.54415456287E-04 9.15928708038E-04 9.81675401518E-04 1.05192188669E-03 1.12694830258E-03 1.20704894101E-03 1.29253257390E-03 1.38372273644E-03 1.48095795754E-03 1.58459192836E-03 1.69499359847E-03 1.81254718857E-03 1.93765210750E-03 2.07072276029E-03 2.21218823304E-03 2.36249183919E-03 2.52209051084E-03 2.69145401752E-03 2.87106399391E-03 3.06141275688E-03 3.26300189126E-03 3.47634058294E-03 3.70194367703E-03 3.94032943811E-03 4.19201698932E-03 4.45752340650E-03 4.73736044386E-03 5.03203086756E-03 5.34202437467E-03 5.66781307549E-03 6.00984651921E-03 6.36854624445E-03 6.74429983920E-03 7.13745449769E-03 7.54831006590E-03 7.97711157219E-03 8.42404124524E-03 8.88921002815E-03 9.37264860535E-03 9.87429796764E-03 1.03939995508E-02 1.09314849940E-02 1.14863655774E-02 1.20581214107E-02 1.26460904610E-02 1.32494575221E-02 1.38672432477E-02 1.44982933849E-02 1.51412683692E-02 1.57946334557E-02 1.64566495869E-02 1.71253652145E-02 1.77986093149E-02 1.84739858553E-02 1.91488699878E-02 1.98204062652E-02 2.04855091835E-02 2.11408663705E-02 2.17829447435E-02 2.24079999636E-02 2.30120895051E-02 2.35910896528E-02 2.41407167154E-02 2.46565527160E-02 2.51340757834E-02 2.55686954140E-02 2.59557927136E-02 2.62907656522E-02 2.65690792751E-02 2.67863207108E-02 2.69382586978E-02 2.70209072234E-02 2.70305927222E-02 2.69640241285E-02 2.68183649114E-02 2.65913060532E-02 2.62811387550E-02 2.58868254850E-02 2.54080678158E-02 2.48453693463E-02 2.42000918692E-02 2.34745028357E-02 2.26718121004E-02 2.17961958938E-02 2.08528059979E-02 1.98477621757E-02 1.87881260608E-02 1.76818549314E-02 1.65377341016E-02 1.53652870437E-02 1.41746628301E-02 1.29765010254E-02 1.17817747855E-02 1.06016135998E-02 9.44710783585E-03 8.32909799298E-03 7.25795230679E-03 6.24333704073E-03 5.29398441443E-03 4.41746360537E-03 3.61996057652E-03 2.90607257874E-03 2.27862300779E-03 1.73850181884E-03 1.28453588485E-03 9.13392505146E-04 6.19517724081E-04 3.95109222581E-04 2.30121338811E-04 1.13451299838E-04 3.69326443349E-05 -7.12792523894E-06 -2.66803104799E-05 -2.95562022084E-05 -2.30334329788E-05 -1.33418810637E-05 -5.11532959252E-06 -7.95894902816E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 2 i j (l(j)) 9.83956104046E-01 Q_int 3.68688447848E-29 3.97403434546E-29 4.28354863601E-29 4.61716918426E-29 4.97677348562E-29 5.36438526265E-29 5.78218585379E-29 6.23252648921E-29 6.71794152263E-29 7.24116269374E-29 7.80513450148E-29 8.41303077458E-29 9.06827253273E-29 9.77454723883E-29 1.05358295507E-28 1.13564036890E-28 1.22408875473E-28 1.31942586798E-28 1.42218823134E-28 1.53295415412E-28 1.65234698674E-28 1.78103862874E-28 1.91975331001E-28 2.06927166644E-28 2.23043513310E-28 2.40415067951E-28 2.59139591374E-28 2.79322458404E-28 3.01077250896E-28 3.24526396927E-28 3.49801859785E-28 3.77045880606E-28 4.06411778855E-28 4.38064815152E-28 4.72183121304E-28 5.08958702760E-28 5.48598519149E-28 5.91325648978E-28 6.37380545032E-28 6.87022387557E-28 7.40530542835E-28 7.98206135351E-28 8.60373742414E-28 9.27383220764E-28 9.99611675434E-28 1.07746558196E-27 1.16138307389E-27 1.25183640842E-27 1.34933462411E-27 1.45442640552E-27 1.56770317110E-27 1.68980240137E-27 1.82141122651E-27 1.96327029324E-27 2.11617793293E-27 2.28099465428E-27 2.45864798603E-27 2.65013769666E-27 2.85654142079E-27 3.07902072371E-27 3.31882763822E-27 3.57731171062E-27 3.85592759551E-27 4.15624324200E-27 4.47994871760E-27 4.82886571929E-27 5.20495782536E-27 5.61034154574E-27 6.04729823294E-27 6.51828692067E-27 7.02595816240E-27 7.57316894767E-27 8.16299878028E-27 8.79876700853E-27 9.48405150534E-27 1.02227088033E-26 1.10188957976E-26 1.18770931398E-26 1.28021304533E-26 1.37992135124E-26 1.48739535388E-26 1.60323987795E-26 1.72810685440E-26 1.86269898928E-26 2.00777371828E-26 2.16414746936E-26 2.33270025724E-26 2.51438063587E-26 2.71021103651E-26 2.92129352159E-26 3.14881598677E-26 3.39405884593E-26 3.65840223691E-26 3.94333378841E-26 4.25045699183E-26 4.58150022512E-26 4.93832647951E-26 5.32294384368E-26 5.73751680463E-26 6.18437842857E-26 6.66604349059E-26 7.18522262691E-26 7.74483758935E-26 8.34803768787E-26 8.99821751379E-26 9.69903604328E-26 1.04544372287E-25 1.12686721940E-25 1.21463231580E-25 1.30923292220E-25 1.41120141648E-25 1.52111164034E-25 1.63958212863E-25 1.76727959030E-25 1.90492266030E-25 2.05328594392E-25 2.21320437587E-25 2.38557791906E-25 2.57137662927E-25 2.77164611422E-25 2.98751341791E-25 3.22019336320E-25 3.47099538840E-25 3.74133091632E-25 4.03272129721E-25 4.34680637042E-25 4.68535369279E-25 5.05026848579E-25 5.44360435750E-25 5.86757485948E-25 6.32456594388E-25 6.81714939072E-25 7.34809728090E-25 7.92039759652E-25 8.53727103608E-25 9.20218913949E-25 9.91889382456E-25 1.06914184452E-24 1.15241104897E-24 1.24216560468E-24 1.33891061771E-24 1.44319053389E-24 1.55559220277E-24 1.67674818013E-24 1.80734028787E-24 1.94810345098E-24 2.09982983346E-24 2.26337329634E-24 2.43965420288E-24 2.62966459807E-24 2.83447379146E-24 3.05523437486E-24 3.29318870875E-24 3.54967591375E-24 3.82613940680E-24 4.12413502411E-24 4.44533977687E-24 4.79156128888E-24 5.16474796917E-24 5.56699997696E-24 6.00058104056E-24 6.46793119688E-24 6.97168052299E-24 7.51466393729E-24 8.09993715339E-24 8.73079387657E-24 9.41078433951E-24 1.01437352818E-23 1.09337714853E-23 1.17853389870E-23 1.27032300999E-23 1.36926103820E-23 1.47590477065E-23 1.59085435956E-23 1.71475669949E-23 1.84830906785E-23 1.99226304890E-23 2.14742876339E-23 2.31467942766E-23 2.49495626773E-23 2.68927381624E-23 2.89872562181E-23 3.12449040319E-23 3.36783868263E-23 3.63013993591E-23 3.91287029928E-23 4.21762087659E-23 4.54610669349E-23 4.90017634892E-23 5.28182241837E-23 5.69319266738E-23 6.13660213839E-23 6.61454617895E-23 7.12971448461E-23 7.68500623559E-23 8.28354641228E-23 8.92870338150E-23 9.62410785247E-23 1.03736733091E-22 1.11816180336E-22 1.20524888456E-22 1.29911866899E-22 1.40029942171E-22 1.50936055126E-22 1.62691581408E-22 1.75362676850E-22 1.89020649778E-22 2.03742362303E-22 2.19610662877E-22 2.36714852536E-22 2.55151187445E-22 2.75023420605E-22 2.96443385726E-22 3.19531626594E-22 3.44418075442E-22 3.71242784168E-22 4.00156712490E-22 4.31322577494E-22 4.64915769351E-22 5.01125338341E-22 5.40155058767E-22 5.82224575718E-22 6.27570641155E-22 6.76448446261E-22 7.29133057568E-22 7.85920964928E-22 8.47131750054E-22 9.13109885005E-22 9.84226670755E-22 1.06088232673E-21 1.14350824312E-21 1.23256940855E-21 1.32856702689E-21 1.43204133787E-21 1.54357465730E-21 1.66379465416E-21 1.79337788290E-21 1.93305359085E-21 2.08360782211E-21 2.24588784118E-21 2.42080690101E-21 2.60934938247E-21 2.81257633413E-21 3.03163144336E-21 3.26774747269E-21 3.52225319727E-21 3.79658088277E-21 4.09227434565E-21 4.41099764119E-21 4.75454442818E-21 5.12484806297E-21 5.52399247974E-21 5.95422391807E-21 6.41796356398E-21 6.91782117548E-21 7.45660976935E-21 8.03736145175E-21 8.66334448181E-21 9.33808166423E-21 1.00653701743E-20 1.08493029270E-20 1.16942916106E-20 1.26050915137E-20 1.35868282866E-20 1.46450267864E-20 1.57856421690E-20 1.70150934023E-20 1.83402993901E-20 1.97687179090E-20 2.13083875781E-20 2.29679730974E-20 2.47568140094E-20 2.66849772591E-20 2.87633138465E-20 3.10035198924E-20 3.34182024598E-20 3.60209505019E-20 3.88264113358E-20 4.18503730719E-20 4.51098534642E-20 4.86231956792E-20 5.24101715255E-20 5.64920927213E-20 6.08919308297E-20 6.56344465337E-20 7.07463289808E-20 7.62563459790E-20 8.21955058924E-20 8.85972321440E-20 9.54975513108E-20 1.02935295869E-19 1.10952322726E-19 1.19593748781E-19 1.28908204820E-19 1.38948109197E-19 1.49769962824E-19 1.61434667133E-19 1.74007866815E-19 1.87560319238E-19 2.02168292643E-19 2.17913995359E-19 2.34886038436E-19 2.53179934317E-19 2.72898634348E-19 2.94153108148E-19 3.17062968108E-19 3.41757142521E-19 3.68374601148E-19 3.97065137284E-19 4.27990210741E-19 4.61323856485E-19 4.97253664040E-19 5.35981833171E-19 5.77726311790E-19 6.22722022488E-19 6.71222184587E-19 7.23499739172E-19 7.79848885095E-19 8.40586734621E-19 9.06055098016E-19 9.76622407130E-19 1.05268578879E-18 1.13467329969E-18 1.22304633532E-18 1.31830222655E-18 1.42097703841E-18 1.53164858683E-18 1.65093969046E-18 1.77952167556E-18 1.91811815404E-18 2.06750909565E-18 2.22853521736E-18 2.40210271462E-18 2.58918836104E-18 2.79084500536E-18 3.00820749645E-18 3.24249906982E-18 3.49503823154E-18 3.76724617828E-18 4.06065479527E-18 4.37691527720E-18 4.71780742046E-18 5.08524963922E-18 5.48130976150E-18 5.90821666613E-18 6.36837282604E-18 6.86436782847E-18 7.39899294815E-18 7.97525685556E-18 8.59640254856E-18 9.26592560277E-18 9.98759384328E-18 1.07654685486E-17 1.16039273058E-17 1.25076886463E-17 1.34818385994E-17 1.45318593148E-17 1.56636599141E-17 1.68836097448E-17 1.81985742248E-17 1.96159534780E-17 2.11437239797E-17 2.27904834446E-17 2.45654992119E-17 2.64787603979E-17 2.85410341111E-17 3.07639260450E-17 3.31599457907E-17 3.57425772354E-17 3.85263544453E-17 4.15269434568E-17 4.47612304389E-17 4.82474167221E-17 5.20051212282E-17 5.60554908776E-17 6.04213195958E-17 6.51271765887E-17 7.01995446077E-17 7.56669689846E-17 8.15602182730E-17 8.79124574008E-17 9.47594343099E-17 1.02139681130E-16 1.10094731023E-16 1.18669351914E-16 1.27911798425E-16 1.37874083437E-16 1.48612270791E-16 1.60186790797E-16 1.72662780308E-16 1.86110449283E-16 2.00605475903E-16 2.16229432451E-16 2.33070244369E-16 2.51222685066E-16 2.70788909262E-16 2.91879027871E-16 3.14611727657E-16 3.39114939157E-16 3.65526556613E-16 3.93995213986E-16 4.24681121402E-16 4.57756966744E-16 4.93408887466E-16 5.31837518090E-16 5.73259119294E-16 6.17906794925E-16 6.66031803808E-16 7.17904973719E-16 7.73818225479E-16 8.34086215755E-16 8.99048107808E-16 9.69069480142E-16 1.04454438382E-15 1.12589756000E-15 1.21358683018E-15 1.30810567260E-15 1.40998599932E-15 1.51980114957E-15 1.63816911622E-15 1.76575602354E-15 1.90327987587E-15 2.05151459817E-15 2.21129439129E-15 2.38351842648E-15 2.56915590545E-15 2.76925151457E-15 2.98493130385E-15 3.21740902379E-15 3.46799295575E-15 3.73809327428E-15 4.02922998288E-15 4.34304146782E-15 4.68129371805E-15 5.04589026336E-15 5.43888288636E-15 5.86248316888E-15 6.31907493755E-15 6.81122767868E-15 7.34171099794E-15 7.91351020618E-15 8.52984311912E-15 9.19417816539E-15 9.91025390494E-15 1.06821000675E-14 1.15140602295E-14 1.24108162575E-14 1.33774146547E-14 1.44192949596E-14 1.55423203570E-14 1.67528106719E-14 1.80575779339E-14 1.94639647113E-14 2.09798854301E-14 2.26138709119E-14 2.43751163793E-14 2.62735332017E-14 2.83198046692E-14 3.05254461114E-14 3.29028696984E-14 3.54654542879E-14 3.82276207123E-14 4.12049129294E-14 4.44140854929E-14 4.78731978357E-14 5.16017158948E-14 5.56206216524E-14 5.99525312065E-14 6.46218220385E-14 6.96547701906E-14 7.50796981279E-14 8.09271341156E-14 8.72299840084E-14 9.40237164184E-14 1.01346562305E-13 1.09239730106E-13 1.17747637627E-13 1.26918161988E-13 1.36802909033E-13 1.47457503726E-13 1.58941903158E-13 1.71320733935E-13 1.84663655837E-13 1.99045753800E-13 2.14547960428E-13 2.31257511400E-13 2.49268436356E-13 2.68682088001E-13 2.89607712420E-13 3.12163063807E-13 3.36475067064E-13 3.62680532008E-13 3.90926923190E-13 4.21373189671E-13 4.54190659415E-13 4.89564003333E-13 5.27692274411E-13 5.68790027746E-13 6.13088527819E-13 6.60837049781E-13 7.12304282071E-13 7.67779838271E-13 8.27575886694E-13 8.92028906869E-13 9.61501582821E-13 1.03638484378E-12 1.11710006381E-12 1.20410143274E-12 1.29787851170E-12 1.39895898770E-12 1.50791164269E-12 1.62534955384E-12 1.75193354302E-12 1.88837589490E-12 2.03544436460E-12 2.19396649740E-12 2.36483428486E-12 2.54900918343E-12 2.74752752398E-12 2.96150634250E-12 3.19214966482E-12 3.44075528072E-12 3.70872204560E-12 3.99755775061E-12 4.30888760572E-12 4.64446338320E-12 5.00617327326E-12 5.39605250693E-12 5.81629480626E-12 6.26926472597E-12 6.75751095614E-12 7.28378066076E-12 7.85103493261E-12 8.46246545164E-12 9.12151244036E-12 9.83188401754E-12 1.05975770576E-11 1.14228996737E-11 1.23124954646E-11 1.32713696127E-11 1.43049170708E-11 1.54189528826E-11 1.66197449132E-11 1.79140490838E-11 1.93091474031E-11 2.08128889419E-11 2.24337339073E-11 2.41808013011E-11 2.60639202257E-11 2.80936850973E-11 3.02815153026E-11 3.26397193904E-11 3.51815643445E-11 3.79213501236E-11 4.08744902092E-11 4.40575981808E-11 4.74885811748E-11 5.11867407796E-11 5.51728812350E-11 5.94694267712E-11 6.41005475154E-11 6.90922954826E-11 7.44727513006E-11 8.02721816725E-11 8.65232097454E-11 9.32609989304E-11 1.00523450309E-10 1.08351415404E-10 1.16788927028E-10 1.25883445364E-10 1.35686126131E-10 1.46252107454E-10 1.57640819904E-10 1.69916321392E-10 1.83147656705E-10 1.97409245155E-10 2.12781300396E-10 2.29350279938E-10 2.47209372037E-10 2.66459019634E-10 2.87207484238E-10 3.09571455901E-10 3.33676706452E-10 3.59658800200E-10 3.87663853068E-10 4.17849354123E-10 4.50385052789E-10 4.85453910690E-10 5.23253129665E-10 5.63995263475E-10 6.07909408126E-10 6.55242490377E-10 7.06260659073E-10 7.61250773714E-10 8.20522023222E-10 8.84407657436E-10 9.53266864717E-10 1.02748678588E-09 1.10748469152E-09 1.19371032282E-09 1.28664842410E-09 1.38682145970E-09 1.49479255022E-09 1.61116863798E-09 1.73660389120E-09 1.87180338798E-09 2.01752706040E-09 2.17459397137E-09 2.34388692034E-09 2.52635738125E-09 2.72303086625E-09 2.93501266529E-09 3.16349406046E-09 3.40975901941E-09 3.67519138321E-09 3.96128265192E-09 4.26964034502E-09 4.60199703979E-09 4.96022006059E-09 5.34632199506E-09 5.76247195911E-09 6.21100778230E-09 6.69444911503E-09 7.21551156691E-09 7.77712193857E-09 8.38243463509E-09 9.03484935032E-09 9.73803015506E-09 1.04959260100E-08 1.13127929324E-08 1.21932178389E-08 1.31421442663E-08 1.41649000925E-08 1.52672273567E-08 1.64553144760E-08 1.77358309273E-08 1.91159645626E-08 2.06034619288E-08 2.22066716412E-08 2.39345911124E-08 2.57969170084E-08 2.78040994586E-08 2.99674006365E-08 3.22989577382E-08 3.48118509941E-08 3.75201767851E-08 4.04391265857E-08 4.35850719257E-08 4.69756559720E-08 5.06298922373E-08 5.45682708520E-08 5.88128731898E-08 6.33874952742E-08 6.83177808083E-08 7.36313644553E-08 7.93580262835E-08 8.55298580945E-08 9.21814426984E-08 9.93500470353E-08 1.07075830217E-07 1.15402067723E-07 1.24375392936E-07 1.34046057331E-07 1.44468210780E-07 1.55700203613E-07 1.67804911964E-07 1.80850088274E-07 1.94908738941E-07 2.10059531076E-07 2.26387230764E-07 2.43983175107E-07 2.62945780813E-07 2.83381091959E-07 3.05403370120E-07 3.29135729971E-07 3.54710824045E-07 3.82271580145E-07 4.11971995888E-07 4.43977994172E-07 4.78468344977E-07 5.15635657798E-07 5.55687450946E-07 5.98847302882E-07 6.45356092437E-07 6.95473334335E-07 7.49478617556E-07 8.07673154523E-07 8.70381449084E-07 9.37953093103E-07 1.01076470083E-06 1.08922199218E-06 1.17376203576E-06 1.26485566425E-06 1.36301007522E-06 1.46877163131E-06 1.58272887525E-06 1.70551577614E-06 1.83781522424E-06 1.98036279360E-06 2.13395079285E-06 2.29943262570E-06 2.47772748542E-06 2.66982540785E-06 2.87679271088E-06 3.09977784924E-06 3.34001771629E-06 3.59884442692E-06 3.87769261734E-06 4.17810730173E-06 4.50175232715E-06 4.85041947225E-06 5.22603823830E-06 5.63068638502E-06 6.06660126675E-06 6.53619202995E-06 7.04205273624E-06 7.58697648109E-06 8.17397058232E-06 8.80627291942E-06 9.48736950913E-06 1.02210134104E-05 1.10112450585E-05 1.18624141338E-05 1.27792030808E-05 1.37666524008E-05 1.48301878489E-05 1.59756496780E-05 1.72093240814E-05 1.85379769975E-05 1.99688904513E-05 2.15099016202E-05 2.31694448257E-05 2.49565966666E-05 2.68811245254E-05 2.89535386961E-05 3.11851483980E-05 3.35881219625E-05 3.61755514970E-05 3.89615223526E-05 4.19611877476E-05 4.51908489202E-05 4.86680412143E-05 5.24116265261E-05 5.64418925739E-05 6.07806594842E-05 6.54513942180E-05 7.04793334072E-05 7.58916151964E-05 8.17174207437E-05 8.79881260623E-05 9.47374649450E-05 1.02001703755E-04 1.09819828929E-04 1.18233748082E-04 1.27288505683E-04 1.37032514320E-04 1.47517802641E-04 1.58800281142E-04 1.70940027052E-04 1.84001589611E-04 1.98054317191E-04 2.13172707725E-04 2.29436784070E-04 2.46932496001E-04 2.65752150637E-04 2.85994873244E-04 3.07767100458E-04 3.31183108102E-04 3.56365575912E-04 3.83446191638E-04 4.12566297117E-04 4.43877579086E-04 4.77542807667E-04 5.13736625630E-04 5.52646391724E-04 5.94473081555E-04 6.39432249690E-04 6.87755056879E-04 7.39689366505E-04 7.95500914595E-04 8.55474557968E-04 9.19915605332E-04 9.89151236412E-04 1.06353201444E-03 1.14343349759E-03 1.22925795534E-03 1.32143619575E-03 1.42042951038E-03 1.52673174335E-03 1.64087149181E-03 1.76341444514E-03 1.89496587055E-03 2.03617325310E-03 2.18772909849E-03 2.35037390724E-03 2.52489932916E-03 2.71215150735E-03 2.91303462133E-03 3.12851463895E-03 3.35962328717E-03 3.60746225211E-03 3.87320761858E-03 4.15811455996E-03 4.46352228910E-03 4.79085928106E-03 5.14164877866E-03 5.51751459156E-03 5.92018719978E-03 6.35151017198E-03 6.81344690904E-03 7.30808772262E-03 7.83765725818E-03 8.40452227125E-03 9.01119976492E-03 9.66036549551E-03 1.03548628525E-02 1.10977121171E-02 1.18921201029E-02 1.27414901796E-02 1.36494326787E-02 1.46197756790E-02 1.56565761653E-02 1.67641315515E-02 1.79469915571E-02 1.92099704193E-02 2.05581594222E-02 2.19969397176E-02 2.35319954068E-02 2.51693268490E-02 2.69152641532E-02 2.87764808042E-02 3.07600073677E-02 3.28732452084E-02 3.51239801476E-02 3.75203959773E-02 4.00710877363E-02 4.27850746430E-02 4.56718125687E-02 4.87412059186E-02 5.20036187795E-02 5.54698851719E-02 5.91513182344E-02 6.30597181484E-02 6.72073785947E-02 7.16070915155E-02 7.62721499367E-02 8.12163485858E-02 8.64539820188E-02 9.19998399528E-02 9.78691994748E-02 1.04077813780E-01 1.10641897070E-01 1.17578105221E-01 1.24903511805E-01 1.32635579049E-01 1.40792123254E-01 1.49391274244E-01 1.58451428322E-01 1.67991194270E-01 1.78029331871E-01 1.88584682442E-01 1.99676090863E-01 2.11322318595E-01 2.23541947175E-01 2.36353271698E-01 2.49774183823E-01 2.63822043862E-01 2.78513541543E-01 2.93864545112E-01 3.09889938468E-01 3.26603446131E-01 3.44017445891E-01 3.62142769126E-01 3.80988488861E-01 4.00561695795E-01 4.20867262657E-01 4.41907597423E-01 4.63682386129E-01 4.86188326190E-01 5.09418851388E-01 5.33363849922E-01 5.58009377178E-01 5.83337365165E-01 6.09325330854E-01 6.35946085972E-01 6.63167451138E-01 6.90951977563E-01 7.19256679870E-01 7.48032783954E-01 7.77225494139E-01 8.06773784226E-01 8.36610217351E-01 8.66660799870E-01 8.96844874761E-01 9.27075060260E-01 9.57257239625E-01 9.87290608044E-01 1.01706778275E+00 1.04647498237E+00 1.07539228132E+00 1.10369394507E+00 1.13124885127E+00 1.15792100174E+00 1.18357012929E+00 1.20805240275E+00 1.23122123247E+00 1.25292817753E+00 1.27302395453E+00 1.29135954618E+00 1.30778740669E+00 1.32216275849E+00 1.33434497342E+00 1.34419902902E+00 1.35159702855E+00 1.35641977084E+00 1.35855835414E+00 1.35791579519E+00 1.35440864309E+00 1.34796856492E+00 1.33854387829E+00 1.32610100419E+00 1.31062581220E+00 1.29212482880E+00 1.27062627944E+00 1.24618093444E+00 1.21886272998E+00 1.18876913623E+00 1.15602124702E+00 1.12076356804E+00 1.08316348420E+00 1.04341039121E+00 1.00171448152E+00 9.58305180712E-01 9.13429236917E-01 8.67348473150E-01 8.20337219837E-01 7.72679452819E-01 7.24665670051E-01 6.76589548126E-01 6.28744427296E-01 5.81419680725E-01 5.34897029886E-01 4.89446873205E-01 4.45324698943E-01 4.02767655708E-01 3.61991354690E-01 3.23186976582E-01 2.86518753051E-01 2.52121887532E-01 2.20100972936E-01 1.90528954805E-01 1.63446677404E-01 1.38863037617E-01 1.16755757337E-01 9.70727697651E-02 7.97341988659E-02 6.46348946990E-02 5.16474707590E-02 4.06257734400E-02 3.14086987220E-02 2.38242578038E-02 1.76937822579E-02 1.28361510324E-02 9.07191693072E-03 6.22720974511E-03 4.13729765566E-03 2.64969842474E-03 1.62674779166E-03 9.47554609764E-04 5.12221898113E-04 2.49293599720E-04 1.03567537669E-04 3.21565528867E-05 3.52661422873E-06 -3.85003886982E-06 -3.16169910791E-06 -1.15450113223E-06 -1.44439611136E-07 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 2 i j (l(j)) 0.00000000000E+00 Q_int 1.80090339285E-29 1.94116522441E-29 2.09235122963E-29 2.25531222848E-29 2.43096530635E-29 2.62029897505E-29 2.82437873576E-29 3.04435307534E-29 3.28145992958E-29 3.53703364982E-29 3.81251251225E-29 4.10944681196E-29 4.42950758747E-29 4.77449602471E-29 5.14635359344E-29 5.54717297316E-29 5.97920982991E-29 6.44489551040E-29 6.94685072469E-29 7.48790029461E-29 8.07108905087E-29 8.69969896820E-29 9.37726763517E-29 1.01076081624E-28 1.08948306415E-28 1.17433652748E-28 1.26579873076E-28 1.36438439008E-28 1.47064830976E-28 1.58518850459E-28 1.70864956523E-28 1.84172628575E-28 1.98516757364E-28 2.13978066444E-28 2.30643566453E-28 2.48607044779E-28 2.67969593361E-28 2.88840177597E-28 3.11336249564E-28 3.35584408995E-28 3.61721115732E-28 3.89893457679E-28 4.20259978557E-28 4.52991570128E-28 4.88272433914E-28 5.26301117818E-28 5.67291633475E-28 6.11474660637E-28 6.59098845352E-28 7.10432199253E-28 7.65763607833E-28 8.25404456185E-28 8.89690381367E-28 9.58983161242E-28 1.03367275044E-27 1.11417947487E-27 1.20095639716E-27 1.29449186636E-27 1.39531226616E-27 1.50398497718E-27 1.62112157001E-27 1.74738124691E-27 1.88347455153E-27 2.03016736762E-27 2.18828522912E-27 2.35871796599E-27 2.54242471185E-27 2.74043930161E-27 2.95387608954E-27 3.18393622046E-27 3.43191438931E-27 3.69920612727E-27 3.98731565526E-27 4.29786434917E-27 4.63259986440E-27 4.99340597098E-27 5.38231315479E-27 5.80151004434E-27 6.25335572766E-27 6.74039302832E-27 7.26536281556E-27 7.83121942887E-27 8.44114730398E-27 9.09857889370E-27 9.80721398449E-27 1.05710405175E-26 1.13943570315E-26 1.22817968529E-26 1.32383541713E-26 1.42694121440E-26 1.53807731914E-26 1.65786916501E-26 1.78699089707E-26 1.92616916558E-26 2.07618721534E-26 2.23788929350E-26 2.41218540070E-26 2.60005641219E-26 2.80255959786E-26 3.02083457217E-26 3.25610970748E-26 3.50970904691E-26 3.78305975551E-26 4.07770015191E-26 4.39528836536E-26 4.73761166710E-26 5.10659652846E-26 5.50431946239E-26 5.93301870925E-26 6.39510683287E-26 6.89318429755E-26 7.43005410256E-26 8.00873755637E-26 8.63249127950E-26 9.30482553161E-26 1.00295239659E-25 1.08106649223E-25 1.16526443786E-25 1.25602006898E-25 1.35384412535E-25 1.45928712526E-25 1.57294246366E-25 1.69544975157E-25 1.82749841554E-25 1.96983157754E-25 2.12325023698E-25 2.28861777840E-25 2.46686483033E-25 2.65899450249E-25 2.86608803098E-25 3.08931086304E-25 3.32991921576E-25 3.58926714566E-25 3.86881416878E-25 4.17013347435E-25 4.49492077809E-25 4.84500386509E-25 5.22235287594E-25 5.62909139397E-25 6.06750839596E-25 6.54007113373E-25 7.04943901890E-25 7.59847858911E-25 8.19027963983E-25 8.82817261265E-25 9.51574733775E-25 1.02568732362E-24 1.10557210957E-24 1.19167865420E-24 1.28449153390E-24 1.38453306590E-24 1.49236624761E-24 1.60859792508E-24 1.73388220799E-24 1.86892415083E-24 2.01448372065E-24 2.17138007389E-24 2.34049616630E-24 2.52278372188E-24 2.71926858883E-24 2.93105651269E-24 3.15933935904E-24 3.40540182090E-24 3.67062864851E-24 3.95651244221E-24 4.26466205225E-24 4.59681163280E-24 4.95483040116E-24 5.34073315705E-24 5.75669162112E-24 6.20504665665E-24 6.68832144308E-24 7.20923567551E-24 7.77072087019E-24 8.37593686203E-24 9.02828958699E-24 9.73145024943E-24 1.04893759824E-23 1.13063321168E-23 1.21869161852E-23 1.31360837953E-23 1.41591765178E-23 1.52619519472E-23 1.64506161034E-23 1.77318583568E-23 1.91128890739E-23 2.06014801941E-23 2.22060089680E-23 2.39355051012E-23 2.57997015700E-23 2.78090893956E-23 2.99749766833E-23 3.23095522604E-23 3.48259542710E-23 3.75383441119E-23 4.04619861287E-23 4.36133335173E-23 4.70101209167E-23 5.06714642133E-23 5.46179681180E-23 5.88718421220E-23 6.34570254838E-23 6.83993219508E-23 7.37265449730E-23 7.94686742276E-23 8.56580243330E-23 9.23294267046E-23 9.95204255724E-23 1.07271489267E-22 1.15626237961E-22 1.24631689145E-22 1.34338522229E-22 1.44801363745E-22 1.56079094766E-22 1.68235182265E-22 1.81338036289E-22 1.95461394942E-22 2.10684739357E-22 2.27093740988E-22 2.44780743735E-22 2.63845283627E-22 2.84394648969E-22 3.06544484125E-22 3.30419440322E-22 3.56153877141E-22 3.83892618643E-22 4.13791768390E-22 4.46019587933E-22 4.80757443733E-22 5.18200827822E-22 5.58560457960E-22 6.02063463483E-22 6.48954663498E-22 6.99497944640E-22 7.53977746129E-22 8.12700660489E-22 8.75997158942E-22 9.44223451178E-22 1.01776348997E-21 1.09703113193E-21 1.18247246654E-21 1.27456832656E-21 1.37383699403E-21 1.48083711690E-21 1.59617085298E-21 1.72048725860E-21 1.85448594129E-21 1.99892099690E-21 2.15460525342E-21 2.32241484522E-21 2.50329414366E-21 2.69826107165E-21 2.90841283213E-21 3.13493208278E-21 3.37909359153E-21 3.64227141054E-21 3.92594660881E-21 4.23171560716E-21 4.56129916224E-21 4.91655205036E-21 5.29947350549E-21 5.71221847021E-21 6.15710972295E-21 6.63665094973E-21 7.15354083399E-21 7.71068824383E-21 8.31122860198E-21 8.95854153090E-21 9.65626987202E-21 1.04083401863E-20 1.12189848516E-20 1.20927658806E-20 1.30346005948E-20 1.40497892967E-20 1.51440450983E-20 1.63235260726E-20 1.75948699085E-20 1.89652312656E-20 2.04423220382E-20 2.20344547545E-20 2.37505893568E-20 2.56003836247E-20 2.75942475256E-20 2.97434017982E-20 3.20599410985E-20 3.45569020645E-20 3.72483366809E-20 4.01493913595E-20 4.32763921768E-20 4.66469367515E-20 5.02799932777E-20 5.41960072703E-20 5.84170166255E-20 6.29667756416E-20 6.78708886996E-20 7.31569543552E-20 7.88547206532E-20 8.49962525390E-20 9.16161123076E-20 9.87515541084E-20 1.06442733597E-19 1.14732933916E-19 1.23668809279E-19 1.33300647521E-19 1.43682653100E-19 1.54873252140E-19 1.66935421232E-19 1.79937041843E-19 1.93951282329E-19 2.09057009695E-19 2.25339233435E-19 2.42889583930E-19 2.61806828113E-19 2.82197425289E-19 3.04176126252E-19 3.27866619058E-19 3.53402225095E-19 3.80926649370E-19 4.10594789222E-19 4.42573606032E-19 4.77043064813E-19 5.14197146995E-19 5.54244942073E-19 5.97411824288E-19 6.43940720946E-19 6.94093479530E-19 7.48152341270E-19 8.06421529499E-19 8.69228961703E-19 9.36928094923E-19 1.00989991487E-18 1.08855507999E-18 1.17333623247E-18 1.26472048928E-18 1.36322212719E-18 1.46939547695E-18 1.58383804285E-18 1.70719386523E-18 1.84015714492E-18 1.98347614992E-18 2.13795742639E-18 2.30447033757E-18 2.48395195623E-18 2.67741233817E-18 2.88594020644E-18 3.11070907823E-18 3.35298386900E-18 3.61412801094E-18 3.89561112584E-18 4.19901729558E-18 4.52605397672E-18 4.87856160942E-18 5.25852397472E-18 5.66807935854E-18 6.10953258507E-18 6.58536798750E-18 7.09826338885E-18 7.65110517173E-18 8.24700452180E-18 8.88931493634E-18 9.58165109638E-18 1.03279092088E-17 1.11322889325E-17 1.19993170128E-17 1.29338727557E-17 1.39412154872E-17 1.50270141505E-17 1.61973792084E-17 1.74588970311E-17 1.88186669611E-17 2.02843412659E-17 2.18641682021E-17 2.35670384326E-17 2.54025350606E-17 2.73809875589E-17 2.95135299002E-17 3.18121632150E-17 3.42898233286E-17 3.69604535591E-17 3.98390831848E-17 4.29419120227E-17 4.62864015948E-17 4.98913733943E-17 5.37771148055E-17 5.79654932726E-17 6.24800793612E-17 6.73462794034E-17 7.25914784745E-17 7.82451945049E-17 8.43392443947E-17 9.09079230661E-17 9.79881964609E-17 1.05619909570E-16 1.13846010662E-16 1.22712792984E-16 1.32270155272E-16 1.42571882566E-16 1.53675948889E-16 1.65644843497E-16 1.78545922545E-16 1.92451788136E-16 2.07440696899E-16 2.23597000376E-16 2.41011619723E-16 2.59782557371E-16 2.80015448541E-16 3.01824155715E-16 3.25331409401E-16 3.50669498807E-16 3.77981016306E-16 4.07419659883E-16 4.39151098075E-16 4.73353902284E-16 5.10220551689E-16 5.49958516439E-16 5.92791425192E-16 6.38960323600E-16 6.88725030800E-16 7.42365601553E-16 8.00183902266E-16 8.62505309749E-16 9.29680542284E-16 1.00208763330E-15 1.08013405876E-15 1.16425903026E-15 1.25493596666E-15 1.35267515827E-15 1.45802663856E-15 1.57158327938E-15 1.69398412744E-15 1.82591800050E-15 1.96812736369E-15 2.12141250771E-15 2.28663605251E-15 2.46472780161E-15 2.65668997460E-15 2.86360284706E-15 3.08663082980E-15 3.32702902157E-15 3.58615027204E-15 3.86545279493E-15 4.16650837402E-15 4.49101120832E-15 4.84078744605E-15 5.21780546118E-15 5.62418693035E-15 6.06221877243E-15 6.53436601800E-15 7.04328568111E-15 7.59184171138E-15 8.18312111063E-15 8.82045130468E-15 9.50741886809E-15 1.02478897072E-14 1.10460308151E-14 1.19063337208E-14 1.28336397649E-14 1.38331673433E-14 1.49105412733E-14 1.60718244462E-14 1.73235519453E-14 1.86727678209E-14 2.01270647298E-14 2.16946266615E-14 2.33842749916E-14 2.52055181231E-14 2.71686049924E-14 2.92845827434E-14 3.15653588926E-14 3.40237683359E-14 3.66736455741E-14 3.95299025627E-14 4.26086126255E-14 4.59271009027E-14 4.95040418431E-14 5.33595642893E-14 5.75153647468E-14 6.19948294739E-14 6.68231660807E-14 7.20275453763E-14 7.76372542629E-14 8.36838605375E-14 9.02013905279E-14 9.72265205625E-14 1.04798783352E-13 1.12960790443E-13 1.21758471997E-13 1.31241335242E-13 1.41462743050E-13 1.52480214215E-13 1.64355747108E-13 1.77156168545E-13 1.90953509820E-13 2.05825412021E-13 2.21855562911E-13 2.39134167838E-13 2.57758457309E-13 2.77833234097E-13 2.99471462953E-13 3.22794906243E-13 3.47934809083E-13 3.75032637834E-13 4.04240876104E-13 4.35723882735E-13 4.69658816615E-13 5.06236633501E-13 5.45663160468E-13 5.88160254040E-13 6.33967048494E-13 6.83341301387E-13 7.36560843851E-13 7.93925143841E-13 8.55756991100E-13 9.22404313352E-13 9.94242133914E-13 1.07167468176E-12 1.15513766587E-12 1.24510072676E-12 1.34207007880E-12 1.44659135838E-12 1.55925269385E-12 1.68068801446E-12 1.81158061703E-12 1.95266701034E-12 2.10474105881E-12 2.26865844895E-12 2.44534150349E-12 2.63578437049E-12 2.84105861636E-12 3.06231925456E-12 3.30081124359E-12 3.55787649101E-12 3.83496140283E-12 4.13362502072E-12 4.45554779277E-12 4.80254102736E-12 5.17655708265E-12 5.57970034955E-12 6.01423909428E-12 6.48261820567E-12 6.98747296835E-12 7.53164387716E-12 8.11819260023E-12 8.75041923654E-12 9.43188084716E-12 1.01664114870E-11 1.09581437531E-11 1.18115320474E-11 1.27313776219E-11 1.37228555883E-11 1.47915440328E-11 1.59434553736E-11 1.71850702091E-11 1.85233737356E-11 1.99658950642E-11 2.15207495391E-11 2.31966844120E-11 2.50031280307E-11 2.69502428407E-11 2.90489825769E-11 3.13111538468E-11 3.37494825125E-11 3.63776853523E-11 3.92105470559E-11 4.22640034438E-11 4.55552311255E-11 4.91027440406E-11 5.29264975589E-11 5.70480007021E-11 6.14904371455E-11 6.62787955327E-11 7.14400099019E-11 7.70031113895E-11 8.29993910082E-11 8.94625764439E-11 9.64290202415E-11 1.03937905892E-10 1.12031466748E-10 1.20755224136E-10 1.30158243311E-10 1.40293409087E-10 1.51217722952E-10 1.62992623580E-10 1.75684333150E-10 1.89364227779E-10 2.04109240250E-10 2.20002291542E-10 2.37132757807E-10 2.55596971351E-10 2.75498763616E-10 2.96950047443E-10 3.20071446284E-10 3.44992973312E-10 3.71854759603E-10 4.00807843883E-10 4.32015019752E-10 4.65651751390E-10 5.01907158830E-10 5.40985080540E-10 5.83105218270E-10 6.28504372598E-10 6.77437772082E-10 7.30180506137E-10 7.87029072995E-10 8.48303041752E-10 9.14346851654E-10 9.85531740446E-10 1.06225783422E-09 1.14495639463E-09 1.23409223489E-09 1.33016633803E-09 1.43371866244E-09 1.54533117614E-09 1.66563112825E-09 1.79529456117E-09 1.93505011662E-09 2.08568311291E-09 2.24803996590E-09 2.42303292795E-09 2.61164521641E-09 2.81493652340E-09 3.03404896919E-09 3.27021350309E-09 3.52475681586E-09 3.79910877692E-09 4.09481046242E-09 4.41352278707E-09 4.75703583101E-09 5.12727887580E-09 5.52633121707E-09 5.95643383029E-09 6.42000192817E-09 6.91963851081E-09 7.45814893699E-09 8.03855667300E-09 8.66412021984E-09 9.33835136872E-09 1.00650348976E-08 1.08482497609E-08 1.16923919331E-08 1.26021990497E-08 1.35827769233E-08 1.46396281446E-08 1.57786828831E-08 1.70063321033E-08 1.83294633161E-08 1.97554991418E-08 2.12924388449E-08 2.29489030874E-08 2.47341821670E-08 2.66582879637E-08 2.87320099582E-08 3.09669755471E-08 3.33757150579E-08 3.59717317902E-08 3.87695774884E-08 4.17849336592E-08 4.50346991833E-08 4.85370847159E-08 5.23117143935E-08 5.63797353931E-08 6.07639360339E-08 6.54888729432E-08 7.05810080931E-08 7.60688564607E-08 8.19831450713E-08 8.83569843566E-08 9.52260527716E-08 1.02628795678E-07 1.10606639576E-07 1.19204222934E-07 1.28469644808E-07 1.38454732696E-07 1.49215331068E-07 1.60811612172E-07 1.73308410818E-07 1.86775585025E-07 2.01288404498E-07 2.16927969013E-07 2.33781659166E-07 2.51943621756E-07 2.71515292698E-07 2.92605960145E-07 3.15333371044E-07 3.39824384353E-07 3.66215674620E-07 3.94654489684E-07 4.25299466624E-07 4.58321510601E-07 4.93904741154E-07 5.32247511323E-07 5.73563505054E-07 6.18082918923E-07 6.66053734609E-07 7.17743089042E-07 7.73438749685E-07 8.33450703024E-07 8.98112864832E-07 9.67784921466E-07 1.04285431239E-06 1.12373836434E-06 1.21088658903E-06 1.30478315648E-06 1.40594955775E-06 1.51494747096E-06 1.63238184651E-06 1.75890422779E-06 1.89521632541E-06 2.04207386411E-06 2.20029072298E-06 2.37074339122E-06 2.55437576321E-06 2.75220429865E-06 2.96532357521E-06 3.19491226341E-06 3.44223955527E-06 3.70867208135E-06 3.99568135252E-06 4.30485176593E-06 4.63788921790E-06 4.99663036860E-06 5.38305260812E-06 5.79928477583E-06 6.24761868945E-06 6.73052154477E-06 7.25064925020E-06 7.81086076647E-06 8.41423352601E-06 9.06408001217E-06 9.76396558457E-06 1.05177276429E-05 1.13294962285E-05 1.22037161689E-05 1.31451708816E-05 1.41590079566E-05 1.52507666509E-05 1.64264074339E-05 1.76923437354E-05 1.90554760568E-05 2.05232286184E-05 2.21035887291E-05 2.38051490744E-05 2.56371531382E-05 2.76095439826E-05 2.97330166328E-05 3.20190743233E-05 3.44800888888E-05 3.71293655938E-05 3.99812127238E-05 4.30510162763E-05 4.63553201176E-05 4.99119119962E-05 5.37399158276E-05 5.78598906968E-05 6.22939370541E-05 6.70658106113E-05 7.22010444803E-05 7.77270801331E-05 8.36734077991E-05 9.00717169597E-05 9.69560576393E-05 1.04363013243E-04 1.12331885736E-04 1.20904894015E-04 1.30127386376E-04 1.40048068033E-04 1.50719244725E-04 1.62197083487E-04 1.74541891741E-04 1.87818415952E-04 2.02096161135E-04 2.17449732607E-04 2.33959201461E-04 2.51710495304E-04 2.70795815933E-04 2.91314085676E-04 3.13371424272E-04 3.37081658238E-04 3.62566864796E-04 3.89957952558E-04 4.19395281275E-04 4.51029323089E-04 4.85021367866E-04 5.21544275310E-04 5.60783276728E-04 6.02936829413E-04 6.48217526834E-04 6.96853067908E-04 7.49087288832E-04 8.05181261106E-04 8.65414459543E-04 9.30086004224E-04 9.99515980542E-04 1.07404684164E-03 1.15404489774E-03 1.23990189697E-03 1.33203670258E-03 1.43089707150E-03 1.53696153936E-03 1.65074141737E-03 1.77278290637E-03 1.90366933384E-03 2.04402351932E-03 2.19451027435E-03 2.35583904254E-03 2.52876668593E-03 2.71410042359E-03 2.91270092841E-03 3.12548558809E-03 3.35343193625E-03 3.59758125938E-03 3.85904238529E-03 4.13899565844E-03 4.43869710707E-03 4.75948280713E-03 5.10277344695E-03 5.47007909649E-03 5.86300418419E-03 6.28325268367E-03 6.73263351165E-03 7.21306613743E-03 7.72658640308E-03 8.27535255216E-03 8.86165146324E-03 9.48790508280E-03 1.01566770500E-02 1.08706795041E-02 1.16327800621E-02 1.24460089523E-02 1.33135662862E-02 1.42388294480E-02 1.52253605763E-02 1.62769141114E-02 1.73974443738E-02 1.85911131378E-02 1.98622971570E-02 2.12155955945E-02 2.26558373036E-02 2.41880878985E-02 2.58176565492E-02 2.75501024249E-02 2.93912407047E-02 3.13471480654E-02 3.34241675460E-02 3.56289126828E-02 3.79682707955E-02 4.04494052960E-02 4.30797568837E-02 4.58670434749E-02 4.88192587079E-02 5.19446688510E-02 5.52518079297E-02 5.87494708784E-02 6.24467045086E-02 6.63527960772E-02 7.04772592224E-02 7.48298170300E-02 7.94203819780E-02 8.42590324996E-02 8.93559858992E-02 9.47215673451E-02 1.00366174661E-01 1.06300238635E-01 1.12534178562E-01 1.19078352741E-01 1.25943003654E-01 1.33138197553E-01 1.40673758223E-01 1.48559194660E-01 1.56803622474E-01 1.65415678834E-01 1.74403430789E-01 1.83774276895E-01 1.93534842058E-01 2.03690865619E-01 2.14247082748E-01 2.25207099285E-01 2.36573260258E-01 2.48346512414E-01 2.60526261181E-01 2.73110222614E-01 2.86094270990E-01 2.99472282870E-01 3.13235978578E-01 3.27374762199E-01 3.41875561397E-01 3.56722668477E-01 3.71897584335E-01 3.87378867113E-01 4.03141987551E-01 4.19159193240E-01 4.35399384138E-01 4.51828001924E-01 4.68406935902E-01 4.85094448353E-01 5.01845122348E-01 5.18609835177E-01 5.35335760605E-01 5.51966403238E-01 5.68441668292E-01 5.84697970004E-01 6.00668381849E-01 6.16282831555E-01 6.31468343706E-01 6.46149332409E-01 6.60247946129E-01 6.73684466336E-01 6.86377761061E-01 6.98245793795E-01 7.09206187464E-01 7.19176842330E-01 7.28076605807E-01 7.35825991129E-01 7.42347940744E-01 7.47568629166E-01 7.51418298796E-01 7.53832121008E-01 7.54751073533E-01 7.54122823947E-01 7.51902607865E-01 7.48054089318E-01 7.42550189775E-01 7.35373871370E-01 7.26518859229E-01 7.15990287270E-01 7.03805251651E-01 6.89993256103E-01 6.74596533781E-01 6.57670231023E-01 6.39282439559E-01 6.19514065249E-01 5.98458523390E-01 5.76221252989E-01 5.52919045187E-01 5.28679184103E-01 5.03638401875E-01 4.77941653393E-01 4.51740720158E-01 4.25192656789E-01 3.98458097815E-01 3.71699446402E-01 3.45078970573E-01 3.18756835997E-01 2.92889107611E-01 2.67625754940E-01 2.43108697957E-01 2.19469931572E-01 1.96829767237E-01 1.75295229646E-01 1.54958645090E-01 1.35896455588E-01 1.18168289528E-01 1.01816315204E-01 8.68648983855E-02 7.33205790038E-02 6.11723752174E-02 5.03924157868E-02 4.09368938405E-02 3.27473270619E-02 2.57521011893E-02 1.98682657632E-02 1.50035435114E-02 1.10585079131E-02 7.92887762067E-03 5.50787186715E-03 3.68856806702E-03 2.36620187100E-03 1.44035127765E-03 8.16950329136E-04 4.13619346113E-04 1.70872192044E-04 4.08984444487E-05 -1.57216358267E-05 -2.98636397474E-05 -2.40399024838E-05 -1.29423168040E-05 -4.37148615233E-06 -5.73269061166E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 4 2 i j (l(j)) 0.00000000000E+00 Q_int 2.51692764791E-29 2.71295642059E-29 2.92425272777E-29 3.15200566842E-29 3.39749695346E-29 3.66210811878E-29 3.94732830002E-29 4.25476261289E-29 4.58614118617E-29 4.94332889824E-29 5.32833587197E-29 5.74332878693E-29 6.19064307269E-29 6.67279605177E-29 7.19250110620E-29 7.75268294751E-29 8.35649407586E-29 9.00733252123E-29 9.70886096626E-29 1.04650273585E-28 1.12800871282E-28 1.21586271359E-28 1.31055914862E-28 1.41263093507E-28 1.52265249594E-28 1.64124299266E-28 1.76906980951E-28 1.90685230945E-28 2.05536588240E-28 2.21544630887E-28 2.38799446343E-28 2.57398138449E-28 2.77445373897E-28 2.99053971254E-28 3.22345535868E-28 3.47451144215E-28 3.74512081549E-28 4.03680637008E-28 4.35120960641E-28 4.69009987184E-28 5.05538431781E-28 5.44911863268E-28 5.87351861033E-28 6.33097261986E-28 6.82405504647E-28 7.35554077918E-28 7.92842082687E-28 8.54591915062E-28 9.21151080696E-28 9.92894150426E-28 1.07022486822E-27 1.15357842331E-27 1.24342389925E-27 1.34026691379E-27 1.44465246429E-27 1.55716799475E-27 1.67844670175E-27 1.80917109787E-27 1.95007685256E-27 2.10195693231E-27 2.26566606311E-27 2.44212554053E-27 2.63232841452E-27 2.83734507782E-27 3.05832928986E-27 3.29652466960E-27 3.55327169422E-27 3.83001524283E-27 4.12831272772E-27 4.44984285891E-27 4.79641509133E-27 5.16997980778E-27 5.57263929494E-27 6.00665957433E-27 6.47448315461E-27 6.97874277717E-27 7.52227623223E-27 8.10814232887E-27 8.73963810893E-27 9.42031740156E-27 1.01540108229E-26 1.09448473332E-26 1.17972774737E-26 1.27160984117E-26 1.37064809382E-26 1.47739985667E-26 1.59246588992E-26 1.71649374345E-26 1.85018140103E-26 1.99428120829E-26 2.14960410667E-26 2.31702419708E-26 2.49748365906E-26 2.69199805298E-26 2.90166203528E-26 3.12765551880E-26 3.37125031285E-26 3.63381728057E-26 3.91683405359E-26 4.22189334763E-26 4.55071192571E-26 4.90514025949E-26 5.28717294305E-26 5.69895991773E-26 6.14281857121E-26 6.62124677896E-26 7.13693696136E-26 7.69279123566E-26 8.29193774803E-26 8.93774827768E-26 9.63385721195E-26 1.03841819994E-25 1.11929451956E-25 1.20646982265E-25 1.30043470018E-25 1.40171795240E-25 1.51088956469E-25 1.62856391528E-25 1.75540323273E-25 1.89212132268E-25 2.03948758495E-25 2.19833134340E-25 2.36954651306E-25 2.55409663079E-25 2.75302027768E-25 2.96743692386E-25 3.19855322840E-25 3.44766983002E-25 3.71618866657E-25 4.00562086461E-25 4.31759524356E-25 4.65386748203E-25 5.01632999815E-25 5.40702259946E-25 5.82814396215E-25 6.28206400447E-25 6.77133722370E-25 7.29871707200E-25 7.86717145180E-25 8.47989941808E-25 9.14034918152E-25 9.85223751374E-25 1.06195706640E-24 1.14466669048E-24 1.23381808336E-24 1.32991295675E-24 1.43349209771E-24 1.54513841207E-24 1.66548020478E-24 1.79519471577E-24 1.93501193125E-24 2.08571869177E-24 2.24816312029E-24 2.42325939511E-24 2.61199289452E-24 2.81542574219E-24 3.03470278435E-24 3.27105803262E-24 3.52582160858E-24 3.80042722918E-24 4.09642027520E-24 4.41546648810E-24 4.75936134419E-24 5.13004015892E-24 5.52958897813E-24 5.96025631760E-24 6.42446581682E-24 6.92482987839E-24 7.46416436967E-24 8.04550446944E-24 8.67212174881E-24 9.34754258242E-24 1.00755679936E-23 1.08602950452E-23 1.17061398961E-23 1.26178626544E-23 1.36005941647E-23 1.46598648833E-23 1.58016360014E-23 1.70323329925E-23 1.83588817725E-23 1.97887476765E-23 2.13299774709E-23 2.29912446375E-23 2.47818981849E-23 2.67120152614E-23 2.87924578653E-23 3.10349339725E-23 3.34520634244E-23 3.60574489483E-23 3.88657527082E-23 4.18927788182E-23 4.51555622825E-23 4.86724648620E-23 5.24632784078E-23 5.65493362423E-23 6.09536332157E-23 6.57009551125E-23 7.08180181370E-23 7.63336192620E-23 8.22787982884E-23 8.86870125252E-23 9.55943250756E-23 1.03039607787E-22 1.11064760007E-22 1.19714944378E-22 1.29038840999E-22 1.39088921372E-22 1.49921743702E-22 1.61598271178E-22 1.74184215058E-22 1.87750404464E-22 2.02373184982E-22 2.18134848312E-22 2.35124095371E-22 2.53436535471E-22 2.73175224374E-22 2.94451244254E-22 3.17384328822E-22 3.42103537149E-22 3.68747979961E-22 3.97467602505E-22 4.28424028383E-22 4.61791469117E-22 4.97757704540E-22 5.36525139562E-22 5.78311943222E-22 6.23353276470E-22 6.71902615566E-22 7.24233178551E-22 7.80639462821E-22 8.41438902447E-22 9.06973654583E-22 9.77612525001E-22 1.05375304359E-21 1.13582370153E-21 1.22428636264E-21 1.31963886264E-21 1.42241781074E-21 1.53320160950E-21 1.65261370987E-21 1.78132611974E-21 1.92006318577E-21 2.06960566972E-21 2.23079514233E-21 2.40453871934E-21 2.59181416643E-21 2.79367540172E-21 3.01125842683E-21 3.24578771990E-21 3.49858312649E-21 3.77106728720E-21 4.06477364379E-21 4.38135506878E-21 4.72259316726E-21 5.09040830311E-21 5.48687040608E-21 5.91421062063E-21 6.37483386198E-21 6.87133235010E-21 7.40650019779E-21 7.98334913488E-21 8.60512545724E-21 9.27532829564E-21 9.99772930765E-21 1.07763939031E-20 1.16157041229E-20 1.25203832992E-20 1.34955226370E-20 1.45466098652E-20 1.56795601200E-20 1.69007492324E-20 1.82170496100E-20 1.96358689117E-20 2.11651917352E-20 2.28136245522E-20 2.45904441416E-20 2.65056497962E-20 2.85700195952E-20 3.07951710591E-20 3.31936265287E-20 3.57788836366E-20 3.85654912666E-20 4.15691314298E-20 4.48067075170E-20 4.82964394248E-20 5.20579660905E-20 5.61124560130E-20 6.04827263812E-20 6.51933714807E-20 7.02709011015E-20 7.57438897254E-20 8.16431373328E-20 8.80018427333E-20 9.48557903967E-20 1.02243551835E-19 1.10206702668E-19 1.18790056596E-19 1.28041917595E-19 1.38014351755E-19 1.48763480284E-19 1.60349795345E-19 1.72838500476E-19 1.86299877536E-19 2.00809682225E-19 2.16449570407E-19 2.33307557642E-19 2.51478514502E-19 2.71064700470E-19 2.92176339418E-19 3.14932239905E-19 3.39460463787E-19 3.65899046907E-19 3.94396775902E-19 4.25114025524E-19 4.58223661169E-19 4.93912011699E-19 5.32379918029E-19 5.73843863391E-19 6.18537191614E-19 6.66711420303E-19 7.18637656282E-19 7.74608121284E-19 8.34937796466E-19 8.99966195004E-19 9.70059272751E-19 1.04561148769E-18 1.12704801982E-18 1.21482716386E-18 1.30944290843E-18 1.41142771598E-18 1.52135551930E-18 1.63984495141E-18 1.76756282700E-18 1.90522789499E-18 2.05361488340E-18 2.21355885920E-18 2.38595992780E-18 2.57178829844E-18 2.77208974422E-18 2.98799148729E-18 3.22070854243E-18 3.47155055469E-18 3.74192916959E-18 4.03336597731E-18 4.34750107562E-18 4.68610229977E-18 5.05107517113E-18 5.44447362078E-18 5.86851154822E-18 6.32557528040E-18 6.81823700100E-18 7.34926922573E-18 7.92166040498E-18 8.53863174166E-18 9.20365531889E-18 9.92047363957E-18 1.06931206877E-17 1.15259446302E-17 1.24236322865E-17 1.33912355043E-17 1.44341995894E-17 1.55583939498E-17 1.67701451263E-17 1.80762723959E-17 1.94841261480E-17 2.10016292496E-17 2.26373216320E-17 2.44004083501E-17 2.63008113851E-17 2.83492254811E-17 3.05571783312E-17 3.29370954509E-17 3.55023701035E-17 3.82674386725E-17 4.12478619035E-17 4.44604124742E-17 4.79231693839E-17 5.16556196953E-17 5.56787681995E-17 6.00152556225E-17 6.46894860384E-17 6.97277642053E-17 7.51584435977E-17 8.10120859688E-17 8.73216333390E-17 9.41225933804E-17 1.01453239239E-16 1.09354824922E-16 1.17871817453E-16 1.27052147123E-16 1.36947477213E-16 1.47613494738E-16 1.59110223830E-16 1.71502363528E-16 1.84859651877E-16 1.99257258383E-16 2.14776207038E-16 2.31503832285E-16 2.49534270501E-16 2.68968989756E-16 2.89917360830E-16 3.12497272707E-16 3.36835796000E-16 3.63069898051E-16 3.91347213723E-16 4.21826876222E-16 4.54680412631E-16 4.90092709187E-16 5.28263051736E-16 5.69406247228E-16 6.13753832553E-16 6.61555377522E-16 7.13079889338E-16 7.68617326440E-16 8.28480230260E-16 8.93005484057E-16 9.62556208746E-16 1.03752380636E-15 1.11833016271E-15 1.20543002149E-15 1.29931354344E-15 1.40050906469E-15 1.50958606998E-15 1.62715839745E-15 1.75388769305E-15 1.89048713391E-15 2.03772544177E-15 2.19643120898E-15 2.36749756139E-15 2.55188718440E-15 2.75063774047E-15 2.96486770856E-15 3.19578267837E-15 3.44468213474E-15 3.71296677047E-15 4.00214636872E-15 4.31384829923E-15 4.64982667628E-15 5.01197222996E-15 5.40232294607E-15 5.82307553487E-15 6.27659779293E-15 6.76544192771E-15 7.29235892002E-15 7.86031400493E-15 8.47250335844E-15 9.13237208367E-15 9.84363359790E-15 1.06102905295E-14 1.14366572424E-14 1.23273841146E-14 1.32874837076E-14 1.43223589744E-14 1.54378336636E-14 1.66401850918E-14 1.79361794687E-14 1.93331099726E-14 2.08388377919E-14 2.24618363627E-14 2.42112390515E-14 2.60968905519E-14 2.81294022839E-14 3.03202121075E-14 3.26816486869E-14 3.52270008680E-14 3.79705924583E-14 4.09278628309E-14 4.41154538062E-14 4.75513032999E-14 5.12547462638E-14 5.52466234885E-14 5.95493988794E-14 6.41872858660E-14 6.91863836560E-14 7.45748241009E-14 8.03829299991E-14 8.66433857277E-14 9.33914211633E-14 1.00665009925E-13 1.08505083060E-13 1.16955759363E-13 1.26064593644E-13 1.35882844319E-13 1.46465761848E-13 1.57872899634E-13 1.70168449133E-13 1.83421601063E-13 1.97706934742E-13 2.13104837745E-13 2.29701958252E-13 2.47591692606E-13 2.66874710861E-13 2.87659523241E-13 3.10063090725E-13 3.34211483172E-13 3.60240588707E-13 3.88296878347E-13 4.18538230171E-13 4.51134817677E-13 4.86270067317E-13 5.24141690603E-13 5.64962796583E-13 6.08963090958E-13 6.56390168573E-13 7.07510906562E-13 7.62612965985E-13 8.22006410399E-13 8.86025450476E-13 9.55030324476E-13 1.02940932516E-12 1.10958098456E-12 1.19599642883E-12 1.28914191654E-12 1.38954157460E-12 1.49776034721E-12 1.61440717452E-12 1.74013841872E-12 1.87566155697E-12 2.02173916193E-12 2.17919319222E-12 2.34890961691E-12 2.53184340026E-12 2.72902387448E-12 2.94156053092E-12 3.17064926221E-12 3.41757909041E-12 3.68373941915E-12 3.97062785034E-12 4.27985860966E-12 4.61317162805E-12 4.97244233029E-12 5.35969218588E-12 5.77710008128E-12 6.22701457784E-12 6.71196712407E-12 7.23468629634E-12 7.79811314891E-12 8.40541775979E-12 9.06001706149E-12 9.76559406302E-12 1.05261185809E-11 1.13458695423E-11 1.22294590806E-11 1.31818584671E-11 1.42084260931E-11 1.53149375724E-11 1.65076182635E-11 1.77931782997E-11 1.91788502725E-11 2.06724299793E-11 2.22823202238E-11 2.40175781213E-11 2.58879659887E-11 2.79040063164E-11 3.00770408934E-11 3.24192946178E-11 3.49439443038E-11 3.76651926702E-11 4.05983483526E-11 4.37599118799E-11 4.71676685620E-11 5.08407885200E-11 5.47999343948E-11 5.90673775397E-11 6.36671234371E-11 6.86250466247E-11 7.39690358045E-11 7.97291515548E-11 8.59377943791E-11 9.26298874687E-11 9.98430730757E-11 1.07617923688E-10 1.15998170692E-10 1.25030950337E-10 1.34767067828E-10 1.45261284088E-10 1.56572622953E-10 1.68764702918E-10 1.81906095647E-10 1.96070710343E-10 2.11338210105E-10 2.27794458587E-10 2.45532004725E-10 2.64650600469E-10 2.85257763366E-10 3.07469379591E-10 3.31410356715E-10 3.57215323769E-10 3.85029390106E-10 4.15008958925E-10 4.47322607042E-10 4.82152033345E-10 5.19693076981E-10 5.60156820894E-10 6.03770775383E-10 6.50780158917E-10 7.01449272829E-10 7.56062989338E-10 8.14928349065E-10 8.78376288423E-10 9.46763497034E-10 1.02047442132E-09 1.09992342558E-09 1.18555711566E-09 1.27785685322E-09 1.37734145480E-09 1.48457010140E-09 1.60014549215E-09 1.72471721070E-09 1.85898539048E-09 2.00370462704E-09 2.15968823297E-09 2.32781279021E-09 2.50902308027E-09 2.70433737526E-09 2.91485316722E-09 3.14175332163E-09 3.38631271010E-09 3.64990537518E-09 3.93401223212E-09 4.24022938524E-09 4.57027707068E-09 4.92600932536E-09 5.30942436719E-09 5.72267581895E-09 6.16808477889E-09 6.64815283853E-09 7.16557611365E-09 7.72326036220E-09 8.32433726907E-09 8.97218201095E-09 9.67043217057E-09 1.04230081245E-08 1.12341350226E-08 1.21083664556E-08 1.30506099706E-08 1.40661545757E-08 1.51607003558E-08 1.63403904096E-08 1.76118452535E-08 1.89821998875E-08 2.04591437652E-08 2.20509638121E-08 2.37665908562E-08 2.56156495695E-08 2.76085123680E-08 2.97563574227E-08 3.20712312166E-08 3.45661159201E-08 3.72550019963E-08 4.01529664549E-08 4.32762571273E-08 4.66423835114E-08 5.02702146344E-08 5.41800845011E-08 5.83939056922E-08 6.29352918051E-08 6.78296893142E-08 7.31045196684E-08 7.87893324186E-08 8.49159701357E-08 9.15187461158E-08 9.86346358603E-08 1.06303483303E-07 1.14568223079E-07 1.23475119861E-07 1.33074026323E-07 1.43418660936E-07 1.54566907311E-07 1.66581136612E-07 1.79528554915E-07 1.93481577380E-07 2.08518231302E-07 2.24722590289E-07 2.42185241964E-07 2.61003791696E-07 2.81283405300E-07 3.03137393459E-07 3.26687841321E-07 3.52066286555E-07 3.79414449695E-07 4.08885020759E-07 4.40642506429E-07 4.74864142483E-07 5.11740876397E-07 5.51478425757E-07 5.94298417817E-07 6.40439616929E-07 6.90159246191E-07 7.43734410788E-07 8.01463630571E-07 8.63668490435E-07 9.30695417365E-07 1.00291759383E-06 1.08073701801E-06 1.16458672206E-06 1.25493316028E-06 1.35227878041E-06 1.45716479182E-06 1.57017414557E-06 1.69193474266E-06 1.82312288749E-06 1.96446700559E-06 2.11675164516E-06 2.28082178448E-06 2.45758746815E-06 2.64802879681E-06 2.85320129776E-06 3.07424170461E-06 3.31237417743E-06 3.56891699621E-06 3.84528976385E-06 4.14302115670E-06 4.46375726412E-06 4.80927056141E-06 5.18146956371E-06 5.58240921203E-06 6.01430204652E-06 6.47953022577E-06 6.98065845593E-06 7.52044789743E-06 8.10187112257E-06 8.72812820233E-06 9.40266400705E-06 1.01291868109E-05 1.09116882978E-05 1.17544650722E-05 1.26621417876E-05 1.36396960116E-05 1.46924849571E-05 1.58262742168E-05 1.70472686498E-05 1.83621455781E-05 1.97780904647E-05 2.13028352535E-05 2.29446995680E-05 2.47126349789E-05 2.66162725625E-05 2.86659739937E-05 3.08728864284E-05 3.32490014532E-05 3.58072183965E-05 3.85614123173E-05 4.15265070117E-05 4.47185533971E-05 4.81548136631E-05 5.18538516036E-05 5.58356295726E-05 6.01216125381E-05 6.47348797415E-05 6.97002445032E-05 7.50443827523E-05 8.07959709005E-05 8.69858337178E-05 9.36471029163E-05 1.00815387193E-04 1.08528954532E-04 1.16828927632E-04 1.25759493347E-04 1.35368127152E-04 1.45705833626E-04 1.56827404088E-04 1.68791692556E-04 1.81661911262E-04 1.95505947078E-04 2.10396700257E-04 2.26412446995E-04 2.43637227413E-04 2.62161260664E-04 2.82081388962E-04 3.03501552449E-04 3.26533296938E-04 3.51296316667E-04 3.77919034361E-04 4.06539221010E-04 4.37304657912E-04 4.70373843688E-04 5.05916749126E-04 5.44115622859E-04 5.85165851072E-04 6.29276874575E-04 6.76673166799E-04 7.27595276408E-04 7.82300938467E-04 8.41066258259E-04 9.04186972080E-04 9.71979789531E-04 1.04478382204E-03 1.12296210263E-03 1.20690320197E-03 1.29702294637E-03 1.39376624308E-03 1.49760901893E-03 1.60906027837E-03 1.72866428722E-03 1.85700288865E-03 1.99469795814E-03 2.14241400445E-03 2.30086092370E-03 2.47079691385E-03 2.65303155723E-03 2.84842907862E-03 3.05791178675E-03 3.28246370697E-03 3.52313441321E-03 3.78104306686E-03 4.05738267078E-03 4.35342454604E-03 4.67052303913E-03 5.01012046720E-03 5.37375230836E-03 5.76305264393E-03 6.17975985893E-03 6.62572260669E-03 7.10290604244E-03 7.61339833022E-03 8.15941742644E-03 8.74331814197E-03 9.36759948377E-03 1.00349122752E-02 1.07480670526E-02 1.15100422337E-02 1.23239925512E-02 1.31932577428E-02 1.41213714843E-02 1.51120705535E-02 1.61693042034E-02 1.72972437240E-02 1.85002921669E-02 1.97830941993E-02 2.11505460534E-02 2.26078055282E-02 2.41603019958E-02 2.58137463591E-02 2.75741408970E-02 2.94477889307E-02 3.14413042309E-02 3.35616200813E-02 3.58159979022E-02 3.82120353267E-02 4.07576736152E-02 4.34612042769E-02 4.63312747612E-02 4.93768930631E-02 5.26074310780E-02 5.60326265266E-02 5.96625832532E-02 6.35077696908E-02 6.75790152680E-02 7.18875045181E-02 7.64447686361E-02 8.12626742131E-02 8.63534088625E-02 9.17294634372E-02 9.74036105241E-02 1.03388878886E-01 1.09698523510E-01 1.16345990915E-01 1.23344879344E-01 1.30708893497E-01 1.38451793401E-01 1.46587337072E-01 1.55129216574E-01 1.64090987129E-01 1.73485988901E-01 1.83327261140E-01 1.93627448349E-01 2.04398698199E-01 2.15652550939E-01 2.27399820095E-01 2.39650464298E-01 2.52413450175E-01 2.65696606259E-01 2.79506468017E-01 2.93848114136E-01 3.08724994377E-01 3.24138749369E-01 3.40089022892E-01 3.56573267346E-01 3.73586543238E-01 3.91121313730E-01 4.09167235473E-01 4.27710947141E-01 4.46735857321E-01 4.66221933630E-01 4.86145495162E-01 5.06479010628E-01 5.27190904793E-01 5.48245376055E-01 5.69602228292E-01 5.91216720296E-01 6.13039436402E-01 6.35016182079E-01 6.57087908486E-01 6.79190670130E-01 7.01255619906E-01 7.23209045858E-01 7.44972454059E-01 7.66462701930E-01 7.87592186261E-01 8.08269089965E-01 8.28397691349E-01 8.47878739306E-01 8.66609897353E-01 8.84486258838E-01 9.01400934951E-01 9.17245716318E-01 9.31911808015E-01 9.45290636734E-01 9.57274727659E-01 9.67758647240E-01 9.76640006672E-01 9.83820519319E-01 9.89207103748E-01 9.92713022382E-01 9.94259044094E-01 9.93774617395E-01 9.91199039261E-01 9.86482603061E-01 9.79587707682E-01 9.70489908674E-01 9.59178891274E-01 9.45659344414E-01 9.29951714481E-01 9.12092817556E-01 8.92136289367E-01 8.70152853078E-01 8.46230386506E-01 8.20473772353E-01 7.93004517605E-01 7.63960131365E-01 7.33493254067E-01 7.01770535212E-01 6.68971261432E-01 6.35285741746E-01 6.00913462259E-01 5.66061028114E-01 5.30939916189E-01 4.95764067595E-01 4.60747354408E-01 4.26100960062E-01 3.92030717240E-01 3.58734450816E-01 3.26399376232E-01 2.95199605449E-01 2.65293813267E-01 2.36823116121E-01 2.09909213448E-01 1.84652838302E-01 1.61132559054E-01 1.39403967782E-01 1.19499283405E-01 1.01427388883E-01 8.51743119743E-02 7.07041483731E-02 5.79604147757E-02 4.68678077357E-02 3.73343324926E-02 2.92537545571E-02 2.25083161324E-02 1.69716498650E-02 1.25118143941E-02 8.99437020211E-03 6.28541083502E-03 4.25446418174E-03 2.77718161943E-03 1.73773988285E-03 1.03089180564E-03 5.66616455116E-04 2.78971574754E-04 1.15353462429E-04 3.32600817249E-05 1.07986691811E-08 -7.90017632862E-06 -5.80416728885E-06 -2.18590965278E-06 -2.97447619972E-07 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 5 1 i j (l(j)) 0.00000000000E+00 Q_int 2.42684434155E-26 2.58336235423E-26 2.74997491146E-26 2.92733305540E-26 3.11612981688E-26 3.31710292334E-26 3.53103768155E-26 3.75877004624E-26 4.00118988656E-26 4.25924446332E-26 4.53394213038E-26 4.82635627484E-26 5.13762951132E-26 5.46897814677E-26 5.82169693318E-26 6.19716412686E-26 6.59684687404E-26 7.02230694374E-26 7.47520683042E-26 7.95731625024E-26 8.47051905623E-26 9.01682059950E-26 9.59835556522E-26 1.02173963139E-25 1.08763617607E-25 1.15778268274E-25 1.23245325041E-25 1.31193965593E-25 1.39655249417E-25 1.48662239163E-25 1.58250129840E-25 1.68456386337E-25 1.79320889825E-25 1.90886093586E-25 2.03197188907E-25 2.16302281659E-25 2.30252580277E-25 2.45102595856E-25 2.60910355154E-25 2.77737627335E-25 2.95650165331E-25 3.14717962773E-25 3.35015527493E-25 3.56622172667E-25 3.79622326730E-25 4.04105863285E-25 4.30168452282E-25 4.57911933855E-25 4.87444716260E-25 5.18882199486E-25 5.52347226183E-25 5.87970561669E-25 6.25891404902E-25 6.66257932400E-25 7.09227877248E-25 7.54969145439E-25 8.03660471972E-25 8.55492119263E-25 9.10666620600E-25 9.69399571548E-25 1.03192047239E-24 1.09847362490E-24 1.16931908697E-24 1.24473368878E-24 1.32501211453E-24 1.41046805391E-24 1.50143542786E-24 1.59826969338E-24 1.70134923245E-24 1.81107683062E-24 1.92788125086E-24 2.05221890899E-24 2.18457565709E-24 2.32546868205E-24 2.47544852642E-24 2.63510123970E-24 2.80505066834E-24 2.98596089342E-24 3.17853882557E-24 3.38353696726E-24 3.60175635318E-24 3.83404968031E-24 4.08132463988E-24 4.34454746418E-24 4.62474670210E-24 4.92301723825E-24 5.24052457125E-24 5.57850936788E-24 5.93829231110E-24 6.32127926056E-24 6.72896674610E-24 7.16294781542E-24 7.62491825898E-24 8.11668323633E-24 8.64016432980E-24 9.19740705315E-24 9.79058884442E-24 1.04220275743E-23 1.10941906035E-23 1.18097044235E-23 1.25713649202E-23 1.33821482985E-23 1.42452227120E-23 1.51639606428E-23 1.61419520794E-23 1.71830185445E-23 1.82912280279E-23 1.94709108823E-23 2.07266767441E-23 2.20634325457E-23 2.34864016894E-23 2.50011444580E-23 2.66135797418E-23 2.83300081668E-23 3.01571367143E-23 3.21021049289E-23 3.41725128160E-23 3.63764505394E-23 3.87225300338E-23 4.12199186558E-23 4.38783750055E-23 4.67082870591E-23 4.97207127592E-23 5.29274232249E-23 5.63409487469E-23 5.99746277503E-23 6.38426589149E-23 6.79601566564E-23 7.23432101868E-23 7.70089463828E-23 8.19755967102E-23 8.72625684630E-23 9.28905205981E-23 9.88814444609E-23 1.05258749716E-22 1.12047355824E-22 1.19273789408E-22 1.26966287917E-22 1.35154909954E-22 1.43871652738E-22 1.53150577132E-22 1.63027940733E-22 1.73542339555E-22 1.84734858840E-22 1.96649233599E-22 2.09332019512E-22 2.22832774839E-22 2.37204254075E-22 2.52502614088E-22 2.68787633551E-22 2.86122946533E-22 3.04576291145E-22 3.24219774232E-22 3.45130153131E-22 3.67389135602E-22 3.91083699102E-22 4.16306430654E-22 4.43155888628E-22 4.71736987865E-22 5.02161409631E-22 5.34548038015E-22 5.69023424472E-22 6.05722282322E-22 6.44788013149E-22 6.86373267147E-22 7.30640539597E-22 7.77762805829E-22 8.27924197122E-22 8.81320720201E-22 9.38161023141E-22 9.98667210660E-22 1.06307571200E-21 1.13163820478E-21 1.20462259843E-21 1.28231408105E-21 1.36501623379E-21 1.45305221713E-21 1.54676603357E-21 1.64652387188E-21 1.75271553799E-21 1.86575597814E-21 1.98608690030E-21 2.11417850017E-21 2.25053129845E-21 2.39567809666E-21 2.55018605907E-21 2.71465892890E-21 2.88973938746E-21 3.07611156545E-21 3.27450371619E-21 3.48569106132E-21 3.71049881998E-21 3.94980543338E-21 4.20454599729E-21 4.47571591600E-21 4.76437479186E-21 5.07165056569E-21 5.39874392425E-21 5.74693299194E-21 6.11757832511E-21 6.51212822843E-21 6.93212441423E-21 7.37920802671E-21 7.85512605481E-21 8.36173815854E-21 8.90102393569E-21 9.47509065716E-21 1.00861815011E-20 1.07366843183E-20 1.14291409625E-20 1.21662572233E-20 1.29509133983E-20 1.37861755486E-20 1.46753074791E-20 1.56217834923E-20 1.66293019635E-20 1.77017997933E-20 1.88434677900E-20 2.00587670461E-20 2.13524463700E-20 2.27295608415E-20 2.41954915654E-20 2.57559666977E-20 2.74170838290E-20 2.91853338104E-20 3.10676261172E-20 3.30713158472E-20 3.52042324617E-20 3.74747103785E-20 3.98916215394E-20 4.24644100771E-20 4.52031292186E-20 4.81184805685E-20 5.12218559252E-20 5.45253817953E-20 5.80419667778E-20 6.17853520047E-20 6.57701648350E-20 7.00119760111E-20 7.45273605023E-20 7.93339622713E-20 8.44505632186E-20 8.98971565735E-20 9.56950250174E-20 1.01866823847E-19 1.08436669500E-19 1.15430233790E-19 1.22874844222E-19 1.30799590772E-19 1.39235439559E-19 1.48215353845E-19 1.57774422839E-19 1.67949998810E-19 1.78781843043E-19 1.90312281202E-19 2.02586368724E-19 2.15652066873E-19 2.29560430147E-19 2.44365805776E-19 2.60126046086E-19 2.76902734556E-19 2.94761426461E-19 3.13771905025E-19 3.34008454105E-19 3.55550148453E-19 3.78481162707E-19 4.02891100300E-19 4.28875343592E-19 4.56535426574E-19 4.85979431619E-19 5.17322411814E-19 5.50686840531E-19 5.86203089995E-19 6.24009940720E-19 6.64255123790E-19 7.07095898129E-19 7.52699664987E-19 8.01244622068E-19 8.52920459840E-19 9.07929102754E-19 9.66485498269E-19 1.02881845677E-18 1.09517154562E-18 1.16580404097E-18 1.24099194080E-18 1.32102904345E-18 1.40622809564E-18 1.49692201449E-18 1.59346518844E-18 1.69623486203E-18 1.80563260997E-18 1.92208590631E-18 2.04604979483E-18 2.17800866707E-18 2.31847815518E-18 2.46800714671E-18 2.62717992939E-18 2.79661847431E-18 2.97698486621E-18 3.16898389067E-18 3.37336578797E-18 3.59092918479E-18 3.82252421476E-18 4.06905584044E-18 4.33148738944E-18 4.61084431867E-18 4.90821822133E-18 5.22477109230E-18 5.56173986873E-18 5.92044126333E-18 6.30227690947E-18 6.70873883811E-18 7.14141530795E-18 7.60199701154E-18 8.09228368174E-18 8.61419112419E-18 9.16975870337E-18 9.76115731146E-18 1.03906978512E-17 1.10608402655E-17 1.17742031504E-17 1.25335739864E-17 1.33419200312E-17 1.42023999143E-17 1.51183759791E-17 1.60934274216E-17 1.71313642760E-17 1.82362423026E-17 1.94123788358E-17 2.06643696540E-17 2.19971069379E-17 2.34157983867E-17 2.49259875674E-17 2.65335755760E-17 2.82448440967E-17 3.00664799476E-17 3.20056012090E-17 3.40697850384E-17 3.62670972776E-17 3.86061239704E-17 4.10960049130E-17 4.37464693675E-17 4.65678740795E-17 4.95712437472E-17 5.27683141006E-17 5.61715777593E-17 5.97943330472E-17 6.36507359565E-17 6.77558554623E-17 7.21257324047E-17 7.67774421691E-17 8.17291614085E-17 8.70002390690E-17 9.26112719960E-17 9.85841854175E-17 1.04942318617E-16 1.11710516131E-16 1.18915224832E-16 1.26584597268E-16 1.34748601670E-16 1.43439139055E-16 1.52690167875E-16 1.62537836717E-16 1.73020625549E-16 1.84179496082E-16 1.96058051833E-16 2.08702708501E-16 2.22162875339E-16 2.36491148225E-16 2.51743515176E-16 2.67979575126E-16 2.85262770808E-16 3.03660636660E-16 3.23245062714E-16 3.44092575510E-16 3.66284637124E-16 3.89907963482E-16 4.15054863206E-16 4.41823598310E-16 4.70318768159E-16 5.00651718199E-16 5.32940975033E-16 5.67312709574E-16 6.03901230053E-16 6.42849506836E-16 6.84309731081E-16 7.28443909428E-16 7.75424497041E-16 8.25435071485E-16 8.78671050052E-16 9.35340453360E-16 9.95664718200E-16 1.05987956280E-15 1.12823590790E-15 1.20100085722E-15 1.27845874120E-15 1.36091222799E-15 1.44868350616E-15 1.54211554362E-15 1.64157342783E-15 1.74744579233E-15 1.86014633536E-15 1.98011543638E-15 2.10782187689E-15 2.24376467214E-15 2.38847502111E-15 2.54251838212E-15 2.70649668241E-15 2.88105067015E-15 3.06686241818E-15 3.26465798923E-15 3.47521027303E-15 3.69934200633E-15 3.93792898784E-15 4.19190350034E-15 4.46225795368E-15 4.75004876253E-15 5.05640047442E-15 5.38251016389E-15 5.72965211006E-15 6.09918277592E-15 6.49254610871E-15 6.91127918215E-15 7.35701820261E-15 7.83150490257E-15 8.33659334645E-15 8.87425717545E-15 9.44659731949E-15 1.00558502067E-14 1.07043965021E-14 1.13947704105E-14 1.21296695783E-14 1.29119656352E-14 1.37447154147E-14 1.46311728987E-14 1.55748019328E-14 1.65792897611E-14 1.76485614338E-14 1.87867951452E-14 1.99984385590E-14 2.12882261885E-14 2.26611978960E-14 2.41227185866E-14 2.56784991713E-14 2.73346188826E-14 2.90975490290E-14 3.09741782817E-14 3.29718395920E-14 3.50983388452E-14 3.73619853615E-14 3.97716243653E-14 4.23366715476E-14 4.50671498578E-14 4.79737286684E-14 5.10677654659E-14 5.43613502295E-14 5.78673526734E-14 6.15994725347E-14 6.55722931051E-14 6.98013382155E-14 7.43031328948E-14 7.90952679416E-14 8.41964686602E-14 8.96266680294E-14 9.54070845908E-14 1.01560305360E-13 1.08110374085E-13 1.15082885196E-13 1.22505083819E-13 1.30405972231E-13 1.38816423189E-13 1.47769300565E-13 1.57299587759E-13 1.67444524398E-13 1.78243751850E-13 1.89739468120E-13 2.01976592740E-13 2.15002942287E-13 2.28869417233E-13 2.43630200831E-13 2.59342970835E-13 2.76069124881E-13 2.93874020390E-13 3.12827229953E-13 3.33002813186E-13 3.54479606112E-13 3.77341529215E-13 4.01677915354E-13 4.27583858828E-13 4.55160586957E-13 4.84515855623E-13 5.15764370320E-13 5.49028234366E-13 5.84437426015E-13 6.22130306339E-13 6.62254159875E-13 7.04965770128E-13 7.50432032199E-13 7.98830604916E-13 8.50350605032E-13 9.05193346189E-13 9.63573125538E-13 1.02571806110E-12 1.09187098311E-12 1.16229038289E-12 1.23725142285E-12 1.31704701172E-12 1.40198894903E-12 1.49240914345E-12 1.58866090973E-12 1.69112034924E-12 1.80018781952E-12 1.91628949873E-12 2.03987905083E-12 2.17143939829E-12 2.31148460904E-12 2.46056190516E-12 2.61925380110E-12 2.78818037981E-12 2.96800171567E-12 3.15942045362E-12 3.36318455474E-12 3.58009021879E-12 3.81098499531E-12 4.05677109529E-12 4.31840891650E-12 4.59692079612E-12 4.89339500541E-12 5.20899000200E-12 5.54493895640E-12 5.90255457050E-12 6.28323420675E-12 6.68846534816E-12 7.11983141048E-12 7.57901792913E-12 8.06781914533E-12 8.58814501630E-12 9.14202867739E-12 9.73163439243E-12 1.03592659971E-11 1.10273759178E-11 1.17385747383E-11 1.24956414113E-11 1.33015341039E-11 1.41594017715E-11 1.50725964675E-11 1.60446864016E-11 1.70794699186E-11 1.81809903442E-11 1.93535517483E-11 2.06017357936E-11 2.19304196198E-11 2.33447949188E-11 2.48503881835E-11 2.64530823555E-11 2.81591397585E-11 2.99752265763E-11 3.19084389792E-11 3.39663306944E-11 3.61569426675E-11 3.84888343908E-11 4.09711173749E-11 4.36134908367E-11 4.64262794095E-11 4.94204735541E-11 5.26077726431E-11 5.60006305620E-11 5.96123041442E-11 6.34569056029E-11 6.75494568074E-11 7.19059487617E-11 7.65434035445E-11 8.14799410139E-11 8.67348497814E-11 9.23286623830E-11 9.82832352010E-11 1.04621834613E-10 1.11369227108E-10 1.18551776517E-10 1.26197547023E-10 1.34336412447E-10 1.43000173572E-10 1.52222681370E-10 1.62039970619E-10 1.72490399626E-10 1.83614800250E-10 1.95456638054E-10 2.08062181455E-10 2.21480682391E-10 2.35764569841E-10 2.50969653286E-10 2.67155341149E-10 2.84384874035E-10 3.02725569777E-10 3.22249088339E-10 3.43031710156E-10 3.65154635701E-10 3.88704301533E-10 4.13772718685E-10 4.40457831110E-10 4.68863899942E-10 4.99101909392E-10 5.31290000760E-10 5.65553934304E-10 6.02027579712E-10 6.40853440771E-10 6.82183210142E-10 7.26178361717E-10 7.73010784587E-10 8.22863450630E-10 8.75931131951E-10 9.32421159810E-10 9.92554235515E-10 1.05656529496E-09 1.12470441998E-09 1.19723782192E-09 1.27444887704E-09 1.35663923910E-09 1.44413000764E-09 1.53726299356E-09 1.63640204564E-09 1.74193447717E-09 1.85427257603E-09 1.97385521574E-09 2.10114957071E-09 2.23665293921E-09 2.38089468497E-09 2.53443831043E-09 2.69788365001E-09 2.87186921796E-09 3.05707470070E-09 3.25422361035E-09 3.46408611506E-09 3.68748203804E-09 3.92528406682E-09 4.17842116435E-09 4.44788218407E-09 4.73471974454E-09 5.04005433533E-09 5.36507868802E-09 5.71106244617E-09 6.07935710842E-09 6.47140131962E-09 6.88872647542E-09 7.33296271913E-09 7.80584528882E-09 8.30922130492E-09 8.84505697937E-09 9.41544529108E-09 1.00226141631E-08 1.06689351532E-08 1.13569327206E-08 1.20892940787E-08 1.28688796890E-08 1.36987344240E-08 1.45820994607E-08 1.55224249261E-08 1.65233833733E-08 1.75888841153E-08 1.87230884832E-08 1.99304260710E-08 2.12156120309E-08 2.25836654728E-08 2.40399290520E-08 2.55900898310E-08 2.72402014694E-08 2.89967078499E-08 3.08664682311E-08 3.28567840111E-08 3.49754272265E-08 3.72306708740E-08 3.96313212010E-08 4.21867520617E-08 4.49069414958E-08 4.78025106553E-08 5.08847652531E-08 5.41657396555E-08 5.76582438514E-08 6.13759134031E-08 6.53332626572E-08 6.95457413406E-08 7.40297948408E-08 7.88029283343E-08 8.38837750675E-08 8.92921690233E-08 9.50492222551E-08 1.01177407239E-07 1.07700644472E-07 1.14644395760E-07 1.22035763470E-07 1.29903596210E-07 1.38278601274E-07 1.47193464340E-07 1.56682976891E-07 1.66784171792E-07 1.77536467621E-07 1.88981822294E-07 2.01164896544E-07 2.14133227939E-07 2.27937416094E-07 2.42631319777E-07 2.58272266726E-07 2.74921276923E-07 2.92643300257E-07 3.11507469447E-07 3.31587369237E-07 3.52961322911E-07 3.75712697186E-07 3.99930226754E-07 4.25708359647E-07 4.53147624808E-07 4.82355023278E-07 5.13444444529E-07 5.46537109522E-07 5.81762042252E-07 6.19256571545E-07 6.59166865114E-07 7.01648497885E-07 7.46867056817E-07 7.94998784548E-07 8.46231264338E-07 9.00764148993E-07 9.58809936539E-07 1.02059479566E-06 1.08635944406E-06 1.15636008322E-06 1.23086939300E-06 1.31017759007E-06 1.39459355415E-06 1.48444602640E-06 1.58008488462E-06 1.68188250015E-06 1.79023518155E-06 1.90556471087E-06 2.02831997810E-06 2.15897872033E-06 2.29804937207E-06 2.44607303399E-06 2.60362556744E-06 2.77131982299E-06 2.94980801123E-06 3.13978422510E-06 3.34198712324E-06 3.55720278467E-06 3.78626774564E-06 4.03007223014E-06 4.28956358649E-06 4.56574994287E-06 4.85970409587E-06 5.17256764659E-06 5.50555540006E-06 5.85996004461E-06 6.23715712880E-06 6.63861035466E-06 7.06587720734E-06 7.52061494205E-06 8.00458695105E-06 8.51966953442E-06 9.06785909996E-06 9.65127981910E-06 1.02721917676E-05 1.09329995808E-05 1.16362616567E-05 1.23846999394E-05 1.31812103207E-05 1.40288736973E-05 1.49309677247E-05 1.58909793114E-05 1.69126178981E-05 1.79998295719E-05 1.91568120663E-05 2.03880307017E-05 2.16982353238E-05 2.30924783026E-05 2.45761336555E-05 2.61549173636E-05 2.78349089553E-05 2.96225744316E-05 3.15247906184E-05 3.35488710280E-05 3.57025933252E-05 3.79942284907E-05 4.04325717867E-05 4.30269756319E-05 4.57873844985E-05 4.87243719530E-05 5.18491799682E-05 5.51737606381E-05 5.87108204401E-05 6.24738671920E-05 6.64772598601E-05 7.07362613870E-05 7.52670947095E-05 8.00870021542E-05 8.52143083997E-05 9.06684872115E-05 9.64702321613E-05 1.02641531554E-04 1.09205747798E-04 1.16187701465E-04 1.23613760296E-04 1.31511933420E-04 1.39911971083E-04 1.48845470153E-04 1.58345985738E-04 1.68449149222E-04 1.79192793053E-04 1.90617082634E-04 2.02764655677E-04 2.15680769391E-04 2.29413455891E-04 2.44013686232E-04 2.59535543474E-04 2.76036405204E-04 2.93577135959E-04 3.12222289976E-04 3.32040324754E-04 3.53103825865E-04 3.75489743500E-04 3.99279641222E-04 4.24559957413E-04 4.51422279879E-04 4.79963634109E-04 5.10286785650E-04 5.42500557063E-04 5.76720159917E-04 6.13067542248E-04 6.51671751895E-04 6.92669316088E-04 7.36204637645E-04 7.82430408064E-04 8.31508037766E-04 8.83608103676E-04 9.38910814245E-04 9.97606491961E-04 1.05989607326E-03 1.12599162567E-03 1.19611688190E-03 1.27050779037E-03 1.34941308161E-03 1.43309484974E-03 1.52182914802E-03 1.61590659715E-03 1.71563300494E-03 1.82132999558E-03 1.93333564628E-03 2.05200512891E-03 2.17771135387E-03 2.31084561283E-03 2.45181821659E-03 2.60105912396E-03 2.75901855675E-03 2.92616759548E-03 3.10299874979E-03 3.29002649681E-03 3.48778777983E-03 3.69684245909E-03 3.91777370527E-03 4.15118832571E-03 4.39771701188E-03 4.65801449613E-03 4.93275960414E-03 5.22265518856E-03 5.52842792801E-03 5.85082797425E-03 6.19062842918E-03 6.54862463154E-03 6.92563323231E-03 7.32249103575E-03 7.74005358208E-03 8.17919344588E-03 8.64079822331E-03 9.12576817933E-03 9.63501352528E-03 1.01694512955E-02 1.07300017910E-02 1.13175845563E-02 1.19331138569E-02 1.25774936209E-02 1.32516118123E-02 1.39563342001E-02 1.46924974896E-02 1.54609017834E-02 1.62623023418E-02 1.70974006114E-02 1.79668344999E-02 1.88711678719E-02 1.98108792512E-02 2.07863497174E-02 2.17978499938E-02 2.28455267304E-02 2.39293879960E-02 2.50492880052E-02 2.62049111183E-02 2.73957551653E-02 2.86211141642E-02 2.98800605181E-02 3.11714267996E-02 3.24937872481E-02 3.38454391328E-02 3.52243841587E-02 3.66283101181E-02 3.80545730220E-02 3.95001799736E-02 4.09617730776E-02 4.24356147130E-02 4.39175745261E-02 4.54031185352E-02 4.68873007696E-02 4.83647578920E-02 4.98297072851E-02 5.12759491031E-02 5.26968728089E-02 5.40854687308E-02 5.54343451781E-02 5.67357516511E-02 5.79816086682E-02 5.91635447062E-02 6.02729407101E-02 6.13009825745E-02 6.22387219240E-02 6.30771454307E-02 6.38072527920E-02 6.44201433610E-02 6.49071112615E-02 6.52597486447E-02 6.54700565357E-02 6.55305624985E-02 6.54344440977E-02 6.51756568712E-02 6.47490652497E-02 6.41505745638E-02 6.33772619885E-02 6.24275039785E-02 6.13010974669E-02 5.99993718375E-02 5.85252884557E-02 5.68835243565E-02 5.50805365680E-02 5.31246034988E-02 5.10258398586E-02 4.87961817281E-02 4.64493386603E-02 4.40007100930E-02 4.14672639002E-02 3.88673756011E-02 3.62206276038E-02 3.35475688634E-02 3.08694364923E-02 2.82078421404E-02 2.55844273538E-02 2.30204935773E-02 2.05366139498E-02 1.81522354882E-02 1.58852816076E-02 1.37517660949E-02 1.17654305647E-02 9.93741797752E-03 8.27599491015E-03 6.78633483219E-03 5.47037358452E-03 4.32674650325E-03 3.35081413504E-03 2.53478023065E-03 1.86790170061E-03 1.33678553554E-03 9.25762453995E-04 6.17321422732E-04 3.92583441523E-04 2.33116065683E-04 1.25536638589E-04 5.82175176406E-05 2.03982084004E-05 2.55940256372E-06 -3.25434231535E-06 -3.18871309882E-06 -1.43772904365E-06 -2.34055835047E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 6 1 i j (l(j)) 0.00000000000E+00 Q_int 2.61605179606E-27 2.78477264123E-27 2.96437504603E-27 3.15556081076E-27 3.35907699794E-27 3.57571885150E-27 3.80633290421E-27 4.05182028547E-27 4.31314024257E-27 4.59131388892E-27 4.88742819410E-27 5.20264023118E-27 5.53818169806E-27 5.89536373030E-27 6.27558202448E-27 6.68032229183E-27 7.11116606376E-27 7.56979687166E-27 8.05800682539E-27 8.57770361596E-27 9.13091796988E-27 9.71981158426E-27 1.03466855737E-26 1.10139894620E-26 1.17243307535E-26 1.24804851223E-26 1.32854072580E-26 1.41422424115E-26 1.50543386846E-26 1.60252601134E-26 1.70588005945E-26 1.81589987098E-26 1.93301535074E-26 2.05768413000E-26 2.19039335474E-26 2.33166158914E-26 2.48204084190E-26 2.64211872320E-26 2.81252074087E-26 2.99391274448E-26 3.18700352725E-26 3.39254759559E-26 3.61134811742E-26 3.84426006056E-26 4.09219353347E-26 4.35611734160E-26 4.63706277296E-26 4.93612762795E-26 5.25448050898E-26 5.59336538687E-26 5.95410646164E-26 6.33811333690E-26 6.74688652786E-26 7.18202332466E-26 7.64522403380E-26 8.13829862213E-26 8.66317378932E-26 9.22190049651E-26 9.81666198048E-26 1.04497822846E-25 1.11237353404E-25 1.18411546339E-25 1.26048434968E-25 1.34177860598E-25 1.42831589137E-25 1.52043435218E-25 1.61849394329E-25 1.72287783470E-25 1.83399390873E-25 1.95227635386E-25 2.07818736131E-25 2.21221893110E-25 2.35489479450E-25 2.50677246054E-25 2.66844539452E-25 2.84054533694E-25 3.02374477208E-25 3.21875955572E-25 3.42635171237E-25 3.64733241290E-25 3.88256514422E-25 4.13296908334E-25 4.39952268911E-25 4.68326752556E-25 4.98531233180E-25 5.30683735450E-25 5.64909895968E-25 6.01343454204E-25 6.40126775079E-25 6.81411405264E-25 7.25358665352E-25 7.72140280219E-25 8.21939050045E-25 8.74949564607E-25 9.31378963648E-25 9.91447746273E-25 1.05539063256E-24 1.12345748073E-24 1.19591426348E-24 1.27304410727E-24 1.35514839864E-24 1.44254796190E-24 1.53558431275E-24 1.63462099276E-24 1.74004498992E-24 1.85226825080E-24 1.97172929024E-24 2.09889490486E-24 2.23426199706E-24 2.37835951672E-24 2.53175052805E-24 2.69503440975E-24 2.86884919718E-24 3.05387407540E-24 3.25083203318E-24 3.46049268802E-24 3.68367529351E-24 3.92125194057E-24 4.17415096514E-24 4.44336057567E-24 4.72993271460E-24 5.03498716884E-24 5.35971594532E-24 5.70538792885E-24 6.07335384025E-24 6.46505151438E-24 6.88201151846E-24 7.32586313283E-24 7.79834071738E-24 8.30129048863E-24 8.83667773380E-24 9.40659449028E-24 1.00132677203E-23 1.06590680127E-23 1.13465188464E-23 1.20783064505E-23 1.28572903012E-23 1.36865142948E-23 1.45692186424E-23 1.55088525305E-23 1.65090875992E-23 1.75738322889E-23 1.87072471129E-23 1.99137609145E-23 2.11980881728E-23 2.25652474248E-23 2.40205808753E-23 2.55697752718E-23 2.72188841254E-23 2.89743513652E-23 3.08430365181E-23 3.28322415124E-23 3.49497392103E-23 3.72038037808E-23 3.96032430307E-23 4.21574328219E-23 4.48763537072E-23 4.77706299298E-23 5.08515709379E-23 5.41312155766E-23 5.76223791295E-23 6.13387033953E-23 6.52947099931E-23 6.95058571062E-23 7.39885998848E-23 7.87604547456E-23 8.38400678170E-23 8.92472877994E-23 9.50032435246E-23 1.01130426517E-22 1.07652778880E-22 1.14595786851E-22 1.21986580386E-22 1.29854039175E-22 1.38228905489E-22 1.47143904304E-22 1.56633871175E-22 1.66735888359E-22 1.77489429714E-22 1.88936514941E-22 2.01121873781E-22 2.14093120796E-22 2.27900941422E-22 2.42599290027E-22 2.58245600736E-22 2.74901011859E-22 2.92630604786E-22 3.11503658300E-22 3.31593919279E-22 3.52979890869E-22 3.75745139233E-22 3.99978620091E-22 4.25775026313E-22 4.53235157938E-22 4.82466316048E-22 5.13582722051E-22 5.46705964006E-22 5.81965471729E-22 6.19499022542E-22 6.59453279644E-22 7.01984365200E-22 7.47258470390E-22 7.95452504806E-22 8.46754787733E-22 9.01365784008E-22 9.59498887342E-22 1.02138125416E-21 1.08725469122E-21 1.15737660049E-21 1.23202098492E-21 1.31147951916E-21 1.39606268926E-21 1.48610100589E-21 1.58194629584E-21 1.68397307679E-21 1.79258002074E-21 1.90819151183E-21 2.03125930463E-21 2.16226428940E-21 2.30171837114E-21 2.45016646993E-21 2.60818865016E-21 2.77640238718E-21 2.95546498010E-21 3.14607612018E-21 3.34898062493E-21 3.56497134845E-21 3.79489227958E-21 4.03964183976E-21 4.30017639369E-21 4.57751398629E-21 4.87273832079E-21 5.18700299327E-21 5.52153600043E-21 5.87764453796E-21 6.25672010851E-21 6.66024395893E-21 7.08979286836E-21 7.54704530952E-21 8.03378800734E-21 8.55192292071E-21 9.10347467435E-21 9.69059847017E-21 1.03155885087E-20 1.09808869538E-20 1.16890934755E-20 1.24429754082E-20 1.32454785641E-20 1.40997387442E-20 1.50090939912E-20 1.59770976336E-20 1.70075321696E-20 1.81044240481E-20 1.92720594016E-20 2.05150007948E-20 2.18381050526E-20 2.32465422386E-20 2.47458158568E-20 2.63417843574E-20 2.80406840284E-20 2.98491533638E-20 3.17742590047E-20 3.38235233512E-20 3.60049539574E-20 3.83270748205E-20 4.07989596889E-20 4.34302675182E-20 4.62312802136E-20 4.92129428070E-20 5.23869062249E-20 5.57655728150E-20 5.93621448084E-20 6.31906759080E-20 6.72661262039E-20 7.16044206302E-20 7.62225111922E-20 8.11384432071E-20 8.63714258168E-20 9.19419070477E-20 9.78716537128E-20 1.04183836466E-19 1.10903120341E-19 1.18055761134E-19 1.25669707995E-19 1.33774712644E-19 1.42402445624E-19 1.51586620056E-19 1.61363123375E-19 1.71770157560E-19 1.82848388410E-19 1.94641104449E-19 2.07194386074E-19 2.20557285620E-19 2.34782019031E-19 2.49924169898E-19 2.66042906651E-19 2.83201213765E-19 3.01466137875E-19 3.20909049759E-19 3.41605923229E-19 3.63637631996E-19 3.87090265689E-19 4.12055466257E-19 4.38630786061E-19 4.66920069064E-19 4.97033856610E-19 5.29089819362E-19 5.63213217115E-19 5.99537388247E-19 6.38204270748E-19 6.79364956850E-19 7.23180283427E-19 7.69821460472E-19 8.19470740112E-19 8.72322128764E-19 9.28582145226E-19 9.88470627663E-19 1.05222159263E-18 1.12008414952E-18 1.19232347394E-18 1.26922184395E-18 1.35107974303E-18 1.43821703427E-18 1.53097421023E-18 1.62971372347E-18 1.73482140281E-18 1.84670796102E-18 1.96581059968E-18 2.09259471760E-18 2.22755572935E-18 2.37122100118E-18 2.52415191170E-18 2.68694604554E-18 2.86023952840E-18 3.04470951281E-18 3.24107682414E-18 3.45010877725E-18 3.67262217486E-18 3.90948649927E-18 4.16162730990E-18 4.43002986002E-18 4.71574294669E-18 5.01988300902E-18 5.34363849075E-18 5.68827448420E-18 6.05513767373E-18 6.44566159801E-18 6.86137225175E-18 7.30389404858E-18 7.77495616868E-18 8.27639931568E-18 8.81018290939E-18 9.37839274244E-18 9.98324913068E-18 1.06271155894E-17 1.13125080688E-17 1.20421047857E-17 1.28187566886E-17 1.36454985982E-17 1.45255610665E-17 1.54623830001E-17 1.64596250987E-17 1.75211841593E-17 1.86512083037E-17 1.98541131876E-17 2.11345992554E-17 2.24976701078E-17 2.39486520543E-17 2.54932149260E-17 2.71373942316E-17 2.88876147419E-17 3.07507155958E-17 3.27339770246E-17 3.48451488014E-17 3.70924805241E-17 3.94847538521E-17 4.20313168218E-17 4.47421203764E-17 4.76277572499E-17 5.06995033608E-17 5.39693618745E-17 5.74501101076E-17 6.11553494581E-17 6.50995585552E-17 6.92981498373E-17 7.37675297792E-17 7.85251630039E-17 8.35896405291E-17 8.89807524154E-17 9.47195651006E-17 1.00828503721E-16 1.07331439744E-16 1.14253784249E-16 1.21622587229E-16 1.29466643295E-16 1.37816604199E-16 1.46705098610E-16 1.56166859622E-16 1.66238860484E-16 1.76960459078E-16 1.88373551727E-16 2.00522736913E-16 2.13455489558E-16 2.27222346550E-16 2.41877104229E-16 2.57477028612E-16 2.74083079181E-16 2.91760147101E-16 3.10577308803E-16 3.30608095925E-16 3.51930782664E-16 3.74628691658E-16 3.98790519600E-16 4.24510683857E-16 4.51889691440E-16 4.81034531774E-16 5.12059094805E-16 5.45084616071E-16 5.80240150481E-16 6.17663076655E-16 6.57499633789E-16 6.99905493156E-16 7.45046366458E-16 7.93098653432E-16 8.44250131209E-16 8.98700688157E-16 9.56663105040E-16 1.01836388658E-15 1.08404414662E-15 1.15396055046E-15 1.22838631788E-15 1.30761229090E-15 1.39194807046E-15 1.48172322634E-15 1.57728858515E-15 1.67901760146E-15 1.78730781726E-15 1.90258241566E-15 2.02529187475E-15 2.15591572818E-15 2.29496443923E-15 2.44298139592E-15 2.60054503459E-15 2.76827110071E-15 2.94681505528E-15 3.13687463667E-15 3.33919258756E-15 3.55455955785E-15 3.78381719485E-15 4.02786143273E-15 4.28764599422E-15 4.56418611819E-15 4.85856252766E-15 5.17192565382E-15 5.50550013248E-15 5.86058959060E-15 6.23858174166E-15 6.64095380957E-15 7.06927830265E-15 7.52522915998E-15 8.01058829429E-15 8.52725255691E-15 9.07724115207E-15 9.66270352950E-15 1.02859277862E-14 1.09493496101E-14 1.16555618011E-14 1.24073244057E-14 1.32075755060E-14 1.40594427048E-14 1.49662553508E-14 1.59315575539E-14 1.69591220386E-14 1.80529648928E-14 1.92173612667E-14 2.04568620856E-14 2.17763118404E-14 2.31808675260E-14 2.46760188020E-14 2.62676094535E-14 2.79618602371E-14 2.97653932006E-14 3.16852575722E-14 3.37289573201E-14 3.59044804896E-14 3.82203304342E-14 4.06855590613E-14 4.33098022234E-14 4.61033173924E-14 4.90770237652E-14 5.22425449581E-14 5.56122544544E-14 5.91993239866E-14 6.30177750393E-14 6.70825336764E-14 7.14094889064E-14 7.60155548139E-14 8.09187367011E-14 8.61382014970E-14 9.16943527118E-14 9.76089102275E-14 1.03904995238E-13 1.10607220674E-13 1.17741787459E-13 1.25336586980E-13 1.33421310177E-13 1.42027563665E-13 1.51188993355E-13 1.60941416060E-13 1.71322959582E-13 1.82374211859E-13 1.94138379724E-13 2.06661457923E-13 2.19992409037E-13 2.34183355025E-13 2.49289781125E-13 2.65370752926E-13 2.82489147450E-13 3.00711899150E-13 3.20110261802E-13 3.40760087292E-13 3.62742122411E-13 3.86142324816E-13 4.11052199384E-13 4.37569156296E-13 4.65796892234E-13 4.95845796202E-13 5.27833381550E-13 5.61884745900E-13 5.98133060779E-13 6.36720092863E-13 6.77796758902E-13 7.21523716481E-13 7.68071992932E-13 8.17623654885E-13 8.70372521075E-13 9.26524921121E-13 9.86300503316E-13 1.04993309535E-12 1.11767161852E-12 1.18978106431E-12 1.26654353054E-12 1.34825932729E-12 1.43524815182E-12 1.52785034240E-12 1.62642821211E-12 1.73136746397E-12 1.84307870585E-12 1.96199905978E-12 2.08859387080E-12 2.22335853383E-12 2.36682043298E-12 2.51954101050E-12 2.68211796318E-12 2.85518759102E-12 3.03942728564E-12 3.23555818693E-12 3.44434801880E-12 3.66661408255E-12 3.90322647748E-12 4.15511150337E-12 4.42325529630E-12 4.70870770595E-12 5.01258639354E-12 5.33608122406E-12 5.68045894994E-12 6.04706816952E-12 6.43734459503E-12 6.85281675568E-12 7.29511190412E-12 7.76596248907E-12 8.26721289846E-12 8.80082672259E-12 9.36889448404E-12 9.97364182711E-12 1.06174382274E-11 1.13028063812E-11 1.20324320322E-11 1.28091745748E-11 1.36360782922E-11 1.45163842828E-11 1.54535432671E-11 1.64512290442E-11 1.75133530861E-11 1.86440798050E-11 1.98478429530E-11 2.11293631308E-11 2.24936662925E-11 2.39461035132E-11 2.54923721714E-11 2.71385382311E-11 2.88910601709E-11 3.07568145431E-11 3.27431228443E-11 3.48577805671E-11 3.71090877468E-11 3.95058818439E-11 4.20575724606E-11 4.47741785200E-11 4.76663676759E-11 5.07454985737E-11 5.40236655198E-11 5.75137462665E-11 6.12294528911E-11 6.51853858570E-11 6.93970918713E-11 7.38811251044E-11 7.86551125930E-11 8.37378242683E-11 8.91492467619E-11 9.49106627570E-11 1.01044734992E-10 1.07575596068E-10 1.14528944260E-10 1.21932144609E-10 1.29814338065E-10 1.38206556494E-10 1.47141846329E-10 1.56655398543E-10 1.66784689505E-10 1.77569628784E-10 1.89052718206E-10 2.01279220376E-10 2.14297338605E-10 2.28158408655E-10 2.42917102711E-10 2.58631646816E-10 2.75364053268E-10 2.93180366727E-10 3.12150927907E-10 3.32350653790E-10 3.53859336276E-10 3.76761961045E-10 4.01149045851E-10 4.27117002862E-10 4.54768524255E-10 4.84212991403E-10 5.15566913860E-10 5.48954395198E-10 5.84507629539E-10 6.22367432659E-10 6.62683805007E-10 7.05616535059E-10 7.51335839418E-10 8.00023048522E-10 8.51871333645E-10 9.07086485330E-10 9.65887741505E-10 1.02850867052E-09 1.09519811337E-09 1.16622118673E-09 1.24186035424E-09 1.32241656749E-09 1.40821048331E-09 1.49958376107E-09 1.59690044732E-09 1.70054845071E-09 1.81094111682E-09 1.92851890652E-09 2.05375118599E-09 2.18713813653E-09 2.32921279197E-09 2.48054321092E-09 2.64173479419E-09 2.81343275853E-09 2.99632477384E-09 3.19114377765E-09 3.39867097851E-09 3.61973905955E-09 3.85523559835E-09 4.10610671463E-09 4.37336096500E-09 4.65807349798E-09 4.96139048949E-09 5.28453387666E-09 5.62880641215E-09 5.99559705689E-09 6.38638674121E-09 6.80275451077E-09 7.24638409332E-09 7.71907090580E-09 8.22272954109E-09 8.75940175953E-09 9.33126502605E-09 9.94064162711E-09 1.05900084074E-08 1.12820071748E-08 1.20194558099E-08 1.28053601397E-08 1.36429266198E-08 1.45355758895E-08 1.54869572530E-08 1.65009641556E-08 1.75817507273E-08 1.87337494596E-08 1.99616901043E-08 2.12706198769E-08 2.26659250527E-08 2.41533540597E-08 2.57390421709E-08 2.74295379072E-08 2.92318312778E-08 3.11533839808E-08 3.32021617108E-08 3.53866687155E-08 3.77159847698E-08 4.01998047338E-08 4.28484808789E-08 4.56730681866E-08 4.86853728266E-08 5.18980040428E-08 5.53244296977E-08 5.89790357324E-08 6.28771898261E-08 6.70353095644E-08 7.14709354305E-08 7.62028089824E-08 8.12509565821E-08 8.66367790854E-08 9.23831479266E-08 9.85145080590E-08 1.05056988262E-07 1.12038519341E-07 1.19488960812E-07 1.27440236679E-07 1.35926480987E-07 1.44984193856E-07 1.54652408784E-07 1.64972872035E-07 1.75990235019E-07 1.87752260612E-07 2.00310044476E-07 2.13718252445E-07 2.28035375238E-07 2.43324001723E-07 2.59651112162E-07 2.77088392911E-07 2.95712574178E-07 3.15605792570E-07 3.36855980292E-07 3.59557282988E-07 3.83810508390E-07 4.09723608078E-07 4.37412194861E-07 4.67000098464E-07 4.98619962400E-07 5.32413885157E-07 5.68534109057E-07 6.07143760370E-07 6.48417644610E-07 6.92543101174E-07 7.39720921836E-07 7.90166337972E-07 8.44110081715E-07 9.01799526700E-07 9.63499914444E-07 1.02949567290E-06 1.10009183424E-06 1.17561555940E-06 1.25641777753E-06 1.34287494931E-06 1.43539096325E-06 1.53439917554E-06 1.64036460416E-06 1.75378628911E-06 1.87519983159E-06 2.00518012566E-06 2.14434429724E-06 2.29335486624E-06 2.45292314888E-06 2.62381291869E-06 2.80684434581E-06 3.00289823596E-06 3.21292059201E-06 3.43792752260E-06 3.67901052454E-06 3.93734216727E-06 4.21418221016E-06 4.51088418547E-06 4.82890248245E-06 5.16979997058E-06 5.53525620293E-06 5.92707624334E-06 6.34720016493E-06 6.79771327022E-06 7.28085708756E-06 7.79904120207E-06 8.35485598370E-06 8.95108627969E-06 9.59072614343E-06 1.02769946768E-05 1.10133530691E-05 1.18035229207E-05 1.26515059467E-05 1.35616051623E-05 1.45384476582E-05 1.55870090828E-05 1.67126399545E-05 1.79210939388E-05 1.92185582298E-05 2.06116861894E-05 2.21076324037E-05 2.37140903315E-05 2.54393327252E-05 2.72922550223E-05 2.92824219126E-05 3.14201173051E-05 3.37163979263E-05 3.61831508012E-05 3.88331548803E-05 4.16801470934E-05 4.47388931253E-05 4.80252632287E-05 5.15563134036E-05 5.53503722944E-05 5.94271341710E-05 6.38077583829E-05 6.85149756922E-05 7.35732019141E-05 7.90086593102E-05 8.48495062051E-05 9.11259753120E-05 9.78705212780E-05 1.05117977976E-04 1.12905726092E-04 1.21273871572E-04 1.30265435517E-04 1.39926556117E-04 1.50306703251E-04 1.61458906358E-04 1.73439996238E-04 1.86310861406E-04 2.00136719645E-04 2.14987405404E-04 2.30937673667E-04 2.48067520909E-04 2.66462523753E-04 2.86214195867E-04 3.07420363664E-04 3.30185561258E-04 3.54621445124E-04 3.80847228780E-04 4.08990137786E-04 4.39185885188E-04 4.71579167446E-04 5.06324180751E-04 5.43585157437E-04 5.83536922029E-04 6.26365466247E-04 6.72268542032E-04 7.21456271390E-04 7.74151771523E-04 8.30591793377E-04 8.91027371339E-04 9.55724481370E-04 1.02496470439E-03 1.09904589117E-03 1.17828282445E-03 1.26300787325E-03 1.35357163383E-03 1.45034355066E-03 1.55371251037E-03 1.66408740028E-03 1.78189762254E-03 1.90759355357E-03 2.04164693761E-03 2.18455120177E-03 2.33682167903E-03 2.49899572395E-03 2.67163270489E-03 2.85531385465E-03 3.05064196038E-03 3.25824087191E-03 3.47875480594E-03 3.71284742230E-03 3.96120064679E-03 4.22451321347E-03 4.50349889806E-03 4.79888441254E-03 5.11140692992E-03 5.44181120693E-03 5.79084627164E-03 6.15926164224E-03 6.54780304309E-03 6.95720758392E-03 7.38819836891E-03 7.84147850306E-03 8.31772446519E-03 8.81757881898E-03 9.34164223667E-03 9.89046481404E-03 1.04645366601E-02 1.10642777510E-02 1.16900270455E-02 1.23420308665E-02 1.30204305640E-02 1.37252494880E-02 1.44563793079E-02 1.52135657358E-02 1.59963937236E-02 1.68042722230E-02 1.76364186175E-02 1.84918429586E-02 1.93693321591E-02 2.02674343249E-02 2.11844434307E-02 2.21183845733E-02 2.30670000666E-02 2.40277366685E-02 2.49977342626E-02 2.59738163435E-02 2.69524826833E-02 2.79299045829E-02 2.89019231328E-02 2.98640509290E-02 3.08114776997E-02 3.17390803106E-02 3.26414376113E-02 3.35128505785E-02 3.43473681908E-02 3.51388194362E-02 3.58808518089E-02 3.65669765868E-02 3.71906211060E-02 3.77451881486E-02 3.82241224450E-02 3.86209841563E-02 3.89295290444E-02 3.91437948616E-02 3.92581932961E-02 3.92676065949E-02 3.91674877575E-02 3.89539629532E-02 3.86239345665E-02 3.81751830241E-02 3.76064653161E-02 3.69176078888E-02 3.61095913820E-02 3.51846245076E-02 3.41462042383E-02 3.29991594042E-02 3.17496747958E-02 3.04052929571E-02 2.89748910335E-02 2.74686303326E-02 2.58978766671E-02 2.42750900856E-02 2.26136832700E-02 2.09278486743E-02 1.92323554086E-02 1.75423179038E-02 1.58729395233E-02 1.42392354729E-02 1.26557405742E-02 1.11362086500E-02 9.69331137877E-03 8.33834542432E-03 7.08095738553E-03 5.92889653843E-03 4.88780539494E-03 3.96105768875E-03 3.14965245264E-03 2.45217130925E-03 1.86480391927E-03 1.38144370232E-03 9.93852485382E-04 6.91888704137E-04 4.63789292800E-04 2.96490614531E-04 1.76977622943E-04 9.58036450446E-05 4.46610973599E-05 1.57300902033E-05 1.98399720609E-06 -2.53588263388E-06 -2.49772923375E-06 -1.13206601185E-06 -1.85259274095E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 2 i j (l(j)) 3.19765442955E-01 Q_int 8.78424237551E-30 9.46839563402E-30 1.02058335881E-29 1.10007062711E-29 1.18574869381E-29 1.27809972398E-29 1.37764343572E-29 1.48494002492E-29 1.60059331786E-29 1.72525416931E-29 1.85962412533E-29 2.00445937128E-29 2.16057498737E-29 2.32884953567E-29 2.51023000426E-29 2.70573713664E-29 2.91647117601E-29 3.14361805710E-29 3.38845608015E-29 3.65236310472E-29 3.93682430380E-29 4.24344052184E-29 4.57393728365E-29 4.93017450512E-29 5.31415696010E-29 5.72804556253E-29 6.17416952731E-29 6.65503947826E-29 7.17336157703E-29 7.73205275233E-29 8.33425711541E-29 8.98336365396E-29 9.68302530408E-29 1.04371795077E-28 1.12500703711E-28 1.21262725491E-28 1.30707169898E-28 1.40887186837E-28 1.51860065752E-28 1.63687558023E-28 1.76436224487E-28 1.90177810012E-28 2.04989647258E-28 2.20955091870E-28 2.38163991579E-28 2.56713191828E-28 2.76707080789E-28 2.98258176813E-28 3.21487761650E-28 3.46526562978E-28 3.73515490085E-28 4.02606426862E-28 4.33963086547E-28 4.67761933045E-28 5.04193174003E-28 5.43461831226E-28 5.85788894472E-28 6.31412565097E-28 6.80589596566E-28 7.33596739373E-28 7.90732298485E-28 8.52317812101E-28 9.18699861149E-28 9.90252019718E-28 1.06737695740E-27 1.15050870536E-27 1.24011509891E-27 1.33670041034E-27 1.44080818673E-27 1.55302430887E-27 1.67398028840E-27 1.80435682169E-27 1.94488762055E-27 2.09636354135E-27 2.25963703561E-27 2.43562694732E-27 2.62532368386E-27 2.82979478963E-27 3.05019095384E-27 3.28775248615E-27 3.54381629666E-27 3.81982341961E-27 4.11732712294E-27 4.43800164957E-27 4.78365163939E-27 5.15622228514E-27 5.55781027924E-27 5.99067561324E-27 6.45725429618E-27 6.96017206362E-27 7.50225915429E-27 8.08656623766E-27 8.71638158203E-27 9.39524955963E-27 1.01269905932E-26 1.09157226557E-26 1.17658844451E-26 1.26822603634E-26 1.36700074420E-26 1.47346843629E-26 1.58822827417E-26 1.71192608456E-26 1.84525799386E-26 1.98897434569E-26 2.14388392352E-26 2.31085850227E-26 2.49083775428E-26 2.68483453748E-26 2.89394059539E-26 3.11933270103E-26 3.36227927939E-26 3.62414754568E-26 3.90641119949E-26 4.21065871826E-26 4.53860229663E-26 4.89208748208E-26 5.27310356098E-26 5.68379475358E-26 6.12647228092E-26 6.60362737150E-26 7.11794528105E-26 7.67232040417E-26 8.26987256290E-26 8.91396456399E-26 9.60822112352E-26 1.03565492655E-25 1.11631603093E-25 1.20325935691E-25 1.29697418998E-25 1.39798792324E-25 1.50686902530E-25 1.62423023952E-25 1.75073203223E-25 1.88708630960E-25 2.03406042405E-25 2.19248149256E-25 2.36324105143E-25 2.54730007349E-25 2.74569437613E-25 2.95954045052E-25 3.19004174475E-25 3.43849543648E-25 3.70629973294E-25 3.99496173953E-25 4.30610594128E-25 4.64148334488E-25 5.00298133265E-25 5.39263428409E-25 5.81263502464E-25 6.26534716605E-25 6.75331840800E-25 7.27929487556E-25 7.84623657344E-25 8.45733404380E-25 9.11602632145E-25 9.82602028751E-25 1.05913115304E-24 1.14162068315E-24 1.23053484023E-24 1.32637400088E-24 1.42967751313E-24 1.54102673165E-24 1.66104828945E-24 1.79041762429E-24 1.92986277984E-24 2.08016850284E-24 2.24218065935E-24 2.41681099500E-24 2.60504226593E-24 2.80793376944E-24 3.02662730528E-24 3.26235360130E-24 3.51643923955E-24 3.79031412178E-24 4.08551951645E-24 4.40371673238E-24 4.74669646802E-24 5.11638888884E-24 5.51487448963E-24 5.94439580271E-24 6.40737001815E-24 6.90640258680E-24 7.44430188284E-24 8.02409500828E-24 8.64904482838E-24 9.32266833392E-24 1.00487564335E-23 1.08313952873E-23 1.16749893029E-23 1.25842859211E-23 1.35644023332E-23 1.46208542786E-23 1.57595870854E-23 1.69870091285E-23 1.83100278937E-23 1.97360888501E-23 2.12732173513E-23 2.29300637984E-23 2.47159523218E-23 2.66409332538E-23 2.87158396882E-23 3.09523484451E-23 3.33630457840E-23 3.59614982342E-23 3.87623289426E-23 4.17812999678E-23 4.50354009824E-23 4.85429448855E-23 5.23236708607E-23 5.63988554609E-23 6.07914323455E-23 6.55261213421E-23 7.06295675611E-23 7.61304913447E-23 8.20598498944E-23 8.84510114869E-23 9.53399432586E-23 1.02765413616E-22 1.10769210409E-22 1.19396376099E-22 1.28695461243E-22 1.38718797712E-22 1.49522793205E-22 1.61168248684E-22 1.73720700542E-22 1.87250789419E-22 2.01834657740E-22 2.17554378218E-22 2.34498415730E-22 2.52762125162E-22 2.72448288036E-22 2.93667690925E-22 3.16539748917E-22 3.41193177647E-22 3.67766717651E-22 3.96409915157E-22 4.27283963671E-22 4.60562611121E-22 4.96433137638E-22 5.35097409509E-22 5.76773015204E-22 6.21694489885E-22 6.70114635281E-22 7.22305942372E-22 7.78562124859E-22 8.39199772087E-22 9.04560130688E-22 9.75011024998E-22 1.05094892703E-21 1.13280118770E-21 1.22102844174E-21 1.31612720007E-21 1.41863264391E-21 1.52912163662E-21 1.64821597005E-21 1.77658586380E-21 1.91495373694E-21 2.06409827350E-21 2.22485880468E-21 2.39814003226E-21 2.58491711992E-21 2.78624118116E-21 3.00324519451E-21 3.23715037957E-21 3.48927306960E-21 3.76103211931E-21 4.05395688969E-21 4.36969585469E-21 4.71002587826E-21 5.07686221381E-21 5.47226928265E-21 5.89847229175E-21 6.35786975637E-21 6.85304699811E-21 7.38679069405E-21 7.96210455922E-21 8.58222625041E-21 9.25064558648E-21 9.97112418781E-21 1.07477166453E-20 1.15847933382E-20 1.24870650289E-20 1.34596093733E-20 1.45078994964E-20 1.56378347926E-20 1.68557741255E-20 1.81685716131E-20 1.95836152008E-20 2.11088682372E-20 2.27529142898E-20 2.45250054493E-20 2.64351143979E-20 2.84939905309E-20 3.07132204512E-20 3.31052931739E-20 3.56836704103E-20 3.84628623251E-20 4.14585091943E-20 4.46874694234E-20 4.81679144196E-20 5.19194308544E-20 5.59631308898E-20 6.03217709898E-20 6.50198799858E-20 7.00838971151E-20 7.55423208120E-20 8.14258690859E-20 8.77676523910E-20 9.46033599600E-20 1.01971460650E-19 1.09913419429E-19 1.18473930730E-19 1.27701169971E-19 1.37647064667E-19 1.48367586664E-19 1.59923067124E-19 1.72378536047E-19 1.85804088238E-19 2.00275277769E-19 2.15873543177E-19 2.32686665764E-19 2.50809263599E-19 2.70343323994E-19 2.91398777452E-19 3.14094116310E-19 3.38557061577E-19 3.64925281693E-19 3.93347167280E-19 4.23982666230E-19 4.57004183826E-19 4.92597552983E-19 5.30963080037E-19 5.72316672003E-19 6.16891051611E-19 6.64937066989E-19 7.16725103335E-19 7.72546604551E-19 8.32715713375E-19 8.97571039257E-19 9.67477563931E-19 1.04282869539E-18 1.12404848184E-18 1.21159399807E-18 1.30595791774E-18 1.40767128589E-18 1.51730650753E-18 1.63548056889E-18 1.76285850956E-18 1.90015716512E-18 2.04814920119E-18 2.20766746174E-18 2.37960965596E-18 2.56494341024E-18 2.76471171365E-18 2.98003878743E-18 3.21213641168E-18 3.46231074482E-18 3.73196967415E-18 4.02263073885E-18 4.33592967017E-18 4.67362959662E-18 5.03763096627E-18 5.42998224164E-18 5.85289142772E-18 6.30873849773E-18 6.80008878670E-18 7.32970742817E-18 7.90057491527E-18 8.51590387381E-18 9.17915714162E-18 9.89406725608E-18 1.06646574594E-17 1.14952643397E-17 1.23905622359E-17 1.33555895427E-17 1.43957770649E-17 1.55169785798E-17 1.67255037798E-17 1.80281537810E-17 1.94322593970E-17 2.09457223938E-17 2.25770599580E-17 2.43354526276E-17 2.62307959570E-17 2.82737562046E-17 3.04758303585E-17 3.28494108368E-17 3.54078552268E-17 3.81655614567E-17 4.11380488205E-17 4.43420453145E-17 4.77955817757E-17 5.15180933515E-17 5.55305288732E-17 5.98554687465E-17 6.45172520254E-17 6.95421133817E-17 7.49583307425E-17 8.07963844271E-17 8.70891286767E-17 9.38719765443E-17 1.01183099184E-16 1.09063640663E-16 1.17557949500E-16 1.26713828243E-16 1.36582802478E-16 1.47220410796E-16 1.58686517337E-16 1.71045648678E-16 1.84367356966E-16 1.98726611320E-16 2.14204219726E-16 2.30887283791E-16 2.48869688907E-16 2.68252632600E-16 2.89145194018E-16 3.11664947786E-16 3.35938625657E-16 3.62102829698E-16 3.90304801030E-16 4.20703248425E-16 4.53469241450E-16 4.88787173163E-16 5.26855797788E-16 5.67889349213E-16 6.12118746593E-16 6.59792893852E-16 7.11180080390E-16 7.66569490891E-16 8.26272832705E-16 8.90626089986E-16 9.59991414443E-16 1.03475916335E-15 1.11535009626E-15 1.20221774287E-15 1.29585095519E-15 1.39677665861E-15 1.50556281713E-15 1.62282162954E-15 1.74921297461E-15 1.88544812449E-15 2.03229374738E-15 2.19057622191E-15 2.36118628757E-15 2.54508405730E-15 2.74330442043E-15 2.95696286650E-15 3.18726176259E-15 3.43549711954E-15 3.70306588518E-15 3.99147380550E-15 4.30234389813E-15 4.63742558572E-15 4.99860454062E-15 5.38791329633E-15 5.80754268530E-15 6.25985416767E-15 6.74739312001E-15 7.27290315913E-15 7.83934158139E-15 8.44989600446E-15 9.10800230517E-15 9.81736395433E-15 1.05819728574E-14 1.14061318183E-14 1.22944787524E-14 1.32520127860E-14 1.42841223874E-14 1.53966156896E-14 1.65957531744E-14 1.78882829018E-14 1.92814784830E-14 2.07831800108E-14 2.24018381782E-14 2.41465618319E-14 2.60271692302E-14 2.80542432923E-14 3.02391911505E-14 3.25943083405E-14 3.51328479905E-14 3.78690953991E-14 4.08184484205E-14 4.39975041109E-14 4.74241521219E-14 5.11176753686E-14 5.50988585356E-14 5.93901050354E-14 6.40155630735E-14 6.90012615324E-14 7.43752564376E-14 8.01677888295E-14 8.64114549309E-14 9.31413895661E-14 1.00395463864E-13 1.08214498359E-13 1.16642492684E-13 1.25726873159E-13 1.35518759647E-13 1.46073253211E-13 1.57449746153E-13 1.69712256210E-13 1.82929786773E-13 1.97176715157E-13 2.12533211107E-13 2.29085687894E-13 2.46927288550E-13 2.66158409951E-13 2.86887267728E-13 3.09230505161E-13 3.33313849497E-13 3.59272819366E-13 3.87253487301E-13 4.17413301627E-13 4.49921972354E-13 4.84962426060E-13 5.22731835133E-13 5.63442727155E-13 6.07324180685E-13 6.54623114152E-13 7.05605675115E-13 7.60558737715E-13 8.19791516718E-13 8.83637307257E-13 9.52455360039E-13 1.02663290258E-12 1.10658731781E-12 1.19276849236E-12 1.28566134767E-12 1.38578856820E-12 1.49371354208E-12 1.61004353075E-12 1.73543308537E-12 1.87058772930E-12 2.01626792730E-12 2.17329336375E-12 2.34254755404E-12 2.52498281503E-12 2.72162562247E-12 2.93358238703E-12 3.16204567163E-12 3.40830091205E-12 3.67373364478E-12 3.95983728176E-12 4.26822155017E-12 4.60062150974E-12 4.95890733185E-12 5.34509481951E-12 5.76135674619E-12 6.21003506466E-12 6.69365410061E-12 7.21493474186E-12 7.77680973438E-12 8.38244019854E-12 9.03523339496E-12 9.73886189006E-12 1.04972842112E-11 1.13147671359E-11 1.21959096407E-11 1.31456688235E-11 1.41693877422E-11 1.52728254921E-11 1.64621895637E-11 1.77441707931E-11 1.91259809569E-11 2.06153933637E-11 2.22207865247E-11 2.39511912995E-11 2.58163417494E-11 2.78267296280E-11 2.99936637713E-11 3.23293333516E-11 3.48468765077E-11 3.75604544719E-11 4.04853305823E-11 4.36379570791E-11 4.70360663386E-11 5.06987718904E-11 5.46466748766E-11 5.89019803374E-11 6.34886220719E-11 6.84323971709E-11 7.37611105506E-11 7.95047319625E-11 8.56955645248E-11 9.23684252297E-11 9.95608420720E-11 1.07313263648E-10 1.15669287920E-10 1.24675906009E-10 1.34383767044E-10 1.44847462541E-10 1.56125833253E-10 1.68282300172E-10 1.81385220232E-10 1.95508271055E-10 2.10730864897E-10 2.27138594631E-10 2.44823715055E-10 2.63885660739E-10 2.84431605135E-10 3.06577062525E-10 3.30446537303E-10 3.56174222284E-10 3.83904754533E-10 4.13794025742E-10 4.46010059725E-10 4.80733953961E-10 5.18160899202E-10 5.58501274474E-10 6.01981827514E-10 6.48846950881E-10 6.99360051483E-10 7.53805030010E-10 8.12487877654E-10 8.75738389633E-10 9.43912023382E-10 1.01739188405E-09 1.09659088395E-09 1.18195405679E-09 1.27396105550E-09 1.37312884301E-09 1.48001459681E-09 1.59521883045E-09 1.71938876826E-09 1.85322197156E-09 1.99747025957E-09 2.15294391686E-09 2.32051624421E-09 2.50112846155E-09 2.69579497484E-09 2.90560907585E-09 3.13174906395E-09 3.37548486057E-09 3.63818511852E-09 3.92132491021E-09 4.22649397762E-09 4.55540565014E-09 4.90990645322E-09 5.29198644564E-09 5.70379037037E-09 6.14762967208E-09 6.62599544793E-09 7.14157239189E-09 7.69725383686E-09 8.29615795444E-09 8.94164521050E-09 9.63733717716E-09 1.03871368077E-08 1.11952502759E-08 1.20662105160E-08 1.30049025784E-08 1.40165909671E-08 1.51069490774E-08 1.62820909253E-08 1.75486053368E-08 1.89135927784E-08 2.03847050544E-08 2.19701880638E-08 2.36789278774E-08 2.55205003901E-08 2.75052247838E-08 2.96442211916E-08 3.19494727616E-08 3.44338925569E-08 3.71113956348E-08 3.99969766843E-08 4.31067936819E-08 4.64582580144E-08 5.00701315853E-08 5.39626313861E-08 5.81575422118E-08 6.26783380258E-08 6.75503127480E-08 7.28007211316E-08 7.84589305214E-08 8.45565843052E-08 9.11277780414E-08 9.82092491298E-08 1.05840581138E-07 1.14064423899E-07 1.22926730566E-07 1.32477012965E-07 1.42768616627E-07 1.53859017015E-07 1.65810138565E-07 1.78688698348E-07 1.92566576134E-07 2.07521212976E-07 2.23636040491E-07 2.41000943139E-07 2.59712756055E-07 2.79875801187E-07 3.01602464641E-07 3.25013818345E-07 3.50240289528E-07 3.77422381564E-07 4.06711450137E-07 4.38270539022E-07 4.72275279860E-07 5.08914861051E-07 5.48393070789E-07 5.90929420053E-07 6.36760351557E-07 6.86140541279E-07 7.39344299488E-07 7.96667078988E-07 8.58427098581E-07 9.24967090566E-07 9.96656181667E-07 1.07389191753E-06 1.15710244162E-06 1.24674884026E-06 1.34332766623E-06 1.44737365469E-06 1.55946264576E-06 1.68021472922E-06 1.81029762849E-06 1.95043034151E-06 2.10138705801E-06 2.26400137406E-06 2.43917082596E-06 2.62786176775E-06 2.83111461788E-06 3.05004950269E-06 3.28587232670E-06 3.53988130100E-06 3.81347396463E-06 4.10815473523E-06 4.42554302855E-06 4.76738198914E-06 5.13554787765E-06 5.53206016337E-06 5.95909237433E-06 6.41898376113E-06 6.91425183435E-06 7.44760584046E-06 8.02196124468E-06 8.64045529590E-06 9.30646375203E-06 1.00236188517E-05 1.07958286232E-05 1.16272976287E-05 1.25225492478E-05 1.34864496134E-05 1.45242333197E-05 1.56415310304E-05 1.68443991253E-05 1.81393515326E-05 1.95333939041E-05 2.10340603020E-05 2.26494525785E-05 2.43882826388E-05 2.62599177968E-05 2.82744294406E-05 3.04426452460E-05 3.27762051867E-05 3.52876216130E-05 3.79903436827E-05 4.08988264519E-05 4.40286049527E-05 4.73963736049E-05 5.10200713339E-05 5.49189727916E-05 5.91137861012E-05 6.36267575771E-05 6.84817838972E-05 7.37045322389E-05 7.93225689216E-05 8.53654971314E-05 9.18651043434E-05 9.88555200932E-05 1.06373384791E-04 1.14458030314E-04 1.23151673159E-04 1.32499620981E-04 1.42550493400E-04 1.53356458010E-04 1.64973482560E-04 1.77461604377E-04 1.90885218109E-04 2.05313382972E-04 2.20820150727E-04 2.37484915688E-04 2.55392788138E-04 2.74634992591E-04 2.95309292441E-04 3.17520442572E-04 3.41380671652E-04 3.67010195843E-04 3.94537765813E-04 4.24101248978E-04 4.55848249026E-04 4.89936764831E-04 5.26535891009E-04 5.65826562413E-04 6.08002344988E-04 6.53270275503E-04 7.01851752755E-04 7.53983482949E-04 8.09918482048E-04 8.69927137962E-04 9.34298335548E-04 1.00334064746E-03 1.07738359397E-03 1.15677897491E-03 1.24190227705E-03 1.33315416008E-03 1.43096202459E-03 1.53578166536E-03 1.64809901326E-03 1.76843196903E-03 1.89733233232E-03 2.03538782900E-03 2.18322423994E-03 2.34150763414E-03 2.51094670897E-03 2.69229524006E-03 2.88635464319E-03 3.09397664999E-03 3.31606609914E-03 3.55358384414E-03 3.80754977831E-03 4.07904597703E-03 4.36921995651E-03 4.67928804777E-03 5.01053888342E-03 5.36433699406E-03 5.74212650983E-03 6.14543496153E-03 6.57587717438E-03 7.03515924575E-03 7.52508259694E-03 8.04754808667E-03 8.60456017250E-03 9.19823110375E-03 9.83078512720E-03 1.05045626844E-02 1.12220245761E-02 1.19857560671E-02 1.27984709000E-02 1.36630151846E-02 1.45823711244E-02 1.55596605379E-02 1.65981481293E-02 1.77012444560E-02 1.88725085379E-02 2.01156500474E-02 2.14345310132E-02 2.28331669661E-02 2.43157274487E-02 2.58865358049E-02 2.75500681600E-02 2.93109514935E-02 3.11739607029E-02 3.31440145486E-02 3.52261703651E-02 3.74256174155E-02 3.97476687625E-02 4.21977515212E-02 4.47813953557E-02 4.75042190740E-02 5.03719151752E-02 5.33902321953E-02 5.65649546994E-02 5.99018807643E-02 6.34067967974E-02 6.70854495371E-02 7.09435150878E-02 7.49865648427E-02 7.92200281608E-02 8.36491516718E-02 8.82789550970E-02 9.31141834925E-02 9.81592558391E-02 1.03418209929E-01 1.08894643527E-01 1.14591651820E-01 1.20511761193E-01 1.26656859442E-01 1.33028122538E-01 1.39625938155E-01 1.46449826198E-01 1.53498356663E-01 1.60769065187E-01 1.68258366784E-01 1.75961468280E-01 1.83872280093E-01 1.91983328068E-01 2.00285666190E-01 2.08768791084E-01 2.17420559310E-01 2.26227108586E-01 2.35172784136E-01 2.44240071490E-01 2.53409537158E-01 2.62659778663E-01 2.71967385538E-01 2.81306912935E-01 2.90650869561E-01 2.99969721712E-01 3.09231915169E-01 3.18403916747E-01 3.27450277236E-01 3.36333717444E-01 3.45015238924E-01 3.53454260863E-01 3.61608784440E-01 3.69435585736E-01 3.76890438017E-01 3.83928363928E-01 3.90503917754E-01 3.96571497509E-01 4.02085686161E-01 4.07001620801E-01 4.11275388016E-01 4.14864443143E-01 4.17728050466E-01 4.19827740782E-01 4.21127782095E-01 4.21595658548E-01 4.21202552049E-01 4.19923820428E-01 4.17739465369E-01 4.14634582849E-01 4.10599788363E-01 4.05631608874E-01 3.99732833191E-01 3.92912812391E-01 3.85187701963E-01 3.76580637587E-01 3.67121836889E-01 3.56848620121E-01 3.45805343559E-01 3.34043240436E-01 3.21620165458E-01 3.08600240400E-01 2.95053399898E-01 2.81054838302E-01 2.66684360401E-01 2.52025640808E-01 2.37165398854E-01 2.22192497924E-01 2.07196980180E-01 1.92269049543E-01 1.77498017605E-01 1.62971228680E-01 1.48772981541E-01 1.34983466363E-01 1.21677736026E-01 1.08924731170E-01 9.67863781775E-02 8.53167786092E-02 7.45615074825E-02 6.45570361682E-02 5.53302936171E-02 4.68983770984E-02 3.92684206895E-02 3.24376264349E-02 2.63934594401E-02 2.11140042572E-02 1.65684758211E-02 1.27178740113E-02 9.51576675109E-03 6.90918254270E-03 4.83958962794E-03 3.24393572662E-03 2.05571973801E-03 1.20606510397E-03 6.24763960481E-04 2.45538566691E-04 2.04423369329E-05 -9.09385780374E-05 -1.24744706483E-04 -1.12048657585E-04 -7.81321746837E-05 -4.18456241174E-05 -1.50595764830E-05 -2.21762107641E-06 -5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 4 2 i j (l(j)) 4.15980910364E-01 Q_int 1.22857768924E-29 1.32426441936E-29 1.42740362919E-29 1.53857574881E-29 1.65840641456E-29 1.78756998997E-29 1.92679336077E-29 2.07686002558E-29 2.23861450516E-29 2.41296709503E-29 2.60089898832E-29 2.80346779753E-29 3.02181350644E-29 3.25716488549E-29 3.51084640685E-29 3.78428569810E-29 4.07902157635E-29 4.39671270822E-29 4.73914694412E-29 5.10825137972E-29 5.50610320087E-29 5.93494137328E-29 6.39717924261E-29 6.89541811588E-29 7.43246190074E-29 8.01133288475E-29 8.63528874381E-29 9.30784087513E-29 1.00327741581E-28 1.08141682543E-28 1.16564205661E-28 1.25642709840E-28 1.35428285609E-28 1.45976002637E-28 1.57345219649E-28 1.69599918474E-28 1.82809064111E-28 1.97046992840E-28 2.12393830557E-28 2.28935943699E-28 2.46766425276E-28 2.65985618770E-28 2.86701682830E-28 3.09031199947E-28 3.33099832545E-28 3.59043030154E-28 3.87006791680E-28 4.17148487026E-28 4.49637742720E-28 4.84657396505E-28 5.22404526289E-28 5.63091559222E-28 6.06947467166E-28 6.54219055259E-28 7.05172350851E-28 7.60094100602E-28 8.19293384195E-28 8.83103353722E-28 9.51883108540E-28 1.02601971616E-27 1.10593039050E-27 1.19206483987E-27 1.28490779767E-27 1.38498175041E-27 1.49284987798E-27 1.60911922306E-27 1.73444410735E-27 1.86952981384E-27 2.01513655586E-27 2.17208375534E-27 2.34125465418E-27 2.52360128481E-27 2.72014982793E-27 2.93200638742E-27 3.16036321515E-27 3.40650542048E-27 3.67181820246E-27 3.95779464516E-27 4.26604412025E-27 4.59830134395E-27 4.95643613937E-27 5.34246395920E-27 5.75855722796E-27 6.20705756762E-27 6.69048897536E-27 7.21157202776E-27 7.77323919120E-27 8.37865132468E-27 9.03121546806E-27 9.73460401558E-27 1.04927753828E-26 1.13099962831E-26 1.21908657392E-26 1.31403409649E-26 1.41637652622E-26 1.52668980917E-26 1.64559474849E-26 1.77376049803E-26 1.91190832813E-26 2.06081568465E-26 2.22132056418E-26 2.39432622994E-26 2.58080629506E-26 2.78181020168E-26 2.99846912686E-26 3.23200234843E-26 3.48372410663E-26 3.75505100019E-26 4.04750995843E-26 4.36274683424E-26 4.70253566641E-26 5.06878866319E-26 5.46356696358E-26 5.88909223660E-26 6.34775918412E-26 6.84214901730E-26 7.37504398275E-26 7.94944301999E-26 8.56857863840E-26 9.23593510861E-26 9.95526807069E-26 1.07306256696E-25 1.15663713365E-25 1.24672083449E-25 1.34382062785E-25 1.44848295615E-25 1.56129682099E-25 1.68289709788E-25 1.81396810904E-25 1.95524747458E-25 2.10753026351E-25 2.27167346810E-25 2.44860082676E-25 2.63930802247E-25 2.84486828613E-25 3.06643843631E-25 3.30526538943E-25 3.56269317693E-25 3.84017050898E-25 4.13925892734E-25 4.46164159310E-25 4.80913275892E-25 5.18368797901E-25 5.58741511423E-25 6.02258619442E-25 6.49165020450E-25 6.99724686653E-25 7.54222149507E-25 8.12964100957E-25 8.76281119391E-25 9.44529530015E-25 1.01809341012E-24 1.09738675052E-24 1.18285578538E-24 1.27498150340E-24 1.37428235470E-24 1.48131716843E-24 1.59668829769E-24 1.72104500932E-24 1.85508713778E-24 1.99956902352E-24 2.15530375816E-24 2.32316776028E-24 2.50410570756E-24 2.69913585312E-24 2.90935575583E-24 3.13594845703E-24 3.38018913820E-24 3.64345229726E-24 3.92721948374E-24 4.23308763638E-24 4.56277807014E-24 4.91814616313E-24 5.30119179802E-24 5.71407061662E-24 6.15910615108E-24 6.63880289987E-24 7.15586042221E-24 7.71318853017E-24 8.31392366407E-24 8.96144654321E-24 9.65940119135E-24 1.04117154439E-23 1.12226230525E-23 1.20966875107E-23 1.30388277362E-23 1.40543457521E-23 1.51489565253E-23 1.63288201278E-23 1.76005764038E-23 1.89713823359E-23 2.04489523223E-23 2.20416015907E-23 2.37582929929E-23 2.56086874449E-23 2.76031982952E-23 2.97530499266E-23 3.20703409238E-23 3.45681121592E-23 3.72604201826E-23 4.01624163261E-23 4.32904319706E-23 4.66620704523E-23 5.02963061286E-23 5.42135911585E-23 5.84359705997E-23 6.29872064709E-23 6.78929114749E-23 7.31806931383E-23 7.88803091763E-23 8.50238349585E-23 9.16458440170E-23 9.87836026144E-23 1.06477279464E-22 1.14770171785E-22 1.23708948964E-22 1.33343915193E-22 1.43729292563E-22 1.54923526205E-22 1.66989613202E-22 1.79995457108E-22 1.94014250088E-22 2.09124884819E-22 2.25412398463E-22 2.42968451232E-22 2.61891842212E-22 2.82289065374E-22 3.04274908880E-22 3.27973101070E-22 3.53517006761E-22 3.81050377772E-22 4.10728161913E-22 4.42717374969E-22 4.77198040608E-22 5.14364203486E-22 5.54425021263E-22 5.97605941664E-22 6.44149971215E-22 6.94319042799E-22 7.48395489718E-22 8.06683634559E-22 8.69511501815E-22 9.37232663885E-22 1.01022823085E-21 1.08890899523E-21 1.17371774375E-21 1.26513174923E-21 1.36366545644E-21 1.46987337726E-21 1.58435321125E-21 1.70774920928E-21 1.84075579915E-21 1.98412149358E-21 2.13865310255E-21 2.30522027374E-21 2.48476038660E-21 2.67828382756E-21 2.88687967616E-21 3.11172183391E-21 3.35407563068E-21 3.61530494543E-21 3.89687988168E-21 4.20038504069E-21 4.52752843902E-21 4.88015112063E-21 5.26023751759E-21 5.66992661777E-21 6.11152400223E-21 6.58751482027E-21 7.10057777484E-21 7.65360019739E-21 8.24969429666E-21 8.89221467310E-21 9.58477719728E-21 1.03312793588E-20 1.11359221996E-20 1.20032339566E-20 1.29380955440E-20 1.39457680222E-20 1.50319222044E-20 1.62026705703E-20 1.74646016648E-20 1.88248171759E-20 2.02909719002E-20 2.18713168217E-20 2.35747455449E-20 2.54108443450E-20 2.73899461161E-20 2.95231885203E-20 3.18225766671E-20 3.43010506733E-20 3.69725584856E-20 3.98521343739E-20 4.29559835395E-20 4.63015733111E-20 4.99077314454E-20 5.37947520822E-20 5.79845099524E-20 6.25005834813E-20 6.73683874789E-20 7.26153161653E-20 7.82708973353E-20 8.43669585299E-20 9.09378061499E-20 9.80204185199E-20 1.05654653988E-19 1.13883475236E-19 1.22753191053E-19 1.32313716951E-19 1.42618856063E-19 1.53726601934E-19 1.65699464883E-19 1.78604823791E-19 1.92515305281E-19 2.07509192436E-19 2.23670865348E-19 2.41091275974E-19 2.59868459985E-19 2.80108088472E-19 3.01924062621E-19 3.25439154711E-19 3.50785699028E-19 3.78106336596E-19 4.07554817902E-19 4.39296868154E-19 4.73511119913E-19 5.10390118378E-19 5.50141404951E-19 5.92988685210E-19 6.39173087833E-19 6.88954521588E-19 7.42613137993E-19 8.00450907913E-19 8.62793320933E-19 9.29991217092E-19 1.00242276128E-18 1.08049557141E-18 1.16464901234E-18 1.25535666844E-18 1.35312900875E-18 1.45851625974E-18 1.57211150172E-18 1.69455400652E-18 1.82653283504E-18 1.96879071504E-18 2.12212822094E-18 2.28740827911E-18 2.46556102414E-18 2.65758903323E-18 2.86457296838E-18 3.08767765788E-18 3.32815865155E-18 3.58736928651E-18 3.86676830321E-18 4.16792805466E-18 4.49254335508E-18 4.84244101760E-18 5.21959013490E-18 5.62611316052E-18 6.06429785314E-18 6.53661015128E-18 7.04570805061E-18 7.59445656211E-18 8.18594383527E-18 8.82349853698E-18 9.51070858394E-18 1.02514413341E-17 1.10498653507E-17 1.19104738610E-17 1.28381100430E-17 1.38379942801E-17 1.49157535404E-17 1.60774530420E-17 1.73296303864E-17 1.86793323491E-17 2.01341545365E-17 2.17022841304E-17 2.33925459626E-17 2.52144521774E-17 2.71782557620E-17 2.92950082464E-17 3.15766218970E-17 3.40359367538E-17 3.66867928889E-17 3.95441082932E-17 4.26239628284E-17 4.59436887182E-17 4.95219680867E-17 5.33789380937E-17 5.75363042587E-17 6.20174626102E-17 6.68476313494E-17 7.20539927669E-17 7.76658462141E-17 8.37147729875E-17 9.02348140546E-17 9.72626616227E-17 1.04837865627E-16 1.13003056300E-16 1.21804184078E-16 1.31290778188E-16 1.41516225382E-16 1.52538070367E-16 1.64418339649E-16 1.77223890587E-16 1.91026787637E-16 2.05904707904E-16 2.21941378269E-16 2.39227046568E-16 2.57858989470E-16 2.77942059905E-16 2.99589277126E-16 3.22922462737E-16 3.48072926246E-16 3.75182204013E-16 4.04402855760E-16 4.35899323098E-16 4.69848854934E-16 5.06442504944E-16 5.45886206736E-16 5.88401932743E-16 6.34228943387E-16 6.83625133514E-16 7.36868483711E-16 7.94258624643E-16 8.56118523230E-16 9.22796300151E-16 9.94667188893E-16 1.07213564738E-15 1.15563763407E-15 1.24564306131E-15 1.34265843974E-15 1.44722972872E-15 1.55994540869E-15 1.68143979284E-15 1.81239659668E-15 1.95355278567E-15 2.10570272245E-15 2.26970263708E-15 2.44647544548E-15 2.63701594309E-15 2.84239640302E-15 3.06377261027E-15 3.30239036577E-15 3.55959249714E-15 3.83682641531E-15 4.13565225977E-15 4.45775167812E-15 4.80493728940E-15 5.17916288451E-15 5.58253442095E-15 6.01732187390E-15 6.48597201032E-15 6.99112215785E-15 7.53561504607E-15 8.12251480365E-15 8.75512420133E-15 9.43700323787E-15 1.01719891734E-14 1.09642181232E-14 1.18181483328E-14 1.27385852662E-14 1.37307086480E-14 1.48001016111E-14 1.59527821149E-14 1.71952368103E-14 1.85344575418E-14 1.99779806931E-14 2.15339295961E-14 2.32110602432E-14 2.50188105596E-14 2.69673535134E-14 2.90676543606E-14 3.13315323498E-14 3.37717272316E-14 3.64019709483E-14 3.92370649058E-14 4.22929632643E-14 4.55868627155E-14 4.91372992513E-14 5.29642524685E-14 5.70892579975E-14 6.15355286859E-14 6.63280852204E-14 7.14938969205E-14 7.70620334982E-14 8.30638286354E-14 8.95330563008E-14 9.65061207979E-14 1.04022261614E-13 1.12123774220E-13 1.20856248072E-13 1.30268823137E-13 1.40414466408E-13 1.51350269943E-13 1.63137772122E-13 1.75843303917E-13 1.89538362133E-13 2.04300011710E-13 2.20211319358E-13 2.37361820965E-13 2.55848025396E-13 2.75773957533E-13 2.97251743600E-13 3.20402242073E-13 3.45355723720E-13 3.72252604601E-13 4.01244236142E-13 4.32493756749E-13 4.66177009725E-13 5.02483532681E-13 5.41617623985E-13 5.83799492266E-13 6.29266495430E-13 6.78274476159E-13 7.31099201409E-13 7.88037914005E-13 8.49411005064E-13 9.15563816637E-13 9.86868584745E-13 1.06372653370E-12 1.14657013352E-12 1.23586553314E-12 1.33211518305E-12 1.43586066222E-12 1.54768572510E-12 1.66821958591E-12 1.79814045865E-12 1.93817937280E-12 2.08912428607E-12 2.25182451747E-12 2.42719552550E-12 2.61622405843E-12 2.81997370563E-12 3.03959088106E-12 3.27631127275E-12 3.53146679443E-12 3.80649307874E-12 4.10293755314E-12 4.42246814288E-12 4.76688265739E-12 5.13811891211E-12 5.53826559902E-12 5.96957407936E-12 6.43447101130E-12 6.93557201987E-12 7.47569640450E-12 8.05788300237E-12 8.68540727707E-12 9.36179973999E-12 1.00908658232E-11 1.08767072607E-11 1.17237451881E-11 1.26367449868E-11 1.36208431002E-11 1.46815759129E-11 1.58249109148E-11 1.70572802236E-11 1.83856168012E-11 1.98173934265E-11 2.13606647192E-11 2.30241124496E-11 2.48170943616E-11 2.67496968018E-11 2.88327914368E-11 3.10780963846E-11 3.34982421533E-11 3.61068425857E-11 3.89185714834E-11 4.19492451680E-11 4.52159112477E-11 4.87369446647E-11 5.25321509603E-11 5.66228773451E-11 6.10321335522E-11 6.57847199599E-11 7.09073682698E-11 7.64288909963E-11 8.23803436096E-11 8.87951995422E-11 9.57095379508E-11 1.03162246382E-10 1.11195239764E-10 1.19853696459E-10 1.29186310723E-10 1.39245568289E-10 1.50088039493E-10 1.61774699264E-10 1.74371268067E-10 1.87948582302E-10 2.02582991953E-10 2.18356789919E-10 2.35358674638E-10 2.53684247823E-10 2.73436552465E-10 2.94726651549E-10 3.17674252287E-10 3.42408378190E-10 3.69068094758E-10 3.97803290234E-10 4.28775517805E-10 4.62158903608E-10 4.98141123856E-10 5.36924460850E-10 5.78726936765E-10 6.23783540728E-10 6.72347547611E-10 7.24691938707E-10 7.81110939432E-10 8.41921665439E-10 9.07465910206E-10 9.78112056490E-10 1.05425715208E-09 1.13632913364E-09 1.22478923362E-09 1.32013456551E-09 1.42290091568E-09 1.53366575156E-09 1.65305146293E-09 1.78172885408E-09 1.92042090779E-09 2.06990684591E-09 2.23102649346E-09 2.40468500253E-09 2.59185791732E-09 2.79359665991E-09 3.01103441798E-09 3.24539250137E-09 3.49798720182E-09 3.77023716226E-09 4.06367133920E-09 4.37993757211E-09 4.72081182282E-09 5.08820813044E-09 5.48418934875E-09 5.91097868985E-09 6.37097219767E-09 6.86675217558E-09 7.40110164477E-09 7.97701994534E-09 8.59773952769E-09 9.26674406902E-09 9.98778797511E-09 1.07649174045E-08 1.16024929292E-08 1.25052139374E-08 1.34781449452E-08 1.45267439362E-08 1.56568929106E-08 1.68749307885E-08 1.81876888747E-08 1.96025290763E-08 2.11273850636E-08 2.27708066383E-08 2.45420075384E-08 2.64509169334E-08 2.85082349232E-08 3.07254923339E-08 3.31151151284E-08 3.56904938267E-08 3.84660582842E-08 4.14573582741E-08 4.46811502803E-08 4.81554910447E-08 5.18998383099E-08 5.59351593979E-08 6.02840481416E-08 6.49708509023E-08 7.00218023058E-08 7.54651714655E-08 8.13314195364E-08 8.76533694001E-08 9.44663885035E-08 1.01808585795E-07 1.09721023876E-07 1.18247947517E-07 1.27437029842E-07 1.37339637489E-07 1.48011116239E-07 1.59511098665E-07 1.71903835531E-07 1.85258552698E-07 1.99649835601E-07 2.15158043291E-07 2.31869754403E-07 2.49878247470E-07 2.69284018228E-07 2.90195336685E-07 3.12728847128E-07 3.37010214224E-07 3.63174818834E-07 3.91368507297E-07 4.21748398340E-07 4.54483751881E-07 4.89756904641E-07 5.27764277537E-07 5.68717460368E-07 6.12844379730E-07 6.60390556445E-07 7.11620459404E-07 7.66818963112E-07 8.26292916843E-07 8.90372833899E-07 9.59414710193E-07 1.03380198176E-06 1.11394763208E-06 1.20029646028E-06 1.29332752258E-06 1.39355676010E-06 1.50153982713E-06 1.61787513504E-06 1.74320712813E-06 1.87822980894E-06 2.02369053198E-06 2.18039408596E-06 2.34920708636E-06 2.53106270177E-06 2.72696573908E-06 2.93799811441E-06 3.16532473897E-06 3.41019985082E-06 3.67397382605E-06 3.95810050528E-06 4.26414507397E-06 4.59379253819E-06 4.94885683990E-06 5.33129065991E-06 5.74319595931E-06 6.18683531475E-06 6.66464410608E-06 7.17924362021E-06 7.73345513853E-06 8.33031508108E-06 8.97309128546E-06 9.66530050425E-06 1.04107272109E-05 1.12134438098E-05 1.20778323550E-05 1.30086078868E-05 1.40108435055E-05 1.50899973094E-05 1.62519413331E-05 1.75029926309E-05 1.88499466632E-05 2.03001131512E-05 2.18613545801E-05 2.35421275409E-05 2.53515271174E-05 2.72993345355E-05 2.93960683115E-05 3.16530391477E-05 3.40824088454E-05 3.66972535198E-05 3.95116314250E-05 4.25406557140E-05 4.58005724845E-05 4.93088444828E-05 5.30842408638E-05 5.71469334321E-05 6.15185998177E-05 6.62225340688E-05 7.12837651781E-05 7.67291840913E-05 8.25876797828E-05 8.88902850222E-05 9.56703324958E-05 1.02963621987E-04 1.10808599373E-04 1.19246548224E-04 1.28321794874E-04 1.38081927843E-04 1.48578032591E-04 1.59864942600E-04 1.72001507880E-04 1.85050882032E-04 1.99080829096E-04 2.14164051440E-04 2.30378540089E-04 2.47807948894E-04 2.66541994094E-04 2.86676880853E-04 3.08315758489E-04 3.31569206169E-04 3.56555750968E-04 3.83402420274E-04 4.12245330631E-04 4.43230315223E-04 4.76513592307E-04 5.12262477015E-04 5.50656139076E-04 5.91886409111E-04 6.36158636288E-04 6.83692600241E-04 7.34723480285E-04 7.89502885093E-04 8.48299946100E-04 9.11402478072E-04 9.79118210341E-04 1.05177609239E-03 1.12972767753E-03 1.21334858859E-03 1.30304006962E-03 1.39923062755E-03 1.50237776828E-03 1.61296983113E-03 1.73152792616E-03 1.85860797870E-03 1.99480288539E-03 2.14074478618E-03 2.29710745666E-03 2.46460882497E-03 2.64401361753E-03 2.83613613772E-03 3.04184318135E-03 3.26205709261E-03 3.49775896400E-03 3.74999198325E-03 4.01986492985E-03 4.30855582348E-03 4.61731572587E-03 4.94747269710E-03 5.30043590647E-03 5.67769989734E-03 6.08084900424E-03 6.51156191939E-03 6.97161640473E-03 7.46289414376E-03 7.98738572632E-03 8.54719575732E-03 9.14454807873E-03 9.78179109168E-03 1.04614031635E-02 1.11859981015E-02 1.19583306729E-02 1.27813021461E-02 1.36579658273E-02 1.45915325596E-02 1.55853761508E-02 1.66430386891E-02 1.77682357040E-02 1.89648611220E-02 2.02369919627E-02 2.15888927161E-02 2.30250193333E-02 2.45500227597E-02 2.61687519295E-02 2.78862561370E-02 2.97077866890E-02 3.16387977384E-02 3.36849461889E-02 3.58520905535E-02 3.81462886407E-02 4.05737939344E-02 4.31410505252E-02 4.58546864406E-02 4.87215052158E-02 5.17484755372E-02 5.49427187824E-02 5.83114942756E-02 6.18621820671E-02 6.56022630442E-02 6.95392961722E-02 7.36808926626E-02 7.80346868645E-02 8.26083036720E-02 8.74093222467E-02 9.24452358532E-02 9.77234076182E-02 1.03251022028E-01 1.09035031999E-01 1.15082101363E-01 1.21398542650E-01 1.27990250044E-01 1.34862627455E-01 1.42020511670E-01 1.49468090573E-01 1.57208816503E-01 1.65245314856E-01 1.73579288095E-01 1.82211415415E-01 1.91141248378E-01 2.00367102918E-01 2.09885948211E-01 2.19693292998E-01 2.29783070067E-01 2.40147519697E-01 2.50777073009E-01 2.61660236262E-01 2.72783477306E-01 2.84131115499E-01 2.95685216542E-01 3.07425493844E-01 3.19329218120E-01 3.31371137103E-01 3.43523407326E-01 3.55755540094E-01 3.68034363809E-01 3.80324004939E-01 3.92585889965E-01 4.04778770664E-01 4.16858775117E-01 4.28779486768E-01 4.40492053830E-01 4.51945331181E-01 4.63086056762E-01 4.73859064247E-01 4.84207533501E-01 4.94073280005E-01 5.03397084002E-01 5.12119059690E-01 5.20179064242E-01 5.27517145809E-01 5.34074029050E-01 5.39791635969E-01 5.44613639078E-01 5.48486043089E-01 5.51357790455E-01 5.53181385230E-01 5.53913528800E-01 5.53515760156E-01 5.51955092554E-01 5.49204637558E-01 5.45244206787E-01 5.40060881025E-01 5.33649535860E-01 5.26013312702E-01 5.17164023838E-01 5.07122480240E-01 4.95918731147E-01 4.83592204931E-01 4.70191741617E-01 4.55775508458E-01 4.40410791393E-01 4.24173656839E-01 4.07148480237E-01 3.89427339948E-01 3.71109277537E-01 3.52299428103E-01 3.33108027080E-01 3.13649302804E-01 2.94040267016E-01 2.74399418332E-01 2.54845376436E-01 2.35495467262E-01 2.16464281704E-01 1.97862232271E-01 1.79794133539E-01 1.62357833232E-01 1.45642921111E-01 1.29729542633E-01 1.14687343439E-01 1.00574569178E-01 8.74373429008E-02 7.53091393634E-02 6.42104720021E-02 5.41488041807E-02 4.51186916250E-02 3.71021578091E-02 3.00692985665E-02 2.39791064793E-02 1.87804997892E-02 1.44135348472E-02 1.08107756541E-02 7.89878905244E-03 5.59972985040E-03 3.83297683168E-03 2.51677850823E-03 1.56986687178E-03 9.12998568187E-04 4.74014455062E-04 1.99863417755E-04 4.64603412016E-05 -2.42655427636E-05 -4.38479692073E-05 -3.69635823046E-05 -2.13369867772E-05 -7.89140457569E-06 -1.16358222671E-06 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.23008640933E-26 1.30942016672E-26 1.39387051187E-26 1.48376743633E-26 1.57946221429E-26 1.68132877519E-26 1.78976516480E-26 1.90519510070E-26 2.02806962785E-26 2.15886888114E-26 2.29810396151E-26 2.44631893304E-26 2.60409294897E-26 2.77204251468E-26 2.95082389676E-26 3.14113568734E-26 3.34372153388E-26 3.55937304498E-26 3.78893288360E-26 4.03329805980E-26 4.29342343582E-26 4.57032545722E-26 4.86508612466E-26 5.17885722185E-26 5.51286481619E-26 5.86841404959E-26 6.24689423842E-26 6.64978430224E-26 7.07865854273E-26 7.53519279530E-26 8.02117097747E-26 8.53849205954E-26 9.08917748489E-26 9.67537906878E-26 1.02993874066E-25 1.09636408246E-25 1.16707349073E-25 1.24234326404E-25 1.32246752064E-25 1.40775934782E-25 1.49855202524E-25 1.59520032727E-25 1.69808190924E-25 1.80759878317E-25 1.92417888863E-25 2.04827776491E-25 2.18038033107E-25 2.32100278075E-25 2.47069459924E-25 2.63004071057E-25 2.79966376313E-25 2.98022656268E-25 3.17243466229E-25 3.37703911928E-25 3.59483943002E-25 3.82668665395E-25 4.07348673913E-25 4.33620406228E-25 4.61586519703E-25 4.91356292534E-25 5.23046050756E-25 5.56779622788E-25 5.92688823295E-25 6.30913968259E-25 6.71604423264E-25 7.14919187148E-25 7.61027513292E-25 8.10109570982E-25 8.62357149425E-25 9.17974407169E-25 9.77178669858E-25 1.04020127943E-24 1.10728849812E-24 1.17870247066E-24 1.25472224873E-24 1.33564488125E-24 1.42178657517E-24 1.51348393103E-24 1.61109525824E-24 1.71500197518E-24 1.82561009961E-24 1.94335183517E-24 2.06868726027E-24 2.20210612578E-24 2.34412976884E-24 2.49531314990E-24 2.65624702133E-24 2.82756023571E-24 3.00992220316E-24 3.20404550703E-24 3.41068868834E-24 3.63065920982E-24 3.86481661106E-24 4.11407586720E-24 4.37941096418E-24 4.66185870468E-24 4.96252275937E-24 5.28257797958E-24 5.62327498804E-24 5.98594506572E-24 6.37200535382E-24 6.78296439131E-24 7.22042800955E-24 7.68610560715E-24 8.18181682943E-24 8.70949867877E-24 9.27121308345E-24 9.86915495474E-24 1.05056607635E-23 1.11832176699E-23 1.19044732424E-23 1.26722458028E-23 1.34895354391E-23 1.43595357282E-23 1.52856462152E-23 1.62714856970E-23 1.73209063627E-23 1.84380088464E-23 1.96271582503E-23 2.08930012017E-23 2.22404840092E-23 2.36748719912E-23 2.52017700501E-23 2.68271445730E-23 2.85573467464E-23 3.03991373727E-23 3.23597132888E-23 3.44467354878E-23 3.66683590543E-23 3.90332650306E-23 4.15506943382E-23 4.42304838868E-23 4.70831050123E-23 5.01197043937E-23 5.33521476092E-23 5.67930655008E-23 6.04559035299E-23 6.43549743158E-23 6.85055135622E-23 7.29237395915E-23 7.76269167179E-23 8.26334227081E-23 8.79628205931E-23 9.36359351110E-23 9.96749340800E-23 1.06103415020E-22 1.12946497359E-22 1.20230920592E-22 1.27985148759E-22 1.36239481675E-22 1.45026173327E-22 1.54379557902E-22 1.64336183955E-22 1.74934957217E-22 1.86217292625E-22 1.98227276151E-22 2.11011837066E-22 2.24620931319E-22 2.39107736741E-22 2.54528860841E-22 2.70944561995E-22 2.88418984912E-22 3.07020411279E-22 3.26821526575E-22 3.47899704087E-22 3.70337307252E-22 3.94222011491E-22 4.19647146806E-22 4.46712062466E-22 4.75522515216E-22 5.06191082525E-22 5.38837602489E-22 5.73589642091E-22 6.10582995683E-22 6.49962215597E-22 6.91881176990E-22 7.36503679115E-22 7.84004085368E-22 8.34568004618E-22 8.88393016479E-22 9.45689443354E-22 1.00668117228E-21 1.07160652975E-21 1.14071921302E-21 1.21428928140E-21 1.29260421153E-21 1.37597002070E-21 1.46471246261E-21 1.55917830030E-21 1.65973666107E-21 1.76678047890E-21 1.88072802984E-21 2.00202456641E-21 2.13114405747E-21 2.26859104024E-21 2.41490259177E-21 2.57065042765E-21 2.73644313592E-21 2.91292855519E-21 3.10079630607E-21 3.30078048587E-21 3.51366253713E-21 3.74027430109E-21 3.98150126812E-21 4.23828603785E-21 4.51163200234E-21 4.80260726688E-21 5.11234882364E-21 5.44206699448E-21 5.79305016032E-21 6.16666979549E-21 6.56438582683E-21 6.98775233838E-21 7.43842364397E-21 7.91816075152E-21 8.42883824419E-21 8.97245160537E-21 9.55112501608E-21 1.01671196552E-20 1.08228425353E-20 1.15208559076E-20 1.22638872745E-20 1.30548400474E-20 1.38968048912E-20 1.47930718020E-20 1.57471429621E-20 1.67627464253E-20 1.78438506842E-20 1.89946801771E-20 2.02197317954E-20 2.15237924546E-20 2.29119578003E-20 2.43896521186E-20 2.59626495322E-20 2.76370965626E-20 2.94195361478E-20 3.13169332094E-20 3.33367018674E-20 3.54867344117E-20 3.77754321413E-20 4.02117381920E-20 4.28051724828E-20 4.55658689143E-20 4.85046149678E-20 5.16328938573E-20 5.49629294003E-20 5.85077337831E-20 6.22811584057E-20 6.62979480066E-20 7.05737982784E-20 7.51254171988E-20 7.99705903174E-20 8.51282502533E-20 9.06185506746E-20 9.64629450493E-20 1.02684270475E-19 1.09306836916E-19 1.16356522195E-19 1.23860873108E-19 1.31849213071E-19 1.40352756695E-19 1.49404731760E-19 1.59040509057E-19 1.69297740593E-19 1.80216506723E-19 1.91839472762E-19 2.04212055703E-19 2.17382601680E-19 2.31402574889E-19 2.46326758679E-19 2.62213469620E-19 2.79124785380E-19 2.97126787292E-19 3.16289818568E-19 3.36688759168E-19 3.58403318396E-19 3.81518346360E-19 4.06124165533E-19 4.32316923688E-19 4.60198969593E-19 4.89879252947E-19 5.21473750099E-19 5.55105917232E-19 5.90907172766E-19 6.29017410882E-19 6.69585548161E-19 7.12770105477E-19 7.58739827422E-19 8.07674341679E-19 8.59764860921E-19 9.15214929980E-19 9.74241221199E-19 1.03707438109E-18 1.10395993158E-18 1.17515922940E-18 1.25095048736E-18 1.33162986143E-18 1.41751260800E-18 1.50893431577E-18 1.60625221704E-18 1.70984658360E-18 1.82012221268E-18 1.93751000869E-18 2.06246866696E-18 2.19548646617E-18 2.33708317622E-18 2.48781208932E-18 2.64826218195E-18 2.81906041630E-18 3.00087419018E-18 3.19441394480E-18 3.40043594095E-18 3.61974521401E-18 3.85319871970E-18 4.10170868261E-18 4.36624616078E-18 4.64784484012E-18 4.94760507351E-18 5.26669818054E-18 5.60637102437E-18 5.96795088397E-18 6.35285064040E-18 6.76257429776E-18 7.19872286004E-18 7.66300058712E-18 8.15722165420E-18 8.68331724073E-18 9.24334307650E-18 9.83948747450E-18 1.04740798818E-17 1.11495999817E-17 1.18686873837E-17 1.26341519371E-17 1.34489847111E-17 1.43163696822E-17 1.52396961758E-17 1.62225721100E-17 1.72688380934E-17 1.83825824328E-17 1.95681571081E-17 2.08301947776E-17 2.21736268806E-17 2.36037029066E-17 2.51260109082E-17 2.67464993366E-17 2.84715002847E-17 3.03077542307E-17 3.22624363759E-17 3.43431846825E-17 3.65581297188E-17 3.89159264296E-17 4.14257879559E-17 4.40975216348E-17 4.69415673225E-17 4.99690381880E-17 5.31917641378E-17 5.66223380421E-17 6.02741649411E-17 6.41615144257E-17 6.82995763964E-17 7.27045204180E-17 7.73935589022E-17 8.23850143661E-17 8.76983910274E-17 9.33544510173E-17 9.93752955096E-17 1.05784451081E-16 1.12606961642E-16 1.19869486296E-16 1.27600403510E-16 1.35829922006E-16 1.44590198801E-16 1.53915464859E-16 1.63842158852E-16 1.74409069546E-16 1.85657487365E-16 1.97631365735E-16 2.10377492837E-16 2.23945674428E-16 2.38388928460E-16 2.53763692248E-16 2.70130043001E-16 2.87551932574E-16 3.06097437361E-16 3.25839024306E-16 3.46853834068E-16 3.69223982450E-16 3.93036881268E-16 4.18385579914E-16 4.45369128949E-16 4.74092967144E-16 5.04669333486E-16 5.37217705751E-16 5.71865267371E-16 6.08747404397E-16 6.48008234532E-16 6.89801170268E-16 7.34289518348E-16 7.81647117894E-16 8.32059019684E-16 8.85722209241E-16 9.42846376559E-16 1.00365473547E-15 1.06838489586E-15 1.13728979211E-15 1.21063867150E-15 1.28871814623E-15 1.37183331340E-15 1.46030894717E-15 1.55449076783E-15 1.65474679271E-15 1.76146877420E-15 1.87507373053E-15 1.99600557530E-15 2.12473685205E-15 2.26177058075E-15 2.40764222336E-15 2.56292177614E-15 2.72821599695E-15 2.90417077613E-15 3.09147366035E-15 3.29085653922E-15 3.50309850512E-15 3.72902889758E-15 3.96953054385E-15 4.22554320867E-15 4.49806726632E-15 4.78816760964E-15 5.09697781112E-15 5.42570455235E-15 5.77563233913E-15 6.14812852071E-15 6.54464863274E-15 6.96674208476E-15 7.41605821457E-15 7.89435273304E-15 8.40349458458E-15 8.94547325003E-15 9.52240652063E-15 1.01365487733E-14 1.07902997797E-14 1.14862140831E-14 1.22270109809E-14 1.30155851495E-14 1.38550179561E-14 1.47485894985E-14 1.56997914226E-14 1.67123405658E-14 1.77901934806E-14 1.89375618951E-14 2.01589291700E-14 2.14590678177E-14 2.28430581508E-14 2.43163081336E-14 2.58845745135E-14 2.75539853159E-14 2.93310637893E-14 3.12227538949E-14 3.32364474403E-14 3.53800129633E-14 3.76618264778E-14 4.00908042034E-14 4.26764374055E-14 4.54288294828E-14 4.83587354458E-14 5.14776039427E-14 5.47976219947E-14 5.83317626169E-14 6.20938355107E-14 6.60985410248E-14 7.03615275972E-14 7.48994529015E-14 7.97300489369E-14 8.48721913159E-14 9.03459730206E-14 9.61727829166E-14 1.02375389330E-13 1.08978029013E-13 1.16006501853E-13 1.23488271681E-13 1.31452573590E-13 1.39930528168E-13 1.48955263105E-13 1.58562042637E-13 1.68788405342E-13 1.79674310822E-13 1.91262295843E-13 2.03597640551E-13 2.16728545400E-13 2.30706319497E-13 2.45585581093E-13 2.61424471000E-13 2.78284879779E-13 2.96232689577E-13 3.15338031558E-13 3.35675559942E-13 3.57324743714E-13 3.80370177150E-13 4.04901910368E-13 4.31015801194E-13 4.58813889732E-13 4.88404797075E-13 5.19904149748E-13 5.53435031515E-13 5.89128464322E-13 6.27123920268E-13 6.67569866587E-13 7.10624345781E-13 7.56455593167E-13 8.05242694253E-13 8.57176284511E-13 9.12459294278E-13 9.71307741704E-13 1.03395157683E-12 1.10063558013E-12 1.17162031894E-12 1.24718316568E-12 1.32761938162E-12 1.41324327063E-12 1.50438940732E-12 1.60141394433E-12 1.70469600407E-12 1.81463916001E-12 1.93167301374E-12 2.05625487354E-12 2.18887154132E-12 2.33004121478E-12 2.48031551223E-12 2.64028162803E-12 2.81056462697E-12 2.99182988676E-12 3.18478569787E-12 3.39018603118E-12 3.60883348408E-12 3.84158241654E-12 4.08934228948E-12 4.35308121844E-12 4.63382975640E-12 4.93268492222E-12 5.25081447935E-12 5.58946151215E-12 5.94994927915E-12 6.33368636207E-12 6.74217221249E-12 7.17700296918E-12 7.63987771561E-12 8.13260511872E-12 8.65711049547E-12 9.21544332236E-12 9.80978526426E-12 1.04424586885E-11 1.11159357310E-11 1.18328479756E-11 1.25959967220E-11 1.34083639329E-11 1.42731238838E-11 1.51936555891E-11 1.61735559591E-11 1.72166539065E-11 1.83270252687E-11 1.95090087585E-11 2.07672228885E-11 2.21065840518E-11 2.35323257026E-11 2.50500188338E-11 2.66655937073E-11 2.83853630493E-11 3.02160467708E-11 3.21647980249E-11 3.42392314697E-11 3.64474527511E-11 3.87980902480E-11 4.13003289748E-11 4.39639460074E-11 4.67993494120E-11 4.98176179733E-11 5.30305454457E-11 5.64506859047E-11 6.00914031581E-11 6.39669228989E-11 6.80923883916E-11 7.24839191770E-11 7.71586745996E-11 8.21349209201E-11 8.74321019158E-11 9.30709157317E-11 9.90733950506E-11 1.05462993855E-10 1.12264678487E-10 1.19505025435E-10 1.27212325236E-10 1.35416692857E-10 1.44150185622E-10 1.53446927969E-10 1.63343245284E-10 1.73877805642E-10 1.85091770784E-10 1.97028957182E-10 2.09736006966E-10 2.23262570294E-10 2.37661499283E-10 2.52989054860E-10 2.69305125641E-10 2.86673463260E-10 3.05161930153E-10 3.24842765780E-10 3.45792867676E-10 3.68094093143E-10 3.91833578544E-10 4.17104079048E-10 4.44004332501E-10 4.72639443867E-10 5.03121295962E-10 5.35568987760E-10 5.70109298020E-10 6.06877183136E-10 6.46016300260E-10 6.87679572523E-10 7.32029784974E-10 7.79240220219E-10 8.29495335266E-10 8.82991483800E-10 9.39937680867E-10 1.00055642102E-09 1.06508454663E-09 1.13377417561E-09 1.20689368219E-09 1.28472874782E-09 1.36758347885E-09 1.45578159052E-09 1.54966767525E-09 1.64960854610E-09 1.75599467147E-09 1.86924169899E-09 1.98979208213E-09 2.11811680488E-09 2.25471722237E-09 2.40012702262E-09 2.55491430813E-09 2.71968381525E-09 2.89507927689E-09 3.08178593767E-09 3.28053323009E-09 3.49209762346E-09 3.71730565832E-09 3.95703717302E-09 4.21222874063E-09 4.48387732936E-09 4.77304419467E-09 5.08085902446E-09 5.40852435100E-09 5.75732025132E-09 6.12860934216E-09 6.52384210516E-09 6.94456255100E-09 7.39241424751E-09 7.86914674391E-09 8.37662239863E-09 8.91682365549E-09 9.49186078632E-09 1.01039801267E-08 1.07555728589E-08 1.14491843405E-08 1.21875240481E-08 1.29734761601E-08 1.38101108157E-08 1.47006961040E-08 1.56487108287E-08 1.66578580917E-08 1.77320797466E-08 1.88755718008E-08 2.00928007888E-08 2.13885212168E-08 2.27677941283E-08 2.42360068606E-08 2.57988940757E-08 2.74625601554E-08 2.92335030301E-08 3.11186395439E-08 3.31253324617E-08 3.52614192067E-08 3.75352424575E-08 3.99556827120E-08 4.25321929531E-08 4.52748355437E-08 4.81943215046E-08 5.13020523186E-08 5.46101644244E-08 5.81315765891E-08 6.18800403221E-08 6.58701935359E-08 7.01176176720E-08 7.46388985017E-08 7.94516908404E-08 8.45747874349E-08 9.00281922863E-08 9.58331986920E-08 1.02012472324E-07 1.08590139636E-07 1.15591881990E-07 1.23045035829E-07 1.30978699298E-07 1.39423845732E-07 1.48413444461E-07 1.57982589374E-07 1.68168635777E-07 1.79011346048E-07 1.90553044674E-07 2.02838783258E-07 2.15916516163E-07 2.29837287437E-07 2.44655429791E-07 2.60428776345E-07 2.77218886040E-07 2.95091283524E-07 3.14115714466E-07 3.34366417311E-07 3.55922412506E-07 3.78867810313E-07 4.03292138441E-07 4.29290690712E-07 4.56964898173E-07 4.86422724047E-07 5.17779084063E-07 5.51156293828E-07 5.86684544909E-07 6.24502411530E-07 6.64757389817E-07 7.07606471672E-07 7.53216755495E-07 8.01766096153E-07 8.53443796648E-07 9.08451344199E-07 9.67003193562E-07 1.02932760062E-06 1.09566750946E-06 1.16628149631E-06 1.24144477409E-06 1.32145026131E-06 1.40660971949E-06 1.49725496351E-06 1.59373914950E-06 1.69643814523E-06 1.80575198823E-06 1.92210643731E-06 2.04595462338E-06 2.17777880586E-06 2.31809224151E-06 2.46744117269E-06 2.62640694278E-06 2.79560824675E-06 2.97570352551E-06 3.16739351317E-06 3.37142394683E-06 3.58858844934E-06 3.81973159587E-06 4.06575217598E-06 4.32760666355E-06 4.60631290765E-06 4.90295405844E-06 5.21868274277E-06 5.55472550527E-06 5.91238753173E-06 6.29305767240E-06 6.69821378415E-06 7.12942841143E-06 7.58837482732E-06 8.07683345724E-06 8.59669870915E-06 9.14998623573E-06 9.73884065538E-06 1.03655437608E-05 1.10325232450E-05 1.17423619779E-05 1.24978078658E-05 1.33017843321E-05 1.41574014556E-05 1.50679678081E-05 1.60370030338E-05 1.70682512163E-05 1.81656950811E-05 1.93335710850E-05 2.05763854460E-05 2.18989311715E-05 2.33063061445E-05 2.48039323324E-05 2.63975761858E-05 2.80933702990E-05 2.98978364066E-05 3.18179097979E-05 3.38609652319E-05 3.60348444417E-05 3.83478853229E-05 4.08089529045E-05 4.34274722058E-05 4.62134630902E-05 4.91775772304E-05 5.23311373076E-05 5.56861785710E-05 5.92554928940E-05 6.30526754668E-05 6.70921742731E-05 7.13893425086E-05 7.59604941012E-05 8.08229625051E-05 8.59951629473E-05 9.14966583111E-05 9.73482288536E-05 1.03571945958E-04 1.10191250132E-04 1.17231033475E-04 1.24717726841E-04 1.32679391929E-04 1.41145818555E-04 1.50148627355E-04 1.59721378180E-04 1.69899684453E-04 1.80721333763E-04 1.92226414989E-04 2.04457452228E-04 2.17459545841E-04 2.31280520896E-04 2.45971083332E-04 2.61584984137E-04 2.78179191847E-04 2.95814073670E-04 3.14553585548E-04 3.34465471432E-04 3.55621472075E-04 3.78097543613E-04 4.01974086186E-04 4.27336182860E-04 4.54273849052E-04 4.82882292654E-04 5.13262185016E-04 5.45519942907E-04 5.79768021509E-04 6.16125218489E-04 6.54716989072E-04 6.95675772017E-04 7.39141326294E-04 7.85261078158E-04 8.34190478232E-04 8.86093368082E-04 9.41142355625E-04 9.99519198576E-04 1.06141519497E-03 1.12703157960E-03 1.19657992502E-03 1.27028254552E-03 1.34837290229E-03 1.43109600754E-03 1.51870882536E-03 1.61148066633E-03 1.70969357307E-03 1.81364269301E-03 1.92363663453E-03 2.03999780217E-03 2.16306270596E-03 2.29318223950E-03 2.43072192086E-03 2.57606208962E-03 2.72959805293E-03 2.89174017262E-03 3.06291388476E-03 3.24355964217E-03 3.43413276980E-03 3.63510322182E-03 3.84695522855E-03 4.07018682048E-03 4.30530921554E-03 4.55284605509E-03 4.81333247289E-03 5.08731398079E-03 5.37534515341E-03 5.67798809370E-03 5.99581066018E-03 6.32938443589E-03 6.67928241853E-03 7.04607641048E-03 7.43033408720E-03 7.83261572207E-03 8.25347054568E-03 8.69343271792E-03 9.15301689138E-03 9.63271334570E-03 1.01329826735E-02 1.06542500000E-02 1.11968987211E-02 1.17612637459E-02 1.23476242357E-02 1.29561958318E-02 1.35871223719E-02 1.42404670994E-02 1.49162033769E-02 1.56142049201E-02 1.63342355813E-02 1.70759387158E-02 1.78388261792E-02 1.86222670133E-02 1.94254758906E-02 2.02475014046E-02 2.10872143036E-02 2.19432957867E-02 2.28142259955E-02 2.36982728532E-02 2.45934814254E-02 2.54976639914E-02 2.64083910406E-02 2.73229834262E-02 2.82385059274E-02 2.91517624950E-02 3.00592934696E-02 3.09573750794E-02 3.18420215414E-02 3.27089900959E-02 3.35537893159E-02 3.43716910335E-02 3.51577462212E-02 3.59068051568E-02 3.66135421824E-02 3.72724853405E-02 3.78780511334E-02 3.84245846029E-02 3.89064048696E-02 3.93178561947E-02 3.96533645413E-02 3.99074995137E-02 4.00750414324E-02 4.01510531778E-02 4.01309562876E-02 4.00106106391E-02 3.97863968783E-02 3.94553005797E-02 3.90149969405E-02 3.84639346230E-02 3.78014171794E-02 3.70276803125E-02 3.61439630668E-02 3.51525708981E-02 3.40569284572E-02 3.28616198427E-02 3.15724140471E-02 3.01962733346E-02 2.87413423771E-02 2.72169161211E-02 2.56333845923E-02 2.40021531519E-02 2.23355371229E-02 2.06466301857E-02 1.89491465169E-02 1.72572372938E-02 1.55852829048E-02 1.39476629754E-02 1.23585071208E-02 1.08314301392E-02 9.37925613582E-03 8.01373677856E-03 6.74526948537E-03 5.58262179528E-03 4.53266842265E-03 3.60014750006E-03 2.78744223322E-03 2.09439358790E-03 1.51814867857E-03 1.05304822300E-03 6.90554773316E-04 4.19221466174E-04 2.24698809013E-04 9.13656524898E-05 7.86912946626E-06 -3.62091649345E-05 -5.13683000316E-05 -4.77088492278E-05 -3.43911819771E-05 -1.90365733403E-05 -7.07885404744E-06 -1.07680071085E-06 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 6 1 i j (l(j)) 0.00000000000E+00 Q_int 1.32598935388E-27 1.41150831984E-27 1.50254278523E-27 1.59944846922E-27 1.70260403286E-27 1.81241255878E-27 1.92930312616E-27 2.05373248744E-27 2.18618685306E-27 2.32718379133E-27 2.47727425085E-27 2.63704471335E-27 2.80711948540E-27 2.98816313785E-27 3.18088310272E-27 3.38603243746E-27 3.60441276755E-27 3.83687741889E-27 4.08433475215E-27 4.34775171224E-27 4.62815760666E-27 4.92664812754E-27 5.24438963308E-27 5.58262370511E-27 5.94267200064E-27 6.32594141621E-27 6.73392958538E-27 7.16823073080E-27 7.63054189365E-27 8.12266956483E-27 8.64653674394E-27 9.20419045335E-27 9.79780973708E-27 1.04297141754E-26 1.11023729486E-26 1.18184144854E-26 1.25806367339E-26 1.33920180939E-26 1.42557290558E-26 1.51751445889E-26 1.61538573295E-26 1.71956916188E-26 1.83047184471E-26 1.94852713607E-26 2.07419633959E-26 2.20797051040E-26 2.35037237400E-26 2.50195836876E-26 2.66332082025E-26 2.83509025577E-26 3.01793786812E-26 3.21257813832E-26 3.41977162746E-26 3.64032794860E-26 3.87510893038E-26 4.12503198459E-26 4.39107369099E-26 4.67427361334E-26 4.97573836151E-26 5.29664591555E-26 5.63825022871E-26 6.00188612728E-26 6.38897452646E-26 6.80102798257E-26 7.23965660347E-26 7.70657434004E-26 8.20360568350E-26 8.73269279463E-26 9.29590309285E-26 9.89543733465E-26 1.05336382131E-25 1.12129995121E-25 1.19361758507E-25 1.27059930561E-25 1.35254592058E-25 1.43977763818E-25 1.53263531822E-25 1.63148180412E-25 1.73670334068E-25 1.84871108334E-25 1.96794270479E-25 2.09486410520E-25 2.22997123269E-25 2.37379202132E-25 2.52688845394E-25 2.68985875820E-25 2.86333974411E-25 3.04800929241E-25 3.24458900339E-25 3.45384701653E-25 3.67660101210E-25 3.91372140618E-25 4.16613475188E-25 4.43482735984E-25 4.72084915230E-25 5.02531776564E-25 5.34942291760E-25 5.69443105613E-25 6.06169030805E-25 6.45263574691E-25 6.86879500052E-25 7.31179422024E-25 7.78336443520E-25 8.28534831628E-25 8.81970737646E-25 9.38852963542E-25 9.99403777855E-25 1.06385978421E-24 1.13247284587E-24 1.20551106985E-24 1.28325985463E-24 1.36602300526E-24 1.45412392058E-24 1.54790685682E-24 1.64773827286E-24 1.75400826215E-24 1.86713207697E-24 1.98755175112E-24 2.11573782710E-24 2.25219119480E-24 2.39744504873E-24 2.55206697152E-24 2.71666115170E-24 2.89187074462E-24 3.07838038562E-24 3.27691886518E-24 3.48826197675E-24 3.71323554818E-24 3.95271866862E-24 4.20764712359E-24 4.47901705162E-24 4.76788883665E-24 5.07539125149E-24 5.40272586857E-24 5.75117175508E-24 6.12209047096E-24 6.51693138920E-24 6.93723735937E-24 7.38465073625E-24 7.86091979743E-24 8.36790557470E-24 8.90758912613E-24 9.48207927702E-24 1.00936208603E-23 1.07446034880E-23 1.14375708892E-23 1.21752308491E-23 1.29604657903E-23 1.37963440356E-23 1.46861317975E-23 1.56333059414E-23 1.66415675710E-23 1.77148564909E-23 1.88573666011E-23 2.00735622851E-23 2.13681958542E-23 2.27463261177E-23 2.42133381500E-23 2.57749643329E-23 2.74373067551E-23 2.92068610565E-23 3.10905418094E-23 3.30957095380E-23 3.52301994796E-23 3.75023522008E-23 3.99210461885E-23 4.24957325430E-23 4.52364719082E-23 4.81539737840E-23 5.12596383734E-23 5.45656011298E-23 5.80847801759E-23 6.18309267819E-23 6.58186790989E-23 7.00636193575E-23 7.45823347561E-23 7.93924822757E-23 8.45128576747E-23 8.99634689340E-23 9.57656144384E-23 1.01941966201E-22 1.08516658453E-22 1.15515381953E-22 1.22965484368E-22 1.30896077140E-22 1.39338149238E-22 1.48324688246E-22 1.57890809269E-22 1.68073892137E-22 1.78913727476E-22 1.90452672185E-22 2.02735814950E-22 2.15811152428E-22 2.29729776794E-22 2.44546075386E-22 2.60317943225E-22 2.77107009241E-22 2.94978877087E-22 3.14003381491E-22 3.34254861136E-22 3.55812449135E-22 3.78760382254E-22 4.03188330061E-22 4.29191745317E-22 4.56872236959E-22 4.86337967139E-22 5.17704073868E-22 5.51093120925E-22 5.86635576774E-22 6.24470324375E-22 6.64745203869E-22 7.07617590274E-22 7.53255008422E-22 8.01835787576E-22 8.53549758249E-22 9.08598993974E-22 9.67198600911E-22 1.02957755838E-21 1.09597961360E-21 1.16666423415E-21 1.24190762182E-21 1.32200379190E-21 1.40726572204E-21 1.49802657523E-21 1.59464100163E-21 1.69748652437E-21 1.80696501475E-21 1.92350426254E-21 2.04755964760E-21 2.17961591928E-21 2.32018909059E-21 2.46982845453E-21 2.62911873047E-21 2.79868234896E-21 2.97918188388E-21 3.17132264149E-21 3.37585541641E-21 3.59357942537E-21 3.82534543018E-21 4.07205906211E-21 4.33468436065E-21 4.61424754054E-21 4.91184100169E-21 5.22862759784E-21 5.56584518036E-21 5.92481143523E-21 6.30692903194E-21 6.71369110442E-21 7.14668708557E-21 7.60760891792E-21 8.09825766504E-21 8.62055054917E-21 9.17652844286E-21 9.76836384374E-21 1.03983693636E-20 1.10690067649E-20 1.17828965805E-20 1.25428283530E-20 1.33517715352E-20 1.42128870936E-20 1.51295398593E-20 1.61053116769E-20 1.71440154001E-20 1.82497097909E-20 1.94267153792E-20 2.06796313454E-20 2.20133534918E-20 2.34330933732E-20 2.49443986612E-20 2.65531748218E-20 2.82657081913E-20 3.00886905402E-20 3.20292452220E-20 3.40949550071E-20 3.62938917134E-20 3.86346477472E-20 4.11263696777E-20 4.37787939783E-20 4.66022850716E-20 4.96078758291E-20 5.28073106822E-20 5.62130915145E-20 5.98385265127E-20 6.36977821694E-20 6.78059386388E-20 7.21790486631E-20 7.68342002991E-20 8.17895836906E-20 8.70645621468E-20 9.26797478053E-20 9.86570821751E-20 1.05019921873E-19 1.11793129892E-19 1.19003172753E-19 1.26678223925E-19 1.34848273911E-19 1.43545247443E-19 1.52803128224E-19 1.62658091722E-19 1.73148646529E-19 1.84315784832E-19 1.96203142595E-19 2.08857170067E-19 2.22327313286E-19 2.36666207297E-19 2.51929881820E-19 2.68177980194E-19 2.85473992431E-19 3.03885503312E-19 3.23484456473E-19 3.44347435529E-19 3.66555963333E-19 3.90196820522E-19 4.15362384625E-19 4.42150991031E-19 4.70667317235E-19 5.01022791876E-19 5.33336030150E-19 5.67733297303E-19 6.04349002021E-19 6.43326221640E-19 6.84817261228E-19 7.28984248726E-19 7.75999768475E-19 8.26047535595E-19 8.79323113867E-19 9.36034679910E-19 9.96403836645E-19 1.06066647922E-18 1.12907371679E-18 1.20189285373E-18 1.27940843418E-18 1.36192335386E-18 1.44976004373E-18 1.54326172986E-18 1.64279377461E-18 1.74874510435E-18 1.86152972918E-18 1.98158836073E-18 2.10939013427E-18 2.24543444187E-18 2.39025288387E-18 2.54441134608E-18 2.70851221109E-18 2.88319671210E-18 3.06914743859E-18 3.26709100364E-18 3.47780088316E-18 3.70210043841E-18 3.94086613329E-18 4.19503095925E-18 4.46558808101E-18 4.75359471750E-18 5.06017627299E-18 5.38653073477E-18 5.73393335440E-18 6.10374163090E-18 6.49740061529E-18 6.91644855735E-18 7.36252291646E-18 7.83736676018E-18 8.34283557551E-18 8.88090451940E-18 9.45367613696E-18 1.00633885774E-17 1.07124243399E-17 1.14033195834E-17 1.21387740375E-17 1.29216615511E-17 1.37550413235E-17 1.46421698575E-17 1.55865136858E-17 1.65917629161E-17 1.76618456512E-17 1.88009433385E-17 2.00135071101E-17 2.13042751755E-17 2.26782913379E-17 2.41409247031E-17 2.56978906603E-17 2.73552732163E-17 2.91195487695E-17 3.09976114180E-17 3.29967998994E-17 3.51249262682E-17 3.73903064234E-17 3.98017926043E-17 4.23688079823E-17 4.51013834844E-17 4.80101969910E-17 5.11066150621E-17 5.44027373547E-17 5.79114439053E-17 6.16464454615E-17 6.56223370600E-17 6.98546550608E-17 7.43599378591E-17 7.91557905136E-17 8.42609535431E-17 8.96953761601E-17 9.54802942278E-17 1.01638313246E-16 1.08193496687E-16 1.15171460035E-16 1.22599470881E-16 1.30506555483E-16 1.38923612195E-16 1.47883532212E-16 1.57421328105E-16 1.67574270642E-16 1.78382034440E-16 1.89886853004E-16 2.02133683776E-16 2.15170383816E-16 2.29047896828E-16 2.43820452243E-16 2.59545777136E-16 2.76285321828E-16 2.94104500022E-16 3.13072944440E-16 3.33264778943E-16 3.54758908204E-16 3.77639326064E-16 4.01995443783E-16 4.27922439452E-16 4.55521629958E-16 4.84900866923E-16 5.16174958201E-16 5.49466116544E-16 5.84904437222E-16 6.22628406444E-16 6.62785442572E-16 7.05532472246E-16 7.51036543677E-16 7.99475479487E-16 8.51038571666E-16 9.05927321362E-16 9.64356226374E-16 1.02655361946E-15 1.09276256070E-15 1.16324178744E-15 1.23826672550E-15 1.31813056560E-15 1.40314540924E-15 1.49364348849E-15 1.58997846446E-15 1.69252680952E-15 1.80168927871E-15 1.91789247602E-15 2.04159052173E-15 2.17326682736E-15 2.31343598498E-15 2.46264577855E-15 2.62147932489E-15 2.79055735283E-15 2.97054062933E-15 3.16213254219E-15 3.36608184926E-15 3.58318560509E-15 3.81429227632E-15 4.06030505809E-15 4.32218540437E-15 4.60095678602E-15 4.89770869135E-15 5.21360088467E-15 5.54986793966E-15 5.90782406517E-15 6.28886824230E-15 6.69448969299E-15 7.12627370134E-15 7.58590781049E-15 8.07518841934E-15 8.59602780486E-15 9.15046159740E-15 9.74065673834E-15 1.03689199511E-14 1.10377067589E-14 1.17496310838E-14 1.25074754657E-14 1.33142019403E-14 1.41729636191E-14 1.50871170163E-14 1.60602351714E-14 1.70961216179E-14 1.81988252546E-14 1.93726561746E-14 2.06222025175E-14 2.19523484074E-14 2.33682930500E-14 2.48755710604E-14 2.64800741036E-14 2.81880739315E-14 3.00062469058E-14 3.19417001036E-14 3.40019991084E-14 3.61951975935E-14 3.85298688151E-14 4.10151391374E-14 4.36607237218E-14 4.64769645193E-14 4.94748707140E-14 5.26661617779E-14 5.60633133039E-14 5.96796057968E-14 6.35291766140E-14 6.76270752575E-14 7.19893222364E-14 7.66329717269E-14 8.15761782784E-14 8.68382678241E-14 9.24398132767E-14 9.84027150025E-14 1.04750286491E-13 1.11507345557E-13 1.18700311423E-13 1.26357308082E-13 1.34508274318E-13 1.43185080840E-13 1.52421654980E-13 1.62254113428E-13 1.72720903556E-13 1.83862953851E-13 1.95723834073E-13 2.08349925745E-13 2.21790603662E-13 2.36098429111E-13 2.51329355577E-13 2.67542947725E-13 2.84802614538E-13 3.03175857492E-13 3.22734534780E-13 3.43555142588E-13 3.65719114542E-13 3.89313140504E-13 4.14429505949E-13 4.41166453278E-13 4.69628566459E-13 4.99927180531E-13 5.32180817726E-13 5.66515650751E-13 6.03065998333E-13 6.41974850826E-13 6.83394427922E-13 7.27486779466E-13 7.74424415719E-13 8.24390985360E-13 8.77581994899E-13 9.34205574553E-13 9.94483292252E-13 1.05865102403E-12 1.12695987716E-12 1.19967717336E-12 1.27708749849E-12 1.35949381647E-12 1.44721865688E-12 1.54060537913E-12 1.64001952097E-12 1.74585022668E-12 1.85851177850E-12 1.97844521701E-12 2.10612007339E-12 2.24203620786E-12 2.38672577407E-12 2.54075530337E-12 2.70472793052E-12 2.87928575607E-12 3.06511236844E-12 3.26293553244E-12 3.47353002410E-12 3.69772070551E-12 3.93638573388E-12 4.19046001720E-12 4.46093890558E-12 4.74888205011E-12 5.05541764313E-12 5.38174674841E-12 5.72914812363E-12 6.09898316581E-12 6.49270129990E-12 6.91184566844E-12 7.35805920839E-12 7.83309105991E-12 8.33880350266E-12 8.87717928654E-12 9.45032934691E-12 1.00605012037E-11 1.07100877283E-11 1.14016366328E-11 1.21378604351E-11 1.29216471617E-11 1.37560717270E-11 1.46444080236E-11 1.55901418476E-11 1.65969845768E-11 1.76688878488E-11 1.88100591162E-11 2.00249782200E-11 2.13184150801E-11 2.26954484766E-11 2.41614860998E-11 2.57222858795E-11 2.73839787481E-11 2.91530927408E-11 3.10365789169E-11 3.30418386736E-11 3.51767531020E-11 3.74497140023E-11 3.98696571907E-11 4.24460977736E-11 4.51891677046E-11 4.81096560305E-11 5.12190514444E-11 5.45295877755E-11 5.80542925638E-11 6.18070384843E-11 6.58025985925E-11 7.00567044364E-11 7.45861088693E-11 7.94086523401E-11 8.45433336542E-11 9.00103853778E-11 9.58313543669E-11 1.02029187107E-10 1.08628321083E-10 1.15654781853E-10 1.23136286832E-10 1.31102355147E-10 1.39584425429E-10 1.48615981218E-10 1.58232683950E-10 1.68472515543E-10 1.79375929601E-10 1.90986013058E-10 2.03348658049E-10 2.16512745567E-10 2.30530340449E-10 2.45456899673E-10 2.61351494637E-10 2.78277047327E-10 2.96300582412E-10 3.15493495980E-10 3.35931841964E-10 3.57696637349E-10 3.80874187503E-10 4.05556433186E-10 4.31841320080E-10 4.59833192971E-10 4.89643216199E-10 5.21389821431E-10 5.55199185296E-10 5.91205738577E-10 6.29552709582E-10 6.70392702582E-10 7.13888315529E-10 7.60212798272E-10 8.09550754363E-10 8.62098890310E-10 9.18066813503E-10 9.77677884110E-10 1.04117012343E-09 1.10879718211E-09 1.18082937469E-09 1.25755478093E-09 1.33928042230E-09 1.42633351668E-09 1.51906281652E-09 1.61784003696E-09 1.72306137996E-09 1.83514916015E-09 1.95455353923E-09 2.08175437869E-09 2.21726321466E-09 2.36162536749E-09 2.51542219292E-09 2.67927348447E-09 2.85384003793E-09 3.03982639007E-09 3.23798374143E-09 3.44911307691E-09 3.67406849855E-09 3.91376078317E-09 4.16916118235E-09 4.44130547999E-09 4.73129832635E-09 5.04031786649E-09 5.36962068508E-09 5.72054708791E-09 6.09452674394E-09 6.49308471453E-09 6.91784789425E-09 7.37055189338E-09 7.85304839335E-09 8.36731300749E-09 8.91545368192E-09 9.49971967593E-09 1.01225111615E-08 1.07863894856E-08 1.14940881429E-08 1.22485245062E-08 1.30528123734E-08 1.39102753827E-08 1.48244613617E-08 1.57991576744E-08 1.68384076407E-08 1.79465280975E-08 1.91281281923E-08 2.03881294895E-08 2.17317874862E-08 2.31647146399E-08 2.46929050149E-08 2.63227606625E-08 2.80611198649E-08 2.99152873684E-08 3.18930667603E-08 3.40027951363E-08 3.62533802270E-08 3.86543401633E-08 4.12158460716E-08 4.39487677024E-08 4.68647223207E-08 4.99761270849E-08 5.32962551818E-08 5.68392959848E-08 6.06204195321E-08 6.46558456475E-08 6.89629180359E-08 7.35601837301E-08 7.84674782800E-08 8.37060171082E-08 8.92984934865E-08 9.52691836370E-08 1.01644059469E-07 1.08450909531E-07 1.15719468797E-07 1.23481557925E-07 1.31771232718E-07 1.40624944538E-07 1.50081712502E-07 1.60183308337E-07 1.70974454848E-07 1.82503039035E-07 1.94820340940E-07 2.07981279435E-07 2.22044676213E-07 2.37073539376E-07 2.53135368083E-07 2.70302479883E-07 2.88652362423E-07 3.08268051413E-07 3.29238536831E-07 3.51659199515E-07 3.75632280466E-07 4.01267385370E-07 4.28682026993E-07 4.58002208384E-07 4.89363049987E-07 5.22909464019E-07 5.58796879756E-07 5.97192023606E-07 6.38273758186E-07 6.82233984939E-07 7.29278615137E-07 7.79628614569E-07 8.33521127541E-07 8.91210686300E-07 9.52970512453E-07 1.01909391744E-06 1.08989580972E-06 1.16571431679E-06 1.24691253103E-06 1.33388038867E-06 1.42703669235E-06 1.52683128818E-06 1.63374740914E-06 1.74830419773E-06 1.87105942154E-06 2.00261239653E-06 2.14360713404E-06 2.29473572857E-06 2.45674200484E-06 2.63042544390E-06 2.81664540969E-06 3.01632569885E-06 3.23045943857E-06 3.46011435886E-06 3.70643846770E-06 3.97066615971E-06 4.25412479103E-06 4.55824175587E-06 4.88455210225E-06 5.23470672787E-06 5.61048119940E-06 6.01378524196E-06 6.44667294894E-06 6.91135376572E-06 7.41020430477E-06 7.94578105375E-06 8.52083404239E-06 9.13832153876E-06 9.80142585024E-06 1.05135703098E-05 1.12784375335E-05 1.20999890420E-05 1.29824863426E-05 1.39305135780E-05 1.49490018530E-05 1.60432553574E-05 1.72189794120E-05 1.84823105726E-05 1.98398489346E-05 2.12986927910E-05 2.28664758036E-05 2.45514068598E-05 2.63623127958E-05 2.83086841775E-05 3.04007243424E-05 3.26494019150E-05 3.50665070238E-05 3.76647114549E-05 4.04576329940E-05 4.34599042185E-05 4.66872460148E-05 5.01565461094E-05 5.38859429142E-05 5.78949150008E-05 6.22043765291E-05 6.68367789696E-05 7.18162194717E-05 7.71685562381E-05 8.29215312791E-05 8.91049009309E-05 9.57505745254E-05 1.02892761612E-04 1.10568128131E-04 1.18815961949E-04 1.27678348149E-04 1.37200354497E-04 1.47430227456E-04 1.58419599158E-04 1.70223705675E-04 1.82901616964E-04 1.96516478787E-04 2.11135766903E-04 2.26831553776E-04 2.43680787990E-04 2.61765586508E-04 2.81173539840E-04 3.01998030097E-04 3.24338561812E-04 3.48301105306E-04 3.73998452234E-04 4.01550582815E-04 4.31085044076E-04 4.62737338252E-04 4.96651320289E-04 5.32979603134E-04 5.71883969275E-04 6.13535786656E-04 6.58116426818E-04 7.05817682723E-04 7.56842183362E-04 8.11403801794E-04 8.69728052821E-04 9.32052475982E-04 9.98626999020E-04 1.06971427637E-03 1.14558999659E-03 1.22654315198E-03 1.31287626293E-03 1.40490554869E-03 1.50296103558E-03 1.60738659275E-03 1.71853988454E-03 1.83679222801E-03 1.96252834267E-03 2.09614597904E-03 2.23805541132E-03 2.38867877859E-03 2.54844925797E-03 2.71781005234E-03 2.89721317411E-03 3.08711800587E-03 3.28798961790E-03 3.50029682200E-03 3.72450994042E-03 3.96109826855E-03 4.21052720984E-03 4.47325506153E-03 4.74972943031E-03 5.04038325782E-03 5.34563043705E-03 5.66586100238E-03 6.00143587825E-03 6.35268117421E-03 6.71988201736E-03 7.10327591752E-03 7.50304566532E-03 7.91931176909E-03 8.35212444320E-03 8.80145516805E-03 9.26718785078E-03 9.74910962529E-03 1.02469013412E-02 1.07601278030E-02 1.12882278353E-02 1.18305042606E-02 1.23861138971E-02 1.29540576938E-02 1.35331711433E-02 1.41221151251E-02 1.47193673560E-02 1.53232146372E-02 1.59317461110E-02 1.65428477544E-02 1.71541983573E-02 1.77632672449E-02 1.83673140205E-02 1.89633906156E-02 1.95483459395E-02 2.01188334262E-02 2.06713217736E-02 2.12021091621E-02 2.17073412244E-02 2.21830330168E-02 2.26250952083E-02 2.30293646646E-02 2.33916395484E-02 2.37077189967E-02 2.39734473569E-02 2.41847628757E-02 2.43377506331E-02 2.44286994003E-02 2.44541619725E-02 2.44110183937E-02 2.42965413416E-02 2.41084627892E-02 2.38450409027E-02 2.35051259751E-02 2.30882240436E-02 2.25945566900E-02 2.20251153943E-02 2.13817086977E-02 2.06670003525E-02 1.98845365822E-02 1.90387605731E-02 1.81350123609E-02 1.71795123757E-02 1.61793270739E-02 1.51423153152E-02 1.40770544498E-02 1.29927454544E-02 1.18990969061E-02 1.08061880959E-02 9.72431215690E-03 8.66380069930E-03 7.63483208569E-03 6.64722613027E-03 5.71022862842E-03 4.83228969287E-03 4.02084035104E-03 3.28207220745E-03 2.62072515571E-03 2.03988809735E-03 1.54081735528E-03 1.12277692691E-03 7.82903888343E-04 5.16101128517E-04 3.14958172783E-04 1.69699179645E-04 6.93631987521E-05 6.00534867487E-06 -2.77775677494E-05 -3.96126942734E-05 -3.69829369226E-05 -2.67986562824E-05 -1.49114091701E-05 -5.57388063160E-06 -8.52306536125E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 4 2 i j (l(j)) 5.41841945057E-01 Q_int 1.71765925520E-29 1.85143768779E-29 1.99563534000E-29 2.15106370392E-29 2.31859747398E-29 2.49917946946E-29 2.69382594032E-29 2.90363228629E-29 3.12977922136E-29 3.37353941844E-29 3.63628467149E-29 3.91949361546E-29 4.22476004756E-29 4.55380189651E-29 4.90847089046E-29 5.29076297785E-29 5.70282955985E-29 6.14698959768E-29 6.62574266292E-29 7.14178300411E-29 7.69801470910E-29 8.29756804811E-29 8.94381708982E-29 9.64039868940E-29 1.03912329554E-28 1.12005453106E-28 1.20728902714E-28 1.30131770787E-28 1.40266973256E-28 1.51191547362E-28 1.62966972647E-28 1.75659516931E-28 1.89340609249E-28 2.04087241825E-28 2.19982403357E-28 2.37115546048E-28 2.55583089008E-28 2.75488960871E-28 2.96945184661E-28 3.20072508221E-28 3.45001083738E-28 3.71871200192E-28 4.00834072848E-28 4.32052694248E-28 4.65702751467E-28 5.01973614818E-28 5.41069403561E-28 5.83210134613E-28 6.28632960719E-28 6.77593505066E-28 7.30367299833E-28 7.87251336794E-28 8.48565738669E-28 9.14655560669E-28 9.85892732335E-28 1.06267815063E-27 1.14544393602E-27 1.23465586432E-27 1.33081598790E-27 1.43446546106E-27 1.54618758541E-27 1.66661109255E-27 1.79641368229E-27 1.93632583650E-27 2.08713493004E-27 2.24968966176E-27 2.42490483072E-27 2.61376648433E-27 2.81733746746E-27 3.03676340374E-27 3.27327914274E-27 3.52821570922E-27 3.80300779370E-27 4.09920182633E-27 4.41846467967E-27 4.76259304922E-27 5.13352356461E-27 5.53334368820E-27 5.96430346260E-27 6.42882817305E-27 6.92953199611E-27 7.46923271123E-27 8.05096755823E-27 8.67801032978E-27 9.35388979511E-27 1.00824095586E-26 1.08676694653E-26 1.17140886729E-26 1.26264305217E-26 1.36098293407E-26 1.46698193415E-26 1.58123657634E-26 1.70438984431E-26 1.83713479997E-26 1.98021848377E-26 2.13444611877E-26 2.30068564215E-26 2.47987258963E-26 2.67301536034E-26 2.88120089172E-26 3.10560077642E-26 3.34747785556E-26 3.60819332560E-26 3.88921439861E-26 4.19212255923E-26 4.51862246469E-26 4.87055153800E-26 5.24989030830E-26 5.65877355657E-26 6.09950232937E-26 6.57455688834E-26 7.08661066818E-26 7.63854532177E-26 8.23346693711E-26 8.87472351719E-26 9.56592382139E-26 1.03109576742E-25 1.11140178559E-25 1.19796236979E-25 1.29126465156E-25 1.39183370230E-25 1.50023548814E-25 1.61708005501E-25 1.74302496172E-25 1.87877898052E-25 2.02510608577E-25 2.18282975333E-25 2.35283759477E-25 2.53608635255E-25 2.73360728417E-25 2.94651196577E-25 3.17599854767E-25 3.42335849707E-25 3.68998386601E-25 3.97737512534E-25 4.28714960879E-25 4.62105061474E-25 4.98095721692E-25 5.36889483908E-25 5.78704665340E-25 6.23776586658E-25 6.72358896280E-25 7.24724997817E-25 7.81169588687E-25 8.42010318567E-25 9.07589577009E-25 9.78276420283E-25 1.05446864829E-24 1.13659504326E-24 1.22511778272E-24 1.32053504054E-24 1.42338379041E-24 1.53424282780E-24 1.65373602712E-24 1.78253585275E-24 1.92136714337E-24 2.07101119110E-24 2.23231013834E-24 2.40617171704E-24 2.59357435706E-24 2.79557269247E-24 3.01330349659E-24 3.24799207938E-24 3.50095918301E-24 3.77362841455E-24 4.06753425748E-24 4.38433070723E-24 4.72580057925E-24 5.09386554206E-24 5.49059693170E-24 5.91822740845E-24 6.37916352146E-24 6.87599925187E-24 7.41153061087E-24 7.98877137460E-24 8.61097004458E-24 9.28162812911E-24 1.00045198485E-23 1.07837133750E-23 1.16235937269E-23 1.25288874460E-23 1.35046891969E-23 1.45564904376E-23 1.56902103238E-23 1.69122290194E-23 1.82294236022E-23 1.96492067651E-23 2.11795685325E-23 2.28291212249E-23 2.46071479261E-23 2.65236547249E-23 2.85894270261E-23 3.08160902461E-23 3.32161752374E-23 3.58031888070E-23 3.85916897282E-23 4.15973706719E-23 4.48371465193E-23 4.83292495527E-23 5.20933320603E-23 5.61505769320E-23 6.05238168687E-23 6.52376628773E-23 7.03186427716E-23 7.57953504618E-23 8.16986068702E-23 8.80616333806E-23 9.49202387958E-23 1.02313020857E-22 1.10281583456E-22 1.18870770772E-22 1.28128919630E-22 1.38108131531E-22 1.48864565856E-22 1.60458755911E-22 1.72955949586E-22 1.86426476549E-22 2.00946144035E-22 2.16596663458E-22 2.33466110256E-22 2.51649419551E-22 2.71248920402E-22 2.92374911680E-22 3.15146282792E-22 3.39691182741E-22 3.66147741308E-22 3.94664846395E-22 4.25402981908E-22 4.58535130907E-22 4.94247749090E-22 5.32741814096E-22 5.74233956537E-22 6.18957679114E-22 6.67164670686E-22 7.19126222685E-22 7.75134755843E-22 8.35505465830E-22 9.00578097061E-22 9.70718854656E-22 1.04632246530E-21 1.12781439864E-21 1.21565326166E-21 1.31033337953E-21 1.41238757756E-21 1.52239017965E-21 1.64096024047E-21 1.76876502920E-21 1.90652378472E-21 2.05501176322E-21 2.21506460105E-21 2.38758301736E-21 2.57353788305E-21 2.77397568449E-21 2.99002441269E-21 3.22289991133E-21 3.47391271898E-21 3.74447544440E-21 4.03611071617E-21 4.35045975148E-21 4.68929159231E-21 5.05451306095E-21 5.44817949090E-21 5.87250629355E-21 6.32988142566E-21 6.82287882799E-21 7.35427291042E-21 7.92705416537E-21 8.54444599715E-21 9.20992286217E-21 9.92722982183E-21 1.07004036184E-20 1.15337953924E-20 1.24320951691E-20 1.34003582523E-20 1.44440336739E-20 1.55689948586E-20 1.67815726781E-20 1.80885910783E-20 1.94974054822E-20 2.10159441837E-20 2.26527529647E-20 2.44170431881E-20 2.63187436358E-20 2.83685563841E-20 3.05780170313E-20 3.29595596156E-20 3.55265865894E-20 3.82935442437E-20 4.12760040058E-20 4.44907500703E-20 4.79558738541E-20 5.16908758080E-20 5.57167751587E-20 6.00562281966E-20 6.47336557777E-20 6.97753807545E-20 7.52097761121E-20 8.10674246405E-20 8.73812910431E-20 9.41869074505E-20 1.01522573382E-19 1.09429571280E-19 1.17952398835E-19 1.27139019400E-19 1.37041131912E-19 1.47714461832E-19 1.59219074750E-19 1.71619714412E-19 1.84986167073E-19 1.99393654227E-19 2.14923255926E-19 2.31662367074E-19 2.49705189243E-19 2.69153260815E-19 2.90116028395E-19 3.12711462739E-19 3.37066722651E-19 3.63318870582E-19 3.91615643969E-19 4.22116286645E-19 4.54992445008E-19 4.90429133976E-19 5.28625778190E-19 5.69797334295E-19 6.14175500640E-19 6.62010021189E-19 7.13570090985E-19 7.69145871083E-19 8.29050121464E-19 8.93619961134E-19 9.63218765301E-19 1.03823821032E-18 1.11910047789E-18 1.20626063095E-18 1.30020917458E-18 1.40147481641E-18 1.51062744197E-18 1.62828132177E-18 1.75509856822E-18 1.89179286175E-18 2.03913346709E-18 2.19794956244E-18 2.36913490576E-18 2.55365286452E-18 2.75254183712E-18 2.96692109665E-18 3.19799708971E-18 3.44707022584E-18 3.71554219572E-18 4.00492385938E-18 4.31684374871E-18 4.65305723222E-18 5.01545639360E-18 5.40608067963E-18 5.82712837742E-18 6.28096898550E-18 6.77015654847E-18 7.29744403014E-18 7.86579880622E-18 8.47841936350E-18 9.13875329971E-18 9.85051672529E-18 1.06177151762E-17 1.14446661555E-17 1.23360234306E-17 1.32968032228E-17 1.43324124368E-17 1.54486790884E-17 1.66518851024E-17 1.79488016648E-17 1.93467273285E-17 2.08535290862E-17 2.24776866436E-17 2.42283401387E-17 2.61153415800E-17 2.81493102888E-17 3.03416926610E-17 3.27048265827E-17 3.52520108627E-17 3.79975800733E-17 4.09569852190E-17 4.41468806890E-17 4.75852179810E-17 5.12913467249E-17 5.52861235750E-17 5.95920295827E-17 6.42332967102E-17 6.92360441985E-17 7.46284255559E-17 8.04407869936E-17 8.67058382023E-17 9.34588364285E-17 1.00737784888E-16 1.08583646631E-16 1.17040575066E-16 1.26156162436E-16 1.35981707650E-16 1.46572504967E-16 1.57988155172E-16 1.70292900982E-16 1.83555988579E-16 1.97852057294E-16 2.13261559649E-16 2.29871214106E-16 2.47774493081E-16 2.67072148968E-16 2.87872781127E-16 3.10293447034E-16 3.34460321030E-16 3.60509404371E-16 3.88587290587E-16 4.18851990439E-16 4.51473821136E-16 4.86636364803E-16 5.24537501596E-16 5.65390523282E-16 6.09425333545E-16 6.56889741779E-16 7.08050857647E-16 7.63196594242E-16 8.22637288332E-16 8.86707446786E-16 9.55767629022E-16 1.03020647606E-15 1.11044289760E-15 1.19692842947E-15 1.29014977460E-15 1.39063154200E-15 1.49893919896E-15 1.61568225325E-15 1.74151768309E-15 1.87715363432E-15 2.02335340548E-15 2.18093974325E-15 2.35079947244E-15 2.53388848662E-15 2.73123712734E-15 2.94395598237E-15 3.17324213549E-15 3.42038590305E-15 3.68677809516E-15 3.97391784240E-15 4.28342103214E-15 4.61702940182E-15 4.97662034049E-15 5.36421745369E-15 5.78200195116E-15 6.23232492143E-15 6.71772056236E-15 7.24092044218E-15 7.80486887107E-15 8.41273947002E-15 9.06795303006E-15 9.77419676236E-15 1.05354450476E-14 1.13559818014E-14 1.22404245812E-14 1.31937505714E-14 1.42213245915E-14 1.53289292856E-14 1.65227976639E-14 1.78096481773E-14 1.91967225250E-14 2.06918264052E-14 2.23033734407E-14 2.40404325246E-14 2.59127788540E-14 2.79309489373E-14 3.01062998868E-14 3.24510733277E-14 3.49784642848E-14 3.77026954348E-14 4.06390971402E-14 4.38041937172E-14 4.72157964213E-14 5.08931036753E-14 5.48568091022E-14 5.91292179728E-14 6.37343727208E-14 6.86981882339E-14 7.40485976808E-14 7.98157096947E-14 8.60319777992E-14 9.27323830273E-14 9.99546307637E-14 1.07739362916E-13 1.16130386611E-13 1.25174920697E-13 1.34923861451E-13 1.45432068970E-13 1.56758675870E-13 1.68967420027E-13 1.82127003229E-13 1.96311477756E-13 2.11600663071E-13 2.28080594959E-13 2.45844009641E-13 2.64990865595E-13 2.85628906003E-13 3.07874265017E-13 3.31852121218E-13 3.57697401977E-13 3.85555542666E-13 4.15583304987E-13 4.47949659035E-13 4.82836734045E-13 5.20440843181E-13 5.60973588131E-13 6.04663049717E-13 6.51755071220E-13 7.02514641651E-13 7.57227386732E-13 8.16201175985E-13 8.79767854972E-13 9.48285112426E-13 1.02213849278E-12 1.10174356540E-12 1.18754826278E-12 1.28003540074E-12 1.37972539497E-12 1.48717918902E-12 1.60300141034E-12 1.72784377206E-12 1.86240873971E-12 2.00745348336E-12 2.16379413761E-12 2.33231039325E-12 2.51395044646E-12 2.70973633338E-12 2.92076968008E-12 3.14823790026E-12 3.39342087553E-12 3.65769815583E-12 3.94255672055E-12 4.24959934390E-12 4.58055361173E-12 4.93728164030E-12 5.32179055277E-12 5.73624376650E-12 6.18297317089E-12 6.66449223179E-12 7.18351016080E-12 7.74294710860E-12 8.34595063621E-12 8.99591339195E-12 9.69649221321E-12 1.04516286803E-11 1.12655713016E-11 1.21428994237E-11 1.30885489413E-11 1.41078401210E-11 1.52065074771E-11 1.63907320654E-11 1.76671762149E-11 1.90430210326E-11 2.05260067683E-11 2.21244763673E-11 2.38474223802E-11 2.57045375382E-11 2.77062692956E-11 2.98638785204E-11 3.21895029182E-11 3.46962252070E-11 3.73981467658E-11 4.03104668536E-11 4.34495681498E-11 4.68331089451E-11 5.04801220703E-11 5.44111226114E-11 5.86482226232E-11 6.32152556572E-11 6.81379111281E-11 7.34438781095E-11 7.91630014123E-11 8.53274497850E-11 9.19718957778E-11 9.91337115623E-11 1.06853178777E-10 1.15173714509E-10 1.24142116508E-10 1.33808825118E-10 1.44228207368E-10 1.55458862283E-10 1.67563951378E-10 1.80611551636E-10 1.94675040620E-10 2.09833506232E-10 2.26172194181E-10 2.43782984574E-10 2.62764909761E-10 2.83224710131E-10 3.05277434608E-10 3.29047086990E-10 3.54667322158E-10 3.82282198115E-10 4.12046984736E-10 4.44129037181E-10 4.78708733961E-10 5.15980493515E-10 5.56153864079E-10 5.99454701548E-10 6.46126438833E-10 6.96431452644E-10 7.50652538303E-10 8.09094495427E-10 8.72085843217E-10 9.39980666963E-10 1.01316059671E-09 1.09203696593E-09 1.17705310589E-09 1.26868684913E-09 1.36745319582E-09 1.47390722558E-09 1.58864719302E-09 1.71231790767E-09 1.84561432905E-09 1.98928549101E-09 2.14413869021E-09 2.31104402446E-09 2.49093927296E-09 2.68483515975E-09 2.89382102796E-09 3.11907093909E-09 3.36185028303E-09 3.62352284999E-09 3.90555850268E-09 4.20954141260E-09 4.53717893506E-09 4.89031120317E-09 5.27092143486E-09 5.68114705195E-09 6.12329167102E-09 6.59983800473E-09 7.11346179581E-09 7.66704680753E-09 8.26370096948E-09 8.90677381838E-09 9.59987525498E-09 1.03468957590E-08 1.11520282083E-08 1.20197913316E-08 1.29550550419E-08 1.39630676995E-08 1.50494854871E-08 1.62204040958E-08 1.74823928267E-08 1.88425313792E-08 2.03084494473E-08 2.18883694365E-08 2.35911524367E-08 2.54263478094E-08 2.74042465933E-08 2.95359390370E-08 3.18333766159E-08 3.43094388505E-08 3.69780052786E-08 3.98540330143E-08 4.29536403437E-08 4.62941967279E-08 4.98944198255E-08 5.37744800456E-08 5.79561131137E-08 6.24627414010E-08 6.73196046847E-08 7.25539008980E-08 7.81949379257E-08 8.42742969839E-08 9.08260087629E-08 9.78867430877E-08 1.05496013308E-07 1.13696396442E-07 1.22533770330E-07 1.32057569147E-07 1.42321058592E-07 1.53381632366E-07 1.65301131527E-07 1.78146188460E-07 1.91988597450E-07 2.06905713794E-07 2.22980883676E-07 2.40303907286E-07 2.58971537471E-07 2.79088017005E-07 3.00765657087E-07 3.24125460507E-07 3.49297792676E-07 3.76423104496E-07 4.05652710640E-07 4.37149627846E-07 4.71089477625E-07 5.07661458396E-07 5.47069392276E-07 5.89532852394E-07 6.35288376639E-07 6.84590774693E-07 7.37714535357E-07 7.94955341807E-07 8.56631703025E-07 9.23086710382E-07 9.94689928661E-07 1.07183943206E-06 1.15496399594E-06 1.24452545636E-06 1.34102125011E-06 1.44498714875E-06 1.55700020178E-06 1.67768190458E-06 1.80770160788E-06 1.94778018783E-06 2.09869399552E-06 2.26127910773E-06 2.43643590140E-06 2.62513397633E-06 2.82841745239E-06 3.04741066951E-06 3.28332432085E-06 3.53746205158E-06 3.81122755854E-06 4.10613222824E-06 4.42380335361E-06 4.76599297325E-06 5.13458737924E-06 5.53161734408E-06 5.95926912017E-06 6.41989626996E-06 6.91603238817E-06 7.45040478314E-06 8.02594918811E-06 8.64582557988E-06 9.31343518574E-06 1.00324387683E-05 1.08067762818E-05 1.16406880014E-05 1.25387372349E-05 1.35058347331E-05 1.45472649236E-05 1.56687141026E-05 1.68763007284E-05 1.81766079702E-05 1.95767186775E-05 2.10842529467E-05 2.27074084750E-05 2.44550039026E-05 2.63365253622E-05 2.83621764675E-05 3.05429319887E-05 3.28905954826E-05 3.54178611612E-05 3.81383803034E-05 4.10668325356E-05 4.42190023308E-05 4.76118610961E-05 5.12636552485E-05 5.51940007034E-05 5.94239842300E-05 6.39762721577E-05 6.88752269527E-05 7.41470322151E-05 7.98198266884E-05 8.59238479074E-05 9.24915861566E-05 9.95579494528E-05 1.07160440313E-04 1.15339345121E-04 1.24137936949E-04 1.33602692762E-04 1.43783525980E-04 1.54734035433E-04 1.66511771817E-04 1.79178522833E-04 1.92800618243E-04 2.07449256179E-04 2.23200852103E-04 2.40137411914E-04 2.58346930777E-04 2.77923819348E-04 2.98969359176E-04 3.21592189138E-04 3.45908824909E-04 3.72044213550E-04 4.00132325431E-04 4.30316785819E-04 4.62751548596E-04 4.97601614700E-04 5.35043798013E-04 5.75267541571E-04 6.18475787113E-04 6.64885901126E-04 7.14730660712E-04 7.68259302759E-04 8.25738640031E-04 8.87454248006E-04 9.53711726393E-04 1.02483803949E-03 1.10118293967E-03 1.18312047841E-03 1.27105060961E-03 1.36540088983E-03 1.46662828055E-03 1.57522105739E-03 1.69170083168E-03 1.81662468963E-03 1.95058745468E-03 2.09422407851E-03 2.24821216649E-03 2.41327464335E-03 2.59018256460E-03 2.77975807988E-03 2.98287755359E-03 3.20047484884E-03 3.43354478011E-03 3.68314674011E-03 3.95040850611E-03 4.23653023056E-03 4.54278862074E-03 4.87054131149E-03 5.22123143469E-03 5.59639238854E-03 5.99765280896E-03 6.42674174447E-03 6.88549403522E-03 7.37585589529E-03 7.89989069666E-03 8.45978495116E-03 9.05785448571E-03 9.69655080388E-03 1.03784676249E-02 1.11063475890E-02 1.18830891155E-02 1.27117533967E-02 1.35955715089E-02 1.45379516162E-02 1.55424862417E-02 1.66129595743E-02 1.77533547766E-02 1.89678612526E-02 2.02608818320E-02 2.16370398173E-02 2.31011858401E-02 2.46584044592E-02 2.63140204338E-02 2.80736045909E-02 2.99429792028E-02 3.19282227804E-02 3.40356741780E-02 3.62719358995E-02 3.86438764823E-02 4.11586318282E-02 4.38236053382E-02 4.66464666988E-02 4.96351491552E-02 5.27978450965E-02 5.61429997665E-02 5.96793029030E-02 6.34156780953E-02 6.73612696423E-02 7.15254266802E-02 7.59176843398E-02 8.05477416860E-02 8.54254361817E-02 9.05607144137E-02 9.59635988123E-02 1.01644150093E-01 1.07612425150E-01 1.13878430127E-01 1.20452068409E-01 1.27343083263E-01 1.34560994901E-01 1.42115031724E-01 1.50014055543E-01 1.58266480601E-01 1.66880186251E-01 1.75862423171E-01 1.85219713078E-01 1.94957741906E-01 2.05081246537E-01 2.15593895186E-01 2.26498161662E-01 2.37795193802E-01 2.49484676476E-01 2.61564689660E-01 2.74031562227E-01 2.86879722186E-01 3.00101544288E-01 3.13687196035E-01 3.27624483294E-01 3.41898696892E-01 3.56492461729E-01 3.71385590131E-01 3.86554941337E-01 4.01974289208E-01 4.17614200412E-01 4.33441925520E-01 4.49421305620E-01 4.65512697191E-01 4.81672918138E-01 4.97855217994E-01 5.14009275375E-01 5.30081225839E-01 5.46013723316E-01 5.61746038245E-01 5.77214195469E-01 5.92351154801E-01 6.07087036984E-01 6.21349397476E-01 6.35063550154E-01 6.48152942590E-01 6.60539584046E-01 6.72144526728E-01 6.82888400133E-01 6.92691997559E-01 7.01476912954E-01 7.09166225353E-01 7.15685227093E-01 7.20962190921E-01 7.24929169956E-01 7.27522823282E-01 7.28685258743E-01 7.28364883326E-01 7.26517250346E-01 7.23105891563E-01 7.18103121333E-01 7.11490799052E-01 7.03261035407E-01 6.93416827479E-01 6.81972607450E-01 6.68954689692E-01 6.54401601342E-01 6.38364282127E-01 6.20906140238E-01 6.02102952462E-01 5.82042598626E-01 5.60824622567E-01 5.38559614491E-01 5.15368412512E-01 4.91381124469E-01 4.66735974689E-01 4.41577984152E-01 4.16057496463E-01 3.90328565994E-01 3.64547228563E-01 3.38869678764E-01 3.13450381634E-01 2.88440149506E-01 2.63984217551E-01 2.40220353583E-01 2.17277039075E-01 1.95271758858E-01 1.74309436678E-01 1.54481052520E-01 1.35862475371E-01 1.18513541882E-01 1.02477407198E-01 8.77801891066E-02 7.44309206556E-02 6.24218196578E-02 5.17288760825E-02 4.23127504687E-02 3.41199683088E-02 2.70843870846E-02 2.11289045390E-02 1.61673691057E-02 1.21066465113E-02 8.84879074084E-03 6.29326318408E-03 4.33914121787E-03 2.88725711028E-03 1.84221029955E-03 1.11420111548E-03 6.23720289356E-04 3.11408871113E-04 1.28472925093E-04 3.39176813313E-05 -5.24645452146E-06 -1.40864591900E-05 -1.01281672263E-05 -4.03922552866E-06 -6.07547904707E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.68699657392E-26 1.79579850515E-26 1.91161755806E-26 2.03490629813E-26 2.16614647877E-26 2.30585092386E-26 2.45456553153E-26 2.61287140737E-26 2.78138713501E-26 2.96077119332E-26 3.15172452941E-26 3.35499329759E-26 3.57137177499E-26 3.80170546521E-26 4.04689440215E-26 4.30789666691E-26 4.58573213151E-26 4.88148644407E-26 5.19631527099E-26 5.53144881276E-26 5.88819661096E-26 6.26795266538E-26 6.67220088106E-26 7.10252086666E-26 7.56059410691E-26 8.04821053292E-26 8.56727551649E-26 9.11981731532E-26 9.70799499849E-26 1.03341068831E-25 1.10005995149E-25 1.17100772284E-25 1.24653123231E-25 1.32692558966E-25 1.41250493759E-25 1.50360367925E-25 1.60057778497E-25 1.70380618317E-25 1.81369224105E-25 1.93066534078E-25 2.05518255728E-25 2.18773044429E-25 2.32882693554E-25 2.47902336866E-25 2.63890663947E-25 2.80910149531E-25 2.99027297629E-25 3.18312901391E-25 3.38842319732E-25 3.60695771801E-25 3.83958650436E-25 4.08721855842E-25 4.35082150782E-25 4.63142538681E-25 4.93012666114E-25 5.24809251254E-25 5.58656539947E-25 5.94686791211E-25 6.33040794034E-25 6.73868417517E-25 7.17329196485E-25 7.63592954877E-25 8.12840469333E-25 8.65264175587E-25 9.21068920410E-25 9.80472762056E-25 1.04370782233E-24 1.11102119359E-24 1.18267590432E-24 1.25895194684E-24 1.34014737145E-24 1.42657945104E-24 1.51858592083E-24 1.61652629811E-24 1.72078328703E-24 1.83176427403E-24 1.94990291974E-24 2.07566085349E-24 2.20952947712E-24 2.35203188521E-24 2.50372490899E-24 2.66520129226E-24 2.83709200751E-24 3.02006872142E-24 3.21484641949E-24 3.42218619980E-24 3.64289824706E-24 3.87784499838E-24 4.12794451330E-24 4.39417406111E-24 4.67757393955E-24 4.97925153981E-24 5.30038567366E-24 5.64223117971E-24 6.00612382670E-24 6.39348553306E-24 6.80582992308E-24 7.24476824142E-24 7.71201564909E-24 8.20939792550E-24 8.73885860269E-24 9.30246655978E-24 9.90242410709E-24 1.05410755918E-23 1.12209165584E-23 1.19446035003E-23 1.27149642400E-23 1.35350089787E-23 1.44079420591E-23 1.53371744862E-23 1.63263372559E-23 1.73792955432E-23 1.85001638055E-23 1.96933218599E-23 2.09634319974E-23 2.23154572009E-23 2.37546805384E-23 2.52867258062E-23 2.69175795047E-23 2.86536142299E-23 3.05016135754E-23 3.24687986388E-23 3.45628562383E-23 3.67919689497E-23 3.91648470792E-23 4.16907626997E-23 4.43795858814E-23 4.72418232593E-23 5.02886590881E-23 5.35319989450E-23 5.69845162510E-23 6.06597017926E-23 6.45719164370E-23 6.87364472479E-23 7.31695672201E-23 7.78885988661E-23 8.29119819046E-23 8.82593453141E-23 9.39515840331E-23 1.00010940608E-22 1.06461092107E-22 1.13327242636E-22 1.20636221829E-22 1.28416589679E-22 1.36698748144E-22 1.45515059938E-22 1.54899974990E-22 1.64890165060E-22 1.75524667033E-22 1.86845035457E-22 1.98895504916E-22 2.11723162882E-22 2.25378133708E-22 2.39913774488E-22 2.55386883554E-22 2.71857922418E-22 2.89391252019E-22 3.08055384226E-22 3.27923249541E-22 3.49072482077E-22 3.71585722922E-22 3.95550943053E-22 4.21061787088E-22 4.48217939204E-22 4.77125512656E-22 5.07897464416E-22 5.40654036552E-22 5.75523226083E-22 6.12641285124E-22 6.52153253298E-22 6.94213524477E-22 7.38986450086E-22 7.86646981304E-22 8.37381352691E-22 8.91387809908E-22 9.48877384357E-22 1.01007471780E-21 1.07521894015E-21 1.14456460386E-21 1.21838267863E-21 1.29696161019E-21 1.38060844742E-21 1.46965004214E-21 1.56443432633E-21 1.66533167164E-21 1.77273633664E-21 1.88706800738E-21 2.00877343735E-21 2.13832819317E-21 2.27623851285E-21 2.42304328397E-21 2.57931614935E-21 2.74566774862E-21 2.92274810426E-21 3.11124916160E-21 3.31190749263E-21 3.52550717412E-21 3.75288285148E-21 3.99492300009E-21 4.25257339710E-21 4.52684081703E-21 4.81879696578E-21 5.12958266833E-21 5.46041232657E-21 5.81257866458E-21 6.18745777997E-21 6.58651452101E-21 7.01130821060E-21 7.46349873929E-21 7.94485305140E-21 8.45725204935E-21 9.00269794335E-21 9.58332207507E-21 1.02013932459E-20 1.08593265824E-20 1.15596929733E-20 1.23052291156E-20 1.30988482078E-20 1.39436513339E-20 1.48429395803E-20 1.58002269354E-20 1.68192540203E-20 1.79040027055E-20 1.90587116700E-20 2.02878929642E-20 2.15963496406E-20 2.29891945221E-20 2.44718701803E-20 2.60501702025E-20 2.77302618303E-20 2.95187100582E-20 3.14225032864E-20 3.34490806283E-20 3.56063609789E-20 3.79027739579E-20 4.03472928488E-20 4.29494696623E-20 4.57194724607E-20 4.86681250899E-20 5.18069494743E-20 5.51482106380E-20 5.87049646316E-20 6.24911095484E-20 6.65214398319E-20 7.08117040850E-20 7.53786666082E-20 8.02401729068E-20 8.54152194220E-20 9.09240277602E-20 9.67881237095E-20 1.03030421352E-19 1.09675312601E-19 1.16748762513E-19 1.24278410747E-19 1.32293679566E-19 1.40825888808E-19 1.49908378264E-19 1.59576637960E-19 1.69868446829E-19 1.80824020337E-19 1.92486167626E-19 2.04900458789E-19 2.18115402936E-19 2.32182637750E-19 2.47157131253E-19 2.63097396605E-19 2.80065720736E-19 2.98128407742E-19 3.17356037962E-19 3.37823743778E-19 3.59611503194E-19 3.82804452350E-19 4.07493218198E-19 4.33774272625E-19 4.61750309418E-19 4.91530645548E-19 5.23231648323E-19 5.56977190095E-19 5.92899132299E-19 6.31137840702E-19 6.71842733883E-19 7.15172867092E-19 7.61297553762E-19 8.10397027102E-19 8.62663144366E-19 9.18300136537E-19 9.77525406362E-19 1.04057037786E-18 1.10768140063E-18 1.17912071243E-18 1.25516746392E-18 1.33611880942E-18 1.42229106806E-18 1.51402095980E-18 1.61166692118E-18 1.71561050589E-18 1.82625787573E-18 1.94404138768E-18 2.06942128337E-18 2.20288748743E-18 2.34496152193E-18 2.49619854422E-18 2.65718951623E-18 2.82856351364E-18 3.01099018405E-18 3.20518236359E-18 3.41189886238E-18 3.63194742960E-18 3.86618790974E-18 4.11553560253E-18 4.38096483943E-18 4.66351279090E-18 4.96428351912E-18 5.28445229219E-18 5.62527017644E-18 5.98806892509E-18 6.37426618203E-18 6.78537102132E-18 7.22298984396E-18 7.68883265486E-18 8.18471974480E-18 8.71258880321E-18 9.27450248973E-18 9.87265649414E-18 1.05093881160E-17 1.11871853978E-17 1.19086968468E-17 1.26767417845E-17 1.34943213628E-17 1.43646302916E-17 1.52910693214E-17 1.62772585325E-17 1.73270514804E-17 1.84445502533E-17 1.96341215015E-17 2.09004135001E-17 2.22483743119E-17 2.36832711225E-17 2.52107108218E-17 2.68366619127E-17 2.85674778337E-17 3.04099217849E-17 3.23711931549E-17 3.44589556533E-17 3.66813672563E-17 3.90471120843E-17 4.15654343353E-17 4.42461744066E-17 4.70998073469E-17 5.01374837871E-17 5.33710735119E-17 5.68132118414E-17 6.04773490037E-17 6.43778026919E-17 6.85298140108E-17 7.29496070319E-17 7.76544521892E-17 8.26627337640E-17 8.79940217215E-17 9.36691481810E-17 9.97102888180E-17 1.06141049516E-16 1.12986558606E-16 1.20273565058E-16 1.28030543002E-16 1.36287802990E-16 1.45077610438E-16 1.54434311701E-16 1.64394468282E-16 1.74996999701E-16 1.86283335568E-16 1.98297577474E-16 2.11086671317E-16 2.24700590745E-16 2.39192532428E-16 2.54619123926E-16 2.71040644963E-16 2.88521262969E-16 3.07129283815E-16 3.26937418724E-16 3.48023068388E-16 3.70468625410E-16 3.94361796263E-16 4.19795943996E-16 4.46870453056E-16 4.75691117636E-16 5.06370555064E-16 5.39028645860E-16 5.73793002170E-16 6.10799466414E-16 6.50192642093E-16 6.92126458826E-16 7.36764773840E-16 7.84282012238E-16 8.34863848571E-16 8.88707932368E-16 9.46024660447E-16 1.00703799905E-15 1.07198635901E-15 1.14112352730E-15 1.21471965876E-15 1.29306233171E-15 1.37645767166E-15 1.46523154753E-15 1.55973084494E-15 1.66032482172E-15 1.76740655077E-15 1.88139445598E-15 2.00273394727E-15 2.13189916100E-15 2.26939481269E-15 2.41575816920E-15 2.57156114807E-15 2.73741255237E-15 2.91396044955E-15 3.10189470378E-15 3.30194967164E-15 3.51490707159E-15 3.74159903856E-15 3.98291137554E-15 4.23978701487E-15 4.51322970272E-15 4.80430792132E-15 5.11415906398E-15 5.44399387954E-15 5.79510120336E-15 6.16885299347E-15 6.56670969149E-15 6.99022592937E-15 7.44105660408E-15 7.92096334419E-15 8.43182139345E-15 8.97562693827E-15 9.55450490792E-15 1.01707172777E-14 1.08266719075E-14 1.15249319509E-14 1.22682258703E-14 1.30594580985E-14 1.39017203881E-14 1.47983038924E-14 1.57527120252E-14 1.67686741513E-14 1.78501601581E-14 1.90013959685E-14 2.02268800538E-14 2.15314010112E-14 2.29200562754E-14 2.43982720368E-14 2.59718244447E-14 2.76468621773E-14 2.94299304677E-14 3.13279966797E-14 3.33484775326E-14 3.54992680822E-14 3.77887725705E-14 4.02259372658E-14 4.28202854199E-14 4.55819544803E-14 4.85217357024E-14 5.16511163163E-14 5.49823244132E-14 5.85283767267E-14 6.23031294958E-14 6.63213326078E-14 7.05986872340E-14 7.51519071818E-14 7.99987842036E-14 8.51582575186E-14 9.06504878174E-14 9.64969360399E-14 1.02720447234E-13 1.09345339822E-13 1.16397500626E-13 1.23904486019E-13 1.31895629602E-13 1.40402156825E-13 1.49457307000E-13 1.59096463184E-13 1.69357290436E-13 1.80279882997E-13 1.91906920951E-13 2.04283837004E-13 2.17458994009E-13 2.31483873941E-13 2.46413279067E-13 2.62305546080E-13 2.79222774052E-13 2.97231067083E-13 3.16400792604E-13 3.36806856337E-13 3.58528994981E-13 3.81652087792E-13 4.06266488237E-13 4.32468377055E-13 4.60360138078E-13 4.90050758293E-13 5.21656253708E-13 5.55300122679E-13 5.91113828478E-13 6.29237312982E-13 6.69819543489E-13 7.13019094806E-13 7.59004768875E-13 8.07956254357E-13 8.60064828762E-13 9.15534105858E-13 9.74580831285E-13 1.03743572948E-12 1.10434440521E-12 1.17556830329E-12 1.25138573013E-12 1.33209294126E-12 1.41800529885E-12 1.50945850406E-12 1.60680990871E-12 1.71043991164E-12 1.82075344511E-12 1.93818155702E-12 2.06318309521E-12 2.19624650040E-12 2.33789171473E-12 2.48867221337E-12 2.64917716723E-12 2.82003374509E-12 3.00190956419E-12 3.19551529893E-12 3.40160745775E-12 3.62099133914E-12 3.85452417825E-12 4.10311849652E-12 4.36774566718E-12 4.64943971091E-12 4.94930133610E-12 5.26850223979E-12 5.60828968595E-12 5.96999137904E-12 6.35502065257E-12 6.76488198838E-12 7.20117690129E-12 7.66561018599E-12 8.15999660212E-12 8.68626792805E-12 9.24648054417E-12 9.84282344542E-12 1.04776268079E-11 1.11533710816E-11 1.18726966924E-11 1.26384143678E-11 1.34535160846E-11 1.43211868026E-11 1.52448168742E-11 1.62280153185E-11 1.72746238999E-11 1.83887321601E-11 1.95746933808E-11 2.08371416054E-11 2.21810097367E-11 2.36115488106E-11 2.51343485325E-11 2.67553590751E-11 2.84809143866E-11 3.03177568849E-11 3.22730638479E-11 3.43544754069E-11 3.65701244388E-11 3.89286683781E-11 4.14393228323E-11 4.41118979824E-11 4.69568365429E-11 4.99852546870E-11 5.32089856324E-11 5.66406256031E-11 6.02935831452E-11 6.41821318280E-11 6.83214654466E-11 7.27277577946E-11 7.74182258217E-11 8.24111965728E-11 8.77261794228E-11 9.33839416457E-11 9.94065899404E-11 1.05817656513E-10 1.12642191676E-10 1.19906860649E-10 1.27640048984E-10 1.35871972075E-10 1.44634794693E-10 1.53962755560E-10 1.63892301602E-10 1.74462230105E-10 1.85713840551E-10 1.97691095958E-10 2.10440794204E-10 2.24012751525E-10 2.38459996612E-10 2.53838978386E-10 2.70209785464E-10 2.87636382252E-10 3.06186858001E-10 3.25933692848E-10 3.46954041435E-10 3.69330033880E-10 3.93149097241E-10 4.18504295805E-10 4.45494696198E-10 4.74225754496E-10 5.04809725182E-10 5.37366105246E-10 5.72022094075E-10 6.08913098400E-10 6.48183251802E-10 6.89985988306E-10 7.34484631830E-10 7.81853043402E-10 8.32276290821E-10 8.85951380895E-10 9.43088022122E-10 1.00390944792E-09 1.06865328663E-09 1.13757249147E-09 1.21093632767E-09 1.28903142199E-09 1.37216288915E-09 1.46065551493E-09 1.55485503215E-09 1.65512946820E-09 1.76187058130E-09 1.87549539342E-09 1.99644781852E-09 2.12520039571E-09 2.26225613531E-09 2.40815048393E-09 2.56345341588E-09 2.72877166203E-09 2.90475107164E-09 3.09207914484E-09 3.29148771349E-09 3.50375579648E-09 3.72971265088E-09 3.97024100072E-09 4.22628049195E-09 4.49883136012E-09 4.78895833471E-09 5.09779480278E-09 5.42654722845E-09 5.77649987157E-09 6.14901979792E-09 6.54556222303E-09 6.96767618907E-09 7.41701061930E-09 7.89532075701E-09 8.40447501680E-09 8.94646228175E-09 9.52339967254E-09 1.01375408138E-08 1.07912846296E-08 1.14871847198E-08 1.22279593202E-08 1.30165019222E-08 1.38558925742E-08 1.47494098998E-08 1.57005438993E-08 1.67130095862E-08 1.77907614748E-08 1.89380090351E-08 2.01592331142E-08 2.14592034377E-08 2.28429972242E-08 2.43160190078E-08 2.58840217360E-08 2.75531292229E-08 2.93298600577E-08 3.12211530443E-08 3.32343942869E-08 3.53774460194E-08 3.76586772849E-08 4.00869966061E-08 4.26718867488E-08 4.54234417236E-08 4.83524061885E-08 5.14702173613E-08 5.47890496652E-08 5.83218622190E-08 6.20824494098E-08 6.60854947029E-08 7.03466279420E-08 7.48824863156E-08 7.97107792617E-08 8.48503575523E-08 9.03212868259E-08 9.61449258484E-08 1.02344009830E-07 1.08942739080E-07 1.15966873399E-07 1.23443832526E-07 1.31402803061E-07 1.39874852272E-07 1.48893049227E-07 1.58492593713E-07 1.68710953467E-07 1.79588010234E-07 1.91166215214E-07 2.03490754537E-07 2.16609725344E-07 2.30574323244E-07 2.45439041805E-07 2.61261884869E-07 2.78104592554E-07 2.96032881766E-07 3.15116702192E-07 3.35430508754E-07 3.57053551578E-07 3.80070184612E-07 4.04570194074E-07 4.30649148043E-07 4.58408768473E-07 4.87957327160E-07 5.19410067137E-07 5.52889651129E-07 5.88526638855E-07 6.26459994959E-07 6.66837629585E-07 7.09816973643E-07 7.55565591057E-07 8.04261830269E-07 8.56095517605E-07 9.11268695109E-07 9.69996405764E-07 1.03250752904E-06 1.09904567010E-06 1.16987010598E-06 1.24525679249E-06 1.32549943561E-06 1.41091063164E-06 1.50182308035E-06 1.59859087585E-06 1.70159088023E-06 1.81122418503E-06 1.92791766641E-06 2.05212563977E-06 2.18433162030E-06 2.32505019612E-06 2.47482902118E-06 2.63425093566E-06 2.80393622177E-06 2.98454500378E-06 3.17677980126E-06 3.38138824530E-06 3.59916596821E-06 3.83095967740E-06 4.07767042541E-06 4.34025708828E-06 4.61974006560E-06 4.91720521615E-06 5.23380804409E-06 5.57077815144E-06 5.92942397369E-06 6.31113781641E-06 6.71740121170E-06 7.14979061474E-06 7.60998346163E-06 8.09976461139E-06 8.62103319601E-06 9.17580990430E-06 9.76624472638E-06 1.03946251880E-05 1.10633851047E-05 1.17751138887E-05 1.25325664428E-05 1.33386736771E-05 1.41965536883E-05 1.51095236414E-05 1.60811123983E-05 1.71150739384E-05 1.82154016206E-05 1.93863433381E-05 2.06324176204E-05 2.19584307420E-05 2.33694948964E-05 2.48710475032E-05 2.64688717154E-05 2.81691181998E-05 2.99783282673E-05 3.19034584360E-05 3.39519065098E-05 3.61315392666E-05 3.84507218499E-05 4.09183489658E-05 4.35438779923E-05 4.63373641132E-05 4.93094975957E-05 5.24716433376E-05 5.58358828145E-05 5.94150585682E-05 6.32228213805E-05 6.72736802875E-05 7.15830555961E-05 7.61673350722E-05 8.10439334791E-05 8.62313556537E-05 9.17492633160E-05 9.76185458183E-05 1.03861395048E-04 1.10501384712E-04 1.17563554229E-04 1.25074497490E-04 1.33062456727E-04 1.41557421762E-04 1.50591234921E-04 1.60197701879E-04 1.70412708760E-04 1.81274345781E-04 1.92823037760E-04 2.05101681829E-04 2.18155792668E-04 2.32033655636E-04 2.46786488117E-04 2.62468609476E-04 2.79137619974E-04 2.96854589022E-04 3.15684253150E-04 3.35695224071E-04 3.56960207218E-04 3.79556231131E-04 4.03564888066E-04 4.29072586189E-04 4.56170813709E-04 4.84956415287E-04 5.15531881035E-04 5.48005648398E-04 5.82492417191E-04 6.19113477992E-04 6.57997054105E-04 6.99278657196E-04 7.43101456679E-04 7.89616662868E-04 8.38983923782E-04 8.91371735470E-04 9.46957865542E-04 1.00592978953E-03 1.06848513955E-03 1.13483216457E-03 1.20519020141E-03 1.27979015552E-03 1.35887499018E-03 1.44270022265E-03 1.53153442558E-03 1.62565973164E-03 1.72537233888E-03 1.83098301438E-03 1.94281759280E-03 2.06121746656E-03 2.18654006371E-03 2.31915930878E-03 2.45946606201E-03 2.60786853112E-03 2.76479264954E-03 2.93068241434E-03 3.10600017615E-03 3.29122687286E-03 3.48686219798E-03 3.69342469357E-03 3.91145175692E-03 4.14149954913E-03 4.38414279269E-03 4.63997444417E-03 4.90960522715E-03 5.19366300913E-03 5.49279200542E-03 5.80765179141E-03 6.13891610404E-03 6.48727141146E-03 6.85341522935E-03 7.23805416104E-03 7.64190163743E-03 8.06567533204E-03 8.51009422562E-03 8.97587529384E-03 9.46372979159E-03 9.97435910654E-03 1.05084501552E-02 1.10666702943E-02 1.16496617221E-02 1.22580353438E-02 1.28923640778E-02 1.35531755821E-02 1.42409443813E-02 1.49560833793E-02 1.56989347469E-02 1.64697601780E-02 1.72687305143E-02 1.80959147461E-02 1.89512684032E-02 1.98346213613E-02 2.07456650982E-02 2.16839394469E-02 2.26488189051E-02 2.36394985764E-02 2.46549798337E-02 2.56940558136E-02 2.67552968689E-02 2.78370361268E-02 2.89373553237E-02 3.00540711075E-02 3.11847220252E-02 3.23265564347E-02 3.34765216096E-02 3.46312543241E-02 3.57870732369E-02 3.69399734099E-02 3.80856233256E-02 3.92193647801E-02 4.03362160523E-02 4.14308787552E-02 4.24977487879E-02 4.35309318043E-02 4.45242636096E-02 4.54713358811E-02 4.63655275821E-02 4.72000424046E-02 4.79679525242E-02 4.86622488905E-02 4.92758981948E-02 4.98019065664E-02 5.02333899338E-02 5.05636508613E-02 5.07862615240E-02 5.08951523198E-02 5.08847054384E-02 5.07498525102E-02 5.04861752526E-02 5.00900078098E-02 4.95585392615E-02 4.88899145503E-02 4.80833318565E-02 4.71391342452E-02 4.60588932172E-02 4.48454816430E-02 4.35031334356E-02 4.20374872484E-02 4.04556114763E-02 3.87660078991E-02 3.69785914510E-02 3.51046438381E-02 3.31567390615E-02 3.11486393526E-02 2.90951605812E-02 2.70120068678E-02 2.49155749049E-02 2.28227293663E-02 2.07505517365E-02 1.87160659071E-02 1.67359449283E-02 1.48262043399E-02 1.30018884904E-02 1.12767571310E-02 9.66298029532E-03 8.17084997444E-03 6.80851731357E-03 5.58176393295E-03 4.49381544585E-03 3.54520427384E-03 2.73368740469E-03 2.05422279183E-03 1.49900566702E-03 1.05756317414E-03 7.16902509972E-04 4.61704296808E-04 2.75910108568E-04 1.47475576656E-04 6.53444022532E-05 1.85962062453E-05 -3.11388298840E-06 -9.09527613019E-06 -7.15557828385E-06 -3.14431377191E-06 -5.25510548077E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 6 1 i j (l(j)) 0.00000000000E+00 Q_int 1.81852224372E-27 1.93580685192E-27 2.06065566746E-27 2.19355653982E-27 2.33502878204E-27 2.48562519998E-27 2.64593425242E-27 2.81658235046E-27 2.99823630526E-27 3.19160593360E-27 3.39744683150E-27 3.61656332674E-27 3.84981162180E-27 4.09810313945E-27 4.36240808420E-27 4.64375923338E-27 4.94325597270E-27 5.26206859219E-27 5.60144285910E-27 5.96270488574E-27 6.34726631135E-27 6.75662981805E-27 7.19239500264E-27 7.65626462707E-27 8.15005127197E-27 8.67568441939E-27 9.23521799229E-27 9.83083838027E-27 1.04648729830E-26 1.11397993043E-26 1.18582546337E-26 1.26230463508E-26 1.34371628960E-26 1.43037854473E-26 1.52263003513E-26 1.62083123549E-26 1.72536586915E-26 1.83664240746E-26 1.95509566590E-26 2.08118850317E-26 2.21541362977E-26 2.35829553330E-26 2.51039252790E-26 2.67229893589E-26 2.84464741009E-26 3.02811140589E-26 3.22340781286E-26 3.43129975596E-26 3.65259957747E-26 3.88817201126E-26 4.13893756174E-26 4.40587610075E-26 4.69003069644E-26 4.99251168908E-26 5.31450102972E-26 5.65725689872E-26 6.02211862209E-26 6.41051190496E-26 6.82395440253E-26 7.26406165036E-26 7.73255337708E-26 8.23126022432E-26 8.76213089994E-26 9.32723979265E-26 9.92879507775E-26 1.05691473456E-25 1.12507987866E-25 1.19764129687E-25 1.27488252450E-25 1.35710538333E-25 1.44463116097E-25 1.53780186630E-25 1.63698156589E-25 1.74255780656E-25 1.85494312978E-25 1.97457668365E-25 2.10192593887E-25 2.23748851545E-25 2.38179412709E-25 2.53540665111E-25 2.69892633181E-25 2.87299212589E-25 3.05828419924E-25 3.25552658466E-25 3.46549001108E-25 3.68899491516E-25 3.92691464717E-25 4.18017888366E-25 4.44977726015E-25 4.73676323816E-25 5.04225822166E-25 5.36745593895E-25 5.71362710721E-25 6.08212439781E-25 6.47438772195E-25 6.89194985712E-25 7.33644243647E-25 7.80960232444E-25 8.31327840360E-25 8.84943879923E-25 9.42017856975E-25 1.00277278933E-24 1.06744607820E-24 1.13629043589E-24 1.20957487321E-24 1.28758575071E-24 1.37062789760E-24 1.45902580286E-24 1.55312488326E-24 1.65329283299E-24 1.75992106051E-24 1.87342621795E-24 1.99425182918E-24 2.12287002292E-24 2.25978337758E-24 2.40552688506E-24 2.56067004132E-24 2.72581907162E-24 2.90161929942E-24 3.08875766793E-24 3.28796542443E-24 3.50002097758E-24 3.72575293909E-24 3.96604336153E-24 4.22183118499E-24 4.49411590597E-24 4.78396148298E-24 5.09250049396E-24 5.42093856185E-24 5.77055906557E-24 6.14272815490E-24 6.53890008871E-24 6.96062291751E-24 7.40954453248E-24 7.88741910466E-24 8.39611393943E-24 8.93761677299E-24 9.51404353954E-24 1.01276466393E-23 1.07808237398E-23 1.14761271450E-23 1.22162737681E-23 1.30041557484E-23 1.38428517519E-23 1.47356390016E-23 1.56860060835E-23 1.66976665777E-23 1.77745735698E-23 1.89209350976E-23 2.01412305940E-23 2.14402283904E-23 2.28230043493E-23 2.42949616983E-23 2.58618521430E-23 2.75297983423E-23 2.93053178328E-23 3.11953484960E-23 3.32072756684E-23 3.53489609998E-23 3.76287731729E-23 4.00556206039E-23 4.26389862529E-23 4.53889646782E-23 4.83163014811E-23 5.14324352951E-23 5.47495424817E-23 5.82805847109E-23 6.20393596081E-23 6.60405546696E-23 7.02998046537E-23 7.48337526741E-23 7.96601152332E-23 8.47977514497E-23 9.02667367513E-23 9.60884413195E-23 1.02285613594E-22 1.08882469164E-22 1.15904785388E-22 1.23380002124E-22 1.31337328948E-22 1.39807859291E-22 1.48824691940E-22 1.58423060370E-22 1.68640470419E-22 1.79516846845E-22 1.91094689333E-22 2.03419238562E-22 2.16538652982E-22 2.30504197000E-22 2.45370441293E-22 2.61195476043E-22 2.78041137930E-22 2.95973251755E-22 3.15061887657E-22 3.35381634911E-22 3.57011893387E-22 3.80037183807E-22 4.04547478015E-22 4.30638550538E-22 4.58412352832E-22 4.87977411659E-22 5.19449253157E-22 5.52950854260E-22 5.88613123235E-22 6.26575411210E-22 6.66986056688E-22 7.10002965188E-22 7.55794226262E-22 8.04538770308E-22 8.56427067747E-22 9.11661873290E-22 9.70459018206E-22 1.03304825369E-21 1.09967414861E-21 1.17059704520E-21 1.24609407631E-21 1.32646024832E-21 1.41200959392E-21 1.50307639915E-21 1.60001650966E-21 1.70320872120E-21 1.81305625973E-21 1.92998835707E-21 2.05446192811E-21 2.18696335625E-21 2.32801039393E-21 2.47815418575E-21 2.63798142212E-21 2.80811663172E-21 2.98922462191E-21 3.18201307644E-21 3.38723532077E-21 3.60569326570E-21 3.83824054084E-21 4.08578583023E-21 4.34929642301E-21 4.62980199313E-21 4.92839862284E-21 5.24625308568E-21 5.58460740563E-21 5.94478371039E-21 6.32818939761E-21 6.73632263435E-21 7.17077821118E-21 7.63325377392E-21 8.12555645715E-21 8.64960994575E-21 9.20746199164E-21 9.80129241552E-21 1.04334216245E-20 1.11063196792E-20 1.18226159457E-20 1.25851093694E-20 1.33967794128E-20 1.42607976969E-20 1.51805403951E-20 1.61596014254E-20 1.72018064937E-20 1.83112280431E-20 1.94922011668E-20 2.07493405477E-20 2.20875584906E-20 2.35120841169E-20 2.50284837977E-20 2.66426829047E-20 2.83609889632E-20 3.01901162999E-20 3.21372122783E-20 3.42098852282E-20 3.64162341745E-20 3.87648804855E-20 4.12650015602E-20 4.39263666899E-20 4.67593752316E-20 4.97750972443E-20 5.29853167452E-20 5.64025777563E-20 6.00402333207E-20 6.39124976797E-20 6.80345018161E-20 7.24223525783E-20 7.70931956189E-20 8.20652823915E-20 8.73580414695E-20 9.29921544633E-20 9.89896368350E-20 1.05373923924E-19 1.12169962523E-19 1.19404308355E-19 1.27105229845E-19 1.35302818578E-19 1.44029106884E-19 1.53318193001E-19 1.63206374324E-19 1.73732289229E-19 1.84937068062E-19 1.96864493851E-19 2.09561173395E-19 2.23076719380E-19 2.37463944241E-19 2.52779066532E-19 2.69081930601E-19 2.86436240434E-19 3.04909808581E-19 3.24574821138E-19 3.45508119817E-19 3.67791502207E-19 3.91512041404E-19 4.16762426252E-19 4.43641323531E-19 4.72253763498E-19 5.02711550303E-19 5.35133698867E-19 5.69646899938E-19 6.06386015144E-19 6.45494603969E-19 6.87125484722E-19 7.31441331682E-19 7.78615310756E-19 8.28831756134E-19 8.82286890589E-19 9.39189592224E-19 9.99762210676E-19 1.06424143597E-18 1.13287922337E-18 1.20594377796E-18 1.28372060263E-18 1.36651361371E-18 1.45464632853E-18 1.54846312962E-18 1.64833061037E-18 1.75463900754E-18 1.86780372614E-18 1.98826696262E-18 2.11649943284E-18 2.25300221137E-18 2.39830868952E-18 2.55298665958E-18 2.71764053352E-18 2.89291370478E-18 3.07949106238E-18 3.27810166717E-18 3.48952160072E-18 3.71457699789E-18 3.95414727504E-18 4.20916856645E-18 4.48063738228E-18 4.76961450261E-18 5.07722912246E-18 5.40468326429E-18 5.75325647497E-18 6.12431082574E-18 6.51929623468E-18 6.93975613235E-18 7.38733349296E-18 7.86377725444E-18 8.37094915261E-18 8.91083099609E-18 9.48553241050E-18 1.00972990820E-17 1.07485215326E-17 1.14417444615E-17 1.21796766885E-17 1.29652017395E-17 1.38013891139E-17 1.46915062792E-17 1.56390314391E-17 1.66476671249E-17 1.77213546639E-17 1.88642895803E-17 2.00809379902E-17 2.13760540534E-17 2.27546985512E-17 2.42222586620E-17 2.57844690123E-17 2.74474340862E-17 2.92176520795E-17 3.11020402922E-17 3.31079621592E-17 3.52432560246E-17 3.75162657706E-17 3.99358734237E-17 4.25115338620E-17 4.52533117626E-17 4.81719209309E-17 5.12787661670E-17 5.45859878327E-17 5.81065092917E-17 6.18540874111E-17 6.58433663190E-17 7.00899346300E-17 7.46103863607E-17 7.94223857756E-17 8.45447364134E-17 8.99974545672E-17 9.58018475030E-17 1.01980596723E-16 1.08557846599E-16 1.15559298726E-16 1.23012312354E-16 1.30946011303E-16 1.39391397776E-16 1.48381473505E-16 1.57951368718E-16 1.68138479420E-16 1.78982613529E-16 1.90526146440E-16 2.02814186619E-16 2.15894751882E-16 2.29818957037E-16 2.44641213640E-16 2.60419442620E-16 2.77215300631E-16 2.95094421000E-16 3.14126670212E-16 3.34386420941E-16 3.55952842693E-16 3.78910211193E-16 4.03348237731E-16 4.29362419743E-16 4.57054414016E-16 4.86532433951E-16 5.17911672468E-16 5.51314752169E-16 5.86872204549E-16 6.24722980115E-16 6.65014991406E-16 7.07905691041E-16 7.53562687048E-16 8.02164397887E-16 8.53900749721E-16 9.08973918666E-16 9.67599120912E-16 1.03000545381E-15 1.09643679122E-15 1.16715273661E-15 1.24242963759E-15 1.32256166598E-15 1.40786196747E-15 1.49866388543E-15 1.59532226374E-15 1.69821483355E-15 1.80774368960E-15 1.92433686170E-15 2.04844998761E-15 2.18056809378E-15 2.32120749104E-15 2.47091779252E-15 2.63028406173E-15 2.79992909923E-15 2.98051587680E-15 3.17275012866E-15 3.37738310976E-15 3.59521453208E-15 3.82709569033E-15 4.07393278926E-15 4.33669048564E-15 4.61639565868E-15 4.91414142378E-15 5.23109140506E-15 5.56848428364E-15 5.92763863931E-15 6.30995810444E-15 6.71693685054E-15 7.15016542862E-15 7.61133698644E-15 8.10225388676E-15 8.62483475263E-15 9.18112196715E-15 9.77328965710E-15 1.04036521916E-14 1.10746732292E-14 1.17889753484E-14 1.25493502995E-14 1.33587699185E-14 1.42203977442E-14 1.51376013854E-14 1.61139656858E-14 1.71533067385E-14 1.82596868045E-14 1.94374301940E-14 2.06911401717E-14 2.20257169543E-14 2.34463768672E-14 2.49586727393E-14 2.65685156125E-14 2.82821978523E-14 3.01064177497E-14 3.20483057105E-14 3.41154521348E-14 3.63159370951E-14 3.86583619295E-14 4.11518828743E-14 4.38062468660E-14 4.66318296539E-14 4.96396763732E-14 5.28415447346E-14 5.62499510030E-14 5.98782189419E-14 6.37405319177E-14 6.78519883660E-14 7.22286608377E-14 7.68876588562E-14 8.18471958314E-14 8.71266602921E-14 9.27466917163E-14 9.87292612562E-14 1.05097757673E-13 1.11877078819E-13 1.19093729026E-13 1.26775922775E-13 1.34953695066E-13 1.43659018907E-13 1.52925930385E-13 1.62790661821E-13 1.73291783508E-13 1.84470354611E-13 1.96370083804E-13 2.09037500274E-13 2.22522135775E-13 2.36876718429E-13 2.52157379045E-13 2.68423870753E-13 2.85739802830E-13 3.04172889616E-13 3.23795215507E-13 3.44683517064E-13 3.66919483333E-13 3.90590075565E-13 4.15787867587E-13 4.42611408149E-13 4.71165606679E-13 5.01562143952E-13 5.33919909289E-13 5.68365465994E-13 6.05033546854E-13 6.44067581656E-13 6.85620258851E-13 7.29854123092E-13 7.76942212383E-13 8.27068734545E-13 8.80429791183E-13 9.37234141717E-13 9.97704024826E-13 1.06207602651E-12 1.13060200830E-12 1.20355009259E-12 1.28120571417E-12 1.36387273945E-12 1.45187465333E-12 1.54555583137E-12 1.64528288562E-12 1.75144610420E-12 1.86446097851E-12 1.98476983409E-12 2.11284356269E-12 2.24918346962E-12 2.39432323817E-12 2.54883102208E-12 2.71331167539E-12 2.88840911993E-12 3.07480887698E-12 3.27324075034E-12 3.48448169397E-12 3.70935885470E-12 3.94875282171E-12 4.20360108572E-12 4.47490169497E-12 4.76371721480E-12 5.07117885819E-12 5.39849093977E-12 5.74693562037E-12 6.11787791190E-12 6.51277104850E-12 6.93316222754E-12 7.38069862576E-12 7.85713391410E-12 8.36433514396E-12 8.90429004805E-12 9.47911492024E-12 1.00910628629E-11 1.07425326859E-11 1.14360783069E-11 1.21744188651E-11 1.29604493002E-11 1.37972518734E-11 1.46881081444E-11 1.56365120434E-11 1.66461835047E-11 1.77210831605E-11 1.88654279097E-11 2.00837075495E-11 2.13807024576E-11 2.27615023771E-11 2.42315265410E-11 2.57965449735E-11 2.74627012970E-11 2.92365368401E-11 3.11250165760E-11 3.31355565054E-11 3.52760529177E-11 3.75549136008E-11 3.99810909801E-11 4.25641175290E-11 4.53141432788E-11 4.82419760796E-11 5.13591243156E-11 5.46778420640E-11 5.82111781440E-11 6.19730269694E-11 6.59781843829E-11 7.02424051785E-11 7.47824666042E-11 7.96162337148E-11 8.47627311297E-11 9.02422173790E-11 9.60762662047E-11 1.02287851351E-10 1.08901438120E-10 1.15943080231E-10 1.23440523411E-10 1.31423315469E-10 1.39922923421E-10 1.48972859271E-10 1.58608812303E-10 1.68868791810E-10 1.79793278030E-10 1.91425383133E-10 2.03811023220E-10 2.16999101203E-10 2.31041701660E-10 2.45994298603E-10 2.61915976878E-10 2.78869668043E-10 2.96922402034E-10 3.16145574182E-10 3.36615231793E-10 3.58412377925E-10 3.81623295347E-10 4.06339893075E-10 4.32660073663E-10 4.60688126637E-10 4.90535146772E-10 5.22319479978E-10 5.56167199408E-10 5.92212611645E-10 6.30598797857E-10 6.71478189337E-10 7.15013182245E-10 7.61376791789E-10 8.10753350941E-10 8.63339254831E-10 9.19343754144E-10 9.78989801609E-10 1.04251495482E-09 1.11017233862E-09 1.18223167098E-09 1.25898035866E-09 1.34072466352E-09 1.42779094828E-09 1.52052700513E-09 1.61930347155E-09 1.72451534159E-09 1.83658357909E-09 1.95595683574E-09 2.08311328764E-09 2.21856259158E-09 2.36284797469E-09 2.51654846262E-09 2.68028125809E-09 2.85470427894E-09 3.04051886628E-09 3.23847267584E-09 3.44936276276E-09 3.67403887520E-09 3.91340696983E-09 4.16843296393E-09 4.44014674258E-09 4.72964643567E-09 5.03810298433E-09 5.36676501882E-09 5.71696406418E-09 6.09012010321E-09 6.48774751422E-09 6.91146141555E-09 7.36298444012E-09 7.84415397496E-09 8.35692989234E-09 8.90340281093E-09 9.48580292231E-09 1.01065094224E-08 1.07680605892E-08 1.14731645546E-08 1.22247108145E-08 1.30257825340E-08 1.38796696993E-08 1.47898831790E-08 1.57601697554E-08 1.67945281992E-08 1.78972264547E-08 1.90728200207E-08 2.03261716065E-08 2.16624721571E-08 2.30872633436E-08 2.46064616201E-08 2.62263839657E-08 2.79537754257E-08 2.97958385810E-08 3.17602650888E-08 3.38552694376E-08 3.60896250780E-08 3.84727031013E-08 4.10145136465E-08 4.37257502349E-08 4.66178372437E-08 4.97029807470E-08 5.29942229632E-08 5.65055005784E-08 6.02517072223E-08 6.42487604007E-08 6.85136732117E-08 7.30646311916E-08 7.79210746701E-08 8.31037870353E-08 8.86349893470E-08 9.45384417599E-08 1.00839552262E-07 1.07565493270E-07 1.14745326656E-07 1.22410137831E-07 1.30593179573E-07 1.39330026288E-07 1.48658739521E-07 1.58620045519E-07 1.69257525770E-07 1.80617821478E-07 1.92750853004E-07 2.05710055423E-07 2.19552631371E-07 2.34339822510E-07 2.50137200989E-07 2.67014982425E-07 2.85048362004E-07 3.04317875474E-07 3.24909786886E-07 3.46916505122E-07 3.70437031379E-07 3.95577439978E-07 4.22451394987E-07 4.51180705430E-07 4.81895921968E-07 5.14736978250E-07 5.49853880299E-07 5.87407447635E-07 6.27570110050E-07 6.70526764308E-07 7.16475695333E-07 7.65629566836E-07 8.18216486678E-07 8.74481152696E-07 9.34686085169E-07 9.99112952539E-07 1.06806399757E-06 1.14186357160E-06 1.22085978526E-06 1.30542628449E-06 1.39596416153E-06 1.49290401130E-06 1.59670814418E-06 1.70787296734E-06 1.82693154744E-06 1.95445636869E-06 2.09106230124E-06 2.23740979595E-06 2.39420832296E-06 2.56222007278E-06 2.74226393975E-06 2.93521980979E-06 3.14203317544E-06 3.36372010326E-06 3.60137258039E-06 3.85616426935E-06 4.12935670178E-06 4.42230594477E-06 4.73646977550E-06 5.07341540259E-06 5.43482777563E-06 5.82251852711E-06 6.23843559449E-06 6.68467357341E-06 7.16348485679E-06 7.67729161868E-06 8.22869870574E-06 8.82050750390E-06 9.45573085235E-06 1.01376090824E-05 1.08696272641E-05 1.16555337484E-05 1.24993601016E-05 1.34054425305E-05 1.43784449091E-05 1.54233835208E-05 1.65456536395E-05 1.77510580821E-05 1.90458378708E-05 2.04367051562E-05 2.19308785586E-05 2.35361210971E-05 2.52607808868E-05 2.71138347930E-05 2.91049352463E-05 3.12444604323E-05 3.35435680840E-05 3.60142531158E-05 3.86694093542E-05 4.15228956334E-05 4.45896065380E-05 4.78855480909E-05 5.14279186993E-05 5.52351956882E-05 5.93272277648E-05 6.37253337753E-05 6.84524081315E-05 7.35330332978E-05 7.89935997495E-05 8.48624338245E-05 9.11699339083E-05 9.79487154046E-05 1.05233764957E-04 1.13062604401E-04 1.21475464932E-04 1.30515471986E-04 1.40228841336E-04 1.50665086907E-04 1.61877240815E-04 1.73922086130E-04 1.86860402855E-04 2.00757227595E-04 2.15682127379E-04 2.31709488061E-04 2.48918817704E-04 2.67395065286E-04 2.87228955046E-04 3.08517336692E-04 3.31363551642E-04 3.55877815356E-04 3.82177615745E-04 4.10388127469E-04 4.40642641858E-04 4.73083011978E-04 5.07860112202E-04 5.45134311449E-04 5.85075958991E-04 6.27865881486E-04 6.73695889605E-04 7.22769292265E-04 7.75301416155E-04 8.31520127802E-04 8.91666355003E-04 9.55994603961E-04 1.02477346792E-03 1.09828612252E-03 1.17683080245E-03 1.26072125333E-03 1.35028715197E-03 1.44587448740E-03 1.54784589414E-03 1.65658092848E-03 1.77247627728E-03 1.89594588813E-03 2.02742100828E-03 2.16735011908E-03 2.31619875112E-03 2.47444916436E-03 2.64259987617E-03 2.82116501922E-03 3.01067350955E-03 3.21166800444E-03 3.42470362816E-03 3.65034644273E-03 3.88917163989E-03 4.14176142925E-03 4.40870259741E-03 4.69058371146E-03 4.98799194078E-03 5.30150947021E-03 5.63170947854E-03 5.97915165633E-03 6.34437723861E-03 6.72790352923E-03 7.13021789599E-03 7.55177121832E-03 7.99297077297E-03 8.45417254728E-03 8.93567297517E-03 9.43770009676E-03 9.96040415022E-03 1.05038476125E-02 1.10679947156E-02 1.16527004752E-02 1.22576992818E-02 1.28825931170E-02 1.35268394732E-02 1.41897390707E-02 1.48704234852E-02 1.55678428158E-02 1.62807535450E-02 1.70077067635E-02 1.77470369533E-02 1.84968515465E-02 1.92550214994E-02 2.00191731430E-02 2.07866815946E-02 2.15546660345E-02 2.23199871705E-02 2.30792472288E-02 2.38287928236E-02 2.45647210630E-02 2.52828892541E-02 2.59789285643E-02 2.66482619849E-02 2.72861269220E-02 2.78876027094E-02 2.84476432962E-02 2.89611153073E-02 2.94228416065E-02 2.98276504120E-02 3.01704299135E-02 3.04461882321E-02 3.06501184309E-02 3.07776681475E-02 3.08246132568E-02 3.07871348072E-02 3.06618982926E-02 3.04461341332E-02 3.01377180521E-02 2.97352498416E-02 2.92381288324E-02 2.86466242122E-02 2.79619381881E-02 2.71862598735E-02 2.63228076982E-02 2.53758581057E-02 2.43507583310E-02 2.32539211381E-02 2.20927995682E-02 2.08758399937E-02 1.96124121170E-02 1.83127149814E-02 1.69876585878E-02 1.56487213272E-02 1.43077841351E-02 1.29769430457E-02 1.16683026404E-02 1.03937537336E-02 9.16473947998E-03 7.99201488690E-03 6.88540542857E-03 5.85357103955E-03 4.90378215631E-03 4.04171462914E-03 3.27127018653E-03 2.59442865387E-03 2.01113726732E-03 1.51924115600E-03 1.11445738166E-03 7.90392838837E-04 5.38603871278E-04 3.48692726726E-04 2.09466108727E-04 1.12546408423E-04 5.01284291950E-05 1.43404751994E-05 -2.41381923918E-06 -7.08731613147E-06 -5.60498750127E-06 -2.47582864620E-06 -4.15950760835E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 5 1 i j (l(j)) 0.00000000000E+00 Q_int 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 6 1 i j (l(j)) 0.00000000000E+00 Q_int 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 6 1 i j (l(j)) 0.00000000000E+00 Q_int 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5D 2 4.00 Wavefunction 1.14184918509E-15 1.18548152281E-15 1.23078113930E-15 1.27781174462E-15 1.32663948328E-15 1.37733302736E-15 1.42996367301E-15 1.48460544074E-15 1.54133517954E-15 1.60023267495E-15 1.66138076130E-15 1.72486543815E-15 1.79077599129E-15 1.85920511830E-15 1.93024905892E-15 2.00400773039E-15 2.08058486801E-15 2.16008817100E-15 2.24262945397E-15 2.32832480421E-15 2.41729474493E-15 2.50966440477E-15 2.60556369380E-15 2.70512748618E-15 2.80849580991E-15 2.91581404373E-15 3.02723312160E-15 3.14290974495E-15 3.26300660311E-15 3.38769260207E-15 3.51714310206E-15 3.65154016419E-15 3.79107280648E-15 3.93593726969E-15 4.08633729336E-15 4.24248440230E-15 4.40459820412E-15 4.57290669808E-15 4.74764659572E-15 4.92906365384E-15 5.11741302006E-15 5.31295959172E-15 5.51597838843E-15 5.72675493881E-15 5.94558568213E-15 6.17277838519E-15 6.40865257517E-15 6.65353998902E-15 6.90778504002E-15 7.17174530219E-15 7.44579201314E-15 7.73031059623E-15 8.02570120260E-15 8.33237927397E-15 8.65077612693E-15 8.98133955952E-15 9.32453448105E-15 9.68084356594E-15 1.00507679326E-14 1.04348278480E-14 1.08335634599E-14 1.12475355558E-14 1.16773263522E-14 1.21235403133E-14 1.25868050010E-14 1.30677719577E-14 1.35671176223E-14 1.40855442820E-14 1.46237810597E-14 1.51825849397E-14 1.57627418319E-14 1.63650676776E-14 1.69904095968E-14 1.76396470796E-14 1.83136932233E-14 1.90134960162E-14 1.97400396715E-14 2.04943460108E-14 2.12774759018E-14 2.20905307499E-14 2.29346540475E-14 2.38110329822E-14 2.47209001062E-14 2.56655350701E-14 2.66462664226E-14 2.76644734786E-14 2.87215882598E-14 2.98190975079E-14 3.09585447763E-14 3.21415326004E-14 3.33697247518E-14 3.46448485781E-14 3.59686974324E-14 3.73431331954E-14 3.87700888937E-14 4.02515714191E-14 4.17896643504E-14 4.33865308844E-14 4.50444168777E-14 4.67656540059E-14 4.85526630422E-14 5.04079572626E-14 5.23341459805E-14 5.43339382160E-14 5.64101465066E-14 5.85656908624E-14 6.08036028729E-14 6.31270299707E-14 6.55392398580E-14 6.80436251025E-14 7.06437079087E-14 7.33431450715E-14 7.61457331193E-14 7.90554136535E-14 8.20762788918E-14 8.52125774237E-14 8.84687201861E-14 9.18492866662E-14 9.53590313428E-14 9.90028903727E-14 1.02785988533E-13 1.06713646430E-13 1.10791387978E-13 1.15024948175E-13 1.19420281161E-13 1.23983568599E-13 1.28721228363E-13 1.33639923568E-13 1.38746571939E-13 1.44048355544E-13 1.49552730888E-13 1.55267439406E-13 1.61200518349E-13 1.67360312088E-13 1.73755483846E-13 1.80395027889E-13 1.87288282170E-13 1.94444941463E-13 2.01875070999E-13 2.09589120623E-13 2.17597939489E-13 2.25912791318E-13 2.34545370240E-13 2.43507817242E-13 2.52812737242E-13 2.62473216818E-13 2.72502842610E-13 2.82915720434E-13 2.93726495114E-13 3.04950371083E-13 3.16603133768E-13 3.28701171785E-13 3.41261499995E-13 3.54301783429E-13 3.67840362134E-13 3.81896276968E-13 3.96489296377E-13 4.11639944200E-13 4.27369528532E-13 4.43700171693E-13 4.60654841340E-13 4.78257382773E-13 4.96532552466E-13 5.15506052888E-13 5.35204568649E-13 5.55655804035E-13 5.76888521966E-13 5.98932584448E-13 6.21818994579E-13 6.45579940143E-13 6.70248838886E-13 6.95860385512E-13 7.22450600479E-13 7.50056880657E-13 7.78718051928E-13 8.08474423787E-13 8.39367846034E-13 8.71441767636E-13 9.04741297830E-13 9.39313269568E-13 9.75206305381E-13 1.01247088577E-12 1.05115942018E-12 1.09132632075E-12 1.13302807879E-12 1.17632334428E-12 1.22127300832E-12 1.26794028877E-12 1.31639081920E-12 1.36669274114E-12 1.41891679996E-12 1.47313644435E-12 1.52942792961E-12 1.58787042492E-12 1.64854612468E-12 1.71154036407E-12 1.77694173914E-12 1.84484223133E-12 1.91533733691E-12 1.98852620122E-12 2.06451175818E-12 2.14340087499E-12 2.22530450246E-12 2.31033783107E-12 2.39862045295E-12 2.49027653007E-12 2.58543496890E-12 2.68422960167E-12 2.78679937461E-12 2.89328854337E-12 3.00384687586E-12 3.11862986298E-12 3.23779893720E-12 3.36152169966E-12 3.48997215589E-12 3.62333096050E-12 3.76178567127E-12 3.90553101296E-12 4.05476915113E-12 4.20970997649E-12 4.37057140011E-12 4.53757965987E-12 4.71096963863E-12 4.89098519462E-12 5.07787950437E-12 5.27191541878E-12 5.47336583282E-12 5.68251406933E-12 5.89965427745E-12 6.12509184638E-12 6.35914383482E-12 6.60213941694E-12 6.85442034529E-12 7.11634143148E-12 7.38827104519E-12 7.67059163220E-12 7.96370025236E-12 8.26800913793E-12 8.58394627339E-12 8.91195599737E-12 9.25249962757E-12 9.60605610955E-12 9.97312269034E-12 1.03542156178E-11 1.07498708665E-11 1.11606448919E-11 1.15871154125E-11 1.20298822229E-11 1.24895680366E-11 1.29668193626E-11 1.34623074141E-11 1.39767290528E-11 1.45108077688E-11 1.50652946982E-11 1.56409696796E-11 1.62386423506E-11 1.68591532869E-11 1.75033751842E-11 1.81722140854E-11 1.88666106554E-11 1.95875415037E-11 2.03360205580E-11 2.11131004901E-11 2.19198741965E-11 2.27574763357E-11 2.36270849234E-11 2.45299229898E-11 2.54672602996E-11 2.64404151375E-11 2.74507561628E-11 2.84997043337E-11 2.95887349063E-11 3.07193795088E-11 3.18932282963E-11 3.31119321869E-11 3.43772051833E-11 3.56908267838E-11 3.70546444850E-11 3.84705763797E-11 3.99406138551E-11 4.14668243933E-11 4.30513544787E-11 4.46964326174E-11 4.64043724711E-11 4.81775761110E-11 5.00185373963E-11 5.19298454816E-11 5.39141884580E-11 5.59743571342E-11 5.81132489609E-11 6.03338721065E-11 6.26393496872E-11 6.50329241597E-11 6.75179618817E-11 7.00979578457E-11 7.27765405950E-11 7.55574773268E-11 7.84446791902E-11 8.14422067872E-11 8.45542758834E-11 8.77852633372E-11 9.11397132553E-11 9.46223433838E-11 9.82380517433E-11 1.01991923517E-10 1.05889238205E-10 1.09935477043E-10 1.14136330722E-10 1.18497707379E-10 1.23025740917E-10 1.27726799627E-10 1.32607495143E-10 1.37674691745E-10 1.42935516008E-10 1.48397366830E-10 1.54067925835E-10 1.59955168175E-10 1.66067373751E-10 1.72413138855E-10 1.79001388257E-10 1.85841387765E-10 1.92942757248E-10 2.00315484170E-10 2.07969937638E-10 2.15916882979E-10 2.24167496888E-10 2.32733383141E-10 2.41626588919E-10 2.50859621747E-10 2.60445467091E-10 2.70397606612E-10 2.80730037137E-10 2.91457290335E-10 3.02594453161E-10 3.14157189071E-10 3.26161760054E-10 3.38625049500E-10 3.51564585946E-10 3.64998567729E-10 3.78945888581E-10 3.93426164200E-10 4.08459759838E-10 4.24067818943E-10 4.40272292895E-10 4.57095971881E-10 4.74562516941E-10 4.92696493255E-10 5.11523404683E-10 5.31069729638E-10 5.51362958324E-10 5.72431631400E-10 5.94305380118E-10 6.17014967999E-10 6.40592334096E-10 6.65070637917E-10 6.90484306058E-10 7.16869080621E-10 7.44262069485E-10 7.72701798490E-10 8.02228265625E-10 8.32882997278E-10 8.64709106640E-10 8.97751354342E-10 9.32056211401E-10 9.67671924584E-10 1.00464858426E-09 1.04303819484E-09 1.08289474794E-09 1.12427429828E-09 1.16723504254E-09 1.21183740122E-09 1.25814410359E-09 1.30622027593E-09 1.35613353312E-09 1.40795407372E-09 1.46175477874E-09 1.51761131407E-09 1.57560223698E-09 1.63580910652E-09 1.69831659830E-09 1.76321262353E-09 1.83058845266E-09 1.90053884378E-09 1.97316217584E-09 2.04856058706E-09 2.12684011852E-09 2.20811086336E-09 2.29248712155E-09 2.38008756070E-09 2.47103538292E-09 2.56545849810E-09 2.66348970380E-09 2.76526687203E-09 2.87093314313E-09 2.98063712711E-09 3.09453311262E-09 3.21278128399E-09 3.33554794646E-09 3.46300576011E-09 3.59533398265E-09 3.73271872159E-09 3.87535319592E-09 4.02343800787E-09 4.17718142505E-09 4.33679967334E-09 4.50251724102E-09 4.67456719444E-09 4.85319150583E-09 5.03864139362E-09 5.23117767574E-09 5.43107113640E-09 5.63860290698E-09 5.85406486137E-09 6.07776002647E-09 6.31000300835E-09 6.55112043473E-09 6.80145141434E-09 7.06134801382E-09 7.33117575288E-09 7.61131411835E-09 7.90215709791E-09 8.20411373416E-09 8.51760869989E-09 8.84308289535E-09 9.18099406833E-09 9.53181745788E-09 9.89604646276E-09 1.02741933353E-08 1.06667899017E-08 1.10743883102E-08 1.14975618075E-08 1.19369055451E-08 1.23930374158E-08 1.28665989234E-08 1.33582560845E-08 1.38687003650E-08 1.43986496531E-08 1.49488492682E-08 1.55200730100E-08 1.61131242457E-08 1.67288370407E-08 1.73680773312E-08 1.80317441420E-08 1.87207708509E-08 1.94361265017E-08 2.01788171662E-08 2.09498873602E-08 2.17504215115E-08 2.25815454855E-08 2.34444281684E-08 2.43402831111E-08 2.52703702360E-08 2.62359976085E-08 2.72385232773E-08 2.82793571834E-08 2.93599631436E-08 3.04818609090E-08 3.16466283023E-08 3.28559034363E-08 3.41113870183E-08 3.54148447417E-08 3.67681097687E-08 3.81730853088E-08 3.96317472954E-08 4.11461471640E-08 4.27184147378E-08 4.43507612228E-08 4.60454823172E-08 4.78049614399E-08 4.96316730829E-08 5.15281862903E-08 5.34971682720E-08 5.55413881539E-08 5.76637208729E-08 5.98671512191E-08 6.21547780339E-08 6.45298185678E-08 6.69956130045E-08 6.95556291584E-08 7.22134673512E-08 7.49728654752E-08 7.78377042496E-08 8.08120126778E-08 8.38999737135E-08 8.71059301430E-08 9.04343906920E-08 9.38900363665E-08 9.74777270353E-08 1.01202508264E-07 1.05069618410E-07 1.09084495991E-07 1.13252787330E-07 1.17580354496E-07 1.22073283550E-07 1.26737893099E-07 1.31580743186E-07 1.36608644511E-07 1.41828668011E-07 1.47248154802E-07 1.52874726500E-07 1.58716295943E-07 1.64781078316E-07 1.71077602701E-07 1.77614724072E-07 1.84401635747E-07 1.91447882317E-07 1.98763373061E-07 2.06358395889E-07 2.14243631799E-07 2.22430169904E-07 2.30929523019E-07 2.39753643853E-07 2.48914941813E-07 2.58426300456E-07 2.68301095603E-07 2.78553214146E-07 2.89197073577E-07 3.00247642256E-07 3.11720460460E-07 3.23631662235E-07 3.35997998078E-07 3.48836858491E-07 3.62166298433E-07 3.76005062703E-07 3.90372612300E-07 4.05289151780E-07 4.20775657668E-07 4.36853907947E-07 4.53546512681E-07 4.70876945800E-07 4.88869578106E-07 5.07549711535E-07 5.26943614732E-07 5.47078559978E-07 5.67982861539E-07 5.89685915466E-07 6.12218240924E-07 6.35611523102E-07 6.59898657750E-07 6.85113797431E-07 7.11292399532E-07 7.38471276108E-07 7.66688645632E-07 7.95984186725E-07 8.26399093931E-07 8.57976135627E-07 8.90759714141E-07 9.24795928174E-07 9.60132637593E-07 9.96819530713E-07 1.03490819414E-06 1.07445218527E-06 1.11550710759E-06 1.15813068883E-06 1.20238286208E-06 1.24832585006E-06 1.29602425255E-06 1.34554513720E-06 1.39695813381E-06 1.45033553213E-06 1.50575238353E-06 1.56328660643E-06 1.62301909582E-06 1.68503383696E-06 1.74941802339E-06 1.81626217945E-06 1.88566028752E-06 1.95770992007E-06 2.03251237678E-06 2.11017282689E-06 2.19080045694E-06 2.27450862425E-06 2.36141501613E-06 2.45164181530E-06 2.54531587153E-06 2.64256887797E-06 2.74353756552E-06 2.84836387798E-06 2.95719518224E-06 3.07018447972E-06 3.18749061670E-06 3.30927849363E-06 3.43571931997E-06 3.56699084718E-06 3.70327761174E-06 3.84477118394E-06 3.99167047943E-06 4.14418198714E-06 4.30252008945E-06 4.46690735920E-06 4.63757486609E-06 4.81476250229E-06 4.99871932651E-06 5.18970390541E-06 5.38798467620E-06 5.59384033593E-06 5.80756021678E-06 6.02944470337E-06 6.25980564718E-06 6.49896681026E-06 6.74726431406E-06 7.00504711549E-06 7.27267750109E-06 7.55053158029E-06 7.83899983254E-06 8.13848763531E-06 8.44941585311E-06 8.77222141216E-06 9.10735792396E-06 9.45529630694E-06 9.81652547691E-06 1.01915529920E-05 1.05809058017E-05 1.09851309635E-05 1.14047964170E-05 1.18404917858E-05 1.22928291948E-05 1.27624441347E-05 1.32499963472E-05 1.37561707707E-05 1.42816784488E-05 1.48272576037E-05 1.53936745992E-05 1.59817250903E-05 1.65922350245E-05 1.72260619045E-05 1.78840959766E-05 1.85672614097E-05 1.92765176788E-05 2.00128608582E-05 2.07773249732E-05 2.15709835376E-05 2.23949510530E-05 2.32503844917E-05 2.41384849520E-05 2.50604993847E-05 2.60177222658E-05 2.70114974864E-05 2.80432201445E-05 2.91143385861E-05 3.02263563525E-05 3.13808343460E-05 3.25793929861E-05 3.38237144674E-05 3.51155451409E-05 3.64566979009E-05 3.78490548062E-05 3.92945696062E-05 4.07952705681E-05 4.23532632499E-05 4.39707334615E-05 4.56499503112E-05 4.73932693859E-05 4.92031360405E-05 5.10820887858E-05 5.30327628988E-05 5.50578939782E-05 5.71603218965E-05 5.93429946773E-05 6.16089726437E-05 6.39614326553E-05 6.64036725643E-05 6.89391158273E-05 7.15713161873E-05 7.43039627456E-05 7.71408850187E-05 8.00860583048E-05 8.31436091937E-05 8.63178213357E-05 8.96131413731E-05 9.30341851709E-05 9.65857441689E-05 1.00272792112E-04 1.04100491917E-04 1.08074202856E-04 1.12199488013E-04 1.16482121989E-04 1.20928098937E-04 1.25543640847E-04 1.30335206233E-04 1.35309499021E-04 1.40473477900E-04 1.45834365915E-04 1.51399660507E-04 1.57177143874E-04 1.63174893744E-04 1.69401294564E-04 1.75865049068E-04 1.82575190327E-04 1.89541094219E-04 1.96772492385E-04 2.04279485648E-04 2.12072557950E-04 2.20162590821E-04 2.28560878377E-04 2.37279142858E-04 2.46329550783E-04 2.55724729689E-04 2.65477785499E-04 2.75602320520E-04 2.86112452165E-04 2.97022832286E-04 3.08348667304E-04 3.20105739069E-04 3.32310426451E-04 3.44979727793E-04 3.58131284168E-04 3.71783403488E-04 3.85955085526E-04 4.00666047871E-04 4.15936752794E-04 4.31788435193E-04 4.48243131463E-04 4.65323709535E-04 4.83053899943E-04 5.01458328081E-04 5.20562547624E-04 5.40393075176E-04 5.60977426221E-04 5.82344152348E-04 6.04522879876E-04 6.27544349847E-04 6.51440459552E-04 6.76244305497E-04 7.01990227973E-04 7.28713857265E-04 7.56452161486E-04 7.85243496215E-04 8.15127655868E-04 8.46145926993E-04 8.78341143441E-04 9.11757743547E-04 9.46441829382E-04 9.82441228127E-04 1.01980555565E-03 1.05858628235E-03 1.09883680141E-03 1.14061249941E-03 1.18397082954E-03 1.22897138734E-03 1.27567598922E-03 1.32414875366E-03 1.37445618537E-03 1.42666726240E-03 1.48085352630E-03 1.53708917542E-03 1.59545116156E-03 1.65601928995E-03 1.71887632273E-03 1.78410808601E-03 1.85180358065E-03 1.92205509695E-03 1.99495833316E-03 2.07061251817E-03 2.14912053840E-03 2.23058906898E-03 2.31512870942E-03 2.40285412392E-03 2.49388418639E-03 2.58834213040E-03 2.68635570407E-03 2.78805733032E-03 2.89358427225E-03 3.00307880420E-03 3.11668838833E-03 3.23456585707E-03 3.35686960155E-03 3.48376376610E-03 3.61541844919E-03 3.75200991073E-03 3.89372078604E-03 4.04074030674E-03 4.19326452851E-03 4.35149656616E-03 4.51564683598E-03 4.68593330565E-03 4.86258175194E-03 5.04582602618E-03 5.23590832803E-03 5.43307948729E-03 5.63759925436E-03 5.84973659923E-03 6.06977001930E-03 6.29798785623E-03 6.53468862191E-03 6.78018133382E-03 7.03478585979E-03 7.29883327256E-03 7.57266621401E-03 7.85663926950E-03 8.15111935219E-03 8.45648609765E-03 8.77313226885E-03 9.10146417155E-03 9.44190208033E-03 9.79488067520E-03 1.01608494890E-02 1.05402733653E-02 1.09336329278E-02 1.13414250595E-02 1.17641633936E-02 1.22023788146E-02 1.26566199703E-02 1.31274537946E-02 1.36154660402E-02 1.41212618222E-02 1.46454661717E-02 1.51887245991E-02 1.57517036668E-02 1.63350915722E-02 1.69395987382E-02 1.75659584129E-02 1.82149272778E-02 1.88872860620E-02 1.95838401646E-02 2.03054202822E-02 2.10528830424E-02 2.18271116412E-02 2.26290164841E-02 2.34595358299E-02 2.43196364357E-02 2.52103142014E-02 2.61325948139E-02 2.70875343877E-02 2.80762201015E-02 2.90997708284E-02 3.01593377582E-02 3.12561050096E-02 3.23912902301E-02 3.35661451809E-02 3.47819563046E-02 3.60400452734E-02 3.73417695134E-02 3.86885227034E-02 4.00817352436E-02 4.15228746918E-02 4.30134461612E-02 4.45549926785E-02 4.61490954950E-02 4.77973743483E-02 4.95014876679E-02 5.12631327203E-02 5.30840456882E-02 5.49660016769E-02 5.69108146424E-02 5.89203372338E-02 6.09964605442E-02 6.31411137605E-02 6.53562637071E-02 6.76439142723E-02 7.00061057107E-02 7.24449138124E-02 7.49624489274E-02 7.75608548385E-02 8.02423074684E-02 8.30090134137E-02 8.58632082911E-02 8.88071548866E-02 9.18431410927E-02 9.49734776231E-02 9.82004954895E-02 1.01526543228E-01 1.04953983860E-01 1.08485191574E-01 1.12122548106E-01 1.15868438821E-01 1.19725248456E-01 1.23695356522E-01 1.27781132349E-01 1.31984929753E-01 1.36309081302E-01 1.40755892178E-01 1.45327633602E-01 1.50026535821E-01 1.54854780613E-01 1.59814493331E-01 1.64907734428E-01 1.70136490477E-01 1.75502664655E-01 1.81008066674E-01 1.86654402154E-01 1.92443261421E-01 1.98376107703E-01 2.04454264738E-01 2.10678903763E-01 2.17051029889E-01 2.23571467847E-01 2.30240847109E-01 2.37059586386E-01 2.44027877490E-01 2.51145668590E-01 2.58412646848E-01 2.65828220471E-01 2.73391500182E-01 2.81101280140E-01 2.88956018346E-01 2.96953816556E-01 3.05092399760E-01 3.13369095270E-01 3.21780811467E-01 3.30324016294E-01 3.38994715549E-01 3.47788431078E-01 3.56700178962E-01 3.65724447792E-01 3.74855177174E-01 3.84085736566E-01 3.93408904620E-01 4.02816849163E-01 4.12301107998E-01 4.21852570711E-01 4.31461461677E-01 4.41117324499E-01 4.50809008077E-01 4.60524654596E-01 4.70251689661E-01 4.79976814871E-01 4.89686003133E-01 4.99364497007E-01 5.08996810411E-01 5.18566734037E-01 5.28057344792E-01 5.37451019651E-01 5.46729454274E-01 5.55873686759E-01 5.64864126904E-01 5.73680591359E-01 5.82302345026E-01 5.90708149081E-01 5.98876315955E-01 6.06784771613E-01 6.14411125427E-01 6.21732747923E-01 6.28726856623E-01 6.35370610186E-01 6.41641210947E-01 6.47516015945E-01 6.52972656399E-01 6.57989165533E-01 6.62544114546E-01 6.66616756393E-01 6.70187176937E-01 6.73236452871E-01 6.75746815672E-01 6.77701820652E-01 6.79086520026E-01 6.79887638672E-01 6.80093751085E-01 6.79695457777E-01 6.78685559158E-01 6.77059224656E-01 6.74814154619E-01 6.71950732261E-01 6.68472162639E-01 6.64384595425E-01 6.59697227961E-01 6.54422384853E-01 6.48575570128E-01 6.42175487828E-01 6.35244026682E-01 6.27806204469E-01 6.19890067552E-01 6.11526541103E-01 6.02749225620E-01 5.93594135498E-01 5.84099375691E-01 5.74304752903E-01 5.64251318265E-01 5.53980839133E-01 5.43535198467E-01 5.32955721272E-01 5.22282428770E-01 5.11553222388E-01 5.00803001230E-01 4.90062718556E-01 4.79358384801E-01 4.68710026955E-01 4.58130616568E-01 4.47624981313E-01 4.37191696649E-01 4.26834512104E-01 4.16559065589E-01 4.06370745875E-01 3.96274696927E-01 3.86275822323E-01 3.76378789761E-01 3.66588035602E-01 3.56907769446E-01 3.47341978704E-01 3.37894433148E-01 3.28569678075E-01 3.19370085726E-01 3.10298800583E-01 3.01358767112E-01 2.92552733877E-01 2.83883257506E-01 2.75352706496E-01 2.66963264828E-01 2.58716935391E-01 2.50615543202E-01 2.42660738398E-01 2.34853999025E-01 2.27196633601E-01 2.19689783472E-01 2.12334424977E-01 2.05131371429E-01 1.98081274955E-01 1.91184628217E-01 1.84441766060E-01 1.77852867124E-01 1.71417955478E-01 1.65136902320E-01 1.59009427811E-01 1.53035103073E-01 1.47213352427E-01 1.41543455903E-01 1.36024552078E-01 1.30655641264E-01 1.25435589081E-01 1.20363130443E-01 1.15436873946E-01 1.10655306675E-01 1.06016799414E-01 1.01519612232E-01 9.71619004300E-02 9.29417207981E-02 8.88570381477E-02 8.49057320667E-02 8.10856038454E-02 7.73943835139E-02 7.38297369365E-02 7.03892729018E-02 6.70705501523E-02 6.38710842973E-02 6.07883545572E-02 5.78198102897E-02 5.49628772552E-02 5.22149635821E-02 4.95734654005E-02 4.70357721183E-02 4.45992713212E-02 4.22613532847E-02 4.00194150935E-02 3.78708643703E-02 3.58131226236E-02 3.38436282291E-02 3.19598390649E-02 3.01592348267E-02 2.84393190512E-02 2.67976208800E-02 2.52316965983E-02 2.37391309818E-02 2.23175384860E-02 2.09645643113E-02 1.96778853742E-02 1.84552112117E-02 1.72942848435E-02 1.61928836120E-02 1.51488200171E-02 1.41599425557E-02 1.32241365762E-02 1.23393251493E-02 1.15034699584E-02 1.07145722039E-02 9.97067351783E-03 9.26985688052E-03 8.61024753049E-03 7.99001385642E-03 7.40736826076E-03 6.86056798334E-03 6.34791587388E-03 5.86776110255E-03 5.41849979871E-03 4.99857560864E-03 4.60648016445E-03 4.24075345734E-03 3.89998410987E-03 3.58280954322E-03 3.28791603654E-03 3.01403867699E-03 2.75996120038E-03 2.52451572302E-03 2.30658236705E-03 2.10508878213E-03 1.91900956724E-03 1.74736559726E-03 1.58922325949E-03 1.44369360600E-03 1.30993142787E-03 1.18713425797E-03 1.07454130910E-03 9.71432354291E-04 8.77126556537E-04 7.90981254777E-04 7.12390713237E-04 6.40784840944E-04 5.75627888092E-04 5.16417125739E-04 4.62681515029E-04 4.13980371859E-04 3.69902032587E-04 3.30062526039E-04 2.94104256704E-04 2.61694703680E-04 2.32525139483E-04 2.06309372548E-04 1.82782516779E-04 1.61699791206E-04 1.42835352381E-04 1.25981161823E-04 1.10945890460E-04 9.75538616690E-05 8.56440342023E-05 7.50690259988E-05 6.56941795525E-05 5.73966692723E-05 5.00646509973E-05 4.35964536000E-05 3.78998123957E-05 3.28911438774E-05 2.84948611169E-05 2.46427290113E-05 2.12732583961E-05 1.83311380230E-05 1.57667725248E-05 1.35363350040E-05 1.15999482183E-05 9.92195479127E-06 8.47059890671E-06 7.21765279566E-06 6.13807276330E-06 5.20968308095E-06 4.41288609884E-06 3.73039697070E-06 3.14700142449E-06 2.64933505804E-06 2.22568268930E-06 1.86579634455E-06 1.56073052433E-06 1.30269344563E-06 1.08491301916E-06 9.01516382557E-07 7.47421872295E-07 6.18242379640E-07 5.10199098408E-07 4.20044733655E-07 3.44995301126E-07 2.82669706500E-07 2.31036351120E-07 1.88366066621E-07 1.53190734611E-07 1.24266998971E-07 1.00544527426E-07 8.11383256411E-08 6.53046511361E-08 5.24201157691E-08 4.19636044073E-08 3.35006736718E-08 2.66701283621E-08 2.11725043842E-08 1.67602157951E-08 1.32291500179E-08 1.04115194744E-08 8.16979992988E-09 6.39160586302E-09 4.98537127554E-09 3.87672066953E-09 3.00542956234E-09 2.32288700761E-09 1.78998426727E-09 1.37536415630E-09 1.05397477874E-09 8.05879510234E-10 6.15282274909E-10 4.69733533313E-10 3.57387451761E-10 2.70968395412E-10 2.04724763326E-10 1.54125702643E-10 1.15614692481E-10 8.64100631930E-11 6.43441062943E-11 4.77337933744E-11 3.52772859042E-11 2.59714070192E-11 1.90460836012E-11 1.39124725568E-11 1.01220772268E-11 7.33465443986E-12 5.29312406757E-12 3.80403353250E-12 2.72241047217E-12 1.94006713855E-12 1.37660829498E-12 9.72547382614E-13 6.84059565545E-13 4.79000022719E-13 3.33895838797E-13 2.31683671487E-13 1.60016059725E-13 1.09999295749E-13 7.52572887327E-14 5.12405027850E-14 3.47182511824E-14 2.34075039283E-14 1.57028325934E-14 1.04809105529E-14 6.95969630102E-15 4.59751989349E-15 3.02113714444E-15 1.97470325779E-15 1.28377391020E-15 8.30043597766E-16 5.33714378900E-16 3.41257458260E-16 2.16965098345E-16 1.37151614316E-16 8.61953312845E-17 5.38525650034E-17 3.34454106592E-17 2.06462610078E-17 1.26674114660E-17 7.72400155746E-18 4.68026932111E-18 2.81798666989E-18 1.68582220744E-18 1.00196849327E-18 5.91602620579E-19 3.46979377551E-19 2.02133435553E-19 1.16948991264E-19 6.71956370803E-20 3.83383941363E-20 2.17188338343E-20 1.22154605062E-20 6.82047256483E-21 3.78016188956E-21 2.07949160391E-21 1.13530827229E-21 6.15090187767E-22 3.30666460797E-22 1.76370239675E-22 9.33256875016E-23 4.89862517236E-23 2.55035230462E-23 1.31684416765E-23 6.74266451356E-24 3.42330687248E-24 1.72318062741E-24 8.59883194390E-25 4.25328231068E-25 2.08514786193E-25 1.01304469159E-25 4.87696954842E-26 2.32622191376E-26 1.09921144723E-26 5.14504347249E-27 2.38518803432E-27 1.09503845608E-27 4.97801320824E-28 2.24051946668E-28 9.98280998093E-29 4.40263832655E-29 1.92164588386E-29 8.29998244344E-30 3.54704794049E-30 1.49963269289E-30 6.27150617579E-31 2.59399024657E-31 1.06099667210E-31 4.29089427017E-32 1.71556768414E-32 6.78002847668E-33 2.64822801379E-33 1.02215136073E-33 3.89803738802E-34 0.00000000000E+00 5D 2 4.00 Wavefunction 1.13221671571E-15 1.17548097755E-15 1.22039845323E-15 1.26703231537E-15 1.31544815052E-15 1.36571405142E-15 1.41790071279E-15 1.47208153072E-15 1.52833270590E-15 1.58673335083E-15 1.64736560104E-15 1.71031473063E-15 1.77566927217E-15 1.84352114127E-15 1.91396576581E-15 1.98710222013E-15 2.06303336444E-15 2.14186598942E-15 2.22371096644E-15 2.30868340349E-15 2.39690280706E-15 2.48849325023E-15 2.58358354715E-15 2.68230743423E-15 2.78480375820E-15 2.89121667141E-15 3.00169583456E-15 3.11639662718E-15 3.23548036615E-15 3.35911453262E-15 3.48747300750E-15 3.62073631607E-15 3.75909188179E-15 3.90273429000E-15 4.05186556150E-15 4.20669543673E-15 4.36744167070E-15 4.53433033931E-15 4.70759615724E-15 4.88748280812E-15 5.07424328718E-15 5.26814025713E-15 5.46944641755E-15 5.67844488839E-15 5.89542960820E-15 6.12070574751E-15 6.35459013801E-15 6.59741171816E-15 6.84951199585E-15 7.11124552862E-15 7.38298042239E-15 7.66509884915E-15 7.95799758443E-15 8.26208856534E-15 8.57779946994E-15 8.90557431872E-15 9.24587409909E-15 9.59917741368E-15 9.96598115353E-15 1.03468011968E-14 1.07421731345E-14 1.11526530236E-14 1.15788181690E-14 1.20212679357E-14 1.24806245916E-14 1.29575341827E-14 1.34526674418E-14 1.39667207316E-14 1.45004170241E-14 1.50545069179E-14 1.56297696931E-14 1.62270144078E-14 1.68470810359E-14 1.74908416481E-14 1.81592016391E-14 1.88531010000E-14 1.95735156414E-14 2.03214587650E-14 2.10979822890E-14 2.19041783277E-14 2.27411807272E-14 2.36101666599E-14 2.45123582805E-14 2.54490244448E-14 2.64214824939E-14 2.74311001071E-14 2.84792972257E-14 2.95675480495E-14 3.06973831107E-14 3.18703914259E-14 3.30882227316E-14 3.43525898035E-14 3.56652708664E-14 3.70281120943E-14 3.84430302072E-14 3.99120151670E-14 4.14371329758E-14 4.30205285819E-14 4.46644288964E-14 4.63711459249E-14 4.81430800195E-14 4.99827232547E-14 5.18926629318E-14 5.38755852184E-14 5.59342789256E-14 5.80716394308E-14 6.02906727495E-14 6.25944997628E-14 6.49863606074E-14 6.74696192315E-14 7.00477681271E-14 7.27244332407E-14 7.55033790739E-14 7.83885139771E-14 8.13838956469E-14 8.44937368324E-14 8.77224112602E-14 9.10744597858E-14 9.45545967799E-14 9.81677167587E-14 1.01918901268E-13 1.05813426028E-13 1.09856768357E-13 1.14054614871E-13 1.18412869485E-13 1.22937661710E-13 1.27635355283E-13 1.32512557109E-13 1.37576126557E-13 1.42833185106E-13 1.48291126361E-13 1.53957626450E-13 1.59840654825E-13 1.65948485463E-13 1.72289708506E-13 1.78873242347E-13 1.85708346162E-13 1.92804632945E-13 2.00172083017E-13 2.07821058070E-13 2.15762315735E-13 2.24007024714E-13 2.32566780488E-13 2.41453621625E-13 2.50680046708E-13 2.60259031920E-13 2.70204049286E-13 2.80529085626E-13 2.91248662223E-13 3.02377855250E-13 3.13932316967E-13 3.25928297741E-13 3.38382668896E-13 3.51312946445E-13 3.64737315721E-13 3.78674656954E-13 3.93144571830E-13 4.08167411048E-13 4.23764302954E-13 4.39957183246E-13 4.56768825831E-13 4.74222874851E-13 4.92343877940E-13 5.11157320743E-13 5.30689662766E-13 5.50968374582E-13 5.72021976473E-13 5.93880078534E-13 6.16573422325E-13 6.40133924099E-13 6.64594719694E-13 6.89990211135E-13 7.16356115017E-13 7.43729512736E-13 7.72148902644E-13 8.01654254192E-13 8.32287064140E-13 8.64090414927E-13 8.97109035255E-13 9.31389363000E-13 9.66979610521E-13 1.00392983247E-12 1.04229199618E-12 1.08212005477E-12 1.12347002301E-12 1.16640005610E-12 1.21097053149E-12 1.25724413373E-12 1.30528594272E-12 1.35516352516E-12 1.40694702961E-12 1.46070928517E-12 1.51652590387E-12 1.57447538702E-12 1.63463923563E-12 1.69710206503E-12 1.76195172386E-12 1.82927941764E-12 1.89917983704E-12 1.97175129102E-12 2.04709584517E-12 2.12531946517E-12 2.20653216587E-12 2.29084816603E-12 2.37838604889E-12 2.46926892904E-12 2.56362462550E-12 2.66158584150E-12 2.76329035116E-12 2.86888119320E-12 2.97850687212E-12 3.09232156710E-12 3.21048534882E-12 3.33316440455E-12 3.46053127192E-12 3.59276508158E-12 3.73005180911E-12 3.87258453657E-12 4.02056372411E-12 4.17419749183E-12 4.33370191253E-12 4.49930131556E-12 4.67122860238E-12 4.84972557405E-12 5.03504327135E-12 5.22744232779E-12 5.42719333627E-12 5.63457722952E-12 5.84988567532E-12 6.07342148663E-12 6.30549904750E-12 6.54644475523E-12 6.79659747941E-12 7.05630903850E-12 7.32594469466E-12 7.60588366744E-12 7.89651966714E-12 8.19826144848E-12 8.51153338554E-12 8.83677606858E-12 9.17444692369E-12 9.52502085611E-12 9.88899091816E-12 1.02668690027E-11 1.06591865630E-11 1.10664953602E-11 1.14893682394E-11 1.19283999352E-11 1.23842079083E-11 1.28574332136E-11 1.33487414022E-11 1.38588234570E-11 1.43883967649E-11 1.49382061257E-11 1.55090247992E-11 1.61016555932E-11 1.67169319923E-11 1.73557193302E-11 1.80189160067E-11 1.87074547514E-11 1.94223039352E-11 2.01644689325E-11 2.09349935348E-11 2.17349614194E-11 2.25654976726E-11 2.34277703728E-11 2.43229922328E-11 2.52524223058E-11 2.62173677557E-11 2.72191856959E-11 2.82592850976E-11 2.93391287718E-11 3.04602354264E-11 3.16241818020E-11 3.28326048898E-11 3.40872042335E-11 3.53897443198E-11 3.67420570599E-11 3.81460443663E-11 3.96036808268E-11 4.11170164826E-11 4.26881797108E-11 4.43193802180E-11 4.60129121484E-11 4.77711573096E-11 4.95965885230E-11 5.14917731014E-11 5.34593764597E-11 5.55021658637E-11 5.76230143217E-11 5.98249046255E-11 6.21109335454E-11 6.44843161851E-11 6.69483905043E-11 6.95066220122E-11 7.21626086423E-11 7.49200858123E-11 7.77829316775E-11 8.07551725853E-11 8.38409887377E-11 8.70447200705E-11 9.03708723572E-11 9.38241235458E-11 9.74093303377E-11 1.01131535019E-10 1.04995972551E-10 1.09008077933E-10 1.13173493847E-10 1.17498078594E-10 1.21987914330E-10 1.26649315623E-10 1.31488838334E-10 1.36513288836E-10 1.41729733587E-10 1.47145509068E-10 1.52768232101E-10 1.58605810563E-10 1.64666454506E-10 1.70958687704E-10 1.77491359641E-10 1.84273657959E-10 1.91315121375E-10 1.98625653102E-10 2.06215534773E-10 2.14095440901E-10 2.22276453897E-10 2.30770079648E-10 2.39588263708E-10 2.48743408091E-10 2.58248388717E-10 2.68116573522E-10 2.78361841254E-10 2.88998600999E-10 3.00041812438E-10 3.11507006894E-10 3.23410309172E-10 3.35768460236E-10 3.48598840756E-10 3.61919495551E-10 3.75749158969E-10 3.90107281232E-10 4.05014055794E-10 4.20490447741E-10 4.36558223276E-10 4.53239980329E-10 4.70559180342E-10 4.88540181266E-10 5.07208271816E-10 5.26589707035E-10 5.46711745227E-10 5.67602686285E-10 5.89291911499E-10 6.11809924872E-10 6.35188396026E-10 6.59460204741E-10 6.84659487195E-10 7.10821683978E-10 7.37983589931E-10 7.66183405899E-10 7.95460792453E-10 8.25856925672E-10 8.57414555053E-10 8.90178063633E-10 9.24193530410E-10 9.59508795148E-10 9.96173525662E-10 1.03423928767E-09 1.07375961731E-09 1.11479009644E-09 1.15738843082E-09 1.20161453123E-09 1.24753059779E-09 1.29520120737E-09 1.34469340446E-09 1.39607679546E-09 1.44942364655E-09 1.50480898533E-09 1.56231070635E-09 1.62200968068E-09 1.68398986961E-09 1.74833844273E-09 1.81514590057E-09 1.88450620185E-09 1.95651689562E-09 2.03127925847E-09 2.10889843697E-09 2.18948359550E-09 2.27314806985E-09 2.36000952655E-09 2.45019012842E-09 2.54381670632E-09 2.64102093755E-09 2.74193953107E-09 2.84671441972E-09 2.95549295986E-09 3.06842813861E-09 3.18567878900E-09 3.30740981336E-09 3.43379241525E-09 3.56500434022E-09 3.70123012578E-09 3.84266136100E-09 3.98949695586E-09 4.14194342107E-09 4.30021515851E-09 4.46453476268E-09 4.63513333387E-09 4.81225080309E-09 4.99613626954E-09 5.18704835094E-09 5.38525554726E-09 5.59103661832E-09 5.80468097582E-09 6.02648909041E-09 6.25677291423E-09 6.49585631964E-09 6.74407555474E-09 7.00177971623E-09 7.26933124039E-09 7.54710641282E-09 7.83549589761E-09 8.13490528678E-09 8.44575567072E-09 8.76848423036E-09 9.10354485205E-09 9.45140876589E-09 9.81256520844E-09 1.01875221108E-08 1.05768068129E-08 1.09809668052E-08 1.14005704988E-08 1.18362080244E-08 1.22884920626E-08 1.27580587058E-08 1.32455683521E-08 1.37517066345E-08 1.42771853853E-08 1.48227436368E-08 1.53891486610E-08 1.59771970483E-08 1.65877158281E-08 1.72215636319E-08 1.78796319007E-08 1.85628461387E-08 1.92721672151E-08 2.00085927150E-08 2.07731583429E-08 2.15669393789E-08 2.23910521910E-08 2.32466558052E-08 2.41349535354E-08 2.50571946757E-08 2.60146762573E-08 2.70087448730E-08 2.80407985700E-08 2.91122888173E-08 3.02247225458E-08 3.13796642684E-08 3.25787382797E-08 3.38236309407E-08 3.51160930500E-08 3.64579423063E-08 3.78510658646E-08 3.92974229903E-08 4.07990478140E-08 4.23580521930E-08 4.39766286806E-08 4.56570536097E-08 4.74016902942E-08 4.92129923526E-08 5.10935071580E-08 5.30458794212E-08 5.50728549096E-08 5.71772843088E-08 5.93621272311E-08 6.16304563781E-08 6.39854618615E-08 6.64304556895E-08 6.89688764244E-08 7.16042940180E-08 7.43404148324E-08 7.71810868518E-08 8.01303050938E-08 8.31922172280E-08 8.63711294080E-08 8.96715123275E-08 9.30980075074E-08 9.66554338222E-08 1.00348794277E-07 1.04183283045E-07 1.08164292766E-07 1.12297422137E-07 1.16588483780E-07 1.21043512420E-07 1.25668773365E-07 1.30470771324E-07 1.35456259550E-07 1.40632249334E-07 1.46006019871E-07 1.51585128490E-07 1.57377421284E-07 1.63391044143E-07 1.69634454207E-07 1.76116431760E-07 1.82846092577E-07 1.89832900739E-07 1.97086681945E-07 2.04617637327E-07 2.12436357793E-07 2.20553838922E-07 2.28981496422E-07 2.37731182184E-07 2.46815200948E-07 2.56246327603E-07 2.66037825150E-07 2.76203463354E-07 2.86757538099E-07 2.97714891497E-07 3.09090932752E-07 3.20901659828E-07 3.33163681944E-07 3.45894242924E-07 3.59111245446E-07 3.72833276213E-07 3.87079632083E-07 4.01870347207E-07 4.17226221189E-07 4.33168848336E-07 4.49720648019E-07 4.66904896188E-07 4.84745758105E-07 5.03268322312E-07 5.22498635908E-07 5.42463741167E-07 5.63191713559E-07 5.84711701219E-07 6.07053965925E-07 6.30249925647E-07 6.54332198708E-07 6.79334649650E-07 7.05292436831E-07 7.32242061859E-07 7.60221420903E-07 7.89269857965E-07 8.19428220191E-07 8.50738915289E-07 8.83245971144E-07 9.16995097710E-07 9.52033751262E-07 9.88411201103E-07 1.02617859882E-06 1.06538905020E-06 1.10609768984E-06 1.14836175867E-06 1.19224068443E-06 1.23779616515E-06 1.28509225589E-06 1.33419545880E-06 1.38517481653E-06 1.43810200932E-06 1.49305145571E-06 1.55010041714E-06 1.60932910654E-06 1.67082080103E-06 1.73466195900E-06 1.80094234156E-06 1.86975513872E-06 1.94119710031E-06 2.01536867196E-06 2.09237413626E-06 2.17232175924E-06 2.25532394255E-06 2.34149738138E-06 2.43096322841E-06 2.52384726405E-06 2.62028007314E-06 2.72039722872E-06 2.82433948237E-06 2.93225295861E-06 3.04428937057E-06 3.16060621633E-06 3.28136701811E-06 3.40674154261E-06 3.53690603454E-06 3.67204347223E-06 3.81234382977E-06 3.95800432406E-06 4.10922971751E-06 4.26623258063E-06 4.42923361558E-06 4.59846193953E-06 4.77415542641E-06 4.95656103190E-06 5.14593514840E-06 5.34254395092E-06 5.54666378419E-06 5.75858154660E-06 5.97859508989E-06 6.20701363643E-06 6.44415822207E-06 6.69036214305E-06 6.94597140843E-06 7.21134525365E-06 7.48685662101E-06 7.77289269853E-06 8.06985545344E-06 8.37816220231E-06 8.69824619461E-06 9.03055721430E-06 9.37556222488E-06 9.73374601358E-06 1.01056118707E-05 1.04916823034E-05 1.08924997698E-05 1.13086274209E-05 1.17406499173E-05 1.21891742330E-05 1.26548305069E-05 1.31382729250E-05 1.36401806548E-05 1.41612587808E-05 1.47022392831E-05 1.52638820804E-05 1.58469761196E-05 1.64523404281E-05 1.70808252863E-05 1.77333134280E-05 1.84107212705E-05 1.91140002000E-05 1.98441378921E-05 2.06021597134E-05 2.13891301394E-05 2.22061542859E-05 2.30543793790E-05 2.39349964576E-05 2.48492419479E-05 2.57983994670E-05 2.67838015862E-05 2.78068316934E-05 2.88689259350E-05 2.99715752327E-05 3.11163273818E-05 3.23047891553E-05 3.35386286301E-05 3.48195774624E-05 3.61494333431E-05 3.75300625025E-05 3.89634022935E-05 4.04514639230E-05 4.19963352804E-05 4.36001838282E-05 4.52652596126E-05 4.69938984617E-05 4.87885251821E-05 5.06516569886E-05 5.25859070285E-05 5.45939879694E-05 5.66787158500E-05 5.88430139618E-05 6.10899169574E-05 6.34225750709E-05 6.58442584852E-05 6.83583619457E-05 7.09684094427E-05 7.36780591305E-05 7.64911084428E-05 7.94114993827E-05 8.24433239601E-05 8.55908299456E-05 8.88584267759E-05 9.22506916379E-05 9.57723758895E-05 9.94284116491E-05 1.03223918620E-04 1.07164211256E-04 1.11254806110E-04 1.15501429505E-04 1.19910025471E-04 1.24486764023E-04 1.29238049681E-04 1.34170530387E-04 1.39291106693E-04 1.44606941358E-04 1.50125469233E-04 1.55854407565E-04 1.61801766707E-04 1.67975861161E-04 1.74385321109E-04 1.81039104329E-04 1.87946508564E-04 1.95117184388E-04 2.02561148509E-04 2.10288797602E-04 2.18310922633E-04 2.26638723763E-04 2.35283825752E-04 2.44258293981E-04 2.53574651044E-04 2.63245894005E-04 2.73285512230E-04 2.83707505945E-04 2.94526405441E-04 3.05757291057E-04 3.17415813793E-04 3.29518216827E-04 3.42081357727E-04 3.55122731525E-04 3.68660494662E-04 3.82713489800E-04 3.97301271531E-04 4.12444133118E-04 4.28163134101E-04 4.44480129053E-04 4.61417797300E-04 4.78999673774E-04 4.97250181020E-04 5.16194662342E-04 5.35859416192E-04 5.56271731823E-04 5.77459926231E-04 5.99453382478E-04 6.22282589382E-04 6.45979182697E-04 6.70575987777E-04 6.96107063778E-04 7.22607749506E-04 7.50114710917E-04 7.78665990327E-04 8.08301057423E-04 8.39060862147E-04 8.70987889426E-04 9.04126215944E-04 9.38521568930E-04 9.74221387076E-04 1.01127488362E-03 1.04973311173E-03 1.08964903220E-03 1.13107758358E-03 1.17407575481E-03 1.21870266044E-03 1.26501961851E-03 1.31309023123E-03 1.36298046847E-03 1.41475875426E-03 1.46849605627E-03 1.52426597846E-03 1.58214485705E-03 1.64221185976E-03 1.70454908853E-03 1.76924168589E-03 1.83637794492E-03 1.90604942312E-03 1.97835106012E-03 2.05338129954E-03 2.13124221495E-03 2.21203964021E-03 2.29588330421E-03 2.38288697019E-03 2.47316857985E-03 2.56685040224E-03 2.66405918773E-03 2.76492632707E-03 2.86958801584E-03 2.97818542431E-03 3.09086487294E-03 3.20777801369E-03 3.32908201720E-03 3.45493976623E-03 3.58552005521E-03 3.72099779637E-03 3.86155423247E-03 4.00737715627E-03 4.15866113710E-03 4.31560775445E-03 4.47842583904E-03 4.64733172130E-03 4.82254948763E-03 5.00431124452E-03 5.19285739072E-03 5.38843689775E-03 5.59130759876E-03 5.80173648604E-03 6.02000001738E-03 6.24638443136E-03 6.48118607180E-03 6.72471172160E-03 6.97727894602E-03 7.23921644562E-03 7.51086441909E-03 7.79257493602E-03 8.08471231974E-03 8.38765354051E-03 8.70178861901E-03 9.02752104041E-03 9.36526817895E-03 9.71546173331E-03 1.00785481727E-02 1.04549891936E-02 1.08452621880E-02 1.12498607216E-02 1.16692950235E-02 1.21040924869E-02 1.25547981798E-02 1.30219753678E-02 1.35062060458E-02 1.40080914815E-02 1.45282527689E-02 1.50673313916E-02 1.56259897957E-02 1.62049119732E-02 1.68048040534E-02 1.74263949036E-02 1.80704367382E-02 1.87377057351E-02 1.94290026592E-02 2.01451534932E-02 2.08870100729E-02 2.16554507281E-02 2.24513809278E-02 2.32757339270E-02 2.41294714172E-02 2.50135841760E-02 2.59290927169E-02 2.68770479365E-02 2.78585317584E-02 2.88746577715E-02 2.99265718611E-02 3.10154528304E-02 3.21425130118E-02 3.33089988626E-02 3.45161915466E-02 3.57654074948E-02 3.70579989458E-02 3.83953544606E-02 3.97788994093E-02 4.12100964260E-02 4.26904458281E-02 4.42214859966E-02 4.58047937109E-02 4.74419844373E-02 4.91347125620E-02 5.08846715667E-02 5.26935941401E-02 5.45632522183E-02 5.64954569507E-02 5.84920585816E-02 6.05549462433E-02 6.26860476519E-02 6.48873286982E-02 6.71607929261E-02 6.95084808897E-02 7.19324693804E-02 7.44348705137E-02 7.70178306669E-02 7.96835292569E-02 8.24341773474E-02 8.52720160739E-02 8.81993148749E-02 9.12183695177E-02 9.43314999048E-02 9.75410476490E-02 1.00849373402E-01 1.04258853925E-01 1.07771878881E-01 1.11390847344E-01 1.15118163996E-01 1.18956235007E-01 1.22907463582E-01 1.26974245139E-01 1.31158962139E-01 1.35463978505E-01 1.39891633654E-01 1.44444236094E-01 1.49124056586E-01 1.53933320849E-01 1.58874201785E-01 1.63948811218E-01 1.69159191116E-01 1.74507304293E-01 1.79995024568E-01 1.85624126366E-01 1.91396273751E-01 1.97313008869E-01 2.03375739808E-01 2.09585727838E-01 2.15944074048E-01 2.22451705360E-01 2.29109359920E-01 2.35917571860E-01 2.42876655448E-01 2.49986688610E-01 2.57247495847E-01 2.64658630560E-01 2.72219356796E-01 2.79928630436E-01 2.87785079860E-01 2.95786986123E-01 3.03932262672E-01 3.12218434670E-01 3.20642617963E-01 3.29201497774E-01 3.37891307175E-01 3.46707805442E-01 3.55646256370E-01 3.64701406649E-01 3.73867464435E-01 3.83138078221E-01 3.92506316155E-01 4.01964645964E-01 4.11504915638E-01 4.21118335065E-01 4.30795458805E-01 4.40526170213E-01 4.50299667142E-01 4.60104449458E-01 4.69928308637E-01 4.79758319693E-01 4.89580835749E-01 4.99381485533E-01 5.09145174129E-01 5.18856087297E-01 5.28497699716E-01 5.38052787492E-01 5.47503445289E-01 5.56831108461E-01 5.66016580539E-01 5.75040066444E-01 5.83881211804E-01 5.92519148723E-01 6.00932548345E-01 6.09099680551E-01 6.16998481090E-01 6.24606626414E-01 6.31901616459E-01 6.38860865557E-01 6.45461801623E-01 6.51681973671E-01 6.57499167675E-01 6.62891530664E-01 6.67837702875E-01 6.72316957656E-01 6.76309348699E-01 6.79795864029E-01 6.82758586057E-01 6.85180856784E-01 6.87047447130E-01 6.88344729100E-01 6.89060849351E-01 6.89185902450E-01 6.88712101924E-01 6.87633946940E-01 6.85948382186E-01 6.83654948314E-01 6.80755919998E-01 6.77256428429E-01 6.73164564822E-01 6.68491461259E-01 6.63251344960E-01 6.57461561922E-01 6.51142565641E-01 6.44317866560E-01 6.37013937786E-01 6.29260072630E-01 6.21088189573E-01 6.12532580429E-01 6.03629597720E-01 5.94417277657E-01 5.84934895597E-01 5.75222451524E-01 5.65320083858E-01 5.55267410897E-01 5.45102800353E-01 5.34862568778E-01 5.24580114258E-01 5.14284987517E-01 5.04001908573E-01 4.93749738289E-01 4.83540416582E-01 4.73377881670E-01 4.63260107883E-01 4.53190916929E-01 4.43176195790E-01 4.33221606815E-01 4.23332591449E-01 4.13514374071E-01 4.03771965917E-01 3.94110169046E-01 3.84533580348E-01 3.75046595540E-01 3.65653413152E-01 3.56359045725E-01 3.47166307767E-01 3.38078830579E-01 3.29100063521E-01 3.20233277517E-01 3.11481568386E-01 3.02847859985E-01 2.94334907141E-01 2.85945298354E-01 2.77681458260E-01 2.69545649827E-01 2.61539976304E-01 2.53666382893E-01 2.45926658161E-01 2.38322435214E-01 2.30855192628E-01 2.23526255190E-01 2.16336794457E-01 2.09287829203E-01 2.02380225783E-01 1.95614698471E-01 1.88991809847E-01 1.82511971276E-01 1.76175443554E-01 1.69982337782E-01 1.63932616528E-01 1.58026095332E-01 1.52262444599E-01 1.46641191924E-01 1.41161724886E-01 1.35823294310E-01 1.30625018038E-01 1.25565885173E-01 1.20644760804E-01 1.15860391193E-01 1.11211409361E-01 1.06696341065E-01 1.02313611100E-01 9.80615498628E-02 9.39384001347E-02 8.99423240083E-02 8.60714098939E-02 8.23236795429E-02 7.86970950201E-02 7.51895655649E-02 7.17989542791E-02 6.85230845893E-02 6.53597464315E-02 6.23067021167E-02 5.93616918402E-02 5.65224388056E-02 5.37866539439E-02 5.11520402139E-02 4.86162964808E-02 4.61771209762E-02 4.38322143527E-02 4.15792823513E-02 3.94160381075E-02 3.73402041284E-02 3.53495139757E-02 3.34417136935E-02 3.16145630236E-02 2.98658364480E-02 2.81933241005E-02 2.65948325883E-02 2.50681857568E-02 2.36112254344E-02 2.22218121828E-02 2.08978260785E-02 1.96371675430E-02 1.84377582368E-02 1.72975420237E-02 1.62144860115E-02 1.51865816668E-02 1.42118460007E-02 1.32883228173E-02 1.24140840147E-02 1.15872309254E-02 1.08058956838E-02 1.00682426037E-02 9.37246955123E-03 8.71680929836E-03 8.09953084054E-03 7.51894066494E-03 6.97338395537E-03 6.46124572185E-03 5.98095184354E-03 5.53097001586E-03 5.10981059343E-03 4.71602732250E-03 4.34821795779E-03 4.00502476017E-03 3.68513487302E-03 3.38728057642E-03 3.11023941953E-03 2.85283423273E-03 2.61393302191E-03 2.39244874848E-03 2.18733899917E-03 1.99760555070E-03 1.82229383457E-03 1.66049230823E-03 1.51133173870E-03 1.37398440545E-03 1.24766322938E-03 1.13162083478E-03 1.02514855141E-03 9.27575363694E-04 8.38266813983E-04 7.56623866738E-04 6.82081740343E-04 6.14108712997E-04 5.52204908955E-04 4.95901071073E-04 4.44757325370E-04 3.98361942950E-04 3.56330104358E-04 3.18302671076E-04 2.83944968513E-04 2.52945584514E-04 2.25015187063E-04 1.99885364478E-04 1.77307491078E-04 1.57051620953E-04 1.38905412142E-04 1.22673083185E-04 1.08174403735E-04 9.52437205768E-05 8.37290201712E-05 7.34910285072E-05 6.44023488482E-05 5.63466376762E-05 4.92178188943E-05 4.29193363736E-05 3.73636087697E-05 3.24726582818E-05 2.81742693522E-05 2.44030268078E-05 2.10999414697E-05 1.82119105206E-05 1.56912135568E-05 1.34950428808E-05 1.15850665703E-05 9.92702284154E-06 8.49034422309E-06 7.24781005418E-06 6.17522583065E-06 5.25112793613E-06 4.45651231705E-06 3.77458568596E-06 3.19053786933E-06 2.69133395173E-06 2.26552490823E-06 1.90307546018E-06 1.59520793616E-06 1.33426096810E-06 1.11356190388E-06 9.27311869368E-07 7.70482466233E-07 6.38723145534E-07 5.28278350786E-07 4.35913577947E-07 3.58849552708E-07 2.94703777652E-07 2.41438752826E-07 1.97316222851E-07 1.60856851662E-07 1.30804772154E-07 1.06096502261E-07 8.58337611601E-08 6.92597593784E-08 5.57385744349E-08 4.47372592805E-08 3.58103642148E-08 2.85865841383E-08 2.27572719990E-08 1.80665861530E-08 1.43030641539E-08 1.12924382873E-08 8.89152908221E-09 6.98307215270E-09 5.47135118219E-09 4.27852578519E-09 3.34155751805E-09 2.60965062803E-09 2.03166485491E-09 1.57666935878E-09 1.21963652668E-09 9.40380486144E-10 7.22673483557E-10 5.53512797478E-10 4.22514610262E-10 3.21414575138E-10 2.43657729567E-10 1.84062956683E-10 1.38549420779E-10 1.03914333780E-10 7.76530791317E-11 5.78141567038E-11 4.28826443530E-11 3.16869234126E-11 2.33243091656E-11 1.71019837433E-11 1.24902662115E-11 9.08578926099E-12 6.58259848367E-12 4.74956155549E-12 3.41278205818E-12 2.44196602154E-12 1.73989712024E-12 1.23434620838E-12 8.71878870929E-13 6.13136334120E-13 4.29255010598E-13 2.99162047594E-13 2.07541762111E-13 1.43313514199E-13 9.84976532149E-14 6.73745445720E-14 4.58638839433E-14 3.10687888824E-14 2.09425457356E-14 1.40462077382E-14 9.37315156402E-15 6.22273429464E-15 4.10977190851E-15 2.70001670522E-15 1.76440598143E-15 1.14679195135E-15 7.41301937879E-16 4.76540688020E-16 3.04627274624E-16 1.93629150436E-16 1.22369920732E-16 7.68863133767E-17 4.80243899632E-17 2.98181556684E-17 1.84023393494E-17 1.12876998814E-17 6.88088727477E-18 4.16827142638E-18 2.50902888064E-18 1.50057802072E-18 8.91619271091E-19 5.26298955611E-19 3.08589801251E-19 1.79717338058E-19 1.03949073649E-19 5.97084684578E-20 3.40563307271E-20 1.92871416022E-20 1.08444359317E-20 6.05306940139E-21 3.35377509508E-21 1.84434142136E-21 1.00659972170E-21 5.45178697306E-22 2.92985075494E-22 1.56219090071E-22 8.26345366905E-23 4.33595071543E-23 2.25661847488E-23 1.16476486595E-23 5.96182745456E-24 3.02576844847E-24 1.52251183374E-24 7.59464246949E-25 3.75515648387E-25 1.84024046692E-25 8.93713094694E-26 4.30079990002E-26 2.05058542589E-26 9.68575153023E-27 4.53173271656E-27 2.09999755658E-27 9.63705220434E-28 4.37912430832E-28 1.97012610646E-28 8.77424672312E-29 3.86793715585E-29 1.68751141669E-29 7.28542786151E-30 3.11205320734E-30 1.31511711237E-30 5.49728727705E-31 2.27268586531E-31 9.29131104486E-32 6S 0 2.00 Wavefunction 1.36745517057E-06 1.38465563917E-06 1.40207246303E-06 1.41970836356E-06 1.43756609642E-06 1.45564845190E-06 1.47395825542E-06 1.49249836791E-06 1.51127168631E-06 1.53028114399E-06 1.54952971120E-06 1.56902039559E-06 1.58875624261E-06 1.60874033602E-06 1.62897579838E-06 1.64946579153E-06 1.67021351706E-06 1.69122221685E-06 1.71249517355E-06 1.73403571111E-06 1.75584719528E-06 1.77793303415E-06 1.80029667867E-06 1.82294162320E-06 1.84587140608E-06 1.86908961012E-06 1.89259986321E-06 1.91640583888E-06 1.94051125687E-06 1.96491988369E-06 1.98963553323E-06 2.01466206738E-06 2.04000339657E-06 2.06566348045E-06 2.09164632845E-06 2.11795600044E-06 2.14459660737E-06 2.17157231188E-06 2.19888732898E-06 2.22654592670E-06 2.25455242676E-06 2.28291120522E-06 2.31162669320E-06 2.34070337755E-06 2.37014580157E-06 2.39995856570E-06 2.43014632823E-06 2.46071380607E-06 2.49166577545E-06 2.52300707268E-06 2.55474259490E-06 2.58687730085E-06 2.61941621164E-06 2.65236441154E-06 2.68572704878E-06 2.71950933634E-06 2.75371655276E-06 2.78835404300E-06 2.82342721923E-06 2.85894156171E-06 2.89490261963E-06 2.93131601197E-06 2.96818742841E-06 3.00552263017E-06 3.04332745096E-06 3.08160779785E-06 3.12036965224E-06 3.15961907073E-06 3.19936218613E-06 3.23960520839E-06 3.28035442555E-06 3.32161620477E-06 3.36339699328E-06 3.40570331941E-06 3.44854179362E-06 3.49191910950E-06 3.53584204485E-06 3.58031746272E-06 3.62535231248E-06 3.67095363091E-06 3.71712854332E-06 3.76388426463E-06 3.81122810052E-06 3.85916744855E-06 3.90770979935E-06 3.95686273777E-06 4.00663394403E-06 4.05703119501E-06 4.10806236537E-06 4.15973542884E-06 4.21205845943E-06 4.26503963273E-06 4.31868722716E-06 4.37300962526E-06 4.42801531501E-06 4.48371289116E-06 4.54011105659E-06 4.59721862361E-06 4.65504451540E-06 4.71359776736E-06 4.77288752858E-06 4.83292306319E-06 4.89371375186E-06 4.95526909328E-06 5.01759870557E-06 5.08071232788E-06 5.14461982184E-06 5.20933117311E-06 5.27485649299E-06 5.34120601993E-06 5.40839012120E-06 5.47641929442E-06 5.54530416932E-06 5.61505550928E-06 5.68568421310E-06 5.75720131665E-06 5.82961799464E-06 5.90294556231E-06 5.97719547724E-06 6.05237934113E-06 6.12850890163E-06 6.20559605412E-06 6.28365284364E-06 6.36269146670E-06 6.44272427327E-06 6.52376376863E-06 6.60582261537E-06 6.68891363534E-06 6.77304981170E-06 6.85824429089E-06 6.94451038471E-06 7.03186157243E-06 7.12031150285E-06 7.20987399645E-06 7.30056304754E-06 7.39239282649E-06 7.48537768188E-06 7.57953214278E-06 7.67487092102E-06 7.77140891349E-06 7.86916120443E-06 7.96814306785E-06 8.06836996986E-06 8.16985757113E-06 8.27262172929E-06 8.37667850146E-06 8.48204414671E-06 8.58873512866E-06 8.69676811798E-06 8.80615999504E-06 8.91692785256E-06 9.02908899824E-06 9.14266095748E-06 9.25766147614E-06 9.37410852328E-06 9.49202029399E-06 9.61141521224E-06 9.73231193371E-06 9.85472934878E-06 9.97868658540E-06 1.01042030122E-05 1.02312982413E-05 1.03599921316E-05 1.04903047918E-05 1.06222565836E-05 1.07558681246E-05 1.08911602920E-05 1.10281542254E-05 1.11668713304E-05 1.13073332818E-05 1.14495620272E-05 1.15935797899E-05 1.17394090733E-05 1.18870726632E-05 1.20365936325E-05 1.21879953442E-05 1.23413014550E-05 1.24965359194E-05 1.26537229931E-05 1.28128872368E-05 1.29740535204E-05 1.31372470263E-05 1.33024932539E-05 1.34698180233E-05 1.36392474793E-05 1.38108080956E-05 1.39845266789E-05 1.41604303731E-05 1.43385466635E-05 1.45189033812E-05 1.47015287072E-05 1.48864511772E-05 1.50736996856E-05 1.52633034904E-05 1.54552922177E-05 1.56496958660E-05 1.58465448114E-05 1.60458698118E-05 1.62477020123E-05 1.64520729495E-05 1.66590145568E-05 1.68685591692E-05 1.70807395287E-05 1.72955887887E-05 1.75131405199E-05 1.77334287152E-05 1.79564877952E-05 1.81823526132E-05 1.84110584612E-05 1.86426410748E-05 1.88771366393E-05 1.91145817953E-05 1.93550136439E-05 1.95984697532E-05 1.98449881636E-05 2.00946073943E-05 2.03473664487E-05 2.06033048209E-05 2.08624625020E-05 2.11248799857E-05 2.13905982754E-05 2.16596588901E-05 2.19321038712E-05 2.22079757887E-05 2.24873177482E-05 2.27701733974E-05 2.30565869333E-05 2.33466031084E-05 2.36402672384E-05 2.39376252090E-05 2.42387234830E-05 2.45436091076E-05 2.48523297219E-05 2.51649335640E-05 2.54814694792E-05 2.58019869267E-05 2.61265359880E-05 2.64551673748E-05 2.67879324362E-05 2.71248831677E-05 2.74660722184E-05 2.78115528999E-05 2.81613791943E-05 2.85156057627E-05 2.88742879538E-05 2.92374818125E-05 2.96052440885E-05 2.99776322455E-05 3.03547044701E-05 3.07365196805E-05 3.11231375362E-05 3.15146184471E-05 3.19110235830E-05 3.23124148829E-05 3.27188550653E-05 3.31304076373E-05 3.35471369048E-05 3.39691079828E-05 3.43963868052E-05 3.48290401351E-05 3.52671355758E-05 3.57107415805E-05 3.61599274637E-05 3.66147634118E-05 3.70753204938E-05 3.75416706728E-05 3.80138868171E-05 3.84920427115E-05 3.89762130691E-05 3.94664735424E-05 3.99629007359E-05 4.04655722174E-05 4.09745665305E-05 4.14899632067E-05 4.20118427780E-05 4.25402867892E-05 4.30753778109E-05 4.36171994524E-05 4.41658363746E-05 4.47213743032E-05 4.52839000425E-05 4.58535014883E-05 4.64302676422E-05 4.70142886254E-05 4.76056556924E-05 4.82044612459E-05 4.88107988507E-05 4.94247632483E-05 5.00464503724E-05 5.06759573629E-05 5.13133825820E-05 5.19588256289E-05 5.26123873556E-05 5.32741698827E-05 5.39442766156E-05 5.46228122599E-05 5.53098828387E-05 5.60055957083E-05 5.67100595758E-05 5.74233845154E-05 5.81456819860E-05 5.88770648484E-05 5.96176473830E-05 6.03675453078E-05 6.11268757964E-05 6.18957574961E-05 6.26743105468E-05 6.34626565994E-05 6.42609188350E-05 6.50692219844E-05 6.58876923472E-05 6.67164578114E-05 6.75556478741E-05 6.84053936609E-05 6.92658279471E-05 7.01370851779E-05 7.10193014898E-05 7.19126147314E-05 7.28171644857E-05 7.37330920910E-05 7.46605406638E-05 7.55996551206E-05 7.65505822008E-05 7.75134704896E-05 7.84884704412E-05 7.94757344023E-05 8.04754166359E-05 8.14876733454E-05 8.25126626991E-05 8.35505448547E-05 8.46014819847E-05 8.56656383013E-05 8.67431800824E-05 8.78342756973E-05 8.89390956333E-05 9.00578125223E-05 9.11906011674E-05 9.23376385707E-05 9.34991039607E-05 9.46751788204E-05 9.58660469155E-05 9.70718943234E-05 9.82929094620E-05 9.95292831194E-05 1.00781208483E-04 1.02048881172E-04 1.03332499263E-04 1.04632263328E-04 1.05948376459E-04 1.07281044305E-04 1.08630475098E-04 1.09996879695E-04 1.11380471600E-04 1.12781467005E-04 1.14200084822E-04 1.15636546715E-04 1.17091077139E-04 1.18563903368E-04 1.20055255540E-04 1.21565366683E-04 1.23094472760E-04 1.24642812701E-04 1.26210628439E-04 1.27798164955E-04 1.29405670307E-04 1.31033395676E-04 1.32681595403E-04 1.34350527025E-04 1.36040451323E-04 1.37751632355E-04 1.39484337501E-04 1.41238837507E-04 1.43015406522E-04 1.44814322144E-04 1.46635865464E-04 1.48480321108E-04 1.50347977282E-04 1.52239125818E-04 1.54154062219E-04 1.56093085705E-04 1.58056499260E-04 1.60044609679E-04 1.62057727617E-04 1.64096167637E-04 1.66160248256E-04 1.68250292002E-04 1.70366625458E-04 1.72509579314E-04 1.74679488422E-04 1.76876691845E-04 1.79101532913E-04 1.81354359271E-04 1.83635522942E-04 1.85945380373E-04 1.88284292498E-04 1.90652624790E-04 1.93050747319E-04 1.95479034812E-04 1.97937866707E-04 2.00427627219E-04 2.02948705393E-04 2.05501495170E-04 2.08086395445E-04 2.10703810133E-04 2.13354148229E-04 2.16037823872E-04 2.18755256414E-04 2.21506870478E-04 2.24293096033E-04 2.27114368454E-04 2.29971128594E-04 2.32863822853E-04 2.35792903244E-04 2.38758827468E-04 2.41762058986E-04 2.44803067086E-04 2.47882326960E-04 2.51000319781E-04 2.54157532773E-04 2.57354459288E-04 2.60591598889E-04 2.63869457419E-04 2.67188547089E-04 2.70549386549E-04 2.73952500979E-04 2.77398422162E-04 2.80887688574E-04 2.84420845464E-04 2.87998444940E-04 2.91621046059E-04 2.95289214908E-04 2.99003524698E-04 3.02764555851E-04 3.06572896091E-04 3.10429140536E-04 3.14333891793E-04 3.18287760050E-04 3.22291363169E-04 3.26345326791E-04 3.30450284423E-04 3.34606877548E-04 3.38815755715E-04 3.43077576648E-04 3.47393006346E-04 3.51762719189E-04 3.56187398039E-04 3.60667734352E-04 3.65204428283E-04 3.69798188798E-04 3.74449733783E-04 3.79159790156E-04 3.83929093981E-04 3.88758390586E-04 3.93648434675E-04 3.98599990451E-04 4.03613831730E-04 4.08690742066E-04 4.13831514875E-04 4.19036953554E-04 4.24307871611E-04 4.29645092790E-04 4.35049451202E-04 4.40521791454E-04 4.46062968780E-04 4.51673849180E-04 4.57355309548E-04 4.63108237816E-04 4.68933533090E-04 4.74832105789E-04 4.80804877794E-04 4.86852782583E-04 4.92976765385E-04 4.99177783324E-04 5.05456805572E-04 5.11814813497E-04 5.18252800818E-04 5.24771773764E-04 5.31372751225E-04 5.38056764919E-04 5.44824859547E-04 5.51678092963E-04 5.58617536334E-04 5.65644274311E-04 5.72759405198E-04 5.79964041125E-04 5.87259308222E-04 5.94646346793E-04 6.02126311501E-04 6.09700371541E-04 6.17369710830E-04 6.25135528188E-04 6.32999037528E-04 6.40961468049E-04 6.49024064423E-04 6.57188086994E-04 6.65454811975E-04 6.73825531649E-04 6.82301554571E-04 6.90884205771E-04 6.99574826966E-04 7.08374776770E-04 7.17285430903E-04 7.26308182412E-04 7.35444441887E-04 7.44695637683E-04 7.54063216146E-04 7.63548641836E-04 7.73153397761E-04 7.82878985610E-04 7.92726925984E-04 8.02698758643E-04 8.12796042741E-04 8.23020357073E-04 8.33373300324E-04 8.43856491323E-04 8.54471569291E-04 8.65220194105E-04 8.76104046555E-04 8.87124828611E-04 8.98284263691E-04 9.09584096929E-04 9.21026095454E-04 9.32612048665E-04 9.44343768514E-04 9.56223089791E-04 9.68251870415E-04 9.80431991724E-04 9.92765358773E-04 1.00525390063E-03 1.01789957070E-03 1.03070434699E-03 1.04367023248E-03 1.05679925537E-03 1.07009346948E-03 1.08355495450E-03 1.09718581636E-03 1.11098818756E-03 1.12496422749E-03 1.13911612277E-03 1.15344608764E-03 1.16795636426E-03 1.18264922306E-03 1.19752696315E-03 1.21259191264E-03 1.22784642904E-03 1.24329289958E-03 1.25893374168E-03 1.27477140322E-03 1.29080836302E-03 1.30704713120E-03 1.32349024956E-03 1.34014029202E-03 1.35699986498E-03 1.37407160781E-03 1.39135819318E-03 1.40886232755E-03 1.42658675157E-03 1.44453424053E-03 1.46270760479E-03 1.48110969024E-03 1.49974337875E-03 1.51861158862E-03 1.53771727506E-03 1.55706343063E-03 1.57665308578E-03 1.59648930927E-03 1.61657520869E-03 1.63691393097E-03 1.65750866283E-03 1.67836263138E-03 1.69947910454E-03 1.72086139162E-03 1.74251284385E-03 1.76443685491E-03 1.78663686145E-03 1.80911634369E-03 1.83187882593E-03 1.85492787717E-03 1.87826711163E-03 1.90190018939E-03 1.92583081691E-03 1.95006274771E-03 1.97459978291E-03 1.99944577187E-03 2.02460461284E-03 2.05008025353E-03 2.07587669181E-03 2.10199797632E-03 2.12844820715E-03 2.15523153650E-03 2.18235216935E-03 2.20981436414E-03 2.23762243350E-03 2.26578074491E-03 2.29429372143E-03 2.32316584245E-03 2.35240164436E-03 2.38200572139E-03 2.41198272625E-03 2.44233737101E-03 2.47307442777E-03 2.50419872953E-03 2.53571517094E-03 2.56762870913E-03 2.59994436453E-03 2.63266722168E-03 2.66580243009E-03 2.69935520512E-03 2.73333082879E-03 2.76773465074E-03 2.80257208902E-03 2.83784863111E-03 2.87356983476E-03 2.90974132893E-03 2.94636881479E-03 2.98345806661E-03 3.02101493279E-03 3.05904533682E-03 3.09755527829E-03 3.13655083390E-03 3.17603815850E-03 3.21602348616E-03 3.25651313119E-03 3.29751348926E-03 3.33903103847E-03 3.38107234048E-03 3.42364404163E-03 3.46675287410E-03 3.51040565706E-03 3.55460929785E-03 3.59937079321E-03 3.64469723046E-03 3.69059578877E-03 3.73707374042E-03 3.78413845203E-03 3.83179738592E-03 3.88005810139E-03 3.92892825609E-03 3.97841560734E-03 4.02852801354E-03 4.07927343558E-03 4.13065993825E-03 4.18269569170E-03 4.23538897291E-03 4.28874816722E-03 4.34278176980E-03 4.39749838725E-03 4.45290673913E-03 4.50901565960E-03 4.56583409905E-03 4.62337112571E-03 4.68163592739E-03 4.74063781318E-03 4.80038621515E-03 4.86089069019E-03 4.92216092177E-03 4.98420672180E-03 5.04703803248E-03 5.11066492822E-03 5.17509761757E-03 5.24034644518E-03 5.30642189382E-03 5.37333458644E-03 5.44109528820E-03 5.50971490865E-03 5.57920450385E-03 5.64957527857E-03 5.72083858854E-03 5.79300594276E-03 5.86608900575E-03 5.94009960002E-03 6.01504970840E-03 6.09095147656E-03 6.16781721548E-03 6.24565940406E-03 6.32449069166E-03 6.40432390085E-03 6.48517203006E-03 6.56704825638E-03 6.64996593838E-03 6.73393861901E-03 6.81898002853E-03 6.90510408751E-03 6.99232490993E-03 7.08065680628E-03 7.17011428680E-03 7.26071206470E-03 7.35246505953E-03 7.44538840060E-03 7.53949743044E-03 7.63480770837E-03 7.73133501416E-03 7.82909535172E-03 7.92810495293E-03 8.02838028152E-03 8.12993803705E-03 8.23279515899E-03 8.33696883087E-03 8.44247648455E-03 8.54933580457E-03 8.65756473262E-03 8.76718147213E-03 8.87820449289E-03 8.99065253591E-03 9.10454461826E-03 9.21990003815E-03 9.33673838003E-03 9.45507951992E-03 9.57494363075E-03 9.69635118795E-03 9.81932297513E-03 9.94388008986E-03 1.00700439497E-02 1.01978362983E-02 1.03272792117E-02 1.04583951046E-02 1.05912067375E-02 1.07257372228E-02 1.08620100322E-02 1.10000490039E-02 1.11398783496E-02 1.12815226625E-02 1.14250069245E-02 1.15703565149E-02 1.17175972179E-02 1.18667552314E-02 1.20178571754E-02 1.21709301012E-02 1.23260015004E-02 1.24830993141E-02 1.26422519430E-02 1.28034882569E-02 1.29668376051E-02 1.31323298273E-02 1.32999952638E-02 1.34698647671E-02 1.36419697134E-02 1.38163420141E-02 1.39930141283E-02 1.41720190754E-02 1.43533904476E-02 1.45371624239E-02 1.47233697831E-02 1.49120479185E-02 1.51032328524E-02 1.52969612509E-02 1.54932704396E-02 1.56921984198E-02 1.58937838844E-02 1.60980662358E-02 1.63050856026E-02 1.65148828583E-02 1.67274996400E-02 1.69429783673E-02 1.71613622627E-02 1.73826953721E-02 1.76070225858E-02 1.78343896608E-02 1.80648432433E-02 1.82984308924E-02 1.85352011039E-02 1.87752033357E-02 1.90184880338E-02 1.92651066585E-02 1.95151117125E-02 1.97685567697E-02 2.00254965040E-02 2.02859867208E-02 2.05500843881E-02 2.08178476694E-02 2.10893359575E-02 2.13646099096E-02 2.16437314839E-02 2.19267639765E-02 2.22137720610E-02 2.25048218281E-02 2.27999808279E-02 2.30993181126E-02 2.34029042816E-02 2.37108115273E-02 2.40231136836E-02 2.43398862757E-02 2.46612065708E-02 2.49871536324E-02 2.53178083754E-02 2.56532536231E-02 2.59935741670E-02 2.63388568286E-02 2.66891905230E-02 2.70446663254E-02 2.74053775400E-02 2.77714197710E-02 2.81428909972E-02 2.85198916481E-02 2.89025246842E-02 2.92908956794E-02 2.96851129067E-02 3.00852874278E-02 3.04915331851E-02 3.09039670979E-02 3.13227091621E-02 3.17478825538E-02 3.21796137366E-02 3.26180325735E-02 3.30632724429E-02 3.35154703587E-02 3.39747670960E-02 3.44413073208E-02 3.49152397253E-02 3.53967171682E-02 3.58858968209E-02 3.63829403190E-02 3.68880139200E-02 3.74012886674E-02 3.79229405610E-02 3.84531507341E-02 3.89921056377E-02 3.95399972322E-02 4.00970231867E-02 4.06633870862E-02 4.12392986469E-02 4.18249739408E-02 4.24206356286E-02 4.30265132027E-02 4.36428432392E-02 4.42698696606E-02 4.49078440095E-02 4.55570257323E-02 4.62176824754E-02 4.68900903931E-02 4.75745344678E-02 4.82713088435E-02 4.89807171727E-02 4.97030729778E-02 5.04387000263E-02 5.11879327225E-02 5.19511165144E-02 5.27286083170E-02 5.35207769534E-02 5.43280036138E-02 5.51506823323E-02 5.59892204843E-02 5.68440393034E-02 5.77155744189E-02 5.86042764159E-02 5.95106114171E-02 6.04350616886E-02 6.13781262700E-02 6.23403216289E-02 6.33221823427E-02 6.43242618066E-02 6.53471329695E-02 6.63913890994E-02 6.74576445783E-02 6.85465357278E-02 6.96587216674E-02 7.07948852041E-02 7.19557337577E-02 7.31420003187E-02 7.43544444440E-02 7.55938532875E-02 7.68610426691E-02 7.81568581817E-02 7.94821763368E-02 8.08379057508E-02 8.22249883708E-02 8.36444007415E-02 8.50971553133E-02 8.65843017921E-02 8.81069285299E-02 8.96661639579E-02 9.12631780597E-02 9.28991838852E-02 9.45754391045E-02 9.62932475995E-02 9.80539610927E-02 9.98589808101E-02 1.01709759178E-01 1.03607801544E-01 1.05554667934E-01 1.07551974814E-01 1.09601396886E-01 1.11704668880E-01 1.13863587355E-01 1.16080012495E-01 1.18355869890E-01 1.20693152292E-01 1.23093921335E-01 1.25560309204E-01 1.28094520243E-01 1.30698832472E-01 1.33375599012E-01 1.36127249377E-01 1.38956290626E-01 1.41865308335E-01 1.44856967367E-01 1.47934012404E-01 1.51099268200E-01 1.54355639527E-01 1.57706110751E-01 1.61153745003E-01 1.64701682889E-01 1.68353140673E-01 1.72111407878E-01 1.75979844224E-01 1.79961875838E-01 1.84060990653E-01 1.88280732895E-01 1.92624696581E-01 1.97096517911E-01 2.01699866459E-01 2.06438435038E-01 2.11315928117E-01 2.16336048680E-01 2.21502483364E-01 2.26818885770E-01 2.32288857777E-01 2.37915928739E-01 2.43703532395E-01 2.49654981367E-01 2.55773439089E-01 2.62061889037E-01 2.68523101128E-01 2.75159595175E-01 2.81973601294E-01 2.88967017190E-01 2.96141362269E-01 3.03497728563E-01 3.11036728488E-01 3.18758439511E-01 3.26662345856E-01 3.34747277445E-01 3.43011346344E-01 3.51451881070E-01 3.60065359216E-01 3.68847338949E-01 3.77792390043E-01 3.86894025272E-01 3.96144633051E-01 4.05535412430E-01 4.15056311621E-01 4.24695971415E-01 4.34441674987E-01 4.44279305690E-01 4.54193314590E-01 4.64166699572E-01 4.74180997930E-01 4.84216294386E-01 4.94251246491E-01 5.04263129291E-01 5.14227901058E-01 5.24120291658E-01 5.33913914926E-01 5.43581406040E-01 5.53094584481E-01 5.62424642632E-01 5.71542359497E-01 5.80418338283E-01 5.89023265869E-01 5.97328191312E-01 6.05304819680E-01 6.12925816604E-01 6.20165117997E-01 6.26998238582E-01 6.33402572017E-01 6.39357674765E-01 6.44845525314E-01 6.49850750036E-01 6.54360806895E-01 6.58366118434E-01 6.61860146035E-01 6.64839398358E-01 6.67303368272E-01 6.69254394387E-01 6.70697445723E-01 6.71639830967E-01 6.72090837506E-01 6.72061309814E-01 6.71563182231E-01 6.70608987672E-01 6.69211371707E-01 6.67382650970E-01 6.65134466337E-01 6.62477595095E-01 6.59422002806E-01 6.55977217349E-01 6.52152897080E-01 6.47959005146E-01 6.43405807915E-01 6.38503859698E-01 6.33263987376E-01 6.27697274898E-01 6.21815047598E-01 6.15628856302E-01 6.09150461171E-01 6.02391815235E-01 5.95365047563E-01 5.88082446004E-01 5.80556439474E-01 5.72799579698E-01 5.64824522398E-01 5.56644007861E-01 5.48270840862E-01 5.39717869943E-01 5.30997966013E-01 5.22124000328E-01 5.13108821853E-01 5.03965234100E-01 4.94705971505E-01 4.85343675483E-01 4.75890870266E-01 4.66359938724E-01 4.56763098313E-01 4.47112377375E-01 4.37419591975E-01 4.27696323512E-01 4.17953897309E-01 4.08203362383E-01 3.98455472617E-01 3.88720669491E-01 3.79009066555E-01 3.69330435759E-01 3.59694195751E-01 3.50109402230E-01 3.40584740361E-01 3.31128519293E-01 3.21748668720E-01 3.12452737450E-01 3.03247893866E-01 2.94140928187E-01 2.85138256355E-01 2.76245925407E-01 2.67469620140E-01 2.58814670867E-01 2.50286062065E-01 2.41888441706E-01 2.33626131053E-01 2.25503134714E-01 2.17523150763E-01 2.09689580733E-01 2.02005539312E-01 1.94473863599E-01 1.87097121782E-01 1.79877621154E-01 1.72817415382E-01 1.65918310997E-01 1.59181873090E-01 1.52609430230E-01 1.46202078660E-01 1.39960685819E-01 1.33885893321E-01 1.27978119460E-01 1.22237561395E-01 1.16664197139E-01 1.11257787484E-01 1.06017878006E-01 1.00943801275E-01 9.60346793952E-02 9.12894269799E-02 8.67067546531E-02 8.22851731608E-02 7.80229981399E-02 7.39183555894E-02 6.99691880597E-02 6.61732615638E-02 6.25281731939E-02 5.90313594144E-02 5.56801049869E-02 5.24715524727E-02 4.94027122496E-02 4.64704729713E-02 4.36716123934E-02 4.10028084869E-02 3.84606507584E-02 3.60416516952E-02 3.37422582575E-02 3.15588633392E-02 2.94878171242E-02 2.75254382708E-02 2.56680248566E-02 2.39118650286E-02 2.22532473031E-02 2.06884704691E-02 1.92138530531E-02 1.78257423115E-02 1.65205227185E-02 1.52946239281E-02 1.41445281899E-02 1.30667772066E-02 1.20579784241E-02 1.11148107505E-02 1.02340297047E-02 9.41247199827E-03 8.64705955955E-03 7.93480300968E-03 7.27280460556E-03 6.65826066576E-03 6.08846349800E-03 5.56080284905E-03 5.07276689897E-03 4.62194282322E-03 4.20601694728E-03 3.82277451893E-03 3.47009912418E-03 3.14597177291E-03 2.84846968070E-03 2.57576477301E-03 2.32612193766E-03 2.09789705146E-03 1.88953480591E-03 1.69956635650E-03 1.52660681932E-03 1.36935263773E-03 1.22657884111E-03 1.09713621637E-03 9.79948412248E-04 8.74008994798E-04 7.78378471854E-04 6.92181302589E-04 6.14602907402E-04 5.44886692028E-04 4.82331098536E-04 4.26286694376E-04 3.76153311518E-04 3.31378701070E-04 2.91467340438E-04 2.55949419158E-04 2.24392596256E-04 1.96401180730E-04 1.71613646549E-04 1.49700256265E-04 1.30360793902E-04 1.13322407184E-04 9.83375586629E-05 8.51820848289E-05 7.36533617945E-05 6.35685757655E-05 5.47630961160E-05 4.70889485584E-05 4.04133856009E-05 3.46175512275E-05 2.95952365193E-05 2.52517227519E-05 2.15027083591E-05 1.82733160428E-05 1.54971762279E-05 1.31155830163E-05 1.10767187717E-05 9.33494347597E-06 7.85014502904E-06 6.58714671807E-06 5.51516815435E-06 4.60733606810E-06 3.84024145689E-06 3.19353970255E-06 2.64959040134E-06 2.19313379068E-06 1.81100080122E-06 1.49185391325E-06 1.22595615007E-06 1.00496569614E-06 8.21753782826E-07 6.70243639183E-07 5.45268456462E-07 4.42446463873E-07 3.58071357061E-07 2.89016460028E-07 2.32651134730E-07 1.86768080041E-07 1.49520282699E-07 1.19366497059E-07 9.50242377540E-08 7.54293696752E-08 5.97014729908E-08 4.71142473749E-08 3.70702992971E-08 2.90797293671E-08 2.27420035690E-08 1.77306530253E-08 1.37804020261E-08 1.06763737497E-08 8.24506774422E-09 6.34684316734E-09 4.86967735501E-09 3.72400084378E-09 2.83843785483E-09 2.15630578398E-09 1.63274875310E-09 1.23239906700E-09 9.27476777346E-10 6.96251757835E-10 5.21805005845E-10 3.91036558841E-10 2.91955792184E-10 2.17163678050E-10 1.60918929111E-10 1.18783513248E-10 8.73400145411E-11 6.39671680815E-11 4.66623064235E-11 3.39014802715E-11 2.45297093083E-11 1.76752286073E-11 1.26827640378E-11 9.06183337615E-12 6.44686064401E-12 4.56653735239E-12 3.22038980502E-12 2.26093691420E-12 1.58016555742E-12 1.09932511150E-12 7.61261857707E-13 5.24687836511E-13 3.59916077166E-13 2.45702071980E-13 1.66915775048E-13 1.12834076724E-13 7.58945362625E-14 5.07902960346E-14 3.38160827821E-14 2.23980467059E-14 1.47575039569E-14 9.67170070552E-15 6.30450319166E-15 4.08721520475E-15 2.63513532750E-15 1.68945610866E-15 1.07703269254E-15 6.82681080623E-16 4.30211973124E-16 2.69520004423E-16 1.67846096706E-16 1.03898829268E-16 6.39228687528E-17 3.90854097789E-17 2.37493695335E-17 1.43395087217E-17 8.60253741245E-18 5.12736081650E-18 3.03599228609E-18 1.78571001693E-18 1.04324966681E-18 6.05334918184E-19 3.48815672130E-19 1.99595714517E-19 1.13402620161E-19 6.39694815384E-20 3.58229347197E-20 1.99135326837E-20 1.09873765649E-20 6.01668782178E-21 3.26962111752E-21 1.76308014061E-21 9.43276500689E-22 5.00674470759E-22 2.63619749853E-22 1.37677366868E-22 7.13123528245E-23 3.66302194863E-23 1.86569731282E-23 9.42157598325E-24 4.71671723171E-24 2.34068336514E-24 1.15128823582E-24 5.61197155676E-25 2.71073876236E-25 1.29733124352E-25 6.15112658397E-26 2.88900279977E-26 1.34393747755E-26 6.19149624493E-27 2.82451960376E-27 1.27576980968E-27 5.70459001906E-28 2.52491000359E-28 1.10606584694E-28 4.79483029858E-29 3.73986728702E-12 3.83454247816E-12 3.93161438316E-12 4.03114367515E-12 4.13319256315E-12 4.23782483106E-12 4.34510587744E-12 4.45510275644E-12 4.56788421969E-12 4.68352075927E-12 4.80208465180E-12 4.92365000355E-12 5.04829279684E-12 5.17609093747E-12 5.30712430342E-12 5.44147479483E-12 5.57922638513E-12 5.72046517354E-12 5.86527943890E-12 6.01375969484E-12 6.16599874636E-12 6.32209174782E-12 6.48213626243E-12 6.64623232322E-12 6.81448249556E-12 6.98699194130E-12 7.16386848445E-12 7.34522267862E-12 7.53116787607E-12 7.72182029860E-12 7.91729911020E-12 8.11772649147E-12 8.32322771606E-12 8.53393122892E-12 8.74996872661E-12 8.97147523960E-12 9.19858921666E-12 9.43145261143E-12 9.67021097111E-12 9.91501352745E-12 1.01660132900E-11 1.04233671418E-11 1.06872359374E-11 1.09577846034E-11 1.12351822414E-11 1.15196022341E-11 1.18112223532E-11 1.21102248708E-11 1.24167966731E-11 1.27311293776E-11 1.30534194524E-11 1.33838683393E-11 1.37226825796E-11 1.40700739432E-11 1.44262595611E-11 1.47914620608E-11 1.51659097059E-11 1.55498365382E-11 1.59434825246E-11 1.63470937066E-11 1.67609223543E-11 1.71852271241E-11 1.76202732203E-11 1.80663325609E-11 1.85236839475E-11 1.89926132396E-11 1.94734135332E-11 1.99663853442E-11 2.04718367961E-11 2.09900838124E-11 2.15214503145E-11 2.20662684236E-11 2.26248786688E-11 2.31976301997E-11 2.37848810047E-11 2.43869981346E-11 2.50043579323E-11 2.56373462677E-11 2.62863587792E-11 2.69518011206E-11 2.76340892151E-11 2.83336495150E-11 2.90509192683E-11 2.97863467919E-11 3.05403917519E-11 3.13135254510E-11 3.21062311230E-11 3.29190042346E-11 3.37523527956E-11 3.46067976759E-11 3.54828729314E-11 3.63811261376E-11 3.73021187321E-11 3.82464263652E-11 3.92146392599E-11 4.02073625808E-11 4.12252168123E-11 4.22688381465E-11 4.33388788806E-11 4.44360078250E-11 4.55609107209E-11 4.67142906694E-11 4.78968685704E-11 4.91093835736E-11 5.03525935403E-11 5.16272755174E-11 5.29342262225E-11 5.42742625423E-11 5.56482220433E-11 5.70569634948E-11 5.85013674061E-11 5.99823365767E-11 6.15007966605E-11 6.30576967446E-11 6.46540099422E-11 6.62907340010E-11 6.79688919268E-11 6.96895326231E-11 7.14537315462E-11 7.32625913780E-11 7.51172427147E-11 7.70188447739E-11 7.89685861187E-11 8.09676854010E-11 8.30173921229E-11 8.51189874179E-11 8.72737848515E-11 8.94831312422E-11 9.17484075035E-11 9.40710295069E-11 9.64524489667E-11 9.88941543477E-11 1.01397671795E-10 1.03964566089E-10 1.06596441622E-10 1.09294943402E-10 1.12061758081E-10 1.14898615007E-10 1.17807287309E-10 1.20789593001E-10 1.23847396123E-10 1.26982607900E-10 1.30197187941E-10 1.33493145465E-10 1.36872540552E-10 1.40337485434E-10 1.43890145814E-10 1.47532742221E-10 1.51267551396E-10 1.55096907717E-10 1.59023204656E-10 1.63048896276E-10 1.67176498767E-10 1.71408592013E-10 1.75747821212E-10 1.80196898523E-10 1.84758604764E-10 1.89435791150E-10 1.94231381075E-10 1.99148371939E-10 2.04189837022E-10 2.09358927403E-10 2.14658873933E-10 2.20092989250E-10 2.25664669854E-10 2.31377398227E-10 2.37234745011E-10 2.43240371237E-10 2.49398030618E-10 2.55711571892E-10 2.62184941227E-10 2.68822184692E-10 2.75627450779E-10 2.82604993001E-10 2.89759172549E-10 2.97094461020E-10 3.04615443208E-10 3.12326819971E-10 3.20233411172E-10 3.28340158687E-10 3.36652129499E-10 3.45174518860E-10 3.53912653542E-10 3.62871995163E-10 3.72058143604E-10 3.81476840508E-10 3.91133972867E-10 4.01035576704E-10 4.11187840844E-10 4.21597110784E-10 4.32269892657E-10 4.43212857300E-10 4.54432844422E-10 4.65936866882E-10 4.77732115069E-10 4.89825961399E-10 5.02225964918E-10 5.14939876035E-10 5.27975641360E-10 5.41341408669E-10 5.55045532006E-10 5.69096576893E-10 5.83503325693E-10 5.98274783093E-10 6.13420181738E-10 6.28948987996E-10 6.44870907877E-10 6.61195893103E-10 6.77934147320E-10 6.95096132486E-10 7.12692575402E-10 7.30734474419E-10 7.49233106313E-10 7.68200033334E-10 7.87647110431E-10 8.07586492663E-10 8.28030642795E-10 8.48992339089E-10 8.70484683292E-10 8.92521108820E-10 9.15115389159E-10 9.38281646475E-10 9.62034360436E-10 9.86388377264E-10 1.01135891902E-09 1.03696159310E-09 1.06321240202E-09 1.09012775340E-09 1.11772447021E-09 1.14601980129E-09 1.17503143217E-09 1.20477749605E-09 1.23527658521E-09 1.26654776257E-09 1.29861057364E-09 1.33148505873E-09 1.36519176547E-09 1.39975176166E-09 1.43518664842E-09 1.47151857373E-09 1.50877024622E-09 1.54696494942E-09 1.58612655626E-09 1.62627954404E-09 1.66744900969E-09 1.70966068548E-09 1.75294095509E-09 1.79731687011E-09 1.84281616694E-09 1.88946728415E-09 1.93729938021E-09 1.98634235175E-09 2.03662685224E-09 2.08818431115E-09 2.14104695359E-09 2.19524782044E-09 2.25082078904E-09 2.30780059432E-09 2.36622285052E-09 2.42612407349E-09 2.48754170347E-09 2.55051412849E-09 2.61508070840E-09 2.68128179943E-09 2.74915877947E-09 2.81875407384E-09 2.89011118193E-09 2.96327470426E-09 3.03829037046E-09 3.11520506780E-09 3.19406687051E-09 3.27492506982E-09 3.35783020479E-09 3.44283409386E-09 3.52998986727E-09 3.61935200029E-09 3.71097634719E-09 3.80492017624E-09 3.90124220543E-09 4.00000263925E-09 4.10126320623E-09 4.20508719760E-09 4.31153950679E-09 4.42068667005E-09 4.53259690797E-09 4.64734016819E-09 4.76498816906E-09 4.88561444450E-09 5.00929438996E-09 5.13610530953E-09 5.26612646426E-09 5.39943912173E-09 5.53612660679E-09 5.67627435370E-09 5.81996995949E-09 5.96730323872E-09 6.11836627964E-09 6.27325350171E-09 6.43206171464E-09 6.59489017890E-09 6.76184066776E-09 6.93301753088E-09 7.10852775957E-09 7.28848105364E-09 7.47298988997E-09 7.66216959280E-09 7.85613840585E-09 8.05501756617E-09 8.25893137999E-09 8.46800730034E-09 8.68237600677E-09 8.90217148699E-09 9.12753112065E-09 9.35859576520E-09 9.59550984389E-09 9.83842143612E-09 1.00874823699E-08 1.03428483169E-08 1.06046788895E-08 1.08731377408E-08 1.11483926667E-08 1.14306157112E-08 1.17199832733E-08 1.20166762176E-08 1.23208799875E-08 1.26327847210E-08 1.29525853691E-08 1.32804818184E-08 1.36166790156E-08 1.39613870956E-08 1.43148215129E-08 1.46772031765E-08 1.50487585873E-08 1.54297199807E-08 1.58203254708E-08 1.62208191998E-08 1.66314514903E-08 1.70524790020E-08 1.74841648919E-08 1.79267789790E-08 1.83805979128E-08 1.88459053463E-08 1.93229921132E-08 1.98121564096E-08 2.03137039808E-08 2.08279483121E-08 2.13552108244E-08 2.18958210761E-08 2.24501169678E-08 2.30184449547E-08 2.36011602623E-08 2.41986271090E-08 2.48112189331E-08 2.54393186272E-08 2.60833187764E-08 2.67436219047E-08 2.74206407257E-08 2.81147984013E-08 2.88265288057E-08 2.95562767971E-08 3.03044984951E-08 3.10716615663E-08 3.18582455164E-08 3.26647419902E-08 3.34916550783E-08 3.43395016330E-08 3.52088115905E-08 3.61001283030E-08 3.70140088775E-08 3.79510245247E-08 3.89117609156E-08 3.98968185477E-08 4.09068131206E-08 4.19423759204E-08 4.30041542147E-08 4.40928116567E-08 4.52090287008E-08 4.63535030269E-08 4.75269499776E-08 4.87301030042E-08 4.99637141263E-08 5.12285544008E-08 5.25254144048E-08 5.38551047288E-08 5.52184564844E-08 5.66163218230E-08 5.80495744687E-08 5.95191102648E-08 6.10258477330E-08 6.25707286484E-08 6.41547186275E-08 6.57788077321E-08 6.74440110883E-08 6.91513695205E-08 7.09019502027E-08 7.26968473249E-08 7.45371827776E-08 7.64241068526E-08 7.83587989625E-08 8.03424683774E-08 8.23763549815E-08 8.44617300473E-08 8.65998970309E-08 8.87921923866E-08 9.10399864019E-08 9.33446840550E-08 9.57077258918E-08 9.81305889276E-08 1.00614787569E-07 1.03161874563E-07 1.05773441964E-07 1.08451122132E-07 1.11196588753E-07 1.14011557881E-07 1.16897789017E-07 1.19857086205E-07 1.22891299160E-07 1.26002324425E-07 1.29192106557E-07 1.32462639341E-07 1.35815967037E-07 1.39254185660E-07 1.42779444286E-07 1.46393946401E-07 1.50099951273E-07 1.53899775367E-07 1.57795793793E-07 1.61790441792E-07 1.65886216254E-07 1.70085677285E-07 1.74391449803E-07 1.78806225179E-07 1.83332762924E-07 1.87973892406E-07 1.92732514630E-07 1.97611604039E-07 2.02614210385E-07 2.07743460627E-07 2.13002560890E-07 2.18394798471E-07 2.23923543889E-07 2.29592252996E-07 2.35404469138E-07 2.41363825366E-07 2.47474046714E-07 2.53738952520E-07 2.60162458822E-07 2.66748580799E-07 2.73501435287E-07 2.80425243350E-07 2.87524332920E-07 2.94803141502E-07 3.02266218950E-07 3.09918230311E-07 3.17763958740E-07 3.25808308495E-07 3.34056308000E-07 3.42513112990E-07 3.51184009733E-07 3.60074418341E-07 3.69189896151E-07 3.78536141208E-07 3.88118995822E-07 3.97944450223E-07 4.08018646309E-07 4.18347881484E-07 4.28938612598E-07 4.39797459981E-07 4.50931211589E-07 4.62346827243E-07 4.74051442986E-07 4.86052375542E-07 4.98357126894E-07 5.10973388975E-07 5.23909048482E-07 5.37172191800E-07 5.50771110069E-07 5.64714304364E-07 5.79010491014E-07 5.93668607052E-07 6.08697815808E-07 6.24107512638E-07 6.39907330800E-07 6.56107147486E-07 6.72717089991E-07 6.89747542056E-07 7.07209150361E-07 7.25112831184E-07 7.43469777232E-07 7.62291464643E-07 7.81589660166E-07 8.01376428522E-07 8.21664139953E-07 8.42465477962E-07 8.63793447251E-07 8.85661381854E-07 9.08082953487E-07 9.31072180097E-07 9.54643434639E-07 9.78811454069E-07 1.00359134857E-06 1.02899861100E-06 1.05504912660E-06 1.08175918294E-06 1.10914548010E-06 1.13722514112E-06 1.16601572275E-06 1.19553522641E-06 1.22580210948E-06 1.25683529684E-06 1.28865419274E-06 1.32127869293E-06 1.35472919714E-06 1.38902662182E-06 1.42419241330E-06 1.46024856115E-06 1.49721761204E-06 1.53512268376E-06 1.57398747981E-06 1.61383630417E-06 1.65469407656E-06 1.69658634808E-06 1.73953931718E-06 1.78357984610E-06 1.82873547771E-06 1.87503445276E-06 1.92250572763E-06 1.97117899242E-06 2.02108468962E-06 2.07225403318E-06 2.12471902811E-06 2.17851249052E-06 2.23366806825E-06 2.29022026193E-06 2.34820444670E-06 2.40765689438E-06 2.46861479621E-06 2.53111628625E-06 2.59520046532E-06 2.66090742551E-06 2.72827827544E-06 2.79735516603E-06 2.86818131702E-06 2.94080104411E-06 3.01525978685E-06 3.09160413721E-06 3.16988186887E-06 3.25014196727E-06 3.33243466046E-06 3.41681145073E-06 3.50332514697E-06 3.59202989800E-06 3.68298122667E-06 3.77623606480E-06 3.87185278915E-06 3.96989125816E-06 4.07041284975E-06 4.17348050005E-06 4.27915874313E-06 4.38751375175E-06 4.49861337917E-06 4.61252720205E-06 4.72932656447E-06 4.84908462299E-06 4.97187639307E-06 5.09777879649E-06 5.22687071014E-06 5.35923301601E-06 5.49494865253E-06 5.63410266719E-06 5.77678227058E-06 5.92307689182E-06 6.07307823544E-06 6.22688033980E-06 6.38457963692E-06 6.54627501403E-06 6.71206787665E-06 6.88206221334E-06 7.05636466218E-06 7.23508457904E-06 7.41833410758E-06 7.60622825117E-06 7.79888494673E-06 7.99642514048E-06 8.19897286580E-06 8.40665532311E-06 8.61960296193E-06 8.83794956512E-06 9.06183233546E-06 9.29139198452E-06 9.52677282393E-06 9.76812285921E-06 1.00155938861E-05 1.02693415896E-05 1.05295256457E-05 1.07963098257E-05 1.10698621042E-05 1.13503547687E-05 1.16379645339E-05 1.19328726581E-05 1.22352650631E-05 1.25453324576E-05 1.28632704645E-05 1.31892797510E-05 1.35235661629E-05 1.38663408634E-05 1.42178204743E-05 1.45782272234E-05 1.49477890945E-05 1.53267399828E-05 1.57153198544E-05 1.61137749113E-05 1.65223577604E-05 1.69413275886E-05 1.73709503424E-05 1.78114989139E-05 1.82632533319E-05 1.87265009589E-05 1.92015366955E-05 1.96886631896E-05 2.01881910538E-05 2.07004390887E-05 2.12257345147E-05 2.17644132101E-05 2.23168199584E-05 2.28833087031E-05 2.34642428113E-05 2.40599953469E-05 2.46709493524E-05 2.52974981414E-05 2.59400456010E-05 2.65990065051E-05 2.72748068396E-05 2.79678841382E-05 2.86786878327E-05 2.94076796144E-05 3.01553338104E-05 3.09221377746E-05 3.17085922927E-05 3.25152120048E-05 3.33425258433E-05 3.41910774899E-05 3.50614258501E-05 3.59541455486E-05 3.68698274443E-05 3.78090791685E-05 3.87725256851E-05 3.97608098764E-05 4.07745931537E-05 4.18145560968E-05 4.28813991207E-05 4.39758431749E-05 4.50986304739E-05 4.62505252628E-05 4.74323146196E-05 4.86448092964E-05 4.98888446017E-05 5.11652813264E-05 5.24750067173E-05 5.38189354988E-05 5.51980109487E-05 5.66132060290E-05 5.80655245776E-05 5.95560025620E-05 6.10857094027E-05 6.26557493674E-05 6.42672630429E-05 6.59214288893E-05 6.76194648812E-05 6.93626302435E-05 7.11522272867E-05 7.29896033483E-05 7.48761528500E-05 7.68133194747E-05 7.88025984760E-05 8.08455391251E-05 8.29437473085E-05 8.50988882840E-05 8.73126896081E-05 8.95869442460E-05 9.19235138770E-05 9.43243324101E-05 9.67914097229E-05 9.93268356423E-05 1.01932784182E-04 1.04611518055E-04 1.07365393486E-04 1.10196865335E-04 1.13108492569E-04 1.16102944089E-04 1.19183004957E-04 1.22351583037E-04 1.25611716090E-04 1.28966579350E-04 1.32419493618E-04 1.35973933914E-04 1.39633538727E-04 1.43402119902E-04 1.47283673218E-04 1.51282389707E-04 1.55402667757E-04 1.59649126079E-04 1.64026617580E-04 1.68540244215E-04 1.73195372906E-04 1.77997652577E-04 1.82953032420E-04 1.88067781453E-04 1.93348509497E-04 1.98802189639E-04 2.04436182336E-04 2.10258261239E-04 2.16276640890E-04 2.22500006433E-04 2.28937545464E-04 2.35598982206E-04 2.42494614171E-04 2.49635351478E-04 2.57032759060E-04 2.64699101932E-04 2.72647393780E-04 2.80891449103E-04 2.89445939167E-04 2.98326452062E-04 3.07549557169E-04 3.17132874346E-04 3.27095148197E-04 3.37456327803E-04 3.48237652297E-04 3.59461742740E-04 3.71152700744E-04 3.83336214350E-04 3.96039671686E-04 4.09292282986E-04 4.23125211581E-04 4.37571714518E-04 4.52667293516E-04 4.68449857014E-04 4.84959894130E-04 5.02240661385E-04 5.20338383144E-04 5.39302466757E-04 5.59185733479E-04 5.80044666317E-04 6.01939676016E-04 6.24935386527E-04 6.49100941340E-04 6.74510332196E-04 7.01242751801E-04 7.29382972260E-04 7.59021751068E-04 7.90256266660E-04 8.23190585605E-04 8.57936163722E-04 8.94612383518E-04 9.33347130549E-04 9.74277411434E-04 1.01755001650E-03 1.06332223015E-03 1.11176259243E-03 1.16305171518E-03 1.21738315681E-03 1.27496435968E-03 1.33601765435E-03 1.40078133552E-03 1.46951081453E-03 1.54247985356E-03 1.61998188736E-03 1.70233143832E-03 1.78986563135E-03 1.88294581516E-03 1.98195929740E-03 2.08732120100E-03 2.19947645011E-03 2.31890189404E-03 2.44610857848E-03 2.58164417374E-03 2.72609557018E-03 2.88009165186E-03 3.04430625993E-03 3.21946135807E-03 3.40633041277E-03 3.60574200236E-03 3.81858366910E-03 4.04580602974E-03 4.28842716052E-03 4.54753727380E-03 4.82430370409E-03 5.11997622244E-03 5.43589269890E-03 5.77348513410E-03 6.13428608157E-03 6.51993548396E-03 6.93218794708E-03 7.37292047697E-03 7.84414070623E-03 8.34799563705E-03 8.88678092963E-03 9.46295076553E-03 1.00791283172E-02 1.07381168552E-02 1.14429115272E-02 1.21967118422E-02 1.30029348958E-02 1.38652293728E-02 1.47874903649E-02 1.57738750410E-02 1.68288192096E-02 1.79570548137E-02 1.91636283963E-02 2.04539205799E-02 2.18336665982E-02 2.33089779229E-02 2.48863650240E-02 2.65727613051E-02 2.83755482521E-02 3.03025818325E-02 3.23622201821E-02 3.45633526129E-02 3.69154299732E-02 3.94284963878E-02 4.21132224038E-02 4.49809395606E-02 4.80436763985E-02 5.13141959157E-02 5.48060344737E-02 5.85335421452E-02 6.25119244892E-02 6.67572857257E-02 7.12866732752E-02 7.61181236098E-02 8.12707093536E-02 8.67645875497E-02 9.26210489974E-02 9.88625685399E-02 1.05512856165E-01 1.12596908755E-01 1.20141062300E-01 1.28173044355E-01 1.36722026504E-01 1.45818676533E-01 1.55495210031E-01 1.65785441034E-01 1.76724831343E-01 1.88350538078E-01 2.00701458985E-01 2.13818274966E-01 2.27743489266E-01 2.42521462668E-01 2.58198444026E-01 2.74822595373E-01 2.92444010814E-01 3.11114728318E-01 3.30888733493E-01 3.51821954342E-01 3.73972245932E-01 3.97399363857E-01 4.22164925303E-01 4.48332356454E-01 4.75966824934E-01 5.05135155902E-01 5.35905730382E-01 5.68348364360E-01 6.02534167127E-01 6.38535377326E-01 6.76425175158E-01 7.16277469150E-01 7.58166655946E-01 8.02167351567E-01 8.48354092642E-01 8.96801006184E-01 9.47581446557E-01 1.00076759840E+00 1.05643004441E+00 1.11463729712E+00 1.17545529386E+00 1.23894685458E+00 1.30517110225E+00 1.37418284606E+00 1.44603192796E+00 1.52076253342E+00 1.59841246804E+00 1.67901240162E+00 1.76258508261E+00 1.84914452579E+00 1.93869517706E+00 2.03123105994E+00 2.12673490904E+00 2.22517729643E+00 2.32651575807E+00 2.43069392787E+00 2.53764068808E+00 2.64726934553E+00 2.75947684414E+00 2.87414302483E+00 2.99112994500E+00 3.11028127029E+00 3.23142175212E+00 3.35435680510E+00 3.47887219876E+00 3.60473387843E+00 3.73168793018E+00 3.85946070470E+00 3.98775911464E+00 4.11627111930E+00 4.24466640994E+00 4.37259730741E+00 4.49969988262E+00 4.62559530843E+00 4.74989144921E+00 4.87218469167E+00 4.99206201791E+00 5.10910331776E+00 5.22288393427E+00 5.33297743174E+00 5.43895857181E+00 5.54040647801E+00 5.63690796499E+00 5.72806100348E+00 5.81347828722E+00 5.89279086360E+00 5.96565178485E+00 6.03173973295E+00 6.09076256715E+00 6.14246074051E+00 6.18661052904E+00 6.22302701595E+00 6.25156677293E+00 6.27213018123E+00 6.28466333735E+00 6.28915949133E+00 6.28565997074E+00 6.27425454910E+00 6.25508122557E+00 6.22832539127E+00 6.19421836767E+00 6.15303531398E+00 6.10509251212E+00 6.05074405081E+00 5.99037794299E+00 5.92441172417E+00 5.85328759150E+00 5.77746715568E+00 5.69742588839E+00 5.61364735759E+00 5.52661735043E+00 5.43681798925E+00 5.34472194917E+00 5.25078688655E+00 5.15545018544E+00 5.05912412425E+00 4.96219155741E+00 4.86500219626E+00 4.76786956067E+00 4.67106865759E+00 4.57483442511E+00 4.47936096153E+00 4.38480153798E+00 4.29126937099E+00 4.19883910868E+00 4.10754896098E+00 4.01740338105E+00 3.92837618303E+00 3.84041396001E+00 3.75343964788E+00 3.66735606517E+00 3.58204924849E+00 3.49739139825E+00 3.41324325205E+00 3.32948854506E+00 3.24613713290E+00 3.16323359688E+00 3.08082568584E+00 2.99896436905E+00 2.91770359840E+00 2.83709978679E+00 2.75721102450E+00 2.67809607206E+00 2.59981318645E+00 2.52241885739E+00 2.44596655169E+00 2.37050558819E+00 2.29608029148E+00 2.22272960163E+00 2.15048734947E+00 2.07938339473E+00 2.00944525511E+00 1.94069866592E+00 1.87316766330E+00 1.80687462371E+00 1.74184576669E+00 1.67809452545E+00 1.61563847215E+00 1.55449361072E+00 1.49467438520E+00 1.43619368347E+00 1.37906283681E+00 1.32329161591E+00 1.26888822407E+00 1.21585928803E+00 1.16420984741E+00 1.11394334323E+00 1.06506160640E+00 1.01756484690E+00 9.71451644446E-01 9.26718941468E-01 8.83362039114E-01 8.41374597172E-01 8.00748638567E-01 7.61474559191E-01 7.23541143676E-01 6.86935587682E-01 6.51643527129E-01 6.17649074739E-01 5.84934864048E-01 5.53482100975E-01 5.23270622848E-01 4.94278964639E-01 4.66484432025E-01 4.39863180750E-01 4.14390301637E-01 3.90039910487E-01 3.66785242022E-01 3.44598746968E-01 3.23452191304E-01 3.03316756726E-01 2.84163141347E-01 2.65961659696E-01 2.48682341119E-01 2.32295025747E-01 2.16769457291E-01 2.02075371971E-01 1.88182583041E-01 1.75061060408E-01 1.62681005006E-01 1.51012917652E-01 1.40027662213E-01 1.29696523033E-01 1.19991256637E-01 1.10884137803E-01 1.02348000189E-01 9.43562717421E-02 8.68830051683E-02 7.99029037906E-02 7.33913431332E-02 6.73243885951E-02 6.16788095762E-02 5.64320904122E-02 5.15624384585E-02 4.70487896425E-02 4.28708117729E-02 3.90089058610E-02 3.54442056751E-02 3.21585757107E-02 2.91346077245E-02 2.63556159456E-02 2.38056310506E-02 2.14693929585E-02 1.93323424875E-02 1.73806118941E-02 1.56010143121E-02 1.39810320983E-02 1.25088040969E-02 1.11731118364E-02 9.96336468056E-03 8.86958396546E-03 7.88238616647E-03 6.99296515048E-03 6.19307358211E-03 5.47500356396E-03 4.83156660208E-03 4.25607299688E-03 3.74231076726E-03 3.28452422087E-03 2.87739228702E-03 2.51600672929E-03 2.19585035457E-03 1.91277533166E-03 1.66298172866E-03 1.44299637149E-03 1.24965211924E-03 1.08006764293E-03 9.31627785692E-04 8.01964572230E-04 6.88938925777E-04 5.90623140547E-04 5.05284147851E-04 4.31367604398E-04 3.67482822107E-04 3.12388550084E-04 2.64979611418E-04 2.24274390092E-04 1.89403156719E-04 1.59597216020E-04 1.34178853854E-04 1.12552057366E-04 9.41939782583E-05 7.86471063452E-05 6.55121183951E-05 5.44413657185E-05 4.51329629791E-05 3.73254402515E-05 3.07929203464E-05 2.53407838241E-05 2.08017848677E-05 1.70325822229E-05 1.39106506986E-05 1.13315401893E-05 9.20645080916E-06 7.46009445290E-06 6.02881490037E-06 4.85894042101E-06 3.90534468087E-06 3.13019358814E-06 2.50185750956E-06 1.99397003326E-06 1.58461612959E-06 1.25563415919E-06 9.92017689701E-07 7.81404502040E-07 6.13641492888E-07 4.80415407911E-07 3.74940472483E-07 2.91695027756E-07 2.26202208551E-07 1.74857244688E-07 1.34733603343E-07 1.03479886126E-07 7.92146818880E-08 6.04375601504E-08 4.59558939324E-08 3.48249010942E-08 2.62986852644E-08 1.97903974638E-08 1.48399334036E-08 1.10878343146E-08 8.25427595968E-09 6.12221555481E-09 4.52392367988E-09 3.33026150071E-09 2.44217597859E-09 1.78398009018E-09 1.29806397414E-09 9.40748612946E-10 6.79048124317E-10 4.88151701712E-10 3.49473203201E-10 2.49146635359E-10 1.76870423504E-10 1.25023350081E-10 8.79911854391E-11 6.16560112794E-11 4.30106201027E-11 2.98686438722E-11 2.06476211388E-11 1.42073848311E-11 9.73021513091E-12 6.63237653825E-12 4.49912725109E-12 3.03719980179E-12 2.04022337724E-12 1.36368575554E-12 9.06892360153E-13 6.00031890489E-13 3.94949928460E-13 2.58601182917E-13 1.68426750327E-13 1.09107541986E-13 7.02962913104E-14 4.50416832093E-14 2.86993409332E-14 1.81833977078E-14 1.14550005179E-14 7.17471007024E-15 4.46762831538E-15 2.76543573144E-15 1.70149856068E-15 1.04051515461E-15 6.32384394173E-16 3.81941454886E-16 2.29225285352E-16 1.36692919253E-16 8.09871797582E-17 4.76699693880E-17 2.78745793130E-17 1.61916936927E-17 9.34327625064E-18 5.35626681005E-18 3.05120001615E-18 1.72789409843E-18 9.73607147723E-19 5.46766667918E-19 3.07004147534E-19 1.71107976382E-19 9.46541157878E-20 5.19649976534E-20 2.83101971432E-20 1.53035905513E-20 8.20766468622E-21 4.36695307003E-21 2.30476357083E-21 1.20647662320E-21 6.26341659652E-22 3.22446868160E-22 1.64593831642E-22 8.32973049745E-23 4.17891212329E-23 2.07808218928E-23 1.02419133258E-23 5.00229687021E-24 2.42090807792E-24 1.16080018519E-24 5.51386591263E-25 2.59431728490E-25 1.20894371866E-25 5.57895011160E-26 2.54922933435E-26 1.15324435014E-26 5.16458047008E-27 2.28925749809E-27 1.00425506166E-27 4.35939679037E-28 1.87233796707E-28 7.95535061969E-29 3.34343340448E-29 1.38971131246E-29 5.71208439157E-30 2.32135482593E-30 9.32617045935E-31 3.70354233509E-31 1.45351618223E-31 5.63698233237E-32 2.15989462636E-32 8.17544812571E-33 3.05644707440E-33 1.12844620322E-33 4.11372271204E-34 1.48050538802E-34 5.25939234456E-35 1.84391391704E-35 6.37900894179E-36 2.17721026621E-36 7.33007319782E-37 2.43389747075E-37 7.96905074900E-38 2.57243621845E-38 8.18537819769E-39 2.56690871176E-39 7.93195197383E-40 2.41472204380E-40 7.24085856007E-41 2.13828816089E-41 6.21744587635E-42 1.77968329656E-42 5.01386474603E-43 1.39000017677E-43 3.79124219449E-44 1.01714674015E-44 2.68368142342E-45 6.96197242530E-46 1.77539586969E-46 4.44965248879E-47 1.09579724946E-47 2.65101135175E-48 6.29902135311E-49 1.46965807717E-49 3.36621341863E-50 7.56742690785E-51 1.66929823064E-51 3.61239573131E-52 7.66703905872E-53 1.59560342951E-53 3.25521595425E-54 6.50853863870E-55 1.27504619336E-55 2.44678397601E-56 4.59811404983E-57 5D 3 2 1.50 4.00 5D 3 2 2.50 4.00 6S 1 0 0.50 2.00 2 1.50 2 1.50 2 2.50 2 2.50 1 0.50 1 1.50 -7.00000000 100.00000000 78.00000000 0.01250000 espresso-5.0.2/pseudo/HUSPBE.RRKJ30000644000700200004540000055741112053145632015440 0ustar marsamoscm H 3 F F 1 4 3 4 .10000000000E+01-.61916649298E+00 1 -.60000000000E+01 .10000000000E+03 .10000000000E+01 .10000000000E-01 1061 3 2 1.10000000000E+00 1.10000000000E+00 1.10000000000E+00 1.20000000000E+00 1.20000000000E+00 1.10000000000E+00 1S 1 0 1.00 1S 1 0 .00 2P 2 1 .00 629 -1.27153486665E+00 -1.28431212103E+00 -1.29721773160E+00 -1.31025298660E+00 -1.32336077396E+00 -1.33675008998E+00 -1.35021059006E+00 -1.36372623067E+00 -1.37742098316E+00 -1.39132698512E+00 -1.40525148455E+00 -1.41936695717E+00 -1.43367580861E+00 -1.44811266563E+00 -1.46256318143E+00 -1.47735404183E+00 -1.49215240071E+00 -1.50718850803E+00 -1.52228194969E+00 -1.53759409312E+00 -1.55306324961E+00 -1.56864937156E+00 -1.58442812610E+00 -1.60030820688E+00 -1.61636006803E+00 -1.63274413086E+00 -1.64900486952E+00 -1.66569323017E+00 -1.68232257259E+00 -1.69926855775E+00 -1.71633307833E+00 -1.73360523565E+00 -1.75104616918E+00 -1.76861686428E+00 -1.78639725238E+00 -1.80434189651E+00 -1.82245738395E+00 -1.84074477695E+00 -1.85932997229E+00 -1.87797507557E+00 -1.89685769832E+00 -1.91586421674E+00 -1.93515612710E+00 -1.95458004938E+00 -1.97423004478E+00 -1.99406522735E+00 -2.01408345189E+00 -2.03434582453E+00 -2.05477050662E+00 -2.07542256862E+00 -2.09628892622E+00 -2.11733686407E+00 -2.13856602593E+00 -2.16012012400E+00 -2.18174810542E+00 -2.20372292125E+00 -2.22583210684E+00 -2.24822776643E+00 -2.27082001241E+00 -2.29363870548E+00 -2.31668594949E+00 -2.33993109972E+00 -2.36346125512E+00 -2.38719071753E+00 -2.41122429497E+00 -2.43536893647E+00 -2.45989353811E+00 -2.48457568349E+00 -2.50951466751E+00 -2.53475840191E+00 -2.56022939371E+00 -2.58595374016E+00 -2.61191947654E+00 -2.63814138960E+00 -2.66466105404E+00 -2.69139090010E+00 -2.71849743313E+00 -2.74576418827E+00 -2.77337204963E+00 -2.80122616150E+00 -2.82934791004E+00 -2.85775042774E+00 -2.88645495204E+00 -2.91550945890E+00 -2.94473605576E+00 -2.97434966491E+00 -3.00421634286E+00 -3.03439294811E+00 -3.06483906595E+00 -3.09562303334E+00 -3.12672385311E+00 -3.15814168643E+00 -3.18987380577E+00 -3.22187957809E+00 -3.25427804175E+00 -3.28694981594E+00 -3.31996172362E+00 -3.35328640276E+00 -3.38701599302E+00 -3.42098413356E+00 -3.45533224021E+00 -3.49005445887E+00 -3.52507731861E+00 -3.56051665711E+00 -3.59622498520E+00 -3.63237978164E+00 -3.66886260046E+00 -3.70567902828E+00 -3.74288185676E+00 -3.78047833838E+00 -3.81843391361E+00 -3.85677632391E+00 -3.89551635679E+00 -3.93459831503E+00 -3.97410093871E+00 -4.01402751969E+00 -4.05431726113E+00 -4.09500894111E+00 -4.13615083135E+00 -4.17765030112E+00 -4.21961465368E+00 -4.26195119543E+00 -4.30472914227E+00 -4.34792867602E+00 -4.39160116191E+00 -4.43569324544E+00 -4.48019206990E+00 -4.52518207273E+00 -4.57059756206E+00 -4.61645216712E+00 -4.66279978570E+00 -4.70960467739E+00 -4.75684602621E+00 -4.80458860766E+00 -4.85280361355E+00 -4.90151654260E+00 -4.95071331630E+00 -5.00034992877E+00 -5.05054784105E+00 -5.10122845378E+00 -5.15240492341E+00 -5.20409975069E+00 -5.25629917063E+00 -5.30905526864E+00 -5.36228465407E+00 -5.41611937979E+00 -5.47041527101E+00 -5.52530473488E+00 -5.58073057780E+00 -5.63670158590E+00 -5.69324915281E+00 -5.75033079313E+00 -5.80801191232E+00 -5.86623570089E+00 -5.92508725062E+00 -5.98448016618E+00 -6.04449872839E+00 -6.10510247586E+00 -6.16632041240E+00 -6.22813236981E+00 -6.29057828235E+00 -6.35365329334E+00 -6.41732795561E+00 -6.48165709149E+00 -6.54664394110E+00 -6.61223642077E+00 -6.67851318493E+00 -6.74543375153E+00 -6.81302576017E+00 -6.88130473849E+00 -6.95025824001E+00 -7.01987127595E+00 -7.09022504027E+00 -7.16124760788E+00 -7.23297410924E+00 -7.30543961834E+00 -7.37860963305E+00 -7.45250980830E+00 -7.52713118471E+00 -7.60249390232E+00 -7.67863880263E+00 -7.75549274709E+00 -7.83315660206E+00 -7.91155803933E+00 -7.99076426697E+00 -8.07075950607E+00 -8.15151176639E+00 -8.23308443456E+00 -8.31548268680E+00 -8.39867783475E+00 -8.48271474560E+00 -8.56756862896E+00 -8.65326502179E+00 -8.73982010852E+00 -8.82723247381E+00 -8.91550394329E+00 -9.00464937779E+00 -9.09466989397E+00 -9.18559072567E+00 -9.27742565764E+00 -9.37012617162E+00 -9.46378209594E+00 -9.55834503997E+00 -9.65383567242E+00 -9.75029332638E+00 -9.84767590760E+00 -9.94604150911E+00 -1.00453599313E+01 -1.01456694302E+01 -1.02469588195E+01 -1.03492510388E+01 -1.04525494000E+01 -1.05568603661E+01 -1.06621994642E+01 -1.07685729918E+01 -1.08759903573E+01 -1.09844746348E+01 -1.10940041214E+01 -1.12046223734E+01 -1.13163275032E+01 -1.14291148956E+01 -1.15430213823E+01 -1.16580403570E+01 -1.17741739702E+01 -1.18914535661E+01 -1.20098729289E+01 -1.21294603075E+01 -1.22502085624E+01 -1.23721393199E+01 -1.24952525663E+01 -1.26195666858E+01 -1.27450946209E+01 -1.28718505726E+01 -1.29998260609E+01 -1.31290582598E+01 -1.32595335269E+01 -1.33912891114E+01 -1.35243091283E+01 -1.36586389643E+01 -1.37942480231E+01 -1.39311794018E+01 -1.40694358806E+01 -1.42090260494E+01 -1.43499644085E+01 -1.44922680027E+01 -1.46359395560E+01 -1.47809909269E+01 -1.49274480823E+01 -1.50753044759E+01 -1.52245830823E+01 -1.53753025632E+01 -1.55274480312E+01 -1.56810717774E+01 -1.58361547592E+01 -1.59927205309E+01 -1.61507898999E+01 -1.63103531615E+01 -1.64714429454E+01 -1.66340652453E+01 -1.67982322721E+01 -1.69639664692E+01 -1.71312561470E+01 -1.73001470035E+01 -1.74706283941E+01 -1.76427153861E+01 -1.78164400853E+01 -1.79917920640E+01 -1.81687867787E+01 -1.83474588592E+01 -1.85277980579E+01 -1.87098297676E+01 -1.88935600182E+01 -1.90790170317E+01 -1.92661924719E+01 -1.94551214791E+01 -1.96457988376E+01 -1.98382530966E+01 -2.00324787372E+01 -2.02285173305E+01 -2.04263453189E+01 -2.06260096683E+01 -2.08275104221E+01 -2.10308518011E+01 -2.12360663934E+01 -2.14431472879E+01 -2.16521232844E+01 -2.18630054686E+01 -2.20758010766E+01 -2.22905196921E+01 -2.25071853219E+01 -2.27258039352E+01 -2.29463913445E+01 -2.31689636181E+01 -2.33935273633E+01 -2.36200925063E+01 -2.38486792843E+01 -2.40793068869E+01 -2.43119681001E+01 -2.45466896602E+01 -2.47834799302E+01 -2.50223463608E+01 -2.52633129273E+01 -2.55063748448E+01 -2.57515603874E+01 -2.59988764822E+01 -2.62483232850E+01 -2.64999205663E+01 -2.67536807240E+01 -2.70096145313E+01 -2.72677314068E+01 -2.75280375413E+01 -2.77905453890E+01 -2.80552681464E+01 -2.83222080345E+01 -2.85913864407E+01 -2.88627942959E+01 -2.91364625646E+01 -2.94123798558E+01 -2.96905660252E+01 -2.99710175400E+01 -3.02537574175E+01 -3.05387809664E+01 -3.08260962002E+01 -3.11157123101E+01 -3.14076313009E+01 -3.17018635724E+01 -3.19984069104E+01 -3.22972678781E+01 -3.25984566823E+01 -3.29019710224E+01 -3.32078028391E+01 -3.35159770513E+01 -3.38264757992E+01 -3.41393120248E+01 -3.44544792226E+01 -3.47719770961E+01 -3.50918071556E+01 -3.54139676030E+01 -3.57384523620E+01 -3.60652640490E+01 -3.63943849923E+01 -3.67258279374E+01 -3.70595782581E+01 -3.73956239347E+01 -3.77339674301E+01 -3.80745928091E+01 -3.84174928569E+01 -3.87626569940E+01 -3.91100737687E+01 -3.94597288980E+01 -3.98116092367E+01 -4.01656988202E+01 -4.05219810983E+01 -4.08804415032E+01 -4.12410560152E+01 -4.16038070743E+01 -4.19686730684E+01 -4.23356299211E+01 -4.27046533119E+01 -4.30757187685E+01 -4.34487965142E+01 -4.38238566874E+01 -4.42008714674E+01 -4.45798053963E+01 -4.49606257181E+01 -4.53432955258E+01 -4.57277739483E+01 -4.61140285577E+01 -4.65020059533E+01 -4.68916723921E+01 -4.72829758039E+01 -4.76758685885E+01 -4.80703012846E+01 -4.84662231049E+01 -4.88635740891E+01 -4.92622967652E+01 -4.96623366831E+01 -5.00636265199E+01 -5.04660966670E+01 -5.08696901018E+01 -5.12743252673E+01 -5.16799330018E+01 -5.20864367001E+01 -5.24937552784E+01 -5.29018072726E+01 -5.33105061665E+01 -5.37197585747E+01 -5.41294794594E+01 -5.45395675008E+01 -5.49499220146E+01 -5.53604445994E+01 -5.57710237550E+01 -5.61815507441E+01 -5.65919120647E+01 -5.70019879860E+01 -5.74116550283E+01 -5.78207842190E+01 -5.82292515281E+01 -5.86369156696E+01 -5.90436397844E+01 -5.94492757360E+01 -5.98536788079E+01 -6.02566931371E+01 -6.06581609366E+01 -6.10579170705E+01 -6.14557964462E+01 -6.18516212207E+01 -6.22452149285E+01 -6.26363924440E+01 -6.30249661376E+01 -6.34107365375E+01 -6.37935073686E+01 -6.41730682178E+01 -6.45492089939E+01 -6.49217111188E+01 -6.52903519649E+01 -6.56548971367E+01 -6.60151151341E+01 -6.63707568090E+01 -6.67215789503E+01 -6.70673228335E+01 -6.74077263522E+01 -6.77425237693E+01 -6.80714356075E+01 -6.83941829656E+01 -6.87104739417E+01 -6.90200178408E+01 -6.93225062696E+01 -6.96176357510E+01 -6.99050872551E+01 -7.01845363134E+01 -7.04556549410E+01 -7.07181049633E+01 -7.09715413431E+01 -7.12156156973E+01 -7.14499652279E+01 -7.16742302727E+01 -7.18880355981E+01 -7.20910043554E+01 -7.22827494580E+01 -7.24628804461E+01 -7.26309992088E+01 -7.27866980805E+01 -7.29295697517E+01 -7.30591940789E+01 -7.31751488404E+01 -7.32770033893E+01 -7.33643275133E+01 -7.34366783855E+01 -7.34936108665E+01 -7.35346786246E+01 -7.35594257836E+01 -7.35673959628E+01 -7.35581270495E+01 -7.35311562092E+01 -7.34860139490E+01 -7.34222357298E+01 -7.33393466013E+01 -7.32368752866E+01 -7.31143517557E+01 -7.29713018532E+01 -7.28072551753E+01 -7.26217402193E+01 -7.24142928500E+01 -7.21844469252E+01 -7.19317442087E+01 -7.16557283679E+01 -7.13559535791E+01 -7.10319751949E+01 -7.06833623716E+01 -7.03096918016E+01 -6.99105498483E+01 -6.94855384281E+01 -6.90342690804E+01 -6.85563689227E+01 -6.80514840731E+01 -6.75192785133E+01 -6.69594337448E+01 -6.63716529001E+01 -6.57556663231E+01 -6.51112255332E+01 -6.44381116132E+01 -6.37361356117E+01 -6.30051388132E+01 -6.22449978787E+01 -6.14556225364E+01 -6.06369685130E+01 -5.97890242209E+01 -5.89118274331E+01 -5.80054593706E+01 -5.70700530088E+01 -5.61057944080E+01 -5.51129194848E+01 -5.40917285801E+01 -5.30425783780E+01 -5.19658928986E+01 -5.08621598890E+01 -4.97319447928E+01 -4.85758773517E+01 -4.73946724196E+01 -4.61891213498E+01 -4.49601017905E+01 -4.37085744436E+01 -4.24355970348E+01 -4.11423146735E+01 -3.98299739370E+01 -3.84999181906E+01 -3.71535967391E+01 -3.57925657293E+01 -3.44184871351E+01 -3.30331375110E+01 -3.16384077115E+01 -3.02363029870E+01 -2.88289511739E+01 -2.74185971878E+01 -2.60076078603E+01 -2.45984762421E+01 -2.31938132434E+01 -2.17963603449E+01 -2.04089756335E+01 -1.90346447772E+01 -1.76764713703E+01 -1.63376766796E+01 -1.50216000720E+01 -1.37316911908E+01 -1.24715056851E+01 -1.12447008127E+01 -1.00550278729E+01 -8.90632474190E+00 -7.80250557401E+00 -6.74754976163E+00 -5.74549421800E+00 -4.80041284446E+00 -3.91640766902E+00 -3.09758930783E+00 -2.34805875490E+00 -1.67188588368E+00 -1.07308783457E+00 -5.55606302480E-01 -1.23275277022E-01 2.20202146534E-01 4.71287805932E-01 6.26643311499E-01 6.83166600812E-01 6.38026874652E-01 4.88712064751E-01 2.33069365280E-01 -1.30647535178E-01 -6.03728670752E-01 -1.18695459083E+00 -1.88054459583E+00 -2.68409877842E+00 -3.59653793333E+00 -4.61604543216E+00 -5.74000313555E+00 -6.96492872549E+00 -8.28641112724E+00 -9.69904488859E+00 -1.11963676890E+01 -1.27707948402E+01 -1.44135585578E+01 -1.61146496774E+01 -1.78627596023E+01 -1.96452328141E+01 -2.14480215763E+01 -2.32556495329E+01 -2.50511855427E+01 -2.68162291390E+01 -2.85309075753E+01 -3.01738903964E+01 -3.17224245634E+01 -3.31523857516E+01 -3.44383591325E+01 -3.55537456318E+01 -3.64708962616E+01 -3.71612888110E+01 -3.75957348838E+01 -3.77446352445E+01 -3.75782789779E+01 -3.70671953605E+01 -3.61825598898E+01 -3.48966590529E+01 -3.31834180547E+01 -3.10189936136E+01 -2.83824369640E+01 -2.52564199035E+01 -2.16280401158E+01 -1.74896835596E+01 -1.28399560023E+01 -7.68467185663E+00 -2.03788394027E+00 4.07705204448E+00 1.06264027812E+01 1.75650024637E+01 2.48352467499E+01 3.23661863109E+01 4.00727744294E+01 4.78553393506E+01 5.55993696527E+01 6.31757243475E+01 7.04413885072E+01 7.72409491883E+01 8.34089696788E+01 8.87735018064E+01 9.31610099943E+01 9.64030353177E+01 9.83449949870E+01 9.88575759077E+01 9.78512773303E+01 9.52947445626E+01 9.12376575722E+01 8.57780123863E+01 7.88563651409E+01 7.03599746977E+01 6.01719192915E+01 4.81676614575E+01 3.42489619623E+01 1.80138652835E+01 1.97585690602E+00 -1.96630360174E-01 1.95679193160E-02 -1.94729914071E-03 1.93798574139E-04 -1.93062962078E-05 1.94870557376E-06 -1.88810411258E-07 1.56095339208E-08 -2.26541185777E-10 -1.16985319142E-08 -4.21433600343E-02 1.86345478544E-02 3.57843450182E-06 3.65072134542E-06 3.72446838509E-06 3.79970511488E-06 3.87646162450E-06 3.95476861131E-06 4.03465739268E-06 4.11615991842E-06 4.19930878360E-06 4.28413724153E-06 4.37067921713E-06 4.45896932039E-06 4.54904286029E-06 4.64093585884E-06 4.73468506554E-06 4.83032797200E-06 4.92790282697E-06 5.02744865162E-06 5.12900525510E-06 5.23261325049E-06 5.33831407101E-06 5.44614998654E-06 5.55616412059E-06 5.66840046745E-06 5.78290390983E-06 5.89972023673E-06 6.01889616179E-06 6.14047934193E-06 6.26451839639E-06 6.39106292615E-06 6.52016353375E-06 6.65187184349E-06 6.78624052209E-06 6.92332329969E-06 7.06317499133E-06 7.20585151882E-06 7.35140993313E-06 7.49990843712E-06 7.65140640882E-06 7.80596442513E-06 7.96364428601E-06 8.12450903917E-06 8.28862300527E-06 8.45605180354E-06 8.62686237804E-06 8.80112302439E-06 8.97890341700E-06 9.16027463692E-06 9.34530920022E-06 9.53408108693E-06 9.72666577057E-06 9.92314024831E-06 1.01235830717E-05 1.03280743779E-05 1.05366959219E-05 1.07495311091E-05 1.09666650283E-05 1.11881844861E-05 1.14141780413E-05 1.16447360401E-05 1.18799506526E-05 1.21199159091E-05 1.23647277380E-05 1.26144840037E-05 1.28692845460E-05 1.31292312198E-05 1.33944279357E-05 1.36649807012E-05 1.39409976638E-05 1.42225891530E-05 1.45098677252E-05 1.48029482084E-05 1.51019477475E-05 1.54069858518E-05 1.57181844420E-05 1.60356678989E-05 1.63595631136E-05 1.66899995373E-05 1.70271092333E-05 1.73710269295E-05 1.77218900724E-05 1.80798388815E-05 1.84450164053E-05 1.88175685784E-05 1.91976442797E-05 1.95853953915E-05 1.99809768602E-05 2.03845467577E-05 2.07962663449E-05 2.12163001356E-05 2.16448159619E-05 2.20819850414E-05 2.25279820450E-05 2.29829851669E-05 2.34471761949E-05 2.39207405834E-05 2.44038675268E-05 2.48967500351E-05 2.53995850105E-05 2.59125733259E-05 2.64359199044E-05 2.69698338017E-05 2.75145282882E-05 2.80702209349E-05 2.86371336988E-05 2.92154930122E-05 2.98055298721E-05 3.04074799322E-05 3.10215835967E-05 3.16480861155E-05 3.22872376822E-05 3.29392935331E-05 3.36045140486E-05 3.42831648569E-05 3.49755169394E-05 3.56818467382E-05 3.64024362659E-05 3.71375732177E-05 3.78875510855E-05 3.86526692744E-05 3.94332332215E-05 4.02295545170E-05 4.10419510282E-05 4.18707470250E-05 4.27162733088E-05 4.35788673439E-05 4.44588733906E-05 4.53566426424E-05 4.62725333647E-05 4.72069110370E-05 4.81601484974E-05 4.91326260905E-05 5.01247318179E-05 5.11368614918E-05 5.21694188917E-05 5.32228159242E-05 5.42974727860E-05 5.53938181298E-05 5.65122892343E-05 5.76533321767E-05 5.88174020090E-05 6.00049629383E-05 6.12164885096E-05 6.24524617932E-05 6.37133755751E-05 6.49997325522E-05 6.63120455300E-05 6.76508376250E-05 6.90166424717E-05 7.04100044321E-05 7.18314788109E-05 7.32816320744E-05 7.47610420730E-05 7.62702982696E-05 7.78100019712E-05 7.93807665656E-05 8.09832177630E-05 8.26179938418E-05 8.42857458998E-05 8.59871381100E-05 8.77228479816E-05 8.94935666262E-05 9.12999990289E-05 9.31428643253E-05 9.50228960833E-05 9.69408425912E-05 9.88974671506E-05 1.00893548376E-04 1.02929880499E-04 1.05007273680E-04 1.07126554325E-04 1.09288565409E-04 1.11494166805E-04 1.13744235621E-04 1.16039666542E-04 1.18381372178E-04 1.20770283423E-04 1.23207349818E-04 1.25693539916E-04 1.28229841666E-04 1.30817262794E-04 1.33456831197E-04 1.36149595339E-04 1.38896624665E-04 1.41699010011E-04 1.44557864031E-04 1.47474321624E-04 1.50449540382E-04 1.53484701031E-04 1.56581007893E-04 1.59739689349E-04 1.62961998317E-04 1.66249212735E-04 1.69602636053E-04 1.73023597739E-04 1.76513453791E-04 1.80073587257E-04 1.83705408772E-04 1.87410357096E-04 1.91189899671E-04 1.95045533183E-04 1.98978784137E-04 2.02991209443E-04 2.07084397010E-04 2.11259966357E-04 2.15519569231E-04 2.19864890238E-04 2.24297647488E-04 2.28819593246E-04 2.33432514606E-04 2.38138234165E-04 2.42938610719E-04 2.47835539969E-04 2.52830955242E-04 2.57926828218E-04 2.63125169684E-04 2.68428030288E-04 2.73837501317E-04 2.79355715484E-04 2.84984847734E-04 2.90727116060E-04 2.96584782338E-04 3.02560153175E-04 3.08655580774E-04 3.14873463815E-04 3.21216248351E-04 3.27686428720E-04 3.34286548478E-04 3.41019201339E-04 3.47887032148E-04 3.54892737853E-04 3.62039068511E-04 3.69328828300E-04 3.76764876557E-04 3.84350128833E-04 3.92087557960E-04 3.99980195148E-04 4.08031131097E-04 4.16243517122E-04 4.24620566309E-04 4.33165554683E-04 4.41881822404E-04 4.50772774971E-04 4.59841884468E-04 4.69092690805E-04 4.78528803008E-04 4.88153900508E-04 4.97971734466E-04 5.07986129117E-04 5.18200983136E-04 5.28620271029E-04 5.39248044541E-04 5.50088434101E-04 5.61145650276E-04 5.72423985262E-04 5.83927814388E-04 5.95661597657E-04 6.07629881301E-04 6.19837299370E-04 6.32288575342E-04 6.44988523759E-04 6.57942051892E-04 6.71154161431E-04 6.84629950202E-04 6.98374613909E-04 7.12393447907E-04 7.26691848999E-04 7.41275317264E-04 7.56149457910E-04 7.71319983155E-04 7.86792714140E-04 8.02573582869E-04 8.18668634171E-04 8.35084027705E-04 8.51826039978E-04 8.68901066404E-04 8.86315623389E-04 9.04076350441E-04 9.22190012315E-04 9.40663501184E-04 9.59503838845E-04 9.78718178944E-04 9.98313809243E-04 1.01829815391E-03 1.03867877583E-03 1.05946337897E-03 1.08065981076E-03 1.10227606448E-03 1.12432028170E-03 1.14680075479E-03 1.16972592935E-03 1.19310440679E-03 1.21694494684E-03 1.24125647016E-03 1.26604806094E-03 1.29132896953E-03 1.31710861509E-03 1.34339658830E-03 1.37020265408E-03 1.39753675428E-03 1.42540901049E-03 1.45382972683E-03 1.48280939270E-03 1.51235868570E-03 1.54248847439E-03 1.57320982124E-03 1.60453398547E-03 1.63647242599E-03 1.66903680431E-03 1.70223898748E-03 1.73609105107E-03 1.77060528212E-03 1.80579418211E-03 1.84167046998E-03 1.87824708511E-03 1.91553719031E-03 1.95355417486E-03 1.99231165750E-03 2.03182348943E-03 2.07210375732E-03 2.11316678636E-03 2.15502714317E-03 2.19769963884E-03 2.24119933188E-03 2.28554153120E-03 2.33074179899E-03 2.37681595368E-03 2.42378007281E-03 2.47165049587E-03 2.52044382713E-03 2.57017693842E-03 2.62086697188E-03 2.67253134262E-03 2.72518774138E-03 2.77885413713E-03 2.83354877955E-03 2.88929020150E-03 2.94609722141E-03 3.00398894556E-03 3.06298477030E-03 3.12310438419E-03 3.18436776997E-03 3.24679520655E-03 3.31040727073E-03 3.37522483894E-03 3.44126908879E-03 3.50856150042E-03 3.57712385785E-03 3.64697825002E-03 3.71814707176E-03 3.79065302457E-03 3.86451911718E-03 3.93976866591E-03 4.01642529493E-03 4.09451293609E-03 4.17405582877E-03 4.25507851924E-03 4.33760585995E-03 4.42166300847E-03 4.50727542611E-03 4.59446887630E-03 4.68326942264E-03 4.77370342659E-03 4.86579754482E-03 4.95957872624E-03 5.05507420854E-03 5.15231151447E-03 5.25131844756E-03 5.35212308750E-03 5.45475378497E-03 5.55923915611E-03 5.66560807631E-03 5.77388967367E-03 5.88411332172E-03 5.99630863173E-03 6.11050544427E-03 6.22673382027E-03 6.34502403135E-03 6.46540654948E-03 6.58791203596E-03 6.71257132964E-03 6.83941543434E-03 6.96847550558E-03 7.09978283630E-03 7.23336884191E-03 7.36926504429E-03 7.50750305493E-03 7.64811455710E-03 7.79113128699E-03 7.93658501382E-03 8.08450751883E-03 8.23493057326E-03 8.38788591501E-03 8.54340522424E-03 8.70152009760E-03 8.86226202129E-03 9.02566234269E-03 9.19175224065E-03 9.36056269438E-03 9.53212445079E-03 9.70646799041E-03 9.88362349164E-03 1.00636207935E-02 1.02464893565E-02 1.04322582221E-02 1.06209559702E-02 1.08126106745E-02 1.10072498570E-02 1.12049004392E-02 1.14055886923E-02 1.16093401849E-02 1.18161797293E-02 1.20261313241E-02 1.22392180966E-02 1.24554622414E-02 1.26748849575E-02 1.28975063824E-02 1.31233455244E-02 1.33524201925E-02 1.35847469225E-02 1.38203409025E-02 1.40592158941E-02 1.43013841517E-02 1.45468563388E-02 1.47956414420E-02 1.50477466815E-02 1.53031774191E-02 1.55619370635E-02 1.58240269721E-02 1.60894463506E-02 1.63581921486E-02 1.66302589533E-02 1.69056388795E-02 1.71843214564E-02 1.74662935117E-02 1.77515390526E-02 1.80400391436E-02 1.83317717812E-02 1.86267117658E-02 1.89248305698E-02 1.92260962041E-02 1.95304730802E-02 1.98379218700E-02 2.01483993632E-02 2.04618583207E-02 2.07782473267E-02 2.10975106370E-02 2.14195880255E-02 2.17444146280E-02 2.20719207838E-02 2.24020318750E-02 2.27346681646E-02 2.30697446315E-02 2.34071708051E-02 2.37468505980E-02 2.40886821380E-02 2.44325575983E-02 2.47783630283E-02 2.51259781836E-02 2.54752763555E-02 2.58261242020E-02 2.61783815790E-02 2.65319013722E-02 2.68865293318E-02 2.72421039083E-02 2.75984560913E-02 2.79554092511E-02 2.83127789846E-02 2.86703729650E-02 2.90279907961E-02 2.93854238730E-02 2.97424552478E-02 3.00988595041E-02 3.04544026371E-02 3.08088419439E-02 3.11619259226E-02 3.15133941816E-02 3.18629773604E-02 3.22103970623E-02 3.25553658006E-02 3.28975869590E-02 3.32367547669E-02 3.35725542921E-02 3.39046614503E-02 3.42327430334E-02 3.45564567590E-02 3.48754513399E-02 3.51893665769E-02 3.54978334759E-02 3.58004743900E-02 3.60969031881E-02 3.63867254528E-02 3.66695387067E-02 3.69449326707E-02 3.72124895543E-02 3.74717843807E-02 3.77223853467E-02 3.79638542200E-02 3.81957467753E-02 3.84176132694E-02 3.86289989589E-02 3.88294446599E-02 3.90184873516E-02 3.91956608263E-02 3.93604963852E-02 3.95125235823E-02 3.96512710170E-02 3.97762671769E-02 3.98870413314E-02 3.99831244763E-02 4.00640503306E-02 4.01293563867E-02 4.01785850123E-02 4.02112846058E-02 4.02270108046E-02 4.02253277458E-02 4.02058093790E-02 4.01680408297E-02 4.01116198138E-02 4.00361580995E-02 3.99412830174E-02 3.98266390142E-02 3.96918892501E-02 3.95367172353E-02 3.93608285030E-02 3.91639523154E-02 3.89458433992E-02 3.87062837049E-02 3.84450841855E-02 3.81620865904E-02 3.78571652662E-02 3.75302289598E-02 3.71812226167E-02 3.68101291659E-02 3.64169712843E-02 3.60018131321E-02 3.55647620497E-02 3.51059702060E-02 3.46256361894E-02 3.41240065292E-02 3.36013771373E-02 3.30580946577E-02 3.24945577124E-02 3.19112180308E-02 3.13085814492E-02 3.06872087682E-02 3.00477164528E-02 2.93907771632E-02 2.87171201008E-02 2.80275311558E-02 2.73228528422E-02 2.66039840065E-02 2.58718792957E-02 2.51275483702E-02 2.43720548506E-02 2.36065149828E-02 2.28320960110E-02 2.20500142464E-02 2.12615328220E-02 2.04679591218E-02 1.96706418794E-02 1.88709679356E-02 1.80703586522E-02 1.72702659770E-02 1.64721681587E-02 1.56775651118E-02 1.48879734336E-02 1.41049210798E-02 1.33299417036E-02 1.25645686720E-02 1.18103287689E-02 1.10687356052E-02 1.03412827519E-02 9.62943662299E-03 8.93462913100E-03 8.25825014871E-03 7.60163980890E-03 6.96608068081E-03 6.35278986456E-03 5.76291104888E-03 5.19750658131E-03 4.65754960345E-03 4.14391630763E-03 3.65737837453E-03 3.19859565456E-03 2.76810915827E-03 2.36633442408E-03 1.99355533298E-03 1.64991844191E-03 1.33542790800E-03 1.04994107653E-03 7.93164804673E-04 5.64652591784E-04 3.63802585014E-04 1.89856525436E-04 4.18996957356E-05 -8.11380750984E-05 -1.80480301428E-04 -2.57500584460E-04 -3.13718178590E-04 -3.50792360624E-04 -3.70515594387E-04 -3.74805497233E-04 -3.65695630522E-04 -3.45325153138E-04 -3.15927395617E-04 -2.79817432291E-04 -2.39378749923E-04 -1.97049133471E-04 -1.55305912647E-04 -1.16650736519E-04 -8.32403950402E-05 -5.57408152677E-05 -3.42460683960E-05 -1.85867227399E-05 -8.30012270977E-06 -2.59964518973E-06 -3.43042055624E-07 -1.44437150288E-16 2.23142031311E-17 5.85604521372E-18 -1.53125370908E-17 -1.74616203082E-16 1.12401081450E-17 -2.73902094227E-17 1.49231841577E-17 -1.77481713143E-17 2.02555677469E-17 -1.23434501365E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 629 1.67326984510E+00 1.69008406916E+00 1.70706720536E+00 1.72422094905E+00 1.74146874895E+00 1.75908646415E+00 1.77679907834E+00 1.79458610017E+00 1.81260787377E+00 1.83090583641E+00 1.84923095741E+00 1.86780637286E+00 1.88663481386E+00 1.90563229404E+00 1.92465063501E+00 1.94411241042E+00 1.96358727403E+00 1.98337299272E+00 2.00323621608E+00 2.02338592644E+00 2.04374191840E+00 2.06425289673E+00 2.08501638579E+00 2.10591471309E+00 2.12703866279E+00 2.14859583640E+00 2.16999750318E+00 2.19195561401E+00 2.21384143063E+00 2.23614040117E+00 2.25859663096E+00 2.28132517635E+00 2.30427599525E+00 2.32739854043E+00 2.35079632881E+00 2.37441055184E+00 2.39824988440E+00 2.42231560047E+00 2.44677060346E+00 2.47130730599E+00 2.49615556114E+00 2.52116821406E+00 2.54655430451E+00 2.57211556215E+00 2.59797360193E+00 2.62407556575E+00 2.65041885435E+00 2.67708232781E+00 2.70396051140E+00 2.73113719560E+00 2.75859581949E+00 2.78629410307E+00 2.81423144804E+00 2.84259391853E+00 2.87105678094E+00 2.89997318892E+00 2.92906831050E+00 2.95853902948E+00 2.98826901833E+00 3.01829701889E+00 3.04862578982E+00 3.07921584675E+00 3.11017962345E+00 3.14140663823E+00 3.17303226395E+00 3.20480716242E+00 3.23707874016E+00 3.26955978861E+00 3.30237851375E+00 3.33559717479E+00 3.36911536302E+00 3.40296705039E+00 3.43713676128E+00 3.47164376624E+00 3.50654169536E+00 3.54171756831E+00 3.57738659288E+00 3.61326909620E+00 3.64959892047E+00 3.68625343041E+00 3.72326048068E+00 3.76063699980E+00 3.79841062736E+00 3.83664328843E+00 3.87510521238E+00 3.91407426140E+00 3.95337735072E+00 3.99308805187E+00 4.03315416217E+00 4.07366414982E+00 4.11459090314E+00 4.15593470950E+00 4.19769207957E+00 4.23981067323E+00 4.28244434335E+00 4.32543883046E+00 4.36888065488E+00 4.41273447552E+00 4.45711954579E+00 4.50182080503E+00 4.54702118146E+00 4.59271315618E+00 4.63880191955E+00 4.68543717000E+00 4.73242843351E+00 4.78000518374E+00 4.82801434936E+00 4.87646333154E+00 4.92542034222E+00 4.97489493974E+00 5.02484244806E+00 5.07529893219E+00 5.12627828511E+00 5.17770872008E+00 5.22969201285E+00 5.28223261494E+00 5.33525192750E+00 5.38880024060E+00 5.44293996381E+00 5.49755159764E+00 5.55277378468E+00 5.60848689589E+00 5.66478046187E+00 5.72162901225E+00 5.77909896877E+00 5.83712150098E+00 5.89568010521E+00 5.95488402667E+00 6.01464843494E+00 6.07499105748E+00 6.13598166926E+00 6.19757418386E+00 6.25974181931E+00 6.32256836264E+00 6.38601674796E+00 6.45011997413E+00 6.51486005919E+00 6.58018010505E+00 6.64623732461E+00 6.71293020055E+00 6.78027586964E+00 6.84830348832E+00 6.91699544504E+00 6.98641911675E+00 7.05646691577E+00 7.12730958307E+00 7.19876092195E+00 7.27099218041E+00 7.34392959936E+00 7.41758461278E+00 7.49199792266E+00 7.56711479777E+00 7.64301988197E+00 7.71963984800E+00 7.79708486744E+00 7.87524334801E+00 7.95422440351E+00 8.03397587805E+00 8.11453537137E+00 8.19587693769E+00 8.27805238801E+00 8.36105556963E+00 8.44484852450E+00 8.52950229717E+00 8.61502122027E+00 8.70133812465E+00 8.78855477459E+00 8.87661908232E+00 8.96556681813E+00 9.05541831387E+00 9.14615754389E+00 9.23776535940E+00 9.33034682789E+00 9.42380915995E+00 9.51819790347E+00 9.61355856937E+00 9.70984671277E+00 9.80709569269E+00 9.90529404695E+00 1.00044680011E+01 1.01046705134E+01 1.02058072227E+01 1.03080086746E+01 1.04111815387E+01 1.05154128886E+01 1.06206824739E+01 1.07269491575E+01 1.08342950193E+01 1.09427269502E+01 1.10522080474E+01 1.11627965172E+01 1.12744604336E+01 1.13872330631E+01 1.15011354750E+01 1.16161660648E+01 1.17323273413E+01 1.18496387481E+01 1.19681018883E+01 1.20877496299E+01 1.22085999419E+01 1.23305903290E+01 1.24538370981E+01 1.25782779331E+01 1.27039397163E+01 1.28308735316E+01 1.29590251576E+01 1.30884699099E+01 1.32191689579E+01 1.33511719786E+01 1.34844647085E+01 1.36190770495E+01 1.37550134703E+01 1.38922825720E+01 1.40309046315E+01 1.41708880523E+01 1.43122451625E+01 1.44550060750E+01 1.45991429348E+01 1.47447122992E+01 1.48917119443E+01 1.50401361620E+01 1.51900327749E+01 1.53413935093E+01 1.54942213715E+01 1.56485571389E+01 1.58043929984E+01 1.59617657435E+01 1.61206663702E+01 1.62811231015E+01 1.64431361741E+01 1.66067295990E+01 1.67719203572E+01 1.69387270850E+01 1.71071390739E+01 1.72772046320E+01 1.74489064037E+01 1.76222927951E+01 1.77973435344E+01 1.79741175855E+01 1.81525756505E+01 1.83327737107E+01 1.85147156548E+01 1.86984128446E+01 1.88838843129E+01 1.90711523668E+01 1.92602208275E+01 1.94511052915E+01 1.96438396200E+01 1.98384156292E+01 2.00348633234E+01 2.02332070912E+01 2.04334280191E+01 2.06355939597E+01 2.08396806219E+01 2.10457187226E+01 2.12537354859E+01 2.14637186499E+01 2.16757107042E+01 2.18897196992E+01 2.21057617196E+01 2.23238660953E+01 2.25440180062E+01 2.27662768553E+01 2.29906291746E+01 2.32170947668E+01 2.34457154347E+01 2.36764780254E+01 2.39094028260E+01 2.41445349229E+01 2.43818613753E+01 2.46214153443E+01 2.48632049308E+01 2.51072669450E+01 2.53535909214E+01 2.56022226198E+01 2.58531556080E+01 2.61064271277E+01 2.63620303493E+01 2.66200193577E+01 2.68803639981E+01 2.71431253354E+01 2.74083037316E+01 2.76759049710E+01 2.79459715124E+01 2.82184947348E+01 2.84935122056E+01 2.87710385679E+01 2.90510835062E+01 2.93336597316E+01 2.96187985995E+01 2.99065081519E+01 3.01968091511E+01 3.04897226820E+01 3.07852576127E+01 3.10834270955E+01 3.13842576004E+01 3.16877742555E+01 3.19939680488E+01 3.23028738473E+01 3.26145027861E+01 3.29288647884E+01 3.32459911714E+01 3.35658760374E+01 3.38885562481E+01 3.42140410522E+01 3.45423309508E+01 3.48734517893E+01 3.52074198845E+01 3.55442494451E+01 3.58839529342E+01 3.62265386318E+01 3.65720229071E+01 3.69204230971E+01 3.72717423233E+01 3.76260085051E+01 3.79832101653E+01 3.83433875877E+01 3.87065262841E+01 3.90726521675E+01 3.94417608869E+01 3.98138824377E+01 4.01890109596E+01 4.05671570316E+01 4.09483327291E+01 4.13325408471E+01 4.17197950069E+01 4.21100925349E+01 4.25034420786E+01 4.28998569876E+01 4.32993344453E+01 4.37018641703E+01 4.41074785072E+01 4.45161544804E+01 4.49279089402E+01 4.53427335570E+01 4.57606280424E+01 4.61815944171E+01 4.66056304135E+01 4.70327282172E+01 4.74628912484E+01 4.78960966722E+01 4.83323609713E+01 4.87716652158E+01 4.92139938410E+01 4.96593499823E+01 5.01077129781E+01 5.05590734094E+01 5.10134175123E+01 5.14707303483E+01 5.19309933261E+01 5.23941892838E+01 5.28602974085E+01 5.33292960975E+01 5.38011663018E+01 5.42758767136E+01 5.47534043699E+01 5.52337210311E+01 5.57167952561E+01 5.62025952580E+01 5.66910890279E+01 5.71822376767E+01 5.76760021670E+01 5.81723460845E+01 5.86712231028E+01 5.91725903596E+01 5.96763996009E+01 6.01825974103E+01 6.06911412512E+01 6.12019614530E+01 6.17150137071E+01 6.22302299909E+01 6.27475480109E+01 6.32669030495E+01 6.37882286108E+01 6.43114463301E+01 6.48364809951E+01 6.53632612733E+01 6.58916991482E+01 6.64217035999E+01 6.69531998391E+01 6.74860813205E+01 6.80202574661E+01 6.85556280405E+01 6.90920869619E+01 6.96295276164E+01 7.01678368063E+01 7.07068924046E+01 7.12465830258E+01 7.17867761800E+01 7.23273401553E+01 7.28681461287E+01 7.34090482952E+01 7.39499043619E+01 7.44905658290E+01 7.50308760766E+01 7.55706735920E+01 7.61097896959E+01 7.66480620475E+01 7.71853059301E+01 7.77213422985E+01 7.82559774666E+01 7.87890221034E+01 7.93202724155E+01 7.98495220556E+01 8.03765551159E+01 8.09011556848E+01 8.14230913010E+01 8.19421312274E+01 8.24580334669E+01 8.29705527226E+01 8.34794283291E+01 8.39844036930E+01 8.44852038808E+01 8.49815543156E+01 8.54731693926E+01 8.59597582090E+01 8.64410145964E+01 8.69166360670E+01 8.73862972709E+01 8.78496804720E+01 8.83064478332E+01 8.87562570944E+01 8.91987612500E+01 8.96335954920E+01 9.00603957081E+01 9.04787809443E+01 9.08883717658E+01 9.12887658246E+01 9.16795671004E+01 9.20603594357E+01 9.24307196213E+01 9.27902198864E+01 9.31384192702E+01 9.34748679336E+01 9.37991117086E+01 9.41106777968E+01 9.44090974581E+01 9.46938818436E+01 9.49645400344E+01 9.52205679095E+01 9.54614570237E+01 9.56866890862E+01 9.58957335132E+01 9.60880602394E+01 9.62631226900E+01 9.64203716807E+01 9.65592472373E+01 9.66791900487E+01 9.67796246208E+01 9.68599725971E+01 9.69196542276E+01 9.69580775789E+01 9.69746502427E+01 9.69687725850E+01 9.69398442447E+01 9.68872564738E+01 9.68104071628E+01 9.67086810032E+01 9.65814677044E+01 9.64281588822E+01 9.62481411332E+01 9.60408062361E+01 9.58055449020E+01 9.55417577445E+01 9.52488431802E+01 9.49262102695E+01 9.45732709795E+01 9.41894513326E+01 9.37741793663E+01 9.33269014885E+01 9.28470743905E+01 9.23341678464E+01 9.17876723341E+01 9.12070914047E+01 9.05919494003E+01 8.99417959165E+01 8.92562043548E+01 8.85347715081E+01 8.77771229052E+01 8.69829200539E+01 8.61518526645E+01 8.52836495281E+01 8.43780790544E+01 8.34349496605E+01 8.24541164334E+01 8.14354781774E+01 8.03789941529E+01 7.92846668931E+01 7.81525637819E+01 7.69828094310E+01 7.57755964383E+01 7.45311871277E+01 7.32499093845E+01 7.19321755099E+01 7.05784717741E+01 6.91893726426E+01 6.77655361090E+01 6.63077217535E+01 6.48167734215E+01 6.32936461159E+01 6.17393948541E+01 6.01551873058E+01 5.85422995842E+01 5.69021342684E+01 5.52362079034E+01 5.35461691646E+01 5.18337927512E+01 5.01009911567E+01 4.83498157627E+01 4.65824554497E+01 4.48012478182E+01 4.30086787316E+01 4.12073823222E+01 3.94001514580E+01 3.75899304899E+01 3.57798213502E+01 3.39730889580E+01 3.21731502330E+01 3.03835903380E+01 2.86081444186E+01 2.68507115717E+01 2.51153421207E+01 2.34062370394E+01 2.17277482284E+01 2.00843681109E+01 1.84807238095E+01 1.69215711318E+01 1.54117844491E+01 1.39563466819E+01 1.25603356109E+01 1.12289092070E+01 9.96729523852E+00 8.78076430106E+00 7.67461791215E+00 6.65416278981E+00 5.72468683474E+00 4.89143084988E+00 4.15956009657E+00 3.53413442424E+00 3.02006604538E+00 2.62208903344E+00 2.34471479195E+00 2.19218648837E+00 2.16843127494E+00 2.27701460682E+00 2.52107837368E+00 2.90328801601E+00 3.42577099453E+00 4.09005199510E+00 4.89698373614E+00 5.84667967990E+00 6.93843878648E+00 8.17066756296E+00 9.54080471617E+00 1.10452381694E+01 1.26792239955E+01 1.44368029698E+01 1.63107158785E+01 1.82923229842E+01 2.03715197274E+01 2.25366587309E+01 2.47744751149E+01 2.70700122749E+01 2.94065614878E+01 3.17656045451E+01 3.41267680900E+01 3.64677914029E+01 3.87645094494E+01 4.09908511525E+01 4.31188605790E+01 4.51187449723E+01 4.69589439752E+01 4.86062372648E+01 5.00258854264E+01 5.11818074301E+01 5.20368131838E+01 5.25528756358E+01 5.26914656407E+01 5.24139437774E+01 5.16820206030E+01 5.04582872016E+01 4.87068219183E+01 4.63938787032E+01 4.34886597471E+01 3.99641789934E+01 3.57982072033E+01 3.09743194668E+01 2.54830163514E+01 1.93229341798E+01 1.25021289817E+01 5.03941277697E+00 -3.03426602873E+00 -1.16744300044E+01 -2.08217069923E+01 -3.04005291182E+01 -4.03179624979E+01 -5.04627384450E+01 -6.07045780540E+01 -7.08939248000E+01 -8.08622301769E+01 -9.04229492259E+01 -9.93734726686E+01 -1.07498226669E+02 -1.14573251140E+02 -1.20372611522E+02 -1.24677069628E+02 -1.27285526158E+02 -1.28029829366E+02 -1.26793669137E+02 -1.23536388330E+02 -1.18322701019E+02 -1.11280086984E+02 -1.02331253145E+02 -9.13296399112E+01 -7.81233050403E+01 -6.25504652418E+01 -4.44835616164E+01 -2.34005101686E+01 -2.56702845870E+00 2.55461683120E-01 -2.54225932365E-02 2.52992651484E-03 -2.51782586737E-04 2.50825530197E-05 -2.53156209926E-06 2.45317629639E-07 -2.03028963340E-08 2.99640281602E-10 1.51253894431E-08 -3.00168022536E-02 1.52438936704E-02 2.94757945071E-06 3.00712257234E-06 3.06786846593E-06 3.12984142586E-06 3.19306623717E-06 3.25756818544E-06 3.32337306692E-06 3.39050719883E-06 3.45899742988E-06 3.52887115099E-06 3.60015630626E-06 3.67288140411E-06 3.74707552871E-06 3.82276835155E-06 3.89999014335E-06 3.97877178614E-06 4.05914478557E-06 4.14114128354E-06 4.22479407104E-06 4.31013660122E-06 4.39720300281E-06 4.48602809369E-06 4.57664739487E-06 4.66909714462E-06 4.76341431302E-06 4.85963661665E-06 4.95780253372E-06 5.05795131943E-06 5.16012302161E-06 5.26435849680E-06 5.37069942648E-06 5.47918833379E-06 5.58986860050E-06 5.70278448430E-06 5.81798113654E-06 5.93550462021E-06 6.05540192838E-06 6.17772100294E-06 6.30251075376E-06 6.42982107822E-06 6.55970288115E-06 6.69220809514E-06 6.82738970129E-06 6.96530175036E-06 7.10599938436E-06 7.24953885857E-06 7.39597756399E-06 7.54537405026E-06 7.69778804905E-06 7.85328049789E-06 8.01191356448E-06 8.17375067157E-06 8.33885652220E-06 8.50729712560E-06 8.67913982348E-06 8.85445331695E-06 9.03330769389E-06 9.21577445700E-06 9.40192655226E-06 9.59183839808E-06 9.78558591500E-06 9.98324655594E-06 1.01848993372E-05 1.03906248698E-05 1.06005053919E-05 1.08146248014E-05 1.10330686895E-05 1.12559243749E-05 1.14832809384E-05 1.17152292586E-05 1.19518620483E-05 1.21932738912E-05 1.24395612796E-05 1.26908226532E-05 1.29471584382E-05 1.32086710869E-05 1.34754651194E-05 1.37476471646E-05 1.40253260029E-05 1.43086126095E-05 1.45976201990E-05 1.48924642699E-05 1.51932626510E-05 1.55001355486E-05 1.58132055937E-05 1.61325978916E-05 1.64584400711E-05 1.67908623359E-05 1.71299975160E-05 1.74759811211E-05 1.78289513939E-05 1.81890493658E-05 1.85564189127E-05 1.89312068123E-05 1.93135628028E-05 1.97036396421E-05 2.01015931689E-05 2.05075823646E-05 2.09217694167E-05 2.13443197831E-05 2.17754022582E-05 2.22151890397E-05 2.26638557975E-05 2.31215817433E-05 2.35885497020E-05 2.40649461843E-05 2.45509614609E-05 2.50467896382E-05 2.55526287353E-05 2.60686807629E-05 2.65951518034E-05 2.71322520928E-05 2.76801961045E-05 2.82392026341E-05 2.88094948865E-05 2.93913005644E-05 2.99848519591E-05 3.05903860422E-05 3.12081445600E-05 3.18383741293E-05 3.24813263353E-05 3.31372578314E-05 3.38064304410E-05 3.44891112616E-05 3.51855727701E-05 3.58960929314E-05 3.66209553085E-05 3.73604491745E-05 3.81148696277E-05 3.88845177082E-05 3.96697005173E-05 4.04707313392E-05 4.12879297645E-05 4.21216218174E-05 4.29721400845E-05 4.38398238462E-05 4.47250192110E-05 4.56280792527E-05 4.65493641493E-05 4.74892413264E-05 4.84480856014E-05 4.94262793322E-05 5.04242125682E-05 5.14422832040E-05 5.24808971371E-05 5.35404684274E-05 5.46214194611E-05 5.57241811171E-05 5.68491929372E-05 5.79969032989E-05 5.91677695927E-05 6.03622584020E-05 6.15808456869E-05 6.28240169719E-05 6.40922675366E-05 6.53861026110E-05 6.67060375742E-05 6.80525981567E-05 6.94263206479E-05 7.08277521058E-05 7.22574505729E-05 7.37159852948E-05 7.52039369437E-05 7.67218978464E-05 7.82704722169E-05 7.98502763926E-05 8.14619390766E-05 8.31061015835E-05 8.47834180912E-05 8.64945558959E-05 8.82401956745E-05 9.00210317496E-05 9.18377723619E-05 9.36911399463E-05 9.55818714141E-05 9.75107184412E-05 9.94784477606E-05 1.01485841462E-04 1.03533697296E-04 1.05622828986E-04 1.07754066544E-04 1.09928256592E-04 1.12146262697E-04 1.14408965698E-04 1.16717264057E-04 1.19072074201E-04 1.21474330881E-04 1.23924987534E-04 1.26425016651E-04 1.28975410155E-04 1.31577179786E-04 1.34231357487E-04 1.36938995811E-04 1.39701168319E-04 1.42518970000E-04 1.45393517690E-04 1.48325950505E-04 1.51317430277E-04 1.54369142003E-04 1.57482294298E-04 1.60658119862E-04 1.63897875951E-04 1.67202844861E-04 1.70574334414E-04 1.74013678468E-04 1.77522237416E-04 1.81101398714E-04 1.84752577408E-04 1.88477216671E-04 1.92276788355E-04 1.96152793552E-04 2.00106763162E-04 2.04140258476E-04 2.08254871767E-04 2.12452226894E-04 2.16733979917E-04 2.21101819721E-04 2.25557468655E-04 2.30102683183E-04 2.34739254541E-04 2.39469009415E-04 2.44293810626E-04 2.49215557826E-04 2.54236188214E-04 2.59357677259E-04 2.64582039436E-04 2.69911328980E-04 2.75347640650E-04 2.80893110509E-04 2.86549916717E-04 2.92320280336E-04 2.98206466156E-04 3.04210783531E-04 3.10335587228E-04 3.16583278298E-04 3.22956304957E-04 3.29457163486E-04 3.36088399140E-04 3.42852607088E-04 3.49752433350E-04 3.56790575769E-04 3.63969784984E-04 3.71292865436E-04 3.78762676375E-04 3.86382132897E-04 3.94154206996E-04 4.02081928626E-04 4.10168386796E-04 4.18416730670E-04 4.26830170694E-04 4.35411979735E-04 4.44165494251E-04 4.53094115466E-04 4.62201310575E-04 4.71490613967E-04 4.80965628465E-04 4.90630026587E-04 5.00487551833E-04 5.10542019987E-04 5.20797320442E-04 5.31257417546E-04 5.41926351973E-04 5.52808242107E-04 5.63907285460E-04 5.75227760102E-04 5.86774026118E-04 5.98550527088E-04 6.10561791587E-04 6.22812434709E-04 6.35307159617E-04 6.48050759110E-04 6.61048117220E-04 6.74304210829E-04 6.87824111309E-04 7.01612986186E-04 7.15676100831E-04 7.30018820174E-04 7.44646610435E-04 7.59565040890E-04 7.74779785655E-04 7.90296625493E-04 8.06121449650E-04 8.22260257711E-04 8.38719161481E-04 8.55504386893E-04 8.72622275936E-04 8.90079288612E-04 9.07882004909E-04 9.26037126808E-04 9.44551480302E-04 9.63432017453E-04 9.82685818456E-04 1.00232009374E-03 1.02234218607E-03 1.04275957273E-03 1.06357986762E-03 1.08481082349E-03 1.10646033414E-03 1.12853643661E-03 1.15104731346E-03 1.17400129505E-03 1.19740686177E-03 1.22127264639E-03 1.24560743636E-03 1.27042017615E-03 1.29571996961E-03 1.32151608235E-03 1.34781794409E-03 1.37463515109E-03 1.40197746854E-03 1.42985483300E-03 1.45827735479E-03 1.48725532050E-03 1.51679919536E-03 1.54691962574E-03 1.57762744158E-03 1.60893365887E-03 1.64084948211E-03 1.67338630675E-03 1.70655572166E-03 1.74036951156E-03 1.77483965950E-03 1.80997834928E-03 1.84579796784E-03 1.88231110771E-03 1.91953056939E-03 1.95746936372E-03 1.99614071421E-03 2.03555805938E-03 2.07573505505E-03 2.11668557660E-03 2.15842372120E-03 2.20096380997E-03 2.24432039014E-03 2.28850823715E-03 2.33354235665E-03 2.37943798653E-03 2.42621059879E-03 2.47387590145E-03 2.52244984027E-03 2.57194860050E-03 2.62238860846E-03 2.67378653312E-03 2.72615928750E-03 2.77952402998E-03 2.83389816558E-03 2.88929934706E-03 2.94574547584E-03 3.00325470296E-03 3.06184542968E-03 3.12153630817E-03 3.18234624180E-03 3.24429438551E-03 3.30740014578E-03 3.37168318058E-03 3.43716339905E-03 3.50386096101E-03 3.57179627619E-03 3.64099000332E-03 3.71146304894E-03 3.78323656594E-03 3.85633195184E-03 3.93077084686E-03 4.00657513160E-03 4.08376692450E-03 4.16236857888E-03 4.24240267980E-03 4.32389204038E-03 4.40685969791E-03 4.49132890950E-03 4.57732314732E-03 4.66486609350E-03 4.75398163444E-03 4.84469385485E-03 4.93702703116E-03 5.03100562450E-03 5.12665427317E-03 5.22399778449E-03 5.32306112620E-03 5.42386941718E-03 5.52644791760E-03 5.63082201839E-03 5.73701723013E-03 5.84505917114E-03 5.95497355495E-03 6.06678617697E-03 6.18052290041E-03 6.29620964137E-03 6.41387235311E-03 6.53353700952E-03 6.65522958754E-03 6.77897604883E-03 6.90480232034E-03 7.03273427395E-03 7.16279770508E-03 7.29501831020E-03 7.42942166325E-03 7.56603319095E-03 7.70487814685E-03 7.84598158428E-03 7.98936832792E-03 8.13506294418E-03 8.28308971015E-03 8.43347258124E-03 8.58623515734E-03 8.74140064759E-03 8.89899183357E-03 9.05903103096E-03 9.22154004965E-03 9.38654015214E-03 9.55405201032E-03 9.72409566046E-03 9.89669045652E-03 1.00718550215E-02 1.02496071972E-02 1.04299639915E-02 1.06129415246E-02 1.07985549724E-02 1.09868185081E-02 1.11777452422E-02 1.13713471597E-02 1.15676350553E-02 1.17666184670E-02 1.19683056063E-02 1.21727032876E-02 1.23798168538E-02 1.25896501007E-02 1.28022051981E-02 1.30174826096E-02 1.32354810088E-02 1.34561971940E-02 1.36796259994E-02 1.39057602054E-02 1.41345904443E-02 1.43661051057E-02 1.46002902373E-02 1.48371294452E-02 1.50766037900E-02 1.53186916814E-02 1.55633687699E-02 1.58106078366E-02 1.60603786800E-02 1.63126480003E-02 1.65673792826E-02 1.68245326761E-02 1.70840648728E-02 1.73459289829E-02 1.76100744086E-02 1.78764467162E-02 1.81449875061E-02 1.84156342813E-02 1.86883203145E-02 1.89629745131E-02 1.92395212841E-02 1.95178803972E-02 1.97979668473E-02 2.00796907163E-02 2.03629570349E-02 2.06476656438E-02 2.09337110554E-02 2.12209823160E-02 2.15093628685E-02 2.17987304162E-02 2.20889567889E-02 2.23799078097E-02 2.26714431648E-02 2.29634162762E-02 2.32556741768E-02 2.35480573904E-02 2.38403998144E-02 2.41325286089E-02 2.44242640898E-02 2.47154196289E-02 2.50058015595E-02 2.52952090907E-02 2.55834342284E-02 2.58702617057E-02 2.61554689227E-02 2.64388258967E-02 2.67200952229E-02 2.69990320485E-02 2.72753840578E-02 2.75488914731E-02 2.78192870692E-02 2.80862962036E-02 2.83496368646E-02 2.86090197364E-02 2.88641482833E-02 2.91147188541E-02 2.93604208079E-02 2.96009366618E-02 2.98359422625E-02 3.00651069823E-02 3.02880939411E-02 3.05045602560E-02 3.07141573179E-02 3.09165310990E-02 3.11113224904E-02 3.12981676710E-02 3.14766985109E-02 3.16465430073E-02 3.18073257569E-02 3.19586684643E-02 3.21001904876E-02 3.22315094229E-02 3.23522417273E-02 3.24620033831E-02 3.25604106017E-02 3.26470805699E-02 3.27216322379E-02 3.27836871500E-02 3.28328703177E-02 3.28688111364E-02 3.28911443445E-02 3.28995110257E-02 3.28935596529E-02 3.28729471753E-02 3.28373401452E-02 3.27864158857E-02 3.27198636967E-02 3.26373860981E-02 3.25387001090E-02 3.24235385595E-02 3.22916514334E-02 3.21428072395E-02 3.19767944073E-02 3.17934227046E-02 3.15925246725E-02 3.13739570739E-02 3.11376023509E-02 3.08833700857E-02 3.06111984604E-02 3.03210557078E-02 3.00129415503E-02 2.96868886162E-02 2.93429638290E-02 2.89812697613E-02 2.86019459447E-02 2.82051701275E-02 2.77911594718E-02 2.73601716796E-02 2.69125060398E-02 2.64485043842E-02 2.59685519435E-02 2.54730780922E-02 2.49625569712E-02 2.44375079775E-02 2.38984961094E-02 2.33461321557E-02 2.27810727176E-02 2.22040200523E-02 2.16157217266E-02 2.10169700685E-02 2.04086014084E-02 1.97914950968E-02 1.91665722902E-02 1.85347944953E-02 1.78971618624E-02 1.72547112212E-02 1.66085138507E-02 1.59596729787E-02 1.53093210053E-02 1.46586164479E-02 1.40087406048E-02 1.33608939396E-02 1.27162921847E-02 1.20761621711E-02 1.14417373880E-02 1.08142532804E-02 1.01949422961E-02 9.58502869467E-03 8.98572313248E-03 8.39821704440E-03 7.82367684156E-03 7.26323794990E-03 6.71799871660E-03 6.18901421442E-03 5.67728997721E-03 5.18377570295E-03 4.70935896371E-03 4.25485896479E-03 3.82102039841E-03 3.40850743983E-03 3.01789793649E-03 2.64967784307E-03 2.30423595726E-03 1.98185901289E-03 1.68272718825E-03 1.40691008829E-03 1.15436325968E-03 9.24925297463E-04 7.18315600879E-04 5.34132834581E-04 3.71854148650E-04 2.30835207643E-04 1.10311074569E-04 9.39799037958E-06 -7.29039167300E-05 -1.37706965400E-04 -1.86231280290E-04 -2.19799167855E-04 -2.39828511124E-04 -2.47825197970E-04 -2.45374610635E-04 -2.34132218600E-04 -2.15813332298E-04 -1.92182091467E-04 -1.65039779053E-04 -1.36212569294E-04 -1.07538836754E-04 -8.08561713633E-05 -5.77370299767E-05 -3.86790107203E-05 -2.37678891405E-05 -1.28992425529E-05 -5.75886907078E-06 -1.80290256718E-06 -2.37750464829E-07 -1.23342023948E-17 7.58010841858E-18 9.13112058106E-18 -1.27779244048E-17 -7.54916640432E-17 -2.74341614786E-17 -1.84999381883E-17 1.15187438673E-17 1.20078154831E-17 -7.32486172123E-19 -1.73224799183E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -2.08411904985E-02 1.24529070693E-02 2.42648687827E-06 2.47550356057E-06 2.52551038008E-06 2.57652733620E-06 2.62857483229E-06 2.68167368372E-06 2.73584512629E-06 2.79111082462E-06 2.84749288089E-06 2.90501384363E-06 2.96369671674E-06 3.02356496869E-06 3.08464254189E-06 3.14695386226E-06 3.21052384900E-06 3.27537792455E-06 3.34154202471E-06 3.40904260908E-06 3.47790667154E-06 3.54816175113E-06 3.61983594297E-06 3.69295790954E-06 3.76755689213E-06 3.84366272249E-06 3.92130583477E-06 4.00051727770E-06 4.08132872694E-06 4.16377249779E-06 4.24788155807E-06 4.33368954130E-06 4.42123076014E-06 4.51054022008E-06 4.60165363344E-06 4.69460743362E-06 4.78943878966E-06 4.88618562112E-06 4.98488661315E-06 5.08558123202E-06 5.18830974081E-06 5.29311321556E-06 5.40003356162E-06 5.50911353042E-06 5.62039673651E-06 5.73392767501E-06 5.84975173936E-06 5.96791523943E-06 6.08846542005E-06 6.21145047982E-06 6.33691959042E-06 6.46492291618E-06 6.59551163412E-06 6.72873795442E-06 6.86465514121E-06 7.00331753386E-06 7.14478056867E-06 7.28910080098E-06 7.43633592774E-06 7.58654481058E-06 7.73978749923E-06 7.89612525555E-06 8.05562057794E-06 8.21833722628E-06 8.38434024738E-06 8.55369600092E-06 8.72647218595E-06 8.90273786787E-06 9.08256350599E-06 9.26602098164E-06 9.45318362685E-06 9.64412625357E-06 9.83892518353E-06 1.00376582787E-05 1.02404049722E-05 1.04472463003E-05 1.06582649343E-05 1.08735452138E-05 1.10931731802E-05 1.13172366112E-05 1.15458250553E-05 1.17790298680E-05 1.20169442482E-05 1.22596632747E-05 1.25072839451E-05 1.27599052136E-05 1.30176280306E-05 1.32805553834E-05 1.35487923367E-05 1.38224460747E-05 1.41016259435E-05 1.43864434952E-05 1.46770125319E-05 1.49734491509E-05 1.52758717914E-05 1.55844012813E-05 1.58991608855E-05 1.62202763546E-05 1.65478759755E-05 1.68820906220E-05 1.72230538072E-05 1.75709017363E-05 1.79257733610E-05 1.82878104348E-05 1.86571575693E-05 1.90339622916E-05 1.94183751034E-05 1.98105495403E-05 2.02106422330E-05 2.06188129699E-05 2.10352247603E-05 2.14600438991E-05 2.18934400330E-05 2.23355862282E-05 2.27866590386E-05 2.32468385764E-05 2.37163085831E-05 2.41952565033E-05 2.46838735582E-05 2.51823548220E-05 2.56908992994E-05 2.62097100044E-05 2.67389940407E-05 2.72789626841E-05 2.78298314664E-05 2.83918202606E-05 2.89651533682E-05 2.95500596080E-05 3.01467724070E-05 3.07555298931E-05 3.13765749886E-05 3.20101555075E-05 3.26565242528E-05 3.33159391173E-05 3.39886631851E-05 3.46749648360E-05 3.53751178517E-05 3.60894015243E-05 3.68181007664E-05 3.75615062240E-05 3.83199143914E-05 3.90936277284E-05 3.98829547798E-05 4.06882102972E-05 4.15097153636E-05 4.23477975199E-05 4.32027908944E-05 4.40750363345E-05 4.49648815415E-05 4.58726812073E-05 4.67987971546E-05 4.77435984795E-05 4.87074616969E-05 4.96907708889E-05 5.06939178560E-05 5.17173022714E-05 5.27613318384E-05 5.38264224507E-05 5.49129983560E-05 5.60214923232E-05 5.71523458118E-05 5.83060091460E-05 5.94829416913E-05 6.06836120350E-05 6.19084981699E-05 6.31580876823E-05 6.44328779426E-05 6.57333763008E-05 6.70601002851E-05 6.84135778048E-05 6.97943473567E-05 7.12029582361E-05 7.26399707517E-05 7.41059564445E-05 7.56014983112E-05 7.71271910323E-05 7.86836412040E-05 8.02714675747E-05 8.18913012870E-05 8.35437861232E-05 8.52295787564E-05 8.69493490062E-05 8.87037800996E-05 9.04935689365E-05 9.23194263607E-05 9.41820774363E-05 9.60822617292E-05 9.80207335942E-05 9.99982624672E-05 1.02015633164E-04 1.04073646184E-04 1.06173118020E-04 1.08314881474E-04 1.10499785980E-04 1.12728697931E-04 1.15002501014E-04 1.17322096551E-04 1.19688403846E-04 1.22102360539E-04 1.24564922967E-04 1.27077066534E-04 1.29639786080E-04 1.32254096271E-04 1.34921031979E-04 1.37641648688E-04 1.40417022891E-04 1.43248252505E-04 1.46136457290E-04 1.49082779277E-04 1.52088383202E-04 1.55154456954E-04 1.58282212021E-04 1.61472883957E-04 1.64727732847E-04 1.68048043787E-04 1.71435127371E-04 1.74890320188E-04 1.78414985326E-04 1.82010512888E-04 1.85678320516E-04 1.89419853926E-04 1.93236587452E-04 1.97130024598E-04 2.01101698607E-04 2.05153173032E-04 2.09286042323E-04 2.13501932422E-04 2.17802501371E-04 2.22189439932E-04 2.26664472212E-04 2.31229356307E-04 2.35885884954E-04 2.40635886194E-04 2.45481224052E-04 2.50423799218E-04 2.55465549757E-04 2.60608451814E-04 2.65854520345E-04 2.71205809855E-04 2.76664415148E-04 2.82232472096E-04 2.87912158412E-04 2.93705694451E-04 2.99615344006E-04 3.05643415138E-04 3.11792261004E-04 3.18064280709E-04 3.24461920170E-04 3.30987672993E-04 3.37644081369E-04 3.44433736980E-04 3.51359281925E-04 3.58423409661E-04 3.65628865956E-04 3.72978449862E-04 3.80475014706E-04 3.88121469088E-04 3.95920777908E-04 4.03875963400E-04 4.11990106190E-04 4.20266346364E-04 4.28707884559E-04 4.37317983070E-04 4.46099966974E-04 4.55057225271E-04 4.64193212046E-04 4.73511447646E-04 4.83015519876E-04 4.92709085216E-04 5.02595870052E-04 5.12679671932E-04 5.22964360833E-04 5.33453880454E-04 5.44152249527E-04 5.55063563139E-04 5.66191994088E-04 5.77541794246E-04 5.89117295947E-04 6.00922913391E-04 6.12963144075E-04 6.25242570236E-04 6.37765860315E-04 6.50537770447E-04 6.63563145961E-04 6.76846922907E-04 6.90394129602E-04 7.04209888194E-04 7.18299416243E-04 7.32668028327E-04 7.47321137665E-04 7.62264257760E-04 7.77503004058E-04 7.93043095631E-04 8.08890356876E-04 8.25050719232E-04 8.41530222920E-04 8.58335018694E-04 8.75471369614E-04 8.92945652841E-04 9.10764361438E-04 9.28934106198E-04 9.47461617486E-04 9.66353747091E-04 9.85617470101E-04 1.00525988679E-03 1.02528822452E-03 1.04570983964E-03 1.06653221946E-03 1.08776298412E-03 1.10940988861E-03 1.13148082468E-03 1.15398382284E-03 1.17692705434E-03 1.20031883314E-03 1.22416761792E-03 1.24848201408E-03 1.27327077574E-03 1.29854280773E-03 1.32430716763E-03 1.35057306776E-03 1.37734987720E-03 1.40464712376E-03 1.43247449604E-03 1.46084184536E-03 1.48975918777E-03 1.51923670606E-03 1.54928475166E-03 1.57991384660E-03 1.61113468548E-03 1.64295813735E-03 1.67539524758E-03 1.70845723975E-03 1.74215551748E-03 1.77650166623E-03 1.81150745505E-03 1.84718483835E-03 1.88354595756E-03 1.92060314279E-03 1.95836891443E-03 1.99685598469E-03 2.03607725908E-03 2.07604583787E-03 2.11677501743E-03 2.15827829153E-03 2.20056935257E-03 2.24366209269E-03 2.28757060487E-03 2.33230918386E-03 2.37789232703E-03 2.42433473518E-03 2.47165131319E-03 2.51985717051E-03 2.56896762161E-03 2.61899818627E-03 2.66996458971E-03 2.72188276262E-03 2.77476884096E-03 2.82863916570E-03 2.88351028230E-03 2.93939894006E-03 2.99632209129E-03 3.05429689020E-03 3.11334069170E-03 3.17347104989E-03 3.23470571636E-03 3.29706263820E-03 3.36055995587E-03 3.42521600064E-03 3.49104929192E-03 3.55807853413E-03 3.62632261344E-03 3.69580059404E-03 3.76653171414E-03 3.83853538167E-03 3.91183116951E-03 3.98643881040E-03 4.06237819148E-03 4.13966934836E-03 4.21833245878E-03 4.29838783581E-03 4.37985592062E-03 4.46275727470E-03 4.54711257164E-03 4.63294258831E-03 4.72026819554E-03 4.80911034823E-03 4.89949007482E-03 4.99142846620E-03 5.08494666392E-03 5.18006584780E-03 5.27680722278E-03 5.37519200514E-03 5.47524140785E-03 5.57697662532E-03 5.68041881718E-03 5.78558909138E-03 5.89250848633E-03 6.00119795223E-03 6.11167833143E-03 6.22397033791E-03 6.33809453571E-03 6.45407131645E-03 6.57192087566E-03 6.69166318825E-03 6.81331798264E-03 6.93690471397E-03 7.06244253595E-03 7.18995027163E-03 7.31944638289E-03 7.45094893858E-03 7.58447558150E-03 7.72004349383E-03 7.85766936138E-03 7.99736933622E-03 8.13915899802E-03 8.28305331377E-03 8.42906659602E-03 8.57721245956E-03 8.72750377647E-03 8.87995262953E-03 9.03457026397E-03 9.19136703752E-03 9.35035236865E-03 9.51153468314E-03 9.67492135874E-03 9.84051866808E-03 1.00083317196E-02 1.01783643968E-02 1.03506192951E-02 1.05250976575E-02 1.07017993075E-02 1.08807225806E-02 1.10618642535E-02 1.12452194712E-02 1.14307816725E-02 1.16185425130E-02 1.18084917862E-02 1.20006173430E-02 1.21949050080E-02 1.23913384953E-02 1.25898993212E-02 1.27905667150E-02 1.29933175284E-02 1.31981261425E-02 1.34049643728E-02 1.36138013729E-02 1.38246035357E-02 1.40373343933E-02 1.42519545151E-02 1.44684214044E-02 1.46866893932E-02 1.49067095360E-02 1.51284295018E-02 1.53517934655E-02 1.55767419977E-02 1.58032119535E-02 1.60311363617E-02 1.62604443118E-02 1.64910608415E-02 1.67229068241E-02 1.69558988557E-02 1.71899491421E-02 1.74249653875E-02 1.76608506824E-02 1.78975033939E-02 1.81348170568E-02 1.83726802658E-02 1.86109765713E-02 1.88495843755E-02 1.90883768335E-02 1.93272217557E-02 1.95659815150E-02 1.98045129579E-02 2.00426673199E-02 2.02802901462E-02 2.05172212177E-02 2.07532944842E-02 2.09883380029E-02 2.12221738856E-02 2.14546182531E-02 2.16854811988E-02 2.19145667615E-02 2.21416729082E-02 2.23665915278E-02 2.25891084371E-02 2.28090033979E-02 2.30260501487E-02 2.32400164496E-02 2.34506641426E-02 2.36577492276E-02 2.38610219554E-02 2.40602269378E-02 2.42551032768E-02 2.44453847139E-02 2.46307997982E-02 2.48110720784E-02 2.49859203150E-02 2.51550587179E-02 2.53181972067E-02 2.54750416981E-02 2.56252944184E-02 2.57686542439E-02 2.59048170695E-02 2.60334762061E-02 2.61543228084E-02 2.62670463335E-02 2.63713350301E-02 2.64668764617E-02 2.65533580609E-02 2.66304677182E-02 2.66978944048E-02 2.67553288292E-02 2.68024641288E-02 2.68389965961E-02 2.68646264402E-02 2.68790585827E-02 2.68820034880E-02 2.68731780285E-02 2.68523063829E-02 2.68191209671E-02 2.67733633979E-02 2.67147854868E-02 2.66431502632E-02 2.65582330261E-02 2.64598224208E-02 2.63477215403E-02 2.62217490471E-02 2.60817403153E-02 2.59275485865E-02 2.57590461397E-02 2.55761254693E-02 2.53787004681E-02 2.51667076110E-02 2.49401071347E-02 2.46988842080E-02 2.44430500882E-02 2.41726432572E-02 2.38877305315E-02 2.35884081399E-02 2.32748027616E-02 2.29470725184E-02 2.26054079127E-02 2.22500327044E-02 2.18812047181E-02 2.14992165723E-02 2.11043963229E-02 2.06971080111E-02 2.02777521071E-02 1.98467658413E-02 1.94046234129E-02 1.89518360668E-02 1.84889520299E-02 1.80165562980E-02 1.75352702630E-02 1.70457511728E-02 1.65486914153E-02 1.60448176176E-02 1.55348895532E-02 1.50196988497E-02 1.45000674916E-02 1.39768461104E-02 1.34509120591E-02 1.29231672662E-02 1.23945358653E-02 1.18659616018E-02 1.13384050122E-02 1.08128403802E-02 1.02902524714E-02 9.77163304944E-03 9.25797718256E-03 8.75027934549E-03 8.24952932901E-03 7.75670796819E-03 7.27278270397E-03 6.79870299477E-03 6.33539559718E-03 5.88375973713E-03 5.44466219557E-03 5.01893233510E-03 4.60735709644E-03 4.21067599625E-03 3.82957616013E-03 3.46468742691E-03 3.11657756285E-03 2.78574762600E-03 2.47262752339E-03 2.17757180498E-03 1.90085573984E-03 1.64267172119E-03 1.40312604745E-03 1.18223612694E-03 9.79928153428E-04 7.96035299340E-04 6.30296471751E-04 4.82355674705E-04 3.51762018535E-04 2.37970413605E-04 1.40342981696E-04 5.81512132971E-05 -9.42110681767E-06 -6.32741900737E-05 -1.04387742668E-04 -1.33815672833E-04 -1.52680016904E-04 -1.62164104670E-04 -1.63504995762E-04 -1.57985230812E-04 -1.46923953851E-04 -1.31667475720E-04 -1.13579361984E-04 -9.40301428537E-05 -7.43867566559E-05 -5.60018523046E-05 -4.00246253780E-05 -2.68288519860E-05 -1.64912172027E-05 -8.95060541681E-06 -3.99530370939E-06 -1.25029645581E-06 -1.64774888026E-07 4.18394786855E-17 1.60349756296E-18 -4.44867007563E-18 -5.51102207559E-18 -9.59630044471E-18 -1.22983136583E-17 7.59154944654E-18 1.49597837854E-18 6.21686986749E-18 -7.26783396563E-18 -8.08663349754E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.10000000000E+00 -5.01093999843E+00 -5.01093960017E+00 -5.01093919386E+00 -5.01093877939E+00 -5.01093835658E+00 -5.01093792518E+00 -5.01093748504E+00 -5.01093703600E+00 -5.01093657790E+00 -5.01093611054E+00 -5.01093563374E+00 -5.01093514731E+00 -5.01093465106E+00 -5.01093414477E+00 -5.01093362827E+00 -5.01093310133E+00 -5.01093256375E+00 -5.01093201530E+00 -5.01093145578E+00 -5.01093088496E+00 -5.01093030260E+00 -5.01092970849E+00 -5.01092910237E+00 -5.01092848401E+00 -5.01092785316E+00 -5.01092720956E+00 -5.01092655297E+00 -5.01092588311E+00 -5.01092519972E+00 -5.01092450253E+00 -5.01092379126E+00 -5.01092306561E+00 -5.01092232532E+00 -5.01092157007E+00 -5.01092079956E+00 -5.01092001349E+00 -5.01091921155E+00 -5.01091839340E+00 -5.01091755872E+00 -5.01091670720E+00 -5.01091583847E+00 -5.01091495219E+00 -5.01091404801E+00 -5.01091312557E+00 -5.01091218450E+00 -5.01091122442E+00 -5.01091024494E+00 -5.01090924569E+00 -5.01090822625E+00 -5.01090718622E+00 -5.01090612518E+00 -5.01090504271E+00 -5.01090393839E+00 -5.01090281175E+00 -5.01090166236E+00 -5.01090048976E+00 -5.01089929347E+00 -5.01089807302E+00 -5.01089682792E+00 -5.01089555767E+00 -5.01089426177E+00 -5.01089293969E+00 -5.01089159092E+00 -5.01089021490E+00 -5.01088881109E+00 -5.01088737892E+00 -5.01088591784E+00 -5.01088442725E+00 -5.01088290655E+00 -5.01088135513E+00 -5.01087977238E+00 -5.01087815767E+00 -5.01087651036E+00 -5.01087482977E+00 -5.01087311524E+00 -5.01087136609E+00 -5.01086958160E+00 -5.01086776108E+00 -5.01086590379E+00 -5.01086400900E+00 -5.01086207595E+00 -5.01086010386E+00 -5.01085809193E+00 -5.01085603937E+00 -5.01085394537E+00 -5.01085180909E+00 -5.01084962965E+00 -5.01084740621E+00 -5.01084513788E+00 -5.01084282373E+00 -5.01084046285E+00 -5.01083805430E+00 -5.01083559711E+00 -5.01083309031E+00 -5.01083053288E+00 -5.01082792381E+00 -5.01082526206E+00 -5.01082254656E+00 -5.01081977623E+00 -5.01081694996E+00 -5.01081406663E+00 -5.01081112508E+00 -5.01080812413E+00 -5.01080506259E+00 -5.01080193923E+00 -5.01079875281E+00 -5.01079550205E+00 -5.01079218566E+00 -5.01078880231E+00 -5.01078535065E+00 -5.01078182931E+00 -5.01077823687E+00 -5.01077457190E+00 -5.01077083294E+00 -5.01076701849E+00 -5.01076312704E+00 -5.01075915702E+00 -5.01075510686E+00 -5.01075097493E+00 -5.01074675959E+00 -5.01074245916E+00 -5.01073807192E+00 -5.01073359611E+00 -5.01072902995E+00 -5.01072437162E+00 -5.01071961925E+00 -5.01071477096E+00 -5.01070982481E+00 -5.01070477882E+00 -5.01069963098E+00 -5.01069437923E+00 -5.01068902149E+00 -5.01068355561E+00 -5.01067797941E+00 -5.01067229067E+00 -5.01066648712E+00 -5.01066056644E+00 -5.01065452628E+00 -5.01064836422E+00 -5.01064207780E+00 -5.01063566452E+00 -5.01062912183E+00 -5.01062244711E+00 -5.01061563770E+00 -5.01060869088E+00 -5.01060160389E+00 -5.01059437391E+00 -5.01058699805E+00 -5.01057947337E+00 -5.01057179686E+00 -5.01056396549E+00 -5.01055597612E+00 -5.01054782556E+00 -5.01053951057E+00 -5.01053102784E+00 -5.01052237400E+00 -5.01051354558E+00 -5.01050453908E+00 -5.01049535091E+00 -5.01048597742E+00 -5.01047641486E+00 -5.01046665942E+00 -5.01045670724E+00 -5.01044655434E+00 -5.01043619669E+00 -5.01042563016E+00 -5.01041485055E+00 -5.01040385356E+00 -5.01039263483E+00 -5.01038118989E+00 -5.01036951418E+00 -5.01035760307E+00 -5.01034545180E+00 -5.01033305557E+00 -5.01032040943E+00 -5.01030750836E+00 -5.01029434722E+00 -5.01028092080E+00 -5.01026722375E+00 -5.01025325064E+00 -5.01023899590E+00 -5.01022445387E+00 -5.01020961879E+00 -5.01019448476E+00 -5.01017904576E+00 -5.01016329568E+00 -5.01014722826E+00 -5.01013083712E+00 -5.01011411576E+00 -5.01009705754E+00 -5.01007965569E+00 -5.01006190331E+00 -5.01004379338E+00 -5.01002531869E+00 -5.01000647193E+00 -5.00998724564E+00 -5.00996763219E+00 -5.00994762380E+00 -5.00992721255E+00 -5.00990639036E+00 -5.00988514899E+00 -5.00986348003E+00 -5.00984137489E+00 -5.00981882482E+00 -5.00979582092E+00 -5.00977235407E+00 -5.00974841501E+00 -5.00972399425E+00 -5.00969908215E+00 -5.00967366886E+00 -5.00964774435E+00 -5.00962129837E+00 -5.00959432047E+00 -5.00956680002E+00 -5.00953872614E+00 -5.00951008775E+00 -5.00948087356E+00 -5.00945107205E+00 -5.00942067147E+00 -5.00938965982E+00 -5.00935802490E+00 -5.00932575424E+00 -5.00929283514E+00 -5.00925925462E+00 -5.00922499949E+00 -5.00919005625E+00 -5.00915441117E+00 -5.00911805022E+00 -5.00908095912E+00 -5.00904312330E+00 -5.00900452789E+00 -5.00896515774E+00 -5.00892499739E+00 -5.00888403109E+00 -5.00884224278E+00 -5.00879961607E+00 -5.00875613425E+00 -5.00871178029E+00 -5.00866653683E+00 -5.00862038615E+00 -5.00857331020E+00 -5.00852529057E+00 -5.00847630849E+00 -5.00842634481E+00 -5.00837538003E+00 -5.00832339425E+00 -5.00827036718E+00 -5.00821627815E+00 -5.00816110608E+00 -5.00810482947E+00 -5.00804742639E+00 -5.00798887452E+00 -5.00792915108E+00 -5.00786823284E+00 -5.00780609614E+00 -5.00774271683E+00 -5.00767807034E+00 -5.00761213158E+00 -5.00754487498E+00 -5.00747627449E+00 -5.00740630354E+00 -5.00733493507E+00 -5.00726214146E+00 -5.00718789459E+00 -5.00711216579E+00 -5.00703492581E+00 -5.00695614488E+00 -5.00687579264E+00 -5.00679383813E+00 -5.00671024981E+00 -5.00662499554E+00 -5.00653804255E+00 -5.00644935744E+00 -5.00635890619E+00 -5.00626665413E+00 -5.00617256590E+00 -5.00607660548E+00 -5.00597873619E+00 -5.00587892062E+00 -5.00577712064E+00 -5.00567329744E+00 -5.00556741143E+00 -5.00545942228E+00 -5.00534928891E+00 -5.00523696946E+00 -5.00512242127E+00 -5.00500560087E+00 -5.00488646401E+00 -5.00476496555E+00 -5.00464105954E+00 -5.00451469916E+00 -5.00438583669E+00 -5.00425442357E+00 -5.00412041027E+00 -5.00398374637E+00 -5.00384438050E+00 -5.00370226033E+00 -5.00355733257E+00 -5.00340954293E+00 -5.00325883611E+00 -5.00310515579E+00 -5.00294844459E+00 -5.00278864412E+00 -5.00262569485E+00 -5.00245953619E+00 -5.00229010643E+00 -5.00211734273E+00 -5.00194118108E+00 -5.00176155632E+00 -5.00157840208E+00 -5.00139165078E+00 -5.00120123361E+00 -5.00100708052E+00 -5.00080912017E+00 -5.00060727993E+00 -5.00040148585E+00 -5.00019166264E+00 -4.99997773367E+00 -4.99975962090E+00 -4.99953724490E+00 -4.99931052479E+00 -4.99907937826E+00 -4.99884372153E+00 -4.99860346928E+00 -4.99835853470E+00 -4.99810882941E+00 -4.99785426347E+00 -4.99759474531E+00 -4.99733018175E+00 -4.99706047797E+00 -4.99678553742E+00 -4.99650526189E+00 -4.99621955140E+00 -4.99592830420E+00 -4.99563141676E+00 -4.99532878372E+00 -4.99502029785E+00 -4.99470585004E+00 -4.99438532927E+00 -4.99405862254E+00 -4.99372561489E+00 -4.99338618932E+00 -4.99304022681E+00 -4.99268760622E+00 -4.99232820431E+00 -4.99196189565E+00 -4.99158855264E+00 -4.99120804544E+00 -4.99082024192E+00 -4.99042500764E+00 -4.99002220581E+00 -4.98961169724E+00 -4.98919334029E+00 -4.98876699083E+00 -4.98833250222E+00 -4.98788972520E+00 -4.98743850792E+00 -4.98697869583E+00 -4.98651013164E+00 -4.98603265529E+00 -4.98554610387E+00 -4.98505031160E+00 -4.98454510969E+00 -4.98403032638E+00 -4.98350578682E+00 -4.98297131301E+00 -4.98242672372E+00 -4.98187183447E+00 -4.98130645740E+00 -4.98073040122E+00 -4.98014347115E+00 -4.97954546878E+00 -4.97893619206E+00 -4.97831543514E+00 -4.97768298834E+00 -4.97703863800E+00 -4.97638216641E+00 -4.97571335172E+00 -4.97503196778E+00 -4.97433778407E+00 -4.97363056557E+00 -4.97291007260E+00 -4.97217606077E+00 -4.97142828075E+00 -4.97066647818E+00 -4.96989039352E+00 -4.96909976189E+00 -4.96829431288E+00 -4.96747377040E+00 -4.96663785250E+00 -4.96578627119E+00 -4.96491873221E+00 -4.96403493485E+00 -4.96313457174E+00 -4.96221732856E+00 -4.96128288391E+00 -4.96033090896E+00 -4.95936106721E+00 -4.95837301424E+00 -4.95736639742E+00 -4.95634085558E+00 -4.95529601870E+00 -4.95423150758E+00 -4.95314693349E+00 -4.95204189780E+00 -4.95091599162E+00 -4.94976879532E+00 -4.94859987821E+00 -4.94740879803E+00 -4.94619510050E+00 -4.94495831882E+00 -4.94369797318E+00 -4.94241357026E+00 -4.94110460258E+00 -4.93977054798E+00 -4.93841086901E+00 -4.93702501228E+00 -4.93561240775E+00 -4.93417246812E+00 -4.93270458800E+00 -4.93120814321E+00 -4.92968248996E+00 -4.92812696402E+00 -4.92654087987E+00 -4.92492352975E+00 -4.92327418275E+00 -4.92159208381E+00 -4.91987645271E+00 -4.91812648298E+00 -4.91634134078E+00 -4.91452016379E+00 -4.91266205994E+00 -4.91076610620E+00 -4.90883134726E+00 -4.90685679420E+00 -4.90484142305E+00 -4.90278417338E+00 -4.90068394673E+00 -4.89853960512E+00 -4.89634996936E+00 -4.89411381741E+00 -4.89182988265E+00 -4.88949685207E+00 -4.88711336439E+00 -4.88467800821E+00 -4.88218931999E+00 -4.87964578203E+00 -4.87704582035E+00 -4.87438780254E+00 -4.87167003559E+00 -4.86889076350E+00 -4.86604816504E+00 -4.86314035126E+00 -4.86016536309E+00 -4.85712116876E+00 -4.85400566122E+00 -4.85081665552E+00 -4.84755188609E+00 -4.84420900399E+00 -4.84078557408E+00 -4.83727907218E+00 -4.83368688217E+00 -4.83000629302E+00 -4.82623449583E+00 -4.82236858074E+00 -4.81840553394E+00 -4.81434223455E+00 -4.81017545150E+00 -4.80590184042E+00 -4.80151794050E+00 -4.79702017134E+00 -4.79240482985E+00 -4.78766808705E+00 -4.78280598505E+00 -4.77781443396E+00 -4.77268920880E+00 -4.76742594659E+00 -4.76202014343E+00 -4.75646715160E+00 -4.75076217688E+00 -4.74490027587E+00 -4.73887635347E+00 -4.73268516050E+00 -4.72632129143E+00 -4.71977918236E+00 -4.71305310911E+00 -4.70613718556E+00 -4.69902536225E+00 -4.69171142514E+00 -4.68418899481E+00 -4.67645152577E+00 -4.66849230625E+00 -4.66030445835E+00 -4.65188093842E+00 -4.64321453810E+00 -4.63429788558E+00 -4.62512344754E+00 -4.61568353145E+00 -4.60597028859E+00 -4.59597571751E+00 -4.58569166822E+00 -4.57510984706E+00 -4.56422182224E+00 -4.55301903020E+00 -4.54149278272E+00 -4.52963427492E+00 -4.51743459420E+00 -4.50488473005E+00 -4.49197558491E+00 -4.47869798614E+00 -4.46504269898E+00 -4.45100044074E+00 -4.43656189625E+00 -4.42171773443E+00 -4.40645862638E+00 -4.39077526466E+00 -4.37465838413E+00 -4.35809878419E+00 -4.34108735264E+00 -4.32361509101E+00 -4.30567314166E+00 -4.28725281643E+00 -4.26834562715E+00 -4.24894331777E+00 -4.22903789842E+00 -4.20862168125E+00 -4.18768731811E+00 -4.16622784017E+00 -4.14423669937E+00 -4.12170781184E+00 -4.09863560318E+00 -4.07501505560E+00 -4.05084175697E+00 -4.02611195169E+00 -4.00082259328E+00 -3.97497139871E+00 -3.94855690439E+00 -3.92157852361E+00 -3.89403660541E+00 -3.86593249474E+00 -3.83726859364E+00 -3.80804842336E+00 -3.77827668718E+00 -3.74795933359E+00 -3.71710361965E+00 -3.68571817414E+00 -3.65381306024E+00 -3.62139983722E+00 -3.58849162076E+00 -3.55510314146E+00 -3.52125080092E+00 -3.48695272492E+00 -3.45222881294E+00 -3.41710078339E+00 -3.38159221386E+00 -3.34572857549E+00 -3.30953726059E+00 -3.27304760263E+00 -3.23629088758E+00 -3.19930035553E+00 -3.16211119133E+00 -3.12476050328E+00 -3.08728728838E+00 -3.04973238291E+00 -3.01213839681E+00 -2.97454963064E+00 -2.93701197328E+00 -2.89957277908E+00 -2.86228072273E+00 -2.82518563022E+00 -2.78833828439E+00 -2.75179020336E+00 -2.71559339030E+00 -2.67980005319E+00 -2.64446229303E+00 -2.60963175942E+00 -2.57535927255E+00 -2.54169441078E+00 -2.50868506362E+00 -2.47637695012E+00 -2.44481310339E+00 -2.41403332252E+00 -2.38407359420E+00 -2.35496548700E+00 -2.32673552282E+00 -2.29940453108E+00 -2.27298699315E+00 -2.24749038624E+00 -2.22291453832E+00 -2.19925100838E+00 -2.17648250925E+00 -2.15458239380E+00 -2.13351422951E+00 -2.11323149115E+00 -2.09367740641E+00 -2.07478499606E+00 -2.05647735678E+00 -2.03866824323E+00 -2.02126301498E+00 -2.00416002434E+00 -1.98725253323E+00 -1.97043126033E+00 -1.95358767544E+00 -1.93661817480E+00 -1.91942929125E+00 -1.90194411469E+00 -1.88411012388E+00 -1.86590865876E+00 -1.84736629469E+00 -1.82859992423E+00 -1.80993114495E+00 -1.79170076069E+00 -1.77384083810E+00 -1.75619082056E+00 -1.73871642257E+00 -1.72141589664E+00 -1.70428751266E+00 -1.68732955776E+00 -1.67054033615E+00 -1.65391816891E+00 -1.63746139376E+00 -1.62116836488E+00 -1.60503745292E+00 -1.58906704472E+00 -1.57325554318E+00 -1.55760136710E+00 -1.54210295100E+00 -1.52675874499E+00 -1.51156721458E+00 -1.49652684056E+00 -1.48163611884E+00 -1.46689356028E+00 -1.45229769058E+00 -1.43784705007E+00 -1.42354019365E+00 -1.40937569057E+00 -1.39535212431E+00 -1.38146809248E+00 -1.36772220660E+00 -1.35411309203E+00 -1.34063938782E+00 -1.32729974653E+00 -1.31409283416E+00 -1.30101732997E+00 -1.28807192635E+00 -1.27525532874E+00 -1.26256625542E+00 -1.25000343745E+00 -1.23756561853E+00 -1.22525155483E+00 -1.21306001494E+00 -1.20098977967E+00 -1.18903964200E+00 -1.17720840690E+00 -1.16549489124E+00 -1.15389792368E+00 -1.14241634453E+00 -1.13104900566E+00 -1.11979477035E+00 -1.10865251323E+00 -1.09762112011E+00 -1.08669948791E+00 -1.07588652452E+00 -1.06518114872E+00 -1.05457915672E+00 -1.04408317680E+00 -1.03369829415E+00 -1.02341625452E+00 -1.01323314333E+00 -1.00315135425E+00 -9.93169879079E-01 -9.83287719670E-01 -9.73503887802E-01 -9.63817405089E-01 -9.54227302879E-01 -9.44732622160E-01 -9.35332413463E-01 -9.26025736767E-01 -9.16811661409E-01 -9.07689265984E-01 -8.98657638260E-01 -8.89715875084E-01 -8.80863082291E-01 -8.72098374616E-01 -8.63420875608E-01 -8.54829717538E-01 -8.46324041315E-01 -8.37902996400E-01 -8.29565740721E-01 -8.21311440590E-01 -8.13139270617E-01 -8.05048413631E-01 -7.97038060595E-01 -7.89107410528E-01 -7.81255670422E-01 -7.73482055166E-01 -7.65785787464E-01 -7.58166097760E-01 -7.50622224158E-01 -7.43153412350E-01 -7.35758915535E-01 -7.28437994348E-01 -7.21189916784E-01 -7.14013958124E-01 -7.06909400865E-01 -6.99875534643E-01 -6.92911656166E-01 -6.86017069141E-01 -6.79191084205E-01 -6.72433018853E-01 -6.65742197374E-01 -6.59117950777E-01 -6.52559616728E-01 -6.46066539480E-01 -6.39638069810E-01 -6.33273564951E-01 -6.26972388530E-01 -6.20733910498E-01 -6.14557507074E-01 -6.08442560678E-01 -6.02388459866E-01 -5.96394599276E-01 -5.90460379559E-01 -5.84585207327E-01 -5.78768495084E-01 -5.73009661175E-01 -5.67308129724E-01 -5.61663330577E-01 -5.56074699245E-01 -5.50541676847E-01 -5.45063710055E-01 -5.39640251040E-01 -5.34270757415E-01 -5.28954692182E-01 -5.23691523680E-01 -5.18480725531E-01 -5.13321776587E-01 -5.08214160881E-01 -5.03157367575E-01 -4.98150890908E-01 -4.93194230147E-01 -4.88286889539E-01 -4.83428378260E-01 -4.78618210369E-01 -4.73855904758E-01 -4.69140985104E-01 -4.64472979825E-01 -4.59851422031E-01 -4.55275849479E-01 -4.50745804526E-01 -4.46260834087E-01 -4.41820489585E-01 -4.37424326912E-01 -4.33071906381E-01 -4.28762792684E-01 -4.24496554849E-01 -4.20272766196E-01 -4.16091004296E-01 -4.11950850927E-01 -4.07851892033E-01 -4.03793717684E-01 -3.99775922032E-01 -3.95798103273E-01 -3.91859863607E-01 -3.87960809194E-01 -3.84100550119E-01 -3.80278700351E-01 -3.76494877705E-01 -3.72748703800E-01 -3.69039804026E-01 -3.65367807504E-01 -3.61732347046E-01 -3.58133059124E-01 -3.54569583827E-01 -3.51041564829E-01 -3.47548649353E-01 -3.44090488132E-01 -3.40666735376E-01 -3.37277048739E-01 -3.33921089282E-01 -3.30598521440E-01 -3.27309012985E-01 -3.24052235001E-01 -3.20827861839E-01 -3.17635571096E-01 -3.14475043575E-01 -3.11345963254E-01 -3.08248017257E-01 -3.05180895822E-01 -3.02144292267E-01 -2.99137902961E-01 -2.96161427296E-01 -2.93214567654E-01 -2.90297029375E-01 -2.87408520735E-01 -2.84548752908E-01 -2.81717439944E-01 -2.78914298735E-01 -2.76139048992E-01 -2.73391413212E-01 -2.70671116654E-01 -2.67977887309E-01 -2.65311455873E-01 -2.62671555724E-01 -2.60057922887E-01 -2.57470296019E-01 -2.54908416371E-01 -2.52372027771E-01 -2.49860876594E-01 -2.47374711740E-01 -2.44913284603E-01 -2.42476349054E-01 -2.40063661408E-01 -2.37674980409E-01 -2.35310067197E-01 -2.32968685289E-01 -2.30650600556E-01 -2.28355581195E-01 -2.26083397712E-01 -2.23833822895E-01 -2.21606631791E-01 -2.19401601686E-01 -2.17218512080E-01 -2.15057144670E-01 -2.12917283320E-01 -2.10798714048E-01 -2.08701224999E-01 -2.06624606425E-01 -2.04568650666E-01 -2.02533152127E-01 -2.00517907259E-01 -1.98522714537E-01 -1.96547374442E-01 -1.94591689438E-01 -1.92655463957E-01 -1.90738504375E-01 -1.88840618994E-01 -1.86961618023E-01 -1.85101313560E-01 -1.83259519573E-01 -1.81436051879E-01 -1.79630728129E-01 -1.77843367787E-01 -1.76073792115E-01 -1.74321824151E-01 -1.72587288695E-01 -1.70870012289E-01 -1.69169823201E-01 -1.67486551411E-01 -1.65820028585E-01 -1.64170088068E-01 -1.62536564861E-01 -1.60919295608E-01 -1.59318118579E-01 -1.57732873642E-01 -1.56163402232E-01 -1.54609547617E-01 -1.53071090567E-01 -1.51548007767E-01 -1.50040079897E-01 -1.48547156157E-01 -1.47069087257E-01 -1.45605725389E-01 -1.44156924214E-01 -1.42722538852E-01 -1.41302425863E-01 -1.39896443234E-01 -1.38504450366E-01 -1.37126308058E-01 -1.35761878495E-01 -1.34411025234E-01 -1.33073613187E-01 -1.31749508612E-01 -1.30438579098E-01 -1.29140693550E-01 -1.27855722180E-01 -1.26583536488E-01 -1.25324009255E-01 -1.24077014528E-01 -1.22842427606E-01 -1.21620125028E-01 -1.20409984565E-01 -1.19211885200E-01 -1.18025707123E-01 -1.16851331716E-01 -1.15688641538E-01 -1.14537520322E-01 -1.13397852953E-01 -1.12269525463E-01 -1.11152425020E-01 -1.10046439912E-01 -1.08951459539E-01 -1.07867374404E-01 -1.06794076095E-01 -1.05731457284E-01 -1.04679411706E-01 -1.03637834156E-01 -1.02606620476E-01 -1.01585667544E-01 -1.00574873263E-01 -9.95741365538E-02 -9.85833573408E-02 -9.76024365457E-02 -9.66312760756E-02 -9.56697788136E-02 -9.47178486092E-02 -9.37753902687E-02 -9.28423095452E-02 -9.19185131302E-02 -9.10039086430E-02 -9.00984046225E-02 -8.92019105176E-02 -8.83143366780E-02 -8.74355943458E-02 -8.65655956458E-02 -8.57042535775E-02 -8.48514820060E-02 -8.40071956534E-02 -8.31713100904E-02 -8.23437417277E-02 -8.15244078078E-02 -8.07132263966E-02 -7.99101163753E-02 -7.91149974323E-02 -7.83277900549E-02 -7.75484155218E-02 -7.67767958949E-02 -7.60128540115E-02 -7.52565134769E-02 -7.45076986563E-02 -7.37663346677E-02 -7.30323473741E-02 -7.23056633760E-02 -7.15862100046E-02 -7.08739153138E-02 -7.01687080735E-02 -6.94705177626E-02 -6.87792745613E-02 -6.80949093448E-02 -6.74173536760E-02 -6.67465397988E-02 -6.60824006311E-02 -6.54248697586E-02 -6.47738814275E-02 -6.41293705386E-02 -6.34912726402E-02 -6.28595239220E-02 -6.22340612085E-02 -6.16148219530E-02 -6.10017442311E-02 -6.03947667344E-02 -5.97938287647E-02 -5.91988702277E-02 -5.86098316271E-02 -5.80266540585E-02 -5.74492792036E-02 -5.68776493245E-02 -5.63117072578E-02 -5.57513964087E-02 -5.51966607457E-02 -5.46474447948E-02 -5.41036936339E-02 -5.35653528875E-02 -5.30323687210E-02 -5.25046878355E-02 -5.19822574626E-02 -5.14650253588E-02 -5.09529398004E-02 -5.04459495784E-02 -4.99440039934E-02 -4.94470528504E-02 -4.89550464540E-02 -4.84679356029E-02 -4.79856715859E-02 -4.75082061759E-02 -4.70354916262E-02 -4.65674806648E-02 -4.61041264903E-02 -4.56453827669E-02 -4.51912036198E-02 -4.47415436307E-02 -4.42963578333E-02 -4.38556017085E-02 -4.34192311805E-02 -4.29872026118E-02 -4.25594727991E-02 -4.21359989692E-02 -4.17167387743E-02 -4.13016502881E-02 -4.08906920013E-02 -4.04838228178E-02 -4.00810020503E-02 -3.96821894164E-02 -3.92873450345E-02 -3.88964294199E-02 -3.85094034806E-02 -3.81262285137E-02 -3.77468662015E-02 -3.73712786073E-02 -3.69994281722E-02 -3.66312777107E-02 -3.62667904075E-02 -3.59059298136E-02 -3.55486598425E-02 -3.51949447671E-02 -3.48447492155E-02 -3.44980381678E-02 -3.41547769527E-02 -3.38149312438E-02 -3.34784670562E-02 -3.31453507431E-02 -3.28155489928E-02 -3.24890288247E-02 -3.21657575866E-02 -3.18457029510E-02 -3.15288329123E-02 -3.12151157831E-02 -3.09045201915E-02 -3.05970150777E-02 -3.02925696909E-02 -2.99911535863E-02 -2.96927366221E-02 -2.93972889563E-02 -2.91047810438E-02 -2.88151836338E-02 -2.85284677661E-02 -2.82446047689E-02 -2.79635662558E-02 -2.76853241226E-02 -2.74098505448E-02 -2.71371179750E-02 -2.68670991396E-02 -2.65997670365E-02 -2.63350949322E-02 -2.60730563594E-02 -2.58136251140E-02 -2.55567752526E-02 -2.53024810900E-02 -2.50507171966E-02 -2.48014583958E-02 -2.45546797615E-02 -2.43103566156E-02 -2.40684645257E-02 -2.38289793022E-02 -2.35918769966E-02 -2.33571338983E-02 -2.31247265329E-02 -2.28946316594E-02 -2.26668262681E-02 -2.24412875784E-02 -2.22179930361E-02 -2.19969203116E-02 -2.17780472975E-02 -2.15613521063E-02 -2.13468130683E-02 -2.11344087293E-02 -2.09241178488E-02 -2.07159193976E-02 -2.05097925556E-02 -2.03057167099E-02 -2.01036714528E-02 8.88653641214E-06 9.06605352908E-06 9.24919701697E-06 9.43604012867E-06 9.62665759663E-06 9.82112566280E-06 1.00195221091E-05 1.02219262886E-05 1.04284191571E-05 1.06390833056E-05 1.08540029934E-05 1.10732641814E-05 1.12969545672E-05 1.15251636194E-05 1.17579826139E-05 1.19955046700E-05 1.22378247879E-05 1.24850398867E-05 1.27372488431E-05 1.29945525306E-05 1.32570538604E-05 1.35248578221E-05 1.37980715260E-05 1.40768042456E-05 1.43611674615E-05 1.46512749060E-05 1.49472426083E-05 1.52491889413E-05 1.55572346684E-05 1.58715029922E-05 1.61921196038E-05 1.65192127326E-05 1.68529131980E-05 1.71933544612E-05 1.75406726793E-05 1.78950067589E-05 1.82564984123E-05 1.86252922137E-05 1.90015356572E-05 1.93853792157E-05 1.97769764010E-05 2.01764838252E-05 2.05840612634E-05 2.09998717173E-05 2.14240814806E-05 2.18568602054E-05 2.22983809699E-05 2.27488203475E-05 2.32083584779E-05 2.36771791383E-05 2.41554698174E-05 2.46434217903E-05 2.51412301944E-05 2.56490941083E-05 2.61672166305E-05 2.66958049608E-05 2.72350704835E-05 2.77852288513E-05 2.83465000718E-05 2.89191085953E-05 2.95032834044E-05 3.00992581059E-05 3.07072710233E-05 3.13275652930E-05 3.19603889607E-05 3.26059950808E-05 3.32646418176E-05 3.39365925479E-05 3.46221159669E-05 3.53214861953E-05 3.60349828883E-05 3.67628913482E-05 3.75055026374E-05 3.82631136955E-05 3.90360274574E-05 3.98245529742E-05 4.06290055371E-05 4.14497068029E-05 4.22869849226E-05 4.31411746726E-05 4.40126175879E-05 4.49016620991E-05 4.58086636709E-05 4.67339849447E-05 4.76779958828E-05 4.86410739163E-05 4.96236040959E-05 5.06259792456E-05 5.16486001192E-05 5.26918755608E-05 5.37562226675E-05 5.48420669561E-05 5.59498425331E-05 5.70799922675E-05 5.82329679682E-05 5.94092305634E-05 6.06092502856E-05 6.18335068584E-05 6.30824896883E-05 6.43566980597E-05 6.56566413345E-05 6.69828391551E-05 6.83358216516E-05 6.97161296533E-05 7.11243149046E-05 7.25609402849E-05 7.40265800333E-05 7.55218199773E-05 7.70472577668E-05 7.86035031118E-05 8.01911780266E-05 8.18109170764E-05 8.34633676317E-05 8.51491901253E-05 8.68690583161E-05 8.86236595576E-05 9.04136950718E-05 9.22398802287E-05 9.41029448313E-05 9.60036334066E-05 9.79427055022E-05 9.99209359886E-05 1.01939115369E-04 1.03998050091E-04 1.06098562875E-04 1.08241493031E-04 1.10427696805E-04 1.12658047709E-04 1.14933436876E-04 1.17254773414E-04 1.19622984763E-04 1.22039017071E-04 1.24503835566E-04 1.27018424940E-04 1.29583789746E-04 1.32200954790E-04 1.34870965545E-04 1.37594888565E-04 1.40373811907E-04 1.43208845569E-04 1.46101121925E-04 1.49051796179E-04 1.52062046826E-04 1.55133076116E-04 1.58266110535E-04 1.61462401292E-04 1.64723224815E-04 1.68049883259E-04 1.71443705025E-04 1.74906045285E-04 1.78438286520E-04 1.82041839072E-04 1.85718141703E-04 1.89468662163E-04 1.93294897779E-04 1.97198376040E-04 2.01180655214E-04 2.05243324957E-04 2.09388006949E-04 2.13616355536E-04 2.17930058385E-04 2.22330837153E-04 2.26820448171E-04 2.31400683139E-04 2.36073369837E-04 2.40840372849E-04 2.45703594298E-04 2.50664974606E-04 2.55726493256E-04 2.60890169580E-04 2.66158063555E-04 2.71532276622E-04 2.77014952512E-04 2.82608278098E-04 2.88314484260E-04 2.94135846764E-04 3.00074687163E-04 3.06133373716E-04 3.12314322320E-04 3.18619997467E-04 3.25052913218E-04 3.31615634191E-04 3.38310776576E-04 3.45141009170E-04 3.52109054423E-04 3.59217689516E-04 3.66469747456E-04 3.73868118190E-04 3.81415749744E-04 3.89115649388E-04 3.96970884812E-04 4.04984585342E-04 4.13159943165E-04 4.21500214586E-04 4.30008721312E-04 4.38688851752E-04 4.47544062352E-04 4.56577878952E-04 4.65793898169E-04 4.75195788808E-04 4.84787293305E-04 4.94572229190E-04 5.04554490586E-04 5.14738049736E-04 5.25126958555E-04 5.35725350219E-04 5.46537440783E-04 5.57567530826E-04 5.68820007138E-04 5.80299344431E-04 5.92010107086E-04 6.03956950938E-04 6.16144625088E-04 6.28577973763E-04 6.41261938194E-04 6.54201558552E-04 6.67401975899E-04 6.80868434202E-04 6.94606282359E-04 7.08620976289E-04 7.22918081047E-04 7.37503272983E-04 7.52382341950E-04 7.67561193545E-04 7.83045851396E-04 7.98842459502E-04 8.14957284605E-04 8.31396718613E-04 8.48167281076E-04 8.65275621699E-04 8.82728522911E-04 9.00532902480E-04 9.18695816178E-04 9.37224460501E-04 9.56126175433E-04 9.75408447272E-04 9.95078911507E-04 1.01514535574E-03 1.03561572269E-03 1.05649811321E-03 1.07780078942E-03 1.09953217784E-03 1.12170087261E-03 1.14431563881E-03 1.16738541576E-03 1.19091932042E-03 1.21492665091E-03 1.23941689000E-03 1.26439970874E-03 1.28988497009E-03 1.31588273271E-03 1.34240325473E-03 1.36945699766E-03 1.39705463030E-03 1.42520703279E-03 1.45392530072E-03 1.48322074928E-03 1.51310491753E-03 1.54358957273E-03 1.57468671474E-03 1.60640858052E-03 1.63876764870E-03 1.67177664425E-03 1.70544854319E-03 1.73979657748E-03 1.77483423985E-03 1.81057528891E-03 1.84703375414E-03 1.88422394117E-03 1.92216043700E-03 1.96085811542E-03 2.00033214244E-03 2.04059798188E-03 2.08167140108E-03 2.12356847659E-03 2.16630560010E-03 2.20989948441E-03 2.25436716948E-03 2.29972602867E-03 2.34599377497E-03 2.39318846746E-03 2.44132851780E-03 2.49043269685E-03 2.54052014144E-03 2.59161036120E-03 2.64372324555E-03 2.69687907080E-03 2.75109850735E-03 2.80640262701E-03 2.86281291050E-03 2.92035125499E-03 2.97903998185E-03 3.03890184443E-03 3.09996003610E-03 3.16223819826E-03 3.22576042863E-03 3.29055128960E-03 3.35663581670E-03 3.42403952725E-03 3.49278842912E-03 3.56290902964E-03 3.63442834465E-03 3.70737390767E-03 3.78177377927E-03 3.85765655649E-03 3.93505138248E-03 4.01398795629E-03 4.09449654273E-03 4.17660798248E-03 4.26035370225E-03 4.34576572515E-03 4.43287668123E-03 4.52171981808E-03 4.61232901167E-03 4.70473877731E-03 4.79898428077E-03 4.89510134952E-03 4.99312648416E-03 5.09309687002E-03 5.19505038884E-03 5.29902563068E-03 5.40506190596E-03 5.51319925763E-03 5.62347847350E-03 5.73594109876E-03 5.85062944860E-03 5.96758662104E-03 6.08685650981E-03 6.20848381752E-03 6.33251406884E-03 6.45899362390E-03 6.58796969185E-03 6.71949034451E-03 6.85360453017E-03 6.99036208755E-03 7.12981375991E-03 7.27201120922E-03 7.41700703054E-03 7.56485476649E-03 7.71560892182E-03 7.86932497814E-03 8.02605940874E-03 8.18586969354E-03 8.34881433408E-03 8.51495286872E-03 8.68434588780E-03 8.85705504901E-03 9.03314309276E-03 9.21267385767E-03 9.39571229606E-03 9.58232448959E-03 9.77257766488E-03 9.96654020918E-03 1.01642816861E-02 1.03658728514E-02 1.05713856686E-02 1.07808933249E-02 1.09944702467E-02 1.12121921155E-02 1.14341358835E-02 1.16603797894E-02 1.18910033735E-02 1.21260874937E-02 1.23657143405E-02 1.26099674525E-02 1.28589317316E-02 1.31126934576E-02 1.33713403035E-02 1.36349613498E-02 1.39036470992E-02 1.41774894906E-02 1.44565819130E-02 1.47410192195E-02 1.50308977404E-02 1.53263152960E-02 1.56273712101E-02 1.59341663213E-02 1.62468029956E-02 1.65653851377E-02 1.68900182016E-02 1.72208092016E-02 1.75578667218E-02 1.79013009256E-02 1.82512235643E-02 1.86077479852E-02 1.89709891392E-02 1.93410635869E-02 1.97180895048E-02 2.01021866901E-02 2.04934765650E-02 2.08920821795E-02 2.12981282142E-02 2.17117409809E-02 2.21330484227E-02 2.25621801134E-02 2.29992672549E-02 2.34444426735E-02 2.38978408156E-02 2.43595977406E-02 2.48298511142E-02 2.53087401984E-02 2.57964058408E-02 2.62929904625E-02 2.67986380435E-02 2.73134941067E-02 2.78377056999E-02 2.83714213759E-02 2.89147911707E-02 2.94679665789E-02 3.00311005274E-02 3.06043473469E-02 3.11878627406E-02 3.17818037501E-02 3.23863287196E-02 3.30015972566E-02 3.36277701899E-02 3.42650095248E-02 3.49134783956E-02 3.55733410139E-02 3.62447626146E-02 3.69279093987E-02 3.76229484713E-02 3.83300477772E-02 3.90493760326E-02 3.97811026523E-02 4.05253976736E-02 4.12824316755E-02 4.20523756947E-02 4.28354011355E-02 4.36316796772E-02 4.44413831753E-02 4.52646835587E-02 4.61017527221E-02 4.69527624128E-02 4.78178841130E-02 4.86972889165E-02 4.95911473996E-02 5.04996294874E-02 5.14229043137E-02 5.23611400751E-02 5.33145038796E-02 5.42831615887E-02 5.52672776538E-02 5.62670149456E-02 5.72825345780E-02 5.83139957247E-02 5.93615554295E-02 6.04253684098E-02 6.15055868536E-02 6.26023602089E-02 6.37158349666E-02 6.48461544366E-02 6.59934585158E-02 6.71578834501E-02 6.83395615880E-02 6.95386211277E-02 7.07551858570E-02 7.19893748850E-02 7.32413023675E-02 7.45110772244E-02 7.57988028503E-02 7.71045768175E-02 7.84284905721E-02 7.97706291233E-02 8.11310707250E-02 8.25098865511E-02 8.39071403644E-02 8.53228881781E-02 8.67571779121E-02 8.82100490421E-02 8.96815322438E-02 9.11716490312E-02 9.26804113890E-02 9.42078214019E-02 9.57538708769E-02 9.73185409639E-02 9.89018017706E-02 1.00503611976E-01 1.02123918439E-01 1.03762655809E-01 1.05419746128E-01 1.07095098440E-01 1.08788608393E-01 1.10500157847E-01 1.12229614481E-01 1.13976831401E-01 1.15741646749E-01 1.17523883327E-01 1.19323348209E-01 1.21139832373E-01 1.22973110332E-01 1.24822939774E-01 1.26689061217E-01 1.28571197662E-01 1.30469054273E-01 1.32382318055E-01 1.34310657558E-01 1.36253722585E-01 1.38211143930E-01 1.40182533121E-01 1.42167482191E-01 1.44165563470E-01 1.46176329394E-01 1.48199312344E-01 1.50234024507E-01 1.52279957769E-01 1.54336583631E-01 1.56403353159E-01 1.58479696969E-01 1.60565025237E-01 1.62658727756E-01 1.64760174018E-01 1.66868713345E-01 1.68983675052E-01 1.71104368656E-01 1.73230084126E-01 1.75360092177E-01 1.77493644607E-01 1.79629974689E-01 1.81768297597E-01 1.83907810893E-01 1.86047695054E-01 1.88187114056E-01 1.90325216002E-01 1.92461133803E-01 1.94593985914E-01 1.96722877113E-01 1.98846899337E-01 2.00965132565E-01 2.03076645749E-01 2.05180497798E-01 2.07275738608E-01 2.09361410132E-01 2.11436547501E-01 2.13500180185E-01 2.15551333191E-01 2.17589028304E-01 2.19612285354E-01 2.21620123520E-01 2.23611562657E-01 2.25585624651E-01 2.27541334788E-01 2.29477723138E-01 2.31393825952E-01 2.33288687057E-01 2.35161359257E-01 2.37010905716E-01 2.38836401339E-01 2.40636934124E-01 2.42411606491E-01 2.44159536578E-01 2.45879859492E-01 2.47571728519E-01 2.49234316268E-01 2.50866815766E-01 2.52468441466E-01 2.54038430194E-01 2.55576041996E-01 2.57080560902E-01 2.58551295585E-01 2.59987579915E-01 2.61388773399E-01 2.62754261500E-01 2.64083455834E-01 2.65375794232E-01 2.66630740666E-01 2.67847785039E-01 2.69026442828E-01 2.70166254583E-01 2.71266785278E-01 2.72327623510E-01 2.73348380557E-01 2.74328689282E-01 2.75268202892E-01 2.76166593564E-01 2.77023550923E-01 2.77838780398E-01 2.78612001447E-01 2.79342945675E-01 2.80031354833E-01 2.80676978737E-01 2.81279573091E-01 2.81838897242E-01 2.82354711881E-01 2.82826776696E-01 2.83254848001E-01 2.83638676344E-01 2.83978004129E-01 2.84272563249E-01 2.84522072749E-01 2.84726236548E-01 2.84884741209E-01 2.84997253793E-01 2.85063419793E-01 2.85082861156E-01 2.85055174411E-01 2.84979928891E-01 2.84856665054E-01 2.84684892904E-01 2.84464090489E-01 2.84193702478E-01 2.83873138780E-01 2.83501773205E-01 2.83078942107E-01 2.82603943000E-01 2.82076033095E-01 2.81494427710E-01 2.80858298511E-01 2.80166771525E-01 2.79418924789E-01 2.78613784534E-01 2.77750514114E-01 2.76829030296E-01 2.75849473151E-01 2.74812021565E-01 2.73716894085E-01 2.72564348503E-01 2.71354681157E-01 2.70088226101E-01 2.68765365681E-01 2.67386568326E-01 2.65952361569E-01 2.64463321590E-01 2.62920073219E-01 2.61323289929E-01 2.59673693775E-01 2.57972055252E-01 2.56219193083E-01 2.54415973932E-01 2.52563312044E-01 2.50662168801E-01 2.48713552209E-01 2.46718516299E-01 2.44678160456E-01 2.42593628658E-01 2.40466108650E-01 2.38296831030E-01 2.36087068250E-01 2.33838133555E-01 2.31551379830E-01 2.29228198373E-01 2.26870017599E-01 2.24478301659E-01 2.22054548994E-01 2.19600290817E-01 2.17117089519E-01 2.14606537019E-01 2.12070253041E-01 2.09509883332E-01 2.06927097821E-01 2.04323588726E-01 2.01701068600E-01 1.99061268335E-01 1.96405935119E-01 1.93736830346E-01 1.91055727535E-01 1.88364410503E-01 1.85664515808E-01 1.82957995984E-01 1.80246650644E-01 1.77532280836E-01 1.74816686422E-01 1.72101663766E-01 1.69389003458E-01 1.66680488068E-01 1.63977890154E-01 1.61282969607E-01 1.58597470832E-01 1.55923121207E-01 1.53261629210E-01 1.50614681923E-01 1.47983942862E-01 1.45371049865E-01 1.42777613029E-01 1.40205212679E-01 1.37655397400E-01 1.35129682106E-01 1.32629546173E-01 1.30156431625E-01 1.27711741387E-01 1.25296837599E-01 1.22913039999E-01 1.20561624378E-01 1.18243821112E-01 1.15960813769E-01 1.13713737794E-01 1.11503679283E-01 1.09331673839E-01 1.07198705521E-01 1.05105705881E-01 1.03053553097E-01 1.01043071210E-01 9.90750294555E-02 9.71501417016E-02 9.52690659990E-02 9.34324042399E-02 9.16407019345E-02 8.98944481082E-02 8.81940753237E-02 8.65399598343E-02 8.49324218715E-02 8.33717260756E-02 8.18580820732E-02 8.03916452080E-02 7.89725174341E-02 7.76007483752E-02 7.62763365596E-02 7.49992308363E-02 7.37693319787E-02 7.25864944816E-02 7.14505285557E-02 7.03612023210E-02 6.93182442000E-02 6.83213455043E-02 6.73701632078E-02 6.64643228887E-02 6.56034218184E-02 6.47870321628E-02 6.40147042503E-02 6.32859698468E-02 6.26003453564E-02 6.19573348501E-02 6.13564327975E-02 6.07971263487E-02 6.02788969858E-02 5.98012213341E-02 5.93635708944E-02 5.89654104451E-02 5.86061948612E-02 5.82853641305E-02 5.80023364210E-02 5.77564991896E-02 5.75471985198E-02 5.73737271442E-02 5.72353119117E-02 5.71311017516E-02 5.70601573951E-02 5.70214441470E-02 5.70138288052E-02 5.70360813870E-02 5.70868817163E-02 5.71648302768E-02 5.72684622062E-02 5.73962630002E-02 5.75466844700E-02 5.77181597096E-02 5.79091161874E-02 5.81179864778E-02 5.83432165077E-02 5.85832714605E-02 5.88366396432E-02 5.91018346958E-02 5.93773965313E-02 5.96618913561E-02 5.99539110700E-02 6.02520722807E-02 6.05550151123E-02 6.08614019378E-02 6.11699161224E-02 6.14792608385E-02 6.17881579836E-02 6.20953472213E-02 6.23995851519E-02 6.26996446105E-02 6.29943140900E-02 6.32823972792E-02 6.35627127112E-02 6.38340935114E-02 6.40953872420E-02 6.43454558347E-02 6.45831756117E-02 6.48074373907E-02 6.50171466786E-02 6.52112239529E-02 6.53886050416E-02 6.55482416057E-02 6.56891017384E-02 6.58101706952E-02 6.59104517706E-02 6.59889673453E-02 6.60447601261E-02 6.60768946085E-02 6.60844587935E-02 6.60665661934E-02 6.60223581650E-02 6.59510066102E-02 6.58517170823E-02 6.57237323360E-02 6.55663363528E-02 6.53788588630E-02 6.51606803727E-02 6.49112376840E-02 6.46300298700E-02 6.43166246364E-02 6.39706649656E-02 6.35918759005E-02 6.31800712897E-02 6.27351602797E-02 6.22571533178E-02 6.17461674164E-02 6.12024304340E-02 6.06262841509E-02 6.00181859585E-02 5.93787090357E-02 5.87085409526E-02 5.80084807141E-02 5.72794343197E-02 5.65224089811E-02 5.57385061818E-02 5.49289137959E-02 5.40948974970E-02 5.32377916885E-02 5.23589901719E-02 5.14599367510E-02 5.05421159383E-02 4.96070439038E-02 4.86562597739E-02 4.76913173628E-02 4.67137773910E-02 4.57252002298E-02 4.47271391863E-02 4.37211343390E-02 4.27087069145E-02 4.16913541960E-02 4.06705449443E-02 3.96477153100E-02 3.86242652140E-02 3.76015551706E-02 3.65809035390E-02 3.55635841245E-02 3.45508242123E-02 3.35438028996E-02 3.25436497601E-02 3.15514438034E-02 3.05682127099E-02 2.95949323186E-02 2.86325263468E-02 2.76818663238E-02 2.67437717174E-02 2.58190102362E-02 2.49082982896E-02 2.40123015888E-02 2.31316358719E-02 2.22668677392E-02 2.14185155813E-02 2.05870505893E-02 1.97728978307E-02 1.89764373805E-02 1.81980054961E-02 1.74378958235E-02 1.66963606270E-02 1.59736120330E-02 1.52698232804E-02 1.45851299694E-02 1.39196313067E-02 1.32733913380E-02 1.26464401688E-02 1.20387751704E-02 1.14503621831E-02 1.08811366469E-02 1.03310047737E-02 9.79984468808E-03 9.28750755306E-03 8.79381868679E-03 8.31857867305E-03 7.86156446973E-03 7.42253051926E-03 7.00120986490E-03 6.59731527690E-03 6.21054039181E-03 5.84056086825E-03 5.48703556137E-03 5.14960771775E-03 4.82790619166E-03 4.52154668261E-03 4.23013299326E-03 3.95325830592E-03 3.69050647474E-03 3.44145333009E-03 3.20566799056E-03 2.98271417770E-03 2.77215152756E-03 2.57353689299E-03 2.38642563028E-03 2.21037286324E-03 2.04493471820E-03 1.88966952317E-03 1.74413896463E-03 1.60790919594E-03 1.48055189157E-03 1.36164524193E-03 1.25077488431E-03 1.14753476581E-03 1.05152793514E-03 9.62367260691E-04 8.79676073082E-04 8.03088731188E-04 7.32251111239E-04 6.66821019397E-04 6.06468528835E-04 5.50876242946E-04 4.99739486907E-04 4.52766430286E-04 4.09678143872E-04 3.70208594264E-04 3.34104580069E-04 3.01125613838E-04 2.71043754032E-04 2.43643391468E-04 2.18720994732E-04 1.96084819114E-04 1.75554583539E-04 1.56961119932E-04 1.40145999314E-04 1.24961138792E-04 1.11268393417E-04 9.89391366738E-05 8.78538331559E-05 7.79016067230E-05 6.89798071904E-05 6.09935783424E-05 5.38554297961E-05 4.74848149802E-05 4.18077172323E-05 3.67562457683E-05 3.22682430271E-05 2.82869046619E-05 2.47604132254E-05 2.16415863838E-05 1.88875403008E-05 1.64593686487E-05 1.43218375385E-05 1.24430965080E-05 1.07944055725E-05 9.34987821941E-06 8.08624012296E-06 6.98260326137E-06 6.02025504043E-06 5.18246196030E-06 4.45428730808E-06 3.82242231470E-06 3.27503018166E-06 2.80160235878E-06 2.39282643485E-06 2.04046166051E-06 1.73720284055E-06 1.47662540953E-06 1.25308577744E-06 1.06163393408E-06 8.97935434602E-07 7.58201226504E-07 6.39124643058E-07 5.37824933152E-07 4.51796741474E-07 3.78864994798E-07 3.17144690237E-07 2.65005119518E-07 2.21038099609E-07 1.84029814407E-07 1.52935904612E-07 1.26859473464E-07 1.05031704658E-07 8.67948155918E-08 7.15870941107E-08 5.89297902117E-08 4.84156557693E-08 3.96989453499E-08 3.24867096282E-08 2.65312299067E-08 2.16234578231E-08 1.75873385976E-08 1.42749091986E-08 1.15620746602E-08 9.34497655273E-09 7.53687735788E-09 6.06549330435E-09 4.87071615266E-09 3.90267154287E-09 3.12006790278E-09 2.48879561903E-09 1.98074125695E-09 1.57278613326E-09 1.24596255107E-09 9.84744546537E-10 7.76453118492E-10 6.10758656107E-10 4.79265686595E-10 3.75167168874E-10 2.92957394255E-10 2.28194151040E-10 1.77302193839E-10 1.37411255322E-10 1.06222870317E-10 8.19011698488E-11 6.29835639527E-11 4.83078830210E-11 3.69531025034E-11 2.81912476684E-11 2.14484751972E-11 1.62736665393E-11 1.23131529670E-11 9.29043175264E-12 6.98993354586E-12 5.24406863060E-12 3.92291931984E-12 2.92606163165E-12 2.17609531083E-12 1.61354041028E-12 1.19282375546E-12 8.79132006562E-13 6.45951677160E-13 4.73152031752E-13 3.45495669992E-13 2.51484992002E-13 1.82471611275E-13 1.31970961284E-13 9.51365109095E-14 6.83577268703E-14 4.89536638997E-14 3.49402080783E-14 2.48538585125E-14 1.76187629398E-14 1.24467313609E-14 8.76230651847E-15 6.14680652369E-15 4.29668212844E-15 2.99263627118E-15 2.07680616925E-15 1.43596366068E-15 9.89191472489E-16 6.78876105561E-16 4.64149172846E-16 3.16129502557E-16 2.14484637756E-16 1.44955345617E-16 9.75803025176E-17 6.54278731831E-17 4.36937022175E-17 2.90611510078E-17 1.92498383998E-17 1.26982518239E-17 8.34152619672E-18 5.45649737827E-18 3.55411417459E-18 2.30504856719E-18 1.48847896099E-18 9.56979278591E-19 6.12553553801E-19 3.90349658001E-19 2.47640507331E-19 1.56402374877E-19 9.83385679638E-20 6.15579439658E-20 3.83681556987E-20 2.38163189356E-20 1.47284786115E-20 9.08038004786E-21 5.58724563444E-21 3.43762641861E-21 2.10453836645E-21 1.28194835020E-21 3.68746577667E-03 3.72452505020E-03 3.76195676424E-03 3.79976466153E-03 3.83795252242E-03 3.87652416525E-03 3.91548344670E-03 3.95483426222E-03 3.99458054639E-03 4.03472627331E-03 4.07527545703E-03 4.11623215192E-03 4.15760045308E-03 4.19938449674E-03 4.24158846072E-03 4.28421656478E-03 4.32727307109E-03 4.37076228463E-03 4.41468855365E-03 4.45905627006E-03 4.50386986991E-03 4.54913383381E-03 4.59485268737E-03 4.64103100168E-03 4.68767339375E-03 4.73478452696E-03 4.78236911156E-03 4.83043190510E-03 4.87897771292E-03 4.92801138864E-03 4.97753783463E-03 5.02756200253E-03 5.07808889368E-03 5.12912355968E-03 5.18067110289E-03 5.23273667690E-03 5.28532548707E-03 5.33844279106E-03 5.39209389931E-03 5.44628417564E-03 5.50101903772E-03 5.55630395765E-03 5.61214446248E-03 5.66854613478E-03 5.72551461320E-03 5.78305559301E-03 5.84117482669E-03 5.89987812448E-03 5.95917135499E-03 6.01906044576E-03 6.07955138388E-03 6.14065021655E-03 6.20236305169E-03 6.26469605859E-03 6.32765546847E-03 6.39124757515E-03 6.45547873562E-03 6.52035537074E-03 6.58588396582E-03 6.65207107132E-03 6.71892330347E-03 6.78644734491E-03 6.85464994541E-03 6.92353792251E-03 6.99311816219E-03 7.06339761959E-03 7.13438331966E-03 7.20608235790E-03 7.27850190105E-03 7.35164918777E-03 7.42553152945E-03 7.50015631082E-03 7.57553099080E-03 7.65166310315E-03 7.72856025728E-03 7.80623013900E-03 7.88468051123E-03 7.96391921485E-03 8.04395416944E-03 8.12479337406E-03 8.20644490807E-03 8.28891693192E-03 8.37221768796E-03 8.45635550126E-03 8.54133878047E-03 8.62717601858E-03 8.71387579387E-03 8.80144677065E-03 8.88989770022E-03 8.97923742167E-03 9.06947486280E-03 9.16061904098E-03 9.25267906408E-03 9.34566413132E-03 9.43958353424E-03 9.53444665761E-03 9.63026298032E-03 9.72704207637E-03 9.82479361581E-03 9.92352736569E-03 1.00232531910E-02 1.01239810558E-02 1.02257210238E-02 1.03284832601E-02 1.04322780313E-02 1.05371157073E-02 1.06430067617E-02 1.07499617734E-02 1.08579914272E-02 1.09671065152E-02 1.10773179375E-02 1.11886367036E-02 1.13010739335E-02 1.14146408584E-02 1.15293488223E-02 1.16452092828E-02 1.17622338125E-02 1.18804340999E-02 1.19998219506E-02 1.21204092886E-02 1.22422081573E-02 1.23652307209E-02 1.24894892653E-02 1.26149961999E-02 1.27417640579E-02 1.28698054984E-02 1.29991333073E-02 1.31297603985E-02 1.32616998153E-02 1.33949647316E-02 1.35295684531E-02 1.36655244191E-02 1.38028462032E-02 1.39415475149E-02 1.40816422012E-02 1.42231442474E-02 1.43660677791E-02 1.45104270632E-02 1.46562365092E-02 1.48035106711E-02 1.49522642484E-02 1.51025120878E-02 1.52542691843E-02 1.54075506831E-02 1.55623718811E-02 1.57187482277E-02 1.58766953274E-02 1.60362289403E-02 1.61973649843E-02 1.63601195365E-02 1.65245088347E-02 1.66905492789E-02 1.68582574333E-02 1.70276500272E-02 1.71987439577E-02 1.73715562901E-02 1.75461042607E-02 1.77224052778E-02 1.79004769234E-02 1.80803369555E-02 1.82620033090E-02 1.84454940983E-02 1.86308276183E-02 1.88180223467E-02 1.90070969455E-02 1.91980702632E-02 1.93909613360E-02 1.95857893903E-02 1.97825738442E-02 1.99813343095E-02 2.01820905933E-02 2.03848627006E-02 2.05896708356E-02 2.07965354038E-02 2.10054770143E-02 2.12165164813E-02 2.14296748265E-02 2.16449732809E-02 2.18624332870E-02 2.20820765006E-02 2.23039247934E-02 2.25280002545E-02 2.27543251929E-02 2.29829221395E-02 2.32138138494E-02 2.34470233040E-02 2.36825737130E-02 2.39204885170E-02 2.41607913895E-02 2.44035062391E-02 2.46486572120E-02 2.48962686943E-02 2.51463653139E-02 2.53989719435E-02 2.56541137025E-02 2.59118159593E-02 2.61721043343E-02 2.64350047016E-02 2.67005431919E-02 2.69687461951E-02 2.72396403621E-02 2.75132526080E-02 2.77896101146E-02 2.80687403324E-02 2.83506709837E-02 2.86354300649E-02 2.89230458496E-02 2.92135468906E-02 2.95069620228E-02 2.98033203662E-02 3.01026513282E-02 3.04049846067E-02 3.07103501925E-02 3.10187783722E-02 3.13302997312E-02 3.16449451563E-02 3.19627458386E-02 3.22837332765E-02 3.26079392784E-02 3.29353959657E-02 3.32661357759E-02 3.36001914653E-02 3.39375961122E-02 3.42783831197E-02 3.46225862190E-02 3.49702394722E-02 3.53213772757E-02 3.56760343630E-02 3.60342458079E-02 3.63960470278E-02 3.67614737867E-02 3.71305621987E-02 3.75033487307E-02 3.78798702062E-02 3.82601638082E-02 3.86442670827E-02 3.90322179421E-02 3.94240546681E-02 3.98198159156E-02 4.02195407158E-02 4.06232684795E-02 4.10310390011E-02 4.14428924612E-02 4.18588694309E-02 4.22790108748E-02 4.27033581548E-02 4.31319530333E-02 4.35648376774E-02 4.40020546616E-02 4.44436469724E-02 4.48896580112E-02 4.53401315983E-02 4.57951119764E-02 4.62546438146E-02 4.67187722117E-02 4.71875427003E-02 4.76610012505E-02 4.81391942735E-02 4.86221686255E-02 4.91099716118E-02 4.96026509900E-02 5.01002549745E-02 5.06028322401E-02 5.11104319258E-02 5.16231036391E-02 5.21408974593E-02 5.26638639421E-02 5.31920541230E-02 5.37255195217E-02 5.42643121461E-02 5.48084844956E-02 5.53580895662E-02 5.59131808537E-02 5.64738123580E-02 5.70400385871E-02 5.76119145615E-02 5.81894958177E-02 5.87728384126E-02 5.93619989277E-02 5.99570344728E-02 6.05580026907E-02 6.11649617604E-02 6.17779704023E-02 6.23970878814E-02 6.30223740117E-02 6.36538891606E-02 6.42916942526E-02 6.49358507737E-02 6.55864207751E-02 6.62434668779E-02 6.69070522766E-02 6.75772407435E-02 6.82540966327E-02 6.89376848841E-02 6.96280710276E-02 7.03253211870E-02 7.10295020840E-02 7.17406810421E-02 7.24589259910E-02 7.31843054700E-02 7.39168886324E-02 7.46567452490E-02 7.54039457122E-02 7.61585610399E-02 7.69206628790E-02 7.76903235097E-02 7.84676158485E-02 7.92526134526E-02 8.00453905231E-02 8.08460219087E-02 8.16545831094E-02 8.24711502798E-02 8.32958002326E-02 8.41286104420E-02 8.49696590471E-02 8.58190248550E-02 8.66767873439E-02 8.75430266666E-02 8.84178236531E-02 8.93012598136E-02 9.01934173418E-02 9.10943791172E-02 9.20042287077E-02 9.29230503727E-02 9.38509290651E-02 9.47879504340E-02 9.57342008265E-02 9.66897672905E-02 9.76547375759E-02 9.86292001372E-02 9.96132441349E-02 1.00606959437E-01 1.01610436621E-01 1.02623766974E-01 1.03647042495E-01 1.04680355896E-01 1.05723800603E-01 1.06777470753E-01 1.07841461200E-01 1.08915867512E-01 1.10000785971E-01 1.11096313575E-01 1.12202548034E-01 1.13319587773E-01 1.14447531928E-01 1.15586480348E-01 1.16736533593E-01 1.17897792928E-01 1.19070360327E-01 1.20254338468E-01 1.21449830732E-01 1.22656941197E-01 1.23875774639E-01 1.25106436524E-01 1.26349033010E-01 1.27603670937E-01 1.28870457827E-01 1.30149501878E-01 1.31440911954E-01 1.32744797588E-01 1.34061268970E-01 1.35390436941E-01 1.36732412986E-01 1.38087309231E-01 1.39455238429E-01 1.40836313953E-01 1.42230649792E-01 1.43638360534E-01 1.45059561363E-01 1.46494368044E-01 1.47942896913E-01 1.49405264866E-01 1.50881589346E-01 1.52371988330E-01 1.53876580317E-01 1.55395484310E-01 1.56928819805E-01 1.58476706774E-01 1.60039265646E-01 1.61616617294E-01 1.63208883012E-01 1.64816184503E-01 1.66438643852E-01 1.68076383509E-01 1.69729526267E-01 1.71398195242E-01 1.73082513845E-01 1.74782605761E-01 1.76498594922E-01 1.78230605483E-01 1.79978761791E-01 1.81743188359E-01 1.83524009836E-01 1.85321350976E-01 1.87135336606E-01 1.88966091592E-01 1.90813740804E-01 1.92678409083E-01 1.94560221202E-01 1.96459301825E-01 1.98375775472E-01 2.00309766474E-01 2.02261398930E-01 2.04230796666E-01 2.06218083185E-01 2.08223381620E-01 2.10246814687E-01 2.12288504632E-01 2.14348573179E-01 2.16427141474E-01 2.18524330030E-01 2.20640258669E-01 2.22775046462E-01 2.24928811662E-01 2.27101671646E-01 2.29293742847E-01 2.31505140682E-01 2.33735979485E-01 2.35986372432E-01 2.38256431467E-01 2.40546267223E-01 2.42855988943E-01 2.45185704397E-01 2.47535519796E-01 2.49905539706E-01 2.52295866957E-01 2.54706602548E-01 2.57137845557E-01 2.59589693033E-01 2.62062239904E-01 2.64555578865E-01 2.67069800278E-01 2.69604992053E-01 2.72161239542E-01 2.74738625415E-01 2.77337229547E-01 2.79957128888E-01 2.82598397343E-01 2.85261105633E-01 2.87945321171E-01 2.90651107916E-01 2.93378526237E-01 2.96127632766E-01 2.98898480252E-01 3.01691117407E-01 3.04505588747E-01 3.07341934439E-01 3.10200190131E-01 3.13080386784E-01 3.15982550504E-01 3.18906702361E-01 3.21852858213E-01 3.24821028515E-01 3.27811218138E-01 3.30823426167E-01 3.33857645709E-01 3.36913863690E-01 3.39992060645E-01 3.43092210511E-01 3.46214280408E-01 3.49358230422E-01 3.52524013376E-01 3.55711574606E-01 3.58920851721E-01 3.62151774371E-01 3.65404263998E-01 3.68678233592E-01 3.71973587438E-01 3.75290220858E-01 3.78628019954E-01 3.81986861336E-01 3.85366611856E-01 3.88767128332E-01 3.92188257273E-01 3.95629834590E-01 3.99091685312E-01 4.02573623295E-01 4.06075450928E-01 4.09596958831E-01 4.13137925553E-01 4.16698117269E-01 4.20277287467E-01 4.23875176636E-01 4.27491511951E-01 4.31126006954E-01 4.34778361232E-01 4.38448260094E-01 4.42135374248E-01 4.45839359466E-01 4.49559856263E-01 4.53296489564E-01 4.57048868370E-01 4.60816585431E-01 4.64599216910E-01 4.68396322056E-01 4.72207442869E-01 4.76032103774E-01 4.79869811290E-01 4.83720053708E-01 4.87582300766E-01 4.91456003330E-01 4.95340593078E-01 4.99235482191E-01 5.03140063043E-01 5.07053707910E-01 5.10975768666E-01 5.14905576507E-01 5.18842441669E-01 5.22785653162E-01 5.26734478512E-01 5.30688163515E-01 5.34645931998E-01 5.38606985605E-01 5.42570503584E-01 5.46535642595E-01 5.50501536534E-01 5.54467296377E-01 5.58432010037E-01 5.62394742244E-01 5.66354534449E-01 5.70310404745E-01 5.74261347817E-01 5.78206334914E-01 5.82144313852E-01 5.86074209038E-01 5.89994921535E-01 5.93905329147E-01 5.97804286549E-01 6.01690625439E-01 6.05563154739E-01 6.09420660827E-01 6.13261907810E-01 6.17085637844E-01 6.20890571489E-01 6.24675408119E-01 6.28438826372E-01 6.32179484656E-01 6.35896021699E-01 6.39587057160E-01 6.43251192287E-01 6.46887010638E-01 6.50493078860E-01 6.54067947523E-01 6.57610152023E-01 6.61118213544E-01 6.64590640089E-01 6.68025927576E-01 6.71422561003E-01 6.74779015680E-01 6.78093758539E-01 6.81365249512E-01 6.84591942976E-01 6.87772289287E-01 6.90904736369E-01 6.93987731400E-01 6.97019722549E-01 6.99999160807E-01 7.02924501884E-01 7.05794208177E-01 7.08606750815E-01 7.11360611772E-01 7.14054286049E-01 7.16686283924E-01 7.19255133260E-01 7.21759381878E-01 7.24197599983E-01 7.26568382638E-01 7.28870352288E-01 7.31102161320E-01 7.33262494653E-01 7.35350072355E-01 7.37363652275E-01 7.39302032676E-01 7.41164054869E-01 7.42948605822E-01 7.44654620745E-01 7.46281085626E-01 7.47827039708E-01 7.49291577889E-01 7.50673853021E-01 7.51973078102E-01 7.53188528324E-01 7.54319542958E-01 7.55365527063E-01 7.56325952969E-01 7.57200361536E-01 7.57988363124E-01 7.58689638273E-01 7.59303938039E-01 7.59831083957E-01 7.60270967594E-01 7.60623549648E-01 7.60888858553E-01 7.61066988551E-01 7.61158097177E-01 7.61162402120E-01 7.61080177407E-01 7.60911748860E-01 7.60657488789E-01 7.60317809856E-01 7.59893158081E-01 7.59384004929E-01 7.58790838450E-01 7.58114153419E-01 7.57354440459E-01 7.56512174112E-01 7.55587799844E-01 7.54581719983E-01 7.53494278598E-01 7.52325745236E-01 7.51076296182E-01 7.49745990040E-01 7.48334742153E-01 7.46842305677E-01 7.45268253998E-01 7.43611958185E-01 7.41872561654E-01 7.40048953442E-01 7.38139740318E-01 7.36143522433E-01 7.34059908382E-01 7.31888814945E-01 7.29630194197E-01 7.27284034003E-01 7.24850358594E-01 7.22329229126E-01 7.19720744219E-01 7.17025040467E-01 7.14242292927E-01 7.11372715585E-01 7.08416561788E-01 7.05374124652E-01 7.02245737434E-01 6.99031773885E-01 6.95732648555E-01 6.92348817078E-01 6.88880776415E-01 6.85329065063E-01 6.81694263229E-01 6.77976992967E-01 6.74177918272E-01 6.70297745142E-01 6.66337221598E-01 6.62297137658E-01 6.58178325280E-01 6.53981658254E-01 6.49708052064E-01 6.45358463696E-01 6.40933891411E-01 6.36435374476E-01 6.31863992854E-01 6.27220866843E-01 6.22507156690E-01 6.17724062148E-01 6.12872822000E-01 6.07954713602E-01 6.02971052868E-01 5.97922927677E-01 5.92811989744E-01 5.87639663766E-01 5.82407410418E-01 5.77116725038E-01 5.71769136787E-01 5.66366207836E-01 5.60909532569E-01 5.55400737179E-01 5.49841478103E-01 5.44233440094E-01 5.38578336401E-01 5.32877908348E-01 5.27133923780E-01 5.21348175963E-01 5.15522482523E-01 5.09658684343E-01 5.03758644456E-01 4.97824246906E-01 4.91857395588E-01 4.85860013073E-01 4.79834039409E-01 4.73781430908E-01 4.67704158909E-01 4.61604208533E-01 4.55483577414E-01 4.49344274426E-01 4.43188318385E-01 4.37017736751E-01 4.30834564314E-01 4.24640841875E-01 4.18438614923E-01 4.12229932309E-01 4.06016844925E-01 3.99801404385E-01 3.93585661718E-01 3.87371666084E-01 3.81161463500E-01 3.74957095605E-01 3.68760598464E-01 3.62574001408E-01 3.56399325944E-01 3.50238584718E-01 3.44093780569E-01 3.37966905664E-01 3.31859940743E-01 3.25774854472E-01 3.19713602935E-01 3.13678129257E-01 3.07670363383E-01 3.01692222020E-01 2.95745608741E-01 2.89832414262E-01 2.83954516881E-01 2.78113783082E-01 2.72312068269E-01 2.66551217620E-01 2.60833067012E-01 2.55159443972E-01 2.49532168570E-01 2.43953054198E-01 2.38423908094E-01 2.32946531514E-01 2.27522719382E-01 2.22154259258E-01 2.16842929423E-01 2.11590495855E-01 2.06398707882E-01 2.01269292250E-01 1.96203945392E-01 1.91204323686E-01 1.86272031577E-01 1.81408607555E-01 1.76615508142E-01 1.71894090312E-01 1.67245593060E-01 1.62671119189E-01 1.58171618706E-01 1.53747875442E-01 1.49400498505E-01 1.45129919933E-01 1.40936399293E-01 1.36820035172E-01 1.32780782619E-01 1.28818474784E-01 1.24932846615E-01 1.21123558347E-01 1.17390216931E-01 1.13732394050E-01 1.10149640079E-01 1.06641493916E-01 1.03207489056E-01 9.98471565222E-02 9.65600253957E-02 9.33456216388E-02 9.02034658293E-02 8.71330703046E-02 8.41339360886E-02 8.12055498661E-02 7.83473811766E-02 7.55588799318E-02 7.28394743064E-02 7.01885690197E-02 6.76055439978E-02 6.50897533963E-02 6.26405249526E-02 6.02571596347E-02 5.79389315533E-02 5.56850881038E-02 5.34948503104E-02 5.13674133432E-02 4.93019471856E-02 4.72975974304E-02 4.53534861869E-02 4.34687130812E-02 4.16423563386E-02 3.98734739340E-02 3.81611048010E-02 3.65042700908E-02 3.49019744735E-02 3.33532074746E-02 3.18569448414E-02 3.04121499357E-02 2.90177751450E-02 2.76727633127E-02 2.63760491806E-02 2.51265608417E-02 2.39232211996E-02 2.27649494320E-02 2.16506624528E-02 2.05792763707E-02 1.95497079369E-02 1.85608759778E-02 1.76117028039E-02 1.67011155881E-02 1.58280477011E-02 1.49914399958E-02 1.41902420257E-02 1.34234131881E-02 1.26899237776E-02 1.19887559410E-02 1.13189045243E-02 1.06793778069E-02 1.00691981220E-02 9.48740236553E-03 8.93304240321E-03 8.40518538564E-03 7.90291398836E-03 7.42532659354E-03 6.97153743176E-03 6.54067670127E-03 6.13189068041E-03 5.74434184589E-03 5.37720900612E-03 5.02968745540E-03 4.70098915099E-03 4.39034291234E-03 4.09699463900E-03 3.82020754223E-03 3.55926238381E-03 3.31345771533E-03 3.08211011083E-03 2.86455438615E-03 2.66014379889E-03 2.46825022348E-03 2.28826429692E-03 2.11959553146E-03 1.96167239129E-03 1.81394233152E-03 1.67587179789E-03 1.54694618689E-03 1.42666976617E-03 1.31456555584E-03 1.21017517173E-03 1.11305863184E-03 1.02279412771E-03 9.38977762646E-04 8.61223258866E-04 7.89161635770E-04 7.22440861760E-04 6.60725481949E-04 6.03696224230E-04 5.51049586155E-04 5.02497405044E-04 4.57766413729E-04 4.16597784283E-04 3.78746661988E-04 3.43981691766E-04 3.12084539152E-04 2.82849407843E-04 2.56082555705E-04 2.31601811045E-04 2.09236090830E-04 1.88824922408E-04 1.70217970200E-04 1.53274568674E-04 1.37863262833E-04 1.23861357303E-04 1.11154475024E-04 9.96361263949E-05 8.92072896687E-05 7.97760032962E-05 7.12569705071E-05 6.35711770370E-05 5.66455220769E-05 5.04124627888E-05 4.48096725972E-05 3.97797133827E-05 3.52697216301E-05 3.12311085191E-05 2.76192738830E-05 2.43933339084E-05 2.15158623937E-05 1.89526453468E-05 1.66724486539E-05 1.46467985257E-05 1.28497743898E-05 1.12578138794E-05 9.84952954203E-06 8.60553688138E-06 7.50829332836E-06 6.54194773260E-06 5.69219995931E-06 4.94617017645E-06 4.29227741974E-06 3.72012702920E-06 3.22040656095E-06 2.78478979133E-06 2.40584844781E-06 2.07697132240E-06 1.79229044949E-06 1.54661406106E-06 1.33246375737E-06 1.14609827730E-06 9.84179682266E-07 8.43734966888E-07 7.22120731750E-07 6.16990737548E-07 5.26266164087E-07 4.48108402635E-07 3.80894215392E-07 3.23193101663E-07 2.73746716387E-07 2.31450193003E-07 1.95335229227E-07 1.64554800964E-07 1.38369376359E-07 1.16134508831E-07 9.72896946836E-08 8.13483876697E-08 6.78890695061E-08 5.65472818712E-08 4.70085317668E-08 3.90019883007E-08 3.22948949039E-08 2.66876267343E-08 2.20093284967E-08 1.81140731478E-08 1.48774869110E-08 1.21937907253E-08 9.97321266761E-09 8.13973003550E-09 6.62910365043E-09 5.38717054796E-09 4.36836456733E-09 3.53443744482E-09 2.85335586328E-09 2.29835252434E-09 1.84711170042E-09 1.48107190310E-09 1.18483028405E-09 9.45635177250E-10 7.52954808924E-10 5.98111656118E-10 4.73973239544E-10 3.74691301485E-10 2.95482357700E-10 2.32443533873E-10 1.82398412673E-10 1.42768336960E-10 1.11465247257E-10 8.68026861138E-11 6.74220864188E-11 5.22318827086E-11 4.03573508022E-11 3.10993981363E-11 2.39008006570E-11 1.83186175992E-11 1.40019647645E-11 1.06730310206E-11 8.11291756834E-12 6.14956968477E-12 4.64813264054E-12 3.50320898656E-12 2.63266032976E-12 1.97265999643E-12 1.47375577418E-12 1.09774582903E-12 8.15207292346E-13 6.03547089581E-13 4.45469356837E-13 3.27774130649E-13 2.40418640069E-13 1.75786104950E-13 1.28117979073E-13 9.30745168545E-14 6.73957609208E-14 4.86408565364E-14 3.49882570969E-14 2.50831076015E-14 1.79210577338E-14 1.27601089734E-14 9.05396072478E-15 6.40178653675E-15 4.51052256716E-15 3.16665095138E-15 2.21516262187E-15 1.54392920118E-15 1.07213531232E-15 7.41747714211E-16 5.11247283766E-16 3.51040812839E-16 2.40115096409E-16 1.63606240483E-16 1.11040633410E-16 7.50669227113E-17 5.05455226337E-17 3.38974300008E-17 2.26403578679E-17 1.50596365261E-17 9.97567878632E-18 6.58035134329E-18 4.32231168556E-18 2.82699461842E-18 1.84101415732E-18 1.19369582900E-18 7.70576202230E-19 4.95226244030E-19 3.16838855016E-19 2.01790320144E-19 1.27929152570E-19 8.07283369499E-20 5.07048574583E-20 3.16971189039E-20 1.97204151822E-20 1.22100525685E-20 7.52321010522E-21 4.61266353298E-21 2.81411491786E-21 1.70825093936E-21 1.03171417996E-21 6.19930360332E-22 3.70578183618E-22 2.20367560041E-22 1.30353759097E-22 7.66980846222E-23 4.48856261672E-23 2.61257269486E-23 1.51232135095E-23 8.70583493237E-24 4.98360046177E-24 2.83673003143E-24 1.60549924484E-24 9.03430143315E-25 5.05412793811E-25 2.81086266208E-25 1.55399302410E-25 8.53981750051E-26 4.66457396180E-26 2.53228606849E-26 1.36623116743E-26 7.32519577047E-27 3.90274899106E-27 2.06609734091E-27 1.08675556438E-27 5.67918194087E-28 2.94838440680E-28 1.52054107180E-28 7.78930941496E-29 3.96330266117E-29 2.00282702820E-29 1.00514267247E-29 5.00933276175E-30 2.47895986116E-30 1.21805186375E-30 5.94206860614E-31 2.87775454223E-31 1.38351009917E-31 6.60224131716E-32 3.12714905826E-32 1.47001317792E-32 6.85766600791E-33 3.17453818826E-33 1.45814341017E-33 6.64509777047E-34 3.00434370484E-34 1.34744258296E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6.11220329138E-07 6.23567761492E-07 6.36164627001E-07 6.49015964487E-07 6.62126914560E-07 6.75502721676E-07 6.89148736230E-07 7.03070416703E-07 7.17273331840E-07 7.31763162878E-07 7.46545705821E-07 7.61626873755E-07 7.77012699218E-07 7.92709336606E-07 8.08723064639E-07 8.25060288875E-07 8.41727544263E-07 8.58731497769E-07 8.76078951030E-07 8.93776843085E-07 9.11832253143E-07 9.30252403421E-07 9.49044662026E-07 9.68216545906E-07 9.87775723857E-07 1.00773001959E-06 1.02808741485E-06 1.04885605264E-06 1.07004424042E-06 1.09166045351E-06 1.11371333839E-06 1.13621171624E-06 1.15916458640E-06 1.18258113004E-06 1.20647071376E-06 1.23084289337E-06 1.25570741773E-06 1.28107423262E-06 1.30695348474E-06 1.33335552573E-06 1.36029091635E-06 1.38777043071E-06 1.41580506054E-06 1.44440601960E-06 1.47358474817E-06 1.50335291766E-06 1.53372243520E-06 1.56470544846E-06 1.59631435052E-06 1.62856178477E-06 1.66146065001E-06 1.69502410558E-06 1.72926557668E-06 1.76419875966E-06 1.79983762754E-06 1.83619643561E-06 1.87328972711E-06 1.91113233905E-06 1.94973940815E-06 1.98912637687E-06 2.02930899964E-06 2.07030334909E-06 2.11212582253E-06 2.15479314848E-06 2.19832239340E-06 2.24273096846E-06 2.28803663652E-06 2.33425751927E-06 2.38141210443E-06 2.42951925317E-06 2.47859820764E-06 2.52866859868E-06 2.57975045364E-06 2.63186420445E-06 2.68503069570E-06 2.73927119306E-06 2.79460739174E-06 2.85106142517E-06 2.90865587386E-06 2.96741377443E-06 3.02735862882E-06 3.08851441367E-06 3.15090558993E-06 3.21455711264E-06 3.27949444090E-06 3.34574354805E-06 3.41333093206E-06 3.48228362613E-06 3.55262920948E-06 3.62439581841E-06 3.69761215752E-06 3.77230751120E-06 3.84851175533E-06 3.92625536926E-06 4.00556944794E-06 4.08648571439E-06 4.16903653241E-06 4.25325491943E-06 4.33917455982E-06 4.42682981828E-06 4.51625575360E-06 4.60748813269E-06 4.70056344489E-06 4.79551891650E-06 4.89239252573E-06 4.99122301787E-06 5.09204992072E-06 5.19491356049E-06 5.29985507783E-06 5.40691644435E-06 5.51614047934E-06 5.62757086692E-06 5.74125217352E-06 5.85722986563E-06 5.97555032806E-06 6.09626088241E-06 6.21940980604E-06 6.34504635132E-06 6.47322076536E-06 6.60398431006E-06 6.73738928264E-06 6.87348903650E-06 7.01233800256E-06 7.15399171105E-06 7.29850681365E-06 7.44594110616E-06 7.59635355162E-06 7.74980430384E-06 7.90635473146E-06 8.06606744245E-06 8.22900630919E-06 8.39523649393E-06 8.56482447488E-06 8.73783807274E-06 8.91434647783E-06 9.09442027773E-06 9.27813148548E-06 9.46555356835E-06 9.65676147722E-06 9.85183167653E-06 1.00508421748E-05 1.02538725558E-05 1.04610040104E-05 1.06723193690E-05 1.08879031345E-05 1.11078415163E-05 1.13322224644E-05 1.15611357049E-05 1.17946727757E-05 1.20329270630E-05 1.22759938385E-05 1.25239702978E-05 1.27769555990E-05 1.30350509024E-05 1.32983594107E-05 1.35669864105E-05 1.38410393140E-05 1.41206277025E-05 1.44058633694E-05 1.46968603654E-05 1.49937350440E-05 1.52966061076E-05 1.56055946553E-05 1.59208242310E-05 1.62424208729E-05 1.65705131637E-05 1.69052322821E-05 1.72467120548E-05 1.75950890104E-05 1.79505024337E-05 1.83130944212E-05 1.86830099381E-05 1.90603968757E-05 1.94454061109E-05 1.98381915663E-05 2.02389102713E-05 2.06477224253E-05 2.10647914614E-05 2.14902841113E-05 2.19243704723E-05 2.23672240751E-05 2.28190219528E-05 2.32799447117E-05 2.37501766032E-05 2.42299055977E-05 2.47193234591E-05 2.52186258216E-05 2.57280122676E-05 2.62476864073E-05 2.67778559600E-05 2.73187328369E-05 2.78705332256E-05 2.84334776763E-05 2.90077911896E-05 2.95937033065E-05 3.01914481997E-05 3.08012647670E-05 3.14233967266E-05 3.20580927142E-05 3.27056063818E-05 3.33661964995E-05 3.40401270578E-05 3.47276673735E-05 3.54290921964E-05 3.61446818193E-05 3.68747221893E-05 3.76195050217E-05 3.83793279166E-05 3.91544944769E-05 3.99453144294E-05 4.07521037485E-05 4.15751847814E-05 4.24148863768E-05 4.32715440158E-05 4.41454999453E-05 4.50371033144E-05 4.59467103132E-05 4.68746843145E-05 4.78213960187E-05 4.87872236008E-05 4.97725528613E-05 5.07777773793E-05 5.18032986693E-05 5.28495263407E-05 5.39168782607E-05 5.50057807206E-05 5.61166686049E-05 5.72499855644E-05 5.84061841928E-05 5.95857262057E-05 6.07890826251E-05 6.20167339656E-05 6.32691704260E-05 6.45468920832E-05 6.58504090917E-05 6.71802418853E-05 6.85369213843E-05 6.99209892057E-05 7.13329978787E-05 7.27735110636E-05 7.42431037754E-05 7.57423626118E-05 7.72718859863E-05 7.88322843649E-05 8.04241805085E-05 8.20482097195E-05 8.37050200939E-05 8.53952727776E-05 8.71196422287E-05 8.88788164845E-05 9.06734974340E-05 9.25044010955E-05 9.43722579006E-05 9.62778129826E-05 9.82218264718E-05 1.00205073796E-04 1.02228345987E-04 1.04292449993E-04 1.06398208999E-04 1.08546462751E-04 1.10738067888E-04 1.12973898280E-04 1.15254845372E-04 1.17581818541E-04 1.19955745447E-04 1.22377572407E-04 1.24848264762E-04 1.27368807260E-04 1.29940204448E-04 1.32563481059E-04 1.35239682425E-04 1.37969874885E-04 1.40755146201E-04 1.43596605994E-04 1.46495386174E-04 1.49452641388E-04 1.52469549474E-04 1.55547311924E-04 1.58687154357E-04 1.61890326995E-04 1.65158105164E-04 1.68491789784E-04 1.71892707887E-04 1.75362213133E-04 1.78901686343E-04 1.82512536040E-04 1.86196198998E-04 1.89954140810E-04 1.93787856456E-04 1.97698870889E-04 2.01688739636E-04 2.05759049400E-04 2.09911418682E-04 2.14147498415E-04 2.18468972603E-04 2.22877558986E-04 2.27375009700E-04 2.31963111970E-04 2.36643688795E-04 2.41418599669E-04 2.46289741294E-04 2.51259048326E-04 2.56328494119E-04 2.61500091497E-04 2.66775893535E-04 2.72157994350E-04 2.77648529918E-04 2.83249678901E-04 2.88963663487E-04 2.94792750250E-04 3.00739251032E-04 3.06805523828E-04 3.12993973701E-04 3.19307053708E-04 3.25747265847E-04 3.32317162020E-04 3.39019345012E-04 3.45856469497E-04 3.52831243054E-04 3.59946427207E-04 3.67204838487E-04 3.74609349508E-04 3.82162890066E-04 3.89868448266E-04 3.97729071655E-04 4.05747868394E-04 4.13928008436E-04 4.22272724741E-04 4.30785314501E-04 4.39469140396E-04 4.48327631873E-04 4.57364286444E-04 4.66582671013E-04 4.75986423229E-04 4.85579252855E-04 4.95364943177E-04 5.05347352428E-04 5.15530415238E-04 5.25918144121E-04 5.36514630980E-04 5.47324048641E-04 5.58350652421E-04 5.69598781717E-04 5.81072861631E-04 5.92777404621E-04 6.04717012180E-04 6.16896376553E-04 6.29320282478E-04 6.41993608958E-04 6.54921331076E-04 6.68108521826E-04 6.81560353992E-04 6.95282102051E-04 7.09279144115E-04 7.23556963905E-04 7.38121152761E-04 7.52977411689E-04 7.68131553441E-04 7.83589504635E-04 7.99357307908E-04 8.15441124113E-04 8.31847234548E-04 8.48582043225E-04 8.65652079183E-04 8.83063998835E-04 9.00824588357E-04 9.18940766121E-04 9.37419585163E-04 9.56268235701E-04 9.75494047689E-04 9.95104493414E-04 1.01510719014E-03 1.03550990281E-03 1.05632054673E-03 1.07754719041E-03 1.09919805833E-03 1.12128153386E-03 1.14380616210E-03 1.16678065293E-03 1.19021388395E-03 1.21411490357E-03 1.23849293408E-03 1.26335737488E-03 1.28871780558E-03 1.31458398934E-03 1.34096587612E-03 1.36787360606E-03 1.39531751287E-03 1.42330812728E-03 1.45185618058E-03 1.48097260813E-03 1.51066855303E-03 1.54095536971E-03 1.57184462772E-03 1.60334811544E-03 1.63547784396E-03 1.66824605089E-03 1.70166520433E-03 1.73574800688E-03 1.77050739958E-03 1.80595656613E-03 1.84210893691E-03 1.87897819328E-03 1.91657827174E-03 1.95492336831E-03 1.99402794287E-03 2.03390672351E-03 2.07457471110E-03 2.11604718372E-03 2.15833970125E-03 2.20146811002E-03 2.24544854747E-03 2.29029744682E-03 2.33603154193E-03 2.38266787205E-03 2.43022378674E-03 2.47871695075E-03 2.52816534900E-03 2.57858729159E-03 2.63000141886E-03 2.68242670648E-03 2.73588247060E-03 2.79038837302E-03 2.84596442641E-03 2.90263099958E-03 2.96040882276E-03 3.01931899294E-03 3.07938297923E-03 3.14062262821E-03 3.20306016943E-03 3.26671822078E-03 3.33161979396E-03 3.39778830003E-03 3.46524755483E-03 3.53402178457E-03 3.60413563131E-03 3.67561415853E-03 3.74848285664E-03 3.82276764858E-03 3.89849489531E-03 3.97569140137E-03 4.05438442040E-03 4.13460166066E-03 4.21637129051E-03 4.29972194390E-03 4.38468272578E-03 4.47128321754E-03 4.55955348236E-03 4.64952407053E-03 4.74122602474E-03 4.83469088527E-03 4.92995069520E-03 5.02703800542E-03 5.12598587971E-03 5.22682789966E-03 5.32959816948E-03 5.43433132077E-03 5.54106251717E-03 5.64982745889E-03 5.76066238712E-03 5.87360408833E-03 5.98868989838E-03 6.10595770662E-03 6.22544595967E-03 6.34719366515E-03 6.47124039520E-03 6.59762628986E-03 6.72639206021E-03 6.85757899133E-03 6.99122894508E-03 7.12738436266E-03 7.26608826688E-03 7.40738426430E-03 7.55131654705E-03 7.69792989440E-03 7.84726967411E-03 7.99938184345E-03 8.15431295002E-03 8.31211013216E-03 8.47282111917E-03 8.63649423115E-03 8.80317837856E-03 8.97292306144E-03 9.14577836829E-03 9.32179497459E-03 9.50102414106E-03 9.68351771143E-03 9.86932810996E-03 1.00585083385E-02 1.02511119735E-02 1.04471931618E-02 1.06468066172E-02 1.08500076161E-02 1.10568519921E-02 1.12673961317E-02 1.14816969683E-02 1.16998119765E-02 1.19217991658E-02 1.21477170742E-02 1.23776247611E-02 1.26115818005E-02 1.28496482728E-02 1.30918847574E-02 1.33383523247E-02 1.35891125273E-02 1.38442273917E-02 1.41037594095E-02 1.43677715283E-02 1.46363271427E-02 1.49094900850E-02 1.51873246160E-02 1.54698954157E-02 1.57572675739E-02 1.60495065814E-02 1.63466783206E-02 1.66488490567E-02 1.69560854294E-02 1.72684544445E-02 1.75860234660E-02 1.79088602089E-02 1.82370327324E-02 1.85706094335E-02 1.89096590422E-02 1.92542506163E-02 1.96044535378E-02 1.99603375110E-02 2.03219725598E-02 2.06894290287E-02 2.10627775828E-02 2.14420892110E-02 2.18274352295E-02 2.22188872880E-02 2.26165173771E-02 2.30203978372E-02 2.34306013704E-02 2.38472010537E-02 2.42702703547E-02 2.46998831491E-02 2.51361137414E-02 2.55790368873E-02 2.60287278188E-02 2.64852622720E-02 2.69487165172E-02 2.74191673913E-02 2.78966923340E-02 2.83813694246E-02 2.88732774231E-02 2.93724958126E-02 2.98791048439E-02 3.03931855831E-02 3.09148199602E-02 3.14440908194E-02 3.19810819718E-02 3.25258782475E-02 3.30785655496E-02 3.36392309081E-02 3.42079625333E-02 3.47848498679E-02 3.53699836387E-02 3.59634559049E-02 3.65653601041E-02 3.71757910940E-02 3.77948451896E-02 3.84226201943E-02 3.90592154242E-02 3.97047317248E-02 4.03592714779E-02 4.10229385980E-02 4.16958385180E-02 4.23780781601E-02 4.30697658935E-02 4.37710114762E-02 4.44819259785E-02 4.52026216896E-02 4.59332120030E-02 4.66738112821E-02 4.74245347029E-02 4.81854980754E-02 4.89568176400E-02 4.97386098418E-02 5.05309910806E-02 5.13340774385E-02 5.21479843845E-02 5.29728264597E-02 5.38087169437E-02 5.46557675052E-02 5.55140878421E-02 5.63837853131E-02 5.72649645693E-02 5.81577271897E-02 5.90621713307E-02 5.99783913961E-02 6.09064777394E-02 6.18465164079E-02 6.27985889404E-02 6.37627722316E-02 6.47391384747E-02 6.57277551954E-02 6.67286853882E-02 6.77419877659E-02 6.87677171281E-02 6.98059248534E-02 7.08566595107E-02 7.19199675788E-02 7.29958942524E-02 7.40844842958E-02 7.51857828885E-02 7.62998363820E-02 7.74266928534E-02 7.85664022936E-02 7.97190160817E-02 8.08845851728E-02 8.20631577908E-02 8.32547790753E-02 8.44594915315E-02 8.56773351396E-02 8.69083473050E-02 8.81525627976E-02 8.94100137015E-02 9.06807294007E-02 9.19647365640E-02 9.32620590636E-02 9.45727178749E-02 9.58967310035E-02 9.72341134239E-02 9.85848770191E-02 9.99490305194E-02 1.01326579442E-01 1.02717526028E-01 1.04121869185E-01 1.05539604419E-01 1.06970723777E-01 1.08415215783E-01 1.09873065373E-01 1.11344253829E-01 1.12828758720E-01 1.14326553828E-01 1.15837609089E-01 1.17361890516E-01 1.18899360137E-01 1.20449975919E-01 1.22013691699E-01 1.23590457107E-01 1.25180217491E-01 1.26782913842E-01 1.28398482709E-01 1.30026856124E-01 1.31667961511E-01 1.33321721608E-01 1.34988054370E-01 1.36666872885E-01 1.38358085280E-01 1.40061594620E-01 1.41777298819E-01 1.43505090531E-01 1.45244857066E-01 1.46996480414E-01 1.48759837024E-01 1.50534797366E-01 1.52321226060E-01 1.54118981975E-01 1.55927917974E-01 1.57747880780E-01 1.59578710858E-01 1.61420242313E-01 1.63272302899E-01 1.65134713722E-01 1.67007288813E-01 1.68889835343E-01 1.70782153678E-01 1.72684037102E-01 1.74595271683E-01 1.76515636160E-01 1.78444901824E-01 1.80382832417E-01 1.82329184015E-01 1.84283704936E-01 1.86246135633E-01 1.88216208607E-01 1.90193648318E-01 1.92178171103E-01 1.94169485106E-01 1.96167290211E-01 1.98171277987E-01 2.00181131641E-01 2.02196525985E-01 2.04217127417E-01 2.06242593909E-01 2.08272575023E-01 2.10306711939E-01 2.12344637508E-01 2.14385976328E-01 2.16430344855E-01 2.18477351546E-01 2.20526597046E-01 2.22577674423E-01 2.24630169457E-01 2.26683661006E-01 2.28737721440E-01 2.30791917181E-01 2.32845809341E-01 2.34898954497E-01 2.36950905609E-01 2.39001213109E-01 2.41049426195E-01 2.43095094337E-01 2.45137769055E-01 2.47177005965E-01 2.49212367162E-01 2.51243423942E-01 2.53269759915E-01 2.55290974523E-01 2.57306686989E-01 2.59316540714E-01 2.61320208106E-01 2.63317395842E-01 2.65307850501E-01 2.67291364510E-01 2.69267782284E-01 2.71237006407E-01 2.73199003632E-01 2.75153810430E-01 2.77101537719E-01 2.79042374323E-01 2.80976588625E-01 2.82904527769E-01 2.84826613675E-01 2.86743335084E-01 2.88655234827E-01 2.90562891583E-01 2.92466895609E-01 2.94367818288E-01 2.96266175938E-01 2.98162389096E-01 3.00056739418E-01 3.01949327267E-01 3.03840033727E-01 3.05728491005E-01 3.07614064712E-01 3.09495850300E-01 3.11372684210E-01 3.13243168335E-01 3.15105704751E-01 3.16958536654E-01 3.18799791211E-01 3.20627520546E-01 3.22439738052E-01 3.24234448378E-01 3.26009670499E-01 3.27763454094E-01 3.29493889999E-01 3.31199115744E-01 3.32877317271E-01 3.34526727834E-01 3.36145624963E-01 3.37732326195E-01 3.39285184117E-01 3.40802581123E-01 3.42282924165E-01 3.43724639696E-01 3.45126168902E-01 3.46485963297E-01 3.47802480714E-01 3.49074181682E-01 3.50299526181E-01 3.51476970749E-01 3.52604965925E-01 3.53681953985E-01 3.54706366960E-01 3.55676624899E-01 3.56591134376E-01 3.57448287207E-01 3.58246459391E-01 3.58984010251E-01 3.59659281806E-01 3.60270598356E-01 3.60816266334E-01 3.61294574425E-01 3.61703794008E-01 3.62042179966E-01 3.62307971928E-01 3.62499396005E-01 3.62614667120E-01 3.62651992018E-01 3.62609573075E-01 3.62485613013E-01 3.62278320662E-01 3.61985917882E-01 3.61606647771E-01 3.61138784273E-01 3.60580643251E-01 3.59930595074E-01 3.59187078687E-01 3.58348617083E-01 3.57413833990E-01 3.56381471486E-01 3.55250408190E-01 3.54019677523E-01 3.52688485520E-01 3.51256227571E-01 3.49722503485E-01 3.48087130304E-01 3.46350152350E-01 3.44511848131E-01 3.42572733857E-01 3.40533563506E-01 3.38395325511E-01 3.36159236333E-01 3.33826731249E-01 3.31399452824E-01 3.28879237544E-01 3.26268101112E-01 3.23568222886E-01 3.20781929891E-01 3.17911680782E-01 3.14960050066E-01 3.11929712825E-01 3.08823430117E-01 3.05644035185E-01 3.02394420538E-01 2.99077525962E-01 2.95696327448E-01 2.92253827037E-01 2.88753043557E-01 2.85197004194E-01 2.81588736877E-01 2.77931263411E-01 2.74227593320E-01 2.70480718379E-01 2.66693607619E-01 2.62869203125E-01 2.59010416209E-01 2.55120124127E-01 2.51201167248E-01 2.47256346651E-01 2.43288422127E-01 2.39300110547E-01 2.35294084583E-01 2.31272971744E-01 2.27239353715E-01 2.23195765969E-01 2.19144697631E-01 2.15088591574E-01 2.11029844725E-01 2.06970808546E-01 2.02913789690E-01 1.98861050781E-01 1.94814811314E-01 1.90777248644E-01 1.86750499022E-01 1.82736658687E-01 1.78737784941E-01 1.74755897222E-01 1.70792978118E-01 1.66850974311E-01 1.62931797412E-01 1.59037324679E-01 1.55169399586E-01 1.51329832320E-01 1.47520399723E-01 1.43742845388E-01 1.39998879431E-01 1.36290178017E-01 1.32618382634E-01 1.28985099141E-01 1.25391896566E-01 1.21840305670E-01 1.18331817297E-01 1.14867880509E-01 1.11449900545E-01 1.08079236607E-01 1.04757199520E-01 1.01485049273E-01 9.82639925001E-02 9.50951799064E-02 9.19797036947E-02 8.89185950153E-02 8.59128214786E-02 8.29632847612E-02 8.00708183389E-02 7.72361853764E-02 7.44600768004E-02 7.17431095818E-02 6.90858252497E-02 6.64886886538E-02 6.39520869930E-02 6.14763291205E-02 5.90616451356E-02 5.67081862658E-02 5.44160250423E-02 5.21851557684E-02 5.00154952757E-02 4.79068839618E-02 4.58590871014E-02 4.38717964188E-02 4.19446319079E-02 4.00771438875E-02 3.82688152722E-02 3.65190640446E-02 3.48272459089E-02 3.31926571073E-02 3.16145373804E-02 3.00920730516E-02 2.86244002160E-02 2.72106080144E-02 2.58497419741E-02 2.45408073964E-02 2.32827727743E-02 2.20745732220E-02 2.09151139003E-02 1.98032734220E-02 1.87379072225E-02 1.77178508816E-02 1.67419233849E-02 1.58089303112E-02 1.49176669367E-02 1.40669212462E-02 1.32554768421E-02 1.24821157440E-02 1.17456210726E-02 1.10447796123E-02 1.03783842477E-02 9.74523627012E-03 9.14414755265E-03 8.57394259000E-03 8.03346040347E-03 7.52155630996E-03 7.03710355550E-03 6.57899481437E-03 6.14614355523E-03 5.73748527644E-03 5.35197861328E-03 4.98860632001E-03 4.64637613038E-03 4.32432150040E-03 4.02150223746E-03 3.73700502043E-03 3.46994381523E-03 3.21946019087E-03 2.98472354099E-03 2.76493121603E-03 2.55930857134E-03 2.36710893656E-03 2.18761351013E-03 2.02012953075E-03 1.86397577267E-03 1.71850249318E-03 1.58308924413E-03 1.45714373627E-03 1.34010106679E-03 1.23142293831E-03 1.13059687162E-03 1.03713541368E-03 9.50575343120E-04 8.70476874819E-04 7.96422865364E-04 7.28018021094E-04 6.64888110300E-04 6.06679181127E-04 5.53056786617E-04 5.03705218285E-04 4.58326749510E-04 4.16640889956E-04 3.78383652159E-04 3.43306831309E-04 3.11177299202E-04 2.81776313234E-04 2.54898841222E-04 2.30352902767E-04 2.07958927787E-04 1.87549132750E-04 1.68966915097E-04 1.52066266214E-04 1.36711203292E-04 1.22775220284E-04 1.10140758163E-04 9.86986945472E-05 8.83478527512E-05 7.89945302255E-05 7.05520463067E-05 6.29403091341E-05 5.60854015456E-05 4.99191857118E-05 4.43789262271E-05 3.94069313317E-05 3.49502119051E-05 3.09601578354E-05 2.73922313393E-05 2.42056767827E-05 2.13632465248E-05 1.88309422940E-05 1.65777715826E-05 1.45755185374E-05 1.27985288099E-05 1.12235078253E-05 9.82933192247E-06 8.59687181519E-06 7.50882782709E-06 6.54957635228E-06 5.70502700069E-06 4.96248989259E-06 4.31055257540E-06 3.73896604581E-06 3.23853937157E-06 2.80104242019E-06 2.41911621534E-06 2.08619045671E-06 1.79640775453E-06 1.54455414632E-06 1.32599548005E-06 1.13661926533E-06 9.72781611413E-07 8.31258888665E-07 7.09203767619E-07 6.04105307501E-07 5.13752783513E-07 4.36202959434E-07 3.69750529061E-07 3.12901466598E-07 2.64349042284E-07 2.22952275218E-07 1.87716610559E-07 1.57776622862E-07 1.32380561401E-07 1.10876566719E-07 9.27004005217E-08 7.73645431859E-08 6.44485247194E-08 5.35903659380E-08 4.44790169066E-08 3.68476893593E-08 3.04679888685E-08 2.51447609874E-08 2.07115734678E-08 1.70267639683E-08 1.39699894429E-08 1.14392196572E-08 9.34812304343E-09 7.62379839814E-09 6.20481077871E-09 5.03949438414E-09 4.08448924511E-09 3.30348221677E-09 2.66612609402E-09 2.14711367523E-09 1.72538631094E-09 1.38345891055E-09 1.10684556628E-09 8.83571907658E-10 7.03762044062E-10 5.59289504420E-10 4.43482960132E-10 3.50878736790E-10 2.77013197154E-10 2.18249027194E-10 1.71630292265E-10 1.34761864397E-10 1.05709466316E-10 8.29171444107E-11 6.48773977044E-11 5.06349355721E-11 3.69206468881E-06 3.76664913241E-06 3.84274027312E-06 3.92036854789E-06 3.99956500852E-06 4.08036133410E-06 4.16278984363E-06 4.24688350902E-06 4.33267596821E-06 4.42020153867E-06 4.50949523111E-06 4.60059276347E-06 4.69353057523E-06 4.78834584199E-06 4.88507649030E-06 4.98376121288E-06 5.08443948404E-06 5.18715157554E-06 5.29193857262E-06 5.39884239050E-06 5.50790579110E-06 5.61917240016E-06 5.73268672469E-06 5.84849417079E-06 5.96664106177E-06 6.08717465670E-06 6.21014316931E-06 6.33559578731E-06 6.46358269198E-06 6.59415507833E-06 6.72736517551E-06 6.86326626774E-06 7.00191271562E-06 7.14335997783E-06 7.28766463338E-06 7.43488440417E-06 7.58507817812E-06 7.73830603272E-06 7.89462925904E-06 8.05411038626E-06 8.21681320666E-06 8.38280280116E-06 8.55214556533E-06 8.72490923596E-06 8.90116291814E-06 9.08097711288E-06 9.26442374537E-06 9.45157619366E-06 9.64250931808E-06 9.83729949115E-06 1.00360246281E-05 1.02387642181E-05 1.04455993561E-05 1.06566127748E-05 1.08718888786E-05 1.10915137766E-05 1.13155753173E-05 1.15441631238E-05 1.17773686296E-05 1.20152851151E-05 1.22580077450E-05 1.25056336062E-05 1.27582617469E-05 1.30159932160E-05 1.32789311035E-05 1.35471805819E-05 1.38208489480E-05 1.41000456661E-05 1.43848824117E-05 1.46754731158E-05 1.49719340111E-05 1.52743836780E-05 1.55829430921E-05 1.58977356728E-05 1.62188873323E-05 1.65465265263E-05 1.68807843053E-05 1.72217943667E-05 1.75696931087E-05 1.79246196844E-05 1.82867160580E-05 1.86561270609E-05 1.90330004503E-05 1.94174869678E-05 1.98097403998E-05 2.02099176389E-05 2.06181787472E-05 2.10346870194E-05 2.14596090489E-05 2.18931147937E-05 2.23353776452E-05 2.27865744968E-05 2.32468858148E-05 2.37164957109E-05 2.41955920155E-05 2.46843663529E-05 2.51830142177E-05 2.56917350534E-05 2.62107323319E-05 2.67402136348E-05 2.72803907363E-05 2.78314796883E-05 2.83937009064E-05 2.89672792582E-05 2.95524441530E-05 3.01494296337E-05 3.07584744706E-05 3.13798222561E-05 3.20137215031E-05 3.26604257435E-05 3.33201936300E-05 3.39932890394E-05 3.46799811780E-05 3.53805446895E-05 3.60952597644E-05 3.68244122523E-05 3.75682937762E-05 3.83272018487E-05 3.91014399914E-05 3.98913178559E-05 4.06971513477E-05 4.15192627527E-05 4.23579808655E-05 4.32136411211E-05 4.40865857294E-05 4.49771638111E-05 4.58857315381E-05 4.68126522753E-05 4.77582967259E-05 4.87230430800E-05 4.97072771652E-05 5.07113926011E-05 5.17357909565E-05 5.27808819101E-05 5.38470834138E-05 5.49348218602E-05 5.60445322527E-05 5.71766583795E-05 5.83316529908E-05 5.95099779799E-05 6.07121045674E-05 6.19385134900E-05 6.31896951923E-05 6.44661500228E-05 6.57683884339E-05 6.70969311857E-05 6.84523095542E-05 6.98350655435E-05 7.12457521025E-05 7.26849333454E-05 7.41531847776E-05 7.56510935253E-05 7.71792585701E-05 7.87382909881E-05 8.03288141945E-05 8.19514641922E-05 8.36068898258E-05 8.52957530410E-05 8.70187291491E-05 8.87765070963E-05 9.05697897392E-05 9.23992941254E-05 9.42657517799E-05 9.61699089971E-05 9.81125271391E-05 1.00094382939E-04 1.02116268813E-04 1.04178993174E-04 1.06283380757E-04 1.08430272945E-04 1.10620528111E-04 1.12855021953E-04 1.15134647849E-04 1.17460317212E-04 1.19832959856E-04 1.22253524361E-04 1.24722978458E-04 1.27242309414E-04 1.29812524423E-04 1.32434651010E-04 1.35109737444E-04 1.37838853149E-04 1.40623089139E-04 1.43463558448E-04 1.46361396574E-04 1.49317761936E-04 1.52333836334E-04 1.55410825417E-04 1.58549959172E-04 1.61752492406E-04 1.65019705253E-04 1.68352903680E-04 1.71753420012E-04 1.75222613460E-04 1.78761870663E-04 1.82372606246E-04 1.86056263376E-04 1.89814314346E-04 1.93648261153E-04 1.97559636105E-04 2.01550002427E-04 2.05620954887E-04 2.09774120426E-04 2.14011158816E-04 2.18333763311E-04 2.22743661330E-04 2.27242615139E-04 2.31832422560E-04 2.36514917679E-04 2.41291971584E-04 2.46165493106E-04 2.51137429581E-04 2.56209767625E-04 2.61384533924E-04 2.66663796044E-04 2.72049663251E-04 2.77544287354E-04 2.83149863556E-04 2.88868631335E-04 2.94702875330E-04 3.00654926254E-04 3.06727161815E-04 3.12922007670E-04 3.19241938386E-04 3.25689478424E-04 3.32267203142E-04 3.38977739824E-04 3.45823768720E-04 3.52808024114E-04 3.59933295408E-04 3.67202428236E-04 3.74618325591E-04 3.82183948978E-04 3.89902319596E-04 3.97776519532E-04 4.05809692987E-04 4.14005047529E-04 4.22365855361E-04 4.30895454623E-04 4.39597250718E-04 4.48474717664E-04 4.57531399467E-04 4.66770911536E-04 4.76196942113E-04 4.85813253733E-04 4.95623684722E-04 5.05632150717E-04 5.15842646217E-04 5.26259246168E-04 5.36886107576E-04 5.47727471158E-04 5.58787663017E-04 5.70071096362E-04 5.81582273250E-04 5.93325786369E-04 6.05306320861E-04 6.17528656171E-04 6.29997667940E-04 6.42718329936E-04 6.55695716015E-04 6.68935002136E-04 6.82441468400E-04 6.96220501141E-04 7.10277595050E-04 7.24618355352E-04 7.39248500013E-04 7.54173862004E-04 7.69400391598E-04 7.84934158719E-04 8.00781355342E-04 8.16948297928E-04 8.33441429918E-04 8.50267324273E-04 8.67432686064E-04 8.84944355112E-04 9.02809308683E-04 9.21034664233E-04 9.39627682212E-04 9.58595768918E-04 9.77946479410E-04 9.97687520481E-04 1.01782675368E-03 1.03837219842E-03 1.05933203508E-03 1.08071460830E-03 1.10252843015E-03 1.12478218356E-03 1.14748472569E-03 1.17064509137E-03 1.19427249670E-03 1.21837634263E-03 1.24296621861E-03 1.26805190639E-03 1.29364338385E-03 1.31975082884E-03 1.34638462322E-03 1.37355535687E-03 1.40127383187E-03 1.42955106667E-03 1.45839830041E-03 1.48782699729E-03 1.51784885105E-03 1.54847578951E-03 1.57971997923E-03 1.61159383020E-03 1.64411000072E-03 1.67728140226E-03 1.71112120454E-03 1.74564284055E-03 1.78086001186E-03 1.81678669384E-03 1.85343714113E-03 1.89082589312E-03 1.92896777961E-03 1.96787792650E-03 2.00757176166E-03 2.04806502086E-03 2.08937375387E-03 2.13151433061E-03 2.17450344746E-03 2.21835813372E-03 2.26309575809E-03 2.30873403540E-03 2.35529103337E-03 2.40278517956E-03 2.45123526842E-03 2.50066046846E-03 2.55108032964E-03 2.60251479078E-03 2.65498418718E-03 2.70850925840E-03 2.76311115615E-03 2.81881145230E-03 2.87563214713E-03 2.93359567768E-03 2.99272492621E-03 3.05304322892E-03 3.11457438476E-03 3.17734266444E-03 3.24137281956E-03 3.30669009199E-03 3.37332022333E-03 3.44128946464E-03 3.51062458624E-03 3.58135288783E-03 3.65350220863E-03 3.72710093788E-03 3.80217802539E-03 3.87876299234E-03 3.95688594234E-03 4.03657757252E-03 4.11786918504E-03 4.20079269861E-03 4.28538066038E-03 4.37166625790E-03 4.45968333140E-03 4.54946638625E-03 4.64105060566E-03 4.73447186356E-03 4.82976673777E-03 4.92697252336E-03 5.02612724627E-03 5.12726967714E-03 5.23043934544E-03 5.33567655376E-03 5.44302239245E-03 5.55251875441E-03 5.66420835023E-03 5.77813472354E-03 5.89434226661E-03 6.01287623625E-03 6.13378276998E-03 6.25710890245E-03 6.38290258217E-03 6.51121268846E-03 6.64208904876E-03 6.77558245620E-03 6.91174468739E-03 7.05062852066E-03 7.19228775443E-03 7.33677722597E-03 7.48415283049E-03 7.63447154044E-03 7.78779142521E-03 7.94417167109E-03 8.10367260159E-03 8.26635569803E-03 8.43228362048E-03 8.60152022905E-03 8.77413060542E-03 8.95018107481E-03 9.12973922823E-03 9.31287394501E-03 9.49965541581E-03 9.69015516580E-03 9.88444607830E-03 1.00826024188E-02 1.02846998590E-02 1.04908155017E-02 1.07010279059E-02 1.09154171117E-02 1.11340646664E-02 1.13570536501E-02 1.15844687026E-02 1.18163960499E-02 1.20529235310E-02 1.22941406260E-02 1.25401384831E-02 1.27910099476E-02 1.30468495894E-02 1.33077537329E-02 1.35738204854E-02 1.38451497669E-02 1.41218433400E-02 1.44040048402E-02 1.46917398061E-02 1.49851557106E-02 1.52843619922E-02 1.55894700861E-02 1.59005934563E-02 1.62178476280E-02 1.65413502196E-02 1.68712209758E-02 1.72075818006E-02 1.75505567907E-02 1.79002722688E-02 1.82568568181E-02 1.86204413159E-02 1.89911589683E-02 1.93691453449E-02 1.97545384135E-02 2.01474785752E-02 2.05481086998E-02 2.09565741613E-02 2.13730228736E-02 2.17976053259E-02 2.22304746193E-02 2.26717865024E-02 2.31216994076E-02 2.35803744875E-02 2.40479756511E-02 2.45246696003E-02 2.50106258661E-02 2.55060168452E-02 2.60110178364E-02 2.65258070766E-02 2.70505657776E-02 2.75854781616E-02 2.81307314979E-02 2.86865161380E-02 2.92530255519E-02 2.98304563633E-02 3.04190083844E-02 3.10188846514E-02 3.16302914587E-02 3.22534383928E-02 3.28885383668E-02 3.35358076528E-02 3.41954659155E-02 3.48677362440E-02 3.55528451838E-02 3.62510227677E-02 3.69625025463E-02 3.76875216180E-02 3.84263206574E-02 3.91791439442E-02 3.99462393899E-02 4.07278585645E-02 4.15242567222E-02 4.23356928252E-02 4.31624295680E-02 4.40047333988E-02 4.48628745416E-02 4.57371270153E-02 4.66277686529E-02 4.75350811188E-02 4.84593499247E-02 4.94008644444E-02 5.03599179268E-02 5.13368075076E-02 5.23318342193E-02 5.33453030001E-02 5.43775227004E-02 5.54288060878E-02 5.64994698513E-02 5.75898346024E-02 5.87002248753E-02 5.98309691251E-02 6.09823997241E-02 6.21548529564E-02 6.33486690104E-02 6.45641919697E-02 6.58017698023E-02 6.70617543475E-02 6.83445013014E-02 6.96503702004E-02 7.09797244029E-02 7.23329310699E-02 7.37103611430E-02 7.51123893218E-02 7.65393940388E-02 7.79917574341E-02 7.94698653280E-02 8.09741071927E-02 8.25048761229E-02 8.40625688061E-02 8.56475854915E-02 8.72603299589E-02 8.89012094874E-02 9.05706348241E-02 9.22690201528E-02 9.39967830636E-02 9.57543445233E-02 9.75421288470E-02 9.93605636711E-02 1.01210079929E-01 1.03091111827E-01 1.05004096827E-01 1.06949475629E-01 1.08927692157E-01 1.10939193552E-01 1.12984430170E-01 1.15063855579E-01 1.17177926573E-01 1.19327103182E-01 1.21511848692E-01 1.23732629682E-01 1.25989916054E-01 1.28284181084E-01 1.30615901478E-01 1.32985557441E-01 1.35393632755E-01 1.37840614870E-01 1.40326995010E-01 1.42853268286E-01 1.45419933832E-01 1.48027494948E-01 1.50676459262E-01 1.53367338909E-01 1.56100650721E-01 1.58876916442E-01 1.61696662949E-01 1.64560422505E-01 1.67468733011E-01 1.70422138294E-01 1.73421188400E-01 1.76466439905E-01 1.79558456250E-01 1.82697808085E-01 1.85885073625E-01 1.89120839031E-01 1.92405698790E-01 1.95740256115E-01 1.99125123348E-01 2.02560922369E-01 2.06048285016E-01 2.09587853490E-01 2.13180280770E-01 2.16826231016E-01 2.20526379957E-01 2.24281415266E-01 2.28092036913E-01 2.31958957483E-01 2.35882902472E-01 2.39864610531E-01 2.43904833668E-01 2.48004337390E-01 2.52163900786E-01 2.56384316534E-01 2.60666390830E-01 2.65010943224E-01 2.69418806364E-01 2.73890825626E-01 2.78427858634E-01 2.83030774654E-01 2.87700453858E-01 2.92437786447E-01 2.97243671634E-01 3.02119016479E-01 3.07064734569E-01 3.12081744553E-01 3.17170968525E-01 3.22333330267E-01 3.27569753350E-01 3.32881159121E-01 3.38268464580E-01 3.43732580178E-01 3.49274407553E-01 3.54894837254E-01 3.60594746476E-01 3.66374996862E-01 3.72236432428E-01 3.78179877663E-01 3.84206135876E-01 3.90315987857E-01 3.96510190942E-01 4.02789478537E-01 4.09154560198E-01 4.15606122331E-01 4.22144829574E-01 4.28771326907E-01 4.35486242515E-01 4.42290191369E-01 4.49183779473E-01 4.56167608626E-01 4.63242281461E-01 4.70408406411E-01 4.77666602092E-01 4.85017500381E-01 4.92461747239E-01 5.00000000000E-01 5.07632919637E-01 5.15361160617E-01 5.23185366875E-01 5.31106171119E-01 5.39124194253E-01 5.47240044791E-01 5.55454318266E-01 5.63767596614E-01 5.72180447560E-01 5.80693423979E-01 5.89307063255E-01 5.98021886620E-01 6.06838398487E-01 6.15757085765E-01 6.24778417169E-01 6.33902842514E-01 6.43130791996E-01 6.52462675460E-01 6.61898881667E-01 6.71439777535E-01 6.81085707374E-01 6.90836992114E-01 7.00693928518E-01 7.10656788378E-01 7.20725817708E-01 7.30901235921E-01 7.41183234996E-01 7.51571978631E-01 7.62067601385E-01 7.72670207810E-01 7.83379871569E-01 7.94196634539E-01 8.05120505905E-01 8.16151461236E-01 8.27289441551E-01 8.38534352371E-01 8.49886062745E-01 8.61344404273E-01 8.72909170105E-01 8.84580113917E-01 8.96356948876E-01 9.08239346575E-01 9.20226935949E-01 9.32319302165E-01 9.44515985481E-01 9.56816480083E-01 9.69220232879E-01 9.81726642268E-01 9.94335056868E-01 1.00704477420E+00 1.01985503932E+00 1.03276504342E+00 1.04577392240E+00 1.05888075528E+00 1.07208456270E+00 1.08538430523E+00 1.09877888167E+00 1.11226712730E+00 1.12584781195E+00 1.13951963813E+00 1.15328123891E+00 1.16713117585E+00 1.18106793674E+00 1.19508993324E+00 1.20919549847E+00 1.22338288439E+00 1.23765025917E+00 1.25199570431E+00 1.26641721173E+00 1.28091268066E+00 1.29547991444E+00 1.31011661715E+00 1.32482039007E+00 1.33958872803E+00 1.35441901562E+00 1.36930852318E+00 1.38425440273E+00 1.39925368368E+00 1.41430326840E+00 1.42939992768E+00 1.44454029602E+00 1.45972086677E+00 1.47493798716E+00 1.49018785320E+00 1.50546650447E+00 1.52076981878E+00 1.53609350677E+00 1.55143310638E+00 1.56678397732E+00 1.58214129543E+00 1.59750004705E+00 1.61285502333E+00 1.62820081461E+00 1.64353180474E+00 1.65884216557E+00 1.67412585142E+00 1.68937659370E+00 1.70458789563E+00 1.71975302719E+00 1.73486502017E+00 1.74991666353E+00 1.76490049895E+00 1.77980881669E+00 1.79463365176E+00 1.80936678050E+00 1.82399971743E+00 1.83852371262E+00 1.85292974944E+00 1.86720854286E+00 1.88135053816E+00 1.89534591025E+00 1.90918456356E+00 1.92285613239E+00 1.93634998205E+00 1.94965521047E+00 1.96276065052E+00 1.97565487292E+00 1.98832618992E+00 2.00076265947E+00 2.01295209022E+00 2.02488204704E+00 2.03653985724E+00 2.04791261743E+00 2.05898720098E+00 2.06975026602E+00 2.08018826412E+00 2.09028744935E+00 2.10003388795E+00 2.10941346844E+00 2.11841191207E+00 2.12701478377E+00 2.13520750329E+00 2.14297535672E+00 2.15030350820E+00 2.15717701182E+00 2.16358082361E+00 2.16949981366E+00 2.17491877826E+00 2.17982245200E+00 2.18419551983E+00 2.18802262902E+00 2.19128840096E+00 2.19397744282E+00 2.19607435897E+00 2.19756376218E+00 2.19843028461E+00 2.19865858845E+00 2.19823337638E+00 2.19713940167E+00 2.19536147802E+00 2.19288448918E+00 2.18969339823E+00 2.18577325668E+00 2.18110921329E+00 2.17568652275E+00 2.16949055422E+00 2.16250679967E+00 2.15472088222E+00 2.14611856442E+00 2.13668575661E+00 2.12640852528E+00 2.11527310169E+00 2.10326589055E+00 2.09037347916E+00 2.07658264678E+00 2.06188037443E+00 2.04625385526E+00 2.02969050545E+00 2.01217797577E+00 1.99370416390E+00 1.97425722760E+00 1.95382559875E+00 1.93239799839E+00 1.90996345291E+00 1.88651131133E+00 1.86203126391E+00 1.83651336210E+00 1.80994803989E+00 1.78232613676E+00 1.75363892218E+00 1.72387812188E+00 1.69303594586E+00 1.66110511832E+00 1.62807890952E+00 1.59395116975E+00 1.55871636533E+00 1.52236961690E+00 1.48490673996E+00 1.44632428776E+00 1.40661959663E+00 1.36579083379E+00 1.32383704772E+00 1.28075822109E+00 1.23655532645E+00 1.19123038447E+00 1.14478652509E+00 1.09722805128E+00 1.04856050571E+00 9.98790740137E-01 9.47926987656E-01 8.95978937709E-01 8.42957813894E-01 7.88876454505E-01 7.33749395781E-01 6.77592957779E-01 6.20425332816E-01 5.62266676370E-01 5.03139200327E-01 4.43067268451E-01 3.82077493910E-01 3.20198838679E-01 2.57462714629E-01 1.93903086061E-01 1.29556573430E-01 6.44625579751E-02 -1.33671305926E-03 -6.77960209724E-02 -1.34867070299E-01 -2.02498384075E-01 -2.70635200130E-01 -3.39219368914E-01 -4.08189253395E-01 -4.77479631612E-01 -5.47021602520E-01 -6.16742495797E-01 -6.86565786344E-01 -7.56411014255E-01 -8.26193711080E-01 -8.95825333257E-01 -9.65213203663E-01 -1.03426046225E+00 -1.10286602681E+00 -1.17092456501E+00 -1.23832647878E+00 -1.30495790227E+00 -1.37070071476E+00 -1.43543256964E+00 -1.49902694098E+00 -1.56135318904E+00 -1.62227664619E+00 -1.68165872478E+00 -1.73935704844E+00 -1.79522560841E+00 -1.84911494659E+00 -1.90087236681E+00 -1.95034217599E+00 -1.99733715623E+00 -2.04140593613E+00 -2.08234458563E+00 -2.11997640003E+00 -2.15412451385E+00 -2.18461247417E+00 -2.21126485712E+00 -2.23390792871E+00 -2.25237035047E+00 -2.26648393079E+00 -2.27608442209E+00 -2.28101236410E+00 -2.28111397307E+00 -2.27624207648E+00 -2.26625709260E+00 -2.25102805365E+00 -2.23043367118E+00 -2.20436344171E+00 -2.17271879027E+00 -2.13541424885E+00 -2.09237866651E+00 -2.04355644701E+00 -1.98890880935E+00 -1.92841506604E+00 -1.86207391301E+00 -1.78990472462E+00 -1.71194884618E+00 -1.62827087584E+00 -1.53895992679E+00 -1.44413085976E+00 -1.34392547528E+00 -1.23851365382E+00 -1.12809443148E+00 -1.01289699774E+00 -8.93181600967E-01 -7.69240346693E-01 -6.41397872533E-01 -5.10011883134E-01 -3.75473527653E-01 -2.38207601654E-01 -9.86725547618E-02 4.26397150648E-02 1.85204300098E-01 3.28463973883E-01 4.71830154416E-01 6.14684158918E-01 7.56378769290E-01 8.96240126654E-01 1.03356997250E+00 1.16764825271E+00 1.29773609922E+00 1.42307920213E+00 1.54291158286E+00 1.65645977619E+00 1.76294742592E+00 1.86160029533E+00 1.95165168961E+00 2.03234828260E+00 2.10295633562E+00 2.16276829015E+00 2.21110971017E+00 2.24734654363E+00 2.27089266510E+00 2.28121765421E+00 2.27785475684E+00 2.26040896712E+00 2.22856516027E+00 2.18209619680E+00 2.12087091024E+00 2.04486188081E+00 1.95415288914E+00 1.84894593494E+00 1.72956769752E+00 1.59647530736E+00 1.45026129095E+00 1.29165754546E+00 1.12153819515E+00 9.40921178770E-01 7.50968415728E-01 5.52984400212E-01 3.48413075800E-01 1.38832849406E-01 -7.40503872168E-02 -2.88412347495E-01 -5.02321654231E-01 -7.13753440336E-01 -9.20605303969E-01 -1.12071564712E+00 -1.31188439340E+00 -1.49189604295E+00 -1.65854498003E+00 -1.80966290213E+00 -1.94314818856E+00 -2.05699697185E+00 -2.14933561715E+00 -2.21845425468E+00 -2.26284094752E+00 -2.28121601430E+00 -2.27256596369E+00 -2.23617643704E+00 -2.17166349817E+00 -2.07900255796E+00 -1.95855417652E+00 -1.81108595098E+00 -1.63778967388E+00 -1.44029293803E+00 -1.22066437153E+00 -9.81411713559E-01 -7.25471989946E-01 -4.56193119577E-01 -1.77306380906E-01 1.07110706946E-01 3.92681379938E-01 6.74786609877E-01 9.48631966081E-01 1.20932401334E+00 1.45195563498E+00 1.67169938029E+00 1.86390762698E+00 2.02421802829E+00 2.14866238678E+00 2.23377677214E+00 2.27671038839E+00 2.27533040761E+00 2.22831973589E+00 2.13526447639E+00 1.99672771821E+00 1.81430622402E+00 1.59066662814E+00 1.32955790544E+00 1.03579714193E+00 7.15226042905E-01 3.74636160420E-01 2.16615156152E-02 -3.35361869372E-01 -6.87569034199E-01 -1.02577013256E+00 -1.34068264929E+00 -1.62318765604E+00 -1.86460463063E+00 -2.05697801373E+00 -2.19336737480E+00 -2.26813186676E+00 -2.27719863272E+00 -2.21830405886E+00 -2.09119631953E+00 -1.89778760652E+00 -1.64224484306E+00 -1.33100861568E+00 -9.72731559937E-01 -5.78129540040E-01 -1.59741672095E-01 2.68401465497E-01 6.91198268909E-01 1.09297777031E+00 1.45807054111E+00 1.77143216535E+00 2.01929800638E+00 2.18984371840E+00 2.27382229448E+00 2.26514569226E+00 2.16137754115E+00 1.96410340254E+00 1.67914678829E+00 1.31660284963E+00 8.90667456647E-01 4.19247324063E-01 -7.66531990106E-02 -5.73761316428E-01 -1.04756047768E+00 -1.47347619525E+00 -1.82817463963E+00 -2.09091252655E+00 -2.24486550000E+00 -2.27835379899E+00 -2.18587954621E+00 -1.96889050878E+00 -1.63619148414E+00 -1.20393712170E+00 -6.95159200765E-01 -1.38806883078E-01 4.31690555101E-01 9.80293922676E-01 1.47057546204E+00 1.86817280738E+00 2.14332370726E+00 2.27330311752E+00 2.24456785899E+00 2.05441092227E+00 1.71194029082E+00 1.23822753041E+00 6.65519765532E-01 3.54738445155E-02 -6.03549523750E-01 -1.20000602850E+00 -1.70328682873E+00 -2.06813712070E+00 -2.25900668894E+00 -2.25392183801E+00 -2.04745894037E+00 -1.65243155260E+00 -1.09997953952E+00 -4.37869623194E-01 2.73023089519E-01 espresso-5.0.2/pseudo/Si.bhs0000644000700200004540000004510512053145632014736 0ustar marsamoscm'PZ' 'Si',4.0,2,2,3,.f.,2,.t. ! pseudo BHS 2.16 0.86 1.6054 -0.6054 2.48 2.81 3.09 -3.0575 0.8096 0.0012 0.0511 -0.0217 -0.0128 1.24 1.60 2.12 -1.7966 -0.0986 0.0424 0.0284 -0.0030 -0.0039 1.89 2.22 2.48 -0.1817 -0.5634 -0.0944 -0.2168 0.0215 0.0588 14.00000 -4.00000 .02500 431 3 Wavefunction 3s 0 2.00 2.4897020E-04 2.5527295E-04 2.6173525E-04 2.6836115E-04 2.7515478E-04 2.8212040E-04 2.8926236E-04 2.9658512E-04 3.0409327E-04 3.1179148E-04 3.1968459E-04 3.2777751E-04 3.3607531E-04 3.4458318E-04 3.5330643E-04 3.6225052E-04 3.7142103E-04 3.8082371E-04 3.9046442E-04 4.0034920E-04 4.1048423E-04 4.2087583E-04 4.3153051E-04 4.4245493E-04 4.5365591E-04 4.6514046E-04 4.7691576E-04 4.8898917E-04 5.0136824E-04 5.1406070E-04 5.2707450E-04 5.4041776E-04 5.5409883E-04 5.6812627E-04 5.8250884E-04 5.9725554E-04 6.1237559E-04 6.2787844E-04 6.4377378E-04 6.6007155E-04 6.7678195E-04 6.9391542E-04 7.1148268E-04 7.2949471E-04 7.4796277E-04 7.6689843E-04 7.8631350E-04 8.0622015E-04 8.2663082E-04 8.4755827E-04 8.6901560E-04 8.9101622E-04 9.1357389E-04 9.3670274E-04 9.6041721E-04 9.8473216E-04 1.0096628E-03 1.0352247E-03 1.0614339E-03 1.0883067E-03 1.1158601E-03 1.1441111E-03 1.1730776E-03 1.2027776E-03 1.2332298E-03 1.2644531E-03 1.2964671E-03 1.3292919E-03 1.3629481E-03 1.3974566E-03 1.4328392E-03 1.4691179E-03 1.5063155E-03 1.5444552E-03 1.5835611E-03 1.6236575E-03 1.6647696E-03 1.7069232E-03 1.7501447E-03 1.7944611E-03 1.8399003E-03 1.8864908E-03 1.9342617E-03 1.9832430E-03 2.0334655E-03 2.0849607E-03 2.1377609E-03 2.1918992E-03 2.2474096E-03 2.3043270E-03 2.3626871E-03 2.4225267E-03 2.4838832E-03 2.5467954E-03 2.6113027E-03 2.6774457E-03 2.7452660E-03 2.8148064E-03 2.8861107E-03 2.9592236E-03 3.0341914E-03 3.1110612E-03 3.1898816E-03 3.2707023E-03 3.3535744E-03 3.4385501E-03 3.5256831E-03 3.6150286E-03 3.7066431E-03 3.8005846E-03 3.8969126E-03 3.9956882E-03 4.0969740E-03 4.2008343E-03 4.3073352E-03 4.4165443E-03 4.5285312E-03 4.6433671E-03 4.7611254E-03 4.8818812E-03 5.0057117E-03 5.1326960E-03 5.2629155E-03 5.3964537E-03 5.5333964E-03 5.6738315E-03 5.8178496E-03 5.9655434E-03 6.1170083E-03 6.2723424E-03 6.4316463E-03 6.5950235E-03 6.7625800E-03 6.9344253E-03 7.1106714E-03 7.2914338E-03 7.4768310E-03 7.6669850E-03 7.8620211E-03 8.0620682E-03 8.2672588E-03 8.4777295E-03 8.6936205E-03 8.9150763E-03 9.1422454E-03 9.3752809E-03 9.6143402E-03 9.8595856E-03 1.0111184E-02 1.0369308E-02 1.0634134E-02 1.0905846E-02 1.1184631E-02 1.1470685E-02 1.1764207E-02 1.2065404E-02 1.2374490E-02 1.2691685E-02 1.3017216E-02 1.3351319E-02 1.3694235E-02 1.4046217E-02 1.4407522E-02 1.4778421E-02 1.5159190E-02 1.5550116E-02 1.5951498E-02 1.6363644E-02 1.6786872E-02 1.7221515E-02 1.7667916E-02 1.8126431E-02 1.8597431E-02 1.9081300E-02 1.9578437E-02 2.0089260E-02 2.0614198E-02 2.1153703E-02 2.1708243E-02 2.2278306E-02 2.2864401E-02 2.3467059E-02 2.4086834E-02 2.4724304E-02 2.5380075E-02 2.6054779E-02 2.6749077E-02 2.7463662E-02 2.8199260E-02 2.8956630E-02 2.9736571E-02 3.0539920E-02 3.1367555E-02 3.2220402E-02 3.3099431E-02 3.4005664E-02 3.4940178E-02 3.5904108E-02 3.6898648E-02 3.7925059E-02 3.8984674E-02 4.0078897E-02 4.1209215E-02 4.2377200E-02 4.3584514E-02 4.4832917E-02 4.6124276E-02 4.7460567E-02 4.8843886E-02 5.0276459E-02 5.1760648E-02 5.3298961E-02 5.4894066E-02 5.6548797E-02 5.8266171E-02 6.0049397E-02 6.1901891E-02 6.3827292E-02 6.5829477E-02 6.7912577E-02 7.0080996E-02 7.2339430E-02 7.4692887E-02 7.7146710E-02 7.9706597E-02 8.2378628E-02 8.5169290E-02 8.8085505E-02 9.1134654E-02 9.4324614E-02 9.7663779E-02 1.0116110E-01 1.0482611E-01 1.0866898E-01 1.1270049E-01 1.1693215E-01 1.2137617E-01 1.2604549E-01 1.3095384E-01 1.3611575E-01 1.4154656E-01 1.4726242E-01 1.5328034E-01 1.5961814E-01 1.6629444E-01 1.7332862E-01 1.8074077E-01 1.8855160E-01 1.9678231E-01 2.0545448E-01 2.1458986E-01 2.2421012E-01 2.3433660E-01 2.4498990E-01 2.5618956E-01 2.6795349E-01 2.8029744E-01 2.9323436E-01 3.0677368E-01 3.2092052E-01 3.3567479E-01 3.5103030E-01 3.6697376E-01 3.8348383E-01 4.0053015E-01 4.1807246E-01 4.3605978E-01 4.5442984E-01 4.7310869E-01 4.9201059E-01 5.1103827E-01 5.3008358E-01 5.4902856E-01 5.6774695E-01 5.8610611E-01 6.0396934E-01 6.2119843E-01 6.3765645E-01 6.5321061E-01 6.6773493E-01 6.8111275E-01 6.9323882E-01 7.0402094E-01 7.1338102E-01 7.2125557E-01 7.2759567E-01 7.3236652E-01 7.3554657E-01 7.3712649E-01 7.3710808E-01 7.3550315E-01 7.3233261E-01 7.2762562E-01 7.2141903E-01 7.1375684E-01 7.0468992E-01 6.9427558E-01 6.8257730E-01 6.6966432E-01 6.5561114E-01 6.4049703E-01 6.2440535E-01 6.0742296E-01 5.8963943E-01 5.7114639E-01 5.5203686E-01 5.3240450E-01 5.1234300E-01 4.9194547E-01 4.7130382E-01 4.5050819E-01 4.2964643E-01 4.0880361E-01 3.8806150E-01 3.6749819E-01 3.4718766E-01 3.2719945E-01 3.0759832E-01 2.8844400E-01 2.6979097E-01 2.5168827E-01 2.3417939E-01 2.1730220E-01 2.0108888E-01 1.8556600E-01 1.7075451E-01 1.5666991E-01 1.4332237E-01 1.3071693E-01 1.1885374E-01 1.0772830E-01 9.7331793E-02 8.7651375E-02 7.8670545E-02 7.0369503E-02 6.2725533E-02 5.5713393E-02 4.9305709E-02 4.3473370E-02 3.8185916E-02 3.3411913E-02 2.9119326E-02 2.5275854E-02 2.1849260E-02 1.8807669E-02 1.6119833E-02 1.3755378E-02 1.1685011E-02 9.8806932E-03 8.3157912E-03 6.9651860E-03 5.8053563E-03 4.8144311E-03 3.9722156E-03 3.2601905E-03 2.6614900E-03 2.1608594E-03 1.7445955E-03 1.4004736E-03 1.1176634E-03 8.8663644E-04 6.9906806E-04 5.4773694E-04 4.2642336E-04 3.2980884E-04 2.5337871E-04 1.9332891E-04 1.4647814E-04 1.1018604E-04 8.2278144E-05 6.0977677E-05 4.4844359E-05 3.2720134E-05 2.3681540E-05 1.6998355E-05 1.2098100E-05 8.5358657E-06 5.9689528E-06 4.1357760E-06 2.8385607E-06 1.9296997E-06 1.2990856E-06 8.6583439E-07 5.7117693E-07 3.7284835E-07 2.4077070E-07 1.5376803E-07 9.7095161E-08 6.0600098E-08 3.7373628E-08 2.2768916E-08 1.3698440E-08 8.1361146E-09 4.7692472E-09 2.7584157E-09 1.5740249E-09 8.8659882E-10 4.9420764E-10 2.7523044E-10 1.5097793E-10 8.1544383E-11 4.3347856E-11 2.2670404E-11 1.1659760E-11 5.8948779E-12 2.9283724E-12 1.4287321E-12 6.8430559E-13 3.2160364E-13 1.4823646E-13 6.6979006E-14 2.9651926E-14 1.2855029E-14 5.4546758E-15 2.2641459E-15 9.1883472E-16 3.6435079E-16 1.4109021E-16 5.3322193E-17 1.9655564E-17 7.0624458E-18 2.4719268E-18 8.4224533E-19 2.7916982E-19 8.9954323E-20 2.8157138E-20 8.5555751E-21 2.5216069E-21 7.2034079E-22 1.9929096E-22 5.3354856E-23 Wavefunction 3p 1 2.00 6.2940012E-07 6.6167015E-07 6.9559470E-07 7.3125859E-07 7.6875101E-07 8.0816571E-07 8.4960124E-07 8.9316122E-07 9.3895456E-07 9.8709577E-07 1.0377052E-06 1.0909095E-06 1.1468416E-06 1.2056414E-06 1.2674559E-06 1.3324398E-06 1.4007554E-06 1.4725736E-06 1.5480740E-06 1.6274455E-06 1.7108863E-06 1.7986053E-06 1.8908217E-06 1.9877661E-06 2.0896810E-06 2.1968212E-06 2.3094545E-06 2.4278627E-06 2.5523418E-06 2.6832030E-06 2.8207737E-06 2.9653977E-06 3.1174367E-06 3.2772709E-06 3.4453000E-06 3.6219441E-06 3.8076449E-06 4.0028668E-06 4.2080979E-06 4.4238514E-06 4.6506667E-06 4.8891111E-06 5.1397808E-06 5.4033026E-06 5.6803353E-06 5.9715717E-06 6.2777401E-06 6.5996061E-06 6.9379743E-06 7.2936910E-06 7.6676456E-06 8.0607732E-06 8.4740568E-06 8.9085297E-06 9.3652784E-06 9.8454449E-06 1.0350230E-05 1.0880896E-05 1.1438769E-05 1.2025245E-05 1.2641790E-05 1.3289946E-05 1.3971333E-05 1.4687655E-05 1.5440703E-05 1.6232361E-05 1.7064607E-05 1.7939523E-05 1.8859296E-05 1.9826227E-05 2.0842732E-05 2.1911354E-05 2.3034765E-05 2.4215773E-05 2.5457332E-05 2.6762546E-05 2.8134679E-05 2.9577161E-05 3.1093599E-05 3.2687785E-05 3.4363704E-05 3.6125548E-05 3.7977722E-05 3.9924856E-05 4.1971819E-05 4.4123729E-05 4.6385967E-05 4.8764189E-05 5.1264340E-05 5.3892673E-05 5.6655758E-05 5.9560504E-05 6.2614174E-05 6.5824403E-05 6.9199216E-05 7.2747051E-05 7.6476779E-05 8.0397725E-05 8.4519690E-05 8.8852982E-05 9.3408433E-05 9.8197432E-05 1.0323195E-04 1.0852458E-04 1.1408855E-04 1.1993776E-04 1.2608685E-04 1.3255118E-04 1.3934692E-04 1.4649104E-04 1.5400142E-04 1.6189683E-04 1.7019699E-04 1.7892267E-04 1.8809567E-04 1.9773892E-04 2.0787652E-04 2.1853382E-04 2.2973744E-04 2.4151540E-04 2.5389714E-04 2.6691359E-04 2.8059728E-04 2.9498243E-04 3.1010497E-04 3.2600270E-04 3.4271534E-04 3.6028466E-04 3.7875456E-04 3.9817120E-04 4.1858308E-04 4.4004121E-04 4.6259919E-04 4.8631339E-04 5.1124304E-04 5.3745042E-04 5.6500100E-04 5.9396360E-04 6.2441054E-04 6.5641788E-04 6.9006555E-04 7.2543757E-04 7.6262226E-04 8.0171248E-04 8.4280582E-04 8.8600486E-04 9.3141745E-04 9.7915693E-04 1.0293425E-03 1.0820993E-03 1.1375590E-03 1.1958600E-03 1.2571478E-03 1.3215752E-03 1.3893030E-03 1.4604999E-03 1.5353436E-03 1.6140207E-03 1.6967272E-03 1.7836693E-03 1.8750637E-03 1.9711380E-03 2.0721315E-03 2.1782959E-03 2.2898954E-03 2.4072078E-03 2.5305252E-03 2.6601543E-03 2.7964176E-03 2.9396541E-03 3.0902197E-03 3.2484888E-03 3.4148546E-03 3.5897303E-03 3.7735501E-03 3.9667702E-03 4.1698701E-03 4.3833535E-03 4.6077495E-03 4.8436142E-03 5.0915317E-03 5.3521157E-03 5.6260110E-03 5.9138947E-03 6.2164783E-03 6.5345089E-03 6.8687716E-03 7.2200907E-03 7.5893319E-03 7.9774046E-03 8.3852634E-03 8.8139111E-03 9.2644003E-03 9.7378365E-03 1.0235380E-02 1.0758249E-02 1.1307722E-02 1.1885141E-02 1.2491915E-02 1.3129522E-02 1.3799513E-02 1.4503515E-02 1.5243235E-02 1.6020464E-02 1.6837079E-02 1.7695049E-02 1.8596440E-02 1.9543415E-02 2.0538244E-02 2.1583302E-02 2.2681081E-02 2.3834190E-02 2.5045361E-02 2.6317454E-02 2.7653464E-02 2.9056524E-02 3.0529912E-02 3.2077056E-02 3.3701540E-02 3.5407109E-02 3.7197676E-02 3.9077325E-02 4.1050322E-02 4.3121112E-02 4.5294335E-02 4.7574822E-02 4.9967606E-02 5.2477922E-02 5.5111217E-02 5.7873147E-02 6.0769587E-02 6.3806626E-02 6.6990576E-02 7.0327967E-02 7.3825547E-02 7.7490284E-02 8.1329354E-02 8.5350145E-02 8.9560240E-02 9.3967412E-02 9.8579610E-02 1.0340494E-01 1.0845164E-01 1.1372808E-01 1.1924269E-01 1.2500398E-01 1.3102044E-01 1.3730055E-01 1.4385270E-01 1.5068511E-01 1.5780582E-01 1.6522256E-01 1.7294267E-01 1.8097303E-01 1.8931994E-01 1.9798899E-01 2.0698493E-01 2.1631155E-01 2.2597149E-01 2.3596611E-01 2.4629528E-01 2.5695718E-01 2.6794813E-01 2.7926235E-01 2.9089175E-01 3.0282568E-01 3.1505074E-01 3.2755050E-01 3.4030530E-01 3.5329205E-01 3.6648399E-01 3.7985057E-01 3.9335727E-01 4.0696553E-01 4.2063268E-01 4.3431200E-01 4.4795279E-01 4.6150057E-01 4.7489734E-01 4.8808198E-01 5.0099075E-01 5.1355784E-01 5.2571615E-01 5.3739805E-01 5.4853625E-01 5.5906479E-01 5.6892001E-01 5.7804151E-01 5.8637308E-01 5.9386360E-01 6.0046776E-01 6.0614663E-01 6.1086814E-01 6.1460726E-01 6.1734602E-01 6.1907342E-01 6.1978504E-01 6.1948266E-01 6.1817367E-01 6.1587053E-01 6.1259019E-01 6.0835353E-01 6.0318487E-01 5.9711161E-01 5.9016382E-01 5.8237409E-01 5.7377726E-01 5.6441031E-01 5.5431223E-01 5.4352388E-01 5.3208793E-01 5.2004863E-01 5.0745173E-01 4.9434427E-01 4.8077438E-01 4.6679108E-01 4.5244409E-01 4.3778358E-01 4.2285997E-01 4.0772369E-01 3.9242498E-01 3.7701366E-01 3.6153889E-01 3.4604900E-01 3.3059124E-01 3.1521157E-01 2.9995447E-01 2.8486274E-01 2.6997730E-01 2.5533701E-01 2.4097850E-01 2.2693600E-01 2.1324120E-01 1.9992312E-01 1.8700801E-01 1.7451923E-01 1.6247721E-01 1.5089936E-01 1.3980009E-01 1.2919076E-01 1.1907973E-01 1.0947240E-01 1.0037129E-01 9.1776102E-02 8.3683866E-02 7.6089065E-02 6.8983795E-02 6.2357934E-02 5.6199337E-02 5.0494032E-02 4.5226435E-02 4.0379566E-02 3.5935271E-02 3.1874442E-02 2.8177241E-02 2.4823311E-02 2.1791984E-02 1.9062481E-02 1.6614092E-02 1.4426352E-02 1.2479190E-02 1.0753075E-02 9.2291281E-03 7.8892335E-03 6.7161186E-03 5.6934232E-03 4.8057490E-03 4.0386935E-03 3.3788681E-03 2.8139025E-03 2.3324358E-03 1.9240970E-03 1.5794751E-03 1.2900811E-03 1.0483035E-03 8.4735852E-04 6.8123615E-04 5.4464424E-04 4.3295085E-04 3.4213403E-04 2.6878477E-04 2.0989847E-04 1.6290828E-04 1.2564282E-04 9.6276982E-05 7.3286736E-05 5.5408002E-05 4.1599490E-05 3.1009462E-05 2.2946240E-05 1.6852263E-05 1.2281479E-05 8.8797970E-06 6.3683565E-06 4.5293253E-06 3.1939570E-06 2.2326432E-06 1.5467042E-06 1.0616800E-06 7.2190017E-07 4.8613278E-07 3.2413354E-07 2.1393646E-07 1.3974953E-07 9.0337842E-08 5.7794927E-08 3.6620188E-08 2.3034752E-08 1.4481670E-08 8.9959234E-09 5.5199124E-09 3.3445832E-09 2.0004873E-09 1.1807846E-09 6.8754348E-10 3.9479718E-10 2.2347983E-10 1.2466231E-10 6.8501922E-11 3.7065950E-11 1.9741594E-11 1.0345455E-11 5.3321022E-12 2.7017524E-12 1.3452497E-12 6.5792720E-13 3.1591687E-13 1.4886250E-13 6.8803049E-14 3.1176476E-14 1.3842837E-14 Wavefunction 3d 2 .00 1.2953704E-09 1.3962591E-09 1.5050055E-09 1.6222215E-09 1.7485668E-09 1.8847523E-09 2.0315446E-09 2.1897696E-09 2.3603178E-09 2.5441490E-09 2.7422977E-09 2.9558790E-09 3.1860949E-09 3.4342409E-09 3.7017136E-09 3.9900180E-09 4.3007768E-09 4.6357388E-09 4.9967889E-09 5.3859590E-09 5.8054392E-09 6.2575902E-09 6.7449565E-09 7.2702808E-09 7.8365194E-09 8.4468589E-09 9.1047340E-09 9.8138470E-09 1.0578188E-08 1.1402060E-08 1.2290097E-08 1.3247299E-08 1.4279050E-08 1.5391159E-08 1.6589883E-08 1.7881968E-08 1.9274685E-08 2.0775872E-08 2.2393977E-08 2.4138106E-08 2.6018075E-08 2.8044462E-08 3.0228671E-08 3.2582994E-08 3.5120681E-08 3.7856011E-08 4.0804378E-08 4.3982374E-08 4.7407883E-08 5.1100182E-08 5.5080049E-08 5.9369882E-08 6.3993820E-08 6.8977886E-08 7.4350126E-08 8.0140772E-08 8.6382412E-08 9.3110168E-08 1.0036190E-07 1.0817842E-07 1.1660371E-07 1.2568519E-07 1.3547395E-07 1.4602509E-07 1.5739798E-07 1.6965661E-07 1.8286997E-07 1.9711242E-07 2.1246410E-07 2.2901140E-07 2.4684743E-07 2.6607256E-07 2.8679498E-07 3.0913129E-07 3.3320718E-07 3.5915812E-07 3.8713016E-07 4.1728068E-07 4.4977934E-07 4.8480902E-07 5.2256682E-07 5.6326520E-07 6.0713317E-07 6.5441756E-07 7.0538444E-07 7.6032058E-07 8.1953508E-07 8.8336114E-07 9.5215788E-07 1.0263124E-06 1.1062419E-06 1.1923961E-06 1.2852597E-06 1.3853553E-06 1.4932459E-06 1.6095387E-06 1.7348878E-06 1.8699985E-06 2.0156310E-06 2.1726044E-06 2.3418020E-06 2.5241755E-06 2.7207509E-06 2.9326340E-06 3.1610168E-06 3.4071840E-06 3.6725202E-06 3.9585180E-06 4.2667860E-06 4.5990582E-06 4.9572034E-06 5.3432360E-06 5.7593271E-06 6.2078169E-06 6.6912274E-06 7.2122773E-06 7.7738967E-06 8.3792437E-06 9.0317220E-06 9.7350006E-06 1.0493033E-05 1.1310083E-05 1.2190741E-05 1.3139960E-05 1.4163076E-05 1.5265838E-05 1.6454446E-05 1.7735581E-05 1.9116441E-05 2.0604786E-05 2.2208981E-05 2.3938039E-05 2.5801673E-05 2.7810354E-05 2.9975364E-05 3.2308864E-05 3.4823960E-05 3.7534775E-05 4.0456531E-05 4.3605631E-05 4.6999752E-05 5.0657947E-05 5.4600745E-05 5.8850271E-05 6.3430367E-05 6.8366726E-05 7.3687035E-05 7.9421128E-05 8.5601155E-05 9.2261759E-05 9.9440269E-05 1.0717691E-04 1.1551502E-04 1.2450130E-04 1.3418607E-04 1.4462355E-04 1.5587213E-04 1.6799476E-04 1.8105925E-04 1.9513862E-04 2.1031159E-04 2.2666292E-04 2.4428395E-04 2.6327305E-04 2.8373619E-04 3.0578753E-04 3.2955002E-04 3.5515609E-04 3.8274836E-04 4.1248046E-04 4.4451780E-04 4.7903855E-04 5.1623454E-04 5.5631234E-04 5.9949437E-04 6.4602010E-04 6.9614734E-04 7.5015363E-04 8.0833774E-04 8.7102124E-04 9.3855024E-04 1.0112972E-03 1.0896631E-03 1.1740791E-03 1.2650093E-03 1.3629530E-03 1.4684472E-03 1.5820695E-03 1.7044411E-03 1.8362301E-03 1.9781547E-03 2.1309869E-03 2.2955566E-03 2.4727557E-03 2.6635427E-03 2.8689469E-03 3.0900744E-03 3.3281127E-03 3.5843370E-03 3.8601159E-03 4.1569184E-03 4.4763205E-03 4.8200126E-03 5.1898073E-03 5.5876479E-03 6.0156165E-03 6.4759439E-03 6.9710186E-03 7.5033977E-03 8.0758169E-03 8.6912023E-03 9.3526814E-03 1.0063596E-02 1.0827515E-02 1.1648246E-02 1.2529851E-02 1.3476658E-02 1.4493279E-02 1.5584618E-02 1.6755893E-02 1.8012645E-02 1.9360755E-02 2.0806460E-02 2.2356361E-02 2.4017442E-02 2.5797078E-02 2.7703050E-02 2.9743549E-02 3.1927186E-02 3.4262997E-02 3.6760442E-02 3.9429405E-02 4.2280184E-02 4.5323482E-02 4.8570388E-02 5.2032349E-02 5.5721139E-02 5.9648815E-02 6.3827664E-02 6.8270134E-02 7.2988759E-02 7.7996059E-02 8.3304436E-02 8.8926035E-02 9.4872603E-02 1.0115532E-01 1.0778458E-01 1.1476983E-01 1.2211928E-01 1.2983967E-01 1.3793596E-01 1.4641108E-01 1.5526555E-01 1.6449722E-01 1.7410089E-01 1.8406805E-01 1.9438653E-01 2.0504026E-01 2.1600912E-01 2.2726872E-01 2.3879042E-01 2.5054143E-01 2.6248499E-01 2.7458074E-01 2.8678535E-01 2.9905317E-01 3.1133719E-01 3.2359012E-01 3.3576561E-01 3.4781960E-01 3.5971164E-01 3.7140630E-01 3.8287435E-01 3.9409377E-01 4.0505053E-01 4.1573882E-01 4.2616099E-01 4.3632685E-01 4.4625250E-01 4.5595864E-01 4.6546840E-01 4.7480491E-01 4.8398857E-01 4.9303448E-01 5.0194990E-01 5.1073218E-01 5.1936732E-01 5.2782922E-01 5.3607975E-01 5.4406970E-01 5.5174051E-01 5.5902663E-01 5.6585830E-01 5.7216453E-01 5.7787586E-01 5.8292686E-01 5.8725799E-01 5.9081682E-01 5.9355855E-01 5.9544597E-01 5.9644888E-01 5.9654340E-01 5.9571103E-01 5.9393797E-01 5.9121453E-01 5.8753485E-01 5.8289678E-01 5.7730208E-01 5.7075666E-01 5.6327087E-01 5.5485986E-01 5.4554381E-01 5.3534815E-01 5.2430365E-01 5.1244639E-01 4.9981773E-01 4.8646411E-01 4.7243684E-01 4.5779172E-01 4.4258874E-01 4.2689160E-01 4.1076722E-01 3.9428520E-01 3.7751725E-01 3.6053657E-01 3.4341719E-01 3.2623332E-01 3.0905871E-01 2.9196593E-01 2.7502573E-01 2.5830644E-01 2.4187329E-01 2.2578791E-01 2.1010773E-01 1.9488560E-01 1.8016927E-01 1.6600114E-01 1.5241793E-01 1.3945051E-01 1.2712376E-01 1.1545656E-01 1.0446180E-01 9.4146502E-02 8.4512043E-02 7.5554384E-02 6.7264412E-02 5.9628322E-02 5.2628052E-02 4.6241755E-02 4.0444304E-02 3.5207814E-02 3.0502174E-02 2.6295580E-02 2.2555052E-02 1.9246935E-02 1.6337371E-02 1.3792734E-02 1.1580021E-02 9.6672020E-03 8.0235153E-03 6.6197149E-03 5.4282647E-03 4.4234828E-03 3.5816368E-03 2.8809950E-03 2.3018351E-03 1.8264176E-03 1.4389269E-03 1.1253868E-03 8.7356737E-04 6.7296675E-04 5.1441665E-04 3.9009718E-04 2.9341140E-04 2.1884434E-04 1.6182789E-04 1.1861355E-04 8.6154689E-05 6.1999124E-05 4.4192649E-05 3.1193606E-05 2.1798308E-05 1.5076811E-05 1.0318362E-05 6.9856811E-06 4.6771654E-06 3.0960566E-06 2.0256311E-06 1.3095046E-06 8.3621039E-07 5.2728966E-07 3.2822220E-07 2.0161737E-07 1.2217488E-07 7.3009403E-08 4.3009428E-08 2.4967652E-08 1.4277691E-08 8.0396558E-09 4.4559961E-09 2.4299888E-09 1.3032736E-09 6.8715365E-10 3.5601586E-10 1.8117047E-10 9.0512449E-11 4.4373850E-11 2.1337007E-11 1.0058004E-11 4.6456015E-12 2.1013775E-12 9.3047685E-13 4.0330390E-13 1.7152658E-13 7.2805446E-14 3.0189522E-14 1.2222260E-14 4.8282096E-15 1.8599012E-15 6.9820954E-16 2.5526411E-16 9.0826093E-17 3.1430392E-17 1.0570637E-17 3.4526359E-18 1.0944021E-18 3.3639505E-19 1.0019142E-19 2.8891685E-20 8.0597391E-21 2.1732529E-21 espresso-5.0.2/pseudo/Si.rel-pbe-rrkj.UPF0000644000700200004540000062105312053145632017111 0ustar marsamoscm Generated using "atomic" code by A. Dal Corso (espresso distribution) Author: anonymous Generation date: 27Apr2007 2 The Pseudo was generated with a Fully-Relativistic Calculation 2 2.4000000E+00 L component and cutoff radius for Local Potential nl pn l occ Rcut Rcut US E pseu 3S 1 0 2.00 2.40000000000 2.40000000000 -0.79355814405 3P 2 1 2.00 2.40000000000 2.40000000000 -0.30060327675 3P 2 1 0.00 2.40000000000 2.40000000000 -0.29828881130 3D 3 2 0.00 2.40000000000 2.40000000000 -0.10000000000 3D 3 2 0.00 2.40000000000 2.40000000000 -0.10000000000 0 Version Number Si Element NC Norm - Conserving pseudopotential F Nonlinear Core Correction SLA PW PBX PBC PBE Exchange-Correlation functional 4.00000000000 Z valence -7.48292757640 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 1141 Number of points in mesh 3 3 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 3S 0 2.00 3P 1 2.00 3P 1 0.00 6.51344261110E-05 6.59537163335E-05 6.67833119583E-05 6.76233426115E-05 6.84739395496E-05 6.93352356800E-05 7.02073655821E-05 7.10904655278E-05 7.19846735035E-05 7.28901292308E-05 7.38069741891E-05 7.47353516373E-05 7.56754066363E-05 7.66272860714E-05 7.75911386760E-05 7.85671150538E-05 7.95553677032E-05 8.05560510407E-05 8.15693214250E-05 8.25953371817E-05 8.36342586279E-05 8.46862480972E-05 8.57514699651E-05 8.68300906746E-05 8.79222787624E-05 8.90282048851E-05 9.01480418460E-05 9.12819646219E-05 9.24301503904E-05 9.35927785580E-05 9.47700307876E-05 9.59620910274E-05 9.71691455391E-05 9.83913829275E-05 9.96289941697E-05 1.00882172645E-04 1.02151114165E-04 1.03436017004E-04 1.04737081932E-04 1.06054512241E-04 1.07388513784E-04 1.08739295001E-04 1.10107066953E-04 1.11492043359E-04 1.12894440624E-04 1.14314477875E-04 1.15752376995E-04 1.17208362660E-04 1.18682662370E-04 1.20175506487E-04 1.21687128272E-04 1.23217763918E-04 1.24767652590E-04 1.26337036462E-04 1.27926160753E-04 1.29535273767E-04 1.31164626931E-04 1.32814474834E-04 1.34485075270E-04 1.36176689272E-04 1.37889581159E-04 1.39624018574E-04 1.41380272525E-04 1.43158617432E-04 1.44959331164E-04 1.46782695086E-04 1.48628994104E-04 1.50498516703E-04 1.52391555003E-04 1.54308404792E-04 1.56249365584E-04 1.58214740658E-04 1.60204837106E-04 1.62219965886E-04 1.64260441866E-04 1.66326583874E-04 1.68418714749E-04 1.70537161391E-04 1.72682254812E-04 1.74854330186E-04 1.77053726905E-04 1.79280788629E-04 1.81535863341E-04 1.83819303401E-04 1.86131465601E-04 1.88472711221E-04 1.90843406086E-04 1.93243920621E-04 1.95674629912E-04 1.98135913762E-04 2.00628156752E-04 2.03151748299E-04 2.05707082721E-04 2.08294559292E-04 2.10914582312E-04 2.13567561165E-04 2.16253910384E-04 2.18974049716E-04 2.21728404189E-04 2.24517404177E-04 2.27341485465E-04 2.30201089323E-04 2.33096662570E-04 2.36028657644E-04 2.38997532677E-04 2.42003751560E-04 2.45047784021E-04 2.48130105698E-04 2.51251198208E-04 2.54411549229E-04 2.57611652573E-04 2.60852008261E-04 2.64133122606E-04 2.67455508289E-04 2.70819684439E-04 2.74226176716E-04 2.77675517391E-04 2.81168245431E-04 2.84704906581E-04 2.88286053451E-04 2.91912245605E-04 2.95584049640E-04 2.99302039285E-04 3.03066795482E-04 3.06878906482E-04 3.10738967936E-04 3.14647582986E-04 3.18605362361E-04 3.22612924472E-04 3.26670895509E-04 3.30779909538E-04 3.34940608601E-04 3.39153642815E-04 3.43419670476E-04 3.47739358159E-04 3.52113380825E-04 3.56542421922E-04 3.61027173498E-04 3.65568336305E-04 3.70166619908E-04 3.74822742799E-04 3.79537432505E-04 3.84311425708E-04 3.89145468353E-04 3.94040315769E-04 3.98996732786E-04 4.04015493854E-04 4.09097383165E-04 4.14243194774E-04 4.19453732726E-04 4.24729811177E-04 4.30072254524E-04 4.35481897537E-04 4.40959585482E-04 4.46506174259E-04 4.52122530535E-04 4.57809531875E-04 4.63568066887E-04 4.69399035352E-04 4.75303348372E-04 4.81281928506E-04 4.87335709921E-04 4.93465638532E-04 4.99672672154E-04 5.05957780647E-04 5.12321946072E-04 5.18766162844E-04 5.25291437884E-04 5.31898790780E-04 5.38589253945E-04 5.45363872776E-04 5.52223705821E-04 5.59169824945E-04 5.66203315491E-04 5.73325276457E-04 5.80536820664E-04 5.87839074930E-04 5.95233180248E-04 6.02720291961E-04 6.10301579946E-04 6.17978228794E-04 6.25751437998E-04 6.33622422138E-04 6.41592411070E-04 6.49662650121E-04 6.57834400283E-04 6.66108938409E-04 6.74487557412E-04 6.82971566467E-04 6.91562291220E-04 7.00261073987E-04 7.09069273972E-04 7.17988267474E-04 7.27019448103E-04 7.36164227000E-04 7.45424033055E-04 7.54800313132E-04 7.64294532294E-04 7.73908174031E-04 7.83642740495E-04 7.93499752732E-04 8.03480750919E-04 8.13587294608E-04 8.23820962967E-04 8.34183355028E-04 8.44676089935E-04 8.55300807200E-04 8.66059166956E-04 8.76952850219E-04 8.87983559149E-04 8.99153017317E-04 9.10462969973E-04 9.21915184320E-04 9.33511449791E-04 9.45253578324E-04 9.57143404653E-04 9.69182786586E-04 9.81373605301E-04 9.93717765638E-04 1.00621719640E-03 1.01887385064E-03 1.03168970600E-03 1.04466676497E-03 1.05780705525E-03 1.07111263003E-03 1.08458556835E-03 1.09822797536E-03 1.11204198273E-03 1.12602974892E-03 1.14019345955E-03 1.15453532773E-03 1.16905759440E-03 1.18376252870E-03 1.19865242830E-03 1.21372961978E-03 1.22899645899E-03 1.24445533139E-03 1.26010865247E-03 1.27595886809E-03 1.29200845488E-03 1.30825992062E-03 1.32471580464E-03 1.34137867819E-03 1.35825114489E-03 1.37533584110E-03 1.39263543633E-03 1.41015263368E-03 1.42789017025E-03 1.44585081756E-03 1.46403738200E-03 1.48245270526E-03 1.50109966478E-03 1.51998117417E-03 1.53910018371E-03 1.55845968079E-03 1.57806269036E-03 1.59791227544E-03 1.61801153756E-03 1.63836361728E-03 1.65897169465E-03 1.67983898971E-03 1.70096876304E-03 1.72236431620E-03 1.74402899229E-03 1.76596617645E-03 1.78817929643E-03 1.81067182305E-03 1.83344727083E-03 1.85650919848E-03 1.87986120947E-03 1.90350695260E-03 1.92745012256E-03 1.95169446052E-03 1.97624375471E-03 2.00110184102E-03 2.02627260355E-03 2.05175997530E-03 2.07756793873E-03 2.10370052636E-03 2.13016182149E-03 2.15695595874E-03 2.18408712474E-03 2.21155955880E-03 2.23937755354E-03 2.26754545558E-03 2.29606766621E-03 2.32494864208E-03 2.35419289591E-03 2.38380499717E-03 2.41378957281E-03 2.44415130798E-03 2.47489494676E-03 2.50602529292E-03 2.53754721062E-03 2.56946562524E-03 2.60178552410E-03 2.63451195723E-03 2.66765003822E-03 2.70120494495E-03 2.73518192045E-03 2.76958627369E-03 2.80442338043E-03 2.83969868402E-03 2.87541769630E-03 2.91158599845E-03 2.94820924184E-03 2.98529314892E-03 3.02284351413E-03 3.06086620479E-03 3.09936716202E-03 3.13835240167E-03 3.17782801527E-03 3.21780017097E-03 3.25827511449E-03 3.29925917012E-03 3.34075874171E-03 3.38278031365E-03 3.42533045190E-03 3.46841580500E-03 3.51204310513E-03 3.55621916913E-03 3.60095089962E-03 3.64624528601E-03 3.69210940565E-03 3.73855042489E-03 3.78557560024E-03 3.83319227948E-03 3.88140790281E-03 3.93023000403E-03 3.97966621168E-03 4.02972425027E-03 4.08041194147E-03 4.13173720535E-03 4.18370806156E-03 4.23633263067E-03 4.28961913538E-03 4.34357590180E-03 4.39821136080E-03 4.45353404926E-03 4.50955261149E-03 4.56627580048E-03 4.62371247936E-03 4.68187162272E-03 4.74076231804E-03 4.80039376712E-03 4.86077528750E-03 4.92191631390E-03 4.98382639975E-03 5.04651521860E-03 5.10999256573E-03 5.17426835959E-03 5.23935264341E-03 5.30525558674E-03 5.37198748705E-03 5.43955877133E-03 5.50797999774E-03 5.57726185723E-03 5.64741517523E-03 5.71845091334E-03 5.79038017104E-03 5.86321418742E-03 5.93696434295E-03 6.01164216124E-03 6.08725931084E-03 6.16382760710E-03 6.24135901396E-03 6.31986564586E-03 6.39935976963E-03 6.47985380639E-03 6.56136033348E-03 6.64389208648E-03 6.72746196113E-03 6.81208301540E-03 6.89776847150E-03 6.98453171795E-03 7.07238631170E-03 7.16134598020E-03 7.25142462358E-03 7.34263631681E-03 7.43499531190E-03 7.52851604013E-03 7.62321311432E-03 7.71910133106E-03 7.81619567309E-03 7.91451131160E-03 8.01406360860E-03 8.11486811934E-03 8.21694059474E-03 8.32029698382E-03 8.42495343624E-03 8.53092630477E-03 8.63823214789E-03 8.74688773236E-03 8.85691003583E-03 8.96831624951E-03 9.08112378086E-03 9.19535025627E-03 9.31101352387E-03 9.42813165627E-03 9.54672295343E-03 9.66680594547E-03 9.78839939561E-03 9.91152230307E-03 1.00361939061E-02 1.01624336848E-02 1.02902613644E-02 1.04196969183E-02 1.05507605711E-02 1.06834728016E-02 1.08178543465E-02 1.09539262032E-02 1.10917096331E-02 1.12312261653E-02 1.13724975993E-02 1.15155460093E-02 1.16603937467E-02 1.18070634444E-02 1.19555780198E-02 1.21059606785E-02 1.22582349183E-02 1.24124245322E-02 1.25685536127E-02 1.27266465552E-02 1.28867280622E-02 1.30488231466E-02 1.32129571362E-02 1.33791556773E-02 1.35474447386E-02 1.37178506158E-02 1.38903999350E-02 1.40651196574E-02 1.42420370835E-02 1.44211798568E-02 1.46025759687E-02 1.47862537629E-02 1.49722419394E-02 1.51605695591E-02 1.53512660486E-02 1.55443612047E-02 1.57398851988E-02 1.59378685820E-02 1.61383422897E-02 1.63413376461E-02 1.65468863698E-02 1.67550205781E-02 1.69657727925E-02 1.71791759435E-02 1.73952633756E-02 1.76140688530E-02 1.78356265645E-02 1.80599711289E-02 1.82871376006E-02 1.85171614747E-02 1.87500786930E-02 1.89859256492E-02 1.92247391949E-02 1.94665566453E-02 1.97114157847E-02 1.99593548730E-02 2.02104126510E-02 2.04646283472E-02 2.07220416831E-02 2.09826928803E-02 2.12466226658E-02 2.15138722794E-02 2.17844834794E-02 2.20584985491E-02 2.23359603042E-02 2.26169120985E-02 2.29013978313E-02 2.31894619542E-02 2.34811494776E-02 2.37765059784E-02 2.40755776067E-02 2.43784110929E-02 2.46850537555E-02 2.49955535079E-02 2.53099588665E-02 2.56283189576E-02 2.59506835256E-02 2.62771029408E-02 2.66076282068E-02 2.69423109688E-02 2.72812035217E-02 2.76243588182E-02 2.79718304769E-02 2.83236727911E-02 2.86799407367E-02 2.90406899815E-02 2.94059768931E-02 2.97758585485E-02 3.01503927423E-02 3.05296379963E-02 3.09136535684E-02 3.13024994618E-02 3.16962364344E-02 3.20949260084E-02 3.24986304799E-02 3.29074129285E-02 3.33213372273E-02 3.37404680529E-02 3.41648708953E-02 3.45946120682E-02 3.50297587197E-02 3.54703788422E-02 3.59165412836E-02 3.63683157577E-02 3.68257728551E-02 3.72889840544E-02 3.77580217333E-02 3.82329591799E-02 3.87138706042E-02 3.92008311496E-02 3.96939169045E-02 4.01932049148E-02 4.06987731951E-02 4.12107007415E-02 4.17290675437E-02 4.22539545976E-02 4.27854439179E-02 4.33236185509E-02 4.38685625874E-02 4.44203611761E-02 4.49791005365E-02 4.55448679730E-02 4.61177518877E-02 4.66978417950E-02 4.72852283351E-02 4.78800032883E-02 4.84822595894E-02 4.90920913422E-02 4.97095938342E-02 5.03348635513E-02 5.09679981933E-02 5.16090966887E-02 5.22582592105E-02 5.29155871916E-02 5.35811833408E-02 5.42551516589E-02 5.49375974549E-02 5.56286273622E-02 5.63283493558E-02 5.70368727685E-02 5.77543083087E-02 5.84807680770E-02 5.92163655843E-02 5.99612157692E-02 6.07154350161E-02 6.14791411732E-02 6.22524535712E-02 6.30354930418E-02 6.38283819363E-02 6.46312441454E-02 6.54442051179E-02 6.62673918806E-02 6.71009330581E-02 6.79449588929E-02 6.87996012658E-02 6.96649937163E-02 7.05412714638E-02 7.14285714286E-02 7.23270322529E-02 7.32367943232E-02 7.41579997916E-02 7.50907925983E-02 7.60353184941E-02 7.69917250632E-02 7.79601617459E-02 7.89407798625E-02 7.99337326366E-02 8.09391752191E-02 8.19572647123E-02 8.29881601949E-02 8.40320227463E-02 8.50890154723E-02 8.61593035301E-02 8.72430541543E-02 8.83404366832E-02 8.94516225851E-02 9.05767854851E-02 9.17161011920E-02 9.28697477263E-02 9.40379053477E-02 9.52207565831E-02 9.64184862554E-02 9.76312815124E-02 9.88593318558E-02 1.00102829171E-01 1.01361967757E-01 1.02636944356E-01 1.03927958187E-01 1.05235210973E-01 1.06558906974E-01 1.07899253022E-01 1.09256458547E-01 1.10630735617E-01 1.12022298964E-01 1.13431366023E-01 1.14858156963E-01 1.16302894725E-01 1.17765805050E-01 1.19247116522E-01 1.20747060599E-01 1.22265871649E-01 1.23803786991E-01 1.25361046926E-01 1.26937894780E-01 1.28534576938E-01 1.30151342885E-01 1.31788445244E-01 1.33446139817E-01 1.35124685620E-01 1.36824344930E-01 1.38545383322E-01 1.40288069712E-01 1.42052676399E-01 1.43839479105E-01 1.45648757023E-01 1.47480792855E-01 1.49335872861E-01 1.51214286901E-01 1.53116328481E-01 1.55042294799E-01 1.56992486791E-01 1.58967209178E-01 1.60966770515E-01 1.62991483238E-01 1.65041663711E-01 1.67117632280E-01 1.69219713320E-01 1.71348235283E-01 1.73503530757E-01 1.75685936511E-01 1.77895793550E-01 1.80133447168E-01 1.82399247004E-01 1.84693547094E-01 1.87016705926E-01 1.89369086499E-01 1.91751056377E-01 1.94162987747E-01 1.96605257479E-01 1.99078247183E-01 2.01582343268E-01 2.04117937005E-01 2.06685424584E-01 2.09285207181E-01 2.11917691018E-01 2.14583287425E-01 2.17282412907E-01 2.20015489208E-01 2.22782943378E-01 2.25585207835E-01 2.28422720440E-01 2.31295924560E-01 2.34205269138E-01 2.37151208767E-01 2.40134203754E-01 2.43154720199E-01 2.46213230064E-01 2.49310211247E-01 2.52446147658E-01 2.55621529293E-01 2.58836852312E-01 2.62092619116E-01 2.65389338424E-01 2.68727525357E-01 2.72107701512E-01 2.75530395050E-01 2.78996140772E-01 2.82505480209E-01 2.86058961701E-01 2.89657140489E-01 2.93300578794E-01 2.96989845911E-01 3.00725518296E-01 3.04508179655E-01 3.08338421036E-01 3.12216840924E-01 3.16144045327E-01 3.20120647881E-01 3.24147269938E-01 3.28224540665E-01 3.32353097144E-01 3.36533584471E-01 3.40766655855E-01 3.45052972722E-01 3.49393204819E-01 3.53788030314E-01 3.58238135909E-01 3.62744216941E-01 3.67306977496E-01 3.71927130513E-01 3.76605397901E-01 3.81342510648E-01 3.86139208939E-01 3.90996242266E-01 3.95914369552E-01 4.00894359264E-01 4.05936989535E-01 4.11043048286E-01 4.16213333350E-01 4.21448652594E-01 4.26749824048E-01 4.32117676029E-01 4.37553047277E-01 4.43056787079E-01 4.48629755405E-01 4.54272823043E-01 4.59986871734E-01 4.65772794309E-01 4.71631494831E-01 4.77563888734E-01 4.83570902966E-01 4.89653476136E-01 4.95812558657E-01 5.02049112899E-01 5.08364113337E-01 5.14758546701E-01 5.21233412136E-01 5.27789721352E-01 5.34428498786E-01 5.41150781760E-01 5.47957620644E-01 5.54850079022E-01 5.61829233853E-01 5.68896175645E-01 5.76052008622E-01 5.83297850898E-01 5.90634834649E-01 5.98064106295E-01 6.05586826674E-01 6.13204171227E-01 6.20917330179E-01 6.28727508728E-01 6.36635927228E-01 6.44643821388E-01 6.52752442456E-01 6.60963057422E-01 6.69276949210E-01 6.77695416883E-01 6.86219775843E-01 6.94851358040E-01 7.03591512175E-01 7.12441603915E-01 7.21403016106E-01 7.30477148985E-01 7.39665420405E-01 7.48969266052E-01 7.58390139670E-01 7.67929513291E-01 7.77588877461E-01 7.87369741474E-01 7.97273633612E-01 8.07302101377E-01 8.17456711738E-01 8.27739051373E-01 8.38150726919E-01 8.48693365221E-01 8.59368613589E-01 8.70178140050E-01 8.81123633617E-01 8.92206804543E-01 9.03429384599E-01 9.14793127333E-01 9.26299808355E-01 9.37951225606E-01 9.49749199645E-01 9.61695573929E-01 9.73792215102E-01 9.86041013291E-01 9.98443882393E-01 1.01100276038E+00 1.02371960961E+00 1.03659641711E+00 1.04963519491E+00 1.06283798035E+00 1.07620683638E+00 1.08974385192E+00 1.10345114215E+00 1.11733084887E+00 1.13138514081E+00 1.14561621398E+00 1.16002629201E+00 1.17461762651E+00 1.18939249740E+00 1.20435321329E+00 1.21950211182E+00 1.23484156004E+00 1.25037395476E+00 1.26610172296E+00 1.28202732213E+00 1.29815324067E+00 1.31448199830E+00 1.33101614642E+00 1.34775826852E+00 1.36471098059E+00 1.38187693152E+00 1.39925880354E+00 1.41685931260E+00 1.43468120880E+00 1.45272727686E+00 1.47100033651E+00 1.48950324296E+00 1.50823888732E+00 1.52721019708E+00 1.54642013654E+00 1.56587170729E+00 1.58556794867E+00 1.60551193828E+00 1.62570679239E+00 1.64615566650E+00 1.66686175578E+00 1.68782829560E+00 1.70905856203E+00 1.73055587233E+00 1.75232358551E+00 1.77436510281E+00 1.79668386827E+00 1.81928336924E+00 1.84216713694E+00 1.86533874700E+00 1.88880182004E+00 1.91256002220E+00 1.93661706576E+00 1.96097670968E+00 1.98564276019E+00 2.01061907143E+00 2.03590954598E+00 2.06151813555E+00 2.08744884152E+00 2.11370571561E+00 2.14029286053E+00 2.16721443056E+00 2.19447463225E+00 2.22207772507E+00 2.25002802205E+00 2.27832989049E+00 2.30698775262E+00 2.33600608627E+00 2.36538942562E+00 2.39514236189E+00 2.42526954402E+00 2.45577567945E+00 2.48666553483E+00 2.51794393676E+00 2.54961577255E+00 2.58168599099E+00 2.61415960312E+00 2.64704168301E+00 2.68033736854E+00 2.71405186225E+00 2.74819043207E+00 2.78275841225E+00 2.81776120409E+00 2.85320427684E+00 2.88909316858E+00 2.92543348699E+00 2.96223091035E+00 2.99949118830E+00 3.03722014286E+00 3.07542366925E+00 3.11410773684E+00 3.15327839010E+00 3.19294174952E+00 3.23310401259E+00 3.27377145474E+00 3.31495043034E+00 3.35664737368E+00 3.39886880001E+00 3.44162130651E+00 3.48491157333E+00 3.52874636468E+00 3.57313252983E+00 3.61807700420E+00 3.66358681047E+00 3.70966905963E+00 3.75633095213E+00 3.80357977898E+00 3.85142292291E+00 3.89986785951E+00 3.94892215840E+00 3.99859348440E+00 4.04888959878E+00 4.09981836039E+00 4.15138772696E+00 4.20360575631E+00 4.25648060761E+00 4.31002054267E+00 4.36423392720E+00 4.41912923217E+00 4.47471503507E+00 4.53100002129E+00 4.58799298549E+00 4.64570283293E+00 4.70413858089E+00 4.76330936007E+00 4.82322441602E+00 4.88389311061E+00 4.94532492343E+00 5.00752945333E+00 5.07051641990E+00 5.13429566498E+00 5.19887715419E+00 5.26427097854E+00 5.33048735594E+00 5.39753663284E+00 5.46542928581E+00 5.53417592323E+00 5.60378728690E+00 5.67427425373E+00 5.74564783746E+00 5.81791919035E+00 5.89109960496E+00 5.96520051586E+00 6.04023350148E+00 6.11621028587E+00 6.19314274056E+00 6.27104288641E+00 6.34992289547E+00 6.42979509289E+00 6.51067195889E+00 6.59256613062E+00 6.67549040422E+00 6.75945773678E+00 6.84448124836E+00 6.93057422407E+00 7.01775011609E+00 7.10602254585E+00 7.19540530609E+00 7.28591236305E+00 7.37755785864E+00 7.47035611265E+00 7.56432162501E+00 7.65946907800E+00 7.75581333863E+00 7.85336946087E+00 7.95215268806E+00 8.05217845529E+00 8.15346239179E+00 8.25602032337E+00 8.35986827493E+00 8.46502247291E+00 8.57149934787E+00 8.67931553705E+00 8.78848788694E+00 8.89903345594E+00 9.01096951703E+00 9.12431356043E+00 9.23908329639E+00 9.35529665792E+00 9.47297180358E+00 9.59212712035E+00 9.71278122651E+00 9.83495297449E+00 9.95866145388E+00 1.00839259944E+01 1.02107661689E+01 1.03392017963E+01 1.04692529451E+01 1.06009399359E+01 1.07342833452E+01 1.08693040080E+01 1.10060230218E+01 1.11444617490E+01 1.12846418211E+01 1.14265851414E+01 1.15703138889E+01 1.17158505214E+01 1.18632177795E+01 1.20124386894E+01 1.21635365674E+01 1.23165350226E+01 1.24714579616E+01 1.26283295912E+01 1.27871744230E+01 1.29480172768E+01 1.31108832847E+01 1.32757978947E+01 1.34427868752E+01 1.36118763185E+01 1.37830926451E+01 1.39564626080E+01 1.41320132966E+01 1.43097721411E+01 1.44897669165E+01 1.46720257475E+01 1.48565771124E+01 1.50434498476E+01 1.52326731525E+01 1.54242765936E+01 1.56182901093E+01 1.58147440146E+01 1.60136690058E+01 1.62150961654E+01 1.64190569667E+01 1.66255832791E+01 1.68347073727E+01 1.70464619236E+01 1.72608800189E+01 1.74779951617E+01 1.76978412769E+01 1.79204527158E+01 1.81458642618E+01 1.83741111361E+01 1.86052290027E+01 1.88392539741E+01 1.90762226172E+01 1.93161719590E+01 1.95591394919E+01 1.98051631802E+01 2.00542814655E+01 2.03065332731E+01 2.05619580179E+01 2.08205956104E+01 2.10824864633E+01 2.13476714976E+01 2.16161921491E+01 2.18880903745E+01 2.21634086586E+01 2.24421900204E+01 2.27244780200E+01 2.30103167656E+01 2.32997509200E+01 2.35928257078E+01 2.38895869227E+01 2.41900809341E+01 2.44943546949E+01 2.48024557485E+01 2.51144322362E+01 2.54303329051E+01 2.57502071152E+01 2.60741048475E+01 2.64020767118E+01 2.67341739543E+01 2.70704484659E+01 2.74109527901E+01 2.77557401314E+01 2.81048643636E+01 2.84583800381E+01 2.88163423923E+01 2.91788073587E+01 2.95458315731E+01 2.99174723837E+01 3.02937878603E+01 3.06748368029E+01 3.10606787512E+01 3.14513739937E+01 3.18469835773E+01 3.22475693170E+01 3.26531938049E+01 3.30639204208E+01 3.34798133416E+01 3.39009375513E+01 3.43273588515E+01 3.47591438713E+01 3.51963600781E+01 3.56390757877E+01 3.60873601755E+01 3.65412832867E+01 3.70009160477E+01 3.74663302772E+01 3.79375986970E+01 3.84147949438E+01 3.88979935804E+01 3.93872701077E+01 3.98827009761E+01 4.03843635976E+01 4.08923363581E+01 4.14066986294E+01 4.19275307816E+01 4.24549141957E+01 4.29889312766E+01 4.35296654654E+01 4.40772012531E+01 4.46316241931E+01 4.51930209152E+01 4.57614791387E+01 4.63370876865E+01 4.69199364985E+01 4.75101166460E+01 4.81077203459E+01 4.87128409750E+01 4.93255730847E+01 4.99460124154E+01 5.05742559122E+01 5.12104017394E+01 5.18545492961E+01 5.25067992316E+01 5.31672534613E+01 5.38360151825E+01 5.45131888906E+01 5.51988803954E+01 5.58931968375E+01 5.65962467054E+01 5.73081398520E+01 5.80289875120E+01 5.87589023193E+01 5.94979983247E+01 6.02463910134E+01 6.10041973233E+01 6.17715356631E+01 6.25485259310E+01 6.33352895334E+01 6.41319494036E+01 6.49386300214E+01 6.57554574322E+01 6.65825592671E+01 6.74200647623E+01 6.82681047797E+01 6.91268118275E+01 6.99963200802E+01 7.08767654004E+01 7.17682853593E+01 7.26710192589E+01 7.35851081530E+01 7.45106948700E+01 7.54479240347E+01 7.63969420910E+01 7.73578973250E+01 7.83309398877E+01 7.93162218193E+01 8.03138970718E+01 8.13241215342E+01 8.23470530560E+01 8.33828514723E+01 8.44316786289E+01 8.54936984070E+01 8.65690767495E+01 8.76579816863E+01 8.87605833611E+01 8.98770540576E+01 9.10075682267E+01 9.21523025134E+01 9.33114357850E+01 9.44851491582E+01 9.56736260282E+01 9.68770520969E+01 9.80956154021E+01 9.93295063468E+01 1.00578917729E+02 8.14180326388E-07 8.24421454169E-07 8.34791399479E-07 8.45291782644E-07 8.55924244370E-07 8.66690446000E-07 8.77592069776E-07 8.88630819098E-07 8.99808418793E-07 9.11126615385E-07 9.22587177364E-07 9.34191895466E-07 9.45942582953E-07 9.57841075893E-07 9.69889233450E-07 9.82088938173E-07 9.94442096290E-07 1.00695063801E-06 1.01961651781E-06 1.03244171477E-06 1.04542823285E-06 1.05857810122E-06 1.07189337456E-06 1.08537613343E-06 1.09902848453E-06 1.11285256106E-06 1.12685052308E-06 1.14102455777E-06 1.15537687988E-06 1.16990973197E-06 1.18462538485E-06 1.19952613784E-06 1.21461431924E-06 1.22989228659E-06 1.24536242712E-06 1.26102715806E-06 1.27688892706E-06 1.29295021255E-06 1.30921352415E-06 1.32568140302E-06 1.34235642230E-06 1.35924118751E-06 1.37633833692E-06 1.39365054199E-06 1.41118050780E-06 1.42893097343E-06 1.44690471244E-06 1.46510453325E-06 1.48353327962E-06 1.50219383109E-06 1.52108910340E-06 1.54022204897E-06 1.55959565738E-06 1.57921295578E-06 1.59907700941E-06 1.61919092208E-06 1.63955783663E-06 1.66018093543E-06 1.68106344087E-06 1.70220861590E-06 1.72361976449E-06 1.74530023217E-06 1.76725340657E-06 1.78948271790E-06 1.81199163955E-06 1.83478368858E-06 1.85786242629E-06 1.88123145879E-06 1.90489443753E-06 1.92885505991E-06 1.95311706981E-06 1.97768425822E-06 2.00256046383E-06 2.02774957358E-06 2.05325552333E-06 2.07908229843E-06 2.10523393437E-06 2.13171451739E-06 2.15852818515E-06 2.18567912732E-06 2.21317158631E-06 2.24100985786E-06 2.26919829176E-06 2.29774129251E-06 2.32664332001E-06 2.35590889026E-06 2.38554257607E-06 2.41554900776E-06 2.44593287390E-06 2.47669892203E-06 2.50785195940E-06 2.53939685374E-06 2.57133853401E-06 2.60368199115E-06 2.63643227890E-06 2.66959451457E-06 2.70317387980E-06 2.73717562145E-06 2.77160505237E-06 2.80646755221E-06 2.84176856831E-06 2.87751361654E-06 2.91370828212E-06 2.95035822055E-06 2.98746915846E-06 3.02504689450E-06 3.06309730027E-06 3.10162632122E-06 3.14063997760E-06 3.18014436536E-06 3.22014565716E-06 3.26065010326E-06 3.30166403257E-06 3.34319385361E-06 3.38524605549E-06 3.42782720895E-06 3.47094396739E-06 3.51460306788E-06 3.55881133226E-06 3.60357566814E-06 3.64890307006E-06 3.69480062050E-06 3.74127549106E-06 3.78833494352E-06 3.83598633103E-06 3.88423709920E-06 3.93309478733E-06 3.98256702952E-06 4.03266155590E-06 4.08338619386E-06 4.13474886923E-06 4.18675760751E-06 4.23942053519E-06 4.29274588095E-06 4.34674197699E-06 4.40141726031E-06 4.45678027403E-06 4.51283966873E-06 4.56960420381E-06 4.62708274885E-06 4.68528428498E-06 4.74421790632E-06 4.80389282135E-06 4.86431835441E-06 4.92550394711E-06 4.98745915982E-06 5.05019367317E-06 5.11371728956E-06 5.17803993468E-06 5.24317165907E-06 5.30912263971E-06 5.37590318155E-06 5.44352371921E-06 5.51199481852E-06 5.58132717824E-06 5.65153163168E-06 5.72261914844E-06 5.79460083609E-06 5.86748794190E-06 5.94129185464E-06 6.01602410633E-06 6.09169637402E-06 6.16832048166E-06 6.24590840192E-06 6.32447225808E-06 6.40402432590E-06 6.48457703555E-06 6.56614297355E-06 6.64873488475E-06 6.73236567431E-06 6.81704840970E-06 6.90279632277E-06 6.98962281181E-06 7.07754144363E-06 7.16656595571E-06 7.25671025830E-06 7.34798843663E-06 7.44041475310E-06 7.53400364951E-06 7.62876974932E-06 7.72472785993E-06 7.82189297498E-06 7.92028027672E-06 8.01990513837E-06 8.12078312651E-06 8.22293000354E-06 8.32636173011E-06 8.43109446765E-06 8.53714458084E-06 8.64452864025E-06 8.75326342484E-06 8.86336592465E-06 8.97485334342E-06 9.08774310129E-06 9.20205283750E-06 9.31780041319E-06 9.43500391415E-06 9.55368165367E-06 9.67385217539E-06 9.79553425619E-06 9.91874690914E-06 1.00435093865E-05 1.01698411826E-05 1.02977620371E-05 1.04272919379E-05 1.05584511242E-05 1.06912600900E-05 1.08257395870E-05 1.09619106277E-05 1.10997944894E-05 1.12394127165E-05 1.13807871247E-05 1.15239398040E-05 1.16688931224E-05 1.18156697291E-05 1.19642925582E-05 1.21147848323E-05 1.22671700663E-05 1.24214720705E-05 1.25777149550E-05 1.27359231330E-05 1.28961213250E-05 1.30583345621E-05 1.32225881906E-05 1.33889078754E-05 1.35573196043E-05 1.37278496920E-05 1.39005247841E-05 1.40753718615E-05 1.42524182444E-05 1.44316915966E-05 1.46132199300E-05 1.47970316087E-05 1.49831553538E-05 1.51716202473E-05 1.53624557374E-05 1.55556916424E-05 1.57513581559E-05 1.59494858512E-05 1.61501056861E-05 1.63532490078E-05 1.65589475580E-05 1.67672334774E-05 1.69781393112E-05 1.71916980137E-05 1.74079429541E-05 1.76269079210E-05 1.78486271281E-05 1.80731352195E-05 1.83004672750E-05 1.85306588158E-05 1.87637458097E-05 1.89997646771E-05 1.92387522964E-05 1.94807460099E-05 1.97257836295E-05 1.99739034430E-05 2.02251442195E-05 2.04795452160E-05 2.07371461831E-05 2.09979873714E-05 2.12621095380E-05 2.15295539525E-05 2.18003624036E-05 2.20745772057E-05 2.23522412053E-05 2.26333977881E-05 2.29180908854E-05 2.32063649810E-05 2.34982651184E-05 2.37938369075E-05 2.40931265320E-05 2.43961807565E-05 2.47030469339E-05 2.50137730127E-05 2.53284075444E-05 2.56469996913E-05 2.59695992341E-05 2.62962565796E-05 2.66270227686E-05 2.69619494842E-05 2.73010890592E-05 2.76444944850E-05 2.79922194192E-05 2.83443181947E-05 2.87008458276E-05 2.90618580260E-05 2.94274111988E-05 2.97975624646E-05 3.01723696601E-05 3.05518913497E-05 3.09361868345E-05 3.13253161615E-05 3.17193401328E-05 3.21183203156E-05 3.25223190512E-05 3.29313994654E-05 3.33456254777E-05 3.37650618119E-05 3.41897740057E-05 3.46198284212E-05 3.50552922553E-05 3.54962335502E-05 3.59427212038E-05 3.63948249807E-05 3.68526155230E-05 3.73161643615E-05 3.77855439266E-05 3.82608275599E-05 3.87420895252E-05 3.92294050209E-05 3.97228501909E-05 4.02225021371E-05 4.07284389311E-05 4.12407396265E-05 4.17594842714E-05 4.22847539207E-05 4.28166306488E-05 4.33551975625E-05 4.39005388141E-05 4.44527396142E-05 4.50118862452E-05 4.55780660751E-05 4.61513675706E-05 4.67318803111E-05 4.73196950030E-05 4.79149034935E-05 4.85175987852E-05 4.91278750504E-05 4.97458276460E-05 5.03715531284E-05 5.10051492684E-05 5.16467150668E-05 5.22963507695E-05 5.29541578834E-05 5.36202391922E-05 5.42946987725E-05 5.49776420099E-05 5.56691756158E-05 5.63694076436E-05 5.70784475060E-05 5.77964059920E-05 5.85233952840E-05 5.92595289755E-05 6.00049220891E-05 6.07596910938E-05 6.15239539238E-05 6.22978299968E-05 6.30814402325E-05 6.38749070716E-05 6.46783544949E-05 6.54919080426E-05 6.63156948342E-05 6.71498435881E-05 6.79944846416E-05 6.88497499717E-05 6.97157732153E-05 7.05926896903E-05 7.14806364167E-05 7.23797521380E-05 7.32901773428E-05 7.42120542869E-05 7.51455270155E-05 7.60907413855E-05 7.70478450887E-05 7.80169876745E-05 7.89983205733E-05 7.99919971204E-05 8.09981725798E-05 8.20170041685E-05 8.30486510809E-05 8.40932745141E-05 8.51510376925E-05 8.62221058937E-05 8.73066464744E-05 8.84048288963E-05 8.95168247525E-05 9.06428077947E-05 9.17829539601E-05 9.29374413987E-05 9.41064505017E-05 9.52901639290E-05 9.64887666382E-05 9.77024459136E-05 9.89313913949E-05 1.00175795107E-04 1.01435851492E-04 1.02711757434E-04 1.04003712298E-04 1.05311917953E-04 1.06636578810E-04 1.07977901849E-04 1.09336096654E-04 1.10711375448E-04 1.12103953119E-04 1.13514047261E-04 1.14941878203E-04 1.16387669048E-04 1.17851645703E-04 1.19334036918E-04 1.20835074318E-04 1.22354992445E-04 1.23894028788E-04 1.25452423826E-04 1.27030421059E-04 1.28628267055E-04 1.30246211479E-04 1.31884507138E-04 1.33543410020E-04 1.35223179332E-04 1.36924077540E-04 1.38646370414E-04 1.40390327066E-04 1.42156219992E-04 1.43944325116E-04 1.45754921834E-04 1.47588293055E-04 1.49444725247E-04 1.51324508482E-04 1.53227936479E-04 1.55155306652E-04 1.57106920158E-04 1.59083081940E-04 1.61084100777E-04 1.63110289333E-04 1.65161964203E-04 1.67239445966E-04 1.69343059233E-04 1.71473132697E-04 1.73629999187E-04 1.75813995718E-04 1.78025463543E-04 1.80264748210E-04 1.82532199609E-04 1.84828172037E-04 1.87153024242E-04 1.89507119488E-04 1.91890825607E-04 1.94304515058E-04 1.96748564985E-04 1.99223357275E-04 2.01729278621E-04 2.04266720576E-04 2.06836079622E-04 2.09437757227E-04 2.12072159907E-04 2.14739699293E-04 2.17440792195E-04 2.20175860662E-04 2.22945332056E-04 2.25749639111E-04 2.28589220007E-04 2.31464518434E-04 2.34375983662E-04 2.37324070615E-04 2.40309239937E-04 2.43331958066E-04 2.46392697309E-04 2.49491935912E-04 2.52630158138E-04 2.55807854339E-04 2.59025521039E-04 2.62283661003E-04 2.65582783323E-04 2.68923403493E-04 2.72306043492E-04 2.75731231864E-04 2.79199503803E-04 2.82711401231E-04 2.86267472892E-04 2.89868274427E-04 2.93514368470E-04 2.97206324730E-04 3.00944720084E-04 3.04730138662E-04 3.08563171944E-04 3.12444418849E-04 3.16374485831E-04 3.20353986970E-04 3.24383544071E-04 3.28463786760E-04 3.32595352585E-04 3.36778887110E-04 3.41015044021E-04 3.45304485227E-04 3.49647880961E-04 3.54045909888E-04 3.58499259209E-04 3.63008624768E-04 3.67574711164E-04 3.72198231856E-04 3.76879909279E-04 3.81620474954E-04 3.86420669605E-04 3.91281243272E-04 3.96202955430E-04 4.01186575105E-04 4.06232880998E-04 4.11342661606E-04 4.16516715342E-04 4.21755850662E-04 4.27060886191E-04 4.32432650853E-04 4.37871983996E-04 4.43379735528E-04 4.48956766045E-04 4.54603946971E-04 4.60322160688E-04 4.66112300679E-04 4.71975271666E-04 4.77911989749E-04 4.83923382553E-04 4.90010389370E-04 4.96173961307E-04 5.02415061435E-04 5.08734664938E-04 5.15133759268E-04 5.21613344296E-04 5.28174432470E-04 5.34818048974E-04 5.41545231886E-04 5.48357032343E-04 5.55254514701E-04 5.62238756707E-04 5.69310849662E-04 5.76471898596E-04 5.83723022437E-04 5.91065354188E-04 5.98500041103E-04 6.06028244867E-04 6.13651141778E-04 6.21369922927E-04 6.29185794392E-04 6.37099977417E-04 6.45113708609E-04 6.53228240131E-04 6.61444839894E-04 6.69764791760E-04 6.78189395737E-04 6.86719968186E-04 6.95357842028E-04 7.04104366947E-04 7.12960909607E-04 7.21928853858E-04 7.31009600962E-04 7.40204569804E-04 7.49515197115E-04 7.58942937701E-04 7.68489264665E-04 7.78155669640E-04 7.87943663022E-04 7.97854774204E-04 8.07890551818E-04 8.18052563974E-04 8.28342398508E-04 8.38761663226E-04 8.49311986161E-04 8.59995015822E-04 8.70812421454E-04 8.81765893298E-04 8.92857142857E-04 9.04087903161E-04 9.15459929040E-04 9.26974997394E-04 9.38634907479E-04 9.50441481177E-04 9.62396563290E-04 9.74502021824E-04 9.86759748282E-04 9.99171657958E-04 1.01173969024E-03 1.02446580890E-03 1.03735200244E-03 1.05040028433E-03 1.06361269340E-03 1.07699129413E-03 1.09053817693E-03 1.10425545854E-03 1.11814528231E-03 1.13220981856E-03 1.14645126490E-03 1.16087184658E-03 1.17547381685E-03 1.19025945729E-03 1.20523107819E-03 1.22039101891E-03 1.23574164820E-03 1.25128536464E-03 1.26702459696E-03 1.28296180445E-03 1.29909947734E-03 1.31544013716E-03 1.33198633718E-03 1.34874066277E-03 1.36570573184E-03 1.38288419521E-03 1.40027873704E-03 1.41789207528E-03 1.43572696204E-03 1.45378618406E-03 1.47207256313E-03 1.49058895652E-03 1.50933825748E-03 1.52832339561E-03 1.54754733738E-03 1.56701308657E-03 1.58672368474E-03 1.60668221172E-03 1.62689178606E-03 1.64735556556E-03 1.66807674771E-03 1.68905857024E-03 1.71030431162E-03 1.73181729152E-03 1.75360087140E-03 1.77565845498E-03 1.79799348881E-03 1.82060946278E-03 1.84350991068E-03 1.86669841076E-03 1.89017858626E-03 1.91395410601E-03 1.93802868499E-03 1.96240608488E-03 1.98709011473E-03 2.01208463144E-03 2.03739354047E-03 2.06302079639E-03 2.08897040351E-03 2.11524641650E-03 2.14185294104E-03 2.16879413447E-03 2.19607420639E-03 2.22369741937E-03 2.25166808961E-03 2.27999058756E-03 2.30866933867E-03 2.33770882407E-03 2.36711358123E-03 2.39688820471E-03 2.42703734684E-03 2.45756571849E-03 2.48847808979E-03 2.51977929085E-03 2.55147421256E-03 2.58356780730E-03 2.61606508976E-03 2.64897113772E-03 2.68229109281E-03 2.71603016134E-03 2.75019361511E-03 2.78478679222E-03 2.81981509794E-03 2.85528400550E-03 2.89119905700E-03 2.92756586423E-03 2.96439010959E-03 3.00167754693E-03 3.03943400249E-03 3.07766537580E-03 3.11637764059E-03 3.15557684573E-03 3.19526911616E-03 3.23546065390E-03 3.27615773895E-03 3.31736673030E-03 3.35909406696E-03 3.40134626891E-03 3.44412993812E-03 3.48745175965E-03 3.53131850261E-03 3.57573702127E-03 3.62071425611E-03 3.66625723492E-03 3.71237307389E-03 3.75906897870E-03 3.80635224569E-03 3.85423026296E-03 3.90271051154E-03 3.95180056659E-03 4.00150809852E-03 4.05184087422E-03 4.10280675831E-03 4.15441371430E-03 4.20666980588E-03 4.25958319819E-03 4.31316215903E-03 4.36741506023E-03 4.42235037892E-03 4.47797669886E-03 4.53430271177E-03 4.59133721870E-03 4.64908913141E-03 4.70756747376E-03 4.76678138310E-03 4.82674011173E-03 4.88745302833E-03 4.94892961940E-03 5.01117949080E-03 5.07421236918E-03 5.13803810358E-03 5.20266666688E-03 5.26810815743E-03 5.33437280060E-03 5.40147095037E-03 5.46941309097E-03 5.53820983849E-03 5.60787194256E-03 5.67841028804E-03 5.74983589667E-03 5.82215992887E-03 5.89539368539E-03 5.96954860918E-03 6.04463628708E-03 6.12066845170E-03 6.19765698321E-03 6.27561391124E-03 6.35455141671E-03 6.43448183377E-03 6.51541765170E-03 6.59737151690E-03 6.68035623482E-03 6.76438477200E-03 6.84947025805E-03 6.93562598777E-03 7.02286542317E-03 7.11120219557E-03 7.20065010778E-03 7.29122313622E-03 7.38293543311E-03 7.47580132869E-03 7.56983533343E-03 7.66505214034E-03 7.76146662724E-03 7.85909385910E-03 7.95794909036E-03 8.05804776735E-03 8.15940553071E-03 8.26203821777E-03 8.36596186512E-03 8.47119271103E-03 8.57774719804E-03 8.68564197550E-03 8.79489390219E-03 8.90552004894E-03 9.01753770132E-03 9.13096436231E-03 9.24581775506E-03 9.36211582565E-03 9.47987674588E-03 9.59911891614E-03 9.71986096826E-03 9.84212176843E-03 9.96592042015E-03 1.00912762672E-02 1.02182088967E-02 1.03467381422E-02 1.04768840865E-02 1.06086670653E-02 1.07421076699E-02 1.08772267506E-02 1.10140454202E-02 1.11525850568E-02 1.12928673075E-02 1.14349140917E-02 1.15787476044E-02 1.17243903201E-02 1.18718649956E-02 1.20211946741E-02 1.21724026888E-02 1.23255126661E-02 1.24805485299E-02 1.26375345048E-02 1.27964951202E-02 1.29574552139E-02 1.31204399364E-02 1.32854747544E-02 1.34525854547E-02 1.36217981490E-02 1.37931392769E-02 1.39666356109E-02 1.41423142601E-02 1.43202026747E-02 1.45003286501E-02 1.46827203313E-02 1.48674062175E-02 1.50544151662E-02 1.52437763978E-02 1.54355195005E-02 1.56296744345E-02 1.58262715370E-02 1.60253415266E-02 1.62269155084E-02 1.64310249788E-02 1.66377018303E-02 1.68469783565E-02 1.70588872573E-02 1.72734616441E-02 1.74907350443E-02 1.77107414074E-02 1.79335151100E-02 1.81590909608E-02 1.83875042064E-02 1.86187905370E-02 1.88529860916E-02 1.90901274635E-02 1.93302517067E-02 1.95733963411E-02 1.98195993584E-02 2.00688992285E-02 2.03213349049E-02 2.05769458313E-02 2.08357719473E-02 2.10978536950E-02 2.13632320253E-02 2.16319484041E-02 2.19040448188E-02 2.21795637851E-02 2.24585483534E-02 2.27410421155E-02 2.30270892118E-02 2.33167343376E-02 2.36100227505E-02 2.39070002775E-02 2.42077133220E-02 2.45122088709E-02 2.48205345024E-02 2.51327383928E-02 2.54488693248E-02 2.57689766944E-02 2.60931105190E-02 2.64213214452E-02 2.67536607566E-02 2.70901803820E-02 2.74309329031E-02 2.77759715634E-02 2.81253502757E-02 2.84791236312E-02 2.88373469077E-02 2.92000760783E-02 2.95673678203E-02 2.99392795236E-02 3.03158693002E-02 3.06971959931E-02 3.10833191854E-02 3.14742992095E-02 3.18701971568E-02 3.22710748874E-02 3.26769950390E-02 3.30880210376E-02 3.35042171068E-02 3.39256482781E-02 3.43523804009E-02 3.47844801531E-02 3.52220150511E-02 3.56650534606E-02 3.61136646072E-02 3.65679185874E-02 3.70278863793E-02 3.74936398538E-02 3.79652517858E-02 3.84427958656E-02 3.89263467105E-02 3.94159798762E-02 3.99117718690E-02 4.04138001574E-02 4.09221431842E-02 4.14368803792E-02 4.19580921711E-02 4.24858600002E-02 4.30202663313E-02 4.35613946667E-02 4.41093295585E-02 4.46641566229E-02 4.52259625525E-02 4.57948351309E-02 4.63708632454E-02 4.69541369016E-02 4.75447472373E-02 4.81427865364E-02 4.87483482439E-02 4.93615269800E-02 4.99824185550E-02 5.06111199847E-02 5.12477295049E-02 5.18923465870E-02 5.25450719539E-02 5.32060075952E-02 5.38752567834E-02 5.45529240900E-02 5.52391154021E-02 5.59339379383E-02 5.66375002662E-02 5.73499123187E-02 5.80712854116E-02 5.88017322611E-02 5.95413670008E-02 6.02903052003E-02 6.10486638826E-02 6.18165615429E-02 6.25941181667E-02 6.33814552488E-02 6.41786958122E-02 6.49859644274E-02 6.58033872318E-02 6.66310919493E-02 6.74692079105E-02 6.83178660727E-02 6.91771990404E-02 7.00473410863E-02 7.09284281717E-02 7.18205979683E-02 7.27239898794E-02 7.36387450620E-02 7.45650064483E-02 7.55029187685E-02 7.64526285734E-02 7.74142842571E-02 7.83880360801E-02 7.93740361933E-02 8.03724386612E-02 8.13833994861E-02 8.24070766327E-02 8.34436300528E-02 8.44932217098E-02 8.55560156045E-02 8.66321778008E-02 8.77218764512E-02 8.88252818232E-02 8.99425663262E-02 9.10739045381E-02 9.22194732330E-02 9.33794514081E-02 9.45540203126E-02 9.57433634750E-02 9.69476667328E-02 9.81671182608E-02 9.94019086008E-02 1.00652230691E-01 1.01918279897E-01 1.03200254042E-01 1.04498353437E-01 1.05812780911E-01 1.07143741848E-01 1.08491444213E-01 1.09856098587E-01 1.11237918199E-01 1.12637118963E-01 1.14053919505E-01 1.15488541205E-01 1.16941208224E-01 1.18412147545E-01 1.19901589004E-01 1.21409765331E-01 1.22936912181E-01 1.24483268174E-01 1.26049074930E-01 1.27634577111E-01 1.29240022454E-01 1.30865661813E-01 1.32511749199E-01 1.34178541815E-01 1.35866300101E-01 1.37575287772E-01 1.39305771863E-01 1.41058022764E-01 1.42832314267E-01 1.44628923611E-01 1.46448131518E-01 1.48290222243E-01 1.50155483618E-01 1.52044207092E-01 1.53956687783E-01 1.55893224520E-01 1.57854119890E-01 1.59839680287E-01 1.61850215960E-01 1.63886041058E-01 1.65947473684E-01 1.68034835940E-01 1.70148453981E-01 1.72288658064E-01 1.74455782600E-01 1.76650166208E-01 1.78872151763E-01 1.81122086456E-01 1.83400321844E-01 1.85707213904E-01 1.88043123095E-01 1.90408414407E-01 1.92803457420E-01 1.95228626366E-01 1.97684300182E-01 2.00170862572E-01 2.02688702067E-01 2.05238212084E-01 2.07819790989E-01 2.10433842159E-01 2.13080774045E-01 2.15761000236E-01 2.18474939522E-01 2.21223015961E-01 2.24005658947E-01 2.26823303273E-01 2.29676389202E-01 2.32565362533E-01 2.35490674676E-01 2.38452782716E-01 2.41452149488E-01 2.44489243649E-01 2.47564539753E-01 2.50678518319E-01 2.53831665914E-01 2.57024475223E-01 2.60257445130E-01 2.63531080791E-01 2.66845893721E-01 2.70202401864E-01 2.73601129682E-01 2.77042608233E-01 2.80527375255E-01 2.84055975251E-01 2.87628959570E-01 2.91246886500E-01 2.94910321348E-01 2.98619836534E-01 3.02376011677E-01 3.06179433687E-01 3.10030696856E-01 3.13930402953E-01 3.17879161313E-01 3.21877588940E-01 3.25926310594E-01 3.30025958898E-01 3.34177174429E-01 3.38380605823E-01 3.42636909876E-01 3.46946751643E-01 3.51310804546E-01 3.55729750476E-01 3.60204279904E-01 3.64735091984E-01 3.69322894663E-01 3.73968404797E-01 3.78672348254E-01 3.83435460037E-01 3.88258484390E-01 3.93142174921E-01 3.98087294717E-01 4.03094616462E-01 4.08164922562E-01 4.13299005261E-01 4.18497666770E-01 4.23761719391E-01 4.29091985643E-01 4.34489298391E-01 4.39954500976E-01 4.45488447347E-01 4.51092002194E-01 4.56766041084E-01 4.62511450597E-01 4.68329128465E-01 4.74219983713E-01 4.80184936797E-01 4.86224919755E-01 4.92340876346E-01 4.98533762201E-01 5.04804544970E-01 5.11154204476E-01 5.17583732867E-01 5.24094134769E-01 5.30686427446E-01 5.37361640957E-01 5.44120818318E-01 5.50965015663E-01 5.57895302413E-01 5.64912761440E-01 5.72018489234E-01 5.79213596081E-01 5.86499206231E-01 5.93876458075E-01 6.01346504324E-01 6.08910512188E-01 6.16569663558E-01 6.24325155193E-01 6.32178198903E-01 6.40130021743E-01 6.48181866201E-01 6.56334990395E-01 6.64590668266E-01 6.72950189781E-01 6.81414861132E-01 6.89986004942E-01 6.98664960469E-01 7.07453083817E-01 7.16351748149E-01 7.25362343900E-01 7.34486278992E-01 7.43724979059E-01 7.53079887668E-01 7.62552466541E-01 7.72144195789E-01 7.81856574138E-01 7.91691119167E-01 8.01649367545E-01 8.11732875267E-01 8.21943217903E-01 8.32281990838E-01 8.42750809528E-01 8.53351309747E-01 8.64085147843E-01 8.74954001003E-01 8.85959567504E-01 8.97103566991E-01 9.08387740736E-01 9.19813851913E-01 9.31383685875E-01 9.43099050434E-01 9.54961776138E-01 9.66973716562E-01 9.79136748597E-01 9.91452772741E-01 1.00392371340E+00 1.01655151918E+00 1.02933816320E+00 1.04228564340E+00 1.05539598286E+00 1.06867123009E+00 1.08211345937E+00 1.09572477108E+00 1.10950729201E+00 1.12346317572E+00 1.13759460283E+00 1.15190378142E+00 1.16639294731E+00 1.18106436448E+00 1.19592032535E+00 1.21096315121E+00 1.22619519253E+00 1.24161882933E+00 1.25723647161E+00 -1.05300774746E+01 -1.05300775064E+01 -1.05300775806E+01 -1.05300776560E+01 -1.05300777336E+01 -1.05300778196E+01 -1.05300779034E+01 -1.05300779856E+01 -1.05300780770E+01 -1.05300781648E+01 -1.05300782509E+01 -1.05300783451E+01 -1.05300784424E+01 -1.05300785397E+01 -1.05300786396E+01 -1.05300787418E+01 -1.05300788464E+01 -1.05300789532E+01 -1.05300790615E+01 -1.05300791727E+01 -1.05300792913E+01 -1.05300794159E+01 -1.05300795387E+01 -1.05300796624E+01 -1.05300797927E+01 -1.05300799265E+01 -1.05300800580E+01 -1.05300801950E+01 -1.05300803415E+01 -1.05300804883E+01 -1.05300806375E+01 -1.05300807916E+01 -1.05300809464E+01 -1.05300811065E+01 -1.05300812753E+01 -1.05300814456E+01 -1.05300816168E+01 -1.05300817936E+01 -1.05300819793E+01 -1.05300821692E+01 -1.05300823586E+01 -1.05300825558E+01 -1.05300827597E+01 -1.05300829655E+01 -1.05300831781E+01 -1.05300833960E+01 -1.05300836185E+01 -1.05300838490E+01 -1.05300840840E+01 -1.05300843234E+01 -1.05300845708E+01 -1.05300848243E+01 -1.05300850829E+01 -1.05300853485E+01 -1.05300856222E+01 -1.05300859019E+01 -1.05300861879E+01 -1.05300864818E+01 -1.05300867827E+01 -1.05300870916E+01 -1.05300874091E+01 -1.05300877339E+01 -1.05300880675E+01 -1.05300884097E+01 -1.05300887598E+01 -1.05300891175E+01 -1.05300894845E+01 -1.05300898632E+01 -1.05300902519E+01 -1.05300906479E+01 -1.05300910535E+01 -1.05300914717E+01 -1.05300919005E+01 -1.05300923389E+01 -1.05300927884E+01 -1.05300932497E+01 -1.05300937227E+01 -1.05300942072E+01 -1.05300947041E+01 -1.05300952132E+01 -1.05300957352E+01 -1.05300962711E+01 -1.05300968210E+01 -1.05300973842E+01 -1.05300979611E+01 -1.05300985533E+01 -1.05300991608E+01 -1.05300997827E+01 -1.05301004204E+01 -1.05301010750E+01 -1.05301017457E+01 -1.05301024334E+01 -1.05301031388E+01 -1.05301038618E+01 -1.05301046028E+01 -1.05301053631E+01 -1.05301061431E+01 -1.05301069425E+01 -1.05301077616E+01 -1.05301086011E+01 -1.05301094627E+01 -1.05301103464E+01 -1.05301112516E+01 -1.05301121800E+01 -1.05301131322E+01 -1.05301141083E+01 -1.05301151092E+01 -1.05301161357E+01 -1.05301171877E+01 -1.05301182664E+01 -1.05301193726E+01 -1.05301205065E+01 -1.05301216691E+01 -1.05301228613E+01 -1.05301240837E+01 -1.05301253370E+01 -1.05301266222E+01 -1.05301279399E+01 -1.05301292908E+01 -1.05301306759E+01 -1.05301320960E+01 -1.05301335522E+01 -1.05301350453E+01 -1.05301365761E+01 -1.05301381458E+01 -1.05301397551E+01 -1.05301414052E+01 -1.05301430970E+01 -1.05301448316E+01 -1.05301466102E+01 -1.05301484338E+01 -1.05301503036E+01 -1.05301522207E+01 -1.05301541863E+01 -1.05301562017E+01 -1.05301582681E+01 -1.05301603868E+01 -1.05301625592E+01 -1.05301647866E+01 -1.05301670703E+01 -1.05301694119E+01 -1.05301718127E+01 -1.05301742743E+01 -1.05301767982E+01 -1.05301793860E+01 -1.05301820394E+01 -1.05301847599E+01 -1.05301875493E+01 -1.05301904093E+01 -1.05301933417E+01 -1.05301963483E+01 -1.05301994311E+01 -1.05302025919E+01 -1.05302058327E+01 -1.05302091556E+01 -1.05302125626E+01 -1.05302160559E+01 -1.05302196375E+01 -1.05302233097E+01 -1.05302270750E+01 -1.05302309357E+01 -1.05302348941E+01 -1.05302389527E+01 -1.05302431139E+01 -1.05302473804E+01 -1.05302517551E+01 -1.05302562405E+01 -1.05302608395E+01 -1.05302655549E+01 -1.05302703898E+01 -1.05302753470E+01 -1.05302804296E+01 -1.05302856410E+01 -1.05302909843E+01 -1.05302964628E+01 -1.05303020800E+01 -1.05303078395E+01 -1.05303137447E+01 -1.05303197994E+01 -1.05303260074E+01 -1.05303323726E+01 -1.05303388989E+01 -1.05303455904E+01 -1.05303524513E+01 -1.05303594863E+01 -1.05303666990E+01 -1.05303740942E+01 -1.05303816766E+01 -1.05303894512E+01 -1.05303974228E+01 -1.05304055960E+01 -1.05304139759E+01 -1.05304225681E+01 -1.05304313778E+01 -1.05304404104E+01 -1.05304496720E+01 -1.05304591679E+01 -1.05304689042E+01 -1.05304788871E+01 -1.05304891227E+01 -1.05304996173E+01 -1.05305103777E+01 -1.05305214103E+01 -1.05305327222E+01 -1.05305443209E+01 -1.05305562131E+01 -1.05305684063E+01 -1.05305809083E+01 -1.05305937267E+01 -1.05306068697E+01 -1.05306203456E+01 -1.05306341624E+01 -1.05306483288E+01 -1.05306628541E+01 -1.05306777471E+01 -1.05306930172E+01 -1.05307086740E+01 -1.05307247273E+01 -1.05307411870E+01 -1.05307580632E+01 -1.05307753670E+01 -1.05307931088E+01 -1.05308112993E+01 -1.05308299505E+01 -1.05308490739E+01 -1.05308686816E+01 -1.05308887862E+01 -1.05309093997E+01 -1.05309305345E+01 -1.05309522045E+01 -1.05309744234E+01 -1.05309972049E+01 -1.05310205633E+01 -1.05310445128E+01 -1.05310690688E+01 -1.05310942467E+01 -1.05311200619E+01 -1.05311465307E+01 -1.05311736698E+01 -1.05312014962E+01 -1.05312300270E+01 -1.05312592798E+01 -1.05312892734E+01 -1.05313200266E+01 -1.05313515587E+01 -1.05313838892E+01 -1.05314170384E+01 -1.05314510268E+01 -1.05314858753E+01 -1.05315216063E+01 -1.05315582429E+01 -1.05315958063E+01 -1.05316343207E+01 -1.05316738109E+01 -1.05317143009E+01 -1.05317558160E+01 -1.05317983825E+01 -1.05318420272E+01 -1.05318867769E+01 -1.05319326597E+01 -1.05319797045E+01 -1.05320279403E+01 -1.05320773975E+01 -1.05321281074E+01 -1.05321801016E+01 -1.05322334120E+01 -1.05322880722E+01 -1.05323441170E+01 -1.05324015810E+01 -1.05324605002E+01 -1.05325209117E+01 -1.05325828530E+01 -1.05326463631E+01 -1.05327114817E+01 -1.05327782492E+01 -1.05328467073E+01 -1.05329168993E+01 -1.05329888691E+01 -1.05330626618E+01 -1.05331383234E+01 -1.05332159012E+01 -1.05332954437E+01 -1.05333770008E+01 -1.05334606239E+01 -1.05335463651E+01 -1.05336342777E+01 -1.05337244169E+01 -1.05338168395E+01 -1.05339116033E+01 -1.05340087670E+01 -1.05341083917E+01 -1.05342105404E+01 -1.05343152765E+01 -1.05344226654E+01 -1.05345327751E+01 -1.05346456740E+01 -1.05347614327E+01 -1.05348801239E+01 -1.05350018220E+01 -1.05351266031E+01 -1.05352545453E+01 -1.05353857293E+01 -1.05355202367E+01 -1.05356581514E+01 -1.05357995605E+01 -1.05359445525E+01 -1.05360932181E+01 -1.05362456505E+01 -1.05364019450E+01 -1.05365621997E+01 -1.05367265152E+01 -1.05368949946E+01 -1.05370677434E+01 -1.05372448694E+01 -1.05374264838E+01 -1.05376127007E+01 -1.05378036365E+01 -1.05379994114E+01 -1.05382001481E+01 -1.05384059723E+01 -1.05386170128E+01 -1.05388334019E+01 -1.05390552759E+01 -1.05392827735E+01 -1.05395160372E+01 -1.05397552141E+01 -1.05400004541E+01 -1.05402519104E+01 -1.05405097409E+01 -1.05407741080E+01 -1.05410451772E+01 -1.05413231186E+01 -1.05416081068E+01 -1.05419003200E+01 -1.05421999419E+01 -1.05425071612E+01 -1.05428221707E+01 -1.05431451679E+01 -1.05434763552E+01 -1.05438159405E+01 -1.05441641377E+01 -1.05445211658E+01 -1.05448872479E+01 -1.05452626142E+01 -1.05456475011E+01 -1.05460421503E+01 -1.05464468096E+01 -1.05468617332E+01 -1.05472871816E+01 -1.05477234222E+01 -1.05481707290E+01 -1.05486293836E+01 -1.05490996743E+01 -1.05495818964E+01 -1.05500763529E+01 -1.05505833551E+01 -1.05511032216E+01 -1.05516362785E+01 -1.05521828616E+01 -1.05527433148E+01 -1.05533179898E+01 -1.05539072481E+01 -1.05545114606E+01 -1.05551310070E+01 -1.05557662771E+01 -1.05564176704E+01 -1.05570855963E+01 -1.05577704750E+01 -1.05584727371E+01 -1.05591928241E+01 -1.05599311889E+01 -1.05606882959E+01 -1.05614646210E+01 -1.05622606523E+01 -1.05630768907E+01 -1.05639138490E+01 -1.05647720533E+01 -1.05656520429E+01 -1.05665543710E+01 -1.05674796048E+01 -1.05684283254E+01 -1.05694011288E+01 -1.05703986261E+01 -1.05714214441E+01 -1.05724702243E+01 -1.05735456247E+01 -1.05746483210E+01 -1.05757790046E+01 -1.05769383845E+01 -1.05781271876E+01 -1.05793461590E+01 -1.05805960619E+01 -1.05818776792E+01 -1.05831918133E+01 -1.05845392857E+01 -1.05859209391E+01 -1.05873376370E+01 -1.05887902641E+01 -1.05902797264E+01 -1.05918069529E+01 -1.05933728955E+01 -1.05949785289E+01 -1.05966248524E+01 -1.05983128883E+01 -1.06000436845E+01 -1.06018183153E+01 -1.06036378800E+01 -1.06055035043E+01 -1.06074163406E+01 -1.06093775695E+01 -1.06113884004E+01 -1.06134500698E+01 -1.06155638440E+01 -1.06177310200E+01 -1.06199529247E+01 -1.06222309152E+01 -1.06245663802E+01 -1.06269607406E+01 -1.06294154502E+01 -1.06319319958E+01 -1.06345118972E+01 -1.06371567084E+01 -1.06398680182E+01 -1.06426474504E+01 -1.06454966645E+01 -1.06484173559E+01 -1.06514112563E+01 -1.06544801337E+01 -1.06576257944E+01 -1.06608500815E+01 -1.06641548757E+01 -1.06675420962E+01 -1.06710137006E+01 -1.06745716849E+01 -1.06782180831E+01 -1.06819549688E+01 -1.06857844541E+01 -1.06897086893E+01 -1.06937298636E+01 -1.06978502047E+01 -1.07020719775E+01 -1.07063974860E+01 -1.07108290704E+01 -1.07153691076E+01 -1.07200200109E+01 -1.07247842282E+01 -1.07296642419E+01 -1.07346625673E+01 -1.07397817523E+01 -1.07450243748E+01 -1.07503930414E+01 -1.07558903865E+01 -1.07615190691E+01 -1.07672817725E+01 -1.07731812005E+01 -1.07792200745E+01 -1.07854011318E+01 -1.07917271218E+01 -1.07982008042E+01 -1.08048249439E+01 -1.08116023059E+01 -1.08185356541E+01 -1.08256277451E+01 -1.08328813229E+01 -1.08402991152E+01 -1.08478838255E+01 -1.08556381291E+01 -1.08635646666E+01 -1.08716660356E+01 -1.08799447847E+01 -1.08884034054E+01 -1.08970443238E+01 -1.09058698922E+01 -1.09148823800E+01 -1.09240839638E+01 -1.09334767167E+01 -1.09430625978E+01 -1.09528434428E+01 -1.09628209501E+01 -1.09729966679E+01 -1.09833719835E+01 -1.09939481087E+01 -1.10047260649E+01 -1.10157066701E+01 -1.10268905232E+01 -1.10382779870E+01 -1.10498691736E+01 -1.10616639278E+01 -1.10736618091E+01 -1.10858620728E+01 -1.10982636538E+01 -1.11108651478E+01 -1.11236647918E+01 -1.11366604446E+01 -1.11498495677E+01 -1.11632292066E+01 -1.11767959689E+01 -1.11905460057E+01 -1.12044749916E+01 -1.12185781045E+01 -1.12328500061E+01 -1.12472848234E+01 -1.12618761282E+01 -1.12766169194E+01 -1.12914996061E+01 -1.13065159887E+01 -1.13216572447E+01 -1.13369139126E+01 -1.13522758781E+01 -1.13677323621E+01 -1.13832719095E+01 -1.13988823794E+01 -1.14145509386E+01 -1.14302640569E+01 -1.14460075021E+01 -1.14617663402E+01 -1.14775249384E+01 -1.14932669687E+01 -1.15089754161E+01 -1.15246325890E+01 -1.15402201332E+01 -1.15557190501E+01 -1.15711097177E+01 -1.15863719156E+01 -1.16014848534E+01 -1.16164272033E+01 -1.16311771374E+01 -1.16457123685E+01 -1.16600101947E+01 -1.16740475493E+01 -1.16878010540E+01 -1.17012470765E+01 -1.17143617913E+01 -1.17271212465E+01 -1.17395014326E+01 -1.17514783555E+01 -1.17630281127E+01 -1.17741269739E+01 -1.17847514624E+01 -1.17948784405E+01 -1.18044851979E+01 -1.18135495394E+01 -1.18220498759E+01 -1.18299653158E+01 -1.18372757569E+01 -1.18439619773E+01 -1.18500057274E+01 -1.18553898192E+01 -1.18600982126E+01 -1.18641161026E+01 -1.18674300002E+01 -1.18700278107E+01 -1.18718989078E+01 -1.18730342027E+01 -1.18734262068E+01 -1.18730690890E+01 -1.18719587264E+01 -1.18700927466E+01 -1.18674705638E+01 -1.18640934053E+01 -1.18599643306E+01 -1.18550882417E+01 -1.18494718826E+01 -1.18431238318E+01 -1.18360544842E+01 -1.18282760238E+01 -1.18198023869E+01 -1.18106492168E+01 -1.18008338088E+01 -1.17903750466E+01 -1.17792933309E+01 -1.17676104992E+01 -1.17553497388E+01 -1.17425354934E+01 -1.17291933628E+01 -1.17153499969E+01 -1.17010329863E+01 -1.16862707472E+01 -1.16710924049E+01 -1.16555276733E+01 -1.16396067344E+01 -1.16233601160E+01 -1.16068185701E+01 -1.15900129526E+01 -1.15729741043E+01 -1.15557327348E+01 -1.15383193098E+01 -1.15207639420E+01 -1.15030962870E+01 -1.14853454445E+01 -1.14675398651E+01 -1.14497072631E+01 -1.14318745364E+01 -1.14140676928E+01 -1.13963117835E+01 -1.13786308446E+01 -1.13610478447E+01 -1.13435846414E+01 -1.13262619443E+01 -1.13090992857E+01 -1.12921149984E+01 -1.12753262004E+01 -1.12587487869E+01 -1.12423974282E+01 -1.12262855739E+01 -1.12104254632E+01 -1.11948281401E+01 -1.11795034743E+01 -1.11644601859E+01 -1.11497058752E+01 -1.11352470553E+01 -1.11210891887E+01 -1.11072367261E+01 -1.10936931488E+01 -1.10804610114E+01 -1.10675419881E+01 -1.10549369181E+01 -1.10426458539E+01 -1.10306681086E+01 -1.10190023043E+01 -1.10076464199E+01 -1.09965978384E+01 -1.09858533942E+01 -1.09754094190E+01 -1.09652617864E+01 -1.09554059560E+01 -1.09458370152E+01 -1.09365497199E+01 -1.09275385338E+01 -1.09187976650E+01 -1.09103211016E+01 -1.09021026453E+01 -1.08941359421E+01 -1.08864145127E+01 -1.08789317791E+01 -1.08716810907E+01 -1.08646557475E+01 -1.08578490216E+01 -1.08512541770E+01 -1.08448644875E+01 -1.08386732524E+01 -1.08326738107E+01 -1.08268595539E+01 -1.08212239365E+01 -1.08157604854E+01 -1.08104628077E+01 -1.08053245969E+01 -1.08003396380E+01 -1.07955018107E+01 -1.07908050925E+01 -1.07862435591E+01 -1.07818113851E+01 -1.07775028424E+01 -1.07733122991E+01 -1.07692342158E+01 -1.07652631421E+01 -1.07613937122E+01 -1.07576206389E+01 -1.07539387082E+01 -1.07503427719E+01 -1.07468277402E+01 -1.07433885736E+01 -1.07400202741E+01 -1.07367178758E+01 -1.07334764351E+01 -1.07302910203E+01 -1.07271567005E+01 -1.07240685341E+01 -1.07210215574E+01 -1.07180107714E+01 -1.07150311295E+01 -1.07120775242E+01 -1.07091447728E+01 -1.07062276037E+01 -1.07033206417E+01 -1.07004183926E+01 -1.06975152277E+01 -1.06946053681E+01 -1.06916828681E+01 -1.06887415986E+01 -1.06857752295E+01 -1.06827772126E+01 -1.06797407630E+01 -1.06766588413E+01 -1.06735241347E+01 -1.06703290378E+01 -1.06670656336E+01 -1.06637256739E+01 -1.06603005593E+01 -1.06567813197E+01 -1.06531585942E+01 -1.06494226110E+01 -1.06455631678E+01 -1.06415696121E+01 -1.06374308216E+01 -1.06331351854E+01 -1.06286705854E+01 -1.06240243788E+01 -1.06191833812E+01 -1.06141338507E+01 -1.06088614732E+01 -1.06033513499E+01 -1.05975879853E+01 -1.05915552783E+01 -1.05852365149E+01 -1.05786143637E+01 -1.05716708740E+01 -1.05643874775E+01 -1.05567449927E+01 -1.05487236344E+01 -1.05403030260E+01 -1.05314622172E+01 -1.05221797061E+01 -1.05124334671E+01 -1.05022009834E+01 -1.04914592859E+01 -1.04801849981E+01 -1.04683543870E+01 -1.04559434204E+01 -1.04429278309E+01 -1.04292831859E+01 -1.04149849643E+01 -1.04000086391E+01 -1.03843297656E+01 -1.03679240754E+01 -1.03507675746E+01 -1.03328366457E+01 -1.03141081527E+01 -1.02945595481E+01 -1.02741689794E+01 -1.02529153959E+01 -1.02307786513E+01 -1.02077396027E+01 -1.01837802030E+01 -1.01588835846E+01 -1.01330341324E+01 -1.01062175451E+01 -1.00784208808E+01 -1.00496325866E+01 -1.00198425104E+01 -9.98904189272E+00 -9.95722333793E+00 -9.92438076415E+00 -9.89050933181E+00 -9.85560535080E+00 -9.81966616751E+00 -9.78269003292E+00 -9.74467595404E+00 -9.70562353128E+00 -9.66553278486E+00 -9.62440397392E+00 -9.58223741225E+00 -9.53903328474E+00 -9.49479146884E+00 -9.44951136503E+00 -9.40319174034E+00 -9.35583058814E+00 -9.30742500733E+00 -9.25797110299E+00 -9.20746391000E+00 -9.15589734021E+00 -9.10326415285E+00 -9.04955594706E+00 -8.99476317475E+00 -8.93887517095E+00 -8.88188019884E+00 -8.82376550570E+00 -8.76451738647E+00 -8.70412125120E+00 -8.64256169349E+00 -8.57982255737E+00 -8.51588700113E+00 -8.45073755777E+00 -8.38435619322E+00 -8.31672436512E+00 -8.24782308676E+00 -8.17763300286E+00 -8.10613448580E+00 -8.03330776279E+00 -7.95913308633E+00 -7.88359096167E+00 -7.80666244561E+00 -7.72832953150E+00 -7.64857563404E+00 -7.56738618611E+00 -7.48474935620E+00 -7.40065689107E+00 -7.31510508220E+00 -7.22809584794E+00 -7.13963791525E+00 -7.04974807689E+00 -6.95845249132E+00 -6.86578798542E+00 -6.77180331333E+00 -6.67656032123E+00 -6.58013496573E+00 -6.48261813542E+00 -6.38411622976E+00 -6.28475145732E+00 -6.18466182579E+00 -6.08400080863E+00 -5.98293668641E+00 -5.88165157417E+00 -5.78034015801E+00 -5.67920817375E+00 -5.57847066754E+00 -5.47835008150E+00 -5.37907420741E+00 -5.28087404831E+00 -5.18398162172E+00 -5.08862772986E+00 -4.99503971344E+00 -4.90343919541E+00 -4.81403981239E+00 -4.72704492333E+00 -4.64264527873E+00 -4.56101663040E+00 -4.48231725974E+00 -4.40668540484E+00 -4.33423657086E+00 -4.26506071624E+00 -4.19921931876E+00 -4.13674234028E+00 -4.07762512864E+00 -4.02182531874E+00 -3.96925982421E+00 -3.91980204594E+00 -3.87327946587E+00 -3.82947184407E+00 -3.78811029602E+00 -3.74887759579E+00 -3.71141013172E+00 -3.67530203480E+00 -3.64011210890E+00 -3.60537431848E+00 -3.57061273567E+00 -3.53536201959E+00 -3.49919470088E+00 -3.46175678234E+00 -3.42281345116E+00 -3.38230704496E+00 -3.34050434673E+00 -3.29834641242E+00 -3.25701930663E+00 -3.21656322165E+00 -3.17666898929E+00 -3.13726349850E+00 -3.09834122249E+00 -3.05989668111E+00 -3.02192443608E+00 -2.98441908780E+00 -2.94730290234E+00 -2.91064256360E+00 -2.87458502900E+00 -2.83897270465E+00 -2.80372482626E+00 -2.76891223844E+00 -2.73452980008E+00 -2.70057240896E+00 -2.66703500298E+00 -2.63391256143E+00 -2.60120010616E+00 -2.56889270278E+00 -2.53698546178E+00 -2.50547353950E+00 -2.47435213908E+00 -2.44357585293E+00 -2.41318511826E+00 -2.38325709055E+00 -2.35369686747E+00 -2.32446163793E+00 -2.29558923506E+00 -2.26707519678E+00 -2.23891511010E+00 -2.21110461121E+00 -2.18363938559E+00 -2.15651516804E+00 -2.12972774265E+00 -2.10327294269E+00 -2.07714665055E+00 -2.05134479750E+00 -2.02586336354E+00 -2.00069837711E+00 -1.97584591470E+00 -1.95130210079E+00 -1.92706310750E+00 -1.90312515358E+00 -1.87948450444E+00 -1.85613747193E+00 -1.83308041351E+00 -1.81030973183E+00 -1.78782187422E+00 -1.76561333221E+00 -1.74368064091E+00 -1.72202037855E+00 -1.70062916585E+00 -1.67950366550E+00 -1.65864058159E+00 -1.63803665904E+00 -1.61768868305E+00 -1.59759347858E+00 -1.57774790974E+00 -1.55814887929E+00 -1.53879332812E+00 -1.51967823473E+00 -1.50080061467E+00 -1.48215752015E+00 -1.46374603946E+00 -1.44556329658E+00 -1.42760645068E+00 -1.40987269572E+00 -1.39235926002E+00 -1.37506340582E+00 -1.35798242897E+00 -1.34111365845E+00 -1.32445445608E+00 -1.30800221613E+00 -1.29175436496E+00 -1.27570836072E+00 -1.25986169297E+00 -1.24421188237E+00 -1.22875648035E+00 -1.21349306877E+00 -1.19841925963E+00 -1.18353269470E+00 -1.16883104519E+00 -1.15431201145E+00 -1.13997332263E+00 -1.12581273630E+00 -1.11182803818E+00 -1.09801704174E+00 -1.08437758789E+00 -1.07090754461E+00 -1.05760480664E+00 -1.04446729511E+00 -1.03149295722E+00 -1.01867976587E+00 -1.00602571934E+00 -9.93528840964E-01 -9.81187178790E-01 -9.68998805242E-01 -9.56961816813E-01 -9.45074333740E-01 -9.33334499693E-01 -9.21740481463E-01 -9.10290468667E-01 -8.98982673440E-01 -8.87815330152E-01 -8.76786695114E-01 -8.65895046297E-01 -8.55138683055E-01 -8.44515925853E-01 -8.34025115995E-01 -8.23664615365E-01 -8.13432806163E-01 -8.03328090649E-01 -7.93348890896E-01 -7.83493648539E-01 -7.73760824530E-01 -7.64148898900E-01 -7.54656370519E-01 -7.45281756864E-01 -7.36023593791E-01 -7.26880435301E-01 -7.17850853321E-01 -7.08933437479E-01 -7.00126794890E-01 -6.91429549933E-01 -6.82840344047E-01 -6.74357835510E-01 -6.65980699242E-01 -6.57707626590E-01 -6.49537325133E-01 -6.41468518477E-01 -6.33499946060E-01 -6.25630362955E-01 -6.17858539676E-01 -6.10183261992E-01 -6.02603330732E-01 -5.95117561608E-01 -5.87724785400E-01 -5.80423846231E-01 -5.73213603767E-01 -5.66092931412E-01 -5.59060716553E-01 -5.52115860383E-01 -5.45257277735E-01 -5.38483896910E-01 -5.31794659513E-01 -5.25188520284E-01 -5.18664447208E-01 -5.12221420420E-01 -5.05858432466E-01 -4.99574484442E-01 -4.93368633461E-01 -4.87239803392E-01 -4.81187183660E-01 -4.75208671361E-01 -4.69305597009E-01 -4.63475789300E-01 -4.57718400624E-01 -4.52032531377E-01 -4.46417293131E-01 -4.40871808492E-01 -4.35395210968E-01 -4.29986644830E-01 -4.24645263962E-01 -4.19370235819E-01 -4.14160735127E-01 -4.09015947889E-01 -4.03935070223E-01 -3.98917308232E-01 -3.93961878019E-01 -3.89068004997E-01 -3.84234926956E-01 -3.79461884032E-01 -3.74748132798E-01 -3.70092936724E-01 -3.65495568423E-01 -3.60955309549E-01 -3.56471450677E-01 -3.52043291194E-01 -3.47670139192E-01 -3.43351311357E-01 -3.39086132863E-01 -3.34873937267E-01 -3.30714066405E-01 -3.26605870001E-01 -3.22548706724E-01 -3.18541942338E-01 -3.14584950780E-01 -3.10677113759E-01 -3.06817820670E-01 -3.03006468490E-01 -2.99242461687E-01 -2.95525212127E-01 -2.91854138983E-01 -2.88228668642E-01 -2.84648234616E-01 -2.81112277457E-01 -2.77620244663E-01 -2.74171590597E-01 -2.70765776399E-01 -2.67402269906E-01 -2.64080545560E-01 -2.60800084338E-01 -2.57560373659E-01 -2.54360907312E-01 -2.51201185375E-01 -2.48080714134E-01 -2.44999006010E-01 -2.41955579478E-01 -2.38949958998E-01 -2.35981674936E-01 -2.33050263490E-01 -2.30155266622E-01 -2.27296231983E-01 -2.24472712842E-01 -2.21684268019E-01 -2.18930461815E-01 -2.16210863940E-01 -2.13525049453E-01 -2.10872598689E-01 -2.08253097198E-01 -2.05666135676E-01 -2.03111309907E-01 -2.00588220694E-01 -1.98096473798E-01 -1.95635679879E-01 -1.93205454433E-01 -1.90805417732E-01 -1.88435194766E-01 -1.86094415183E-01 -1.83782713231E-01 -1.81499727701E-01 -1.79245101873E-01 -1.77018483457E-01 -1.74819524540E-01 -1.72647881528E-01 -1.70503215099E-01 -1.68385190145E-01 -1.66293475719E-01 -1.64227744987E-01 -1.62187675175E-01 -1.60172947516E-01 -1.58183247207E-01 -1.56218263351E-01 -1.54277688917E-01 -1.52361220686E-01 -1.50468559206E-01 -1.48599408744E-01 -1.46753477242E-01 -1.44930476270E-01 -1.43130120979E-01 -1.41352130061E-01 -1.39596225701E-01 -1.37862133535E-01 -1.36149582608E-01 -1.34458305330E-01 -1.32788037436E-01 -1.31138517943E-01 -1.29509489110E-01 -1.27900696398E-01 -1.26311888431E-01 -1.24742816952E-01 -1.23193236793E-01 -1.21662905828E-01 -1.20151584939E-01 -1.18659037980E-01 -1.17185031737E-01 -1.15729335894E-01 -1.14291722995E-01 -1.12871968410E-01 -1.11469850300E-01 -1.10085149580E-01 -1.08717649890E-01 -1.07367137553E-01 -1.06033401550E-01 -1.04716233481E-01 -1.03415427537E-01 -1.02130780465E-01 -1.00862091534E-01 -9.96091625103E-02 -9.83717976210E-02 -9.71498035252E-02 -9.59429892838E-02 -9.47511663297E-02 -9.35741484381E-02 -9.24117516976E-02 -9.12637944813E-02 -9.01300974186E-02 -8.90104833669E-02 -8.79047773844E-02 -8.68128067022E-02 -8.57344006977E-02 -8.46693908677E-02 -8.36176108022E-02 -8.25788961586E-02 -8.15530846355E-02 -8.05400159479E-02 -7.95395318015E-02 1 0 Beta L 853 3.77200132062E-04 3.81944725674E-04 3.86748998928E-04 3.91613702502E-04 3.96546579553E-04 4.01515177810E-04 4.06536940162E-04 4.11770938535E-04 4.16795272755E-04 4.22108201131E-04 4.27400458426E-04 4.32835684206E-04 4.38193933658E-04 4.43780601874E-04 4.49307002731E-04 4.55023307290E-04 4.60696213841E-04 4.66541306357E-04 4.72349689351E-04 4.78336558387E-04 4.84339519398E-04 4.90397051406E-04 4.96554714049E-04 5.02864003256E-04 5.09172177154E-04 5.15540821215E-04 5.22062208520E-04 5.28638352266E-04 5.35256610115E-04 5.42005611279E-04 5.48813822380E-04 5.55737157710E-04 5.62702849532E-04 5.69829070363E-04 5.76944359780E-04 5.84235396155E-04 5.91546259094E-04 5.99002669746E-04 6.06584760781E-04 6.14121355985E-04 6.21922588327E-04 6.29730384629E-04 6.37589688236E-04 6.45703566486E-04 6.53776668664E-04 6.61995115536E-04 6.70356809366E-04 6.78739358807E-04 6.87297003565E-04 6.95967577763E-04 7.04702279377E-04 7.13541010513E-04 7.22537436050E-04 7.31637680319E-04 7.40824327718E-04 7.50122252789E-04 7.59621318756E-04 7.69097768058E-04 7.78845302638E-04 7.88588175093E-04 7.98549199430E-04 8.08579389517E-04 8.18751149807E-04 8.29025402424E-04 8.39476520812E-04 8.50009855040E-04 8.60754123455E-04 8.71560712619E-04 8.82500146517E-04 8.93597289155E-04 9.04876855397E-04 9.16218080539E-04 9.27743817620E-04 9.39427356892E-04 9.51242417883E-04 9.63208408269E-04 9.75315294325E-04 9.87589735061E-04 1.00002284690E-03 1.01259752536E-03 1.02534154863E-03 1.03822404507E-03 1.05129180760E-03 1.06450464424E-03 1.07790193931E-03 1.09146824411E-03 1.10517771634E-03 1.11908167464E-03 1.13320035376E-03 1.14739956395E-03 1.16187095571E-03 1.17647573143E-03 1.19126024003E-03 1.20625883884E-03 1.22142636373E-03 1.23680137505E-03 1.25233761762E-03 1.26809297441E-03 1.28404326071E-03 1.30022879717E-03 1.31654830535E-03 1.33311425320E-03 1.34986907416E-03 1.36689208035E-03 1.38405063947E-03 1.40147315444E-03 1.41909277875E-03 1.43693989475E-03 1.45501473608E-03 1.47333492959E-03 1.49183619704E-03 1.51062212844E-03 1.52962209736E-03 1.54886724319E-03 1.56833920093E-03 1.58807737024E-03 1.60803892650E-03 1.62827094408E-03 1.64874923664E-03 1.66949358371E-03 1.69048532493E-03 1.71176700398E-03 1.73326793125E-03 1.75511463670E-03 1.77714445163E-03 1.79952974573E-03 1.82214712257E-03 1.84506314147E-03 1.86829730551E-03 1.89177141981E-03 1.91558758998E-03 1.93966807722E-03 1.96406069056E-03 1.98878888257E-03 2.01379280822E-03 2.03912075435E-03 2.06477267558E-03 2.09074153745E-03 2.11704680625E-03 2.14366844787E-03 2.17063582413E-03 2.19793555610E-03 2.22558187035E-03 2.25357900768E-03 2.28193331024E-03 2.31062898986E-03 2.33969945416E-03 2.36912370729E-03 2.39892072487E-03 2.42910244513E-03 2.45964743754E-03 2.49058571046E-03 2.52192187929E-03 2.55363666393E-03 2.58577101163E-03 2.61827754013E-03 2.65123803904E-03 2.68455870811E-03 2.71834597890E-03 2.75251644555E-03 2.78716225895E-03 2.82220392837E-03 2.85771007613E-03 2.89365702839E-03 2.93003927973E-03 2.96691655920E-03 3.00421764733E-03 3.04201847672E-03 3.08027758503E-03 3.11902559473E-03 3.15825452171E-03 3.19798548076E-03 3.23820381956E-03 3.27895033102E-03 3.32017748903E-03 3.36195198377E-03 3.40423772154E-03 3.44705234691E-03 3.49041511255E-03 3.53431277924E-03 3.57877235378E-03 3.62378794500E-03 3.66937115543E-03 3.71552483051E-03 3.76226166335E-03 3.80958809428E-03 3.85750751609E-03 3.90602010825E-03 3.95515917840E-03 4.00490513508E-03 4.05528880964E-03 4.10628859071E-03 4.15794499816E-03 4.21024410920E-03 4.26319977163E-03 4.31682260600E-03 4.37112675512E-03 4.42610215356E-03 4.48178299940E-03 4.53814993987E-03 4.59523845210E-03 4.65303693666E-03 4.71156279386E-03 4.77082885736E-03 4.83083721242E-03 4.89160467683E-03 4.95313163188E-03 5.01543635173E-03 5.07852124365E-03 5.14239856633E-03 5.20708713743E-03 5.27257979969E-03 5.33890097206E-03 5.40605903582E-03 5.47405276464E-03 5.54291437998E-03 5.61263083112E-03 5.68323337559E-03 5.75472331739E-03 5.82709767362E-03 5.90040333526E-03 5.97461858369E-03 6.04976586394E-03 6.12586755998E-03 6.20291594141E-03 6.28094292302E-03 6.35994277974E-03 6.43995172763E-03 6.52094654448E-03 6.60297116182E-03 6.68602921642E-03 6.77012555850E-03 6.85528398571E-03 6.94151686301E-03 7.02882239702E-03 7.11724097428E-03 7.20676248028E-03 7.29741036237E-03 7.38920328458E-03 7.48214525593E-03 7.57626428806E-03 7.67155656359E-03 7.76805436875E-03 7.86576261821E-03 7.96470327926E-03 8.06488714118E-03 8.16632967282E-03 8.26905277053E-03 8.37306143742E-03 8.47837635336E-03 8.58503068137E-03 8.69301057112E-03 8.80235436075E-03 8.91307698958E-03 9.02518966924E-03 9.13871060858E-03 9.25366132790E-03 9.37005781061E-03 9.48792056196E-03 9.60725885302E-03 9.72810963417E-03 9.85046701994E-03 9.97437483895E-03 1.00998341373E-02 1.02268774027E-02 1.03555139543E-02 1.04857671274E-02 1.06176643994E-02 1.07512176149E-02 1.08864483757E-02 1.10233849102E-02 1.11620411069E-02 1.13024410379E-02 1.14446084420E-02 1.15885648033E-02 1.17343268298E-02 1.18819286562E-02 1.20313832391E-02 1.21827193529E-02 1.23359574588E-02 1.24911249393E-02 1.26482436408E-02 1.28073358702E-02 1.29684335260E-02 1.31315559379E-02 1.32967276960E-02 1.34639808510E-02 1.36333337232E-02 1.38048225613E-02 1.39784633180E-02 1.41542889163E-02 1.43323279756E-02 1.45126065268E-02 1.46951482213E-02 1.48799917730E-02 1.50671570857E-02 1.52566776738E-02 1.54485808864E-02 1.56428986896E-02 1.58396623489E-02 1.60388971137E-02 1.62406415531E-02 1.64449233808E-02 1.66517707564E-02 1.68612244198E-02 1.70733085050E-02 1.72880650856E-02 1.75055181203E-02 1.77257105164E-02 1.79486675758E-02 1.81744346189E-02 1.84030370388E-02 1.86345180998E-02 1.88689089433E-02 1.91062462321E-02 1.93465723495E-02 1.95899181396E-02 1.98363265436E-02 2.00858354571E-02 2.03384797918E-02 2.05943052053E-02 2.08533431185E-02 2.11156453033E-02 2.13812418001E-02 2.16501823197E-02 2.19225035773E-02 2.21982519109E-02 2.24774671194E-02 2.27601941399E-02 2.30464788396E-02 2.33363633581E-02 2.36298925280E-02 2.39271177976E-02 2.42280769703E-02 2.45328240282E-02 2.48414033088E-02 2.51538637605E-02 2.54702555114E-02 2.57906254997E-02 2.61150257020E-02 2.64435039942E-02 2.67761174754E-02 2.71129118290E-02 2.74539417218E-02 2.77992639518E-02 2.81489262783E-02 2.85029888305E-02 2.88615039777E-02 2.92245275576E-02 2.95921180550E-02 2.99643309358E-02 3.03412261057E-02 3.07228617247E-02 3.11092972242E-02 3.15005923719E-02 3.18968098987E-02 3.22980107598E-02 3.27042573221E-02 3.31156121504E-02 3.35321435713E-02 3.39539115575E-02 3.43809844766E-02 3.48134294379E-02 3.52513125026E-02 3.56947037502E-02 3.61436711406E-02 3.65982846695E-02 3.70586167321E-02 3.75247378590E-02 3.79967220192E-02 3.84746409287E-02 3.89585721712E-02 3.94485885965E-02 3.99447674934E-02 4.04471886083E-02 4.09559262139E-02 4.14710640089E-02 4.19926787036E-02 4.25208545396E-02 4.30556729001E-02 4.35972170823E-02 4.41455722180E-02 4.47008228925E-02 4.52630579481E-02 4.58323628918E-02 4.64088270843E-02 4.69925419978E-02 4.75835967020E-02 4.81820861436E-02 4.87880990863E-02 4.94017368091E-02 5.00230887509E-02 5.06522558449E-02 5.12893354438E-02 5.19344253097E-02 5.25876289254E-02 5.32490462992E-02 5.39187809887E-02 5.45969383732E-02 5.52836229812E-02 5.59789437312E-02 5.66830072634E-02 5.73959251431E-02 5.81178073346E-02 5.88487664959E-02 5.95889181608E-02 6.03383763986E-02 6.10972594084E-02 6.18656841586E-02 6.26437709538E-02 6.34316428363E-02 6.42294206480E-02 6.50372296796E-02 6.58551953689E-02 6.66834473640E-02 6.75221125196E-02 6.83713228082E-02 6.92312106920E-02 7.01019094688E-02 7.09835564583E-02 7.18762881504E-02 7.27802437949E-02 7.36955646413E-02 7.46223931079E-02 7.55608743655E-02 7.65111545552E-02 7.74733815121E-02 7.84477052934E-02 7.94342781529E-02 8.04332541169E-02 8.14447882117E-02 8.24690387488E-02 8.35061645433E-02 8.45563291499E-02 8.56196934996E-02 8.66964260472E-02 8.77866927760E-02 8.88906644893E-02 9.00085124788E-02 9.11404122127E-02 9.22865382340E-02 9.34470708806E-02 9.46221899999E-02 9.58120783816E-02 9.70169225838E-02 9.82369086946E-02 9.94722280742E-02 1.00723072180E-01 1.01989636010E-01 1.03272117325E-01 1.04570714922E-01 1.05885631854E-01 1.07217071698E-01 1.08565242621E-01 1.09930354234E-01 1.11312618637E-01 1.12712251399E-01 1.14129469361E-01 1.15564493979E-01 1.17017548198E-01 1.18488857842E-01 1.19978651340E-01 1.21487161185E-01 1.23014621153E-01 1.24561269257E-01 1.26127345344E-01 1.27713093225E-01 1.29318759064E-01 1.30944592357E-01 1.32590845601E-01 1.34257774811E-01 1.35945638417E-01 1.37654698840E-01 1.39385220844E-01 1.41137474080E-01 1.42911729541E-01 1.44708262584E-01 1.46527352334E-01 1.48369280969E-01 1.50234333755E-01 1.52122800063E-01 1.54034972872E-01 1.55971147963E-01 1.57931625798E-01 1.59916710042E-01 1.61926708387E-01 1.63961931582E-01 1.66022694935E-01 1.68109317693E-01 1.70222122423E-01 1.72361436210E-01 1.74527589653E-01 1.76720917967E-01 1.78941760286E-01 1.81190459272E-01 1.83467363346E-01 1.85772823228E-01 1.88107195465E-01 1.90470840140E-01 1.92864122401E-01 1.95287410724E-01 1.97741079649E-01 2.00225506965E-01 2.02741075644E-01 2.05288173567E-01 2.07867192482E-01 2.10478529701E-01 2.13122587281E-01 2.15799771462E-01 2.18510494297E-01 2.21255172497E-01 2.24034227470E-01 2.26848086206E-01 2.29697180485E-01 2.32581947965E-01 2.35502830318E-01 2.38460276100E-01 2.41454737697E-01 2.44486674308E-01 2.47556549716E-01 2.50664833737E-01 2.53812001276E-01 2.56998533767E-01 2.60224917415E-01 2.63491645124E-01 2.66799214985E-01 2.70148131270E-01 2.73538904390E-01 2.76972050334E-01 2.80448091796E-01 2.83967557161E-01 2.87530981229E-01 2.91138905183E-01 2.94791876267E-01 2.98490448416E-01 3.02235182154E-01 3.06026643969E-01 3.09865407565E-01 3.13752053238E-01 3.17687167327E-01 3.21671344215E-01 3.25705183753E-01 3.29789293952E-01 3.33924288806E-01 3.38110790068E-01 3.42349426284E-01 3.46640832940E-01 3.50985653628E-01 3.55384537927E-01 3.59838143928E-01 3.64347136733E-01 3.68912188598E-01 3.73533979781E-01 3.78213198064E-01 3.82950538569E-01 3.87746704630E-01 3.92602406832E-01 3.97518364050E-01 4.02495302781E-01 4.07533957651E-01 4.12635070821E-01 4.17799393428E-01 4.23027683590E-01 4.28320708598E-01 4.33679243205E-01 4.39104070860E-01 4.44595983111E-01 4.50155780001E-01 4.55784269791E-01 4.61482269299E-01 4.67250603880E-01 4.73090107236E-01 4.79001621775E-01 4.84985998259E-01 4.91044096552E-01 4.97176784582E-01 5.03384939256E-01 5.09669446290E-01 5.16031199810E-01 5.22471102954E-01 5.28990067515E-01 5.35589013990E-01 5.42268871781E-01 5.49030578946E-01 5.55875082333E-01 5.62803337712E-01 5.69816309501E-01 5.76914970742E-01 5.84100303545E-01 5.91373298496E-01 5.98734954817E-01 6.06186280626E-01 6.13728292460E-01 6.21362015513E-01 6.29088483478E-01 6.36908738496E-01 6.44823831111E-01 6.52834820242E-01 6.60942773025E-01 6.69148764645E-01 6.77453878623E-01 6.85859206081E-01 6.94365846425E-01 7.02974906316E-01 7.11687500348E-01 7.20504750554E-01 7.29427785874E-01 7.38457742969E-01 7.47595765129E-01 7.56843002277E-01 7.66200611320E-01 7.75669755072E-01 7.85251602856E-01 7.94947329724E-01 8.04758116156E-01 8.14685148498E-01 8.24729617635E-01 8.34892719603E-01 8.45175654591E-01 8.55579627233E-01 8.66105845464E-01 8.76755521073E-01 8.87529868488E-01 8.98430104695E-01 9.09457448941E-01 9.20613122006E-01 9.31898345782E-01 9.43314342879E-01 9.54862335918E-01 9.66543546993E-01 9.78359197235E-01 9.90310505979E-01 1.00239869009E+00 1.01462496359E+00 1.02699053647E+00 1.03949661439E+00 1.05214439738E+00 1.06493507961E+00 1.07786984795E+00 1.09094988137E+00 1.10417634995E+00 1.11755041377E+00 1.13107322201E+00 1.14474591178E+00 1.15856960678E+00 1.17254541669E+00 1.18667443507E+00 1.20095773891E+00 1.21539638659E+00 1.22999141674E+00 1.24474384703E+00 1.25965467188E+00 1.27472486164E+00 1.28995536035E+00 1.30534708406E+00 1.32090091932E+00 1.33661772065E+00 1.35249830914E+00 1.36854346992E+00 1.38475395002E+00 1.40113045636E+00 1.41767365287E+00 1.43438415846E+00 1.45126254411E+00 1.46830933021E+00 1.48552498380E+00 1.50290991542E+00 1.52046447615E+00 1.53818895443E+00 1.55608357228E+00 1.57414848244E+00 1.59238376384E+00 1.61078941860E+00 1.62936536726E+00 1.64811144507E+00 1.66702739737E+00 1.68611287500E+00 1.70536742954E+00 1.72479050837E+00 1.74438144912E+00 1.76413947474E+00 1.78406368701E+00 1.80415306129E+00 1.82440643976E+00 1.84482252500E+00 1.86539987322E+00 1.88613688684E+00 1.90703180735E+00 1.92808270706E+00 1.94928748098E+00 1.97064383851E+00 1.99214929383E+00 2.01380115706E+00 2.03559652392E+00 2.05753226555E+00 2.07960501772E+00 2.10181116926E+00 2.12414685039E+00 2.14660792005E+00 2.16918995275E+00 2.19188822536E+00 2.21469770199E+00 2.23761301970E+00 2.26062847226E+00 2.28373799379E+00 2.30693514156E+00 2.33021307775E+00 2.35356455060E+00 2.37698187449E+00 2.40045690913E+00 2.42398103799E+00 2.44754514524E+00 2.47113959244E+00 2.49475419315E+00 2.51837818727E+00 2.54200021397E+00 2.56560828298E+00 2.58918974561E+00 2.61273126353E+00 2.63621877679E+00 2.65963747082E+00 2.68297174115E+00 2.70620515797E+00 2.72932042840E+00 2.75229935797E+00 2.77512281068E+00 2.79777066729E+00 2.82022178321E+00 2.84245394418E+00 2.86444382141E+00 2.88616692549E+00 2.90759755889E+00 2.92870876823E+00 2.94947229506E+00 2.96985852651E+00 2.98983644544E+00 3.00937358003E+00 3.02843595413E+00 3.04698803721E+00 3.06499269527E+00 3.08241114338E+00 3.09920289844E+00 3.11532573556E+00 3.13073564538E+00 3.14538679564E+00 3.15923149620E+00 3.17222016825E+00 3.18430131956E+00 3.19542152531E+00 3.20552541650E+00 3.21455567680E+00 3.22245304799E+00 3.22915634733E+00 3.23460249562E+00 3.23872655946E+00 3.24146180832E+00 3.24273978751E+00 3.24249041031E+00 3.24064206905E+00 3.23712176867E+00 3.23185528381E+00 3.22476734125E+00 3.21578183061E+00 3.20482204418E+00 3.19181094883E+00 3.17667149186E+00 3.15932694190E+00 3.13970126843E+00 3.11771955981E+00 3.09330848315E+00 3.06639678607E+00 3.03691584250E+00 3.00480024309E+00 2.96998843030E+00 2.93242337932E+00 2.89205332312E+00 2.84883252181E+00 2.80272207413E+00 2.75369076859E+00 2.70171597174E+00 2.64678454909E+00 2.58889381377E+00 2.52805249733E+00 2.46428173497E+00 2.39761605767E+00 2.32810438099E+00 2.25581098042E+00 2.18081644096E+00 2.10321856730E+00 2.02313324043E+00 1.94069520423E+00 1.85605876490E+00 1.76939838503E+00 1.68090915234E+00 1.59080710307E+00 1.49932937858E+00 1.40673419334E+00 1.31330059228E+00 1.21932797513E+00 1.12513536597E+00 1.03106040638E+00 9.37458051877E-01 8.44698952513E-01 7.53167500214E-01 6.63259527856E-01 5.75379647718E-01 4.89938219974E-01 4.07347945966E-01 3.28020085018E-01 2.52360298382E-01 1.80764129499E-01 1.13612135644E-01 5.12646927761E-02 -5.94349718259E-03 -5.77091592845E-02 -1.03766412270E-01 -1.43892892831E-01 -1.77915970002E-01 -2.05718970351E-01 -2.27247321143E-01 -2.42514503603E-01 -2.51607692336E-01 -2.54692938497E-01 -2.52019734230E-01 -2.43924774213E-01 -2.30834705442E-01 -2.13267630477E-01 -1.91833100456E-01 -1.67230303018E-01 -1.40244117310E-01 -1.11738671259E-01 -8.26479985523E-02 -5.39633501379E-02 -2.67166700392E-02 -1.95969656499E-03 1.92619039524E-02 3.59400290290E-02 4.71419112203E-02 5.20555763900E-02 5.00378357409E-02 4.07242185566E-02 2.36338797224E-02 2.78853866011E-03 -2.66285118891E-04 3.62976213596E-05 5.99428383250E-06 8.67837800385E-06 8.07855418087E-06 7.79357057068E-06 7.46899012701E-06 7.14326827255E-06 6.80430238581E-06 6.48141588687E-06 2.40 2.40 3S 2 1 Beta L 853 -4.00348976379E-08 -4.10483858970E-08 -4.20875307336E-08 -4.31529816469E-08 -4.42454045785E-08 -4.53654823283E-08 -4.65139149814E-08 -4.76914203455E-08 -4.88987343999E-08 -5.01366117550E-08 -5.14058261246E-08 -5.27071708090E-08 -5.40414591909E-08 -5.54095252440E-08 -5.68122240541E-08 -5.82504323538E-08 -5.97250490699E-08 -6.12369958859E-08 -6.27872178178E-08 -6.43766838048E-08 -6.60063873148E-08 -6.76773469656E-08 -6.93906071615E-08 -7.11472387457E-08 -7.29483396702E-08 -7.47950356817E-08 -7.66884810253E-08 -7.86298591661E-08 -8.06203835286E-08 -8.26612982552E-08 -8.47538789841E-08 -8.68994336465E-08 -8.90993032838E-08 -9.13548628861E-08 -9.36675222517E-08 -9.60387268679E-08 -9.84699588148E-08 -1.00962737692E-07 -1.03518621566E-07 -1.06139207949E-07 -1.08826134792E-07 -1.11581081512E-07 -1.14405770040E-07 -1.17301965899E-07 -1.20271479306E-07 -1.23316166302E-07 -1.26437929917E-07 -1.29638721353E-07 -1.32920541211E-07 -1.36285440735E-07 -1.39735523095E-07 -1.43272944706E-07 -1.46899916572E-07 -1.50618705668E-07 -1.54431636359E-07 -1.58341091849E-07 -1.62349515676E-07 -1.66459413236E-07 -1.70673353349E-07 -1.74993969863E-07 -1.79423963305E-07 -1.83966102565E-07 -1.88623226629E-07 -1.93398246349E-07 -1.98294146270E-07 -2.03313986487E-07 -2.08460904565E-07 -2.13738117495E-07 -2.19148923706E-07 -2.24696705129E-07 -2.30384929307E-07 -2.36217151567E-07 -2.42197017236E-07 -2.48328263926E-07 -2.54614723865E-07 -2.61060326296E-07 -2.67669099929E-07 -2.74445175464E-07 -2.81392788168E-07 -2.88516280526E-07 -2.95820104952E-07 -3.03308826574E-07 -3.10987126087E-07 -3.18859802679E-07 -3.26931777028E-07 -3.35208094381E-07 -3.43693927706E-07 -3.52394580925E-07 -3.61315492230E-07 -3.70462237481E-07 -3.79840533691E-07 -3.89456242600E-07 -3.99315374341E-07 -4.09424091191E-07 -4.19788711428E-07 -4.30415713276E-07 -4.41311738958E-07 -4.52483598845E-07 -4.63938275712E-07 -4.75682929106E-07 -4.87724899818E-07 -5.00071714472E-07 -5.12731090228E-07 -5.25710939609E-07 -5.39019375443E-07 -5.52664715937E-07 -5.66655489871E-07 -5.81000441936E-07 -5.95708538194E-07 -6.10788971683E-07 -6.26251168166E-07 -6.42104792019E-07 -6.58359752274E-07 -6.75026208809E-07 -6.92114578703E-07 -7.09635542744E-07 -7.27600052105E-07 -7.46019335188E-07 -7.64904904647E-07 -7.84268564576E-07 -8.04122417894E-07 -8.24478873906E-07 -8.45350656060E-07 -8.66750809899E-07 -8.88692711217E-07 -9.11190074417E-07 -9.34256961082E-07 -9.57907788770E-07 -9.82157340017E-07 -1.00702077158E-06 -1.03251362392E-06 -1.05865183090E-06 -1.08545172974E-06 -1.11293007126E-06 -1.14110403031E-06 -1.16999121655E-06 -1.19960968539E-06 -1.22997794935E-06 -1.26111498958E-06 -1.29304026775E-06 -1.32577373820E-06 -1.35933586040E-06 -1.39374761179E-06 -1.42903050083E-06 -1.46520658046E-06 -1.50229846193E-06 -1.53883558145E-06 -1.57781182069E-06 -1.61781722658E-06 -1.65879719023E-06 -1.70082989244E-06 -1.74392668025E-06 -1.78808969714E-06 -1.83343613360E-06 -1.87985378814E-06 -1.92748545792E-06 -1.97632997788E-06 -2.02638825800E-06 -2.07773741847E-06 -2.13036714116E-06 -2.18433634239E-06 -2.23965849305E-06 -2.29638753250E-06 -2.35460108262E-06 -2.41418458965E-06 -2.47538585613E-06 -2.53807380016E-06 -2.60233582348E-06 -2.66831534937E-06 -2.73584351607E-06 -2.80517957496E-06 -2.87622206175E-06 -2.94903375618E-06 -3.02379683975E-06 -3.10030509747E-06 -3.17889038519E-06 -3.25936807209E-06 -3.34190351532E-06 -3.42658837219E-06 -3.51331804464E-06 -3.60234377089E-06 -3.69354523808E-06 -3.78708636446E-06 -3.88304283701E-06 -3.98131072580E-06 -4.08219105156E-06 -4.18554228986E-06 -4.29152822499E-06 -4.40025145915E-06 -4.51162550614E-06 -4.62591537702E-06 -4.74304856731E-06 -4.86313243187E-06 -4.98634515233E-06 -5.11254199663E-06 -5.24205412293E-06 -5.37478073917E-06 -5.51085824943E-06 -5.65046675314E-06 -5.79346355225E-06 -5.94022038361E-06 -6.09063267668E-06 -6.24481044974E-06 -6.40300862357E-06 -6.56506300235E-06 -6.73134805777E-06 -6.90178154297E-06 -7.07650613893E-06 -7.25575239548E-06 -7.43939392023E-06 -7.62780855754E-06 -7.82094281451E-06 -8.01893577300E-06 -8.22203045732E-06 -8.43013461098E-06 -8.64364783545E-06 -8.86247252720E-06 -9.08684864919E-06 -9.31697915290E-06 -9.55281687000E-06 -9.79472233133E-06 -1.00426970131E-05 -1.02969645897E-05 -1.05577074385E-05 -1.08249490913E-05 -1.10990737867E-05 -1.13800750145E-05 -1.16681812159E-05 -1.19636435050E-05 -1.22664854701E-05 -1.25770925596E-05 -1.28955173991E-05 -1.32219733176E-05 -1.35567922127E-05 -1.38999424010E-05 -1.42519163832E-05 -1.46127344283E-05 -1.49826702115E-05 -1.53620540181E-05 -1.57509054283E-05 -1.61497227856E-05 -1.65585850557E-05 -1.69778101048E-05 -1.74076358699E-05 -1.78483489851E-05 -1.83002252441E-05 -1.87635355107E-05 -1.92385481974E-05 -1.97256585611E-05 -2.02250092404E-05 -2.07370838923E-05 -2.12620602071E-05 -2.18003578320E-05 -2.23522760469E-05 -2.29181532459E-05 -2.34983923310E-05 -2.40932701418E-05 -2.47032297115E-05 -2.53286487913E-05 -2.59698650649E-05 -2.66273393339E-05 -2.73014584999E-05 -2.79926104754E-05 -2.87012966016E-05 -2.94279059994E-05 -3.01729265451E-05 -3.09367881615E-05 -3.17199888552E-05 -3.25230323258E-05 -3.33463740304E-05 -3.41906000180E-05 -3.50561667446E-05 -3.59436507911E-05 -3.68535998724E-05 -3.77865936556E-05 -3.87432063831E-05 -3.97240342659E-05 -4.07296656728E-05 -4.17608021353E-05 -4.28180098674E-05 -4.39019964378E-05 -4.50133990589E-05 -4.61529725145E-05 -4.73213781548E-05 -4.85193484612E-05 -4.97476657788E-05 -5.10070553235E-05 -5.22983367317E-05 -5.36223310559E-05 -5.49797929144E-05 -5.63716677218E-05 -5.77987448467E-05 -5.92619120140E-05 -6.07627011400E-05 -6.22957589741E-05 -6.38841257716E-05 -6.54952995294E-05 -6.71513558934E-05 -6.88502884328E-05 -7.05975483017E-05 -7.23827420315E-05 -7.42159730588E-05 -7.60882976286E-05 -7.80300572944E-05 -7.99871078088E-05 -8.20284651514E-05 -8.40912156294E-05 -8.62310523512E-05 -8.84035289243E-05 -9.06509906677E-05 -9.29409061195E-05 -9.52978058112E-05 -9.77047514479E-05 -1.00178443054E-04 -1.02720114154E-04 -1.05314358253E-04 -1.07986632680E-04 -1.10714402631E-04 -1.13521858423E-04 -1.16392712649E-04 -1.19335235850E-04 -1.22367598298E-04 -1.25457996676E-04 -1.28632201135E-04 -1.31890179342E-04 -1.35236069319E-04 -1.38647000758E-04 -1.42171220467E-04 -1.45756969677E-04 -1.49450918590E-04 -1.53233823744E-04 -1.57124068763E-04 -1.61084429076E-04 -1.65174664053E-04 -1.69347277271E-04 -1.73639670757E-04 -1.78044207593E-04 -1.82531571385E-04 -1.87165191471E-04 -1.91897568084E-04 -1.96763267610E-04 -2.01737413859E-04 -2.06851614362E-04 -2.12075131786E-04 -2.17455256594E-04 -2.22955856131E-04 -2.28597793888E-04 -2.34398128108E-04 -2.40310508910E-04 -2.46406817501E-04 -2.52647453651E-04 -2.59033924475E-04 -2.65599593974E-04 -2.72315468565E-04 -2.79216121604E-04 -2.86281396380E-04 -2.93523424725E-04 -3.00965224234E-04 -3.08577766409E-04 -3.16384056238E-04 -3.24401503245E-04 -3.32614441656E-04 -3.41024677671E-04 -3.49669179641E-04 -3.58509102332E-04 -3.67599874942E-04 -3.76891110179E-04 -3.86438471681E-04 -3.96219151998E-04 -4.06252866718E-04 -4.16534755944E-04 -4.27077676542E-04 -4.37889654714E-04 -4.48977341860E-04 -4.60340611899E-04 -4.71992001865E-04 -4.83943244654E-04 -4.96195849726E-04 -5.08751689295E-04 -5.21632730236E-04 -5.34837811389E-04 -5.48377189438E-04 -5.62260270715E-04 -5.76491762447E-04 -5.91084511610E-04 -6.06048060233E-04 -6.21392280555E-04 -6.37118547624E-04 -6.53238501505E-04 -6.69791714648E-04 -6.86740605043E-04 -7.04147335861E-04 -7.21927914655E-04 -7.40232750420E-04 -7.58939803736E-04 -7.78203981747E-04 -7.97838150001E-04 -8.18092569619E-04 -8.38769249366E-04 -8.60022998438E-04 -8.81801307903E-04 -9.04062445358E-04 -9.27011483019E-04 -9.50465380283E-04 -9.74496218563E-04 -9.99194199092E-04 -1.02448368293E-03 -1.05038432710E-03 -1.07702127262E-03 -1.10426990602E-03 -1.13219153095E-03 -1.16089662625E-03 -1.19025485306E-03 -1.22038669070E-03 -1.25129355850E-03 -1.28294038248E-03 -1.31546029295E-03 -1.34870265754E-03 -1.38289698184E-03 -1.41786208079E-03 -1.45378034197E-03 -1.49055631583E-03 -1.52830631968E-03 -1.56696695593E-03 -1.60666821841E-03 -1.64730786845E-03 -1.68901612630E-03 -1.73176854234E-03 -1.77561021380E-03 -1.82055183218E-03 -1.86661624277E-03 -1.91389750661E-03 -1.96231725212E-03 -2.01200214481E-03 -2.06292606530E-03 -2.11514125285E-03 -2.16868133998E-03 -2.22358058232E-03 -2.27984587233E-03 -2.33757623930E-03 -2.39672484489E-03 -2.45740797226E-03 -2.51958833499E-03 -2.58338107779E-03 -2.64875929887E-03 -2.71580778558E-03 -2.78455314335E-03 -2.85501519627E-03 -2.92729906777E-03 -3.00137715840E-03 -3.07735182380E-03 -3.15523684298E-03 -3.23510591317E-03 -3.31697619089E-03 -3.40093978674E-03 -3.48701744479E-03 -3.57526597252E-03 -3.66576363874E-03 -3.75854352642E-03 -3.85366571793E-03 -3.95120352027E-03 -4.05120466567E-03 -4.15374332770E-03 -4.25885966774E-03 -4.36665517015E-03 -4.47717432939E-03 -4.59047232184E-03 -4.70666375851E-03 -4.82577172207E-03 -4.94790474604E-03 -5.07313215414E-03 -5.20151587241E-03 -5.33315529870E-03 -5.46812399811E-03 -5.60650761886E-03 -5.74838710109E-03 -5.89386979104E-03 -6.04301220825E-03 -6.19594605351E-03 -6.35274184782E-03 -6.51349903827E-03 -6.67833228012E-03 -6.84732855879E-03 -7.02059963688E-03 -7.19825967262E-03 -7.38040766437E-03 -7.56716432274E-03 -7.75864219109E-03 -7.95497177455E-03 -8.15625794175E-03 -8.36263858867E-03 -8.57423690555E-03 -8.79119078630E-03 -9.01362883271E-03 -9.24169086389E-03 -9.47552135293E-03 -9.71526504012E-03 -9.96107368256E-03 -1.02130932848E-02 -1.04714875159E-02 -1.07364170400E-02 -1.10080432434E-02 -1.12865387586E-02 -1.15720712155E-02 -1.18648285078E-02 -1.21649815771E-02 -1.24727270701E-02 -1.27882472534E-02 -1.31117486501E-02 -1.34434231543E-02 -1.37834848794E-02 -1.41321387366E-02 -1.44896050938E-02 -1.48561064639E-02 -1.52318736669E-02 -1.56171293622E-02 -1.60121280561E-02 -1.64171035142E-02 -1.68323151455E-02 -1.72580124363E-02 -1.76944738865E-02 -1.81419522420E-02 -1.86007437266E-02 -1.90711201291E-02 -1.95533799183E-02 -2.00478213630E-02 -2.05547500831E-02 -2.10744834011E-02 -2.16073413867E-02 -2.21536549030E-02 -2.27137653150E-02 -2.32880177072E-02 -2.38767684225E-02 -2.44803834715E-02 -2.50992363991E-02 -2.57337123088E-02 -2.63841999205E-02 -2.70511089940E-02 -2.77348466641E-02 -2.84358398997E-02 -2.91545207346E-02 -2.98913347027E-02 -3.06467383721E-02 -3.14211976815E-02 -3.22151944293E-02 -3.30292147446E-02 -3.38637660051E-02 -3.47193637654E-02 -3.55965336429E-02 -3.64958193895E-02 -3.74177775272E-02 -3.83629735992E-02 -3.93319941160E-02 -4.03254360140E-02 -4.13439088893E-02 -4.23880460861E-02 -4.34584863249E-02 -4.45558902184E-02 -4.56809349538E-02 -4.68343102024E-02 -4.80167289891E-02 -4.92289149535E-02 -5.04716169727E-02 -5.17455942837E-02 -5.30516336118E-02 -5.43905339922E-02 -5.57631186726E-02 -5.71702274457E-02 -5.86127262107E-02 -6.00914946201E-02 -6.16074429295E-02 -6.31614949270E-02 -6.47546042595E-02 -6.63877433431E-02 -6.80619107965E-02 -6.97781292201E-02 -7.15374458204E-02 -7.33409337232E-02 -7.51896924944E-02 -7.70848481434E-02 -7.90275555575E-02 -8.10189941830E-02 -8.30603776368E-02 -8.51529438106E-02 -8.72979640648E-02 -8.94967400524E-02 -9.17506024492E-02 -9.40609191177E-02 -9.64290854747E-02 -9.88565347652E-02 -1.01344733936E-01 -1.03895182665E-01 -1.06509420921E-01 -1.09189022730E-01 -1.11935600606E-01 -1.14750806404E-01 -1.17636330645E-01 -1.20593904660E-01 -1.23625301304E-01 -1.26732335231E-01 -1.29916864291E-01 -1.33180791238E-01 -1.36526062292E-01 -1.39954671126E-01 -1.43468658527E-01 -1.47070112027E-01 -1.50761169343E-01 -1.54544018273E-01 -1.58420897550E-01 -1.62394098090E-01 -1.66465964428E-01 -1.70638895794E-01 -1.74915346321E-01 -1.79297827840E-01 -1.83788909452E-01 -1.88391219735E-01 -1.93107446860E-01 -1.97940341861E-01 -2.02892716861E-01 -2.07967449241E-01 -2.13167480860E-01 -2.18495819990E-01 -2.23955543062E-01 -2.29549794931E-01 -2.35281791126E-01 -2.41154818741E-01 -2.47172237098E-01 -2.53337480440E-01 -2.59654057829E-01 -2.66125555810E-01 -2.72755638063E-01 -2.79548048686E-01 -2.86506611567E-01 -2.93635233157E-01 -3.00937903352E-01 -3.08418696074E-01 -3.16081771607E-01 -3.23931377393E-01 -3.31971849101E-01 -3.40207612252E-01 -3.48643183278E-01 -3.57283170658E-01 -3.66132275963E-01 -3.75195295651E-01 -3.84477121058E-01 -3.93982740819E-01 -4.03717240205E-01 -4.13685804180E-01 -4.23893716218E-01 -4.34346360397E-01 -4.45049222268E-01 -4.56007888668E-01 -4.67228049106E-01 -4.78715496323E-01 -4.90476125743E-01 -5.02515937816E-01 -5.14841035562E-01 -5.27457627395E-01 -5.40372025275E-01 -5.53590644921E-01 -5.67120006452E-01 -5.80966732559E-01 -5.95137548662E-01 -6.09639282186E-01 -6.24478860915E-01 -6.39663312148E-01 -6.55199761436E-01 -6.71095430172E-01 -6.87357634309E-01 -7.03993781455E-01 -7.21011368867E-01 -7.38417980112E-01 -7.56221281862E-01 -7.74429020617E-01 -7.93049018026E-01 -8.12089167261E-01 -8.31557427295E-01 -8.51461818180E-01 -8.71810414911E-01 -8.92611340757E-01 -9.13872761028E-01 -9.35602874450E-01 -9.57809905974E-01 -9.80502097075E-01 -1.00368769645E+00 -1.02737494975E+00 -1.05157208780E+00 -1.07628731546E+00 -1.10152879751E+00 -1.12730464561E+00 -1.15362290282E+00 -1.18049152772E+00 -1.20791837747E+00 -1.23591118868E+00 -1.26447755864E+00 -1.29362492396E+00 -1.32336053785E+00 -1.35369144696E+00 -1.38462446535E+00 -1.41616614758E+00 -1.44832276029E+00 -1.48110025086E+00 -1.51450421583E+00 -1.54853986543E+00 -1.58321198779E+00 -1.61852490986E+00 -1.65448245600E+00 -1.69108790531E+00 -1.72834394491E+00 -1.76625262156E+00 -1.80481529091E+00 -1.84403256225E+00 -1.88390424274E+00 -1.92442927618E+00 -1.96560568011E+00 -2.00743047963E+00 -2.04989963636E+00 -2.09300797600E+00 -2.13674911054E+00 -2.18111535749E+00 -2.22609765560E+00 -2.27168547555E+00 -2.31786672843E+00 -2.36462766810E+00 -2.41195279107E+00 -2.45982473188E+00 -2.50822415320E+00 -2.55712963365E+00 -2.60651754979E+00 -2.65636195471E+00 -2.70663445304E+00 -2.75730407066E+00 -2.80833712249E+00 -2.85969707473E+00 -2.91134440527E+00 -2.96323646044E+00 -3.01532730865E+00 -3.06756759261E+00 -3.11990437889E+00 -3.17228100658E+00 -3.22463693561E+00 -3.27690759439E+00 -3.32902422944E+00 -3.38091375590E+00 -3.43249861183E+00 -3.48369661653E+00 -3.53442083353E+00 -3.58457944231E+00 -3.63407561660E+00 -3.68280741470E+00 -3.73066768168E+00 -3.77754396546E+00 -3.82331845128E+00 -3.86786791386E+00 -3.91106369305E+00 -3.95277169431E+00 -3.99285241665E+00 -4.03116101358E+00 -4.06754738801E+00 -4.10185632675E+00 -4.13392767820E+00 -4.16359657605E+00 -4.19069371598E+00 -4.21504568655E+00 -4.23647536153E+00 -4.25480235741E+00 -4.26984355938E+00 -4.28141372370E+00 -4.28932615696E+00 -4.29339348075E+00 -4.29342848271E+00 -4.28924506008E+00 -4.28065925865E+00 -4.26749040941E+00 -4.24956236733E+00 -4.22670485182E+00 -4.19875489110E+00 -4.16555837063E+00 -4.12697168235E+00 -4.08286347492E+00 -4.03311649778E+00 -3.97762953551E+00 -3.91631942368E+00 -3.84912313550E+00 -3.77599992981E+00 -3.69693354241E+00 -3.61193440699E+00 -3.52104188359E+00 -3.42432647295E+00 -3.32189199137E+00 -3.21387767666E+00 -3.10046019449E+00 -2.98185551026E+00 -2.85832058811E+00 -2.73015487806E+00 -2.59770154682E+00 -2.46134840722E+00 -2.32152849899E+00 -2.17872027017E+00 -2.03344730982E+00 -1.88627757898E+00 -1.73782208929E+00 -1.58873297706E+00 -1.43970092279E+00 -1.29145186882E+00 -1.14474298841E+00 -1.00035786655E+00 -8.59100855153E-01 -7.21790572304E-01 -5.89252523073E-01 -4.62310826500E-01 -3.41779044805E-01 -2.28450121242E-01 -1.23085446877E-01 -2.64030917871E-02 6.09347467280E-02 1.38335005830E-01 2.05287632819E-01 2.61379952251E-01 3.06311371291E-01 3.39908234694E-01 3.62138599596E-01 3.73126653336E-01 3.73166442140E-01 3.62734515371E-01 3.42501016964E-01 3.13338671604E-01 2.76329016863E-01 2.32765121881E-01 1.84149908529E-01 1.32189047090E-01 7.87772377521E-02 2.59765060507E-02 -2.40150663594E-02 -6.89059857745E-02 -1.06367437113E-01 -1.34105205127E-01 -1.49949961784E-01 -1.51970578607E-01 -1.38598521791E-01 -1.08917128713E-01 -6.16642669764E-02 -7.09766675666E-03 7.30199405679E-04 -4.81661291289E-05 2.68733033429E-05 1.74444589196E-05 1.65252417524E-05 1.48909057402E-05 1.34496330135E-05 1.21052310943E-05 1.08608947198E-05 9.71067802441E-06 2.40 2.40 3P 3 1 Beta L 853 -4.02111234670E-08 -4.12290729043E-08 -4.22727918542E-08 -4.33429326752E-08 -4.44401642400E-08 -4.55651723542E-08 -4.67186601844E-08 -4.79013486980E-08 -4.91139771139E-08 -5.03573033644E-08 -5.16321045687E-08 -5.29391775192E-08 -5.42793391790E-08 -5.56534271928E-08 -5.70623004103E-08 -5.85068394231E-08 -5.99879471151E-08 -6.15065492269E-08 -6.30635949342E-08 -6.46600574413E-08 -6.62969345892E-08 -6.79752494794E-08 -6.96960511133E-08 -7.14604150481E-08 -7.32694440686E-08 -7.51242688767E-08 -7.70260487985E-08 -7.89759725083E-08 -8.09752587719E-08 -8.30251572082E-08 -8.51269490705E-08 -8.72819480473E-08 -8.94915010829E-08 -9.17569892199E-08 -9.40798284623E-08 -9.64614706601E-08 -9.89034044173E-08 -1.01407156022E-07 -1.03974290400E-07 -1.06606412095E-07 -1.09305166267E-07 -1.12072239727E-07 -1.14909361985E-07 -1.17818306335E-07 -1.20800890963E-07 -1.23858980079E-07 -1.26994485090E-07 -1.30209365789E-07 -1.33505631580E-07 -1.36885342736E-07 -1.40350611689E-07 -1.43903604342E-07 -1.47546541433E-07 -1.51281699916E-07 -1.55111414386E-07 -1.59038078540E-07 -1.63064146670E-07 -1.67192135200E-07 -1.71424624258E-07 -1.75764259286E-07 -1.80213752699E-07 -1.84775885574E-07 -1.89453509392E-07 -1.94249547822E-07 -1.99166998543E-07 -2.04208935121E-07 -2.09378508933E-07 -2.14678951128E-07 -2.20113574657E-07 -2.25685776336E-07 -2.31399038973E-07 -2.37256933542E-07 -2.43263121419E-07 -2.49421356666E-07 -2.55735488381E-07 -2.62209463102E-07 -2.68847327273E-07 -2.75653229777E-07 -2.82631424524E-07 -2.89786273112E-07 -2.97122247555E-07 -3.04643933076E-07 -3.12356030973E-07 -3.20263361559E-07 -3.28370867172E-07 -3.36683615268E-07 -3.45206801585E-07 -3.53945753392E-07 -3.62905932817E-07 -3.72092940266E-07 -3.81512517917E-07 -3.91170553312E-07 -4.01073083038E-07 -4.11226296499E-07 -4.21636539784E-07 -4.32310319634E-07 -4.43254307508E-07 -4.54475343756E-07 -4.65980441891E-07 -4.77776792973E-07 -4.89871770107E-07 -5.02272933046E-07 -5.14988032921E-07 -5.28025017084E-07 -5.41392034075E-07 -5.55097438714E-07 -5.69149797325E-07 -5.83557893091E-07 -5.98330731541E-07 -6.13477546179E-07 -6.29007804258E-07 -6.44931212695E-07 -6.61257724139E-07 -6.77997543191E-07 -6.95161132783E-07 -7.12759220718E-07 -7.30802806375E-07 -7.49303167580E-07 -7.68271867664E-07 -7.87720762681E-07 -8.07662008824E-07 -8.28108070022E-07 -8.49071725728E-07 -8.70566078911E-07 -8.92604564240E-07 -9.15200956488E-07 -9.38369379136E-07 -9.62124313202E-07 -9.86480606293E-07 -1.01145348189E-06 -1.03705854885E-06 -1.06331181117E-06 -1.09022967800E-06 -1.11782897388E-06 -1.14612694927E-06 -1.17514129133E-06 -1.20489013497E-06 -1.23539207418E-06 -1.26666617367E-06 -1.29873198077E-06 -1.33160953765E-06 -1.36531939387E-06 -1.39988261917E-06 -1.43532081669E-06 -1.47165613648E-06 -1.50741606664E-06 -1.54563883127E-06 -1.58478367147E-06 -1.62495878312E-06 -1.66611737176E-06 -1.70834346133E-06 -1.75161618070E-06 -1.79599248886E-06 -1.84150416864E-06 -1.88815705291E-06 -1.93599674305E-06 -1.98503748465E-06 -2.03532112920E-06 -2.08690628714E-06 -2.13976125579E-06 -2.19396590988E-06 -2.24955061833E-06 -2.30650723783E-06 -2.36500446604E-06 -2.42483204202E-06 -2.48630503942E-06 -2.54927486592E-06 -2.61381131553E-06 -2.68008604926E-06 -2.74788108884E-06 -2.81756087162E-06 -2.88888231864E-06 -2.96204660182E-06 -3.03712801700E-06 -3.11397845596E-06 -3.19288317033E-06 -3.27374864619E-06 -3.35662723584E-06 -3.44169881418E-06 -3.52879850686E-06 -3.61822779055E-06 -3.70982038016E-06 -3.80377457880E-06 -3.90016088499E-06 -3.99884572658E-06 -4.10018181537E-06 -4.20398691474E-06 -4.31043487788E-06 -4.41963138395E-06 -4.53150634642E-06 -4.64629295954E-06 -4.76395118451E-06 -4.88456303304E-06 -5.00829172366E-06 -5.13507399314E-06 -5.26514534720E-06 -5.39846102790E-06 -5.53511648190E-06 -5.67536957411E-06 -5.81898317504E-06 -5.96639263911E-06 -6.11744207478E-06 -6.27234027928E-06 -6.43121371514E-06 -6.59397050694E-06 -6.76100249720E-06 -6.93218045069E-06 -7.10768799790E-06 -7.28770297499E-06 -7.47216672686E-06 -7.66140347093E-06 -7.85537589884E-06 -8.05424755266E-06 -8.25825071168E-06 -8.46727156423E-06 -8.68171228393E-06 -8.90152273771E-06 -9.12687299647E-06 -9.35800408107E-06 -9.59488722728E-06 -9.83785680166E-06 -1.00869234976E-05 -1.03423075381E-05 -1.06042049410E-05 -1.08726211766E-05 -1.11479603688E-05 -1.14301892800E-05 -1.17195675599E-05 -1.20163250896E-05 -1.23204982771E-05 -1.26324815499E-05 -1.29522955411E-05 -1.32801898313E-05 -1.36164918371E-05 -1.39611491120E-05 -1.43146693489E-05 -1.46770603432E-05 -1.50486356501E-05 -1.54296877405E-05 -1.58202708447E-05 -1.62208413440E-05 -1.66314916147E-05 -1.70525574435E-05 -1.74842870277E-05 -1.79269262824E-05 -1.83808194024E-05 -1.88461379081E-05 -1.93232683516E-05 -1.98124876805E-05 -2.03140693273E-05 -2.08283685233E-05 -2.13556655047E-05 -2.18963231030E-05 -2.24506920776E-05 -2.30190553351E-05 -2.36018330600E-05 -2.41993422386E-05 -2.48119905559E-05 -2.54401510991E-05 -2.60841915839E-05 -2.67445835913E-05 -2.74216345801E-05 -2.81158544176E-05 -2.88276793973E-05 -2.95574569257E-05 -3.03057521274E-05 -3.10729878276E-05 -3.18596403692E-05 -3.26662060300E-05 -3.34931733097E-05 -3.43411218703E-05 -3.52105028113E-05 -3.61018904076E-05 -3.70158490900E-05 -3.79529466484E-05 -3.89137758272E-05 -3.98989118850E-05 -4.09089762234E-05 -4.19446538795E-05 -4.30065084579E-05 -4.40952616697E-05 -4.52115585883E-05 -4.63561361806E-05 -4.75296749231E-05 -4.87329313450E-05 -4.99666510859E-05 -5.12316022643E-05 -5.25285559690E-05 -5.38583635038E-05 -5.52218175596E-05 -5.66198203806E-05 -5.80531730374E-05 -5.95228592967E-05 -6.10294405648E-05 -6.25773665572E-05 -6.41510897782E-05 -6.57917629792E-05 -6.74480097289E-05 -6.91494380715E-05 -7.09108661068E-05 -7.26969509449E-05 -7.45484356417E-05 -7.64249619227E-05 -7.83688051804E-05 -8.03427589482E-05 -8.23881102505E-05 -8.44605684040E-05 -8.66099662742E-05 -8.87953927101E-05 -9.10478235163E-05 -9.33518322656E-05 -9.57130057559E-05 -9.81378561578E-05 -1.00619909195E-04 -1.03170045767E-04 -1.05781358240E-04 -1.08457864411E-04 -1.11203668863E-04 -1.14021981748E-04 -1.16906154086E-04 -1.19861574232E-04 -1.22904056009E-04 -1.26008827480E-04 -1.29199090361E-04 -1.32474350566E-04 -1.35826619744E-04 -1.39259174178E-04 -1.42793213789E-04 -1.46408601600E-04 -1.50093928437E-04 -1.53925646883E-04 -1.57805675616E-04 -1.61797767471E-04 -1.65891260416E-04 -1.70104065150E-04 -1.74401540404E-04 -1.78824663875E-04 -1.83334859948E-04 -1.87997767890E-04 -1.92738773375E-04 -1.97622646599E-04 -2.02633415121E-04 -2.07750595574E-04 -2.13019906316E-04 -2.18409526457E-04 -2.23931297561E-04 -2.29615976060E-04 -2.35417421171E-04 -2.41376813795E-04 -2.47490775916E-04 -2.53754914266E-04 -2.60178164498E-04 -2.66765653800E-04 -2.73514250436E-04 -2.80444325544E-04 -2.87546309003E-04 -2.94814289793E-04 -3.02288692978E-04 -3.09935191021E-04 -3.17776469817E-04 -3.25832244920E-04 -3.34075984012E-04 -3.42527203456E-04 -3.51204759711E-04 -3.60096338029E-04 -3.69205133479E-04 -3.78559622282E-04 -3.88135482282E-04 -3.97969991415E-04 -4.08030700137E-04 -4.18375274897E-04 -4.28954421825E-04 -4.39817571230E-04 -4.50953216268E-04 -4.62368331623E-04 -4.74069783311E-04 -4.86071363795E-04 -4.98380080713E-04 -5.10993336727E-04 -5.23929241684E-04 -5.37190635025E-04 -5.50792276585E-04 -5.64730990530E-04 -5.79032088846E-04 -5.93686348382E-04 -6.08716914994E-04 -6.24123013658E-04 -6.39927131093E-04 -6.56114174692E-04 -6.72766317205E-04 -6.89733207785E-04 -7.07222800704E-04 -7.25129592546E-04 -7.43484231669E-04 -7.62302441991E-04 -7.81588282416E-04 -8.01423904684E-04 -8.21637786671E-04 -8.42484009438E-04 -8.63794240547E-04 -8.85642875265E-04 -9.08120475188E-04 -9.31045988456E-04 -9.54647225568E-04 -9.78789352278E-04 -1.00361147770E-03 -1.02895370470E-03 -1.05506444904E-03 -1.08173082233E-03 -1.10912216594E-03 -1.13717967277E-03 -1.16601481137E-03 -1.19547686157E-03 -1.22577932225E-03 -1.25678887508E-03 -1.28860090769E-03 -1.32123145888E-03 -1.35466410584E-03 -1.38895518670E-03 -1.42411881291E-03 -1.46015986293E-03 -1.49713755105E-03 -1.53502277005E-03 -1.57388913449E-03 -1.61369812384E-03 -1.65458581331E-03 -1.69645234194E-03 -1.73938053053E-03 -1.78342072834E-03 -1.82856687362E-03 -1.87484113862E-03 -1.92231560596E-03 -1.97095422389E-03 -2.02085790693E-03 -2.07200985017E-03 -2.12444869378E-03 -2.17821377627E-03 -2.23338024501E-03 -2.28987535329E-03 -2.34787034576E-03 -2.40727195557E-03 -2.46821147755E-03 -2.53069461282E-03 -2.59473622961E-03 -2.66042619555E-03 -2.72775666813E-03 -2.79680443076E-03 -2.86758831337E-03 -2.94017739531E-03 -3.01458729677E-03 -3.09089853243E-03 -3.16911980740E-03 -3.24934223087E-03 -3.33157864970E-03 -3.41590745707E-03 -3.50235403374E-03 -3.59100908837E-03 -3.68189689032E-03 -3.77508121072E-03 -3.87062351277E-03 -3.96859321622E-03 -4.06903428219E-03 -4.17202092964E-03 -4.27760577506E-03 -4.38586846068E-03 -4.49687433554E-03 -4.61067974019E-03 -4.72736869852E-03 -4.84701392618E-03 -4.96967594801E-03 -5.09545524031E-03 -5.22440613949E-03 -5.35662720946E-03 -5.49217967281E-03 -5.63117951747E-03 -5.77368777184E-03 -5.91979595359E-03 -6.06960870362E-03 -6.22321224606E-03 -6.38068721461E-03 -6.54216580117E-03 -6.70771588813E-03 -6.87745399811E-03 -7.05149407279E-03 -7.22993117998E-03 -7.41287925955E-03 -7.60046145273E-03 -7.79277681819E-03 -7.98997450331E-03 -8.19214053043E-03 -8.39943125046E-03 -8.61196111384E-03 -8.82986951034E-03 -9.05328238856E-03 -9.28234943646E-03 -9.51720807570E-03 -9.75800651794E-03 -1.00048942550E-02 -1.02580234008E-02 -1.05175521143E-02 -1.07836488161E-02 -1.10564674796E-02 -1.13361850287E-02 -1.16229777458E-02 -1.19170160267E-02 -1.22184950074E-02 -1.25275865918E-02 -1.28445007927E-02 -1.31694184141E-02 -1.35025523544E-02 -1.38441085016E-02 -1.41942941903E-02 -1.45533326391E-02 -1.49214446504E-02 -1.52988597166E-02 -1.56858135514E-02 -1.60825434874E-02 -1.64893008908E-02 -1.69063335239E-02 -1.73339052029E-02 -1.77722798377E-02 -1.82217266911E-02 -1.86825323517E-02 -1.91549748597E-02 -1.96393518983E-02 -2.01359659006E-02 -2.06451209527E-02 -2.11671348678E-02 -2.17023343226E-02 -2.22510463074E-02 -2.28136158701E-02 -2.33903875219E-02 -2.39817253560E-02 -2.45879878962E-02 -2.52095587552E-02 -2.58468172350E-02 -2.65001618486E-02 -2.71699959007E-02 -2.78567346765E-02 -2.85608025357E-02 -2.92826370670E-02 -3.00226826229E-02 -3.07814011236E-02 -3.15592569891E-02 -3.23567341711E-02 -3.31743258239E-02 -3.40125369454E-02 -3.48718837736E-02 -3.57529008435E-02 -3.66561290324E-02 -3.75821260603E-02 -3.85314667201E-02 -3.95047326056E-02 -4.05025268782E-02 -4.15254635669E-02 -4.25741726772E-02 -4.36493025709E-02 -4.47515128413E-02 -4.58814827708E-02 -4.70399097448E-02 -4.82275039937E-02 -4.94449958221E-02 -5.06931364959E-02 -5.19726895059E-02 -5.32844424461E-02 -5.46292008180E-02 -5.60077879498E-02 -5.74210519064E-02 -5.88698565018E-02 -6.03550914628E-02 -6.18776651711E-02 -6.34385091420E-02 -6.50385797730E-02 -6.66788533351E-02 -6.83603340509E-02 -7.00840467232E-02 -7.18510454993E-02 -7.36624058531E-02 -7.55192336141E-02 -7.74226590595E-02 -7.93738412636E-02 -8.13739661388E-02 -8.34242509707E-02 -8.55259399922E-02 -8.76803097103E-02 -8.98886664218E-02 -9.21523481092E-02 -9.44727261132E-02 -9.68512041188E-02 -9.92892204813E-02 -1.01788246610E-01 -1.04349792098E-01 -1.06975400064E-01 -1.09666652710E-01 -1.12425168793E-01 -1.15252607700E-01 -1.18150666433E-01 -1.21121083675E-01 -1.24165639867E-01 -1.27286156921E-01 -1.30484500822E-01 -1.33762581391E-01 -1.37122354126E-01 -1.40565820105E-01 -1.44095028628E-01 -1.47712076202E-01 -1.51419108897E-01 -1.55218324097E-01 -1.59111968996E-01 -1.63102344528E-01 -1.67191804475E-01 -1.71382758089E-01 -1.75677669215E-01 -1.80079060508E-01 -1.84589510575E-01 -1.89211659277E-01 -1.93948206137E-01 -1.98801911920E-01 -2.03775601521E-01 -2.08872162983E-01 -2.14094550043E-01 -2.19445783827E-01 -2.24928951886E-01 -2.30547212601E-01 -2.36303793810E-01 -2.42201995356E-01 -2.48245190663E-01 -2.54436826823E-01 -2.60780427235E-01 -2.67279591885E-01 -2.73937999622E-01 -2.80759408439E-01 -2.87747657420E-01 -2.94906668579E-01 -3.02240446289E-01 -3.09753081184E-01 -3.17448748962E-01 -3.25331713714E-01 -3.33406327334E-01 -3.41677032675E-01 -3.50148362909E-01 -3.58824944047E-01 -3.67711495925E-01 -3.76812832109E-01 -3.86133863158E-01 -3.95679595822E-01 -4.05455134428E-01 -4.15465683236E-01 -4.25716545175E-01 -4.36213124023E-01 -4.46960925801E-01 -4.57965557230E-01 -4.69232728978E-01 -4.80768254350E-01 -4.92578050492E-01 -5.04668138916E-01 -5.17044644813E-01 -5.29713798657E-01 -5.42681934567E-01 -5.55955491202E-01 -5.69541011424E-01 -5.83445141037E-01 -5.97674629172E-01 -6.12236326661E-01 -6.27137185128E-01 -6.42384256558E-01 -6.57984690142E-01 -6.73945732442E-01 -6.90274723920E-01 -7.06979097298E-01 -7.24066375111E-01 -7.41544165927E-01 -7.59420162524E-01 -7.77702136626E-01 -7.96397935968E-01 -8.15515479574E-01 -8.35062752533E-01 -8.55047801217E-01 -8.75478726678E-01 -8.96363678685E-01 -9.17710848925E-01 -9.39528462474E-01 -9.61824770880E-01 -9.84608042002E-01 -1.00788655098E+00 -1.03166856986E+00 -1.05596235592E+00 -1.08077614015E+00 -1.10611811358E+00 -1.13199641384E+00 -1.15841911009E+00 -1.18539418640E+00 -1.21292952555E+00 -1.24103288957E+00 -1.26971190068E+00 -1.29897402042E+00 -1.32882652637E+00 -1.35927648942E+00 -1.39033074751E+00 -1.42199587854E+00 -1.45427817224E+00 -1.48718359854E+00 -1.52071777607E+00 -1.55488593673E+00 -1.58969288955E+00 -1.62514298208E+00 -1.66124005850E+00 -1.69798741706E+00 -1.73538776343E+00 -1.77344316213E+00 -1.81215498573E+00 -1.85152385984E+00 -1.89154960675E+00 -1.93223118469E+00 -1.97356662456E+00 -2.01555296378E+00 -2.05818617518E+00 -2.10146109463E+00 -2.14537134274E+00 -2.18990924455E+00 -2.23506574488E+00 -2.28083031887E+00 -2.32719088047E+00 -2.37413368471E+00 -2.42164322734E+00 -2.46970214012E+00 -2.51829108070E+00 -2.56738862053E+00 -2.61697112617E+00 -2.66701263817E+00 -2.71748474555E+00 -2.76835645533E+00 -2.81959406002E+00 -2.87116099962E+00 -2.92301772156E+00 -2.97512153725E+00 -3.02742647510E+00 -3.07988313241E+00 -3.13243852455E+00 -3.18503593271E+00 -3.23761475213E+00 -3.29011033859E+00 -3.34245385785E+00 -3.39457213498E+00 -3.44638750810E+00 -3.49781768572E+00 -3.54877560892E+00 -3.59916932187E+00 -3.64890184931E+00 -3.69787108539E+00 -3.74596969508E+00 -3.79308502855E+00 -3.83909905464E+00 -3.88388831133E+00 -3.92732388014E+00 -3.96927138489E+00 -4.00959101815E+00 -4.04813760060E+00 -4.08476067408E+00 -4.11930463455E+00 -4.15160890812E+00 -4.18150817284E+00 -4.20883263391E+00 -4.23340835295E+00 -4.25505763862E+00 -4.27359950279E+00 -4.28885018524E+00 -4.30062375472E+00 -4.30873278736E+00 -4.31298913062E+00 -4.31320475377E+00 -4.30919269157E+00 -4.30076808337E+00 -4.28774931048E+00 -4.26995923628E+00 -4.24722654828E+00 -4.21938720522E+00 -4.18628598816E+00 -4.14777815392E+00 -4.10373118969E+00 -4.05402666268E+00 -3.99856216085E+00 -3.93725331596E+00 -3.87003589887E+00 -3.79686797659E+00 -3.71773211425E+00 -3.63263760741E+00 -3.54162272331E+00 -3.44475692853E+00 -3.34214307876E+00 -3.23391954014E+00 -3.12026221227E+00 -3.00138641693E+00 -2.87754861524E+00 -2.74904791287E+00 -2.61622730926E+00 -2.47947464574E+00 -2.33922320444E+00 -2.19595190733E+00 -2.05018506587E+00 -1.90249162740E+00 -1.75348386765E+00 -1.60381547680E+00 -1.45417898809E+00 -1.30530250196E+00 -1.15794565799E+00 -1.01289481457E+00 -8.70957398579E-01 -7.32955394142E-01 -5.99717947638E-01 -4.72073072791E-01 -3.50838451968E-01 -2.36811339121E-01 -1.30757585020E-01 -3.33998193917E-02 5.45951572876E-02 1.32629699295E-01 2.00189262725E-01 2.56856851183E-01 3.02327806575E-01 3.36424755936E-01 3.59112483610E-01 3.70512450868E-01 3.70916629459E-01 3.60800252110E-01 3.40833009035E-01 3.11888135456E-01 2.75048737614E-01 2.31610593685E-01 1.83080540195E-01 1.31169409498E-01 7.77783221394E-02 2.49769526494E-02 -2.50278205732E-02 -6.99347049127E-02 -1.07404309679E-01 -1.35131391414E-01 -1.50935584259E-01 -1.52875307357E-01 -1.39372862231E-01 -1.09505266660E-01 -6.20024348014E-02 -7.16936639063E-03 6.97680833833E-04 -8.25448946923E-05 -5.37992539377E-06 -1.31597718267E-05 -1.24621739733E-05 -1.25539038267E-05 -1.25204667245E-05 -1.24564694229E-05 -1.23566441808E-05 -1.22248097822E-05 2.40 2.40 3P 3 Number of nonzero Dij 1 1 6.34407926354E-01 2 2 2.41313598459E-01 3 3 2.40024713855E-01 3S 0 2.00 Wavefunction 1.13153964440E-05 1.14577266129E-05 1.16018470750E-05 1.17477803495E-05 1.18955492388E-05 1.20451768320E-05 1.21966865087E-05 1.23501019427E-05 1.25054471055E-05 1.26627462701E-05 1.28220240147E-05 1.29833052268E-05 1.31466151071E-05 1.33119791729E-05 1.34794232628E-05 1.36489735403E-05 1.38206564979E-05 1.39944989614E-05 1.41705280942E-05 1.43487714012E-05 1.45292567331E-05 1.47120122913E-05 1.48970666317E-05 1.50844486694E-05 1.52741876832E-05 1.54663133203E-05 1.56608556007E-05 1.58578449221E-05 1.60573120643E-05 1.62592881947E-05 1.64638048724E-05 1.66708940536E-05 1.68805880963E-05 1.70929197658E-05 1.73079222393E-05 1.75256291114E-05 1.77460743992E-05 1.79692925478E-05 1.81953184356E-05 1.84241873795E-05 1.86559351408E-05 1.88905979306E-05 1.91282124154E-05 1.93688157231E-05 1.96124454483E-05 1.98591396589E-05 2.01089369012E-05 2.03618762067E-05 2.06179970976E-05 2.08773395934E-05 2.11399442169E-05 2.14058520007E-05 2.16751044935E-05 2.19477437664E-05 2.22238124201E-05 2.25033535908E-05 2.27864109574E-05 2.30730287483E-05 2.33632517482E-05 2.36571253050E-05 2.39546953371E-05 2.42560083405E-05 2.45611113961E-05 2.48700521767E-05 2.51828789552E-05 2.54996406115E-05 2.58203866401E-05 2.61451671585E-05 2.64740329142E-05 2.68070352934E-05 2.71442263283E-05 2.74856587059E-05 2.78313857758E-05 2.81814615584E-05 2.85359407541E-05 2.88948787510E-05 2.92583316339E-05 2.96263561933E-05 2.99990099337E-05 3.03763510833E-05 3.07584386024E-05 3.11453321931E-05 3.15370923084E-05 3.19337801618E-05 3.23354577367E-05 3.27421877960E-05 3.31540338925E-05 3.35710603779E-05 3.39933324137E-05 3.44209159809E-05 3.48538778904E-05 3.52922857936E-05 3.57362081928E-05 3.61857144519E-05 3.66408748073E-05 3.71017603791E-05 3.75684431816E-05 3.80409961353E-05 3.85194930777E-05 3.90040087751E-05 3.94946189343E-05 3.99914002144E-05 4.04944302387E-05 4.10037876069E-05 4.15195519075E-05 4.20418037298E-05 4.25706246772E-05 4.31060973792E-05 4.36483055049E-05 4.41973337756E-05 4.47532679785E-05 4.53161949798E-05 4.58862027383E-05 4.64633803193E-05 4.70478179082E-05 4.76396068252E-05 4.82388395387E-05 4.88456096806E-05 4.94600120603E-05 5.00821426800E-05 5.07120987492E-05 5.13499787005E-05 5.19958822043E-05 5.26499101849E-05 5.33121648361E-05 5.39827496371E-05 5.46617693686E-05 5.53493301297E-05 5.60455393536E-05 5.67505058251E-05 5.74643396973E-05 5.81871525091E-05 5.89190572021E-05 5.96601681386E-05 6.04106011195E-05 6.11704734025E-05 6.19399037198E-05 6.27190122976E-05 6.35079208740E-05 6.43067527185E-05 6.51156326512E-05 6.59346870624E-05 6.67640439320E-05 6.76038328499E-05 6.84541850360E-05 6.93152333606E-05 7.01871123657E-05 7.10699582854E-05 7.19639090676E-05 7.28691043952E-05 7.37856857084E-05 7.47137962263E-05 7.56535809698E-05 7.66051867836E-05 7.75687623599E-05 7.85444582611E-05 7.95324269434E-05 8.05328227809E-05 8.15458020895E-05 8.25715231512E-05 8.36101462392E-05 8.46618336427E-05 8.57267496923E-05 8.68050607856E-05 8.78969354134E-05 8.90025441860E-05 9.01220598596E-05 9.12556573635E-05 9.24035138277E-05 9.35658086098E-05 9.47427233241E-05 9.59344418689E-05 9.71411504562E-05 9.83630376399E-05 9.96002943462E-05 1.00853113903E-04 1.02121692068E-04 1.03406227066E-04 1.04706919610E-04 1.06023972942E-04 1.07357592857E-04 1.08707987742E-04 1.10075368603E-04 1.11459949101E-04 1.12861945585E-04 1.14281577125E-04 1.15719065548E-04 1.17174635469E-04 1.18648514331E-04 1.20140932436E-04 1.21652122984E-04 1.23182322108E-04 1.24731768913E-04 1.26300705511E-04 1.27889377057E-04 1.29498031793E-04 1.31126921083E-04 1.32776299453E-04 1.34446424630E-04 1.36137557584E-04 1.37849962568E-04 1.39583907158E-04 1.41339662296E-04 1.43117502335E-04 1.44917705075E-04 1.46740551814E-04 1.48586327387E-04 1.50455320213E-04 1.52347822339E-04 1.54264129485E-04 1.56204541092E-04 1.58169360368E-04 1.60158894335E-04 1.62173453876E-04 1.64213353788E-04 1.66278912825E-04 1.68370453753E-04 1.70488303396E-04 1.72632792693E-04 1.74804256743E-04 1.77003034863E-04 1.79229470636E-04 1.81483911970E-04 1.83766711149E-04 1.86078224887E-04 1.88418814388E-04 1.90788845399E-04 1.93188688268E-04 1.95618718004E-04 1.98079314331E-04 2.00570861751E-04 2.03093749606E-04 2.05648372132E-04 2.08235128529E-04 2.10854423014E-04 2.13506664896E-04 2.16192268627E-04 2.18911653878E-04 2.21665245597E-04 2.24453474081E-04 2.27276775038E-04 2.30135589658E-04 2.33030364685E-04 2.35961552480E-04 2.38929611096E-04 2.41935004351E-04 2.44978201897E-04 2.48059679295E-04 2.51179918090E-04 2.54339405886E-04 2.57538636421E-04 2.60778109646E-04 2.64058331803E-04 2.67379815501E-04 2.70743079803E-04 2.74148650300E-04 2.77597059197E-04 2.81088845397E-04 2.84624554580E-04 2.88204739298E-04 2.91829959050E-04 2.95500780380E-04 2.99217776957E-04 3.02981529672E-04 3.06792626724E-04 3.10651663713E-04 3.14559243735E-04 3.18515977475E-04 3.22522483303E-04 3.26579387370E-04 3.30687323708E-04 3.34846934326E-04 3.39058869314E-04 3.43323786944E-04 3.47642353769E-04 3.52015244734E-04 3.56443143276E-04 3.60926741435E-04 3.65466739959E-04 3.70063848419E-04 3.74718785311E-04 3.79432278179E-04 3.84205063723E-04 3.89037887912E-04 3.93931506110E-04 3.98886683185E-04 4.03904193633E-04 4.08984821699E-04 4.14129361500E-04 4.19338617151E-04 4.24613402885E-04 4.29954543189E-04 4.35362872927E-04 4.40839237473E-04 4.46384492844E-04 4.51999505834E-04 4.57685154149E-04 4.63442326546E-04 4.69271922971E-04 4.75174854699E-04 4.81152044483E-04 4.87204426691E-04 4.93332947457E-04 4.99538564830E-04 5.05822248919E-04 5.12184982053E-04 5.18627758930E-04 5.25151586774E-04 5.31757485493E-04 5.38446487841E-04 5.45219639579E-04 5.52077999637E-04 5.59022640284E-04 5.66054647294E-04 5.73175120119E-04 5.80385172058E-04 5.87685930436E-04 5.95078536778E-04 6.02564146991E-04 6.10143931542E-04 6.17819075647E-04 6.25590779454E-04 6.33460258233E-04 6.41428742567E-04 6.49497478545E-04 6.57667727958E-04 6.65940768501E-04 6.74317893967E-04 6.82800414460E-04 6.91389656592E-04 7.00086963701E-04 7.08893696053E-04 7.17811231066E-04 7.26840963520E-04 7.35984305780E-04 7.45242688019E-04 7.54617558441E-04 7.64110383514E-04 7.73722648196E-04 7.83455856174E-04 7.93311530098E-04 8.03291211825E-04 8.13396462658E-04 8.23628863597E-04 8.33990015588E-04 8.44481539772E-04 8.55105077748E-04 8.65862291828E-04 8.76754865301E-04 8.87784502702E-04 8.98952930077E-04 9.10261895260E-04 9.21713168151E-04 9.33308540993E-04 9.45049828659E-04 9.56938868938E-04 9.68977522828E-04 9.81167674830E-04 9.93511233251E-04 1.00601013050E-03 1.01866632340E-03 1.03148179351E-03 1.04445854741E-03 1.05759861706E-03 1.07090406008E-03 1.08437696012E-03 1.09801942716E-03 1.11183359787E-03 1.12582163593E-03 1.13998573240E-03 1.15432810604E-03 1.16885100369E-03 1.18355670060E-03 1.19844750085E-03 1.21352573765E-03 1.22879377376E-03 1.24425400184E-03 1.25990884487E-03 1.27576075651E-03 1.29181222149E-03 1.30806575602E-03 1.32452390822E-03 1.34118925848E-03 1.35806441991E-03 1.37515203874E-03 1.39245479477E-03 1.40997540180E-03 1.42771660805E-03 1.44568119659E-03 1.46387198586E-03 1.48229183004E-03 1.50094361958E-03 1.51983028162E-03 1.53895478051E-03 1.55832011825E-03 1.57792933501E-03 1.59778550960E-03 1.61789176000E-03 1.63825124384E-03 1.65886715893E-03 1.67974274380E-03 1.70088127820E-03 1.72228608363E-03 1.74396052395E-03 1.76590800584E-03 1.78813197945E-03 1.81063593890E-03 1.83342342289E-03 1.85649801528E-03 1.87986334568E-03 1.90352309005E-03 1.92748097131E-03 1.95174075997E-03 1.97630627472E-03 2.00118138312E-03 2.02637000221E-03 2.05187609916E-03 2.07770369197E-03 2.10385685009E-03 2.13033969516E-03 2.15715640167E-03 2.18431119765E-03 2.21180836544E-03 2.23965224235E-03 2.26784722144E-03 2.29639775223E-03 2.32530834150E-03 2.35458355403E-03 2.38422801338E-03 2.41424640268E-03 2.44464346545E-03 2.47542400641E-03 2.50659289230E-03 2.53815505271E-03 2.57011548099E-03 2.60247923502E-03 2.63525143819E-03 2.66843728024E-03 2.70204201817E-03 2.73607097716E-03 2.77052955155E-03 2.80542320572E-03 2.84075747513E-03 2.87653796723E-03 2.91277036253E-03 2.94946041555E-03 2.98661395589E-03 3.02423688925E-03 3.06233519854E-03 3.10091494489E-03 3.13998226882E-03 3.17954339131E-03 3.21960461494E-03 3.26017232508E-03 3.30125299103E-03 3.34285316723E-03 3.38497949445E-03 3.42763870106E-03 3.47083760427E-03 3.51458311140E-03 3.55888222121E-03 3.60374202517E-03 3.64916970886E-03 3.69517255331E-03 3.74175793640E-03 3.78893333430E-03 3.83670632286E-03 3.88508457916E-03 3.93407588293E-03 3.98368811812E-03 4.03392927446E-03 4.08480744900E-03 4.13633084777E-03 4.18850778737E-03 4.24134669670E-03 4.29485611861E-03 4.34904471167E-03 4.40392125195E-03 4.45949463479E-03 4.51577387665E-03 4.57276811700E-03 4.63048662023E-03 4.68893877759E-03 4.74813410918E-03 4.80808226601E-03 4.86879303202E-03 4.93027632623E-03 4.99254220488E-03 5.05560086364E-03 5.11946263986E-03 5.18413801486E-03 5.24963761624E-03 5.31597222034E-03 5.38315275461E-03 5.45119030018E-03 5.52009609432E-03 5.58988153312E-03 5.66055817414E-03 5.73213773908E-03 5.80463211661E-03 5.87805336522E-03 5.95241371607E-03 6.02772557603E-03 6.10400153069E-03 6.18125434744E-03 6.25949697871E-03 6.33874256521E-03 6.41900443922E-03 6.50029612806E-03 6.58263135754E-03 6.66602405557E-03 6.75048835579E-03 6.83603860134E-03 6.92268934867E-03 7.01045537154E-03 7.09935166498E-03 7.18939344946E-03 7.28059617513E-03 7.37297552613E-03 7.46654742508E-03 7.56132803760E-03 7.65733377704E-03 7.75458130923E-03 7.85308755745E-03 7.95286970745E-03 8.05394521265E-03 8.15633179948E-03 8.26004747277E-03 8.36511052147E-03 8.47153952431E-03 8.57935335574E-03 8.68857119205E-03 8.79921251753E-03 8.91129713094E-03 9.02484515205E-03 9.13987702845E-03 9.25641354247E-03 9.37447581831E-03 9.49408532947E-03 9.61526390620E-03 9.73803374336E-03 9.86241740833E-03 9.98843784930E-03 1.01161184037E-02 1.02454828068E-02 1.03765552009E-02 1.05093601444E-02 1.06439226210E-02 1.07802680501E-02 1.09184222963E-02 1.10584116798E-02 1.12002629874E-02 1.13440034832E-02 1.14896609199E-02 1.16372635505E-02 1.17868401401E-02 1.19384199788E-02 1.20920328938E-02 1.22477092627E-02 1.24054800273E-02 1.25653767072E-02 1.27274314144E-02 1.28916768677E-02 1.30581464087E-02 1.32268740168E-02 1.33978943258E-02 1.35712426405E-02 1.37469549544E-02 1.39250679667E-02 1.41056191014E-02 1.42886465259E-02 1.44741891707E-02 1.46622867494E-02 1.48529797799E-02 1.50463096054E-02 1.52423184167E-02 1.54410492755E-02 1.56425461375E-02 1.58468538770E-02 1.60540183121E-02 1.62640862307E-02 1.64771054171E-02 1.66931246800E-02 1.69121938809E-02 1.71343639636E-02 1.73596869850E-02 1.75882161462E-02 1.78200058250E-02 1.80551116099E-02 1.82935903343E-02 1.85355001127E-02 1.87809003774E-02 1.90298519167E-02 1.92824169146E-02 1.95386589914E-02 1.97986432456E-02 2.00624362980E-02 2.03301063356E-02 2.06017231591E-02 2.08773582300E-02 2.11570847205E-02 2.14409775643E-02 2.17291135100E-02 2.20215711751E-02 2.23184311023E-02 2.26197758184E-02 2.29256898936E-02 2.32362600042E-02 2.35515749963E-02 2.38717259523E-02 2.41968062595E-02 2.45269116804E-02 2.48621404258E-02 2.52025932303E-02 2.55483734300E-02 2.58995870430E-02 2.62563428525E-02 2.66187524921E-02 2.69869305347E-02 2.73609945837E-02 2.77410653672E-02 2.81272668357E-02 2.85197262624E-02 2.89185743466E-02 2.93239453215E-02 2.97359770642E-02 3.01548112095E-02 3.05805932683E-02 3.10134727480E-02 3.14536032786E-02 3.19011427413E-02 3.23562534017E-02 3.28191020476E-02 3.32898601300E-02 3.37687039096E-02 3.42558146071E-02 3.47513785585E-02 3.52555873749E-02 3.57686381069E-02 3.62907334151E-02 3.68220817442E-02 3.73628975033E-02 3.79134012515E-02 3.84738198881E-02 3.90443868499E-02 3.96253423128E-02 4.02169333996E-02 4.08194143945E-02 4.14330469626E-02 4.20581003764E-02 4.26948517478E-02 4.33435862675E-02 4.40045974500E-02 4.46781873858E-02 4.53646669998E-02 4.60643563174E-02 4.67775847363E-02 4.75046913063E-02 4.82460250153E-02 4.90019450837E-02 4.97728212641E-02 5.05590341500E-02 5.13609754909E-02 5.21790485146E-02 5.30136682570E-02 5.38652618996E-02 5.47342691131E-02 5.56211424096E-02 5.65263475011E-02 5.74503636652E-02 5.83936841181E-02 5.93568163938E-02 6.03402827309E-02 6.13446204652E-02 6.23703824287E-02 6.34181373549E-02 6.44884702897E-02 6.55819830077E-02 6.66992944337E-02 6.78410410686E-02 6.90078774198E-02 7.02004764350E-02 7.14195299393E-02 7.26657490749E-02 7.39398647423E-02 7.52426280427E-02 7.65748107207E-02 7.79372056062E-02 7.93306270548E-02 8.07559113850E-02 8.22139173126E-02 8.37055263785E-02 8.52316433713E-02 8.67931967411E-02 8.83911390042E-02 9.00264471365E-02 9.17001229536E-02 9.34131934763E-02 9.51667112787E-02 9.69617548169E-02 9.87994287362E-02 1.00680864154E-01 1.02607218913E-01 1.04579677814E-01 1.06599452797E-01 1.08667783109E-01 1.10785935411E-01 1.12955203859E-01 1.15176910119E-01 1.17452403350E-01 1.19783060114E-01 1.22170284236E-01 1.24615506592E-01 1.27120184829E-01 1.29685803009E-01 1.32313871167E-01 1.35005924785E-01 1.37763524168E-01 1.40588253722E-01 1.43481721119E-01 1.46445556353E-01 1.49481410664E-01 1.52590955341E-01 1.55775880375E-01 1.59037892971E-01 1.62378715905E-01 1.65800085704E-01 1.69303750660E-01 1.72891468657E-01 1.76565004797E-01 1.80326128824E-01 1.84176612329E-01 1.88118225725E-01 1.92152734990E-01 1.96281898144E-01 2.00507461483E-01 2.04831155518E-01 2.09254690642E-01 2.13779752494E-01 2.18407997009E-01 2.23141045151E-01 2.27980477306E-01 2.32927827335E-01 2.37984576264E-01 2.43152145610E-01 2.48431890325E-01 2.53825091350E-01 2.59332947778E-01 2.64956568602E-01 2.70696964053E-01 2.76555036515E-01 2.82531571022E-01 2.88627225315E-01 2.94842519478E-01 3.01177825136E-01 3.07633354231E-01 3.14209147368E-01 3.20905061749E-01 3.27720758697E-01 3.34655690788E-01 3.41709088607E-01 3.48879947141E-01 3.56167011855E-01 3.63568764446E-01 3.71083408345E-01 3.78708853978E-01 3.86442703848E-01 3.94282237481E-01 4.02224396294E-01 4.10265768448E-01 4.18402573757E-01 4.26630648738E-01 4.34945431874E-01 4.43341949193E-01 4.51814800271E-01 4.60358144755E-01 4.68965689539E-01 4.77630676720E-01 4.86345872472E-01 4.95103556978E-01 5.03895515596E-01 5.12713031408E-01 5.21546879340E-01 5.30387322028E-01 5.39224107635E-01 5.48046469810E-01 5.56843129996E-01 5.65602302308E-01 5.74311701199E-01 5.82958552117E-01 5.91529605406E-01 6.00011153646E-01 6.08389052660E-01 6.16648746412E-01 6.24775295982E-01 6.32753412826E-01 6.40567496495E-01 6.48201676968E-01 6.55639861733E-01 6.62865787732E-01 6.69863078225E-01 6.76615304615E-01 6.83106053217E-01 6.89318996906E-01 6.95237971504E-01 7.00847056730E-01 7.06130661439E-01 7.11073612795E-01 7.15661248949E-01 7.19879514681E-01 7.23715059373E-01 7.27155336561E-01 7.30188704192E-01 7.32804524608E-01 7.34993263120E-01 7.36746583939E-01 7.38057442052E-01 7.38920169537E-01 7.39330554656E-01 7.39285911927E-01 7.38785141278E-01 7.37828774242E-01 7.36419005089E-01 7.34559704669E-01 7.32256414723E-01 7.29516320362E-01 7.26348198423E-01 7.22762339472E-01 7.18770441289E-01 7.14385471838E-01 7.09621499900E-01 7.04493491850E-01 6.99017073374E-01 6.93208255351E-01 6.87083123643E-01 6.80657493130E-01 6.73946527020E-01 6.66964323258E-01 6.59723470757E-01 6.52234579170E-01 6.44505786998E-01 6.36542254007E-01 6.28345645210E-01 6.19916465464E-01 6.11263773981E-01 6.02399273734E-01 5.93334832941E-01 5.84082462883E-01 5.74654295657E-01 5.65062561886E-01 5.55319568448E-01 5.45437676239E-01 5.35429278024E-01 5.25299801157E-01 5.15068518551E-01 5.04747785185E-01 4.94349900331E-01 4.83887086235E-01 4.73371467066E-01 4.62815048155E-01 4.52229695553E-01 4.41627115942E-01 4.31018836934E-01 4.20416187793E-01 4.09830280633E-01 3.99271992120E-01 3.88751945747E-01 3.78280494728E-01 3.67867705556E-01 3.57523342301E-01 3.47256851719E-01 3.37077349229E-01 3.26993605806E-01 3.17014035877E-01 3.07146686272E-01 2.97399226299E-01 2.87778938982E-01 2.78292713524E-01 2.68947039027E-01 2.59747999500E-01 2.50701270181E-01 2.41812115181E-01 2.33085386451E-01 2.24525524065E-01 2.16136557785E-01 2.07922109898E-01 1.99885399263E-01 1.92029246530E-01 1.84356080464E-01 1.76867945323E-01 1.69566509192E-01 1.62453073229E-01 1.55528581722E-01 1.48793632875E-01 1.42248490253E-01 1.35893094793E-01 1.29727077297E-01 1.23749771331E-01 1.17960226449E-01 1.12357221667E-01 1.06939279108E-01 1.01704677759E-01 9.66514672715E-02 9.17774817444E-02 8.70803534322E-02 8.25575263363E-02 7.82062696263E-02 7.40236908552E-02 7.00067489324E-02 6.61522668250E-02 6.24569439609E-02 5.89173683150E-02 5.55300281608E-02 5.22913234773E-02 4.91975770015E-02 4.62450449239E-02 4.34299272250E-02 4.07483776536E-02 3.81965133526E-02 3.57704241348E-02 3.34661814172E-02 3.12798468196E-02 2.92074804346E-02 2.72451487753E-02 2.53889324070E-02 2.36349332663E-02 2.19792816722E-02 2.04181430289E-02 1.89477242216E-02 1.75642797030E-02 1.62641172672E-02 1.50436035065E-02 1.38991689449E-02 1.28273128435E-02 1.18246076684E-02 1.08877032162E-02 1.00133303894E-02 9.19830461615E-03 8.43952890823E-03 7.73399655469E-03 7.07879344780E-03 6.47110004096E-03 5.90819293978E-03 5.38744612935E-03 4.90633184307E-03 4.46242108006E-03 4.05338378052E-03 3.67698867013E-03 3.33110278637E-03 3.01369070159E-03 2.72281345857E-03 2.45662723644E-03 2.21338176506E-03 1.99141850762E-03 1.78916863132E-03 1.60515078701E-03 1.43796871833E-03 1.28630872159E-03 1.14893697708E-03 1.02469677236E-03 9.12505637628E-04 8.11352412753E-04 7.20294264548E-04 6.38453672388E-04 5.65015399054E-04 4.99223462788E-04 4.40378125441E-04 3.87832910437E-04 3.40991663160E-04 2.99305665125E-04 2.62270812143E-04 2.29424865510E-04 2.00344784037E-04 1.74644143653E-04 1.51970650180E-04 1.32003749809E-04 1.14452340827E-04 9.90525891656E-05 8.55658494578E-05 7.37766924553E-05 6.34910388976E-05 5.45343992200E-05 4.67502178635E-05 3.99983203776E-05 3.41534610181E-05 2.91039681051E-05 2.47504840403E-05 2.10047965705E-05 1.77887576351E-05 1.50332859391E-05 1.26774492423E-05 1.06676222601E-05 8.95671601186E-06 7.50347443485E-06 6.27183409947E-06 5.23034290177E-06 4.35163372393E-06 3.61197096378E-06 2.99099522784E-06 2.47090918528E-06 2.03635995215E-06 1.67415625652E-06 1.37299192245E-06 1.12320056535E-06 9.16538558033E-07 7.45993529123E-07 6.05615852138E-07 4.90370774816E-07 3.96009023090E-07 3.18953892085E-07 2.56203006139E-07 2.05243091566E-07 1.63976258826E-07 1.30656434929E-07 1.03832006172E-07 8.22774851648E-08 6.50059248827E-08 5.12072026375E-08 4.02160255275E-08 3.14876927683E-08 2.45776036324E-08 1.91239875647E-08 1.48333968492E-08 1.14685597138E-08 8.83824338413E-09 6.78882272375E-09 5.19729114161E-09 3.96548681554E-09 3.01533936134E-09 2.28497026238E-09 1.72550503258E-09 1.29847656482E-09 9.73717754042E-10 7.27657587789E-10 5.41948758470E-10 4.02366740095E-10 2.97930436986E-10 2.20203183479E-10 1.62740266330E-10 1.19805178290E-10 8.78504695197E-11 6.41621691447E-11 4.66722454246E-11 3.38112353584E-11 2.43929187334E-11 1.75244463271E-11 1.25366004306E-11 8.92990937297E-12 6.33319211344E-12 4.47180519580E-12 3.14342898428E-12 2.19968579660E-12 1.53224854714E-12 1.06239103142E-12 7.33163622072E-13 5.03562245602E-13 3.44203466635E-13 2.34132067707E-13 1.58476025133E-13 1.06732415766E-13 7.15207338131E-14 4.76807245627E-14 3.16228534133E-14 2.08630739278E-14 1.36913390654E-14 8.93665380024E-15 5.80144191405E-15 3.74540879325E-15 2.40455463149E-15 1.53501180598E-15 9.74315381132E-16 6.14846767851E-16 3.85728797406E-16 2.40554232476E-16 1.49117030224E-16 9.18738503235E-17 5.62566320372E-17 3.42325278102E-17 2.06991975008E-17 1.24360592246E-17 7.42321076186E-18 4.40194993380E-18 2.59302568618E-18 1.51719224756E-18 8.81677367386E-19 5.08834786785E-19 2.91611195815E-19 1.65940994739E-19 9.37533074904E-20 5.25852267395E-20 2.92782749729E-20 1.61804888770E-20 8.87486070804E-21 4.83074401652E-21 2.60920005482E-21 1.39829687153E-21 7.43442340921E-22 3.92109896585E-22 2.05133733881E-22 1.06436539747E-22 5.47676166778E-23 2.79441469721E-23 1.41366239377E-23 7.08992630106E-24 3.52477703676E-24 1.73687132815E-24 8.48205837427E-25 4.10471892149E-25 1.96817842807E-25 9.34962272713E-26 4.39968258339E-26 2.05066475127E-26 9.46589808473E-27 4.32683103243E-27 1.95823790379E-27 8.77392973346E-28 3.89135748334E-28 1.70816881702E-28 7.42039179684E-29 3.18957095185E-29 1.35640493443E-29 5.70610383244E-30 2.37423669075E-30 9.76972771010E-31 3.97515741765E-31 1.59910942358E-31 6.35904348490E-32 2.49937929228E-32 9.70812828231E-33 3.72595165783E-33 1.41277137414E-33 5.29143281699E-34 1.95737641085E-34 7.15001854870E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3P 1 2.00 Wavefunction 1.32508292500E-09 1.35862755896E-09 1.39302137937E-09 1.42828588349E-09 1.46444311278E-09 1.50151566669E-09 1.53952671677E-09 1.57850002117E-09 1.61845993947E-09 1.65943144791E-09 1.70144015503E-09 1.74451231764E-09 1.78867485723E-09 1.83395537684E-09 1.88038217826E-09 1.92798427975E-09 1.97679143418E-09 2.02683414761E-09 2.07814369837E-09 2.13075215658E-09 2.18469240426E-09 2.23999815581E-09 2.29670397912E-09 2.35484531719E-09 2.41445851025E-09 2.47558081847E-09 2.53825044529E-09 2.60250656127E-09 2.66838932857E-09 2.73593992607E-09 2.80520057509E-09 2.87621456578E-09 2.94902628422E-09 3.02368124008E-09 3.10022609515E-09 3.17870869245E-09 3.25917808617E-09 3.34168457229E-09 3.42627972005E-09 3.51301640418E-09 3.60194883793E-09 3.69313260695E-09 3.78662470408E-09 3.88248356492E-09 3.98076910439E-09 4.08154275413E-09 4.18486750096E-09 4.29080792622E-09 4.39943024612E-09 4.51080235314E-09 4.62499385848E-09 4.74207613555E-09 4.86212236457E-09 4.98520757836E-09 5.11140870917E-09 5.24080463683E-09 5.37347623800E-09 5.50950643675E-09 5.64898025638E-09 5.79198487258E-09 5.93860966788E-09 6.08894628755E-09 6.24308869687E-09 6.40113323987E-09 6.56317869954E-09 6.72932635956E-09 6.89968006763E-09 7.07434630036E-09 7.25343422984E-09 7.43705579184E-09 7.62532575584E-09 7.81836179667E-09 8.01628456816E-09 8.21921777848E-09 8.42728826749E-09 8.64062608603E-09 8.85936457717E-09 9.08364045959E-09 9.31359391303E-09 9.54936866588E-09 9.79111208503E-09 1.00389752680E-08 1.02931131373E-08 1.05536845375E-08 1.08208523341E-08 1.10947835156E-08 1.13756492981E-08 1.16636252318E-08 1.19588913109E-08 1.22616320865E-08 1.25720367813E-08 1.28902994084E-08 1.32166188923E-08 1.35511991933E-08 1.38942494350E-08 1.42459840349E-08 1.46066228387E-08 1.49763912573E-08 1.53555204081E-08 1.57442472590E-08 1.61428147771E-08 1.65514720800E-08 1.69704745919E-08 1.74000842029E-08 1.78405694330E-08 1.82922055999E-08 1.87552749909E-08 1.92300670394E-08 1.97168785059E-08 2.02160136634E-08 2.07277844877E-08 2.12525108522E-08 2.17905207279E-08 2.23421503886E-08 2.29077446208E-08 2.34876569392E-08 2.40822498080E-08 2.46918948670E-08 2.53169731643E-08 2.59578753942E-08 2.66150021414E-08 2.72887641316E-08 2.79795824879E-08 2.86878889944E-08 2.94141263656E-08 3.01587485236E-08 3.09222208815E-08 3.17050206343E-08 3.25076370574E-08 3.33305718123E-08 3.41743392598E-08 3.50394667823E-08 3.59264951126E-08 3.68359786722E-08 3.77684859180E-08 3.87245996974E-08 3.97049176128E-08 4.07100523946E-08 4.17406322850E-08 4.27973014298E-08 4.38807202819E-08 4.49915660131E-08 4.61305329384E-08 4.72983329491E-08 4.84956959583E-08 4.97233703569E-08 5.09821234814E-08 5.22727420935E-08 5.35960328719E-08 5.49528229164E-08 5.63439602651E-08 5.77703144242E-08 5.92327769113E-08 6.07322618134E-08 6.22697063572E-08 6.38460714958E-08 6.54623425087E-08 6.71195296181E-08 6.88186686198E-08 7.05608215311E-08 7.23470772544E-08 7.41785522577E-08 7.60563912727E-08 7.79817680098E-08 7.99558858924E-08 8.19799788085E-08 8.40553118822E-08 8.61831822642E-08 8.83649199430E-08 9.06018885757E-08 9.28954863408E-08 9.52471468115E-08 9.76583398524E-08 1.00130572538E-07 1.02665390094E-07 1.05264376864E-07 1.07929157300E-07 1.10661396976E-07 1.13462803631E-07 1.16335128236E-07 1.19280166088E-07 1.22299757931E-07 1.25395791109E-07 1.28570200743E-07 1.31824970942E-07 1.35162136046E-07 1.38583781890E-07 1.42092047115E-07 1.45689124502E-07 1.49377262341E-07 1.53158765838E-07 1.57035998557E-07 1.61011383895E-07 1.65087406597E-07 1.69266614311E-07 1.73551619179E-07 1.77945099467E-07 1.82449801245E-07 1.87068540098E-07 1.91804202890E-07 1.96659749564E-07 2.01638214996E-07 2.06742710888E-07 2.11976427718E-07 2.17342636731E-07 2.22844691981E-07 2.28486032433E-07 2.34270184110E-07 2.40200762296E-07 2.46281473795E-07 2.52516119252E-07 2.58908595524E-07 2.65462898117E-07 2.72183123685E-07 2.79073472589E-07 2.86138251523E-07 2.93381876204E-07 3.00808874136E-07 3.08423887434E-07 3.16231675733E-07 3.24237119154E-07 3.32445221363E-07 3.40861112692E-07 3.49490053349E-07 3.58337436704E-07 3.67408792663E-07 3.76709791120E-07 3.86246245505E-07 3.96024116413E-07 4.06049515335E-07 4.16328708474E-07 4.26868120663E-07 4.37674339381E-07 4.48754118869E-07 4.60114384353E-07 4.71762236372E-07 4.83704955215E-07 4.95950005476E-07 5.08505040712E-07 5.21377908233E-07 5.34576654005E-07 5.48109527678E-07 5.61984987743E-07 5.76211706819E-07 5.90798577073E-07 6.05754715781E-07 6.21089471020E-07 6.36812427519E-07 6.52933412643E-07 6.69462502539E-07 6.86410028433E-07 7.03786583088E-07 7.21603027423E-07 7.39870497306E-07 7.58600410506E-07 7.77804473839E-07 7.97494690479E-07 8.17683367461E-07 8.38383123377E-07 8.59606896258E-07 8.81367951665E-07 9.03679890977E-07 9.26556659896E-07 9.50012557161E-07 9.74062243483E-07 9.98720750715E-07 1.02400349124E-06 1.04992626762E-06 1.07650528243E-06 1.10375714846E-06 1.13169889902E-06 1.16034799863E-06 1.18972235394E-06 1.21984032490E-06 1.25072073624E-06 1.28238288925E-06 1.31484657382E-06 1.34813208085E-06 1.38226021489E-06 1.41725230717E-06 1.45313022890E-06 1.48991640500E-06 1.52763382805E-06 1.56630607271E-06 1.60595731042E-06 1.64661232454E-06 1.68829652583E-06 1.73103596830E-06 1.77485736554E-06 1.81978810741E-06 1.86585627713E-06 1.91309066886E-06 1.96152080568E-06 2.01117695808E-06 2.06209016282E-06 2.11429224238E-06 2.16781582482E-06 2.22269436421E-06 2.27896216148E-06 2.33665438594E-06 2.39580709716E-06 2.45645726763E-06 2.51864280575E-06 2.58240257962E-06 2.64777644126E-06 2.71480525158E-06 2.78353090589E-06 2.85399636006E-06 2.92624565743E-06 3.00032395630E-06 3.07627755814E-06 3.15415393659E-06 3.23400176706E-06 3.31587095720E-06 3.39981267810E-06 3.48587939624E-06 3.57412490631E-06 3.66460436483E-06 3.75737432459E-06 3.85249277008E-06 3.95001915363E-06 4.05001443266E-06 4.15254110772E-06 4.25766326158E-06 4.36544659930E-06 4.47595848925E-06 4.58926800529E-06 4.70544596986E-06 4.82456499831E-06 4.94669954429E-06 5.07192594621E-06 5.20032247507E-06 5.33196938330E-06 5.46694895491E-06 5.60534555701E-06 5.74724569246E-06 5.89273805397E-06 6.04191357953E-06 6.19486550927E-06 6.35168944371E-06 6.51248340354E-06 6.67734789087E-06 6.84638595204E-06 7.01970324209E-06 7.19740809071E-06 7.37961157000E-06 7.56642756393E-06 7.75797283943E-06 7.95436711949E-06 8.15573315787E-06 8.36219681593E-06 8.57388714126E-06 8.79093644833E-06 9.01348040122E-06 9.24165809837E-06 9.47561215961E-06 9.71548881520E-06 9.96143799733E-06 1.02136134338E-05 1.04721727439E-05 1.07372775376E-05 1.10090935155E-05 1.12877905735E-05 1.15735429082E-05 1.18665291262E-05 1.21669323555E-05 1.24749403604E-05 1.27907456580E-05 1.31145456397E-05 1.34465426935E-05 1.37869443312E-05 1.41359633179E-05 1.44938178047E-05 1.48607314658E-05 1.52369336373E-05 1.56226594615E-05 1.60181500334E-05 1.64236525514E-05 1.68394204719E-05 1.72657136677E-05 1.77027985905E-05 1.81509484375E-05 1.86104433220E-05 1.90815704485E-05 1.95646242925E-05 2.00599067842E-05 2.05677274974E-05 2.10884038432E-05 2.16222612679E-05 2.21696334572E-05 2.27308625440E-05 2.33062993226E-05 2.38963034682E-05 2.45012437613E-05 2.51214983185E-05 2.57574548287E-05 2.64095107957E-05 2.70780737865E-05 2.77635616858E-05 2.84664029579E-05 2.91870369138E-05 2.99259139864E-05 3.06834960114E-05 3.14602565170E-05 3.22566810189E-05 3.30732673241E-05 3.39105258428E-05 3.47689799062E-05 3.56491660947E-05 3.65516345729E-05 3.74769494335E-05 3.84256890498E-05 3.93984464378E-05 4.03958296262E-05 4.14184620372E-05 4.24669828756E-05 4.35420475287E-05 4.46443279761E-05 4.57745132095E-05 4.69333096637E-05 4.81214416580E-05 4.93396518491E-05 5.05887016953E-05 5.18693719328E-05 5.31824630634E-05 5.45287958554E-05 5.59092118561E-05 5.73245739184E-05 5.87757667402E-05 6.02636974171E-05 6.17892960101E-05 6.33535161264E-05 6.49573355162E-05 6.66017566835E-05 6.82878075131E-05 7.00165419133E-05 7.17890404744E-05 7.36064111448E-05 7.54697899235E-05 7.73803415701E-05 7.93392603335E-05 8.13477706981E-05 8.34071281500E-05 8.55186199609E-05 8.76835659943E-05 8.99033195297E-05 9.21792681092E-05 9.45128344051E-05 9.69054771090E-05 9.93586918445E-05 1.01874012102E-04 1.04453010197E-04 1.07097298255E-04 1.09808529218E-04 1.12588397878E-04 1.15438641937E-04 1.18361043095E-04 1.21357428162E-04 1.24429670202E-04 1.27579689704E-04 1.30809455780E-04 1.34120987402E-04 1.37516354660E-04 1.40997680059E-04 1.44567139844E-04 1.48226965364E-04 1.51979444465E-04 1.55826922922E-04 1.59771805904E-04 1.63816559484E-04 1.67963712173E-04 1.72215856508E-04 1.76575650671E-04 1.81045820152E-04 1.85629159453E-04 1.90328533836E-04 1.95146881116E-04 2.00087213500E-04 2.05152619466E-04 2.10346265701E-04 2.15671399078E-04 2.21131348688E-04 2.26729527923E-04 2.32469436611E-04 2.38354663207E-04 2.44388887035E-04 2.50575880590E-04 2.56919511903E-04 2.63423746955E-04 2.70092652161E-04 2.76930396916E-04 2.83941256198E-04 2.91129613252E-04 2.98499962322E-04 3.06056911474E-04 3.13805185470E-04 3.21749628731E-04 3.29895208366E-04 3.38247017280E-04 3.46810277365E-04 3.55590342762E-04 3.64592703217E-04 3.73822987516E-04 3.83286967007E-04 3.92990559212E-04 4.02939831533E-04 4.13141005050E-04 4.23600458414E-04 4.34324731840E-04 4.45320531202E-04 4.56594732235E-04 4.68154384832E-04 4.80006717467E-04 4.92159141714E-04 5.04619256892E-04 5.17394854822E-04 5.30493924709E-04 5.43924658141E-04 5.57695454223E-04 5.71814924838E-04 5.86291900037E-04 6.01135433575E-04 6.16354808579E-04 6.31959543364E-04 6.47959397398E-04 6.64364377415E-04 6.81184743685E-04 6.98431016443E-04 7.16113982482E-04 7.34244701912E-04 7.52834515092E-04 7.71895049738E-04 7.91438228209E-04 8.11476274984E-04 8.32021724322E-04 8.53087428120E-04 8.74686563974E-04 8.96832643439E-04 9.19539520500E-04 9.42821400263E-04 9.66692847862E-04 9.91168797596E-04 1.01626456229E-03 1.04199584292E-03 1.06837873843E-03 1.09542975586E-03 1.12316582069E-03 1.15160428749E-03 1.18076295076E-03 1.21066005613E-03 1.24131431182E-03 1.27274490035E-03 1.30497149065E-03 1.33801425031E-03 1.37189385833E-03 1.40663151808E-03 1.44224897060E-03 1.47876850827E-03 1.51621298881E-03 1.55460584965E-03 1.59397112266E-03 1.63433344922E-03 1.67571809574E-03 1.71815096953E-03 1.76165863510E-03 1.80626833083E-03 1.85200798611E-03 1.89890623894E-03 1.94699245389E-03 1.99629674058E-03 2.04684997267E-03 2.09868380722E-03 2.15183070465E-03 2.20632394917E-03 2.26219766972E-03 2.31948686144E-03 2.37822740775E-03 2.43845610289E-03 2.50021067515E-03 2.56352981058E-03 2.62845317741E-03 2.69502145101E-03 2.76327633953E-03 2.83326061022E-03 2.90501811635E-03 2.97859382485E-03 3.05403384473E-03 3.13138545607E-03 3.21069713992E-03 3.29201860884E-03 3.37540083828E-03 3.46089609874E-03 3.54855798877E-03 3.63844146882E-03 3.73060289588E-03 3.82510005915E-03 3.92199221646E-03 4.02134013174E-03 4.12320611339E-03 4.22765405366E-03 4.33474946901E-03 4.44455954152E-03 4.55715316137E-03 4.67260097035E-03 4.79097540656E-03 4.91235075020E-03 5.03680317054E-03 5.16441077409E-03 5.29525365403E-03 5.42941394085E-03 5.56697585431E-03 5.70802575673E-03 5.85265220767E-03 6.00094601989E-03 6.15300031691E-03 6.30891059187E-03 6.46877476801E-03 6.63269326062E-03 6.80076904061E-03 6.97310769965E-03 7.14981751703E-03 7.33100952815E-03 7.51679759480E-03 7.70729847721E-03 7.90263190790E-03 8.10292066745E-03 8.30829066212E-03 8.51887100351E-03 8.73479409017E-03 8.95619569128E-03 9.18321503249E-03 9.41599488381E-03 9.65468164983E-03 9.89942546211E-03 1.01503802739E-02 1.04077039574E-02 1.06715584030E-02 1.09421096216E-02 1.12195278487E-02 1.15039876522E-02 1.17956680416E-02 1.20947525805E-02 1.24014295023E-02 1.27158918278E-02 1.30383374863E-02 1.33689694397E-02 1.37079958090E-02 1.40556300046E-02 1.44120908592E-02 1.47776027643E-02 1.51523958092E-02 1.55367059246E-02 1.59307750283E-02 1.63348511748E-02 1.67491887088E-02 1.71740484214E-02 1.76096977107E-02 1.80564107458E-02 1.85144686343E-02 1.89841595934E-02 1.94657791259E-02 1.99596301986E-02 2.04660234257E-02 2.09852772556E-02 2.15177181619E-02 2.20636808384E-02 2.26235083983E-02 2.31975525768E-02 2.37861739390E-02 2.43897420905E-02 2.50086358934E-02 2.56432436858E-02 2.62939635048E-02 2.69612033153E-02 2.76453812406E-02 2.83469257991E-02 2.90662761438E-02 2.98038823054E-02 3.05602054406E-02 3.13357180826E-02 3.21309043961E-02 3.29462604355E-02 3.37822944063E-02 3.46395269299E-02 3.55184913112E-02 3.64197338088E-02 3.73438139079E-02 3.82913045953E-02 3.92627926361E-02 4.02588788520E-02 4.12801784013E-02 4.23273210586E-02 4.34009514957E-02 4.45017295615E-02 4.56303305619E-02 4.67874455374E-02 4.79737815392E-02 4.91900619024E-02 5.04370265153E-02 5.17154320846E-02 5.30260523950E-02 5.43696785621E-02 5.57471192786E-02 5.71592010507E-02 5.86067684256E-02 6.00906842068E-02 6.16118296570E-02 6.31711046864E-02 6.47694280251E-02 6.64077373770E-02 6.80869895544E-02 6.98081605896E-02 7.15722458231E-02 7.33802599647E-02 7.52332371246E-02 7.71322308133E-02 7.90783139058E-02 8.10725785680E-02 8.31161361412E-02 8.52101169813E-02 8.73556702501E-02 8.95539636524E-02 9.18061831172E-02 9.41135324163E-02 9.64772327172E-02 9.88985220647E-02 1.01378654785E-01 1.03918900810E-01 1.06520544908E-01 1.09184885828E-01 1.11913235339E-01 1.14706917160E-01 1.17567265777E-01 1.20495625143E-01 1.23493347242E-01 1.26561790515E-01 1.29702318149E-01 1.32916296198E-01 1.36205091551E-01 1.39570069725E-01 1.43012592472E-01 1.46534015195E-01 1.50135684168E-01 1.53818933535E-01 1.57585082090E-01 1.61435429827E-01 1.65371254242E-01 1.69393806379E-01 1.73504306617E-01 1.77703940178E-01 1.81993852345E-01 1.86375143393E-01 1.90848863204E-01 1.95416005575E-01 2.00077502192E-01 2.04834216286E-01 2.09686935933E-01 2.14636367021E-01 2.19683125859E-01 2.24827731431E-01 2.30070597300E-01 2.35412023145E-01 2.40852185951E-01 2.46391130839E-01 2.52028761554E-01 2.57764830622E-01 2.63598929173E-01 2.69530476463E-01 2.75558709105E-01 2.81682670036E-01 2.87901197250E-01 2.94212912322E-01 3.00616208777E-01 3.07109240332E-01 3.13689909069E-01 3.20355853602E-01 3.27104437290E-01 3.33932736575E-01 3.40837529520E-01 3.47815284641E-01 3.54862150119E-01 3.61973943504E-01 3.69146142016E-01 3.76373873572E-01 3.83651908671E-01 3.90974653263E-01 3.98336142772E-01 4.05730037409E-01 4.13149618961E-01 4.20587789206E-01 4.28037070159E-01 4.35489606316E-01 4.42937169086E-01 4.50371163624E-01 4.57782638234E-01 4.65162296547E-01 4.72500512671E-01 4.79787349478E-01 4.87012580215E-01 4.94165713605E-01 5.01236022557E-01 5.08212576631E-01 5.15084278342E-01 5.21839903359E-01 5.28468144633E-01 5.34957660428E-01 5.41297126167E-01 5.47475289997E-01 5.53481031828E-01 5.59303425613E-01 5.64931804490E-01 5.70355828353E-01 5.75565553305E-01 5.80551502346E-01 5.85304736539E-01 5.89816925778E-01 5.94080418140E-01 5.98088306721E-01 6.01834492664E-01 6.05313743007E-01 6.08521741835E-01 6.11455133070E-01 6.14111553166E-01 6.16489651829E-01 6.18589098818E-01 6.20410574807E-01 6.21955744248E-01 6.23227208178E-01 6.24228434913E-01 6.24963666691E-01 6.25437800405E-01 6.25656240786E-01 6.25624724624E-01 6.25349114950E-01 6.24835164496E-01 6.24088248222E-01 6.23113065304E-01 6.21913311599E-01 6.20491324393E-01 6.18847702069E-01 6.16980902289E-01 6.14886823277E-01 6.12558373921E-01 6.09987797289E-01 6.07175964997E-01 6.04126410326E-01 6.00842907473E-01 5.97329466024E-01 5.93590325164E-01 5.89629947618E-01 5.85453013335E-01 5.81064412894E-01 5.76469240656E-01 5.71672787615E-01 5.66680533949E-01 5.61498141313E-01 5.56131444795E-01 5.50586444539E-01 5.44869297010E-01 5.38986305906E-01 5.32943912691E-01 5.26748686739E-01 5.20407315074E-01 5.13926591713E-01 5.07313406601E-01 5.00574734157E-01 4.93717621432E-01 4.86749175912E-01 4.79669651633E-01 4.72493053879E-01 4.65226593840E-01 4.57877491231E-01 4.50452960908E-01 4.42960199433E-01 4.35406371681E-01 4.27798597550E-01 4.20143938868E-01 4.12449386594E-01 4.04721848382E-01 3.96968136605E-01 3.89194956912E-01 3.81408897406E-01 3.73616418491E-01 3.65823843466E-01 3.58037349907E-01 3.50262961881E-01 3.42506543021E-01 3.34773790478E-01 3.27070229769E-01 3.19401210505E-01 3.11771903001E-01 3.04187295738E-01 2.96652193646E-01 2.89171217185E-01 2.81748802156E-01 2.74389200220E-01 2.67096480037E-01 2.59874529000E-01 2.52727055472E-01 2.45657591471E-01 2.38669495751E-01 2.31765957174E-01 2.24949998347E-01 2.18224479424E-01 2.11592102017E-01 2.05055413158E-01 1.98616809236E-01 1.92278539857E-01 1.86042711575E-01 1.79911291435E-01 1.73886110286E-01 1.67968865833E-01 1.62161125380E-01 1.56464328258E-01 1.50879787911E-01 1.45408693629E-01 1.40052111945E-01 1.34810987692E-01 1.29686144738E-01 1.24678286443E-01 1.19787995854E-01 1.15015735691E-01 1.10361848169E-01 1.05826554712E-01 1.01409955607E-01 9.71120296679E-02 9.29326339619E-02 8.88715036554E-02 8.49282520384E-02 8.11023707793E-02 7.73932304570E-02 7.38000814119E-02 7.03220549530E-02 6.69581649482E-02 6.37073098193E-02 6.05682749559E-02 5.75397355544E-02 5.46202598803E-02 5.18083129471E-02 4.91022605974E-02 4.65003739655E-02 4.40008342975E-02 4.16017380999E-02 3.93011025824E-02 3.70968713607E-02 3.49869203808E-02 3.29690640249E-02 3.10410613610E-02 2.92006224927E-02 2.74454149726E-02 2.57730702380E-02 2.41811900323E-02 2.26673527759E-02 2.12291198520E-02 1.98640417750E-02 1.85696642136E-02 1.73435338391E-02 1.61832039757E-02 1.50862400310E-02 1.40502246870E-02 1.30727628341E-02 1.21514862367E-02 1.12840579159E-02 1.04681762420E-02 9.70157873035E-03 8.98204553486E-03 8.30740263801E-03 7.67552473655E-03 7.08433782452E-03 6.53182147685E-03 6.01601083836E-03 5.53499832446E-03 5.08693504095E-03 4.67003193177E-03 4.28256066425E-03 3.92285426253E-03 3.58930750035E-03 3.28037706527E-03 2.99458150664E-03 2.73050098022E-03 2.48677680261E-03 2.26211082865E-03 2.05526466540E-03 1.86505873584E-03 1.69037120586E-03 1.53013678744E-03 1.38334543127E-03 1.24904092117E-03 1.12631938275E-03 1.01432771824E-03 9.12261978923E-04 8.19365686056E-04 7.34928110935E-04 6.58282523849E-04 5.88804421313E-04 5.25909739645E-04 4.69053066072E-04 4.17728378133E-04 3.71487312349E-04 3.29888530375E-04 2.92520370171E-04 2.59002034239E-04 2.28981815715E-04 2.02135381136E-04 1.78164111689E-04 1.56793504564E-04 1.37771635761E-04 1.20867685367E-04 1.05870526037E-04 9.25873751735E-05 8.08425110167E-05 7.04760526576E-05 6.13428037802E-05 5.33111597849E-05 4.62608710193E-05 4.00724655475E-05 3.46492495486E-05 2.99052367029E-05 2.57629924892E-05 2.21529161654E-05 1.90125684921E-05 1.62860437614E-05 1.39233845870E-05 1.18800378269E-05 1.01163499432E-05 8.59710004802E-06 7.29106885156E-06 6.17064170128E-06 5.21144389593E-06 4.39200645873E-06 3.69346057077E-06 3.09925888987E-06 2.59492201460E-06 2.16780839645E-06 1.80690605255E-06 1.50264448754E-06 1.24672529426E-06 1.03196996817E-06 8.52183538898E-07 7.02032693153E-07 5.76937135696E-07 4.72973008227E-07 3.86787259533E-07 3.15521933240E-07 2.56747411563E-07 2.08403724216E-07 1.68749100720E-07 1.36315011442E-07 1.09867007821E-07 8.83707351997E-08 7.09625526981E-08 5.69242538362E-08 4.56614396445E-08 3.65228187790E-08 2.91290172810E-08 2.31642615750E-08 1.83664913138E-08 1.45188718530E-08 1.14425312449E-08 8.99036492125E-09 7.04176813767E-09 5.49817182260E-09 4.27927173200E-09 3.31985381376E-09 2.56713048116E-09 1.97851314875E-09 1.51975595966E-09 1.16341420234E-09 8.87568546363E-10 6.74772994155E-10 5.11190418247E-10 3.85884802534E-10 2.90243897148E-10 2.17509995156E-10 1.62400005952E-10 1.20798992353E-10 8.95139094619E-11 6.60764827264E-11 4.85860355175E-11 3.55846643601E-11 2.59584999145E-11 1.88599175358E-11 1.36465026547E-11 9.83335991299E-12 7.05600436959E-12 5.04160869666E-12 3.58681999068E-12 2.54071910564E-12 1.79178760150E-12 1.25798389104E-12 8.79220661494E-13 6.11688351615E-13 4.23591279110E-13 2.91959711593E-13 2.00277554212E-13 1.36725357854E-13 9.28852954010E-14 6.27912767309E-14 4.22356434918E-14 2.82656539682E-14 1.88196439965E-14 1.24654564908E-14 8.21336286009E-15 5.38295981067E-15 3.50896852623E-15 2.27492222780E-15 1.46673801612E-15 9.40388366996E-16 5.99515015482E-16 3.80014376194E-16 2.39483596134E-16 1.50036022273E-16 9.34387850674E-17 5.78413118696E-17 3.55873317155E-17 2.17603398970E-17 1.32225456503E-17 7.98379538651E-18 4.78976254860E-18 2.85491864458E-18 1.69049199973E-18 9.94342835104E-19 5.80933454250E-19 3.37090830943E-19 1.94249740768E-19 1.11155020468E-19 6.31559889927E-20 3.56268999209E-20 1.99517176046E-20 1.10912766622E-20 6.11986037189E-21 3.35134732806E-21 1.82126872318E-21 9.82117559768E-22 5.25466999998E-22 2.78918343435E-22 1.46863868121E-22 7.67034950017E-23 3.97313339103E-23 2.04091011806E-23 1.03954123772E-23 3P 1 0.00 Wavefunction 1.30664920902E-09 1.33972719124E-09 1.37364254656E-09 1.40841647320E-09 1.44407070597E-09 1.48062752995E-09 1.51810979434E-09 1.55654092677E-09 1.59594494794E-09 1.63634648667E-09 1.67777079521E-09 1.72024376512E-09 1.76379194339E-09 1.80844254903E-09 1.85422349014E-09 1.90116338130E-09 1.94929156145E-09 1.99863811229E-09 2.04923387702E-09 2.10111047962E-09 2.15430034468E-09 2.20883671758E-09 2.26475368533E-09 2.32208619787E-09 2.38087008987E-09 2.44114210319E-09 2.50293990978E-09 2.56630213531E-09 2.63126838321E-09 2.69787925950E-09 2.76617639816E-09 2.83620248713E-09 2.90800129497E-09 2.98161769829E-09 3.05709770974E-09 3.13448850677E-09 3.21383846117E-09 3.29519716923E-09 3.37861548278E-09 3.46414554101E-09 3.55184080297E-09 3.64175608106E-09 3.73394757526E-09 3.82847290824E-09 3.92539116143E-09 4.02476291188E-09 4.12665027018E-09 4.23111691924E-09 4.33822815411E-09 4.44805092281E-09 4.56065386814E-09 4.67610737061E-09 4.79448359242E-09 4.91585652255E-09 5.04030202305E-09 5.16789787640E-09 5.29872383416E-09 5.43286166682E-09 5.57039521488E-09 5.71141044130E-09 5.85599548518E-09 6.00424071688E-09 6.15623879450E-09 6.31208472179E-09 6.47187590752E-09 6.63571222638E-09 6.80369608142E-09 6.97593246800E-09 7.15252903949E-09 7.33359617448E-09 7.51924704582E-09 7.70959769137E-09 7.90476708647E-09 8.10487721834E-09 8.31005316234E-09 8.52042316011E-09 8.73611869974E-09 8.95727459798E-09 9.18402908446E-09 9.41652388812E-09 9.65490432577E-09 9.89931939296E-09 1.01499218571E-08 1.04068683528E-08 1.06703194800E-08 1.09404399043E-08 1.12173984598E-08 1.15013682545E-08 1.17925267788E-08 1.20910560162E-08 1.23971425574E-08 1.27109777162E-08 1.30327576500E-08 1.33626834816E-08 1.37009614255E-08 1.40478029163E-08 1.44034247414E-08 1.47680491758E-08 1.51419041218E-08 1.55252232509E-08 1.59182461500E-08 1.63212184712E-08 1.67343920854E-08 1.71580252395E-08 1.75923827180E-08 1.80377360085E-08 1.84943634713E-08 1.89625505135E-08 1.94425897671E-08 1.99347812725E-08 2.04394326652E-08 2.09568593688E-08 2.14873847920E-08 2.20313405302E-08 2.25890665737E-08 2.31609115193E-08 2.37472327888E-08 2.43483968520E-08 2.49647794561E-08 2.55967658603E-08 2.62447510766E-08 2.69091401170E-08 2.75903482462E-08 2.82888012414E-08 2.90049356587E-08 2.97391991052E-08 3.04920505196E-08 3.12639604585E-08 3.20554113908E-08 3.28668979992E-08 3.36989274891E-08 3.45520199061E-08 3.54267084608E-08 3.63235398620E-08 3.72430746585E-08 3.81858875896E-08 3.91525679440E-08 4.01437199286E-08 4.11599630455E-08 4.22019324798E-08 4.32702794963E-08 4.43656718469E-08 4.54887941873E-08 4.66403485057E-08 4.78210545610E-08 4.90316503330E-08 5.02728924834E-08 5.15455568291E-08 5.28504388269E-08 5.41883540703E-08 5.55601388001E-08 5.69666504265E-08 5.84087680651E-08 5.98873930863E-08 6.14034496791E-08 6.29578854282E-08 6.45516719067E-08 6.61858052829E-08 6.78613069437E-08 6.95792241322E-08 7.13406306025E-08 7.31466272912E-08 7.49983430051E-08 7.68969351269E-08 7.88435903386E-08 8.08395253632E-08 8.28859877252E-08 8.49842565302E-08 8.71356432648E-08 8.93414926157E-08 9.16031833109E-08 9.39221289808E-08 9.62997790420E-08 9.87376196034E-08 1.01237174395E-07 1.03800005720E-07 1.06427715431E-07 1.09121945934E-07 1.11884381209E-07 1.14716747870E-07 1.17620816237E-07 1.20598401449E-07 1.23651364592E-07 1.26781613870E-07 1.29991105789E-07 1.33281846387E-07 1.36655892485E-07 1.40115352971E-07 1.43662390122E-07 1.47299220950E-07 1.51028118595E-07 1.54851413739E-07 1.58771496066E-07 1.62790815756E-07 1.66911885016E-07 1.71137279647E-07 1.75469640660E-07 1.79911675923E-07 1.84466161851E-07 1.89135945149E-07 1.93923944582E-07 1.98833152808E-07 2.03866638242E-07 2.09027546976E-07 2.14319104749E-07 2.19744618956E-07 2.25307480721E-07 2.31011167015E-07 2.36859242829E-07 2.42855363401E-07 2.49003276503E-07 2.55306824782E-07 2.61769948162E-07 2.68396686307E-07 2.75191181145E-07 2.82157679457E-07 2.89300535535E-07 2.96624213896E-07 3.04133292080E-07 3.11832463507E-07 3.19726540411E-07 3.27820456849E-07 3.36119271785E-07 3.44628172249E-07 3.53352476585E-07 3.62297637768E-07 3.71469246818E-07 3.80873036292E-07 3.90514883867E-07 4.00400816013E-07 4.10537011764E-07 4.20929806576E-07 4.31585696285E-07 4.42511341174E-07 4.53713570130E-07 4.65199384914E-07 4.76975964540E-07 4.89050669755E-07 5.01431047649E-07 5.14124836366E-07 5.27139969941E-07 5.40484583261E-07 5.54167017151E-07 5.68195823582E-07 5.82579771020E-07 5.97327849908E-07 6.12449278280E-07 6.27953507530E-07 6.43850228313E-07 6.60149376603E-07 6.76861139907E-07 6.93995963630E-07 7.11564557604E-07 7.29577902779E-07 7.48047258095E-07 7.66984167508E-07 7.86400467215E-07 8.06308293047E-07 8.26720088054E-07 8.47648610285E-07 8.69106940762E-07 8.91108491653E-07 9.13667014659E-07 9.36796609606E-07 9.60511733259E-07 9.84827208360E-07 1.00975823289E-06 1.03532038957E-06 1.06152965560E-06 1.08840241265E-06 1.11595545708E-06 1.14420601046E-06 1.17317173035E-06 1.20287072127E-06 1.23332154610E-06 1.26454323761E-06 1.29655531041E-06 1.32937777313E-06 1.36303114089E-06 1.39753644818E-06 1.43291526198E-06 1.46918969524E-06 1.50638242070E-06 1.54451668507E-06 1.58361632354E-06 1.62370577470E-06 1.66481009583E-06 1.70695497850E-06 1.75016676470E-06 1.79447246325E-06 1.83989976672E-06 1.88647706871E-06 1.93423348162E-06 1.98319885483E-06 2.03340379336E-06 2.08487967702E-06 2.13765867998E-06 2.19177379092E-06 2.24725883364E-06 2.30414848818E-06 2.36247831254E-06 2.42228476485E-06 2.48360522619E-06 2.54647802398E-06 2.61094245587E-06 2.67703881435E-06 2.74480841194E-06 2.81429360697E-06 2.88553783011E-06 2.95858561145E-06 3.03348260841E-06 3.11027563421E-06 3.18901268718E-06 3.26974298072E-06 3.35251697408E-06 3.43738640392E-06 3.52440431661E-06 3.61362510140E-06 3.70510452443E-06 3.79889976358E-06 3.89506944417E-06 3.99367367567E-06 4.09477408924E-06 4.19843387622E-06 4.30471782768E-06 4.41369237489E-06 4.52542563086E-06 4.63998743286E-06 4.75744938617E-06 4.87788490874E-06 5.00136927711E-06 5.12797967352E-06 5.25779523406E-06 5.39089709818E-06 5.52736845942E-06 5.66729461739E-06 5.81076303107E-06 5.95786337352E-06 6.10868758789E-06 6.26332994491E-06 6.42188710181E-06 6.58445816272E-06 6.75114474066E-06 6.92205102099E-06 7.09728382659E-06 7.27695268458E-06 7.46116989482E-06 7.65005060009E-06 7.84371285806E-06 8.04227771506E-06 8.24586928179E-06 8.45461481085E-06 8.66864477631E-06 8.88809295523E-06 9.11309651133E-06 9.34379608068E-06 9.58033585963E-06 9.82286369491E-06 1.00715311761E-05 1.03264937303E-05 1.05879107194E-05 1.08559455396E-05 1.11307657235E-05 1.14125430450E-05 1.17014536264E-05 1.19976780489E-05 1.23014014648E-05 1.26128137141E-05 1.29321094425E-05 1.32594882232E-05 1.35951546819E-05 1.39393186244E-05 1.42921951679E-05 1.46540048756E-05 1.50249738942E-05 1.54053340956E-05 1.57953232217E-05 1.61951850329E-05 1.66051694606E-05 1.70255327637E-05 1.74565376881E-05 1.78984536315E-05 1.83515568117E-05 1.88161304391E-05 1.92924648938E-05 1.97808579072E-05 2.02816147480E-05 2.07950484132E-05 2.13214798233E-05 2.18612380235E-05 2.24146603891E-05 2.29820928361E-05 2.35638900381E-05 2.41604156475E-05 2.47720425229E-05 2.53991529623E-05 2.60421389419E-05 2.67014023615E-05 2.73773552950E-05 2.80704202489E-05 2.87810304258E-05 2.95096299954E-05 3.02566743722E-05 3.10226304999E-05 3.18079771438E-05 3.26132051896E-05 3.34388179507E-05 3.42853314822E-05 3.51532749045E-05 3.60431907330E-05 3.69556352178E-05 3.78911786916E-05 3.88504059259E-05 3.98339164965E-05 4.08423251587E-05 4.18762622314E-05 4.29363739910E-05 4.40233230758E-05 4.51377888998E-05 4.62804680777E-05 4.74520748606E-05 4.86533415822E-05 4.98850191167E-05 5.11478773482E-05 5.24427056523E-05 5.37703133891E-05 5.51315304099E-05 5.65272075752E-05 5.79582172873E-05 5.94254540354E-05 6.09298349551E-05 6.24723004014E-05 6.40538145370E-05 6.56753659348E-05 6.73379681965E-05 6.90426605856E-05 7.07905086777E-05 7.25826050265E-05 7.44200698473E-05 7.63040517167E-05 7.82357282917E-05 8.02163070449E-05 8.22470260204E-05 8.43291546077E-05 8.64639943351E-05 8.86528796840E-05 9.08971789228E-05 9.31982949631E-05 9.55576662361E-05 9.79767675932E-05 1.00457111227E-04 1.03000247618E-04 1.05607766503E-04 1.08281297871E-04 1.11022512980E-04 1.13833125405E-04 1.16714892107E-04 1.19669614534E-04 1.22699139744E-04 1.25805361566E-04 1.28990221778E-04 1.32255711327E-04 1.35603871570E-04 1.39036795551E-04 1.42556629314E-04 1.46165573241E-04 1.49865883430E-04 1.53659873105E-04 1.57549914066E-04 1.61538438169E-04 1.65627938846E-04 1.69820972672E-04 1.74120160954E-04 1.78528191380E-04 1.83047819694E-04 1.87681871423E-04 1.92433243643E-04 1.97304906791E-04 2.02299906528E-04 2.07421365637E-04 2.12672485981E-04 2.18056550507E-04 2.23576925298E-04 2.29237061679E-04 2.35040498377E-04 2.40990863738E-04 2.47091877990E-04 2.53347355579E-04 2.59761207552E-04 2.66337444004E-04 2.73080176588E-04 2.79993621089E-04 2.87082100062E-04 2.94350045538E-04 3.01802001794E-04 3.09442628203E-04 3.17276702147E-04 3.25309122006E-04 3.33544910228E-04 3.41989216470E-04 3.50647320823E-04 3.59524637116E-04 3.68626716308E-04 3.77959249962E-04 3.87528073805E-04 3.97339171389E-04 4.07398677831E-04 4.17712883659E-04 4.28288238749E-04 4.39131356365E-04 4.50249017300E-04 4.61648174123E-04 4.73335955534E-04 4.85319670830E-04 4.97606814482E-04 5.10205070828E-04 5.23122318893E-04 5.36366637317E-04 5.49946309424E-04 5.63869828407E-04 5.78145902652E-04 5.92783461196E-04 6.07791659319E-04 6.23179884286E-04 6.38957761229E-04 6.55135159177E-04 6.71722197248E-04 6.88729250989E-04 7.06166958880E-04 7.24046229007E-04 7.42378245900E-04 7.61174477546E-04 7.80446682582E-04 8.00206917670E-04 8.20467545057E-04 8.41241240332E-04 8.62541000375E-04 8.84380151515E-04 9.06772357887E-04 9.29731630011E-04 9.53272333577E-04 9.77409198471E-04 1.00215732801E-03 1.02753220844E-03 1.05354971862E-03 1.08022614005E-03 1.10757816704E-03 1.13562291722E-03 1.16437794230E-03 1.19386123907E-03 1.22409126072E-03 1.25508692844E-03 1.28686764328E-03 1.31945329838E-03 1.35286429146E-03 1.38712153762E-03 1.42224648251E-03 1.45826111583E-03 1.49518798510E-03 1.53305020991E-03 1.57187149641E-03 1.61167615226E-03 1.65248910189E-03 1.69433590222E-03 1.73724275869E-03 1.78123654183E-03 1.82634480411E-03 1.87259579732E-03 1.92001849037E-03 1.96864258751E-03 2.01849854705E-03 2.06961760056E-03 2.12203177254E-03 2.17577390063E-03 2.23087765626E-03 2.28737756592E-03 2.34530903293E-03 2.40470835975E-03 2.46561277088E-03 2.52806043639E-03 2.59209049593E-03 2.65774308351E-03 2.72505935279E-03 2.79408150309E-03 2.86485280602E-03 2.93741763283E-03 3.01182148244E-03 3.08811101018E-03 3.16633405728E-03 3.24653968115E-03 3.32877818633E-03 3.41310115638E-03 3.49956148645E-03 3.58821341677E-03 3.67911256699E-03 3.77231597135E-03 3.86788211483E-03 3.96587097012E-03 4.06634403568E-03 4.16936437465E-03 4.27499665480E-03 4.38330718955E-03 4.49436397997E-03 4.60823675791E-03 4.72499703020E-03 4.84471812403E-03 4.96747523343E-03 5.09334546701E-03 5.22240789685E-03 5.35474360873E-03 5.49043575360E-03 5.62956960033E-03 5.77223258988E-03 5.91851439086E-03 6.06850695644E-03 6.22230458278E-03 6.38000396896E-03 6.54170427839E-03 6.70750720184E-03 6.87751702206E-03 7.05184068007E-03 7.23058784312E-03 7.41387097437E-03 7.60180540444E-03 7.79450940464E-03 7.99210426219E-03 8.19471435729E-03 8.40246724216E-03 8.61549372211E-03 8.83392793865E-03 9.05790745468E-03 9.28757334190E-03 9.52307027039E-03 9.76454660042E-03 1.00121544767E-02 1.02660499247E-02 1.05263929499E-02 1.07933476391E-02 1.10670822642E-02 1.13477693891E-02 1.16355859787E-02 1.19307135111E-02 1.22333380918E-02 1.25436505718E-02 1.28618466678E-02 1.31881270857E-02 1.35226976468E-02 1.38657694176E-02 1.42175588422E-02 1.45782878785E-02 1.49481841369E-02 1.53274810232E-02 1.57164178842E-02 1.61152401570E-02 1.65241995221E-02 1.69435540596E-02 1.73735684096E-02 1.78145139354E-02 1.82666688916E-02 1.87303185953E-02 1.92057556012E-02 1.96932798807E-02 2.01931990055E-02 2.07058283340E-02 2.12314912031E-02 2.17705191230E-02 2.23232519769E-02 2.28900382248E-02 2.34712351105E-02 2.40672088744E-02 2.46783349689E-02 2.53049982793E-02 2.59475933483E-02 2.66065246045E-02 2.72822065956E-02 2.79750642252E-02 2.86855329945E-02 2.94140592468E-02 3.01611004171E-02 3.09271252851E-02 3.17126142317E-02 3.25180594998E-02 3.33439654579E-02 3.41908488673E-02 3.50592391529E-02 3.59496786759E-02 3.68627230103E-02 3.77989412211E-02 3.87589161448E-02 3.97432446716E-02 4.07525380293E-02 4.17874220680E-02 4.28485375452E-02 4.39365404113E-02 4.50521020942E-02 4.61959097830E-02 4.73686667102E-02 4.85710924308E-02 4.98039230989E-02 5.10679117394E-02 5.23638285156E-02 5.36924609898E-02 5.50546143777E-02 5.64511117937E-02 5.78827944877E-02 5.93505220698E-02 6.08551727235E-02 6.23976434048E-02 6.39788500254E-02 6.55997276185E-02 6.72612304855E-02 6.89643323207E-02 7.07100263124E-02 7.24993252180E-02 7.43332614098E-02 7.62128868898E-02 7.81392732699E-02 8.01135117141E-02 8.21367128405E-02 8.42100065781E-02 8.63345419759E-02 8.85114869597E-02 9.07420280319E-02 9.30273699113E-02 9.53687351065E-02 9.77673634188E-02 1.00224511369E-01 1.02741451544E-01 1.05319471853E-01 1.07959874694E-01 1.10663976015E-01 1.13433104276E-01 1.16268599289E-01 1.19171810943E-01 1.22144097795E-01 1.25186825528E-01 1.28301365258E-01 1.31489091698E-01 1.34751381141E-01 1.38089609289E-01 1.41505148886E-01 1.44999367167E-01 1.48573623105E-01 1.52229264438E-01 1.55967624479E-01 1.59790018698E-01 1.63697741047E-01 1.67692060041E-01 1.71774214565E-01 1.75945409414E-01 1.80206810538E-01 1.84559539991E-01 1.89004670578E-01 1.93543220179E-01 1.98176145748E-01 2.02904336983E-01 2.07728609650E-01 2.12649698557E-01 2.17668250178E-01 2.22784814922E-01 2.27999839034E-01 2.33313656141E-01 2.38726478441E-01 2.44238387526E-01 2.49849324867E-01 2.55559081955E-01 2.61367290103E-01 2.67273409954E-01 2.73276720677E-01 2.79376308906E-01 2.85571057427E-01 2.91859633665E-01 2.98240477992E-01 3.04711791917E-01 3.11271526187E-01 3.17917368887E-01 3.24646733562E-01 3.31456747476E-01 3.38344240046E-01 3.45305731571E-01 3.52337422330E-01 3.59435182159E-01 3.66594540627E-01 3.73810677921E-01 3.81078416582E-01 3.88392214216E-01 3.95746157355E-01 4.03133956597E-01 4.10548943210E-01 4.17984067366E-01 4.25431898190E-01 4.32884625797E-01 4.40334065531E-01 4.47771664577E-01 4.55188511153E-01 4.62575346474E-01 4.69922579676E-01 4.77220305895E-01 4.84458327653E-01 4.91626179742E-01 4.98713157729E-01 5.05708350213E-01 5.12600674930E-01 5.19378918762E-01 5.26031781693E-01 5.32547924663E-01 5.38916021281E-01 5.45124813243E-01 5.51163169264E-01 5.57020147265E-01 5.62685059444E-01 5.68147539799E-01 5.73397613567E-01 5.78425767918E-01 5.83223023159E-01 5.87781003571E-01 5.92092006861E-01 5.96149071130E-01 5.99946038063E-01 6.03477610978E-01 6.06739406196E-01 6.09727996101E-01 6.12440942119E-01 6.14876815754E-01 6.17035205734E-01 6.18916709241E-01 6.20522905166E-01 6.21856307318E-01 6.22920295552E-01 6.23719022841E-01 6.24257296465E-01 6.24540431642E-01 6.24574076213E-01 6.24364005288E-01 6.23915885165E-01 6.23235006327E-01 6.22325985897E-01 6.21192440569E-01 6.19836631841E-01 6.18259086167E-01 6.16458193651E-01 6.14429789869E-01 6.12166726542E-01 6.09661193769E-01 6.06914006607E-01 6.03928640875E-01 6.00708813875E-01 5.97258478955E-01 5.93581819813E-01 5.89683244519E-01 5.85567379288E-01 5.81239061975E-01 5.76703335306E-01 5.71965439814E-01 5.67030806472E-01 5.61905049061E-01 5.56593956208E-01 5.51103483079E-01 5.45439742717E-01 5.39608997029E-01 5.33617647378E-01 5.27472224793E-01 5.21179379768E-01 5.14745871662E-01 5.08178557684E-01 5.01484381484E-01 4.94670361357E-01 4.87743578081E-01 4.80704098727E-01 4.73566062897E-01 4.66336661487E-01 4.59023096049E-01 4.51632565418E-01 4.44172252278E-01 4.36649309766E-01 4.29070848169E-01 4.21443921820E-01 4.13775516274E-01 4.06072535847E-01 3.98341791607E-01 3.90589989902E-01 3.82823721488E-01 3.75049451342E-01 3.67273509207E-01 3.59502080921E-01 3.51741200588E-01 3.43996743596E-01 3.36274420516E-01 3.28579771900E-01 3.20918163954E-01 3.13294785095E-01 3.05714643358E-01 2.98182564637E-01 2.90703191707E-01 2.83280983994E-01 2.75920218045E-01 2.68624988627E-01 2.61399210415E-01 2.54246620193E-01 2.47170779502E-01 2.40175077682E-01 2.33262735214E-01 2.26436807326E-01 2.19700187754E-01 2.13055612639E-01 2.06505664445E-01 2.00052775872E-01 1.93699233688E-01 1.87447182424E-01 1.81298627887E-01 1.75255440439E-01 1.69319358010E-01 1.63491988801E-01 1.57774813672E-01 1.52169188174E-01 1.46676344236E-01 1.41297391503E-01 1.36033318330E-01 1.30884992457E-01 1.25853161385E-01 1.20938452505E-01 1.16141372992E-01 1.11462309553E-01 1.06901528038E-01 1.02459173013E-01 9.81352673175E-02 9.39297116969E-02 8.98422845432E-02 8.58726418199E-02 8.20203172125E-02 7.82847225590E-02 7.46651486004E-02 7.11607660889E-02 6.77706272825E-02 6.44936678490E-02 6.13287091921E-02 5.82744612084E-02 5.53295254736E-02 5.24923988515E-02 4.97614775109E-02 4.71350613328E-02 4.46113586817E-02 4.21884915120E-02 3.98645007781E-02 3.76373521109E-02 3.55049417237E-02 3.34651025087E-02 3.15156102821E-02 2.96541901399E-02 2.78785228815E-02 2.61862514644E-02 2.45749874502E-02 2.30423174060E-02 2.15858092271E-02 2.02030183472E-02 1.88914938083E-02 1.76487841600E-02 1.64724431655E-02 1.53600352907E-02 1.43091409568E-02 1.33173615398E-02 1.23823241022E-02 1.15016858448E-02 1.06731382693E-02 9.89441104532E-03 9.16327557547E-03 8.47754825755E-03 7.83509344202E-03 7.23382608649E-03 6.67171410994E-03 6.14678045135E-03 5.65710483866E-03 5.20082527525E-03 4.77613925251E-03 4.38130469801E-03 4.01464066943E-03 3.67452780564E-03 3.35940854660E-03 3.06778713440E-03 2.79822940816E-03 2.54936240592E-03 2.31987378656E-03 2.10851108542E-03 1.91408081658E-03 1.73544743547E-03 1.57153217475E-03 1.42131176650E-03 1.28381706343E-03 1.15813157136E-03 1.04338990510E-03 9.38776179061E-04 8.43522343826E-04 7.56906479139E-04 6.78251053368E-04 6.06921158816E-04 5.42322731097E-04 4.83900763926E-04 4.31140131239E-04 3.83584499676E-04 3.40784129660E-04 3.02319293962E-04 2.67801553305E-04 2.36871973370E-04 2.09199397610E-04 1.84478777736E-04 1.62429563630E-04 1.42794154118E-04 1.25336409722E-04 1.09840228203E-04 9.61081835166E-05 8.39602284560E-05 7.32324610943E-05 6.37759549206E-05 5.54556524024E-05 4.81480655695E-05 4.17302932693E-05 3.61029394988E-05 3.11775794174E-05 2.68745360627E-05 2.31221508606E-05 1.98561001149E-05 1.70187560798E-05 1.45585911063E-05 1.24296232665E-05 1.05909017844E-05 9.00603054627E-06 7.64272792030E-06 6.47242109021E-06 5.46987309355E-06 4.61284075442E-06 3.88176171348E-06 3.25946877815E-06 2.73092984888E-06 2.28301171681E-06 1.90426607606E-06 1.58473614774E-06 1.31578237231E-06 1.08992569066E-06 9.00707001544E-07 7.42561453161E-07 6.10706298197E-07 5.01041114634E-07 4.10059267714E-07 3.34769561493E-07 2.72627100603E-07 2.21472453909E-07 1.79478281279E-07 1.45102652347E-07 1.17048352010E-07 9.42275311318E-08 7.57311229081E-08 6.08025056439E-08 4.88149518745E-08 3.90797216350E-08 3.11962036461E-08 2.48306453803E-08 1.97058119161E-08 1.55921000586E-08 1.22999269913E-08 9.67323138812E-09 7.58394221898E-09 5.92728643012E-09 4.61782131949E-09 3.58609078857E-09 2.77581679537E-09 2.14154831503E-09 1.64669999994E-09 1.26192158934E-09 9.63747019011E-10 7.33479197030E-10 5.56272612125E-10 4.20381397422E-10 3.16545252021E-10 2.37489790993E-10 1.77521513184E-10 1.32200704012E-10 9.80782816966E-11 7.24849008323E-11 5.33625931121E-11 3.91308940669E-11 2.85808151284E-11 2.07912069597E-11 1.50630537442E-11 1.08680665472E-11 7.80863129764E-12 5.58673474159E-12 3.97995852640E-12 2.82301356584E-12 1.99359793866E-12 1.40161374867E-12 9.80981804324E-13 6.83456293521E-13 4.73972108841E-13 3.27161211450E-13 2.24756485473E-13 1.53666131908E-13 1.04552244799E-13 7.07866375656E-14 4.76875525287E-14 3.19644608913E-14 2.13162479647E-14 1.41418834782E-14 9.33315735874E-15 6.12697544988E-15 4.00065338842E-15 2.59808644922E-15 1.67797094618E-15 1.07768875633E-15 6.88255788765E-16 4.37041971524E-16 2.75919206280E-16 1.73178747761E-16 1.08051077849E-16 6.70120683540E-17 4.13079374072E-17 2.53068045035E-17 1.54074493414E-17 9.32136958597E-18 5.60337543459E-18 3.34661512918E-18 1.98569468013E-18 1.17039911068E-18 6.85226272933E-19 3.98451796418E-19 2.30102913036E-19 1.31957872816E-19 7.51410397259E-20 4.24824115765E-20 2.38447113446E-20 1.32857570684E-20 7.34770585299E-21 4.03318196918E-21 2.19701662494E-21 1.18759044665E-21 6.36950530602E-22 3.38928171491E-22 1.78907832058E-22 9.36757063596E-23 4.86470161993E-23 2.50537164254E-23 1.27946783536E-23 2.56076396881E-10 2.62559001963E-10 2.69205714985E-10 2.76020690361E-10 2.83008187673E-10 2.90172574336E-10 2.97518328324E-10 3.05050040976E-10 3.12772419857E-10 3.20690291707E-10 3.28808605455E-10 3.37132435312E-10 3.45666983945E-10 3.54417585726E-10 3.63389710067E-10 3.72588964839E-10 3.82021099879E-10 3.91692010580E-10 4.01607741576E-10 4.11774490526E-10 4.22198611980E-10 4.32886621355E-10 4.43845199008E-10 4.55081194409E-10 4.66601630423E-10 4.78413707701E-10 4.90524809178E-10 5.02942504690E-10 5.15674555704E-10 5.28728920170E-10 5.42113757494E-10 5.55837433638E-10 5.69908526350E-10 5.84335830527E-10 5.99128363706E-10 6.14295371707E-10 6.29846334408E-10 6.45790971673E-10 6.62139249423E-10 6.78901385871E-10 6.96087857902E-10 7.13709407627E-10 7.31777049094E-10 7.50302075175E-10 7.69296064621E-10 7.88770889300E-10 8.08738721620E-10 8.29212042134E-10 8.50203647343E-10 8.71726657692E-10 8.93794525772E-10 9.16421044730E-10 9.39620356886E-10 9.63406962578E-10 9.87795729219E-10 1.01280190059E-09 1.03844110639E-09 1.06472937195E-09 1.09168312832E-09 1.11931922249E-09 1.14765492792E-09 1.17670795538E-09 1.20649646397E-09 1.23703907250E-09 1.26835487110E-09 1.30046343320E-09 1.33338482770E-09 1.36713963158E-09 1.40174894271E-09 1.43723439306E-09 1.47361816222E-09 1.51092299125E-09 1.54917219692E-09 1.58838968625E-09 1.62859997148E-09 1.66982818539E-09 1.71210009698E-09 1.75544212761E-09 1.79988136750E-09 1.84544559265E-09 1.89216328225E-09 1.94006363640E-09 1.98917659444E-09 2.03953285361E-09 2.09116388826E-09 2.14410196953E-09 2.19838018550E-09 2.25403246187E-09 2.31109358321E-09 2.36959921462E-09 2.42958592411E-09 2.49109120539E-09 2.55415350135E-09 2.61881222806E-09 2.68510779939E-09 2.75308165235E-09 2.82277627289E-09 2.89423522252E-09 2.96750316550E-09 3.04262589681E-09 3.11965037071E-09 3.19862473011E-09 3.27959833670E-09 3.36262180175E-09 3.44774701777E-09 3.53502719093E-09 3.62451687434E-09 3.71627200212E-09 3.81034992440E-09 3.90680944311E-09 4.00571084879E-09 4.10711595823E-09 4.21108815313E-09 4.31769241973E-09 4.42699538938E-09 4.53906538025E-09 4.65397243999E-09 4.77178838951E-09 4.89258686791E-09 5.01644337846E-09 5.14343533582E-09 5.27364211443E-09 5.40714509812E-09 5.54402773094E-09 5.68437556940E-09 5.82827633585E-09 5.97581997339E-09 6.12709870202E-09 6.28220707635E-09 6.44124204466E-09 6.60430300948E-09 6.77149188976E-09 6.94291318458E-09 7.11867403842E-09 7.29888430816E-09 7.48365663176E-09 7.67310649861E-09 7.86735232179E-09 8.06651551202E-09 8.27072055360E-09 8.48009508217E-09 8.69476996452E-09 8.91487938037E-09 9.14056090627E-09 9.37195560154E-09 9.60920809650E-09 9.85246668283E-09 1.01018834063E-08 1.03576141616E-08 1.06198187903E-08 1.08886611802E-08 1.11643093679E-08 1.14469356441E-08 1.17367166611E-08 1.20338335431E-08 1.23384719997E-08 1.26508224417E-08 1.29710801002E-08 1.32994451488E-08 1.36361228287E-08 1.39813235765E-08 1.43352631564E-08 1.46981627948E-08 1.50702493183E-08 1.54517552960E-08 1.58429191846E-08 1.62439854773E-08 1.66552048568E-08 1.70768343521E-08 1.75091374990E-08 1.79523845049E-08 1.84068524174E-08 1.88728252982E-08 1.93505943998E-08 1.98404583481E-08 2.03427233289E-08 2.08577032793E-08 2.13857200839E-08 2.19271037762E-08 2.24821927444E-08 2.30513339437E-08 2.36348831122E-08 2.42332049943E-08 2.48466735677E-08 2.54756722781E-08 2.61205942782E-08 2.67818426736E-08 2.74598307750E-08 2.81549823565E-08 2.88677319202E-08 2.95985249681E-08 3.03478182807E-08 3.11160802019E-08 3.19037909326E-08 3.27114428302E-08 3.35395407168E-08 3.43886021944E-08 3.52591579687E-08 3.61517521810E-08 3.70669427478E-08 3.80053017102E-08 3.89674155909E-08 3.99538857612E-08 4.09653288171E-08 4.20023769640E-08 4.30656784128E-08 4.41558977846E-08 4.52737165260E-08 4.64198333357E-08 4.75949646007E-08 4.87998448445E-08 5.00352271859E-08 5.13018838102E-08 5.26006064516E-08 5.39322068886E-08 5.52975174507E-08 5.66973915396E-08 5.81327041619E-08 5.96043524767E-08 6.11132563562E-08 6.26603589609E-08 6.42466273288E-08 6.58730529808E-08 6.75406525394E-08 6.92504683655E-08 7.10035692091E-08 7.28010508778E-08 7.46440369220E-08 7.65336793371E-08 7.84711592838E-08 8.04576878266E-08 8.24945066909E-08 8.45828890391E-08 8.67241402671E-08 8.89195988200E-08 9.11706370289E-08 9.34786619691E-08 9.58451163398E-08 9.82714793661E-08 1.00759267724E-07 1.03310036487E-07 1.05925380103E-07 1.08606933385E-07 1.11356372537E-07 1.14175416203E-07 1.17065826538E-07 1.20029410314E-07 1.23068020044E-07 1.26183555148E-07 1.29377963133E-07 1.32653240817E-07 1.36011435573E-07 1.39454646611E-07 1.42985026292E-07 1.46604781472E-07 1.50316174882E-07 1.54121526546E-07 1.58023215225E-07 1.62023679913E-07 1.66125421355E-07 1.70331003618E-07 1.74643055685E-07 1.79064273109E-07 1.83597419693E-07 1.88245329219E-07 1.93010907221E-07 1.97897132804E-07 2.02907060504E-07 2.08043822199E-07 2.13310629070E-07 2.18710773607E-07 2.24247631670E-07 2.29924664600E-07 2.35745421384E-07 2.41713540873E-07 2.47832754061E-07 2.54106886420E-07 2.60539860286E-07 2.67135697320E-07 2.73898521021E-07 2.80832559305E-07 2.87942147151E-07 2.95231729310E-07 3.02705863092E-07 3.10369221210E-07 3.18226594709E-07 3.26282895958E-07 3.34543161731E-07 3.43012556351E-07 3.51696374925E-07 3.60600046658E-07 3.69729138249E-07 3.79089357373E-07 3.88686556256E-07 3.98526735335E-07 4.08616047012E-07 4.18960799508E-07 4.29567460810E-07 4.40442662714E-07 4.51593204985E-07 4.63026059604E-07 4.74748375140E-07 4.86767481217E-07 4.99090893110E-07 5.11726316443E-07 5.24681652017E-07 5.37965000754E-07 5.51584668772E-07 5.65549172583E-07 5.79867244425E-07 5.94547837732E-07 6.09600132739E-07 6.25033542234E-07 6.40857717447E-07 6.57082554099E-07 6.73718198601E-07 6.90775054404E-07 7.08263788519E-07 7.26195338201E-07 7.44580917796E-07 7.63432025769E-07 7.82760451910E-07 8.02578284718E-07 8.22897918976E-07 8.43732063521E-07 8.65093749205E-07 8.86996337064E-07 9.09453526692E-07 9.32479364828E-07 9.56088254159E-07 9.80294962353E-07 1.00511463132E-06 1.03056278668E-06 1.05665534756E-06 1.08340863651E-06 1.11083938976E-06 1.13896476774E-06 1.16780236583E-06 1.19737022538E-06 1.22768684506E-06 1.25877119245E-06 1.29064271594E-06 1.32332135693E-06 1.35682756237E-06 1.39118229757E-06 1.42640705936E-06 1.46252388963E-06 1.49955538910E-06 1.53752473157E-06 1.57645567844E-06 1.61637259366E-06 1.65730045901E-06 1.69926488981E-06 1.74229215104E-06 1.78640917379E-06 1.83164357222E-06 1.87802366094E-06 1.92557847276E-06 1.97433777699E-06 2.02433209814E-06 2.07559273513E-06 2.12815178097E-06 2.18204214296E-06 2.23729756340E-06 2.29395264081E-06 2.35204285175E-06 2.41160457311E-06 2.47267510505E-06 2.53529269449E-06 2.59949655918E-06 2.66532691246E-06 2.73282498856E-06 2.80203306860E-06 2.87299450727E-06 2.94575376017E-06 3.02035641182E-06 3.09684920445E-06 3.17528006750E-06 3.25569814786E-06 3.33815384090E-06 3.42269882232E-06 3.50938608077E-06 3.59826995133E-06 3.68940614989E-06 3.78285180834E-06 3.87866551070E-06 3.97690733022E-06 4.07763886734E-06 4.18092328874E-06 4.28682536727E-06 4.39541152305E-06 4.50674986549E-06 4.62091023652E-06 4.73796425481E-06 4.85798536125E-06 4.98104886552E-06 5.10723199390E-06 5.23661393830E-06 5.36927590658E-06 5.50530117417E-06 5.64477513697E-06 5.78778536570E-06 5.93442166160E-06 6.08477611365E-06 6.23894315713E-06 6.39701963388E-06 6.55910485397E-06 6.72530065910E-06 6.89571148754E-06 7.07044444082E-06 7.24960935217E-06 7.43331885669E-06 7.62168846338E-06 7.81483662909E-06 8.01288483430E-06 8.21595766098E-06 8.42418287244E-06 8.63769149529E-06 8.85661790348E-06 9.08109990469E-06 9.31127882881E-06 9.54729961888E-06 9.78931092435E-06 1.00374651968E-05 1.02919187883E-05 1.05528320520E-05 1.08203694461E-05 1.10946996394E-05 1.13759956211E-05 1.16644348121E-05 1.19601991805E-05 1.22634753590E-05 1.25744547663E-05 1.28933337312E-05 1.32203136205E-05 1.35556009697E-05 1.38994076177E-05 1.42519508447E-05 1.46134535142E-05 1.49841442186E-05 1.53642574285E-05 1.57540336460E-05 1.61537195630E-05 1.65635682226E-05 1.69838391852E-05 1.74147986995E-05 1.78567198779E-05 1.83098828764E-05 1.87745750794E-05 1.92510912902E-05 1.97397339257E-05 2.02408132171E-05 2.07546474157E-05 2.12815630047E-05 2.18218949163E-05 2.23759867554E-05 2.29441910287E-05 2.35268693807E-05 2.41243928361E-05 2.47371420484E-05 2.53655075563E-05 2.60098900465E-05 2.66707006237E-05 2.73483610890E-05 2.80433042251E-05 2.87559740900E-05 2.94868263189E-05 3.02363284342E-05 3.10049601652E-05 3.17932137753E-05 3.26015943999E-05 3.34306203933E-05 3.42808236852E-05 3.51527501477E-05 3.60469599728E-05 3.69640280606E-05 3.79045444187E-05 3.88691145728E-05 3.98583599900E-05 4.08729185130E-05 4.19134448084E-05 4.29806108269E-05 4.40751062776E-05 4.51976391155E-05 4.63489360445E-05 4.75297430336E-05 4.87408258498E-05 4.99829706062E-05 5.12569843259E-05 5.25636955234E-05 5.39039548036E-05 5.52786354776E-05 5.66886341982E-05 5.81348716140E-05 5.96182930436E-05 6.11398691698E-05 6.27005967559E-05 6.43014993826E-05 6.59436282089E-05 6.76280627553E-05 6.93559117124E-05 7.11283137730E-05 7.29464384919E-05 7.48114871714E-05 7.67246937747E-05 7.86873258687E-05 8.07006855960E-05 8.27661106781E-05 8.48849754503E-05 8.70586919296E-05 8.92887109180E-05 9.15765231394E-05 9.39236604155E-05 9.63316968780E-05 9.88022502216E-05 1.01336982998E-04 1.03937603951E-04 1.06605869398E-04 1.09343584657E-04 1.12152605518E-04 1.15034839769E-04 1.17992248765E-04 1.21026849063E-04 1.24140714099E-04 1.27335975929E-04 1.30614827029E-04 1.33979522156E-04 1.37432380274E-04 1.40975786545E-04 1.44612194388E-04 1.48344127620E-04 1.52174182654E-04 1.56105030796E-04 1.60139420601E-04 1.64280180337E-04 1.68530220511E-04 1.72892536509E-04 1.77370211317E-04 1.81966418346E-04 1.86684424357E-04 1.91527592498E-04 1.96499385443E-04 2.01603368660E-04 2.06843213788E-04 2.12222702147E-04 2.17745728377E-04 2.23416304210E-04 2.29238562395E-04 2.35216760756E-04 2.41355286422E-04 2.47658660200E-04 2.54131541137E-04 2.60778731238E-04 2.67605180377E-04 2.74615991402E-04 2.81816425433E-04 2.89211907368E-04 2.96808031610E-04 3.04610568022E-04 3.12625468111E-04 3.20858871468E-04 3.29317112461E-04 3.38006727197E-04 3.46934460771E-04 3.56107274805E-04 3.65532355294E-04 3.75217120778E-04 3.85169230844E-04 3.95396594983E-04 4.05907381818E-04 4.16710028704E-04 4.27813251742E-04 4.39226056209E-04 4.50957747423E-04 4.63017942075E-04 4.75416580033E-04 4.88163936662E-04 5.01270635657E-04 5.14747662437E-04 5.28606378110E-04 5.42858534048E-04 5.57516287093E-04 5.72592215419E-04 5.88099335098E-04 6.04051117389E-04 6.20461506784E-04 6.37344939859E-04 6.54716364955E-04 6.72591262739E-04 6.90985667682E-04 7.09916190495E-04 7.29400041581E-04 7.49455055540E-04 7.70099716780E-04 7.91353186295E-04 8.13235329662E-04 8.35766746312E-04 8.58968800147E-04 8.82863651557E-04 9.07474290923E-04 9.32824573655E-04 9.58939256864E-04 9.85844037736E-04 1.01356559369E-03 1.04213162443E-03 1.07157089594E-03 1.10191328656E-03 1.13318983525E-03 1.16543279213E-03 1.19867567137E-03 1.23295330665E-03 1.26830190924E-03 1.30475912883E-03 1.34236411733E-03 1.38115759563E-03 1.42118192371E-03 1.46248117398E-03 1.50510120825E-03 1.54908975846E-03 1.59449651120E-03 1.64137319647E-03 1.68977368070E-03 1.73975406432E-03 1.79137278411E-03 1.84469072059E-03 1.89977131061E-03 1.95668066562E-03 2.01548769563E-03 2.07626423938E-03 2.13908520094E-03 2.20402869307E-03 2.27117618770E-03 2.34061267394E-03 2.41242682391E-03 2.48671116688E-03 2.56356227213E-03 2.64308094094E-03 2.72537240823E-03 2.81054655435E-03 2.89871812742E-03 2.99000697705E-03 3.08453829966E-03 3.18244289631E-03 3.28385744352E-03 3.38892477779E-03 3.49779419457E-03 3.61062176233E-03 3.72757065267E-03 3.84881148709E-03 3.97452270146E-03 4.10489092905E-03 4.24011140304E-03 4.38038837948E-03 4.52593558196E-03 4.67697666881E-03 4.83374572424E-03 4.99648777445E-03 5.16545933025E-03 5.34092895718E-03 5.52317787490E-03 5.71250058712E-03 5.90920554369E-03 6.11361583648E-03 6.32606993076E-03 6.54692243392E-03 6.77654490330E-03 7.01532669518E-03 7.26367585700E-03 7.52202006494E-03 7.79080760902E-03 8.07050842827E-03 8.36161519827E-03 8.66464447368E-03 8.98013788845E-03 9.30866341647E-03 9.65081669564E-03 1.00072224183E-02 1.03785357914E-02 1.07654440691E-02 1.11686681621E-02 1.15889643266E-02 1.20271259368E-02 1.24839853442E-02 1.29604158291E-02 1.34573336463E-02 1.39757001710E-02 1.45165241482E-02 1.50808640506E-02 1.56698305490E-02 1.62845891001E-02 1.69263626574E-02 1.75964345086E-02 1.82961512450E-02 1.90269258690E-02 1.97902410433E-02 2.05876524879E-02 2.14207925297E-02 2.22913738108E-02 2.32011931586E-02 2.41521356258E-02 2.51461787024E-02 2.61853967073E-02 2.72719653620E-02 2.84081665527E-02 2.95963932838E-02 3.08391548284E-02 3.21390820774E-02 3.34989330921E-02 3.49215988626E-02 3.64101092724E-02 3.79676392738E-02 3.95975152704E-02 4.13032217107E-02 4.30884078871E-02 4.49568949409E-02 4.69126830671E-02 4.89599589145E-02 5.11031031738E-02 5.33466983432E-02 5.56955366626E-02 5.81546282007E-02 6.07292090802E-02 6.34247498209E-02 6.62469637807E-02 6.92018156671E-02 7.22955300911E-02 7.55346001307E-02 7.89257958660E-02 8.24761728436E-02 8.61930804247E-02 9.00841699616E-02 9.41574027462E-02 9.84210576644E-02 1.02883738485E-01 1.07554380704E-01 1.12442257858E-01 1.17556987208E-01 1.22908534701E-01 1.28507219082E-01 1.34363715041E-01 1.40489055273E-01 1.46894631283E-01 1.53592192815E-01 1.60593845707E-01 1.67912048024E-01 1.75559604268E-01 1.83549657457E-01 1.91895678886E-01 2.00611455320E-01 2.09711073404E-01 2.19208901027E-01 2.29119565398E-01 2.39457927559E-01 2.50239053054E-01 2.61478178475E-01 2.73190673594E-01 2.85391998782E-01 2.98097657409E-01 3.11323142936E-01 3.25083880395E-01 3.39395161956E-01 3.54272076317E-01 3.69729431623E-01 3.85781671674E-01 4.02442785199E-01 4.19726207973E-01 4.37644717637E-01 4.56210321071E-01 4.75434134276E-01 4.95326254717E-01 5.15895626209E-01 5.37149896440E-01 5.59095267375E-01 5.81736338824E-01 6.05075945592E-01 6.29114988758E-01 6.53852261719E-01 6.79284271801E-01 7.05405058400E-01 7.32206008725E-01 7.59675672451E-01 7.87799576704E-01 8.16560043029E-01 8.45936008151E-01 8.75902850564E-01 9.06432225132E-01 9.37491908124E-01 9.69045655266E-01 1.00105307556E+00 1.03346952383E+00 1.06624601501E+00 1.09932916342E+00 1.13266115031E+00 1.16617972295E+00 1.19981822867E+00 1.23350568714E+00 1.26716690408E+00 1.30072262949E+00 1.33408976316E+00 1.36718161010E+00 1.39990818776E+00 1.43217658697E+00 1.46389138747E+00 1.49495512847E+00 1.52526883383E+00 1.55473259075E+00 1.58324617964E+00 1.61070975194E+00 1.63702455168E+00 1.66209367512E+00 1.68582286178E+00 1.70812130885E+00 1.72890249976E+00 1.74808503632E+00 1.76559346290E+00 1.78135906976E+00 1.79532066197E+00 1.80742527917E+00 1.81762885121E+00 1.82589677410E+00 1.83220439052E+00 1.83653735972E+00 1.83889190158E+00 1.83927490107E+00 1.83770386016E+00 1.83420668601E+00 1.82882130631E+00 1.82159510474E+00 1.81258417245E+00 1.80185237411E+00 1.78947023059E+00 1.77551362339E+00 1.76006232986E+00 1.74319840171E+00 1.72500440317E+00 1.70556152905E+00 1.68494762687E+00 1.66323515129E+00 1.64048908303E+00 1.61676484924E+00 1.59210628653E+00 1.56654369315E+00 1.54009202263E+00 1.51276307399E+00 1.48461210770E+00 1.45570720930E+00 1.42611684688E+00 1.39590962886E+00 1.36515406729E+00 1.33391834795E+00 1.30227010785E+00 1.27027622119E+00 1.23800259438E+00 1.20549931439E+00 1.17284481272E+00 1.14010097869E+00 1.10732801569E+00 1.07458429027E+00 1.04192619331E+00 1.00940801350E+00 9.77081823229E-01 9.44997377034E-01 9.13202022749E-01 8.81740625256E-01 8.50655502881E-01 8.19986376335E-01 7.89770330069E-01 7.60041785886E-01 7.30819246979E-01 7.02145252507E-01 6.74046209363E-01 6.46545872679E-01 6.19665376457E-01 5.93423274449E-01 5.67835590777E-01 5.42915879737E-01 5.18675294177E-01 4.95122661805E-01 4.72264568719E-01 4.50105449447E-01 4.28647682712E-01 4.07891692137E-01 3.87836051086E-01 3.68477590809E-01 3.49811511079E-01 3.31831492500E-01 3.14529809701E-01 2.97897444627E-01 2.81924199210E-01 2.66598806709E-01 2.51909041081E-01 2.37841823780E-01 2.24383327455E-01 2.11519076064E-01 1.99234040992E-01 1.87512732819E-01 1.76339288464E-01 1.65697553455E-01 1.55571159183E-01 1.45943595017E-01 1.36798275236E-01 1.28118600765E-01 1.19888015764E-01 1.12090059150E-01 1.04708411180E-01 9.77269352405E-02 9.11297150396E-02 8.49010873945E-02 7.90256708525E-02 7.34883903837E-02 6.82744983990E-02 6.33695923569E-02 5.87596292241E-02 5.44309370567E-02 5.03702239657E-02 4.65645847257E-02 4.30015052782E-02 3.96688653676E-02 3.65549395384E-02 3.36483967061E-02 3.09382984986E-02 2.84140965471E-02 2.60656288894E-02 2.38831156281E-02 2.18571539699E-02 1.99787127534E-02 1.82391265559E-02 1.66300894534E-02 1.51436484949E-02 1.37721969350E-02 1.25084672621E-02 1.13455240457E-02 1.02767566203E-02 9.29587161604E-03 8.39688534185E-03 7.57411602492E-03 6.82217590632E-03 6.13596319440E-03 5.51065387724E-03 4.94169339697E-03 4.42478819121E-03 3.95589710923E-03 3.53122271349E-03 3.14720247998E-03 2.80049991382E-03 2.48799559925E-03 2.20677820551E-03 1.95413547220E-03 1.72754519947E-03 1.52466626933E-03 1.34332972524E-03 1.18152993751E-03 1.03741588141E-03 9.09282554724E-04 7.95562560062E-04 6.94817876113E-04 6.05731840125E-04 5.27101362091E-04 4.57829388903E-04 3.96917634458E-04 3.43459589310E-04 2.96633820998E-04 2.55697573753E-04 2.19980673851E-04 1.88879744525E-04 1.61852732112E-04 1.38413742967E-04 1.18128188696E-04 1.00608235453E-04 8.55085513732E-05 7.25223447724E-05 6.13776844414E-05 5.18340922867E-05 4.36793976412E-05 3.67268418430E-05 3.08124211100E-05 2.57924553408E-05 2.15413702116E-05 1.79496798290E-05 1.49221572066E-05 1.23761799560E-05 1.02402388036E-05 8.45259685540E-06 6.96008790756E-06 5.71704254497E-06 4.68433125847E-06 3.82851433738E-06 3.12108884848E-06 2.53782358370E-06 2.05817343936E-06 1.66476527182E-06 1.34294785130E-06 1.08039910201E-06 8.66784366668E-07 6.93459964921E-07 5.53216821480E-07 4.40059431015E-07 3.49020088464E-07 2.76023538577E-07 2.17665095730E-07 1.71144627454E-07 1.34169713079E-07 1.04869114070E-07 8.17199477731E-08 6.34865814738E-08 4.91695191599E-08 3.79627807816E-08 2.92184756590E-08 2.24174502131E-08 1.71450475462E-08 1.30711544549E-08 9.93383224585E-09 7.52593292767E-09 5.68419365742E-09 4.28015793711E-09 3.21161852928E-09 2.40114944011E-09 1.78865160887E-09 1.32746679866E-09 9.81505372214E-10 7.22956729449E-10 5.30471174250E-10 3.87721716773E-10 2.82270860594E-10 2.04681228575E-10 1.47820350648E-10 1.06319424020E-10 7.61536694613E-11 5.43183131455E-11 3.85794519092E-11 2.72833079304E-11 1.92108147050E-11 1.34672424200E-11 9.39878754640E-12 6.52981955289E-12 4.51588123566E-12 3.10864809623E-12 2.12992412740E-12 1.45243362091E-12 9.85699833217E-13 6.65712932526E-13 4.47406941255E-13 2.99208772630E-13 1.99108182998E-13 1.31838467878E-13 8.68642251484E-14 5.69525183021E-14 3.71635648485E-14 2.41415188952E-14 1.56187737195E-14 1.00713677906E-14 6.48074135930E-15 4.16993414550E-15 2.66783258539E-15 1.69699929659E-15 1.07316602913E-15 6.74656006599E-16 4.21595279878E-16 2.61863042632E-16 1.61653322857E-16 9.91729970197E-17 6.04597867862E-17 3.66243331146E-17 2.20428586903E-17 1.31803178150E-17 7.82902855973E-18 4.61931635392E-18 2.70706521242E-18 1.57555584900E-18 9.10637187286E-19 5.22631287416E-19 2.97814161654E-19 1.68483039664E-19 9.46211959854E-20 5.27475238667E-20 2.91847931070E-20 1.60254799743E-20 8.73220313898E-21 4.72120569461E-21 2.53253667524E-21 1.34768743562E-21 7.11392978912E-22 3.72454069408E-22 1.93389934357E-22 9.95743953274E-23 5.08356365005E-23 2.57305552911E-23 1.29105071475E-23 6.42100561779E-24 3.16504694022E-24 1.54605794320E-24 7.48325279004E-25 3.58859143475E-25 1.70480946386E-25 8.02221974424E-26 3.73876469604E-26 1.72553562035E-26 7.88548886700E-27 3.56769916233E-27 1.59789438850E-27 7.08358000307E-28 3.10775211047E-28 1.34918658943E-28 5.79525126467E-29 2.46257202362E-29 1.03505422850E-29 4.30264081587E-30 1.76866056156E-30 7.18836507576E-31 2.88821852228E-31 1.14704785635E-31 4.50216159590E-32 1.74616131097E-32 6.69123471759E-33 2.53291635726E-33 9.47024784865E-34 3.49671426948E-34 1.27481977547E-34 4.58836505440E-35 1.63011209343E-35 5.71552640233E-36 1.97743534745E-36 6.74967356534E-37 2.27260456612E-37 7.54659235767E-38 2.47108771504E-38 7.97735789129E-39 2.53855199594E-39 7.96142070749E-40 2.46032835995E-40 7.49053819428E-41 2.24630578265E-41 6.63403952403E-42 1.92910980241E-42 5.52231136175E-43 1.55590884609E-43 4.31379915187E-44 1.17668522909E-44 3.15715778858E-45 8.33062821998E-46 2.16129196984E-46 3S 1 0 0.50 2.00 3P 2 1 0.50 2.00 3P 2 1 1.50 0.00 0 0.50 1 0.50 1 1.50 -7.00000000 100.00000000 14.00000000 0.01250000 espresso-5.0.2/pseudo/H_US.van0000644000700200004540000015740512053145632015200 0ustar marsamoscm 7 3 2 26 9 2002 hydrogen 1.000000000 1.000000000 5.000000000 1 399 -9.17722813320E-01 100 1.000000000 -0.477159370 3 0 0.500000000 1 2 0.00000 3 8 10.00000 5.00000000000E-01 0 8.00000000000E-01 1 271 0 -4.77175016779E-01 0.00000000000E+00 1.02765767535E-03 2.08132643737E-03 3.16166983182E-03 4.26935770419E-03 5.40508076718E-03 6.56954692327E-03 7.76348142921E-03 8.98762785877E-03 1.02427483999E-02 1.15296240080E-02 1.28490552904E-02 1.42018624068E-02 1.55888865703E-02 1.70109890601E-02 1.84690530200E-02 1.99639831933E-02 2.14967068557E-02 2.30681739395E-02 2.46793579023E-02 2.63312560640E-02 2.80248903050E-02 2.97613070671E-02 3.15415793249E-02 3.33668051621E-02 3.52381097512E-02 3.71566460241E-02 3.91235938232E-02 4.11401623143E-02 4.32075895662E-02 4.53271427055E-02 4.75001200748E-02 4.97278501477E-02 5.20116933903E-02 5.43530421910E-02 5.67533215552E-02 5.92139903229E-02 6.17365408578E-02 6.43225001197E-02 6.69734308518E-02 6.96909306678E-02 7.24766347761E-02 7.53322141306E-02 7.82593781758E-02 8.12598741994E-02 8.43354876713E-02 8.74880445690E-02 9.07194085351E-02 9.40314856820E-02 9.74262205339E-02 1.00905600268E-01 1.04471652587E-01 1.08126447018E-01 1.11872095035E-01 1.15710750546E-01 1.19644609081E-01 1.23675909715E-01 1.27806932503E-01 1.32040001170E-01 1.36377480461E-01 1.40821777907E-01 1.45375341944E-01 1.50040662101E-01 1.54820268661E-01 1.59716730751E-01 1.64732656429E-01 1.69870691654E-01 1.75133517343E-01 1.80523850385E-01 1.86044439306E-01 1.91698064238E-01 1.97487533108E-01 2.03415680363E-01 2.09485363187E-01 2.15699458361E-01 2.22060858779E-01 2.28572469737E-01 2.35237203469E-01 2.42057975361E-01 2.49037697312E-01 2.56179272771E-01 2.63485588796E-01 2.70959510358E-01 2.78603870461E-01 2.86421462795E-01 2.94415031562E-01 3.02587260420E-01 3.10940762449E-01 3.19478065595E-01 3.28201601078E-01 3.37113687146E-01 3.46216513545E-01 3.55512124163E-01 3.65002397339E-01 3.74689026486E-01 3.84573496239E-01 3.94657060437E-01 4.04940713504E-01 4.15425164873E-01 4.26110806659E-01 4.36997681946E-01 4.48085449299E-01 4.59373344139E-01 4.70860138490E-01 4.82544096835E-01 4.94422928212E-01 5.06493736289E-01 5.18752963895E-01 5.31196335544E-01 5.43818794076E-01 5.56614434102E-01 5.69576430209E-01 5.82696960715E-01 5.95967125778E-01 6.09376860516E-01 6.22914842648E-01 6.36568393723E-01 6.50323374450E-01 6.64164074235E-01 6.78073093102E-01 6.92031217664E-01 7.06017290065E-01 7.20008069152E-01 7.33978085429E-01 7.47899487958E-01 7.61741884264E-01 7.75472173461E-01 7.89054371190E-01 8.02449429299E-01 8.15615047701E-01 8.28505481039E-01 8.41071340000E-01 8.53259387815E-01 8.65012333777E-01 8.76268624269E-01 8.86962233589E-01 8.97022455631E-01 9.06373699416E-01 9.14935290800E-01 9.22621282992E-01 9.29340280404E-01 9.34995279139E-01 9.39483529242E-01 9.42696424330E-01 9.44519424738E-01 9.44832021035E-01 9.43507746759E-01 9.40414248475E-01 9.35413424288E-01 9.28361641690E-01 9.19110047586E-01 9.07504984976E-01 8.93388531025E-01 8.76599174884E-01 8.56972652531E-01 8.34342959996E-01 8.08543566428E-01 7.79408850062E-01 7.46775782844E-01 7.10485888947E-01 6.70387505147E-01 6.26338370571E-01 5.78208574370E-01 5.25883889243E-01 4.69269517518E-01 4.08294274793E-01 3.42915233151E-01 2.73122839744E-01 1.98946523030E-01 1.20460786468E-01 3.77917819608E-02 -4.88756613401E-02 -1.39290594198E-01 -2.33128152803E-01 -3.29981503012E-01 -4.29353643638E-01 -5.30649227913E-01 -6.33166605803E-01 -7.36090340159E-01 -8.38484509123E-01 -9.39287171991E-01 -1.03730644918E+00 -1.13121874824E+00 -1.21956975215E+00 -1.30077887931E+00 -1.37314801417E+00 -1.43487539916E+00 -1.48407565988E+00 -1.51880700198E+00 -1.53710666130E+00 -1.53703569304E+00 -1.51673413783E+00 -1.47448748339E+00 -1.40880512381E+00 -1.31851118018E+00 -1.20284755186E+00 -1.06158838049E+00 -8.95164191929E-01 -7.04792790864E-01 -4.92612481451E-01 -2.61811342765E-01 -1.67440780524E-02 2.36974609847E-01 4.92414050915E-01 7.41326086082E-01 9.74218172857E-01 1.18052419188E+00 1.34889821898E+00 1.46765737651E+00 1.52539848532E+00 1.51180839957E+00 1.41867806450E+00 1.24111354238E+00 9.78911209295E-01 6.38026474564E-01 2.32013193741E-01 -2.16757524139E-01 -6.76375578958E-01 -1.10554269901E+00 -1.45507535193E+00 -1.67125369517E+00 -1.70027736797E+00 -1.49922937422E+00 -1.04836796714E+00 -3.65723761646E-01 4.76857832211E-01 1.34114234777E+00 2.02220842982E+00 2.27640417874E+00 1.90656793014E+00 9.40813588823E-01 8.01928215637E-02 -7.63579719903E-03 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6.65578617599E+00 -3.57460913696E+01 9.49576732529E+00 0.00000000000E+00 1.39412053655E-06 5.71854568728E-06 1.31958894776E-05 2.40620138329E-05 3.85667546054E-05 5.69746860590E-05 7.95659258206E-05 1.06636982411E-04 1.38501647579E-04 1.75491935780E-04 2.17959073261E-04 2.66274539333E-04 3.20831162573E-04 3.82044274807E-04 4.50352925901E-04 5.26221162526E-04 6.10139374250E-04 7.02625710458E-04 8.04227571817E-04 9.15523180158E-04 1.03712323089E-03 1.16967263228E-03 1.31385233602E-03 1.47038126410E-03 1.64001833673E-03 1.82356460679E-03 2.02186550637E-03 2.23581321117E-03 2.46634912904E-03 2.71446651910E-03 2.98121324832E-03 3.26769469277E-03 3.57507679111E-03 3.90458925835E-03 4.25752896831E-03 4.63526351361E-03 5.03923495260E-03 5.47096375303E-03 5.93205294286E-03 6.42419247920E-03 6.94916384677E-03 7.50884489820E-03 8.10521494884E-03 8.74036013968E-03 9.41647908253E-03 1.01358888025E-02 1.09010309939E-02 1.17144786052E-02 1.25789427727E-02 1.34972801189E-02 1.44725004377E-02 1.55077747851E-02 1.66064439986E-02 1.77720276676E-02 1.90082335799E-02 2.03189676686E-02 2.17083444889E-02 2.31806982510E-02 2.47405944408E-02 2.63928420609E-02 2.81425065243E-02 2.99949232375E-02 3.19557119118E-02 3.40307916406E-02 3.62263967870E-02 3.85490937260E-02 4.10057984886E-02 4.36037953579E-02 4.63507564709E-02 4.92547624818E-02 5.23243243464E-02 5.55684062915E-02 5.89964500353E-02 6.26184003300E-02 6.64447319018E-02 7.04864778678E-02 7.47552597141E-02 7.92633189243E-02 8.40235503538E-02 8.90495374491E-02 9.43555894198E-02 9.99567804749E-02 1.05868991244E-01 1.12108952509E-01 1.18694291380E-01 1.25643580062E-01 1.32976387352E-01 1.40713333039E-01 1.48876145367E-01 1.57487721736E-01 1.66572192843E-01 1.76154990440E-01 1.86262918941E-01 1.96924231081E-01 2.08168707866E-01 2.20027743059E-01 2.32534432454E-01 2.45723668213E-01 2.59632238527E-01 2.74298932922E-01 2.89764653488E-01 3.06072532351E-01 3.23268055726E-01 3.41399194863E-01 3.60516544240E-01 3.80673467350E-01 4.01926250418E-01 4.24334264408E-01 4.47960135662E-01 4.72869925504E-01 4.99133319121E-01 5.26823824038E-01 5.56018978436E-01 5.86800569551E-01 6.19254862321E-01 6.53472838410E-01 6.89550445603E-01 7.27588857533E-01 7.67694743528E-01 8.09980548227E-01 8.54564780461E-01 9.01572310658E-01 9.51134675783E-01 1.00339039056E+00 1.05848526333E+00 1.11657271459E+00 1.17781409564E+00 1.24237900449E+00 1.31044559522E+00 1.38220087671E+00 1.45784099548E+00 1.53757149681E+00 1.62160755703E+00 1.71017417909E+00 1.80350634193E+00 1.90184909311E+00 2.00545757251E+00 2.11459695335E+00 2.22954228508E+00 2.35057822075E+00 2.47799860974E+00 2.61210593455E+00 2.75321056860E+00 2.90162982970E+00 3.05768680252E+00 3.22170890133E+00 3.39402614331E+00 3.57496910193E+00 3.76486650971E+00 3.96404248076E+00 4.17281332538E+00 4.39148393254E+00 4.62034370193E+00 4.85966201458E+00 5.10968324216E+00 5.37062130918E+00 5.64265384001E+00 5.92591594602E+00 6.22049373561E+00 6.52641766428E+00 6.84365588201E+00 7.17210778276E+00 7.51159801488E+00 7.86187127253E+00 8.22258825540E+00 8.59332325559E+00 8.97356390474E+00 9.36271368689E+00 9.76009788815E+00 1.01649737057E+01 1.05765452658E+01 1.09939842913E+01 1.14164570954E+01 1.18431584434E+01 1.22733525899E+01 1.27064214410E+01 1.31419192734E+01 1.35796327383E+01 1.40196439426E+01 1.44623932163E+01 1.49087367064E+01 1.53599921963E+01 1.58179645418E+01 1.62849399220E+01 1.67636358482E+01 1.72570917682E+01 1.77684834931E+01 1.83008440173E+01 1.88566742727E+01 1.94374308120E+01 2.00428844185E+01 2.06703554819E+01 2.13138500185E+01 2.19631458087E+01 2.26029122314E+01 2.32119901113E+01 2.37630077203E+01 2.42225616648E+01 2.45522380685E+01 2.47107752619E+01 2.46576505939E+01 2.43582769954E+01 2.37907744527E+01 2.29538845059E+01 2.18749724400E+01 2.06161927911E+01 1.92758485400E+01 1.79810240879E+01 1.68674003862E+01 1.60442420641E+01 1.55498103437E+01 1.53204260926E+01 1.52335670808E+01 1.52322886107E+01 1.52872003131E+01 1.53549517702E+01 1.53779353384E+01 1.52866782634E+01 1.50046711718E+01 1.44560825557E+01 1.35766053081E+01 1.23272382682E+01 1.07099608736E+01 8.78282671341E+00 6.66989621003E+00 4.55893622554E+00 2.67804248574E+00 1.24375832777E+00 3.82105595475E-01 4.63446413577E-02 4.75883350841E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.54057737160E+02 4.02436715542E+03 -2.39594005421E+05 4.06532314711E+06 -3.39603786801E+07 1.49408497891E+08 -3.32059597235E+08 2.94504065235E+08 2 8 10.000000000 6.00000000000E-01 0.00000000000E+00 -4.70448615498E-04 -9.52806671066E-04 -1.44737560272E-03 -1.95446450133E-03 -2.47439025881E-03 -3.00747779569E-03 -3.55406024591E-03 -4.11447917161E-03 -4.68908477415E-03 -5.27823611277E-03 -5.88230132750E-03 -6.50165786886E-03 -7.13669273203E-03 -7.78780269830E-03 -8.45539458096E-03 -9.13988547904E-03 -9.84170303558E-03 -1.05612857042E-02 -1.12990830205E-02 -1.20555558819E-02 -1.28311768325E-02 -1.36264303578E-02 -1.44418131831E-02 -1.52778345830E-02 -1.61350166952E-02 -1.70138948456E-02 -1.79150178771E-02 -1.88389484913E-02 -1.97862635939E-02 -2.07575546533E-02 -2.17534280629E-02 -2.27745055176E-02 -2.38214243942E-02 -2.48948381467E-02 -2.59954167044E-02 -2.71238468880E-02 -2.82808328265E-02 -2.94670963939E-02 -3.06833776460E-02 -3.19304352789E-02 -3.32090470866E-02 -3.45200104425E-02 -3.58641427777E-02 -3.72422820867E-02 -3.86552874280E-02 -4.01040394547E-02 -4.15894409375E-02 -4.31124173220E-02 -4.46739172745E-02 -4.62749132672E-02 -4.79164021476E-02 -4.95994057521E-02 -5.13249715006E-02 -5.30941730391E-02 -5.49081108594E-02 -5.67679129730E-02 -5.86747355558E-02 -6.06297636542E-02 -6.26342118549E-02 -6.46893250253E-02 -6.67963790077E-02 -6.89566813948E-02 -7.11715722490E-02 -7.34424249134E-02 -7.57706467558E-02 -7.81576800166E-02 -8.06050025761E-02 -8.31141288402E-02 -8.56866105301E-02 -8.83240376065E-02 -9.10280390791E-02 -9.38002839704E-02 -9.66424821425E-02 -9.95563853003E-02 -1.02543787832E-01 -1.05606527852E-01 -1.08746488052E-01 -1.11965596778E-01 -1.15265828888E-01 -1.18649206871E-01 -1.22117801691E-01 -1.25673733946E-01 -1.29319174698E-01 -1.33056346662E-01 -1.36887525013E-01 -1.40815038598E-01 -1.44841270701E-01 -1.48968660274E-01 -1.53199702645E-01 -1.57536950752E-01 -1.61983015766E-01 -1.66540568323E-01 -1.71212339025E-01 -1.76001119646E-01 -1.80909763482E-01 -1.85941186502E-01 -1.91098367488E-01 -1.96384349101E-01 -2.01802237751E-01 -2.07355204526E-01 -2.13046484707E-01 -2.18879378499E-01 -2.24857250090E-01 -2.30983528092E-01 -2.37261704010E-01 -2.43695332283E-01 -2.50288027985E-01 -2.57043466319E-01 -2.63965379330E-01 -2.71057554643E-01 -2.78323830915E-01 -2.85768095551E-01 -2.93394278531E-01 -3.01206348775E-01 -3.09208305883E-01 -3.17404174714E-01 -3.25797994474E-01 -3.34393810970E-01 -3.43195662344E-01 -3.52207568342E-01 -3.61433511870E-01 -3.70877424502E-01 -3.80543162907E-01 -3.90434489745E-01 -4.00555043966E-01 -4.10908316259E-01 -4.21497612273E-01 -4.32326021986E-01 -4.43396375236E-01 -4.54711204891E-01 -4.66272694803E-01 -4.78082637751E-01 -4.90142377343E-01 -5.02452763586E-01 -5.15014092682E-01 -5.27826066143E-01 -5.40887736128E-01 -5.54197478560E-01 -5.67752956930E-01 -5.81551125932E-01 -5.95588233331E-01 -6.09859877800E-01 -6.24361075643E-01 -6.39086403291E-01 -6.54030161228E-01 -6.69186635053E-01 -6.84550389029E-01 -7.00116675127E-01 -7.15881877968E-01 -7.31844083161E-01 -7.48003668664E-01 -7.64364007786E-01 -7.80932156856E-01 -7.97719615295E-01 -8.14743001209E-01 -8.32024731404E-01 -8.49593521114E-01 -8.67484802170E-01 -8.85740856163E-01 -9.04410786648E-01 -9.23550122829E-01 -9.43220222988E-01 -9.63487280918E-01 -9.84421163541E-01 -1.00609390191E+00 -1.02857812905E+00 -1.05194530033E+00 -1.07626404393E+00 -1.10159846493E+00 -1.12800676927E+00 -1.15553996205E+00 -1.18424093129E+00 -1.21414349581E+00 -1.24527154346E+00 -1.27763749492E+00 -1.31123985943E+00 -1.34605860432E+00 -1.38204767845E+00 -1.41912303585E+00 -1.45714567945E+00 -1.49589903982E+00 -1.53506290677E+00 -1.57418805556E+00 -1.61268142165E+00 -1.64981499112E+00 -1.68477541100E+00 -1.71676459649E+00 -1.74514566567E+00 -1.76959502042E+00 -1.79019042095E+00 -1.80735476252E+00 -1.82162239363E+00 -1.83328061918E+00 -1.84202200489E+00 -1.84676567639E+00 -1.84580973839E+00 -1.83749710578E+00 -1.82151259806E+00 -1.80047631975E+00 -1.78071655155E+00 -1.77091878154E+00 -1.77869099593E+00 -1.80704244803E+00 -1.85326356035E+00 -1.91112110805E+00 -1.97485078687E+00 -2.04158383694E+00 -2.10841831601E+00 -2.16298865353E+00 -2.17685019961E+00 -2.12903885236E+00 -2.05908226470E+00 -2.02609911102E+00 -2.02273049274E+00 -2.01954229707E+00 -2.01395609512E+00 -2.00858493806E+00 -2.00393636170E+00 -2.00079347475E+00 -1.99999235017E+00 -1.99999228850E+00 -1.99999214525E+00 -1.99999190963E+00 -1.99999158484E+00 -1.99999119736E+00 -1.99999080608E+00 -1.99999050485E+00 -1.99999040765E+00 -1.99999063901E+00 -1.99999087468E+00 -1.99998786857E+00 -2.00000784257E+00 -2.00003110703E+00 -2.00000513903E+00 -1.99998539938E+00 -1.99999145772E+00 -1.99999081890E+00 -1.99999062086E+00 -1.99999042789E+00 -1.99999023995E+00 -1.99999005692E+00 -1.99998987870E+00 -1.99998970512E+00 -1.99998953600E+00 -1.99998937113E+00 -1.99998921027E+00 -1.99998905316E+00 -1.99998889957E+00 -1.99998874921E+00 -1.99998860185E+00 -1.99998845727E+00 -1.99998831530E+00 -1.99998817583E+00 -1.99998803886E+00 -1.99998790446E+00 -1.99998777288E+00 -1.99998764456E+00 -1.99998752009E+00 -1.99998740037E+00 -1.99998728652E+00 -1.99998718000E+00 -1.99998708255E+00 -1.99998699630E+00 -1.99998692366E+00 -1.99998686742E+00 -1.99998683060E+00 -1.99998681651E+00 -1.99998682855E+00 -1.99998687019E+00 -1.99998694479E+00 -1.99998705547E+00 -1.99998720484E+00 -1.99998739496E+00 -1.99998762693E+00 -1.99998790090E+00 -1.99998821567E+00 -1.99998856871E+00 -1.99998895590E+00 -1.99998937158E+00 -1.99998980839E+00 -1.99999025757E+00 -1.99999070888E+00 -1.99999115105E+00 -1.99999157194E+00 -1.99999195914E+00 -1.99999230024E+00 -1.99999258356E+00 -1.99999279854E+00 -1.99999293641E+00 -1.99999299057E+00 -1.99999295708E+00 -1.99999283495E+00 -1.99999262629E+00 -1.99999233628E+00 -1.99999197306E+00 -1.99999154733E+00 -1.99999107191E+00 -1.99999056112E+00 -1.99999003017E+00 -1.99998949447E+00 -1.99998896897E+00 -1.99998846764E+00 -1.99998800294E+00 -1.99998758557E+00 -1.99998722416E+00 -1.99998692523E+00 -1.99998669321E+00 -1.99998653053E+00 -1.99998643781E+00 -1.99998641411E+00 -1.99998645710E+00 -1.99998656346E+00 -1.99998672896E+00 -1.99998694884E+00 -1.99998721790E+00 -1.99998753076E+00 -1.99998788197E+00 -1.99998826612E+00 -1.99998867797E+00 -1.99998911247E+00 -1.99998956486E+00 -1.99999003066E+00 -1.99999050570E+00 -1.99999098616E+00 -1.99999146852E+00 -1.99999194959E+00 -1.99999242649E+00 -1.99999289665E+00 -1.99999335775E+00 -1.99999380779E+00 -1.99999424500E+00 -1.99999466787E+00 -1.99999507511E+00 -1.99999546567E+00 -1.99999583869E+00 -1.99999619352E+00 -1.99999652970E+00 -1.99999684694E+00 -1.99999714510E+00 -1.99999742422E+00 -1.99999768445E+00 -1.99999792436E+00 -1.99999814829E+00 -1.99999835506E+00 -1.99999854509E+00 -1.99999871889E+00 -1.99999887706E+00 -1.99999902030E+00 -1.99999914935E+00 -1.99999926502E+00 -1.99999936816E+00 -1.99999945961E+00 -1.99999954027E+00 -1.99999961100E+00 -1.99999967268E+00 -1.99999972614E+00 -1.99999977220E+00 -1.99999981165E+00 -1.99999984521E+00 -1.99999987360E+00 -1.99999989744E+00 -1.99999991733E+00 -1.99999993381E+00 -1.99999994738E+00 -1.99999995846E+00 -1.99999996744E+00 -1.99999997300E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 0.00000000000E+00 -4.35825633329E-04 -8.82684215544E-04 -1.34085501397E-03 -1.81062436145E-03 -2.29228583484E-03 -2.78614043790E-03 -3.29249678887E-03 -3.81167131268E-03 -4.34398843804E-03 -4.88978079942E-03 -5.44938944413E-03 -6.02316404452E-03 -6.61146311559E-03 -7.21465423798E-03 -7.83311428649E-03 -8.46722966440E-03 -9.11739654357E-03 -9.78402111055E-03 -1.04675198188E-02 -1.11683196473E-02 -1.18868583652E-02 -1.26235848039E-02 -1.33789591344E-02 -1.41534531536E-02 -1.49475505755E-02 -1.57617473311E-02 -1.65965518753E-02 -1.74524855010E-02 -1.83300826613E-02 -1.92298912999E-02 -2.01524731885E-02 -2.10984042741E-02 -2.20682750332E-02 -2.30626908357E-02 -2.40822723173E-02 -2.51276557606E-02 -2.61994934863E-02 -2.72984542531E-02 -2.84252236676E-02 -2.95805046037E-02 -3.07650176326E-02 -3.19795014628E-02 -3.32247133905E-02 -3.45014297609E-02 -3.58104464401E-02 -3.71525792985E-02 -3.85286647057E-02 -3.99395600361E-02 -4.13861441872E-02 -4.28693181096E-02 -4.43900053490E-02 -4.59491526010E-02 -4.75477302781E-02 -4.91867330901E-02 -5.08671806370E-02 -5.25901180156E-02 -5.43566164393E-02 -5.61677738715E-02 -5.80247156735E-02 -5.99285952650E-02 -6.18805948003E-02 -6.38819258579E-02 -6.59338301450E-02 -6.80375802161E-02 -7.01944802071E-02 -7.24058665833E-02 -7.46731089031E-02 -7.69976105962E-02 -7.93808097568E-02 -8.18241799521E-02 -8.43292310453E-02 -8.68975100340E-02 -8.95306019030E-02 -9.22301304922E-02 -9.49977593789E-02 -9.78351927741E-02 -1.00744176433E-01 -1.03726498581E-01 -1.06783990849E-01 -1.09918529224E-01 -1.13132035016E-01 -1.16426475828E-01 -1.19803866545E-01 -1.23266270330E-01 -1.26815799626E-01 -1.30454617177E-01 -1.34184937043E-01 -1.38009025630E-01 -1.41929202724E-01 -1.45947842524E-01 -1.50067374680E-01 -1.54290285330E-01 -1.58619118132E-01 -1.63056475295E-01 -1.67605018603E-01 -1.72267470421E-01 -1.77046614700E-01 -1.81945297955E-01 -1.86966430229E-01 -1.92112986033E-01 -1.97388005250E-01 -2.02794594021E-01 -2.08335925573E-01 -2.14015241022E-01 -2.19835850113E-01 -2.25801131910E-01 -2.31914535418E-01 -2.38179580137E-01 -2.44599856534E-01 -2.51179026426E-01 -2.57920823264E-01 -2.64829052305E-01 -2.71907590662E-01 -2.79160387227E-01 -2.86591462434E-01 -2.94204907869E-01 -3.02004885694E-01 -3.09995627880E-01 -3.18181435226E-01 -3.26566676136E-01 -3.35155785148E-01 -3.43953261182E-01 -3.52963665479E-01 -3.62191619213E-01 -3.71641800743E-01 -3.81318942472E-01 -3.91227827280E-01 -4.01373284500E-01 -4.11760185391E-01 -4.22393438078E-01 -4.33277981893E-01 -4.44418781102E-01 -4.55820817936E-01 -4.67489084888E-01 -4.79428576219E-01 -4.91644278604E-01 -5.04141160855E-01 -5.16924162647E-01 -5.29998182185E-01 -5.43368062711E-01 -5.57038577784E-01 -5.71014415233E-01 -5.85300159693E-01 -5.99900273615E-01 -6.14819076654E-01 -6.30060723306E-01 -6.45629178691E-01 -6.61528192340E-01 -6.77761269872E-01 -6.94331642400E-01 -7.11242233539E-01 -7.28495623856E-01 -7.46094012603E-01 -7.64039176577E-01 -7.82332425923E-01 -8.00974556727E-01 -8.19965800197E-01 -8.39305768268E-01 -8.58993395440E-01 -8.79026876662E-01 -8.99403601084E-01 -9.20120081485E-01 -9.41171879221E-01 -9.62553524499E-01 -9.84258431844E-01 -1.00627881061E+00 -1.02860557042E+00 -1.05122822142E+00 -1.07413476933E+00 -1.09731160526E+00 -1.12074339026E+00 -1.14441293483E+00 -1.16830107335E+00 -1.19238653397E+00 -1.21664580396E+00 -1.24105299131E+00 -1.26557968297E+00 -1.29019480064E+00 -1.31486445499E+00 -1.33955179959E+00 -1.36421688591E+00 -1.38881652119E+00 -1.41330413135E+00 -1.43762963128E+00 -1.46173930565E+00 -1.48557570361E+00 -1.50907755157E+00 -1.53217968887E+00 -1.55481303183E+00 -1.57690457290E+00 -1.59837742242E+00 -1.61915090172E+00 -1.63914069787E+00 -1.65825909171E+00 -1.67641527288E+00 -1.69351575727E+00 -1.70946492507E+00 -1.72416570000E+00 -1.73752039354E+00 -1.74943174134E+00 -1.75980416335E+00 -1.76854528341E+00 -1.77556774969E+00 -1.78079140331E+00 -1.78414584924E+00 -1.78557349193E+00 -1.78503310694E+00 -1.78250403043E+00 -1.77799106038E+00 -1.77153017722E+00 -1.76319520706E+00 -1.75310556901E+00 -1.74143526813E+00 -1.72842331915E+00 -1.71438581186E+00 -1.69972985883E+00 -1.68496969848E+00 -1.67074526252E+00 -1.65784355546E+00 -1.64710146114E+00 -1.63697945331E+00 -1.62667769350E+00 -1.61619780234E+00 -1.60554156373E+00 -1.59471105026E+00 -1.58370852517E+00 -1.57253648054E+00 -1.56119762490E+00 -1.54969481798E+00 -1.53803115921E+00 -1.52620980223E+00 -1.51423416020E+00 -1.50210758316E+00 -1.48983369614E+00 -1.47741592306E+00 -1.46485797327E+00 -1.45216319706E+00 -1.43933523558E+00 -1.42637719495E+00 -1.41329247360E+00 -1.40008374500E+00 -1.38675397488E+00 -1.37330520718E+00 -1.35973978141E+00 -1.34605892227E+00 -1.33226416542E+00 -1.31835575820E+00 -1.30433429966E+00 -1.29019896877E+00 -1.27594938178E+00 -1.26158367417E+00 -1.24710057529E+00 -1.23249738071E+00 -1.21777223950E+00 -1.20292206314E+00 -1.18794501359E+00 -1.17283840085E+00 -1.15760134781E+00 -1.14223272831E+00 -1.12673396481E+00 -1.11110704858E+00 -1.09535739703E+00 -1.07949197560E+00 -1.06352210349E+00 -1.04746166487E+00 -1.03132970999E+00 -1.01514870912E+00 -9.98946762219E-01 -9.82755825011E-01 -9.66613330394E-01 -9.50560317293E-01 -9.34642293778E-01 -9.18907235490E-01 -9.03405588404E-01 -8.88188171688E-01 -8.73305317609E-01 -8.58804798427E-01 -8.44730211531E-01 -8.31119130483E-01 -8.18000943963E-01 -8.05395491356E-01 -7.93310642021E-01 -7.81741710577E-01 -7.70669115165E-01 -7.60058876778E-01 -7.49860717262E-01 -7.40009921757E-01 -7.30426209426E-01 -7.21017149519E-01 -7.11678021939E-01 -7.02296785395E-01 -6.92754907001E-01 -6.82933571489E-01 -6.72715118228E-01 -6.61989816884E-01 -6.50657218682E-01 -6.38632560756E-01 -6.25847194988E-01 -6.12253693806E-01 -5.97824696726E-01 -5.82556133177E-01 -5.66464287671E-01 -5.49587097598E-01 -5.31979772745E-01 -5.13714617789E-01 -4.94875905609E-01 -4.75558917310E-01 -4.55864840507E-01 -4.35899679788E-01 -4.15769778196E-01 -3.95581033066E-01 -3.75435360095E-01 -3.55430395160E-01 -3.35656963425E-01 -3.16199253461E-01 -2.97133183434E-01 -2.78526930132E-01 -2.60440006138E-01 -2.42923998836E-01 -2.26022161787E-01 -2.09770237101E-01 -1.94196390472E-01 -1.79322027070E-01 -1.65161939204E-01 -1.51725063297E-01 -1.39014747890E-01 -1.27029428782E-01 -1.15762956705E-01 -1.05205187047E-01 -9.53423294880E-02 -8.61574590211E-02 -7.76308649610E-02 -6.97404936588E-02 -6.24622834237E-02 -5.57705488944E-02 -4.96382934531E-02 -4.40375428137E-02 -3.89396290648E-02 -3.43154781653E-02 -3.01358610744E-02 -2.63716374243E-02 -2.30261609170E-02 -2.00024674021E-02 -1.73030198737E-02 -1.49035811968E-02 -1.27803465998E-02 -1.09101198572E-02 -9.27046831509E-03 -7.83985759692E-03 -6.59776426321E-03 -5.52476702562E-03 -4.60261621165E-03 -3.81428237932E-03 -3.14398479393E-03 -2.57720113159E-03 -2.10065983643E-03 -1.70231691273E-03 -1.37131902547E-03 -1.09795494480E-03 -8.73597399680E-04 -6.90637424592E-04 -5.42413224042E-04 -4.23135487912E-04 -3.27810950395E-04 -2.52165816368E-04 -1.92570482679E-04 -1.55845298102E-04 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 0.00000000000E+00 1.10501278930E-08 4.53265356658E-08 1.04593690424E-07 1.90721044143E-07 3.05688783410E-07 4.51593883196E-07 6.30656480452E-07 8.45226584180E-07 1.09779113944E-06 1.39098146370E-06 1.72758107488E-06 2.11053393133E-06 2.54295310525E-06 3.02812991199E-06 3.56954351872E-06 4.17087105758E-06 4.83599826927E-06 5.56903070448E-06 6.37430551233E-06 7.25640384590E-06 8.22016391691E-06 9.27069473314E-06 1.04133905538E-05 1.16539461003E-05 1.29983725604E-05 1.44530144284E-05 1.60245672233E-05 1.77200961299E-05 1.95470556122E-05 2.15133100472E-05 2.36271554334E-05 2.58973422280E-05 2.83330993719E-05 3.09441595636E-05 3.37407858456E-05 3.67337995715E-05 3.99346098249E-05 4.33552443639E-05 4.70083821705E-05 5.09073876875E-05 5.50663468283E-05 5.95001048521E-05 6.42243061989E-05 6.92554363865E-05 7.46108660732E-05 8.03088973986E-05 8.63688127190E-05 9.28109258588E-05 9.96566360091E-05 1.06928484406E-04 1.14650213931E-04 1.22846831788E-04 1.31544675405E-04 1.40771481731E-04 1.50556460100E-04 1.60930368845E-04 1.71925595849E-04 1.83576243237E-04 1.95918216417E-04 2.08989317694E-04 2.22829344681E-04 2.37480193767E-04 2.52985968871E-04 2.69393095779E-04 2.86750442324E-04 3.05109444711E-04 3.24524240302E-04 3.45051807177E-04 3.66752110812E-04 3.89688258238E-04 4.13926660051E-04 4.39537200661E-04 4.66593417192E-04 4.95172687476E-04 5.25356427571E-04 5.57230299283E-04 5.90884428203E-04 6.26413632740E-04 6.63917664721E-04 7.03501462116E-04 7.45275414459E-04 7.89355641614E-04 8.35864286497E-04 8.84929822448E-04 9.36687375943E-04 9.91279065376E-04 1.04885435667E-03 1.10957043652E-03 1.17359260404E-03 1.24109468177E-03 1.31225944676E-03 1.38727908285E-03 1.46635565494E-03 1.54970160621E-03 1.63754027950E-03 1.73010646361E-03 1.82764696581E-03 1.93042121152E-03 2.03870187229E-03 2.15277552328E-03 2.27294333126E-03 2.39952177446E-03 2.53284339518E-03 2.67325758660E-03 2.82113141471E-03 2.97685047659E-03 3.14081979609E-03 3.31346475797E-03 3.49523208145E-03 3.68659083410E-03 3.88803348677E-03 4.10007701037E-03 4.32326401480E-03 4.55816393048E-03 4.80537423250E-03 5.06552170720E-03 5.33926376057E-03 5.62728976775E-03 5.93032246200E-03 6.24911936159E-03 6.58447423189E-03 6.93721857962E-03 7.30822317538E-03 7.69839959950E-03 8.10870180548E-03 8.54012769403E-03 8.99372068924E-03 9.47057130741E-03 9.97181870686E-03 1.04986522057E-02 1.10523127524E-02 1.16340943312E-02 1.22453452833E-02 1.28874695208E-02 1.35619276081E-02 1.42702376821E-02 1.50139761799E-02 1.57947783395E-02 1.66143384332E-02 1.74744096933E-02 1.83768038848E-02 1.93233904744E-02 2.03160953461E-02 2.13568990083E-02 2.24478342373E-02 2.35909830998E-02 2.47884733006E-02 2.60424738026E-02 2.73551896707E-02 2.87288561047E-02 3.01657316311E-02 3.16680904489E-02 3.32382139426E-02 3.48783814072E-02 3.65908600705E-02 3.83778945441E-02 4.02416958956E-02 4.21844306066E-02 4.42082097697E-02 4.63150789779E-02 4.85070094822E-02 5.07858913286E-02 5.31535293420E-02 5.56116429932E-02 5.81618713723E-02 6.08057846815E-02 6.35449038553E-02 6.63807300992E-02 6.93147862938E-02 7.23486723180E-02 7.54841363804E-02 7.87231643592E-02 8.20680889155E-02 8.55217196794E-02 8.90874950654E-02 9.27696551646E-02 9.65734335947E-02 1.00505264074E-01 1.04572994726E-01 1.08786099617E-01 1.13155872740E-01 1.17695584531E-01 1.22420575123E-01 1.27348252083E-01 1.32497953634E-01 1.37890631990E-01 1.43548306232E-01 1.49493231496E-01 1.55746732853E-01 1.62327660498E-01 1.69250440707E-01 1.76522727913E-01 1.84142711065E-01 1.92096196011E-01 2.00353677751E-01 2.08867732892E-01 2.17571199777E-01 2.26376760722E-01 2.35178675227E-01 2.43857495828E-01 2.52288567873E-01 2.60354881110E-01 2.67964285375E-01 2.75070063606E-01 2.81692239204E-01 2.87934726916E-01 2.93990693595E-01 3.00125982073E-01 3.06629953846E-01 3.13728484574E-01 3.21472776751E-01 3.29664619208E-01 3.37975967484E-01 3.46281300677E-01 3.54562746652E-01 3.62803653942E-01 3.70986577885E-01 3.79093301123E-01 3.87104859801E-01 3.95001575709E-01 4.02763094712E-01 4.10368431674E-01 4.17796022163E-01 4.25023781140E-01 4.32029168873E-01 4.38789264249E-01 4.45280845695E-01 4.51480479741E-01 4.57364617118E-01 4.62909695841E-01 4.68092250102E-01 4.72889023213E-01 4.77277147033E-01 4.81234698993E-01 4.84739213048E-01 4.87769537547E-01 4.90305390323E-01 4.92327502954E-01 4.93817767038E-01 4.94759381756E-01 4.95137001332E-01 4.94936881568E-01 4.94147023798E-01 4.92757315409E-01 4.90759664999E-01 4.88148131323E-01 4.84919043875E-01 4.81071114277E-01 4.76605536153E-01 4.71526072743E-01 4.65839129794E-01 4.59553813136E-01 4.52681968415E-01 4.45238202601E-01 4.37239884772E-01 4.28707126065E-01 4.19662736454E-01 4.10132158587E-01 4.00143376639E-01 3.89726800883E-01 3.78915126378E-01 3.67743167062E-01 3.56247664304E-01 3.44467071922E-01 3.32441317578E-01 3.20211543383E-01 3.07819826686E-01 2.95308884774E-01 2.82721765607E-01 2.70101529181E-01 2.57490922741E-01 2.44932055109E-01 2.32466074194E-01 2.20132853210E-01 2.07970690071E-01 1.96016025191E-01 1.84303181947E-01 1.72864134083E-01 1.61728303496E-01 1.50922391169E-01 1.40470243341E-01 1.30392753832E-01 1.20707802994E-01 1.11430232332E-01 1.02571853686E-01 9.41414904230E-02 8.61450483095E-02 7.85856124566E-02 7.14635673610E-02 6.47767360368E-02 5.85205352584E-02 5.26881431772E-02 4.72706768491E-02 4.22573766804E-02 3.76357961175E-02 3.33919944767E-02 2.95107319577E-02 2.59756654034E-02 2.27695441872E-02 1.98744049981E-02 1.72717647357E-02 1.49428100302E-02 1.28685820753E-02 1.10301548175E-02 9.40880465061E-03 7.98616934097E-03 6.74439413021E-03 5.66626286733E-03 4.73531243794E-03 3.93592898481E-03 3.25342498827E-03 2.67409670786E-03 2.18526210826E-03 1.77527987452E-03 1.43355066143E-03 1.15050211510E-03 9.17559568781E-04 7.27104536160E-04 5.72423277412E-04 4.47647742590E-04 3.47691154217E-04 2.68180358936E-04 2.05386893463E-04 1.56158474501E-04 1.17852362499E-04 8.82717734923E-05 6.56062402949E-05 4.83765621789E-05 3.53847420579E-05 2.56690970570E-05 1.84645470999E-05 1.31679380034E-05 9.30814072605E-06 6.52058503994E-06 4.52583126816E-06 3.11175420540E-06 2.11890492040E-06 1.42862463336E-06 9.53506215952E-07 6.29829298510E-07 4.11631143062E-07 2.66114496206E-07 1.70133261926E-07 1.07535672301E-07 6.71795966974E-08 4.14685799686E-08 2.52853947697E-08 1.52250007825E-08 9.04995305231E-09 5.30880970536E-09 3.07231637666E-09 1.75349274316E-09 9.86635808762E-10 5.47095100311E-10 2.98847260977E-10 1.60740875705E-10 8.50889583383E-11 4.43006607858E-11 2.26641362477E-11 1.13766603142E-11 5.58803781979E-12 2.67122532490E-12 1.22817006631E-12 5.28428423316E-13 1.98098881123E-13 5.12156356343E-14 1.55593343615E-15 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6.27499101025E-05 1.27088341742E-04 1.93055508533E-04 2.60692642102E-04 3.30042017859E-04 4.01146981422E-04 4.74051975707E-04 5.48802568709E-04 6.25445481983E-04 7.04028619843E-04 7.84601099310E-04 8.67213280805E-04 9.51916799631E-04 1.03876459825E-03 1.12781095935E-03 1.21911153982E-03 1.31272340548E-03 1.40870506681E-03 1.50711651546E-03 1.60801926180E-03 1.71147637332E-03 1.81755251409E-03 1.92631398514E-03 2.03782876595E-03 2.15216655687E-03 2.26939882275E-03 2.38959883756E-03 2.51284173024E-03 2.63920453161E-03 2.76876622252E-03 2.90160778324E-03 3.03781224409E-03 3.17746473729E-03 3.32065255018E-03 3.46746517981E-03 3.61799438885E-03 3.77233426296E-03 3.93058126959E-03 4.09283431826E-03 4.25919482242E-03 4.42976676279E-03 4.60465675239E-03 4.78397410315E-03 4.96783089426E-03 5.15634204219E-03 5.34962537256E-03 5.54780169373E-03 5.75099487235E-03 5.95933191079E-03 6.17294302645E-03 6.39196173326E-03 6.61652492503E-03 6.84677296106E-03 7.08284975388E-03 7.32490285916E-03 7.57308356797E-03 7.82754700133E-03 8.08845220719E-03 8.35596225977E-03 8.63024436158E-03 8.91146994785E-03 9.19981479373E-03 9.49545912414E-03 9.79858772640E-03 1.01093900658E-02 1.04280604038E-02 1.07547979199E-02 1.10898068355E-02 1.14332965423E-02 1.17854817323E-02 1.21465825329E-02 1.25168246438E-02 1.28964394784E-02 1.32856643082E-02 1.36847424115E-02 1.40939232251E-02 1.45134625003E-02 1.49436224628E-02 1.53846719766E-02 1.58368867121E-02 1.63005493180E-02 1.67759495987E-02 1.72633846948E-02 1.77631592691E-02 1.82755856970E-02 1.88009842617E-02 1.93396833544E-02 1.98920196795E-02 2.04583384653E-02 2.10389936793E-02 2.16343482502E-02 2.22447742937E-02 2.28706533461E-02 2.35123766021E-02 2.41703451597E-02 2.48449702706E-02 2.55366735976E-02 2.62458874776E-02 2.69730551924E-02 2.77186312457E-02 2.84830816465E-02 2.92668842014E-02 3.00705288124E-02 3.08945177837E-02 3.17393661350E-02 3.26056019242E-02 3.34937665768E-02 3.44044152246E-02 3.53381170527E-02 3.62954556551E-02 3.72770293996E-02 3.82834518017E-02 3.93153519083E-02 4.03733746904E-02 4.14581814467E-02 4.25704502169E-02 4.37108762050E-02 4.48801722145E-02 4.60790690933E-02 4.73083161912E-02 4.85686818275E-02 4.98609537718E-02 5.11859397361E-02 5.25444678797E-02 5.39373873271E-02 5.53655686982E-02 5.68299046528E-02 5.83313104486E-02 5.98707245130E-02 6.14491090300E-02 6.30674505414E-02 6.47267605631E-02 6.64280762180E-02 6.81724608838E-02 6.99610048576E-02 7.17948260377E-02 7.36750706219E-02 7.56029138245E-02 7.75795606101E-02 7.96062464472E-02 8.16842380806E-02 8.38148343227E-02 8.59993668654E-02 8.82392011127E-02 9.05357370340E-02 9.28904100389E-02 9.53046918747E-02 9.77800915461E-02 1.00318156259E-01 1.02920472385E-01 1.05588666458E-01 1.08324406186E-01 1.11129401494E-01 1.14005405597E-01 1.16954216090E-01 1.19977676076E-01 1.23077675317E-01 1.26256151411E-01 1.29515091011E-01 1.32856531060E-01 1.36282560066E-01 1.39795319410E-01 1.43397004680E-01 1.47089867046E-01 1.50876214668E-01 1.54758414137E-01 1.58738891953E-01 1.62820136045E-01 1.67004697323E-01 1.71295191274E-01 1.75694299596E-01 1.80204771876E-01 1.84829427305E-01 1.89571156444E-01 1.94432923028E-01 1.99417765818E-01 2.04528800504E-01 2.09769221650E-01 2.15142304689E-01 2.20651407972E-01 2.26299974869E-01 2.32091535917E-01 2.38029711032E-01 2.44118211765E-01 2.50360843628E-01 2.56761508469E-01 2.63324206912E-01 2.70053040857E-01 2.76952216045E-01 2.84026044684E-01 2.91278948147E-01 2.98715459736E-01 3.06340227511E-01 3.14158017202E-01 3.22173715182E-01 3.30392331521E-01 3.38819003124E-01 3.47458996934E-01 3.56317713229E-01 3.65400688995E-01 3.74713601386E-01 3.84262271278E-01 3.94052666898E-01 4.04090907564E-01 4.14383267502E-01 4.24936179772E-01 4.35756240288E-01 4.46850211941E-01 4.58225028822E-01 4.69887800564E-01 4.81845816779E-01 4.94106551615E-01 5.06677668431E-01 5.19567024584E-01 5.32782676342E-01 5.46332883917E-01 5.60226116630E-01 5.74471058204E-01 5.89076612190E-01 6.04051907536E-01 6.19406304288E-01 6.35149399445E-01 6.51291032953E-01 6.67841293859E-01 6.84810526614E-01 7.02209337542E-01 7.20048601465E-01 7.38339468505E-01 7.57093371048E-01 7.76322030895E-01 7.96037466583E-01 8.16252000901E-01 8.36978268593E-01 8.58229224248E-01 8.80018150408E-01 9.02358665859E-01 9.25264734152E-01 9.48750672324E-01 9.72831159852E-01 9.97521247823E-01 1.02283636835E+00 1.04879234420E+00 1.07540539871E+00 1.10269216590E+00 1.13066970089E+00 1.15935549055E+00 1.18876746444E+00 1.21892400598E+00 1.24984396402E+00 1.28154666451E+00 1.31405192269E+00 1.34738005540E+00 1.38155189380E+00 1.41658879642E+00 1.45251266244E+00 1.48934594546E+00 1.52711166749E+00 1.56583343331E+00 1.60553544531E+00 1.64624251852E+00 1.68798009620E+00 1.73077426569E+00 1.77465177474E+00 1.81964004821E+00 1.86576720526E+00 1.91306207684E+00 1.96155422379E+00 2.01127395529E+00 2.06225234779E+00 2.11452126444E+00 2.16811337501E+00 2.22306217632E+00 2.27940201315E+00 2.33716809975E+00 2.39639654179E+00 2.45712435898E+00 2.51938950818E+00 2.58323090714E+00 2.64868845881E+00 2.71580307628E+00 2.78461670839E+00 2.85517236589E+00 2.92751414836E+00 3.00168727177E+00 3.07773809674E+00 3.15571415751E+00 3.23566419166E+00 3.31763817056E+00 3.40168733061E+00 3.48786420529E+00 3.57622265792E+00 3.66681791544E+00 3.75970660282E+00 3.85494677852E+00 3.95259797074E+00 4.05272121467E+00 4.15537909058E+00 4.26063576299E+00 4.36855702075E+00 4.47921031816E+00 4.59266481713E+00 4.70899143041E+00 4.82826286593E+00 4.95055367222E+00 5.07594028500E+00 5.20450107500E+00 5.33631639690E+00 5.47146863955E+00 5.61004227752E+00 5.75212392383E+00 5.89780238414E+00 6.04716871224E+00 6.20031626693E+00 6.35734077043E+00 6.51834036815E+00 6.68341569010E+00 6.85266991372E+00 7.02620882841E+00 7.20414090164E+00 7.38657734675E+00 7.57363219246E+00 7.76542235413E+00 7.96206770686E+00 8.16369116039E+00 8.37041873595E+00 8.58237964500E+00 8.79970637001E+00 9.02253474726E+00 9.25100405173E+00 9.48525708418E+00 9.72544026038E+00 9.97170370264E+00 1.02242013336E+01 1.04830909726E+01 1.07485344339E+01 1.10206976285E+01 1.12997506671E+01 1.15858679670E+01 1.18792283609E+01 1.21800152085E+01 1.24884165114E+01 1.28046250305E+01 1.31288384063E+01 1.34612592828E+01 1.38020954339E+01 1.41515598932E+01 1.45098710874E+01 1.48772529727E+01 1.52539351747E+01 1.56401531320E+01 1.60361482435E+01 1.64421680189E+01 1.68584662339E+01 1.72853030884E+01 1.77229453693E+01 1.81716666173E+01 1.86317472977E+01 1.91034749761E+01 1.95871444974E+01 2.00830581710E+01 2.05915259590E+01 2.11128656704E+01 2.16474031593E+01 2.21954725293E+01 2.27574163414E+01 2.33335858288E+01 2.39243411162E+01 2.45300514449E+01 2.51510954036E+01 2.57878611650E+01 2.64407467284E+01 2.71101601685E+01 2.77965198905E+01 2.85002548916E+01 2.92218050291E+01 2.99616212952E+01 3.07201660993E+01 3.14979135566E+01 3.22953497844E+01 3.31129732065E+01 3.39512948641E+01 3.48108387354E+01 3.56921420635E+01 3.65957556915E+01 3.75222444074E+01 3.84721872969E+01 3.94461781050E+01 4.04448256079E+01 4.14687539927E+01 4.25186032479E+01 4.35950295635E+01 4.46987057411E+01 4.58303216142E+01 4.69905844794E+01 4.81802195389E+01 4.93999703534E+01 5.06505993067E+01 5.19328880827E+01 6.19688044167E-05 6.35375521692E-05 6.51460129602E-05 6.67951921300E-05 6.84861204692E-05 7.02198548631E-05 7.19974789522E-05 7.38201038093E-05 7.56888686344E-05 7.76049414662E-05 7.95695199127E-05 8.15838318994E-05 8.36491364368E-05 8.57667244074E-05 8.79379193728E-05 9.01640784004E-05 9.24465929121E-05 9.47868895537E-05 9.71864310869E-05 9.96467173032E-05 1.02169285962E-04 1.04755713750E-04 1.07407617269E-04 1.10126654045E-04 1.12914523565E-04 1.15772968338E-04 1.18703774985E-04 1.21708775356E-04 1.24789847673E-04 1.27948917707E-04 1.31187959980E-04 1.34508998998E-04 1.37914110519E-04 1.41405422849E-04 1.44985118171E-04 1.48655433912E-04 1.52418664138E-04 1.56277160991E-04 1.60233336156E-04 1.64289662373E-04 1.68448674977E-04 1.72712973486E-04 1.77085223226E-04 1.81568156995E-04 1.86164576773E-04 1.90877355471E-04 1.95709438731E-04 2.00663846760E-04 2.05743676226E-04 2.10952102186E-04 2.16292380078E-04 2.21767847748E-04 2.27381927542E-04 2.33138128443E-04 2.39040048264E-04 2.45091375896E-04 2.51295893616E-04 2.57657479450E-04 2.64180109596E-04 2.70867860911E-04 2.77724913456E-04 2.84755553113E-04 2.91964174260E-04 2.99355282520E-04 3.06933497577E-04 3.14703556061E-04 3.22670314512E-04 3.30838752414E-04 3.39213975305E-04 3.47801217973E-04 3.56605847725E-04 3.65633367740E-04 3.74889420512E-04 3.84379791376E-04 3.94110412121E-04 4.04087364704E-04 4.14316885044E-04 4.24805366924E-04 4.35559365987E-04 4.46585603833E-04 4.57890972218E-04 4.69482537367E-04 4.81367544385E-04 4.93553421787E-04 5.06047786145E-04 5.18858446842E-04 5.31993410959E-04 5.45460888276E-04 5.59269296404E-04 5.73427266048E-04 5.87943646400E-04 6.02827510670E-04 6.18088161758E-04 6.33735138068E-04 6.49778219469E-04 6.66227433409E-04 6.83093061182E-04 7.00385644356E-04 7.18115991356E-04 7.36295184228E-04 7.54934585558E-04 7.74045845579E-04 7.93640909452E-04 8.13732024728E-04 8.34331749008E-04 8.55452957792E-04 8.77108852521E-04 8.99312968836E-04 9.22079185031E-04 9.45421730733E-04 9.69355195793E-04 9.93894539406E-04 1.01905509946E-03 1.04485260212E-03 1.07130317168E-03 1.09842334059E-03 1.12623005984E-03 1.15474070954E-03 1.18397310978E-03 1.21394553175E-03 1.24467670920E-03 1.27618585010E-03 1.30849264871E-03 1.34161729782E-03 1.37558050141E-03 1.41040348759E-03 1.44610802187E-03 1.48271642074E-03 1.52025156563E-03 1.55873691724E-03 1.59819653017E-03 1.63865506795E-03 1.68013781849E-03 1.72267070987E-03 1.76628032651E-03 1.81099392586E-03 1.85683945536E-03 1.90384556997E-03 1.95204165003E-03 2.00145781967E-03 2.05212496560E-03 2.10407475643E-03 2.15733966248E-03 2.21195297605E-03 2.26794883224E-03 2.32536223027E-03 2.38422905539E-03 2.44458610128E-03 2.50647109307E-03 2.56992271088E-03 2.63498061405E-03 2.70168546587E-03 2.77007895906E-03 2.84020384177E-03 2.91210394434E-03 2.98582420667E-03 3.06141070632E-03 3.13891068733E-03 3.21837258970E-03 3.29984607970E-03 3.38338208092E-03 3.46903280607E-03 3.55685178966E-03 3.64689392141E-03 3.73921548057E-03 3.83387417112E-03 3.93092915784E-03 4.03044110324E-03 4.13247220554E-03 4.23708623749E-03 4.34434858626E-03 4.45432629432E-03 4.56708810132E-03 4.68270448705E-03 4.80124771552E-03 4.92279188010E-03 5.04741294987E-03 5.17518881703E-03 5.30619934567E-03 5.44052642163E-03 5.57825400371E-03 5.71946817613E-03 5.86425720234E-03 6.01271158021E-03 6.16492409854E-03 6.32098989512E-03 6.48100651615E-03 6.64507397722E-03 6.81329482585E-03 6.98577420554E-03 7.16261992150E-03 7.34394250809E-03 7.52985529781E-03 7.72047449220E-03 7.91591923448E-03 8.11631168396E-03 8.32177709245E-03 8.53244388252E-03 8.74844372778E-03 8.96991163515E-03 9.19698602929E-03 9.42980883908E-03 9.66852558636E-03 9.91328547687E-03 1.01642414935E-02 1.04215504920E-02 1.06853732987E-02 1.09558748116E-02 1.12332241029E-02 1.15175945250E-02 1.18091638185E-02 1.21081142239E-02 1.24146325948E-02 1.27289105152E-02 1.30511444190E-02 1.33815357130E-02 1.37202909024E-02 1.40676217202E-02 1.44237452595E-02 1.47888841092E-02 1.51632664928E-02 1.55471264116E-02 1.59407037905E-02 1.63442446282E-02 1.67580011509E-02 1.71822319698E-02 1.76172022430E-02 1.80631838411E-02 1.85204555170E-02 1.89893030806E-02 1.94700195768E-02 1.99629054690E-02 2.04682688269E-02 2.09864255192E-02 2.15176994106E-02 2.20624225646E-02 2.26209354509E-02 2.31935871582E-02 2.37807356125E-02 2.43827478007E-02 2.50000000000E-02 2.56328780131E-02 2.62817774094E-02 2.69471037721E-02 2.76292729519E-02 2.83287113267E-02 2.90458560682E-02 2.97811554153E-02 3.05350689540E-02 3.13080679048E-02 3.21006354172E-02 3.29132668717E-02 3.37464701894E-02 3.46007661495E-02 3.54766887148E-02 3.63747853655E-02 3.72956174410E-02 3.82397604916E-02 3.92078046373E-02 4.02003549371E-02 4.12180317675E-02 4.22614712095E-02 4.33313254467E-02 4.44282631729E-02 4.55529700098E-02 4.67061489358E-02 4.78885207253E-02 4.91008243992E-02 5.03438176868E-02 5.16182774992E-02 5.29250004153E-02 5.42648031796E-02 5.56385232123E-02 5.70470191332E-02 5.84911712981E-02 5.99718823492E-02 6.14900777789E-02 6.30467065090E-02 6.46427414829E-02 6.62791802746E-02 6.79570457115E-02 6.96773865141E-02 7.14412779516E-02 7.32498225133E-02 7.51041505987E-02 7.70054212230E-02 7.89548227422E-02 8.09535735959E-02 8.30029230684E-02 8.51041520698E-02 8.72585739365E-02 8.94675352525E-02 9.17324166905E-02 9.40546338750E-02 9.64356382674E-02 9.88769180730E-02 1.01379999171E-01 1.03946446069E-01 1.06577862879E-01 1.09275894323E-01 1.12042226758E-01 1.14878589233E-01 1.17786754565E-01 1.20768540453E-01 1.23825810610E-01 1.26960475930E-01 1.30174495679E-01 1.33469878727E-01 1.36848684793E-01 1.40313025742E-01 1.43865066900E-01 1.47507028408E-01 1.51241186610E-01 1.55069875478E-01 1.58995488065E-01 1.63020478008E-01 1.67147361057E-01 1.71378716647E-01 1.75717189515E-01 1.80165491346E-01 1.84726402473E-01 1.89402773616E-01 1.94197527658E-01 1.99113661476E-01 2.04154247814E-01 2.09322437203E-01 2.14621459929E-01 2.20054628055E-01 2.25625337486E-01 2.31337070098E-01 2.37193395909E-01 2.43197975314E-01 2.49354561370E-01 2.55667002145E-01 2.62139243118E-01 2.68775329652E-01 2.75579409516E-01 2.82555735482E-01 2.89708667981E-01 2.97042677827E-01 3.04562349018E-01 3.12272381590E-01 3.20177594567E-01 3.28282928962E-01 3.36593450875E-01 3.45114354652E-01 3.53850966134E-01 3.62808745990E-01 3.71993293122E-01 3.81410348171E-01 3.91065797105E-01 4.00965674891E-01 4.11116169277E-01 4.21523624652E-01 4.32194546014E-01 4.43135603037E-01 4.54353634236E-01 4.65855651247E-01 4.77648843206E-01 4.89740581240E-01 5.02138423080E-01 5.14850117780E-01 5.27883610564E-01 5.41247047788E-01 5.54948782036E-01 5.68997377338E-01 5.83401614524E-01 5.98170496709E-01 6.13313254928E-01 6.28839353895E-01 6.44758497930E-01 6.61080637014E-01 6.77815973016E-01 6.94974966067E-01 7.12568341094E-01 7.30607094531E-01 7.49102501185E-01 7.68066121288E-01 7.87509807719E-01 8.07445713415E-01 8.27886298967E-01 8.48844340406E-01 8.70332937190E-01 8.92365520391E-01 9.14955861092E-01 9.38118078990E-01 9.61866651226E-01 9.86216421430E-01 1.01118260900E+00 1.03678081862E+00 1.06302705000E+00 1.08993770789E+00 1.11752961233E+00 1.14582000916E+00 1.17482658079E+00 1.20456745728E+00 1.23506122764E+00 1.26632695147E+00 1.29838417087E+00 1 0.00000000000E+00 8.59934612422E-05 1.74163855027E-04 2.64566273735E-04 3.57257209915E-04 4.52294584832E-04 5.49737784497E-04 6.49647696607E-04 7.52086748394E-04 8.57118945430E-04 9.64809911389E-04 1.07522692881E-03 1.18843898086E-03 1.30451679416E-03 1.42353288263E-03 1.54556159249E-03 1.67067914828E-03 1.79896370014E-03 1.93049537214E-03 2.06535631187E-03 2.20363074126E-03 2.34540500859E-03 2.49076764185E-03 2.63980940335E-03 2.79262334570E-03 2.94930486916E-03 3.10995178035E-03 3.27466435246E-03 3.44354538682E-03 3.61670027607E-03 3.79423706880E-03 3.97626653571E-03 4.16290223747E-03 4.35426059408E-03 4.55046095600E-03 4.75162567688E-03 4.95788018807E-03 5.16935307489E-03 5.38617615467E-03 5.60848455664E-03 5.83641680370E-03 6.07011489600E-03 6.30972439663E-03 6.55539451909E-03 6.80727821687E-03 7.06553227505E-03 7.33031740398E-03 7.60179833501E-03 7.88014391842E-03 8.16552722348E-03 8.45812564071E-03 8.75812098637E-03 9.06569960924E-03 9.38105249958E-03 9.70437540052E-03 1.00358689217E-02 1.03757386552E-02 1.07241952940E-02 1.10814547529E-02 1.14477382911E-02 1.18232726384E-02 1.22082901228E-02 1.26030288008E-02 1.30077325906E-02 1.34226514066E-02 1.38480412977E-02 1.42841645865E-02 1.47312900121E-02 1.51896928743E-02 1.56596551807E-02 1.61414657956E-02 1.66354205909E-02 1.71418226002E-02 1.76609821730E-02 1.81932171330E-02 1.87388529362E-02 1.92982228322E-02 1.98716680262E-02 2.04595378431E-02 2.10621898919E-02 2.16799902320E-02 2.23133135403E-02 2.29625432784E-02 2.36280718608E-02 2.43103008229E-02 2.50096409887E-02 2.57265126385E-02 2.64613456754E-02 2.72145797904E-02 2.79866646264E-02 2.87780599395E-02 2.95892357578E-02 3.04206725376E-02 3.12728613155E-02 3.21463038555E-02 3.30415127926E-02 3.39590117692E-02 3.48993355658E-02 3.58630302242E-02 3.68506531628E-02 3.78627732818E-02 3.88999710594E-02 3.99628386363E-02 4.10519798875E-02 4.21680104812E-02 4.33115579227E-02 4.44832615820E-02 4.56837727039E-02 4.69137543995E-02 4.81738816165E-02 4.94648410886E-02 5.07873312598E-02 5.21420621841E-02 5.35297553982E-02 5.49511437646E-02 5.64069712847E-02 5.78979928790E-02 5.94249741330E-02 6.09886910074E-02 6.25899295098E-02 6.42294853278E-02 6.59081634207E-02 6.76267775688E-02 6.93861498795E-02 7.11871102489E-02 7.30304957779E-02 7.49171501439E-02 7.68479229268E-02 7.88236688903E-02 8.08452472215E-02 8.29135207286E-02 8.50293550012E-02 8.71936175373E-02 8.94071768416E-02 9.16709015018E-02 9.39856592521E-02 9.63523160322E-02 9.87717350558E-02 1.01244775900E-01 1.03772293639E-01 1.06355138027E-01 1.08994152777E-01 1.11690174939E-01 1.14444034417E-01 1.17256553668E-01 1.20128547606E-01 1.23060823769E-01 1.26054182791E-01 1.29109419245E-01 1.32227322902E-01 1.35408680498E-01 1.38654278066E-01 1.41964903925E-01 1.45341352410E-01 1.48784428459E-01 1.52294953131E-01 1.55873770193E-01 1.59521753875E-01 1.63239817930E-01 1.67028926099E-01 1.70890104127E-01 1.74824453442E-01 1.78833166602E-01 1.82917544638E-01 1.87079016349E-01 1.91319159639E-01 1.95639724917E-01 2.00042660540E-01 2.04530140248E-01 2.09104592450E-01 2.13768731146E-01 2.18525588158E-01 2.23378546236E-01 2.28331372442E-01 2.33388251048E-01 2.38553814989E-01 2.43833174675E-01 2.49231942712E-01 2.54756252783E-01 2.60412770636E-01 2.66208694762E-01 2.72151743991E-01 2.78250128865E-01 2.84512503253E-01 2.90947892343E-01 2.97565592827E-01 3.04375040865E-01 3.11385643316E-01 3.18606567781E-01 3.26046487288E-01 3.33713276082E-01 3.41613653967E-01 3.49752778143E-01 3.58133783619E-01 3.66757276095E-01 3.75620784914E-01 3.84718188298E-01 3.94039128820E-01 4.03568443790E-01 4.13285643116E-01 4.23164475978E-01 4.33172637072E-01 4.43271672810E-01 4.53417156844E-01 4.63559211563E-01 4.73643456237E-01 4.83612461150E-01 4.93407777780E-01 5.02972594633E-01 5.12255032938E-01 5.21212042022E-01 5.29813776785E-01 5.38048235979E-01 5.45925808616E-01 5.53483218902E-01 5.60786185777E-01 5.67929938815E-01 5.75036588815E-01 5.82248288121E-01 5.89715205442E-01 5.97577682686E-01 6.05942663947E-01 6.14855732014E-01 6.24271984086E-01 6.34031570743E-01 6.43848836685E-01 6.53326991205E-01 6.62011528967E-01 6.69491938716E-01 6.75546271812E-01 6.80285364756E-01 6.84172579239E-01 6.87669263521E-01 6.90852473213E-01 6.93710812691E-01 6.96232149248E-01 6.98404990030E-01 7.00218096621E-01 7.01660527204E-01 7.02721679968E-01 7.03391337878E-01 7.03659714472E-01 7.03517500856E-01 7.02955913449E-01 7.01966742720E-01 7.00542402360E-01 6.98675979170E-01 6.96361283006E-01 6.93592897117E-01 6.90366228081E-01 6.86677555729E-01 6.82524082125E-01 6.77903980014E-01 6.72816439679E-01 6.67261714624E-01 6.61241164852E-01 6.54757298179E-01 6.47813808162E-01 6.40415609057E-01 6.32568866234E-01 6.24281022402E-01 6.15560817947E-01 6.06418305666E-01 5.96864858124E-01 5.86913167906E-01 5.76577238973E-01 5.65872369438E-01 5.54815124149E-01 5.43423297498E-01 5.31715865185E-01 5.19712925620E-01 5.07435630212E-01 4.94906103588E-01 4.82147353663E-01 4.69183173023E-01 4.56038032290E-01 4.42736967282E-01 4.29305461336E-01 4.15769324799E-01 4.02154573548E-01 3.88487308499E-01 3.74793598126E-01 3.61099365606E-01 3.47430282432E-01 3.33811669404E-01 3.20268406372E-01 3.06824850665E-01 2.93504764858E-01 2.80331252729E-01 2.67326703249E-01 2.54512740443E-01 2.41910178299E-01 2.29538977894E-01 2.17418205602E-01 2.05565989490E-01 1.93999473048E-01 1.82734763980E-01 1.71786878157E-01 1.61169677690E-01 1.50895804579E-01 1.40976610452E-01 1.31422085176E-01 1.22240786164E-01 1.13439772032E-01 1.05024543080E-01 9.69989922985E-02 8.93653692378E-02 8.21242596753E-02 7.52745825681E-02 6.88136059630E-02 6.27369821135E-02 5.70388020437E-02 5.17116685771E-02 4.67467867868E-02 4.21340699127E-02 3.78622587749E-02 3.39190521320E-02 3.02912455137E-02 2.69648757656E-02 2.39253687259E-02 2.11576873915E-02 1.86464781905E-02 1.63762130800E-02 1.43313254909E-02 1.24963383484E-02 1.08559827146E-02 9.39530585688E-03 8.09976785427E-03 6.95532612033E-03 5.94850750337E-03 5.06646786874E-03 4.29703930840E-03 3.62876532754E-03 3.05092454576E-03 2.55354360456E-03 2.12740010319E-03 1.76401648458E-03 1.45564586629E-03 1.19525085716E-03 9.76476421319E-04 7.93617848144E-04 6.41584863269E-04 5.15862861759E-04 4.12472131577E-04 3.27926318948E-04 2.59190269245E-04 2.03638354284E-04 1.59013818216E-04 1.23389629021E-04 9.51312404739E-05 7.28615785191E-05 5.54284794103E-05 4.18747264634E-05 3.14107592028E-05 2.33900639579E-05 1.72871992067E-05 1.26783624041E-05 9.22436756851E-06 6.65587410558E-06 4.76068649478E-06 3.37293049742E-06 2.36390307214E-06 1.63438835168E-06 1.10822833728E-06 7.26930818749E-07 4.45083001358E-07 2.26308715812E-07 3.94453218062E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 espresso-5.0.2/pseudo/Au.pz-rrkjus_aewfc.UPF0000644000700200004540000250031212053145632017717 0ustar marsamoscm Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Author: ADC Generation date: 15Feb2010 Pseudopotential type: USPP Element: Au Functional: LDA Suggested minimum cutoff for wavefunctions: 23. Ry Suggested minimum cutoff for charge density: 297. Ry The Pseudo was generated with a Scalar-Relativistic Calculation L component and cutoff radius for Local Potential: 0 2.5000 Valence configuration: nl pn l occ Rcut Rcut US E pseu 6P 2 1 0.00 3.300 3.300 -0.065163 5D 3 2 10.00 1.800 2.400 -0.523090 6S 1 0 1.00 3.718 3.950 -0.447624 Generation configuration: 6P 2 1 0.00 3.300 3.300 -0.065163 5D 3 2 10.00 1.800 2.400 -0.523089 5D 3 2 0.00 1.800 2.400 -0.300000 6S 1 0 1.00 2.500 2.500 -0.447622 Pseudization used: rrkj 1.154280969056350E-005 1.168800036289902E-005 1.183501730907066E-005 1.198388350077537E-005 1.213462219865848E-005 1.228725695594821E-005 1.244181162213593E-005 1.259831034670267E-005 1.275677758289254E-005 1.291723809153360E-005 1.307971694490680E-005 1.324423953066353E-005 1.341083155579253E-005 1.357951905063667E-005 1.375032837296023E-005 1.392328621206732E-005 1.409841959297219E-005 1.427575588062193E-005 1.445532278417225E-005 1.463714836131719E-005 1.482126102267309E-005 1.500768953621788E-005 1.519646303178609E-005 1.538761100562044E-005 1.558116332498077E-005 1.577715023281075E-005 1.597560235246348E-005 1.617655069248639E-005 1.638002665146643E-005 1.658606202293620E-005 1.679468900034167E-005 1.700594018207249E-005 1.721984857655562E-005 1.743644760741288E-005 1.765577111868353E-005 1.787785338011243E-005 1.810272909250474E-005 1.833043339314805E-005 1.856100186130257E-005 1.879447052376059E-005 1.903087586047560E-005 1.927025481026243E-005 1.951264477656899E-005 1.975808363332066E-005 2.000660973083819E-005 2.025826190182993E-005 2.051307946745958E-005 2.077110224349020E-005 2.103237054650549E-005 2.129692520020938E-005 2.156480754180473E-005 2.183605942845244E-005 2.211072324381164E-005 2.238884190466229E-005 2.267045886761101E-005 2.295561813588121E-005 2.324436426618870E-005 2.353674237570381E-005 2.383279814910098E-005 2.413257784569717E-005 2.443612830667986E-005 2.474349696242617E-005 2.505473183991388E-005 2.536988157022581E-005 2.568899539614853E-005 2.601212317986657E-005 2.633931541075354E-005 2.667062321326119E-005 2.700609835490770E-005 2.734579325436651E-005 2.768976098965677E-005 2.803805530643692E-005 2.839073062640257E-005 2.874784205578996E-005 2.910944539398653E-005 2.947559714224954E-005 2.984635451253460E-005 3.022177543643511E-005 3.060191857423422E-005 3.098684332407067E-005 3.137660983121973E-005 3.177127899749112E-005 3.217091249074505E-005 3.257557275452785E-005 3.298532301782910E-005 3.340022730496103E-005 3.382035044556266E-005 3.424575808472945E-005 3.467651669327048E-005 3.511269357809479E-005 3.555435689272801E-005 3.600157564796161E-005 3.645441972263599E-005 3.691295987455908E-005 3.737726775156261E-005 3.784741590269696E-005 3.832347778956728E-005 3.880552779781194E-005 3.929364124872542E-005 3.978789441102760E-005 4.028836451278059E-005 4.079512975345603E-005 4.130826931615377E-005 4.182786337997445E-005 4.235399313254775E-005 4.288674078271787E-005 4.342618957338904E-005 4.397242379453232E-005 4.452552879635606E-005 4.508559100264215E-005 4.565269792424975E-005 4.622693817278916E-005 4.680840147446749E-005 4.739717868410861E-005 4.799336179934946E-005 4.859704397501473E-005 4.920831953767253E-005 4.982728400037321E-005 5.045403407757330E-005 5.108866770024757E-005 5.173128403119071E-005 5.238198348051186E-005 5.304086772132379E-005 5.370803970562962E-005 5.438360368040936E-005 5.506766520390847E-005 5.576033116213172E-005 5.646170978554432E-005 5.717191066598313E-005 5.789104477378067E-005 5.861922447510438E-005 5.935656354951406E-005 6.010317720774023E-005 6.085918210968589E-005 6.162469638265523E-005 6.239983963981079E-005 6.318473299886351E-005 6.397949910099765E-005 6.478426213003356E-005 6.559914783183196E-005 6.642428353394158E-005 6.725979816549462E-005 6.810582227735215E-005 6.896248806250284E-005 6.982992937671862E-005 7.070828175946961E-005 7.159768245510263E-005 7.249827043428588E-005 7.341018641572330E-005 7.433357288814244E-005 7.526857413255816E-005 7.621533624481720E-005 7.717400715842579E-005 7.814473666766458E-005 7.912767645099445E-005 8.012298009475629E-005 8.113080311716941E-005 8.215130299263148E-005 8.318463917632421E-005 8.423097312912878E-005 8.529046834285402E-005 8.636329036578262E-005 8.744960682853838E-005 8.854958747027862E-005 8.966340416521678E-005 9.079123094947720E-005 9.193324404828977E-005 9.308962190352450E-005 9.426054520157391E-005 9.544619690158577E-005 9.664676226405015E-005 9.786242887974772E-005 9.909338669906042E-005 1.003398280616518E-004 1.016019477265210E-004 1.028799429024331E-004 1.041740132787346E-004 1.054843610565545E-004 1.068111909803991E-004 1.081547103701436E-004 1.095151291534257E-004 1.108926598984485E-004 1.122875178471931E-004 1.136999209490521E-004 1.151300898948838E-004 1.165782481514954E-004 1.180446219965611E-004 1.195294405539774E-004 1.210329358296646E-004 1.225553427478189E-004 1.240968991876181E-004 1.256578460203925E-004 1.272384271472606E-004 1.288388895372388E-004 1.304594832658323E-004 1.321004615541076E-004 1.337620808082614E-004 1.354446006596826E-004 1.371482840055209E-004 1.388733970497657E-004 1.406202093448393E-004 1.423889938337173E-004 1.441800268925744E-004 1.459935883739699E-004 1.478299616505753E-004 1.496894336594508E-004 1.515722949468813E-004 1.534788397137734E-004 1.554093658616258E-004 1.573641750390771E-004 1.593435726890380E-004 1.613478680964186E-004 1.633773744364541E-004 1.654324088236390E-004 1.675132923612777E-004 1.696203501916560E-004 1.717539115468473E-004 1.739143098001537E-004 1.761018825181977E-004 1.783169715136675E-004 1.805599228987248E-004 1.828310871390871E-004 1.851308191087876E-004 1.874594781456253E-004 1.898174281073129E-004 1.922050374283284E-004 1.946226791774865E-004 1.970707311162290E-004 1.995495757576517E-004 2.020596004262737E-004 2.046011973185554E-004 2.071747635641826E-004 2.097807012881171E-004 2.124194176734298E-004 2.150913250249251E-004 2.177968408335618E-004 2.205363878416901E-004 2.233103941091033E-004 2.261192930799245E-004 2.289635236503331E-004 2.318435302371415E-004 2.347597628472390E-004 2.377126771479039E-004 2.407027345380032E-004 2.437304022200877E-004 2.467961532733923E-004 2.499004667277567E-004 2.530438276384738E-004 2.562267271620809E-004 2.594496626331046E-004 2.627131376417689E-004 2.660176621126839E-004 2.693637523845212E-004 2.727519312906933E-004 2.761827282410477E-004 2.796566793045879E-004 2.831743272932355E-004 2.867362218466452E-004 2.903429195180877E-004 2.939949838614123E-004 2.976929855191026E-004 3.014375023114415E-004 3.052291193267959E-004 3.090684290130384E-004 3.129560312701190E-004 3.168925335437994E-004 3.208785509205689E-004 3.249147062237523E-004 3.290016301108272E-004 3.331399611719660E-004 3.373303460298163E-004 3.415734394405378E-004 3.458699043961085E-004 3.502204122279187E-004 3.546256427116686E-004 3.590862841735835E-004 3.636030335979675E-004 3.681765967361073E-004 3.728076882165480E-004 3.774970316567558E-004 3.822453597761835E-004 3.870534145107607E-004 3.919219471288214E-004 3.968517183484923E-004 4.018434984565563E-004 4.068980674288110E-004 4.120162150519421E-004 4.171987410469287E-004 4.224464551940010E-004 4.277601774591716E-004 4.331407381223548E-004 4.385889779071016E-004 4.441057481119625E-004 4.496919107435059E-004 4.553483386510084E-004 4.610759156628384E-004 4.668755367245572E-004 4.727481080387547E-004 4.786945472066466E-004 4.847157833714514E-004 4.908127573635697E-004 4.969864218475926E-004 5.032377414711559E-004 5.095676930156690E-004 5.159772655489395E-004 5.224674605797158E-004 5.290392922141762E-004 5.356937873143838E-004 5.424319856587365E-004 5.492549401044352E-004 5.561637167519926E-004 5.631593951118168E-004 5.702430682728838E-004 5.774158430735368E-004 5.846788402744319E-004 5.920331947336580E-004 5.994800555840624E-004 6.070205864128035E-004 6.146559654431642E-004 6.223873857186529E-004 6.302160552894170E-004 6.381431974010048E-004 6.461700506854989E-004 6.542978693550558E-004 6.625279233978782E-004 6.708614987766557E-004 6.792998976294953E-004 6.878444384733860E-004 6.964964564102184E-004 7.052573033353974E-004 7.141283481490804E-004 7.231109769700670E-004 7.322065933523859E-004 7.414166185046020E-004 7.507424915118825E-004 7.601856695608600E-004 7.697476281673161E-004 7.794298614067372E-004 7.892338821477653E-004 7.991612222885870E-004 8.092134329962984E-004 8.193920849492728E-004 8.296987685825868E-004 8.401350943365271E-004 8.507026929082248E-004 8.614032155064582E-004 8.722383341096529E-004 8.832097417271350E-004 8.943191526636661E-004 9.055683027873066E-004 9.169589498006514E-004 9.284928735154701E-004 9.401718761308089E-004 9.519977825145877E-004 9.639724404887383E-004 9.760977211179330E-004 9.883755190019388E-004 1.000807752571654E-003 1.013396364388868E-003 1.026143321449788E-003 1.039050615492390E-003 1.052120263307627E-003 1.065354307054562E-003 1.078754814579454E-003 1.092323879738867E-003 1.106063622726840E-003 1.119976190406168E-003 1.134063756643857E-003 1.148328522650792E-003 1.162772717325682E-003 1.177398597603335E-003 1.192208448807300E-003 1.207204585006958E-003 1.222389349379100E-003 1.237765114574051E-003 1.253334283086409E-003 1.269099287630427E-003 1.285062591520140E-003 1.301226689054259E-003 1.317594105905907E-003 1.334167399517270E-003 1.350949159499192E-003 1.367942008035814E-003 1.385148600294291E-003 1.402571624839670E-003 1.420213804054984E-003 1.438077894566630E-003 1.456166687675094E-003 1.474483009791101E-003 1.493029722877248E-003 1.511809724895185E-003 1.530825950258439E-003 1.550081370290911E-003 1.569578993691155E-003 1.589321867002498E-003 1.609313075089058E-003 1.629555741617775E-003 1.650053029546477E-003 1.670808141618105E-003 1.691824320861146E-003 1.713104851096363E-003 1.734653057449905E-003 1.756472306872852E-003 1.778566008667319E-003 1.800937615019160E-003 1.823590621537383E-003 1.846528567800347E-003 1.869755037908821E-003 1.893273661046015E-003 1.917088112044642E-003 1.941202111961120E-003 1.965619428657000E-003 1.990343877387692E-003 2.015379321398612E-003 2.040729672528821E-003 2.066398891822259E-003 2.092390990146665E-003 2.118710028820285E-003 2.145360120246458E-003 2.172345428556188E-003 2.199670170258799E-003 2.227338614900778E-003 2.255355085732892E-003 2.283723960385707E-003 2.312449671553605E-003 2.341536707687396E-003 2.370989613695659E-003 2.400812991654878E-003 2.431011501528534E-003 2.461589861895236E-003 2.492552850686001E-003 2.523905305930825E-003 2.555652126514626E-003 2.587798272942710E-003 2.620348768115858E-003 2.653308698115162E-003 2.686683212996748E-003 2.720477527596464E-003 2.754696922344721E-003 2.789346744091569E-003 2.824432406942150E-003 2.859959393102669E-003 2.895933253736994E-003 2.932359609834037E-003 2.969244153086048E-003 3.006592646777951E-003 3.044410926687876E-003 3.082704901998998E-003 3.121480556222868E-003 3.160743948134351E-003 3.200501212718310E-003 3.240758562128229E-003 3.281522286656856E-003 3.322798755719081E-003 3.364594418847174E-003 3.406915806698530E-003 3.449769532076109E-003 3.493162290961686E-003 3.537100863562119E-003 3.581592115368773E-003 3.626642998230254E-003 3.672260551438676E-003 3.718451902829531E-003 3.765224269895452E-003 3.812584960913953E-003 3.860541376089358E-003 3.909101008709113E-003 3.958271446314606E-003 4.008060371886751E-003 4.058475565046467E-003 4.109524903270250E-003 4.161216363121066E-003 4.213558021494679E-003 4.266558056881703E-003 4.320224750645493E-003 4.374566488316133E-003 4.429591760900702E-003 4.485309166209985E-003 4.541727410201922E-003 4.598855308341918E-003 4.656701786980283E-003 4.715275884747000E-003 4.774586753964014E-003 4.834643662075306E-003 4.895455993094956E-003 4.957033249073405E-003 5.019385051582189E-003 5.082521143217301E-003 5.146451389121511E-003 5.211185778525807E-003 5.276734426310233E-003 5.343107574584374E-003 5.410315594287681E-003 5.478368986809969E-003 5.547278385632273E-003 5.617054557988352E-003 5.687708406547110E-003 5.759250971116123E-003 5.831693430366660E-003 5.905047103580363E-003 5.979323452417908E-003 6.054534082709926E-003 6.130690746270413E-003 6.207805342732992E-003 6.285889921410251E-003 6.364956683176467E-003 6.445017982374041E-003 6.526086328743852E-003 6.608174389379954E-003 6.691294990708831E-003 6.775461120493547E-003 6.860685929863129E-003 6.946982735367426E-003 7.034365021057870E-003 7.122846440594382E-003 7.212440819378772E-003 7.303162156715022E-003 7.395024627996658E-003 7.488042586921715E-003 7.582230567735516E-003 7.677603287501689E-003 7.774175648401746E-003 7.871962740063548E-003 7.970979841919119E-003 8.071242425592073E-003 8.172766157315089E-003 8.275566900377816E-003 8.379660717605496E-003 8.485063873868857E-003 8.591792838625505E-003 8.699864288493319E-003 8.809295109856230E-003 8.920102401502705E-003 9.032303477297506E-003 9.145915868886996E-003 9.260957328438504E-003 9.377445831414151E-003 9.495399579379520E-003 9.614837002847708E-003 9.735776764159128E-003 9.858237760397530E-003 9.982239126342744E-003 1.010780023746047E-002 1.023494071292978E-002 1.036368041870864E-002 1.049403947063798E-002 1.062603823758490E-002 1.075969734462530E-002 1.089503767626656E-002 1.103208037971087E-002 1.117084686815944E-002 1.131135882415843E-002 1.145363820298683E-002 1.159770723608707E-002 1.174358843453865E-002 1.189130459257564E-002 1.204087879114828E-002 1.219233440152939E-002 1.234569508896624E-002 1.250098481637825E-002 1.265822784810127E-002 1.281744875367892E-002 1.297867241170164E-002 1.314192401369399E-002 1.330722906805095E-002 1.347461340402353E-002 1.364410317575483E-002 1.381572486636648E-002 1.398950529209681E-002 1.416547160649090E-002 1.434365130464337E-002 1.452407222749459E-002 1.470676256618080E-002 1.489175086643913E-002 1.507906603306784E-002 1.526873733444279E-002 1.546079440709076E-002 1.565526726032006E-002 1.585218628090969E-002 1.605158223785722E-002 1.625348628718660E-002 1.645792997681635E-002 1.666494525148889E-002 1.687456445776207E-002 1.708682034906334E-002 1.730174609080755E-002 1.751937526557914E-002 1.773974187837941E-002 1.796288036193998E-002 1.818882558210285E-002 1.841761284326837E-002 1.864927789391159E-002 1.888385693216799E-002 1.912138661148954E-002 1.936190404637190E-002 1.960544681815359E-002 1.985205298088822E-002 2.010176106729043E-002 2.035461009475676E-002 2.061063957146217E-002 2.086988950253327E-002 2.113240039629928E-002 2.139821327062142E-002 2.166736965930209E-002 2.193991161857464E-002 2.221588173367467E-002 2.249532312549416E-002 2.277827945731910E-002 2.306479494165203E-002 2.335491434712027E-002 2.364868300547117E-002 2.394614681865532E-002 2.424735226599869E-002 2.455234641146525E-002 2.486117691101074E-002 2.517389202002901E-002 2.549054060089212E-002 2.581117213058501E-002 2.613583670843655E-002 2.646458506394756E-002 2.679746856471740E-002 2.713453922447038E-002 2.747584971118282E-002 2.782145335531270E-002 2.817140415813252E-002 2.852575680016720E-002 2.888456664973803E-002 2.924788977161398E-002 2.961578293577205E-002 2.998830362626762E-002 3.036551005021643E-002 3.074746114688973E-002 3.113421659692343E-002 3.152583683164344E-002 3.192238304250822E-002 3.232391719066996E-002 3.273050201665629E-002 3.314220105017344E-002 3.355907862003301E-002 3.398119986420345E-002 3.440863073998791E-002 3.484143803433047E-002 3.527968937425129E-002 3.572345323741392E-002 3.617279896282488E-002 3.662779676166786E-002 3.708851772827475E-002 3.755503385123378E-002 3.802741802463838E-002 3.850574405947678E-002 3.899008669516495E-002 3.948052161122526E-002 3.997712543911100E-002 4.047997577418069E-002 4.098915118782232E-002 4.150473123973004E-002 4.202679649033609E-002 4.255542851339785E-002 4.309070990874453E-002 4.363272431518325E-002 4.418155642356762E-002 4.473729199003131E-002 4.530001784938709E-002 4.586982192869545E-002 4.644679326100312E-002 4.703102199925448E-002 4.762259943037866E-002 4.822161798955269E-002 4.882817127464523E-002 4.944235406084120E-002 5.006426231545034E-002 5.069399321290290E-002 5.133164514993261E-002 5.197731776095204E-002 5.263111193362039E-002 5.329312982460709E-002 5.396347487555471E-002 5.464225182924107E-002 5.532956674594629E-002 5.602552702002453E-002 5.673024139668436E-002 5.744381998898111E-002 5.816637429502139E-002 5.889801721538568E-002 5.963886307076892E-002 6.038902761984307E-002 6.114862807734536E-002 6.191778313239248E-002 6.269661296702675E-002 6.348523927499447E-002 6.428378528076052E-002 6.509237575876319E-002 6.591113705290950E-002 6.674019709631759E-002 6.757968543130607E-002 6.842973322963503E-002 6.929047331300260E-002 7.016204017379778E-002 7.104456999611589E-002 7.193820067703731E-002 7.284307184817380E-002 7.375932489748709E-002 7.468710299137997E-002 7.562655109706737E-002 7.657781600522721E-002 7.754104635293653E-002 7.851639264689711E-002 7.950400728695148E-002 8.050404458989657E-002 8.151666081359575E-002 8.254201418139383E-002 8.358026490684094E-002 8.463157521872497E-002 8.569610938642118E-002 8.677403374555928E-002 8.786551672401310E-002 8.897072886821900E-002 9.008984286982274E-002 9.122303359266412E-002 9.237047810009920E-002 9.353235568266646E-002 9.470884788610236E-002 9.590013853970694E-002 9.710641378506871E-002 9.832786210514909E-002 9.956467435373281E-002 1.008170437852504E-001 1.020851660849731E-001 1.033692393995905E-001 1.046694643681706E-001 1.059860441535097E-001 1.073191844738783E-001 1.086690936351632E-001 1.100359825634177E-001 1.114200648378179E-001 1.128215567240347E-001 1.142406772080270E-001 1.156776480302573E-001 1.171326937203404E-001 1.186060416321258E-001 1.200979219792219E-001 1.216085678709685E-001 1.231382153488593E-001 1.246871034234251E-001 1.262554741115788E-001 1.278435724744311E-001 1.294516466555824E-001 1.310799479198949E-001 1.327287306927541E-001 1.343982525998229E-001 1.360887745072956E-001 1.378005605626601E-001 1.395338782359697E-001 1.412889983616375E-001 1.430661951807543E-001 1.448657463839383E-001 1.466879331547266E-001 1.485330402135090E-001 1.504013558620177E-001 1.522931720283739E-001 1.542087843127022E-001 1.561484920333198E-001 1.581125982735040E-001 1.601014099288509E-001 1.621152377552284E-001 1.641543964173308E-001 1.662192045378485E-001 1.683099847472505E-001 1.704270637341989E-001 1.725707722965920E-001 1.747414453932544E-001 1.769394221962740E-001 1.791650461439976E-001 1.814186649946956E-001 1.837006308808978E-001 1.860113003644170E-001 1.883510344920614E-001 1.907201988520480E-001 1.931191636311289E-001 1.955483036724307E-001 1.980079985340275E-001 2.004986325482460E-001 2.030205948817174E-001 2.055742795961881E-001 2.081600857100894E-001 2.107784172608879E-001 2.134296833682158E-001 2.161142982977957E-001 2.188326815261730E-001 2.215852578062568E-001 2.243724572336917E-001 2.271947153140589E-001 2.300524730309249E-001 2.329461769147478E-001 2.358762791126458E-001 2.388432374590492E-001 2.418475155472363E-001 2.448895828017698E-001 2.479699145518484E-001 2.510889921055738E-001 2.542473028251603E-001 2.574453402030839E-001 2.606836039391903E-001 2.639626000187776E-001 2.672828407916535E-001 2.706448450521942E-001 2.740491381204060E-001 2.774962519240060E-001 2.809867250815400E-001 2.845211029865395E-001 2.880999378927434E-001 2.917237890003874E-001 2.953932225435787E-001 2.991088118787753E-001 3.028711375743690E-001 3.066807875014048E-001 3.105383569254351E-001 3.144444485995297E-001 3.183996728584607E-001 3.224046477140645E-001 3.264599989518109E-001 3.305663602285822E-001 3.347243731716810E-001 3.389346874790906E-001 3.431979610209862E-001 3.475148599425329E-001 3.518860587679707E-001 3.563122405060083E-001 3.607940967565483E-001 3.653323278187473E-001 3.699276428004423E-001 3.745807597289491E-001 3.792924056632535E-001 3.840633168076197E-001 3.888942386266194E-001 3.937859259616160E-001 3.987391431487085E-001 4.037546641381582E-001 4.088332726153256E-001 4.139757621231161E-001 4.191829361859786E-001 4.244556084354553E-001 4.297946027373108E-001 4.352007533202687E-001 4.406749049063550E-001 4.462179128428929E-001 4.518306432361507E-001 4.575139730866701E-001 4.632687904263043E-001 4.690959944569695E-001 4.749964956911518E-001 4.809712160941747E-001 4.870210892282549E-001 4.931470603983800E-001 4.993500868000070E-001 5.056311376686321E-001 5.119911944312333E-001 5.184312508596177E-001 5.249523132257065E-001 5.315554004587596E-001 5.382415443045921E-001 5.450117894867843E-001 5.518671938699178E-001 5.588088286248770E-001 5.658377783962134E-001 5.729551414716300E-001 5.801620299535887E-001 5.874595699330757E-001 5.948489016655614E-001 6.023311797491608E-001 6.099075733050483E-001 6.175792661601324E-001 6.253474570320277E-001 6.332133597163647E-001 6.411782032764388E-001 6.492432322352620E-001 6.574097067700189E-001 6.656789029089677E-001 6.740521127308315E-001 6.825306445666780E-001 6.911158232043574E-001 6.998089900954998E-001 7.086115035651159E-001 7.175247390238465E-001 7.265500891828638E-001 7.356889642714936E-001 7.449427922575628E-001 7.543130190705188E-001 7.638011088273678E-001 7.734085440614351E-001 7.831368259540239E-001 7.929874745689737E-001 8.029620290901689E-001 8.130620480620501E-001 8.232891096331267E-001 8.336448118025784E-001 8.441307726699394E-001 8.547486306879259E-001 8.655000449184586E-001 8.763866952918815E-001 8.874102828694665E-001 8.985725301092017E-001 9.098751811349249E-001 9.213200020088576E-001 9.329087810075424E-001 9.446433289012773E-001 9.565254792370466E-001 9.685570886250112E-001 9.807400370286199E-001 9.930762280583437E-001 1.005567589269131E+000 1.018216072461586E+000 1.031023653986938E+000 1.043992335055862E+000 1.057124142051155E+000 1.070421126844380E+000 1.083885367116464E+000 1.097518966682341E+000 1.111324055819683E+000 1.125302791601751E+000 1.139457358234453E+000 1.153789967397626E+000 1.168302858590606E+000 1.182998299482174E+000 1.197878586264863E+000 1.212946044013758E+000 1.228203027049790E+000 1.243651919307596E+000 1.259295134708025E+000 1.275135117535305E+000 1.291174342818983E+000 1.307415316720644E+000 1.323860576925497E+000 1.340512693038912E+000 1.357374266987906E+000 1.374447933427716E+000 1.391736360153463E+000 1.409242248516992E+000 1.426968333848979E+000 1.444917385886317E+000 1.463092209204907E+000 1.481495643657872E+000 1.500130564819283E+000 1.518999884433488E+000 1.538106550870063E+000 1.557453549584513E+000 1.577043903584753E+000 1.596880673903445E+000 1.616966960076317E+000 1.637305900626443E+000 1.657900673554666E+000 1.678754496836160E+000 1.699870628923235E+000 1.721252369254495E+000 1.742903058770364E+000 1.764826080435129E+000 1.787024859765532E+000 1.809502865366000E+000 1.832263609470647E+000 1.855310648492040E+000 1.878647583576919E+000 1.902278061168873E+000 1.926205773578096E+000 1.950434459558341E+000 1.974967904891077E+000 1.999809942977056E+000 2.024964455435275E+000 2.050435372709473E+000 2.076226674682303E+000 2.102342391297166E+000 2.128786603187917E+000 2.155563442316470E+000 2.182677092618409E+000 2.210131790656765E+000 2.237931826283955E+000 2.266081543312110E+000 2.294585340191790E+000 2.323447670699240E+000 2.352673044632333E+000 2.382266028515196E+000 2.412231246311772E+000 2.442573380148311E+000 2.473297171044949E+000 2.504407419656528E+000 2.535908987022681E+000 2.567806795327404E+000 2.600105828668144E+000 2.632811133834565E+000 2.665927821097149E+000 2.699461065005646E+000 2.733416105197647E+000 2.767798247217268E+000 2.802612863344141E+000 2.837865393432877E+000 2.873561345763014E+000 2.909706297899732E+000 2.946305897565345E+000 2.983365863521755E+000 3.020891986464049E+000 3.058890129925276E+000 3.097366231192663E+000 3.136326302235321E+000 3.175776430643602E+000 3.215722780580345E+000 3.256171593743987E+000 3.297129190343883E+000 3.338601970087839E+000 3.380596413182052E+000 3.423119081343709E+000 3.466176618826210E+000 3.509775753457392E+000 3.553923297690754E+000 3.598626149669885E+000 3.643891294306372E+000 3.689725804371141E+000 3.736136841599649E+000 3.783131657810893E+000 3.830717596040504E+000 3.878902091688159E+000 3.927692673679322E+000 3.977096965641699E+000 4.027122687096432E+000 4.077777654664260E+000 4.129069783286941E+000 4.181007087463910E+000 4.233597682504620E+000 4.286849785796552E+000 4.340771718089170E+000 4.395371904794115E+000 4.450658877301630E+000 4.506641274313660E+000 4.563327843193642E+000 4.620727441333277E+000 4.678849037536573E+000 4.737701713421167E+000 4.797294664837412E+000 4.857637203305218E+000 4.918738757468972E+000 4.980608874570842E+000 5.043257221942480E+000 5.106693588515634E+000 5.170927886351652E+000 5.235970152190238E+000 5.301830549017776E+000 5.368519367655248E+000 5.436047028366252E+000 5.504424082485173E+000 5.573661214065809E+000 5.643769241550856E+000 5.714759119462221E+000 5.786641940112772E+000 5.859428935339488E+000 5.933131478258443E+000 6.007761085041936E+000 6.083329416717840E+000 6.159848280991737E+000 6.237329634091858E+000 6.315785582637241E+000 6.395228385529487E+000 6.475670455868155E+000 6.557124362890405E+000 6.639602833934942E+000 6.723118756430647E+000 6.807685179910347E+000 6.893315318049740E+000 6.980022550732136E+000 7.067820426139063E+000 7.156722662867154E+000 7.246743152071796E+000 7.337895959637549E+000 7.430195328376061E+000 7.523655680251497E+000 7.618291618633952E+000 7.714117930581368E+000 7.811149589149919E+000 7.909401755733683E+000 8.008889782433595E+000 8.109629214456213E+000 8.211635792542772E+000 8.314925455428606E+000 8.419514342333693E+000 8.525418795484423E+000 8.632655362667032E+000 8.741240799813346E+000 8.851192073618808E+000 8.962526364193662E+000 9.075261067747340E+000 9.189413799306600E+000 9.305002395468025E+000 9.422044917184898E+000 9.540559652589383E+000 9.660565119850022E+000 9.782080070065190E+000 9.905123490193121E+000 1.002971460601851E+001 1.015587288515670E+001 1.028361804009549E+001 1.041297003127522E+001 1.054394907020771E+001 1.067657562263422E+001 1.081087041172344E+001 1.094685442130939E+001 1.108454889917020E+001 1.122397536034822E+001 1.136515559051163E+001 1.150811164935864E+001 1.165286587406432E+001 1.179944088277074E+001 1.194785957812126E+001 1.209814515083896E+001 1.225032108335034E+001 1.240441115345448E+001 1.256043943803831E+001 1.271843031683876E+001 1.287840847625204E+001 1.304039891319106E+001 1.320442693899119E+001 1.337051818336513E+001 1.353869859840777E+001 1.370899446265109E+001 1.388143238517036E+001 1.405603930974184E+001 1.423284251905267E+001 1.441186963896407E+001 1.459314864282770E+001 1.477670785585678E+001 1.496257595955180E+001 1.515078199618207E+001 1.534135537332378E+001 1.553432586845477E+001 1.572972363360754E+001 1.592757920008046E+001 1.612792348320828E+001 1.633078778719289E+001 1.653620380999446E+001 1.674420364828453E+001 1.695481980246100E+001 1.716808518172644E+001 1.738403310923028E+001 1.760269732727551E+001 1.782411200259108E+001 1.804831173167053E+001 1.827533154617760E+001 1.850520691842025E+001 1.873797376689299E+001 1.897366846188952E+001 1.921232783118548E+001 1.945398916579281E+001 1.969869022578678E+001 1.994646924620580E+001 2.019736494302594E+001 2.045141651921032E+001 2.070866367083452E+001 2.096914659328943E+001 2.123290598756156E+001 2.149998306659294E+001 2.177041956172056E+001 2.204425772919693E+001 2.232154035679291E+001 2.260231077048313E+001 2.288661284121599E+001 2.317449099176851E+001 2.346599020368732E+001 2.376115602431743E+001 2.406003457391874E+001 2.436267255287275E+001 2.466911724897943E+001 2.497941654484593E+001 2.529361892536862E+001 2.561177348530862E+001 2.593392993696326E+001 2.626013861793359E+001 2.659045049898959E+001 2.692491719203479E+001 2.726359095817038E+001 2.760652471586138E+001 2.795377204920520E+001 2.830538721630404E+001 2.866142515774325E+001 2.902194150517542E+001 2.938699259001338E+001 2.975663545223187E+001 3.013092784928007E+001 3.050992826510663E+001 3.089369591929748E+001 3.128229077632943E+001 3.167577355493956E+001 3.207420573761245E+001 3.247764958018738E+001 3.288616812158545E+001 3.329982519365995E+001 3.371868543117002E+001 3.414281428187987E+001 3.457227801678541E+001 3.500714374046886E+001 3.544747940158435E+001 3.589335380347485E+001 3.634483661492268E+001 3.680199838103579E+001 3.726491053427013E+001 3.773364540559150E+001 3.820827623577726E+001 3.868887718686012E+001 3.917552335371663E+001 3.966829077580032E+001 4.016725644902349E+001 4.067249833778781E+001 4.118409538716618E+001 4.170212753523855E+001 4.222667572558188E+001 4.275782191991816E+001 4.329564911092098E+001 4.384024133518297E+001 4.439168368634733E+001 4.495006232840319E+001 4.551546450914947E+001 4.608797857382732E+001 4.666769397892397E+001 4.725470130615108E+001 4.784909227659762E+001 4.845095976506210E+001 4.906039781456422E+001 4.967750165103892E+001 5.030236769821636E+001 5.093509359268751E+001 5.157577819916076E+001 5.222452162590947E+001 5.288142524041374E+001 5.354659168520003E+001 5.422012489387841E+001 5.490213010738317E+001 5.559271389041655E+001 5.629198414809947E+001 5.700005014283256E+001 5.771702251136787E+001 5.844301328209676E+001 5.917813589255434E+001 5.992250520714386E+001 6.067623753508540E+001 6.143945064858844E+001 6.221226380125486E+001 6.299479774671218E+001 6.378717475748122E+001 6.458951864408225E+001 6.540195477437969E+001 6.622461009317193E+001 6.705761314202637E+001 6.790109407936390E+001 6.875518470079732E+001 6.962001845972361E+001 7.049573048817726E+001 7.138245761794451E+001 7.228033840194315E+001 7.318951313587273E+001 7.411012388013486E+001 7.504231448203151E+001 7.598623059824087E+001 7.694201971757626E+001 7.790983118403240E+001 7.888981622011970E+001 7.988212795049398E+001 8.088692142588209E+001 8.190435364730860E+001 8.293458359062834E+001 8.397777223136569E+001 8.503408256986830E+001 8.610367965677578E+001 8.718673061880878E+001 8.828340468488391E+001 8.939387321255487E+001 9.051830971478853E+001 9.165688988707623E+001 9.280979163488601E+001 9.397719510146190E+001 9.515928269597032E+001 9.635623912200305E+001 9.756825140643704E+001 9.879550892865727E+001 1.000382034501488E+002 1.442851211320437E-007 1.461000045362377E-007 1.479377163633833E-007 1.497985437596921E-007 1.516827774832310E-007 1.535907119493527E-007 1.555226452766992E-007 1.574788793337834E-007 1.594597197861567E-007 1.614654761441700E-007 1.634964618113350E-007 1.655529941332941E-007 1.676353944474067E-007 1.697439881329584E-007 1.718791046620028E-007 1.740410776508415E-007 1.762302449121524E-007 1.784469485077741E-007 1.806915348021531E-007 1.829643545164649E-007 1.852657627834137E-007 1.875961192027236E-007 1.899557878973261E-007 1.923451375702555E-007 1.947645415622597E-007 1.972143779101344E-007 1.996950294057935E-007 2.022068836560798E-007 2.047503331433304E-007 2.073257752867025E-007 2.099336125042708E-007 2.125742522759062E-007 2.152481072069452E-007 2.179555950926610E-007 2.206971389835441E-007 2.234731672514053E-007 2.262841136563093E-007 2.291304174143506E-007 2.320125232662821E-007 2.349308815470074E-007 2.378859482559450E-007 2.408781851282803E-007 2.439080597071124E-007 2.469760454165083E-007 2.500826216354774E-007 2.532282737728741E-007 2.564134933432447E-007 2.596387780436275E-007 2.629046318313187E-007 2.662115650026173E-007 2.695600942725592E-007 2.729507428556555E-007 2.763840405476455E-007 2.798605238082786E-007 2.833807358451377E-007 2.869452266985151E-007 2.905545533273588E-007 2.942092796962977E-007 2.979099768637622E-007 3.016572230712147E-007 3.054516038334983E-007 3.092937120303271E-007 3.131841479989235E-007 3.171235196278227E-007 3.211124424518567E-007 3.251515397483322E-007 3.292414426344192E-007 3.333827901657649E-007 3.375762294363462E-007 3.418224156795815E-007 3.461220123707097E-007 3.504756913304615E-007 3.548841328300322E-007 3.593480256973745E-007 3.638680674248317E-007 3.684449642781193E-007 3.730794314066824E-007 3.777721929554389E-007 3.825239821779278E-007 3.873355415508834E-007 3.922076228902466E-007 3.971409874686391E-007 4.021364061343131E-007 4.071946594315981E-007 4.123165377228637E-007 4.175028413120129E-007 4.227543805695333E-007 4.280719760591182E-007 4.334564586658811E-007 4.389086697261849E-007 4.444294611591001E-007 4.500196955995202E-007 4.556802465329499E-007 4.614119984319885E-007 4.672158468945327E-007 4.730926987837121E-007 4.790434723695910E-007 4.850690974726492E-007 4.911705156090678E-007 4.973486801378450E-007 5.036045564097574E-007 5.099391219182005E-007 5.163533664519222E-007 5.228482922496807E-007 5.294249141568469E-007 5.360842597839734E-007 5.428273696673631E-007 5.496552974316541E-007 5.565691099544508E-007 5.635698875330268E-007 5.706587240531220E-007 5.778367271598645E-007 5.851050184308436E-007 5.924647335513577E-007 5.999170224918683E-007 6.074630496876841E-007 6.151039942209068E-007 6.228410500046652E-007 6.306754259696662E-007 6.386083462530947E-007 6.466410503898840E-007 6.547747935063982E-007 6.630108465165474E-007 6.713504963203703E-007 6.797950460051171E-007 6.883458150488559E-007 6.970041395266466E-007 7.057713723193041E-007 7.146488833247892E-007 7.236380596722584E-007 7.327403059388048E-007 7.419570443689258E-007 7.512897150967528E-007 7.607397763710738E-007 7.703087047831904E-007 7.799979954976349E-007 7.898091624857939E-007 7.997437387624707E-007 8.098032766254196E-007 8.199893478978996E-007 8.303035441742698E-007 8.407474770686828E-007 8.513227784669020E-007 8.620311007812855E-007 8.728741172089828E-007 8.838535219933701E-007 8.949710306887829E-007 9.062283804285736E-007 9.176273301965413E-007 9.291696611017805E-007 9.408571766569770E-007 9.526917030602150E-007 9.646750894803225E-007 9.768092083458072E-007 9.890959556374306E-007 1.001537251184454E-006 1.014135038964618E-006 1.026891287407893E-006 1.039807989704053E-006 1.052887164114110E-006 1.066130854285675E-006 1.079541129572283E-006 1.093120085356730E-006 1.106869843378483E-006 1.120792552065210E-006 1.134890386868465E-006 1.149165550603622E-006 1.163620273794056E-006 1.178256815019674E-006 1.193077461269822E-006 1.208084528300627E-006 1.223280360996847E-006 1.238667333738255E-006 1.254247850770648E-006 1.270024346581513E-006 1.285999286280413E-006 1.302175165984182E-006 1.318554513206932E-006 1.335139887254989E-006 1.351933879626795E-006 1.368939114417822E-006 1.386158248730606E-006 1.403593973089914E-006 1.421249011863151E-006 1.439126123686048E-006 1.457228101893693E-006 1.475557774957014E-006 1.494118006924717E-006 1.512911697870808E-006 1.531941784347736E-006 1.551211239845226E-006 1.570723075254907E-006 1.590480339340757E-006 1.610486119215485E-006 1.630743540822904E-006 1.651255769426345E-006 1.672026010103268E-006 1.693057508246033E-006 1.714353550069011E-006 1.735917463122071E-006 1.757752616810492E-006 1.779862422921466E-006 1.802250336157180E-006 1.824919854674624E-006 1.847874520632192E-006 1.871117920743136E-006 1.894653686836016E-006 1.918485496422167E-006 1.942617073270322E-006 1.967052187988464E-006 1.991794658612974E-006 2.016848351205232E-006 2.042217180455676E-006 2.067905110295487E-006 2.093916154515972E-006 2.120254377395701E-006 2.146923894335591E-006 2.173928872501921E-006 2.201273531477471E-006 2.228962143920844E-006 2.256999036234059E-006 2.285388589238589E-006 2.314135238859845E-006 2.343243476820317E-006 2.372717851341411E-006 2.402562967854105E-006 2.432783489718582E-006 2.463384138952862E-006 2.494369696970647E-006 2.525745005328422E-006 2.557514966481942E-006 2.589684544552283E-006 2.622258766101464E-006 2.655242720917873E-006 2.688641562811564E-006 2.722460510419523E-006 2.756704848021126E-006 2.791379926363792E-006 2.826491163499056E-006 2.862044045629164E-006 2.898044127964269E-006 2.934497035590488E-006 2.971408464348799E-006 3.008784181725041E-006 3.046630027751097E-006 3.084951915917404E-006 3.123755834096959E-006 3.163047845480923E-006 3.202834089526011E-006 3.243120782913807E-006 3.283914220522111E-006 3.325220776408549E-006 3.367046904806516E-006 3.409399141133666E-006 3.452284103013097E-006 3.495708491307349E-006 3.539679091165443E-006 3.584202773083065E-006 3.629286493976097E-006 3.674937298267654E-006 3.721162318988783E-006 3.767968778893019E-006 3.815363991584949E-006 3.863355362662981E-006 3.911950390876487E-006 3.961156669297492E-006 4.010981886507112E-006 4.061433827796904E-006 4.112520376385340E-006 4.164249514649575E-006 4.216629325372704E-006 4.269667993006722E-006 4.323373804951356E-006 4.377755152848984E-006 4.432820533895858E-006 4.488578552169794E-006 4.545037919974594E-006 4.602207459201342E-006 4.660096102706850E-006 4.718712895709448E-006 4.778066997202295E-006 4.838167681384509E-006 4.899024339110268E-006 4.960646479356154E-006 5.023043730706955E-006 5.086225842860138E-006 5.150202688149278E-006 5.214984263086609E-006 5.280580689925013E-006 5.347002218239645E-006 5.414259226529435E-006 5.482362223838770E-006 5.551321851399531E-006 5.621148884293824E-006 5.691854233137606E-006 5.763448945785480E-006 5.835944209056965E-006 5.909351350484434E-006 5.983681840083083E-006 6.058947292143143E-006 6.135159467044622E-006 6.212330273094908E-006 6.290471768389449E-006 6.369596162695862E-006 6.449715819361744E-006 6.530843257246448E-006 6.612991152677202E-006 6.696172341429798E-006 6.780399820734207E-006 6.865686751305440E-006 6.952046459399909E-006 7.039492438897710E-006 7.128038353411047E-006 7.217698038419210E-006 7.308485503430399E-006 7.400414934170725E-006 7.493500694800780E-006 7.587757330160044E-006 7.683199568039553E-006 7.779842321483162E-006 7.877700691117713E-006 7.976789967512560E-006 8.077125633568736E-006 8.178723366938198E-006 8.281599042473479E-006 8.385768734708197E-006 8.491248720368691E-006 8.598055480917325E-006 8.706205705127730E-006 8.815716291692468E-006 8.926604351863505E-006 9.038887212125838E-006 9.152582416904824E-006 9.267707731307525E-006 9.384281143898532E-006 9.502320869510751E-006 9.621845352091452E-006 9.742873267584216E-006 9.865423526847066E-006 9.989515278607338E-006 1.011516791245373E-005 1.024240106186591E-005 1.037123460728234E-005 1.050168867920659E-005 1.063378366135281E-005 1.076754019383073E-005 1.090297917637066E-005 1.104012177158919E-005 1.117898940829583E-005 1.131960378484133E-005 1.146198687250814E-005 1.160616091894338E-005 1.175214845163511E-005 1.189997228143235E-005 1.204965550610923E-005 1.220122151397416E-005 1.235469398752424E-005 1.251009690714568E-005 1.266745455486085E-005 1.282679151812235E-005 1.298813269365487E-005 1.315150329134534E-005 1.331692883818203E-005 1.348443518224318E-005 1.365404849673584E-005 1.382579528408550E-005 1.399970238007711E-005 1.417579695804822E-005 1.435410653313490E-005 1.453465896657103E-005 1.471748247004169E-005 1.490260561009125E-005 1.509005731258697E-005 1.527986686723874E-005 1.547206393217564E-005 1.566667853858011E-005 1.586374109538034E-005 1.606328239400176E-005 1.626533361317824E-005 1.646992632382384E-005 1.667709249396588E-005 1.688686449373991E-005 1.709927510044767E-005 1.731435750367864E-005 1.753214531049588E-005 1.775267255068730E-005 1.797597368208288E-005 1.820208359593868E-005 1.843103762238877E-005 1.866287153596560E-005 1.889762156118981E-005 1.913532437823049E-005 1.937601712863639E-005 1.961973742113944E-005 1.986652333753122E-005 2.011641343861323E-005 2.036944677022219E-005 2.062566286933097E-005 2.088510177022631E-005 2.114780401076432E-005 2.141381063870454E-005 2.168316321812381E-005 2.195590383591065E-005 2.223207510834149E-005 2.251172018773951E-005 2.279488276921729E-005 2.308160709750434E-005 2.337193797386026E-005 2.366592076307519E-005 2.396360140055802E-005 2.426502639951400E-005 2.457024285821250E-005 2.487929846734615E-005 2.519224151748265E-005 2.550912090661026E-005 2.582998614777823E-005 2.615488737683332E-005 2.648387536025357E-005 2.681700150308072E-005 2.715431785695235E-005 2.749587712823499E-005 2.784173268625973E-005 2.819193857166115E-005 2.854654950482134E-005 2.890562089442006E-005 2.926920884609245E-005 2.963737017119574E-005 3.001016239568597E-005 3.038764376910668E-005 3.076987327369046E-005 3.115691063357501E-005 3.154881632413531E-005 3.194565158143283E-005 3.234747841178388E-005 3.275435960144823E-005 3.316635872643952E-005 3.358354016245935E-005 3.400596909495580E-005 3.443371152930902E-005 3.486683430114462E-005 3.530540508677687E-005 3.574949241378337E-005 3.619916567171242E-005 3.665449512292547E-005 3.711555191357561E-005 3.758240808472439E-005 3.805513658359845E-005 3.853381127498747E-005 3.901850695278586E-005 3.950929935167939E-005 4.000626515897888E-005 4.050948202660287E-005 4.101902858321070E-005 4.153498444648852E-005 4.205743023558968E-005 4.258644758373163E-005 4.312211915095137E-005 4.366452863702108E-005 4.421376079452650E-005 4.476990144210966E-005 4.533303747787818E-005 4.590325689298345E-005 4.648064878536914E-005 4.706530337369316E-005 4.765731201142442E-005 4.825676720111697E-005 4.886376260886392E-005 4.947839307893258E-005 5.010075464858440E-005 5.073094456308084E-005 5.136906129087813E-005 5.201520453901333E-005 5.266947526868349E-005 5.333197571102128E-005 5.400280938306867E-005 5.468208110395167E-005 5.536989701125877E-005 5.606636457762481E-005 5.677159262752402E-005 5.748569135427398E-005 5.820877233725354E-005 5.894094855933750E-005 5.968233442455017E-005 6.043304577594132E-005 6.119319991368696E-005 6.196291561341756E-005 6.274231314477736E-005 6.353151429021627E-005 6.433064236401889E-005 6.513982223157260E-005 6.595918032887791E-005 6.678884468230468E-005 6.762894492859602E-005 6.847961233512461E-005 6.934097982040341E-005 7.021318197485440E-005 7.109635508183888E-005 7.199063713895154E-005 7.289616787958324E-005 7.381308879475454E-005 7.474154315522385E-005 7.568167603387409E-005 7.663363432838017E-005 7.759756678416241E-005 7.857362401762815E-005 7.956195853970585E-005 8.056272477967552E-005 8.157607910929815E-005 8.260217986724944E-005 8.364118738386040E-005 8.469326400616935E-005 8.575857412328913E-005 8.683728419209283E-005 8.792956276322338E-005 8.903558050742978E-005 9.015551024223466E-005 9.128952695893779E-005 9.243780784995823E-005 9.360053233652143E-005 9.477788209669396E-005 9.597004109377112E-005 9.717719560502183E-005 9.839953425079437E-005 9.963724802398900E-005 1.008905303199009E-004 1.021595769664386E-004 1.034445862547227E-004 1.047457589700687E-004 1.060632984233607E-004 1.073974104828188E-004 1.087483036061665E-004 1.101161888732029E-004 1.115012800187838E-004 1.129037934662188E-004 1.143239483610875E-004 1.157619666054813E-004 1.172180728926769E-004 1.186924947422440E-004 1.201854625355963E-004 1.216972095519891E-004 1.232279720049691E-004 1.247779890792843E-004 1.263475029682559E-004 1.279367589116223E-004 1.295460052338580E-004 1.311754933829748E-004 1.328254779698113E-004 1.344962168078162E-004 1.361879709533320E-004 1.379010047463858E-004 1.396355858519930E-004 1.413919853019803E-004 1.431704775373354E-004 1.449713404510883E-004 1.467948554317332E-004 1.486413074071955E-004 1.505109848893535E-004 1.524041800191174E-004 1.543211886120780E-004 1.562623102047282E-004 1.582278481012658E-004 1.602181094209865E-004 1.622334051462705E-004 1.642740501711749E-004 1.663403633506369E-004 1.684326675502942E-004 1.705512896969354E-004 1.726965608295810E-004 1.748688161512102E-004 1.770683950811363E-004 1.792956413080421E-004 1.815509028436824E-004 1.838345320772601E-004 1.861468858304891E-004 1.884883254133480E-004 1.908592166805349E-004 1.932599300886345E-004 1.956908407540008E-004 1.981523285113711E-004 2.006447779732152E-004 2.031685785898325E-004 2.057241247102043E-004 2.083118156436111E-004 2.109320557220259E-004 2.135852543632918E-004 2.162718261350944E-004 2.189921908197392E-004 2.217467734797427E-004 2.245360045242497E-004 2.273603197762857E-004 2.302201605408546E-004 2.331159736738949E-004 2.360482116520998E-004 2.390173326436192E-004 2.420238005796487E-004 2.450680852269198E-004 2.481506622611027E-004 2.512720133411304E-004 2.544326261844594E-004 2.576329946432771E-004 2.608736187816658E-004 2.641550049537410E-004 2.674776658827677E-004 2.708421207412762E-004 2.742488952321830E-004 2.776985216709333E-004 2.811915390686770E-004 2.847284932164888E-004 2.883099367706504E-004 2.919364293390033E-004 2.956085375683896E-004 2.993268352331915E-004 3.030919033249837E-004 3.069043301433157E-004 3.107647113876343E-004 3.146736502503627E-004 3.186317575111515E-004 3.226396516323126E-004 3.266979588554569E-004 3.308073132993445E-004 3.349683570589676E-004 3.391817403058797E-004 3.434481213897853E-004 3.477681669414088E-004 3.521425519766566E-004 3.565719600020899E-004 3.610570831217253E-004 3.655986221451748E-004 3.701972866971507E-004 3.748537953283452E-004 3.795688756277054E-004 3.843432643361217E-004 3.891777074615428E-004 3.940729603955431E-004 3.990297880313528E-004 4.040489648833745E-004 4.091312752082036E-004 4.142775131271680E-004 4.194884827504126E-004 4.247649983025431E-004 4.301078842498490E-004 4.355179754291309E-004 4.409961171781411E-004 4.465431654676740E-004 4.521599870353111E-004 4.578474595208483E-004 4.636064716034343E-004 4.694379231404222E-004 4.753427253079798E-004 4.813218007434598E-004 4.873760836895619E-004 4.935065201403157E-004 4.997140679888875E-004 5.059996971772587E-004 5.123643898477790E-004 5.188091404966256E-004 5.253349561292011E-004 5.319428564174732E-004 5.386338738593066E-004 5.454090539397906E-004 5.522694552945952E-004 5.592161498753914E-004 5.662502231173386E-004 5.733727741086932E-004 5.805849157625390E-004 5.878877749906810E-004 5.952824928797334E-004 6.027702248694087E-004 6.103521409330653E-004 6.180294257605150E-004 6.258032789431293E-004 6.336749151612862E-004 6.416455643741577E-004 6.497164720119005E-004 6.578888991702549E-004 6.661641228075887E-004 6.745434359444339E-004 6.830281478655134E-004 6.916195843243286E-004 7.003190877503066E-004 7.091280174585545E-004 7.180477498622638E-004 7.270796786877674E-004 7.362252151923211E-004 7.454857883846115E-004 7.548628452480385E-004 7.643578509668171E-004 7.739722891549061E-004 7.837076620878345E-004 7.935654909374309E-004 8.035473160095066E-004 8.136546969845399E-004 8.238892131613688E-004 8.342524637039699E-004 8.447460678913260E-004 8.553716653704378E-004 8.661309164125326E-004 8.770255021724723E-004 8.880571249514486E-004 8.992275084629664E-004 9.105383981021726E-004 9.219915612185886E-004 9.335887873922497E-004 9.453318887133422E-004 9.572227000653402E-004 9.692630794117066E-004 9.814549080862140E-004 9.938000910868934E-004 1.006300557373707E-003 1.018958260169947E-003 1.031775177267423E-003 1.044753311335512E-003 1.057894690234062E-003 1.071201367330265E-003 1.084675421819491E-003 1.098318959050164E-003 1.112134110852737E-003 1.126123035872784E-003 1.140287919908301E-003 1.154630976251240E-003 1.169154446033331E-003 1.183860598576280E-003 1.198751731746337E-003 1.213830172313359E-003 1.229098276314364E-003 1.244558429421660E-003 1.260213047315630E-003 1.276064576062164E-003 1.292115492494881E-003 1.308368304602132E-003 1.324825551918871E-003 1.341489805923478E-003 1.358363670439541E-003 1.375449782042722E-003 1.392750810472724E-003 1.410269459050433E-003 1.428008465100337E-003 1.445970600378217E-003 1.464158671504255E-003 1.482575520401572E-003 1.501224024740273E-003 1.520107098387106E-003 1.539227691860742E-003 1.558588792792813E-003 1.578193426394736E-003 1.598044655930388E-003 1.618145583194780E-003 1.638499348998686E-003 1.659109133659426E-003 1.679978157497786E-003 1.701109681341195E-003 1.722507007033252E-003 1.744173477949621E-003 1.766112479520469E-003 1.788327439759429E-003 1.810821829799228E-003 1.833599164434083E-003 1.856663002668863E-003 1.880016948275221E-003 1.903664650354674E-003 1.927609803908777E-003 1.951856150416498E-003 1.976407478418800E-003 2.001267624110637E-003 2.026440471940355E-003 2.051929955216635E-003 2.077740056723106E-003 2.103874809340631E-003 2.130338296677486E-003 2.157134653707400E-003 2.184268067415680E-003 2.211742777453425E-003 2.239563076799970E-003 2.267733312433694E-003 2.296257886011222E-003 2.325141254555213E-003 2.354387931150767E-003 2.384002485650600E-003 2.413989545389111E-003 2.444353795905384E-003 2.475099981675344E-003 2.506232906853075E-003 2.537757436021468E-003 2.569678494952351E-003 2.602001071376118E-003 2.634730215761099E-003 2.667871042102698E-003 2.701428728722447E-003 2.735408519077162E-003 2.769815722578211E-003 2.804655715421146E-003 2.839933941425737E-003 2.875655912886561E-003 2.911827211434347E-003 2.948453488908072E-003 2.985540468238115E-003 3.023093944340454E-003 3.061119785022123E-003 3.099623931898105E-003 3.138612401319673E-003 3.178091285314504E-003 3.218066752538549E-003 3.258545049239879E-003 3.299532500234721E-003 3.341035509895669E-003 3.383060563152428E-003 3.425614226505076E-003 3.468703149050074E-003 3.512334063519251E-003 3.556513787331744E-003 3.601249223659293E-003 3.646547362504842E-003 3.692415281794734E-003 3.738860148484692E-003 3.785889219679613E-003 3.833509843767560E-003 3.881729461567939E-003 3.930555607494122E-003 3.979995910730759E-003 4.030058096425807E-003 4.080749986897637E-003 4.132079502857278E-003 4.184054664646013E-003 4.236683593488633E-003 4.289974512762327E-003 4.343935749281661E-003 4.398575734599635E-003 4.453903006325104E-003 4.509926209456855E-003 4.566654097734341E-003 4.624095535005529E-003 4.682259496611864E-003 4.741155070790669E-003 4.800791460095247E-003 4.861177982832744E-003 4.922324074520200E-003 4.984239289358856E-003 5.046933301726978E-003 5.110415907691570E-003 5.174697026538951E-003 5.239786702324733E-003 5.305695105443192E-003 5.372432534216385E-003 5.440009416503359E-003 5.508436311329438E-003 5.577723910536162E-003 5.647883040451884E-003 5.718924663583376E-003 5.790859880328804E-003 5.863699930712119E-003 5.937456196139398E-003 6.012140201177184E-003 6.087763615353186E-003 6.164338254979751E-003 6.241876085000088E-003 6.320389220857901E-003 6.399889930390416E-003 6.480390635745222E-003 6.561903915321331E-003 6.644442505734495E-003 6.728019303807402E-003 6.812647368584804E-003 6.898339923373973E-003 6.985110357810963E-003 7.072972229952668E-003 7.161939268395374E-003 7.252025374419858E-003 7.343244624163446E-003 7.435611270819518E-003 7.529139746864511E-003 7.623844666313104E-003 7.719740827001655E-003 7.816843212900345E-003 7.915166996454559E-003 8.014727540955486E-003 8.115540402940775E-003 8.217621334625237E-003 8.320986286362096E-003 8.425651409135395E-003 8.531633057083475E-003 8.638947790054467E-003 8.747612376193748E-003 8.857643794563949E-003 8.969059237798081E-003 9.081876114785798E-003 9.196112053393669E-003 9.311784903219536E-003 9.428912738381486E-003 9.547513860342098E-003 9.667606800767940E-003 9.789210324425299E-003 9.912343432112171E-003 1.003702536362711E-002 1.016327560077563E-002 1.029111387041409E-002 1.042056014753223E-002 1.055163465837424E-002 1.068435788359907E-002 1.081875056148073E-002 1.095483369114852E-002 1.109262853586833E-002 1.123215662636502E-002 1.137343976418656E-002 1.151650002511072E-002 1.166135976259428E-002 1.180804161126597E-002 1.195656849046308E-002 1.210696360781264E-002 1.225925046285775E-002 1.241345285072930E-002 1.256959486586413E-002 1.272770090576983E-002 1.288779567483673E-002 1.304990418819828E-002 1.321405177563944E-002 1.338026408555475E-002 1.354856708895580E-002 1.371898708352926E-002 1.389155069774603E-002 1.406628489502189E-002 1.424321697793067E-002 1.442237459247032E-002 1.460378573238258E-002 1.478747874352718E-002 1.497348232831078E-002 1.516182555017197E-002 1.535253783812238E-002 1.554564899134495E-002 1.574118918385031E-002 1.593918896919132E-002 1.613967928523729E-002 1.634269145900805E-002 1.654825721156871E-002 1.675640866298640E-002 1.696717833734883E-002 1.718059916784646E-002 1.739670450191829E-002 1.761552810646240E-002 1.783710417311224E-002 1.806146732357896E-002 1.828865261506134E-002 1.851869554572341E-002 1.875163206024104E-002 1.898749855541860E-002 1.922633188587579E-002 1.946816936980642E-002 1.971304879480941E-002 1.996100842379307E-002 2.021208700095396E-002 2.046632375783054E-002 2.072375841943332E-002 2.098443121045200E-002 2.124838286154043E-002 2.151565461568119E-002 2.178628823462955E-002 2.206032600543911E-002 2.233781074706915E-002 2.261878581707500E-002 2.290329511838309E-002 2.319138310615050E-002 2.348309479471149E-002 2.377847576461092E-002 2.407757216972621E-002 2.438043074447926E-002 2.468709881113847E-002 2.499762428721321E-002 2.531205569294093E-002 2.563044215886841E-002 2.595283343352879E-002 2.627927989121458E-002 2.660983253984897E-002 2.694454302895588E-002 2.728346365773012E-002 2.762664738320957E-002 2.797414782854944E-002 2.832601929140137E-002 2.868231675239737E-002 2.904309588374051E-002 2.940841305790417E-002 2.977832535643995E-002 3.015289057889715E-002 3.053216725185389E-002 3.091621463806186E-002 3.130509274570661E-002 3.169886233778352E-002 3.209758494159255E-002 3.250132285835180E-002 3.291013917293206E-002 3.332409776371436E-002 3.374326331257058E-002 3.416770131497059E-002 3.459747809021585E-002 3.503266079180177E-002 3.547331741791097E-002 3.591951682203767E-002 3.637132872374665E-002 3.682882371956682E-002 3.729207329402193E-002 3.776114983080062E-002 3.823612662406595E-002 3.871707788990830E-002 3.920407877794151E-002 3.969720538304503E-002 4.019653475725432E-002 4.070214492179984E-002 4.121411487929855E-002 4.173252462609799E-002 4.225745516477566E-002 4.278898851679636E-002 4.332720773532762E-002 4.387219691821740E-002 4.442404122113442E-002 4.498282687087357E-002 4.554864117882965E-002 4.612157255463927E-002 4.670171051999562E-002 4.728914572263617E-002 4.788396995050631E-002 4.848627614610199E-002 4.909615842099152E-002 4.971371207052124E-002 5.033903358870540E-002 5.097222068330325E-002 5.161337229108676E-002 5.226258859329888E-002 5.291997103130776E-002 5.358562232245689E-002 5.425964647611462E-002 5.494214880992644E-002 5.563323596627038E-002 5.633301592892075E-002 5.704159803992053E-002 5.775909301666596E-002 5.848561296920716E-002 5.922127141776459E-002 5.996618331046765E-002 6.072046504131523E-002 6.148423446836215E-002 6.225761093213553E-002 6.304071527428100E-002 6.383366985644544E-002 6.463659857939566E-002 6.544962690237797E-002 6.627288186272220E-002 6.710649209569060E-002 6.795058785457815E-002 6.880530103106466E-002 6.967076517582262E-002 7.054711551938569E-002 7.143448899327777E-002 7.233302425140965E-002 7.324286169174360E-002 7.416414347823054E-002 7.509701356302420E-002 7.604161770897300E-002 7.699810351239672E-002 7.796662042614823E-002 7.894731978296551E-002 7.994035481911860E-002 8.094588069835194E-002 8.196405453613007E-002 8.299503542418679E-002 8.403898445538310E-002 8.509606474887935E-002 8.616644147562175E-002 8.725028188415171E-002 8.834775532673829E-002 8.945903328583943E-002 9.058428940089745E-002 9.172369949546938E-002 9.287744160470077E-002 9.404569600314372E-002 9.522864523292440E-002 9.642647413226711E-002 9.763936986437399E-002 9.886752194667103E-002 1.001111222804199E-001 1.013703651807027E-001 1.026454474067847E-001 1.039365681928576E-001 1.052439292791712E-001 1.065677349435553E-001 1.079081920333379E-001 1.092655099976668E-001 1.106399009202351E-001 1.120315795524208E-001 1.134407633468417E-001 1.148676724913325E-001 1.163125299433503E-001 1.177755614648112E-001 1.192569956573673E-001 1.207570639981253E-001 1.222760008758149E-001 1.238140436274140E-001 1.253714325752313E-001 1.269484110644587E-001 1.285452255011937E-001 1.301621253909403E-001 1.317993633775963E-001 1.334571952829278E-001 1.351358801465430E-001 1.368356802663674E-001 1.385568612396275E-001 1.402996920043527E-001 1.420644448813953E-001 1.438513956169830E-001 1.456608234258040E-001 1.474930110346342E-001 1.493482447265158E-001 1.512268143854870E-001 1.531290135418792E-001 1.550551394181811E-001 1.570054929754788E-001 1.589803789604845E-001 1.609801059531505E-001 1.630049864148883E-001 1.650553367373899E-001 1.671314772920641E-001 1.692337324800972E-001 1.713624307831386E-001 1.735179048146295E-001 1.757004913717730E-001 1.779105314881583E-001 1.801483704870508E-001 1.824143580353463E-001 1.847088481982097E-001 1.870321994943975E-001 1.893847749522759E-001 1.917669421665472E-001 1.941790733556846E-001 1.966215454200943E-001 1.990947400010058E-001 2.015990435401035E-001 2.041348473399111E-001 2.067025476249308E-001 2.093025456035566E-001 2.119352475307625E-001 2.146010647715805E-001 2.173004138653786E-001 2.200337165909438E-001 2.228014000323885E-001 2.256038966458817E-001 2.284416443272200E-001 2.313150864802531E-001 2.342246720861624E-001 2.371708557736190E-001 2.401540978898185E-001 2.431748645724102E-001 2.462336278223348E-001 2.493308655775725E-001 2.524670617878242E-001 2.556427064901290E-001 2.588582958854315E-001 2.621143324161179E-001 2.654113248445195E-001 2.687497883324118E-001 2.721302445215070E-001 2.755532216149616E-001 2.790192544599113E-001 2.825288846310391E-001 2.860826605151999E-001 2.896811373971064E-001 2.933248775460915E-001 2.970144503039679E-001 3.007504321739843E-001 3.045334069109094E-001 3.083639656122429E-001 3.122427068105741E-001 3.161702365671077E-001 3.201471685663578E-001 3.241741242120408E-001 3.282517327241699E-001 3.323806312373699E-001 3.365614649004349E-001 3.407948869771298E-001 3.450815589482673E-001 3.494221506150650E-001 3.538173402038006E-001 3.582678144717906E-001 3.627742688146928E-001 3.673374073751672E-001 3.719579431528984E-001 3.766365981160009E-001 3.813741033138329E-001 3.861711989912185E-001 3.910286347041179E-001 3.959471694367445E-001 4.009275717201557E-001 4.059706197523423E-001 4.110771015198181E-001 4.162478149207494E-001 4.214835678896253E-001 4.267851785234984E-001 4.321534752098177E-001 4.375892967558608E-001 4.430934925198043E-001 4.486669225434357E-001 4.543104576865335E-001 4.600249797629474E-001 4.658113816783767E-001 4.716705675698937E-001 4.776034529472157E-001 4.836109648357515E-001 4.896940419214579E-001 4.958536346975040E-001 5.020907056127937E-001 5.084062292223477E-001 5.148011923395773E-001 5.212765941904819E-001 5.278334465697735E-001 5.344727739989770E-001 5.411956138865123E-001 5.480030166897872E-001 5.548960460793417E-001 5.618757791050399E-001 5.689433063643684E-001 5.760997321728415E-001 5.833461747365497E-001 5.906837663268885E-001 5.981136534574703E-001 6.056369970632763E-001 6.132549726820528E-001 6.209687706379866E-001 6.287795962277045E-001 6.366886699085939E-001 6.446972274895095E-001 6.528065203238684E-001 6.610178155051718E-001 6.693323960650005E-001 6.777515611734801E-001 6.862766263422897E-001 6.949089236302068E-001 7.036498018512434E-001 7.125006267854070E-001 7.214627813920984E-001 7.305376660262095E-001 7.397266986569293E-001 7.490313150892983E-001 7.584529691885675E-001 7.679931331073555E-001 7.776532975156858E-001 7.874349718339023E-001 7.973396844685152E-001 8.073689830510281E-001 8.175244346797461E-001 8.278076261646492E-001 8.382201642753296E-001 8.487636759920488E-001 8.594398087599665E-001 8.702502307465452E-001 8.811966311022158E-001 8.922807202243064E-001 9.035042300242895E-001 9.148689141984092E-001 9.263765485016858E-001 9.380289310253940E-001 9.498278824780109E-001 9.617752464697032E-001 9.738728898004050E-001 9.861227027514963E-001 9.985265993811748E-001 1.011086517823526E+000 1.023804420591357E+000 1.036682294882854E+000 1.049722152892071E+000 1.062926032123354E+000 1.076295995709697E+000 1.089834132735110E+000 1.103542558561049E+000 1.117423415156936E+000 1.131478871434857E+000 1.145711123588453E+000 1.160122395436075E+000 1.174714938768274E+000 1.189491033699629E+000 1.204452989025038E+000 1.219603142580463E+000 1.234943861608216E+000 1.250477543126860E+000 -1.154562602979889E+001 -1.154562602979853E+001 -1.154562602979817E+001 -1.154562602979780E+001 -1.154562602979742E+001 -1.154562602979704E+001 -1.154562602979664E+001 -1.154562602979625E+001 -1.154562602979585E+001 -1.154562602979543E+001 -1.154562602979501E+001 -1.154562602979458E+001 -1.154562602979414E+001 -1.154562602979370E+001 -1.154562602979325E+001 -1.154562602979277E+001 -1.154562602979228E+001 -1.154562602979179E+001 -1.154562602979128E+001 -1.154562602979076E+001 -1.154562602979022E+001 -1.154562602978966E+001 -1.154562602978909E+001 -1.154562602978852E+001 -1.154562602978791E+001 -1.154562602978729E+001 -1.154562602978666E+001 -1.154562602978602E+001 -1.154562602978535E+001 -1.154562602978467E+001 -1.154562602978396E+001 -1.154562602978324E+001 -1.154562602978250E+001 -1.154562602978174E+001 -1.154562602978096E+001 -1.154562602978016E+001 -1.154562602977934E+001 -1.154562602977849E+001 -1.154562602977763E+001 -1.154562602977674E+001 -1.154562602977582E+001 -1.154562602977488E+001 -1.154562602977392E+001 -1.154562602977294E+001 -1.154562602977192E+001 -1.154562602977088E+001 -1.154562602976981E+001 -1.154562602976872E+001 -1.154562602976760E+001 -1.154562602976644E+001 -1.154562602976526E+001 -1.154562602976405E+001 -1.154562602976280E+001 -1.154562602976153E+001 -1.154562602976021E+001 -1.154562602975887E+001 -1.154562602975749E+001 -1.154562602975607E+001 -1.154562602975463E+001 -1.154562602975314E+001 -1.154562602975160E+001 -1.154562602975004E+001 -1.154562602974842E+001 -1.154562602974677E+001 -1.154562602974509E+001 -1.154562602974335E+001 -1.154562602974156E+001 -1.154562602973973E+001 -1.154562602973786E+001 -1.154562602973594E+001 -1.154562602973396E+001 -1.154562602973194E+001 -1.154562602972986E+001 -1.154562602972774E+001 -1.154562602972555E+001 -1.154562602972331E+001 -1.154562602972100E+001 -1.154562602971864E+001 -1.154562602971623E+001 -1.154562602971375E+001 -1.154562602971120E+001 -1.154562602970859E+001 -1.154562602970591E+001 -1.154562602970317E+001 -1.154562602970035E+001 -1.154562602969746E+001 -1.154562602969450E+001 -1.154562602969146E+001 -1.154562602968834E+001 -1.154562602968515E+001 -1.154562602968187E+001 -1.154562602967850E+001 -1.154562602967505E+001 -1.154562602967152E+001 -1.154562602966789E+001 -1.154562602966417E+001 -1.154562602966035E+001 -1.154562602965643E+001 -1.154562602965243E+001 -1.154562602964831E+001 -1.154562602964409E+001 -1.154562602963976E+001 -1.154562602963532E+001 -1.154562602963078E+001 -1.154562602962611E+001 -1.154562602962132E+001 -1.154562602961641E+001 -1.154562602961137E+001 -1.154562602960621E+001 -1.154562602960091E+001 -1.154562602959549E+001 -1.154562602958992E+001 -1.154562602958420E+001 -1.154562602957835E+001 -1.154562602957235E+001 -1.154562602956619E+001 -1.154562602955988E+001 -1.154562602955340E+001 -1.154562602954677E+001 -1.154562602953996E+001 -1.154562602953297E+001 -1.154562602952581E+001 -1.154562602951847E+001 -1.154562602951095E+001 -1.154562602950323E+001 -1.154562602949531E+001 -1.154562602948719E+001 -1.154562602947886E+001 -1.154562602947033E+001 -1.154562602946158E+001 -1.154562602945260E+001 -1.154562602944340E+001 -1.154562602943396E+001 -1.154562602942428E+001 -1.154562602941436E+001 -1.154562602940419E+001 -1.154562602939375E+001 -1.154562602938305E+001 -1.154562602937209E+001 -1.154562602936084E+001 -1.154562602934930E+001 -1.154562602933747E+001 -1.154562602932535E+001 -1.154562602931291E+001 -1.154562602930016E+001 -1.154562602928709E+001 -1.154562602927368E+001 -1.154562602925992E+001 -1.154562602924583E+001 -1.154562602923138E+001 -1.154562602921656E+001 -1.154562602920136E+001 -1.154562602918577E+001 -1.154562602916980E+001 -1.154562602915341E+001 -1.154562602913661E+001 -1.154562602911938E+001 -1.154562602910172E+001 -1.154562602908361E+001 -1.154562602906504E+001 -1.154562602904600E+001 -1.154562602902648E+001 -1.154562602900645E+001 -1.154562602898594E+001 -1.154562602896488E+001 -1.154562602894331E+001 -1.154562602892118E+001 -1.154562602889849E+001 -1.154562602887522E+001 -1.154562602885136E+001 -1.154562602882691E+001 -1.154562602880183E+001 -1.154562602877611E+001 -1.154562602874975E+001 -1.154562602872270E+001 -1.154562602869499E+001 -1.154562602866656E+001 -1.154562602863742E+001 -1.154562602860754E+001 -1.154562602857690E+001 -1.154562602854548E+001 -1.154562602851327E+001 -1.154562602848024E+001 -1.154562602844638E+001 -1.154562602841164E+001 -1.154562602837605E+001 -1.154562602833954E+001 -1.154562602830211E+001 -1.154562602826373E+001 -1.154562602822437E+001 -1.154562602818402E+001 -1.154562602814265E+001 -1.154562602810023E+001 -1.154562602805673E+001 -1.154562602801213E+001 -1.154562602796640E+001 -1.154562602791952E+001 -1.154562602787144E+001 -1.154562602782215E+001 -1.154562602777160E+001 -1.154562602771978E+001 -1.154562602766665E+001 -1.154562602761216E+001 -1.154562602755631E+001 -1.154562602749902E+001 -1.154562602744029E+001 -1.154562602738008E+001 -1.154562602731833E+001 -1.154562602725503E+001 -1.154562602719012E+001 -1.154562602712357E+001 -1.154562602705533E+001 -1.154562602698535E+001 -1.154562602691362E+001 -1.154562602684005E+001 -1.154562602676463E+001 -1.154562602668730E+001 -1.154562602660801E+001 -1.154562602652671E+001 -1.154562602644334E+001 -1.154562602635787E+001 -1.154562602627023E+001 -1.154562602618038E+001 -1.154562602608825E+001 -1.154562602599377E+001 -1.154562602589692E+001 -1.154562602579760E+001 -1.154562602569577E+001 -1.154562602559136E+001 -1.154562602548430E+001 -1.154562602537454E+001 -1.154562602526200E+001 -1.154562602514660E+001 -1.154562602502828E+001 -1.154562602490696E+001 -1.154562602478257E+001 -1.154562602465503E+001 -1.154562602452426E+001 -1.154562602439018E+001 -1.154562602425269E+001 -1.154562602411173E+001 -1.154562602396719E+001 -1.154562602381900E+001 -1.154562602366705E+001 -1.154562602351125E+001 -1.154562602335150E+001 -1.154562602318771E+001 -1.154562602301977E+001 -1.154562602284757E+001 -1.154562602267101E+001 -1.154562602248998E+001 -1.154562602230437E+001 -1.154562602211405E+001 -1.154562602191891E+001 -1.154562602171882E+001 -1.154562602151368E+001 -1.154562602130333E+001 -1.154562602108765E+001 -1.154562602086651E+001 -1.154562602063976E+001 -1.154562602040727E+001 -1.154562602016889E+001 -1.154562601992447E+001 -1.154562601967386E+001 -1.154562601941690E+001 -1.154562601915343E+001 -1.154562601888329E+001 -1.154562601860629E+001 -1.154562601832228E+001 -1.154562601803108E+001 -1.154562601773249E+001 -1.154562601742634E+001 -1.154562601711243E+001 -1.154562601679057E+001 -1.154562601646055E+001 -1.154562601612217E+001 -1.154562601577522E+001 -1.154562601541946E+001 -1.154562601505470E+001 -1.154562601468069E+001 -1.154562601429721E+001 -1.154562601390400E+001 -1.154562601350082E+001 -1.154562601308744E+001 -1.154562601266356E+001 -1.154562601222895E+001 -1.154562601178332E+001 -1.154562601132640E+001 -1.154562601085789E+001 -1.154562601037751E+001 -1.154562600988496E+001 -1.154562600937990E+001 -1.154562600886205E+001 -1.154562600833107E+001 -1.154562600778663E+001 -1.154562600722839E+001 -1.154562600665598E+001 -1.154562600606907E+001 -1.154562600546727E+001 -1.154562600485021E+001 -1.154562600421750E+001 -1.154562600356875E+001 -1.154562600290354E+001 -1.154562600222146E+001 -1.154562600152208E+001 -1.154562600080497E+001 -1.154562600006966E+001 -1.154562599931570E+001 -1.154562599854261E+001 -1.154562599774991E+001 -1.154562599693710E+001 -1.154562599610366E+001 -1.154562599524908E+001 -1.154562599437281E+001 -1.154562599347431E+001 -1.154562599255301E+001 -1.154562599160831E+001 -1.154562599063965E+001 -1.154562598964640E+001 -1.154562598862793E+001 -1.154562598758361E+001 -1.154562598651277E+001 -1.154562598541474E+001 -1.154562598428884E+001 -1.154562598313434E+001 -1.154562598195053E+001 -1.154562598073665E+001 -1.154562597949193E+001 -1.154562597821559E+001 -1.154562597690684E+001 -1.154562597556484E+001 -1.154562597418873E+001 -1.154562597277765E+001 -1.154562597133072E+001 -1.154562596984701E+001 -1.154562596832559E+001 -1.154562596676549E+001 -1.154562596516573E+001 -1.154562596352529E+001 -1.154562596184315E+001 -1.154562596011822E+001 -1.154562595834941E+001 -1.154562595653561E+001 -1.154562595467567E+001 -1.154562595276841E+001 -1.154562595081261E+001 -1.154562594880703E+001 -1.154562594675040E+001 -1.154562594464143E+001 -1.154562594247875E+001 -1.154562594026100E+001 -1.154562593798677E+001 -1.154562593565462E+001 -1.154562593326304E+001 -1.154562593081054E+001 -1.154562592829553E+001 -1.154562592571642E+001 -1.154562592307156E+001 -1.154562592035926E+001 -1.154562591757781E+001 -1.154562591472541E+001 -1.154562591180023E+001 -1.154562590880042E+001 -1.154562590572405E+001 -1.154562590256915E+001 -1.154562589933370E+001 -1.154562589601563E+001 -1.154562589261281E+001 -1.154562588912306E+001 -1.154562588554413E+001 -1.154562588187373E+001 -1.154562587810948E+001 -1.154562587424898E+001 -1.154562587028972E+001 -1.154562586622918E+001 -1.154562586206471E+001 -1.154562585779364E+001 -1.154562585341321E+001 -1.154562584892058E+001 -1.154562584431284E+001 -1.154562583958702E+001 -1.154562583474004E+001 -1.154562582976877E+001 -1.154562582466996E+001 -1.154562581944032E+001 -1.154562581407645E+001 -1.154562580857484E+001 -1.154562580293191E+001 -1.154562579714397E+001 -1.154562579120725E+001 -1.154562578511787E+001 -1.154562577887182E+001 -1.154562577246503E+001 -1.154562576589329E+001 -1.154562575915228E+001 -1.154562575223757E+001 -1.154562574514460E+001 -1.154562573786869E+001 -1.154562573040505E+001 -1.154562572274874E+001 -1.154562571489469E+001 -1.154562570683769E+001 -1.154562569857239E+001 -1.154562569009330E+001 -1.154562568139477E+001 -1.154562567247101E+001 -1.154562566331605E+001 -1.154562565392376E+001 -1.154562564428786E+001 -1.154562563440188E+001 -1.154562562425917E+001 -1.154562561385290E+001 -1.154562560317605E+001 -1.154562559222141E+001 -1.154562558098156E+001 -1.154562556944887E+001 -1.154562555761551E+001 -1.154562554547341E+001 -1.154562553301429E+001 -1.154562552022963E+001 -1.154562550711068E+001 -1.154562549364841E+001 -1.154562547983357E+001 -1.154562546565662E+001 -1.154562545110777E+001 -1.154562543617694E+001 -1.154562542085374E+001 -1.154562540512752E+001 -1.154562538898729E+001 -1.154562537242175E+001 -1.154562535541930E+001 -1.154562533796796E+001 -1.154562532005541E+001 -1.154562530166901E+001 -1.154562528279569E+001 -1.154562526342204E+001 -1.154562524353423E+001 -1.154562522311803E+001 -1.154562520215879E+001 -1.154562518064141E+001 -1.154562515855035E+001 -1.154562513586961E+001 -1.154562511258270E+001 -1.154562508867263E+001 -1.154562506412190E+001 -1.154562503891249E+001 -1.154562501302580E+001 -1.154562498644268E+001 -1.154562495914341E+001 -1.154562493110763E+001 -1.154562490231439E+001 -1.154562487274203E+001 -1.154562484236828E+001 -1.154562481117015E+001 -1.154562477912391E+001 -1.154562474620511E+001 -1.154562471238851E+001 -1.154562467764809E+001 -1.154562464195698E+001 -1.154562460528747E+001 -1.154562456761095E+001 -1.154562452889788E+001 -1.154562448911779E+001 -1.154562444823921E+001 -1.154562440622963E+001 -1.154562436305551E+001 -1.154562431868216E+001 -1.154562427307379E+001 -1.154562422619341E+001 -1.154562417800280E+001 -1.154562412846246E+001 -1.154562407753156E+001 -1.154562402516792E+001 -1.154562397132789E+001 -1.154562391596639E+001 -1.154562385903678E+001 -1.154562380049080E+001 -1.154562374027856E+001 -1.154562367834844E+001 -1.154562361464703E+001 -1.154562354911905E+001 -1.154562348170728E+001 -1.154562341235252E+001 -1.154562334099345E+001 -1.154562326756659E+001 -1.154562319200621E+001 -1.154562311424419E+001 -1.154562303421001E+001 -1.154562295183058E+001 -1.154562286703016E+001 -1.154562277973027E+001 -1.154562268984956E+001 -1.154562259730366E+001 -1.154562250200515E+001 -1.154562240386332E+001 -1.154562230278411E+001 -1.154562219866994E+001 -1.154562209141957E+001 -1.154562198092796E+001 -1.154562186708608E+001 -1.154562174978076E+001 -1.154562162889451E+001 -1.154562150430534E+001 -1.154562137588657E+001 -1.154562124350663E+001 -1.154562110702882E+001 -1.154562096631114E+001 -1.154562082120601E+001 -1.154562067156007E+001 -1.154562051721392E+001 -1.154562035800181E+001 -1.154562019375143E+001 -1.154562002428357E+001 -1.154561984941185E+001 -1.154561966894238E+001 -1.154561948267345E+001 -1.154561929039513E+001 -1.154561909188899E+001 -1.154561888692764E+001 -1.154561867527438E+001 -1.154561845668275E+001 -1.154561823089611E+001 -1.154561799764715E+001 -1.154561775665747E+001 -1.154561750763700E+001 -1.154561725028353E+001 -1.154561698428210E+001 -1.154561670930448E+001 -1.154561642500851E+001 -1.154561613103749E+001 -1.154561582701951E+001 -1.154561551256670E+001 -1.154561518727456E+001 -1.154561485072117E+001 -1.154561450246634E+001 -1.154561414205083E+001 -1.154561376899537E+001 -1.154561338279981E+001 -1.154561298294211E+001 -1.154561256887730E+001 -1.154561214003644E+001 -1.154561169582542E+001 -1.154561123562387E+001 -1.154561075878381E+001 -1.154561026462847E+001 -1.154560975245081E+001 -1.154560922151214E+001 -1.154560867104060E+001 -1.154560810022961E+001 -1.154560750823615E+001 -1.154560689417909E+001 -1.154560625713731E+001 -1.154560559614782E+001 -1.154560491020372E+001 -1.154560419825213E+001 -1.154560345919194E+001 -1.154560269187149E+001 -1.154560189508616E+001 -1.154560106757579E+001 -1.154560020802198E+001 -1.154559931504529E+001 -1.154559838720227E+001 -1.154559742298236E+001 -1.154559642080464E+001 -1.154559537901439E+001 -1.154559429587948E+001 -1.154559316958661E+001 -1.154559199823737E+001 -1.154559077984407E+001 -1.154558951232532E+001 -1.154558819350158E+001 -1.154558682109017E+001 -1.154558539270034E+001 -1.154558390582795E+001 -1.154558235784988E+001 -1.154558074601815E+001 -1.154557906745383E+001 -1.154557731914056E+001 -1.154557549791783E+001 -1.154557360047380E+001 -1.154557162333788E+001 -1.154556956287288E+001 -1.154556741526672E+001 -1.154556517652396E+001 -1.154556284245654E+001 -1.154556040867429E+001 -1.154555787057504E+001 -1.154555522333396E+001 -1.154555246189261E+001 -1.154554958094733E+001 -1.154554657493714E+001 -1.154554343803080E+001 -1.154554016411357E+001 -1.154553674677305E+001 -1.154553317928439E+001 -1.154552945459477E+001 -1.154552556530704E+001 -1.154552150366271E+001 -1.154551726152384E+001 -1.154551283035428E+001 -1.154550820119977E+001 -1.154550336466706E+001 -1.154549831090246E+001 -1.154549302956806E+001 -1.154548750981870E+001 -1.154548174027589E+001 -1.154547570900155E+001 -1.154546940347020E+001 -1.154546281053940E+001 -1.154545591641975E+001 -1.154544870664155E+001 -1.154544116602211E+001 -1.154543327862932E+001 -1.154542502774494E+001 -1.154541639582532E+001 -1.154540736446019E+001 -1.154539791432981E+001 -1.154538802515947E+001 -1.154537767567242E+001 -1.154536684353960E+001 -1.154535550532793E+001 -1.154534363644518E+001 -1.154533121108247E+001 -1.154531820215430E+001 -1.154530458123474E+001 -1.154529031849184E+001 -1.154527538261724E+001 -1.154525974075398E+001 -1.154524335841967E+001 -1.154522619942614E+001 -1.154520822579578E+001 -1.154518939767324E+001 -1.154516967323306E+001 -1.154514900858297E+001 -1.154512735766268E+001 -1.154510467213750E+001 -1.154508090128715E+001 -1.154505599188937E+001 -1.154502988809768E+001 -1.154500253131423E+001 -1.154497386005548E+001 -1.154494380981292E+001 -1.154491231290613E+001 -1.154487929833023E+001 -1.154484469159534E+001 -1.154480841455949E+001 -1.154477038525325E+001 -1.154473051769724E+001 -1.154468872171065E+001 -1.154464490271175E+001 -1.154459896150963E+001 -1.154455079408686E+001 -1.154450029137192E+001 -1.154444733900274E+001 -1.154439181708001E+001 -1.154433359990958E+001 -1.154427255573480E+001 -1.154420854645691E+001 -1.154414142734465E+001 -1.154407104673232E+001 -1.154399724570490E+001 -1.154391985777197E+001 -1.154383870852821E+001 -1.154375361530123E+001 -1.154366438678649E+001 -1.154357082266860E+001 -1.154347271322928E+001 -1.154336983894144E+001 -1.154326197004951E+001 -1.154314886613570E+001 -1.154303027567248E+001 -1.154290593556084E+001 -1.154277557065493E+001 -1.154263889327258E+001 -1.154249560269252E+001 -1.154234538463811E+001 -1.154218791074823E+001 -1.154202283803575E+001 -1.154184980833412E+001 -1.154166844773251E+001 -1.154147836600105E+001 -1.154127915600600E+001 -1.154107039311731E+001 -1.154085163460849E+001 -1.154062241905085E+001 -1.154038226570419E+001 -1.154013067390434E+001 -1.153986712245109E+001 -1.153959106899741E+001 -1.153930194944309E+001 -1.153899917733547E+001 -1.153868214327868E+001 -1.153835021435747E+001 -1.153800273357550E+001 -1.153763901931307E+001 -1.153725836480990E+001 -1.153686003767334E+001 -1.153644327941874E+001 -1.153600730504653E+001 -1.153555130265899E+001 -1.153507443312269E+001 -1.153457582978176E+001 -1.153405459822624E+001 -1.153350981612143E+001 -1.153294053310306E+001 -1.153234577074431E+001 -1.153172452259806E+001 -1.153107575432251E+001 -1.153039840389222E+001 -1.152969138190116E+001 -1.152895357196156E+001 -1.152818383120317E+001 -1.152738099087582E+001 -1.152654385705970E+001 -1.152567121148428E+001 -1.152476181245988E+001 -1.152381439592075E+001 -1.152282767658210E+001 -1.152180034920864E+001 -1.152073108999454E+001 -1.151961855805123E+001 -1.151846139699970E+001 -1.151725823666285E+001 -1.151600769485118E+001 -1.151470837923556E+001 -1.151335888929848E+001 -1.151195781835492E+001 -1.151050375563193E+001 -1.150899528839621E+001 -1.150743100411804E+001 -1.150580949265736E+001 -1.150412934845991E+001 -1.150238917274914E+001 -1.150058757569894E+001 -1.149872317857410E+001 -1.149679461582259E+001 -1.149480053710760E+001 -1.149273960926351E+001 -1.149061051816417E+001 -1.148841197049103E+001 -1.148614269538893E+001 -1.148380144600080E+001 -1.148138700087065E+001 -1.147889816520917E+001 -1.147633377201387E+001 -1.147369268304103E+001 -1.147097378962529E+001 -1.146817601334638E+001 -1.146529830654242E+001 -1.146233965267283E+001 -1.145929906653352E+001 -1.145617559432887E+001 -1.145296831360820E+001 -1.144967633307243E+001 -1.144629879226106E+001 -1.144283486112770E+001 -1.143928373951605E+001 -1.143564465654557E+001 -1.143191686992034E+001 -1.142809966517130E+001 -1.142419235484548E+001 -1.142019427765358E+001 -1.141610479758809E+001 -1.141192330302469E+001 -1.140764920581778E+001 -1.140328194040221E+001 -1.139882096291131E+001 -1.139426575032269E+001 -1.138961579964043E+001 -1.138487062712369E+001 -1.138002976756961E+001 -1.137509277365900E+001 -1.137005921537154E+001 -1.136492867947688E+001 -1.135970076910814E+001 -1.135437510342232E+001 -1.134895131735283E+001 -1.134342906145755E+001 -1.133780800186673E+001 -1.133208782033286E+001 -1.132626821438593E+001 -1.132034889759522E+001 -1.131432959994068E+001 -1.130821006829373E+001 -1.130199006701016E+001 -1.129566937863467E+001 -1.128924780471877E+001 -1.128272516675175E+001 -1.127610130720545E+001 -1.126937609069268E+001 -1.126254940523988E+001 -1.125562116367337E+001 -1.124859130511991E+001 -1.124145979662071E+001 -1.123422663485956E+001 -1.122689184800433E+001 -1.121945549766235E+001 -1.121191768094915E+001 -1.120427853267068E+001 -1.119653822761916E+001 -1.118869698298207E+001 -1.118075506086500E+001 -1.117271277092780E+001 -1.116457047313431E+001 -1.115632858061600E+001 -1.114798756264905E+001 -1.113954794774554E+001 -1.113101032685855E+001 -1.112237535670095E+001 -1.111364376317866E+001 -1.110481634493753E+001 -1.109589397702429E+001 -1.108687761466132E+001 -1.107776829713489E+001 -1.106856715179684E+001 -1.105927539817888E+001 -1.104989435221942E+001 -1.104042543060205E+001 -1.103087015520471E+001 -1.102123015765896E+001 -1.101150718401785E+001 -1.100170309953134E+001 -1.099181989352760E+001 -1.098185968439847E+001 -1.097182472468725E+001 -1.096171740627669E+001 -1.095154026567453E+001 -1.094129598939445E+001 -1.093098741942908E+001 -1.092061755881246E+001 -1.091018957726814E+001 -1.089970681693993E+001 -1.088917279820114E+001 -1.087859122553832E+001 -1.086796599350570E+001 -1.085730119274546E+001 -1.084660111606968E+001 -1.083587026459920E+001 -1.082511335395442E+001 -1.081433532049346E+001 -1.080354132759251E+001 -1.079273677196363E+001 -1.078192729000506E+001 -1.077111876417912E+001 -1.076031732941324E+001 -1.074952937951949E+001 -1.073876157362846E+001 -1.072802084263367E+001 -1.071731439564275E+001 -1.070664972643258E+001 -1.069603461990564E+001 -1.068547715854561E+001 -1.067498572887095E+001 -1.066456902788555E+001 -1.065423606952676E+001 -1.064399619111139E+001 -1.063385905978146E+001 -1.062383467895215E+001 -1.061393339476488E+001 -1.060416590254999E+001 -1.059454325330322E+001 -1.058507686018162E+001 -1.057577850502456E+001 -1.056666034490554E+001 -1.055773491872147E+001 -1.054902740953067E+001 -1.054047688453058E+001 -1.053215853382580E+001 -1.052408657217942E+001 -1.051627563105383E+001 -1.050874076547809E+001 -1.050149746095518E+001 -1.049456164039654E+001 -1.048794967106513E+001 -1.048167837150117E+001 -1.047576501839475E+001 -1.047022735335965E+001 -1.046508358954925E+001 -1.046035241804083E+001 -1.045605301389769E+001 -1.045220504179802E+001 -1.044882866109774E+001 -1.044594453016814E+001 -1.044357380982067E+001 -1.044173816559866E+001 -1.044045976867943E+001 -1.043976129509019E+001 -1.043966592289668E+001 -1.044019732697466E+001 -1.044137967092157E+001 -1.044323759560726E+001 -1.044579620380108E+001 -1.044908104024514E+001 -1.045311806647237E+001 -1.045793362959262E+001 -1.046355442419001E+001 -1.047000744639240E+001 -1.047731993908748E+001 -1.048551932717207E+001 -1.049463314163229E+001 -1.050468893116257E+001 -1.051571415994380E+001 -1.052773609011578E+001 -1.054078164739849E+001 -1.055487726824365E+001 -1.057004872683352E+001 -1.058632094019196E+001 -1.060371774963579E+001 -1.062226167677606E+001 -1.064197365228275E+001 -1.066287271565701E+001 -1.068497568431587E+001 -1.070829679039182E+001 -1.073284728378670E+001 -1.075863500020376E+001 -1.078566389311683E+001 -1.081393352892851E+001 -1.084343854492626E+001 -1.087416807007019E+001 -1.090610510914824E+001 -1.093922589141544E+001 -1.097349918550264E+001 -1.100888558313865E+001 -1.104533675508425E+001 -1.108279468362875E+001 -1.112119087705269E+001 -1.116044557261396E+001 -1.120046693586781E+001 -1.124115026548097E+001 -1.128237721413996E+001 -1.132401503767558E+001 -1.136591588611635E+001 -1.140791615202882E+001 -1.144983589318045E+001 -1.149147834824693E+001 -1.153262956595009E+001 -1.157305816961856E+001 -1.161251528066916E+001 -1.165073462586445E+001 -1.168743285435469E+001 -1.172231009140092E+001 -1.175505075622902E+001 -1.178524340667159E+001 -1.181264428472853E+001 -1.183688174023431E+001 -1.185759198670198E+001 -1.187440451439064E+001 -1.188694503718497E+001 -1.189483886663710E+001 -1.189771472331176E+001 -1.189520898940383E+001 -1.188697039929101E+001 -1.187266515619132E+001 -1.185198245339373E+001 -1.182464036760848E+001 -1.179039207985637E+001 -1.174903236601588E+001 -1.170039956840497E+001 -1.164436606889598E+001 -1.158085509616031E+001 -1.150985087495566E+001 -1.143140427344161E+001 -1.134563799775903E+001 -1.125275115897255E+001 -1.115302301836211E+001 -1.104681569687122E+001 -1.093457561257730E+001 -1.081683338531763E+001 -1.069420191860982E+001 -1.056737233375029E+001 -1.043710738687849E+001 -1.030423194367097E+001 -1.016962001442752E+001 -1.003417776043710E+001 -9.898821766284843E+000 -9.764451727993222E+000 -9.631916530161991E+000 -9.501972474611375E+000 -9.375232178693686E+000 -9.252102386521779E+000 -9.132708636883700E+000 -9.016804415326884E+000 -8.903662090514878E+000 -8.792251518989517E+000 -8.682301890048088E+000 -8.573788517338086E+000 -8.466687498787691E+000 -8.360975678783026E+000 -8.256630611940800E+000 -8.153630528447211E+000 -8.051954300927704E+000 -7.951581413065765E+000 -7.852491931429260E+000 -7.754666472148942E+000 -7.658086175662432E+000 -7.562732680980290E+000 -7.468588101004163E+000 -7.375634999124522E+000 -7.283856367048431E+000 -7.193235603822353E+000 -7.103756496004993E+000 -7.015403198949334E+000 -6.928160219150427E+000 -6.842012397615489E+000 -6.756944894214643E+000 -6.672943172967790E+000 -6.589992988226454E+000 -6.508080371707629E+000 -6.427191620337466E+000 -6.347313284865227E+000 -6.268432159206211E+000 -6.190535270471284E+000 -6.113609869652673E+000 -6.037643422919518E+000 -5.962623603492375E+000 -5.888538284059168E+000 -5.815375529699898E+000 -5.743123591287067E+000 -5.671770899329974E+000 -5.601306058234177E+000 -5.531717840945942E+000 -5.462995183955812E+000 -5.395127182634671E+000 -5.328103086877593E+000 -5.261912297033086E+000 -5.196544360094839E+000 -5.131988966136247E+000 -5.068235944967912E+000 -5.005275262999978E+000 -4.943097020292977E+000 -4.881691447780508E+000 -4.821048904650134E+000 -4.761159875868287E+000 -4.702014969836583E+000 -4.643604916168651E+000 -4.585920563575921E+000 -4.528952877853291E+000 -4.472692939955591E+000 -4.417131944156086E+000 -4.362261196280633E+000 -4.308072112009532E+000 -4.254556215241879E+000 -4.201705136516419E+000 -4.149510611483723E+000 -4.097964479425730E+000 -4.047058681817943E+000 -3.996785260931109E+000 -3.947136358469100E+000 -3.898104214239594E+000 -3.849681164855832E+000 -3.801859642466181E+000 -3.754632173510318E+000 -3.707991377499718E+000 -3.661929965805261E+000 -3.616440740546165E+000 -3.571516593336483E+000 -3.527150504207775E+000 -3.483335540510927E+000 -3.440064855756008E+000 -3.397331688571431E+000 -3.355129361623747E+000 -3.313451280564734E+000 -3.272290932993290E+000 -3.231641887431287E+000 -3.191497792313642E+000 -3.151852374991534E+000 -3.112699440748970E+000 -3.074032871832213E+000 -3.035846626491520E+000 -2.998134738035562E+000 -2.960891313897551E+000 -2.924110534713501E+000 -2.887786653412120E+000 -2.851913994315963E+000 -2.816486952254225E+000 -2.781499991686336E+000 -2.746947645836745E+000 -2.712824515840495E+000 -2.679125269899292E+000 -2.645844642448373E+000 -2.612977433333487E+000 -2.580518506998261E+000 -2.548462791681769E+000 -2.516805278625815E+000 -2.485541021292379E+000 -2.454665134590528E+000 -2.424172794113121E+000 -2.394059235382963E+000 -2.364319753108209E+000 -2.334949700447217E+000 -2.305944488282332E+000 -2.277299584502837E+000 -2.249010513296819E+000 -2.221072854451656E+000 -2.193482242663454E+000 -2.166234366854819E+000 -2.139324969501269E+000 -2.112749845965994E+000 -2.086504843842749E+000 -2.060585862307132E+000 -2.034988851475688E+000 -2.009709811773146E+000 -1.984744793307485E+000 -1.960089895252664E+000 -1.935741265301758E+000 -1.911695098808287E+000 -1.887947638586808E+000 -1.864495174055385E+000 -1.841334040765837E+000 -1.818460619664828E+000 -1.795871336784257E+000 -1.773562662507729E+000 -1.751531111064110E+000 -1.729773240038639E+000 -1.708285649605962E+000 -1.687064982351123E+000 -1.666107922504229E+000 -1.645411195484138E+000 -1.624971567386871E+000 -1.604785844478007E+000 -1.584850872795055E+000 -1.565163536538812E+000 -1.545720768020530E+000 -1.526519517449181E+000 -1.507556749086161E+000 -1.488829578397980E+000 -1.470335040359468E+000 -1.452070245161492E+000 -1.434032338892655E+000 -1.416218503093462E+000 -1.398625954315852E+000 -1.381251943688314E+000 -1.364093756486392E+000 -1.347148711708443E+000 -1.330414161656795E+000 -1.313887491523979E+000 -1.297566118984183E+000 -1.281447493789797E+000 -1.265529097372845E+000 -1.249808442451556E+000 -1.234283072641624E+000 -1.218950562158805E+000 -1.203808515087685E+000 -1.188854565546177E+000 -1.174086376949271E+000 -1.159501641737443E+000 -1.145098081016145E+000 -1.130873444199722E+000 -1.116825508659723E+000 -1.102952079377656E+000 -1.089250988601960E+000 -1.075720095509323E+000 -1.062357285870186E+000 -1.049160471718338E+000 -1.036127591024736E+000 -1.023256607375250E+000 -1.010545509652490E+000 -9.979923117215919E-001 -9.855950521198220E-001 -9.733517937501615E-001 -9.612606235785738E-001 -9.493196523351143E-001 -9.375270142187422E-001 -9.258808666057491E-001 -9.143793897618891E-001 -9.030207865579974E-001 -8.918032821892095E-001 -8.807251238976583E-001 -8.697845806985571E-001 -8.589799431097881E-001 -8.483095228847363E-001 -8.377716527485284E-001 -8.273646861375281E-001 -8.170869969420177E-001 -8.069369792521611E-001 -7.969130471070389E-001 -7.870136342468526E-001 -7.772371938682151E-001 -7.675821983824143E-001 -7.580471391767729E-001 -7.486305263788884E-001 -7.393308886238458E-001 -7.301467728243350E-001 -7.210767439435688E-001 -7.121193847710890E-001 -7.032732957012987E-001 -6.945370945147779E-001 -6.859094161623259E-001 -6.773889125516370E-001 -6.689742523366983E-001 -6.606641207097247E-001 -6.524572191957397E-001 -6.443522654496915E-001 -6.363479930560610E-001 -6.284431513310093E-001 -6.206365051269301E-001 -6.129268346394683E-001 -6.053129352169312E-001 -5.977936171720375E-001 -5.903677055960507E-001 -5.830340401751757E-001 -5.757914750092645E-001 -5.686388784327863E-001 -5.615751328379626E-001 -5.545991345001818E-001 -5.477097934055077E-001 -5.409060330803731E-001 -5.341867904233931E-001 -5.275510155392249E-001 -5.209976715745477E-001 -5.145257345560326E-001 -5.081341932303487E-001 -5.018220489061673E-001 -4.955883152980887E-001 -4.894320183725610E-001 -4.833521961956609E-001 -4.773478987828008E-001 -4.714181879503001E-001 -4.655621371687713E-001 -4.597788314183722E-001 -4.540673670458095E-001 -4.484268516231503E-001 -4.428564038083926E-001 -4.373551532077247E-001 -4.319222402395553E-001 -4.265568160001753E-001 -4.212580421311283E-001 -4.160250906882239E-001 -4.108571440121456E-001 -4.057533946007181E-001 -4.007130449827074E-001 -3.957353075932300E-001 -3.908194046506966E-001 -3.859645680352652E-001 -3.811700391688431E-001 -3.764350688965374E-001 -3.717589173696060E-001 -3.671408539298670E-001 -3.625801569955046E-001 -3.580761139483510E-001 -3.536280210225130E-001 -3.492351831944188E-001 -3.448969140742255E-001 -3.406125357985526E-001 -3.363813789245814E-001 -3.322027823254411E-001 -3.280760930869081E-001 -3.240006664053984E-001 -3.199758654871961E-001 -3.160010614489742E-001 -3.120756332195131E-001 -3.081989674426628E-001 -3.043704583815140E-001 -3.005895078237305E-001 -2.968555249881016E-001 -2.931679264322082E-001 -2.895261359612739E-001 -2.859295845381298E-001 -2.823777101942966E-001 -2.788699579421846E-001 -2.754057796883664E-001 -2.719846341479403E-001 -2.686059867599583E-001 -2.652693096038888E-001 -2.619740813171416E-001 -2.587197870135900E-001 -2.555059182031270E-001 -2.523319727122157E-001 -2.491974546054125E-001 -2.461018741078893E-001 -2.430447475288932E-001 -2.400255971861756E-001 -2.370439513313556E-001 -2.340993440761989E-001 -2.311913153198347E-001 -2.283194106768513E-001 -2.254831814063041E-001 -2.226821843416027E-001 -2.199159818212526E-001 1.063737951762341E-009 1.090666606216019E-009 1.118276962802672E-009 1.146586278893950E-009 1.175612248733955E-009 1.205373014498704E-009 1.235887177635586E-009 1.267173810489876E-009 1.299252468225562E-009 1.332143201047976E-009 1.365866566735805E-009 1.400443643490381E-009 1.435896043110248E-009 1.472245924499227E-009 1.509516007516471E-009 1.547729587177095E-009 1.586910548212334E-009 1.627083379998270E-009 1.668273191862489E-009 1.710505728778241E-009 1.753807387455867E-009 1.798205232841612E-009 1.843727015034101E-009 1.890401186629043E-009 1.938256920503047E-009 1.987324128047597E-009 2.037633477864664E-009 2.089216414935571E-009 2.142105180275127E-009 2.196332831083331E-009 2.251933261407171E-009 2.308941223325519E-009 2.367392348670316E-009 2.427323171297617E-009 2.488771149922455E-009 2.551774691531738E-009 2.616373175389878E-009 2.682606977652111E-009 2.750517496600905E-009 2.820147178521250E-009 2.891539544230940E-009 2.964739216282520E-009 3.039791946853830E-009 3.116744646344600E-009 3.195645412696997E-009 3.276543561458373E-009 3.359489656605109E-009 3.444535542146739E-009 3.531734374530142E-009 3.621140655864070E-009 3.712810267984705E-009 3.806800507383656E-009 3.903170121020114E-009 4.001979343039618E-009 4.103289932422377E-009 4.207165211584606E-009 4.313670105957120E-009 4.422871184565835E-009 4.534836701639574E-009 4.649636639271213E-009 4.767342751158708E-009 4.888028607453535E-009 5.011769640744417E-009 5.138643193205139E-009 5.268728564935963E-009 5.402107063528710E-009 5.538862054886693E-009 5.679079015331115E-009 5.822845585026531E-009 5.970251622758851E-009 6.121389262099941E-009 6.276352968994156E-009 6.435239600802604E-009 6.598148466842145E-009 6.765181390456996E-009 6.936442772661561E-009 7.112039657394508E-009 7.292081798424705E-009 7.476681727950895E-009 7.665954826938013E-009 7.860019397233984E-009 8.058996735512273E-009 8.263011209086246E-009 8.472190333642763E-009 8.686664852943711E-009 8.906568820544991E-009 9.132039683584448E-009 9.363218368690768E-009 9.600249370067192E-009 9.843280839805170E-009 1.009246468048414E-008 1.034795664011563E-008 1.060991640949087E-008 1.087850772199263E-008 1.115389845593408E-008 1.143626073948802E-008 1.172577105827269E-008 1.202261036566102E-008 1.232696419588231E-008 1.263902277998731E-008 1.295898116474864E-008 1.328703933457147E-008 1.362340233649024E-008 1.396828040832977E-008 1.432188911011078E-008 1.468444945878176E-008 1.505618806636191E-008 1.543733728158096E-008 1.582813533510467E-008 1.622882648843685E-008 1.663966118659062E-008 1.706089621462474E-008 1.749279485814266E-008 1.793562706785452E-008 1.838966962830525E-008 1.885520633087378E-008 1.933252815115195E-008 1.982193343081373E-008 2.032372806408840E-008 2.083822568895457E-008 2.136574788317394E-008 2.190662436528792E-008 2.246119320070246E-008 2.302980101298991E-008 2.361280320054014E-008 2.421056415869591E-008 2.482345750751192E-008 2.545186632527947E-008 2.609618338796288E-008 2.675681141469730E-008 2.743416331950114E-008 2.812866246936083E-008 2.884074294884897E-008 2.957084983144122E-008 3.031943945770197E-008 3.108697972051172E-008 3.187395035751542E-008 3.268084325097427E-008 3.350816273520787E-008 3.435642591181997E-008 3.522616297290333E-008 3.611791753242731E-008 3.703224696601423E-008 3.796972275931714E-008 3.893093086521724E-008 3.991647207006313E-008 4.092696236918200E-008 4.196303335189674E-008 4.302533259628970E-008 4.411452407396038E-008 4.523128856502872E-008 4.637632408364529E-008 4.755034631427260E-008 4.875408905901118E-008 4.998830469624999E-008 5.125376465092691E-008 5.255125987669483E-008 5.388160135029316E-008 5.524562057843471E-008 5.664417011752470E-008 5.807812410653566E-008 5.954837881337314E-008 6.105585319507219E-008 6.260148947217519E-008 6.418625371765091E-008 6.581113646072034E-008 6.747715330597119E-008 6.918534556814239E-008 7.093678092298037E-008 7.273255407457130E-008 7.457378743956555E-008 7.646163184872623E-008 7.839726726623447E-008 8.038190352720586E-008 8.241678109387721E-008 8.450317183093428E-008 8.664237980047046E-008 8.883574207706650E-008 9.108462958350587E-008 9.339044794764693E-008 9.575463838098403E-008 9.817867857945393E-008 1.006640836470418E-007 1.032124070427712E-007 1.058252415516672E-007 1.085042202802964E-007 1.112510176775145E-007 1.140673505810489E-007 1.169549792905789E-007 1.199157086679811E-007 1.229513892654239E-007 1.260639184820262E-007 1.292552417497906E-007 1.325273537495626E-007 1.358822996577720E-007 1.393221764247315E-007 1.428491340853022E-007 1.464653771027329E-007 1.501731657465210E-007 1.539748175051567E-007 1.578727085346246E-007 1.618692751435824E-007 1.659670153161294E-007 1.701684902731293E-007 1.744763260730569E-007 1.788932152533668E-007 1.834219185134207E-007 1.880652664400105E-007 1.928261612765682E-007 1.977075787371634E-007 2.027125698664172E-007 2.078442629465084E-007 2.131058654524484E-007 2.185006660568569E-007 2.240320366854917E-007 2.297034346248061E-007 2.355184046828713E-007 2.414805814049909E-007 2.475936913454119E-007 2.538615553965423E-007 2.602880911771287E-007 2.668773154809006E-007 2.736333467871910E-007 2.805604078351218E-007 2.876628282629534E-007 2.949450473142438E-007 3.024116166125262E-007 3.100672030062146E-007 3.179165914855379E-007 3.259646881733149E-007 3.342165233914330E-007 3.426772548049710E-007 3.513521706458991E-007 3.602466930183965E-007 3.693663812878451E-007 3.787169355556042E-007 3.883042002217674E-007 3.981341676380939E-007 4.082129818534235E-007 4.185469424539094E-007 4.291425085004525E-007 4.400063025658352E-007 4.511451148740329E-007 4.625659075443261E-007 4.742758189428506E-007 4.862821681443029E-007 4.980939285623949E-007 5.107109199184611E-007 5.236466340907011E-007 5.369073657527699E-007 5.505483486112143E-007 5.644511487661471E-007 5.787819030814056E-007 5.934403678185058E-007 6.084789817428412E-007 6.238946264838865E-007 6.396958557068590E-007 6.559032476704116E-007 6.725310477405712E-007 6.895477505007771E-007 7.070385984382111E-007 7.249507832446103E-007 7.432971296411132E-007 7.621416913310826E-007 7.814504627735727E-007 8.012268861169807E-007 8.215394994507253E-007 8.423304209692927E-007 8.636860959778853E-007 8.855537161567413E-007 9.079914844374112E-007 9.309842878526222E-007 9.545713962130285E-007 9.787360396956451E-007 1.003526835316374E-006 1.028975904213483E-006 1.054998175267045E-006 1.081737476861400E-006 1.109137727525565E-006 1.137212548521584E-006 1.166022653930697E-006 1.195571536473416E-006 1.225813782306692E-006 1.256894127593351E-006 1.288697914040630E-006 1.321359071618325E-006 1.354794034834044E-006 1.389124755786049E-006 1.424294068298996E-006 1.460357945919424E-006 1.497356222183086E-006 1.535262914484766E-006 1.574146156135409E-006 1.614010241727666E-006 1.654872979784014E-006 1.696788230166706E-006 1.739750040514842E-006 1.783802840104321E-006 1.828976349325820E-006 1.875292809762255E-006 1.922773598347988E-006 1.971467377541383E-006 2.021379996147386E-006 2.072567864581524E-006 2.125045283513135E-006 2.178864565687857E-006 2.234025024812375E-006 2.290594343783738E-006 2.348597521467532E-006 2.408052593791635E-006 2.469055074455800E-006 2.531546508705100E-006 2.595651360316213E-006 2.661376096396841E-006 2.728757503132314E-006 2.797854473422128E-006 2.868693773266278E-006 2.941327642900696E-006 3.015809744681709E-006 3.092144860370956E-006 3.170450912604401E-006 3.250720732635918E-006 3.333039522086472E-006 3.417396200116278E-006 3.503958121484260E-006 3.592657096854155E-006 3.683615137687898E-006 3.776884641873196E-006 3.872501148331434E-006 3.970559322127686E-006 4.071084154413070E-006 4.174147344382572E-006 4.279841020943328E-006 4.388183087690191E-006 4.499297399669306E-006 4.613214139632996E-006 4.730005978952900E-006 4.849752111214601E-006 4.972540099326404E-006 5.098439068694836E-006 5.227495026728307E-006 5.359884649439551E-006 5.495539693903133E-006 5.634702281816145E-006 5.777354009516051E-006 5.923609556547919E-006 6.073591373748441E-006 6.227355513602062E-006 6.385003887676653E-006 6.546664950539108E-006 6.712404870101536E-006 6.882330939053249E-006 7.056590843943230E-006 7.235237237219291E-006 7.418395294094393E-006 7.606212614485692E-006 7.798792155803859E-006 7.996212400794375E-006 8.198650863966870E-006 8.406229506037856E-006 8.619038304158124E-006 8.837243701414065E-006 9.060973755345198E-006 9.290354772854000E-006 9.525572655773786E-006 9.766701609558541E-006 1.001398538176365E-005 1.026748269272255E-005 1.052743381912225E-005 1.079393403728686E-005 1.106720247722896E-005 1.134738415214246E-005 1.163466093270907E-005 1.192919279246836E-005 1.223120153785652E-005 1.254084889501466E-005 1.285833483177732E-005 1.318384594657561E-005 1.351762392082878E-005 1.385983289687805E-005 1.421069467413887E-005 1.457047769683310E-005 1.493931613926660E-005 1.531754232656403E-005 1.570528861182464E-005 1.610292437689695E-005 1.651054433624171E-005 1.692854784058924E-005 1.735709747040905E-005 1.779650171640508E-005 1.824704282987211E-005 1.870897847771146E-005 1.918261275352855E-005 1.966822727714386E-005 2.016613408803940E-005 2.067667015831263E-005 2.120010049186286E-005 2.173679819017256E-005 2.228707990758480E-005 2.285128052070922E-005 2.342979400974382E-005 2.402291712968119E-005 2.463107839602004E-005 2.525462824355495E-005 2.589395217302108E-005 2.654947975636102E-005 2.722158971137700E-005 2.791071753536460E-005 2.861729330608510E-005 2.934173752080454E-005 3.008455578788474E-005 3.084615766677239E-005 3.162701708728066E-005 3.242769558019650E-005 3.324858735819248E-005 3.409031861632508E-005 3.495330656400670E-005 3.583816173070278E-005 3.674542185740329E-005 3.767562930752968E-005 3.862941974389559E-005 3.960731643740439E-005 4.060999587636307E-005 4.163804531406607E-005 4.269212165080833E-005 4.377288102268691E-005 4.488100655603609E-005 4.601716687126131E-005 4.718212715547689E-005 4.837650501353952E-005 4.960121295110746E-005 5.085684110029527E-005 5.214430919263774E-005 5.346434448086705E-005 5.481777938945083E-005 5.620553248293133E-005 5.762835722857818E-005 5.908722794497521E-005 6.058303023859018E-005 6.211667994137457E-005 6.368919110101992E-005 6.530145920358018E-005 6.695457525156417E-005 6.864953777617568E-005 7.038739237352376E-005 7.216925573476783E-005 7.399620460423602E-005 7.586942936692667E-005 7.779004299308103E-005 7.975931590079210E-005 8.177839173727470E-005 8.384862341151507E-005 8.597123184269123E-005 8.814759033487428E-005 9.037902451785916E-005 9.266696850283661E-005 9.501281104185027E-005 9.741804468991954E-005 9.988416519134058E-005 1.024127094912327E-004 1.050052617254359E-004 1.076634536596666E-004 1.103889168692001E-004 1.131833919606337E-004 1.160485882889814E-004 1.189863226427840E-004 1.219984351548408E-004 1.250867758879926E-004 1.282533130393581E-004 1.314999804828572E-004 1.348288792911664E-004 1.382420017400426E-004 1.417415404139081E-004 1.453296824025767E-004 1.490086066954467E-004 1.527807190783885E-004 1.566482695136820E-004 1.606137483714040E-004 1.646795911846474E-004 1.688483739469896E-004 1.731226710609341E-004 1.775051643070432E-004 1.819986036118153E-004 1.866057800858266E-004 1.913295795964624E-004 1.961729525155512E-004 2.011389477794014E-004 2.062306183685847E-004 2.114511980806896E-004 2.168039042794868E-004 2.222921399127913E-004 2.279192662983702E-004 2.336888550020094E-004 2.396044672135166E-004 2.456698400504913E-004 2.518887400920837E-004 2.582650732167338E-004 2.648027687210142E-004 2.715059836873809E-004 2.783788613368806E-004 2.854257292442840E-004 2.926509527386879E-004 3.000590570042990E-004 3.076547094251692E-004 3.154425836422598E-004 3.234276319568790E-004 3.316147653522784E-004 3.400091510423271E-004 3.486160018670137E-004 3.574407137139814E-004 3.664888042372041E-004 3.757659120264800E-004 3.852778310402757E-004 3.950305330411196E-004 4.050300728489017E-004 4.152827181091941E-004 4.257948918155663E-004 4.365731140323911E-004 4.476241679249588E-004 4.589549120613452E-004 4.705724722017695E-004 4.824840795306953E-004 4.946971671922029E-004 5.072193762975175E-004 5.200585297975345E-004 5.332226740088670E-004 5.467199702286844E-004 5.605589072145554E-004 5.747480982277290E-004 5.892964238118786E-004 6.042129600130313E-004 6.195070334753790E-004 6.351881889995076E-004 6.512662321231805E-004 6.677511787994903E-004 6.846533631258596E-004 7.019833259774782E-004 7.197518897515694E-004 7.379701217134180E-004 7.566494676661816E-004 7.758015512541066E-004 7.954382976736450E-004 8.155720538593169E-004 8.362153527195727E-004 8.573810308293309E-004 8.790824159165922E-004 9.013329800298515E-004 9.241466389851306E-004 9.475376386240433E-004 9.715205705892321E-004 9.961104598891811E-004 1.021322580579741E-003 1.047172759381325E-003 1.073677049651271E-003 1.100852066331776E-003 1.128714769729861E-003 1.157282510199747E-003 1.186573154176134E-003 1.216604988514139E-003 1.247396741259534E-003 1.278967659631778E-003 1.311337418805979E-003 1.344526267645045E-003 1.378554854878125E-003 1.413444485168297E-003 1.449216895576058E-003 1.485894418048283E-003 1.523499956506936E-003 1.562056958610559E-003 1.601589497262083E-003 1.642122238492701E-003 1.683680453870530E-003 1.726290112160883E-003 1.769977759729260E-003 1.814770668489372E-003 1.860696801018291E-003 1.907784765448059E-003 1.956063972654737E-003 2.005564508506725E-003 2.056317260894014E-003 2.108353913348694E-003 2.161706856966828E-003 2.216409396446249E-003 2.272495673788186E-003 2.330000596201936E-003 2.388960086419906E-003 2.449410875443367E-003 2.511390334462770E-003 2.574938164874837E-003 2.640092815616607E-003 2.706894863633714E-003 2.775386984822651E-003 2.845610788697080E-003 2.917611622539996E-003 2.991432008333846E-003 3.067119418878787E-003 3.144721043835732E-003 3.224284867077459E-003 3.305860447828881E-003 3.389499328607312E-003 3.475252056127673E-003 3.563173731519099E-003 3.653316994418932E-003 3.745741694743847E-003 3.840500448192172E-003 3.937655781741753E-003 4.037268179270315E-003 4.139396494101904E-003 4.244108724841013E-003 4.351465280310453E-003 4.461537376170870E-003 4.574391477725976E-003 4.690096563423628E-003 4.808725574767109E-003 4.930355107970938E-003 5.055055238846052E-003 5.182908767274563E-003 5.313991643808569E-003 5.448387155058609E-003 5.586177674059265E-003 5.727449676244338E-003 5.872292255092957E-003 6.020790880014637E-003 6.173043529738855E-003 6.329139895739674E-003 6.489180717011022E-003 6.653261348266373E-003 6.821487745197194E-003 6.993962975262044E-003 7.170791002996544E-003 7.352085772217855E-003 7.537957860672719E-003 7.728521924808727E-003 7.923898390420209E-003 8.124204898382356E-003 8.329568764681626E-003 8.540114931639376E-003 8.755976564530595E-003 8.977284056483662E-003 9.204176410988205E-003 9.436793699583343E-003 9.675280853443630E-003 9.919782470091927E-003 1.017045349287537E-002 1.042744632085274E-002 1.069092129726508E-002 1.096103985648131E-002 1.123797108372999E-002 1.152188262127947E-002 1.181295387783884E-002 1.211136148968028E-002 1.241729032045400E-002 1.273093005882688E-002 1.305247310424694E-002 1.338211811623279E-002 1.372006830658276E-002 1.406653140526204E-002 1.442172114475111E-002 1.478585661923322E-002 1.515916073919295E-002 1.554186439239853E-002 1.593420197692163E-002 1.633641476736073E-002 1.674875042128801E-002 1.717146188015852E-002 1.760480758171547E-002 1.804905516497964E-002 1.850447580732198E-002 1.897134919205989E-002 1.944996076990351E-002 1.994060384708644E-002 2.044357965707407E-002 2.095919344528269E-002 2.148776317004089E-002 2.202960993007664E-002 2.258506500549557E-002 2.315446778849103E-002 2.373816475854029E-002 2.433651235067956E-002 2.494987452146346E-002 2.557862494908799E-002 2.622314553344979E-002 2.688382864160935E-002 2.756107496107029E-002 2.825529626517830E-002 2.896691250106068E-002 2.969635594416493E-002 3.044406836457560E-002 3.121049956875925E-002 3.199611505312260E-002 3.280139458085400E-002 3.362681046146984E-002 3.447287339772390E-002 3.534008595824917E-002 3.622897514240823E-002 3.714006612488389E-002 3.807392083454310E-002 3.903108323744381E-002 4.001213666055556E-002 4.101766728622851E-002 4.204827557770564E-002 4.310457353343514E-002 4.418719902434961E-002 4.529679006392877E-002 4.643400778998592E-002 4.759953175741383E-002 4.879405207550905E-002 5.001827354281946E-002 5.127292781187215E-002 5.255874805155979E-002 5.387649867777685E-002 5.522695353359029E-002 5.661091057846727E-002 5.802917834768599E-002 5.948259265498195E-002 6.097200001940945E-002 6.249827565434170E-002 6.406230717223604E-002 6.566500418730813E-002 6.730730341355294E-002 6.899015180179256E-002 7.071452619203410E-002 7.248142498489395E-002 7.429186370662516E-002 7.614688361057835E-002 7.804755434422594E-002 7.999495951110938E-002 8.199021327861727E-002 8.403445624830259E-002 8.612884613298974E-002 8.827457277831069E-002 9.047285103497307E-002 9.272492095986916E-002 9.503204793626029E-002 9.739552680884288E-002 9.981668161957077E-002 1.022968595162225E-001 1.048374413554758E-001 1.074398345470304E-001 1.101054761388212E-001 1.128358332567776E-001 1.156324039844884E-001 1.184967172930207E-001 1.214303301303861E-001 1.244348375097385E-001 1.275118597441488E-001 1.306630542669018E-001 1.338901079491719E-001 1.371947449065088E-001 1.405787174770424E-001 1.440438164559661E-001 1.475918661571876E-001 1.512247212253722E-001 1.549442778128908E-001 1.587524617775573E-001 1.626512361897039E-001 1.666426004553306E-001 1.707285894925748E-001 1.749112717819545E-001 1.791927555720017E-001 1.835751827401940E-001 1.880607326766222E-001 1.926516189284344E-001 1.973500947243052E-001 2.021584460598612E-001 2.070789972957831E-001 2.121141076102929E-001 2.172661713587860E-001 2.225376198270065E-001 2.279309177737239E-001 2.334485652845510E-001 2.390930964800024E-001 2.448670791157556E-001 2.507731127714815E-001 2.568138314648226E-001 2.629918976006158E-001 2.693100053935536E-001 2.757708801271622E-001 2.823772706489896E-001 2.891319580473956E-001 2.960377445424589E-001 3.030974584892381E-001 3.103139510278575E-001 3.176900909150371E-001 3.252287688983351E-001 3.329328895998623E-001 3.408053727320913E-001 3.488491487122321E-001 3.570671577326882E-001 3.654623455285167E-001 3.740376599541970E-001 3.827960490133262E-001 3.917404565374870E-001 4.008738182184378E-001 4.101990572291327E-001 4.197190811807923E-001 4.294367757929630E-001 4.393550008188540E-001 4.494765851685261E-001 4.598043197786103E-001 4.703409534226599E-001 4.810891850089157E-001 4.920516580254656E-001 5.032309511506080E-001 5.146295748190022E-001 5.262499581816350E-001 5.380944449147232E-001 5.501652817244229E-001 5.624646097254464E-001 5.749944553002591E-001 5.877567176766537E-001 6.007531600793220E-001 6.139853964832783E-001 6.274548801512009E-001 6.411628905141741E-001 6.551105197311003E-001 6.692986584708708E-001 6.837279812385879E-001 6.983989302098802E-001 7.133116996547776E-001 7.284662177454009E-001 7.438621301548899E-001 7.594987799832951E-001 7.753751884445561E-001 7.914900351681146E-001 8.078416364795776E-001 8.244279223011215E-001 8.412464151276789E-001 8.582942039476239E-001 8.755679201581464E-001 8.930637120402102E-001 9.107772168185014E-001 9.287035337116327E-001 9.468371947736755E-001 9.651721348400644E-001 9.837016612252312E-001 1.002418421386198E+000 1.021314370897242E+000 1.040380739292630E+000 1.059607995978163E+000 1.078985814700644E+000 1.098503036890101E+000 1.118147636147762E+000 1.137906678775329E+000 1.157766287080274E+000 1.177711599720543E+000 1.197726732768060E+000 1.217794740579701E+000 1.237897575118287E+000 1.258016047598106E+000 1.278129787559713E+000 1.298217204734226E+000 1.318255449711104E+000 1.338220376247264E+000 1.358086504474536E+000 1.377826985604987E+000 1.397413567362219E+000 1.416816563779917E+000 1.436004823957008E+000 1.454945707509169E+000 1.473605060413830E+000 1.491947196008770E+000 1.509934881006203E+000 1.527529324981004E+000 1.544690177460472E+000 1.561375530210374E+000 1.577541926983333E+000 1.593144382730469E+000 1.608136409578422E+000 1.622470055538995E+000 1.636095952070640E+000 1.648963375424697E+000 1.661020321018377E+000 1.672213592620940E+000 1.682488907574573E+000 1.691791020393038E+000 1.700063864222759E+000 1.707250715129351E+000 1.713294376379634E+000 1.718137389790116E+000 1.721722270561323E+000 1.723991772262073E+000 1.724889180771835E+000 1.724358640059876E+000 1.722345513207471E+000 1.718796777926261E+000 1.713661461575084E+000 1.706891116099402E+000 1.698440333997467E+000 1.688267310680754E+000 1.676334449956023E+000 1.662609019074992E+000 1.647063851689059E+000 1.629678100647547E+000 1.610438042239913E+000 1.589337930789271E+000 1.566380904919955E+000 1.541579944482298E+000 1.514958875390176E+000 1.486553423612453E+000 1.456412311053221E+000 1.424598393281337E+000 1.391189831992310E+000 1.356281294936335E+000 1.319985179077053E+000 1.282432842419856E+000 1.243775837766829E+000 1.204187133267747E+000 1.163862302864252E+000 1.123020673129592E+000 1.081906401093741E+000 1.040789464281819E+000 9.999665361613648E-001 9.597617149989192E-001 9.205270811003285E-001 8.826430393025676E-001 8.465184147509638E-001 8.125902579422748E-001 7.813233126755353E-001 7.532091037612508E-001 7.287645890892064E-001 7.085303271378366E-001 6.930681045625364E-001 6.829579660851240E-001 6.787945956264834E-001 6.811829881834742E-001 6.907333639715134E-001 7.080552737486105E-001 7.337508498933851E-001 7.684071706390353E-001 8.125877055362111E-001 8.668228318271483E-001 9.315994207757727E-001 1.007349511023520E+000 1.094438114412445E+000 1.193150214977013E+000 1.303677060678138E+000 1.426101874743366E+000 1.560385149582938E+000 1.706349733698329E+000 1.863665954654132E+000 2.031837079005756E+000 2.210185451329363E+000 2.397839705171379E+000 2.593723494108663E+000 2.796546229758673E+000 3.004796367961686E+000 3.216737817106047E+000 3.430410074002439E+000 3.643632718499896E+000 3.854014894584084E+000 4.058970403761699E+000 4.255738999059442E+000 4.441414411016775E+000 4.612979559597757E+000 4.767349279887530E+000 4.901420752121310E+000 5.012131632835711E+000 5.096525662328176E+000 5.151825266747369E+000 5.175510363113417E+000 5.165402246143243E+000 5.119751055419341E+000 5.037324915812941E+000 4.917498407573333E+000 4.760337552427659E+000 4.566678013750339E+000 4.338192684755551E+000 4.077444285341959E+000 3.787917998383421E+000 3.474028518684220E+000 3.141095164002695E+000 2.795277854151310E+000 2.443465780865752E+000 2.093109415728324E+000 1.751985091598067E+000 1.427879708836012E+000 1.128181121259416E+000 8.593574435598105E-001 6.263059130483632E-001 4.315490739569610E-001 2.742530254213760E-001 1.490393397738294E-001 4.729945958125817E-002 -3.342199814220190E-002 -9.367791457660821E-002 -1.342514012829603E-001 -1.561646230035172E-001 -1.606854011876584E-001 -1.493312119924516E-001 -1.238701793411398E-001 -8.631865635363194E-002 -3.893498787533387E-002 1.579094489734844E-002 7.515278052480988E-002 1.362476883652596E-001 1.960016483338584E-001 2.512002603431164E-001 2.985252742522116E-001 3.345969441750817E-001 3.560222463392637E-001 3.594485007041914E-001 3.416254947203389E-001 2.994431337851963E-001 2.302604148525543E-001 1.294512897212974E-001 1.502735804863368E-002 -1.501258670840482E-003 1.388059763386288E-004 -2.255134777978179E-005 -5.406923284049709E-006 -6.051509853015975E-006 -5.017810898308522E-006 -4.229948593738445E-006 -3.491731052651828E-006 -2.817507742017729E-006 -2.201074808519336E-006 -1.638687847376133E-006 -1.126549320821405E-006 -6.612324917006534E-007 -2.395180507667885E-007 1.416627773688858E-007 4.850583932208651E-007 7.933385076618488E-007 1.068917888358717E-006 1.314115704775137E-006 1.531068402412968E-006 1.721757518368609E-006 1.888106952673930E-006 2.031836809908544E-006 2.154612642601275E-006 2.257990264378851E-006 2.343406783108881E-006 2.412255390516839E-006 2.465804174915485E-006 2.505274165902125E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 -2.845878683938045E-013 -2.954625391902296E-013 -3.067527528753849E-013 -3.184743881729167E-013 -3.306439305642224E-013 -3.432784954738588E-013 -3.563958523409393E-013 -3.700144496103322E-013 -3.841534406788245E-013 -3.988327108327514E-013 -4.140729052149462E-013 -4.298954578603813E-013 -4.463226218413122E-013 -4.633775005643243E-013 -4.810840802633068E-013 -4.994672637340563E-013 -5.185529053579171E-013 -5.383678474637877E-013 -5.589399580795549E-013 -5.802981701261109E-013 -6.024725221090294E-013 -6.254942003651780E-013 -6.493955829236341E-013 -6.742102850426229E-013 -6.999732064865296E-013 -7.267205806094267E-013 -7.544900253142078E-013 -7.833205959589629E-013 -8.132528402850065E-013 -8.443288554438388E-013 -8.765923472031733E-013 -9.100886914153995E-013 -9.448649978348492E-013 -9.809701763736414E-013 -1.018455005889319E-012 -1.057372205600986E-012 -1.097776509234377E-012 -1.139724742000207E-012 -1.183275900513975E-012 -1.228491235769678E-012 -1.275434339284110E-012 -1.324171232532935E-012 -1.374770459804229E-012 -1.427303184600223E-012 -1.481843289722677E-012 -1.538467481182762E-012 -1.597255396081524E-012 -1.658289714612665E-012 -1.721656276345214E-012 -1.787444200949593E-012 -1.855746013536763E-012 -1.926657774786969E-012 -2.000279216050899E-012 -2.076713879613320E-012 -2.156069264316464E-012 -2.238456976748029E-012 -2.323992888206307E-012 -2.412797297663290E-012 -2.504995100954953E-012 -2.600715966436580E-012 -2.700094517350276E-012 -2.803270521161074E-012 -2.910389086127956E-012 -3.021600865386275E-012 -3.137062268828605E-012 -3.256935683081787E-012 -3.381389699890040E-012 -3.510599353224784E-012 -3.644746365455037E-012 -3.784019402924509E-012 -3.928614341294612E-012 -4.078734541026979E-012 -4.234591133392627E-012 -4.396403317410026E-012 -4.564398668129989E-012 -4.738813456700421E-012 -4.919892982661691E-012 -5.107891918939428E-012 -5.303074670020381E-012 -5.505715743814808E-012 -5.716100137728343E-012 -5.934523739486730E-012 -6.161293743276566E-012 -6.396729081787836E-012 -6.641160874765483E-012 -6.894932894701264E-012 -7.158402050320265E-012 -7.431938888542836E-012 -7.715928115627095E-012 -8.010769138225607E-012 -8.316876625116671E-012 -8.634681090400858E-012 -8.964629498982207E-012 -9.307185895186325E-012 -9.662832055399312E-012 -1.003206816564501E-011 -1.041541352505427E-011 -1.081340727621465E-011 -1.122660916342873E-011 -1.165560031994683E-011 -1.210098408528115E-011 -1.256338685375171E-011 -1.304345895545622E-011 -1.354187557090438E-011 -1.405933768060157E-011 -1.459657305091799E-011 -1.515433725763022E-011 -1.573341474857436E-011 -1.633461994690469E-011 -1.695879839651097E-011 -1.760682795120325E-011 -1.827962000933892E-011 -1.897812079562664E-011 -1.970331269191096E-011 -2.045621561880843E-011 -2.123788847013936E-011 -2.204943060217134E-011 -2.289198337977059E-011 -2.376673178163390E-011 -2.467490606686122E-011 -2.561778350520876E-011 -2.659669017346136E-011 -2.761300282044574E-011 -2.866815080331086E-011 -2.976361809779701E-011 -3.090094538532057E-011 -3.208173221981182E-011 -3.330763927735138E-011 -3.458039069176875E-011 -3.590177647949074E-011 -3.727365505704616E-011 -3.869795585477062E-011 -4.017668203038653E-011 -4.171191328627234E-011 -4.330580879438827E-011 -4.496061023296657E-011 -4.667864493924198E-011 -4.846232918265187E-011 -5.031417156311490E-011 -5.223677653916187E-011 -5.423284809088504E-011 -5.630519352285621E-011 -5.845672741236091E-011 -6.069047570850281E-011 -6.300957998794422E-011 -6.541730187326510E-011 -6.791702762015755E-011 -7.051227287990590E-011 -7.320668764385061E-011 -7.600406137679140E-011 -7.890832834654360E-011 -8.192357315715395E-011 -8.505403649354565E-011 -8.830412108568194E-011 -9.167839790062982E-011 -9.518161257123615E-011 -9.881869207045503E-011 -1.025947516407173E-010 -1.065151019880807E-010 -1.105852567512878E-010 -1.148109402562270E-010 -1.191980955667108E-010 -1.237528928428872E-010 -1.284817380190456E-010 -1.333912818130170E-010 -1.384884290798394E-010 -1.437803485228544E-010 -1.492744827758700E-010 -1.549785588705957E-010 -1.609005991040537E-010 -1.670489323212530E-010 -1.734322056290044E-010 -1.800593965573369E-010 -1.869398256856274E-010 -1.940831697512069E-010 -2.014994752588571E-010 -2.091991726103759E-010 -2.171930907740372E-010 -2.254924725146177E-010 -2.341089902053893E-010 -2.430547622443093E-010 -2.523423700975262E-010 -2.619848759941279E-010 -2.719958412970614E-010 -2.823893455760339E-010 -2.931800064092175E-010 -3.043829999416456E-010 -3.160140822291508E-010 -3.280896113979207E-010 -3.406265706508134E-010 -3.536425921527745E-010 -3.671559818289837E-010 -3.811857451105733E-010 -3.957516136641487E-010 -4.108740731426986E-010 -4.265743919969087E-010 -4.428746513874466E-010 -4.597977762402086E-010 -4.773675674882852E-010 -4.956087355459520E-010 -5.145469350617463E-010 -5.342088009995547E-010 -5.546219860984127E-010 -5.758151997637286E-010 -5.978182484446215E-010 -6.206620775541365E-010 -6.443788149913407E-010 -6.690018163264738E-010 -6.945657117127132E-010 -7.211064545905351E-010 -7.486613722531547E-010 -7.772692183441966E-010 -8.069702273613784E-010 -8.378061712429006E-010 -8.698204181161433E-010 -9.030579932911965E-010 -9.375656425851558E-010 -9.733918980661169E-010 -1.010587146309386E-009 -1.049203699261925E-009 -1.089295867814600E-009 -1.130920038185876E-009 -1.174134751224178E-009 -1.219000784740628E-009 -1.265581238987865E-009 -1.313941625405118E-009 -1.364149958754524E-009 -1.416276852778064E-009 -1.470395619509753E-009 -1.526582372382799E-009 -1.584916133276608E-009 -1.645478943654395E-009 -1.708355979947417E-009 -1.773635673348427E-009 -1.841409834182578E-009 -1.911773781030811E-009 -1.984826474787330E-009 -2.060670657839640E-009 -2.139412998566955E-009 -2.221164241360218E-009 -2.306039362374532E-009 -2.394157731233464E-009 -2.485643278912119E-009 -2.580624672035541E-009 -2.679235493837333E-009 -2.781614432033073E-009 -2.887905473872766E-009 -2.998258108646647E-009 -3.112827537929036E-009 -3.231774893856227E-009 -3.355267465744992E-009 -3.483478935370787E-009 -3.616589621236301E-009 -3.754786732174129E-009 -3.898264630639909E-009 -4.047225106066622E-009 -4.201877658664159E-009 -4.362439794063504E-009 -4.529137329219844E-009 -4.702204710004824E-009 -4.881885340934702E-009 -5.068431927497945E-009 -5.262106831564000E-009 -5.463182440372839E-009 -5.671941549624377E-009 -5.888677761206381E-009 -6.113695896120693E-009 -6.347312423187617E-009 -6.589855904132601E-009 -6.841667455680021E-009 -7.103101229304858E-009 -7.374524909316463E-009 -7.656320229975105E-009 -7.948883512368628E-009 -8.252626221804227E-009 -8.567975546499202E-009 -8.895374998384746E-009 -9.235285036867616E-009 -9.588183716426748E-009 -9.954567358956327E-009 -1.033495125179981E-008 -1.072987037245791E-008 -1.113988014098828E-008 -1.156555720115679E-008 -1.200750023143730E-008 -1.246633078700206E-008 -1.294269417388577E-008 -1.343726035655328E-008 -1.395072490014752E-008 -1.448380994874229E-008 -1.503726524097604E-008 -1.561186916449522E-008 -1.620842985069004E-008 -1.682778631126183E-008 -1.747080961822156E-008 -1.813840412897774E-008 -1.883150875823817E-008 -1.955109829851244E-008 -2.029818479107493E-008 -2.107381894931360E-008 -2.187909163646878E-008 -2.271513539983869E-008 -2.358312606361049E-008 -2.448428438255565E-008 -2.541987775891802E-008 -2.639122202490541E-008 -2.739968329329554E-008 -2.844667987875612E-008 -2.953368429258344E-008 -3.066222531366293E-008 -3.183389013856492E-008 -3.305032661380212E-008 -3.431324555338284E-008 -3.562442314492469E-008 -3.698570344771064E-008 -3.839900098619903E-008 -3.986630344263918E-008 -4.138967445257443E-008 -4.297125650716942E-008 -4.461327396643996E-008 -4.631803618762328E-008 -4.808794077309162E-008 -4.992547694237362E-008 -5.183322903302721E-008 -5.381388013528902E-008 -5.587021586560935E-008 -5.800512828438272E-008 -6.022161996338154E-008 -6.252280820861434E-008 -6.491192944455050E-008 -6.739234376587051E-008 -6.996753966315073E-008 -7.264113892912388E-008 -7.541690175242048E-008 -7.829873200594756E-008 -8.129068273735186E-008 -8.439696186927961E-008 -8.762193811745846E-008 -9.097014713491740E-008 -9.444629789099228E-008 -9.805527929408607E-008 -1.018021670674926E-007 -1.056922308879661E-007 -1.097309417970649E-007 -1.139239798956964E-007 -1.182772423326917E-007 -1.227968515986315E-007 -1.274891641366013E-007 -1.323607792819759E-007 -1.374185485438154E-007 -1.426695852409172E-007 -1.481212745060827E-007 -1.537812836726654E-007 -1.596575730580096E-007 -1.657584071589472E-007 -1.720923662750922E-007 -1.786683585762880E-007 -1.854956326311734E-007 -1.925837904144883E-007 -1.999428008114180E-007 -2.075830136379594E-007 -2.155151741970369E-007 -2.237504383908332E-007 -2.323003884105908E-007 -2.411770490259590E-007 -2.503929044967737E-007 -2.599609161310836E-007 -2.698945405140967E-007 -2.802077484336809E-007 -2.909150445290682E-007 -3.020314876903460E-007 -3.135727122374716E-007 -3.255549499085702E-007 -3.379950526884449E-007 -3.509105165094216E-007 -3.643195058578284E-007 -3.782408793207559E-007 -3.926942161089876E-007 -4.076998435934439E-007 -4.232788658938270E-007 -4.394531935597131E-007 -4.562455743857866E-007 -4.736796254046144E-007 -4.917798661019045E-007 -5.105717529009879E-007 -5.300817149650202E-007 -5.503371913672595E-007 -5.782115555504032E-007 -5.935607818629932E-007 -6.162397036852952E-007 -6.397737751340417E-007 -6.642106652830153E-007 -6.895821955352605E-007 -7.159261655937846E-007 -7.432715846340385E-007 -7.716593358023250E-007 -8.011351778938246E-007 -8.317416530238078E-007 -8.635145732593603E-007 -8.964957718511061E-007 -9.307490303603867E-007 -9.662940383820713E-007 -1.003211777572220E-006 -1.041534378273274E-006 -1.081326274343123E-006 -1.122626306390594E-006 -1.165517736012436E-006 -1.210038306330837E-006 -1.256264823625573E-006 -1.304264720542580E-006 -1.354082828359630E-006 -1.405812044437953E-006 -1.459520145178493E-006 -1.515275742178909E-006 -1.573170290276018E-006 -1.633269053565353E-006 -1.695661947660354E-006 -1.760455504685460E-006 -1.827705633558147E-006 -1.897533229466715E-006 -1.970031841553204E-006 -2.045289746841898E-006 -2.123426839601502E-006 -2.204560260491820E-006 -2.288781406083843E-006 -2.376222703006605E-006 -2.467019055186037E-006 -2.561260905138814E-006 -2.659129374082590E-006 -2.760716593107702E-006 -2.866189782422785E-006 -2.975700989513511E-006 -3.089387382233364E-006 -3.207423229914912E-006 -3.329972203317330E-006 -3.457200474197638E-006 -3.589278935579484E-006 -3.726420609851965E-006 -3.868788790485793E-006 -4.016616435145357E-006 -4.170069873549745E-006 -4.329411547118086E-006 -4.494823150180188E-006 -4.666554634812360E-006 -4.844860412306618E-006 -5.029963236765851E-006 -5.222149252837227E-006 -5.421678750438234E-006 -5.628830843435170E-006 -5.843898813138329E-006 -6.067182593726402E-006 -6.298998740701198E-006 -6.539678237248658E-006 -6.789547349644713E-006 -7.048960728194513E-006 -7.318299076326516E-006 -7.597916079273720E-006 -7.888235709617883E-006 -8.189611327372769E-006 -8.502547497129522E-006 -8.827408087673587E-006 -9.164704926049630E-006 -9.514874472073737E-006 -9.878428419142490E-006 -1.025588176213416E-005 -1.064775438610657E-005 -1.105458391726565E-005 -1.147696882186693E-005 -1.191550838438275E-005 -1.237079620691376E-005 -1.284346524640004E-005 -1.333421295641904E-005 -1.384371053294117E-005 -1.437266179329813E-005 -1.492183626872705E-005 -1.549199474053239E-005 -1.608392793099958E-005 -1.669849712521629E-005 -1.733654089452219E-005 -1.799897539213834E-005 -1.868668856980501E-005 -1.940072378812523E-005 -2.014200961513284E-005 -2.091164467837923E-005 -2.171065474834818E-005 -2.254023266376281E-005 -2.340147920054805E-005 -2.429565662117429E-005 -2.522397987252269E-005 -2.618778642591240E-005 -2.718842282102248E-005 -2.822728079671674E-005 -2.930584548984662E-005 -3.042562654531313E-005 -3.158819563498855E-005 -3.279516515807847E-005 -3.404826550420289E-005 -3.534925096611557E-005 -3.669995379647166E-005 -3.810223282101972E-005 -3.955814567237285E-005 -4.106963616172429E-005 -4.263890528800684E-005 -4.426814081638858E-005 -4.595962287564823E-005 -4.771573448443501E-005 -4.953893870833167E-005 -5.143183279800211E-005 -5.339700806226435E-005 -5.543732737977745E-005 -5.755557460335398E-005 -5.975475310366274E-005 -6.203796377279554E-005 -6.440842473192071E-005 -6.686945680717672E-005 -6.942452050813161E-005 -7.207719111768736E-005 -7.483128740400546E-005 -7.769053956069468E-005 -8.065906123370253E-005 -8.374100401170408E-005 -8.694071639117336E-005 -9.026268272720813E-005 -9.371158503744667E-005 -9.729227604226404E-005 -1.010097212985207E-004 -1.048692591069913E-004 -1.088762437253430E-004 -1.130363284822568E-004 -1.173553932987974E-004 -1.218394362731906E-004 -1.264948032074715E-004 -1.313280926082060E-004 -1.363459992997440E-004 -1.415556392069450E-004 -1.469643573033647E-004 -1.525796710750409E-004 -1.584096074001768E-004 -1.644622161244525E-004 -1.707461504351149E-004 -1.772700802745602E-004 -1.840433811321988E-004 -1.910753809225250E-004 -1.983760849257232E-004 -2.059557084522542E-004 -2.138249364371761E-004 -2.219947764907620E-004 -2.304768307134757E-004 -2.392829011403533E-004 -2.484254485234636E-004 -2.579172484397565E-004 -2.677717291135564E-004 -2.780026659373442E-004 -2.886244995303593E-004 -2.996521098733171E-004 -3.111010691881993E-004 -3.229873848361558E-004 -3.353278933808006E-004 -3.481397698994930E-004 -3.614411689505563E-004 -3.752506991216396E-004 -3.895878354394046E-004 -4.044726842315268E-004 -4.199261793252744E-004 -4.359700556820553E-004 -4.526268943459101E-004 -4.699199889457465E-004 -4.878737114569591E-004 -5.065140047953599E-004 -5.258594225838230E-004 -5.460114418230390E-004 -5.662763282570709E-004 -5.936990239485927E-004 -6.033280575910146E-004 -6.486442183091610E-004 -6.397015027429223E-004 -6.958695142658487E-004 -6.878038269735424E-004 -7.614183188008328E-004 -7.642969046113141E-004 -7.794192439111291E-004 -8.487973949398327E-004 -8.203930075847410E-004 -9.295056243272207E-004 -8.814367038925807E-004 -9.774029224685829E-004 -1.002083104142994E-003 -1.029963602101629E-003 -1.070568269850828E-003 -1.112694231022920E-003 -1.154385576697517E-003 -1.203136821021803E-003 -1.227719626701962E-003 -1.307388990992531E-003 -1.343009580425884E-003 -1.402821395269843E-003 -1.433187095846489E-003 -1.499216957139608E-003 -1.578828509975216E-003 -1.601456212952976E-003 -1.700496342755074E-003 -1.722621441081991E-003 -1.823800842464057E-003 -1.876379807299454E-003 -1.963511050543470E-003 -2.011640463346603E-003 -2.111024536812823E-003 -2.199787532258662E-003 -2.251634790043963E-003 -2.366043238041980E-003 -2.436098221333841E-003 -2.521548139965898E-003 -2.695671907072855E-003 -2.688820696781957E-003 -2.856293965170210E-003 -2.949504302990534E-003 -3.055633049020047E-003 -3.185881008438328E-003 -3.296158494452674E-003 -3.434807274865101E-003 -3.550625014074001E-003 -3.705260689327340E-003 -3.839192390244918E-003 -3.956423205127090E-003 -4.149607845388197E-003 -4.281485474228179E-003 -4.448622361538181E-003 -4.646378098338115E-003 -4.790334866049094E-003 -4.978954912034379E-003 -5.185191786350525E-003 -5.357321207782366E-003 -5.608158223689791E-003 -5.784065199931396E-003 -5.983623299661844E-003 -6.275448296837377E-003 -6.465069872504864E-003 -6.726594123402346E-003 -6.986949806669820E-003 -7.236559761981412E-003 -7.556347495646404E-003 -7.805873157654755E-003 -8.102702452493976E-003 -8.419131337460944E-003 -8.758416416229459E-003 -9.082174232904194E-003 -9.418920738302056E-003 -9.782202765858172E-003 -1.015357151689651E-002 -1.056860986804400E-002 -1.092105836184455E-002 -1.138503876015121E-002 -1.179038477499433E-002 -1.225385467722157E-002 -1.272178163046364E-002 -1.319615067797031E-002 -1.371370207240036E-002 -1.422616625513390E-002 -1.477448223651828E-002 -1.533947142372027E-002 -1.592282837578499E-002 -1.652032676306334E-002 -1.717183326847047E-002 -1.780790336302679E-002 -1.849606597154677E-002 -1.919987903956261E-002 -1.993078610578747E-002 -2.069089219325387E-002 -2.148708896746290E-002 -2.229469566066961E-002 -2.315467535674182E-002 -2.403123668948659E-002 -2.495358382849588E-002 -2.589768487745275E-002 -2.689574607534978E-002 -2.790998276009138E-002 -2.897770356580565E-002 -3.008718285669931E-002 -3.122633920374818E-002 -3.242714093477245E-002 -3.365006857640318E-002 -3.494022398711172E-002 -3.627000417751214E-002 -3.765442812961417E-002 -3.908653961134106E-002 -4.057780161904861E-002 -4.211720086287690E-002 -4.373323792532291E-002 -4.538923354450830E-002 -4.712156914377130E-002 -4.892054499413079E-002 -5.077526154514356E-002 -5.271356004852856E-002 -5.472043805674898E-002 -5.680255235047738E-002 -5.896644068876522E-002 -6.121086776582918E-002 -6.354110500198240E-002 -6.595612184802668E-002 -6.847000535620118E-002 -7.107331592985500E-002 -7.377683323594042E-002 -7.658520693378568E-002 -7.949635448877179E-002 -8.252338503625967E-002 -8.565632860586592E-002 -8.891754384468586E-002 -9.229616066019708E-002 -9.580562031234408E-002 -9.944723486872165E-002 -1.032254871480838E-001 -1.071475434445877E-001 -1.112211338635927E-001 -1.154439963342633E-001 -1.198298988323878E-001 -1.243791360218820E-001 -1.291039291477638E-001 -1.340034320515135E-001 -1.390906233046427E-001 -1.443682450139843E-001 -1.498481315563740E-001 -1.555332263954499E-001 -1.614298266273990E-001 -1.675545781839864E-001 -1.739073756541716E-001 -1.804989010615738E-001 -1.873403308326016E-001 -1.944398071697218E-001 -2.018056910363737E-001 -2.094503703981814E-001 -2.173807936285166E-001 -2.256115863349546E-001 -2.341506030036857E-001 -2.430112587964972E-001 -2.522053001312030E-001 -2.617437999941923E-001 -2.716416452726986E-001 -2.819094465084531E-001 -2.925640764198869E-001 -3.036168324330069E-001 -3.150844115051816E-001 -3.269827883411458E-001 -3.393241963604989E-001 -3.521294198283007E-001 -3.654124223568918E-001 -3.791932484677467E-001 -3.934873413887932E-001 -4.083160811271123E-001 -4.236977111366311E-001 -4.396535410490277E-001 -4.562033352528747E-001 -4.733702210466531E-001 -4.911748111877969E-001 -5.096429450663456E-001 -5.287968008789603E-001 -5.486618526562648E-001 -5.692647951156831E-001 -5.906307785541260E-001 -6.127891397196352E-001 -6.357680091970712E-001 -6.595962153059585E-001 -6.843060529644225E-001 -7.099272094196305E-001 -7.364949626254234E-001 -7.640411342288616E-001 -7.926019706531644E-001 -8.222134738153635E-001 -8.529134808454888E-001 -8.847406409680829E-001 -9.177346335297241E-001 -9.519380781237938E-001 -9.873923375958693E-001 -1.024143238102747E+000 -1.062235617390829E+000 -1.101716980694494E+000 -1.142635877657256E+000 -1.185043635756200E+000 -1.228991247384661E+000 -1.274533392453723E+000 -1.321724647613699E+000 -1.370623386320721E+000 -1.421287705962545E+000 -1.473779031504211E+000 -1.528160513882934E+000 -1.584496554979903E+000 -1.642854249771794E+000 -1.703302524566308E+000 -1.765912434728374E+000 -1.830757186680678E+000 -1.897912384308491E+000 -1.967455385861996E+000 -2.039466445777187E+000 -2.114027836082091E+000 -2.191224194107285E+000 -2.271143008536953E+000 -2.353873656778006E+000 -2.439508355419957E+000 -2.528142179200984E+000 -2.619872222036197E+000 -2.714798765685757E+000 -2.813024284066969E+000 -2.914654505429617E+000 -3.019797535186008E+000 -3.128564323313583E+000 -3.241068753898610E+000 -3.357427477085913E+000 -3.477759786877428E+000 -3.602188241006033E+000 -3.730837761767937E+000 -3.863836657854556E+000 -4.001315606806365E+000 -4.143408304407600E+000 -4.290251603884307E+000 -4.441984422258457E+000 -4.598749162853238E+000 -4.760690370938235E+000 -4.927955743489669E+000 -5.100695051717288E+000 -5.279060893044729E+000 -5.463208290676434E+000 -5.653294238417246E+000 -5.849478286466237E+000 -6.051921813712354E+000 -6.260788062970263E+000 -6.476242070973655E+000 -6.698450346628178E+000 -6.927580682428399E+000 -7.163801871806172E+000 -7.407283637647893E+000 -7.658196033240330E+000 -7.916709448217503E+000 -8.182994023501251E+000 -8.457219379462487E+000 -8.739554189641183E+000 -9.030165784137608E+000 -9.329219551700177E+000 -9.636878583816852E+000 -9.953302931042487E+000 -1.027864917096166E+001 -1.061306962315257E+001 -1.095671180581522E+001 -1.130971746882773E+001 -1.167222203864316E+001 -1.204435356896545E+001 -1.242623199182523E+001 -1.281796794277690E+001 -1.321966197259675E+001 -1.363140320120701E+001 -1.405326836098408E+001 -1.448532038543831E+001 -1.492760720100171E+001 -1.538016029510939E+001 -1.584299325550225E+001 -1.631610022226434E+001 -1.679945426062284E+001 -1.729300561976169E+001 -1.779667996190980E+001 -1.831037645635683E+001 -1.883396580934843E+001 -1.936728814754588E+001 -1.991015094474125E+001 -2.046232670336974E+001 -2.102355059678683E+001 -2.159351814368375E+001 -2.217188257862034E+001 -2.275825231906106E+001 -2.335218827558509E+001 -2.395320109055348E+001 -2.456074832264949E+001 -2.517423156022954E+001 -2.579299348057776E+001 -2.641631487096464E+001 -2.704341160832473E+001 -2.767343160989014E+001 -2.830545182834106E+001 -2.893847516569775E+001 -2.957142752961181E+001 -3.020315484135182E+001 -3.083242019772734E+001 -3.145790108860223E+001 -3.207818676933681E+001 -3.269177579693365E+001 -3.329707376827093E+001 -3.389239130460169E+001 -3.447594231263122E+001 -3.504584259190153E+001 -3.560010881975893E+001 -3.613665798171132E+001 -3.665330728623144E+001 -3.714777465666270E+001 -3.761767985045856E+001 -3.806054626058494E+001 -3.847380351219363E+001 -3.885479091326908E+001 -3.920076179928151E+001 -3.950888896353240E+001 -3.977627113578876E+001 -3.999994068238334E+001 -4.017687259183685E+001 -4.030399482169162E+001 -4.037820012873021E+001 -4.039635942241193E+001 -4.035533678049399E+001 -4.025200616032998E+001 -4.008326988654187E+001 -3.984607898300442E+001 -3.953745542094691E+001 -3.915451623808656E+001 -3.869449965509023E+001 -3.815479308531474E+001 -3.753296309114739E+001 -3.682678716944099E+001 -3.603428731171641E+001 -3.515376522934832E+001 -3.418383904803193E+001 -3.312348128795179E+001 -3.197205790285398E+001 -3.072936802818094E+001 -2.939568412077915E+001 -2.797179209009391E+001 -2.645903089618173E+001 -2.485933114672844E+001 -2.317525207050858E+001 -2.141001620783595E+001 -1.956754111411396E+001 -1.765246733818958E+001 -1.567018178816852E+001 -1.362683571499565E+001 -1.152935633544666E+001 -9.385451247798983E+000 -7.203604685090113E+000 -4.993064702184938E+000 -2.763820470782093E+000 -5.265687686174942E-001 1.707330944233036E+000 3.925913603171352E+000 6.116678190348125E+000 8.266670263556421E+000 1.036257756228713E+001 1.239083844440563E+001 1.433776290025162E+001 1.618966540989049E+001 1.793300868648885E+001 1.955455707369947E+001 2.104153790245755E+001 2.238180901066210E+001 2.356403007779795E+001 2.457783538226590E+001 2.541400523726588E+001 2.606463321287811E+001 2.652328621583320E+001 2.678515443070967E+001 2.684718824802650E+001 2.670821956659955E+001 2.636906504957716E+001 2.583260950652800E+001 2.510386797938423E+001 2.419002587179648E+001 2.310045707115398E+001 2.184672090249376E+001 2.044253949735867E+001 1.890375800115433E+001 1.724829085717050E+001 1.549605820932010E+001 1.366891721253688E+001 1.179059388401143E+001 9.886622099793684E+000 7.984297538422496E+000 6.112656204442374E+000 4.302489785429444E+000 2.586414082033450E+000 9.990127620792393E-001 -4.229127198305598E-001 -1.639943657964366E+000 -2.609435219358161E+000 -3.284609875857035E+000 -3.613284536648017E+000 -3.535637532146373E+000 -2.985096335750650E+000 -1.850481397823585E+000 -3.032681604725054E-001 6.177545333854766E-003 -1.390682283493910E-003 7.973575003278192E-004 5.668486810453011E-004 5.759977925360804E-004 5.612946933501268E-004 5.488971113676172E-004 5.362411054477413E-004 5.236091809468711E-004 5.109982938607194E-004 4.984323579816933E-004 4.859312555505402E-004 4.735122356759454E-004 4.611926839268174E-004 4.489874951264805E-004 4.369105766183228E-004 4.249755105774839E-004 4.131934102725846E-004 4.015755499722831E-004 3.901319077124132E-004 3.788712097380317E-004 3.678025225846929E-004 3.569326619976664E-004 3.462691665966007E-004 3.358183065741398E-004 3.255856268879565E-004 3.155769047807390E-004 3.057961782515049E-004 2.962484448085674E-004 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.854125889981621E-013 5.039611734321644E-013 5.232185363204144E-013 5.432117615031329E-013 5.639689677481709E-013 5.855193482976507E-013 6.078932119257751E-013 6.311220255655446E-013 6.552384585643020E-013 6.802764286304068E-013 7.062711495355811E-013 7.332591806400975E-013 7.612784783103910E-013 7.903684493014596E-013 8.205700061791099E-013 8.519256248600012E-013 8.844794043503791E-013 9.182771287675992E-013 9.533663317315727E-013 9.897963632167597E-013 1.027618458958696E-012 1.066885812512695E-012 1.107653650066048E-012 1.149979308108952E-012 1.193922314073409E-012 1.239544470053470E-012 1.286909939724629E-012 1.336085338584561E-012 1.387139827642128E-012 1.440145210686489E-012 1.495176035272957E-012 1.552309697567823E-012 1.611626551199462E-012 1.673210020268843E-012 1.737146716678471E-012 1.803526561944583E-012 1.872442913664142E-012 1.943992696814346E-012 2.018276540069314E-012 2.095398917325797E-012 2.175468294636749E-012 2.258597282759658E-012 2.344902795533911E-012 2.434506214310200E-012 2.527533558663056E-012 2.624115663626588E-012 2.724388363702880E-012 2.828492683901563E-012 2.936575038079549E-012 3.048787434859682E-012 3.165287691417747E-012 3.286239655439056E-012 3.411813435556195E-012 3.542185640592289E-012 3.677539627946305E-012 3.818065761469631E-012 3.963961679196544E-012 4.115432571305332E-012 4.272691468700766E-012 4.435959542623955E-012 4.605466415710781E-012 4.781450484936643E-012 4.964159256901456E-012 5.153849695926574E-012 5.350788585453353E-012 5.555252903251105E-012 5.767530210962908E-012 5.987919058536500E-012 6.216729404109315E-012 6.454283049938301E-012 6.700914094987254E-012 6.956969404808552E-012 7.222809099380130E-012 7.498807059583373E-012 7.785351453034922E-012 8.082845280011139E-012 8.391706940233841E-012 8.712370821313691E-012 9.045287909679559E-012 9.390926424852381E-012 9.749772477956037E-012 1.012233075539121E-011 1.050912522863393E-011 1.091069989115664E-011 1.132761952350881E-011 1.176047048763258E-011 1.220986155153094E-011 1.267642474544796E-011 1.316081625076558E-011 1.366371732286679E-011 1.418583524926324E-011 1.472790434433486E-011 1.529068698208058E-011 1.587497466833224E-011 1.648158915394039E-011 1.711138359049638E-011 1.776524373021789E-011 1.844408917168365E-011 1.914887465317047E-011 1.988059139541162E-011 2.064026849566381E-011 2.142897437504538E-011 2.224781828117898E-011 2.309795184825440E-011 2.398057071670372E-011 2.489691621476751E-011 2.584827710431732E-011 2.683599139338988E-011 2.786144821798060E-011 2.892608979574597E-011 3.003141345435889E-011 3.117897373737308E-011 3.237038459055570E-011 3.360732163176509E-011 3.489152450756407E-011 3.622479933988489E-011 3.760902126618544E-011 3.904613707667088E-011 4.053816795228757E-011 4.208721230734296E-011 4.369544874074486E-011 4.536513910001651E-011 4.709863166239208E-011 4.889836443746824E-011 5.076686859605751E-011 5.270677203006304E-011 5.472080304838652E-011 5.681179421406113E-011 5.898268632800963E-011 6.123653256503149E-011 6.357650276783259E-011 6.600588790513786E-011 6.852810470016068E-011 7.114670043593048E-011 7.386535794424595E-011 7.668790078526305E-011 7.961829862500771E-011 8.266067281837049E-011 8.581930220544508E-011 8.909862912934787E-011 9.250326568399772E-011 9.603800020063348E-011 9.970780398219179E-011 1.035178382950219E-010 1.074734616277686E-010 1.115802372276278E-010 1.158439409245804E-010 1.202705692546051E-010 1.248663478932953E-010 1.296377404117426E-010 1.345914573669957E-010 1.397344657398903E-010 1.450739987335119E-010 1.506175659460808E-010 1.563729639325617E-010 1.623482871698541E-010 1.685519394409830E-010 1.749926456543066E-010 1.816794641143527E-010 1.886217992615575E-010 1.958294148988016E-010 2.033124479233748E-010 2.110814225836546E-010 2.191472652805645E-010 2.275213199346285E-010 2.362153639402222E-010 2.452416247294850E-010 2.546127969691510E-010 2.643420604145217E-010 2.744430984456696E-010 2.849301173119400E-010 2.958178661118389E-010 3.071216575363741E-010 3.188573894050574E-010 3.310415670248326E-010 3.436913264033732E-010 3.568244583494360E-010 3.704594334940950E-010 3.846154282681261E-010 3.993123518720208E-010 4.145708742765702E-010 4.304124552934326E-010 4.468593747565145E-010 4.639347638566690E-010 4.816626376737431E-010 5.000679289517272E-010 5.191765231645623E-010 5.390152949218272E-010 5.596121457655973E-010 5.809960434115883E-010 6.031970624897684E-010 6.262464268417769E-010 6.501765534345904E-010 6.750210979522147E-010 7.008150021295514E-010 7.275945428949559E-010 7.553973833906667E-010 7.842626259427728E-010 8.142308670553242E-010 8.453442545058629E-010 8.776465466226516E-010 9.111831738270603E-010 9.460013025275656E-010 9.821499014552853E-010 1.019679810534339E-009 1.058643812383844E-009 1.099096706552188E-009 1.141095386587921E-009 1.184698920055673E-009 1.229968631609663E-009 1.276968189241573E-009 1.325763693824187E-009 1.376423772076604E-009 1.429019673081869E-009 1.483625368492765E-009 1.540317656566592E-009 1.599176270175409E-009 1.660283988943494E-009 1.723726755669844E-009 1.789593797199406E-009 1.857977749912972E-009 1.928974790012425E-009 2.002684768784315E-009 2.079211353032201E-009 2.158662170875184E-009 2.241148963117619E-009 2.326787740403123E-009 2.415698946373580E-009 2.508007627062879E-009 2.603843606763513E-009 2.703341670613323E-009 2.806641754159373E-009 2.913889140165308E-009 3.025234662939208E-009 3.140834920469150E-009 3.260852494664936E-009 3.385456180015697E-009 3.514821220984915E-009 3.649129558476854E-009 3.788570085720909E-009 3.933338913933762E-009 4.083639648133206E-009 4.239683673491135E-009 4.401690452628760E-009 4.569887834272152E-009 4.744512373701927E-009 4.925809665448138E-009 5.114034688698031E-009 5.309452165902444E-009 5.512336935085468E-009 5.722974336380596E-009 5.941660613337297E-009 6.168703329562231E-009 6.404421801281390E-009 6.649147546430893E-009 6.903224750908867E-009 7.167010752643404E-009 7.440876544157967E-009 7.725207294340635E-009 8.020402890151269E-009 8.326878499028481E-009 8.645065152787108E-009 8.975410353827676E-009 9.318378704510336E-009 9.674452560578484E-009 1.004413270955076E-008 1.042793907503621E-008 1.082641144796210E-008 1.124011024574418E-008 1.166961730046549E-008 1.211553667717376E-008 1.257849552344737E-008 1.305914495142460E-008 1.355816095353746E-008 1.407624535323716E-008 1.461412679204892E-008 1.517256175434406E-008 1.575233563127051E-008 1.635426382533849E-008 1.697919289721443E-008 1.762800175633598E-008 1.830160289702349E-008 1.900094368182492E-008 1.972700767390023E-008 2.048081602031927E-008 2.126342888821732E-008 2.207594695583021E-008 2.291951296050331E-008 2.379531330585452E-008 2.470457973034949E-008 2.564859103963579E-008 2.662867490507448E-008 2.764620973099581E-008 2.870262659330696E-008 2.979941125217833E-008 3.093810624163743E-008 3.212031303901161E-008 3.334769431726801E-008 3.462197628342188E-008 3.594495110629793E-008 3.731847943706292E-008 3.874449302607224E-008 4.022499743971094E-008 4.176207488105088E-008 4.335788711829244E-008 4.501467852510387E-008 4.673477923714283E-008 4.852060842919080E-008 5.037467771751655E-008 5.229959469224786E-008 5.429806658472328E-008 5.637290407498303E-008 5.852702524474640E-008 6.076345968144512E-008 6.308535273907848E-008 6.549596996188208E-008 6.799870167703775E-008 7.059706776287552E-008 7.329472259928123E-008 7.609546020726933E-008 7.900321958494468E-008 8.202209024736676E-008 8.515631797810196E-008 8.841031080055074E-008 9.178864517745606E-008 9.529607244730318E-008 9.893752550666915E-008 1.027181257479175E-007 1.066431902619944E-007 1.107182393164630E-007 1.149490041192805E-007 1.193414348792507E-007 1.239017091744798E-007 1.286362406406077E-007 1.335516879910324E-007 1.386549643818193E-007 1.439532471344560E-007 1.494539878301377E-007 1.551649227897712E-007 1.610940839544436E-007 1.672498101816567E-007 1.736407589732027E-007 1.802759186511992E-007 1.871646209993846E-007 1.943165543874626E-007 2.017417773969611E-007 2.094507329677532E-007 2.174542630851482E-007 2.257636240282051E-007 2.343905022007162E-007 2.433470305671169E-007 2.526458057164518E-007 2.622999055783825E-007 2.723229078161596E-007 2.827289089224292E-007 2.935325440447235E-007 3.047490075685241E-007 3.163940744868461E-007 3.284841225863866E-007 3.410361554814643E-007 3.540678265281179E-007 3.675974636520098E-007 3.816440951250621E-007 3.962274763270537E-007 4.113681175298431E-007 4.270873127432717E-007 4.434071696633250E-007 4.603506407646822E-007 4.779415555813426E-007 4.962046542208077E-007 5.151656221588464E-007 5.348511263638817E-007 5.552888528017330E-007 5.765075453734942E-007 5.985370463413147E-007 6.214083382989010E-007 6.451535877458215E-007 6.698061903268367E-007 6.954008177999473E-007 7.219734667991427E-007 7.495615094605128E-007 7.782037459828182E-007 8.079404591965682E-007 8.388134712182353E-007 8.708662022693561E-007 9.041437317432230E-007 9.386928616050495E-007 9.859837678190585E-007 1.012426272791592E-006 1.051108850828083E-006 1.091250399369830E-006 1.132931781737549E-006 1.176207289214236E-006 1.221141350133262E-006 1.267783757843587E-006 1.316204082614361E-006 1.366480249840281E-006 1.418684727244806E-006 1.472878875552906E-006 1.529134183544716E-006 1.587558712884236E-006 1.648187219546329E-006 1.711156585388157E-006 1.776522413786494E-006 1.844394192816882E-006 1.914838743788550E-006 1.987997263285589E-006 2.063934902249011E-006 2.142782144022933E-006 2.224653934393863E-006 2.309627498988450E-006 2.397860609347954E-006 2.489468891094113E-006 2.584569724794974E-006 2.683318594835797E-006 2.785827354392348E-006 2.892249290371974E-006 3.002765312232244E-006 3.117472152340436E-006 3.236575027592634E-006 3.360233596949105E-006 3.488599066143674E-006 3.621875349035191E-006 3.760261950405050E-006 3.903915690350374E-006 4.053061801532231E-006 4.207930061765900E-006 4.368676065674610E-006 4.535606915239456E-006 4.708881556958125E-006 4.888784113564339E-006 5.075573984206351E-006 5.269485679195239E-006 5.470815872129744E-006 5.679843895668011E-006 5.896853261390416E-006 6.122136024080041E-006 6.356054259869280E-006 6.598887709364181E-006 6.851032500855339E-006 7.112773812091033E-006 7.384557630217456E-006 7.666695432094172E-006 7.959612869496739E-006 8.263743446534219E-006 8.579468064044162E-006 8.907273965844275E-006 9.247605372674097E-006 9.600938490548163E-006 9.967773465499081E-006 1.034862188698122E-005 1.074402378405138E-005 1.115454338865366E-005 1.158073766649830E-005 1.202321150717248E-005 1.248261347292366E-005 1.295954801059187E-005 1.345473699332974E-005 1.396878518564193E-005 1.450255029569731E-005 1.505665555383821E-005 1.563197227548964E-005 1.622924607951187E-005 1.684934907012276E-005 1.749315963628720E-005 1.816156467189414E-005 1.885548208274950E-005 1.957593136053777E-005 2.032393455603072E-005 2.110050516326934E-005 2.190672278272918E-005 2.274377616249824E-005 2.361281059880461E-005 2.451502718672349E-005 2.545173747738082E-005 2.642423941983383E-005 2.743388244241709E-005 2.848213421501337E-005 2.957042628283128E-005 3.070032040201562E-005 3.187333281214397E-005 3.309124034086490E-005 3.435562969779957E-005 3.566837249370763E-005 3.703122070697719E-005 3.844620593248052E-005 3.991520879234806E-005 4.144037985791705E-005 4.302379330593310E-005 4.466772920073709E-005 4.637448434433684E-005 4.814643357553983E-005 4.998610891025995E-005 5.189608556486710E-005 5.387904456387262E-005 5.593773660235034E-005 5.807511249025256E-005 6.029416428308542E-005 6.259801733953473E-005 6.498984372845873E-005 6.747314954686423E-005 7.005125473916478E-005 7.272791023802468E-005 7.550684851945894E-005 7.839195924345965E-005 8.138730645188713E-005 8.449709219658240E-005 8.772574486356815E-005 9.107768712980830E-005 9.455779843948174E-005 9.817083010673776E-005 1.019219044556513E-004 1.058163097432487E-004 1.098595350628292E-004 1.140572451787494E-004 1.184153421477233E-004 1.229399255238287E-004 1.276375050389624E-004 1.325144488638361E-004 1.375777699523151E-004 1.428345500604992E-004 1.482922063878575E-004 1.539583877848598E-004 1.598410801835909E-004 1.659485605207235E-004 1.722893007663293E-004 1.788724026854935E-004 1.857070011158412E-004 1.928027384307781E-004 2.001696425383650E-004 2.078179468566377E-004 2.157584743057855E-004 2.240024772382576E-004 2.325613790225950E-004 2.414473147463155E-004 2.506728114438183E-004 2.602506953874018E-004 2.701946525381785E-004 2.805184189488084E-004 2.912367488448597E-004 3.023644360989220E-004 3.139174653486844E-004 3.259117537681641E-004 3.383643630790103E-004 3.512927190201525E-004 3.647150451448573E-004 3.786501198480953E-004 3.931177274854071E-004 4.081380034938646E-004 4.237321989844639E-004 4.399221073523142E-004 4.567306303923787E-004 4.741812671179403E-004 4.922986463401797E-004 5.111081509607124E-004 5.306363386956697E-004 5.509105174062957E-004 5.719593993321562E-004 5.938122864687853E-004 6.165001393797307E-004 6.400547012097337E-004 6.645091887085095E-004 6.898978979005960E-004 7.162565351199746E-004 7.436221733051248E-004 7.720333261173416E-004 8.015297314627485E-004 8.321529564054835E-004 8.639472256240129E-004 8.969444693502412E-004 9.313150225261670E-004 9.659023457834117E-004 1.012462930623180E-003 1.029363120225082E-003 1.105843740828834E-003 1.091819580144083E-003 1.186473522557066E-003 1.173999650970599E-003 1.297784692657757E-003 1.303718102786636E-003 1.329945678081739E-003 1.446897617693009E-003 1.400668944500215E-003 1.583866086148310E-003 1.505062028371178E-003 1.666363095435545E-003 1.708966856210810E-003 1.756875950627609E-003 1.826082929773182E-003 1.897932546047868E-003 1.969041217389344E-003 2.052055479218506E-003 2.094767240850039E-003 2.229441604752077E-003 2.290721541487181E-003 2.392396731722340E-003 2.445100899700233E-003 2.557314675738942E-003 2.692227125836597E-003 2.732253983252119E-003 2.899745560261034E-003 2.939130095627983E-003 3.110371459822646E-003 3.200682569894038E-003 3.348717366112988E-003 3.431848153695599E-003 3.600515913919189E-003 3.751564154837336E-003 3.841248272010718E-003 4.035333928928519E-003 4.155539514375119E-003 4.301652176189330E-003 4.595718035058864E-003 4.588051951767584E-003 4.871394966631332E-003 5.030919673501465E-003 5.212214071015187E-003 5.433846596631778E-003 5.622386296598489E-003 5.858417970218327E-003 6.056507448109510E-003 6.319568433936218E-003 6.548263779573238E-003 6.749379146311199E-003 7.077330785923444E-003 7.303213324659774E-003 7.588214453430012E-003 7.924467334503638E-003 8.171204599905543E-003 8.492842145304727E-003 8.843904358715904E-003 9.138541836564748E-003 9.564586256539026E-003 9.866158629702790E-003 1.020730106907485E-002 1.070268145679371E-002 1.102799071177321E-002 1.147353471714579E-002 1.191748240329726E-002 1.234396816096026E-002 1.288765538090486E-002 1.331485501926813E-002 1.382112305952679E-002 1.436067282394471E-002 1.493865285943513E-002 1.549134619494758E-002 1.606604312830454E-002 1.668563109179685E-002 1.731909788986183E-002 1.802604408971567E-002 1.862914209221767E-002 1.941875104019583E-002 2.011127128710169E-002 2.090135327202247E-002 2.169943240829064E-002 2.250906250681353E-002 2.339127608249625E-002 2.426586420611704E-002 2.520091382076228E-002 2.616456507929604E-002 2.715973220001183E-002 2.817927081028587E-002 2.928974106273885E-002 3.037547895616194E-002 3.154893464285341E-002 3.274955894922393E-002 3.399633183037998E-002 3.529289958763854E-002 3.665074344605612E-002 3.802877029468033E-002 3.949532927691463E-002 4.099076819310743E-002 4.256384117864143E-002 4.417454523861714E-002 4.587659094980179E-002 4.760707988445501E-002 4.942821652475804E-002 5.132057100086496E-002 5.326399823408878E-002 5.531190127459362E-002 5.739845640544350E-002 5.959888154436876E-002 6.186727980928286E-002 6.422873220975045E-002 6.667171629042501E-002 6.921543273356834E-002 7.184160644741622E-002 7.459778920180071E-002 7.742299366534300E-002 8.037789077774016E-002 8.344645566824405E-002 8.661057514756787E-002 8.991679666442065E-002 9.334019318422415E-002 9.689198096446949E-002 1.005831546935461E-001 1.044118008798365E-001 1.083868009682820E-001 1.125065839655934E-001 1.167947448751872E-001 1.212357018359620E-001 1.258475564036474E-001 1.306381958293215E-001 1.356043268216642E-001 1.407679312577532E-001 1.461125756958066E-001 1.516756809338435E-001 1.574393281690885E-001 1.634260755581103E-001 1.696383275895612E-001 1.760837394570933E-001 1.827744616830316E-001 1.897236002632585E-001 1.969276007035550E-001 2.044096311968224E-001 2.121704441983847E-001 2.202306293847425E-001 2.285890559996737E-001 2.372676074735733E-001 2.462711396260890E-001 2.556196545416496E-001 2.653183645773942E-001 2.753780725671500E-001 2.858268341330081E-001 2.966648201403448E-001 3.079101652561880E-001 3.195818672509327E-001 3.316938563089518E-001 3.442604635863149E-001 3.573027284574000E-001 3.708326501906543E-001 3.848750329849020E-001 3.994434132431870E-001 4.145606167814631E-001 4.302466969602134E-001 4.465206093043550E-001 4.634076804932201E-001 4.809261332074692E-001 4.991046402757959E-001 5.179626142511857E-001 5.375284724261551E-001 5.578294674657762E-001 5.788866267288251E-001 6.007352603119180E-001 6.233993306769703E-001 6.469129632494699E-001 6.713026419492785E-001 6.966047675949554E-001 7.228505508762968E-001 7.500763317373291E-001 7.783159133064128E-001 8.076087326839989E-001 8.379900666690272E-001 8.695039395642254E-001 9.021883076860924E-001 9.360866584063743E-001 9.712445477674549E-001 1.007705000467240E+000 1.045518056697334E+000 1.084731788383669E+000 1.125395474808530E+000 1.167564216340784E+000 1.211288814177284E+000 1.256629434360113E+000 1.303640533723218E+000 1.352383993685866E+000 1.402921340684079E+000 1.455317216398313E+000 1.509637671964420E+000 1.565950533047623E+000 1.624328588786117E+000 1.684842593467817E+000 1.747570808044308E+000 1.812589910948279E+000 1.879981097039124E+000 1.949827373269791E+000 2.022216449245136E+000 2.097235554323078E+000 2.174978140979896E+000 2.255537572289807E+000 2.339013623496516E+000 2.425505695680059E+000 2.515118826887761E+000 2.607961023432825E+000 2.704142472808403E+000 2.803777949445895E+000 2.906985381559437E+000 3.013886350692516E+000 3.124606131878558E+000 3.239274107634998E+000 3.358022698577635E+000 3.480989271842063E+000 3.608314677960806E+000 3.740143836605725E+000 3.876626547795141E+000 4.017915893727704E+000 4.164169824828541E+000 4.315551196095804E+000 4.472226373386597E+000 4.634367184230257E+000 4.802149262513730E+000 4.975753824321195E+000 5.155366208613017E+000 5.341176661127612E+000 5.533380488538306E+000 5.732177781602957E+000 5.937773217192273E+000 6.150377094575248E+000 6.370203842448916E+000 6.597473725276203E+000 6.832411153183017E+000 7.075245767569967E+000 7.326212678078591E+000 7.585550644357397E+000 7.853504450967563E+000 8.130322671221563E+000 8.416259354503325E+000 8.711572234335819E+000 9.016523985670830E+000 9.331381561739363E+000 9.656415438822265E+000 9.991900596258802E+000 1.033811530651232E+001 1.069534119795668E+001 1.106386313982424E+001 1.144396870935734E+001 1.183594787944733E+001 1.224009254900636E+001 1.265669642590660E+001 1.308605402889376E+001 1.352846069814305E+001 1.398421162029669E+001 1.445360137421412E+001 1.493692321953392E+001 1.543446843321794E+001 1.594652531045008E+001 1.647337856736888E+001 1.701530809716533E+001 1.757258824430212E+001 1.814548648908217E+001 1.873426253437535E+001 1.933916668467836E+001 1.996043891013920E+001 2.059830708599665E+001 2.125298573019421E+001 2.192467403050637E+001 2.261355451315006E+001 2.331979078026563E+001 2.404352589431926E+001 2.478488000228236E+001 2.554394829625818E+001 2.632079859855480E+001 2.711546889603068E+001 2.792796472659205E+001 2.875825642982176E+001 2.960627620533865E+001 3.047191511746104E+001 3.135501987149502E+001 3.225538947957330E+001 3.317277167781191E+001 3.410685941217258E+001 3.505728691058033E+001 3.602362568529793E+001 3.700538058420267E+001 3.800198533001094E+001 3.901279821571632E+001 4.003709753266332E+001 4.107407687377861E+001 4.212284034094353E+001 4.318239762719770E+001 4.425165900280501E+001 4.532943023105258E+001 4.641440740829910E+001 4.750517174924732E+001 4.860018443892830E+001 4.969778134287208E+001 5.079616794713206E+001 5.189341421089568E+001 5.298744966876120E+001 5.407605861839340E+001 5.515687555995237E+001 5.622738090152495E+001 5.728489699491377E+001 5.832658457634739E+001 5.934943966199546E+001 6.035029101624684E+001 6.132579824461288E+001 6.227245062543216E+001 6.318656674661111E+001 6.406429510222006E+001 6.490161573471300E+001 6.569434301488718E+001 6.643812974979051E+001 6.712847271880355E+001 6.776071970536100E+001 6.833007834746149E+001 6.883162674577011E+001 6.926032612133645E+001 6.961103563264965E+001 6.987852948063710E+001 7.005751650976390E+001 7.014266237428637E+001 7.012861450580408E+001 7.001002994231021E+001 6.978160615694424E+001 6.943811500538686E+001 6.897443991566092E+001 6.838561625064153E+001 6.766687505922164E+001 6.681369004740327E+001 6.582182786436715E+001 6.468740151241104E+001 6.340692679553899E+001 6.197738162934456E+001 6.039626788971805E+001 5.866167549986471E+001 5.677234838054483E+001 5.472775168388625E+001 5.252813978399081E+001 5.017462435815719E+001 4.766924168487049E+001 4.501501837683486E+001 4.221603450862267E+001 3.927748303502449E+001 3.620572431953701E+001 3.300833453392761E+001 2.969414643773212E+001 2.627328124099745E+001 2.275716990265209E+001 1.915856243324856E+001 1.549152358780680E+001 1.177141341662150E+001 8.014851269091650E+000 4.239661696683243E+000 4.648012092886802E-001 -3.289735385719041E+000 -7.003029798245279E+000 -1.065337676894433E+001 -1.421844265266918E+001 -1.767544569874008E+001 -2.100135764219635E+001 -2.417312541561273E+001 -2.716791141560975E+001 -2.996335029427451E+001 -3.253781946791446E+001 -3.487072035744359E+001 -3.694276644557954E+001 -3.873627415129772E+001 -4.023545192294409E+001 -4.142668269096259E+001 -4.229879474728625E+001 -4.284331599097391E+001 -4.305470666884958E+001 -4.293056616365573E+001 -4.247180969024305E+001 -4.168281174028482E+001 -4.057151378488220E+001 -3.914949501215278E+001 -3.743200589521666E+001 -3.543796587612638E+001 -3.318992770437632E+001 -3.071401238722791E+001 -2.803982009109581E+001 -2.520032370238880E+001 -2.223175303378270E+001 -1.917347910643426E+001 -1.606790959458374E+001 -1.296040855195528E+001 -9.899256625617454E+000 -6.935672358914644E+000 -4.123921849609815E+000 -1.521554057845691E+000 8.101866255235137E-001 2.805698058387335E+000 4.394008327725288E+000 5.497266789527167E+000 6.028623509743404E+000 5.888509466593568E+000 4.966097944362974E+000 3.076376843373670E+000 5.039519366996456E-001 -1.026919106309117E-002 2.301934946865069E-003 -1.333726091420508E-003 -9.503385117125328E-004 -9.652136843387501E-004 -9.404605339251523E-004 -9.195473805404459E-004 -8.982138246020777E-004 -8.769295052080495E-004 -8.556894678481911E-004 -8.345334950734086E-004 -8.134946170194649E-004 -7.926014375982970E-004 -7.718827545794889E-004 -7.513631903401064E-004 -7.310657007735687E-004 -7.110126831530819E-004 -6.912224093935220E-004 -6.717134104743037E-004 -6.525020516352522E-004 -6.336026094980841E-004 -6.150299270037969E-004 -5.967950966156374E-004 -5.789104189989771E-004 -5.613860841610804E-004 -5.442310794975436E-004 -5.274547846001195E-004 -5.110636872202160E-004 -4.950658824080991E-004 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.674072930999663E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 -2.568687722313208E+000 -1.557960632273509E+000 0.000000000000000E+000 -1.557960632273509E+000 -9.458763416463380E-001 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 3.812860852969260E-001 2.342438276995441E-001 0.000000000000000E+000 2.342438276995441E-001 1.439705944595187E-001 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 7.616704548722910E-027 8.107939787350791E-027 8.630856976897252E-027 9.187499427644416E-027 9.780042232065523E-027 1.041080076404593E-026 1.108223972625692E-026 1.179698278103504E-026 1.255782280239949E-026 1.336773278926849E-026 1.422987748251662E-026 1.514762573126883E-026 1.612456365675171E-026 1.716450866513986E-026 1.827152436415382E-026 1.944993644169519E-026 2.070434956856638E-026 2.203966539132164E-026 2.346110168555754E-026 2.497421274448486E-026 2.658491108244958E-026 2.829949053821123E-026 3.012465086825487E-026 3.206752392623482E-026 3.413570153084847E-026 3.633726513103187E-026 3.868081738439794E-026 4.117551577230751E-026 4.383110838292692E-026 4.665797200209473E-026 4.966715266083756E-026 5.287040879797609E-026 5.628025720648086E-026 5.991002194311258E-026 6.377388639246384E-026 6.788694868884234E-026 7.226528071255828E-026 7.692599089114715E-026 8.188729105092118E-026 8.716856758007769E-026 9.279045718143061E-026 9.877492751077642E-026 1.051453630159863E-025 1.119266563122440E-025 1.191453054504827E-025 1.268295174590919E-025 1.350093185634959E-025 1.437166715142814E-025 1.529856004823406E-025 1.628523240090595E-025 1.733553965310531E-025 1.845358590324666E-025 1.964373994135106E-025 2.091065232018833E-025 2.225927352741312E-025 2.369487332970269E-025 2.522306136448491E-025 2.684980905971858E-025 2.858147296737756E-025 3.042481960181670E-025 3.238705188007241E-025 3.447583726741858E-025 3.669933773815341E-025 3.906624166869122E-025 4.158579778758298E-025 4.426785131512294E-025 4.712288243376183E-025 5.016204723964709E-025 5.339722133531109E-025 5.684104623384709E-025 6.050697875589492E-025 6.440934361246134E-025 6.856338937903900E-025 7.298534807974667E-025 7.769249861431744E-025 8.270323427577333E-025 8.803713462261872E-025 9.371504198638981E-025 9.975914291351974E-025 1.061930548597509E-024 1.130419184758543E-024 1.203324958452716E-024 1.280932750575366E-024 1.363545815261045E-024 1.451486964855668E-024 1.545099831312715E-024 1.644750208942623E-024 1.750827483761956E-024 1.863746155027766E-024 1.983947454902437E-024 2.111901072577950E-024 2.248106989596614E-024 2.393097433539806E-024 2.547438957718822E-024 2.711734654994289E-024 2.886626514374577E-024 3.072797929601832E-024 3.270976369527887E-024 3.481936220714596E-024 3.706501813366231E-024 3.945550642417571E-024 4.200016796364521E-024 4.470894607235185E-024 4.759242535963878E-024 5.066187308350341E-024 5.392928317765133E-024 5.740742311805419E-024 6.110988381213989E-024 6.505113270555764E-024 6.924657031403872E-024 7.371259040124426E-024 7.846664403775388E-024 8.352730779150461E-024 8.891435631613260E-024 9.464883962086364E-024 1.007531653238813E-023 1.072511862105819E-023 1.141682934388526E-023 1.215315157555740E-023 1.293696251120358E-023 1.377132490909606E-023 1.465949905844536E-023 1.560495551905081E-023 1.661138868258868E-023 1.768273120852822E-023 1.882316939108370E-023 2.003715951725036E-023 2.132944527984268E-023 2.270507631357725E-023 2.416942792663067E-023 2.572822210477254E-023 2.738754987014969E-023 2.915389508208791E-023 3.103415977291274E-023 3.303569111779223E-023 3.516631014398217E-023 3.743434229166139E-023 3.984864994577008E-023 4.241866706597143E-023 4.515443605005576E-023 4.806664697482623E-023 5.116667936780858E-023 5.446664667300143E-023 5.797944358442285E-023 6.171879643240827E-023 6.569931681954400E-023 6.993655871582338E-023 7.444707923612291E-023 7.924850333748820E-023 8.435959268903986E-023 8.980031898360065E-023 9.559194197752271E-023 1.017570925636471E-022 1.083198612020105E-022 1.153058920538442E-022 1.227424831866895E-022 1.306586932421937E-022 1.390854549833840E-022 1.480556961651127E-022 1.576044681999789E-022 1.677690831224831E-022 1.785892593866177E-022 1.901072770665901E-022 2.023681430671333E-022 2.154197669889709E-022 2.293131483366186E-022 2.441025758000673E-022 2.598458393890179E-022 2.766044562486027E-022 2.944439110389794E-022 3.134339118180521E-022 3.336486624272488E-022 3.551671524446292E-022 3.780734658383948E-022 4.024571095268322E-022 4.284133631285294E-022 4.560436512695870E-022 4.854559399025418E-022 5.167651581856858E-022 5.500936475712676E-022 5.855716398573599E-022 6.233377660714969E-022 6.635395981743916E-022 7.063342257006309E-022 7.518888695894460E-022 8.003815356041660E-022 8.520017098936647E-022 9.069510994135893E-022 9.654444201007067E-022 1.027710235880135E-021 1.093991851783822E-021 1.164548264670344E-021 1.239655175260731E-021 1.319606065445077E-021 1.404713345069481E-021 1.495309572684256E-021 1.591748755023843E-021 1.694407730295790E-021 1.803687640684310E-021 1.920015499822185E-021 2.043845861355771E-021 2.175662595123453E-021 2.315980777887520E-021 2.465348706007917E-021 2.624350037922348E-021 2.793606074804234E-021 2.973778188310868E-021 3.165570404907473E-021 3.369732156866110E-021 3.587061210688778E-021 3.818406784397312E-021 4.064672865871647E-021 4.326821745202130E-021 4.605877774859188E-021 4.902931372373151E-021 5.219143281164492E-021 5.555749106174509E-021 5.914064142018469E-021 6.295488512528333E-021 6.701512641767481E-021 7.133723077895232E-021 7.593808692638952E-021 8.083567280597165E-021 8.604912584161657E-021 9.159881771508027E-021 9.750643396874825E-021 1.037950587423747E-020 1.104892649748621E-020 1.176152104235632E-020 1.252007398762974E-020 1.332754939554640E-020 1.418710249394389E-020 1.510209200537890E-020 1.607609327141019E-020 1.711291222332479E-020 1.821660025389774E-020 1.939147004829997E-020 2.064211243601000E-020 2.197341432958199E-020 2.339057782036491E-020 2.489914050578871E-020 2.650499712765002E-020 2.821442260594536E-020 3.003409655826036E-020 3.197112940052387E-020 3.403309013111533E-020 3.622803590689431E-020 3.856454352671990E-020 4.105174294548214E-020 4.369935294960459E-020 4.651771913341746E-020 4.951785432479918E-020 5.271148161804427E-020 5.611108018211742E-020 5.972993402328380E-020 6.358218389265947E-020 6.768288254151270E-020 7.204805354022498E-020 7.669475389075100E-020 8.164114067723584E-020 8.690654201522566E-020 9.251153257671503E-020 9.847801398613667E-020 1.048293004014506E-019 1.115902096147414E-019 1.187871600282968E-019 1.264482738851087E-019 1.346034871571726E-019 1.432846665209692E-019 1.525257338772256E-019 1.623627989015034E-019 1.728343001435762E-019 1.839811552269275E-019 1.958469207352944E-019 2.084779624110030E-019 2.219236363301583E-019 2.362364817626366E-019 2.514724264704674E-019 2.676910052468445E-019 2.849555925496853E-019 3.033336501387656E-019 3.228969906840924E-019 3.437220583755510E-019 3.658902276303225E-019 3.894881210652958E-019 4.146079479769162E-019 4.413478646511443E-019 4.698123579113894E-019 5.001126534031911E-019 5.323671502109889E-019 5.667018835052815E-019 6.032510170279808E-019 6.421573673403300E-019 6.835729618819443E-019 7.276596330215647E-019 7.745896504208020E-019 8.245463941818736E-019 8.777250714096194E-019 9.343334789878539E-019 9.945928155505592E-019 1.058738545820740E-018 1.127021320694383E-018 1.199707956664738E-018 1.277082478414080E-018 1.359447228646883E-018 1.447124049501113E-018 1.540455540154048E-018 1.639806395536711E-018 1.745564831388050E-018 1.858144101217232E-018 1.977984111101631E-018 2.105553138630460E-018 2.241349662710679E-018 2.385904311385437E-018 2.539781935275999E-018 2.703583814749265E-018 2.877950009435498E-018 3.063561859276922E-018 3.261144646880285E-018 3.471470431576493E-018 3.695361066261396E-018 3.933691408806411E-018 4.187392740587278E-018 4.457456405489237E-018 4.744937683607954E-018 5.050959914783082E-018 5.376718888076692E-018 5.723487514349326E-018 6.092620800191354E-018 6.485561142645601E-018 6.903843965410674E-018 7.349103718548169E-018 7.823080265138329E-018 8.327625679839940E-018 8.864711485919841E-018 9.436436359031555E-018 1.004503432784493E-017 1.069288350357179E-017 1.138251537249807E-017 1.211662468783341E-017 1.289807999953100E-017 1.372993486322264E-017 1.461543977206975E-017 1.555805485815231E-017 1.656146341302907E-017 1.762958628029942E-017 1.876659717640659E-017 1.997693899954963E-017 2.126534119043070E-017 2.263683821267585E-017 2.409678922514263E-017 2.565089902298314E-017 2.730524032929249E-017 2.906627752444706E-017 3.094089190585490E-017 3.293640857682371E-017 3.506062506961349E-017 3.732184181452116E-017 3.972889457405438E-017 4.229118896893456E-017 4.501873723083945E-017 4.792219732549633E-017 5.101291459900472E-017 5.430296611011947E-017 5.780520782172634E-017 6.153332483591321E-017 6.550188486892807E-017 6.972639517498712E-017 7.422336314135590E-017 7.901036079148967E-017 8.410609344827578E-017 8.953047282568437E-017 9.530469483443787E-017 1.014513224057252E-016 1.079943736565998E-016 1.149594157415736E-016 1.223736647571295E-016 1.302660920895422E-016 1.386675376215591E-016 1.476108302403086E-016 1.571309161173187E-016 1.672649952619102E-016 1.780526668815565E-016 1.895360841172029E-016 2.017601187581948E-016 2.147725365804312E-016 2.286241839929081E-016 2.433691867219468E-016 2.590651613095238E-016 2.757734402520988E-016 2.935593116597110E-016 3.124922743718171E-016 3.326463095267400E-016 3.541001696459198E-016 3.769376863625658E-016 4.012480979971806E-016 4.271263982599880E-016 4.546737074428140E-016 4.839976675509070E-016 5.152128629186808E-016 5.484412679529621E-016 5.838127237533464E-016 6.214654454720499E-016 6.615465623958511E-016 7.042126928604809E-016 7.496305562440034E-016 7.979776244306102E-016 8.494428152904041E-016 9.042272308850868E-016 9.625449432840622E-016 1.024623831061635E-015 1.090706469743997E-015 1.161051079685406E-015 1.235932535077557E-015 1.315643438034905E-015 1.400495261952951E-015 1.490819568607379E-015 1.586969303749808E-015 1.689320176262968E-015 1.798272126264368E-015 1.914250887895221E-015 2.037709652901448E-015 2.169130841507167E-015 2.309027987500763E-015 2.457947744899520E-015 2.616472024034133E-015 2.785220265400064E-015 2.964851860160975E-015 3.156068726762730E-015 3.359618053726302E-015 3.576295219337214E-015 3.806946899640949E-015 4.052474376888483E-015 4.313837061360829E-015 4.592056240333964E-015 4.888219068833954E-015 5.203482817776742E-015 5.539079396092194E-015 5.896320164503959E-015 6.276601059775054E-015 6.681408049442997E-015 7.112322938359833E-015 7.571029549726365E-015 8.059320304774628E-015 8.579103226809037E-015 9.132409396975774E-015 9.721400890895212E-015 1.034837922717033E-014 1.101579436078586E-014 1.172625425654066E-014 1.248253507992349E-014 1.328759204525448E-014 1.414457096348347E-014 1.505682053477020E-014 1.602790543388206E-014 1.706162023954239E-014 1.816200426216206E-014 1.933335732789473E-014 2.058025658069731E-014 2.190757436805133E-014 2.332049728023791E-014 2.482454641756723E-014 2.642559896475906E-014 2.812991115678302E-014 2.994414272590209E-014 3.187538292545091E-014 3.393117823204508E-014 3.611956183447174E-014 3.844908502449923E-014 4.092885061227183E-014 4.356854849686887E-014 4.637849353103154E-014 4.936966582802000E-014 5.255375366811632E-014 5.594319917243830E-014 5.955124692254912E-014 6.339199571586195E-014 6.748045365908082E-014 7.183259681498382E-014 7.646543163171971E-014 8.139706139858789E-014 8.664675698799572E-014 9.223503216004229E-014 9.818372372401016E-014 1.045160768700215E-013 1.112568360043254E-013 1.184323414431907E-013 1.260706323432677E-013 1.342015562706655E-013 1.428568858369285E-013 1.520704428577129E-013 1.618782305193721E-013 1.723185740699378E-013 1.834322705843227E-013 1.952627483890102E-013 2.078562367692643E-013 2.212619466220676E-013 2.355322627607728E-013 2.507229486230037E-013 2.668933641818035E-013 2.841066979116249E-013 3.024302137157100E-013 3.219355137798378E-013 3.426988183797208E-013 3.648012637355381E-013 3.883292190776462E-013 4.133746241626203E-013 4.400353485586312E-013 4.684155741043485E-013 4.986262020360368E-013 5.307852863739844E-013 5.650184952620191E-013 6.014596020630961E-013 6.402510081302985E-013 6.815442992963433E-013 7.255008382564879E-013 7.722923951600610E-013 8.221018188751025E-013 8.751237515496702E-013 9.315653892625325E-013 9.916472917361320E-013 1.055604244276505E-012 1.123686175308900E-012 1.196159133095272E-012 1.273306325451044E-012 1.355429226524851E-012 1.442848754958046E-012 1.535906528308638E-012 1.634966197289394E-012 1.740414867507285E-012 1.852664613557131E-012 1.972154086245977E-012 2.099350230723092E-012 2.234750107747269E-012 2.378882839906866E-012 2.532311675525197E-012 2.695636193038777E-012 2.869494644349850E-012 3.054566445665758E-012 3.251574836511989E-012 3.461289705730069E-012 3.684530599109577E-012 3.922169922300830E-012 4.175136352181863E-012 4.444418465732084E-012 4.731068601242648E-012 5.036206975650381E-012 5.361026059317614E-012 5.706795238134554E-012 6.074865774455481E-012 6.466676088371953E-012 6.883757379936524E-012 7.327739614233886E-012 7.800357888989922E-012 8.303459223168556E-012 8.839009772784279E-012 9.409102504748340E-012 1.001596539365374E-011 1.066197012799634E-011 1.134964137487812E-011 1.208166663675610E-011 1.286090680056458E-011 1.369040726403526E-011 1.457340985868861E-011 1.551336553251845E-011 1.651394785426687E-011 1.757906731755707E-011 1.871288670437965E-011 1.991983726739578E-011 2.120463614360664E-011 2.257230470903244E-011 2.402818826509080E-011 2.557797694139467E-011 2.722772787533775E-011 2.898388892868017E-011 3.085332393129733E-011 3.284333945527421E-011 3.496171340591259E-011 3.721672540454032E-011 3.961718918147457E-011 4.217248704869881E-011 4.489260652446389E-011 4.778817948887585E-011 5.087052355835967E-011 5.415168651847581E-011 5.764449341122259E-011 6.136259648570494E-011 6.532052884550818E-011 6.953376107559942E-011 7.401876183785064E-011 7.879306216277215E-011 8.387532414157561E-011 8.928541376368153E-011 9.504447864222013E-011 1.011750307240970E-010 1.077010342689032E-010 1.146479996814361E-010 1.220430831072344E-010 1.299151927740537E-010 1.382951018478188E-010 1.472155690409698E-010 1.567114665706772E-010 1.668199162691011E-010 1.775804356981151E-010 1.890350913124248E-010 2.012286641523790E-010 2.142088245309014E-010 2.280263183586065E-010 2.427351661638571E-010 2.583928733453454E-010 2.750606566875057E-010 2.928036820374296E-010 3.116913208792723E-010 3.317974204263644E-010 3.532005931322739E-010 3.759845243183094E-010 4.002382990577186E-010 4.260567514147514E-010 4.535408346644742E-010 4.827980172246323E-010 5.139427021914171E-010 5.470966755464906E-010 5.823895828142558E-010 6.199594356645359E-010 6.599531533022414E-010 7.025271357170280E-010 7.478478773576978E-010 7.960926176442388E-010 8.474500349177967E-010 9.021209855148311E-010 9.603192894333023E-010 1.022272566887402E-009 1.088223130442197E-009 1.158428932580868E-009 1.233164576378201E-009 1.312722389768278E-009 1.397413570329535E-009 1.487569404297472E-009 1.583542563505452E-009 1.685708485531386E-009 1.794466845729548E-009 1.910243119653831E-009 2.033490253282260E-009 2.164690433299370E-009 2.304356978333370E-009 2.453036347849247E-009 2.611310284826588E-009 2.779798092727148E-009 2.959159063659575E-009 3.150095060390570E-009 3.353353267236874E-009 3.569729117051929E-009 3.800069409060716E-009 4.045275628657319E-009 4.306307479099523E-009 4.584186644030502E-009 4.880000792656444E-009 5.194907843344084E-009 5.530140505122662E-009 5.887011108331644E-009 6.266916753314539E-009 6.671344788415651E-009 7.101878643097247E-009 7.560204038703318E-009 8.048115602878229E-009 8.567523907506983E-009 9.120462966821357E-009 9.709098217409484E-009 1.033573501660354E-008 1.100282769020757E-008 1.171298916608538E-008 1.246900123107411E-008 1.327382545193010E-008 1.413061480359861E-008 1.504272605125969E-008 1.601373293201743E-008 1.704744019358999E-008 1.814789853829827E-008 1.931942053850464E-008 2.056659758170493E-008 2.189431791287679E-008 2.330778584904323E-008 2.481254223289137E-008 2.641448621883968E-008 2.811989846776695E-008 2.993546584472840E-008 3.186830772044074E-008 3.392600397671769E-008 3.611662482554824E-008 3.844876256986234E-008 4.093156541345525E-008 4.357477347641939E-008 4.638875713614347E-008 4.938455786239430E-008 5.257393170526135E-008 5.596939559677106E-008 5.958427666517895E-008 6.343276475325568E-008 6.752996833725918E-008 7.189197408755094E-008 7.653591029174764E-008 8.148001440150128E-008 8.674370496645093E-008 9.234765824168057E-008 9.831388977907603E-008 1.046658413135677E-007 1.114284733123567E-007 1.186283635251326E-007 1.262938119592398E-007 1.344549526718158E-007 1.431438728441575E-007 1.523947395966142E-007 1.622439350625106E-007 1.727302002497361E-007 1.838947882764332E-007 1.957816275724569E-007 2.084374957248778E-007 2.219122046326023E-007 2.362587977397648E-007 2.515337601088802E-007 2.677972421952146E-007 2.851132982024084E-007 3.035501399855654E-007 3.231804075115269E-007 3.440814569533988E-007 3.663356675941543E-007 3.900307687437917E-007 4.152601880024742E-007 4.421234222535292E-007 4.707264328804351E-007 5.011820667948571E-007 5.336105049661686E-007 5.681397402479062E-007 6.049060864359464E-007 6.440547205896027E-007 6.857402608112356E-007 7.301273817921429E-007 7.773914706201197E-007 8.277193254801128E-007 8.813099000521930E-007 9.383750966353815E-007 9.991406111499705E-007 1.063846833471180E-006 1.132749806685785E-006 1.206122249164108E-006 1.284254643560118E-006 1.367456397132776E-006 1.456057078079656E-006 1.550407732862995E-006 1.650882289851422E-006 1.757879054935334E-006 1.871822305177913E-006 1.993163986902418E-006 2.122385525101709E-006 2.259999751452885E-006 2.406552958750513E-006 2.562627090012185E-006 2.728842071137034E-006 2.905858296495746E-006 3.094379277504065E-006 3.295154464852508E-006 3.508982255780214E-006 3.736713198515545E-006 3.979253406788446E-006 4.237568198168360E-006 4.512685970886785E-006 4.805702334720755E-006 5.117784512542681E-006 5.450176030230001E-006 5.804201713745204E-006 6.181273013423842E-006 6.582893676782874E-006 7.010665792559961E-006 7.466296230118432E-006 7.951603499909503E-006 8.468525062336267E-006 9.019125114064589E-006 9.605602882726513E-006 1.023030146286437E-005 1.089571722808022E-005 1.160450985652426E-005 1.235951300921039E-005 1.316374570307517E-005 1.402042442336998E-005 1.493297602264266E-005 1.590505145660386E-005 1.694054041013151E-005 1.804358687002903E-005 1.921860570451360E-005 2.047030031312067E-005 2.180368141442636E-005 2.322408704314133E-005 2.473720383224944E-005 2.634908966042960E-005 2.806619774959963E-005 2.989540230238262E-005 3.184402577446396E-005 3.391986788216337E-005 3.613123645123191E-005 3.848698021880694E-005 4.099652370657615E-005 4.366990428964198E-005 4.651781159229557E-005 4.955162934880625E-005 5.278347987450261E-005 5.622627129998838E-005 5.989374772882146E-005 6.380054248708767E-005 6.796223464127304E-005 7.239540896923852E-005 7.711771957750815E-005 8.214795736679126E-005 8.750612155624131E-005 9.321349548583662E-005 9.929272692501894E-005 1.057679131244055E-004 1.126646908560669E-004 1.200103316962314E-004 1.278338428124471E-004 1.361660735248717E-004 1.450398279187016E-004 1.544899837912645E-004 1.645536182230904E-004 1.752701400671245E-004 1.866814296539139E-004 1.988319860128917E-004 2.117690819106478E-004 2.255429270057862E-004 2.402068394168357E-004 2.558174259936560E-004 2.724347715742850E-004 2.901226374971706E-004 3.089486696231813E-004 3.289846161020375E-004 3.503065550933597E-004 3.729951326228273E-004 3.971358107184306E-004 4.228191259295717E-004 4.501409582825321E-004 4.792028106681468E-004 5.101120985913042E-004 5.429824501354724E-004 5.779340159085500E-004 6.150937886373977E-004 6.545959319663551E-004 6.965821178893381E-004 7.412018721035163E-004 7.886129264145316E-004 8.389815771474395E-004 8.924830483216313E-004 9.493018581322795E-004 1.009632187041647E-003 1.073678245521549E-003 1.141654639200362E-003 1.213786728853166E-003 1.290310982331132E-003 1.371475315153369E-003 1.457539416080874E-003 1.548775053557115E-003 1.645466358429769E-003 1.747910077866541E-003 1.856415794839340E-003 1.971306106979483E-003 2.092916757999828E-003 2.221596714238105E-003 2.357708178203049E-003 2.501626530299407E-003 2.653740189174949E-003 2.814450380375011E-003 2.984170802210018E-003 3.163327176948965E-003 3.352356674647773E-003 3.551707196119676E-003 3.761836500761018E-003 3.983211164172442E-003 4.216305349777169E-003 4.461599377947581E-003 4.719578075527867E-003 4.990728888104734E-003 5.275539736947587E-003 5.574496602248024E-003 5.888080814152518E-003 6.216766033143518E-003 6.561014901608389E-003 6.921275348982068E-003 7.297976533700803E-003 7.691524406395510E-003 8.102296880338110E-003 8.530638597174510E-003 8.976855278482191E-003 9.441207656738729E-003 9.923904982917420E-003 1.042509811220606E-002 1.094487217431396E-002 1.148323884054478E-002 1.204012820631908E-002 1.261538031516233E-002 1.320873635837825E-002 1.381982959372207E-002 1.444817603638878E-002 1.509316498654997E-002 1.575404946947784E-002 1.642993667697109E-002 1.711977851227626E-002 1.782236235489845E-002 1.853630217651590E-002 1.926003015449157E-002 1.999178894504650E-002 2.072962479379190E-002 2.147138167674291E-002 2.221469667985520E-002 2.295699683915555E-002 2.369549767628427E-002 2.442720367525453E-002 2.514891095493817E-002 2.585721239766315E-002 2.654850549670295E-002 2.721900318372487E-002 2.786474789072346E-002 2.848162908887069E-002 2.906540452833202E-002 2.961172537765857E-002 3.011616542813859E-002 3.057425448676097E-002 3.098151603053244E-002 3.133350913421633E-002 3.162587461260328E-002 3.185438523680909E-002 3.201499979157170E-002 3.210392063701299E-002 3.211765432396552E-002 3.205307468706388E-002 3.190748770493562E-002 3.167869727280878E-002 3.136507088075279E-002 3.096560403191612E-002 3.047998207111088E-002 2.990863792674894E-002 2.925280410053337E-002 2.851455707173166E-002 2.769685211876637E-002 2.680354640290759E-002 2.583940800982128E-002 2.481010850756014E-002 2.372219645740546E-002 2.258304921006539E-002 2.140080023776193E-002 2.018423919669038E-002 1.894268188888523E-002 1.768580730318370E-002 1.642345896844402E-002 1.516540795677818E-002 1.392107504068182E-002 1.269920974858346E-002 1.150752439472663E-002 1.035228160133028E-002 9.237834407981010E-003 8.167391198751178E-003 7.147199896049533E-003 6.183961324964099E-003 5.283627435772015E-003 4.451268233633593E-003 3.690946452223925E-003 3.005604131665368E-003 2.396965633407022E-003 1.865461928662132E-003 1.410181222013057E-003 1.028851097140571E-003 7.178573758866436E-004 4.723047435360173E-004 2.861238916193332E-004 1.522294454623097E-004 6.273226073527649E-005 9.208778529640194E-006 -1.697098585351497E-005 -2.425658101459782E-005 -2.047269707433630E-005 -1.232025013661597E-005 -4.827976080673535E-006 -7.616201095350661E-007 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.835408283348811E-027 5.147265324243060E-027 5.479235416250669E-027 5.832615739720472E-027 6.208787135946086E-027 6.609219502833168E-027 7.035477538557475E-027 7.489226855657022E-027 7.972240489449166E-027 8.486405826204879E-027 9.033731978151330E-027 9.616357634121687E-027 1.023655941652833E-026 1.089676077731418E-026 1.159954146764412E-026 1.234764761833843E-026 1.314400247043889E-026 1.399171779783649E-026 1.489410606659561E-026 1.585469337848737E-026 1.687723324930862E-026 1.796572127582653E-026 1.912441074865999E-026 2.035782927210491E-026 2.167079645584674E-026 2.306844274768959E-026 2.455622948089290E-026 2.613997021444974E-026 2.782585344969469E-026 2.962046681200788E-026 3.153082279210377E-026 3.356438614749116E-026 3.572910307117548E-026 3.803343224158059E-026 4.048637787501881E-026 4.309752490986162E-026 4.587707645989424E-026 4.883589368320540E-026 5.198553822239785E-026 5.533831738195898E-026 5.890733221931944E-026 6.270652873752062E-026 6.675075237952426E-026 7.105580603710353E-026 7.563851180098696E-026 8.051677669354200E-026 8.570966264085498E-026 9.123746095762174E-026 9.712177163590029E-026 1.033855877475503E-025 1.100533852901599E-025 1.171512188275389E-025 1.247068232984923E-025 1.327497223916977E-025 1.413113439101610E-025 1.504251425760375E-025 1.601267307556868E-025 1.704540176157701E-025 1.814473572541391E-025 1.931497063843569E-025 2.056067921899821E-025 2.188672910045374E-025 2.329830185153403E-025 2.480091322344251E-025 2.640043470277258E-025 2.810311645446839E-025 2.991561174448064E-025 3.184500293754778E-025 3.389882917168996E-025 3.608511581755550E-025 3.841240583773013E-025 4.088979316854966E-025 4.352695825485356E-025 4.633420587653355E-025 4.932250541468584E-025 5.250353371470497E-025 5.588972071381184E-025 5.949429801130288E-025 6.333135057131294E-025 6.741587176011892E-025 7.176382193304249E-025 7.639219079988764E-025 8.131906381259971E-025 8.656369283456253E-025 9.214657136767446E-025 9.808951463114915E-025 1.044157448049627E-024 1.111499817710235E-024 1.183185397066506E-024 1.259494299077929E-024 1.340724702437768E-024 1.427194016712787E-024 1.519240122628030E-024 1.617222692343108E-024 1.721524594878995E-024 1.832553392187020E-024 1.950742931706072E-024 2.076555041630898E-024 2.210481335515805E-024 2.353045133265353E-024 2.504803506018199E-024 2.666349452914725E-024 2.838314218254059E-024 3.021369758094892E-024 3.216231365938449E-024 3.423660467753285E-024 3.644467597263904E-024 3.879515563128898E-024 4.129722820384484E-024 4.396067059327668E-024 4.679589025862184E-024 4.981396588235802E-024 5.302669066059647E-024 5.644661838525156E-024 6.008711249825641E-024 6.396239830950235E-024 6.808761858254675E-024 7.247889270529076E-024 7.715337967683904E-024 8.212934515666121E-024 8.742623283805297E-024 9.306474042479247E-024 9.906690050786555E-024 1.054561666582956E-023 1.122575050724838E-023 1.194974921281617E-023 1.272044182321680E-023 1.354083983658264E-023 1.441414897598919E-023 1.534378171588784E-023 1.633337061642373E-023 1.738678251774366E-023 1.850813364975829E-023 1.970180571639962E-023 2.097246301722528E-023 2.232507067326953E-023 2.376491402836241E-023 2.529761930172553E-023 2.692917557254599E-023 2.866595818243432E-023 3.051475364720945E-023 3.248278617535794E-023 3.457774589678527E-023 3.680781891216619E-023 3.918171928031131E-023 4.170872306854100E-023 4.439870459912115E-023 4.726217503339190E-023 5.031032344435905E-023 5.355506053824198E-023 5.700906519581529E-023 6.068583401541324E-023 6.459973405118064E-023 6.876605895265002E-023 7.320108872501101E-023 7.792215334358350E-023 8.294770047107525E-023 8.829736754222441E-023 9.399205849750395E-023 1.000540254657256E-022 1.065069557147156E-022 1.133760642098314E-022 1.206881921419875E-022 1.284719118101932E-022 1.367576382684365E-022 1.455777481731646E-022 1.549667062957807E-022 1.649612001944855E-022 1.756002835717103E-022 1.869255288773152E-022 1.989811897538338E-022 2.118143739585585E-022 2.254752274381172E-022 2.400171302748599E-022 2.554969052706968E-022 2.719750399834239E-022 2.895159230831891E-022 3.081880959526155E-022 3.280645205137513E-022 3.492228643283778E-022 3.717458040856834E-022 3.957213486632592E-022 4.212431830236788E-022 4.484110342905567E-022 4.773310614344511E-022 5.081162700913487E-022 5.408869541346782E-022 5.757711657262254E-022 6.129052156827594E-022 6.524342061135359E-022 6.945125974099276E-022 7.393048118028209E-022 7.869858758460388E-022 8.377421043364340E-022 8.917718283430569E-022 9.492861701900818E-022 1.010509868421969E-021 1.075682155974201E-021 1.145057694981209E-021 1.218907571874271E-021 1.297520356657596E-021 1.381203230502025E-021 1.470283186062093E-021 1.565108305207013E-021 1.666049119158240E-021 1.773500056348225E-021 1.887880983658283E-021 2.009638847057517E-021 2.139249418054019E-021 2.277219152782519E-021 2.424087170992691E-021 2.580427362671548E-021 2.746850630531036E-021 2.924007277123816E-021 3.112589545914774E-021 3.313334326237446E-021 3.527026032705422E-021 3.754499670329498E-021 3.996644097318160E-021 4.254405498310604E-021 4.528791081613846E-021 4.820873014891505E-021 5.131792614682307E-021 5.462764806119678E-021 5.815082870278444E-021 6.190123497698872E-021 6.589352167835536E-021 7.014328875450275E-021 7.466714226326167E-021 7.948275926121397E-021 8.460895687717518E-021 9.006576584054686E-021 9.587450875182774E-021 1.020578834011477E-020 1.086400514603855E-020 1.156467328954282E-020 1.231053064675145E-020 1.310449167163416E-020 1.394965878430015E-020 1.484933449377337E-020 1.580703430261900E-020 1.682650044384825E-020 1.791171650377612E-020 1.906692298797322E-020 2.029663389113555E-020 2.160565433561838E-020 2.299909934755872E-020 2.448241384395335E-020 2.606139390879265E-020 2.774220944138789E-020 2.953142826538939E-020 3.143604179270439E-020 3.346349234259319E-020 3.562170222269854E-020 3.791910468563886E-020 4.036467688213040E-020 4.296797493940446E-020 4.573917130198719E-020 4.868909448075422E-020 5.182927136557892E-020 5.517197226691134E-020 5.873025886229247E-020 6.251803523515042E-020 6.655010220531805E-020 7.084221516356948E-020 7.541114563616215E-020 8.027474681995233E-020 8.545202334416424E-020 9.096320553140461E-020 9.682982844810617E-020 1.030748160532826E-019 1.097225707744175E-019 1.167990688604998E-019 1.243319618848039E-019 1.323506847940378E-019 1.408865709260641E-019 1.499729744456297E-019 1.596454006765166E-019 1.699416448394064E-019 1.809019397375630E-019 1.925691129674253E-019 2.049887542684202E-019 2.182093936659072E-019 2.322826911033595E-019 2.472636383047829E-019 2.632107736561255E-019 2.801864109453752E-019 2.982568828551067E-019 3.174928001589728E-019 3.379693276349237E-019 3.597664777733104E-019 3.829694234275441E-019 4.076688306289818E-019 4.339612128665521E-019 4.619493082154508E-019 4.917424807885531E-019 5.234571480792390E-019 5.572172358654527E-019 5.931546624525817E-019 6.314098541473228E-019 6.721322939767605E-019 7.154811057968126E-019 7.616256760724368E-019 8.107463157592355E-019 8.630349648727809E-019 9.186959424987573E-019 9.779467451746472E-019 1.041018896762608E-018 1.108158853134486E-018 1.179628965204023E-018 1.255708504069309E-018 1.336694752271338E-018 1.422904165432625E-018 1.514673608815219E-018 1.612361673629847E-018 1.716350078239736E-018 1.827045159734412E-018 1.944879461701742E-018 2.070313424402580E-018 2.203837183952375E-018 2.345972487540018E-018 2.497274732167901E-018 2.658335134879368E-018 2.829783042953979E-018 3.012288393097601E-018 3.206564329236894E-018 3.413369989146895E-018 3.633513470801010E-018 3.867854990034162E-018 4.117310241857884E-018 4.382853978561859E-018 4.665523818583193E-018 4.966424301026992E-018 5.286731201681270E-018 5.627696127391009E-018 5.990651406744369E-018 6.377015296181066E-018 6.788297521866408E-018 7.226105178985738E-018 7.692149011511131E-018 8.188250096978626E-018 8.716346962396742E-018 9.278503159092690E-018 9.876915326093969E-018 1.051392177355472E-017 1.119201161976574E-017 1.191383451745146E-017 1.268221100736054E-017 1.350014353960597E-017 1.437082820582161E-017 1.529766722797896E-017 1.628428225266399E-017 1.733452850276270E-017 1.845250984185331E-017 1.964259481016910E-017 2.090943369479417E-017 2.225797670079326E-017 2.369349329428111E-017 2.522159279301370E-017 2.684824628496160E-017 2.857980996051204E-017 3.042304994947008E-017 3.238516875991293E-017 3.447383342220614E-017 3.669720544815605E-017 3.906397272236626E-017 4.158338345041139E-017 4.426528229648740E-017 4.712014885174136E-017 5.015913858360347E-017 5.339412642612776E-017 5.683775318167442E-017 6.050347491525092E-017 6.440561553452097E-017 6.855942276094014E-017 7.298112771073040E-017 7.768800831850324E-017 8.269845685136807E-017 8.803205177733602E-017 9.370963426885121E-017 9.975338964038817E-017 1.061869340383361E-016 1.130354067219203E-016 1.203255682957433E-016 1.280859052778051E-016 1.363467414115961E-016 1.451403561572344E-016 1.545011108246350E-016 1.644655828416132E-016 1.750727086815522E-016 1.863639360091521E-016 1.983833856387718E-016 2.111780239382182E-016 2.247978463516732E-016 2.392960727588731E-016 2.547293554339233E-016 2.711580004163610E-016 2.886462031594756E-016 3.072622993767124E-016 3.270790320663454E-016 3.481738357578368E-016 3.706291390906046E-016 3.945326869075146E-016 4.199778831217421E-016 4.470641556967354E-016 4.758973451654901E-016 5.065901182073026E-016 5.392624078980474E-016 5.740418823543406E-016 6.110644436028024E-016 6.504747586238136E-016 6.924268246448665E-016 7.370845708923852E-016 7.846224991534748E-016 8.352263656506089E-016 8.890939068937218E-016 9.464356123460848E-016 1.007475546923134E-015 1.072452226538334E-015 1.141619550117273E-015 1.215247791721947E-015 1.293624656662069E-015 1.377056405720168E-015 1.465869051883609E-015 1.560409634259791E-015 1.661047574152503E-015 1.768176118598444E-015 1.882213877004627E-015 2.003606456891308E-015 2.132828205132217E-015 2.270384061496140E-015 2.416811531732974E-015 2.572682787913898E-015 2.738606904233471E-015 2.915232237009906E-015 3.103248958183852E-015 3.303391752215709E-015 3.516442686919534E-015 3.743234269452257E-015 3.984652699399415E-015 4.241641331669426E-015 4.515204362728241E-015 4.806410754578472E-015 5.116398411816982E-015 5.446378628092970E-015 5.797640819341896E-015 6.171557562291183E-015 6.569589957925987E-015 6.993293340874209E-015 7.444323357020503E-015 7.924442433098978E-015 8.435526663545246E-015 8.979573141519549E-015 9.558707762748077E-015 1.017519353267762E-014 1.083143940940473E-014 1.153000971693548E-014 1.227363416555892E-014 1.306521851849199E-014 1.390785594647670E-014 1.480483911470068E-014 1.575967304927327E-014 1.677608883353468E-014 1.785805818772067E-014 1.900980898895543E-014 2.023584179222002E-014 2.154094741685722E-014 2.293022566733425E-014 2.440910526142108E-014 2.598336504365743E-014 2.765915656700555E-014 2.944302813093350E-014 3.134195036986139E-014 3.336334349196787E-014 3.551510627479715E-014 3.780564693097566E-014 4.024391596465757E-014 4.283944114708966E-014 4.560236474798035E-014 4.854348316815960E-014 5.167428912841130E-014 5.500701657934204E-014 5.855468850778696E-014 6.233116782657343E-014 6.635121154651079E-014 7.063052844230266E-014 7.518584043773405E-014 8.003494795001452E-014 8.519679944863990E-014 9.069156550059882E-014 9.654071759128437E-014 1.027671120291402E-013 1.093950792619243E-013 1.164505189536441E-013 1.239610011937076E-013 1.319558742338177E-013 1.404663791736381E-013 1.495257720434156E-013 1.591694537606629E-013 1.694351084687697E-013 1.803628507981639E-013 1.919953826255348E-013 2.043781599437201E-013 2.175595704944116E-013 2.315911228578663E-013 2.465276477385971E-013 2.624275122336993E-013 2.793528479211700E-013 2.973697936596433E-013 3.165487540484122E-013 3.369646745578482E-013 3.586973344054705E-013 3.818316583222642E-013 4.064580484277093E-013 4.326727375105474E-013 4.605781650959791E-013 4.902833777690793E-013 5.219044553189653E-013 5.555649643692378E-013 5.913964412676078E-013 6.295389061219926E-013 6.701414099921264E-013 7.133626173752694E-013 7.593714262626451E-013 8.083476281899860E-013 8.604826108619895E-013 9.159801061413323E-013 9.750569859482313E-013 1.037944110790081E-012 1.104887229727094E-012 1.176147944369669E-012 1.252004727068383E-012 1.332754012601932E-012 1.418711355114497E-012 1.510212661577221E-012 1.607615503728800E-012 1.711300517614211E-012 1.821672889795062E-012 1.939163939267472E-012 2.064232807162167E-012 2.197368247279725E-012 2.339090539153860E-012 2.489953518619655E-012 2.650546744826457E-012 2.821497803461704E-012 3.003474759088411E-012 3.197188766991107E-012 3.403396851845510E-012 3.622904866572330E-012 3.856570643264266E-012 4.105307343463382E-012 4.370087029141740E-012 4.651944461909313E-012 4.951981146274099E-012 5.271369636580887E-012 5.611358109984948E-012 5.973275276266185E-012 6.358535521539299E-012 6.768644476043117E-012 7.205204895249796E-012 7.669922902176737E-012 8.164614671139018E-012 8.691213542735828E-012 9.251777540176384E-012 9.848497446780665E-012 1.048370536066521E-011 1.115988381513417E-011 1.187967546069652E-011 1.264589342656414E-011 1.346153229454286E-011 1.432977981127211E-011 1.525402934736282E-011 1.623789317599199E-011 1.728521657115786E-011 1.840009284890155E-011 1.958687937388380E-011 2.085021460166994E-011 2.219503617106946E-011 2.362660025270079E-011 2.515050209675700E-011 2.677269786579139E-011 2.849952794083223E-011 3.033774173757384E-011 3.229452402910513E-011 3.437752311100522E-011 3.659488066257947E-011 3.895526355064153E-011 4.146789779930374E-011 4.414260455650313E-011 4.698983857072172E-011 5.002072904240828E-011 5.324712312768895E-011 5.668163230515179E-011 6.033768162478711E-011 6.422956223360419E-011 6.837248727997754E-011 7.278265135943596E-011 7.747729384552281E-011 8.247476638897578E-011 8.779460449868474E-011 9.345760415652503E-011 9.948590295137259E-011 1.059030668274795E-010 1.127341820700140E-010 1.200059535183095E-010 1.277468091906039E-010 1.359870108552337E-010 1.447587731981353E-010 1.540963892619801E-010 1.640363646392900E-010 1.746175606950861E-010 1.858813458680506E-010 1.978717581055586E-010 2.106356770748318E-010 2.242230067064989E-010 2.386868717032112E-010 2.540838245633155E-010 2.704740668831527E-010 2.879216852460152E-010 3.064949013848534E-010 3.262663398109479E-010 3.473133112626837E-010 3.697181157886215E-010 3.935683642663254E-010 4.189573216226276E-010 4.459842718530404E-010 4.747549060111414E-010 5.053817365381777E-010 5.379845370459674E-010 5.726908112071829E-010 6.096362920783607E-010 6.489654730012593E-010 6.908321734866477E-010 7.354001413518983E-010 7.828436930606570E-010 8.333483971425484E-010 8.871118000749223E-010 9.443441996741030E-010 1.005269468653664E-009 1.070125931502416E-009 1.139167297106219E-009 1.212663652588400E-009 1.290902521002565E-009 1.374189987152514E-009 1.462851896711400E-009 1.557235132601891E-009 1.657708973002977E-009 1.764666538543911E-009 1.878526332354812E-009 1.999733879186044E-009 2.128763472041470E-009 2.266120028615995E-009 2.412341072075078E-009 2.567998835625853E-009 2.733702506878068E-009 2.910100613357832E-009 3.097883566585706E-009 3.297786366860468E-009 3.510591485597553E-009 3.737131932675505E-009 3.978294522205813E-009 4.235023350592425E-009 4.508323498162620E-009 4.799264971156016E-009 5.108986898885030E-009 5.438702001342459E-009 5.789701347032674E-009 6.163359417434908E-009 6.561139501736268E-009 6.984599436649471E-009 7.435397721511902E-009 7.915300027496742E-009 8.426186127355452E-009 8.970057275934517E-009 9.549044066820539E-009 1.016541479809743E-008 1.082158438068125E-008 1.152012382171170E-008 1.226377032426176E-008 1.305543804010509E-008 1.389822951833717E-008 1.479544789830647E-008 1.575060988893865E-008 1.676745959275650E-008 1.784998322252078E-008 1.900242477418554E-008 2.022930271434284E-008 2.153542775090528E-008 2.292592175378402E-008 2.440623790434712E-008 2.598218215053581E-008 2.765993605540735E-008 2.944608112348768E-008 3.134762471099512E-008 3.337202761304364E-008 3.552723344161403E-008 3.782169991209097E-008 4.026443215843679E-008 4.286501821315769E-008 4.563366678812581E-008 4.858124751128297E-008 5.171933377613467E-008 5.506024837215215E-008 5.861711208250164E-008 6.240389543897298E-008 6.643547383757868E-008 7.072768623898092E-008 7.529739768364747E-008 8.016256587228537E-008 8.534231207267457E-008 9.085699664354206E-008 9.672829946377288E-008 1.029793056003628E-007 1.096345965483380E-007 1.167203474063450E-007 1.242644303799236E-007 1.322965250227055E-007 1.408482356554220E-007 1.499532164295050E-007 1.596473045415070E-007 1.699686621213302E-007 1.809579273676637E-007 1.926583755336262E-007 2.051160904044035E-007 2.183801469554878E-007 2.325028059197755E-007 2.475397210455102E-007 2.635501598725999E-007 2.805972389126271E-007 2.987481741772178E-007 3.180745480535929E-007 3.386525936029981E-007 3.605634974229895E-007 3.838937222832260E-007 4.087353508336162E-007 4.351864517685328E-007 4.633514699089775E-007 4.933416417808189E-007 5.252754383491232E-007 5.592790366968376E-007 5.954868225393695E-007 6.340419255978288E-007 6.750967899883507E-007 7.188137819150469E-007 7.653658371184989E-007 8.149371506895660E-007 8.677239120135973E-007 9.239350878185761E-007 9.837932564684932E-007 1.047535496875119E-006 1.115414335595575E-006 1.187698755935489E-006 1.264675273132440E-006 1.346649079929494E-006 1.433945267170547E-006 1.526910124327079E-006 1.625912525188778E-006 1.731345404302891E-006 1.843627330097359E-006 1.963204181024790E-006 2.090550931463135E-006 2.226173554553755E-006 2.370611049628123E-006 2.524437602356739E-006 2.688264886306036E-006 2.862744515118502E-006 3.048570655162914E-006 3.246482809103199E-006 3.457268781540464E-006 3.681767838571344E-006 3.920874073887211E-006 4.175539994844691E-006 4.446780342783800E-006 4.735676162802682E-006 5.043379139149555E-006 5.371116213431832E-006 5.720194503922917E-006 6.092006545406456E-006 6.488035870230753E-006 6.909862952525808E-006 7.359171538935498E-006 7.837755390650038E-006 8.347525463074208E-006 8.890517551108555E-006 9.468900429721285E-006 1.008498452132808E-005 1.074123112341848E-005 1.144026223188051E-005 1.218487099765261E-005 1.297803285654665E-005 1.382291737450772E-005 1.472290085303879E-005 1.568157974218751E-005 1.670278491123805E-005 1.779059683016657E-005 1.894936171795666E-005 2.018370871707090E-005 2.149856815672223E-005 2.289919097105699E-005 2.439116934203556E-005 2.598045864057896E-005 2.767340074348848E-005 2.947674880780017E-005 3.139769358844430E-005 3.344389138949966E-005 3.562349374392280E-005 3.794517892125580E-005 4.041818536768791E-005 4.305234718775442E-005 4.585813178198075E-005 4.884667975995578E-005 5.202984725340948E-005 5.542025075921856E-005 5.903131464740319E-005 6.287732147444564E-005 6.697346524742096E-005 7.133590778947123E-005 7.598183836204803E-005 8.092953670404580E-005 8.619843965230239E-005 9.180921151205021E-005 9.778381834936421E-005 1.041456063808428E-004 1.109193846379935E-004 1.181315120854768E-004 1.258099893730492E-004 1.339845554006047E-004 1.426867888741067E-004 1.519502150272066E-004 1.618104176785232E-004 1.723051567880864E-004 1.834744916677369E-004 1.953609099891469E-004 2.080094627193734E-004 2.214679050970041E-004 2.357868437417101E-004 2.510198899660242E-004 2.672238193298725E-004 2.844587374455458E-004 3.027882520025858E-004 3.222796509383742E-004 3.430040866300395E-004 3.650367659263305E-004 3.884571457737309E-004 4.133491341181206E-004 4.398012956818902E-004 4.679070621248311E-004 4.977649459953685E-004 5.294787577655490E-004 5.631578251176577E-004 5.989172135122388E-004 6.368779469146492E-004 6.771672273903730E-004 7.199186520963961E-004 7.652724259964150E-004 8.133755684110019E-004 8.643821112786249E-004 9.184532867494014E-004 9.757577014602458E-004 1.036471494545783E-003 1.100778476126071E-003 1.168870242676811E-003 1.240946265332674E-003 1.317213946798895E-003 1.397888642150518E-003 1.483193638385195E-003 1.573360087163708E-003 1.668626884725669E-003 1.769240492508639E-003 1.875454691528405E-003 1.987530263103606E-003 2.105734588029687E-003 2.230341155834739E-003 2.361628975286957E-003 2.499881876878517E-003 2.645387697593325E-003 2.798437337884625E-003 2.959323680455550E-003 3.128340360164556E-003 3.305780374179897E-003 3.491934521404194E-003 3.687089660192644E-003 3.891526773522899E-003 4.105518831057020E-003 4.329328437991350E-003 4.563205261244718E-003 4.807383224411155E-003 5.062077464033060E-003 5.327481041159998E-003 5.603761403876575E-003 5.891056598545840E-003 6.189471229944512E-003 6.499072173302767E-003 6.819884044526978E-003 7.151884438608293E-003 7.494998950430850E-003 7.849095996906289E-003 8.213981464598639E-003 8.589393212771249E-003 8.974995468087266E-003 9.370373154025920E-003 9.775026205410486E-003 1.018836392625950E-002 1.060969945741701E-002 1.103824442902774E-002 1.147310388182294E-002 1.191327155025583E-002 1.235762560965890E-002 1.280492499862461E-002 1.325380643655998E-002 1.370278226463044E-002 1.415023924583972E-002 1.459443846653522E-002 1.503351648687423E-002 1.546548789140920E-002 1.588824939260451E-002 1.629958563938686E-002 1.669717687937450E-002 1.707860861680039E-002 1.744138339792004E-002 1.778293484146006E-002 1.810064401299249E-002 1.839185821863167E-002 1.865391226477901E-002 1.888415219647313E-002 1.907996148699742E-002 1.923878960557118E-002 1.935818283813781E-002 1.943581717849093E-002 1.946953304340435E-002 1.945737149635868E-002 1.939761159032207E-002 1.928880836145947E-002 1.912983092337459E-002 1.891990002646281E-002 1.865862436025190E-002 1.834603478946800E-002 1.798261562832734E-002 1.756933197369690E-002 1.710765203781278E-002 1.659956334678849E-002 1.604758160378497E-002 1.545475095704560E-002 1.482463436458942E-002 1.416129271073693E-002 1.346925130631628E-002 1.275345239589949E-002 1.201919230335170E-002 1.127204187315431E-002 1.051774891156501E-002 9.762121401436161E-003 9.010890361015128E-003 8.269551345026757E-003 7.543183752031488E-003 6.836247313633234E-003 6.152355409008048E-003 5.494025185600410E-003 4.863101537695147E-003 4.263046854438401E-003 3.697513887174972E-003 3.169687831727747E-003 2.682217461298514E-003 2.237152595726682E-003 1.835890198105095E-003 1.479131491604904E-003 1.166852538170976E-003 8.982907051945377E-004 6.719493551401307E-004 4.856229155365960E-004 3.364442127993528E-004 2.209555746367359E-004 1.352047158676845E-004 7.486581778463897E-005 3.538549147195924E-005 1.215248454371209E-005 6.890571118550737E-007 -3.139070050284243E-006 -2.898385061123054E-006 -1.354200333272826E-006 -2.346952195572682E-007 -1.387778780781446E-017 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.353968426677736E-029 1.459421107901923E-029 1.573086881660480E-029 1.695605417691441E-029 1.827666205867238E-029 1.970012436393534E-029 2.123445182214079E-029 2.288827907158641E-029 2.467091325204142E-029 2.659238638195335E-029 2.866351181500756E-029 3.089594509375917E-029 3.330224954279805E-029 3.589596697058144E-029 3.869169387781997E-029 4.170516360128700E-029 4.495333485533075E-029 4.845448716936603E-029 5.222832375843380E-029 5.629608240574836E-029 6.068065498123512E-029 6.540671626866977E-029 7.050086282641011E-029 7.599176266317666E-029 8.191031657120704E-029 8.828983202470099E-029 9.516621062220427E-029 1.025781501277788E-028 1.105673622479800E-028 1.191788073702095E-028 1.284609475834626E-028 1.384660194053836E-028 1.492503277504365E-028 1.608745627935364E-028 1.734041415123369E-028 1.869095758302455E-028 2.014668694319477E-028 2.171579454845716E-028 2.340711076715488E-028 2.523015371337152E-028 2.719518281142304E-028 2.931325653217647E-028 3.159629462611172E-028 3.405714520335270E-028 3.670965703817061E-028 3.956875750486011E-028 4.265053658358702E-028 4.597233740895896E-028 4.955285387089485E-028 5.341223581705621E-028 5.757220244887775E-028 6.205616454935474E-028 6.688935623043560E-028 7.209897694144909E-028 7.771434453773852E-028 8.376706027091280E-028 9.029118662922711E-028 9.732343902890858E-028 1.049033924351977E-027 1.130737040758977E-027 1.218803535007722E-027 1.313729013377730E-027 1.416047682022724E-027 1.526335353289044E-027 1.645212686178666E-027 1.773348679192834E-027 1.911464435212940E-027 2.060337219605922E-027 2.220804834391731E-027 2.393770333089194E-027 2.580207102773515E-027 2.781164341945634E-027 2.997772965040711E-027 3.231251966804257E-027 3.482915282352366E-027 3.754179181521745E-027 4.046570239122575E-027 4.361733925947683E-027 4.701443868885164E-027 5.067611832247057E-027 5.462298476485206E-027 5.887724954840714E-027 6.346285413188499E-027 6.840560463421624E-027 7.373331706198916E-027 7.947597384783981E-027 8.566589258070735E-027 9.233790787749800E-027 9.952956741967042E-027 1.072813432579660E-026 1.156368595744235E-026 1.246431381834494E-026 1.343508631535292E-026 1.448146660387744E-026 1.560934333254910E-026 1.682506378239544E-026 1.813546958703591E-026 1.954793523491355E-026 2.107040957024012E-026 2.271146052620788E-026 2.448032334220801E-026 2.638695253640778E-026 2.844207792616680E-026 3.065726501155586E-026 3.304498006179581E-026 3.561866027089636E-026 3.839278937730931E-026 4.138297917315325E-026 4.460605736171481E-026 4.808016225765790E-026 5.182484486287616E-026 5.586117889243866E-026 6.021187936981151E-026 6.490143045876792E-026 6.995622325137899E-026 7.540470428750261E-026 8.127753564158866E-026 8.760776747770878E-026 9.443102404388652E-026 1.017857041524413E-025 1.097131972745677E-025 1.182581164652639E-025 1.274685494294152E-025 1.373963291419488E-025 1.480973255450108E-025 1.596317599637237E-025 1.720645440099548E-025 1.854656448813127E-025 1.999104791111467E-025 2.154803369854326E-025 2.322628400150009E-025 2.503524340376054E-025 2.698509207248270E-025 2.908680304849377E-025 3.135220399858270E-025 3.379404377731572E-025 3.642606417296410E-025 3.926307724130198E-025 4.232104866248056E-025 4.561718759008334E-025 4.917004349799587E-025 5.299961057011426E-025 5.712744022035613E-025 6.157676237619655E-025 6.637261620827086E-025 7.154199104173862E-025 7.711397824241156E-025 8.311993493240291E-025 8.959366045662976E-025 9.657158659326204E-025 1.040929825785446E-024 1.122001760998099E-024 1.209387915003383E-024 1.303580065366045E-024 1.405108291328436E-024 1.514543956904067E-024 1.632502926306926E-024 1.759649029811744E-024 1.896697799549829E-024 2.044420496264224E-024 2.203648449685187E-024 2.375277736952186E-024 2.560274225410810E-024 2.759679008163549E-024 2.974614262963975E-024 3.206289567425646E-024 3.456008706086046E-024 3.725177007632519E-024 4.015309253582061E-024 4.328038202921894E-024 4.665123780684110E-024 5.028462982165154E-024 5.420100548526479E-024 5.842240473855554E-024 6.297258408444606E-024 6.787715028087640E-024 7.316370444634626E-024 7.886199738898554E-024 8.500409703330187E-024 9.162456888681947E-024 9.876067056219970E-024 1.064525614495650E-023 1.147435287189583E-023 1.236802309248220E-023 1.333129605834013E-023 1.436959272007576E-023 1.548875623441928E-023 1.669508484738840E-023 1.799536733853005E-023 1.939692122570676E-023 2.090763394542860E-023 2.253600724048291E-023 2.429120500465386E-023 2.618310485378879E-023 2.822235371343331E-023 3.042042773585962E-023 3.278969688368528E-023 3.534349454352781E-023 3.809619256146199E-023 4.106328212254990E-023 4.426146092960062E-023 4.770872717177883E-023 5.142448081187232E-023 5.542963276223546E-023 5.974672256380772E-023 6.440004523045793E-023 6.941578797249861E-023 7.482217756878731E-023 8.064963921678223E-023 8.693096775449924E-023 9.370151221793759E-023 1.009993747726145E-022 1.088656251387004E-022 1.173445317164780E-022 1.264838107128130E-022 1.363348946706139E-022 1.469532219124985E-022 1.583985485275111E-022 1.707352846566731E-022 1.840328569698414E-022 1.983660993737566E-022 2.138156741500720E-022 2.304685258933355E-022 2.484183708035540E-022 2.677662240868926E-022 2.886209684325020E-022 3.110999667647120E-022 3.353297227188666E-022 3.614465925577708E-022 3.895975525351457E-022 4.199410260244908E-022 4.526477750682208E-022 4.879018613642851E-022 5.259016820984357E-022 5.668610864514015E-022 6.110105790642203E-022 6.585986172345019E-022 7.098930091436309E-022 7.651824209837341E-022 8.247780014659364E-022 8.890151328519724E-022 9.582553183635024E-022 1.032888216590544E-021 1.113333834348134E-021 1.200044890321709E-021 1.293509362802941E-021 1.394253235853817E-021 1.502843459353286E-021 1.619891139584584E-021 1.746054978318747E-021 1.882044979748045E-021 2.028626446130843E-021 2.186624284633675E-021 2.356927649608039E-021 2.540494946426905E-021 2.738359225040586E-021 2.951633993605137E-021 3.181519484900020E-021 3.429309410800326E-021 3.696398242815205E-021 3.984289059664552E-021 4.294602006057513E-021 4.629083410275428E-021 4.989615611869838E-021 5.378227554782173E-021 5.797106205499159E-021 6.248608860501438E-021 6.735276412266889E-021 7.259847648485020E-021 7.825274664953231E-021 8.434739478892652E-021 9.091671936177948E-021 9.799769013255414E-021 1.056301562237436E-020 1.138570703721545E-020 1.227247306511918E-020 1.322830410194736E-020 1.425857921620396E-020 1.536909642046314E-020 1.656610530046082E-020 1.785634218547346E-020 1.924706805791128E-020 2.074610941546577E-020 2.236190231576969E-020 2.410353985143607E-020 2.598082332264780E-020 2.800431739527935E-020 3.018540955495879E-020 3.253637419165661E-020 3.507044167544528E-020 3.780187281216162E-020 4.074603909798277E-020 4.391950922455587E-020 4.734014232150317E-020 5.102718846103491E-020 5.500139699027234E-020 5.928513330093735E-020 6.390250469354067E-020 6.887949604439102E-020 7.424411603890366E-020 8.002655479415700E-020 8.625935375773925E-020 9.297758883900954E-020 1.002190678033704E-019 1.080245430404124E-019 1.164379409033075E-019 1.255066089100932E-019 1.352815821979958E-019 1.458178707303056E-019 1.571747688720928E-019 1.694161890769355E-019 1.826110215625352E-019 1.968335219993240E-019 2.121637293938410E-019 2.286879165185618E-019 2.464990754230297E-019 2.656974407585689E-019 2.863910538616389E-019 3.086963707702947E-019 3.327389175954315E-019 3.586539969349834E-019 3.865874493065319E-019 4.166964738833510E-019 4.491505131526958E-019 4.841322064748488E-019 5.218384179091988E-019 5.624813440915322E-019 6.062897083972996E-019 6.535100481111030E-019 7.044081018461229E-019 7.592703050213612E-019 8.184054018126142E-019 8.821461826486932E-019 9.508513570307991E-019 1.024907572214550E-018 1.104731589115090E-018 1.190772627680303E-018 1.283514894931129E-018 1.383480309895706E-018 1.491231440772236E-018 1.607374670849831E-018 1.732563611003764E-018 1.867502777969501E-018 2.012951559095247E-018 2.169728485885129E-018 2.338715840382899E-018 2.520864620318874E-018 2.717199890962231E-018 2.928826553796616E-018 3.156935564482890E-018 3.402810635101354E-018 3.667835458390724E-018 3.953501494639346E-018 4.261416365049874E-018 4.593312898811980E-018 4.951058884796517E-018 5.336667582749373E-018 5.752309053138188E-018 6.200322369411441E-018 6.683228781395555E-018 7.203745903908522E-018 7.764803010437103E-018 8.369557517944999E-018 9.021412755581037E-018 9.724037117282600E-018 1.048138470605743E-017 1.129771758612042E-017 1.217762976811242E-017 1.312607306237864E-017 1.414838494579872E-017 1.525031859899147E-017 1.643807528292967E-017 1.771833923716880E-017 1.909831529608020E-017 2.058576943477796E-017 2.218907247291446E-017 2.391724718228957E-017 2.578001906337672E-017 2.778787107651238E-017 2.995210263575334E-017 3.228489319739299E-017 3.479937080098429E-017 3.750968594858909E-017 4.043109123801302E-017 4.358002719816600E-017 4.697421480959143E-017 5.063275523082986E-017 5.457623729182705E-017 5.882685335931745E-017 6.340852422621487E-017 6.834703372783316E-017 7.367017384249563E-017 7.940790109308829E-017 8.559250512971716E-017 9.225879044217023E-017 9.944427222477633E-017 1.071893874958995E-016 1.155377226601401E-016 1.245362587938628E-016 1.342356360343956E-016 1.446904385607521E-016 1.559595017696139E-016 1.681062433752026E-016 1.811990202963124E-016 1.953115133388824E-016 2.105231418389095E-016 2.269195105991091E-016 2.445928916344334E-016 2.636427434374986E-016 2.841762706860442E-016 3.063090275421886E-016 3.301655679385295E-016 3.558801465105341E-016 3.835974741197281E-016 4.134735322193322E-016 4.456764506451702E-016 4.803874537715724E-016 5.178018803567089E-016 5.581302828164914E-016 6.015996121131310E-016 6.484544949262299E-016 6.989586102936210E-016 7.533961734688459E-016 8.120735353456161E-016 8.753209064498422E-016 9.434942152008476E-016 1.016977110898962E-015 1.096183122711036E-015 1.181557986803433E-015 1.273582154718068E-015 1.372773497107118E-015 1.479690218041338E-015 1.594933996291766E-015 1.719153371262040E-015 1.853047392625078E-015 1.997369554201873E-015 2.152932034219740E-015 2.320610265811147E-015 2.501347863473002E-015 2.696161933208977E-015 2.906148796236653E-015 3.132490158468576E-015 3.376459760484417E-015 3.639430545415776E-015 3.922882385078980E-015 4.228410407832917E-015 4.557733975024923E-015 4.912706356537003E-015 5.295325159879297E-015 5.707743571517324E-015 6.152282473690252E-015 6.631443504904211E-015 7.147923137593892E-015 7.704627852170530E-015 8.304690492842701E-015 8.951487897246583E-015 9.648659899090354E-015 1.040012981074239E-014 1.121012650102179E-014 1.208320819242469E-014 1.302428811169519E-014 1.403866213807944E-014 1.513203860483958E-014 1.631057042172346E-014 1.758088969914347E-014 1.895014506889463E-014 2.042604191141702E-014 2.201688571595791E-014 2.373162881762273E-014 2.557992077429929E-014 2.757216266692347E-014 2.971956562862983E-014 3.203421393212226E-014 3.452913299025189E-014 3.721836265242933E-014 4.011703620929937E-014 4.324146555022275E-014 4.660923295272587E-014 5.023929002040134E-014 5.415206432595342E-014 5.836957435944289E-014 6.291555342850991E-014 6.781558320772015E-014 7.309723768847352E-014 7.879023833942665E-014 8.492662135045449E-014 9.154091790116745E-014 9.867034846826452E-014 1.063550322650096E-013 1.146382129912326E-013 1.235665021640341E-013 1.331901413982803E-013 1.435632851125788E-013 1.547443052513537E-013 1.667961197374874E-013 1.797865465035054E-013 1.937886850931877E-013 2.088813279805776E-013 2.251494039205735E-013 2.426844558254561E-013 2.615851558559528E-013 2.819578606248012E-013 3.039172096363975E-013 3.275867703293909E-013 3.530997333511985E-013 3.805996619760153E-013 4.102412998824809E-013 4.421914418353985E-013 4.766298721698399E-013 5.137503763572840E-013 5.537618313445782E-013 5.968893807996110E-013 6.433757018751332E-013 6.934823706170351E-013 7.474913336981499E-013 8.057064947567682E-013 8.684554242636732E-013 9.360912025362072E-013 1.008994406266938E-012 1.087575249741523E-012 1.172275892790505E-012 1.263572928457489E-012 1.361980064376878E-012 1.468051012943917E-012 1.582382606533907E-012 1.705618155293164E-012 1.838451066370377E-012 1.981628745513675E-012 2.135956800235370E-012 2.302303573155668E-012 2.481605029781961E-012 2.674870017334009E-012 2.883185948287399E-012 3.107724910113441E-012 3.349750266845276E-012 3.610623757499185E-012 3.891813163349467E-012 4.194900565217278E-012 4.521591235107832E-012 4.873723237368590E-012 5.253277767086878E-012 5.662390291728981E-012 6.103362563167854E-012 6.578675569519141E-012 7.091003489226065E-012 7.643228726978006E-012 8.238458138057253E-012 8.880040495243645E-012 9.571585328549268E-012 1.031698322681836E-011 1.112042772064963E-011 1.198643886965110E-011 1.291988868647227E-011 1.392602853014341E-011 1.501051866055072E-011 1.617946006396050E-011 1.743942873359857E-011 1.879751269943475E-011 2.026135188560462E-011 2.183918106042574E-011 2.353987611137120E-011 2.537300409590801E-011 2.734887687122465E-011 2.947860913896238E-011 3.177418098139091E-011 3.424850527856817E-011 3.691550013950229E-011 3.979016741750991E-011 4.288867676760156E-011 4.622845687144361E-011 4.982829314697032E-011 5.370843356423641E-011 5.789070251799780E-011 6.239862330437071E-011 6.725755050282593E-011 7.249481265861856E-011 7.813986570843608E-011 8.422445867173460E-011 9.078281203311018E-011 9.785181023623963E-011 1.054712089904389E-010 1.136838586709208E-010 1.225359454510447E-010 1.320772502412112E-010 1.423614292424103E-010 1.534463152692857E-010 1.653942423087781E-010 1.782723966454725E-010 1.921531938022364E-010 2.071146858806350E-010 2.232409996900328E-010 2.406228102222858E-010 2.593578494389761E-010 2.795514557013921E-010 3.013171656955958E-010 3.247773520109153E-010 3.500639113056698E-010 3.773190043461397E-010 4.066958555460075E-010 4.383596127046739E-010 4.724882756895443E-010 5.092736958635399E-010 5.489226517675078E-010 5.916580157969350E-010 6.377199982573250E-010 6.873675025127117E-010 7.408795762318000E-010 7.985569779653539E-010 8.607238685475688E-010 9.277296248563419E-010 9.999508107482729E-010 1.077793280621856E-009 1.161694466766552E-009 1.252125828161797E-009 1.349595499245523E-009 1.454651142706835E-009 1.567883020018585E-009 1.689927307502512E-009 1.821469661525389E-009 1.963249070713342E-009 2.116061996252859E-009 2.280766843500533E-009 2.458288777623792E-009 2.649624908078287E-009 2.855849888868905E-009 3.078121935211771E-009 3.317689328035608E-009 3.575897404984160E-009 3.854196105835991E-009 4.154148103977271E-009 4.477437560858349E-009 4.825879566053469E-009 5.201430312574257E-009 5.606198055762568E-009 6.042454925961234E-009 6.512649657847678E-009 7.019421307478931E-009 7.565614034668958E-009 8.154293033111721E-009 8.788761686143357E-009 9.472580075108284E-009 1.020958489408149E-008 1.100391094426324E-008 1.186001425751439E-008 1.278269704459882E-008 1.377713455519962E-008 1.484890403910120E-008 1.600401593251144E-008 1.724894748072836E-008 1.859067895432951E-008 2.003673267402285E-008 2.159521505161729E-008 2.327486191045502E-008 2.508508729673467E-008 2.703603606746527E-008 2.913864056796112E-008 3.140468167701120E-008 3.384685459929734E-008 3.647883973816770E-008 3.931537903866612E-008 4.237235827283157E-008 4.566689565327745E-008 4.921743732370822E-008 5.304386022600139E-008 5.716758292486771E-008 6.161168499076928E-008 6.640103561750291E-008 7.156243217598671E-008 7.712474947002286E-008 8.311910052796570E-008 8.957900980206215E-008 9.654059974802028E-008 1.040427917973772E-007 1.121275228480412E-007 1.208399784574395E-007 1.302288440166327E-007 1.403465753049534E-007 1.512496898893222E-007 1.629990809923350E-007 1.756603555521403E-007 1.893041983074161E-007 2.040067639492561E-007 2.198500994245262E-007 2.369225987819753E-007 2.553194930081544E-007 2.751433775164943E-007 2.965047802362181E-007 3.195227733433462E-007 3.443256320036007E-007 3.710515437463023E-007 3.998493722529655E-007 4.308794798788339E-007 4.643146131588170E-007 5.003408563231698E-007 5.391586579636365E-007 5.809839362427044E-007 6.260492689044750E-007 6.746051744108328E-007 7.269214910364456E-007 7.832888616006782E-007 8.440203316941423E-007 9.094530700693220E-007 9.799502205005192E-007 1.055902895032862E-006 1.137732319409407E-006 1.225892142084972E-006 1.320870919447691E-006 1.423194790221939E-006 1.533430353716348E-006 1.652187767057269E-006 1.780124078100253E-006 1.917946811629791E-006 2.066417828125566E-006 2.226357475391318E-006 2.398649055346667E-006 2.584243629313650E-006 2.784165187589493E-006 2.999516210268442E-006 3.231483648943167E-006 3.481345360508524E-006 3.750477027068755E-006 4.040359598135963E-006 4.352587294121472E-006 4.688876212958072E-006 5.051073584657527E-006 5.441167722104383E-006 5.861298719551466E-006 6.313769954519798E-006 6.801060452390128E-006 7.325838177428476E-006 7.890974318911195E-006 8.499558645422988E-006 9.154916006031759E-006 9.860624062800431E-006 1.062053234470817E-005 1.143878272015507E-005 1.231983139125298E-005 1.326847252165696E-005 1.428986361651491E-005 1.538955278201466E-005 1.657350800143759E-005 1.784814857308311E-005 1.922037886726302E-005 2.069762456885066E-005 2.228787158515779E-005 2.399970781002777E-005 2.584236794919167E-005 2.782578162572168E-005 2.996062499974006E-005 3.225837615206026E-005 3.473137449924297E-005 3.739288452557110E-005 4.025716413599470E-005 4.333953795608449E-005 4.665647592545772E-005 5.022567755581449E-005 5.406616224744986E-005 5.819836608689582E-005 6.264424557311045E-005 6.742738875183742E-005 7.257313426674468E-005 7.810869887025278E-005 8.406331397170562E-005 9.046837183656886E-005 9.735758209060466E-005 1.047671392234860E-004 1.127359018298690E-004 1.213055843715533E-004 1.305209622934907E-004 1.404300913762791E-004 1.510845422619853E-004 1.625396511455134E-004 1.748547876836804E-004 1.880936412353670E-004 2.023245266106100E-004 2.176207105750989E-004 2.340607604259874E-004 2.517289160306867E-004 2.707154867939959E-004 2.911172751031179E-004 3.130380278783054E-004 3.365889179476416E-004 3.618890570486005E-004 3.890660423555537E-004 4.182565385226003E-004 4.496068973315847E-004 4.832738171316639E-004 5.194250443607783E-004 5.582401195400430E-004 5.999111702397609E-004 6.446437536170075E-004 6.926577512360767E-004 7.441883189831272E-004 7.994868949966827E-004 8.588222686343949E-004 9.224817136006483E-004 9.907721884547559E-004 1.064021607812955E-003 1.142580187643537E-003 1.226821868133782E-003 1.317145817677808E-003 1.413978021591517E-003 1.517772959210830E-003 1.629015373057374E-003 1.748222133770018E-003 1.875944204496898E-003 2.012768708408459E-003 2.159321102939678E-003 2.316267464281984E-003 2.484316885525405E-003 2.664223991693080E-003 2.856791574713128E-003 3.062873351118374E-003 3.283376844970785E-003 3.519266398142884E-003 3.771566309666814E-003 4.041364105364925E-003 4.329813938403647E-003 4.638140120751874E-003 4.967640784771304E-003 5.319691673312950E-003 5.695750055727158E-003 6.097358766107052E-003 6.526150358872529E-003 6.983851375444108E-003 7.472286714250676E-003 7.993384094651950E-003 8.549178603514052E-003 9.141817311161328E-003 9.773563941210248E-003 1.044680357637616E-002 1.116404737970633E-002 1.192793730783792E-002 1.274125078978101E-002 1.360690534138818E-002 1.452796308207949E-002 1.550763511653715E-002 1.654928573996608E-002 1.765643642112852E-002 1.883276951269897E-002 2.008213163356090E-002 2.140853666246535E-002 2.281616827702781E-002 2.430938196633371E-002 2.589270643949628E-002 2.757084434638122E-002 2.934867222038888E-002 3.123123954672665E-002 3.322376685304572E-002 3.533164271268609E-002 3.756041954417349E-002 3.991580808406367E-002 4.240367040384538E-002 4.503001133548092E-002 4.780096816434889E-002 5.072279844304810E-002 5.380186577475957E-002 5.704462341087648E-002 6.045759550451073E-002 6.404735585943305E-002 6.782050401325945E-002 7.178363849436377E-002 7.594332709439981E-002 8.030607400262178E-002 8.487828365465730E-002 8.966622115733491E-002 9.467596916277166E-002 9.991338107956389E-002 1.053840305268367E-001 1.110931569583634E-001 1.170456074093416E-001 1.232457743478652E-001 1.296975296470557E-001 1.364041547323885E-001 1.433682670021790E-001 1.505917426677852E-001 1.580756362137950E-001 1.658200967375906E-001 1.738242814921052E-001 1.820862670252621E-001 1.906029583845039E-001 1.993699969345117E-001 2.083816674205242E-001 2.176308049979841E-001 2.271087030408741E-001 2.368050226354506E-001 2.467077047618725E-001 2.568028862625711E-001 2.670748207916031E-001 2.775058060320823E-001 2.880761185575512E-001 2.987639577955415E-001 3.095454006257378E-001 3.203943682085276E-001 3.312826066897725E-001 3.421796834618734E-001 3.530530006764686E-001 3.638678276978618E-001 3.745873541553260E-001 3.851727651938874E-001 3.955833404344027E-001 4.057765780316701E-001 4.157083450618907E-001 4.253330552756438E-001 4.346038750180405E-001 4.434729578428657E-001 4.518917080316194E-001 4.598110728718621E-001 4.671818631532301E-001 4.739551009059985E-001 4.800823929394435E-001 4.855163282396570E-001 4.902108967645782E-001 4.941219266345834E-001 4.972075361679322E-001 4.994285966612164E-001 5.007492012758199E-001 5.011371348739415E-001 5.005643391641937E-001 4.990073670801457E-001 4.964478199388676E-001 4.928727606240633E-001 4.882750958228693E-001 4.826539202295613E-001 4.760148156246222E-001 4.683700978538287E-001 4.597390049772525E-001 4.501478202377545E-001 4.396299240153920E-001 4.282257695876995E-001 4.159827783017824E-001 4.029551506751335E-001 3.892035909661218E-001 3.747949438770912E-001 3.598017432539884E-001 3.443016739038717E-001 3.283769489409635E-001 3.121136063653509E-001 2.956007298477146E-001 2.789295999094243E-001 2.621927828210969E-001 2.454831655677895E-001 2.288929461208480E-001 2.125125889952330E-001 1.964297566422888E-001 1.807282276229227E-001 1.654868127254726E-001 1.507782802447521E-001 1.366683015442141E-001 1.232144278139999E-001 1.104651086599994E-001 9.845876287555955E-002 8.722291153841499E-002 7.677338354210134E-002 6.711360393818777E-002 5.823397618292581E-002 5.011137072812488E-002 4.271555360196461E-002 3.603199222474612E-002 3.004596379348506E-002 2.473664763637251E-002 2.007749449306567E-002 1.603668791837354E-002 1.257769394109098E-002 9.659893066762293E-003 7.239286633787645E-003 5.269267544297407E-003 3.701443578512820E-003 2.486499949117871E-003 1.575086542048687E-003 9.187144939058478E-004 4.706464276105771E-004 1.867648359050178E-004 2.640376098844710E-005 -4.686997965291928E-005 -6.453832357258826E-005 -5.248691091833124E-005 -3.044248411943062E-005 -1.150042735162393E-005 -1.749375867055036E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 8.677115883487859E-030 9.352925686121807E-030 1.008137036138511E-029 1.086654933163848E-029 1.171288129927239E-029 1.262512911356079E-029 1.360842657424898E-029 1.466830732271619E-029 1.581073598330151E-029 1.704214173004609E-029 1.836945446775187E-029 1.980014383097175E-029 2.134226122040310E-029 2.300448511324961E-029 2.479616990254315E-029 2.672739854027322E-029 2.880903928058329E-029 3.105280684236201E-029 3.347132833543096E-029 3.607821432133844E-029 3.888813540866116E-029 4.191690481386721E-029 4.518156735236162E-029 4.870049536052338E-029 5.249349208855033E-029 5.658190314596480E-029 6.098873662696168E-029 6.573879259161472E-029 7.085880263161695E-029 7.637758030598216E-029 8.232618329329969E-029 8.873808817308316E-029 9.564937881981442E-029 1.030989494698984E-028 1.111287236043155E-028 1.197838898787620E-028 1.291131564290098E-028 1.391690249826246E-028 1.500080863196401E-028 1.616913387449402E-028 1.742845313645840E-028 1.878585340979245E-028 2.024897365078030E-028 2.182604776932931E-028 2.352595096642833E-028 2.535824968055818E-028 2.733325542413734E-028 2.946208281297258E-028 3.175671211528431E-028 3.423005667231038E-028 3.689603556990448E-028 3.976965197010245E-028 4.286707754347455E-028 4.620574347742048E-028 4.980443857256875E-028 5.368341497932881E-028 5.786450216964679E-028 6.237122978535387E-028 6.722896005445339E-028 7.246503052054023E-028 7.810890788857568E-028 8.419235385281412E-028 9.074960384009439E-028 9.781755967440093E-028 1.054359972469434E-027 1.136477903604382E-027 1.224991520073173E-027 1.320398944396836E-027 1.423237094945917E-027 1.534084707522311E-027 1.653565592274341E-027 1.782352144273979E-027 1.921169127512351E-027 2.070797753608521E-027 2.232080078185101E-027 2.405923739651721E-027 2.593307067064741E-027 2.795284585808225E-027 3.012992952080207E-027 3.247657349581415E-027 3.500598384404566E-027 3.773239516926374E-027 4.067115072526081E-027 4.383878876212005E-027 4.725313559748753E-027 5.093340593661860E-027 5.490031100576909E-027 5.917617510746168E-027 6.378506125356071E-027 6.875290658317383E-027 7.410766832745859E-027 7.987948114277676E-027 8.610082669760738E-027 9.280671646759078E-027 1.000348887674129E-026 1.078260211283451E-026 1.162239592166332E-026 1.252759635809985E-026 1.350329756178580E-026 1.455499042510238E-026 1.568859349391984E-026 1.691048627502668E-026 1.822754513767892E-026 1.964718201131141E-026 2.117738609718774E-026 2.282676882872551E-026 2.460461233351968E-026 2.652092166978856E-026 2.858648113121120E-026 3.081291493701982E-026 3.321275264888711E-026 3.579949968275369E-026 3.858771331240846E-026 4.159308459254352E-026 4.483252666231708E-026 4.832426992636301E-026 5.208796464889361E-026 5.614479153825674E-026 6.051758094427647E-026 6.523094133917920E-026 7.031139780514424E-026 7.578754130784305E-026 8.169018959601864E-026 8.805256063259347E-026 9.491045953331263E-026 1.023024800649403E-025 1.102702218369769E-025 1.188585244091654E-025 1.281157196322630E-025 1.380939036421603E-025 1.488492300380276E-025 1.604422258943959E-025 1.729381323855680E-025 1.864072719392725E-025 2.009254439857723E-025 2.165743515295458E-025 2.334420609441504E-025 2.516234975778157E-025 2.712209799588529E-025 2.923447956072080E-025 3.151138216925924E-025 3.396561940320594E-025 3.661100281918816E-025 3.946241967518325E-025 4.253591671060458E-025 4.584879045152644E-025 4.941968454925632E-025 5.326869470003836E-025 5.741748173633814E-025 6.188939352614819E-025 6.670959636631322E-025 7.190521660931693E-025 7.750549332054796E-025 8.354194282514808E-025 9.004853607045261E-025 9.706188980215053E-025 1.046214726300406E-024 1.127698271430417E-024 1.215528093234419E-024 1.310198466077248E-024 1.412242160462383E-024 1.522233441270982E-024 1.640791299516195E-024 1.768582935799874E-024 1.906327515075444E-024 2.054800213847101E-024 2.214836582581935E-024 2.387337247884528E-024 2.573272980896615E-024 2.773690160444705E-024 2.989716661680138E-024 3.222568203351166E-024 3.473555189426588E-024 3.744090083573616E-024 4.035695357990698E-024 4.350012061328094E-024 4.688809053914195E-024 5.053992962259025E-024 5.447618908856048E-024 5.871902077665584E-024 6.329230180365461E-024 6.822176893525881E-024 7.353516342326237E-024 7.926238712324559E-024 8.543567077136138E-024 9.208975536721060E-024 9.926208768357845E-024 1.069930310032684E-023 1.153260922690018E-023 1.243081669246943E-023 1.339898028259770E-023 1.444254847051784E-023 1.556739407916043E-023 1.677984733126833E-023 1.808673147359166E-023 1.949540117564108E-023 2.101378391909787E-023 2.265042461080005E-023 2.441453367037461E-023 2.631603886313398E-023 2.836564116993122E-023 3.057487500839482E-023 3.295617314443895E-023 3.552293665935379E-023 3.828961036622291E-023 4.127176410008092E-023 4.448618033929039E-023 4.795094865122984E-023 5.168556749380634E-023 5.571105394569223E-023 6.005006198280279E-023 6.472700996664405E-023 6.976821806197345E-023 7.520205635712162E-023 8.105910452054009E-023 8.737232389205455E-023 9.417724297731062E-023 1.015121573892821E-022 1.094183453620615E-022 1.179403000497553E-022 1.271259799177732E-022 1.370270786356408E-022 1.476993159901686E-022 1.592027514561514E-022 1.716021221892552E-022 1.849672073431749E-022 1.993732207613440E-022 2.149012342530781E-022 2.316386338362300E-022 2.496796115139130E-022 2.691256953528139E-022 2.900863208462295E-022 3.126794467771897E-022 3.370322190475682E-022 3.632816862089568E-022 3.915755707220133E-022 4.220731002847298E-022 4.549459039079362E-022 4.903789777809006E-022 5.285717263625435E-022 5.697390845570953E-022 6.141127272895178E-022 6.619423732875753E-022 7.134971904079011E-022 7.690673104146588E-022 8.289654617354070E-022 8.935287293827773E-022 9.631204519460914E-022 1.038132266328543E-021 1.118986311736988E-021 1.206137605327503E-021 1.300076602876118E-021 1.401331958885094E-021 1.510473501657713E-021 1.628115440084207E-021 1.754919820185346E-021 1.891600250866013E-021 2.038925919845750E-021 2.197725922366632E-021 2.368893927038766E-021 2.553393205081040E-021 2.752262051259984E-021 2.966619627033630E-021 3.197672258783586E-021 3.446720226579404E-021 3.715165081679845E-021 4.004517533951414E-021 4.316405953591498E-021 4.652585535000763E-021 5.014948174375778E-021 5.405533116609074E-021 5.826538431413910E-021 6.280333383256646E-021 6.769471764710547E-021 7.296706268266086E-021 7.865003977476876E-021 8.477563064620030E-021 9.137830788838723E-021 9.849522896054362E-021 1.061664452982379E-020 1.144351277081966E-020 1.233478093177871E-020 1.329546474463997E-020 1.433097058724530E-020 1.544712590845121E-020 1.665021202287308E-020 1.794699945981926E-020 1.934478606534467E-020 2.085143807184910E-020 2.247543436634428E-020 2.422591420651474E-020 2.611272865310194E-020 2.814649600805223E-020 3.033866157041583E-020 3.270156204627972E-020 3.524849497520933E-020 3.799379356390680E-020 4.095290734821927E-020 4.414248913743574E-020 4.758048873016064E-020 5.128625392916207E-020 5.528063942367062E-020 5.958612415187460E-020 6.422693780408664E-020 6.922919717849326E-020 7.462105315684479E-020 8.043284912721358E-020 8.669729174535998E-020 9.344963499569025E-020 1.007278785876320E-019 1.085729818039234E-019 1.170290940042820E-019 1.261438030816305E-019 1.359684032691079E-019 1.465581838049748E-019 1.579727400799142E-019 1.702763090177473E-019 1.835381305769548E-019 1.978328374074060E-019 2.132408748551308E-019 2.298489536787572E-019 2.477505380253442E-019 2.670463714117357E-019 2.878450436714715E-019 3.102636020578087E-019 3.344282099419170E-019 3.604748568131276E-019 3.885501235768775E-019 4.188120074571256E-019 4.514308111454867E-019 4.865901012008811E-019 5.244877410931704E-019 5.653370047043979E-019 6.093677765539570E-019 6.568278455020905E-019 7.079842992122169E-019 7.631250272195101E-019 8.225603410644989E-019 8.866247206091069E-019 9.556786963627424E-019 1.030110878411457E-018 1.110340143368112E-018 1.196817991650962E-018 1.290031088356408E-018 1.390504002024986E-018 1.498802156713321E-018 1.615535013985008E-018 1.741359502727606E-018 1.876983716097220E-018 2.023170896395695E-018 2.180743730305735E-018 2.350588978655685E-018 2.533662466768636E-018 2.730994463479394E-018 2.943695479090270E-018 3.172962514894374E-018 3.420085799435944E-018 3.686456049416966E-018 3.973572296111288E-018 4.283050321330170E-018 4.616631750413580E-018 4.976193853418442E-018 5.363760109661475E-018 5.781511595069069E-018 6.231799256417634E-018 6.717157141538988E-018 7.240316659944244E-018 7.804221954119903E-018 8.412046467998589E-018 9.067210805845304E-018 9.773401982061474E-018 1.053459417023589E-017 1.135507106821053E-017 1.223945000502119E-017 1.319270792537723E-017 1.422020939790982E-017 1.532773680480627E-017 1.652152288272599E-017 1.780828579812291E-017 1.919526695436388E-017 2.069027174340463E-017 2.230171347135522E-017 2.403866070512973E-017 2.591088830662531E-017 2.792893244162848E-017 3.010414987301372E-017 3.244878187191122E-017 3.497602310650376E-017 3.770009589613164E-017 4.063633024857052E-017 4.380125013089657E-017 4.721266645943209E-017 5.088977733207321E-017 5.485327606706392E-017 5.912546765620534E-017 6.373039428784427E-017 6.869397064602680E-017 7.404412974721127E-017 7.981098013524464E-017 8.602697531921658E-017 9.272709640770509E-017 9.994904896719129E-017 1.077334752124620E-016 1.161241827231062E-016 1.251683909732051E-016 1.349169970615597E-016 1.454248621378575E-016 1.567511201366228E-016 1.689595105563680E-016 1.821187371566350E-016 1.963028545914968E-016 2.115916851552911E-016 2.280712679857928E-016 2.458343432527249E-016 2.649808740563401E-016 2.856186089730451E-016 3.078636884137621E-016 3.318412982072725E-016 3.576863740865548E-016 3.855443610425614E-016 4.155720318186493E-016 4.479383691516876E-016 4.828255167245641E-016 5.204298041815212E-016 5.609628519744913E-016 6.046527622578463E-016 6.517454025332161E-016 7.025057892679116E-016 7.572195792731635E-016 8.161946772346846E-016 8.797629684417431E-016 9.482821864654761E-016 1.022137926296475E-015 1.101745814270362E-015 1.187553846992217E-015 1.280044912421800E-015 1.379739507306577E-015 1.487198666254322E-015 1.603027118928252E-015 1.727876693131101E-015 1.862449982928324E-015 2.007504302452083E-015 2.163855947635046E-015 2.332384789856111E-015 2.514039227347577E-015 2.709841522226631E-015 2.920893553183989E-015 3.148383016201232E-015 3.393590108189911E-015 3.657894731162504E-015 3.942784257474585E-015 4.249861899834864E-015 4.580855733182301E-015 4.937628419198349E-015 5.322187688175411E-015 5.736697637224521E-015 6.183490908398950E-015 6.665081815261102E-015 7.184180491757799E-015 7.743708143020616E-015 8.346813483908746E-015 8.996890457795595E-015 9.697597335302727E-015 1.045287730045139E-014 1.126698064006977E-014 1.214448866131582E-014 1.309033947189996E-014 1.410985576807091E-014 1.520877478672818E-014 1.639328059019850E-014 1.767003886534054E-014 1.904623443278965E-014 2.052961167740139E-014 2.212851812739224E-014 2.385195142738903E-014 2.570960996969738E-014 2.771194746868106E-014 2.987023178532933E-014 3.219660833300663E-014 3.470416842114958E-014 3.740702292146395E-014 4.032038167111801E-014 4.346063905970681E-014 4.684546628155690E-014 5.049391077243896E-014 5.442650339017801E-014 5.866537394222282E-014 6.323437571018959E-014 6.815921967202626E-014 7.346761917699061E-014 7.918944588745184E-014 8.535689786491260E-014 9.200468074596356E-014 9.917020302754003E-014 1.068937865602158E-013 1.152188934338327E-013 1.241923705319874E-013 1.338647131312878E-013 1.442903490284504E-013 1.555279447937743E-013 1.676407358740121E-013 1.806968824018305E-013 1.947698527136443E-013 2.099388367335148E-013 2.262891915487809E-013 2.439129216841984E-013 2.629091967765584E-013 2.833849095621111E-013 3.054552773159438E-013 3.292444901268267E-013 3.548864096545328E-013 3.825253223005918E-013 4.123167510294860E-013 4.444283304072524E-013 4.790407497799803E-013 5.163487698979963E-013 5.565623187046489E-013 5.999076724538009E-013 6.466287288001835E-013 6.969883790239486E-013 7.512699871084003E-013 8.097789839908139E-013 8.728445859539889E-013 9.408216468244544E-013 1.014092654395637E-012 1.093069882305519E-012 1.178197709511426E-012 1.269955120210220E-012 1.368858399013264E-012 1.475464033535784E-012 1.590371849634539E-012 1.714228379396180E-012 1.847730504459255E-012 1.991629372331161E-012 2.146734624811008E-012 2.313918948932448E-012 2.494122990769213E-012 2.688360645589061E-012 2.897724756858561E-012 3.123393271174821E-012 3.366635859636671E-012 3.628821062428707E-012 3.911423983587946E-012 4.216034592906095E-012 4.544366667913724E-012 4.898267431192243E-012 5.279727945380799E-012 5.690894308768806E-012 6.134079727849488E-012 6.611777529818685E-012 7.126675183186786E-012 7.681669416224300E-012 8.279882509749606E-012 8.924679853647287E-012 9.619688883292551E-012 1.036881946369120E-011 1.117628591353134E-011 1.204663064980926E-011 1.298474978907753E-011 1.399592067252485E-011 1.508583149937802E-011 1.626061338095383E-011 1.752687478955036E-011 1.889173867559533E-011 2.036288258451384E-011 2.194858183201969E-011 2.365775598693937E-011 2.550001907099248E-011 2.748573357383342E-011 2.962606877996847E-011 3.193306348797551E-011 3.441969375755668E-011 3.709994589950349E-011 3.998889499606106E-011 4.310278971995917E-011 4.645914372034248E-011 5.007683406047763E-011 5.397620725030620E-011 5.817919372483058E-011 6.270943111522918E-011 6.759239707118104E-011 7.285555249620886E-011 7.852849597206227E-011 8.464312989767057E-011 9.123384006373930E-011 9.833768886932184E-011 1.059946233149063E-010 1.142476999816499E-010 1.231433265888880E-010 1.327315230402785E-010 1.430662022914721E-010 1.542054735455403E-010 1.662119685889009E-010 1.791531937130623E-010 1.931019089992141E-010 2.081365371476474E-010 2.243416041254290E-010 2.418082137305215E-010 2.606345598555923E-010 2.809264773259093E-010 3.027980372806260E-010 3.263721871790364E-010 3.517814412919614E-010 3.791686260695638E-010 4.086876801765660E-010 4.405045213255157E-010 4.747979755627166E-010 5.117607833438243E-010 5.516006811618467E-010 5.945415659575521E-010 6.408247562481175E-010 6.907103417012449E-010 7.444786474533134E-010 8.024318053219208E-010 8.648954486421636E-010 9.322205425890239E-010 1.004785351448532E-009 1.082997562105146E-009 1.167296571314367E-009 1.258155950860732E-009 1.356086104645023E-009 1.461637131079118E-009 1.575401910274351E-009 1.698019426576498E-009 1.830178355775915E-009 1.972620923765811E-009 2.126147070523562E-009 2.291618934056995E-009 2.469965683103663E-009 2.662188727817131E-009 2.869367330837182E-009 3.092664656354779E-009 3.333334289642229E-009 3.592727260567800E-009 3.872299610784573E-009 4.173620555039375E-009 4.498381266890372E-009 4.848404352936854E-009 5.225654059114858E-009 5.632247268504764E-009 6.070465354498777E-009 6.542766948832816E-009 7.051801707903467E-009 7.600425136297122E-009 8.191714567998473E-009 8.828986383259016E-009 9.515814558762275E-009 1.025605065876407E-008 1.105384537393557E-008 1.191367172923070E-008 1.284035009154768E-008 1.383907510595816E-008 1.491544473693670E-008 1.607549153990950E-008 1.732571636582659E-008 1.867312466741297E-008 2.012526562414133E-008 2.169027429007265E-008 2.337691700770335E-008 2.519464032907768E-008 2.715362373008075E-008 2.926483639547633E-008 3.154009840052975E-008 3.399214661902308E-008 3.663470573366256E-008 3.948256472655222E-008 4.255165928554090E-008 4.585916057671748E-008 4.942357088155858E-008 5.326482660398810E-008 5.740440925078847E-008 6.186546496722385E-008 6.667293329850395E-008 7.185368589579831E-008 7.743667591683231E-008 8.345309894723250E-008 8.993656634224464E-008 9.692329191166594E-008 1.044522930073392E-007 1.125656071072798E-007 1.213085250586948E-007 1.307298423211885E-007 1.408821295047254E-007 1.518220237679540E-007 1.636105426110170E-007 1.763134218126255E-007 1.900014793467520E-007 2.047510072768974E-007 2.206441937444673E-007 2.377695773915227E-007 2.562225366484941E-007 2.761058166175721E-007 2.975300963195409E-007 3.206145994925387E-007 3.454877522189914E-007 3.722878908937461E-007 4.011640244837284E-007 4.322766551239656E-007 4.657986615103885E-007 5.019162498753655E-007 5.408299776846034E-007 5.827558555674824E-007 6.279265334076459E-007 6.765925770095546E-007 7.290238421915514E-007 7.855109536407418E-007 8.463668965680594E-007 9.119287295461197E-007 9.825594278315265E-007 1.058649866905401E-006 1.140620956925463E-006 1.228925939320776E-006 1.324052857911155E-006 1.426527217531069E-006 1.536914844370309E-006 1.655824963082643E-006 1.783913507029390E-006 1.921886679048877E-006 2.070504781552770E-006 2.230586336114221E-006 2.403012514123612E-006 2.588731901783585E-006 2.788765624353957E-006 3.004212856396225E-006 3.236256746722404E-006 3.486170788874630E-006 3.755325670169795E-006 4.045196634783692E-006 4.357371398921108E-006 4.693558658811901E-006 5.055597235350139E-006 5.445465902222999E-006 5.865293947840060E-006 6.317372524965103E-006 6.804166845729190E-006 7.328329284121479E-006 7.892713451951577E-006 8.500389319671106E-006 9.154659457848203E-006 9.859076480871491E-006 1.061746178016118E-005 1.143392564006218E-005 1.231288883656778E-005 1.325910582551008E-005 1.427768963478346E-005 1.537413858286770E-005 1.655436495429152E-005 1.782472577206203E-005 1.919205581634987E-005 2.066370304913608E-005 2.224756661539507E-005 2.395213760299834E-005 2.578654275582070E-005 2.776059134764908E-005 2.988482543833422E-005 3.217057374883099E-005 3.463000940659880E-005 3.727621183067740E-005 4.012323304216089E-005 4.318616870565913E-005 4.648123422625306E-005 5.002584624795979E-005 5.383870992188814E-005 5.793991233534975E-005 6.235102251853708E-005 6.709519847112526E-005 7.219730167906334E-005 7.768401962051913E-005 8.358399679123811E-005 8.992797481111329E-005 9.674894220827535E-005 1.040822945121094E-004 1.119660053243953E-004 1.204408090765827E-004 1.295503962223708E-004 1.393416216575542E-004 1.498647272036657E-004 1.611735790389327E-004 1.733259210078828E-004 1.863836447924510E-004 2.004130779783877E-004 2.154852911063324E-004 2.316764248514432E-004 2.490680385346499E-004 2.677474812266234E-004 2.878082867673140E-004 3.093505940856601E-004 3.324815942676905E-004 3.573160058857921E-004 3.839765801669753E-004 4.125946376433755E-004 4.433106379948915E-004 4.762747848578210E-004 5.116476674399326E-004 5.496009408442284E-004 5.903180470665170E-004 6.339949786902300E-004 6.808410873586704E-004 7.310799391556074E-004 7.849502190728338E-004 8.427066867838083E-004 9.046211859746638E-004 9.709837095108935E-004 1.042103522730917E-003 1.118310347161423E-003 1.199955606940057E-003 1.287413740204481E-003 1.381083577664726E-003 1.481389790513608E-003 1.588784409744558E-003 1.703748418837962E-003 1.826793421639294E-003 1.958463387084382E-003 2.099336472225116E-003 2.250026924768045E-003 2.411187066056193E-003 2.583509355095944E-003 2.767728533851209E-003 2.964623853593525E-003 3.175021381599930E-003 3.399796386931953E-003 3.639875803394474E-003 3.896240767065587E-003 4.169929224995129E-003 4.462038610786924E-003 4.773728581801987E-003 5.106223811637929E-003 5.460816830348750E-003 5.838870903562884E-003 6.241822940224171E-003 6.671186417121983E-003 7.128554306676240E-003 7.615601992604055E-003 8.134090156102844E-003 8.685867613040008E-003 9.272874080334779E-003 9.897142847248802E-003 1.056080332466723E-002 1.126608344264973E-002 1.201531186355606E-002 1.281091997491545E-002 1.365544362290198E-002 1.455152454382145E-002 1.550191144740302E-002 1.650946070194051E-002 1.757713656746256E-002 1.870801091913197E-002 1.990526239902351E-002 2.117217493032615E-002 2.251213552388466E-002 2.392863130289996E-002 2.542524566756365E-002 2.700565351748552E-002 2.867361544603763E-002 3.043297081723316E-002 3.228762963260132E-002 3.424156309274154E-002 3.629879275598408E-002 3.846337819492733E-002 4.073940305066895E-002 4.313095938446419E-002 4.564213022739928E-002 4.827697023066753E-002 5.103948432228860E-002 5.393360428078214E-002 5.696316314259844E-002 6.013186736813490E-002 6.344326670116440E-002 6.690072166862278E-002 7.050736868211299E-002 7.426608271942418E-002 7.817943758392061E-002 8.224966376208144E-002 8.647860392486517E-002 9.086766614705603E-002 9.541777495050845E-002 1.001293203121949E-001 1.050021048163512E-001 1.100352891717161E-001 1.152273363598161E-001 1.205759547284375E-001 1.260780403955073E-001 1.317296193824787E-001 1.375257899525203E-001 1.434606656869118E-001 1.495273198925947E-001 1.557177319939941E-001 1.620227366223974E-001 1.684319761753565E-001 1.749338576757132E-001 1.815155148139082E-001 1.881627761067340E-001 1.948601401494119E-001 2.015907589741500E-001 2.083364305555410E-001 2.150776015196745E-001 2.217933811176570E-001 2.284615675137302E-001 2.350586874113368E-001 2.415600499955031E-001 2.479398161051251E-001 2.541710834623226E-001 2.602259886766984E-001 2.660758266087253E-001 2.716911875176871E-001 2.770421122351150E-001 2.820982653942410E-001 2.868291265101426E-001 2.912041984448555E-001 2.951932325083981E-001 2.987664691427599E-001 3.018948928143802E-001 3.045504994054625E-001 3.067065740501690E-001 3.083379770137663E-001 3.094214348674270E-001 3.099358338754350E-001 3.098625121926569E-001 3.091855471763620E-001 3.078920338562572E-001 3.059723503886483E-001 3.034204061535704E-001 3.002338680459810E-001 2.964143604715973E-001 2.919676345918187E-001 2.869037024764493E-001 2.812369320223947E-001 2.749860987841559E-001 2.681743912390006E-001 2.608293664752538E-001 2.529828538428969E-001 2.446708047361167E-001 2.359330873794011E-001 2.268132262518524E-001 2.173580865959267E-001 2.076175053018585E-001 1.976438703215073E-001 1.874916516271921E-001 1.772168875741310E-001 1.668766313306546E-001 1.565283627902785E-001 1.462293720573060E-001 1.360361211877621E-001 1.260035913580544E-001 1.161846230160391E-001 1.066292568383851E-001 9.738408347489130E-002 8.849161011038348E-002 7.998965183052123E-002 7.191075565866173E-002 6.428166496410276E-002 5.712283176380556E-002 5.044798429574521E-002 4.426375718887607E-002 3.856939166057327E-002 3.335651351772270E-002 2.860899741631004E-002 2.430664817300593E-002 2.043768929376963E-002 1.698996723338705E-002 1.394777810163672E-002 1.129215824407931E-002 9.001229318307324E-003 7.050593783306247E-003 5.413775317771097E-003 4.062697292012613E-003 2.968191098268985E-003 2.100524945121196E-003 1.429942691742708E-003 9.272014817001684E-004 5.640963718787639E-004 3.139598665654331E-004 1.521242725023991E-004 5.633508228052031E-005 7.104144787162259E-006 -1.200785554061889E-005 -1.418918462320340E-005 -9.263728118505399E-006 -3.674260355635006E-006 -5.692910784449445E-007 -1.387778780781446E-017 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 5.560372642792259E-030 5.993437544627092E-030 6.460231338613895E-030 6.963380970877588E-030 7.505717985011513E-030 8.090294456977310E-030 8.720400171081251E-030 9.399581133686879E-030 1.013165952885219E-029 1.092075522819512E-029 1.177130897603615E-029 1.268810738029626E-029 1.367630984978994E-029 1.474147762950597E-029 1.588960509727707E-029 1.712715349796309E-029 1.846108730499335E-029 1.989891341389636E-029 2.144872338838425E-029 2.311923899673830E-029 2.491986129475600E-029 2.686072353148274E-029 2.895274817546119E-029 3.120770838242153E-029 3.363829425033128E-029 3.625818423466163E-029 3.908212212577332E-029 4.212600002161968E-029 4.540694776270781E-029 4.894342933262759E-029 5.275534676665122E-029 5.686415215316831E-029 6.129296835825628E-029 6.606671915278196E-029 7.121226947434220E-029 7.675857661338564E-029 8.273685317433743E-029 8.918074272881416E-029 9.612650914943819E-029 1.036132406897585E-028 1.116830699587571E-028 1.203814110278899E-028 1.297572150050030E-028 1.398632455134088E-028 1.507563756264178E-028 1.624979079283576E-028 1.751539195032802E-028 1.887956337928172E-028 2.034998214158688E-028 2.193492322057997E-028 2.364330608964719E-028 2.548474490778531E-028 2.746960262460022E-028 2.960904929922763E-028 3.191512496137393E-028 3.440080736823442E-028 3.708008503860288E-028 3.996803597518048E-028 4.308091251810412E-028 4.643623280722143E-028 5.005287936782485E-028 5.395120537465422E-028 5.815314919217986E-028 6.268235783575804E-028 6.756432004845578E-028 7.282650974244722E-028 7.849854061222508E-028 8.461233278972921E-028 9.120229247926713E-028 9.830550558315181E-028 1.059619464077019E-027 1.142147026241365E-027 1.231102177503557E-027 1.326985525182089E-027 1.430336665971337E-027 1.541737222595947E-027 1.661814116972535E-027 1.791243098298772E-027 1.930752545924705E-027 2.081127568407491E-027 2.243214421817470E-027 2.417925272160330E-027 2.606243328716429E-027 2.809228377185899E-027 3.028022743778109E-027 3.263857723809032E-027 3.518060510984627E-027 3.792061666365445E-027 4.087403169045250E-027 4.405747093849971E-027 4.748884964891691E-027 5.118747837616385E-027 5.517417166083381E-027 5.947136516633544E-027 6.410324193866763E-027 6.909586849982648E-027 7.447734154073458E-027 8.027794603922328E-027 8.653032569289917E-027 9.326966662603228E-027 1.005338954042938E-026 1.083638924717093E-026 1.168037222109639E-026 1.259008809217604E-026 1.357065641127628E-026 1.462759546113397E-026 1.576685331124978E-026 1.699484129146503E-026 1.831847007259979E-026 1.974518855720104E-026 2.128302579926302E-026 2.294063618883019E-026 2.472734815576404E-026 2.665321666676169E-026 2.872907981106033E-026 3.096661979327040E-026 3.337842867658454E-026 3.597807924634030E-026 3.878020139273085E-026 4.180056444251926E-026 4.505616590308654E-026 4.856532711823633E-026 5.234779637406926E-026 5.642486003517153E-026 6.081946233655176E-026 6.555633450546815E-026 7.066213393980279E-026 7.616559422622344E-026 8.209768684238283E-026 8.849179545315702E-026 9.538390378179599E-026 1.028127981132613E-025 1.108202855693632E-025 1.194514293840706E-025 1.287548025030419E-025 1.387827609345330E-025 1.495917383900147E-025 1.612425638726218E-025 1.738008040007069E-025 1.873371319929791E-025 2.019277253917258E-025 2.176546947623798E-025 2.346065457819829E-025 2.528786773170161E-025 2.725739182936030E-025 2.938031063813821E-025 3.166857117476915E-025 3.413505093923127E-025 3.679363038464299E-025 3.965927103141670E-025 4.274809966526430E-025 4.607749909289520E-025 4.966620596614338E-025 5.353441622504360E-025 5.770389875325269E-025 6.219811788542457E-025 6.704236545597028E-025 7.226390313232194E-025 7.789211583370195E-025 8.395867709878432E-025 9.049772733287144E-025 9.754606593770451E-025 1.051433584051399E-024 1.133323595401372E-024 1.221591540692865E-024 1.316734159889141E-024 1.419286881123118E-024 1.529826833892454E-024 1.648976096934903E-024 1.777405199061644E-024 1.915836892649942E-024 2.065050221031256E-024 2.225884902664209E-024 2.399246056765250E-024 2.586109296991063E-024 2.787526221837890E-024 3.004630332656266E-024 3.238643412584951E-024 3.490882402302857E-024 3.762766811293179E-024 4.055826706327093E-024 4.371711322124318E-024 4.712198342647014E-024 5.079203905259767E-024 5.474793384054958E-024 5.901193013027902E-024 6.360802414513740E-024 6.856208103390228E-024 7.390198043044300E-024 7.965777335017673E-024 8.586185130626578E-024 9.254912859729488E-024 9.975723879225948E-024 1.075267465186243E-023 1.159013757453164E-023 1.249282558453342E-023 1.346581868227489E-023 1.451459251966672E-023 1.564504921510331E-023 1.686355056844149E-023 1.817695386289801E-023 1.959265045534967E-023 2.111860737220338E-023 2.276341214492666E-023 2.453632113755526E-023 2.644731163814531E-023 2.850713800732691E-023 3.072739219993664E-023 3.312056900032750E-023 3.570013633847547E-023 3.848061108259280E-023 4.147764073478926E-023 4.470809148952481E-023 4.819014315042243E-023 5.194339143959619E-023 5.598895827524909E-023 6.034961063815480E-023 6.504988869594524E-023 7.011624390625417E-023 7.557718787590436E-023 8.146345281386096E-023 8.780816448093370E-023 9.464702860950903E-023 1.020185318424287E-022 1.099641583218217E-022 1.185286231467617E-022 1.277601240135889E-022 1.377106124550073E-022 1.484360862044140E-022 1.599969043307745E-022 1.724581269174943E-022 1.858898811969075E-022 2.003677562008142E-022 2.159732281480466E-022 2.327941189629836E-022 2.509250905053626E-022 2.704681772927887E-022 2.915333607138427E-022 3.142391879633030E-022 3.387134391826043E-022 3.650938465599240E-022 3.935288694368139E-022 4.241785297832824E-022 4.572153127431685E-022 4.928251373177071E-022 5.312084026499285E-022 5.725811157980371E-022 6.171761073444170E-022 6.652443416813055E-022 7.170563293469417E-022 7.729036493602548E-022 8.331005901213151E-022 8.979859181118508E-022 9.679247843494819E-022 1.043310779324509E-021 1.124568147983612E-021 1.212154177225689E-021 1.306561769345672E-021 1.408322215908808E-021 1.518008187665721E-021 1.636236957334355E-021 1.763673873385541E-021 1.901036104381245E-021 2.049096674937387E-021 2.208688816024064E-021 2.380710654085084E-021 2.566130265365493E-021 2.765991123890939E-021 2.981417973758135E-021 3.213623158783549E-021 3.463913445131096E-021 3.733697375314350E-021 4.024493194958591E-021 4.337937396931782E-021 4.675793930927687E-021 5.039964130329141E-021 5.432497412216400E-021 5.855602810736030E-021 6.311661408736112E-021 6.803239737628383E-021 7.333104220886496E-021 7.904236742463658E-021 8.519851427742206E-021 9.183412731452850E-021 9.898654934355245E-021 1.066960315839989E-020 1.150059601863758E-020 1.239631003935204E-020 1.336178597182148E-020 1.440245716181535E-020 1.552418012646782E-020 1.673326751260397E-020 1.803652362199488E-020 1.944128270346575E-020 2.095545022734994E-020 2.258754737456619E-020 2.434675899068805E-020 2.624298527487142E-020 2.828689749452789E-020 3.048999803928462E-020 3.286468515219127E-020 3.542432270245881E-020 3.818331539238322E-020 4.115718982169185E-020 4.436268186551200E-020 4.781783085769108E-020 5.154208110949901E-020 5.555639133501952E-020 5.988335259903714E-020 6.454731545118645E-020 6.957452696182357E-020 7.499327843081265E-020 8.083406460046825E-020 8.712975526865207E-020 9.391578026779289E-020 1.012303288508224E-019 1.091145646060985E-019 1.176128571107701E-019 1.267730316262477E-019 1.366466382409677E-019 1.472892419750794E-019 1.587607354796642E-019 1.711256760902278E-019 1.844536491312812E-019 1.988196595165477E-019 2.143045538485755E-019 2.309954753931594E-019 2.489863544890114E-019 2.683784371525030E-019 2.892808548522701E-019 3.118112386601562E-019 3.360963812346825E-019 3.622729503624559E-019 3.904882580730352E-019 4.209010896555353E-019 4.536825972423712E-019 4.890172629888483E-019 5.271039372690452E-019 5.681569577305146E-019 6.124073555054203E-019 6.601041553662101E-019 7.115157771425381E-019 7.669315462861384E-019 8.266633220844498E-019 8.910472526859704E-019 9.604456668139430E-019 1.035249112814117E-018 1.115878556511650E-018 1.202787750245721E-018 1.296465786413887E-018 1.397439849896517E-018 1.506278184850778E-018 1.623593292570217E-018 1.750045378406108E-018 1.886346067148487E-018 2.033262407775592E-018 2.191621190108659E-018 2.362313597664671E-018 2.546300222891248E-018 2.744616473007455E-018 2.958378396872437E-018 3.188788965672889E-018 3.437144842774795E-018 3.704843680837160E-018 3.993391987252861E-018 4.304413602180304E-018 4.639658836876228E-018 5.001014323756991E-018 5.390513633619787E-018 5.810348719773453E-018 6.262882253481484E-018 6.750660920135591E-018 7.276429750985631E-018 7.843147571078206E-018 8.454003650338576E-018 9.112435651501143E-018 9.822148975891138E-018 1.058713761592797E-017 1.141170663169846E-017 1.230049637808847E-017 1.325850861881286E-017 1.429113467430125E-017 1.540418576184440E-017 1.660392569874136E-017 1.789710615248634E-017 1.929100463636734E-017 2.079346546429934E-017 2.241294389536548E-017 2.415855371649408E-017 2.604011853104290E-017 2.806822704192016E-017 3.025429264035036E-017 3.261061763562119E-017 3.515046248726865E-017 3.788812042930489E-017 4.083899790643901E-017 4.401970127494844E-017 4.744813025610937E-017 5.114357866810015E-017 5.512684300324588E-017 5.942033946162437E-017 6.404823009964194E-017 6.903655880347817E-017 7.441339785259410E-017 8.020900589808679E-017 8.645599824491351E-017 9.318953039625014E-017 1.004474958928685E-016 1.082707395608835E-016 1.167032873679060E-016 1.257925941811169E-016 1.355898108215164E-016 1.461500719171762E-016 1.575328061753943E-016 1.698020708197825E-016 1.830269120743242E-016 1.972817537230064E-016 2.126468159316178E-016 2.292085666886183E-016 2.470602084055249E-016 2.663022024151290E-016 2.870428343191194E-016 3.093988233665501E-016 3.334959792923887E-016 3.594699103124428E-016 3.874667862588269E-016 4.176441611504529E-016 4.501718598274399E-016 4.852329336389156E-016 5.230246905621887E-016 5.637598055501744E-016 6.076675173554110E-016 6.549949185655821E-016 7.060083461100825E-016 7.609948800624481E-016 8.202639591729136E-016 8.841491222222730E-016 9.530098849961083E-016 1.027233763441813E-015 1.107238454393260E-015 1.193474186134703E-015 1.286426252031258E-015 1.386617741483309E-015 1.494612483572765E-015 1.611018219965752E-015 1.736490024926480E-015 1.871733991687565E-015 2.017511205920727E-015 2.174642028667642E-015 2.344010712831759E-015 2.526570379209022E-015 2.723348380058652E-015 2.935452080395517E-015 3.164075089536641E-015 3.410503977967562E-015 3.676125517325236E-015 3.962434484238011E-015 4.271042071935404E-015 4.603684956961094E-015 4.962235072007989E-015 5.348710139867908E-015 5.765285027771277E-015 6.214303986007654E-015 6.698293839694833E-015 7.219978207926380E-015 7.782292830308694E-015 8.388402087130249E-015 9.041716806120477E-015 9.745913455997200E-015 1.050495483480245E-014 1.132311236943851E-014 1.220499015188159E-014 1.315555084732109E-014 1.418014362000705E-014 1.528453423393884E-014 1.647493749776696E-014 1.775805223646861E-014 1.914109898657401E-014 2.063186062704678E-014 2.223872617443575E-014 2.397073798872189E-014 2.583764265547242E-014 2.784994583059800E-014 3.001897135630556E-014 3.235692498086875E-014 3.487696304073995E-014 3.759326649144989E-014 4.052112070382766E-014 4.367700147452026E-014 4.707866773474310E-014 5.074526147888393E-014 5.469741547520100E-014 5.895736936463289E-014 6.354909480093786E-014 6.849843033623774E-014 7.383322681087113E-014 7.958350406555849E-014 8.578161985756889E-014 9.246245193124965E-014 9.966359426726812E-014 1.074255686146843E-013 1.157920524959533E-013 1.248101249676093E-013 1.345305315192895E-013 1.450079696013956E-013 1.563013963877467E-013 1.684743605046564E-013 1.815953595926659E-013 1.957382257125102E-013 2.109825407634883E-013 2.274140842512494E-013 2.451253159239708E-013 2.642158959920146E-013 2.847932458575904E-013 3.069731525087698E-013 3.308804199778184E-013 3.566495715285441E-013 3.844256065226347E-013 4.143648162225786E-013 4.466356631201683E-013 4.814197287369249E-013 5.189127352278633E-013 5.593256465350755E-013 6.028858552850757E-013 6.498384621059680E-013 7.004476545603419E-013 7.549981935074760E-013 8.137970147661122E-013 8.771749571802856E-013 9.454886209019359E-013 1.019122378301227E-012 1.098490530778938E-012 1.184039644042287E-012 1.276251058227867E-012 1.375643596035939E-012 1.482776480180450E-012 1.598252482272861E-012 1.722721311732276E-012 1.856883268184224E-012 2.001493186807517E-012 2.157364678694027E-012 2.325374711926373E-012 2.506468540309707E-012 2.701665024282321E-012 2.912062360563192E-012 3.138844258671460E-012 3.383286600454165E-012 3.646764615388267E-012 3.930760616019206E-012 4.236872337712618E-012 4.566821920998871E-012 4.922465601017215E-012 5.305804147694934E-012 5.718994116811524E-012 6.164359982040435E-012 6.644407189725327E-012 7.161836307393779E-012 7.719558119738150E-012 8.320710071484756E-012 8.968673905643719E-012 9.667094638278534E-012 1.041990108498917E-011 1.123132798723976E-011 1.210593974472417E-011 1.304865614811616E-011 1.406478002683386E-011 1.516002707699089E-011 1.634055795386302E-011 1.761301297896248E-011 1.898454942884781E-011 2.046288179088717E-011 2.205632513323421E-011 2.377384188579808E-011 2.562509217568735E-011 2.762048816699891E-011 2.977125258701892E-011 3.208948187796992E-011 3.458821404553771E-011 3.728150211950037E-011 4.018449308888228E-011 4.331351299318117E-011 4.668615875183679E-011 5.032139705095847E-011 5.423967093030538E-011 5.846301471504960E-011 6.301517789816344E-011 6.792175842378130E-011 7.321034682485055E-011 7.891068100905015E-011 8.505481353699257E-011 9.167729165989108E-011 9.881535145650210E-011 1.065091271271912E-010 1.148018763863895E-010 1.237402234744397E-010 1.333744212838651E-010 1.437586334906003E-010 1.549512388502932E-010 1.670151593771372E-010 1.800182132358984E-010 1.940334964080230E-010 2.091397924996979E-010 2.254220159345787E-010 2.429716881056533E-010 2.618874518207987E-010 2.822756257270207E-010 3.042507993082988E-010 3.279364789506068E-010 3.534657795539609E-010 3.809821720056017E-010 4.106402900551722E-010 4.426067960773729E-010 4.770613184157390E-010 5.141974594329801E-010 5.542238798425513E-010 5.973654729485123E-010 6.438646249360842E-010 6.939825745542628E-010 7.480008804078057E-010 8.062229983348814E-010 8.689759864867888E-010 9.366123374432335E-010 1.009511957167275E-009 1.088084294098113E-009 1.172770636706449E-009 1.264046587964441E-009 1.362424730728792E-009 1.468457503459710E-009 1.582740295191431E-009 1.705914784255524E-009 1.838672534334172E-009 1.981758870274414E-009 2.135977054901137E-009 2.302192789989228E-009 2.481339063329553E-009 2.674421380858111E-009 2.882523393381990E-009 3.106812968162830E-009 3.348548727463834E-009 3.609087098136127E-009 3.889889901948369E-009 4.192532540946505E-009 4.518712813384220E-009 4.870260415685942E-009 5.249147178671907E-009 5.657498102355007E-009 6.097603236561029E-009 6.571930494606503E-009 7.083139449952606E-009 7.634096206830967E-009 8.227889424100890E-009 8.867847572064287E-009 9.557557540487344E-009 1.030088467118582E-008 1.110199435808735E-008 1.196537530201959E-008 1.289586458443508E-008 1.389867466571117E-008 1.497942248281570E-008 1.614416079555468E-008 1.739941195380024E-008 1.875220428307383E-008 2.021011128067410E-008 2.178129383993452E-008 2.347454574570734E-008 2.529934267873556E-008 2.726589500934640E-008 2.938520466965346E-008 3.166912642863233E-008 3.413043387506639E-008 3.678289052381051E-008 3.964132639175478E-008 4.272172048692300E-008 4.604128966994209E-008 4.961858436244363E-008 5.347359163651704E-008 5.762784626311329E-008 6.210455030119829E-008 6.692870191806816E-008 7.212723413550596E-008 7.772916423859738E-008 8.376575472740326E-008 9.027068661502593E-008 9.728024609602822E-008 1.048335255467798E-007 1.129726400063996E-007 1.217429602804040E-007 1.311933639782714E-007 1.413765058138246E-007 1.523491086809355E-007 1.641722770666808E-007 1.769118345274142E-007 1.906386870294102E-007 2.054292141770080E-007 2.213656904152760E-007 2.385367384956313E-007 2.570378176967186E-007 2.769717493873962E-007 2.984492828424447E-007 3.215897042910566E-007 3.465214925575069E-007 3.733830247974479E-007 4.023233361048206E-007 4.335029371379804E-007 4.670946941138236E-007 5.032847758862268E-007 5.422736732270527E-007 5.842772957263335E-007 6.295281522093221E-007 6.782766209288947E-007 7.307923163822158E-007 7.873655599137627E-007 8.483089620568496E-007 9.139591249136576E-007 9.846784736298355E-007 1.060857226673042E-006 1.142915515298388E-006 1.231305663417695E-006 1.326514639798435E-006 1.429066695615374E-006 1.539526201042026E-006 1.658500695847163E-006 1.786644169904352E-006 1.924660590716306E-006 2.073307696343236E-006 2.233401073405148E-006 2.405818541361950E-006 2.591504865659561E-006 2.791476824155482E-006 3.006828652859847E-006 3.238737898949787E-006 3.488471711087002E-006 3.757393599197148E-006 4.046970698105946E-006 4.358781571965324E-006 4.694524599146137E-006 5.056026979793933E-006 5.445254411645510E-006 5.864321482547341E-006 6.315502831875511E-006 6.801245136486569E-006 7.324179980919638E-006 7.887137675642756E-006 8.493162091639971E-006 9.145526584343353E-006 9.847751085214462E-006 1.060362044420171E-005 1.141720411266240E-005 1.229287726192149E-005 1.323534343961324E-005 1.424965887257008E-005 1.534125853250072E-005 1.651598408884628E-005 1.778011388098110E-005 1.914039505128121E-005 2.060407798993105E-005 2.217895325201340E-005 2.387339111846902E-005 2.569638398337285E-005 2.765759176221086E-005 2.976739052817922E-005 3.203692459701004E-005 3.447816229496924E-005 3.710395565945455E-005 3.992810433757993E-005 4.296542396447958E-005 4.623181932095876E-005 4.974436258815934E-005 5.352137703684629E-005 5.758252650885574E-005 6.194891107021640E-005 6.664316923770117E-005 7.168958720437372E-005 7.711421551431955E-005 8.294499366299708E-005 8.921188312633546E-005 9.594700935029267E-005 1.031848132617106E-004 1.109622128923157E-004 1.193187757391806E-004 1.282969025181316E-004 1.379420230005470E-004 1.483028046593063E-004 1.594313748858718E-004 1.713835575778037E-004 1.842191249338932E-004 1.980020653336303E-004 2.128008682165457E-004 2.286888269183733E-004 2.457443604601427E-004 2.640513553285683E-004 2.836995283258263E-004 3.047848116077064E-004 3.274097610691666E-004 3.516839892750025E-004 3.777246241711508E-004 4.056567948478190E-004 4.356141456600134E-004 4.677393800407114E-004 5.021848353704967E-004 5.391130902905023E-004 5.786976058633222E-004 6.211234020006907E-004 6.665877705818145E-004 7.153010266851837E-004 7.674872993463181E-004 8.233853632339979E-004 8.832495126050829E-004 9.473504788545016E-004 1.015976392916848E-003 1.089433793702434E-003 1.168048683655072E-003 1.252167632408326E-003 1.342158929378670E-003 1.438413785975252E-003 1.541347587917668E-003 1.651401197936364E-003 1.769042308878898E-003 1.894766846961108E-003 2.029100424575326E-003 2.172599841702664E-003 2.325854634560443E-003 2.489488669655879E-003 2.664161780898596E-003 2.850571446851404E-003 3.049454504564202E-003 3.261588895732672E-003 3.487795440154083E-003 3.728939630606538E-003 3.985933442352372E-003 4.259737149461532E-003 4.551361139055243E-003 4.861867713386544E-003 5.192372868394684E-003 5.544048035993794E-003 5.918121775879016E-003 6.315881401052966E-003 6.738674519591175E-003 7.187910473376484E-003 7.665061652635924E-003 8.171664663119313E-003 8.709321320657406E-003 9.279699445644943E-003 9.884533427709204E-003 1.052562452845624E-002 1.120484088775174E-002 1.192411719649264E-002 1.268545399628808E-002 1.349091656390451E-002 1.434263333576024E-002 1.524279382521835E-002 1.619364598293531E-002 1.719749294812625E-002 1.825668913634129E-002 1.937363560724420E-002 2.055077465401871E-002 2.179058355442435E-002 2.309556742227063E-002 2.446825109722868E-002 2.591117001052076E-002 2.742685996422508E-002 2.901784576275421E-002 3.068662863663782E-002 3.243567240113929E-002 3.426738829556118E-002 3.618411845347858E-002 3.818811795965276E-002 4.028153545617029E-002 4.246639226852088E-002 4.474456003197110E-002 4.711773680986640E-002 4.958742170844492E-002 5.215488800753570E-002 5.482115484319192E-002 5.758695749695385E-002 6.045271636714995E-002 6.341850472039584E-002 6.648401534632919E-002 6.964852626556411E-002 7.291086566980218E-002 7.626937630397516E-002 7.972187953297956E-002 8.326563936991258E-002 8.689732677842031E-002 9.061298459852615E-002 9.440799348279932E-002 9.827703926741653E-002 1.022140822401327E-001 1.062123288037570E-001 1.102642060687356E-001 1.143613399411831E-001 1.184945373022255E-001 1.226537729000067E-001 1.268281815961037E-001 1.310060566223344E-001 1.351748545109913E-001 1.393212073601156E-001 1.434309430845060E-001 1.474891142814675E-001 1.514800363067250E-001 1.553873351094232E-001 1.591940053146021E-001 1.628824789662107E-001 1.664347052528108E-001 1.698322414311495E-001 1.730563550395152E-001 1.760881373532161E-001 1.789086278790936E-001 1.814989495154087E-001 1.838404538189292E-001 1.859148756242801E-001 1.877044960536610E-001 1.891923127406140E-001 1.903622158727203E-001 1.911991684386014E-001 1.916893888485753E-001 1.918205338902818E-001 1.915818797855989E-001 1.909644989384534E-001 1.899614298101821E-001 1.885678372355373E-001 1.867811604037214E-001 1.846012456803732E-001 1.820304614430988E-001 1.790737921493726E-001 1.757389089550488E-001 1.720362143570579E-001 1.679788585467044E-001 1.635827254306989E-001 1.588663866045908E-001 1.538510219450521E-001 1.485603059194166E-001 1.430202591872749E-001 1.372590655825725E-001 1.313068551069566E-001 1.251954541260426E-001 1.189581045291278E-001 1.126291541777284E-001 1.062437215173491E-001 9.983733774790668E-002 9.344557042960344E-002 8.710363283207992E-002 8.084598370583621E-002 7.470592245864918E-002 6.871518495063975E-002 6.290354527697156E-002 5.729842898745749E-002 5.192454320132506E-002 4.680352902088283E-002 4.195364154174330E-002 3.738946261601081E-002 3.312165136986767E-002 2.915673733480736E-002 2.549696095451101E-002 2.214016621501347E-002 1.907975025805581E-002 1.630467512604672E-002 1.380157799743695E-002 1.156161521604002E-002 9.575600270086679E-003 7.832305754435137E-003 6.318675895921513E-003 5.020070004384924E-003 3.920533312606972E-003 3.003090777397521E-003 2.250058561858462E-003 1.643367136236945E-003 1.164889253305754E-003 7.967655043583793E-004 5.217197715579186E-004 3.233566851019998E-004 1.864331865757130E-004 9.709650247965301E-005 4.308124442814476E-005 1.385896530672198E-005 7.342944721364097E-007 -3.117278259870404E-006 -2.673834770604983E-006 -1.156394837116548E-006 -1.847397750470714E-007 -1.040834085586084E-017 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 2.721530313368659E-012 2.790426181283072E-012 2.861066156398924E-012 2.933494391000304E-012 3.007756155091677E-012 3.083897864693139E-012 3.161967110851921E-012 3.242012689388367E-012 3.324084631394890E-012 3.408234234507038E-012 3.494514094966200E-012 3.582978140493950E-012 3.673681663998643E-012 3.766681358135270E-012 3.862035350740229E-012 3.959803241163100E-012 4.060046137518198E-012 4.162826694879115E-012 4.268209154440188E-012 4.376259383669343E-012 4.487044917477391E-012 4.600635000429558E-012 4.717100630025600E-012 4.836514601075544E-012 4.958951551198810E-012 5.084488007475159E-012 5.213202434276603E-012 5.345175282310205E-012 5.480489038902381E-012 5.619228279556172E-012 5.761479720813666E-012 5.907332274456689E-012 6.056877103079550E-012 6.210207677068636E-012 6.367419833024436E-012 6.528611833662554E-012 6.693884429231087E-012 6.863340920482823E-012 7.037087223241581E-012 7.215231934603039E-012 7.397886400811451E-012 7.585164786854677E-012 7.777184147821041E-012 7.974064502062555E-012 8.175928906210290E-012 8.382903532088772E-012 8.595117745577517E-012 8.812704187468891E-012 9.035798856372932E-012 9.264541193720920E-012 9.499074170920784E-012 9.739544378718908E-012 9.986102118824131E-012 1.023890149785118E-011 1.049810052364235E-011 1.076386120402755E-011 1.103634964808447E-011 1.131573616996214E-011 1.160219539533286E-011 1.189590637053894E-011 1.219705267450245E-011 1.250582253346803E-011 1.282240893865046E-011 1.314700976686042E-011 1.347982790418397E-011 1.382107137279294E-011 1.417095346096561E-011 1.452969285639877E-011 1.489751378289466E-011 1.527464614050820E-011 1.566132564924197E-011 1.605779399637891E-011 1.646429898754477E-011 1.688109470159460E-011 1.730844164942048E-011 1.774660693677913E-011 1.819586443124185E-011 1.865649493337057E-011 1.912878635222748E-011 1.961303388532745E-011 2.010954020314615E-011 2.061861563829896E-011 2.114057837950892E-011 2.167575467048514E-011 2.222447901383569E-011 2.278709438014262E-011 2.336395242232977E-011 2.395541369545730E-011 2.456184788208042E-011 2.518363402331293E-011 2.582116075574029E-011 2.647482655433027E-011 2.714503998149261E-011 2.783221994244396E-011 2.853679594703732E-011 2.925920837821959E-011 2.999990876728531E-011 3.075936007609852E-011 3.153803698645892E-011 3.233642619679353E-011 3.315502672635898E-011 3.399435022714497E-011 3.485492130367330E-011 3.573727784089286E-011 3.664197134037529E-011 3.756956726502140E-011 3.852064539249397E-011 3.949580017759765E-011 4.049564112383263E-011 4.152079316435426E-011 4.257189705257655E-011 4.364960976266396E-011 4.475460490016173E-011 4.588757312302139E-011 4.704922257328436E-011 4.824027931969391E-011 4.946148781151176E-011 5.071361134382340E-011 5.199743253462207E-011 5.331375381397073E-011 5.466339792554713E-011 5.604720844088518E-011 5.746605028663496E-011 5.892081028516991E-011 6.041239770888004E-011 6.194174484849659E-011 6.350980759580428E-011 6.511756604110485E-011 6.676602508580549E-011 6.845621507051516E-011 7.018919241904095E-011 7.196604029868768E-011 7.378786929727260E-011 7.565581811727904E-011 7.757105428758317E-011 7.953477489319694E-011 8.154820732348587E-011 8.361261003932739E-011 8.572927335968988E-011 8.789952026812439E-011 9.012470723967251E-011 9.240622508870748E-011 9.474549983823889E-011 9.714399361122357E-011 9.960320554444047E-011 1.021246727254997E-010 1.047099711535729E-010 1.073607167244445E-010 1.100785662404988E-010 1.128652184462765E-010 1.157224150902446E-010 1.186519420134475E-010 1.216556302657150E-010 1.247353572501288E-010 1.278930478964612E-010 1.311306758643186E-010 1.344502647767441E-010 1.378538894850476E-010 1.413436773656562E-010 1.449218096497942E-010 1.485905227868240E-010 1.523521098421001E-010 1.562089219302106E-010 1.601633696845004E-010 1.642179247637970E-010 1.683751213972767E-010 1.726375579684426E-010 1.770078986391991E-010 1.814888750150400E-010 1.860832878523922E-010 1.907940088091805E-010 1.956239822397076E-010 2.005762270349729E-010 2.056538385095781E-010 2.108599903364011E-010 2.161979365302450E-010 2.216710134817054E-010 2.272826420425237E-010 2.330363296637319E-010 2.389356725879253E-010 2.449843580970322E-010 2.511861668169869E-010 2.575449750807453E-010 2.640647573511205E-010 2.707495887049537E-010 2.776036473801706E-010 2.846312173873188E-010 2.918366911872152E-010 2.992245724363793E-010 3.067994788019676E-010 3.145661448479663E-010 3.225294249944526E-010 3.306942965517660E-010 3.390658628314928E-010 3.476493563362046E-010 3.564501420299439E-010 3.654737206915076E-010 3.747257323526127E-010 3.842119598231040E-010 3.939383323054030E-010 4.039109291004538E-010 4.141359834074906E-010 4.246198862199922E-010 4.353691903202659E-010 4.463906143751549E-010 4.576910471354263E-010 4.692775517414720E-010 4.811573701380042E-010 4.933379276005130E-010 5.058268373763129E-010 5.186319054430713E-010 5.317611353878105E-010 5.452227334094130E-010 5.590251134477710E-010 5.731769024427806E-010 5.876869457264662E-010 6.025643125516110E-010 6.178183017603417E-010 6.334584475962175E-010 6.494945256634531E-010 6.659365590369970E-010 6.827948245272922E-010 7.000798591036263E-010 7.178024664800916E-010 7.359737238682737E-010 7.546049889008763E-010 7.737079067306306E-010 7.932944173089037E-010 8.133767628485744E-010 8.339674954758309E-010 8.550794850756692E-010 8.767259273360158E-010 8.989203519954727E-010 9.216766312998659E-010 9.450089886728738E-010 9.689320076061442E-010 9.934606407744774E-010 1.018610219381756E-009 1.044396462743474E-009 1.070835488111844E-009 1.097943820749627E-009 1.125738404258995E-009 1.154236611171857E-009 1.183456253808293E-009 1.213415595409865E-009 1.244133361554772E-009 1.275628751861960E-009 1.307921451991397E-009 1.341031645948624E-009 1.374980028700314E-009 1.409787819109327E-009 1.445476773197250E-009 1.482069197742621E-009 1.519587964223502E-009 1.558056523112911E-009 1.597498918536203E-009 1.637939803299488E-009 1.679404454298493E-009 1.721918788317526E-009 1.765509378228371E-009 1.810203469599253E-009 1.856028997724319E-009 1.903014605084157E-009 1.951189659248360E-009 2.000584271231331E-009 2.051229314312718E-009 2.103156443334308E-009 2.156398114485474E-009 2.210987605589410E-009 2.266959036903014E-009 2.324347392443242E-009 2.383188541853410E-009 2.443519262822999E-009 2.505377264075067E-009 2.568801208935557E-009 2.633830739499300E-009 2.700506501407802E-009 2.768870169254178E-009 2.838964472631410E-009 2.910833222839866E-009 2.984521340270981E-009 3.060074882484203E-009 3.137541072994681E-009 3.216968330789668E-009 3.298406300592322E-009 3.381905883891400E-009 3.467519270756723E-009 3.555299972459849E-009 3.645302854920750E-009 3.737584173001028E-009 3.832201605665401E-009 3.929214292033288E-009 4.028682868342999E-009 4.130669505851770E-009 4.235237949695219E-009 4.342453558730531E-009 4.452383346388338E-009 4.565096022558716E-009 4.680662036537631E-009 4.799153621060536E-009 4.920644837450716E-009 5.045211621910581E-009 5.172931832984887E-009 5.303885300225450E-009 5.438153874087902E-009 5.575821477091555E-009 5.716974156274464E-009 5.861700136976333E-009 6.010089877983080E-009 6.162236128067347E-009 6.318233983960359E-009 6.478180949791503E-009 6.642176998032398E-009 6.810324631984116E-009 6.982728949846114E-009 7.159497710407154E-009 7.340741400399269E-009 7.526573303556805E-009 7.717109571423779E-009 7.912469295953782E-009 8.112774583947689E-009 8.318150633376060E-009 8.528725811633475E-009 8.744631735774056E-009 8.966003354778099E-009 9.192979033901690E-009 9.425700641161199E-009 9.664313636007618E-009 9.908967160245603E-009 1.015981413125424E-008 1.041701133756785E-008 1.068071953687636E-008 1.095110355650678E-008 1.122833239644852E-008 1.151257933498669E-008 1.180402203700990E-008 1.210284266505977E-008 1.240922799319184E-008 1.272336952371903E-008 1.304546360691071E-008 1.337571156372187E-008 1.371431981162934E-008 1.406149999365417E-008 1.441746911064949E-008 1.478244965693847E-008 1.515666975938532E-008 1.554036331998739E-008 1.593377016207724E-008 1.633713618022590E-008 1.675071349394118E-008 1.717476060525719E-008 1.760954256031333E-008 1.805533111502394E-008 1.851240490494241E-008 1.898104961942518E-008 1.946155818020544E-008 1.995423092448756E-008 2.045937579267704E-008 2.097730852086261E-008 2.150835283817228E-008 2.205284066912529E-008 2.261111234110684E-008 2.318351679709591E-008 2.377041181377841E-008 2.437216422518248E-008 2.498915015197562E-008 2.562175523656663E-008 2.627037488416044E-008 2.693541450991473E-008 2.761728979235508E-008 2.831642693320497E-008 2.903326292379462E-008 2.976824581821438E-008 3.052183501338383E-008 3.129450153621131E-008 3.208672833802428E-008 3.289901059645336E-008 3.373185602495972E-008 3.458578519019899E-008 3.546133183742058E-008 3.635904322410477E-008 3.727948046204726E-008 3.822321886810524E-008 3.919084832382239E-008 4.018297364416067E-008 4.120021495556612E-008 4.224320808360889E-008 4.331260495043494E-008 4.440907398228384E-008 4.553330052732181E-008 4.668598728405546E-008 4.786785474059216E-008 4.907964162502156E-008 5.032210536720121E-008 5.159602257223360E-008 5.290218950593191E-008 5.424142259257743E-008 5.561455892527944E-008 5.702245678925813E-008 5.846599619837657E-008 5.994607944525736E-008 6.146363166532950E-008 6.301960141515493E-008 6.461496126540108E-008 6.625070840882579E-008 6.792786528365758E-008 6.964748021276103E-008 7.141062805898496E-008 7.321841089710610E-008 7.507195870278640E-008 7.697243005897576E-008 7.892101288020342E-008 8.091892515520688E-008 8.296741570836751E-008 8.506776498042789E-008 8.722128582897602E-008 8.942932434920348E-008 9.169326071544291E-008 9.401451004401946E-008 9.639452327795000E-008 9.883478809404614E-008 1.013368298329896E-007 1.039022124529573E-007 1.065325395073991E-007 1.092294551475750E-007 1.119946451504814E-007 1.148298379728092E-007 1.177368058315926E-007 1.207173658122254E-007 1.237733810045393E-007 1.269067616676499E-007 1.301194664243113E-007 1.334135034855083E-007 1.367909319060725E-007 1.402538628720925E-007 1.438044610209329E-007 1.474449457946877E-007 1.511775928279059E-007 1.550047353704739E-007 1.589287657465309E-007 1.629521368503383E-007 1.670773636800390E-007 1.713070249102606E-007 1.756437645045581E-007 1.800902933686951E-007 1.846493910458037E-007 1.893239074544858E-007 1.941167646709381E-007 1.990309587562257E-007 2.040695616298386E-007 2.092357229907158E-007 2.145326722869257E-007 2.199637207352530E-007 2.255322633919415E-007 2.312417812759035E-007 2.370958435457136E-007 2.430981097317625E-007 2.492523320249565E-007 2.555623576234098E-007 2.620321311385897E-007 2.686656970624279E-007 2.754672022969429E-007 2.824408987479569E-007 2.895911459845337E-007 2.969224139658083E-007 3.044392858369095E-007 3.121464607957375E-007 3.200487570323856E-007 3.281511147430530E-007 3.364585992203385E-007 3.449764040218516E-007 3.537098542191320E-007 3.626644097289033E-007 3.718456687287691E-007 3.812593711594788E-007 3.909114023159597E-007 4.008077965293905E-007 4.109547409425872E-007 4.213585793811144E-007 4.320258163225154E-007 4.429631209661765E-007 4.541773314063650E-007 4.656754589110685E-007 4.774646923093224E-007 4.895524024897716E-007 5.019461470133052E-007 5.146536748426497E-007 5.276829311918978E-007 5.410420624990109E-007 5.547394215244358E-007 5.687835725790201E-007 5.831832968845327E-007 5.979475980701308E-007 6.130857078082606E-007 6.286070915935094E-007 6.445214546680616E-007 6.608387480974734E-007 6.775691750005866E-007 6.947231969375069E-007 7.123115404596784E-007 7.303452038261426E-007 7.488354638902510E-007 7.677938831611207E-007 7.872323170443251E-007 8.071629212663555E-007 8.275981594875177E-007 8.485508111081042E-007 8.700339792726993E-007 8.920610990777218E-007 9.146459459873379E-007 9.378026444630734E-007 9.615456768125599E-007 9.858898922629884E-007 1.010850516265013E-006 1.036443160032968E-006 1.062683830327415E-006 1.089588939486207E-006 1.117175315710402E-006 1.145460213611511E-006 1.174461325026780E-006 1.204196790109290E-006 1.234685208699955E-006 1.265945651988532E-006 1.297997674471087E-006 1.330861326211445E-006 1.364557165414406E-006 1.399106271318694E-006 1.434530257417749E-006 1.470851285016834E-006 1.508092077134973E-006 1.546275932760570E-006 1.585426741469746E-006 1.625568998416665E-006 1.666727819705362E-006 1.708928958152863E-006 1.752198819453555E-006 1.796564478755155E-006 1.842053697656746E-006 1.888694941639729E-006 1.936517397942769E-006 1.985550993892157E-006 2.035826415699198E-006 2.087375127736618E-006 2.140229392306358E-006 2.194422289911252E-006 2.249987740043568E-006 2.306960522503770E-006 2.365376299262954E-006 2.425271636883075E-006 2.486684029509253E-006 2.549651922448846E-006 2.614214736352466E-006 2.680412892012295E-006 2.748287835793776E-006 2.817882065716806E-006 2.889239158203344E-006 2.962403795508511E-006 3.037421793852796E-006 3.114340132273550E-006 3.193206982214292E-006 3.274071737870843E-006 3.356985047313963E-006 3.441998844408410E-006 3.529166381549200E-006 3.618542263236034E-006 3.710182480507809E-006 3.804144446259311E-006 3.900487031463053E-006 3.999270602319764E-006 4.100557058361569E-006 4.204409871532640E-006 4.310894126272739E-006 4.420076560629676E-006 4.532025608427559E-006 4.646811442518213E-006 4.764506019144056E-006 4.885183123441484E-006 5.008918416114342E-006 5.135789481308258E-006 5.265875875717026E-006 5.399259178953442E-006 5.536023045217584E-006 5.676253256296434E-006 5.820037775930022E-006 5.967466805579704E-006 6.118632841635458E-006 6.273630734100137E-006 6.432557746789282E-006 6.595513619086274E-006 6.762600629296266E-006 6.933923659635122E-006 7.109590262902244E-006 7.289710730881955E-006 7.474398164513522E-006 7.663768545884700E-006 7.857940812085473E-006 8.057036930985953E-006 8.261181978979819E-006 8.470504220746844E-006 8.685135191090402E-006 8.905209778905774E-006 9.130866313329914E-006 9.362246652142693E-006 9.599496272465243E-006 9.842764363837578E-006 1.009220392370596E-005 1.034797185542631E-005 1.061022906882169E-005 1.087914058336293E-005 1.115487563407156E-005 1.143760778017459E-005 1.172751501663484E-005 1.202477988859166E-005 1.232958960880992E-005 1.264213617822711E-005 1.296261650967893E-005 1.329123255485854E-005 1.362819143465920E-005 1.397370557293051E-005 1.432799283378606E-005 1.469127666253464E-005 1.506378623035108E-005 1.544575658278314E-005 1.583742879217828E-005 1.623905011419959E-005 1.665087414846451E-005 1.707316100349393E-005 1.750617746602892E-005 1.795019717490136E-005 1.840550079952730E-005 1.887237622316791E-005 1.935111873113638E-005 1.984203120402560E-005 2.034542431613198E-005 2.086161673923182E-005 2.139093535181852E-005 2.193371545401840E-005 2.249030098828609E-005 2.306104476609652E-005 2.364630870074678E-005 2.424646404650564E-005 2.486189164425280E-005 2.549298217381075E-005 2.614013641313503E-005 2.680376550462663E-005 2.748429122869148E-005 2.818214628482281E-005 2.889777458038437E-005 2.963163152736045E-005 3.038418434724515E-005 3.115591238440377E-005 3.194730742804922E-005 3.275887404316919E-005 3.359112991064775E-005 3.444460617683364E-005 3.531984781286683E-005 3.621741398404275E-005 3.713787842951271E-005 3.808182985264738E-005 3.904987232237798E-005 4.004262568583292E-005 4.106072599265468E-005 4.210482593130789E-005 4.317559527778048E-005 4.427372135705400E-005 4.539990951772223E-005 4.655488362016923E-005 4.773938653876880E-005 4.895418067847794E-005 5.020004850632802E-005 5.147779309825256E-005 5.278823870175978E-005 5.413223131494865E-005 5.551063928233807E-005 5.692435390815877E-005 5.837429008753735E-005 5.986138695624091E-005 6.138660855955332E-005 6.295094454088562E-005 6.455541085080185E-005 6.620105047709063E-005 6.788893419660217E-005 6.962016134954241E-005 7.139586063700160E-005 7.321719094244920E-005 7.508534217803747E-005 7.700153615649102E-005 7.896702748951571E-005 8.098310451355977E-005 8.305109024382218E-005 8.517234335763921E-005 8.734825920818616E-005 8.958027086908363E-005 9.186985021196226E-005 9.421850901712250E-005 9.662780011909470E-005 9.909931858778551E-005 1.016347029473090E-004 1.042356364325198E-004 1.069038482859791E-004 1.096411150959040E-004 1.124492621767693E-004 1.153301649940653E-004 1.182857506351717E-004 1.213179993272604E-004 1.244289460045880E-004 1.276206819268666E-004 1.308953563502719E-004 1.342551782531661E-004 1.377024181189219E-004 1.412394097771174E-004 1.448685523062414E-004 1.485923119994852E-004 1.524132243964249E-004 1.563338963826007E-004 1.603570083601337E-004 1.644853164914614E-004 1.687216550196231E-004 1.730689386673621E-004 1.775301651184328E-004 1.821084175844821E-004 1.868068674600422E-004 1.916287770699042E-004 1.965775025120927E-004 2.016564965998830E-004 2.068693119071803E-004 2.122196039214302E-004 2.177111343075135E-004 2.233477742878762E-004 2.291335081432792E-004 2.350724368383988E-004 2.411687817781042E-004 2.474268886992523E-004 2.538512317033805E-004 2.604464174359661E-004 2.672171894184531E-004 2.741684325391879E-004 2.813051777092920E-004 2.886326066909004E-004 2.961560571043259E-004 3.038810276216480E-004 3.118131833544401E-004 3.199583614436883E-004 3.283225768602184E-004 3.369120284241451E-004 3.457331050532189E-004 3.547923922485883E-004 3.640966788288029E-004 3.736529639218740E-004 3.834684642268304E-004 3.935506215553198E-004 4.039071106660084E-004 4.145458474036706E-004 4.254749971555583E-004 4.367029836396359E-004 4.482384980376041E-004 4.600905084881568E-004 4.722682699558187E-004 4.847813344913125E-004 4.976395619000164E-004 5.108531308367916E-004 5.244325503448250E-004 5.383886718580273E-004 5.527327016866684E-004 5.674762140078320E-004 5.826311643816759E-004 5.982099038170516E-004 6.142251934098820E-004 6.306902195792759E-004 6.476186099276886E-004 6.650244497518525E-004 6.829222992331709E-004 7.013272113371218E-004 7.202547504526229E-004 7.397210118035164E-004 7.597426416664722E-004 7.803368584296611E-004 8.015214745297682E-004 8.233149193058368E-004 8.457362628088572E-004 8.688052406108350E-004 8.925422796552157E-004 9.169685251955039E-004 9.421058688693954E-004 9.679769779573499E-004 9.946053258787951E-004 1.022015223978755E-003 1.050231854662009E-003 1.079281305933248E-003 1.109190607404937E-003 1.139987767836567E-003 1.171701814271829E-003 1.204362832843620E-003 1.238002011319144E-003 1.272651683460520E-003 1.308345375279484E-003 1.345117853268490E-003 1.383005174693056E-003 1.422044740034452E-003 1.462275347675344E-003 1.503737250924211E-003 1.546472217479230E-003 1.590523591435434E-003 1.635936357943883E-003 1.682757210634756E-003 1.731034621922958E-003 1.780818916316180E-003 1.832162346853325E-003 1.885119174803799E-003 1.939745752764178E-003 1.996100611294166E-003 2.054244549237783E-003 2.114240727882949E-003 2.176154769116606E-003 2.240054857739158E-003 2.306011848107554E-003 2.374099375282324E-003 2.444393970860017E-003 2.516975183678780E-003 2.591925705590747E-003 2.669331502502031E-003 2.749281950886638E-003 2.831869979988615E-003 2.917192219931871E-003 3.005349155964565E-003 3.096445289072164E-003 3.190589303199230E-003 3.287894239326444E-003 3.388477676658056E-003 3.492461921178887E-003 3.599974201848502E-003 3.711146874706364E-003 3.826117635167050E-003 3.945029738792107E-003 4.068032230830035E-003 4.195280184821728E-003 4.326934950574166E-003 4.463164411809423E-003 4.604143253801421E-003 4.750053241315541E-003 4.901083507170554E-003 5.057430851744119E-003 5.219300053744827E-003 5.386904192576423E-003 5.560464982616699E-003 5.740213119735758E-003 5.926388640373713E-003 6.119241293495352E-003 6.319030925734519E-003 6.526027880032539E-003 6.740513408069514E-003 6.962780096773562E-003 7.193132309183562E-003 7.431886639924166E-003 7.679372385535161E-003 7.935932029877491E-003 8.201921744814881E-003 8.477711906342599E-003 8.763687626308357E-003 9.060249299831513E-003 9.367813168494783E-003 9.686811899335949E-003 1.001769517962205E-002 1.036093032733758E-002 1.071700291725776E-002 1.108641742241814E-002 1.146969787071964E-002 1.186738851632837E-002 1.228005452545950E-002 1.270828267602321E-002 1.315268207052780E-002 1.361388486151787E-002 1.409254698871221E-002 1.458934892687734E-002 1.510499644333519E-002 1.564022136385519E-002 1.619578234552177E-002 1.677246565499400E-002 1.737108595039355E-002 1.799248706485278E-002 1.863754278954998E-002 1.930715765382427E-002 2.000226769972711E-002 2.072384124810570E-002 2.147287965303943E-002 2.225041804116180E-002 2.305752603208694E-002 2.389530843583672E-002 2.476490592281799E-002 2.566749566153161E-002 2.660429191881901E-002 2.757654661703973E-002 2.858554984215814E-002 2.963263029627349E-002 3.071915568766369E-002 3.184653305093732E-002 3.301620898938497E-002 3.422966983110745E-002 3.548844168996481E-002 3.679409042183594E-002 3.814822146612315E-002 3.955247956185005E-002 4.100854832712168E-002 4.251814969012018E-002 4.408304315920312E-002 4.570502491908346E-002 4.738592673945738E-002 4.912761468186438E-002 5.093198758998459E-002 5.280097534800766E-002 5.473653689118495E-002 5.674065795215691E-002 5.881534852619022E-002 6.096264003804623E-002 6.318458219282558E-002 6.548323949287067E-002 6.786068740257548E-002 7.031900814285109E-002 7.286028609699094E-002 7.548660280978269E-002 7.820003156198986E-002 8.100263150272256E-002 8.389644132281381E-002 8.688347245310857E-002 8.996570177255588E-002 9.314506381225925E-002 9.642344244311980E-002 9.980266203651024E-002 1.032844780895167E-001 1.068705673087110E-001 1.105625171492376E-001 1.143618148091685E-001 1.182698356827013E-001 1.222878312798327E-001 1.264169166246341E-001 1.306580571493045E-001 1.350120551066734E-001 1.394795355299099E-001 1.440609317748178E-001 1.487564706872569E-001 1.535661574460362E-001 1.584897601399241E-001 1.635267941463731E-001 1.686765063890383E-001 1.739378595611728E-001 1.793095164125845E-001 1.847898242088005E-001 1.903767994825571E-001 1.960681132095111E-001 2.018610765520731E-001 2.077526273274930E-001 2.137393173684836E-001 2.198173009567603E-001 2.259823245216402E-001 2.322297178070536E-001 2.385543867208790E-001 2.449508080899453E-001 2.514130265522890E-001 2.579346538248178E-001 2.645088705890853E-001 2.711284312401479E-001 2.777856717428260E-001 2.844725208358662E-001 2.911805148168945E-001 2.979008161291404E-001 3.046242359542718E-001 3.113412609935757E-001 3.180420845917688E-001 3.247166423232252E-001 3.313546521188089E-001 3.379456589623864E-001 3.444790841287730E-001 3.509442788690675E-001 3.573305823745654E-001 3.636273837664855E-001 3.698241877654840E-001 3.759106835922894E-001 3.818768165390730E-001 3.877128615307403E-001 3.934094978668378E-001 3.989578841993325E-001 4.043497326602986E-001 4.095773809084079E-001 4.146338607161151E-001 4.195129615731667E-001 4.242092876397762E-001 4.287183062479833E-001 4.330363860267547E-001 4.371608226200029E-001 4.410898498822822E-001 4.448226343805829E-001 4.483592510087641E-001 4.517006375409236E-001 4.548485260188018E-001 4.578053489939125E-001 4.605741188355537E-001 4.631582785789729E-001 4.655615231315688E-001 4.677875900862288E-001 4.698400199160445E-001 4.717218859489416E-001 4.734354952474953E-001 4.749820623498857E-001 4.763613587610861E-001 4.775713421144347E-001 4.786077700443048E-001 4.794638050076778E-001 4.801317685331828E-001 4.806104436850792E-001 4.809005819287859E-001 4.810030443270641E-001 4.809188028336769E-001 4.806489415810568E-001 4.801946581449063E-001 4.795572647684279E-001 4.787381895286975E-001 4.777389774276265E-001 4.765612914046237E-001 4.752069133381172E-001 4.736777445032355E-001 4.719758063440848E-001 4.701032409478612E-001 4.680623113225679E-001 4.658554014828380E-001 4.634850163289278E-001 4.609537813051816E-001 4.582644418250855E-001 4.554198624510589E-001 4.524230258182213E-001 4.492770312925250E-001 4.459850933549361E-001 4.425505397046374E-001 4.389768090756238E-001 4.352674487625123E-001 4.314261118528540E-001 4.274565541647944E-001 4.233626308904543E-001 4.191482929470026E-001 4.148175830389675E-001 4.103746314369126E-001 4.058236514791985E-001 4.011689348050778E-001 3.964148463289061E-001 3.915658189667357E-001 3.866263481279701E-001 3.816009859861351E-001 3.764943355441132E-001 3.713110445103974E-001 3.660557990040558E-001 3.607333171071177E-001 3.553483422840328E-001 3.499056366886595E-001 3.444099743799517E-001 3.388661344681005E-001 3.332788942133530E-001 3.276530220999797E-001 3.219932709082851E-001 3.163043708074157E-001 3.105910224917354E-001 3.048578903834580E-001 2.991095959238069E-001 2.933507109745974E-001 2.875857513515966E-001 2.818191705103595E-001 2.760553534044554E-001 2.702986105351572E-001 2.645531722106739E-001 2.588231830319684E-001 2.531126966210634E-001 2.474256706065185E-001 2.417659618795069E-001 2.361373221325743E-001 2.305433936917983E-001 2.249877056516577E-001 2.194736703204744E-001 2.140045799828527E-001 2.085836039840669E-001 2.032137861398945E-001 1.978980424739530E-001 1.926391592831590E-001 1.874397915305443E-001 1.823024615632972E-001 1.772295581525833E-001 1.722233358504451E-001 1.672859146578695E-001 1.624192799969825E-001 1.576252829792570E-001 1.529056409606368E-001 1.482619383735649E-001 1.436956278250733E-001 1.392080314493565E-001 1.348003425025886E-001 1.304736271871825E-001 1.262288266922093E-001 1.220667594363078E-001 1.179881234991172E-001 1.139934992270448E-001 1.100833519990551E-001 1.062580351381196E-001 1.025177929539862E-001 9.886276390304202E-002 9.529298385120669E-002 9.180838942603585E-002 8.840882144451268E-002 8.509402840334558E-002 8.186367001895334E-002 7.871732080511661E-002 7.565447367596573E-002 7.267454356329878E-002 6.977687103735247E-002 6.696072592098441E-002 6.422531088731864E-002 6.156976503199366E-002 5.899316741149784E-002 5.649454053965686E-002 5.407285383520546E-002 5.172702701331908E-002 4.945593341516711E-002 4.725840326978108E-002 4.513322688307564E-002 4.307915774933817E-002 4.109491558096322E-002 3.917918925271047E-002 3.733063964934574E-002 3.554805924214122E-002 3.383162451237322E-002 3.217992890509699E-002 3.059139478067670E-002 2.906444975266456E-002 2.759752768667086E-002 2.618906970811301E-002 2.483752521008469E-002 2.354135285905786E-002 2.229902159605691E-002 2.110901163092401E-002 1.996981542729433E-002 1.887993867590631E-002 1.783790125388790E-002 1.684223816768299E-002 1.589150047731426E-002 1.498425619971923E-002 1.411909118893966E-002 1.329460999097601E-002 1.250943667139060E-002 1.176221561335678E-002 1.105161228440352E-002 1.037631396997266E-002 9.735030472032662E-003 9.126494771102833E-003 8.549463650152260E-003 8.002718278955901E-003 7.485064757613106E-003 6.995334618063216E-003 6.532385282566766E-003 6.095100478259348E-003 5.682390607027789E-003 5.293193070103710E-003 4.926472546918246E-003 4.581221227911967E-003 4.256459001145524E-003 3.951233592709145E-003 3.664620661080940E-003 3.395723845735437E-003 3.143674770453534E-003 2.907633001932366E-003 2.686785964438188E-003 2.480348811385980E-003 2.287564254865905E-003 2.107702354268009E-003 1.940060265282104E-003 1.783961950669163E-003 1.638757854312859E-003 1.503824540165068E-003 1.378564297796273E-003 1.262404716350751E-003 1.154798228786812E-003 1.055221628353641E-003 9.631755593186047E-004 8.781839840118212E-004 7.997936282982925E-004 7.275734076221264E-004 6.611138357922133E-004 6.000264186945240E-004 5.439430351231123E-004 4.925153069203900E-004 4.454139606077765E-004 4.023281826709694E-004 3.629649706406427E-004 3.270484820801750E-004 2.943193835580941E-004 2.645342016455223E-004 2.374646779393851E-004 2.128971300721693E-004 1.906318206304770E-004 1.704823358697147E-004 1.522749760836093E-004 1.358481594678378E-004 1.210518413105239E-004 1.077469503529079E-004 9.580484419619418E-005 8.510678569150474E-005 7.554344234628714E-005 6.701441092132223E-005 5.942776958838850E-005 5.269966028284137E-005 4.666065119854486E-005 4.124864544557127E-005 3.640623072743666E-005 3.208041502301796E-005 2.822236926688254E-005 2.478717752360131E-005 2.173359508689664E-005 1.902381487057080E-005 1.662324239548729E-005 1.450027961583337E-005 1.262611776884201E-005 1.097453937542308E-005 9.521729465050568E-006 8.246096047024509E-006 7.128099802103438E-006 6.150092923664761E-006 5.296166996141543E-006 4.552009760612487E-006 3.904770583155783E-006 3.342934410949256E-006 2.856203974108575E-006 2.435389967863455E-006 2.072308929817007E-006 1.759688510617428E-006 1.491079823275997E-006 1.260776546446867E-006 1.063740450079116E-006 8.955330077799379E-007 7.522527587954945E-007 6.304780835178375E-007 5.272150596499708E-007 4.398500713884276E-007 3.661068509945083E-007 3.040076407019367E-007 2.518381728340819E-007 2.081161770672229E-007 1.715631357734691E-007 1.410790211135144E-007 1.157197608407990E-007 9.467719345249790E-008 7.726128721919279E-008 6.288441159773271E-008 5.104746344833847E-008 4.132766421924382E-008 3.336785772621769E-008 2.686715125041817E-008 2.157275533012690E-008 1.727288976730298E-008 1.379063495843391E-008 1.097861865263529E-008 8.714438611173895E-009 6.896731374505350E-009 5.441806427658561E-009 4.280773492673034E-009 3.357098475318202E-009 2.624530766222046E-009 2.045351162788389E-009 1.588895661201878E-009 1.230315794177182E-009 9.495410893167094E-010 7.304136263041961E-010 5.599686111912911E-010 4.278383958440601E-010 3.257604833798646E-010 2.471728089187944E-010 1.868820011819065E-010 1.407924452628088E-010 1.056858097807916E-010 7.904230052609928E-011 5.889628385476849E-011 4.372011090297161E-011 3.233099073906894E-011 2.381662756372467E-011 1.747607287191976E-011 1.019595777716384E-015 1.058556568597211E-015 1.099006129107600E-015 1.141001348110279E-015 1.184601288303093E-015 1.229867269287536E-015 1.276862953809534E-015 1.325654437295681E-015 1.376310340810820E-015 1.428901907567734E-015 1.483503103124644E-015 1.540190719411477E-015 1.599044482731163E-015 1.660147165887893E-015 1.723584704600016E-015 1.789446318361303E-015 1.857824635920565E-015 1.928815825556104E-015 2.002519730328190E-015 2.079040008499835E-015 2.158484279323293E-015 2.240964274397379E-015 2.326595994808446E-015 2.415499874276020E-015 2.507800948532583E-015 2.603629031175656E-015 2.703118896239584E-015 2.806410467743726E-015 2.913649016483664E-015 3.024985364342210E-015 3.140576096407525E-015 3.260583781196711E-015 3.385177199294578E-015 3.514531580729157E-015 3.648828851417817E-015 3.788257889030548E-015 3.933014788630329E-015 4.083303138464112E-015 4.239334306292371E-015 4.401327736659829E-015 4.569511259525522E-015 4.744121410686230E-015 4.925403764443919E-015 5.113613278985071E-015 5.309014654957655E-015 5.511882707750038E-015 5.722502753995422E-015 5.941171012845368E-015 6.168195022576815E-015 6.403894073118452E-015 6.648599655104792E-015 6.902655926089532E-015 7.166420194573806E-015 7.440263422530162E-015 7.724570747128982E-015 8.019742022401098E-015 8.326192381598403E-015 8.644352821043419E-015 8.974670806288888E-015 9.317610901439978E-015 9.673655422524100E-015 1.004330511582729E-014 1.042707986215123E-014 1.082551940798129E-014 1.123918412459399E-014 1.166865579617144E-014 1.211453843803123E-014 1.257745914612250E-014 1.305806897898300E-014 1.355704387339742E-014 1.407508559504493E-014 1.461292272547280E-014 1.517131168678421E-014 1.575103780548165E-014 1.635291641696156E-014 1.697779401221422E-014 1.762654942834113E-014 1.830009508456455E-014 1.899937826546744E-014 1.972538245326851E-014 2.047912871100612E-014 2.126167711857648E-014 2.207412826364564E-014 2.291762478953243E-014 2.379335300223880E-014 2.470254453888817E-014 2.564647809991811E-014 2.662648124746358E-014 2.764393227245995E-014 2.870026213309182E-014 2.979695646731370E-014 3.093555768227327E-014 3.211766712357561E-014 3.334494732743935E-014 3.461912435891229E-014 3.594199023943464E-014 3.731540546716465E-014 3.874130163361078E-014 4.022168414025040E-014 4.175863501895636E-014 4.335431586019712E-014 4.501097085312984E-014 4.673092994186114E-014 4.851661210231485E-014 5.037052874431570E-014 5.229528724367318E-014 5.429359460923346E-014 5.636826129005673E-014 5.852220512807423E-014 6.075845546178449E-014 6.308015738675968E-014 6.549057617895450E-014 6.799310188703880E-014 7.059125410021189E-014 7.328868689820530E-014 7.608919399043411E-014 7.899671405152610E-014 8.201533626073227E-014 8.514930605300866E-014 8.840303108985929E-014 9.178108745833611E-014 9.528822610691575E-014 9.892937952730360E-014 1.027096686915631E-013 1.066344102543268E-013 1.107091240302178E-013 1.149395407569988E-013 1.193316101553665E-013 1.238915092967264E-013 1.286256512907181E-013 1.335406943047068E-013 1.386435509279286E-013 1.439413978934583E-013 1.494416861716728E-013 1.551521514494063E-013 1.610808250095340E-013 1.672360450262878E-013 1.736264682921871E-013 1.802610823930802E-013 1.871492183484184E-013 1.943005637345384E-013 2.017251763094136E-013 2.094334981580340E-013 2.174363703783078E-013 2.257450483281434E-013 2.343712174551486E-013 2.433270097312189E-013 2.526250207151214E-013 2.622783272670746E-013 2.723005059402376E-013 2.827056520749763E-013 2.935083996227565E-013 3.047239417275504E-013 3.163680520936988E-013 3.284571071702821E-013 3.410081091831992E-013 3.540387100473496E-013 3.675672361925480E-013 3.816127143380840E-013 3.961948982521835E-013 4.113342965339981E-013 4.270522014572022E-013 4.433707189157609E-013 4.603127995139855E-013 4.779022708446042E-013 4.961638710002356E-013 5.151232833654126E-013 5.348071727380696E-013 5.552432228313092E-013 5.764601752081864E-013 5.984878697042622E-013 6.213572863947940E-013 6.451005891655671E-013 6.697511709486576E-013 6.953437006867476E-013 7.219141720920335E-013 7.494999542683170E-013 7.781398442674614E-013 8.078741216541385E-013 8.387446051556017E-013 8.707947114761589E-013 9.040695163590682E-013 9.386158179817242E-013 9.744822027733065E-013 1.011719113747449E-012 1.050378921446032E-012 1.090515997593896E-012 1.132186791568021E-012 1.175449909788772E-012 1.220366198144827E-012 1.266998827567732E-012 1.315413382876429E-012 1.365677955016704E-012 1.417863236825307E-012 1.472042622453386E-012 1.528292310589105E-012 1.586691411624599E-012 1.647322058917995E-012 1.710269524306969E-012 1.775622338036320E-012 1.843472413268192E-012 1.913915175350114E-012 1.987049696022592E-012 2.062978832755071E-012 2.141809373406194E-012 2.223652186411797E-012 2.308622376711921E-012 2.396839447636076E-012 2.488427468974485E-012 2.583515251471654E-012 2.682236527987687E-012 2.784730141582145E-012 2.891140240784957E-012 3.001616482329026E-012 3.116314241629652E-012 3.235394831306776E-012 3.359025728057434E-012 3.487380808197413E-012 3.620640592203453E-012 3.758992498599892E-012 3.902631107546793E-012 4.051758434500364E-012 4.206584214330408E-012 4.367326196294528E-012 4.534210450283864E-012 4.707471684771065E-012 4.887353576907736E-012 5.074109115235510E-012 5.268000955492851E-012 5.469301790017897E-012 5.678294731266900E-012 5.895273709987774E-012 6.120543888608532E-012 6.354422090422159E-012 6.597237245171546E-012 6.849330851660982E-012 7.111057458045091E-012 7.382785160470486E-012 7.664896120771537E-012 7.957787103948314E-012 8.261870036182613E-012 8.577572584176943E-012 8.905338756631142E-012 9.245629528702630E-012 9.598923490328574E-012 9.965717519321653E-012 1.034652748018621E-011 1.074188894963753E-011 1.115235796984468E-011 1.157851183045616E-011 1.202094988050849E-011 1.248029437135924E-011 1.295719133183033E-011 1.345231147679222E-011 1.396635115046694E-011 1.450003330577663E-011 1.505410852111490E-011 1.562935605597096E-011 1.622658494689142E-011 1.684663514532080E-011 1.749037869892126E-011 1.815872097803289E-011 1.885260194899946E-011 1.957299749615051E-011 2.032092079429893E-011 2.109742373368443E-011 2.190359839936693E-011 2.274057860715050E-011 2.360954149819791E-011 2.451170919457877E-011 2.544835051807911E-011 2.642078277469041E-011 2.743037360728731E-011 2.847854291909974E-011 2.956676487068496E-011 3.069656995320746E-011 3.186954714094348E-011 3.308734612603650E-011 3.435167963864745E-011 3.566432585576238E-011 3.702713090204535E-011 3.844201144625382E-011 3.991095739686831E-011 4.143603470072737E-011 4.301938824860377E-011 4.466324489180860E-011 4.636991657406584E-011 4.814180358306173E-011 4.998139792624253E-011 5.189128683560801E-011 5.387415640643000E-011 5.593279537501354E-011 5.807009904081367E-011 6.028907333842419E-011 6.259283906516480E-011 6.498463627021287E-011 6.746782881145246E-011 7.004590908644932E-011 7.272250294420615E-011 7.550137478460522E-011 7.838643285271075E-011 8.138173473537717E-011 8.449149306789314E-011 8.772008145868801E-011 9.107204064043277E-011 9.455208485618621E-011 9.816510848956877E-011 1.019161929482877E-010 1.058106138106953E-010 1.098538482454317E-010 1.140515827145855E-010 1.184097209712083E-010 1.229343923624285E-010 1.276319604498446E-010 1.325090319593193E-010 1.375724660727636E-010 1.428293840749769E-010 1.482871793691123E-010 1.539535278748521E-010 1.598363988239177E-010 1.659440659680960E-010 1.722851192155476E-010 1.788684767117597E-010 1.857033973821350E-010 1.927994939538593E-010 2.001667464753567E-010 2.078155163523512E-010 2.157565609202724E-010 2.240010485735009E-010 2.325605744727320E-010 2.414471768525461E-010 2.506733539521232E-010 2.602520815929130E-010 2.701968314279805E-010 2.805215898886938E-010 2.912408778554024E-010 3.023697710797669E-010 3.139239213874664E-010 3.259195786911015E-010 3.383736138442509E-010 3.513035423688256E-010 3.647275490890896E-010 3.786645137069936E-010 3.931340373547885E-010 4.081564701622666E-010 4.237529398773970E-010 4.399453815806096E-010 4.567565685345168E-010 4.742101442124617E-010 4.923306555509360E-010 5.111435874726353E-010 5.306753987287022E-010 5.509535591105704E-010 5.720065880837408E-010 5.938640948978258E-010 6.165568202292720E-010 6.401166794153271E-010 6.645768073400574E-010 6.899716050355414E-010 7.163367880637774E-010 7.437094367473564E-010 7.721280483195365E-010 8.016325910670677E-010 8.322645605419101E-010 8.640670379209039E-010 8.970847505954711E-010 9.313641350765482E-010 9.669534023032409E-010 1.003902605447026E-009 1.042263710306883E-009 1.082090668394343E-009 1.123439492811245E-009 1.166368337026914E-009 1.210937576665560E-009 1.257209894418909E-009 1.305250368203493E-009 1.355126562686588E-009 1.406908624309509E-009 1.460669379941911E-009 1.516484439305840E-009 1.574432301313590E-009 1.634594464468890E-009 1.697055541486720E-009 1.761903378292942E-009 1.829229177571104E-009 1.899127627030172E-009 1.971697032573587E-009 2.047039456556923E-009 2.125260861327920E-009 2.206471258246549E-009 2.290784862417272E-009 2.378320253316098E-009 2.469200541560162E-009 2.563553542050572E-009 2.661511953731288E-009 2.763213546216878E-009 2.868801353551629E-009 2.978423875372446E-009 3.092235285758542E-009 3.210395650061566E-009 3.333071150021143E-009 3.460434317482442E-009 3.592664277044379E-009 3.729946997979826E-009 3.872475555782023E-009 4.020450403705068E-009 4.174079654680391E-009 4.333579374005563E-009 4.499173883217253E-009 4.671096075575543E-009 4.849587743603338E-009 5.034899919141543E-009 5.227293226398096E-009 5.427038248487599E-009 5.634415907976809E-009 5.849717861971337E-009 6.073246912299072E-009 6.305317431367219E-009 6.546255804291869E-009 6.796400887921891E-009 7.056104487402672E-009 7.325731850949928E-009 7.605662183529307E-009 7.896289180164387E-009 8.198021579622922E-009 8.511283739260014E-009 8.836516231826723E-009 9.174176465083241E-009 9.524739325088198E-009 9.888697844068745E-009 1.026656389381036E-008 1.065886890554216E-008 1.106616461732916E-008 1.148902385002346E-008 1.192804131286504E-008 1.238383443986518E-008 1.285704425814899E-008 1.334833628947749E-008 1.385840148621812E-008 1.438795720307889E-008 1.493774820597338E-008 1.550854771943509E-008 1.610115851405398E-008 1.671641403546466E-008 1.735517957647394E-008 1.801835349397583E-008 1.870686847236551E-008 1.942169283522861E-008 2.016383190715106E-008 2.093432942756384E-008 2.173426901861127E-008 2.256477570910702E-008 2.342701751672049E-008 2.432220709061905E-008 2.525160341687591E-008 2.621651358904140E-008 2.721829464636837E-008 2.825835548227540E-008 2.933815882573275E-008 3.045922329835682E-008 3.162312555010542E-008 3.283150247657818E-008 3.408605352103819E-008 3.538854306439425E-008 3.674080290650267E-008 3.814473484227847E-008 3.960231333623904E-008 4.111558829923909E-008 4.268668797130445E-008 4.431782191461596E-008 4.601128412085252E-008 4.776945623726404E-008 4.959481091600850E-008 5.148991529146446E-008 5.345743459040741E-008 5.550013588012711E-008 5.762089195975594E-008 5.982268540027830E-008 6.210861273890507E-008 6.448188883370704E-008 6.694585138463299E-008 6.950396562726772E-008 7.215982920593023E-008 7.491717723296371E-008 7.777988754133156E-008 8.075198613790338E-008 8.383765286510034E-008 8.704122727885646E-008 9.036721475116629E-008 9.382029280579257E-008 9.740531769604593E-008 1.011273312338848E-007 1.049915678799326E-007 1.090034621043855E-007 1.131686560291579E-007 1.174930073620080E-007 1.219825976338013E-007 1.266437407504882E-007 1.314829918718251E-007 1.365071566293152E-007 1.417233006963313E-007 1.471387597238754E-007 1.527611496559377E-007 1.585983774389638E-007 1.646586521404807E-007 1.709504964925111E-007 1.774827588760101E-007 1.842646257631585E-007 1.913056346350181E-007 1.986156873926973E-007 2.062050642808815E-007 2.140844383433025E-007 2.222648904304612E-007 2.307579247807066E-007 2.395754851965643E-007 2.487299718390544E-007 2.582342586636119E-007 2.681017115220997E-007 2.783462069563763E-007 2.889821517098180E-007 3.000245029842280E-007 3.114887894706003E-007 3.233911331832874E-007 3.357482721282739E-007 3.485775838374002E-007 3.618971098016141E-007 3.757255808375937E-007 3.900824434233744E-007 4.049878870400091E-007 4.204628725576623E-007 4.365291617060460E-007 4.532093476705973E-007 4.705268868573851E-007 4.885061318713996E-007 5.071723657545419E-007 5.265518375314303E-007 5.466717991129702E-007 5.675605436095160E-007 5.892474451074823E-007 6.117629999652626E-007 6.351388696864878E-007 6.594079254308515E-007 6.846042942250135E-007 7.107634069385240E-007 7.379220480921446E-007 7.661184075685289E-007 7.953921342979167E-007 8.257843919942103E-007 8.573379170197635E-007 8.900970784601133E-007 9.241079404930514E-007 9.594183271396215E-007 9.960778894879526E-007 1.034138175484366E-006 1.073652702389736E-006 1.114677032002851E-006 1.157268848756408E-006 1.201488040795257E-006 1.247396784150788E-006 1.295059630129583E-006 1.344543596039043E-006 1.395918259377363E-006 1.449255855620027E-006 1.504631379740146E-006 1.562122691605096E-006 1.621810625397372E-006 1.683779103213319E-006 1.748115252998980E-006 1.814909530988788E-006 1.884255848818747E-006 1.956251705492523E-006 2.030998324385618E-006 2.108600795479804E-006 2.189168223027395E-006 2.272813878852480E-006 2.359655361504171E-006 2.449814761485108E-006 2.543418832786920E-006 2.640599170565134E-006 2.741492398457227E-006 2.846240354169103E-006 2.954990298571688E-006 3.067895112204248E-006 3.185113516974865E-006 3.306810299805939E-006 3.433156533233765E-006 3.564329834050732E-006 3.700514595368301E-006 3.841902255647288E-006 3.988691564326471E-006 4.141088859297611E-006 4.299308361696968E-006 4.463572471074710E-006 4.634112081999583E-006 4.811166907812700E-006 4.994985814352849E-006 5.185827172666445E-006 5.383959215723776E-006 5.589660423553169E-006 5.803219912531530E-006 6.024937832796336E-006 6.255125801728736E-006 6.494107327633880E-006 6.742218279658475E-006 6.999807347628810E-006 7.267236535994815E-006 7.544881666463195E-006 7.833132916064512E-006 8.132395358881658E-006 8.443089525711997E-006 8.765652009774613E-006 9.100536071651385E-006 9.448212269124712E-006 9.809169134003226E-006 1.018391383907559E-005 1.057297291841984E-005 1.097689300915012E-005 1.139624160961089E-005 1.183160788494586E-005 1.228360348263982E-005 1.275286339723857E-005 1.324004686163694E-005 1.374583826780430E-005 1.427094812729677E-005 1.481611405860676E-005 1.538210184073838E-005 1.596970647440687E-005 1.657975329059903E-005 1.721309912145622E-005 1.787063349072257E-005 1.855327984898390E-005 1.926199690647288E-005 1.999777992681752E-005 2.076166216624097E-005 2.155471626632855E-005 2.237805581318091E-005 2.323283687823840E-005 2.412025961045262E-005 2.504156994659740E-005 2.599806134401798E-005 2.699107657869385E-005 2.802200967637424E-005 2.909230777092455E-005 3.020347322022464E-005 3.135706564881058E-005 3.255470417104518E-005 3.379806960740829E-005 3.508890688305059E-005 3.642902742586250E-005 3.782031173905529E-005 3.926471199241400E-005 4.076425475780475E-005 4.232104388043670E-005 4.393726335421076E-005 4.561518041012286E-005 4.735714869148288E-005 4.916561149505409E-005 5.104310524267345E-005 5.299226295651114E-005 5.501581798739606E-005 5.711660780342364E-005 5.929757793124854E-005 6.156178609600669E-005 6.391240648185616E-005 6.635273410973970E-005 6.888618949689039E-005 7.151632336606233E-005 7.424682162902455E-005 7.708151049500334E-005 8.002436181174821E-005 8.307949858013370E-005 8.625120070430814E-005 8.954391093837857E-005 9.296224107040582E-005 9.651097831866829E-005 1.001950920102199E-004 1.040197404530251E-004 1.079902781355292E-004 1.121122631341363E-004 1.163914648430946E-004 1.208338719797623E-004 1.254457008698534E-004 1.302334041088751E-004 1.352036794686023E-004 1.403634791960703E-004 1.457200196392902E-004 1.512807912374557E-004 1.570535688790054E-004 1.630464226959101E-004 1.692677291611272E-004 1.757261827245505E-004 1.824308077934480E-004 1.893909712024339E-004 1.966163951476740E-004 2.041171705970475E-004 2.119037712040483E-004 2.199870677564695E-004 2.283783431318664E-004 2.370893078497801E-004 2.461321161721155E-004 2.555193828416446E-004 2.652642003971843E-004 2.753801571732507E-004 2.858813559643730E-004 2.967824333506764E-004 3.080985797968536E-004 3.198455604370279E-004 3.320397366988037E-004 3.446980886569847E-004 3.578382382875742E-004 3.714784735230394E-004 3.856377732342205E-004 4.003358331303277E-004 4.155930926071826E-004 4.314307625838544E-004 4.478708543955323E-004 4.649362096993805E-004 4.826505315477065E-004 5.010384165333897E-004 5.201253881767212E-004 5.399379314973896E-004 5.605035288881062E-004 5.818506972635081E-004 6.040090265873870E-004 6.270092198390212E-004 6.508831343725218E-004 6.756638248396510E-004 7.013855876482414E-004 7.280840070557609E-004 7.557960029086583E-004 7.845598801446242E-004 8.144153800592482E-004 8.454037334532681E-004 8.775677156773857E-004 9.109517036679827E-004 9.456017350427324E-004 9.815655693063805E-004 1.018892751267253E-003 1.057634676704679E-003 1.097844660411658E-003 1.139578006627625E-003 1.182892082022457E-003 1.227846391240283E-003 1.274502655128985E-003 1.322924891755284E-003 1.373179500262325E-003 1.425335347696258E-003 1.479463858864469E-003 1.535639109376619E-003 1.593937921907643E-003 1.654439965851520E-003 1.717227860417234E-003 1.782387281319472E-003 1.850007071154860E-003 1.920179353602622E-003 1.992999651536377E-003 2.068567009196745E-003 2.146984118554058E-003 2.228357449956642E-003 2.312797387241780E-003 2.400418367409417E-003 2.491339025002393E-003 2.585682341357416E-003 2.683575798831307E-003 2.785151540199217E-003 2.890546533313335E-003 2.999902741230822E-003 3.113367297936762E-003 3.231092689822706E-003 3.353236943083268E-003 3.479963817196411E-003 3.611443004652853E-003 3.747850337091314E-003 3.889367998028131E-003 4.036184742330894E-003 4.188496122621422E-003 4.346504722777497E-003 4.510420398724298E-003 4.680460526653645E-003 4.856850258895113E-003 5.039822787572242E-003 5.229619616257689E-003 5.426490839771517E-003 5.630695432319148E-003 5.842501544138176E-003 6.062186806810283E-003 6.290038647425420E-003 6.526354611755007E-003 6.771442696595936E-003 7.025621691440089E-003 7.289221529622269E-003 7.562583649088404E-003 7.846061362922587E-003 8.140020239764329E-003 8.444838494222524E-003 8.760907387416087E-003 9.088631637708384E-003 9.428429841743143E-003 9.780734905845169E-003 1.014599448781936E-002 1.052467144920631E-002 1.091724431799373E-002 1.132420776177995E-002 1.174607307135764E-002 1.218336865466201E-002 1.263664054099529E-002 1.310645289541701E-002 1.359338854313833E-002 1.409804950375689E-002 1.462105753508194E-002 1.516305468631288E-002 1.572470386022790E-002 1.630668938404707E-002 1.690971758855593E-002 1.753451739499610E-002 1.818184090922701E-002 1.885246402253597E-002 1.954718701845144E-002 2.026683518480234E-002 2.101225943022308E-002 2.178433690418962E-002 2.258397161958525E-002 2.341209507672198E-002 2.426966688761279E-002 2.515767539918102E-002 2.607713831400600E-002 2.702910330704405E-002 2.801464863665145E-002 2.903488374809846E-002 3.009094986760555E-002 3.118402058478252E-002 3.231530242119162E-002 3.348603538256395E-002 3.469749349203598E-002 3.595098530156149E-002 3.724785437846390E-002 3.858947976386202E-002 3.997727639949712E-002 4.141269551923006E-002 4.289722500124399E-002 4.443238967672346E-002 4.601975159050394E-002 4.766091020889628E-002 4.935750256961349E-002 5.111120336838424E-002 5.292372497654984E-002 5.479681738356599E-002 5.673226805802081E-002 5.873190172038776E-002 6.079758002037434E-002 6.293120111133273E-002 6.513469911380151E-002 6.741004345983699E-002 6.975923810937415E-002 7.218432062941127E-002 7.468736112639501E-002 7.727046102170136E-002 7.993575165967752E-002 8.268539273723585E-002 8.552157054351130E-002 8.844649599764987E-002 9.146240247229775E-002 9.457154338991146E-002 9.777618957853640E-002 1.010786263732468E-001 1.044811504490037E-001 1.079860663702463E-001 1.115956828420964E-001 1.153123086477805E-001 1.191382482563494E-001 1.230757970845858E-001 1.271272363966487E-001 1.312948278247882E-001 1.355808074942839E-001 1.399873797356314E-001 1.445167103669872E-001 1.491709195298852E-001 1.539520740613964E-001 1.588621793861267E-001 1.639031709117876E-001 1.690769049125695E-001 1.743851488851412E-001 1.798295713628834E-001 1.854117311749209E-001 1.911330661376111E-001 1.969948811675293E-001 2.029983358065099E-001 2.091444311511265E-001 2.154339961810610E-001 2.218676734831310E-001 2.284459043704389E-001 2.351689133990443E-001 2.420366922879161E-001 2.490489832516354E-001 2.562052617593790E-001 2.635047187383014E-001 2.709462422443431E-001 2.785283986289840E-001 2.862494132363807E-001 2.941071506717599E-001 3.020990946889804E-001 3.102223277526713E-001 3.184735103385146E-001 3.268488600439651E-001 3.353441305909645E-001 3.439545908122139E-001 3.526750037230362E-001 3.614996057920600E-001 3.704220865357056E-001 3.794355685737595E-001 3.885325882962817E-001 3.977050773054628E-001 4.069443448099839E-001 4.162410611637771E-001 4.255852427557066E-001 4.349662384717160E-001 4.443727179660036E-001 4.537926619929828E-001 4.632133550667890E-001 4.726213807298112E-001 4.820026197260656E-001 4.913422513887432E-001 5.006247585639640E-001 5.098339364042032E-001 5.189529053747318E-001 5.279641288245231E-001 5.368494354788147E-001 5.455900472136971E-001 5.541666124731146E-001 5.625592456850347E-001 5.707475730258702E-001 5.787107848697406E-001 5.864276952414127E-001 5.938768085680630E-001 6.010363939945722E-001 6.078845674894666E-001 6.143993819227633E-001 6.205589252424955E-001 6.263414268125796E-001 6.317253719002787E-001 6.366896242161890E-001 6.412135563125314E-001 6.452771875361600E-001 6.488613291103874E-001 6.519477357839393E-001 6.545192633360933E-001 6.565600310635351E-001 6.580555881972905E-001 6.589930830070664E-001 6.593614331460886E-001 6.591514955728578E-001 6.583562341583087E-001 6.569708828491798E-001 6.549931020130987E-001 6.524231253404559E-001 6.492638944258298E-001 6.455211779012452E-001 6.412036717494828E-001 6.363230771932656E-001 6.308941523415613E-001 6.249347335843310E-001 6.184657225698391E-001 6.115110344828024E-001 6.040975032769577E-001 5.962547395128366E-001 5.880149365220432E-001 5.794126207757631E-001 5.704843425904825E-001 5.612683036719294E-001 5.518039184930629E-001 5.421313071378241E-001 5.322907180336834E-001 5.223218799561704E-001 5.122632838305263E-001 5.021513961905094E-001 4.920198076913547E-001 4.818983218195192E-001 4.718119908987229E-001 4.617801086585852E-001 4.518151710017334E-001 4.419218191642180E-001 4.320985286509898E-001 4.223482535956552E-001 4.126756581404888E-001 4.030851847235713E-001 3.935810584295034E-001 3.841672914347134E-001 3.748476875274949E-001 3.656258466841479E-001 3.565051696837331E-001 3.474888627450977E-001 3.385799418545369E-001 3.297812348595482E-001 3.210953918938311E-001 3.125248873409286E-001 3.040720240481731E-001 2.957389378178564E-001 2.875276018378900E-001 2.794398310443515E-001 2.714772864093004E-001 2.636414791482162E-001 2.559337748423268E-001 2.483553974719850E-001 2.409074333581169E-001 2.335908350095803E-001 2.264064248750717E-001 2.193548989989620E-001 2.124368305811602E-001 2.056526734417828E-001 1.990027653920343E-001 1.924873315133099E-001 1.861064873470744E-001 1.798602419985862E-001 1.737485011580031E-001 1.677710700428197E-001 1.619276562659720E-001 1.562178726342621E-001 1.506412398820465E-001 1.451971893453604E-001 1.398850655818343E-001 1.347041289419030E-001 1.296535580968876E-001 1.247324525295784E-001 1.199398349929368E-001 1.152746539424797E-001 1.107357859478132E-001 1.063220380886332E-001 1.020321503403233E-001 9.786479795405365E-002 9.381859383600720E-002 8.989209093005732E-002 8.608378460787539E-002 8.239211507006973E-002 7.881546976155629E-002 7.535218580392412E-002 7.200055244710923E-002 6.875881354221325E-002 6.562517003681465E-002 6.259778249362054E-002 5.967477363279467E-002 5.685423089778798E-002 5.413420904398250E-002 5.151273274895270E-002 4.898779924264939E-002 4.655738095532137E-002 4.421942818052201E-002 4.197187175009434E-002 3.981262571760272E-002 3.773959004627781E-002 3.575065329717098E-002 3.384369531287851E-002 3.201658989189260E-002 3.026720744837303E-002 2.859341765191070E-002 2.699309204167105E-002 2.546410660915902E-002 2.400434434376940E-002 2.261169773521529E-002 2.128407122692625E-002 2.001938361455124E-002 1.881557038377219E-002 1.767058598176097E-002 1.658240601677609E-002 1.554902938059903E-002 1.456848028875069E-002 1.363881023370587E-002 1.275809984663290E-002 1.192446066352564E-002 1.113603679196244E-002 1.039100647511773E-002 9.687583550064924E-003 9.024018797838736E-003 8.398601183169430E-003 7.809658982256268E-003 7.255560797409013E-003 6.734716457851923E-003 6.245577806450024E-003 5.786639372579764E-003 5.356438931821817E-003 4.953557953599631E-003 4.576621938320861E-003 4.224300645996253E-003 3.895308218710494E-003 3.588403199698478E-003 3.302388452136918E-003 3.036110981093134E-003 2.788461662378277E-003 2.558374882330202E-003 2.344828092800240E-003 2.146841285837400E-003 1.963476392752577E-003 1.793836612403654E-003 1.637065673669923E-003 1.492347037181196E-003 1.358903041433543E-003 1.235993998460668E-003 1.122917244237980E-003 1.019006148976705E-003 9.236290924190064E-004 8.361884091731926E-004 7.561193090325519E-004 6.828887771032711E-004 6.159944584283916E-004 5.549635316373101E-004 4.993515759758374E-004 4.487414358820377E-004 4.027420870723639E-004 3.609875078837152E-004 3.231355593984223E-004 2.888668776455333E-004 2.578837809362384E-004 2.299091951482716E-004 2.046855995333589E-004 1.819739953769161E-004 1.615528995964019E-004 1.432173651251050E-004 1.267780296892875E-004 1.120601943565794E-004 9.890293300637933E-005 8.715823365381942E-005 7.669017234717210E-005 6.737412015516420E-005 5.909598356630605E-005 5.175147842435931E-005 4.524563724366401E-005 3.949373126250120E-005 3.441676219900103E-005 2.994283833398299E-005 2.600684319229480E-005 2.254989510862814E-005 1.951883999379856E-005 1.686577615861811E-005 1.454761002270830E-005 1.252564150497955E-005 1.076517786917427E-005 9.235174781591017E-006 7.907903328605752E-006 6.758641738591414E-006 5.765390555974556E-006 4.908610024093870E-006 4.170978447849838E-006 3.537170326442411E-006 2.993653070351649E-006 2.528501144746776E-006 2.131226513033937E-006 1.792624289235074E-006 1.504632545454271E-006 1.260205260644438E-006 1.053197438729309E-006 8.782614674508777E-007 7.307538337021712E-007 6.066513561888631E-007 5.024761416831330E-007 4.152285165558818E-007 3.423272303915461E-007 2.815562730234056E-007 2.310176900242677E-007 1.890898243242666E-007 1.543904530089964E-007 1.257443283103111E-007 1.021546701993523E-007 8.277819471376588E-008 6.690329711118653E-008 5.393104207551144E-008 4.335864447044322E-008 3.476515351636368E-008 2.779908076107174E-008 2.216773783894365E-008 1.762807379888850E-008 1.397882377514701E-008 1.105380103473522E-008 8.716183030005150E-009 6.853659092492067E-009 5.374322911262053E-009 4.203207039183851E-009 3.279369465038019E-009 2.553453887000846E-009 1.985655841775671E-009 1.544036413221283E-009 1.196804936573147E-009 9.246636215058301E-010 7.120669203645313E-010 5.465329360720652E-010 4.180728666989693E-010 3.187198680554504E-010 2.421413552081863E-010 1.833210809276113E-010 1.382993545986528E-010 1.039615283382060E-010 7.786640546941886E-011 5.810754578271211E-011 4.320157595714915E-011 3.199858401454973E-011 2.361050374233576E-011 1.735409682187414E-011 1.270573333746526E-011 9.265670128045952E-012 6.729944195705234E-012 4.868346728536488E-012 3.507232475881213E-012 2.516158209152862E-012 1.797540632970733E-012 1.278685156011197E-012 9.056682274333254E-013 6.386624955508363E-013 4.483801132779945E-013 3.133787120355115E-013 2.180299365987794E-013 1.509945294640101E-013 1.040829017174594E-013 7.140769145928175E-014 4.875644438592391E-014 3.312944623292373E-014 2.240086545990172E-014 1.507151506255680E-014 1.008935037194298E-014 6.719794887398040E-015 4.452535062837133E-015 2.934869833437308E-015 1.924295648324659E-015 1.254952076380718E-015 8.140019491606027E-016 5.250938222263706E-016 3.368459743200992E-016 2.148712216449727E-016 1.362845584479678E-016 8.594195668211238E-017 5.387934393494170E-017 3.357884296974808E-017 2.080190038380752E-017 1.280858737004114E-017 7.838393558497477E-018 4.767017592887862E-018 2.880886394496145E-018 1.729938243083828E-018 1.032107949209160E-018 6.117503562003567E-019 3.601985887191928E-019 2.106648528149893E-019 1.223735729482902E-019 7.059783630172049E-020 4.044506932455398E-020 2.300763584533375E-020 1.299486938769811E-020 7.286620740427670E-021 4.055972989171349E-021 2.240982190366037E-021 1.228897145137711E-021 6.687830401916670E-022 3.611651543644988E-022 1.935241084112533E-022 1.028798177410943E-022 5.425601280875899E-023 2.838208510859850E-023 1.472566992656004E-023 7.576963842757739E-024 3.865976791413103E-024 1.955784763010313E-024 9.809209214540065E-025 4.876978142061692E-025 2.403386678791730E-025 1.173826945431850E-025 5.681238628290216E-026 2.724525337897760E-026 1.294485655133862E-026 6.092720851193719E-027 2.840412423125520E-027 1.311461060345454E-027 5.996259290908056E-028 2.714581506697442E-028 1.216658354950551E-028 5.397874603622152E-029 2.370335163505426E-029 1.030085504857932E-029 4.429516910871111E-030 1.884522515767029E-030 7.931398264479622E-031 3.301737135074533E-031 1.359313547014949E-031 1.286689490478864E-006 1.302874051885625E-006 1.319262190013860E-006 1.335856465543499E-006 1.352659471363860E-006 1.369673832978795E-006 1.386902208916929E-006 1.404347291147062E-006 1.422011805498786E-006 1.439898512088419E-006 1.458010205750262E-006 1.476349716473306E-006 1.494919909843423E-006 1.513723687491115E-006 1.532763987544908E-006 1.552043785090429E-006 1.571566092635280E-006 1.591333960579741E-006 1.611350477693405E-006 1.631618771597811E-006 1.652142009255125E-006 1.672923397462998E-006 1.693966183355627E-006 1.715273654911132E-006 1.736849141465310E-006 1.758696014231842E-006 1.780817686829057E-006 1.803217615813320E-006 1.825899301219122E-006 1.848866287105971E-006 1.872122162112152E-006 1.895670560015466E-006 1.919515160301012E-006 1.943659688736112E-006 1.968107917952479E-006 1.992863668035688E-006 2.017930807122070E-006 2.043313252003130E-006 2.069014968737540E-006 2.095039973270858E-006 2.121392332063009E-006 2.148076162723693E-006 2.175095634655761E-006 2.202454969706702E-006 2.230158442828308E-006 2.258210382744646E-006 2.286615172628427E-006 2.315377250785886E-006 2.344501111350282E-006 2.373991304984116E-006 2.403852439590174E-006 2.434089181031524E-006 2.464706253860571E-006 2.495708442057269E-006 2.527100589776641E-006 2.558887602105675E-006 2.591074445829762E-006 2.623666150208756E-006 2.656667807762823E-006 2.690084575068142E-006 2.723921673562641E-006 2.758184390361850E-006 2.792878079085033E-006 2.828008160691688E-006 2.863580124328595E-006 2.899599528187507E-006 2.936072000373611E-006 2.973003239784954E-006 3.010399017002899E-006 3.048265175193785E-006 3.086607631021943E-006 3.125432375574174E-006 3.164745475295880E-006 3.204553072938947E-006 3.244861388521587E-006 3.285676720300200E-006 3.327005445753501E-006 3.368854022579020E-006 3.411228989702119E-006 3.454136968297724E-006 3.497584662824888E-006 3.541578862074382E-006 3.586126440229453E-006 3.631234357939936E-006 3.676909663409871E-006 3.723159493498777E-006 3.769991074836831E-006 3.817411724954033E-006 3.865428853423575E-006 3.914049963019617E-006 3.963282650889602E-006 4.013134609741329E-006 4.063613629044948E-006 4.114727596250093E-006 4.166484498018308E-006 4.218892421470971E-006 4.271959555452927E-006 4.325694191812024E-006 4.380104726694715E-006 4.435199661857986E-006 4.490987605997764E-006 4.547477276094041E-006 4.604677498772930E-006 4.662597211685834E-006 4.721245464905994E-006 4.780631422342554E-006 4.840764363172460E-006 4.901653683290332E-006 4.963308896776608E-006 5.025739637384144E-006 5.088955660043482E-006 5.152966842387110E-006 5.217783186292824E-006 5.283414819446592E-006 5.349871996924985E-006 5.417165102797576E-006 5.485304651749453E-006 5.554301290724176E-006 5.624165800587380E-006 5.694909097811310E-006 5.766542236180539E-006 5.839076408519158E-006 5.912522948439660E-006 5.986893332113838E-006 6.062199180065986E-006 6.138452258988600E-006 6.215664483580982E-006 6.293847918410903E-006 6.373014779799731E-006 6.453177437731259E-006 6.534348417784557E-006 6.616540403091087E-006 6.699766236316486E-006 6.784038921667265E-006 6.869371626922736E-006 6.955777685492497E-006 7.043270598499834E-006 7.131864036891272E-006 7.221571843572693E-006 7.312408035572342E-006 7.404386806230989E-006 7.497522527419687E-006 7.591829751785382E-006 7.687323215024843E-006 7.784017838187108E-006 7.881928730004939E-006 7.981071189255581E-006 8.081460707151261E-006 8.183112969759703E-006 8.286043860455097E-006 8.390269462399929E-006 8.495806061058027E-006 8.602670146739145E-006 8.710878417175656E-006 8.820447780131615E-006 8.931395356044591E-006 9.043738480700810E-006 9.157494707943878E-006 9.272681812417640E-006 9.389317792343492E-006 9.507420872332630E-006 9.627009506233707E-006 9.748102380016283E-006 9.870718414690524E-006 9.994876769263706E-006 1.012059684373377E-005 1.024789828212072E-005 1.037680097553595E-005 1.050732506529032E-005 1.063949094604127E-005 1.077331926897954E-005 1.090883094505595E-005 1.104604714824879E-005 1.118498931887230E-005 1.132567916692678E-005 1.146813867549080E-005 1.161239010415613E-005 1.175845599250587E-005 1.190635916363624E-005 1.205612272772283E-005 1.220777008563152E-005 1.236132493257502E-005 1.251681126181523E-005 1.267425336841229E-005 1.283367585302068E-005 1.299510362573318E-005 1.315856190997314E-005 1.332407624643566E-005 1.349167249707838E-005 1.366137684916250E-005 1.383321581934460E-005 1.400721625781990E-005 1.418340535251774E-005 1.436181063334963E-005 1.454245997651102E-005 1.472538160883686E-005 1.491060411221226E-005 1.509815642803839E-005 1.528806786175468E-005 1.548036808741785E-005 1.567508715233856E-005 1.587225548177637E-005 1.607190388369377E-005 1.627406355356998E-005 1.647876607927537E-005 1.668604344600709E-005 1.689592804128688E-005 1.710845266002167E-005 1.732365050962785E-005 1.754155521522014E-005 1.776220082486541E-005 1.798562181490294E-005 1.821185309533130E-005 1.844093001526323E-005 1.867288836844903E-005 1.890776439886935E-005 1.914559480639853E-005 1.938641675253892E-005 1.963026786622755E-005 1.987718624971575E-005 2.012721048452267E-005 2.038037963746381E-005 2.063673326675529E-005 2.089631142819493E-005 2.115915468142110E-005 2.142530409625024E-005 2.169480125909422E-005 2.196768827945823E-005 2.224400779652050E-005 2.252380298579497E-005 2.280711756587738E-005 2.309399580527657E-005 2.338448252933152E-005 2.367862312721543E-005 2.397646355902799E-005 2.427805036297661E-005 2.458343066264833E-005 2.489265217437293E-005 2.520576321467882E-005 2.552281270784262E-005 2.584385019353365E-005 2.616892583455491E-005 2.649809042468084E-005 2.683139539659432E-005 2.716889282992301E-005 2.751063545937700E-005 2.785667668298882E-005 2.820707057045707E-005 2.856187187159490E-005 2.892113602488497E-005 2.928491916614191E-005 2.965327813728364E-005 3.002627049521324E-005 3.040395452081229E-005 3.078638922804763E-005 3.117363437319232E-005 3.156575046416295E-005 3.196279876997412E-005 3.236484133031197E-005 3.277194096522829E-005 3.318416128495618E-005 3.360156669984944E-005 3.402422243044705E-005 3.445219451766399E-005 3.488554983311055E-005 3.532435608954121E-005 3.576868185143515E-005 3.621859654570964E-005 3.667417047256828E-005 3.713547481648577E-005 3.760258165733080E-005 3.807556398162888E-005 3.855449569396671E-005 3.903945162854018E-005 3.953050756084763E-005 4.002774021953006E-005 4.053122729836032E-005 4.104104746838319E-005 4.155728039020808E-005 4.208000672645650E-005 4.260930815436592E-005 4.314526737855228E-005 4.368796814393305E-005 4.423749524881281E-005 4.479393455813343E-005 4.535737301689087E-005 4.592789866372100E-005 4.650560064465607E-005 4.709056922705422E-005 4.768289581370437E-005 4.828267295710838E-005 4.888999437394299E-005 4.950495495970373E-005 5.012765080353276E-005 5.075817920323354E-005 5.139663868047406E-005 5.204312899618178E-005 5.269775116613179E-005 5.336060747673123E-005 5.403180150100235E-005 5.471143811476638E-005 5.539962351303119E-005 5.609646522658507E-005 5.680207213879936E-005 5.751655450264200E-005 5.824002395790564E-005 5.897259354865225E-005 5.971437774087706E-005 6.046549244039498E-005 6.122605501095160E-005 6.199618429256262E-005 6.277600062008323E-005 6.356562584201187E-005 6.436518333953001E-005 6.517479804578165E-005 6.599459646539519E-005 6.682470669425105E-005 6.766525843949804E-005 6.851638303982123E-005 6.937821348596512E-005 7.025088444151461E-005 7.113453226393785E-005 7.202929502589344E-005 7.293531253680578E-005 7.385272636471199E-005 7.478167985838365E-005 7.572231816972646E-005 7.667478827646211E-005 7.763923900509530E-005 7.861582105416989E-005 7.960468701781736E-005 8.060599140960162E-005 8.161989068666389E-005 8.264654327417128E-005 8.368610959007276E-005 8.473875207016706E-005 8.580463519348536E-005 8.688392550799362E-005 8.797679165661846E-005 8.908340440359990E-005 9.020393666117630E-005 9.133856351660442E-005 9.248746225951986E-005 9.365081240964155E-005 9.482879574482493E-005 9.602159632946775E-005 9.722940054327372E-005 9.845239711037750E-005 9.969077712883664E-005 1.009447341004941E-004 1.022144639612173E-004 1.035001651115162E-004 1.048020384475484E-004 1.061202873925126E-004 1.074551179284389E-004 1.088067386283771E-004 1.101753606889913E-004 1.115611979635642E-004 1.129644669954172E-004 1.143853870517496E-004 1.158241801579059E-004 1.172810711320716E-004 1.187562876204079E-004 1.202500601326267E-004 1.217626220780145E-004 1.232942098019090E-004 1.248450626226349E-004 1.264154228689040E-004 1.280055359176868E-004 1.296156502325599E-004 1.312460174025362E-004 1.328968921813837E-004 1.345685325274395E-004 1.362611996439242E-004 1.379751580197640E-004 1.397106754709261E-004 1.414680231822750E-004 1.432474757499550E-004 1.450493112243060E-004 1.468738111533203E-004 1.487212606266450E-004 1.505919483201389E-004 1.524861665409905E-004 1.544042112734031E-004 1.563463822248551E-004 1.583129828729434E-004 1.603043205128152E-004 1.623207063051971E-004 1.643624553250287E-004 1.664298866107094E-004 1.685233232139635E-004 1.706430922503341E-004 1.727895249503120E-004 1.749629567111083E-004 1.771637271490789E-004 1.793921801528089E-004 1.816486639368652E-004 1.839335310962256E-004 1.862471386613932E-004 1.885898481542056E-004 1.909620256443447E-004 1.933640418065597E-004 1.957962719786099E-004 1.982590962199372E-004 2.007528993710770E-004 2.032780711138175E-004 2.058350060321166E-004 2.084241036737851E-004 2.110457686129471E-004 2.137004105132877E-004 2.163884441920956E-004 2.191102896851139E-004 2.218663723122055E-004 2.246571227438483E-004 2.274829770684646E-004 2.303443768606013E-004 2.332417692499675E-004 2.361756069913413E-004 2.391463485353581E-004 2.421544581001905E-004 2.452004057441301E-004 2.482846674390856E-004 2.514077251450038E-004 2.545700668852314E-004 2.577721868228238E-004 2.610145853378173E-004 2.642977691054734E-004 2.676222511755099E-004 2.709885510523297E-004 2.743971947762611E-004 2.778487150058215E-004 2.813436511010186E-004 2.848825492077013E-004 2.884659623429722E-004 2.920944504816788E-004 2.957685806439938E-004 2.994889269840999E-004 3.032560708799919E-004 3.070706010244123E-004 3.109331135169310E-004 3.148442119571899E-004 3.188045075393183E-004 3.228146191475442E-004 3.268751734530064E-004 3.309868050117917E-004 3.351501563642062E-004 3.393658781352985E-004 3.436346291366534E-004 3.479570764694675E-004 3.523338956289263E-004 3.567657706098973E-004 3.612533940139583E-004 3.657974671577743E-004 3.703987001828448E-004 3.750578121666338E-004 3.797755312351031E-004 3.845525946766684E-004 3.893897490575904E-004 3.942877503388263E-004 3.992473639943547E-004 4.042693651309938E-004 4.093545386097371E-004 4.145036791686161E-004 4.197175915471196E-004 4.249970906121830E-004 4.303430014857693E-004 4.357561596740626E-004 4.412374111982940E-004 4.467876127272232E-004 4.524076317112904E-004 4.580983465184676E-004 4.638606465718288E-004 4.696954324888552E-004 4.756036162225066E-004 4.815861212040758E-004 4.876438824878490E-004 4.937778468975990E-004 4.999889731749294E-004 5.062782321294987E-004 5.126466067911467E-004 5.190950925639427E-004 5.256246973821899E-004 5.322364418684004E-004 5.389313594932743E-004 5.457104967377066E-004 5.525749132568435E-004 5.595256820462225E-004 5.665638896100120E-004 5.736906361313917E-004 5.809070356450877E-004 5.882142162120985E-004 5.956133200966384E-004 6.031055039453244E-004 6.106919389686374E-004 6.183738111246894E-004 6.261523213053216E-004 6.340286855245678E-004 6.420041351095122E-004 6.500799168935690E-004 6.582572934122233E-004 6.665375431012581E-004 6.749219604975050E-004 6.834118564421417E-004 6.920085582865845E-004 7.007134101009967E-004 7.095277728854526E-004 7.184530247837938E-004 7.274905613002029E-004 7.366417955185440E-004 7.459081583244942E-004 7.552910986305142E-004 7.647920836036826E-004 7.744125988964384E-004 7.841541488802727E-004 7.940182568823999E-004 8.040064654254565E-004 8.141203364702619E-004 8.243614516616798E-004 8.347314125776290E-004 8.452318409812776E-004 8.558643790764670E-004 8.666306897664047E-004 8.775324569156744E-004 8.885713856156023E-004 8.997492024530259E-004 9.110676557825151E-004 9.225285160020856E-004 9.341335758324499E-004 9.458846505998588E-004 9.577835785225851E-004 9.698322210010821E-004 9.820324629118843E-004 9.943862129052896E-004 1.006895403706879E-003 1.019561992422922E-003 1.032387960849720E-003 1.045375315786952E-003 1.058526089355054E-003 1.071842339316718E-003 1.085326149402530E-003 1.098979629640838E-003 1.112804916691887E-003 1.126804174186281E-003 1.140979593067842E-003 1.155333391940917E-003 1.169867817422196E-003 1.184585144497108E-003 1.199487676880848E-003 1.214577747384108E-003 1.229857718283573E-003 1.245329981697262E-003 1.260996959964753E-003 1.276861106032384E-003 1.292924903843497E-003 1.309190868733784E-003 1.325661547831818E-003 1.342339520464840E-003 1.359227398569875E-003 1.376327827110245E-003 1.393643484497573E-003 1.411177083019339E-003 1.428931369272089E-003 1.446909124600340E-003 1.465113165541313E-003 1.483546344275536E-003 1.502211549083420E-003 1.521111704807901E-003 1.540249773323222E-003 1.559628754009952E-003 1.579251684236336E-003 1.599121639846058E-003 1.619241735652527E-003 1.639615125939772E-003 1.660245004970051E-003 1.681134607498261E-003 1.702287209293264E-003 1.723706127666240E-003 1.745394722006143E-003 1.767356394322398E-003 1.789594589794943E-003 1.812112797331707E-003 1.834914550133665E-003 1.858003426267564E-003 1.881383049246469E-003 1.905057088618203E-003 1.929029260561857E-003 1.953303328492457E-003 1.977883103673927E-003 2.002772445840490E-003 2.027975263826633E-003 2.053495516205758E-003 2.079337211937693E-003 2.105504411025159E-003 2.132001225179377E-003 2.158831818494957E-003 2.186000408134180E-003 2.213511265020898E-003 2.241368714544137E-003 2.269577137271622E-003 2.298140969673347E-003 2.327064704855387E-003 2.356352893304109E-003 2.386010143640949E-003 2.416041123387965E-003 2.446450559744322E-003 2.477243240373904E-003 2.508424014204251E-003 2.539997792237011E-003 2.571969548370114E-003 2.604344320231862E-003 2.637127210027170E-003 2.670323385396139E-003 2.703938080285210E-003 2.737976595831124E-003 2.772444301257875E-003 2.807346634786983E-003 2.842689104561225E-003 2.878477289582154E-003 2.914716840661623E-003 2.951413481387567E-003 2.988573009104347E-003 3.026201295907902E-003 3.064304289655984E-003 3.102888014993809E-003 3.141958574395362E-003 3.181522149220698E-003 3.221585000789547E-003 3.262153471471524E-003 3.303233985793289E-003 3.344833051562996E-003 3.386957261012362E-003 3.429613291956729E-003 3.472807908973459E-003 3.516547964599071E-003 3.560840400545485E-003 3.605692248935742E-003 3.651110633559681E-003 3.697102771149912E-003 3.743675972678555E-003 3.790837644675171E-003 3.838595290566375E-003 3.886956512037556E-003 3.935929010417167E-003 3.985520588084168E-003 4.035739149899030E-003 4.086592704658885E-003 4.138089366577357E-003 4.190237356789571E-003 4.243045004883007E-003 4.296520750454701E-003 4.350673144695417E-003 4.405510852001495E-003 4.461042651614866E-003 4.517277439292047E-003 4.574224229002702E-003 4.631892154658480E-003 4.690290471872929E-003 4.749428559753120E-003 4.809315922723867E-003 4.869962192385243E-003 4.931377129404231E-003 4.993570625441445E-003 5.056552705113613E-003 5.120333527992915E-003 5.184923390643975E-003 5.250332728699491E-003 5.316572118975525E-003 5.383652281627422E-003 5.451584082347487E-003 5.520378534605404E-003 5.590046801932566E-003 5.660600200251572E-003 5.732050200251851E-003 5.804408429812935E-003 5.877686676476416E-003 5.951896889968036E-003 6.027051184771283E-003 6.103161842753800E-003 6.180241315848181E-003 6.258302228788547E-003 6.337357381904561E-003 6.417419753974449E-003 6.498502505138626E-003 6.580618979875774E-003 6.663782710043061E-003 6.748007417982334E-003 6.833307019694272E-003 6.919695628082364E-003 7.007187556268862E-003 7.095797320984695E-003 7.185539646035606E-003 7.276429465846783E-003 7.368481929088231E-003 7.461712402383410E-003 7.556136474103609E-003 7.651769958250527E-003 7.748628898430026E-003 7.846729571919484E-003 7.946088493831981E-003 8.046722421379958E-003 8.148648358241743E-003 8.251883559033939E-003 8.356445533893034E-003 8.462352053169787E-003 8.569621152239750E-003 8.678271136433739E-003 8.788320586092125E-003 8.899788361746708E-003 9.012693609434517E-003 9.127055766147642E-003 9.242894565423468E-003 9.360230043080111E-003 9.479082543101513E-003 9.599472723677338E-003 9.721421563402657E-003 9.844950367642651E-003 9.970080775068091E-003 1.009683476436688E-002 1.022523466113793E-002 1.035530314497325E-002 1.048706325673470E-002 1.062053840603202E-002 1.075575237890890E-002 1.089272934574425E-002 1.103149386937601E-002 1.117207091345507E-002 1.131448585103745E-002 1.145876447342268E-002 1.160493299924720E-002 1.175301808384147E-002 1.190304682886006E-002 1.205504679219437E-002 1.220904599817769E-002 1.236507294809325E-002 1.252315663099570E-002 1.268332653485719E-002 1.284561265804981E-002 1.301004552117604E-002 1.317665617926012E-002 1.334547623431290E-002 1.351653784828386E-002 1.368987375641429E-002 1.386551728100597E-002 1.404350234562079E-002 1.422386348972669E-002 1.440663588380643E-002 1.459185534494610E-002 1.477955835292099E-002 1.496978206679719E-002 1.516256434206800E-002 1.535794374834476E-002 1.555595958762318E-002 1.575665191314596E-002 1.596006154888466E-002 1.616623010966341E-002 1.637520002194892E-002 1.658701454533184E-002 1.680171779472537E-002 1.701935476330858E-002 1.723997134624235E-002 1.746361436518749E-002 1.769033159365565E-002 1.792017178322470E-002 1.815318469065194E-002 1.838942110591930E-002 1.862893288124661E-002 1.887177296111040E-002 1.911799541330674E-002 1.936765546109919E-002 1.962080951649324E-002 1.987751521468199E-002 2.013783144970808E-002 2.040181841138990E-002 2.066953762356159E-002 2.094105198367821E-002 2.121642580384049E-002 2.149572485329444E-002 2.177901640246476E-002 2.206636926858287E-002 2.235785386297257E-002 2.265354224005991E-002 2.295350814817570E-002 2.325782708222255E-002 2.356657633828154E-002 2.387983507023583E-002 2.419768434849312E-002 2.452020722089122E-002 2.484748877587527E-002 2.517961620803881E-002 2.551667888612422E-002 2.585876842358337E-002 2.620597875180218E-002 2.655840619609837E-002 2.691614955460599E-002 2.727931018016472E-002 2.764799206533817E-002 2.802230193068918E-002 2.840234931644713E-002 2.878824667770735E-002 2.918010948330842E-002 2.957805631854071E-002 2.998220899184448E-002 3.039269264566400E-002 3.080963587163110E-002 3.123317083025827E-002 3.166343337533052E-002 3.210056318319218E-002 3.254470388713393E-002 3.299600321709480E-002 3.345461314490118E-002 3.392069003527737E-002 3.439439480286961E-002 3.487589307553748E-002 3.536535536417772E-002 3.586295723935504E-002 3.636887951502934E-002 3.688330843967778E-002 3.740643589512550E-002 3.793845960341111E-002 3.847958334202674E-002 3.903001716788736E-002 3.958997765039905E-002 4.015968811401034E-002 4.073937889064916E-002 4.132928758246174E-002 4.192965933528987E-002 4.254074712333820E-002 4.316281204550416E-002 4.379612363386070E-002 4.444096017480200E-002 4.509760904338332E-002 4.576636705140557E-002 4.644754080981857E-002 4.714144710603792E-002 4.784841329679231E-002 4.856877771714323E-002 4.930289010634022E-002 5.005111205120019E-002 5.081381744772406E-002 5.159139298168616E-002 5.238423862895990E-002 5.319276817636486E-002 5.401740976384726E-002 5.485860644883068E-002 5.571681679359589E-002 5.659251547657530E-002 5.748619392846836E-002 5.839836099410771E-002 5.932954362102642E-002 6.028028757569566E-002 6.125115818842043E-002 6.224274112789487E-002 6.325564320643244E-002 6.429049321689474E-002 6.534794280234740E-002 6.642866735947472E-002 6.753336697677702E-002 6.866276740856664E-002 6.981762108576203E-002 7.099870816445066E-002 7.220683761316145E-002 7.344284833974005E-002 7.470761035866431E-002 7.600202599957059E-002 7.732703115767157E-002 7.868359658665196E-002 8.007272923450512E-002 8.149547362260474E-002 8.295291326822406E-002 8.444617215040444E-002 8.597641621894049E-002 8.754485494595858E-002 8.915274291927620E-002 9.080138147639742E-002 9.249212037761374E-002 9.422635951625168E-002 9.600555066361663E-002 9.783119924563098E-002 9.970486614754749E-002 1.016281695424154E-001 1.036027867382044E-001 1.056304560376131E-001 1.077129786036179E-001 1.098522203227370E-001 1.120501136567782E-001 1.143086594725045E-001 1.166299288371785E-001 1.190160647663099E-001 1.214692839081362E-001 1.239918781473855E-001 1.265862161086985E-001 1.292547445377052E-001 1.319999895351505E-001 1.348245576166235E-001 1.377311365673553E-001 1.407224960582011E-001 1.438014879852890E-001 1.469710464919070E-001 1.502341876269852E-001 1.535940085900154E-001 1.570536865074257E-001 1.606164766803004E-001 1.642857102379004E-001 1.680647911257206E-001 1.719571923508257E-001 1.759664514009700E-001 1.800961647475679E-001 1.843499813359863E-001 1.887315949599556E-001 1.932447354102093E-001 1.978931582808859E-001 2.026806333108701E-001 2.076109311312766E-001 2.126878082848668E-001 2.179149903785374E-001 2.232961532264041E-001 2.288349018386773E-001 2.345347471108436E-001 2.403990800689924E-001 2.464311435308592E-001 2.526340010488077E-001 2.590105030109972E-001 2.655632497909844E-001 2.722945518545923E-001 2.792063867566271E-001 2.863003529897046E-001 2.935776206836493E-001 3.010388791974095E-001 3.086842816968288E-001 3.165133868715604E-001 3.245250980134636E-001 3.327175997573878E-001 3.410882928736428E-001 3.496337275996978E-001 3.583495361065434E-001 3.672303648121871E-001 3.762698073798849E-001 3.854603393706260E-001 3.947932556559919E-001 4.042586118362378E-001 4.138451710459707E-001 4.235403576620361E-001 4.333302195503413E-001 4.431994005946382E-001 4.531311253343093E-001 4.631071975928596E-001 4.731080149961094E-001 4.831126012509718E-001 4.930986579736126E-001 5.030426377112952E-001 5.129198395875110E-001 5.227045287079051E-001 5.323700800895678E-001 5.418891474147367E-001 5.512338563608433E-001 5.603760216242816E-001 5.692873860411121E-001 5.779398794243680E-001 5.863058938994935E-001 5.943585716465196E-001 6.020721000746851E-001 6.094220085919626E-001 6.163854603226069E-001 6.229415314084540E-001 6.290714699455490E-001 6.347589262003824E-001 6.399901455645517E-001 6.447541157888548E-001 6.490426604339968E-001 6.528504712321503E-001 6.561750732206174E-001 6.590167181384941E-001 6.613782037301604E-001 6.632646193480638E-001 6.646830216827354E-001 6.656420486869086E-001 6.661514849529151E-001 6.662217981393237E-001 6.658636737622035E-001 6.650875850572868E-001 6.639034460200344E-001 6.623204095226315E-001 6.603468890035704E-001 6.579908854593511E-001 6.552605058383351E-001 6.521641230599405E-001 6.487103739091201E-001 6.449081444621703E-001 6.407665556636605E-001 6.362949490523723E-001 6.315028726330085E-001 6.264000668894392E-001 6.209964509344164E-001 6.153021087900229E-001 6.093272757925994E-001 6.030823251155312E-001 5.965777544030562E-001 5.898241725082034E-001 5.828322863280486E-001 5.756128877296974E-001 5.681768405607782E-001 5.605350677387306E-001 5.526985384137938E-001 5.446782552013741E-001 5.364852414803256E-001 5.281305287546830E-001 5.196251440774551E-001 5.109800975362870E-001 5.022063698020749E-001 4.933148997429357E-001 4.843165721073903E-001 4.752222052820503E-001 4.660425391306276E-001 4.567882229226300E-001 4.474698033616470E-001 4.380977127247203E-001 4.286822571258121E-001 4.192336049179384E-001 4.097617752500138E-001 4.002766267958756E-001 3.907878466743454E-001 3.813049395804400E-001 3.718372171490490E-001 3.623937875734642E-001 3.529835455020781E-001 3.436151622374095E-001 3.342970762622478E-001 3.250374841182169E-001 3.158443316624014E-001 3.067253057278067E-001 2.976878262134129E-001 2.887390386293401E-001 2.798858071222231E-001 2.711347080052755E-001 2.624920238166913E-001 2.539637379290217E-001 2.455555297309270E-001 2.372727704013108E-001 2.291205192942307E-001 2.211035209511988E-001 2.132262027555489E-001 2.054926732414246E-001 1.979067210676980E-001 1.904718146647435E-001 1.831911025594790E-001 1.760674143815010E-001 1.691032625504436E-001 1.623008446419521E-001 1.556620464268735E-001 1.491884455754487E-001 1.428813160154827E-001 1.367416329306661E-001 1.307700783824660E-001 1.249670475363089E-001 1.193326554701534E-001 1.138667445410037E-001 1.085688922825846E-001 1.034384198050550E-001 9.847440066553453E-002 9.367567017631251E-002 8.904083511579006E-002 8.456828380565341E-002 8.025619651640689E-002 7.610255616223580E-002 7.210515924523263E-002 6.826162700831714E-002 6.456941675569634E-002 6.102583329946883E-002 5.762804049096226E-002 5.437307279560702E-002 5.125784687059251E-002 4.827917310521066E-002 4.543376708466886E-002 4.271826093923152E-002 4.012921454182070E-002 3.766312651866294E-002 3.531644503919059E-002 3.308557835318590E-002 3.096690504507449E-002 2.895678397731746E-002 2.705156389700423E-002 2.524759268198919E-002 2.354122620523267E-002 2.192883679838129E-002 2.040682129803431E-002 1.897160866058041E-002 1.761966713392948E-002 1.634751097689604E-002 1.515170671939556E-002 1.402887895897786E-002 1.297571569153052E-002 1.198897317622303E-002 1.106548033692076E-002 1.020214270436212E-002 9.395945905354166E-003 8.643958707092430E-003 7.943335626440545E-003 7.291319115609341E-003 6.685241337147356E-003 6.122525542490370E-003 5.600687069515263E-003 5.117333975599193E-003 4.670167323600094E-003 4.256981138947916E-003 3.875662056669070E-003 3.524188677660921E-003 3.200630653911374E-003 2.903147522553425E-003 2.629987308789130E-003 2.379484917684486E-003 2.150060334720056E-003 1.940216654729716E-003 1.748537958543482E-003 1.573687056212936E-003 1.414403115183824E-003 1.269499191196018E-003 1.137859679011268E-003 1.018437699361088E-003 9.102524377176881E-004 8.123864496628101E-004 7.239829467591723E-004 6.442430759245131E-004 5.724232043776141E-004 5.078322211504281E-004 4.498308519574945E-004 3.978447547813691E-004 3.513234631594704E-004 3.097571609914023E-004 2.726764881910693E-004 2.396500441839210E-004 2.102819802012960E-004 1.842096828063238E-004 1.611015505834441E-004 1.406548653619820E-004 1.225937588085661E-004 1.066672747154483E-004 9.264752683376708E-005 8.032795165417746E-005 6.952165512332356E-005 6.005985190432219E-005 5.179039544342458E-005 4.457639679360599E-005 3.829492986899942E-005 3.283582056235227E-005 2.810051694762683E-005 2.400103761587127E-005 2.045899504818643E-005 1.740469081692240E-005 1.477627932279283E-005 1.251899671987813E-005 1.058445165080461E-005 8.929974408904965E-006 7.518021160983899E-006 6.315629901460804E-006 5.293924864141491E-006 4.427666189674167E-006 3.694841732870862E-006 3.076297992559710E-006 2.555407255557849E-006 2.117768163870352E-006 1.750937038558389E-006 1.444187423205010E-006 1.188295442968914E-006 9.753487103972431E-007 7.985766451281667E-007 6.522002101368789E-007 5.312992011732072E-007 4.316953575406795E-007 3.498496905351527E-007 2.827725499780698E-007 2.279450687452976E-007 1.832507395205286E-007 1.469159868127358E-007 1.174587002903679E-007 9.364379251354501E-008 7.444493508657813E-008 5.901171207982961E-008 4.664150832305760E-008 3.675552295191141E-008 2.887836554603820E-008 2.262075352506212E-008 1.766488539646795E-008 1.375211523417292E-008 1.067259968671758E-008 8.256630163369644E-009 6.367399928909954E-009 4.894988962861465E-009 3.751378917620457E-009 2.866336652520179E-009 2.184027934727743E-009 1.660243287283075E-009 1.260135931726533E-009 9.563876209937462E-010 7.232865953987054E-010 5.450388064052332E-010 4.092280051714915E-010 3.061288853504640E-010 2.281519547719393E-010 1.693965745405534E-010 1.252924695169212E-010 9.231331353812162E-011 6.774879632328568E-011 4.952395057139813E-011 3.605651479436836E-011 2.614478144779129E-011 1.887977676822144E-011 1.357677894479964E-011 9.722140484021801E-012 6.932170006425825E-012 4.921475284446048E-012 3.478696437666893E-012 2.447985883155273E-012 1.714936993523167E-012 1.195940951095679E-012 8.301732408527979E-013 5.735878622014775E-013 3.944372205627369E-013 2.699458829338345E-013 1.838528001516844E-013 1.246040112555616E-013 8.403016398625126E-014 5.638358079970142E-014 3.764062714983915E-014 2.499884577599847E-014 1.651633857401751E-014 1.085449841709115E-014 7.095434504683765E-015 4.613093018732594E-015 2.982770005428507E-015 1.917925121597742E-015 1.226302071818652E-015 7.796262195703814E-016 4.927962682061532E-016 3.096769146417508E-016 1.934544615559696E-016 1.201281573482438E-016 7.414370248896496E-017 4.548141231071363E-017 2.772619328326885E-017 1.679612789080827E-017 1.011011938736661E-017 6.046397706642991E-018 3.592486470775849E-018 2.120390380829377E-018 1.243147209886421E-018 7.239001822318711E-019 4.186461344784800E-019 2.404308393578415E-019 1.371102392106202E-019 7.763323724068739E-020 4.363998311694076E-020 2.435235739573162E-020 1.348891417879713E-020 7.415697557761650E-021 4.045992184598883E-021 2.190556929099922E-021 1.176788627684924E-021 6.272117783651742E-022 3.316336925907938E-022 1.739354555078822E-022 9.048121112523845E-023 4.667934273436866E-023 2.388040919751671E-023 1.211333127579062E-023 6.091773385407799E-024 3.036932434504843E-024 1.500686950731585E-024 7.349544233513689E-025 3.566951208462223E-025 1.715342731901000E-025 8.172812171857529E-026 3.857520730934766E-026 1.803473588438751E-026 8.350722522654682E-027 3.829114880463227E-027 1.738519155997545E-027 7.814717802957882E-028 3.477324091958398E-028 1.531509574753076E-028 2.966624902809167E-007 3.024630044591705E-007 3.083769335983123E-007 3.144064952523304E-007 3.205589574116098E-007 3.268472960520471E-007 3.332713965304811E-007 3.398344856985319E-007 3.465393022763021E-007 3.533886443613408E-007 3.603853703506508E-007 3.675324001867056E-007 3.748327165720100E-007 3.822893662164832E-007 3.899054611112027E-007 3.976841798294887E-007 4.056287688558725E-007 4.137425439435028E-007 4.220288915005647E-007 4.304912700062915E-007 4.391332114571635E-007 4.479583228439037E-007 4.569702876598892E-007 4.661728674416127E-007 4.755699033418420E-007 4.851653177361384E-007 4.949631158634090E-007 5.049673875011823E-007 5.151823086763136E-007 5.256121434118360E-007 5.362612455106950E-007 5.471340603771140E-007 5.582351268763596E-007 5.695690792336860E-007 5.811406489732598E-007 5.929546668978797E-007 6.050160651103238E-007 6.173298790771777E-007 6.299012497360073E-007 6.427354256467680E-007 6.558377651883522E-007 6.692137388012038E-007 6.828689312769388E-007 6.968090440959418E-007 7.110398978139169E-007 7.255674344984046E-007 7.403977202162853E-007 7.555369475733210E-007 7.709914383068032E-007 7.867676459324016E-007 8.028721584463257E-007 8.193117010839429E-007 8.360931391360106E-007 8.532234808237152E-007 8.707098802337245E-007 8.885596403144965E-007 9.067802159351052E-007 9.253792170078730E-007 9.443644116761308E-007 9.637437295684460E-007 9.835252651206961E-007 1.003717280967386E-006 1.024328211403642E-006 1.045366665919347E-006 1.066841432806903E-006 1.088761482844151E-006 1.111135973053993E-006 1.133974250542322E-006 1.157285856415862E-006 1.181080529781585E-006 1.205368211829394E-006 1.230159049999792E-006 1.255463402238303E-006 1.281291841338445E-006 1.307655159375086E-006 1.334564372230065E-006 1.362030724211979E-006 1.390065692772114E-006 1.418680993318485E-006 1.447888584130048E-006 1.477700671373148E-006 1.508129714222338E-006 1.539188430087719E-006 1.570889799951042E-006 1.603247073812801E-006 1.636273776252649E-006 1.669983712105481E-006 1.704390972255586E-006 1.739509939551336E-006 1.775355294842905E-006 1.811942023145586E-006 1.849285419931320E-006 1.887401097551099E-006 1.926304991790972E-006 1.966013368564433E-006 2.006542830744036E-006 2.047910325135120E-006 2.090133149594633E-006 2.133228960298046E-006 2.177215779157463E-006 2.222112001394073E-006 2.267936403268154E-006 2.314708149969924E-006 2.362446803674579E-006 2.411172331764963E-006 2.460905115225335E-006 2.511665957209830E-006 2.563476091789246E-006 2.616357192879873E-006 2.670331383358172E-006 2.725421244365184E-006 2.781649824804612E-006 2.839040651038643E-006 2.897617736785617E-006 2.957405593223781E-006 3.018429239305407E-006 3.080714212285688E-006 3.144286578470884E-006 3.209172944190320E-006 3.275400466996887E-006 3.342996867100843E-006 3.411990439041780E-006 3.482410063603746E-006 3.554285219978591E-006 3.627645998182745E-006 3.702523111732712E-006 3.778947910584711E-006 3.856952394343974E-006 3.936569225749347E-006 4.017831744438967E-006 4.100773981002874E-006 4.185430671328599E-006 4.271837271245820E-006 4.360029971476390E-006 4.450045712896104E-006 4.541922202114734E-006 4.635697927381027E-006 4.731412174819439E-006 4.829105045005576E-006 4.928817469887444E-006 5.030591230059736E-006 5.134468972398576E-006 5.240494228064269E-006 5.348711430879769E-006 5.459165936092758E-006 5.571904039529359E-006 5.686972997147724E-006 5.804421044999869E-006 5.924297419610323E-006 6.046652378780345E-006 6.171537222826635E-006 6.299004316263658E-006 6.429107109938907E-006 6.561900163630583E-006 6.697439169117447E-006 6.835780973730717E-006 6.976983604398163E-006 7.121106292190729E-006 7.268209497382233E-006 7.418354935032944E-006 7.571605601108022E-006 7.728025799142078E-006 7.887681167461333E-006 8.050638706975080E-006 8.216966809548439E-006 8.386735286968618E-006 8.560015400517165E-006 8.736879891160936E-006 8.917403010374834E-006 9.101660551609553E-006 9.289729882417955E-006 9.481689977253888E-006 9.677621450957642E-006 9.877606592942429E-006 1.008172940209671E-005 1.029007562241741E-005 1.050273277938935E-005 1.071979021712674E-005 1.094133913629265E-005 1.116747263281283E-005 1.139828573740079E-005 1.163387545591101E-005 1.187434081053779E-005 1.211978288187766E-005 1.237030485187335E-005 1.262601204765809E-005 1.288701198631902E-005 1.315341442059924E-005 1.342533138555812E-005 1.370287724621025E-005 1.398616874616346E-005 1.427532505727707E-005 1.457046783036188E-005 1.487172124694378E-005 1.517921207211350E-005 1.549306970848528E-005 1.581342625128793E-005 1.614041654461209E-005 1.647417823883807E-005 1.681485184926918E-005 1.716258081599595E-005 1.751751156501716E-005 1.787979357064419E-005 1.824957941921578E-005 1.862702487415074E-005 1.901228894236691E-005 1.940553394209504E-005 1.980692557211717E-005 2.021663298245929E-005 2.063482884656924E-005 2.106168943501082E-005 2.149739469070635E-005 2.194212830576007E-005 2.239607779989590E-005 2.285943460054339E-005 2.333239412460675E-005 2.381515586195223E-005 2.430792346065025E-005 2.481090481400907E-005 2.532431214943777E-005 2.584836211917712E-005 2.638327589293763E-005 2.692927925248484E-005 2.748660268821302E-005 2.805548149774887E-005 2.863615588662821E-005 2.922887107108905E-005 2.983387738302562E-005 3.045143037714884E-005 3.108179094039959E-005 3.172522540366208E-005 3.238200565582572E-005 3.305240926024477E-005 3.373671957364624E-005 3.443522586753725E-005 3.514822345216449E-005 3.587601380307926E-005 3.661890469036275E-005 3.737721031056739E-005 3.815125142143111E-005 3.894135547942273E-005 3.974785678017772E-005 4.057109660188486E-005 4.141142335168565E-005 4.226919271514934E-005 4.314476780888806E-005 4.403851933637764E-005 4.495082574705102E-005 4.588207339873282E-005 4.683265672348451E-005 4.780297839693157E-005 4.879344951114522E-005 4.980448975115264E-005 5.083652757515150E-005 5.189000039850562E-005 5.296535478160080E-005 5.406304662164064E-005 5.518354134846457E-005 5.632731412447145E-005 5.749485004873380E-005 5.868664436538988E-005 5.990320267640192E-005 6.114504115877100E-005 6.241268678630091E-005 6.370667755600467E-005 6.502756271925010E-005 6.637590301774160E-005 6.775227092443833E-005 6.915725088951033E-005 7.059143959143605E-005 7.205544619334723E-005 7.354989260472875E-005 7.507541374858332E-005 7.663265783417298E-005 7.822228663545169E-005 7.984497577530512E-005 8.150141501571655E-005 8.319230855397951E-005 8.491837532508036E-005 8.668034931037670E-005 8.847897985269899E-005 9.031503197800623E-005 9.218928672372813E-005 9.410254147392951E-005 9.605561030143440E-005 9.804932431705040E-005 1.000845320260364E-004 1.021620996919597E-004 1.042829117080896E-004 1.064478709764809E-004 1.086578992948986E-004 1.109139377517426E-004 1.132169471291306E-004 1.155679083143021E-004 1.179678227195091E-004 1.204177127105616E-004 1.229186220441982E-004 1.254716163144587E-004 1.280777834082326E-004 1.307382339701672E-004 1.334541018771170E-004 1.362265447223213E-004 1.390567443095019E-004 1.419459071570711E-004 1.448952650126493E-004 1.479060753780911E-004 1.509796220452217E-004 1.541172156424933E-004 1.573201941927684E-004 1.605899236824450E-004 1.639277986421408E-004 1.673352427391556E-004 1.708137093819373E-004 1.743646823367777E-004 1.779896763569695E-004 1.816902378246601E-004 1.854679454056383E-004 1.893244107172983E-004 1.932612790100242E-004 1.972802298622460E-004 2.013829778894185E-004 2.055712734671804E-004 2.098469034689537E-004 2.142116920182475E-004 2.186675012559322E-004 2.232162321227588E-004 2.278598251573935E-004 2.326002613102513E-004 2.374395627734069E-004 2.423797938268709E-004 2.474230617015208E-004 2.525715174589789E-004 2.578273568887362E-004 2.631928214228196E-004 2.686701990683090E-004 2.742618253580103E-004 2.799700843195964E-004 2.857974094635283E-004 2.917462847900759E-004 2.978192458157598E-004 3.040188806195351E-004 3.103478309090482E-004 3.168087931072943E-004 3.234045194600107E-004 3.301378191641393E-004 3.370115595177018E-004 3.440286670914241E-004 3.511921289224573E-004 3.585049937305418E-004 3.659703731569611E-004 3.735914430266392E-004 3.813714446337322E-004 3.893136860510704E-004 3.974215434638069E-004 4.056984625276303E-004 4.141479597519017E-004 4.227736239080744E-004 4.315791174637600E-004 4.405681780427994E-004 4.497446199117037E-004 4.591123354928260E-004 4.686752969046239E-004 4.784375575293779E-004 4.884032536087239E-004 4.985766058673585E-004 5.089619211652783E-004 5.195635941789061E-004 5.303861091114589E-004 5.414340414329108E-004 5.527120596498967E-004 5.642249271059028E-004 5.759775038120850E-004 5.879747483090517E-004 6.002217195599415E-004 6.127235788751241E-004 6.254855918688424E-004 6.385131304481114E-004 6.518116748341785E-004 6.653868156168462E-004 6.792442558419443E-004 6.933898131322355E-004 7.078294218420254E-004 7.225691352457343E-004 7.376151277606846E-004 7.529736972043372E-004 7.686512670862030E-004 7.846543889346372E-004 8.009897446587148E-004 8.176641489453639E-004 8.346845516919189E-004 8.520580404742411E-004 8.697918430505301E-004 8.878933299009311E-004 9.063700168030248E-004 9.252295674432597E-004 9.444797960643647E-004 9.641286701487594E-004 9.841843131379413E-004 1.004655007187817E-003 1.025549195959901E-003 1.046875487448284E-003 1.068642656842241E-003 1.090859649424298E-003 1.113535583503575E-003 1.136679753384148E-003 1.160301632368157E-003 1.184410875793339E-003 1.209017324104626E-003 1.234131005959385E-003 1.259762141365866E-003 1.285921144854334E-003 1.312618628680332E-003 1.339865406059479E-003 1.367672494433112E-003 1.396051118764065E-003 1.425012714861793E-003 1.454568932735986E-003 1.484731639977762E-003 1.515512925167448E-003 1.546925101307897E-003 1.578980709282194E-003 1.611692521334554E-003 1.645073544573107E-003 1.679137024493200E-003 1.713896448519738E-003 1.749365549567022E-003 1.785558309614412E-003 1.822488963296083E-003 1.860172001503001E-003 1.898622174995169E-003 1.937854498022070E-003 1.977884251949114E-003 2.018726988887796E-003 2.060398535327124E-003 2.102914995763769E-003 2.146292756328247E-003 2.190548488404307E-003 2.235699152238556E-003 2.281762000537213E-003 2.328754582046723E-003 2.376694745114801E-003 2.425600641228338E-003 2.475490728524395E-003 2.526383775270376E-003 2.578298863309261E-003 2.631255391465617E-003 2.685273078907895E-003 2.740371968462340E-003 2.796572429873631E-003 2.853895163007148E-003 2.912361200987563E-003 2.971991913268219E-003 3.032809008625537E-003 3.094834538072434E-003 3.158090897684525E-003 3.222600831332599E-003 3.288387433314615E-003 3.355474150880197E-003 3.423884786640323E-003 3.493643500854644E-003 3.564774813588544E-003 3.637303606731784E-003 3.711255125870262E-003 3.786654982002090E-003 3.863529153088886E-003 3.941903985432833E-003 4.021806194869734E-003 4.103262867767928E-003 4.186301461822576E-003 4.270949806634478E-003 4.357236104062189E-003 4.445188928335816E-003 4.534837225920510E-003 4.626210315117242E-003 4.719337885388037E-003 4.814249996392458E-003 4.910977076721658E-003 5.009549922315899E-003 5.109999694551010E-003 5.212357917978762E-003 5.316656477705698E-003 5.422927616394491E-003 5.531203930871383E-003 5.641518368322811E-003 5.753904222063806E-003 5.868395126860223E-003 5.985025053786394E-003 6.103828304599226E-003 6.224839505609243E-003 6.348093601028571E-003 6.473625845775252E-003 6.601471797712778E-003 6.731667309303141E-003 6.864248518651164E-003 6.999251839917239E-003 7.136713953075124E-003 7.276671792990763E-003 7.419162537797576E-003 7.564223596543068E-003 7.711892596080970E-003 7.862207367182595E-003 8.015205929840443E-003 8.170926477736516E-003 8.329407361847216E-003 8.490687073156061E-003 8.654804224444935E-003 8.821797531133897E-003 8.991705791139093E-003 9.164567863717657E-003 9.340422647267931E-003 9.519309056052798E-003 9.701265995813325E-003 9.886332338239363E-003 1.007454689426329E-002 1.026594838614242E-002 1.046057541829527E-002 1.065846644685627E-002 1.085965974791293E-002 1.106419338438946E-002 1.127210517153980E-002 1.148343264101311E-002 1.169821300345416E-002 1.191648310960086E-002 1.213827940984066E-002 1.236363791218748E-002 1.259259413864052E-002 1.282518307988608E-002 1.306143914830342E-002 1.330139612923544E-002 1.354508713048531E-002 1.379254452999958E-002 1.404379992169886E-002 1.429888405941715E-002 1.455782679891088E-002 1.482065703789924E-002 1.508740265409764E-002 1.535809044120640E-002 1.563274604281742E-002 1.591139388420210E-002 1.619405710194448E-002 1.648075747138417E-002 1.677151533183473E-002 1.706634950954395E-002 1.736527723836370E-002 1.766831407809795E-002 1.797547383049926E-002 1.828676845288514E-002 1.860220796934740E-002 1.892180037952937E-002 1.924555156494754E-002 1.957346519283646E-002 1.990554261749760E-002 2.024178277913543E-002 2.058218210016639E-002 2.092673437898911E-002 2.127543068120702E-002 2.162825922829780E-002 2.198520528372697E-002 2.234625103650681E-002 2.271137548220518E-002 2.308055430141265E-002 2.345375973568091E-002 2.383096046094911E-002 2.421212145848004E-002 2.459720388333235E-002 2.498616493040052E-002 2.537895769805937E-002 2.577553104945574E-002 2.617582947149566E-002 2.657979293158185E-002 2.698735673216241E-002 2.739845136315895E-002 2.781300235234895E-002 2.823093011378492E-002 2.865214979434057E-002 2.907657111848217E-002 2.950409823137184E-002 2.993462954041823E-002 3.036805755539905E-002 3.080426872728952E-002 3.124314328594040E-002 3.168455507675981E-002 3.212837139656323E-002 3.257445282876721E-002 3.302265307811367E-002 3.347281880512320E-002 3.392478946048803E-002 3.437839711962781E-002 3.483346631764400E-002 3.528981388492233E-002 3.574724878364602E-002 3.620557194549676E-002 3.666457611083491E-002 3.712404566966510E-002 3.758375650470835E-002 3.804347583691818E-002 3.850296207379304E-002 3.896196466085454E-002 3.942022393667714E-002 3.987747099187183E-002 4.033342753244382E-002 4.078780574796143E-002 4.124030818499140E-002 4.169062762627335E-002 4.213844697612498E-002 4.258343915258687E-002 4.302526698683526E-002 4.346358313040882E-002 4.389802997081428E-002 4.432823955609441E-002 4.475383352895997E-002 4.517442307110578E-002 4.558960885834923E-002 4.599898102724725E-002 4.640211915386571E-002 4.679859224539216E-002 4.718795874529991E-002 4.756976655278768E-002 4.794355305723492E-002 4.830884518842802E-002 4.866515948332711E-002 4.901200217015685E-002 4.934886927061746E-002 4.967524672102393E-002 4.999061051319273E-002 5.029442685590420E-002 5.058615235777855E-002 5.086523423240952E-002 5.113111052660652E-002 5.138321037260019E-002 5.162095426506917E-002 5.184375436384734E-002 5.205101482316997E-002 5.224213214831528E-002 5.241649558049306E-002 5.257348751082598E-002 5.271248392426044E-002 5.283285487423275E-002 5.293396498890330E-002 5.301517400975533E-002 5.307583736333617E-002 5.311530676689767E-002 5.313293086866795E-002 5.312805592345906E-002 5.310002650428486E-002 5.304818625062890E-002 5.297187865396485E-002 5.287044788109085E-002 5.274323963579386E-002 5.258960205931179E-002 5.240888667000752E-002 5.220044934261227E-002 5.196365132733403E-002 5.169786030906063E-002 5.140245150681647E-002 5.107680881355645E-002 5.072032597630020E-002 5.033240781652438E-002 4.991247149064002E-002 4.945994779028661E-002 4.897428248207265E-002 4.845493768628641E-002 4.790139329398797E-002 4.731314842177602E-002 4.668972290339903E-002 4.603065881725172E-002 4.533552204866211E-002 4.460390388573396E-002 4.383542264736324E-002 4.302972534189431E-002 4.218648935472454E-002 4.130542416300220E-002 4.038627307539400E-002 3.942881499472469E-002 3.843286620111216E-002 3.739828215303767E-002 3.632495930360278E-002 3.521283692903181E-002 3.406189896628287E-002 3.287217585643024E-002 3.164374639027896E-002 3.037673955246698E-002 2.907133636010353E-002 2.772777169178446E-002 2.634633610261622E-002 2.492737762067208E-002 2.347130352009620E-002 2.197858206586536E-002 2.044974422501499E-002 1.888538533893603E-002 1.728616675115376E-002 1.565281738480961E-002 1.398613526388311E-002 1.228698897201450E-002 1.055631904262048E-002 8.795139273836327E-003 7.004537961669178E-003 5.185679044609533E-003 3.339803152822807E-003 1.468228554930413E-003 -4.276480047085248E-004 -2.346350585387493E-003 -4.286323453355658E-003 -6.245930616326362E-003 -8.223455496518617E-003 -1.021710074957629E-002 -1.222498823670842E-002 -1.424515915737357E-002 -1.627557434979060E-002 -1.831411476649679E-002 -2.035858213209056E-002 -2.240669979018986E-002 -2.445611374650597E-002 -2.650439391477566E-002 -2.854903557211027E-002 -3.058746103010613E-002 -3.261702152781554E-002 -3.463499935239862E-002 -3.663861019296175E-002 -3.862500573273554E-002 -4.059127648435350E-002 -4.253445487255760E-002 -4.445151856817934E-002 -4.633939407672266E-002 -4.819496058430610E-002 -5.001505406310783E-002 -5.179647163779709E-002 -5.353597621372989E-002 -5.523030136693891E-002 -5.687615649515582E-002 -5.847023222827551E-002 -6.000920609580443E-002 -6.148974844793637E-002 -6.290852862596982E-002 -6.426222137682647E-002 -6.554751350545393E-002 -6.676111075790142E-002 -6.789974492684950E-002 -6.896018117035611E-002 -6.993922553355791E-002 -7.083373266203737E-002 -7.164061369454056E-002 -7.235684432170644E-002 -7.297947299645126E-002 -7.350562928064369E-002 -7.393253231170781E-002 -7.425749937180652E-002 -7.447795454128776E-002 -7.459143741712153E-002 -7.459561187611911E-002 -7.448827486180933E-002 -7.426736517294864E-002 -7.393097223076761E-002 -7.347734480120381E-002 -7.290489964754464E-002 -7.221223008810286E-002 -7.139811443277673E-002 -7.046152427160629E-002 -6.940163258773273E-002 -6.821782166649970E-002 -6.690969077181161E-002 -6.547706356028582E-002 -6.391999520321187E-002 -6.223877918586585E-002 -6.043395375333066E-002 -5.850630797165108E-002 -5.645688737291465E-002 -5.428699915270735E-002 -5.199821688835603E-002 -4.959238474644997E-002 -4.707162114834410E-002 -4.443832186269880E-002 -4.169516249461851E-002 -3.884510034162586E-002 -3.589137558756375E-002 -3.283751180656317E-002 -2.968731575046293E-002 -2.644487639452487E-002 -2.311456321796177E-002 -1.970102369768837E-002 -1.620917999581762E-002 -1.264422482375145E-002 -9.011616468248981E-003 -5.317072967580844E-003 -1.566565428779879E-003 2.233689519950089E-003 6.077238144430608E-003 9.957398886807921E-003 1.386727251113215E-002 1.779975310505342E-002 2.174753992714929E-002 2.570315008612557E-002 2.965893203493768E-002 3.360707985978230E-002 3.753964834091764E-002 4.144856875938292E-002 4.532566542088572E-002 4.916267286538209E-002 5.295125372814983E-002 5.668301721540300E-002 6.034953815466830E-002 6.394237657719633E-002 6.745309778657951E-002 7.087329286447781E-002 7.419459956090914E-002 7.740872351297862E-002 8.050745973224260E-002 8.348271429720562E-002 8.632652618381897E-002 8.903108916339288E-002 9.158877369415575E-002 9.399214872990196E-002 9.623400336686198E-002 9.830736824819135E-002 1.002055366443757E-001 1.019220851274395E-001 1.034508937571530E-001 1.047861656984646E-001 1.059224461911389E-001 1.068546407950225E-001 1.075780328374515E-001 1.080882999930109E-001 1.083815299300807E-001 1.084542349633039E-001 1.083033656561997E-001 1.079263233235510E-001 1.073209713888410E-001 1.064856455578096E-001 1.054191627750863E-001 1.041208289367368E-001 1.025904453373859E-001 1.008283138362613E-001 9.883524073200224E-002 9.661253934132311E-002 9.416203128157750E-002 9.148604646189513E-002 8.858742179182623E-002 8.546949862031321E-002 8.213611892129885E-002 7.859162024537676E-002 7.484082945959644E-002 7.088905529986930E-002 6.674207976240568E-002 6.240614836227690E-002 5.788795928857965E-002 5.319465148682229E-002 4.833379170010545E-002 4.331336050147928E-002 3.814173735058188E-002 3.282768470834956E-002 2.738033124429087E-002 2.180915417158328E-002 1.612396074612650E-002 1.033486896671154E-002 4.452287514669446E-003 -1.513105027226089E-003 -7.550381635199592E-003 -1.364838894100380E-002 -1.979576991921771E-002 -2.598098711772849E-002 -3.219234638138446E-002 -3.841802101625420E-002 -4.464607633930497E-002 -5.086449455568456E-002 -5.706119990322452E-002 -6.322408400135685E-002 -6.934103133942995E-002 -7.539994483750245E-002 -8.138877141116198E-002 -8.729552747082517E-002 -9.310832428538433E-002 -9.881539314000987E-002 -1.044051102184229E-001 -1.098660211410149E-001 -1.151868650917720E-001 -1.203565984690254E-001 -1.253644179975115E-001 -1.301997832419844E-001 -1.348524384655789E-001 -1.393124337791412E-001 -1.435701455307138E-001 -1.476162958871669E-001 -1.514419715625135E-001 -1.550386416496700E-001 -1.583981745142815E-001 -1.615128537107405E-001 -1.643753928817085E-001 -1.669789496034034E-001 -1.693171381397185E-001 -1.713840410690496E-001 -1.731742197486350E-001 -1.746827235824277E-001 -1.759050980601284E-001 -1.768373915371420E-001 -1.774761607279592E-001 -1.778184748888614E-001 -1.778619186699356E-001 -1.776045936211426E-001 -1.770451183425715E-001 -1.761826272749691E-001 -1.750167681330516E-001 -1.735476979908921E-001 -1.717760780357022E-001 -1.697030670134672E-001 -1.673303133970283E-001 -1.646599463142083E-001 -1.616945652803415E-001 -1.584372287859823E-001 -1.548914417965546E-001 -1.510611422261711E-001 -1.469506864527567E-001 -1.425648339458838E-001 -1.379087310823580E-001 -1.329878942275403E-001 -1.278081921626621E-001 -1.223758279399809E-001 -1.166973202485456E-001 -1.107794843736269E-001 -1.046294128325314E-001 -9.825445576861112E-002 -9.166220118383428E-002 -8.486045508834267E-002 -7.785722164304132E-002 -7.066068336848710E-002 -6.327918149021958E-002 -5.572119648726104E-002 -4.799532890684457E-002 -4.011028050456061E-002 -3.207483576509726E-002 -2.389784385461210E-002 -1.558820105156896E-002 -7.154833698629928E-003 1.393318286052661E-003 1.004731730401913E-002 1.879824334820112E-002 2.763720862526770E-002 3.655537150674524E-002 4.554394979091980E-002 5.459423326128438E-002 6.369759553091127E-002 7.284550516559819E-002 8.202953608195121E-002 9.124137721972096E-002 1.004728414906989E-001 1.097158740093024E-001 1.189625596126322E-001 1.282051296802694E-001 1.374359682662700E-001 1.466476175589899E-001 1.558327816612246E-001 1.649843275118082E-001 1.740952894277554E-001 1.831588771806348E-001 1.921684747191700E-001 2.011176433699029E-001 2.100001229165076E-001 2.188098324985905E-001 2.275408710151686E-001 2.361875170960535E-001 2.447442286679332E-001 2.532056421434680E-001 2.615665712620165E-001 2.698220056106159E-001 2.779671088537681E-001 2.859972167003705E-001 2.939078346358234E-001 3.016946354469268E-001 3.093534565666770E-001 3.168802972654717E-001 3.242713157145582E-001 3.315228259468069E-001 3.386312947390773E-001 3.455933384395667E-001 3.524057197626046E-001 3.590653445723798E-001 3.655692586760753E-001 3.719146446458364E-001 3.780988186879219E-001 3.841192275762845E-001 3.899734456667093E-001 3.956591720065005E-001 4.011742275535576E-001 4.065165525175265E-001 4.116842038345406E-001 4.166753527859055E-001 4.214882827698997E-001 4.261213872346996E-001 4.305731677792546E-001 4.348422324277790E-001 4.389272940823483E-001 4.428271691569334E-001 4.465407763950434E-001 4.500671358719983E-001 4.534053681817106E-001 4.565546938067222E-001 4.595144326691218E-001 4.622840038588596E-001 4.648629255348877E-001 4.672508149934783E-001 4.694473888970212E-001 4.714524636555756E-001 4.732659559524507E-001 4.748878834041197E-001 4.763183653438422E-001 4.775576237174697E-001 4.786059840790659E-001 4.794638766731631E-001 4.801318375897315E-001 4.806105099772428E-001 4.809006452985777E-001 4.810031046139661E-001 4.809188598746493E-001 4.806489952105454E-001 4.801947081948516E-001 4.795573110682714E-001 4.787382319053869E-001 4.777390157056214E-001 4.765613253912608E-001 4.752069426951200E-001 4.736777689206527E-001 4.719758255576275E-001 4.701032547369071E-001 4.680623195083864E-001 4.658554039267729E-001 4.634850129306061E-001 4.609537720007384E-001 4.582644265854101E-001 4.554198412800577E-001 4.524229987510907E-001 4.492769983940439E-001 4.459850547177692E-001 4.425504954476508E-001 4.389767593422153E-001 4.352673937189498E-001 4.314260516866325E-001 4.274564890830014E-001 4.233625611181536E-001 4.191482187256316E-001 4.148175046247514E-001 4.103745490992999E-001 4.058235654993142E-001 4.011688454741986E-001 3.964147539469635E-001 3.915657238408429E-001 3.866262505709797E-001 3.816008863152288E-001 3.764942340794242E-001 3.713109415736709E-001 3.660556949173476E-001 3.607332121915365E-001 3.553482368554765E-001 3.499055310645893E-001 3.444098688734175E-001 3.388660293866839E-001 3.332787898581273E-001 3.276529187645442E-001 3.219931688778652E-001 3.163042703580007E-001 3.105909238892932E-001 3.048577938832068E-001 2.991095017695489E-001 2.933506193981174E-001 2.875856625721262E-001 2.818190847341024E-001 2.760552708241818E-001 2.702985313298590E-001 2.645530965452856E-001 2.588231110571524E-001 2.531126284730541E-001 2.474256064070303E-001 2.417659017357002E-001 2.361372661370794E-001 2.305433419227962E-001 2.249876581730126E-001 2.194736271819197E-001 2.140045412202244E-001 2.085835696195828E-001 2.032137561824784E-001 1.978980169195977E-001 1.926391381153285E-001 1.874397747206086E-001 1.823024490709994E-001 1.772295499265344E-001 1.722233318286447E-001 1.672859147682469E-001 1.624192841579567E-001 1.576252911003125E-001 1.529056529429119E-001 1.482619541104477E-001 1.436956472028057E-001 1.392080543476409E-001 1.348003687951952E-001 1.304736567425548E-001 1.262288593740648E-001 1.220667951042328E-001 1.179881620091507E-001 1.139935404322526E-001 1.100833957500909E-001 1.062580812837693E-001 1.025178413416975E-001 9.886281437943473E-002 9.529303626256579E-002 9.180844361876846E-002 8.840887726564198E-002 8.509408570085963E-002 8.186372864228104E-002 7.871738060546321E-002 7.565453450670222E-002 7.267460528024365E-002 6.977693349912056E-002 6.696078898924616E-002 6.422537442704765E-002 6.156982891173103E-002 5.899323150349531E-002 5.649460472011174E-002 5.407291798439795E-002 5.172709101558253E-002 4.945599716048060E-002 4.725846664677965E-002 4.513328978462981E-002 4.307922350963152E-002 4.109495351956944E-002 3.917938083825371E-002 3.733058180911757E-002 3.554811965453955E-002 3.383168384143215E-002 3.217998708145719E-002 3.059145174319447E-002 2.906450544491822E-002 2.759758205631595E-002 2.618912270670767E-002 2.483757679289577E-002 2.354140298485859E-002 2.229907022691588E-002 2.110905873198503E-002 1.996986096654685E-002 1.887998262394584E-002 1.783794358366577E-002 1.684227885424618E-002 1.589153949752389E-002 1.498429353199045E-002 1.411912681289645E-002 1.329464388717715E-002 1.250946882097723E-002 1.176224599770581E-002 1.105164088475687E-002 1.037634076704419E-002 9.735055445590550E-003 9.126517899524299E-003 8.549484909947749E-003 8.002737644258908E-003 7.485082199631655E-003 6.995350104488213E-003 6.532398776931890E-003 6.095111939246431E-003 5.682399987710625E-003 5.293200317122517E-003 4.926477599575725E-003 4.581224017180641E-003 4.256459448574747E-003 3.951231609218344E-003 3.664616145623900E-003 3.395716683818250E-003 3.143664832486296E-003 2.907620141391924E-003 2.686770015815895E-003 2.480329587890683E-003 2.287541545848003E-003 2.107675922325366E-003 1.940029843002829E-003 1.783927236959444E-003 1.638718510250322E-003 1.503780184308988E-003 1.378514500875469E-003 1.262348995237772E-003 1.154736039652708E-003 1.055152358881045E-003 9.630985198314366E-004 8.780983973572178E-004 7.996986182898931E-004 7.274679858227088E-004 6.609968863772489E-004 5.998966810953660E-004 5.437990840981679E-004 4.923555296433099E-004 4.452365302917339E-004 4.021310281655134E-004 3.627457413399470E-004 3.268045073658791E-004 2.940476258628584E-004 2.642312020606632E-004 2.371264930964705E-004 2.125192587980865E-004 1.902091186008185E-004 1.700089161573798E-004 1.517440931073552E-004 1.352520733758969E-004 1.203816592711693E-004 1.069924405473165E-004 9.495421749510562E-005 8.414643901658936E-005 7.445765653383740E-005 6.578499447567334E-005 5.803363798108252E-005 5.111633835414898E-005 4.495293670363490E-005 3.946990610119441E-005 3.459991249623459E-005 3.028139453308082E-005 2.645816232780208E-005 2.307901517819019E-005 2.009737810130022E-005 1.747095701892979E-005 1.516141234267643E-005 1.313405064694319E-005 1.135753406059120E-005 9.803606955943205E-006 8.446839467549764E-006 7.264387332523258E-006 6.235767509257893E-006 5.342649001880759E-006 4.568658293673408E-006 3.899198773783153E-006 3.321283527594049E-006 2.823380851905829E-006 2.395271851307031E-006 2.027919471537132E-006 1.713348328905019E-006 1.444534701659512E-006 1.215306059140308E-006 1.020249518397216E-006 8.546286276495769E-007 7.143080016122620E-007 5.956845961026123E-007 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 7.261387187761866E-011 7.494932415307209E-011 7.735989068961487E-011 7.984798735858712E-011 8.241734808881016E-011 8.507320651733448E-011 8.781766227258925E-011 9.065371295085478E-011 9.358431794280790E-011 9.661253549289785E-011 9.974152573609543E-011 1.029745540327151E-010 1.063149943771166E-010 1.097663329242352E-010 1.133321716331658E-010 1.170162320319277E-010 1.208223591073487E-010 1.247545253241456E-010 1.288168347774157E-010 1.330135274828912E-010 1.373489838094560E-010 1.418277290585722E-010 1.464544381954177E-010 1.512339407366975E-010 1.561712258002545E-010 1.612714473217756E-010 1.665399294440666E-010 1.719821720845482E-010 1.776038566868138E-010 1.834108521622860E-010 1.894092210282031E-010 1.956052257483791E-010 2.020053352833908E-010 2.086162318570672E-010 2.154448179463829E-010 2.224982235020944E-010 2.297838134076988E-010 2.373091951845466E-010 2.450822269512002E-010 2.531110256453950E-010 2.614039755172388E-010 2.699697369025715E-010 2.788172552856982E-010 2.879557706610190E-010 2.973948272033901E-010 3.071442832573778E-010 3.172143216559014E-010 3.276154603791118E-010 3.383585635647071E-010 3.494548528812604E-010 3.609159192765148E-010 3.727537351130001E-010 3.849806667037306E-010 3.976094872611672E-010 4.106533902730634E-010 4.241260033192645E-010 4.380414023439955E-010 4.524141263986531E-010 4.672591928706161E-010 4.825921132140991E-010 4.984289091996057E-010 5.147861296990882E-010 5.316808680244805E-010 5.491307798378625E-010 5.671541016521135E-010 5.857696699415402E-010 6.049969408826052E-010 6.248560107455548E-010 6.453676369584245E-010 6.665532598656226E-010 6.884350252040177E-010 7.110358073202188E-010 7.343792331535253E-010 7.584897070098270E-010 7.833924361525781E-010 8.091134572378301E-010 8.356796636212077E-010 8.631188335656281E-010 8.914596593795283E-010 9.207317775163404E-010 9.509657996669835E-010 9.821933448781875E-010 1.014447072730555E-009 1.047760717611391E-009 1.082169124118486E-009 1.117708283632255E-009 1.154415372094852E-009 1.192328789036175E-009 1.231488197888006E-009 1.271934567628875E-009 1.313710215803685E-009 1.356858852963557E-009 1.401425628572901E-009 1.447457178432248E-009 1.495001673667008E-009 1.544108871333978E-009 1.594830166699150E-009 1.647218647242129E-009 1.701329148444342E-009 1.757218311420086E-009 1.814944642451433E-009 1.874568574490059E-009 1.936152530691125E-009 1.999760990046533E-009 2.065460555187100E-009 2.133320022425507E-009 2.203410454114283E-009 2.275805253395533E-009 2.350580241421687E-009 2.427813737129179E-009 2.507586639649678E-009 2.589982513446347E-009 2.675087676265451E-009 2.762991289996725E-009 2.853785454538938E-009 2.947565304770375E-009 3.044429110727228E-009 3.144478381096331E-009 3.247817970132246E-009 3.354556188112329E-009 3.464804915447220E-009 3.578679720568118E-009 3.696299981716225E-009 3.817789012763942E-009 3.943274193201723E-009 4.072887102428940E-009 4.206763658491745E-009 4.345044261415693E-009 4.487873941285783E-009 4.635402511231710E-009 4.787784725481386E-009 4.945180442651189E-009 5.107754794447076E-009 5.275678359956497E-009 5.449127345717033E-009 5.628283771753924E-009 5.813335663785074E-009 6.004477251798736E-009 6.201909175215954E-009 6.405838694856937E-009 6.616479911937867E-009 6.834053994332203E-009 7.058789410338402E-009 7.290922170204061E-009 7.530696075664845E-009 7.778362977765228E-009 8.034183043237020E-009 8.298425029720866E-009 8.571366570125516E-009 8.853294466429465E-009 9.144504993239849E-009 9.445304211433981E-009 9.756008292219841E-009 1.007694385196313E-008 1.040844829814016E-008 1.075087018678777E-008 1.110456959183430E-008 1.146991848670788E-008 1.184730113863246E-008 1.223711451603487E-008 1.263976870950128E-008 1.305568736673538E-008 1.348530814198650E-008 1.392908316043104E-008 1.438747949800723E-008 1.486097967721989E-008 1.535008217944921E-008 1.585530197431569E-008 1.637717106667172E-008 1.691623906180973E-008 1.747307374949663E-008 1.804826170746454E-008 1.864240892500959E-008 1.925614144737179E-008 1.989010604159245E-008 2.054497088456838E-008 2.122142627404686E-008 2.192018536333028E-008 2.264198492048513E-008 2.338758611287727E-008 2.415777531788251E-008 2.495336496065097E-008 2.577519437983263E-008 2.662413072220248E-008 2.750106986715566E-008 2.840693738207494E-008 2.934268950960780E-008 3.030931418792465E-008 3.130783210506632E-008 3.233929778852640E-008 3.340480073125284E-008 3.450546655529298E-008 3.564245821434819E-008 3.681697723654663E-008 3.803026500878722E-008 3.928360410405392E-008 4.057831965314640E-008 4.191578076232272E-008 4.329740197839980E-008 4.472464480291058E-008 4.619901925697021E-008 4.772208549856055E-008 4.929545549399939E-008 5.092079474542168E-008 5.259982407616145E-008 5.433432147598745E-008 5.612612400821223E-008 5.797712978076257E-008 5.988929998337044E-008 6.186466099311707E-008 6.390530655063860E-008 6.601340000938059E-008 6.819117666036927E-008 7.044094613505262E-008 7.276509488884981E-008 7.516608876813883E-008 7.764647566350441E-008 8.020888825216447E-008 8.285604683259328E-008 8.559076225446229E-008 8.841593894712562E-008 9.133457804998816E-008 9.434978064820741E-008 9.746475111729834E-008 1.006828005803326E-007 1.040073504815492E-007 1.074419362803241E-007 1.109902112695822E-007 1.146559505228726E-007 1.184430549744752E-007 1.223555556370531E-007 1.263976179615227E-007 1.305735463439711E-007 1.348877887846160E-007 1.393449417039762E-007 1.439497549215952E-007 1.487071368028452E-007 1.536221595795280E-007 1.587000648501842E-007 1.639462692662266E-007 1.693663704102209E-007 1.749661528728569E-007 1.807515945353753E-007 1.867288730644476E-007 1.929043726267496E-007 1.992846908307129E-007 2.058766459032008E-007 2.126872841091172E-007 2.197238874222348E-007 2.269939814558128E-007 2.345053436618675E-007 2.422660118082679E-007 2.502842927431387E-007 2.585687714563838E-007 2.671283204484784E-007 2.759721094170276E-007 2.851096152719518E-007 2.945506324905311E-007 3.043052838239304E-007 3.143840313672245E-007 3.247976880053578E-007 3.355574292479026E-007 3.466748054659210E-007 3.581617545446971E-007 3.700306149665765E-007 3.822941393386472E-007 3.949655083804965E-007 4.080583453878116E-007 4.215867311881300E-007 4.355652196056111E-007 4.500088534522816E-007 4.649331810638119E-007 4.803542733984992E-007 4.962887417187841E-007 5.127537558752886E-007 5.297670632140602E-007 5.473470081284138E-007 5.655125522775094E-007 5.842832954945631E-007 6.036794974083822E-007 6.237220998027349E-007 6.444327497389082E-007 6.658338234676885E-007 6.879484511579048E-007 7.108005424696092E-007 7.344148130009447E-007 7.588168116387519E-007 7.840329488440060E-007 8.100905259042498E-007 8.370177651863019E-007 8.648438414236686E-007 8.935989140742793E-007 9.233141607853972E-007 9.540218120038312E-007 9.857551867708930E-007 1.018548729742906E-006 1.052438049479491E-006 1.087459958043299E-006 1.123652511956393E-006 1.161055054560019E-006 1.199708259826147E-006 1.239654177670809E-006 1.280936280821026E-006 1.323599513288868E-006 1.367690340508062E-006 1.413256801190495E-006 1.460348560961893E-006 1.509016967838061E-006 1.559315109605155E-006 1.611297873169650E-006 1.665022005945970E-006 1.720546179352044E-006 1.777931054485524E-006 1.837239350055883E-006 1.898535912650223E-006 1.961887789413305E-006 2.027364303225090E-006 2.095037130461959E-006 2.164980381430748E-006 2.237270683567813E-006 2.311987267498512E-006 2.389212056055788E-006 2.469029756359942E-006 2.551527955065183E-006 2.636797216882198E-006 2.724931186489747E-006 2.816026693952162E-006 2.910183863763668E-006 3.007506227644602E-006 3.108100841218894E-006 3.212078404706638E-006 3.319553387770176E-006 3.430644158656866E-006 3.545473117786630E-006 3.664166835937458E-006 3.786856197187304E-006 3.913676546776236E-006 4.044767844058327E-006 4.180274820718579E-006 4.320347144436168E-006 4.465139588181538E-006 4.614812205341217E-006 4.769530510870948E-006 4.929465668684514E-006 5.094794685492745E-006 5.265700611314534E-006 5.442372746889218E-006 5.625006858227550E-006 5.813805398546522E-006 6.008977737841689E-006 6.210740400359274E-006 6.419317310239213E-006 6.634940045609583E-006 6.857848101422314E-006 7.088289161329982E-006 7.326519378913587E-006 7.572803668581794E-006 7.827416006472888E-006 8.090639741701985E-006 8.362767918307524E-006 8.644103608263137E-006 8.934960255933228E-006 9.235662034363461E-006 9.546544213810448E-006 9.867953542928594E-006 1.020024864304607E-005 1.054380041597645E-005 1.089899246582739E-005 1.126622153528351E-005 1.164589795685616E-005 1.203844611960970E-005 1.244430495189057E-005 1.286392842060335E-005 1.329778604759576E-005 1.374636344373368E-005 1.421016286126626E-005 1.468970376510134E-005 1.518552342363187E-005 1.569817751977530E-005 1.622824078290990E-005 1.677630764241433E-005 1.734299290354044E-005 1.792893244637305E-005 1.853478394865546E-005 1.916122763328498E-005 1.980896704130913E-005 2.047872983128042E-005 2.117126860585584E-005 2.188736176655582E-005 2.262781439762757E-005 2.339345917998840E-005 2.418515733625623E-005 2.500379960790741E-005 2.585030726563542E-005 2.672563315401898E-005 2.763076277164385E-005 2.856671538785935E-005 2.953454519738873E-005 3.053534251405173E-005 3.157023500489786E-005 3.264038896609066E-005 3.374701064192554E-005 3.489134758840865E-005 3.607469008286859E-005 3.729837258112038E-005 3.856377522374855E-005 3.987232539312593E-005 4.122549932283586E-005 4.262482376121741E-005 4.407187769080762E-005 4.556829410551015E-005 4.711576184737641E-005 4.871602750494458E-005 5.037089737514171E-005 5.208223949081647E-005 5.385198571603402E-005 5.568213391132951E-005 5.757475017118514E-005 5.953197113606381E-005 6.155600638140459E-005 6.364914088605787E-005 6.581373758271325E-005 6.805223999295034E-005 7.036717494962236E-005 7.276115540936271E-005 7.523688335808959E-005 7.779715281246814E-005 8.044485292037821E-005 8.318297116352613E-005 8.601459666543082E-005 8.894292360811005E-005 9.197125476088972E-005 9.510300512485834E-005 9.834170569659223E-005 1.016910073548800E-004 1.051546848742839E-004 1.087366410694840E-004 1.124409110744647E-004 1.162716667607177E-004 1.202332212987532E-004 1.243300338673319E-004 1.285667145149552E-004 1.329480291782724E-004 1.374789048621991E-004 1.421644349866675E-004 1.470098849050660E-004 1.520206975995625E-004 1.572024995586474E-004 1.625611068423726E-004 1.681025313409117E-004 1.738329872322143E-004 1.797588976446792E-004 1.858869015309269E-004 1.922238607589079E-004 1.987768674267460E-004 2.055532514078775E-004 2.125605881332136E-004 2.198067066172247E-004 2.272996977350134E-004 2.350479227576202E-004 2.430600221529832E-004 2.513449246601516E-004 2.599118566445364E-004 2.687703517421646E-004 2.779302608010959E-004 2.874017621283421E-004 2.971953720508293E-004 3.073219557991316E-004 3.177927387229048E-004 3.286193178471412E-004 3.398136737785720E-004 3.513881829717403E-004 3.633556303644711E-004 3.757292223926689E-004 3.885226003945771E-004 4.017498544148367E-004 4.154255374188916E-004 4.295646799284875E-004 4.441828050892225E-004 4.592959441813074E-004 4.749206525849035E-004 4.910740262116036E-004 5.077737184138269E-004 5.250379573841000E-004 5.428855640563871E-004 5.613359705218381E-004 5.804092389715041E-004 6.001260811787666E-004 6.205078785344057E-004 6.415767026474140E-004 6.633553365248373E-004 6.858672963440859E-004 7.091368538313309E-004 7.331890592597445E-004 7.580497650814927E-004 7.837456502075271E-004 8.103042449493456E-004 8.377539566370115E-004 8.661240959278228E-004 8.954449038201173E-004 9.257475793867752E-004 9.570643082430491E-004 9.894282917633954E-004 1.022873777062015E-003 1.057436087751819E-003 1.093151655496546E-003 1.130058052370694E-003 1.168194024041933E-003 1.207599523790538E-003 1.248315747380324E-003 1.290385168795408E-003 1.333851576857006E-003 1.378760112734246E-003 1.425157308362791E-003 1.473091125784816E-003 1.522610997423568E-003 1.573767867305456E-003 1.626614233242209E-003 1.681204189985262E-003 1.737593473364073E-003 1.795839505419555E-003 1.856001440543283E-003 1.918140212632514E-003 1.982318583270407E-003 2.048601190940118E-003 2.117054601280661E-003 2.187747358391584E-003 2.260750037192614E-003 2.336135296843430E-003 2.413977935227679E-003 2.494354944504223E-003 2.577345567727392E-003 2.663031356536721E-003 2.751496229915266E-003 2.842826534014142E-003 2.937111103039315E-003 3.034441321195039E-003 3.134911185676560E-003 3.238617370702797E-003 3.345659292577742E-003 3.456139175767189E-003 3.570162119975177E-003 3.687836168202173E-003 3.809272375764494E-003 3.934584880251898E-003 4.063890972397424E-003 4.197311167830715E-003 4.334969279682920E-003 4.476992492008094E-003 4.623511433982578E-003 4.774660254840330E-003 4.930576699498362E-003 5.091402184822623E-003 5.257281876480481E-003 5.428364766321701E-003 5.604803750225340E-003 5.786755706345236E-003 5.974381573681938E-003 6.167846430903721E-003 6.367319575334081E-003 6.572974602017470E-003 6.784989482769269E-003 7.003546645109967E-003 7.228833050977200E-003 7.461040275102832E-003 7.700364582935415E-003 7.947007007981361E-003 8.201173428430868E-003 8.463074642926977E-003 8.732926445328401E-003 9.010949698308551E-003 9.297370405624750E-003 9.592419782883015E-003 9.896334326614700E-003 1.020935588147200E-002 1.053173170533982E-002 1.086371453215146E-002 1.120556263218562E-002 1.155753986961136E-002 1.191991575703736E-002 1.229296550681020E-002 1.267697007879532E-002 1.307221622436268E-002 1.347899652628668E-002 1.389760943425833E-002 1.432835929569433E-002 1.477155638151555E-002 1.522751690655388E-002 1.569656304423309E-002 1.617902293515592E-002 1.667523068921552E-002 1.718552638083549E-002 1.771025603692823E-002 1.824977161714718E-002 1.880443098599354E-002 1.937459787632343E-002 1.996064184378665E-002 2.056293821171287E-002 2.118186800594639E-002 2.181781787911510E-002 2.247118002380441E-002 2.314235207409173E-002 2.383173699488194E-002 2.453974295846951E-002 2.526678320773788E-002 2.601327590539235E-002 2.677964396860811E-002 2.756631488846089E-002 2.837372053349412E-002 2.920229693676258E-002 3.005248406568008E-002 3.092472557398548E-002 3.181946853512987E-002 3.273716315637585E-002 3.367826247288921E-002 3.464322202109341E-002 3.563249949054736E-002 3.664655435359927E-002 3.768584747206100E-002 3.875084068014139E-002 3.984199634287115E-002 4.095977688924780E-002 4.210464431932581E-002 4.327705968447562E-002 4.447748254003450E-002 4.570637036957394E-002 4.696417798001046E-002 4.825135686679198E-002 4.956835454839785E-002 5.091561386939922E-002 5.229357227133728E-002 5.370266103068926E-002 5.514330446320756E-002 5.661591909393487E-002 5.812091279221897E-002 5.965868387107331E-002 6.122962015025652E-002 6.283409798247255E-002 6.447248124212623E-002 6.614512027610479E-002 6.785235081609575E-002 6.959449285199507E-002 7.137184946600651E-002 7.318470562708572E-002 7.503332694543724E-002 7.691795838683445E-002 7.883882294659639E-002 8.079612028312666E-002 8.279002531099373E-002 8.482068675361290E-002 8.688822565567603E-002 8.899273385556607E-002 9.113427241809099E-002 9.331287002797470E-002 9.552852134465142E-002 9.778118531902574E-002 1.000707834729819E-001 1.023971981425546E-001 1.047602706858075E-001 1.071597996566083E-001 1.095955389456358E-001 1.120671958901120E-001 1.145744293539105E-001 1.171168477798645E-001 1.196940072162724E-001 1.223054093197789E-001 1.249504993370018E-001 1.276286640674695E-001 1.303392298106333E-001 1.330814602999304E-001 1.358545546270868E-001 1.386576451600663E-001 1.414897954583004E-001 1.443499981890632E-001 1.472371730490874E-001 1.501501646957595E-001 1.530877406924727E-001 1.560485894729608E-001 1.590313183296832E-001 1.620344514315822E-001 1.650564278767795E-001 1.680955997860321E-001 1.711502304430119E-001 1.742184924877260E-001 1.772984661696318E-001 1.803881376672481E-001 1.834853974812941E-001 1.865880389086231E-001 1.896937566044367E-001 1.928001452404876E-001 1.959046982671806E-001 1.990048067876869E-001 2.020977585523704E-001 2.051807370820043E-001 2.082508209284244E-001 2.113049830814147E-001 2.143400905307668E-001 2.173529039925781E-001 2.203400778089698E-001 2.232981600305030E-001 2.262235926906550E-001 2.291127122817891E-001 2.319617504421002E-001 2.347668348630584E-001 2.375239904268891E-001 2.402291405836301E-001 2.428781089772880E-001 2.454666213305729E-001 2.479903075976327E-001 2.504447043941133E-001 2.528252577137572E-001 2.551273259406037E-001 2.573461831656638E-001 2.594770228167254E-001 2.615149616096636E-001 2.634550438293203E-001 2.652922459476358E-001 2.670214815862854E-001 2.686376068305731E-001 2.701354259007712E-001 2.715096971864605E-001 2.727551396487142E-001 2.738664395941880E-001 2.748382578243250E-001 2.756652371619558E-001 2.763420103565761E-001 2.768632083685261E-001 2.772234690311747E-001 2.774174460890309E-001 2.774398186084919E-001 2.772853007566670E-001 2.769486519424257E-001 2.764246873124984E-001 2.757082885941167E-001 2.747944152743340E-001 2.736781161048065E-001 2.723545409194602E-001 2.708189527511141E-001 2.690667402317815E-001 2.670934302600324E-001 2.648947009174722E-001 2.624663946150714E-001 2.598045314487759E-001 2.569053227425286E-001 2.537651847555467E-001 2.503807525294105E-001 2.467488938492526E-001 2.428667232920508E-001 2.387316163337601E-001 2.343412234857385E-001 2.296934844296398E-001 2.247866421186597E-001 2.196192568117244E-001 2.141902200059065E-001 2.084987682310437E-001 2.025444966692150E-001 1.963273725604084E-001 1.898477483543895E-001 1.831063745674654E-001 1.761044123015299E-001 1.688434453814946E-001 1.613254920659556E-001 1.535530162847409E-001 1.455289383558355E-001 1.372566451331138E-001 1.287399995353382E-001 1.199833494060323E-001 1.109915356531305E-001 1.017698996167693E-001 9.232428961324650E-002 8.266106660306077E-002 7.278710893108679E-002 6.270981608736827E-002 5.243711143775107E-002 4.197744387466056E-002 3.133978833977289E-002 2.053364517216335E-002 9.569038237748280E-003 -1.543488201515473E-003 -1.279287391715056E-002 -2.416754847740774E-002 -3.565543837539557E-002 -4.724397554902439E-002 -5.892010731515721E-002 -7.067030773554919E-002 -8.248059042714041E-002 -9.433652282411578E-002 -1.062232418939443E-001 -1.181254713044395E-001 -1.300275400338304E-001 -1.419134024109734E-001 -1.537666595682351E-001 -1.655705822852755E-001 -1.773081351979728E-001 -1.889620023430462E-001 -2.005146140054869E-001 -2.119481748326055E-001 -2.232446931752251E-001 -2.343860116131352E-001 -2.453538386182039E-001 -2.561297813043552E-001 -2.666953792088058E-001 -2.770321390434167E-001 -2.871215703486851E-001 -2.969452219757806E-001 -3.064847193142186E-001 -3.157218021743846E-001 -3.246383632254051E-001 -3.332164868800579E-001 -3.414384885098107E-001 -3.492869538649809E-001 -3.567447785677057E-001 -3.637952075391676E-001 -3.704218742175554E-001 -3.766088394197382E-001 -3.823406296976967E-001 -3.876022750404736E-001 -3.923793457737758E-001 -3.966579885123531E-001 -4.004249610248305E-001 -4.036676658766553E-001 -4.063741827241275E-001 -4.085332991409373E-001 -4.101345398680818E-001 -4.111681943882967E-001 -4.116253427370235E-001 -4.114978794732735E-001 -4.107785357453452E-001 -4.094608993980380E-001 -4.075394330796023E-001 -4.050094903180189E-001 -4.018673295471477E-001 -3.981101260737024E-001 -3.937359819857573E-001 -3.887439340124730E-001 -3.831339593528527E-001 -3.769069794985285E-001 -3.700648620817893E-001 -3.626104207852529E-001 -3.545474133537596E-001 -3.458805377522193E-001 -3.366154265153218E-001 -3.267586393362600E-001 -3.163176539420035E-001 -3.053008553022646E-001 -2.937175232182373E-001 -2.815778183355775E-001 -2.688927666240478E-001 -2.556742423639241E-001 -2.419349496767853E-001 -2.276884026358326E-001 -2.129489039885542E-001 -1.977315225225010E-001 -1.820520691033103E-001 -1.659270714130136E-001 -1.493737474162094E-001 -1.324099775819527E-001 -1.150542758902683E-001 -9.732575965408462E-002 -7.924411819011000E-002 -6.082958037571524E-002 -4.210288113319829E-002 -2.308522688780113E-002 -3.798260051411294E-003 1.573597741013822E-002 3.549508126202326E-002 5.545632306720645E-002 7.559668895848358E-002 9.589291903350117E-002 1.163215472853074E-001 1.368589419766678E-001 1.574813463630363E-001 1.781649196668791E-001 1.988857782050938E-001 2.196200365715847E-001 2.403438487786271E-001 2.610334492633716E-001 2.816651936695304E-001 3.022155993187042E-001 3.226613852906642E-001 3.429795120368483E-001 3.631472204560166E-001 3.831420703651022E-001 4.029419783014640E-001 4.225252545947625E-001 4.418706396473771E-001 4.609573393615813E-001 4.797650596496563E-001 4.982740399598689E-001 5.164650857470470E-001 5.343195998116351E-001 5.518196124260133E-001 5.689478101618890E-001 5.856875633281553E-001 6.020229519250982E-001 6.179387900185915E-001 6.334206484371754E-001 6.484548756958975E-001 6.630286170535818E-001 6.771298316148427E-001 6.907473073946141E-001 7.038706742711179E-001 7.164904147628967E-001 7.285978725765656E-001 7.401852588840705E-001 7.512456563012282E-001 7.617730205528971E-001 7.717621798240368E-001 7.812088318099153E-001 7.901095384925663E-001 7.984617186840997E-001 8.062636383904057E-001 8.135143990610313E-001 8.202139238023861E-001 8.263629416418573E-001 8.319629699397794E-001 8.370162950544595E-001 8.415259513725609E-001 8.454956988230747E-001 8.489299989978650E-001 8.518339900053725E-001 8.542134601865339E-001 8.560748208233783E-001 8.574250779711251E-001 8.582718035440324E-001 8.586231057837864E-001 8.584875992369354E-001 8.578743743648266E-001 8.567929669059089E-001 8.552533271059973E-001 8.532657889274067E-001 8.508410393427336E-001 8.479900878136269E-001 8.447242360491735E-001 8.410550481326229E-001 8.369943210991461E-001 8.325540560412354E-001 8.277464298122107E-001 8.225837673921454E-001 8.170785149745635E-001 8.112432138262557E-001 8.050904749667656E-001 7.986329547084212E-001 7.918833310922953E-001 7.848542812501641E-001 7.775584597174358E-001 7.700084777171066E-001 7.622168834304649E-001 7.541961432633537E-001 7.459586191977903E-001 7.375165371778054E-001 7.288819787824491E-001 7.200668928179470E-001 7.110830625157268E-001 7.019420999261606E-001 6.926554328079207E-001 6.832342940983255E-001 6.736897121312209E-001 6.640325018067237E-001 6.542732565075531E-001 6.444223410880440E-001 6.344898855524950E-001 6.244857795747181E-001 6.144196677926371E-001 6.043009458472085E-001 5.941387571340534E-001 5.839419902355099E-001 5.737192770002861E-001 5.634789912375405E-001 5.532292479920126E-001 5.429779033667841E-001 5.327325548603368E-001 5.225005421848021E-001 5.122889485326484E-001 5.021046022595178E-001 4.919540789514948E-001 4.818437038457630E-001 4.717795545743591E-001 4.617674642015700E-001 4.518130245264244E-001 4.419215896226917E-001 4.320982795898194E-001 4.223479844892963E-001 4.126753684420267E-001 4.030848738634188E-001 3.935807258140357E-001 3.841669364448176E-001 3.748473095170463E-001 3.656254449783969E-001 3.565047435775922E-001 3.474884115013342E-001 3.385794650183495E-001 3.297807351165187E-001 3.210948721201937E-001 3.125243502759099E-001 3.040714722957867E-001 2.957383738489768E-001 2.875270279925612E-001 2.794392495342969E-001 2.714766993206129E-001 2.636408884442014E-001 2.559331823664750E-001 2.483548049510530E-001 2.409068424052991E-001 2.335902471277544E-001 2.264058414601009E-001 2.193543213430405E-001 2.124362598761908E-001 2.056521107827729E-001 1.990022117805030E-001 1.924867878606946E-001 1.861059544781297E-001 1.798597206547692E-001 1.737479920008362E-001 1.677705736572280E-001 1.619271731635878E-001 1.562174032566936E-001 1.506407846041067E-001 1.451967484782512E-001 1.398846393762853E-001 1.347037175912593E-001 1.296531617401467E-001 1.247320712543726E-001 1.199394688384599E-001 1.152743029023562E-001 1.107354499729081E-001 1.063217170898011E-001 1.020318441910966E-001 9.786450649326681E-002 9.381831687035737E-002 8.989182823659972E-002 8.608353593645224E-002 8.239188014567282E-002 7.881524828662083E-002 7.535197746055415E-002 7.200035689923309E-002 6.875863043766854E-002 6.562499900936232E-002 6.259762316488650E-002 5.967462561413909E-002 5.685409379210104E-002 5.413408244740626E-002 5.151261625252901E-002 4.898769243389245E-002 4.655728341971556E-002 4.421933950294394E-002 4.197179151615948E-002 3.981255351493634E-002 3.773952546571007E-002 3.575059593385690E-002 3.384364476734245E-002 3.201654577099826E-002 3.026716936621820E-002 2.859338523065107E-002 2.699306491226826E-002 2.546408441205893E-002 2.400432672951023E-002 2.261168436496514E-002 2.128406177295419E-002 2.001937776063193E-002 1.881556782552623E-002 1.767058642693298E-002 1.658240918545252E-002 1.554903500536774E-002 1.456848811480481E-002 1.363882001889424E-002 1.275811136145969E-002 1.192447369110172E-002 1.113605112791114E-002 1.039102192743800E-002 9.687599938954386E-003 9.024035955479804E-003 8.398618953481256E-003 7.809677220615479E-003 7.255579370342171E-003 6.734735242702628E-003 6.245596691023571E-003 5.786658254768227E-003 5.356457719212345E-003 4.953576563068780E-003 4.576640295617554E-003 4.224318685316069E-003 3.895325882263731E-003 3.588420437274416E-003 3.302405220666595E-003 3.036127244212768E-003 2.788477389995418E-003 2.558390050194533E-003 2.344842682080786E-003 2.146855282707802E-003 1.963489787985925E-003 1.793849400978233E-003 1.637077854387087E-003 1.492358612296414E-003 1.358914016301570E-003 1.236004381195586E-003 1.122927045388766E-003 1.019015381218844E-003 9.236377702624846E-004 8.361965486871644E-004 7.561269275867666E-004 6.828958931263110E-004 6.160010911825049E-004 5.549697010100859E-004 4.993573022873363E-004 4.487467397086382E-004 4.027469890852412E-004 3.609920287025274E-004 3.231397194587651E-004 2.888706970802837E-004 2.578872794693084E-004 2.299123920003404E-004 2.046885133387532E-004 1.819766441102804E-004 1.615553005088410E-004 1.432195346881811E-004 1.267799835455710E-004 1.120619472777691E-004 9.890449886434270E-005 8.715962523675906E-005 7.669140647516199E-005 6.737516726036133E-005 5.909708871916777E-005 5.175212489491995E-005 4.524632358517591E-005 3.949429834773559E-005 3.441721550089331E-005 2.994318197728280E-005 2.600707986226048E-005 2.255002593344403E-005 1.951886439916057E-005 1.686569168616628E-005 1.454741210406394E-005 1.252532318133456E-005 1.076472944413694E-005 9.234583392193820E-006 7.907152415918664E-006 6.757710393970805E-006 5.764252724519579E-006 4.907233475163023E-006 4.169325240749100E-006 3.535188322188942E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.572493202973320E-011 4.719556558489981E-011 4.871349856638761E-011 5.028025224761126E-011 5.189817788240546E-011 5.357057109045020E-011 5.529875400708246E-011 5.708461421773761E-011 5.893001524979045E-011 6.083688287880528E-011 6.280720704077584E-011 6.484304393206183E-011 6.694651815584713E-011 6.911982494279489E-011 7.136523244541131E-011 7.368508410871684E-011 7.608180111970493E-011 7.855788493815588E-011 8.111591991145920E-011 8.375857597618580E-011 8.648861144924236E-011 8.930887591153450E-011 9.222231318716306E-011 9.523196442127706E-011 9.834097125981211E-011 1.015525791344488E-010 1.048701406562373E-010 1.082971191214477E-010 1.118370921333247E-010 1.154937553435462E-010 1.192709263173118E-010 1.231725485261178E-010 1.272026954724073E-010 1.313655749504268E-010 1.356655334477603E-010 1.401070606921609E-010 1.446947943484555E-010 1.494335248704518E-010 1.543282005129436E-010 1.593839325090775E-010 1.646060004185181E-010 1.699998576520291E-010 1.755711371782745E-010 1.813256574188334E-010 1.872694283376238E-010 1.934086577311323E-010 1.997497577260608E-010 2.062993514912188E-010 2.130642801707163E-010 2.200516100457438E-010 2.272686399324709E-010 2.347229088238405E-010 2.424222037832932E-010 2.503745680987253E-010 2.585883097052547E-010 2.670720098856551E-010 2.758345322576116E-010 2.848850320572520E-010 2.942329657287245E-010 3.038881008299109E-010 3.138605262647026E-010 3.241606628526109E-010 3.347992742468352E-010 3.457874782122885E-010 3.571367582754535E-010 3.688589757583383E-010 3.809663822092085E-010 3.934716322431875E-010 4.063877968062557E-010 4.197283768766233E-010 4.335073176179158E-010 4.477390229990885E-010 4.624383708964829E-010 4.776207286939438E-010 4.933019693974479E-010 5.094984882812361E-010 5.262272200830082E-010 5.435056567663152E-010 5.613518658688917E-010 5.797845094562870E-010 5.988228637007980E-010 6.184868391063678E-010 6.387970014008009E-010 6.597745931173537E-010 6.814415558884882E-010 7.038205534753342E-010 7.269349955571875E-010 7.508090623061744E-010 7.754677297730518E-010 8.009367961109677E-010 8.272429086649040E-010 8.544135919554361E-010 8.824772765863991E-010 9.114633291070336E-010 9.414020828601902E-010 9.723248698492339E-010 1.004264053657362E-009 1.037253063454175E-009 1.071326429125489E-009 1.106519817563591E-009 1.142870070156358E-009 1.180415241514929E-009 1.219194639480982E-009 1.259248866455968E-009 1.300619862096123E-009 1.343350947418495E-009 1.387486870364741E-009 1.433073852871009E-009 1.480159639493824E-009 1.528793547643547E-009 1.579026519478708E-009 1.630911175516277E-009 1.684501870014770E-009 1.739854748188992E-009 1.797027805317164E-009 1.856080947803196E-009 1.917076056259000E-009 1.980077050673828E-009 2.045149957739937E-009 2.112362980406103E-009 2.181786569732975E-009 2.253493499126645E-009 2.327558941029439E-009 2.404060546149475E-009 2.483078525313356E-009 2.564695734029087E-009 2.648997759849268E-009 2.736073012627597E-009 2.826012817764841E-009 2.918911512543602E-009 3.014866545654569E-009 3.113978580020341E-009 3.216351599026482E-009 3.322093016273070E-009 3.431313788963884E-009 3.544128535054173E-009 3.660655654282097E-009 3.781017453213037E-009 3.905340274430325E-009 4.033754630010415E-009 4.166395339425106E-009 4.303401672018222E-009 4.444917494209084E-009 4.591091421580189E-009 4.742076976011805E-009 4.898032748031618E-009 5.059122564553217E-009 5.225515662182998E-009 5.397386866281108E-009 5.574916775968267E-009 5.758291955276708E-009 5.947705130650175E-009 6.143355395004717E-009 6.345448418569199E-009 6.554196666731721E-009 6.769819625125772E-009 6.992544032197778E-009 7.222604119505815E-009 7.460241860007635E-009 7.705707224604840E-009 7.959258447219001E-009 8.221162298684748E-009 8.491694369754499E-009 8.771139363519334E-009 9.059791397560819E-009 9.357954316159116E-009 9.665942012893701E-009 9.984078763984284E-009 1.031269957273130E-008 1.065215052542733E-008 1.100278915912338E-008 1.136498484164689E-008 1.173911916428167E-008 1.212558634753381E-008 1.252479366042185E-008 1.293716185374434E-008 1.336312560779321E-008 1.380313399499706E-008 1.425765095799488E-008 1.472715580365766E-008 1.521214371359268E-008 1.571312627168347E-008 1.623063200923696E-008 1.676520696832875E-008 1.731741528395736E-008 1.788783978563897E-008 1.847708261909553E-008 1.908576588871102E-008 1.971453232145387E-008 2.036404595298663E-008 2.103499283670892E-008 2.172808177650437E-008 2.244404508398897E-008 2.318363936108476E-008 2.394764630877091E-008 2.473687356289315E-008 2.555215555794226E-008 2.639435441974325E-008 2.726436088802881E-008 2.816309526990363E-008 2.909150842524028E-008 3.005058278508281E-008 3.104133340417053E-008 3.206480904873250E-008 3.312209332074203E-008 3.421430581986116E-008 3.534260334434668E-008 3.650818113223279E-008 3.771227414414964E-008 3.895615838918394E-008 4.024115229523515E-008 4.156861812537040E-008 4.293996344173246E-008 4.435664261860808E-008 4.582015840631852E-008 4.733206354765101E-008 4.889396244860827E-008 5.050751290531381E-008 5.217442788897344E-008 5.389647739085822E-008 5.567549032934115E-008 5.751335652108908E-008 5.941202871858338E-008 6.137352471621691E-008 6.339992952729140E-008 6.549339763431922E-008 6.765615531511530E-008 6.989050304724998E-008 7.219881799352157E-008 7.458355657119831E-008 7.704725710787324E-008 7.959254258687330E-008 8.222212348526393E-008 8.493880070759534E-008 8.774546861864364E-008 9.064511817851201E-008 9.364084018357206E-008 9.673582861684466E-008 9.993338411154363E-008 1.032369175316323E-007 1.066499536733757E-007 1.101761350920080E-007 1.138192260577747E-007 1.175831166457574E-007 1.214718269640390E-007 1.254895115249227E-007 1.296404637640837E-007 1.339291207126948E-007 1.383600678277452E-007 1.429380439859482E-007 1.476679466468210E-007 1.525548371907085E-007 1.576039464377267E-007 1.628206803538019E-007 1.682106259501963E-007 1.737795573831322E-007 1.795334422603518E-007 1.854784481616859E-007 1.916209493809510E-007 1.979675338967404E-007 2.045250105799435E-007 2.113004166460894E-007 2.183010253608968E-007 2.255343540076956E-007 2.330081721256887E-007 2.407305100283290E-007 2.487096676114067E-007 2.569542234607755E-007 2.654730442699845E-007 2.742752945784419E-007 2.833704468410984E-007 2.927682918410211E-007 3.024789494566198E-007 3.125128797956934E-007 3.228808947088847E-007 3.335941696955669E-007 3.446642562156347E-007 3.561030944211373E-007 3.679230263221738E-007 3.801368094019691E-007 3.927576306965631E-007 4.057991213550806E-007 4.192753716970995E-007 4.332009467842079E-007 4.475909025234306E-007 4.624608023208149E-007 4.778267343041007E-007 4.937053291340541E-007 5.101137784247167E-007 5.270698537935284E-007 5.445919265630039E-007 5.626989881363895E-007 5.814106710705100E-007 6.007472708698103E-007 6.207297685264302E-007 6.413798538320108E-007 6.627199494878174E-007 6.847732360406820E-007 7.075636776732258E-007 7.311160488777964E-007 7.554559620445829E-007 7.806098959954161E-007 8.066052254958570E-007 8.334702517793003E-007 8.612342341179859E-007 8.899274224770208E-007 9.195810912887555E-007 9.502275743861565E-007 9.819003011351450E-007 1.014633833807262E-006 1.048463906235435E-006 1.083427463797117E-006 1.119562704770580E-006 1.156909123111740E-006 1.195507552700516E-006 1.235400213107420E-006 1.276630756932842E-006 1.319244318773256E-006 1.363287565870521E-006 1.408808750502295E-006 1.455857764173674E-006 1.504486193672164E-006 1.554747379050287E-006 1.606696473602301E-006 1.660390505903836E-006 1.715888443985590E-006 1.773251261714698E-006 1.832542007459904E-006 1.893825875119302E-006 1.957170277592111E-006 2.022644922778745E-006 2.090321892196351E-006 2.160275722299965E-006 2.232583488602547E-006 2.307324892690345E-006 2.384582352233352E-006 2.464441094094057E-006 2.546989250641191E-006 2.632317959378863E-006 2.720521466005256E-006 2.811697231018929E-006 2.905946039994860E-006 3.003372117656496E-006 3.104083245874424E-006 3.208190885726719E-006 3.315810303760649E-006 3.427060702600167E-006 3.542065356048570E-006 3.660951748840762E-006 3.783851721204857E-006 3.910901618398248E-006 4.042242445388938E-006 4.178020026858679E-006 4.318385172710508E-006 4.463493849269434E-006 4.613507356371443E-006 4.768592510542610E-006 4.928921834476921E-006 5.094673753028479E-006 5.266032795941065E-006 5.443189807545531E-006 5.626342163663314E-006 5.815693995962361E-006 6.011456424020091E-006 6.213847795356531E-006 6.423093933709691E-006 6.639428395834316E-006 6.863092737114600E-006 7.094336786291221E-006 7.333418929613097E-006 7.580606404734614E-006 7.836175604689856E-006 8.100412392286407E-006 8.373612425272685E-006 8.656081492644626E-006 8.948135862469641E-006 9.250102641618357E-006 9.562320147807633E-006 9.885138294371649E-006 1.021891898819173E-005 1.056403654122980E-005 1.092087809612492E-005 1.128984406632784E-005 1.167134859126360E-005 1.206582000702893E-005 1.247370133314734E-005 1.289545077592220E-005 1.333154224894575E-005 1.378246591134014E-005 1.424872872432539E-005 1.473085502672876E-005 1.522938713006960E-005 1.574488593387476E-005 1.627793156190056E-005 1.682912401995934E-005 1.739908387607108E-005 1.798845296368398E-005 1.859789510873140E-005 1.922809688131783E-005 1.987976837285131E-005 2.055364399946639E-005 2.125048333260835E-005 2.197107195767726E-005 2.271622236165892E-005 2.348677485069938E-005 2.428359849860966E-005 2.510759212731870E-005 2.595968532032448E-005 2.684083947022651E-005 2.775204886145644E-005 2.869434178935885E-005 2.966878171680996E-005 3.067646846959923E-005 3.171853947183636E-005 3.279617102268597E-005 3.391057961577168E-005 3.506302330263329E-005 3.625480310166259E-005 3.748726445398763E-005 3.876179872781946E-005 4.007984477282181E-005 4.144289052611151E-005 4.285247467154568E-005 4.431018835400206E-005 4.581767695040970E-005 4.737664189934009E-005 4.898884259102253E-005 5.065609831970312E-005 5.238029030032335E-005 5.416336375155275E-005 5.600733004726959E-005 5.791426893864501E-005 5.988633084904886E-005 6.192573924405941E-005 6.403479307892574E-005 6.621586932589855E-005 6.847142558391466E-005 7.080400277319095E-005 7.321622791735674E-005 7.571081701582651E-005 7.829057800919231E-005 8.095841384049149E-005 8.371732561528586E-005 8.657041586356845E-005 8.952089190659818E-005 9.257206933184651E-005 9.572737557932697E-005 9.899035364266727E-005 1.023646658883729E-004 1.058540979968242E-004 1.094625630286418E-004 1.131941056201514E-004 1.170529063117766E-004 1.210432860132873E-004 1.251697106099321E-004 1.294367957135871E-004 1.338493115631571E-004 1.384121880785721E-004 1.431305200728303E-004 1.480095726266490E-004 1.530547866303955E-004 1.582717844980840E-004 1.636663760583400E-004 1.692445646273485E-004 1.750125532689221E-004 1.809767512469432E-004 1.871437806755558E-004 1.935204833726041E-004 2.001139279219398E-004 2.069314169503421E-004 2.139804946249219E-004 2.212689543770083E-004 2.288048468586405E-004 2.365964881379185E-004 2.446524681395953E-004 2.529816593374176E-004 2.615932257048584E-004 2.704966319310078E-004 2.797016529085218E-004 2.892183835006558E-004 2.990572485945406E-004 3.092290134479825E-004 3.197447943372017E-004 3.306160695130439E-004 3.418546904733284E-004 3.534728935591163E-004 3.654833118828042E-004 3.778989875960685E-004 3.907333845057975E-004 4.040004010462667E-004 4.177143836159171E-004 4.318901402872050E-004 4.465429548980918E-004 4.616886015338410E-004 4.773433594078775E-004 4.935240281505549E-004 5.102479435147527E-004 5.275329935073010E-004 5.453976349552943E-004 5.638609105164140E-004 5.829424661424330E-004 6.026625690051069E-004 6.230421258936975E-004 6.441027020933851E-004 6.658665407538398E-004 6.883565827572150E-004 7.115964870948111E-004 7.356106517616234E-004 7.604242351779474E-004 7.860631781471456E-004 8.125542263586063E-004 8.399249534448284E-004 8.682037846014430E-004 8.974200207788554E-004 9.276038634540292E-004 9.587864399907489E-004 9.909998295965035E-004 1.024277089883892E-003 1.058652284044205E-003 1.094160508640541E-003 1.130837922027511E-003 1.168721773404231E-003 1.207850432506931E-003 1.248263419947072E-003 1.290001438200460E-003 1.333106403252284E-003 1.377621476902556E-003 1.423591099735791E-003 1.471061024758187E-003 1.520078351704904E-003 1.570691562019289E-003 1.622950554505196E-003 1.676906681652673E-003 1.732612786636457E-003 1.790123240985773E-003 1.849493982922956E-003 1.910782556367337E-003 1.974048150599754E-003 2.039351640581833E-003 2.106755627922940E-003 2.176324482486368E-003 2.248124384624920E-003 2.322223368034567E-003 2.398691363213259E-003 2.477600241510358E-003 2.559023859750363E-003 2.643038105412809E-003 2.729720942348236E-003 2.819152457008125E-003 2.911414905164564E-003 3.006592759093122E-003 3.104772755190102E-003 3.206043941992858E-003 3.310497728569270E-003 3.418227933239783E-003 3.529330832592581E-003 3.643905210749497E-003 3.762052408837208E-003 3.883876374615001E-003 4.009483712207061E-003 4.138983731883718E-003 4.272488499832434E-003 4.410112887855523E-003 4.551974622927643E-003 4.698194336541952E-003 4.848895613769620E-003 5.004205041952868E-003 5.164252258947163E-003 5.329170000823418E-003 5.499094148936041E-003 5.674163776257657E-003 5.854521192875911E-003 6.040311990542373E-003 6.231685086157825E-003 6.428792764072407E-003 6.631790717073024E-003 6.840838085924225E-003 7.056097497322299E-003 7.277735100115753E-003 7.505920599638554E-003 7.740827289995465E-003 7.982632084131715E-003 8.231515541511783E-003 8.487661893224613E-003 8.751259064324749E-003 9.022498693211090E-003 9.301576147836688E-003 9.588690538535019E-003 9.884044727239404E-003 1.018784533286403E-002 1.050030273260598E-002 1.082163105891901E-002 1.115204819190079E-002 1.149177574682605E-002 1.184103905654913E-002 1.220006714848979E-002 1.256909271590703E-002 1.294835208315607E-002 1.333808516461407E-002 1.373853541695085E-002 1.414994978441117E-002 1.457257863676564E-002 1.500667569957791E-002 1.545249797642632E-002 1.591030566270888E-002 1.638036205065119E-002 1.686293342512789E-002 1.735828894989937E-002 1.786670054385645E-002 1.838844274685777E-002 1.892379257473592E-002 1.947302936304077E-002 2.003643459908066E-002 2.061429174181485E-002 2.120688602914418E-002 2.181450427214004E-002 2.243743463574617E-002 2.307596640548243E-002 2.373038973967481E-002 2.440099540673192E-002 2.508807450698464E-002 2.579191817860299E-002 2.651281728710213E-002 2.725106209794857E-002 2.800694193177716E-002 2.878074480173045E-002 2.957275703243360E-002 3.038326286012101E-002 3.121254401343490E-002 3.206087927442142E-002 3.292854401925641E-002 3.381580973824106E-002 3.472294353461747E-002 3.565020760176477E-002 3.659785867834991E-002 3.756614748102134E-002 3.855531811425057E-002 3.956560745694491E-002 4.059724452547529E-002 4.165044981278570E-002 4.272543460327586E-002 4.382240026317614E-002 4.494153750616341E-002 4.608302563399951E-002 4.724703175200859E-002 4.843370995924853E-002 4.964320051327174E-002 5.087562896941571E-002 5.213110529461027E-002 5.340972295573971E-002 5.471155798265144E-002 5.603666800596094E-002 5.738509126986358E-002 5.875684562022893E-002 6.015192746832204E-002 6.157031073056869E-002 6.301194574485830E-002 6.447675816395913E-002 6.596464782670508E-002 6.747548760770258E-002 6.900912224639959E-002 7.056536715645621E-002 7.214400721645833E-002 7.374479554312240E-002 7.536745224824931E-002 7.701166318080105E-002 7.867707865559213E-002 8.036331217021148E-002 8.206993911191721E-002 8.379649545637867E-002 8.554247646027388E-002 8.730733534989014E-002 8.909048200801647E-002 9.089128166156217E-002 9.270905357248314E-002 9.454306973474817E-002 9.639255358022979E-002 9.825667869655871E-002 1.001345675601368E-001 1.020252902876591E-001 1.039278634096554E-001 1.058412486697145E-001 1.077643518532162E-001 1.096960216495470E-001 1.116350485519327E-001 1.135801637991700E-001 1.155300383636903E-001 1.174832819905324E-001 1.194384422919427E-001 1.213940039024574E-001 1.233483876994544E-001 1.252999500942837E-001 1.272469823992096E-001 1.291877102755057E-001 1.311202932681495E-001 1.330428244326637E-001 1.349533300597341E-001 1.368497695033199E-001 1.387300351180415E-001 1.405919523116924E-001 1.424332797187770E-001 1.442517095010178E-001 1.460448677808107E-001 1.478103152136269E-001 1.495455477053766E-001 1.512479972807468E-001 1.529150331085137E-001 1.545439626898086E-001 1.561320332152723E-001 1.576764330969793E-001 1.591742936809405E-001 1.606226911458942E-001 1.620186485939851E-001 1.633591383387834E-001 1.646410843959287E-001 1.658613651814805E-001 1.670168164228223E-001 1.681042342866930E-001 1.691203787286034E-001 1.700619770675438E-001 1.709257277894856E-001 1.717083045827339E-001 1.724063606076977E-001 1.730165330031025E-001 1.735354476300879E-001 1.739597240550061E-001 1.742859807710670E-001 1.745108406582688E-001 1.746309366803169E-001 1.746429178164582E-001 1.745434552253668E-001 1.743292486374012E-001 1.739970329707181E-001 1.735435851658893E-001 1.729657312328122E-001 1.722603535028544E-001 1.714243980783141E-001 1.704548824704251E-001 1.693489034162876E-001 1.681036448642581E-001 1.667163861164983E-001 1.651845101165481E-001 1.635055118689658E-001 1.616770069772591E-001 1.596967402855188E-001 1.575625946083561E-001 1.552725995329430E-001 1.528249402761451E-001 1.502179665789364E-001 1.474502016194762E-001 1.445203509254225E-001 1.414273112652380E-001 1.381701794974331E-001 1.347482613558618E-001 1.311610801483608E-001 1.274083853451893E-001 1.234901610328912E-001 1.194066342083663E-001 1.151582828871055E-001 1.107458439987179E-001 1.061703210420707E-001 1.014329914715658E-001 9.653541378531984E-002 9.147943428528553E-002 8.626719347867937E-002 8.090113208946519E-002 7.538399664810584E-002 6.971884462734747E-002 6.390904909145981E-002 5.795830282614086E-002 5.187062191621970E-002 4.565034873837897E-002 3.930215433638542E-002 3.283104014678100E-002 2.624233904366633E-002 1.954171567211728E-002 1.273516604092817E-002 5.829016346780729E-003 -1.170078996396460E-003 -8.255140147187614E-003 -1.541886546769510E-002 -2.265363601548909E-002 -2.995152091354383E-002 -3.730428361234365E-002 -4.470338905531274E-002 -5.214001175556384E-002 -5.960504478871734E-002 -6.708910970326681E-002 -7.458256734671143E-002 -8.207552960249380E-002 -8.955787202972224E-002 -9.701924739475809E-002 -1.044491000810415E-001 -1.118366813610153E-001 -1.191710655116857E-001 -1.264411667531847E-001 -1.336357569876195E-001 -1.407434843134230E-001 -1.477528922882670E-001 -1.546524399112514E-001 -1.614305222924388E-001 -1.680754919747660E-001 -1.745756808698648E-001 -1.809194227653347E-001 -1.870950763565120E-001 -1.930910487508549E-001 -1.988958193877752E-001 -2.044979643112535E-001 -2.098861807270187E-001 -2.150493117706506E-001 -2.199763714078588E-001 -2.246565693835877E-001 -2.290793361326604E-001 -2.332343475615487E-001 -2.371115496086436E-001 -2.407011824891899E-001 -2.439938045308670E-001 -2.469803155068615E-001 -2.496519793751699E-001 -2.520004463357290E-001 -2.540177741207522E-001 -2.556964484382465E-001 -2.570294024940156E-001 -2.580100355234043E-001 -2.586322302705044E-001 -2.588903693593970E-001 -2.587793505091453E-001 -2.582946005515555E-001 -2.574320882180735E-001 -2.561883356694912E-001 -2.545604287492710E-001 -2.525460259481903E-001 -2.501433660745525E-001 -2.473512746303440E-001 -2.441691688993564E-001 -2.405970617583962E-001 -2.366355642272171E-001 -2.322858867767007E-001 -2.275498394180675E-001 -2.224298305985047E-001 -2.169288649305681E-001 -2.110505397840630E-001 -2.047990407698727E-001 -1.981791361454225E-001 -1.911961701712025E-001 -1.838560554470816E-001 -1.761652642561137E-001 -1.681308189422311E-001 -1.597602813467431E-001 -1.510617413269846E-001 -1.420438043788934E-001 -1.327155783838186E-001 -1.230866594985718E-001 -1.131671172067029E-001 -1.029674785482979E-001 -9.249871154531544E-002 -8.177220783965745E-002 -7.079976456185597E-002 -5.959356544946016E-002 -4.816616123594853E-002 -3.653044933324592E-002 -2.469965283366598E-002 -1.268729886027378E-002 -5.071962981950040E-004 1.182658705680496E-002 2.429974789219405E-002 3.689777127073510E-002 4.960595497258800E-002 6.240943423566335E-002 7.529320683917809E-002 8.824215847261464E-002 1.012410883301634E-001 1.142747348693283E-001 1.273278016717601E-001 1.403849833445625E-001 1.534309914012914E-001 1.664505800635581E-001 1.794285719264451E-001 1.923498834336975E-001 2.051995501116698E-001 2.179627515140768E-001 2.306248358324940E-001 2.431713441300626E-001 2.555880341577753E-001 2.678609037139085E-001 2.799762135075110E-001 2.919205094863246E-001 3.036806445881292E-001 3.152437998723614E-001 3.265975049861143E-001 3.377296579154867E-001 3.486285439699537E-001 3.592828539442333E-001 3.696817013992788E-001 3.798146390017773E-001 3.896716738600925E-001 3.992432817941065E-001 4.085204204770396E-001 4.174945413890957E-001 4.261576005257409E-001 4.345020678075256E-001 4.425209351435483E-001 4.502077231068242E-001 4.575564861868347E-001 4.645618165922434E-001 4.712188465850123E-001 4.775232493357764E-001 4.834712382991619E-001 4.890595651166212E-001 4.942855160631449E-001 4.991469070627653E-001 5.036420773059819E-001 5.077698815099836E-001 5.115296808697607E-001 5.149213327547905E-001 5.179451792119134E-001 5.206020343402297E-001 5.228931706083354E-001 5.248203041879498E-001 5.263855793809797E-001 5.275915522193207E-001 5.284411733182338E-001 5.289377700649935E-001 5.290850282247013E-001 5.288869730447521E-001 5.283479499384851E-001 5.274726048270479E-001 5.262658642165369E-001 5.247329150851451E-001 5.228791846522947E-001 5.207103200987010E-001 5.182321683030151E-001 5.154507556571725E-001 5.123722680188938E-001 5.090030308559709E-001 5.053494896330687E-001 5.014181904878371E-001 4.972157612391415E-001 4.927488927662256E-001 4.880243207937358E-001 4.830488081136172E-001 4.778291272710901E-001 4.723720437381886E-001 4.666842995947061E-001 4.607725977328747E-001 4.546435865986892E-001 4.483038454794929E-001 4.417598703444959E-001 4.350180602401469E-001 4.280847014186108E-001 4.209659463265988E-001 4.136678060197446E-001 4.061961539450346E-001 3.985567040659932E-001 3.907550046419201E-001 3.827964276163039E-001 3.746861594334887E-001 3.664291922165053E-001 3.580303153958759E-001 3.494941077620962E-001 3.408249299170824E-001 3.320269170985770E-001 3.231039723499094E-001 3.140597600060557E-001 3.048976994655332E-001 2.956209592163304E-001 2.862324510827994E-001 2.767348246592133E-001 2.671304618945031E-001 2.574214717915475E-001 2.476096851832575E-001 2.376966495465911E-001 2.276836238145197E-001 2.175715731448554E-001 2.073611636037030E-001 1.970527567201278E-001 1.866464038674066E-001 1.761418404249401E-001 1.655384796735409E-001 1.548354063753483E-001 1.440313699880540E-001 1.331247774614197E-001 1.221136855622288E-001 1.109957926718013E-001 9.976842999801484E-002 8.842855214137628E-002 7.697272695207329E-002 6.539712461206648E-002 5.369750587314811E-002 4.186920937846125E-002 2.990713799121970E-002 1.780574405026398E-002 5.559013467603936E-003 -6.839551421801771E-003 -1.939695035312754E-002 -3.212070506855921E-002 -4.501888080527008E-002 -5.810010944873645E-002 -7.137361447319887E-002 -8.484923779931675E-002 -9.853746870804203E-002 -1.124494749595151E-001 -1.265971362764337E-001 -1.409930803629398E-001 -1.556507216426967E-001 -1.705843029135723E-001 -1.858089401313241E-001 -2.013406705509822E-001 -2.171965044723969E-001 -2.333944808557710E-001 -2.499537270940942E-001 -2.668945232523885E-001 -2.842383711087509E-001 -3.020080683595271E-001 -3.202277883807845E-001 -3.389231659708228E-001 -3.581213895340138E-001 -3.778513002050913E-001 -3.981434984554454E-001 -4.190304587693430E-001 -4.405466530287055E-001 -4.627286833005416E-001 -4.856154247818282E-001 -5.092481797230841E-001 -5.336708432246644E-001 -5.589300818795442E-001 -5.850755263237868E-001 -6.121599788517618E-001 -6.402396373583700E-001 -6.693743369860133E-001 -6.996278109808555E-001 -7.310679724022714E-001 -7.637672184825584E-001 -7.978027596024645E-001 -8.332569750334782E-001 -8.702177978019404E-001 -9.087791312548742E-001 -9.490413001552372E-001 -9.911115394075400E-001 -1.035104523816273E+000 -1.081142942612381E+000 -1.129358122850643E+000 -1.179890706187047E+000 -1.232891383994518E+000 -1.288521696272367E+000 -1.346954900355128E+000 -1.408376916035976E+000 -1.472987354395571E+000 -1.541000638376474E+000 -1.612647223974854E+000 -1.688174931844621E+000 -1.767850400135144E+000 -1.851960670524534E+000 -1.940814920679703E+000 -2.034746357787404E+000 -2.134114289374379E+000 -2.239306389389843E+000 -2.350741179481117E+000 -2.468870747577148E+000 -2.594183728336617E+000 -2.727208572745007E+000 -2.868517137196121E+000 -3.018728625810158E+000 -3.178513923566192E+000 -3.348600362116118E+000 -3.529776964958304E+000 -3.722900224050212E+000 -3.928900466006784E+000 -4.148788872852788E+000 -4.383665229971975E+000 -4.634726482537195E+000 -4.903276191442620E+000 -5.190734990739532E+000 -5.498652160968985E+000 -5.828718446780762E+000 -6.182780263048516E+000 -6.562855451588123E+000 -6.971150770849073E+000 -7.410081323908800E+000 -7.882292156137673E+000 -8.390682283455373E+000 -8.938431445670464E+000 -9.529029917562893E+000 -1.016631175380099E+001 -1.085449189324918E+001 -1.159820760460771E+001 -1.240256481965644E+001 -1.327318997383728E+001 -1.421628805787548E+001 -1.523870768019976E+001 -1.634801404991761E+001 -1.755257091617560E+001 -1.886163264437152E+001 -2.028544777577659E+001 -2.183537560804005E+001 -2.352401755370622E+001 -2.536536528685455E+001 -2.737496797961984E+001 -2.957012126691036E+001 -3.197008096642907E+001 -3.459630503067992E+001 -3.747272772805474E+001 -4.062607065313617E+001 -4.408619586587832E+001 -4.788650727163726E+001 -5.206440729834761E+001 -5.666181702617356E+001 -6.172576920520288E+001 -6.730908509002009E+001 -7.347114776405874E+001 -8.027878666476136E+001 -8.780729040631229E+001 -9.614156779187515E+001 -1.053774801867159E+002 -1.156233722745358E+002 -1.270018327484088E+002 -1.396517218191565E+002 -1.537305087087917E+002 -1.694169697151969E+002 -1.869143061990226E+002 -2.064537522159093E+002 -2.282987538055537E+002 -2.527498165239025E+002 -2.801501350590902E+002 -3.108944673821078E+002 -3.454420854899834E+002 -3.843166550391915E+002 -4.281059328822062E+002 -4.774926753060270E+002 -5.332604087826811E+002 -5.963124122053811E+002 -6.676909671771197E+002 -7.486004010025761E+002 -8.404341727393430E+002 -9.448067994977922E+002 -1.063591540457465E+003 -1.198964942211488E+003 -1.353459572273199E+003 -1.530026539013328E+003 -1.732109726121134E+003 -1.963734071220480E+003 -2.229610707876327E+003 -2.535262388183804E+003 -2.887173334618043E+003 -3.292968566091840E+003 -3.761628843221986E+003 -4.303748730310860E+003 -4.931846937082760E+003 -5.660740158008578E+003 -6.507994166343517E+003 -7.494469063642934E+003 -8.644979484277643E+003 -9.989095398462678E+003 -1.156211518670723E+004 -1.340625017734275E+004 -1.557206923231047E+004 -1.812026372434251E+004 -2.112380799434250E+004 -2.467060890610984E+004 -2.886676144246172E+004 -3.384055671315875E+004 -3.974742593999776E+004 -4.677605109410887E+004 -5.515593264995985E+004 -6.516678095985979E+004 -7.715019466097560E+004 -9.152421329332187E+004 -1.088014897146407E+005 -1.296120310820881E+005 -1.547317183600335E+005 -1.851181508130463E+005 -2.219557964418144E+005 -2.667129916325021E+005 -3.212140626883726E+005 -3.877307902448442E+005 -4.690986734516172E+005 -5.688650652627583E+005 -6.914783642527175E+005 -8.425302234354907E+005 -1.029066388249091E+006 -1.259986593088214E+006 -1.546560316579465E+006 -1.903093642761437E+006 -2.347793703991539E+006 -2.903892146832370E+006 -3.601109060706622E+006 -4.477565605016896E+006 -5.582289571362874E+006 -6.978506618203086E+006 -8.747975437083595E+006 -1.099671387433222E+007 -1.386258362666561E+007 -1.752536543817358E+007 -2.222018124701531E+007 -2.825542743102858E+007 -3.603680625501545E+007 -4.609962575074200E+007 -5.915234467576671E+007 -7.613545784196523E+007 -9.830137371831246E+007 -1.273231091183341E+008 -1.654426686911500E+008 -2.156742519883151E+008 -2.820834566933305E+008 -3.701721683504922E+008 -4.874109189245692E+008 -6.439777128660409E+008 -8.537869159811325E+008 -1.135927065452726E+009 -1.516677192552075E+009 -2.032344500180591E+009 -2.733272381412015E+009 -3.689522135750781E+009 -4.998957079190313E+009 -6.798787910674609E+009 -9.282123790247311E+009 -1.272179051036456E+010 -1.750473971861270E+010 -2.418195421731870E+010 -3.354111628675026E+010 -4.671284861565376E+010 -6.532667268225817E+010 -9.174089757499017E+010 -1.293829041384912E+011 -1.832549731864662E+011 -2.606894210078220E+011 -3.724808187472926E+011 -5.345910685479987E+011 -7.707286238036687E+011 -1.116267611464968E+012 -1.624230150561035E+012 -2.374460283784590E+012 -3.487758201107771E+012 -5.147760097703889E+012 -7.634971080116060E+012 -1.137995906695417E+013 -1.704690730163854E+013 -2.566550652833641E+013 -3.884020607572532E+013 -5.908389621921531E+013 -9.035277258508928E+013 -1.389081778066207E+014 -2.147126915312888E+014 -3.337038175554103E+014 -5.215171200509819E+014 -8.196164719530928E+014 -1.295444113031565E+015 -2.059321598853383E+015 -3.292753094252078E+015 -5.296098958601395E+015 -8.569348645066112E+015 -1.394978871361708E+016 -2.284805764957040E+016 -3.765537471120481E+016 -6.245041697900641E+016 -1.042340243674797E+017 -1.750995572260561E+017 -2.960724733873864E+017 -5.039471649877043E+017 -8.635411031344641E+017 -1.489805588023521E+018 -2.587991312498890E+018 -4.527111912573809E+018 -7.975243374483559E+018 -1.415046097790704E+019 -2.528956350560969E+019 -4.552992204654514E+019 -8.258070638405914E+019 -1.509135548138976E+020 -2.778998473953248E+020 -5.157055361793603E+020 -9.645224177107033E+020 -1.818294120108746E+021 -3.455429725236589E+021 -6.620207356100413E+021 -1.278847709583922E+022 -2.491096430201959E+022 -4.893663943038959E+022 -9.696114396478818E+022 2.721531219750934E-012 2.790427110610525E-012 2.861067109251917E-012 2.933495367973872E-012 3.007757156795918E-012 3.083898891753582E-012 3.161968163909928E-012 3.242013769101524E-012 3.324085738437407E-012 3.408235369570219E-012 3.494515258758821E-012 3.582979333742715E-012 3.673682887448654E-012 3.766682612550480E-012 3.862036636903924E-012 3.959804559878388E-012 4.060047489608508E-012 4.162828081188699E-012 4.268210575834656E-012 4.376260841036214E-012 4.487046411726649E-012 4.600636532494208E-012 4.717102200862258E-012 4.836516211665016E-012 4.958953202546726E-012 5.084489700612588E-012 5.213204170260714E-012 5.345177062224908E-012 5.480490863858998E-012 5.619230150694146E-012 5.761481639301296E-012 5.907334241491814E-012 6.056879119890318E-012 6.210209744914261E-012 6.367421953196002E-012 6.528614007483826E-012 6.693886658059290E-012 6.863343205709543E-012 7.037089566293601E-012 7.215234336943247E-012 7.397888863939751E-012 7.585167312308927E-012 7.777186737177997E-012 7.974067156938850E-012 8.175931628263490E-012 8.382906323018386E-012 8.595120607126034E-012 8.812707121422888E-012 9.035801864564192E-012 9.264544278027551E-012 9.499077333268435E-012 9.739547621081962E-012 9.986105443226875E-012 1.023890490636915E-011 1.049810401840361E-011 1.076386478721401E-011 1.103635332193320E-011 1.131573993676688E-011 1.160219925744530E-011 1.189591033037036E-011 1.219705673452506E-011 1.250582669621661E-011 1.282241320672391E-011 1.314701414292339E-011 1.347983239096857E-011 1.382107597310038E-011 1.417095817766799E-011 1.452969769244081E-011 1.489751874129556E-011 1.527465122436363E-011 1.566133086172588E-011 1.605779934074559E-011 1.646430446713079E-011 1.688110031982097E-011 1.730844740979476E-011 1.774661284289764E-011 1.819587048679192E-011 1.865650114213272E-011 1.912879271807790E-011 1.961304041224054E-011 2.010954689519674E-011 2.061862249966500E-011 2.114058541447406E-011 2.167576188344135E-011 2.222448640928622E-011 2.278710196270448E-011 2.336396019673694E-011 2.395542166656341E-011 2.456185605486197E-011 2.518364240287226E-011 2.582116934730892E-011 2.647483536327206E-011 2.714504901330704E-011 2.783222920276969E-011 2.853680544165568E-011 2.925921811305820E-011 2.999991874842178E-011 3.075937030976416E-011 3.153804747904268E-011 3.233643695484605E-011 3.315503775659665E-011 3.399436153645407E-011 3.485493289911435E-011 3.573728972970495E-011 3.664198352998086E-011 3.756957976303057E-011 3.852065820670930E-011 3.949581331601929E-011 4.049565459466284E-011 4.152080697600314E-011 4.257191121366692E-011 4.364962428203658E-011 4.475461978688126E-011 4.588758838638169E-011 4.704923822281441E-011 4.824029536516392E-011 4.946150426293920E-011 5.071362821147880E-011 5.199744982903621E-011 5.331377154594071E-011 5.466341610614291E-011 5.604722708145729E-011 5.746606939882085E-011 5.892082988090141E-011 6.041241780039094E-011 6.194176544833016E-011 6.350982871682123E-011 6.511758769649108E-011 6.676604728908046E-011 6.845623783554078E-011 7.018921576002969E-011 7.196606423021128E-011 7.378789383427183E-011 7.565584327507223E-011 7.757108008187669E-011 7.953480134009431E-011 8.154823443949819E-011 8.361263784138343E-011 8.572930186514634E-011 8.789954949477782E-011 9.012473720576897E-011 9.240625581295524E-011 9.474553133981918E-011 9.714402590980311E-011 9.960323866018357E-011 1.021247066790806E-010 1.047100059661891E-010 1.073607524178299E-010 1.100786028369366E-010 1.128652559686143E-010 1.157224535619079E-010 1.186519814584544E-010 1.216556707086911E-010 1.247353987163228E-010 1.278930904117607E-010 1.311307194552659E-010 1.344503094705535E-010 1.378539353096215E-010 1.413437243496030E-010 1.449218578224464E-010 1.485905721782560E-010 1.523521604831477E-010 1.562089738524892E-010 1.601634229204252E-010 1.642179793466034E-010 1.683751773610413E-010 1.726376153481036E-010 1.770079574705793E-010 1.814889353348676E-010 1.860833496983261E-010 1.907940722198303E-010 1.956240472546621E-010 2.005762936948209E-010 2.056539068559354E-010 2.108600604119374E-010 2.161980083787086E-010 2.216710871479515E-010 2.272827175725422E-010 2.330364071046769E-010 2.389357519881446E-010 2.449844395060943E-010 2.511862502857176E-010 2.575450606612534E-010 2.640648450968354E-010 2.707496786706562E-010 2.776037396220259E-010 2.846313119629143E-010 2.918367881555951E-010 2.992246718580813E-010 3.067995807390620E-010 3.145662493640917E-010 3.225295321548599E-010 3.306944064233562E-010 3.390659754828577E-010 3.476494718376753E-010 3.564502604536280E-010 3.654738421113373E-010 3.747258568443911E-010 3.842120874645511E-010 3.939384631762077E-010 4.039110632823175E-010 4.141361209841851E-010 4.246200272774079E-010 4.353693349464644E-010 4.463907626604300E-010 4.576911991723502E-010 4.692777076249645E-010 4.811575299653843E-010 4.933380914715606E-010 5.058270053933350E-010 5.186320777109609E-010 5.317613120141152E-010 5.452229145044015E-010 5.590252991245024E-010 5.731770928171740E-010 5.876871409173720E-010 6.025645126808897E-010 6.178185069529359E-010 6.334586579802285E-010 6.494947413702253E-010 6.659367802011966E-010 6.827950512869948E-010 7.000800916003973E-010 7.178027048590804E-010 7.359739682783021E-010 7.546052394945298E-010 7.737081636643579E-010 7.932946807431093E-010 8.133770329477182E-010 8.339677724085427E-010 8.550797690148357E-010 8.767262184589045E-010 8.989206504838318E-010 9.216769373400424E-010 9.450093024559340E-010 9.689323293279796E-010 9.934609706359431E-010 1.018610557588787E-009 1.044396809507214E-009 1.070835843648779E-009 1.097944185281720E-009 1.125738778013824E-009 1.154236994382762E-009 1.183456646714514E-009 1.213415998256697E-009 1.244133774593714E-009 1.275629175350891E-009 1.307921886194918E-009 1.341032091138052E-009 1.374980485153833E-009 1.409788287112162E-009 1.445477253041847E-009 1.482069689728828E-009 1.519588468658756E-009 1.558057040312432E-009 1.597499448823189E-009 1.637940347005317E-009 1.679405011762934E-009 1.721919359888946E-009 1.765509964263957E-009 1.810204070465232E-009 1.856029613796188E-009 1.903015236746918E-009 1.951190306896763E-009 2.000584935270116E-009 2.051229995156872E-009 2.103157141409322E-009 2.156398830227608E-009 2.210988339445967E-009 2.266959789332622E-009 2.324348163916137E-009 2.383189332851732E-009 2.443520073841092E-009 2.505378095619791E-009 2.568802061526602E-009 2.633831613669510E-009 2.700507397703509E-009 2.768871088235545E-009 2.838965414872777E-009 2.910834188930115E-009 2.984522330813900E-009 3.060075898098866E-009 3.137542114315831E-009 3.216969398468118E-009 3.298407395295359E-009 3.381907006303203E-009 3.467520421578789E-009 3.555301152411435E-009 3.645304064739317E-009 3.737585413442709E-009 3.832202877505469E-009 3.929215596066645E-009 4.028684205384661E-009 4.130670876737392E-009 4.235239355281608E-009 4.342454999896183E-009 4.452384824033990E-009 4.565097537607905E-009 4.680663589937273E-009 4.799155213781518E-009 4.920646470488500E-009 5.045213296285837E-009 5.172933549744116E-009 5.303887060441645E-009 5.438155678861221E-009 5.575823327550006E-009 5.716976053574609E-009 5.861702082304012E-009 6.010091872554154E-009 6.162238173128454E-009 6.318236080789698E-009 6.478183099699628E-009 6.642179202363038E-009 6.810326892115019E-009 6.982731267189910E-009 7.159500086412225E-009 7.340743836550667E-009 7.526575801377175E-009 7.717112132474310E-009 7.912471921835187E-009 8.112777276301201E-009 8.318153393884463E-009 8.528728642022148E-009 8.744634637812056E-009 8.966006330279270E-009 9.192982084725793E-009 9.425703769215073E-009 9.664316843246370E-009 9.908970448673845E-009 1.015981750292732E-008 1.041701479459316E-008 1.068072308141463E-008 1.095110719077344E-008 1.122833612271508E-008 1.151258315558217E-008 1.180402595432229E-008 1.210284668153749E-008 1.240923211134530E-008 1.272337374612221E-008 1.304546793620273E-008 1.337571600260866E-008 1.371432436288534E-008 1.406150466012404E-008 1.441747389524993E-008 1.478245456265999E-008 1.515667478929416E-008 1.554036847722738E-008 1.593377544987182E-008 1.633714160188011E-008 1.675071905284371E-008 1.717476630488255E-008 1.760954840422397E-008 1.805533710687247E-008 1.851241104847394E-008 1.898105591847964E-008 1.946156463871992E-008 1.995423754649886E-008 2.045938258232411E-008 2.097731548238924E-008 2.150835997592966E-008 2.205284798757475E-008 2.261111984482267E-008 2.318352449076817E-008 2.377041970221594E-008 2.437217231331580E-008 2.498915844486011E-008 2.562176373938561E-008 2.627038360222847E-008 2.693542344868090E-008 2.761729895740645E-008 2.831643633027000E-008 2.903327255874681E-008 2.976825569707592E-008 3.052184514232936E-008 3.129451192157178E-008 3.208673898629092E-008 3.289902151428172E-008 3.373186721917385E-008 3.458579666779568E-008 3.546134360557375E-008 3.635905529016996E-008 3.727949283356621E-008 3.822323155281060E-008 3.919086132964259E-008 4.018298697922481E-008 4.120022862820912E-008 4.224322210237669E-008 4.331261932408979E-008 4.440908871980983E-008 4.553331563793047E-008 4.668600277719151E-008 4.786787062593942E-008 4.907965791250900E-008 5.032212206700913E-008 5.159603969480007E-008 5.290220706195923E-008 5.424144059303884E-008 5.561457738142596E-008 5.702247571262562E-008 5.846601560079289E-008 5.994609933884983E-008 6.146365206253245E-008 6.301962232871747E-008 6.461498270839506E-008 6.625073039465399E-008 6.792788782606206E-008 6.964750332583178E-008 7.141065175716866E-008 7.321843519521516E-008 7.507198361600820E-008 7.697245560288218E-008 7.892103907076053E-008 8.091895200878497E-008 8.296744324175127E-008 8.506779321082695E-008 8.722131477403566E-008 8.942935402701571E-008 9.169329114455779E-008 9.401454124345658E-008 9.639455526721050E-008 9.883482089312483E-008 1.013368634623875E-007 1.039022469336944E-007 1.065325748610276E-007 1.092294913961927E-007 1.119946823167455E-007 1.148298760799504E-007 1.177368449034299E-007 1.207174058731806E-007 1.237734220796527E-007 1.269068037825957E-007 1.301195096054135E-007 1.334135477597575E-007 1.367909773011424E-007 1.402539094163576E-007 1.438045087434858E-007 1.474449947253577E-007 1.511776429972776E-007 1.550047868099058E-007 1.589288184881757E-007 1.629521909271627E-007 1.670774191258441E-007 1.713070817597033E-007 1.756438227931729E-007 1.800903531329158E-007 1.846494523229866E-007 1.893239702829330E-007 1.941168290899213E-007 1.990310248060108E-007 2.040696293517112E-007 2.092357924270064E-007 2.145327434810366E-007 2.199637937316852E-007 2.255323382363228E-007 2.312418580150168E-007 2.370959222275262E-007 2.430981904054563E-007 2.492524147409581E-007 2.555624424334228E-007 2.620322180956267E-007 2.686657862208435E-007 2.754672937124681E-007 2.824409924777333E-007 2.895912420871499E-007 2.969225125013362E-007 3.044393868669419E-007 3.121465643834265E-007 3.200488632424820E-007 3.281512236419472E-007 3.364587108761019E-007 3.449765185042786E-007 3.537099715997844E-007 3.626645300811547E-007 3.718457921278506E-007 3.812594976825262E-007 3.909115320420612E-007 4.008079295396374E-007 4.109548773201239E-007 4.213587192111905E-007 4.320259596925387E-007 4.429632679657680E-007 4.541774821274148E-007 4.656756134477933E-007 4.774648507583241E-007 4.895525649500985E-007 5.019463135865131E-007 5.146538456328658E-007 5.276831063058860E-007 5.410422420462380E-007 5.547396056171403E-007 5.687837613322824E-007 5.831834904163474E-007 5.979477965014797E-007 6.130859112631894E-007 6.286073001992040E-007 6.445216685549287E-007 6.608389673992213E-007 6.775693998543100E-007 6.947234274837713E-007 7.123117768426088E-007 7.303454461935135E-007 7.488357123935788E-007 7.677941379557584E-007 7.872325782895600E-007 8.071631891255077E-007 8.275984341280434E-007 8.485510927016997E-007 8.700342679954086E-007 8.920613951100467E-007 9.146462495143511E-007 9.378029556745347E-007 9.615459959030342E-007 9.858902194319681E-007 1.010850851717041E-006 1.036443503977769E-006 1.062684182980023E-006 1.089589301067103E-006 1.117175686445650E-006 1.145460593732900E-006 1.174461714771968E-006 1.204197189721956E-006 1.234685618429948E-006 1.265946072092029E-006 1.297998105210754E-006 1.330861767856597E-006 1.364557618241184E-006 1.399106735610229E-006 1.434530733464343E-006 1.470851773116145E-006 1.508092577592195E-006 1.546276445888629E-006 1.585427267589493E-006 1.625569537857076E-006 1.666728372803749E-006 1.708929525255081E-006 1.752199400914217E-006 1.796565074937859E-006 1.842054308934301E-006 1.888695568394387E-006 1.936518040566463E-006 1.985551652786751E-006 2.035827091276735E-006 2.087375820419578E-006 2.140230102527927E-006 2.194423018115589E-006 2.249988486686084E-006 2.306961288051413E-006 2.365377084194504E-006 2.425272441689443E-006 2.486684854693786E-006 2.549652768527646E-006 2.614215603854711E-006 2.680413781480569E-006 2.748288747784414E-006 2.817883000800240E-006 2.889240116964461E-006 2.962404778547018E-006 3.037422801783598E-006 3.114341165727133E-006 3.193208041837123E-006 3.274072824325771E-006 3.356986161280637E-006 3.441999986583703E-006 3.529167552647647E-006 3.618543463990281E-006 3.710183711669073E-006 3.804145708597851E-006 3.900488325768651E-006 3.999271929402227E-006 4.100558419051229E-006 4.204411266680880E-006 4.310895556752528E-006 4.420078027336111E-006 4.532027112278438E-006 4.646812984454597E-006 4.764507600130870E-006 4.885184744468123E-006 5.008920078195287E-006 5.135791185483717E-006 5.265877623053587E-006 5.399260970544744E-006 5.536024882185002E-006 5.676255139789786E-006 5.820039707128290E-006 5.967468785691779E-006 6.118634871900895E-006 6.273632815789938E-006 6.432559881206696E-006 6.595515807567611E-006 6.762602873211745E-006 6.933925960389730E-006 7.109592621936620E-006 7.289713149673298E-006 7.474400644576522E-006 7.663771088772488E-006 7.857943419390606E-006 8.057039604341410E-006 8.261184720060036E-006 8.470507031268765E-006 8.685138072814564E-006 8.905212733637415E-006 9.130869342920109E-006 9.362249758489531E-006 9.599499457515020E-006 9.842767629586020E-006 1.009220727219949E-005 1.034797528876332E-005 1.061023258915388E-005 1.087914419289671E-005 1.115487933506936E-005 1.143761157495635E-005 1.172751890757948E-005 1.202478387813854E-005 1.232959369946043E-005 1.264214037254623E-005 1.296262081029686E-005 1.329123696447233E-005 1.362819595603451E-005 1.397371020890334E-005 1.432799758726457E-005 1.469128153650095E-005 1.506379122786320E-005 1.544576170697688E-005 1.583743404626927E-005 1.623905550148532E-005 1.665087967232641E-005 1.707316666739950E-005 1.750618327353397E-005 1.795020312965225E-005 1.840550690526329E-005 1.887238248372350E-005 1.935112515044379E-005 1.984203778611722E-005 2.034543106514297E-005 2.086162365940278E-005 2.139094244749814E-005 2.193372272966629E-005 2.249030844847562E-005 2.306105241551774E-005 2.364631654420939E-005 2.424647208894210E-005 2.486189989072146E-005 2.549299062949908E-005 2.614014508336294E-005 2.680377439484997E-005 2.748430034450549E-005 2.818215563196571E-005 2.889778416474104E-005 2.963164135496623E-005 3.038419442428972E-005 3.115592271723511E-005 3.194731802317774E-005 3.275888490727189E-005 3.359114105057260E-005 3.444461759960389E-005 3.531985952568564E-005 3.621742599429784E-005 3.713789074478106E-005 3.808184248070026E-005 3.904988527118596E-005 4.004263896357101E-005 4.106073960770761E-005 4.210483989227563E-005 4.317560959348387E-005 4.427373603654047E-005 4.539992457027169E-005 4.655489905530013E-005 4.773940236624437E-005 4.895419690831255E-005 5.020006514879378E-005 5.147781016388595E-005 5.278825620136875E-005 5.413224925961965E-005 5.551065768344323E-005 5.692437277736358E-005 5.837430943680832E-005 5.986140679785346E-005 6.138662890609988E-005 6.295096540528388E-005 6.455543224630341E-005 6.620107241728977E-005 6.788895669544517E-005 6.962018442133668E-005 7.139588429642518E-005 7.321721520456065E-005 7.508536705828569E-005 7.700156167072587E-005 7.896705365399861E-005 8.098313134497463E-005 8.305111775928659E-005 8.517237157471618E-005 8.734828814489591E-005 8.958030054391573E-005 9.186988064388839E-005 9.421854022560906E-005 9.662783212411647E-005 9.909935140983912E-005 1.016347366074267E-004 1.042356709522843E-004 1.069038836875381E-004 1.096411514019857E-004 1.124492994106979E-004 1.153302031797771E-004 1.182857897972320E-004 1.213180394908806E-004 1.244289871956429E-004 1.276207241719124E-004 1.308953996765652E-004 1.342552226886827E-004 1.377024636923767E-004 1.412394565179847E-004 1.448686002447760E-004 1.485923611667432E-004 1.524132748242864E-004 1.563339481037926E-004 1.603570614082529E-004 1.644853709009987E-004 1.687217108259886E-004 1.730689959069104E-004 1.775302238284896E-004 1.821084778033714E-004 1.868069292271143E-004 1.916288404255643E-004 1.965775674978308E-004 2.016565632583046E-004 2.068693802820372E-004 2.122196740576539E-004 2.177112062512482E-004 2.233478480865134E-004 2.291335838454936E-004 2.350725144941849E-004 2.411688614388139E-004 2.474269704176342E-004 2.538513155336201E-004 2.604465034337270E-004 2.672172776409204E-004 2.741685230451117E-004 2.813052705590332E-004 2.886327019464785E-004 2.961561548294666E-004 3.038811278818337E-004 3.118132862169618E-004 3.199584669776988E-004 3.283226851367882E-004 3.369121395163176E-004 3.457332190360711E-004 3.547925091992901E-004 3.640967988266804E-004 3.736530870484748E-004 3.834685905659896E-004 3.935507511932301E-004 4.039072436912911E-004 4.145459839074491E-004 4.254751372315352E-004 4.367031273841714E-004 4.482386455497986E-004 4.600906598699345E-004 4.722684253120170E-004 4.847814939297704E-004 4.976397255316686E-004 5.108532987757662E-004 5.244327227085415E-004 5.383888487673007E-004 5.527328832658175E-004 5.674764003847895E-004 5.826313556881045E-004 5.982101001884624E-004 6.142253949857574E-004 6.306904265031979E-004 6.476188223474700E-004 6.650246678196747E-004 6.829225231057259E-004 7.013274411757583E-004 7.202549864235004E-004 7.397212540777619E-004 7.597428904203443E-004 7.803371138447204E-004 8.015217367930544E-004 8.233151886100488E-004 8.457365393525450E-004 8.688055245985927E-004 8.925425712978867E-004 9.169688247103931E-004 9.421061764804889E-004 9.679772938955425E-004 9.946056503821244E-004 1.022015557292650E-003 1.050232197039543E-003 1.079281657635402E-003 1.109190968700878E-003 1.139988139003928E-003 1.171702195597008E-003 1.204363224622086E-003 1.238002413855760E-003 1.272652097069868E-003 1.308345800286217E-003 1.345118290007689E-003 1.383005623510599E-003 1.422045201287403E-003 1.462275821732354E-003 1.503737738165935E-003 1.546472718298765E-003 1.590524106238769E-003 1.635936887150371E-003 1.682757754677597E-003 1.731035181249715E-003 1.780819491389299E-003 1.832162938150692E-003 1.885119782819305E-003 1.939746378008316E-003 1.996101254294646E-003 2.054245210540180E-003 2.114241408051369E-003 2.176155468734384E-003 2.240055577409584E-003 2.306012588454625E-003 2.374100136951530E-003 2.444394754519151E-003 2.516975990018797E-003 2.591926535326644E-003 2.669332356373756E-003 2.749282829660049E-003 2.831870884456481E-003 2.917193150914915E-003 3.005350114312529E-003 3.096446275664938E-003 3.190590318948015E-003 3.287895285174962E-003 3.388478753583828E-003 3.492463030194541E-003 3.599975344003138E-003 3.711148051086988E-003 3.826118846900045E-003 3.945030987044769E-003 4.068033516812197E-003 4.195281509787417E-003 4.326936315823336E-003 4.463165818689765E-003 4.604144703710235E-003 4.750054735701682E-003 4.901085047536481E-003 5.057432439647994E-003 5.219301690802714E-003 5.386905880464558E-003 5.560466723073870E-003 5.740214914565759E-003 5.926390491447910E-003 6.119243202755354E-003 6.319032895194913E-003 6.526029911783783E-003 6.740515504280903E-003 6.962782259696329E-003 7.193134541154084E-003 7.431888943367293E-003 7.679374762967678E-003 7.935934483911708E-003 8.201924278162329E-003 8.477714521817907E-003 8.763690326833251E-003 9.060252088438936E-003 9.367816048333208E-003 9.686814873673786E-003 1.001769825185226E-002 1.036093350098241E-002 1.071700619597371E-002 1.108642081000091E-002 1.146970137110865E-002 1.186739213361387E-002 1.228005826388744E-002 1.270828654000096E-002 1.315268606463004E-002 1.361388899049282E-002 1.409255125748793E-002 1.458935334056827E-002 1.510500100724887E-002 1.564022608349920E-002 1.619578722661079E-002 1.677247070345711E-002 1.737109117238170E-002 1.799249246674653E-002 1.863754837796728E-002 1.930716343562856E-002 2.000227368203546E-002 2.072384743829726E-002 2.147288605876400E-002 2.225042467034850E-002 2.305753289295316E-002 2.389531553689705E-002 2.476491327289339E-002 2.566750326975872E-002 2.660429979465945E-002 2.757655477028950E-002 2.858555828295722E-002 2.963263903511534E-002 3.071916473540471E-002 3.184654241880652E-002 3.301621868899344E-002 3.422967987445774E-002 3.548845208946032E-002 3.679410119029013E-002 3.814823261676840E-002 3.955249110834653E-002 4.100856028356567E-002 4.251816207105216E-002 4.408305597961561E-002 4.570503819442815E-002 4.738594048565180E-002 4.912762891529813E-002 5.093200232752458E-002 5.280099060700277E-002 5.473655268946981E-002 5.674067430805451E-002 5.881536545851396E-002 6.096265756610010E-002 6.318460033640355E-002 6.548325827225476E-002 6.786070683853183E-002 7.031902825662482E-002 7.286030691029877E-002 7.548662434480390E-002 7.820005384135527E-002 8.100265454950104E-002 8.389646516049652E-002 8.688349710559065E-002 8.996572726411535E-002 9.314509016753308E-002 9.642346968707718E-002 9.980269019442228E-002 1.032845071869233E-001 1.068705973713837E-001 1.105625482031387E-001 1.143618468804067E-001 1.182698687974835E-001 1.222878654644117E-001 1.264169519052515E-001 1.306580935521302E-001 1.350120926577404E-001 1.394795742550446E-001 1.440609716995657E-001 1.487565118368044E-001 1.535661998451272E-001 1.584898038127728E-001 1.635268391165717E-001 1.686765526794597E-001 1.739379071938716E-001 1.793095654086931E-001 1.847898745884202E-001 1.903768512646470E-001 1.960681664117724E-001 2.018611311908313E-001 2.077526834175772E-001 2.137393749231027E-001 2.198173599873776E-001 2.259823850378461E-001 2.322297798164384E-001 2.385544502289028E-001 2.449508730998088E-001 2.514130930648045E-001 2.579347218382800E-001 2.645089400991436E-001 2.711285022396799E-001 2.777857442218121E-001 2.844725947812673E-001 2.911805902125331E-001 2.979008929555841E-001 3.046243141887196E-001 3.113413406097507E-001 3.180421655598155E-001 3.247167246096118E-001 3.313547356862348E-001 3.379457437696995E-001 3.444791701308955E-001 3.509443660169294E-001 3.573306706150516E-001 3.636274730423936E-001 3.698242780154983E-001 3.759107747509713E-001 3.818769085368709E-001 3.877129542940201E-001 3.934095913179358E-001 3.989579782566327E-001 4.043498272383347E-001 4.095774759179858E-001 4.146339560644513E-001 4.195130571640405E-001 4.242093833736925E-001 4.287184020223476E-001 4.330364817360617E-001 4.371609181560289E-001 4.410899451342833E-001 4.448227292354927E-001 4.483593453513843E-001 4.517007312541069E-001 4.548486189836148E-001 4.578054410897775E-001 4.605742099403592E-001 4.631583685691472E-001 4.655616118821087E-001 4.677876774706744E-001 4.698401058063955E-001 4.717219702155019E-001 4.734355777586444E-001 4.749821429717669E-001 4.763614373572063E-001 4.775714185451682E-001 4.786078441662988E-001 4.794638766731631E-001 4.801318375897315E-001 4.806105099772428E-001 4.809006452985777E-001 4.810031046139661E-001 4.809188598746493E-001 4.806489952105454E-001 4.801947081948516E-001 4.795573110682714E-001 4.787382319053869E-001 4.777390157056214E-001 4.765613253912608E-001 4.752069426951200E-001 4.736777689206527E-001 4.719758255576275E-001 4.701032547369071E-001 4.680623195083864E-001 4.658554039267729E-001 4.634850129306061E-001 4.609537720007384E-001 4.582644265854101E-001 4.554198412800577E-001 4.524229987510907E-001 4.492769983940439E-001 4.459850547177692E-001 4.425504954476508E-001 4.389767593422153E-001 4.352673937189498E-001 4.314260516866325E-001 4.274564890830014E-001 4.233625611181536E-001 4.191482187256316E-001 4.148175046247514E-001 4.103745490992999E-001 4.058235654993142E-001 4.011688454741986E-001 3.964147539469635E-001 3.915657238408429E-001 3.866262505709797E-001 3.816008863152288E-001 3.764942340794242E-001 3.713109415736709E-001 3.660556949173476E-001 3.607332121915365E-001 3.553482368554765E-001 3.499055310645893E-001 3.444098688734175E-001 3.388660293866839E-001 3.332787898581273E-001 3.276529187645442E-001 3.219931688778652E-001 3.163042703580007E-001 3.105909238892932E-001 3.048577938832068E-001 2.991095017695489E-001 2.933506193981174E-001 2.875856625721262E-001 2.818190847341024E-001 2.760552708241818E-001 2.702985313298590E-001 2.645530965452856E-001 2.588231110571524E-001 2.531126284730541E-001 2.474256064070303E-001 2.417659017357002E-001 2.361372661370794E-001 2.305433419227962E-001 2.249876581730126E-001 2.194736271819197E-001 2.140045412202244E-001 2.085835696195828E-001 2.032137561824784E-001 1.978980169195977E-001 1.926391381153285E-001 1.874397747206086E-001 1.823024490709994E-001 1.772295499265344E-001 1.722233318286447E-001 1.672859147682469E-001 1.624192841579567E-001 1.576252911003125E-001 1.529056529429119E-001 1.482619541104477E-001 1.436956472028057E-001 1.392080543476409E-001 1.348003687951952E-001 1.304736567425548E-001 1.262288593740648E-001 1.220667951042328E-001 1.179881620091507E-001 1.139935404322526E-001 1.100833957500909E-001 1.062580812837693E-001 1.025178413416975E-001 9.886281437943473E-002 9.529303626256579E-002 9.180844361876846E-002 8.840887726564198E-002 8.509408570085963E-002 8.186372864228104E-002 7.871738060546321E-002 7.565453450670222E-002 7.267460528024365E-002 6.977693349912056E-002 6.696078898924616E-002 6.422537442704765E-002 6.156982891173103E-002 5.899323150349531E-002 5.649460472011174E-002 5.407291798439795E-002 5.172709101558253E-002 4.945599716048060E-002 4.725846664677965E-002 4.513328978462981E-002 4.307922350963152E-002 4.109495351956944E-002 3.917938083825371E-002 3.733058180911757E-002 3.554811965453955E-002 3.383168384143215E-002 3.217998708145719E-002 3.059145174319447E-002 2.906450544491822E-002 2.759758205631595E-002 2.618912270670767E-002 2.483757679289577E-002 2.354140298485859E-002 2.229907022691588E-002 2.110905873198503E-002 1.996986096654685E-002 1.887998262394584E-002 1.783794358366577E-002 1.684227885424618E-002 1.589153949752389E-002 1.498429353199045E-002 1.411912681289645E-002 1.329464388717715E-002 1.250946882097723E-002 1.176224599770581E-002 1.105164088475687E-002 1.037634076704419E-002 9.735055445590550E-003 9.126517899524299E-003 8.549484909947749E-003 8.002737644258908E-003 7.485082199631655E-003 6.995350104488213E-003 6.532398776931890E-003 6.095111939246431E-003 5.682399987710625E-003 5.293200317122517E-003 4.926477599575725E-003 4.581224017180641E-003 4.256459448574747E-003 3.951231609218344E-003 3.664616145623900E-003 3.395716683818250E-003 3.143664832486296E-003 2.907620141391924E-003 2.686770015815895E-003 2.480329587890683E-003 2.287541545848003E-003 2.107675922325366E-003 1.940029843002829E-003 1.783927236959444E-003 1.638718510250322E-003 1.503780184308988E-003 1.378514500875469E-003 1.262348995237772E-003 1.154736039652708E-003 1.055152358881045E-003 9.630985198314366E-004 8.780983973572178E-004 7.996986182898931E-004 7.274679858227088E-004 6.609968863772489E-004 5.998966810953660E-004 5.437990840981679E-004 4.923555296433099E-004 4.452365302917339E-004 4.021310281655134E-004 3.627457413399470E-004 3.268045073658791E-004 2.940476258628584E-004 2.642312020606632E-004 2.371264930964705E-004 2.125192587980865E-004 1.902091186008185E-004 1.700089161573798E-004 1.517440931073552E-004 1.352520733758969E-004 1.203816592711693E-004 1.069924405473165E-004 9.495421749510562E-005 8.414643901658936E-005 7.445765653383740E-005 6.578499447567334E-005 5.803363798108252E-005 5.111633835414898E-005 4.495293670363490E-005 3.946990610119441E-005 3.459991249623459E-005 3.028139453308082E-005 2.645816232780208E-005 2.307901517819019E-005 2.009737810130022E-005 1.747095701892979E-005 1.516141234267643E-005 1.313405064694319E-005 1.135753406059120E-005 9.803606955943205E-006 8.446839467549764E-006 7.264387332523258E-006 6.235767509257893E-006 5.342649001880759E-006 4.568658293673408E-006 3.899198773783153E-006 3.321283527594049E-006 2.823380851905829E-006 2.395271851307031E-006 2.027919471537132E-006 1.713348328905019E-006 1.444534701659512E-006 1.215306059140308E-006 1.020249518397216E-006 8.546286276495769E-007 7.143080016122620E-007 5.956845961026123E-007 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.019596330108608E-015 1.058557142097445E-015 1.099006724520183E-015 1.141001966268285E-015 1.184601930071379E-015 1.229867935563937E-015 1.276863645526123E-015 1.325655155420074E-015 1.376311086347528E-015 1.428902681559570E-015 1.483503906654182E-015 1.540191553602556E-015 1.599045348750467E-015 1.660148064946573E-015 1.723585637955400E-015 1.789447287318642E-015 1.857825641834860E-015 1.928816869833997E-015 2.002520814429930E-015 2.079041133941331E-015 2.158485447678223E-015 2.240965487299392E-015 2.326597253953442E-015 2.415501181424525E-015 2.507802305512216E-015 2.603630439883673E-015 2.703120358645538E-015 2.806411985892214E-015 2.913650592497182E-015 3.024987000424139E-015 3.140577794845193E-015 3.260585544364595E-015 3.385179029657621E-015 3.514533480846220E-015 3.648830823945249E-015 3.788259936725913E-015 3.933016914356235E-015 4.083305345192243E-015 4.239336597107606E-015 4.401330114764599E-015 4.569513728244252E-015 4.744123973469987E-015 4.925406424875244E-015 5.113616040782970E-015 5.309017521982845E-015 5.511885684010300E-015 5.722505843651217E-015 5.941174220215650E-015 6.168198352145050E-015 6.403897529538931E-015 6.648603243209097E-015 6.902659650893298E-015 7.166424061283738E-015 7.440267436551298E-015 7.724574914072299E-015 8.019746348091288E-015 8.326196872082046E-015 8.644357482597425E-015 8.974675645429262E-015 9.317615924930979E-015 9.673660637387629E-015 1.004331052935275E-014 1.042708548190569E-014 1.082552524182004E-014 1.123919018067162E-014 1.166866208295312E-014 1.211454496430459E-014 1.257746592100994E-014 1.305807601195436E-014 1.355705117428336E-014 1.407509317405053E-014 1.461293059319186E-014 1.517131985421412E-014 1.575104628403861E-014 1.635292521849676E-014 1.697780314903022E-014 1.762655891320914E-014 1.830010493074227E-014 1.899938848671758E-014 1.972539306387804E-014 2.047913972580620E-014 2.126168855296320E-014 2.207414013360161E-014 2.291763711164894E-014 2.379336579373929E-014 2.470255781765204E-014 2.564649188450587E-014 2.662649555714274E-014 2.764394712723188E-014 2.870027755371989E-014 2.979697247535213E-014 3.093557430009730E-014 3.211768437441280E-014 3.334496523540196E-014 3.461914294903115E-014 3.594200953769402E-014 3.731542550053861E-014 3.874132243010081E-014 4.022170572892455E-014 4.175865742999009E-014 4.335433912491526E-014 4.501099500405044E-014 4.673095501274082E-014 4.851663812819597E-014 5.037055576157575E-014 5.229531529007508E-014 5.429362372397862E-014 5.636829151383972E-014 5.852223650313970E-014 6.075848803198638E-014 6.308019119762227E-014 6.549061127773619E-014 6.799313832279798E-014 7.059129192387572E-014 7.328872616264081E-014 7.608923475052211E-014 7.899675636423788E-014 8.201538018520915E-014 8.514935165064464E-014 8.840307842438719E-014 9.178113659591627E-014 9.528827711622866E-014 9.892943247964570E-014 1.027097236609465E-013 1.066344673175832E-013 1.107091832671053E-013 1.149396022503135E-013 1.193316739910580E-013 1.238915755640185E-013 1.286257200822330E-013 1.335407657165950E-013 1.386436250600030E-013 1.439414748493336E-013 1.494417660589101E-013 1.551522343796645E-013 1.610809110987251E-013 1.672361343947384E-013 1.736265610648077E-013 1.802611786995385E-013 1.871493183233221E-013 1.943006675176219E-013 2.017252840457343E-013 2.094336099981743E-013 2.174364864785857E-013 2.257451688508314E-013 2.343713425687004E-013 2.433271396105044E-013 2.526251555416716E-013 2.622784672293343E-013 2.723006512338311E-013 2.827058029029779E-013 2.935085561959762E-013 3.047241042648281E-013 3.163682208222095E-013 3.284572823258554E-013 3.410082910106463E-013 3.540388988008075E-013 3.675674321358332E-013 3.816129177450617E-013 3.961951094071518E-013 4.113345157320830E-013 4.270524290047710E-013 4.433709551308510E-013 4.603130447267475E-013 4.779025253977667E-013 4.961641352495780E-013 5.151235576802698E-013 5.348074575018427E-013 5.552435184420032E-013 5.764604820789679E-013 5.984881882640322E-013 6.213576170887929E-013 6.451009324559937E-013 6.697515273153144E-013 6.953440706277174E-013 7.219145561243650E-013 7.495003529287583E-013 7.781402581132043E-013 8.078745512635952E-013 8.387450511292233E-013 8.707951744372588E-013 9.040699969547087E-013 9.386163168836111E-013 9.744827206787298E-013 1.011719651380264E-012 1.050379479557659E-012 1.090516576964380E-012 1.132187393007121E-012 1.175450534137085E-012 1.220366846274978E-012 1.266999500385572E-012 1.315414081322320E-012 1.365678680066827E-012 1.417863989493018E-012 1.472043403790652E-012 1.528293121687947E-012 1.586692253618646E-012 1.647322932984050E-012 1.710270431666655E-012 1.775623279957801E-012 1.843473391067922E-012 1.913916190394701E-012 1.987050749730697E-012 2.062979926599385E-012 2.141810508915516E-012 2.223653365173139E-012 2.308623600372759E-012 2.396840717906634E-012 2.488428787630121E-012 2.583516620355371E-012 2.682237949012657E-012 2.784731616734434E-012 2.891141772126274E-012 3.001618071999597E-012 3.116315891851250E-012 3.235396544385769E-012 3.359027506388059E-012 3.487382654265094E-012 3.620642508588277E-012 3.758994487980237E-012 3.902633172703032E-012 4.051760578318789E-012 4.206586439807248E-012 4.367328506540122E-012 4.534212848527051E-012 4.707474174363635E-012 4.887356161329172E-012 5.074111798097827E-012 5.268003740545619E-012 5.469304681153541E-012 5.678297732526064E-012 5.895276825565048E-012 6.120547122858254E-012 6.354425447864510E-012 6.597240730498913E-012 6.849334469744424E-012 7.111061213941248E-012 7.382789059428593E-012 7.664900168240742E-012 7.957791305585381E-012 8.261874397859679E-012 8.577577111989879E-012 8.905343456907976E-012 9.245634408012423E-012 9.598928555490602E-012 9.965722777414911E-012 1.034653293855936E-011 1.074189461591913E-011 1.115236385195381E-011 1.157851793661360E-011 1.202095621924808E-011 1.248030095153991E-011 1.295719816264842E-011 1.345231856779431E-011 1.396635851156330E-011 1.450004094725496E-011 1.505411645365476E-011 1.562936429065869E-011 1.622659349523558E-011 1.684664401926835E-011 1.749038791087420E-011 1.815873054086561E-011 1.885261187607671E-011 1.957300780134603E-011 2.032093149201497E-011 2.109743483887175E-011 2.190360992754580E-011 2.274059057443228E-011 2.360955392130764E-011 2.451172209087855E-011 2.544836390559229E-011 2.642079667212689E-011 2.743038803406961E-011 2.847855789539015E-011 2.956678041741369E-011 3.069658609210196E-011 3.186956389455882E-011 3.308736351778679E-011 3.435169769283857E-011 3.566434459762607E-011 3.702715035777425E-011 3.844203164303833E-011 3.991097836293444E-011 4.143605646537614E-011 4.301941084225237E-011 4.466326834603270E-011 4.636994092164385E-011 4.814182885802052E-011 4.998142416390492E-011 5.189131407264235E-011 5.387418468090108E-011 5.593282472643620E-011 5.807012951020771E-011 6.028910496837172E-011 6.259287189986993E-011 6.498467035556318E-011 6.746786419508347E-011 7.004594581781084E-011 7.272254107463140E-011 7.550141436738265E-011 7.838647394315842E-011 8.138177739092011E-011 8.449153734814368E-011 8.772012742552894E-011 9.107208835810395E-011 9.455213439137420E-011 9.816515991150016E-011 1.019162463288258E-010 1.058106692244405E-010 1.098539057698262E-010 1.140516424300208E-010 1.184097829611379E-010 1.229344567134845E-010 1.276320272519585E-010 1.325091013058484E-010 1.375725380606204E-010 1.428294588047655E-010 1.482872569452687E-010 1.539536084057897E-010 1.598364824221794E-010 1.659441527505112E-010 1.722852093033958E-010 1.788685702309393E-010 1.857034944633399E-010 1.927995947327605E-010 2.001668510927935E-010 2.078156249545266E-010 2.157566736589583E-010 2.240011656062499E-010 2.325606959630967E-010 2.414473029703096E-010 2.506734848735347E-010 2.602522175009344E-010 2.701969725125425E-010 2.805217363469609E-010 2.912410298920500E-010 3.023699289072647E-010 3.139240852263775E-010 3.259197487703889E-010 3.383737904015974E-010 3.513037256509691E-010 3.647277393521645E-010 3.786647112168895E-010 3.931342423875228E-010 4.081566830043678E-010 4.237531608263095E-010 4.399456109451053E-010 4.567568066351285E-010 4.742103913819304E-010 4.923309121346749E-010 5.111438538292158E-010 5.306756752303513E-010 5.509538461436927E-010 5.720068860494577E-010 5.938644042125357E-010 6.165571413252348E-010 6.401170127412656E-010 6.645771533617854E-010 6.899719642366127E-010 7.163371609461622E-010 7.437098238321479E-010 7.721284501476722E-010 8.016330082000881E-010 8.322649935627435E-010 8.640674874346799E-010 8.970852172303702E-010 9.313646194846755E-010 9.669539051615378E-010 1.003903127458217E-009 1.042264252200454E-009 1.082091230927571E-009 1.123440076770245E-009 1.166368943227745E-009 1.210938205955360E-009 1.257210547677079E-009 1.305251046342935E-009 1.355127266654967E-009 1.406909355090586E-009 1.460670138556915E-009 1.516485226814895E-009 1.574433118817202E-009 1.634595313109475E-009 1.697056422450208E-009 1.761904292810432E-009 1.829230126920584E-009 1.899128612538300E-009 1.971698055617560E-009 2.047040518566385E-009 2.125261963787653E-009 2.206472402704806E-009 2.290786050482074E-009 2.378321486656833E-009 2.469201821909931E-009 2.563554871208628E-009 2.661513333565564E-009 2.763214978666610E-009 2.868802840630091E-009 2.978425419169772E-009 3.092236888444664E-009 3.210397313889275E-009 3.333072877329247E-009 3.460436110699062E-009 3.592666138690358E-009 3.729948930672275E-009 3.872477562238003E-009 4.020452486745406E-009 4.174081817233652E-009 4.333581619112163E-009 4.499176214033738E-009 4.671098495379025E-009 4.849590255796105E-009 5.034902527255845E-009 5.227295934101108E-009 5.427041059586579E-009 5.634418826424456E-009 5.849720891871342E-009 6.073250057911902E-009 6.305320697116091E-009 6.546259194768983E-009 6.796404407894886E-009 7.056108141821314E-009 7.325735644953086E-009 7.605666122452193E-009 7.896293269546045E-009 8.198025825214020E-009 8.511288147030925E-009 8.836520807975935E-009 9.174181216046053E-009 9.524744257545793E-009 9.888702964957550E-009 1.026656921033186E-008 1.065887442517296E-008 1.106617034783155E-008 1.148902979945631E-008 1.192804748959515E-008 1.238384085257899E-008 1.285705091586484E-008 1.334834320155834E-008 1.385840866238465E-008 1.438796465342323E-008 1.493775594097327E-008 1.550855574996861E-008 1.610116685141482E-008 1.671642269137809E-008 1.735518856311324E-008 1.801836282397938E-008 1.870687815885460E-008 1.942170289182595E-008 2.016384234799985E-008 2.093434026734770E-008 2.173428027257488E-008 2.256478739307758E-008 2.342702964712994E-008 2.432221968452725E-008 2.525161649199457E-008 2.621652716375902E-008 2.721830873977608E-008 2.825837011419377E-008 2.933817401673975E-008 3.045923906981672E-008 3.162314192419884E-008 3.283151947633327E-008 3.408607117036305E-008 3.538856138811049E-008 3.674082193038036E-008 3.814475459307232E-008 3.960233384172606E-008 4.111560958825776E-008 4.268671007379520E-008 4.431784486166316E-008 4.601130794472833E-008 4.776948097147385E-008 4.959483659533788E-008 5.148994195202824E-008 5.345746226970042E-008 5.550016461707690E-008 5.762092179477749E-008 5.982271637533095E-008 6.210864489755139E-008 6.448192222117418E-008 6.694588604787613E-008 6.950400161503642E-008 7.215986656883672E-008 7.491721602355421E-008 7.777992781416013E-008 8.075202794960844E-008 8.383769627448458E-008 8.704127234696956E-008 9.036726154139050E-008 9.382034138393208E-008 9.740536813041947E-008 1.011273835954216E-007 1.049916222422720E-007 1.090035185439808E-007 1.131687146253837E-007 1.174930681972714E-007 1.219826607936586E-007 1.266438063237646E-007 1.314830599507401E-007 1.365072273096119E-007 1.417233740774112E-007 1.471388359089382E-007 1.527612287521262E-007 1.585984595575149E-007 1.646587373968815E-007 1.709505850066618E-007 1.774828507723919E-007 1.842647211710092E-007 1.913057336885138E-007 1.986157902311407E-007 2.062051710488978E-007 2.140845491910436E-007 2.222650055138159E-007 2.307580442615204E-007 2.395756092428660E-007 2.487301006252941E-007 2.582343923709049E-007 2.681018503384818E-007 2.783463510770676E-007 2.889823013374981E-007 3.000246583293210E-007 3.114889507515702E-007 3.233913006269456E-007 3.357484459700983E-007 3.485777643218651E-007 3.618972971825350E-007 3.757257753784848E-007 3.900826453978183E-007 4.049880967320410E-007 4.204630902621712E-007 4.365293877291870E-007 4.532095823302232E-007 4.705271304834932E-007 4.885063848065959E-007 5.071726283545232E-007 5.265521101654841E-007 5.466720821644933E-007 5.675608374765541E-007 5.892477502032878E-007 6.117633167188788E-007 6.351391985433507E-007 6.594082668534159E-007 6.846046486934022E-007 7.107637749512050E-007 7.379224301666296E-007 7.661188042421021E-007 7.953925461283908E-007 8.257848195607112E-007 8.573383609235417E-007 8.900975393253927E-007 9.241084189679041E-007 9.594188238968792E-007 9.960784052261531E-007 1.034138710928735E-006 1.073653258293209E-006 1.114677609147127E-006 1.157269447953052E-006 1.201488662886840E-006 1.247397430012070E-006 1.295060300668743E-006 1.344544292198958E-006 1.395918982136933E-006 1.449256605995548E-006 1.504632158786742E-006 1.562123500418198E-006 1.621811465114266E-006 1.683779975014731E-006 1.748116158110748E-006 1.814910470683581E-006 1.884256824417850E-006 1.956252718367696E-006 2.030999375961031E-006 2.108601887234028E-006 2.189169356495486E-006 2.272815055628135E-006 2.359656583241968E-006 2.449816029902835E-006 2.543420149667981E-006 2.640600537761070E-006 2.741493817890291E-006 2.846241827834984E-006 2.954991828542311E-006 3.067896700630678E-006 3.185115166090344E-006 3.306812011929002E-006 3.433158310771526E-006 3.564331679502232E-006 3.700516511328043E-006 3.841904244808875E-006 3.988693629486399E-006 4.141091003359181E-006 4.299310587674376E-006 4.463574782097279E-006 4.634114481316174E-006 4.811169398796253E-006 4.994988400505127E-006 5.185829857622951E-006 5.383962003258870E-006 5.589663317585360E-006 5.803222917128968E-006 6.024940952182564E-006 6.255129040288576E-006 6.494110689919630E-006 6.742221770396277E-006 6.999810971725287E-006 7.267240298543967E-006 7.544885572753555E-006 7.833136971586574E-006 8.132399569335580E-006 8.443093897015607E-006 8.765656548071712E-006 9.100540783320384E-006 9.448217160787548E-006 9.809174212534674E-006 1.018391911161298E-005 1.057297839237297E-005 1.097689869221171E-005 1.139624750976739E-005 1.183161401048864E-005 1.228360984217681E-005 1.275286999970633E-005 1.324005371631319E-005 1.374584538432095E-005 1.427095551565342E-005 1.481612172918480E-005 1.538210980431542E-005 1.596971474217198E-005 1.657976187416835E-005 1.721310803288931E-005 1.787064274253930E-005 1.855328945418196E-005 1.926200687854605E-005 1.999779027977459E-005 2.076167291462538E-005 2.155472742523877E-005 2.237806739829161E-005 2.323284890582239E-005 2.412027209740370E-005 2.504158291045398E-005 2.599807480298773E-005 2.699109055167915E-005 2.802202418299862E-005 2.909232283156032E-005 3.020348885602137E-005 3.135708188172463E-005 3.255472102387054E-005 3.379808710380843E-005 3.508892504759172E-005 3.642904628404781E-005 3.782033131736071E-005 3.926473231832523E-005 4.076427585985573E-005 4.232106578824959E-005 4.393728609853733E-005 4.561520402288751E-005 4.735717320582731E-005 4.916563694538356E-005 5.104313166470494E-005 5.299229038732329E-005 5.501584646548115E-005 5.711663736874119E-005 5.929760862528127E-005 6.156181796181844E-005 6.391243956415198E-005 6.635276845492844E-005 6.888622515314922E-005 7.151636038340413E-005 7.424686005936798E-005 7.708155039224491E-005 8.002440323183774E-005 8.307954158115206E-005 8.625124534654873E-005 8.954395728443123E-005 9.296228918524397E-005 9.651102826973966E-005 1.001951438675404E-004 1.040197942892762E-004 1.079903340261596E-004 1.121123211574667E-004 1.163915250804270E-004 1.208339345154927E-004 1.254457657915900E-004 1.302334715075593E-004 1.352037494386359E-004 1.403635518354459E-004 1.457200950497281E-004 1.512808695245448E-004 1.570536501523505E-004 1.630465070692840E-004 1.692678167526284E-004 1.757262736567666E-004 1.824309021936268E-004 1.893910692026587E-004 1.966164968850474E-004 2.041172762138816E-004 2.119038808480613E-004 2.199871815809907E-004 2.283784612960476E-004 2.370894305188167E-004 2.461322435174745E-004 2.555195150413017E-004 2.652643376358702E-004 2.753802996427059E-004 2.858815038636124E-004 2.967825868862644E-004 3.080987391831885E-004 3.198457258966379E-004 3.320399084626530E-004 3.446982669647917E-004 3.578384233881420E-004 3.714786656745973E-004 3.856379727047786E-004 4.003360401980464E-004 4.155933075607531E-004 4.314309857228963E-004 4.478710860310036E-004 4.649364501540039E-004 4.826507811564111E-004 5.010386756437705E-004 5.201256571495135E-004 5.399382107069617E-004 5.605038187229709E-004 5.818509981268525E-004 6.040093388976249E-004 6.270095440303607E-004 6.508834708955562E-004 6.756641741619727E-004 7.013859502550770E-004 7.280843834506308E-004 7.557963936140595E-004 7.845602857027361E-004 8.144158010326700E-004 8.454041704257763E-004 8.775681692547254E-004 9.109521744786854E-004 9.456022237389625E-004 9.815660765648147E-004 1.018893277789989E-003 1.057635223220179E-003 1.097845227675729E-003 1.139578595424429E-003 1.182892693165563E-003 1.227847025573753E-003 1.274503313528503E-003 1.322925575129319E-003 1.373180209553350E-003 1.425336083881994E-003 1.479464622959187E-003 1.535639902432485E-003 1.593938745016111E-003 1.654440820144771E-003 1.717228747069674E-003 1.782388201549277E-003 1.850008026225574E-003 1.920180344824817E-003 1.993000680269375E-003 2.068568076850396E-003 2.146985226590568E-003 2.228358599892484E-003 2.312798580649668E-003 2.400419605920341E-003 2.491340310307733E-003 2.585683675211120E-003 2.683577183052159E-003 2.785152976673168E-003 2.890548023995923E-003 2.999904288149669E-003 3.113368903194163E-003 3.231094355598301E-003 3.353238671636812E-003 3.479965610870626E-003 3.611444865876395E-003 3.747852268381822E-003 3.889370001995377E-003 4.036186821680049E-003 4.188498280156427E-003 4.346506961404544E-003 4.510422721455432E-003 4.680462936610468E-003 4.856852759312618E-003 5.039825381802781E-003 5.229622307775058E-003 5.426493632175160E-003 5.630698329338527E-003 5.842504549637253E-003 6.062189924792160E-003 6.290041882037115E-003 6.526357967292361E-003 6.771446177508707E-003 7.025625302337191E-003 7.289225275277172E-003 7.562587534444680E-003 7.846065393099637E-003 8.140024420063280E-003 8.444842830132278E-003 8.760911884619613E-003 9.088636302089104E-003 9.428434679391570E-003 9.780739923065685E-003 1.014599969113725E-002 1.052467684537490E-002 1.091724991400176E-002 1.132421356485923E-002 1.174607908899077E-002 1.218337489459038E-002 1.263664701122729E-002 1.310645960423643E-002 1.359339549911297E-002 1.409805671574741E-002 1.462106501225091E-002 1.516306243813402E-002 1.572471189649556E-002 1.630669771488593E-002 1.690972622443088E-002 1.753452634672237E-002 1.818185018798055E-002 1.885247363986393E-002 1.954719698628298E-002 2.026684551545955E-002 2.101227013643217E-002 2.178434799909222E-002 2.258398311674999E-002 2.341210699015618E-002 2.426967923177443E-002 2.515768818899072E-002 2.607715156485930E-002 2.702911703482379E-002 2.801466285774025E-002 2.903489847939132E-002 3.009096512652257E-002 3.118403638928176E-002 3.231531878978192E-002 3.348605233431787E-002 3.469751104660279E-002 3.595100347918003E-002 3.724787319997559E-002 3.858949925072359E-002 3.997729657379348E-002 4.141271640368693E-002 4.289724661924035E-002 4.443241205230394E-002 4.601977474839081E-002 4.766093417450112E-002 4.935752736904864E-002 5.111122902847386E-002 5.292375152484047E-002 5.479684484833659E-002 5.673229646829220E-002 5.873193110593152E-002 6.079761041172097E-002 6.293123253977895E-002 6.513473161141661E-002 6.741007705946833E-002 6.975927284465155E-002 7.218435653475039E-002 7.468739823699923E-002 7.727049937356222E-002 7.993579128957409E-002 8.268543368273190E-002 8.552161284295137E-002 8.844653969015270E-002 9.146244759774846E-002 9.457158998895082E-002 9.777623769254822E-002 1.010786760443427E-001 1.044812017200046E-001 1.079861192846540E-001 1.115957374440859E-001 1.153123649821661E-001 1.191383063685532E-001 1.230758570206033E-001 1.271272982030114E-001 1.312948915485206E-001 1.355808731828577E-001 1.399874474369143E-001 1.445167801291873E-001 1.491709914014896E-001 1.539521480911054E-001 1.588622556227819E-001 1.639032494042946E-001 1.690769857098138E-001 1.743852320358981E-001 1.798296569157218E-001 1.854118191780991E-001 1.911331566389659E-001 1.969949742143581E-001 2.029984314454440E-001 2.091445294279973E-001 2.154340971407580E-001 2.218677771694506E-001 2.284460108259249E-001 2.351690226648193E-001 2.420368044035046E-001 2.490490982547761E-001 2.562053796858285E-001 2.635048396216273E-001 2.709463661157091E-001 2.785285255169234E-001 2.862495431665614E-001 2.941072836667386E-001 3.020992307679474E-001 3.102224669311852E-001 3.184736526282284E-001 3.268490054523417E-001 3.353442791209836E-001 3.439547424620709E-001 3.526751584858320E-001 3.614997636554831E-001 3.704222474817074E-001 3.794357325782225E-001 3.885327553286826E-001 3.977052473285310E-001 4.069445177793544E-001 4.162412370276429E-001 4.255854214544685E-001 4.349664199376317E-001 4.443729021228401E-001 4.537928487556693E-001 4.632135443410751E-001 4.726215724119330E-001 4.820028137024192E-001 4.913424475355692E-001 5.006249567470440E-001 5.098341364785736E-001 5.189531071844120E-001 5.279643322022668E-001 5.368496402458838E-001 5.455902531796611E-001 5.541668194356775E-001 5.625594534298924E-001 5.707477813266050E-001 5.787109934877495E-001 5.864279039258785E-001 5.938770170559646E-001 6.010366020107433E-001 6.078847747466987E-001 6.143995881219584E-001 6.205591300728719E-001 6.263416299519304E-001 6.317255730152848E-001 6.366898229627848E-001 6.412137523363266E-001 6.452773804729197E-001 6.488615185865522E-001 6.519479214172209E-001 6.545194447361051E-001 6.565602078324707E-001 6.580557599306475E-001 6.589932492944055E-001 6.593615935718217E-001 6.591516497170633E-001 6.583563815975612E-001 6.569710231573860E-001 6.549932347623247E-001 6.524232501017433E-001 6.492640107699820E-001 6.455212853995695E-001 6.412037699744775E-001 6.363231657192361E-001 6.308942307451489E-001 6.249348014449370E-001 6.184657794699335E-001 6.115110800080975E-001 6.040975370164354E-001 5.962547610586171E-001 5.880149454690842E-001 5.794126167213749E-001 5.704843251336694E-001 5.612682724125411E-001 5.518038730307708E-001 5.421312470709311E-001 5.322906429577841E-001 5.223217894626905E-001 5.122631775051746E-001 5.021512736116891E-001 4.920196684285967E-001 4.818981654319943E-001 4.718118169339341E-001 4.617799166513198E-001 4.518149604734026E-001 4.419215896226917E-001 4.320982795898194E-001 4.223479844892963E-001 4.126753684420267E-001 4.030848738634188E-001 3.935807258140357E-001 3.841669364448176E-001 3.748473095170463E-001 3.656254449783969E-001 3.565047435775922E-001 3.474884115013342E-001 3.385794650183495E-001 3.297807351165187E-001 3.210948721201937E-001 3.125243502759099E-001 3.040714722957867E-001 2.957383738489768E-001 2.875270279925612E-001 2.794392495342969E-001 2.714766993206129E-001 2.636408884442014E-001 2.559331823664750E-001 2.483548049510530E-001 2.409068424052991E-001 2.335902471277544E-001 2.264058414601009E-001 2.193543213430405E-001 2.124362598761908E-001 2.056521107827729E-001 1.990022117805030E-001 1.924867878606946E-001 1.861059544781297E-001 1.798597206547692E-001 1.737479920008362E-001 1.677705736572280E-001 1.619271731635878E-001 1.562174032566936E-001 1.506407846041067E-001 1.451967484782512E-001 1.398846393762853E-001 1.347037175912593E-001 1.296531617401467E-001 1.247320712543726E-001 1.199394688384599E-001 1.152743029023562E-001 1.107354499729081E-001 1.063217170898011E-001 1.020318441910966E-001 9.786450649326681E-002 9.381831687035737E-002 8.989182823659972E-002 8.608353593645224E-002 8.239188014567282E-002 7.881524828662083E-002 7.535197746055415E-002 7.200035689923309E-002 6.875863043766854E-002 6.562499900936232E-002 6.259762316488650E-002 5.967462561413909E-002 5.685409379210104E-002 5.413408244740626E-002 5.151261625252901E-002 4.898769243389245E-002 4.655728341971556E-002 4.421933950294394E-002 4.197179151615948E-002 3.981255351493634E-002 3.773952546571007E-002 3.575059593385690E-002 3.384364476734245E-002 3.201654577099826E-002 3.026716936621820E-002 2.859338523065107E-002 2.699306491226826E-002 2.546408441205893E-002 2.400432672951023E-002 2.261168436496514E-002 2.128406177295419E-002 2.001937776063193E-002 1.881556782552623E-002 1.767058642693298E-002 1.658240918545252E-002 1.554903500536774E-002 1.456848811480481E-002 1.363882001889424E-002 1.275811136145969E-002 1.192447369110172E-002 1.113605112791114E-002 1.039102192743800E-002 9.687599938954386E-003 9.024035955479804E-003 8.398618953481256E-003 7.809677220615479E-003 7.255579370342171E-003 6.734735242702628E-003 6.245596691023571E-003 5.786658254768227E-003 5.356457719212345E-003 4.953576563068780E-003 4.576640295617554E-003 4.224318685316069E-003 3.895325882263731E-003 3.588420437274416E-003 3.302405220666595E-003 3.036127244212768E-003 2.788477389995418E-003 2.558390050194533E-003 2.344842682080786E-003 2.146855282707802E-003 1.963489787985925E-003 1.793849400978233E-003 1.637077854387087E-003 1.492358612296414E-003 1.358914016301570E-003 1.236004381195586E-003 1.122927045388766E-003 1.019015381218844E-003 9.236377702624846E-004 8.361965486871644E-004 7.561269275867666E-004 6.828958931263110E-004 6.160010911825049E-004 5.549697010100859E-004 4.993573022873363E-004 4.487467397086382E-004 4.027469890852412E-004 3.609920287025274E-004 3.231397194587651E-004 2.888706970802837E-004 2.578872794693084E-004 2.299123920003404E-004 2.046885133387532E-004 1.819766441102804E-004 1.615553005088410E-004 1.432195346881811E-004 1.267799835455710E-004 1.120619472777691E-004 9.890449886434270E-005 8.715962523675906E-005 7.669140647516199E-005 6.737516726036133E-005 5.909708871916777E-005 5.175212489491995E-005 4.524632358517591E-005 3.949429834773559E-005 3.441721550089331E-005 2.994318197728280E-005 2.600707986226048E-005 2.255002593344403E-005 1.951886439916057E-005 1.686569168616628E-005 1.454741210406394E-005 1.252532318133456E-005 1.076472944413694E-005 9.234583392193820E-006 7.907152415918664E-006 6.757710393970805E-006 5.764252724519579E-006 4.907233475163023E-006 4.169325240749100E-006 3.535188322188942E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 6.764211176492685E-016 7.022685194215987E-016 7.291036020349380E-016 7.569641067466929E-016 7.858892169830932E-016 8.159196134473325E-016 8.470975313335153E-016 8.794668197268623E-016 9.130730032737056E-016 9.479633462080371E-016 9.841869188246147E-016 1.021794666492156E-015 1.060839481303657E-015 1.101376276464617E-015 1.143462063523791E-015 1.187156032555057E-015 1.232519635403228E-015 1.279616672110829E-015 1.328513380647420E-015 1.379278530067669E-015 1.431983517229153E-015 1.486702467205959E-015 1.543512337539290E-015 1.602493026471686E-015 1.663727485317108E-015 1.727301835124864E-015 1.793305487801558E-015 1.861831271861303E-015 1.932975562981116E-015 2.006838419545114E-015 2.083523723368085E-015 2.163139325796417E-015 2.245797199391830E-015 2.331613595411246E-015 2.420709207304279E-015 2.513209340458281E-015 2.609244088429691E-015 2.708948515909553E-015 2.812462848680474E-015 2.919932670832281E-015 3.031509129513590E-015 3.147349147507418E-015 3.267615643929711E-015 3.392477763361179E-015 3.522111113734783E-015 3.656698013313273E-015 3.796427747104330E-015 3.941496833073783E-015 4.092109298531389E-015 4.248476967077894E-015 4.410819756516816E-015 4.579365988150148E-015 4.754352707892795E-015 4.936026019657455E-015 5.124641431478848E-015 5.320464214863925E-015 5.523769777873688E-015 5.734844052461153E-015 5.953983896610263E-015 6.181497511841416E-015 6.417704876670546E-015 6.662938196631706E-015 6.917542371495835E-015 7.181875480342879E-015 7.456309285169580E-015 7.741229753740947E-015 8.037037602421096E-015 8.344148859746662E-015 8.662995451535469E-015 8.994025808353467E-015 9.337705496193999E-015 9.694517871256791E-015 1.006496475974723E-014 1.044956716365215E-014 1.084886599348483E-014 1.126342282902939E-014 1.169382070915503E-014 1.214066495181046E-014 1.260458400535205E-014 1.308623033240294E-014 1.358628132748601E-014 1.410544026972165E-014 1.464443731192990E-014 1.520403050752814E-014 1.578500687666881E-014 1.638818351311586E-014 1.701440873341784E-014 1.766456326999266E-014 1.833956150980270E-014 1.904035278036237E-014 1.976792268488604E-014 2.052329448845518E-014 2.130753055715354E-014 2.212173385219435E-014 2.296704948114160E-014 2.384466630840588E-014 2.475581862728111E-014 2.570178789587286E-014 2.668390453935984E-014 2.770354982112396E-014 2.876215778537896E-014 2.986121727403195E-014 3.100227402061236E-014 3.218693282421451E-014 3.341685980651118E-014 3.469378475501108E-014 3.601950355585803E-014 3.739588071959178E-014 3.882485200342302E-014 4.030842713371127E-014 4.184869263247340E-014 4.344781475189922E-014 4.510804252100059E-014 4.683171090867900E-014 4.862124410766070E-014 5.047915894391672E-014 5.240806841636433E-014 5.441068537182747E-014 5.648982632042434E-014 5.864841539674954E-014 6.088948847241928E-014 6.321619742576684E-014 6.563181457469028E-014 6.813973727888918E-014 7.074349271796173E-014 7.344674285208140E-014 7.625328957223259E-014 7.916708004724603E-014 8.219221227515540E-014 8.533294084668268E-014 8.859368292895697E-014 9.197902447788361E-014 9.549372668790067E-014 9.914273268819269E-014 1.029311744947819E-013 1.068643802282696E-013 1.109478816073846E-013 1.151874217288745E-013 1.195889631446809E-013 1.241586962477622E-013 1.289030479783516E-013 1.338286908629021E-013 1.389425523984261E-013 1.442518247954293E-013 1.497639750931425E-013 1.554867556612746E-013 1.614282151030608E-013 1.675967095749370E-013 1.740009145387610E-013 1.806498369631118E-013 1.875528279908207E-013 1.947195960905587E-013 2.021602207109692E-013 2.098851664565538E-013 2.179052978052472E-013 2.262318943883774E-013 2.348766668545075E-013 2.438517733394639E-013 2.531698365657180E-013 2.628439615951707E-013 2.728877542603024E-013 2.833153402996181E-013 2.941413852242947E-013 3.053811149439702E-013 3.170503371806931E-013 3.291654637011258E-013 3.417435333983079E-013 3.548022362553962E-013 3.683599382251226E-013 3.824357070599428E-013 3.970493391291965E-013 4.122213872610240E-013 4.279731896481581E-013 4.443268998582755E-013 4.613055179911053E-013 4.789329230260965E-013 4.972339064061822E-013 5.162342069048180E-013 5.359605468253750E-013 5.564406695837887E-013 5.777033787272908E-013 5.997785784441634E-013 6.226973156214109E-013 6.464918235095700E-013 6.711955670560294E-013 6.968432899706072E-013 7.234710635896406E-013 7.511163376072253E-013 7.798179927450206E-013 8.096163954346788E-013 8.405534545897651E-013 8.726726805470985E-013 9.060192462603065E-013 9.406400508317389E-013 9.765837854720646E-013 1.013901001980278E-012 1.052644183840531E-012 1.092867820035641E-012 1.134628481681208E-012 1.177984901588082E-012 1.222998056865007E-012 1.269731254677773E-012 1.318250221285298E-012 1.368623194478027E-012 1.420921019548569E-012 1.475217248929515E-012 1.531588245638712E-012 1.590113290677286E-012 1.650874694531623E-012 1.713957912936054E-012 1.779451667059009E-012 1.847448068281824E-012 1.918042747745491E-012 1.991334990847706E-012 2.067427876879336E-012 2.146428423996567E-012 2.228447739732893E-012 2.313601177262307E-012 2.402008497633714E-012 2.493794038204644E-012 2.589086887511055E-012 2.688021066819428E-012 2.790735718616159E-012 2.897375302299598E-012 3.008089797349897E-012 3.123034914262240E-012 3.242372313540467E-012 3.366269833058672E-012 3.494901724110861E-012 3.628448896480545E-012 3.767099172874789E-012 3.911047553080927E-012 4.060496488216991E-012 4.215656165461937E-012 4.376744803665999E-012 4.543988960256711E-012 4.717623849872720E-012 4.897893675172936E-012 5.085051970286734E-012 5.279361957388084E-012 5.481096916894850E-012 5.690540571814548E-012 5.907987486776305E-012 6.133743482310874E-012 6.368126064961059E-012 6.611464873827447E-012 6.864102144177649E-012 7.126393188770850E-012 7.398706897574794E-012 7.681426256578007E-012 7.974948886426688E-012 8.279687601644202E-012 8.596070991219263E-012 8.924544021379658E-012 9.265568661399173E-012 9.619624533317692E-012 9.987209586488606E-012 1.036884079790180E-011 1.076505489926748E-011 1.117640913188342E-011 1.160348203034691E-011 1.204687423621412E-011 1.250720934275094E-011 1.298513477196332E-011 1.348132268514090E-011 1.399647092819405E-011 1.453130401311431E-011 1.508657413693826E-011 1.566306223964805E-011 1.626157910249647E-011 1.688296648830100E-011 1.752809832531109E-011 1.819788193631287E-011 1.889325931470081E-011 1.961520844931045E-011 2.036474469987543E-011 2.114292222504384E-011 2.195083546496139E-011 2.278962068050740E-011 2.366045755134799E-011 2.456457083505375E-011 2.550323208961599E-011 2.647776146178320E-011 2.748952954373394E-011 2.853995930069650E-011 2.963052807222667E-011 3.076276964995856E-011 3.193827643475004E-011 3.315870167625707E-011 3.442576179808683E-011 3.574123881179889E-011 3.710698282315090E-011 3.852491463411204E-011 3.999702844430509E-011 4.152539465567582E-011 4.311216278433385E-011 4.475956448366135E-011 4.646991668293986E-011 4.824562484591089E-011 5.008918635385215E-011 5.200319401792755E-011 5.399033972575151E-011 5.605341822729494E-011 5.819533106545848E-011 6.041909065684084E-011 6.272782452844036E-011 6.512477971625042E-011 6.761332733193248E-011 7.019696730399147E-011 7.287933330012068E-011 7.566419783763791E-011 7.855547758920324E-011 8.155723889127643E-011 8.467370346306476E-011 8.790925434400224E-011 9.126844205811135E-011 9.475599101391745E-011 9.837680614891534E-011 1.021359798279346E-010 1.060387990051050E-010 1.100907526594927E-010 1.142975395148690E-010 1.186650760544635E-010 1.231995048419786E-010 1.279072031605644E-010 1.327947919819078E-010 1.378691452780433E-010 1.431373996889904E-010 1.486069645598073E-010 1.542855323611803E-010 1.601810895082051E-010 1.663019275925706E-010 1.726566550439496E-010 1.792542092369923E-010 1.861038690609491E-010 1.932152679696074E-010 2.005984075298832E-010 2.082636714881380E-010 2.162218403739911E-010 2.244841066621731E-010 2.330620905137442E-010 2.419678561188073E-010 2.512139286637144E-010 2.608133119466180E-010 2.707795066661453E-010 2.811265294089198E-010 2.918689323626261E-010 3.030218237823529E-010 3.146008892389895E-010 3.266224136795640E-010 3.391033043305508E-010 3.520611144763472E-010 3.655140681463787E-010 3.794810857455389E-010 3.939818106640154E-010 4.090366369039308E-010 4.246667377616382E-010 4.408940956060295E-010 4.577415327947201E-010 4.752327437716001E-010 4.933923283908943E-010 5.122458265145812E-010 5.318197539318588E-010 5.521416396511441E-010 5.732400646170736E-010 5.951447019069505E-010 6.178863584631571E-010 6.414970184202550E-010 6.660098880876724E-010 6.914594426512702E-010 7.178814746594600E-010 7.453131443620403E-010 7.737930319725928E-010 8.033611919278970E-010 8.340592092206999E-010 8.659302578850595E-010 8.990191617164966E-010 9.333724573123893E-010 9.690384595212315E-010 1.006067329392824E-009 1.044511144724965E-009 1.084423973305823E-009 1.125861948955048E-009 1.168883350470531E-009 1.213548683591840E-009 1.259920766095620E-009 1.308064816142648E-009 1.358048544000717E-009 1.409942247272457E-009 1.463818909761931E-009 1.519754304119087E-009 1.577827098406430E-009 1.638118966737744E-009 1.700714704144519E-009 1.765702345831591E-009 1.833173290989721E-009 1.903222431339257E-009 1.975948284585610E-009 2.051453132974293E-009 2.129843167140347E-009 2.211228635454462E-009 2.295723999075833E-009 2.383448092929805E-009 2.474524292836706E-009 2.569080689026916E-009 2.667250266286177E-009 2.769171090984543E-009 2.874986505251883E-009 2.984845328573184E-009 3.098902067087018E-009 3.217317130881605E-009 3.340257059594073E-009 3.467894756630055E-009 3.600409732333240E-009 3.737988356446647E-009 3.880824120220797E-009 4.029117908537363E-009 4.183078282430944E-009 4.342921772406364E-009 4.508873182963961E-009 4.681165908761118E-009 4.860042262854714E-009 5.045753817486004E-009 5.238561757887309E-009 5.438737249608017E-009 5.646561819876465E-009 5.862327753534107E-009 6.086338504098557E-009 6.318909120533903E-009 6.560366690328206E-009 6.811050799501394E-009 7.071314010190543E-009 7.341522356483906E-009 7.622055859201316E-009 7.913309060344689E-009 8.215691577970238E-009 8.529628682262882E-009 8.855561893622601E-009 9.193949603604282E-009 9.545267719583962E-009 9.910010334058095E-009 1.028869041951725E-008 1.068184054987103E-008 1.109001364943918E-008 1.151378377056190E-008 1.195374690092289E-008 1.241052180172063E-008 1.288475087786613E-008 1.337710108143153E-008 1.388826484961938E-008 1.441896107857198E-008 1.496993613439022E-008 1.554196490278320E-008 1.613585187882523E-008 1.675243229835247E-008 1.739257331258980E-008 1.805717520766060E-008 1.874717267069302E-008 1.946353610430453E-008 2.020727299131222E-008 2.097942931158812E-008 2.178109101305240E-008 2.261338553887178E-008 2.347748341301210E-008 2.437459988637354E-008 2.530599664582339E-008 2.627298358853043E-008 2.727692066409401E-008 2.831921978706043E-008 2.940134682251410E-008 3.052482364753612E-008 3.169123029142945E-008 3.290220715771865E-008 3.415945733105029E-008 3.546474897223641E-008 3.681991780480933E-008 3.822686969658426E-008 3.968758333985836E-008 4.120411303401681E-008 4.277859157445638E-008 4.441323325188979E-008 4.611033696624774E-008 4.787228945955576E-008 4.970156867233308E-008 5.160074722823155E-008 5.357249605181393E-008 5.561958812455942E-008 5.774490238437443E-008 5.995142777409475E-008 6.224226744466861E-008 6.462064311893061E-008 6.708989962210290E-008 6.965350958539039E-008 7.231507832928582E-008 7.507834893344854E-008 7.794720750028427E-008 8.092568861962766E-008 8.401798104220618E-008 8.722843356986692E-008 9.056156117084182E-008 9.402205132865105E-008 9.761477063356972E-008 1.013447716259211E-007 1.052172999008209E-007 1.092378014843567E-007 1.134119304915720E-007 1.177455570770222E-007 1.222447756890729E-007 1.269159136395506E-007 1.317655400007861E-007 1.368004748425591E-007 1.420277988219280E-007 1.474548631394205E-007 1.530892998755856E-007 1.589390327224291E-007 1.650122881248201E-007 1.713176068475278E-007 1.778638559841406E-007 1.846602414247533E-007 1.917163207999392E-007 1.990420169192013E-007 2.066476317227897E-007 2.145438607664856E-007 2.227418082597198E-007 2.312530026781482E-007 2.400894129726282E-007 2.492634653973783E-007 2.587880609809554E-007 2.686765936646156E-007 2.789429691335341E-007 2.896016243673493E-007 3.006675479375028E-007 3.121563010798865E-007 3.240840395724154E-007 3.364675364482556E-007 3.493242055766217E-007 3.626721261442747E-007 3.765300680721057E-007 3.909175184025225E-007 4.058547086947014E-007 4.213626434661877E-007 4.374631297208063E-007 4.541788076043384E-007 4.715331822310523E-007 4.895506567257684E-007 5.082565665278778E-007 5.276772150054983E-007 5.478399104297673E-007 5.687730043612209E-007 5.905059315021534E-007 6.130692510709216E-007 6.364946897563039E-007 6.608151863122082E-007 6.860649378553701E-007 7.122794479310308E-007 7.394955764140815E-007 7.677515913157427E-007 7.970872225684832E-007 8.275437178647173E-007 8.591639006276396E-007 8.919922301955748E-007 9.260748643043322E-007 9.614597239552278E-007 9.981965607598604E-007 1.036337026856116E-006 1.075934747493527E-006 1.117045396389860E-006 1.159726773964618E-006 1.204038888559294E-006 1.250044040758272E-006 1.297806910928690E-006 1.347394650102088E-006 1.398876974325265E-006 1.452326262323419E-006 1.507817658436606E-006 1.565429175386795E-006 1.625241808858398E-006 1.687339644492626E-006 1.751809983089553E-006 1.818743456119558E-006 1.888234158759518E-006 1.960379782874426E-006 2.035281744810797E-006 2.113045342363721E-006 2.193779887218588E-006 2.277598872209126E-006 2.364620120474528E-006 2.454965955676466E-006 2.548763375378962E-006 2.646144225859676E-006 2.747245387181420E-006 2.852208968789168E-006 2.961182505077687E-006 3.074319167659568E-006 3.191777972978585E-006 3.313724012945199E-006 3.440328682960234E-006 3.571769923421121E-006 3.708232468085937E-006 3.849908104894239E-006 3.996995947402347E-006 4.149702707785251E-006 4.308242994526702E-006 4.472839606519547E-006 4.643723852529063E-006 4.821135869923177E-006 5.005324966393498E-006 5.196549965114787E-006 5.395079572472367E-006 5.601192753342563E-006 5.815179118539509E-006 6.037339341069482E-006 6.267985564804170E-006 6.507441843337978E-006 6.756044623380945E-006 7.014143167717920E-006 7.282100084164730E-006 7.560291817108606E-006 7.849109178314954E-006 8.148957895772844E-006 8.460259179058793E-006 8.783450318853154E-006 9.118985286804157E-006 9.467335384135282E-006 9.828989895469205E-006 1.020445676817455E-005 1.059426334454412E-005 1.099895707744959E-005 1.141910630678517E-005 1.185530106876453E-005 1.230815389283944E-005 1.277830068978729E-005 1.326640162344634E-005 1.377314203725562E-005 1.429923341826504E-005 1.484541440301836E-005 1.541245178097844E-005 1.600114160454058E-005 1.661231027557633E-005 1.724681571285893E-005 1.790554854795658E-005 1.858943338079400E-005 1.929943005797706E-005 2.003653503673252E-005 2.080178274655063E-005 2.159624706273364E-005 2.242104279156909E-005 2.327732724901650E-005 2.416630184597762E-005 2.508921379803096E-005 2.604735783443440E-005 2.704207804995857E-005 2.807476974039968E-005 2.914688137630533E-005 3.025991660462026E-005 3.141543637342562E-005 3.261506108236121E-005 3.386047286524778E-005 3.515341791742534E-005 3.649570894705155E-005 3.788922769541744E-005 3.933592755061044E-005 4.083783629083646E-005 4.239705888870141E-005 4.401578045063935E-005 4.569626926750520E-005 4.744087995581215E-005 4.925205675431648E-005 5.113233690785868E-005 5.308435420326036E-005 5.511084263892999E-005 5.721464020961176E-005 5.939869286884527E-005 6.166605860906053E-005 6.401991171474738E-005 6.646354716598081E-005 6.900038521876877E-005 7.163397614706063E-005 7.436800515927747E-005 7.720629752854398E-005 8.015282387187623E-005 8.321170566999328E-005 8.638722096723583E-005 8.968381029396380E-005 9.310608281444049E-005 9.665882270772810E-005 1.003469957749363E-004 1.041757563080763E-004 1.081504542113744E-004 1.122766423879943E-004 1.165600844074176E-004 1.210067624486595E-004 1.256228855695607E-004 1.304148982396183E-004 1.353894892343608E-004 1.405536008406583E-004 1.459144384129542E-004 1.514794802753239E-004 1.572564880096593E-004 1.632535171132111E-004 1.694789280580467E-004 1.759413977636303E-004 1.826499314937352E-004 1.896138751996341E-004 1.968429283109211E-004 2.043471570145747E-004 2.121370080208298E-004 2.202233228333118E-004 2.286173525529175E-004 2.373307732373494E-004 2.463757018087932E-004 2.557647125678502E-004 2.655108543070115E-004 2.756276680497990E-004 2.861292054599698E-004 2.970300479167211E-004 3.083453262827397E-004 3.200907414185564E-004 3.322825854303533E-004 3.449377637066094E-004 3.580738177559667E-004 3.717089488833013E-004 3.858620427265872E-004 4.005526946921755E-004 4.158012363111714E-004 4.316287625551637E-004 4.480571601538713E-004 4.651091369195177E-004 4.828082521547660E-004 5.011789481429655E-004 5.202465827852487E-004 5.400374634119022E-004 5.605788818071338E-004 5.818991504992475E-004 6.040276403417621E-004 6.269948194505728E-004 6.508322935282233E-004 6.755728476256296E-004 7.012504893933063E-004 7.279004938682905E-004 7.555594498464102E-004 7.842653079053730E-004 8.140574301072079E-004 8.449766414724020E-004 8.770652832430628E-004 9.103672680303664E-004 9.449281368800977E-004 9.807951183368959E-004 1.018017189561841E-003 1.056645139566074E-003 1.096731634643591E-003 1.138331286055382E-003 1.181500720041221E-003 1.226298650243170E-003 1.272785952593439E-003 1.321025742765396E-003 1.371083456248648E-003 1.423026931139643E-003 1.476926493724403E-003 1.532855046933586E-003 1.590888161763507E-003 1.651104171743817E-003 1.713584270538288E-003 1.778412612780313E-003 1.845676418217672E-003 1.915466079277510E-003 1.987875272132930E-003 2.063001071377545E-003 2.140944068395940E-003 2.221808493537379E-003 2.305702342192819E-003 2.392737504863437E-003 2.483029901347618E-003 2.576699619118460E-003 2.673871056024333E-003 2.774673067397529E-003 2.879239117683273E-003 2.987707436690947E-003 3.100221180575255E-003 3.216928597646516E-003 3.337983199119088E-003 3.463543934889534E-003 3.593775374464354E-003 3.728847893115916E-003 3.868937863376756E-003 4.014227851965262E-003 4.164906822230980E-003 4.321170342212362E-003 4.483220798390469E-003 4.651267615217779E-003 4.825527480497127E-003 5.006224576687270E-003 5.193590818185857E-003 5.387866094659422E-003 5.589298520457307E-003 5.798144690156508E-003 6.014669940263090E-003 6.239148617091709E-003 6.471864350827080E-003 6.713110335763784E-003 6.963189616703108E-003 7.222415381477301E-003 7.491111259535585E-003 7.769611626535670E-003 8.058261914844787E-003 8.357418929834498E-003 8.667451171841756E-003 8.988739163630499E-003 9.321675783168844E-003 9.666666601505869E-003 1.002413022549924E-002 1.039449864511217E-002 1.077821758496385E-002 1.117574685977225E-002 1.158756073329956E-002 1.201414828034700E-002 1.245601375131888E-002 1.291367693880401E-002 1.338767354559079E-002 1.387855555345447E-002 1.438689159200173E-002 1.491326730679799E-002 1.545828572591868E-002 1.602256762400978E-002 1.660675188284411E-002 1.721149584729611E-002 1.783747567555396E-002 1.848538668230273E-002 1.915594367351524E-002 1.984988127136976E-002 2.056795422772279E-002 2.131093772443225E-002 2.207962765871047E-002 2.287484091156142E-002 2.369741559721145E-002 2.454821129130940E-002 2.542810923551609E-002 2.633801251595047E-002 2.727884621279442E-002 2.825155751818289E-002 2.925711581933636E-002 3.029651274369178E-002 3.137076216260642E-002 3.248090014999917E-002 3.362798489208157E-002 3.481309654412006E-002 3.603733702993504E-002 3.730182977961378E-002 3.860771940067436E-002 3.995617127765930E-002 4.134837109489409E-002 4.278552427687143E-002 4.426885534045990E-002 4.579960715286172E-002 4.737904008895497E-002 4.900843108138843E-002 5.068907255649145E-002 5.242227124878513E-002 5.420934688658750E-002 5.605163074090599E-002 5.795046402954150E-002 5.990719616801767E-002 6.192318285869119E-002 6.399978400911879E-002 6.613836147048507E-002 6.834027658666619E-002 7.060688754424807E-002 7.293954651361703E-002 7.533959657104514E-002 7.780836839151675E-002 8.034717670192013E-002 8.295731648411167E-002 8.564005891730755E-002 8.839664704924183E-002 9.122829118555331E-002 9.413616398697253E-002 9.712139526401972E-002 1.001850664591635E-001 1.033282048066974E-001 1.065517771609735E-001 1.098566834841457E-001 1.132437499851489E-001 1.167137219023689E-001 1.202672559232974E-001 1.239049122354267E-001 1.276271462037896E-001 1.314342996718097E-001 1.353265918836032E-001 1.393041100275183E-001 1.433667994025258E-001 1.475144532111586E-001 1.517467019849534E-001 1.560630026508906E-001 1.604626272501071E-001 1.649446513231829E-001 1.695079419796652E-001 1.741511456730795E-001 1.788726757066336E-001 1.836706994990675E-001 1.885431256446556E-001 1.934875908063257E-001 1.985014464860751E-001 2.035817457225070E-001 2.087252297712676E-001 2.139283148304569E-001 2.191870788797886E-001 2.244972487092318E-001 2.298541872202223E-001 2.352528810901642E-001 2.406879288988334E-001 2.461535298235020E-001 2.516434730179450E-001 2.571511277990572E-001 2.626694347734706E-001 2.681908980452172E-001 2.737075786541986E-001 2.792110894036944E-001 2.846925912434783E-001 2.901427913830518E-001 2.955519433169476E-001 3.009098489509230E-001 3.062058630238599E-001 3.114289000252574E-001 3.165674438120666E-001 3.216095601310369E-001 3.265429122535900E-001 3.313547799290739E-001 3.360320818589730E-001 3.405614018888426E-001 3.449290191061005E-001 3.491209420200837E-001 3.531229469854867E-001 3.569206210112118E-001 3.604994090733284E-001 3.638446660228853E-001 3.669417131464626E-001 3.697758993990795E-001 3.723326672852018E-001 3.745976233136643E-001 3.765566128961172E-001 3.781957994958703E-001 3.795017477645264E-001 3.804615103274998E-001 3.810627177963511E-001 3.812936714959353E-001 3.811434382978910E-001 3.806019468493446E-001 3.796600843774187E-001 3.783097931369739E-001 3.765441654519513E-001 3.743575361809349E-001 3.717455713166717E-001 3.687053513090603E-001 3.652354475837324E-001 3.613359906163691E-001 3.570087278191654E-001 3.522570694038247E-001 3.470861203087839E-001 3.415026962213188E-001 3.355153216923737E-001 3.291342083384056E-001 3.223712111558099E-001 3.152397610453131E-001 3.077547717622821E-001 2.999325196806393E-001 2.917904949893413E-001 2.833472232379033E-001 2.746220565174250E-001 2.656349340120990E-001 2.564061121887865E-001 2.469558655133542E-001 2.373041592958270E-001 2.274702970737763E-001 2.174725458449848E-001 2.073277434541142E-001 1.970508935187297E-001 1.866547544395666E-001 1.761494302660547E-001 1.655419724645820E-001 1.548360029424498E-001 1.440313699880540E-001 1.331247774614197E-001 1.221136855622288E-001 1.109957926718013E-001 9.976842999801484E-002 8.842855214137628E-002 7.697272695207329E-002 6.539712461206648E-002 5.369750587314811E-002 4.186920937846125E-002 2.990713799121970E-002 1.780574405026398E-002 5.559013467603936E-003 -6.839551421801771E-003 -1.939695035312754E-002 -3.212070506855921E-002 -4.501888080527008E-002 -5.810010944873645E-002 -7.137361447319887E-002 -8.484923779931675E-002 -9.853746870804203E-002 -1.124494749595151E-001 -1.265971362764337E-001 -1.409930803629398E-001 -1.556507216426967E-001 -1.705843029135723E-001 -1.858089401313241E-001 -2.013406705509822E-001 -2.171965044723969E-001 -2.333944808557710E-001 -2.499537270940942E-001 -2.668945232523885E-001 -2.842383711087509E-001 -3.020080683595271E-001 -3.202277883807845E-001 -3.389231659708228E-001 -3.581213895340138E-001 -3.778513002050913E-001 -3.981434984554454E-001 -4.190304587693430E-001 -4.405466530287055E-001 -4.627286833005416E-001 -4.856154247818282E-001 -5.092481797230841E-001 -5.336708432246644E-001 -5.589300818795442E-001 -5.850755263237868E-001 -6.121599788517618E-001 -6.402396373583700E-001 -6.693743369860133E-001 -6.996278109808555E-001 -7.310679724022714E-001 -7.637672184825584E-001 -7.978027596024645E-001 -8.332569750334782E-001 -8.702177978019404E-001 -9.087791312548742E-001 -9.490413001552372E-001 -9.911115394075400E-001 -1.035104523816273E+000 -1.081142942612381E+000 -1.129358122850643E+000 -1.179890706187047E+000 -1.232891383994518E+000 -1.288521696272367E+000 -1.346954900355128E+000 -1.408376916035976E+000 -1.472987354395571E+000 -1.541000638376474E+000 -1.612647223974854E+000 -1.688174931844621E+000 -1.767850400135144E+000 -1.851960670524534E+000 -1.940814920679703E+000 -2.034746357787404E+000 -2.134114289374379E+000 -2.239306389389843E+000 -2.350741179481117E+000 -2.468870747577148E+000 -2.594183728336617E+000 -2.727208572745007E+000 -2.868517137196121E+000 -3.018728625810158E+000 -3.178513923566192E+000 -3.348600362116118E+000 -3.529776964958304E+000 -3.722900224050212E+000 -3.928900466006784E+000 -4.148788872852788E+000 -4.383665229971975E+000 -4.634726482537195E+000 -4.903276191442620E+000 -5.190734990739532E+000 -5.498652160968985E+000 -5.828718446780762E+000 -6.182780263048516E+000 -6.562855451588123E+000 -6.971150770849073E+000 -7.410081323908800E+000 -7.882292156137673E+000 -8.390682283455373E+000 -8.938431445670464E+000 -9.529029917562893E+000 -1.016631175380099E+001 -1.085449189324918E+001 -1.159820760460771E+001 -1.240256481965644E+001 -1.327318997383728E+001 -1.421628805787548E+001 -1.523870768019976E+001 -1.634801404991761E+001 -1.755257091617560E+001 -1.886163264437152E+001 -2.028544777577659E+001 -2.183537560804005E+001 -2.352401755370622E+001 -2.536536528685455E+001 -2.737496797961984E+001 -2.957012126691036E+001 -3.197008096642907E+001 -3.459630503067992E+001 -3.747272772805474E+001 -4.062607065313617E+001 -4.408619586587832E+001 -4.788650727163726E+001 -5.206440729834761E+001 -5.666181702617356E+001 -6.172576920520288E+001 -6.730908509002009E+001 -7.347114776405874E+001 -8.027878666476136E+001 -8.780729040631229E+001 -9.614156779187515E+001 -1.053774801867159E+002 -1.156233722745358E+002 -1.270018327484088E+002 -1.396517218191565E+002 -1.537305087087917E+002 -1.694169697151969E+002 -1.869143061990226E+002 -2.064537522159093E+002 -2.282987538055537E+002 -2.527498165239025E+002 -2.801501350590902E+002 -3.108944673821078E+002 -3.454420854899834E+002 -3.843166550391915E+002 -4.281059328822062E+002 -4.774926753060270E+002 -5.332604087826811E+002 -5.963124122053811E+002 -6.676909671771197E+002 -7.486004010025761E+002 -8.404341727393430E+002 -9.448067994977922E+002 -1.063591540457465E+003 -1.198964942211488E+003 -1.353459572273199E+003 -1.530026539013328E+003 -1.732109726121134E+003 -1.963734071220480E+003 -2.229610707876327E+003 -2.535262388183804E+003 -2.887173334618043E+003 -3.292968566091840E+003 -3.761628843221986E+003 -4.303748730310860E+003 -4.931846937082760E+003 -5.660740158008578E+003 -6.507994166343517E+003 -7.494469063642934E+003 -8.644979484277643E+003 -9.989095398462678E+003 -1.156211518670723E+004 -1.340625017734275E+004 -1.557206923231047E+004 -1.812026372434251E+004 -2.112380799434250E+004 -2.467060890610984E+004 -2.886676144246172E+004 -3.384055671315875E+004 -3.974742593999776E+004 -4.677605109410887E+004 -5.515593264995985E+004 -6.516678095985979E+004 -7.715019466097560E+004 -9.152421329332187E+004 -1.088014897146407E+005 -1.296120310820881E+005 -1.547317183600335E+005 -1.851181508130463E+005 -2.219557964418144E+005 -2.667129916325021E+005 -3.212140626883726E+005 -3.877307902448442E+005 -4.690986734516172E+005 -5.688650652627583E+005 -6.914783642527175E+005 -8.425302234354907E+005 -1.029066388249091E+006 -1.259986593088214E+006 -1.546560316579465E+006 -1.903093642761437E+006 -2.347793703991539E+006 -2.903892146832370E+006 -3.601109060706622E+006 -4.477565605016896E+006 -5.582289571362874E+006 -6.978506618203086E+006 -8.747975437083595E+006 -1.099671387433222E+007 -1.386258362666561E+007 -1.752536543817358E+007 -2.222018124701531E+007 -2.825542743102858E+007 -3.603680625501545E+007 -4.609962575074200E+007 -5.915234467576671E+007 -7.613545784196523E+007 -9.830137371831246E+007 -1.273231091183341E+008 -1.654426686911500E+008 -2.156742519883151E+008 -2.820834566933305E+008 -3.701721683504922E+008 -4.874109189245692E+008 -6.439777128660409E+008 -8.537869159811325E+008 -1.135927065452726E+009 -1.516677192552075E+009 -2.032344500180591E+009 -2.733272381412015E+009 -3.689522135750781E+009 -4.998957079190313E+009 -6.798787910674609E+009 -9.282123790247311E+009 -1.272179051036456E+010 -1.750473971861270E+010 -2.418195421731870E+010 -3.354111628675026E+010 -4.671284861565376E+010 -6.532667268225817E+010 -9.174089757499017E+010 -1.293829041384912E+011 -1.832549731864662E+011 -2.606894210078220E+011 -3.724808187472926E+011 -5.345910685479987E+011 -7.707286238036687E+011 -1.116267611464968E+012 -1.624230150561035E+012 -2.374460283784590E+012 -3.487758201107771E+012 -5.147760097703889E+012 -7.634971080116060E+012 -1.137995906695417E+013 -1.704690730163854E+013 -2.566550652833641E+013 -3.884020607572532E+013 -5.908389621921531E+013 -9.035277258508928E+013 -1.389081778066207E+014 -2.147126915312888E+014 -3.337038175554103E+014 -5.215171200509819E+014 -8.196164719530928E+014 -1.295444113031565E+015 -2.059321598853383E+015 -3.292753094252078E+015 -5.296098958601395E+015 -8.569348645066112E+015 -1.394978871361708E+016 -2.284805764957040E+016 -3.765537471120481E+016 -6.245041697900641E+016 -1.042340243674797E+017 -1.750995572260561E+017 -2.960724733873864E+017 -5.039471649877043E+017 -8.635411031344641E+017 -1.489805588023521E+018 -2.587991312498890E+018 -4.527111912573809E+018 -7.975243374483559E+018 -1.415046097790704E+019 -2.528956350560969E+019 -4.552992204654514E+019 -8.258070638405914E+019 -1.509135548138976E+020 -2.778998473953248E+020 -5.157055361793603E+020 -9.645224177107033E+020 -1.818294120108746E+021 -3.455429725236589E+021 -6.620207356100413E+021 -1.278847709583922E+022 -2.491096430201959E+022 -4.893663943038959E+022 -9.696114396478818E+022 1.655569844908758E-012 1.697480795076867E-012 1.740452726000165E-012 1.784512496534370E-012 1.829687645470358E-012 1.876006408746824E-012 1.923497737098658E-012 1.972191314152090E-012 2.022117574977917E-012 2.073307725114443E-012 2.125793760071922E-012 2.179608485330812E-012 2.234785536846268E-012 2.291359402071699E-012 2.349365441514566E-012 2.408839910837827E-012 2.469819983520922E-012 2.532343774094403E-012 2.596450361962766E-012 2.662179815830350E-012 2.729573218745562E-012 2.798672693779140E-012 2.869521430352431E-012 2.942163711232195E-012 3.016644940208785E-012 3.093011670474968E-012 3.171311633723195E-012 3.251593769979475E-012 3.333908258192479E-012 3.418306547597018E-012 3.504841389871480E-012 3.593566872109352E-012 3.684538450625420E-012 3.777812985617761E-012 3.873448776707245E-012 3.971505599376657E-012 4.072044742332332E-012 4.175129045811607E-012 4.280822940860006E-012 4.389192489602760E-012 4.500305426535736E-012 4.614231200861747E-012 4.731041019898552E-012 4.850807893585752E-012 4.973606680118388E-012 5.099514132735723E-012 5.228608947694534E-012 5.360971813456812E-012 5.496685461122711E-012 5.635834716140193E-012 5.778506551323639E-012 5.924790141214723E-012 6.074776917819417E-012 6.228560627755930E-012 6.386237390849455E-012 6.547905760210142E-012 6.713666783832016E-012 6.883624067751244E-012 7.057883840803336E-012 7.236555021019561E-012 7.419749283704312E-012 7.607581131235787E-012 7.800167964633722E-012 7.997630156938798E-012 8.200091128449791E-012 8.407677423865232E-012 8.620518791377919E-012 8.838748263771856E-012 9.062502241572043E-012 9.291920578299223E-012 9.527146667882920E-012 9.768327534287253E-012 1.001561392340578E-011 1.026916039728249E-011 1.052912543071828E-011 1.079567151032272E-011 1.106896523607349E-011 1.134917742544689E-011 1.163648322018419E-011 1.193106219576105E-011 1.223309847362795E-011 1.254278083629214E-011 1.286030284531284E-011 1.318586296228353E-011 1.351966467287697E-011 1.386191661403016E-011 1.421283270434946E-011 1.457263227781663E-011 1.494154022087960E-011 1.531978711301398E-011 1.570760937084264E-011 1.610524939590382E-011 1.651295572616000E-011 1.693098319134222E-011 1.735959307222704E-011 1.779905326394537E-011 1.824963844342576E-011 1.871163024107649E-011 1.918531741681361E-011 1.967099604054543E-011 2.016896967722579E-011 2.067954957659197E-011 2.120305486770603E-011 2.173981275842084E-011 2.229015873989578E-011 2.285443679628937E-011 2.343299961976089E-011 2.402620883091413E-011 2.463443520482231E-011 2.525805890277462E-011 2.589746970988915E-011 2.655306727874158E-011 2.722526137916075E-011 2.791447215434856E-011 2.862113038348289E-011 2.934567775096868E-011 3.008856712250506E-011 3.085026282814119E-011 3.163124095249770E-011 3.243198963233513E-011 3.325300936165524E-011 3.409481330452626E-011 3.495792761582698E-011 3.584289177011061E-011 3.675025889879431E-011 3.768059613588397E-011 3.863448497245188E-011 3.961252162008725E-011 4.061531738354796E-011 4.164349904284610E-011 4.269770924500604E-011 4.377860690573945E-011 4.488686762128928E-011 4.602318409069948E-011 4.718826654877448E-011 4.838284320999900E-011 4.960766072369614E-011 5.086348464070731E-011 5.215109989188646E-011 5.347131127870787E-011 5.482494397629284E-011 5.621284404917140E-011 5.763587898009985E-011 5.909493821226652E-011 6.059093370522225E-011 6.212480050488497E-011 6.369749732797381E-011 6.531000716123870E-011 6.696333787585909E-011 6.865852285739599E-011 7.039662165169200E-011 7.217872062712239E-011 7.400593365360994E-011 7.587940279883069E-011 7.780029904204385E-011 7.976982300599119E-011 8.178920570732617E-011 8.385970932603908E-011 8.598262799436132E-011 8.815928860564008E-011 9.039105164368988E-011 9.267931203313975E-011 9.502550001130669E-011 9.743108202214031E-011 9.989756163279933E-011 1.024264804734286E-010 1.050194192007301E-010 1.076779984859240E-010 1.104038800277214E-010 1.131987675909408E-010 1.160644080714161E-010 1.190025925878645E-010 1.220151576013937E-010 1.251039860633504E-010 1.282710085922270E-010 1.315182046803609E-010 1.348476039311821E-010 1.382612873277821E-010 1.417613885335963E-010 1.453500952260136E-010 1.490296504637462E-010 1.528023540888153E-010 1.566705641640282E-010 1.606366984468434E-010 1.647032359005497E-010 1.688727182436984E-010 1.731477515387628E-010 1.775310078210108E-010 1.820252267686149E-010 1.866332174150420E-010 1.913578599047907E-010 1.962021072935769E-010 2.011689873940903E-010 2.062616046684765E-010 2.114831421687288E-010 2.168368635261984E-010 2.223261149914741E-010 2.279543275258975E-010 2.337250189460265E-010 2.396417961223873E-010 2.457083572338859E-010 2.519284940792937E-010 2.583060944472447E-010 2.648451445462317E-010 2.715497314961199E-010 2.784240458827295E-010 2.854723843770918E-010 2.926991524210082E-010 3.001088669805977E-010 3.077061593695531E-010 3.154957781438586E-010 3.234825920698000E-010 3.316715931671004E-010 3.400678998290997E-010 3.486767600219210E-010 3.575035545646191E-010 3.665538004923765E-010 3.758331545048274E-010 3.853474165016844E-010 3.951025332078706E-010 4.051046018904151E-010 4.153598741694518E-010 4.258747599256862E-010 4.366558313067850E-010 4.477098268351877E-010 4.590436556199052E-010 4.706644016749462E-010 4.825793283470572E-010 4.947958828555567E-010 5.073217009471017E-010 5.201646116682744E-010 5.333326422590059E-010 5.468340231698647E-010 5.606771932063643E-010 5.748708048035009E-010 5.894237294338078E-010 6.043450631523297E-010 6.196441322819575E-010 6.353304992426953E-010 6.514139685284939E-010 6.679045928353823E-010 6.848126793447537E-010 7.021487961656846E-010 7.199237789403711E-010 7.381487376167638E-010 7.568350633926592E-010 7.759944358355860E-010 7.956388301829278E-010 8.157805248268465E-010 8.364321089887006E-010 8.576064905877313E-010 8.793169043089478E-010 9.015769198752584E-010 9.244004505290012E-010 9.478017617282024E-010 9.717954800629640E-010 9.963966023975865E-010 1.021620505244117E-009 1.047482954373196E-009 1.074000114668210E-009 1.101188560228887E-009 1.129065284730674E-009 1.157647712046381E-009 1.186953707136684E-009 1.217001587216351E-009 1.247810133203129E-009 1.279398601456470E-009 1.311786735813415E-009 1.344994779929172E-009 1.379043489930109E-009 1.413954147387054E-009 1.449748572617012E-009 1.486449138321620E-009 1.524078783570869E-009 1.562661028140830E-009 1.602219987214332E-009 1.642780386453788E-009 1.684367577455616E-009 1.727007553595864E-009 1.770726966277004E-009 1.815553141585987E-009 1.861514097374016E-009 1.908638560768699E-009 1.956955986129524E-009 2.006496573457882E-009 2.057291287273136E-009 2.109371875966570E-009 2.162770891645265E-009 2.217521710478330E-009 2.273658553558217E-009 2.331216508290127E-009 2.390231550322923E-009 2.450740566035211E-009 2.512781375590668E-009 2.576392756577019E-009 2.641614468243446E-009 2.708487276351587E-009 2.777052978655633E-009 2.847354431027465E-009 2.919435574243165E-009 2.993341461447620E-009 3.069118286314421E-009 3.146813411918632E-009 3.226475400340504E-009 3.308154043018573E-009 3.391900391871203E-009 3.477766791205969E-009 3.565806910436838E-009 3.656075777629598E-009 3.748629813896497E-009 3.843526868661627E-009 3.940826255819008E-009 4.040588790806108E-009 4.142876828615847E-009 4.247754302770887E-009 4.355286765284602E-009 4.465541427633655E-009 4.578587202767860E-009 4.694494748183481E-009 4.813336510087015E-009 4.935186768676951E-009 5.060121684571908E-009 5.188219346414098E-009 5.319559819677897E-009 5.454225196714059E-009 5.592299648060830E-009 5.733869475053967E-009 5.879023163768692E-009 6.027851440327172E-009 6.180447327606181E-009 6.336906203380322E-009 6.497325859937188E-009 6.661806565201728E-009 6.830451125408033E-009 7.003364949357657E-009 7.180656114304761E-009 7.362435433509095E-009 7.548816525499204E-009 7.739915885089078E-009 7.935852956192589E-009 8.136750206481379E-009 8.342733203932661E-009 8.553930695314987E-009 8.770474686660914E-009 8.992500525776908E-009 9.220146986842056E-009 9.453556357148500E-009 9.692874526037709E-009 9.938251076088371E-009 1.018983937661267E-008 1.044779667951974E-008 1.071228421760561E-008 1.098346730533188E-008 1.126151544215552E-008 1.154660241847454E-008 1.183890642425593E-008 1.213861016041345E-008 1.244590095300523E-008 1.276097087032248E-008 1.308401684294218E-008 1.341524078681946E-008 1.375484972949583E-008 1.410305593950269E-008 1.446007705904102E-008 1.482613624001978E-008 1.520146228353851E-008 1.558628978290109E-008 1.598085927024999E-008 1.638541736691304E-008 1.680021693755615E-008 1.722551724823909E-008 1.766158412847210E-008 1.810869013737593E-008 1.856711473404805E-008 1.903714445224212E-008 1.951907307946974E-008 2.001320184063663E-008 2.051983958632782E-008 2.103930298585960E-008 2.157191672521920E-008 2.211801371001547E-008 2.267793527356778E-008 2.325203139026319E-008 2.384066089431528E-008 2.444419170406116E-008 2.506300105193745E-008 2.569747572027838E-008 2.634801228308364E-008 2.701501735390740E-008 2.769890784002341E-008 2.840011120302468E-008 2.911906572602117E-008 2.985622078760229E-008 3.061203714273552E-008 3.138698721077682E-008 3.218155537077315E-008 3.299623826424130E-008 3.383154510561244E-008 3.468799800053690E-008 3.556613227224787E-008 3.646649679618809E-008 3.738965434310865E-008 3.833618193085507E-008 3.930667118505992E-008 4.030172870896781E-008 4.132197646262397E-008 4.236805215166396E-008 4.344060962594654E-008 4.454031928828033E-008 4.566786851349921E-008 4.682396207814820E-008 4.800932260104938E-008 4.922469099502241E-008 5.047082693004325E-008 5.174850930812960E-008 5.305853675025116E-008 5.440172809556855E-008 5.577892291331292E-008 5.719098202762740E-008 5.863878805569826E-008 6.012324595951124E-008 6.164528361158058E-008 6.320585237500167E-008 6.480592769819304E-008 6.644650972469755E-008 6.812862391842586E-008 6.985332170473224E-008 7.162168112772419E-008 7.343480752421691E-008 7.529383421475486E-008 7.719992321213210E-008 7.915426594785535E-008 8.115808401700387E-008 8.321262994195196E-008 8.531918795543277E-008 8.747907480343372E-008 8.969364056842426E-008 9.196426951343319E-008 9.429238094750271E-008 9.667943011306082E-008 9.912690909576881E-008 1.016363477574111E-007 1.042093146924142E-007 1.068474182085906E-007 1.095523073327248E-007 1.123256728416283E-007 1.151692483193101E-007 1.180848112409260E-007 1.210741840841837E-007 1.241392354689008E-007 1.272818813254275E-007 1.305040860926703E-007 1.338078639464613E-007 1.371952800590474E-007 1.406684518904866E-007 1.442295505127587E-007 1.478808019674254E-007 1.516244886576839E-007 1.554629507756920E-007 1.593985877660563E-007 1.634338598264009E-007 1.675712894459608E-007 1.718134629831588E-007 1.761630322831614E-007 1.806227163364242E-007 1.851953029792682E-007 1.898836506375539E-007 1.946906901145466E-007 1.996194264240982E-007 2.046729406702886E-007 2.098543919747142E-007 2.151670194526323E-007 2.206141442391952E-007 2.261991715670570E-007 2.319255928966501E-007 2.377969881004735E-007 2.438170277027653E-007 2.499894751759654E-007 2.563181892954145E-007 2.628071265537704E-007 2.694603436366546E-007 2.762819999610968E-007 2.832763602783640E-007 2.904477973428197E-007 2.978007946484949E-007 3.053399492350869E-007 3.130699745651627E-007 3.209957034743713E-007 3.291220911965375E-007 3.374542184655306E-007 3.459972946958776E-007 3.547566612441222E-007 3.637377947529907E-007 3.729463105804757E-007 3.823879663160103E-007 3.920686653859508E-007 4.019944607506523E-007 4.121715586954757E-007 4.226063227181258E-007 4.333052775147892E-007 4.442751130675959E-007 4.555226888360001E-007 4.670550380547329E-007 4.788793721410736E-007 4.910030852142277E-007 5.034337587296936E-007 5.161791662315714E-007 5.292472782258298E-007 5.426462671776574E-007 5.563845126360727E-007 5.704706064890840E-007 5.849133583527439E-007 5.997218010975562E-007 6.149051965157830E-007 6.304730411332782E-007 6.464350721695917E-007 6.628012736501709E-007 6.795818826745956E-007 6.967873958448981E-007 7.144285758581093E-007 7.325164582673051E-007 7.510623584155204E-007 7.700778785470465E-007 7.895749151007175E-007 8.095656661899423E-007 8.300626392743686E-007 8.510786590281822E-007 8.726268754101946E-007 8.947207719410045E-007 9.173741741927282E-007 9.406012584968553E-007 9.644165608759114E-007 9.888349862050661E-007 1.013871817609467E-006 1.039542726103883E-006 1.065863780480767E-006 1.092851457453694E-006 1.120522652062757E-006 1.148894688348943E-006 1.177985330304938E-006 1.207812793109552E-006 1.238395754653509E-006 1.269753367364504E-006 1.301905270339713E-006 1.334871601794011E-006 1.368673011832519E-006 1.403330675556643E-006 1.438866306512345E-006 1.475302170490486E-006 1.512661099688808E-006 1.550966507245679E-006 1.590242402155997E-006 1.630513404579980E-006 1.671804761555838E-006 1.714142363128140E-006 1.757552758903145E-006 1.802063175043407E-006 1.847701531715285E-006 1.894496461001149E-006 1.942477325290252E-006 1.991674236162189E-006 2.042118073779356E-006 2.093840506798651E-006 2.146874012823390E-006 2.201251899409038E-006 2.257008325639963E-006 2.314178324292101E-006 2.372797824606233E-006 2.432903675680815E-006 2.494533670515324E-006 2.557726570712506E-006 2.622522131871263E-006 2.688961129685707E-006 2.757085386772288E-006 2.826937800254885E-006 2.898562370129206E-006 2.972004228428795E-006 3.047309669226138E-006 3.124526179492062E-006 3.203702470847192E-006 3.284888512231730E-006 3.368135563528319E-006 3.453496210173457E-006 3.541024398782041E-006 3.630775473844077E-006 3.722806215507770E-006 3.817174878499931E-006 3.913941232237071E-006 4.013166602149020E-006 4.114913912283949E-006 4.219247729226227E-006 4.326234307400637E-006 4.435941635789252E-006 4.548439486145212E-006 4.663799462750619E-006 4.782095053781054E-006 4.903401684358922E-006 5.027796771339592E-006 5.155359779943095E-006 5.286172282270697E-006 5.420318017830059E-006 5.557882956127432E-006 5.698955361414940E-006 5.843625859786839E-006 5.991987508522497E-006 6.144135868060999E-006 6.300169076497940E-006 6.460187926845637E-006 6.624295947193934E-006 6.792599483797029E-006 6.965207787489274E-006 7.142233103228810E-006 7.323790763338035E-006 7.509999284277569E-006 7.700980467385807E-006 7.896859503696225E-006 8.097765083025531E-006 8.303829507673660E-006 8.515188810844760E-006 8.731982880229151E-006 8.954355586837632E-006 9.182454919590265E-006 9.416433125864768E-006 9.656446858336331E-006 9.902657328658682E-006 1.015523046809156E-005 1.041433709586391E-005 1.068015309536491E-005 1.095285959894690E-005 1.123264318174651E-005 1.151969606500841E-005 1.181421632967072E-005 1.211640814077685E-005 1.242648198338789E-005 1.274465491075346E-005 1.307115080558899E-005 1.340620065523821E-005 1.375004284166968E-005 1.410292344731890E-005 1.446509657767507E-005 1.483682470207072E-005 1.521837901342877E-005 1.561003980877763E-005 1.601209689140600E-005 1.642484999664099E-005 1.684860924248162E-005 1.728369560710215E-005 1.773044143482511E-005 1.818919097281710E-005 1.866030094046484E-005 1.914414113376159E-005 1.964109506716767E-005 2.015156065589724E-005 2.067595094097506E-005 2.121469486044331E-005 2.176823807012768E-005 2.233704381711655E-005 2.292159387032449E-005 2.352238951170681E-005 2.413995259273860E-005 2.477482666119464E-005 2.542757816271269E-005 2.609879772325044E-005 2.678910151795281E-005 2.749913273286316E-005 2.822956312637767E-005 2.898109469763915E-005 2.975446146994520E-005 3.055043139745326E-005 3.136980840454347E-005 3.221343456740462E-005 3.308219244865701E-005 3.397700759613417E-005 3.489885121827491E-005 3.584874304912731E-005 3.682775441716364E-005 3.783701153310813E-005 3.887769901314029E-005 3.995106365504775E-005 4.105841848645974E-005 4.220114710519096E-005 4.338070833402548E-005 4.459864121306214E-005 4.585657035540740E-005 4.715621169338061E-005 4.849937864421232E-005 4.988798872747766E-005 5.132407066756342E-005 5.280977201815241E-005 5.434736734779021E-005 5.593926702863248E-005 5.758802667472544E-005 5.929635727684325E-005 6.106713608840643E-005 6.290341831857884E-005 6.480844969155696E-005 6.678567994011980E-005 6.883877730228641E-005 7.097164409595427E-005 7.318843345469017E-005 7.549356731074632E-005 7.789175571930411E-005 8.038801762567173E-005 8.298770318331406E-005 8.569651773995684E-005 8.852054761656425E-005 9.146628781573509E-005 9.454067180177987E-005 9.775110351093879E-005 1.011054917576220E-004 1.046122872173596E-004 1.082805221788596E-004 1.121198532745280E-004 1.161406074104610E-004 1.203538311383656E-004 1.247713437238666E-004 1.294057941908569E-004 1.342707226365853E-004 1.393806261384721E-004 1.447510295938204E-004 1.503985618613798E-004 1.563410375994240E-004 1.625975452240766E-004 1.691885414438610E-004 1.761359528585028E-004 1.834632851465846E-004 1.911957404040238E-004 1.993603432387756E-004 2.079860762681987E-004 2.171040257128266E-004 2.267475378351973E-004 2.369523870193760E-004 2.477569563496251E-004 2.592024316079825E-004 2.713330096733827E-004 2.841961223816604E-004 2.978426769721755E-004 3.123273143401487E-004 3.277086863883748E-004 3.440497538706206E-004 3.614181062197142E-004 3.798863049501284E-004 3.995322523498951E-004 4.204395872826370E-004 4.426981100643448E-004 4.664042385018450E-004 4.916614973362991E-004 5.185810434854011E-004 5.472822296487117E-004 5.778932090088234E-004 6.105515839601995E-004 6.454051019929519E-004 6.826124020672927E-004 7.223438150538478E-004 7.647822220438165E-004 8.101239746024829E-004 8.585798812954629E-004 9.103762651326309E-004 9.657560968511464E-004 1.024980209316809E-003 1.088328598644478E-003 1.156101818020215E-003 1.228622470596151E-003 1.306236808229230E-003 1.389316443287715E-003 1.478260181197896E-003 1.573495981897422E-003 1.675483058869397E-003 1.784714124984270E-003 1.901717794939265E-003 2.027061154695758E-003 2.161352508941760E-003 2.305244318283378E-003 2.459436338566788E-003 2.624678975463384E-003 2.801776868234223E-003 2.991592717384574E-003 3.195051371786884E-003 3.413144191698155E-003 3.646933705069977E-003 3.897558575454619E-003 4.166238900865099E-003 4.454281863930876E-003 4.763087754819455E-003 5.094156389462371E-003 5.449093946806796E-003 5.829620249973170E-003 6.237576517438864E-003 6.674933611590613E-003 7.143800813293407E-003 7.646435152378991E-003 8.185251325327056E-003 8.762832232685935E-003 9.381940170171877E-003 1.004552870867706E-002 1.075675529978735E-002 1.151899464469668E-002 1.233585286571024E-002 1.321118252076761E-002 1.414909850261071E-002 1.515399486535935E-002 1.623056262226889E-002 1.738380855941994E-002 1.861907511086546E-002 1.994206134142482E-002 2.135884508382380E-002 2.287590627711409E-002 2.450015155337966E-002 2.623894011949872E-002 2.810011098017486E-002 3.009201154756847E-002 3.222352768158533E-002 3.450411520309360E-002 3.694383292016974E-002 3.955337720461932E-002 4.234411815265018E-002 4.532813735944120E-002 4.851826733252439E-002 5.192813256318420E-002 5.557219226847803E-002 5.946578480888495E-002 6.362517377788404E-002 6.806759574987339E-002 7.281130966168743E-002 7.787564779037859E-002 8.328106827587733E-002 8.904920912147510E-002 9.520294358762217E-002 1.017664368753217E-001 1.087652039741285E-001 1.162261685264763E-001 1.241777225344942E-001 1.326497867076493E-001 1.416738712192321E-001 1.512831366068517E-001 1.615124545166187E-001 1.723984679524187E-001 1.839796506506327E-001 1.962963651566942E-001 2.093909191329667E-001 2.233076193776375E-001 2.380928229814765E-001 2.537949849937188E-001 2.704647019097760E-001 2.881547502322738E-001 3.069201192932798E-001 3.268180374594409E-001 3.479079907737747E-001 3.702517330181961E-001 3.939132861098404E-001 4.189589296727538E-001 4.454571785547399E-001 4.734787469881125E-001 5.030964980235973E-001 5.343853767992285E-001 5.674223261426581E-001 6.022861829459868E-001 6.390575536994005E-001 6.778186675244300E-001 7.186532050111273E-001 7.616461011384013E-001 8.068833205439770E-001 8.544516034132280E-001 9.044381802758977E-001 9.569304540390515E-001 1.012015647646544E+000 1.069780415841487E+000 1.130310419622326E+000 1.193689862127844E+000 1.260000984863438E+000 1.329323523395304E+000 1.401734121891206E+000 1.477305706180780E+000 1.556106815346534E+000 1.638200892240693E+000 1.723645533756573E+000 1.812491702165075E+000 1.904782899361186E+000 2.000554306450452E+000 2.099831891741376E+000 2.202631490896980E+000 2.308957863732690E+000 2.418803732927747E+000 2.532148810737648E+000 2.648958820649550E+000 2.769184521806212E+000 2.892760744924684E+000 3.019605449346369E+000 3.149618811760992E+000 3.282682358034021E+000 3.418658150421552E+000 3.557388043256775E+000 3.698693020922076E+000 3.842372632556361E+000 3.988204538465275E+000 4.135944183580751E+000 4.285324613525646E+000 4.436056448857464E+000 4.587828032862542E+000 4.740305767822721E+000 4.893134653957444E+000 5.045939044227381E+000 5.198323626854196E+000 5.349874645744026E+000 5.500161366985860E+000 5.648737797224421E+000 5.795144656974133E+000 5.938911608854725E+000 6.079559737301261E+000 6.216604272554150E+000 6.349557547702461E+000 6.477932173276239E+000 6.601244409417901E+000 6.719017711072845E+000 6.830786417000533E+000 6.936099548810582E+000 7.034524681765588E+000 7.125651844873820E+000 7.209097403929988E+000 7.284507877768077E+000 7.351563635186545E+000 7.409982417907790E+000 7.459522633653908E+000 7.499986363061132E+000 7.531222024804822E+000 7.553126645037088E+000 7.565647680098648E+000 7.568784345478169E+000 7.562588409148487E+000 7.547164413669037E+000 7.522669298730933E+000 7.489311404023006E+000 7.447348841261674E+000 7.397087233771026E+000 7.338876831901834E+000 7.273109022593380E+000 7.200212261241530E+000 7.120647463457531E+000 7.034902902997665E+000 6.943488669833937E+000 6.846930748756259E+000 6.745764783817137E+000 6.640529597162458E+000 6.531760532206835E+000 6.419982690652732E+000 6.305704130546772E+000 6.189409088539951E+000 6.071551284011807E+000 5.952547356095787E+000 5.832770477409861E+000 5.712544181110733E+000 5.592136431585162E+000 5.471753964683404E+000 5.351536922115193E+000 5.231553807920516E+000 5.111796804486522E+000 4.992177503361968E+000 4.872591324538930E+000 4.753144942395283E+000 4.633995928291402E+000 4.515291392941585E+000 4.397168542249016E+000 4.279755299285093E+000 4.163170972410954E+000 4.047526948089788E+000 3.932927385558036E+000 3.819469889850442E+000 3.707246139828306E+000 3.596342448942596E+000 3.486840238539034E+000 3.378816406619744E+000 3.272343579118823E+000 3.167490235909040E+000 3.064320709899635E+000 2.962895064678152E+000 2.863268864177196E+000 2.765492856830815E+000 2.669612606694843E+000 2.575668115172648E+000 2.483693489494700E+000 2.393716728171394E+000 2.305759709493729E+000 2.219838486969692E+000 2.135963993564437E+000 2.054142991947867E+000 1.974378538951423E+000 1.896670227300151E+000 1.821014403240744E+000 1.747404376492071E+000 1.675830622301834E+000 1.606280975462555E+000 1.538740814061310E+000 1.473193220728026E+000 1.409619192035979E+000 1.347997781099431E+000 1.288306248954283E+000 1.230520210464932E+000 1.174613772661469E+000 1.120559665727338E+000 1.068329366882095E+000 1.017893217424221E+000 9.692205332152916E-001 9.222797088994202E-001 8.770383161611686E-001 8.334631963309331E-001 7.915205476498161E-001 7.511760075059644E-001 7.123947299518791E-001 6.751414588073039E-001 6.393805966451532E-001 6.050762699490018E-001 5.721923907198029E-001 5.406927147972225E-001 5.105408971473403E-001 4.817005443536382E-001 4.541352645325395E-001 4.278087148782262E-001 4.026846470244929E-001 3.787269503939671E-001 3.558996936874254E-001 3.341671646483399E-001 3.134939082202731E-001 2.938447631975843E-001 2.751848974531701E-001 2.574798418108022E-001 2.406955226142404E-001 2.247982930306947E-001 2.097549631126034E-001 1.955328286291464E-001 1.820996986674734E-001 1.694239219934441E-001 1.574744121527464E-001 1.462206712856544E-001 1.356328126224540E-001 1.256815816216735E-001 1.163383757097701E-001 1.075752625787647E-001 9.936499699752152E-002 9.168103609284420E-002 8.449755305827006E-002 7.778944925134035E-002 7.153236464408286E-002 6.570268659641784E-002 6.027755692806159E-002 5.523487727114675E-002 5.055331269311063E-002 4.621229358726794E-002 4.219201583679029E-002 3.847343926641324E-002 3.503828440496384E-002 3.186902759062579E-002 2.894889445960141E-002 2.626185186738476E-002 2.379259830010807E-002 2.152655284125959E-002 1.944984276639234E-002 1.754928984521000E-002 1.581239543645420E-002 1.422732446636493E-002 1.278288838604691E-002 1.146852720678416E-002 1.027429071522161E-002 9.190818972332239E-003 8.209322201213572E-003 7.321560169017530E-003 6.519821167733012E-003 5.796900697137343E-003 5.146079951054263E-003 4.561104205147397E-003 4.036161200895766E-003 3.565859616203996E-003 3.145207708360365E-003 2.769592209843289E-003 2.434757551863633E-003 2.136785484592459E-003 1.872075156837427E-003 1.637323711570381E-003 1.429507447247707E-003 1.245863588374024E-003 1.083872702305731E-003 9.412417929369008E-004 8.158880957132778E-004 7.059235924334685E-004 6.096402585661042E-004 5.254960503779794E-004 4.521016340653527E-004 3.882078543360091E-004 3.326939355251172E-004 2.845564043584286E-004 2.428987199114116E-004 2.069215931563980E-004 1.759139757401935E-004 1.492446952858635E-004 1.263547125540043E-004 1.067499742165151E-004 8.999483377222693E-005 7.570601224834978E-005 6.354706976217353E-005 5.322335873953134E-005 4.447742957480294E-005 3.708485974555411E-005 3.085047783675786E-005 2.560495455856694E-005 2.120173363183185E-005 1.751427634179985E-005 1.443359459852816E-005 1.186604846975119E-005 9.731385346189046E-006 7.960999141869204E-006 6.496389203494738E-006 5.287799887636217E-006 4.293023047427830E-006 3.476346939030714E-006 2.807636300826514E-006 2.261529565921758E-006 1.816740333181120E-006 1.455451337238604E-006 1.162790219072250E-006 9.263774019436373E-007 7.359373205322834E-007 5.829651325444841E-007 4.604418615435029E-007 3.625916776466269E-007 2.846757200296466E-007 2.228194722686577E-007 1.738779969973943E-007 1.352733109689896E-007 1.049152344604039E-007 8.111602614050046E-008 6.251712137145658E-008 4.802836234441336E-008 3.677775129393252E-008 2.807003917411803E-008 2.135270810110995E-008 1.618812024436247E-008 1.223079202768627E-008 9.208913578959330E-009 6.909372198462172E-009 5.165657813715547E-009 3.848130334455462E-009 2.856215672310572E-009 2.112170890283654E-009 1.556121240727842E-009 1.142124292392854E-009 8.350603172224508E-010 6.081848250620234E-010 4.412096693501188E-010 3.188044354222219E-010 2.294306790746546E-010 1.644387109244091E-010 1.173706284029247E-010 8.342470162335545E-011 5.904546490660937E-011 4.161132826183778E-011 2.919751979385097E-011 2.039696723597206E-011 1.418554716200564E-011 9.821158955656720E-012 6.768470361560931E-012 4.643058356924915E-012 3.170136279431006E-012 2.154199608544228E-012 1.456806571424165E-012 9.803906798670712E-013 6.565243786473010E-013 4.374512730927524E-013 2.900067300788940E-013 1.912749677311364E-013 1.255022958261327E-013 8.191439016246615E-014 5.318081953845360E-014 3.434055200094614E-014 2.205403361072096E-014 1.408537974144763E-014 8.945829370462316E-015 5.649591000927069E-015 3.547583430123105E-015 2.214858589869630E-015 1.374808951922019E-015 8.482834171726646E-016 5.202485181709730E-016 3.171185690611211E-016 1.921076559160865E-016 1.156522332916230E-016 6.918776519759827E-017 4.113010621370306E-017 2.429698313366024E-017 1.426411089839127E-017 8.323965799324740E-018 4.830609790678408E-018 2.790172641737410E-018 1.606606328080110E-018 9.249163753794397E-019 5.287180579531192E-019 3.000789472526711E-019 1.690819168130661E-019 9.457342087513515E-020 5.250623595503012E-020 2.893220746476577E-020 1.582120971404739E-020 8.585058377722422E-021 4.622210926525856E-021 2.468972037480319E-021 1.308274608498327E-021 6.876284947850041E-022 3.584564180777060E-022 1.853109886875252E-022 9.499538612358834E-023 4.828297447727041E-023 2.432925147971257E-023 1.215231948943177E-023 6.016406792819077E-024 2.951984493831280E-024 1.435292746241163E-024 6.914591154908464E-025 3.300209855741394E-025 1.560322773985442E-025 7.306903039778542E-026 3.388798673300742E-026 1.556318875839774E-026 7.076817506696401E-027 3.185734175528831E-027 1.419574047454612E-027 6.260769422363128E-028 2.732511363104907E-028 1.180058706953480E-028 5.041905100944044E-029 2.130965703650800E-029 8.908192292235844E-030 3.682763962651491E-030 1.505457370450878E-030 6.084314463773836E-031 2.430754065252199E-031 9.598278652621413E-032 3.745455555915895E-032 1.444142665607264E-032 5.501031003755262E-033 2.069856296010286E-033 7.691855907832981E-034 2.822596650379488E-034 1.022643545717110E-034 3.657528326322430E-035 1.291125255577943E-035 4.497744033417785E-036 1.545945933866541E-036 5.241959830042250E-037 1.753148059255490E-037 5.782209039624944E-038 1.880369040394197E-038 6.028223927156122E-039 1.904822642252238E-039 5.931431532984290E-040 1.819802428722132E-040 5.500062569574323E-041 1.637222121138310E-041 4.799113763438424E-042 1.384980932014085E-042 3.934328658603966E-043 1.099905281199466E-043 3.025592117431429E-044 8.187427193442752E-045 2.179098825082438E-045 5.703062199131922E-046 1.467402176353640E-046 3.711137867227415E-047 9.223329824221218E-048 2.252142003523397E-048 5.401752037048712E-049 1.272350047480495E-049 2.942474377413152E-050 6.679633905401524E-051 1.488075756009386E-051 3.252573169084019E-052 6.973562772651949E-053 1.466231697398555E-053 3.022484370021539E-054 6.107044341065116E-055 1.209189185519539E-055 2.345540054893537E-056 espresso-5.0.2/Makefile0000644000700200004540000002216512053145634014031 0ustar marsamoscminclude make.sys default : @echo 'to install, type at the shell prompt:' @echo ' ./configure' @echo ' make target' @echo 'where target is one of the following:' @echo ' pw basic code for scf, structure optimization, MD' @echo ' ph phonon code, Gamma-only version and third-order derivatives' @echo ' pwcond ballistic conductance' @echo ' neb code for Nudged Elastic Band method' @echo ' pp postprocessing programs' @echo ' cp CP code: CP MD with ultrasoft pseudopotentials' @echo ' ld1 utilities for pseudopotential generation' @echo ' upf utilities for pseudopotential conversion' @echo ' tddfpt time dependent dft code' @echo ' gui Graphical User Interface ' @echo ' pwall same as "make pw ph pp pwcond neb"' @echo ' all same as "make pwall cp ld1 upf tddfpt"' @echo ' xspectra X-ray core-hole spectroscopy calculations ' @echo ' gipaw NMR and EPR spectra' @echo ' w90 Maximally localised Wannier Functions' @echo ' want Quantum Transport with Wannier functions' @echo ' yambo electronic excitations with plane waves' @echo ' plumed Metadynamics plugin for pw or cp' @echo ' clean remove executables and objects' @echo ' veryclean revert distribution to the original status' @echo ' tar create a tarball of the source tree' @if test -d GUI/; then \ echo ' tar-gui create a standalone PWgui tarball from the GUI sources'; fi @echo ' doc build documentation' @echo ' links create links to all executables in bin/' ########################################################### # Main targets ########################################################### pw : bindir mods liblapack libblas libs libiotk libenviron if test -d PW ; then \ ( cd PW ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ; fi cp : bindir mods liblapack libblas libs libiotk if test -d CPV ; then \ ( cd CPV ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ; fi ph : bindir mods libs pw cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile phonon neb : bindir mods libs pw cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ tddfpt : bindir mods libs pw ph cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ pp : bindir mods libs pw if test -d PP ; then \ ( cd PP ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ; fi pwcond : bindir mods libs pw pp cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ acfdt : bindir mods libs pw ph if test -d ACFDT ; then \ ( cd ACFDT ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ; fi gipaw : pw neb cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ ld1 : bindir liblapack libblas mods libs cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ upf : mods libs if test -d upftools ; then \ ( cd upftools ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ; fi pw_export : libiotk bindir mods libs pw if test -d PP ; then \ ( cd PP ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= pw_export.x ; \ else $(MAKE) $(MFLAGS) TLDEPS= pw_export.x ; fi ) ; fi xspectra : bindir mods libs pw cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ gui : touch-dummy cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ pwall : pw neb ph pp pwcond acfdt all : pwall cp ld1 upf tddfpt ########################################################### # Auxiliary targets used by main targets: # compile modules, libraries, directory for binaries, etc ########################################################### mods : libiotk libelpa ( cd Modules ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) libs : mods ( cd clib ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ( cd flib ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= $(FLIB_TARGETS) ; \ else $(MAKE) $(MFLAGS) TLDEPS= $(FLIB_TARGETS) ; fi ) libenviron : mods ( if test -d Environ ; then cd Environ ; if test "$(MAKE)" = "" ; \ then make $(MFLAGS) TLDEPS= all; else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ; fi ) bindir : test -d bin || mkdir bin ############################################################# # Targets for external libraries ############################################################ libblas : touch-dummy cd install ; $(MAKE) $(MFLAGS) -f extlibs_makefile $@ liblapack: touch-dummy cd install ; $(MAKE) $(MFLAGS) -f extlibs_makefile $@ libelpa: touch-dummy cd install ; $(MAKE) $(MFLAGS) -f extlibs_makefile $@ libiotk: touch-dummy cd install ; $(MAKE) $(MFLAGS) -f extlibs_makefile $@ # In case of trouble with iotk and compilers, add # FFLAGS="$(FFLAGS_NOOPT)" after $(MFLAGS) ######################################################### # plugins ######################################################### w90: bindir libblas liblapack cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ want : touch-dummy cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ yambo: touch-dummy cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ plumed: touch-dummy cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile $@ touch-dummy : $(dummy-variable) ######################################################### # "make links" produces links to all executables in bin/ # while "make inst" INSTALLDIR=/some/place" links all # available executables to /some/place/ (must exist and # be writable), prepending "qe_" to all executables (e.g.: # /some/place/qe_pw.x). This allows installation of QE # into system directories with no danger of name conflicts ######################################################### inst : ( for exe in */*/*.x */bin/* ; do \ file=`basename $$exe`; if test "$(INSTALLDIR)" != ""; then \ if test ! -L $(PWD)/$$exe; then ln -fs $(PWD)/$$exe $(INSTALLDIR)/qe_$$file ; fi ; \ fi ; \ done ) links : bindir ( cd bin/ ; \ rm -f *.x ; \ for exe in ../*/*/*.x ../*/bin/* ; do \ if test ! -L $$exe ; then ln -fs $$exe . ; fi \ done \ ) ######################################################### # Other targets: clean up ######################################################### # remove object files and executables clean : touch make.sys for dir in \ CPV Modules PP PW \ ACFDT \ clib flib pwtools upftools \ dev-tools extlibs Environ \ ; do \ if test -d $$dir ; then \ ( cd $$dir ; \ if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= clean ; \ else $(MAKE) $(MFLAGS) TLDEPS= clean ; fi ) \ fi \ done - @(cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile clean) - @(cd install ; $(MAKE) $(MFLAGS) -f extlibs_makefile clean) - /bin/rm -rf bin/*.x tmp - cd PW/tests; /bin/rm -rf CRASH *.out *.out? ; cd - - cd CPV/tests; /bin/rm -rf CRASH *.out *.out? # remove configuration files too distclean veryclean : clean - @(cd install ; $(MAKE) $(MFLAGS) -f plugins_makefile veryclean) - @(cd install ; $(MAKE) $(MFLAGS) -f extlibs_makefile veryclean) - rm -rf install/patch-plumed - cd install ; rm -f config.log configure.msg config.status \ CPV/version.h ChangeLog* intel.pcl */intel.pcl - cd install ; rm -fr autom4te.cache - cd pseudo; ./clean_ps ; cd - - cd install; ./clean.sh ; cd - - cd include; ./clean.sh ; cd - - rm -f espresso.tar.gz - for dir in Doc; do \ test -d $$dir && ( cd $$dir ; $(MAKE) $(MFLAGS) TLDEPS= clean ) \ done - rm -rf make.sys tar : @if test -f espresso.tar.gz ; then /bin/rm espresso.tar.gz ; fi # do not include unneeded stuff find ./ -type f | grep -v -e /.svn/ -e'/\.' -e'\.o$$' \ -e'\.mod$$' -e'\.a$$' -e'\.d$$' -e'\.i$$' -e'\.F90$$' -e'\.x$$' \ -e'~$$' -e'\./GUI' | xargs tar rvf espresso.tar gzip espresso.tar ######################################################### # Tools for the developers ######################################################### tar-gui : @if test -d GUI/PWgui ; then \ cd GUI/PWgui ; \ if test "$(MAKE)" = "" ; then \ make $(MFLAGS) TLDEPS= clean svninit pwgui-source; \ else $(MAKE) $(MFLAGS) TLDEPS= clean svninit pwgui-source; fi; \ mv PWgui-*.tgz ../.. ; \ else \ echo ; \ echo " Sorry, tar-gui works only for svn sources !!!" ; \ echo ; \ fi # NOTICE about "make doc": in order to build the .html and .txt # documentation in Doc, "tcl", "tcllib", "xsltproc" are needed; # in order to build the .pdf files in Doc, "pdflatex" is needed; # in order to build html files for user guide and developer manual, # "latex2html" and "convert" (from Image-Magick) are needed. doc : touch-dummy if test -d Doc ; then \ ( cd Doc ; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ) ; fi for dir in */Doc; do \ ( if test -f $$dir/Makefile ; then cd $$dir; if test "$(MAKE)" = "" ; then make $(MFLAGS) TLDEPS= all ; \ else $(MAKE) $(MFLAGS) TLDEPS= all ; fi ; fi ); done depend: @echo 'Checking dependencies...' - ( if test -x install/makedeps.sh ; then install/makedeps.sh ; fi) espresso-5.0.2/configure0000755000700200004540000000310512053145634014271 0ustar marsamoscm#! /bin/sh # # This script is a simple wrapper calling the autoconf configuration # script (configure) in install/ # Dependencies may be also directly generated # # Courtesy of A. Ferretti and G. Bussi # #================================================================ # MANUAL=" Usage configure [-h, --help] [] -h, --help print this manual these flags will be passed to the autoconf configure After configuration, the make.sys file will created in the QE home (current) directory --------------------------------------------------------------- Manual from autoconf configure : --------------------------------------------------------------- " # #================================================================ # # run from directory where this script is auxdir=`echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname if [ "$auxdir" != "configure" ] ; then cd $auxdir ; fi # # detect the simplest cases # case $1 in ("-h" | "--help" ) echo "$MANUAL" ; ./install/configure --help ; exit 0 ;; esac # # run the autoconf configure with the # given cong_flags # test -e ./install/make.sys && rm ./install/make.sys test -e ./install/configure.msg && rm ./install/configure.msg ./install/configure "$@" # # copy make.sys in the home dir # and final clean up # test -e ./install/make.sys && mv ./install/make.sys . test -e config.log && mv config.log ./install/ test -e config.status && mv config.status ./install/ test -e configure.msg && mv configure.msg ./install/ # exit 0 espresso-5.0.2/QHA/0000755000700200004540000000000012053440273012771 5ustar marsamoscmespresso-5.0.2/QHA/Debye/0000755000700200004540000000000012053440276014024 5ustar marsamoscmespresso-5.0.2/QHA/Debye/Debye.f900000644000700200004540000001342312053145633015376 0ustar marsamoscm! ! Copyright (C) 2004-2008 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Eyvaz Isaev, ! Department of Physics, Chemistry, and Biology (IFM), Linkoping University, Sweden ! Condensed Matter Theory Group, Uppsala University, Sweden ! Theoretical Physics Department, Moscow State Institute of Steel and Alloys, Russia ! E-mail: isaev@ifm.liu.se, eyvaz_isaev@yahoo.com ! ! Debye temperature calculation at various T ! ! Some definitions of former fqha.f90 were used ! Program Debye_Temperature ! ! As the Debye function, D(x)=1/x^3(\int_{0}^{x} y^4*exp(y)/(exp(y)-1)^2 dy, ! is an universal function and depends on only x = \Theta/T, ! x (and then T_D) can be found comparing calcuated C_v(T) with the 9*N_at*D(x) with a given precision, ! therefore, \Theta, using the given temperature. ! ! At low temperatures (usually, 1 - 25K) the C_v=234k_B(T/T_D)^3 is used to find T_D. ! For T > w2 (the second moment of phonon frequencies) we put T_D = \Theta_{infty}, ! this mostly happens around 300K, that is why calculations are restricted by T < 300K ! ! implicit none implicit real*8(a-h,o-z) integer, parameter:: ndivx=10000 real(kind=8) :: dos(ndivx),nu(ndivx) ,T,a1,a2,a3,a4 real(kind=8) :: de, emax real(kind=8) :: CV, CV_tot, q1,q2,q3, cv1,pi,x0 integer :: i,ndiv, n1 integer :: natoms character(len=80) :: filename real(kind=8) :: pdos(ndivx),gx(ndivx),gy(ndivx),gz(ndivx) real(kind=8) :: x(10),D(10) character(len=1) :: dummy character(len=18) :: PHDOS_file external Debye_T ! ! a1=0.5d0/13.6058d0/8065.5d0 ! 0.5\hbar cm^{-1} to Ry a2=8.617d-5/13.6058d0 ! K_B to Ry a3=1.0d0/8065.5d0/8.617d-5 ! \hbar/K_B pi=3.141592653 ! K_B a4=1.d0/13.6058d0/8065.5d0 ! open(9, file='T_Debye.in') read(9,'(a)') PHDOS_file read(9,*) accuracy read(9,*) T_low_start, T_low, T_low_delta read(9,*) T_high, T_high_delta if(T_low.lt.1) then write(6,'("Please choose T_low around 10-20K")') stop endif if(accuracy.lt.0.00005) then stop " Accuracy should not be better than 5d-5, this one is quite enough" endif close(9) open(unit=10,file=PHDOS_file) read(10,*) dummy, natoms read (10,*) dummy, ndiv, emax, de if (ndiv.gt.ndivx) stop ' ndiv too large' if(PHDOS_file.eq.'PHDOS.out') then ! More safe reading a file PHDOS.out i=1 100 read(10,*,end=99) nu(i),dos(i) i=i+1 goto 100 99 continue ! else ! ! More safe reading a file projected_DOS i=1 101 read(10,*,end=98) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i) i=i+1 goto 101 98 continue endif ! close(10) w1=0. w2=0. tdos=0.d0 do i=2,ndiv-3,3 tdos = tdos + 3*dos(i) + 3*dos(i+1) + 2*dos(i+2) w1 = w1 + 3*dos(i)*nu(i) + & & 3*dos(i+1)*nu(i+1) + & & 2*dos(i+2)*nu(i+2) w2 = w2 + 3*dos(i)*nu(i)**2 + & & 3*dos(i+1)*nu(i+1)**2 + & & 2*dos(i+2)*nu(i+2)**2 enddo tdos=tdos*de*3/8 if((tdos/(3*natoms)).ge.2) then factor=2 else factor=1 endif write(6,'("# factor ===", f8.4)') factor w1=w1*de*3/8/(3*natoms)/factor w2=w2*de*3/8/(3*natoms)/factor write(6,'("# The first moment of phonon frequencies : ",2x,f12.2," [cm^-1]", f8.2," [THz]")') w1, w1/33 write(6,'("# The second moment of phonon frequencies : ",2x,f12.2, " [cm^-2]", f8.2,"[THz^2]")') w2, w2/33**2 w1=4*w1/3*a3 w2=a3*sqrt(5./3*w2) write(6,'("# Debye temperature via the first moment of phonon frequencies: ",2x,f8.2, "[ K]")') w1 write(6,'("# Debye_{\infty} via the second moment of phonon frequencies: ",2x,f8.2, "[ K]")') w2 ! T_D, low temperatures: T < T_low do T = T_low_start, T_low, T_low_delta ! The heat capacity in a standard way ! CV=0. do i=2,ndiv-3,3 q1=0.5*a3*nu(i)/T q2=0.5*a3*nu(i+1)/T q3=0.5*a3*nu(i+2)/T CV = CV + 3*dos(i)*q1*q1/sinh(q1)**2 + & & 3*dos(i+1)*q2*q2/sinh(q2)**2 + & & 2*dos(i+2)*q3*q3/sinh(q3)**2 enddo ! factor is due old program which gives 2 times larger DOS, and should be removed in the next future CV_tot=CV*de*3/8/factor t3=dexp(dlog(CV_tot)/3) coefficient=dexp(dlog(234.d0*natoms)/3) TD=T*coefficient/t3 write(6,'(f8.2, 4x,f8.2,4x,f12.8,4x,f12.8)') T, TD, CV_tot, 234*natoms*dexp(dlog(T/TD)*3) ! enddo ! for intermediate and higher T , T_high usually up to room temperature (300K) do T = T_low+5, T_high, T_high_delta ! The heat capacity in a standard way ! CV=0. do i=2,ndiv-3,3 q1=0.5*a3*nu(i)/T q2=0.5*a3*nu(i+1)/T q3=0.5*a3*nu(i+2)/T CV = CV + 3*dos(i)*q1*q1/sinh(q1)**2 + & & 3*dos(i+1)*q2*q2/sinh(q2)**2 + & & 2*dos(i+2)*q3*q3/sinh(q3)**2 enddo ! factor is due old program which gives 2 times larger DOS, and should be removed in the next future CV_tot=CV*de*3/8/factor x0=0.00 ! ! do while (.true.) TD=0 do while (x0.le.500.0) ! if(dabs(CV_tot-9*natoms*Debye_T(x0)).le.accuracy & & .and.(dabs(CV_tot-3*natoms).gt.0.01)) then TD=T*x0 write(6,'(f8.2, 4x,f8.2,4x,f12.8,4x,f12.8)') T, TD, CV_tot, 9*natoms*Debye_T(x0) if(dabs(TD-w2).lt.1) then stop "# There is no need to calculate the Debye temperature at higher temperatures" endif goto 102 ! else ! goto 102 endif x0=x0+0.0001 ! if(dabs(CV_tot-3*natoms).le.0.001) x0=x0-0.0001 enddo 102 continue enddo stop end program Debye_Temperature espresso-5.0.2/QHA/Debye/Makefile0000644000700200004540000000051712053145633015466 0ustar marsamoscm.SUFFIXES: .f90 .f .o FC = ifort LD = $(FC) -static Debye_x = Debye.x FFLAGS = -O3 SRCS = Debye.f90 Debye_T.f debye3.f cheval.f d1mach.f OBJS = Debye.o Debye_T.o debye3.o cheval.o d1mach.o Debye_x:$(OBJS) $(LD) -o $(Debye_x) $(OBJS) .f.o : $(FC) $(FFLAGS) -c $< .f90.o : $(FC) $(FFLAGS) -c $< clean: rm -f *.o *.x espresso-5.0.2/QHA/Debye/Debye_T.f0000644000700200004540000000026412053145633015507 0ustar marsamoscm real*8 function Debye_T(x) implicit real*8(a-h,o-z) if(x.eq.0.d0) then d=0.333333333333333 else d=-x/(dexp(x)-1) + 4*debye3(x)/3 endif Debye_T=d return end espresso-5.0.2/QHA/Debye/debye3.f0000644000700200004540000001302712053145633015350 0ustar marsamoscm DOUBLE PRECISION FUNCTION DEBYE3(XVALUE) C C C DEFINITION: C C This program calculates the Debye function of order 3, defined as C C DEBYE3(x) = 3*[Integral {0 to x} t^3/(exp(t)-1) dt] / (x^3) C C The code uses Chebyshev series whose coefficients C are given to 20 decimal places. C C C ERROR RETURNS: C C If XVALUE < 0.0 an error message is printed and the C function returns the value 0.0 C C C MACHINE-DEPENDENT PARAMETERS: C C NTERMS - INTEGER - The no. of elements of the array ADEB3. C The recommended value is such that C ABS(ADEB3(NTERMS)) < EPS/100, C subject to 1 <= NTERMS <= 18 C C XLOW - DOUBLE PRECISION - The value below which C DEBYE3 = 1 - 3x/8 + x*x/20 to machine precision. C The recommended value is C SQRT(8*EPSNEG) C C XUPPER - DOUBLE PRECISION - The value above which C DEBYE3 = (18*zeta(4)/x^3) - 3*exp(-x)(x^3+3x^2+6x+6)/x^3. C The recommended value is C -LOG(2*EPS) C C XLIM1 - DOUBLE PRECISION - The value above which DEBYE3 = 18*zeta(4)/x^3 C The recommended value is C -LOG(XMIN) C C XLIM2 - DOUBLE PRECISION - The value above which DEBYE3 = 0.0 to machine C precision. The recommended value is C CUBE ROOT(19/XMIN) C C For values of EPS, EPSNEG, and XMIN see the file MACHCON.TXT C C The machine-dependent constants are computed internally by C using the D1MACH subroutine. C C C OTHER MISCFUN SUBROUTINES USED: C C CHEVAL , ERRPRN, D1MACH C C C INTRINSIC FUNCTIONS USED: C C AINT , EXP , INT , LOG , SQRT C C C AUTHOR: C Dr. Allan J. MacLeod, C Dept. of Mathematics and Statistics, C University of Paisley C High St. C PAISLEY C SCOTLAND C PA1 2BE C C (e-mail: macl_ms0@paisley.ac.uk ) C C C LATEST UPDATE: 23 January, 1996 C INTEGER I,NEXP,NTERMS DOUBLE PRECISION ADEB3(0:18),CHEVAL,DEBINF,EIGHT,EXPMX,FOUR, & HALF,ONE,ONEHUN,PT375,RK,SEVP5,SIX,SUM,T,THREE,TWENTY,X, & XK,XKI,XLIM1,XLIM2,XLOW,XUPPER,XVALUE,ZERO,D1MACH C C OTHER MISCFUN SUBROUTINES USED: C external CHEVAL, D1MACH C C C INTRINSIC FUNCTIONS USED: C intrinsic AINT , EXP , INT , LOG , SQRT, abs C c*****CHARACTER FNNAME*6,ERRMSG*17 c*****DATA FNNAME/'DEBYE3'/ c*****DATA ERRMSG/'ARGUMENT NEGATIVE'/ DATA ZERO,PT375/0.0 D 0 , 0.375 D 0/ DATA HALF,ONE/0.5 D 0 , 1.0 D 0/ DATA THREE,FOUR,SIX/3.0 D 0 , 4.0 D 0 , 6.0 D 0/ DATA SEVP5,EIGHT,TWENTY/7.5 D 0 , 8.0 D 0 , 20.0 D 0/ DATA ONEHUN/100.0 D 0/ DATA DEBINF/0.51329 91127 34216 75946 D -1/ DATA ADEB3/2.70773 70683 27440 94526 D 0, 1 0.34006 81352 11091 75100 D 0, 2 -0.12945 15018 44408 6863 D -1, 3 0.79637 55380 17381 64 D -3, 4 -0.54636 00095 90823 8 D -4, 5 0.39243 01959 88049 D -5, 6 -0.28940 32823 5386 D -6, 7 0.21731 76139 625 D -7, 8 -0.16542 09994 98 D -8, 9 0.12727 96189 2 D -9, X -0.98796 3459 D -11, 1 0.77250 740 D -12, 2 -0.60779 72 D -13, 3 0.48075 9 D -14, 4 -0.38204 D -15, 5 0.3048 D -16, 6 -0.244 D -17, 7 0.20 D -18, 8 -0.2 D -19/ C C Start computation C X = XVALUE C C Error test C IF ( X .LT. ZERO ) THEN c********CALL ERRPRN(FNNAME,ERRMSG) DEBYE3 = ZERO RETURN ENDIF C C Compute the machine-dependent constants. C T = D1MACH(1) XLIM1 = - LOG( T ) XK = ONE / THREE XKI = (ONE/DEBINF) ** XK RK = T ** XK XLIM2 = XKI / RK T = D1MACH(3) XLOW = SQRT ( T * EIGHT ) XUPPER = - LOG( T + T ) T = T / ONEHUN DO 10 NTERMS = 18 , 0 , -1 IF ( ABS(ADEB3(NTERMS)) .GT. T ) GOTO 19 10 CONTINUE C C Code for x <= 4.0 C 19 IF ( X .LE. FOUR ) THEN IF ( X .LT. XLOW ) THEN DEBYE3 = ( ( X - SEVP5 ) * X + TWENTY ) / TWENTY ELSE T = ( ( X * X / EIGHT ) - HALF ) - HALF DEBYE3 = CHEVAL ( NTERMS , ADEB3 , T ) - PT375 * X ENDIF ELSE C C Code for x > 4.0 C IF ( X .GT. XLIM2 ) THEN DEBYE3 = ZERO ELSE DEBYE3 = ONE / ( DEBINF * X * X * X ) IF ( X .LT. XLIM1 ) THEN EXPMX = EXP ( -X ) IF ( X .GT. XUPPER ) THEN SUM = (((X+THREE)*X+SIX)*X+SIX) / (X*X*X) ELSE SUM = ZERO RK = AINT ( XLIM1 / X ) NEXP = INT ( RK ) XK = RK * X DO 100 I = NEXP,1,-1 XKI = ONE / XK T = (((SIX*XKI+SIX)*XKI+THREE)*XKI+ONE) / RK SUM = SUM * EXPMX + T RK = RK - ONE XK = XK - X 100 CONTINUE ENDIF DEBYE3 = DEBYE3 - THREE * SUM * EXPMX ENDIF ENDIF ENDIF RETURN END espresso-5.0.2/QHA/Debye/cheval.f0000644000700200004540000000434612053145633015443 0ustar marsamoscm DOUBLE PRECISION FUNCTION CHEVAL(N,A,T) C C This function evaluates a Chebyshev series, using the C Clenshaw method with Reinsch modification, as analysed C in the paper by Oliver. C C INPUT PARAMETERS C C N - INTEGER - The no. of terms in the sequence C C A - DOUBLE PRECISION ARRAY, dimension 0 to N - The coefficients of C the Chebyshev series C C T - DOUBLE PRECISION - The value at which the series is to be C evaluated C C C REFERENCES C C "An error analysis of the modified Clenshaw method for C evaluating Chebyshev and Fourier series" J. Oliver, C J.I.M.A., vol. 20, 1977, pp379-391 C C C MACHINE-DEPENDENT CONSTANTS: NONE C C C INTRINSIC FUNCTIONS USED; C C ABS C C C AUTHOR: Dr. Allan J. MacLeod, C Dept. of Mathematics and Statistics, C University of Paisley , C High St., C PAISLEY, C SCOTLAND C C C LATEST MODIFICATION: 21 December , 1992 C C INTEGER I,N DOUBLE PRECISION A(0:N),D1,D2,HALF,T,TEST,TT,TWO,U0,U1,U2,ZERO INTRINSIC ABS DATA ZERO,HALF/ 0.0 D 0 , 0.5 D 0 / DATA TEST,TWO/ 0.6 D 0 , 2.0 D 0 / U1 = ZERO C C If ABS ( T ) < 0.6 use the standard Clenshaw method C IF ( ABS( T ) .LT. TEST ) THEN U0 = ZERO TT = T + T DO 100 I = N , 0 , -1 U2 = U1 U1 = U0 U0 = TT * U1 + A( I ) - U2 100 CONTINUE CHEVAL = ( U0 - U2 ) / TWO ELSE C C If ABS ( T ) > = 0.6 use the Reinsch modification C D1 = ZERO C C T > = 0.6 code C IF ( T .GT. ZERO ) THEN TT = ( T - HALF ) - HALF TT = TT + TT DO 200 I = N , 0 , -1 D2 = D1 U2 = U1 D1 = TT * U2 + A( I ) + D2 U1 = D1 + U2 200 CONTINUE CHEVAL = ( D1 + D2 ) / TWO ELSE C C T < = -0.6 code C TT = ( T + HALF ) + HALF TT = TT + TT DO 300 I = N , 0 , -1 D2 = D1 U2 = U1 D1 = TT * U2 + A( I ) - D2 U1 = D1 - U2 300 CONTINUE CHEVAL = ( D1 - D2 ) / TWO ENDIF ENDIF RETURN END espresso-5.0.2/QHA/Debye/T_Debye.in0000644000700200004540000000004012053145633015660 0ustar marsamoscmPHDOS.out 0.0001 15 3 500 10 espresso-5.0.2/QHA/Debye/d1mach.f0000644000700200004540000004103512053145633015332 0ustar marsamoscmC C Version by w.g.bardsley, university of manchester, u.k., 26/10/98 C ================================================================= C DOUBLE PRECISION FUNCTION D1MACH(I) C===================================================== INTEGER I IF (I.EQ.1) THEN D1MACH = 2.2250739D-308 ELSEIF (I.EQ.2) THEN D1MACH = 1.7976931D+308 ELSEIF (I.EQ.3) THEN D1MACH = 1.1102230D-16 ELSEIF (I.EQ.4) THEN D1MACH = 2.220446D-16 ELSEIF (I.EQ.5) THEN D1MACH = 0.301029995663981195D+00 ELSE D1MACH = 0.0D+00 ENDIF RETURN C===================================================== C***BEGIN PROLOGUE D1MACH C***DATE WRITTEN 750101 (YYMMDD) C***REVISION DATE 890213 (YYMMDD) C***CATEGORY NO. R1 C***KEYWORDS LIBRARY=SLATEC,TYPE=DOUBLE PRECISION(R1MACH-S D1MACH-D), C MACHINE CONSTANTS C***AUTHOR FOX, P. A., (BELL LABS) C HALL, A. D., (BELL LABS) C SCHRYER, N. L., (BELL LABS) C***PURPOSE RETURNS DOUBLE PRECISION MACHINE DEPENDENT CONSTANTS C***DESCRIPTION C C D1MACH CAN BE USED TO OBTAIN MACHINE-DEPENDENT PARAMETERS C FOR THE LOCAL MACHINE ENVIRONMENT. IT IS A FUNCTION C SUBPROGRAM WITH ONE (INPUT) ARGUMENT, AND CAN BE CALLED C AS FOLLOWS, FOR EXAMPLE C C D = D1MACH(I) C C WHERE I=1,...,5. THE (OUTPUT) VALUE OF D ABOVE IS C DETERMINED BY THE (INPUT) VALUE OF I. THE RESULTS FOR C VARIOUS VALUES OF I ARE DISCUSSED BELOW. C C D1MACH( 1) = B**(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE. C D1MACH( 2) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE. C D1MACH( 3) = B**(-T), THE SMALLEST RELATIVE SPACING. C D1MACH( 4) = B**(1-T), THE LARGEST RELATIVE SPACING. C D1MACH( 5) = LOG10(B) C C ASSUME DOUBLE PRECISION NUMBERS ARE REPRESENTED IN THE T-DIGIT, C BASE-B FORM C C SIGN (B**E)*( (X(1)/B) + ... + (X(T)/B**T) ) C C WHERE 0 .LE. X(I) .LT. B FOR I=1,...,T, 0 .LT. X(1), AND C EMIN .LE. E .LE. EMAX. C C THE VALUES OF B, T, EMIN AND EMAX ARE PROVIDED IN I1MACH AS C FOLLOWS: C I1MACH(10) = B, THE BASE. C I1MACH(14) = T, THE NUMBER OF BASE-B DIGITS. C I1MACH(15) = EMIN, THE SMALLEST EXPONENT E. C I1MACH(16) = EMAX, THE LARGEST EXPONENT E. C C TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT, C THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY C REMOVING THE C FROM COLUMN 1. ALSO, THE VALUES OF C D1MACH(1) - D1MACH(4) SHOULD BE CHECKED FOR CONSISTENCY C WITH THE LOCAL OPERATING SYSTEM. C C***REFERENCES FOX P.A., HALL A.D., SCHRYER N.L.,*FRAMEWORK FOR A C PORTABLE LIBRARY*, ACM TRANSACTIONS ON MATHEMATICAL C SOFTWARE, VOL. 4, NO. 2, JUNE 1978, PP. 177-188. C***ROUTINES CALLED XERROR C C THE CALL TO XERROR HAS BEEN COMMENTED TO GET A STAND ALONE ROUTINE C IT CAN BE ADAPTED TO FIT THE LOCAL ERROR HANDLING PROCEDURES C NOTE ADDED BY F. ROMANI 7/11/89 C C***END PROLOGUE D1MACH C C INTEGER SMALL(4) C INTEGER LARGE(4) C INTEGER RIGHT(4) C INTEGER DIVER(4) C INTEGER LOG10(4) C C DOUBLE PRECISION DMACH(5) C SAVE DMACH C C EQUIVALENCE (DMACH(1),SMALL(1)) C EQUIVALENCE (DMACH(2),LARGE(1)) C EQUIVALENCE (DMACH(3),RIGHT(1)) C EQUIVALENCE (DMACH(4),DIVER(1)) C EQUIVALENCE (DMACH(5),LOG10(1)) C C MACHINE CONSTANTS FOR THE AMIGA C ABSOFT FORTRAN COMPILER USING THE 68020/68881 COMPILER OPTION C C DATA SMALL(1), SMALL(2) / Z'00100000', Z'00000000' / C DATA LARGE(1), LARGE(2) / Z'7FEFFFFF', Z'FFFFFFFF' / C DATA RIGHT(1), RIGHT(2) / Z'3CA00000', Z'00000000' / C DATA DIVER(1), DIVER(2) / Z'3CB00000', Z'00000000' / C DATA LOG10(1), LOG10(2) / Z'3FD34413', Z'509F79FF' / C C MACHINE CONSTANTS FOR THE AMIGA C ABSOFT FORTRAN COMPILER USING SOFTWARE FLOATING POINT C C DATA SMALL(1), SMALL(2) / Z'00100000', Z'00000000' / C DATA LARGE(1), LARGE(2) / Z'7FDFFFFF', Z'FFFFFFFF' / C DATA RIGHT(1), RIGHT(2) / Z'3CA00000', Z'00000000' / C DATA DIVER(1), DIVER(2) / Z'3CB00000', Z'00000000' / C DATA LOG10(1), LOG10(2) / Z'3FD34413', Z'509F79FF' / C C MACHINE CONSTANTS FOR THE APOLLO C C DATA SMALL(1), SMALL(2) / 16#00100000, 16#00000000 / C DATA LARGE(1), LARGE(2) / 16#7FFFFFFF, 16#FFFFFFFF / C DATA RIGHT(1), RIGHT(2) / 16#3CA00000, 16#00000000 / C DATA DIVER(1), DIVER(2) / 16#3CB00000, 16#00000000 / C DATA LOG10(1), LOG10(2) / 16#3FD34413, 16#509F79FF / C C MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM C C DATA SMALL(1) / ZC00800000 / C DATA SMALL(2) / Z000000000 / C DATA LARGE(1) / ZDFFFFFFFF / C DATA LARGE(2) / ZFFFFFFFFF / C DATA RIGHT(1) / ZCC5800000 / C DATA RIGHT(2) / Z000000000 / C DATA DIVER(1) / ZCC6800000 / C DATA DIVER(2) / Z000000000 / C DATA LOG10(1) / ZD00E730E7 / C DATA LOG10(2) / ZC77800DC0 / C C MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM C C DATA SMALL(1) / O1771000000000000 / C DATA SMALL(2) / O0000000000000000 / C DATA LARGE(1) / O0777777777777777 / C DATA LARGE(2) / O0007777777777777 / C DATA RIGHT(1) / O1461000000000000 / C DATA RIGHT(2) / O0000000000000000 / C DATA DIVER(1) / O1451000000000000 / C DATA DIVER(2) / O0000000000000000 / C DATA LOG10(1) / O1157163034761674 / C DATA LOG10(2) / O0006677466732724 / C C MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS C C DATA SMALL(1) / O1771000000000000 / C DATA SMALL(2) / O7770000000000000 / C DATA LARGE(1) / O0777777777777777 / C DATA LARGE(2) / O7777777777777777 / C DATA RIGHT(1) / O1461000000000000 / C DATA RIGHT(2) / O0000000000000000 / C DATA DIVER(1) / O1451000000000000 / C DATA DIVER(2) / O0000000000000000 / C DATA LOG10(1) / O1157163034761674 / C DATA LOG10(2) / O0006677466732724 / C C MACHINE CONSTANTS FOR THE CDC 170/180 SERIES USING NOS/VE C C DATA SMALL(1) / Z"3001800000000000" / C DATA SMALL(2) / Z"3001000000000000" / C DATA LARGE(1) / Z"4FFEFFFFFFFFFFFE" / C DATA LARGE(2) / Z"4FFE000000000000" / C DATA RIGHT(1) / Z"3FD2800000000000" / C DATA RIGHT(2) / Z"3FD2000000000000" / C DATA DIVER(1) / Z"3FD3800000000000" / C DATA DIVER(2) / Z"3FD3000000000000" / C DATA LOG10(1) / Z"3FFF9A209A84FBCF" / C DATA LOG10(2) / Z"3FFFF7988F8959AC" / C C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES C C DATA SMALL(1) / 00564000000000000000B / C DATA SMALL(2) / 00000000000000000000B / C DATA LARGE(1) / 37757777777777777777B / C DATA LARGE(2) / 37157777777777777777B / C DATA RIGHT(1) / 15624000000000000000B / C DATA RIGHT(2) / 00000000000000000000B / C DATA DIVER(1) / 15634000000000000000B / C DATA DIVER(2) / 00000000000000000000B / C DATA LOG10(1) / 17164642023241175717B / C DATA LOG10(2) / 16367571421742254654B / C C MACHINE CONSTANTS FOR THE CELERITY C1260 C C DATA SMALL(1), SMALL(2) / Z'00100000', Z'00000000' / C DATA LARGE(1), LARGE(2) / Z'7FEFFFFF', Z'FFFFFFFF' / C DATA RIGHT(1), RIGHT(2) / Z'3CA00000', Z'00000000' / C DATA DIVER(1), DIVER(2) / Z'3CB00000', Z'00000000' / C DATA LOG10(1), LOG10(2) / Z'3FD34413', Z'509F79FF' / C C MACHINE CONSTANTS FOR THE CONVEX C-1 C C DATA SMALL(1), SMALL(2) / '00100000'X,'00000000'X / C DATA LARGE(1), LARGE(2) / '7FFFFFFF'X,'FFFFFFFF'X / C DATA RIGHT(1), RIGHT(2) / '3CC00000'X,'00000000'X / C DATA DIVER(1), DIVER(2) / '3CD00000'X,'00000000'X / C DATA LOG10(1), LOG10(2) / '3FF34413'X,'509F79FF'X / C C MACHINE CONSTANTS FOR THE CRAY-1 C C DATA SMALL(1) / 201354000000000000000B / C DATA SMALL(2) / 000000000000000000000B / C DATA LARGE(1) / 577767777777777777777B / C DATA LARGE(2) / 000007777777777777774B / C DATA RIGHT(1) / 376434000000000000000B / C DATA RIGHT(2) / 000000000000000000000B / C DATA DIVER(1) / 376444000000000000000B / C DATA DIVER(2) / 000000000000000000000B / C DATA LOG10(1) / 377774642023241175717B / C DATA LOG10(2) / 000007571421742254654B / C C MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200 C C NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD - C STATIC DMACH(5) C C DATA SMALL / 20K, 3*0 / C DATA LARGE / 77777K, 3*177777K / C DATA RIGHT / 31420K, 3*0 / C DATA DIVER / 32020K, 3*0 / C DATA LOG10 / 40423K, 42023K, 50237K, 74776K / C C MACHINE CONSTANTS FOR THE ELXSI 6400 C (ASSUMING REAL*8 IS THE DEFAULT DOUBLE PRECISION) C C DATA SMALL(1), SMALL(2) / '00100000'X,'00000000'X / C DATA LARGE(1), LARGE(2) / '7FEFFFFF'X,'FFFFFFFF'X / C DATA RIGHT(1), RIGHT(2) / '3CB00000'X,'00000000'X / C DATA DIVER(1), DIVER(2) / '3CC00000'X,'00000000'X / C DATA LOG10(1), LOG10(2) / '3FD34413'X,'509F79FF'X / C C MACHINE CONSTANTS FOR THE HARRIS 220 C C DATA SMALL(1), SMALL(2) / '20000000, '00000201 / C DATA LARGE(1), LARGE(2) / '37777777, '37777577 / C DATA RIGHT(1), RIGHT(2) / '20000000, '00000333 / C DATA DIVER(1), DIVER(2) / '20000000, '00000334 / C DATA LOG10(1), LOG10(2) / '23210115, '10237777 / C C MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES C C DATA SMALL(1), SMALL(2) / O402400000000, O000000000000 / C DATA LARGE(1), LARGE(2) / O376777777777, O777777777777 / C DATA RIGHT(1), RIGHT(2) / O604400000000, O000000000000 / C DATA DIVER(1), DIVER(2) / O606400000000, O000000000000 / C DATA LOG10(1), LOG10(2) / O776464202324, O117571775714 / C C MACHINE CONSTANTS FOR THE HP 2100 C THREE WORD DOUBLE PRECISION OPTION WITH FTN4 C C DATA SMALL(1), SMALL(2), SMALL(3) / 40000B, 0, 1 / C DATA LARGE(1), LARGE(2), LARGE(3) / 77777B, 177777B, 177776B / C DATA RIGHT(1), RIGHT(2), RIGHT(3) / 40000B, 0, 265B / C DATA DIVER(1), DIVER(2), DIVER(3) / 40000B, 0, 276B / C DATA LOG10(1), LOG10(2), LOG10(3) / 46420B, 46502B, 77777B / C C MACHINE CONSTANTS FOR THE HP 2100 C FOUR WORD DOUBLE PRECISION OPTION WITH FTN4 C C DATA SMALL(1), SMALL(2) / 40000B, 0 / C DATA SMALL(3), SMALL(4) / 0, 1 / C DATA LARGE(1), LARGE(2) / 77777B, 177777B / C DATA LARGE(3), LARGE(4) / 177777B, 177776B / C DATA RIGHT(1), RIGHT(2) / 40000B, 0 / C DATA RIGHT(3), RIGHT(4) / 0, 225B / C DATA DIVER(1), DIVER(2) / 40000B, 0 / C DATA DIVER(3), DIVER(4) / 0, 227B / C DATA LOG10(1), LOG10(2) / 46420B, 46502B / C DATA LOG10(3), LOG10(4) / 76747B, 176377B / C C MACHINE CONSTANTS FOR THE HP 9000 C C DATA SMALL(1), SMALL(2) / 00040000000B, 00000000000B / C DATA LARGE(1), LARGE(2) / 17737777777B, 37777777777B / C DATA RIGHT(1), RIGHT(2) / 07454000000B, 00000000000B / C DATA DIVER(1), DIVER(2) / 07460000000B, 00000000000B / C DATA LOG10(1), LOG10(2) / 07764642023B, 12047674777B / C C MACHINE CONSTANTS FOR THE IBM 360/370 SERIES, C THE XEROX SIGMA 5/7/9, THE SEL SYSTEMS 85/86, AND C THE PERKIN ELMER (INTERDATA) 7/32. C C DATA SMALL(1), SMALL(2) / Z00100000, Z00000000 / C DATA LARGE(1), LARGE(2) / Z7FFFFFFF, ZFFFFFFFF / C DATA RIGHT(1), RIGHT(2) / Z33100000, Z00000000 / C DATA DIVER(1), DIVER(2) / Z34100000, Z00000000 / C DATA LOG10(1), LOG10(2) / Z41134413, Z509F79FF / C C MACHINE CONSTANTS FOR THE IBM PC C ASSUMES THAT ALL ARITHMETIC IS DONE IN DOUBLE PRECISION C ON 8088, I.E., NOT IN 80 BIT FORM FOR THE 8087. C C DATA SMALL(1) / 2.23D-308 / C DATA LARGE(1) / 1.79D+308 / C DATA RIGHT(1) / 1.11D-16 / C DATA DIVER(1) / 2.22D-16 / C DATA LOG10(1) / 0.301029995663981195D0 / C C MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR) C C DATA SMALL(1), SMALL(2) / "033400000000, "000000000000 / C DATA LARGE(1), LARGE(2) / "377777777777, "344777777777 / C DATA RIGHT(1), RIGHT(2) / "113400000000, "000000000000 / C DATA DIVER(1), DIVER(2) / "114400000000, "000000000000 / C DATA LOG10(1), LOG10(2) / "177464202324, "144117571776 / C C MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR) C C DATA SMALL(1), SMALL(2) / "000400000000, "000000000000 / C DATA LARGE(1), LARGE(2) / "377777777777, "377777777777 / C DATA RIGHT(1), RIGHT(2) / "103400000000, "000000000000 / C DATA DIVER(1), DIVER(2) / "104400000000, "000000000000 / C DATA LOG10(1), LOG10(2) / "177464202324, "476747767461 / C C MACHINE CONSTANTS FOR PDP-11 FORTRAN SUPPORTING C 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). C C DATA SMALL(1), SMALL(2) / 8388608, 0 / C DATA LARGE(1), LARGE(2) / 2147483647, -1 / C DATA RIGHT(1), RIGHT(2) / 612368384, 0 / C DATA DIVER(1), DIVER(2) / 620756992, 0 / C DATA LOG10(1), LOG10(2) / 1067065498, -2063872008 / C C DATA SMALL(1), SMALL(2) / O00040000000, O00000000000 / C DATA LARGE(1), LARGE(2) / O17777777777, O37777777777 / C DATA RIGHT(1), RIGHT(2) / O04440000000, O00000000000 / C DATA DIVER(1), DIVER(2) / O04500000000, O00000000000 / C DATA LOG10(1), LOG10(2) / O07746420232, O20476747770 / C C MACHINE CONSTANTS FOR PDP-11 FORTRAN SUPPORTING C 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). C C DATA SMALL(1), SMALL(2) / 128, 0 / C DATA SMALL(3), SMALL(4) / 0, 0 / C DATA LARGE(1), LARGE(2) / 32767, -1 / C DATA LARGE(3), LARGE(4) / -1, -1 / C DATA RIGHT(1), RIGHT(2) / 9344, 0 / C DATA RIGHT(3), RIGHT(4) / 0, 0 / C DATA DIVER(1), DIVER(2) / 9472, 0 / C DATA DIVER(3), DIVER(4) / 0, 0 / C DATA LOG10(1), LOG10(2) / 16282, 8346 / C DATA LOG10(3), LOG10(4) / -31493, -12296 / C C DATA SMALL(1), SMALL(2) / O000200, O000000 / C DATA SMALL(3), SMALL(4) / O000000, O000000 / C DATA LARGE(1), LARGE(2) / O077777, O177777 / C DATA LARGE(3), LARGE(4) / O177777, O177777 / C DATA RIGHT(1), RIGHT(2) / O022200, O000000 / C DATA RIGHT(3), RIGHT(4) / O000000, O000000 / C DATA DIVER(1), DIVER(2) / O022400, O000000 / C DATA DIVER(3), DIVER(4) / O000000, O000000 / C DATA LOG10(1), LOG10(2) / O037632, O020232 / C DATA LOG10(3), LOG10(4) / O102373, O147770 / C C MACHINE CONSTANTS FOR THE SUN C C DATA SMALL(1), SMALL(2) / Z'00100000', Z'00000000' / C DATA LARGE(1), LARGE(2) / Z'7FEFFFFF', Z'FFFFFFFF' / C DATA RIGHT(1), RIGHT(2) / Z'3CA00000', Z'00000000' / C DATA DIVER(1), DIVER(2) / Z'3CB00000', Z'00000000' / C DATA LOG10(1), LOG10(2) / Z'3FD34413', Z'509F79FF' / C C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES FTN COMPILER C C DATA SMALL(1), SMALL(2) / O000040000000, O000000000000 / C DATA LARGE(1), LARGE(2) / O377777777777, O777777777777 / C DATA RIGHT(1), RIGHT(2) / O170540000000, O000000000000 / C DATA DIVER(1), DIVER(2) / O170640000000, O000000000000 / C DATA LOG10(1), LOG10(2) / O177746420232, O411757177572 / C C MACHINE CONSTANTS FOR VAX 11/780 C (EXPRESSED IN INTEGER AND HEXADECIMAL) C THE HEX FORMAT BELOW MAY NOT BE SUITABLE FOR UNIX SYSYEMS C THE INTEGER FORMAT SHOULD BE OK FOR UNIX SYSTEMS C C DATA SMALL(1), SMALL(2) / 128, 0 / C DATA LARGE(1), LARGE(2) / -32769, -1 / C DATA RIGHT(1), RIGHT(2) / 9344, 0 / C DATA DIVER(1), DIVER(2) / 9472, 0 / C DATA LOG10(1), LOG10(2) / 546979738, -805796613 / C C DATA SMALL(1), SMALL(2) / Z00000080, Z00000000 / C DATA LARGE(1), LARGE(2) / ZFFFF7FFF, ZFFFFFFFF / C DATA RIGHT(1), RIGHT(2) / Z00002480, Z00000000 / C DATA DIVER(1), DIVER(2) / Z00002500, Z00000000 / C DATA LOG10(1), LOG10(2) / Z209A3F9A, ZCFF884FB / C C MACHINE CONSTANTS FOR VAX 11/780 (G-FLOATING) C (EXPRESSED IN INTEGER AND HEXADECIMAL) C THE HEX FORMAT BELOW MAY NOT BE SUITABLE FOR UNIX SYSYEMS C THE INTEGER FORMAT SHOULD BE OK FOR UNIX SYSTEMS C C DATA SMALL(1), SMALL(2) / 16, 0 / C DATA LARGE(1), LARGE(2) / -32769, -1 / C DATA RIGHT(1), RIGHT(2) / 15552, 0 / C DATA DIVER(1), DIVER(2) / 15568, 0 / C DATA LOG10(1), LOG10(2) / 1142112243, 2046775455 / C C DATA SMALL(1), SMALL(2) / Z00000010, Z00000000 / C DATA LARGE(1), LARGE(2) / ZFFFF7FFF, ZFFFFFFFF / C DATA RIGHT(1), RIGHT(2) / Z00003CC0, Z00000000 / C DATA DIVER(1), DIVER(2) / Z00003CD0, Z00000000 / C DATA LOG10(1), LOG10(2) / Z44133FF3, Z79FF509F / C C C***FIRST EXECUTABLE STATEMENT D1MACH C C THE CALL TO XERROR HAS BEEN COMMENTED TO GET A STAND ALONE ROUTINE C IT CAN BE ADAPTED TO FIT THE LOCAL ERROR HANDLING PROCEDURES C NOTE ADDED BY F. ROMANI 7/11/89 C C IF (I .LT. 1 .OR. I .GT. 5) C 1 CALL XERROR ('D1MACH -- I OUT OF BOUNDS', 25, 1, 2) C C D1MACH = DMACH(I) C RETURN C END C C espresso-5.0.2/QHA/tetrahedra/0000755000700200004540000000000012053440276015117 5ustar marsamoscmespresso-5.0.2/QHA/tetrahedra/BCO_b_gt_a.dat0000755000700200004540000000110312053145633017504 0ustar marsamoscm 1.000000 -0.491248 0.000000 1.000000 0.491248 0.000000 0.000000 0.000000 0.570300 Base centered Orthorhombic, b > a 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.5000000000 -0.5000000000 0.5000000000 0.5000000000 -0.5000000000 0.5000000000 0.0000000000 -0.3103448276 0.6896551724 0.0000000000 0.3103448276 0.3103448276 0.0000000000 0.3103448276 0.3103448276 0.5000000000 0.0000000000 0.0000000000 0.5000000000 espresso-5.0.2/QHA/tetrahedra/ttrinp_hcp0000644000700200004540000000031112053145633017206 0ustar marsamoscm 6 3 12 0.00000 0.00000 0.00000 0.00000 0.57735 0.00000 -0.33333 0.57735 0.00000 0.00000 0.00000 X 0.00000 0.57735 X -0.33333 0.57735 X 1 2 3 6 1 4 5 6 1 5 6 2 espresso-5.0.2/QHA/tetrahedra/ttrinp_ortho_simple0000644000700200004540000000060312053145633021144 0ustar marsamoscm 8 6 8 0.000000 0.000000 0.000000 ! \Gamma 0.500000 0.000000 0.000000 ! X 0.000000 YY 0.000000 ! Y 0.500000 YY 0.000000 ! S 0.000000 0.000000 ZZ ! Z 0.500000 0.000000 ZZ ! U 0.000000 YY ZZ ! T 0.500000 YY ZZ ! R 1 7 3 4 1 7 4 8 1 7 8 5 1 2 3 5 7 3 5 6 3 5 6 2 espresso-5.0.2/QHA/tetrahedra/ttrinp_bct0000644000700200004540000000111012053145633017202 0ustar marsamoscm 7 4 12 0.00000 0.00000 0.00000 ! Gamma 1.00000 0.00000 0.00000 ! Z 0.50000 0.50000 0.00000 ! X 1.00000 0.00000 0.19481 ! V 0.50000 0.50000 0.60680 ! P 0.50000 0.00000 0.60680 ! N 0.00000 0.00000 1.01879 ! Z' 1 2 3 5 1 2 4 5 1 4 5 6 1 5 6 7 How to get vertexes V P N, Z' for bct lattices with cmatdyn.init < Temperature <T_Debye.in < run_Phonon_DOS.sh chmod +x run_Phonon_DOS.sh ./run_Phonon_DOS.sh espresso-5.0.2/QHA/Examples/environment_variables0000755000700200004540000000053312053145633021074 0ustar marsamoscm # BIN_DIR = path of compiled Quantum ESPRESSO executable matdyn.x # Usually this is $QEDIR/bin, where $QEDIR is the root # of the Quantum ESPRESSO source tree # QHA_DIR = root of the QHA package # The following is the typical setting if QHA is unpacked into $QEDIR QHA_DIR=`cd ../.. ; pwd` BIN_DIR=`cd ../../../bin ; pwd ` espresso-5.0.2/QHA/Examples/Al/0000755000700200004540000000000012053440301015073 5ustar marsamoscmespresso-5.0.2/QHA/Examples/Al/Edit_Me0000755000700200004540000000261212053145633016342 0ustar marsamoscm############################################################################## # Optional parameters, any information specific for the system studied # SysInfo='Al, Simple cubic' # Mandatory parameters # Specify SystemName and Force Constants matrix Sysname='Al4' FC_file='Al4.fc' # # Specify lattice type (used to create ttrinp file). It should be the same as in scf.in file # Specify atoms in the unit cell as they specified in scf.in file # Specify atomic masses for these atoms in the same order as atoms in scf.in # Specify the frequency step (delta_e) as well, but 0.75 is a good choice ibrav=1 atoms="Al1 Al2 Al3 Al4 " mass="26.98 26.98 26.98 26.98 " delta_e=0.75 # Edit and add ONLY amass parameters # Please do not change flfrq='frequency' line # leave asr (acoustic sum rule) and flfrc lines cat >matdyn.init < Temperature <T_Debye.in < run_Phonon_DOS.sh chmod +x run_Phonon_DOS.sh ./run_Phonon_DOS.sh espresso-5.0.2/QHA/Examples/Al/Al4.fc0000644000700200004540000112735512053145633016055 0ustar marsamoscm 1 4 1 7.6439000 .0000000 .0000000 .0000000 .0000000 .0000000 1 'Al ' 24588.6885119929721 1 1 .0000000 .0000000 .0000000 2 1 .5000000 .5000000 .0000000 3 1 .5000000 .0000000 .5000000 4 1 .0000000 .5000000 .5000000 F 4 4 4 1 1 1 1 1 1 1 9.59658548455E-02 2 1 1 -2.55783907283E-03 3 1 1 -4.90926189209E-04 4 1 1 -2.55783907283E-03 1 2 1 1.15428838094E-04 2 2 1 -3.31576536097E-04 3 2 1 5.91178610438E-05 4 2 1 -3.31576536097E-04 1 3 1 1.35860716906E-05 2 3 1 -1.01265322081E-04 3 3 1 -1.82625138234E-04 4 3 1 -1.01265322081E-04 1 4 1 1.15428838094E-04 2 4 1 -3.31576536097E-04 3 4 1 5.91178610438E-05 4 4 1 -3.31576536097E-04 1 1 2 1.15428838094E-04 2 1 2 -3.31576536097E-04 3 1 2 5.91178610438E-05 4 1 2 -3.31576536097E-04 1 2 2 -1.16431480469E-05 2 2 2 2.26852512431E-04 3 2 2 -5.49559379719E-05 4 2 2 2.26852512431E-04 1 3 2 -5.17241194063E-05 2 3 2 -2.87411138469E-05 3 3 2 1.02897783894E-04 4 3 2 -2.87411138469E-05 1 4 2 -1.16431480469E-05 2 4 2 2.26852512431E-04 3 4 2 -5.49559379719E-05 4 4 2 2.26852512431E-04 1 1 3 1.35860716906E-05 2 1 3 -1.01265322081E-04 3 1 3 -1.82625138234E-04 4 1 3 -1.01265322081E-04 1 2 3 -5.17241194063E-05 2 2 3 -2.87411138469E-05 3 2 3 1.02897783894E-04 4 2 3 -2.87411138469E-05 1 3 3 -1.68368803594E-05 2 3 3 8.97821451437E-05 3 3 3 3.19912479916E-04 4 3 3 8.97821451437E-05 1 4 3 -5.17241194063E-05 2 4 3 -2.87411138469E-05 3 4 3 1.02897783894E-04 4 4 3 -2.87411138469E-05 1 1 4 1.15428838094E-04 2 1 4 -3.31576536097E-04 3 1 4 5.91178610438E-05 4 1 4 -3.31576536097E-04 1 2 4 -1.16431480469E-05 2 2 4 2.26852512431E-04 3 2 4 -5.49559379719E-05 4 2 4 2.26852512431E-04 1 3 4 -5.17241194063E-05 2 3 4 -2.87411138469E-05 3 3 4 1.02897783894E-04 4 3 4 -2.87411138469E-05 1 4 4 -1.16431480469E-05 2 4 4 2.26852512431E-04 3 4 4 -5.49559379719E-05 4 4 4 2.26852512431E-04 1 1 1 2 1 1 1 -1.29193945561E-02 2 1 1 -1.29193945561E-02 3 1 1 -2.73403758895E-04 4 1 1 -2.73403758895E-04 1 2 1 -1.29193945561E-02 2 2 1 -1.29193945561E-02 3 2 1 -2.73403758895E-04 4 2 1 -2.73403758895E-04 1 3 1 4.22421813984E-05 2 3 1 4.22421813984E-05 3 3 1 6.55673835734E-05 4 3 1 6.55673835734E-05 1 4 1 4.22421813984E-05 2 4 1 4.22421813984E-05 3 4 1 6.55673835734E-05 4 4 1 6.55673835734E-05 1 1 2 1.54006407927E-04 2 1 2 1.54006407927E-04 3 1 2 -1.30720960836E-04 4 1 2 -1.30720960836E-04 1 2 2 1.54006407927E-04 2 2 2 1.54006407927E-04 3 2 2 -1.30720960836E-04 4 2 2 -1.30720960836E-04 1 3 2 9.24810258281E-06 2 3 2 9.24810258281E-06 3 3 2 -1.04624889167E-04 4 3 2 -1.04624889167E-04 1 4 2 9.24810258281E-06 2 4 2 9.24810258281E-06 3 4 2 -1.04624889167E-04 4 4 2 -1.04624889167E-04 1 1 3 6.02114964297E-05 2 1 3 6.02114964297E-05 3 1 3 3.55110307172E-05 4 1 3 3.55110307172E-05 1 2 3 6.02114964297E-05 2 2 3 6.02114964297E-05 3 2 3 3.55110307172E-05 4 2 3 3.55110307172E-05 1 3 3 -5.51194348906E-06 2 3 3 -5.51194348906E-06 3 3 3 8.56924031359E-05 4 3 3 8.56924031359E-05 1 4 3 -5.51194348906E-06 2 4 3 -5.51194348906E-06 3 4 3 8.56924031359E-05 4 4 3 8.56924031359E-05 1 1 4 1.54006407927E-04 2 1 4 1.54006407927E-04 3 1 4 -1.30720960836E-04 4 1 4 -1.30720960836E-04 1 2 4 1.54006407927E-04 2 2 4 1.54006407927E-04 3 2 4 -1.30720960836E-04 4 2 4 -1.30720960836E-04 1 3 4 9.24810258281E-06 2 3 4 9.24810258281E-06 3 3 4 -1.04624889167E-04 4 3 4 -1.04624889167E-04 1 4 4 9.24810258281E-06 2 4 4 9.24810258281E-06 3 4 4 -1.04624889167E-04 4 4 4 -1.04624889167E-04 1 1 1 3 1 1 1 -1.29193945561E-02 2 1 1 -1.29193945561E-02 3 1 1 -2.73403758895E-04 4 1 1 -2.73403758895E-04 1 2 1 1.54006407927E-04 2 2 1 1.54006407927E-04 3 2 1 -1.30720960836E-04 4 2 1 -1.30720960836E-04 1 3 1 6.02114964297E-05 2 3 1 6.02114964297E-05 3 3 1 3.55110307172E-05 4 3 1 3.55110307172E-05 1 4 1 1.54006407927E-04 2 4 1 1.54006407927E-04 3 4 1 -1.30720960836E-04 4 4 1 -1.30720960836E-04 1 1 2 -1.29193945561E-02 2 1 2 -1.29193945561E-02 3 1 2 -2.73403758895E-04 4 1 2 -2.73403758895E-04 1 2 2 1.54006407927E-04 2 2 2 1.54006407927E-04 3 2 2 -1.30720960836E-04 4 2 2 -1.30720960836E-04 1 3 2 6.02114964297E-05 2 3 2 6.02114964297E-05 3 3 2 3.55110307172E-05 4 3 2 3.55110307172E-05 1 4 2 1.54006407927E-04 2 4 2 1.54006407927E-04 3 4 2 -1.30720960836E-04 4 4 2 -1.30720960836E-04 1 1 3 4.22421813984E-05 2 1 3 4.22421813984E-05 3 1 3 6.55673835734E-05 4 1 3 6.55673835734E-05 1 2 3 9.24810258281E-06 2 2 3 9.24810258281E-06 3 2 3 -1.04624889167E-04 4 2 3 -1.04624889167E-04 1 3 3 -5.51194348906E-06 2 3 3 -5.51194348906E-06 3 3 3 8.56924031359E-05 4 3 3 8.56924031359E-05 1 4 3 9.24810258281E-06 2 4 3 9.24810258281E-06 3 4 3 -1.04624889167E-04 4 4 3 -1.04624889167E-04 1 1 4 4.22421813984E-05 2 1 4 4.22421813984E-05 3 1 4 6.55673835734E-05 4 1 4 6.55673835734E-05 1 2 4 9.24810258281E-06 2 2 4 9.24810258281E-06 3 2 4 -1.04624889167E-04 4 2 4 -1.04624889167E-04 1 3 4 -5.51194348906E-06 2 3 4 -5.51194348906E-06 3 3 4 8.56924031359E-05 4 3 4 8.56924031359E-05 1 4 4 9.24810258281E-06 2 4 4 9.24810258281E-06 3 4 4 -1.04624889167E-04 4 4 4 -1.04624889167E-04 1 1 1 4 1 1 1 2.52330248607E-03 2 1 1 5.39210714489E-04 3 1 1 2.88852827658E-04 4 1 1 5.39210714489E-04 1 2 1 2.52330248607E-03 2 2 1 5.39210714489E-04 3 2 1 2.88852827658E-04 4 2 1 5.39210714489E-04 1 3 1 2.01534496258E-05 2 3 1 -4.52565123902E-05 3 3 1 9.69388440308E-05 4 3 1 -4.52565123902E-05 1 4 1 2.01534496258E-05 2 4 1 -4.52565123902E-05 3 4 1 9.69388440308E-05 4 4 1 -4.52565123902E-05 1 1 2 2.52330248607E-03 2 1 2 5.39210714489E-04 3 1 2 2.88852827658E-04 4 1 2 5.39210714489E-04 1 2 2 2.52330248607E-03 2 2 2 5.39210714489E-04 3 2 2 2.88852827658E-04 4 2 2 5.39210714489E-04 1 3 2 2.01534496258E-05 2 3 2 -4.52565123902E-05 3 3 2 9.69388440308E-05 4 3 2 -4.52565123902E-05 1 4 2 2.01534496258E-05 2 4 2 -4.52565123902E-05 3 4 2 9.69388440308E-05 4 4 2 -4.52565123902E-05 1 1 3 2.01534496258E-05 2 1 3 -4.52565123902E-05 3 1 3 9.69388440308E-05 4 1 3 -4.52565123902E-05 1 2 3 2.01534496258E-05 2 2 3 -4.52565123902E-05 3 2 3 9.69388440308E-05 4 2 3 -4.52565123902E-05 1 3 3 -2.33146257211E-05 2 3 3 -9.43141788670E-05 3 3 3 -4.15249231811E-05 4 3 3 -9.43141788670E-05 1 4 3 -2.33146257211E-05 2 4 3 -9.43141788670E-05 3 4 3 -4.15249231811E-05 4 4 3 -9.43141788670E-05 1 1 4 2.01534496258E-05 2 1 4 -4.52565123902E-05 3 1 4 9.69388440308E-05 4 1 4 -4.52565123902E-05 1 2 4 2.01534496258E-05 2 2 4 -4.52565123902E-05 3 2 4 9.69388440308E-05 4 2 4 -4.52565123902E-05 1 3 4 -2.33146257211E-05 2 3 4 -9.43141788670E-05 3 3 4 -4.15249231811E-05 4 3 4 -9.43141788670E-05 1 4 4 -2.33146257211E-05 2 4 4 -9.43141788670E-05 3 4 4 -4.15249231811E-05 4 4 4 -9.43141788670E-05 1 1 2 1 1 1 1 -1.29193945561E-02 2 1 1 -2.73403758895E-04 3 1 1 -2.73403758895E-04 4 1 1 -1.29193945561E-02 1 2 1 4.22421813984E-05 2 2 1 6.55673835734E-05 3 2 1 6.55673835734E-05 4 2 1 4.22421813984E-05 1 3 1 4.22421813984E-05 2 3 1 6.55673835734E-05 3 3 1 6.55673835734E-05 4 3 1 4.22421813984E-05 1 4 1 -1.29193945561E-02 2 4 1 -2.73403758895E-04 3 4 1 -2.73403758895E-04 4 4 1 -1.29193945561E-02 1 1 2 1.54006407927E-04 2 1 2 -1.30720960836E-04 3 1 2 -1.30720960836E-04 4 1 2 1.54006407927E-04 1 2 2 9.24810258281E-06 2 2 2 -1.04624889167E-04 3 2 2 -1.04624889167E-04 4 2 2 9.24810258281E-06 1 3 2 9.24810258281E-06 2 3 2 -1.04624889167E-04 3 3 2 -1.04624889167E-04 4 3 2 9.24810258281E-06 1 4 2 1.54006407927E-04 2 4 2 -1.30720960836E-04 3 4 2 -1.30720960836E-04 4 4 2 1.54006407927E-04 1 1 3 6.02114964297E-05 2 1 3 3.55110307172E-05 3 1 3 3.55110307172E-05 4 1 3 6.02114964297E-05 1 2 3 -5.51194348906E-06 2 2 3 8.56924031359E-05 3 2 3 8.56924031359E-05 4 2 3 -5.51194348906E-06 1 3 3 -5.51194348906E-06 2 3 3 8.56924031359E-05 3 3 3 8.56924031359E-05 4 3 3 -5.51194348906E-06 1 4 3 6.02114964297E-05 2 4 3 3.55110307172E-05 3 4 3 3.55110307172E-05 4 4 3 6.02114964297E-05 1 1 4 1.54006407927E-04 2 1 4 -1.30720960836E-04 3 1 4 -1.30720960836E-04 4 1 4 1.54006407927E-04 1 2 4 9.24810258281E-06 2 2 4 -1.04624889167E-04 3 2 4 -1.04624889167E-04 4 2 4 9.24810258281E-06 1 3 4 9.24810258281E-06 2 3 4 -1.04624889167E-04 3 3 4 -1.04624889167E-04 4 3 4 9.24810258281E-06 1 4 4 1.54006407927E-04 2 4 4 -1.30720960836E-04 3 4 4 -1.30720960836E-04 4 4 4 1.54006407927E-04 1 1 2 2 1 1 1 9.59699248245E-02 2 1 1 -2.56237924763E-03 3 1 1 -4.98729616455E-04 4 1 1 -2.56237924763E-03 1 2 1 1.20453507770E-04 2 2 1 -3.31387745305E-04 3 2 1 5.41999011141E-05 4 2 1 -3.31387745305E-04 1 3 1 1.78566253766E-05 2 3 1 -9.90316625172E-05 3 3 1 -1.79969313417E-04 4 3 1 -9.90316625172E-05 1 4 1 1.20453507770E-04 2 4 1 -3.31387745305E-04 3 4 1 5.41999011141E-05 4 4 1 -3.31387745305E-04 1 1 2 1.19792675702E-04 2 1 2 -3.30731450180E-04 3 1 2 5.59934941578E-05 4 1 2 -3.30731450180E-04 1 2 2 -6.57584784219E-06 2 2 2 2.26085706295E-04 3 2 2 -5.79855820484E-05 4 2 2 2.26085706295E-04 1 3 2 -4.86383858484E-05 2 3 2 -2.98670322047E-05 3 3 2 9.72656154328E-05 4 3 2 -2.98670322047E-05 1 4 2 -6.57584784219E-06 2 4 2 2.26085706295E-04 3 4 2 -5.79855820484E-05 4 4 2 2.26085706295E-04 1 1 3 2.09949874703E-05 2 1 3 -9.70578409234E-05 3 1 3 -1.78893299773E-04 4 1 3 -9.70578409234E-05 1 2 3 -4.86395962984E-05 2 2 3 -2.86123205234E-05 3 2 3 9.97126749703E-05 4 2 3 -2.86123205234E-05 1 3 3 -1.29822361422E-05 2 3 3 8.35554808641E-05 3 3 3 3.07990501139E-04 4 3 3 8.35554808641E-05 1 4 3 -4.86395962984E-05 2 4 3 -2.86123205234E-05 3 4 3 9.97126749703E-05 4 4 3 -2.86123205234E-05 1 1 4 1.19792675702E-04 2 1 4 -3.30731450180E-04 3 1 4 5.59934941578E-05 4 1 4 -3.30731450180E-04 1 2 4 -6.57584784219E-06 2 2 4 2.26085706295E-04 3 2 4 -5.79855820484E-05 4 2 4 2.26085706295E-04 1 3 4 -4.86383858484E-05 2 3 4 -2.98670322047E-05 3 3 4 9.72656154328E-05 4 3 4 -2.98670322047E-05 1 4 4 -6.57584784219E-06 2 4 4 2.26085706295E-04 3 4 4 -5.79855820484E-05 4 4 4 2.26085706295E-04 1 1 2 3 1 1 1 2.52500273020E-03 2 1 1 5.37005283587E-04 3 1 1 2.86208653875E-04 4 1 1 5.37005283587E-04 1 2 1 2.12188517011E-05 2 2 1 -4.91561099152E-05 3 2 1 9.69435420780E-05 4 2 1 -4.91561099152E-05 1 3 1 2.12188517011E-05 2 3 1 -4.91561099152E-05 3 3 1 9.69435420780E-05 4 3 1 -4.91561099152E-05 1 4 1 2.52500273020E-03 2 4 1 5.37005283587E-04 3 4 1 2.86208653875E-04 4 4 1 5.37005283587E-04 1 1 2 2.52500273020E-03 2 1 2 5.37005283587E-04 3 1 2 2.86208653875E-04 4 1 2 5.37005283587E-04 1 2 2 2.12188517011E-05 2 2 2 -4.91561099152E-05 3 2 2 9.69435420780E-05 4 2 2 -4.91561099152E-05 1 3 2 2.12188517011E-05 2 3 2 -4.91561099152E-05 3 3 2 9.69435420780E-05 4 3 2 -4.91561099152E-05 1 4 2 2.52500273020E-03 2 4 2 5.37005283587E-04 3 4 2 2.86208653875E-04 4 4 2 5.37005283587E-04 1 1 3 2.12188517011E-05 2 1 3 -4.91561099152E-05 3 1 3 9.69435420780E-05 4 1 3 -4.91561099152E-05 1 2 3 -1.62819061239E-05 2 2 3 -9.03904005427E-05 3 2 3 -3.73438484595E-05 4 2 3 -9.03904005427E-05 1 3 3 -1.62819061239E-05 2 3 3 -9.03904005427E-05 3 3 3 -3.73438484595E-05 4 3 3 -9.03904005427E-05 1 4 3 2.12188517011E-05 2 4 3 -4.91561099152E-05 3 4 3 9.69435420780E-05 4 4 3 -4.91561099152E-05 1 1 4 2.12188517011E-05 2 1 4 -4.91561099152E-05 3 1 4 9.69435420780E-05 4 1 4 -4.91561099152E-05 1 2 4 -1.62819061239E-05 2 2 4 -9.03904005427E-05 3 2 4 -3.73438484595E-05 4 2 4 -9.03904005427E-05 1 3 4 -1.62819061239E-05 2 3 4 -9.03904005427E-05 3 3 4 -3.73438484595E-05 4 3 4 -9.03904005427E-05 1 4 4 2.12188517011E-05 2 4 4 -4.91561099152E-05 3 4 4 9.69435420780E-05 4 4 4 -4.91561099152E-05 1 1 2 4 1 1 1 -1.29197802688E-02 2 1 1 -2.73780712150E-04 3 1 1 -2.73780712150E-04 4 1 1 -1.29197802688E-02 1 2 1 1.51962127150E-04 2 2 1 -1.32007643825E-04 3 2 1 -1.32007643825E-04 4 2 1 1.51962127150E-04 1 3 1 5.76169626688E-05 2 3 1 3.32426443687E-05 3 3 1 3.32426443687E-05 4 3 1 5.76169626688E-05 1 4 1 1.51962127150E-04 2 4 1 -1.32007643825E-04 3 4 1 -1.32007643825E-04 4 4 1 1.51962127150E-04 1 1 2 -1.29197802688E-02 2 1 2 -2.73780712150E-04 3 1 2 -2.73780712150E-04 4 1 2 -1.29197802688E-02 1 2 2 1.51962127150E-04 2 2 2 -1.32007643825E-04 3 2 2 -1.32007643825E-04 4 2 2 1.51962127150E-04 1 3 2 5.76169626688E-05 2 3 2 3.32426443687E-05 3 3 2 3.32426443687E-05 4 3 2 5.76169626688E-05 1 4 2 1.51962127150E-04 2 4 2 -1.32007643825E-04 3 4 2 -1.32007643825E-04 4 4 2 1.51962127150E-04 1 1 3 4.56157825188E-05 2 1 3 6.70710680187E-05 3 1 3 6.70710680187E-05 4 1 3 4.56157825188E-05 1 2 3 1.08979076187E-05 2 2 3 -1.03756197356E-04 3 2 3 -1.03756197356E-04 4 2 3 1.08979076187E-05 1 3 3 -5.87861848750E-06 2 3 3 8.68125646625E-05 3 3 3 8.68125646625E-05 4 3 3 -5.87861848750E-06 1 4 3 1.08979076187E-05 2 4 3 -1.03756197356E-04 3 4 3 -1.03756197356E-04 4 4 3 1.08979076187E-05 1 1 4 4.56157825188E-05 2 1 4 6.70710680188E-05 3 1 4 6.70710680187E-05 4 1 4 4.56157825187E-05 1 2 4 1.08979076187E-05 2 2 4 -1.03756197356E-04 3 2 4 -1.03756197356E-04 4 2 4 1.08979076187E-05 1 3 4 -5.87861848750E-06 2 3 4 8.68125646625E-05 3 3 4 8.68125646625E-05 4 3 4 -5.87861848750E-06 1 4 4 1.08979076187E-05 2 4 4 -1.03756197356E-04 3 4 4 -1.03756197356E-04 4 4 4 1.08979076187E-05 1 1 3 1 1 1 1 -1.29193945561E-02 2 1 1 -2.73403758895E-04 3 1 1 -2.73403758895E-04 4 1 1 -1.29193945561E-02 1 2 1 1.54006407927E-04 2 2 1 -1.30720960836E-04 3 2 1 -1.30720960836E-04 4 2 1 1.54006407927E-04 1 3 1 6.02114964297E-05 2 3 1 3.55110307172E-05 3 3 1 3.55110307172E-05 4 3 1 6.02114964297E-05 1 4 1 1.54006407927E-04 2 4 1 -1.30720960836E-04 3 4 1 -1.30720960836E-04 4 4 1 1.54006407927E-04 1 1 2 4.22421813984E-05 2 1 2 6.55673835734E-05 3 1 2 6.55673835734E-05 4 1 2 4.22421813984E-05 1 2 2 9.24810258281E-06 2 2 2 -1.04624889167E-04 3 2 2 -1.04624889167E-04 4 2 2 9.24810258281E-06 1 3 2 -5.51194348906E-06 2 3 2 8.56924031359E-05 3 3 2 8.56924031359E-05 4 3 2 -5.51194348906E-06 1 4 2 9.24810258281E-06 2 4 2 -1.04624889167E-04 3 4 2 -1.04624889167E-04 4 4 2 9.24810258281E-06 1 1 3 4.22421813984E-05 2 1 3 6.55673835734E-05 3 1 3 6.55673835734E-05 4 1 3 4.22421813984E-05 1 2 3 9.24810258281E-06 2 2 3 -1.04624889167E-04 3 2 3 -1.04624889167E-04 4 2 3 9.24810258281E-06 1 3 3 -5.51194348906E-06 2 3 3 8.56924031359E-05 3 3 3 8.56924031359E-05 4 3 3 -5.51194348906E-06 1 4 3 9.24810258281E-06 2 4 3 -1.04624889167E-04 3 4 3 -1.04624889167E-04 4 4 3 9.24810258281E-06 1 1 4 -1.29193945561E-02 2 1 4 -2.73403758895E-04 3 1 4 -2.73403758895E-04 4 1 4 -1.29193945561E-02 1 2 4 1.54006407927E-04 2 2 4 -1.30720960836E-04 3 2 4 -1.30720960836E-04 4 2 4 1.54006407927E-04 1 3 4 6.02114964297E-05 2 3 4 3.55110307172E-05 3 3 4 3.55110307172E-05 4 3 4 6.02114964297E-05 1 4 4 1.54006407927E-04 2 4 4 -1.30720960836E-04 3 4 4 -1.30720960836E-04 4 4 4 1.54006407927E-04 1 1 3 2 1 1 1 2.52500273020E-03 2 1 1 5.37005283587E-04 3 1 1 2.86208653875E-04 4 1 1 5.37005283587E-04 1 2 1 2.52500273020E-03 2 2 1 5.37005283587E-04 3 2 1 2.86208653875E-04 4 2 1 5.37005283587E-04 1 3 1 2.12188517011E-05 2 3 1 -4.91561099152E-05 3 3 1 9.69435420780E-05 4 3 1 -4.91561099152E-05 1 4 1 2.12188517011E-05 2 4 1 -4.91561099152E-05 3 4 1 9.69435420780E-05 4 4 1 -4.91561099152E-05 1 1 2 2.12188517011E-05 2 1 2 -4.91561099152E-05 3 1 2 9.69435420780E-05 4 1 2 -4.91561099152E-05 1 2 2 2.12188517011E-05 2 2 2 -4.91561099152E-05 3 2 2 9.69435420780E-05 4 2 2 -4.91561099152E-05 1 3 2 -1.62819061239E-05 2 3 2 -9.03904005427E-05 3 3 2 -3.73438484595E-05 4 3 2 -9.03904005427E-05 1 4 2 -1.62819061239E-05 2 4 2 -9.03904005427E-05 3 4 2 -3.73438484595E-05 4 4 2 -9.03904005427E-05 1 1 3 2.12188517011E-05 2 1 3 -4.91561099152E-05 3 1 3 9.69435420780E-05 4 1 3 -4.91561099152E-05 1 2 3 2.12188517011E-05 2 2 3 -4.91561099152E-05 3 2 3 9.69435420780E-05 4 2 3 -4.91561099152E-05 1 3 3 -1.62819061239E-05 2 3 3 -9.03904005427E-05 3 3 3 -3.73438484595E-05 4 3 3 -9.03904005427E-05 1 4 3 -1.62819061239E-05 2 4 3 -9.03904005427E-05 3 4 3 -3.73438484595E-05 4 4 3 -9.03904005427E-05 1 1 4 2.52500273020E-03 2 1 4 5.37005283587E-04 3 1 4 2.86208653875E-04 4 1 4 5.37005283587E-04 1 2 4 2.52500273020E-03 2 2 4 5.37005283587E-04 3 2 4 2.86208653875E-04 4 2 4 5.37005283587E-04 1 3 4 2.12188517011E-05 2 3 4 -4.91561099152E-05 3 3 4 9.69435420780E-05 4 3 4 -4.91561099152E-05 1 4 4 2.12188517011E-05 2 4 4 -4.91561099152E-05 3 4 4 9.69435420780E-05 4 4 4 -4.91561099152E-05 1 1 3 3 1 1 1 9.59699248245E-02 2 1 1 -2.56237924763E-03 3 1 1 -4.98729616455E-04 4 1 1 -2.56237924763E-03 1 2 1 1.19792675702E-04 2 2 1 -3.30731450180E-04 3 2 1 5.59934941578E-05 4 2 1 -3.30731450180E-04 1 3 1 2.09949874703E-05 2 3 1 -9.70578409234E-05 3 3 1 -1.78893299773E-04 4 3 1 -9.70578409234E-05 1 4 1 1.19792675702E-04 2 4 1 -3.30731450180E-04 3 4 1 5.59934941578E-05 4 4 1 -3.30731450180E-04 1 1 2 1.20453507770E-04 2 1 2 -3.31387745305E-04 3 1 2 5.41999011141E-05 4 1 2 -3.31387745305E-04 1 2 2 -6.57584784219E-06 2 2 2 2.26085706295E-04 3 2 2 -5.79855820484E-05 4 2 2 2.26085706295E-04 1 3 2 -4.86395962984E-05 2 3 2 -2.86123205234E-05 3 3 2 9.97126749703E-05 4 3 2 -2.86123205234E-05 1 4 2 -6.57584784219E-06 2 4 2 2.26085706295E-04 3 4 2 -5.79855820484E-05 4 4 2 2.26085706295E-04 1 1 3 1.78566253766E-05 2 1 3 -9.90316625172E-05 3 1 3 -1.79969313417E-04 4 1 3 -9.90316625172E-05 1 2 3 -4.86383858484E-05 2 2 3 -2.98670322047E-05 3 2 3 9.72656154328E-05 4 2 3 -2.98670322047E-05 1 3 3 -1.29822361422E-05 2 3 3 8.35554808641E-05 3 3 3 3.07990501139E-04 4 3 3 8.35554808641E-05 1 4 3 -4.86383858484E-05 2 4 3 -2.98670322047E-05 3 4 3 9.72656154328E-05 4 4 3 -2.98670322047E-05 1 1 4 1.20453507770E-04 2 1 4 -3.31387745305E-04 3 1 4 5.41999011141E-05 4 1 4 -3.31387745305E-04 1 2 4 -6.57584784219E-06 2 2 4 2.26085706295E-04 3 2 4 -5.79855820484E-05 4 2 4 2.26085706295E-04 1 3 4 -4.86395962984E-05 2 3 4 -2.86123205234E-05 3 3 4 9.97126749703E-05 4 3 4 -2.86123205234E-05 1 4 4 -6.57584784219E-06 2 4 4 2.26085706295E-04 3 4 4 -5.79855820484E-05 4 4 4 2.26085706295E-04 1 1 3 4 1 1 1 -1.29197802688E-02 2 1 1 -2.73780712150E-04 3 1 1 -2.73780712150E-04 4 1 1 -1.29197802688E-02 1 2 1 -1.29197802688E-02 2 2 1 -2.73780712150E-04 3 2 1 -2.73780712150E-04 4 2 1 -1.29197802688E-02 1 3 1 4.56157825188E-05 2 3 1 6.70710680187E-05 3 3 1 6.70710680187E-05 4 3 1 4.56157825187E-05 1 4 1 4.56157825187E-05 2 4 1 6.70710680188E-05 3 4 1 6.70710680187E-05 4 4 1 4.56157825187E-05 1 1 2 1.51962127150E-04 2 1 2 -1.32007643825E-04 3 1 2 -1.32007643825E-04 4 1 2 1.51962127150E-04 1 2 2 1.51962127150E-04 2 2 2 -1.32007643825E-04 3 2 2 -1.32007643825E-04 4 2 2 1.51962127150E-04 1 3 2 1.08979076187E-05 2 3 2 -1.03756197356E-04 3 3 2 -1.03756197356E-04 4 3 2 1.08979076187E-05 1 4 2 1.08979076187E-05 2 4 2 -1.03756197356E-04 3 4 2 -1.03756197356E-04 4 4 2 1.08979076187E-05 1 1 3 5.76169626688E-05 2 1 3 3.32426443687E-05 3 1 3 3.32426443687E-05 4 1 3 5.76169626688E-05 1 2 3 5.76169626688E-05 2 2 3 3.32426443687E-05 3 2 3 3.32426443687E-05 4 2 3 5.76169626687E-05 1 3 3 -5.87861848750E-06 2 3 3 8.68125646625E-05 3 3 3 8.68125646625E-05 4 3 3 -5.87861848750E-06 1 4 3 -5.87861848750E-06 2 4 3 8.68125646625E-05 3 4 3 8.68125646625E-05 4 4 3 -5.87861848750E-06 1 1 4 1.51962127150E-04 2 1 4 -1.32007643825E-04 3 1 4 -1.32007643825E-04 4 1 4 1.51962127150E-04 1 2 4 1.51962127150E-04 2 2 4 -1.32007643825E-04 3 2 4 -1.32007643825E-04 4 2 4 1.51962127150E-04 1 3 4 1.08979076187E-05 2 3 4 -1.03756197356E-04 3 3 4 -1.03756197356E-04 4 3 4 1.08979076187E-05 1 4 4 1.08979076187E-05 2 4 4 -1.03756197356E-04 3 4 4 -1.03756197356E-04 4 4 4 1.08979076187E-05 1 1 4 1 1 1 1 2.52330248607E-03 2 1 1 5.39210714489E-04 3 1 1 2.88852827658E-04 4 1 1 5.39210714489E-04 1 2 1 2.01534496258E-05 2 2 1 -4.52565123902E-05 3 2 1 9.69388440308E-05 4 2 1 -4.52565123902E-05 1 3 1 2.01534496258E-05 2 3 1 -4.52565123902E-05 3 3 1 9.69388440308E-05 4 3 1 -4.52565123902E-05 1 4 1 2.52330248607E-03 2 4 1 5.39210714489E-04 3 4 1 2.88852827658E-04 4 4 1 5.39210714489E-04 1 1 2 2.01534496258E-05 2 1 2 -4.52565123902E-05 3 1 2 9.69388440308E-05 4 1 2 -4.52565123902E-05 1 2 2 -2.33146257211E-05 2 2 2 -9.43141788670E-05 3 2 2 -4.15249231811E-05 4 2 2 -9.43141788670E-05 1 3 2 -2.33146257211E-05 2 3 2 -9.43141788670E-05 3 3 2 -4.15249231811E-05 4 3 2 -9.43141788670E-05 1 4 2 2.01534496258E-05 2 4 2 -4.52565123902E-05 3 4 2 9.69388440308E-05 4 4 2 -4.52565123902E-05 1 1 3 2.01534496258E-05 2 1 3 -4.52565123902E-05 3 1 3 9.69388440308E-05 4 1 3 -4.52565123902E-05 1 2 3 -2.33146257211E-05 2 2 3 -9.43141788670E-05 3 2 3 -4.15249231811E-05 4 2 3 -9.43141788670E-05 1 3 3 -2.33146257211E-05 2 3 3 -9.43141788670E-05 3 3 3 -4.15249231811E-05 4 3 3 -9.43141788670E-05 1 4 3 2.01534496258E-05 2 4 3 -4.52565123902E-05 3 4 3 9.69388440308E-05 4 4 3 -4.52565123902E-05 1 1 4 2.52330248607E-03 2 1 4 5.39210714489E-04 3 1 4 2.88852827658E-04 4 1 4 5.39210714489E-04 1 2 4 2.01534496258E-05 2 2 4 -4.52565123902E-05 3 2 4 9.69388440308E-05 4 2 4 -4.52565123902E-05 1 3 4 2.01534496258E-05 2 3 4 -4.52565123902E-05 3 3 4 9.69388440308E-05 4 3 4 -4.52565123902E-05 1 4 4 2.52330248607E-03 2 4 4 5.39210714489E-04 3 4 4 2.88852827658E-04 4 4 4 5.39210714489E-04 1 1 4 2 1 1 1 -1.29197802688E-02 2 1 1 -1.29197802688E-02 3 1 1 -2.73780712150E-04 4 1 1 -2.73780712150E-04 1 2 1 1.51962127150E-04 2 2 1 1.51962127150E-04 3 2 1 -1.32007643825E-04 4 2 1 -1.32007643825E-04 1 3 1 5.76169626688E-05 2 3 1 5.76169626688E-05 3 3 1 3.32426443687E-05 4 3 1 3.32426443687E-05 1 4 1 1.51962127150E-04 2 4 1 1.51962127150E-04 3 4 1 -1.32007643825E-04 4 4 1 -1.32007643825E-04 1 1 2 4.56157825188E-05 2 1 2 4.56157825187E-05 3 1 2 6.70710680187E-05 4 1 2 6.70710680188E-05 1 2 2 1.08979076187E-05 2 2 2 1.08979076187E-05 3 2 2 -1.03756197356E-04 4 2 2 -1.03756197356E-04 1 3 2 -5.87861848750E-06 2 3 2 -5.87861848750E-06 3 3 2 8.68125646625E-05 4 3 2 8.68125646625E-05 1 4 2 1.08979076187E-05 2 4 2 1.08979076187E-05 3 4 2 -1.03756197356E-04 4 4 2 -1.03756197356E-04 1 1 3 4.56157825188E-05 2 1 3 4.56157825188E-05 3 1 3 6.70710680187E-05 4 1 3 6.70710680187E-05 1 2 3 1.08979076187E-05 2 2 3 1.08979076187E-05 3 2 3 -1.03756197356E-04 4 2 3 -1.03756197356E-04 1 3 3 -5.87861848750E-06 2 3 3 -5.87861848750E-06 3 3 3 8.68125646625E-05 4 3 3 8.68125646625E-05 1 4 3 1.08979076187E-05 2 4 3 1.08979076187E-05 3 4 3 -1.03756197356E-04 4 4 3 -1.03756197356E-04 1 1 4 -1.29197802688E-02 2 1 4 -1.29197802688E-02 3 1 4 -2.73780712150E-04 4 1 4 -2.73780712150E-04 1 2 4 1.51962127150E-04 2 2 4 1.51962127150E-04 3 2 4 -1.32007643825E-04 4 2 4 -1.32007643825E-04 1 3 4 5.76169626688E-05 2 3 4 5.76169626688E-05 3 3 4 3.32426443687E-05 4 3 4 3.32426443687E-05 1 4 4 1.51962127150E-04 2 4 4 1.51962127150E-04 3 4 4 -1.32007643825E-04 4 4 4 -1.32007643825E-04 1 1 4 3 1 1 1 -1.29197802688E-02 2 1 1 -1.29197802688E-02 3 1 1 -2.73780712150E-04 4 1 1 -2.73780712150E-04 1 2 1 4.56157825187E-05 2 2 1 4.56157825187E-05 3 2 1 6.70710680187E-05 4 2 1 6.70710680188E-05 1 3 1 4.56157825188E-05 2 3 1 4.56157825187E-05 3 3 1 6.70710680187E-05 4 3 1 6.70710680187E-05 1 4 1 -1.29197802688E-02 2 4 1 -1.29197802688E-02 3 4 1 -2.73780712150E-04 4 4 1 -2.73780712150E-04 1 1 2 1.51962127150E-04 2 1 2 1.51962127150E-04 3 1 2 -1.32007643825E-04 4 1 2 -1.32007643825E-04 1 2 2 1.08979076187E-05 2 2 2 1.08979076187E-05 3 2 2 -1.03756197356E-04 4 2 2 -1.03756197356E-04 1 3 2 1.08979076187E-05 2 3 2 1.08979076187E-05 3 3 2 -1.03756197356E-04 4 3 2 -1.03756197356E-04 1 4 2 1.51962127150E-04 2 4 2 1.51962127150E-04 3 4 2 -1.32007643825E-04 4 4 2 -1.32007643825E-04 1 1 3 5.76169626688E-05 2 1 3 5.76169626688E-05 3 1 3 3.32426443687E-05 4 1 3 3.32426443687E-05 1 2 3 -5.87861848750E-06 2 2 3 -5.87861848750E-06 3 2 3 8.68125646625E-05 4 2 3 8.68125646625E-05 1 3 3 -5.87861848750E-06 2 3 3 -5.87861848750E-06 3 3 3 8.68125646625E-05 4 3 3 8.68125646625E-05 1 4 3 5.76169626688E-05 2 4 3 5.76169626687E-05 3 4 3 3.32426443687E-05 4 4 3 3.32426443687E-05 1 1 4 1.51962127150E-04 2 1 4 1.51962127150E-04 3 1 4 -1.32007643825E-04 4 1 4 -1.32007643825E-04 1 2 4 1.08979076187E-05 2 2 4 1.08979076187E-05 3 2 4 -1.03756197356E-04 4 2 4 -1.03756197356E-04 1 3 4 1.08979076187E-05 2 3 4 1.08979076187E-05 3 3 4 -1.03756197356E-04 4 3 4 -1.03756197356E-04 1 4 4 1.51962127150E-04 2 4 4 1.51962127150E-04 3 4 4 -1.32007643825E-04 4 4 4 -1.32007643825E-04 1 1 4 4 1 1 1 9.59639493234E-02 2 1 1 -2.56447110288E-03 3 1 1 -4.99811967495E-04 4 1 1 -2.56447110288E-03 1 2 1 1.10083401333E-04 2 2 1 -3.33931441620E-04 3 2 1 5.73658301641E-05 4 2 1 -3.33931441620E-04 1 3 1 9.32019138594E-06 2 3 1 -1.01269581917E-04 3 3 1 -1.76195129820E-04 4 3 1 -1.01269581917E-04 1 4 1 1.10083401333E-04 2 4 1 -3.33931441620E-04 3 4 1 5.73658301641E-05 4 4 1 -3.33931441620E-04 1 1 2 1.10083401333E-04 2 1 2 -3.33931441620E-04 3 1 2 5.73658301641E-05 4 1 2 -3.33931441620E-04 1 2 2 -1.09944916078E-05 2 2 2 2.26459720977E-04 3 2 2 -5.43290955391E-05 4 2 2 2.26459720977E-04 1 3 2 -4.70122843922E-05 2 3 2 -2.47914316828E-05 3 3 2 1.03954986489E-04 4 3 2 -2.47914316828E-05 1 4 2 -1.09944916078E-05 2 4 2 2.26459720977E-04 3 4 2 -5.43290955391E-05 4 4 2 2.26459720977E-04 1 1 3 9.32019138594E-06 2 1 3 -1.01269581917E-04 3 1 3 -1.76195129820E-04 4 1 3 -1.01269581917E-04 1 2 3 -4.70122843922E-05 2 2 3 -2.47914316828E-05 3 2 3 1.03954986489E-04 4 2 3 -2.47914316828E-05 1 3 3 -2.07168866407E-06 2 3 3 9.63163367703E-05 3 3 3 3.20133687380E-04 4 3 3 9.63163367703E-05 1 4 3 -4.70122843922E-05 2 4 3 -2.47914316828E-05 3 4 3 1.03954986489E-04 4 4 3 -2.47914316828E-05 1 1 4 1.10083401333E-04 2 1 4 -3.33931441620E-04 3 1 4 5.73658301641E-05 4 1 4 -3.33931441620E-04 1 2 4 -1.09944916078E-05 2 2 4 2.26459720977E-04 3 2 4 -5.43290955391E-05 4 2 4 2.26459720977E-04 1 3 4 -4.70122843922E-05 2 3 4 -2.47914316828E-05 3 3 4 1.03954986489E-04 4 3 4 -2.47914316828E-05 1 4 4 -1.09944916078E-05 2 4 4 2.26459720977E-04 3 4 4 -5.43290955391E-05 4 4 4 2.26459720977E-04 1 2 1 1 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.58946644406E-04 3 2 1 0.00000000000E+00 4 2 1 3.58946644406E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.58946644406E-04 3 4 1 0.00000000000E+00 4 4 1 -3.58946644406E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.01525037763E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01525037763E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.01525037763E-04 3 4 2 0.00000000000E+00 4 4 2 2.01525037763E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.58505889412E-05 3 2 3 0.00000000000E+00 4 2 3 4.58505889412E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.58505889412E-05 3 4 3 0.00000000000E+00 4 4 3 -4.58505889412E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.01525037763E-04 3 2 4 0.00000000000E+00 4 2 4 -2.01525037763E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.01525037763E-04 3 4 4 0.00000000000E+00 4 4 4 2.01525037763E-04 1 2 1 2 1 1 1 -1.37034719794E-02 2 1 1 1.37034719794E-02 3 1 1 4.83480209374E-06 4 1 1 -4.83480209375E-06 1 2 1 1.37034719794E-02 2 2 1 -1.37034719794E-02 3 2 1 -4.83480209375E-06 4 2 1 4.83480209376E-06 1 3 1 2.89107873124E-06 2 3 1 -2.89107873125E-06 3 3 1 5.62294541938E-05 4 3 1 -5.62294541937E-05 1 4 1 -2.89107873125E-06 2 4 1 2.89107873126E-06 3 4 1 -5.62294541937E-05 4 4 1 5.62294541937E-05 1 1 2 5.49179727281E-05 2 1 2 -5.49179727281E-05 3 1 2 6.14233913281E-05 4 1 2 -6.14233913281E-05 1 2 2 -5.49179727281E-05 2 2 2 5.49179727281E-05 3 2 2 -6.14233913281E-05 4 2 2 6.14233913281E-05 1 3 2 6.14846955406E-05 2 3 2 -6.14846955406E-05 3 3 2 -7.16518208969E-05 4 3 2 7.16518208969E-05 1 4 2 -6.14846955406E-05 2 4 2 6.14846955406E-05 3 4 2 7.16518208969E-05 4 4 2 -7.16518208969E-05 1 1 3 -9.43100515625E-06 2 1 3 9.43100515625E-06 3 1 3 -5.22875046813E-05 4 1 3 5.22875046813E-05 1 2 3 9.43100515625E-06 2 2 3 -9.43100515625E-06 3 2 3 5.22875046813E-05 4 2 3 -5.22875046813E-05 1 3 3 -5.04826262437E-05 2 3 3 5.04826262437E-05 3 3 3 -1.12779887531E-04 4 3 3 1.12779887531E-04 1 4 3 5.04826262437E-05 2 4 3 -5.04826262437E-05 3 4 3 1.12779887531E-04 4 4 3 -1.12779887531E-04 1 1 4 5.49179727281E-05 2 1 4 -5.49179727281E-05 3 1 4 6.14233913281E-05 4 1 4 -6.14233913281E-05 1 2 4 -5.49179727281E-05 2 2 4 5.49179727281E-05 3 2 4 -6.14233913281E-05 4 2 4 6.14233913281E-05 1 3 4 6.14846955406E-05 2 3 4 -6.14846955406E-05 3 3 4 -7.16518208969E-05 4 3 4 7.16518208969E-05 1 4 4 -6.14846955406E-05 2 4 4 6.14846955406E-05 3 4 4 7.16518208969E-05 4 4 4 -7.16518208969E-05 1 2 1 3 1 1 1 -1.51051024081E-36 2 1 1 1.49875529730E-36 3 1 1 1.49875529730E-36 4 1 1 -1.51051024081E-36 1 2 1 -4.28887761257E-04 2 2 1 4.28887761257E-04 3 2 1 -7.21633081557E-05 4 2 1 7.21633081557E-05 1 3 1 1.49875529730E-36 2 3 1 -1.51051024081E-36 3 3 1 -1.51051024081E-36 4 3 1 1.49875529730E-36 1 4 1 4.28887761257E-04 2 4 1 -4.28887761257E-04 3 4 1 7.21633081557E-05 4 4 1 -7.21633081557E-05 1 1 2 1.50463276905E-36 2 1 2 -1.50463276905E-36 3 1 2 -1.50463276905E-36 4 1 2 1.50463276905E-36 1 2 2 -4.28887761257E-04 2 2 2 4.28887761257E-04 3 2 2 -7.21633081557E-05 4 2 2 7.21633081557E-05 1 3 2 -1.50463276905E-36 2 3 2 1.50463276905E-36 3 3 2 1.50463276905E-36 4 3 2 -1.50463276905E-36 1 4 2 4.28887761257E-04 2 4 2 -4.28887761257E-04 3 4 2 7.21633081557E-05 4 4 2 -7.21633081557E-05 1 1 3 -1.49875529730E-36 2 1 3 1.51051024081E-36 3 1 3 1.51051024081E-36 4 1 3 -1.49875529730E-36 1 2 3 6.01167308938E-05 2 2 3 -6.01167308938E-05 3 2 3 -6.09870361569E-05 4 2 3 6.09870361569E-05 1 3 3 1.51051024081E-36 2 3 3 -1.49875529730E-36 3 3 3 -1.49875529730E-36 4 3 3 1.51051024081E-36 1 4 3 -6.01167308938E-05 2 4 3 6.01167308938E-05 3 4 3 6.09870361569E-05 4 4 3 -6.09870361569E-05 1 1 4 1.50463276905E-36 2 1 4 -1.50463276905E-36 3 1 4 -1.50463276905E-36 4 1 4 1.50463276905E-36 1 2 4 6.01167308938E-05 2 2 4 -6.01167308938E-05 3 2 4 -6.09870361569E-05 4 2 4 6.09870361569E-05 1 3 4 -1.50463276905E-36 2 3 4 1.50463276905E-36 3 3 4 1.50463276905E-36 4 3 4 -1.50463276905E-36 1 4 4 -6.01167308938E-05 2 4 4 6.01167308938E-05 3 4 4 6.09870361569E-05 4 4 4 -6.09870361569E-05 1 2 1 4 1 1 1 1.50463276905E-36 2 1 1 -4.30207913484E-04 3 1 1 -1.50463276905E-36 4 1 1 4.30207913484E-04 1 2 1 -1.50463276905E-36 2 2 1 4.30207913484E-04 3 2 1 1.50463276905E-36 4 2 1 -4.30207913484E-04 1 3 1 -1.50463276905E-36 2 3 1 -7.29651725582E-05 3 3 1 1.50463276905E-36 4 3 1 7.29651725582E-05 1 4 1 1.50463276905E-36 2 4 1 7.29651725582E-05 3 4 1 -1.50463276905E-36 4 4 1 -7.29651725582E-05 1 1 2 -1.50463276905E-36 2 1 2 -4.30207913484E-04 3 1 2 1.50463276905E-36 4 1 2 4.30207913484E-04 1 2 2 1.50463276905E-36 2 2 2 4.30207913484E-04 3 2 2 -1.50463276905E-36 4 2 2 -4.30207913484E-04 1 3 2 1.50463276905E-36 2 3 2 -7.29651725582E-05 3 3 2 -1.50463276905E-36 4 3 2 7.29651725582E-05 1 4 2 -1.50463276905E-36 2 4 2 7.29651725582E-05 3 4 2 1.50463276905E-36 4 4 2 -7.29651725582E-05 1 1 3 1.50463276905E-36 2 1 3 5.94357490219E-05 3 1 3 -1.50463276905E-36 4 1 3 -5.94357490219E-05 1 2 3 -1.50463276905E-36 2 2 3 -5.94357490219E-05 3 2 3 1.50463276905E-36 4 2 3 5.94357490219E-05 1 3 3 -1.50463276905E-36 2 3 3 -5.81786513669E-05 3 3 3 1.50463276905E-36 4 3 3 5.81786513669E-05 1 4 3 1.50463276905E-36 2 4 3 5.81786513669E-05 3 4 3 -1.50463276905E-36 4 4 3 -5.81786513669E-05 1 1 4 -1.50463276905E-36 2 1 4 5.94357490219E-05 3 1 4 1.50463276905E-36 4 1 4 -5.94357490219E-05 1 2 4 1.50463276905E-36 2 2 4 -5.94357490219E-05 3 2 4 -1.50463276905E-36 4 2 4 5.94357490219E-05 1 3 4 1.50463276905E-36 2 3 4 -5.81786513669E-05 3 3 4 -1.50463276905E-36 4 3 4 5.81786513669E-05 1 4 4 -1.50463276905E-36 2 4 4 5.81786513669E-05 3 4 4 1.50463276905E-36 4 4 4 -5.81786513669E-05 1 2 2 1 1 1 1 -1.37034719794E-02 2 1 1 -2.89107873125E-06 3 1 1 2.89107873124E-06 4 1 1 1.37034719794E-02 1 2 1 -4.83480209375E-06 2 2 1 5.62294541937E-05 3 2 1 -5.62294541937E-05 4 2 1 4.83480209376E-06 1 3 1 4.83480209374E-06 2 3 1 -5.62294541937E-05 3 3 1 5.62294541938E-05 4 3 1 -4.83480209375E-06 1 4 1 1.37034719794E-02 2 4 1 2.89107873126E-06 3 4 1 -2.89107873125E-06 4 4 1 -1.37034719794E-02 1 1 2 5.49179727281E-05 2 1 2 -6.14846955406E-05 3 1 2 6.14846955406E-05 4 1 2 -5.49179727281E-05 1 2 2 -6.14233913281E-05 2 2 2 -7.16518208969E-05 3 2 2 7.16518208969E-05 4 2 2 6.14233913281E-05 1 3 2 6.14233913281E-05 2 3 2 7.16518208969E-05 3 3 2 -7.16518208969E-05 4 3 2 -6.14233913281E-05 1 4 2 -5.49179727281E-05 2 4 2 6.14846955406E-05 3 4 2 -6.14846955406E-05 4 4 2 5.49179727281E-05 1 1 3 -9.43100515625E-06 2 1 3 5.04826262437E-05 3 1 3 -5.04826262437E-05 4 1 3 9.43100515625E-06 1 2 3 5.22875046812E-05 2 2 3 -1.12779887531E-04 3 2 3 1.12779887531E-04 4 2 3 -5.22875046813E-05 1 3 3 -5.22875046812E-05 2 3 3 1.12779887531E-04 3 3 3 -1.12779887531E-04 4 3 3 5.22875046812E-05 1 4 3 9.43100515625E-06 2 4 3 -5.04826262438E-05 3 4 3 5.04826262437E-05 4 4 3 -9.43100515625E-06 1 1 4 5.49179727281E-05 2 1 4 -6.14846955406E-05 3 1 4 6.14846955406E-05 4 1 4 -5.49179727281E-05 1 2 4 -6.14233913281E-05 2 2 4 -7.16518208969E-05 3 2 4 7.16518208969E-05 4 2 4 6.14233913281E-05 1 3 4 6.14233913281E-05 2 3 4 7.16518208969E-05 3 3 4 -7.16518208969E-05 4 3 4 -6.14233913281E-05 1 4 4 -5.49179727281E-05 2 4 4 6.14846955406E-05 3 4 4 -6.14846955406E-05 4 4 4 5.49179727281E-05 1 2 2 2 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.62560554799E-04 3 2 1 0.00000000000E+00 4 2 1 3.62560554799E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.62560554799E-04 3 4 1 0.00000000000E+00 4 4 1 -3.62560554799E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.01820592419E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01820592419E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.01820592419E-04 3 4 2 0.00000000000E+00 4 4 2 2.01820592419E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.16200862765E-05 3 2 3 0.00000000000E+00 4 2 3 4.16200862765E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.16200862765E-05 3 4 3 0.00000000000E+00 4 4 3 -4.16200862765E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.01820592419E-04 3 2 4 0.00000000000E+00 4 2 4 -2.01820592419E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.01820592419E-04 3 4 4 0.00000000000E+00 4 4 4 2.01820592419E-04 1 2 2 3 1 1 1 -1.50463276905E-36 2 1 1 4.30655140556E-04 3 1 1 1.50463276905E-36 4 1 1 -4.30655140556E-04 1 2 1 -1.50463276905E-36 2 2 1 -7.22708198781E-05 3 2 1 1.50463276905E-36 4 2 1 7.22708198781E-05 1 3 1 1.50463276905E-36 2 3 1 7.22708198781E-05 3 3 1 -1.50463276905E-36 4 3 1 -7.22708198781E-05 1 4 1 1.50463276905E-36 2 4 1 -4.30655140556E-04 3 4 1 -1.50463276905E-36 4 4 1 4.30655140556E-04 1 1 2 1.50463276905E-36 2 1 2 4.30655140556E-04 3 1 2 -1.50463276905E-36 4 1 2 -4.30655140556E-04 1 2 2 1.50463276905E-36 2 2 2 -7.22708198781E-05 3 2 2 -1.50463276905E-36 4 2 2 7.22708198781E-05 1 3 2 -1.50463276905E-36 2 3 2 7.22708198781E-05 3 3 2 1.50463276905E-36 4 3 2 -7.22708198781E-05 1 4 2 -1.50463276905E-36 2 4 2 -4.30655140556E-04 3 4 2 1.50463276905E-36 4 4 2 4.30655140556E-04 1 1 3 -1.50463276905E-36 2 1 3 -6.07755422331E-05 3 1 3 1.50463276905E-36 4 1 3 6.07755422331E-05 1 2 3 -1.50463276905E-36 2 2 3 -5.97793100193E-05 3 2 3 1.50463276905E-36 4 2 3 5.97793100193E-05 1 3 3 1.50463276905E-36 2 3 3 5.97793100193E-05 3 3 3 -1.50463276905E-36 4 3 3 -5.97793100193E-05 1 4 3 1.50463276905E-36 2 4 3 6.07755422331E-05 3 4 3 -1.50463276905E-36 4 4 3 -6.07755422331E-05 1 1 4 1.50463276905E-36 2 1 4 -6.07755422331E-05 3 1 4 -1.50463276905E-36 4 1 4 6.07755422331E-05 1 2 4 1.50463276905E-36 2 2 4 -5.97793100193E-05 3 2 4 -1.50463276905E-36 4 2 4 5.97793100193E-05 1 3 4 -1.50463276905E-36 2 3 4 5.97793100193E-05 3 3 4 1.50463276905E-36 4 3 4 -5.97793100193E-05 1 4 4 -1.50463276905E-36 2 4 4 6.07755422331E-05 3 4 4 1.50463276905E-36 4 4 4 -6.07755422331E-05 1 2 2 4 1 1 1 1.50757150493E-36 2 1 1 1.50757150493E-36 3 1 1 -1.50169403318E-36 4 1 1 -1.50169403318E-36 1 2 1 4.29104399061E-04 2 2 1 -7.41155615893E-05 3 2 1 7.41155615893E-05 4 2 1 -4.29104399061E-04 1 3 1 -1.50169403318E-36 2 3 1 -1.50169403318E-36 3 3 1 1.50757150493E-36 4 3 1 1.50757150493E-36 1 4 1 -4.29104399061E-04 2 4 1 7.41155615893E-05 3 4 1 -7.41155615893E-05 4 4 1 4.29104399061E-04 1 1 2 -1.50463276905E-36 2 1 2 -1.50463276905E-36 3 1 2 1.50463276905E-36 4 1 2 1.50463276905E-36 1 2 2 4.29104399061E-04 2 2 2 -7.41155615893E-05 3 2 2 7.41155615893E-05 4 2 2 -4.29104399061E-04 1 3 2 1.50463276905E-36 2 3 2 1.50463276905E-36 3 3 2 -1.50463276905E-36 4 3 2 -1.50463276905E-36 1 4 2 -4.29104399061E-04 2 4 2 7.41155615893E-05 3 4 2 -7.41155615893E-05 4 4 2 4.29104399061E-04 1 1 3 1.50169403318E-36 2 1 3 1.50169403318E-36 3 1 3 -1.50757150493E-36 4 1 3 -1.50757150493E-36 1 2 3 -6.06947371606E-05 2 2 3 -5.93882407106E-05 3 2 3 5.93882407106E-05 4 2 3 6.06947371606E-05 1 3 3 -1.50757150493E-36 2 3 3 -1.50757150493E-36 3 3 3 1.50169403318E-36 4 3 3 1.50169403318E-36 1 4 3 6.06947371606E-05 2 4 3 5.93882407106E-05 3 4 3 -5.93882407106E-05 4 4 3 -6.06947371606E-05 1 1 4 -1.50463276905E-36 2 1 4 -1.50463276905E-36 3 1 4 1.50463276905E-36 4 1 4 1.50463276905E-36 1 2 4 -6.06947371606E-05 2 2 4 -5.93882407106E-05 3 2 4 5.93882407106E-05 4 2 4 6.06947371606E-05 1 3 4 1.50463276905E-36 2 3 4 1.50463276905E-36 3 3 4 -1.50463276905E-36 4 3 4 -1.50463276905E-36 1 4 4 6.06947371606E-05 2 4 4 5.93882407106E-05 3 4 4 -5.93882407106E-05 4 4 4 -6.06947371606E-05 1 2 3 1 1 1 1 -1.50463276905E-36 2 1 1 -1.50463276905E-36 3 1 1 1.50463276905E-36 4 1 1 1.50463276905E-36 1 2 1 4.30207913484E-04 2 2 1 -7.29651725582E-05 3 2 1 7.29651725582E-05 4 2 1 -4.30207913484E-04 1 3 1 1.50463276905E-36 2 3 1 1.50463276905E-36 3 3 1 -1.50463276905E-36 4 3 1 -1.50463276905E-36 1 4 1 -4.30207913484E-04 2 4 1 7.29651725582E-05 3 4 1 -7.29651725582E-05 4 4 1 4.30207913484E-04 1 1 2 1.50463276905E-36 2 1 2 1.50463276905E-36 3 1 2 -1.50463276905E-36 4 1 2 -1.50463276905E-36 1 2 2 -5.94357490219E-05 2 2 2 -5.81786513669E-05 3 2 2 5.81786513669E-05 4 2 2 5.94357490219E-05 1 3 2 -1.50463276905E-36 2 3 2 -1.50463276905E-36 3 3 2 1.50463276905E-36 4 3 2 1.50463276905E-36 1 4 2 5.94357490219E-05 2 4 2 5.81786513669E-05 3 4 2 -5.81786513669E-05 4 4 2 -5.94357490219E-05 1 1 3 -1.50463276905E-36 2 1 3 -1.50463276905E-36 3 1 3 1.50463276905E-36 4 1 3 1.50463276905E-36 1 2 3 -5.94357490219E-05 2 2 3 -5.81786513669E-05 3 2 3 5.81786513669E-05 4 2 3 5.94357490219E-05 1 3 3 1.50463276905E-36 2 3 3 1.50463276905E-36 3 3 3 -1.50463276905E-36 4 3 3 -1.50463276905E-36 1 4 3 5.94357490219E-05 2 4 3 5.81786513669E-05 3 4 3 -5.81786513669E-05 4 4 3 -5.94357490219E-05 1 1 4 1.50463276905E-36 2 1 4 1.50463276905E-36 3 1 4 -1.50463276905E-36 4 1 4 -1.50463276905E-36 1 2 4 4.30207913484E-04 2 2 4 -7.29651725582E-05 3 2 4 7.29651725582E-05 4 2 4 -4.30207913484E-04 1 3 4 -1.50463276905E-36 2 3 4 -1.50463276905E-36 3 3 4 1.50463276905E-36 4 3 4 1.50463276905E-36 1 4 4 -4.30207913484E-04 2 4 4 7.29651725582E-05 3 4 4 -7.29651725582E-05 4 4 4 4.30207913484E-04 1 2 3 2 1 1 1 -1.50757150493E-36 2 1 1 -4.29104399061E-04 3 1 1 1.50169403318E-36 4 1 1 4.29104399061E-04 1 2 1 1.50169403318E-36 2 2 1 4.29104399061E-04 3 2 1 -1.50757150493E-36 4 2 1 -4.29104399061E-04 1 3 1 1.50169403318E-36 2 3 1 -7.41155615893E-05 3 3 1 -1.50757150493E-36 4 3 1 7.41155615893E-05 1 4 1 -1.50757150493E-36 2 4 1 7.41155615893E-05 3 4 1 1.50169403318E-36 4 4 1 -7.41155615893E-05 1 1 2 1.50463276905E-36 2 1 2 6.06947371606E-05 3 1 2 -1.50463276905E-36 4 1 2 -6.06947371606E-05 1 2 2 -1.50463276905E-36 2 2 2 -6.06947371606E-05 3 2 2 1.50463276905E-36 4 2 2 6.06947371606E-05 1 3 2 -1.50463276905E-36 2 3 2 -5.93882407106E-05 3 3 2 1.50463276905E-36 4 3 2 5.93882407106E-05 1 4 2 1.50463276905E-36 2 4 2 5.93882407106E-05 3 4 2 -1.50463276905E-36 4 4 2 -5.93882407106E-05 1 1 3 -1.50169403318E-36 2 1 3 6.06947371606E-05 3 1 3 1.50757150493E-36 4 1 3 -6.06947371606E-05 1 2 3 1.50757150493E-36 2 2 3 -6.06947371606E-05 3 2 3 -1.50169403318E-36 4 2 3 6.06947371606E-05 1 3 3 1.50757150493E-36 2 3 3 -5.93882407106E-05 3 3 3 -1.50169403318E-36 4 3 3 5.93882407106E-05 1 4 3 -1.50169403318E-36 2 4 3 5.93882407106E-05 3 4 3 1.50757150493E-36 4 4 3 -5.93882407106E-05 1 1 4 1.50463276905E-36 2 1 4 -4.29104399061E-04 3 1 4 -1.50463276905E-36 4 1 4 4.29104399061E-04 1 2 4 -1.50463276905E-36 2 2 4 4.29104399061E-04 3 2 4 1.50463276905E-36 4 2 4 -4.29104399061E-04 1 3 4 -1.50463276905E-36 2 3 4 -7.41155615893E-05 3 3 4 1.50463276905E-36 4 3 4 7.41155615893E-05 1 4 4 1.50463276905E-36 2 4 4 7.41155615893E-05 3 4 4 -1.50463276905E-36 4 4 4 -7.41155615893E-05 1 2 3 3 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.60242649126E-04 3 2 1 0.00000000000E+00 4 2 1 3.60242649126E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.60242649126E-04 3 4 1 0.00000000000E+00 4 4 1 -3.60242649126E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.28494799632E-05 3 2 3 0.00000000000E+00 4 2 3 4.28494799632E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.28494799632E-05 3 4 3 0.00000000000E+00 4 4 3 -4.28494799632E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 1 2 3 4 1 1 1 1.37037308055E-02 2 1 1 3.09015600156E-06 3 1 1 -3.09015600156E-06 4 1 1 -1.37037308055E-02 1 2 1 -1.37037308055E-02 2 2 1 -3.09015600157E-06 3 2 1 3.09015600156E-06 4 2 1 1.37037308055E-02 1 3 1 -3.09015600156E-06 2 3 1 5.77062827953E-05 3 3 1 -5.77062827953E-05 4 3 1 3.09015600156E-06 1 4 1 3.09015600156E-06 2 4 1 -5.77062827953E-05 3 4 1 5.77062827953E-05 4 4 1 -3.09015600157E-06 1 1 2 -5.35140122641E-05 2 1 2 6.28362787078E-05 3 1 2 -6.28362787078E-05 4 1 2 5.35140122641E-05 1 2 2 5.35140122641E-05 2 2 2 -6.28362787078E-05 3 2 2 6.28362787078E-05 4 2 2 -5.35140122641E-05 1 3 2 -6.28362787078E-05 2 3 2 -7.29860027984E-05 3 3 2 7.29860027984E-05 4 3 2 6.28362787078E-05 1 4 2 6.28362787078E-05 2 4 2 7.29860027984E-05 3 4 2 -7.29860027984E-05 4 4 2 -6.28362787078E-05 1 1 3 8.88898306719E-06 2 1 3 -5.08309663984E-05 3 1 3 5.08309663984E-05 4 1 3 -8.88898306719E-06 1 2 3 -8.88898306719E-06 2 2 3 5.08309663984E-05 3 2 3 -5.08309663984E-05 4 2 3 8.88898306719E-06 1 3 3 5.08309663984E-05 2 3 3 -1.14095454955E-04 3 3 3 1.14095454955E-04 4 3 3 -5.08309663984E-05 1 4 3 -5.08309663984E-05 2 4 3 1.14095454955E-04 3 4 3 -1.14095454955E-04 4 4 3 5.08309663984E-05 1 1 4 -5.35140122641E-05 2 1 4 6.28362787078E-05 3 1 4 -6.28362787078E-05 4 1 4 5.35140122641E-05 1 2 4 5.35140122641E-05 2 2 4 -6.28362787078E-05 3 2 4 6.28362787078E-05 4 2 4 -5.35140122641E-05 1 3 4 -6.28362787078E-05 2 3 4 -7.29860027984E-05 3 3 4 7.29860027984E-05 4 3 4 6.28362787078E-05 1 4 4 6.28362787078E-05 2 4 4 7.29860027984E-05 3 4 4 -7.29860027984E-05 4 4 4 -6.28362787078E-05 1 2 4 1 1 1 1 1.51051024081E-36 2 1 1 4.28887761257E-04 3 1 1 -1.49875529730E-36 4 1 1 -4.28887761257E-04 1 2 1 1.51051024081E-36 2 2 1 -7.21633081557E-05 3 2 1 -1.49875529730E-36 4 2 1 7.21633081557E-05 1 3 1 -1.49875529730E-36 2 3 1 7.21633081557E-05 3 3 1 1.51051024081E-36 4 3 1 -7.21633081557E-05 1 4 1 -1.49875529730E-36 2 4 1 -4.28887761257E-04 3 4 1 1.51051024081E-36 4 4 1 4.28887761257E-04 1 1 2 -1.50463276905E-36 2 1 2 -6.01167308938E-05 3 1 2 1.50463276905E-36 4 1 2 6.01167308938E-05 1 2 2 -1.50463276905E-36 2 2 2 -6.09870361569E-05 3 2 2 1.50463276905E-36 4 2 2 6.09870361569E-05 1 3 2 1.50463276905E-36 2 3 2 6.09870361569E-05 3 3 2 -1.50463276905E-36 4 3 2 -6.09870361569E-05 1 4 2 1.50463276905E-36 2 4 2 6.01167308938E-05 3 4 2 -1.50463276905E-36 4 4 2 -6.01167308938E-05 1 1 3 1.49875529730E-36 2 1 3 -6.01167308938E-05 3 1 3 -1.51051024081E-36 4 1 3 6.01167308938E-05 1 2 3 1.49875529730E-36 2 2 3 -6.09870361569E-05 3 2 3 -1.51051024081E-36 4 2 3 6.09870361569E-05 1 3 3 -1.51051024081E-36 2 3 3 6.09870361569E-05 3 3 3 1.49875529730E-36 4 3 3 -6.09870361569E-05 1 4 3 -1.51051024081E-36 2 4 3 6.01167308938E-05 3 4 3 1.49875529730E-36 4 4 3 -6.01167308938E-05 1 1 4 -1.50463276905E-36 2 1 4 4.28887761257E-04 3 1 4 1.50463276905E-36 4 1 4 -4.28887761257E-04 1 2 4 -1.50463276905E-36 2 2 4 -7.21633081557E-05 3 2 4 1.50463276905E-36 4 2 4 7.21633081557E-05 1 3 4 1.50463276905E-36 2 3 4 7.21633081557E-05 3 3 4 -1.50463276905E-36 4 3 4 -7.21633081557E-05 1 4 4 1.50463276905E-36 2 4 4 -4.28887761257E-04 3 4 4 -1.50463276905E-36 4 4 4 4.28887761257E-04 1 2 4 2 1 1 1 1.50463276905E-36 2 1 1 -1.50463276905E-36 3 1 1 -1.50463276905E-36 4 1 1 1.50463276905E-36 1 2 1 -4.30655140556E-04 2 2 1 4.30655140556E-04 3 2 1 -7.22708198781E-05 4 2 1 7.22708198781E-05 1 3 1 -1.50463276905E-36 2 3 1 1.50463276905E-36 3 3 1 1.50463276905E-36 4 3 1 -1.50463276905E-36 1 4 1 4.30655140556E-04 2 4 1 -4.30655140556E-04 3 4 1 7.22708198781E-05 4 4 1 -7.22708198781E-05 1 1 2 -1.50463276905E-36 2 1 2 1.50463276905E-36 3 1 2 1.50463276905E-36 4 1 2 -1.50463276905E-36 1 2 2 6.07755422331E-05 2 2 2 -6.07755422331E-05 3 2 2 -5.97793100193E-05 4 2 2 5.97793100193E-05 1 3 2 1.50463276905E-36 2 3 2 -1.50463276905E-36 3 3 2 -1.50463276905E-36 4 3 2 1.50463276905E-36 1 4 2 -6.07755422331E-05 2 4 2 6.07755422331E-05 3 4 2 5.97793100193E-05 4 4 2 -5.97793100193E-05 1 1 3 1.50463276905E-36 2 1 3 -1.50463276905E-36 3 1 3 -1.50463276905E-36 4 1 3 1.50463276905E-36 1 2 3 6.07755422331E-05 2 2 3 -6.07755422331E-05 3 2 3 -5.97793100193E-05 4 2 3 5.97793100193E-05 1 3 3 -1.50463276905E-36 2 3 3 1.50463276905E-36 3 3 3 1.50463276905E-36 4 3 3 -1.50463276905E-36 1 4 3 -6.07755422331E-05 2 4 3 6.07755422331E-05 3 4 3 5.97793100193E-05 4 4 3 -5.97793100193E-05 1 1 4 -1.50463276905E-36 2 1 4 1.50463276905E-36 3 1 4 1.50463276905E-36 4 1 4 -1.50463276905E-36 1 2 4 -4.30655140556E-04 2 2 4 4.30655140556E-04 3 2 4 -7.22708198781E-05 4 2 4 7.22708198781E-05 1 3 4 1.50463276905E-36 2 3 4 -1.50463276905E-36 3 3 4 -1.50463276905E-36 4 3 4 1.50463276905E-36 1 4 4 4.30655140556E-04 2 4 4 -4.30655140556E-04 3 4 4 7.22708198781E-05 4 4 4 -7.22708198781E-05 1 2 4 3 1 1 1 1.37067712500E-02 2 1 1 -1.37067712500E-02 3 1 1 -5.75450117499E-06 4 1 1 5.75450117500E-06 1 2 1 5.75450117500E-06 2 2 1 -5.75450117501E-06 3 2 1 5.48592277812E-05 4 2 1 -5.48592277812E-05 1 3 1 -5.75450117499E-06 2 3 1 5.75450117500E-06 3 3 1 -5.48592277813E-05 4 3 1 5.48592277812E-05 1 4 1 -1.37067712500E-02 2 4 1 1.37067712500E-02 3 4 1 5.75450117500E-06 4 4 1 -5.75450117501E-06 1 1 2 -5.50718982125E-05 2 1 2 5.50718982125E-05 3 1 2 -6.16300101687E-05 4 1 2 6.16300101687E-05 1 2 2 6.16300101687E-05 2 2 2 -6.16300101687E-05 3 2 2 -7.15648150250E-05 4 2 2 7.15648150250E-05 1 3 2 -6.16300101687E-05 2 3 2 6.16300101687E-05 3 3 2 7.15648150250E-05 4 3 2 -7.15648150250E-05 1 4 2 5.50718982125E-05 2 4 2 -5.50718982125E-05 3 4 2 6.16300101687E-05 4 4 2 -6.16300101687E-05 1 1 3 6.09222033125E-06 2 1 3 -6.09222033125E-06 3 1 3 5.39320003250E-05 4 1 3 -5.39320003250E-05 1 2 3 -5.39320003250E-05 2 2 3 5.39320003250E-05 3 2 3 -1.11266984644E-04 4 2 3 1.11266984644E-04 1 3 3 5.39320003250E-05 2 3 3 -5.39320003250E-05 3 3 3 1.11266984644E-04 4 3 3 -1.11266984644E-04 1 4 3 -6.09222033125E-06 2 4 3 6.09222033125E-06 3 4 3 -5.39320003250E-05 4 4 3 5.39320003250E-05 1 1 4 -5.50718982125E-05 2 1 4 5.50718982125E-05 3 1 4 -6.16300101688E-05 4 1 4 6.16300101688E-05 1 2 4 6.16300101688E-05 2 2 4 -6.16300101688E-05 3 2 4 -7.15648150250E-05 4 2 4 7.15648150250E-05 1 3 4 -6.16300101688E-05 2 3 4 6.16300101688E-05 3 3 4 7.15648150250E-05 4 3 4 -7.15648150250E-05 1 4 4 5.50718982125E-05 2 4 4 -5.50718982125E-05 3 4 4 6.16300101688E-05 4 4 4 -6.16300101688E-05 1 2 4 4 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.60242649126E-04 3 2 1 0.00000000000E+00 4 2 1 3.60242649126E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.60242649126E-04 3 4 1 0.00000000000E+00 4 4 1 -3.60242649126E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.28494799632E-05 3 2 3 0.00000000000E+00 4 2 3 4.28494799632E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.28494799632E-05 3 4 3 0.00000000000E+00 4 4 3 -4.28494799632E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 1 3 1 1 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.58946644406E-04 3 1 2 0.00000000000E+00 4 1 2 3.58946644406E-04 1 2 2 0.00000000000E+00 2 2 2 2.01525037763E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01525037763E-04 1 3 2 0.00000000000E+00 2 3 2 -4.58505889412E-05 3 3 2 0.00000000000E+00 4 3 2 4.58505889412E-05 1 4 2 0.00000000000E+00 2 4 2 2.01525037763E-04 3 4 2 0.00000000000E+00 4 4 2 -2.01525037763E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.58946644406E-04 3 1 4 0.00000000000E+00 4 1 4 -3.58946644406E-04 1 2 4 0.00000000000E+00 2 2 4 -2.01525037763E-04 3 2 4 0.00000000000E+00 4 2 4 2.01525037763E-04 1 3 4 0.00000000000E+00 2 3 4 4.58505889412E-05 3 3 4 0.00000000000E+00 4 3 4 -4.58505889412E-05 1 4 4 0.00000000000E+00 2 4 4 -2.01525037763E-04 3 4 4 0.00000000000E+00 4 4 4 2.01525037763E-04 1 3 1 2 1 1 1 5.87747175413E-39 2 1 1 5.87747175412E-39 3 1 1 5.87747175413E-39 4 1 1 5.87747175412E-39 1 2 1 1.38336454722E-52 2 2 1 -1.59217429019E-52 3 2 1 1.38336454722E-52 4 2 1 -1.17455480424E-52 1 3 1 -5.87747175413E-39 2 3 1 -5.87747175412E-39 3 3 1 -5.87747175413E-39 4 3 1 -5.87747175412E-39 1 4 1 -1.38336454722E-52 2 4 1 1.17455480424E-52 3 4 1 -1.38336454722E-52 4 4 1 1.59217429019E-52 1 1 2 -4.28887761257E-04 2 1 2 4.28887761257E-04 3 1 2 -7.21633081557E-05 4 1 2 7.21633081557E-05 1 2 2 -4.28887761257E-04 2 2 2 4.28887761257E-04 3 2 2 -7.21633081557E-05 4 2 2 7.21633081557E-05 1 3 2 6.01167308938E-05 2 3 2 -6.01167308938E-05 3 3 2 -6.09870361569E-05 4 3 2 6.09870361569E-05 1 4 2 6.01167308938E-05 2 4 2 -6.01167308938E-05 3 4 2 -6.09870361569E-05 4 4 2 6.09870361569E-05 1 1 3 5.87747175413E-39 2 1 3 5.87747175412E-39 3 1 3 5.87747175413E-39 4 1 3 5.87747175412E-39 1 2 3 1.38336454722E-52 2 2 3 -1.59217429019E-52 3 2 3 1.38336454722E-52 4 2 3 -1.17455480424E-52 1 3 3 -5.87747175413E-39 2 3 3 -5.87747175412E-39 3 3 3 -5.87747175413E-39 4 3 3 -5.87747175412E-39 1 4 3 -1.38336454722E-52 2 4 3 1.17455480424E-52 3 4 3 -1.38336454722E-52 4 4 3 1.59217429019E-52 1 1 4 4.28887761257E-04 2 1 4 -4.28887761257E-04 3 1 4 7.21633081557E-05 4 1 4 -7.21633081557E-05 1 2 4 4.28887761257E-04 2 2 4 -4.28887761257E-04 3 2 4 7.21633081557E-05 4 2 4 -7.21633081557E-05 1 3 4 -6.01167308938E-05 2 3 4 6.01167308938E-05 3 3 4 6.09870361569E-05 4 3 4 -6.09870361569E-05 1 4 4 -6.01167308938E-05 2 4 4 6.01167308938E-05 3 4 4 6.09870361569E-05 4 4 4 -6.09870361569E-05 1 3 1 3 1 1 1 -1.37034719794E-02 2 1 1 1.37034719794E-02 3 1 1 4.83480209374E-06 4 1 1 -4.83480209375E-06 1 2 1 5.49179727281E-05 2 2 1 -5.49179727281E-05 3 2 1 6.14233913281E-05 4 2 1 -6.14233913281E-05 1 3 1 -9.43100515625E-06 2 3 1 9.43100515625E-06 3 3 1 -5.22875046813E-05 4 3 1 5.22875046813E-05 1 4 1 5.49179727281E-05 2 4 1 -5.49179727281E-05 3 4 1 6.14233913281E-05 4 4 1 -6.14233913281E-05 1 1 2 1.37034719794E-02 2 1 2 -1.37034719794E-02 3 1 2 -4.83480209375E-06 4 1 2 4.83480209376E-06 1 2 2 -5.49179727281E-05 2 2 2 5.49179727281E-05 3 2 2 -6.14233913281E-05 4 2 2 6.14233913281E-05 1 3 2 9.43100515625E-06 2 3 2 -9.43100515625E-06 3 3 2 5.22875046813E-05 4 3 2 -5.22875046813E-05 1 4 2 -5.49179727281E-05 2 4 2 5.49179727281E-05 3 4 2 -6.14233913281E-05 4 4 2 6.14233913281E-05 1 1 3 2.89107873124E-06 2 1 3 -2.89107873125E-06 3 1 3 5.62294541938E-05 4 1 3 -5.62294541937E-05 1 2 3 6.14846955406E-05 2 2 3 -6.14846955406E-05 3 2 3 -7.16518208969E-05 4 2 3 7.16518208969E-05 1 3 3 -5.04826262437E-05 2 3 3 5.04826262437E-05 3 3 3 -1.12779887531E-04 4 3 3 1.12779887531E-04 1 4 3 6.14846955406E-05 2 4 3 -6.14846955406E-05 3 4 3 -7.16518208969E-05 4 4 3 7.16518208969E-05 1 1 4 -2.89107873125E-06 2 1 4 2.89107873126E-06 3 1 4 -5.62294541937E-05 4 1 4 5.62294541937E-05 1 2 4 -6.14846955406E-05 2 2 4 6.14846955406E-05 3 2 4 7.16518208969E-05 4 2 4 -7.16518208969E-05 1 3 4 5.04826262437E-05 2 3 4 -5.04826262437E-05 3 3 4 1.12779887531E-04 4 3 4 -1.12779887531E-04 1 4 4 -6.14846955406E-05 2 4 4 6.14846955406E-05 3 4 4 7.16518208969E-05 4 4 4 -7.16518208969E-05 1 3 1 4 1 1 1 -5.80850536859E-35 2 1 1 -4.30207913484E-04 3 1 1 5.80850536859E-35 4 1 1 4.30207913484E-04 1 2 1 5.80850536859E-35 2 2 1 -4.30207913484E-04 3 2 1 -5.80850536859E-35 4 2 1 4.30207913484E-04 1 3 1 -5.80850536859E-35 2 3 1 5.94357490219E-05 3 3 1 5.80850536859E-35 4 3 1 -5.94357490219E-05 1 4 1 5.80850536859E-35 2 4 1 5.94357490219E-05 3 4 1 -5.80850536859E-35 4 4 1 -5.94357490219E-05 1 1 2 5.80850536859E-35 2 1 2 4.30207913484E-04 3 1 2 -5.80850536859E-35 4 1 2 -4.30207913484E-04 1 2 2 -5.80850536859E-35 2 2 2 4.30207913484E-04 3 2 2 5.80850536859E-35 4 2 2 -4.30207913484E-04 1 3 2 5.80850536859E-35 2 3 2 -5.94357490219E-05 3 3 2 -5.80850536859E-35 4 3 2 5.94357490219E-05 1 4 2 -5.80850536859E-35 2 4 2 -5.94357490219E-05 3 4 2 5.80850536859E-35 4 4 2 5.94357490219E-05 1 1 3 -5.50757881478E-35 2 1 3 -7.29651725582E-05 3 1 3 5.50757881478E-35 4 1 3 7.29651725582E-05 1 2 3 5.50757881478E-35 2 2 3 -7.29651725582E-05 3 2 3 -5.50757881478E-35 4 2 3 7.29651725582E-05 1 3 3 -5.50757881478E-35 2 3 3 -5.81786513669E-05 3 3 3 5.50757881478E-35 4 3 3 5.81786513669E-05 1 4 3 5.50757881478E-35 2 4 3 -5.81786513669E-05 3 4 3 -5.50757881478E-35 4 4 3 5.81786513669E-05 1 1 4 5.50757881478E-35 2 1 4 7.29651725582E-05 3 1 4 -5.50757881478E-35 4 1 4 -7.29651725582E-05 1 2 4 -5.50757881478E-35 2 2 4 7.29651725582E-05 3 2 4 5.50757881478E-35 4 2 4 -7.29651725582E-05 1 3 4 5.50757881478E-35 2 3 4 5.81786513669E-05 3 3 4 -5.50757881478E-35 4 3 4 -5.81786513669E-05 1 4 4 -5.50757881478E-35 2 4 4 5.81786513669E-05 3 4 4 5.50757881478E-35 4 4 4 -5.81786513669E-05 1 3 2 1 1 1 1 1.38336454722E-52 2 1 1 -1.59217429019E-52 3 1 1 1.38336454722E-52 4 1 1 -1.17455480424E-52 1 2 1 -1.38336454722E-52 2 2 1 1.59217429019E-52 3 2 1 -1.38336454722E-52 4 2 1 1.17455480424E-52 1 3 1 -1.38336454722E-52 2 3 1 1.17455480424E-52 3 3 1 -1.38336454722E-52 4 3 1 1.59217429019E-52 1 4 1 1.38336454722E-52 2 4 1 -1.17455480424E-52 3 4 1 1.38336454722E-52 4 4 1 -1.59217429019E-52 1 1 2 4.30207913484E-04 2 1 2 -7.29651725582E-05 3 1 2 7.29651725582E-05 4 1 2 -4.30207913484E-04 1 2 2 -5.94357490219E-05 2 2 2 -5.81786513669E-05 3 2 2 5.81786513669E-05 4 2 2 5.94357490219E-05 1 3 2 -5.94357490219E-05 2 3 2 -5.81786513669E-05 3 3 2 5.81786513669E-05 4 3 2 5.94357490219E-05 1 4 2 4.30207913484E-04 2 4 2 -7.29651725582E-05 3 4 2 7.29651725582E-05 4 4 2 -4.30207913484E-04 1 1 3 1.38336454722E-52 2 1 3 -1.59217429019E-52 3 1 3 1.38336454722E-52 4 1 3 -1.17455480424E-52 1 2 3 -1.38336454722E-52 2 2 3 1.59217429019E-52 3 2 3 -1.38336454722E-52 4 2 3 1.17455480424E-52 1 3 3 -1.38336454722E-52 2 3 3 1.17455480424E-52 3 3 3 -1.38336454722E-52 4 3 3 1.59217429019E-52 1 4 3 1.38336454722E-52 2 4 3 -1.17455480424E-52 3 4 3 1.38336454722E-52 4 4 3 -1.59217429019E-52 1 1 4 -4.30207913484E-04 2 1 4 7.29651725582E-05 3 1 4 -7.29651725582E-05 4 1 4 4.30207913484E-04 1 2 4 5.94357490219E-05 2 2 4 5.81786513669E-05 3 2 4 -5.81786513669E-05 4 2 4 -5.94357490219E-05 1 3 4 5.94357490219E-05 2 3 4 5.81786513669E-05 3 3 4 -5.81786513669E-05 4 3 4 -5.94357490219E-05 1 4 4 -4.30207913484E-04 2 4 4 7.29651725582E-05 3 4 4 -7.29651725582E-05 4 4 4 4.30207913484E-04 1 3 2 2 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.60242649126E-04 3 1 2 0.00000000000E+00 4 1 2 3.60242649126E-04 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 -4.28494799632E-05 3 3 2 0.00000000000E+00 4 3 2 4.28494799632E-05 1 4 2 0.00000000000E+00 2 4 2 2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.60242649126E-04 3 1 4 0.00000000000E+00 4 1 4 -3.60242649126E-04 1 2 4 0.00000000000E+00 2 2 4 -2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 4.28494799632E-05 3 3 4 0.00000000000E+00 4 3 4 -4.28494799632E-05 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 1 3 2 3 1 1 1 5.80928112324E-35 2 1 1 -4.29104399061E-04 3 1 1 -5.80869337607E-35 4 1 1 4.29104399061E-04 1 2 1 -5.80898724966E-35 2 2 1 6.06947371606E-05 3 2 1 5.80898724966E-35 4 2 1 -6.06947371606E-05 1 3 1 5.80869337607E-35 2 3 1 6.06947371606E-05 3 3 1 -5.80928112324E-35 4 3 1 -6.06947371606E-05 1 4 1 -5.80898724966E-35 2 4 1 -4.29104399061E-04 3 4 1 5.80898724966E-35 4 4 1 4.29104399061E-04 1 1 2 -5.80869337607E-35 2 1 2 4.29104399061E-04 3 1 2 5.80928112324E-35 4 1 2 -4.29104399061E-04 1 2 2 5.80898724966E-35 2 2 2 -6.06947371606E-05 3 2 2 -5.80898724966E-35 4 2 2 6.06947371606E-05 1 3 2 -5.80928112324E-35 2 3 2 -6.06947371606E-05 3 3 2 5.80869337607E-35 4 3 2 6.06947371606E-05 1 4 2 5.80898724966E-35 2 4 2 4.29104399061E-04 3 4 2 -5.80898724966E-35 4 4 2 -4.29104399061E-04 1 1 3 5.50835456943E-35 2 1 3 -7.41155615893E-05 3 1 3 -5.50776682226E-35 4 1 3 7.41155615893E-05 1 2 3 -5.50806069584E-35 2 2 3 -5.93882407106E-05 3 2 3 5.50806069584E-35 4 2 3 5.93882407106E-05 1 3 3 5.50776682226E-35 2 3 3 -5.93882407106E-05 3 3 3 -5.50835456943E-35 4 3 3 5.93882407106E-05 1 4 3 -5.50806069584E-35 2 4 3 -7.41155615893E-05 3 4 3 5.50806069584E-35 4 4 3 7.41155615893E-05 1 1 4 -5.50776682226E-35 2 1 4 7.41155615893E-05 3 1 4 5.50835456943E-35 4 1 4 -7.41155615893E-05 1 2 4 5.50806069584E-35 2 2 4 5.93882407106E-05 3 2 4 -5.50806069584E-35 4 2 4 -5.93882407106E-05 1 3 4 -5.50835456943E-35 2 3 4 5.93882407106E-05 3 3 4 5.50776682226E-35 4 3 4 -5.93882407106E-05 1 4 4 5.50806069584E-35 2 4 4 7.41155615893E-05 3 4 4 -5.50806069584E-35 4 4 4 -7.41155615893E-05 1 3 2 4 1 1 1 1.37037308055E-02 2 1 1 3.09015600156E-06 3 1 1 -3.09015600156E-06 4 1 1 -1.37037308055E-02 1 2 1 -5.35140122641E-05 2 2 1 6.28362787078E-05 3 2 1 -6.28362787078E-05 4 2 1 5.35140122641E-05 1 3 1 8.88898306719E-06 2 3 1 -5.08309663984E-05 3 3 1 5.08309663984E-05 4 3 1 -8.88898306719E-06 1 4 1 -5.35140122641E-05 2 4 1 6.28362787078E-05 3 4 1 -6.28362787078E-05 4 4 1 5.35140122641E-05 1 1 2 -1.37037308055E-02 2 1 2 -3.09015600157E-06 3 1 2 3.09015600156E-06 4 1 2 1.37037308055E-02 1 2 2 5.35140122641E-05 2 2 2 -6.28362787078E-05 3 2 2 6.28362787078E-05 4 2 2 -5.35140122641E-05 1 3 2 -8.88898306719E-06 2 3 2 5.08309663984E-05 3 3 2 -5.08309663984E-05 4 3 2 8.88898306719E-06 1 4 2 5.35140122641E-05 2 4 2 -6.28362787078E-05 3 4 2 6.28362787078E-05 4 4 2 -5.35140122641E-05 1 1 3 -3.09015600156E-06 2 1 3 5.77062827953E-05 3 1 3 -5.77062827953E-05 4 1 3 3.09015600156E-06 1 2 3 -6.28362787078E-05 2 2 3 -7.29860027984E-05 3 2 3 7.29860027984E-05 4 2 3 6.28362787078E-05 1 3 3 5.08309663984E-05 2 3 3 -1.14095454955E-04 3 3 3 1.14095454955E-04 4 3 3 -5.08309663984E-05 1 4 3 -6.28362787078E-05 2 4 3 -7.29860027984E-05 3 4 3 7.29860027984E-05 4 4 3 6.28362787078E-05 1 1 4 3.09015600156E-06 2 1 4 -5.77062827953E-05 3 1 4 5.77062827953E-05 4 1 4 -3.09015600157E-06 1 2 4 6.28362787078E-05 2 2 4 7.29860027984E-05 3 2 4 -7.29860027984E-05 4 2 4 -6.28362787078E-05 1 3 4 -5.08309663984E-05 2 3 4 1.14095454955E-04 3 3 4 -1.14095454955E-04 4 3 4 5.08309663984E-05 1 4 4 6.28362787078E-05 2 4 4 7.29860027984E-05 3 4 4 -7.29860027984E-05 4 4 4 -6.28362787078E-05 1 3 3 1 1 1 1 -1.37034719794E-02 2 1 1 -2.89107873125E-06 3 1 1 2.89107873124E-06 4 1 1 1.37034719794E-02 1 2 1 5.49179727281E-05 2 2 1 -6.14846955406E-05 3 2 1 6.14846955406E-05 4 2 1 -5.49179727281E-05 1 3 1 -9.43100515625E-06 2 3 1 5.04826262437E-05 3 3 1 -5.04826262437E-05 4 3 1 9.43100515625E-06 1 4 1 5.49179727281E-05 2 4 1 -6.14846955406E-05 3 4 1 6.14846955406E-05 4 4 1 -5.49179727281E-05 1 1 2 -4.83480209375E-06 2 1 2 5.62294541937E-05 3 1 2 -5.62294541937E-05 4 1 2 4.83480209375E-06 1 2 2 -6.14233913281E-05 2 2 2 -7.16518208969E-05 3 2 2 7.16518208969E-05 4 2 2 6.14233913281E-05 1 3 2 5.22875046812E-05 2 3 2 -1.12779887531E-04 3 3 2 1.12779887531E-04 4 3 2 -5.22875046813E-05 1 4 2 -6.14233913281E-05 2 4 2 -7.16518208969E-05 3 4 2 7.16518208969E-05 4 4 2 6.14233913281E-05 1 1 3 4.83480209374E-06 2 1 3 -5.62294541937E-05 3 1 3 5.62294541938E-05 4 1 3 -4.83480209375E-06 1 2 3 6.14233913281E-05 2 2 3 7.16518208969E-05 3 2 3 -7.16518208969E-05 4 2 3 -6.14233913281E-05 1 3 3 -5.22875046812E-05 2 3 3 1.12779887531E-04 3 3 3 -1.12779887531E-04 4 3 3 5.22875046812E-05 1 4 3 6.14233913281E-05 2 4 3 7.16518208969E-05 3 4 3 -7.16518208969E-05 4 4 3 -6.14233913281E-05 1 1 4 1.37034719794E-02 2 1 4 2.89107873126E-06 3 1 4 -2.89107873125E-06 4 1 4 -1.37034719794E-02 1 2 4 -5.49179727281E-05 2 2 4 6.14846955406E-05 3 2 4 -6.14846955406E-05 4 2 4 5.49179727281E-05 1 3 4 9.43100515625E-06 2 3 4 -5.04826262438E-05 3 3 4 5.04826262437E-05 4 3 4 -9.43100515625E-06 1 4 4 -5.49179727281E-05 2 4 4 6.14846955406E-05 3 4 4 -6.14846955406E-05 4 4 4 5.49179727281E-05 1 3 3 2 1 1 1 5.80896787000E-35 2 1 1 4.30655140556E-04 3 1 1 -5.80896787000E-35 4 1 1 -4.30655140556E-04 1 2 1 -5.80896787000E-35 2 2 1 4.30655140556E-04 3 2 1 5.80896787000E-35 4 2 1 -4.30655140556E-04 1 3 1 5.80896787000E-35 2 3 1 -6.07755422331E-05 3 3 1 -5.80896787000E-35 4 3 1 6.07755422331E-05 1 4 1 -5.80896787000E-35 2 4 1 -6.07755422331E-05 3 4 1 5.80896787000E-35 4 4 1 6.07755422331E-05 1 1 2 -5.50804131619E-35 2 1 2 -7.22708198781E-05 3 1 2 5.50804131619E-35 4 1 2 7.22708198781E-05 1 2 2 5.50804131619E-35 2 2 2 -7.22708198781E-05 3 2 2 -5.50804131619E-35 4 2 2 7.22708198781E-05 1 3 2 -5.50804131619E-35 2 3 2 -5.97793100193E-05 3 3 2 5.50804131619E-35 4 3 2 5.97793100193E-05 1 4 2 5.50804131619E-35 2 4 2 -5.97793100193E-05 3 4 2 -5.50804131619E-35 4 4 2 5.97793100193E-05 1 1 3 5.50804131619E-35 2 1 3 7.22708198781E-05 3 1 3 -5.50804131619E-35 4 1 3 -7.22708198781E-05 1 2 3 -5.50804131619E-35 2 2 3 7.22708198781E-05 3 2 3 5.50804131619E-35 4 2 3 -7.22708198781E-05 1 3 3 5.50804131619E-35 2 3 3 5.97793100193E-05 3 3 3 -5.50804131619E-35 4 3 3 -5.97793100193E-05 1 4 3 -5.50804131619E-35 2 4 3 5.97793100193E-05 3 4 3 5.50804131619E-35 4 4 3 -5.97793100193E-05 1 1 4 -5.80896787000E-35 2 1 4 -4.30655140556E-04 3 1 4 5.80896787000E-35 4 1 4 4.30655140556E-04 1 2 4 5.80896787000E-35 2 2 4 -4.30655140556E-04 3 2 4 -5.80896787000E-35 4 2 4 4.30655140556E-04 1 3 4 -5.80896787000E-35 2 3 4 6.07755422331E-05 3 3 4 5.80896787000E-35 4 3 4 -6.07755422331E-05 1 4 4 5.80896787000E-35 2 4 4 6.07755422331E-05 3 4 4 -5.80896787000E-35 4 4 4 -6.07755422331E-05 1 3 3 3 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.62560554799E-04 3 1 2 0.00000000000E+00 4 1 2 3.62560554799E-04 1 2 2 0.00000000000E+00 2 2 2 2.01820592419E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01820592419E-04 1 3 2 0.00000000000E+00 2 3 2 -4.16200862765E-05 3 3 2 0.00000000000E+00 4 3 2 4.16200862765E-05 1 4 2 0.00000000000E+00 2 4 2 2.01820592419E-04 3 4 2 0.00000000000E+00 4 4 2 -2.01820592419E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.62560554799E-04 3 1 4 0.00000000000E+00 4 1 4 -3.62560554799E-04 1 2 4 0.00000000000E+00 2 2 4 -2.01820592419E-04 3 2 4 0.00000000000E+00 4 2 4 2.01820592419E-04 1 3 4 0.00000000000E+00 2 3 4 4.16200862765E-05 3 3 4 0.00000000000E+00 4 3 4 -4.16200862765E-05 1 4 4 0.00000000000E+00 2 4 4 -2.01820592419E-04 3 4 4 0.00000000000E+00 4 4 4 2.01820592419E-04 1 3 3 4 1 1 1 -2.93873587706E-39 2 1 1 -2.93873587706E-39 3 1 1 -2.93873587706E-39 4 1 1 -2.93873587706E-39 1 2 1 1.04404871488E-53 2 2 1 -1.04404871488E-53 3 2 1 -1.04404871488E-53 4 2 1 1.04404871488E-53 1 3 1 2.93873587706E-39 2 3 1 2.93873587706E-39 3 3 1 2.93873587706E-39 4 3 1 2.93873587706E-39 1 4 1 1.04404871488E-53 2 4 1 -1.04404871488E-53 3 4 1 -1.04404871488E-53 4 4 1 1.04404871488E-53 1 1 2 4.29104399061E-04 2 1 2 -7.41155615893E-05 3 1 2 7.41155615893E-05 4 1 2 -4.29104399061E-04 1 2 2 4.29104399061E-04 2 2 2 -7.41155615893E-05 3 2 2 7.41155615893E-05 4 2 2 -4.29104399061E-04 1 3 2 -6.06947371606E-05 2 3 2 -5.93882407106E-05 3 3 2 5.93882407106E-05 4 3 2 6.06947371606E-05 1 4 2 -6.06947371606E-05 2 4 2 -5.93882407106E-05 3 4 2 5.93882407106E-05 4 4 2 6.06947371606E-05 1 1 3 -2.93873587706E-39 2 1 3 -2.93873587706E-39 3 1 3 -2.93873587706E-39 4 1 3 -2.93873587706E-39 1 2 3 1.04404871488E-53 2 2 3 -1.04404871488E-53 3 2 3 -1.04404871488E-53 4 2 3 1.04404871488E-53 1 3 3 2.93873587706E-39 2 3 3 2.93873587706E-39 3 3 3 2.93873587706E-39 4 3 3 2.93873587706E-39 1 4 3 1.04404871488E-53 2 4 3 -1.04404871488E-53 3 4 3 -1.04404871488E-53 4 4 3 1.04404871488E-53 1 1 4 -4.29104399061E-04 2 1 4 7.41155615893E-05 3 1 4 -7.41155615893E-05 4 1 4 4.29104399061E-04 1 2 4 -4.29104399061E-04 2 2 4 7.41155615893E-05 3 2 4 -7.41155615893E-05 4 2 4 4.29104399061E-04 1 3 4 6.06947371606E-05 2 3 4 5.93882407106E-05 3 3 4 -5.93882407106E-05 4 3 4 -6.06947371606E-05 1 4 4 6.06947371606E-05 2 4 4 5.93882407106E-05 3 4 4 -5.93882407106E-05 4 4 4 -6.06947371606E-05 1 3 4 1 1 1 1 -5.80905007336E-35 2 1 1 4.28887761257E-04 3 1 1 5.80787457901E-35 4 1 1 -4.28887761257E-04 1 2 1 5.80846232619E-35 2 2 1 -6.01167308938E-05 3 2 1 -5.80846232619E-35 4 2 1 6.01167308938E-05 1 3 1 -5.80787457901E-35 2 3 1 -6.01167308938E-05 3 3 1 5.80905007336E-35 4 3 1 6.01167308938E-05 1 4 1 5.80846232619E-35 2 4 1 4.28887761257E-04 3 4 1 -5.80846232619E-35 4 4 1 -4.28887761257E-04 1 1 2 5.50694802520E-35 2 1 2 -7.21633081557E-05 3 1 2 -5.50812351955E-35 4 1 2 7.21633081557E-05 1 2 2 -5.50753577238E-35 2 2 2 -6.09870361569E-05 3 2 2 5.50753577238E-35 4 2 2 6.09870361569E-05 1 3 2 5.50812351955E-35 2 3 2 -6.09870361569E-05 3 3 2 -5.50694802520E-35 4 3 2 6.09870361569E-05 1 4 2 -5.50753577238E-35 2 4 2 -7.21633081557E-05 3 4 2 5.50753577238E-35 4 4 2 7.21633081557E-05 1 1 3 -5.50812351955E-35 2 1 3 7.21633081557E-05 3 1 3 5.50694802520E-35 4 1 3 -7.21633081557E-05 1 2 3 5.50753577238E-35 2 2 3 6.09870361569E-05 3 2 3 -5.50753577238E-35 4 2 3 -6.09870361569E-05 1 3 3 -5.50694802520E-35 2 3 3 6.09870361569E-05 3 3 3 5.50812351955E-35 4 3 3 -6.09870361569E-05 1 4 3 5.50753577238E-35 2 4 3 7.21633081557E-05 3 4 3 -5.50753577238E-35 4 4 3 -7.21633081557E-05 1 1 4 5.80787457901E-35 2 1 4 -4.28887761257E-04 3 1 4 -5.80905007336E-35 4 1 4 4.28887761257E-04 1 2 4 -5.80846232619E-35 2 2 4 6.01167308938E-05 3 2 4 5.80846232619E-35 4 2 4 -6.01167308938E-05 1 3 4 5.80905007336E-35 2 3 4 6.01167308938E-05 3 3 4 -5.80787457901E-35 4 3 4 -6.01167308938E-05 1 4 4 -5.80846232619E-35 2 4 4 -4.28887761257E-04 3 4 4 5.80846232619E-35 4 4 4 4.28887761257E-04 1 3 4 2 1 1 1 1.37067712500E-02 2 1 1 -1.37067712500E-02 3 1 1 -5.75450117499E-06 4 1 1 5.75450117500E-06 1 2 1 -5.50718982125E-05 2 2 1 5.50718982125E-05 3 2 1 -6.16300101687E-05 4 2 1 6.16300101687E-05 1 3 1 6.09222033125E-06 2 3 1 -6.09222033125E-06 3 3 1 5.39320003250E-05 4 3 1 -5.39320003250E-05 1 4 1 -5.50718982125E-05 2 4 1 5.50718982125E-05 3 4 1 -6.16300101688E-05 4 4 1 6.16300101688E-05 1 1 2 5.75450117500E-06 2 1 2 -5.75450117501E-06 3 1 2 5.48592277812E-05 4 1 2 -5.48592277812E-05 1 2 2 6.16300101687E-05 2 2 2 -6.16300101687E-05 3 2 2 -7.15648150250E-05 4 2 2 7.15648150250E-05 1 3 2 -5.39320003250E-05 2 3 2 5.39320003250E-05 3 3 2 -1.11266984644E-04 4 3 2 1.11266984644E-04 1 4 2 6.16300101688E-05 2 4 2 -6.16300101688E-05 3 4 2 -7.15648150250E-05 4 4 2 7.15648150250E-05 1 1 3 -5.75450117499E-06 2 1 3 5.75450117500E-06 3 1 3 -5.48592277813E-05 4 1 3 5.48592277812E-05 1 2 3 -6.16300101687E-05 2 2 3 6.16300101687E-05 3 2 3 7.15648150250E-05 4 2 3 -7.15648150250E-05 1 3 3 5.39320003250E-05 2 3 3 -5.39320003250E-05 3 3 3 1.11266984644E-04 4 3 3 -1.11266984644E-04 1 4 3 -6.16300101688E-05 2 4 3 6.16300101688E-05 3 4 3 7.15648150250E-05 4 4 3 -7.15648150250E-05 1 1 4 -1.37067712500E-02 2 1 4 1.37067712500E-02 3 1 4 5.75450117500E-06 4 1 4 -5.75450117501E-06 1 2 4 5.50718982125E-05 2 2 4 -5.50718982125E-05 3 2 4 6.16300101687E-05 4 2 4 -6.16300101687E-05 1 3 4 -6.09222033125E-06 2 3 4 6.09222033125E-06 3 3 4 -5.39320003250E-05 4 3 4 5.39320003250E-05 1 4 4 5.50718982125E-05 2 4 4 -5.50718982125E-05 3 4 4 6.16300101688E-05 4 4 4 -6.16300101688E-05 1 3 4 3 1 1 1 5.22024357439E-54 2 1 1 5.22024357439E-54 3 1 1 -1.56607307232E-53 4 1 1 -1.56607307232E-53 1 2 1 -1.56607307232E-53 2 2 1 -1.56607307232E-53 3 2 1 5.22024357439E-54 4 2 1 5.22024357439E-54 1 3 1 1.56607307232E-53 2 3 1 1.56607307232E-53 3 3 1 -5.22024357439E-54 4 3 1 -5.22024357439E-54 1 4 1 -5.22024357439E-54 2 4 1 -5.22024357439E-54 3 4 1 1.56607307232E-53 4 4 1 1.56607307232E-53 1 1 2 -4.30655140556E-04 2 1 2 4.30655140556E-04 3 1 2 -7.22708198781E-05 4 1 2 7.22708198781E-05 1 2 2 6.07755422331E-05 2 2 2 -6.07755422331E-05 3 2 2 -5.97793100193E-05 4 2 2 5.97793100193E-05 1 3 2 6.07755422331E-05 2 3 2 -6.07755422331E-05 3 3 2 -5.97793100193E-05 4 3 2 5.97793100193E-05 1 4 2 -4.30655140556E-04 2 4 2 4.30655140556E-04 3 4 2 -7.22708198781E-05 4 4 2 7.22708198781E-05 1 1 3 5.22024357439E-54 2 1 3 5.22024357439E-54 3 1 3 -1.56607307232E-53 4 1 3 -1.56607307232E-53 1 2 3 -1.56607307232E-53 2 2 3 -1.56607307232E-53 3 2 3 5.22024357439E-54 4 2 3 5.22024357439E-54 1 3 3 1.56607307232E-53 2 3 3 1.56607307232E-53 3 3 3 -5.22024357439E-54 4 3 3 -5.22024357439E-54 1 4 3 -5.22024357439E-54 2 4 3 -5.22024357439E-54 3 4 3 1.56607307232E-53 4 4 3 1.56607307232E-53 1 1 4 4.30655140556E-04 2 1 4 -4.30655140556E-04 3 1 4 7.22708198781E-05 4 1 4 -7.22708198781E-05 1 2 4 -6.07755422331E-05 2 2 4 6.07755422331E-05 3 2 4 5.97793100193E-05 4 2 4 -5.97793100193E-05 1 3 4 -6.07755422331E-05 2 3 4 6.07755422331E-05 3 3 4 5.97793100193E-05 4 3 4 -5.97793100193E-05 1 4 4 4.30655140556E-04 2 4 4 -4.30655140556E-04 3 4 4 7.22708198781E-05 4 4 4 -7.22708198781E-05 1 3 4 4 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.60242649126E-04 3 1 2 0.00000000000E+00 4 1 2 3.60242649126E-04 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 -4.28494799632E-05 3 3 2 0.00000000000E+00 4 3 2 4.28494799632E-05 1 4 2 0.00000000000E+00 2 4 2 2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.60242649126E-04 3 1 4 0.00000000000E+00 4 1 4 -3.60242649126E-04 1 2 4 0.00000000000E+00 2 2 4 -2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 4.28494799632E-05 3 3 4 0.00000000000E+00 4 3 4 -4.28494799632E-05 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 2 1 1 1 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.58946644406E-04 3 2 1 0.00000000000E+00 4 2 1 3.58946644406E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.58946644406E-04 3 4 1 0.00000000000E+00 4 4 1 -3.58946644406E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.01525037763E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01525037763E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.01525037763E-04 3 4 2 0.00000000000E+00 4 4 2 2.01525037763E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.58505889412E-05 3 2 3 0.00000000000E+00 4 2 3 4.58505889412E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.58505889412E-05 3 4 3 0.00000000000E+00 4 4 3 -4.58505889412E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.01525037763E-04 3 2 4 0.00000000000E+00 4 2 4 -2.01525037763E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.01525037763E-04 3 4 4 0.00000000000E+00 4 4 4 2.01525037763E-04 2 1 1 2 1 1 1 -1.37034719794E-02 2 1 1 1.37034719794E-02 3 1 1 2.89107873124E-06 4 1 1 -2.89107873125E-06 1 2 1 1.37034719794E-02 2 2 1 -1.37034719794E-02 3 2 1 -2.89107873125E-06 4 2 1 2.89107873126E-06 1 3 1 4.83480209374E-06 2 3 1 -4.83480209375E-06 3 3 1 5.62294541938E-05 4 3 1 -5.62294541937E-05 1 4 1 -4.83480209375E-06 2 4 1 4.83480209376E-06 3 4 1 -5.62294541937E-05 4 4 1 5.62294541937E-05 1 1 2 5.49179727281E-05 2 1 2 -5.49179727281E-05 3 1 2 6.14846955406E-05 4 1 2 -6.14846955406E-05 1 2 2 -5.49179727281E-05 2 2 2 5.49179727281E-05 3 2 2 -6.14846955406E-05 4 2 2 6.14846955406E-05 1 3 2 6.14233913281E-05 2 3 2 -6.14233913281E-05 3 3 2 -7.16518208969E-05 4 3 2 7.16518208969E-05 1 4 2 -6.14233913281E-05 2 4 2 6.14233913281E-05 3 4 2 7.16518208969E-05 4 4 2 -7.16518208969E-05 1 1 3 -9.43100515625E-06 2 1 3 9.43100515625E-06 3 1 3 -5.04826262437E-05 4 1 3 5.04826262437E-05 1 2 3 9.43100515625E-06 2 2 3 -9.43100515625E-06 3 2 3 5.04826262437E-05 4 2 3 -5.04826262438E-05 1 3 3 -5.22875046812E-05 2 3 3 5.22875046812E-05 3 3 3 -1.12779887531E-04 4 3 3 1.12779887531E-04 1 4 3 5.22875046812E-05 2 4 3 -5.22875046813E-05 3 4 3 1.12779887531E-04 4 4 3 -1.12779887531E-04 1 1 4 5.49179727281E-05 2 1 4 -5.49179727281E-05 3 1 4 6.14846955406E-05 4 1 4 -6.14846955406E-05 1 2 4 -5.49179727281E-05 2 2 4 5.49179727281E-05 3 2 4 -6.14846955406E-05 4 2 4 6.14846955406E-05 1 3 4 6.14233913281E-05 2 3 4 -6.14233913281E-05 3 3 4 -7.16518208969E-05 4 3 4 7.16518208969E-05 1 4 4 -6.14233913281E-05 2 4 4 6.14233913281E-05 3 4 4 7.16518208969E-05 4 4 4 -7.16518208969E-05 2 1 1 3 1 1 1 -1.50463276905E-36 2 1 1 1.50463276905E-36 3 1 1 1.50463276905E-36 4 1 1 -1.50463276905E-36 1 2 1 -4.30207913484E-04 2 2 1 4.30207913484E-04 3 2 1 -7.29651725582E-05 4 2 1 7.29651725582E-05 1 3 1 1.50463276905E-36 2 3 1 -1.50463276905E-36 3 3 1 -1.50463276905E-36 4 3 1 1.50463276905E-36 1 4 1 4.30207913484E-04 2 4 1 -4.30207913484E-04 3 4 1 7.29651725582E-05 4 4 1 -7.29651725582E-05 1 1 2 1.50463276905E-36 2 1 2 -1.50463276905E-36 3 1 2 -1.50463276905E-36 4 1 2 1.50463276905E-36 1 2 2 -4.30207913484E-04 2 2 2 4.30207913484E-04 3 2 2 -7.29651725582E-05 4 2 2 7.29651725582E-05 1 3 2 -1.50463276905E-36 2 3 2 1.50463276905E-36 3 3 2 1.50463276905E-36 4 3 2 -1.50463276905E-36 1 4 2 4.30207913484E-04 2 4 2 -4.30207913484E-04 3 4 2 7.29651725582E-05 4 4 2 -7.29651725582E-05 1 1 3 -1.50463276905E-36 2 1 3 1.50463276905E-36 3 1 3 1.50463276905E-36 4 1 3 -1.50463276905E-36 1 2 3 5.94357490219E-05 2 2 3 -5.94357490219E-05 3 2 3 -5.81786513669E-05 4 2 3 5.81786513669E-05 1 3 3 1.50463276905E-36 2 3 3 -1.50463276905E-36 3 3 3 -1.50463276905E-36 4 3 3 1.50463276905E-36 1 4 3 -5.94357490219E-05 2 4 3 5.94357490219E-05 3 4 3 5.81786513669E-05 4 4 3 -5.81786513669E-05 1 1 4 1.50463276905E-36 2 1 4 -1.50463276905E-36 3 1 4 -1.50463276905E-36 4 1 4 1.50463276905E-36 1 2 4 5.94357490219E-05 2 2 4 -5.94357490219E-05 3 2 4 -5.81786513669E-05 4 2 4 5.81786513669E-05 1 3 4 -1.50463276905E-36 2 3 4 1.50463276905E-36 3 3 4 1.50463276905E-36 4 3 4 -1.50463276905E-36 1 4 4 -5.94357490219E-05 2 4 4 5.94357490219E-05 3 4 4 5.81786513669E-05 4 4 4 -5.81786513669E-05 2 1 1 4 1 1 1 1.51051024081E-36 2 1 1 -4.28887761257E-04 3 1 1 -1.49875529730E-36 4 1 1 4.28887761257E-04 1 2 1 -1.49875529730E-36 2 2 1 4.28887761257E-04 3 2 1 1.51051024081E-36 4 2 1 -4.28887761257E-04 1 3 1 -1.49875529730E-36 2 3 1 -7.21633081557E-05 3 3 1 1.51051024081E-36 4 3 1 7.21633081557E-05 1 4 1 1.51051024081E-36 2 4 1 7.21633081557E-05 3 4 1 -1.49875529730E-36 4 4 1 -7.21633081557E-05 1 1 2 -1.50463276905E-36 2 1 2 -4.28887761257E-04 3 1 2 1.50463276905E-36 4 1 2 4.28887761257E-04 1 2 2 1.50463276905E-36 2 2 2 4.28887761257E-04 3 2 2 -1.50463276905E-36 4 2 2 -4.28887761257E-04 1 3 2 1.50463276905E-36 2 3 2 -7.21633081557E-05 3 3 2 -1.50463276905E-36 4 3 2 7.21633081557E-05 1 4 2 -1.50463276905E-36 2 4 2 7.21633081557E-05 3 4 2 1.50463276905E-36 4 4 2 -7.21633081557E-05 1 1 3 1.49875529730E-36 2 1 3 6.01167308938E-05 3 1 3 -1.51051024081E-36 4 1 3 -6.01167308938E-05 1 2 3 -1.51051024081E-36 2 2 3 -6.01167308938E-05 3 2 3 1.49875529730E-36 4 2 3 6.01167308938E-05 1 3 3 -1.51051024081E-36 2 3 3 -6.09870361569E-05 3 3 3 1.49875529730E-36 4 3 3 6.09870361569E-05 1 4 3 1.49875529730E-36 2 4 3 6.09870361569E-05 3 4 3 -1.51051024081E-36 4 4 3 -6.09870361569E-05 1 1 4 -1.50463276905E-36 2 1 4 6.01167308938E-05 3 1 4 1.50463276905E-36 4 1 4 -6.01167308938E-05 1 2 4 1.50463276905E-36 2 2 4 -6.01167308938E-05 3 2 4 -1.50463276905E-36 4 2 4 6.01167308938E-05 1 3 4 1.50463276905E-36 2 3 4 -6.09870361569E-05 3 3 4 -1.50463276905E-36 4 3 4 6.09870361569E-05 1 4 4 -1.50463276905E-36 2 4 4 6.09870361569E-05 3 4 4 1.50463276905E-36 4 4 4 -6.09870361569E-05 2 1 2 1 1 1 1 -1.37034719794E-02 2 1 1 -4.83480209375E-06 3 1 1 4.83480209374E-06 4 1 1 1.37034719794E-02 1 2 1 -2.89107873125E-06 2 2 1 5.62294541937E-05 3 2 1 -5.62294541937E-05 4 2 1 2.89107873126E-06 1 3 1 2.89107873124E-06 2 3 1 -5.62294541937E-05 3 3 1 5.62294541938E-05 4 3 1 -2.89107873125E-06 1 4 1 1.37034719794E-02 2 4 1 4.83480209376E-06 3 4 1 -4.83480209375E-06 4 4 1 -1.37034719794E-02 1 1 2 5.49179727281E-05 2 1 2 -6.14233913281E-05 3 1 2 6.14233913281E-05 4 1 2 -5.49179727281E-05 1 2 2 -6.14846955406E-05 2 2 2 -7.16518208969E-05 3 2 2 7.16518208969E-05 4 2 2 6.14846955406E-05 1 3 2 6.14846955406E-05 2 3 2 7.16518208969E-05 3 3 2 -7.16518208969E-05 4 3 2 -6.14846955406E-05 1 4 2 -5.49179727281E-05 2 4 2 6.14233913281E-05 3 4 2 -6.14233913281E-05 4 4 2 5.49179727281E-05 1 1 3 -9.43100515625E-06 2 1 3 5.22875046813E-05 3 1 3 -5.22875046813E-05 4 1 3 9.43100515625E-06 1 2 3 5.04826262437E-05 2 2 3 -1.12779887531E-04 3 2 3 1.12779887531E-04 4 2 3 -5.04826262437E-05 1 3 3 -5.04826262437E-05 2 3 3 1.12779887531E-04 3 3 3 -1.12779887531E-04 4 3 3 5.04826262437E-05 1 4 3 9.43100515625E-06 2 4 3 -5.22875046813E-05 3 4 3 5.22875046813E-05 4 4 3 -9.43100515625E-06 1 1 4 5.49179727281E-05 2 1 4 -6.14233913281E-05 3 1 4 6.14233913281E-05 4 1 4 -5.49179727281E-05 1 2 4 -6.14846955406E-05 2 2 4 -7.16518208969E-05 3 2 4 7.16518208969E-05 4 2 4 6.14846955406E-05 1 3 4 6.14846955406E-05 2 3 4 7.16518208969E-05 3 3 4 -7.16518208969E-05 4 3 4 -6.14846955406E-05 1 4 4 -5.49179727281E-05 2 4 4 6.14233913281E-05 3 4 4 -6.14233913281E-05 4 4 4 5.49179727281E-05 2 1 2 2 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.62560554799E-04 3 2 1 0.00000000000E+00 4 2 1 3.62560554799E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.62560554799E-04 3 4 1 0.00000000000E+00 4 4 1 -3.62560554799E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.01820592419E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01820592419E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.01820592419E-04 3 4 2 0.00000000000E+00 4 4 2 2.01820592419E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.16200862765E-05 3 2 3 0.00000000000E+00 4 2 3 4.16200862765E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.16200862765E-05 3 4 3 0.00000000000E+00 4 4 3 -4.16200862765E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.01820592419E-04 3 2 4 0.00000000000E+00 4 2 4 -2.01820592419E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.01820592419E-04 3 4 4 0.00000000000E+00 4 4 4 2.01820592419E-04 2 1 2 3 1 1 1 -1.50757150493E-36 2 1 1 4.29104399061E-04 3 1 1 1.50169403318E-36 4 1 1 -4.29104399061E-04 1 2 1 -1.50757150493E-36 2 2 1 -7.41155615893E-05 3 2 1 1.50169403318E-36 4 2 1 7.41155615893E-05 1 3 1 1.50169403318E-36 2 3 1 7.41155615893E-05 3 3 1 -1.50757150493E-36 4 3 1 -7.41155615893E-05 1 4 1 1.50169403318E-36 2 4 1 -4.29104399061E-04 3 4 1 -1.50757150493E-36 4 4 1 4.29104399061E-04 1 1 2 1.50463276905E-36 2 1 2 4.29104399061E-04 3 1 2 -1.50463276905E-36 4 1 2 -4.29104399061E-04 1 2 2 1.50463276905E-36 2 2 2 -7.41155615893E-05 3 2 2 -1.50463276905E-36 4 2 2 7.41155615893E-05 1 3 2 -1.50463276905E-36 2 3 2 7.41155615893E-05 3 3 2 1.50463276905E-36 4 3 2 -7.41155615893E-05 1 4 2 -1.50463276905E-36 2 4 2 -4.29104399061E-04 3 4 2 1.50463276905E-36 4 4 2 4.29104399061E-04 1 1 3 -1.50169403318E-36 2 1 3 -6.06947371606E-05 3 1 3 1.50757150493E-36 4 1 3 6.06947371606E-05 1 2 3 -1.50169403318E-36 2 2 3 -5.93882407106E-05 3 2 3 1.50757150493E-36 4 2 3 5.93882407106E-05 1 3 3 1.50757150493E-36 2 3 3 5.93882407106E-05 3 3 3 -1.50169403318E-36 4 3 3 -5.93882407106E-05 1 4 3 1.50757150493E-36 2 4 3 6.06947371606E-05 3 4 3 -1.50169403318E-36 4 4 3 -6.06947371606E-05 1 1 4 1.50463276905E-36 2 1 4 -6.06947371606E-05 3 1 4 -1.50463276905E-36 4 1 4 6.06947371606E-05 1 2 4 1.50463276905E-36 2 2 4 -5.93882407106E-05 3 2 4 -1.50463276905E-36 4 2 4 5.93882407106E-05 1 3 4 -1.50463276905E-36 2 3 4 5.93882407106E-05 3 3 4 1.50463276905E-36 4 3 4 -5.93882407106E-05 1 4 4 -1.50463276905E-36 2 4 4 6.06947371606E-05 3 4 4 1.50463276905E-36 4 4 4 -6.06947371606E-05 2 1 2 4 1 1 1 1.50463276905E-36 2 1 1 1.50463276905E-36 3 1 1 -1.50463276905E-36 4 1 1 -1.50463276905E-36 1 2 1 4.30655140556E-04 2 2 1 -7.22708198781E-05 3 2 1 7.22708198781E-05 4 2 1 -4.30655140556E-04 1 3 1 -1.50463276905E-36 2 3 1 -1.50463276905E-36 3 3 1 1.50463276905E-36 4 3 1 1.50463276905E-36 1 4 1 -4.30655140556E-04 2 4 1 7.22708198781E-05 3 4 1 -7.22708198781E-05 4 4 1 4.30655140556E-04 1 1 2 -1.50463276905E-36 2 1 2 -1.50463276905E-36 3 1 2 1.50463276905E-36 4 1 2 1.50463276905E-36 1 2 2 4.30655140556E-04 2 2 2 -7.22708198781E-05 3 2 2 7.22708198781E-05 4 2 2 -4.30655140556E-04 1 3 2 1.50463276905E-36 2 3 2 1.50463276905E-36 3 3 2 -1.50463276905E-36 4 3 2 -1.50463276905E-36 1 4 2 -4.30655140556E-04 2 4 2 7.22708198781E-05 3 4 2 -7.22708198781E-05 4 4 2 4.30655140556E-04 1 1 3 1.50463276905E-36 2 1 3 1.50463276905E-36 3 1 3 -1.50463276905E-36 4 1 3 -1.50463276905E-36 1 2 3 -6.07755422331E-05 2 2 3 -5.97793100193E-05 3 2 3 5.97793100193E-05 4 2 3 6.07755422331E-05 1 3 3 -1.50463276905E-36 2 3 3 -1.50463276905E-36 3 3 3 1.50463276905E-36 4 3 3 1.50463276905E-36 1 4 3 6.07755422331E-05 2 4 3 5.97793100193E-05 3 4 3 -5.97793100193E-05 4 4 3 -6.07755422331E-05 1 1 4 -1.50463276905E-36 2 1 4 -1.50463276905E-36 3 1 4 1.50463276905E-36 4 1 4 1.50463276905E-36 1 2 4 -6.07755422331E-05 2 2 4 -5.97793100193E-05 3 2 4 5.97793100193E-05 4 2 4 6.07755422331E-05 1 3 4 1.50463276905E-36 2 3 4 1.50463276905E-36 3 3 4 -1.50463276905E-36 4 3 4 -1.50463276905E-36 1 4 4 6.07755422331E-05 2 4 4 5.97793100193E-05 3 4 4 -5.97793100193E-05 4 4 4 -6.07755422331E-05 2 1 3 1 1 1 1 -1.51051024081E-36 2 1 1 -1.51051024081E-36 3 1 1 1.49875529730E-36 4 1 1 1.49875529730E-36 1 2 1 4.28887761257E-04 2 2 1 -7.21633081557E-05 3 2 1 7.21633081557E-05 4 2 1 -4.28887761257E-04 1 3 1 1.49875529730E-36 2 3 1 1.49875529730E-36 3 3 1 -1.51051024081E-36 4 3 1 -1.51051024081E-36 1 4 1 -4.28887761257E-04 2 4 1 7.21633081557E-05 3 4 1 -7.21633081557E-05 4 4 1 4.28887761257E-04 1 1 2 1.50463276905E-36 2 1 2 1.50463276905E-36 3 1 2 -1.50463276905E-36 4 1 2 -1.50463276905E-36 1 2 2 -6.01167308938E-05 2 2 2 -6.09870361569E-05 3 2 2 6.09870361569E-05 4 2 2 6.01167308938E-05 1 3 2 -1.50463276905E-36 2 3 2 -1.50463276905E-36 3 3 2 1.50463276905E-36 4 3 2 1.50463276905E-36 1 4 2 6.01167308938E-05 2 4 2 6.09870361569E-05 3 4 2 -6.09870361569E-05 4 4 2 -6.01167308938E-05 1 1 3 -1.49875529730E-36 2 1 3 -1.49875529730E-36 3 1 3 1.51051024081E-36 4 1 3 1.51051024081E-36 1 2 3 -6.01167308938E-05 2 2 3 -6.09870361569E-05 3 2 3 6.09870361569E-05 4 2 3 6.01167308938E-05 1 3 3 1.51051024081E-36 2 3 3 1.51051024081E-36 3 3 3 -1.49875529730E-36 4 3 3 -1.49875529730E-36 1 4 3 6.01167308938E-05 2 4 3 6.09870361569E-05 3 4 3 -6.09870361569E-05 4 4 3 -6.01167308938E-05 1 1 4 1.50463276905E-36 2 1 4 1.50463276905E-36 3 1 4 -1.50463276905E-36 4 1 4 -1.50463276905E-36 1 2 4 4.28887761257E-04 2 2 4 -7.21633081557E-05 3 2 4 7.21633081557E-05 4 2 4 -4.28887761257E-04 1 3 4 -1.50463276905E-36 2 3 4 -1.50463276905E-36 3 3 4 1.50463276905E-36 4 3 4 1.50463276905E-36 1 4 4 -4.28887761257E-04 2 4 4 7.21633081557E-05 3 4 4 -7.21633081557E-05 4 4 4 4.28887761257E-04 2 1 3 2 1 1 1 -1.50463276905E-36 2 1 1 -4.30655140556E-04 3 1 1 1.50463276905E-36 4 1 1 4.30655140556E-04 1 2 1 1.50463276905E-36 2 2 1 4.30655140556E-04 3 2 1 -1.50463276905E-36 4 2 1 -4.30655140556E-04 1 3 1 1.50463276905E-36 2 3 1 -7.22708198781E-05 3 3 1 -1.50463276905E-36 4 3 1 7.22708198781E-05 1 4 1 -1.50463276905E-36 2 4 1 7.22708198781E-05 3 4 1 1.50463276905E-36 4 4 1 -7.22708198781E-05 1 1 2 1.50463276905E-36 2 1 2 6.07755422331E-05 3 1 2 -1.50463276905E-36 4 1 2 -6.07755422331E-05 1 2 2 -1.50463276905E-36 2 2 2 -6.07755422331E-05 3 2 2 1.50463276905E-36 4 2 2 6.07755422331E-05 1 3 2 -1.50463276905E-36 2 3 2 -5.97793100193E-05 3 3 2 1.50463276905E-36 4 3 2 5.97793100193E-05 1 4 2 1.50463276905E-36 2 4 2 5.97793100193E-05 3 4 2 -1.50463276905E-36 4 4 2 -5.97793100193E-05 1 1 3 -1.50463276905E-36 2 1 3 6.07755422331E-05 3 1 3 1.50463276905E-36 4 1 3 -6.07755422331E-05 1 2 3 1.50463276905E-36 2 2 3 -6.07755422331E-05 3 2 3 -1.50463276905E-36 4 2 3 6.07755422331E-05 1 3 3 1.50463276905E-36 2 3 3 -5.97793100193E-05 3 3 3 -1.50463276905E-36 4 3 3 5.97793100193E-05 1 4 3 -1.50463276905E-36 2 4 3 5.97793100193E-05 3 4 3 1.50463276905E-36 4 4 3 -5.97793100193E-05 1 1 4 1.50463276905E-36 2 1 4 -4.30655140556E-04 3 1 4 -1.50463276905E-36 4 1 4 4.30655140556E-04 1 2 4 -1.50463276905E-36 2 2 4 4.30655140556E-04 3 2 4 1.50463276905E-36 4 2 4 -4.30655140556E-04 1 3 4 -1.50463276905E-36 2 3 4 -7.22708198781E-05 3 3 4 1.50463276905E-36 4 3 4 7.22708198781E-05 1 4 4 1.50463276905E-36 2 4 4 7.22708198781E-05 3 4 4 -1.50463276905E-36 4 4 4 -7.22708198781E-05 2 1 3 3 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.60242649126E-04 3 2 1 0.00000000000E+00 4 2 1 3.60242649126E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.60242649126E-04 3 4 1 0.00000000000E+00 4 4 1 -3.60242649126E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.28494799632E-05 3 2 3 0.00000000000E+00 4 2 3 4.28494799632E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.28494799632E-05 3 4 3 0.00000000000E+00 4 4 3 -4.28494799632E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 2 1 3 4 1 1 1 1.37067712500E-02 2 1 1 5.75450117500E-06 3 1 1 -5.75450117499E-06 4 1 1 -1.37067712500E-02 1 2 1 -1.37067712500E-02 2 2 1 -5.75450117501E-06 3 2 1 5.75450117500E-06 4 2 1 1.37067712500E-02 1 3 1 -5.75450117499E-06 2 3 1 5.48592277812E-05 3 3 1 -5.48592277813E-05 4 3 1 5.75450117500E-06 1 4 1 5.75450117500E-06 2 4 1 -5.48592277812E-05 3 4 1 5.48592277812E-05 4 4 1 -5.75450117501E-06 1 1 2 -5.50718982125E-05 2 1 2 6.16300101688E-05 3 1 2 -6.16300101688E-05 4 1 2 5.50718982125E-05 1 2 2 5.50718982125E-05 2 2 2 -6.16300101688E-05 3 2 2 6.16300101688E-05 4 2 2 -5.50718982125E-05 1 3 2 -6.16300101688E-05 2 3 2 -7.15648150250E-05 3 3 2 7.15648150250E-05 4 3 2 6.16300101688E-05 1 4 2 6.16300101688E-05 2 4 2 7.15648150250E-05 3 4 2 -7.15648150250E-05 4 4 2 -6.16300101688E-05 1 1 3 6.09222033125E-06 2 1 3 -5.39320003250E-05 3 1 3 5.39320003250E-05 4 1 3 -6.09222033125E-06 1 2 3 -6.09222033125E-06 2 2 3 5.39320003250E-05 3 2 3 -5.39320003250E-05 4 2 3 6.09222033125E-06 1 3 3 5.39320003250E-05 2 3 3 -1.11266984644E-04 3 3 3 1.11266984644E-04 4 3 3 -5.39320003250E-05 1 4 3 -5.39320003250E-05 2 4 3 1.11266984644E-04 3 4 3 -1.11266984644E-04 4 4 3 5.39320003250E-05 1 1 4 -5.50718982125E-05 2 1 4 6.16300101687E-05 3 1 4 -6.16300101687E-05 4 1 4 5.50718982125E-05 1 2 4 5.50718982125E-05 2 2 4 -6.16300101687E-05 3 2 4 6.16300101687E-05 4 2 4 -5.50718982125E-05 1 3 4 -6.16300101687E-05 2 3 4 -7.15648150250E-05 3 3 4 7.15648150250E-05 4 3 4 6.16300101687E-05 1 4 4 6.16300101687E-05 2 4 4 7.15648150250E-05 3 4 4 -7.15648150250E-05 4 4 4 -6.16300101687E-05 2 1 4 1 1 1 1 1.50463276905E-36 2 1 1 4.30207913484E-04 3 1 1 -1.50463276905E-36 4 1 1 -4.30207913484E-04 1 2 1 1.50463276905E-36 2 2 1 -7.29651725582E-05 3 2 1 -1.50463276905E-36 4 2 1 7.29651725582E-05 1 3 1 -1.50463276905E-36 2 3 1 7.29651725582E-05 3 3 1 1.50463276905E-36 4 3 1 -7.29651725582E-05 1 4 1 -1.50463276905E-36 2 4 1 -4.30207913484E-04 3 4 1 1.50463276905E-36 4 4 1 4.30207913484E-04 1 1 2 -1.50463276905E-36 2 1 2 -5.94357490219E-05 3 1 2 1.50463276905E-36 4 1 2 5.94357490219E-05 1 2 2 -1.50463276905E-36 2 2 2 -5.81786513669E-05 3 2 2 1.50463276905E-36 4 2 2 5.81786513669E-05 1 3 2 1.50463276905E-36 2 3 2 5.81786513669E-05 3 3 2 -1.50463276905E-36 4 3 2 -5.81786513669E-05 1 4 2 1.50463276905E-36 2 4 2 5.94357490219E-05 3 4 2 -1.50463276905E-36 4 4 2 -5.94357490219E-05 1 1 3 1.50463276905E-36 2 1 3 -5.94357490219E-05 3 1 3 -1.50463276905E-36 4 1 3 5.94357490219E-05 1 2 3 1.50463276905E-36 2 2 3 -5.81786513669E-05 3 2 3 -1.50463276905E-36 4 2 3 5.81786513669E-05 1 3 3 -1.50463276905E-36 2 3 3 5.81786513669E-05 3 3 3 1.50463276905E-36 4 3 3 -5.81786513669E-05 1 4 3 -1.50463276905E-36 2 4 3 5.94357490219E-05 3 4 3 1.50463276905E-36 4 4 3 -5.94357490219E-05 1 1 4 -1.50463276905E-36 2 1 4 4.30207913484E-04 3 1 4 1.50463276905E-36 4 1 4 -4.30207913484E-04 1 2 4 -1.50463276905E-36 2 2 4 -7.29651725582E-05 3 2 4 1.50463276905E-36 4 2 4 7.29651725582E-05 1 3 4 1.50463276905E-36 2 3 4 7.29651725582E-05 3 3 4 -1.50463276905E-36 4 3 4 -7.29651725582E-05 1 4 4 1.50463276905E-36 2 4 4 -4.30207913484E-04 3 4 4 -1.50463276905E-36 4 4 4 4.30207913484E-04 2 1 4 2 1 1 1 1.50757150493E-36 2 1 1 -1.50169403318E-36 3 1 1 -1.50169403318E-36 4 1 1 1.50757150493E-36 1 2 1 -4.29104399061E-04 2 2 1 4.29104399061E-04 3 2 1 -7.41155615893E-05 4 2 1 7.41155615893E-05 1 3 1 -1.50169403318E-36 2 3 1 1.50757150493E-36 3 3 1 1.50757150493E-36 4 3 1 -1.50169403318E-36 1 4 1 4.29104399061E-04 2 4 1 -4.29104399061E-04 3 4 1 7.41155615893E-05 4 4 1 -7.41155615893E-05 1 1 2 -1.50463276905E-36 2 1 2 1.50463276905E-36 3 1 2 1.50463276905E-36 4 1 2 -1.50463276905E-36 1 2 2 6.06947371606E-05 2 2 2 -6.06947371606E-05 3 2 2 -5.93882407106E-05 4 2 2 5.93882407106E-05 1 3 2 1.50463276905E-36 2 3 2 -1.50463276905E-36 3 3 2 -1.50463276905E-36 4 3 2 1.50463276905E-36 1 4 2 -6.06947371606E-05 2 4 2 6.06947371606E-05 3 4 2 5.93882407106E-05 4 4 2 -5.93882407106E-05 1 1 3 1.50169403318E-36 2 1 3 -1.50757150493E-36 3 1 3 -1.50757150493E-36 4 1 3 1.50169403318E-36 1 2 3 6.06947371606E-05 2 2 3 -6.06947371606E-05 3 2 3 -5.93882407106E-05 4 2 3 5.93882407106E-05 1 3 3 -1.50757150493E-36 2 3 3 1.50169403318E-36 3 3 3 1.50169403318E-36 4 3 3 -1.50757150493E-36 1 4 3 -6.06947371606E-05 2 4 3 6.06947371606E-05 3 4 3 5.93882407106E-05 4 4 3 -5.93882407106E-05 1 1 4 -1.50463276905E-36 2 1 4 1.50463276905E-36 3 1 4 1.50463276905E-36 4 1 4 -1.50463276905E-36 1 2 4 -4.29104399061E-04 2 2 4 4.29104399061E-04 3 2 4 -7.41155615893E-05 4 2 4 7.41155615893E-05 1 3 4 1.50463276905E-36 2 3 4 -1.50463276905E-36 3 3 4 -1.50463276905E-36 4 3 4 1.50463276905E-36 1 4 4 4.29104399061E-04 2 4 4 -4.29104399061E-04 3 4 4 7.41155615893E-05 4 4 4 -7.41155615893E-05 2 1 4 3 1 1 1 1.37037308055E-02 2 1 1 -1.37037308055E-02 3 1 1 -3.09015600156E-06 4 1 1 3.09015600156E-06 1 2 1 3.09015600156E-06 2 2 1 -3.09015600157E-06 3 2 1 5.77062827953E-05 4 2 1 -5.77062827953E-05 1 3 1 -3.09015600156E-06 2 3 1 3.09015600156E-06 3 3 1 -5.77062827953E-05 4 3 1 5.77062827953E-05 1 4 1 -1.37037308055E-02 2 4 1 1.37037308055E-02 3 4 1 3.09015600156E-06 4 4 1 -3.09015600157E-06 1 1 2 -5.35140122641E-05 2 1 2 5.35140122641E-05 3 1 2 -6.28362787078E-05 4 1 2 6.28362787078E-05 1 2 2 6.28362787078E-05 2 2 2 -6.28362787078E-05 3 2 2 -7.29860027984E-05 4 2 2 7.29860027984E-05 1 3 2 -6.28362787078E-05 2 3 2 6.28362787078E-05 3 3 2 7.29860027984E-05 4 3 2 -7.29860027984E-05 1 4 2 5.35140122641E-05 2 4 2 -5.35140122641E-05 3 4 2 6.28362787078E-05 4 4 2 -6.28362787078E-05 1 1 3 8.88898306719E-06 2 1 3 -8.88898306719E-06 3 1 3 5.08309663984E-05 4 1 3 -5.08309663984E-05 1 2 3 -5.08309663984E-05 2 2 3 5.08309663984E-05 3 2 3 -1.14095454955E-04 4 2 3 1.14095454955E-04 1 3 3 5.08309663984E-05 2 3 3 -5.08309663984E-05 3 3 3 1.14095454955E-04 4 3 3 -1.14095454955E-04 1 4 3 -8.88898306719E-06 2 4 3 8.88898306719E-06 3 4 3 -5.08309663984E-05 4 4 3 5.08309663984E-05 1 1 4 -5.35140122641E-05 2 1 4 5.35140122641E-05 3 1 4 -6.28362787078E-05 4 1 4 6.28362787078E-05 1 2 4 6.28362787078E-05 2 2 4 -6.28362787078E-05 3 2 4 -7.29860027984E-05 4 2 4 7.29860027984E-05 1 3 4 -6.28362787078E-05 2 3 4 6.28362787078E-05 3 3 4 7.29860027984E-05 4 3 4 -7.29860027984E-05 1 4 4 5.35140122641E-05 2 4 4 -5.35140122641E-05 3 4 4 6.28362787078E-05 4 4 4 -6.28362787078E-05 2 1 4 4 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 -3.60242649126E-04 3 2 1 0.00000000000E+00 4 2 1 3.60242649126E-04 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 3.60242649126E-04 3 4 1 0.00000000000E+00 4 4 1 -3.60242649126E-04 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 0.00000000000E+00 2 4 2 -2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 -4.28494799632E-05 3 2 3 0.00000000000E+00 4 2 3 4.28494799632E-05 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 4.28494799632E-05 3 4 3 0.00000000000E+00 4 4 3 -4.28494799632E-05 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 0.00000000000E+00 2 2 4 2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 2 2 1 1 1 1 1 9.59658548455E-02 2 1 1 1.15428838094E-04 3 1 1 1.35860716906E-05 4 1 1 1.15428838094E-04 1 2 1 -2.55783907283E-03 2 2 1 -3.31576536097E-04 3 2 1 -1.01265322081E-04 4 2 1 -3.31576536097E-04 1 3 1 -4.90926189209E-04 2 3 1 5.91178610438E-05 3 3 1 -1.82625138234E-04 4 3 1 5.91178610438E-05 1 4 1 -2.55783907283E-03 2 4 1 -3.31576536097E-04 3 4 1 -1.01265322081E-04 4 4 1 -3.31576536097E-04 1 1 2 1.15428838094E-04 2 1 2 -1.16431480469E-05 3 1 2 -5.17241194063E-05 4 1 2 -1.16431480469E-05 1 2 2 -3.31576536097E-04 2 2 2 2.26852512431E-04 3 2 2 -2.87411138469E-05 4 2 2 2.26852512431E-04 1 3 2 5.91178610438E-05 2 3 2 -5.49559379719E-05 3 3 2 1.02897783894E-04 4 3 2 -5.49559379719E-05 1 4 2 -3.31576536097E-04 2 4 2 2.26852512431E-04 3 4 2 -2.87411138469E-05 4 4 2 2.26852512431E-04 1 1 3 1.35860716906E-05 2 1 3 -5.17241194063E-05 3 1 3 -1.68368803594E-05 4 1 3 -5.17241194063E-05 1 2 3 -1.01265322081E-04 2 2 3 -2.87411138469E-05 3 2 3 8.97821451437E-05 4 2 3 -2.87411138469E-05 1 3 3 -1.82625138234E-04 2 3 3 1.02897783894E-04 3 3 3 3.19912479916E-04 4 3 3 1.02897783894E-04 1 4 3 -1.01265322081E-04 2 4 3 -2.87411138469E-05 3 4 3 8.97821451437E-05 4 4 3 -2.87411138469E-05 1 1 4 1.15428838094E-04 2 1 4 -1.16431480469E-05 3 1 4 -5.17241194063E-05 4 1 4 -1.16431480469E-05 1 2 4 -3.31576536097E-04 2 2 4 2.26852512431E-04 3 2 4 -2.87411138469E-05 4 2 4 2.26852512431E-04 1 3 4 5.91178610438E-05 2 3 4 -5.49559379719E-05 3 3 4 1.02897783894E-04 4 3 4 -5.49559379719E-05 1 4 4 -3.31576536097E-04 2 4 4 2.26852512431E-04 3 4 4 -2.87411138469E-05 4 4 4 2.26852512431E-04 2 2 1 2 1 1 1 -1.29193945561E-02 2 1 1 -1.29193945561E-02 3 1 1 4.22421813984E-05 4 1 1 4.22421813984E-05 1 2 1 -1.29193945561E-02 2 2 1 -1.29193945561E-02 3 2 1 4.22421813984E-05 4 2 1 4.22421813984E-05 1 3 1 -2.73403758895E-04 2 3 1 -2.73403758895E-04 3 3 1 6.55673835734E-05 4 3 1 6.55673835734E-05 1 4 1 -2.73403758895E-04 2 4 1 -2.73403758895E-04 3 4 1 6.55673835734E-05 4 4 1 6.55673835734E-05 1 1 2 1.54006407927E-04 2 1 2 1.54006407927E-04 3 1 2 9.24810258281E-06 4 1 2 9.24810258281E-06 1 2 2 1.54006407927E-04 2 2 2 1.54006407927E-04 3 2 2 9.24810258281E-06 4 2 2 9.24810258281E-06 1 3 2 -1.30720960836E-04 2 3 2 -1.30720960836E-04 3 3 2 -1.04624889167E-04 4 3 2 -1.04624889167E-04 1 4 2 -1.30720960836E-04 2 4 2 -1.30720960836E-04 3 4 2 -1.04624889167E-04 4 4 2 -1.04624889167E-04 1 1 3 6.02114964297E-05 2 1 3 6.02114964297E-05 3 1 3 -5.51194348906E-06 4 1 3 -5.51194348906E-06 1 2 3 6.02114964297E-05 2 2 3 6.02114964297E-05 3 2 3 -5.51194348906E-06 4 2 3 -5.51194348906E-06 1 3 3 3.55110307172E-05 2 3 3 3.55110307172E-05 3 3 3 8.56924031359E-05 4 3 3 8.56924031359E-05 1 4 3 3.55110307172E-05 2 4 3 3.55110307172E-05 3 4 3 8.56924031359E-05 4 4 3 8.56924031359E-05 1 1 4 1.54006407927E-04 2 1 4 1.54006407927E-04 3 1 4 9.24810258281E-06 4 1 4 9.24810258281E-06 1 2 4 1.54006407927E-04 2 2 4 1.54006407927E-04 3 2 4 9.24810258281E-06 4 2 4 9.24810258281E-06 1 3 4 -1.30720960836E-04 2 3 4 -1.30720960836E-04 3 3 4 -1.04624889167E-04 4 3 4 -1.04624889167E-04 1 4 4 -1.30720960836E-04 2 4 4 -1.30720960836E-04 3 4 4 -1.04624889167E-04 4 4 4 -1.04624889167E-04 2 2 1 3 1 1 1 2.52330248607E-03 2 1 1 2.52330248607E-03 3 1 1 2.01534496258E-05 4 1 1 2.01534496258E-05 1 2 1 5.39210714489E-04 2 2 1 5.39210714489E-04 3 2 1 -4.52565123902E-05 4 2 1 -4.52565123902E-05 1 3 1 2.88852827658E-04 2 3 1 2.88852827658E-04 3 3 1 9.69388440308E-05 4 3 1 9.69388440308E-05 1 4 1 5.39210714489E-04 2 4 1 5.39210714489E-04 3 4 1 -4.52565123902E-05 4 4 1 -4.52565123902E-05 1 1 2 2.52330248607E-03 2 1 2 2.52330248607E-03 3 1 2 2.01534496258E-05 4 1 2 2.01534496258E-05 1 2 2 5.39210714489E-04 2 2 2 5.39210714489E-04 3 2 2 -4.52565123902E-05 4 2 2 -4.52565123902E-05 1 3 2 2.88852827658E-04 2 3 2 2.88852827658E-04 3 3 2 9.69388440308E-05 4 3 2 9.69388440308E-05 1 4 2 5.39210714489E-04 2 4 2 5.39210714489E-04 3 4 2 -4.52565123902E-05 4 4 2 -4.52565123902E-05 1 1 3 2.01534496258E-05 2 1 3 2.01534496258E-05 3 1 3 -2.33146257211E-05 4 1 3 -2.33146257211E-05 1 2 3 -4.52565123902E-05 2 2 3 -4.52565123902E-05 3 2 3 -9.43141788670E-05 4 2 3 -9.43141788670E-05 1 3 3 9.69388440308E-05 2 3 3 9.69388440308E-05 3 3 3 -4.15249231811E-05 4 3 3 -4.15249231811E-05 1 4 3 -4.52565123902E-05 2 4 3 -4.52565123902E-05 3 4 3 -9.43141788670E-05 4 4 3 -9.43141788670E-05 1 1 4 2.01534496258E-05 2 1 4 2.01534496258E-05 3 1 4 -2.33146257211E-05 4 1 4 -2.33146257211E-05 1 2 4 -4.52565123902E-05 2 2 4 -4.52565123902E-05 3 2 4 -9.43141788670E-05 4 2 4 -9.43141788670E-05 1 3 4 9.69388440308E-05 2 3 4 9.69388440308E-05 3 3 4 -4.15249231811E-05 4 3 4 -4.15249231811E-05 1 4 4 -4.52565123902E-05 2 4 4 -4.52565123902E-05 3 4 4 -9.43141788670E-05 4 4 4 -9.43141788670E-05 2 2 1 4 1 1 1 -1.29193945561E-02 2 1 1 1.54006407927E-04 3 1 1 6.02114964297E-05 4 1 1 1.54006407927E-04 1 2 1 -1.29193945561E-02 2 2 1 1.54006407927E-04 3 2 1 6.02114964297E-05 4 2 1 1.54006407927E-04 1 3 1 -2.73403758895E-04 2 3 1 -1.30720960836E-04 3 3 1 3.55110307172E-05 4 3 1 -1.30720960836E-04 1 4 1 -2.73403758895E-04 2 4 1 -1.30720960836E-04 3 4 1 3.55110307172E-05 4 4 1 -1.30720960836E-04 1 1 2 -1.29193945561E-02 2 1 2 1.54006407927E-04 3 1 2 6.02114964297E-05 4 1 2 1.54006407927E-04 1 2 2 -1.29193945561E-02 2 2 2 1.54006407927E-04 3 2 2 6.02114964297E-05 4 2 2 1.54006407927E-04 1 3 2 -2.73403758895E-04 2 3 2 -1.30720960836E-04 3 3 2 3.55110307172E-05 4 3 2 -1.30720960836E-04 1 4 2 -2.73403758895E-04 2 4 2 -1.30720960836E-04 3 4 2 3.55110307172E-05 4 4 2 -1.30720960836E-04 1 1 3 4.22421813984E-05 2 1 3 9.24810258281E-06 3 1 3 -5.51194348906E-06 4 1 3 9.24810258281E-06 1 2 3 4.22421813984E-05 2 2 3 9.24810258281E-06 3 2 3 -5.51194348906E-06 4 2 3 9.24810258281E-06 1 3 3 6.55673835734E-05 2 3 3 -1.04624889167E-04 3 3 3 8.56924031359E-05 4 3 3 -1.04624889167E-04 1 4 3 6.55673835734E-05 2 4 3 -1.04624889167E-04 3 4 3 8.56924031359E-05 4 4 3 -1.04624889167E-04 1 1 4 4.22421813984E-05 2 1 4 9.24810258281E-06 3 1 4 -5.51194348906E-06 4 1 4 9.24810258281E-06 1 2 4 4.22421813984E-05 2 2 4 9.24810258281E-06 3 2 4 -5.51194348906E-06 4 2 4 9.24810258281E-06 1 3 4 6.55673835734E-05 2 3 4 -1.04624889167E-04 3 3 4 8.56924031359E-05 4 3 4 -1.04624889167E-04 1 4 4 6.55673835734E-05 2 4 4 -1.04624889167E-04 3 4 4 8.56924031359E-05 4 4 4 -1.04624889167E-04 2 2 2 1 1 1 1 -1.29193945561E-02 2 1 1 4.22421813984E-05 3 1 1 4.22421813984E-05 4 1 1 -1.29193945561E-02 1 2 1 -2.73403758895E-04 2 2 1 6.55673835734E-05 3 2 1 6.55673835734E-05 4 2 1 -2.73403758895E-04 1 3 1 -2.73403758895E-04 2 3 1 6.55673835734E-05 3 3 1 6.55673835734E-05 4 3 1 -2.73403758895E-04 1 4 1 -1.29193945561E-02 2 4 1 4.22421813984E-05 3 4 1 4.22421813984E-05 4 4 1 -1.29193945561E-02 1 1 2 1.54006407927E-04 2 1 2 9.24810258281E-06 3 1 2 9.24810258281E-06 4 1 2 1.54006407927E-04 1 2 2 -1.30720960836E-04 2 2 2 -1.04624889167E-04 3 2 2 -1.04624889167E-04 4 2 2 -1.30720960836E-04 1 3 2 -1.30720960836E-04 2 3 2 -1.04624889167E-04 3 3 2 -1.04624889167E-04 4 3 2 -1.30720960836E-04 1 4 2 1.54006407927E-04 2 4 2 9.24810258281E-06 3 4 2 9.24810258281E-06 4 4 2 1.54006407927E-04 1 1 3 6.02114964297E-05 2 1 3 -5.51194348906E-06 3 1 3 -5.51194348906E-06 4 1 3 6.02114964297E-05 1 2 3 3.55110307172E-05 2 2 3 8.56924031359E-05 3 2 3 8.56924031359E-05 4 2 3 3.55110307172E-05 1 3 3 3.55110307172E-05 2 3 3 8.56924031359E-05 3 3 3 8.56924031359E-05 4 3 3 3.55110307172E-05 1 4 3 6.02114964297E-05 2 4 3 -5.51194348906E-06 3 4 3 -5.51194348906E-06 4 4 3 6.02114964297E-05 1 1 4 1.54006407927E-04 2 1 4 9.24810258281E-06 3 1 4 9.24810258281E-06 4 1 4 1.54006407927E-04 1 2 4 -1.30720960836E-04 2 2 4 -1.04624889167E-04 3 2 4 -1.04624889167E-04 4 2 4 -1.30720960836E-04 1 3 4 -1.30720960836E-04 2 3 4 -1.04624889167E-04 3 3 4 -1.04624889167E-04 4 3 4 -1.30720960836E-04 1 4 4 1.54006407927E-04 2 4 4 9.24810258281E-06 3 4 4 9.24810258281E-06 4 4 4 1.54006407927E-04 2 2 2 2 1 1 1 9.59699248245E-02 2 1 1 1.20453507770E-04 3 1 1 1.78566253766E-05 4 1 1 1.20453507770E-04 1 2 1 -2.56237924763E-03 2 2 1 -3.31387745305E-04 3 2 1 -9.90316625172E-05 4 2 1 -3.31387745305E-04 1 3 1 -4.98729616455E-04 2 3 1 5.41999011141E-05 3 3 1 -1.79969313417E-04 4 3 1 5.41999011141E-05 1 4 1 -2.56237924763E-03 2 4 1 -3.31387745305E-04 3 4 1 -9.90316625172E-05 4 4 1 -3.31387745305E-04 1 1 2 1.19792675702E-04 2 1 2 -6.57584784219E-06 3 1 2 -4.86383858484E-05 4 1 2 -6.57584784219E-06 1 2 2 -3.30731450180E-04 2 2 2 2.26085706295E-04 3 2 2 -2.98670322047E-05 4 2 2 2.26085706295E-04 1 3 2 5.59934941578E-05 2 3 2 -5.79855820484E-05 3 3 2 9.72656154328E-05 4 3 2 -5.79855820484E-05 1 4 2 -3.30731450180E-04 2 4 2 2.26085706295E-04 3 4 2 -2.98670322047E-05 4 4 2 2.26085706295E-04 1 1 3 2.09949874703E-05 2 1 3 -4.86395962984E-05 3 1 3 -1.29822361422E-05 4 1 3 -4.86395962984E-05 1 2 3 -9.70578409234E-05 2 2 3 -2.86123205234E-05 3 2 3 8.35554808641E-05 4 2 3 -2.86123205234E-05 1 3 3 -1.78893299773E-04 2 3 3 9.97126749703E-05 3 3 3 3.07990501139E-04 4 3 3 9.97126749703E-05 1 4 3 -9.70578409234E-05 2 4 3 -2.86123205234E-05 3 4 3 8.35554808641E-05 4 4 3 -2.86123205234E-05 1 1 4 1.19792675702E-04 2 1 4 -6.57584784219E-06 3 1 4 -4.86383858484E-05 4 1 4 -6.57584784219E-06 1 2 4 -3.30731450180E-04 2 2 4 2.26085706295E-04 3 2 4 -2.98670322047E-05 4 2 4 2.26085706295E-04 1 3 4 5.59934941578E-05 2 3 4 -5.79855820484E-05 3 3 4 9.72656154328E-05 4 3 4 -5.79855820484E-05 1 4 4 -3.30731450180E-04 2 4 4 2.26085706295E-04 3 4 4 -2.98670322047E-05 4 4 4 2.26085706295E-04 2 2 2 3 1 1 1 -1.29197802688E-02 2 1 1 1.51962127150E-04 3 1 1 5.76169626688E-05 4 1 1 1.51962127150E-04 1 2 1 -2.73780712150E-04 2 2 1 -1.32007643825E-04 3 2 1 3.32426443688E-05 4 2 1 -1.32007643825E-04 1 3 1 -2.73780712150E-04 2 3 1 -1.32007643825E-04 3 3 1 3.32426443688E-05 4 3 1 -1.32007643825E-04 1 4 1 -1.29197802688E-02 2 4 1 1.51962127150E-04 3 4 1 5.76169626687E-05 4 4 1 1.51962127150E-04 1 1 2 -1.29197802688E-02 2 1 2 1.51962127150E-04 3 1 2 5.76169626687E-05 4 1 2 1.51962127150E-04 1 2 2 -2.73780712150E-04 2 2 2 -1.32007643825E-04 3 2 2 3.32426443688E-05 4 2 2 -1.32007643825E-04 1 3 2 -2.73780712150E-04 2 3 2 -1.32007643825E-04 3 3 2 3.32426443688E-05 4 3 2 -1.32007643825E-04 1 4 2 -1.29197802688E-02 2 4 2 1.51962127150E-04 3 4 2 5.76169626687E-05 4 4 2 1.51962127150E-04 1 1 3 4.56157825188E-05 2 1 3 1.08979076187E-05 3 1 3 -5.87861848750E-06 4 1 3 1.08979076187E-05 1 2 3 6.70710680188E-05 2 2 3 -1.03756197356E-04 3 2 3 8.68125646625E-05 4 2 3 -1.03756197356E-04 1 3 3 6.70710680187E-05 2 3 3 -1.03756197356E-04 3 3 3 8.68125646625E-05 4 3 3 -1.03756197356E-04 1 4 3 4.56157825188E-05 2 4 3 1.08979076187E-05 3 4 3 -5.87861848750E-06 4 4 3 1.08979076187E-05 1 1 4 4.56157825188E-05 2 1 4 1.08979076187E-05 3 1 4 -5.87861848750E-06 4 1 4 1.08979076187E-05 1 2 4 6.70710680188E-05 2 2 4 -1.03756197356E-04 3 2 4 8.68125646625E-05 4 2 4 -1.03756197356E-04 1 3 4 6.70710680188E-05 2 3 4 -1.03756197356E-04 3 3 4 8.68125646625E-05 4 3 4 -1.03756197356E-04 1 4 4 4.56157825187E-05 2 4 4 1.08979076188E-05 3 4 4 -5.87861848750E-06 4 4 4 1.08979076188E-05 2 2 2 4 1 1 1 2.52500273020E-03 2 1 1 2.12188517011E-05 3 1 1 2.12188517011E-05 4 1 1 2.52500273020E-03 1 2 1 5.37005283587E-04 2 2 1 -4.91561099152E-05 3 2 1 -4.91561099152E-05 4 2 1 5.37005283587E-04 1 3 1 2.86208653875E-04 2 3 1 9.69435420780E-05 3 3 1 9.69435420780E-05 4 3 1 2.86208653875E-04 1 4 1 5.37005283587E-04 2 4 1 -4.91561099152E-05 3 4 1 -4.91561099152E-05 4 4 1 5.37005283587E-04 1 1 2 2.52500273020E-03 2 1 2 2.12188517011E-05 3 1 2 2.12188517011E-05 4 1 2 2.52500273020E-03 1 2 2 5.37005283587E-04 2 2 2 -4.91561099152E-05 3 2 2 -4.91561099152E-05 4 2 2 5.37005283587E-04 1 3 2 2.86208653875E-04 2 3 2 9.69435420780E-05 3 3 2 9.69435420780E-05 4 3 2 2.86208653875E-04 1 4 2 5.37005283587E-04 2 4 2 -4.91561099152E-05 3 4 2 -4.91561099152E-05 4 4 2 5.37005283587E-04 1 1 3 2.12188517011E-05 2 1 3 -1.62819061239E-05 3 1 3 -1.62819061239E-05 4 1 3 2.12188517011E-05 1 2 3 -4.91561099152E-05 2 2 3 -9.03904005427E-05 3 2 3 -9.03904005427E-05 4 2 3 -4.91561099152E-05 1 3 3 9.69435420780E-05 2 3 3 -3.73438484595E-05 3 3 3 -3.73438484595E-05 4 3 3 9.69435420780E-05 1 4 3 -4.91561099152E-05 2 4 3 -9.03904005427E-05 3 4 3 -9.03904005427E-05 4 4 3 -4.91561099152E-05 1 1 4 2.12188517011E-05 2 1 4 -1.62819061239E-05 3 1 4 -1.62819061239E-05 4 1 4 2.12188517011E-05 1 2 4 -4.91561099152E-05 2 2 4 -9.03904005427E-05 3 2 4 -9.03904005427E-05 4 2 4 -4.91561099152E-05 1 3 4 9.69435420780E-05 2 3 4 -3.73438484595E-05 3 3 4 -3.73438484595E-05 4 3 4 9.69435420780E-05 1 4 4 -4.91561099152E-05 2 4 4 -9.03904005427E-05 3 4 4 -9.03904005427E-05 4 4 4 -4.91561099152E-05 2 2 3 1 1 1 1 2.52330248607E-03 2 1 1 2.01534496258E-05 3 1 1 2.01534496258E-05 4 1 1 2.52330248607E-03 1 2 1 5.39210714489E-04 2 2 1 -4.52565123902E-05 3 2 1 -4.52565123902E-05 4 2 1 5.39210714489E-04 1 3 1 2.88852827658E-04 2 3 1 9.69388440308E-05 3 3 1 9.69388440308E-05 4 3 1 2.88852827658E-04 1 4 1 5.39210714489E-04 2 4 1 -4.52565123902E-05 3 4 1 -4.52565123902E-05 4 4 1 5.39210714489E-04 1 1 2 2.01534496258E-05 2 1 2 -2.33146257211E-05 3 1 2 -2.33146257211E-05 4 1 2 2.01534496258E-05 1 2 2 -4.52565123902E-05 2 2 2 -9.43141788670E-05 3 2 2 -9.43141788670E-05 4 2 2 -4.52565123902E-05 1 3 2 9.69388440308E-05 2 3 2 -4.15249231811E-05 3 3 2 -4.15249231811E-05 4 3 2 9.69388440308E-05 1 4 2 -4.52565123902E-05 2 4 2 -9.43141788670E-05 3 4 2 -9.43141788670E-05 4 4 2 -4.52565123902E-05 1 1 3 2.01534496258E-05 2 1 3 -2.33146257211E-05 3 1 3 -2.33146257211E-05 4 1 3 2.01534496258E-05 1 2 3 -4.52565123902E-05 2 2 3 -9.43141788670E-05 3 2 3 -9.43141788670E-05 4 2 3 -4.52565123902E-05 1 3 3 9.69388440308E-05 2 3 3 -4.15249231811E-05 3 3 3 -4.15249231811E-05 4 3 3 9.69388440308E-05 1 4 3 -4.52565123902E-05 2 4 3 -9.43141788670E-05 3 4 3 -9.43141788670E-05 4 4 3 -4.52565123902E-05 1 1 4 2.52330248607E-03 2 1 4 2.01534496258E-05 3 1 4 2.01534496258E-05 4 1 4 2.52330248607E-03 1 2 4 5.39210714489E-04 2 2 4 -4.52565123902E-05 3 2 4 -4.52565123902E-05 4 2 4 5.39210714489E-04 1 3 4 2.88852827658E-04 2 3 4 9.69388440308E-05 3 3 4 9.69388440308E-05 4 3 4 2.88852827658E-04 1 4 4 5.39210714489E-04 2 4 4 -4.52565123902E-05 3 4 4 -4.52565123902E-05 4 4 4 5.39210714489E-04 2 2 3 2 1 1 1 -1.29197802688E-02 2 1 1 1.51962127150E-04 3 1 1 5.76169626688E-05 4 1 1 1.51962127150E-04 1 2 1 -1.29197802688E-02 2 2 1 1.51962127150E-04 3 2 1 5.76169626687E-05 4 2 1 1.51962127150E-04 1 3 1 -2.73780712150E-04 2 3 1 -1.32007643825E-04 3 3 1 3.32426443688E-05 4 3 1 -1.32007643825E-04 1 4 1 -2.73780712150E-04 2 4 1 -1.32007643825E-04 3 4 1 3.32426443688E-05 4 4 1 -1.32007643825E-04 1 1 2 4.56157825188E-05 2 1 2 1.08979076187E-05 3 1 2 -5.87861848750E-06 4 1 2 1.08979076187E-05 1 2 2 4.56157825187E-05 2 2 2 1.08979076188E-05 3 2 2 -5.87861848750E-06 4 2 2 1.08979076188E-05 1 3 2 6.70710680188E-05 2 3 2 -1.03756197356E-04 3 3 2 8.68125646625E-05 4 3 2 -1.03756197356E-04 1 4 2 6.70710680188E-05 2 4 2 -1.03756197356E-04 3 4 2 8.68125646625E-05 4 4 2 -1.03756197356E-04 1 1 3 4.56157825188E-05 2 1 3 1.08979076187E-05 3 1 3 -5.87861848750E-06 4 1 3 1.08979076187E-05 1 2 3 4.56157825188E-05 2 2 3 1.08979076187E-05 3 2 3 -5.87861848750E-06 4 2 3 1.08979076187E-05 1 3 3 6.70710680187E-05 2 3 3 -1.03756197356E-04 3 3 3 8.68125646625E-05 4 3 3 -1.03756197356E-04 1 4 3 6.70710680188E-05 2 4 3 -1.03756197356E-04 3 4 3 8.68125646625E-05 4 4 3 -1.03756197356E-04 1 1 4 -1.29197802688E-02 2 1 4 1.51962127150E-04 3 1 4 5.76169626687E-05 4 1 4 1.51962127150E-04 1 2 4 -1.29197802688E-02 2 2 4 1.51962127150E-04 3 2 4 5.76169626687E-05 4 2 4 1.51962127150E-04 1 3 4 -2.73780712150E-04 2 3 4 -1.32007643825E-04 3 3 4 3.32426443688E-05 4 3 4 -1.32007643825E-04 1 4 4 -2.73780712150E-04 2 4 4 -1.32007643825E-04 3 4 4 3.32426443688E-05 4 4 4 -1.32007643825E-04 2 2 3 3 1 1 1 9.59639493234E-02 2 1 1 1.10083401333E-04 3 1 1 9.32019138594E-06 4 1 1 1.10083401333E-04 1 2 1 -2.56447110288E-03 2 2 1 -3.33931441620E-04 3 2 1 -1.01269581917E-04 4 2 1 -3.33931441620E-04 1 3 1 -4.99811967495E-04 2 3 1 5.73658301641E-05 3 3 1 -1.76195129820E-04 4 3 1 5.73658301641E-05 1 4 1 -2.56447110288E-03 2 4 1 -3.33931441620E-04 3 4 1 -1.01269581917E-04 4 4 1 -3.33931441620E-04 1 1 2 1.10083401333E-04 2 1 2 -1.09944916078E-05 3 1 2 -4.70122843922E-05 4 1 2 -1.09944916078E-05 1 2 2 -3.33931441620E-04 2 2 2 2.26459720977E-04 3 2 2 -2.47914316828E-05 4 2 2 2.26459720977E-04 1 3 2 5.73658301641E-05 2 3 2 -5.43290955391E-05 3 3 2 1.03954986489E-04 4 3 2 -5.43290955391E-05 1 4 2 -3.33931441620E-04 2 4 2 2.26459720977E-04 3 4 2 -2.47914316828E-05 4 4 2 2.26459720977E-04 1 1 3 9.32019138594E-06 2 1 3 -4.70122843922E-05 3 1 3 -2.07168866406E-06 4 1 3 -4.70122843922E-05 1 2 3 -1.01269581917E-04 2 2 3 -2.47914316828E-05 3 2 3 9.63163367703E-05 4 2 3 -2.47914316828E-05 1 3 3 -1.76195129820E-04 2 3 3 1.03954986489E-04 3 3 3 3.20133687380E-04 4 3 3 1.03954986489E-04 1 4 3 -1.01269581917E-04 2 4 3 -2.47914316828E-05 3 4 3 9.63163367703E-05 4 4 3 -2.47914316828E-05 1 1 4 1.10083401333E-04 2 1 4 -1.09944916078E-05 3 1 4 -4.70122843922E-05 4 1 4 -1.09944916078E-05 1 2 4 -3.33931441620E-04 2 2 4 2.26459720977E-04 3 2 4 -2.47914316828E-05 4 2 4 2.26459720977E-04 1 3 4 5.73658301641E-05 2 3 4 -5.43290955391E-05 3 3 4 1.03954986489E-04 4 3 4 -5.43290955391E-05 1 4 4 -3.33931441620E-04 2 4 4 2.26459720977E-04 3 4 4 -2.47914316828E-05 4 4 4 2.26459720977E-04 2 2 3 4 1 1 1 -1.29197802688E-02 2 1 1 4.56157825188E-05 3 1 1 4.56157825188E-05 4 1 1 -1.29197802688E-02 1 2 1 -1.29197802688E-02 2 2 1 4.56157825187E-05 3 2 1 4.56157825188E-05 4 2 1 -1.29197802688E-02 1 3 1 -2.73780712150E-04 2 3 1 6.70710680187E-05 3 3 1 6.70710680187E-05 4 3 1 -2.73780712150E-04 1 4 1 -2.73780712150E-04 2 4 1 6.70710680188E-05 3 4 1 6.70710680187E-05 4 4 1 -2.73780712150E-04 1 1 2 1.51962127150E-04 2 1 2 1.08979076187E-05 3 1 2 1.08979076187E-05 4 1 2 1.51962127150E-04 1 2 2 1.51962127150E-04 2 2 2 1.08979076188E-05 3 2 2 1.08979076187E-05 4 2 2 1.51962127150E-04 1 3 2 -1.32007643825E-04 2 3 2 -1.03756197356E-04 3 3 2 -1.03756197356E-04 4 3 2 -1.32007643825E-04 1 4 2 -1.32007643825E-04 2 4 2 -1.03756197356E-04 3 4 2 -1.03756197356E-04 4 4 2 -1.32007643825E-04 1 1 3 5.76169626688E-05 2 1 3 -5.87861848750E-06 3 1 3 -5.87861848750E-06 4 1 3 5.76169626688E-05 1 2 3 5.76169626688E-05 2 2 3 -5.87861848750E-06 3 2 3 -5.87861848750E-06 4 2 3 5.76169626688E-05 1 3 3 3.32426443687E-05 2 3 3 8.68125646625E-05 3 3 3 8.68125646625E-05 4 3 3 3.32426443687E-05 1 4 3 3.32426443687E-05 2 4 3 8.68125646625E-05 3 4 3 8.68125646625E-05 4 4 3 3.32426443688E-05 1 1 4 1.51962127150E-04 2 1 4 1.08979076187E-05 3 1 4 1.08979076187E-05 4 1 4 1.51962127150E-04 1 2 4 1.51962127150E-04 2 2 4 1.08979076188E-05 3 2 4 1.08979076187E-05 4 2 4 1.51962127150E-04 1 3 4 -1.32007643825E-04 2 3 4 -1.03756197356E-04 3 3 4 -1.03756197356E-04 4 3 4 -1.32007643825E-04 1 4 4 -1.32007643825E-04 2 4 4 -1.03756197356E-04 3 4 4 -1.03756197356E-04 4 4 4 -1.32007643825E-04 2 2 4 1 1 1 1 -1.29193945561E-02 2 1 1 1.54006407927E-04 3 1 1 6.02114964297E-05 4 1 1 1.54006407927E-04 1 2 1 -2.73403758895E-04 2 2 1 -1.30720960836E-04 3 2 1 3.55110307172E-05 4 2 1 -1.30720960836E-04 1 3 1 -2.73403758895E-04 2 3 1 -1.30720960836E-04 3 3 1 3.55110307172E-05 4 3 1 -1.30720960836E-04 1 4 1 -1.29193945561E-02 2 4 1 1.54006407927E-04 3 4 1 6.02114964297E-05 4 4 1 1.54006407927E-04 1 1 2 4.22421813984E-05 2 1 2 9.24810258281E-06 3 1 2 -5.51194348906E-06 4 1 2 9.24810258281E-06 1 2 2 6.55673835734E-05 2 2 2 -1.04624889167E-04 3 2 2 8.56924031359E-05 4 2 2 -1.04624889167E-04 1 3 2 6.55673835734E-05 2 3 2 -1.04624889167E-04 3 3 2 8.56924031359E-05 4 3 2 -1.04624889167E-04 1 4 2 4.22421813984E-05 2 4 2 9.24810258281E-06 3 4 2 -5.51194348906E-06 4 4 2 9.24810258281E-06 1 1 3 4.22421813984E-05 2 1 3 9.24810258281E-06 3 1 3 -5.51194348906E-06 4 1 3 9.24810258281E-06 1 2 3 6.55673835734E-05 2 2 3 -1.04624889167E-04 3 2 3 8.56924031359E-05 4 2 3 -1.04624889167E-04 1 3 3 6.55673835734E-05 2 3 3 -1.04624889167E-04 3 3 3 8.56924031359E-05 4 3 3 -1.04624889167E-04 1 4 3 4.22421813984E-05 2 4 3 9.24810258281E-06 3 4 3 -5.51194348906E-06 4 4 3 9.24810258281E-06 1 1 4 -1.29193945561E-02 2 1 4 1.54006407927E-04 3 1 4 6.02114964297E-05 4 1 4 1.54006407927E-04 1 2 4 -2.73403758895E-04 2 2 4 -1.30720960836E-04 3 2 4 3.55110307172E-05 4 2 4 -1.30720960836E-04 1 3 4 -2.73403758895E-04 2 3 4 -1.30720960836E-04 3 3 4 3.55110307172E-05 4 3 4 -1.30720960836E-04 1 4 4 -1.29193945561E-02 2 4 4 1.54006407927E-04 3 4 4 6.02114964297E-05 4 4 4 1.54006407927E-04 2 2 4 2 1 1 1 2.52500273020E-03 2 1 1 2.52500273020E-03 3 1 1 2.12188517011E-05 4 1 1 2.12188517011E-05 1 2 1 5.37005283587E-04 2 2 1 5.37005283587E-04 3 2 1 -4.91561099152E-05 4 2 1 -4.91561099152E-05 1 3 1 2.86208653875E-04 2 3 1 2.86208653875E-04 3 3 1 9.69435420780E-05 4 3 1 9.69435420780E-05 1 4 1 5.37005283587E-04 2 4 1 5.37005283587E-04 3 4 1 -4.91561099152E-05 4 4 1 -4.91561099152E-05 1 1 2 2.12188517011E-05 2 1 2 2.12188517011E-05 3 1 2 -1.62819061239E-05 4 1 2 -1.62819061239E-05 1 2 2 -4.91561099152E-05 2 2 2 -4.91561099152E-05 3 2 2 -9.03904005427E-05 4 2 2 -9.03904005427E-05 1 3 2 9.69435420780E-05 2 3 2 9.69435420780E-05 3 3 2 -3.73438484595E-05 4 3 2 -3.73438484595E-05 1 4 2 -4.91561099152E-05 2 4 2 -4.91561099152E-05 3 4 2 -9.03904005427E-05 4 4 2 -9.03904005427E-05 1 1 3 2.12188517011E-05 2 1 3 2.12188517011E-05 3 1 3 -1.62819061239E-05 4 1 3 -1.62819061239E-05 1 2 3 -4.91561099152E-05 2 2 3 -4.91561099152E-05 3 2 3 -9.03904005427E-05 4 2 3 -9.03904005427E-05 1 3 3 9.69435420780E-05 2 3 3 9.69435420780E-05 3 3 3 -3.73438484595E-05 4 3 3 -3.73438484595E-05 1 4 3 -4.91561099152E-05 2 4 3 -4.91561099152E-05 3 4 3 -9.03904005427E-05 4 4 3 -9.03904005427E-05 1 1 4 2.52500273020E-03 2 1 4 2.52500273020E-03 3 1 4 2.12188517011E-05 4 1 4 2.12188517011E-05 1 2 4 5.37005283587E-04 2 2 4 5.37005283587E-04 3 2 4 -4.91561099152E-05 4 2 4 -4.91561099152E-05 1 3 4 2.86208653875E-04 2 3 4 2.86208653875E-04 3 3 4 9.69435420780E-05 4 3 4 9.69435420780E-05 1 4 4 5.37005283587E-04 2 4 4 5.37005283587E-04 3 4 4 -4.91561099152E-05 4 4 4 -4.91561099152E-05 2 2 4 3 1 1 1 -1.29197802688E-02 2 1 1 -1.29197802688E-02 3 1 1 4.56157825188E-05 4 1 1 4.56157825188E-05 1 2 1 -2.73780712150E-04 2 2 1 -2.73780712150E-04 3 2 1 6.70710680187E-05 4 2 1 6.70710680188E-05 1 3 1 -2.73780712150E-04 2 3 1 -2.73780712150E-04 3 3 1 6.70710680187E-05 4 3 1 6.70710680187E-05 1 4 1 -1.29197802688E-02 2 4 1 -1.29197802688E-02 3 4 1 4.56157825188E-05 4 4 1 4.56157825187E-05 1 1 2 1.51962127150E-04 2 1 2 1.51962127150E-04 3 1 2 1.08979076187E-05 4 1 2 1.08979076187E-05 1 2 2 -1.32007643825E-04 2 2 2 -1.32007643825E-04 3 2 2 -1.03756197356E-04 4 2 2 -1.03756197356E-04 1 3 2 -1.32007643825E-04 2 3 2 -1.32007643825E-04 3 3 2 -1.03756197356E-04 4 3 2 -1.03756197356E-04 1 4 2 1.51962127150E-04 2 4 2 1.51962127150E-04 3 4 2 1.08979076187E-05 4 4 2 1.08979076188E-05 1 1 3 5.76169626688E-05 2 1 3 5.76169626688E-05 3 1 3 -5.87861848750E-06 4 1 3 -5.87861848750E-06 1 2 3 3.32426443687E-05 2 2 3 3.32426443688E-05 3 2 3 8.68125646625E-05 4 2 3 8.68125646625E-05 1 3 3 3.32426443687E-05 2 3 3 3.32426443687E-05 3 3 3 8.68125646625E-05 4 3 3 8.68125646625E-05 1 4 3 5.76169626688E-05 2 4 3 5.76169626688E-05 3 4 3 -5.87861848750E-06 4 4 3 -5.87861848750E-06 1 1 4 1.51962127150E-04 2 1 4 1.51962127150E-04 3 1 4 1.08979076187E-05 4 1 4 1.08979076187E-05 1 2 4 -1.32007643825E-04 2 2 4 -1.32007643825E-04 3 2 4 -1.03756197356E-04 4 2 4 -1.03756197356E-04 1 3 4 -1.32007643825E-04 2 3 4 -1.32007643825E-04 3 3 4 -1.03756197356E-04 4 3 4 -1.03756197356E-04 1 4 4 1.51962127150E-04 2 4 4 1.51962127150E-04 3 4 4 1.08979076187E-05 4 4 4 1.08979076188E-05 2 2 4 4 1 1 1 9.59699248245E-02 2 1 1 1.19792675702E-04 3 1 1 2.09949874703E-05 4 1 1 1.19792675702E-04 1 2 1 -2.56237924763E-03 2 2 1 -3.30731450180E-04 3 2 1 -9.70578409234E-05 4 2 1 -3.30731450180E-04 1 3 1 -4.98729616455E-04 2 3 1 5.59934941578E-05 3 3 1 -1.78893299773E-04 4 3 1 5.59934941578E-05 1 4 1 -2.56237924763E-03 2 4 1 -3.30731450180E-04 3 4 1 -9.70578409234E-05 4 4 1 -3.30731450180E-04 1 1 2 1.20453507770E-04 2 1 2 -6.57584784219E-06 3 1 2 -4.86395962984E-05 4 1 2 -6.57584784219E-06 1 2 2 -3.31387745305E-04 2 2 2 2.26085706295E-04 3 2 2 -2.86123205234E-05 4 2 2 2.26085706295E-04 1 3 2 5.41999011141E-05 2 3 2 -5.79855820484E-05 3 3 2 9.97126749703E-05 4 3 2 -5.79855820484E-05 1 4 2 -3.31387745305E-04 2 4 2 2.26085706295E-04 3 4 2 -2.86123205234E-05 4 4 2 2.26085706295E-04 1 1 3 1.78566253766E-05 2 1 3 -4.86383858484E-05 3 1 3 -1.29822361422E-05 4 1 3 -4.86383858484E-05 1 2 3 -9.90316625172E-05 2 2 3 -2.98670322047E-05 3 2 3 8.35554808641E-05 4 2 3 -2.98670322047E-05 1 3 3 -1.79969313417E-04 2 3 3 9.72656154328E-05 3 3 3 3.07990501139E-04 4 3 3 9.72656154328E-05 1 4 3 -9.90316625172E-05 2 4 3 -2.98670322047E-05 3 4 3 8.35554808641E-05 4 4 3 -2.98670322047E-05 1 1 4 1.20453507770E-04 2 1 4 -6.57584784219E-06 3 1 4 -4.86395962984E-05 4 1 4 -6.57584784219E-06 1 2 4 -3.31387745305E-04 2 2 4 2.26085706295E-04 3 2 4 -2.86123205234E-05 4 2 4 2.26085706295E-04 1 3 4 5.41999011141E-05 2 3 4 -5.79855820484E-05 3 3 4 9.97126749703E-05 4 3 4 -5.79855820484E-05 1 4 4 -3.31387745305E-04 2 4 4 2.26085706295E-04 3 4 4 -2.86123205234E-05 4 4 4 2.26085706295E-04 2 3 1 1 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.58946644406E-04 2 2 2 2.01525037763E-04 3 2 2 -4.58505889412E-05 4 2 2 2.01525037763E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.58946644406E-04 2 4 2 -2.01525037763E-04 3 4 2 4.58505889412E-05 4 4 2 -2.01525037763E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.58946644406E-04 2 2 4 -2.01525037763E-04 3 2 4 4.58505889412E-05 4 2 4 -2.01525037763E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.58946644406E-04 2 4 4 2.01525037763E-04 3 4 4 -4.58505889412E-05 4 4 4 2.01525037763E-04 2 3 1 2 1 1 1 2.02719088412E-19 2 1 1 2.02719088413E-19 3 1 1 2.02719088412E-19 4 1 1 2.02719088413E-19 1 2 1 -2.02719088412E-19 2 2 1 -2.02719088413E-19 3 2 1 -2.02719088412E-19 4 2 1 -2.02719088413E-19 1 3 1 2.02719088412E-19 2 3 1 2.02719088413E-19 3 3 1 2.02719088412E-19 4 3 1 2.02719088413E-19 1 4 1 -2.02719088412E-19 2 4 1 -2.02719088413E-19 3 4 1 -2.02719088412E-19 4 4 1 -2.02719088413E-19 1 1 2 -4.28887761257E-04 2 1 2 -4.28887761257E-04 3 1 2 6.01167308938E-05 4 1 2 6.01167308938E-05 1 2 2 4.28887761257E-04 2 2 2 4.28887761257E-04 3 2 2 -6.01167308938E-05 4 2 2 -6.01167308938E-05 1 3 2 -7.21633081557E-05 2 3 2 -7.21633081557E-05 3 3 2 -6.09870361569E-05 4 3 2 -6.09870361569E-05 1 4 2 7.21633081557E-05 2 4 2 7.21633081557E-05 3 4 2 6.09870361569E-05 4 4 2 6.09870361569E-05 1 1 3 -2.02719088412E-19 2 1 3 -2.02719088413E-19 3 1 3 -2.02719088412E-19 4 1 3 -2.02719088413E-19 1 2 3 2.02719088412E-19 2 2 3 2.02719088413E-19 3 2 3 2.02719088412E-19 4 2 3 2.02719088413E-19 1 3 3 -2.02719088412E-19 2 3 3 -2.02719088413E-19 3 3 3 -2.02719088412E-19 4 3 3 -2.02719088413E-19 1 4 3 2.02719088412E-19 2 4 3 2.02719088413E-19 3 4 3 2.02719088412E-19 4 4 3 2.02719088413E-19 1 1 4 4.28887761257E-04 2 1 4 4.28887761257E-04 3 1 4 -6.01167308938E-05 4 1 4 -6.01167308938E-05 1 2 4 -4.28887761257E-04 2 2 4 -4.28887761257E-04 3 2 4 6.01167308938E-05 4 2 4 6.01167308938E-05 1 3 4 7.21633081557E-05 2 3 4 7.21633081557E-05 3 3 4 6.09870361569E-05 4 3 4 6.09870361569E-05 1 4 4 -7.21633081557E-05 2 4 4 -7.21633081557E-05 3 4 4 -6.09870361569E-05 4 4 4 -6.09870361569E-05 2 3 1 3 1 1 1 -4.81482486097E-35 2 1 1 4.81482486097E-35 3 1 1 -4.81482486097E-35 4 1 1 4.81482486097E-35 1 2 1 -4.30207913484E-04 2 2 1 -4.30207913484E-04 3 2 1 5.94357490219E-05 4 2 1 5.94357490219E-05 1 3 1 4.81482486097E-35 2 3 1 -4.81482486097E-35 3 3 1 4.81482486097E-35 4 3 1 -4.81482486097E-35 1 4 1 4.30207913484E-04 2 4 1 4.30207913484E-04 3 4 1 -5.94357490219E-05 4 4 1 -5.94357490219E-05 1 1 2 4.81482486097E-35 2 1 2 -4.81482486097E-35 3 1 2 4.81482486097E-35 4 1 2 -4.81482486097E-35 1 2 2 4.30207913484E-04 2 2 2 4.30207913484E-04 3 2 2 -5.94357490219E-05 4 2 2 -5.94357490219E-05 1 3 2 -4.81482486097E-35 2 3 2 4.81482486097E-35 3 3 2 -4.81482486097E-35 4 3 2 4.81482486097E-35 1 4 2 -4.30207913484E-04 2 4 2 -4.30207913484E-04 3 4 2 5.94357490219E-05 4 4 2 5.94357490219E-05 1 1 3 -4.81482486097E-35 2 1 3 4.81482486097E-35 3 1 3 -4.81482486097E-35 4 1 3 4.81482486097E-35 1 2 3 -7.29651725582E-05 2 2 3 -7.29651725582E-05 3 2 3 -5.81786513669E-05 4 2 3 -5.81786513669E-05 1 3 3 4.81482486097E-35 2 3 3 -4.81482486097E-35 3 3 3 4.81482486097E-35 4 3 3 -4.81482486097E-35 1 4 3 7.29651725582E-05 2 4 3 7.29651725582E-05 3 4 3 5.81786513669E-05 4 4 3 5.81786513669E-05 1 1 4 4.81482486097E-35 2 1 4 -4.81482486097E-35 3 1 4 4.81482486097E-35 4 1 4 -4.81482486097E-35 1 2 4 7.29651725582E-05 2 2 4 7.29651725582E-05 3 2 4 5.81786513669E-05 4 2 4 5.81786513669E-05 1 3 4 -4.81482486097E-35 2 3 4 4.81482486097E-35 3 3 4 -4.81482486097E-35 4 3 4 4.81482486097E-35 1 4 4 -7.29651725582E-05 2 4 4 -7.29651725582E-05 3 4 4 -5.81786513669E-05 4 4 4 -5.81786513669E-05 2 3 1 4 1 1 1 -1.37034719794E-02 2 1 1 5.49179727281E-05 3 1 1 -9.43100515625E-06 4 1 1 5.49179727281E-05 1 2 1 1.37034719794E-02 2 2 1 -5.49179727281E-05 3 2 1 9.43100515625E-06 4 2 1 -5.49179727281E-05 1 3 1 4.83480209374E-06 2 3 1 6.14233913281E-05 3 3 1 -5.22875046813E-05 4 3 1 6.14233913281E-05 1 4 1 -4.83480209375E-06 2 4 1 -6.14233913281E-05 3 4 1 5.22875046813E-05 4 4 1 -6.14233913281E-05 1 1 2 1.37034719794E-02 2 1 2 -5.49179727281E-05 3 1 2 9.43100515625E-06 4 1 2 -5.49179727281E-05 1 2 2 -1.37034719794E-02 2 2 2 5.49179727281E-05 3 2 2 -9.43100515625E-06 4 2 2 5.49179727281E-05 1 3 2 -4.83480209375E-06 2 3 2 -6.14233913281E-05 3 3 2 5.22875046813E-05 4 3 2 -6.14233913281E-05 1 4 2 4.83480209376E-06 2 4 2 6.14233913281E-05 3 4 2 -5.22875046813E-05 4 4 2 6.14233913281E-05 1 1 3 2.89107873124E-06 2 1 3 6.14846955406E-05 3 1 3 -5.04826262437E-05 4 1 3 6.14846955406E-05 1 2 3 -2.89107873125E-06 2 2 3 -6.14846955406E-05 3 2 3 5.04826262437E-05 4 2 3 -6.14846955406E-05 1 3 3 5.62294541938E-05 2 3 3 -7.16518208969E-05 3 3 3 -1.12779887531E-04 4 3 3 -7.16518208969E-05 1 4 3 -5.62294541937E-05 2 4 3 7.16518208969E-05 3 4 3 1.12779887531E-04 4 4 3 7.16518208969E-05 1 1 4 -2.89107873125E-06 2 1 4 -6.14846955406E-05 3 1 4 5.04826262437E-05 4 1 4 -6.14846955406E-05 1 2 4 2.89107873126E-06 2 2 4 6.14846955406E-05 3 2 4 -5.04826262437E-05 4 2 4 6.14846955406E-05 1 3 4 -5.62294541937E-05 2 3 4 7.16518208969E-05 3 3 4 1.12779887531E-04 4 3 4 7.16518208969E-05 1 4 4 5.62294541937E-05 2 4 4 -7.16518208969E-05 3 4 4 -1.12779887531E-04 4 4 4 -7.16518208969E-05 2 3 2 1 1 1 1 2.02716912965E-19 2 1 1 2.02716912965E-19 3 1 1 2.02716912965E-19 4 1 1 2.02716912965E-19 1 2 1 -2.02716912965E-19 2 2 1 -2.02716912965E-19 3 2 1 -2.02716912965E-19 4 2 1 -2.02716912965E-19 1 3 1 2.02716912965E-19 2 3 1 2.02716912965E-19 3 3 1 2.02716912965E-19 4 3 1 2.02716912965E-19 1 4 1 -2.02716912965E-19 2 4 1 -2.02716912965E-19 3 4 1 -2.02716912965E-19 4 4 1 -2.02716912965E-19 1 1 2 4.30207913484E-04 2 1 2 -5.94357490219E-05 3 1 2 -5.94357490219E-05 4 1 2 4.30207913484E-04 1 2 2 -7.29651725582E-05 2 2 2 -5.81786513669E-05 3 2 2 -5.81786513669E-05 4 2 2 -7.29651725582E-05 1 3 2 7.29651725582E-05 2 3 2 5.81786513669E-05 3 3 2 5.81786513669E-05 4 3 2 7.29651725582E-05 1 4 2 -4.30207913484E-04 2 4 2 5.94357490219E-05 3 4 2 5.94357490219E-05 4 4 2 -4.30207913484E-04 1 1 3 -2.02716912965E-19 2 1 3 -2.02716912965E-19 3 1 3 -2.02716912965E-19 4 1 3 -2.02716912965E-19 1 2 3 2.02716912965E-19 2 2 3 2.02716912965E-19 3 2 3 2.02716912965E-19 4 2 3 2.02716912965E-19 1 3 3 -2.02716912965E-19 2 3 3 -2.02716912965E-19 3 3 3 -2.02716912965E-19 4 3 3 -2.02716912965E-19 1 4 3 2.02716912965E-19 2 4 3 2.02716912965E-19 3 4 3 2.02716912965E-19 4 4 3 2.02716912965E-19 1 1 4 -4.30207913484E-04 2 1 4 5.94357490219E-05 3 1 4 5.94357490219E-05 4 1 4 -4.30207913484E-04 1 2 4 7.29651725582E-05 2 2 4 5.81786513669E-05 3 2 4 5.81786513669E-05 4 2 4 7.29651725582E-05 1 3 4 -7.29651725582E-05 2 3 4 -5.81786513669E-05 3 3 4 -5.81786513669E-05 4 3 4 -7.29651725582E-05 1 4 4 4.30207913484E-04 2 4 4 -5.94357490219E-05 3 4 4 -5.94357490219E-05 4 4 4 4.30207913484E-04 2 3 2 2 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.60242649126E-04 2 2 2 2.04137711858E-04 3 2 2 -4.28494799632E-05 4 2 2 2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.60242649126E-04 2 4 2 -2.04137711858E-04 3 4 2 4.28494799632E-05 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.60242649126E-04 2 2 4 -2.04137711858E-04 3 2 4 4.28494799632E-05 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.60242649126E-04 2 4 4 2.04137711858E-04 3 4 4 -4.28494799632E-05 4 4 4 2.04137711858E-04 2 3 2 3 1 1 1 1.37037308055E-02 2 1 1 -5.35140122641E-05 3 1 1 8.88898306719E-06 4 1 1 -5.35140122641E-05 1 2 1 3.09015600156E-06 2 2 1 6.28362787078E-05 3 2 1 -5.08309663984E-05 4 2 1 6.28362787078E-05 1 3 1 -3.09015600156E-06 2 3 1 -6.28362787078E-05 3 3 1 5.08309663984E-05 4 3 1 -6.28362787078E-05 1 4 1 -1.37037308055E-02 2 4 1 5.35140122641E-05 3 4 1 -8.88898306719E-06 4 4 1 5.35140122641E-05 1 1 2 -1.37037308055E-02 2 1 2 5.35140122641E-05 3 1 2 -8.88898306719E-06 4 1 2 5.35140122641E-05 1 2 2 -3.09015600157E-06 2 2 2 -6.28362787078E-05 3 2 2 5.08309663984E-05 4 2 2 -6.28362787078E-05 1 3 2 3.09015600156E-06 2 3 2 6.28362787078E-05 3 3 2 -5.08309663984E-05 4 3 2 6.28362787078E-05 1 4 2 1.37037308055E-02 2 4 2 -5.35140122641E-05 3 4 2 8.88898306719E-06 4 4 2 -5.35140122641E-05 1 1 3 -3.09015600156E-06 2 1 3 -6.28362787078E-05 3 1 3 5.08309663984E-05 4 1 3 -6.28362787078E-05 1 2 3 5.77062827953E-05 2 2 3 -7.29860027984E-05 3 2 3 -1.14095454955E-04 4 2 3 -7.29860027984E-05 1 3 3 -5.77062827953E-05 2 3 3 7.29860027984E-05 3 3 3 1.14095454955E-04 4 3 3 7.29860027984E-05 1 4 3 3.09015600156E-06 2 4 3 6.28362787078E-05 3 4 3 -5.08309663984E-05 4 4 3 6.28362787078E-05 1 1 4 3.09015600156E-06 2 1 4 6.28362787078E-05 3 1 4 -5.08309663984E-05 4 1 4 6.28362787078E-05 1 2 4 -5.77062827953E-05 2 2 4 7.29860027984E-05 3 2 4 1.14095454955E-04 4 2 4 7.29860027984E-05 1 3 4 5.77062827953E-05 2 3 4 -7.29860027984E-05 3 3 4 -1.14095454955E-04 4 3 4 -7.29860027984E-05 1 4 4 -3.09015600157E-06 2 4 4 -6.28362787078E-05 3 4 4 5.08309663984E-05 4 4 4 -6.28362787078E-05 2 3 2 4 1 1 1 4.81453098738E-35 2 1 1 -4.81482486097E-35 3 1 1 4.81511873456E-35 4 1 1 -4.81482486097E-35 1 2 1 -4.29104399061E-04 2 2 1 6.06947371606E-05 3 2 1 6.06947371606E-05 4 2 1 -4.29104399061E-04 1 3 1 -4.81511873456E-35 2 3 1 4.81482486097E-35 3 3 1 -4.81453098738E-35 4 3 1 4.81482486097E-35 1 4 1 4.29104399061E-04 2 4 1 -6.06947371606E-05 3 4 1 -6.06947371606E-05 4 4 1 4.29104399061E-04 1 1 2 -4.81511873456E-35 2 1 2 4.81482486097E-35 3 1 2 -4.81453098738E-35 4 1 2 4.81482486097E-35 1 2 2 4.29104399061E-04 2 2 2 -6.06947371606E-05 3 2 2 -6.06947371606E-05 4 2 2 4.29104399061E-04 1 3 2 4.81453098738E-35 2 3 2 -4.81482486097E-35 3 3 2 4.81511873456E-35 4 3 2 -4.81482486097E-35 1 4 2 -4.29104399061E-04 2 4 2 6.06947371606E-05 3 4 2 6.06947371606E-05 4 4 2 -4.29104399061E-04 1 1 3 4.81453098738E-35 2 1 3 -4.81482486097E-35 3 1 3 4.81511873456E-35 4 1 3 -4.81482486097E-35 1 2 3 -7.41155615893E-05 2 2 3 -5.93882407106E-05 3 2 3 -5.93882407106E-05 4 2 3 -7.41155615893E-05 1 3 3 -4.81511873456E-35 2 3 3 4.81482486097E-35 3 3 3 -4.81453098738E-35 4 3 3 4.81482486097E-35 1 4 3 7.41155615893E-05 2 4 3 5.93882407106E-05 3 4 3 5.93882407106E-05 4 4 3 7.41155615893E-05 1 1 4 -4.81511873456E-35 2 1 4 4.81482486097E-35 3 1 4 -4.81453098738E-35 4 1 4 4.81482486097E-35 1 2 4 7.41155615893E-05 2 2 4 5.93882407106E-05 3 2 4 5.93882407106E-05 4 2 4 7.41155615893E-05 1 3 4 4.81453098738E-35 2 3 4 -4.81482486097E-35 3 3 4 4.81511873456E-35 4 3 4 -4.81482486097E-35 1 4 4 -7.41155615893E-05 2 4 4 -5.93882407106E-05 3 4 4 -5.93882407106E-05 4 4 4 -7.41155615893E-05 2 3 3 1 1 1 1 -4.81423711379E-35 2 1 1 4.81482486097E-35 3 1 1 -4.81541260814E-35 4 1 1 4.81482486097E-35 1 2 1 4.28887761257E-04 2 2 1 -6.01167308938E-05 3 2 1 -6.01167308938E-05 4 2 1 4.28887761257E-04 1 3 1 4.81541260814E-35 2 3 1 -4.81482486097E-35 3 3 1 4.81423711379E-35 4 3 1 -4.81482486097E-35 1 4 1 -4.28887761257E-04 2 4 1 6.01167308938E-05 3 4 1 6.01167308938E-05 4 4 1 -4.28887761257E-04 1 1 2 4.81541260814E-35 2 1 2 -4.81482486097E-35 3 1 2 4.81423711379E-35 4 1 2 -4.81482486097E-35 1 2 2 -7.21633081557E-05 2 2 2 -6.09870361569E-05 3 2 2 -6.09870361569E-05 4 2 2 -7.21633081557E-05 1 3 2 -4.81423711379E-35 2 3 2 4.81482486097E-35 3 3 2 -4.81541260814E-35 4 3 2 4.81482486097E-35 1 4 2 7.21633081557E-05 2 4 2 6.09870361569E-05 3 4 2 6.09870361569E-05 4 4 2 7.21633081557E-05 1 1 3 -4.81423711379E-35 2 1 3 4.81482486097E-35 3 1 3 -4.81541260814E-35 4 1 3 4.81482486097E-35 1 2 3 7.21633081557E-05 2 2 3 6.09870361569E-05 3 2 3 6.09870361569E-05 4 2 3 7.21633081557E-05 1 3 3 4.81541260814E-35 2 3 3 -4.81482486097E-35 3 3 3 4.81423711379E-35 4 3 3 -4.81482486097E-35 1 4 3 -7.21633081557E-05 2 4 3 -6.09870361569E-05 3 4 3 -6.09870361569E-05 4 4 3 -7.21633081557E-05 1 1 4 4.81541260814E-35 2 1 4 -4.81482486097E-35 3 1 4 4.81423711379E-35 4 1 4 -4.81482486097E-35 1 2 4 -4.28887761257E-04 2 2 4 6.01167308938E-05 3 2 4 6.01167308938E-05 4 2 4 -4.28887761257E-04 1 3 4 -4.81423711379E-35 2 3 4 4.81482486097E-35 3 3 4 -4.81541260814E-35 4 3 4 4.81482486097E-35 1 4 4 4.28887761257E-04 2 4 4 -6.01167308938E-05 3 4 4 -6.01167308938E-05 4 4 4 4.28887761257E-04 2 3 3 2 1 1 1 1.37067712500E-02 2 1 1 -5.50718982125E-05 3 1 1 6.09222033125E-06 4 1 1 -5.50718982125E-05 1 2 1 -1.37067712500E-02 2 2 1 5.50718982125E-05 3 2 1 -6.09222033125E-06 4 2 1 5.50718982125E-05 1 3 1 -5.75450117499E-06 2 3 1 -6.16300101687E-05 3 3 1 5.39320003250E-05 4 3 1 -6.16300101688E-05 1 4 1 5.75450117500E-06 2 4 1 6.16300101687E-05 3 4 1 -5.39320003250E-05 4 4 1 6.16300101688E-05 1 1 2 5.75450117500E-06 2 1 2 6.16300101687E-05 3 1 2 -5.39320003250E-05 4 1 2 6.16300101688E-05 1 2 2 -5.75450117501E-06 2 2 2 -6.16300101687E-05 3 2 2 5.39320003250E-05 4 2 2 -6.16300101688E-05 1 3 2 5.48592277812E-05 2 3 2 -7.15648150250E-05 3 3 2 -1.11266984644E-04 4 3 2 -7.15648150250E-05 1 4 2 -5.48592277812E-05 2 4 2 7.15648150250E-05 3 4 2 1.11266984644E-04 4 4 2 7.15648150250E-05 1 1 3 -5.75450117499E-06 2 1 3 -6.16300101687E-05 3 1 3 5.39320003250E-05 4 1 3 -6.16300101688E-05 1 2 3 5.75450117500E-06 2 2 3 6.16300101687E-05 3 2 3 -5.39320003250E-05 4 2 3 6.16300101688E-05 1 3 3 -5.48592277813E-05 2 3 3 7.15648150250E-05 3 3 3 1.11266984644E-04 4 3 3 7.15648150250E-05 1 4 3 5.48592277812E-05 2 4 3 -7.15648150250E-05 3 4 3 -1.11266984644E-04 4 4 3 -7.15648150250E-05 1 1 4 -1.37067712500E-02 2 1 4 5.50718982125E-05 3 1 4 -6.09222033125E-06 4 1 4 5.50718982125E-05 1 2 4 1.37067712500E-02 2 2 4 -5.50718982125E-05 3 2 4 6.09222033125E-06 4 2 4 -5.50718982125E-05 1 3 4 5.75450117500E-06 2 3 4 6.16300101687E-05 3 3 4 -5.39320003250E-05 4 3 4 6.16300101688E-05 1 4 4 -5.75450117501E-06 2 4 4 -6.16300101687E-05 3 4 4 5.39320003250E-05 4 4 4 -6.16300101688E-05 2 3 3 3 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.60242649126E-04 2 2 2 2.04137711858E-04 3 2 2 -4.28494799632E-05 4 2 2 2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.60242649126E-04 2 4 2 -2.04137711858E-04 3 4 2 4.28494799632E-05 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.60242649126E-04 2 2 4 -2.04137711858E-04 3 2 4 4.28494799632E-05 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.60242649126E-04 2 4 4 2.04137711858E-04 3 4 4 -4.28494799632E-05 4 4 4 2.04137711858E-04 2 3 3 4 1 1 1 2.02722462293E-19 2 1 1 2.02722462293E-19 3 1 1 2.02722462293E-19 4 1 1 2.02722462293E-19 1 2 1 -2.02722462293E-19 2 2 1 -2.02722462293E-19 3 2 1 -2.02722462293E-19 4 2 1 -2.02722462293E-19 1 3 1 2.02722462293E-19 2 3 1 2.02722462293E-19 3 3 1 2.02722462293E-19 4 3 1 2.02722462293E-19 1 4 1 -2.02722462293E-19 2 4 1 -2.02722462293E-19 3 4 1 -2.02722462293E-19 4 4 1 -2.02722462293E-19 1 1 2 -4.30655140556E-04 2 1 2 6.07755422331E-05 3 1 2 6.07755422331E-05 4 1 2 -4.30655140556E-04 1 2 2 4.30655140556E-04 2 2 2 -6.07755422331E-05 3 2 2 -6.07755422331E-05 4 2 2 4.30655140556E-04 1 3 2 -7.22708198781E-05 2 3 2 -5.97793100193E-05 3 3 2 -5.97793100193E-05 4 3 2 -7.22708198781E-05 1 4 2 7.22708198781E-05 2 4 2 5.97793100193E-05 3 4 2 5.97793100193E-05 4 4 2 7.22708198781E-05 1 1 3 -2.02722462293E-19 2 1 3 -2.02722462293E-19 3 1 3 -2.02722462293E-19 4 1 3 -2.02722462293E-19 1 2 3 2.02722462293E-19 2 2 3 2.02722462293E-19 3 2 3 2.02722462293E-19 4 2 3 2.02722462293E-19 1 3 3 -2.02722462293E-19 2 3 3 -2.02722462293E-19 3 3 3 -2.02722462293E-19 4 3 3 -2.02722462293E-19 1 4 3 2.02722462293E-19 2 4 3 2.02722462293E-19 3 4 3 2.02722462293E-19 4 4 3 2.02722462293E-19 1 1 4 4.30655140556E-04 2 1 4 -6.07755422331E-05 3 1 4 -6.07755422331E-05 4 1 4 4.30655140556E-04 1 2 4 -4.30655140556E-04 2 2 4 6.07755422331E-05 3 2 4 6.07755422331E-05 4 2 4 -4.30655140556E-04 1 3 4 7.22708198781E-05 2 3 4 5.97793100193E-05 3 3 4 5.97793100193E-05 4 3 4 7.22708198781E-05 1 4 4 -7.22708198781E-05 2 4 4 -5.97793100193E-05 3 4 4 -5.97793100193E-05 4 4 4 -7.22708198781E-05 2 3 4 1 1 1 1 -1.37034719794E-02 2 1 1 5.49179727281E-05 3 1 1 -9.43100515625E-06 4 1 1 5.49179727281E-05 1 2 1 -2.89107873125E-06 2 2 1 -6.14846955406E-05 3 2 1 5.04826262437E-05 4 2 1 -6.14846955406E-05 1 3 1 2.89107873124E-06 2 3 1 6.14846955406E-05 3 3 1 -5.04826262437E-05 4 3 1 6.14846955406E-05 1 4 1 1.37034719794E-02 2 4 1 -5.49179727281E-05 3 4 1 9.43100515625E-06 4 4 1 -5.49179727281E-05 1 1 2 -4.83480209375E-06 2 1 2 -6.14233913281E-05 3 1 2 5.22875046813E-05 4 1 2 -6.14233913281E-05 1 2 2 5.62294541937E-05 2 2 2 -7.16518208969E-05 3 2 2 -1.12779887531E-04 4 2 2 -7.16518208969E-05 1 3 2 -5.62294541937E-05 2 3 2 7.16518208969E-05 3 3 2 1.12779887531E-04 4 3 2 7.16518208969E-05 1 4 2 4.83480209376E-06 2 4 2 6.14233913281E-05 3 4 2 -5.22875046813E-05 4 4 2 6.14233913281E-05 1 1 3 4.83480209374E-06 2 1 3 6.14233913281E-05 3 1 3 -5.22875046813E-05 4 1 3 6.14233913281E-05 1 2 3 -5.62294541937E-05 2 2 3 7.16518208969E-05 3 2 3 1.12779887531E-04 4 2 3 7.16518208969E-05 1 3 3 5.62294541938E-05 2 3 3 -7.16518208969E-05 3 3 3 -1.12779887531E-04 4 3 3 -7.16518208969E-05 1 4 3 -4.83480209375E-06 2 4 3 -6.14233913281E-05 3 4 3 5.22875046813E-05 4 4 3 -6.14233913281E-05 1 1 4 1.37034719794E-02 2 1 4 -5.49179727281E-05 3 1 4 9.43100515625E-06 4 1 4 -5.49179727281E-05 1 2 4 2.89107873126E-06 2 2 4 6.14846955406E-05 3 2 4 -5.04826262437E-05 4 2 4 6.14846955406E-05 1 3 4 -2.89107873125E-06 2 3 4 -6.14846955406E-05 3 3 4 5.04826262437E-05 4 3 4 -6.14846955406E-05 1 4 4 -1.37034719794E-02 2 4 4 5.49179727281E-05 3 4 4 -9.43100515625E-06 4 4 4 5.49179727281E-05 2 3 4 2 1 1 1 4.81482486097E-35 2 1 1 -4.81482486097E-35 3 1 1 4.81482486097E-35 4 1 1 -4.81482486097E-35 1 2 1 4.30655140556E-04 2 2 1 4.30655140556E-04 3 2 1 -6.07755422331E-05 4 2 1 -6.07755422331E-05 1 3 1 -4.81482486097E-35 2 3 1 4.81482486097E-35 3 3 1 -4.81482486097E-35 4 3 1 4.81482486097E-35 1 4 1 -4.30655140556E-04 2 4 1 -4.30655140556E-04 3 4 1 6.07755422331E-05 4 4 1 6.07755422331E-05 1 1 2 -4.81482486097E-35 2 1 2 4.81482486097E-35 3 1 2 -4.81482486097E-35 4 1 2 4.81482486097E-35 1 2 2 -7.22708198781E-05 2 2 2 -7.22708198781E-05 3 2 2 -5.97793100193E-05 4 2 2 -5.97793100193E-05 1 3 2 4.81482486097E-35 2 3 2 -4.81482486097E-35 3 3 2 4.81482486097E-35 4 3 2 -4.81482486097E-35 1 4 2 7.22708198781E-05 2 4 2 7.22708198781E-05 3 4 2 5.97793100193E-05 4 4 2 5.97793100193E-05 1 1 3 4.81482486097E-35 2 1 3 -4.81482486097E-35 3 1 3 4.81482486097E-35 4 1 3 -4.81482486097E-35 1 2 3 7.22708198781E-05 2 2 3 7.22708198781E-05 3 2 3 5.97793100193E-05 4 2 3 5.97793100193E-05 1 3 3 -4.81482486097E-35 2 3 3 4.81482486097E-35 3 3 3 -4.81482486097E-35 4 3 3 4.81482486097E-35 1 4 3 -7.22708198781E-05 2 4 3 -7.22708198781E-05 3 4 3 -5.97793100193E-05 4 4 3 -5.97793100193E-05 1 1 4 -4.81482486097E-35 2 1 4 4.81482486097E-35 3 1 4 -4.81482486097E-35 4 1 4 4.81482486097E-35 1 2 4 -4.30655140556E-04 2 2 4 -4.30655140556E-04 3 2 4 6.07755422331E-05 4 2 4 6.07755422331E-05 1 3 4 4.81482486097E-35 2 3 4 -4.81482486097E-35 3 3 4 4.81482486097E-35 4 3 4 -4.81482486097E-35 1 4 4 4.30655140556E-04 2 4 4 4.30655140556E-04 3 4 4 -6.07755422331E-05 4 4 4 -6.07755422331E-05 2 3 4 3 1 1 1 2.02715893481E-19 2 1 1 2.02715893481E-19 3 1 1 2.02715893481E-19 4 1 1 2.02715893481E-19 1 2 1 -2.02715893481E-19 2 2 1 -2.02715893481E-19 3 2 1 -2.02715893481E-19 4 2 1 -2.02715893481E-19 1 3 1 2.02715893481E-19 2 3 1 2.02715893481E-19 3 3 1 2.02715893481E-19 4 3 1 2.02715893481E-19 1 4 1 -2.02715893481E-19 2 4 1 -2.02715893481E-19 3 4 1 -2.02715893481E-19 4 4 1 -2.02715893481E-19 1 1 2 4.29104399061E-04 2 1 2 4.29104399061E-04 3 1 2 -6.06947371606E-05 4 1 2 -6.06947371606E-05 1 2 2 -7.41155615893E-05 2 2 2 -7.41155615893E-05 3 2 2 -5.93882407106E-05 4 2 2 -5.93882407106E-05 1 3 2 7.41155615893E-05 2 3 2 7.41155615893E-05 3 3 2 5.93882407106E-05 4 3 2 5.93882407106E-05 1 4 2 -4.29104399061E-04 2 4 2 -4.29104399061E-04 3 4 2 6.06947371606E-05 4 4 2 6.06947371606E-05 1 1 3 -2.02715893481E-19 2 1 3 -2.02715893481E-19 3 1 3 -2.02715893481E-19 4 1 3 -2.02715893481E-19 1 2 3 2.02715893481E-19 2 2 3 2.02715893481E-19 3 2 3 2.02715893481E-19 4 2 3 2.02715893481E-19 1 3 3 -2.02715893481E-19 2 3 3 -2.02715893481E-19 3 3 3 -2.02715893481E-19 4 3 3 -2.02715893481E-19 1 4 3 2.02715893481E-19 2 4 3 2.02715893481E-19 3 4 3 2.02715893481E-19 4 4 3 2.02715893481E-19 1 1 4 -4.29104399061E-04 2 1 4 -4.29104399061E-04 3 1 4 6.06947371606E-05 4 1 4 6.06947371606E-05 1 2 4 7.41155615893E-05 2 2 4 7.41155615893E-05 3 2 4 5.93882407106E-05 4 2 4 5.93882407106E-05 1 3 4 -7.41155615893E-05 2 3 4 -7.41155615893E-05 3 3 4 -5.93882407106E-05 4 3 4 -5.93882407106E-05 1 4 4 4.29104399061E-04 2 4 4 4.29104399061E-04 3 4 4 -6.06947371606E-05 4 4 4 -6.06947371606E-05 2 3 4 4 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.62560554799E-04 2 2 2 2.01820592419E-04 3 2 2 -4.16200862765E-05 4 2 2 2.01820592419E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.62560554799E-04 2 4 2 -2.01820592419E-04 3 4 2 4.16200862765E-05 4 4 2 -2.01820592419E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.62560554799E-04 2 2 4 -2.01820592419E-04 3 2 4 4.16200862765E-05 4 2 4 -2.01820592419E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.62560554799E-04 2 4 4 2.01820592419E-04 3 4 4 -4.16200862765E-05 4 4 4 2.01820592419E-04 3 1 1 1 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.58946644406E-04 3 1 2 0.00000000000E+00 4 1 2 3.58946644406E-04 1 2 2 0.00000000000E+00 2 2 2 2.01525037763E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01525037763E-04 1 3 2 0.00000000000E+00 2 3 2 -4.58505889412E-05 3 3 2 0.00000000000E+00 4 3 2 4.58505889412E-05 1 4 2 0.00000000000E+00 2 4 2 2.01525037763E-04 3 4 2 0.00000000000E+00 4 4 2 -2.01525037763E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.58946644406E-04 3 1 4 0.00000000000E+00 4 1 4 -3.58946644406E-04 1 2 4 0.00000000000E+00 2 2 4 -2.01525037763E-04 3 2 4 0.00000000000E+00 4 2 4 2.01525037763E-04 1 3 4 0.00000000000E+00 2 3 4 4.58505889412E-05 3 3 4 0.00000000000E+00 4 3 4 -4.58505889412E-05 1 4 4 0.00000000000E+00 2 4 4 -2.01525037763E-04 3 4 4 0.00000000000E+00 4 4 4 2.01525037763E-04 3 1 1 2 1 1 1 1.38336454722E-52 2 1 1 -1.17455480424E-52 3 1 1 1.38336454722E-52 4 1 1 -1.59217429019E-52 1 2 1 1.38336454722E-52 2 2 1 -1.59217429019E-52 3 2 1 1.38336454722E-52 4 2 1 -1.17455480424E-52 1 3 1 -1.38336454722E-52 2 3 1 1.59217429019E-52 3 3 1 -1.38336454722E-52 4 3 1 1.17455480424E-52 1 4 1 -1.38336454722E-52 2 4 1 1.17455480424E-52 3 4 1 -1.38336454722E-52 4 4 1 1.59217429019E-52 1 1 2 -4.30207913484E-04 2 1 2 4.30207913484E-04 3 1 2 -7.29651725582E-05 4 1 2 7.29651725582E-05 1 2 2 -4.30207913484E-04 2 2 2 4.30207913484E-04 3 2 2 -7.29651725582E-05 4 2 2 7.29651725582E-05 1 3 2 5.94357490219E-05 2 3 2 -5.94357490219E-05 3 3 2 -5.81786513669E-05 4 3 2 5.81786513669E-05 1 4 2 5.94357490219E-05 2 4 2 -5.94357490219E-05 3 4 2 -5.81786513669E-05 4 4 2 5.81786513669E-05 1 1 3 1.38336454722E-52 2 1 3 -1.17455480424E-52 3 1 3 1.38336454722E-52 4 1 3 -1.59217429019E-52 1 2 3 1.38336454722E-52 2 2 3 -1.59217429019E-52 3 2 3 1.38336454722E-52 4 2 3 -1.17455480424E-52 1 3 3 -1.38336454722E-52 2 3 3 1.59217429019E-52 3 3 3 -1.38336454722E-52 4 3 3 1.17455480424E-52 1 4 3 -1.38336454722E-52 2 4 3 1.17455480424E-52 3 4 3 -1.38336454722E-52 4 4 3 1.59217429019E-52 1 1 4 4.30207913484E-04 2 1 4 -4.30207913484E-04 3 1 4 7.29651725582E-05 4 1 4 -7.29651725582E-05 1 2 4 4.30207913484E-04 2 2 4 -4.30207913484E-04 3 2 4 7.29651725582E-05 4 2 4 -7.29651725582E-05 1 3 4 -5.94357490219E-05 2 3 4 5.94357490219E-05 3 3 4 5.81786513669E-05 4 3 4 -5.81786513669E-05 1 4 4 -5.94357490219E-05 2 4 4 5.94357490219E-05 3 4 4 5.81786513669E-05 4 4 4 -5.81786513669E-05 3 1 1 3 1 1 1 -1.37034719794E-02 2 1 1 1.37034719794E-02 3 1 1 2.89107873124E-06 4 1 1 -2.89107873125E-06 1 2 1 5.49179727281E-05 2 2 1 -5.49179727281E-05 3 2 1 6.14846955406E-05 4 2 1 -6.14846955406E-05 1 3 1 -9.43100515625E-06 2 3 1 9.43100515625E-06 3 3 1 -5.04826262437E-05 4 3 1 5.04826262437E-05 1 4 1 5.49179727281E-05 2 4 1 -5.49179727281E-05 3 4 1 6.14846955406E-05 4 4 1 -6.14846955406E-05 1 1 2 1.37034719794E-02 2 1 2 -1.37034719794E-02 3 1 2 -2.89107873125E-06 4 1 2 2.89107873126E-06 1 2 2 -5.49179727281E-05 2 2 2 5.49179727281E-05 3 2 2 -6.14846955406E-05 4 2 2 6.14846955406E-05 1 3 2 9.43100515625E-06 2 3 2 -9.43100515625E-06 3 3 2 5.04826262437E-05 4 3 2 -5.04826262438E-05 1 4 2 -5.49179727281E-05 2 4 2 5.49179727281E-05 3 4 2 -6.14846955406E-05 4 4 2 6.14846955406E-05 1 1 3 4.83480209374E-06 2 1 3 -4.83480209375E-06 3 1 3 5.62294541938E-05 4 1 3 -5.62294541937E-05 1 2 3 6.14233913281E-05 2 2 3 -6.14233913281E-05 3 2 3 -7.16518208969E-05 4 2 3 7.16518208969E-05 1 3 3 -5.22875046812E-05 2 3 3 5.22875046812E-05 3 3 3 -1.12779887531E-04 4 3 3 1.12779887531E-04 1 4 3 6.14233913281E-05 2 4 3 -6.14233913281E-05 3 4 3 -7.16518208969E-05 4 4 3 7.16518208969E-05 1 1 4 -4.83480209375E-06 2 1 4 4.83480209375E-06 3 1 4 -5.62294541937E-05 4 1 4 5.62294541937E-05 1 2 4 -6.14233913281E-05 2 2 4 6.14233913281E-05 3 2 4 7.16518208969E-05 4 2 4 -7.16518208969E-05 1 3 4 5.22875046812E-05 2 3 4 -5.22875046813E-05 3 3 4 1.12779887531E-04 4 3 4 -1.12779887531E-04 1 4 4 -6.14233913281E-05 2 4 4 6.14233913281E-05 3 4 4 7.16518208969E-05 4 4 4 -7.16518208969E-05 3 1 1 4 1 1 1 -5.80905007336E-35 2 1 1 -4.28887761257E-04 3 1 1 5.80787457901E-35 4 1 1 4.28887761257E-04 1 2 1 5.80846232619E-35 2 2 1 -4.28887761257E-04 3 2 1 -5.80846232619E-35 4 2 1 4.28887761257E-04 1 3 1 -5.80787457901E-35 2 3 1 6.01167308938E-05 3 3 1 5.80905007336E-35 4 3 1 -6.01167308938E-05 1 4 1 5.80846232619E-35 2 4 1 6.01167308938E-05 3 4 1 -5.80846232619E-35 4 4 1 -6.01167308938E-05 1 1 2 5.80787457901E-35 2 1 2 4.28887761257E-04 3 1 2 -5.80905007336E-35 4 1 2 -4.28887761257E-04 1 2 2 -5.80846232619E-35 2 2 2 4.28887761257E-04 3 2 2 5.80846232619E-35 4 2 2 -4.28887761257E-04 1 3 2 5.80905007336E-35 2 3 2 -6.01167308938E-05 3 3 2 -5.80787457901E-35 4 3 2 6.01167308938E-05 1 4 2 -5.80846232619E-35 2 4 2 -6.01167308938E-05 3 4 2 5.80846232619E-35 4 4 2 6.01167308938E-05 1 1 3 -5.50812351955E-35 2 1 3 -7.21633081557E-05 3 1 3 5.50694802520E-35 4 1 3 7.21633081557E-05 1 2 3 5.50753577238E-35 2 2 3 -7.21633081557E-05 3 2 3 -5.50753577238E-35 4 2 3 7.21633081557E-05 1 3 3 -5.50694802520E-35 2 3 3 -6.09870361569E-05 3 3 3 5.50812351955E-35 4 3 3 6.09870361569E-05 1 4 3 5.50753577238E-35 2 4 3 -6.09870361569E-05 3 4 3 -5.50753577238E-35 4 4 3 6.09870361569E-05 1 1 4 5.50694802520E-35 2 1 4 7.21633081557E-05 3 1 4 -5.50812351955E-35 4 1 4 -7.21633081557E-05 1 2 4 -5.50753577238E-35 2 2 4 7.21633081557E-05 3 2 4 5.50753577238E-35 4 2 4 -7.21633081557E-05 1 3 4 5.50812351955E-35 2 3 4 6.09870361569E-05 3 3 4 -5.50694802520E-35 4 3 4 -6.09870361569E-05 1 4 4 -5.50753577238E-35 2 4 4 6.09870361569E-05 3 4 4 5.50753577238E-35 4 4 4 -6.09870361569E-05 3 1 2 1 1 1 1 5.87747175413E-39 2 1 1 5.87747175412E-39 3 1 1 5.87747175413E-39 4 1 1 5.87747175412E-39 1 2 1 -1.38336454722E-52 2 2 1 1.59217429019E-52 3 2 1 -1.38336454722E-52 4 2 1 1.17455480424E-52 1 3 1 -5.87747175413E-39 2 3 1 -5.87747175412E-39 3 3 1 -5.87747175413E-39 4 3 1 -5.87747175412E-39 1 4 1 1.38336454722E-52 2 4 1 -1.17455480424E-52 3 4 1 1.38336454722E-52 4 4 1 -1.59217429019E-52 1 1 2 4.28887761257E-04 2 1 2 -7.21633081557E-05 3 1 2 7.21633081557E-05 4 1 2 -4.28887761257E-04 1 2 2 -6.01167308938E-05 2 2 2 -6.09870361569E-05 3 2 2 6.09870361569E-05 4 2 2 6.01167308938E-05 1 3 2 -6.01167308938E-05 2 3 2 -6.09870361569E-05 3 3 2 6.09870361569E-05 4 3 2 6.01167308938E-05 1 4 2 4.28887761257E-04 2 4 2 -7.21633081557E-05 3 4 2 7.21633081557E-05 4 4 2 -4.28887761257E-04 1 1 3 5.87747175413E-39 2 1 3 5.87747175412E-39 3 1 3 5.87747175413E-39 4 1 3 5.87747175412E-39 1 2 3 -1.38336454722E-52 2 2 3 1.59217429019E-52 3 2 3 -1.38336454722E-52 4 2 3 1.17455480424E-52 1 3 3 -5.87747175413E-39 2 3 3 -5.87747175412E-39 3 3 3 -5.87747175413E-39 4 3 3 -5.87747175412E-39 1 4 3 1.38336454722E-52 2 4 3 -1.17455480424E-52 3 4 3 1.38336454722E-52 4 4 3 -1.59217429019E-52 1 1 4 -4.28887761257E-04 2 1 4 7.21633081557E-05 3 1 4 -7.21633081557E-05 4 1 4 4.28887761257E-04 1 2 4 6.01167308938E-05 2 2 4 6.09870361569E-05 3 2 4 -6.09870361569E-05 4 2 4 -6.01167308938E-05 1 3 4 6.01167308938E-05 2 3 4 6.09870361569E-05 3 3 4 -6.09870361569E-05 4 3 4 -6.01167308938E-05 1 4 4 -4.28887761257E-04 2 4 4 7.21633081557E-05 3 4 4 -7.21633081557E-05 4 4 4 4.28887761257E-04 3 1 2 2 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.60242649126E-04 3 1 2 0.00000000000E+00 4 1 2 3.60242649126E-04 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 -4.28494799632E-05 3 3 2 0.00000000000E+00 4 3 2 4.28494799632E-05 1 4 2 0.00000000000E+00 2 4 2 2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.60242649126E-04 3 1 4 0.00000000000E+00 4 1 4 -3.60242649126E-04 1 2 4 0.00000000000E+00 2 2 4 -2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 4.28494799632E-05 3 3 4 0.00000000000E+00 4 3 4 -4.28494799632E-05 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 3 1 2 3 1 1 1 5.80896787000E-35 2 1 1 -4.30655140556E-04 3 1 1 -5.80896787000E-35 4 1 1 4.30655140556E-04 1 2 1 -5.80896787000E-35 2 2 1 6.07755422331E-05 3 2 1 5.80896787000E-35 4 2 1 -6.07755422331E-05 1 3 1 5.80896787000E-35 2 3 1 6.07755422331E-05 3 3 1 -5.80896787000E-35 4 3 1 -6.07755422331E-05 1 4 1 -5.80896787000E-35 2 4 1 -4.30655140556E-04 3 4 1 5.80896787000E-35 4 4 1 4.30655140556E-04 1 1 2 -5.80896787000E-35 2 1 2 4.30655140556E-04 3 1 2 5.80896787000E-35 4 1 2 -4.30655140556E-04 1 2 2 5.80896787000E-35 2 2 2 -6.07755422331E-05 3 2 2 -5.80896787000E-35 4 2 2 6.07755422331E-05 1 3 2 -5.80896787000E-35 2 3 2 -6.07755422331E-05 3 3 2 5.80896787000E-35 4 3 2 6.07755422331E-05 1 4 2 5.80896787000E-35 2 4 2 4.30655140556E-04 3 4 2 -5.80896787000E-35 4 4 2 -4.30655140556E-04 1 1 3 5.50804131619E-35 2 1 3 -7.22708198781E-05 3 1 3 -5.50804131619E-35 4 1 3 7.22708198781E-05 1 2 3 -5.50804131619E-35 2 2 3 -5.97793100193E-05 3 2 3 5.50804131619E-35 4 2 3 5.97793100193E-05 1 3 3 5.50804131619E-35 2 3 3 -5.97793100193E-05 3 3 3 -5.50804131619E-35 4 3 3 5.97793100193E-05 1 4 3 -5.50804131619E-35 2 4 3 -7.22708198781E-05 3 4 3 5.50804131619E-35 4 4 3 7.22708198781E-05 1 1 4 -5.50804131619E-35 2 1 4 7.22708198781E-05 3 1 4 5.50804131619E-35 4 1 4 -7.22708198781E-05 1 2 4 5.50804131619E-35 2 2 4 5.97793100193E-05 3 2 4 -5.50804131619E-35 4 2 4 -5.97793100193E-05 1 3 4 -5.50804131619E-35 2 3 4 5.97793100193E-05 3 3 4 5.50804131619E-35 4 3 4 -5.97793100193E-05 1 4 4 5.50804131619E-35 2 4 4 7.22708198781E-05 3 4 4 -5.50804131619E-35 4 4 4 -7.22708198781E-05 3 1 2 4 1 1 1 1.37067712500E-02 2 1 1 5.75450117500E-06 3 1 1 -5.75450117499E-06 4 1 1 -1.37067712500E-02 1 2 1 -5.50718982125E-05 2 2 1 6.16300101688E-05 3 2 1 -6.16300101688E-05 4 2 1 5.50718982125E-05 1 3 1 6.09222033125E-06 2 3 1 -5.39320003250E-05 3 3 1 5.39320003250E-05 4 3 1 -6.09222033125E-06 1 4 1 -5.50718982125E-05 2 4 1 6.16300101687E-05 3 4 1 -6.16300101687E-05 4 4 1 5.50718982125E-05 1 1 2 -1.37067712500E-02 2 1 2 -5.75450117501E-06 3 1 2 5.75450117500E-06 4 1 2 1.37067712500E-02 1 2 2 5.50718982125E-05 2 2 2 -6.16300101688E-05 3 2 2 6.16300101688E-05 4 2 2 -5.50718982125E-05 1 3 2 -6.09222033125E-06 2 3 2 5.39320003250E-05 3 3 2 -5.39320003250E-05 4 3 2 6.09222033125E-06 1 4 2 5.50718982125E-05 2 4 2 -6.16300101687E-05 3 4 2 6.16300101687E-05 4 4 2 -5.50718982125E-05 1 1 3 -5.75450117499E-06 2 1 3 5.48592277812E-05 3 1 3 -5.48592277813E-05 4 1 3 5.75450117500E-06 1 2 3 -6.16300101688E-05 2 2 3 -7.15648150250E-05 3 2 3 7.15648150250E-05 4 2 3 6.16300101688E-05 1 3 3 5.39320003250E-05 2 3 3 -1.11266984644E-04 3 3 3 1.11266984644E-04 4 3 3 -5.39320003250E-05 1 4 3 -6.16300101687E-05 2 4 3 -7.15648150250E-05 3 4 3 7.15648150250E-05 4 4 3 6.16300101687E-05 1 1 4 5.75450117500E-06 2 1 4 -5.48592277812E-05 3 1 4 5.48592277812E-05 4 1 4 -5.75450117501E-06 1 2 4 6.16300101688E-05 2 2 4 7.15648150250E-05 3 2 4 -7.15648150250E-05 4 2 4 -6.16300101688E-05 1 3 4 -5.39320003250E-05 2 3 4 1.11266984644E-04 3 3 4 -1.11266984644E-04 4 3 4 5.39320003250E-05 1 4 4 6.16300101687E-05 2 4 4 7.15648150250E-05 3 4 4 -7.15648150250E-05 4 4 4 -6.16300101687E-05 3 1 3 1 1 1 1 -1.37034719794E-02 2 1 1 -4.83480209375E-06 3 1 1 4.83480209374E-06 4 1 1 1.37034719794E-02 1 2 1 5.49179727281E-05 2 2 1 -6.14233913281E-05 3 2 1 6.14233913281E-05 4 2 1 -5.49179727281E-05 1 3 1 -9.43100515625E-06 2 3 1 5.22875046813E-05 3 3 1 -5.22875046813E-05 4 3 1 9.43100515625E-06 1 4 1 5.49179727281E-05 2 4 1 -6.14233913281E-05 3 4 1 6.14233913281E-05 4 4 1 -5.49179727281E-05 1 1 2 -2.89107873125E-06 2 1 2 5.62294541937E-05 3 1 2 -5.62294541937E-05 4 1 2 2.89107873126E-06 1 2 2 -6.14846955406E-05 2 2 2 -7.16518208969E-05 3 2 2 7.16518208969E-05 4 2 2 6.14846955406E-05 1 3 2 5.04826262437E-05 2 3 2 -1.12779887531E-04 3 3 2 1.12779887531E-04 4 3 2 -5.04826262437E-05 1 4 2 -6.14846955406E-05 2 4 2 -7.16518208969E-05 3 4 2 7.16518208969E-05 4 4 2 6.14846955406E-05 1 1 3 2.89107873124E-06 2 1 3 -5.62294541937E-05 3 1 3 5.62294541938E-05 4 1 3 -2.89107873125E-06 1 2 3 6.14846955406E-05 2 2 3 7.16518208969E-05 3 2 3 -7.16518208969E-05 4 2 3 -6.14846955406E-05 1 3 3 -5.04826262437E-05 2 3 3 1.12779887531E-04 3 3 3 -1.12779887531E-04 4 3 3 5.04826262437E-05 1 4 3 6.14846955406E-05 2 4 3 7.16518208969E-05 3 4 3 -7.16518208969E-05 4 4 3 -6.14846955406E-05 1 1 4 1.37034719794E-02 2 1 4 4.83480209376E-06 3 1 4 -4.83480209375E-06 4 1 4 -1.37034719794E-02 1 2 4 -5.49179727281E-05 2 2 4 6.14233913281E-05 3 2 4 -6.14233913281E-05 4 2 4 5.49179727281E-05 1 3 4 9.43100515625E-06 2 3 4 -5.22875046813E-05 3 3 4 5.22875046813E-05 4 3 4 -9.43100515625E-06 1 4 4 -5.49179727281E-05 2 4 4 6.14233913281E-05 3 4 4 -6.14233913281E-05 4 4 4 5.49179727281E-05 3 1 3 2 1 1 1 5.80928112324E-35 2 1 1 4.29104399061E-04 3 1 1 -5.80869337607E-35 4 1 1 -4.29104399061E-04 1 2 1 -5.80898724966E-35 2 2 1 4.29104399061E-04 3 2 1 5.80898724966E-35 4 2 1 -4.29104399061E-04 1 3 1 5.80869337607E-35 2 3 1 -6.06947371606E-05 3 3 1 -5.80928112324E-35 4 3 1 6.06947371606E-05 1 4 1 -5.80898724966E-35 2 4 1 -6.06947371606E-05 3 4 1 5.80898724966E-35 4 4 1 6.06947371606E-05 1 1 2 -5.50776682226E-35 2 1 2 -7.41155615893E-05 3 1 2 5.50835456943E-35 4 1 2 7.41155615893E-05 1 2 2 5.50806069584E-35 2 2 2 -7.41155615893E-05 3 2 2 -5.50806069584E-35 4 2 2 7.41155615893E-05 1 3 2 -5.50835456943E-35 2 3 2 -5.93882407106E-05 3 3 2 5.50776682226E-35 4 3 2 5.93882407106E-05 1 4 2 5.50806069584E-35 2 4 2 -5.93882407106E-05 3 4 2 -5.50806069584E-35 4 4 2 5.93882407106E-05 1 1 3 5.50835456943E-35 2 1 3 7.41155615893E-05 3 1 3 -5.50776682226E-35 4 1 3 -7.41155615893E-05 1 2 3 -5.50806069584E-35 2 2 3 7.41155615893E-05 3 2 3 5.50806069584E-35 4 2 3 -7.41155615893E-05 1 3 3 5.50776682226E-35 2 3 3 5.93882407106E-05 3 3 3 -5.50835456943E-35 4 3 3 -5.93882407106E-05 1 4 3 -5.50806069584E-35 2 4 3 5.93882407106E-05 3 4 3 5.50806069584E-35 4 4 3 -5.93882407106E-05 1 1 4 -5.80869337607E-35 2 1 4 -4.29104399061E-04 3 1 4 5.80928112324E-35 4 1 4 4.29104399061E-04 1 2 4 5.80898724966E-35 2 2 4 -4.29104399061E-04 3 2 4 -5.80898724966E-35 4 2 4 4.29104399061E-04 1 3 4 -5.80928112324E-35 2 3 4 6.06947371606E-05 3 3 4 5.80869337607E-35 4 3 4 -6.06947371606E-05 1 4 4 5.80898724966E-35 2 4 4 6.06947371606E-05 3 4 4 -5.80898724966E-35 4 4 4 -6.06947371606E-05 3 1 3 3 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.62560554799E-04 3 1 2 0.00000000000E+00 4 1 2 3.62560554799E-04 1 2 2 0.00000000000E+00 2 2 2 2.01820592419E-04 3 2 2 0.00000000000E+00 4 2 2 -2.01820592419E-04 1 3 2 0.00000000000E+00 2 3 2 -4.16200862765E-05 3 3 2 0.00000000000E+00 4 3 2 4.16200862765E-05 1 4 2 0.00000000000E+00 2 4 2 2.01820592419E-04 3 4 2 0.00000000000E+00 4 4 2 -2.01820592419E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.62560554799E-04 3 1 4 0.00000000000E+00 4 1 4 -3.62560554799E-04 1 2 4 0.00000000000E+00 2 2 4 -2.01820592419E-04 3 2 4 0.00000000000E+00 4 2 4 2.01820592419E-04 1 3 4 0.00000000000E+00 2 3 4 4.16200862765E-05 3 3 4 0.00000000000E+00 4 3 4 -4.16200862765E-05 1 4 4 0.00000000000E+00 2 4 4 -2.01820592419E-04 3 4 4 0.00000000000E+00 4 4 4 2.01820592419E-04 3 1 3 4 1 1 1 5.22024357439E-54 2 1 1 -1.56607307232E-53 3 1 1 -1.56607307232E-53 4 1 1 5.22024357439E-54 1 2 1 -5.22024357439E-54 2 2 1 1.56607307232E-53 3 2 1 1.56607307232E-53 4 2 1 -5.22024357439E-54 1 3 1 1.56607307232E-53 2 3 1 -5.22024357439E-54 3 3 1 -5.22024357439E-54 4 3 1 1.56607307232E-53 1 4 1 -1.56607307232E-53 2 4 1 5.22024357439E-54 3 4 1 5.22024357439E-54 4 4 1 -1.56607307232E-53 1 1 2 4.30655140556E-04 2 1 2 -7.22708198781E-05 3 1 2 7.22708198781E-05 4 1 2 -4.30655140556E-04 1 2 2 4.30655140556E-04 2 2 2 -7.22708198781E-05 3 2 2 7.22708198781E-05 4 2 2 -4.30655140556E-04 1 3 2 -6.07755422331E-05 2 3 2 -5.97793100193E-05 3 3 2 5.97793100193E-05 4 3 2 6.07755422331E-05 1 4 2 -6.07755422331E-05 2 4 2 -5.97793100193E-05 3 4 2 5.97793100193E-05 4 4 2 6.07755422331E-05 1 1 3 5.22024357439E-54 2 1 3 -1.56607307232E-53 3 1 3 -1.56607307232E-53 4 1 3 5.22024357439E-54 1 2 3 -5.22024357439E-54 2 2 3 1.56607307232E-53 3 2 3 1.56607307232E-53 4 2 3 -5.22024357439E-54 1 3 3 1.56607307232E-53 2 3 3 -5.22024357439E-54 3 3 3 -5.22024357439E-54 4 3 3 1.56607307232E-53 1 4 3 -1.56607307232E-53 2 4 3 5.22024357439E-54 3 4 3 5.22024357439E-54 4 4 3 -1.56607307232E-53 1 1 4 -4.30655140556E-04 2 1 4 7.22708198781E-05 3 1 4 -7.22708198781E-05 4 1 4 4.30655140556E-04 1 2 4 -4.30655140556E-04 2 2 4 7.22708198781E-05 3 2 4 -7.22708198781E-05 4 2 4 4.30655140556E-04 1 3 4 6.07755422331E-05 2 3 4 5.97793100193E-05 3 3 4 -5.97793100193E-05 4 3 4 -6.07755422331E-05 1 4 4 6.07755422331E-05 2 4 4 5.97793100193E-05 3 4 4 -5.97793100193E-05 4 4 4 -6.07755422331E-05 3 1 4 1 1 1 1 -5.80850536859E-35 2 1 1 4.30207913484E-04 3 1 1 5.80850536859E-35 4 1 1 -4.30207913484E-04 1 2 1 5.80850536859E-35 2 2 1 -5.94357490219E-05 3 2 1 -5.80850536859E-35 4 2 1 5.94357490219E-05 1 3 1 -5.80850536859E-35 2 3 1 -5.94357490219E-05 3 3 1 5.80850536859E-35 4 3 1 5.94357490219E-05 1 4 1 5.80850536859E-35 2 4 1 4.30207913484E-04 3 4 1 -5.80850536859E-35 4 4 1 -4.30207913484E-04 1 1 2 5.50757881478E-35 2 1 2 -7.29651725582E-05 3 1 2 -5.50757881478E-35 4 1 2 7.29651725582E-05 1 2 2 -5.50757881478E-35 2 2 2 -5.81786513669E-05 3 2 2 5.50757881478E-35 4 2 2 5.81786513669E-05 1 3 2 5.50757881478E-35 2 3 2 -5.81786513669E-05 3 3 2 -5.50757881478E-35 4 3 2 5.81786513669E-05 1 4 2 -5.50757881478E-35 2 4 2 -7.29651725582E-05 3 4 2 5.50757881478E-35 4 4 2 7.29651725582E-05 1 1 3 -5.50757881478E-35 2 1 3 7.29651725582E-05 3 1 3 5.50757881478E-35 4 1 3 -7.29651725582E-05 1 2 3 5.50757881478E-35 2 2 3 5.81786513669E-05 3 2 3 -5.50757881478E-35 4 2 3 -5.81786513669E-05 1 3 3 -5.50757881478E-35 2 3 3 5.81786513669E-05 3 3 3 5.50757881478E-35 4 3 3 -5.81786513669E-05 1 4 3 5.50757881478E-35 2 4 3 7.29651725582E-05 3 4 3 -5.50757881478E-35 4 4 3 -7.29651725582E-05 1 1 4 5.80850536859E-35 2 1 4 -4.30207913484E-04 3 1 4 -5.80850536859E-35 4 1 4 4.30207913484E-04 1 2 4 -5.80850536859E-35 2 2 4 5.94357490219E-05 3 2 4 5.80850536859E-35 4 2 4 -5.94357490219E-05 1 3 4 5.80850536859E-35 2 3 4 5.94357490219E-05 3 3 4 -5.80850536859E-35 4 3 4 -5.94357490219E-05 1 4 4 -5.80850536859E-35 2 4 4 -4.30207913484E-04 3 4 4 5.80850536859E-35 4 4 4 4.30207913484E-04 3 1 4 2 1 1 1 1.37037308055E-02 2 1 1 -1.37037308055E-02 3 1 1 -3.09015600156E-06 4 1 1 3.09015600156E-06 1 2 1 -5.35140122641E-05 2 2 1 5.35140122641E-05 3 2 1 -6.28362787078E-05 4 2 1 6.28362787078E-05 1 3 1 8.88898306719E-06 2 3 1 -8.88898306719E-06 3 3 1 5.08309663984E-05 4 3 1 -5.08309663984E-05 1 4 1 -5.35140122641E-05 2 4 1 5.35140122641E-05 3 4 1 -6.28362787078E-05 4 4 1 6.28362787078E-05 1 1 2 3.09015600156E-06 2 1 2 -3.09015600157E-06 3 1 2 5.77062827953E-05 4 1 2 -5.77062827953E-05 1 2 2 6.28362787078E-05 2 2 2 -6.28362787078E-05 3 2 2 -7.29860027984E-05 4 2 2 7.29860027984E-05 1 3 2 -5.08309663984E-05 2 3 2 5.08309663984E-05 3 3 2 -1.14095454955E-04 4 3 2 1.14095454955E-04 1 4 2 6.28362787078E-05 2 4 2 -6.28362787078E-05 3 4 2 -7.29860027984E-05 4 4 2 7.29860027984E-05 1 1 3 -3.09015600156E-06 2 1 3 3.09015600156E-06 3 1 3 -5.77062827953E-05 4 1 3 5.77062827953E-05 1 2 3 -6.28362787078E-05 2 2 3 6.28362787078E-05 3 2 3 7.29860027984E-05 4 2 3 -7.29860027984E-05 1 3 3 5.08309663984E-05 2 3 3 -5.08309663984E-05 3 3 3 1.14095454955E-04 4 3 3 -1.14095454955E-04 1 4 3 -6.28362787078E-05 2 4 3 6.28362787078E-05 3 4 3 7.29860027984E-05 4 4 3 -7.29860027984E-05 1 1 4 -1.37037308055E-02 2 1 4 1.37037308055E-02 3 1 4 3.09015600156E-06 4 1 4 -3.09015600157E-06 1 2 4 5.35140122641E-05 2 2 4 -5.35140122641E-05 3 2 4 6.28362787078E-05 4 2 4 -6.28362787078E-05 1 3 4 -8.88898306719E-06 2 3 4 8.88898306719E-06 3 3 4 -5.08309663984E-05 4 3 4 5.08309663984E-05 1 4 4 5.35140122641E-05 2 4 4 -5.35140122641E-05 3 4 4 6.28362787078E-05 4 4 4 -6.28362787078E-05 3 1 4 3 1 1 1 -2.93873587706E-39 2 1 1 -2.93873587706E-39 3 1 1 -2.93873587706E-39 4 1 1 -2.93873587706E-39 1 2 1 1.04404871488E-53 2 2 1 1.04404871488E-53 3 2 1 -1.04404871488E-53 4 2 1 -1.04404871488E-53 1 3 1 2.93873587706E-39 2 3 1 2.93873587706E-39 3 3 1 2.93873587706E-39 4 3 1 2.93873587706E-39 1 4 1 1.04404871488E-53 2 4 1 1.04404871488E-53 3 4 1 -1.04404871488E-53 4 4 1 -1.04404871488E-53 1 1 2 -4.29104399061E-04 2 1 2 4.29104399061E-04 3 1 2 -7.41155615893E-05 4 1 2 7.41155615893E-05 1 2 2 6.06947371606E-05 2 2 2 -6.06947371606E-05 3 2 2 -5.93882407106E-05 4 2 2 5.93882407106E-05 1 3 2 6.06947371606E-05 2 3 2 -6.06947371606E-05 3 3 2 -5.93882407106E-05 4 3 2 5.93882407106E-05 1 4 2 -4.29104399061E-04 2 4 2 4.29104399061E-04 3 4 2 -7.41155615893E-05 4 4 2 7.41155615893E-05 1 1 3 -2.93873587706E-39 2 1 3 -2.93873587706E-39 3 1 3 -2.93873587706E-39 4 1 3 -2.93873587706E-39 1 2 3 1.04404871488E-53 2 2 3 1.04404871488E-53 3 2 3 -1.04404871488E-53 4 2 3 -1.04404871488E-53 1 3 3 2.93873587706E-39 2 3 3 2.93873587706E-39 3 3 3 2.93873587706E-39 4 3 3 2.93873587706E-39 1 4 3 1.04404871488E-53 2 4 3 1.04404871488E-53 3 4 3 -1.04404871488E-53 4 4 3 -1.04404871488E-53 1 1 4 4.29104399061E-04 2 1 4 -4.29104399061E-04 3 1 4 7.41155615893E-05 4 1 4 -7.41155615893E-05 1 2 4 -6.06947371606E-05 2 2 4 6.06947371606E-05 3 2 4 5.93882407106E-05 4 2 4 -5.93882407106E-05 1 3 4 -6.06947371606E-05 2 3 4 6.06947371606E-05 3 3 4 5.93882407106E-05 4 3 4 -5.93882407106E-05 1 4 4 4.29104399061E-04 2 4 4 -4.29104399061E-04 3 4 4 7.41155615893E-05 4 4 4 -7.41155615893E-05 3 1 4 4 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 -3.60242649126E-04 3 1 2 0.00000000000E+00 4 1 2 3.60242649126E-04 1 2 2 0.00000000000E+00 2 2 2 2.04137711858E-04 3 2 2 0.00000000000E+00 4 2 2 -2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 -4.28494799632E-05 3 3 2 0.00000000000E+00 4 3 2 4.28494799632E-05 1 4 2 0.00000000000E+00 2 4 2 2.04137711858E-04 3 4 2 0.00000000000E+00 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 3.60242649126E-04 3 1 4 0.00000000000E+00 4 1 4 -3.60242649126E-04 1 2 4 0.00000000000E+00 2 2 4 -2.04137711858E-04 3 2 4 0.00000000000E+00 4 2 4 2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 4.28494799632E-05 3 3 4 0.00000000000E+00 4 3 4 -4.28494799632E-05 1 4 4 0.00000000000E+00 2 4 4 -2.04137711858E-04 3 4 4 0.00000000000E+00 4 4 4 2.04137711858E-04 3 2 1 1 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.58946644406E-04 2 2 2 2.01525037763E-04 3 2 2 -4.58505889412E-05 4 2 2 2.01525037763E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.58946644406E-04 2 4 2 -2.01525037763E-04 3 4 2 4.58505889412E-05 4 4 2 -2.01525037763E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.58946644406E-04 2 2 4 -2.01525037763E-04 3 2 4 4.58505889412E-05 4 2 4 -2.01525037763E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.58946644406E-04 2 4 4 2.01525037763E-04 3 4 4 -4.58505889412E-05 4 4 4 2.01525037763E-04 3 2 1 2 1 1 1 2.02716912965E-19 2 1 1 2.02716912965E-19 3 1 1 2.02716912965E-19 4 1 1 2.02716912965E-19 1 2 1 -2.02716912965E-19 2 2 1 -2.02716912965E-19 3 2 1 -2.02716912965E-19 4 2 1 -2.02716912965E-19 1 3 1 2.02716912965E-19 2 3 1 2.02716912965E-19 3 3 1 2.02716912965E-19 4 3 1 2.02716912965E-19 1 4 1 -2.02716912965E-19 2 4 1 -2.02716912965E-19 3 4 1 -2.02716912965E-19 4 4 1 -2.02716912965E-19 1 1 2 -4.30207913484E-04 2 1 2 -4.30207913484E-04 3 1 2 5.94357490219E-05 4 1 2 5.94357490219E-05 1 2 2 4.30207913484E-04 2 2 2 4.30207913484E-04 3 2 2 -5.94357490219E-05 4 2 2 -5.94357490219E-05 1 3 2 -7.29651725582E-05 2 3 2 -7.29651725582E-05 3 3 2 -5.81786513669E-05 4 3 2 -5.81786513669E-05 1 4 2 7.29651725582E-05 2 4 2 7.29651725582E-05 3 4 2 5.81786513669E-05 4 4 2 5.81786513669E-05 1 1 3 -2.02716912965E-19 2 1 3 -2.02716912965E-19 3 1 3 -2.02716912965E-19 4 1 3 -2.02716912965E-19 1 2 3 2.02716912965E-19 2 2 3 2.02716912965E-19 3 2 3 2.02716912965E-19 4 2 3 2.02716912965E-19 1 3 3 -2.02716912965E-19 2 3 3 -2.02716912965E-19 3 3 3 -2.02716912965E-19 4 3 3 -2.02716912965E-19 1 4 3 2.02716912965E-19 2 4 3 2.02716912965E-19 3 4 3 2.02716912965E-19 4 4 3 2.02716912965E-19 1 1 4 4.30207913484E-04 2 1 4 4.30207913484E-04 3 1 4 -5.94357490219E-05 4 1 4 -5.94357490219E-05 1 2 4 -4.30207913484E-04 2 2 4 -4.30207913484E-04 3 2 4 5.94357490219E-05 4 2 4 5.94357490219E-05 1 3 4 7.29651725582E-05 2 3 4 7.29651725582E-05 3 3 4 5.81786513669E-05 4 3 4 5.81786513669E-05 1 4 4 -7.29651725582E-05 2 4 4 -7.29651725582E-05 3 4 4 -5.81786513669E-05 4 4 4 -5.81786513669E-05 3 2 1 3 1 1 1 -4.81423711379E-35 2 1 1 4.81482486097E-35 3 1 1 -4.81541260814E-35 4 1 1 4.81482486097E-35 1 2 1 -4.28887761257E-04 2 2 1 -4.28887761257E-04 3 2 1 6.01167308938E-05 4 2 1 6.01167308938E-05 1 3 1 4.81541260814E-35 2 3 1 -4.81482486097E-35 3 3 1 4.81423711379E-35 4 3 1 -4.81482486097E-35 1 4 1 4.28887761257E-04 2 4 1 4.28887761257E-04 3 4 1 -6.01167308938E-05 4 4 1 -6.01167308938E-05 1 1 2 4.81541260814E-35 2 1 2 -4.81482486097E-35 3 1 2 4.81423711379E-35 4 1 2 -4.81482486097E-35 1 2 2 4.28887761257E-04 2 2 2 4.28887761257E-04 3 2 2 -6.01167308938E-05 4 2 2 -6.01167308938E-05 1 3 2 -4.81423711379E-35 2 3 2 4.81482486097E-35 3 3 2 -4.81541260814E-35 4 3 2 4.81482486097E-35 1 4 2 -4.28887761257E-04 2 4 2 -4.28887761257E-04 3 4 2 6.01167308938E-05 4 4 2 6.01167308938E-05 1 1 3 -4.81423711379E-35 2 1 3 4.81482486097E-35 3 1 3 -4.81541260814E-35 4 1 3 4.81482486097E-35 1 2 3 -7.21633081557E-05 2 2 3 -7.21633081557E-05 3 2 3 -6.09870361569E-05 4 2 3 -6.09870361569E-05 1 3 3 4.81541260814E-35 2 3 3 -4.81482486097E-35 3 3 3 4.81423711379E-35 4 3 3 -4.81482486097E-35 1 4 3 7.21633081557E-05 2 4 3 7.21633081557E-05 3 4 3 6.09870361569E-05 4 4 3 6.09870361569E-05 1 1 4 4.81541260814E-35 2 1 4 -4.81482486097E-35 3 1 4 4.81423711379E-35 4 1 4 -4.81482486097E-35 1 2 4 7.21633081557E-05 2 2 4 7.21633081557E-05 3 2 4 6.09870361569E-05 4 2 4 6.09870361569E-05 1 3 4 -4.81423711379E-35 2 3 4 4.81482486097E-35 3 3 4 -4.81541260814E-35 4 3 4 4.81482486097E-35 1 4 4 -7.21633081557E-05 2 4 4 -7.21633081557E-05 3 4 4 -6.09870361569E-05 4 4 4 -6.09870361569E-05 3 2 1 4 1 1 1 -1.37034719794E-02 2 1 1 5.49179727281E-05 3 1 1 -9.43100515625E-06 4 1 1 5.49179727281E-05 1 2 1 1.37034719794E-02 2 2 1 -5.49179727281E-05 3 2 1 9.43100515625E-06 4 2 1 -5.49179727281E-05 1 3 1 2.89107873124E-06 2 3 1 6.14846955406E-05 3 3 1 -5.04826262437E-05 4 3 1 6.14846955406E-05 1 4 1 -2.89107873125E-06 2 4 1 -6.14846955406E-05 3 4 1 5.04826262437E-05 4 4 1 -6.14846955406E-05 1 1 2 1.37034719794E-02 2 1 2 -5.49179727281E-05 3 1 2 9.43100515625E-06 4 1 2 -5.49179727281E-05 1 2 2 -1.37034719794E-02 2 2 2 5.49179727281E-05 3 2 2 -9.43100515625E-06 4 2 2 5.49179727281E-05 1 3 2 -2.89107873125E-06 2 3 2 -6.14846955406E-05 3 3 2 5.04826262437E-05 4 3 2 -6.14846955406E-05 1 4 2 2.89107873126E-06 2 4 2 6.14846955406E-05 3 4 2 -5.04826262437E-05 4 4 2 6.14846955406E-05 1 1 3 4.83480209374E-06 2 1 3 6.14233913281E-05 3 1 3 -5.22875046813E-05 4 1 3 6.14233913281E-05 1 2 3 -4.83480209375E-06 2 2 3 -6.14233913281E-05 3 2 3 5.22875046813E-05 4 2 3 -6.14233913281E-05 1 3 3 5.62294541938E-05 2 3 3 -7.16518208969E-05 3 3 3 -1.12779887531E-04 4 3 3 -7.16518208969E-05 1 4 3 -5.62294541937E-05 2 4 3 7.16518208969E-05 3 4 3 1.12779887531E-04 4 4 3 7.16518208969E-05 1 1 4 -4.83480209375E-06 2 1 4 -6.14233913281E-05 3 1 4 5.22875046813E-05 4 1 4 -6.14233913281E-05 1 2 4 4.83480209376E-06 2 2 4 6.14233913281E-05 3 2 4 -5.22875046813E-05 4 2 4 6.14233913281E-05 1 3 4 -5.62294541937E-05 2 3 4 7.16518208969E-05 3 3 4 1.12779887531E-04 4 3 4 7.16518208969E-05 1 4 4 5.62294541937E-05 2 4 4 -7.16518208969E-05 3 4 4 -1.12779887531E-04 4 4 4 -7.16518208969E-05 3 2 2 1 1 1 1 2.02719088412E-19 2 1 1 2.02719088413E-19 3 1 1 2.02719088412E-19 4 1 1 2.02719088413E-19 1 2 1 -2.02719088412E-19 2 2 1 -2.02719088413E-19 3 2 1 -2.02719088412E-19 4 2 1 -2.02719088413E-19 1 3 1 2.02719088412E-19 2 3 1 2.02719088413E-19 3 3 1 2.02719088412E-19 4 3 1 2.02719088413E-19 1 4 1 -2.02719088412E-19 2 4 1 -2.02719088413E-19 3 4 1 -2.02719088412E-19 4 4 1 -2.02719088413E-19 1 1 2 4.28887761257E-04 2 1 2 -6.01167308938E-05 3 1 2 -6.01167308938E-05 4 1 2 4.28887761257E-04 1 2 2 -7.21633081557E-05 2 2 2 -6.09870361569E-05 3 2 2 -6.09870361569E-05 4 2 2 -7.21633081557E-05 1 3 2 7.21633081557E-05 2 3 2 6.09870361569E-05 3 3 2 6.09870361569E-05 4 3 2 7.21633081557E-05 1 4 2 -4.28887761257E-04 2 4 2 6.01167308938E-05 3 4 2 6.01167308938E-05 4 4 2 -4.28887761257E-04 1 1 3 -2.02719088412E-19 2 1 3 -2.02719088413E-19 3 1 3 -2.02719088412E-19 4 1 3 -2.02719088413E-19 1 2 3 2.02719088412E-19 2 2 3 2.02719088413E-19 3 2 3 2.02719088412E-19 4 2 3 2.02719088413E-19 1 3 3 -2.02719088412E-19 2 3 3 -2.02719088413E-19 3 3 3 -2.02719088412E-19 4 3 3 -2.02719088413E-19 1 4 3 2.02719088412E-19 2 4 3 2.02719088413E-19 3 4 3 2.02719088412E-19 4 4 3 2.02719088413E-19 1 1 4 -4.28887761257E-04 2 1 4 6.01167308938E-05 3 1 4 6.01167308938E-05 4 1 4 -4.28887761257E-04 1 2 4 7.21633081557E-05 2 2 4 6.09870361569E-05 3 2 4 6.09870361569E-05 4 2 4 7.21633081557E-05 1 3 4 -7.21633081557E-05 2 3 4 -6.09870361569E-05 3 3 4 -6.09870361569E-05 4 3 4 -7.21633081557E-05 1 4 4 4.28887761257E-04 2 4 4 -6.01167308938E-05 3 4 4 -6.01167308938E-05 4 4 4 4.28887761257E-04 3 2 2 2 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.60242649126E-04 2 2 2 2.04137711858E-04 3 2 2 -4.28494799632E-05 4 2 2 2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.60242649126E-04 2 4 2 -2.04137711858E-04 3 4 2 4.28494799632E-05 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.60242649126E-04 2 2 4 -2.04137711858E-04 3 2 4 4.28494799632E-05 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.60242649126E-04 2 4 4 2.04137711858E-04 3 4 4 -4.28494799632E-05 4 4 4 2.04137711858E-04 3 2 2 3 1 1 1 1.37067712500E-02 2 1 1 -5.50718982125E-05 3 1 1 6.09222033125E-06 4 1 1 -5.50718982125E-05 1 2 1 5.75450117500E-06 2 2 1 6.16300101688E-05 3 2 1 -5.39320003250E-05 4 2 1 6.16300101687E-05 1 3 1 -5.75450117499E-06 2 3 1 -6.16300101688E-05 3 3 1 5.39320003250E-05 4 3 1 -6.16300101687E-05 1 4 1 -1.37067712500E-02 2 4 1 5.50718982125E-05 3 4 1 -6.09222033125E-06 4 4 1 5.50718982125E-05 1 1 2 -1.37067712500E-02 2 1 2 5.50718982125E-05 3 1 2 -6.09222033125E-06 4 1 2 5.50718982125E-05 1 2 2 -5.75450117501E-06 2 2 2 -6.16300101688E-05 3 2 2 5.39320003250E-05 4 2 2 -6.16300101687E-05 1 3 2 5.75450117500E-06 2 3 2 6.16300101688E-05 3 3 2 -5.39320003250E-05 4 3 2 6.16300101687E-05 1 4 2 1.37067712500E-02 2 4 2 -5.50718982125E-05 3 4 2 6.09222033125E-06 4 4 2 -5.50718982125E-05 1 1 3 -5.75450117499E-06 2 1 3 -6.16300101688E-05 3 1 3 5.39320003250E-05 4 1 3 -6.16300101687E-05 1 2 3 5.48592277812E-05 2 2 3 -7.15648150250E-05 3 2 3 -1.11266984644E-04 4 2 3 -7.15648150250E-05 1 3 3 -5.48592277813E-05 2 3 3 7.15648150250E-05 3 3 3 1.11266984644E-04 4 3 3 7.15648150250E-05 1 4 3 5.75450117500E-06 2 4 3 6.16300101688E-05 3 4 3 -5.39320003250E-05 4 4 3 6.16300101687E-05 1 1 4 5.75450117500E-06 2 1 4 6.16300101688E-05 3 1 4 -5.39320003250E-05 4 1 4 6.16300101687E-05 1 2 4 -5.48592277812E-05 2 2 4 7.15648150250E-05 3 2 4 1.11266984644E-04 4 2 4 7.15648150250E-05 1 3 4 5.48592277812E-05 2 3 4 -7.15648150250E-05 3 3 4 -1.11266984644E-04 4 3 4 -7.15648150250E-05 1 4 4 -5.75450117501E-06 2 4 4 -6.16300101688E-05 3 4 4 5.39320003250E-05 4 4 4 -6.16300101687E-05 3 2 2 4 1 1 1 4.81482486097E-35 2 1 1 -4.81482486097E-35 3 1 1 4.81482486097E-35 4 1 1 -4.81482486097E-35 1 2 1 -4.30655140556E-04 2 2 1 6.07755422331E-05 3 2 1 6.07755422331E-05 4 2 1 -4.30655140556E-04 1 3 1 -4.81482486097E-35 2 3 1 4.81482486097E-35 3 3 1 -4.81482486097E-35 4 3 1 4.81482486097E-35 1 4 1 4.30655140556E-04 2 4 1 -6.07755422331E-05 3 4 1 -6.07755422331E-05 4 4 1 4.30655140556E-04 1 1 2 -4.81482486097E-35 2 1 2 4.81482486097E-35 3 1 2 -4.81482486097E-35 4 1 2 4.81482486097E-35 1 2 2 4.30655140556E-04 2 2 2 -6.07755422331E-05 3 2 2 -6.07755422331E-05 4 2 2 4.30655140556E-04 1 3 2 4.81482486097E-35 2 3 2 -4.81482486097E-35 3 3 2 4.81482486097E-35 4 3 2 -4.81482486097E-35 1 4 2 -4.30655140556E-04 2 4 2 6.07755422331E-05 3 4 2 6.07755422331E-05 4 4 2 -4.30655140556E-04 1 1 3 4.81482486097E-35 2 1 3 -4.81482486097E-35 3 1 3 4.81482486097E-35 4 1 3 -4.81482486097E-35 1 2 3 -7.22708198781E-05 2 2 3 -5.97793100193E-05 3 2 3 -5.97793100193E-05 4 2 3 -7.22708198781E-05 1 3 3 -4.81482486097E-35 2 3 3 4.81482486097E-35 3 3 3 -4.81482486097E-35 4 3 3 4.81482486097E-35 1 4 3 7.22708198781E-05 2 4 3 5.97793100193E-05 3 4 3 5.97793100193E-05 4 4 3 7.22708198781E-05 1 1 4 -4.81482486097E-35 2 1 4 4.81482486097E-35 3 1 4 -4.81482486097E-35 4 1 4 4.81482486097E-35 1 2 4 7.22708198781E-05 2 2 4 5.97793100193E-05 3 2 4 5.97793100193E-05 4 2 4 7.22708198781E-05 1 3 4 4.81482486097E-35 2 3 4 -4.81482486097E-35 3 3 4 4.81482486097E-35 4 3 4 -4.81482486097E-35 1 4 4 -7.22708198781E-05 2 4 4 -5.97793100193E-05 3 4 4 -5.97793100193E-05 4 4 4 -7.22708198781E-05 3 2 3 1 1 1 1 -4.81482486097E-35 2 1 1 4.81482486097E-35 3 1 1 -4.81482486097E-35 4 1 1 4.81482486097E-35 1 2 1 4.30207913484E-04 2 2 1 -5.94357490219E-05 3 2 1 -5.94357490219E-05 4 2 1 4.30207913484E-04 1 3 1 4.81482486097E-35 2 3 1 -4.81482486097E-35 3 3 1 4.81482486097E-35 4 3 1 -4.81482486097E-35 1 4 1 -4.30207913484E-04 2 4 1 5.94357490219E-05 3 4 1 5.94357490219E-05 4 4 1 -4.30207913484E-04 1 1 2 4.81482486097E-35 2 1 2 -4.81482486097E-35 3 1 2 4.81482486097E-35 4 1 2 -4.81482486097E-35 1 2 2 -7.29651725582E-05 2 2 2 -5.81786513669E-05 3 2 2 -5.81786513669E-05 4 2 2 -7.29651725582E-05 1 3 2 -4.81482486097E-35 2 3 2 4.81482486097E-35 3 3 2 -4.81482486097E-35 4 3 2 4.81482486097E-35 1 4 2 7.29651725582E-05 2 4 2 5.81786513669E-05 3 4 2 5.81786513669E-05 4 4 2 7.29651725582E-05 1 1 3 -4.81482486097E-35 2 1 3 4.81482486097E-35 3 1 3 -4.81482486097E-35 4 1 3 4.81482486097E-35 1 2 3 7.29651725582E-05 2 2 3 5.81786513669E-05 3 2 3 5.81786513669E-05 4 2 3 7.29651725582E-05 1 3 3 4.81482486097E-35 2 3 3 -4.81482486097E-35 3 3 3 4.81482486097E-35 4 3 3 -4.81482486097E-35 1 4 3 -7.29651725582E-05 2 4 3 -5.81786513669E-05 3 4 3 -5.81786513669E-05 4 4 3 -7.29651725582E-05 1 1 4 4.81482486097E-35 2 1 4 -4.81482486097E-35 3 1 4 4.81482486097E-35 4 1 4 -4.81482486097E-35 1 2 4 -4.30207913484E-04 2 2 4 5.94357490219E-05 3 2 4 5.94357490219E-05 4 2 4 -4.30207913484E-04 1 3 4 -4.81482486097E-35 2 3 4 4.81482486097E-35 3 3 4 -4.81482486097E-35 4 3 4 4.81482486097E-35 1 4 4 4.30207913484E-04 2 4 4 -5.94357490219E-05 3 4 4 -5.94357490219E-05 4 4 4 4.30207913484E-04 3 2 3 2 1 1 1 1.37037308055E-02 2 1 1 -5.35140122641E-05 3 1 1 8.88898306719E-06 4 1 1 -5.35140122641E-05 1 2 1 -1.37037308055E-02 2 2 1 5.35140122641E-05 3 2 1 -8.88898306719E-06 4 2 1 5.35140122641E-05 1 3 1 -3.09015600156E-06 2 3 1 -6.28362787078E-05 3 3 1 5.08309663984E-05 4 3 1 -6.28362787078E-05 1 4 1 3.09015600156E-06 2 4 1 6.28362787078E-05 3 4 1 -5.08309663984E-05 4 4 1 6.28362787078E-05 1 1 2 3.09015600156E-06 2 1 2 6.28362787078E-05 3 1 2 -5.08309663984E-05 4 1 2 6.28362787078E-05 1 2 2 -3.09015600157E-06 2 2 2 -6.28362787078E-05 3 2 2 5.08309663984E-05 4 2 2 -6.28362787078E-05 1 3 2 5.77062827953E-05 2 3 2 -7.29860027984E-05 3 3 2 -1.14095454955E-04 4 3 2 -7.29860027984E-05 1 4 2 -5.77062827953E-05 2 4 2 7.29860027984E-05 3 4 2 1.14095454955E-04 4 4 2 7.29860027984E-05 1 1 3 -3.09015600156E-06 2 1 3 -6.28362787078E-05 3 1 3 5.08309663984E-05 4 1 3 -6.28362787078E-05 1 2 3 3.09015600156E-06 2 2 3 6.28362787078E-05 3 2 3 -5.08309663984E-05 4 2 3 6.28362787078E-05 1 3 3 -5.77062827953E-05 2 3 3 7.29860027984E-05 3 3 3 1.14095454955E-04 4 3 3 7.29860027984E-05 1 4 3 5.77062827953E-05 2 4 3 -7.29860027984E-05 3 4 3 -1.14095454955E-04 4 4 3 -7.29860027984E-05 1 1 4 -1.37037308055E-02 2 1 4 5.35140122641E-05 3 1 4 -8.88898306719E-06 4 1 4 5.35140122641E-05 1 2 4 1.37037308055E-02 2 2 4 -5.35140122641E-05 3 2 4 8.88898306719E-06 4 2 4 -5.35140122641E-05 1 3 4 3.09015600156E-06 2 3 4 6.28362787078E-05 3 3 4 -5.08309663984E-05 4 3 4 6.28362787078E-05 1 4 4 -3.09015600157E-06 2 4 4 -6.28362787078E-05 3 4 4 5.08309663984E-05 4 4 4 -6.28362787078E-05 3 2 3 3 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.60242649126E-04 2 2 2 2.04137711858E-04 3 2 2 -4.28494799632E-05 4 2 2 2.04137711858E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.60242649126E-04 2 4 2 -2.04137711858E-04 3 4 2 4.28494799632E-05 4 4 2 -2.04137711858E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.60242649126E-04 2 2 4 -2.04137711858E-04 3 2 4 4.28494799632E-05 4 2 4 -2.04137711858E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.60242649126E-04 2 4 4 2.04137711858E-04 3 4 4 -4.28494799632E-05 4 4 4 2.04137711858E-04 3 2 3 4 1 1 1 2.02715893481E-19 2 1 1 2.02715893481E-19 3 1 1 2.02715893481E-19 4 1 1 2.02715893481E-19 1 2 1 -2.02715893481E-19 2 2 1 -2.02715893481E-19 3 2 1 -2.02715893481E-19 4 2 1 -2.02715893481E-19 1 3 1 2.02715893481E-19 2 3 1 2.02715893481E-19 3 3 1 2.02715893481E-19 4 3 1 2.02715893481E-19 1 4 1 -2.02715893481E-19 2 4 1 -2.02715893481E-19 3 4 1 -2.02715893481E-19 4 4 1 -2.02715893481E-19 1 1 2 -4.29104399061E-04 2 1 2 6.06947371606E-05 3 1 2 6.06947371606E-05 4 1 2 -4.29104399061E-04 1 2 2 4.29104399061E-04 2 2 2 -6.06947371606E-05 3 2 2 -6.06947371606E-05 4 2 2 4.29104399061E-04 1 3 2 -7.41155615893E-05 2 3 2 -5.93882407106E-05 3 3 2 -5.93882407106E-05 4 3 2 -7.41155615893E-05 1 4 2 7.41155615893E-05 2 4 2 5.93882407106E-05 3 4 2 5.93882407106E-05 4 4 2 7.41155615893E-05 1 1 3 -2.02715893481E-19 2 1 3 -2.02715893481E-19 3 1 3 -2.02715893481E-19 4 1 3 -2.02715893481E-19 1 2 3 2.02715893481E-19 2 2 3 2.02715893481E-19 3 2 3 2.02715893481E-19 4 2 3 2.02715893481E-19 1 3 3 -2.02715893481E-19 2 3 3 -2.02715893481E-19 3 3 3 -2.02715893481E-19 4 3 3 -2.02715893481E-19 1 4 3 2.02715893481E-19 2 4 3 2.02715893481E-19 3 4 3 2.02715893481E-19 4 4 3 2.02715893481E-19 1 1 4 4.29104399061E-04 2 1 4 -6.06947371606E-05 3 1 4 -6.06947371606E-05 4 1 4 4.29104399061E-04 1 2 4 -4.29104399061E-04 2 2 4 6.06947371606E-05 3 2 4 6.06947371606E-05 4 2 4 -4.29104399061E-04 1 3 4 7.41155615893E-05 2 3 4 5.93882407106E-05 3 3 4 5.93882407106E-05 4 3 4 7.41155615893E-05 1 4 4 -7.41155615893E-05 2 4 4 -5.93882407106E-05 3 4 4 -5.93882407106E-05 4 4 4 -7.41155615893E-05 3 2 4 1 1 1 1 -1.37034719794E-02 2 1 1 5.49179727281E-05 3 1 1 -9.43100515625E-06 4 1 1 5.49179727281E-05 1 2 1 -4.83480209375E-06 2 2 1 -6.14233913281E-05 3 2 1 5.22875046813E-05 4 2 1 -6.14233913281E-05 1 3 1 4.83480209374E-06 2 3 1 6.14233913281E-05 3 3 1 -5.22875046813E-05 4 3 1 6.14233913281E-05 1 4 1 1.37034719794E-02 2 4 1 -5.49179727281E-05 3 4 1 9.43100515625E-06 4 4 1 -5.49179727281E-05 1 1 2 -2.89107873125E-06 2 1 2 -6.14846955406E-05 3 1 2 5.04826262437E-05 4 1 2 -6.14846955406E-05 1 2 2 5.62294541937E-05 2 2 2 -7.16518208969E-05 3 2 2 -1.12779887531E-04 4 2 2 -7.16518208969E-05 1 3 2 -5.62294541937E-05 2 3 2 7.16518208969E-05 3 3 2 1.12779887531E-04 4 3 2 7.16518208969E-05 1 4 2 2.89107873126E-06 2 4 2 6.14846955406E-05 3 4 2 -5.04826262437E-05 4 4 2 6.14846955406E-05 1 1 3 2.89107873124E-06 2 1 3 6.14846955406E-05 3 1 3 -5.04826262437E-05 4 1 3 6.14846955406E-05 1 2 3 -5.62294541937E-05 2 2 3 7.16518208969E-05 3 2 3 1.12779887531E-04 4 2 3 7.16518208969E-05 1 3 3 5.62294541938E-05 2 3 3 -7.16518208969E-05 3 3 3 -1.12779887531E-04 4 3 3 -7.16518208969E-05 1 4 3 -2.89107873125E-06 2 4 3 -6.14846955406E-05 3 4 3 5.04826262437E-05 4 4 3 -6.14846955406E-05 1 1 4 1.37034719794E-02 2 1 4 -5.49179727281E-05 3 1 4 9.43100515625E-06 4 1 4 -5.49179727281E-05 1 2 4 4.83480209376E-06 2 2 4 6.14233913281E-05 3 2 4 -5.22875046813E-05 4 2 4 6.14233913281E-05 1 3 4 -4.83480209375E-06 2 3 4 -6.14233913281E-05 3 3 4 5.22875046813E-05 4 3 4 -6.14233913281E-05 1 4 4 -1.37034719794E-02 2 4 4 5.49179727281E-05 3 4 4 -9.43100515625E-06 4 4 4 5.49179727281E-05 3 2 4 2 1 1 1 4.81453098738E-35 2 1 1 -4.81482486097E-35 3 1 1 4.81511873456E-35 4 1 1 -4.81482486097E-35 1 2 1 4.29104399061E-04 2 2 1 4.29104399061E-04 3 2 1 -6.06947371606E-05 4 2 1 -6.06947371606E-05 1 3 1 -4.81511873456E-35 2 3 1 4.81482486097E-35 3 3 1 -4.81453098738E-35 4 3 1 4.81482486097E-35 1 4 1 -4.29104399061E-04 2 4 1 -4.29104399061E-04 3 4 1 6.06947371606E-05 4 4 1 6.06947371606E-05 1 1 2 -4.81511873456E-35 2 1 2 4.81482486097E-35 3 1 2 -4.81453098738E-35 4 1 2 4.81482486097E-35 1 2 2 -7.41155615893E-05 2 2 2 -7.41155615893E-05 3 2 2 -5.93882407106E-05 4 2 2 -5.93882407106E-05 1 3 2 4.81453098738E-35 2 3 2 -4.81482486097E-35 3 3 2 4.81511873456E-35 4 3 2 -4.81482486097E-35 1 4 2 7.41155615893E-05 2 4 2 7.41155615893E-05 3 4 2 5.93882407106E-05 4 4 2 5.93882407106E-05 1 1 3 4.81453098738E-35 2 1 3 -4.81482486097E-35 3 1 3 4.81511873456E-35 4 1 3 -4.81482486097E-35 1 2 3 7.41155615893E-05 2 2 3 7.41155615893E-05 3 2 3 5.93882407106E-05 4 2 3 5.93882407106E-05 1 3 3 -4.81511873456E-35 2 3 3 4.81482486097E-35 3 3 3 -4.81453098738E-35 4 3 3 4.81482486097E-35 1 4 3 -7.41155615893E-05 2 4 3 -7.41155615893E-05 3 4 3 -5.93882407106E-05 4 4 3 -5.93882407106E-05 1 1 4 -4.81511873456E-35 2 1 4 4.81482486097E-35 3 1 4 -4.81453098738E-35 4 1 4 4.81482486097E-35 1 2 4 -4.29104399061E-04 2 2 4 -4.29104399061E-04 3 2 4 6.06947371606E-05 4 2 4 6.06947371606E-05 1 3 4 4.81453098738E-35 2 3 4 -4.81482486097E-35 3 3 4 4.81511873456E-35 4 3 4 -4.81482486097E-35 1 4 4 4.29104399061E-04 2 4 4 4.29104399061E-04 3 4 4 -6.06947371606E-05 4 4 4 -6.06947371606E-05 3 2 4 3 1 1 1 2.02722462293E-19 2 1 1 2.02722462293E-19 3 1 1 2.02722462293E-19 4 1 1 2.02722462293E-19 1 2 1 -2.02722462293E-19 2 2 1 -2.02722462293E-19 3 2 1 -2.02722462293E-19 4 2 1 -2.02722462293E-19 1 3 1 2.02722462293E-19 2 3 1 2.02722462293E-19 3 3 1 2.02722462293E-19 4 3 1 2.02722462293E-19 1 4 1 -2.02722462293E-19 2 4 1 -2.02722462293E-19 3 4 1 -2.02722462293E-19 4 4 1 -2.02722462293E-19 1 1 2 4.30655140556E-04 2 1 2 4.30655140556E-04 3 1 2 -6.07755422331E-05 4 1 2 -6.07755422331E-05 1 2 2 -7.22708198781E-05 2 2 2 -7.22708198781E-05 3 2 2 -5.97793100193E-05 4 2 2 -5.97793100193E-05 1 3 2 7.22708198781E-05 2 3 2 7.22708198781E-05 3 3 2 5.97793100193E-05 4 3 2 5.97793100193E-05 1 4 2 -4.30655140556E-04 2 4 2 -4.30655140556E-04 3 4 2 6.07755422331E-05 4 4 2 6.07755422331E-05 1 1 3 -2.02722462293E-19 2 1 3 -2.02722462293E-19 3 1 3 -2.02722462293E-19 4 1 3 -2.02722462293E-19 1 2 3 2.02722462293E-19 2 2 3 2.02722462293E-19 3 2 3 2.02722462293E-19 4 2 3 2.02722462293E-19 1 3 3 -2.02722462293E-19 2 3 3 -2.02722462293E-19 3 3 3 -2.02722462293E-19 4 3 3 -2.02722462293E-19 1 4 3 2.02722462293E-19 2 4 3 2.02722462293E-19 3 4 3 2.02722462293E-19 4 4 3 2.02722462293E-19 1 1 4 -4.30655140556E-04 2 1 4 -4.30655140556E-04 3 1 4 6.07755422331E-05 4 1 4 6.07755422331E-05 1 2 4 7.22708198781E-05 2 2 4 7.22708198781E-05 3 2 4 5.97793100193E-05 4 2 4 5.97793100193E-05 1 3 4 -7.22708198781E-05 2 3 4 -7.22708198781E-05 3 3 4 -5.97793100193E-05 4 3 4 -5.97793100193E-05 1 4 4 4.30655140556E-04 2 4 4 4.30655140556E-04 3 4 4 -6.07755422331E-05 4 4 4 -6.07755422331E-05 3 2 4 4 1 1 1 0.00000000000E+00 2 1 1 0.00000000000E+00 3 1 1 0.00000000000E+00 4 1 1 0.00000000000E+00 1 2 1 0.00000000000E+00 2 2 1 0.00000000000E+00 3 2 1 0.00000000000E+00 4 2 1 0.00000000000E+00 1 3 1 0.00000000000E+00 2 3 1 0.00000000000E+00 3 3 1 0.00000000000E+00 4 3 1 0.00000000000E+00 1 4 1 0.00000000000E+00 2 4 1 0.00000000000E+00 3 4 1 0.00000000000E+00 4 4 1 0.00000000000E+00 1 1 2 0.00000000000E+00 2 1 2 0.00000000000E+00 3 1 2 0.00000000000E+00 4 1 2 0.00000000000E+00 1 2 2 -3.62560554799E-04 2 2 2 2.01820592419E-04 3 2 2 -4.16200862765E-05 4 2 2 2.01820592419E-04 1 3 2 0.00000000000E+00 2 3 2 0.00000000000E+00 3 3 2 0.00000000000E+00 4 3 2 0.00000000000E+00 1 4 2 3.62560554799E-04 2 4 2 -2.01820592419E-04 3 4 2 4.16200862765E-05 4 4 2 -2.01820592419E-04 1 1 3 0.00000000000E+00 2 1 3 0.00000000000E+00 3 1 3 0.00000000000E+00 4 1 3 0.00000000000E+00 1 2 3 0.00000000000E+00 2 2 3 0.00000000000E+00 3 2 3 0.00000000000E+00 4 2 3 0.00000000000E+00 1 3 3 0.00000000000E+00 2 3 3 0.00000000000E+00 3 3 3 0.00000000000E+00 4 3 3 0.00000000000E+00 1 4 3 0.00000000000E+00 2 4 3 0.00000000000E+00 3 4 3 0.00000000000E+00 4 4 3 0.00000000000E+00 1 1 4 0.00000000000E+00 2 1 4 0.00000000000E+00 3 1 4 0.00000000000E+00 4 1 4 0.00000000000E+00 1 2 4 3.62560554799E-04 2 2 4 -2.01820592419E-04 3 2 4 4.16200862765E-05 4 2 4 -2.01820592419E-04 1 3 4 0.00000000000E+00 2 3 4 0.00000000000E+00 3 3 4 0.00000000000E+00 4 3 4 0.00000000000E+00 1 4 4 -3.62560554799E-04 2 4 4 2.01820592419E-04 3 4 4 -4.16200862765E-05 4 4 4 2.01820592419E-04 3 3 1 1 1 1 1 9.59658548455E-02 2 1 1 1.15428838094E-04 3 1 1 1.35860716906E-05 4 1 1 1.15428838094E-04 1 2 1 1.15428838094E-04 2 2 1 -1.16431480469E-05 3 2 1 -5.17241194063E-05 4 2 1 -1.16431480469E-05 1 3 1 1.35860716906E-05 2 3 1 -5.17241194063E-05 3 3 1 -1.68368803594E-05 4 3 1 -5.17241194063E-05 1 4 1 1.15428838094E-04 2 4 1 -1.16431480469E-05 3 4 1 -5.17241194063E-05 4 4 1 -1.16431480469E-05 1 1 2 -2.55783907283E-03 2 1 2 -3.31576536097E-04 3 1 2 -1.01265322081E-04 4 1 2 -3.31576536097E-04 1 2 2 -3.31576536097E-04 2 2 2 2.26852512431E-04 3 2 2 -2.87411138469E-05 4 2 2 2.26852512431E-04 1 3 2 -1.01265322081E-04 2 3 2 -2.87411138469E-05 3 3 2 8.97821451437E-05 4 3 2 -2.87411138469E-05 1 4 2 -3.31576536097E-04 2 4 2 2.26852512431E-04 3 4 2 -2.87411138469E-05 4 4 2 2.26852512431E-04 1 1 3 -4.90926189209E-04 2 1 3 5.91178610438E-05 3 1 3 -1.82625138234E-04 4 1 3 5.91178610438E-05 1 2 3 5.91178610438E-05 2 2 3 -5.49559379719E-05 3 2 3 1.02897783894E-04 4 2 3 -5.49559379719E-05 1 3 3 -1.82625138234E-04 2 3 3 1.02897783894E-04 3 3 3 3.19912479916E-04 4 3 3 1.02897783894E-04 1 4 3 5.91178610438E-05 2 4 3 -5.49559379719E-05 3 4 3 1.02897783894E-04 4 4 3 -5.49559379719E-05 1 1 4 -2.55783907283E-03 2 1 4 -3.31576536097E-04 3 1 4 -1.01265322081E-04 4 1 4 -3.31576536097E-04 1 2 4 -3.31576536097E-04 2 2 4 2.26852512431E-04 3 2 4 -2.87411138469E-05 4 2 4 2.26852512431E-04 1 3 4 -1.01265322081E-04 2 3 4 -2.87411138469E-05 3 3 4 8.97821451437E-05 4 3 4 -2.87411138469E-05 1 4 4 -3.31576536097E-04 2 4 4 2.26852512431E-04 3 4 4 -2.87411138469E-05 4 4 4 2.26852512431E-04 3 3 1 2 1 1 1 2.52330248607E-03 2 1 1 2.52330248607E-03 3 1 1 2.01534496258E-05 4 1 1 2.01534496258E-05 1 2 1 2.52330248607E-03 2 2 1 2.52330248607E-03 3 2 1 2.01534496258E-05 4 2 1 2.01534496258E-05 1 3 1 2.01534496258E-05 2 3 1 2.01534496258E-05 3 3 1 -2.33146257211E-05 4 3 1 -2.33146257211E-05 1 4 1 2.01534496258E-05 2 4 1 2.01534496258E-05 3 4 1 -2.33146257211E-05 4 4 1 -2.33146257211E-05 1 1 2 5.39210714489E-04 2 1 2 5.39210714489E-04 3 1 2 -4.52565123902E-05 4 1 2 -4.52565123902E-05 1 2 2 5.39210714489E-04 2 2 2 5.39210714489E-04 3 2 2 -4.52565123902E-05 4 2 2 -4.52565123902E-05 1 3 2 -4.52565123902E-05 2 3 2 -4.52565123902E-05 3 3 2 -9.43141788670E-05 4 3 2 -9.43141788670E-05 1 4 2 -4.52565123902E-05 2 4 2 -4.52565123902E-05 3 4 2 -9.43141788670E-05 4 4 2 -9.43141788670E-05 1 1 3 2.88852827658E-04 2 1 3 2.88852827658E-04 3 1 3 9.69388440308E-05 4 1 3 9.69388440308E-05 1 2 3 2.88852827658E-04 2 2 3 2.88852827658E-04 3 2 3 9.69388440308E-05 4 2 3 9.69388440308E-05 1 3 3 9.69388440308E-05 2 3 3 9.69388440308E-05 3 3 3 -4.15249231811E-05 4 3 3 -4.15249231811E-05 1 4 3 9.69388440308E-05 2 4 3 9.69388440308E-05 3 4 3 -4.15249231811E-05 4 4 3 -4.15249231811E-05 1 1 4 5.39210714489E-04 2 1 4 5.39210714489E-04 3 1 4 -4.52565123902E-05 4 1 4 -4.52565123902E-05 1 2 4 5.39210714489E-04 2 2 4 5.39210714489E-04 3 2 4 -4.52565123902E-05 4 2 4 -4.52565123902E-05 1 3 4 -4.52565123902E-05 2 3 4 -4.52565123902E-05 3 3 4 -9.43141788670E-05 4 3 4 -9.43141788670E-05 1 4 4 -4.52565123902E-05 2 4 4 -4.52565123902E-05 3 4 4 -9.43141788670E-05 4 4 4 -9.43141788670E-05 3 3 1 3 1 1 1 -1.29193945561E-02 2 1 1 -1.29193945561E-02 3 1 1 4.22421813984E-05 4 1 1 4.22421813984E-05 1 2 1 1.54006407927E-04 2 2 1 1.54006407927E-04 3 2 1 9.24810258281E-06 4 2 1 9.24810258281E-06 1 3 1 6.02114964297E-05 2 3 1 6.02114964297E-05 3 3 1 -5.51194348906E-06 4 3 1 -5.51194348906E-06 1 4 1 1.54006407927E-04 2 4 1 1.54006407927E-04 3 4 1 9.24810258281E-06 4 4 1 9.24810258281E-06 1 1 2 -1.29193945561E-02 2 1 2 -1.29193945561E-02 3 1 2 4.22421813984E-05 4 1 2 4.22421813984E-05 1 2 2 1.54006407927E-04 2 2 2 1.54006407927E-04 3 2 2 9.24810258281E-06 4 2 2 9.24810258281E-06 1 3 2 6.02114964297E-05 2 3 2 6.02114964297E-05 3 3 2 -5.51194348906E-06 4 3 2 -5.51194348906E-06 1 4 2 1.54006407927E-04 2 4 2 1.54006407927E-04 3 4 2 9.24810258281E-06 4 4 2 9.24810258281E-06 1 1 3 -2.73403758895E-04 2 1 3 -2.73403758895E-04 3 1 3 6.55673835734E-05 4 1 3 6.55673835734E-05 1 2 3 -1.30720960836E-04 2 2 3 -1.30720960836E-04 3 2 3 -1.04624889167E-04 4 2 3 -1.04624889167E-04 1 3 3 3.55110307172E-05 2 3 3 3.55110307172E-05 3 3 3 8.56924031359E-05 4 3 3 8.56924031359E-05 1 4 3 -1.30720960836E-04 2 4 3 -1.30720960836E-04 3 4 3 -1.04624889167E-04 4 4 3 -1.04624889167E-04 1 1 4 -2.73403758895E-04 2 1 4 -2.73403758895E-04 3 1 4 6.55673835734E-05 4 1 4 6.55673835734E-05 1 2 4 -1.30720960836E-04 2 2 4 -1.30720960836E-04 3 2 4 -1.04624889167E-04 4 2 4 -1.04624889167E-04 1 3 4 3.55110307172E-05 2 3 4 3.55110307172E-05 3 3 4 8.56924031359E-05 4 3 4 8.56924031359E-05 1 4 4 -1.30720960836E-04 2 4 4 -1.30720960836E-04 3 4 4 -1.04624889167E-04 4 4 4 -1.04624889167E-04 3 3 1 4 1 1 1 -1.29193945561E-02 2 1 1 1.54006407927E-04 3 1 1 6.02114964297E-05 4 1 1 1.54006407927E-04 1 2 1 -1.29193945561E-02 2 2 1 1.54006407927E-04 3 2 1 6.02114964297E-05 4 2 1 1.54006407927E-04 1 3 1 4.22421813984E-05 2 3 1 9.24810258281E-06 3 3 1 -5.51194348906E-06 4 3 1 9.24810258281E-06 1 4 1 4.22421813984E-05 2 4 1 9.24810258281E-06 3 4 1 -5.51194348906E-06 4 4 1 9.24810258281E-06 1 1 2 -1.29193945561E-02 2 1 2 1.54006407927E-04 3 1 2 6.02114964297E-05 4 1 2 1.54006407927E-04 1 2 2 -1.29193945561E-02 2 2 2 1.54006407927E-04 3 2 2 6.02114964297E-05 4 2 2 1.54006407927E-04 1 3 2 4.22421813984E-05 2 3 2 9.24810258281E-06 3 3 2 -5.51194348906E-06 4 3 2 9.24810258281E-06 1 4 2 4.22421813984E-05 2 4 2 9.24810258281E-06 3 4 2 -5.51194348906E-06 4 4 2 9.24810258281E-06 1 1 3 -2.73403758895E-04 2 1 3 -1.30720960836E-04 3 1 3 3.55110307172E-05 4 1 3 -1.30720960836E-04 1 2 3 -2.73403758895E-04 2 2 3 -1.30720960836E-04 3 2 3 3.55110307172E-05 4 2 3 -1.30720960836E-04 1 3 3 6.55673835734E-05 2 3 3 -1.04624889167E-04 3 3 3 8.56924031359E-05 4 3 3 -1.04624889167E-04 1 4 3 6.55673835734E-05 2 4 3 -1.04624889167E-04 3 4 3 8.56924031359E-05 4 4 3 -1.04624889167E-04 1 1 4 -2.73403758895E-04 2 1 4 -1.30720960836E-04 3 1 4 3.55110307172E-05 4 1 4 -1.30720960836E-04 1 2 4 -2.73403758895E-04 2 2 4 -1.30720960836E-04 3 2 4 3.55110307172E-05 4 2 4 -1.30720960836E-04 1 3 4 6.55673835734E-05 2 3 4 -1.04624889167E-04 3 3 4 8.56924031359E-05 4 3 4 -1.04624889167E-04 1 4 4 6.55673835734E-05 2 4 4 -1.04624889167E-04 3 4 4 8.56924031359E-05 4 4 4 -1.04624889167E-04 3 3 2 1 1 1 1 2.52330248607E-03 2 1 1 2.01534496258E-05 3 1 1 2.01534496258E-05 4 1 1 2.52330248607E-03 1 2 1 2.01534496258E-05 2 2 1 -2.33146257211E-05 3 2 1 -2.33146257211E-05 4 2 1 2.01534496258E-05 1 3 1 2.01534496258E-05 2 3 1 -2.33146257211E-05 3 3 1 -2.33146257211E-05 4 3 1 2.01534496258E-05 1 4 1 2.52330248607E-03 2 4 1 2.01534496258E-05 3 4 1 2.01534496258E-05 4 4 1 2.52330248607E-03 1 1 2 5.39210714489E-04 2 1 2 -4.52565123902E-05 3 1 2 -4.52565123902E-05 4 1 2 5.39210714489E-04 1 2 2 -4.52565123902E-05 2 2 2 -9.43141788670E-05 3 2 2 -9.43141788670E-05 4 2 2 -4.52565123902E-05 1 3 2 -4.52565123902E-05 2 3 2 -9.43141788670E-05 3 3 2 -9.43141788670E-05 4 3 2 -4.52565123902E-05 1 4 2 5.39210714489E-04 2 4 2 -4.52565123902E-05 3 4 2 -4.52565123902E-05 4 4 2 5.39210714489E-04 1 1 3 2.88852827658E-04 2 1 3 9.69388440308E-05 3 1 3 9.69388440308E-05 4 1 3 2.88852827658E-04 1 2 3 9.69388440308E-05 2 2 3 -4.15249231811E-05 3 2 3 -4.15249231811E-05 4 2 3 9.69388440308E-05 1 3 3 9.69388440308E-05 2 3 3 -4.15249231811E-05 3 3 3 -4.15249231811E-05 4 3 3 9.69388440308E-05 1 4 3 2.88852827658E-04 2 4 3 9.69388440308E-05 3 4 3 9.69388440308E-05 4 4 3 2.88852827658E-04 1 1 4 5.39210714489E-04 2 1 4 -4.52565123902E-05 3 1 4 -4.52565123902E-05 4 1 4 5.39210714489E-04 1 2 4 -4.52565123902E-05 2 2 4 -9.43141788670E-05 3 2 4 -9.43141788670E-05 4 2 4 -4.52565123902E-05 1 3 4 -4.52565123902E-05 2 3 4 -9.43141788670E-05 3 3 4 -9.43141788670E-05 4 3 4 -4.52565123902E-05 1 4 4 5.39210714489E-04 2 4 4 -4.52565123902E-05 3 4 4 -4.52565123902E-05 4 4 4 5.39210714489E-04 3 3 2 2 1 1 1 9.59639493234E-02 2 1 1 1.10083401333E-04 3 1 1 9.32019138594E-06 4 1 1 1.10083401333E-04 1 2 1 1.10083401333E-04 2 2 1 -1.09944916078E-05 3 2 1 -4.70122843922E-05 4 2 1 -1.09944916078E-05 1 3 1 9.32019138593E-06 2 3 1 -4.70122843922E-05 3 3 1 -2.07168866406E-06 4 3 1 -4.70122843922E-05 1 4 1 1.10083401333E-04 2 4 1 -1.09944916078E-05 3 4 1 -4.70122843922E-05 4 4 1 -1.09944916078E-05 1 1 2 -2.56447110288E-03 2 1 2 -3.33931441620E-04 3 1 2 -1.01269581917E-04 4 1 2 -3.33931441620E-04 1 2 2 -3.33931441620E-04 2 2 2 2.26459720977E-04 3 2 2 -2.47914316828E-05 4 2 2 2.26459720977E-04 1 3 2 -1.01269581917E-04 2 3 2 -2.47914316828E-05 3 3 2 9.63163367703E-05 4 3 2 -2.47914316828E-05 1 4 2 -3.33931441620E-04 2 4 2 2.26459720977E-04 3 4 2 -2.47914316828E-05 4 4 2 2.26459720977E-04 1 1 3 -4.99811967495E-04 2 1 3 5.73658301641E-05 3 1 3 -1.76195129820E-04 4 1 3 5.73658301641E-05 1 2 3 5.73658301641E-05 2 2 3 -5.43290955391E-05 3 2 3 1.03954986489E-04 4 2 3 -5.43290955391E-05 1 3 3 -1.76195129820E-04 2 3 3 1.03954986489E-04 3 3 3 3.20133687380E-04 4 3 3 1.03954986489E-04 1 4 3 5.73658301641E-05 2 4 3 -5.43290955391E-05 3 4 3 1.03954986489E-04 4 4 3 -5.43290955391E-05 1 1 4 -2.56447110288E-03 2 1 4 -3.33931441620E-04 3 1 4 -1.01269581917E-04 4 1 4 -3.33931441620E-04 1 2 4 -3.33931441620E-04 2 2 4 2.26459720977E-04 3 2 4 -2.47914316828E-05 4 2 4 2.26459720977E-04 1 3 4 -1.01269581917E-04 2 3 4 -2.47914316828E-05 3 3 4 9.63163367703E-05 4 3 4 -2.47914316828E-05 1 4 4 -3.33931441620E-04 2 4 4 2.26459720977E-04 3 4 4 -2.47914316828E-05 4 4 4 2.26459720977E-04 3 3 2 3 1 1 1 -1.29197802688E-02 2 1 1 1.51962127150E-04 3 1 1 5.76169626688E-05 4 1 1 1.51962127150E-04 1 2 1 4.56157825188E-05 2 2 1 1.08979076187E-05 3 2 1 -5.87861848750E-06 4 2 1 1.08979076187E-05 1 3 1 4.56157825188E-05 2 3 1 1.08979076187E-05 3 3 1 -5.87861848750E-06 4 3 1 1.08979076187E-05 1 4 1 -1.29197802688E-02 2 4 1 1.51962127150E-04 3 4 1 5.76169626687E-05 4 4 1 1.51962127150E-04 1 1 2 -1.29197802688E-02 2 1 2 1.51962127150E-04 3 1 2 5.76169626687E-05 4 1 2 1.51962127150E-04 1 2 2 4.56157825187E-05 2 2 2 1.08979076188E-05 3 2 2 -5.87861848750E-06 4 2 2 1.08979076188E-05 1 3 2 4.56157825188E-05 2 3 2 1.08979076187E-05 3 3 2 -5.87861848750E-06 4 3 2 1.08979076187E-05 1 4 2 -1.29197802688E-02 2 4 2 1.51962127150E-04 3 4 2 5.76169626687E-05 4 4 2 1.51962127150E-04 1 1 3 -2.73780712150E-04 2 1 3 -1.32007643825E-04 3 1 3 3.32426443688E-05 4 1 3 -1.32007643825E-04 1 2 3 6.70710680188E-05 2 2 3 -1.03756197356E-04 3 2 3 8.68125646625E-05 4 2 3 -1.03756197356E-04 1 3 3 6.70710680187E-05 2 3 3 -1.03756197356E-04 3 3 3 8.68125646625E-05 4 3 3 -1.03756197356E-04 1 4 3 -2.73780712150E-04 2 4 3 -1.32007643825E-04 3 4 3 3.32426443688E-05 4 4 3 -1.32007643825E-04 1 1 4 -2.73780712150E-04 2 1 4 -1.32007643825E-04 3 1 4 3.32426443688E-05 4 1 4 -1.32007643825E-04 1 2 4 6.70710680188E-05 2 2 4 -1.03756197356E-04 3 2 4 8.68125646625E-05 4 2 4 -1.03756197356E-04 1 3 4 6.70710680188E-05 2 3 4 -1.03756197356E-04 3 3 4 8.68125646625E-05 4 3 4 -1.03756197356E-04 1 4 4 -2.73780712150E-04 2 4 4 -1.32007643825E-04 3 4 4 3.32426443688E-05 4 4 4 -1.32007643825E-04 3 3 2 4 1 1 1 -1.29197802688E-02 2 1 1 4.56157825188E-05 3 1 1 4.56157825188E-05 4 1 1 -1.29197802688E-02 1 2 1 1.51962127150E-04 2 2 1 1.08979076187E-05 3 2 1 1.08979076187E-05 4 2 1 1.51962127150E-04 1 3 1 5.76169626688E-05 2 3 1 -5.87861848750E-06 3 3 1 -5.87861848750E-06 4 3 1 5.76169626688E-05 1 4 1 1.51962127150E-04 2 4 1 1.08979076187E-05 3 4 1 1.08979076187E-05 4 4 1 1.51962127150E-04 1 1 2 -1.29197802688E-02 2 1 2 4.56157825187E-05 3 1 2 4.56157825188E-05 4 1 2 -1.29197802688E-02 1 2 2 1.51962127150E-04 2 2 2 1.08979076188E-05 3 2 2 1.08979076187E-05 4 2 2 1.51962127150E-04 1 3 2 5.76169626688E-05 2 3 2 -5.87861848750E-06 3 3 2 -5.87861848750E-06 4 3 2 5.76169626688E-05 1 4 2 1.51962127150E-04 2 4 2 1.08979076188E-05 3 4 2 1.08979076187E-05 4 4 2 1.51962127150E-04 1 1 3 -2.73780712150E-04 2 1 3 6.70710680187E-05 3 1 3 6.70710680187E-05 4 1 3 -2.73780712150E-04 1 2 3 -1.32007643825E-04 2 2 3 -1.03756197356E-04 3 2 3 -1.03756197356E-04 4 2 3 -1.32007643825E-04 1 3 3 3.32426443687E-05 2 3 3 8.68125646625E-05 3 3 3 8.68125646625E-05 4 3 3 3.32426443688E-05 1 4 3 -1.32007643825E-04 2 4 3 -1.03756197356E-04 3 4 3 -1.03756197356E-04 4 4 3 -1.32007643825E-04 1 1 4 -2.73780712150E-04 2 1 4 6.70710680188E-05 3 1 4 6.70710680187E-05 4 1 4 -2.73780712150E-04 1 2 4 -1.32007643825E-04 2 2 4 -1.03756197356E-04 3 2 4 -1.03756197356E-04 4 2 4 -1.32007643825E-04 1 3 4 3.32426443688E-05 2 3 4 8.68125646625E-05 3 3 4 8.68125646625E-05 4 3 4 3.32426443688E-05 1 4 4 -1.32007643825E-04 2 4 4 -1.03756197356E-04 3 4 4 -1.03756197356E-04 4 4 4 -1.32007643825E-04 3 3 3 1 1 1 1 -1.29193945561E-02 2 1 1 4.22421813984E-05 3 1 1 4.22421813984E-05 4 1 1 -1.29193945561E-02 1 2 1 1.54006407927E-04 2 2 1 9.24810258281E-06 3 2 1 9.24810258281E-06 4 2 1 1.54006407927E-04 1 3 1 6.02114964297E-05 2 3 1 -5.51194348906E-06 3 3 1 -5.51194348906E-06 4 3 1 6.02114964297E-05 1 4 1 1.54006407927E-04 2 4 1 9.24810258281E-06 3 4 1 9.24810258281E-06 4 4 1 1.54006407927E-04 1 1 2 -2.73403758895E-04 2 1 2 6.55673835734E-05 3 1 2 6.55673835734E-05 4 1 2 -2.73403758895E-04 1 2 2 -1.30720960836E-04 2 2 2 -1.04624889167E-04 3 2 2 -1.04624889167E-04 4 2 2 -1.30720960836E-04 1 3 2 3.55110307172E-05 2 3 2 8.56924031359E-05 3 3 2 8.56924031359E-05 4 3 2 3.55110307172E-05 1 4 2 -1.30720960836E-04 2 4 2 -1.04624889167E-04 3 4 2 -1.04624889167E-04 4 4 2 -1.30720960836E-04 1 1 3 -2.73403758895E-04 2 1 3 6.55673835734E-05 3 1 3 6.55673835734E-05 4 1 3 -2.73403758895E-04 1 2 3 -1.30720960836E-04 2 2 3 -1.04624889167E-04 3 2 3 -1.04624889167E-04 4 2 3 -1.30720960836E-04 1 3 3 3.55110307172E-05 2 3 3 8.56924031359E-05 3 3 3 8.56924031359E-05 4 3 3 3.55110307172E-05 1 4 3 -1.30720960836E-04 2 4 3 -1.04624889167E-04 3 4 3 -1.04624889167E-04 4 4 3 -1.30720960836E-04 1 1 4 -1.29193945561E-02 2 1 4 4.22421813984E-05 3 1 4 4.22421813984E-05 4 1 4 -1.29193945561E-02 1 2 4 1.54006407927E-04 2 2 4 9.24810258281E-06 3 2 4 9.24810258281E-06 4 2 4 1.54006407927E-04 1 3 4 6.02114964297E-05 2 3 4 -5.51194348906E-06 3 3 4 -5.51194348906E-06 4 3 4 6.02114964297E-05 1 4 4 1.54006407927E-04 2 4 4 9.24810258281E-06 3 4 4 9.24810258281E-06 4 4 4 1.54006407927E-04 3 3 3 2 1 1 1 -1.29197802688E-02 2 1 1 1.51962127150E-04 3 1 1 5.76169626688E-05 4 1 1 1.51962127150E-04 1 2 1 -1.29197802688E-02 2 2 1 1.51962127150E-04 3 2 1 5.76169626687E-05 4 2 1 1.51962127150E-04 1 3 1 4.56157825188E-05 2 3 1 1.08979076187E-05 3 3 1 -5.87861848750E-06 4 3 1 1.08979076187E-05 1 4 1 4.56157825188E-05 2 4 1 1.08979076187E-05 3 4 1 -5.87861848750E-06 4 4 1 1.08979076187E-05 1 1 2 -2.73780712150E-04 2 1 2 -1.32007643825E-04 3 1 2 3.32426443688E-05 4 1 2 -1.32007643825E-04 1 2 2 -2.73780712150E-04 2 2 2 -1.32007643825E-04 3 2 2 3.32426443688E-05 4 2 2 -1.32007643825E-04 1 3 2 6.70710680188E-05 2 3 2 -1.03756197356E-04 3 3 2 8.68125646625E-05 4 3 2 -1.03756197356E-04 1 4 2 6.70710680188E-05 2 4 2 -1.03756197356E-04 3 4 2 8.68125646625E-05 4 4 2 -1.03756197356E-04 1 1 3 -2.73780712150E-04 2 1 3 -1.32007643825E-04 3 1 3 3.32426443688E-05 4 1 3 -1.32007643825E-04 1 2 3 -2.73780712150E-04 2 2 3 -1.32007643825E-04 3 2 3 3.32426443688E-05 4 2 3 -1.32007643825E-04 1 3 3 6.70710680187E-05 2 3 3 -1.03756197356E-04 3 3 3 8.68125646625E-05 4 3 3 -1.03756197356E-04 1 4 3 6.70710680188E-05 2 4 3 -1.03756197356E-04 3 4 3 8.68125646625E-05 4 4 3 -1.03756197356E-04 1 1 4 -1.29197802688E-02 2 1 4 1.51962127150E-04 3 1 4 5.76169626687E-05 4 1 4 1.51962127150E-04 1 2 4 -1.29197802688E-02 2 2 4 1.51962127150E-04 3 2 4 5.76169626687E-05 4 2 4 1.51962127150E-04 1 3 4 4.56157825188E-05 2 3 4 1.08979076187E-05 3 3 4 -5.87861848750E-06 4 3 4 1.08979076187E-05 1 4 4 4.56157825187E-05 2 4 4 1.08979076188E-05 3 4 4 -5.87861848750E-06 4 4 4 1.08979076188E-05 3 3 3 3 1 1 1 9.59699248245E-02 2 1 1 1.20453507770E-04 3 1 1 1.78566253766E-05 4 1 1 1.20453507770E-04 1 2 1 1.19792675702E-04 2 2 1 -6.57584784219E-06 3 2 1 -4.86383858484E-05 4 2 1 -6.57584784219E-06 1 3 1 2.09949874703E-05 2 3 1 -4.86395962984E-05 3 3 1 -1.29822361422E-05 4 3 1 -4.86395962984E-05 1 4 1 1.19792675702E-04 2 4 1 -6.57584784219E-06 3 4 1 -4.86383858484E-05 4 4 1 -6.57584784219E-06 1 1 2 -2.56237924763E-03 2 1 2 -3.31387745305E-04 3 1 2 -9.90316625172E-05 4 1 2 -3.31387745305E-04 1 2 2 -3.30731450180E-04 2 2 2 2.26085706295E-04 3 2 2 -2.98670322047E-05 4 2 2 2.26085706295E-04 1 3 2 -9.70578409234E-05 2 3 2 -2.86123205234E-05 3 3 2 8.35554808641E-05 4 3 2 -2.86123205234E-05 1 4 2 -3.30731450180E-04 2 4 2 2.26085706295E-04 3 4 2 -2.98670322047E-05 4 4 2 2.26085706295E-04 1 1 3 -4.98729616455E-04 2 1 3 5.41999011141E-05 3 1 3 -1.79969313417E-04 4 1 3 5.41999011141E-05 1 2 3 5.59934941578E-05 2 2 3 -5.79855820484E-05 3 2 3 9.72656154328E-05 4 2 3 -5.79855820484E-05 1 3 3 -1.78893299773E-04 2 3 3 9.97126749703E-05 3 3 3 3.07990501139E-04 4 3 3 9.97126749703E-05 1 4 3 5.59934941578E-05 2 4 3 -5.79855820484E-05 3 4 3 9.72656154328E-05 4 4 3 -5.79855820484E-05 1 1 4 -2.56237924763E-03 2 1 4 -3.31387745305E-04 3 1 4 -9.90316625172E-05 4 1 4 -3.31387745305E-04 1 2 4 -3.30731450180E-04 2 2 4 2.26085706295E-04 3 2 4 -2.98670322047E-05 4 2 4 2.26085706295E-04 1 3 4 -9.70578409234E-05 2 3 4 -2.86123205234E-05 3 3 4 8.35554808641E-05 4 3 4 -2.86123205234E-05 1 4 4 -3.30731450180E-04 2 4 4 2.26085706295E-04 3 4 4 -2.98670322047E-05 4 4 4 2.26085706295E-04 3 3 3 4 1 1 1 2.52500273020E-03 2 1 1 2.12188517011E-05 3 1 1 2.12188517011E-05 4 1 1 2.52500273020E-03 1 2 1 2.52500273020E-03 2 2 1 2.12188517011E-05 3 2 1 2.12188517011E-05 4 2 1 2.52500273020E-03 1 3 1 2.12188517011E-05 2 3 1 -1.62819061239E-05 3 3 1 -1.62819061239E-05 4 3 1 2.12188517011E-05 1 4 1 2.12188517011E-05 2 4 1 -1.62819061239E-05 3 4 1 -1.62819061239E-05 4 4 1 2.12188517011E-05 1 1 2 5.37005283587E-04 2 1 2 -4.91561099152E-05 3 1 2 -4.91561099152E-05 4 1 2 5.37005283587E-04 1 2 2 5.37005283587E-04 2 2 2 -4.91561099152E-05 3 2 2 -4.91561099152E-05 4 2 2 5.37005283587E-04 1 3 2 -4.91561099152E-05 2 3 2 -9.03904005427E-05 3 3 2 -9.03904005427E-05 4 3 2 -4.91561099152E-05 1 4 2 -4.91561099152E-05 2 4 2 -9.03904005427E-05 3 4 2 -9.03904005427E-05 4 4 2 -4.91561099152E-05 1 1 3 2.86208653875E-04 2 1 3 9.69435420780E-05 3 1 3 9.69435420780E-05 4 1 3 2.86208653875E-04 1 2 3 2.86208653875E-04 2 2 3 9.69435420780E-05 3 2 3 9.69435420780E-05 4 2 3 2.86208653875E-04 1 3 3 9.69435420780E-05 2 3 3 -3.73438484595E-05 3 3 3 -3.73438484595E-05 4 3 3 9.69435420780E-05 1 4 3 9.69435420780E-05 2 4 3 -3.73438484595E-05 3 4 3 -3.73438484595E-05 4 4 3 9.69435420780E-05 1 1 4 5.37005283587E-04 2 1 4 -4.91561099152E-05 3 1 4 -4.91561099152E-05 4 1 4 5.37005283587E-04 1 2 4 5.37005283587E-04 2 2 4 -4.91561099152E-05 3 2 4 -4.91561099152E-05 4 2 4 5.37005283587E-04 1 3 4 -4.91561099152E-05 2 3 4 -9.03904005427E-05 3 3 4 -9.03904005427E-05 4 3 4 -4.91561099152E-05 1 4 4 -4.91561099152E-05 2 4 4 -9.03904005427E-05 3 4 4 -9.03904005427E-05 4 4 4 -4.91561099152E-05 3 3 4 1 1 1 1 -1.29193945561E-02 2 1 1 1.54006407927E-04 3 1 1 6.02114964297E-05 4 1 1 1.54006407927E-04 1 2 1 4.22421813984E-05 2 2 1 9.24810258281E-06 3 2 1 -5.51194348906E-06 4 2 1 9.24810258281E-06 1 3 1 4.22421813984E-05 2 3 1 9.24810258281E-06 3 3 1 -5.51194348906E-06 4 3 1 9.24810258281E-06 1 4 1 -1.29193945561E-02 2 4 1 1.54006407927E-04 3 4 1 6.02114964297E-05 4 4 1 1.54006407927E-04 1 1 2 -2.73403758895E-04 2 1 2 -1.30720960836E-04 3 1 2 3.55110307172E-05 4 1 2 -1.30720960836E-04 1 2 2 6.55673835734E-05 2 2 2 -1.04624889167E-04 3 2 2 8.56924031359E-05 4 2 2 -1.04624889167E-04 1 3 2 6.55673835734E-05 2 3 2 -1.04624889167E-04 3 3 2 8.56924031359E-05 4 3 2 -1.04624889167E-04 1 4 2 -2.73403758895E-04 2 4 2 -1.30720960836E-04 3 4 2 3.55110307172E-05 4 4 2 -1.30720960836E-04 1 1 3 -2.73403758895E-04 2 1 3 -1.30720960836E-04 3 1 3 3.55110307172E-05 4 1 3 -1.30720960836E-04 1 2 3 6.55673835734E-05 2 2 3 -1.04624889167E-04 3 2 3 8.56924031359E-05 4 2 3 -1.04624889167E-04 1 3 3 6.55673835734E-05 2 3 3 -1.04624889167E-04 3 3 3 8.56924031359E-05 4 3 3 -1.04624889167E-04 1 4 3 -2.73403758895E-04 2 4 3 -1.30720960836E-04 3 4 3 3.55110307172E-05 4 4 3 -1.30720960836E-04 1 1 4 -1.29193945561E-02 2 1 4 1.54006407927E-04 3 1 4 6.02114964297E-05 4 1 4 1.54006407927E-04 1 2 4 4.22421813984E-05 2 2 4 9.24810258281E-06 3 2 4 -5.51194348906E-06 4 2 4 9.24810258281E-06 1 3 4 4.22421813984E-05 2 3 4 9.24810258281E-06 3 3 4 -5.51194348906E-06 4 3 4 9.24810258281E-06 1 4 4 -1.29193945561E-02 2 4 4 1.54006407927E-04 3 4 4 6.02114964297E-05 4 4 4 1.54006407927E-04 3 3 4 2 1 1 1 -1.29197802688E-02 2 1 1 -1.29197802688E-02 3 1 1 4.56157825188E-05 4 1 1 4.56157825188E-05 1 2 1 1.51962127150E-04 2 2 1 1.51962127150E-04 3 2 1 1.08979076187E-05 4 2 1 1.08979076187E-05 1 3 1 5.76169626688E-05 2 3 1 5.76169626688E-05 3 3 1 -5.87861848750E-06 4 3 1 -5.87861848750E-06 1 4 1 1.51962127150E-04 2 4 1 1.51962127150E-04 3 4 1 1.08979076187E-05 4 4 1 1.08979076187E-05 1 1 2 -2.73780712150E-04 2 1 2 -2.73780712150E-04 3 1 2 6.70710680187E-05 4 1 2 6.70710680188E-05 1 2 2 -1.32007643825E-04 2 2 2 -1.32007643825E-04 3 2 2 -1.03756197356E-04 4 2 2 -1.03756197356E-04 1 3 2 3.32426443688E-05 2 3 2 3.32426443688E-05 3 3 2 8.68125646625E-05 4 3 2 8.68125646625E-05 1 4 2 -1.32007643825E-04 2 4 2 -1.32007643825E-04 3 4 2 -1.03756197356E-04 4 4 2 -1.03756197356E-04 1 1 3 -2.73780712150E-04 2 1 3 -2.73780712150E-04 3 1 3 6.70710680187E-05 4 1 3 6.70710680187E-05 1 2 3 -1.32007643825E-04 2 2 3 -1.32007643825E-04 3 2 3 -1.03756197356E-04 4 2 3 -1.03756197356E-04 1 3 3 3.32426443687E-05 2 3 3 3.32426443688E-05 3 3 3 8.68125646625E-05 4 3 3 8.68125646625E-05 1 4 3 -1.32007643825E-04 2 4 3 -1.32007643825E-04 3 4 3 -1.03756197356E-04 4 4 3 -1.03756197356E-04 1 1 4 -1.29197802688E-02 2 1 4 -1.29197802688E-02 3 1 4 4.56157825188E-05 4 1 4 4.56157825187E-05 1 2 4 1.51962127150E-04 2 2 4 1.51962127150E-04 3 2 4 1.08979076187E-05 4 2 4 1.08979076188E-05 1 3 4 5.76169626688E-05 2 3 4 5.76169626688E-05 3 3 4 -5.87861848750E-06 4 3 4 -5.87861848750E-06 1 4 4 1.51962127150E-04 2 4 4 1.51962127150E-04 3 4 4 1.08979076187E-05 4 4 4 1.08979076188E-05 3 3 4 3 1 1 1 2.52500273020E-03 2 1 1 2.52500273020E-03 3 1 1 2.12188517011E-05 4 1 1 2.12188517011E-05 1 2 1 2.12188517011E-05 2 2 1 2.12188517011E-05 3 2 1 -1.62819061239E-05 4 2 1 -1.62819061239E-05 1 3 1 2.12188517011E-05 2 3 1 2.12188517011E-05 3 3 1 -1.62819061239E-05 4 3 1 -1.62819061239E-05 1 4 1 2.52500273020E-03 2 4 1 2.52500273020E-03 3 4 1 2.12188517011E-05 4 4 1 2.12188517011E-05 1 1 2 5.37005283587E-04 2 1 2 5.37005283587E-04 3 1 2 -4.91561099152E-05 4 1 2 -4.91561099152E-05 1 2 2 -4.91561099152E-05 2 2 2 -4.91561099152E-05 3 2 2 -9.03904005427E-05 4 2 2 -9.03904005427E-05 1 3 2 -4.91561099152E-05 2 3 2 -4.91561099152E-05 3 3 2 -9.03904005427E-05 4 3 2 -9.03904005427E-05 1 4 2 5.37005283587E-04 2 4 2 5.37005283587E-04 3 4 2 -4.91561099152E-05 4 4 2 -4.91561099152E-05 1 1 3 2.86208653875E-04 2 1 3 2.86208653875E-04 3 1 3 9.69435420780E-05 4 1 3 9.69435420780E-05 1 2 3 9.69435420780E-05 2 2 3 9.69435420780E-05 3 2 3 -3.73438484595E-05 4 2 3 -3.73438484595E-05 1 3 3 9.69435420780E-05 2 3 3 9.69435420780E-05 3 3 3 -3.73438484595E-05 4 3 3 -3.73438484595E-05 1 4 3 2.86208653875E-04 2 4 3 2.86208653875E-04 3 4 3 9.69435420780E-05 4 4 3 9.69435420780E-05 1 1 4 5.37005283587E-04 2 1 4 5.37005283587E-04 3 1 4 -4.91561099152E-05 4 1 4 -4.91561099152E-05 1 2 4 -4.91561099152E-05 2 2 4 -4.91561099152E-05 3 2 4 -9.03904005427E-05 4 2 4 -9.03904005427E-05 1 3 4 -4.91561099152E-05 2 3 4 -4.91561099152E-05 3 3 4 -9.03904005427E-05 4 3 4 -9.03904005427E-05 1 4 4 5.37005283587E-04 2 4 4 5.37005283587E-04 3 4 4 -4.91561099152E-05 4 4 4 -4.91561099152E-05 3 3 4 4 1 1 1 9.59699248245E-02 2 1 1 1.19792675702E-04 3 1 1 2.09949874703E-05 4 1 1 1.19792675702E-04 1 2 1 1.20453507770E-04 2 2 1 -6.57584784219E-06 3 2 1 -4.86395962984E-05 4 2 1 -6.57584784219E-06 1 3 1 1.78566253766E-05 2 3 1 -4.86383858484E-05 3 3 1 -1.29822361422E-05 4 3 1 -4.86383858484E-05 1 4 1 1.20453507770E-04 2 4 1 -6.57584784219E-06 3 4 1 -4.86395962984E-05 4 4 1 -6.57584784219E-06 1 1 2 -2.56237924763E-03 2 1 2 -3.30731450180E-04 3 1 2 -9.70578409234E-05 4 1 2 -3.30731450180E-04 1 2 2 -3.31387745305E-04 2 2 2 2.26085706295E-04 3 2 2 -2.86123205234E-05 4 2 2 2.26085706295E-04 1 3 2 -9.90316625172E-05 2 3 2 -2.98670322047E-05 3 3 2 8.35554808641E-05 4 3 2 -2.98670322047E-05 1 4 2 -3.31387745305E-04 2 4 2 2.26085706295E-04 3 4 2 -2.86123205234E-05 4 4 2 2.26085706295E-04 1 1 3 -4.98729616455E-04 2 1 3 5.59934941578E-05 3 1 3 -1.78893299773E-04 4 1 3 5.59934941578E-05 1 2 3 5.41999011141E-05 2 2 3 -5.79855820484E-05 3 2 3 9.97126749703E-05 4 2 3 -5.79855820484E-05 1 3 3 -1.79969313417E-04 2 3 3 9.72656154328E-05 3 3 3 3.07990501139E-04 4 3 3 9.72656154328E-05 1 4 3 5.41999011141E-05 2 4 3 -5.79855820484E-05 3 4 3 9.97126749703E-05 4 4 3 -5.79855820484E-05 1 1 4 -2.56237924763E-03 2 1 4 -3.30731450180E-04 3 1 4 -9.70578409234E-05 4 1 4 -3.30731450180E-04 1 2 4 -3.31387745305E-04 2 2 4 2.26085706295E-04 3 2 4 -2.86123205234E-05 4 2 4 2.26085706295E-04 1 3 4 -9.90316625172E-05 2 3 4 -2.98670322047E-05 3 3 4 8.35554808641E-05 4 3 4 -2.98670322047E-05 1 4 4 -3.31387745305E-04 2 4 4 2.26085706295E-04 3 4 4 -2.86123205234E-05 4 4 4 2.26085706295E-04 espresso-5.0.2/QHA/Examples/AlAs/0000755000700200004540000000000012053440301015357 5ustar marsamoscmespresso-5.0.2/QHA/Examples/AlAs/alas444.fc0000644000700200004540000022706612053145633017074 0ustar marsamoscm 2 2 2 10.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1 'Al ' 24590.7655930491 2 'As ' 68285.4024548272 1 1 0.0000000 0.0000000 0.0000000 2 2 0.2500000 0.2500000 0.2500000 T 13.7439582 0.0000000 0.0000000 0.0000000 13.7439582 0.0000000 0.0000000 0.0000000 13.7439582 1 2.5582107 0.0000000 0.0000000 0.0000000 2.5582107 0.0000000 0.0000000 0.0000000 2.5582107 2 -2.5582107 0.0000000 0.0000000 0.0000000 -2.5582107 0.0000000 0.0000000 0.0000000 -2.5582107 4 4 4 1 1 1 1 1 1 1 2.17005913679E-01 2 1 1 -5.06938862218E-03 3 1 1 1.00336620428E-04 4 1 1 -5.06938862218E-03 1 2 1 1.07967330641E-02 2 2 1 -6.07625849912E-04 3 2 1 -1.61530248405E-04 4 2 1 -5.06938862218E-03 1 3 1 4.17921167955E-03 2 3 1 -6.07625849912E-04 3 3 1 1.00336620428E-04 4 3 1 -6.07625849912E-04 1 4 1 1.07967330641E-02 2 4 1 -5.06938862218E-03 3 4 1 -1.61530248405E-04 4 4 1 -6.07625849912E-04 1 1 2 -5.06938862218E-03 2 1 2 -1.61530248405E-04 3 1 2 -6.07625849912E-04 4 1 2 1.07967330641E-02 1 2 2 -6.07625849912E-04 2 2 2 -3.22039210024E-04 3 2 2 -6.07625849912E-04 4 2 2 -2.56503159344E-04 1 3 2 -6.07625849912E-04 2 3 2 -1.61530248405E-04 3 3 2 -2.55050013283E-04 4 3 2 -2.65400768767E-04 1 4 2 -5.06938862218E-03 2 4 2 2.08639111358E-04 3 4 2 -2.55050013283E-04 4 4 2 -2.56503159344E-04 1 1 3 1.00336620428E-04 2 1 3 -6.07625849912E-04 3 1 3 4.17921167955E-03 4 1 3 -6.07625849912E-04 1 2 3 -1.61530248405E-04 2 2 3 -6.07625849912E-04 3 2 3 -2.65400768767E-04 4 2 3 -2.55050013283E-04 1 3 3 1.00336620428E-04 2 3 3 -2.55050013283E-04 3 3 3 -4.47311084653E-04 4 3 3 -2.55050013283E-04 1 4 3 -1.61530248405E-04 2 4 3 -2.55050013283E-04 3 4 3 -2.65400768767E-04 4 4 3 -6.07625849912E-04 1 1 4 -5.06938862218E-03 2 1 4 1.07967330641E-02 3 1 4 -6.07625849912E-04 4 1 4 -1.61530248405E-04 1 2 4 -5.06938862218E-03 2 2 4 -2.56503159344E-04 3 2 4 -2.55050013283E-04 4 2 4 2.08639111358E-04 1 3 4 -6.07625849912E-04 2 3 4 -2.65400768767E-04 3 3 4 -2.55050013283E-04 4 3 4 -1.61530248405E-04 1 4 4 -6.07625849912E-04 2 4 4 -2.56503159344E-04 3 4 4 -6.07625849912E-04 4 4 4 -3.22039210024E-04 1 1 1 2 1 1 1 -5.16391583529E-02 2 1 1 -3.64188345240E-04 3 1 1 -1.48119141585E-04 4 1 1 -5.20939249629E-04 1 2 1 -5.16391583529E-02 2 2 1 7.95483539403E-04 3 2 1 7.95483539403E-04 4 2 1 -5.16391583529E-02 1 3 1 -1.83234358035E-03 2 3 1 5.14047338764E-04 3 3 1 7.95483539403E-04 4 3 1 -5.20939249629E-04 1 4 1 -1.83234358035E-03 2 4 1 7.95483539403E-04 3 4 1 -1.48119141585E-04 4 4 1 -1.98915351604E-04 1 1 2 -3.64188345240E-04 2 1 2 -1.25452581001E-04 3 1 2 1.77408652632E-04 4 1 2 -5.20939249629E-04 1 2 2 7.95483539403E-04 2 2 2 5.14047338764E-04 3 2 2 -1.83234358035E-03 4 2 2 -5.20939249629E-04 1 3 2 5.14047338764E-04 2 3 2 5.14047338764E-04 3 3 2 1.77408652632E-04 4 3 2 1.77408652632E-04 1 4 2 7.95483539403E-04 2 4 2 -1.25452581001E-04 3 4 2 -2.88089152916E-05 4 4 2 1.77408652632E-04 1 1 3 -1.48119141585E-04 2 1 3 1.77408652632E-04 3 1 3 -1.98915351604E-04 4 1 3 -6.93663419118E-05 1 2 3 7.95483539403E-04 2 2 3 -1.83234358035E-03 3 2 3 -1.98915351604E-04 4 2 3 -1.48119141585E-04 1 3 3 7.95483539403E-04 2 3 3 1.77408652632E-04 3 3 3 -2.88089152916E-05 4 3 3 -1.25452581001E-04 1 4 3 -1.48119141585E-04 2 4 3 -2.88089152916E-05 3 4 3 -2.88089152916E-05 4 4 3 -1.48119141585E-04 1 1 4 -5.20939249629E-04 2 1 4 -5.20939249629E-04 3 1 4 -6.93663419118E-05 4 1 4 -6.93663419117E-05 1 2 4 -5.16391583529E-02 2 2 4 -5.20939249629E-04 3 2 4 -1.48119141585E-04 4 2 4 -3.64188345240E-04 1 3 4 -5.20939249629E-04 2 3 4 1.77408652632E-04 3 3 4 -1.25452581001E-04 4 3 4 -3.64188345240E-04 1 4 4 -1.98915351604E-04 2 4 4 1.77408652632E-04 3 4 4 -1.48119141585E-04 4 4 4 -6.93663419117E-05 1 1 2 1 1 1 1 -5.16391583529E-02 2 1 1 -5.20939249629E-04 3 1 1 -1.48119141585E-04 4 1 1 -3.64188345240E-04 1 2 1 -1.83234358035E-03 2 2 1 -1.98915351604E-04 3 2 1 -1.48119141585E-04 4 2 1 7.95483539403E-04 1 3 1 -1.83234358035E-03 2 3 1 -5.20939249629E-04 3 3 1 7.95483539403E-04 4 3 1 5.14047338764E-04 1 4 1 -5.16391583529E-02 2 4 1 -5.16391583529E-02 3 4 1 7.95483539403E-04 4 4 1 7.95483539403E-04 1 1 2 -5.20939249629E-04 2 1 2 -6.93663419117E-05 3 1 2 -6.93663419118E-05 4 1 2 -5.20939249629E-04 1 2 2 -1.98915351604E-04 2 2 2 -6.93663419117E-05 3 2 2 -1.48119141585E-04 4 2 2 1.77408652632E-04 1 3 2 -5.20939249629E-04 2 3 2 -3.64188345240E-04 3 3 2 -1.25452581001E-04 4 3 2 1.77408652632E-04 1 4 2 -5.16391583529E-02 2 4 2 -3.64188345240E-04 3 4 2 -1.48119141585E-04 4 4 2 -5.20939249629E-04 1 1 3 -1.48119141585E-04 2 1 3 -6.93663419118E-05 3 1 3 -1.98915351604E-04 4 1 3 1.77408652632E-04 1 2 3 -1.48119141585E-04 2 2 3 -1.48119141585E-04 3 2 3 -2.88089152916E-05 4 2 3 -2.88089152916E-05 1 3 3 7.95483539403E-04 2 3 3 -1.25452581001E-04 3 3 3 -2.88089152916E-05 4 3 3 1.77408652632E-04 1 4 3 7.95483539403E-04 2 4 3 -1.48119141585E-04 3 4 3 -1.98915351604E-04 4 4 3 -1.83234358035E-03 1 1 4 -3.64188345240E-04 2 1 4 -5.20939249629E-04 3 1 4 1.77408652632E-04 4 1 4 -1.25452581001E-04 1 2 4 7.95483539403E-04 2 2 4 1.77408652632E-04 3 2 4 -2.88089152916E-05 4 2 4 -1.25452581001E-04 1 3 4 5.14047338764E-04 2 3 4 1.77408652632E-04 3 3 4 1.77408652632E-04 4 3 4 5.14047338764E-04 1 4 4 7.95483539403E-04 2 4 4 -5.20939249629E-04 3 4 4 -1.83234358035E-03 4 4 4 5.14047338764E-04 1 1 2 2 1 1 1 2.25820185085E-01 2 1 1 -2.56160409093E-03 3 1 1 -1.49360259832E-03 4 1 1 -2.56160409093E-03 1 2 1 2.12384697031E-03 2 2 1 1.21258056338E-04 3 2 1 -4.39388421551E-05 4 2 1 -2.56160409093E-03 1 3 1 1.15442183580E-03 2 3 1 1.21258056338E-04 3 3 1 -1.49360259832E-03 4 3 1 1.21258056338E-04 1 4 1 2.12384697031E-03 2 4 1 -2.56160409093E-03 3 4 1 -4.39388421551E-05 4 4 1 1.21258056338E-04 1 1 2 -2.56160409093E-03 2 1 2 -4.39388421551E-05 3 1 2 1.21258056338E-04 4 1 2 2.12384697031E-03 1 2 2 1.21258056338E-04 2 2 2 1.16617821226E-04 3 2 2 1.21258056338E-04 4 2 2 -2.17114253094E-04 1 3 2 1.21258056338E-04 2 3 2 -4.39388421551E-05 3 3 2 -3.99142320331E-05 4 3 2 -1.61263112517E-04 1 4 2 -2.56160409093E-03 2 4 2 9.73356142608E-04 3 4 2 -3.99142320331E-05 4 4 2 -2.17114253094E-04 1 1 3 -1.49360259832E-03 2 1 3 1.21258056338E-04 3 1 3 1.15442183580E-03 4 1 3 1.21258056338E-04 1 2 3 -4.39388421551E-05 2 2 3 1.21258056338E-04 3 2 3 -1.61263112517E-04 4 2 3 -3.99142320331E-05 1 3 3 -1.49360259832E-03 2 3 3 -3.99142320331E-05 3 3 3 7.01237821597E-04 4 3 3 -3.99142320331E-05 1 4 3 -4.39388421551E-05 2 4 3 -3.99142320331E-05 3 4 3 -1.61263112517E-04 4 4 3 1.21258056338E-04 1 1 4 -2.56160409093E-03 2 1 4 2.12384697031E-03 3 1 4 1.21258056338E-04 4 1 4 -4.39388421551E-05 1 2 4 -2.56160409093E-03 2 2 4 -2.17114253094E-04 3 2 4 -3.99142320331E-05 4 2 4 9.73356142608E-04 1 3 4 1.21258056338E-04 2 3 4 -1.61263112517E-04 3 3 4 -3.99142320331E-05 4 3 4 -4.39388421551E-05 1 4 4 1.21258056338E-04 2 4 4 -2.17114253094E-04 3 4 4 1.21258056338E-04 4 4 4 1.16617821226E-04 1 2 1 1 1 1 1 6.39679281766E-18 2 1 1 -3.40438281250E-03 3 1 1 1.35525271561E-20 4 1 1 3.40438281250E-03 1 2 1 3.40438281250E-03 2 2 1 -8.99183686349E-04 3 2 1 -1.38502058413E-04 4 2 1 -3.39785095158E-03 1 3 1 1.35525271561E-20 2 3 1 -1.06221643341E-03 3 3 1 -9.12728098218E-04 4 3 1 -1.38502058413E-04 1 4 1 -3.40438281250E-03 2 4 1 -3.39785095158E-03 3 4 1 -1.06221643341E-03 4 4 1 -8.99183686349E-04 1 1 2 3.39785095158E-03 2 1 2 1.38502058413E-04 3 1 2 8.99183686349E-04 4 1 2 -3.40438281250E-03 1 2 2 1.06221643341E-03 2 2 2 1.08420217249E-19 3 2 2 -1.06221643341E-03 4 2 2 0.00000000000E+00 1 3 2 8.99183686349E-04 2 3 2 -1.38502058413E-04 3 3 2 -4.33924323405E-05 4 3 2 3.44178125000E-05 1 4 2 3.40438281250E-03 2 4 2 -1.08420217249E-19 3 4 2 -3.44178125000E-05 4 4 2 2.16840434497E-19 1 1 3 9.12728098218E-04 2 1 3 1.06221643341E-03 3 1 3 -2.30392961653E-19 4 1 3 1.38502058413E-04 1 2 3 1.38502058413E-04 2 2 3 -8.99183686349E-04 3 2 3 -3.44178125000E-05 4 2 3 4.33924323405E-05 1 3 3 -2.30392961653E-19 2 3 3 3.44178125000E-05 3 3 3 -3.25260651746E-19 4 3 3 -3.44178125000E-05 1 4 3 1.06221643341E-03 2 4 3 4.33924323405E-05 3 4 3 3.44178125000E-05 4 4 3 -8.99183686349E-04 1 1 4 3.39785095158E-03 2 1 4 3.40438281250E-03 3 1 4 8.99183686349E-04 4 1 4 1.06221643341E-03 1 2 4 -3.40438281250E-03 2 2 4 1.08420217249E-19 3 2 4 3.44178125000E-05 4 2 4 0.00000000000E+00 1 3 4 8.99183686349E-04 2 3 4 -3.44178125000E-05 3 3 4 -4.33924323405E-05 4 3 4 -1.06221643341E-03 1 4 4 1.38502058413E-04 2 4 4 -1.08420217249E-19 3 4 4 -1.38502058413E-04 4 4 4 2.16840434497E-19 1 2 1 2 1 1 1 -4.34182798560E-02 2 1 1 3.13666863964E-04 3 1 1 2.69134053327E-04 4 1 1 -5.25455773473E-04 1 2 1 4.34182798560E-02 2 2 1 4.90921761103E-04 3 2 1 -4.90921761103E-04 4 2 1 -4.34182798560E-02 1 3 1 -2.28336698890E-03 2 3 1 4.12614861281E-04 3 3 1 4.43287006678E-04 4 3 1 -7.61898136036E-04 1 4 1 2.28336698890E-03 2 4 1 4.43287006678E-04 3 4 1 -9.28133927826E-06 4 4 1 -1.24034696673E-04 1 1 2 -3.13666863964E-04 2 1 2 -2.65466702825E-05 3 1 2 -2.52683788275E-04 4 1 2 -5.25455773473E-04 1 2 2 -4.43287006678E-04 2 2 2 -4.12614861281E-04 3 2 2 2.28336698890E-03 4 2 2 7.61898136036E-04 1 3 2 -4.12614861281E-04 2 3 2 4.12614861281E-04 3 3 2 -4.57082971750E-06 4 3 2 4.57082971750E-06 1 4 2 -4.90921761103E-04 2 4 2 2.65466702825E-05 3 4 2 -4.39245940445E-05 4 4 2 -2.52683788275E-04 1 1 3 9.28133927826E-06 2 1 3 4.57082971750E-06 3 1 3 -1.24034696673E-04 4 1 3 3.80124509512E-05 1 2 3 -4.43287006678E-04 2 2 3 -2.28336698890E-03 3 2 3 1.24034696673E-04 4 2 3 9.28133927826E-06 1 3 3 4.90921761103E-04 2 3 3 2.52683788275E-04 3 3 3 4.39245940445E-05 4 3 3 -2.65466702825E-05 1 4 3 -2.69134053327E-04 2 4 3 4.39245940445E-05 3 4 3 -4.39245940445E-05 4 4 3 2.69134053327E-04 1 1 4 7.61898136036E-04 2 1 4 -7.61898136036E-04 3 1 4 -3.80124509512E-05 4 1 4 3.80124509512E-05 1 2 4 4.34182798560E-02 2 2 4 5.25455773473E-04 3 2 4 -2.69134053327E-04 4 2 4 -3.13666863964E-04 1 3 4 5.25455773473E-04 2 3 4 2.52683788275E-04 3 3 4 2.65466702825E-05 4 3 4 3.13666863964E-04 1 4 4 1.24034696673E-04 2 4 4 -4.57082971750E-06 3 4 4 -9.28133927826E-06 4 4 4 -3.80124509512E-05 1 2 2 1 1 1 1 -4.34182798560E-02 2 1 1 -5.25455773473E-04 3 1 1 -1.24034696673E-04 4 1 1 -7.61898136036E-04 1 2 1 -4.90921761103E-04 2 2 1 2.69134053327E-04 3 2 1 -9.28133927826E-06 4 2 1 4.43287006678E-04 1 3 1 4.90921761103E-04 2 3 1 3.13666863964E-04 3 3 1 4.43287006678E-04 4 3 1 4.12614861281E-04 1 4 1 4.34182798560E-02 2 4 1 -4.34182798560E-02 3 4 1 2.28336698890E-03 4 4 1 -2.28336698890E-03 1 1 2 -3.13666863964E-04 2 1 2 3.80124509512E-05 3 1 2 -3.80124509512E-05 4 1 2 3.13666863964E-04 1 2 2 -2.69134053327E-04 2 2 2 -3.80124509512E-05 3 2 2 -9.28133927826E-06 4 2 2 2.65466702825E-05 1 3 2 5.25455773473E-04 2 3 2 -7.61898136036E-04 3 3 2 -4.57082971750E-06 4 3 2 2.52683788275E-04 1 4 2 4.34182798560E-02 2 4 2 7.61898136036E-04 3 4 2 1.24034696673E-04 4 4 2 5.25455773473E-04 1 1 3 9.28133927826E-06 2 1 3 3.80124509512E-05 3 1 3 2.69134053327E-04 4 1 3 -2.65466702825E-05 1 2 3 1.24034696673E-04 2 2 3 -1.24034696673E-04 3 2 3 -4.39245940445E-05 4 2 3 4.39245940445E-05 1 3 3 -2.28336698890E-03 2 3 3 4.57082971750E-06 3 3 3 4.39245940445E-05 4 3 3 2.52683788275E-04 1 4 3 -4.43287006678E-04 2 4 3 9.28133927826E-06 3 4 3 -2.69134053327E-04 4 4 3 4.90921761103E-04 1 1 4 7.61898136036E-04 2 1 4 -5.25455773473E-04 3 1 4 -2.52683788275E-04 4 1 4 4.57082971750E-06 1 2 4 2.28336698890E-03 2 2 4 -2.52683788275E-04 3 2 4 -4.39245940445E-05 4 2 4 -4.57082971750E-06 1 3 4 -4.12614861281E-04 2 3 4 -2.65466702825E-05 3 3 4 2.65466702825E-05 4 3 4 4.12614861281E-04 1 4 4 -4.43287006678E-04 2 4 4 -3.13666863964E-04 3 4 4 -4.90921761103E-04 4 4 4 -4.12614861281E-04 1 2 2 2 1 1 1 6.28837260042E-18 2 1 1 -2.99621062500E-03 3 1 1 1.62630325873E-19 4 1 1 2.99621062500E-03 1 2 1 2.99621062500E-03 2 2 1 4.39131886507E-05 3 2 1 1.81510754087E-04 4 2 1 -3.54163220158E-03 1 3 1 8.13151629364E-20 2 3 1 7.41145040866E-05 3 3 1 -1.44127934822E-03 4 3 1 1.81510754087E-04 1 4 1 -2.99621062500E-03 2 4 1 -3.54163220158E-03 3 4 1 7.41145040866E-05 4 4 1 4.39131886507E-05 1 1 2 3.54163220158E-03 2 1 2 -1.81510754087E-04 3 1 2 -4.39131886507E-05 4 1 2 -2.99621062500E-03 1 2 2 -7.41145040866E-05 2 2 2 0.00000000000E+00 3 2 2 7.41145040866E-05 4 2 2 -2.16840434497E-19 1 3 2 -4.39131886507E-05 2 3 2 1.81510754087E-04 3 3 2 -8.04474323405E-05 4 3 2 1.40093125000E-04 1 4 2 2.99621062500E-03 2 4 2 -2.16840434497E-19 3 4 2 -1.40093125000E-04 4 4 2 0.00000000000E+00 1 1 3 1.44127934822E-03 2 1 3 -7.41145040866E-05 3 1 3 -2.16840434497E-19 4 1 3 -1.81510754087E-04 1 2 3 -1.81510754087E-04 2 2 3 4.39131886507E-05 3 2 3 -1.40093125000E-04 4 2 3 8.04474323405E-05 1 3 3 -2.98155597434E-19 2 3 3 1.40093125000E-04 3 3 3 -6.50521303491E-19 4 3 3 -1.40093125000E-04 1 4 3 -7.41145040866E-05 2 4 3 8.04474323405E-05 3 4 3 1.40093125000E-04 4 4 3 4.39131886507E-05 1 1 4 3.54163220158E-03 2 1 4 2.99621062500E-03 3 1 4 -4.39131886507E-05 4 1 4 -7.41145040866E-05 1 2 4 -2.99621062500E-03 2 2 4 0.00000000000E+00 3 2 4 1.40093125000E-04 4 2 4 -2.16840434497E-19 1 3 4 -4.39131886507E-05 2 3 4 -1.40093125000E-04 3 3 4 -8.04474323405E-05 4 3 4 7.41145040866E-05 1 4 4 -1.81510754087E-04 2 4 4 -2.16840434497E-19 3 4 4 1.81510754087E-04 4 4 4 0.00000000000E+00 1 3 1 1 1 1 1 5.61752250619E-18 2 1 1 3.39785095158E-03 3 1 1 9.12728098218E-04 4 1 1 3.39785095158E-03 1 2 1 3.40438281250E-03 2 2 1 1.06221643341E-03 3 2 1 1.38502058413E-04 4 2 1 -3.40438281250E-03 1 3 1 -7.58941520740E-19 2 3 1 8.99183686349E-04 3 3 1 -9.28348110191E-19 4 3 1 8.99183686349E-04 1 4 1 -3.40438281250E-03 2 4 1 3.40438281250E-03 3 4 1 1.06221643341E-03 4 4 1 1.38502058413E-04 1 1 2 -3.40438281250E-03 2 1 2 1.38502058413E-04 3 1 2 1.06221643341E-03 4 1 2 3.40438281250E-03 1 2 2 -8.99183686349E-04 2 2 2 1.02999206386E-18 3 2 2 -8.99183686349E-04 4 2 2 1.08420217249E-18 1 3 2 -1.06221643341E-03 2 3 2 -1.38502058413E-04 3 3 2 3.44178125000E-05 4 3 2 -3.44178125000E-05 1 4 2 -3.39785095158E-03 2 4 2 8.67361737988E-19 3 4 2 4.33924323405E-05 4 4 2 8.13151629364E-19 1 1 3 -8.87690528723E-19 2 1 3 8.99183686349E-04 3 1 3 -8.67361737988E-19 4 1 3 8.99183686349E-04 1 2 3 -1.38502058413E-04 2 2 3 -1.06221643341E-03 3 2 3 -3.44178125000E-05 4 2 3 3.44178125000E-05 1 3 3 -9.12728098218E-04 2 3 3 -4.33924323405E-05 3 3 3 -1.44334414212E-18 4 3 3 -4.33924323405E-05 1 4 3 -1.06221643341E-03 2 4 3 -3.44178125000E-05 3 4 3 3.44178125000E-05 4 4 3 -1.38502058413E-04 1 1 4 3.40438281250E-03 2 1 4 -3.40438281250E-03 3 1 4 1.38502058413E-04 4 1 4 1.06221643341E-03 1 2 4 -3.39785095158E-03 2 2 4 8.13151629364E-19 3 2 4 4.33924323405E-05 4 2 4 8.67361737988E-19 1 3 4 -1.38502058413E-04 2 3 4 3.44178125000E-05 3 3 4 -3.44178125000E-05 4 3 4 -1.06221643341E-03 1 4 4 -8.99183686349E-04 2 4 4 1.08420217249E-18 3 4 4 -8.99183686349E-04 4 4 4 1.02999206386E-18 1 3 1 2 1 1 1 -4.34182798560E-02 2 1 1 -3.13666863964E-04 3 1 1 9.28133927826E-06 4 1 1 7.61898136036E-04 1 2 1 4.34182798560E-02 2 2 1 -4.43287006678E-04 3 2 1 -4.43287006678E-04 4 2 1 4.34182798560E-02 1 3 1 -2.28336698890E-03 2 3 1 -4.12614861281E-04 3 3 1 4.90921761103E-04 4 3 1 5.25455773473E-04 1 4 1 2.28336698890E-03 2 4 1 -4.90921761103E-04 3 4 1 -2.69134053327E-04 4 4 1 1.24034696673E-04 1 1 2 3.13666863964E-04 2 1 2 -2.65466702825E-05 3 1 2 4.57082971750E-06 4 1 2 -7.61898136036E-04 1 2 2 4.90921761103E-04 2 2 2 -4.12614861281E-04 3 2 2 -2.28336698890E-03 4 2 2 5.25455773473E-04 1 3 2 4.12614861281E-04 2 3 2 4.12614861281E-04 3 3 2 2.52683788275E-04 4 3 2 2.52683788275E-04 1 4 2 4.43287006678E-04 2 4 2 2.65466702825E-05 3 4 2 4.39245940445E-05 4 4 2 -4.57082971750E-06 1 1 3 2.69134053327E-04 2 1 3 -2.52683788275E-04 3 1 3 -1.24034696673E-04 4 1 3 -3.80124509512E-05 1 2 3 -4.90921761103E-04 2 2 3 2.28336698890E-03 3 2 3 1.24034696673E-04 4 2 3 -2.69134053327E-04 1 3 3 4.43287006678E-04 2 3 3 -4.57082971750E-06 3 3 3 4.39245940445E-05 4 3 3 2.65466702825E-05 1 4 3 -9.28133927826E-06 2 4 3 -4.39245940445E-05 3 4 3 -4.39245940445E-05 4 4 3 -9.28133927826E-06 1 1 4 -5.25455773473E-04 2 1 4 -5.25455773473E-04 3 1 4 3.80124509512E-05 4 1 4 3.80124509512E-05 1 2 4 -4.34182798560E-02 2 2 4 7.61898136036E-04 3 2 4 9.28133927826E-06 4 2 4 -3.13666863964E-04 1 3 4 -7.61898136036E-04 2 3 4 4.57082971750E-06 3 3 4 -2.65466702825E-05 4 3 4 3.13666863964E-04 1 4 4 -1.24034696673E-04 2 4 4 -2.52683788275E-04 3 4 4 2.69134053327E-04 4 4 4 -3.80124509512E-05 1 3 2 1 1 1 1 -4.34182798560E-02 2 1 1 -3.13666863964E-04 3 1 1 9.28133927826E-06 4 1 1 7.61898136036E-04 1 2 1 -4.90921761103E-04 2 2 1 -2.69134053327E-04 3 2 1 1.24034696673E-04 4 2 1 2.28336698890E-03 1 3 1 4.90921761103E-04 2 3 1 5.25455773473E-04 3 3 1 -2.28336698890E-03 4 3 1 -4.12614861281E-04 1 4 1 4.34182798560E-02 2 4 1 4.34182798560E-02 3 4 1 -4.43287006678E-04 4 4 1 -4.43287006678E-04 1 1 2 -5.25455773473E-04 2 1 2 3.80124509512E-05 3 1 2 3.80124509512E-05 4 1 2 -5.25455773473E-04 1 2 2 2.69134053327E-04 2 2 2 -3.80124509512E-05 3 2 2 -1.24034696673E-04 4 2 2 -2.52683788275E-04 1 3 2 3.13666863964E-04 2 3 2 -7.61898136036E-04 3 3 2 4.57082971750E-06 4 3 2 -2.65466702825E-05 1 4 2 -4.34182798560E-02 2 4 2 7.61898136036E-04 3 4 2 9.28133927826E-06 4 4 2 -3.13666863964E-04 1 1 3 -1.24034696673E-04 2 1 3 -3.80124509512E-05 3 1 3 2.69134053327E-04 4 1 3 -2.52683788275E-04 1 2 3 -9.28133927826E-06 2 2 3 -9.28133927826E-06 3 2 3 -4.39245940445E-05 4 2 3 -4.39245940445E-05 1 3 3 4.43287006678E-04 2 3 3 -4.57082971750E-06 3 3 3 4.39245940445E-05 4 3 3 2.65466702825E-05 1 4 3 2.28336698890E-03 2 4 3 1.24034696673E-04 3 4 3 -2.69134053327E-04 4 4 3 -4.90921761103E-04 1 1 4 -7.61898136036E-04 2 1 4 3.13666863964E-04 3 1 4 -2.65466702825E-05 4 1 4 4.57082971750E-06 1 2 4 4.43287006678E-04 2 2 4 2.65466702825E-05 3 2 4 4.39245940445E-05 4 2 4 -4.57082971750E-06 1 3 4 4.12614861281E-04 2 3 4 2.52683788275E-04 3 3 4 2.52683788275E-04 4 3 4 4.12614861281E-04 1 4 4 -2.28336698890E-03 2 4 4 5.25455773473E-04 3 4 4 4.90921761103E-04 4 4 4 -4.12614861281E-04 1 3 2 2 1 1 1 6.20705743748E-18 2 1 1 3.54163220158E-03 3 1 1 1.44127934822E-03 4 1 1 3.54163220158E-03 1 2 1 2.99621062500E-03 2 2 1 -7.41145040866E-05 3 2 1 -1.81510754087E-04 4 2 1 -2.99621062500E-03 1 3 1 -2.16840434497E-19 2 3 1 -4.39131886507E-05 3 3 1 1.35525271561E-19 4 3 1 -4.39131886507E-05 1 4 1 -2.99621062500E-03 2 4 1 2.99621062500E-03 3 4 1 -7.41145040866E-05 4 4 1 -1.81510754087E-04 1 1 2 -2.99621062500E-03 2 1 2 -1.81510754087E-04 3 1 2 -7.41145040866E-05 4 1 2 2.99621062500E-03 1 2 2 4.39131886507E-05 2 2 2 2.71050543121E-20 3 2 2 4.39131886507E-05 4 2 2 1.35525271561E-19 1 3 2 7.41145040866E-05 2 3 2 1.81510754087E-04 3 3 2 1.40093125000E-04 4 3 2 -1.40093125000E-04 1 4 2 -3.54163220158E-03 2 4 2 -1.35525271561E-19 3 4 2 8.04474323405E-05 4 4 2 -1.89735380185E-19 1 1 3 -1.35525271561E-19 2 1 3 -4.39131886507E-05 3 1 3 2.16840434497E-19 4 1 3 -4.39131886507E-05 1 2 3 1.81510754087E-04 2 2 3 7.41145040866E-05 3 2 3 -1.40093125000E-04 4 2 3 1.40093125000E-04 1 3 3 -1.44127934822E-03 2 3 3 -8.04474323405E-05 3 3 3 -5.69206140555E-19 4 3 3 -8.04474323405E-05 1 4 3 7.41145040866E-05 2 4 3 -1.40093125000E-04 3 4 3 1.40093125000E-04 4 4 3 1.81510754087E-04 1 1 4 2.99621062500E-03 2 1 4 -2.99621062500E-03 3 1 4 -1.81510754087E-04 4 1 4 -7.41145040866E-05 1 2 4 -3.54163220158E-03 2 2 4 -2.43945488809E-19 3 2 4 8.04474323405E-05 4 2 4 -1.35525271561E-19 1 3 4 1.81510754087E-04 2 3 4 1.40093125000E-04 3 3 4 -1.40093125000E-04 4 3 4 7.41145040866E-05 1 4 4 4.39131886507E-05 2 4 4 1.35525271561E-19 3 4 4 4.39131886507E-05 4 4 4 8.13151629364E-20 2 1 1 1 1 1 1 6.39679281766E-18 2 1 1 3.40438281250E-03 3 1 1 1.35525271561E-20 4 1 1 -3.40438281250E-03 1 2 1 -3.40438281250E-03 2 2 1 -8.99183686349E-04 3 2 1 -1.06221643341E-03 4 2 1 -3.39785095158E-03 1 3 1 1.35525271561E-20 2 3 1 -1.38502058413E-04 3 3 1 -9.12728098218E-04 4 3 1 -1.06221643341E-03 1 4 1 3.40438281250E-03 2 4 1 -3.39785095158E-03 3 4 1 -1.38502058413E-04 4 4 1 -8.99183686349E-04 1 1 2 3.39785095158E-03 2 1 2 1.06221643341E-03 3 1 2 8.99183686349E-04 4 1 2 3.40438281250E-03 1 2 2 1.38502058413E-04 2 2 2 2.16840434497E-19 3 2 2 -1.38502058413E-04 4 2 2 -1.08420217249E-19 1 3 2 8.99183686349E-04 2 3 2 -1.06221643341E-03 3 3 2 -4.33924323405E-05 4 3 2 -3.44178125000E-05 1 4 2 -3.40438281250E-03 2 4 2 0.00000000000E+00 3 4 2 3.44178125000E-05 4 4 2 1.08420217249E-19 1 1 3 9.12728098218E-04 2 1 3 1.38502058413E-04 3 1 3 -2.30392961653E-19 4 1 3 1.06221643341E-03 1 2 3 1.06221643341E-03 2 2 3 -8.99183686349E-04 3 2 3 3.44178125000E-05 4 2 3 4.33924323405E-05 1 3 3 -2.30392961653E-19 2 3 3 -3.44178125000E-05 3 3 3 -3.25260651746E-19 4 3 3 3.44178125000E-05 1 4 3 1.38502058413E-04 2 4 3 4.33924323405E-05 3 4 3 -3.44178125000E-05 4 4 3 -8.99183686349E-04 1 1 4 3.39785095158E-03 2 1 4 -3.40438281250E-03 3 1 4 8.99183686349E-04 4 1 4 1.38502058413E-04 1 2 4 3.40438281250E-03 2 2 4 2.16840434497E-19 3 2 4 -3.44178125000E-05 4 2 4 -1.08420217249E-19 1 3 4 8.99183686349E-04 2 3 4 3.44178125000E-05 3 3 4 -4.33924323405E-05 4 3 4 -1.38502058413E-04 1 4 4 1.06221643341E-03 2 4 4 0.00000000000E+00 3 4 4 -1.06221643341E-03 4 4 4 1.08420217249E-19 2 1 1 2 1 1 1 -4.34182798560E-02 2 1 1 -7.61898136036E-04 3 1 1 -1.24034696673E-04 4 1 1 -5.25455773473E-04 1 2 1 4.34182798560E-02 2 2 1 -2.28336698890E-03 3 2 1 2.28336698890E-03 4 2 1 -4.34182798560E-02 1 3 1 4.90921761103E-04 2 3 1 4.12614861281E-04 3 3 1 4.43287006678E-04 4 3 1 3.13666863964E-04 1 4 1 -4.90921761103E-04 2 4 1 4.43287006678E-04 3 4 1 -9.28133927826E-06 4 4 1 2.69134053327E-04 1 1 2 7.61898136036E-04 2 1 2 4.57082971750E-06 3 1 2 -2.52683788275E-04 4 1 2 -5.25455773473E-04 1 2 2 -4.43287006678E-04 2 2 2 -4.12614861281E-04 3 2 2 -4.90921761103E-04 4 2 2 -3.13666863964E-04 1 3 2 -4.12614861281E-04 2 3 2 4.12614861281E-04 3 3 2 2.65466702825E-05 4 3 2 -2.65466702825E-05 1 4 2 2.28336698890E-03 2 4 2 -4.57082971750E-06 3 4 2 -4.39245940445E-05 4 4 2 -2.52683788275E-04 1 1 3 9.28133927826E-06 2 1 3 -2.65466702825E-05 3 1 3 2.69134053327E-04 4 1 3 3.80124509512E-05 1 2 3 -4.43287006678E-04 2 2 3 4.90921761103E-04 3 2 3 -2.69134053327E-04 4 2 3 9.28133927826E-06 1 3 3 -2.28336698890E-03 2 3 3 2.52683788275E-04 3 3 3 4.39245940445E-05 4 3 3 4.57082971750E-06 1 4 3 1.24034696673E-04 2 4 3 4.39245940445E-05 3 4 3 -4.39245940445E-05 4 4 3 -1.24034696673E-04 1 1 4 -3.13666863964E-04 2 1 4 3.13666863964E-04 3 1 4 -3.80124509512E-05 4 1 4 3.80124509512E-05 1 2 4 4.34182798560E-02 2 2 4 5.25455773473E-04 3 2 4 1.24034696673E-04 4 2 4 7.61898136036E-04 1 3 4 5.25455773473E-04 2 3 4 2.52683788275E-04 3 3 4 -4.57082971750E-06 4 3 4 -7.61898136036E-04 1 4 4 -2.69134053327E-04 2 4 4 2.65466702825E-05 3 4 4 -9.28133927826E-06 4 4 4 -3.80124509512E-05 2 1 2 1 1 1 1 -4.34182798560E-02 2 1 1 -5.25455773473E-04 3 1 1 2.69134053327E-04 4 1 1 3.13666863964E-04 1 2 1 2.28336698890E-03 2 2 1 -1.24034696673E-04 3 2 1 -9.28133927826E-06 4 2 1 4.43287006678E-04 1 3 1 -2.28336698890E-03 2 3 1 -7.61898136036E-04 3 3 1 4.43287006678E-04 4 3 1 4.12614861281E-04 1 4 1 4.34182798560E-02 2 4 1 -4.34182798560E-02 3 4 1 -4.90921761103E-04 4 4 1 4.90921761103E-04 1 1 2 7.61898136036E-04 2 1 2 3.80124509512E-05 3 1 2 -3.80124509512E-05 4 1 2 -7.61898136036E-04 1 2 2 1.24034696673E-04 2 2 2 -3.80124509512E-05 3 2 2 -9.28133927826E-06 4 2 2 -4.57082971750E-06 1 3 2 5.25455773473E-04 2 3 2 3.13666863964E-04 3 3 2 2.65466702825E-05 4 3 2 2.52683788275E-04 1 4 2 4.34182798560E-02 2 4 2 -3.13666863964E-04 3 4 2 -2.69134053327E-04 4 4 2 5.25455773473E-04 1 1 3 9.28133927826E-06 2 1 3 3.80124509512E-05 3 1 3 -1.24034696673E-04 4 1 3 4.57082971750E-06 1 2 3 -2.69134053327E-04 2 2 3 2.69134053327E-04 3 2 3 -4.39245940445E-05 4 2 3 4.39245940445E-05 1 3 3 4.90921761103E-04 2 3 3 -2.65466702825E-05 3 3 3 4.39245940445E-05 4 3 3 2.52683788275E-04 1 4 3 -4.43287006678E-04 2 4 3 9.28133927826E-06 3 4 3 1.24034696673E-04 4 4 3 -2.28336698890E-03 1 1 4 -3.13666863964E-04 2 1 4 -5.25455773473E-04 3 1 4 -2.52683788275E-04 4 1 4 -2.65466702825E-05 1 2 4 -4.90921761103E-04 2 2 4 -2.52683788275E-04 3 2 4 -4.39245940445E-05 4 2 4 2.65466702825E-05 1 3 4 -4.12614861281E-04 2 3 4 4.57082971750E-06 3 3 4 -4.57082971750E-06 4 3 4 4.12614861281E-04 1 4 4 -4.43287006678E-04 2 4 4 7.61898136036E-04 3 4 4 2.28336698890E-03 4 4 4 -4.12614861281E-04 2 1 2 2 1 1 1 6.28837260042E-18 2 1 1 2.99621062500E-03 3 1 1 1.62630325873E-19 4 1 1 -2.99621062500E-03 1 2 1 -2.99621062500E-03 2 2 1 4.39131886507E-05 3 2 1 7.41145040866E-05 4 2 1 -3.54163220158E-03 1 3 1 8.13151629364E-20 2 3 1 1.81510754087E-04 3 3 1 -1.44127934822E-03 4 3 1 7.41145040866E-05 1 4 1 2.99621062500E-03 2 4 1 -3.54163220158E-03 3 4 1 1.81510754087E-04 4 4 1 4.39131886507E-05 1 1 2 3.54163220158E-03 2 1 2 -7.41145040866E-05 3 1 2 -4.39131886507E-05 4 1 2 2.99621062500E-03 1 2 2 -1.81510754087E-04 2 2 2 0.00000000000E+00 3 2 2 1.81510754087E-04 4 2 2 -2.16840434497E-19 1 3 2 -4.39131886507E-05 2 3 2 7.41145040866E-05 3 3 2 -8.04474323405E-05 4 3 2 -1.40093125000E-04 1 4 2 -2.99621062500E-03 2 4 2 -2.16840434497E-19 3 4 2 1.40093125000E-04 4 4 2 0.00000000000E+00 1 1 3 1.44127934822E-03 2 1 3 -1.81510754087E-04 3 1 3 -2.16840434497E-19 4 1 3 -7.41145040866E-05 1 2 3 -7.41145040866E-05 2 2 3 4.39131886507E-05 3 2 3 1.40093125000E-04 4 2 3 8.04474323405E-05 1 3 3 -2.98155597434E-19 2 3 3 -1.40093125000E-04 3 3 3 -6.50521303491E-19 4 3 3 1.40093125000E-04 1 4 3 -1.81510754087E-04 2 4 3 8.04474323405E-05 3 4 3 -1.40093125000E-04 4 4 3 4.39131886507E-05 1 1 4 3.54163220158E-03 2 1 4 -2.99621062500E-03 3 1 4 -4.39131886507E-05 4 1 4 -1.81510754087E-04 1 2 4 2.99621062500E-03 2 2 4 0.00000000000E+00 3 2 4 -1.40093125000E-04 4 2 4 -2.16840434497E-19 1 3 4 -4.39131886507E-05 2 3 4 1.40093125000E-04 3 3 4 -8.04474323405E-05 4 3 4 1.81510754087E-04 1 4 4 -7.41145040866E-05 2 4 4 -2.16840434497E-19 3 4 4 7.41145040866E-05 4 4 4 0.00000000000E+00 2 2 1 1 1 1 1 2.17005913679E-01 2 1 1 1.07967330641E-02 3 1 1 4.17921167955E-03 4 1 1 1.07967330641E-02 1 2 1 -5.06938862218E-03 2 2 1 -6.07625849912E-04 3 2 1 -6.07625849912E-04 4 2 1 -5.06938862218E-03 1 3 1 1.00336620428E-04 2 3 1 -1.61530248405E-04 3 3 1 1.00336620428E-04 4 3 1 -1.61530248405E-04 1 4 1 -5.06938862218E-03 2 4 1 -5.06938862218E-03 3 4 1 -6.07625849912E-04 4 4 1 -6.07625849912E-04 1 1 2 -5.06938862218E-03 2 1 2 -6.07625849912E-04 3 1 2 -6.07625849912E-04 4 1 2 -5.06938862218E-03 1 2 2 -1.61530248405E-04 2 2 2 -3.22039210024E-04 3 2 2 -1.61530248405E-04 4 2 2 2.08639111358E-04 1 3 2 -6.07625849912E-04 2 3 2 -6.07625849912E-04 3 3 2 -2.55050013283E-04 4 3 2 -2.55050013283E-04 1 4 2 1.07967330641E-02 2 4 2 -2.56503159344E-04 3 4 2 -2.65400768767E-04 4 4 2 -2.56503159344E-04 1 1 3 1.00336620428E-04 2 1 3 -1.61530248405E-04 3 1 3 1.00336620428E-04 4 1 3 -1.61530248405E-04 1 2 3 -6.07625849912E-04 2 2 3 -6.07625849912E-04 3 2 3 -2.55050013283E-04 4 2 3 -2.55050013283E-04 1 3 3 4.17921167955E-03 2 3 3 -2.65400768767E-04 3 3 3 -4.47311084653E-04 4 3 3 -2.65400768767E-04 1 4 3 -6.07625849912E-04 2 4 3 -2.55050013283E-04 3 4 3 -2.55050013283E-04 4 4 3 -6.07625849912E-04 1 1 4 -5.06938862218E-03 2 1 4 -5.06938862218E-03 3 1 4 -6.07625849912E-04 4 1 4 -6.07625849912E-04 1 2 4 1.07967330641E-02 2 2 4 -2.56503159344E-04 3 2 4 -2.65400768767E-04 4 2 4 -2.56503159344E-04 1 3 4 -6.07625849912E-04 2 3 4 -2.55050013283E-04 3 3 4 -2.55050013283E-04 4 3 4 -6.07625849912E-04 1 4 4 -1.61530248405E-04 2 4 4 2.08639111358E-04 3 4 4 -1.61530248405E-04 4 4 4 -3.22039210024E-04 2 2 1 2 1 1 1 -5.16391583529E-02 2 1 1 -5.20939249629E-04 3 1 1 -1.98915351604E-04 4 1 1 -5.20939249629E-04 1 2 1 -5.16391583529E-02 2 2 1 -1.83234358035E-03 3 2 1 -1.83234358035E-03 4 2 1 -5.16391583529E-02 1 3 1 7.95483539403E-04 2 3 1 5.14047338764E-04 3 3 1 7.95483539403E-04 4 3 1 -3.64188345240E-04 1 4 1 7.95483539403E-04 2 4 1 7.95483539403E-04 3 4 1 -1.48119141585E-04 4 4 1 -1.48119141585E-04 1 1 2 -5.20939249629E-04 2 1 2 1.77408652632E-04 3 1 2 1.77408652632E-04 4 1 2 -5.20939249629E-04 1 2 2 7.95483539403E-04 2 2 2 5.14047338764E-04 3 2 2 7.95483539403E-04 4 2 2 -3.64188345240E-04 1 3 2 5.14047338764E-04 2 3 2 5.14047338764E-04 3 3 2 -1.25452581001E-04 4 3 2 -1.25452581001E-04 1 4 2 -1.83234358035E-03 2 4 2 1.77408652632E-04 3 4 2 -2.88089152916E-05 4 4 2 1.77408652632E-04 1 1 3 -1.48119141585E-04 2 1 3 -1.25452581001E-04 3 1 3 -1.48119141585E-04 4 1 3 -6.93663419118E-05 1 2 3 7.95483539403E-04 2 2 3 7.95483539403E-04 3 2 3 -1.48119141585E-04 4 2 3 -1.48119141585E-04 1 3 3 -1.83234358035E-03 2 3 3 1.77408652632E-04 3 3 3 -2.88089152916E-05 4 3 3 1.77408652632E-04 1 4 3 -1.98915351604E-04 2 4 3 -2.88089152916E-05 3 4 3 -2.88089152916E-05 4 4 3 -1.98915351604E-04 1 1 4 -3.64188345240E-04 2 1 4 -3.64188345240E-04 3 1 4 -6.93663419118E-05 4 1 4 -6.93663419117E-05 1 2 4 -5.16391583529E-02 2 2 4 -5.20939249629E-04 3 2 4 -1.98915351604E-04 4 2 4 -5.20939249629E-04 1 3 4 -5.20939249629E-04 2 3 4 1.77408652632E-04 3 3 4 1.77408652632E-04 4 3 4 -5.20939249629E-04 1 4 4 -1.48119141585E-04 2 4 4 -1.25452581001E-04 3 4 4 -1.48119141585E-04 4 4 4 -6.93663419118E-05 2 2 2 1 1 1 1 -5.16391583529E-02 2 1 1 -5.20939249629E-04 3 1 1 -1.98915351604E-04 4 1 1 -5.20939249629E-04 1 2 1 7.95483539403E-04 2 2 1 -1.48119141585E-04 3 2 1 -1.48119141585E-04 4 2 1 7.95483539403E-04 1 3 1 7.95483539403E-04 2 3 1 -3.64188345240E-04 3 3 1 7.95483539403E-04 4 3 1 5.14047338764E-04 1 4 1 -5.16391583529E-02 2 4 1 -5.16391583529E-02 3 4 1 -1.83234358035E-03 4 4 1 -1.83234358035E-03 1 1 2 -3.64188345240E-04 2 1 2 -6.93663419117E-05 3 1 2 -6.93663419118E-05 4 1 2 -3.64188345240E-04 1 2 2 -1.48119141585E-04 2 2 2 -6.93663419118E-05 3 2 2 -1.48119141585E-04 4 2 2 -1.25452581001E-04 1 3 2 -5.20939249629E-04 2 3 2 -5.20939249629E-04 3 3 2 1.77408652632E-04 4 3 2 1.77408652632E-04 1 4 2 -5.16391583529E-02 2 4 2 -5.20939249629E-04 3 4 2 -1.98915351604E-04 4 4 2 -5.20939249629E-04 1 1 3 -1.48119141585E-04 2 1 3 -6.93663419118E-05 3 1 3 -1.48119141585E-04 4 1 3 -1.25452581001E-04 1 2 3 -1.98915351604E-04 2 2 3 -1.98915351604E-04 3 2 3 -2.88089152916E-05 4 2 3 -2.88089152916E-05 1 3 3 -1.83234358035E-03 2 3 3 1.77408652632E-04 3 3 3 -2.88089152916E-05 4 3 3 1.77408652632E-04 1 4 3 7.95483539403E-04 2 4 3 -1.48119141585E-04 3 4 3 -1.48119141585E-04 4 4 3 7.95483539403E-04 1 1 4 -5.20939249629E-04 2 1 4 -5.20939249629E-04 3 1 4 1.77408652632E-04 4 1 4 1.77408652632E-04 1 2 4 -1.83234358035E-03 2 2 4 1.77408652632E-04 3 2 4 -2.88089152916E-05 4 2 4 1.77408652632E-04 1 3 4 5.14047338764E-04 2 3 4 -1.25452581001E-04 3 3 4 -1.25452581001E-04 4 3 4 5.14047338764E-04 1 4 4 7.95483539403E-04 2 4 4 -3.64188345240E-04 3 4 4 7.95483539403E-04 4 4 4 5.14047338764E-04 2 2 2 2 1 1 1 2.25820185085E-01 2 1 1 2.12384697031E-03 3 1 1 1.15442183580E-03 4 1 1 2.12384697031E-03 1 2 1 -2.56160409093E-03 2 2 1 1.21258056338E-04 3 2 1 1.21258056338E-04 4 2 1 -2.56160409093E-03 1 3 1 -1.49360259832E-03 2 3 1 -4.39388421551E-05 3 3 1 -1.49360259832E-03 4 3 1 -4.39388421551E-05 1 4 1 -2.56160409093E-03 2 4 1 -2.56160409093E-03 3 4 1 1.21258056338E-04 4 4 1 1.21258056338E-04 1 1 2 -2.56160409093E-03 2 1 2 1.21258056338E-04 3 1 2 1.21258056338E-04 4 1 2 -2.56160409093E-03 1 2 2 -4.39388421551E-05 2 2 2 1.16617821226E-04 3 2 2 -4.39388421551E-05 4 2 2 9.73356142608E-04 1 3 2 1.21258056338E-04 2 3 2 1.21258056338E-04 3 3 2 -3.99142320331E-05 4 3 2 -3.99142320331E-05 1 4 2 2.12384697031E-03 2 4 2 -2.17114253094E-04 3 4 2 -1.61263112517E-04 4 4 2 -2.17114253094E-04 1 1 3 -1.49360259832E-03 2 1 3 -4.39388421551E-05 3 1 3 -1.49360259832E-03 4 1 3 -4.39388421551E-05 1 2 3 1.21258056338E-04 2 2 3 1.21258056338E-04 3 2 3 -3.99142320331E-05 4 2 3 -3.99142320331E-05 1 3 3 1.15442183580E-03 2 3 3 -1.61263112517E-04 3 3 3 7.01237821597E-04 4 3 3 -1.61263112517E-04 1 4 3 1.21258056338E-04 2 4 3 -3.99142320331E-05 3 4 3 -3.99142320331E-05 4 4 3 1.21258056338E-04 1 1 4 -2.56160409093E-03 2 1 4 -2.56160409093E-03 3 1 4 1.21258056338E-04 4 1 4 1.21258056338E-04 1 2 4 2.12384697031E-03 2 2 4 -2.17114253094E-04 3 2 4 -1.61263112517E-04 4 2 4 -2.17114253094E-04 1 3 4 1.21258056338E-04 2 3 4 -3.99142320331E-05 3 3 4 -3.99142320331E-05 4 3 4 1.21258056338E-04 1 4 4 -4.39388421551E-05 2 4 4 9.73356142608E-04 3 4 4 -4.39388421551E-05 4 4 4 1.16617821226E-04 2 3 1 1 1 1 1 6.61363325216E-18 2 1 1 -3.40438281250E-03 3 1 1 3.25260651746E-19 4 1 1 3.40438281250E-03 1 2 1 -3.39785095158E-03 2 2 1 -1.06221643341E-03 3 2 1 -8.99183686349E-04 4 2 1 -3.40438281250E-03 1 3 1 -9.12728098218E-04 2 3 1 -1.38502058413E-04 3 3 1 5.82758667711E-19 4 3 1 -1.06221643341E-03 1 4 1 -3.39785095158E-03 2 4 1 3.40438281250E-03 3 4 1 -8.99183686349E-04 4 4 1 -1.38502058413E-04 1 1 2 3.40438281250E-03 2 1 2 8.99183686349E-04 3 1 2 1.06221643341E-03 4 1 2 3.39785095158E-03 1 2 2 -1.38502058413E-04 2 2 2 -1.35525271561E-19 3 2 2 1.38502058413E-04 4 2 2 -2.43945488809E-19 1 3 2 -1.06221643341E-03 2 3 2 8.99183686349E-04 3 3 2 -3.44178125000E-05 4 3 2 -4.33924323405E-05 1 4 2 -3.40438281250E-03 2 4 2 -1.89735380185E-19 3 4 2 3.44178125000E-05 4 4 2 -3.52365706058E-19 1 1 3 2.16840434497E-19 2 1 3 1.38502058413E-04 3 1 3 9.12728098218E-04 4 1 3 1.06221643341E-03 1 2 3 -8.99183686349E-04 2 2 3 1.06221643341E-03 3 2 3 4.33924323405E-05 4 2 3 3.44178125000E-05 1 3 3 2.71050543121E-19 2 3 3 3.44178125000E-05 3 3 3 -2.30392961653E-19 4 3 3 -3.44178125000E-05 1 4 3 -8.99183686349E-04 2 4 3 -3.44178125000E-05 3 4 3 4.33924323405E-05 4 4 3 1.38502058413E-04 1 1 4 -3.40438281250E-03 2 1 4 3.39785095158E-03 3 1 4 1.38502058413E-04 4 1 4 8.99183686349E-04 1 2 4 3.40438281250E-03 2 2 4 -4.06575814682E-19 3 2 4 -3.44178125000E-05 4 2 4 -1.89735380185E-19 1 3 4 -1.38502058413E-04 2 3 4 -4.33924323405E-05 3 3 4 3.44178125000E-05 4 3 4 8.99183686349E-04 1 4 4 -1.06221643341E-03 2 4 4 -2.43945488809E-19 3 4 4 1.06221643341E-03 4 4 4 -8.13151629364E-20 2 3 1 2 1 1 1 -4.34182798560E-02 2 1 1 -5.25455773473E-04 3 1 1 -1.24034696673E-04 4 1 1 -7.61898136036E-04 1 2 1 -4.34182798560E-02 2 2 1 2.28336698890E-03 3 2 1 -2.28336698890E-03 4 2 1 4.34182798560E-02 1 3 1 4.43287006678E-04 2 3 1 4.12614861281E-04 3 3 1 4.90921761103E-04 4 3 1 3.13666863964E-04 1 4 1 4.43287006678E-04 2 4 1 -4.90921761103E-04 3 4 1 2.69134053327E-04 4 4 1 -9.28133927826E-06 1 1 2 -5.25455773473E-04 2 1 2 -2.52683788275E-04 3 1 2 4.57082971750E-06 4 1 2 7.61898136036E-04 1 2 2 -4.90921761103E-04 2 2 2 -4.12614861281E-04 3 2 2 -4.43287006678E-04 4 2 2 -3.13666863964E-04 1 3 2 4.12614861281E-04 2 3 2 -4.12614861281E-04 3 3 2 -2.65466702825E-05 4 3 2 2.65466702825E-05 1 4 2 2.28336698890E-03 2 4 2 -2.52683788275E-04 3 4 2 -4.39245940445E-05 4 4 2 -4.57082971750E-06 1 1 3 2.69134053327E-04 2 1 3 -2.65466702825E-05 3 1 3 9.28133927826E-06 4 1 3 3.80124509512E-05 1 2 3 4.90921761103E-04 2 2 3 -4.43287006678E-04 3 2 3 9.28133927826E-06 4 2 3 -2.69134053327E-04 1 3 3 -2.28336698890E-03 2 3 3 4.57082971750E-06 3 3 3 4.39245940445E-05 4 3 3 2.52683788275E-04 1 4 3 -1.24034696673E-04 2 4 3 -4.39245940445E-05 3 4 3 4.39245940445E-05 4 4 3 1.24034696673E-04 1 1 4 3.13666863964E-04 2 1 4 -3.13666863964E-04 3 1 4 3.80124509512E-05 4 1 4 -3.80124509512E-05 1 2 4 4.34182798560E-02 2 2 4 7.61898136036E-04 3 2 4 1.24034696673E-04 4 2 4 5.25455773473E-04 1 3 4 -7.61898136036E-04 2 3 4 -4.57082971750E-06 3 3 4 2.52683788275E-04 4 3 4 5.25455773473E-04 1 4 4 -9.28133927826E-06 2 4 4 2.65466702825E-05 3 4 4 -2.69134053327E-04 4 4 4 -3.80124509512E-05 2 3 2 1 1 1 1 -4.34182798560E-02 2 1 1 3.13666863964E-04 3 1 1 2.69134053327E-04 4 1 1 -5.25455773473E-04 1 2 1 4.43287006678E-04 2 2 1 -9.28133927826E-06 3 2 1 -1.24034696673E-04 4 2 1 2.28336698890E-03 1 3 1 4.43287006678E-04 2 3 1 -7.61898136036E-04 3 3 1 -2.28336698890E-03 4 3 1 4.12614861281E-04 1 4 1 -4.34182798560E-02 2 4 1 4.34182798560E-02 3 4 1 4.90921761103E-04 4 4 1 -4.90921761103E-04 1 1 2 -7.61898136036E-04 2 1 2 -3.80124509512E-05 3 1 2 3.80124509512E-05 4 1 2 7.61898136036E-04 1 2 2 -9.28133927826E-06 2 2 2 -3.80124509512E-05 3 2 2 1.24034696673E-04 4 2 2 -4.57082971750E-06 1 3 2 3.13666863964E-04 2 3 2 5.25455773473E-04 3 3 2 2.52683788275E-04 4 3 2 2.65466702825E-05 1 4 2 4.34182798560E-02 2 4 2 5.25455773473E-04 3 4 2 -2.69134053327E-04 4 4 2 -3.13666863964E-04 1 1 3 -1.24034696673E-04 2 1 3 3.80124509512E-05 3 1 3 9.28133927826E-06 4 1 3 4.57082971750E-06 1 2 3 2.69134053327E-04 2 2 3 -2.69134053327E-04 3 2 3 4.39245940445E-05 4 2 3 -4.39245940445E-05 1 3 3 4.90921761103E-04 2 3 3 2.52683788275E-04 3 3 3 4.39245940445E-05 4 3 3 -2.65466702825E-05 1 4 3 -2.28336698890E-03 2 4 3 1.24034696673E-04 3 4 3 9.28133927826E-06 4 4 3 -4.43287006678E-04 1 1 4 -5.25455773473E-04 2 1 4 -3.13666863964E-04 3 1 4 -2.65466702825E-05 4 1 4 -2.52683788275E-04 1 2 4 -4.90921761103E-04 2 2 4 2.65466702825E-05 3 2 4 -4.39245940445E-05 4 2 4 -2.52683788275E-04 1 3 4 4.12614861281E-04 2 3 4 -4.57082971750E-06 3 3 4 4.57082971750E-06 4 3 4 -4.12614861281E-04 1 4 4 2.28336698890E-03 2 4 4 7.61898136036E-04 3 4 4 -4.43287006678E-04 4 4 4 -4.12614861281E-04 2 3 2 2 1 1 1 6.20705743748E-18 2 1 1 -2.99621062500E-03 3 1 1 -3.25260651746E-19 4 1 1 2.99621062500E-03 1 2 1 -3.54163220158E-03 2 2 1 7.41145040866E-05 3 2 1 4.39131886507E-05 4 2 1 -2.99621062500E-03 1 3 1 -1.44127934822E-03 2 3 1 1.81510754087E-04 3 3 1 1.08420217249E-19 4 3 1 7.41145040866E-05 1 4 1 -3.54163220158E-03 2 4 1 2.99621062500E-03 3 4 1 4.39131886507E-05 4 4 1 1.81510754087E-04 1 1 2 2.99621062500E-03 2 1 2 -4.39131886507E-05 3 1 2 -7.41145040866E-05 4 1 2 3.54163220158E-03 1 2 2 1.81510754087E-04 2 2 2 5.42101086243E-20 3 2 2 -1.81510754087E-04 4 2 2 -5.42101086243E-20 1 3 2 7.41145040866E-05 2 3 2 -4.39131886507E-05 3 3 2 -1.40093125000E-04 4 3 2 -8.04474323405E-05 1 4 2 -2.99621062500E-03 2 4 2 5.42101086243E-20 3 4 2 1.40093125000E-04 4 4 2 -2.71050543121E-19 1 1 3 -1.35525271561E-19 2 1 3 -1.81510754087E-04 3 1 3 1.44127934822E-03 4 1 3 -7.41145040866E-05 1 2 3 4.39131886507E-05 2 2 3 -7.41145040866E-05 3 2 3 8.04474323405E-05 4 2 3 1.40093125000E-04 1 3 3 2.16840434497E-19 2 3 3 1.40093125000E-04 3 3 3 -4.87890977618E-19 4 3 3 -1.40093125000E-04 1 4 3 4.39131886507E-05 2 4 3 -1.40093125000E-04 3 4 3 8.04474323405E-05 4 4 3 -1.81510754087E-04 1 1 4 -2.99621062500E-03 2 1 4 3.54163220158E-03 3 1 4 -1.81510754087E-04 4 1 4 -4.39131886507E-05 1 2 4 2.99621062500E-03 2 2 4 -2.71050543121E-19 3 2 4 -1.40093125000E-04 4 2 4 5.42101086243E-20 1 3 4 1.81510754087E-04 2 3 4 -8.04474323405E-05 3 3 4 1.40093125000E-04 4 3 4 -4.39131886507E-05 1 4 4 7.41145040866E-05 2 4 4 -5.42101086243E-20 3 4 4 -7.41145040866E-05 4 4 4 5.42101086243E-20 3 1 1 1 1 1 1 5.61752250619E-18 2 1 1 3.39785095158E-03 3 1 1 9.12728098218E-04 4 1 1 3.39785095158E-03 1 2 1 -3.40438281250E-03 2 2 1 1.38502058413E-04 3 2 1 1.06221643341E-03 4 2 1 3.40438281250E-03 1 3 1 -7.58941520740E-19 2 3 1 8.99183686349E-04 3 3 1 -9.28348110191E-19 4 3 1 8.99183686349E-04 1 4 1 3.40438281250E-03 2 4 1 -3.40438281250E-03 3 4 1 1.38502058413E-04 4 4 1 1.06221643341E-03 1 1 2 3.40438281250E-03 2 1 2 1.06221643341E-03 3 1 2 1.38502058413E-04 4 1 2 -3.40438281250E-03 1 2 2 -8.99183686349E-04 2 2 2 1.02999206386E-18 3 2 2 -8.99183686349E-04 4 2 2 1.08420217249E-18 1 3 2 -1.38502058413E-04 2 3 2 -1.06221643341E-03 3 3 2 -3.44178125000E-05 4 3 2 3.44178125000E-05 1 4 2 -3.39785095158E-03 2 4 2 8.67361737988E-19 3 4 2 4.33924323405E-05 4 4 2 8.13151629364E-19 1 1 3 -8.87690528723E-19 2 1 3 8.99183686349E-04 3 1 3 -8.67361737988E-19 4 1 3 8.99183686349E-04 1 2 3 -1.06221643341E-03 2 2 3 -1.38502058413E-04 3 2 3 3.44178125000E-05 4 2 3 -3.44178125000E-05 1 3 3 -9.12728098218E-04 2 3 3 -4.33924323405E-05 3 3 3 -1.44334414212E-18 4 3 3 -4.33924323405E-05 1 4 3 -1.38502058413E-04 2 4 3 3.44178125000E-05 3 4 3 -3.44178125000E-05 4 4 3 -1.06221643341E-03 1 1 4 -3.40438281250E-03 2 1 4 3.40438281250E-03 3 1 4 1.06221643341E-03 4 1 4 1.38502058413E-04 1 2 4 -3.39785095158E-03 2 2 4 8.13151629364E-19 3 2 4 4.33924323405E-05 4 2 4 8.67361737988E-19 1 3 4 -1.06221643341E-03 2 3 4 -3.44178125000E-05 3 3 4 3.44178125000E-05 4 3 4 -1.38502058413E-04 1 4 4 -8.99183686349E-04 2 4 4 1.08420217249E-18 3 4 4 -8.99183686349E-04 4 4 4 1.02999206386E-18 3 1 1 2 1 1 1 -4.34182798560E-02 2 1 1 7.61898136036E-04 3 1 1 9.28133927826E-06 4 1 1 -3.13666863964E-04 1 2 1 4.34182798560E-02 2 2 1 -4.43287006678E-04 3 2 1 -4.43287006678E-04 4 2 1 4.34182798560E-02 1 3 1 4.90921761103E-04 2 3 1 -4.12614861281E-04 3 3 1 -2.28336698890E-03 4 3 1 5.25455773473E-04 1 4 1 -4.90921761103E-04 2 4 1 2.28336698890E-03 3 4 1 1.24034696673E-04 4 4 1 -2.69134053327E-04 1 1 2 -7.61898136036E-04 2 1 2 4.57082971750E-06 3 1 2 -2.65466702825E-05 4 1 2 3.13666863964E-04 1 2 2 -2.28336698890E-03 2 2 2 -4.12614861281E-04 3 2 2 4.90921761103E-04 4 2 2 5.25455773473E-04 1 3 2 4.12614861281E-04 2 3 2 4.12614861281E-04 3 3 2 2.52683788275E-04 4 3 2 2.52683788275E-04 1 4 2 4.43287006678E-04 2 4 2 -4.57082971750E-06 3 4 2 4.39245940445E-05 4 4 2 2.65466702825E-05 1 1 3 -1.24034696673E-04 2 1 3 -2.52683788275E-04 3 1 3 2.69134053327E-04 4 1 3 -3.80124509512E-05 1 2 3 2.28336698890E-03 2 2 3 -4.90921761103E-04 3 2 3 -2.69134053327E-04 4 2 3 1.24034696673E-04 1 3 3 4.43287006678E-04 2 3 3 2.65466702825E-05 3 3 3 4.39245940445E-05 4 3 3 -4.57082971750E-06 1 4 3 -9.28133927826E-06 2 4 3 -4.39245940445E-05 3 4 3 -4.39245940445E-05 4 4 3 -9.28133927826E-06 1 1 4 -5.25455773473E-04 2 1 4 -5.25455773473E-04 3 1 4 3.80124509512E-05 4 1 4 3.80124509512E-05 1 2 4 -4.34182798560E-02 2 2 4 -3.13666863964E-04 3 2 4 9.28133927826E-06 4 2 4 7.61898136036E-04 1 3 4 3.13666863964E-04 2 3 4 -2.65466702825E-05 3 3 4 4.57082971750E-06 4 3 4 -7.61898136036E-04 1 4 4 2.69134053327E-04 2 4 4 -2.52683788275E-04 3 4 4 -1.24034696673E-04 4 4 4 -3.80124509512E-05 3 1 2 1 1 1 1 -4.34182798560E-02 2 1 1 7.61898136036E-04 3 1 1 9.28133927826E-06 4 1 1 -3.13666863964E-04 1 2 1 2.28336698890E-03 2 2 1 1.24034696673E-04 3 2 1 -2.69134053327E-04 4 2 1 -4.90921761103E-04 1 3 1 -2.28336698890E-03 2 3 1 5.25455773473E-04 3 3 1 4.90921761103E-04 4 3 1 -4.12614861281E-04 1 4 1 4.34182798560E-02 2 4 1 4.34182798560E-02 3 4 1 -4.43287006678E-04 4 4 1 -4.43287006678E-04 1 1 2 -5.25455773473E-04 2 1 2 3.80124509512E-05 3 1 2 3.80124509512E-05 4 1 2 -5.25455773473E-04 1 2 2 -1.24034696673E-04 2 2 2 -3.80124509512E-05 3 2 2 2.69134053327E-04 4 2 2 -2.52683788275E-04 1 3 2 -7.61898136036E-04 2 3 2 3.13666863964E-04 3 3 2 -2.65466702825E-05 4 3 2 4.57082971750E-06 1 4 2 -4.34182798560E-02 2 4 2 -3.13666863964E-04 3 4 2 9.28133927826E-06 4 4 2 7.61898136036E-04 1 1 3 2.69134053327E-04 2 1 3 -3.80124509512E-05 3 1 3 -1.24034696673E-04 4 1 3 -2.52683788275E-04 1 2 3 -9.28133927826E-06 2 2 3 -9.28133927826E-06 3 2 3 -4.39245940445E-05 4 2 3 -4.39245940445E-05 1 3 3 4.43287006678E-04 2 3 3 2.65466702825E-05 3 3 3 4.39245940445E-05 4 3 3 -4.57082971750E-06 1 4 3 -4.90921761103E-04 2 4 3 -2.69134053327E-04 3 4 3 1.24034696673E-04 4 4 3 2.28336698890E-03 1 1 4 3.13666863964E-04 2 1 4 -7.61898136036E-04 3 1 4 4.57082971750E-06 4 1 4 -2.65466702825E-05 1 2 4 4.43287006678E-04 2 2 4 -4.57082971750E-06 3 2 4 4.39245940445E-05 4 2 4 2.65466702825E-05 1 3 4 4.12614861281E-04 2 3 4 2.52683788275E-04 3 3 4 2.52683788275E-04 4 3 4 4.12614861281E-04 1 4 4 4.90921761103E-04 2 4 4 5.25455773473E-04 3 4 4 -2.28336698890E-03 4 4 4 -4.12614861281E-04 3 1 2 2 1 1 1 6.20705743748E-18 2 1 1 3.54163220158E-03 3 1 1 1.44127934822E-03 4 1 1 3.54163220158E-03 1 2 1 -2.99621062500E-03 2 2 1 -1.81510754087E-04 3 2 1 -7.41145040866E-05 4 2 1 2.99621062500E-03 1 3 1 -2.16840434497E-19 2 3 1 -4.39131886507E-05 3 3 1 1.35525271561E-19 4 3 1 -4.39131886507E-05 1 4 1 2.99621062500E-03 2 4 1 -2.99621062500E-03 3 4 1 -1.81510754087E-04 4 4 1 -7.41145040866E-05 1 1 2 2.99621062500E-03 2 1 2 -7.41145040866E-05 3 1 2 -1.81510754087E-04 4 1 2 -2.99621062500E-03 1 2 2 4.39131886507E-05 2 2 2 8.13151629364E-20 3 2 2 4.39131886507E-05 4 2 2 1.35525271561E-19 1 3 2 1.81510754087E-04 2 3 2 7.41145040866E-05 3 3 2 -1.40093125000E-04 4 3 2 1.40093125000E-04 1 4 2 -3.54163220158E-03 2 4 2 -1.35525271561E-19 3 4 2 8.04474323405E-05 4 4 2 -2.43945488809E-19 1 1 3 -1.35525271561E-19 2 1 3 -4.39131886507E-05 3 1 3 2.16840434497E-19 4 1 3 -4.39131886507E-05 1 2 3 7.41145040866E-05 2 2 3 1.81510754087E-04 3 2 3 1.40093125000E-04 4 2 3 -1.40093125000E-04 1 3 3 -1.44127934822E-03 2 3 3 -8.04474323405E-05 3 3 3 -5.69206140555E-19 4 3 3 -8.04474323405E-05 1 4 3 1.81510754087E-04 2 4 3 1.40093125000E-04 3 4 3 -1.40093125000E-04 4 4 3 7.41145040866E-05 1 1 4 -2.99621062500E-03 2 1 4 2.99621062500E-03 3 1 4 -7.41145040866E-05 4 1 4 -1.81510754087E-04 1 2 4 -3.54163220158E-03 2 2 4 -1.89735380185E-19 3 2 4 8.04474323405E-05 4 2 4 -1.35525271561E-19 1 3 4 7.41145040866E-05 2 3 4 -1.40093125000E-04 3 3 4 1.40093125000E-04 4 3 4 1.81510754087E-04 1 4 4 4.39131886507E-05 2 4 4 1.35525271561E-19 3 4 4 4.39131886507E-05 4 4 4 2.71050543121E-20 3 2 1 1 1 1 1 6.61363325216E-18 2 1 1 3.40438281250E-03 3 1 1 3.25260651746E-19 4 1 1 -3.40438281250E-03 1 2 1 -3.39785095158E-03 2 2 1 -1.38502058413E-04 3 2 1 -8.99183686349E-04 4 2 1 3.40438281250E-03 1 3 1 -9.12728098218E-04 2 3 1 -1.06221643341E-03 3 3 1 5.82758667711E-19 4 3 1 -1.38502058413E-04 1 4 1 -3.39785095158E-03 2 4 1 -3.40438281250E-03 3 4 1 -8.99183686349E-04 4 4 1 -1.06221643341E-03 1 1 2 -3.40438281250E-03 2 1 2 8.99183686349E-04 3 1 2 1.38502058413E-04 4 1 2 3.39785095158E-03 1 2 2 -1.06221643341E-03 2 2 2 -8.13151629364E-20 3 2 2 1.06221643341E-03 4 2 2 -2.43945488809E-19 1 3 2 -1.38502058413E-04 2 3 2 8.99183686349E-04 3 3 2 3.44178125000E-05 4 3 2 -4.33924323405E-05 1 4 2 3.40438281250E-03 2 4 2 -1.89735380185E-19 3 4 2 -3.44178125000E-05 4 4 2 -4.06575814682E-19 1 1 3 2.16840434497E-19 2 1 3 1.06221643341E-03 3 1 3 9.12728098218E-04 4 1 3 1.38502058413E-04 1 2 3 -8.99183686349E-04 2 2 3 1.38502058413E-04 3 2 3 4.33924323405E-05 4 2 3 -3.44178125000E-05 1 3 3 2.71050543121E-19 2 3 3 -3.44178125000E-05 3 3 3 -2.30392961653E-19 4 3 3 3.44178125000E-05 1 4 3 -8.99183686349E-04 2 4 3 3.44178125000E-05 3 4 3 4.33924323405E-05 4 4 3 1.06221643341E-03 1 1 4 3.40438281250E-03 2 1 4 3.39785095158E-03 3 1 4 1.06221643341E-03 4 1 4 8.99183686349E-04 1 2 4 -3.40438281250E-03 2 2 4 -3.52365706058E-19 3 2 4 3.44178125000E-05 4 2 4 -1.89735380185E-19 1 3 4 -1.06221643341E-03 2 3 4 -4.33924323405E-05 3 3 4 -3.44178125000E-05 4 3 4 8.99183686349E-04 1 4 4 -1.38502058413E-04 2 4 4 -2.43945488809E-19 3 4 4 1.38502058413E-04 4 4 4 -1.35525271561E-19 3 2 1 2 1 1 1 -4.34182798560E-02 2 1 1 -5.25455773473E-04 3 1 1 2.69134053327E-04 4 1 1 3.13666863964E-04 1 2 1 -4.34182798560E-02 2 2 1 -4.90921761103E-04 3 2 1 4.90921761103E-04 4 2 1 4.34182798560E-02 1 3 1 4.43287006678E-04 2 3 1 4.12614861281E-04 3 3 1 -2.28336698890E-03 4 3 1 -7.61898136036E-04 1 4 1 4.43287006678E-04 2 4 1 2.28336698890E-03 3 4 1 -1.24034696673E-04 4 4 1 -9.28133927826E-06 1 1 2 -5.25455773473E-04 2 1 2 -2.52683788275E-04 3 1 2 -2.65466702825E-05 4 1 2 -3.13666863964E-04 1 2 2 2.28336698890E-03 2 2 2 -4.12614861281E-04 3 2 2 -4.43287006678E-04 4 2 2 7.61898136036E-04 1 3 2 4.12614861281E-04 2 3 2 -4.12614861281E-04 3 3 2 4.57082971750E-06 4 3 2 -4.57082971750E-06 1 4 2 -4.90921761103E-04 2 4 2 -2.52683788275E-04 3 4 2 -4.39245940445E-05 4 4 2 2.65466702825E-05 1 1 3 -1.24034696673E-04 2 1 3 4.57082971750E-06 3 1 3 9.28133927826E-06 4 1 3 3.80124509512E-05 1 2 3 -2.28336698890E-03 2 2 3 -4.43287006678E-04 3 2 3 9.28133927826E-06 4 2 3 1.24034696673E-04 1 3 3 4.90921761103E-04 2 3 3 -2.65466702825E-05 3 3 3 4.39245940445E-05 4 3 3 2.52683788275E-04 1 4 3 2.69134053327E-04 2 4 3 -4.39245940445E-05 3 4 3 4.39245940445E-05 4 4 3 -2.69134053327E-04 1 1 4 -7.61898136036E-04 2 1 4 7.61898136036E-04 3 1 4 3.80124509512E-05 4 1 4 -3.80124509512E-05 1 2 4 4.34182798560E-02 2 2 4 -3.13666863964E-04 3 2 4 -2.69134053327E-04 4 2 4 5.25455773473E-04 1 3 4 3.13666863964E-04 2 3 4 2.65466702825E-05 3 3 4 2.52683788275E-04 4 3 4 5.25455773473E-04 1 4 4 -9.28133927826E-06 2 4 4 -4.57082971750E-06 3 4 4 1.24034696673E-04 4 4 4 -3.80124509512E-05 3 2 2 1 1 1 1 -4.34182798560E-02 2 1 1 -7.61898136036E-04 3 1 1 -1.24034696673E-04 4 1 1 -5.25455773473E-04 1 2 1 4.43287006678E-04 2 2 1 -9.28133927826E-06 3 2 1 2.69134053327E-04 4 2 1 -4.90921761103E-04 1 3 1 4.43287006678E-04 2 3 1 3.13666863964E-04 3 3 1 4.90921761103E-04 4 3 1 4.12614861281E-04 1 4 1 -4.34182798560E-02 2 4 1 4.34182798560E-02 3 4 1 -2.28336698890E-03 4 4 1 2.28336698890E-03 1 1 2 3.13666863964E-04 2 1 2 -3.80124509512E-05 3 1 2 3.80124509512E-05 4 1 2 -3.13666863964E-04 1 2 2 -9.28133927826E-06 2 2 2 -3.80124509512E-05 3 2 2 -2.69134053327E-04 4 2 2 2.65466702825E-05 1 3 2 -7.61898136036E-04 2 3 2 5.25455773473E-04 3 3 2 2.52683788275E-04 4 3 2 -4.57082971750E-06 1 4 2 4.34182798560E-02 2 4 2 5.25455773473E-04 3 4 2 1.24034696673E-04 4 4 2 7.61898136036E-04 1 1 3 2.69134053327E-04 2 1 3 3.80124509512E-05 3 1 3 9.28133927826E-06 4 1 3 -2.65466702825E-05 1 2 3 -1.24034696673E-04 2 2 3 1.24034696673E-04 3 2 3 4.39245940445E-05 4 2 3 -4.39245940445E-05 1 3 3 -2.28336698890E-03 2 3 3 2.52683788275E-04 3 3 3 4.39245940445E-05 4 3 3 4.57082971750E-06 1 4 3 4.90921761103E-04 2 4 3 -2.69134053327E-04 3 4 3 9.28133927826E-06 4 4 3 -4.43287006678E-04 1 1 4 -5.25455773473E-04 2 1 4 7.61898136036E-04 3 1 4 4.57082971750E-06 4 1 4 -2.52683788275E-04 1 2 4 2.28336698890E-03 2 2 4 -4.57082971750E-06 3 2 4 -4.39245940445E-05 4 2 4 -2.52683788275E-04 1 3 4 4.12614861281E-04 2 3 4 2.65466702825E-05 3 3 4 -2.65466702825E-05 4 3 4 -4.12614861281E-04 1 4 4 -4.90921761103E-04 2 4 4 -3.13666863964E-04 3 4 4 -4.43287006678E-04 4 4 4 -4.12614861281E-04 3 2 2 2 1 1 1 6.20705743748E-18 2 1 1 2.99621062500E-03 3 1 1 -3.25260651746E-19 4 1 1 -2.99621062500E-03 1 2 1 -3.54163220158E-03 2 2 1 1.81510754087E-04 3 2 1 4.39131886507E-05 4 2 1 2.99621062500E-03 1 3 1 -1.44127934822E-03 2 3 1 7.41145040866E-05 3 3 1 1.08420217249E-19 4 3 1 1.81510754087E-04 1 4 1 -3.54163220158E-03 2 4 1 -2.99621062500E-03 3 4 1 4.39131886507E-05 4 4 1 7.41145040866E-05 1 1 2 -2.99621062500E-03 2 1 2 -4.39131886507E-05 3 1 2 -1.81510754087E-04 4 1 2 3.54163220158E-03 1 2 2 7.41145040866E-05 2 2 2 5.42101086243E-20 3 2 2 -7.41145040866E-05 4 2 2 -5.42101086243E-20 1 3 2 1.81510754087E-04 2 3 2 -4.39131886507E-05 3 3 2 1.40093125000E-04 4 3 2 -8.04474323405E-05 1 4 2 2.99621062500E-03 2 4 2 5.42101086243E-20 3 4 2 -1.40093125000E-04 4 4 2 -2.71050543121E-19 1 1 3 -1.35525271561E-19 2 1 3 -7.41145040866E-05 3 1 3 1.44127934822E-03 4 1 3 -1.81510754087E-04 1 2 3 4.39131886507E-05 2 2 3 -1.81510754087E-04 3 2 3 8.04474323405E-05 4 2 3 -1.40093125000E-04 1 3 3 2.16840434497E-19 2 3 3 -1.40093125000E-04 3 3 3 -4.87890977618E-19 4 3 3 1.40093125000E-04 1 4 3 4.39131886507E-05 2 4 3 1.40093125000E-04 3 4 3 8.04474323405E-05 4 4 3 -7.41145040866E-05 1 1 4 2.99621062500E-03 2 1 4 3.54163220158E-03 3 1 4 -7.41145040866E-05 4 1 4 -4.39131886507E-05 1 2 4 -2.99621062500E-03 2 2 4 -2.71050543121E-19 3 2 4 1.40093125000E-04 4 2 4 5.42101086243E-20 1 3 4 7.41145040866E-05 2 3 4 -8.04474323405E-05 3 3 4 -1.40093125000E-04 4 3 4 -4.39131886507E-05 1 4 4 1.81510754087E-04 2 4 4 -5.42101086243E-20 3 4 4 -1.81510754087E-04 4 4 4 5.42101086243E-20 3 3 1 1 1 1 1 2.17005913679E-01 2 1 1 -5.06938862218E-03 3 1 1 1.00336620428E-04 4 1 1 -5.06938862218E-03 1 2 1 -5.06938862218E-03 2 2 1 -1.61530248405E-04 3 2 1 -6.07625849912E-04 4 2 1 1.07967330641E-02 1 3 1 1.00336620428E-04 2 3 1 -6.07625849912E-04 3 3 1 4.17921167955E-03 4 3 1 -6.07625849912E-04 1 4 1 -5.06938862218E-03 2 4 1 1.07967330641E-02 3 4 1 -6.07625849912E-04 4 4 1 -1.61530248405E-04 1 1 2 1.07967330641E-02 2 1 2 -6.07625849912E-04 3 1 2 -1.61530248405E-04 4 1 2 -5.06938862218E-03 1 2 2 -6.07625849912E-04 2 2 2 -3.22039210024E-04 3 2 2 -6.07625849912E-04 4 2 2 -2.56503159344E-04 1 3 2 -1.61530248405E-04 2 3 2 -6.07625849912E-04 3 3 2 -2.65400768767E-04 4 3 2 -2.55050013283E-04 1 4 2 -5.06938862218E-03 2 4 2 -2.56503159344E-04 3 4 2 -2.55050013283E-04 4 4 2 2.08639111358E-04 1 1 3 4.17921167955E-03 2 1 3 -6.07625849912E-04 3 1 3 1.00336620428E-04 4 1 3 -6.07625849912E-04 1 2 3 -6.07625849912E-04 2 2 3 -1.61530248405E-04 3 2 3 -2.55050013283E-04 4 2 3 -2.65400768767E-04 1 3 3 1.00336620428E-04 2 3 3 -2.55050013283E-04 3 3 3 -4.47311084653E-04 4 3 3 -2.55050013283E-04 1 4 3 -6.07625849912E-04 2 4 3 -2.65400768767E-04 3 4 3 -2.55050013283E-04 4 4 3 -1.61530248405E-04 1 1 4 1.07967330641E-02 2 1 4 -5.06938862218E-03 3 1 4 -1.61530248405E-04 4 1 4 -6.07625849912E-04 1 2 4 -5.06938862218E-03 2 2 4 2.08639111358E-04 3 2 4 -2.55050013283E-04 4 2 4 -2.56503159344E-04 1 3 4 -1.61530248405E-04 2 3 4 -2.55050013283E-04 3 3 4 -2.65400768767E-04 4 3 4 -6.07625849912E-04 1 4 4 -6.07625849912E-04 2 4 4 -2.56503159344E-04 3 4 4 -6.07625849912E-04 4 4 4 -3.22039210024E-04 3 3 1 2 1 1 1 -5.16391583529E-02 2 1 1 -5.20939249629E-04 3 1 1 -1.48119141585E-04 4 1 1 -3.64188345240E-04 1 2 1 -5.16391583529E-02 2 2 1 7.95483539403E-04 3 2 1 7.95483539403E-04 4 2 1 -5.16391583529E-02 1 3 1 7.95483539403E-04 2 3 1 5.14047338764E-04 3 3 1 -1.83234358035E-03 4 3 1 -5.20939249629E-04 1 4 1 7.95483539403E-04 2 4 1 -1.83234358035E-03 3 4 1 -1.98915351604E-04 4 4 1 -1.48119141585E-04 1 1 2 -5.20939249629E-04 2 1 2 1.77408652632E-04 3 1 2 -1.25452581001E-04 4 1 2 -3.64188345240E-04 1 2 2 -1.83234358035E-03 2 2 2 5.14047338764E-04 3 2 2 7.95483539403E-04 4 2 2 -5.20939249629E-04 1 3 2 5.14047338764E-04 2 3 2 5.14047338764E-04 3 3 2 1.77408652632E-04 4 3 2 1.77408652632E-04 1 4 2 7.95483539403E-04 2 4 2 1.77408652632E-04 3 4 2 -2.88089152916E-05 4 4 2 -1.25452581001E-04 1 1 3 -1.98915351604E-04 2 1 3 1.77408652632E-04 3 1 3 -1.48119141585E-04 4 1 3 -6.93663419117E-05 1 2 3 -1.83234358035E-03 2 2 3 7.95483539403E-04 3 2 3 -1.48119141585E-04 4 2 3 -1.98915351604E-04 1 3 3 7.95483539403E-04 2 3 3 -1.25452581001E-04 3 3 3 -2.88089152916E-05 4 3 3 1.77408652632E-04 1 4 3 -1.48119141585E-04 2 4 3 -2.88089152916E-05 3 4 3 -2.88089152916E-05 4 4 3 -1.48119141585E-04 1 1 4 -5.20939249629E-04 2 1 4 -5.20939249629E-04 3 1 4 -6.93663419118E-05 4 1 4 -6.93663419117E-05 1 2 4 -5.16391583529E-02 2 2 4 -3.64188345240E-04 3 2 4 -1.48119141585E-04 4 2 4 -5.20939249629E-04 1 3 4 -3.64188345240E-04 2 3 4 -1.25452581001E-04 3 3 4 1.77408652632E-04 4 3 4 -5.20939249629E-04 1 4 4 -1.48119141585E-04 2 4 4 1.77408652632E-04 3 4 4 -1.98915351604E-04 4 4 4 -6.93663419118E-05 3 3 2 1 1 1 1 -5.16391583529E-02 2 1 1 -3.64188345240E-04 3 1 1 -1.48119141585E-04 4 1 1 -5.20939249629E-04 1 2 1 7.95483539403E-04 2 2 1 -1.48119141585E-04 3 2 1 -1.98915351604E-04 4 2 1 -1.83234358035E-03 1 3 1 7.95483539403E-04 2 3 1 -5.20939249629E-04 3 3 1 -1.83234358035E-03 4 3 1 5.14047338764E-04 1 4 1 -5.16391583529E-02 2 4 1 -5.16391583529E-02 3 4 1 7.95483539403E-04 4 4 1 7.95483539403E-04 1 1 2 -5.20939249629E-04 2 1 2 -6.93663419117E-05 3 1 2 -6.93663419118E-05 4 1 2 -5.20939249629E-04 1 2 2 -1.48119141585E-04 2 2 2 -6.93663419118E-05 3 2 2 -1.98915351604E-04 4 2 2 1.77408652632E-04 1 3 2 -3.64188345240E-04 2 3 2 -5.20939249629E-04 3 3 2 1.77408652632E-04 4 3 2 -1.25452581001E-04 1 4 2 -5.16391583529E-02 2 4 2 -5.20939249629E-04 3 4 2 -1.48119141585E-04 4 4 2 -3.64188345240E-04 1 1 3 -1.98915351604E-04 2 1 3 -6.93663419117E-05 3 1 3 -1.48119141585E-04 4 1 3 1.77408652632E-04 1 2 3 -1.48119141585E-04 2 2 3 -1.48119141585E-04 3 2 3 -2.88089152916E-05 4 2 3 -2.88089152916E-05 1 3 3 7.95483539403E-04 2 3 3 1.77408652632E-04 3 3 3 -2.88089152916E-05 4 3 3 -1.25452581001E-04 1 4 3 -1.83234358035E-03 2 4 3 -1.98915351604E-04 3 4 3 -1.48119141585E-04 4 4 3 7.95483539403E-04 1 1 4 -5.20939249629E-04 2 1 4 -3.64188345240E-04 3 1 4 -1.25452581001E-04 4 1 4 1.77408652632E-04 1 2 4 7.95483539403E-04 2 2 4 -1.25452581001E-04 3 2 4 -2.88089152916E-05 4 2 4 1.77408652632E-04 1 3 4 5.14047338764E-04 2 3 4 1.77408652632E-04 3 3 4 1.77408652632E-04 4 3 4 5.14047338764E-04 1 4 4 -1.83234358035E-03 2 4 4 -5.20939249629E-04 3 4 4 7.95483539403E-04 4 4 4 5.14047338764E-04 3 3 2 2 1 1 1 2.25820185085E-01 2 1 1 -2.56160409093E-03 3 1 1 -1.49360259832E-03 4 1 1 -2.56160409093E-03 1 2 1 -2.56160409093E-03 2 2 1 -4.39388421551E-05 3 2 1 1.21258056338E-04 4 2 1 2.12384697031E-03 1 3 1 -1.49360259832E-03 2 3 1 1.21258056338E-04 3 3 1 1.15442183580E-03 4 3 1 1.21258056338E-04 1 4 1 -2.56160409093E-03 2 4 1 2.12384697031E-03 3 4 1 1.21258056338E-04 4 4 1 -4.39388421551E-05 1 1 2 2.12384697031E-03 2 1 2 1.21258056338E-04 3 1 2 -4.39388421551E-05 4 1 2 -2.56160409093E-03 1 2 2 1.21258056338E-04 2 2 2 1.16617821226E-04 3 2 2 1.21258056338E-04 4 2 2 -2.17114253094E-04 1 3 2 -4.39388421551E-05 2 3 2 1.21258056338E-04 3 3 2 -1.61263112517E-04 4 3 2 -3.99142320331E-05 1 4 2 -2.56160409093E-03 2 4 2 -2.17114253094E-04 3 4 2 -3.99142320331E-05 4 4 2 9.73356142608E-04 1 1 3 1.15442183580E-03 2 1 3 1.21258056338E-04 3 1 3 -1.49360259832E-03 4 1 3 1.21258056338E-04 1 2 3 1.21258056338E-04 2 2 3 -4.39388421551E-05 3 2 3 -3.99142320331E-05 4 2 3 -1.61263112517E-04 1 3 3 -1.49360259832E-03 2 3 3 -3.99142320331E-05 3 3 3 7.01237821597E-04 4 3 3 -3.99142320331E-05 1 4 3 1.21258056338E-04 2 4 3 -1.61263112517E-04 3 4 3 -3.99142320331E-05 4 4 3 -4.39388421551E-05 1 1 4 2.12384697031E-03 2 1 4 -2.56160409093E-03 3 1 4 -4.39388421551E-05 4 1 4 1.21258056338E-04 1 2 4 -2.56160409093E-03 2 2 4 9.73356142608E-04 3 2 4 -3.99142320331E-05 4 2 4 -2.17114253094E-04 1 3 4 -4.39388421551E-05 2 3 4 -3.99142320331E-05 3 3 4 -1.61263112517E-04 4 3 4 1.21258056338E-04 1 4 4 1.21258056338E-04 2 4 4 -2.17114253094E-04 3 4 4 1.21258056338E-04 4 4 4 1.16617821226E-04 espresso-5.0.2/QHA/Examples/AlAs/Edit_Me0000755000700200004540000000273712053145633016636 0ustar marsamoscm############################################################################## # Optional parameters, any information specific for the system studied # SysInfo='AlAs' # Mandatory parameters # Specify SystemName and Force Constants matrix Sysname='AlAs' FC_file='alas444.fc' # # Specify lattice type (used to create ttrinp file). It should be the same as in scf.in file # Specify atoms in the unit cell as they specified in scf.in file # Specify atomic masses for these atoms in the same order as in scf.in # Specify the frequency step (delta_e) as well, but 0.75 is a good choice ibrav=2 atoms="Al As " mass="26.98 74.922 " delta_e=0.75 # Edit ONLY amass parameters # Please do not change flfrq='frequency' line # leave asr (acoustic sum rule) and flfrc lines cat >matdyn.init < Temperature <T_Debye.in < run_Phonon_DOS.sh chmod +x run_Phonon_DOS.sh ./run_Phonon_DOS.sh espresso-5.0.2/QHA/Examples/README0000644000700200004540000000223312053145633015431 0ustar marsamoscmIn order to run examples, you should edit file "environment_variables", then move into each subdirectory (currently Al/, Si/, AlAs/) and run the "Run_Me" file. Reference results are in subdirectory "reference/". The "Run_me" file produces and executes a script "run_Phonon_DOS.sh". If you want to change what the example does, you may modify the "Edit_Me" file, or directly the "run_Phonon_DOS.sh" script. environment_variables: set the BIN_DIR and QHA_DIR variables */Edit_Me: optional parameters, system-specific information ################# JUST FOR INFO #################################### Header: You should not edit this file (in $QHA_DIR/Include) Tetrahedra: Contains info for tetrahedra (in $QHA_DIR/Include) Running: Contains all executable lines (in $QHA_DIR/Include) Run_Me: Merges Header, Edit_Me, Tetrahedra and Running files to produce run_phonon_DOS.sh which is started to produce output files for a number of thermodynamic properties in the framework of the Quasi-Harmonic Approximation (QHA) *.fc : force constant files (produced by Quantum ESPRESSO) reference/ : directory copnatins reference data for checking purposes espresso-5.0.2/QHA/License_agreement0000644000700200004540000000036012053145633016326 0ustar marsamoscmPlease give a reference for the code if you find it useful. Thermodynamics properties were calculated using the QHA code written by Eyvaz Isaev which is distributed as a part of Quantum Espresso code, see http://www.quantum-espresso.org espresso-5.0.2/QHA/Phonon_DOS/0000755000700200004540000000000012053440276014742 5ustar marsamoscmespresso-5.0.2/QHA/Phonon_DOS/generate_tetra.f0000644000700200004540000000770512053145633020112 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se, eyvaz_isaev@yahoo.com ! ! Adopted from a program published in a preprint (early 90th) of Lebedev Physical Institute (Moscow) ! Early versions of this program was used in ab initio psedopotentials code of E.I.Isaev ! subroutine generate_tetra(npt) include 'parameters.h' PARAMETER (KMAX=15000) C dimension lstpnt(100000),iarr(4),pnt1(4,4) integer ttrin(4,27000) EQUIVALENCE(IARR(1),I),(IARR(2),J),(IARR(3),K),(IARR(4),L) C COMMON /INTET/ NIN,TTRIN omg=0.D0 NPNT=0 nt0=ntet0 n1=ndiv NTETMX=N1**3 write(6,991) 991 format(22('*'),' generate_tetra ',21(('*'))) 998 FORMAT(4I3) PRINT *,' NT0=',NT0,' NTETMX=',NTETMX GOTO 11 12 DO 58 KTET0=1,NT0 LKTET=NTETMX*(KTET0-1) DO 141 I=1,4 IPNT=TTR0(I,KTET0) DO 140 K=1,3 PNT1(K,I)=PNT0(K,IPNT) 140 CONTINUE PNT1(4,I)=1. 141 CONTINUE PRINT 100,((PNT1(II,JJ),JJ=1,4),II=1,4) 100 FORMAT(1X,4F9.4) ot=dabs(det4(pnt1))/6. omg=omg+ot WRITE(6,99) ot 99 format(' volume of tetrahedron =',f9.5) NUM=0 DO 21 IJK=0,N1 L=N1-IJK DO 21 JK=0,IJK I=IJK-JK DO 21 K=0,JK J=JK-K NUM=NUM+1 NPNT=NPNT+1 C WRITE(6,*)'I,J,K,L,PNT',I,J,K,L,NPNT IF(NPNT.GT.KMAX) then print*,'NPNT==',npnt,' KMAX=',kmax STOP'MAXIMUM NUMBER OF K-POINTS EXCEEDED' endif DO 23 M1=1,3 PNT(M1,NPNT)=0. DO 23 M2=1,4 23 PNT(M1,NPNT)=PNT(M1,NPNT)+PNT0(M1,TTR0(M2,KTET0))*IARR(M2)/N1 IF(I.NE.0.AND.J.NE.0.AND.K.NE.0.AND.L.NE.0)GOTO 22 DO 1 IND=1,NPNT-1 IF (NPNT.EQ.1)GOTO 1 S=0. DO 2 KCHK =1,3 2 S=S+dABS(PNT(KCHK,IND)-PNT(KCHK,NPNT)) IF(S-.0001)3,3,1 1 CONTINUE IND=0 3 IF(IND.EQ.0) GOTO 22 NPNT=NPNT-1 LSTPNT(NUM)=IND GOTO 21 22 LSTPNT(NUM)=NPNT 21 CONTINUE 20 DO 10 IT =1,NTETMX LIT=LKTET+IT DO 10 K=1,4 I25=TTRIN(K,IT) TTR(K,LIT)=LSTPNT(I25) !!10 print*,'ttr in trmsh7',lit,ttr(k,lit) 10 continue NTET(KTET0)=N1**3 58 CONTINUE npt=npnt omg48=1./omg*2. write(6,98) omg,omg48 c write(10,98) omg,omg48 98 format(' total volume of BZ is =',f9.4,' omg48=',f9.4) write(6,992) c write(10,992) 992 format(18('*'),' end of generate_tetra ',18('*')) DO 777 JJ=1,NPNT c PRINT*, (PNT(II,JJ),II=1,3) C PRINT*, ((PNT(II,JJ),II=1,3),JJ=1,NPNT) 777 CONTINUE RETURN C GET TTRIN 11 NIN=0 DO 15 IJK=0,N1 DO 15 JK=0,IJK I=IJK-JK DO 15 K=0,JK J=JK-K IF(IJK.EQ.N1)GOTO 15 IF(IJK.EQ.N1-1)GOTO 16 IF(IJK.EQ.N1-2)GOTO 17 CALL TTRGEN(I,J,K,6) 17 DO 18 L=2,5 18 CALL TTRGEN(I,J,K,L) 16 CALL TTRGEN(I,J,K,1) 15 CONTINUE GOTO 12 C************************************** C GET LSTPNT END SUBROUTINE TTRGEN(I1,J1,K1,L) INTEGER TTRIN(4,27000),IND(3,4,6) COMMON/INTET/NIN,TTRIN DATA IND / 0,0,0, 1,0,0, 0,1,0, 0,0,1, 1 1,0,0, 0,1,0, 0,0,1, 1,0,1, 2 1,0,0, 0,1,0, 1,1,0, 1,0,1, 3 0,0,1, 0,1,0, 0,1,1, 1,0,1, 4 0,1,1, 0,1,0, 1,1,0, 1,0,1, 5 1,1,0, 0,1,1, 1,0,1, 1,1,1/ NUM(I,J,K)=I*(I+1)*(I+2)/6+J*(J+1)/2+K+1 NIN=NIN+1 DO 1 M=1,4 K=IND(3,M,L)+K1 JK=K+IND(2,M,L)+J1 IJK=JK+IND(1,M,L)+I1 1 TTRIN(M,NIN)=NUM(IJK,JK,K) RETURN END espresso-5.0.2/QHA/Phonon_DOS/phonon_dos.f0000644000700200004540000000565612053145633017272 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se ! evyaz_isaev@yahoo.com ! ! This program calculates phonon density of states using the tetrahedra method ! frequences are in cm^{-1} ! a frequency step delta_e (cm^{-1}) is read from temporary phdos.in file ! Suitable for Espresso 3.0 and higher versions include 'parameters.h' ! initial parameters parameter (nmax=10000) c reading frequences read(5,'(12X,I4,6X,I4)') nzone, Nkpt !!! NB nzone=3*natoms irec=14*nzone nstar=nzone natoms=nzone/3 print*, 'natoms==', natoms print*,'irec====',irec open(2,file='eigenv',access='direct',form='unformatted', * recl=irec) do 4 ki=1,nkpt read(5,*) read(5,*) (e(l),l=1,nzone) write(2,rec=ki) (e(l),l=1,nzone) if(ki.eq.1) then E_min=e(1) E_max=e(1) endif do i=1,nzone if(e(i).le.E_min) E_min=e(i) if(e(i).ge.E_max) E_max=e(i) enddo 4 continue 12 format(8f10.4) close(2) ! print*,'Testing eigenv' open(9,file='phdos.in',access='sequential') read(9,*) delta_e print*, delta_e read(9,*) (atom(i),i=1,natoms) print*,atom(1),atom(2) close(9) ! give some delta ~0.0001 then E_min=0 if(E_min.gt.0.0) then Emin=0.0 else Emin=E_min write(6,'("It seems you have imaginary frequences.\ * Hopefully you know what you are doing")') endif ! We take somewhat larger frequency range if(E_max.le.100) then Emax=E_max*(1+0.06) else if(E_max.gt.100.and.E_max.lt.500) then Emax=E_max*(1+0.05) else if(E_max.gt.500.and.E_max.lt.1000) then Emax=E_max*(1+0.04) else if(E_max.gt.1000) then Emax=E_max*(1+0.03) endif nstep=aint((Emax-Emin)/delta_e) - 1 if(nstep.gt.nmax) then write(6, * '("Be sure your phonon spectrum is correct: Emax >2500 cm-1")') write(6,'("Or you do not use very small delta_e")') stop endif print*,'nstep====', nstep open(17,file='eigenv',access='direct',form='unformatted', * recl=irec) do 41 ki=1,11 read(17,rec=ki) (e(i),i=1,3) write(6,121) (e(i),i=1,3) 41 continue 121 format(8f10.4) close(17) print*,'E_min=',E_min,' E_max=', E_max print*,'nstep====', nstep call k_brillouin call generate_tetra(npnt) ! open(unit=8,file='PHDOS.out',access='sequential',form='formatted') rewind 8 print*,'before integration: E_min=', E_min,' E_max=', E_max write(8,'("#", I4)') natoms write(8,'("#", I6," ",2f14.8)') nstep, emax, delta_e do 1 i=1,nstep e1=emin+delta_e*(i-1) call Integration(e1,tdos,dos,1) write(8,2) e1,dos 1 continue 2 format(2f14.8) close(8) stop end espresso-5.0.2/QHA/Phonon_DOS/Makefile0000644000700200004540000000074012053145633016402 0ustar marsamoscm.SUFFIXES: .f .o FC = ifort LD = $(FC) -static DOS = phonon_dos.x TET = tetra.x #Linux #FFLAGS = -O3 -ffast-math -fno-f2c FFLAGS = -O3 OBJ1 = phonon_dos.o k_brillouin.o generate_tetra.o det3.o det4.o \ Tetrahedra.o Integration.o OBJ2 = tetra.o k_brillouin.o generate_tetra.o det3.o det4.o all: tetra phdos tetra: $(OBJ2) $(LD) -o $(TET) $(OBJ2) $(LIBS) phdos: $(OBJ1) $(LD) $(OBJ1) $(LIBS) -o $(DOS) .f.o : $(FC) $(FFLAGS) -c $< clean: rm -f *.o espresso-5.0.2/QHA/Phonon_DOS/det3.f0000644000700200004540000000126512053145633015753 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se, eyvaz_isaev@yahoo.com ! real*8 function det3(x,y,z) real*8 x,y,z, s1, s2, s3 dimension x(3),y(3),z(3) s1=x(1)*(y(2)*z(3)-y(3)*z(2)) s2=y(1)*(x(2)*z(3)-x(3)*z(2)) s3=z(1)*(x(2)*y(3)-x(3)*y(2)) det3=s1-s2+s3 return end espresso-5.0.2/QHA/Phonon_DOS/Tetrahedra.f0000644000700200004540000000726312053145633017203 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se, eyvaz_isaev@yahoo.com ! ! Adopted from a program published in a preprint (early 90th) of Lebedev Physical Institute (Moscow) ! Early versions of this program was used in ab initio psedopotentials code of E.I.Isaev ! SUBROUTINE Tetrahedra(E0,ns,IV) include 'parameters.h' DIMENSION IND(4),L(4),e0(4),et(4) LOGICAL GF GF(Xx)=EF.GT.Xx DF(Xx)=EF-Xx lv=ns if(iv.eq.0) lv=1 DO 10 I=1,4 10 IND(I)=1 DO 1 I=1,3 I1=I+1 DO 1 J=I1 ,4 IF(E0(I).GT.E0(J))GOTO 2 IND(I)=IND(I)+1 GOTO 1 2 IND(J)=IND(J)+1 1 CONTINUE DO 20 I=1,4 JJ=IND(I) L(JJ)=I 20 ET(JJ)=E0((I)) c print*,et IF(GF(ET(4))) GOTO 4 TS=0. DS=0. DO 24 K=1,LV ADS(K)=0. 24 ATS(K)=0. RETURN 4 IF(GF(ET(3))) GOTO 5 EF4=DF(ET(4)) E24=EF4/(ET(2)-ET(4)) E14=EF4/(ET(1)-ET(4)) E34=EF4/(ET(3)-ET(4)) TMP=E24*E14*E34*OT DS=TMP*3.0/EF4 TS=TMP IF(IV.EQ.1)THEN DO 25 K=1,LV A14=E14*( A0(L(1),K)- A0(L(4),K)) A34=E34*(A0(L(3),K)-A0(L(4),K)) A24=E24*( A0(L(2),K)- A0(L(4),K)) ADS(K)=DS*(A0(L(4),K)+(A24+A14+A34)*.33333333) 25 ATS(K)=TS*(A0(L(4),K)+(A24+A14+A34)*.25) ENDIF RETURN 5 IF(GF(ET(2)))GOTO6 C SECTION IS A QUADRANGLE OM23=ET(2)-ET(3) C DIVIDING INTO TWO TETRAHEDRA C THE FIRST TETRAHEDRON DOM1=DF(ET(4)) DOM11=ET(1)-ET(4) DOM12=ET(2)-ET(4) DOM13=DOM1 F1=1./DOM11/DOM12*(ET(2)-EF)/OM23 C THE SECOND TETRAHEDRON DOM2=-DF(ET(1)) DOM21=DOM2 DOM22=ET(1)-ET(3) DOM23=ET(1)-ET(4) F2=1./DOM22/DOM23 G2=(EF-ET(3))/OM23 C DS=(DOM1*F1+DOM2*F2*G2)*3.*OT TS=(DOM1**2*F1+(1.-DOM2**2*F2)*G2)*OT IF(IV.EQ.1)THEN DO 26 K=1,LV PP1=A0(L(4),K) PP2=A0(L(1),K) PMDL=A0(L(3),K)+(A0(L(2),K)-A0(L(3),K))*DF(ET(3))/(ET(2)-ET(3)) PI11=(PP2-PP1)/DOM11 PI12=(A0(L(2),K)-PP1)/DOM12 PI13=(PMDL-PP1)/DOM13 PIDS1=(PI11+PI12+PI13)*.333333333 PITS1=(PI11+PI12+PI13)*.25 PI21=-(PP2-PMDL)/DOM21 PI22=-(PP2-A0(L(3),K))/DOM22 PI23=-(PP2-PP1)/DOM23 PIDS2=(PI21+PI22+PI23)*.333333333 PITS2=(PI21+PI22+PI23)*.25 ADS(K)=(DOM1*F1*(PP1+DOM1*PIDS1) 1 +DOM2*F2*G2*(PP2+DOM2*PIDS2))*3.*OT ATS(K)=(DOM1**2*F1*(PP1+DOM1*PITS1) 1 +((PMDL+PP1+PP2+A0(L(3),K))*.25 2 -DOM2**2*F2*(PP2+DOM2*PITS2))*G2)*OT 26 CONTINUE ENDIF RETURN 6 IF(GF(ET(1)))GOTO7 EF1=DF(ET(1)) E14=EF1/(ET(1)-ET(4)) E12=EF1/(ET(1)-ET(2)) E13=EF1/(ET(1)-ET(3)) TMP=E12*E13*E14*OT C !NB TMP<0,EF1<0 DS=TMP*3./EF1 TS=OT+TMP IF(IV.EQ.1)THEN DO 27 K=1,LV A14=E14*( A0(L(1),K)- A0(L(4),K)) A13=E13*(A0(L(1),K)-A0(L(3),K)) A12=E12*( A0(L(1),K)- A0(L(2),K)) ADS(K)=DS*(A0(L(1),K)+(A12+A14+A13)*.33333333) 27 ATS(K)=(A0(1,K)+A0(2,K)+A0(3,K)+A0(4,K))*.25*OT 1 +TMP*(A0(L(1),K)+(A12+A14+A13)*.25) ENDIF RETURN 7 TS=OT DS=0. DO 28 K=1,LV ADS(K)=0. 28 ATS(K)=(A0(1,K)+A0(2,K)+A0(3,K)+A0(4,K))*.25*OT RETURN END espresso-5.0.2/QHA/Phonon_DOS/tetra.f0000644000700200004540000000154612053145633016235 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se, ! eyvaz_isaev@yahoo.com ! C subroutine tetra C Program tetra to generate k-points for integration C over the BZ program tetra include 'parameters.h' open(9,file='kpts_out',form='formatted') wgt=1.0 call k_brillouin call generate_tetra(npnt) write(9,71) npnt do j=1,npnt write(9,788) (pnt(i,j),i=1,3), wgt enddo 788 format(3x,4f10.5) 71 format(i4) close(9) stop C return end espresso-5.0.2/QHA/Phonon_DOS/det4.f0000644000700200004540000000221712053145633015752 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se, eyvaz_isaev@yahoo.com function det4(pnt1) real*8 pnt1,x,y,z,s, s1, s2, s3, s4, det3, det4 dimension pnt1(4,4),x(3),y(3),z(3) do 1 i=1,3 x(i)=pnt1(i,2) y(i)=pnt1(i,3) 1 z(i)=pnt1(i,4) s1=det3(x,y,z) do 2 i=1,3 x(i)=pnt1(i,1) y(i)=pnt1(i,3) 2 z(i)=pnt1(i,4) s2=det3(x,y,z) do 3 i=1,3 x(i)=pnt1(i,1) y(i)=pnt1(i,2) 3 z(i)=pnt1(i,4) s3=det3(x,y,z) do 4 i=1,3 x(i)=pnt1(i,1) y(i)=pnt1(i,2) 4 z(i)=pnt1(i,3) s4=det3(x,y,z) s=s1-s2+s3-s4 if(dabs(s).le.1.d-12) then write(6,5) 5 format(8('*'),' WARNING: error in det4 due wrong input in ttrinp * ',8('*') / * 6('*'),' volume of a tetrahedron must not equal zero ',6('*')) stop endif det4=s return end espresso-5.0.2/QHA/Phonon_DOS/parameters.h0000644000700200004540000000115712053145633017261 0ustar marsamoscm! GNU License ! Eyvaz Isaev ! evyaz_isaev@yahoo.com ! Eyvaz.Isaev@fysik.uu.se ! implicit real*8(a-h,o-z) integer ttr0,ttr character*4 atom common /xyz3/x(3),y(3),z(3) * /edh/e(5000) * /int1/ats(500),ads(500),a0(4,500) * /int2/rog(500),roz(500) * /hrog/har(100,500) * /mesh1/npnt,ntet(25),nt0 * /mesh2/pnt(3,10000),ttr(4,81000),omg48,pnt0(3,25),ttr0(4,25) * /ttrinf/ndiv,npnt0,ntet0 * /int/ot,ef,ts,ds * /zb/zbk(3), ki * /vcell/vol * /zones/nzone * /types/atom(25) * /fordos/emax,delta_e,nstep espresso-5.0.2/QHA/Phonon_DOS/Integration.f0000644000700200004540000000603112053145633017373 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se ! eyvaz_isaev@yahoo.com ! ! Adopted from a program published in a preprint (early 90th) of Lebedev Physical Institute (Moscow) ! Early versions of this program was used in ab initio psedopotentials code of E.I.Isaev ! subroutine integration(e_init,tdos,dos,lpartial) include 'parameters.h' dimension e0(4),pnt1(4,4), gx(3) C ef=e_init irec=14*nzone jrec=14*nzone*nzone open(unit=17,file='eigenv',access='direct',recl=irec, *form='unformatted') open(unit=21,file='partial_DOS',access='direct',recl=jrec, *form='unformatted') ! NB!!! in phonon calculations NZONE=3*NATOMS N6=NZONE NS=NZONE DOS=0.D0 TDOS=0.D0 natoms=n6/3 c DO 1 I=1,NS rog(I)=0.D0 1 roz(i)=0.D0 NTETMX=NTET(1) DO 120 KTET0=1,NT0 LKTET=NTETMX*(KTET0-1) LKTET1=LKTET+1 DO 30 I=1,4 IPNT=TTR(I,LKTET1) DO 20 K=1,3 PNT1(K,I)=PNT(K,IPNT) 20 CONTINUE PNT1(4,I)=1D0 30 CONTINUE ot=abs(det4(pnt1))/6.0 NKTT=NTET(KTET0) DO 110 KTET=1,NKTT LK=LKTET+KTET DO 70 NZ=1,N6 DO 60 I=1,4 IPNT=TTR(I,LK) read(17,rec=ipnt)(e(j),j=1,n6) read(21,rec=ipnt)((har(j,k),k=1,ns),j=1,n6) e0(i)=e(nz) DO 2 J=1,NS a0(i,j)=har(nz,j) 2 CONTINUE 60 CONTINUE CALL Tetrahedra(e0,ns,1) TDOS=TDOS+TS DOS=DOS+DS DO 3 J=1,NS rog(J)=rog(J)+ATS(J) roz(J)=roz(J)+ADS(J) 3 CONTINUE 70 CONTINUE 110 CONTINUE 120 CONTINUE ! ! We norm phonon DOS so that the integrated DOS is equal 3N ! No spin polarization in phonon calcultions, so we introduce a factor 0.5 ! TDOS=TDOS*OMG48*0.5 DOS=DOS*OMG48*0.5 DO 4 I=1,NS rog(I)=rog(I)*OMG48*0.5 4 roz(I)=roz(I)*OMG48*0.5 s1=roz(1)+roz(2)+roz(3) 99 FORMAT(' Freq,Tot_DOS,DOS==',7(1X,G14.7)) WRITE (6,99) ef,TDOS,DOS,s1,roz(1),roz(2),roz(3) do natom=1,natoms iunit=30+natom open(unit=iunit,file='projected_DOS.'//atom(natom), * access='sequential',form='formatted') if(ef.eq.0.) then write(iunit,'("#",7X,"E",10X," DOS",14X,"PDOS",13X,"g_x", * 13X,"g_y",13X,"g_z")') write(iunit,'("# ",i4,f14.6,f6.3)') nstep,emax,delta_e endif pdos=0.d0 do imode=1,3 pdos=pdos+roz(3*(natom-1)+imode) gx(imode)=roz(3*(natom-1)+imode) enddo WRITE (iunit, '(f12.4,5(3XG14.7))') ef,dos,pdos,gx(1), * gx(2),gx(3) enddo close(17) close(21) RETURN END espresso-5.0.2/QHA/Phonon_DOS/k_brillouin.f0000644000700200004540000000177412053145633017432 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys ! (Technological University) ! ! Condensed Matter Theory Group, ! Uppsala University, Sweden ! ! Eyvaz.Isaev@fysik.uu.se, ! eyvaz_isaev@yahoo.com ! SUBROUTINE K_BRILLOUIN INCLUDE 'parameters.h' OPEN(UNIT=7,FILE='ttrinp',ACCESS='SEQUENTIAL') REWIND (7) WRITE(6,9) READ(7,*) NPNT0,NTET0,NDIV WRITE(6,'(3I4)') NPNT0,NTET0,NDIV DO 5 KI=1,NPNT0 READ(7,*)(PNT0(I,KI),I=1,3) WRITE(6,'(3f10.6)') (PNT0(I,KI),I=1,3) 5 CONTINUE npt=npnt0 DO 6 KI=1,NTET0 READ(7,*) (TTR0(I,KI),I=1,4) 6 CONTINUE WRITE(6,9) 9 FORMAT(6('*'),' input tetrahedra for BZ-integration ',6('*')) RETURN END espresso-5.0.2/QHA/Phonon_DOS/ttrinp0000644000700200004540000000074312053145633016210 0ustar marsamoscm 4 1 16 0.000000 0.000000 0.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.000000 1.000000 0.000000 0.000000 1 2 3 4 4 - total number of tetrahedra vertexes 1 - number of tetrahera comprising the IBZ 16 - each tetrahedra edge is divided by 16 Next lines are vertex coordinates in cartesian Next 4 integer numbers are for tetrahedra vertex order (i.e. how they are connected, in this particular case from point 1 to 4 thoroghout 2 and 3)espresso-5.0.2/QHA/Include/0000755000700200004540000000000012053440276014357 5ustar marsamoscmespresso-5.0.2/QHA/Include/Header0000755000700200004540000000456412053145633015505 0ustar marsamoscm#!/bin/sh #################################################################### # Copyright Eyvaz Isaev # # # Department of Physics, Chemistry, and Biophysics (IFM), # Linkoping University, Sweden # # Theoretical Physics Department, # Moscow State Institute of Steel and Alloys, Russia # (Technological University) # # isaev@ifm.liu.se, eyvaz_isaev@yahoo.com # # set environment variables # . ../environment_variables # # As input parameters you have to specify (there are no default parameters): # # Mandatory parameters: # # Atoms - specify atoms involved in your calculations, you can specify Fe1, Fe1, Cr1,Cr2, etc. # N.B.! in the same order as you did it in your self-consistent input file. # delta_e - frequency step (in cm{-1}) # # "Temperature" file which contains # T_start, T_end, T_delta # initial T, final T, and delta T for calculation of the phonon contribution (F_vib) to # the free energy, the heat capacity (C_v), phonon entropy (S_vib), and phonon internal # energy (E_int) # # T_list - list of temperatures for which the Debye temperature has to be calculated. # For lower T (do not specify T<10K !!!) calculations require more computer time, # starting from 10K is much faster # # Optional parameters: # Sysname - specify your system name you have considered, # required to see your system name in output files # SysInfo - Any information on your system (volume, pressure, etc.) will be reflected in the head part # of output file # # Input parameters for Quasiharonic calculations (fqha.in) # PHDOS.out - Total phonon DOS, you might specify any partial phonon DOS name but only # total phonon DOS is used for this purpose # Sysname.QHA.out - Name of output file for QHA calculations # T_start, T_end, T_step - starting T, the highest T used in QHA calculations, and T step # # # To start Phonon DOS calculatons you have to edit matdin.init file (See below) to specify # force constants matrix, and atomic masses # You need also "ttrinp" file to show Brillouin Zone: # See ttrinp file for explanation how you can manage it # There are some ttrinp files for a number of popular (FCC, BCC, Simple Cubic, and HCP) latticies # For these crystal structures you need no additional information and ttrinp file added # automatically. ############################################################################## espresso-5.0.2/QHA/Include/Running0000755000700200004540000000411512053145633015725 0ustar marsamoscm############################################################################ # Below run commands # Generate q-points $QHA_DIR/bin/tetra.x cp matdyn.init matdyn.init.tmp cat kpts_out >> matdyn.init.tmp echo EOF >>matdyn.init.tmp mv matdyn.init.tmp matdyn.in echo ' Recalculating omega(q) from C(R)' $BIN_DIR/matdyn.x < matdyn.in > matdyn.out nmodes=`head -1 frequency | cut -c 13-16 ` nkpt=`head -1 frequency | cut -c 23-26 ` natoms=`echo "scale=0; $nmodes/3" | bc -l` # cat >phdos1.in <phdos.in <name <out mv out PHDOS.out #rm -f name # Atomic related properties cat >atom_info < atom_name < atom_mass cat >name <out mv out projected_DOS.$Atom cp projected_DOS.$Atom projected.DOS echo "# $Sysname $Atom $SysInfo" >>Thermodynamics.$Atom $QHA_DIR/bin/Atom_projected_properties.x >>Thermodynamics.$Atom # # Mean Square Displacement calculations for each atoms cat name Temperature atom_mass > displacement.in $QHA_DIR/bin/Mean_square_displacement.x < displacement.in mv Displacements Displacements.$Atom done # Debye Temperature calculations $QHA_DIR/bin/Debye.x >> Theta_D #rm -f T_Debey.in # Finally, thermodynamic properties # # Parameters required for QHA calculations # Total Phonon DOS file # output file for C_V, S, Internal energy # cat >fqha.in <> fqha.in $QHA_DIR/bin/F_QHA.x ./ttrinp ;; 5) echo "Trigonal R: not implemented yet" exit ;; 6) c2a1=`head -1 $FC_file | cut -c 36-44` c2a=`echo "scale=8;$c2a1/2" | bc -l` echo $c2a sed 's/X/'$c2a'/g' $QHA_DIR/tetrahedra/ttrinp_stetra > ./ttrinp ;; 7) echo "Running script instruction:" echo "See instructions in $QHA_DIR/tetrahedra/ttrinp_bct file to setup tetrahedra vertecies for c/a<1" echo "Then comment exit line by #" echo "And uncomment the next line" exit;; # cp $QHA_DIR/tetrahedra/ttrinp_bct ./ttrinp ;; 8) b2a1=`head -1 $FC_file | cut -c 25-33` c2a1=`head -1 $FC_file | cut -c 36-44` b2a=`echo "scale=8;$b2a1/2" |bc -l` c2a=`echo "scale=8;$c2a1/2" |bc -l` sed 's/YY/'$b2a'/g' $QHA_DIR/tetrahedra/ttrinp_ortho_simple > ttrinp1 sed 's/ZZ/'$c2a'/g' ttrinp1 > ./ttrinp rm -f ttrinp1;; 9) echo "Orthorhombic base centered: not implemented yet" exit ;; 10) echo "Orthorhombic face centered: not implemented yet" exit ;; 11) echo "Orthorhombic body centered: not implemented yet" exit ;; 12) echo "Monoclinic P: not implemented yet" exit ;; 13) echo "Monoclinic base centered: not implemented yet" exit ;; 14) echo "Triclinic: not implemented yet" exit ;; esac espresso-5.0.2/QHA/Compile0000755000700200004540000000113412053145633014310 0ustar marsamoscm#!/bin/bash if [ ! -d bin ]; then mkdir bin fi cd ./Phonon_DOS make rm -f *.o cd ../Debye make rm -f *.o cd ../SRC make rm -f *.o cd ../bin ln -s ../Phonon_DOS/tetra.x tetra.x ln -s ../Phonon_DOS/phonon_dos.x phonon_dos.x ln -s ../Debye/Debye.x Debye.x ln -s ../SRC/Atom_projected_properties.x Atom_projected_properties.x ln -s ../SRC/F_QHA.x F_QHA.x ln -s ../SRC/Ghost_DOS.x Ghost_DOS.x ln -s ../SRC/Partial_phonon_DOS.x Partial_phonon_DOS.x ln -s ../SRC/Mean_square_displacement.x Mean_square_displacement.x ln -s ../SRC/atom_info.x atom_info.x cd .. espresso-5.0.2/QHA/README0000644000700200004540000000471212053145633013657 0ustar marsamoscmQHA package, by Eyvaz Isaev - For Quasi-Harmonic Approximation Executable files can be compiled using the Compile script: tetra.x - to generate vertexes of microtetrahedra matdyn.x - to generate phonons for microtetrahedra vertexes Partial_phonon_DOS.x - to project DOS onto a specified atom and its polarization vector phonon_dos.x - to calculate phonon DOS and atom projected phonon DOS. Ghost_DOS.x - to remove "NaN" statements (taken as (DOS(i-1)+DOS(i+1))/2) with small (order of 0.5THz) frequency step in integration Atom_projected_properties.x - to integrate phonon DOS, and atom projected DOS to find out atom-specific contribution to the zero point vibration energy, phonon DOS, vibration energy, specific heat, entropy, internal energy, as well as LO and TA (g_x,g_y,g_z) components of atom-specific phonon DOS NB!!! The limitation for the program is the presence of only one frequency gap in the phonon spectrum, i.e. the program assumes that there are well separated low-lying "acoustic" modes and optical branches. Hopefully will be corrected for more complex structures to avoid this limitation. Debye.x - calculates the Debye temperature F_QHA.x - Total vibrational energy, the specific heat, entropy and internal energy in the quasiharmonic approximation C_v is in units of R, the universal gas constant. If you like to see C_v or S in kcal/(mol K) or J/(mol K) then just multilply the 4th column by a factor of 2 (in kcal/(mol K)), or 8.31 ( in J/(mol K)), respectively. Presumably one needs to divide C_v to a number of formula units in the unit cell. Mean_Square_Displacements.x - calculates exactly what is declared (in Ang^2) To start phonon calculations one needs the following files: run_Phonon_DOS.sh - the main script - see the Examples directory for examples matdyn.init - to specify the force constants matrix and atomic masses ttrinp - Brillouin zone (tetrahedra) information There are predefined ttrinp files for simple cubic, face centered cubic, body centered cubic, hexagonal, simple tetragonal and simple orthorhombic lattices. For body centered tetragonal with c/a<1 there are instructions on how to setup ttrinp file (it is quite easy). Maybe the same "trick" can be applied for other structures with more complicated Brillouin zone. espresso-5.0.2/QHA/SRC/0000755000700200004540000000000012053440276013423 5ustar marsamoscmespresso-5.0.2/QHA/SRC/Atom_projected_properties.f900000644000700200004540000001547712053145633021173 0ustar marsamoscm! ! Copyright (C) 2004-2009 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! GNU License ! ! Eyvaz Isaev ! ! Department of Physics, Chemistry and Biology, ! Institute of Physics, Linkoping University, Sweden ! ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys, Russia ! ! isaev@ifm.liu.se ! evyaz_isaev@yahoo.com ! ! ! Integrate phonon DOS, Free_Energy, Entropy, MSD ! program Atom_projected_properties ! implicit none integer, parameter:: ndivx=10000 real(kind=8) :: dos(ndivx),nu(ndivx) ,T,a1,a2,a3 real(kind=8) :: de, emax, norm,norm_tot real(kind=8) :: F0, F0_tot, Ftot, Free, Ftot_sum, Free_sum, S0 real(kind=8) :: T_start, T_end, T_delta, CV, CV_tot, q1,q2,q3,Entropy real(kind=8) :: x, coth, sinh, prefactor, amass integer :: i, ndiv integer :: i1, i2, i3 real(kind=8) :: t_dos, p_dos character(len=80) :: filename character(len=2) :: dummy real(kind=8) :: pdos(ndivx),gx(ndivx),gy(ndivx),gz(ndivx) real(kind=8) :: t_dos_A, p_dos_A, t_dos_O, p_dos_O, F0_A, F0_O, & & Free_sum_A, Free_sum_O, Entropy_A, Entropy_O, & & Heat_capacity_A, Heat_Capacity_O, E_int, E_int_A, E_int_O real(kind=8) :: rest ! ! sinh(x)=(dexp(x)-dexp(-x))/2 coth(x)=(dexp(x)+dexp(-x))/(dexp(x) - dexp(-x)) ! ! a1=0.5d0/13.6058d0/8065.5d0 a2=8.617d-5/13.6058d0 a3=1.0d0/8065.5d0/8.617d-5 ! amass=911.3684d0 open(unit=9, file='projected.DOS') open(unit=12,file='Temperature') read(12,*) T_start, T_end, T_delta read(9,*) read (9,*) dummy, ndiv, emax, de if (ndiv.gt.ndivx) stop ' ndivx too small' ! ! do i=1,ndiv ! read(9,*) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i) ! enddo i=1 100 read(9,*,end=99) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i) i=i+1 goto 100 99 continue ndiv=i ! "Acoustic" branches ! do i=2,ndiv if(dos(i).le.1.d-9) then i1=i goto 1 endif enddo 1 continue ! Optical modes ! do i=i1, ndiv if(dos(i).gt.1.d-8) then i2=i goto 2 endif enddo 2 continue i3=i1+3 ! If i1 and i2 differ no more than 5% we suggest there is no band gap rest=float(ndiv-i1)/ndiv*100 if(rest.lt.5.0) then write(6,'("# Presumably, the phonon spectrum has no band gap")') endif ! Contribution from Acoustic part t_dos=0.0 p_dos=0.0 F0=0.0 ! ! "Acoustic part", Low frequencies ! do i=2,i3-3,3 t_dos = t_dos + 3*dos(i)+3*dos(i+1)+2*dos(i+2) p_dos = p_dos + 3*pdos(i)+3*pdos(i+1)+2*pdos(i+2) F0= F0 + 3*pdos(i)*a1*nu(i)+3*pdos(i+1)*a1*nu(i+1)+ & & 2*pdos(i+2)*a1*nu(i+2) enddo t_dos_A=t_dos*de*3/8 p_dos_A=p_dos*de*3/8 F0_A=F0*de*3/8 ! ! Optical part ! if(rest.gt.5.0) then t_dos=0.0 p_dos=0.0 F0=0.0 do i=i2,ndiv-3,3 t_dos = t_dos + 3*dos(i)+3*dos(i+1)+2*dos(i+2) p_dos = p_dos + 3*pdos(i)+3*pdos(i+1)+2*pdos(i+2) F0= F0 + 3*pdos(i)*a1*nu(i)+3*pdos(i+1)*a1*nu(i+1)+ & & 2*pdos(i+2)*a1*nu(i+2) enddo ! t_dos_O=t_dos*de*3/8 p_dos_O=p_dos*de*3/8 F0_O=F0*de*3/8 endif ! if(rest.gt.5.0) then write(6, & & '("#Contribution From:", / & & "#", 25X,"Acoustic part", 5X, "Optical part", / & & "#Integrated DOS :", f14.8, 4x, f14.8, / & & "#Integrated Partial DOS:", f14.8, 4x, f14.8, / & & "#Zero vibration energy :", f14.8, 4x, f14.8)') & & t_dos_A, T_dos_O, p_dos_A, p_dos_O, F0_A, F0_O write(6, & & '("#Contribution From:", / "#",25X,"Acoustic part", 36X, "Optical part")') write(6, & & '(105("#"),/"#"," T,K",5X,"F_vib", 9X, " C_v", 9x," S", & & 9X, "E_int",8X, "F_vib", 7X," C_v", 7X, " S", & & 10x, "E_int",/ 105("#"))') ! & '(96("#"),/"#"," T,K",5X,"Vibr.energy", 3X, "Heat capacity", 2x,"Entropy", & ! & 3X, "Int.energy",8X, "Vibr.energy", 3X,"Heat capacity", 2X, "Entropy", & ! & 3x, "Int.energy",/ 96("#"))') else write(6, & & '("#Contribution From:", / & & "#", 25X,"Acoustic part" / & & "#Integrated Phonon DOS:", f14.8, / & & "#Integrated Partial DOS:", f14.8, / & & "#Zero vibration energy :", f14.8)') & & t_dos_A, p_dos_A, F0_A write(6, & & '("#Contribution From:", / "#",15X,"Acoustic part")') write(6, & & '(66("#"),/"#"," T,K",5X,"Vibr.energy", 3X, "Heat capacity", 2x,"Entropy", & & 7X, "Int.energy", / 66("#"))') endif do T=T_start, T_end, T_delta Free=0.0 S0=0.0 CV=0.0 E_int=0.0 do i=2,i3-3,3 q1=0.5*a3*nu(i)/T q2=0.5*a3*nu(i+1)/T q3=0.5*a3*nu(i+2)/T ! E_int = E_int + 3*nu(i)*pdos(i)*a1*coth(q1) + & & 3*nu(i+1)*pdos(i+1)*a1*coth(q2) + & & 2*nu(i+2)*pdos(i+2)*a1*coth(q3) Free = Free + 3*pdos(i)*a2*T*dlog(2.*sinh(q1)) + & & 3*pdos(i+1)*a2*T*dlog(2.*sinh(q2)) + & & 2*pdos(i+2)*a2*T*dlog(2.*sinh(q3)) ! S0 = S0 + 3*pdos(i)*(q1*coth(q1) - dlog(2*sinh(q1))) + & & 3*pdos(i+1)*(q2*coth(q2) - dlog(2*sinh(q2))) + & & 2*pdos(i+2)*(q3*coth(q3) - dlog(2*sinh(q3))) CV = CV + 3*pdos(i)*q1*q1/sinh(0.5d0*a3*nu(i)/T)**2 + & & 3*pdos(i+1)*q2*q2/sinh(q2)**2 + & & 2*pdos(i+2)*q3*q3/sinh(q3)**2 enddo Free_sum_A=Free*de*3/8 Entropy_A=S0*de*3/8 Heat_capacity_A=CV*de*3/8 E_int_A=E_int*de*3/8 ! Contribution from Optical part ! if(rest.gt.5.0) then ! Free=0.0 S0=0.0 CV=0.0 E_int=0.0 do i=i2,ndiv-3,3 ! q1=0.5*a3*nu(i)/T q2=0.5*a3*nu(i+1)/T q3=0.5*a3*nu(i+2)/T ! E_int = E_int + 3*nu(i)*pdos(i)*a1*coth(q1) + & & 3*nu(i+1)*pdos(i+1)*a1*coth(q2) + & & 2*nu(i+2)*pdos(i+2)*a1*coth(q3) Free =Free + 3*pdos(i)*a2*T*dlog(2.*sinh(q1)) + & & 3*pdos(i+1)*a2*T*dlog(2.*sinh(q2)) + & & 2*pdos(i+2)*a2*T*dlog(2.*sinh(q3)) ! S0 = S0 + 3*pdos(i)*(q1*coth(q1) - dlog(2*sinh(q1))) + & & 3*pdos(i+1)*(q2*coth(q2) - dlog(2*sinh(q2))) + & & 2*pdos(i+2)*(q3*coth(q3) - dlog(2*sinh(q3))) CV = CV + 3*pdos(i)*q1*q1/sinh(q1)**2 + & & 3*pdos(i+1)*q2*q2/sinh(q2)**2 + & & 2*pdos(i+2)*q3*q3/sinh(q3)**2 enddo Free_sum_O=Free*de*3/8 Entropy_O=S0*de*3/8 Heat_capacity_O=CV*de*3/8 E_int_O=E_int*de*3/8 endif ! if(rest.gt.5.0) then write(6,'(f8.2, 4f12.6, 1x, 4f12.6)') & & T, Free_sum_A, Heat_capacity_A, Entropy_A, E_int_A, Free_sum_O, & & Heat_capacity_O, Entropy_O, E_int_O else write(6,'(f8.2, 4f14.8)') & & T, Free_sum_A, Heat_capacity_A, Entropy_A, E_int_A endif enddo close(9) close(12) stop end program Atom_projected_properties ! espresso-5.0.2/QHA/SRC/Partial_phonon_DOS.f900000644000700200004540000000403412053145633017425 0ustar marsamoscm! ! Copyright (C) 2006, PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Eyvaz Isaev, ! Theoretical Physics Department, Moscow State Institute of Steel and Alloys, ! Department of Physics, Chemistry and Biology (IFM), Linkoping University, Sweden ! Condensed Matter Theory Group, Uppsala University, Sweden ! evyaz_isaev@yahoo.com ! isaev@ifm.liu.se ! Eyvaz.Isaev@fysik.uu.se ! ! An auxiallary program to calculate atom projected phonon density of states ! In this program all quantities to integrate over the BZ are calculated ! and collected in partial_DOS file ! implicit real*8(a-h,o-z) ! dimension e_xr(3),e_xi(3), e_yr(3),e_yi(3),e_zr(3),e_zi(3), & & Ank(100,25,3), Bnk(225,225),xx(225),t(3) complex*16 xmode(3), tt(3) open(unit=9, file='matdyn.modes',form='formatted') read(5,*) kpnts, nmodes natoms=nmodes/3 lrecl=14*natoms*3*nmodes open(unit=18, file='partial_DOS',access='direct',recl=lrecl,form='unformatted') do kpt=1,kpnts ! read(9,*) read(9,*) ! 1 read(9,'(6X,3f12.4 )', end=999) qx,qy,qz read(9,*) do modes=1,nmodes read(9,'(11X, I2, 3X,F15.6,8X,f15.6,8X)') nmode,omega_THz, omega_cm ! do iatom=1,natoms read(9, '(2x,f10.6,f11.6,f13.6,f11.6,f13.6,f11.6,5x)') & & e_xr(1), e_xi(1), e_yr(2), e_yi(2), e_zr(3), e_zi(3) xmode(1)=dcmplx(e_xr(1),e_xi(1)) xmode(2)=dcmplx(e_yr(2),e_yi(2)) xmode(3)=dcmplx(e_zr(3),e_zi(3)) ! Ank(modes,iatom,1)=dconjg(xmode(1))*xmode(1) Ank(modes,iatom,2)=dconjg(xmode(2))*xmode(2) Ank(modes,iatom,3)=dconjg(xmode(3))*xmode(3) ! enddo enddo read(9,*) ! ! Write to file do modes=1,nmodes ! ij=0 ! do i=1,natoms do j=1,3 ij=ij+1 Bnk(modes,ij)=Ank(modes,i,j) enddo enddo ! enddo write(18,rec=kpt) ((Bnk(i,j),j=1,ij),i=1,nmodes) enddo 999 continue close(9) stop 'Partial_DOS finished' end espresso-5.0.2/QHA/SRC/Makefile0000644000700200004540000000142412053145633015063 0ustar marsamoscm.SUFFIXES: .f90 .o FC = ifort LD = $(FC) -static Proj_x = Atom_projected_properties.x FQHA_x = F_QHA.x Ghost_x = Ghost_DOS.x Partial_x = Partial_phonon_DOS.x MSD_x = Mean_square_displacement.x Atom_x = atom_info.x FFLAGS = -FR OBJ1 = Mean_square_displacement.o OBJ2 = Atom_projected_properties.o OBJ3 = F_QHA.o OBJ4 = Ghost_DOS.o OBJ5 = Partial_phonon_DOS.o OBJ6 = atom_info.o all: MSD Proj FQHA Ghost Partial Atom MSD: $(OBJ1) $(LD) -o $(MSD_x) $(OBJ1) Proj: $(OBJ2) $(LD) -o $(Proj_x) $(OBJ2) FQHA: $(OBJ3) $(LD) -o $(FQHA_x) $(OBJ3) Ghost: $(OBJ4) $(LD) -o $(Ghost_x) $(OBJ4) Partial:$(OBJ5) $(LD) -o $(Partial_x) $(OBJ5) Atom :$(OBJ6) $(LD) -o $(Atom_x) $(OBJ6) .f90.o : $(FC) $(FFLAGS) -c $< clean: rm -f *.o espresso-5.0.2/QHA/SRC/F_QHA.f900000755000700200004540000001414512053145633014630 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Eyvaz Isaev, Copyright 2005-2008 ! ! Department of Physics, Chemistry, and Biophysics (IFM), Linkoping University, Sweden ! ! Theoretical Physics Department, Moscow State Institute of Steel and Alloys, Russia ! ! Materials Theory Group, Institute of Physics and Materials Science, Uppsala University, Sweden ! ! isaev@ifm.liu.se ! eyvaz_isaev@yahoo.com ! ! Given phonon DOS, calculates: ! ! F0 - zero vibration energy, ZVE (Ry/cell) ! E_int - the internal energy (Ry/cell) ! F_vib - the phonon contribution to the free energy (Ry/cell) including the ZVE ! C_v - the heat capacity at a constant volume (in units of R, the universal gas constant) ! S - entropy (in units of R, the universal gas constant ) ! u^2 - mean square displacement, in Ang^2 ! ! Parameters used ! T in K, ! F_vib in Ry/cell, ! C_v in R (the universal gas constant, so that C_v(\infty) \to 3NR) ! where N is the number of atoms considered, ! S in R ! Zero vibration energy in Ry/cell, ! phonon DOS has the norm of 3*N ! ! from R to J/(mol K) multiply C_v by 8.314 ! from R to cal/(mol K) multiply C_v by 1.985 ! from Web: R equal to 8.314 joules per Kelvin or 1.985 calories ! ! PHDOS.out - name of the phonon DOS file obtained by means of either matdyn.x ! applying dos=.true. option (then copy your phonon DOS file to PHDOS.out) ! or the program with projected phonon DOS. ! ! Avoid using another DOS filename otherwise the program will try to read projected DOS. ! ! Output file is suitable for visualization using Gnuplot (www.gnuplot.info) or Xmgace (Xmgr). ! ! MSD calculations moved to MSD.f90 ! Keep in mind: preliminary u^2 estimations are for simple metals or semiconductors (one atom type only!) ! If Theta_D is unknown, then set up Theta_D=0 or negatve, so that preliminary u^2 estimations are avoided. ! High temperature estimaton for u^2 is given at room temperature ! program fqha ! implicit none integer, parameter:: ndivx=10000 real(kind=8) :: dos(ndivx),nu(ndivx),a1,a2,a3 real(kind=8) :: pdos(ndivx),gx(ndivx),gy(ndivx),gz(ndivx) real(kind=8) :: de, emax, norm,norm_tot real(kind=8) :: F0, F0_tot, Ftot, Free, Ftot_sum, Free_sum, S0, E_internal ! real(kind=8) :: CV, CV_tot, E_int, q1,q2,q3,Entropy integer :: T_start, T_end, T_delta real(kind=8) :: coth, norm_par, x, T ! real(kind=8) :: Theta_D,prefactor,amass, factor2 integer :: i,ndiv,n character(len=80) :: filename, outfile character(len=9) :: dos_file, dosfile character(len=1) :: dummy ! coth(x)=(dexp(x)+dexp(-x))/(dexp(x) - dexp(-x)) ! ! ! Used constants a1=0.5d0/13.6058d0/8065.5d0 a2=8.617d-5/13.6058d0 a3=1.0d0/8065.5d0/8.617d-5 dos_file='PHDOS.out' read(5,'(a)') filename read(5,'(a)') outfile read(5, *) T_start, T_end, T_delta dosfile=filename(1:9) open(unit=1,file=filename) read (1,*) read (1,*) dummy, ndiv, emax, de if (ndiv.gt.ndivx) stop ' ndivx too small' print*, 'ndiv from file ===', ndiv if(dosfile.eq.dos_file) then i=1 1 read(1,*, end=98) nu(i),dos(i) i=i+1 goto 1 ! else i=1 2 read(1,*,end=98) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i) i=i+1 goto 2 ! endif 98 continue close(1) ! ndiv = i - 1 ! print*, 'ndiv===', ndiv if(dosfile.ne.dos_file) then norm_par=0. do i=2,ndiv-3,3 norm_par = norm_par + 3*pdos(i)+3*pdos(i+1)+2*pdos(i+2) enddo norm_par=norm_par*de*3/8 print*, 'norm_partial==', norm_par endif open(unit=1,file=outfile,status='unknown') do T=T_start,T_end,T_delta ! norm=0.d0 F0=0.d0 Free=0.d0 Ftot=0.d0 CV=0.d0 S0=0.d0 E_int=0.d0 ! do i=2,ndiv-3,3 norm = norm + 3*dos(i)+3*dos(i+1)+2*dos(i+2) F0= F0 + 3*dos(i)*a1*nu(i)+3*dos(i+1)*a1*nu(i+1)+ & & 2*dos(i+2)*a1*nu(i+2) q1=0.5*a3*nu(i)/T q2=0.5*a3*nu(i+1)/T q3=0.5*a3*nu(i+2)/T ! The next is the phonon contribution to the free energy without ZVE ! ! Ftot=Ftot + 3*dos(i)*a2*T*dlog(1.d0-exp(-2*q1)) + & ! & 3*dos(i+1)*a2*T*dlog(1.d0-exp(-2*q2)) + & ! & 2*dos(i+2)*a2*T*dlog(1.d0-exp(-2*q3)) ! E_int = E_int + 3*dos(i)*a1*nu(i)*coth(q1) + & & 3*dos(i+1)*a1*nu(i+1)*coth(q2) + & & 2*dos(i+2)*a1*nu(i+2)*coth(q3) ! ! Free = Free + 3*dos(i)*a2*T*dlog(2.*sinh(q1)) + & & 3*dos(i+1)*a2*T*dlog(2.*sinh(q2)) + & & 2*dos(i+2)*a2*T*dlog(2.*sinh(q3)) ! ! CV = CV + 3*dos(i)*q1*q1/sinh(q1)**2 + & & 3*dos(i+1)*q2*q2/sinh(q2)**2 + & & 2*dos(i+2)*q3*q3/sinh(q3)**2 ! ! S: a2*dos(i)*[ ] ! S0 = S0 + 3*dos(i)*(q1*coth(q1) - dlog(2*sinh(q1))) + & & 3*dos(i+1)*(q2*coth(q2) - dlog(2*sinh(q2))) + & & 2*dos(i+2)*(q3*coth(q3) - dlog(2*sinh(q3))) enddo norm_tot=norm*de*3/8 F0_tot=F0*de*3/8 ! Ftot_sum=Ftot*de*3/8 + F0_tot E_internal=E_int*de*3/8 Free_sum=Free*de*3/8 CV_tot=CV*de*3/8 Entropy=S0*de*3/8 if(T.eq.T_start) then write(1,'("# Zero vibration energy:",f18.10,2x, "(Ry/cell)")') F0_tot write(1,'("# Phonon DOS norm :",2x, f12.6, 6x, "! 3N for check purpose, N number of atoms in the unit cell")') norm_tot write(1,'("# T in K, F_vib in Ry/cell, C_v in R (the universal gas constant by 3N modes), S in k_B ")') write(1,'("#")') ! write(1,'("# T E_internal F_vibration Specific heat (C_v) Entropy u2")') write(1,'("# T", 9X,"E_internal",8X, "F_vibration",10X, "Specific heat (C_v)",7X,"Entropy")') write(1,'(108("#"))') !! & "Specific heat (C_v)",7X,"Entropy",13X, "u2")') ! endif ! write(1,'(f8.2,2f18.10,5X,f18.10,4X,f18.10,4X,f12.6)') T, E_internal, Free_sum,CV_tot,Entropy write(6,'(f8.2,5f14.8)') T,norm_tot,F0_tot,Free_sum, Entropy enddo ! 10 close(1) ! stop end program fqha ! espresso-5.0.2/QHA/SRC/Ghost_DOS.f900000644000700200004540000000441212053145633015534 0ustar marsamoscm! To correct NaN problem in Phonon DOS calculatons ! To avoid this problem try delta_e \sim 1 cm^{-1} in Phonon_DOS ! These NaN are replaced by (dos(i-1)+dos(i+1))/2 ! implicit real*8(a-h,o-z) ! parameter (max_kpoints=100000, max_bands=500) dimension ef(10000),dos(10000),pdos(10000),gx(10000),gy(10000),gz(10000) dimension iline(10000) character*3 dummy, dummy1 character*100 line character*95 line1 character*30 line2 character*9 dos_file_name character*9 phdos dummy='NaN' dummy1='nan' phdos='PHDOS.out' read(5,'(a)') line dos_file_name=line(1:9) if(dos_file_name.eq.phdos) then open(9,file='PHDOS.out') else open(9,file=line) endif j=0 do read(9,'(a)',end=99) line j=j+1 enddo 99 continue nlines=j if(nlines.gt.10000) stop 'Tooo many lines, nlines > 10000' rewind(9) j=0 do i=1,nlines read(9,'(a)',end=100) line if(line(27:29).eq.dummy.or.line(27:29).eq.dummy1.or. & & line(26:28).eq.dummy.or.line(26:28).eq.dummy1.or. & & line(23:25).eq.dummy.or.line(23:25).eq.dummy1.or. & & line(17:19).eq.dummy.or.line(17:19).eq.dummy1.or. & & line(16:18).eq.dummy.or.line(16:18).eq.dummy1) then j=j+1 iline(i)=i else iline(i)=0 endif enddo 100 continue REWIND(9) j=0 do i=1,nlines if(i.le.2) then read(9,'(a)', end=100) line write(6,'(a)') line else if(iline(i).eq.0) then if(dos_file_name.ne.phdos) then read(9, *,end=101) ef(i),dos(i),pdos(i),gx(i),gy(i),gz(i) else read(9, *,end=101) ef(i),dos(i) endif else read(9,'(f12.4)') ef(i) endif endif enddo 101 continue rewind(9) do i=1,nlines if(i.le.2) then ! read(9,'(a)') line else if(iline(i).eq.0) then if(dos_file_name.ne.phdos) then read(9,*) ef(i), dos(i), pdos(i), gx(i),gy(i),gz(i) write(6,'(f12.4,5(3XG14.7))') ef(i), dos(i), pdos(i), gx(i),gy(i),gz(i) else read(9,*) ef(i), dos(i) write(6,'(f12.4,(3XG14.7))') ef(i), dos(i) endif else read(9,'(a)') line if(dos_file_name.ne.phdos) then dos(i)=(dos(i-1)+dos(i+1))/2 pdos(i)=(pdos(i-1)+pdos(i+1))/2 gx(i)=(gx(i-1)+gx(i+1))/2 gy(i)=(gy(i-1)+gy(i+1))/2 gz(i)=(gz(i-1)+gz(i+1))/2 else dos(i)=(dos(i-1)+dos(i+1))/2 write(6,'(f12.4,(3XG14.7))') ef(i), dos(i) endif endif endif enddo close(9) stop end espresso-5.0.2/QHA/SRC/Mean_square_displacement.f900000755000700200004540000001255212053145633020742 0ustar marsamoscm! ! Copyright (C) 2006 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Eyvaz Isaev, Copyright 2005-2008 ! ! Department of Physics, Chemistry, and Biophysics (IFM), Linkoping University, Sweden ! ! Theoretical Physics Department, Moscow State Institute of Steel and Alloys, Russia ! ! Materials Theory Group, Institute of Physics and Materials Science, Uppsala University, Sweden ! ! isaev@ifm.liu.se ! eyvaz_isaev@yahoo.com ! ! Given projected phonon DOS, calculates: ! ! u^2 - mean square displacement, in Ang^2, ! as well <(u_x^)2>, <(u_y)^2>, and <(u_z)^2> ! ! Parameters used ! T in K, ! phonon DOS has the norm of 3*N ! ! Output file is suitable for visualization using Gnuplot (www.gnuplot.info) or Xmgace (Xmgr). ! ! Keep in mind: preliminary u^2 estimations are for simple metals or semiconductors (one atom type only!) ! If Theta_D is unknown, then set up Theta_D=0 or negatve, so that preliminary u^2 estimations are avoided. ! High temperature estimaton for u^2 is given at room temperature ! program mean_square_displacement ! implicit none integer, parameter:: ndivx=10000 real(kind=8) :: dos(ndivx),nu(ndivx),a1,a2,a3 real(kind=8) :: pdos(ndivx),gx(ndivx),gy(ndivx),gz(ndivx) real(kind=8) :: de, emax, norm,norm_tot ! real(kind=8) :: q1,q2,q3 integer :: T_start, T_end, T_delta, T300 real(kind=8) :: x, coth, sN,s, norm1, norm_partial real(kind=8) :: Theta_D,prefactor,amass real(kind=8) :: u2, u2_x, u2_y, u2_z, T, factor2 integer :: i,ndiv,n character(len=80) :: filename, outfile character(len=1) :: dummy ! coth(x)=(dexp(x)+dexp(-x))/(dexp(x) - dexp(-x)) ! ! ! Used constants a1=0.5d0/13.6058d0/8065.5d0 a2=8.617d-5/13.6058d0 a3=1.0d0/8065.5d0/8.617d-5 read(5,'(a)') filename ! read(5,'(a)') outfile read(5, *) T_start, T_end, T_delta read(5, *) amass ! read(5, *) amass, Theta_D open(unit=1,file=filename) read (1,*) read (1,*) dummy, ndiv, emax, de if (ndiv.gt.ndivx) stop ' ndiv too large' print*, 'ndiv from file ===', ndiv ! ! Safe reading of input dos file i=1 2 read(1,*,end=98) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i) i=i+1 goto 2 ! 98 continue close(1) ! ndiv = i - 1 ! print*, 'ndiv===', ndiv norm1=0. do i=2,ndiv-3,3 norm1 = norm1 + 3*pdos(i)+3*pdos(i+1)+2*pdos(i+2) enddo norm_partial=norm1*de*3/8 print*, 'norm_partial==', norm_partial ! if(Theta_D.gt.0.d0) then ! ! if(Theta_D.lt.100.d0) then ! write(6,'("Unlikely, the Debye temperature is lower than 100K")') ! write(6,'("So, be careful about low and high temperature estimations for MSD")') ! endif ! ! Some estimations before theoretical calculations ! This part can be helpful for estimation purposes, so, I leave this part. ! ! Low-Temperature limit, for test case ! See Reissland's textbook "The physics of phonons" ! ! Al ! amass=26.98 ! Theta_D=400 ! ! Si ! amass=14.01 ! Theta_D=2000 ! ! Cu ! amass=14.01 ! Theta_D=315 ! ! Pd ! amass=106.42 ! Theta_D=275 ! ! Pa ! amass=231 ! Theta_D=175 ! ! prefactor=9*1.0545**2/(4*1.66053886*1.3804) ! u2=prefactor*100/amass/Theta_D ! ! print*, '# Low temperature u^2===', u2 ! ! High Temperature limit (at room temperature), for test case ! ! T300=300 ! prefactor=9*1.0545**2/(1.66053886*1.3804) ! u2=prefactor*100*T300/amass/Theta_D**2 ! ! print*, '# High temperature u^2(300K)===', u2 ! ! else ! ! write(6,'("# Preliminary Low and High temperature u^2 estimations are not calculated")') ! ! endif ! open(unit=1,file=outfile,status='unknown') open(unit=9,file='Displacements',status='unknown') write(9,'(56("#"))') write(9,'("# T in K, u^2, u^2_x, u^2_y, u^2_z are in Ang^2")') write(9,'("# u^2 = u^2_x + u^2_y + u^2_z ")') write(9,'("# T u^2 u^2_x u^2_y u^2_z")') write(9,'(56("#"))') ! do T=T_start,T_end,T_delta ! norm=0.d0 ! u2=0 u2_x=0 u2_y=0 u2_z=0 do i=2,ndiv-3,3 norm = norm + 3*dos(i)+3*dos(i+1)+2*dos(i+2) q1=0.5*a3*nu(i)/T q2=0.5*a3*nu(i+1)/T q3=0.5*a3*nu(i+2)/T ! Mean square displacements ! u2 = u2 + 3*pdos(i)*coth(q1)/q1 + & & 3*pdos(i+1)*coth(q2)/q2 + & & 2*pdos(i+2)*coth(q3)/q3 !! u2_x = u2_x + 3*gx(i)*coth(q1)/q1 + & & 3*gx(i+1)*coth(q2)/q2 + & & 2*gx(i+2)*coth(q3)/q3 ! u2_y = u2_y + 3*gy(i)*coth(q1)/q1 + & & 3*gy(i+1)*coth(q2)/q2 + & & 2*gy(i+2)*coth(q3)/q3 ! u2_z = u2_z + 3*gz(i)*coth(q1)/q1 + & & 3*gz(i+1)*coth(q2)/q2 + & & 2*gz(i+2)*coth(q3)/q3 enddo norm_tot=norm*de*3/8 prefactor=1.0545**2*100/(1.66053886*1.3804)/4 factor2=1. ! if(dabs(norm_par/3 - 1).gt.0.1) factor2=2. ! print*, 'factor2===', factor2 u2=prefactor*u2*de*3/8/amass/T/factor2 ! u2=prefactor*u2*de*3/8/amass/T u2_x=prefactor*u2_x*de*3/8/amass/T/factor2 u2_y=prefactor*u2_y*de*3/8/amass/T/factor2 u2_z=prefactor*u2_z*de*3/8/amass/T/factor2 ! write(9,'(f8.2,4f12.6)') T, u2, u2_x,u2_y,u2_z enddo ! !10 close(1) close(9) ! stop end program mean_square_displacement ! espresso-5.0.2/QHA/SRC/atom_info.f900000644000700200004540000000127012053145633015715 0ustar marsamoscm! Find atomic symbol and atomic mass for current atom from the list ! character*4 Atom(100), dummy, dummy1,dummy2, dummy3, dummy4 real*8 amass(100) read(5,*) N ! read(5,'(a,a,a,a,a,a,a,a,a,a)') (Atom(i), i=1,N) read(5,'(10a)') (Atom(i), i=1,N) read(5,*) (amass(i), i=1,N) open(1,file='atom_name') read(1,'(a4)') dummy dummy1=' '//dummy dummy2=' '//dummy dummy3=' '//dummy dummy4=' '//dummy//' ' do i=1,N if(Atom(i).eq.dummy.or.Atom(i).eq.dummy1.or. & & Atom(i).eq.dummy2.or.Atom(i).eq.dummy3.or.Atom(i).eq.dummy4) then write(6,'(f10.4)') amass(i) stop endif enddo close(1) stop 'equivalent atomic symbols are not found ' end espresso-5.0.2/Doc/0000755000700200004540000000000012053440273013065 5ustar marsamoscmespresso-5.0.2/Doc/INPUT_pw_export.html0000777000700200004540000000000012053440163024107 2../PP/Doc/INPUT_pw_export.htmlustar marsamoscmespresso-5.0.2/Doc/plumed_quick_ref.aux0000644000700200004540000000762612053147351017136 0ustar marsamoscm\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \citation{Bonomi:2009ul} \citation{Laio:2008wu} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Overview}{2}{subsection.1.1}} \newlabel{EQ_prob}{{1}{2}{Overview\relax }{equation.1}{}} \newlabel{EQ_free_energy}{{2}{2}{Overview\relax }{equation.2}{}} \citation{Laio:2008wu} \citation{Laio:2002wm} \newlabel{EQ_vg}{{3}{3}{Overview\relax }{equation.3}{}} \newlabel{EQ_vgd}{{4}{3}{Overview\relax }{equation.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Collective variables}{3}{subsection.1.2}} \citation{QE:guide} \@writefile{toc}{\contentsline {section}{\numberline {2}Step-by-step metadynamics calculations}{4}{section.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Compile {\sc Quantum ESPRESSO}\ with \texttt {PLUMED} plugin}{4}{subsection.2.1}} \citation{PLUMED:manual} \citation{PLUMED:manual} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Running metadynamics in {\sc Quantum ESPRESSO}}{5}{subsection.2.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Units in the input and output files}{5}{subsection.2.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Postprocessing}{5}{subsection.2.4}} \citation{Ensing:2005p53} \@writefile{toc}{\contentsline {section}{\numberline {3}First worked example: SN2 reaction}{6}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}SN2 reaction in vacuum}{6}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Choice of CVs and simulation details}{6}{subsection.3.2}} \citation{PLUMED:manual} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces A sketch of SN2 reaction}}{7}{figure.1}} \newlabel{Fig_Reaction_sn2}{{1}{7}{SN2 reaction in vacuum\relax }{figure.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Metadynamics with Born-Oppenheimer molecular dynamics}{7}{subsection.3.3}} \newlabel{EQ_vwall}{{5}{8}{Metadynamics with Born-Oppenheimer molecular dynamics\relax }{equation.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The time evolution of CVs}}{11}{figure.2}} \newlabel{FIG_sn2_cv}{{2}{11}{Metadynamics with Born-Oppenheimer molecular dynamics\relax }{figure.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The time population of CVs}}{12}{figure.3}} \newlabel{FIG_sn2_cvs}{{3}{12}{Metadynamics with Born-Oppenheimer molecular dynamics\relax }{figure.3}{}} \citation{Bussi:2006gg} \citation{Barducci:2008ua} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}Free energy reconstruction}{13}{subsubsection.3.3.1}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Free energy surface of SN2 reaction}}{13}{figure.4}} \newlabel{FIG_sn2_fes}{{4}{13}{Free energy reconstruction\relax }{figure.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {4}Second worked example: H-H}{13}{section.4}} \citation{Barducci:2008ua} \citation{Laio:2008wu} \newlabel{EQ_wt}{{6}{14}{Second worked example: H-H\relax }{equation.6}{}} \newlabel{EQ_wt_v}{{7}{14}{Second worked example: H-H\relax }{equation.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Free energy surface}}{15}{figure.5}} \newlabel{FIG_hh_fes}{{5}{15}{Second worked example: H-H\relax }{figure.5}{}} \bibcite{Bonomi:2009ul}{1} \bibcite{Laio:2008wu}{2} \bibcite{Laio:2002wm}{3} \bibcite{QE:guide}{4} \bibcite{PLUMED:manual}{5} \bibcite{Ensing:2005p53}{6} \bibcite{Bussi:2006gg}{7} \bibcite{Barducci:2008ua}{8} espresso-5.0.2/Doc/INPUT_CP.html0000777000700200004540000000000012053440163020746 2../CPV/Doc/INPUT_CP.htmlustar marsamoscmespresso-5.0.2/Doc/constraints_HOWTO.log0000644000700200004540000001632212053147350017123 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2012.9.4) 21 NOV 2012 13:53 entering extended mode **constraints_HOWTO.tex (./constraints_HOWTO.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/report.cls Document Class: report 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@chapter=\count80 \c@section=\count81 \c@subsection=\count82 \c@subsubsection=\count83 \c@paragraph=\count84 \c@subparagraph=\count85 \c@figure=\count86 \c@table=\count87 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/base/inputenc.sty Package: inputenc 2004/02/05 v1.0d Input encoding file (/usr/share/texmf/tex/latex/base/latin1.def File: latin1.def 2004/02/05 v1.0d Input encoding file )) (/usr/share/texmf/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip43 For additional information on amsmath, use the `?' option. (/usr/share/texmf/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texmf/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks14 \ex@=\dimen103 )) (/usr/share/texmf/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen104 ) (/usr/share/texmf/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count88 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count89 \leftroot@=\count90 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count91 \DOTSCASE@=\count92 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen105 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count93 \c@MaxMatrixCols=\count94 \dotsspace@=\muskip10 \c@parentequation=\count95 \dspbrk@lvl=\count96 \tag@help=\toks15 \row@=\count97 \column@=\count98 \maxfields@=\count99 \andhelp@=\toks16 \eqnshift@=\dimen106 \alignsep@=\dimen107 \tagshift@=\dimen108 \tagwidth@=\dimen109 \totwidth@=\dimen110 \lineht@=\dimen111 \@envbody=\toks17 \multlinegap=\skip44 \multlinetaggap=\skip45 \mathdisplay@stack=\toks18 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (/usr/share/texmf/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2001/10/25 v2.2f \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 132. ) (/usr/share/texmf/tex/latex/amsfonts/amssymb.sty Package: amssymb 2002/01/22 v2.2d ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks19 ) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: dvips.def on input line 80. (/usr/share/texmf/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen112 \Gin@req@width=\dimen113 ) (./constraints_HOWTO.aux) \openout1 = `constraints_HOWTO.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Try loading font information for U+msa on input line 18. (/usr/share/texmf/tex/latex/amsfonts/umsa.fd File: umsa.fd 2002/01/19 v2.2g AMS font definitions ) LaTeX Font Info: Try loading font information for U+msb on input line 18. (/usr/share/texmf/tex/latex/amsfonts/umsb.fd File: umsb.fd 2002/01/19 v2.2g AMS font definitions ) LaTeX Font Info: Try loading font information for OMS+cmr on input line 24. (/usr/share/texmf/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 24. Overfull \hbox (9.15565pt too wide) in paragraph at lines 26--28 []\OT1/cmr/m/n/12 the an-a-lyt-i-cal ex-pres-sion for the gra-di-ents of the co n-straint $[][]\OML/cmm/m/it/12 ^^[\OT1/cmr/m/n/12 (\OMS/cmsy/m/n/12 f\OT1/cmr/ bx/n/12 R[]\OMS/cmsy/m/n/12 g\OT1/cmr/m/n/12 )$ [] LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 39. [1 {/usr/share/texmf-var/fonts/map/pdftex/updmap/pdftex.map}] [2] (./constraints_HOWTO.aux) ) Here is how much of TeX's memory you used: 1528 strings out of 94500 17322 string characters out of 1176767 66883 words of memory out of 1000000 4691 multiletter control sequences out of 10000+50000 15702 words of font info for 60 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 27i,8n,22p,234b,205s stack positions out of 1500i,500n,5000p,200000b,5000s PDF statistics: 49 PDF objects out of 300000 0 named destinations out of 131072 1 words of extra memory for PDF output out of 65536 Output written on constraints_HOWTO.pdf (2 pages, 64966 bytes). espresso-5.0.2/Doc/user_guide/0000755000700200004540000000000012053147354015224 5ustar marsamoscmespresso-5.0.2/Doc/user_guide/prev.png0000644000700200004540000000042712053147354016711 0ustar marsamoscm‰PNG  IHDR?GŸýT PLTE¿¿¿oooççç[Íã¹tRNS@æØf¹IDATxœ…= Ã0 …_pF—Dà5àK¤÷ t têÞ¡Cñ)éèät-´ªÓ}ñüYÒ#% À¡Æ4”ÒÍ¥d/Çùªåvµë`3 v3tâE$ Sãà™ù£ç°5•ªs}jßf/‹¹šÀŒˆˆ”hQ!žÜäÛ•=KV_³ªN8âK›Àþ8’!û™)Š‚x'‡Éë‘ÒȸÙD˜ˆ¹^Kù ê-êŸþsNH¼!%³IEND®B`‚espresso-5.0.2/Doc/user_guide/node7.html0000644000700200004540000001341012053147354017125 0ustar marsamoscm 2 Installation next up previous contents
Next: 2.1 Download Up: User's Guide for Quantum-ESPRESSO Previous: 1.4 Terms of use   Contents

2 Installation

For machines with GPU acceleration, see the page qe-forge.org/gf/project/q-e-gpu/ and the file README.GPU in the GPU-enabled distribution for more specific information.



Subsections

Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/footnode.html0000644000700200004540000000214712053147354017733 0ustar marsamoscm Footnotes
... MKL,1
Beware: MKL v.10.2.2 has a buggy dsyev yielding wrong results with more than one thread; fixed in v.10.2.4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
espresso-5.0.2/Doc/user_guide/node19.html0000644000700200004540000001475012053147354017220 0ustar marsamoscm 3.4 Tricks and problems next up previous contents
Next: About this document ... Up: 3 Parallelism Previous: 3.3 Parallelization levels   Contents

Subsections

3.4 Tricks and problems

3.4.0.1 Trouble with input files

Some implementations of the MPI library have problems with input redirection in parallel. This typically shows up under the form of mysterious errors when reading data. If this happens, use the option -in (or -inp or -input), followed by the input file name. Example:
   pw.x -in inputfile -npool 4 > outputfile
Of course the input file must be accessible by the processor that must read it (only one processor reads the input file and subsequently broadcasts its contents to all other processors).

Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even the -in/inp/input mechanism that is present in all QUANTUM ESPRESSO codes. In this case, use the -i option of mpirun.lsf to provide an input file.

3.4.0.2 Trouble with MKL and MPI parallelization

If you notice very bad parallel performances with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by the latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default on multicore machines. You must set the environmental variable OMP_NUM_THREADS to 1 to disable it. Note that if for some reason the correct setting of variable OMP_NUM_THREADS does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov. 2008) suggests to use the -x option to mpirun to propagate OMP_NUM_THREADS to all processors. Axel Kohlmeyer suggests the following (April 2008): "(I've) found that Intel is now turning on multithreading without any warning and that is for example why their FFT seems faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also if you use the 'numactl' tool on linux to bind a job to a specific cpu core, MKL will still try to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to either link with
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core (on 64-bit: x86_64, ia64)
-lmkl_intel -lmkl_sequential -lmkl_core (on 32-bit, i.e. ia32 )
or edit the libmkl_'platform'.a file. I'm using now a file libmkl10.a with:
  GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a)
It works like a charm". UPDATE: Since v.4.2, configure links by default MKL without multithreaded support.

3.4.0.3 Trouble with compilers and MPI libraries

Many users of QUANTUM ESPRESSO, in particular those working on PC clusters, have to rely on themselves (or on less-than-adequate system managers) for the correct configuration of software for parallel execution. Mysterious and irreproducible crashes in parallel execution are sometimes due to bugs in QUANTUM ESPRESSO, but more often than not are a consequence of buggy compilers or of buggy or miscompiled MPI libraries.


next up previous contents
Next: About this document ... Up: 3 Parallelism Previous: 3.3 Parallelization levels   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/next_g.png0000644000700200004540000000042012053147354017212 0ustar marsamoscm‰PNG  IHDR%/[:tRNS¿-Mc%ÉIDATxœ­’Áà C?y¬¥ý2N6èAKdƒ¬ÑƒqH÷ÚCuž°dS.€Ê l”`N‹#™“ÀQ‚[O‰´ 2.3 configure next up previous contents
Next: 2.4 Libraries Up: 2 Installation Previous: 2.2 Prerequisites   Contents

Subsections

2.3 configure

To install the QUANTUM ESPRESSO source package, run the configure script. This is actually a wrapper to the true configure, located in the install/ subdirectory. configure will (try to) detect compilers and libraries available on your machine, and set up things accordingly. Presently it is expected to work on most Linux 32- and 64-bit PCs (all Intel and AMD CPUs) and PC clusters, SGI Altix, IBM SP and BlueGene machines, NEC SX, Cray XT machines, Mac OS X, MS-Windows PCs, and (for experts!) on several GPU-accelerated hardware.

Instructions for the impatient:

    cd espresso-X.Y.Z/
    ./configure
     make all
Symlinks to executable programs will be placed in the bin/ subdirectory. Note that both C and Fortran compilers must be in your execution path, as specified in the PATH environment variable. Additional instructions for special machines:

./configure ARCH=crayxt4 for CRAY XT machines
./configure ARCH=necsx for NEC SX machines
./configure ARCH=ppc64-mn PowerPC Linux + xlf (Marenostrum)
./configure ARCH=ppc64-bg IBM BG/P (BlueGene)

configure generates the following files:

make.sys compilation rules and flags (used by Makefile)
install/configure.msg a report of the configuration run (not needed for compilation)
install/config.log detailed log of the configuration run (may be needed for debugging)
include/fft_defs.h defines fortran variable for C pointer (used only by FFTW)
include/c_defs.h defines C to fortran calling convention
  and a few more definitions used by C files

NOTA BENE: unlike previous versions, configure no longer runs the makedeps.sh shell script that updates dependencies. If you modify the sources, run ./install/makedeps.sh or type make depend to update files make.depend in the various subdirectories.

You should always be able to compile the QUANTUM ESPRESSO suite of programs without having to edit any of the generated files. However you may have to tune configure by specifying appropriate environment variables and/or command-line options. Usually the tricky part is to get external libraries recognized and used: see Sec.2.4 for details and hints.

Environment variables may be set in any of these ways:

     export VARIABLE=value; ./configure             # sh, bash, ksh
     setenv VARIABLE value; ./configure             # csh, tcsh
     ./configure VARIABLE=value                     # any shell
Some environment variables that are relevant to configure are:

ARCH label identifying the machine type (see below)
F90, F77, CC names of Fortran 95, Fortran 77, and C compilers
MPIF90 name of parallel Fortran 95 compiler (using MPI)
CPP source file preprocessor (defaults to $CC -E)
LD linker (defaults to $MPIF90)
(C,F,F90,CPP,LD)FLAGS compilation/preprocessor/loader flags
LIBDIRS extra directories where to search for libraries

For example, the following command line:

     ./configure MPIF90=mpf90 FFLAGS="-O2 -assume byterecl" \
                  CC=gcc CFLAGS=-O3 LDFLAGS=-static
instructs configure to use mpf90 as Fortran 95 compiler with flags -O2 -assume byterecl, gcc as C compiler with flags -O3, and to link with flag -static. Note that the value of FFLAGS must be quoted, because it contains spaces. NOTA BENE: do not pass compiler names with the leading path included. F90=f90xyz is ok, F90=/path/to/f90xyz is not. Do not use environmental variables with configure unless they are needed! try configure with no options as a first step.

If your machine type is unknown to configure, you may use the ARCH variable to suggest an architecture among supported ones. Some large parallel machines using a front-end (e.g. Cray XT) will actually need it, or else configure will correctly recognize the front-end but not the specialized compilation environment of those machines. In some cases, cross-compilation requires to specify the target machine with the -host option. This feature has not been extensively tested, but we had at least one successful report (compilation for NEC SX6 on a PC). Currently supported architectures are:

ia32 Intel 32-bit machines (x86) running Linux
ia64 Intel 64-bit (Itanium) running Linux
x86_64 Intel and AMD 64-bit running Linux - see note below
aix IBM AIX machines
solaris PC's running SUN-Solaris
sparc Sun SPARC machines
crayxt4 Cray XT4/XT5/XE machines
mac686 Apple Intel machines running Mac OS X
cygwin MS-Windows PCs with Cygwin
necsx NEC SX-6 and SX-8 machines
ppc64 Linux PowerPC machines, 64 bits
ppc64-mn as above, with IBM xlf compiler
ppc64-bg IBM BlueGene

Note: x86_64 replaces amd64 since v.4.1. Cray Unicos machines, SGI machines with MIPS architecture, HP-Compaq Alphas are no longer supported since v.4.2; PowerPC Macs are no longer supported since v.5.0. Finally, configure recognizes the following command-line options:
-enable-parallel compile for parallel (MPI) execution if possible (default: yes)
-enable-openmp compile for OpenMP execution if possible (default: no)
-enable-shared use shared libraries if available (default: yes;
  "no" is implemented, untested, in only a few cases)
-enable-debug compile with debug flags (only for selected cases; default: no)
-disable-wrappers disable C to fortran wrapper check (default: enabled)
-enable-signals enable signal trapping (default: disabled)

and the following optional packages:
-with-internal-blas compile with internal BLAS (default: no)
-with-internal-lapack compile with internal LAPACK (default: no)
-with-scalapack=no do not use ScaLAPACK (default: yes)
-with-scalapack=intel use ScaLAPACK for Intel MPI (default:OpenMPI)

If you want to modify the configure script (advanced users only!), see the Developer Manual.


2.3.1 Manual configuration

If configure stops before the end, and you don't find a way to fix it, you have to write working make.sys, include/fft_defs.h and include/c_defs.h files. For the latter two files, follow the explanations in include/defs.h.README.

If configure has run till the end, you should need only to edit make.sys. A few sample make.sys files are provided in install/Make.system. The template used by configure is also found there as install/make.sys.in and contains explanations of the meaning of the various variables. Note that you may need to select appropriate preprocessing flags in conjunction with the desired or available libraries (e.g. you need to add -D__FFTW to DFLAGS if you want to link internal FFTW). For a correct choice of preprocessing flags, refer to the documentation in include/defs.h.README.

NOTA BENE: If you change any settings (e.g. preprocessing, compilation flags) after a previous (successful or failed) compilation, you must run make clean before recompiling, unless you know exactly which routines are affected by the changed settings and how to force their recompilation.


next up previous contents
Next: 2.4 Libraries Up: 2 Installation Previous: 2.2 Prerequisites   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/img1.png0000644000700200004540000000027612053147353016573 0ustar marsamoscm‰PNG  IHDR÷yi*PLTE³³³¨¨¨œœœxxx```TTTHHH<<<000$$$ |ŠÂtRNS@æØfBIDAT™c```àH`À xpI4°@™wA·¹u’\Ø$AZ/àÖ‹„+x00€˜ ,k·àTy.’è‘…ÃÊÍIEND®B`‚espresso-5.0.2/Doc/user_guide/internals.pl0000644000700200004540000000206412053147354017562 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate internals original text with physical files. $key = q/SubSec:para/; $ref_files{$key} = "$dir".q|node17.html|; $noresave{$key} = "$nosave"; $key = q/Sec:Installation/; $ref_files{$key} = "$dir".q|node9.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Contacts/; $ref_files{$key} = "$dir".q|node4.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Terms/; $ref_files{$key} = "$dir".q|node6.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Examples/; $ref_files{$key} = "$dir".q|node13.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Guidelines/; $ref_files{$key} = "$dir".q|node5.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:manconf/; $ref_files{$key} = "$dir".q|node10.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:LinuxPCMPI/; $ref_files{$key} = "$dir".q|node14.html|; $noresave{$key} = "$nosave"; $key = q/Sec:para/; $ref_files{$key} = "$dir".q|node15.html|; $noresave{$key} = "$nosave"; $key = q/Sec:Libraries/; $ref_files{$key} = "$dir".q|node11.html|; $noresave{$key} = "$nosave"; 1; espresso-5.0.2/Doc/user_guide/node15.html0000644000700200004540000000640112053147354017206 0ustar marsamoscm 3 Parallelism next up previous contents
Next: 3.1 Understanding Parallelism Up: User's Guide for Quantum-ESPRESSO Previous: 2.7 Installation tricks and   Contents


3 Parallelism



Subsections

Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/images.tex0000644000700200004540000001770112053147352017217 0ustar marsamoscm\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \usepackage{html} \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm % to be decided \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2071}% $ \sim$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \end{document} espresso-5.0.2/Doc/user_guide/node2.html0000644000700200004540000001744012053147354017127 0ustar marsamoscm 1 Introduction next up previous contents
Next: 1.1 People Up: User's Guide for Quantum-ESPRESSO Previous: Contents   Contents

1 Introduction

This guide gives a general overview of the contents and of the installation of QUANTUM ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), version 5.0.2.

The QUANTUM ESPRESSO distribution contains the core packages PWscf (Plane-Wave Self-Consistent Field) and CP (Car-Parrinello) for the calculation of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials. It also includes other packages for more specialized calculations:

  • PWneb: energy barriers and reaction pathways through the Nudged Elastic Band (NEB) method.
  • PHonon: vibrational properties with Density-Functional Perturbation Theory.
  • PostProc: codes and utilities for data postprocessing.
  • PWcond: ballistic conductance.
  • XSPECTRA: K-edge X-ray adsorption spectra.
  • TD-DFPT: spectra from Time-Dependent Density-Functional Perturbation Theory.
The following auxiliary packages are included as well:
  • PWgui: a Graphical User Interface, producing input data files for PWscf and some PostProc codes.
  • atomic: atomic calculations and pseudopotential generation.
  • QHA: utilities for the calculation of projected density of states (PDOS) and of the free energy in the Quasi-Harmonic Approximation (to be used in conjunction with PHonon).
  • PlotPhon: phonon dispersion plotting utility (to be used in conjunction with PHonon).
A copy of required external libraries is also included. Finally, several additional packages that exploit data produced by QUANTUM ESPRESSO or patch some QUANTUM ESPRESSO routines can be installed as plug-ins:
  • Wannier90: maximally localized Wannier functions.
  • WanT: quantum transport properties with Wannier functions.
  • YAMBO: electronic excitations within Many-Body Perturbation Theory: GW and Bethe-Salpeter equation.
  • PLUMED: calculation of free-energy surface through metadynamics.
  • GIPAW (Gauge-Independent Projector Augmented Waves): NMR chemical shifts and EPR g-tensor.
  • GWL: electronic excitations within GW Approximation.
Documentation on single packages can be found in the Doc/ or doc/ directory of each package. A detailed description of input data is available for most packages in files INPUT_*.txt and INPUT_*.html.

The QUANTUM ESPRESSO codes work on many different types of Unix machines, including parallel machines using both OpenMP and MPI (Message Passing Interface) and GPU-accelerated machines. Running QUANTUM ESPRESSO on Mac OS X and MS-Windows is also possible: see section 2.2.

Further documentation, beyond what is provided in this guide, can be found in:

  • the Doc/ directory of the QUANTUM ESPRESSO distribution;
  • the QUANTUM ESPRESSO web site www.quantum-espresso.org;
  • the archives of the mailing list: See section 1.2, ``Contacts'', for more info.
People who want to contribute to QUANTUM ESPRESSO should read the Developer Manual: Doc/developer_man.pdf.

This guide does not explain the basic Unix concepts (shell, execution path, directories etc.) and utilities needed to run QUANTUM ESPRESSO; it does not explain either solid state physics and its computational methods. If you want to learn the latter, you should first read a good textbook, such as e.g. the book by Richard Martin: Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press (2004); or: Density functional theory: a practical introduction, D. S. Sholl, J. A. Steckel (Wiley, 2009); or Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, J. Kohanoff (Cambridge University Press, 2006). Then you should consult the documentation of the package you want to use for more specific references.

All trademarks mentioned in this guide belong to their respective owners.



Subsections
next up previous contents
Next: 1.1 People Up: User's Guide for Quantum-ESPRESSO Previous: Contents   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node18.html0000644000700200004540000003261512053147354017217 0ustar marsamoscm 3.3 Parallelization levels next up previous contents
Next: 3.4 Tricks and problems Up: 3 Parallelism Previous: 3.2 Running on parallel   Contents

Subsections

3.3 Parallelization levels

In QUANTUM ESPRESSO several MPI parallelization levels are implemented, in which both calculations and data structures are distributed across processors. Processors are organized in a hierarchy of groups, which are identified by different MPI communicators level. The groups hierarchy is as follow:

  • world: is the group of all processors (MPI_COMM_WORLD).
  • images: Processors can then be divided into different "images", each corresponding to a different self-consistent or linear-response calculation, loosely coupled to others.
  • pools: each image can be subpartitioned into "pools", each taking care of a group of k-points.
  • bands: each pool is subpartitioned into "band groups", each taking care of a group of Kohn-Sham orbitals (also called bands, or wavefunctions) (still experimental)
  • PW: orbitals in the PW basis set, as well as charges and density in either reciprocal or real space, are distributed across processors. This is usually referred to as "PW parallelization". All linear-algebra operations on array of PW / real-space grids are automatically and effectively parallelized. 3D FFT is used to transform electronic wave functions from reciprocal to real space and vice versa. The 3D FFT is parallelized by distributing planes of the 3D grid in real space to processors (in reciprocal space, it is columns of G-vectors that are distributed to processors).
  • tasks: In order to allow good parallelization of the 3D FFT when the number of processors exceeds the number of FFT planes, FFTs on Kohn-Sham states are redistributed to "task" groups so that each group can process several wavefunctions at the same time.
  • linear-algebra group: A further level of parallelization, independent on PW or k-point parallelization, is the parallelization of subspace diagonalization / iterative orthonormalization. Both operations required the diagonalization of arrays whose dimension is the number of Kohn-Sham states (or a small multiple of it). All such arrays are distributed block-like across the ``linear-algebra group'', a subgroup of the pool of processors, organized in a square 2D grid. As a consequence the number of processors in the linear-algebra group is given by n2 , where n is an integer; n2 must be smaller than the number of processors in the PW group. The diagonalization is then performed in parallel using standard linear algebra operations. (This diagonalization is used by, but should not be confused with, the iterative Davidson algorithm). The preferred option is to use ScaLAPACK; alternative built-in algorithms are anyway available.
Note however that not all parallelization levels are implemented in all codes!

3.3.0.1 About communications

Images and pools are loosely coupled and processors communicate between different images and pools only once in a while, whereas processors within each pool are tightly coupled and communications are significant. This means that Gigabit ethernet (typical for cheap PC clusters) is ok up to 4-8 processors per pool, but fast communication hardware (e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per pool.

3.3.0.2 Choosing parameters

: To control the number of processors in each group, command line switches: -nimage, -npools, -nband, -ntg, -northo or -ndiag are used. As an example consider the following command line:
mpirun -np 4096 ./neb.x -nimage 8 -npool 2 -ntg 4 -ndiag 144 -input my.input
This executes a NEB calculation on 4096 processors, 8 images (points in the configuration space in this case) at the same time, each of which is distributed across 512 processors. k-points are distributed across 2 pools of 256 processors each, 3D FFT is performed using 4 task groups (64 processors each, so the 3D real-space grid is cut into 64 slices), and the diagonalization of the subspace Hamiltonian is distributed to a square grid of 144 processors (12x12).

Default values are: -nimage 1 -npool 1 -ntg 1 ; ndiag is set to 1 if ScaLAPACK is not compiled, it is set to the square integer smaller than or equal to half the number of processors of each pool.

3.3.0.3 Massively parallel calculations

For very large jobs (i.e. O(1000) atoms or more) or for very long jobs, to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use in an effective way all available parallelization levels. Without a judicious choice of parameters, large jobs will find a stumbling block in either memory or CPU requirements. Note that I/O may also become a limiting factor.

Since v.4.1, ScaLAPACK can be used to diagonalize block distributed matrices, yielding better speed-up than the internal algorithms for large ( > 1000 x 1000 ) matrices, when using a large number of processors (> 512 ). You need to have -D__SCALAPACK added to DFLAGS in make.sys, LAPACK_LIBS set to something like:

    LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack
The repeated -lblacs is not an error, it is needed! configure tries to find a ScaLAPACK library, unless configure -with-scalapack=no is specified. If it doesn't, inquire with your system manager on the correct way to link it.

A further possibility to expand scalability, especially on machines like IBM BlueGene, is to use mixed MPI-OpenMP. The idea is to have one (or more) MPI process(es) per multicore node, with OpenMP parallelization inside a same node. This option is activated by configure -with-openmp, which adds preprocessing flag -D__OPENMP and one of the following compiler options:

ifort -openmp
xlf -qsmp=omp
PGI -mp
ftn -mp=nonuma

OpenMP parallelization is currently implemented and tested for the following combinations of FFTs and libraries:

internal FFTW copy requires -D__FFTW
ESSL requires -D__ESSL or -D__LINUX_ESSL, link with -lesslsmp

Currently, ESSL (when available) are faster than internal FFTW.

3.3.1 Understanding parallel I/O

In parallel execution, each processor has its own slice of data (Kohn-Sham orbitals, charge density, etc), that have to be written to temporary files during the calculation, or to data files at the end of the calculation. This can be done in two different ways:
  • ``distributed'': each processor writes its own slice to disk in its internal format to a different file.
  • ``collected'': all slices are collected by the code to a single processor that writes them to disk, in a single file, using a format that doesn't depend upon the number of processors or their distribution.

The ``distributed'' format is fast and simple, but the data so produced is readable only by a job running on the same number of processors, with the same type of parallelization, as the job who wrote the data, and if all files are on a file system that is visible to all processors (i.e., you cannot use local scratch directories: there is presently no way to ensure that the distribution of processes across processors will follow the same pattern for different jobs).

Currently, CP uses the ``collected'' format; PWscf uses the ``distributed'' format, but has the option to write the final data file in ``collected'' format (input variable wf_collect) so that it can be easily read by CP and by other codes running on a different number of processors.

In addition to the above, other restrictions to file interoperability apply: e.g., CP can read only files produced by PWscf for the k = 0 case.

The directory for data is specified in input variables outdir and prefix (the former can be specified as well in environment variable ESPRESSO_TMPDIR): outdir/prefix.save. A copy of pseudopotential files is also written there. If some processor cannot access the data directory, the pseudopotential files are read instead from the pseudopotential directory specified in input data. Unpredictable results may follow if those files are not the same as those in the data directory!

IMPORTANT: Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally the scratch directory outdir should be a modern Parallel File System. If you do not have any, you can use local scratch disks (i.e. each node is physically connected to a disk and writes to it) but you may run into trouble anyway if you need to access your files that are scattered in an unpredictable way across disks residing on different nodes.

You can use input variable disk_io='minimal', or even 'none', if you run into trouble (or into angry system managers) with excessive I/O with pw.x. The code will store wavefunctions into RAM during the calculation. Note however that this will increase your memory usage and may limit or prevent restarting from interrupted runs. For very large runs, you may also want to use wf_collect=.false. and (CP only) saverho=.false. to reduce I/O to the strict minimum.


next up previous contents
Next: 3.4 Tricks and problems Up: 3 Parallelism Previous: 3.2 Running on parallel   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node11.html0000644000700200004540000001675012053147354017212 0ustar marsamoscm 2.4 Libraries next up previous contents
Next: 2.5 Compilation Up: 2 Installation Previous: 2.3 configure   Contents

Subsections


2.4 Libraries

QUANTUM ESPRESSO makes use of the following external libraries:

  • BLAS (http://www.netlib.org/blas/) and
  • LAPACK (http://www.netlib.org/lapack/) for linear algebra
  • FFTW (http://www.fftw.org/) for Fast Fourier Transforms
A copy of the needed routines is provided with the distribution. However, when available, optimized vendor-specific libraries should be used: this often yields huge performance gains.

2.4.0.1 BLAS and LAPACK

QUANTUM ESPRESSO can use the following architecture-specific replacements for BLAS and LAPACK:
MKL for Intel Linux PCs
ACML for AMD Linux PCs
ESSL for IBM machines
SCSL for SGI Altix
SUNperf for Sun
If none of these is available, we suggest that you use the optimized ATLAS library: see
http://math-atlas.sourceforge.net/. Note that ATLAS is not a complete replacement for LAPACK: it contains all of the BLAS, plus the LU code, plus the full storage Cholesky code. Follow the instructions in the ATLAS distributions to produce a full LAPACK replacement.

Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige Goto. They can be freely downloaded, but not redistributed. See the "GotoBLAS2" item at
http://www.tacc.utexas.edu/tacc-projects/.

2.4.0.2 FFT

QUANTUM ESPRESSO has an internal copy of an old FFTW version, and it can use the following vendor-specific FFT libraries:
IBM ESSL
SGI SCSL
SUN sunperf
NEC ASL
configure will first search for vendor-specific FFT libraries; if none is found, it will search for an external FFTW v.3 library; if none is found, it will fall back to the internal copy of FFTW.

If you have recent versions (v.10 or later) of MKL installed, you may use the FFTW3 interface provided with MKL. This can be directly linked in MKL distributed with v.12 of the Intel compiler. In earlier versions, only sources are distributed: you have to compile them and to modify file make.sys accordingly (MKL must be linked after the FFTW-MKL interface).

2.4.0.3 MPI libraries

MPI libraries are usually needed for parallel execution (unless you are happy with OpenMP multicore parallelization). In well-configured machines, configure should find the appropriate parallel compiler for you, and this should find the appropriate libraries. Since often this doesn't happen, especially on PC clusters, see Sec.2.7.6.

2.4.0.4 Other libraries

QUANTUM ESPRESSO can use the MASS vector math library from IBM, if available (only on AIX).

2.4.0.5 If optimized libraries are not found

The configure script attempts to find optimized libraries, but may fail if they have been installed in non-standard places. You should examine the final value of BLAS_LIBS, LAPACK_LIBS, FFT_LIBS, MPI_LIBS (if needed), MASS_LIBS (IBM only), either in the output of configure or in the generated make.sys, to check whether it found all the libraries that you intend to use.

If some library was not found, you can specify a list of directories to search in the environment variable LIBDIRS, and rerun configure; directories in the list must be separated by spaces. For example:

   ./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math"
If this still fails, you may set some or all of the *_LIBS variables manually and retry. For example:
   ./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse"
Beware that in this case, configure will blindly accept the specified value, and won't do any extra search.


next up previous contents
Next: 2.5 Compilation Up: 2 Installation Previous: 2.3 configure   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/next.png0000644000700200004540000000036512053147354016714 0ustar marsamoscm‰PNG  IHDR%wìu PLTE¿¿¿oooççç[Íã¹tRNS@æØf—IDATxœmŽ1 Ã0 EQF >ŠÁk >B‡ú>†¬…NÙ3û¯=Œ¡k¡•äШ¾Ÿ?²d”Œ M53–—³³ˆkARMê9®êNÈlúà :CÕü5¥t•·¥læ¸]o¦÷ÁDª­×/ûÜ¡_ç\lŽEÄ6¶ãtÄUˆê›é¬è{Ccs=Ëßû@ªuwÿû¡®·ˆz User's Guide for Quantum-ESPRESSO next up previous contents
Next: Contents   Contents

Image quantum_espresso Image democritos
User's Guide for QUANTUM ESPRESSO

(version 5.0.2)





Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node9.html0000644000700200004540000001036712053147354017137 0ustar marsamoscm 2.2 Prerequisites next up previous contents
Next: 2.3 configure Up: 2 Installation Previous: 2.1 Download   Contents


2.2 Prerequisites

To install QUANTUM ESPRESSO from source, you need first of all a minimal Unix environment: basically, a command shell (e.g., bash or tcsh) and the utilities make, awk, sed. MS-Windows users need to have Cygwin (a UNIX environment which runs under Windows) installed: see http://www.cygwin.com/. Note that the scripts contained in the distribution assume that the local language is set to the standard, i.e. "C"; other settings may break them. Use export LC_ALL=C (sh/bash) or setenv LC_ALL C (csh/tcsh) to prevent any problem when running scripts (including installation scripts).

Second, you need C and Fortran-95 compilers. For parallel execution, you will also need MPI libraries and a parallel (i.e. MPI-aware) compiler. For massively parallel machines, or for simple multicore parallelization, an OpenMP-aware compiler and libraries are also required.

Big machines with specialized hardware (e.g. IBM SP, CRAY, etc) typically have a Fortran-95 compiler with MPI and OpenMP libraries bundled with the software. Workstations or ``commodity'' machines, using PC hardware, may or may not have the needed software. If not, you need either to buy a commercial product (e.g Portland) or to install an open-source compiler like gfortran or g95. Note that several commercial compilers are available free of charge under some license for academic or personal usage (e.g. Intel, Sun).


next up previous contents
Next: 2.3 configure Up: 2 Installation Previous: 2.1 Download   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node4.html0000644000700200004540000001124312053147354017124 0ustar marsamoscm 1.2 Contacts next up previous contents
Next: 1.3 Guidelines for posting Up: 1 Introduction Previous: 1.1 People   Contents


1.2 Contacts

The web site for QUANTUM ESPRESSO is http://www.quantum-espresso.org/. Releases and patches can be downloaded from this site or following the links contained in it. The main entry point for developers is the QE-forge web site: http://qe-forge.org/, and in particular the page dedicated to the QUANTUM ESPRESSO project: qe-forge.org/gf/project/q-e/.

The recommended place where to ask questions about installation and usage of QUANTUM ESPRESSO, and to report problems, is the pw_forum mailing list: pw_forum@pwscf.org. Here you can obtain help from the developers and from knowledgeable users. You have to be subscribed (see ``Contacts'' section of the web site) in order to post to the pw_forum list. Please read the guidelines for posting, section 1.3! NOTA BENE: only messages that appear to come from the registered user's e-mail address, in its exact form, will be accepted. Messages "waiting for moderator approval" are automatically deleted with no further processing (sorry, too much spam). In case of trouble, carefully check that your return e-mail is the correct one (i.e. the one you used to subscribe).

Since pw_forum has a sizable traffic, an alternative low-traffic list, pw_users@pwscf.org, is provided for those interested only in QUANTUM ESPRESSO-related news, such as e.g. announcements of new versions, tutorials, etc.. You can subscribe (but not post) to this list from the web site, ``Contacts'' section.

If you need to contact the developers for specific questions about coding, proposals, offers of help, etc., please send a message to the developers' mailing list: q-e-developers@qe-forge.org. Do not post general questions: they will be ignored.


next up previous contents
Next: 1.3 Guidelines for posting Up: 1 Introduction Previous: 1.1 People   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/up.png0000644000700200004540000000032312053147354016354 0ustar marsamoscm‰PNG  IHDRîë5À PLTE¿¿¿oooççç[Íã¹tRNS@æØfuIDATxœ]1ƒ0 EŸdÆ&Cwr„,Ü'köŽ•7n)âIT xO²¾m”'<æ‡Qßüâ²1A ¹ÙàB›­ÓPÕÔ+†× ñ:æ²×ŠpÛ­Yh/ãiOî.c7ùÏN¤´¾põ±_×Ä/11Ab$·}IEND®B`‚espresso-5.0.2/Doc/user_guide/prev_g.png0000644000700200004540000000050712053147354017216 0ustar marsamoscm‰PNG  IHDR?šJtRNS¿-Mc%IDATxœÍ”ÁuÄ D?~´5ým9î`ÓD:p9€cÇäm.™ÂBBb$9d¾b`Hí¨ž°UI:Bu:±éΓE»-'ƒ}› Øã²ØC|,¤÷tÇ%ì„}yF²sP©ª=šT¯’„¨Â.¢+—9döGƒ+WZ­~paòâÛnP8ðã9ÔâÔ5îil u9ä'»öͩβ ý²‘ÁÖ’á_¼ÿ¹+þxež ôŒUþ+Ôi„Îÿþ@i’ZfG-Κ6)nsU~!ÃL,À’cšˆÔwámP,ßv®zSßñ§Hµ¹Ë=hy™êW:þCý>Gæõ'ÿoå²i=Q)ÂIEND®B`‚espresso-5.0.2/Doc/user_guide/node1.html0000644000700200004540000001015012053147354017115 0ustar marsamoscm Contents next up previous
Next: 1 Introduction Up: User's Guide for Quantum-ESPRESSO Previous: User's Guide for Quantum-ESPRESSO


Contents



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/WARNINGS0000644000700200004540000000020012053147352016365 0ustar marsamoscmNo implementation found for style `graphicx' Substitution of arg to newlabelxx delayed. There is no author for this document. espresso-5.0.2/Doc/user_guide/node20.html0000644000700200004540000000567712053147354017220 0ustar marsamoscm About this document ... next up previous contents
Up: User's Guide for Quantum-ESPRESSO Previous: 3.4 Tricks and problems   Contents

About this document ...

Image quantum_espresso Image democritos
User's Guide for QUANTUM ESPRESSO

(version 5.0.2)

This document was generated using the LaTeX2HTML translator Version 2002-2-1 (1.71)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -t 'User's Guide for Quantum-ESPRESSO' -html_version 3.2,math -toc_depth 5 -split 5 -toc_stars -show_section_numbers -local_icons -image_type png user_guide.tex

The translation was initiated by Layla Martin-Samos Colomer on 2012-11-21


Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/quantum_espresso.png0000644000700200004540000011316612053147352021355 0ustar marsamoscm‰PNG  IHDRµjê© pHYsdd–ÅÝFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 ÌÈu› vpAgµž½†è€IDATxÚìýy¼mYUŠǘÍZk7§»}µPTÑ ¨”H"*ŠŠØ!1ñg¢Q_4jó’¼ÄgòŒ>QIÔgŒÆî)¨ØD ÒŠÒSR@õu»Óìf­5›1ÞsŸ}O5·€*¹÷V±¿Ÿ[»ÎÙgïµÖœkïù£ûRU¬°Âß6åýçó=^IDå÷ *¯'‹C•dÿ $JRŽ­Ã_졯°ÂÃöb_À OˆÁeu'0hÁ J‹ÕŸd°  ¢û>ÎBásO*¸¼˜}^‘Õ&h…. V̱ƒÂ=LÖ%(L1ÊzO‹ÿÎÆ=ïûð ”îóØçYœ„W̱ +æXáAB±ô8À’!èžÏzàå‘îN ²ü]Iï×ݵ +ü­ƒVqŽ>Ø÷S@Î=·Xæ—ëþâ5÷Í)¤XØ-DË` P°î{±Ê9ÌÅø +|6`Å+Vš…æÅ?Rä»sÆò‘ÏgðÂFæÜ#ö­e2c‡g¬°Â +oÕ kÐ}0)š! *¢$ Í奙CU‰ï{ÝÀDDD-,"M†ˆ@ì@lA eðŠ?VXá3Žs¬ð·½LŽ…6IsÀ"”7,ßU~0狜sá "‚rù5‘S&"Ã䉳£j.öd¬°ÂÃ+oÕC À(€¸ðCI€›sþœ¡†O9€ Îå¼.x"{îx‹ú ÚC2$#'H@ÎÐ HV¨*i&‰$‘$«$RUeªPED5ƒ„å¾71\bd@,Ä 6²d@“°!¶j™Ø*Á’±`6 §l0óª1„ÓéÀ,)ˆB°«ˆÉ +œ+›ã¡ ˆBT¤J¬¢È £(ÛóxdWþœ[_‹£ ˆ(RDDXZˆB$";#C³æXX$«dé­b@>«B‹5ý|^¦Þ`°a°’“Ù~(1Ø9M†Œ%1–ÙG5”„Ǽυ`ÕLt€thtîÿ+ÒXa…ûÇŠ9z r„HT‘¬¢2°Xb§Æ[ýôMeZX¡¤¤Òm¤*ÈÈ šT’HÒ,Œ9T5'ä^s†¤Â6Í™PH†(H‘÷ã “* P‡9ŠT*þØ/ŠÒÕ”d‰=³Sr`£–32–Ø Y%ÇÖ)uÍ"XB¬XDÚ`•eÎ)­ò{WXá“aÅ1@¥Gî:HOY ¢" "fÃÆ)WŠd„>íísÞ¯æãk,S Éœ£æ ’5÷š£H†Î 9jÎHPì‰4¥Å»T!ÍPE>çXðG uœÇæ(Ùºû‹>)qò`Rö rÄd4lÙZ#¶Ä–’Û…©a˜L@f€Š»jap)ˆV…+¬ðI°bއHZJ†)År„$ÒD‚a&†ñdj‚ 6Õ?Ñ¢C‘T‘zHÖÜSŽ$As”XdŠ,$ 5G–¤9€Ì¡ºÏ² Ï|JŽe}8ÝwvoÖÅóDeY_¼ŸÅ Á9Pò v¶”Èrj±[ÖLla-$@<Œ"³ÈV1A‹Aó@=}+¬ðÙ‚s<Ôöæè§SHÉF2©@ 3` ØÂ JÌÊDôé)Ò¢>" H 9©$Š3•„!=$RîŒM ÒA9A稒He?ÎeêÔò‘Œå}¿Ó~•ßy˜C%`iaÀŠœ’ª˜4õDÌP&q`{°bãÁL’@ÖÃ:˜v?Šnj`ÝÏ5(ÑŽ{¬°Âù±bއºí;ív4ÎXzh†&Va0ÁÈÁÀd[;øO9 T¡ 9 öš#RPJSÊIrO¹ÇÂ](G‘¤’L9©F*^)HÖý(=b*Ö5þ\e h‘ Fça#‘ª™¡Ð\Â쀘, UdҬ˓ 5™ÂVÙ‚ð dÀ^­'×ÃzØ d’fËê`ì²F@€h…>›°bއ4Ì%¶gf´K"{ˆfÓ¨ïÕöãO÷ Ф9j {¤ ÈIÓ’)õ’;N¤Gì!A¡ª Íši‚Ê"¼a,ˆ˜-[°3ˆ(¤b|…Q8ÞçÕQHd‘û«ÅÅ™$‘f ’dÕLšÍQ([˜Hì…qVI”-)Œp„$!ˆÛoŒXÃÌfÅ+¬ð)bÅ—(`ËrI.†@2ÃäNšOM?AØEš ÷5`Ëq 7LT³µÉH4* Œæð=޼ðQBqý(/âè (N#e ‘b„HŸ¤Kª¶#rOÒ"Ï‘{ä’¹‘GìaZ'Æ‘AMD Â`‹E^,««A¤D3³,ëÃÏ•ÖÜ•kf•BQ"¢ª–TETK‚fä>§Ê;"AH[fËûŒWÃ8¶5L%¹–T“«È¸&ÍÁ®F¬aØ®ñÝ‹a²o†¬jÔWXaÅ1ˆ ÌgˆSäR—S‚fKi •L=Fq")\1ˆhÖ”E„b@Š#RÜC:–Öä@©ƒ$ͽÆ^¤¥I# ìk!cÁ¶"öd ÈÀQâÏE„0 Àø¥•1e*vŸ#&kPÖlR…f³ˆµw¤ ± ‰Ä–9"'≠gT4kJªj$ÁJ¶‡ °âÕ856"pЬE…ŒUãÎ ÂËÒ½¶Â ++æ¸dq[pÕœ’ ÛÒíIØå<#é5&U(œMM=l¥Ì'&&Û¸8»ŸÕN”¹äÝjÐÔåR ¦ŸPNˆ‡ii)µ, i"H)§$ÈXdÊ2×k%~ca=Œ°]ÇBWÊ€÷«ù2Uyo o(/Ã!ç¹R ûs! µ«B!©…d*þ+‰P¡‘’£­$HP ÈY5HÎ{M†mÐäÔxr5'KÖeÞ¶dr[CI4cÀ€Hµ0ÈÂ.Z±Ç +`Å A$’sæîlî÷´ß52§ÜsΔIˆ‘;h¤d¬µ+&ˆI˜Ÿ·ž£PˆB¤¥8Õ0¥¨o9GŽ3„)Ò qN9²däm(‘Ã1°c`7ÁlaÌ>s;^Ѓ±Ë0¸ë(”QÒ«ˆ”ÎÛñIbXp,¤sÉïe[AD4B9"gp½_{Ø“Hk²¡9¶*‚Ü«––eë‘ ˆÔXÒ ÚS’D’öb ³ƒuD XÝï=µ*/_a¬˜ã’Å=" *"'{v‘gÐÀI l”@¬1œ Ù³|Ëîïø¤yŽ4AœØ8—Ü›{Ä âaŽØAJ>‚Æëájk؊بÙ$"eGÆ©q0^%âl†DD‹Ø¸a2JÌD`ß/ ¹‰XÏèà T•P|V ”T`H†Fä„Äfæzß é =²Eò,Ä$")HΜ3rDîaJ ßA#I„”ÐN€u £Î¸ ­¾)+¬p«ïÃ¥ ÕsRü9¹5q.ýLÓ”$" 2  J0ÄpÙÃÒ{o!OË;s„=Š3¤)ÅÖH@W’n÷¦ˆ-PClÔ À¦‚k`êerìׄ ŒUv°ØÃ%cL‰°%c m(’÷[q°Ü2¸óõùàê`´¡« EÔdŸ9Š1a"²dI#r@ö$=Ègtš£«+¤ èT{ÉrfIˆ»ã =r7DŽÉA€ä¡:€iÀʰ² u¬°€s\ê8¨dLÄÌD5t-r$È epNDJ`ïà+¸†r‘.bàçPr“(žÕØk˜Q?¥4Gœ!vHaí§H3‘¤°ÌžLý˜ØÃzr² ›Z¸Rbª7ˆö½U¶Rc‰‹þ¹Ea%°¡e“ðÂÊK…ÁÅ@Ï£>"ç¤y_ Q8pB‚´"I$"Ú‹$¤€\qŠ0=™93¹gÓRjIzeì=r€‹š³Ú@¹"c‘™œ‡fdØ [3ÌJq…°bއ–aÙEöªPIQCoRG1#0™s&Ã!X9Bï# [lÉa‚Ôkì8µˆ- ¥ˆ0…•¹JŸUaر«à×ÔX6žlCvW±©@®YÄÀ‡ñd<Œ%bˆ,$vX$o·(¿×(Ï—•KÈw.(”„2bbÀƒ°$HŒ¥ìØfä€!‘‰™ ®Bò3RVi5LȤEQŠ…ªB„­#ji¿Q-Q^2´Št¬°VÌqÉ A-¨RŽ Ö‚ 먅ÄPkRK3A«":§ì¼¯0€Ïư@CO%F ÷8íh!Eô-B4EžIž&m}'`@Nh€zÄ՘݀LÅΓ±dåFìfȶñ}5""f6æîÒî|·ã¾ÛÅÞÃwoÜÛ!¢{†ˆ†Œgx@a3RDZAÐ,dåJSo¢[ ZØ_#µ'΂Õ͆Ò0·B®’œT…¼ô”+°CµUR¬PR!*_\"l…rX1ÇÃE\Ö–NPT‘R§1H¦H‘CÐ"î!Íf¬00ž¸2¶«ÕVdjX§¶&SÁÖdd°5l SÂØïözñ±pÎÃXäaŒ–ŒAna4(@B‰Á°B3’B2RÔ®Õ ²DšJ¢¨’ ä1ÀZ€Xq7ÄVøìÁŠ9.8×HC÷Ÿ 0/ÅsD 3ıEî´›˜ÑÏâ‰iÆ9›ÚØ~Hn;‚À6°ŽüÖÁÕ°%b\ÃxcˆïÁ‹¬Ù‹Tk­0 eb Í,‚\#÷à<;‡d5÷–¬¤9kžJh äjHG9J9%4™µ*Ò Äd À J0 YQÇ ŸUX1Çà ºŒmì¯æ¤@N-ÂaaJqJ¹ç°‡Ô#¶è÷fИŮ‘«¸ZƒÁÈÔ5dkTc**¶Hš[{”^Dó#”A &Œ,”³AîA-Œ‡ušœ&/©7&hô¤E%—‘æ”#¥^SO©*9W6÷I3HU²ª# %½˜É @(b\+¬ðY„s<\°P£º»åQê0R‹4AØAØE?A˜S »H=âa&)23ŠWªÚT絑©©P5„õäÖ`Œ€¶ø…îÍ×mµÜûï·¨] ¹¦&6ƒd(¹\æÀˆ¼ 4½¥0e)Î$ÐÍšIUKC”˜ÀDŽ˜œ<° ]a…‡2VÌñ°Cé§*"&ç è¶ÑŸEØC?Eè(´ÛȽäVR$2jkrkpCn6àjruCõCØùlEvæR»§J²Hqºä>@½FªÈtîy"€,¸)]LN92Ï•­–.OÖ‚ØRèQT9Îe†Å’éIh¿-•k ûUÁ>Ûp©}ñWx (R}´æSÕœ3çlº â4Ç Û÷gè[í#õSѨˆd¾ß@uvhë`ÛP5"7†Â5`r8§Ü¤ˆ•÷MŽeNíE“€UÄ ”¦QûmÎ j@Þ0y6¶º%"ãÀ°Ê3æ€$Î9G¤e€§‹D£*3Ä~%hµÂgVÌñ°E1;(Í%Í5Ì8ÍJb¯©'‰D‰˜ÈU¨‡¨×áÖ•‡dk°‡«áø®F©Û¸û¾še|ûíWéœ{ìb“‡€dZhañ~æÓ¾W‰J [ c@š-Ú¤»Ò="E€˜æY³‘Ø(xS‰2#)A©RÓ(5Ê•1*KjZa…Ϭ˜ã¢cEÓ}馅v, S„@ìœSBÞÆì,Â'x¶Ë;=f‚6£¦vÙz!9FƒÜr{ M#7¹j»Kq·ɵŸ±D Sª×PmÁÊn#¹5ÓŒM5˜ÛƹÊùü®VPYÈÝbqûŠ!8øäÅžÈp7§ÕÕò)^tÍ`à ¹VœBƒ®‚ZâV™‰†¬Vt;çÀíÔ$a[ë`‹2N‰¡BÔ-ŒCub¿¸=˜h«¯Ø C¬>Ö\j ûö"wd &v#8æ¬Ä™R›CgBÖ¾×.ð<¢OèT@ä•T` &1CBgR‡Ð#všZŠ}©×Ô«döØ nW“«Œ­ÈÕä*[­3[Øì[V¿‡³Ÿ,(ÃV¤dH@Ž "ŠŸsê…(r„‚âšÀLdVÙ1Yx eU¦¢mEPR¢sþ¼VxXaÅ¥Eì@ 9J "¢Ôiì{2•f &ïJ¿ƒy«³.ïu<íыƜ‘(dƒ¬dÈ0 ¶c7¡n€~*ý4w{ÜO´ß•8' E½ ?†Á¯±ÃÙá+_m-J Ø’ÓKªPóp-v[T~0QJQ!V €-4’$PFè‘:HŠp54W†Ò¢7ÖŒ¼%v€Qp.É\ôpµ>Û±bŽ‹ Y%‘‘¥©CL„9ÅŽr;Ê ä]î÷0ítož÷Z3‹œ)YœYX%PFèÔ6Œñ@û] {hwr¿Gq¦9²1pµV›äG¨ÖQ­Ã¯s½Žf_Á­ûÝ]Pä‡õÆ™K¸ŸœYôe;‡ØB3Q¤rÀ|[A"   d TxÈ\‘1™ @¡w“k\a…‡VÌq‘AHЍ©C ”{¤–SÏ)*uæHìLs@Þ6ý6¦3v4OÜIHÀF‘3‘ z… ”yù”Âu»Úo£ŸªffOÕõ0û-öö[¨6Pm¢£À:å’šB¥:îáÌK‚ؘ å'!ƒT¥í "Eˆ î@XKIʱ`!vLcKÞb¥‡õ¬­ðYs\ttƒvS-å©Cj‘"Q@ì{°GVpDÞF¿‹¶Ó>RP$†4U%UA”(ë¼Ç¬CwÝ÷{$‘Œƒh³EÃT¯;7B½‰z ~ ~[ƒÍAÍZHAë¬!ÒýH6ÁÌ–l b®Æ9Y… ‰]4²…Дd Q s²CdPú¬#,È’Y¦U…à c¬˜ãb#Ì¥ë$L¨Ÿ"·ˆs¤±S*Ìa&€"òDºzJBÊ(ÿ$ƒ…p†qD b(QîæAÚ3è[¤³ ^˃C¨¶L³ 7D½†z n [+[ -ê!@¤³>lé#Ìʲ° ÀŒJŒq‰ ¬‰2kÖœ˘ävF)q7‡É²d˜P{P­Èyó°±VX1Çņ†.çVCG±7¹Elgˆ!˜ØR /ŒD¹“Ð!‹ª"À”péñ§œ ìÁPÄ,¹æÚÏ9G†õ¨šlb‡ÞØ…~¶‚±$À |®+H!‡sr•B kœS|| "FÈhT‡š:TŒ(Æ{{&#p-û¹:²Z˜fc5ˆ«NP+<±bŽ €K\•‹„0Ñ~Jíi—ZôSô{H3Ä9ŠdÛv9v$i}K ÄhzFT RVp‚ Ê%–µ5V0F-e1ê4›Y¶n]‡iýx®›zÃ×'~ÃÛqU‚€ f±ˆ@sîš o=¹2ÐýoBѹ²`À{6ŽÉB!.¡NÎx¤WƆ¤ÝŽÆÖBጶ‘X †`›aÃŒ2 k^œç…\õ’+¬ð °bŽ …²R(¸ü(¡•~Æ¡[Ìh_ÿ¼dåržkê³$Hla1IîÎ{|&"XbÃL9³¢–á+ò5ì€l;„TUcm cîÎ +Ë> 8¸¹a7ÔÔeUS ‘ûFÓœ$"´jgD”Ü€cg°3„VMGvÀÌ÷©ÿ¸¢êX1Ç/,ašûí¦Òï vÚïQØãÐjî$Çœ³Õ©¦žÈ¡)rÒ4½ß33“”8+ A‘­çQP¯£Þàj~~Ã×Cpvw¿ÄöQêùØÃ5ÀT“1ƒ"sÊ-º½ÜM B5§(pDµÒ€L[‘^ìa¬°Âg+渠0A =”û=év©ß¥Ôi¿GýqJ)DlÛ˜@ŠHf™Ÿ÷Ð*‹nÅÚ(9R†“u¦nP¯Á¯Ão¢:„z Õ:\³êØúðwN}ª("»LD\—¦’“ÀBº3×å¡Õ8U‰„hx@šˆšf×Àz°Â–Ç,ÝSVÇ ¬˜ãBa¿¶šæè÷¨ß5¥gFì©ßE¿‡4GêLJ,™PÊ…dJ ÌÐÄ’Ï{|UU¥â¡Qy‹Æk³†z Õ&Ü&܆ú ªÇ¨F(}fµ”M/V%ÏK”›•®à‡È¢êbn¥Ê&Ìlš£›*í!ôjÜ*pŽB£¶«á,¬dŽVxØ`Å 1C$ ¶è&èvÑï¡ÛÅÁyê‘"‰ ¶H‚,HR"á I×óA”¤%üŠì *³9¤j Õ&ªMõëä7´k5`kUíë*;á‡sÕ§ RJ³qdXæš|6`ø¤õ yŽ~âú©´{úm ¡÷àZW[çÁšÜÑÒªéjŽWxX`ÅeÉ7r@?Õ~º=t;èö—­^gH=$åMKÈ‚”Ë!ÍÐóæx2ó~ÿ 5”­µã[#T›¨¶PmPµ…zëAv.fÙnvqiºHÀ]ùRI©pqñ[±±µ1.…¡h¦Ü"Ïgˆ-R mò³d{p S«ä®2¬¹ÉDdÌ*±j…‡VÌq!šEbÔØR?7¡“Ø!´æZ„¹“%gí='¡˜) BˆDbîgÉ¡E!˜PYx k²CØ!ì~×ÀyeÎr ý•ÀÒ½!³°à*‚jŒ¯8Wäk„üÕ@ʦÛc6¸ar# ©Z‰>çÌÌ™c…X1Ç‚ɻɬwÙÖíÄLnËÓ3èwÑžd=‰0ëÐôQ8e¡6@"È@VTB =¾d•4r$KÄä9Td$›ÔÁh¨<=l_ë¡øµTitH†G¨Ù4ÆZˆÅÁxÉNÝ+,A5ŠÞíâw^(xÕ—ƒ×U+IjbD37ƒ™Ë±Ÿ¶fÖU´_q§=Ie 25ÕÇh°w4iEEUäÜ{·Â +æ¸P ‹’È¿ptL4ͧH]Щ èbÖ4ejªš"šÀ€JÑóŽ…QHADJÅE¥†`3¨¹i`=›†ª±õ#ø†M%‹b´¢Yr±'ä¡ b&ãÔyr |[œÔŽöm‹º%S“k%Θ|î[ã:Ê=—•+Š^á!s\(¨`%ìrñ¬†³;ÚvÚ%öÔîú¬)¥”ü"¢Y!"Yºƒ¤ÀDJ ¢}ò'…1Ð gìx Ã5Ø1ûM­i¸ä|ο¾ºïÌpžüõâ:ª]Ôc{žžŽ¹ÓÉŒ\e¬cSg»Ã évÈ8ãÇv08à\‘Ç m¬V r,eéwП¥þ¬íÏ¢Û¦‰AtÖÑ,¢ôB)qLh…”²ŠpÖ¢wN Ê &&&µ¬L`)kA­Š5f8B³–ýº©KuÕ&ܦZv /…+< 0ØÂP¯#î!l PPÕ¤“4kÂ×Öxµœ©ÛeçƨFd Ò´ýbb…VÌqá st;ÜžånÝm‹©¥.ši@›ÐA(dÊ‚.“åŒ,* RßG‘…œ”!VÃd˜˜ÀJÑC­å¦É~ ·êH®6]׋‹ e~ð ZZ? Ī·(ÎÐíiŽÔ¬7ÏyŽéõÔ8§Î² ;è-âÒܘZ"Ä«ö+<´±bŽ Úî¡ÝÃ|ŽY‹YÀ$¡K˜Ì½ W„Ì)£ÏPER&¤”ë1 ‹E‡&r† +,2ÖÚ4R¨Þ@uHëuñ ‹Ò¯i‘„+Ûî°Ÿi¨¬ÌâF\­S˜¢Þ‘Øó`Fs>;E×b:#gÉ0¬…ßõè'ˆ-\n€o¯ðÇŠ9.t±X$é§h瘷:²—ÌL´:M4OÔ)z JNÙvªHY3-ÏóÂÕ±ðY1˜‰ ²cã½1Q5´õ&Ü5#r(é·º/N‚Uî„–Ú@¨m´ZCš S7—ÁˆG\oËÙO[ñÞ±s°{0•v{觨ÖÁ•‚WîÂêX1džjŒè{íSîrn…Û(]Ð.Q'Ü)zhÈ’Dº@¢9k ’ÓbÙgÑ&"bff^´Î&‚±’Õ;‡aƒÊsU‘o`r•€ haŽbˬnýÂ~³+%[Ã605¬ÏUÍͶAîzê*î#ú^ë¹ö­ô¥I¬+m°X- ª è&̳[èlc÷æ˜XÚ‰¦ösA§ (>):›2²"Ë"´MdÄ g0ÁF•ƒ:o)¤úò-l t´–›©¹—‹_s8WƒF‹¦w0¸hÅQEÕÈ’ RJ6Dø@—‚«½ô¡5ÞÛìˆ*YÊ€"90J UBå N`…#Àh‘•„È  ’¡h!7© H"r@¶¨ ð0†ˆBVv´‡Púë"Ì>]”º/ƒÉ„z ãã¹ë8n¦a§‡j:kÝ™}3Ëu4aHN¨äṽU•¢*T~±nÁ +jŸ©Ïè2z ¨¦Dm‚ªæ¬""Ê âÀÅÛD `Fv‘‚á‘1ŽP7dkØšMæ!×<¨‹þ €÷»š+”yá´±Ö3# |L§•I"’B HA1FkmXSµ†Áûη°(ˆ6™$[ÉöôÙ“·Ýz×ïþñìôö™›>qæ¦[¦wž’®« ;çØÌçm¯„hÌàèá#¾fýÊËÖ¹ü ¿¸¾þQ¸ê¨z'° N†;`£´N‚ÃÌW„~à |}Bû›ÅÔÖ×h }Ö6PkPÏ`‡fæ[Ι ëÊU¸ÂC+æ¸PP˜¢cž]Ä ºÛñ„dÚK›hÍ,£tŠ>k’Ò5V³Š€u±ßU ± ä"m«0@€²¤µhƒf€jÜû òc2õƒ¾îÏÐlˆx¹ïVÌí:[ÄI@å»Ú`,” LF¶J "˜Ì95p虌’íAx™"ŒZ+¦ý¡·ÿÎk>úÿK?|Û`¯ëÖ’Tª.c]„XTT;…ÒPÕ9ÒígOÚ¹åmï‚5öÇ~%S_qìŠ>ûš—|ñáÏ{b½¶QÃNŒmX­z/HŠ®ŸOâ°9‚Ù.ê†Cðnj;3±<°âwÀ•4{èwµ› îP鳡Ùâ k¬˜ãBA…À€°(bÆ< ºgt/£‹yÒcžLEÌœF L,©Ml˜D²*$  %ÈyŒÆ¨6xp ƒÃ0½ô¨Åf›Ö†ˆHÊÌLÖ üÇ?qö÷ßxæÎ“ÕsŸ|øi7Ð`Ë2eH”臔‡.€lѰµˆ©àHq¤ ûðÛ~ýÕø­×¸›îÜèãÕ–²ÍsŸš™‘¬"DÉa“4e``ˆÊ¢QLÀ˜ÙZ[ÅÓšx2ÞüË¿ñ×?÷kæØáë¿ê…Oùê/?ë©0&;ì É¢¶öòkqË)ñgÍ` à RÛ󞧪F3g;á~Wú]évæp Æ]r7f…>¬˜ã‚aá&'2F§˜ M”¦sÑi¬°ÂƒÂŠ9.H3`¡‹Tþœµ4&™úl"©,‹»õÜšO ¡ª-Ì¡š5ˆT# ;Ò±->¤[Guýhö몰 ât©ÝbeÉÆ(TÕö™3öó¿<5©>´>˜ö {rçm?ºõŽ÷üá?û±×:K g‘¹DŒªIWÌ©÷½ã5ÿÿWœýÍ×]Þë¡ÚÝ:¹k“ÉÔuë±ê)êx°qÙ‘öE_püW^õÄÇ®}¶6Py0Z@ÊÈ‚íÝé‡oºëûããŸØýýׯ;îŠ{»l$ 8»˜ü´?Ãݱª¢÷ôwÿÎ?=éñ_öß¿ùU_*Ò£ñú‘8]CSa<°Þ¥iÄ,†‰T®Ç¨Ã`OÚêw!sÐ¥g ®°Â§ƒKkYy8ƒýZµ„,2rí’›kÑAqI)4*¬!”Žƒä¡J0ç„ 0Ž0èxŒµ1×i0Np¤_’u9gÃçr…c×ÝqÇÓ¾m²áiÑ€ˆdÇU“Lúè;Þûì$›!(Z¿Y…)¼õ_ÿô‡þë/®ï¼fTO|¿ÚõÚϤ2Â<ØáøI_üìk_ò¥_ø÷ÈË‘¶`‘ ýbæ`”0ÎÂ'{âð#Ÿs㲤ÿë»øìöîÛÞý7¯zÍ-¯}:][!õ ¢v›¾6ï¿é×_þÝW¼ôK_üoþ™>öZ3X‹M¥•£¦6® ±G—â,»&rסk%Ì4ÍPª‹}VXáã’[V®ˆ9'ã”8+Ad LÎ)IfÑ"‡Tè…”´x¡Š_G—q¦NrcA …`ÄØ1Ú\;¦G qô‘iý }ŒQÌAæ!´àÅÀ9+1Ûò:«~>§g{Ô¾àÚ;Ožü³·ÝøÛ¿ÿ‘?}óçÌi: v !Nœê僵齿¼ñO^ôcÿÛ‘—U_D£¾]¿iVínVGu‚Ëvîøþ.ÌnÓù£híÑ«ù i¬˜ãÁ03@Ø/g€ƒÃ°PT…jqâh¿ÿì9¨jÉÂ….Añi™°YÓà†›Î71`siºDŒ18ÐõÜÕõ‰'Þ¥Ò¥n4´ÔCsc«~ÖÕ¾ºí W LÑ­aÐDÀÄ?ÿ…_úÐ?ÿ »U団¸=Ù@uVõ#C¾îËŸýÿû¶o?æQ¸ê¨Ú’¬ËµAžD3¾¿ ´*˜윳v]'“Ù\eÎ g«‡¾äéOÒ#o8ûÍïüáÿzû»ßëÚÙ¨ìq·öâ7»ü{ÿäG¶Þú‘—üëïÅÖ¦9zÕáã;ó7¼spt¬}¦6¡‹è#B/¡×Ø™ÜÃ>dH}…îs\ °C€eEN #ª,5@T…"*Õ¼XÀÊã~`|!·`ˆ¬€Ùð86Ôµ«±q5c)6 ûK³I¬@™-— c›‡}ñËÿΟþáìÝvK£q­æDÓ¬££'>ÿ»ÿaòÕñ>’O"“7ýÓ¿û?~§žMCuÀüÌ´Bµg«ÑSžøüïû¶+¾ú]„ކÜ#… k†Ÿ$—iÙ¸$%™ÏçmÛ6c¸².t„°6vãÑk^ð?½ýgïþð¯üöM¯ý_¶ï׆ƒú)æ;æÌo¼úÕŸøØ‹àe¦:úÀ`ÓÏw÷êšit0›Ó¼•vŠ~‚~²bŽÒX1Dž¾¹@¢P…Q­CBJ ¥PT¥(…Óçû{tFikˆ š³[5ŽÓú5fírئèñYfÕ¥Ìâ%Y–Ž“a-bŽDGèÖNÿîk6ÛBúøl2úÜ'áÿöÃG<Ê ¶Ïü÷—ýýúÍïÜ"µŠˆ´³ƒvóÐçûß»î;þ¾ZUU3Q*ö°>JŠ&1óù´U´!‚®ëº®K)©êÔ²H›3tͨ2Nðc¿ý~éÅ÷s¹ZLîÀ$£É´1æsê&ˆSÄmàš‹}+VXácÅ $ÂÏhŒŽ½*Y{&²FmB'Y³*h¡U%ºÌ­R (|3”¡€‡;rG7yýjðÊ%¸Qº@]z&Ç~ôF…ˆÄÌ슴¦<í†k¿à©`q6¦¬ëf¿üU߸ñç8¶¹¶ÓMÆg_ïšúq/þ²güÐ?ÓËNœìãØ 4bî›Ù–ˆEîÇmBœÏç1FU]:Ð8PU¹qSûʃ: k ©Mê17M}ýãžõŠ{“>ÿ×ÿÙÉæÎyë$¹u÷wæ_zÓºþ–z7¡IØë±—°1C?¡~ýÞž+¬ð °bŽ .ë>³5¨=Æ–b¥D*Y]$®ˆ#†U”S¦¨¤ Q¡¬*²_á!P(‰ª0•1‡Žàð!»v¦‚dC¦ø¼˜Kô*ÐE19áD0 ZLÆ ñô+Ÿöõ7}b²uûìZ5>=ªw/ý™¿êÅ_¢kÍv­ªª’ÖÌ)ƒ3²Ã@TØžwBH]×õ}¯ª¥š½ðÇÆÆ†3Æ{ †ÀìÙ0´~!½’¯00›ßú²ï|Ñ ~ú/Ùã]7qMØÈuÞ³¯}ýž4¶WïEô2É:gž;™ï¡Û3ÝŠ9VxhãR  >lQ,0‘ax‹ÚscÑX­µÑе²¨kjý¶øwÏÚÔåԥ܇Ôö¹ï% -âüb߇VxP¸$7¤Gä‰5'Svvp\·v2o%šT:’>ª ¨"zA—SH9g;Ó«ØÖØžç]5„‰Å8ƒÔ3±’ѰvT¯KqüUã² Øß ^*\ ÇÐ8‹Á®\["´ÄYu Býüì›ßtÓk_ß}à¯×£LÝP¢4—{ô—?w|ÃÜÕ—»dÿç¿ÿÓ?ùËzèvgíšl¥Ó—]þµoz5®zäZê~•ÅÒ¶8à§3€¹/¿]Ji6›õ]df&›sch84McÊAÈ.æðÜ*`¿?‡€¸ãùç=ãùoýõßúÊ¿W¿åyÈb¦ƒ¹tëWü¾=ýì¶9|§ƒŸË–òN‡S'»ã§lÚ±vC™dB0°»ê¸ÂC+æ¸@à²FÃ:xKµ3AGC‘„”@d6¤±ôû΀1°†ZÅþP%×Ö ñà’ëÃ!)ú²Ž;‘³¯\ìóš#té–_û­×þäÏ„›o±ÌºÝjäéììðpë”Ê_¾ú·óGŸþÅ_tÕðÐÉ_ø±‰“¶ £fÔÒ-[kßø?U7z~ ¶ò~ÒÚbiŽ1¦”þÉSUÎ9gŒ¹Ï·Ü0©v/ýÍŸûù§¿¨¹éh,6«|z·oôÎ0ߨj Mº^5VÒgYÄñÞºòx &í°Â}aÅû2醪õƒŽ$Ûl‘@ŽÀ€I°ž¹gM‰¢ (’€,*³hç·(ÖÈ¢‹^O¼áyãJ?\»Øã»'j¶* ý$cXIs³øøM¿÷/þÏ;_÷ÖGËݼGZÎÆ~¸îºùŠzÈ™›>úþ_=}—Žîî_Ïå/ÿ&<¬}ÀmGʺ/"!„BÎû ADÎ9ïý=^LDŸŠÍ1#ٵѱéuù†ÿñŠ„ËÍøl¿KTíw[Ðí¬;ŠYʳ]LN#÷%Wn?ñú€í±Â —ŸIÓÓaGkÔ›~¦Ó½õCOý§ß¥W^­ xDR¢ñ±]ú©2‡1Æ{ïÜ"æÁÌKò‘”RÎù|t²o À Ü›ÓÃê9ÿáß´G¯0ˆ>eâê »[væíSì%¤¤9Bz°ÿ ¯ä+TU5ç\¼[÷ü]ˆéŒnLm®:ñ?ðýÖ¨ÉZß:wjÚNOO11&h.5†ªyq…¸$åbVXá¾pÉ­8W$;p€GÈÕF]•šcâÖÑ9L†‡ÒÚ0o˜¼A²ieÓè¡jºÎXwÝaÖukz0Q <Ñž†ä™FˆáìµHælÝ_r÷ѹa®$+éôÿýýºÝýøØŠu9¦¹%©C3 d õrGMMö”íYï5×sçËñ¤Wüp/ˆ‡À†*F fúúŽ”¸·ˆˆHΙ˜1÷!¥¬ 2)+HŒ¥fPCªÈYRÅt:N§'OžÜÛÛÛÙÙÙÙÙ)ååç;Ý:P£¿ ‹fí²ïù»“g<'2R¼ehú]³þ¶“Œ³Þíí4á¶@>fJ¤â8Ìå’»+¬pßX}T/ÑO"ÃÎ8Ͼf_Ã7¨øŠ}e«ÊTµ©Ýyø¦ïÿÞí·Ù;±ßô³öÃ7ÝœÎDfciQõ—`s—Þm\a…ûÆ¥Y}˜B È ÎS54õqL@‹dÀ X†ñ° Y€¹õ@oš\G ØPià]<à«È^‚Ì¡ºÔ«ˆvNž¾ºvó˜õ<Ÿ¸Î™q—'5¸ÍMÐ6[W\õÈð2T÷4/î?Ùé-˽ªZç””ªƒUåK’(Ü ""©ÌyŸr’ÕÝ`ŸóŒ­g>-ÿÑ›«È]4øøîì1³!ú¸èÃNˆnµ…[á!…s\ Ðr!å ~ˆzqtŽXl` L€‹ÈMä-œ%5¨lYêÌ~Á‚9Îþdc!ã\а£ÁÐæ)áVÌq°…ƒ-ÜÕH† iÁ’Qb2–L³B´ˆS•º*|A*$¤(úá¢ÖÌ%Y]ÔÌëÂ!jœíBÄù5k)£õ´Ö…yãú$õÆæ£^þÕS GûÞ§O…6PZÕ8ç(?´](ù¸…–A‹"wˆý ¹1¦XÖ²s®¤]1óðSìÁyÁsݵìnüð†F„I«7ðôÈ€- @ ‹¬¥vòbß¶VøÔ°bŽ R()ÈÁÔðkZU’æ £l¼†ž8"‹ªU-yDL¾ÉG dB 0v àK1\%0ÌÚ÷ÔØ”Söf6‰nÐ Åû|¹fáÆçiVʵ?üÔÏáÇ?¦‚#º›æÇ²Þû|ÛÿÂ%ª(S•@±½OªcÓ4Î9kmUUÆðþqä W•<Ý`s( Ö>á›_òæø¡u_ï¨ ýú·NŸ‹ÊÎ"EvéÑÿ +œ—à’ó0….šŠgÖ£q³Fõª ®6QmÂo°ßäzƒê ª×ØoQ½ ?¦jŒªV°. ‘å!0ÍÜ ¦‘€ˆŠ”àã?ïÉÉ›Ÿÿb‰M”®6&ŠXóøoùê9œ‹ƒdÜo¨c{{{gggooo2™´mB(fÇ2Ð}Ðà`æõõõõõñpØXËË/O±´6˜Ù1"躿ûUîèF ó™I.Ù³»Ým½ k*zS®°Â%s\(`ÁPX¸Š\M~;„’²Âàpø!ü:Û5˜lÅΗEE÷ÿù¥ŒÒ"éR”X]8¼ï³ è©_ô<Ônšúó½^ ™yèÆÞd‘_ñÜ€Œ{Ù'%q?ç]fâ–_—¹UËàÇ=, cL±3rÖý#`¹„ß×§›‘pdíÐ5—yÇÜ8´Mýá܈ټ\Å+£c…‡ VÌq 0`b‚­£?GÀÀk3Ðz]ýøãð—Á‡;'¸ÞÂp½oŽ›Ëv‰ÌŒ p†Á‘’I¦òˆ—qˆ:O`«†„—YwÕ#ŽG·çúžRˆš¤ŠvÙ9Á¨U É‘ÁáSso^ñe_‘xc=»4î¾ÿ¤ûòeº3WUÕ4Íx<ÞÚÚ:räH15––G ˜‡ÍB‡Øì[òâ8K»dyÀÀ"j`P#l\þÿÁ.5vÇãáÜDùíbzmU+jÈ„$1IÙdYìR¾¿³–¿–×/ßÒ‡T.µ´U?xÙ ,Oqðçe^ÙÁ׫j’\^Ð…^ì]–/+§ˆ1–D—´<ò¼íåÀbÌ(ý eṌ1«žãÍ¥—RDU–a* ÐbH1ëþÅ«,¶$ Hyž šÎˆHÀÀtiù H‡$"ˆ˜©ìB‚è»@Ì è5@ßc{q/€½nY4vqн è Š®ÍH&‚ˆm`"@ÎB¡è1;'0r*£– zô@Ä$§@Dv€r„èº941!*ÀˆØö€èì1Ef€Bæ@‹)¨Ì0E–³@ ’ º Éô@Ô ÙCšÅYLÊ+æ¸88·ÿukäFäF´°9*xÊÃTp| WÁUEoã’ì,~>Dª+\¹ì­£_õÿðκ:$Þ)YCãíÍÖ¦}ËéãëªôQŒ ]÷è§>É–àú§¿ ošf4mlllmmmllŒF£º®­µåC–ä± §ßÏ=Z…,Ý\ ‘Oj”ˆ&€øQ×]˜Uµ ½sîìé3y23,4CT `kïö•ù$^2c(gíºÀ fˆ ï£÷v>Ÿ(…ñÅYB(KpQ.Gµ–ËÄ”1Þ{ }è+_íHô}_X¼ä.;çœsÓ锥¦ÒZVEŒ¹iª¬*žÃ2ç)iJj-bÌÎ"„CH1ff¤$8Ó*§(Ov}G g³Ž‰C å:R"e1®Œ§óu´È3§Ç±7ŠSšžžR{ƈDpbV‰Žd=‹Ÿ´ƒÝ #¯§Y¥g†íª àæÙœ0Ò©¾®Ý.Ù¬èGŒs‡Ýt4§@ ½ã„½Ó vˆYÄÙjw\ÏÚ@¤@Ä8™)rë +zìÝá±7Àh{óŽi}zZ¯Ä»!(XTn”´ßY—™ÁÔbjuow½‘ &,šžY€¢XÅéÐažÑ"M†!`º›‹óœ±¿_j°„jšÜŽÁÞXv†¦…îíTóO ÏQø*B~pïÍòâ‹êÁôÄÚ©FOÖir”‹BÄd<ª¡z +ª ò^%Ïb5¬z!ØêÄ7}Óã?ò1ù©_ÚI3©³6ÔQH’YÍ(eECãB¯×>÷YÈ Õ§?Ö"“~oJ!A*°'¬ý$Ÿÿ%1,WÕbÓà@Çܯ%$ €±þ„ÇÑ¡u{fCtµŸìíìÝtóÆ“N€Šû‘ª]ûgoÏ?øÁétꜫªj6›]yå•7ÜpÕW\vŸÇõ«÷äÉ“u]¿ìe/óÞÞrË-¯{Ýëæóù ¿ø‹ó˜Ç7]¹øB~m^óš×œ>}ºë:UuÎF£§>õ©×=æÑ÷É£?õŠŸ2Ƭ¯¯Ã7|Cá-oyËG>òfþ®ïøNìÇ~J¢sÎùU¯zÕd:/'²Ö†¼÷/zÑ‹Nœ8a -ìû>þÉëßxÓM71ów~×·ØÛ›¾êU¯RÕ«¯¾úÙÏ~vU9@–z0ÓéôÆÿúÝï~wÛ¶âãž÷¼çFùð‡?ü§ú§}ß眿ó»¿Ç9…P™Op”[?þ‰×<ûËŽö4MmphZ“ŽùºŸû±CÏ{:†ëņàŠ=DÞwãÿúáŸü«·ýÙ‰n:=m¯>\Ûõ—ýÊ÷Oú¼Ë†›öLì¡S†=³ûWü»_ñ‹ÃYØ mçä¬I|ìcŸþ-/»ê;¾qî‡}Цª²ë=° Áíwüü¾¸¹ó¬8hÒm2ÎV—Ñ3¾òÇþm¼ö 6Ì1ÇUèÑäî=?õÓïÿñŸA»·'Ýfr»ÃcG_ðô—¼âGâ‘CÆ7VAS-=ÞþþÿõÿròÞw «Í½ÔO|õ·~ÙóÿýOÕ#Vd‘Ò|F R^»ýoþç·ß©wÐõ•LZkÃ_ô´gÿÊÞݺ¼äƒ e&©Ü|ò=ÿû÷~è9=¹{¸WÞNCwøEÏxáÿ\ýørSV6ÇÅÁr'‹j Õ–VZm¢Ùf]šõÔ¬£ZG½‰Á!­×QÙ9QÕK¯¯øù 09'SUÈð†§]ÄpðÜïÿÇúŒ'ÇÃ[œ@1õµ„5çÉžd%­Dƒ5ÍÆûèœhdŒ¹ÏŠñ²áÅÝ{4ݧVÕ}Þ¦ƒ¦Æ½;>ÝßÊHœß|죽­ˆ(çÈ’öþú¦RÀÁ€‚Ü~×É÷¾÷½ÛÛÛUU•‹1ž:uêïxÇùŽ_èïm¹ž¾ï1ÓéôÕ‹eøïÿûÏœ9Óu]±Œ1'Ož|ûÛßÞ÷çBPuV*ßô]/·¯TޔˇÖÚ”}äÃÍI™˜@]¦“9“õ®^ B†w“Ùñ®uíigûzÄlr»ìk EKàÒ‡_ÿ†í7¾åÈ-·ÔýôêõÁÖ­wð]·ýþÏüL‹I`ìx¡<¬Fµ6ó §ÖGî2µ×e¾ç¯ûáé?ô!l+‘Ô‰Œ­±?}æP˜6³=;t[ÌWL'³7¾å-?ýÿ„~ `À¸m/;UÎÓSÔݳn²³9$kãäT–9ƵNØfX6Ĭ6ÿü/îºõoæOã¤Ë³£1þO¿ü¡_ÿ­º5„ „”ñßý/Û·ý™?{²Ö0ô°së»ßöW?ô£ €¡D¤¼àîº÷ýáënþý?X;¹sxm3ä´½wúp79ùæ·¼ñ‡~øÜïA.+Æè½/EUU•ý'½(¢…%sùS>ç¯ÿìmΛ”³g7ùÐÇS2Ö–F]"§·Ï†F£Ñãÿøº®‰èƒüàl6»í¶ÛÎwôãÒrYPµvé}Z&*ºõÖ[»®cæÏýÜÏ5ÆÜ~ûí1ƽ½½ù|Þ4ͽ+ðsÎMÓˆÈ?øÁg=ëÖÚÑhÔu]™Àê@…¿µö™Ï|fˆùÆolÛ–™o¸á"jš&%qvIÀT¦×Zëœ+'\æ^/íÂrkD¤0u©Ö´Öªjß÷Ö6óywêÔ©òú‚j^¸Â -©Î5Œ3~Æéøó¾ðÄ3oØÈÃÝT ù¨”mÛz­E"§qöÁ?k:uûå¿öÏ¿cÄaûÇu’sûÛon~è;$õ¾Bæì ?ág·¯õIèúoz^}äò3oÛ™×¾IÛX¥ÄÖÌ@!f_çmd”@†‰ÁΘZSV(YÀ“d ÆÜ4Ê„›#zá`2”(K²•’æä÷I…á¡á žÿå_ôì/úèGÏüéŸäW_½ó¶÷´ÚöÈ>ÛÑµ×€Ý XËÖOWN}).²¬I)ÏÉA?Õ¾ÊÈyi©Dt»®ëû¾Ø+Å–R*‹û’B>Yq»B‘1~ã‘W#/n¡#t·Ü‰EÃ/ÉP ‘ª‡Ãñx\ÂÌ\×õl6;ßÑ )îGÂQ`)òxoË#„0 ˜•+ãñØ{?™L–]I–{ÿr|ç\q+…vww™¹ÔNbß,Xž¢lùuAcYU m¤$"Rùe×,-lŽ«³2sñG•”Ë()m å1k‰( n»í¶«¯¾<„pÛm·¥´È"[¤,L&"(j¶ÆLZMD Å4´†mDS¥VÁŽ@bÎFÙιÍ*¸µ›£æñæ|^,À›¨=°” Ÿ ýÙa½%õ@Ǻ;»jt˜šÖ븘#nl­ “Ú¤Qegýa ëv§ÝÙ™ƒ5³ )5•@6¦1îW]LH1%À¯ˆk£‚G7ß 1h»ãœªÃƒ#a*zxŒ0Íõ†i¼H0{ç?w˜7û1ÌÚÔÍLuxcˆ#öp•Å cbE²Æ&©nïuP« äì`–ªÙÕd+æ¸hX|9÷ÅD@0ŒY‚Pñö¨"+|_34ïws¸ÔA bˆ5 Ù ;CÈ ¹ñufÎaqøøávcãÝäªíÙVÃôš-ÈdtÜÍC˜ sê¡v8î²:ÍÇoÍ uÄУ‰€‚-˜9Kd6uº½ÖëÇ’!GEÈ*€‘ 4‰úiu¨ÚÖ9‚l{÷ìWþûÙ¦_ÇÚ° ÙAÜÑØC¦-d¼þ¼ÿúïÂF¦£›L E b Ã" 5[èIÛrs *ÎqŸÚf­¹+n»UnÕ¥€Åwãn¹R  ``M3ÑHç0WžyÌ|ó–,w5ª ‚FN15Íl§7äK/ãÊ–ìâÀÞb ¬É¬ßñÞŒ¥O‘÷ÆÚÕ—uÄGrû@ã:Ë+f.á_"*Ë\Ù§¯¯¯‹àÞVG×…étšYC%cÕ”£©‚Õ„$Å^éû¸ÜÚŸïJj4ùl àªË“Ï”ÓPBwòƒ…ãZåŽò²j¤l½—;ñûì¾¶ã¹¢÷{WË.afc³%¢ÂLÌV•Ê3Kkã ¯ÐdùõøÀh4:Xé‚ýd¶åB_ºä¬eJêÚïG•1TþàL—#™ýŽˆ„®ïÙ˜,‚(F³”®*Ƙ,‘ÌÀ™3g¬Å7ÞX". ÊÑœˆŒ³”¡ŒHÖÛ¬HÁ wS:SõWóÜc±ëLh ÖTÉ¢ª®êDk92°Ýd¯{B}Ý`o†ã}NeŸÖ€Ôzm²ó¡nlu'M[š{À0w!Ä`XÊV0fX®"¡ÙºRF£è¡Ó<Ñ­dooÏNÃS0¤Œ&C]“Ž@}7&›Ü¨­˜È¬£Û±4Xud=µ@SC<2zèT?yGÊð\=ï9CƒÄHÀ@H[aAG=Èð]ìê0?=âiÆFøòï0zäªÒÒÁf¨5LŽáñ(ÎP³I’í± ;›2lB³üÔ­r«.Q(t&Xc㊠H‘—¶ È/9ÒødXü¦Ä¼XD-›âáyð(Kg1Êæ"çDÄ|·´”¤ëBß÷Ť¸w.ÖÁ|i‹|ªƒ`̾¡IJȺÈ:g}æ7eœs]—RÂÒ@¹ßÛ¥Þûâ ;{ö,>eõÉÏŠå±»;;{öl×u…Ø–ù¾÷†P·áHnþØîÛÞvæMo>õÎwxD°”›š³Xl™üîd^Uk¿ýÍß‹}¼éZBk‡8Iš½Õ”Df“rœ87 o=øDD}ç™CópíàÐpU ¦Ns" b8{ÖÌNUmÇñ°ºîì®çªg9iPT ŽÎô3ÑtLm|ëûøõïp¯ý3ûñ»`EöI q@Kµž˜‡;ÿðOÞû#ÿiýc3â2³Š$¹¤¬QY$˜py4ìüî›ÞõçßñoÍ›ÞsXj™¹žq³bŽKJ´Ø«Áy®=Ž,c‘:gd(#Ìé!UìgbêBPWJë^,ÐŽ $—çƒDYè , £ü°L‹ZrAŒq6›M§Óâ,*î”’ºŠ»ÇÕ—Ç¿ÿBÂA„I&ѬªL$½û÷Vˆ¢â˜“”RÉsµv‘=uÿQÕÁ`°±±Ñ÷ýÎÎÎE¤ n¾ùæS§NåœG£Ñ²ºð>}µó[~î7~ï…ßü[/xù_ý_?…ݽ9Ã’1ÌtáQOyòðêk>6ï蕯ÿɧ>ÿ­ÿâõ½æÞ11@jç¤lö6«³¹sàÁ,Aç&îØÚݮڅ౪TäA)÷TÃïíî¾îOξú ×sUM­!c'@'BˆH‚ÈvŽyûÔýûŸü¹oøö_þšøž_ûMI“))P2:À#›g=jzÔ«ÌoùÉ_ú§¿ä?üïhv‚4L`…îû?¸ê+_ªk'Ö3þ•ßýïÿ–þè+pË­ñSœö{cÅ—(²°ä‰á •ìïØÙ(,Ýî§Ý’û¢âÜ®0!32Tг1í«þVÎX*–òéåɃ µªèº0ŸÏçóy18ŠrI/©ªê€éneŸ´%X£ÊÅa'0û ¾GHFõ4w,ŸN§õWõ®w½ïæ›oŽ1ÞÏÊ[L«Á`pÝu×»­$|¦¯ó|¸òÊ+EäŸøDI#Ç… Ï÷úˆÅÔì1cö5{P•a I’B1<éûþÑ3¿ï;îó—9ûþWüü/|Ýß;õs¿±©‰C0YR&‰}èCˆó®ž„çõoû?ñêÿò_n9uj>~Þ žÛ…y*®ÑÄ´ !vƒÓ[Þóº¯û¾ÿ÷Û`zfç–ÜçËŽz€Ã¦xÊç‘ÐÌ‹C$X+j!HÆ~—“p/ù•W\ÿU/º¥ñ»ªéλÞ÷Š_øµç}Íì=ï3ÈJTôŽJ•§üÂO>ë[þþ´ò·n†Ûg7¿ÿ_þè¯>ûkgï}ᆱ8Ç% ˆ4)Y"XƒA…¡ÉM¤^(°$”Ðîñ"ðÐØÐþ£ª–’3_U3ÉÅMïÀ¹ $(-¿&ŸþYî•’ËûübOxï‹£?gíû~>ŸÙ%ï}Q\÷UÀ9“’ÝŽEàäÀæ¸õuÙ¯“!…2´Ê{?v!ÔrKnÕ|>ÿ‹¿ø‹2^cÌÁ2ÀóMæu×]÷ö·¿½$8=àn%‡J)Ýyç677—·à|¯¦fwh¯þ¦¯xòË^ìܸçãQ%@Ûê &¶ÙígëÍ•ßþw¾ç«¿ü¯ö_õë?ÿø®â›î|Ó¿þ±¯ý–o°uŠó‡™€Ê™»kÖд{ã/ÿÖc³Ó~ûoímÍÃW#€9Ï mÙ¶ƒæØ3>÷¹ßù-NâÜyßYÔ£0*uÔ® Õá­/ûÇÿàø OŸi=öÑäjáý~ 5P·nrôØçÿÌÿý9?ð=¯ÿ¾ÿxöw_¿q¦?5»åÏ_ý»Ï}ìå4Þ0`[ÄE4³bëkþÃ÷^ö÷¿øƒ?û ñK¿qghíÞ雾÷ÇýÉ+Øxh,7Ÿ… HÙ„$Xk†ÖF¬‹½zÈmw‘t«sc[¤ñq¢áÆZ&-‰T†h²½³ayÁÅ2ëi¹è/ãŤ Šù|>›ÍÊÒY×õp8F£ÑÀ9ãœp!©eÊoÉýä—’ó°½S¬Š"®´¾±±à~˜þx‹yÑ÷ý`0(Å(›$Þǽ"c\_– þÅM /6S)5?räHIo»›ÉƒgBüÈk¶ž÷Eãg>ûÈÓžV_e’€ž€f°6!7©®¼âÿî»ÿÅ[¿¾æÊ>µ£6€óèØŠQœÌÃî¤Ë]½1¾ò©C›Íóžýåÿöÿð×_ab¬VP €½«çÖÙg>é…¯ú‰õÑP ]vå#üc¯‡ 1IçÅ, 4æšØ!?ý©ü‚§¾ä9¸êJEU‰wla 9A2Ø6$ õšë_øóÿñÙ¯zÅ6ñ•<>õþX.…¥`@éd*ë5æ\]{í5?ôÝ_ÿ¿°n†£³»±éðXÙ—,ö…K8k†5Æe±¤¬[ÔEc75H‹¼¥‡ Rèb¹4¼qhëfcT³*DäÌ©Ó'Š?îA÷:*ù£ æ8 RÜV)I×umÛ–ŒÕ¦iŠ6âÒ_²›–šƒ÷ÈXÅþ*|ÿ6°pàì©ÓšEI³*ZÛÜ(Jd‹‡ ?( züøñ—¿ü›TñWõWï|ç;ïÇÛs'®¾úê÷½ï}÷Ï4Ÿi­":qâÄîîîý‹Næ÷h¢Ê6¹£é¾+›ã’†öòhænAÚœzFÑÎ|ˆ`ùßÄh42ÆH)sÌ2ÙÝ…üít-Ŧ–õËðF)P˜N§Ee¤®ëÁ`à½-r³T‘RÆûÁðø²Éù§4\"dUÅîîî9%sÂ`4$(èÁg|2”rñ3gÎkäw?¹I‹ºEçDpÕUW]ôîSUUmll”ßǬ/¹OŒ\2.µ&&‡™²vÎ œ•b¶' ¡.â¶{X 8¶v¥Auçt¯ÙÜRr¾W3 Ø*Þέ¾oû¶ô˜ãaTÏLÁ‘ îŠÌ¨ÉXv€yL[yx¤ojq_p}Ìé¶wÞØÄ˜"T)B`0MQØBlƒ¡Wç{T™(u…PÀ ‡Ì‡˜ÆI£ápv襵ý¦«†}¨T!y¿áô¾$~Î {"#xL½fo)¯"äC4ª°Š*ÜL7ÇyË`Sys$¶ØclÍþ¶³´×Svþ| É*zl8 ëŸñ¤­yÅT\3­¾ù=sÛ§¤Ë6?[j?šMÌ<Ÿ‚#¸â¤*µfvwwÛ¶` 5M5 ŠWJuQˆÀg™€ÎøØ'CV4°‘˜Úõõ1ó'«ê”»ãH9¶ïxgHy|p:B=ùÊÏÏB.Át0‰AÒS 2D&%)KtŒÙûº|OKBêrŒû]ClJ¼p™¥ª|yK!Èõ©ëz¿¶EX¥˜Ë fì'ïb?,¥ÄŒ+¯¼rccã RÖ}L¾4:‹{T„t±IXú*"¡e‰FS ð¨@E sN‰ŠF â‹y°FC?ƒF•tÕ•—3©w¦®4G‚€¬L5ˆ E2YlÈ£3â×yö ƒm@¨FµFëhê`¦ŽøG_þµ¿9Þü•+iæí㺳ƒéY›§©¢³#  öÂMOo UëÛ“©Çp °@]1 €èfôØ*«³º q’8_ù¸ç÷­õÕ¬}ÓïTH­áªŒè…ZØޏFÙLŒ™m;œ®0·*HZЉ«ŒjÐæ?ôOxãÑÏ}å‹¿UlÌø¶ìQ$$X` Q¤ß°—ýîåúËg½Ô(kÑg›ÇšfÔ‘5 ÑåJ¹Šþ8Ú °EGóíhÏÅÃVÞªK‹ÞXǾâºF=C•­·Â‰$;‚Î3Úo=d¶ÃTº?±+ Y²jãìí·Üüô,ÉÀÕùÁFbz–ÊjXÍâÂrÎ5µ/’±Ë×´Q°_XGw—U¿‡ íý…Èí7~¸¶F‰|Ƭm½±Uª:áÈ¢ {0¨jÎ Z(|Ä»®+ˆ8 `>Ÿ[kƒÁtÚVU•s®ëºÔÇ/\Úr€…ê–FÆR§¤LÎrÔ›é. ï}ÙïŸo¸Ëé]J»ãîÊÄe×××O:e­ÝÙÙ‡³Ù¬iš½½½º®‹×=n_IjðÞ[k¯¹æš£GZkÇãaÛ¶…ü€¥×¯Ì:@ÞÎúzmKÓ„Ý¡È|îÇC8Õ²{/µûY¶žÌÒÖÚúúÙÓà8´ßL"¤!Ù ÂÀù „¼MÌÌ<¼Ÿõ“‘€ìÀ€01;ñ¶C8ü´'¤Æ ßuãÇ¿  Èä¹|Dc\w\ïLêÑ H0¨zJÚ‡(€ ŽñPó¡í—£ˆ{8Õ®sì¶ÚE² %׆«Üdû®”;@¯›1žƒØs »…fóÔ’×v&gÑÞµmÍx{Ô½‹LÓs\ò`€k[h8ÄxŽ¡ÐÔØ½INÐo·fz{:v¹GõàOu! AUIi®ºj64qª’Gµ?uçØžÈz%ÎPÎÔŸî–«^QL*ÏóÁm¸ˆ8皦4Õýp@iH'"ÖX³_Ƿ߃Ö<×ù […BÒmïzߺHGZ«‹¾yôµ×YS-"˜„ûÚycÌÞÞÞ[ßúÖápHD·ß~{‘›}Ýë^÷øÇ?þšk®)@)7‘ÍÍÍ3gÎÜqÇðP¡¢‚®ª1ª1‹|³bŽ,-H(Œ{ÐÎýÕOĈ}q‘¾ï ë,¨°ONGŽùЇ>4N_ùÊW;v,„P´¹.»ì>Ú, 9ËÁ×ÖÖ67×—7¨ä;œKÃSå}ÑĤre3>½7ûÐ/þòümïÞIØ5_õ/ÿ±y£LµƒEEM–ãW^};ªÙ´ûéžså#/ëÿüí­O×_ Í9MÛPRh‚±â\Õ !Ò`v~§êlj×Fƪ.Ï£°}⣪ÍMÜzò#oø‹G|÷wõRPR©F¨%7Y1¼ù‡ÿÓÉŸþÕlÖŸñyOýß¿Gœ%Î@¤ÚÏDó¶wÿöÓ¾t: WΦ{3|üµ ÉûE¥¼?-þñ6ïz·|âæ_xò³‡G··gYÎŽj`Ñ¥(ŽÉÆã¯Ý~ üÞί>ç«êë® ·Þòˆ>ݾ×nÎQÇCf«úY¢E×r˜ÕƒFN׆ž€žœéÒäwkóxiC*±`”È~Ó4{”d¤œBšMfïx¿·$€ýdý3îƒ"N¥›Ó’-:dŠLúr¿Ä²ý_ùuéÌÁ*²}¾G“¨ó!È:€â–;òíwQNArE.Gƒ«®–ÒÒ•!U]_yùUëëckùÎ;o¿í¶[î¸ã6"I!t·ÜrK,ÚæË½üå—Ÿ8|xkmm´··³½}æÔ©»Œ¡µcÇŽ-ûàâ€IB×÷­1TziJ¡mgEÀüÞD˜R¡+Eæ’¦R ço©,5"´ßu±$Fã€Öýå—_~äÈ‘¦ibŒwÜqÇÍ7ßLD—]vÙe—]VZ ,)ªªØÅ")Š£Ñ¨ˆGY¼‰[E ô#$§ mŸ<}Ç[þrç ~òÏß±»½ÓW^5‹¾MåõÜg™Ç]÷q²Wß¶·óæ÷ˆX>råS¾îeÓdØ ©Râ¨#¢Ì»t[ }å=Ÿÿóéª H1bzòÓ„`+ ÈeOx\ôÓŸ¸=Ö¡¹4°äÈ‘zÓ1{rgÞõÁÝ?ùó[^÷‡gÿê=AP x Ufðù_ó5[ÇáöºÍ¿9Ý|ôäœÌÇ÷„/ûb4 €DÁã@ñ¬oþSSŸ<{¶úèÍmg'šÒhóÙ_ÿ-PØò5$¤ró›æ _öÅ©£õz=}àÆÓòöñ;oiû4lŽ|ÙK¿e9¾•Íq)C@P£~„á#Ÿ×z»m´2è“ p¦7»·0æÀÖžÚO D€‚‰³&o{ÕóžõÑ÷¼·©½ÎæÞè~÷oxÁs:#õƒø|'þrY/·û.{®ëºiæ{÷ÝýZª±¿·-Î¥âíYîèï?·J¡bØŠÞü–·U¡7¬¾r¯¹‡ J­`.5[G¶6ŸóœçÜ~ûíwÜq-²è{g†Ãaß÷UU•!Óçq»Þ{ë­·ž>}ÚsìØ±Ë/¿üxÄh4ºÏq?~¼¤‰³Y[[{ä#)"E@w9¢å ùÈG¦”Ž9R;†û-ìû~ss󪫮*>·òäÒ'VžÉ9>|ø†nØÙÙ¹õÖÛcŒUUmnn^sÍ5ÇŽB¬*·¼†œóp8c €ÒN5[®_ô¼gv»·Þxcû8~Õ¡gÞð¨oxéÜU ˜ð5´Ä碻þÑ'¾æËµò§Gîðù&"÷ †¼±<<ö‚ç`o²öÔÏQ0»Ñµ_÷U"¦ÍÚÎÚ ž„˜3•&K|Íåæ¹78£)¦Ë›µqÈþ󮇯pX¦Óû ú<ò_ý÷Ø+ÞóÚ?šÍbØë.Üu/ÿÆ/9òù7(ÌB_ÝÀ”î¿ÆÊwóÓŽ˜_ûGk³3°¾½vë_úÂök¾rB*L\ôP˜ã_pËÞðÊ?ûõ?~òGgwÊôŠI?yÔ‘Çý×î¾è9G—_䇌l÷gdÀ!ƒú»ú¾²ú›?ÕÿMú›™ûØÙü‰NÏNÍ é‰Çݽ/ü6 žr±/ùST\¬Ô!çîäÞú?¿òÖjÔÓY_Ýå×Í»_?«ì0Ü4‹sÖb·!õι¥èáx<^4Ñ»×÷7¶&ç¼··B‚Y´¥ãì½_[[[n‡ï_½#æ$ÆV]ÿ¦oûGwüÞ«‡¡Kä&Ù>æ~ëÓ~ògÜ 3„Râl33;%dÉ)¥ÊWK­@yŸùî6—ª Ê’ ›˜âRŠˆ‹B{ø¬Zš#5uƒ¢ï61„ü8éuÑËÏ; å…àüýHl•ZË2Ï]×–=ȯ…ÿ–SB*së½MI¬eR?8Þ¶m›¦)­A–¾Uå$À ÐQ¹ ±€Î:‚ƒ¹R@ h>éy¼µ Ó”E³q`•)"x ¦=ÖÖc®GE¨Ä Úlå+Dt 1èx@çñ'¤mH@>gïÜÁpÎóaÕA·2¡ï€„fÐ÷YëÁ8ÐS0ÎÛÑîaHš#Y‡P¤z,Â>ÄŒ†ZJ _ „z%1z !8ÀX%DɎ;Ï"ƒ( {Dp–B#@5A J0îöÆÙÔëèm; MÛ¢±èÝÙÊ/÷§+›ãR†–Æ,0µ©Ç i\ÑZƨ2kÜÇ©ž$lߎS·ãê‡sh‰^9ԜɚÀ|üɯ·Öw·ï¨4{Fºù®“ïz÷ÖÓ¾àtˆ@9ç¥F÷2Ja­­ªÊ¹ûøäßCœjß±NƘœtù׃;èOçpb÷ ªÛî¼ëmïI©”)Ð|èýügôl0Ì` € 1/JÙ±ŸÅÄ¢RX¡X˳— 0\*­ª–Ÿ±_¥ïëTU&nêF¡9gkópPÈý`þ1äŒåëχ¥[¬ ¡®kÜ]æý์1)I©¡)Dμ %ŠãkimC)I¹­)I¡³:#¢ ".òQ‰šàÌ®EHз8!a¬¼ %êXsÖ¹Ó!8àíÿ×Þ»[–_õ}ßµÖï÷Û¯sϽ·ûöt÷<õF ˠшÒXŠ%c‚dŠà Š ò!ÆÄ)ã¤â`WáÂT¹’8åØU.ìBئ p¶*À8HKB$02x`4¯žî¾ÏóØ{ÿ~¿µòÇ>÷ôížiI3‘Ô}»÷§ºNŸû8÷<î¹û»×ë»`"‚ÙÀĨ‹²æeYpÙÌs;¹É9ƒÂmÃû/]Ø!À€"ç(Ò \í hQ=V›êYB„}šœ™Á¢ë'+0ªá7K PiBÃ^ K C7eea’œˆÏ,’€ ØÍ‹3¡ÁêŸöÑo©O«¶<þ,ƒ±&d‡<Ùd8ß#i@Ås,CqZŒuŽÓ€ì eàÒ¡Ô…U€–³ý~wïV?ÄGæ5Ta` |öìëÞøu\â%Çd‹£_ÿÐGVËd_ëu놨á°5ÆCÇ5ÔkKÅO¦­N®_]{•?ßôð†Þì©ÎÑí=þD÷Ô%%™d+Ïnî<úæ~}„Æ8Ô`ðÎ{ç‡PÉcbœhèZ·­K/Ò†oŽiÕ¤¿Ž6†UKëgg°¬™@kÈšOJàu–À°!.zp¦ÜŒ¡w`-½«Ÿ,Çļžç6cu]4C×ŵf¬+"ƒßÉúב³ û¸T¯÷Óþª [ÙÍÇcN ìr0‰a«-ÊŽ]Š`ÃÐä@«ÖU DÃTæ6¸ŽØ0_,æd‡È>g -A=J÷Д0Ñ›¶o„ekM‚if ¤— à#DLÙB‹íˆŽ‘  >Ñø+른¾ìÍ‘Së´%‹$KÙÏy™ªHI@höùx°T Ó4œ{µ¹GBQ”³1’ fmns¿ú5k‚JLß9%ÁÈ#Oóµ™ó1[u»Ê ]èÓ×ßûeéSù.ëï?#O·ñéèžÔ”RùoÂw}]üš¿ê'÷t¨ÌP®nÏ‘ä´ züÎOÿ³×ß@Ú?lòWu“Ëõæw<ù©+U½ciðxÔØsQøhÞ7M¸YzhýnÞÝÝïûÞ¹Ð÷½÷‡ÜÈd2©ëzõÍ'VÌžÔƒÁø}ww½»i(ÏÆöööðáºL €" ,FiÈX«*±£Vìþ«ÿâ=õ/|úçÒiÔßúöo|ßϾð¸u–P##_X¡œ¼ù ëSàˆ”½ZT@êsÒ\–ÎèñgŸüÍOíh–¦¶ƒ«ó*¼å]ê¦ü–z˜Œ|‘ŒÊq»Â'«·ŒPK½…jŠ=Ù¬pÐʆa*¾[¤ý}wy7í?…éYWÖ‘0˜.ª½çϽâ[Þyðïo {…U‹ƒßú?ö®ÿêÚê>vAU›,_ÀEwA89š0tâºa+Å‚ˆº.¾ ]ÕàxÃ7›Yï“"x'Í|ŸDðç5—ikKÔ.º/ì¼íÍ7»k}ɺ‘‘¯ £rÜæØ°Ò›Br˶6ÏòFÆcC1UJ>8p—hïs8wÅ&·²š…>·ú)|Q$凿÷;ßÿ3ÿúÁ˜k–Ÿüä³øà…oÿžž @kðN»>_à}»Î2­7¤Vƒ©øóxú¾?ií·.GŸTŽ“É.GÀ”8(‹n(g>þøg~æ÷–ÍeM²ˆ3¯¯y÷7`ëìÍîWìtü¾FîrFå¸]9q^«`‘Å4ûí\•®©Ð¸4‰~*˜xîzì/ÜÑçpô &÷³o†i;ZõõžŽ#‘C(Þôº‹ï~{û³¿T÷œKžd|äÿø‡ßþMßа,ļðçy^CžjPŽõVíáKCÌñEæðN΂¬c—auÇÉO®ñHdp0‡™b,Ø}èïÿHÙÎgÝ‚z7¿÷@óòoûFÐÍþ饛Ќ|Å•ãvåÚ10¸@±©Õ¶¶” 4µnæ› 0ÇaëŸÆÁ3ØÚ' ~_‘}_2Œ’¯ýËÿÍÏ|àßœoÑú°`‹ýÁc?ú¿ö¿ÿžªä##O$4œÉ¾öžÁ2ädÌã!ä›7TÈ×£×kí9é¼´úýœØlAD¤*FT›0‰Ñå}ä3ïû?·´Õ‚&ê:í^ùÍﯾTÝìÁÿÔÍ¿42rû0*ÇmÊÊîu}bëJS*7¹Ü@½ÀƽéQÇ›¤³6ÏZš_ÂÁ%̰‘AbÃÞ§S”4gLàå­œÿÖwÈÏ}Ø-u¯± T|ìGßûµ¾>œAٕ‘ Ÿ·ÿó:Ù…ÕøÑçu6#¢¶m‡¨%ç¼Þ´±±ÄЬPfeî5+¬À—’7ˆ‚Ðí}úßýôßükoXö]$¥3{Eƒ7žÿêÿî›MȺ†Gu9åŒÊq»B×þ_ù%³JŠÁKU¸*pAðF1¢kµ›ébývb§gËlhS|àñŽÿñ/Ý·ÕÁ獵çŒý¯ýoOüÊ¿ÝÊó´hø• ­EBa˜°”`†©*èÚXø £Ï7}z>«‘ìã"Çúæ8¹# Ïj f €'âo}F@dàÉg~ê{ÿÆ}4yÜi]ÔäÓQºü®÷¼ š¨Þ º±Ó“DyAFå¸]¡•gÕjï ÎKQ£Ú r‚ªASPü4pÃ(æs,h¹ŸÃâ ‰(ã´Œê4å%´ðÀ™ïøû?ü¬“pκ¸ti³]üî÷ý­Åo¼ŸÆº„‘am‹."e°Šx×Co *Nú¢?ÿÎ×k*p¼>v½Üi¸ùP#!BKèØVÆIY- »+´Äæ².ZV¿{ù}ßñç/>}¤G½V9çYÚ{ëŸydûkÄÙ3VlÁ•4#§œQ9n[ÖÛVÀCÉ‚= Ê©•›¨”5š’7¼ND«¬‡3ÌŽ¤;Òų:{ñ†Óôû%d¡ ˜·ñŸ¿íþâ÷<Ѧf2íf‡³-{î÷>ñ‹ù–‹g»ÑFˆÒ$ PFÊ009ƒ[¯ ¿áǯۢž_$?©4ƒ«àɦ©!þX •^×ÕØ°ýmŽ”X|øûþgþÍÇ–Úî¡ßYÒ^¼zÿë.¼é=ïèÃgÎõnä@_Š5ë##·ŽÓsd¹ëࡳvð´ì)Ô¶s¹eÅÕêJ›—jÂB±X"ÎB¿k‹gÐî"-OIuÔˆ=Ôw‘À µ‡ÿ§ï?ÿ-ß\F¹Jz®(ݤºú‰Oýü»¾ÇöŸÅ&º´h‘æÐ^¢Hi½ìz]ÉXsCCíú“Ï9çuG/Žeæx•ø gИ4er¢ÐVã¼_J…Éîå_ý«?xùçeCx?ôÍ™ºˆ/¯ßþíïÀf ­³ uTnrº¦ûGFžÏ¨·)@ƒéå°3ŒD]™ÃY+Π:ƒrbUIII“àQ`Ñ£=ä~íeÌŸ³Å^À©©w†¢ëÄ…ùl^SL7¿åïþí+“êüù®<ûœWÚÞ˜Ôþä¿ý¦ïÆòrÁ¾€E¤ N@¶~ý»>ø›z«:LyëÌ×õÖÞÿÉßÿ;ÿí÷?ñó¿BÑ8(2QmíuxRÖvè_p§ÀÐXuƒ¨œɤKä9ƒ¼óHØÿÍOý½ïÿëñ_þò½u¹ë;á"MÚ«ûßôžÿì·¾j&Wü¹i—ËrúI…˜Š2äS ŽŒ¼0òC?ôC·ú1Œ¼0ÑñÿBÄCŸ;5B-õI,–°y/KéYµ#⢙P(²cW•€AD¸÷€A=¡ŽÕ·„2€¸A¨áA F ì£Ú¸÷{ßôÇ>ñ‰ïž¼tΰHóÝ ûcOîö¿û½ _ÿÕmYÌ]P_¢Y Α0&R3âªί\BÒ`ƒn "#P‚ˆMA„ÝýI©ä.‘™¹í¦&[UED ll’ÄG–¥†BÈúOýÄû>úëýÖ‘4BEC~6¿Ôïì¿þ=¯}ÙÛïµz^Lߘùœm݇éElÜ“%]Äéi˜y>£rœ2f¹¥nÆñHâÚ!µÈ‰[¢9•" h¸˜Z± WB&$Ž$ ³è@0œ’†ÝJ±;?Ú~õƒý#¿ö_,ûìÏ—îOè‰||ñë¿{߃÷M.ÞïHžšX`ŸÛçK5ËŽÔò&hÓÕD«’õ’”,³ö•(SNœ—¹ŸÍÀFl¯:²˜‘μùfB ”á0wê •ÿôGÿÏ÷ýÍßùßÿö//¶­BÓ|oùÌæyyóŸ~øÕo|ïLhç,üy.¶yr&ç94¶ÐÑQ9FN5£rœ:2C‘;Î-i ma‘¤Ž%›v¤F¡F95ßÀÊ5³ÀDÃÎQ0@§äÈe@á”Øíl?òÎwþƯÿÆÑ•=žuó³þÌalœöñ?üÝö7;¼ç‘×Úbßz¯…ÓÚ{ç&‰|Ò¾vi£®¢rJ{ê{qâ@³'r`ÎêI|ËLEÌÒ¥?Úá^Í'Û›TF$”é°Êé³ïý§ïÿÞ¿²øèoîHNyF’-¡ÏWÎ?T<ü¶W½ìáûèÞ)&“Äo܇ú,M.PsRب#§Q9Nd 0ÌRÜQŠ²æ¶€ÝÂRâP¢Ø€+ÉŠRœC(Iü0^È §¥/tŸâNZ®½pæáwãç<>¹÷ʽn&:§nZ.Ðï}ø£Ÿù¹_HWŸå7|Õ„­Ìi––WJ]NËåVK˜¼‡÷‚gˆAŒœÁ)DÙxïp‰Z³(T,¸'îJJÙrA4%—.¹ÅþOþ_üK?ðŸ~ôŸ?¨¦žÉsqa+3>¸ðPó†·¿ü¾G.b[SSaz¡w›~ã~4g0¹å&Èoz´±Ä8rª•ãB À4Yî9uÐ5 Áú}dïj %9Q.Å3\€fOÃf=œ'Ä*Œ$;š‹£ÍÉëÞý®œú?øðÇP×ö.l§*íégâgÿÃûîÊÕÏ„‹ÛB›¹ªsSÌC•› ° ¬@†ÐÁÕˇIa$¡j²/+¥IŸJÖP©]~ò3?þ¿ú?üà¥ÿÄ“›U‘SÚ;ÚPSoo?›–¯äü×¾õ5g_3ÅF3NÎô~§š>Ø×;\Ÿ¡ú,Ü$fÇÙªÓóŒ¼ô»MFn; °Ng—õðI:ü>iË«¶xJ–G¶w Gäl]ÀÎCØ<—'¯”3ؼÕ9„MHXý„S¢€Æ.ù"¬õδ'¢«ýÈ/þ¥^>öé‹“ÚõÝ~èg\pÛ”‹yŸëæÌ£¼ì¿|×ù·=ºùÀC\5KôÞyšj9ƒ}‚„“± ëºœ£ŸõåFU¦öàýþ?ÿ¹gþÍ¿£«»M=ëQ•³ùrêŠ U}yvÙ.Ôü›}õ½½œ ØÌZij6±ñª—¹âžvçåE½-“H:ã°:u¦‘‘dTŽS†êjt!µ{8zVfOÐᓘ]Ñå%Ì÷x~ó½Ü÷Vlºû1=—·^%õL/¢¹¨ÕY Ì™êÐ}t XF”~ž–¥÷³)Y: †Ê|þÄßý'ýïÝ‹W·¼/ç}ퟣ.°‰Ëqšúìë_{ÿ׿Þ}ÛÛ/ÞwosïE” `0ñ€(X Ìöw]Lq¾8¸|y1›µ¿öÉßûÐÇ®|â·ë6Ù"!yÂÂq^æ3ÍÖ¼;ÚÕÝGßý†GÞõFèU´{ íª-:svŽÚM_Vœy5´Y^|uYN©Ü àX°-1ÇÈ©fTŽSFN`©Ÿóâ9™=…ÃÏa~Y®èâŠë÷0¿ÒdÕÎØ8“ϼšêm4ur‘š Rn‚œæÌr:Îy ÈíÒ¤8Ã;@2ˆ†¤]Gÿñ³ý/?òØOþ¬5î´. fèÛ`,Y‹˜&æ®X ÂSSŸ{ùË'÷^<û²­*©(À,Y]ÿà±ßî/ï<ùt¿H1×i?sáÕ(Å(ì¹ð½æÖæÙ=ôæ¯~Ë·=^Iiñ;]ÿ´? a²™ËI,7‹­‡¬¸À~Óó݅ׄ¢&©a‚&˜%âqŒ|ä3*Ç©£$à ý‚æÏèÁéüŠtOä£=ž]æùUÌS]9ÁdË6¤ÉYlÞ‹æ>›œ§É| ´H 0e"càÔøb´€ÔPê#>ý?úã?ùÿÌû¿îàÒ2FrB>ôffvfVØ`f I ƦlVÅãñr ƒ}Ø÷Žs5Y)ÃiÏBòûSûš?ñúGþÌÃçþø=}{îstù9,Ú4)]]ccÍÙXÝcõýûÁ_ÄÓ—êu¹ÄfÝÅØ§ä9{©’BübÒ¬¤D¡ÉŒœøÀa׳Û8*äèâ=¯xç›ÿô·¾më ê–·§/çn7Ï.ÙÁ36»*Ú©df œ¢¨6QlJ¹…bŠr‚²ºÕ/ÓÈÈ—…1æ8u$ƒ3ÈyŽÅemøè’-v1¿DÝe,¯ØâJêŽTsvPmbz“‹©¹×ê hv¸ØpL&ƒ_àÐle åSttˆƒ'$Ã``ƒ¥¬¤Rx[<ýÔÓÿþãŸýÔcóýÖþ•Ýùîž$- Ô%IêRp—¢\&ÎŒP7“é†{Ë›^ùð_õ–Géå¢&ôX\År7=–Åìi¿÷f—Zà<ª‡PÔh΢>‡ê<šóhΡ˜"lÞê—jdäKÏsœ:V=Q4,n’€0 úÎ2,öl™,‘%†YZ -Ñ3Ú¾vReà‘$ž¨¦¼ 4;÷Ó¡€ FÀ÷Yò, ¤ÞÅ‘W¼bûÁÞþž÷ g̳çžëf˽ƒÃç®^ÞMí2sb'õtsçâù­sÓí-ÜsE@#^2¤@Ç‹–çGX.j=tË}w¸‡Ã],g&DÕõ$¹©+øM„m ›¦äj¸âV¿J##_Få8e¬öv¬2ÈÃ×&‚圲¥Ô«%ošÅŒ;oyI)¢;„/!AÄ9BŸÙD’kä8׿NƒÝþ ðjQ;#3 8äe‰¢†sjÈà°ªßL«ÉÆÙAïSƒfÃ+ÌÀÌ9%0±Y" îsp9Çç;„öðèòt~Ë],÷`=‚§Pf7ͶAÕ†ú —Ûg9l›Û0©ÀrJr##/ŽQ9NCr‘¯X¥;‚qްS¨A‰, 'UClyy)ÀžH€§æz"9²ò8’áÓRæ0SˆÙJüp& XaCµŸRFK&Žü µÇ»yUÕ³OÖón¸žˆ=RRØ\™ãê³è§}‹nÝAއjKqž‹ gÅo¥bƒÂŠM”›(·¨Ø0_(ä´Dp##/ŠQ9Nùút’”$pZqhZ¤i nAÎkŒ{’%usHe®"aKΈÈ*èøZÍý´(G @Aj,R„&X=T@5c’­¢à¡9A¦1Ax€uÐZ°¬59qn—GùJÆÑ•ª˜—q¡ý!ÇyB› ËB,ÞûÒ…)Â6‡’BƒÐÀWð%\’SÁŒ¼HFå8eøëì¼®{”gÀ RR‚rfŽqq¹¹ëæÔB’`$?DbÔ Ø†ßT °®×ëéjÆa¥*·×äàðÆ .Ž „5P¯-à†ëL€¿ÁjÐ!6Y?ëMÐ#A[Çus^¶Xa~íæO»”`ìÊ‹TÕ°­åû†ÝüÔÊ{ÐìP9…1Yrš å­~©FF¾ôŒÊq§@ äKÎ%¥©B¬áÕB¤Š˜!¶ˆsr>sMª,R€*Às ºÎL‰×t3îäõ§ °­V½–‘34Z×YZR\¢Ÿ£_ ÿ(µPyržCP"Tä*ø ¡‚¯ÈÆaº™ýpGîTFå¸S  !Jf‰¬EVã‚XЗ«yëœ,u´Ü‡E¥Š-$063È×FÞ@<2@ &€Vä;:qt·l¹·ØZês{H©åî€ÛC,¯byí>õ™7qRÖ¨¦(§¦Søå6Š „. Î2ˆÇÈÈÈøÎ¾S ¾‚™i†¦¬€«ˆE¸€²Z77í©ŸÁ"»-A„˜ÍÈTI¹µb›„=e‰èô´[½TŽ]x³i¤Ü¢ŸQê­Ý—ÜswHíUÌw±<°~A³›p(PNPLÍoR˜¢Ü„Ÿ ÚFh&`gƒ±Aè´”FF^£rÜ!ä!ÙB¾¢œ4dS€–£AœÔˆqiš³u{°n¥fC±V*{Qˆ‘£c{¨;%À9GÄ%ºúCôKײ.©ÝC»~†Ô0Tg¨(Q6&9lŸrØ¢¢±r“|€x¬¬àOÍ0þÈÈK`TŽ;2( â!5ifÀ¸ÐØ‘ b˜¨;ÐØZNh÷-w…̈ X4*ÔyÑ ®ƒàø?fhBŽ–Zêgè©;@ßr»GinÝÒÒ˜ ÄÑ EW#LQmQ¹רoDëMït\¹¹•ã :xˆóTT€*±Ó©EO0X†Ìà™õKI ¢%Ãp ‚F5Ï¡0URƒ(¤ ð{Ь}Gqiý!wûè—Ô ÎÑ › ÌWäk (J„ ¡¦°)Õ&Ê)¨‚x–ýAW㚃÷ðúºÜÝŒÊqÇl«Ã¤ÈÎP4ƒ¶È¨‡EÒå94jj3Í™ ð\ÈAÕh©0Áž1Ø›°O½æl©Õ8ç~nqAq‰8×8ã~iý‚RgLGE?H€/ÈJø®¯V ¦Ç3‡—Ü©ŒÊqÇàpí—Aªlq¨Ò(Á!P_Akò¥Ã®ÔnIýÂÇ]ä%¬…¶èOYRÝ„°õŠÐS6b«)ˆ‰N¸\­œz­—nÑ[+ë©"33J²zh˜ØÈbÌ9RžiÛb1siAº@Ú׸ßÇY9{ ÙÌ\r‚²¡P{©·áj S-7©Ü¢PÃÐñ³¦2GFîtFå¸Ã!7eíȲ‘FøVAYÙÈ4#÷PEjÑ/àÀ‡W@àÉLA Η@<¤­hð¢îÀ®ÕÏi5˜xK‡?ž¿%—hHѰŒÏ´Cì4µ–Ò’b˹£¸@>D:¢nNqØ;q¥ùš|M®„óp5\IE-E_@VÎY##w£rÜéøMB/ZØ`åD.#;tÈý –ÑwÐC¸Žá¹#é³U„ Ù›xvžƒ"FF+•NñmoeŠæ„Œað¢ž@ŒÜ#·HKKöKˑӂb‹8C·x„xDý¡Ë½!8ò5µ…¡¡PC¼…)5ªm¸Ú° 2F鹫•ãN‡jøˆD™Ð)C—l¨Àpà‹ h´ØRê` ±Bê‘; =cJ‘‹(L`4CØ CìÄ!ód¬q«R6ÃcŒ¸ˆŽ?a€µHq´DZR¿¤Ø’&Ä#J-ºÚ=ô3¤9´ÍÙmr(©¬á„F}#EWÚ¡*7àjƒ_?å1E5rW1*ÇN˜„|€I•-÷¬¹pýœ809°CïÐ/(÷€".aù¸b‘ HÐR±zäà  ÅâŽ3ülljªaîIy½nĦÐ3¤9R‡Ô"ΗHs‰4¡;@jÑ¡?D\B3Hà ”[æ=…©ù:»~ÄBIå|© >jëà#w£rÜá ÃÌÄ_€b#K-GöÆÄA\~í‘3ÔÚ•X†ÒR\‚x¸)á H‰aðÍÕ ãÒÌà|KS7¤ 2Ø›JÈ=r„f¤9r‡~‰¸DZ`Øy•ÚäÎâ ¹5»¾†ª6IŠÒ˜4S+6(TjH9=ÎΑ£#w£rÜá0z™1ÁUDÄ`áŠJEê3@Ì2è‡Å–b ËŠl©ŒÍ(¤„וr¸±0ßR.!Þœù‘@ÄbdtË@H;@¡9®d#õf†8³Ü#.)/(.çˆ äí L$Üü¤¦Â‘+áø òS*6à+xÐ0°Áݦ×ù_ŒÜéŒÊq‡CÈCW‘ƒ2¸`o‡°šUKCJ 5©B“ªš%$Hà $ !ˆ‰ÚÐëÊ1+˜û3À@t Û4“eÍ=R‡ÔC{ʉ4§ØRN–ZN-Åq~-uf‘X!B!À×ê¦Æ K{¸@¡¤0ŸÀ7€ÕâvàdZLó ôtŒÜ¹Ðà¤=r·¡Ë«–zŠKôGœæègˆshFœ[ìr¿´Ô±v‚dPÝñð%¤‚+L sX8L@<有7q8s`v 9‘dë¢òuËøn0ÇÞ–fÆr²sIOØh 0˜¢ë424Ã2ºã˜ÃzäÖR›sRK¾=$ë¡s¤#t ôsh†ZâŠÄ“/Í•¾"_²„X5,]MnаÙ»õÝŽŒÜåŒ1Ç] û Ìh(&rËD$€1“Û½#4[7#ç‘{¸¨©0W’Fg9‚à Ó)Œ‘)Q'°"È1]Sˆ¡_ÖÖ[¯S"˜]7º~,–XNf–)%ÓLMÐ/€ *­årÏš©›™FØ"Ç%RG 1³5Ø‘ Ê\©®  ¹†$oàK¸°^w522‚Q9î^\€8b†DÀÎÄYŒÌŒ\’T”–È-â±U‹––Èœ§ÔÁÊi;“ìX ä’R W9…ƒ° HˆØÈ 1Ã/"aµ|p—½~ð›†hØ0:f3)icKh2Ë”£j"ÍjqIšM#é’Ò’s‹Ü“Et ²ŒÜ‘öªJäáØS1…8H )LJöæ¦ÀÅ9à °Ç53ö‘‘‘Q9îV rñÞ8¨‹ÌMH\@*À…r«¹sñ€AÕZN‰¬…z0³/Á 5¸Cì "`”ˆÀäŒ$ÄĽDBD""0l–1ìžÙj#á Ph6dR3Ë•a™,[Δ{h"Sh6]š%&þb‹´dëâÐjlÌL˜+øR 4 ’\ß ”OåY¢á©[…<æGí•ã®EWãrdäì •årRn‘ æR”¬ P%MœÕ)eÄDš{f)ÁÜ‚— b €åðyˆ‘’`D  D¤R£ëc˜`"@Í2Ìtˆ0L àÜ v,ë:Gž[Nª©£ár¥1a0‘xâ~i Á|Aìà*øÊ\ _“¯á<¹jÓ°ã—ËV%–±Ð122*ÇÝ Ùj^ƒI@d$ÄžUa9&As \Áu¤¦Ébê(Gµž4ÁrR#ꙹ–¥€`C ’![5Xt;°cv+… A†Eç×p¸až ´šY¹ëcŽ‘ëÈC jš‘;MŨªÜï“eʹãÔYn)'hι[4Qަi5‹GCÅ[„a¤|X\á‹k¶×]Þä}¨ƒŠdd]¥¤Ô`kA€’ŒXÁ«8ÆUÄLˆÈ™sàÀÌSo\²/LØñäž[ý’Œœ>Ƙcä: ò3Dö"ÄT šIYÀBÉAzhæLÐL¦–±74dl€Œà¡@`ÆŠîdÂg}]orsmP‡–Ü!±¦Äƒ™H„Ęˆ†‚ÊPœ‡øáCsIL<8ˆ”ð%±_ ÷ŒŒ¼HÆ¿œ‘ë …V8XÀ¢„ ¶cÁˆÔ!÷È=Ì(Á2L)§!ìJ$ÑÊmÑ f¦Ç©Ç•çë‡Æ?oh¨ÄȘˆ`z´Vå†xb9ˆLàAì‰üÐvl~Bì Ž¯¥°üh652òÒ•cäFèÚ!)àPÔ =R‚ë‘"4BËÚ×*Õ 9çÀ2T¡ÃX_†éÐëjëËc yáM‚&CD¯†?†µV 1Ùà}ÂŽØâAñ«˜c,ÄAG,p@n\>2ò’•cä:Ïó _õAÀ”¡8™¦¡ÎÀ4Qî!zìbþ¸'ÊW!HZ'”ÃŒ†+|“l•›'²@$ƒ¨2$6„$Ì f“Àäà8¬”Ãy°# DbDÄÇw–Ç?€‘‘—Äø‡3r+Ù8)%& uˆ‘ƒ)é0%Ë–i´œÈ²Y¦\˜ °lN‡O`_®~îqÀa«‰¿|ÓD4D?ƬÄ06&áòXBìˆÙ†I*T˜%¬Æ×%8¯œƒôk1ÏxŒŒ¼xÆÞª‘Hލ×t¼g|=@W—«} ‘Ó0ua)ƒÌ,›eÓÞ ¤¤.­®KUqåX9#²1ƒ¼²(ˆHc ó†Cµƒ\Bì§Ì OÌz½@ص”±Évdä¥0Æ#7°NäÐqýÈ 'D€¯áP°B´~Ýêg92r71*ÇÈ—…|âäÿÚ¸™Ñ‹s)?iK2ˆÏð¡[еOãlßÈÈW‚ñïlddddäÅñÿ°u&ÆGB¿®Æñæú„À-¢RIEND®B`‚espresso-5.0.2/Doc/user_guide/node3.html0000644000700200004540000001047212053147354017126 0ustar marsamoscm 1.1 People next up previous contents
Next: 1.2 Contacts Up: 1 Introduction Previous: 1 Introduction   Contents

1.1 People

The maintenance and further development of the QUANTUM ESPRESSO distribution is promoted by the DEMOCRITOS National Simulation Center of IOM-CNR under the coordination of Paolo Giannozzi (Univ.Udine, Italy) and Layla Martin-Samos (Univ.Nova Gorica) with the strong support of the CINECA National Supercomputing Center in Bologna under the responsibility of Carlo Cavazzoni.

Main contributors to QUANTUM ESPRESSO, in addition to the authors of the paper mentioned in Sect.1.4, are acknowledged in the documentation of each package. An alphabetic list of further contributors who answered questions on the mailing list, found bugs, helped in porting to new architectures, wrote some code, contributed in some way or another at some stage, follows:

Dario Alfè, Audrius Alkauskas, Alain Allouche, Francesco Antoniella, Uli Aschauer, Francesca Baletto, Gerardo Ballabio, Mauro Boero, Claudia Bungaro, Paolo Cazzato, Gabriele Cipriani, Jiayu Dai, Cesar Da Silva, Alberto Debernardi, Gernot Deinzer, Yves Ferro, Martin Hilgeman, Yosuke Kanai, Axel Kohlmeyer, Konstantin Kudin, Nicolas Lacorne, Stephane Lefranc, Sergey Lisenkov, Kurt Maeder, Andrea Marini, Giuseppe Mattioli, Nicolas Mounet, William Parker, Pasquale Pavone, Mickael Profeta, Guido Roma, Kurt Stokbro, Sylvie Stucki, Paul Tangney, Pascal Thibaudeau, Antonio Tilocca, Jaro Tobik, Malgorzata Wierzbowska, Vittorio Zecca, Silviu Zilberman, Federico Zipoli,
and let us apologize to everybody we have forgotten.


next up previous contents
Next: 1.2 Contacts Up: 1 Introduction Previous: 1 Introduction   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node16.html0000644000700200004540000001243512053147354017213 0ustar marsamoscm 3.1 Understanding Parallelism next up previous contents
Next: 3.2 Running on parallel Up: 3 Parallelism Previous: 3 Parallelism   Contents

3.1 Understanding Parallelism

Two different parallelization paradigms are currently implemented in QUANTUM ESPRESSO:

  1. Message-Passing (MPI). A copy of the executable runs on each CPU; each copy lives in a different world, with its own private set of data, and communicates with other executables only via calls to MPI libraries. MPI parallelization requires compilation for parallel execution, linking with MPI libraries, execution using a launcher program (depending upon the specific machine). The number of CPUs used is specified at run-time either as an option to the launcher or by the batch queue system.
  2. OpenMP. A single executable spawn subprocesses (threads) that perform in parallel specific tasks. OpenMP can be implemented via compiler directives (explicit OpenMP) or via multithreading libraries (library OpenMP). Explicit OpenMP require compilation for OpenMP execution; library OpenMP requires only linking to a multithreading version of mathematical libraries, e.g.: ESSLSMP, ACML_MP, MKL (the latter is natively multithreading). The number of threads is specified at run-time in the environment variable OMP_NUM_THREADS.

MPI is the well-established, general-purpose parallelization. In QUANTUM ESPRESSO several parallelization levels, specified at run-time via command-line options to the executable, are implemented with MPI. This is your first choice for execution on a parallel machine.

Library OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effectiveness relies upon the quality of the multithreading libraries and the availability of multithreading FFTs. If you are using MKL,1you may want to select FFTW3 (set CPPFLAGS=-D__FFTW3... in make.sys) and to link with the MKL interface to FFTW3. You will get a decent speedup ($ \sim$ 25 %) on two cores.

Explicit OpenMP is a recent addition, still under development, devised to increase scalability on large multicore parallel machines. Explicit OpenMP can be used together with MPI and also together with library OpenMP. Beware conflicts between the various kinds of parallelization! If you don't know how to run MPI processes and OpenMP threads in a controlled manner, forget about mixed OpenMP-MPI parallelization.


next up previous contents
Next: 3.2 Running on parallel Up: 3 Parallelism Previous: 3 Parallelism   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node6.html0000644000700200004540000000624712053147354017136 0ustar marsamoscm 1.4 Terms of use next up previous contents
Next: 2 Installation Up: 1 Introduction Previous: 1.3 Guidelines for posting   Contents


1.4 Terms of use

QUANTUM ESPRESSO is free software, released under the GNU General Public License. See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the distribution).

We shall greatly appreciate if scientific work done using QUANTUM ESPRESSO distribution will contain an explicit acknowledgment and the following reference:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569
Note the form QUANTUM ESPRESSO for textual citations of the code. Please also see package-specific documentation for further recommended citations. Pseudopotentials should be cited as (for instance)
[ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.


Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/images.pl0000644000700200004540000000037312053147354017031 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate images original text with physical files. $key = q/sim;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \sim$|; 1; espresso-5.0.2/Doc/user_guide/contents.png0000644000700200004540000000042612053147354017571 0ustar marsamoscm‰PNG  IHDRA¯H PLTE¿¿¿oooççç[Íã¹tRNS@æØf¸IDATxœ= Ã0 …_ÐjÈUT¼âKô>†¬Y³wö:¨x ô*…®…VþKÈÐ7HÏŸd !xx8Ü!€2  ÈÛóâª*dqM #lÊÁ—”îa"¢­–Ôd2Ê‹z¶÷ƒ9mÙº«ÉኺCÒSr-$¢Ÿð¡¡—â»BDÌÁ`GRêœÜ ©‡ŽwýAÚsšÜ¥˜V töÎGIEND®B`‚espresso-5.0.2/Doc/user_guide/node12.html0000644000700200004540000001427712053147354017215 0ustar marsamoscm 2.5 Compilation next up previous contents
Next: 2.6 Running tests and Up: 2 Installation Previous: 2.4 Libraries   Contents

2.5 Compilation

There are a few adjustable parameters in Modules/parameters.f90. The present values will work for most cases. All other variables are dynamically allocated: you do not need to recompile your code for a different system.

At your choice, you may compile the complete QUANTUM ESPRESSO suite of programs (with make all), or only some specific programs. make with no arguments yields a list of valid compilation targets:

  • make pw compiles the self-consistent-field package PWscf
  • make cp compiles the Car-Parrinello package CP
  • make neb downloads PWneb package from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
  • make ph downloads PHonon package from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
  • make pp compiles the postprocessing package PostProc
  • make pwcond downloads the balistic conductance package PWcond from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
  • make pwall produces all of the above.
  • make ld1 downloads the pseudopotential generator package atomic from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
  • make xspectra downloads the package XSpectra from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
  • make upf produces utilities for pseudopotential conversion in directory upftools/
  • make all produces all of the above
  • make plumed unpacks PLUMED, patches several routines in PW/, CPV/ and clib/, recompiles PWscf and CP with PLUMED support
  • make w90 downloads wannier90, unpacks it, copies an appropriate make.sys file, produces all executables in W90/wannier90.x and in bin/
  • make want downloads WanT from qe-forge, unpacks it, runs its configure, produces all executables for WanT in WANT/bin.
  • make yambo downloads yambo from qe-forge, unpacks it, runs its configure, produces all yambo executables in YAMBO/bin
  • make gipaw downloads GIPAW from qe-forge, unpacks it, runs its configure, produces all GIPAW executables in GIPAW/bin and in main bin directory.
For the setup of the GUI, refer to the PWgui-X.Y.Z /INSTALL file, where X.Y.Z stands for the version number of the GUI (should be the same as the general version number). If you are using the SVN sources, see the GUI/README file instead.


next up previous contents
Next: 2.6 Running tests and Up: 2 Installation Previous: 2.4 Libraries   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/labels.pl0000644000700200004540000000423212053147354017024 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate labels original text with physical files. $key = q/SubSec:para/; $external_labels{$key} = "$URL/" . q|node17.html|; $noresave{$key} = "$nosave"; $key = q/Sec:Installation/; $external_labels{$key} = "$URL/" . q|node9.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Contacts/; $external_labels{$key} = "$URL/" . q|node4.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Terms/; $external_labels{$key} = "$URL/" . q|node6.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Examples/; $external_labels{$key} = "$URL/" . q|node13.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Guidelines/; $external_labels{$key} = "$URL/" . q|node5.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:manconf/; $external_labels{$key} = "$URL/" . q|node10.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:LinuxPCMPI/; $external_labels{$key} = "$URL/" . q|node14.html|; $noresave{$key} = "$nosave"; $key = q/Sec:para/; $external_labels{$key} = "$URL/" . q|node15.html|; $noresave{$key} = "$nosave"; $key = q/Sec:Libraries/; $external_labels{$key} = "$URL/" . q|node11.html|; $noresave{$key} = "$nosave"; 1; # LaTeX2HTML 2002-2-1 (1.71) # labels from external_latex_labels array. $key = q/SubSec:para/; $external_latex_labels{$key} = q|3.2|; $noresave{$key} = "$nosave"; $key = q/Sec:Installation/; $external_latex_labels{$key} = q|2.2|; $noresave{$key} = "$nosave"; $key = q/SubSec:Contacts/; $external_latex_labels{$key} = q|1.2|; $noresave{$key} = "$nosave"; $key = q/SubSec:Terms/; $external_latex_labels{$key} = q|1.4|; $noresave{$key} = "$nosave"; $key = q/SubSec:Examples/; $external_latex_labels{$key} = q|2.6|; $noresave{$key} = "$nosave"; $key = q/SubSec:Guidelines/; $external_latex_labels{$key} = q|1.3|; $noresave{$key} = "$nosave"; $key = q/SubSec:manconf/; $external_latex_labels{$key} = q|2.3.1|; $noresave{$key} = "$nosave"; $key = q/SubSec:LinuxPCMPI/; $external_latex_labels{$key} = q|2.7.6|; $noresave{$key} = "$nosave"; $key = q/Sec:para/; $external_latex_labels{$key} = q|3|; $noresave{$key} = "$nosave"; $key = q/Sec:Libraries/; $external_latex_labels{$key} = q|2.4|; $noresave{$key} = "$nosave"; 1; espresso-5.0.2/Doc/user_guide/user_guide.css0000644000700200004540000000157312053147354020077 0ustar marsamoscm/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */ .MATH { font-family: "Century Schoolbook", serif; } .MATH I { font-family: "Century Schoolbook", serif; font-style: italic } .BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold } /* implement both fixed-size and relative sizes */ SMALL.XTINY { font-size : xx-small } SMALL.TINY { font-size : x-small } SMALL.SCRIPTSIZE { font-size : smaller } SMALL.FOOTNOTESIZE { font-size : small } SMALL.SMALL { } BIG.LARGE { } BIG.XLARGE { font-size : large } BIG.XXLARGE { font-size : x-large } BIG.HUGE { font-size : larger } BIG.XHUGE { font-size : xx-large } /* heading styles */ H1 { } H2 { } H3 { } H4 { } H5 { } /* mathematics styles */ DIV.displaymath { } /* math displays */ TD.eqno { } /* equation-number cells */ /* document-specific styles come next */ espresso-5.0.2/Doc/user_guide/node17.html0000644000700200004540000000616212053147354017214 0ustar marsamoscm 3.2 Running on parallel machines next up previous contents
Next: 3.3 Parallelization levels Up: 3 Parallelism Previous: 3.1 Understanding Parallelism   Contents


3.2 Running on parallel machines

Parallel execution is strongly system- and installation-dependent. Typically one has to specify:

  1. a launcher program (not always needed), such as poe, mpirun, mpiexec, with the appropriate options (if any);
  2. the number of processors, typically as an option to the launcher program, but in some cases to be specified after the name of the program to be executed;
  3. the program to be executed, with the proper path if needed;
  4. other QUANTUM ESPRESSO-specific parallelization options, to be read and interpreted by the running code.
Items 1) and 2) are machine- and installation-dependent, and may be different for interactive and batch execution. Note that large parallel machines are often configured so as to disallow interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your specific configuration (shell, execution path, etc). Item 4) is optional but it is very important for good performances. We refer to the next section for a description of the various possibilities.



Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node14.html0000644000700200004540000006727212053147354017222 0ustar marsamoscm 2.7 Installation tricks and problems next up previous contents
Next: 3 Parallelism Up: 2 Installation Previous: 2.6 Running tests and   Contents

Subsections

2.7 Installation tricks and problems

2.7.1 All architectures

  • Working Fortran-95 and C compilers are needed in order to compile QUANTUM ESPRESSO. Most ``Fortran-90'' compilers actually implement the Fortran-95 standard, but older versions may not be Fortran-95 compliant. Moreover, C and Fortran compilers must be in your PATH. If configure says that you have no working compiler, well, you have no working compiler, at least not in your PATH, and not among those recognized by configure.
  • If you get Compiler Internal Error or similar messages: your compiler version is buggy. Try to lower the optimization level, or to remove optimization just for the routine that has problems. If it doesn't work, or if you experience weird problems at run time, try to install patches for your version of the compiler (most vendors release at least a few patches for free), or to upgrade to a more recent compiler version.
  • If you get error messages at the loading phase that look like file XYZ.o: unknown / not recognized/ invalid / wrong file type / file format / module version, one of the following things have happened:
    1. you have leftover object files from a compilation with another compiler: run make clean and recompile.
    2. make did not stop at the first compilation error (it may happen in some software configurations). Remove the file *.o that triggers the error message, recompile, look for a compilation error.
    If many symbols are missing in the loading phase: you did not specify the location of all needed libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the needed order. If only symbols from clib/ are missing, verify that you have the correct C-to-Fortran bindings, defined in include/c_defs.h. Note that QUANTUM ESPRESSO is self-contained (with the exception of MPI libraries for parallel compilation): if system libraries are missing, the problem is in your compiler/library combination or in their usage, not in QUANTUM ESPRESSO.
  • If you get an error like Can't open module file global_version.mod: your machine doesn't like the script that produces file version.f90 with the correct version and revision. Quick solution: copy Modules/version.f90.in to Modules/version.f90.
  • If you get mysterious errors in the provided tests and examples: your compiler, or your mathematical libraries, or MPI libraries, or a combination thereof, is very likely buggy. Although the presence of subtle bugs in QUANTUM ESPRESSO that are not revealed during the testing phase can never be ruled out, it is very unlikely that this happens on the provided tests and examples.

2.7.2 Cray XE and XT machines

For Cray XE machines:

$ module swap PrgEnv-cray PrgEnv-pgi
$ ./configure --enable-openmp --enable-parallel --with-scalapack
$ vim make.sys
then manually add -D__IOTK_WORKAROUND1 at the end of DFLAGS line.

''Now, despite what people can imagine, every CRAY machine deployed can have different environment. For example on the machine I usually use for tests [...] I do have to unload some modules to make QE running properly. On another CRAY [...] there is also Intel compiler as option and the system is slightly different compared to the other. So my recipe should work, 99% of the cases. I strongly suggest you to use PGI, also for a performance point of view.'' (Info by Filippo Spiga, Sept. 2012)

For Cray XT machines, use ./configure ARCH=crayxt4 or else configure will not recognize the Cray-specific software environment.

Older Cray machines: T3D, T3E, X1, are no longer supported.

2.7.3 IBM AIX

v.4.3.1 of the CP code, Wannier-function dynamics, crashes with ``segmentation violation'' on some AIX v.6 machines. Workaround: compile it with mpxlf95 instead of mpxlf90. (Info by Roberto Scipioni, June 2011)

On IBM machines with ESSL libraries installed, there is a potential conflict between a few LAPACK routines that are also part of ESSL, but with a different calling sequence. The appearance of run-time errors like ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD AN ILLEGAL VALUE is a signal that you are calling the bad routine. If you have defined -D__ESSL you should load ESSL before LAPACK: see variable LAPACK_LIBS in make.sys.

2.7.4 IBM BlueGene

The current configure is tested and works on the machines at CINECA and at Jülich. For other sites, you may need something like

  ./configure ARCH=ppc64-bg BLAS_LIBS=...  LAPACK_LIBS=... \
              SCALAPACK_DIR=... BLACS_DIR=..."
where the various *_LIBS and *_DIR "suggest" where the various libraries are located.

2.7.5 Linux PC

Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emulation and in 64-bit mode. 64-bit executables can address a much larger memory space than 32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it is not guaranteed to work and will not give any advantage anyway.

Currently the following compilers are supported by configure: Intel (ifort), Portland (pgf90), gfortran, g95, Pathscale (pathf95), Sun Studio (sunf95), AMD Open64 (openf95). The ordering approximately reflects the quality of support. Both Intel MKL and AMD acml mathematical libraries are supported. Some combinations of compilers and of libraries may however require manual editing of make.sys.

It is usually convenient to create semi-statically linked executables (with only libc, libm, libpthread dynamically linked). If you want to produce a binary that runs on different machines, compile it on the oldest machine you have (i.e. the one with the oldest version of the operating system).

If you get errors like IPO Error: unresolved : __svml_cos2 at the linking stage, your compiler is optimized to use the SSE version of sine, cosine etc. contained in the SVML library. Append -lsvml to the list of libraries in your make.sys file (info by Axel Kohlmeyer, oct.2007).

2.7.5.1 Linux PCs with Portland compiler (pgf90)

QUANTUM ESPRESSO does not work reliably, or not at all, with many old versions (< 6.1 ) of the Portland Group compiler (pgf90). Use the latest version of each release of the compiler, with patches if available (see the Portland Group web site, http://www.pgroup.com/).

2.7.5.2 Linux PCs with Pathscale compiler

Version 2.99 of the Pathscale EKO compiler (web site http://www.pathscale.com/) works and is recognized by configure, but the preprocessing command, pathcc -E, causes a mysterious error in compilation of iotk and should be replaced by

   /lib/cpp -P --traditional
The MVAPICH parallel environment with Pathscale compilers also works (info by Paolo Giannozzi, July 2008).

Version 3.1 and version 4 (open source!) of the Pathscale EKO compiler also work (info by Cezary Sliwa, April 2011, and Carlo Nervi, June 2011). In case of mysterious errors while compiling iotk, remove all lines like:

# 1 "iotk_base.spp"
from all iotk source files.

2.7.5.3 Linux PCs with gfortran

Old gfortran versions often produce nonfunctional phonon executables (segmentation faults and the like); other versions miscompile iotk (the executables work but crash with a mysterious iotk error when reading from data files). Recent versions should be fine.

If you experience problems in reading files produced by previous versions of QUANTUM ESPRESSO: ``gfortran used 64-bit record markers to allow writing of records larger than 2 GB. Before with 32-bit record markers only records < 2GB could be written. However, this caused problems with older files and inter-compiler operability. This was solved in GCC 4.2 by using 32-bit record markers but such that one can still store > 2GB records (following the implementation of Intel). Thus this issue should be gone. See 4.2 release notes (item ``Fortran") at http://gcc.gnu.org/gcc-4.2/changes.html." (Info by Tobias Burnus, March 2010).

``Using gfortran v.4.4 (after May 27, 2009) and 4.5 (after May 5, 2009) can produce wrong results, unless the environment variable GFORTRAN_UNBUFFERED_ALL=1 is set. Newer 4.4/4.5 versions (later than April 2010) should be OK. See
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43551." (Info by Tobias Burnus, March 2010).

2.7.5.4 Linux PCs with g95

g95 v.0.91 and later versions (http://www.g95.org) work. The executables that produce are however slower (let us say 20% or so) that those produced by gfortran, which in turn are slower (by another 20% or so) than those produced by ifort.

2.7.5.5 Linux PCs with Sun Studio compiler

``The Sun Studio compiler, sunf95, is free (web site: http://developers.sun.com/sunstudio/ and comes with a set of algebra libraries that can be used in place of the slow built-in libraries. It also supports OpenMP, which g95 does not. On the other hand, it is a pain to compile MPI with it. Furthermore the most recent version has a terrible bug that totally miscompiles the iotk input/output library (you'll have to compile it with reduced optimization).'' (info by Lorenzo Paulatto, March 2010).

2.7.5.6 Linux PCs with AMD Open64 suite

The AMD Open64 compiler suite, openf95 (web site: http://developer.amd.com/cpu/open64/pages/default.aspx) can be freely downloaded from the AMD site. It is recognized by configure but little tested. It sort of works but it fails to pass several tests (info by Paolo Giannozzi, March 2010). "I have configured for Pathscale, then switched to the Open64 compiler by editing make.sys. "make pw" succeeded and pw.x did process my file, but with "make all" I get an internal compiler error [in CPV/wf.f90]" (info by Cezary Sliwa, April 2011).

2.7.5.7 Linux PCs with Intel compiler (ifort)

The Intel compiler, ifort, is available for free for personal usage (http://software.intel.com/). It seem to produce the faster executables, at least on Intel CPUs, but not all versions work as expected. ifort versions < 9.1 are not recommended, due to the presence of subtle and insidious bugs. In case of trouble, update your version with the most recent patches, available via Intel Premier support (registration free of charge for Linux): http://software.intel.com/en-us/articles/intel-software-developer-support. Since each major release of ifort differs a lot from the previous one, compiled objects from different releases may be incompatible and should not be mixed.

If configure doesn't find the compiler, or if you get Error loading shared libraries at run time, you may have forgotten to execute the script that sets up the correct PATH and library path. Unless your system manager has done this for you, you should execute the appropriate script - located in the directory containing the compiler executable - in your initialization files. Consult the documentation provided by Intel.

The warning: feupdateenv is not implemented and will always fail, showing up in recent versions, can be safely ignored. Warnings on "bad preprocessing option" when compiling iotk and complains about ``recommanded formats'' should also be ignored.

ifort v.12: release 12.0.0 miscompiles iotk, leading to mysterious errors when reading data files. Workaround: increase the parameter BLOCKSIZE to e.g. 131072*1024 when opening files in iotk/src/iotk_files.f90 (info by Lorenzo Paulatto, Nov. 2010). Release 12.0.2 seems to work and to produce faster executables than previous versions on 64-bit CPUs (info by P. Giannozzi, March 2011).

ifort v.11: Segmentation faults were reported for the combination ifort 11.0.081, MKL 10.1.1.019, OpenMP 1.3.3. The problem disappeared with ifort 11.1.056 and MKL 10.2.2.025 (Carlo Nervi, Oct. 2009).

ifort v.10: On 64-bit AMD CPUs, at least some versions of ifort 10.1 miscompile subroutine write_rho_xml in Module/xml_io_base.f90 with -O2 optimization. Using -O1 instead solves the problem (info by Carlo Cavazzoni, March 2008).

"The intel compiler version 10.1.008 miscompiles a lot of codes (I have proof for CP2K and CPMD) and needs to be updated in any case" (info by Axel Kohlmeyer, May 2008).

ifort v.9: The latest (July 2006) 32-bit version of ifort 9.1 works. Earlier versions yielded Compiler Internal Error.

2.7.5.8 Linux PCs with MKL libraries

On Intel CPUs it is very convenient to use Intel MKL libraries. They can be also used for AMD CPU, selecting the appropriate machine-optimized libraries, and also together with non-Intel compilers. Note however that recent versions of MKL (10.2 and following) do not perform well on AMD machines.

configure should recognize properly installed MKL libraries. By default the non-threaded version of MKL is linked, unless option configure -with-openmp is specified. In case of trouble, refer to the following web page to find the correct way to link MKL:
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/.

MKL contains optimized FFT routines and a FFTW interface, to be separately compiled. For 64-bit Intel Core2 processors, they are slightly faster than FFTW (MKL v.10, FFTW v.3 fortran interface, reported by P. Giannozzi, November 2008).

For parallel (MPI) execution on multiprocessor (SMP) machines, set the environmental variable OMP_NUM_THREADS to 1 unless you know what you are doing. See Sec.3 for more info on this and on the difference between MPI and OpenMP parallelization.

2.7.5.9 Linux PCs with ACML libraries

For AMD CPUs, especially recent ones, you may find convenient to link AMD acml libraries (can be freely downloaded from AMD web site). configure should recognize properly installed acml libraries, together with the compilers most frequently used on AMD systems: pgf90, pathscale, openf95, sunf95.


2.7.6 Linux PC clusters with MPI

PC clusters running some version of MPI are a very popular computational platform nowadays. QUANTUM ESPRESSO is known to work with at least two of the major MPI implementations (MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. configure should automatically recognize a properly installed parallel environment and prepare for parallel compilation. Unfortunately this not always happens. In fact:
  • configure tries to locate a parallel compiler in a logical place with a logical name, but if it has a strange names or it is located in a strange location, you will have to instruct configure to find it. Note that in many PC clusters (Beowulf), there is no parallel Fortran-95 compiler in default installations: you have to configure an appropriate script, such as mpif90.
  • configure tries to locate libraries (both mathematical and parallel libraries) in the usual places with usual names, but if they have strange names or strange locations, you will have to rename/move them, or to instruct configure to find them. If MPI libraries are not found, parallel compilation is disabled.
  • configure tests that the compiler and the libraries are compatible (i.e. the compiler may link the libraries without conflicts and without missing symbols). If they aren't and the compilation fails, configure will revert to serial compilation.

Apart from such problems, QUANTUM ESPRESSO compiles and works on all non-buggy, properly configured hardware and software combinations. You may have to recompile MPI libraries: not all MPI installations contain support for the fortran-90 compiler of your choice (or for any fortran-90 compiler at all!).

If QUANTUM ESPRESSO does not work for some reason on a PC cluster, try first if it works in serial execution. A frequent problem with parallel execution is that QUANTUM ESPRESSO does not read from standard input, due to the configuration of MPI libraries: see Sec.3.2.

If you are dissatisfied with the performances in parallel execution, see Sec.3 and in particular Sec.[*].

2.7.7 Intel Mac OS X

Newer Mac OS-X machines (10.4 and later) with Intel CPUs are supported by configure, with gcc4+g95, gfortran, and the Intel compiler ifort with MKL libraries. Parallel compilation with OpenMPI also works.

2.7.7.1 Intel Mac OS X with ifort

"Uninstall darwin ports, fink and developer tools. The presence of all of those at the same time generates many spooky events in the compilation procedure. I installed just the developer tools from apple, the intel fortran compiler and everything went on great" (Info by Riccardo Sabatini, Nov. 2007)

2.7.7.2 Intel Mac OS X 10.4 with g95 and gfortran

An updated version of Developer Tools (XCode 2.4.1 or 2.5), that can be downloaded from Apple, may be needed. Some tests fails with mysterious errors, that disappear if fortran BLAS are linked instead of system Atlas libraries. Use:

   BLAS_LIBS_SWITCH = internal
   BLAS_LIBS      = /path/to/espresso/BLAS/blas.a -latlas
(Info by Paolo Giannozzi, jan.2008, updated April 2010)

2.7.7.3 Detailed installation instructions for Mac OS X 10.6

(Instructions for 10.6.3 by Osman Baris Malcioglu, tested as of May 2010) Summary for the hasty:

  • GNU fortran: Install macports compilers, Install MPI environment, Configure QUANTUM ESPRESSO using
      ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95
    
  • Intel compiler: Use Version > 11.1.088 , Use 32 bit compilers, Install MPI environment, install macports provided cpp (optional), Configure QUANTUM ESPRESSO using
     ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3
    

2.7.7.4 Compilation with GNU compilers

. The following instructions use macports version of gnu compilers due to some issues in mixing gnu supplied fortran compilers with apple modified gnu compiler collection. For more information regarding macports please refer to: http://www.macports.org/

First install necessary compilers from macports

   port install gcc43
   port install g95
The apple supplied MPI environment has to be overridden since there is a new set of compilers now (and Apple provided mpif90 is just an empty placeholder since Apple does not provide fortran compilers). I have used OpenMPI for this case. Recommended minimum configuration line is:
  ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95
of course, installation directory should be set accordingly if a multiple compiler environment is desired. The default installation directory of OpenMPI overwrites apple supplied MPI permanently!
Next step is QUANTUM ESPRESSO itself. Sadly, the Apple supplied optimized BLAS/LAPACK libraries tend to misbehave under different tests, and it is much safer to use internal libraries. The minimum recommended configuration line is (presuming the environment is set correctly):
  ./configure CC=gcc-mp-4.3 CXX=g++-mp-4.3 F77=g95 F90=g95 FC=g95 \
              CPP=cpp-mp-4.3 --with-internal-blas --with-internal-lapack

2.7.7.5 Compilation with Intel compilers

. Newer versions of Intel compiler (>11.1.067) support Mac OS X 10.6, and furthermore they are bundled with intel MKL. 32 bit binaries obtained using 11.1.088 are tested and no problems have been encountered so far. Sadly, as of 11.1.088 the 64 bit binary misbehave under some tests. Any attempt to compile 64 bit binary using v.< 11.1.088 will result in very strange compilation errors.

Like the previous section, I would recommend installing macports compiler suite. First, make sure that you are using the 32 bit version of the compilers, i.e.

. /opt/intel/Compiler/11.1/088/bin/ifortvars.sh ia32
. /opt/intel/Compiler/11.1/088/bin/iccvars.sh ia32
will set the environment for 32 bit compilation in my case.

Then, the MPI environment has to be set up for Intel compilers similar to previous section.

The recommended configuration line for QUANTUM ESPRESSO is:

 ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3
MKL libraries will be detected automatically if they are in their default locations. Otherwise, mklvars32 has to be sourced before the configuration script.

Security issues: MacOs 10.6 comes with a disabled firewall. Preparing a ipfw based firewall is recommended. Open source and free GUIs such as "WaterRoof" and "NoobProof" are available that may help you in the process.


next up previous contents
Next: 3 Parallelism Up: 2 Installation Previous: 2.6 Running tests and   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/images.log0000644000700200004540000001613712053147352017202 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=latex 2012.9.4) 21 NOV 2012 13:54 entering extended mode **./images.tex (./images.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texmf/tex/latex/hyperre f/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count89 \Field@Width=\dimen104 \Fld@charsize=\dimen105 \Choice@toks=\toks15 \Field@toks=\toks16 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count90 \c@Hfootnote=\count91 ) *hyperref using default driver hdvips* (/usr/share/texmf/tex/latex/hyperref/hdvips.def File: hdvips.def 2003/11/30 v6.74m Hyperref driver for dvips (/usr/share/texmf/tex/latex/hyperref/pdfmark.def File: pdfmark.def 2003/11/30 v6.74m Hyperref definitions for pdfmark specials \pdf@docset=\toks17 \pdf@box=\box26 \pdf@toks=\toks18 \pdf@defaulttoks=\toks19 \Fld@listcount=\count92 \@outlinefile=\write3 )) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count93 \c@lchapter=\count94 \c@chapter=\count95 \c@lsection=\count96 \c@lsubsection=\count97 \c@lsubsubsection=\count98 \c@lparagraph=\count99 \c@lsubparagraph=\count100 \c@lsubsubparagraph=\count101 \ptrfile=\write4 ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: dvips.def on input line 80. (/usr/share/texmf/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (/usr/share/texmf/tex/latex/graphics/color.sty Package: color 1999/02/16 v1.0i Standard LaTeX Color (DPC) (/usr/share/texmf/tex/latex/graphics/color.cfg File: color.cfg 2005/02/03 v1.3 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 125. (/usr/share/texmf/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texmf/tex/latex/base/inputenc.sty Package: inputenc 2004/02/05 v1.0d Input encoding file (/usr/share/texmf/tex/latex/base/latin1.def File: latin1.def 2004/02/05 v1.0d Input encoding file )) \sizebox=\box27 \lthtmlwrite=\write5 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. Package hyperref Info: Link coloring OFF on input line 146. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count102 ) LaTeX Info: Redefining \ref on input line 146. LaTeX Info: Redefining \pageref on input line 146. \openout3 = `images.out'. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=721.41339pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 212. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 212. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 212. l2hSize :tex2html_wrap_inline2071:7.75pt::0.0pt::9.92088pt. [1 ] (./images.aux) ) Here is how much of TeX's memory you used: 2749 strings out of 94501 37218 string characters out of 1176790 88132 words of memory out of 1000000 5935 multiletter control sequences out of 10000+50000 6376 words of font info for 23 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 32i,6n,23p,204b,241s stack positions out of 1500i,500n,5000p,200000b,5000s Output written on images.dvi (1 page, 2052 bytes). espresso-5.0.2/Doc/user_guide/democritos.png0000644000700200004540000002310112053147352020075 0ustar marsamoscm‰PNG  IHDR9Yr¼£-PLTE32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿ{èœ pHYsVT™bUˆ vpAg9Yû©Å"ÒIDATxÚí|pU¶÷d¾Ñ}Ó¯i¿ž2»©"µ¬hÔº° jõ¼éà€Ês‰SQˆfã.DdDÄW(Í qÍú2¸,¡}\ž!*Aê… ¬¨$$RB0HHB.¤ÏtÕ­wnwÏßtObj«¾úª8J2Ó}ûÞs÷wÏ¿¾à Wddâø­Àÿ·r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘Ê?¹#é—ìnÍ,¶}êì¡ûN©Ãèž5üv8 ²\:²û£#})›ôíÞ÷cÜW+äÆŽÑelöíw/ÛqvÐíœ1ɲ*rK­tWÚŒ{^˜hyýPñXAð¤{D>ã¡RrèiÖЃ Ç,ˆox\W7kü”™OïŽÕü#>uÝ ™–Ðó•SªeœÚ1äŽOXwÈ7^àD¾.S$ ß’.2LyÛÍ‹‡l9ÇóâÌuëÖ®]¶`j&çÁűñ}eó|öºxY»;zæ!Käv‹nÏÛ‰—.M97'f,Øy¤O#Ç÷>›Åëc ¸çv‘C¢d<²-Qß¡wô0¥<³ “zQ+^»öÙ≸Öy.Ó&ÆÐÇiÁ%‰…`Ÿ{Ü‚Á‰Áœã87 Mï6›ÐƒŽ7á"™nîA‹6VÈqIœc]8÷X}°ß­kE>³w庤ë=¸5+ÿ @ÕÙí£6}én÷cNwðœ`ÙhÄð%ìV8Ž ÔÍÐ`Îñ œÛ‡Ë3ÛN ÃèÒ08_~ìð£ƒ9‡‚.Å$BgǹinwÁø#ÙGàÞvzܼ¹Ä§pýslÇdȼ;eQŽ›Ÿj=·è§Ïã<3çn¾Ç˜p’šE<ç&qœ`“i1éA³ ä ÕbW[qŽÌ9—7§¯ÜdÇ9’ɉ¯©ó .kÿœå">S[…»ú[j/Á ·³'1’Ó”‚BˆãÜήJâMâ\7n ûZ·Uá§n ‹1lΡ×â ²í8׃b/@&Ç'Þß¶çs ™ÑmœÛ%‹ö4΋±L·{"BXTÝÐçÓyîÃd5= œÃPuJ!gQ…—u“alrô2\Ρ'Ã} ›œA‹CHÔ÷ãË^艿>…c¾RâæfšJ J“kÑs5Ò‚ _¸Ä¨d Îw™þ)YMHà\økã yo<Ù7‘ųS’È?\ÎiЇ¶w5óæâ1ËVèVÇ¢õêÆi¿÷èi\ Ì@à9Ñ=&Šð©Ôx`@…{©ž¥CHKÌÎ_€ ]¦áÙ‡àÇR÷û¬àŽTwÔI¨/,ˆ/Ï ›s4¤ÒÓT_L³ˆÞ\ \ÇÙ,EÉá…ëbªO‹|:Î>B¡ç´Áì6µÖê­n÷ݨ<ïöСĴsêéCóí‹f­&5ç€w{*Sv«mÃ,Ëðh„^*æŒþħãâ­áÛ9:Ö­d¸˜n.A"#ÝÜ[èÅX(˜éI%oæ:ËxwFj4`&Ç¡%|ˆã³èP‚œYå'ÆJh¯™>;5çpxv¤îw¯'J ¶.Šz0V6ç(Ltë±tøfœø¤8¹}б£Nás‡ô%BŒs¢ÏmM 0¤V±Žfóœ]ýÓ”p1ÇcÆ3Åíž44r,%ÆøÕF…[["]¤äÜ>7êö‹‡¡S´jÔãÓxV{H_§Ú"gÃ9m"ÏMÕ3)‡ˆ$ãï"DFž´7vÔc0kúÇ»9=8 »Ý)­3Žõ^8˜ÊqÃ@Ž•¤Á³ºÁ²áÆïã£ãö™vä[¤Â¶h“7DNG )åÙFíŸâtRþÅã?¹Ã¬>‡)ÎXŽ÷Ämí!8én!eJ<M‹)‰~‹U†·fs¼ o;kθ‰ã5Ÿ­— µÇ«èøp„w³ú¨x7Å^É1ë:p£Ñ¬Ô›JÏqPàÝÂøXÛÔœÃБLAº}h(l,Šþnaøœ{[póh&†VœÓ„xv¡ÝæøÝTÅ1þ‹Tó0•'Ø»¶}pÎ6ª¨k‘³Cäüf5blëtˆ¼z05¾ÎvQT$ŠçGë{ð/ Ÿs-žhO6vîBKã½!›†ñ/Fc"ÂJ{:/5’ÅGJ®ƒåT¦ˆ†Ÿ cÉÛ6<ËA‹`ÖçÔlì4Z‚‚sªú{5dÓ3ÌF;mÔ\úVIvïÐN.çÎg¢R« òØp}BzÜj•QœÅ´ãŽøu]É'ØquÀq 17+EìF®{¬ß³|;FÏŸ¢ï!à0vÝÛCqpõxa•eÏôEu¬>ÝKé"Ÿ„/á8V4çŽ\‡?’‰ÚpîA.!Ç$*{-ˆ®?ÎÀø« m×a˜añz‘žÎÆ µ4•¬å±+ƒôy†[Gîp¤>á±ûH¡wΡœJç8“XI²,®æòª“xT–Ÿ‡sÛÜ,ìý—p{âF<ûÏq|v\2€ÉèlvÖdL"íGÃËÞñƒ÷BûAμd©æ`Îaʸ•^™¸*›2DÜ.Qg¡Î7ÇêrÚV85çÎn{<‹Õ¥ø™±G-9§ç¤ Ù`ÜÇ'½^"ôÖØY'X«ŸÐˉ¾óT÷-ðx-§/ާæ;ëØÉ9a|edåû*'éŲ‡ô:-qï!Ðióf014çX˜4FÀÉf­º¶Ó¯e!áøŒ­¹l$NFiV+Pí9—ž™™Éά鰉 /PÙbz2d«˜ïœbÝTZ¼òä'Zš#;3˜–aÒƒÏþeÕ‚©ìÄž(®Õ’žQa·~ËÃß:ûÙ7ž=^À(=f†ÿà„þ£ˆš©9ÇÐùi¨¤[à³rŠ_[÷‡œ,œ0Çó“NÇ­ôd³£.™Óþ¸jæ7’™9ZsÎ(’ë8ÑSœH&\ÌÄjºû1J§q|r݇)kR@ÞááŘ#ë<¢~Sðàæs3<:NV0V{Í£¡cgHS—‚È–„:ÚYì(£g˜œc*´Ü*èUQ^?”‡ŸÄìÝ ÇºI"Çʦ¸`ÒoØ!Gp=uIGu3sÞèK<ÖÎ6oGE|ŒBæàEw›”õN=æ©Tèy.‹÷°õAÍD>sÁYë÷×zVÝÄ3z°åøÌâÓQ¥Zx{ß oóýªÉǿÇ Ѫz ì˜&Š‚[÷g¼Gœ²-aº„1“ìÌfgm9· ÅbŹ×_¯|å¯ï~t ›¦À»o$ɺ½”V¾¾nPxvÄœ'TV¾/kì¸áë ¦egfOzð¹Ã*U5j#NW.˜’™51gÝqgÔ{Þ¨Œ? ÛP£K†š Œ¯¬¬´ªŸk)½£8gâØÌñ9Å;úôCrƒþhÕ}7ÉY»û¼šâD«º0¯F4ëSD‰B£gË’';%ù•Ÿ¦ª_àŠâ5UïÉb´xíõsÄ8w•Ä?§E#áD•›T‹èÝ©ö«뉰P€UÕ¸²³ý߇°]}Ë®-U:=øØX4ek1Ü14Ë«Ch2ÔófJ-4Fûøÿœ¿Ibò.ó÷ÇV7W†¢‹ª‡‚ÐáJõ¬ÐˆzøIT±A®4/¯¨¬?|?7%ôÓºŒ Ûtê÷õ__,ÏÍ}ª.Ú oIô£’rse¾ù¡:ùB*iHuÿÃ{'r˸Î+rpž÷.œK›´¨¤¤d(:0B…O‹Q»KªÐ?zñÇÀ )°|užTÔk6D‘¥‚^¬·ë—¬””ÎUüíÉ7.n ÕJ òœYx­ÃÉÄáÀÿÿéÈAÁ|€þ’»öÐr!Cî“i γ¼Õ 0Èè¹é2Îz½· M­Z§7µ@0:¤\AËäÖý7ËE]hcZýI7~P,ÀÞ(Ùkúá(§ÃéJKKs¸\N—럎™_aó½pB>8dÔ Á<«{ÚzYÂÉ‘¤ÔÒ“rÕw ~ÑáŠqŽÌ¨ ÝÛmFðú™†ÞŽÄëÐi©RlUýýÿAÂ9FßyOþÃ.]¼ô™TÓúª{ÈAA€Íú ¹ù¤TQ[[{Œ†žœ;¯±,·U(ÏË-»ˆ¿CsçW÷ÒàSy¡ö‚ŽÏdå)znuî¼*|²v^QG¤§ùþBüå/QÊè[’ù×À‡\ ÍÍ]Ï8·¿0w ¶öUÐl¹dõüEÌJµ>‘ûT¨Ðè¤]Ùݽ8šÂ幡^m¹ØC·ÌË-½H; žÈÝÏZtúåÀÚ\”[ø¥Û ç\ŒÎëdškòÖçÇwã¯F£übô¯˜îò7²TÿöÞoÿïÕ®vÇtr'û6Á9RPÀŽávKÕ'$9A)è“å’»!•‚%p‘,R«•BúïòŠÖVéX³O)íÂé Ú£z L䔊ÍJ‡Ö }Y8ý‘þŸÌ%+Y–äzP™ôz{‰R¡ÕH”ø”``úQzT‘ƒ²¢èQ¸V+ŸŒjƒ¹R )þÊJòªTÐT®Š”<­]ñ¿Ä0"]%X[‡Ïû¤íZ…R´5Æ"—ÃqUÍ=׸\¸cGšÓáJsŽz¦ŸÝøÛõëUÏǾü‡ëª7á«[\¿<Ãîlír¥ýÊì¤[¹~ýßvÈ-bœ£]Ê®J}ï…ž^µP3J¼¥Ðji@“j”þ  +þB šå£$€ ÒF`£rð¨úÞ´r‘Ë¡(€s…’rø=¬Hß‘%8 ô÷·É5€œ«–‘œ òºÒá­"½ì—ŽE4;(5uõ—äboíde.픩÷ÕþþZ¥ý¤Tk„°YÕÀç^¨bFšüÜé¼úÃL\ÌÎ1øpóºnÔc¹ð+xý6½åR—ãPáÌÏÒFÇêXb»´3F/¯0ÌIJÎÑZé\«ÜHXø\€~¥šn—Øô…¥J¿†¾+™? %ðÄôKP*ûŒÈvI$è=#o!¥öZé{³ß«uÒF ]Rð‚Œœ–ää: ¾JrWÈ!4kë ƒ]R•©˜V¢L—I9’ªîbv®W$)tB1Ý[ÞfHat¬\ŽÅ®#YÞ¿ 7jòsò¯Y³8ν“¯F?{¯^Ìú ¡Ìg ?u8®Ç¼KÓÒ~Ãf»Iç0¶+Ü6Áî¶³sçz•ÇÚ€"'éœ p¸¤·(|Sè5â…RœüQ9 ôÓni{·o‘Ñÿ åX+³yè!°§ºOê¶6"ç ZBΡñ¯ÿr´†A“sÚ¯Ž´¶VÈ{êöÔVw–cä±YFÎ5œ”Êë>ÙS…¹ÙÔ^¿þ~¨R:*â"”ÑÇä H˜9»n»öšý—Q£Fý‹ªÒc£‘|ÆÛᯉ¿g ';÷è1,¿Æñßw­Ã5Á@îçù蔩-rȹÞúrúVfu5R@2Õ2V4)e½j…ôq«´òÝURª5O?%sa£\î(‘O’Ew0¯Àd(­ Ò|´Xߥ·ü°BÐŽúʉÂ@, þRl¹šTx?ÓÚŸAÒå÷~p™ž Mo<)UµÄÛº‹BH¡Ê¤ÿ9¨•÷œ”›LS€œƒÀ¬VÚ<#*¼‘9ÁI„áyÜjw®añÛs®4œZøÒ8gÚU˜ÕB3xêx¹ÒÞÔŸ r8ê;ò¬ ñ· S!IQ¤‚c,–½^ïêpq®>.ÒÐrËABÊeÅ/¿`pN>JKMÇÒŸd¸E1š†¿3:h,l9è—¼^IÞŽˆ|0}QµO*ÑÚdy–¸¾rúw‰€¯ y·’vúd?îÂÈ&í*’¿"­èGÓècqN…LéVY·sè ¼RP‹qn+îÐö’wºï(Tø"sÒ^q¸Fç;\£>DgX:§SÏö¿B(Шˆ˜Î¹{ñÆ7úŠ©ã\:`ïÝöžË™¦»š{6<ìt^eϹ]7ÖÕS€“¨¯%jÓŽmE \_v½>Xê¢Pƒ¾ÿLÕ9²¿†ØSjC»Ðüj¾Y5²·ô³Àš«p]ûÞ*«g¾LÓNT”üï4v[W4á’oi†VlQý&»k¾«.­-Šf ¶V¯ØÒÆK7wiÞBÃØaU;c×7£1|ËHóðz5Æ¢ýÕ/Õ vØ.ÒÅNǽãðÏoÐЭùÓ›þ¼u«ávÕÉHÄ l·"çTläÒ:h÷ O¿ kïMP‘}ÿ¦oùž…ˆ¹-rzɨLh¬ø£±BûO/Öi`dè:¢FÄô`kËþ^g¤:¥ÿ wzÅžÂn4½üc¶³ÆZ¯´‡õÏOTHÓôSX¬`KŒæa0+ØDºÕm†uµi¬þ¤þÖáZ8Úáúý8§s °”Z$Gùδ[ðãWÈDä`Ôrµyà/½Á߈öÎd˜ìtÂ+_ÞH‘·öœT5°Ou|ÏÝß”ª¡–º‹ÁC:Rqn‰wVA#Žè vËqIÐêBˆ«½º ‡h.R= I!ýå¹Óý5‘o/)³ÊmZvÊõt8^êtü†ñ Ýä{‰¥QdÖmÌιtÎ};t´yg Ã{)îÖ4†RrÃ×t¡3çH?˜'}6,˜œ‘c…#æZ5ºŠ ¹ ¢â-S/l^¢ø[î×¶™.àÖ®ê%_E,’ׯ–0\©\!gäØ÷¢©«>g5<î¾ N×ÏÖ¸¯ ÅÚÿ†H¾Ë1ynp¾A ä ¼ÆépΡäý hýŽ_Ò3¿ ©9•ôûŸ.ppNŠ­»Vô€UöÂcdtr3Zm_oÜí Þ'ÌOÁ¹´yzÛÇjß]R ÐꃴqºE¹«KŠãÊî§'¥Rk%µF´ìºÚõ¦Ëéx'¡úÃöñ-ØàSƒs½Øàæ­G‘s£¤lÚwoÎaV1ç9 ¹Öe#  sz„s˜T”äÚ´c…$ ¯—0žQVÇnÚ)Ù!e±=Æ8ÕXtsßdÑ+ L"½”ùÑ›^¶]S'8\ã;7\åt¾—p9çÄ0WÓ9Gˆ:Úåø™¡ ¢ÄÊìœv·ëó“ßšsU¬$TëeQ]]îý{Ð>Íóæí¢ôrÙ,ï“O–Ñ-y³ò.w>éÍ­ºpNÂßœ ç>Ë}»$Rk»°Ü;kõ<Œ+r6J‘m‰iÜú¹³î¯^îÍm¦Za3……½M²<ÿÂQm®w‰‰Y$YÈÑù@3-›‡Ù#'rÛØŸsȹޕ~pQ¨U–siUlšëÍݺ(ô®Ž¦à —#íÑÉFäÞIœn¾‘ ü9·Ûý£^ìËs¥/ Ú9´y׺ãFÁœÃ\á~L¶å>o¯ê+Ìû÷Þ_yžÔDV(‹J¹H-WVÈ/”)ë»$_żéÆbä\ƒâÛ8+/Ò—\²D‘0"&J9 üM2‘-ÒÅ ´²@‘Wúó¨6£ŒÔÉ¥JÅ×»ÐèWËüç’n³0 y§¿tYëÄT0(½0_–WΚK[¥cìO—ÔHŠä’劲ú»€\r5­W|yR™V­Ê£V€jw"m6´&síœí¡ç4‘˜jô6ÜáÁ¼†Dù˜wL¦Cq. K»°‚@{{+FüJ°Èzù»ö“%J9À )å˜y–*m@¿¯ïTJI»Ülr.‰ÕHjÉveÁ/åfBñwÉüû›P&“º1Ó³®Wé.©º  ¤†oC±ÚþˆB]¥ò"úƒÜE œ‘VÂ)´—VùrŽÙA8(¯€2?Óêc…’¹s£ŒIÄŒè¬ÂGY}$ëõ®÷¶1ƒê“shç.›9“QNç•’w±ð;ˆØ+tHÎÍøûi¿"+’¤,"µwI/ŸÕÓeÜ®±Z «d9> >@F}`<[” {”“ZƒQÑB˜ 9‚?à¨üAdu %y ÔJýzÖU¢x›XÍ¥szã ¥ŽÆ½ Åàû?¥¶3ÓõÛ T“¥^–ò53Îí¯–»14ž±‘Óˆ\Õ/3ÓÐ,5²¡«£¥ud‡È7絋ß9“8Û…ç¸(çÐÐMv:æè7ÚjlËv+ÑÂ×8Ò¾ŠsdQÁ÷òJ–ü²ys3t’ ¹5èo>ØüAÝwzu\ÒrÎu{oÓ‰;†öFü+&°¸Íš¤ô¯Ÿ²ßÇØ›-ô­A¡×È’BJa¹.r¤›û_‚¾îöÀ\@ßzFi0^ü€á6ÊØk±­òÉ©‘C{YüìÿÕýrúõV©•Ð.e%}ÉO©TÓ§,Çö5òÑ­ŠJÿ.ÇMKÛuµ“•å~ñ+Sn@¹~± ÓOs³QizX^ãpÞɌ˟¯Å—ïtþ’êy…Ëqƹ‚4Cõð‚¿ö+¡—|]MÒÁ=JMÿ7þ"˜‡Ö9$A9rîceu×ÅÒÕJ=ôKú[BJ@ÎuR“sa[¸„Áì%]^oí¹ð‰åÒ 4‰y ícåøÖ÷ûJ ä~ ºKxëè~ÃËTHµ—”íêIÉ<챚"ç]´â.Ò%7Âý'è òjx}«T Á»jIà T)”ÔHñ1/í¹­{ƒÜ™¿YÈ¢BÖ ª¿fga{EqæÇhfðàá´nLÊ7¤-dó‡é퇶v£ºÈ×û½OB_ФT4õ’è"MxQBÎUø0A}A–”YÛ;™‹ãܧH¢Ï κŸVôš û¡×=°WÜqzS0Dýe—k°áÆÃ.©^ë H’T`DµPˆ#ŽBšÒ {d;Ò´…¢¬ hç´Z…õ¸‚¾êÓW¢k¾$O÷£›e·[MùêÎkqâp:~»q®kÎUŒŽ“(á7]W?ßýþõ®qÌV÷oW;¯]JiŸ Ó¯LÆpÏõ¯Kí8×ÜL¡{Wé¯ T5èªn`:šBMaüÕµ½êXS3ik`~éDU¡ý»: l7v'im¢».ÓÎZ=¿Â\àDuu{f]¤î¤q¥­6´¿_oú…ÚÚ±+ õ?ôÃѪ“”ýLë¯ÿM|ýæ3‘>¤mKtÝÛÏ{¤¾Cë¨ ‡aO¨‰’þúN :ª«O4T >îÀ8{Uý% '÷h«K ûW—èþôÊš5k–®YªË;Ÿü~ñíë|”9 þ›>âÿäN»fòÝC}‰7b¸Bÿÿ|Èšå?¼˜ÚÖJ"¦™°šI¤a}#32K$’Ïk‘¿ËLõÚÕbõ ,7×tcG0Ê8ÔL|Yqƒ­‰ˆ1yÄöY¤rC¢‡P1M¿¨êٽрh‘š¡!Th"¢ë&êÀÀå›{˜ãa/‚YW™Ff’¦#™Ð_T‰Ñ©rÚO;aý'Èhâ‡B’¿>¨3<`È×èÉ}’¸oª©‹þî êjðù Œ"—.ÿ ‚gÔàõ]hIEND®B`‚espresso-5.0.2/Doc/user_guide/node13.html0000644000700200004540000001506512053147354017212 0ustar marsamoscm 2.6 Running tests and examples next up previous contents
Next: 2.7 Installation tricks and Up: 2 Installation Previous: 2.5 Compilation   Contents


2.6 Running tests and examples

As a final check that compilation was successful, you may want to run some or all of the examples. There are two different types of examples:

  • automated tests. Quick and exhaustive, but not meant to be realistic, implemented only for PWscf and CP.
  • examples. Cover many more programs and features of the QUANTUM ESPRESSO distribution, but they require manual inspection of the results.
Instructions for the impatient:
   cd PW/tests/
   ./check_pw.x.j
for PWscf; PW/tests/README contains a list of what is tested. For CP:
   cd CPV/tests/
   ./check_cp.x.j
Instructions for all others: edit file environment_variables, setting the following variables as needed.
BIN_DIR: directory where executables reside
PSEUDO_DIR: directory where pseudopotential files reside
TMP_DIR: directory to be used as temporary storage area
The default values of BIN_DIR and PSEUDO_DIR should be fine, unless you have installed things in nonstandard places. TMP_DIR must be a directory where you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). NOTA BENE: do not use a directory containing other data: the examples will clean it!

If you have compiled the parallel version of QUANTUM ESPRESSO (this is the default if parallel libraries are detected), you will usually have to specify a launcher program (such as mpirun or mpiexec) and the number of processors: see Sec.3.2 for details. In order to do that, edit again the environment_variables file and set the PARA_PREFIX and PARA_POSTFIX variables as needed. Parallel executables will be run by a command like this:

      $PARA_PREFIX pw.x $PARA_POSTFIX -in file.in > file.out
For example, if the command line is like this (as for an IBM SP):
      poe pw.x -procs 4 -in file.in > file.out
you should set PARA_PREFIX="poe", PARA_POSTFIX="-procs 4". Furthermore, if your machine does not support interactive use, you must run the commands specified above through the batch queuing system installed on that machine. Ask your system administrator for instructions. For execution using OpenMP on N threads, you should set PARA_PREFIX to "env OMP_NUM_THREADS=N ... ".

Notice that most tests and examples are devised to be run serially or on a small number of processors; do not use tests and examples to benchmark parallelism, do not try to run on too many processors.

To run an example, go to the corresponding directory (e.g. PW/examples/example01) and execute:

      ./run_example
This will create a subdirectory results/, containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system.

In each example's directory, the reference/ subdirectory contains verified output files, that you can check your results against. They were generated on a Linux PC using the Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain diff of your results against the reference data doesn't work, or at least, it requires human inspection of the results.

The example scripts stop if an error is detected. You should look inside the last written output file to understand why.


next up previous contents
Next: 2.7 Installation tricks and Up: 2 Installation Previous: 2.5 Compilation   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/images.aux0000644000700200004540000000060712053147352017211 0ustar marsamoscm\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi espresso-5.0.2/Doc/user_guide/user_guide.html0000644000700200004540000000000012053147354027372 1espresso-5.0.2/Doc/user_guide/index.htmlustar marsamoscmespresso-5.0.2/Doc/user_guide/crossref.png0000644000700200004540000000022312053147354017555 0ustar marsamoscm‰PNG  IHDR  ‡‹6tRNS¿-Mc%LIDATxœmÍË À@ ÑçÅý¦”ãrÜÛÈ!äÑE BRŒ¥cdWL«TÄÍB1 µœº<¤~¥¿Û»pjOú‚ºG¿”ÔC¡¯ë¥äâIEND®B`‚espresso-5.0.2/Doc/user_guide/node5.html0000644000700200004540000001130012053147354017117 0ustar marsamoscm 1.3 Guidelines for posting to the mailing list next up previous contents
Next: 1.4 Terms of use Up: 1 Introduction Previous: 1.2 Contacts   Contents


1.3 Guidelines for posting to the mailing list

Life for subscribers of pw_forum will be easier if everybody complies with the following guidelines:
  • Before posting, please: browse or search the archives - links are available in the ``Contacts'' section of the web site. Most questions are asked over and over again. Also: make an attempt to search the available documentation, notably the FAQs and the User Guide(s). The answer to most questions is already there.
  • Reply to both the mailing list and the author or the post, using ``Reply to all'' (not ``Reply'': the Reply-To: field no longer points to the mailing list).
  • Sign your post with your name and affiliation.
  • Choose a meaningful subject. Do not use "reply" to start a new thread: it will confuse the ordering of messages into threads that most mailers can do. In particular, do not use "reply" to a Digest!!!
  • Be short: no need to send 128 copies of the same error message just because you this is what came out of your 128-processor run. No need to send the entire compilation log for a single error appearing at the end.
  • Avoid excessive or irrelevant quoting of previous messages. Your message must be immediately visible and easily readable, not hidden into a sea of quoted text.
  • Remember that even experts cannot guess where a problem lies in the absence of sufficient information. One piece of information that must always be provided is the version number of QUANTUM ESPRESSO.
  • Remember that the mailing list is a voluntary endeavor: nobody is entitled to an answer, even less to an immediate answer.
  • Finally, please note that the mailing list is not a replacement for your own work, nor is it a replacement for your thesis director's work.


next up previous contents
Next: 1.4 Terms of use Up: 1 Introduction Previous: 1.2 Contacts   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/user_guide/node8.html0000644000700200004540000001510312053147354017127 0ustar marsamoscm 2.1 Download next up previous contents
Next: 2.2 Prerequisites Up: 2 Installation Previous: 2 Installation   Contents

2.1 Download

Presently, QUANTUM ESPRESSO is distributed in source form; some precompiled executables (binary files) are provided for PWgui. Packages for the Debian Linux distribution are however made available by debichem developers. Stable releases of the QUANTUM ESPRESSO source package (current version is 5.0.2) can be downloaded from the Download section of www.quantum-espresso.org. If you plan to run on GPU machines, download the GPU-enabled version, also reachable from the same link.

Uncompress and unpack the base distribution using the command:

     tar zxvf espresso-X.Y.Z.tar.gz
(a hyphen before "zxvf" is optional) where X.Y.Z stands for the version number. If your version of tar doesn't recognize the "z" flag:
     gunzip -c espresso-X.Y.Z.tar.gz | tar xvf -
A directory espresso-X.Y.Z/ will be created. Given the size of the complete distribution, you may need to download more packages. If the computer you expect to install QUANTUM ESPRESSO is always connected to the internet, the Makefile's will automatically download, unpack and install the required packages on demand. If not, you can download each required package into subdirectory archive but not unpacked or uncompressed: command make will take care of this during installation.

Package GWL needs a manual download and installation: please follow the instructions given at gww.qe-forge.org.

The bravest may access the development version via anonymous access to the Subversion (SVN) repository: qe-forge.org/gf/project/q-e/scmsvn, link ''Access Info'' on the left. See also the Developer Manual (Doc/developer_man.pdf), section ''Using SVN''. Beware: the development version is, well, under development: use at your own risk!

The QUANTUM ESPRESSO distribution contains several directories. Some of them are common to all packages:

Modules/ source files for modules that are common to all programs
include/ files *.h included by fortran and C source files
clib/ external libraries written in C
flib/ external libraries written in Fortran
install/ installation scripts and utilities
pseudo/ pseudopotential files used by examples
upftools/ converters to unified pseudopotential format (UPF)
Doc/ general documentation
archive/ contains plug-ins in .tar.gz form

while others are specific to a single package:

PW/ PWscf package
NEB/ PWneb package
PP/ PostProc package
PHonon/ PHonon package
PWCOND/ PWcond package
CPV/ CP package
atomic/ atomic package
GUI/ PWGui package


next up previous contents
Next: 2.2 Prerequisites Up: 2 Installation Previous: 2 Installation   Contents
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/INPUT_bgw2pw.xml0000777000700200004540000000000012053440163022141 2../PP/Doc/INPUT_bgw2pw.xmlustar marsamoscmespresso-5.0.2/Doc/INPUT_PH.txt0000777000700200004540000000000012053440163021257 2../PHonon/Doc/INPUT_PH.txtustar marsamoscmespresso-5.0.2/Doc/quantum_espresso.pdf0000644000700200004540000013234312053145633017205 0ustar marsamoscm%PDF-1.3 %Äåòåë§ó ÐÄÆ 2 0 obj << /Length 4 0 R /Filter /FlateDecode >> stream xÚ+TT(TÐH-JN-()MÌQ(Ê ˜*¡¡„NÎUÐ÷Ì5Tpɪ”˜ ò endstream endobj 4 0 obj 53 endobj 1 0 obj << /Type /Page /Parent 7 0 R /Resources 3 0 R /Contents 2 0 R /MediaBox [0 0 531 181] >> endobj 3 0 obj << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 5 0 R >> >> endobj 5 0 obj << /Length 6 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 8 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xÚìxTU÷'½÷Bh*MŠAAlkW…Õµ VA¤)½†„R(„IH%ÒHïm’™¹åœó~ç½wÀWÝo¿E¿ûÞ'aZ&r~÷íš4ý߉€ @ѨÆù…uÝá:†O¢>O×S¡ñ/ÌlüI”×b RµO^“&Mšþ¤" wì´›%À.¢‹$f»>€º qùÎôê‡uÝA&Mš4iÒtc{ì*ë– L5zÕ·]ÇÈu )s<.SäŠgë¾³† Mš4iú3€u-Ãl¿îPüëýa×CÎå`3‡±Ô–&Mš4iú³å2/(\y´«Ž•ÌFDÕºò¿4`ܨ©«b[æ¬Ç/|Mš4iÒtË^ÛT‡éÀ¹`¹¤6[Ah1›©ÍØ„fhSÓuŒß¹MÔ£I³1Å@€Ë)xMš4iÒô'c„R™‰F;Ahc3çí¬fú nÐ^†ÖV ­%h-ÅÜXs‘ùÿb´[k¿úràï¨}5tÔ0c=˜@hI²ñ„ŽŒ†Mš4iús€£²,J’ Š&0´Cg 蘾†¶VÈ-%rS!7hÊEkÌáÆ²i}7Rwê²®iRC¶Ü˜Ã4åÓæó´©€5r“ZJŶ2©½‚èëh'÷\ÚÁÔ‰´Ò¤I“&MWKV#ùÖ—€ hj"€1YÀ®óÿÆ´ô/ÄŸ„’® 5èD•¡»nŠu{j¶¢äv[ÀØUÐ^ŽÞD[1i-–[ŠHsmÌeõ™P›Æª“¡*‰UžåF+iÅRqŠTÄÉå'äŠcôÒÉk”Å£]J€rþdZ™J«3äêL¨É†Úl¨Ï¡ùœ#´½ˆu”QÃ%f¨¡¤ í@J¢D-º¢äÊTÉUe½˜u§@d-[¢I“¦¿8øˆ¹~hw0¹“J;7ÉÄys™Ó‡¹«î_êeÕÊ[BÑ8G0£mÂ×dÔ`(©¥š ¡ñ<4äʵ™rmº\“B«’8#G@éq´’X(9ÅG‹fEQ¬è€bQ×4(ŠFãwƇDz²xV~Š•'@Ån¬2‰V§šL¹>]’¦,ŒkuT2c=35QO‰ ÁÚLgä*pÐk¶„h!/Mš4ý¥Àв€±}¡™eC½ÔQ/wÔÑÎFjl¡‚^Åü!n°îžl¸ºÎVù J$*ùKð’;¤ö:hçþE †rhí9ZF‡‚Ÿó¬ô” àâ~(ˆ€óáp! òBÐrƒ!wäî†ÈÙÙ;•ײÜ@ÈÛùÜBðá…áPÉï㸡E‡iñQZÇ.¡å)´2¥B¤¥Hn-“ÚªHg=34qÆ1™;eü“±c½«ËŒBB¹øÏ«thàФIÓ_Jx~„6è¬Ã‹üÖ2¹¥Dl*’š‹ù ÚÆ/¶«Íç$c à"_ÑpETŠJ ›€S‰?yG=i«šK„Æ‹ÐpêÒYu2w+øŽÇxQ47¸°.„Àù`È @@dípn¤o@K[–ú3¤®ƒ”µÜXÊO×4šþ37–±27À¹ìÜfÈÚ‚v~œß@á4)8…Ü19Åq¤,Ž”'ð÷ÃjÒI]iÈ£MYK©Š¬æ’ ÀÄ.SŒËQ¢Vüv÷¤0íÿ3Mš4ý•DüôÃò¤æ Ðu™¤6UªN•«3h]ÔŸƒ¦|¬G24r¾üP¾ÜAÍÍXLkÀ²XC#ÓWqTâ_šLR• '¡ì÷,XQ-ˆ„ó{Yn7ÈÞY[áÜ&Èܨ2)²ή6[ò*´¤Õª±äk›töGÕä”Uäì*šò£jù=÷3;·²¶Avä„B.wg"Yá> pqg‡¿«K§XeT§Bm¦R¸U†EYÆ:ÌÈü$‘ ]Ý%Wd@4iÒ¤é/%F‡ø¹ UIxh_:ÎIZÍ/õ¡ô(”Ÿ€Êx¨MÅWS3e¿{è_—¯¡ ƒv‚ØÆ&ƽ›V%UŸµP}*âáÒ1†a¨H ay½“Û ™›!cK]Ë“‚9»š›œ¼Š›ú}ÅÝØ©›ÐÒ6³ô×41õgnrê:’Â?Ûjnœ;$u5¢„çì:–²Ÿ$} ¤mÃè÷q·§ØÅ(ã)?‰ø¨É€†\h)À ¾¡L AŒhL4³Ã<‰QûÿL“&M!µ°º,z)žÆhA\†óA4/O˽pq”ãÇ»¬¯$¢þøL«q© õÜÅ`-¥´©‹c«Ó1yQvJbðUøËåÒì]${=·Ïù´u€>Åpvg„Ê ~àÓTŒ8©  ç¶³¬,k'¯ÐS‚ÜP´¼àkÉÙM³w“¬ø(N¥ŒMŠmèva¸WB“~dh+Ð8’Ò×CæVàÉ `¹ücáhÛ%Ç 4.%°ª¨ÏF­½ô岩‰r8ªñ+ÖÕœ®yš4iú ‰Õg’ÊD¹è0Éß‹¹ƒ¼]Ëá­ôÜ~TBîÈäÛ¤']ˆ’+ß…Q˜ž(Œîª­ú¥á™!ù!˜OÏQÒ%ÜÎm‡ŒÍ˜.IY É+ñu¿‡Ä%äÌrÎJÚ’¾•fî¢Ùˆ̃¢EGhi©HÆ<¾RÇkÔ׊†*è 84iÒô§–2èUÙÁp@¹R8Ú mÅPv ã…zæfÀ+|~y¿Ã>‰Ë õ'9m‹œ±ÏUî\:-…×@9Œ±}lsèN¡«¦©Í¥PW5¹P•.Wœ1]:É.DÃ…C9pn ¤ÿ)+ y;¹â¾a§¿ƒ3?ÀÙÕœ4s w Ø¹È „œÈÛ‹×üxnäG7)=AËb•x¨8•º•‰JÇuŒ¿4¿sY,–i•cÅ1äâa¹ð\ŒbèùÈãKwa8&Hêfš¼\N\*&,•N/%gV`åìZHY™[°v‹3« ’EË¥'9YM*f…óðƒí¨Â&wɨbãêZf5‡NµÎtMš4ýùÀÑr c w/dlÔUô=9½ˆœZ–CÜ×pæ{!q¥xvdü̽,mjȹ®ç¢<ÿ{”$&™ˆ` úK´¥êÎCÕ9(? eñ´$Fºx£IÙ{Xæš²ÃPüÂ>á;š°˜¿($.ÇðTê:dz=»Ñ)ØÞDÑ!¬È-=†‰†²8¸Çkìì¨Âþ <·k3¸…V—uMƒÚ³)ýƒP™ÀqÃÊOaB3ò‡‘GÜ%ÉßËrö°sþœh,u-¾ÃÄIâJš¸’ãCNø)éüܲwѼ¹`?)ަeÇ1øVÍñ‘ƒY¡¶Jfhb¢ˆxÕ4ø+{[4iÒ¤éF•ô¯à ¤á<¿º¦i›äÄåôô?[>>K:6K>öDÀŽ!Ä}-œZI‹iÊj1/›µ¯Ž®­üŒ41©U6Ô›Ú+%ìÝ;G+’¡8]›óá,'€p¤¯…ÔÕ,i¿’NÇMLX"qj¤ÿ 1p”ãÅ·…P´J¢ ü4T$5ñc?­.“mÌÇQÓyurk-†¶´öÒk[k¦³ÑÎCs>4å! ë³1AÏ]þ*—âLO£0ö•Yþ¹Ò7bž$i«äôb9á{𼂤¬ÁØZö–· ‚ÉÅZ|œ]:Ãj21(×ZF;”¾&ªTeìòäxš4iú³€ƒ¨‡¼Ô.Öæ²´Ÿùq-ÆÎfÇ?‚#ïÐÃÓÙÁ·HÔ;°ÿUvø1fåßûT>=ß”±•”Å^Ý»ôduVH-ç…†,¹2™^: E1†!/%‰À_83Àéo¸#'.‘SVÒôµôÜϘwÀÖ¼p,a*‰K±XpU™@k¹¿ÍêóN—*b-¥ØL±ÕJ§I ë¬Ãæn#ÎÅeBŽ+¼–ÑŽZ¼ggú@ÐW°örlWi.0C¤6jR *!R‡ònŸÒf¸²7CæZš¶’ÔùŽI\B“—BêJÈ\ÙëINÉçž Ð*Ïò÷ŒÍï­eDh©³«ãCÛ®I“¦?Y¨Ê\"+¶™ª³!i©tò+)æ=vhD½ûž‡ˆ ü%ÿD¾H¼‡¦Â‘7éñOMg×±Òø—ƒ?¯`À‘æü¾)›Õ&“ªx¬>â—îùüº}3w1 q)$,ÁFüWpj.œùÎ.ƒŒu,{ Ë÷‡ ìb4§ +17M°štZŸÅr¤æ™“¢­‚èkÌ½ÛÆfj±d=žÉ܈ ç–¨ÝÜT¸¦©ßLÆû3±.´áó £Ú+°;£å"Î9©É¢Õp)ÊÎ@IÇ ïSy;!g3¤¯â° IßK ‹9ûàÌ"H^©ß³ô͘åÏ V*¯Ž }jÒ !‹¿sN7ZŒêoC‡&MšþàÀ¹…]àÚ èÑåýÓhødØû? OBÀSø8O¢!‡ˆgáÀ?é¡·…Ä•èüÒÑ`TLmL_Ã=lͨ<…MsÅ!/LIsGã8³N/„SßAÂR–¸ˆ%/e©«Ø¹,ÇŸ^ØK ÷‘‹‡pÖGE2N©Í¢h3v¯ÓöJÚÙˆùS+žö 0ˆò™×3]96êz{=®ÊPw÷°ã(Ñ#´aF»“³¯Šµ”ÑÆR_@ër9AhE"&Ö‹£å‚H)?kº²¶È©ëÄÄÒé%ôÔ"üÑNÃ’V` qæF¥¢ ¡Yv *âH]k:å 6âL0|óL‡&Mšþà…Ëàõbm.¿ìg13¤½ÏSN ÿaûý°å>Øül½WÞvŸ´ý>xBŸ¤‘¯‰§—süb¯+ÿ£,Ë’$ñËiÚV†9*Ïbkza„=t©?Cò2H˜OOÍ!§æ³„¥´ZNÿ™dn!9»82”ÖìãôÒiR~êó á4Aë%è¨ÅÐ÷¤vìŒPëø!U5÷Ùuù=¿näª9‹]Qÿ)C‘D’ wg±sØ©E4ñ’²NÎØ&gмìø(‹5³£õ"†Ë˜¶Õ\“&M7®ðÈT.¸ùq+¨k6ˆ@jÏBü·ôÐÛrðclËݰz,|ýŽÛhX|,OWß ›'@Àß rªtf”D™Äîüh55BGkËþT• P| ÎGAN0œÛFÓÖˆ)K!öˆýŒœ-Ç}+%­$›YNäï¥÷³’CP‹“Ìk³hC´TA{ƒ EÑ$ËâåÊÞÿñÐ'uXŠâƒ›X[%i*‘ë‹H} ­I"q˜È(ÜÕÅ»XêVì:ç®Gìl8>N|Êý,Hÿ‘eo’s‚È…Z|ë‡ë³Ys!t\ÂA%æ!íTézQÃW’²ÁV“&Mšþôà—Cé!¹;¥Ë:¡U´ä“Æ Z~‚–ÄÀùý i›!yMX,ŸžÏ©N ÿ—c7_ö. aî'¥G¿h¯NÆRئ"h«„Î&0upd"Q*ÿKzâô¹áG%£×CŒ*; £–¶WcYoÇeTœFvìÇ„xÖn„rv%œZ±_ÂñY÷;óMù‘“fïÆèVñQ¹â ©;‡ìЗI‰Â¡ÿ¤T»á/I6ÁiÒ¤IÓŸ ßÝiǦñ*8HÒp)ZÍ€,±Úê ñ"ί›)ô—0*ÅÏOÉTúGüFöõ¹©›Dº*ø•Z,c3Vaµ”b¯_U2– b…8È7k60žú?_Ð_É'çafçìjì‘Ï – £ÄÒxR›Îšò˜¾ŸŠûØL*¥¨Vo¥I“¦?-8Ȫqfp웦‚C¹"–qxk5Ô_€Ê4(£EG ×OÅÔµpj1ÿ Ž}'>ƒ“ŸKg–áøÙìí8´äb.Ý«L‚ÚLl'×—ãLrIIdñznÅå~¹ÿ…¤kìQò$„hÂ5èíUÐ|Õ§Óê¹ü+ŽÆlø¹ü£âwÌfÇf‘#ŸÒcŸCÜ<,Hÿ ²wa§yYnl,Ä.S §Rws‡† Mš4ý¹CUWze‡HèðÓ²>[­‹ÀùH–‚s®’WÀéoàøç4æ8ú)ÄÍ„bÚfE[%1¬ø9´ÒÖ@öN,?.=†®²‘¡bkwÀJ‡&MšþÜàØ<b¯`r¼ø ^·Wb|¦"ÿ˜¤œ›ðêúä\züS9æCrä;Î,…”ur^()<€+“h}6m.ŽZ|¬ï’º‚QŒ0J(È7âçvU¥–ܽkœ";”H–„}¦FÚ^.5óO†U¥ÐÒ8Ø»;å—CÜBùè'ôèÇpüˆû¾´Õ4g'½°—GaVc²ChÃþm‰&Mšþ¤àX4–ÝÍÖŒ‡-÷ppÐð—M§–`"£µòIÕiZ¼.øCÖ8û#;µ Ž}AÎ$G? Ç>$ñ_áXòŒmÌJ°K'Íe¨m—°¯[¼Å+§ü©à¸r cf»d¦Z@Ý!~ÙõPÞ+UŽ˜@hW"W%ÐxžÕ¤³²x(ŠÆñ)é[pÇÇ©y4ö zä8ò>\^HÓÖÐs[.#YyîXçDôj“¦&Mš4ýÀaŒÿNºA/È5iRi )„Ü ¾¾£±óáÈLvôCvüCˆŸgCÖ&ÈÃÙéÜ1©JÂaãmŘÑ;”^Œ«ÚðºÆþ)‰èŽÊ*X*©E³W¼qõݪí‡2PY [ `¨ä?)ÎÔªJS!@vKß g—pžJ13äƒÓéá4öKš¸LN]‡{ÏóvӢäê¬ÜXD:pØ—6n]“&MÿOÕ}šeéQ.‰•( éÀAOm`j‚Î"R ÇÞ€Ð)°ñX9ÃS_†ùãaáð Çh²v4Ý:¦¡“…˜wå´o ê$Ä^Œ ¥üÔ\vì~; Ç>„Ó àìZ’á/äï“KO°ê$Cý9©å½ÊvO¢«'À¢Ñ0oÌNgasn‡E·Ë+o‡caçƒ4`’pà5–<Jcàü^š¹+N1þ~û,pä=89 Q’±™æ„ȅѤò 4dˆí¥¤£„F zåô£Ü‰ á jl9@ì` 8/±6Jãáb4vydn…ÄïÙñÏYôûìÐ ˆæÀý'\%ý€›GòÃhñqZ†sz9;Dþ»“#dnTÝEµ–&Mšþþ†Z¼J»O0ÚÙ,륎JÚRÄø5pS‘X‘4äAm‚éÜØû<Ýø´p |1 >Âf ’f ‘?Å>NçŒ"KFcüjýDºù!)d ÄÍ€ aôÜ)i%îé;2“D½C¾_‡ø/±^ˆ»!¹Áü›–%`g_[Ž ”:qç¸rÍÌ0¦Ã$FÿÊ¿eþÔFÎŽR¥R™ŒùŽóa¸Üe‘/°ð¾—àÈ;7—³ÌíPAËO@]:¢_Ô+y!­1P“&Mÿ5‰õœrc©:‹eÜÅ(ˆ€Ü=ìüœû‘¾²¶’ô­lO]"|ß!6L~óV˜:^/„©ý`zööÍlæør$Ì ³o§Ÿ¿ þF¾CN#aS ây8ô&œœKÒ~"¹{¤Ò£˜ oÌà NB&v͹Â<Àý¯‡Ýþ×Á¡t2èšÓNÑ]`&èlæ<• ¤ê³ré!š·‹œ]IâBÌ[$ò%ö<ìŸ 13良hÒ½.F ‡ØúDÐês5iÒôß;·:Ê¥–±:]*;ÅѸ-"Ç2¶ÊY[NY ©ë¤äuêÖo!üEøv´ôéP:}0L½ ^/ d¯Ü¦÷£ïöf3ÂW#aÞ]0çNúÙÓ¼Ñdõ½4jª67F>‡•T‰‹ÅsÛMöÓªDh8me˜X!8Ü•˜‡ƒ•ÿJæé}*5þ—ÎÊÒÜou2~’ -´í’Ô-UÅ‘‹áäÜ&¥Æàczð51t ²ãÀkrÌÇrüw¾žßÍŠ@U 4W€Á€uU˜-Ò|Mš4ý¢xKDsè[±…é+ >ªÏàÚÖ {!w'î0M[‡cÏ,å×·,qIøZ:1 #êG?–÷¼ óngŸ£oß ¯†WÁËé´~ôÍþðöPòÁÓì‘Ò‚;Ù×£å/†“¹#á»±¸U6x „OeGfBò2’¹\ˆ€Š8}C¾ÐR&ƒê^`ïæ2´½]"ÊpHî‹á˜¯lZvœ^œXŽ{ôSþ œÄ‚ž‚¯Â‰OYÂ7ùäm‡ÒƒP›‚KùVdʆÜ_¬dZÒ\“&M¿éÊf‰šC"˜„í¨&Xe"?”Xa„âhl€ÔUØ¡œð=Ä-ŸøBŽûRŽ)ļ ÇÞƒCo‰»§\¿º};榟§_€EwAÀ${N‡“_!’röàhÜÚ±½«€$Á¼U m¯D7èÕYWnôh¹UI¬(Šœ†”•85÷à[,d2pp„=Ï¿±ŸÉg—ÎŽ‚`¨8‰3L:(©Žÿýf+Mš4ýyÁ¡ºJ<„Š`j Mùre )>Ì]’µ“¦®…3ËØ©oå“óœsþ¡ý69ò6‰~]Úÿx"Ÿv<úkàøx;¾üë§·Áì°ð.ü$ìŽ}IK•9KÑPž Í… փܮúAÝà`8®ü}™ç$pôJËyZyZ*ŽF¯0ù&¼ïþ; x묿.žœ+ŸùŽfnb…ûhåYÖR†c¬ÕÀ¡I“¦ÿæ~Yí¥¬:™¡yA,kMYÃN/ƦG?%1âL益Xäólß?XÄd2 B'AðãÒ¶‰×Ç;C88GÆ‚qðÕh˜9 ÁñÝ8!ì82NÏÃ<{a”§@}t6ë&¨ÀóŒ)5E¬É©"Ý¿/Ú †j¹1G¨L‚‹‘$s;µ¢ßƒÐ)òŽ™ÿÃö4‰yŸÆ~É’–Óì]´ø(«Ë}5HíW‚ƒýP¤¦I“¦ÿÆ5,î³0ÕACæ5òC0©‘²#çÇgAÌ ˆzöMc¯@ØSüìy‚ÿC°ë~²eüõsƒÉGCGÆ×cáËQü>04üx¯éÐ4ˆÿ,ÙÁPšÀj ¡½dcWúÛL s÷ºvaÜ%¹k#¬¹ÒLn“õ•¦† Ò¥X!?L>»b¿ÂÅî;fÛïƒÀ‡`ÿ«ˆè´u,?”•Ÿ‚æ|0VjàФIÓJ lOîÀíŠ\±—¹’–)#¤fÁ¡·1¦þyƒçœÛ„-÷Æ{aý=°áX?ü4îºà˜~+ýp(ÌUU³GɳGåwÃŽÇ…ã@ò"ÈÚŽ“o«rik p»Z ¾7 Ý£ÜäËÑEÍ’¾Z¬NŠŽJY» q)¶?Kwü vÜ ¡Ç_ßñáÌbš¹ wšÔ$Ckž,‹]Ûu•ÿ 4phÒ¤éw†>ð›¡1—ÆzI?Àɹ0zû‘ƒŸBÿÂÿA²c"¬¿ÖÝ«î†åcÑ~KWÜ%®¸óúÇøh|É=Ž»ØÜÛ…£É†aÿsÂé¯!óg¸¥g¡©Lm„šd¤tË®ìÚÐd>âE¥–]Õ(ëå¦|±*Y.Ø• ñ_Ã7iÀ$qË}ÈŽ I8,öKš¼BÎÝM¸GY—$FB¤+Á¡±C“&M¿236’šLù|8I^ ñ‹èÑÏhÔ{› ~½Œ÷Эc¥MwÈ«ÆÓƱ%w⢅cè¢1Ââ;Œßÿ 8†ÂG·Áì10,ûz´°ä.y×cp|ª˜´rvBÑQ¨Êö F·PWlV¥æŽ? WäÎ)¼L|l ˜¾˜Ög2…œ]XopäC4¹sódöëb>O/2¶È÷ÑÊ“C‡$ 84iÒô‡ÈÑÆOg?ƒšK¡0Фn&ñ‹ æCˆþ'D> »‡ÍƒuáÇñ°ôNöÝh˜w‡Ò> >ŸŽ€™#àã‘ð ¿=†}4’¼3Tz} <µ?L¯Þ ¯ g # YÃ`îPaá(iëpä=)a–)}½\NjÓ%}­,ˬû ÔôÇx"™hg#­Ë'c c+ΰÚÿ†ð”aã8aýÝàÿ(|E>ö~gÂ·Øøa?kÈÎ*þ‹J_¥€Ý”Tí¸Ô¤I“¦#Ú)«çFC>œ%‰+å³1²Á©ô$Ûö¬?Ü KîbßÜNç€Ï†Ã§·áø©†Ðw‡À»C÷)Þƽ5„¼y«üÚ@2m{u ¼:^LgŒÀPÕ·Á×#äãhà8ñ1IúZÎÝ eG 9ŸZéºÚ¥ÚÁõ‡/D0µ±æ"\5Ë?ÛÄ¥px†òœ´y‚¸æNØt/„N!‡§âfÓôu W¦°Öb J;:ŽÌ5ï=פI“¦àH˜i¥„V%Á¹ $~®ý6„?˧[&«'ÒïÇ‚1ÜÅ ³n? o¦Ó‘×p:H¯ô“^êO£/¢±—З°WÂÔAlš¶z{8|8> o‡MÀ¾×!~Kÿ‘†ÚT¼è•µöV‡.ùÃ.‡ŒÓ×;jpåÓÅþ&5ö¿ Û~ÃVŒíCÄ ¦#H ‹ mXt”Ôd‚¡”që²ZÙ³&Mš~‹Ç¡ôH0‘–DÃÙïèÑ÷ؾ@àý°áolÕD²øNö•’zÿ6öÎ`ùðb?öBú›Éä¾äé>ôïÜnbOÝOô…I7ÁÓ·À³ýØsØ?±o¥/Ý Ó¸?2”ÍB–Ü“áw7~€\R‘-E ¶«»M™–ÈøOÁ¡l}Û µ÷³ç@Â÷ìÈgð¸¼òéÛa°únxJÞ?M:ñ $~#åîe—NBkÃåy¹ÚJYMš4ý6p¨#åü ˆû ;ÁƒŸ€­cᇠ8äË‘hzk¼:^Hžï¿ &Ý ÷Gz±‡zÁßzÁ½áÁ>p?¿Ñ ì÷fõ¥OÞÌþÞ=Ó&€©Å ËDZð—å“óä´-p1Z¬¿úzE38@Ëÿ‡¿G¥á…JÔЀù‹’þžÆ/„ð²µ÷Éó‡Ââ‘°ñ2™~;h2¶@a$4dâ6ÞnOjÃ5iÒô›ÁÁÚ¥ôMýÖPm{ÖÜóÇÀ#áý!ðÚ­8#Ÿÿ“náD@:Üß&ö„»}a¬/ÜéƒvG¸ÃÇ|û.6Ηñ;Üß›=ÐîC&÷æà ?ßOO“–òk](OÚë©:û‚™ÛÄ•ë^­_ãJÙ¿Î?FY2Òör¨J‚¼=rò*ünŠ~3æ …wÁ¶‡qÉÑ·±â:{Tž‚Ž e? êqhàФIÓoˆp0ÍBâJˆx¶?ÂÖÜC ‡Ï†±ƒè´~ì}ažÿܧïá€ð†1^0ÒÝæÎ†¸rƒÁîh·º0Õø7os‡ž0ÊFûÀñ‰ä³aàÿÄ}"e¬cEÇ¡æ‚(” T 8°Ó_ìʲ6ZäKé¶—•R]"´Bs$é[iüL Kï¡_ †o†Óµãéî'`ÿ‹û5¤¬eEQ¬é<“ÚÕ=äZ¹&Mš~8šLñK!èlÃò²»…9H òÆÍòó½É¤žì!?6ÑŽõÇxÑa Îò '©¿ƒt³ƒ|³¹Éôu’úØH7ÙÊ7ÛÑ~0À ¹À­œ)np§—éQo,ß ’¾ y›¡ü 4\’€u›î¥# d’&í7ò‡=G~諵µ”˜ ½ÊŽ‘,)ù+8ø.¬xHž5Xš=H^~Ýú0„NfG>£§—Éya¤.‹Íʯ@‡&Mš~#8°£ (5%ÌÅÔÆw÷×#å#á¥A0ùfx¨'Œï£}á6_¸Õ ú{B/wðso'ð°W[p±Aã7œíÁÁœìÀݼ™íåHoqeýÜà™~°t<;2]>·ÊTr„´—I¦–íså¦öÊ”¨¨Ì} ƒQe2‰jà vÊØ¯­DÖdf¾ÎïZb>~?Â$“r˜Ë]ü5Ô‡˜pF!‘Íô”•ÍMüŽF ::¡MÀu}ø8Lð.¢„©ëfMj@O¤æîM©«³{ú”(€ØM9â…ƒrÚr9v¦´c’<ç6xg̼ VŽ'÷ÃÁ©;“e¬“ËŽP}1@'Ã÷¨… 5iÒô[È¡x„šNÍõc`ÞöñéµÁðìÍðD/6ÑSCÝ¡¿;ôqc~NàfÇ1Áœ¬¨ƒ…l§£¶hÌŽ›%³±àvà`Iœ,EwKÉÛ†ÜbÏõ‡ÕƒȹÄK§Xg^ß`"—OßËÕÁjÚ(¯ø¦MÊn®>k¦.@WF}I’À¯ÛJ°H¡º9Üô@]•Å¿+5Ü µõéI%óæÌ˜÷ØäðAwîr¹y‡M=ö=÷ºÜîî½ÛÎÅßÞe›“{P¿Çy$õÍ× ç~ÞuŠŠAÔ3|+lü¹ T^ ‰ Zð;íÐ^ ei,ëgÿþKÞ3†°ÅwÐ-!l2D¿K“—J…‘rs.v­Z“&M¿=Äy™ ±³áÇ0s }í2¥}ØO¾Ç›Ü¡¯#ø8p^PGkjkA¬t’…Žèt²NG¬tÄÊ‚‡(äwmt¢N诃iƒ`ÓS0—É5Ù¸üôÆ“Œ^E ñ–@ßÉ/úùÕ~»Rú*0‚­sŒ® ðeP6)2³‹a¦ÐΣ„NÚ:²Ïž\¸`ëØ [Üo´ì±ÍÝk§«W‹g˜£ç>{÷ýv®ûl]"mœ#­]"¬œÚ{DØy„Úy9{ïpñÞáÑc·ßNûÞÁÇ$¼?³êøaÜ–Hô@ŒzdYT½þùvâëwvV]€ÂP’¸Â_ƒ€·Ê¯ß¾?Ž£»¤/Êqs¤œRu6tP¦•µiҤ鷘J ¦,KÇ¿„eÃà0¥{¸/ë#tûÙ“Öàf V`­ XáWÖÅ nL1“¥ŽÙX²¿c¡àÃB'ÐÁŒÛ ð%HýUIJ¶j 7âùô‹z`J©,JT&ü6ðO§¬¨yÝÖ‹s—”;lÐ7*9ˆ }eû9ciRÃKDqODõye¤ÈÏHžÿõ¶acüí{°ð9fããàaïaãfåbéjåfçêàµÇÞû»íÐõuì³×®Wˆ¥_¨…_˜U¯}v7Eë9SB]}÷¸ôÜf㻳ϰäf ǀРrÁT‘9¦¼§¥´ýlz>¼ÕôBOúÞ­0ÿNºaN‚#ïÓ´5rI ´–aŠI‹TiÒ¤é7C=jdùÄø~8¼:óƒq=a˜'½ÅEò¶&Ž:°1ó‚³€£ëâ…úGn¿mm VVøM+¼Á:éA˜7"ß“òw±–|Lj0èFöÎ_4F(7¼×7fÏœì;h³­kˆG¯]–A#'ÐSñÊX'î;™°„X1GBi'°&j>²[ô%ydÔ8|üñvºõÜîäèÚ3Ô­Gƒ{ˆƒë^'·`Ç½Ž¾áÎ~aüûÎüûÞÁ¶>¡v¾a~aÎî!În{œ÷8¹9»îqr vrÞãฮûN—}NQnÞü w;ûØù¿Û¼L­mRk‡2AÄœïh(–ò"Hü\🠟 3üÃG~¥ÌÍ~ÛÂÙ2gó{ >÷¼kàФIÓo UÉJ¨J’bçÂÒQðòp¸× †{cFÃÛ8X0KfR\ée\i¿¥5X¨à°R£Xàb/Oí k'Ñ“óL‡1c«änÀv —·1B»7´Öο›é:»½Î.!6öǬ=­=‚úÝÚ–‘Í] ‘™°„X1UÍ0Fd¹™u0{nl>4á±µV^Üû»û /,]#-Ý£ì|ö;ú;zírpß«s ³õröÝîä³ÁÅgGï~‡ï¸'å±g›thì„m½o^ïî³ÅÅ+ÀÙ+ÜÙ7ÌÆãˆ…÷P=ƒœ¼öZ»GX¹‡:xìróŒq¾yƒÎuÏ÷Ôƒ©C­ÃdĤEG‡Tž ¦,…ð—`ÁÃó=„É}àÍ‘lÑpøéÇ?¡ç~¦•§¡³Q‡&Mš~[Œ‡kƒ,Jqó/ ewºÂ-®àæö܃°ìö,Tj˜³WQCý>§†’à°KK“Ng²ÖA//2kìy•d­5¶§dµÓï†mAQƒVT&*8Z#zܲÁÍk‡—oˆÛ^ç@O¯-ÎA6.§¾[ F#æU‹ªð“Ôwpd4œK {ååÍvÞ‡t^Gíý¶[9EÚ8pñqóÞᆀXgï³ÓsÀÑÁc?•¿vMÇÉcPy @Ú€ñc¿?"nü—c2BMmG|bñ–À„¹K¸/È{ðN[?ß]n¾»<¼ö8»YÙÚ8FØyDÚùm¶ôÚ3ú¾–ý`(0nÖV`Ê_‡_‡ÅWúžèÁ˃aé°óIˆzCNúŽG¾üFt5iÒt# ëEˆbü %»Lr Ôâ =%p£I䎻 ÉhÊÏÎñwï±ÓÙ×ßÊóuÏÃ6½Bl}‚]|œ=v<û*¦ËA0*jë6`·4Ÿùê»m®Ãt®Çœ}#\ÜìÃÜ"ݼwÛ¸îvï8奆©8X³Z£EÔÙæJZ„*C§ø[1½b6&»9DZisiËáÈÔ×ߊè9(ÒÚ#ÚÞó€­s­}»‡¿›û^¿›>¬úüçÛwQ Õ˜J·±oÃÏ“×t<ìÏ êx¿?]0 6þ Â^ãç¡ÐV hÿ4iÒôï±ALX&$㾆ïo‡ç‡³Qn²½leMuVœœÜ•PbP–ü¿È‰›Áaiaä·m»]]«³žF”ŦB¼šÇ+s¼ ¿1¯l¯ Ž'ß½~‘½öZù„YûF8õ ròòwtK|ô%hkÒcÅ)¦8ÀÔfÊI6.йgµ[¨£k€£3wöÙùÆèz¬µí»w“…ë6Au…kj”S»Q*½®ðÁ ’½¡¹Eßz¾¸p[àþ'_XáÒó¨U¯ï½n^öN¡ÖŽ\ü‚\{ïòÐ࿊àBuœ]o x¨ñ]¸‡Û@xá&ød8,Ÿ€+W޾ «XMºVU¥I“¦ß"ÊD¬Ž¥D0ƒã6톽{övÔÆ¦ *;³ø…©u˜CW£XX|e©Óûê`Úñ"äí`ú spJ6aZù†< ®ª tôÞfãâá·ÓÑu§ƒSˆ›çNkÇ`G½Ÿ}¢± ÜëP*©„¤ ëv8÷ÛnçèÚc¿Oï0k×(k/îªüàêw`Ê?õ1Ç¡¤äN†õ²Ò­Dÿoö_\¹˜¤³Ó¨¯m¬«©/­«/kn®imjª,mHKª9z(êþ'rë³ÉÖ#ÐÍg«£Ë&;ÇÝ6îlý¶yûF¾3* ábxô øæí:˜ØŸ=ÛÞ ï‚­AÔ+4y))?£¾/Mš4iúwä j xb,ÿ cÝY?Wðpg[fcÑí_˜Iai‰v55”4‡%XÙî¡ \tÌRg¸Õ>¿—Ÿ UG@nÕbW ÄаÓìzÉñú·g†÷´ÃÂ>XguØÞõ “×6 ‡¨[†Õ–cÓ· “©±å䇟ísédá¶ÛÙ5ÔÕ3ÈÒ)ÂÒsm¯ˆqU†„ƒÐfêhcx.Óv%ƒAÍòüfÇK–i{{G]]C{m]c}Cus륶ÖÒöÖKíÕmuu­µ¦ºòšÈñS^ÛáÔ{§ÞŽ.{]í=¶ºùE>ö¸|Òk«¾ ãl #¼éþðò@öÅ(¶f<„NÁ©Åc0?®I“&M¿á:[m”ŽÍ…E·ÁKCؽžl¸ôu†ÌÅïìÚ°¼ŠÝ:[nDgÍñÁÝ ÙBg¸ÛV>.¤n}.àð óCÆàœÁzÝrÜÚÚco¿¿É÷–}.½öÙù®Ö9l3¾iûnL µ17Þ\·õÑIö~‡zìup tt¶r ³õì1¸`þ÷P]Ïá‚ ’bJ]锕<ý_ÃL4 ƒ©¹¹µ¾¾±¶¶¾º¡¦º¶¦²ª¦¦º¡±®µ½Å tH²‘Tµµ×¬ßÎl¬7üýföÞP¶d ìz”Æ|BsC¡µTû¡I“¦ßpb*×¾‚, ß ƒ×†Ñ'|É„8áv3íeG=¬¨ƒŽZc«¸ Ã¯jÏ8¹‚&ŠKbCuֲάm™–T™&õ†ÝÏw^< R-?ÓDµòHÃzÖT]¯°BÄÔr:áâŠ5Y ¾+ 2–_⾆(Ä@CÝáG&ûë\Â}\¢,CmÜÃ}ûE=ð˜1:d£ØÝ()-£òUIˆË@„_E(g‡$‘ŽCccsMM7îqT4ÖU××5ÕÕÚ€»qÆ.$ øB͘F7 2O¿þ†¿“ï!KO—žQ.nÑ6n»u®Azv,œdx¶?¸9ÀP¸¿LˆãÖ7LdûÞd™Û¡!Cû¡I“¦ßådeáøWðÃpxoùgùñ¾l‚7»Ã“ q†›™-s±–ì,8Dk Y)¬º²"WfCˆ¥÷8°‘ÜQG^GÞ1ÖéÀx¾ºtC¹Š¿=Žë©ÐóSYqr ,©‰‟ÔÍ»Ç?pPçsÄ£wˆƒëK·ýö>[œúž™þ>T—1ê…£B#&B§¹§üŠi„ ~å- ‚ÔÒÒÆ Î îkpã7ªªë›šZDƒ§ +3B8:ڕߣÁ(7¹ßžM-«×o°îæØg«ÎÖßËs§«Ï.;ÇÀž¶¦gî2ÙÛ@/ãÏô…n£YÈó¼ *ã´š4iú÷R»DŠ}ëÆÀcéôò 飽Èý>ô./æ ýœ¡§õr$nvÔÑ–9Ø‚ ±´¼Ü¨ô•Ëj¥.wL<¬`ÖÃ>G2µá15§› Q:o<ŸãºC¥«ÏÊÊ9k;«B‡O8èØ{›{ Îê ûW¿UÎ~åaЮçþD»2öƒ™ÅÿHÛ±˜J@ËñI¨üküE¹­MÏaÁ Îük§Aµ…= uȡ١ ï%@%WÃýÈö(,ÜÐ÷ÖÝ®7mqòØéí¶ßÉ3ÂÉw¿³c™s¶‡ôo>dz¶pÙñ‰ûŠhÿ 4iÒô[B4&5`uz>l ó'‡ƒåׇ§ûÇüÈD6Ú†xB?èë=ݰ1ÐÕœì±=Ћ¬h×tÎÙZ§Îª¢>ðí(\Ú}Nªÿ%’|y”Ò¤ëŽUç~¨ QW‘Áï& H§›äÔ3ÚÒ5ÌÎv·§ãgí7 ®ÙÐŒuc@ܨÂ3\°u…IøDDÏEÙÒú+åeÜ×hhhâ°à_Õì¿ÝØØŒ½8yWffäœ@/NV&bQI¤Ì<çâG\Á‘’;ô¡:ï½¶ÖÑö¡–}v:ºïsÔIÖ6ré7áewyîMÒ¦1Vy>Xû¡I“¦©2/rª3Å-‚ÝO³Õ÷Éߌ7}4œ½6„¼8@~ª/{È&úÂ^òH7á6g2Èn²§}ì•îrk¥kC§·Áú[ÐÙRkKÌžÛè„7›‚ŸÖל¿Ñ~^Ü“!a›ˆ’ºh»÷F{ZSOuÔ;”<ëӸǟÌ|èñÓÿ#þ¡É)¯¾×"•åkSGÔ7‹ƒmúDºß¬³9ìì«sí5¼½¬¨þ_èOá´jkk«­i¬¯kn¨oÁ„xum]]]GG‡¹`ø÷‡Ÿ´4†O|ò Î7ÊÉ/ØÆ=TçìÖ'ÂÕ¾ÑËô†=è‡}aÙx|Ô½N–qF;cêgÃ_OI¢h×5iÒte¤J UAƒ)a)„L±ååÙ#àÝìµÁì¹~0é&Ü;±'ç-ñ`#\a°3 t†ÁàeG¯‡…öqXë¤ÛЃoˆme7ÚÏk’%¢ÆøWBE^õM¯Û;ÅŠ-A[‡Ý·Þù×›6غm÷ôÙ¡s<èÔ'̱×O.¾k†Oýø“º9‹¶ûݶ׾‡¿ÛVg×(+÷]ž7 qÐÔøÇº cW®Þ3MMM*8¸©¾Fkk« ×{ȯÿ†ecÔUoë?jÎ}ƒw°oï@K— '»\{g¹—7Lôf¯÷„oǰ€©ìÜ YlVv2šU)àA[E®I“¦+O-eƒ@³ºöOÿ'aýðýh˜5> o †À3·À“7ÁC½Éý=`‚Üé ·{âZÀ^ŽLi÷3X©MÖ²F®88È=CáôÀTíFJ†u¶Á-H‰,"5Š‹<7u³k¿ãöƒbu¾Ñ:ÏýN=w¸x†º¹íµqÓÙÙ8m°sØáåÕs@¨Î-ÌÙÝßÞ)гÏ&×¾…»t‚$wü¡Ü U¤Þæthiiáþ… ŽºÚ&Žææ_RC}È寓ëCDVR,u¬ {Ÿ‘Áν¶¹»…»º::ÒÙ–x¸‹·ûÂ3¾tÖydz8W4Ô+c²4phÒ¤éWŽ-böv8ú.„OÿGáç»àÛq0g |<Þ Ó|L¾™<Õë úÁ}~pooèïÆ”Ú*ÁÊýà Π|1þ„ä„íF¿¡×ë95ª««985˜×ë;†+©ñëàhsáœäÎØÓí{ÅxõÙb§ÛãähåtÚÉ­þf/v¿}o ðÓƒpäQ_¡,±UJàÐ5™á£I“&M—R&©0N}Q¯Aè³°ã>¶j"ý~,w;ût8ÌÓ‡ÐiÄûÑçúÂÓ}褾ðd:ÔƒY!8dKÁ¡¸Ø¾³­,uòô;¡äÃëÕL‚Ø} Ö íXÍÚÚ¸í¹özx{xn·wÜ`mìéêÙc»¥=Çn'ïpg¿ƒv=öêÜÂízD8÷µórî{ÀÉÅ_çœòÊ{8ÀL`”¸ëòU‹‰¢ÈÝEœ*8›Fá×ñ«àPŽ} Kˆ Mk·l×9†yx9yñ-ÒÞ3ÓÕÅ0Æ^,-‘/[Š€Í‘<ùç„784iÒtõ¸ˆý ¢t)R–ÓãŸÒý¯BÐlëdݲì.º`4|9f—ß,¾=H~£{åúbx~0íElÌÓH¨Î–CÄ`¥4tXëȗ㡾@éÆó°dP:¹Û)næ±ãâ?.sôá>E€¥Ý>WïHGÝ!Nžaž=\½•|~¶~û{GºôÝmë½ÍÂ-Ĺ× ç£c0V¡¡WÊÑùã[qqTg'çD­"•õuÍíí’Dºïóûc‘ØB‚˜4"; ³9~òË»­½‚íøOÑsÏ~[‡²[½ar˜;Â&êòvb%£G¦C“&Mÿ¬1â§Ô¦AÖ6zjù"^†àGÙÎÙÏaÅݰøN˜?†ãCþl›9Þ o…ׇӻýd»®µ€:Gj£kÇ­O–²­[òô Ø#ÎdbD?¨¡CA˜ÂÂM†¶éuÀ£o°NvŠvîyȹgˆµÛvKÇ`÷Û­Ü‚œýœ}¶Ùºm±sñwõôôÙîäºÑýæ– ½uÈ `2áƒÃd2©Ù ³j›jªšÛL&ñJ·¢Û¹ÀîAY&„üÛ,9R‡\Ïø›kä)(ØÜkÔ^;ÇH{ß ‡>Ûí]Oû:ïö…G@ðß;«³°a“`§H8´¢*Mš4]-Ù *­Дù!,éGˆ§Cä$y¶Ýë8;&À’»aÁ:ïv˜=>½ >ïŽ&ý${V`áBítmØhAìlaõCüT6ÝxÁqQêFÕrS‘ü-Û6»ôJÐy†Zû„Øø†»ö pðÙiãìäìèdë~ÀÑ;ÌÑ=ÐÞ9Ä'¥‡;8tu ±´Ž{ù=ÚùSñëùþTxÎ~ÿ>‹n'¢£££¾¾}º:~CGsS;!ì_ÁÁ¿J’ÄY#¯ƒ£Míð4¡ÏÑDÄþsÛ«×úG::´òÜëÒÿg¯G‹†Žðæi÷UتH8–ˆ ¢”ÞiÒ¤IÓen¨š˜H:ªäò$é\ =½ ŽÞ‚Èi4xмë1²õ^²~<]=V^yûᮎoGÀ¼Ñ¦ywÈ“ú(CÔ-LÖ¢¦9dK[Nb©k>4]fÍ7à^ þÊÄÀ‘¡üàRÊƒÏø[;¸à"×k?]×yzDØx†:xmt÷³õqï³§Ï@îtW:ýæÊXó»Ë¢ˆB|Kijn­®©«­k¨«o¬VÆRÕ×7ªÙ ¦tÜ«#Öõz=G ÿk,ÙU(ó{߀*ÿGç?T½ÍNwç.î]áÙ‘ðóxZzPÙ‡ 8IK#dí߉&Mš®¼âej÷²†zV“NòÃáì8µŽ|‡Þ‚ˆ— øiØýºîŸÆÃÚq¦å·Ãâ»äÅ㤧û¨k›Dµd­€ÃÊtÎÔJ×óam Þp?¯¨ìhb¢QY,%øÞjãªø×G¸½W€«÷GÏ`+×w¿Ý¶^»l|J|}e}¬Zãôë½×û[‚(746WUs4Ô74ÕÔÖ«3FÚÛ;AÒë;››[›•Ù#õUUUüF2÷PÐï¾`ˆ9²ÍÍo¯S «{ˆWÏ0+«Â‘îòÂ;áÒajž^"ª„¹˜¤UãjÒ¤éJÚåyH­Ð|JŽ@ÖNH]‹V±3!z:ì ž…=“`×c°ýØ~¼q¬¹{ÌŸï§®—t¶TÙâ$YZrp0+ñäçJkà ÷ó Ø”€àPqù“Îó ½Wˆ­×õÀèâ»ß–³Ã3ØÂ)ܱÇ6{ßÈwBEþ/ÂM¿÷š_ÍPH’¤‚£Ó`âŽFeU ŽZeªau5çG#G†:{„G‡ÿÚ¨¨¹¹Yõ_~÷a순ôl˜•g˜ƒw€÷Ak—£7ÛÀ—÷Cá~Êt1¨`’4phÒ¤éÚ'˜ú_ÜèÚQÕg¡ ²vAÊR8ó œü ޼‡¦Bä?aïd~‚$÷ö‡`ë£òÔA²ª³c¸7ÖB´Ðqp€µN>³Kªn¼îܾ„󢘴ӱo´wˆ¥ûõÀàâaáîìfçbå±Óù¦‹s1hýÝ€&ä_›/0U!S“ µ¶é¹—q¥Ç¡òBrˆ]]Á+®¶¶¶–––ÎÎN£¢?üI4ÄD;ö=`ßÛ_çÂ?„]^íÿ¼›d…2Ù¨$€þL~1IKŽkҤ闱*óAÆÔfhÊ£e±äü>ÈÜi«Yâ"÷9;þ>ÄL‡¯AäTùw9üï°çiš"¾5\âàÀ¹6`fEœX¥´“§®9ŒnPu7DQlkïhimç°¨æ€àt¨oäVÓ5D]¦Î‹–Ž ½^°P«¾4ý£yke»1|Ôý¡¶=Øú°óüÉQ—;| d‡•ÐeÖðbM•È4phҤ骃ŒëÒ*@_Aj2åÒxÈßK³wÑôu$y M˜Kcg±£³èéá×¥C¯BøT¶ÿUéý»LœVJÓŸ%Õé$káßÌÜdRé14'1c'Ž®%Æ>,C\ý®ëqØyïq÷ݧsÜãì¶ÃÉçøäi ö\¡Rqðë9ît‚À=…ÖÖVî8`É-÷0ê10U×ÀaÁ­UœܱeªfÆ»)Ø:ÖÛ”Ú€‚•k¶Xyqèbï¾ÃÝí¸»¤…àcÂ_ ³8J™±Mš4ý2V¥Ì´SÏxÄÖZÌÙÅÇ àÍ ë!e$.†S àä\8þ™|â88b>>½×ÈIaÓ½ÈÉ Œ_eûnLp¨k\Meú«˜úøs;í]¶»_79`ïâälïbç²Íͯæ@„¡Ë“ºòÄþ·ÞGsssSSSCw"jkjjª««Õqîe ¡°C5•ííœWB5vuŒþ@f\ ÙaŸ{CÙΞý£¬Ü·;98{…Z¸W…|¯L}ç/`4©à`¿2ý]“&Mÿz2v+C픺\tVѦ¸”Å'Ø…H–» έ‡Ô!iœY§Òøùpx'ùò!“ ‚CY#kÉ¿Êü:{ƒ#'À ®1ºcU8'\î$Lä7V¬ßéî¹ÖÙízàðwêfáºÓÇ+ÌÚy‹‹/ÐæVu~ÇÕàø·—ý*5T/ƒó¢»_C¥'…9'®Ünhl掆ú”Ý}*(ºû8ºyñÇÀÁ?öv4œ0ñ¨½çNo+—0k¿“ó§A[›r%T¥x84iÒô+~+IÖš6¤±ê$ZK C~dCú.HÙ&¦m³«!~‘pæXs§`§æ8ì¨Î,1?޹–:Èß‹Éñ3àqØ]q2Ô”n9&ÔÎ{³›ó.'7ÿÿÃÞ{ÀÇQ]ûãk«mW/– 65 %< ü tL51Ièðh)@BHB¡Ü›lY’Õ{ï’«\d[ͽWÉV_moÓÏÿÜ{WËb°É#/Áâ¿ç3Ÿõz5s÷ÎìÌùÞÓ¾',&Wœcœ’£O*SÇÖ†‹Â’Ö$$Õª4ÅÑ“ ¬ôubþhq R d Xà{›Íæv»ERû­0o•ÿ•;.ü“ƒüo(Ö_çÇ®ì¬ÍÄ\µ¾**);"výÕ?°“?yhÓ[hš² Ê,Œµ&Ý¢¤ }+û+ÛßÇ‹lªx‹¼¤¡ìïüþÙ×Ѥ‚sîU|Úm‘6d<§|¾e|àWT€†òØ”ü#»=\`Пñº(”¤‹™\ø ³ò›pÖˆ<%YVhŸ¯ÏæOJ^D§¼ý¾É+2ç7ðHPMvKnò…ÒFÓä‘z+*Ô¢$é뼌·%9e\ŠlCØ–IÉ?d£?¡ƒáúÅø”Z|¿þf^7sÅ*‚W"üiv£)ó’‘½É×$ÚAF¶Ð‰á̃™þ̸L’ƒu“”DvÖøÓSN’ÈÑ ãVúÆBil¼^RE;Q ¬e›—=Z™-k‚É1Ǩ ØY_3yu‘iË"ixL>q²Ä}RNëÄS0³No„_Sæé°8#éšI‡Hß;ˆ.jzQ‚òÍ{ȳf= Ãû”Þ6åt o„ƒ°¯öä𻲡+¶ʵ-?æ58ÐÊ;Àá¦Þ9 | 8WJê’ȉe†˜|mT¾:¶*,¾^[¥ŠÎÕF.‹1†'­‰Œ­ÑçjâÍ[Bô‡ôu(8<˃ÂËË*/˜>D]ê74XŒƒ½~ß1A¾M$ZIð;ót“s"t…Úè}RIâU’£Ÿý Uîæ&©ÚŸifïx^” *j—÷ååHî1^„ÀU ^žçñš ;“¬œ×¬û"j0uý¥U™N§“íê–ð•Mžªk'àw4 ¼‚ ÿŒæ sœ€dÿ¥ÎC\Yq¤å—"©GÑÃyñ‹#£(qˆã#åJ(Í(„8섯Þ뢙vòê49À3‚úÓ+:ˆ és/%nsƒ U8êeo-ú?ùʘ‹@ÚRÇË‘?åš]tN˜¾Ð˜¡I´ì٩ЇT&­Dô€Ã³­uÇê´Œ…‹–,[ž‚o-^ZV^yælßùÆ/¯¨Z¹jufV±2NwŸI]ŽGN·jê%Y—_Çïì¤Ö2ÀQžßqÈr`Ö‚¼èk+ïÊTMY6i¶:©ðúÛ{–¬Þ«%„Tª±=”³Ú}§Ó§\“žœ«KΉ˜°D=)EYõÃÏÀ±“>.WY§N*V©§åç&ú_&¸åéƒ$Ê{œYbŒÉ Õ—/+SOÍUió'$w½ñšƒZ•ŠBI6‰ËMV÷¾åÙe}•*ºÄxY^ØÄ,Ud³Ê˜—¼é…'‚ û¢±=?ªÌã"Â"9{%Û1Ñ´Wêz;•Þ­pf«{”?/LФ‘qÕØQ’¨s™®Õxetý#™7½ýçŒØ©*MñxmN„.3T[¦ŽÍ×Ä•h¢³"ãš~t7©‘dt±ÿ‰ãDBÈ`ÀÁ,f}x¼ü,—ÀÃQ+:³ÙŒ«_|ƒj6;.ä"ÐØ·¸÷í¿—’ŠôQyšH<ßýïÏæ<¢Ž¯ÌïißÅTzËæ­;Û:ÚÚ;Ñ”@õŽø|ã£ù€ûãÆ¼O¨¥Ùj¿££ãœé1ßb*sÔí;v¶#ˆTU×2 1™L_4Op¦–qÌÍ[¶áG•U5háþ_¶ëêêÂa×dfãQ8gœ?~ŰÉ,ˆrÎfeEíÒ%)i«3ýc j vTVVû9†6 š;:ºp‡:'õó¸ÜÞµë6 ¨!”àqŠ$0W¹0&93vRaô¤¬ð˜|mL)®Ãõq¯¼!ñ.º°åïSý¢gÞu V÷çOÇEÓC¿â¡²õxOò‚8àÅÁ­EÆ„4uRçGsÑÉQEJèþÉè<øl=œ"Wyßãáñù-ÞSÿ³‡Sb§åh¾C7@¢ç¸gÑ(¹}s>(ÖÇ¯Š™hÞØDޝl¨P…·è“º>ü@‘yQò­ò9.pƒ³$fZuôÄuÓA×óæ"ÝÔ†qQ›nºÍ$ÜDÛZh»ùà'ËêÇ'•‡'ò hÂqÀ ,áž¹ªX±Ç] ž†VRÃý÷Ò¸?WysQÈ´Â'^û %m ÉQ'SêبŠ]§2vÞŠh%:¶‚)7•ë.Ý}÷/åQrfæ ´w¢}ý=¿h Ó¤©&6ä´çªb+µI]·ÝÔØC|œ<À²‡XP¤6<𸦰ƒgܧŽS°ý#¸áj 1ŒGžž¨øR«p#­ûdêÕwË@##»ÞþkfDB±&zM˜¶8"áDV&>ÙÃÌÛõ/p©øU%ªÒƒƒ†6X®8.àc²X,%!¾v´$Ä_`ˆûø셀íô±UîÑ…á Zcn„¶Â³îúÛQGÑ|H…™.;)p  þgZ—žÎ7>.ïY0šYgÎö±ýÛÛÛýñ—ÀŒÖŠÊj„üÔç¨.v¶u°xJooï9¦;aWõ¨™/Y±wß¡ºúfT×ø‰ÿ¬™Ù凅~‚nÔ.àýé»W©¢¼&uU†8ðè´´ ´)jjê-¶dÇa;:ºÐY¾<%eeZIi%Ú>f‹QÿË€ƒEv%A¤ÏL‚½-mea†²° Ý_@ÄÀâ^4=À98‚$’Í‹FÙH…,õ%å*C×ý3†À…s%.3Á¼ÀËdø}sæWª Ù:ýආZþEÒ´¼4óõ%ð’ùŽ‹/É¿ï§À[- 4·X6ÕCë6 VGNòÍ _“¸B‡§éôˆ¸*¨kîÙÖpæØb"!ÆyeŽ´àÅ,-÷<^ Qe§â’†¸ÇÄÁ2ã¤U]Ýô»‚zû"žÄ²ÐÜЖ=òÄ49Q%ª4 R£Ý¡¨Tž0•gœÚW;å±T7F‰Äq9H¯dý&Ößÿó²°È¢C‰.*Ã0¼©™%JLïþ ¨á7=PÕ#p°0ǰɌØo¼œ }™¾÷zy“Éìç$ñ«„6~ÂWFø•3¡ úÔÉÐÖ\}l‰ÞP_aȘB4LbEºcK{ê|Ü8˜+©²ª†á€ƒÂöGà`ñŽsb=LoW×4  Áôy{Çn¦xѤ:§õ!{;¯\•Žû–ÖÔ6âáøþü!;Ä2_Ø…åÊ*æ û°¢¦~ÉŠUKSRý¾,všx¾¾çŽ<]T¡.¡ã•—lÛšGZ6 ·wM|" X‚ÂI$ó í¾òf¦©ôMÚØòÇ_ÃGÀ;BâÑC´*P]$¥J&N0‘¼?¯Ü0!%.Á²¥™èÞêæ*•vƒ!©ý£HðœfvyY—.òóºò “  µ÷?ìFœPœ+ÕúÆñº­÷ÿÊ)‰£îTj.‘ã¸Î÷g‡ÆWF_Òûé|~ýVgÓF8ÙCê8ñ³+Ƀ«T}Uåøøòñq{gÍ’OG‹^!(à$atR`éfæ5jÊÕú1'$qûs¯CËêt£=ïƒÀñmAf®ö•8^¹¾¡zE"àáCiÀÍŸzÆÔy8àŒ{EkîQ®‰AÔÀ-]çܺÉKK]iVÕ¿þÈ8é¬Ñ7À°€y«>Î)¬ã8!ƒØ´ÛÓ4bÁÍŸ¾K²yÍ~à! ½ÆÂ" ›(M®+W]¨Ój‹Õ†5aÉŸIÙÚÑõïŽÊªº…‹–åæ 4Mº­}SÅÔÏ…EeÙ9¸Ôǵ=êêo8ò JðÍÞ}‡ËðDÈpzhzœ82£ µãõã9Ú„ÔФ¦‡ŸÛˆ 8’ò§°õ¹ vÛžY³ .¹v¥JW¡º|‘>yÛ¿Söv *f…Û pN’¨%ÐÀ²gáÒ4mtZ\×X¼›¯)«OLÊ Ó´Íý€Ž)2©×ó2ƒœÚøBƒ¡ù–Ûú›ëÌå±ë41=åbEß4agÌ«BØñéœ MbµJ›nœ´<ö»)Ú+ö|¸@öX s¬3M$ÆC+îº?7ib™J[g¸¤<階ÞÛ>…`"q£y"KL•t<þlvâUÕª¤šÐKþëÄÇ‹àL—>_AàøvÍ9…• âÏ~¸Üùæõð-èÐâ/à“BÆÁøPh~‡Sç¥øƒç²XyÿŒ¢N pdê<[[x™DÅyYù?—ËEÂÙĆ#f+Ëùav44,íßÄÚý ›-6«Íár{N73R|¹X8ðæ+gBÕÇœ À» t± 8Š4†,õdaÔs"oïØõï\¨/Z¼!Uq×®}¥eUˆhtœ8Ø’¾º¦÷Ç7 .ÅcñÍ7[¶îÀÁñ,˜­¼¢†™!çŽTƒ±^ÙWªžP>¥åÑÁî´CTÚ"­•Àb?³8eÉ5?¨SM)Žž²*D“qå÷†Wfã°<ïApÑY9Žk›;?E¥ÉˆÙýÊ›;>þ¨èžÛWY'unñr6ÑË)tåã«{V˜¡Z£®WEg¯X{EŽJ·2\W÷ê›-â ¶5c%ÓÚæÏ©PÇÕ"pD&¥Ä^‘b¼|לy’`±ám$Q yÁ0„˜4t -©Eš¨|ý”bUüš„äüë/wµíFKBä,žfอ§þòi~Ä””ø 麘*URÞÔGö¶ãÛ:§ á4]T„ãUÎwo†Ÿ¤8µLZÇ"phHòñ*¨zM!ŽøÀ“RUª·e¡þÑ_åE (pä铜ëÖ2Sœ––ý«ÍÔQSY­V’EqYó&ÜFÓD·Û‹†±2ú‡‡G¬V»ÓéFeÎLÄÖ¦œ…9ÃEÒû¿¢Žƒ£À,Dé²ëã8 ´‰yZ}aÜU ©ä"_A='òŽÎÝÿnà(+¯Æõ9b.Ôqc(€o.¸!pXm.¶'¢ ¾~SÀqðÐ1œüê´LüŠ¢âr²!1—ó¹ª4‰º‰­/½Ò¿±Î´usok;y´ðJrK…&mÈ6·•Øõt÷ùëûN›R¡‰ª )½¼¡Æ’%ó;’a•ƒŸ.iŒœÒ’°H{ISÄå…ªØÊññÙ—^ÍÞÅS¥-ÑÊ—G*®D×|×ÝüÞ}¤F# ¬Ú‚DÜdnïœ TÆú¸I}þCn^ëhjTzŽ“$*¶¾FŸuè ‹+jÃÃÏå©&W„$¤ê"Ö½ý¾è0I4F(±»Ž¤MHN›­!îØî]|}e|⪰Èô˜ií·Ï Ç·N<4!œ^Ÿ®ó̹¦ÇHSµ’ZE-­¬G€£ði‰­BÆm>¥07NËó¯d« y:ã(4Lè/)ÅW«+ý ÀÁ (Š&“‰ðªÓÆÌv@` € Êáp!X0CV¹HˆÃC|E«„‘c\8H¼Fâ})g»Ëô yÚ„\­¾áòJ 8ˆ›ÇÎ?pTVÕ!pÌýdAZz¢C Ç8P-#Üà§,ÀG}ƒÀqäèI4‘pKY™¶aã´8ü8J4Ò4“vÌ™Ë!jCz_¾@R`î =_Hä›ì%µu’EìßÛð½k‹UšFí•À»í r’ÑštœÒžYsªUÑU*ãÊäkÖ¨§-½¼éŽÇF²‹hXD潌×ëË]UõúKŠ ñû_x­jhpøÆLÏ’æÄò§>YX8>6'~²cC=êp‰P—p #dùf‚H ‰…ëA •¶#æ3¥Õ¡I †¸‚—Iå=ó›žàñ”’ê(—Õ}ÜÜÞP¨N.RÅ´Þÿ`8¾uâbÀA~ÿÞ&~é=ðˉpM¤¬'ŽGà0»c¼ŠÏ|”°–!à ·"G5%kM²ç­¿æè¢rµ†"1_—¸E 9ž=ÿp°Z –I‹šµ1Ža“Wa¸Î'n(„꛲۲ì®ÚÿÁ¼ª°øº¤Ëøâ2pŽ’C§Ç·“f lO8_p¼î†ó±›2LB¦Y ¯ƒÞôŽÌ^P1e…q’iÓFBL¸¦9€•˜¼”e‘Ü6M Í#á¼9º)™CÃý¿ÑÎ3‚]e”Ζ¤gê,7šWøÉž«™V¨IÜ0ýö p|+C`ΚµrêƒðüT¸)^Ž/‘V€>àð¤Ýw‡röŽ=¯óh8pœøÇl|”²u†B´;ÔñÛ?žC*?ÜÿÀjÊëõ² ³8Ðv ÊŸ’`0ÚC†6›ÃßÎÉW€6Ê슯þ<ÞÁa¦a+5Zª&_Ðâ ¹ø¡Ú8µiCqD Žlƒa×í3ð©¹̹ÑÖþŸˆq,\´lÁÂ¥£€{P!£>p 0Wjñ“§ÎPDø&ãÌÙ4šXî°ÉZWߌ Bb.çŽZ6×·ó£Ù"]¾“NA+Š{ ±¤DilYQÄ”Ê]Ørç#©š˜‚è«ÓGqÅMÖv’‰¤ì»¨@7'BíÞ½'\·Ô[LïX/-¸“F£[_LÇÝöÛ§³t‘ÚK)ÐàÀ^ðp´Ä›§¥éBçûs 5—®ÐOumj#Ó¢ I¡+ zY8¼©ÃéØÂ9È-{$[mÔ%áî{x ÇNIö1É£]#S(iy¢Í›rYqäÄ÷ÞŽoȬg¹1†¶ÚKžþxÜS‚^å&ÞªW¨JúÇÍ`7_„/"Ðt\Z©… ¼3ëêC“sõñÕ†„Õ!úÖ{‰ËAR·ä•¨Oák:©˜:7ØúI*”¿ ëßd±0 Ån·)ñ{ïry†h2Õ¨¡ák…ÿL/r‘ø­DŸ ç}šYfŒ+7Äo^ô1'“µ!mˆ@ôÒ–Ž,lj±j(¤0¼2uõV7H¨è§íE `Kng{™ªß±cÇgEy£í¨ð ³8PÙ2ý¼}GSÂxF0JÀ£•ãÌâÀ¿âQ4¹yE¾þùƒJ«V­Z²d |¾í/£(a–••-[¶lÅ ÆyE~,B`¸2µ¬¬âœÑØ›ÎÎÎE‹-]º´§çlW×n<4--ÃápÕÕ5¤§¯Yθ¼hL˜uÛ ö/÷nl+W',Ö'þx®·]€µ¦ô0Zž‚Psÿc…ú¨\ŠöÖâÐ"(2& Y¡¥5“ƒüR^:þ¾wßiŒˆ[mLìÝÒt¬—ÏßìÊÑ'–k#·üt:\ÏŠÌÔñ±eщžuåÄËD«×Iyˆ,° ®®FO^ëݲÑB .Ü$«‹g!ÜÓE8äI©H¡jJcÜw‹ï}˜ü“ƒyÕ(=/9ÐmÇA²Ôqy‘ׂ[¢¨è-?5+,¾õg÷õòůa}鏸›w:«žWÞ¹N‚«¢•˜Pn¼ T‘|˜Jüó0xRC…Dú ñ^ÅçÔ³¿«h|B®&¶B“«Ž*½úG ¹E‹µü/ÇˆÉÆ€cp´4ñ‚Ù,ÛÖårRNCW‚‚Úip4™ Ã_BÎR|5pЄ)3í±î…K#bjÔh^ÅåŒ×ïÍ\å¥ä@,ƒ•õ¶®v\T§gdŸ:}V¤Éø,$zžá”oÈÞ§¢ârÔíYÙùv®\åîž¾´ô,ÄŽŽŽŽ@6Zÿ•)-«Z•šXÀ€Wò Ξ=ûEó„UŽ#LTU×3¯]qIÅ… Q8–/_ޏpÎ/yëÖ­[¹reZZšÕj _,X„@ dIûÏ´«« Q÷ïë°XlgÏö±êËÒÒr„›ÅŒ’ÅÇÝÜ4$fÔ·­+g\øª„¤C|@ú-J‚Ãa£ -¸B6k2éå×?ôdþ8}}d$˜M`íïøñ]9†ÈTUÀ @“à”h9Ú†û?x¯V“5Áºeýùwro“VMàÊ2&UãZî|ØwWÇ ]R£!ùôÒùNð ±ÔB2»ß_X O*ˆŽ‡šjqr„bQ‘9Iä©Ã‰ÆiH1yNìU‹B ï¾¼Ã0ÐS¨›š¦)%õ€v/3‚xFìŽÏ_ª¢ËüáM XÁ6˜ti~¨~ë=÷áŸ\|pKtÛq‚]ša"ŒôYøA †SŒI¹qÉ-÷cìnÖ=ÞÆ×àã›à©iðƒ˜!‘žã:%Då}éåÄVþ_Î>úFÆÉCM)ÈLòYí¦ ãT´ýËã* «c§i$5_´÷_¸|¤ ¨ú~¾²8 U0!}cÝÞ/R¼¾aiº8ɤ43–ª‘‘?)ÇWá$H;yue]ÿÃʰ¨’ðÈ∸sæÎ/(,EPÀçÍ_ŒŸ°¿¬ œˆ+hÇÎNæª:sæÌ9'ÎÞ°Êqœ ޲òj?ïÏ+¨äSRRpž~ÍÎdöìÙƒÈ2oÞ¼ÔÔ´ªªš’’2Tþ»víù"pà±mmmhnà˜;à8ÂJJoâEpðRÏÖŽMÚØRµ¡âÒ+:þîå3ž”:Û3sô—Qhg¯@J­½àAœu ÄñxdÎÇe‰éºd¾ñü‡ÝéòåX8ó“ËBc7Þù0!¼,链ۨŠ]ûèL -¥ŸNGp*‚ ‡ß›W©I¬T©7ßü³Òû_w÷¯Úߟ—Áƒ%_(áÐ\w_ñßéªq%ÆÈòïÿ ûòk6ªâª´úu~pöx¶Í†´éðÖ5â×ÀEIQ!0^¥ŒSyo,·Ì8;VΊ-ÉÃH¨€©ÃYæ¶ýõÙšørclEˆ&=<²íÕ?’˜Šø5¸Tüõ¥Íæ` !¨ö{û˜{ ß pØìNé÷ç[Áž3”ËEüT¨¬€˜× Í@ÇÑ…½U.\§Ó> =y¹yÑjCu%º¨*ÝIJn£.rAxY¢~™)úÛÚ;QQ£Š.+¯Ä׊ÊjÜêêêŽ9Âücdéxȱã'7nÚŒˆP^Q…ûwvíöw6ô~Pزµµ¦¶¾¡±m:ü¾C‡ÖÖ5àQ6›-ÐÜ𭬪iݾÓOŠˆ;×7œw¥3ܶmMMMþö²þogaößS§NíÚµ«¦¦®¼¼²®®¡µuGÿh øsòœñ¨ƒâ˜UUU&“yÓI Üöí;ñc§„Ì´a†äK6àùÁ#Ç[¦?Ýpÿ/Ö>øXËmî¸åÑõ>'ìÜ+1BQy¶±ê~7ד[Ôú·÷Öß1£êÎGÛžzãĪ|°rnÿ~Š@{¼’”Ûý…%3Ÿ*~êSë–óþðN§—¹dE®þ±êïš¹}ÖG RpÇ3rjï›™ÿij`µ0nP)ÊŠG ŠK¦?¼ö¡‡ªï»¿qÆ/·=0³ýƒÙà°£^-y„ðŸâz’;“•]û«_Õ>ôó¼Ûhý͇·¬G!ÛòhcÒ•È!ʱ¼êçžÚtËm·ÍhyéÅîòŠÁ2íEËÂB@YJDͽ¡áõ?ì™þrÓ}O¸å±Ͼê¨_?l{ñ+XÚÚXaƒ{ëX …3•÷¯ž¾n‰“&ëEa¬®M‚Ê_ƒ{×:1Ú§’h Žö¼öö­[Ÿª‰-ŒŽ­ SbË¿ócÔ.–ñòuE’”‘ ±hŒ2kÿ××?h±øˆªÎã"ôˆ- c ÁAÐâÀ×ÁÁA?)î#_⺑hùŸ—kyêÅBclZW¡‰ÊÛñÚŸA&lH´ˆY$„”ƒ¦±H¬Ç·ßU©P°øÒV#lâ–âz‘%ÜÃ: ˆÔXßU·×ã–’ÜÂçÛ&í0Î d…£Ùøò<‘¯Ù-ÄÓß”Ý:tý)ó2³ö¤ÖÄã¦ç-8˜žQ$ßžâ(—¼‡DJldÄñæ ^ÀÁ³G8›¸?ªŸƒ…7‹¿½îW'pI*"Mƒ5Cwݘ9/ߪÉCü¯^rǺ^6 dO¼t•VSV[¢½|hÇN|ŒÐ_/>„êehÈÄ€ƒØ~²©á‡ÓÍr”/êáUßÐЉŒ™|‘qÄ ¡!\œZ7|ØIíÕ‰îâËoÌÕêË5êŠýJc‚©²µ‘Å”¤ü« ‰†Ô} LKÓ&D{³“òû|>Óð£ÈÂ! ßÿ3¿P öïƒû ’øYc€¹ñ¹XöèÆ #püó¡Æ9Íáó¼îçØhçtšbý§§ìè:©ß4"&Ó¾À‘I ,àA†£&;ðVÒÉOfI¤°†÷fôùyÂ(Ð? “8D‚mVFjN nôĽ4QžåÆ:¥óÆàxßž¬3ðè«$Ù¨ù"ùZÍûîq Eœ uÏ’õ”ä!Ú ‘ÌEXן*†¬ZD&‰ÅŠm”´„zéIJНÎ]m‡&‚™³Ñ. eE+u£Š¾ßx´Ã»ÄèRH}¡@=­J^0)í’”1¢W>\M/CÊOå?þž7NöN#a)1–ÞÊïÊ[À÷#·ÀˆwP‡u>4culTµF]ª,V%VÍ™'«‚øz憄Ze€2„ÿR¿‰eR!|X¬v¿¹AàcTO~ÑgÅŠ5†ÑNéõ Å ð‹ÉKŸ÷uC?p–u[r4S²uú2mDµJ—9í r€hcŠC¤ùú’Òç*Ö?37dé‹Èè›v° qçœþˆ€Ÿ©©*aVÆ—Žn¶@ÀÎ ÎØÿÉ_>açÄ\üß…†á—¡æ›µß ì-ÅÖì sl)ryº&§Vª[ô0Qd3‰P€/ç™urX[ FSûˆ9!1¦Ö׉âvQ ŠSXË/‚ìá5B¾@ùAª²$ôlc宊g´ÂBdWQRXY"'û’²Yá†OŸ{|¼%¤&±HEZ{Bº·x+™•GÀOåQæC+[jQNwÒ“„ÔÄàpJÏ:YˆñÊ…weÀÁ€ƒî×¾@„‘ƒ)þå,Ëjµžã9aÀ!Òg‹tÚµ}A¤S—%ÅŽÊL.VEäk ¦‚”¯¾àÜ.æ-(©°ô~e”¾À²:—AíÿÈiwÂ;×ÁÓ“•;à; .>0 òg8Ö÷ ózÐÃÖ£uìˆgÝ3¯–©J4‘©F]eDBýnO¯×çKü­D;­ß!Ïúh dôõ“WfnØl¶¯ð,Š—˜¹Á ?;",%r~ìp‘”J޶&ΜÑf#䟯þnMˆ&7fBAÔ„ºñÆò«®„Þó&30΢àÜ.ò-¨¡/nà`a8\'á@®Òü–X0æÞ¯^ª<2nšÉî'1°ø×Ε`éÅ壴¡eìü¾¢Ì™[·¦©“›Cc3⌅ªˆ•q x5ÍÝ%þ[’eHÍã/p^ 8<œw´<ÜÜ?€šßÜ××g2™<ÏW–ì1±;\þx:Û¹n »> õ—t÷$96ÔcÌF"pòTzÌ% º¸ì¨ø‚ð¨¢ý®7_WÏWûÚ‚[p šAùßGÇýÀAðÝÛǫų¹ÊÇ`ÙOáW OM†;§À•Fá&=üãÿqëþ=õ 1’ºÇù¡â,u=Q­Š-4Få©5UaÆ’þØs•GínÀQö§óŸ þ:\NV!>08‚‹Åâ§KúJaTêØÿµXíVF pÈà =¼<ËÀ±Ä ^496½öÇøûq¿¾½nœ Üd„7¯—ÊŸƒ}é`?ÊÂ#>ö´1ôûnÎܲnex|Exla5f« {>YNÂï`eä<[Ç_8$E¶Ø¬LÛ£¹Á€£¿¿?°Üû‹AÀ÷¤M9¥(ñ—™³7N—çóqì€âqÙCQ’Ê´s'Ï ¯ß¸Ø:úÚQqŠ”ÈX:öØ9aÚÀZ1óÕ¡I%ã£S QպĔK¯†-Û@ôXE/Ï»Ãèbb›Éd:‡'ö‹ÀÁ>¡Œ¸Ã~à`ø_Žg¬ˆÀsŸ«Ôf‡£­¤¸ q¢=½üÊï–EMÌ‹ªU'—ãêU–¯Á–8³‹49‚” ü[DðGÆ©_F@…#™ŽÃá½Y~ë¿à¹+aÆdñíï@æƒÒú·¸ý`:I;M²†öcDÜh3HfÒŒLÞ娩Z™Ð¬NJÓ—é“êÆ%6]u³{÷vž’®‘e¿¤´W ¹ccÙA“C%Åfw2AcS÷LF(üÀ÷xeE$ÌÁÙä¾­ÂÞ eã[Pý$dÞ'Ï¿E~ûZþ¥‰üsÉðÉ¡êIië»ÒÁ2bt~ ‡$ûØæ8BúææÌ`6Õ<øt¥~òÒqê IS ôÆÕcÞ­wx­ghf´7xˆäEôDc!—Ç4b98ðõ‹Ÿ«Âý<«‚ÅbéëëcÀáoÿDz2¼ Áo?D†.™³‘ö› ™‡7þþ÷¥‘“«5 Ë£ŒyñÖª"˦ÅOŸ ï ûV¸û6óîam” %(ÿ·2Š2£ËcÚµª`:Ä©Tv| ͯ(EÉ«î–?ºQøÃ4å¹iðÞõPô ²á·R×JèÞ¡ØúÆP:.G×í<çAq9­„'áàØ™´¤+‹“®(VÖÜÒ„ä UtÝMw‚§D +x¬Y2O¢x¶hnø£þàø°ÉüåÍ,>ÝÚ?bxx-¬šƒ%âúêe_›9ú_Y"M4D²y-/¿Q9­84f.z•^—­ ©ÐëýëíPógqãláx¹s  OÔíRŒ%(Aùw‡ä#ÉšaŸûx{?ß½v¯€Í‚êg•ìGIKÙ¿_ /]/þåZ%ãV©ñ)eÇ8R/öïqÌ´^áYÍ·Lhpð=iW-²¹«¥<þšã¤|cb¹JÝšXc˜’þƒ`Ç.p9Ò%Ó3Ú‡€£±exÁÌ Ä‘ÀŠïóìÓé ŒˆôØQ¦ÄÖ¿CV|dY4ÛMâEŽ8Ê<"œê¯äç«Ô1%¡19ê¸ôð˜†Ø¤L­êÌë?†Æ§…ÆßÞï‰ÍŠ£—0ˆ)C0(A ÊØÆÑM*Üv±¯ fAëß¡á(þ¬ºæÜ¿»ÅûÇ«=Ënâ«f([gÁþ¡» Ü}cÈ56'.݇ÀiB, õ¤¿€foÇ–ò¤k*T±%Qɹê¨2}B“*ê“ïý´§¨ÚÌÕ¾—Ø(NY LÁeÊ¡Äfw‚à_ v»ø©†|­ÉÍÁß¿C"ý×$'H´É&b•hÝÔ±ð¡g«TÆš˜äU]ž1¹>bJ…JÝÿÜO äYçÚû óï\W Ÿ·™tæÁA¸à ” å?(ŠGtôxOmòv¬V6½ uÏCþ½|êðîø?]ÍÍþä?k'µ/€Sµ0Ô^(¸2'µÊnº°§ý.]cå|-T¯ÛZZÒ¯½¡p|ÔÚШâPõšHÝ&U\IDòî¿ýðjÐÞ–^Ôýý0ÐÓ7áÌvao.lýš ¥J™·ÂìK³®ãg_éwBÍÿ@ëÇÊ‘R¥w«b; ¤rŽÔ¶Ñ¢9…¶%;õ2˜vP<ÐѶrÂåUêÄjm\^dtº.jY|Â2m̦»ñ´l$=—Eè•“Í3Ðk>{¢·÷Ì@ïððÙ~çÐ0¸]$kÙ){çI`]ôîW<~â=Ýý½g‡†úL&èt÷éï;=ÜïâX—4ÂÿB†’8y²íÉWs"&ä†GçÄÅ–ë¦G$¬V©JÃN=}£²t”?[^†sa÷¥g«â"¥¥ p%(Aù&€x³4¼O>VC:t´üꞅ⇠eî¼ÿ?þ®²èF(x6¼+ï^#Ÿlƒ³5¥2JjI—Êcˆ5—t¬$)¼:we^ÿ£4MB¶J¿,)6_YhˆOSÇdª'îë]0õÙ†zFúm#޳ÛàˆÕ1`¶ž0ÙFì¤0O$$W⢊Ÿ^ ‰\âì’ICNQv;=Ã#ÎÞkwß×`·i ¿·Ïj¶¹I[Mê(Dt‘ì 8§,OzZ@MÑÅ!aFM‘:.'t\ý´ˆž'¾ î‡â§ ñUqãë°;Ž–ÃÐàm˜\” %(ÿ9 á¡óŒ|f›r ¶Ï…µ¯Cõ3}'¤þXžûiÎ÷ ý^¨}Ci]¨,Ní„‘ã Ø_¢¯dyìÔŸYiïc•·’ÌÁ™SU?ÿU®qÚÆñ8ÒtºâØø¢Ø )¡‘™W~ë[¿?zêðÈÀYë@ß龞–¾#‹ÉéVì‚,Jþ³V|]^}Å• E𿦠iÿ40Ôß?Øvøäàð1ËȰÛN|Yž~°ŸÎÉÈÿÑmé㢛ŒË£ãS5ê<­¾>":G²ö Ãàÿ\ K;ÅÊ_É›ßölýÁ™õ`?²F»Óqƒ” ü§—à¨çx‹l:(h€®U°ùïÐø”=¹wÉ‹®“f_+n’gaÃß¡+E8ÜýàêÉãCŒ1Õ‡ÅÁ­‹”‡;HŒF—s׬rUÑyÆäÒ¨¤4Õ¸¾*2¾@¥©Œœ˜}yç«¿n]?l9}Êröøp_Ÿ×kõ}vú,ï@b}Í»»{zMgûÍÃVwŸÅ;©RŸ¡ ) ‹ªLºdµ.²ã§Sí¯Ý o‡Œ[ jº¸îE‚{³ø“MÊP'x˜•'Ó+cÉâ JP‚ò-ñV¡âdûYñìé`‰²c¡¼ñ©î9(}LY}‹²àZXz3ä< o@ëGÒÞB8Õ æƒà&ýéÆšÅAšàõÏàŽøad놼ïßš¦Š­ÓOn O(ÒG¥kukU†]|‘*2_›ÜxÇC‡W®²Ü+;l ŠÑ-‚ š]„sX"l%n8šÌë•!‹Ýd·÷÷ ôõ?môôvTWoýås%±—–ª¢Âcóà ùÆøÔ}aD즨É%¡êâI1‡_š.½w,™Y÷ÊÅwóu3ùÍoñíËå½%î¾ÉzDÛç}ƒÀ” å?©FGKD¯E>¤œj‚=é°m®¼îrÕsÿ¬þ±´üF1íN¨|6üIêJ…åз l'eâfiÑ¢"pÂ.Áƒj^8ž˜!´y‡ËÑóþ¢‚¸ï®ˆLÈ›XU¿$Ú¸26zMdlAX\‘*®H7eÝÍw~ýÇ7ÕºŽu«$;H6I²‰à¦aDBUâ´ö{‡Ï8N9Û¾õèÆÆ½Ì.ùÙô”È)Y uò´qùÚ¨]TVdLFxdeô%yÚ˜¥jUÇc×CÆ‹ö(,»Í½äÿ)ù÷AãS®Æ—¹ÖÉe?Øà±W $ð.Éz În…ƒоDÞ0K¬ý5”ÿrîäWÜèYùc(ý%4ýFj_$È’O7‹¦} ©³–¥1³â%ñ¯‡.Ñ97£ –X -¥ã:¶oÏó¯d‡Çè²µÑõãã«ÃâóÃ"3tÆŒè¨,£±P£­U3#Ⲍ²'\Öð£;·üüéƒo½s`Ö‡?úôàÇó|øé‰Y³›úeíÿ»;oò5k S2Õ‹Cuh\êcòu±ÙáÆ£l%·¯€ÝÅp²…s÷+’r2úM&Ö>(A JPþc±îN¤"€wƒå„|zƒx Xéš'¶üM®{ Šg@ÆâÊ[!s:”>©¬ý+lŸOÀ¥{³2r¸ÒäTñ*A…õ% ³¬¿½Ä/-KqQÞà9èÚ¿íwopeMDdñxmI¸¡T›¯AK¡@Ÿ”¯K,ÓNÀ­D“T ! „¹úØ\c\–!¶Xˆ’-‚låË“KÃ&äë4%‘ºBMx~XX¹ÚX©Ž)W’8?:¡aúÃ+ÿ­ó`ç;JÍ3q/šbæ½äÊ7ülþ³Ð>Ÿ?P$v·Âà‘àý” åâÙW r`ïQζJG«a÷reÛGJóëPùäÝ/¦ÿLμ Æ7IKÙ=òñ©7Ø{I^(é}ä[SrWJÖ$û“®Æ‚¾ÙJ,[@ô€Û ½}Ggý£è'w-2LÈÑL¬ÒM* ‹-*6&äŽÓ†Ët±Õ†„J]Li„±$B_ª6h¸j£‹t1ºØ¼_ƒ” \Sö ˸Á´GîÞ󔎥$êé7P9Sλ[ȾCʽ ª_„õoÁÎ…Êþ"þT‹8|Dr )‚¥)Y©$ÛG;QsJ¥Ž—À#q6Ñé/OJ5%+ñ¶ïnûãßs¿{Snä%å:´ ¢s£²tÑÙ‘š¨Òˆ¨²0Cuxd“6®TY¨ÖçkôºÈl!C­_£Ì‰¯Q%W„^’­¹4óò›7¿ò{SC…8ÐÉ{÷*'׋‡J¸öEÞuoz*ÁÜ+gÝ™·Cå3Ðð*lþt.„Ãг ÌGȯ” %(ß¼ˆÊ({ñ5‰°Ÿ”‡vÁ‰Fe_¾²c!´ü_RÊ îäòn‡’™Pû"lž])â‘*áÌNÁ|±ƒ”GH¾ŠVÈ@쎱cr°roxÒ ÃWѧx$É+ŒæÜJ¡Î=y¸¯(wÓÛoÕÝ|GÞå×§ÆLM7NÉ3LÉO.ŸT’T©M. / O(Ô'ç&eGN*œpUíU74¾ðëcËÓ•Ý ƒ‘«†÷AÏóÉ2ç aç‡Ðø*”> …÷AÉ}PñÉˆÞøhûög‰èÇVô” %(ß´È>šV߯×$;ºáìùh£Ô•©lŸ›þ ÏKåðÅwCÁPþ h~¶Ï=™Ò‰©—l9®¸mÀ¹=øhœ$ŠfŽ$Dq’ÂSNÝÑs oD^± ¼‹Ö€¸÷ˆ.’ zÀ6âsf츪8¿Eû²¯ =*}7e£"à*øºÊ‚P÷Çú¸{’ë‘É ‚@¡þH‡&I¢6 í²Ásüp×w†wCßû¾\Ø16þªŸ‡¢G à~(›!Õ½À7¿!ì˜+w.‡C%pz+ Rìƒ ïvú JP‚r‘Øæ0ä o[ On”CG* ˆ¯û#Ô½ ¥ÊÅÊå¿„úWˆÃªc)(„“õÒðvÅr€Ô5ÞÏʪ•±SßÁ3º)…Võ)ÊhY²2šE‹`9)Ÿí”6·c1l˜õ¿‡ÊÇÅ’G…¢JÕ3ÄÁ²ícew.û›eÓpžÎùÙ²|ìàRÝ¡(¢»–æåÒÀ›\É%"¥\W|¨+\4Í/N<š^NI‘%‰šþk‹VˆÃæ°ž°Z»,ýÞSE°/MÞ¶Öý^l|Á[;ÃUy¯§æQ±éhù¶§ÈÖÀ±r8»0ƒ¹-@Í–`µFP‚”‹Z$<eä”ÔÛ)o€}YÐþ)l™%4ýN¬}^){JŠ'v옯ìYGkÉ@Ø7 2O0Hù¬2>‹ßf6WEdvÖgicën§ ñÙ-p¬ö¤Aëyýß êq(›!–þ¯ª´þ-aËlZë— GêáôVÅtLñZ}D†8²Œq%(A¹˜}X"ð.°÷+C {3ÚеvÌU6½­¬{ ªŸÄŽò_Aýo`ËûбDÚW$®"Y£Ã{Hþg…ðжÈ#ýjiA¾­À!ûÓ’}„ó¢x«bï–͇ä¾6ùd#ȇö%°i–Òô&TüÊ!U=¥4ÿVÙò®´s¡²k (S¡·l=¤*Ó72|ŽŸ*(A JP.:HÕoGP÷Àéf8PH¼Rmó`ë? ù5¨zÊŸTªÿšÿ›ß:WK{óˆÝqf íSì=;Hsse4ŒŒ°! ŠÏ)ô­¿xJÑ%{F$G??´Oèk—N­U+iDü}Y)Šp‚5!þþ•Øt{ÒáPo„þÝ`>ž…¸=úú %(ÿ?†8›l;­ôwŠ'›Å#UÒÞ5Dïmy~«T>'W> µ/AÓï¤ÖùйäÂñ:¥g«<°¬§Á= KÍò%ýŽ–x|Û!—æÈ’WáFd[·!Ux­ê_U~£4¿.míËao†r°P<^/õÒ‹¶~IóÒäoÿu JP‚òíX:ûKùDàͧ ·M9ÝGªaO&t.†mïËþ$6þ¥ñ×°þO¤âƒø¬ áD=ô¬çúwI#{7iüÄ;Hï'é[­pfÉÑ/›OÊ»¡{­"WÑ¡QãoÐø:4ü!CÞøeëûr[* w¸D9Y'ÝæÃàCú,)K¦w9ˆA JP.zýL$Twqà1ƒ½LWÅ'›à`ìM…ŽyÊ–wÅ oAÝóPÿ¢Üôš°áoRë|iW:,…cµÞ3­B—2rˆTºMÀSvùÛ{Ù<òs@´œ÷I=Û”ãõ5v§Ë­saÓ{JÓ Íõo*­(í å®L ²ÕгŽô„%„TNyí¤B›Ñ*‚/Ë7A JPÆ (î#’e¿Ð·S9¹þ¿ö®„©Í+Ëþݙ鞚îI'tÛIÇqâݼ“ØxÁKœØÆ+66„„vÚ%Є¾ï½wçžOˆ%íôÔT2åÄ~§n¹ƒìz络;ÿˆü7Éy–&Ž‘í€ùH=ýwzòo4òg²¦™säñ!T{ÝTŒªrZ5–¨µB²ºmÁaM(HF·…µû4ÝÁóη½Ã6T!wóDÛeoôwfQv'5Ä*µ*b½(Wãf)l¦*>J±'4wSú϶ÜGèåéùä³?Ã6ÆΣ¦·Wø/@$GTÞ%Væ™qÐÆ¦Ú¤­E444Þ'´ ª™åY™sRü%&X\¸{Éy„ÆâFýì?èÅÑør'÷95;H±˜JÈ{d!"W’Š/Õ­&­E»ÃJ©NIEX”¡º±‡>~[Eu<«@yÖPžÑ ’\Íšµ¤(‡Ä¢[%Æ)ò„·ÈA¹ŽnM¤ä_‹ùûÜíGäLŸ ö«¹f ÊNÀ)Ã/5<š2ôŒ¸††Æ{&9¨]·#”uÂñ;z‡æ®‘ï"¹NÑØôò#búù˜Þ ‰¯À)þ~¤­âÃ*5e.ùøj-ê smEn6,³X]îèxgí±Îz×owÏ+Qû^Ä Ï¯¿U¡f^ñ;*…‚Oæì*ùZÍ‘ÿ¹Ï¢‡jìSñú¿1ë÷ê4â:+ïy¾F±{”xÈZ¬ÑÌ“Qg­V]ÊÐÐÐx¹CÀA}­$Wæåâ”̼©‡V&ÿ*¹zhü½ú”éC½ü èÃöM%Ï9 Rô‘L©Åiµh¯¤DcU­U27Ðô«ÄÞƒZíq|‡ƒbOgò6_tªÕpXoÀÑ«‘¤Ê,<";)Òcrá1f1øWá•‘û¸ö!û7|Á~õzý ÒV|ñöôÁð*z%ܤ(¡Yª ZÍ¡h«k¤÷·{PÕž¡ã¿ßm‰a’lãu²ÐØ,áÀ¯- ávÑA™Wè@Ž QèºÕv{³á¯?†—׫hô¯bê¤dñPsß›±'fj\f˜qÔú2kŽË®zÏ›Î444>@l÷Z‘µ¨ÜXS³k­Uz)šè ß&ï%¤­&¾Ä@ôè§ôæï8E§¾&O/¯ÐüÄ×òÔeí´ä¦åUcVÏU‘¶*ÖúòVw¾\zW@ݾÓÚ$-ûÛV•ø¨_[e¬„ñú36J ƒg)x £‘ŽãÊö¹zó‰ýý·“‡ù+Òÿ­bN‰ý¨Ø£\ Èj’šô9ËíµïÆŽY±†††Æ{Im¬¦à³´Óòd6寲Áª¡è§ü´H޳ô€Sà;¦ å8†tÍøçÒöwa;(¦+wŠéÁAŠ Qì%_>òµ´è#¥ÖËVþŠHÓ &?×;ìCUæ¦2×Ñì´YÁ9ÏW‰Ã´¶à“y2oñgù”1sC‘¶Ãh»ûTÿUM$çqš¹Hþë*r 6é©*?%KAUKÓF…Œ®›ÈnNìw¶ÇDCCCã=HiSQKvrJRâ*ÝQ¡j”ŠA‘uñ×ftˆÏIì—3½d?B_™ãŒ±Ï ÛÁºÃÕCîˤð=Š>¦Ä«™wËb@•fÍZJÖs¸Õ·j$,îPÆ;\ì¡ÚM¸um”åj3}+ój9L…€™uˆÔ„¹0Œ]ð&XÃq’&¨Ñƒòõ§,7ÔÄg4ýùÎÉÐ-1;¤b?Râ1åÞPÉKõ$­¯`ãLçw‰c›±ª]·ãjhh|JÄò€µÆ¥”ŸÂêºèƒÎU\Í\6=ÆÄ11~ˆÆÒøßÈö7rŸ'o?…n á*öX%^ÊÌ„ÌMKR˜*ó|ºªfVnD»l¶ËhU5Ö¬DÖV§ ‹¶ïçû«Õn샴ÐÙâªöê§Ýý r»Q .è« ->Ì_Õ,UÓ´’ r„Š>•w˜™‰vú ú¦"÷hv€}4}”X\ð›ûÌ´B·íôá½(×ÅÜ=”Ë“/ŒÂ¤(M«j˜V³xpÃÔUp |ÞnÕÔÚ¢ªÆ`o˜›¤Ä ¸¬ÏÝ¥ÐuæéêSŽHøO|AãÔä1ržF%ÝwEÅÜrá)°*=®²“Î+,°h$͵¬h.¢ˆÌ'9¹íUV jMôwíNÊí…G»¤°/ºÛ@þ‰5T‹~\FS¶¬žd³ÄoD62°¨-2_„aržŸ¦ŒM&‡Í…G&sbà†ò]QÞ³¦ë˜iÿRØ‚m_(×I+wŒ9÷½ˆ=R©”3Ë>Y¥µ4µJd®[bHg¤444>læ@Z £pEjðý<¤–œ,"Ðk¢¹{pdò]FÀ~TÚ¾cÿ`‚˹ã”tŸ•¾~Œ6Ì Ê(3È%‡±jÑIËÈ_‰RTUãði_Í¡0Ý,ªõµQ£V„Õ ±1‚*¶åÑaÒÞ þT´æS{ë­BËlÕÌf“häD=-+ ¢‘ËaVO2çT;j˜X¹Os·dh@ûñF\§hê1ùÃö¹˜8„Î1ç ­„®ÒÜmþf¦2oð.J^¹š·¨jèãíúÌë2¸††Æ‡ µ³ðN4a*²–••¨Y CzdÆ,õ1õ¸&=—LW/¤ÇäaeÿZL}úô X&úú(ÜqÂèmŠÁ+m£´Ò*z!dÊ!XŽWº<ÒȪ5øÐëe 6©¨VUµêr³Âa}Œ@&mc…ƒ¿‡C¬—ø§Ìµ<3…YOõ$¿Z¹2§Ê!Yô³Þ‘¹)Ÿô8K ™x¢b÷QÝ^÷ïÌ)š>†–cûa²¥¦IÇ7ä:CÞ‹¸J‘ï1)ŸxJé×*?…Xµ(­&U{Ó*j]ßõN•¦ ]v¥d‹$Úu¹Q6X”ÃTôó½/íXl}¨Âwep¼½ä9Ã|Á¬ƒ—¯ëö¯ùOé9IÞ \Â@Äì]Š<¤yÖ,Ïù¦ì(¬Ú¸Ã/Ͱ¡R¥beže‚¬ÅU-Å„‚ÍSÖ;ÁŸ¢þRM½–PÕ³(ÏšüË~Zrâ‘óLs£XžÎúbá “ó… _Áï„÷¼ôôHç1e?¬&¿¤‰Ã–Ä8Bî“4s–‚p_™R‰akPÅÎLÇLįS*ûÖšOaÑE «¡¬©e(¹¥ÌuÑ^Cr©–R¥ˆ\òâŸW‰—já9Í ªð5éë—î³ÊyZNU‡•íP{òkÃþ Æå¦{¬FÖ«¼A¡[Ø‚Ä7ùø#¾Ìóᬒ#”~CÙ •·xT⦂ª¤ä·"¸,R:0Ñý´ìEÝSØÁD¹7ˆÔ J>Cã? «†¹Ûæç½.gú„§×œ>m:O™SÇøµ™“ëž!ß9 } r‰>€sWÒ&Xefh%¬ê ¤Ô°©c?µc‘H]ëFajâÐÐÐøÀ³UVó’Õï´½]»[uµW‘\*ÏQÁK9e&)ùB.`Ø\…n:CŽ“Â~b;ødvœVî^Üç½çTઠ^£ð VŸÏÞÃFQì)ª!¬8X•°^àÈŽ#?ÆîÊÁ\“yE©¬PO=§äJ ÑÂCŠ3YÜE&?tüßaÁ+?¯»O90©qÇqæá:¦ó\hûÌð 9[Æï«Ô3l<Ì{h) ÊÖ<ãZŽ6˪ÝÂè0JÚ_ï´{éÿ60mt-Çѹ$»Dî\7 TOaGÁ«ò.V23Áê¡ykì:p#çžs4ÝGÎå8%§ŽKç å:NÓ'„û¼ð^F#S`@nŠàmºË ‚nÞÈØå}¨bÑÇ{ŒXæ”…g»ÁŸÆžb°}þ!?bîžÅAƒ¬,+‹à5p“¯_Í\d¶b„0ûQšê¤¤Ž¢Šá9N Ý ðM#öÀL ÉÌs•¡¥ *Π_·šÄŒ|nË$Ö ¼,ÖØÂ/ÈèÁwéC‘ž×ÐÐÐøgXµ4¾"ye¬ŠÍ²¹ºÔ®çÍRX,ä’Gæì”Åü5+ˆÈ¾#‚ƒ˜€ð]‘žKbúœpö²ô0'8„ë4ðé^‹û<‚OrfŽàUDhfm2ðö „ø–¼—!sÜ}äêež"ÇQ°ÃÔ1Ô\ð\§L×ÄÌ%áë­„oCéD m8ñœrvdÞ=²@ÓW--W—d³¤ÿÅ5444~!ÌÝ‚Æ÷àÝQE3mjØ=-ûP¡ÈØPSN¼`Õù¹ÇugVs‚žËÂ}†CN÷ öáêÛç9é>¯<ve+¤çÂ[£ûçÔôYäÁ\üh=¬/Ð[;}ŠY rƒÿ–ÁwIu ¦fo¡ê½o *Zµï̘*¸©èEV%ŠqõelHÜZÕÿâ¿TqÈn>fg£ÖŽobùf{()̉—‚(mÃ3p”Ò#(UwÌf#? ô0{‡ý‘ð]F: Ù¤Kjú"‡tõu‚…ÉÞ0]ÿ*Ät‡t÷JÐD‚dѯX¯Ydq›æï¡’|BéaGrãŠ_rQq|QK`—úz¶ªpÖÖ‰††††Æ/&8öí[½j™\©èÃhÀ> stream xÚ}’OHQÇ¿³%B¬e&RðN¶Wí`ŒÝõoʶ¬k¦²Î¾ÙÞÌn%Bˆ.AÖ1ºXÑI:†‚b]"è(‚—í73»îˆÚƒ7ï3¿ÿ¿ß{@](mšz€yÃÉþ(»;>Áê7P‡A+­Xf$‘v™lqdí}…䜛áãõÿ] ‚U€Æ¬ÇמöxÀáû¶iO:¬äÒb“¸M¤’1âWÄg³>žöq†[ ñ2ñMÅ'"()Y'æ±ld4ƒä—‰»2–’'&ßÀSg^™öÐ}8õ¹&›°€åwÀ¥Öš,Ô \V:k²Ý¤;©iÝR;;\‘Œu?ÊåÝV þ°ÿ¼\þûº\ÞC9¾u¥(J•IÒÀëÃ]ýÜàBS˜s_ QP5ûFz¼Úë׋Gõ%«t{3qW°D÷0vz ¼ü \}\ø$€Ôu¡ºmþÀÍ+˜…–ÍÙ¬C–;XØ9:Y„^g±BÞ,Ú\°ACioci]g®©Å·¸(ñL;òz±Úï9ÚAnŒŽÐIó ¨Üê­°4“I÷ÐÝ x#Ã{zwA¼¨j}ƒÎ…Ðþ¤Š¾Q¥óš=˜ò8Ðmèñá Ã(Äo{1±cÚÑd5¾Ué­ÊgÒ·t¶üÆlaȱi"ßÐ\.5æ±”šËÅâ^Å8tph0èk€!‰~D† TÒhd¡‘”»6‚ØÂì±–:>f¤ß&Ÿm×çŠäíxÝA4Ž…¶ƒLþ&ÿ–·ä%ù­ük±¥ªiÄ”¦¬?ûCqÌÕ¸m¥&/¾By#¤Õ‘%iþ 'ËW©¯:ÕXl©Errð'ñ=_—Ü—)Œi7Ò¬›©äê,úF|ÙNšٮͯ6×rm^™Ü ®ÍšUáHWü «Ãÿ5;¿?ÿͰh endstream endobj 10 0 obj 706 endobj 8 0 obj [ /ICCBased 9 0 R ] endobj 7 0 obj << /Type /Pages /MediaBox [0 0 531 181] /Count 1 /Kids [ 1 0 R ] >> endobj 11 0 obj << /Type /Catalog /Pages 7 0 R >> endobj 12 0 obj << /CreationDate (D:20090714182634+02'00') /ModDate (D:20090714182634+02'00') /Producer (Mac OS X 10.4.11 Quartz PDFContext) >> endobj xref 0 13 0000000000 00000 n 0000000167 00000 n 0000000022 00000 n 0000000271 00000 n 0000000149 00000 n 0000000360 00000 n 0000044727 00000 n 0000045611 00000 n 0000045576 00000 n 0000044748 00000 n 0000045556 00000 n 0000045694 00000 n 0000045744 00000 n trailer << /Size 13 /Root 11 0 R /Info 12 0 R /ID [ <23bcf38dd2cc9c24d4a1c1c8dd550325> <23bcf38dd2cc9c24d4a1c1c8dd550325> ] >> startxref 45888 %%EOF espresso-5.0.2/Doc/INPUT_pw_export.xml0000777000700200004540000000000012053440163023577 2../PP/Doc/INPUT_pw_export.xmlustar marsamoscmespresso-5.0.2/Doc/plumed_quick_ref.log0000644000700200004540000005213712053147351017117 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2012.9.4) 21 NOV 2012 13:54 entering extended mode **plumed_quick_ref.tex (./plumed_quick_ref.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/amsfonts/amssymb.sty Package: amssymb 2002/01/22 v2.2d (/usr/share/texmf/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2001/10/25 v2.2f \@emptytoks=\toks14 \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 132. )) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks15 ) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: pdftex.def on input line 80. (/usr/share/texmf/tex/latex/graphics/pdftex.def File: pdftex.def 2002/06/19 v0.03k graphics/color for pdftex \Gread@gobject=\count87 )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texmf/tex/latex/hyperref/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX \@linkdim=\dimen105 \Hy@linkcounter=\count88 \Hy@pagecounter=\count89 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count90 \Field@Width=\dimen106 \Fld@charsize=\dimen107 \Choice@toks=\toks16 \Field@toks=\toks17 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count91 \c@Hfootnote=\count92 ) *hyperref using default driver hpdftex* (/usr/share/texmf/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2003/11/30 v6.74m Hyperref driver for pdfTeX (/usr/share/texmf/tex/latex/psnfss/pifont.sty Package: pifont 2004/09/15 PSNFSS-v9.2 Pi font support (SPQR) LaTeX Font Info: Try loading font information for U+pzd on input line 63. (/usr/share/texmf/tex/latex/psnfss/upzd.fd File: upzd.fd 2001/06/04 font definitions for U/pzd. ) LaTeX Font Info: Try loading font information for U+psy on input line 64. (/usr/share/texmf/tex/latex/psnfss/upsy.fd File: upsy.fd 2001/06/04 font definitions for U/psy. )) \Fld@listcount=\count93 \@outlinefile=\write3 ) (/usr/share/texmf/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip43 For additional information on amsmath, use the `?' option. (/usr/share/texmf/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texmf/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks18 \ex@=\dimen108 )) (/usr/share/texmf/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen109 ) (/usr/share/texmf/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count94 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count95 \leftroot@=\count96 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count97 \DOTSCASE@=\count98 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen110 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count99 \c@MaxMatrixCols=\count100 \dotsspace@=\muskip10 \c@parentequation=\count101 \dspbrk@lvl=\count102 \tag@help=\toks19 \row@=\count103 \column@=\count104 \maxfields@=\count105 \andhelp@=\toks20 \eqnshift@=\dimen111 \alignsep@=\dimen112 \tagshift@=\dimen113 \tagwidth@=\dimen114 \totwidth@=\dimen115 \lineht@=\dimen116 \@envbody=\toks21 \multlinegap=\skip44 \multlinetaggap=\skip45 \mathdisplay@stack=\toks22 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (./plumed_quick_ref.aux) \openout1 = `plumed_quick_ref.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. (/usr/share/texmf/tex/context/base/supp-pdf.tex (/usr/share/texmf/tex/context/base/supp-mis.tex loading : Context Support Macros / Miscellaneous (2004.10.26) \protectiondepth=\count106 \scratchcounter=\count107 \scratchtoks=\toks23 \scratchdimen=\dimen117 \scratchskip=\skip46 \scratchmuskip=\muskip11 \scratchbox=\box28 \scratchread=\read1 \scratchwrite=\write4 \zeropoint=\dimen118 \onepoint=\dimen119 \onebasepoint=\dimen120 \minusone=\count108 \thousandpoint=\dimen121 \onerealpoint=\dimen122 \emptytoks=\toks24 \nextbox=\box29 \nextdepth=\dimen123 \everyline=\toks25 \!!counta=\count109 \!!countb=\count110 \recursecounter=\count111 ) loading : Context Support Macros / PDF (2004.03.26) \nofMPsegments=\count112 \nofMParguments=\count113 \MPscratchCnt=\count114 \MPscratchDim=\dimen124 \MPnumerator=\count115 \everyMPtoPDFconversion=\toks26 ) Package hyperref Info: Link coloring OFF on input line 15. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count116 ) LaTeX Info: Redefining \ref on input line 15. LaTeX Info: Redefining \pageref on input line 15. (./plumed_quick_ref.out) (./plumed_quick_ref.out) \openout3 = `plumed_quick_ref.out'. LaTeX Font Info: Try loading font information for U+msa on input line 22. (/usr/share/texmf/tex/latex/amsfonts/umsa.fd File: umsa.fd 2002/01/19 v2.2g AMS font definitions ) LaTeX Font Info: Try loading font information for U+msb on input line 22. (/usr/share/texmf/tex/latex/amsfonts/umsb.fd File: umsb.fd 2002/01/19 v2.2g AMS font definitions ) (./plumed_quick_ref.toc) \tf@toc=\write5 \openout5 = `plumed_quick_ref.toc'. [1 {/usr/share/texmf-var/fonts/map/pdftex/updmap/pdftex.map}] Underfull \hbox (badness 10000) in paragraph at lines 39--40 [] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 41. LaTeX Font Info: Try loading font information for OMS+cmr on input line 44. (/usr/share/texmf/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 44. [2] [3] Underfull \hbox (badness 10000) in paragraph at lines 107--108 [] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@encoding' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@family' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@series' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmtt/bx/n/14.4' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\ignorespaces' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 122. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmtt/bx/n/14.4' on input line 122. [4] Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@encoding' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@family' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@series' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmr/m/sc/14.4' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\ignorespaces' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 143. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmr/m/sc/14.4' on input line 143. Overfull \hbox (6.91164pt too wide) in paragraph at lines 145--146 \OT1/cmr/m/n/12 To run the meta-dy-nam-ics cal-cu-la-tions, you will need to pr e-pare the in-put file \OT1/cmtt/m/n/12 plumed.dat [] Overfull \hbox (52.98253pt too wide) in paragraph at lines 200--200 []\OT1/cmtt/m/n/12 sum_hills.x -file HILLS -out fes.dat -ndim 3 -ndw 1 2 -kt 0. 6 -ngrid 100 100 100[] [] [5] Overfull \hbox (9.7575pt too wide) in paragraph at lines 200--200 []\OT1/cmtt/m/n/12 [-cutoff_s 6.25 ] (the hills are cutoff at 6.25 standard de viations from[] [] Overfull \hbox (28.28252pt too wide) in paragraph at lines 200--200 []\OT1/cmtt/m/n/12 [-2pi x ] ([0;2pi] periodicity on the x CV, if -fix is not used 2pi[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 200--200 []\OT1/cmtt/m/n/12 [-pi x ] ([-pi;pi] periodicity on the x CV, if -fi x is not used 2pi[] [] Overfull \hbox (59.15753pt too wide) in paragraph at lines 200--200 []\OT1/cmtt/m/n/12 [-bias ] (writing output the bias for a well tempe red metadynamics run)[] [] <./pic/sn2_reaction.pdf, id=161, 844.15375pt x 404.712pt> File: ./pic/sn2_reaction.pdf Graphic file (type pdf) [6] Overfull \hbox (2.78009pt too wide) in paragraph at lines 230--230 []\OT1/cmr/bx/n/14.4 Metadynamics with Born-Oppenheimer molec-u-lar dy-nam- [] [7 <./pic/sn2_reaction.pdf>] [8] [9] Overfull \hbox (15.93251pt too wide) in paragraph at lines 359--359 []\OT1/cmtt/m/n/12 1-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000[] [] Overfull \hbox (15.93251pt too wide) in paragraph at lines 359--359 []\OT1/cmtt/m/n/12 2-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 359--359 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 1: UPPER LIMIT = 7.000000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 359--359 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 1: LOWER LIMIT = 2.500000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 359--359 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 2: UPPER LIMIT = 7.000000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 359--359 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 2: LOWER LIMIT = 2.500000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 377--377 [] \OT1/cmtt/m/n/12 0.000 3.470115309 5.828643634 0.00000000 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 377--377 [] \OT1/cmtt/m/n/12 20.000 3.476912892 5.822800771 0.00000000 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 377--377 [] \OT1/cmtt/m/n/12 40.000 3.483516729 5.817608411 0.00100000 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 377--377 [] \OT1/cmtt/m/n/12 60.000 3.490411466 5.812574439 0.00099960 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 377--377 [] \OT1/cmtt/m/n/12 80.000 3.498291622 5.807005696 0.00199817 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 377--377 [] \OT1/cmtt/m/n/12 100.000 3.507739014 5.800326723 0.00199435 6 0.000000000[] [] [10] Missing character: There is no Õ in font cmr12! <./pic/sn2cv.pdf, id=265, 356.23087pt x 210.7875pt> File: ./pic/sn2cv.pdf Graphic file (type pdf) <./pic/sn2cvs.pdf, id=266, 352.71774pt x 210.7875pt> File: ./pic/sn2cvs.pdf Graphic file (type pdf) Overfull \hbox (40.63252pt too wide) in paragraph at lines 412--412 [] \OT1/cmtt/m/n/12 40.000 3.483516729 5.817608411 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 412--412 [] \OT1/cmtt/m/n/12 80.000 3.498291622 5.807005696 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 412--412 [] \OT1/cmtt/m/n/12 120.000 3.519061248 5.792237732 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 412--412 [] \OT1/cmtt/m/n/12 160.000 3.547107311 5.772092610 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 412--412 [] \OT1/cmtt/m/n/12 200.000 3.578429291 5.750272190 0.30000000 0 0.300000000[] [] [11 <./pic/sn2cv.pdf>] Overfull \hbox (40.63252pt too wide) in paragraph at lines 412--412 [] \OT1/cmtt/m/n/12 240.000 3.606928115 5.732241302 0.30000000 0 0.300000000[] [] Overfull \hbox (13.80449pt too wide) in paragraph at lines 426--427 []\OT1/cmr/m/n/12 In or-der to restart a meta-dy-nam-ics run, the flag \OT1/cmt t/m/n/12 RESTART \OT1/cmr/m/n/12 must be added to \OT1/cmtt/m/n/12 plumed.dat [] [12 <./pic/sn2cvs.pdf>] <./pic/sn2_fes.pdf, id=285, 346.4945pt x 152.36925pt> File: ./pic/sn2_fes.pdf Graphic file (type pdf) [13 <./pic/sn2_fes.pdf>] [14] <./pic/hh_fes.pdf, id=310, 350.10799pt x 210.7875pt> File: ./pic/hh_fes.pdf Graphic file (type pdf) [15 <./pic/hh_fes.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 537--538 []\OT1/cmr/m/n/12 User's Guide for \OT1/cmr/m/sc/12 Quan-tum ESPRESSO\OT1/cmr/m /n/12 : \OT1/cmtt/m/n/12 espresso/Doc/\OT1/cmr/m/n/12 ; [] [16] (./plumed_quick_ref.aux) ) Here is how much of TeX's memory you used: 3552 strings out of 94500 45590 string characters out of 1176767 98478 words of memory out of 1000000 6627 multiletter control sequences out of 10000+50000 15206 words of font info for 58 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 27i,7n,41p,1810b,255s stack positions out of 1500i,500n,5000p,200000b,5000s PDF statistics: 327 PDF objects out of 300000 53 named destinations out of 131072 154 words of extra memory for PDF output out of 65536
Output written on plumed_quick_ref.pdf (16 pages, 518854 bytes). espresso-5.0.2/Doc/INPUT_PH.xml0000777000700200004540000000000012053440163021221 2../PHonon/Doc/INPUT_PH.xmlustar marsamoscmespresso-5.0.2/Doc/INPUT_PP.txt0000777000700200004540000000000012053440163020415 2../PP/Doc/INPUT_PP.txtustar marsamoscmespresso-5.0.2/Doc/user_guide.out0000644000700200004540000000332412053147350015753 0ustar marsamoscm\BOOKMARK [1][-]{section.1}{Introduction}{} \BOOKMARK [2][-]{subsection.1.1}{People}{section.1} \BOOKMARK [2][-]{subsection.1.2}{Contacts}{section.1} \BOOKMARK [2][-]{subsection.1.3}{Guidelines for posting to the mailing list}{section.1} \BOOKMARK [2][-]{subsection.1.4}{Terms of use}{section.1} \BOOKMARK [1][-]{section.2}{Installation}{} \BOOKMARK [2][-]{subsection.2.1}{Download}{section.2} \BOOKMARK [2][-]{subsection.2.2}{Prerequisites}{section.2} \BOOKMARK [2][-]{subsection.2.3}{configure}{section.2} \BOOKMARK [3][-]{subsubsection.2.3.1}{Manual configuration}{subsection.2.3} \BOOKMARK [2][-]{subsection.2.4}{Libraries}{section.2} \BOOKMARK [2][-]{subsection.2.5}{Compilation}{section.2} \BOOKMARK [2][-]{subsection.2.6}{Running tests and examples}{section.2} \BOOKMARK [2][-]{subsection.2.7}{Installation tricks and problems}{section.2} \BOOKMARK [3][-]{subsubsection.2.7.1}{All architectures}{subsection.2.7} \BOOKMARK [3][-]{subsubsection.2.7.2}{Cray XE and XT machines}{subsection.2.7} \BOOKMARK [3][-]{subsubsection.2.7.3}{IBM AIX}{subsection.2.7} \BOOKMARK [3][-]{subsubsection.2.7.4}{IBM BlueGene}{subsection.2.7} \BOOKMARK [3][-]{subsubsection.2.7.5}{Linux PC}{subsection.2.7} \BOOKMARK [3][-]{subsubsection.2.7.6}{Linux PC clusters with MPI}{subsection.2.7} \BOOKMARK [3][-]{subsubsection.2.7.7}{Intel Mac OS X}{subsection.2.7} \BOOKMARK [1][-]{section.3}{Parallelism}{} \BOOKMARK [2][-]{subsection.3.1}{Understanding Parallelism}{section.3} \BOOKMARK [2][-]{subsection.3.2}{Running on parallel machines}{section.3} \BOOKMARK [2][-]{subsection.3.3}{Parallelization levels}{section.3} \BOOKMARK [3][-]{subsubsection.3.3.1}{Understanding parallel I/O}{subsection.3.3} \BOOKMARK [2][-]{subsection.3.4}{Tricks and problems}{section.3} espresso-5.0.2/Doc/INPUT_PWCOND.txt0000777000700200004540000000000012053440163022216 2../PWCOND/Doc/INPUT_PWCOND.txtustar marsamoscmespresso-5.0.2/Doc/plumed_quick_ref.out0000644000700200004540000000175512053147351017145 0ustar marsamoscm\BOOKMARK [1][-]{section.1}{Introduction}{} \BOOKMARK [2][-]{subsection.1.1}{Overview}{section.1} \BOOKMARK [2][-]{subsection.1.2}{Collective variables}{section.1} \BOOKMARK [1][-]{section.2}{Step-by-step metadynamics calculations}{} \BOOKMARK [2][-]{subsection.2.1}{Compile Quantum ESPRESSO with PLUMED plugin}{section.2} \BOOKMARK [2][-]{subsection.2.2}{Running metadynamics in Quantum ESPRESSO}{section.2} \BOOKMARK [2][-]{subsection.2.3}{Units in the input and output files}{section.2} \BOOKMARK [2][-]{subsection.2.4}{Postprocessing}{section.2} \BOOKMARK [1][-]{section.3}{First worked example: SN2 reaction}{} \BOOKMARK [2][-]{subsection.3.1}{SN2 reaction in vacuum}{section.3} \BOOKMARK [2][-]{subsection.3.2}{Choice of CVs and simulation details}{section.3} \BOOKMARK [2][-]{subsection.3.3}{Metadynamics with Born-Oppenheimer molecular dynamics}{section.3} \BOOKMARK [3][-]{subsubsection.3.3.1}{Free energy reconstruction}{subsection.3.3} \BOOKMARK [1][-]{section.4}{Second worked example: H-H}{} espresso-5.0.2/Doc/INPUT_BANDS.txt0000777000700200004540000000000012053440163021235 2../PP/Doc/INPUT_BANDS.txtustar marsamoscmespresso-5.0.2/Doc/INPUT_PW.xml0000777000700200004540000000000012053440163020404 2../PW/Doc/INPUT_PW.xmlustar marsamoscmespresso-5.0.2/Doc/INPUT_pw2bgw.xml0000777000700200004540000000000012053440163022141 2../PP/Doc/INPUT_pw2bgw.xmlustar marsamoscmespresso-5.0.2/Doc/developer_man.pdf0000644000700200004540000072370612053147350016417 0ustar marsamoscm%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (subsection.1.1) >> endobj 12 0 obj (Who should read \(and who should write\) this guide) endobj 13 0 obj << /S /GoTo /D (subsection.1.2) >> endobj 16 0 obj (Who may read this guide but will not necessarily profit from it) endobj 17 0 obj << /S /GoTo /D (subsection.1.3) >> endobj 20 0 obj (How to contribute to Quantum ESPRESSO as a user) endobj 21 0 obj << /S /GoTo /D (section.2) >> endobj 24 0 obj (How to become a developer) endobj 25 0 obj << /S /GoTo /D (subsection.2.1) >> endobj 28 0 obj (About qe-forge.org) endobj 29 0 obj << /S /GoTo /D (subsection.2.2) >> endobj 32 0 obj (Contributing new developments) endobj 33 0 obj << /S /GoTo /D (subsection.2.3) >> endobj 36 0 obj (Hints, Caveats, Do's and Dont's for developers) endobj 37 0 obj << /S /GoTo /D (subsection.2.4) >> endobj 40 0 obj (Guidelines for reporting bugs) endobj 41 0 obj << /S /GoTo /D (section.3) >> endobj 44 0 obj ( Structure of the distribution) endobj 45 0 obj << /S /GoTo /D (subsubsection.3.0.1) >> endobj 48 0 obj ( Libraries) endobj 49 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 52 0 obj (Installation mechanism) endobj 53 0 obj << /S /GoTo /D (subsubsection.3.1.1) >> endobj 56 0 obj ( How to edit the configure script) endobj 57 0 obj << /S /GoTo /D (subsubsection.3.1.2) >> endobj 60 0 obj (How to add support for a new architecture) endobj 61 0 obj << /S /GoTo /D (section.4) >> endobj 64 0 obj ( Algorithms) endobj 65 0 obj << /S /GoTo /D (subsection.4.1) >> endobj 68 0 obj (Gamma tricks) endobj 69 0 obj << /S /GoTo /D (section.5) >> endobj 72 0 obj ( Structure of the code) endobj 73 0 obj << /S /GoTo /D (subsection.5.1) >> endobj 76 0 obj (Preprocessing) endobj 77 0 obj << /S /GoTo /D (section.6) >> endobj 80 0 obj (Format of arrays containing charge density, potential, etc.) endobj 81 0 obj << /S /GoTo /D (section.7) >> endobj 84 0 obj (Parallelization) endobj 85 0 obj << /S /GoTo /D (subsubsection.7.0.1) >> endobj 88 0 obj (Usage of \043ifdef \137\137MPI) endobj 89 0 obj << /S /GoTo /D (subsection.7.1) >> endobj 92 0 obj (Tricks and pitfalls) endobj 93 0 obj << /S /GoTo /D (subsection.7.2) >> endobj 96 0 obj ( Data distribution) endobj 97 0 obj << /S /GoTo /D (section.8) >> endobj 100 0 obj ( File Formats) endobj 101 0 obj << /S /GoTo /D (subsection.8.1) >> endobj 104 0 obj (Data file\(s\)) endobj 105 0 obj << /S /GoTo /D (subsubsection.8.1.1) >> endobj 108 0 obj (Rationale) endobj 109 0 obj << /S /GoTo /D (subsubsection.8.1.2) >> endobj 112 0 obj (General structure) endobj 113 0 obj << /S /GoTo /D (subsubsection.8.1.3) >> endobj 116 0 obj ( Structure of file "data-file.xml") endobj 117 0 obj << /S /GoTo /D (subsubsection.8.1.4) >> endobj 120 0 obj (Sample) endobj 121 0 obj << /S /GoTo /D (subsection.8.2) >> endobj 124 0 obj (Restart files) endobj 125 0 obj << /S /GoTo /D (section.9) >> endobj 128 0 obj (Modifying/adding/extending Quantum ESPRESSO) endobj 129 0 obj << /S /GoTo /D (subsection.9.1) >> endobj 132 0 obj (Programming style \(or lack of it\)) endobj 133 0 obj << /S /GoTo /D (subsection.9.2) >> endobj 136 0 obj (Adding or modifying input variables) endobj 137 0 obj << /S /GoTo /D (section.10) >> endobj 140 0 obj ( Using SVN) endobj 141 0 obj << /S /GoTo /D (subsection.10.1) >> endobj 144 0 obj (SVN operations) endobj 145 0 obj << /S /GoTo /D (subsection.10.2) >> endobj 148 0 obj (Removing conflicts) endobj 149 0 obj << /S /GoTo /D (section.11) >> endobj 152 0 obj (Bibliography) endobj 153 0 obj << /S /GoTo /D [154 0 R /Fit ] >> endobj 158 0 obj << /Length 1560 /Filter /FlateDecode >> stream xÚíX[ÓF~ϯ°Ô©æ~y¤°À¢"²U€oâl¬:q°è¯ï93ã8 A] ¥ T‘â{æÌœÛw.,¡ðc ãŠ(#mÑF°dº%ïJ¸ÖίÙ·w#wÆ÷Ï—,yT^Ž’—»oœJ¢µ+<9-ëé ãäÌ„€{“dûýårtÿ1â’kXr9O˜ÐDqà‡"…5Éåìuú¨¸sU=fézœáxœ±´¹óvœ *Òç9ŒW¸lƒ£ ßòtŽ;šñÛËg÷sº\†8I5\x¹A‚ùªÃÇf‰;’ŒYN¨2ɸ#Öç—žM.€è«³ÉäE |ÄdD(Ñ~C½!ã ŽJÿ8¼fñZ*^9SwoŒ.m’9 £•òTÖž;ÁÒžy˜ñ´k"Œ8¥8¡H†p Tp3gŽšô<ìð‚«A<›# h×Ù Ol,qÖô›¿¦+îC:÷ÅÄc4’œaâHî=‚@x¿)W×=lÃ`æu{ƒ®*_/‹°Œ]Û»*Û IÂL/œÌ”‘ןƒ(æ8 ¢ðRÛ}|Tßë`5ë_DºxFezƒ”†ÜÄôäS)å<…ÜÈ( 'Oªrå/¹ß1Ù³ºAëÚÖÕæV:+ï¶}’„>ßìö¡­Š[žNºÆši·iöÐÕ£éÇ2Àñ"~˜•Aº,¦a~Š®ê10.¬©:…}Ôf¹=4pÈ)€˜‡^)Mú+jçªÉ›²ÅXˆ}ß,ò}‘&U̹4q Ñc‘õê|ÕvyUy×/ëUL¿ aK_䫲…ˆ©˜ü®e¸'®JkÏÀ³µqH4úrlVÆ\?,ŠSÑËUG)‹|êË ÿ¥Oi›“)¾rPº>Åo§M¹†ƒ¸2w4æûLNõ%¤"PŨCØRÅÈÍxÈMºÝå¹!ôÌbèi7ë}q9? ðyŒ·ÜU‰™üXQû_¸¥70}Ywˆ¶­2BëƒPÄC"XPÙ-–}xbVè”ݺT•;¯’/—Qn/‰¼ÈþhÑ×ÕwLÞâá dìÖqP}fœÆþC½Ëì'(RíyY 62@{S¨o}#3íøÿjü$5êPI>;tÖx7˻՘{ý69–ïc÷-*´oIù­åÊ;¬Ïñ;®_äÍõžu„jd…ÙPpî@î€i¸Ñ±­=Á"4¿üÂ¼Š ÿiŠ 3 hÀûwŸ9˜»À»åMî1¥òGWžÚŸyŸŽ m0ªMOîVi˜Ò0ÄóßÚ¾¤¸ŽÍ‹zž?•s)‹9Ò]-Wß4΢ÄHz«¯ßÒd6¢É³%ÂY•lGØeÎñd9D1à2ΫÑd4t\%áL²¾Gûùt2e'ÓÌÇÃÍBçö°'}cw`óüâ|œG¿‰Zýo= *bXW`aç͠Ǧ˱ %à]0cÚï®}ž÷–RUmð°¬N–ïÆgH¾üλ³geÂ6–M>iö•Y¨è9§òJ™l=ôü#¾übCw¡endstream endobj 154 0 obj << /Type /Page /Contents 158 0 R /Resources 157 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 203 0 R /Annots [ 171 0 R 172 0 R 179 0 R 180 0 R 181 0 R 182 0 R 186 0 R 187 0 R 188 0 R 189 0 R 190 0 R 191 0 R 192 0 R 193 0 R 194 0 R 195 0 R 196 0 R 197 0 R 198 0 R 199 0 R 200 0 R 201 0 R 202 0 R ] >> endobj 155 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 204 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 531.00000000 181.00000000] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 205 0 R >>>> /Length 206 0 R /Filter /FlateDecode >> stream xÚ+TT(TÐH-JN-()MÌQ(Ê ˜*¡¡„NÎUÐ÷Ì5Tpɪ”˜ òendstream endobj 204 0 obj << /CreationDate (D:20090714182634+02'00') /ModDate (D:20090714182634+02'00') /Producer (Mac OS X 10.4.11 Quartz PDFContext) >> endobj 205 0 obj << /Length 207 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 208 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xÚìxTU÷'½÷Bh*MŠAAlkW…Õµ VA¤)½†„R(„IH%ÒHïm’™¹åœó~ç½wÀWÝo¿E¿ûÞ'aZ&r~÷íš4ý߉€ @ѨÆù…uÝá:†O¢>O×S¡ñ/ÌlüI”×b RµO^“&Mšþ¤" wì´›%À.¢‹$f»>€º qùÎôê‡uÝA&Mš4iÒtc{ì*ë– L5zÕ·]ÇÈu )s<.SäŠgë¾³† Mš4iú3€u-Ãl¿îPüëýa×CÎå`3‡±Ô–&Mš4iú³å2/(\y´«Ž•ÌFDÕºò¿4`ܨ©«b[æ¬Ç/|Mš4iÒtË^ÛT‡éÀ¹`¹¤6[Ah1›©ÍØ„fhSÓuŒß¹MÔ£I³1Å@€Ë)xMš4iÒô'c„R™‰F;Ahc3çí¬fú nÐ^†ÖV ­%h-ÅÜXs‘ùÿb´[k¿úràï¨}5tÔ0c=˜@hI²ñ„ŽŒ†Mš4iús€£²,J’ Š&0´Cg 蘾†¶VÈ-%rS!7hÊEkÌáÆ²i}7Rwê²®iRC¶Ü˜Ã4åÓæó´©€5r“ZJŶ2©½‚èëh'÷\ÚÁÔ‰´Ò¤I“&MWKV#ùÖ—€ hj"€1YÀ®óÿÆ´ô/ÄŸ„’® 5èD•¡»nŠu{j¶¢äv[ÀØUÐ^ŽÞD[1i-–[ŠHsmÌeõ™P›Æª“¡*‰UžåF+iÅRqŠTÄÉå'äŠcôÒÉk”Å£]J€rþdZ™J«3äêL¨É†Úl¨Ï¡ùœ#´½ˆu”QÃ%f¨¡¤ í@J¢D-º¢äÊTÉUe½˜u§@d-[¢I“¦¿8øˆ¹~hw0¹“J;7ÉÄys™Ó‡¹«î_êeÕÊ[BÑ8G0£mÂ×dÔ`(©¥š ¡ñ<4äʵ™rmº\“B«’8#G@éq´’X(9ÅG‹fEQ¬è€bQ×4(ŠFãwƇDz²xV~Š•'@Ån¬2‰V§šL¹>]’¦,ŒkuT2c=35QO‰ ÁÚLgä*pÐk¶„h!/Mš4ý¥Àв€±}¡™eC½ÔQ/wÔÑÎFjl¡‚^Åü!n°îžl¸ºÎVù J$*ùKð’;¤ö:hçþE †rhí9ZF‡‚Ÿó¬ô” àâ~(ˆ€óáp! òBÐrƒ!wäî†ÈÙÙ;•ײÜ@ÈÛùÜBðá…áPÉï㸡E‡iñQZÇ.¡å)´2¥B¤¥Hn-“ÚªHg=34qÆ1™;eü“±c½«ËŒBB¹øÏ«thàФIÓ_Jx~„6è¬Ã‹üÖ2¹¥Dl*’š‹ù ÚÆ/¶«Íç$c à"_ÑpETŠJ ›€S‰?yG=i«šK„Æ‹ÐpêÒYu2w+øŽÇxQ47¸°.„Àù`È @@dípn¤o@K[–ú3¤®ƒ”µÜXÊO×4šþ37–±27À¹ìÜfÈÚ‚v~œß@á4)8…Ü19Åq¤,Ž”'ð÷ÃjÒI]iÈ£MYK©Š¬æ’ ÀÄ.SŒËQ¢Vüv÷¤0íÿ3Mš4ý•DüôÃò¤æ Ðu™¤6UªN•«3h]ÔŸƒ¦|¬G24r¾üP¾ÜAÍÍXLkÀ²XC#ÓWqTâ_šLR• '¡ì÷,XQ-ˆ„ó{Yn7ÈÞY[áÜ&Èܨ2)²ή6[ò*´¤Õª±äk›töGÕä”Uäì*šò£jù=÷3;·²¶Avä„B.wg"Yá> pqg‡¿«K§XeT§Bm¦R¸U†EYÆ:ÌÈü$‘ ]Ý%Wd@4iÒ¤é/%F‡ø¹ UIxh_:ÎIZÍ/õ¡ô(”Ÿ€Êx¨MÅWS3e¿{è_—¯¡ ƒv‚ØÆ&ƽ›V%UŸµP}*âáÒ1†a¨H ay½“Û ™›!cK]Ë“‚9»š›œ¼Š›ú}ÅÝØ©›ÐÒ6³ô×41õgnrê:’Â?Ûjnœ;$u5¢„çì:–²Ÿ$} ¤mÃè÷q·§ØÅ(ã)?‰ø¨É€†\h)À ¾¡L AŒhL4³Ã<‰QûÿL“&M!µ°º,z)žÆhA\†óA4/O˽pq”ãÇ»¬¯$¢þøL«q© õÜÅ`-¥´©‹c«Ó1yQvJbðUøËåÒì]${=·Ïù´u€>Åpvg„Ê ~àÓTŒ8©  ç¶³¬,k'¯ÐS‚ÜP´¼àkÉÙM³w“¬ø(N¥ŒMŠmèva¸WB“~dh+Ð8’Ò×CæVàÉ `¹ücáhÛ%Ç 4.%°ª¨ÏF­½ô岩‰r8ªñ+ÖÕœ®yš4iú ‰Õg’ÊD¹è0Éß‹¹ƒ¼]Ëá­ôÜ~TBîÈäÛ¤']ˆ’+ß…Q˜ž(Œîª­ú¥á™!ù!˜OÏQÒ%ÜÎm‡ŒÍ˜.IY É+ñu¿‡Ä%äÌrÎJÚ’¾•fî¢Ùˆ̃¢EGhi©HÆ<¾RÇkÔ׊†*è 84iÒô§–2èUÙÁp@¹R8Ú mÅPv ã…zæfÀ+|~y¿Ã>‰Ë õ'9m‹œ±ÏUî\:-…×@9Œ±}lsèN¡«¦©Í¥PW5¹P•.Wœ1]:É.DÃ…C9pn ¤ÿ)+ y;¹â¾a§¿ƒ3?ÀÙÕœ4s w Ø¹È „œÈÛ‹×üxnäG7)=AËb•x¨8•º•‰JÇuŒ¿4¿sY,–i•cÅ1äâa¹ð\ŒbèùÈãKwa8&Hêfš¼\N\*&,•N/%gV`åìZHY™[°v‹3« ’EË¥'9YM*f…óðƒí¨Â&wɨbãêZf5‡NµÎtMš4ýùÀÑr c w/dlÔUô=9½ˆœZ–CÜ×pæ{!q¥xvdü̽,mjȹ®ç¢<ÿ{”$&™ˆ` úK´¥êÎCÕ9(? eñ´$Fºx£IÙ{Xæš²ÃPüÂ>á;š°˜¿($.ÇðTê:dz=»Ñ)ØÞDÑ!¬È-=†‰†²8¸Çkìì¨Âþ <·k3¸…V—uMƒÚ³)ýƒP™ÀqÃÊOaB3ò‡‘GÜ%ÉßËrö°sþœh,u-¾ÃÄIâJš¸’ãCNø)éüܲwѼ¹`?)ަeÇ1øVÍñ‘ƒY¡¶Jfhb¢ˆxÕ4ø+{[4iÒ¤éF•ô¯à ¤á<¿º¦i›äÄåôô?[>>K:6K>öDÀŽ!Ä}-œZI‹iÊj1/›µ¯Ž®­üŒ41©U6Ô›Ú+%ìÝ;G+’¡8]›óá,'€p¤¯…ÔÕ,i¿’NÇMLX"qj¤ÿ 1p”ãÅ·…P´J¢ ü4T$5ñc?­.“mÌÇQÓyurk-†¶´öÒk[k¦³ÑÎCs>4å! ë³1AÏ]þ*—âLO£0ö•Yþ¹Ò7bž$i«äôb9á{𼂤¬ÁØZö–· ‚ÉÅZ|œ]:Ãj21(×ZF;”¾&ªTeìòäxš4iú³€ƒ¨‡¼Ô.Öæ²´Ÿùq-ÆÎfÇ?‚#ïÐÃÓÙÁ·HÔ;°ÿUvø1fåßûT>=ß”±•”Å^Ý»ôduVH-ç…†,¹2™^: E1†!/%‰À_83Àéo¸#'.‘SVÒôµôÜϘwÀÖ¼p,a*‰K±XpU™@k¹¿ÍêóN—*b-¥ØL±ÕJ§I ë¬Ãæn#ÎÅeBŽ+¼–ÑŽZ¼ggú@ÐW°örlWi.0C¤6jR *!R‡ònŸÒf¸²7CæZš¶’ÔùŽI\B“—BêJÈ\ÙëINÉçž Ð*Ïò÷ŒÍï­eDh©³«ãCÛ®I“¦?Y¨Ê\"+¶™ª³!i©tò+)æ=vhD½ûž‡ˆ ü%ÿD¾H¼‡¦Â‘7éñOMg×±Òø—ƒ?¯`À‘æü¾)›Õ&“ªx¬>â—îùüº}3w1 q)$,ÁFüWpj.œùÎ.ƒŒu,{ Ë÷‡ ìb4§ +17M°štZŸÅr¤æ™“¢­‚èkÌ½ÛÆfj±d=žÉ܈ ç–¨ÝÜT¸¦©ßLÆû3±.´áó £Ú+°;£å"Î9©É¢Õp)ÊÎ@IÇ ïSy;!g3¤¯â° IßK ‹9ûàÌ"H^©ß³ô͘åÏ V*¯Ž }jÒ !‹¿sN7ZŒêoC‡&MšþàÀ¹…]àÚ èÑåýÓhødØû? OBÀSø8O¢!‡ˆgáÀ?é¡·…Ä•èüÒÑ`TLmL_Ã=lͨ<…MsÅ!/LIsGã8³N/„SßAÂR–¸ˆ%/e©«Ø¹,ÇŸ^ØK ÷‘‹‡pÖGE2N©Í¢h3v¯ÓöJÚÙˆùS+žö 0ˆò™×3]96êz{=®ÊPw÷°ã(Ñ#´aF»“³¯Šµ”ÑÆR_@ër9AhE"&Ö‹£å‚H)?kº²¶È©ëÄÄÒé%ôÔ"üÑNÃ’V` qæF¥¢ ¡Yv *âH]k:å 6âL0|óL‡&Mšþà…Ëàõbm.¿ìg13¤½ÏSN ÿaûý°å>Øül½WÞvŸ´ý>xBŸ¤‘¯‰§—süb¯+ÿ£,Ë’$ñËiÚV†9*Ïbkza„=t©?Cò2H˜OOÍ!§æ³„¥´ZNÿ™dn!9»82”ÖìãôÒiR~êó á4Aë%è¨ÅÐ÷¤vìŒPëø!U5÷Ùuù=¿näª9‹]Qÿ)C‘D’ wg±sØ©E4ñ’²NÎØ&gмìø(‹5³£õ"†Ë˜¶Õ\“&M7®ðÈT.¸ùq+¨k6ˆ@jÏBü·ôÐÛrðclËݰz,|ýŽÛhX|,OWß ›'@Àß rªtf”D™Äîüh55BGkËþT• P| ÎGAN0œÛFÓÖˆ)K!öˆýŒœ-Ç}+%­$›YNäï¥÷³’CP‹“Ìk³hC´TA{ƒ EÑ$ËâåÊÞÿñÐ'uXŠâƒ›X[%i*‘ë‹H} ­I"q˜È(ÜÕÅ»XêVì:ç®Gìl8>N|Êý,Hÿ‘eo’s‚È…Z|ë‡ë³Ys!t\ÂA%æ!íTézQÃW’²ÁV“&Mšþôà—Cé!¹;¥Ë:¡U´ä“Æ Z~‚–ÄÀùý i›!yMX,ŸžÏ©N ÿ—c7_ö. aî'¥G¿h¯NÆRئ"h«„Î&0upd"Q*ÿKzâô¹áG%£×CŒ*; £–¶WcYoÇeTœFvìÇ„xÖn„rv%œZ±_ÂñY÷;óMù‘“fïÆèVñQ¹â ©;‡ìЗI‰Â¡ÿ¤T»á/I6ÁiÒ¤IÓŸ ßÝiǦñ*8HÒp)ZÍ€,±Úê ñ"ί›)ô—0*ÅÏOÉTúGüFöõ¹©›Dº*ø•Z,c3Vaµ”b¯_U2– b…8È7k60žú?_Ð_É'çafçìjì‘Ï – £ÄÒxR›Îšò˜¾ŸŠûØL*¥¨Vo¥I“¦?-8Ȫqfp웦‚C¹"–qxk5Ô_€Ê4(£EG ×OÅÔµpj1ÿ Ž}'>ƒ“ŸKg–áøÙìí8´äb.Ý«L‚ÚLl'×—ãLrIIdñznÅå~¹ÿ…¤kìQò$„hÂ5èíUÐ|Õ§Óê¹ü+ŽÆlø¹ü£âwÌfÇf‘#ŸÒcŸCÜ<,Hÿ ²wa§yYnl,Ä.S §Rws‡† Mš4ý¹CUWze‡HèðÓ²>[­‹ÀùH–‚s®’WÀéoàøç4æ8ú)ÄÍ„bÚfE[%1¬ø9´ÒÖ@öN,?.=†®²‘¡bkwÀJ‡&MšþÜàØ<b¯`r¼ø ^·Wb|¦"ÿ˜¤œ›ðêúä\züS9æCrä;Î,…”ur^()<€+“h}6m.ŽZ|¬ï’º‚QŒ0J(È7âçvU¥–ܽkœ";”H–„}¦FÚ^.5óO†U¥ÐÒ8Ø»;å—CÜBùè'ôèÇpüˆû¾´Õ4g'½°—GaVc²ChÃþm‰&Mšþ¤àX4–ÝÍÖŒ‡-÷ppÐð—M§–`"£µòIÕiZ¼.øCÖ8û#;µ Ž}AÎ$G? Ç>$ñ_áXòŒmÌJ°K'Íe¨m—°¯[¼Å+§ü©à¸r cf»d¦Z@Ý!~ÙõPÞ+UŽ˜@hW"W%ÐxžÕ¤³²x(ŠÆñ)é[pÇÇ©y4ö zä8ò>\^HÓÖÐs[.#YyîXçDôj“¦&Mš4ýÀaŒÿNºA/È5iRi )„Ü ¾¾£±óáÈLvôCvüCˆŸgCÖ&ÈÃÙéÜ1©JÂaãmŘÑ;”^Œ«ÚðºÆþ)‰èŽÊ*X*©E³W¼qõݪí‡2PY [ `¨ä?)ÎÔªJS!@vKß g—pžJ13äƒÓéá4öKš¸LN]‡{ÏóvӢäê¬ÜXD:pØ—6n]“&MÿOÕ}šeéQ.‰•( éÀAOm`j‚Î"R ÇÞ€Ð)°ñX9ÃS_†ùãaáð Çh²v4Ý:¦¡“…˜wå´o ê$Ä^Œ ¥üÔ\vì~; Ç>„Ó àìZ’á/äï“KO°ê$Cý9©å½ÊvO¢«'À¢Ñ0oÌNgasn‡E·Ë+o‡caçƒ4`’pà5–<Jcàü^š¹+N1þ~û,pä=89 Q’±™æ„ȅѤò 4dˆí¥¤£„F zåô£Ü‰ á jl9@ì` 8/±6Jãáb4vydn…ÄïÙñÏYôûìÐ ˆæÀý'\%ý€›GòÃhñqZ†sz9;Dþ»“#dnTÝEµ–&Mšþþ†Z¼J»O0ÚÙ,륎JÚRÄø5pS‘X‘4äAm‚éÜØû<Ýø´p |1 >Âf ’f ‘?Å>NçŒ"KFcüjýDºù!)d ÄÍ€ aôÜ)i%îé;2“D½C¾_‡ø/±^ˆ»!¹Áü›–%`g_[Ž ”:qç¸rÍÌ0¦Ã$FÿÊ¿eþÔFÎŽR¥R™ŒùŽóa¸Üe‘/°ð¾—àÈ;7—³ÌíPAËO@]:¢_Ô+y!­1P“&Mÿ5‰õœrc©:‹eÜÅ(ˆ€Ü=ìüœû‘¾²¶’ô­lO]"|ß!6L~óV˜:^/„©ý`zööÍlæør$Ì ³o§Ÿ¿ þF¾CN#aS ây8ô&œœKÒ~"¹{¤Ò£˜ oÌà NB&v͹Â<Àý¯‡Ýþ×Á¡t2èšÓNÑ]`&èlæ<• ¤ê³ré!š·‹œ]IâBÌ[$ò%ö<ìŸ 13良hÒ½.F ‡ØúDÐês5iÒôß;·:Ê¥–±:]*;ÅѸ-"Ç2¶ÊY[NY ©ë¤äuêÖo!üEøv´ôéP:}0L½ ^/ d¯Ü¦÷£ïöf3ÂW#aÞ]0çNúÙÓ¼Ñdõ½4jª67F>‡•T‰‹ÅsÛMöÓªDh8me˜X!8Ü•˜‡ƒ•ÿJæé}*5þ—ÎÊÒÜou2~’ -´í’Ô-UÅ‘‹áäÜ&¥Æàczð51t ²ãÀkrÌÇrüw¾žßÍŠ@U 4W€Á€uU˜-Ò|Mš4ý¢xKDsè[±…é+ >ªÏàÚÖ {!w'î0M[‡cÏ,å×·,qIøZ:1 #êG?–÷¼ óngŸ£oß ¯†WÁËé´~ôÍþðöPòÁÓì‘Ò‚;Ù×£å/†“¹#á»±¸U6x „OeGfBò2’¹\ˆ€Š8}C¾ÐR&ƒê^`ïæ2´½]"ÊpHî‹á˜¯lZvœ^œXŽ{ôSþ œÄ‚ž‚¯Â‰OYÂ7ùäm‡ÒƒP›‚KùVdʆÜ_¬dZÒ\“&M¿éÊf‰šC"˜„í¨&Xe"?”Xa„âhl€ÔUØ¡œð=Ä-ŸøBŽûRŽ)ļ ÇÞƒCo‰»§\¿º};榟§_€EwAÀ${N‡“_!’röàhÜÚ±½«€$Á¼U m¯D7èÕYWnôh¹UI¬(Šœ†”•85÷à[,d2pp„=Ï¿±ŸÉg—ÎŽ‚`¨8‰3L:(©Žÿýf+Mš4ýyÁ¡ºJ<„Š`j Mùre )>Ì]’µ“¦®…3ËØ©oå“óœsþ¡ý69ò6‰~]Úÿx"Ÿv<úkàøx;¾üë§·Áì°ð.ü$ìŽ}IK•9KÑPž Í… փܮúAÝà`8®ü}™ç$pôJËyZyZ*ŽF¯0ù&¼ïþ; x묿.žœ+ŸùŽfnb…ûhåYÖR†c¬ÕÀ¡I“¦ÿæ~Yí¥¬:™¡yA,kMYÃN/ƦG?%1âL益Xäólß?XÄd2 B'AðãÒ¶‰×Ç;C88GÆ‚qðÕh˜9 ÁñÝ8!ì82NÏÃ<{a”§@}t6ë&¨ÀóŒ)5E¬É©"Ý¿/Ú †j¹1G¨L‚‹‘$s;µ¢ßƒÐ)òŽ™ÿÃö4‰yŸÆ~É’–Óì]´ø(«Ë}5HíW‚ƒýP¤¦I“¦ÿÆ5,î³0ÕACæ5òC0©‘²#çÇgAÌ ˆzöMc¯@ØSüìy‚ÿC°ë~²eüõsƒÉGCGÆ×cáËQü>04üx¯éÐ4ˆÿ,ÙÁPšÀj ¡½dcWúÛL s÷ºvaÜ%¹k#¬¹ÒLn“õ•¦† Ò¥X!?L>»b¿ÂÅî;fÛïƒÀ‡`ÿ«ˆè´u,?”•Ÿ‚æ|0VjàФIÓJ lOîÀíŠ\±—¹’–)#¤fÁ¡·1¦þyƒçœÛ„-÷Æ{aý=°áX?ü4îºà˜~+ýp(ÌUU³GɳGåwÃŽÇ…ã@ò"ÈÚŽ“o«rik p»Z ¾7 Ý£ÜäËÑEÍ’¾Z¬NŠŽJY» q)¶?Kwü vÜ ¡Ç_ßñáÌbš¹ wšÔ$Ckž,‹]Ûu•ÿ 4phÒ¤éw†>ð›¡1—ÆzI?Àɹ0zû‘ƒŸBÿÂÿA²c"¬¿ÖÝ«î†åcÑ~KWÜ%®¸óúÇøh|É=Ž»ØÜÛ…£É†aÿsÂé¯!óg¸¥g¡©Lm„šd¤tË®ìÚÐd>âE¥–]Õ(ëå¦|±*Y.Ø• ñ_Ã7iÀ$qË}ÈŽ I8,öKš¼BÎÝM¸GY—$FB¤+Á¡±C“&M¿236’šLù|8I^ ñ‹èÑÏhÔ{› ~½Œ÷Эc¥MwÈ«ÆÓƱ%w⢅cè¢1Ââ;Œßÿ 8†ÂG·Áì10,ûz´°ä.y×cp|ª˜´rvBÑQ¨Êö F·PWlV¥æŽ? WäÎ)¼L|l ˜¾˜Ög2…œ]XopäC4¹sódöëb>O/2¶È÷ÑÊ“C‡$ 84iÒô‡ÈÑÆOg?ƒšK¡0Фn&ñ‹ æCˆþ'D> »‡ÍƒuáÇñ°ôNöÝh˜w‡Ò> >ŸŽ€™#àã‘ð ¿=†}4’¼3Tz} <µ?L¯Þ ¯ g # YÃ`îPaá(iëpä=)a–)}½\NjÓ%}­,ˬû ÔôÇx"™hg#­Ë'c c+ΰÚÿ†ð”aã8aýÝàÿ(|E>ö~gÂ·Øøa?kÈÎ*þ‹J_¥€Ý”Tí¸Ô¤I“¦#Ú)«çFC>œ%‰+å³1²Á©ô$Ûö¬?Ü KîbßÜNç€Ï†Ã§·áø©†Ðw‡À»C÷)Þƽ5„¼y«üÚ@2m{u ¼:^LgŒÀPÕ·Á×#äãhà8ñ1IúZÎÝ eG 9ŸZéºÚ¥ÚÁõ‡/D0µ±æ"\5Ë?ÛÄ¥px†òœ´y‚¸æNØt/„N!‡§âfÓôu W¦°Öb J;:ŽÌ5ï=פI“¦àH˜i¥„V%Á¹ $~®ý6„?˧[&«'ÒïÇ‚1ÜÅ ³n? o¦Ó‘×p:H¯ô“^êO£/¢±—З°WÂÔAlš¶z{8|8> o‡MÀ¾×!~Kÿ‘†ÚT¼è•µöV‡.ùÃ.‡ŒÓ×;jpåÓÅþ&5ö¿ Û~ÃVŒíCÄ ¦#H ‹ mXt”Ôd‚¡”që²ZÙ³&Mš~‹Ç¡ôH0‘–DÃÙïèÑ÷ؾ@àý°áolÕD²øNö•’zÿ6öÎ`ùðb?öBú›Éä¾äé>ôïÜnbOÝOô…I7ÁÓ·À³ýØsØ?±o¥/Ý Ó¸?2”ÍB–Ü“áw7~€\R‘-E ¶«»M™–ÈøOÁ¡l}Û µ÷³ç@Â÷ìÈgð¸¼òéÛa°únxJÞ?M:ñ $~#åîe—NBkÃåy¹ÚJYMš4ý6p¨#åü ˆû ;ÁƒŸ€­cᇠ8äË‘hzk¼:^Hžï¿ &Ý ÷Gz±‡zÁßzÁ½áÁ>p?¿Ñ ì÷fõ¥OÞÌþÞ=Ó&€©Å ËDZð—å“óä´-p1Z¬¿úzE38@Ëÿ‡¿G¥á…JÔЀù‹’þžÆ/„ð²µ÷Éó‡Ââ‘°ñ2™~;h2¶@a$4dâ6ÞnOjÃ5iÒô›ÁÁÚ¥ôMýÖPm{ÖÜóÇÀ#áý!ðÚ­8#Ÿÿ“náD@:Üß&ö„»}a¬/ÜéƒvG¸ÃÇ|û.6Ηñ;Üß›=ÐîC&÷æà ?ßOO“–òk](OÚë©:û‚™ÛÄ•ë^­_ãJÙ¿Î?FY2Òör¨J‚¼=rò*ünŠ~3æ …wÁ¶‡qÉÑ·±â:{Tž‚Ž e? êqhàФIÓoˆp0ÍBâJˆx¶?ÂÖÜC ‡Ï†±ƒè´~ì}ažÿܧïá€ð†1^0ÒÝæÎ†¸rƒÁîh·º0Õø7os‡ž0ÊFûÀñ‰ä³aàÿÄ}"e¬cEÇ¡æ‚(” T 8°Ó_ìʲ6ZäKé¶—•R]"´Bs$é[iüL Kï¡_ †o†Óµãéî'`ÿ‹û5¤¬eEQ¬é<“ÚÕ=äZ¹&Mš~8šLñK!èlÃò²»…9H òÆÍòó½É¤žì!?6ÑŽõÇxÑa Îò '©¿ƒt³ƒ|³¹Éôu’úØH7ÙÊ7ÛÑ~0À ¹À­œ)np§—éQo,ß ’¾ y›¡ü 4\’€u›î¥# d’&í7ò‡=G~諵µ”˜ ½ÊŽ‘,)ù+8ø.¬xHž5Xš=H^~Ýú0„NfG>£§—Éya¤.‹Íʯ@‡&Mš~#8°£ (5%ÌÅÔÆw÷×#å#á¥A0ùfx¨'Œï£}á6_¸Õ ú{B/wðso'ð°W[p±Aã7œíÁÁœìÀݼ™íåHoqeýÜà™~°t<;2]>·ÊTr„´—I¦–íså¦öÊ”¨¨Ì} ƒQe2‰jà vÊØ¯­DÖdf¾ÎïZb>~?Â$“r˜Ë]ü5Ô‡˜pF!‘Íô”•ÍMüŽF ::¡MÀu}ø8Lð.¢„©ëfMj@O¤æîM©«³{ú”(€ØM9â…ƒrÚr9v¦´c’<ç6xg̼ VŽ'÷ÃÁ©;“e¬“ËŽP}1@'Ã÷¨… 5iÒô[È¡x„šNÍõc`ÞöñéµÁðìÍðD/6ÑSCÝ¡¿;ôqc~NàfÇ1Áœ¬¨ƒ…l§£¶hÌŽ›%³±àvà`Iœ,EwKÉÛ†ÜbÏõ‡ÕƒȹÄK§Xg^ß`"—OßËÕÁjÚ(¯ø¦MÊn®>k¦.@WF}I’À¯ÛJ°H¡º9Üô@]•Å¿+5Ü µõéI%óæÌ˜÷ØäðAwîr¹y‡M=ö=÷ºÜîî½ÛÎÅßÞe›“{P¿Çy$õÍ× ç~ÞuŠŠAÔ3|+lü¹ T^ ‰ Zð;íÐ^ ei,ëgÿþKÞ3†°ÅwÐ-!l2D¿K“—J…‘rs.v­Z“&M¿=Äy™ ±³áÇ0s }í2¥}ØO¾Ç›Ü¡¯#ø8p^PGkjkA¬t’…Žèt²NG¬tÄÊ‚‡(äwmt¢N诃iƒ`ÓS0—É5Ù¸üôÆ“Œ^E ñ–@ßÉ/úùÕ~»Rú*0‚­sŒ® ðeP6)2³‹a¦ÐΣ„NÚ:²Ïž\¸`ëØ [Üo´ì±ÍÝk§«W‹g˜£ç>{÷ýv®ûl]"mœ#­]"¬œÚ{DØy„Úy9{ïpñÞáÑc·ßNûÞÁÇ$¼?³êøaÜ–Hô@ŒzdYT½þùvâëwvV]€ÂP’¸Â_ƒ€·Ê¯ß¾?Ž£»¤/Êqs¤œRu6tP¦•µiҤ鷘J ¦,KÇ¿„eÃà0¥{¸/ë#tûÙ“Öàf V`­ XáWÖÅ nL1“¥ŽÙX²¿c¡àÃB'ÐÁŒÛ ð%HýUIJ¶j 7âùô‹z`J©,JT&ü6ðO§¬¨yÝÖ‹s—”;lÐ7*9ˆ }eû9ciRÃKDqODõye¤ÈÏHžÿõ¶acüí{°ð9fããàaïaãfåbéjåfçêàµÇÞû»íÐõuì³×®Wˆ¥_¨…_˜U¯}v7Eë9SB]}÷¸ôÜf㻳ϰäf ǀРrÁT‘9¦¼§¥´ýlz>¼ÕôBOúÞ­0ÿNºaN‚#ïÓ´5rI ´–aŠI‹TiÒ¤é7C=jdùÄø~8¼:óƒq=a˜'½ÅEò¶&Ž:°1ó‚³€£ëâ…úGn¿mm VVøM+¼Á:éA˜7"ß“òw±–|Lj0èFöÎ_4F(7¼×7fÏœì;h³­kˆG¯]–A#'ÐSñÊX'î;™°„X1GBi'°&j>²[ô%ydÔ8|üñvºõÜîäèÚ3Ô­Gƒ{ˆƒë^'·`Ç½Ž¾áÎ~aüûÎüûÞÁ¶>¡v¾a~aÎî!În{œ÷8¹9»îqr vrÞãฮûN—}NQnÞü w;ûØù¿Û¼L­mRk‡2AÄœïh(–ò"Hü\🠟 3üÃG~¥ÌÍ~ÛÂÙ2gó{ >÷¼kàФIÓo UÉJ¨J’bçÂÒQðòp¸× †{cFÃÛ8X0KfR\ée\i¿¥5X¨à°R£Xàb/Oí k'Ñ“óL‡1c«änÀv —·1B»7´Öο›é:»½Î.!6öǬ=­=‚úÝÚ–‘Í] ‘™°„X1UÍ0Fd¹™u0{nl>4á±µV^Üû»û /,]#-Ý£ì|ö;ú;zírpß«s ³õröÝîä³ÁÅgGï~‡ï¸'å±g›thì„m½o^ïî³ÅÅ+ÀÙ+ÜÙ7ÌÆãˆ…÷P=ƒœ¼öZ»GX¹‡:xìróŒq¾yƒÎuÏ÷Ôƒ©C­ÃdĤEG‡Tž ¦,…ð—`ÁÃó=„É}àÍ‘lÑpøéÇ?¡ç~¦•§¡³Q‡&Mš~[Œ‡kƒ,Jqó/ ewºÂ-®àæö܃°ìö,Tj˜³WQCý>§†’à°KK“Ng²ÖA//2kìy•d­5¶§dµÓï†mAQƒVT&*8Z#zܲÁÍk‡—oˆÛ^ç@O¯-ÎA6.§¾[ F#æU‹ªð“Ôwpd4œK {ååÍvÞ‡t^Gíý¶[9EÚ8pñqóÞᆀXgï³ÓsÀÑÁc?•¿vMÇÉcPy @Ú€ñc¿?"nü—c2BMmG|bñ–À„¹K¸/È{ðN[?ß]n¾»<¼ö8»YÙÚ8FØyDÚùm¶ôÚ3ú¾–ý`(0nÖV`Ê_‡_‡ÅWúžèÁ˃aé°óIˆzCNúŽG¾üFt5iÒt# ëEˆbü %»Lr Ôâ =%p£I䎻 ÉhÊÏÎñwï±ÓÙ×ßÊóuÏÃ6½Bl}‚]|œ=v<û*¦ËA0*jë6`·4Ÿùê»m®Ãt®Çœ}#\ÜìÃÜ"ݼwÛ¸îvï8奆©8X³Z£EÔÙæJZ„*C§ø[1½b6&»9DZisiËáÈÔ×ߊè9(ÒÚ#ÚÞó€­s­}»‡¿›û^¿›>¬úüçÛwQ Õ˜J·±oÃÏ“×t<ìÏ êx¿?]0 6þ Â^ãç¡ÐV hÿ4iÒôï±ALX&$㾆ïo‡ç‡³Qn²½leMuVœœÜ•PbP–ü¿È‰›Áaiaä·m»]]«³žF”ŦB¼šÇ+s¼ ¿1¯l¯ Ž'ß½~‘½öZù„YûF8õ ròòwtK|ô%hkÒcÅ)¦8ÀÔfÊI6.йgµ[¨£k€£3wöÙùÆèz¬µí»w“…ë6Au…kj”S»Q*½®ðÁ ’½¡¹Eßz¾¸p[àþ'_XáÒó¨U¯ï½n^öN¡ÖŽ\ü‚\{ïòÐ࿊àBuœ]o x¨ñ]¸‡Û@xá&ød8,Ÿ€+W޾ «XMºVU¥I“¦ß"ÊD¬Ž¥D0ƒã6톽{övÔÆ¦ *;³ø…©u˜CW£XX|e©Óûê`Úñ"äí`ú spJ6aZù†< ®ª tôÞfãâá·ÓÑu§ƒSˆ›çNkÇ`G½Ÿ}¢± ÜëP*©„¤ ëv8÷ÛnçèÚc¿Oï0k×(k/îªüàêw`Ê?õ1Ç¡¤äN†õ²Ò­Dÿoö_\¹˜¤³Ó¨¯m¬«©/­«/kn®imjª,mHKª9z(êþ'rë³ÉÖ#ÐÍg«£Ë&;ÇÝ6îlý¶yûF¾3* ábxô øæí:˜ØŸ=ÛÞ ï‚­AÔ+4y))?£¾/Mš4iúwä j xb,ÿ cÝY?Wðpg[fcÑí_˜Iai‰v55”4‡%XÙî¡ \tÌRg¸Õ>¿—Ÿ UG@nÕbW ÄаÓìzÉñú·g†÷´ÃÂ>XguØÞõ “×6 ‡¨[†Õ–cÓ· “©±å䇟ísédá¶ÛÙ5ÔÕ3ÈÒ)ÂÒsm¯ˆqU†„ƒÐfêhcx.Óv%ƒAÍòüfÇK–i{{G]]C{m]c}Cus륶ÖÒöÖKíÕmuu­µ¦ºòšÈñS^ÛáÔ{§ÞŽ.{]í=¶ºùE>ö¸|Òk«¾ ãl #¼éþðò@öÅ(¶f<„NÁ©Åc0?®I“&M¿á:[m”ŽÍ…E·ÁKCؽžl¸ôu†ÌÅïìÚ°¼ŠÝ:[nDgÍñÁÝ ÙBg¸ÛV>.¤n}.àð óCÆàœÁzÝrÜÚÚco¿¿É÷–}.½öÙù®Ö9l3¾iûnL µ17Þ\·õÑIö~‡zìup tt¶r ³õì1¸`þ÷P]Ïá‚ ’bJ]锕<ý_ÃL4 ƒ©¹¹µ¾¾±¶¶¾º¡¦º¶¦²ª¦¦º¡±®µ½Å tH²‘Tµµ×¬ßÎl¬7üýföÞP¶d ìz”Æ|BsC¡µTû¡I“¦ßpb*×¾‚, ß ƒ×†Ñ'|É„8áv3íeG=¬¨ƒŽZc«¸ Ã¯jÏ8¹‚&ŠKbCuֲάm™–T™&õ†ÝÏw^< R-?ÓDµòHÃzÖT]¯°BÄÔr:áâŠ5Y ¾+ 2–_⾆(Ä@CÝáG&ûë\Â}\¢,CmÜÃ}ûE=ð˜1:d£ØÝ()-£òUIˆË@„_E(g‡$‘ŽCccsMM7îqT4ÖU××5ÕÕÚ€»qÆ.$ øB͘F7 2O¿þ†¿“ï!KO—žQ.nÑ6n»u®Azv,œdx¶?¸9ÀP¸¿LˆãÖ7LdûÞd™Û¡!Cû¡I“¦ßådeáøWðÃpxoùgùñ¾l‚7»Ã“ q†›™-s±–ì,8Dk Y)¬º²"WfCˆ¥÷8°‘ÜQG^GÞ1ÖéÀx¾ºtC¹Š¿=Žë©ÐóSYqr ,©‰‟ÔÍ»Ç?pPçsÄ£wˆƒëK·ýö>[œúž™þ>T—1ê…£B#&B§¹§üŠi„ ~å- ‚ÔÒÒÆ Î îkpã7ªªë›šZDƒ§ +3B8:ڕߣÁ(7¹ßžM-«×o°îæØg«ÎÖßËs§«Ï.;ÇÀž¶¦gî2ÙÛ@/ãÏô…n£YÈó¼ *ã´š4iú÷R»DŠ}ëÆÀcéôò 飽Èý>ô./æ ýœ¡§õr$nvÔÑ–9Ø‚ ±´¼Ü¨ô•Ëj¥.wL<¬`ÖÃ>G2µá15§› Q:o<ŸãºC¥«ÏÊÊ9k;«B‡O8èØ{›{ Îê ûW¿UÎ~åaЮçþD»2öƒ™ÅÿHÛ±˜J@ËñI¨üküE¹­MÏaÁ Îük§Aµ…= uȡ١ ï%@%WÃýÈö(,ÜÐ÷ÖÝ®7mqòØéí¶ßÉ3ÂÉw¿³c™s¶‡ôo>dz¶pÙñ‰ûŠhÿ 4iÒô[B4&5`uz>l ó'‡ƒåׇ§ûÇüÈD6Ú†xB?èë=ݰ1ÐÕœì±=Ћ¬h×tÎÙZ§Îª¢>ðí(\Ú}Nªÿ%’|y”Ò¤ëŽUç~¨ QW‘Áï& H§›äÔ3ÚÒ5ÌÎv·§ãgí7 ®ÙÐŒuc@ܨÂ3\°u…IøDDÏEÙÒú+åeÜ×hhhâ°à_Õì¿ÝØØŒ½8yWffäœ@/NV&bQI¤Ì<çâG\Á‘’;ô¡:ï½¶ÖÑö¡–}v:ºïsÔIÖ6ré7áewyîMÒ¦1Vy>Xû¡I“¦©2/rª3Å-‚ÝO³Õ÷Éߌ7}4œ½6„¼8@~ª/{È&úÂ^òH7á6g2Èn²§}ì•îrk¥kC§·Áú[ÐÙRkKÌžÛè„7›‚ŸÖל¿Ñ~^Ü“!a›ˆ’ºh»÷F{ZSOuÔ;”<ëӸǟÌ|èñÓÿ#þ¡É)¯¾×"•åkSGÔ7‹ƒmúDºß¬³9ìì«sí5¼½¬¨þ_èOá´jkk«­i¬¯kn¨oÁ„xum]]]GG‡¹`ø÷‡Ÿ´4†O|ò Î7ÊÉ/ØÆ=TçìÖ'ÂÕ¾ÑËô†=è‡}aÙx|Ô½N–qF;cêgÃ_OI¢h×5iÒte¤J UAƒ)a)„L±ååÙ#àÝìµÁì¹~0é&Ü;±'ç-ñ`#\a°3 t†ÁàeG¯‡…öqXë¤ÛЃoˆme7ÚÏk’%¢ÆøWBE^õM¯Û;ÅŠ-A[‡Ý·Þù×›6غm÷ôÙ¡s<èÔ'̱×O.¾k†Oýø“º9‹¶ûݶ׾‡¿ÛVg×(+÷]ž7 qÐÔøÇº cW®Þ3MMM*8¸©¾Fkk« ×{ȯÿ†ecÔUoë?jÎ}ƒw°oï@K— '»\{g¹—7Lôf¯÷„oǰ€©ìÜ YlVv2šU)àA[E®I“¦+O-eƒ@³ºöOÿ'aýðýh˜5> o †À3·À“7ÁC½Éý=`‚Üé ·{âZÀ^ŽLi÷3X©MÖ²F®88È=CáôÀTíFJ†u¶Á-H‰,"5Š‹<7u³k¿ãöƒbu¾Ñ:ÏýN=w¸x†º¹íµqÓÙÙ8m°sØáåÕs@¨Î-ÌÙÝßÞ)гÏ&×¾…»t‚$wü¡Ü U¤Þæthiiáþ… ŽºÚ&Žææ_RC}È寓ëCDVR,u¬ {Ÿ‘Áν¶¹»…»º::ÒÙ–x¸‹·ûÂ3¾tÖydz8W4Ô+c²4phÒ¤éWŽ-böv8ú.„OÿGáç»àÛq0g |<Þ Ó|L¾™<Õë úÁ}~pooèïÆ”Ú*ÁÊýà Π|1þ„ä„íF¿¡×ë95ª««985˜×ë;†+©ñëàhsáœäÎØÓí{ÅxõÙb§ÛãähåtÚÉ­þf/v¿}o ðÓƒpäQ_¡,±UJàÐ5™á£I“&M—R&©0N}Q¯Aè³°ã>¶j"ý~,w;ût8ÌÓ‡ÐiÄûÑçúÂÓ}褾ðd:ÔƒY!8dKÁ¡¸Ø¾³­,uòô;¡äÃëÕL‚Ø} Ö íXÍÚÚ¸í¹özx{xn·wÜ`mìéêÙc»¥=Çn'ïpg¿ƒv=öêÜÂízD8÷µórî{ÀÉÅ_çœòÊ{8ÀL`”¸ëòU‹‰¢ÈÝEœ*8›Fá×ñ«àPŽ} Kˆ Mk·l×9†yx9yñ-ÒÞ3ÓÕÅ0Æ^,-‘/[Š€Í‘<ùç„784iÒtõ¸ˆý ¢t)R–ÓãŸÒý¯BÐlëdݲì.º`4|9f—ß,¾=H~£{åúbx~0íElÌÓH¨Î–CÄ`¥4tXëȗ㡾@éÆó°dP:¹Û)næ±ãâ?.sôá>E€¥Ý>WïHGÝ!Nžaž=\½•|~¶~û{GºôÝmë½ÍÂ-Ĺ× ç£c0V¡¡WÊÑùã[qqTg'çD­"•õuÍíí’Dºïóûc‘ØB‚˜4"; ³9~òË»­½‚íøOÑsÏ~[‡²[½ar˜;Â&êòvb%£G¦C“&Mÿ¬1â§Ô¦AÖ6zjù"^†àGÙÎÙÏaÅݰøN˜?†ãCþl›9Þ o…ׇӻýd»®µ€:Gj£kÇ­O–²­[òô Ø#ÎdbD?¨¡CA˜ÂÂM†¶éuÀ£o°NvŠvîyȹgˆµÛvKÇ`÷Û­Ü‚œýœ}¶Ùºm±sñwõôôÙîäºÑýæ– ½uÈ `2áƒÃd2©Ù ³j›jªšÛL&ñJ·¢Û¹ÀîAY&„üÛ,9R‡\Ïø›kä)(ØÜkÔ^;ÇH{ß ‡>Ûí]Oû:ïö…G@ðß;«³°a“`§H8´¢*Mš4]-Ù *­Дù!,éGˆ§Cä$y¶Ýë8;&À’»aÁ:ïv˜=>½ >ïŽ&ý${V`áBítmØhAìlaõCüT6ÝxÁqQêFÕrS‘ü-Û6»ôJÐy†Zû„Øø†»ö pðÙiãìäìèdë~ÀÑ;ÌÑ=ÐÞ9Ä'¥‡;8tu ±´Ž{ù=ÚùSñëùþTxÎ~ÿ>‹n'¢£££¾¾}º:~CGsS;!ì_ÁÁ¿J’ÄY#¯ƒ£Míð4¡ÏÑDÄþsÛ«×úG::´òÜëÒÿg¯G‹†Žðæi÷UتH8–ˆ ¢”ÞiÒ¤IÓen¨š˜H:ªäò$é\ =½ ŽÞ‚Èi4xмë1²õ^²~<]=V^yûᮎoGÀ¼Ñ¦ywÈ“ú(CÔ-LÖ¢¦9dK[Nb©k>4]fÍ7à^ þÊÄÀ‘¡üàRÊƒÏø[;¸à"×k?]×yzDØx†:xmt÷³õqï³§Ï@îtW:ýæÊXó»Ë¢ˆB|Kijn­®©«­k¨«o¬VÆRÕ×7ªÙ ¦tÜ«#Öõz=G ÿk,ÙU(ó{߀*ÿGç?T½ÍNwç.î]áÙ‘ðóxZzPÙ‡ 8IK#dí߉&Mš®¼âej÷²†zV“NòÃáì8µŽ|‡Þ‚ˆ— øiØýºîŸÆÃÚq¦å·Ãâ»äÅ㤧û¨k›Dµd­€ÃÊtÎÔJ×óam Þp?¯¨ìhb¢QY,%øÞjãªø×G¸½W€«÷GÏ`+×w¿Ý¶^»l|J|}e}¬Zãôë½×û[‚(746WUs4Ô74ÕÔÖ«3FÚÛ;AÒë;››[›•Ù#õUUUüF2÷PÐï¾`ˆ9²ÍÍo¯S «{ˆWÏ0+«Â‘îòÂ;áÒajž^"ª„¹˜¤UãjÒ¤éJÚåyH­Ð|JŽ@ÖNH]‹V±3!z:ì ž…=“`×c°ýØ~¼q¬¹{ÌŸï§®—t¶TÙâ$YZrp0+ñäçJkà ÷ó Ø”€àPqù“Îó ½Wˆ­×õÀèâ»ß–³Ã3ØÂ)ܱÇ6{ßÈwBEþ/ÂM¿÷š_ÍPH’¤‚£Ó`âŽFeU ŽZeªau5çG#G†:{„G‡ÿÚ¨¨¹¹Yõ_~÷a순ôl˜•g˜ƒw€÷Ak—£7ÛÀ—÷Cá~Êt1¨`’4phÒ¤éÚ'˜ú_ÜèÚQÕg¡ ²vAÊR8ó œü ޼‡¦Bä?aïd~‚$÷ö‡`ë£òÔA²ª³c¸7ÖB´Ðqp€µN>³Kªn¼îܾ„󢘴ӱo´wˆ¥ûõÀàâaáîìfçbå±Óù¦‹s1hýÝ€&ä_›/0U!S“ µ¶é¹—q¥Ç¡òBrˆ]]Á+®¶¶¶–––ÎÎN£¢?üI4ÄD;ö=`ßÛ_çÂ?„]^íÿ¼›d…2Ù¨$€þL~1IKŽkҤ闱*óAÆÔfhÊ£e±äü>ÈÜi«Yâ"÷9;þ>ÄL‡¯AäTùw9üï°çiš"¾5\âàÀ¹6`fEœX¥´“§®9ŒnPu7DQlkïhimç°¨æ€àt¨oäVÓ5D]¦Î‹–Ž ½^°P«¾4ý£yke»1|Ôý¡¶=Øú°óüÉQ—;| d‡•ÐeÖðbM•È4phҤ骃ŒëÒ*@_Aj2åÒxÈßK³wÑôu$y M˜Kcg±£³èéá×¥C¯BøT¶ÿUéý»LœVJÓŸ%Õé$káßÌÜdRé14'1c'Ž®%Æ>,C\ý®ëqØyïq÷ݧsÜãì¶ÃÉçøäi ö\¡Rqðë9ît‚À=…ÖÖVî8`É-÷0ê10U×ÀaÁ­UœܱeªfÆ»)Ø:ÖÛ”Ú€‚•k¶Xyqèbï¾ÃÝí¸»¤…àcÂ_ ³8J™±Mš4ý2V¥Ì´SÏxÄÖZÌÙÅÇ àÍ ë!e$.†S àä\8þ™|â88b>>½×ÈIaÓ½ÈÉ Œ_eûnLp¨k\Meú«˜úøs;í]¶»_79`ïâälïbç²Íͯæ@„¡Ë“ºòÄþ·ÞGsssSSSCw"jkjjª««Õqîe ¡°C5•ííœWB5vuŒþ@f\ ÙaŸ{CÙΞý£¬Ü·;98{…Z¸W…|¯L}ç/`4©à`¿2ý]“&Mÿz2v+C픺\tVѦ¸”Å'Ø…H–» έ‡Ô!iœY§Òøùpx'ùò!“ ‚CY#kÉ¿Êü:{ƒ#'À ®1ºcU8'\î$Lä7V¬ßéî¹ÖÙízàðwêfáºÓÇ+ÌÚy‹‹/ÐæVu~ÇÕàø·—ý*5T/ƒó¢»_C¥'…9'®Ünhl掆ú”Ý}*(ºû8ºyñÇÀÁ?öv4œ0ñ¨½çNo+—0k¿“ó§A[›r%T¥x84iÒô+~+IÖš6¤±ê$ZK C~dCú.HÙ&¦m³«!~‘pæXs§`§æ8ì¨Î,1?޹–:Èß‹Éñ3àqØ]q2Ô”n9&ÔÎ{³›ó.'7ÿÿÃÞ{ÀÇQ]ûãk«mW/– 65 %< ü tL51Ièðh)@BHB¡Ü›lY’Õ{ï’«\d[ͽWÉV_moÓÏÿÜ{WËb°É#/Áâ¿ç3Ÿõz5s÷ÎìÌùÞÓ¾',&Wœcœ’£O*SÇÖ†‹Â’Ö$$Õª4ÅÑ“ ¬ôubþhq R d Xà{›Íæv»ERû­0o•ÿ•;.ü“ƒüo(Ö_çÇ®ì¬ÍÄ\µ¾**);"výÕ?°“?yhÓ[hš² Ê,Œµ&Ý¢¤ }+û+ÛßÇ‹lªx‹¼¤¡ìïüþÙ×Ѥ‚sîU|Úm‘6d<§|¾e|àWT€†òØ”ü#»=\`Пñº(”¤‹™\ø ³ò›pÖˆ<%YVhŸ¯ÏæOJ^D§¼ý¾É+2ç7ðHPMvKnò…ÒFÓä‘z+*Ô¢$é뼌·%9e\ŠlCØ–IÉ?d£?¡ƒáúÅø”Z|¿þf^7sÅ*‚W"üiv£)ó’‘½É×$ÚAF¶Ð‰á̃™þ̸L’ƒu“”DvÖøÓSN’ÈÑ ãVúÆBil¼^RE;Q ¬e›—=Z™-k‚É1Ǩ ØY_3yu‘iË"ixL>q²Ä}RNëÄS0³No„_Sæé°8#éšI‡Hß;ˆ.jzQ‚òÍ{ȳf= Ãû”Þ6åt o„ƒ°¯öä𻲡+¶ʵ-?æ58ÐÊ;Àá¦Þ9 | 8WJê’ȉe†˜|mT¾:¶*,¾^[¥ŠÎÕF.‹1†'­‰Œ­ÑçjâÍ[Bô‡ôu(8<˃ÂËË*/˜>D]ê74XŒƒ½~ß1A¾M$ZIð;ót“s"t…Úè}RIâU’£Ÿý Uîæ&©ÚŸifïx^” *j—÷ååHî1^„ÀU ^žçñš ;“¬œ×¬û"j0uý¥U™N§“íê–ð•Mžªk'àw4 ¼‚ ÿŒæ sœ€dÿ¥ÎC\Yq¤å—"©GÑÃyñ‹#£(qˆã#åJ(Í(„8섯Þ뢙vòê49À3‚úÓ+:ˆ és/%nsƒ U8êeo-ú?ùʘ‹@ÚRÇË‘?åš]tN˜¾Ð˜¡I´ì٩ЇT&­Dô€Ã³­uÇê´Œ…‹–,[ž‚o-^ZV^yælßùÆ/¯¨Z¹jufV±2NwŸI]ŽGN·jê%Y—_Çïì¤Ö2ÀQžßqÈr`Ö‚¼èk+ïÊTMY6i¶:©ðúÛ{–¬Þ«%„Tª±=”³Ú}§Ó§\“žœ«KΉ˜°D=)EYõÃÏÀ±“>.WY§N*V©§åç&ú_&¸åéƒ$Ê{œYbŒÉ Õ—/+SOÍUió'$w½ñšƒZ•ŠBI6‰ËMV÷¾åÙe}•*ºÄxY^ØÄ,Ud³Ê˜—¼é…'‚ û¢±=?ªÌã"Â"9{%Û1Ñ´Wêz;•Þ­pf«{”?/LФ‘qÕØQ’¨s™®Õxetý#™7½ýçŒØ©*MñxmN„.3T[¦ŽÍ×Ä•h¢³"ãš~t7©‘dt±ÿ‰ãDBÈ`ÀÁ,f}x¼ü,—ÀÃQ+:³ÙŒ«_|ƒj6;.ä"ÐØ·¸÷í¿—’ŠôQyšH<ßýïÏæ<¢Ž¯ÌïißÅTzËæ­;Û:ÚÚ;Ñ”@õŽø|ã£ù€ûãÆ¼O¨¥Ùj¿££ãœé1ßb*sÔí;v¶#ˆTU×2 1™L_4Op¦–qÌÍ[¶áG•U5háþ_¶ëêêÂa×dfãQ8gœ?~ŰÉ,ˆrÎfeEíÒ%)i«3ýc j vTVVû9†6 š;:ºp‡:'õó¸ÜÞµë6 ¨!”àqŠ$0W¹0&93vRaô¤¬ð˜|mL)®Ãõq¯¼!ñ.º°åïSý¢gÞu V÷çOÇEÓC¿â¡²õxOò‚8àÅÁ­EÆ„4uRçGsÑÉQEJèþÉè<øl=œ"Wyßãáñù-ÞSÿ³‡Sb§åh¾C7@¢ç¸gÑ(¹}s>(ÖÇ¯Š™hÞØDޝl¨P…·è“º>ü@‘yQò­ò9.pƒ³$fZuôÄuÓA×óæ"ÝÔ†qQ›nºÍ$ÜDÛZh»ùà'ËêÇ'•‡'ò hÂqÀ ,áž¹ªX±Ç] ž†VRÃý÷Ò¸?WysQÈ´Â'^û %m ÉQ'SêبŠ]§2vÞŠh%:¶‚)7•ë.Ý}÷/åQrfæ ´w¢}ý=¿h Ó¤©&6ä´çªb+µI]·ÝÔØC|œ<À²‡XP¤6<𸦰ƒgܧŽS°ý#¸áj 1ŒGžž¨øR«p#­ûdêÕwË@##»ÞþkfDB±&zM˜¶8"áDV&>ÙÃÌÛõ/p©øU%ªÒƒƒ†6X®8.àc²X,%!¾v´$Ä_`ˆûø셀íô±UîÑ…á Zcn„¶Â³îúÛQGÑ|H…™.;)p  þgZ—žÎ7>.ïY0šYgÎö±ýÛÛÛýñ—ÀŒÖŠÊj„üÔç¨.v¶u°xJooï9¦;aWõ¨™/Y±wß¡ºúfT×ø‰ÿ¬™Ù凅~‚nÔ.àýé»W©¢¼&uU†8ðè´´ ´)jjê-¶dÇa;:ºÐY¾<%eeZIi%Ú>f‹QÿË€ƒEv%A¤ÏL‚½-mea†²° Ý_@ÄÀâ^4=À98‚$’Í‹FÙH…,õ%å*C×ý3†À…s%.3Á¼ÀËdø}sæWª Ù:ýආZþEÒ´¼4óõ%ð’ùŽ‹/É¿ï§À[- 4·X6ÕCë6 VGNòÍ _“¸B‡§éôˆ¸*¨kîÙÖpæØb"!ÆyeŽ´àÅ,-÷<^ Qe§â’†¸ÇÄÁ2ã¤U]Ýô»‚zû"žÄ²ÐÜЖ=òÄ49Q%ª4 R£Ý¡¨Tž0•gœÚW;å±T7F‰Äq9H¯dý&Ößÿó²°È¢C‰.*Ã0¼©™%JLïþ ¨á7=PÕ#p°0ǰɌØo¼œ }™¾÷zy“Éìç$ñ«„6~ÂWFø•3¡ úÔÉÐÖ\}l‰ÞP_aȘB4LbEºcK{ê|Ü8˜+©²ª†á€ƒÂöGà`ñŽsb=LoW×4  Áôy{Çn¦xѤ:§õ!{;¯\•Žû–ÖÔ6âáøþü!;Ä2_Ø…åÊ*æ û°¢¦~ÉŠUKSRý¾,všx¾¾çŽ<]T¡.¡ã•—lÛšGZ6 ·wM|" X‚ÂI$ó í¾òf¦©ôMÚØòÇ_ÃGÀ;BâÑC´*P]$¥J&N0‘¼?¯Ü0!%.Á²¥™èÞêæ*•vƒ!©ý£HðœfvyY—.òóºò “  µ÷?ìFœPœ+ÕúÆñº­÷ÿÊ)‰£îTj.‘ã¸Î÷g‡ÆWF_Òûé|~ýVgÓF8ÙCê8ñ³+Ƀ«T}Uåøøòñq{gÍ’OG‹^!(à$atR`éfæ5jÊÕú1'$qûs¯CËêt£=ïƒÀñmAf®ö•8^¹¾¡zE"àáCiÀÍŸzÆÔy8àŒ{EkîQ®‰AÔÀ-]çܺÉKK]iVÕ¿þÈ8é¬Ñ7À°€y«>Î)¬ã8!ƒØ´ÛÓ4bÁÍŸ¾K²yÍ~à! ½ÆÂ" ›(M®+W]¨Ój‹Õ†5aÉŸIÙÚÑõïŽÊªº…‹–åæ 4Mº­}SÅÔÏ…EeÙ9¸Ôǵ=êêo8ò JðÍÞ}‡ËðDÈpzhzœ82£ µãõã9Ú„ÔФ¦‡ŸÛˆ 8’ò§°õ¹ vÛžY³ .¹v¥JW¡º|‘>yÛ¿Söv *f…Û pN’¨%ÐÀ²gáÒ4mtZ\×X¼›¯)«OLÊ Ó´Íý€Ž)2©×ó2ƒœÚøBƒ¡ù–Ûú›ëÌå±ë41=åbEß4agÌ«BØñéœ MbµJ›nœ´<ö»)Ú+ö|¸@öX s¬3M$ÆC+îº?7ib™J[g¸¤<階ÞÛ>…`"q£y"KL•t<þlvâUÕª¤šÐKþëÄÇ‹àL—>_AàøvÍ9…• âÏ~¸Üùæõð-èÐâ/à“BÆÁøPh~‡Sç¥øƒç²XyÿŒ¢N pdê<[[x™DÅyYù?—ËEÂÙĆ#f+Ëùav44,íßÄÚý ›-6«Íár{N73R|¹X8ðæ+gBÕÇœ À» t± 8Š4†,õdaÔs"oïØõï\¨/Z¼!Uq×®}¥eUˆhtœ8Ø’¾º¦÷Ç7 .ÅcñÍ7[¶îÀÁñ,˜­¼¢†™!çŽTƒ±^ÙWªžP>¥åÑÁî´CTÚ"­•Àb?³8eÉ5?¨SM)Žž²*D“qå÷†Wfã°<ïApÑY9Žk›;?E¥ÉˆÙýÊ›;>þ¨èžÛWY'unñr6ÑË)tåã«{V˜¡Z£®WEg¯X{EŽJ·2\W÷ê›-â ¶5c%ÓÚæÏ©PÇÕ"pD&¥Ä^‘b¼|לy’`±ám$Q yÁ0„˜4t -©Eš¨|ý”bUüš„äüë/wµíFKBä,žfอ§þòi~Ä””ø 麘*URÞÔGö¶ãÛ:§ á4]T„ãUÎwo†Ÿ¤8µLZÇ"phHòñ*¨zM!ŽøÀ“RUª·e¡þÑ_åE (pä铜ëÖ2Sœ––ý«ÍÔQSY­V’EqYó&ÜFÓD·Û‹†±2ú‡‡G¬V»ÓéFeÎLÄÖ¦œ…9ÃEÒû¿¢Žƒ£À,Dé²ëã8 ´‰yZ}aÜU ©ä"_A='òŽÎÝÿnà(+¯Æõ9b.Ôqc(€o.¸!pXm.¶'¢ ¾~SÀqðÐ1œüê´LüŠ¢âr²!1—ó¹ª4‰º‰­/½Ò¿±Î´usok;y´ðJrK…&mÈ6·•Øõt÷ùëûN›R¡‰ª )½¼¡Æ’%ó;’a•ƒŸ.iŒœÒ’°H{ISÄå…ªØÊññÙ—^ÍÞÅS¥-ÑÊ—G*®D×|×ÝüÞ}¤F# ¬Ú‚DÜdnïœ TÆú¸I}þCn^ëhjTzŽ“$*¶¾FŸuè ‹+jÃÃÏå©&W„$¤ê"Ö½ý¾è0I4F(±»Ž¤MHN›­!îØî]|}e|⪰Èô˜ií·Ï Ç·N<4!œ^Ÿ®ó̹¦ÇHSµ’ZE-­¬G€£ði‰­BÆm>¥07NËó¯d« y:ã(4Lè/)ÅW«+ý ÀÁ (Š&“‰ðªÓÆÌv@` € Êáp!X0CV¹HˆÃC|E«„‘c\8H¼Fâ})g»Ëô yÚ„\­¾áòJ 8ˆ›ÇÎ?pTVÕ!pÌýdAZz¢C Ç8P-#Üà§,ÀG}ƒÀqäèI4‘pKY™¶aã´8ü8J4Ò4“vÌ™Ë!jCz_¾@R`î =_Hä›ì%µu’EìßÛð½k‹UšFí•À»í r’ÑštœÒžYsªUÑU*ãÊäkÖ¨§-½¼éŽÇF²‹hXD潌×ëË]UõúKŠ ñû_x­jhpøÆLÏ’æÄò§>YX8>6'~²cC=êp‰P—p #dùf‚H ‰…ëA •¶#æ3¥Õ¡I †¸‚—Iå=ó›žàñ”’ê(—Õ}ÜÜÞP¨N.RÅ´Þÿ`8¾uâbÀA~ÿÞ&~é=ðˉpM¤¬'ŽGà0»c¼ŠÏ|”°–!à ·"G5%kM²ç­¿æè¢rµ†"1_—¸E 9ž=ÿp°Z –I‹šµ1Ža“Wa¸Î'n(„꛲۲ì®ÚÿÁ¼ª°øº¤Ëøâ2pŽ’C§Ç·“f lO8_p¼î†ó±›2LB¦Y ¯ƒÞôŽÌ^P1e…q’iÓFBL¸¦9€•˜¼”e‘Ü6M Í#á¼9º)™CÃý¿ÑÎ3‚]e”Ζ¤gê,7šWøÉž«™V¨IÜ0ýö p|+C`ΚµrêƒðüT¸)^Ž/‘V€>àð¤Ýw‡röŽ=¯óh8pœøÇl|”²u†B´;ÔñÛ?žC*?ÜÿÀjÊëõ² ³8Ðv ÊŸ’`0ÚC†6›ÃßÎÉW€6Ê슯þ<ÞÁa¦a+5Zª&_Ðâ ¹ø¡Ú8µiCqD Žlƒa×í3ð©¹̹ÑÖþŸˆq,\´lÁÂ¥£€{P!£>p 0Wjñ“§ÎPDø&ãÌÙ4šXî°ÉZWߌ Bb.çŽZ6×·ó£Ù"]¾“NA+Š{ ±¤DilYQÄ”Ê]Ørç#©š˜‚è«ÓGqÅMÖv’‰¤ì»¨@7'BíÞ½'\·Ô[LïX/-¸“F£[_LÇÝöÛ§³t‘ÚK)ÐàÀ^ðp´Ä›§¥éBçûs 5—®ÐOumj#Ó¢ I¡+ zY8¼©ÃéØÂ9È-{$[mÔ%áî{x ÇNIö1É£]#S(iy¢Í›rYqäÄ÷ÞŽoȬg¹1†¶ÚKžþxÜS‚^å&ÞªW¨JúÇÍ`7_„/"Ðt\Z©… ¼3ëêC“sõñÕ†„Õ!úÖ{‰ËAR·ä•¨Oák:©˜:7ØúI*”¿ ëßd±0 Ån·)ñ{ïry†h2Õ¨¡ák…ÿL/r‘ø­DŸ ç}šYfŒ+7Äo^ô1'“µ!mˆ@ôÒ–Ž,lj±j(¤0¼2uõV7H¨è§íE `Kng{™ªß±cÇgEy£í¨ð ³8PÙ2ý¼}GSÂxF0JÀ£•ãÌâÀ¿âQ4¹yE¾þùƒJ«V­Z²d |¾í/£(a–••-[¶lÅ ÆyE~,B`¸2µ¬¬âœÑØ›ÎÎÎE‹-]º´§çlW×n<4--ÃápÕÕ5¤§¯Yθ¼hL˜uÛ ö/÷nl+W',Ö'þx®·]€µ¦ô0Zž‚Psÿc…ú¨\ŠöÖâÐ"(2& Y¡¥5“ƒüR^:þ¾wßiŒˆ[mLìÝÒt¬—ÏßìÊÑ'–k#·üt:\ÏŠÌÔñ±eщžuåÄËD«×Iyˆ,° ®®FO^ëݲÑB .Ü$«‹g!ÜÓE8äI©H¡jJcÜw‹ï}˜ü“ƒyÕ(=/9ÐmÇA²Ôqy‘ׂ[¢¨è-?5+,¾õg÷õòůa}鏸›w:«žWÞ¹N‚«¢•˜Pn¼ T‘|˜Jüó0xRC…Dú ñ^ÅçÔ³¿«h|B®&¶B“«Ž*½úG ¹E‹µü/ÇˆÉÆ€cp´4ñ‚Ù,ÛÖårRNCW‚‚Úip4™ Ã_BÎR|5pЄ)3í±î…K#bjÔh^ÅåŒ×ïÍ\å¥ä@,ƒ•õ¶®v\T§gdŸ:}V¤Éø,$zžá”oÈÞ§¢ârÔíYÙùv®\åîž¾´ô,ÄŽŽŽŽ@6Zÿ•)-«Z•šXÀ€Wò Ξ=ûEó„UŽ#LTU×3¯]qIÅ… Q8–/_ޏpÎ/yëÖ­[¹reZZšÕj _,X„@ dIûÏ´«« Q÷ïë°XlgÏö±êËÒÒr„›ÅŒ’ÅÇÝÜ4$fÔ·­+g\øª„¤C|@ú-J‚Ãa£ -¸B6k2éå×?ôdþ8}}d$˜M`íïøñ]9†ÈTUÀ @“à”h9Ú†û?x¯V“5Áºeýùwro“VMàÊ2&UãZî|ØwWÇ ]R£!ùôÒùNð ±ÔB2»ß_X O*ˆŽ‡šjqr„bQ‘9Iä©Ã‰ÆiH1yNìU‹B ï¾¼Ã0ÐS¨›š¦)%õ€v/3‚xFìŽÏ_ª¢ËüáM XÁ6˜ti~¨~ë=÷áŸ\|pKtÛq‚]ša"ŒôYøA †SŒI¹qÉ-÷cìnÖ=ÞÆ×àã›à©iðƒ˜!‘žã:%Då}éåÄVþ_Î>úFÆÉCM)ÈLòYí¦ ãT´ýËã* «c§i$5_´÷_¸|¤ ¨ú~¾²8 U0!}cÝÞ/R¼¾aiº8ɤ43–ª‘‘?)ÇWá$H;yue]ÿÃʰ¨’ðÈ∸sæÎ/(,EPÀçÍ_ŒŸ°¿¬ œˆ+hÇÎNæª:sæÌ9'ÎÞ°Êqœ ޲òj?ïÏ+¨äSRRpž~ÍÎdöìÙƒÈ2oÞ¼ÔÔ´ªªš’’2Tþ»víù"pà±mmmhnà˜;à8ÂJJoâEpðRÏÖŽMÚØRµ¡âÒ+:þîå3ž”:Û3sô—Qhg¯@J­½àAœu ÄñxdÎÇe‰éºd¾ñü‡ÝéòåX8ó“ËBc7Þù0!¼,链ۨŠ]ûèL -¥ŸNGp*‚ ‡ß›W©I¬T©7ßü³Òû_w÷¯Úߟ—Áƒ%_(áÐ\w_ñßéªq%ÆÈòïÿ ûòk6ªâª´úu~pöx¶Í†´éðÖ5â×ÀEIQ!0^¥ŒSyo,·Ì8;VΊ-ÉÃH¨€©ÃYæ¶ýõÙšørclEˆ&=<²íÕ?’˜Šø5¸Tüõ¥Íæ` !¨ö{û˜{ ß pØìNé÷ç[Áž3”ËEüT¨¬€˜× Í@ÇÑ…½U.\§Ó> =y¹yÑjCu%º¨*ÝIJn£.rAxY¢~™)úÛÚ;QQ£Š.+¯Ä׊ÊjÜêêêŽ9Âücdéxȱã'7nÚŒˆP^Q…ûwvíöw6ô~Pزµµ¦¶¾¡±m:ü¾C‡ÖÖ5àQ6›-ÐÜ𭬪iݾÓOŠˆ;×7œw¥3ܶmMMMþö²þogaößS§NíÚµ«¦¦®¼¼²®®¡µuGÿh øsòœñ¨ƒâ˜UUU&“yÓI Üöí;ñc§„Ì´a†äK6àùÁ#Ç[¦?Ýpÿ/Ö>øXËmî¸åÑõ>'ìÜ+1BQy¶±ê~7ד[Ôú·÷Öß1£êÎGÛžzãĪ|°rnÿ~Š@{¼’”Ûý…%3Ÿ*~êSë–óþðN§—¹dE®þ±êïš¹}ÖG RpÇ3rjï›™ÿij`µ0nP)ÊŠG ŠK¦?¼ö¡‡ªï»¿qÆ/·=0³ýƒÙà°£^-y„ðŸâz’;“•]û«_Õ>ôó¼Ûhý͇·¬G!ÛòhcÒ•È!ʱ¼êçžÚtËm·ÍhyéÅîòŠÁ2íEËÂB@YJDͽ¡áõ?ì™þrÓ}O¸å±Ͼê¨_?l{ñ+XÚÚXaƒ{ëX …3•÷¯ž¾n‰“&ëEa¬®M‚Ê_ƒ{×:1Ú§’h Žö¼öö­[Ÿª‰-ŒŽ­ SbË¿ócÔ.–ñòuE’”‘ ±hŒ2kÿ××?h±øˆªÎã"ôˆ- c ÁAÐâÀ×ÁÁA?)î#_⺑hùŸ—kyêÅBclZW¡‰ÊÛñÚŸA&lH´ˆY$„”ƒ¦±H¬Ç·ßU©P°øÒV#lâ–âz‘%ÜÃ: ˆÔXßU·×ã–’ÜÂçÛ&í0Î d…£Ùøò<‘¯Ù-ÄÓß”Ý:tý)ó2³ö¤ÖÄã¦ç-8˜žQ$ßžâ(—¼‡DJldÄñæ ^ÀÁ³G8›¸?ªŸƒ…7‹¿½îW'pI*"Mƒ5Cwݘ9/ߪÉCü¯^rǺ^6 dO¼t•VSV[¢½|hÇN|ŒÐ_/>„êehÈÄ€ƒØ~²©á‡ÓÍr”/êáUßÐЉŒ™|‘qÄ ¡!\œZ7|ØIíÕ‰îâËoÌÕêË5êŠýJc‚©²µ‘Å”¤ü« ‰†Ô} LKÓ&D{³“òû|>Óð£ÈÂ! ßÿ3¿P öïƒû ’øYc€¹ñ¹XöèÆ #püó¡Æ9Íáó¼îçØhçtšbý§§ìè:©ß4"&Ó¾À‘I ,àA†£&;ðVÒÉOfI¤°†÷fôùyÂ(Ð? “8D‚mVFjN nôĽ4QžåÆ:¥óÆàxßž¬3ðè«$Ù¨ù"ùZÍûîq Eœ uÏ’õ”ä!Ú ‘ÌEXן*†¬ZD&‰ÅŠm”´„zéIJНÎ]m‡&‚™³Ñ. eE+u£Š¾ßx´Ã»ÄèRH}¡@=­J^0)í’”1¢W>\M/CÊOå?þž7NöN#a)1–ÞÊïÊ[À÷#·ÀˆwP‡u>4culTµF]ª,V%VÍ™'«‚øz憄Ze€2„ÿR¿‰eR!|X¬v¿¹AàcTO~ÑgÅŠ5†ÑNéõ Å ð‹ÉKŸ÷uC?p–u[r4S²uú2mDµJ—9í r€hcŠC¤ùú’Òç*Ö?37dé‹Èè›v° qçœþˆ€Ÿ©©*aVÆ—Žn¶@ÀÎ ÎØÿÉ_>açÄ\üß…†á—¡æ›µß ì-ÅÖì sl)ryº&§Vª[ô0Qd3‰P€/ç™urX[ FSûˆ9!1¦Ö׉âvQ ŠSXË/‚ìá5B¾@ùAª²$ôlc宊g´ÂBdWQRXY"'û’²Yá†OŸ{|¼%¤&±HEZ{Bº·x+™•GÀOåQæC+[jQNwÒ“„ÔÄàpJÏ:YˆñÊ…weÀÁ€ƒî×¾@„‘ƒ)þå,Ëjµžã9aÀ!Òg‹tÚµ}A¤S—%ÅŽÊL.VEäk ¦‚”¯¾àÜ.æ-(©°ô~e”¾À²:—AíÿÈiwÂ;×ÁÓ“•;à; .>0 òg8Ö÷ ózÐÃÖ£uìˆgÝ3¯–©J4‘©F]eDBýnO¯×çKü­D;­ß!Ïúh dôõ“WfnØl¶¯ð,Š—˜¹Á ?;",%r~ìp‘”J޶&ΜÑf#䟯þnMˆ&7fBAÔ„ºñÆò«®„Þó&30΢àÜ.ò-¨¡/nà`a8\'á@®Òü–X0æÞ¯^ª<2nšÉî'1°ø×Ε`éÅ壴¡eìü¾¢Ì™[·¦©“›Cc3⌅ªˆ•q x5ÍÝ%þ[’eHÍã/p^ 8<œw´<ÜÜ?€šßÜ××g2™<ÏW–ì1±;\þx:Û¹n »> õ—t÷$96ÔcÌF"pòTzÌ% º¸ì¨ø‚ð¨¢ý®7_WÏWûÚ‚[p šAùßGÇýÀAðÝÛǫų¹ÊÇ`ÙOáW OM†;§À•Fá&=üãÿqëþ=õ 1’ºÇù¡â,u=Q­Š-4Få©5UaÆ’þØs•GínÀQö§óŸ þ:\NV!>08‚‹Åâ§KúJaTêØÿµXíVF pÈà =¼<ËÀ±Ä ^496½öÇøûq¿¾½nœ Üd„7¯—ÊŸƒ}é`?ÊÂ#>ö´1ôûnÎܲnex|Exla5f« {>YNÂï`eä<[Ç_8$E¶Ø¬LÛ£¹Á€£¿¿?°Üû‹AÀ÷¤M9¥(ñ—™³7N—çóqì€âqÙCQ’Ê´s'Ï ¯ß¸Ø:úÚQqŠ”ÈX:öØ9aÚÀZ1óÕ¡I%ã£S QպĔK¯†-Û@ôXE/Ï»Ãèbb›Éd:‡'ö‹ÀÁ>¡Œ¸Ã~à`ø_Žg¬ˆÀsŸ«Ôf‡£­¤¸ q¢=½üÊï–EMÌ‹ªU'—ãêU–¯Á–8³‹49‚” ü[DðGÆ©_F@…#™ŽÃá½Y~ë¿à¹+aÆdñíï@æƒÒú·¸ý`:I;M²†öcDÜh3HfÒŒLÞ娩Z™Ð¬NJÓ—é“êÆ%6]u³{÷vž’®‘e¿¤´W ¹ccÙA“C%Åfw2AcS÷LF(üÀ÷xeE$ÌÁÙä¾­ÂÞ eã[Pý$dÞ'Ï¿E~ûZþ¥‰üsÉðÉ¡êIië»ÒÁ2bt~ ‡$ûØæ8BúææÌ`6Õ<øt¥~òÒqê IS ôÆÕcÞ­wx­ghf´7xˆäEôDc!—Ç4b98ðõ‹Ÿ«Âý<«‚ÅbéëëcÀáoÿDz2¼ Áo?D†.™³‘ö› ™‡7þþ÷¥‘“«5 Ë£ŒyñÖª"˦ÅOŸ ï ûV¸û6óîam” %(ÿ·2Š2£ËcÚµª`:Ä©Tv| ͯ(EÉ«î–?ºQøÃ4å¹iðÞõPô ²á·R×JèÞ¡ØúÆP:.G×í<çAq9­„'áàØ™´¤+‹“®(VÖÜÒ„ä UtÝMw‚§D +x¬Y2O¢x¶hnø£þàø°ÉüåÍ,>ÝÚ?bxx-¬šƒ%âúêe_›9ú_Y"M4D²y-/¿Q9­84f.z•^—­ ©ÐëýëíPógqãláx¹s  OÔíRŒ%(Aùw‡ä#ÉšaŸûx{?ß½v¯€Í‚êg•ìGIKÙ¿_ /]/þåZ%ãV©ñ)eÇ8R/öïqÌ´^áYÍ·Lhpð=iW-²¹«¥<þšã¤|cb¹JÝšXc˜’þƒ`Ç.p9Ò%Ó3Ú‡€£±exÁÌ Ä‘ÀŠïóìÓé ŒˆôØQ¦ÄÖ¿CV|dY4ÛMâEŽ8Ê<"œê¯äç«Ô1%¡19ê¸ôð˜†Ø¤L­êÌë?†Æ§…ÆßÞï‰ÍŠ£—0ˆ)C0(A ÊØÆÑM*Üv±¯ fAëß¡á(þ¬ºæÜ¿»ÅûÇ«=Ënâ«f([gÁþ¡» Ü}cÈ56'.݇ÀiB, õ¤¿€foÇ–ò¤k*T±%Qɹê¨2}B“*ê“ïý´§¨ÚÌÕ¾—Ø(NY LÁeÊ¡Äfw‚à_ v»ø©†|­ÉÍÁß¿C"ý×$'H´É&b•hÝÔ±ð¡g«TÆš˜äU]ž1¹>bJ…JÝÿÜO äYçÚû óï\W Ÿ·™tæÁA¸à ” å?(ŠGtôxOmòv¬V6½ uÏCþ½|êðîø?]ÍÍþä?k'µ/€Sµ0Ô^(¸2'µÊnº°§ý.]cå|-T¯ÛZZÒ¯½¡p|ÔÚШâPõšHÝ&U\IDòî¿ýðjÐÞ–^Ôýý0ÐÓ7áÌvao.lýš ¥J™·ÂìK³®ãg_éwBÍÿ@ëÇÊ‘R¥w«b; ¤rŽÔ¶Ñ¢9…¶%;õ2˜vP<ÐѶrÂåUêÄjm\^dtº.jY|Â2m̦»ñ´l$=—Eè•“Í3Ðk>{¢·÷Ì@ïððÙ~çÐ0¸]$kÙ){çI`]ôîW<~â=Ýý½g‡†úL&èt÷éï;=ÜïâX—4ÂÿB†’8y²íÉWs"&ä†GçÄÅ–ë¦G$¬V©JÃN=}£²t”?[^†sa÷¥g«â"¥¥ p%(Aù&€x³4¼O>VC:t´üꞅ⇠eî¼ÿ?þ®²èF(x6¼+ï^#Ÿlƒ³5¥2JjI—Êcˆ5—t¬$)¼:we^ÿ£4MB¶J¿,)6_YhˆOSÇdª'îë]0õÙ†zFúm#޳ÛàˆÕ1`¶ž0ÙFì¤0O$$W⢊Ÿ^ ‰\âì’ICNQv;=Ã#ÎÞkwß×`·i ¿·Ïj¶¹I[Mê(Dt‘ì 8§,OzZ@MÑÅ!aFM‘:.'t\ý´ˆž'¾ î‡â§ ñUqãë°;Ž–ÃÐàm˜\” %(ÿ9 á¡óŒ|f›r ¶Ï…µ¯Cõ3}'¤þXžûiÎ÷ ý^¨}Ci]¨,Ní„‘ã Ø_¢¯dyìÔŸYiïc•·’ÌÁ™SU?ÿU®qÚÆñ8ÒtºâØø¢Ø )¡‘™W~ë[¿?zêðÈÀYë@ß龞–¾#‹ÉéVì‚,Jþ³V|]^}Å• E𿦠iÿ40Ôß?Øvøäàð1ËȰÛN|Yž~°ŸÎÉÈÿÑmé㢛ŒË£ãS5ê<­¾>":G²ö Ãàÿ\ K;ÅÊ_É›ßölýÁ™õ`?²F»Óqƒ” ü§—à¨çx‹l:(h€®U°ùïÐø”=¹wÉ‹®“f_+n’gaÃß¡+E8ÜýàêÉãCŒ1Õ‡ÅÁ­‹”‡;HŒF—s׬rUÑyÆäÒ¨¤4Õ¸¾*2¾@¥©Œœ˜}yç«¿n]?l9}Êröøp_Ÿ×kõ}vú,ï@b}Í»»{zMgûÍÃVwŸÅ;©RŸ¡ ) ‹ªLºdµ.²ã§Sí¯Ý o‡Œ[ jº¸îE‚{³ø“MÊP'x˜•'Ó+cÉâ JP‚ò-ñV¡âdûYñìé`‰²c¡¼ñ©î9(}LY}‹²àZXz3ä< o@ëGÒÞB8Õ æƒà&ýéÆšÅAšàõÏàŽøad놼ïßš¦Š­ÓOn O(ÒG¥kukU†]|‘*2_›ÜxÇC‡W®²Ü+;l ŠÑ-‚ š]„sX"l%n8šÌë•!‹Ýd·÷÷ ôõ?môôvTWoýås%±—–ª¢Âcóà ùÆøÔ}aD즨É%¡êâI1‡_š.½w,™Y÷ÊÅwóu3ùÍoñíËå½%î¾ÉzDÛç}ƒÀ” å?©FGKD¯E>¤œj‚=é°m®¼îrÕsÿ¬þ±´üF1íN¨|6üIêJ…åз l'eâfiÑ¢"pÂ.Áƒj^8ž˜!´y‡ËÑóþ¢‚¸ï®ˆLÈ›XU¿$Ú¸26zMdlAX\‘*®H7eÝÍw~ýÇ7ÕºŽu«$;H6I²‰à¦aDBUâ´ö{‡Ï8N9Û¾õèÆÆ½Ì.ùÙô”È)Y uò´qùÚ¨]TVdLFxdeô%yÚ˜¥jUÇc×CÆ‹ö(,»Í½äÿ)ù÷AãS®Æ—¹ÖÉe?Øà±W $ð.Éz În…ƒоDÞ0K¬ý5”ÿrîäWÜèYùc(ý%4ýFj_$È’O7‹¦} ©³–¥1³â%ñ¯‡.Ñ97£ –X -¥ã:¶oÏó¯d‡Çè²µÑõãã«ÃâóÃ"3tÆŒè¨,£±P£­U3#Ⲍ²'\Öð£;·üüéƒo½s`Ö‡?úôàÇó|øé‰Y³›úeíÿ»;oò5k S2Õ‹Cuh\êcòu±ÙáÆ£l%·¯€ÝÅp²…s÷+’r2úM&Ö>(A JPþc±îN¤"€wƒå„|zƒx Xéš'¶üM®{ Šg@ÆâÊ[!s:”>©¬ý+lŸOÀ¥{³2r¸ÒäTñ*A…õ% ³¬¿½Ä/-KqQÞà9èÚ¿íwopeMDdñxmI¸¡T›¯AK¡@Ÿ”¯K,ÓNÀ­D“T ! „¹úØ\c\–!¶Xˆ’-‚låË“KÃ&äë4%‘ºBMx~XX¹ÚX©Ž)W’8?:¡aúÃ+ÿ­ó`ç;JÍ3q/šbæ½äÊ7ülþ³Ð>Ÿ?P$v·Âà‘àý” åâÙW r`ïQζJG«a÷reÛGJóëPùäÝ/¦ÿLμ Æ7IKÙ=òñ©7Ø{I^(é}ä[SrWJÖ$û“®Æ‚¾ÙJ,[@ô€Û ½}Ggý£è'w-2LÈÑL¬ÒM* ‹-*6&äŽÓ†Ët±Õ†„J]Li„±$B_ª6h¸j£‹t1ºØ¼_ƒ” \Sö ˸Á´GîÞ󔎥$êé7P9Sλ[ȾCʽ ª_„õoÁÎ…Êþ"þT‹8|Dr )‚¥)Y©$ÛG;QsJ¥Ž—À#q6Ñé/OJ5%+ñ¶ïnûãßs¿{Snä%å:´ ¢s£²tÑÙ‘š¨Òˆ¨²0Cuxd“6®TY¨ÖçkôºÈl!C­_£Ì‰¯Q%W„^’­¹4óò›7¿ò{SC…8ÐÉ{÷*'׋‡J¸öEÞuoz*ÁÜ+gÝ™·Cå3Ðð*lþt.„Ãг ÌGȯ” %(ß¼ˆÊ({ñ5‰°Ÿ”‡vÁ‰Fe_¾²c!´ü_RÊ îäòn‡’™Pû"lž])â‘*áÌNÁ|±ƒ”GH¾ŠVÈ@쎱cr°roxÒ ÃWѧx$É+ŒæÜJ¡Î=y¸¯(wÓÛoÕÝ|GÞå×§ÆLM7NÉ3LÉO.ŸT’T©M. / O(Ô'ç&eGN*œpUíU74¾ðëcËÓ•Ý ƒ‘«†÷AÏóÉ2ç aç‡Ðø*”> …÷AÉ}PñÉˆÞøhûög‰èÇVô” %(ß´È>šV߯×$;ºáìùh£Ô•©lŸ›þ ÏKåðÅwCÁPþ h~¶Ï=™Ò‰©—l9®¸mÀ¹=øhœ$ŠfŽ$Dq’ÂSNÝÑs oD^± ¼‹Ö€¸÷ˆ.’ zÀ6âsf츪8¿Eû²¯ =*}7e£"à*øºÊ‚P÷Çú¸{’ë‘É ‚@¡þH‡&I¢6 í²Ásüp×w†wCßû¾\Ø16þªŸ‡¢G à~(›!Õ½À7¿!ì˜+w.‡C%pz+ Rìƒ ïvú JP‚r‘Øæ0ä o[ On”CG* ˆ¯û#Ô½ ¥ÊÅÊå¿„úWˆÃªc)(„“õÒðvÅr€Ô5ÞÏʪ•±SßÁ3º)…Võ)ÊhY²2šE‹`9)Ÿí”6·c1l˜õ¿‡ÊÇÅ’G…¢JÕ3ÄÁ²ícew.û›eÓpžÎùÙ²|ìàRÝ¡(¢»–æåÒÀ›\É%"¥\W|¨+\4Í/N<š^NI‘%‰šþk‹VˆÃæ°ž°Z»,ýÞSE°/MÞ¶Öý^l|Á[;ÃUy¯§æQ±éhù¶§ÈÖÀ±r8»0ƒ¹-@Í–`µFP‚”‹Z$<eä”ÔÛ)o€}YÐþ)l™%4ýN¬}^){JŠ'v옯ìYGkÉ@Ø7 2O0Hù¬2>‹ßf6WEdvÖgicën§ ñÙ-p¬ö¤Aëyýß êq(›!–þ¯ª´þ-aËlZë— GêáôVÅtLñZ}D†8²Œq%(A¹˜}X"ð.°÷+C {3ÚеvÌU6½­¬{ ªŸÄŽò_Aýo`ËûбDÚW$®"Y£Ã{Hþg…ðжÈ#ýjiA¾­À!ûÓ’}„ó¢x«bï–͇ä¾6ùd#ȇö%°i–Òô&TüÊ!U=¥4ÿVÙò®´s¡²k (S¡·l=¤*Ó72|ŽŸ*(A JP.:HÕoGP÷Àéf8PH¼Rmó`ë? ù5¨zÊŸTªÿšÿ›ß:WK{óˆÝqf íSì=;Hsse4ŒŒ°! ŠÏ)ô­¿xJÑ%{F$G??´Oèk—N­U+iDü}Y)Šp‚5!þþ•Øt{ÒáPo„þÝ`>ž…¸=úú %(ÿ?†8›l;­ôwŠ'›Å#UÒÞ5Dïmy~«T>'W> µ/AÓï¤ÖùйäÂñ:¥g«<°¬§Á= KÍò%ýŽ–x|Û!—æÈ’WáFd[·!Ux­ê_U~£4¿.míËao†r°P<^/õÒ‹¶~IóÒäoÿu JP‚òíX:ûKùDàͧ ·M9ÝGªaO&t.†mïËþ$6þ¥ñ×°þO¤âƒø¬ áD=ô¬çúwI#{7iüÄ;Hï'é[­pfÉÑ/›OÊ»¡{­"WÑ¡QãoÐø:4ü!CÞøeëûr[* w¸D9Y'ÝæÃàCú,)K¦w9ˆA JP.zýL$Twqà1ƒ½LWÅ'›à`ìM…ŽyÊ–wÅ oAÝóPÿ¢Üôš°áoRë|iW:,…cµÞ3­B—2rˆTºMÀSvùÛ{Ù<òs@´œ÷I=Û”ãõ5v§Ë­saÓ{JÓ Íõo*­(í å®L ²ÕгŽô„%„TNyí¤B›Ñ*‚/Ë7A JPÆ (î#’e¿Ð·S9¹þ¿ö®„©Í+Ëþݙ鞚îI'tÛIÇqâݼ“ØxÁKœØÆ+66„„vÚ%Є¾ï½wçžOˆ%íôÔT2åÄ~§n¹ƒìz络;ÿˆü7Éy–&Ž‘í€ùH=ýwzòo4òg²¦™säñ!T{ÝTŒªrZ5–¨µB²ºmÁaM(HF·…µû4ÝÁóη½Ã6T!wóDÛeoôwfQv'5Ä*µ*b½(Wãf)l¦*>J±'4wSú϶ÜGèåéùä³?Ã6ÆΣ¦·Wø/@$GTÞ%Væ™qÐÆ¦Ú¤­E444Þ'´ ª™åY™sRü%&X\¸{Éy„ÆâFýì?èÅÑør'÷95;H±˜JÈ{d!"W’Š/Õ­&­E»ÃJ©NIEX”¡º±‡>~[Eu<«@yÖPžÑ ’\Íšµ¤(‡Ä¢[%Æ)ò„·ÈA¹ŽnM¤ä_‹ùûÜíGäLŸ ö«¹f ÊNÀ)Ã/5<š2ôŒ¸††Æ{&9¨]·#”uÂñ;z‡æ®‘ï"¹NÑØôò#búù˜Þ ‰¯À)þ~¤­âÃ*5e.ùøj-ê smEn6,³X]îèxgí±Îz×owÏ+Qû^Ä Ï¯¿U¡f^ñ;*…‚Oæì*ùZÍ‘ÿ¹Ï¢‡jìSñú¿1ë÷ê4â:+ïy¾F±{”xÈZ¬ÑÌ“Qg­V]ÊÐÐÐx¹CÀA}­$Wæåâ”̼©‡V&ÿ*¹zhü½ú”éC½ü èÃöM%Ï9 Rô‘L©Åiµh¯¤DcU­U27Ðô«ÄÞƒZíq|‡ƒbOgò6_tªÕpXoÀÑ«‘¤Ê,<";)Òcrá1f1øWá•‘û¸ö!û7|Á~õzý ÒV|ñöôÁð*z%ܤ(¡Yª ZÍ¡h«k¤÷·{PÕž¡ã¿ßm‰a’lãu²ÐØ,áÀ¯- ávÑA™Wè@Ž QèºÕv{³á¯?†—׫hô¯bê¤dñPsß›±'fj\f˜qÔú2kŽË®zÏ›Î444>@l÷Z‘µ¨ÜXS³k­Uz)šè ß&ï%¤­&¾Ä@ôè§ôæï8E§¾&O/¯ÐüÄ×òÔeí´ä¦åUcVÏU‘¶*ÖúòVw¾\zW@ݾÓÚ$-ûÛV•ø¨_[e¬„ñú36J ƒg)x £‘ŽãÊö¹zó‰ýý·“‡ù+Òÿ­bN‰ý¨Ø£\ Èj’šô9ËíµïÆŽY±†††Æ{Im¬¦à³´Óòd6寲Áª¡è§ü´H޳ô€Sà;¦ å8†tÍøçÒöwa;(¦+wŠéÁAŠ Qì%_>òµ´è#¥ÖËVþŠHÓ &?×;ìCUæ¦2×Ñì´YÁ9ÏW‰Ã´¶à“y2oñgù”1sC‘¶Ãh»ûTÿUM$çqš¹Hþë*r 6é©*?%KAUKÓF…Œ®›ÈnNìw¶ÇDCCCã=HiSQKvrJRâ*ÝQ¡j”ŠA‘uñ×ftˆÏIì—3½d?B_™ãŒ±Ï ÛÁºÃÕCîˤð=Š>¦Ä«™wËb@•fÍZJÖs¸Õ·j$,îPÆ;\ì¡ÚM¸um”åj3}+ój9L…€™uˆÔ„¹0Œ]ð&XÃq’&¨Ñƒòõ§,7ÔÄg4ýùÎÉÐ-1;¤b?Râ1åÞPÉKõ$­¯`ãLçw‰c›±ª]·ãjhh|JÄò€µÆ¥”ŸÂêºèƒÎU\Í\6=ÆÄ11~ˆÆÒøßÈö7rŸ'o?…n á*öX%^ÊÌ„ÌMKR˜*ó|ºªfVnD»l¶ËhU5Ö¬DÖV§ ‹¶ïçû«Õn샴ÐÙâªöê§Ýý r»Q .è« ->Ì_Õ,UÓ´’ r„Š>•w˜™‰vú ú¦"÷hv€}4}”X\ð›ûÌ´B·íôá½(×ÅÜ=”Ë“/ŒÂ¤(M«j˜V³xpÃÔUp |ÞnÕÔÚ¢ªÆ`o˜›¤Ä ¸¬ÏÝ¥ÐuæéêSŽHøO|AãÔä1ržF%ÝwEÅÜrá)°*=®²“Î+,°h$͵¬h.¢ˆÌ'9¹íUV jMôwíNÊí…G»¤°/ºÛ@þ‰5T‹~\FS¶¬žd³ÄoD62°¨-2_„aržŸ¦ŒM&‡Í…G&sbà†ò]QÞ³¦ë˜iÿRØ‚m_(×I+wŒ9÷½ˆ=R©”3Ë>Y¥µ4µJd®[bHg¤444>læ@Z £pEjðý<¤–œ,"Ðk¢¹{pdò]FÀ~TÚ¾cÿ`‚˹ã”tŸ•¾~Œ6Ì Ê(3È%‡±jÑIËÈ_‰RTUãði_Í¡0Ý,ªõµQ£V„Õ ±1‚*¶åÑaÒÞ þT´æS{ë­BËlÕÌf“häD=-+ ¢‘ËaVO2çT;j˜X¹Os·dh@ûñF\§hê1ùÃö¹˜8„Î1ç ­„®ÒÜmþf¦2oð.J^¹š·¨jèãíúÌë2¸††Æ‡ µ³ðN4a*²–••¨Y CzdÆ,õ1õ¸&=—LW/¤ÇäaeÿZL}úô X&úú(ÜqÂèmŠÁ+m£´Ò*z!dÊ!XŽWº<ÒȪ5øÐëe 6©¨VUµêr³Âa}Œ@&mc…ƒ¿‡C¬—ø§Ìµ<3…YOõ$¿Z¹2§Ê!Yô³Þ‘¹)Ÿô8K ™x¢b÷QÝ^÷ïÌ)š>†–cûa²¥¦IÇ7ä:CÞ‹¸J‘ï1)ŸxJé×*?…Xµ(­&U{Ó*j]ßõN•¦ ]v¥d‹$Úu¹Q6X”ÃTôó½/íXl}¨Âwep¼½ä9Ã|Á¬ƒ—¯ëö¯ùOé9IÞ \Â@Äì]Š<¤yÖ,Ïù¦ì(¬Ú¸Ã/Ͱ¡R¥beže‚¬ÅU-Å„‚ÍSÖ;ÁŸ¢þRM½–PÕ³(ÏšüË~Zrâ‘óLs£XžÎúbá “ó… _Áï„÷¼ôôHç1e?¬&¿¤‰Ã–Ä8Bî“4s–‚p_™R‰akPÅÎLÇLįS*ûÖšOaÑE «¡¬©e(¹¥ÌuÑ^Cr©–R¥ˆ\òâŸW‰—já9Í ªð5éë—î³ÊyZNU‡•íP{òkÃþ Æå¦{¬FÖ«¼A¡[Ø‚Ä7ùø#¾Ìóᬒ#”~CÙ •·xT⦂ª¤ä·"¸,R:0Ñý´ìEÝSØÁD¹7ˆÔ J>Cã? «†¹Ûæç½.gú„§×œ>m:O™SÇøµ™“ëž!ß9 } r‰>€sWÒ&Xefh%¬ê ¤Ô°©c?µc‘H]ëFajâÐÐÐøÀ³UVó’Õï´½]»[uµW‘\*ÏQÁK9e&)ùB.`Ø\…n:CŽ“Â~b;ødvœVî^Üç½çTઠ^£ð VŸÏÞÃFQì)ª!¬8X•°^àÈŽ#?ÆîÊÁ\“yE©¬PO=§äJ ÑÂCŠ3YÜE&?tüßaÁ+?¯»O90©qÇqæá:¦ó\hûÌð 9[Æï«Ô3l<Ì{h) ÊÖ<ãZŽ6˪ÝÂè0JÚ_ï´{éÿ60mt-Çѹ$»Dî\7 TOaGÁ«ò.V23Áê¡ykì:p#çžs4ÝGÎå8%§ŽKç å:NÓ'„û¼ð^F#S`@nŠàmºË ‚nÞÈØå}¨bÑÇ{ŒXæ”…g»ÁŸÆžb°}þ!?bîžÅAƒ¬,+‹à5p“¯_Í\d¶b„0ûQšê¤¤Ž¢Šá9N Ý ðM#öÀL ÉÌs•¡¥ *Π_·šÄŒ|nË$Ö ¼,ÖØÂ/ÈèÁwéC‘ž×ÐÐÐøgXµ4¾"ye¬ŠÍ²¹ºÔ®çÍRX,ä’Gæì”Åü5+ˆÈ¾#‚ƒ˜€ð]‘žKbúœpö²ô0'8„ë4ðé^‹û<‚OrfŽàUDhfm2ðö „ø–¼—!sÜ}äêež"ÇQ°ÃÔ1Ô\ð\§L×ÄÌ%áë­„oCéD m8ñœrvdÞ=²@ÓW--W—d³¤ÿÅ5444~!ÌÝ‚Æ÷àÝQE3mjØ=-ûP¡ÈØPSN¼`Õù¹ÇugVs‚žËÂ}†CN÷ öáêÛç9é>¯<ve+¤çÂ[£ûçÔôYäÁ\üh=¬/Ð[;}ŠY rƒÿ–ÁwIu ¦fo¡ê½o *Zµï̘*¸©èEV%ŠqõelHÜZÕÿâ¿TqÈn>fg£ÖŽobùf{()̉—‚(mÃ3p”Ò#(UwÌf#? ô0{‡ý‘ð]F: Ù¤Kjú"‡tõu‚…ÉÞ0]ÿ*Ät‡t÷JÐD‚dѯX¯Ydq›æï¡’|BéaGrãŠ_rQq|QK`—úz¶ªpÖÖ‰††††Æ/&8öí[½j™\©èÃhÀ> stream xÚ}’OHQÇ¿³%B¬e&RðN¶Wí`ŒÝõoʶ¬k¦²Î¾ÙÞÌn%Bˆ.AÖ1ºXÑI:†‚b]"è(‚—í73»îˆÚƒ7ï3¿ÿ¿ß{@](mšz€yÃÉþ(»;>Áê7P‡A+­Xf$‘v™lqdí}…䜛áãõÿ] ‚U€Æ¬ÇמöxÀáû¶iO:¬äÒb“¸M¤’1âWÄg³>žöq†[ ñ2ñMÅ'"()Y'æ±ld4ƒä—‰»2–’'&ßÀSg^™öÐ}8õ¹&›°€åwÀ¥Öš,Ô \V:k²Ý¤;©iÝR;;\‘Œu?ÊåÝV þ°ÿ¼\þûº\ÞC9¾u¥(J•IÒÀëÃ]ýÜàBS˜s_ QP5ûFz¼Úë׋Gõ%«t{3qW°D÷0vz ¼ü \}\ø$€Ôu¡ºmþÀÍ+˜…–ÍÙ¬C–;XØ9:Y„^g±BÞ,Ú\°ACioci]g®©Å·¸(ñL;òz±Úï9ÚAnŒŽÐIó ¨Üê­°4“I÷ÐÝ x#Ã{zwA¼¨j}ƒÎ…Ðþ¤Š¾Q¥óš=˜ò8Ðmèñá Ã(Äo{1±cÚÑd5¾Ué­ÊgÒ·t¶üÆlaȱi"ßÐ\.5æ±”šËÅâ^Å8tph0èk€!‰~D† TÒhd¡‘”»6‚ØÂì±–:>f¤ß&Ÿm×çŠäíxÝA4Ž…¶ƒLþ&ÿ–·ä%ù­ük±¥ªiÄ”¦¬?ûCqÌÕ¸m¥&/¾By#¤Õ‘%iþ 'ËW©¯:ÕXl©Errð'ñ=_—Ü—)Œi7Ò¬›©äê,úF|ÙNšٮͯ6×rm^™Ü ®ÍšUáHWü «Ãÿ5;¿?ÿͰhendstream endobj 210 0 obj 706 endobj 156 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 211 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 262.00000000 76.00000000] /Resources << /Font << /F0 212 0 R >> /XObject << /Im0 213 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 214 0 R >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 211 0 obj << /Title (democritos_03.pdf) /CreationDate (D:20110323170410) /ModDate (D:20110323170410) /Producer (ImageMagick 6.2.8 10/20/10 Q16 file:/usr/share/ImageMagick-6.2.8/doc/index.html) >> endobj 212 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 213 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 215 0 R /BitsPerComponent 8 /Length 216 0 R >> stream xÚí|pU¶ÿd¾£û¦_Ó~{Ê즊Բ¢Q7""èÂ6¨ÕóÒÁ•ç§¢ Í*Æ]ˆÈˆˆ¯X‰hVˆkÖ—Áe %è3àò Q R/$H`E%1 Ñ‚a IÈ…ô™®ºõÎíîùÝ=ß÷}ÿËÑdzúÞ>÷Üs?÷üê(¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥ÿot4ó²]Ó¬2Û§ÎÞµÿ´:ö¬ã·#éø£éòÑ=LÙepÏþ¤f2~œNãsï¸gùÎsIÍùãiu¸I­qר0½ L²¼¸l¼ x2="ŸõðG©trøÖуÇ-ŒíxB7gâÔYÏì‰}Åü=>uÝ8 šÇù5S=n‘q'¿qÎzôwdñï™s8…ˆn^'ýÃ#d¯KXˆ›ùDz<Ò¶¿Ù†éxOòMõµ,Qp»y7#Îíñ<~Áúiu}–Gp3™°#/x²^Žèèˆ)¬Û·ÿUŠy?¥{DÞ‚rbXœÌ{Øà†aÒþäáÏÝ#ðÞ-ˆwÚˆH)a¢ ‚(¬ØtbWnÂÇã(ª85—ŽX2…ëxþÛě۳™È¼(ò^ôˆn¯¶BÝö,ÏëE±g2MhC;*MÀ^W}nxZLÌû)ìá#RƈU܉ic‡hãNôèË2íhÂðí™"S)c»y1ËtäaByææô*­lݺçÊ&áRóüøsQ1q§#Râ´óÃG$yUŽ:Ÿºùà?€\hÿË4‘!Tˆ·7êuœ[Ì\×®’£ë²Pu™g¬õ¦¢P5„ª*.Ôä +·¸9ÒÊqó³H DÚ⺋–î!q±0îÎé›p©ÅÉí$J8=ËìÞøGÛ¯c`™´%Ó{„¶çŠLÅ ]p‡<¨†T•’Y¼[˜GÕˆ”8ãçÌËÈeÈFÈ|c0Äî@@%5 ]âÂÜÃ"'Lï¿‚Ó :-ÆDk[ ˆÜ¿0ñ’ý·' ÷·…K.Ç$²¤õ(ÇÊ=œÃæ¾5öÎQB û# ßÐe?: åßíx˜m‘ìíjd}4ª…€ÍOl×!âöƒ..ÌAI÷„Åäîg3nòu ™Îûýe0{i¬;¹´7‚8-ª›oQ“㉪é Gà÷¤vËÙ‡ÐÊÖháoÁûE7'ì‹ Žçl÷sh$r,V#^ˆY¨ #qr?ÕâúiyœMæ`ôÖ™,œÆ¤ ÛSà öO”Ÿ¨ˆ8O¸?œÃÀé6.†°eu¼Pe´• ðÆõS÷!î=Fîl9n?S­®^€IYû¨%ihc7ÇñRW3$0¿æºmwÚoN´0žÙÌ%‰QKšˆ0z,X@ kE.£¥g©I=qSM時vt-QEçsa`ˆ‹>€‚=Çb3šÄ¬„&±†o³Ðέ/ãÝÙ±íÿH2ÂaBs·Ý€„â¼Í8,d¿U ª­Ìo’>BëŽÞ!•,Ç•˜je)4B–£œþþ(pròä˜ QïÑwÌa>VqÛ=fغ9n}5Dœ¸:–ÃifËŽR+‚ÏÙ4Œð€ÐIœ{jÜÈv„áH<âð™*pÂ.ãÁ·ÝVÝ#pürDHbÓxwî$Ž(|ã Ú­ñý6"|œãNãú„ÈsÙ6€>N;®H4ôúÜã D$#ŽCÜt4»Ûm"nŒb8ÞÔÉvsÑ‘áÇ88÷x}°ßªëD>»·äú„ûý¸/k~;Õ9•í§6ƒ™n÷8cJwòœ`ÙhØèÅmU8øÓMP2âø8ÄíÇÕ™c'‚cTi˜?œ/?~DŠ£ÉˆCBgb ‡³CÜt·;Ÿ`à‘èpcŠÃ»‡¦#DœÈJE8/V2{ÍôÖ©‡»À³35ß}ž"ز<$ê¿Õ)j­Öˆ£0É­GС›qÞ“c莩Æv:ÏÖUœyn»h €‘¤°š1šÃs7Ó”*ãxLs¦ºÝ“Ó+Ž¥Á²R¨pkûp˜EJÄíx±=%[À˜)R§ê‰é<+7d®·W5â´I<Çb* ã—2œ¿‹2’£u¸«#þcXÓ3ÞÃéAY¨ÌíNQj뵂i7ű '+Ír™·c –*%⎊±ÁŸ%ˆ‹YŽ×>™UC=ãŽØ‹• 0ÁHgº¦r k˜!§ÙÛY)íÑ4€Ø˜:5â#RÙÒ.Œ"â*–*À®ñº—Ølóˆ5âÂå°É4LFÍR¥6‡`ª o¨v7@„Íb$‡°#ÝžÂFæÜbû=BB/ â41MDD¡ÆÃsqR²e!5™¢Â:]´AKm6³¸Ä&sÐDwä=º³~ByŸ0تƒ<çÙEhhŸ˜TåM•ñœ̱}KÓÐa«ýL¦›÷ÄE.©§^çæ¦§âªÁC¼ìÂ4Jf±â¹õº[#næ z\k“9œ@[öBˆJÓ=¼ëáÄÓáC-gU 1±ŒžHïâXèg.ð ¥ +­*LôÄØâOÄÁãƒÔ¨Ïrs¿±º¯Þ)ZG6ˆcá[®ya‰¸Í±–k=€…‹0‰:Fòã ä§‹GîÑ* #ço‘âB¡GwÜ;–4qCý®\É>TUÀdݸu"h‰¸ý‚çtceƒ8ŒÚ#åGdnØoÛ#]Þ9]a(ÏvjOø§CòÏ·øQÅaõ8LlÆs¼'f_§Adº…”iðT´+$z“YHHl³ÌUs9^Ð÷œ5âÜÄñOD»ÏÑëÍÚ¨ªÈðp”w³Š¨YØšb£ä›…¸€AhNê¥çµ)„òn!æõSjÄaL„ŠL¹ýh%l̉þ"Á²Å qo nþQÍT¡â4![h²9~UqˆßEƒUà<Ì÷AÀ öNm?Æ™sŒ¢é:Dlš4ß,R†}£LÓäªÐéðu¶k¢"N<6©)<Ê #F\»'ÂÈÆÆEME3w`ï¦càÁ‹‘Xˆ°RžŽJäðák2δÐð! yÛŽçX'hÌzœš‹L#Ç4ˆSÕר[ Î0m´Qe\=.ѱc k]]MFÜ…l”iµÄ¡;ˆuÒZ †ç0Ù¸3vU†³v¤Ãci\F•›¥! ö Ò=Öõ×oÇéISäA¦‘q€‹Ç «-9Ó?à¨ãõé^ÎùõŽó¬·z*qG¯C[Î>m÷—W•½ÿCŸcÛ üE G´ë1ñ³<„q&·w8ÄÒT²ŽG&VÆèó,·®¸#áz„þ€ìÃeÝ4ˆC:Éq&¬hyL•åQ'>ÇÂ4E´>>’ˆ¸í4ê7 †S+kÄ1Z =ÌŽ;qY±i‰õˆŠá'¾Äæ {ÿœõ'ì¡À Ï'Y£·=¼‡M(t4šS’I¢ý6bÆ#ŽIsq%LO:±q9Ÿ¥¾ûLÁÏà4rb ç;Ù ‹–IˆÛ3™%¹Se8–Ä…=j»ÀNÅËJE3ÑÃÂÞt wÄïÂsóÇçÆ¤˜€ÎaçIÆÅƒîÈD4ºìM>¨1ï´oQÇÙ—-ÅLF¦ž Y™5ñ‹²9KÄÍñsð8Ê|s´‡}Ø'Qqç¶?‘ÃêPü¬è“–ˆÓóÐ8v€ñŸð"‰Ð[£§™`~/?ònSÝ¿Ð#à½üÁ”j˜ä¬g'ㄉ5áu¬™¬ÇÖá´Ç¼s@wÍ›QDzıøhœ€“ÍYñjg^ËA¸ñYí4Re!¹ˆ›¬°B¦{Xy@µE\fvv6;“¦kMŒ{QÊ–Ò“G«YÅ#1($5ïö0Ó‰”âÈ®,&¤G˜üÐs^½pZ;‘'Šë´„gTØ£7yø[ç<÷Æss& Ýñ¢ÇLêcß9܉šÿ(,fjÄ1ßsa: éøœü²×Öÿ.?'Ìñüä31Ký¹ì8Köô߯ž5NÀmdŸ.†+âú'zÊâ¡„K_:w?NétŽOLš1MMˆ$B;=¼5`d½GÔY Üyn¦Ž‡Ï…ÅŒÑ^óèGäØ QãL¥°0| =®nveõqL„ö[½Êë‡îðJÌÝwÂ57YäX•׋Cðí´{#Lp5uÊDi³óߌÇe(×lŽø8…ìäõDG›‘õ4Î<ê£Tè>‡÷°åAÁD>{á9k¡ô¯¾‰gà`«)ðÙeg"Bµó>ú^Þæ=úË4“}SY¢UÁ@Ø9]·îÊx8u{Üt Ã%Ù•ËÒrnAÊlO‡Súúë5o ýåÝöÑd¼ûF­ßGiÍë듲£îÄì ¦æ˜0Yc§ __8=7;wòCÏQ©ªQ"p¦fáÔÜìœIùëO{ÞÿFMì‰gØŽ]6ÄŒÃ{MMU±\#èeù“ÆgOÌ/Û9¨‚KÖïG«ï¿y\þº=Ô'€°b*þÍúœP<ÑÈٱĹNMô>šªBB`ë‰÷T“¥É ¯s$ÆÇ˜»$ö9-Ç‹„ê±É¯ˆÎNÕ¯Jl#®’ªB µEDHß%V›VI>Ö]ÙRŒt ÍònIÒµ˜)¥ÐèG"æ"{%ï6??¶j\Œ\–Ö¥‚БRÝìàÿˆÃBŠ5U–VöàÅ÷ó ‘‚ÿC6lo<Ø£_è_¬((xº1Ò¡piäRI9ÈùÊâ¼Áa:úB*oNÕþá}·tË„ÿwM%ߘァÒ)-.//O§Pò¬®{¥jýºÄ‹¿†WJþk ¥Ò³ƒ?¢8Pªé¥&;þ»e¥¼bžâëJl¸’Üê”Ð9»èZ‡“‘Ãÿÿoë Š •ß½—ž”[ I»I꥽40ß²©Ya£çgÈ8é ÞZ´²j£Rj4jþ@dH¹šVÊ'­ù·É¥½h_:|- ?(ºÞ$ÙKúá§ÃéÊÈÈp¸\N—ë[qdA1„,ðÂIùPúÞ ÖSZµid çF‚’Ò@OÉ•TwÙõøE×Vqdf5éÛa3‚Ï?ļ/ tÇ߇ Å‘ZÅVÔßþ„›cì]÷=òز%ËžM5­¯ú~¼â ØÏ&ý…ÜvJªnhh8NƒOÍ›ßRYP‚’WT^ÂÏà¼u4ðta°«¸û3Yyšž_S0¿Ÿl˜_Úæ´ÀW‚¾r¥’¾%™Nyˆ´à¼‚ qJ –bï¼jÚŒ=—®Y°˜Y¨Ž' ž–Lº”Ý‘Í7€C å¨/YQÐVHþ½tëü‚ŠK´§øÉ‚¬GOöo¥m¥%_Pº£d~ñ¥È¼žEœ¹¦l{a„ 7þb,ÒÏÆÞøŠé(ÿ~£AËôoïýúÿ^íºaQ_´em˜É]ìÛm6*.fGlû¤º“’„€È“åò»#•âbʼn,Vük”ú¯òÊŽéx[žRÑ‹=üÒ“´_)ñ›ŠSª·(ÝZ³ôeÉ|ð…ù?U@V*²,Éåô23àõ¥Z«—(ÉSþÇè1EÈŠ¢ßZƒ|*"™_Hµ4¨øV*«È«Rqk•â/U µ.Å÷Séõ+†F|>OÚ¡U+¥Û¢r9WÕß{Ë…ÛÕápd8® ç˜g‡Xãð_¯G­^õÂwìË¿¹®z¾ºÅõó³¬eãX—+ã&“nìåúåÚ(n1CíUvŸTš.ö¨% œUä-…ÖI{Z¥`‹ô½Að•hÐ&#?”N›”CǤà÷¦]ì–›‰\¥~œ*”‡‡ßCŠô)WÃÿÐP§\ˆ¸:¡é"o¥«|Õ*²Áå€t<,Ù!©µw¨¼¹u‘U´Gj¡ÞW‡†”®SRƒoÀ T¯Ÿ÷{¡ZŠhòS§óêop0r1Ç´‡;×u£Ã…^Áû·ë=—¹Ï‚ g’1ö;V¸z ûeœ5¸¼ÂTÞbcö ÄÑé|‡ÜBXÐ\ê‡!¥Žî†Ùìü%ʆnü«˜ñ>å~ðB„ IÕP!ç!ì–zHÀ{VÞJI] Ò÷&ÿ¼W¥M@z¥ÀE-Éň8ô1@òÊ))X3,Ѥm0ŒôJµ¦`Z¹2CR$åxP¨½›Ù¸6|\‘¤àIÅôlu»™…½Òñ*9²>‚Pyÿ„Û˜)wÍ-Z²ví’¢¹÷M¹=ì}zõê+Ôdëø©ÃùS=Ô]–‘ñ+6Ûm9‡±WáöÛP×væÏ@Ü€RR«Þ½|½$}Œaä+l–WÉçYð­DÅI:âü~íé- ß”x@¡ç~Lö+C´OÚÑ—·Øà¿R9ÞÁì:äÔøIã¶DÔIˆ8ô¾•à[–0`"N[ê5⎎jyoãÞ†ºž* 9¶Èˆ¸æSRUã'{kÑ·™Òë÷ß‹Z¥»:&4ëpL¹ á2w÷í×^óÏÿ4f̘RUz|,BïOØú qø[ÖqŠÓy¯þSå×8þ;®u¸ ³?-BwL퇈hš)w£WeW#å~„RÃD«R9 VKwH«.Òݥ௠ZÛŒãP>6Éu¡îrùTq ©WtïóK0þðK¦¤•¤EZ€Öêû€ô€ï¦ÿ|çáX^Q‚€…ÀW=×jïgZ§’gÀ…ôú¼\¡çƒ3ZNIµD-÷ï¦Th²Áä½§äVÓ âÀ?»ƒ¶Í,€joxNp µðî³»Ö²@„m8WN-ty‚3ã*Ìd¡ »Çtu¹2ÞÔŸ q8ê;·9X¦Ã_/J¡8ðKŠ"g°ìõzׄ qMðt‰¾ˆF[R%+>ùEqò1Zî§°xn£ Ö¢äI†CƒhøƒÆâ•C>Éë•ä¨f,®Ë“ʵNYž-û/A^ý›D ¯Q·ŠöäÉ>Ü‚áÚ[*)>EZ9„f18Õ2¥ÛdÝÆ¡ðJ-Џm¸=»fJÞyÇ :/<'í‡kl‘Ã5æC´o†•s:õÿ+Ôz¦#î>løF_0u‚K××{·¿çrfè^æÞ8WÙ"n÷¦M ÇôÀ?Ȩš;µãÛ@‡6TbïU{)Ô£Ó?[{ž¨'öV;Ñ&´½Ú¨ïTlÁ=C,Þ…¶Z\Õ¡æ·*›˜Ó´“ÕU‡þ³ ݶ•­¸à[Û {Ô}¡ÿ¡¾úïê*J#¨u+·v‡CKÅ–n m[iÕv8¾iC·ŒÜï×a :T÷R=J‡ýÂ,îr:?¿B#·öonüÓ¶m†ÃU§ ‡°­ŠˆS±“Kwç Ý‹(ý*¤½w›ŠØû}¿÷/B•Û)N¯(µU{4V8cÿéÅ9 Œ\½FÄ€˜^Fc}Ùj†ËQúG¨×Ãx(ú²ÑôzÙÌ¢hÒÖ· ^ MÓY±ò,1º‡À¬Y '³Õe†t±i´à¤þÚáZ4Öáúí§s-°4Z §DEÎŒ[ðò+Ä!"0\¹Ú<ÐW„Žà¯D{g LqºÆà/o¤ˆZ[Ä%Õ ì“?]½çhMÕQKÍ"y €'ï®l.—?I×»_ŒŒ+’–0ê¸Èá(ët,¹ÞåØˆÊ™BEN×¶e:â(FycŒ‡à1¼~ Ûm£3Ãñ)úÙgÉ"G Ä-õÎ.n¡#!]¾>9&óYSbÙqW'tm¥Š¢ç)h¨ª`†¯>ü­û%ev•MϹ‰Ž„BËœŽ_1´¡ƒ|/¾ЏºÙ8—ޏ¯q{Ž5[Ö¢!¼âVîGCø%7|M9íGŠ}Bé³ Ä謭A Àª 4VWËÅÕÕçi¥âqËRÅ××ÞÐi^\Ä}];@ ¶hX*oX#aœR›\ !gåè  ™«;o9#J7:]?Yër¼‚Öj[ìë E.Çmˆrqð êÏP„Ö:ι”¼Z>‡ãçôìÏhJĆ#C¾§Gª78/EW]+}Ъ{¹€¡1Z¹š¬NÞ@LóEï“æU`m›ÄþÑBw¯T´îm™aQßꕢŷÊè)©ÂZH­ú¯v½ér:Þ‰ üÙ&¾;|j n;üÌlz ‡/Ú8@Àf|÷æ\f퇊£P0ŸŽŒ4è™F¦åv\åjU/5´xVYm"´#\¢CÀÃzo«ªè–¾Õ‚+‹HÂ\*}èG¯X®©·9\–87^åt¾ׂˆsbt«éˆ#DërüÄ•ÄàÉlœv ÷ê SÞO‹¸žZVª+ð²h®±à½h›æ{ wSz¥r¶÷©§*éÖÂÙ…WzžòÔ^@<}`<[Z{•SZ³Q Ñ‚˜QqÁ1ùƒð⣒ä­Ð é©V¹âmeU–ž-'•Fó"cî—:ÏÎЛA©#K,Ïkcˆ;P'÷aD³wXèUQ%^#5 *­„å·ˆFìî{ ûºüó½êY¥ÙxdžǨd/À¶É§º¥6TÚÊ:DçÐ7˜œ»Ñ£wH„ö*«èK>J¥úAeö¯—mSTú79fZÚ ÷³_˜tÒõKŒ˜~‚ˆ{„ÚâÌÐã‘ÐZ‡ó.fYþt-þºr—óçTÏ&\޳vŠ+.FÔ/úÚà€|)¯·U:´W©úÆW óÑ0¥R¨BÄ}¬¬é½T±¦Gi‚!Ic@Hùƒˆ¸j"µ_Ò*gz`6Ž’^¯·á|èä i%šÃB¦ícå"ämÊ+‡ò˜fÐQ‚ßÛHð¦Zj¸Ò¬øi·ÔDÊç#Ç:ŠˆClÑê»I¯ÜŸ¤/ÊkàUôªRîn Í3ó V¡¤^Š uiÿ½h©ØËš0á¶üÕ"޲•úKo¾±×g¯qŒeÆÉèÃD|cÆ"6¿ ˜Ò~hgã0¡‹ó¾Ï“Ð @")~­¼$û{I+Þ”qÕy˜”¾(KÊì=̳ŠîS„Ðgâ@Ý‚O+z•„ýÒ+È·›Þ øP_å•z츕¡°WjÒzü’$Á,”àˆþcÐf4ÀÙ B?¡(+)Ú8­AaWÒWóô…è] É3|Çé™ÄlU“¾ºëZg 9œŽ_/bˆë{ã¦“Л®«_è{ÿz×f§¿û—«×.£tÐ…9×ß§`˜çúçe6ˆkk£Ð·»“ 5O©ôÖ5³C­ÁÖ~ôî¨=ÞÚF:›™G:YÛLèÐî;Œ­I:ZiÏî+´§AOª08YW×Õˆ©iÓ†š~@ëÞ´åløÝéÜÚ‰\ߎóÀiêÖºB!Øl¥d¨©Gƒîºº“­ÇE‚»1¼>PÛt™Â©½:c'ƪ*ýaã_Y»ví²µËtzç“ß.Ù¨}]„4wÑ#ÕGü¯¢±×LY«;§/±aÆ)ôßðçCÖ­è‘%v‹üÃY„UI•ãt éYä á^ ÿe2Õ«T‹VL€°t\ÏÉíLÀ¨ÛP3Ùeå vz&|æÅ8ÈÝdáZ ‰œïAÁ4ý¦ª'ôF¢…ˆ„4\“ “.cˆ¨ÃÃW†‡i(dn`vR‡½ðe¬Â22‰ÌÌL3F25I%`W±Ð~Ü)ŠÈ¿!Fã/RIüš|gd2ÀÈ”˜> stream 32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿendstream endobj 218 0 obj 768 endobj 171 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 468.9042 164.5694 479.1989] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 172 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 451.4696 382.2215 465.4173] /Subtype /Link /A << /S /GoTo /D (subsection.1.1) >> >> endobj 179 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 437.688 441.2103 450.3073] /Subtype /Link /A << /S /GoTo /D (subsection.1.2) >> >> endobj 180 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 423.2421 406.0237 435.8614] /Subtype /Link /A << /S /GoTo /D (subsection.1.3) >> >> endobj 181 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 397.0903 253.9979 409.7096] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 182 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 382.3124 227.7167 395.2638] /Subtype /Link /A << /S /GoTo /D (subsection.2.1) >> >> endobj 186 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 368.1987 280.1271 380.818] /Subtype /Link /A << /S /GoTo /D (subsection.2.2) >> >> endobj 187 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 353.7528 356.793 366.3722] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 188 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 339.307 267.2658 351.9263] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 189 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 315.4798 263.2189 325.7745] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 190 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 301.034 203.9386 311.3287] /Subtype /Link /A << /S /GoTo /D (subsubsection.3.0.1) >> >> endobj 191 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 286.5882 235.9654 296.8829] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 192 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 269.4856 331.3282 282.437] /Subtype /Link /A << /S /GoTo /D (subsubsection.3.1.1) >> >> endobj 193 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 255.3719 374.4861 267.9912] /Subtype /Link /A << /S /GoTo /D (subsubsection.3.1.2) >> >> endobj 194 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 229.2201 160.8251 241.8394] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 195 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 217.0989 189.8112 227.3936] /Subtype /Link /A << /S /GoTo /D (subsection.4.1) >> >> endobj 196 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 190.947 220.8237 201.2418] /Subtype /Link /A << /S /GoTo /D (section.5) >> >> endobj 197 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 174.1766 187.6803 186.6631] /Subtype /Link /A << /S /GoTo /D (subsection.5.1) >> >> endobj 198 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 148.0248 431.856 160.6441] /Subtype /Link /A << /S /GoTo /D (section.6) >> >> endobj 199 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 124.1976 174.698 134.4923] /Subtype /Link /A << /S /GoTo /D (section.7) >> >> endobj 200 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 107.4272 269.5837 120.0465] /Subtype /Link /A << /S /GoTo /D (subsubsection.7.0.1) >> >> endobj 201 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 92.9814 209.9563 105.6007] /Subtype /Link /A << /S /GoTo /D (subsection.7.1) >> >> endobj 202 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 80.8601 210.3769 91.1548] /Subtype /Link /A << /S /GoTo /D (subsection.7.2) >> >> endobj 159 0 obj << /D [154 0 R /XYZ 72 786.281 null] >> endobj 160 0 obj << /D [154 0 R /XYZ 72 761.3744 null] >> endobj 170 0 obj << /D [154 0 R /XYZ 72 484.3463 null] >> endobj 157 0 obj << /Font << /F19 163 0 R /F20 166 0 R /F25 169 0 R /F15 175 0 R /F27 178 0 R /F37 185 0 R >> /XObject << /Im1 155 0 R /Im2 156 0 R >> /ProcSet [ /PDF /Text ] >> endobj 221 0 obj << /Length 2067 /Filter /FlateDecode >> stream xÚíY[“Û¶~÷¯ØÙ—P3—¸ñ’>%S;MgÚl¬M;$\»b-‘*Hz£þúž @Qknc»ÎLâôE—ç|ç;З7Ï®^Js!D\#/nî.2y‘é"Ö¢P7õ÷Q¾Z ™Ëèe³ƒRdWk•™èåªPQç°f_=T !òHèÕ7¾z)ΆYlLq±:Ö 4l,àã$I¢?–+ % !Óè‡Dèý!1I?Ð¥H“(^­Mò+è¢ø…g(òÄã{!Ó¸*ˆæ¢""X…L¢WkÓµøÜÁ±å¹ú¤ñù9Ð’E¸¤‡ë+2îÖ:‚ 1‹úÁÁËXaÓ€%0m>a¨ÌJZgѱpc5èµÝÆÞËu—5ûõš+ãŸö»K˜K‰_7„BzŽB1GA{ƒÙ”ûíõ}wô‰ZNF˜­Ÿ &éÉþ•í´ 7Ìù bHjÌÿ¹~BT*Ž¥çáy‚)-Œ`| ø"É¢¿tjT7wǦ½GP¯ÊºEBù§Á¶uƒ%¨åᓳP]ÈØ‰ãÇ¿±kÙø÷û³èÅæúÕ 8ÃÍk¿YZ¥ÌLœ›i˜°•sY°Ö&‰ó\Èsc)&epíº{´•r¿‡ím¦g>–ytd²Aâ1 tAA‚=veµ‚Úמ ÅT3°ªÈÓì7mº˜ì à´qÇì`ˆÜqŽeÓFïŠoVFGä›My»³ˆr"ÄoýÎî"’Õ: ÿ6Ûg Y»ùÛ_QÊæ‰ˆ¤yW)+¯» ÀÅ# ø=‹@P€ƒ-jÒß9¥-Ê ÆO2~¯,X+¸ö›ÉD«®…(aš ÓŒ\ˆß%fïf×`ƒ äé—èáhÖ·;zt\yØ®ú?X¸NòH¦§‘³X £qd8UÄ…R)IrÇD_£ ãçƒÃ(#¢ ÎC¶}HÇJ§Ò$‹8ËDÆŸˆ0ÜßñeÛ±×õÛn¤ä²æwG¡ ©ÈW½S òüi:ÿ”– Šùda¨(¤C(ç›Á.­V¥±Î’Â÷ä(3QäÛ6=¿cSÛÅx¦¤ŒUQo ‘¦L7[¤š ° ›óÆmŽuCUmu&¨Óhà™ác „41åkíÒºã-‘MG¿õ‘?f°€Á°lñÌ;àÉ}îaSHN+­aà¥In<$,ñÞbDç*I=p¯[òÞžbë_„†ÑPTï-3Í­dœNöÙá!¿îŸÌ«ÝxŠˆÍlÿ bgÈý– X‹"³"3 ý`ìýy€»‚)ª±™d·oþm¯ÈÂë+K¢ {4ûƒcöÃ¥Ù«jgáØhåãa EiL¬d¢ÿW%$7B—‘P…‰e*‹gl†ïÑÙÒ;E]† ¡ƒãvÄq¬lÍÝ">ÇE›ƒÒiöqÉý01'7@q*•9‡`rð¾Dê_ªr°÷¤IoÉP/ ºCH–{O‡°Æß"eç÷˜:”¥Ì&³w§oèW›4Gà’4ºG"y~žºW4¹ëm¼Äްß$Ns­ƒ8ME:ãtù§›<Ú3…C:rä º+䆷­ÂÛ‰VᵈnI’2p â÷×€‘ Q¿ÖV¶ïKGAnççA‚WL,}·;Ô´÷\Ñð ˆ%çÔ}½šhBZÏÖl"‘pò‰X©ÇÐñsfðÐÏÒ3ô:’Ñ@[…‡ò¶Ù5Cƒª[áT–¼=…s7òéä̈ˆìÌ{³y®3 ³iˆç~:ç÷·íÂFgƒjþ9öƒwð°DëGYÛà}xìCˆÂÛÏÂý¹iƒŸûØîý?8Ðw½u\ú ­½î\rçoŒT/\ªY¨#æÁ·œNkÉää–cèëׂå½¶žwz®éØŽ¨cè’ óо©üNÅÛmÓÖKǨT«4OŸ:F™‹E}³,50~Ê,=ÏDH ÕÉ]ÁõCP6´ó½ ¤}æ„eÏ@'µŒîDft!ûßÛ9ƒuÍ$*¬;…ÕùD§CMùPÙ9 Ý¥=!™bæ²QyŠùS‡ôµßà5 $$LIä²î;“oÝéNóˆB€]¥úƒn:fØE¥ô:±ä|‚ífùU³DÖaãþÇ*—@>û R¸½³æFä]ƒd9SðB<™sì0ÛëI޼{]ðJ4†nœùEïØöãá0q±hÕ&á»(ºÈÛ#Ñß =·x&Æ":?GûûÑ…¿¼úÏ!;'ê­å^øœÒj)ºÆG³2it ů)óâkéÝ.ÜÖ,Aº·¼š²múý%A¶Ö¢89¬äd6Ä:àg,DMØÔÚøá¦LGe]‡æþæà‚¿ÎÔoŇÕ”’’bapÍ÷˜ë@¦Ë² [ðžÇ9¢Û…uÕïÖ[ÿ?.Ö20 {5L07îõÚY’V¼ZKC†xÉßË%£À !•N³œ#’Ķg/nžý uÕ®endstream endobj 220 0 obj << /Type /Page /Contents 221 0 R /Resources 219 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 203 0 R /Annots [ 223 0 R 224 0 R 225 0 R 226 0 R 227 0 R 228 0 R 229 0 R 230 0 R 231 0 R 232 0 R 233 0 R 234 0 R 235 0 R 236 0 R 243 0 R 244 0 R ] >> endobj 223 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 748.423 169.4179 758.7177] /Subtype /Link /A << /S /GoTo /D (section.8) >> >> endobj 224 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 730.9884 175.259 744.9361] /Subtype /Link /A << /S /GoTo /D (subsection.8.1) >> >> endobj 225 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 719.5313 203.8736 729.826] /Subtype /Link /A << /S /GoTo /D (subsubsection.8.1.1) >> >> endobj 226 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 705.0855 244.8293 715.3802] /Subtype /Link /A << /S /GoTo /D (subsubsection.8.1.2) >> >> endobj 227 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 690.6397 318.8218 700.9344] /Subtype /Link /A << /S /GoTo /D (subsubsection.8.1.3) >> >> endobj 228 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 673.8693 192.0071 686.4886] /Subtype /Link /A << /S /GoTo /D (subsubsection.8.1.4) >> >> endobj 229 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 661.748 178.9008 672.0427] /Subtype /Link /A << /S /GoTo /D (subsection.8.2) >> >> endobj 230 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 632.6074 393.6982 646.5551] /Subtype /Link /A << /S /GoTo /D (section.9) >> >> endobj 231 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 618.1616 287.1161 632.1093] /Subtype /Link /A << /S /GoTo /D (subsection.9.1) >> >> endobj 232 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 604.38 303.8601 616.9993] /Subtype /Link /A << /S /GoTo /D (subsection.9.2) >> >> endobj 233 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 578.2282 161.2402 590.8475] /Subtype /Link /A << /S /GoTo /D (section.10) >> >> endobj 234 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 563.7823 198.5021 576.2688] /Subtype /Link /A << /S /GoTo /D (subsection.10.1) >> >> endobj 235 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 549.3365 213.9537 561.9558] /Subtype /Link /A << /S /GoTo /D (subsection.10.2) >> >> endobj 236 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 523.1847 165.9462 535.804] /Subtype /Link /A << /S /GoTo /D (section.11) >> >> endobj 243 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [466.3152 112.7571 483.2654 126.7048] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 244 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [100.2687 84.5296 117.2189 97.1489] /Subtype /Link /A << /S /GoTo /D (subsection.5.1) >> >> endobj 222 0 obj << /D [220 0 R /XYZ 72 786.281 null] >> endobj 6 0 obj << /D [220 0 R /XYZ 72 506.1652 null] >> endobj 10 0 obj << /D [220 0 R /XYZ 72 474.733 null] >> endobj 14 0 obj << /D [220 0 R /XYZ 72 317.946 null] >> endobj 18 0 obj << /D [220 0 R /XYZ 72 217.1157 null] >> endobj 219 0 obj << /Font << /F25 169 0 R /F15 175 0 R /F20 166 0 R /F39 239 0 R /F33 242 0 R /F27 178 0 R >> /ProcSet [ /PDF /Text ] >> endobj 247 0 obj << /Length 2722 /Filter /FlateDecode >> stream xÚµYÛŽã6}Ÿ¯hÌ“ ÄŠî—ìSt6³À&³q'À"ɃlѶvÔR%MÇ¿uªHÊꨓFæÅæ¥H«Š§©oî^}ù]ß„¡_¦itsw¼)J?‰“ä&O¨–ñÍ]ý«÷[æ›ßïþõåwaz-LÅ"²›€¥Þn¢Üë›nÞØt§Í6‰¯ŸF)ì§Ó€Rè‘·Œg% C1ø?Õ&ô´é@¹«¯G…ÞHmv`Ýo¶4ä0Ý«cG ›Þ,ð[Z=°L¯ÇÁht”ÁZAº•ʬYŸ¶KûÚ†‰Ÿ$iÉFÝC¡S{¡)“Ô{ÐꨴVµTGh“$ž,YxæUщUñßõúƒ:j—Í(Äj"]HõÐ'…‚ÂÛ)%í;–<Œ¦=¢±~òõe¡÷úŸSS«¶é¯—yG^]^Ù~Yl­à­aÉטOܼŒ‰­õ3MæÓÊé_Š7÷d4ÚÛŽˆ¸ÈÄí(|Ä{è†÷¨á¤:¥›ÚH»ºh«FFPm³] dËN';Ð|ð™‘ϼ†È½ÏÖüZ ÎýÔÖ"±gÕšÅÆ3<G™W!BQ É¡Ðk©awøïúQ ï'Ž·æxA]}b㬄ÖÈÚD„BX#üÚM'XJ¹p”“[”Þë³½:²ãW›mNqÖÁš£‰sïN­š5×è,Ä,6\ùŽ@›Vï§F_/WáÂ]CÚ'‡ÊØÀUúin*p¨V\à õ˜üÄÂR¨,Ú¶‡þÞ4pxàD£Òç>mpU×à”£k X<€ßZµ‚=fZíFÞÅNÌÉÝ÷Íp¥Y÷8“^·g–B`á §k[e‚Ѭ0̱  L0Fµ^`LDŒq›À=² OýÈïd0[K}Öˆüº®Möˆi©G؇‚”÷M¤šBÊ$’Þ­AdžæÞŒ:Jß^è'Ñ6ï8–óP°Ët=… t«NU×X³—DÁõNâ2÷£ ‹ÌVþ3Aª‘îÙ¯['³ðïíî-mî§ÛÝîÇ5e…æYiæ臅ç9ÂÔ•‹I S›“Ùö’”¤ãCSÍ¢âÂ|á”4÷Ã(ˆÍ’ï·@ üÔŠ~>¨Aô€Fš1ô~õé‡ñÏÿý½5!¤lÝ‹†êÓÚ>·Q”úQ™?±Î}ÕPnÃ\†ü7 ¦”m–ôIÈÊè3 "A»â€§¢ ~4+µ®9T­4i›¡Ð,¸Erè¿éØÀíT›d‘¹ Ò"a³;ÙrTœGtdÞǦ5 ó9¼¬&sï+13˜. m“T› Y$èÌX!SXB[r©jS¶L:‹zÈksHQðV­…‹a:p³Rµ°9äFŠë0MÄ¥e)‚Ý/ã8ã]E4*ŒRï{¸Ã,d”çï¥H —(˜"t66Ρw!i ÛÕÄËêµ0"{F™‰ØóÍù<˜1 ÎKc ›NÐÂf§öß(C„Ï2&ô­¥Zzlþæ"㳆ì‚s)Pié²LÒ‡^ØžnöÓ¨¤p4¤é'3«¥4ÔÝõŽ è†NnkFaj,â†/õfˆÑ¥[‹¯³ ð`Ö,ÊY%À³bÔ)0Ëä¼Jø)ŠÙš,jhÊÈDz¥ÂÄ—þ«ÖLªÕiɵ´3Ä[Ö e,.=XÚHITäˆå½¥YvoŸÓ0ü" ,Jƒ{”xÿS‡Q š åçe/­Öwë8ég¸1˜Ömâ@ŸïŠkšä1)[E@ì ™ß¶ªØ;‰gx.4§œääIŸŸAµlãÔ{<#O›>IÖ“ÔÉè™bj¤5ùwtX*JfA[}ßt4@so†½ëø¤‚ó b(\Ó<[Þ“f’ÍÈd Åòl¦$Üänahs)ªï®`%ñã$³Ç:Nü, sÖ ¬|-àÑs Œ³«æáEîiV|ª«–~ÞÚÑ”¢ü0ËŠù› 2/mìâ DÄlÅòTp×4{© 9tå"§|öÄ9(ÅO|vh}æ$„~P”6zW I,*3É3ã`¬"ë_„¬ÊŒ‚®—­KT†~XFÉ2ZäŽeˆXr˜ÓYpO²¨01–^þô •ü-Î4ÏÄï–¡”R€,ôZNE ùûÆÞ¼ÆF!ú8¡ÇÔZ>øk±BŒ×²,{(lÝðü¸‹tͬž¨ŽP{ßþ²“C?ýï~ùA ×/CC®ºlŠì1NréN" BÅl%)ì´Í»ÆˆNmϨ ëÕA-…÷“!g xMÅLè½Þ¡ñhÖV…³°.+ééÃ&%Ò|sG2Œr y÷ÑRûÖôrgÅ@”QR˜$«ÒÝHê—T˜ãÜ!coéýJIN£ˆ¯:;‘ƒÝÌSÍèô`Ó£ÑÎ̦Ga?""7fÓè¼1žŸá}Ì}ŠÔû¡g†«:TMÌѬ–-Ap|"?Jé*‚jã6qÄJG•qFƒâ\¥ÙÎa5F‰)©¹È2§¤žº°‡½px£œA>Âü´ô‹œVX>Ç©y>Q6¥ öÑÇÜOÁMS·°¶óuâklH˜êœHµéçügz¯a"Ä™+Ê÷A)´¢º9™öÁ¡ERîjFùƒ£[Ý0dxhÞHÍpĸe«Ô"Èþ )%ÜͶ¶çŠ©çEî´r‡ÿÇ|³×b@DZ%쿸¾{¥À±ÛûôçM=_"†EÂŽ$SWÓÙ5£Ç„Jb yѸ‚tÌxÍx#ûZ×çë—‰UÏ;i=¿¯µ—µ›Æ>­=›`óOL°‘OÔÙrŽÉ½Èˆcù™¥mùXÊíËî¶¶†tùͽºWãvøjý ¦Hý$Kó= r ‰ÌcªÒ¢…^Øý‘€Pä¹w^„šJÝ R-_–ö‚Cƒzb ÷PÍÉ ·cvåßüÀôÍdl|·)p;f-‘¯œñ•ÉR…Ç®žü…վʥ־¬ƒš­kMËÏÈ66:>2•xpO¡WoØŸÃ\ÿv"“,Y¢ú/"``’¿)PuaQª?ymÎRû¹ ÔUP{ßf©ÚŠ™ï ³†ÉUv”„ÒJl€ d>&iàÝW¿.ðhätUO6h›áOß©æ\µžrÈžüõø(Óö Ý2S\ÇÃè”~Z¤Ù‹9j¥ö.Nnï'wÏde!ˆpƒr½Ÿ‡™| ÑõêöîÕÿm‰ÑÅendstream endobj 246 0 obj << /Type /Page /Contents 247 0 R /Resources 245 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 203 0 R /Annots [ 249 0 R ] >> endobj 249 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [405.2412 730.9884 422.1914 744.9361] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 248 0 obj << /D [246 0 R /XYZ 72 786.281 null] >> endobj 22 0 obj << /D [246 0 R /XYZ 72 539.6227 null] >> endobj 26 0 obj << /D [246 0 R /XYZ 72 432.0178 null] >> endobj 245 0 obj << /Font << /F33 242 0 R /F15 175 0 R /F20 166 0 R /F37 185 0 R /F25 169 0 R >> /ProcSet [ /PDF /Text ] >> endobj 252 0 obj << /Length 2854 /Filter /FlateDecode >> stream xÚ½YI“㶾ϯèšK¨ª›ÀmŽqÍTœTbÇÝñ%Î-BÝ\4\ºÝÿ>o å©TR¹ˆà#ðððÖïA||wÿYë»0ô³(RwÇ»4ó6æ.103}÷XüÓû%“Ý¿ÿ|ÿ9Œ–“a˜ê ¾ hÖ¡*;•xÏ»½V±×6üüë>¯FࣙøKµmpú¸ž>´»Ð»ð’ªl,Ì yïµ {·ù^ßiô¿“4 ‡Ý>ôP–‘¤¾)÷Ùò ²¸ò8ÀÒÿ£ìŸŠr`éþĤ¿Ø·þÓŽxªjqáëJÞÄ+›~èðœtb»l›~2=ó¢àÁr ­tLxFl„‚Ó¹’ùX†þþ3KS¯E­% „=OÊ"íϧÝ™ÚÚ2!gµ¨`¥ ›…I$zùûˆâçÍ€±Þí jåáÇŸ>Á.HýaS»Zû¡I„Ka_è@•x!ˆl;Tbªgg©zäy&BUi|"ê¡+åë“¡vAï¤+•*ß(m@k -e$ÀÀ&¢HÁ5,ÉKˆ„“¸WÙý–S… F®^+ö)Üö©/{ØÄâOaáçÅVðÛ^Øõ[JË?Sa*Ë1(зRïuï|¨Ëaëø€ðq·R>.cPN[×8ylÊC>”¨@ô7(òˆºÅ£š @a€Û ΃\X¡]Ï\ò¦àÐÛ Jö)‹N½g];yWª¶ý` WA|µµ„¼$ö¸é&òƒ4 où£N’m¼Î Qìga–üw†< Z뺄ßaÓ„IèG l=›°Á%þw‰l)ve5}mX£#6,ê ‹›ºDTÛ¾ÏO(2ê}IA§jû p h.âÀ8K½Me Æ´|¤Q用<áõleÉ2Fñ½³'ˆÛ¨Irý9óú9|q6%™ÂécOá‡Cò@D>÷"g³e™Ày[J'<£ÀÆÔÇ{ø¹}…ßW~¾Á(Ew¤.ÞŸŽø‹«:$þjÈ|Ùc¨ÞszÀì^S:½ß²µ‚ª‚®Åؾ¸/Ì1¾61ûÝ4i¯ÇaBs•:QðªÈûŽ|£Ùi²UâïÓ8ГRTy ü•_0£ÂtH)¸ôRãÃ2‡M¿µ)å‡qÌAúó.…´Ð‘[Œ¨ï4ð.  ´ÎÁcg…HÕ+ç÷Ù€ðrt>=Õ@ l$<Ó #8|ÀÆAÖ7ö•s}¸Ôγy:ø÷>Íbï‘$ç,Ü”ªÚ"âÊO {q’#kk±Î¼‘éTðµ8"ÒŸ10â žñÈCÚ*2è3Sæ ëÏ9äEŸKá\78Œzõ½òªâÁ!ï-E ÖD®k¢^¾V6ïØ$øvžr ¼PIÔ[›jxøùo9«ÐvVòòƒPŠ˜øþýTaÝ{üÈ©é‘J´uɽsl¨Ê¾] þT’ºø\ýuö# j?â+œ–¬sf„mŒ D ˆ‰3/5Ï•ËÒ‹SXÅŽÔ3‚tç¼™Ó%Ó)ð0X¹¨–HA< Öåä$³›êM¾ò£¯Éx8¼Ðцyîf3ph›øF£$®³ÄWA¬×6ƒêLúôð°‰´âÔkæ+¶sÅ¢Ä9ö#Èûæ J3;iS®Š°ƒ¦Œ•ÐËž™SQvN‰ô“JP½WÇü‡†ÝØLosoü; íMR`ñz"Â,iy!ô e^³_ñú£TCŸ%QõüÚŠ çéætÚÏ@ä×í„ë¬È¹:!rîÌÖ¬¤ ФíÜÐ01§Q œVrM¡ª?çnD[ϰ(2 ¡ÐÉÍÁò‡U}W¬zœóËe‚cÁU±Yõ6øV &+QB¾>s…ºë˶ùÀ”õnà=¹CßóÕÔ°uðuà¦Æ9ÊbšR™žð |Ÿ¼áßáÞ>à‡öÈÏ ؼñ·EÞã‹%ü´èìç‹FZß2ã¢]ð+åc)›Ì)l1ÓÝ[áøÈI´âÓŸ è-¦˜,H2Ò²ñtæ´&~Ia•¦œêZWAÒM¹7§ˆwí¾ë¢Í9Ž.ÂÛZ’>åS× µ×DºÆ(OÍf -ØšÄò¯º?œº¬+Ëχ w¨0¼zÍpJ„áuÒ ƒ¦©TÇáùK¨M%hªî›ð&—Êïy—ëë2¬¢/ÄnßìÆÁ·»¤ÄÏ‚E—ÄÛq “œDÒ\^ð+1ï)ñC%kœ#MÞ€Íñ/[()ˆ¿‰’4âð¯"èÎÑæf¶¿ºÕ"·Y÷.·…«cÎ/è÷ų†| ò»u\ÿ›? "†õ©'Ð2l©uuí7.}eáÜGᦹ@¶72AŽâÆLøâ¢²¾ðõ2ƒ=˜»Yv³PîŠx,%[€k†¸|ñ•/ØIèY8•\4`‘e „7ðL1î/ÙT"*î"£ÉÅx°“ž&¼³¸À©ç¶Áb¤2ãòÐ^þñPY¼Î·¼¢nå ørìì—QVõ&ÁIõ=’†8Z” ÜäëÈD*ePØ#“üéD%‡Ùº8ð=6Åû›HÁ·´·¡ÀA¾xŸÈÂ7JoãP6V)ëÍ~4ôÍŽBÅXûw<Î"38ruXT¦X\3­ÆN› Ž62Œ:¬¶(R|'¾Js·Ï´Ÿ%*$) ~{÷éñÝ¿Ððéýendstream endobj 251 0 obj << /Type /Page /Contents 252 0 R /Resources 250 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 203 0 R /Annots [ 254 0 R 255 0 R ] >> endobj 254 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [145.8487 470.5899 159.5472 483.2092] /Subtype /Link /A << /S /GoTo /D (section.10) >> >> endobj 255 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [265.9051 257.3894 288.7083 270.0087] /Subtype /Link /A << /S /GoTo /D (subsection.10.2) >> >> endobj 253 0 obj << /D [251 0 R /XYZ 72 786.281 null] >> endobj 30 0 obj << /D [251 0 R /XYZ 72 540.2453 null] >> endobj 250 0 obj << /Font << /F33 242 0 R /F15 175 0 R /F20 166 0 R /F37 185 0 R /F25 169 0 R >> /ProcSet [ /PDF /Text ] >> endobj 258 0 obj << /Length 3004 /Filter /FlateDecode >> stream xÚµYYÜÆ~ß_1ð‹¹†ËæMA`Yr²’‘‡ì™m,‡¤xìz’?ŸºšÇ˜6¬Ø~!û¬>ªê«£_½»¹ûÌv*tƒ0öwÄß%aæ†* vïÊïß½Ý+'€ò#çŸkõmà;–ú·û ‰œO±’cóÓm Ü;¯›i Ëë’ ¯›‘¥óØt<§ÔOHJcgÕà·… Û1©Þ}~÷Yì”r³(¢m«Ä ƒ0Üí}ßUqœÑÞ¿÷TƒU´¬Ü4ðâG£^Ñ:ÇæV9ý4sJ¬˜ú„µ6}ë§ÎexÀåÀÁü,†î÷£á ©óŒ$ “h Px RÇÝf/«Nç0¨¼ðz<¡ÓBº‘ic]j)â•ø‰£«¦=ë‹8xús_ó 6ïöx^8ØX†QJ'L1V¸^‡ „žS M¿GhR ÜUäád¯`m¸rè-óÁž F(;àápÐGÐ÷ ÞU^rÏ,À°¸¡ÍO4ŸY–,¹àƒ˜¥*Í„ ÏÏ0ðÙ…Ïû)Ö¸ðx†Ï^÷H±CBXêÕ`ýt÷wìÂO´ÈÍ›w7 (z;µ‹‚Ø ROí廩Ç»â|óþ滼]yãí>¿ñÜ K£Ý3TÿÁ'·ä¨gJY¹|A¬Ü‡Iä&*É,KY´{MšÊñ;gÝ÷r×Ô<4[wž­,°Wþ~ãñSjø<é ïµÅÆ®ßÚ`»ÊO”Lw·qÀá&œ$Í ½4üª˜y¬Py7LJ íÏDC3§hXXYRÔMc‰°zê+½Ìœ *@3ò ‚ÄŸË{š«fÚÜ3<à°+¤Ïð_é3Ö0žn£tÁTù¡ÒkÅd.X.ô|V(,”¦P®ÍaLSƒ~DZr>!Ý'L*y\§K‡¼../o÷QOƒM]]¸tQ"öG>²è±Œê‘Þ‘o×GCYꤳ2µ”ðˆ´ÅÕÚî›/csJ¾6Ý×,¡ú'8Ü/ÈŒHˆLô"óï€C’ø ™Iê?bU”¡oγf0øå„åšÄë%/㯗 \•DÁZŒÿ»¹!ß’$• }ºÀU ­BŽòÛ¡ûÅÖº!‚rÏHÛ˜ŠåO½„ý0€ûuÓVM%6=[è]fÅ=fšÞŠ®؆`ZåŒü)àFÞñðP†r H’‡b‡Á8oH+ÛgÌ*Ñs}¤[¤ÝJ¤9P¡ÓáAkÍãìü³Ì+鏨ãŒ<1X6Ç‹¬8ÖPáXa'¶œdŠVë°ÚÙÚ"¯˜ èíâ4Z{Ûs+éÐ WwyF«Zªbç[DŒ óˆ…t>£õÇê ¢S‚h¢X7NÖ¬*., >³¿ëy–9nm|uƒY„È‚{F¥·—]hîÊ©ë•ïU"p‰:tÍØÄ="%h‰O2}ãÒyC0Ãc_èv0‡Jºé<ð?LPƒ7øÈ ‚2ì¨É§;twðž·Õæ¢IQ$L$¯šL]TcÉœ"htWãŠV3O´´Z9ER¢òÞÊ#ñÁ¾¥‘…–¯G:CMN*x"à›&Λ·_}ó¼}‹­_nãAê*¥,  ßän!Ì>ˆc7M FÓ }p½#ƼFžfþ #Pí<Í(5fçR™%¤ã†kô3P6l{™²@nhjþŸÅ%æZiª½22Ô?Ø…öŠÈõƒ!F¡yë…ê‘ÿyWnú¯b›fŸôŸ°ý¸2`/˜×F¬ÂÁ••{Htg&qYÓ#g²£ÎŠ#+cº£¼ÅKË a¥úV"hZVbùŠ•„©–•XY±V¬´á´Ïìij³Äu,c„L.ãL)hùDúÓ=»±Ù…f;_æ5Ûqré}~‰!Jú3ÔÊ®P w§Kg+ˆ»ãÇž{q$ù6X!lj–m[¥ ë.ÒvJRX,êI:’Œ2ìY\Ðfå!õñK´’Ÿ~”EóÅNIDkD¥ !f´…†-<‹¼×ýŸ Wi4ËØ”#ÇLzà® Jk>ÀÈ•QÃwFÞŽ½J˜¶¨”‘¼æ"s¿ŸÛ\|6UY‰±Ãph!D6®%ÚEsnÇý–Ð >DÁ9szóž0øþ}SY'¦çÎIwB8ž‹õÃJÕLèðÈc)vmÉqi"ÍÙQùì.·j“LËW¦Ãcýœ‹¾`•²9•DRù¦·lzX´vÓÁùm€¤æLì™nåçÈÿÁœW°xg5ÚG—ƒæu—5(J̨ Ëóð³ÏhöuUm;êAâF)„”ÿ‡£þšïº˜ü)ÞƒxíVš)·Ñq „Gúãô{¸»0UșÞÒÓäÞgëa%çA „¢j^s¡lZ"•Y<Å)†á°[z`ÜΞa›ƒ÷¢CòŒjF‹4TH²íô“‡lK Ø9ìúé‚‚8$ÿL»'N E!ˆHEH'ç ð+$Ÿ ¦Ô1| (zÇýËbÐJpéÏtLÝŽyf@3o97‡Õ)ê­L‰žQfÇ`)ãBsø5¸”Ínä2ਊâ±ú°ºf¼Çð—!PßN©Ã+ÉðBj?[g5®a8ÌÜ8I‚ÆáûãFtš—%ît!pwÓA#%¿VkùÒ¡8Ý.»/öPzñyÊm3ÃZû­‘#$h)¯Ö´Lpæ_¾õ+9¼ÿÌúê[ø¼»N¿©(Á8?‹]0•þïN¿M÷K’é7û®ï“¦q¸×¿¸6ÓuÜ̾yne‰ðí¯è·Dè·@Œâ_ÅW˜€A>%rBþ-¿2ß:PhŽDB/›s«öÆÑW×=E˜Ù"º…fýS~†¸¿— ë&ïãÈÍÂ4¹ÖœØÔw~“Cñ›cŽOÈoñ<§ÖÏyþÙe¢ÜÅpäuaçq ‰õ`²µMP¼º°Œ@2ñÞ5wáéÏäž×F—ÜvkŽƒóšÿrg\¡\:vn&Æuo© l¬@ˆjfGM '\ë ¡¯žËÝ:';Gßèæ„ZB Ê„MÁëä­^ïÎAV¢Ò‹ò3È_Fr’3`äÈ‚E@HŒ-z[‘·‚éòçÑÔ¾`¶,âsŒìZ޹FzW 0FÙ8l±Š¼4@C,½†Q_¾åòPþ‚‹â¨n¿{äÅÀi“Å¥’÷x+vxlï÷.k”Ÿ¹~Á?pJ‚EŠ1 Ôœ/ÆÊÚ]”dqô‘ö‰‚È36I¶uì N8"D‰Óõ> endobj 259 0 obj << /D [257 0 R /XYZ 72 786.281 null] >> endobj 34 0 obj << /D [257 0 R /XYZ 72 761.3744 null] >> endobj 38 0 obj << /D [257 0 R /XYZ 72 147.9664 null] >> endobj 256 0 obj << /Font << /F25 169 0 R /F33 242 0 R /F15 175 0 R /F37 185 0 R /F20 166 0 R >> /ProcSet [ /PDF /Text ] >> endobj 262 0 obj << /Length 3197 /Filter /FlateDecode >> stream xÚ­ZKwܶÞëWhWªÇCIîªqìÖ9©ÛDÊ*É‚âp4¬fÈ –õï{_À#ʲRmH¼\྾{Áï®Ï.?s®T˜'‰>¿Þœgy›8>·1Tnί׿¿EÊ^ü~ýÃå•LC13QzѨïÆÛ‹•ÑiÐU‡‹•¶AÛ =·ôÛvÜ­¹|èªMu±RAw¡‚âf÷ÀÍ7ôI…‹ Æ»J>{]70\¶2îÆ-9@gW”ÐvW7Ò¸) µ¬wõ€í²N1ðNŒîÄØ(4yì¶òG_®6ðh‘ÊÛ*ôÅ¥s°&Ì´ÑòñÛ¥Vq‡ZÙü|¥â0Ž“œÆn‘ðá·——ðœ.| ÏÉ—Xßà C×Âó¿8´Äï/ÿXáPì:ÚóÖ;¡cÆßó,9_i #Êâ—2XgŽÁY€d±‘¸´Å&bµÎ,ð¬ÜëŠû«¦o·\®›MÛí‘Ô¡Æ/?´Üíeqó$/xJ]K]뱬Öo/V±BÖ%‡º,v K™ÞÀ<>#Ó«®¯Û†gm°aܯp£°£dž5ÊÛ¢[ßãp$±«.ûvCËp[‡Ò§’ l÷ØxS7…lã·(‰zx(›äÂý¶&ÙÜr™F"¬PÃ7»jÏ}Ök:̪rî·tü™L BMïmq`m«š~¾³ŒvVËÙöUW;.߸x õàè*髾Tå8ȡ͆òµD1Û¬¥´Çý |ß{€“ÓÁ–¢q²qe8r#"ÓŽø‰ïª¾lë›zX-ï õ#""z*YñÇk7Ø*ä< Ââq.ª4e«~52SÖuW•úÃÒ§ˆ54ñÉlvHï :Ö¥5Œ ml?Ê–­Ú¹ºAWf`WßîêJZîìÖÃP5ÜVË{Ãâ@_4ÖB#&ªÃ©*OÃDyükHG¿Änàvr縪„«yc;§€T³Ê£gÖ¢Ðê“õsxD‹gƒ“ÜNˆ¾Æh< ,ˆ²€"†‘¶v®,;²[ù;ý^ â°Às÷Z IÕjlE« 2—üÅá wÕn©¾”ÕAæ`w …½C»ª_D‹Ê„9* ïë®æ3}B(M¦©r‡.siJ[›ªÔKÎØãöˆ_ÃâÄIöÍ:*B9Ì(UlÕü0¿U,˜LPEGÆ3šj 1ÂSšØŠ4X°å¾«™¯ ×kzgÁ;®>)wÐ$S¹+¿MîAä2£‚z¢R š3l "¬0Úã2ÂI´ÐHÛ ÇlÙ÷™6;ߣ=xf‘ D?‡Ž¥°dŒ×;?0ö>r‘$±( ì÷TœÃ’&Û3sÖ*\<°ŠÖ Ô “K?{}¦ \%¸·(D'6´9ØûröÇÙ¯¿Gçë³èü‡3Œ‰`‘{¨D¡Ês}¾?3aš+í껳«³Ÿü|+7áj:ãweΉúÁ²«ãÊDä/@ä'„DÅ,`[FŒûÊ7ðøðË'x¾#S¶èß4¸\g—½.o˜åÍ¢ÝSn´“©Íˆr±(T@nY;03C6däLò=õ@øQ¶]%{!& †@šÌSìÅj€‰:Ábúÿg/¸,“ù¯ÇÞÉŒ_e¯7eï)•˜iÈSõŠdºŸ¥31¡Ê@ŸftR¤ðˆÊŒÎÍ+Réf|–Ê@˜†}F%ª Þ|xDgž„:M“W¤ÓÍø,yÆ29£.B¿¤W ²‰Í^®³NðñIç0Ôd¯(M~Æçöap˜ÎDDø´X€!7ùÜ ”.^bs‚ÞèIsÒÕŽ˜a»žX9°‚á‘:º¬jïû°¼®0:hÈ1EŠ€f­Q Ÿæ7P®ŽÀø¦ÌTù˜M:Ôà͸0·¹~.ñ„«éŒO0 Â)}\ ^cÔ´A¼nŸ@:¹òè 1,0èz[÷“ƒ‘ÌT'qa¤&îº$#¶v]’—Œ(³Œ{ÒPéÔ>‹{@•¢$KgÑ]ï0a;5'˜ðÚ¥ ¦’ ìQ « à­Ý˜|”uPr²©º‚ÃX•N@ÒclkÃXk=·˜ã¬qŒ"—À-ÂX­ë1çF™žVr2BåàvÚáÓ…å m!ÓÞÄïZœæž3„å1å ê“AŒ•žBh2N6 F—os!]Yô•h£Í…R'‘pNDUD T(IB\Α;(ucsâ\C©!®Õ¾ÇÄSn‚«ª:]ÖG“hP–\?¥ôDô ï ô?Ããýßáñý¿Þ/1cå'`™¡|Ʀ䲯©‹Î],äò Aˆ1¾ÒIð±é)3ƒz€/Få”8Xq¢Ç&Áž9{pžp{C‰~ÿ ¹–vmPü(òÕ“°ß­zN¸b踓‘ºÛ Ø.†Ù`Lu”¹šSUô9Ú ãÊLáU ʃAÌEj-ÉeZRȤgÝ: |.œ²ÆŽ:¡GK6ì4…x¡ˆ…x»”T–/þDNLw©s_Û“+› _p¶ƒ›È ìõΫ”絤3{Ö9wáP­ÿöÚ©Ì›É žL×þ¶jåý2ÒèýñÂÞÞùo¦‚Òv‹F1,k=ãíÆáù€V,º†p8Mb;¿ÆùHêLh+κ rÚ`®è|óÀ'¦ahSUë^>oùÝ‹¡+ëÍ·Ô“ž0ô&÷°†.xîе†èZ–“Á1Q:õ['»x$2^½ ¼t\Ãþƒ¿IâoùžAFÙIni¨v;ÉÌÑ*X8•BJƒÑ¼Q é©L#B#é­ÍÉä}uw’|>è4 ÚF† èSY¹—¼3á8)t½ã:Ð6“P¾ø;½á*|bL«é¸'+š¥õ}Þ¡å&8d¢<} ›!$Ó*I&Ê$Á'¹ôwKxlxäcô)vÙ˜.c}D£Ó\ 껋c>¦,&žËå±Ñ¸ —ÒÕÖÒ0Ë-f‚Bec;ÉZ«YÖúŸ-ú©{N‘“NÁ»Z×N1[~Lƒ>ðMˆ~óë˜IŸî;K¼MëËŽÖ: ‹.]G¥´|ì&­¸ÿD½Áå‘G}HÍA@áæ,bIî½¢,!cI°éÚ½ ¥_ ÐûˤŽn»²è+øGc–:Mž&dµx IÛ ‚ÒìÔ1Øüˆèþñé—'®rŸ.P<º­‘å—˜ÀU66só4üÓå­ãÈ<™’džáÓŸ 0g{Ï{Œn¤&$;ŠGpÙ“¨ãø{º¦Ÿ„dL,´ ÿl°hXsU2ϰ¦© ¾o›¿`&âóÅÿ,¬ K§/’£">ë/Àx `8£«ñfå2ߘM@Ø2=ËJþàû¾š2½ yʶtÕ­‹cÀÇ Vb ÆŽsÌAÞç–ÓØxÄ©XòñVv-ù€,b@[nÒÛ–—Ü{YÏ@º`³pï ›"zß-2$‰Ã$×fv>Äé£QåÜh„ž;…§Ø¤MÃþIý™ý ƒP#Öþ—öÐ& ºqÑ·$Ih½›ø&¡S ÈÎâôÂV¾]¾é©z™$ž^¸¬b«ùÜä±áºÿDâ j>`ñŽù³…hfûb—í¯‰ [‡yœÄ¦†ü7î†áN.× Ñ+íÃ) >¢H% Te`»ʽÀ†)I]¦ç¢‘Lendstream endobj 261 0 obj << /Type /Page /Contents 262 0 R /Resources 260 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 203 0 R >> endobj 263 0 obj << /D [261 0 R /XYZ 72 786.281 null] >> endobj 42 0 obj << /D [261 0 R /XYZ 72 593.587 null] >> endobj 46 0 obj << /D [261 0 R /XYZ 72 562.1548 null] >> endobj 264 0 obj << /D [261 0 R /XYZ 72 474.8987 null] >> endobj 265 0 obj << /D [261 0 R /XYZ 72 449.826 null] >> endobj 50 0 obj << /D [261 0 R /XYZ 72 348.9128 null] >> endobj 54 0 obj << /D [261 0 R /XYZ 72 172.5326 null] >> endobj 260 0 obj << /Font << /F33 242 0 R /F15 175 0 R /F37 185 0 R /F20 166 0 R /F25 169 0 R >> /ProcSet [ /PDF /Text ] >> endobj 268 0 obj << /Length 3009 /Filter /FlateDecode >> stream xÚ¥iÛÆõûþ u Ta9äNmÇAš&Ù5‚" .5’K䆇×Ûþù¾c†‡ÌõÑ|‘æ|×¼›O¯/?—f%¥ÈŒQ«ëÝ*Í„1Ù*Ñ™Ð2‹V×Û_‚ß¿ZÿvýíãçQ2=…B)•®B:”÷kt5üu¿;¾2‡n”HÂH¹+e»Þ¨LeÕv9\9íz#ƒ-®Êàf­’àžOlí.ç€ÎœêÖ­¼ªÊ·°ÿø»²Z«4èßòr{ßvöÔŠõF+¼Üñê=‚FR{ÇÕçÔ!GoðŒuvŒÐS« C¡S-´q!7#Ðf½‰dìp?ÂIâvûÏGœ›3$xdG;£4x½ìúHÿZ§ÒSw¥?RY»åQÎ0[Ø aw:” » IŠi%TrúQ‹trhÙ–l˜›tÈ my!j0Öœã3 $ÞÐ÷é,¸&¿fy³l¿èpò®$¦ystÛ¾qJ4wÿ»úx$OsGx޵ÊÅä(Ye¡2ÿg.’Š,1c"3溤)ÊDš¤Ñ™äHáäÔÕE+Ò„à«de€ÚX%êOÇÆâf r!8JZa¬ÍˆÉ¿zõôŠÞ ý"J,?‘ƒ»„199鬪b.íÄ%›î ‹¾ilU8I@òÊ2øÊ%_]òBé€ vŠÐÛ)Œ;…±O¯ÓÁ#Ó#¤Š™˜½AÛß´]Ùõu‰Ì]éSŽD0x³6šôöØ»$sv„c2¥jî†8Xâ¥Ò|HŠ.Œ&IEwæ–è­KŸ¨AÛ¸íeÅÐi*IZÄB¦RÿiÅ n¦ Cg{ŒV#ê‰b σñ† 3¾0Ï©s( ·ÎdBeìlÿª<•GŠ F@`{´dÄmBó~>!%û%#NµHtÍ¢BÆ^Ÿœ'y!ªÖ`cGYÛi‰ŽÌˆÓAÆÃ!*K¸MïºÑ]§!k¾'l KÙ@,¡Â< 'P€©©¯Æ—biaHÆ*™—Ã^ q®ži ê–+Òv^¼¡,œæ©Ù[ŒH‚ùh† $ZÒ¯‚©LðM½¦4ÞÄÿ|ëô «—þE¥dãl°ø’Ø«aeˆ¼)à¡$Ë·;€eÝò”‚è3y/QEbŒ kô÷œ÷Ê£ þIèD3¿¦ã+9ïß6ö );3 „°ÜWíp©áøsJÒ°XÁªŠˆD}JŠT÷Øv`ðöÔì u=xÅé4Ú­ÒGåÝ¡tý–Ùû‹±Ë6¤Ô¡|7œa›ŠQCjçÏKîU4¥mùˆí j™›is7†€8š@šÊ4=%Kǧ@5€5þe5à@ƒ×¸1ÑlÛGKz<ïÞGgrÄ”#þ£³cÄDÌrÙ-E˜êøSÊnüŠ!‡;˜)adÊÈç7<2Ddœ°–y²#±§¡lîÑÆq›¨Ó ÂYòw´–»<“j—'‰÷x »MÃÈœÞÏ茪°Ö:¢p“#¼bRž½èË-ÕièžC\ƒ{Fu'6Ósž÷¤fÍÿ'$9†”Š]Ì.U‚9T–}j dtäC^[{N<Ÿ@T9 5ßiØùÝÅüÊrð»ê½¤‡{[zh‡Q³îÄo‹å Õ)®A(iÎ?:]ó7!úºµ­Ù¦­˜•G³¾¯2gÖ¢Uì;„¸I^›a¸þ,6ÿóÖò*¹l¸¦›-¸AÞÀr›œiãlPqSBîô#:ŠýþàœÝb„5]šý¹)³/>O†4ÝH¬§½OTllVÿÝv‚0Jæs.IDTmj@`3?%’|W1æõr£LËà:–vÔ–da„Ä–¥sc¤¦§³-«2°@ÍÏø9ð/ùÔ—üwy¹äMù¥9eòýij²ã˜eŸ¡w¯ŒÚå½î¦ž+'5.b ?›¿âϮžïÛÍž‡Ã}u Sˆ¨(T¢ýK<œÃmðZ: ¾øb‰ø·)bø÷ˆfCß”6~ŸZ@£BlâhðXêAйeTú¶ >(ßg>0ŽÎh‰ßaÏøˆÔ{ù°ø…XÒXȱB‘DÍ4àNC³dîna~¢ Ñv<ã<,ómXªå-§¥ÔBƒ‚âUc'uÕ– ¶Ìå%™Ï`¨`ÉâÅàÐF‡ý¬pð€ù¹XÉO}µŒPP>PSì{oíŸQµ7rFÄì ”@O9àÁ í&ÆìXhåî~Xœ—pxñ>- žÓÇ·ã?êW…­ˆØaÌùÝYn”Ë0¡I yþ8 ":ñ}»ÿC'endstream endobj 267 0 obj << /Type /Page /Contents 268 0 R /Resources 266 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 271 0 R >> endobj 269 0 obj << /D [267 0 R /XYZ 72 786.281 null] >> endobj 58 0 obj << /D [267 0 R /XYZ 72 413.8858 null] >> endobj 270 0 obj << /D [267 0 R /XYZ 72 282.9602 null] >> endobj 266 0 obj << /Font << /F15 175 0 R /F37 185 0 R /F20 166 0 R /F25 169 0 R >> /ProcSet [ /PDF /Text ] >> endobj 274 0 obj << /Length 2332 /Filter /FlateDecode >> stream xÚ­Y[oÛF~÷¯Ô•á„ÃÞäÁAÀE ìn ÔE[ IÙD)J%)_€ýñ{¾s†Ô%t³ çEœë7gÎýŒÞ]½þ¨Ã™Ö* Ã`vµši_« g±M•Õ©™]¿-ÖÙ2HOK/ ÏgúÄ‹R:ó¥^TQB¿‘·¥¡d‘{uÕ,iÅîÑ»m°o7E36^<ÜUµÛ·ið—KO/Þý,ƒŸþiet¾å36Øý¬²•‘˽êóÚ˪ÇNUZùøø D-=ë›Åe/(U'°ù†é¹ZÙT%0˜°~ùÇÕ3æi«¬ S¾k¿YzÆÚÅv×K£Ãú Á¯K „‹ŒÚ<ØSƒÑZp‡þ”9,€²<ßìÜy<±Ú´yÕµ4ï—¡eà¶Ê[mƒ“WñÎQÐõ|bs;b£´‹êw_›²-ùÎî ë,Gï®jÊîøÎ ßy³ç|9 ¾Kæîl}¢ [ãÄúi™0Ÿ£0^|\&ÁwÁŽªézlhXD%Iœ´gQõ2K¨ iŽêXH$i!<3ß#•€*dcÀÁr<:9¶õwõ¦™O]S ÖßßyѦ$bRŠ÷aWÆñŒÔVY? y{ýJÒŧ².s‘?#ä›õ¶¢Ýõ¨ ÂäD“)±fŸ6Nµ¡+¼]ÔÄý¦é’:Êë&>²Ï@ß$3Z¦LœD úÝÒ µ]ä,€‚*˜¥gíݲ¡²m'ãn9·W˜ÉnE}C’œ¨ßa¹[“vµùÐØrüîZ¶… ¦3Q£ä{€¶9ýÞɹŠ)AaOdeÉäóÈNææ`âw?Ô¼ÛD*Õ::¶c%4•Åy²ààü=Vò¿aeÿã7!«;s%²?öÍž?=þECÑFÄ)MgýÊ“Œ°–YPߩ߮•r=äÓê])ÝÁܨù½ˆš],Íð›B`ØC”½tHs[·]\eÛm ¬­óhåxš¨Ø9ÒëêÊ{ñù¼lJ?„ä–%ø¹.™"0ôÉã€ö8X4lŒeíEŸ¤â³·EçÐÛ w2™ñUÐèºê¶¢jè´eÆý&ã½*ʰvu/ý‘­Ž°¢$Çl7q!ç÷œ(G— Þ)œrÇäÎ1CvZo\h¤Ÿ?¡|çã ìw>ÁC¦M}û„é³WgšÖø3M.%UIÛ™5FE¾‰fùú쯳ßþðgÅ™?ûñÌW&%ø@_é4 fë3£B­“¡_Ÿ}:û×èˆÞ!仉lƒ¦ Æu u•"¦Ï…âîNbÚÉ)ŽfU#Ì4êªë¥åô7°¹ža„œaņ‘9 :Œ¾¾¸ñšœ#²•0Y glÚ¢l¿À.ʼ-ÇL¡XL:PÚXs,Ým[®‘sP‘&¬‹•*N8|@‘ ·»Ö­x¨ ªAJYTç†äª¼[Û–oKÓ•û²nL ûI†ýr%»ŽÌ;xíÓ©ÌZfï²NömÙL`9n£ë€[IÔþ4Q_"ÛF1„·®|--°{Ðô % l¨lF3ë[k¾XIGDïrBIJ…}ö1¬ãœx[9=s†XÅ6ã=쎜ͤÝ_ù–Î2I¨‚Ä&/·»Ñ;„|ÆîÂИýÑÅ`œ¬GÉ4Åq¢´öÓoHñ€øUŠ­"Êê'(&݇ÌErÄsR¥4•˜îsfÅ÷JYÓÙ”B{Œ\`aq–ÿ‰xÃh»»wÃ|Ö^«±`_µæÂE '‡+À+ðx×Pð’dÑKˆw’-ØQ·Y»HÀçITæUV˨»ºP'ß¶ükWµe1¬ýRݪWÒõ®‘=¡õKÕß9è­…ÏPÇacT_„ýC{FpÊhƒg®‡Á笘ƒöm43tž…Z¼ØŠDïrÊŠÉ5Gš*ÛqîWì•g.”sAßAO$£w×% CZ³˜W­(ú»ýÝ($ð#w`Yzœ|™}eÆåŸvŽâÊj:ñ,F“nÀ¬O«™ŒbÊ«}J±é5ëŒÓ†¡ôs+ç./<•MDA;ŒÈ¸‘—F/ÏF@ïqJ21%QŸæ­÷þ”VJ|”±qü­hµ*ЗÞÙ:†‘N¾vgCØÍñ/.¯‘ÔY Þ‰¿¸ž —H@VòívNm¸'¬ê¤ƒ¤‡£;BgÌ,wpgq•—r%~râx »u9Y€&$Ô4¢ëŠBÃìØ¼æßĦ Ôêßôóá‚~Þÿüaª¦Aª¨SÀci¢ÈqÇÎèWÎÞvxf:H)šziJ8½ ‰ØÜðrn™— Šl[5åÍÄŸ¤nluVG­“gsä9‚Õ`ÊOÍË•Åáy€Sº†* ¨ì–1ã.{‘èûˆ†•ý1wF~ÀK ZÛò«’eьЪ(LÒc·3÷.ÙÓ‘Ûº—*ĘŽÓN‡Ø•Òÿ<úJ'4('F}È• Å@®NÙNìqžØšdL;ÝÌF¾\Eû©w‡üƒt¢Î` »îL¾åõŽjÇ7’“‚‚‰l(Š9¢˜ù_¿\!FDïr*Š}•˜8Ü}¢o¡Âøq©Ôkw¹‹÷.x£½wôÁÎáy ¿ÅÉÕz3¤íyÖ¹—Dœ|Ÿf½ãÓ —Ùz[—.ÁSÁãëËn†÷Ч“%’ÑÔø‚‰(7äjœíìšFB©CôüŸeC-U.Ê$éß½Ùø*†w;Ò‰—7ã#Ú*¥_ÿ-’ex„ÿ“Á›VñZº=ŸO>5¸q¾Ce1€=Â]É÷Œvºsò¹s¿ˆÓäU ӸœÞÛ¹G¿×xøtoi”ØrÉýÁÜOüÆ€™¹hÝõÁ]»£ÎýWp Ä‹Ú).È €O蘺¸¡ò" šßcðæú'úý8ÉÓ7o&_Ψ„ th5àjx]ù" ˆôåö0µƒ~ýü#®ÔfÌ­÷ÿ 9;hl™ŸTZ—õmߺ‡< ¹§[®´å]'ðRQCW ©truP2ø¦ÿi£ÿendstream endobj 273 0 obj << /Type /Page /Contents 274 0 R /Resources 272 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 271 0 R >> endobj 275 0 obj << /D [273 0 R /XYZ 72 786.281 null] >> endobj 276 0 obj << /D [273 0 R /XYZ 72 701.1005 null] >> endobj 272 0 obj << /Font << /F15 175 0 R /F37 185 0 R >> /ProcSet [ /PDF /Text ] >> endobj 279 0 obj << /Length 1539 /Filter /FlateDecode >> stream xÚ­ÙrœFð}¿‚RôÀªf¸G)?Ī(¶+‡ëÍv©0 ZJ,¬Íz«òñéc€e…'~fzº{º§ÏáÕõâÅ•BØ2\ã:‡©ga‘/m_HϸÎ>˜?,­@øfºZ S¥0Ü! 0[\70IÉ(W°¨Ò5 ŒC¥£Ô[o T066 ¶½ütýÖp Kø¶ï’Ž´ikºÓÎO—°só†¿þ€á—<3Š`øèÎi8VbŽþ€³ÚRˆpºÿ²(v‚ª%e‰[;ÔfÐ80%L§J0²Òt´ut¶|–lO辆 ”Óùà X³Ì¾bR{U³üdä,*nYÁ«þš5žGÏ™ô\ƒé»70\—‘·ož²ßhóûW"8t]K¸¶çxÒ°\Ï–ÒÕ7¶´<š¹Úá$¬Qª¦å­F}ÙâE[¯õL}íÈØ¼Ú-݈ûŽ+Õ¨‹¥å{Ž™œ`EÕvä)ðæ9Bc™v»•æü¦Bf¨:¡• ½ZÆî:Â3ÅýQà9S‘` ¨â ÇlUI,ÓNeç(œ0÷$8°Ø2J¥#ãUWó÷¥®uǀݪHq¹âåß8‡+ꊟ—BH@TyÛ*ÜÆÅGGxp9ZÉžë0³øÐ‡ПŸ“¡QA\Õ”l!爙&{/’¶ˆ”%­%Ú¯ÅÿLÙÊâ´‡€>íÍÅÞÀjÞ9ñnÛ Èn¢‰}rPÕ9\íÄZxtSÐÙ¼5g™1ºÅ˜§lÝÁL#w½É%ï§õQœ8Àï´ÚP䣘+(\‘jP3:&f>„Ò1Á.ù“°+Rì³w4CÙD˜×£©hàètò¯5`­`佇5ÃR iÏ.‹Jµs^0›6û"HÒd¨W†ÓN1ü’? ¦îŒç9”!¦Á‚¨‹|ß´œÞ1T뺧 Ìœ»æÅ6Û‚ü3U„²òþ†Ozy‚cÊt·:™K#YN×úòFÝ, nlÇRDD e`Æ„LaHmÁÅØeœ0±™CÏ.Æ‚HhCE~¤ Û”l…®›ÚÏ/¯V67òu!Øòb•`Âá¬Î®æ/ja‰S»"‚u:oö¼¤’§¹B¢Ù6#qñPt*í¶ÂLkVcqþ§"I'¯ôdÈ‘M´=Œ«è‘1ªð{y a6ç&äŽ^쑃ËÀ\“æ{^djÃuŒµ¾¸m˜ä‡ý¬u˜R`ó8!QÕ÷§¿˜{‡úPì(,õ‰hК§­&åú¢ÑG9¤3çcCÒ²\éQ²u¥Ï™W•%¦ ×Ç.HPô%E…yìO£~¡È÷LÏÆ“kÃeQñ—úÜ=ʱøùz!@ÇàÍ¡†‘k¸^ ézñeñá“cd Çx»plOƱƒ…c ðNc½€‡†q¿.ï ­£uÈò>X¦nïEÀ ’ãÉt')KK öa±}×ßû~bŸÛw[†P[&r“Ó¢úë&×ËØ¸Úùᛩ´QÉÐIU·:c¸¾9BLýcÓ¨Û1îIuùø†Îh©KH4×Ý+¹ÃéÃåöò¸Ž7t[“~Pç˜êÖ™ûõŠñ¢ƒÂ©ß›c€"t¬ÙȪž”Y†Ÿa6Ö÷€-K©Ú±¤cHG£DFïR¾Èôuî ¸Aþ )‘QRendstream endobj 278 0 obj << /Type /Page /Contents 279 0 R /Resources 277 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 271 0 R >> endobj 280 0 obj << /D [278 0 R /XYZ 72 786.281 null] >> endobj 281 0 obj << /D [278 0 R /XYZ 72 240.4966 null] >> endobj 277 0 obj << /Font << /F37 185 0 R /F15 175 0 R >> /ProcSet [ /PDF /Text ] >> endobj 284 0 obj << /Length 2475 /Filter /FlateDecode >> stream xÚÍ]oÛFòÝ¿Bð(]„ w—KrSô¡MâÂ…‘Þ!î¡-…\ED(‘©&îýù›]Š”è¸ûá^Äýœ™ïý¸¼xq-ôBˆÈh-ËõBÄ"’©^d‰‰aÔbYþüP–W¡’i°Úñ×î®dôû;ž®›=î®d47+VÅQ¬®D°+y\Úßb‘ìì˫ߗ?/âE(L¤b¦Ï\Ây„'.Þ,/‹b!T™8‹ B¨tQl/þ¸øõ÷xQ^Ä‹Ÿ/âH™\/>Ã#Û i!r?¯/Þ]ükÃ1Ègø¢àGnލ‘\xI¶úÄv—/¯ÂDi\ѼÂ/Xs}•Ë Ù÷°µ÷lÌ2ǨV·mUÛ}D\ •Š„Væœ9* . ÆqvÄ•$É£4jÊ•r’ åáë(Š.™5Sbû"…Õ-É€ÎTM£O»·¡ýñ¦Óšð9/¢A¹$n\“ÏNl7📢òÞ@–ç ¾d~88­ÒpÍÀ8æá± g$°è2Kؤ(Ž «µ‡–HGˆä?©õñéÊ••¸ïËJ¿â<s,´êÂvÝ(qÄ]äå¡o¶Î«S&Kœ' çÒ>PYÔ¸$ähÉF‹ž÷Ð)ƒ¬<öT%¤D‰‰ÓEbò(×À`8‚8£€ÂDq Yº?†o*Úö{ÊÒ™xtYž™8oZvŒMWõþí+¯Onå†ßÞ_¯º:Ôý…¸Í¥ß]µ-jEÓî+â¾e•JG™Ê’)Ë'vÇ"Újê7Àð3’Á'»A%PëínPâUOe jUQ4{Ê )á= S‘7xv͇œ"ggÞž)°ª½í¼Ò»öA÷'£äbFŽäj9 DÇAˆèÕ’B›Ò@ľ$ü0$sÐâh\j ·‹€ñ‰)4ÊžpBˆ¿ £¶mÑIé*¸5Êa\ò±ÿðLtO%‘E‘?Ÿ{îô…k×Ïä6 ¹¥Ý±! Ÿ™MœB¶„f£5沯шáäœáÄ&2Rê#jòåyÇ͵KD ®^gzš´ù2Ûº_FÃlc÷öׯdÕûJç·Z7®†¥ Ñ58oY_xúÏWÔô}q­²Ih–@‚:Ê1­ j!ad‡Jbª\Áÿ-§ÍxñU‰DBë©P¹õóo­Ñž˜ߣC _É@BT“¶MÝ Õ \2¸à-§r¸úáŽj'J\ÒŒRsÕ*ÀžàâW¿Æu¼wó~–onÏßh\–‚< –ž½I\·ÜA¨³$~÷köÔHÁ…ƒ±5Uí·ö‹³“®·íäƒîĬ»{Åv8nÃ¥[.&šOç×ü_/ Øîï›]á»ÌüR<£.DuÎËg‹ˆ6+ª\fXñíK/ÞâÄZæ˜XCGÑÑGÍ x-мx ù{-êLÍ Œ™b¦Lù¿ûÿKÀsr!žðï¯įýû呪Ìÿ¹óµ?Á^9ÆLó—‡þó2ô‹óþ¡€zÎ,ŒŽt¬Õt^88Ç ••‰óï\ëPS_wÔÃøÖ!ޱcȹæé" >o,j–É\k™k%ãã. ^ñMoÿ> endobj 285 0 obj << /D [283 0 R /XYZ 72 786.281 null] >> endobj 282 0 obj << /Font << /F15 175 0 R /F37 185 0 R >> /ProcSet [ /PDF /Text ] >> endobj 288 0 obj << /Length 1779 /Filter /FlateDecode >> stream xÚ¥XmoÛ6þî_!&•&Rï)úÁñ’-­Ý¦µ‹h‹A±éX¨,9’Ü$À~üî…’mE-6ô -òÈ;òîyŽGŸ/¿] ßÂŽ}_‹µ!aËÀ7B/¶=»ÆbõÉ´F–/¤™®ñW˜#™Åž;¹R+'øã˜«ô³#\5²„YŽ„I9®¨yÁ®T»²Y24—ªªP\Œp.I×e±å¯7ŠUWu½|•”+âŠ\ ?;¾Ýg“ Ë,Ty£â9¬ìÈãéÂLõ>Ò|ôeñÊp Kx¶çù1uˆfËG .rdž®-W¡ëÙ14Ær;¸|úâ«c¼8¶G¾qÇq,íÀµÁNÔô³Á|ð®Uhµ­c•ç=‘/>˜Æ}.w»¡M°¤o»^ƒJ™ É/G‘4 pª+S=$Û]¦¸³nF?N'üQäü;¾BÏ}> endobj 289 0 obj << /D [287 0 R /XYZ 72 786.281 null] >> endobj 290 0 obj << /D [287 0 R /XYZ 72 489.5604 null] >> endobj 286 0 obj << /Font << /F15 175 0 R /F37 185 0 R /F20 166 0 R >> /ProcSet [ /PDF /Text ] >> endobj 293 0 obj << /Length 3160 /Filter /FlateDecode >> stream xڵ˒Û6ò>_¡š–ªD Þ íÊÁãĉ³NÕîÎÜâTЦ8cŠRHÊöäë· P…kû"Øè÷ ¼º¹øö×3ÎÓ\k1»¹qÆSaô̪î—ð¿ú¸m`ݦó…’:¹š/x‚3=ê’¶Õpö“ùo7?ÏØlÁUª”Κ—Ïæ"KžãÒÅ7ÖٌϸP©*›Y©Ò~fåúâÏ‹_c³å›ý|ÁR™gzöXÊó\ÌÖ2Õœgá¹¹¸¾øïp1B\‚¼ŠpSd©ÆìF<¯xö¿9ðâùO'¨Z›ZÆÕgD5@ü$ªžKqŒê«—Wׯ™f·»¶êMû &“‰“ûºòOišÂ~ Oš'ô;’›Ò"]¡5'Ç;|éCZ» gx8uëáÕoº¢›ã{ØåÜÍ-œ,lžæ€CP„ÌaÝë*E/A‘4—ÉË[P-“aå–œ.#vˆÔæwíòœÊ“ËE0`ªÂµKÚöÛ­C¼j—ÕÒÃÝÐÒ¯¬*šCÖѨj‘Ú÷5±i×ô8ÐïçZ'EW#^oÿ*r¼nëű’mƒÛÚ É é\oÔü;”š“`²nIW¹ýôàð«Û·ô.„³k$¾óûK|ã¬Ëb@òp#°­¥Ñ»~çüˆÄX•Å®¯Âš†²Z †¯`°¬»ªÄÄbÓÝ]ÆÈÛlq´8¡ êI–ìzz ft8–‹%‰@y'ë}Ut%2xEóuKó=¶H^Û4Šv‰ìé<‡âàØq7ÏDâÔÁíÚž¤: hámý1­<Ú:ñSëÂI‹<*îªþÜÕ]EÏx8博Ôª+ï ï·]Õá{}=„%TØ:곇áTä#‹>÷š|Ul‘pÇ©w4ÕØÕ«gפO@Á·/8 B+t ‘C”Pùl!Áþ¤4Ž.iÆ’g¨pok§që~D¥À çq˜c-·ôvŠxrøáB'?:׿^SXH«“¡«ñ©œƒ†‘sq@Ý)7†Xý²¥HRM¹sÁ=LO“»Þ™‚’ ̲ñæúâà5cŒÖÉâ7u0]œCv¿û^cÈ'øGwhÄþõoVíâÚ¹œ5ÍlP”‹¦x¡:ÒxÔl·àTxÓW~ÑÙÌñ¾ˆõ€±7È,–gÚÓ£³øßoè·Eé”Ô¼ßÐ\pޝ’‡‹!Äs^3ÅbÜÏR&!…MšÅ@©Ò10 \¨S#N¾ò»46ˬ=A ˜…8Æø^ {2S~#“±£!°KáähëH‡<¡C޳(±@ ìG{ÏÂYOb`ljìÈzŸ°Yʞɠ1¼.ìüÒà¥ÞÁÿãXÂVEsëçnƒ~Öþå¨ “°û]æf×Õè½DFYN‚žÏ0J žü2ºªÊ¡HN´µ9ê<<}˜SÖˆðH{qôâÅ ¯Ì‚µ45šÎúÝAæ±vQ 6½ÿ§-Îø9þ1#õàSš¾YE ­Ø¡C­›ºè[*;ÈhU¬l'^3Îhäƒÿ-R7t”--weµ|‚és{ﳡh‚ͼœ»˜&èÔ0¦­‡›{¬’>fóSëáÖªÅÊ:µàëÝÎ?â¶ÎD̶=èä#‰Ò&_G}SÆJ}°ß0icTˆì`ŸL³,ÀúšÇPƒ¡äYþÅèDíø°Bå¡$#GÃò*ÙÎ K_zÔp2J©lš1 Ê‡ÉÆCÚÄeʘ1ŸôNö?ÈîêªYö1˜à9MÆQ[tª•í)–ð"ç)–8ŸáçÆa³`GªÆ¡r%@FÚæ<ÆÍCb ^fùäè#p&Õyvxò×èýœg hNÊ­5N40ÌÁÙˆ4ƒ"r²ŽÀs¸&íÔ±((!Iq°ø1’™ÑŸ¢ÂNÂÕQ +MšI`º5´ä|gÔ°Ú¤,æ¾"6€\ÂtEìn܈Ôfgš)XFÆ)bŠ"Áˆ5±J¹”¾>q{Ÿ®rà¯V*¦¬Ëdg«³ú¬êÌ?«:ÛÓ¼åDãNS¤)œ½ÆÝc &åÜœk ül[_Ú„¶©ÒP‹|>[A~ÂDJ¢”‰Û?bšŠ‡ðͲT#%šƒBé¥S>î(Wz†E†‚|kYѨ)KW•–XÔg2qå>¬¸š´+š¦jê¿BµFK.o‚WPÑE0°,)ùCö!BI0),ì#™½€}¦þqj|˜ëy¹þ ÒÑ…îÒž/!_D*W~®/Ö~´í¨ %½Ø»rUòäY¿OÍE&³I¾ 0$&©mU~Õº>Œ+ÿ”€d2‰ºCËÜaqKÃrÓìÖ­ŸÿP«xö dŒ8fÄÄ—¸$bÁ©WçZt+Ý8fn•¦]Á_ä» ×@˜!ÏÉ£ Í5G0ŒQô4v˜Q™×£N÷öeŽ“ñÛä= ÍR¹˜hñ´2ÎY>•‹šÊÅÉåWøÅewÌÍâ‚·xŒ÷þ\(‹¦næsÉßÊCœ³Ngãä:À`«eµõæ7Þ¨Çõr¼Y©¢‰¼7ÈôÄ™·i˜4ÇÌAË$ç4 SŠþ¤{¤%r&(ÊDkVÈÄ”ÐSÉž d…8!p°–:~¾“zàÖÅA‚zµ}ý¶ Ž~y|ÛEr€wñ®§ü»Kï:#ñ,ö Ñ=ê¿jß½ÆÙíÊaGM3útë››8(Àª:£7«]Ï&ôfÿÓ9¥qØâAÕ»^ʧ»±îRBqãÎÆ®ÇøHÍ¢v­Y˜y¾†ÂŽ»ÆmÑØîžr‡š·°F]{ßwK!ãI~Ù Xp˾'îëæ¼ì¨›ªó,lákî ¿ï¡×£w2«jý¹éßpP‘Íøë¢ú¿Ô.ýUg‚ˆœwyü_®`ëb6ºo¡X †l¡=$K¬‹w#ñ\©ÆÏïöpǽϣçïï ÈœìDŒ‡ä–˜0l£ O¹©Ý)‹{³òæð|¼¹ˆŸLæT8ŸÄò2TLà]¦lä^¾d°÷”Y™d¡4ò¦,”.‚¿÷s­¨?ºC™"ÓÜop—:–.uà±ú˜¾ÔÚsMÌÌ·=;Ú<-uÖ™ë :ŽÚ¡ •°~µDWqënÀÉihШþô~®é™à}Ÿ~z5c&BGÏ£°¸ ÜPyè{ïÞ° Z·Ô¥ÛåcÞð‹ %ðú`”ÒA|O,}B²ÿ ¼†7iTÑ•ÁÆ,æÌWõº-›Ý² w‚Þ€iažð°Br1 jÚ 5î,‰Ì÷¡bÒœË1*éÓFÀÄtm–r€ýw(Ë+Ð"–DÓšn.ÜQ›ãÛOGà=ÔÉ *•ꉹňƒÈÄng&Äå’@ü „ˆS"®*wƒ— Hí²Æ´ÍßÛã4ºDѾMK™.õ»ñ¶3Žý½è„vH™™Ì]X—Yžíå{ëÙ€ý„ä÷ßñï6À×!¬~¼sfR\¦)–¡¨&›åÞoá-0­Ë‰¾úÒôýSøùð¯Î†ßâ[õm´cå ~.¢4ÄàÀw*·ý·)þ7,±•¡Z¼aÂÇ}"ޛЍ2…ÂX»œ¥ƒT ~êÐ ã™îÓ¼rê6kÑý3,M·¢¿¦Qða@¶d)‡tú¾H‹ZCðùþ¤ÿ«¤¤@!†¢ çyß0™Ý~¬åxa–Îþ) dl86"Ps­³ihÀÊ‚è¸ Õ™Ù¡3Ã`'QŒ§šçòÀk`6jü>h|oÂÙ<åv¬YÏ1«“Š(¯"ûb |ÄÁ'G¾ÑTì†ínxJ÷Á›=vH$EݾŠxNßð1½zS82ÞòI}>4<@ù fQ&›L§™0ô Ï<.‚Jþ7€¨endstream endobj 292 0 obj << /Type /Page /Contents 293 0 R /Resources 291 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 271 0 R >> endobj 294 0 obj << /D [292 0 R /XYZ 72 786.281 null] >> endobj 62 0 obj << /D [292 0 R /XYZ 72 656.1855 null] >> endobj 66 0 obj << /D [292 0 R /XYZ 72 622.0701 null] >> endobj 70 0 obj << /D [292 0 R /XYZ 72 447.6509 null] >> endobj 74 0 obj << /D [292 0 R /XYZ 72 416.8829 null] >> endobj 291 0 obj << /Font << /F15 175 0 R /F25 169 0 R /F30 297 0 R /F34 300 0 R /F33 242 0 R /F31 303 0 R /F28 306 0 R /F35 309 0 R /F29 312 0 R /F37 185 0 R >> /ProcSet [ /PDF /Text ] >> endobj 315 0 obj << /Length 2661 /Filter /FlateDecode >> stream xڽɖÓHò^_áá$e‘‹RK¿Çðýš†®[Ó!ga,¹%™ªš¯ŸX2mÙ•¦˜¾X¹FÆž‘~yqöì43)ãÂ5»¸œej–%EœÈBÏ.–D+;_èÂD…Læ2jìüÏ‹_Ÿ½ÑÙtW’Ä&Ñj&hOݪŸí~ì3ú½„Ÿ!^Áoü~^¿€ŸWï^3¸C$¤Öq!”q𪮫,aCY·â“D%šz¹Õ]òwiÕ¶ëίW%ìuëÊÞrc;Ø%Ó»uˆ(UÝ|‡.m<_¤ºˆÞ¶ˆél!³M˜ú1ÂÔÿ°Gƒ.uèÄž~>Ew+œ×Æ) }O²fq ¶¿ÁÂq‘I9 à—!`JÅp©ænÇ.ÖÛ˜ ž¡í+äÊiÔ_ëÎ hH I¹÷fȼ»Ï¿àÏ×︬ºÔø„Á6ví/°؇]¹»cx¼©éªÉ€N©¹rd¼Go›ÒßL‚@=L ¡–>‚ãïÂÈ$zΟ?&zÊ=§_xpÁƒ;%£Þ?y!õ8sð•{ ž»@ Uxm›@M¼2#3\uÍrð±*ùw Ò€¿Sw™ˆu7ÍÊWüÅ+¤uðÝ­‰MZûÙaõ¶å™ÞRÄãÜ”•¥ f'ç÷×9Dñ©z°R.v;ÍžU¯ž*è‘iÐØ›7<òe\/ýu… #a˳Ëz!.Æ…AÃ‹Í Ÿ‚°`ï¶lÒ§xCCï©$t&(æcÓƒª¤’8Y¶?Rž‡Bœ‰t Nýí¨{@B ÓÊ`Šl Vÿí„è‡R{¥‡ÙN 8ª[åqš Cûz·VÎ2¸M„Ä¥èý x?a¡÷C·–o …ž°^í“åÏCHÈå±È]fV‡˜”Æ©rG–áp›~•<®b(SÄ2-ò™JaaÄÜ£ü s?UØ\Larýá€Lä3¤ž€ º0^Ž!*Tlòü€Š[L£fÈ5»ã‰vŠ£ò©‰\gR :,Öy^L¥õ4x°‚fZLÅõ%$®ˆU÷—:%.È÷b }´ ,ú„´<Ä»„¥ÁÉ ¥Ò KV.óG Ký\a} T8™\в- ú›üÒ‚X‚îSÒò ïWšÅo—rMÆ @Wðÿ úTHô”¼öje)“†¬cD b’˜°¿?<G~ùuXi’Ìøc â&@CEŸÊ²zãpºâÒ•óáÍtËKWÕ£+”@CÅú±®¨ú™'®Ž[ DäÚS4°ºÀ=®ÁtÏqú‡®êÁ-¤<fO¤‹TK)}Tƒ:‘‚¤!ù{¦ô·ª‡ g@ß²â–\åyÁ: 4pOfG÷¤»JEØPüBENÎ*N¦Tpyëyˆ"0 £³¤~˜ ô;©ïd~ AéÝöK©Ÿ@¾A\b€ÔRè$?ªã³ iÙÂ0ÖTGvyù¤|¹Oµ¨‚ëfÙ`µt‰¥´y`ˆÞ¶µÚ/åÔF\êr.]¦±–™žº»löœZj_9Ń\ãKÎŽ}T°ž"½Y‘MuU6Ì ]dp³ªâ°~2É¢ÀC®Ó'»+yX¬ÌÕ‰_e M¢È•sÔ¾‰ùêõÉ,ämI±ËÛØ7¢w“Q×:”H TDwµUˆëvp«ê‘x•¯–ú|{ÿàg'¥÷…Ó*UÄIyƶÞWYtÂÞUëhØÕd-OàËi‹á4»tvµj ÷万bǧKÿí¶yÉè7åš. É>mÈ%Ã-²mÊþœ¯=¢hwÉÏYˆâñ“Ã!iˆið)tUNJH!%‡%Ïói v-ïNÁž‡³9)’ìÎLòÌÄäSé*æD«Y-·•+i­íšîÎî2> iêj‚¯y‹ ðÀ÷ïé›^æÞôÞÏ5^ÍeƒÏh¶Á:É˱&­=Uœœ¼˜½uÏ;7@± Øk[m÷N˽½{ÿ–;šÜ%®RGî% Aî}²]NžÜ1ôdêìÀJ ãühø÷qz˜Û?;-;î¶û[Ád)?*­;Â=¤…t‡ 9‘\.Ü»ÞÑC.RÿàÂ]FÏgîß X×bk^£þm[pr£ù­.¹Qùÿ4ÍÀ[ðug޽ǩ·ÜiêO=—çø8æ³^—‚^…0CX«Ò5êqà5ô’}Åô*yª>æyƺ"µOþ:K'endstream endobj 314 0 obj << /Type /Page /Contents 315 0 R /Resources 313 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 317 0 R >> endobj 316 0 obj << /D [314 0 R /XYZ 72 786.281 null] >> endobj 78 0 obj << /D [314 0 R /XYZ 72 686.2831 null] >> endobj 82 0 obj << /D [314 0 R /XYZ 72 141.3833 null] >> endobj 313 0 obj << /Font << /F15 175 0 R /F37 185 0 R /F25 169 0 R /F33 242 0 R /F30 297 0 R /F31 303 0 R /F28 306 0 R >> /ProcSet [ /PDF /Text ] >> endobj 320 0 obj << /Length 2841 /Filter /FlateDecode >> stream xÚÍYK“ÛÆ¾ï¯`äƒÀ* 0x(•ƒäXκlI‘7¹Ø®î¢4Zí¿O¿¹ØHNtÈ…˜gOÏôëëæ««‹ç¯•Ù(ågÆèÍÕ~“èMe~¤²psUþâõvØîB£¼v«¼=7?nMäåÐïªüº¶=â@SrûCÓnuêÝÉTÓ0y[57óÒëíN'^;ùÀk‡[Ûqóص4WØö+ÏöO§s—w°™Ïõ·;¤Þ?·©zȘ õ!ÿ€üXžª«a¨íö·«6Áf§"?ŠLF·=ØC‹ôï·»H%p–åŽYäåXW5ØòLE@ú_¦—…©xq$QâOÝÊl»ç³ Lp·Õ¸ö~Ä–ÝM1TmÓãaæ}|ìx®ðð®^ÞCg‡Óý1/Î.˜ÒoèõJ8GÁ[蘯ˆ²¢Çè¯G¸ ž¿Ö'úôÂÀOÃX½ÄÇMýE¥´ñþÑç7H4ák†‰ñ¾©pÁh—–[@ú⻫ ƒÚè ó³,‹6qšùq:Y.~¿øå·`S^›.?ÌR³¹ƒNà«,Ó›ÃEäa”¹~}ñóÅß'‚‘Ÿ‚Có¤³ÓŠH…›Ý’µWh9§/£Uê§I¬ç+àýôî’ŸñÔÌ@(1¯Þií«8fñ|›×5êo zÕò÷§wø`—Ü©«ëŽ €žQ–vö÷±"9BgÅ8cå¨' êÌ€sUCûKÞRñ„˜3¿arr¹,Ÿ ñUÈNŽHåéß®]/R¾ÖÊ­þ5PQm™‘Ù,ñ`ánìG¸ø½;œ>óÅÃ|Té]F~†úTµ{ 7®aqf•¸<y‰8J½Ë78•®$_“É¥á{ììG1Wz§”Ž…åôp‡cUç`ƒÄ‚¬oáqdxÊxÕÀÃt!Ø•s÷f‹~“üý–²ª´ùéñû¶®Ùcò~z%ñªŸêFì T¸|y•øQE¤V¸'€dMLÐLà 1½¬ñõB ® ³;ê“ÇcÅ CæFQ³i€”_õž':tê¤c²£¿mǺäI[‰£‡q–'¾©öÎ7ì’À{ê<.úY8Ë—Þá8ZA~<2‰’ V,¹Ö±<¯8AZ.¯Cšã ŒºšÂ*Þ-Н—^Õ𦃈rärn(`ʾN³li(>J¬I ŒýL)'M¢à 8(¾(ô£³/©Šï—WŒÐ­8ûUâXjybìñq´mб…wÆï1ïXlÍ‹í'[Œ“AàÈ"–ì›KkEâ8"™+<4[nÃRÒ‘?p³"ºªéÁzH%À¨:V „Ô ¥NI% EÔUÎóyÃß3]“hH Ê’f¶ÿÏä+ÉÝö¼Y¹aëÎ0¬Hðu6Žmvwà¿÷µ{yo}ŒÿÆ{Ó²l`«o2V´Äl×KTUçû@ƒTœzöp°{Ï]vÔb ÎàNu^&‹–M-¯Fut#DyZÕcçmþ€;Ãx;;D‰‘S•3¡'Úmü0J¿$ú‡¾Q*} E1ýe(â?ÑÙ©$¿làò Î^=„ß*%ó†€K›ÙÈðÐÈÒ‚¾Z[N!úw·¶á=“šÔ]eÆO¼‚ |är¶m 2Ÿœ&/Ì')À¥²Z¡íæ “û®=p„NR?Nutævo 9³²Ðñ´U؃öÁQIῲQ„Ó&ôXSÑ+aï]JøApÞDiâ«ò¡¯¡Lêk(ÌÀ„éf·dmM›2í›Ø,®0©Þ›°?6Ør¥š„AWÇ )ymô¬pØé qÁ9FM%ïE/H„ë)aB‘—÷<|œF{Ñ›?£_I€Q¡Àôÿ  ,­Ãè³0:ð“Ú'x‡ ëKLÖ^²¹@¦âGIph+ñµzqäíuß‚.ä9Zþ"Äù:6”aLó™ >»ïR´«m¢'…ÈTlCÈ×ñ¨ÄÅ?HØŽ”° {Œ×”h|jìù#†øÞ.iŒý Bƒb”Ñ’]œQt& ÇK„`œ³ÛSÈ:8ŠUSZÁ‡Ðâ÷ª…Ö„\`Rr&|^| ’ϰР%"®Dg9àÓ}¶ûZ§¤ýŽ8=jß  J'Š •æ%8@ßÏ2°áU\P0 \ïÕ­œ‚!¼s;Ó¡Ó žs¶Øs¯VV¯E¬Üö; ®#îJ€E*ÚÄ!§=±DøŽMŸïí x-0ÎAb¡jŠêÈ9`ä‘RMSžDòÚˆQ•W8}€¡ûÊr3œãT^ œ;†èÓek~X­À½Çz ´-MÉ_E”½ç_HÎxÀ) ¯âFO"2§ŒZ(ÒÓÐ@dCu Ø{'üBAm›§7QNšJùgY!(¾Yå`­jåä;%ö((pÒ J—­;J挭²=ST"È:¿ã¢RËrþ œTÝsã>£UÛ Ðp”DÍi+¶ëœÉõ¦Ã ˆŠ| Dg*éM ¾Y u< vÂÎ §©#CiA@ÑÊ ÎX ^×2Oñ*3bYÏH(žÁ8ZžÎjU-Cã3ÀªäBb#wÇ £/¦LŸµú¡0M’³ôù°šñô,¼>Æ(Òz{˜¿»­&+GÑ甸Bk€šß/S!‡¦ŸDknžp·Ú ‰yÿ’[ZC)<® B=ß,ÇÚÇÄûB¢Ä'Ç̽Eá´ÖÄ™÷FT¢ãŤv¤#åD‰ZOêÈ(W“ëQº\ªT¤öÓìTF[2‚‰L07%Ï\»GL°‡RvZ<œ'²™$tîp„»€ý(~í§Ü€Ò£ Ãì€ñnÔrÎ!¯ázëÑ+gª&—¸hi%{K0Š]˜ÆD!£,–Œ‹§ãç—[ÍT§‹Ñãè)Ø2–á|U´¹`oÀsÅì²R°Ô óDµÃ8‰!Ä.ǹÄíÊ=vhï­ÓÉÎÝñ«çsåe­L2KCW µ9&ü±«åÔÀOUè(Oå4½ÀA””çR÷€ W®šK7xËÚíšsþ U,%pŒ9 àˉHl=•Å$Ÿ»«ÜëÞæÍÍêcf‰è$üoóòù[¼(è»sƒùP¡ÜÔëHSYxu‹¨4A¼ë.U·ýÉ€C]¸¥wŽÏhh‘ü(a?€!$‰É¡Ã,ÀòÜ ø$¨ˆF-Ö~ZÛ)ª”çêqˆFËŸ|A‘êDW.­.HŒ‹’®œ3UFrîáah?I½ë&x¦¥Ø­áÀ\ņw~±v¯ã^Á2ùÉåkDŒ:·X¶ra7§¸uõ7þî ù•ú€ ÒÓ×zûŽœÑô},Å>ãÎå[èü|…)þü¥²øDÝâ¬ׯ8e[=UÞ_å„×knÿÛ—°âÇyÉÚÇ]£«' N€½Â³%÷Ø6òwBœ/$>EMï`¨².•oŒÊ{ú nè)› ®ŸY9=ý\ ƒS¡’ú្½‹„€¬¤®Gü7 RôŠøž²¢â”” h‹Z ¡9ÝÃP’cAk9ñadÁX§äÏð?U·g¼¾á§9 Íýcy‘ °-EV´·|ÂÉÄ…¥Îe6ˆpáØ/ÌqáÆcÌ©j2Aˆ~± \;HÅRØÃe%ÕñS ‰9,ð5äýĽŠ\¡åßõ³Ü¡endstream endobj 319 0 obj << /Type /Page /Contents 320 0 R /Resources 318 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 317 0 R >> endobj 321 0 obj << /D [319 0 R /XYZ 72 786.281 null] >> endobj 86 0 obj << /D [319 0 R /XYZ 72 701.1486 null] >> endobj 90 0 obj << /D [319 0 R /XYZ 72 456.3133 null] >> endobj 318 0 obj << /Font << /F15 175 0 R /F25 169 0 R /F37 185 0 R /F33 242 0 R >> /ProcSet [ /PDF /Text ] >> endobj 324 0 obj << /Length 1835 /Filter /FlateDecode >> stream xÚÕXIoÛF¾çWèR€B†®ÊÍE (šÔö­éGÖ4\”*®Ó?ß·q“U§)½³¾yë÷ÞÌ×Ï^¼Qé*J‚8ÉÔêz·ÊÕ*O6AmâÕuõ›—k?ò|Ò0ô^a§ì˵ç©WìºuäõذԽ9öôïÚõï×?½xù(ؤ)‘W¾RA”e¢þ뱄ÝíZå^l€ªÊ¼×Wï/__]½ãžnu‡ó÷ÜÇõÖ–kUx÷‡rïnß­‘ 8Tó¢F7• V‚Ù£±ºÑ¸¤Å­½lÝ!¹ºæŽa>`¤ã­ýÞjÍs[\Øë[<ÉM‡,`ÏŒò ‰“ÄŒƒ¸"ÈÍÞQâ¹( ZŸ¸AS Äd,ó`€\-ö®i×í¸`´æg¤£í™eàUmÅ-¹îè“x¸‘¢Q=µwrÂ^hìº=µðîL{ËC•|Njˆˆ{)ΰ0eQžÆà9ImŠŒTð×9£G*HÁ·ÄèÄ)|oHéÚòéÝŽÿ‡ºl…Ç»5)>Ÿ‘S6æsžk8~ÇavB§A-ü)‹öœõ€22…?astNB`Ü6Šj¾—ˆoÙ¸Û¾³nç¶yZn­'’0 ¨a7Ê&¹ä™à€*Þê™5*ÀŒ¸ÿ¡m-ˆJpŽhé×{m쌌ù"´+"µµº‘щߛV—v–;ÓïlåŒå\øü\g§D-'u´<#@8ƒšþ€„ ñþl¾/moÊ 6UZL°IéœD± *S¦$ MÓN[nÜ€¶5¨RÔ¶q$_¸l‡*I¢ÂkX©•¶%å-¤á;r}¨ZØ÷ƒ1ÆÍ¶Ÿ[5´xܶïýÐáe‰i1ŒÆv?Ë ÍXö3ㇶHgBöjœŽRh¤<’¨këu…£=SSž»w½nP»q‚9x˜½çÖž,ÀPÈ$ýá¤Ïã‹Äê©x‘(Yy”ííâ\á SÞ@¢­¬®d´ï–rqï©4;’)¨Ò«†Ê'‡©"@yRï=å&‹,™)Ï+…)ýÏ @HÚÝi¶øï†œ7à󼘕[gºv„DGL|ÝHõ2*òù9{õ£³Hq1/ÄüT_ž¯ øô§­\_özLŽ´ÂóI3¤ÝlY9®ç¢Ú u»†ô…³Û>-q?M¼?–…ÄÇ›ÿ} î(¬öƒ³ÚÁKqÊEfùžÉùðó¯\aR¸mn6ù”‡“4ó.(_ijh‚6\áJÓr$Å'WA4\}Æ«®o Ðn;¾¦bûôÚCk%ƒ;î’+<¸ï ReäX™rrwX ]/¦[ ß`•!)RmA)…– n·—2!mäehüVl]›”°Èëš–¬eÿxZ´ð}ÚOÍŽëN½5Ú=š1ƹ <ε$ÂO/îŸó“ƒ²Ò|7Ðm5{Œ˜Ý/¦Q΂ä,&9ç`0z+ € &Eç Ó4!E+Ðo–® Ê •F$U!ï:oС(Ãæ)ÜÕ7 `DCň›hMD!QËó(©xAßH¥'oDIMè‡uƒ›] ÃGß…ˆHKïJø0”d~–®®pôÝY‰Ádñ&±BÀràcCÌH äÄ[ƒ£Û¡BéåŠÎ!ãga&…IWS!yo))²ÚîË#%Ò–«f˜:pˆÊ™¯x› C˜LAGðóq6"./ü‘ñˆü\Nu,_Å¥öÅcí¡vù›Ù+Ù–f‚ýôô¢­Õ=>ÌáˆBNÂlÎG=ž`—8 Â,‹ç–xÛûrT¼p _—ç±þÄÌ—úÓÑP.Þæ0ÄÙ" *: 'ØŒŽ\aÖw‡*÷ë/sÅI;q¤Eß2Ày _H€{º@}”Þ OŽÈm5áA+í;kÆŠ{Š„Ç³mú-|–îþ,+ÃôÌ`çH5çLOIwìg JQRÖCõrc)¦ —ÿ¥bø6àž¡­ä2a•?–UõίÿŽØHWƒ~W*LðÀ㳊"g׋Rœ|öúúÙßxºendstream endobj 323 0 obj << /Type /Page /Contents 324 0 R /Resources 322 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 317 0 R >> endobj 325 0 obj << /D [323 0 R /XYZ 72 786.281 null] >> endobj 94 0 obj << /D [323 0 R /XYZ 72 761.3744 null] >> endobj 98 0 obj << /D [323 0 R /XYZ 72 292.4462 null] >> endobj 102 0 obj << /D [323 0 R /XYZ 72 261.014 null] >> endobj 106 0 obj << /D [323 0 R /XYZ 72 187.5235 null] >> endobj 322 0 obj << /Font << /F25 169 0 R /F15 175 0 R /F33 242 0 R /F27 178 0 R /F20 166 0 R >> /ProcSet [ /PDF /Text ] >> endobj 328 0 obj << /Length 2041 /Filter /FlateDecode >> stream xÚ½XioãFý®_!¬X4›‡DÎrM ;ÁØ’`@‹”Ô0E)$eüë·^U5Iyä`’ù"³»«ëxu¶¿¼ݼ ñ1^ÇÁøv5NR/ £h¼ˆèäáø6ÿeò«oÓßn¿¿ycâ!1}&¡?ûLµŸÎ‚ÅdW·S3ÉîÊb: ƒù$[Ö»¦‘ïܧ̤&"þ¨¦A2iq¾˜4;Ú]a·ÅîqJ{™Râ|Ÿ-±u?ãI¶Æ~#jÛ0szÍ‚Ð[é?jÃ6l÷‡¶¨õrÍJolëÈ—í¡»Ê¢©Ìcúxá<ßíÊîØ]Õ¼¾d§Yˆ¯øÖâOXyhÐ;[e$¡>‰ªßÝüG>V;U¾äãµâPKè ëü¥¡/>ìKp¶ $LߨžÄ!rÎh Âijä£uûDó ^CýÊ>‚ÀVkõ 6ÛìÔOÒ¿êÿ~úñ…¡éXg Á&”¥f­øÆò‰},r9,í]=tñ¯~ì[ÀÜÞÓ§‘Ívçü ÒüÚeî5ŒîµkÛ/ \Q5‡ºøØéš‹McïlIQA‹Ó¹¾œkðSÔíù¹Â¥Œ`M ›4¯F²m®¹ ´rR²ë;–ÕkÄVÖZÏ¬Ž¶ÝhàáF²_AtU+š`µ.^8÷õèÁæÅ™Ýœ E¹šu™’Uy—ˆÐäÅÌVy¡qÄ-/¤¨õA‘äÂÌú ÉoŽ5g®óâÆ6]: Â/4íFm=ˆ•ŠýJÕS$þa¸SÜ)fÕ•dhÞ‡žštG@$Žg¦Aµ±è8e[HÄ•×î°¶dogЫ£ÓÒS´™-µrgæuáú^¨ÿððŒ‡?ý˜ ž|ËöV0² Œñ¤iyyàÖÂx\@ÐçÐ2ó¹ýfš“Î?¬_•m‹×ÓYÆ“Ÿ¿Ñ:†k&ò¢(Nž»¦Ù×P§ÒÛÆ‹èØó™v§$<ñ’Ôˆe·ð_`’ÉÒ²è#9Wò¯d¯8#û¤ôtCΟc’[jY-·‚Ó¹*S*âzÐÙŠ½ÒF=UÒ^'¸Ê•ìpÇŽUÎk‹Æ“Šá ½€Š&_½½¡oÞ‚ÃO_sì„.”#XÐò¸ÓÊz ã$;½Ñd)•Z˕ݯöuÝ?@§Ñ7·#CôÇf.B/^„fùso‘šd¼ÜŽ~ýò›?ÎGþøû‘ï…i´ð=“¦Áx;¢+†(u]ŽÞ~îÎ:޳!Ë/1UžG^¸Xx>±îȀ̫*?Ž«kQþHES‘ \_S(g}Ø‚åA vèÇ,å . ‰ÑKô!—jÛwr€s¸á›2nîû¬âÅëÉKÇþÁU÷'Œ‰ÌKc.*Ô…Z-"‰áÊ)_¶ripü7¥ŸÈ„½F8is–Í•›?wÛK9zõj`ÏÓ80&ôÂ(1ì•Ô÷ƒ¿ÇÙå…80fî%1Í·L¹ðË],é\NùË AººGúpèOnÀ9ñ`Î‚Ž½UMàñÃ.^¨ÂRÊê+Çœ®ÿm–+eá<¹ÞæŒ"1O!u–k‡› -ˆõ%!ÅÉ{)hËYfeéÚ’¦ôy:ª\ì2îû\·8“¼³z;Œˆ[7Uõ3S[h!|Ò:•°¢ðÐT?Ñ%U­Ìâ<Ÿvm¿Ô.È Ü¸³8ïþ®-t㎛ÌÍd¶Â³òzeÎrÊ1µdÇkŽÀÇsEÓORôñ#EgÅ~à ,ù_Ì ëSGŽ–œ‰ç5Ï!ξÞÞ9qž:Ÿ'ésÑŽKÈ:ìz÷çêû¯X³Ù[èQUÁªkQÊÿÿlËe×U"0+O%í{‡E½ö¿©­TŽbË#Ö3`rÂn&Ä)•Aq¦ß°X|¶wq~àfÇÓrz³tvQó¹‹/zßíö2 ›—}ûc¾|¥oüªòÚ>ˆ…}«†ü¹ç™êܹ2h,E½Æ]DóП¼;pøX×NÝ›nÐ5~Â>ÿ˜›¾€ÿàwûÁM_޹A.ûõN¦®@Ú¨îᢽS ³ç…{Ò‹&5)ÿw I$‚ÌÜMôÿ%KÛèendstream endobj 327 0 obj << /Type /Page /Contents 328 0 R /Resources 326 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 317 0 R >> endobj 329 0 obj << /D [327 0 R /XYZ 72 786.281 null] >> endobj 110 0 obj << /D [327 0 R /XYZ 72 498.8632 null] >> endobj 326 0 obj << /Font << /F33 242 0 R /F15 175 0 R /F25 169 0 R /F37 185 0 R >> /ProcSet [ /PDF /Text ] >> endobj 332 0 obj << /Length 2026 /Filter /FlateDecode >> stream xÚ¥X[“›6~÷¯ðø ·‹2ËÎlÚ$mf“Nw&3IXÀ6³Ü ØﯯÎ9È»äÚ!Òѹë;<[ÏÎ_p1çœEB¸óõf¸óÀ˜Ï#o¾N?XÏãdéÖni{îʺ±›¥-_ë¼jOÔ4o³¤¯—ÜjDI–6·€@Ëb9Ë«îÑòÓúÕù /0t}¶r‚`n»sÃh…§f¹#arHa¯<'t=Ϻžmä°¯`EŸË±†i·´|ª[˜û’Ä­&‡öDi@ øµ°í.Ki]"_âÆ}Ó¤%¦g´â¯· ùÜ™ÛÜg¾/BCH.–Ò¾“E‘±È5ÙAÀC«k@†Ê†S:%†#•LÆçľ­ˆ~ âL <¶Íà¥CN}Ž6ÍŽg(!÷9ó#_œj³AÿéÓÑaô¢ÌÖéX)?:¹’ïï~—Ã¥|ãÊœ ¢2':|ÞxŒçÛÓloP5­TÝv¦Ñ$gaõ»ŒÎj«â¼ÐÎ÷­zcˆÊç8žô+|Ú‚ ÕCâðs ZÉý«•#W‹ ¬~@m÷Ù(ÅFÇȧNк`à ¥C¥èã­’|ÝÔHê'ý}ÉO¶Ž†¦Æ~à*å’½ŽÃ%§þ×<°ýg9”…rÍOƳâlXMtö]~qH±9Í}<ÍMv¡´¥Jb +»P&Á–!TïG{²XA¢@Ñ‹éQÖE–ì!a¨8+P¬Ì“Õî«3µ¡èjšÝB™Œ—nh`–mö•¬mà!Z¨ -Æ?LYp³4‡ØAz^fÄ¼ë³æGËlù 8M™‘J(ÚÒ(¡Ú–BUQ4§QEÉœß,¢ §rß}•«WÙëxS’’8ÿËëžwâõ€ñ@’lW°È>JôÑáÁTˆÈiè9+©¬º, ò\îÜŠÊ¥‹_0xËb¡\Œµœøþõ•ÔeSä2…dLô*^6úVmK”»‡ü† Ä}Zx-Ä®ã ñÒ¿È‹LíB˜|3{¾žq¹Â™ó9‚…¾Ü뇂qÁ½yRÎþ}øäÌÓ™35s˜…b~+_ƣȗ3 ÎCý^ÌÞÍþÚGÛdùì!Pá"bžøx4ˆ|Çø‚ªš–ºˆKH©kÄ-ˆ&˜ mu0¦²:VÐo˜¸;û ¾ÒQ‚N •°2_Îé´£V‹\7øGa˜¹‘üe‘héMÉL/p¨:ÙÇáƒúðƒNËhÄÞ +µïzdÎ:Ò‚¤¦å1TC Ä”‹0ÝW2MK, hO ©pçêfLiéÞ«·sWò2ò….GeCØÅdµOÂq¬w=¼µûŸ{ti°B@à‚¤‡/½/¤b{¤Ê<„§ÌʼnÊ)K‘ë2¾ZQ)zÿZÊ{E•ä¨*q cûH´.~X³2UžrU«Œ®åñn–¸Ÿ¸ï àB¬˜!rƒje°-ïåüµaŽŒ5U:Ý…PÞg`ßô(%a^t-’÷‰Áð "UÏ'rúVÔýÅzT´Ä*ëä8Ùé[OÎßÂ6 Ä F´ß4à‘Ña\(4¢¼ÞFñP¥³à€m‡y+q¾:½az©SÖ;a&àª"Ž·‹QOÊÃOúX¥³°*4}$ÔAEŸ+Nüä#úYy.¢ŽÌQh9‡" N-×!ÆFS@ ÚE¦wA¡üÛoö?ÔšÅ#صx\ø¾ÁeB^ùôˆÇ®Á ˜lV«…Û\K­”?îþר´$Zˆç)tâ|§>¶ã®ÚšPìK²I98ÅÄ)Ö usôúL„tGÕkSPšFÂÙÆØ§¥í{ÂzJ”ºé ÏÄô€Î f“ÀpŒD>YCO÷rTðØ€EŸ.Ð5`ç2‰ Rºš\U-hó9ÿçÍŸr\?…ÅxËæÀ²ƒeŸh3¬ºz.‡7¸ù?]L9ÌìƈÉÇ0ˆ›F—·†¢§«>î1ðúNEǽÈ: p1¾6ÂâÛ½›®áëKI|ùhê?€ÎP ,ãE÷:WmUÐp®¶¾™¹Zžìt»cÏœµc±Ö,1ªíŽ~£`§‰ªOØöÉ9¸ u¸˜ŽÜ©X¹•xCA¨õ2t­KˆÖ—DH³.isÂ^JMÌa)&´y|­’ú±¤û¢]nþ~:I„uû®'®ê ¶âéÖ~!Ïd±¶éwV¦à`‰-˜ú‡CÍq‘Iˆ¨ûÿv¡ààb@3™dG¥ƒÐ;÷¢¹lFß‘{Ò¢›]çTTL½ùäH± e½yzƒ©&ƒ„+ k‡W7ð®éÙ)öÈ2ßÕWü!'EVmñí¯ *K¸5šV¹¾* ¨ÍÚI=»ü‡¢R¾È»“žWÆR^j+W•86•i—I‚‹Œ•!°†hƒŸ5c†É‘µAe$Ö4Œ·LY¥JUq­î 5˜-4™¨Ç«š„ãR°}ßíjŠ@jàÀãØK|ûr\‡Áo˜‚–ìÖhKb…‚ä8Yð9ôMî× >Þë=zêà¾j‡ÍþyÛQêùíc“J2:‚ù0 ÈIÔÕ@+ùö„°endstream endobj 331 0 obj << /Type /Page /Contents 332 0 R /Resources 330 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 317 0 R >> endobj 333 0 obj << /D [331 0 R /XYZ 72 786.281 null] >> endobj 114 0 obj << /D [331 0 R /XYZ 72 442.255 null] >> endobj 330 0 obj << /Font << /F15 175 0 R /F37 185 0 R /F33 242 0 R /F25 169 0 R >> /ProcSet [ /PDF /Text ] >> endobj 336 0 obj << /Length 1645 /Filter /FlateDecode >> stream xÚ­XkoÛ6ýž_ôKí!VE=üÚ©c'Þœ¥[»†,щPY6$9[òëÇsIZ´«&.°/ÅÇå½çœ{IûcpðnÈüCƬžï;‡Áü°ãv¼žå±ž{Ä5†Í®ÓXæÍ–ë´IV”añ_›¿½ºs§Û¶zŒµ[Žgyv×§íï‡MÖ¢™ž‹f2:k¶|æ52ñ‘³¢}s…q†¦|9åˆæƒœrô”Ø•»4.š« ºoÞ‰æXz³G«Ö˜µ™—ññtå—=6}¯ [éšË©¥ø˜ï¬Š@hä.&±]…9v.xÉse7ËÏ‘þ}çH.FÔ™kL7Ö£¦Xüæ0®œˆyV$%ÆŸdŒÎVŒ¶ˆ’Y¬ãu(¸®Õl±£Ö süÆm¸Àç*åu Žc±v»G.xó¼–ܶÅ|ÖÛáöDxúï¨Iz9B-Ñ,3â0X6z'ÄNd„çw+ °.¿iÀ¶ áL“-bb › •˜/JŒîkr‡R웚ÖE“Ößœh)½nq‹XÏŸ(Î!…øC-Ö¡<@…Šêv#Ì+Ú<Ì@z©ê4áÎÑ1ý¢ý)öM|·¨ 5eñ3• p®.u·F•YšJ÷@Äè;6¢„ª²¿¡®ØÇ‡S°t:k®F·—;xTªzBGÁþó¦˜7g½»òaNWWÅ5GæfÅžWÓÄ0!eµÎà'I‚RäóñK\R~]RIFwp£î×îv(4y‡ÐP¡vd\tôÖ‰’R×6=™aœŠÑ[´ºTD.Èf©+û«$@p”:gSzI€»>ü½£By]ái{m²üºV²ê UTÏ.}MÎB=­êt¬= u%1 3s/¥qEÕ~ó= ÂèœhúDÒB$ßUvXJè7V†w`u¬yõÔ1Ý cÓM Ç»qü¤Gh*¸ž(10ßsë\⑾]r kVžK5+t-ÉÉÊ¡s,×vÅ‹Ýs-×íÈwö/rq€ÅªRÇœ¯t¡¬ŒW"=úµ §ku{LþÊ4éÈ™¬ky¾ˆ~û‡iá^RU5i@Dá¢zÝ…sù8/¶Þ«õõU¥»P"ÿ#2(“'º ÈúÿÁ ºãâÊÄ=å…za™—¢ùüS¿I ¾jÄßä:•ŸÉ¦èl1bü>Aoü%¨D7Èì>ñØÿrô&:ßÉ”te)e}©g€y¡‚jV ¯uÉŠëë´,Zt¡åKzƺtd÷¢ÝÕŽí a;ýÒ±ý6ÅǺX{0þÝå{ìendstream endobj 335 0 obj << /Type /Page /Contents 336 0 R /Resources 334 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 317 0 R >> endobj 337 0 obj << /D [335 0 R /XYZ 72 786.281 null] >> endobj 118 0 obj << /D [335 0 R /XYZ 72 681.5488 null] >> endobj 334 0 obj << /Font << /F15 175 0 R /F37 185 0 R /F25 169 0 R >> /ProcSet [ /PDF /Text ] >> endobj 340 0 obj << /Length 1098 /Filter /FlateDecode >> stream xÚ¥WÛnÚ@}ÏWðТ־UH$5- ;Q«¶²ã7`1mó÷Ý3»k6®M¢öebvçvÎÌÎn΃£“¡Õm†î:ŽÙ îZFÇÔ»ŽÛmumW· ×jó¯í·ãc£ýqÊÄdÄÄU2ùŸ³þ±fuzÝö·ŽÓùÅ ÉüXs »ý°ÁŠ6g2* °ì°?L#á*0ÌSl0̸F*?íövǾoÉGš3‘ÄP^ã3…Å–…7Ž¿Z–fغm;.ÏüÛ gLx&Æ¡ÏäŸKÝtºæÔ#„½_QN”zœÖ")¬$ù ᅺij-¬æ!É_ X &Š¡YÐŒžn;NOâèq'HyBäƒö *Ò—ˆÍžÞs.׃k&|†’Õ%”H~ƒ´Ó52¢LÊÀõqÉ›Òàȱ-r”±…Ýê–àP^íëßw Õs#øÙþ¬Ü*A=ßð½TǦ.ú!‘„bQ|Ò%Ö6"j¦Rשä¦F—¨½š;uN¡VåYí–²ASµÀ)ê›1ö¨ {®#îãظåßsjÕ˜º–ÑÐØºÐ~ ÖQÓ€uF­Š½˜»Nh%¿gâ±1Y¨, ž§ÙqzäoØyÁOcÉö‹ýmóŠ?ðð+ZÊæ·ù‘ÎW¢ÎTQÚÖ¶h Ô!AcêÊ‚øAoíd5Ô8‘GmyW)Ü'´ª¥ò'9Å{Re¥]qøéã=HÙÁ5G”œ1¢Ç™û]%‡ e‡Õ9ÂlÖ4â2Y¼h)Ùæ'‰ ›GÁZÇOOhölYáÿßCf4Ûx`®ù ï¿ãJl¾¸ŒÝã·FUÍ©îËH¦!ÉWÓhŒõ!õ À×O2î÷».K)ך;k*?§¡U¥šÔ, Òës^Fމ›Í#g<ºþ5.È›— rcqí×ñ L-ÌøqÿÀp>ÇU€Q1òq-iô#ºâÔKâ‰åX& Cy-Î40±åÍÍ÷éñ—Ù\Ùˆî(¿rbª¾¹¼"4Ü#¯|Dl ÃwH÷8b¡€’A7À{ ƒ™_æ^OîÆ+` ɈƒQ¢ŸšD<†”(U†Ð;Fó–Ù¯E‰-«¨}ÊäFSzàs2BQxlqFnJ“ ü35€‹`D¿ŒˆáÁˆþzè·5¬¸û-³ÙJ²bê®aœÖ½ŽP—qó»è&WÏ…k´ó¹GÍ0$´ø¼l®x£¥?¥ŽA|¯Ù¼±"05 ~_ à{{$*‡ëý –^›l"ï_KZ!~Ñõ‹ƒó'´Ðù|öÌkPA£¿â¯“fƒìˆK¤|™ò×X ŽC«o©D}Y0é?;d§åQñð¸$ô­*ÂræügŦ_>GJž GýßËìØºe™&krKïZî)…1\èyÁÑÊ8Hendstream endobj 339 0 obj << /Type /Page /Contents 340 0 R /Resources 338 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 342 0 R >> endobj 341 0 obj << /D [339 0 R /XYZ 72 786.281 null] >> endobj 338 0 obj << /Font << /F37 185 0 R /F15 175 0 R >> /ProcSet [ /PDF /Text ] >> endobj 345 0 obj << /Length 833 /Filter /FlateDecode >> stream xÚ•VMo›@½çW ¨û6lˆZKƒC‹Áì$j+5I5‰#Ǫ”ß}³,&Ö®ã^Ƭ™™7óæƒ”'½Èi¦ixŽ3ÐÊ;Í쌑㴑í¶éYZyó­­»fgÓÕÓîÜ^³çŸ¿ùázËëG~øðÄ¡|‡G§óŸoapùR+^²ç³îò³fº†í8®¦›¶aÛŽGp}ö¾Ì˜˜L¿Å‚ †,˜øtŠ——cr¦[CÃ3Í¡ðæro=¦Ã[Z4ª}M¸†ë™#®ƒ7Ws †Àα,ÌÚqÊÞ/a4Q^#ª˜(Ú®€¾A~ãHé pÐ,x 2'Wr{e>gP‚\³¼àKèTQFöÿ¾²3^^ÙáñUßn˜x=rv€Ð]xÝ‘O¼ELdòìxVTÿTY8ÉÑrÁNÓO@ eïã\$ä  <±¯ 5^‘œS8­öûO—'Õ#öAX0Xç«zÛ“„u¹ðç^ŸwRX”kTy2B†ÓqWg+Àí|ï;ýõ3Šw Bi؟抜#gj%Ž4ý «"š©EV±ýF‹LÄZÔš9?œr6ÕÕ$’)¹jÎ3~§z`ÐÇjŠç4Sš‚(â²Y!G qX ЙÔÊ“†êv‚âM4 ib´æaÔ\7nåû«4AϧDðW­¾‘ã)7F°CŠä ]àuÄ’vS)kϳ÷Õ½½ÒU|ND)*Š©š1ñE§ñmÉ 94t©sŸÀcrup{D¥Éã©Rs&8¦Ù«R°YG*Ï $Ï3±ÇΫ•jß²r€nŪ¯šÎʨ­ygQ¿±=a ûl'ÜcEýáË}»æ¿wØ·üpú‹þÒ€. Ü Œ&®·§êàÁ}¨Iv)vTDÁïç®Ëï=1L´¿Ã èSFŠÕØE¼›VùÀcp_^³TìÄeI,fÌçƒByQOÓøÕ;I]EZ7Ë'´h(ZnŽù0©=M3Áöìý/¶FÜ ô"Óißvwt™¡e#Ëã´úP= Ë“5Q[®endstream endobj 344 0 obj << /Type /Page /Contents 345 0 R /Resources 343 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 342 0 R >> endobj 346 0 obj << /D [344 0 R /XYZ 72 786.281 null] >> endobj 343 0 obj << /Font << /F37 185 0 R /F15 175 0 R >> /ProcSet [ /PDF /Text ] >> endobj 349 0 obj << /Length 765 /Filter /FlateDecode >> stream xÚ•VÛnÚ@}ç+ü‡ð€ƒ/\,E•0!Á–YÔTUe¹`.*Ô8 ùûΛkÖ†¼ŒÖ»;3gÏœõ(ÝtŒ†¢iªU«éŠ˜(MS5ª†¥4 SµÈ(büëúÖ)k×O-2]›Lÿß¾]ß'ëôÈØ‚̃Û'û­ü[|W´¦jÖjM¥¢™ªiÒ€Cµi½#v›ª'ˈÔF’À#Ó0r:Ìöt˜¦{@þ~^¤ù¤\©iæõA@ ³€ÙÀnJ°[)8$>’¹~àâ,5ð0ÑBg{¶.ÜïàŽt~ž=„³Ÿ¾àpùÖáÉV+« n<®nêT‘V/ZÒ†ñœÌ¤`×í xx#Èe÷ïñÍ”»‹²2ÊAa‡SoªMKkpF;>þ‰çãtfB¯ËÙPV.8†nªõj£q‚‡å‹|-/ø-Ó«žJÿØw)2<“yqŒ“I’}Y‘Y„ŒÃ¥¼<€ø^š¼&»uýŒ¿!_hi³Ùç-HÀ&ð¹n‰ÜõlþÅÖw9>„½"È’\‘ï(S”Iî°FÀ ẜê,¿„ñ–öù¢x+Mi¡v¢³q¥Epгpo¹geNTbIµ½“c=¥¶¸[xÇígPÔîÐ ‘Ú†òXoî¼# @·ý™HëHþ,=0¿^[¸L§×LKÈ×´M¿Š7á§çäÖQêÄ'÷íí’à6ø•†qª+ÁL ‚vÐásOÈHÂ,¾Û…Mžù‰ÒqñåW3 Ç<, '·«‹CdÀàÛytMp÷ãWe4;Bƒ©=šUVÄ«¤à±É§F½ÚßæŠQW-4zíÙ‘;()î G \Ⱥ…WÖË^q¤œ{Z™õL}icÆÇ&ÊÚ4(áú¿¾„û&°.82®TØ\¹&yŠ=l~é¼B  Ÿ‘Anð¶ûcÿHU¤È/{OvÝt´Úᯗ^¥/Cש¦†Ú0¬´ïèö–QúiÔCäendstream endobj 348 0 obj << /Type /Page /Contents 349 0 R /Resources 347 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 342 0 R >> endobj 350 0 obj << /D [348 0 R /XYZ 72 786.281 null] >> endobj 347 0 obj << /Font << /F37 185 0 R /F15 175 0 R >> /ProcSet [ /PDF /Text ] >> endobj 353 0 obj << /Length 755 /Filter /FlateDecode >> stream xÚVÛnÚ@}ÏWXQ@ª ë ભÄŃ ^’¶Bœ…”¨ýûΙÅܺ¸i_F»ìÎÌ93gÇ4äY©íT !,ßólCÞ5×rÊŽoT]ßr…ïröµð©T…¸I¦9"3¨K²aL¦Ÿ|)~—WFÙ0íšUóEU94èl’‰"¸Ž°ìÉÜÆ}²ò5Ëõ¼ša ×r]Z°/.Œzd¢Œ‘§ ß®9@0Ž»Üþ€ØÇ%™·cŽò_ù#5£ìv°"Š3o” ‹ååhé¼'@Ü« ¥6J{IGÏEÓn!Ðz:W›“6«å=Ù§µúéë9%íÒ…}òÙ‹'2*µéT,_ˆÊQ!ÐõE£… Ák|˽¶¶í¯(O¤êð6ÿÕí^Ü‚R’ý$ðNöùú¨Ïú.]ÕdS =J”bÐÉú÷õªG´: Vç‚°!Àõò*p Üu`£ˆ„À}³/}ؓŖ|¿_îËcRÏRFªÁ/ééIA²vÐÀä®  ‰©¼lת”«ÕÃd éƒéšÖK,½Â-ïdRµ?Wò…É3™)ÏRø¾ Âú Góå¹â¦MÇÜš¬ —ŠÖ xL±Nnþì†$´^¦7 Ôx0EÙö ßÊ^àWÀ@Ë'<Èý.N÷õäæ©Ú¼ ,éjóŽñ$?#ׇž l«i|HSADùáçi }k6³'6а—üPN ¿0ÓxÂ+N21†ê×¼d/¨˜¾ê_ÎßÐÖ…þ¥˜¼BzlSÈâQs¾ñ‡¬–É4Ý6=ÔCš}¦™ûQBgæÀtqr mï̸Ãz?Ñ2h}¥?;:?A øyM5¹6€ømÃ4ÑÁá?ÞâLÿ‚3ÍÅ íñŒÔ§#?4Vðp7Þü7a­GÀGo[¥¶ðöÿÉϳè›FǪ:¾ú4Ù6îžòì7/¼endstream endobj 352 0 obj << /Type /Page /Contents 353 0 R /Resources 351 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 342 0 R >> endobj 354 0 obj << /D [352 0 R /XYZ 72 786.281 null] >> endobj 351 0 obj << /Font << /F37 185 0 R /F15 175 0 R >> /ProcSet [ /PDF /Text ] >> endobj 357 0 obj << /Length 827 /Filter /FlateDecode >> stream xÚ­VÛnÚ@}ÏW ”ò€Á—õ¥Š*°) `dLÒª­,Ä-Q @Ó|~çÌbD¬5¹¨/“]ïœÙ9gf‡4’³Zh:%]×”¥Ó•ó¤ê¶QYރ̓d¶[Ë¿s|\Îä¦Lk­vq¨Íp¸À]a¨— ÷òDY–V­J»“)âù‚„4Ö2›m¦V·M[1%C~Å7üÑ Á0W}GYý€÷ï©ò_âµùßyèòãkd›FP-mgé+"Öÿ+tÅéVzkz´÷²ÅÅ3ñˆ/»K¾²s\Ã4?Ñ9‹‡ìÇw²#³~ÚÂaŠ&Ú•UIÌ „nÃ×Ë=dÜž¨-^ O[î·-8–[Yr)Èœ$É÷$Ћ34ýdŸ5™²r€nìqŶÑ>å#¾NÇdH,öûUu(´A÷ë¿F2ô]—jSs<×|-ǘ0cÖóYÈǸk6'ógÅ…‚ ‡ÞJ­9é¼y‚ïr¤}-bÏ6û9ïÙškëžâY¿cˆ7¦ª•k¡.Žÿ4 Cs\ô„iQ*u‹C&|Ï‚äìq«Vendstream endobj 356 0 obj << /Type /Page /Contents 357 0 R /Resources 355 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 342 0 R >> endobj 358 0 obj << /D [356 0 R /XYZ 72 786.281 null] >> endobj 355 0 obj << /Font << /F37 185 0 R /F15 175 0 R >> /ProcSet [ /PDF /Text ] >> endobj 361 0 obj << /Length 2696 /Filter /FlateDecode >> stream xÚÍÉrÜÆõί˜ð`cª4öEU:P"•¢BR´H§”r|€€N‡ØŒ…‹¾>ok`†9QLWå2½âõÛ·ys}ðò.ÜÀöƒÈ[\¯±·ˆƒÔÜÔ_\¿X‰½\¹–?®Zq¡ú!ëp2,W~ZÿtÜ äƒå¯×ïbl{n Dg±òR;ò“”¦꼯«ÐëÇ¥kéú~_fE¡a¬o^¯B˜0T]àîl÷×vÒ0‚WøO#~“Õc…øÅÖÉÕåÇsu…»fgªWÄ5ŽÝ˜q%â]Áø’ˆnnð·Ëª GD ‰¬~Xú®õX*ÓСÛ—YŽç·|Ú¬yÔÄE¸ë2R. åÚiz†qžíF3îz£:€8ž•5fž]§ê¥ƒ8\«|äݺÁÑ´:än.âÂ-dô¨ ân©km¯ ]Ìk¾p·ôK•M»\Á ªë#QäZÿX&žÕŒòÞÜà·cYðû°‚ï-uG¿vèe"®›²”Ëm²éA˜ý¥ÊzÔ8/²†âÉ„4Áˆ­{–œÀzCÓÓ͘.ÕDRÿŠ™íûÛÌ ü –ƒV¸.? šï“ Lß1JwÙ©¶kˆA¹ê{F!J¬¦E‰è¦îyÝoâÎ?3?yAÒAº[=d¥þ¢äRVÃÍS$ }à“{=lx6L|nxc¬ SÞt eFŽuòUm©˜îƒ“ë+Z¸Žk{Q¸ˆ€Í`Ÿþ"¯~;øåWgQ8‹÷Ží§I¸¸‡…c»iê-ªß‘;².®~šà`–.þ œ•ë„v§0ÛFí z«'‚p;Mt&rtúéÅW´ú‰y ³ÿ?b´)ˆÿ3±A„+Ú%öìôâg —”Þ¶í}º Z`§®ç±rÇ‘ÿÊýŽ ½#7úHÏäMU±nöl\“fÃá¬Ùh¨4~IZý ,Ü­·¨îGg°}&Ÿ£qVŠ}x° öŸoöŽOˆ2x QÞwõw$*ë4šÔçRp­³ ‹žŸþ&Yå–w£h_æY¯Œg‰wžN!´D~(o¯‘X°ÕÐ ¬×<|ÎÀKo/™žê‘‚¦ýÂ;_ ¡aåù‘uüáÇžgY]ðäôo¡ï$æóbØ JJÉÑFŠï“¯oQ¤¹’QVªÐ_ê[ᮈIò7Ÿ+K>+‡6¸ªÊgäÛ÷Ń5ÅVÍãRüûøßêÊ÷ðð¸áWêfÉÌïЉ-¤èiOE®× %:Á ±äp*Zß" ÅruMŒU¼ ª–<û£ÜU-é°„™¨!Eïg¦÷ç^q`F+7YX¸ ’) ¼5ïHØ+Æ\QàwÀN`ýÈ󌇿XVQKÐw,õЖÀ Åý&x¦{ëF6šÏøÌnF9YÎ7oP*Àè Çm~ê£ZíÓšJUˆ¡˜3j䤸ˆ„€î§¢ƒÇ;Xø’»àÈš‡ëÈ7AÇEhœƒ±ÆÀ|vðYCLº#QŽò†Ißl b’v5hp%I¨ `ëô ŠªoÍ À ý;f£+¾Ù ‡lr)“…c!ÉÌX©ícÒú çg°©íwDÇ 1½ÂmùœtÛKSdèü`µ"T1‚à¶h5ݨÛq O‘Þ×ò=gZ©œ¸êùû=ä6#  b2ä$Öð+„¬SÝó„S§Î3Ø¡ä5»Ýª€)¹’ù?کѹåo3KÇ©eÓNéa6WÆ;¡‡Ts¬ðaÎÍTGA‹©?¡Y॒{iÄ2ÄÉvSCvÌŽkŠž·ˆ§ö½·‡vû©¼DÿhPÂ>:ŽäØPz æ:^ ÕŸ_˜@¿'±]Ïó°® z4ôãç¹¾ãp[$Os½æ‘•hÜ¢Ž} °Ü·£4rwU¤;â æœaϵß6ø”3î˜ýnÅ5®œÔu¸b‘̹+œŒ5¤j2ßf#®7»0ìd ÷†“M©ÓùÌ»7ö Ë¡yÅ._zÒNšÞD„ð †,¸!âÓûí +ýÅT7ö>†•¥ô0ÈÝK‚Éé–ÅíÍ #ã#xA<šRBÈK•Ï.šÓõ_9‡qtŠ3ŸØJ¶‹©<Œ§+KüOÕüQV=Éb]î@wÆ…J#lM=jê ªú­¿Î¦J@K%ÄIö0ö,Ï íÄ‹Rú5IbÎ'¼À$¹ÿ.qendstream endobj 360 0 obj << /Type /Page /Contents 361 0 R /Resources 359 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 342 0 R >> endobj 362 0 obj << /D [360 0 R /XYZ 72 786.281 null] >> endobj 122 0 obj << /D [360 0 R /XYZ 72 761.3744 null] >> endobj 126 0 obj << /D [360 0 R /XYZ 72 741.6982 null] >> endobj 130 0 obj << /D [360 0 R /XYZ 72 703.6376 null] >> endobj 359 0 obj << /Font << /F25 169 0 R /F20 166 0 R /F15 175 0 R /F33 242 0 R /F37 185 0 R >> /ProcSet [ /PDF /Text ] >> endobj 365 0 obj << /Length 2331 /Filter /FlateDecode >> stream xÚµÙrÛFò_ÁÕKÈ*ƃËUy°w¥-¥lÚ3µ»•¤R Š(ƒƒÃŠþ~ûÅkEÄ=}wO÷èÍnñòÆu—JY‘ç9ËÝaF–vµ^*r—»ôÇÕO¶ Ö?ï¾{y£¼10 C×ö—6A½ÉÖµº_;Á*^«U SW9«C\&.þÕ#Üô7c”o°RªÀõ#+Tž7FMpõŸ2, ­C„.}…žRYW²’êœ_J‹z8Ø=`Ä“Ô9ªÈ´ç õ'^ ”G`ñ±Ê”¾Táà TIõòw…kêòžÛ„P îÌä)ò¦„ˆž’Œ¡Ke™òQÝôYÛ@׳5råDþ…‘¡PÆúòÒÌÊw¬ŠŸ¥†þÀ ‘­™{Œ›1Ê3+ôåê4]dF#ÆÄ, åþ?-•«•x^ð|RõŸ’ *rH.7•ŠŒ ³ö%^ou““#S‚&À/Ñ #;ÒÑó Òc|J QèÛ~0äw¢ÂË…ð¢w¼š68ж-þ–:ÅyúëýÏ ÜŒ0ιŸ­-„º'<ë}x•B¿âVó÷Žr­ÀÂgã¾Gø÷Ž ,'ˆ‚ ÷/Ƶ܄˜l ?lŽqo‹”·÷˜ëÔÔQÔJJNlD÷Ǽ4r <^3ž#.0È[T|_²—( äü¢Ü ~½ÉMõ* <ìdÈ ÜiÐE*¥ƒiðà0µ=ÅcÒôåAÑ™¢E²}5™%õW&¥$IVðà™Ü'×ÿyýî À×8ÀÒDkiÎü6az1ìàÖT3T™õÝ̸ù×x‰3ll îynêX»àP^ جcœWçÜ0q5¥Ò¿qP/Ê¡ V›*I­êÕUW…ex¿bÝ`g¸àÓeÛŽOg¨ê #‘à^¦FdVÈ&3yÑQ‘åz޳ÔÅ‘r£g<Á¸£œ‹<(ÏB_«ô|^$æ±²-2ã–¬®˜|9§Zq,¨É=Ý¿öСº¢'&nÅ‚I+æz–Ee­ Æ!~n·¿»†ŸâÏ÷k(ºîö%P*ˆ.jrŠÉŽeáC ý¾04‘$М©{7¡o)'˜Jñ}vÊN(¿4Ö5> ºÀÓ’Ú‰ŒÛwnƒ‡,ªèÆq IOüͤ%`%¦ ­óÅÞjŒ,ú¸t[*½tíвýÈýz·57c”snëÚV¹Î@L³CÜ¢4®T[rOy¤ÁÖ1¼0ÎËÑ"ó²ä“|ëkß…Ráõ`>¥í–RÉ&j˜^û¹ÐJÏ…›#ЦžÚà³çVŸk}–ÿqˆ¨Õ/pSÂÍS§Œê¦#„€îxbXXn 4€ú$*9ºæâõöæ÷Q~+þÍXü÷7#:ã]S‹ CÀñQa67ÌqÁ 1+Éît\”#O³ì^O§®ivÇ\Þä¼ø¦¼7dms)y]¯ÝÑ­obž2ÌÃ×eD“ÇÇ壧bðm|§p³Ú¼Oü_6MÕ0‘T¾é™kËΦ÷¯J; ¼? ƒçL;c””vz8p/oÜæ²ãÊhO…ÄÈœ}è¡SO6É9ò0äsÎ|7¨=¨8•žOüãSâCœXÍÈDü/J7ÔQ_‘nö –& .i¡wAûÏæ•Ä4xü„‰â´ÿ#a„ÓǤ¸xL*z‚Ôÿ‘<”€}R(š)8žñ…ÿz˜ò€endstream endobj 364 0 obj << /Type /Page /Contents 365 0 R /Resources 363 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 370 0 R >> endobj 366 0 obj << /D [364 0 R /XYZ 72 786.281 null] >> endobj 134 0 obj << /D [364 0 R /XYZ 72 556.3665 null] >> endobj 367 0 obj << /D [364 0 R /XYZ 72 421.9671 null] >> endobj 368 0 obj << /D [364 0 R /XYZ 72 325.1225 null] >> endobj 369 0 obj << /D [364 0 R /XYZ 72 184.2763 null] >> endobj 363 0 obj << /Font << /F33 242 0 R /F15 175 0 R /F25 169 0 R /F37 185 0 R >> /ProcSet [ /PDF /Text ] >> endobj 373 0 obj << /Length 2499 /Filter /FlateDecode >> stream xÚÉrã¸õÞ_áêUeÑ$¸»j³¤SªÌaÚ39dRJ„,Ä© ý}ÞŠ’èNg.$ð€¼}ÁO>©ì..BgéÝÓî®PwEZ…i\%wOÍ߃8Z­ã´ª‚_í*L÷¼Z'E|ùíçÕ?žþòð)ì8¬²L!vt·Vy¨Ê´$ä§½^­UÇz»REð²Ê² ~†ƒ®cy½^©2x]e)Œà–¶Þ´‚9èºY÷]{âéË€#”¨" ê®X‡ÇŸý8[Ü·ÕÖò]@=¯:O×—qƒˆ¯x½¬é;†ÿe°¿Ø“qÄAÐO÷ÓqÃiUª DQ ïq¦iƼÿ¤_ñhÝ" #kDø•UÁ¶&Êa\ûúLCˆó7bœ€ë-°„PËó·½–#:­º¢ Wë4VÁÏxµÇsûÚÉ {¶µÓVàÈt£= qÀ”4ÉÖ‰,²òBZ ŒH™ ¯Ð:”’Ãq¼á9ýð³#rÕ‹`†–yÏH$–†Ç‰8=H·9 ót²?VäÜñlÛŽ‡ï¸º“d`ËZn’3NHr?<ëqF’—Cc_XÉà)YVy†+bøÖˆ€4c>Z`îŒÁöá¸7¾u ©Ùp¶vÏ#C0kžû;枈B¢v \g­BÛ2Ýr䡞܂ªË^\ωšVHòD'¨Ù__òïn:<ÙáDˆA? NJªˆèåèÍfÂýÞ~çH8+1€A¯ÎÜjÖ Þ7Ô-[òkð'2‘^0О'¿µÆá¥Ã íÍ€ŸoD™óUÖuÃàÇ&% acë–Ìžn-ŠK¹#à×Îüg¶Dpo:vb´ø*"y ¼©÷îÉ~ÿfhŸæEãø¿­å¶,8aGä^][Óʘ8Ckæ€ù¬,ƒOè½\êïL 0r=ŽVBŸ„ûkžIpiI„ÖTñ´|Ö „ËÍ ÿ?þöå‘w›C:Y©›WÊ Ý–$;v‰uã å‚É ` d5HV–pÇ#6Àë–—!`Ĩ»fwâƶ>è«ÈÍþü×~øaº]?Ö[ I…ƒN-‹¨r1œìú‘£Xwú‘fR̦JÊ0Š*4àÕ{$ÐáóøŸ‹ùnóŠþ>Pþ¥ÛC÷‘ŒiK!™¦Õ‡¥¤e˜F¹\Á,ƒV˰Ìru©P6 I€öD’%Ј†që˜ëKlÅIU’½ÃÖ¿5|×;Ê T „4„ÏóÎw¸ ‚7|ÿ…[·Ž°Ö¸—ìul_I «L…JMREkITÚ …÷ÏïÏʼn#Ò0+ãâRŸAÿ[å)Ù±Bû"ÿÕRϨ‚Äáx€µjÊÀQа »¶Gm5’Ca'W 0 ÂÁm¤b8Æ?ükÃF{9p<º)"ÙH±¨—h^Áõ,8b6z±v¡º-TßP¹ÙŒ¢s¾™¶åQ}”RKü˜é<ê ·ž“%ËÇ ¡Èd9$Äjá¬í‘½´L)pѰ+ÐrQMv½Î@³? ijhÉ2-¨V n±ãf›%lËš™¸c‰ò°(Ôep¸aYÒ•T%Vk¢ÀI 1øê¥Œ¶!³‚ew&iî ç-0ŠÏUwIq ‡p ²»G0`@ pÀÁ{å¸ ãË\V±ÞÅ‘¨T73µqG‚1á[TTÞ¨¨1£wߢ[óÒëIÙÂdsc5Š?åùåçÖhê |6ô©švm¦Qej¸8Äk0ÞWç­¥zh;)0@ÞúC¶¼¥æå€ârß.­Ï;æXÔ)´Q#1µQ5WÀg¿•źE×üëôïAQ¶úþ¢LÙõb¦ìð@¨›z|Øõl¼Ìýú¹ø¿m¦nЭ—BßYÕ<*‰€¿è[.D¾Wy…Àf¯¾2 [÷õÈ$ý»ep¶³Õñ| ˆ”CyƒxiSój0G=óŽsOƒ³~ÇNíÉ,Kåé‹‹,¿!æPKWënòÚ‘­œê¼jê ûà$Ê^Òå…‚zä^tÉ¥ñQoTB]ÒôFè&¹œ¤Ûn}?¥=N·uGÅ\s›M°Öfü–;Ú@'¸cß_ň›0U-* Uµ-’®¾BºÊc!]å η º ›žNná·ç7¦<>SŠAVÁ†^0^üë®õ–ÁÀÿõ8ÚÝ”Œ S7fœÑri ¶Íƒ¡(©ÊŠüªã^ í³Ì+5¾ªB¨\¯£ ̸”WЦ`Â9Pi—œ!HµÚ7¨°I:ìþ…7I´•¸s>­<'ol쬰b5¶Ý£¼s‡ŸŸ³¶ÚR€Šæ¶Ê‹õ çCnƨb¨õ¹´›š´¥ZöBÅ–Šù,xÛ'¯P Ûc-ßè¥ïÈ©ò–FÁ¶oω¨a’ õ|@ùçä„ÿ§RVR!œ5=ò„+‚A_VçÆ?þœ|\ÆUïx8–ªBwâä8Í’48AúÆ@Zv˜[Á=7G»^€¦³Þb±9÷/'i|žÇ|åx-éÀù#QŸ÷Ü$Ê#ž“×»$:#QßoZŒï„åͯãõé gíuE–`øQã´T]«*ÉRUÍÃéµy0üÚœ@“7Å4/ÅDì8–åéôjCˆ‚5SN/‚Ò(JͰm¨4;9Ðø«k| kç·¾M™cÏ{¤Øœ*ÅeÓCáóè_p­dí¶!úíƒ&ãa•ÇVª†è9SRî &ÿfpÎO—Xsô° h¬kŸþN p²@¶Ñ²„ÀºŠ$§E[ö|dÁ/å\w 1óŒÉ;Éj–V{âWϻϙ娪’åÎàôž^‘>ñ‡vb¦·h„`-2¦>U±Í]a ¥o˜ê t•.î&eŽüб rÉh9FÀ¦YµFs4üïAœ?GýÅ«y¯xç|¬‡)ý’y…•Gaœe…´á‹]AVEá >Š>.–$aþUàù†v,Õ d»8‡ªÓ^YÌŒÊqñßž>ü 9ÆÆendstream endobj 372 0 obj << /Type /Page /Contents 373 0 R /Resources 371 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 370 0 R >> endobj 374 0 obj << /D [372 0 R /XYZ 72 786.281 null] >> endobj 138 0 obj << /D [372 0 R /XYZ 72 761.3744 null] >> endobj 142 0 obj << /D [372 0 R /XYZ 72 545.2584 null] >> endobj 146 0 obj << /D [372 0 R /XYZ 72 308.8461 null] >> endobj 375 0 obj << /D [372 0 R /XYZ 72 261.8352 null] >> endobj 376 0 obj << /D [372 0 R /XYZ 72 237.5846 null] >> endobj 371 0 obj << /Font << /F25 169 0 R /F15 175 0 R /F37 185 0 R /F33 242 0 R >> /ProcSet [ /PDF /Text ] >> endobj 379 0 obj << /Length 1206 /Filter /FlateDecode >> stream xÚµVKsÛ6¾ëWðH͘ñ Eúyd»žqœXJsHr IHBÍW@ÊJ.ýíÝ@YÒ¨6I/x.û}ûfËÑäšO=JIEÌ[®¼DòÔ›Š”šroY|ò»—1õëqQáo[Y­´+¶ý›GX»YÞM®it¨4 Ìj ˜ "L"£õ7ÐÈÙÔGUÕÙÉn M6f‰ÿbè`¡ÙÚIžÕvP6ãÖóÁst£rÞ8Y3Îêµ´óás;’oËV«žŒÁ#9,ïð~Sÿ)XüþÖ¯Qa/õ*Ë奅yÌMˆˆ¢äåïë‘´Ë 4“¯Ú`M£×h<1ChÖœ¯PªÕ ´ hÞ›SŠâV—WØZœåúØ a¬Ø©²‚·Ô/»'Ì Rœ¼ >©¿ÛÙF–íjë©Ú.îiGLª^ÛÕÞðb-ÂhžJY!£ ÷VV"G.ÒVwò×@ Ϋ /ÝÖ <©e¨i§ú=ÚXi»^È—½oÊñ{!@¤"J Ò¦5&JÝY·9ä&ª¹µÄl!Db9dÀá”0 äTò”¤œÇF%¥pˆ2áϨx*±mÐW•eífÌÄég€"–ˆ©Qt=N!’ŸŒ¹–׿¹‹Ö”.Äq`}éôÜ0LxÃÝ(uO,ø{ÙçY‰ñ…6_Ø»ïˆí¥*.¬œ3ý«3çXNaM´a ·çæßÚ2Sµ,œ¾‡o+ô¡.ìôC­\LuªÇKéwZv.?‡Q¸×*`FÏáL?@À‚búW„ÕVYíŒÄ66õÄÐ04-tˆW¶ƒE®¤-ªë]¨eµ>GŽkLi Ð;nïó¸ÁÔ#vëB3¶4˜{¦ÿ–ñ8@ì,Ný+׿)² bIètk ×Ï4zTnûq8búÄ¿Eh².0Bl¹}îšúDxîú{Tåö–ÞÉC»ÎÏNd”‹sY¾/ÕGñêRêÈc·Æ§Åqš9×/ ø×¦ë×pÜ»<ý?\ñÑ…ãÂ…ãÌÄЄt Œ!o¶ª¯/VóÁzš˜ï´­OYUY€NéÂThX’ú4ð0ÞÀ,%,ŽŽóí¡Jc(ì·½a]eå/¯YÇeòÒ>ΓlHE{9™ìv;’wļý–Èb;ùŸÅá±6/åÕÇÇÅ|Cóþt†%ŠÏéÛ‡%l¬‰$ö‚ªüÕ¿Ïž÷OÖ+–°  ¾šìÔ³rïŠ M"îW€›(·WWŽæË… Bz^üˆ¦±'hH±—W£¯£O_B¯…ÞÝ($<ì`š¦Ì«FŽÐd˜—£Åèý^a°×ªœáoñ)gŒ„œŠ×«-/QØ5«­µÿ9-ÿ6—g$J§?'WM ‚bmþ.Wº\«¶ÿ)žOÔž² '@O"’Иþ<ÛƒÆàPå9¶ÓÀ§d/g>ç±M[ÈL+qÂfªzåJHÞlM¹”æ+äžäÆþ LáilB<£ ´Ùž¡¨*ÍÊýצ(ü‹} ‚ƒòÁxD”¦IîŦ—w)ûÙendstream endobj 378 0 obj << /Type /Page /Contents 379 0 R /Resources 377 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 370 0 R >> endobj 380 0 obj << /D [378 0 R /XYZ 72 786.281 null] >> endobj 150 0 obj << /D [378 0 R /XYZ 72 641.4076 null] >> endobj 377 0 obj << /Font << /F37 185 0 R /F15 175 0 R /F25 169 0 R /F33 242 0 R >> /ProcSet [ /PDF /Text ] >> endobj 311 0 obj << /Length1 769 /Length2 1408 /Length3 532 /Length 1974 /Filter /FlateDecode >> stream xÚíR{8Tû&)Æé¸U”.K"šÌÌr×´l·A…Mí¦™Å,fÖbf &—-‘[cGŒK²I%äRT*Õ&š„ÒN5]t"Ï5eÛ:‹Ng?§ýç9g¯õÏz¿ïýÞß»Þßg¨O÷7ud¡{!WÁLAh мü¨H¢ i<ˆÁ(âÌÀ [´±GA`F@ª­¹-ÅŒ`ÐÐH!cc€1Ídžd8r!Ìd €cC\\ƒÉàþ(†0! päp¿ù >àñ!^4Ä"@`ÁL Ø …Á<ïÇ E«Ïe– òK+âñqS€1nÒÀ-²P„#XP(ìâgA¸“ÿ…©¯Å]Ž7ƒ;/gô§.ƒ s„ÿê£ÜHñ/”ñ¯©Ðgk^ p¿îºc ÌtDÂ8@ù\‚ù®p,ĢÓ „28|h¡!¬¯Mà±-X ÓÝhþÄ…Û\hÑ0‚mFþ[tž»€Á?0ž Ž‚)$ ĉøûåk×WG¹ L”#ø:XRÇð½À‘%0‚b(÷K&!(†x$ @(Ê#Ì_¦… @Fh¾¸€-)‹AÿÀ ŽÙ<è3ãÏéä„ÆÆ™â«hj†‚ 9`eIIø"SÀãA¶°@xV_p(Œ' A±“04ˆ2íRà šV'ºTHj”7+:…5çz7\¹×®–ò O‘s²Ë#jóãúÀ™SEÚQY3«ÇÏh‹÷íq•íÊ-˜‰Þ3R´¯U/ðm‘—ðeäyʘúŦþé7–Š>}»«óƒNt–LÜ+£;oµô‘¾BGptcGq*Õ*еˆ³#í@½‘¹¾ŸFaTuºEÚpŒFþ‘ÅÃwRÃÓTZˆ¿N¢m­™ •RÑ\Èôë¾o‚WЍ»ÞûìA.‡ÍÈ<ìF´X¸"»¸õÂìÌi1y›Ä¼É(·éß*1¨.-Gº¤«ãKIÉút—%¬þôñ{§w{_„\n¾u3~Cé zl_–C÷‡Å=Wçè†3Ë”owÊ®\ÿØ=®=ü$ÇâÅâé¨Ã$šùZþ?ŠÛ¢^]N?¾W$Ü&ûî—a«#fÏ÷Q=#óÜhòÐY[²áŒ™5_͉Xò·w’g>ôå¾{ÞH r©ÏdˆÖÔ쉄¡û}£Y+| ´×¨Žkx*Ûý±OÌØ3­/p&=·>¿ðvÔÒyþ`Ð}oŒtí§=Ñs¬[?_s<^…}»•¹aÛŒc÷™=â­¢'K‹Å{Oð•>Z« W¿÷}¯w[þãå"çUšÜB{Y Á²í§Ý8Øõò€ÙHÛ;yÉ«$••–¼åŸþp9¯R5<‰ÛäýK(µ:¥ o3&"5[„‹=v¿öï¶OªazÌ׈Gz<̺~×Ò÷öqSê¥Ìw.‹ÆªÏö âÄ;AezåµFfR+Ø~b$]ö¬´æÜÀœBÚ'=qS{錭I…&?½‰PFïeéÿ¾ËIÝç‡óuË.¬´CÄ“Aµ|C™N«Ü[…(H àMÅ5ê3Çš z·‡¸dIf†#Žõ™×ÂÆ¦CëÊ•~ªb³øä{àŒÝÝ ‰Þ“iÓ•šzW*unDÐ €¤¡a»¢W¿iÖYöF…héÖßF¯ÍJ,{ã¯7:´ozn'+é¤ßL^ÙfwüÉ¡’ĵ|w»‚³£Jc»ïWڳεüöìæMˆ`Ñ!²QËs4µ™x1äԾ̂Īõªæã^ÖkŠ¿Ó8ªZ+ªc:2Fá%:í¯»wÆ=MžÄt å¯JOO ŸÔˆº|“cŠuœ±ÝÉ\¯#;©9öƒ½zò×¹/ëû®W¨o±\wÔÓZZ4uZ¢†¯µ—D¤³«Ž•ßr0B0aŸ@²,{hQïÛ.ÏN+4r¨D³Ç„ó&F+e%­S&äoVì–<;ßBÒÖ ]-0Îú­Ý Q᜿Ô5>ÃuŠ2ÕQJû~Ó-wSlòC²®f™j*Yî3çyñ˜ÇÊi9µŠ–”¢Ýmð¨ÉáÍÏL‘:Q÷àÛËîÍ>ýñj{þƒ˜ä‚öRþˇð—Àÿ…“1xÊeð"ÿxt!¦endstream endobj 312 0 obj << /Type /Font /Subtype /Type1 /Encoding 381 0 R /FirstChar 49 /LastChar 51 /Widths 382 0 R /BaseFont /PHCWSX+CMR6 /FontDescriptor 310 0 R >> endobj 310 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PHCWSX+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/one/two/three) /FontFile 311 0 R >> endobj 382 0 obj [611 611 611 ] endobj 381 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two/three 52/.notdef] >> endobj 308 0 obj << /Length1 769 /Length2 825 /Length3 532 /Length 1382 /Filter /FlateDecode >> stream xÚíR{8TiÞìª5[H…´mŸb.gÆ`°žb±X¹—Â1ç›q4sg™D‰nä¾¥§‹Š±ÛEIlût‘.êÑb-»SI›G$OºÈ.•Ý3ÚžžÕŸ»í³ßùçûýÞ÷{¿÷{ÇÊ<(„-ÆÈ8èM4á .À3 d…#@8<–••'Q'‰e( ]"!@œ,ˆðœ\øˆ‹Àe<ÉD…Ëâi`ãi«%9±R¸%@JÇC£!Aå „”àVq€X.ÁÚJ •J‡… Ã%4ˆƒ2œ`qµ†| ) œ^·±äÄ7P ¤”Œ)`Ø´ŒEŒ$ä*€A)‹H2wAÆÉ¿ajª¸w²\ˆ*´òÚÞQ.WýE ‰É4¤@‰AŠ˜J€¯½@ OVLE}iTŽKÄ„LqàðÂ×®ôÆS!„Ó’x EåJ8Ù‡6Õ “Þ¤®Ÿgh€·§Ýë©NbA(NСªDxoÉ“5ò¶f2¢ðTÅãðxCd¾7»ÕSîò"$$†2À:”¢P‹ÇHñ…B†œÀ`*€©Œa.‡ iæ`’IR’bi‡*\TÉ$…+×03‰×‚“}gÀM¤pæ ÚλÏóð SÓØ€-b˜ˆ€/NÎŽéãI’) ôäÿÃdô¦–âL®¦B KÓEJ\³JOo©Êðªh«Öåê5} ™q!²!c/Ž¥‡Ë–›Ëhõà¡{uùM&kÚMý$®;çP§æçîˆ)Ÿs¤.çàב……ç9¿„˜¨²rvÍš°³ômJ ß½oó½.ç©Þ=Û-ì5#šg–a++Îýv§ë#£¥ÁÅK›9iÏèžfl¢êîï|¹À\/«,*¸§>vuZeD‹°Ëwô!\µÖÐáÌLÑ­<ËP÷‘à2vI‘UÝé=&û††‚#/e|Á)ø*§fºr¬Ó÷ZRÍ&^+Š5hì­ì3]Ö’“Üñ$šJY¢ß>ïò«0ƒ²h× š±úK¿;Þ=cv.Æ`£&YgßRQý²†~à¦vµò¹^ï<ûÅÜs³~¬Ü*ý`ðaDŸs›ìñH±îÑ‚}·È Ò€·zel;ä×:z6n†…E‚òþ4M¬ÎúÝqWÝ.Ã:N/ÊKï¨ ¢¤"·W¸ÅÕòs¨ë¿)ÍǼ!£‹ÝTº†ž¯³zœm=PWûüØ\VÔÝŸæw©Î¦¨[kr-Á•r]bÜÖû©0»È´úò¡Æ–ŽÌU+«^´šÞ=µ>,Ðôö6»_½Ê×—6èm o™ß7z•ß°½rúùÁö‰Æµ67³c¼[v® Pl/»¾?Y:î¥)¹uë;E°"mìì¯ú¥Å¹¼Y5í CÞ…ÌoòÊ׿xGÜd»¸°÷cnpÚsÜmºCØÉFæ°4µ¾Xw"|y•ƒ\”UºY¯yo«·¿m4",7Þ?Ä~n/>ࢠ;áÕÍö¾‡ÛngÒS”¼Ò¯óò®½FCÖúGœëü‡õ³DÆE1öõéõ™‘?_t{qʸŽu—l¸të[¢1­Ð%aŸ˜©uîUÝw=“ö¬þZ\¿Ñ¯ñfÊx­haî¶ T¾GwøØU;cÞ?\¬ÿþ9D)šT ÔÖŸëðKendstream endobj 309 0 obj << /Type /Font /Subtype /Type1 /Encoding 383 0 R /FirstChar 3 /LastChar 48 /Widths 384 0 R /BaseFont /JCTMFC+CMSY6 /FontDescriptor 307 0 R >> endobj 307 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /JCTMFC+CMSY6 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-4 -948 1329 786] /Flags 4 /CharSet (/asteriskmath/prime) /FontFile 308 0 R >> endobj 384 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 366 ] endobj 383 0 obj << /Type /Encoding /Differences [ 0 /.notdef 3/asteriskmath 4/.notdef 48/prime 49/.notdef] >> endobj 305 0 obj << /Length1 846 /Length2 1972 /Length3 532 /Length 2567 /Filter /FlateDecode >> stream xÚíRy<ÔyÏbÓØbQòs«3î\¢”cÈ1ncægf˜ËœîVˆ$EãÖ†%DEYŠÊÖ}ŸCie7¹R:°Ù¡Ýíõ´>Ï_Ïëù}ÿù½ßŸ÷çý}¿>Ÿ¯Šò¬&Kñ­)d†& 7,íœ 8QQ±¤hB>f€FüØ18€`âm×7Ò9f¤Ë–j(€Ã3uËÃÛ"Ai š Ø¡xÄóÀ ‰ÀY †2B¡‚Hœ¶;è€Hi, …Àá–€aþ Ž@†hmç±!PƒO4–Iý«Äit^(@ò0À‹ˆ¥‰¡ €hÙSxw¼$ÿP_š[3‰D{4iÛž7£TÑ$1ôÏ:…De2@`GÁ‚4ò—R7ðS4;K`’¾¬Ú0ÐDAÆAö‰"Э ! I``ð@šHwxŒý2ol;´,ì¬,Q6Gw¶¹SB¢ d†s(õoÓmí†ƼÙÐ!€' ƒÁyBÞùëÏû‹«¬È –@æ==}M£¡C!¼wÁCz@8 ±`†ðòjAɯà$ Ð ÛË4´xÂ6·ua€MÉD0€ñ™…ÿÉ~Úåß´&2韉c€… þõxn 6å3æù0ð4ð“âŸ#³° „„kêèšÚ¼V8ÌèÁ"ÿMˆaÒxA;¯‘7ø¿p·& 1ñ Æ860£æBi”Ua_™à> ÜO)öÕ„cƾç#wœ >2]…Z/Ïß7'8'ÏÞ<@O¬pì¶^ŽNÉþ8Çò›Ë«;€ZͶ }NU|óRä~ÍЛ=>‡éÎÒt÷¢Çy+­/¯!ÕO8ÿº›«°«Ñ“u§1'VßeMt‰«RÕQpÍ .MПb‹¦§ LõÆDÆ Õ|E©gŠ­ ýöÑëÍ‹sO©Üa}orÏð(~„DÄ£/%:ª+ŸT˜œSwos½"WëxŸNjJ&yÈ47 ­oU«”:Ü1#q'/ zž;×y­1«x_ŽSóO•Ìï"\Y+3“Ïïa^é…ˆ% »µ=-3+º7È‘éØ{š„eÅ#ç!žû6êFp@ùG]9aR5â“"-¾…pè7Ö?þ.P¾'µµÔò5_í1'¶7dst2±ZZ.zö׉¢Î3Ýn²²~aÉYdz¢Ï¼Ä”ŽÈ< N&ËÊ·ïí6ôÓ>>@üÖX@6¡=QD…à!'ÖEÍM•ïgH±©µhünvõóпúÜB4SüáR1Â…Y_U?^]â³4ÞKÍzÙð ß·µèH¨ï3=Uµ‚ªðÃ%ù“Ú _;IjdÝã˜}ðMì—«½5訑žmzì1–_ƒ ¥y›…™¯—–š%9 ÃåãK${A0|£íîÑÅÌ3ëúËyã’`_ø,â4&ÃQe€¶>vœ5'ºõ^&ñÀ‰„¢?.:J]ÿþP[-Að•ÑG——_Ñ×ÎÇHƧÕvº<ÃíCþîÖ¹ß+jÂxWêbú^ƒœÓ í÷ÔÅn•GB¯¯¥jTpâVÔ£ù”ƒ»Ã¯R¯Â,c;}KN­ :Td‡YÍ[„îo@8°@¸x_óɈí 3î&ɨÂdT›*W™Aút¶FpÐæÎ¸ÞuÕp9ŠtLMeÑDËZ52’ª]†…”‹ýbYô¢¡‘+P¢`˜PåñæYZYÏxqC[2zâ …-Èßµ?î5Ž9 é—2?¢z¦ÿ Ð1㙓óÎ’¨zu‡+•Hº×öеÎÝò£ÁT¿Å‡ýÊ»§=F|5tæn* ¾àÿª´R®ÿ2Âîæ‚{bW®»Ö7óÔÅ*v&Ö· Üxeq¶Õ§XkàS™^\ë›îñˆ+ÙýdS_¸Y½¦9ÇÃGb³qÝm®3±TR¦qOÎ9m²~[Wx9;çŠÙ%¡Ö‰ÄaíL‹ŽËÅûβ×6¶L¡®òŠìÖÕ[i¿Í¨§–i‰gM–=‰Uäò¹¶…ã°=DUÖ;Õã¹ZÖç®#T½SJÔþ®í­„&Ù%z¥?ÞèpùI “Y$è”oÒhâníiªm+|¬ß+˜5 Vé ß*tb½,ŵ§n5¶†U–ó+ª»w_ Jö{[µÁÄO‡÷‚áÎåÛ¸7‹ÞÓhß\T‡ç_Qië)yþ4äao$^GþtÝÅmk_WÏ“ÛÂÔ¼\ະ¼÷¦ExbHÁCÓ 9Ë’3g’ß>w‡N¸KÏJ“§VºE” ÞW›T|)·ëäe#ïlò7£•®¡HL^Qic¶‰¿…ZdVAÌîÀZ? dÑ2„’ë7ŽUÃQ€º¿¶ü .Iž±†Ð¼P§þÚQëvü°©WkÇó é…€ñC­Ã)cOš³„×–E›)Ú5èÇ£¦+Ï]S:'JQ°‘% \÷€lRSdÇo|]×û¥ .óñ… Äßy;‘w¹¸ñöA†=?}¨>Í64ÇWö豃[JœòOå\á$tï9™2¾Ú®¤YÚë¯ß ×P¾ùR(Çó_×IëtÁþMÖ×¹+Y¦óÝ?Íý2ä1Œ‘áo ”ªD:4Äu-p²O¡ÛÓmuzoíc#Ïù;>¥KíÓØã[V™<¬¬ÇI¨‡ÚuÑùᥫíú¨±ñ&Bÿ––å4ãí^z.ì¸|ÑLz¶[ºtü&!ÍÆ4æˆä¬K÷ƒU¥MmýrQOGÝ¡¯-¼.å!w¿ˆf+áüŸŒˆ8ù\í½½xnSt"5{;V×5L+Ùè `É{ã¥üúæÄ¦$+[÷‰5×.™!*–ã€n« \!_·2HÇ#ÉðY"¤Kß‹àá¤IQË`9®<%³¥‚ÓPsùÂÁ§7ºl›;.¡5*„ŸÊÌ-^Í‘DÒЂÂó5Šéö:P" ÖüÐÐÅÕL»ý×õwç|Žb«|íÌÏÖ?ÊŒËe9Í®Âß.†Š:Wȑ̛´úëQŒ ´ìfxý‡bŸ÷Ï£©!$Žàõp´gõ³‰'~l9í(*¸iæBv¸A+ø ¹Ñ¢7²‹+±Ù;÷!]ó ©å}žÕ¶Ÿ|Ïì;×ÐVΤ|³¨sŒ‡ÿÏìõŠä·#UÚÉö?Š«k¸Àò—½1 Zþš¼`Æbø¶fÜj°|\¨Dh6út˜ÊšÜ;‡@Ò;Â*åÆX“k¥Åz^HT,÷¤’óÆ~†ÃëÆì_+•nrJÈeql.t_O<ÐZ `Îdÿæ–Ìlˆ¿£}–jÄ29ö~ÿüO`ˆ šÆ Ð´ ÈgûM>endstream endobj 306 0 obj << /Type /Font /Subtype /Type1 /Encoding 385 0 R /FirstChar 8 /LastChar 51 /Widths 386 0 R /BaseFont /BMECXI+CMR8 /FontDescriptor 304 0 R >> endobj 304 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /BMECXI+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/Phi/parenleft/parenright/plus/one/two/three) /FontFile 305 0 R >> endobj 386 0 obj [767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 413 413 0 826 0 0 0 0 0 531 531 531 ] endobj 385 0 obj << /Type /Encoding /Differences [ 0 /.notdef 8/Phi 9/.notdef 40/parenleft/parenright 42/.notdef 43/plus 44/.notdef 49/one/two/three 52/.notdef] >> endobj 302 0 obj << /Length1 823 /Length2 2170 /Length3 532 /Length 2763 /Filter /FlateDecode >> stream xÚíRi<”íþ!‘š¢ Q=YgcÈ’C"1‘eÒ˜yŒafÆØ²$Ë)B²d‹¢^Kv½É‘c/![*$õ¦3t:ï{z?žóéüÎ}¹¯ÿÿº¯ûú]ÿ[nŸ¹¥*–9‚G!&[Gi8SSüA€wD"Eääp,ĦALÔPZZ€±'@«HMmŒš6F]DÀAn¾,Õ™ (àWIš–²hd0%±AOƒL¢–™²}á–N,Vox Èò)p  ÐÈlÀ¤Ò˜"ˆUKx¦hþ(S<Ý~¶¼@–Ï °fSà™¤@Lº/@Dfï5çå¿aëWñ£žtº‰±*¿ÔßÚ$îûOÄpódƒ,À¢€,æ¯Tkð‡7SBódüÚųItˤÒA@¥Gªÿ¨Ó<ŽÒ|@Š9MvœHtp­2)¿:áÅ·æa…·>af«üc°k=sÉ&øºòOòFý‰y±h>€ŽD¢xDÞþy"þò–!“ QhL*€Æh$‹ä+‚äI¡1ÀИÐ}x†p&Äæ]xÁNKduª-A† Òjy­¢‰FÿB($@Ðþ5„Ë_ &€pý¢‚¹ÿˆ¾>äã§ŠVTÑžÃU®&ðoD²'‹2ÙkŽëOìDãM}@²·"넺ÜxÈÉ 4Ì|ž+¨è!˜ÚZVœ¨ŸÒÙÚÅ*m'€{>Š…‰¹ÐòDãgMò'̈äC¬£Ÿ%"¬W¬¶]1#ÉRhŽd=«lŸY2QèÈc—a‘oFu±Qšφ§×Þ0. íª3±žŠølfÝeuTmÞ«bbÞR¹Q#M á›ï’pôÕ±,jï×ï.âÛñÉ/E(xé)o»W½ü¥ÝÙ¬fÛh2(xæ·jÁãh¼#ÿ™ÆÔÝ;l4VÐÜ28ËYtÌé¹}ka溊%‹š:ƒ§\æfþ•Ù–~-¢Óµ¢FjÚááØ”0îbjð “[a S»®æz¼Ï䎡Ót›Ûnu^éG÷*iú1îð[¨À'ÊjÃî±®sÔ þ„€ñ|mÿ6eo \w–%˜äŽ×¿ð{þ“¼ÃÔJªKw]àò¨²JyãÅãb'¬3š¬ta­9‡ƒâšºßJ4:–ÙØTvŸ¿ëÒÁüqXîíiúÞ×ô„j~ jŸóÝJŸ_Øg¡jõsqzï*#*LâƒÅ9O.ß+YŒ;ñ è¬P»™«ïä«7S&„=û\5c§)˜ïš×ËìN2Ö/äd8Μæ/÷ ¬é1°‘ÇN¼7]‚°§‘þDêFyU'½_HÀ‹‘ðY'æÀ¸LÏAùêÞѸuÅD7øMþR™ÛxvÃÉGaj[ZöM5“ÒûaÇLdÉÑy]­'–Â-ÜuGZ×i„hkÜ ÏS¶À–ÇîÉK_8sDõ¶¼²óWσxB÷ÓÁù Ë£AÓBeJÏ箿I§5}à ÄH—íævóu|E1Ð ¬è@V½€ û¢eðUñ°ß™ -zlkl{2®_aȜ魞W¬£·ã£F/»I|°!•ÉL½ˆ÷˜ÕŽ.U6Ç©{iLˆ—O’§§áè[$M™+\#té,¡éíÀLBºi±ôùt'jŠƒtóg„;øêÙñØ{½ _ÆJ;îFD¡¨ðÁ{½Ùه6I´zïû#UÆz9ÑîÒü¯¥;¸ŠîIê±Ë-B‚7ÞªzoÛÕ~˜ß!Ç(9·€ÎK–ð‚¯  •l3–ƒ½{‹²TËÔþÔžkrËÖ·¤_KÞ+D¤`ð r՜Ţډ:Y—v‰÷ ºã­O2îZ5d´˜Åhtô©n—¦rFqVô‘Žºö ¤`ãÉCŽÒazŸK’.«¶¨œ h¾PH>ÔŸÈWkã²G|ÆæjUV³ù Y÷a_ßÁïV#2ŽØE?ô‰Ðw†ŠʽzäóÝ(š?û€Ð]¦å#xê㽉©û;#Öy{ë¬~Ú­{Ê!Û6ð¦làrÎ܈֎n±æxw˜ÉZà÷ÌüpΩ¸O¢A×"½u7­ÛÔj#—™£p6è‰A}vp¤¹íPÙ­Þõ­Ïa¾Ëãí*A†» s° ± Å6Óã·× KnvȱÍ,Sv ¯)œXdœ*ž gï—TõÑK}9úõ“̓yQ[á·­w¨ÅÑ›fçB×(Å‹žÓe^¶.{†¶è¹Xö…Ÿ6õ*§ÚšÜéù^«Çà`—:|9|þߦ>p$·%•÷ä…‡w]Ð ' Ó ˆ‡j¼t'Q R¥“PBn°¤\tÓÔ6îÔ'•p‰¶ûQ©A5ª‘6¡“›ª¢ð¡_ÎC2'v²Ô8îˆô¡¥»SÓ¶D›Û£½È#ÅDµ‘P·’éÌ­#.cÇí:çƒÛÓìôcDõ ~šéA X{ôlü+-¨½HX¡"¬wêÆ9/ oÑ›PáÛá{°ˆyµÇ2Kfå§çÚ^%ò©ÍØ9ÄÌÕ¢˜G®,½›ÀT6pOì ×7ñ úö u®à¦6}J¶þñΊDaùCŽë#âðôј,ÂIæä;Bë½ÚÑT1éž²pD_·qrÚ ex³rãl‘Î+X‹¯pVç%‘~ØSvFñh{»;,S2%%±”ç*ç¨?,1tß)Qé7š®ÑåÃçŠÎõˆ€ŽSC¤jzzÇòH|V̼§åJ>:Ím· >@ή«ry×dé¿£1ÉôY{œ,êƒá¹å-§1ÑŸêžX5ûo!æÝÄœ÷X~1ÆFù ÎÆÇ „K}vnƒföö‹½”‡7lSûm£4õAûÑÅ,†8ò?\"ÿøŸ ÓA‹ 1H,W‘ ¨Áendstream endobj 303 0 obj << /Type /Font /Subtype /Type1 /Encoding 387 0 R /FirstChar 59 /LastChar 110 /Widths 388 0 R /BaseFont /VIWONZ+CMMI8 /FontDescriptor 301 0 R >> endobj 301 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VIWONZ+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/comma/G/i/j/k/n) /FontFile 302 0 R >> endobj 388 0 obj [295 0 0 0 0 0 0 0 0 0 0 0 828 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 362 430 553 0 0 645 ] endobj 387 0 obj << /Type /Encoding /Differences [ 0 /.notdef 59/comma 60/.notdef 71/G 72/.notdef 105/i/j/k 108/.notdef 110/n 111/.notdef] >> endobj 299 0 obj << /Length1 787 /Length2 874 /Length3 532 /Length 1436 /Filter /FlateDecode >> stream xÚíRiTglAQÕbdO2@X,55*»²ÔÉF’œL$Á&biiE\eqC¬h´¨§-‡¥*GQÐnµÚ#;ÚN ÖSüÙþêéÌŸy÷Ýï¾ûÝ7tÛÐW!ž€ðpŒt…7 ŠˆáˆÁ¢Ñé“(Ž} “ˆ7€¼¼ à/ˆXžÞl¶7D‘@ ž¢ PQ µ$Oà/ATc &“ ¥!€Å  ©`±„kOHA8"EˆMˆAƒ D$H@D(Fcj ñ±DxNÁBYÊ»Ö&„R¦€eÒP…8&V!’HcãÔ,„ròo˜š.Γ‰ÅÁ°D+¯ éƒ6,AÅŠ? ¸$EF"Â…M§F!SÞ‚!*“LïòIXŒ ü1‘®;ƒåÆ™j R*G„¡()H‰°XŠLâ&œn…JoÒó³0ÿ°hç©­NöBa#×(RÀzOž¬¡÷5•ÊA,‹ÁbA‘zß}ÅO›µàB6ÇÀ+h,JŠÍá€Í@1!"ˆœ2Ìd`8IT2Jˆ4íRY€)A1™T‹Nn€ K©èPi2µ¤¤¿pw.`¦(u)-òá}pùfW7põ¢FC—<=½”# d`ääE¥ö®ND©¤DŽhí¸Àçë ûÎgVª–—Þ8þ1söhã©§ú ÑjU!*TFpŠÃlEäÑý59×Ì’oš¯øì1&ÎYìþîó×GŒOÖd*‹ÎMçÔ3îF˜)2²÷Îyël?À¿¶1rÑ7½VÞõDßív.¯í¶4 Ÿ¬+­îj7˜ï¾Ûi‘¥gG…¾FÇÔL¡y|{ÂÊvvFqlx÷N_ZÅ稲Å ¶W<‡«bín€»ÃOlˆÑ³u¿»²ÁHg[Y«Mú ¦£mÑÉê«nKÊ‘ ‚¸•‹¶²›ßŒx°õÔÇ=蛤òáy=kæéVýFôc-¼æÌôy+Rtévãf¦-! —¦Û¯¤u˜FMž¢ÇÝ~Ø0’`âå×¼>ù:×da¾-¶+|½¯ä­XÇ{Úæ|˜ç÷ßZ§)|Õ7tLÇ rÍIƒžÎÜ¥5‚jî²K¬ÃŒ°¾Úô‚¬K#¾J/·Ýµµ‹R7¶6ïÃòXtÏõšbæ ©(;ªÔm4¹3ÉÂúæÌ{¹!?•‡šUæÚ˜”Ï«50™+Ûªî; wm„Òùö.+³3_ç>&IÎ{ðhže8´Ìz‹¨¦ÒòÖWŒA¦±žaíˆMÓVПñÅp[£uNŒ†ìÝÔÅ+ù>)êMfF Ínu¯¦r|«ŸÓªrüy:ý\>¿¤ÂŽ©-_%ÅqÇ ï èÏ9úØUÚúS!­VGŒ{>ú]¨²nu÷9¬–×ë]ôKc<›uùÌøÄõ¦'ÑuÏvXHì»ÄÕ¯©%O”=Úiùm†lâEêøüÙ©ÝÎ5aǯ®óí.Û§æ›…èmµÓÍ8[^”i§ù$ÞÃ&ÒÚç> endobj 298 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /GQAQOX+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus/asteriskmath/prime) /FontFile 299 0 R >> endobj 390 0 obj [826 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 288 ] endobj 389 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 3/asteriskmath 4/.notdef 48/prime 49/.notdef] >> endobj 296 0 obj << /Length1 892 /Length2 3292 /Length3 532 /Length 3934 /Filter /FlateDecode >> stream xÚíWi<”mß¶…¬‘%•\’,aÃdla²”l·%cf0˜ÆX‡l Ù×(D’=‘µB”[²ÎmMd_ÊZ¶WÝϽ¼÷óñ}?=¿çº¾œÇñ?Îã<®ÿÿúrŠ K«aˆvX-", ‘ }}8ZƒÁ,¢¢$,ŠŒ#(2@ä] À—rp„œ‹( Atõ!áÉ€¸†ÄPÃcI84Šè£ÈŽXü‘åÑ8,ÙGPsqnüØáÜÀºcIžXŒ `ph2`‡uÀX@?2éì‰üwãáúGÉKr? ˆÿŒ)…Ä .>kÏ2 †=ÊòÿëŸæZ..(üûŸú·: sñù—‚ˆwõ cI€>ƒ%þ)5ÃþN‹ÁyàÿYÕ!£\ph5‚ƒ †ÀdÀ°ßyœ»Î‹1‘ю€=ÊÅû“Ç0ÿLrÔ¿Ÿ9@&בæê—þ5ÚŸE#Ž@¾éãŠÀ©bÈ_ø¨I$œ7` –ƒ!G£÷•õ?Ó$ ‰Á€ÊÉ( åÃ>²‚ÊÉ€#`°ÞÖû(1H†@$mŽ:ãØI,?æ ½ €È(äO, @®î¸?±ÜQÝõhtDÌ_”BñxÔŸ €´ÿD°Âý Ê §¿A8rþ BÀˆð7@¤Ÿðß{ª®Nô¦HË‚i¨ÜÑ7‚¡ò\ìÿ¿„h K ÿüo&ó¶Ç ‹õÆ¢Y¨ƒD´â§ûUw nkæ¼/<&á~6-ïNW}hEš¢Ìâ¸"w?©ºç&öÜW®P.'\щ”e½Æ^nR Jͯ•b æjeç‘È~`Ì´Š^´²¡k{ÔÒĉψ˜¥ M»V_ZýMds³þXéµyü±Àò=†‚¡ÁýõÛÎÝ“TÖTŒÈL ‹õ£W×’±¦sqß—´‰9Djn¿ÕƒÍ“T¦±Σìi ‘ôéó×,µK“WÅ šQ#£©ïü6oÑ Ì˪öy•'Ø í¸? PâÜ¢¡xåö¨F|û’.´f7ƒ#µ_4¶Ù;a´9À‡™ÉoXŸé ÄÛÄ«Äx®RmË…kvÅk`È•ëc±É ÁÏ®â"\âJïâ«€uŽâ̸ZVÉ%?1¥Wn£:qK­âñ.ÈÀm•8b7 (½ãÖùÆÈ{´šCôñÆL©V¬ÇBòìÜzæ™ìòÜ$9Sø4™ïv‰þýÓkùia÷PÄþÓ—äc°Ü®V,¼ßÝõDp”ê`Œ~8òÉN G¯Þ§²eTV M*58c7Uwú…ó‡”òFª¿ì¾WY]—¤m™Ôv Õ^\s-Ï›uåoæ‰Ó~ Ð1°)›!ûý›”î@k|(Ò¤ ¡ïüd*íg Äù!©®ð,˜3BûÔa¦Ý?ùW²z_4Ö®Iw×:{öM󮱺ïê" rü‹Ý­­³KxüÊñEÎ!v/ÉH;-Üt‰[µÚIzSP‹­E XÙÎݘO{lïž-£¯‚cUgE&ð4^4Ö†ÂTÁÏëM¿WÿðQÙçpkï0½õ'üS.£†ìü»ùÌ·‚¶05ð„Ýw"ÑõŽç* ל IN8¨T¥Tk«;ï­5fÏ «úóÁëæÅvžÍì·ôÏ0w48!³Í;"Ù˜k4‹ÖÞ½^§ø”mÙõ­|Šr‡œÒŽïܽeÎ>Õ¾mõd‘Ke3{ÝÆÎŸlrŽ®Çò¹ÞL}¡¼ùRvÌ&düxå%×ġРÄ^ |l0tRÉó±ÞNe̺PóìÃâé\^xÚåöÓûÖy“ØçY‡×ïæÑ/uùˆ¼ª“¿äk•1‘(Ã;(Ž ŸÅ þ6¤ypîyòæcBEQf1ЂÌڛܫ€Ú¨$¬#}w¤ ‡W@ÎEtº}L«ŠppÕ‡àLá'’Žñ²?Dd׺2ÉÊò@—£ø;õ+r ]'Lj«Õ"«Eò:gv¾êdI;zý&MX¢èç×ä­ÍÆ;¨Yxê—Ū¬«–}Áöð$í*ÎBúä«°sÖãù%”UðíÜÛ²‹_§¥ê_¸¸›Yuzw·ÉlLtžˆÆ}XòG}k¨OŽ’3fÐõ[_‰QÙëNi XüfžÐI=wæõüÜþ‹ná\ÉX-+Óe•`»Êx¹þžG|æêa%¶ÞýÌܦ¢š—Ý„f× Ô]œØd†*3‚LcÚº×"i¿98æ zh\ƒRÄïÏ“ž_Èsqžq³œ^8é VþÁLﱇGŒ{ª‡v‘^Hƒ ßÕôZ… üµÍV+b–âcU$ü¦ÙC*Æ©²uW#ËÜGù2]wTK†Žüæ·]®-›tT­GgfŽTÛP‡i(s‰ð-ó)Ìë{ãSlÉÄk¿æž0Ú.e[‹wVQ½hí@ÏGIwí4Ï)§2¹~’G÷D1¸f,F¼,(¶ÖâEŒÛ€ÕmtÓzMÕ$Ò<%Vs‘㮨ýíåw£-Ô˜@xä$6»Î€ÇÕ˜±ÞöA MYLä•G_M., –´ŠàvâúÜâY¸òŽÑëçàŠZ2åEq>ũ칉7¹¶zÙæ¡¥òé6²ñ j…²ßyüoßþ.h–Wi^v¥v W±cVÒaûˆÂ«{‰®À¶Ó6éyÚò¦2Q\¬ÅÛæ}^Ü0çW‹Æ·ûçCUñ™oÂëøìGRe%“žœ”X>5ã#¾ é¦㥑_ª‘X¬PKVtpsH¦Ñüòú1ºyFa¡ÒhŸ½E'4ÐÁ¾AJx5O¦jÝžßPòOfžk‹_L‹-h œ$‚Îy*ZVO6fÕD‰-ÃÏlÈ[Š 2c”[N±¬ í—bMÖȳù 1ÏI«ºìö¼= ×îR&#ƨñ.úïéMàíEn8û'¥¤°¶gÝ' ßcÇ» BSòñ%¦‹Ÿ‹Ã˜£o0XGšÅ¥îó¬ȯ¦ËËJ"¿™÷JdÝ·O/"î6,1R¶Ó&5朾î9v–›¼›3™âªx ·;\Ž3°¸¢¬ÕêoüH„ÅûWïž`Mæ'2˜5·³)^u‚-9í†Y6· ŸË€>zo fßÍ•kßO ŸöiQŠ3lõË$‡¤³Åž ˆ ¶ÔÕ›¸ dÇѧºØ|ýœ®e8ç4XZÖ„u¯—À'™}Êït–Ò†3Я8ÐH.Ò~~{ˆðœáµØ¤h,F¯¨ƒ¿&Ù+×û„Yãùê¥}wN{Ýé0ßë€ç>.I`K›¹*ƒán‚{gêôÅ¥ÊZ’jÔñ¥¬’êžâXsãðÉ>uþ½ÏÊYD6¹RãÄ1¼3b R´|Ïz]ÛO©ösíeš@Þøþí¶Ù]¨õ>LdL]°MÝæÇCËwÞª§r½¾²ÑÝü 7i%›õESôýÉ"­zUß]{9ÃÑÆgPfÒ•Õ3Â;V%¬™õ’W;ÓôøëÌÔ_¼k¶O¼L›CW}Ëðëk‘¾ˆß¢_=•cåõQ² %<œÜÚ¨îx¿qÕrt긃“ÎAC´M7SËMkqüó§¶uƲeµ–ˆžcÓo{ÂhoºÔ•ÉKV¥æ®Í¢"¢~ÞT~e™š¯n”pü4Wá/yù±çx.ŸJÚ·ÍX9½ù<ä71›fu«Œ6á}“Nß ›S7ìrãá ¼ñ½°™Ñ-íÐ&À ž¸”Æx6eN¿/.Á­¥ÚIïÕ6«ëHs”qWuJ…ߣªÛFÌtŒq¼Xy–¯#üàûöÃÉÞ7‘¼"Rw8“3Š¹ï” wUWnV_¾ð­!4ÉO“þ*êø2œ“ÞeŒ™dë2`/õðMp·DÖè]ˆ²eÇRAãÃÛ#5EåôÅz*6æ·Øä¶O«øQÎl±©^©¬ZzYŽÒî>LL UЖêï÷Ü>î(g¸Øz!.©U³žßîôõB;‡š× J ò”÷ôÔf¾¿=rpØ{yPç¥÷—ë6’¹ÎUÉÃìO§½O\`«øut‹¨õÞr2«C8õ½?ôC>ß+Oý`qÑ„‹Îà) )ÍDT°ÑoÏÞ–Á½VL+I¿<þæ¿Z„@¾¹ÿ-¡ÝCœÅj`>AWÌŽÖûåÃ\øìKDH¯´Š³@AÖÜÑ~!p>pVÌ–wRîA}T„õ7Íy”ÙJ˜­ÿíy{³ï½S,‚Ù¡a˶¡9ôõí‡÷æúaO^Ñ›÷ðœbÜ—A³©%>ø`jdžêŶQómåÚïm RÇ}„a¹Ï1´¸d=›Pc>V£é­±ó¶Mo¨óþçHYU¿KŠ©CRû‚.º··|L¿EhG!"ã¼Ç* b›Ä5ÀW<°4¨{®IÀò´¶Çf7gmtXLŒmQQmŠ\ß›u0¿n¸,8Òª*¥Z¹ŸÔ¿¼®ÃèOU>QPêw<‡ï–“Ò•ˆü¾Õ‰ˆ§ç«J#N^lÄgé n°òüö0ÿ“´ýÇ.ÿ3Ϩƒ ù¾j8ûªòÀ¦áݬÂòO»pŒEqn<ùÄ„XÓh-Þ;-„~±wtGü¿=,ÿ5ø0@»`Q$2"9³üŸ[ëëendstream endobj 297 0 obj << /Type /Font /Subtype /Type1 /Encoding 391 0 R /FirstChar 28 /LastChar 114 /Widths 392 0 R /BaseFont /UQDXBC+CMMI12 /FontDescriptor 295 0 R >> endobj 295 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /UQDXBC+CMMI12 /ItalicAngle -14.04 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/tau/psi/period/comma/G/i/j/k/n/r) /FontFile 296 0 R >> endobj 392 0 obj [425 0 0 0 637 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 272 0 0 0 0 0 0 0 0 0 0 0 772 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 334 405 509 0 0 584 0 0 0 441 ] endobj 391 0 obj << /Type /Encoding /Differences [ 0 /.notdef 28/tau 29/.notdef 32/psi 33/.notdef 58/period/comma 60/.notdef 71/G 72/.notdef 105/i/j/k 108/.notdef 110/n 111/.notdef 114/r 115/.notdef] >> endobj 241 0 obj << /Length1 836 /Length2 1180 /Length3 532 /Length 1777 /Filter /FlateDecode >> stream xÚíRiXSglan-V ú!ƒP0Ë „”½DP–`¤"‹6äÞ„+In¸ÜØ7 `E‘¡jeÁ´X"ÂãR fÊb©,G‘¹ ¶3ôç̯yæ~î{ÎùÞï<ç}m¬x|Æb?LFÐ :ä |‚ø;!&€èLŠŽ“ù Ä@..à*Äb&Ç•Åtes(6À“«pTK;Ÿ÷çEÀ•"8*È@€ˆE¤d¡@ø˜Ep%°mþF؆$ ø^¦S À¨1ˆ•QóŽd" p^Á°Bþ†Ú‹à ¤)`Gš|aL&QQÁùB:ùo˜ZÜÜO!‘ ¤óíRú/¢Õk&•+AŒà²ÅÒÈ+sAŒ*¤‹ÙB A…\™X‚äDg:²_h‚ªD`JcH I@pD/¶BÆ·`„ÌÝ´9œëðz® $O€Êˆí*9˜¿©jè·šL G• ’Ig2!RHž7Ñ‹Û$b0*Ûp\ ¢DVl°¨ F”Q’ŽtFWM2a8e~¬LÀ¢2EÂ<ºûň!³Fˆ_!)’ H¼‚Ú¯B&‹Tâ!"ADÄ¿ÀޝáW+0ÿ>ooL¹Ær4gÒ.9‡üoB¡Ç±°dÈojJA”ˆÒÙŽ ÝR÷œ¨Lû"eÓ¹æ o3Œ^4~ùs§aM¸.åsNæ³O‡Z‰‰â'…½Yu¦q-f[„nŸ™àרšàÌ]Ï‹L.U¨Ï–„ç`Wӿ盪«µËglŸÔÅ”wêH¯…k5ÞwòSëÏ­÷7.; zGœ»9ÙÓnü®ý¶\ûõæœÎRÃn½5¦ªîŸ¬{¦Û¢ÁC8z¿+0€gšà§¶myÇ<LôS¢E{[ZBskÛ{?1ƒgV…dVG*‡-3Ö§ÛŒÝâ—(ÇÕ)û:îÈ M[3†4…ãI!F”jKïúîæºÔ†^FöÍ7-ÿØØçûÒ¼Ñ!X»ZÌìqÔ¿úXG½»§?ìJ”>7hh~>eªDwêúqKßáÄø?WyL†™j’é[+óv>-®ª3n¯z2ñjëôÉ~qÆ(øžš¤¨˜Ðêb³†¦#N÷Ú›7÷.YF-H ¾NÑ„üf 4µ=GëåŽùT4é Ktäñº ßÙÖáÂÑMÑ<é{ƒ ËoÚºW¥ö_9vªöa¸ÄjbƺÚòPO„fÚ3;Ê&Æþâ™Äð#¬wSÕø2µ+®­µçFêwÌæ±ŒÑ¢=õŠîœù¬øáôºiQ®7¤»íÎ;Îlo]Wr§‰bôáúè0ïÛ|Y±_î‹Õr´(5ÍÊaVå9¬]¡‹|w]®ü¶üî_.D‰Û ýÝïÏ¥o¡2€C†Uøs}8¶œ¿¶R¯š·+ÊnÔ£uT/©Üå-ÿ¶¸>˨°y:sªßyÈbÃ×ÁÔòÙ5˧—>¾NèÕŒI¦žfä:1¾ÈŸrÊR4D„¤ý²lÕJgBvlñ¬üX9íçÎèWwÏÁëÇYUæ-%—<5+»FÞílª?|;Gë}öbvøD#+Þ1Ý­±¾uB¨P;¹ù›hO⼆)Zˆ×þóW›l›#Œ(»¾¦\VwT¾Õ9ýê‡[.Äwè6j#·Me$þ`îCKÕ ¼Ñ_m«ü“k«óµ÷jhs¿¨r6¬°>•جvíãnU·ß=š)ÍÌí½ƒ™M׈kË.MÏø^zº¢´ÝñAfÕÈ[õÉò»¥¬¨UÄqÆö¯Í(/0‡ÓÍž„±—èiËßi¯Ë<è/7 ¥µ¦ÞW6¸%š;ÂËž£{]ǹCu×èÌ[<"ÔKŸU{ “/†•UN–YtM¤¤äµskqù±+3#]‘—G o4ÁülÍí®%‘9ùÔß$¿ì‹fxQwþ´Õ®&k ¥Â`åÖD÷±Ÿíïn¨ ­‹ì´®;´Â¤ô»€”œ—³ÁþÛ‡ôÞ«œ¸PÓûÁ‰þßGÛt¾°ºLÃ8›|šl²äÜ"l+C…oÍ_R/ö˜É‡ð#‡¥GÒ'²¢]KìËì/¼:>óãuɽí"ÝÑ`enØpÓ&%_´C—ù(?í£¿aÆî»=nÅ~5Í‚¾áÔ˜?2 ²~`©¿dÙ.ÀèáSÝÖúŒËó ŒÁãÍÜ>÷™9¿^Ëxøe˳ð^ÎɾÖÃEN5Xü‹OqZ€o¸TÄü?ÊÿüO4JN`RGù'u¯¼#endstream endobj 242 0 obj << /Type /Font /Subtype /Type1 /Encoding 393 0 R /FirstChar 0 /LastChar 103 /Widths 394 0 R /BaseFont /NAEGXA+CMSY10 /FontDescriptor 240 0 R >> endobj 240 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /NAEGXA+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/bullet/lessequal/braceleft/braceright) /FontFile 241 0 R >> endobj 394 0 obj [778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 500 ] endobj 393 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 15/bullet 16/.notdef 20/lessequal 21/.notdef 102/braceleft/braceright 104/.notdef] >> endobj 238 0 obj << /Length1 809 /Length2 1834 /Length3 532 /Length 2413 /Filter /FlateDecode >> stream xÚí’{<”iÇ“ÃæXÖ#9¥9šqn2åù”ò˜yð0§cBë´„"“)9%&MmE!ÛP9d­ŒEQrH;IŠÚÝw÷mÿ|ß¿ÞÏûÜÿ<¿ëþÝ×õýüîÛPßÃE¦2ƒ '&ƒÂ¡q6€£»ÃÀ¡± ††Ž²a&c+Ȇlœµ5 G†8+giC°°1—˜G&‹‹À!¡lÀÄÑô³É Ó!¦€ Àd‡BtI H¼™bsÑ™F¼>Ÿˆ¼ á@T´Pa ‚B`†æ3“ #˜ Xþ^¦F²þÜâ@H„ 0‘@šD*“AãT(X³“)™IHþP_7wФÑv‚ôÏíÿÈéÓ¸x˜tV$Bw&B_[ý ßñ˜´ raƒ4˜Bf„Ð …# ±„ßëp„ Q=`6%iЗ:Ä ~Í!Iï ÆÏÇÕÃ×Íì_ûeÛ„l. °ù¿hÜ_ZG{±h,'1JÖŸ_ÛÆ 0©0#À-A@®‚ä IˆÅ0ƒ EP´„ƒf0Ù’#€$™8 ˜‰(|¾Wœ¤+ú\ûC ü—Ä ò7i`Ø“Ö&ê‹ügÌèXÞ@በ¼%°$âþÍH‰DˆÁþòÈ$Aþ©ƒaIö QD=LŠmrØÉêÔŠøm%•2¦:üòäG )×ø¶è‰A[µn¤¦ÃúvV5E5 ¨äMî¨ÂPƒ‰CZÕäCͱޘ”^Õæo4L‹ò½å¦)ûö/o)¼W™~&}L¤7ª1›î3?å4ÈÝ^â,‹µ&¬¨xÒóém|xBÛHñÕ`4O! °Îíä;þ4ûá‡×Î̦¨¬Es_¾X}Q¤uw +¼ÿ¾uF¡û²ItÂx&0uݸ]u›VüôYLÖì©bØæŒM¥¢>çŤAÜëzlêj(ø8‘k0ëÑ #c–&—Ô…¯ñ£ˆõíþ8ºö<ú!_uãUÛV«×þÊïŽù«í¯Ž7Rœ1I9}^ê,L7Ÿ¹n![,^=Ôxo® ÚðnX¹h Ÿa›q»L Ÿ÷&r åî™F–òfæ=IîIø±Ñ­,¢w‹°ï—k‰©³o î÷0ê(º=Îa9!¥e†å›ÊV%ÞéÌ4³D]wówiö®Æò5àD¶ËÆ6»†0b»vðÛz÷¬{¡Æí`¹4>Ùóñ÷<+g¾æjÂÏ9Øß¡‘SÔº’¡DÉõ }Û««¡ã4qZ,7u—tNÎŒ™’ö¶'-µÍHvÀ¶kñÑ4eƒï%é•Z催ê*ŸªÆ­Íc`žqé'GÞè ì„“§xIJzmÝH†%§Å¨º­>˜€æÙN Dá{?yºêìäÖmÞŒšÈef·mÌ].œSû~†Ù߬÷¤\8檞awžgƒrTlpé%h齂}¶€tâ†]ÕS\ÔÍõ·ÍßÍ»mZÜßT+ Û’5!}¦Åf˜c#HŽ ÛÔñáå«™ûF4ÇBQ ‹}³.Ê·{h­Ù÷ãí2î§Ç«¢äùÉ㇡˜A÷-â‚Ö¦¿Êo´H¤3·ÒÚßÁ+N#K”ßðDû®3ïxÚ•–„“/ôù)sØu@z蜳ó«ŸÒ³K[g«MÕo|ºiág_(Ö̪ŒЕœëPùùÕ9Ýבž Xñ]ß4Þ¤·Ì~ÀÒ<}ªcpÃ¥ÃÝ*†ƒ'M&’ÛUàÂõƒn‰Ô‡ÛÝ='ã-áTÁRIA‹^D8°“=—GÒn ˜æÅëàð¤xßÑìlTmNì–G Ëö+?Œ_×—*¾ê;z+p°Z棺ïiÇ™cüLƒ¬çxŒ°Q9=Vò¶ú oT°ù}M(‡h÷c*;œµ¤\ïõ`BŸƒÝáœâ$òÉbÝ1°e{+ôñ§Ä(¥5§x’Ô®}åÍ_¦,½|ú÷œ"žÉMµ¾baÐÝ Òxôƒ§·Ï«­»tÔ#+Uð;Qìã5ÝO*U‘ùÝÑN‰{ƒ†¥÷Ù7´¯>lªñ½4@ñ*×;i-ÕJ°­[_Û²dþþô ´À`P+ðitÓ•Ý»ÒW>:ëúQgþz·Ö‡«ÁrK?ŽòƒÓ†s—νiPu­,ùI¾°î@RYÆB›ú·#Ox¾H|ËRr]]*»"¶h÷ aKEœgÇwìþ-“OßG¾Ò›à…aÕWi†, Ƈß<,ˆOÉZ³æì"–t'Pe@Df¥¾§Ì¾ÛÕVÅÞ8z½UÑŽ#Å7¬TûD²§ë²Î\Ú±¨_n–ÏšmÚ.:’ÙÓYÉÉ^ؼ§pqVM‘Õv~,ÌUû¼’ȆÙp ÖôlŠ÷3È3©¶.ïÆI<&2ÏÙB­\›¥ÈKk+píw2å•¡ËáfŠyÀ¼bêðöÆ·¦—D‰!öÝuá6µÇ[?˜´ÜôÔíu([~Û!%6ꞌïs³fÂÐV—l”Ö¼nöÅ üóâͪ~'ö×ÊÜÊðÇŽmâ[”ÑCÔÕ¹Ò>wìûN†Ÿß"{°¦s/°}yɼ‡0&áJ²Þ1S©ß)ô-9±^Ñ黦,}ímÄ‚ìÇ”õìÛŽ™$yðúÚÉ+ù¦ÍF±›×^Þe¤¨–ÞPRy4÷@çu~þ%~c>=«·«Õj¾k&PF(¥¼•ZIžÈ(ª»qzþݹ걷ä˜5n.ÏjôÓÌú§ÖR¼,ÓXÓº7gc|ãp¾Ì±æ«|½Ó òOYÍéoTï¿íÝÕiÞH7ºq%J+-$SS¶® ÔlFÁíÜMû=*u† ‰?{-§§» Ë(¥JHŒ™×]<¼÷¥Ç›Å¼Rç¬[/I¨]ýÖw—9·WZWÌÖ˜UøT÷ÉÝÍæ.Šz;W¯¤!Øî>Pµ6w>«$Éy齫t—~F¯íØÐý«WI Ó‰¤ko~cî·c cŒ¸FRIš1iëÒ:—w =3¸¦1²²k{î>Ô9ySaÅ»!ƒ†ÓÝ­¾o¦ MÂ!eöá¹8µœŠ‹§íŠJAçµÙÏè?µ¥Ï0DR¬#}s .zº­u’œŸ”ý?…ÿ7øŸh@¡A ÂfÒA$\á7ú û/endstream endobj 239 0 obj << /Type /Font /Subtype /Type1 /Encoding 395 0 R /FirstChar 101 /LastChar 119 /Widths 396 0 R /BaseFont /WTJPVL+CMBXTI10 /FontDescriptor 237 0 R >> endobj 237 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /WTJPVL+CMBXTI10 /ItalicAngle -14.04 /StemV 107 /XHeight 444 /FontBBox [-29 -250 1274 754] /Flags 4 /CharSet (/e/i/r/t/w) /FontFile 238 0 R >> endobj 396 0 obj [532 0 0 0 356 0 0 0 0 0 0 0 0 502 0 385 0 0 768 ] endobj 395 0 obj << /Type /Encoding /Differences [ 0 /.notdef 101/e 102/.notdef 105/i 106/.notdef 114/r 115/.notdef 116/t 117/.notdef 119/w 120/.notdef] >> endobj 184 0 obj << /Length1 2099 /Length2 13156 /Length3 532 /Length 14302 /Filter /FlateDecode >> stream xÚíµUX\ÍÖp Á-¸[ãîn!¸»{F‚7îîîÜ Ü%hpIp·Üýï÷“Möþ/Ϲ:Ïé¾é1k®š£kVÕ¢"SVc1³7JÚÛ93±1³ñÄÔÕÙØl̬ˆTTb  ±³•½¸±3ÀÆÇÇq±°³ظù9¹ø9¹©bö + Kg­Ý?I<[ ÈÊÔØ `ìl ´ÏajlP³7µ:{0Dllªÿ<áP:A®@3fD66€™•©3Àhae‡Èò‘Œ¹=€ç¿Ãf.ÿ;ä 9¥´`I:XÑÌÞÎÆ`4GdQ´×‚MþßúÏÉ%]llmÿ™þ¿Véÿ7¶µ²ñøŸ {[g  `oÙýgªð¿å€fV.¶ÿ9*ãllce*bga°þwÈÊIÒÊh¦lålj p¹ÿ+ ´3ûOðºý—‹ˆ”„¶‚4Ãÿ4ô¿•­ìœÕ=þ5ë?ÙÿÅlo ^•;@•™•• œþþï/ƒÿ(&agjofeÞ\ÜcÈØ¼5ÀÄðbXÙ™Ý@w°0 ³½3øxM|æö ÄúÉÁ `qt±wš™Øü3òßA.‹‹­É?M¶°{ sXÌìmlŒAo!¾ÿyü¿ý¿aNV‹ƒ1hg4ÿ+Êö?ÑÿHf°;ý3…“õ[œkãâô‹šÚÛÚ¿EÀ–––À7CN°¡x"{³·€ÅÉÆØÉò- `ñ‚ìßà?aoüsíÝÞÆ¹ÀÞΖ à_`es{—·uàëš[¹þ•Öu·ð_ –uºþå n ðß‚ ¬jgõ·ï?ÿÙÆþ¯‡øþ™ÆÖêߣÜ`a ÓÛbqƒŽ.Æo-å[üs•ߤ¹9þiÐéŸëå-y#°¤èÅÞl'þF`3‰ØHòÀ:RoV‘~#°„̫˽¸ºü«+¼¸ºâ«+ý‹xÁÕ•ß\]åÀÕUß\]íÀMS#°‹Æ]4ßì¢õF`í7»èü‹øÀ.ºov1›Zÿíhð­LÀáß©|ÿÊþ÷#ÃVsm“©=èm¿€oX–·óÁ¶2y#°•鿈¬eöþ³aþÂö÷_ö°ø ÁËdù‚e¬þBðB}þ ÁNÖ!XÊæ/[Ù¾!ØÊî/[Ùÿ…`+‡¿ðŸíû‚­@á?î/[9ÿ…`+—¿låú‚­ÜÞü®eqÿ ÁV!ØÊó/äü§“ÿ-ò¿DEíݽ˜ØLìà‹— œËÍÇåóoi¦. ð éü_/\ð«åÙÜ üݦˆ‹ ö¦ÁŸÓšBË}% §*`è!E-šãzf;‘‚~%@Ú”ŒÊ9Ò¯Õk?Tfb¾ßƒÙ#u{"tŠìðV—< pŒOŸÙsý´—éÙJ¨}‘©à±ë@~t„ÚÞ4wõ‡ Rifm¬7PIôxž)·Xq }MìÖéŒìƒõÚa$?b±!Ø ×4£cxØJ=~× |ÕßûžO7€å«Îào¹Î3â튓|ÎöùþÇ«/ ) ×J®×¦5ìIªgrÌ…ÂXwF˜Ô»c* ¿Þ ©î?BVŸX$¾«¶¥úŠhãNÛÿئ˜m8ò—\YåaY?¿tDj9Õ/Ô®üZ(è«;ºÐmð=j½¡ž—ŽX¢¨×è<Á~ëÔó0úQ¶ñõ¬F×úÈ2®vˆ”+ÿ÷³º3¯ ÌðP³¾ìKÙÛ6ê@ ê¯ü¬Dšµ_μ  £¤,¤×Zí…³Õ&4Wg1Z…øðÆkÔ“CÐ[ yb0¾K; @2®Ù‡ÛÖNäɽûÐ.¶1•g½OåL ߺlÆV2|V÷üøÜMxÀý”çí’ò/"ìM‚^~7VÓ‰‚nMšÞCxE0ZŠÖ¼ËãÑÜ A¾dºÑz½âñ»€/¼dK¸¿¹´oG^âÂZˆcÙólpìÄ™&}] ii@?:˜RÆüs>%¬%¸­M€Ëáœ.` buû+ŽÖ”›Ê­IÓ:…zzÃ`ôDêv›[:WþJb÷jsÕð¢9å<øž¨·Û\ö Ï×ß»!©þØã~W„7É–áÝc®•‰Àµ\#´,©­³Uó¨uÍ»°;Èù!ù‚X;ÈÇ —8’6ny®ïZÍüʤTó¹ çáý¦Á÷"ÝUÎPä„á™æûzLÏ"•®Ÿê€DHýZ±$³M·Š¯Átø ;F»Ž¶¸%ú´pòÑ°Ñ Üï" *>ÓÔéiÃûfÛ²$µíAÐ^ÕáüéÝ~øXlŽø[êâ[-•HmºÈCs8n¸ö|éÉ}„Ú¼<Ý¥Û''›Q˜€« £Ýù”Uxu[Füúyb²’ d´¼;NjeîU•ü ɾz¢Í|«ÒŸM0÷#ñ.y¾†ÒHÑoÁ>Ë_ÓλÍÇÛŒž œ»…÷œ¹^ˆ´¢ƒnçv5é|òéÇyÎA înhƒõrüÞU¼Ý#’cJ~ôŒ¥ž••ÉS£ºbµà륄cªZ˜ñÐ Ù€GÕ¦Úþ´»“ùTêÜ&³´ú!:ÊŸíÈÌ(gRfõ¥µü¸JrN[”°˜Œ­Á ÿY4Uôëœ\^+ñ ·+y=ó¡ËUõŒ!%Àí{P¼bw›ðWKö°¤yuê%Gëûý®–ì¢PÆ/*Úg©õʦjú„BSÂ9ŒØ”PÔÌ[Ãë{É¥V^ʘºŸx'²e|cú‹ éX†b Ò\Ú”‘áDôsŽ„f#ŽM)}I#ǹ]ÜàǺôi.3öqÌž±+M Â^$Ðt¯CËýxÞê4E¾ñüÙQ gý,6·­æs~]¤MÈIh¬ã퀕‡P᎞”R'½IÔE¬8·&‰ˆËª×wŸìëE Oæ_Õót½ZìF737§”¾Ö%I«"2-ñÈD·›ŠqÛ-ê)õ"úýѬ¬âh¯›AR¶ †lŸ"¬Ÿ7CƒËmWüÁ& s€°ýS BGni´†¡`¾;I{‚ïtàä‚GáÏI;FH ¹ð-sö åý ñ±M¦çö†<,1ëW ÁŸp€_ù#¹{*á#|Ñj' È Ûm«ÚKVdg> h4)ä.Й|½ 5÷™œ‰õ¯2˜èñÑ|gÛý(tú1¾q±æÉg~Œõæº XíTH§!L"ÌÖ®±ýêv:2 “ŒÈÊí¢éJƒ#J&ŽlH9¿Ò)U:‰˜–j–JL¿âˆá۳͙† 7õ²£Ÿ!žÂÚšˆýAج¼$/ýÓÑ™˜šsG­˜I%Uæ ¹£‘â%/ÆNÍÒÄÊ<×TAZ°£ey(E]À H÷V!ûDÒb÷g³Ðý¦¿¦=/Þ|;ÊLºÁÓ˘B‡¼ÂñÎK–ÒŽ¯MË7«Û¶Ü,D¡^2rNع°ʳ  a+¢ŠyZÎWÕ ‚Rh æ$Ó$dt^Îvé¨èÔÍGjúÃXý«q¯ú GÌ"§ö΢½XÈùhj Ôuv±Üº2ŸM‘0£vƒðç5÷¯Ž Q:Ã_Sú¹§P:ITc£§P8‡gó]÷ÈõäbÒdÅÁ Ê’gvX")<ÄÅò`/¯‘ǨþŒ¹‡`M1ökE¨Lî'!¢óÌ’ÝXmbtõ†;²\]Ï_,‡«òµbÁ{ó"¹ËžÙ¼ˆÔÜ€O.×iøÑÕÜP Qƒ6‹éãÏæMòzzß²ŽnïóÄŒ[^ô24cmóæÜ„˜M¡:Íç-R"/*/4=–‚~–5~³ŠãÔº6YKÐd7’T‹õÖ’ÂN£.šHBUžTçÇ‚w§{EñHÆÃÀb9åCOPÍÿ€CìVzÆ(cC •Оº,MÌ ˆŠÒ/šÎtaÉàk {~w„r­h,§åò1yBæ%œm]鿞¹&CBÕ¶»¹|“ÏÎî±’ÙÑÒ*7êtî¤+ú3ÔõÊCïÜ…‚tno$·©œîEyá1M𳈼ö½~ë–Rò'3bù`…¬¯ÓDº%@fçÛ%,ÁþÐP 3jñP¼4CÕ â_I sQýÌÌèÙ¯0£¥ sÌ6’"7AÿMª ó^ÚvçŸ ¸víß»º^h{jd×§‡tªÑ³c$&¥ð1x~aø¼ÔNHîZqqq²X­²èͽNˆñA¬‚¹a$yZ‡òÅaJ©¿7_§ù¾¶©[Ðïe[ÿz½¸•D”°’;QuîM&Æ3þ² 4—›HºVñûLa…5KØÙ}¼ŠÇ8À¥û×.¡fÿMf»ü‡¹Z çCi1]­f8×¾íÃäJç\“96û±HvEXE˜~"Õ«C¨†£g—‚-hArR/êQrâùiøˆáÞy(3WCþkÈßsûé¨"½·mÏõb ÷sÍfš®ìï=LiÈW8LðE@“Ìècè&èÒ=IxQÂÌ¥­ð©H].|7BDRÎÎ~G© ­«Eû ì<1/á½%±²¸ð3^˜¶ð–‰ðO»¾#Ó¤Ù6ô’|Kx&¿?=Ĥku†¥ùüàes{¹/c<+Ç—{Ó‡Ñý³Oàåœ5ù¤·B°ìÇ÷|±ÍÆàûyæÆƒfîíZ;”™†øÁ] B$øp<<ú$ ñÙb”•D£Ã3SRnM­p¥ #ô«¬üvãVÂáŪó”q`ÙnäöÖñΆýZßøùIâ½ÒQ4J “x”þáâ@æVœ÷’ñâ6bLj.¡‘Ÿ­zHkp±M™2ÆÅñbÓ3f H–fÝT"çgO/apÜíGq¿ÈÕ}£Z{ËØ µÝjÇ0VŒ Mr¬ÝÝ89ëÒ‰ã|¸aŒJºsp¡‘¦ ØÙ™Ç‚’ÏPû.i¬lcŽÅ_®î4Lõ$AÄ-bñŠúÅ®}Êf1•¶ýlzÆ´‰gÒ ë)"9¬ž™ XxåÛ²p¢¿áqiž‡T²8b¡M°}5Ÿ…<@ àqéE ™1èkËK‰ –&zš˜h±§÷¯×¯þ ˆ°Š)ô É嬆Ç&?¢é“Àh4r°6ZAÂâ™é. gïÞlu5{ Mw8RØœÑýz—uþškÿZK[H‰Ê"p@0²€³åC̨Ò%uPGçÖI/µc{=ìMÉÇʦ bú3tíΟ@‹@R'ºË¥ B²GÙß~Òï·Ò¢YÌO„¾¼ Å»QôOÔ¼N†Ÿ9÷Éù#åKÌGÂ7ŸýmNÍî áуå›ÙÕöJpæ üï.ÿ {&Óx{£)>å=Ê%rg“!øè¬ÛoiR )×ø”4p°+Aä;å2øïgCT%#ÇÞж™¢07ó1%¶–=‘E¼Wº,«ø«¸æK´‚¼ £üA¸"|u1ZSÇ‚AÞ­¸n}Zb²`=Zá+• ;KtÚ“´èä’h‡ó@ïOèCm&RÕÃ^?F«f¤zAxWÍÐÁ+WdnËA*·á‚@ ”Íz%ÙW-­€æF@¤_«˜h—úvÑ4¾Owi8“Ç:®óŸ—Ó#<Êoê'l$ÏŠÖn|‘hØ\+$ØŒF̺?G®ú} ¡°ùuòu­,‡õèÄtýL£²^ŠÌ8ZP\ó³éWã÷!á¡›>®¿rRGœÝ45)M}“8¡…+þ´T'9¬ÏxdD˜y7*7›Ï!åØƒzŸ\ËËínHè÷g¸ú@ÑèJþ¨äx(m|OÔÕ-ßçZÔ¹è2ˆ8ek¡ lÒ uº‘ŽG|\„iÝ ˆ×5¹Mð3cøáb-ê ËãNôøéÞ8¡¡Œ/S­Ûåò·v3N ›A ©'EW-$|Üqø·Á]ùüâï'&k£ûOçÉÖ°…?æ4­¾t0~`_ÏŽò+í_!ÿ\òk÷]Ó-ñ K¤!:^ÖMf¹Çiyvÿ]ÉRbÕ#*îdÓ¸•vÍPG¡³x‘û͇-Yl}eoÎ_‹˜W–0ß$=Ž>Ť=» ì±Ü}:ñ*•hNfÎüø\K=jK˜ª‹¬6t ;4‹©Ñ‚.ÿq”à^¤þ-#ç¹ý°ÏEã„?ÝbÔÆM”4Ó0Ûú—mmDyó'#½]'¿Þ9ƒýnª½Ã{LÜ>Yë.S éšÉñOÏ#¨·Ÿ…”={ ÷÷ˆ‰«nDÙÉÌ“kܵVå½í'3$¥›ú~Ë ØŠ®ºJÿQœ‰‚3S²ËØ£Œxy  “ ô”mnˆüò<Ž—KøI!­#­“•µó *ôˆ[’ÉÑλÿŽãAvߩΧc!®}ç´þóá'§ù)È"kÖPjÂfMuó êÙNü [•¦ÀÈ~Ã5‘爢ÖFËìWΜ‰ÚÕðêõtZÌx}ú/B½”Lß^ p‹ñu½uo±·i& Aî%S©õæ¤3T¥» ØhΈ↠vXkF1Ï+KÍÎ\CAÝßúž¤IgBMëçIè^‘똯¶§ ç*|[”«ä2ôÊÄL*1kß¿0TgD²™–_ÁQì_•!3Ó4M~4ãz¾ÔÀ2Õ5ÌÂFÖrƒW+‡Sâ^r„Œà zYùV1ù9ê›—Àës‚¦¡´ »«ý7æÄ…~w…*T¯}è,›0…瘲øÊ×t¤qC—=,Ž–Aù„èïÊqG†ÛýpÝ®îÙØMûqăzY×?Kx¾Ï?”cp®xÍ…ßmñ.õzü੪§tH'ö—×§UA”jôu9‘¸í9±Ô[²‹2^öŽÅÝ|`ÖsW•á² ö?™±;ÏPO°€pf“ÁVË[­aæby¿ÒÜùå·yR'‰èsç »Ñ?Ôû®È$]Ÿ2´®–iÆoµFŽj±½.|ÁÂtªêóʸ¹”% 8”øŒØÒP[%¼ñòµô8H¦¢ž!ÓóOk‚sI8ï„lÓÁâ´­ñ’±*¯ÕÚìyáUùg¡2ßd=ݽA¯j랦è]Ô ±Ê“ƒ¿yG#ÖÔo]hÐ,”2B Éa°§I,Z iñåRº”¶@Øó¥%:Ã’¨á¥´×Ë|uß%A˜½Vü¶¯³F{b–X”\(´¢ÖÕy¶T4ëPßIOIÍ$Ì, ½\Þ/‰öΓü–Û˜ÏÇÿœ}! [!wva!j­YÖ†¹Py{Ì„œ‹Nœ!%¸ó[ÛM•Ô¨äáÍôÕe^’lel³¦Á•–%»åKí‚¢.ŠñF˜"Á×­ôOX“ 9lf¤R©AïíEAš½vv„ºáuv@·!Y$gB0N«¨_·–w`Ó‚Ëô'i³"‰"¨J…7ÍåóHcÇs…k¾ó¥æLn…|(Tà3-=󽊼^ÏÐò;¥7뺉•…Eëû*½cq³¸øÑއ9;æD<«‚ŸcA¦R&<ËlÀ™hQ ]Á$‰ÄÖÉs´ûö‘.Ýf$½ƒmÆøZ‰ ÎV(òI§$^½îø,S»A …«V;x+OG·~@6-’'H ˆKõùX¿LÞW«<“tü9j=oƒ˜ã¬°…ÖùöMŒ"‹IÌqt.Íí› …üu2jçú¿†ŽÚ2z£›ã©öR´faÂÊCUqïÑÍp Јñ@ó™˜>H¤Å£ßP¥`ºSh zvëÄÅ2jú•¾T~….6«C¾wfKsTêû-j’¯{±&¼F 㪭wñ<‰Ft¦—D´2˜º\Jñ5‚”¡ÔñÌ“жe¡ƒvÄø5A›Ì‚“¨³G×±\ÄhÒþ‰Ú… B¾Oâ)kíOÁè«ëÌâ'S‹Þ’¯aFuÍ «ÝXF&F];stáúÑ»ú}O m :F~” ñuêüäJ˜¸[¬±0¢²'²Ÿžµt+È|#fu›ö›¤?è?ÜgÑpÀù;]ŽEÏ·¦]’@ƒ´AÃßøDTV¡”ÑkuB'åj݂ߥ/Á¿tã I ]ÚÄwæç…så|ï:-ØëèñA"f9&b Žq±i¡€ÆO ]½Ç¦Ÿ£Â½KµÚ|(ÕCy®~*ÙDÿQƒ_$ŽüÅTéný}÷³œzoD†§Ù©ÓŸt-AaXS%‚ͯ5bûÞ]žFÈõ[ N‰ùAÙß/†OŸO®Öò-ÅO_΍5ú>&Ìܽ?´Ú²Ð[!²ã†·~K™ÖЮ[çîeG~5k¤…þÂNr˜<>ârÕà¸ÿN³ªåBÆÍ[O¨;„PáKßã4´Éga½ñ ŽÖ#³±)GÏnÇÖ÷:{5g`Œ:·„Ð+ÄrkŸôãgyŨ•¬rß'‘î<Š€çâ¬mœ s-†lh$fâB Ssì2‚8_׿òGÅø—¿„fÎqÑUq:q-à2&Y¥­€Ô*·xåq‚·f_–_½§äZX¿¬n³¯Dü¶IEG¼kS±Îa¡±írZâü\¼Ô^¨5õúâg»!™¸ÝZæd ¾õŠõ¢h¨´ÆÇóõ4n'oØ;© ãC§çI‰‰ ˆ³]#~—2‡ì³ú/#¼•rþÏ -몔Œ§g¼K·“ ú{Ã1IžV‡ÆšÌ4ÇÎØ#"Áå¨Á'§Ù(9`x›ï I@ùqÄ»‹$=.Óit@LG go™9j6—žK,©Çq½ð§IÖU®Pù®ïDfZ°:ßÒ£ú/‡& ’¾z”ßp`ñ'tᢠÎBâ/™%"þVç²SZò…¾þÒÜe?G{_vÒ}c ¹•è-ÓI XNH⡵:òºz£Ì%‘b·áØué™9xãPò¸hIܵy”6_T»XLB¥LO_5³†Ï»¨ÚŒHÖn«´Fõ«÷áfÊ»îq&y¢*¤/¸½’aæç'ZB˜-^OE (ˆb@Ü@mOÐyáK G«›…|ãЩVÏÒ‰ Ä.DZ·%KâüÙâH“}êü_Oã/$4Ж—A£.& HB#í¥å¼Nø¨€áˤv²5èëXæ iY}êYyÞ‚wsÛ žÀãÌÄ ™YÇ‘¹dÑ ±”•ÞàbØ Wí:_óh\$ù,Ýç‹û_·AHÃ6\cJÈæœÄù üªÊ`ïТ¢'¾ò5+…µctÅiÖ=fP„ Ñ95ÅO#9œÏtá­"=©?\o˜™h5ûiN; ¸|©?gѾ¤LdsÕPó–?(ôŒÌ'Fœn=Œ|O×9ÏÜürTÅûɼâ½]ÜÆ+ržÁ°·—›»‘ÿQ;µÈõniÇ\ÁhjÁúW>¾þlÔªb†Â|ê±;‘]„о–IÞ+{ËÅuU´´žƒ„W½°«îrÂTÄaÊ:=wÈÌš-ª‰é„™k»šÔt¸&[±³æ=(ÕÜVš/ vò)½9'@9Æw4´E˜twæPè/P‰!{ œû¡uäh¨##èwXïœö?‚V‹47[Ø"áK¡Þ» §ÓÀaoô+ª9 2I+KNÞµ½¦Yh)¯©/N¶ ¿øÏ>ì|Àm§+bÓ–Òi…³*òvìÄ;†”&ª‡ñY—܈²;—óÒ5å…CÒÖΓ@¤Ä3ì’ÉÀ éx§''wé(àTæ¦t$j‘%j1ù åc`:ïŒ eÞ¡Ão%Ûòù¦¤‘Ä~Ó¹¼W|GPºÍ¿½i ©Æ˜¶t½Pö®2õrëùºÅ^ï"óBÝä³ßùŒÕþ¯¦°ÏúH¤Ðƒãþæ[ Ä=(Nî/™å<8¦¸\¦ ¬XoŽ"¹îð²Ø$s'¦b³BC¥ç·;óô.en(¥#÷üeõ$ø Hí3çNF3¹£c´M}L±Õ²lSI·žÏYÚ2Æ=´“ƒÔ*‘„+žK^ 4Ë1€±aœž‚v, ³Ý,ôÊnü܆܎BÕÒ–˜¸Ó½„ͼ—Lį&„ãÃó>Ũïö"·fv·©‹UùäÊNeSC¥Æ2Ú-< ÁˆÐ‰v?JÐC)› ׄÄï[•FS/<Åy<‚wš¬ÔºÂëëˆ%ydqèp0Î’ÅtuôT»¢rÔgJOTLu.·Ù‹–Ë ñFftu?còVûßµ!"8òÌ®fC#³dî+ý 7ëZï‚o?u%Ù>eÁÙF畱òåeda6_B·(¿BH~ë’^Çx‚_Ê[½¶ÊfÝáe|È]*\[F@Ú~]DAÇ 5çWÊÿÅ'•{&eÑü ù=ŠåÖùÁI*ôØfy‡  ½/QN&éJz ЭÛë‡ïl Œ’Ã%]Jÿ¹tz™¯|¿Œ‘ô@ãÔÂó´•z½s * "ÃÊüÔJ·H¢+„0DZ+wW±ÿËpœÝ©ýÒ~«ÃT€ !ªŽäyë À¥r…„w9q]ú€*¢ñå÷p9Áçûƒ½H,7Wçi‡¤Y‹pºE¾›_ðôÅxµ©¦†kŸsÜF=òMÉîÂ}(…ÝžìÜ1séÛ³¢Uäþ/·{+ý=}6zà„êc™D´ô_šZ06IGš CKN×]p|µû½úØCîðè¶LU€¬¬£1`´c&jŠ¡Êp%àN=ˆfS-è ®Mʆ|¿xe²Ô–Á¸Þ–È£Ô ð熘ßBî5ǧcïH„9ÚS"ä±úÓ˦ ^k¾c=ÿŒq0ûoF•%l'’`¬‘­¬VèenIpYy’XÑîfÏ«&›ù¤nfIçGµi¹ßß&óu}]7Õi½­šÛD5xÆÛ 1§L€£;•/ÅÅ;ZS-°^KØùí™èžº”ŒLx¾')åÎOÚ™(oi71  Ãz.]÷HX*”Åñƒï=³Â]{¹YmÅqI G½hÍ7Mâ+ÕàBˆLz0£…£0\‘u«Þ³ÔKÉÜIgÇ¿°¤»x‘¡Å0d9;c‰*R–8QàßâîÕ‡¥°l’m8—„.#[­{39þ~ÝÞc¢¶…)ç©‘YÇÖÑâp¸¦ZI¸¡CwQ³™úYÜác¨ª´îå˜âš(ÇöwUë)¡±;¾5¦ SY a4éT¼bÆÎ)-#B[– ¥11‚k›¬Ü(…RUY3þûó_}ÕT‰\2$/&’Y^—µE½ÙðÔPûÍ[N´T\¸ÝÌãh[îÌp”zh¥mG5e½y¡ÂÞh{‹üû<þ‘b ¦š&· ‘K‹6¥ï±ïdöLB§5dØû!Ý´*¸­Û‚ÏA“¥^½\±jf …ÞD2<Ñ”žwaþ¹#È„2”ÚCTg¬6m¼ìè]ˆö¢œ&ý.ø9_r׿Õüe’ƒ˜§Ñaú܉®ì¬ßধ½e¿=oNÐ齜è«G~'à¨s£}uÙ7¥ “;¯TI£œá½Õ=(›%¹¯PQy†ÚhæbÁ$o$Si 4ÒUMãÚŽ©ßfæàÒÔóe@S ï ã̽KfÓj™ø•7]ºH伬°ÅÞ~è¬0»ÙW¿¿ R˜á¶CÓ#«Ô®æòWs8üèôˆÊÌ3ÿSúXrÉynRDjm 3cëΩp¦?FD”Wn"Aè¶eŠK[ åÔˆt/s±¦^îi3VLûU§rÉ”†›ÖomX\ŠÙÁ%Þ*QáÏ ¯÷Þêû,˜ËmÏv‹Y½Ø—ŸL‹ 7–È£RÖjøRšy}_ ~L'?ïök³É Œ_ö\M̈„086*Yy²všv0ÔDÂV¢FGÐõ´:ï××xíi%d-º '¯9S0Sgvü¤²ªêÒ†Žý¯ pãòò£h¶×ÓÑB0á ÓÌýI+×¼^ÕÐÉsJìž[âÐVPƒ-ÉÞ…‡™¯{2ÂÃuN$¥+|·‹64€ÞÕëS  rè§ÓG %3Nœ|% äáKHÄ%î¾­wF¥g”…Ì_9ƒr°’¯r)¤Q{/éw«Óf 5DØÝê¼Ù§úá_)9KK¤$ôºÑ‚n‰À7DÄÓQ¸K‹‡oÑ®ðÜ¢}'%†­Ce‚Vz-*$&ͽ*>üaÌFJÄ‹HH¸‡n©Añ¥ùª¾xÂ'£µ—Sf)Pð=QEÂÌè_¹ã>‡Ñ£úwzQv âjÝP‘ ‰âƒ²`AÝ׉™èãóNïô{ZÛë®o½lÇ@<. ¦_ñŸ/9äñ8¢á¨ò¯ƒ/Ê“kޫҢ̦«UGG¹p¥ìZÖ×­¼êQ2'MÇö” ¥ò|¹ïE"²Þ¢“)Lû5•Œª*¹ye)þÃZÝczܰ/lÝ;yÕ¶Ö*Gs H­LKw(‰»hªâ^"{Ø,ZUÈœ:–ªWNd ˆð”€„7!¸dŸBLÜæ–Î|Ôùé }p"³hZñš`Ÿ.?¨WV:'OŸgJõÝ)õv€¼Ú’ u;îÕ#Gë«oüÄ̰Fïb"JœŸ"“f ]ºØqÄYqž^]òÔéÍü¡ÆÙ„¬Æ¾í¹AƒâAÙÝà©t¨¬´aJdÕïõj'U/ÚúQÜzWGT=-1ñ¼ Sf˜ÜxhCZ*„ô¡µ]8ŠNçËXí™ .M«¥ö´b)’1™§TFT­N_â€S¾²«MhùqL'äˆÇõpÄßñ/y –]i^Š>!þ*‘U7ÇCr%q‰6 ’ùƒkϜ˥uÈ3tºfSF“…ޱÈ Z¤¶ÑÚ…0œ}×û¨—¼…Ø]‡ÇÎpDüÈ–õªv[gÓcÖ0é3+3¥§kÄ£Ê~mkRémšã²MvP£S…a¤@j.d[s|&ºçnõ€€Åƒ?P[ÐÌ”CÍÝzF1^ÔpùÑ—,xò«ÌÔäE‹tiúf†Æ¸…*û3+;÷Ÿ]ô¿…?âôë H‡U²ZôÇ’P!½ÆÒt‘zªhÕBî÷Dú|êÇ<µ~*êM=Ûy©>dµŽ=*Áf…ûÓ‹÷ü"ÍuØÙ2i9¨n˜3Á[;2Ë?‚?ɲ¾Xþû¼t½KL6ÒüçŒõ² Ñ7«¦¾ íkFÒ‡u!` “R™G™h\xwC†±Òz†ºNÙÍÁ½Þ—E ¿ $‰òËÃè°óžì|Æ'³}ÒŽi©¦D’Ÿ"EnƒØ—¶;Ÿ¨”§£å=Lhäï[a®L¿í»„å™ï?WïÊÎ.:»lˆ>À0·¿Óa © D…øjòDUÖÒGJÎu©Ý<Ų»å]j­ßW&HA:$cÙÿEÉTi“&˜9®2¥ñjPFÉwDÊãÄstÍ‘ I£øiA]’Ê/4e;wR¦‘ꛣ¦uÞ’Él‹þØTá}­fÅ}'ñ,Mõ0ˇ¹¾‚‰ýøÏGæmW ‡œtr .­ÅïÆe>\“ U7¨$bzï¥gåtlgãî©#¿¤¦8G*q¦‡” ð\êÂ~>‡‰‡šKO,ë ÝcÞF­«¦Ø;rпÞÓxØå|ߎÐ!ž¡1ϼt©%ŒH]ÏÓÌ!U£áÁD¾î¶r@)ù¸ø)ൟµùù™&ÍbÖ&fF®»Z–L/®‡–pMc¸–È _öuYðÖ¥NN¨V­)U feYò&ÙTÊRl§´viÚË‹ð4"_ ÅxhæDþCÿR çƒTˆ|íC ÃU ‹aõÝ7µ«&ç;ÁoÖÄ¡h·†ÙÒé0c·l®ã#­kØp$Þ?ÊJFõÄ·f% ^µ? VᑘWNAÆÉŽ3|åaVDwF -LÅUµl¿ÄÀ‚+n"¡OÉO¼µF óÁノ.!Eþ´M{b±:˜%Šxú¡Ö¤èýÊwÄÛîgÖÿ‡Äÿ‚ÿOL`j49ÛÛƒ¬ÿÌ«{6endstream endobj 185 0 obj << /Type /Font /Subtype /Type1 /Encoding 397 0 R /FirstChar 34 /LastChar 124 /Widths 398 0 R /BaseFont /AGEXMH+CMTT12 /FontDescriptor 183 0 R >> endobj 183 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /AGEXMH+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/quotedbl/numbersign/dollar/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/bar) /FontFile 184 0 R >> endobj 398 0 obj [515 515 515 0 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 515 ] endobj 397 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl/numbersign/dollar 37/.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question 64/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef 124/bar 125/.notdef] >> endobj 177 0 obj << /Length1 993 /Length2 4236 /Length3 532 /Length 4902 /Filter /FlateDecode >> stream xÚí“WXS붆)ÒiÊDšÔ$ôÞ«:HÇ’ ŒôŽ JD‘*U¥H¥ƒ‚  4Eš@éE@ <èÚkëYûòœ«óœ9oæ;Ê÷Ïÿ0³”Òvù" pX?)ˆ4DÐ…ZCdˆ4˜QXX€ù¡qX=˜B€(+Cí«(¢È@TÀ *ò²ŒÂ€.Î;F¹ûçuÅ~)Ú^<ÃP˜Ÿ;ÂëHÖ88á hc0€ÅÏ_Àá‹ÀnÒŒà††û®ËúéȋĊ…Ý®zÿ" ð¾G¦€óG&Å€#‹n8,&pC A&¸£³GNþ7LýSÜà*cóú)ÿkJÿ‘‡y¡1ÿªÀyy_õCà(Î Çþ³ô2â/sP„úª×?³Æ~0 ®Ea€DN,÷Wík€öG¸™¡ýàî†ñEüŠ#°nÿtr4½_>@VÆVì%þµÖ_I3ëgàÀ¿«1ä7 öÀÒ`0ä¨ðèýûËé‡écá874ÈÈ+0<À>’’‘—‚ ë†ðþGŽAÒXœßQ p4™‰Ã3þܪ"ü ýEJÈäߤt”3ûM²Èòßt´Rì7õ¹þ&eÿ7AŽ|ƒ <BÿG­˜ß9:ûõâþ@9„ÿ¤|ÿ@ä÷Y¼ú¹ºöeŽ”~á.OGç$%«HÉÈC~z’åÁ!ÿ­~G`ý~ýGWàoF¢n á€3Ž áàªÑ)Õן„ê?ê-¢óåK+ˆînŒ©LS•^WeÀ×¼·Bœ]g‹aó@³&¯\,¹!å'¸«µƒßY‚b†ÙÞ?%–›nI· _rt¦z›ÝÞrÂ+3v~„Æ»FbuTü™ÐHóôÒ"Dñ!÷Jܱ'‡6B=Ãz&F˜RÝg“².%!l>'tí.âáFòÞžvL'Ÿ<ánùÔç9vg í¯FQ«¯)˜ Ϭ ìÏ+‹È¬EåäcârHoU9’ M)”xPÔ ^vOÐ2±Q¨tû|Ô “bD^]Té㱩ì!n9¯¨/¼Ê½µ´U÷¡of„Ä’DAgSöñ˜j÷·Ž>`»QîÍ–‰IQÖ¼¸VtúBÔøíë5bâ-Žƒ>1{§VY¾}fh¬7•³wR÷J)n©ÿH:yqV7hOÍ`4ÈU ùʾÂí~oh©J%¬åŽ'¢Éèâ& ØéDÀˆáCZØw1ñ\ŒšØç‡c2'}Zˆ×ÆS 'òíÊCŸ{q7]pùïgú^…‡Ã8'’W><ªG…Kð_0fe¹ SÍ‘÷Ê쪭hËò~ìmK€ð=Á2óa;Xå¼àCµƒ€ëû¦/• É÷áV'‡¯ìëyü`¢Ó#Šv_ N.­¸ùaAþSפàž9! ®feàÉ47gšróæÑ~eZÈno´A[RP¨!?XÏ,æñÂΤSòyè½Ã;GÙ¦ãBt°.Å q—ºÛ™R˜ã·µ¢p¦Vý\÷)©UΩ¡ÝÞ . ÁgCײ•ßÐ%r™Jªâù{˼ˆ´ªþÇüÊ .l¿±Šª9‰ å4s>уzï»2Û¤ExXÍv¹Ìú¤u0Õïþâæ½ORÛV-—¦Î‡FÀ­;®0h1¥÷"üÒêá¹À†Ò`‹zJn¹÷¦Æ´éÔÅDx;ˆ¸À¿‹˜š|€Ü øbäž¼£E6äz}›¸­reΣ;.4ÌsîÜ@ˆ;eÅ’»WÇW×J<ÁØqÿÕžŸÝêçÍí±iU®vz®ÇÞeæ£{´‹½žpçøH¶4•…ÝÁ¯_D°䔺~ùQÜùM{¶àÑ*¥'×ÔW,«7ctrsÀ’]ÄCS焯½G8ýò‰Ë¼ë?Ì"¼tF{2x‹4Äö£<´íåYßáUž:Ü7*~í©@q¥I[£^k×EòÎÙ–ñpg°y(K<„¨°ŸèÄáÚè]0— ýÑS²mw½TÌüSŽMþò2Û Žåü™gmÅ!ï î_ÈÇ_,~áxîtkâ0.ùUo4œr‘­Ýv˜¶xµTÓÎíQ­^Ã`2ûœd·Idá0k½C$YÈÂÏÃ^4¶Yçög ;†h+ƪk3^™ÇèFeä%í3þðƒ†æ¾v^BeîòЦ¯»ôƒ½BRÄHŸX¬Ó?DiTnÕvLºX9üHU5†Æœ.ýN׿ÌC«¦üz-bØï½›þúq€•Â:UñËnÎ6J”mˆ½y[íkR:•‘ªÑ/axô‡Ñ{zm¶BØÀ¡ç§öt*jhVÒÁ„OçwÀ§—Ö9¶©>#©öiN‘¯I+"‹"RÐÚ°+;!TÐHd§E&ìrsY£ˆr·½\rJ»È÷†AÞ,ï†ÃÍÔà nõN»Ñ󼬖ùvä üökϳB·`7…zë*† yyË–j˪éCåQ·€ì24 ŸDømËŠoã­êý—©–X’„¯HúVnÛº@_I@@̆*sU±³ýÏä6¥ñäûz';.Ï䔸"yGA"–mŽWŠƒs|ßݵ¦ŒÕb%‚{ËC¢´Ë;ŸLÈÈÚ}–­<˵‡ ›Ê Ýß2y«Ÿã™ø²¯sê–¹¦b^>>ª&{i±)"†å´Š3éXÕ&våq¥>½qÿêSéuG<ÓØÊ|}ò½iii]Ì=܇ÖoYõ‘íÑŠ_lfõ1ñ>š¬éÉÈZg?QžÆ|ü”N*â“!ÚŽ~z”ÖV·qÉa͵0&ŠŸàîa¥Y_[ÊçtyIýÊ‘q«7éi”ÐÂCh^?SwC|í“£êjUä ºôdzü´w¢’p]o¹%N5½¹{'²5Ÿ•Y+œÏùü&¬BÆöÙ »²ØÄq^4Õ‹=å´×ÜsüöÏÉ9"3êD•Ù{=ç)ÒÓd5Yáô;í¦fªå™ÚQ}ýw: 2‹¼æuÞ¬kûŸÏÙ¹äÖ²ºèƒšéîȳ’ëj»âÒù}|M€÷Ò=Þ|Š,á G•¡©a-È]É…oY¡j˜?ú;ž“ÔñDðÒòwfµ¸¨B*pªb¹¥v£h‹sê1Sc-¥½â晉*¢¨{™Òuñ¯ösRa2HÏI­hz½ëF‡ëOÆÇS<µZŸØ¿+“îé%¸6¤.‡kÀÎé.õÑTW4ŸÂµ ¸Ðúîa:X›¶«É·|¡Ý¡¾RÍÑ7\«ûL´,85gjlðð|âPê·%nOqOµg•ª{½¯ÇÀC#[XcÑF,ýëyKÉ i硸KíÅUÇyÒ³ ɹ>¶:„ˆ£@ôd‘>HÉÝ-“wG%}¯@Ü–'Ô[K«£ž}fzE¡óõ™„&‹›bôHB™yzMà}ôŒì¬*ªÉÉ;‰/®sX;±ñiÎôÛI̦å¦W4UÐåÂëdÿÇÖøÖ›\RË,ÕÚÜ7%V|m4ØÙ½G˜arSI; × ƒï ÌnKªo×úÖF;„UØÉkg`vôÌ“u›•Ï3`òp*‘}ý:/A¸@°¼¶,ÒAâ_Y;Ó;ÖN7vß„K¾¼áU“SÀ Ÿl\FïYêUcD}vµõ¸ ¨ú©­ŽÎvïÊ8¨·_xËÉãí”{°íÂNŠH⨓C7æÔÔÒv°gø¹«$»¬"n?r+ÂÑìÔ¢ÒÿÖ´¬-ŽÁNïvʶ=éD\§‰@UL)Æ eš•XªŠ!ð¨†wš®,"§ƒL΃ˮ·Èy/ïüoÞ É}‚{…­q2ì_̱ ií«Z/ôlºù 𲃺™$çÜ?—ëÃØzŒÃ•›IðɯjÔqÏ×èã²Ó†EÄÓïôñŒñÊ·¢¨ŒÕÎà%ªÖôQ¼Iíb>áêaé SÐql¹æk‘Íb˘f…ÁØžÒ¢àÒ: ñ±GuüãÌ÷'ÃÙ9—Lva/ž»žÛzGHÞébÂk³Î“Y8™¥ŽEt¬ôôCt“/>U‰¼I÷…ìÓ6¶iŸ’Ô¶Ío%ânv“)ÄÝó¶šRÊ`²=«EÄ;#ŽïçPçàÃ…la¼"Esï÷~··tªAÔºÃ?Ê+ÑRÒ,\—•W¦yhŸ?5oÑ+kZx²!™šù@‡²RÓ^º7<¸,ÞEàáÚçºb)›¾ëÂ,®ÿÓ„0÷³Î>ŸµNº![ÕNƒ´õ§óoLD>"MæŒNžȨ~»êRËIZzèq«L›û¶~“÷à|t‚ã³A!„w\n^;2È(¸è,j÷ VmðüGKmÇ6ÁuRô«°ë8'ß­Q›À;²ÌÏÍâ ÚäïÌEŽÅêssÜâƒ=Ï?£•|OE°»ì@­r`§?Ù¿xäq…¼SŠïHј‘YdA}¡²ƒ$Òà7dÒ=‹kc” ÍáãQÛ©üÁù‘½Ì <%=±›ïÉéâQV)ÛŠc:HÝüá tÓ5h›•†¡”—é[#ZïnpÙñ¦HÖíµ,rO ã–x¦Ð¼·›E˜£ Y3ÅÉ7g´Ô§`aMužiq±_ðPF¼f¤Úü>®M~`¸þF\ucÑ{‡"YßÀs¨<ÔehBÏó‹ro'•vvžueN–}~–ê:Cn®ÎyqÆoÇD½<~J2B:XÞ]U¶pòÜ@riqM7?ÛÚ<óåÒ­ã®"ÞbN“ôO6¤Œ'OݘWæÿöùœ‰f±¦ŠQ͹®Rd/S5(’ÅýÐ|tÑ? H> endobj 176 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /TRITJZ+CMTI12 /ItalicAngle -14.04 /StemV 63 /XHeight 431 /FontBBox [-36 -251 1103 750] /Flags 4 /CharSet (/F/N/P/S/a/b/c/e/i/l/n/o/r/s/t/u/w/y) /FontFile 177 0 R >> endobj 400 0 obj [638 0 0 0 0 0 0 0 727 0 663 0 0 550 0 0 0 0 0 0 0 0 0 0 0 0 0 500 450 450 0 450 0 0 0 300 0 0 250 0 550 500 0 0 413 400 325 525 0 650 0 475 ] endobj 399 0 obj << /Type /Encoding /Differences [ 0 /.notdef 70/F 71/.notdef 78/N 79/.notdef 80/P 81/.notdef 83/S 84/.notdef 97/a/b/c 100/.notdef 101/e 102/.notdef 105/i 106/.notdef 108/l 109/.notdef 110/n/o 112/.notdef 114/r/s/t/u 118/.notdef 119/w 120/.notdef 121/y 122/.notdef] >> endobj 174 0 obj << /Length1 2277 /Length2 16254 /Length3 532 /Length 17509 /Filter /FlateDecode >> stream xÚ¬¶c|^ݶ¸[í¤±m[ Û¹cÛNc۶Ѱ±m»±Ñ$}ïgïsv»ÏÿëûË—\cb\s¬±æº)H”Tè…MìŒL%ìl陘yˆEå•™Yˆ™˜à((DM -ílÅ Myˆ™¹¹™‰…]̉Y˜ˆ™9xX¹x˜Øá(ˆEíì=-Í-œ‰©D©ÿ™ÄI, 0u´46´%–7t¶0÷06´!V±3¶4uö` ¶±!Vþg…±²©“©£«© 33±‰¥±3±‘©¹¥-ã?BÒ¶fvÄœÿ›¸Øÿï«©£PŠ˜ (IM T4±³µñ 615ƒcT°æ2šüÿ!õ7—p±±Q0ü³ý?Eú† –6ÿ3Á`ïâlêH,ogbêhû§j˜þÛMÞÔÄÒðG¥ m,…mÍmL‰™þ²t’°t75Q²t6¶ 63´q2ýWÜÔÖäÿJëö/FUᯢ²â´ÿ~žÿS2´´uVõ°ÿÏ®ÿLþ3ÿa`u-݉µ™˜˜˜ÿûŸîÿÉ%nklgbi lvbCGGC8`g‰Ø‹™ØÒÖÄÔØÔ(ÌÈ`kç \B ¬‰±™#Ü?“‰˜QÒ0ü'ú¯1£’…åØŒffˆ²Ñæ²ý3ù¯aöøÏ8+p:ÐÅÆð'\âàbçljbdóï^ùÏp±­ ÀèŸF3·ýæ f4±³±1tüâ$f´7u46µýk5ð†`ÔÉøxþåþŸlÿŠ X{CGS[S³¿¢Ìÿý?“%0túg 'ë?AàÉìm\œþ€ç2¶û»°lÀóXxØ[˜þ9 Ç¿Ä-íþ²Ïâdcèdñ'<‰§©£ÝŸðv¶¦ÿav ½³ÛŸqv ·³…£é_3þyjv.*ÆþÏs³týkP× Øqÿa ¬“©ë_®Àîb4ý¯B°Um-ÿáúçÌ6v-âþg€åG9€‚¦.†ƒ˜ÞðÏÎÀì˜Y䳊þ!`J±?L'þâÖEâ“Jþ!`E¤þ°Ò(#ó‡€.²è"÷‡€.òè¢ð‡€.ŠÞ* ‹Òº|ùC@å?tQùC@Õ?tQûC@õ?tÑøC@—¯è¢ù~@ ­Mÿ«ß¹Yþ¼Šÿ=ÀúŸÿý*pÿÓä–ŽÆ.3Ó?ÍÃÍñ?ý÷.@Á?o7PÐèÿ\LÀj™ü…ÿôË_øO7ÿ…@;ó¿èdñKö×…ÄT³ú NÖ!Pê¯ÛŒ høë&ZÙþ…@+»¿heÿ­þB •ã_øÏëõ­œÿB •Ë_´rý Vn]È@+÷¿håñ­<ÿÂ.`[“¿¯f–’[Ú˜ü»Âÿï‡LDÄÎÝ‹xOÓ³on`gq²3ùü×8­w¡›¦Ñžâ“™29í´¸¤ÿ¤õÚiæ$„ݱg¢éH<’;ëäAé*“6ãÞt†D»„}Y°YS>è;}%ëp€Ç–L°ÁnQ&7JæP†‹ÂƒËf¯ô^rþ'h>‡F€à-)§j›~¤gÉÒVÊú³41âY# öG¡'ÓECç:Äž‡®aâû=×ÖLæ–Ÿuî¢HV°œ>L†ð„ía)m¾ç]–Iâ?Ë̾_ø( ¬áPÒ<™×N÷p0о~"”›L‹t2~êoÕ«ýÊT'-„HËê~£ÔŽÍ–ã¦4ˆWÆç"%:{ïì.(h%ëçS\qrc –±)“»©H¥aÖk[¦iœ™019ö‰OÛ¶>æ"ªÑód­’&ŸhŸXqå’ÍR!‡ùËÁÇMŠNjùåD¤ÚÖ E½\í8rVáV!zÆÿ´¥Í÷ð~6³Ç"‚ÀqG›^»¹eð0D°kˆ;R.‘0é4T‘¬¦—¦±\@©¯ØõgòÂê×+]„m}ÎÆ©ú1Â*k!S“ʺ Äzpú¤pD)ñi ®ùRËÅÒH—hDWºHÚÄ;TZïiêŸI·ÏM…`g#åÆá¡‰”lI­C9"%§ô‚‡ˆñk6±BhwuÂÃ!Ó½5ÁsWß>Ri¨æuqËÍ8§AÃB9ÕSî´²úŽ•8Ѭ´TNäç‹b'¡®óT‹â¹°ˆ“wë¶d.[‡TNpâÓ1éQÚ}¤f/ý{P×ýè*œMP¨<&¼’ù»åYPaÁpBzOì ¸Õ}qóÐvô ÛÕÍ¿°}(~­çCF“GláÛh«–ÆÇŸb é;lX%÷‹xð@Î?@}^#+–ŠKe²ÅØΜlWŘöÀ|`y³›öPá [å:T—ë¶Ó¡¶-ÁŒfâ¥Ðà Ü}ɳ٨¡dvÂ(È3/¼ä³†ýÙŸ«ã£8]Hs7$"E8›ú) ¨ h}wMTAºgÈûŒE¦e #8w›z•M#=Ò¿‰ƒrŒ šÇO¾® 99%ò£ü<áÔeºhK Iž0àüi°ýYé« ab_ ä;5"JncÚÛJïö‚þ‹±Ï~õ õX܆©wå~ú[Ä3úÄôË:· ™ú*¢ó!«’ª­ˆL0 ªaÈ]G9æSîìV¯ TIXíå¡$*ˆ›ç¥Ã¸uþÛålz(ókž+¶ÌÛ@J½xÌ,¿ôØ…7%qb–×V¨ì ¬>÷;²ú6Âur—gØ>´Ò¬­>j] ¯Ú—æ:ûrõˆÁ~öc’0UðB› .±>ááú¥7ˆñ±ø£`‘£(¼šÎœ€Ïì¦`‚‡ÖãÃ2›Vw¢àÌ5Ôu…¤bc}A[b³*÷Ž4 ö³:°uõ½ML¸Ý·ÑùÏv°b‘“”L±™^¨gy£’äSVajíϬñÏ_”ð្7ùâq¦ùú7è0°oÀïâŸAhËØD‹1Æ-jZyz%èÙsBù©CÐÜL¸‡Z6'1øé¨u„§×–#éQ¾­Mú·Õè?Øx“ˆãÞ‚’’—@›ë̸0á$áK£7ŒP°’uù·îÏ+¼fÖ :Ø)çå{J†v¼w¿¥»ÉM(gt`~ßœžYN¼b†ã'ªs‰ž*@Ý„Mžy¬6'Û›-˜Ž{¯;“3@N¹ˆu2+x³Zlï’P{´q¼ ±Á«ÿeÖÿ }®Æñ¨U3Kúƒ¾EŽ!Zœ–¼VK˜g’'Ìö$Muóþ)"Ö÷Cøhoj-ƒÅ5©â†6·ý$Š*ÖFàiçHPÄ=»§ ×ÈV ^…¢Gš·´svç«Ø]G•¡õ°Ä-ª‘-ÓŘK¦ª  ´†¼Â&ŸØìÐÓk9Ô] g2ºÒõy©§(ƒÇ#Ÿ'ÝTÓö?Æt†\@¨x¼­«™xüÞ…éÃŽ·5ŽÁòPEv(Ï^æå;aÍ4R£%Ê°š” ‹3¥Ö×@Q¢‡eÌç±\}4˜FR’fÀc$š¹.|àyÁ‘µMý×R¥ÉŠÄ¾PÀ©óq÷+03x½GÖçzAhKj@Ø1ü zyö¶¦«•㹄‘2ˆøý©{/½þ2p9¿s7“=Š$ò,ç'F3–!#ä¤P°]ù)ñôß)J?D—hµ-Y¬o¼¿³P§¨oò±w|ÛVÀ/Jͤ,Õ]³v8xir<—E£…Æè9P“áÿPß;÷ÂïŒ{¯/˜þº­L¶Ô)S ©©P@÷Åö˜ÌŽ3„À¡T¯2óÔÇ"@]ײq˜$TÁSOÛgíÈeYè£FŽÆR*¸M´ß¡õùàþM ësu\;¨þûõõh«S(ÃŽj‡‹Én |7²Sø…‘O CFÆM6Y?ßø‹‹Ct˜ü´‡…Z6Æv X-¼=Çï:÷ÐH€ 9ó/ê¨ìÅÅŸø³á.¢Ï½U¿íç"vE°áàGºl‘!{®ežômœÄ5WBÍCa^]WçNJšá)xª(kØDÍfP¢z [|IcÊÜÏrú·r_ÆÐé\,ºŸ^5|ß^JûÁÿ‹œØ !±Ùî0ŸÅ³§Ë·žæ-ùJr­Î«Ö}`_lzT_Ø¿¹Aùe·Ù®ežû‘Ì#Ù}ÓfðÝùð VÇo8¬®Oß1ó'i@eÉ1FÃò£hÉ´å’büU¯/Æ4“Ü -xŠ•J‚}Vmt–PxnŠ_²\CumóäU¾‡u«\㣠šfsïZÊ—ô EQ3}îm·Ä:…m±c!ññc¬.A-ÈŸ,ý¨ »]{Ú—½5d% à(ét¬?2´í:¤5¤ÆJyÉ¿x®1íëóì¿&¯~”êfX¤›ð•fê4&˜©u/®¯#@NÅ09j'`øSÊ?'Þ®<Â: §÷TÖÝfscÀ=&«Ä÷ is^†ílj?0®eK¼úÉÐaSyøÊIŠ6UåüÚ•ë‡>5…ÃYV³âxÚÛ*U,»p˜¨š±ß}À µSôúv²B? (všcm¯óßH}¿xÁêUR ð‚¡;U¹T¶ðáåìaË#æ¢Äò[7ø=Àn¥@‚µ¨chTL³€‚A*þˆ=vdŽ‘ì/„5Ø$»@5†õsl@ȾñÞYïá #âs8™8ùÚ™¶`ßRªl²Eäîïbø“ßÚn7ª÷%¦X”–¡CKæÅuÉ¿ìaý¶$RžLïfr;ËR±‡0©“Reí¬†…Ùfù,­Ø¹PwºÕŒcit€Û(ì­Ê°of'V$û»m–Þ£GcE'ŽüPÛ·Qþ¢GÑb‘€«†ÓæŒBŒQ‘‘¹{¢ð£&Xü±ÚiG ’°½§¦Óœè±W[ƘÐP(nk´ýP†Ë…Q·®žBŒ6X>‡¡g äé(à¯;x‘9Eùw߸áˆrœ"T\õb…m"´?ë1êÊ ec|;ÄÉŒÔtÓA7Õn…ŒUƒÔAH#ÀÞðšµJr]Ó®ÕÓÍ9µæÎZJª*óz’e¯_#]Õ{©¤·K:óÈ2=¯ ¨”:æ,(/œ*af}RLÛp9êÆÏmO „Hv×Cžø‹ãRœ Jîª7ÊZxifØcDŠ ÞrhŸÜnE ý3¬¾Ù+šúÁƤ%ÏÒͶ_ørŸ¤‡MÇÊ£?æo2!§••/æj1âò©n[‚–㛕òȈœ2õŸµ¬žÃbã Y†ï ôIÆXïø`òùb‘ZZˆ²p¶·•)å#Ôù]ëóL€bìÈXH7G-¹6M„›ûm44í:=q^ ·Ãn™_N/t bD£RŽ¿$2GB{2-ìG’vAj|Í~OˆÅßüòéšî·úF>†W¼Q¿ó:I7­ªàw³pÕ= sÿá6׌ΗŠP‰¨ÕBá§\½o{7ßÍÇ y0–ê‡S™Á½TY#ÅõÙ4¥çJÎÁJÍ&ßE£<«ÖûÛË#J&¼SÇ&Žš:ð[zÕ˜8~P&ÎT|Ù”Fý Iý½ë`ÿZÔ0ÜÿDëàþ¤ŽFøÞ¸¦Q&M‚MøTç+„ô«¦öªÊþÎí˜)úˆqøJ(µ¬n*‘ Ùûyˆ]<ËÍ­ü¾Ž"&íDž…i7ŠúE£zóïƒ#Ué/¤”ud¶Gš/j¥_ºƒË髿sk1§$@E}ö–2îJÚ£Õ>¥Jn¡›¤]ÑjÚ³eEœ{;²‘ ö5ÍI)ÅÕ¼ã%Pûâ‹«$®f髊t,Î)Ñ>þ"·G¢*ÐŲÈý$²Úˆïl‹xB!´Ûö·7.ÉR0 ‡ëRøÇf¾ÔÓ$H³}AOû2õ£œéă2ÙÚ€ñ 'Hu½¿ðíó­gáé7£+ÑÁåÏz¾ÙGPåÏ´²˜xÓ¦˜•fIzL_BÈuqŸØxZÒ&:R>}}I‰h<öžÙ ÌÅ˯iJ°o燃µ‰eT—«¢zä7°Ã%†§€ 0O€äHrûèñùn§݉'ߺ…À1‹YÅýqj"Òâð!3õ¬2 ¦‹D¨R:¯Ñ%à\Æhwmâ& ž—çÿðäG‘FÑ8B0&žN”QÞ‚ag{l;ñQ¯EóÃ÷õèbí*€ûŒçEþsºs7¿dC9žºôJo¤d¦¤@ïþ÷ü+‚{ÂH_ï}§gÄwÝä»jT£bÈS\VaƒÑ˜$§<_›Ù­b¸ÆŸõò.¹ù„Ô7¨#W‡¾ñ} ÃDÁO3¿Ê]ÞrL4W†ã„ ³{ô·øåè8ßiÛ)·?v!'¯6ìð6É‹ßçBr¢z×øa¾É…-‡#üž™ô˜‚……í*õ~ûu ®Öî)þh“KDÛg?÷õÛxOÉ)Œã3´ÈgÕÙ¹Ž.çƒ Ҥƣÿº¡Ð~¢²€œ±šÉ†=„…ÃX~HV8L?©É¾bùY<×ß0ÙRö±& †«äõ¸T‚}èë |Ü ÚøGË „Õ8³X‚Ì'|•8OØÐ=ë»ÆN¼ka ÞØÎåj×0•÷‘•!îþáU±0°ñT;ÈÓVhoª;ÒRþ7yPÙG6Õ%q ¢ Î?ý—©ùut ~Hfr‡9—xô*q¡f¬ºfñb©ööõßUSýªw6Á‘Óôkª ñÁ¹öðËÞ±¾¥ÊÈúÅäG0¤¤¤+q«±ïÄ3{›îiÆ:>sû3ÙÀòBŒïåÑSäÈÁD :Þb÷uAÑã@?ÅyC¦îDFøôúõ´þÝß`·ò•Iòd² àîÌ $>S…ŒY—³[ì{`=.'—+þÛï0 ª½5Êwì’vEÎ'C‚¹\ŒÓqnf“p…]Ze‚‹SUí’|bl{ÂfÇ&OgçC G­%D!d–¼g†§#žAús­'üÎÉ g”o{`Q±y¥'?=tñ‰Íw8¤ˆ0ÚûülZnn)7õd´¼*z¦Égb«ª^¼s•ûærf #Õ•×€2¬Û¼ëß•u濨\H¯Zí¾Éiê,¦HfÖúc±Yä^÷Y¦¡L>ñ脦Gº>Ñ„~Òù¦¢˜îàÐOøñ-ìÒ¥ÔÊæ(ÇìpÎNÍQäAW„3i¨ÒsnÆÂ©xé¸YåW2ÞOüŽ×rC×U\íÕWØ%I7˜A%ίŸÆ˜`»äÒ‘êD{ ®{ý²ù‚tØÇ]d·þHÑeo ›¨á>U VIOT-|E†Ñ.‰ß¤îÕ_‹J×ÝJúà׊ìÃry»DæÔV¿ß »1 G…WânWĽžVc·P ù}£ù*,·á‹b‰<ßëñSëì²›9—§+ na‹`(BXo[õüH²7‡-”Ÿ‡³³J9–!¥b.׈}àg&ôÍq„×]ºF)ÑIêÃýÆ\¹ æLhšÖÓœ±–yŠ †^B»;bv’ ´ž/O=exµ÷—³ 9ý™nS_£wQ«^N}Ъ$6 Ð)ÛfîÌŽ3å­¾Jc—w1ºuŽvjàA½½å­^GÕ@=êW2º%ںطZ!ÃGˆ‚WâË…? ÙÑÿÝ(,9P3 ³ç³5õmAEêAJÀÎõrpgÁ$uièá*|Nˆù£V§ý`p·t+edk Kû«ž%‹ŒTÑ{=ͤ U% ­FŸ]Ü KOyiÅ5¬>š Cb¡Á¨ ˆØ*%ÓzÞ{¦3wµnî+[þ6â7Ùï&÷ªBÝX‰ðµV¯.mèLS»i Gê¦lÊEªAÝS ´Ýv2ûc±ÔE¹7ž€—U¡X°é“êgL‘;}ÿô™hÔ¬ß,*#6óÀÕ9.n0t¥9‚fi¥˜å<Š•¨xH/µ¤o§Øè3UëpPŸÏ8ìzÃ1°Í| AŸN¿.îo zºFªœæ›‚ˆ#×`ŒÙê}0îl1R¸¿±çÎn ÜĘ8÷Ìy!C*+ÇÓ¥12âúl®?±5]<þÿR©Ç*:í9oQ2ƒð* •X=þ("²¿U§æ7¼¹j?ÆIËæÿa£#/ÂD4êkÈ%÷`þ{ÕY4Cæ@© Ý%3âý-nI"ÓñzÕt,2ðzÒµùÄâ28oÏîeë[й? ´•zy×ÍÚ¥ÚMåñqÓcí—ʯ:€‰Ã§UzÎwfb\xeµ^[O²Þ½Ä¨¡]oÙÁMï™l DHbû†ï§ûä33&üN…vÜ zÐBø…~˵Œrùr†{蜆ä<¦”¢¸åõB8¼R.èNê¦Ê©lœä%ófº «ÄbŒÈW8ñAÎ/2–n W¹šöhGâM;Î7P7CuM,YàÖ¹¹ŸÐs™¸?§_ûÆ!ž$|¢‘i® n¬\kïIÌ.·ww«é'Ü“ªlÿ a(X¯!ÁDGfÂuQˆ¶¡½[t„Ñ¡•²Þb§Ä‡†—)J'AVò†Ÿ{F Z²& ž@[\íÛpàEûf'ƒbgÙª\÷‹Û«¹ÿ¾ô}—*×k#ÿ„&9ë»JÕQ5+ˆ¤£ùþã{éb&it•,Å2H2¥ò!txº"uI%©œUiO` ”ž‰½X¥e‘KÈv¨„P”ä!ZŽŽ<ò6ØÑÚö8ž\Ö§lhM—ó©z¯›Õ…(™ÝrüT-í‘kýô9ðNª#IZ†/TaëëÁjó~åÄÁkËŸÔèO;ܰ&.ÅsHŒç§,ùoåÈVchÌLéÕI¢‚9ÓjáµXÏž·)H…3á?×§Îå¾|开 (/X‚*"¹ä!‰x¦ÉÅ{N¦ï¾ÿöÒxú}´ eÇw‰pUÚ’¸ÙØ#ùv‰ób8M{ÕÙ±Óƒ%•£—k«ì|¯U´³>©lZŒÞë‚,ÀÝa†Ûy¡•j [G§äv³³z¬¸ß¦gPzP¼¥¼?c‹g®{h³fE -œ>®2uŸTÚ0_ýú«?T ¢ÔÒ s¯ Â(lRuA+cª™·œÇ­¾û…[‰ßˆ2–·ƒÉ‡w“ð¶s1½ÃwJà´Q$Œ%ßÛü:ó$Ü1KÔ.ÈZ+z,h¬£z|À%â㨟DNÆ$Žn¢ É\Ͼ¾°§?_©‘ú…ÂFÛ«ºˆž€~'¾½êV2é¶ò;Tàëï@MÒ/ô·AÞ=´¤ ŽHIT½ ÇÈ3}) A›J2ZáªjÇKòd>hxB*— µfã#aVA8ºÌ´“™ôÏJ`pÖªåÝ4<(üNSÁ®ÑšôVÖg?›ltT؉=­¾’²ùƒ„)mûÂg V\Q®F¯XØ(Œ¯q¤ŸS8t‹L¬Ñ]ž{2If²ëûªm«8MÇž²‰"“,\}£saìXÏEˆCtübN:“ ;§†k!˜Ù‰[v ZÜéÓ>M«æÑMâöä¯@-®nI:5Ö÷«²öî§š;h †mÙSóçf;—Æc÷—n5É—ÁKz]ƒ WÍ¥Û¦¬æórðr½ó‰êË»ªìb|ö²$ckåï+•ëÞ}Æ_fXµÂJM&‘¦ù*bc#e*\|]vêÀžDp·³Å¿¤hŠðJ9V¬üføˆ­c¼~¿œ™ßèk|ÈœÎØï3.¦Ð`¯ ž“ú^’5Ù"§Gòåi±¦5×ÄŠTÛ$‘0"Óš4ÁÐÄ+hÙùE:]„ZR™ÑYEÜ.]¿Ùx³+üŒjÈX ©¡Õ­È0 Ï.çõ«èÖa?fâ£Bʯý€…/ZŠÏù€{éùœÐÍæfØìÉŠÜnDŒÛÏz– ¡ž£;ë±Õœû’­®xÒž8N«±´ç|¬ƒÏ*Qº ‰ÆB5Ñ£ü+ü•$húüÌoÍDHc_F ‹x8£•ù³]eFšHXãv ‡øoÝgüEøM$œÒã†ÅXë’k‚r'ˆ^!S¥ª(³–è ìkpîÒ0ñ¿ï*\ý8;|¼8¾eriîí ‹GùwÛëQüó/-cað' sÚÌ U)•z¥¤!ß .j™ƒ}ˈó9 Ø,õóê·ÐÝ6ÍÂ’H†Jä=–›æ¨zŸÈNX3Eh—»³M…Üý´ÚŸrKl¤s‰¤ïüež~D;¹È¯;‰.ˆ)8' ¸Šþ~ËrÏ;è:ßÝK ÚÇLâÄd+ f(û¡ëUéã /Á7Šç'ÅðµsèÎéÜ Ï\2‹Aü½{H§yK1è–“±²Û‘Ö³Öщ Q™bŒ5) V¤™QCÛV!€(~ ׯ!6Ü{è}&ÍÓ†hÇD?'†[ãO@ÕÅÙ²j•ÁÅ460ñ1XCJÕãí ý#(é E’h*£p­ì»âÊÔfDƒÃ}S2ÜÖÁ^zúÒB1ÆS+I éCÞt˜O®‡3÷2ì ¬CLaL¤n ©êF§ìõ‡ùêojÄnçIþóœúå9á“öd=r–ý¤ãšÎC·IŽÄÂN,cVž„ˆtn’élõ‹Kñu9þòkQ‘o2Bi5½ t¹Oùí+}Îô_;¥) úXK÷”V”»ózþçzDê&¿¸Dg;-\Ï(ÞÝŠý¨)¼Üݳ@;› ÊÁEØIÚí3‚mhRêß«ðâñy?³Žâ¼º8†îoHìÑ—Ws”g­´cò†Ž`mäa°õÜÓHÕxAˆ¸6«ë×êÂï}û8C~ÃÖ 1;lTî¿r’{±Ö7—¯Qá}{4ð‰‡vmŸ£56*¯þŽŸbìÔ®ÍÌ©bN&^ð¸ÆºsÔq_sç°Þ"‰w]D @êé¼µ«8 ÐÍ—'©,µhÓm"óooÊqîVcëÜ-GSUNxd®,,÷É!—æ¾=>Ÿ_^k¬É:ˆà•sœ}zHV™4'óÃ}ï1êxtÙk9Jš¡À†—x˜ç˜„²NÛN°ŠÀ™\™mñc€52ç #c…K˜ë,ôcîìéð#ƒÞ0£[²ôPÞåah“Yº@©bIæ§‘0³ó#*ËDâ«ç*ê‚iWÆÑ $y»àD!fÆWÌ›|/¦­úeæÅ©@I wм9.ç½™ hœãäo }áìÝ&ÇþZ8lGi;„¸ÎôñôÄ–õv€¥¿«á&%táHÙ¤[ªl9%‰¸å·›Ir>• KøCÝ#ò·8ó§cÔ >QÎwlù^)KϤêÉ7ÖÔ$?W€\ºuÀžþoÕÓ‡úË¢ÝîÊé»nõ#Ÿœ3œÑñЈ…±ôGÔ3Ž4¦ÐB8Ô é’’ðÐ+“üTÄVÎ^ð•1$-D • §\.vÑP°$5Ôhr‘6bio%=ü4êŸíg”CÓmë1ú¨æõ,À ø„t¯“·érxÙ矴һ Ê—­‰çŸ!–lõÀ­K4» ×C²•¨îEz¨¸+RŒ¡æU¸ØlhJæjôùIƒ; ¼Šc~„{ o _æÍ2:»åïV>âÛïÚ=4MfA¤<Ïà‚œ;# üpJM[~©±ô½­Æ8BK<û ÀÈÊ^*œÂ»"‚ÂöJ}²¦c·PÍ™%ÀïsûåšÍaŠ[†/l¥ÉþÛ‰%ë§sî¦äªÕ£¤Ú1ýv­l‚”lÿϪ(JL¡Ë `ý ÝåÊÓ þÒg·ß™àJ[a±\Y¦­ûS ¨dö‚XÔâm“WÑ_Ÿ•ŠÈã™Éå·rgN>°é*rÇã<W_¥cs3ûÌú.?F…4äOý~:û¶ËZv™ðpÓHÃb’ª|ks·üÈb-†üyÑ­obI *¤ñBˆ¼òƒN=®8[ à )ѪÊÊPóλy5ç G"!ÿhç­q‡99ø+9ÙˆÊéù±@ÏWcÇTmÀ÷ ‰|«Øà+Õ"ÿ8ý;Œež¾ž#¸je0ˆ¤¡^X {­UÓÆÍÃÀ铌*×;iÑzË‹|çò¡Í·ÉÕ2¢·TcŸG ¯k;ãÏ<‡¸ÑŸ(.b~¢äeÔü¼Ä,¤Kìý©@"$<âs£ ÝÙó«Ãÿ”Ïä `n=Å’VƒY:”l£Ž R2ƒÆ zè½ðW‡{w)X‚˯Od1ôê­€Âä$Âåt)’[¿nö|E™K–‡¸õìyøû·ÄôvC+Î٧µ7Ÿ$zo±¯hP>ûHÍ®Û=vÃ|U=ŒHCX]Åy_¬ÀÊiS¶°5”‰šBÔ“,WW9š×uRo˜¬6Œ|> ­Y>)'«±Ÿþlù´rtÇ™ÒçVø S¢ íÒŽ ìðºâýšo`J3ÚçëѲt»¬{¿-ìÐÊÕÁáŸÇ”$N{e›é¡xGö18]† ùœ³±÷†³óµ~sA´uÛ-ƒñàñ€˜(rÜ?i¢-öms¨×ê±°^Ââ’$3ÀØ­þ¶j—­“ÛèBÉol²ÓSKÕI—ýF»»{Ž@ùwg+ýá”ÒzÒ`¡Ÿ=W¥ ©ÑLØú;U¯j&£¥‰);w-n ººŒh¨-ÅlŒ+URúæŠ>‰Ëýà¤Îy«ARnÇÉÍf¶åezQÑ}ÿ¦ÿ[£q¢Î»DLJL+ ²³¢«Y™IîJµ—™Ô+]±d4‰É=xO-ìâ8W,3ô·G˜ßçÅà🅥$”Ý>@2Ú. ç>X•¦™ò•êØ¢E6T¼a¼÷íí:µÚ•aÓ6™/Ô@©Í4Q–ú•Ç•œé ðª8Ó”ºeâé¤f·?Åx†ÖCÔ <¬*5œ®Bˆ}¶iž‰ÛZ÷e’ú9žíñ­!7>@žl,žÓkªïHHG€®ZtmÈC¯…•:ZXàÄmÝ]ÏHÖþ˜ó,’% Â/ËUaÕŽÇQÌ¥€±që€9ÁðoK7R.èªZìC@”¢Ð³,ö´Î§u,R™ B2,ëö3ƒíË«oGN?b@)‡…6ãžœ—»ìD ‰¤Æšê¨ °Yµ@§rÔÐ¥ 2¶Å*›Jƒµb^JS¹Q?jý–RÉï™kÂOD¤ÙE óF?eÄ ê _U­ñ=;Û,QáuM1%ž†QÁ-6O­w§uê~h;p2–ö[•Q„/UI¥õÎ9’0_ŸÊJXÚíbŽ0q÷Y’÷€–Ø–0‰Ø6eTŽŒ{/TJu1ÄŒ£ÈœkJ/]úÌ7:T„38Ydú:ÞS:©ù[‘ßKªá›yWÔ©Bª#e­þ}!ØÜ7¬e¾8ïuå—–i¿ÍôœÇÙÑ3!Þ_,3´WÀµD÷bµŸ‡;fv‰>CPMíjqqwÍ<óXôDÓ¾¿Jª¹Ž{žØÈKîŒÀ¾aâ½%¶p€í!SP¹06>!Êcwñ»b…A×f"®ù®<žIW”Ù÷k³ºØ Ô4óóg”±ì±Rž6âçÚ*šÎ¬TrBÖªÕ<Œ´)U87ÜÑ[rÐ^MÁåcÔ{Ÿo\…—=º† ¥JoS§./kœ’åf¦jìým¤ ~{¯˜üàë©áIÈ4'¡Ì~&&~GÝÒë+qRRÓoÝÝXX ÜmæÍþü`":ޱ޾˜­§âØoí›ÝÇ®#龞àˆ(^$˰4Ôš<¿1j™#¦_sªY¨¦â ‚Ž•h™+é" …)ZtXb_Øe0yˆ;<¥/~ëýÕÊßä« m¹š•‡ž5ÚNἌØ©ÛxÑvž%Dð$ÞÈ?¬‡Û˜+‚‰8 ÏàoYà‘‰P< Åu~“Ç4 ¦*p-°ª)ß%WmÇ$9Ÿ&¾cªíÖ¯9¿Èî¡#'FLC€>ö~ZŸªÐ SÝ ž«÷º‘}¼7°­ýýÀX”À™  ¡Œ†…)3*nh‘°9&{u …þuùfCCŒÃ÷k5Tñá7óÏó«F¼Õ‡0w¡Y0²Cνó3z!‘„Œ™ð㿨ͨ˜ &/YGòÂx“_èšQºöÙ½¨d)?Cƒ˜ÔÖ—2U$9Iv~|—`´uÞÆ¶c}|‡º£h^"ܸ vìºé•W¢]; ïüâò» lªØ‘›çóío‰'[\?’o¢<Áòf%]ãH1h$²Zàφe‰ÄÛ0ÈAWø‰Íª^ª‘‰³`§ÄèÁÄ=ÑÝ.*ߟ•AÖÎ+€r±ýçÌQT’šÉyóÛÞ³ÙO*?úŽò}zk¼…j¬Šm£ÖÚ&BfOÂýly¾m¼çÍ3Þ¨4Q4 Íž ¹Ð „ñJ͆¾Ä¹4XZÑðN”äS2…`%ã3Þɳa:Ÿ…»à.¦ÊÒÀã* J æQ=^ÒDa°J&±r½î/Gh¨ý„ý€žS4ƒ¼µ}ÎY©C+d»wÂÅDËfÿ¤™“¨|¶RÍ Á2û«£J9x¿¼ó3‹Ê®‹†d¿µ`²D÷½l}3ç}ƒéèW™ÆD!\EJ¥ZŠß@NÀd²˜à,ÝÌQqÌË÷¸Ãå¼aºtr¢Æ§ž 2÷BÄŸûÐc”ú÷]̹ H½¾H¼\Ê|V•hý:Ä„é§õ5©¸ìføÐïlÍGp½´DŠWÛª‚§ 2ämŠ>Îæ.¾Þ¬*¡“˜xºYò ´‚n·NàŸ‡ìîÐÃޝðÇR¿“þZ»UmHZ›WaîÿuGt­ žT¦NÌmtMˆÖ4Ù .j¸qEHײíŠy°|ˆ"srãpðA} ÷vJ'?>!îÇ‘øªÑ0…ßÜÙŠ¬‰ë¨ñ®Í–ܽäþ»/Qï°u-+Hl)³“}àsˆ80•~  Wûæ»W©úeû):÷*f¼*â!‰E›!­g» rÓŽ~£Z;s!žGPsRŠ û ³YñœôļbÏîÕò)R[ÜïÓKéV0i8Eqñ¥ØBBÚ’(¤©·~/S\£†ìÔd¡¦ ¸)ãü¯—uN¤È—>ŒýˆÓ„ "¯37³Ñ‚àî[K…•KÉVS¶ì!6y4þø¯—éCßíô"h7|oÔ~4SïÛ@|ŽÖ²Å÷D> ,Òш…Ћ³Á­ãX_˜º1¸gÈéÍ:4@σ@·{¹ñ"ƒmfÊ€*Ð[Al¤)õ–8Ú ÝúDVÃæŒ¹msÙç k¢=’¦~×*¥”ÀÕv ½;¡{™>ÝÆP¸iTSÃÅ?kk¥ÔU—Y°PÍC«ASq̥嵴 ·Ç@‡~¼'vc¤3ÿI˜ä±‚#öÄÿa1½AHŽ­`ëœ1èÔÉr#t!º‚ÝÏN¹HZ/Ñh/£‰Yôm†&ÉòñÊQZçÓO¡ÚϘ€îÈ]ÏIðE’û4\²ô5¦õ]iVDí5K,†Ê—³;}/gˆ‹µó6³Úu¾a§|ÙÈ úŸ“){Z•,²ÓÅ›à@,&–a袑nÕÐЯ‡éƒ ð=¶&EcÆŸÜV¢LB¿œB38ÏCÁÂKª$)ž÷ˆÐÄ-‹í¦ñL&š‡kÞñeK¡ƒ»Ý*Ä_+‘Û‚sí/‘»8~Ù‚={ºí^á¹ÎÓ§Œ'³;´^k@ôÆ[ÄB°•ìùÂ2Ê!š_P¨qÝx…ΜÑż/ÑŠzWÆt[PöýRfí€l [odi!Àã ÜBiä=ÖLÔÕ¦¶Ò6'Aà†þ$RÁà—ÂÝ{5T¸æd÷þ!ñ˜ÞÒW«·tÏ@ˆ¾‡¦`T› ñÝ ¹øZˆˆçWiÔsvÒKFÆXj¡£$zü}ÂÂv²©g$ðÊxA¶˜x=£Ûg‰r Í˜kímŽÖ8Èè!O Øççß^YAHdƒB-"‡ý&–OýDÇ¿1Ý…HW`*Ñ×hP¸^ÿïg”%_Ím¡×ÃMÔ’º*§~ðHÅ€ñžF‘âÌyêYÔëƒö›ñ¹1ýð.½`}}aë:1|kIv€jb )¨~°›&+†`ãÊ|rÇ`l¡…fK o¸›ÝÓ­y¦þÂ×ëËSÄ«$„%íNläR[t¡Cw©/vŸò Û«Œ¿íÍx–à×!#2úÎÚ…{ùì‰~c(Ò²†|ÕnLd¨N«áÆ^ðÝœÎ!(ŒTOûuAëJÀF(A:ðÒ—ÞS%èsO%áIÊʦ²P)Ü-Ü+N0ý(!S/|df:ò šU8ÇEÊht°–6l|Hiåo'"kŠ0F~…ÔB}v_ì~Ƚ§)­¬L¹,¨Ë‘SOV{wÎÖÖ‰ˆ$Û¯V[™@#m.L-* ®›b°¶¢½†-¿§{bwHG"±y>Â%¿GóA4¦ ›J‘Êh?UµcÄTKŸu°7’6|—Ñ£Q6 N´{YtEû¥“«Èì¡MÝÎÐ×¼ÆR¼ìuwXΞÀDÙµ’Lž'1jA—}þŽ·NœžvAºÖ^h}LÍúùH9;(BÃ`›$ƒc*ä:wLýºv6¿\r‘WP\ux1ÞÝ ƳkQ‚ÆéÖ`Œì—ã I%,y’( ޤw)š­QÐÝÞ±þ²3½Ù~T=[+­la9Á¾q³þ"¯I÷¡Ûç0ŒbœVoYJÈçâT%å˜Hžö=¶»í/¤+Ed÷w?ñ.ªÛr!ïÄ©(/¥Qó4¶àªÞð!€ø‘+T®SDëŽ&Ï@ic!Hà”Þ8<.—´£GTÁ‘”ùòðÂê !-o=¯MÔšwAë‰_•ò–쬵N#@EÎveo ¿¡ë³Q†w¹esù“ZM^W›†S20íø$n<3ÚwÈ,ò)é³Íõr2¸iwî¢&Ú÷þ*Ö¢ZT1mÊÒm‰2›KÈZRÍç°¤ø v÷xý²øuPÙgÂDc NTê%Š! ÀÔû#ÿ—°ZJE¡yÊ©]af^<×ÕôÓ ãÔYîêÇ—gê¶Iʤi¶(ºK†Å)c›ò,ä¾u­Ç ú:Ìj•³~+ëÛ4ÊOž!DÒ"H1š»‘uê—ß¿ó!hq#8¼>/Â?®n1„ɽà¦kó߱Όµç±ˆ7ÝJXדh>×±¡Riäâ £ýÞ5güùÛþw„Ý  P²:d0Kýª©à4R/g#ÖŽ\µÔ¿(󿬅ë#ïÒ¿'A˜Ò 1À ççžßÀÕï+j«–ëPê°æãy öLÒ‰¼µyì2yGê!Œ4F§%Ö–"ä@&N@öV¨ÊøK ÂAÐ YÞ”8´ÒÂÅo5ŠUcYCý@íoó ­ÜÃÞ’u™W¿eÞ›W’Áß³3L#Ýt] œÈUÑßá #×µ5wg°ïs¥q@  üUã^ü•1r¸Ÿ ï…2j*4Û(ª£ïºgnýÊD¯ÊY{o kæhjß'ûîJé2‚‘gƒÌº/Ÿ^øfòñŽ’÷*ñßXžXÁ-l{§v_®éâREt•„hyT¸à®=Z‡ky`h³½_ï,ÃxËB«'B¤®CA›{ôë, µÀXÓ~š¬ Å{X¬ª<¸`¯­ºo³E©Ç¸—øŠŒ’ÇúDi q*<÷eÓ ª=:[t!ÿÞæNõq'§dw‘ÏH÷{‰ŠR—[õ]Áø“ÄkH§ ¡g’»Q«|ìÖR”ÞµùÆS‹_`lµä÷l±ö»}ëGpkÓQU{s¶OøÊUôÅAÇFh&2ßáL]V<»Sö´W·YqõGWØIÇ8«{dÌŒHål +–¢§ðÀu%õ†Á¿»“WQ,„Ùœ…Æî•J~ÓBQên_Ad×m}9ç…œç½?ÐgÌCs5ݾAä«EqcÞ.ŽÁØÁýÑèmÂ5+´qcfÍ °1z(¡G€äç¨Ý*Tëb€£ÙöYΊCø‰U⮋…¨ÒáÒWSK½>§køƒÒèìÍ—Ö‘Kz×§êjS‹v„L–Áðµ’‡ÏM+~K¶o¹ÃR©ñó(¿„‡S ˜_vÎ{:IKÆ™Ü1†ŽAŽüBa{3blwm-qûJJ9áØK=4œ *å¥ï^å#)QÚÔhIôú­b(pšiÃ>šÒÁ9+Á9”Ëàx-Ý=dXê,M;K'^þø:j5’ë[°jÍïÁ¿b® |%µÆ×¸î5z+S,ŒO‘ŸÍƒ Z]àKš!Ú÷ƒ—hëa¿£5Œã«Ä$ >Ù9}E Ç‚ãJê›ÓgŸ3ºH ¼r†oâׄ½X¿\iú‘àµYó½ à8Añon´µWaÄ1“¶Û¢œ‰í±ê)K]ær” È ¸ª<QIö|ƒ;œâí¬L»ûU?†UÃQÓr—1!%q’à‘G¤ýL¼c•‰} â¯f¦·÷]§!צ4 œÂ.ôm(qñz=c}È‹ÖÛà~‰§=0H “´M†!׎"vG‡¸š–TÆq4% UÓF[úÛÅ£mÐÁ®þ¼ž»!l=4M³šNñ¯áž:oìFŒ[®¾]ãLTØç›³ÍÈñõ%ðNLµí·Ul@ÏôÁ{m½/žš’çÓ÷Í&æŽKùïmžº‡Ÿôà”r²¼4T³Ò„£÷3Ó·uá2ïÌ–ªZQ#0eµ×.|?â4I–*¢>ä.¨’‹£¿»oªñ'àÕhˆ¶fO‹¢¥>HÒ azO믃s‹Ãèi] .Ä#Á¦­Ùp­ˆêÌðÜ¿˜/‚5 ïÿÀ(Äx¤ YAR,’ÓtÖmYgᬀü|ð¤1Èe0þëŽE©õkÊfÿsò“#Ý8¦B”îYj‰cC:O‚µÐr­ëÝÇÇ—gós%A–ûLhW_uÉ1!„«ÄõòåÃZD¦·­õ“XºôC†þ÷ƒ¯l)l?ú ôLsª0H«i¨îË3<à‡EìÕ!n@ý/)Á´<– ZKéº>ÕBÕ.»]iÑÅÎ|Ž-ÝMMÍÑÉ—6_cvå×^T?¡ç“è<Á»úò>:;VyPܶouÇ-%‘ëÂ!*»YtÞ¿±ÿ|â:K¹°ÝÖË7ß~žîUÀ©ìܹpþ^O9ésO®°.eZ¢yÏYSÚð.[ÜH—û…‹÷3MÖKxÇbÓߘ¯ót½tì®9<{ÄÛÛoîdËܵ—I0¯{!×ÃM×VÏÝö¸¼…ÿ‘Ô‰5ÎðÇ…þXê”»þr©XÎÉ¿ò+äÿ„éÅêâ¶¼{wWi‡Î´:ö×Äϵ½Ðùg•¼ºòïx%?±õ &É®NI­_Ø¿2²nÊ6¦©µ Ì <þ'Þ;-ÃöåIE§TõŠýŠ]áâÞ¿}Rçì›j}/êHñú·^5 L¦W~瞣µ¦6ÍPqó¥öT÷7ö?fiÖù!qìÔ m1¯ØsMeÓŽ¬ç^î§ìýÝÿÿƒÂO}k§r®ÊOÈÛñœŸñH£¢É6í½Ç¤,žÅßgi¦Ä—=#ÓGMjçó4àâÏœš¦¯?<𨜶àíóifϼoSÉݱÅðMOòÇP;ÆŠkáLw?¸íXô«ÙÞ#vù³_|nÎWaú!7n¹Ÿ(Ë5anͨÝN5ëŽJµ.Iå qR.þQ¢õ’º£ŸöiYO1 p0, HÎIM,*ÉÏM,ÊæÛ™½Oendstream endobj 175 0 obj << /Type /Font /Subtype /Type1 /Encoding 401 0 R /FirstChar 0 /LastChar 126 /Widths 402 0 R /BaseFont /TAXCKE+CMR12 /FontDescriptor 173 0 R >> endobj 173 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /TAXCKE+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/Gamma/Phi/ff/fi/fl/ffi/ffl/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/bracketleft/quotedblleft/bracketright/circumflex/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/tilde) /FontFile 174 0 R >> endobj 402 0 obj [612 0 0 0 0 0 0 0 707 0 0 571 544 544 816 816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 490 816 490 816 762 272 381 381 490 762 272 326 272 490 490 490 490 490 490 490 490 490 490 490 272 272 0 762 0 0 762 734 693 707 748 666 639 768 734 353 503 761 612 897 734 762 666 762 721 544 707 734 734 1006 734 734 0 272 490 272 490 0 272 490 544 435 544 435 299 490 544 272 299 517 272 816 544 490 544 517 381 386 381 544 517 707 517 517 435 490 0 0 490 ] endobj 401 0 obj << /Type /Encoding /Differences [ 0 /Gamma 1/.notdef 8/Phi 9/.notdef 11/ff/fi/fl/ffi/ffl 16/.notdef 33/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 64/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright/circumflex 95/.notdef 96/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef 126/tilde 127/.notdef] >> endobj 168 0 obj << /Length1 1743 /Length2 10452 /Length3 532 /Length 11438 /Filter /FlateDecode >> stream xÚíµU\\O—¨MBî!4îîîîîîÖ4îîàîî$¸Kp܃Ÿþ¿3ó&3sù}WçwèžµWÕzjUíÚ$Êj "æ S IÌÀÂÈ SÕfa°02#PPˆ9[˜€m@@q°/€…‡‡ âj`e°pò²±ór°#PÄ@ŽžÎ6VÖ`µÍ?I\ g3 @Álmá™ÃÌÄ 2³±{2DìíªÿŒp¨Z¸X8»Y˜3"°°ÌmÌÀS + Ó?F2@K€ë?Âæ®ŽÿõÈÍÂÙ" †HÒ Šæ  ½'ÀÜÂI©e1ùÿCêN.éjo¯hâðÏôÿêÒÿznâ`cïùŸ GW°…3@dná üŸ©Zÿ!' ²ÿ_edÀ&ö6f"@+{ ó„l\$m<,Ì•mÀfÖK{‹Å-€æÿSÒ¶ 0éÊ+i‹ÊÑýç~þ롲‰ ¬îéøïiÿÉþ³üaHwœm<zÌŒÌÌ,DÈï¿þ3øÅ$€f s ä@ppLœM< 'Bo€ ÐÜÂ`á1fb‚À!HK|– g„¶¢ÅdióOì? ‚öÿF6v““+lanjÿ;ùï'& «ƒé?ÇÀ ø'ÌóŸþ{6;3€ÉÑÄÙhoaùW”å?£ÿ#RÔ äà`ò')fíéhmñ§;'d,¤ ÈüOˆ Àäboâbý' `ò²pý @ô@@‹3Ä ìþç9ÄlílñWÆ?ý¹:ÿ üÓ!·¿2 º.Íú7Cd],Üþr…l “Å["Dhó—'dÈ‚ ýCd±?Y“ø¿‰ ²É?Ñ—úCué?ñ–ùC òRAáA*(þ›¸!”ÿdNÕ?™SíA¡þ‡ +ÒøCzšROëß¹˜þì5¤ºé‚l˜ÙŸÓÉ ‘1ÿ !ëµø ÿÙ«¿bgõBô¬ÿBˆß_çž"a÷B,ìÿBˆ†ÃdhÿBˆè/„h8þ…ºÎá?Çã/„4üB4\ÿBˆ†Û_ÑpÿƒO“Ç_Ñðü !^!¤«ê¿^ÿ}c‰Š‚<¼ Ç›ò°°@^e.fßÿ–hæê y]Áÿú@&û/¶´Ü’fKó 3¾Û”¦°R?‰ü©2Ú7¢VÍ ŠõݳˆÁ‹ŸÞØÈ9Ñ®×i?”§a¢ìÁì»?ºDuø¨ŒKž:%¤Î½ì¹ï¥yµj_¦)xî:’Þ¡¶7ý¸>æx£4³>ZúY§ ?ó|à(W™Z\}v•ªGÏ­¡'=„“K[2Í^#<´Ž’D-Õ©4‚=|Íís⻵É`?Ûp¸º• P‡+ÆC>\NÒ‹´ù¸¦ñÜéOäm݇„±;ŒÚƒ’¨m×…¯:q•O¦z«Ä,zö—1é?¨®èÁú_«¾9.WýÈ*нW‚Ãg/“Š”åB¶‰jë, Ñ€ªM¨¦ôŸl^Ëë°6ÖU¼ý8–?ÿÁZNêµ1‹ïd³a%®­ ŠDÆB‰w„RMNCþ*Ë&º?*ñ\Ùàÿõ£KB-Ê­dau„e7©2ùÜnƒÌzãâñhò’hp?§€uA‚“¸&Ú9ÿ¶1¼z”]w}™Dš"äÞˆ‘•ú ¿à'éÍxÛtU!'ÁIx¿I\­Au³=æ‰Ìb%'HI„f%Ô×0 ×ÖŠŠÜg`±Ìï_®/¯¥šEbq¸× È‘?_¡(æ¬3*1(Æ!нWŸôg' \¤tïùì¦X©Ýzu'öò5{c *Öy1}!¯ÄùkK–åB a«æö{±Üô¤¡/~;NÙ̈/Ú–çóˆý†¸ä³Í°gù?ü¥¸ÌÓ‡jÑbõ/+*ì%͘C ¬ø£šã‚²ýó(˵ν}}¶Qf›™9ú±bK–إٱžK¶W³ì¥²OÓÐsÔý‡áŒ ̦397uâXRþÅí@ɹ3窆´/®ä¼œXì±bæºÐqR¡eH޲¢´ÿÜ ?DatnrÂäõÿHÆæãºOãø1iî[·Òª¿b²3Û1ü=îîˆ#¿_Rv*ŠKˆÐ€Iæ&î¯!Ý.ÃQ^hk|ùLekàžSHˆJžÄÚm_ÅaEœ$sÍ+ë¼ç1UEeèbÑY“ñi„@´•5×áQÁ]É•…o*Ñ÷Òóƒ(Jæk„ ðо;ßÞ›îŸûOhÝ4<ÑNõ¥¬u7‘®ØBXJ±·~ÃÉZvÓÞ“ãÑð7°jŠùJ@_mí§OüD¡÷óf½¤5÷yÈÉíÂ?:ØJ|dÖ¿¡×, ñSF1RTšu&5ggL=9úÚu…Jfs]÷2¥F¹³£I>N¡=-sPÔ3ûe(öùoií¤mIžMÚïÍlëH”Ó¨ÈÂVSpóQ» ?7Á¶Ø*ÍÂÚÍãöv›]Ëuc4FП¦]òì ³i5#ÇÜ"<2ózŽÿ&  ëƉ{Œ,f̲$Ïpù¥pq9Ìîª>ZGÏ%E (У™…„±?óMÐÂöÎ%Ô(ˆ“æ¸ÇË@bè< R·Ù(9?‡Â×ûû}\ÈSQ’Ìo<ÿ†Én%N÷ î…~«ÔE°öKä7Ôq%ÒÑ ;#%LóâÏÛëFVê1—É%&–¯è? á÷ç©2mÌòØn„iˆÚð.Ç2Ö;CLºí½wZ%´?™ZQë¤ãoÙ›Q¤7ML†,ÖøåJÆ{¬Ë©öU#¦gû_­±ÌRELrw ”TLŽˆ¼ûIλ\ã88×Z˜,]rºÏÝuÅR`P (¬4ë¯Ò¢ÍÙr/»T/ų™º~oU¾a&Á ü†×ýú>¾ÔÅ(©á+G¦gö¹T‚:Õ¾dß¼åýD&÷Ï‘Ðöë÷‘ñ„£tµéÔkœ2ZÎ×ê+)«Õ (ix´M­%¦Tp¥I˜¸Þ¶ú.dQð^Rq»X#Þ’dÊË€æ2L1?[¥ñŸ[f½-jÍhô½‡˜:Â,Št¡¨7žYßVÚæ<0®y‰Jæ+Ù›„o´Mr‘à/{¦È¾ ²¾›S¢i-Ø› fV’•À,÷q'¸ÏÊã©«fį9²o‰XC®çñ<éUÅQCÔ(f ‰LÛ:ØÇÐVŠ~h¾>Nò༬¦­sÃêpÂ{‹ûyR»”ÜÒ·¿‹ÀÆÁ¤Ú0Nk“[' Š`ó‚P‡üÙùHJ7i1âCæçÖO Fy·Ù!Jƒº~O‚nl{á¿Qiß™îÕmÃ"açDçŽo|¦ÂZt~ÿ]aÌjÑN|ÕNÓ‘Ìñ›Kª="@? +øIG6¹ Í9ì#qÅ>Ú'cØàÄ‚A¿ÌK¯1ל7ótç?ËñøˆSpŸòÒ0»yõ×į֌­S¶‘:…Rp¬Û3in ·´ô¿¢%ÖÓc8‚Ú˜·Û5´’ói^¥˜C¤±>w«"¯Îóñ{KûcX‚Ï㽈nUbÖºx{“¼¹.ÖuÆhì:¦Á݆n¯Ì2³ð6-NFù%q”à·ƒoŦ°Ô˜W(Üͬ;0YRƸØn¨ñÚŽÆpÅ…÷Ës ò˜Ä?l ·( Fùœ§¾¬r‡?‘˜mûV&ʧGBãø ôŸ´-ð¿óxOp/´{Ϫã¼âVíÊçÿÒ„Lx0[‹-ì[-ÝÇÖ“ƒ®àUa[« Øµ‹_-°l[~¸ì£j²ÜÒÝz=taMJk‚O›ÐD(fm%æõͽ•˜‹îO…Î HÎRºÍ¢FK‹ UÖ¤Mâ1QcÚ‡r¸ôL4y®¯jŠŒœ$s‘‚©å… óî½IÃÔôîlì!¦ß†ånd}CãCÌ,v®ˆ0í`X˜ª²³puÓgbä*såå,ViOͳÜR°<Ï*U…’§œÁ¶É´¦yäôù6ˆz«A¡éW”Tƒ$e7øˆŸ\”àÜØÖ”4.([‹ð¹[<¨®sÝÎ0C’PeRönÉÍwP {¨î쉣ÖÉŠE`.¹©3j.ÕÕ¦ë ²|2O‰Æúpµñn‚Ñþ6í[ºÙá-…¥öbò[mr¹YÐ=U×t‡lx÷P¢»R‹U»—Âç8æz6TðQ她æU80ý‘ '{Sï1·1É'³ŒµÿªrÒU€‘ñxmÀËê<;÷wWã6'Â@fuúŠ|q‰û,ðÄ-?ÎÌP‹à\¦½á’\;‘Êѵyï’&yDÇã7<=w¼àBÈG'JWaM¯=­‡¥¿Ùb¡c ¶oÙ¥!;³a¤À{={›ìqã[¬qýhñSÙI\mz¦ÇÕâ/¾bw´©ž–ù =Fó]ë(× ý‘ÙXºá;¿¤0^(FÙGSÐÏ¥Ç7Ûû}£Æ÷¸„¬¹5:YvMzŸç¥ö7-sÄ¥"ŒÎ¦Xsš©<ßCÕ¿Û>úW£>=ã–X1 ë¡æôsM)¨ÔœwLo{œOV’1Õáax›e4¼´iEw»|ãUuŽùÚ˜ªÿËúРU»ž€bŽ ;<@¡§ošagû}E œk®Þ÷W¸ñ_ø¶ׂêc¬Ã0äØÑry‹ÕË #e¤²‹f»8Ÿ=o¼¤TEbò‚zËsžýÆt·7±Å)WØj×—Þj7ïãÑÓtwv[Åþéi°ðå;àQ“ë.hÿM뻆oA’Ä–G¥eÞ–pÆ 1$ͨ F“¢”ÏÔv÷ª?+n8_HW=u=3&Dª„’Æ%¾¡ŽžEßÇÝî6qÛ:xZ#l¸ÑÖ¿™”õ†m×¢* %µÜ°U«¬àï±u‡ ª³œÝ§qti¥ƒÃgSB…cSaÎ0î ¢“[J »Å‹:k/4zt¶®6˜ˆ„—Ô'€‚º¿åÌÉAªEB‡rÆ•H(lh‰P2EÓ•dæÇ IgþŒÕŠ¥«È—í3ÓÞbÁ*xÚÃóÒSëoy>Cs›ëØv /[Ãjû™!Þ°A—–Ýs‡ gæ#Æ ”_”Cm†Þ$œ]u-Í‡Žž‰^°Þ°åè>÷†±3?g·ÄBšæïà’)~Ûºî«o^"x$¿LkhFá,”¨%JDÜE>5«á;Wö ˆ\«²¯ëC3:ö¾†UéËÝI¶(·½Â ™àE¦Ž8•Œ¿±ãäúº*9ûãã*ðEïî­¹è€wïC10ÿ &v¨©%!CŸ¯÷‹ÿªz˜Ò½tPMsXtQ$“J'…M¿ÎøïÁ:klîöäΟscùaþƒ­›Xt3µ.H¤1Y2ÉT]uìb‰(4…Ð6—Ÿz*Êð•¤C Â~ülo§Y1zi¢žOÉ«øú…eòv ?–ˆYbD.]LΦZO÷Ó?»MÍÐ^òå¼Eßޫߢ}±OÇ{!‡S°ÒI½eø0¬’ÀÖšå}h&ÛÅM ªß›¤3ÏÊ`ÖWx«aIœÒH¦š˜5…B7ö–sc5aâJÙBÓKÄŒ›í)ìöSäV˜”˜ôš4T(ÕØ‘YÆ\Xóe|BÓ˜û~†ÿS׊œ–üLŽwøìÒpªµòSè/GŽ“ˆ´¢He4Ù6W­šA—°}>³]“÷XnM')\WR]Å<7<¶$e3ÔäA8vÙŽ?k®ù›Þ¯4yb˜ä…À Û!¸(ßäÑÔ•rô8ÑúZ|.°±ñRûmuܦÉý¹z¨š»X8àþbÐ2”D¤8âGß7-ý*9éSÁ*Ûœ²?m´ÿ "¹¤ª5Ù.¥~ O+uÊ6ȇ˃ébºØ¢¨¯Ãuë7#ë7ß`Æ€´0CÓzØç¥µôÀâw”ºRLÅü¹Ä®å„‡÷™© ÚT«"œ4®9®“ïrÑ¥é²Îä ìå̵Nk®)zÏJú³Tt"§Ê`ž¸Ý›"Jv`˜¼2º6eöåúJÖ'DDýQc£×?#!€&¿iè‰v•·ö.ƒ~Kº¨—™þAu |Œö«º 9 ýî#ïm·¹­[hx"Øõø#!gªû/Á5`ÎZÙ¬ž‰Úé¿~M#ŠoYõúyঈ€ª5óÚò'JÆÕñ÷[µ:HƒOÑö#µ³ålÍë>Ð'ârHk?-°ðu‡½ùÎ8÷KÈ®LÄדU“‡··,C®R osB)=q÷ùl»3é,y¿ÏH\c…Û&gz:¥Á•EÑ}ª<áŽuÞÍÔ㲇æ@0´×ŽÐ *a¹3šI·ÙS1è¨i·Ó¤kËÖ š»Ñmôz‰Õºhõ~™M:|—¯–¤¥Jv^cç{hïj9áß¿Ñûù࣠=~ñÀÑ”'Ço!ñðWŠwn9¶¦ òoýèÔBõ¾Éá~Uš³ö·²¼’œp»_L™mn•%vŠà‰Úîµ+­FGœÄ^&]QÏö9m»ŠÇą̂ûþŠÃÉãË1’¢•iˆíÍý² \aÁ‡- ¤8¨Œc'h) ü¼âÛë‘Ï%ó¼ÿYF Z[Ôµ[¨7”¾¢ø”¦š`“ÒÌX5w¥JY »ô)Wî3nYþ :%]ß8;Swlº¿²,óOš‚T‡ÉÁR§»³¹V-:M"j±šøÇÅʺðȽ]Д8 ý*> \‹ÒâJ¶6K÷I³}|}EÒ5.ÅZë> Ï.ýÖ^ßÃd7¸ðv­.Sô£w0^¯öÚŠø`ñÞéö¯ÆÛ¢§‡Ò¼ÿP^Ϥ…+H*ÑÄ„ÞvÑöc„%]Sõ§ó«Ä%ZAÊ#Ÿ‹ÄuàaÁ´»Ë=‡° ?¥€3Ã(\FC§Â;Õ8øí\¾.ÁÖr„LZ9oz4Ÿq‚€|ýañ*¥”UŠÄ¡”À;Æ;û~ü¹Àgr¯J;Ú •ÎÆ‹¢%*ЇmòL¦Šm´ÓÐþФÒ3ÄK­ø!q)ÊïÛ¨¾Ì §ß­Ô½0wŠ\†mÄ"dº9?Ñï†k™7º×Ó cƒú”㤎4ÚPõ ݺýAƒ&˜|ÂaŽø‹æ +X` ðºê©‹‰‡.sÒy_ûX%é'!¸øfð”„>ŽsO:;÷i‹?I¾¨|‚#ö|§íS»±³„`;éO$¾KÿÜ ©(›i£t¹¤1£ŸYc^¼‹j;6€ÃûŽØæ½«[Šé|ügöÈGcùøˆã&—¸éÅ`^ßzòúºx‡ó¼Ð­AwsóïÃÓÔ!&}vMŰ;; Êù™yéŠÙ ÖF]®ÄÝÅ3Vèwvj_Ï«± â¦í1 …áx…óf—:år›éA õxú/†›ìËñþ†?¶ƒ´3̬{±©¥ÓÏd™ÚD> ¦uF:¹$M¦.º“õþj M#*Åy¤píH)Ô@¦ûxt{šö‘1¥Äz¡Ö9ÃÄ\º.õiìãs—k—ˆÔϧG_¢™Ë¯E˜Ûœ_¦zЀ‘œ†©zæ£]ûÃ*¿ôlHsOU–¶Á&r#êûÙMêª$JÙÛ¹ ?ÿ•™ïXb3¨/ÄŒ¸j3ûj7¥Î–§3'¼—¯^>2ÄË÷_gßøË0“Sð>ÀdݵÄy—¤l°ë/F?ûÀR¡æ>:ΤߵÙg¶uu™àeËLZ½íw‡õFçÌÃB[un3@ÿ|n*¡ƒ>®ïÆåxƒ?§¬)#ЩÿÃ:Qg¥MÓ¶4j§½'ÒÙW–)ñ§lP‘¡tKQ"@?#ðCÕ–däÅ¢Œ®flÚtUƒ{‰ªV)^ä6£á¾ð›…ˆ‚÷´ÆÏit ªPßÖbˆ¾ ¶”ûNDö×—©³Nõ ÞL½]±'9áJJ¥hEb"' ýÓë1ÞUcw@y<{L6mèÙ«Ä*}lZÆìr¨jˆ1Õ1;Aï`tÍ›žE]àV¦þ+tr‚:ëŽ:;®…qÐЋ YâgBlüLtœr‹±ö„ðAPŒËâfOD§›ª| ÚÝÊd*óšSàNÛׯzàpe%¥öyF×à?{Æ‚Ï|­×ˆÔ‰z“µçHÌÑ‹0³ÿF}Ú¡âê­jw‹y÷Ɔ¶ýe<ÝRÔ} äés@}oUªF‚jÓ B˜Ck©Ž ’ã{SX±+mÇš…ðÙéQ„„7_±Šü€Îª+ý›ìúj¸ŽáasáÞÜ6·öt’]eZ"÷úB½hø¨‡ÛÐŒž„@%=JÖæB=å|„IQ¿>§&!ö}ý;¦^wg8-ªP=I²7k­_{ßÁø;Mu8»ÛŸoHUrÕÏËKì QšI“"êr»W5ðÃ3§»o¦iäGààÈ"¹ 6rZкË…[žbS܇“¢$K®s£qÛÚN+¯n`V¡¤®¾i”'‰cp×Â%"`L÷„ˆŽ´„uZ2&‘Dú ·œÓ“‚&À¼äBíñµ6>\=Õï¦O‰ë+ ?r>+Ä9ÂoÕ멉†î¡HÞ½`Àà/#í ø„y˜]U9^&¨oÓ°ú;¶u­]IÒµ|ä{¦§t×ðãŽö ÀÖëBoT¼ø’rí3¿ltõ6š7iÿŠLM*VþEôÓînÿ‹dÊ£Sº%2¬)hÇÑoŸ–ÐáªwÌ·-‘BlLFÑ­¶}A(â釿—Ùü`¿f‰Qávì®®f´Lf n ½W †Wi‚pjãs bl½ŸÖHèD·äë—ý€Â8¤®ŸqÄœÒ/"ب°b‹h¿¼àÉqpZxOË'ÕV›änH2†$e6W<ü¡ß[O^å˜ÂŒ©`’èuî¬ã0YÙ¨Œ$Jim¹”£ÙUÂ’28œF¼Œ†òÅ+LÿR­È%ËZªâ¸“rOþë:'ËÙ¸VJyº‘žóZ/é-åë‚IfÏ|t1 7ÉÏj þí¤á{2ö1ö«åÇh…’ѽõí6Ew–P½úŒa'a#Ê™s ý_qiD‡'4y +aÞ?‹íl£ôRaßÔ=Õ5Ïi\ðú¯ÎÌ\ß4rýß—È£žïö¶äз¨W¡ÿ•ýý!©3›øH‹iÍ.´é9œzÒŠÕ"¥6Z,FëVµ×¯ö;&×pEF¹ëY}1”1Eå˘'Q<{Ñ„|•ŠËM¥x,%µE9.GäꥇHµa¥ªøfÉüÆvê[¶ E×É)â ÇnÁJ³ºÂdƒÒ¯—JÆL쉄®ãéW 8Ùçj¢u7y³”ïx á'}š€ÐœøtßýÇZ&òÓ(~«ð4±¸TîÀ•¬· çË·ï˜ù}ïŸ0ÎuÃts´±s¦wAÕ·gºMÖëªì!SÍÊŠðì)Ò†×<_²ôõݳÈíRæqeº×öÇÃ.Šg>.¾û¿-Òüã—¬Áî ‘.ª_oØË.j¤‹m­I0BáÍõ÷Þã4¬‰¤é‡÷Mø°ÂCH9 ^GãNLm>'ÙyÓRg´š]Kþå÷ÕK;0a›ï¶Ú‹ Ã)PÚeZßzyîǃ²¾Û ‘7Pïði†=¶ÑøE¦€ª±\ß, þÚŸâ·x¹;é[ß;#ôYM!¬¬fŒÖŸß¸ò;ôU_LÓ^LûÔžûƒ{,M Õ†©»wr&9`°N¬Ô ‚%~Ë7™s݈ö3ǼiêX‹ì>™ØÿÚúm…òÆ ñ넇RHÌ×ï‰H)µ,™¨I… }i_õð¹ö0µçñ' ÍW«·)* ï‹ËU§·‰˜‚ŽÏvo1÷ªqé*i“Ê¿(DÆ]Ï…²\ÿn¨×­Übn¦êSGŠJTQVi2\YÎß#CfF@5ÚúµäÉ™>ø>)²ë¡€,^k ºŠH m¢¶<Øþví~p}1ÈO‰áÙL:à,˜Pê-Ù}€ú›ãy€`¥~ÀÆ,ždêÖÜ7˜ï„j’Y¿§ž{ Nªa÷kÏVÀšíx=KL´›¾–oóžúÕñJr#ÛÜz{ãÑÙò¦¾z±àÈsÑÝ1–rEköÕÿ g=Màñ üÀú¦Bƒã)GuÕ´N=ïÏÎ4w‚䋽ê%|ÑJÉ*¹°÷w^£B¢=¤Ù*ÔY>‚)LI²†Q1ßáuí‚Ò©Ÿ4ÛMotÉL_4ºïZ?N`¦©¤æÕzA3ù¶E{uãüèè¥SjÍÐ:5mMÁé91ÔãÉŽo…á½K tD}!‰Ÿ»Ð›`ã8+Uá«3?ÃT¤¾°k-îññâ±Êú‰Ç¯ðI¤ø¥½F ]Ây‡¥ÚF{¤ ‰c²V—ÆðsùåûdÙ8Äš®žø³aÜ= ddöª`AhoåkºƒC2½H§Å! õ «ó'«@{|dõú§šgám}Ž_‘³óØ<"z³üj}¬[‹5ŒLXåO}üb½ú'Fþ´+Y¿­8v©­ª?k4§áv²L7ê¦ËçÎ/)ÎÍ­í—c“ÓZsfÙ(  ÄùñÝeÂ[ÕhIRïz*¶Û~,äL:<_x͕ĉ#À¹ü’ov |-Ã^BLJ­“UƒYhTdOmÀðæãí(w]Q+A’÷ñÊÊêna™Î˜}7ÚçÆí,‡h³h>,””hשL×JÈÙIÕÞå¿d}8¿ÐÓR†a[ÄÌIHIhFv¯w-å„mžJ‚Ç×§ %N¶ùGÃ+O$‡ÿ²úðÄ¡¤HˆØ­¤9j%]Ò…ž%’!€ÚB±_cðfaiÒŒúS·:ý‘•Â#Ëës*½à”ãÚüªåÞ㘩1$¡ï„ñþ*¡&«ú3‹Ü{EÕô"BÂ--¸¸œ¶óõ‘x¡¬ßàIï1…b†³|\$ÒÆ˜vÊÝAmç½gª¦²²e“X»#°ãå\+Ó‰ˆÏ`„´§Óƒ­+?}wh˜K\Áhßr{Ï17wŒlÅâäˆÓ1'Ô¼UP·Ö[¤Í…ÏoHvÉ‘ƒ"îʉF*\:" ’®E»¤%~`ƨœ‰q”æ øóÊ÷…~Šð5üX1¶- m²®¤r°„]§Ùç6Š{þMæ3Ûôbû ÅÕ ”裱/ŒúRå~ŠÃwïsW®ÀäpZíbI†÷Ýi)¸ã)bRýò®&}¨ AmðL;ÆÄáùNä&Ô•“á ¿è¢fê>}AÒr¤3Ó ªÒ”¶/B=·DM‹Þîoñ,®àÉhá}èb‚bÄ;Þ:~Ø€Fú”üÆ&¬ªÉqYþíŠìÖW¹ ÚÏ É PÔm‚›Ÿ"ëí¤z9úa†üåc?ùK×çf»¶ ÛT‚š€ä'+ Ã"”(MEËKôrYüEzܽj±»=üÌ©Ü+€kg£·¢Ì@vÒââpº¡ïèŠ[2<Þ¸ y¤~¥BÿÈýêùkÿßQø:0€pNÁôÔŽ©WÖêL$¶]õ­šâ+Ë>Î ë·”ö*Økݦ“É ",;¼{“‰Q¸Ó1Aå¸Ôáp­œXè™ËLÒûø eÜ{©×,gÃÕÙíE®Û„BÅÁrïfs°¬U>˜Žä T1DÏ;àô2.hù}Ù\TýO a±Ç«âŒ­Ú}e°~z´ ï…ÇPõåçÿÚM?«^ŠòC-صéW‘Qàc]ßÌ{Œëº±U“^±«†¥¶£oåvÆPرv]–uóäïw¿_6Îê(Kê]+’[%ÀÄ\õô9Š<N…usw2vhzHS,I%‚A(ÞŠü2NqH­ V°¢êa)Âmqa­l†8lh¬”æYÁx±èy•gé]EäKŽÞA_›lgÄœMá´{ä§½¡SzG¹mñI.Âucæ3. mÊ78w´Ížáªƒ–ÌÿÿþßÿWL`foaâ 9˜8Û!üªSÛéendstream endobj 169 0 obj << /Type /Font /Subtype /Type1 /Encoding 403 0 R /FirstChar 12 /LastChar 123 /Widths 404 0 R /BaseFont /ZLOXBK+CMBX12 /FontDescriptor 167 0 R >> endobj 167 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /ZLOXBK+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fi/fl/quotedblright/numbersign/quoteright/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/A/B/C/D/F/G/H/I/L/M/N/P/R/S/T/U/V/W/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z/endash) /FontFile 168 0 R >> endobj 404 0 obj [625 625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 581 938 0 0 0 313 438 438 0 0 313 375 313 563 563 563 563 563 563 563 563 563 563 563 0 0 0 0 0 0 0 850 800 813 862 0 707 884 880 419 0 0 676 1067 880 0 769 0 839 625 782 865 850 1162 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 0 459 444 438 625 594 813 594 594 500 563 ] endobj 403 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi/fl 14/.notdef 34/quotedblright/numbersign 36/.notdef 39/quoteright/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine 58/.notdef 65/A/B/C/D 69/.notdef 70/F/G/H/I 74/.notdef 76/L/M/N 79/.notdef 80/P 81/.notdef 82/R/S/T/U/V/W 88/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 165 0 obj << /Length1 904 /Length2 2877 /Length3 532 /Length 3511 /Filter /FlateDecode >> stream xÚí’y<”mÛÇIÈØemTWB–23¶±Gƒ»I”3†Y4fD’5{YJB¶ÈÒÈR–²%ûÙÆ¾EŠÉ’¥â™ºß»ž·çÏ÷ýëý¼×õÏõ=Îßù;×qœ2ÌÏ1À’@c‘r¡„ÐP¦¨³(@(Á!22(2ˆ¦àHDC4ÔššÀ€ê 4RKU]KU" Hn^dœ“3CÉÿ!HÆaÐDÀMq L œ%ap ÅK 0Àã‹;Ü Ð${€X%`q à:áˆØH'ˆŽ$ùwKuûgÉ$»3CrÌò3"–DÄ{XÐ3#1Ï™Iþ7BýinLÅãÍЄö·é?hïõ_ÁJÉ€) ’‰Jσ§3±8*áÏÕ4‡1 :áAþw çnŒó±æ8 ÆpDãÝÁŸuˆý3³s?#À ,­ /*þ3ÓŸ«æh‘béåöË÷‡ü'#~3³Cdœ'`W‚ÃL!óýçËöÓŒˆGt”ÕÔ4™Œö‚0o“Ôo€#bAOôdF†)Iæ€ÙÀ‘D†ü©ªsörs‰?ê?KêšÌè!™túiÀ˜ùoB°3¿I€Yü&vö1ÇCÿ"œiJøÌÞÀˆÿ†êŒòoÈÜKý‰ÿÙçcÇHžÞUàˆ²ó¯áH$€Tƒûü7†J&ƒDÊÏKÌÖ?ìˆcŽ=A d°„Ñr‰/ νa”Ñù˜]Þ]2!;èuõÍâm%Ƙ¶P/¹ì%¸oI𦠠Ž&poÞä ë¨6!Qjp½Éû,ìæ€`¯°|zâYÎOÆ%»Í©µü„ä°ƒûß¹•)~:¸:îQÍ^pj|(1¾3·¿ïûò Wßö‰Aîû؃Ó÷ ¶©§âÀs3ãÑm›s‘2HƒšÅ.%®îÞ”¨íváMÐŒH5e£'è~ã‚Ë{:¾m‡À;î £ùÞiò<ª©K3’ÛyZÖ5Ýû]HSÒÝÍÆ¾ãÆA /?†T¾¾Ú é±`³‹›b¹"kp»7ÉÙ8B#Ý,ô}¸¬÷}N’d<îQA¥œÈí¼ÔXÒ^·û 5¯Ò»l,’MþØŠS}æm6 ÚuÚø6™å ƒÄQ¤1KpÄ¥ùª“«âö<8î*$Ï(P¿«TQS¥nó>î‰ ºkW8ÚjbÝl“ôAùì]}ApözãíD\ÐÇb,!r´Ësµácƒµ}¾.**™¸skÎyõ …níf¤¦U+àUTØyáIx\^ͳK„˜F÷b„?/ØËÂØJGmB“s¼d ­j·úý-Tº¤¸Á+ü½-Öéñzé$ŠO·hø™Šû52®™±â5äóYúÕ¬|éšõÀ!ánÅñ, ‘’5váKýÀPÚÔüÞ—ÙœšR™1»Šàᮚ¥¼OÞK9š&Á6Žç¨¦ /ö7Î<ºœÚÏ‘ceDïU©1[pð`,îõÂ#»«foÛ‹Êú—ÄçêÜDªbqVm6=\§é~›'¯¡µÆÇ%ÊÇÆBò"hת §UÞ~áHy{~l陋^\ûá z&G;åÕvÕþ©á™æŽ 5Öͧë7`-sõ]FÂaœd—ñäú¯ ³M “»9þ±KüÝ—­dÕ–[òoɱ,4rßZüt¯n ÿ{ßn¸ïĤnìð~½ÃÖÁa'BëÐÄ—„Ô2Å×Y[</éIäR7ž/(§ÓmÜðΩ¸õlvŠú^û1TOPCg]³yû@œ¬«¥”LÔGÙú'[L‚ª§õ@®„ÈäúókÕÍÅùfâÎ ñEƒY3A5óÙUFè|Á¨óÝŽªpÙÀßÔÞÐçlè#ý#yöªÔ©b½>î ®Å6Óõ¼ûqÜû¶—¾j^TÕ0/î OÍÚSK±µ™t,@‡ú‹¬ò'&žrß{}Ê‘§:cªuuK».ê(ÿ%™.¡têEŒv%ô#¦”S´_b}`&ªô{’¥~ˆè]ø:t¨’gQ8RÜïý`Lƒ™—MÆg3Þ;rÜA¨ê&ãx1r×}î—“‰E†ÃŠmÄõÀçY#Õê)bã1Š2!>¡*oµ_+|£%{[eOléªß²"íY3®ëCtnÍ矿s£H`§‡LÞhJkÞ‚:GDžŒÀ~^›BòóŠø§!óCYñvÒ½)‹Ø ¤$qiêJ’îJê"¥wgä¸\Jód³–¨T§£—e)’‹¤Õ:BBe‘´´ÿkiØPNZ­äD“¶‰Üôhcç­ ¾À’ë¥ÔòÉמhïfyik‰¶‘èsω± ñ7bOº~`§ZwšÛ¾»!  Ÿäuo©{Hš»dršœL3bXÕ·>¿·¶NG§¼r‘È{uùິ–ùõôQî ìÊ’¯öÛý*<|mPýk‰_ú×Ëœ3¦ÔVQøë]ü8…)?1ÌFn—'(–þÐôm‚-`±ûhˆâÞ=y3<7ƒÃŽS¼ïsßÝ0 ôK\ªS{uú Ÿã{õ”ån£t[þ¯+¥£[—­¾-œ¢ÍÙ¦âæf›³-Y•­;3gKW¸W=ŸKíÈìì3Ý­Nå–2 § '|~á5lMÐn¤óIé íÝ?Ÿpol”xu7o¦ãV„'eq%1xjK^K¥RöQÅÃHÐùåˆQ§ÅJÑÖÃajQwN7‹)õZ×?(wêì˜ô¾¸šÑZ˜q1+Hh¼jQØ!<úye‰ÄZ†%ažRš°éÖ]”’梮øM•Ç/ê…¹Þ|Tè%¶^7Ï¢íRâuï·üÜ2=[ÆÓÝ$¢$=ûþð™\¶ù˜Q‹m뫯Ê©‘.vŸƒÂ®$$“œhv%¦4¿²ža÷e¾Ð¦ïò_ŸØÊÄ;mx reÇ¿ Û4ùQÅk“ÏTݤñõª5m=a·Þ >ƒ„¡muÓ5œÔ†‚eQÈVmîüš×Ûh> Ê¢ÅAQ­ÇIóí¤_yO*9bÖyrÁ⌨=µôZe‰,í;?ÝØµ¬Zf¤rÇ×)dD…Ŭ²:S“{6Þ Á'‡ZµA«°júëCÔ5´ ŽC+X™UXÌÝh«—zÑ¡®Ÿpä|HÄÄ€§:cyëe{î7à¶øè$˜'X`0v°ñÊR65+°6†¶àI)-’È ÜÊ qÞ=ã  É–óDoX®\(øä`äÃJ¢‹SâÛU_iIy¦k[pêQrI¤¡¿g†J‹«yBá—Xk¥%“ Æ9ä£êÚœG—kõLÙ…è»zW±…¢§u/îÐèÝŠQb7ºjäRA‘ ¤ç‘{§ç½Ôd<":–©KËTî_d}ÍÍ{)ªÐŽÖ}}&9®0Å…@3‡%½‰‰Ì*àªØIXì7ûÉÔ^»¼rý«›Ô©9þRéBý†`¸ç¨aû4ÅÓ°âÞèmŒCÒÙ;†¼û€wg|¥UnÑazRsnNá:»õ¦ë(×ú”úóûN³= ½k+8Þ>ÿî†ÏS Ê­ùý_Ê|"KŠTè@¼ö.)<ö5Ýkp[¢Ð†YrÚпÏÕ¹iRI|èjöÖ9ã $WŸyäÑCmF«]XŽæ“=õyƒÏOau>gˆíM—ß`j¨…/½½(’¦e)Õß+g>!l¦|Åõ1#§$éÙ\Õf _·ni~R3ýKY€ã]¶¦0§&­çQ<ÆgNœ‚¬b ¸ã¢uÞL—#v­¦‰KµîXÎ.e7.íR&F üMk i=MZÜËÃór[ôí·ÃOM”qßÇXÙ&R³‹ßÅ·5F<#î|º{D~='£‡ žµ–Ærò›jèŽãæPÍìWá»z‹ÃKR óñ¡)s.7r†Áù/­7”¯{[”TêžØuÎ`¡²Ú@µœ¨…ÿÈÿüŸ0ÀàA4™B" É®Àì9Ûendstream endobj 166 0 obj << /Type /Font /Subtype /Type1 /Encoding 405 0 R /FirstChar 45 /LastChar 117 /Widths 406 0 R /BaseFont /ATXDYD+CMCSC10 /FontDescriptor 164 0 R >> endobj 164 0 obj << /Ascent 514 /CapHeight 683 /Descent 0 /FontName /ATXDYD+CMCSC10 /ItalicAngle 0 /StemV 72 /XHeight 431 /FontBBox [14 -250 1077 750] /Flags 4 /CharSet (/hyphen/E/O/P/Q/R/S/a/m/n/t/u) /FontFile 165 0 R >> endobj 406 0 obj [378 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 742 0 0 0 0 0 0 0 0 0 844 742 844 800 611 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0 0 0 0 0 0 0 0 0 0 0 747 613 0 0 0 0 0 591 613 ] endobj 405 0 obj << /Type /Encoding /Differences [ 0 /.notdef 45/hyphen 46/.notdef 69/E 70/.notdef 79/O/P/Q/R/S 84/.notdef 97/a 98/.notdef 109/m/n 111/.notdef 116/t/u 118/.notdef] >> endobj 162 0 obj << /Length1 1050 /Length2 3868 /Length3 532 /Length 4560 /Filter /FlateDecode >> stream xÚíSi<”}Û¶VŠ—ìëûR !ë d ™Á0 cˆ¬YÆ’G²ïKDÈ–ÝØEBv ‘ì’²T²¤wê~îîÞžïûéý½s}™ã8Ïóø×ñ?/A>ãk’êœR‡%HB¤ *€¦¡)D€HIÓ jâ‘0 ‡½# Uˆ²2P÷td¤ˆ‚Ь’ŠŒ½  ‰sóÁ£œœ €ˆ¦è&E@ƒÄ£à0,`#8#1d 8 \ÃÁQH‚ ŽF¦?&<S¤ï…DHÑC 'H'–üÃ.Ö(þE#<Ýþ.y!ñdS€Ù¤(@¶ˆÀaÑ>éH6‘ÏB’üo˜úS\Û6‚a~Èÿé?Ê0 íóïÆÍ“€Ä†8ý³õ:ò/o†HÊógU—C£àêX'4þ‹Byh£¼‘cî 8ÂÐÈŸ<‹øÓ9·ŸÀ–VºÆâÝçÏš1 …%˜ù¸ýRýÑüCþÁätð(oÀFZJZBn$?ÿ³ýã,-,‡@aÉ !¯Àðx˜=y3ÈHð…(,é ½É†ÁRX<3ñqxú×)« €Ý=qä”~†A®ý¤å¤° Ä¢‘Ž¿±³4+i²ñ¥€o#ñ¸_„¸'žœ$áç‡E^¡¿±#мpH¤7N?9ƒ«†º$׋´ò†ŠiÅ(5œêbªÚF›B^ݧDô껋Í>±Ü/IceZ¦]æ½uÈåÕägòBûã÷Ø”ñ£e¯›Ëi·¸,·Ó }–ÜÎ3“jÇ>½—§„ŽÌö%Xåwenv¯ç‹\1[9þš¢ÝÆ«º==TAÑR; möDH–ÏôTŠ{Q„\øÌ­S q43ƒ!.á'êŧ·pMž ý¼9ñGöÇírréOWlÐŽSgæsÉTbó’óE«lJ}P C™‘=\ïð0e^ÇÓ. ð+esSzú ×éåÁPÎKåÝŸE à—Ãæ]¨°IIãæžW¹(|÷.ä›~Ps¥V\59;#v/©+”©ÌféuüùUîïv‚ŒëJXP~öóƒ½êŽ2!;…úÁÞ¹™…keÐÆrþÏysþÊJ¶¦§u:‹Kbêhu=±1Ÿ´ÊõtýŠ÷_×ÂÅH($¸ØlI%¦$î>‡ê²â-Z´õø‰¡ãÂqüWQïÞ¼*ýôV©.?RD.ÊâOè^(©{Hk³Û-Šü­¬1.—ÀoB;¦ó+J-ÖÞÔpˆŒÖï„…Â,;2Ò:uÑ (Éaª³(_©±1ÁÎÄÀWOo2zÍiuÁø°›¶JìxÍN¶ðÛ¨Ü)Õ÷0N©¥gÒý„ ¾ ‡d’^F]†1K0úç²÷SÎ7§¶ÔNfù02ÊTR¹CMÇÓÄòP1DR»l§xúìÃKE0†àƒ%3ø{÷"ßÅ6}åå; D{ dí[ âš¾þ ‹»˜zÙq¥+Bw[ µíA÷ßV~õ—™Àño1ŠÝR(º¹+ÖÆë¡ÂB¥$óÂùÀ!âaò-ÍÝ;|†÷ŠÚ:wƒ(XùÆ”o¹ïŠ|ËZò;ò¿Wþ>âR¥±±³÷SŠH_`yúÁDžï‹r໪Ryüä#¡éÅã ×5`ìa‡ÂÁ4ÔÊ/ÓÏ%ã³UwcŒø‹[2×2ên>©ß‰_òÖc*r{áfÆß>ìfUbÂÔT?Õ™æ½Mª-5»˜CŸãi)ÿbÈ6=ÞË¢á—jvn0Áp|®5@y$½J 3oðä/‹äüt’™•Ó¯€x×ÛêJJ_æŠUW–z‚w Ózy×÷z\>Ÿ*‹¾u)‰¥•¦c®õ뮘èóGÙÑ"6§.«K… …³qða‡Œ='LDÖuvfõH97-ˆ jºñ ÄO|FìÈèº]:ôÁÑ¢„µB¡y¼£çŽ]àГdÌ»¶û_YŠNòâ2¶ ¡t¶G8Ê«AZ*à£+<£˜LjÙUŸK¦*ëçÕÖŒÃÀKþÞ§4š\¡Ú^ºAk=â×-œÝÞ”:®:­È R·"nn¬9™I—oô«¾%2ÚCh•Ž—Y®NNój=7"ShB:öðÃ4äÞ¿F®ã™ÊR¿\°¶‘Ùuç _œð³¨â*YyíÉ}ݲ’Ôðæ£û:€e3hÙh•ú®1émI>-"eÇÆà™ñdƒÙü‡N»ƒFÉ2½÷.Ÿ ÝçøE¥óZ™×lJÃz,.X«JKÉß2Ù¥íß~9BÑŠ;¨{ŸÎ„{xš¼áu£LÒæ£ ’I7öûâÍ04®ÄIUi•|ã8“¡ÌÐ!NwìNŸ­I-ÔU^Ýü†âP3/?TÊ”½Qcå*#½kÚ¾ÓŽ]ä¼7_om‰®¾ÖÓi„Qo$Ðme%gIŸ%ÕG¹@¨¬EÜ%b¥WÙ2k¹êˆ†$6óåÉø¾}ÿ[¹’÷áNùÂfŒB¥¿•û¥¥Þ4Éà æMîöVþå¯K£½Àu>«šÍÏn›0¥†º<Ï»o1ªÈr+e£w^+ê C˜£ÙgñBÌŠfg¿Â‹¾ÚÁ|æ5·¸Ý»ÁÝOÉïëRMÃ?Ë=ƒ¶di{ÑR2äÙá›~hÉÎØiW0º¾×žº¨­zMÔšŒ¦J`fz¹Þ’;¥•>13“Uæ¯×›§êr*sÙÊÙÔ]žËn#åßÊŠŸu=%gvrª!ÖÞºÌ/¦Ì/¨Þ{êd±µþÙûCJ4×î1QoÐ8æÒ†ðÖqÇó7öí¼†ª]kð~²¾º¬êë—¦!ä¬ÒjÏ~×ý¨_é£|õз3 £³¨z†$ ¦6w ²cÊ3o41Ö§ØŸê Hk&Å}ÿb f¾3M|‘sªl¬À½LÊeYwo*¡f9ºèÝ1)¦/f_ÚUgF|DЇQƒÊ肞ËS\J‡|ˆ-T9T-ç®V:¨žåâÜ’÷¤@5|K=Ãn*ÚCû•1â¬Hµ›FÞp¢î;t©¦yeV_äÄÚ £êºÎïÑØ¡Äbbrt×m „äම‹¨Ù|OW/©!iùr×å­ (½'‘Uh¥Â›†÷b4Õ¬Ñ{é‚uA5ÿ‰HF3ßuFcQîöæÈÆÉúê}åËI=31L+™ Âjá‹Û œÞÆKñ}ÌR(gûK¨!—hª‹‚,‚J—uÕ7\wÍÖ>äØ AtÅ3¼ú(ðÔÁ'*I¯a´­C«µT–“MÀ÷ ÖÇ*ÔÜ"Õp–YpD”i鿯Q¹€Ç$é×?;IÚ鯵TGÍÑÎ>òõp9­xZv]Ä:šö¥3YÏ"q-W® ØÛ-üèª{Jäú!é3³KÛÁÁòöÝÐ>¯Œ~ÓËZaµÅcOâ;2Š;ÏoÛ>\[°Ï¹«qqéÉñ,¿‡ËBÐcÏÕ·åø–óœ›¶e›+ºi¯fY(ÞŸ1ï¬ä¥žj1^•›¢ô÷4Ù7<Ë6?Rz¾QtTâTŒEN ÜîúUæsyÕ×>Õ8â³»VÎÕ_¾• ÀL!^ýƒ[KDµÝ•;rj½Ô±YŽÔYp±‚@Äs8šn®Fcg_¯çûf± S¯›VçV[geö/6ãRFÃGÌÓU)㬡){t¿6¹úf¹%[jh7G$m]% ÚÒï sÓ°Ñ*HÔ†·6é¯÷n|Ì;R»Å¥p)öi*ϦñÖDºÄ!Ý4^ñe3nÒrá&¬sË(üBÙf7u½€“«ŒHþYœÃü™‚ã—*°Œô©¶¹¨Lb¦žïF²)ÿ&¥øæ ¾0Ù8‚• ç§y6ŒCÀ±†'æKÊÞ‹}OZ#¶£6|ûÑ£ÑÅ4ϛɑ݈Êþþ½Ü¯×D¾½ þxMVXåmþÔ;T…QÔ+v%¯Ð*Ó}fhå6k¹•œhó¶-®= ˆÞ¼=`! 1þö$H§ÎfwŠ›4䫟t4Ø®kÏ®|T¼Ñè>\¡1…“ëM/û3”ßUÞ }¼v9|ö(û¼©vÂö‚J"/.þQkßôÒƒ© 6VŒi—¡n¯yÐÀHOŽåHÿöéã'Žv ÎõçhÓ ¼å´fvlæ›}¾þ¬?\ÊÕ0ÂM€(Oj20@н r¥£µ²æÂÂ¥¤hÁÔ‘yk#!9 ºoSŽ)Ð3´vOÏdÍú[hî=pAgp•`‰Pï/x®ÒsU5 +ÚÒ–ËɎ쾉&Á|ËgÅü9RÃÂ#—%n¿ÖßòÉì¹™¼¥h%ìÌ{¶ê#^µu2×>»¿mz.`lé+Hi(Ì´%çÜ&ÙîÛ[ûM ‡1·(D÷ñÓ°ÌDC}×6“ɧ9³Êç‰c`O )öD„ÞYP¼S×g.À.Âëe/ÿjzI'ÔÁjE{ýw¢OÄa²¥Vw7¥k6ßSî­RƇÇ[û¹‚™Ûܯ' zÞÿ H¾ ñÚ6AgX[c4J¬!%¡‹É.v÷íåz3‚Ÿš¾.§¸ Å­óä_ÚÓ²ÉÜC÷nkG¢ïÑä'¶è1¾Žj¬wòJ}\’H2h§Ó#Ø ·u®ž%6P•¹ åÚ´`vÔ¹PX}3eáíƒUØaºG±üâ…¨G®SV*È>?Ìô+CD¿*"þô½cÉcð¨²`Åt¤‚mÙ3â!VD«–­IkT;ÂF¼: )ß¶QÓs¸Áüé ³<’¦¨µØ{™â=“áÉ©mÈÜ»7z §}Àvs ¨Asõ¦“ý!%m ,KGå±û^äÌø™""¾²Eï–á€ìàÞ8=‡Va¥"Sn.Ëâ’!¨3ž"äð¬]…‡HºW-°íjÄò ù³ê X‡Ÿ¼\k¼.—c“èhEöDLKàñM½O¹ÊËj†.åž8Õ5‰X•äNÛû5ÙåÖ§øÒÍ[cý.×'xn†8+‰¦eî–ϤèlƤªï`ç)´}c ÔvCÓM×uuG/ ‘î68×–·êï&ØÙ˜ÕÚLž·) å´Ôµ¿°~ùý1åpurœ&¹ä ÁÅ#Ô"êfÆXë5§Úáòׇé’^wWØÔ Ÿ»Òâ¨Yç´Àv-µÀ–›jC'^U[«´+‹ÞÑrXÏu}nÄDÙNãÿ/¥¨›AÖ½æßŠ×ÛìŒÌž' wǹ âÜî>'†,EœíƤ{š(T9$q,}e--ú,ƒ€f•Zæ`|&Š;M[$f°£ÝRänìMâW ÍÎÎñÓ{y|·—Ã,J'2‚¤ˆm, ù¤‘K%ßKš¡s¶§.”1l2uUI~Nã§5 !jè~ݔЩ:Ð\†’töò5:ÓÍÖ¸ÈV›ùŒPÒÝéƒ -ƒðU¢ãtõçÞʆJÿôÿ/ðBŽFÂð†w¥ÿ/„mCÖendstream endobj 163 0 obj << /Type /Font /Subtype /Type1 /Encoding 407 0 R /FirstChar 39 /LastChar 118 /Widths 408 0 R /BaseFont /LXYIBP+CMR17 /FontDescriptor 161 0 R >> endobj 161 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /LXYIBP+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/quoteright/parenleft/parenright/period/zero/two/five/D/M/a/e/f/l/n/o/p/r/s/u/v) /FontFile 162 0 R >> endobj 408 0 obj [250 354 354 0 0 0 0 250 0 459 0 459 0 0 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 707 0 0 0 0 0 0 0 0 850 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 459 0 0 0 406 276 0 0 0 0 0 250 0 511 459 511 0 354 359 0 511 485 ] endobj 407 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright/parenleft/parenright 42/.notdef 46/period 47/.notdef 48/zero 49/.notdef 50/two 51/.notdef 53/five 54/.notdef 68/D 69/.notdef 77/M 78/.notdef 97/a 98/.notdef 101/e/f 103/.notdef 108/l 109/.notdef 110/n/o/p 113/.notdef 114/r/s 116/.notdef 117/u/v 119/.notdef] >> endobj 203 0 obj << /Type /Pages /Count 6 /Parent 409 0 R /Kids [154 0 R 220 0 R 246 0 R 251 0 R 257 0 R 261 0 R] >> endobj 271 0 obj << /Type /Pages /Count 6 /Parent 409 0 R /Kids [267 0 R 273 0 R 278 0 R 283 0 R 287 0 R 292 0 R] >> endobj 317 0 obj << /Type /Pages /Count 6 /Parent 409 0 R /Kids [314 0 R 319 0 R 323 0 R 327 0 R 331 0 R 335 0 R] >> endobj 342 0 obj << /Type /Pages /Count 6 /Parent 409 0 R /Kids [339 0 R 344 0 R 348 0 R 352 0 R 356 0 R 360 0 R] >> endobj 370 0 obj << /Type /Pages /Count 3 /Parent 409 0 R /Kids [364 0 R 372 0 R 378 0 R] >> endobj 409 0 obj << /Type /Pages /Count 27 /Kids [203 0 R 271 0 R 317 0 R 342 0 R 370 0 R] >> endobj 410 0 obj << /Type /Outlines /First 7 0 R /Last 151 0 R /Count 11 >> endobj 151 0 obj << /Title 152 0 R /A 149 0 R /Parent 410 0 R /Prev 139 0 R >> endobj 147 0 obj << /Title 148 0 R /A 145 0 R /Parent 139 0 R /Prev 143 0 R >> endobj 143 0 obj << /Title 144 0 R /A 141 0 R /Parent 139 0 R /Next 147 0 R >> endobj 139 0 obj << /Title 140 0 R /A 137 0 R /Parent 410 0 R /Prev 127 0 R /Next 151 0 R /First 143 0 R /Last 147 0 R /Count -2 >> endobj 135 0 obj << /Title 136 0 R /A 133 0 R /Parent 127 0 R /Prev 131 0 R >> endobj 131 0 obj << /Title 132 0 R /A 129 0 R /Parent 127 0 R /Next 135 0 R >> endobj 127 0 obj << /Title 128 0 R /A 125 0 R /Parent 410 0 R /Prev 99 0 R /Next 139 0 R /First 131 0 R /Last 135 0 R /Count -2 >> endobj 123 0 obj << /Title 124 0 R /A 121 0 R /Parent 99 0 R /Prev 103 0 R >> endobj 119 0 obj << /Title 120 0 R /A 117 0 R /Parent 103 0 R /Prev 115 0 R >> endobj 115 0 obj << /Title 116 0 R /A 113 0 R /Parent 103 0 R /Prev 111 0 R /Next 119 0 R >> endobj 111 0 obj << /Title 112 0 R /A 109 0 R /Parent 103 0 R /Prev 107 0 R /Next 115 0 R >> endobj 107 0 obj << /Title 108 0 R /A 105 0 R /Parent 103 0 R /Next 111 0 R >> endobj 103 0 obj << /Title 104 0 R /A 101 0 R /Parent 99 0 R /Next 123 0 R /First 107 0 R /Last 119 0 R /Count -4 >> endobj 99 0 obj << /Title 100 0 R /A 97 0 R /Parent 410 0 R /Prev 83 0 R /Next 127 0 R /First 103 0 R /Last 123 0 R /Count -2 >> endobj 95 0 obj << /Title 96 0 R /A 93 0 R /Parent 83 0 R /Prev 91 0 R >> endobj 91 0 obj << /Title 92 0 R /A 89 0 R /Parent 83 0 R /Prev 87 0 R /Next 95 0 R >> endobj 87 0 obj << /Title 88 0 R /A 85 0 R /Parent 83 0 R /Next 91 0 R >> endobj 83 0 obj << /Title 84 0 R /A 81 0 R /Parent 410 0 R /Prev 79 0 R /Next 99 0 R /First 87 0 R /Last 95 0 R /Count -3 >> endobj 79 0 obj << /Title 80 0 R /A 77 0 R /Parent 410 0 R /Prev 71 0 R /Next 83 0 R >> endobj 75 0 obj << /Title 76 0 R /A 73 0 R /Parent 71 0 R >> endobj 71 0 obj << /Title 72 0 R /A 69 0 R /Parent 410 0 R /Prev 63 0 R /Next 79 0 R /First 75 0 R /Last 75 0 R /Count -1 >> endobj 67 0 obj << /Title 68 0 R /A 65 0 R /Parent 63 0 R >> endobj 63 0 obj << /Title 64 0 R /A 61 0 R /Parent 410 0 R /Prev 43 0 R /Next 71 0 R /First 67 0 R /Last 67 0 R /Count -1 >> endobj 59 0 obj << /Title 60 0 R /A 57 0 R /Parent 51 0 R /Prev 55 0 R >> endobj 55 0 obj << /Title 56 0 R /A 53 0 R /Parent 51 0 R /Next 59 0 R >> endobj 51 0 obj << /Title 52 0 R /A 49 0 R /Parent 43 0 R /Prev 47 0 R /First 55 0 R /Last 59 0 R /Count -2 >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 43 0 R /Next 51 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 410 0 R /Prev 23 0 R /Next 63 0 R /First 47 0 R /Last 51 0 R /Count -2 >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 23 0 R /Prev 35 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 23 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 23 0 R /Prev 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 23 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 410 0 R /Prev 7 0 R /Next 43 0 R /First 27 0 R /Last 39 0 R /Count -4 >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 7 0 R /Prev 15 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 7 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 410 0 R /Next 23 0 R /First 11 0 R /Last 19 0 R /Count -3 >> endobj 411 0 obj << /Names [(Doc-Start) 160 0 R (Item.1) 264 0 R (Item.10) 375 0 R (Item.11) 376 0 R (Item.2) 265 0 R (Item.3) 270 0 R (Item.4) 276 0 R (Item.5) 281 0 R (Item.6) 290 0 R (Item.7) 367 0 R (Item.8) 368 0 R (Item.9) 369 0 R (page.1) 159 0 R (page.10) 285 0 R (page.11) 289 0 R (page.12) 294 0 R (page.13) 316 0 R (page.14) 321 0 R (page.15) 325 0 R (page.16) 329 0 R (page.17) 333 0 R (page.18) 337 0 R (page.19) 341 0 R (page.2) 222 0 R (page.20) 346 0 R (page.21) 350 0 R (page.22) 354 0 R (page.23) 358 0 R (page.24) 362 0 R (page.25) 366 0 R (page.26) 374 0 R (page.27) 380 0 R (page.3) 248 0 R (page.4) 253 0 R (page.5) 259 0 R (page.6) 263 0 R (page.7) 269 0 R (page.8) 275 0 R (page.9) 280 0 R (section*.1) 170 0 R (section.1) 6 0 R (section.10) 138 0 R (section.11) 150 0 R (section.2) 22 0 R (section.3) 42 0 R (section.4) 62 0 R (section.5) 70 0 R (section.6) 78 0 R (section.7) 82 0 R (section.8) 98 0 R (section.9) 126 0 R (subsection.1.1) 10 0 R (subsection.1.2) 14 0 R (subsection.1.3) 18 0 R (subsection.10.1) 142 0 R (subsection.10.2) 146 0 R (subsection.2.1) 26 0 R (subsection.2.2) 30 0 R (subsection.2.3) 34 0 R (subsection.2.4) 38 0 R (subsection.3.1) 50 0 R (subsection.4.1) 66 0 R (subsection.5.1) 74 0 R (subsection.7.1) 90 0 R (subsection.7.2) 94 0 R (subsection.8.1) 102 0 R (subsection.8.2) 122 0 R (subsection.9.1) 130 0 R (subsection.9.2) 134 0 R (subsubsection.3.0.1) 46 0 R (subsubsection.3.1.1) 54 0 R (subsubsection.3.1.2) 58 0 R (subsubsection.7.0.1) 86 0 R (subsubsection.8.1.1) 106 0 R (subsubsection.8.1.2) 110 0 R (subsubsection.8.1.3) 114 0 R (subsubsection.8.1.4) 118 0 R] /Limits [(Doc-Start) (subsubsection.8.1.4)] >> endobj 412 0 obj << /Kids [411 0 R] >> endobj 413 0 obj << /Dests 412 0 R >> endobj 414 0 obj << /Type /Catalog /Pages 409 0 R /Outlines 410 0 R /Names 413 0 R /PageMode /UseOutlines /OpenAction 153 0 R >> endobj 415 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfeTeX-1.21a)/Keywords() /CreationDate (D:20121121135400+01'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 416 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000071205 00000 n 0000228825 00000 n 0000000054 00000 n 0000000084 00000 n 0000071261 00000 n 0000228753 00000 n 0000000134 00000 n 0000000204 00000 n 0000071317 00000 n 0000228667 00000 n 0000000255 00000 n 0000000337 00000 n 0000071373 00000 n 0000228594 00000 n 0000000388 00000 n 0000000454 00000 n 0000074729 00000 n 0000228470 00000 n 0000000500 00000 n 0000000544 00000 n 0000074786 00000 n 0000228396 00000 n 0000000595 00000 n 0000000632 00000 n 0000078427 00000 n 0000228309 00000 n 0000000683 00000 n 0000000731 00000 n 0000081871 00000 n 0000228222 00000 n 0000000782 00000 n 0000000847 00000 n 0000081928 00000 n 0000228148 00000 n 0000000898 00000 n 0000000946 00000 n 0000085565 00000 n 0000228023 00000 n 0000000992 00000 n 0000001041 00000 n 0000085621 00000 n 0000227949 00000 n 0000001097 00000 n 0000001126 00000 n 0000085793 00000 n 0000227838 00000 n 0000001177 00000 n 0000001218 00000 n 0000085850 00000 n 0000227764 00000 n 0000001274 00000 n 0000001326 00000 n 0000089299 00000 n 0000227690 00000 n 0000001382 00000 n 0000001442 00000 n 0000102632 00000 n 0000227565 00000 n 0000001488 00000 n 0000001518 00000 n 0000102689 00000 n 0000227504 00000 n 0000001569 00000 n 0000001600 00000 n 0000102746 00000 n 0000227379 00000 n 0000001646 00000 n 0000001687 00000 n 0000102803 00000 n 0000227318 00000 n 0000001738 00000 n 0000001770 00000 n 0000105969 00000 n 0000227230 00000 n 0000001816 00000 n 0000001894 00000 n 0000106026 00000 n 0000227105 00000 n 0000001940 00000 n 0000001974 00000 n 0000109333 00000 n 0000227031 00000 n 0000002030 00000 n 0000002079 00000 n 0000109390 00000 n 0000226944 00000 n 0000002130 00000 n 0000002168 00000 n 0000111652 00000 n 0000226870 00000 n 0000002219 00000 n 0000002256 00000 n 0000111709 00000 n 0000226741 00000 n 0000002302 00000 n 0000002335 00000 n 0000111766 00000 n 0000226624 00000 n 0000002387 00000 n 0000002421 00000 n 0000111823 00000 n 0000226545 00000 n 0000002478 00000 n 0000002507 00000 n 0000114305 00000 n 0000226452 00000 n 0000002564 00000 n 0000002601 00000 n 0000116759 00000 n 0000226359 00000 n 0000002658 00000 n 0000002712 00000 n 0000118831 00000 n 0000226280 00000 n 0000002769 00000 n 0000002795 00000 n 0000127940 00000 n 0000226202 00000 n 0000002847 00000 n 0000002880 00000 n 0000127998 00000 n 0000226071 00000 n 0000002927 00000 n 0000002990 00000 n 0000128056 00000 n 0000225992 00000 n 0000003042 00000 n 0000003097 00000 n 0000130828 00000 n 0000225913 00000 n 0000003149 00000 n 0000003204 00000 n 0000133929 00000 n 0000225781 00000 n 0000003252 00000 n 0000003282 00000 n 0000133987 00000 n 0000225702 00000 n 0000003335 00000 n 0000003369 00000 n 0000134045 00000 n 0000225623 00000 n 0000003422 00000 n 0000003460 00000 n 0000135795 00000 n 0000225544 00000 n 0000003508 00000 n 0000003540 00000 n 0000005232 00000 n 0000005550 00000 n 0000051451 00000 n 0000066000 00000 n 0000003592 00000 n 0000065827 00000 n 0000065884 00000 n 0000223983 00000 n 0000219141 00000 n 0000223822 00000 n 0000218546 00000 n 0000214752 00000 n 0000218383 00000 n 0000213482 00000 n 0000201760 00000 n 0000213320 00000 n 0000065942 00000 n 0000062170 00000 n 0000062325 00000 n 0000200112 00000 n 0000182321 00000 n 0000199952 00000 n 0000181639 00000 n 0000176455 00000 n 0000181477 00000 n 0000062485 00000 n 0000062644 00000 n 0000062804 00000 n 0000062959 00000 n 0000175034 00000 n 0000160448 00000 n 0000174872 00000 n 0000063119 00000 n 0000063278 00000 n 0000063437 00000 n 0000063596 00000 n 0000063751 00000 n 0000063916 00000 n 0000064076 00000 n 0000064241 00000 n 0000064407 00000 n 0000064562 00000 n 0000064722 00000 n 0000064876 00000 n 0000065036 00000 n 0000065190 00000 n 0000065344 00000 n 0000065510 00000 n 0000065669 00000 n 0000224813 00000 n 0000006023 00000 n 0000006168 00000 n 0000050540 00000 n 0000050560 00000 n 0000050583 00000 n 0000050620 00000 n 0000051430 00000 n 0000051896 00000 n 0000052099 00000 n 0000052209 00000 n 0000061233 00000 n 0000061253 00000 n 0000061303 00000 n 0000061325 00000 n 0000062149 00000 n 0000071430 00000 n 0000068325 00000 n 0000066178 00000 n 0000071148 00000 n 0000068587 00000 n 0000068741 00000 n 0000068900 00000 n 0000069065 00000 n 0000069231 00000 n 0000069397 00000 n 0000069563 00000 n 0000069722 00000 n 0000069877 00000 n 0000070037 00000 n 0000070195 00000 n 0000070351 00000 n 0000070512 00000 n 0000070673 00000 n 0000160010 00000 n 0000157312 00000 n 0000159845 00000 n 0000156672 00000 n 0000154614 00000 n 0000156511 00000 n 0000070828 00000 n 0000070989 00000 n 0000074843 00000 n 0000074369 00000 n 0000071567 00000 n 0000074672 00000 n 0000074511 00000 n 0000078484 00000 n 0000077901 00000 n 0000074967 00000 n 0000078370 00000 n 0000078051 00000 n 0000078208 00000 n 0000081985 00000 n 0000081692 00000 n 0000078608 00000 n 0000081814 00000 n 0000085907 00000 n 0000085386 00000 n 0000082109 00000 n 0000085508 00000 n 0000085678 00000 n 0000085736 00000 n 0000089414 00000 n 0000089120 00000 n 0000086031 00000 n 0000089242 00000 n 0000089356 00000 n 0000224930 00000 n 0000092174 00000 n 0000091937 00000 n 0000089525 00000 n 0000092059 00000 n 0000092116 00000 n 0000094115 00000 n 0000093878 00000 n 0000092259 00000 n 0000094000 00000 n 0000094057 00000 n 0000096934 00000 n 0000096755 00000 n 0000094200 00000 n 0000096877 00000 n 0000099115 00000 n 0000098878 00000 n 0000097019 00000 n 0000099000 00000 n 0000099057 00000 n 0000102860 00000 n 0000102453 00000 n 0000099213 00000 n 0000102575 00000 n 0000153963 00000 n 0000149747 00000 n 0000153801 00000 n 0000149278 00000 n 0000147564 00000 n 0000149119 00000 n 0000147070 00000 n 0000144026 00000 n 0000146909 00000 n 0000143502 00000 n 0000140657 00000 n 0000143344 00000 n 0000140211 00000 n 0000138551 00000 n 0000140052 00000 n 0000138217 00000 n 0000135964 00000 n 0000138058 00000 n 0000106083 00000 n 0000105790 00000 n 0000103049 00000 n 0000105912 00000 n 0000225047 00000 n 0000109447 00000 n 0000109154 00000 n 0000106233 00000 n 0000109276 00000 n 0000111881 00000 n 0000111473 00000 n 0000109558 00000 n 0000111595 00000 n 0000114363 00000 n 0000114126 00000 n 0000112005 00000 n 0000114248 00000 n 0000116816 00000 n 0000116580 00000 n 0000114474 00000 n 0000116702 00000 n 0000118889 00000 n 0000118652 00000 n 0000116927 00000 n 0000118774 00000 n 0000120344 00000 n 0000120165 00000 n 0000118987 00000 n 0000120287 00000 n 0000225164 00000 n 0000121521 00000 n 0000121342 00000 n 0000120429 00000 n 0000121464 00000 n 0000122630 00000 n 0000122451 00000 n 0000121606 00000 n 0000122573 00000 n 0000123729 00000 n 0000123550 00000 n 0000122715 00000 n 0000123672 00000 n 0000124900 00000 n 0000124721 00000 n 0000123814 00000 n 0000124843 00000 n 0000128114 00000 n 0000127761 00000 n 0000124985 00000 n 0000127883 00000 n 0000131060 00000 n 0000130649 00000 n 0000128238 00000 n 0000130771 00000 n 0000130886 00000 n 0000130944 00000 n 0000131002 00000 n 0000225281 00000 n 0000134219 00000 n 0000133750 00000 n 0000131171 00000 n 0000133872 00000 n 0000134103 00000 n 0000134161 00000 n 0000135853 00000 n 0000135616 00000 n 0000134330 00000 n 0000135738 00000 n 0000138457 00000 n 0000138425 00000 n 0000140546 00000 n 0000140430 00000 n 0000143862 00000 n 0000143740 00000 n 0000147422 00000 n 0000147286 00000 n 0000149628 00000 n 0000149504 00000 n 0000154411 00000 n 0000154197 00000 n 0000157156 00000 n 0000156918 00000 n 0000160292 00000 n 0000160224 00000 n 0000175943 00000 n 0000175573 00000 n 0000182036 00000 n 0000181876 00000 n 0000201174 00000 n 0000200711 00000 n 0000214283 00000 n 0000213909 00000 n 0000218958 00000 n 0000218768 00000 n 0000224476 00000 n 0000224256 00000 n 0000225374 00000 n 0000225468 00000 n 0000228934 00000 n 0000230606 00000 n 0000230645 00000 n 0000230683 00000 n 0000230813 00000 n trailer << /Size 416 /Root 414 0 R /Info 415 0 R /ID [<2D66AB9DB609AF683D89EE3B1151CD3C> <2D66AB9DB609AF683D89EE3B1151CD3C>] >> startxref 231076 %%EOF espresso-5.0.2/Doc/plumed_quick_ref.tex0000644000700200004540000007350512053145633017141 0ustar marsamoscm\documentclass[12pt,a4paper]{article} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{amssymb} \usepackage{graphicx} \usepackage{hyperref} \usepackage{amsmath} \pagestyle{plain} \textwidth = 15.5 cm \textheight = 23.5 cm \topmargin =-1.0 cm \oddsidemargin = 0.5 cm \listparindent=0pt \itemsep=5pt \begin{document} \title{Quick reference guide on \texttt{PLUMED} with \qe} \author{{\em Changru Ma}\\ SISSA, Trieste\\ } \date{March 30, 2011} \maketitle \tableofcontents \newpage \section{Introduction} \texttt{PLUMED}\cite{Bonomi:2009ul} is a plugin for free energy calculation in molecular systems which works together with some of the most popular molecular dynamics engines, including classical (GROMACS, NAMD, DL\_POLY, AMBER and LAMMPS), GPU-accelerated (ACEMD) and ab-initio (\qe) codes. Free energy calculations can be performed as a function of many order parameters with a particular focus on biological problems using state of the art methods such as metadynamics\cite{Laio:2008wu}, umbrella sampling and Jarzynski-equation based steered MD. The software, written in ANSI-C language, can be easily interfaced with both fortran and C/C++ codes. The \texttt{PLUMED} user guide can be downloaded here \href{https://sites.google.com/site/plumedweb/documentation}{https://sites.google.com/site/plumedweb/documentation} and \texttt{PLUMED} tutorial can be found here \href{http://sites.google.com/site/plumedtutorial2010/}{http://sites.google.com/site/plumedtutorial2010/}. \\ {\bf All the features in \texttt{PLUMED} are compatible with \qe\ but:} \begin{itemize} \item variable cell calculations \item non-orthorhombic cell \item energy related collective variables \end{itemize} \subsection{Overview} A system described by a set of coordinates $x$ and a potential $V(x)$ evolving under the action of a dynamics whose equilibrium distribution is canonical at a temperature $T$. We explore the properties of the system as a function of a finite number of CVs $S_{\alpha}(x), ~\alpha ~= ~1, ~d$. The equilibrium behavior of these variables is defined by the probability distribution \begin{equation} P(s)~=~\frac{exp(-(1/T)F(s))}{\int{ds~exp(-(1/T)F(s))}} \label{EQ_prob} \end{equation} where $s$ denotes the d dimensional vector $(s_{1},..., ~s_{d})$ and the free energy is given by \begin{equation} F(s) ~= ~T ~ln(\int{dx ~exp(-\frac{1}{T}V(x))} ~\delta(s-S(x))) \label{EQ_free_energy} \end{equation} Here capital $S$ is used for denoting the function of the coordinates $S(x)$, while lower case s is used for denoting the value of the CVs. In metadynamics the free energy is reconstructed recursively, starting from the bottom of the well by a history-dependent random walk that explores a larger and larger portion of configuration space. A small repulsive Gaussian potential is added every $\tau_{G}$ MD steps. The external ('metadynamics') potential acting on the system at time $t$ is given by \begin{equation} V_{G}(S(x), ~t) ~= ~\omega ~\sum_{\substack{t' ~= ~\tau_{G}, ~2\tau_{G},...\\t' pw.out \end{verbatim} for Car-Parrinello Molecular Dynamics, \begin{verbatim} cp.x -plumed < cp.in > cp.out \end{verbatim} \subsection{Units in the input and output files} There are several output files for the simulation with \texttt{PLUMED}, e.g. \texttt{PLUMED.OUT}, \texttt{COLVAR} and \texttt{HILLS}. All the units in the input and output files for \texttt{PLUMED} adopt the internal units of the main code, say Rydberg atomic units in \texttt{pw.x} and Hartree atomic units in \texttt{cp.x}. But there are two exceptions, for distance it is always Bohr and for energy it is always Rydberg. \subsection{Postprocessing} There is a \texttt{sum\_hills.f90} code (in espresso/PLUMED/utilities/sum\_hills/) performing post-processing task to estimate the free energy after a metadynamics run. The program \texttt{sum\_hills.f90} is a tool for summing up the Gaussians laid during the metadynamics trajectory and obtaining the free energy surface. As \texttt{sum\_hills.f90} is a simple fortran 90 program, the installation is straight- forward so long as you have a fortran compiler available on your machine. As an example, with the gnu g95 compiler one would compile sum hills.f90 using the following command: \begin{verbatim} g95 -O3 sum_hills.f90 serial.f90 -o sum_hills.x \end{verbatim} For post processing of large HILLS files it is recommended to use a parallel version. The \texttt{sum\_hills.x} program takes its input parameters from the command line. If run without options, this brief summary of options is printed out. Detail descriptions of the following options can be found in the manual\cite{PLUMED:manual} of \texttt{PLUMED}. \begin{verbatim} USAGE: sum_hills.x -file HILLS -out fes.dat -ndim 3 -ndw 1 2 -kt 0.6 -ngrid 100 100 100 [-ndim 3 ] (number of collective variables NCV) [-ndw 1 ... ] (CVs for the free energy surface) [-ngrid 50 ... ] (mesh dimension. DEFAULT :: 100) [-dp ... ] (size of the mesh of the output free energy) [-fix 1.1 ... ] (define the region for the FES, if omitted this is automatically calculated) [-stride 10 ] (how often the FES is written) [-cutoff_e 1.e-6 ] (the hills are cutoff at 1.e-6) [-cutoff_s 6.25 ] (the hills are cutoff at 6.25 standard deviations from the center) [-2pi x ] ([0;2pi] periodicity on the x CV, if -fix is not used 2pi is assumed) [-pi x ] ([-pi;pi] periodicity on the x CV, if -fix is not used 2pi is assumed) [-kt 0.6 ] (kT in the energy units) [-grad ] (apply periodicity using degrees) [-bias ] (writing output the bias for a well tempered metadynamics run) [-file HILLLS ] (input file) [-out fes.dat ] (output file) [-hills nhills ] (number of gaussians that are read) \end{verbatim} \section{First worked example: SN2 reaction} \subsection{SN2 reaction in vacuum} In this section, we will show a very simple chemical reaction done with \qe\ code with \texttt{PLUMED} plugin. The goal of this example is to study the free energy for the reaction depicted in Fig. \ref{Fig_Reaction_sn2}. This SN2 reaction between Cl$^{-}$ and CH3Cl shows the symmetric transition state and the CH3 conversion of configuration known as the Walden inversion\cite{Ensing:2005p53}. \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2_reaction.pdf} \caption{A sketch of SN2 reaction} \label{Fig_Reaction_sn2} \end{center} \end{figure*} \subsection{Choice of CVs and simulation details} The first thing you should decide is the collective variables (CVs) to be used: \begin{itemize} \item Distance? \item Does the angle matter? \item Torsion? \item Coordination number? \item Anything else? \end{itemize} Here we choose the bond length of C-Cl as CV1 and the bond length of C-Cl$^{-}$ as CV2. The simulation will be performed using the Born-Oppenheimer molecular dynamics (BO-MD) algorithm as implemented in the \qe\ program (\texttt{pw.x}) and then Car-Parrinello molecular dynamics (CP-MD) (\texttt{cp.x}). The electronic structure is computed within density functional theory (DFT) using the PBE exchange-correlation functional. Ultra-soft pseudo-potentials are used for the valence electrons, and the wave function is expanded in a plane waves basis set up to an kinetic energy cutoff of 25 Ry and charge density cutoff of 200 Ry. An orthorhombic P supercell of 18 * 12 * 12 a.u.$^{3}$ is used. The temperature of the system is 300 K via "soft" velocity rescaling in BO-MD and Nose-Hoover thermostat in CP-MD. \subsection{Metadynamics with Born-Oppenheimer molecular dynamics} For Metadynamics a possible input \texttt{plumed.dat} can be \begin{verbatim} # switching on metadynamics and Gaussian parameters HILLS HEIGHT 0.001 W_STRIDE 2 # instruction for CVs printout PRINT W_STRIDE 1 # the distance between C-Cl' and C-Cl DISTANCE LIST 1 3 SIGMA 0.3 DISTANCE LIST 2 3 SIGMA 0.3 # WALLS: prevent to depart the two mols UWALL CV 1 LIMIT 7.0 KAPPA 100.0 LWALL CV 1 LIMIT 2.5 KAPPA 100.0 UWALL CV 2 LIMIT 7.0 KAPPA 100.0 LWALL CV 2 LIMIT 2.5 KAPPA 100.0 # end of the input ENDMETA \end{verbatim} Here we describe briefly the syntax used in the \texttt{PLUMED} input file. For the detail introduction, please have a look at the \texttt{PLUMED} manual\cite{PLUMED:manual}. The symbol \# allows the user to comment any line in the input file. The \texttt{HILLS} turns on the standard Metadynamics and the \texttt{HEIGHT 0.001} means the height of the Gaussians is 0.001 Rdy. Pay attention: in this code distances are in Bohr (1 Bohr = 0.529177249 \AA) and the energies in Rydberg (1 Rydberg = 13.60569 eV). The frequency for add Gaussians is controlled by \texttt{W\_STRIDE} followed by a number that represents the number of steps between one MD step and the other which is 2 here. The line that starts with the keyword \texttt{PRINT W\_STRIDE} control the frequency for the main \texttt{PLUMED} output file which is called \texttt{COLVAR}. This file contains the data regarding the collective variable positions, the constraint positions, the energy of hills and energy of constraints and other useful informations that will be introduced time by time during the tutorial. All the informations are appended in the \texttt{COLVAR} file and overwritten if an old \texttt{COLVAR} file already exists. The \texttt{DISTANCE LIST 1 3} shows that our CV1 is the distance between atom 1 and atom 3, the \texttt{SIGMA 0.3} indicates the width of the Gaussians is 0.3 Bohr. In order to prevent to depart the two molecules, we add the wall potentials on CV1 and CV2, for both of them the upper limit wall and the lower limit wall. The \texttt{UWALL} and \texttt{LWALL} keywords define a wall for the value of the CV s which limits the region of the phase space accessible during the simulation. The restraining potential starts acting on the system when the value of the CV is greater (in the case of \texttt{UWALL}) or lower (in the case of \texttt{LWALL}) than a certain limit \texttt{LIMIT}. The functional form of this potential is the following: \begin{equation} V_{wall}(s) = KAPPA (\frac{s - LIMIT + OFF}{EPS})^{EXP} \label{EQ_vwall} \end{equation} where \texttt{KAPPA} is an energy constant in internal unit of the code, \texttt{EPS} a rescaling factor and \texttt{EXP} the exponent determining the power law. By default: \texttt{EXP} = 4, \texttt{EPS} = 1.0, \texttt{OFF} = 0. The termination of the input for \texttt{PLUMED} is marked with the keyword \texttt{ENDMETA}. Whatever it follows is ignored by \texttt{PLUMED}. You can introduce blank lines. They are not interpreted by \texttt{PLUMED}. Here is the input file pw.in for pw.x: \begin{verbatim} &control title = 'ch3cl', calculation='md' restart_mode='from_scratch', pseudo_dir = './', outdir = './tmp', dt=20, nstep=2000, prefix = 'md', / &system ibrav = 8, celldm(1) = 18.d0, celldm(2) = 0.666666d0, celldm(3) = 0.666666d0, nat = 6, ntyp = 3, tot_charge = -1, ecutwfc = 25.0, ecutrho = 100.0, nr1b = 24, nr2b = 24, nr3b = 24, nosym = .true. / &electrons conv_thr = 1.0d-8 mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' ion_temperature='berendsen' tempw= 300. nraise=20 / ATOMIC_SPECIES Cl 35.4527d0 Cl.blyp-mt.UPF C 12.0107d0 C.blyp-mt.UPF H 1.00794d0 H.blyp-vbc.UPF ATOMIC_POSITIONS bohr Cl 12.880706242 6.000000000 5.994035868 Cl 3.581982751 6.000000000 5.989431927 C 9.410606817 6.000000000 6.004535337 H 8.743333410 4.313700292 5.030609604 H 8.743333410 7.686299708 5.030609604 H 8.746264064 6.000000000 7.952930073 K_POINTS gamma \end{verbatim} In this example, we perform a 2000 steps NVT MD to reconstruct the free energy profile for the SN2 reaction. To run the metadynamics simulation, simply type \begin{verbatim} pw.x -plumed < pw.in > pw.out \end{verbatim} After the execution of the program, you will get a brunch of interesting stuff. First of all, you will get a \texttt{PLUMED.OUT} file that contains some printout from \texttt{PLUMED} so you may check whether the input was correctly read: \begin{verbatim} ::::::::::::::::: READING PLUMED INPUT ::::::::::::::::: |-HILLS: |--HEIGHT 0.001000 WRITING STRIDE 2 DEPOSITION RATE 0.000025 |-PRINTING ON COLVAR FILE EVERY 1 STEPS |-INITIAL TIME OFFSET IS 0.000000 TIME UNITS 1-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000 |- DISCARDING DISTANCE COMPONENTS (XYZ): 000 |- 1st SET MEMBERS: 1 |- 2nd SET MEMBERS: 3 2-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000 |- DISCARDING DISTANCE COMPONENTS (XYZ): 000 |- 1st SET MEMBERS: 2 |- 2nd SET MEMBERS: 3 |-WALL ON COLVAR 1: UPPER LIMIT = 7.000000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-WALL ON COLVAR 1: LOWER LIMIT = 2.500000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-WALL ON COLVAR 2: UPPER LIMIT = 7.000000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-WALL ON COLVAR 2: LOWER LIMIT = 2.500000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-HILLS ACTIVE ON COLVAR 1 |-HILLS ACTIVE ON COLVAR 2 \end{verbatim} This tells you that everything is going fine. The index of atoms are parsed correctly and the printout is correctly understood. Now what you get is a \texttt{COLVAR} file that consists in the time evolution of the CVs. Its format looks something like this: \begin{verbatim} #! FIELDS time cv1 cv2 vbias vwall vext 0.000 3.470115309 5.828643634 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 20.000 3.476912892 5.822800771 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 40.000 3.483516729 5.817608411 0.001000000 0.000000000 0.000000000 0.000000000 0.000000000 60.000 3.490411466 5.812574439 0.000999600 0.000000000 0.000000000 0.000000000 0.000000000 80.000 3.498291622 5.807005696 0.001998170 0.000000000 0.000000000 0.000000000 0.000000000 100.000 3.507739014 5.800326723 0.001994356 0.000000000 0.000000000 0.000000000 0.000000000 \end{verbatim} In the first line there is a simple remainder to the elements that you have in each column. Namely time first (in a.u. by default in \qe), then the value of the two CVs followed by the various additional potential energies introduced by \texttt{PLUMED}. The fourth column is the bias potential, the wall potential is in the fifth column and the external potential is in the last. Now you can plot the evolution of the CVs with gnuplot by using the command \texttt{p "./COLVAR" u 1:2 t "CV1" ,"" u 1:3 t "CV2"} and youÕll get something like Fig. \ref{FIG_sn2_cv}. If you want to understand how the CVs are related then you may use the command \texttt{p "./COLVAR" u 2:3} with gnuplot that results in a plot like that in Fig. \ref{FIG_sn2_cvs}. \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2cv.pdf} \caption{The time evolution of CVs} \label{FIG_sn2_cv} \end{center} \end{figure*} \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2cvs.pdf} \caption{The time population of CVs} \label{FIG_sn2_cvs} \end{center} \end{figure*} Beside the usual \texttt{COLVAR} file, when you run a metadynamics calculation you get an additional file called \texttt{HILLS} which contains a list of the Gaussians deposited during the simulation. In the example above, this file looks like: \begin{verbatim} 40.000 3.483516729 5.817608411 0.300000000 0.300000000 0.001000000 0.000 80.000 3.498291622 5.807005696 0.300000000 0.300000000 0.001000000 0.000 120.000 3.519061248 5.792237732 0.300000000 0.300000000 0.001000000 0.000 160.000 3.547107311 5.772092610 0.300000000 0.300000000 0.001000000 0.000 200.000 3.578429291 5.750272190 0.300000000 0.300000000 0.001000000 0.000 240.000 3.606928115 5.732241302 0.300000000 0.300000000 0.001000000 0.000 \end{verbatim} where: \begin{itemize} \item the first column contains the time \texttt{t} (in internal unit of the MD code which is \texttt{a.u.} here in BOMD) at which the Gaussian was deposited; \item the following 2 columns contain the centroid of the Gaussian, $S_{i}(R(t))$, one for each CV $i$; \item the following 2 columns contain the Gaussian sigma $\sigma_{i}$, one for each CV $i$; \item the last but one column contains the value of $W$; \item the last column is meaningful only in well-tempered metadynamics simulations (see the next example). \end{itemize} This file will be used to calculate the estimate of the free energy at the end of our metadynamics calculation. In order to restart a metadynamics run, the flag \texttt{RESTART} must be added to \texttt{plumed.dat} after flag \texttt{HILLS}. This allows a metadynamics simulation to be restarted after an interruption or after a run has finished. The \texttt{HILLS} files will be read at the beginning of the simulation and the bias potential applied to the dynamics. Note that the presence of the \texttt{RESTART} flag only affects the metadynamics part of the simulation, and thus the usual procedure for restarting a MD run must be followed. \subsubsection{Free energy reconstruction} In the long-time limit, the bias potential of metadynamics converges to the free energy changed in sign\cite{Bussi:2006gg}. At any time during the simulation we can sum the Gaussians deposited so far and obtain the current estimate of the free energy surface (FES) using the utility \texttt{sum\_hills} as we compiled in the previous section. \begin{verbatim} sum_hills.x -file HILLS -out fes.dat -ndim 2 -ngrid 100 100 \end{verbatim} The file in output \texttt{fes.dat} contains the estimate of the free energy calculated on a regular grid whose dimension is specified by \texttt{-ngird}. These parameters should be chosen with care. To calculate accurately the potential in a given point of the CV space, a practical rule is to choose the bin size to be half the Gaussian sigma. As usual, you can plot the 3D FES with gnuplot: \begin{verbatim} set pm3d sp "fes.dat" w pm3d \end{verbatim} and you will get a plot like that in Fig. \ref{FIG_sn2_fes} \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2_fes.pdf} \caption{Free energy surface of SN2 reaction} \label{FIG_sn2_fes} \end{center} \end{figure*} \section{Second worked example: H-H} In this example, well-tempered (WT) metadynamics\cite{Barducci:2008ua} will be employed to reconstruct the FES of the hydrogen molecule within Born-Oppenheimer approximation (with \texttt{pw.x}). In WT metadynamics, the Gaussian height $W$ is automatically rescaled during the simulations following: \begin{equation} W = W_{0} \exp{-\frac{V(S, t)}{k_{B}\Delta T}} \label{EQ_wt} \end{equation} where $W_{0}$ is the initial Gaussian height and $\Delta T$ a parameter with the dimension of a temperature. The use of Eq. \ref{EQ_wt} guarantees that the bias potential converges in a single simulation and does not oscillate around the FES value, causing the problem of overfilling as what we got in Fig. \ref{FIG_sn2_fes}. \begin{equation} V(S, t\to \infty) = -\frac{\Delta T}{T + \Delta T} F(S) + C \label{EQ_wt_v} \end{equation} where $T$ is the temperature of the system and $C$ a constant. The quantity $T + \Delta T$ is often referred as the (fictitious) CV temperature, while the ratio $(T + \Delta T) / T$ as bias factor. For the details of WT metadynamics, please see references\cite{Barducci:2008ua, Laio:2008wu}. To perform a WT metadynamics simulation with \texttt{PLUMED} you have to use the directive \texttt{WELLTEMPERED} and specify one of the parameters described above using either the keyword \texttt{CV\_TEMPERTURE} or \texttt{BIASFACTOR}. In addition, the temperature of the system must be specified explicitly with \texttt{SIMTEMP}. Here are some practical rules to choose wisely the parameters in WT metadynamics simulations: \begin{itemize} \item The bias factor (or equivalently the CV temperature) regulates how fast the amount of bias potential added decreases with simulation time and eventually controls the extent of exploration. The choice of these parameters depends on the typical free-energy barriers involved in the process under study. Note that this parameter can be changed on-the-fly as needed. \item The optimal choice of the initial Gaussian height $W_{0}$ is less crucial and at the same time less trivial. It is irrelevant in the long time regime and affects only the transient part of the simulation. A short initial filling period can be desirable if the transverse degrees of freedom relax quickly, otherwise a moderate initial energy rate is a better choice. \end{itemize} The following is an example of input file for this WT metadynamics simulation at 300 K with a bias factor 10 and an initial Gaussian height of 0.005. \begin{verbatim} PRINT W_STRIDE 5 HILLS HEIGHT 0.005 W_STRIDE 10 WELLTEMPERED SIMTEMP 300 BIASFACTOR 10 DISTANCE LIST 1 2 SIGMA 0.2 ENDMETA \end{verbatim} In WT metadynamics, the Gaussians height as written in the \texttt{HILLS} file is multiplied by the factor $(T + \Delta T) / \Delta T$. This guarantees that when you sum the Gaussians (by means for example of the \texttt{sum\_hills} code) you get directly the FES. The last column of the \texttt{HILLS} file contains the value of the bias factor used in the WT metadynamics simulation. For this example, the \texttt{HILLS} file looks like: \begin{verbatim} 200.000 1.433853674 0.200000000 0.005555556 10.000 400.000 1.431075271 0.200000000 0.004147748 10.000 600.000 1.431419655 0.200000000 0.003334619 10.000 800.000 1.509148410 0.200000000 0.002937840 10.000 1000.000 1.683639369 0.200000000 0.003660780 10.000 1200.000 1.680674151 0.200000000 0.002997952 10.000 \end{verbatim} Then you can sum up the Gaussians and plot it with gnuplot. \begin{verbatim} sum_hills.x -ndim 1 -ndw 1 -file HILLS -out fes.dat \end{verbatim} The \texttt{sum\_hills} code could also be used to check the convergence of a metadynamics simulation. This can be easily achieved by calculating the estimate of the FES at regular interval in time using the \texttt{-stride} option and then evaluating the free energy at different time steps. Just run \texttt{sum\_hills}: \begin{verbatim} sum_hills.x -out fes.dat -ndim 1 -ndw 1 -stride 150 \end{verbatim} and you will get \texttt{fes.dat}, the FES for the whole simulation and \texttt{fes.dat.1}, \texttt{fes.dat.2} ..., one every \texttt{stride} Gaussians. You can plot free energy estimate at different time steps as shown in Fig. \ref{FIG_hh_fes}. \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/hh_fes.pdf} \caption{Free energy surface} \label{FIG_hh_fes} \end{center} \end{figure*} From the Fig. \ref{FIG_hh_fes}, we can see that the lowest saddle point is at 1.43 Bohr, which is the bond length of the hydrogen molecule and it takes 0.113 Hartree = 3.09 eV to break this bond. \newpage \begin{thebibliography}{10} \bibitem{Bonomi:2009ul} M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia and M. Parrinello, Comp. Phys. Comm. {\bf 180}, 1961 (2009). \bibitem{Laio:2008wu} A. Laio and F. L. Gervasio, Rep. Prog. Phys., {\bf 71}, 126601 (2008). \bibitem{Laio:2002wm} A. Laio and M. Parrinello, PNAS, {\bf 99}, 12562 (2002). \bibitem{QE:guide} User's Guide for \qe: \texttt{espresso/Doc/}; \href{http://www.quantum-espresso.org/user_guide/user_guide.html}{http://www.quantum-espresso.org/user\_guide/user\_guide.html} \bibitem{PLUMED:manual} \texttt{PLUMED} manual: \href{https://sites.google.com/site/plumedweb/documentation}{https://sites.google.com/site/plumedweb/documentation} \bibitem{Ensing:2005p53} B. Ensing, A. Laio, M. Parrinello, and M. L. Klein, J. Phys. Chem. B {\bf 109}, 6676 (2005). \bibitem{Bussi:2006gg} G. Bussi, A. Laio and M. Parrinello, PRL {\bf 96}, 090601 (2006). \bibitem{Barducci:2008ua} A. Barducci, G. Bussi and M. Parrinello, PRL {\bf 100},20603 (2008) \end{thebibliography} \end{document} espresso-5.0.2/Doc/INPUT_NEB.html0000777000700200004540000000000012053440163021126 2../NEB/Doc/INPUT_NEB.htmlustar marsamoscmespresso-5.0.2/Doc/INPUT_PROJWFC.xml0000777000700200004540000000000012053440163021745 2../PP/Doc/INPUT_PROJWFC.xmlustar marsamoscmespresso-5.0.2/Doc/ChangeLog.cp0000644000700200004540000006241112053145633015246 0ustar marsamoscmSee file ChangeLog.old for changes after aug. 2004 24-jul-04 few changes in module usage, sort of workaround for ifc 7.1 (CC) 23-jul-04 inputs for string dynamics merged to CP input very preliminary sort of manual for FPMD/CP codes (CC) 19-jul-04 - further merging of low level subroutine between FPMD and CP ( cell_move in Module/cell_base.f90 ) - More input parameters check in Module/read_namelists - For CP, restart file is saved in working directory like in FPMD and not in output_dir where MD data are saved, this is because usually one keep MD trajectories in home dir. - added pseudopotential for wannier dynamics example - added Wannier postprocessing (from Manu Sharma ) - fixed a small bug for FPMD and 'diis' electron dynamics (CC) 15-jul-04 added module cp_mass (for car-parrinello electronic mass) cpr.f90: lot of staff moved to subroutines (CC) 10-jul-04 Reference to nonexistent subroutines or variables removed from newly added code. Tabulators removed (PG). 07-jul-04 New kind of calculation cp-wf added - varius fix for CP with wannier functions, Now I'm able to run Sharma examples, but the code is still not fully tested. Fix in readpp for pseudo different from UPF (CC) 29-jun-04 Added to CPV the string dynamics as implemented by Yosuke (not fully tested yet) (CC) 12-Jun-04 deeq and dvan merged with those in uspp.f90 ipp temporarily moved from module ions_base to cvan (PG) 02-Jun-04 oops, deeq and dvan are complex in uspp.f90, real in CP... To be fixed; for the time being, deeq and dvan not merged (PG) 01-Jun-04 deeq, betae merged with deeq, vkb in PW; order of indices in deeq and rhovan made compatible with order in PW (PG) 31-May-04 More USPP_related variables moved to Modules/uspp.f90 Note that nhx => nhm for consistency with other names (those ending in x are static dimensioning) Parameter ipp no longer needed on input (still used internally): PP type assumed following the same logic as in PWscf (PG) 26-may-04 Most variables in module ncprm have been moved to a new module uspp_param, shared between PW and CP (in file Modules/uspp.f90) Remaining variables in ncprm moved to new module qrl_mod (PG) 28-apr-04 PP cleanup and merge: module "atom", common with PW, replaces "atomic_wfc" and part of "ncprm", ifpcor => nlcc, rscore => rho_atc as in PW 27-apr-04 PP cleanup and merge: vloc_at is v(r), not r*v(r) 26-apr-04 PP cleanup and merge: rucore => vloc_at 23-apr-04 PP cleanup and merge: mmaxx => ndmx 22-apr-04 Same logic (or lack of it) for DFT used as in PW 21-apr-04 Derivatives of ylm merged, variable cell works again (maybe). Indices of gx and gxb reversed, cleanup (PG) L=3 sort of implemented (untested). ng0 => gstart (PG) 19-apr-04 Next step in USPP harmonization: aainit, spherical harmonics merged - derivatives of ylm NOT YET, variable cell NOT WORKING (PG) 13-apr-04 First step in USPP harmonization: lx, lqx => lqmax, lix => lmaxx+1, variables in module "uspp.f90", common with PW, used (merge of aainit not yet done) invmat3 moved to flib/ and merged with invmat of PW Misc: dfloat => dble (PG) 29-mar-04 Various cleanup and code harmonization: date_and_tim moved to flib and used by all code, tictac substituted by start_clock/stop_clock celldm/alat/at input parameters in FPMD/CP read and set as in PW . (CC) 15-mar-04 Almost all neb routines moved to Modules (CC) New module check_stop used by all codes to check for exit conditions ( maximum time or EXIT file ) (CC) 11-mar-04 NEB works for CP as well (CC) 07-mar-04 Cleanup in CPV: no more SSUM and CSUM Modules/smallbox.f90 should work again 26-feb-04 Martin Hilgeman, SGI: - support for the SGI Altix class of machines, with Intel Itanium2 processors. These machines run Linux. Please find more information on http://www.sgi.com/servers/altix/. I have added an extra configure target named 'altix', as well as a '__ALTIX' pre-processor macro. The 'altix' target runs either serial or parallel with the SGI MPT MPI library, which is optimised for our low-latency, high-bandwidth NUMAflex interconnect which allows the use of shared memory. - modified Makeflags for the 'origin' target and added support for SCSL. - added support for 1-D, multiple 1-D and 3-D FFT routines from the SGI SCSL scientific library. SCSL is the successor of Complib (which is currently supported in CP). The two libraries have a different calling sequence.and the main advantage is that the same library is also supported (with the same calling sequence) on Altix systems. I have added a '__SCSL' macro for it and renamed the '__SGI' macro to '__COMPLIB' in 'Modules/fft_scalar.f90. - I also found a typo in 'CPV/cpr.f90', where all OPEN statements for external files had the same unit number. This bug was not in CP90 v1.3. - I had to change the comment character in the scaLAPACK routines, because this was causing problems with the Intel Compilers. This isn't used anyway. 25-feb-04 merging FPMD/CP added common subroutines (wave_steepest wave_verlet ) to advance wave_functions . FPMD friction parameter for electrons "gdelt" substituted with "frice" ------------------------------------------------------------------- Date: 24 Feb 2004 Version: 2.0 ------------------------------------------------------------------- 18-feb-04 Initial support for NEB and meta dynamics. I do not include NEB dynamics modules in this version, because I want to wait for common neb modules, to be built as soon as this version has been released (CC) 17-feb-04 outdir added to the path of the output and restart files, pseudopotential reading moved out from cprmain subroutine (CC) 16-feb-04 CPV has been "subroutinized" and is ready for NEB like dynamics. Note that iosys has been split into two subroutines: read_input_file and iosys. The first routine simply calls read_namelists and read_cards to read in the stdin, and does not perform any initialization. The second (iosys) does not read anythings but copies values from input_parameters to local variables. read_input_file is called from the new main program. iosys is called from the cprmain subroutine (the old main program). This is the scheme used in FPMD. i Deallocation statements added to CPV for neb like dynamics. (CC) 09-nov-03 Unit 6 replaced by stdout (module io_global) Wavefunctions are in module wavefunction_module 31-jul-03 Major input restructuring, now common with all codes 01-jul-03 Variable-cell is working again (call to sph_bes fixed) 25-jun-03 More merging of common routines (CC) 19-may-03 some cleanup for occupancy and empty state calculation 14-may-03 Bug: namelist &ions must be read in all cases Write charge density (if required) only at last step Documentation updated 21-apr-03 fft restructuring (Carlo) Exch_corr: gradr not deallocated in some cases 12-apr-03 rsg in ortho => rs 27-feb-03 Misc. installation changes 21-feb-03 "error" renamed to "errore", "rnd" to "rndx" bug in io_base fixed 11-feb-03 pseudo_dir implemented 10-feb-03 Some cleanup (ibrav, tau written at the end) support for intel compiler and linux re-added ------------------------------------------------------------------ First release ------------------------------------------------------------------ 2-feb-03 Ultrasoft UPF bug fixed, more small changes related to cpv => cp 1-feb-03 added check on dimension of pseudopotential arrays configure and example cpr.j fixed 10-jan-03 "make tar" or "make dist" produces a tar.gz file with a source distribution - Make.sample removed (PG) 05-jan-03 ggen: same ordering of PW and FPMD (using d(:) vector) interoperability with FPMD checked also in parallel 04-jan-03 file dimensions.f90 replaced by file parameters.f90 changes to restart file (CC): - io_base.f90 mp.f90 mp_global.f90 mp_wave.f90 updated - directory "arch" replaced by "system", file Machine.* replaced by Make.* 20-dec-02 Spin-polarized calculation at fixed cell possible again Error in core corrections fixed 16-dec-02 readpseudo.f90: yet another uninitialized variable fixed 11-dec-02 restart.f90: compilation warnings fixed readpseudo.f90: upf%tvanp always initialized 04-dec-02 __VARIABLECELL removed everywhere Small changes to UPF reading 01-dec-02 New writefile and readfile added same restart file layout as FPMD Program main alone in the file cpr.f90, all other subroutines moved to cprsub.f90 . Subroutine matinv moved to cplib.f90 para_mod.f90 compiled even if __PARA is not defined startup subroutine now appropriate also in the scalar code 30-nov-02 Module cell changed in cell_module function and types added from FPMD mill_l, bi1, bi2, bi3 added erroneus usage of twmass corrected 22-nov-02 Minor glitches, documentation updated 21-nov-02 Input updated (final), cpv removed 15-nov-02 cpr.x as fast as cpv.x for fixed-cell calculation (useless calls to formf removed) - cpv.f90 is obsolete 14-nov-02 More input changes New installation procedure (like FPMD) Double underscore prepended to all the CPP macro Added modules from FPMD used in the new output format bug fix to mp_get and mp_put routines (module "mp") Added old "nbeg=-1" option ( suggested by Vittadini) Moved calculation of center of mass (suggested by Varadha) 06-nov-02 Compilation error on sp4 04-nov-02 Copyright corrected Added possibility to read UPF pseudopotentials 21 oct-02 Compilation problems for cpr on parallel machines, gnu license, Make.sample updated, misc. 08-oct-02 More trouble from unitialized variables (variable-cell, intel compiler) fixed 11-sep-02 INPUT documentation updated 31-aug-02 New input layout with the namelists: CONTROL, SYSTEM, ELECTRONS, IONS, CELL . New ATOMIC_SPECIES card introduced, with the syntax: Label(is) pmass(is) psfile(is) ipp(is) with: character(len=2) label real(kind = 8) pmass character(len=*) psfile integer ipp New ATOMIC_POSITIONS card introduced, with the syntax label(ia) px(ia) py(ia) pz(ia) ..... with: character(len=2) label this label identify the atom and should match one of those present in ATOMIC_SPECIE, and could be optionally follewed by an index ( like Cu20 ), to be compliant with the XYZ format. real( kind=8 ) px, py, pz 16-aug-02 flag 'atomic_positions' properly (?) implemented fricp was incorrectly read more obvious format for units 77 and 78 Units f77 and f78 are flushed (at least for some compilers) 12-aug-02 Misc. changes for compatibility with other codes: iforce for each component, may be specified on input as before in spin-polarized case, nbnd = number of spin up states = number of spin down states, not their sum. Files are opened and closed during the run in order to preserve their content in case of crash; I/O-related useless crap removed 08-aug-02 New input - sort of working also in parallel PP files are now separated and called by name 06-aug-02 New input - sort of working (not in parallel) 17-jul-02 Start of the Grand Unification ------------------------------------------------------------------------- 24-apr-02 Readvan: check if nang=0 (Yudong) ------------------------------------------------------------------------- tag:cpr11 7-mar-02 Added check for consistency between US format and ipp (Seungwu) 28-feb-02 Format used in unit 78 increased (Andrea Trave) 27-feb-02 Initialization of Nose' variables not properly done in some cases (Xiaofei+Ralph) A few formats increased to avoid *** in the output 26-feb-02 More problems in variable-cell + Nose' in the parallel case: readpfile, writepfile modified (found by Andrea Trave) File format is once again not compatible with previous versions 25-feb-02 Serious (and stupid) bug in init1 if ibrav=0 and first basis vector had a component along z Found by Balazs Hetenyi 22-feb-02 Nose' bug in cpr fixed also when using steepest descent on ions Box grid unit vectors are written on output (both suggested by Andrea Trave) ------------------------------------------------------------------------- tag:cpr10 06-feb-02 fix problem with preprocessing on ibm introduced yesterday Remaining untyped variables explicitely typed 05-feb-02 added support for pgi compiler on a PC beowulf (Andrea Vittadini): minor changes, documentation update. Intel compiler: cpu_time does not work, replaced by etime 01-feb-02 cplib: subroutine rhoset was using uninitialized variables in spin-polarized case (found by Yudong). 30-jan-02 cpv: in subroutine ggenb, gxnb(1,*) must be set to zero (found by Yudong) 23-jan-02 Default mmx changed to 5000 (500 was too small in most cases) (Ralph) ------------------------------------------------------------------------- tag:cpr9 22-jan-02 More small changes for Compaq parallel machines (Yudong) Yet another serious Nose' bug in cpr (found by Ralph) 18-jan-02 Potential bug in Nose' dynamics fixed (some variables were not set to zero - the bug appeared with Intel compiler) More minor changes (timing routines, Make.sample) 17-jan-02 Added support for intel fortran compiler on linux PC (does not work for Nose') and for Compaq parallel machines (Thanks to Yudong Wu) (untested) Preprocessing simplified, documentation updated, minor changes here and there 15-jan-02 fixed bug in readpfile that caused serious trouble to Nose' dynamics when restarting from file in the parallel case (xnhpm was not broadcast to all nodes in readpfile) Thanks to Xiaofei Wang for remarking the bug 09-nov-01 memory message for origin fixed ------------------------------------------------------------------------- tag:cpr8 22-oct-01 serious bug in cpr when restarting from previous dynamics run fixed 18-oct-01 serious bug in drhov fixed (thanks to Ralph Gebauer): stress was wrong if no ultrasoft atoms were present 27-aug-01 Added memory and file size estimator ------------------------------------------------------------------------- tag:cpr7 25-aug-01 awful bug in newd (wrong forces in spin-polarized case) 14-aug-01 bug in new init for cpr fixed bug in parallel fft for boxes on ibm for n1rx=nr1+1 13-aug-01 more cleaning init1 for cpr heavily modified (calls other routines) 10-aug-01 cleaning of unused variables ------------------------------------------------------------------------- tag:cpr6 09-aug-01 merged file format and related routines (readfile/writefile) between cpr and cpv. NOTA BENE: files produced by previous versions of the code cannot be read by this version. Scalar and parallel files still have different formats Documentation update 08-aug-01 cpr: major cleanup of nlinit and newnlinit 19-jul-01 First attempt of a parallelization for boxes (routines rhov, drhov, newd, set_cc, force_cc) ------------------------------------------------------------------------- tag:cpr5 17-jul-01 Merge of vofrho in cpv and cpr More rhoofr and various other cleaning ------------------------------------------------------------------------- tag:cpr4 16-jul-01 Variables rhovan, drhovan use compact indices like qgb cpr: rhoofr simplified and merged with cpv rhoofr ------------------------------------------------------------------------- tag:cpr3 14-jul-01 Small box section heavily modified in order to make it parallel (parallelization to be finished): - newd works now in real space instead of g-space: slower in scalar, in parallel reduces communications to minimum - newd, rhov, drhov, set_cc, force_cc: common code extracted and put into subroutines (box2grid, box2grid2, boxdotgrid) - two fft at a time implemented in force_cc Timing (hopefully) more readable Case ibrav=0 works (again) Documentation update ------------------------------------------------------------------------- tag:cpr2 12-Jul-01 Yet another bug in force_cc for parallel execution 11-Jul-01 Rather serious bug in set_cc fixed 06-Jul-01 Added core corrections to cpv Documentation update 21-Jun-01 Documentation update 04-May-01 Out-of-bounds bug in atomic_wfc ------------------------------------------------------------------------- tag:cpr1 27-Apr-01 First merge of variable-cell calculation, major changes There are two executable, "cpr.x" and "cpv.x" NOTA BENE: input data for cpv.x changed wrt preceding version ------------------------------------------------------------------------- tag:cp90_16 19-Apr-01 Yet another bug in boxes (for nr odd) fixed printing of elapsed times on origin works (sort of) Bug in estimate of S(S+1) with Becke's formula in parallel case fixed dft is read from file in BHS pseudopotentials as well Minor changes to allow more than 64 processors Minor corrections here and there 07-Mar-01 Check on pseudopotential sanity added 21-feb-01 Added INPUT.HOWTO ------------------------------------------------------------------------- tag:cp90_15 09-feb-01 bug in wavefunction write/read for the parallel case fixed Make.sample updated for NEC sx-5 Estimate of S(S+1) added 27-jan-01 latgen modified (once again) so as to yield for ibrav=5 right-handed axis triplets. 26-jan-01 pseudopotential format converter "pw2us.f90" updated 23-jan-01 latgen modified again to yield more accurate lattices for ibrav=5. Also: calculation of shells in ggen and ggenb modified to be more numerically robust. 22-jan-01 latgen modified so as to yield for ibrav=7 and 10 right-handed axis triplets. Boxes for US PPs do not seem to work with the original (left-handed) axis triplets. INPUT updated. TODO: find what is wrong with the logic of boxes. 18-jan-01 INPUT completed, Make.sample updated for t3e 16-jan-01 checks on nqlc and nang modified so that local PPs work 12-dec-00 nec bug in good_fft_dimension fixed added support for nec sx-5 and updated Make.sample redefinition of grid in BHS case removed added definition of variable f as array in all fft routines 21-nov-00 parallel case for nproc=1 and nr3x=nr3+1 fixed ------------------------------------------------------------------------- tag:cp90_14 15-nov-00 added routine that reads PPs in Andrea Dal Corso's format 07-nov-00 deeq must be set to zero if non-us pp are to be used! Dynamical variables eigr, eigrb, ei1, ei2, ei3 are allocated to the actual maximum number "nas" of atoms of the same kind and no longer to fixed parameter nax. Static variables are still dimensioned as (nax,nsx) 06-nov-00 more energic stop in error for parallel case Removed hard-coded scratch directory for SP3 case: the scratch directory is read from value of SCRDIR environment variable 25-oct-00 bug in PW91 spin-polarised (finally) found ------------------------------------------------------------------------- tag:cp90_13 20-oct-00 added support for NEC SX-4 16-oct-00 fixed bug if number of atoms > numbers of states (relevant only for two molecules of H2 or similar cases) 03-oct-00 Make.sample update naux increased to 15000 in ibmfft ndr=ndw is now allowed (had problem on origin) 26-sep-00 bug in initbox fixed: numerical rounding could lead to rather large error for US pseudopotentials if an atom was very very close to a grid point. Limitation on nr1b,nr2b,nr3b even removed. Latgen for ibrav=9,10,11,13, fixed Minor corrections. ------------------------------------------------------------------------- tag:cp90_12 09-aug-00 slightly inconsistent calculation of box grid modified; exch-corr routines modified so as to be compatible with future introduction of cell dynamics. Note that the former version of PW91 is still present as "ggapwold". 28-jun-00 COPY is the real, not complex version: needs factor 2 when COPYing complex wavefunctions mysterious line "emaec=73" removed 21-jun-00 reduce was missing in ggapw 19-jun-00 PW91 spin-polarised added. NOTA BENE: since there are some differences wrt preceding (spin-unpolarised) results, the old routine "ggapwold" has been retained. Use "ggapw" instead (in exch_corr) for spin-polarized calculations. INPUT file updated 12-jun-00 ortho: test of floating-point error added ------------------------------------------------------------------------- tag:cp90_11 10-jun-00 very serious bug in sigset for spin-polarized case 08-Jun-00 parallel I/O finally (?) correct (??) 01-Jun-00 parallel I/O better implemented some comments added or updated ------------------------------------------------------------------------- tag:cp90_10 31-May-00 write wavefunctions on one file for parallel execution 29-May-00 write rho on one file for parallel execution 25-May-00 numerical problem in very special cases in LSDA fixed 22-May-00 lim2 in ggapbe was wrong 05-Apr-00 very stupid and serious bug with constraints fixed -------------------------------------------------------------------------- tag:cp90_9 14-Mar-00 calculation of forces in vofrho is done in separate routines direct and reciprocal lattices moved into modules more logical names for rhet (=>rhog) and rhoe (=>rhor) obvious PBE bug fixed 05-Mar-00 added PBE (written by Michele Lazzeri) -------------------------------------------------------------------------- tag:cp90_8 07-Feb-00 modules mass, pptype, rcmax_mod moved into ions module leng and spin moved into elct module control added many comments updated, added, displaced -------------------------------------------------------------------------- tag: cp90_7 06-Feb-00 modules eigrb_mod, irb_mod, teigr removed 05-Feb-00 modules becdr_mod, betae_mod, wbeta_mod, forc removed tau0, sfac, deeq, rhovan removed from modules -------------------------------------------------------------------------- tag: cp90_6 04-Feb-00 added support for absoft, Make.sample updated calphi, ortho cleaned 03-Feb-00 added support for origin prefor simplified -------------------------------------------------------------------------- tag: cp90_5 03-Feb-00 added index ish for easier indexing of bec and becdr iterative orthonormalization: redundant variables removed 02-Feb-00 indices of becdr rearranged in the same way as for bec -------------------------------------------------------------------------- tag: cp90_4 02-Feb-00 removed loop (no longer used) for constraints, gam, gamold => lambda, olambda eigs does no longer produce INF (produces 0.0 ...) on empty states major index rearrangements of bec and similar quantities: bec(nax,nx,nhx,nsp) => bec(nhsa,nx) 01-Feb-00 formf moved out of the main loop into initialization bec removed from modules and called explicitely some tictac's moved into subroutines -------------------------------------------------------------------------- tag: cp90_3 01-Feb-00 Argh! serious bug in formf corrected 31-Jan-00 blypnum removed 29-Jan-00 reversed order of indexes in sfac, rhops, vps (should be faster and more logical) -------------------------------------------------------------------------- tag: cp90_2 29-Jan-00 serious error fixed more extensive cleaning: phfac and nlpre merged strucf does no longer calculate eigr read, write, random initialization moved to separate routines 28-Jan-00 some minor cleaning -------------------------------------------------------------------------- tag: cp90_1 27-Jan-00 Initial release of f90 code. Main differences wrt f77 version: - dynamic allocation of memory - commons replaced by modules - some general cleanup espresso-5.0.2/Doc/developer_man.log0000644000700200004540000004146312053147350016420 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2012.9.4) 21 NOV 2012 13:54 entering extended mode **developer_man.tex (./developer_man.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texmf/tex/latex/hyperref/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count89 \Field@Width=\dimen104 \Fld@charsize=\dimen105 \Choice@toks=\toks15 \Field@toks=\toks16 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count90 \c@Hfootnote=\count91 ) *hyperref using default driver hpdftex* (/usr/share/texmf/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2003/11/30 v6.74m Hyperref driver for pdfTeX (/usr/share/texmf/tex/latex/psnfss/pifont.sty Package: pifont 2004/09/15 PSNFSS-v9.2 Pi font support (SPQR) LaTeX Font Info: Try loading font information for U+pzd on input line 63. (/usr/share/texmf/tex/latex/psnfss/upzd.fd File: upzd.fd 2001/06/04 font definitions for U/pzd. ) LaTeX Font Info: Try loading font information for U+psy on input line 64. (/usr/share/texmf/tex/latex/psnfss/upsy.fd File: upsy.fd 2001/06/04 font definitions for U/psy. )) \Fld@listcount=\count92 \@outlinefile=\write3 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count93 \c@lchapter=\count94 \c@chapter=\count95 \c@lsection=\count96 \c@lsubsection=\count97 \c@lsubsubsection=\count98 \c@lparagraph=\count99 \c@lsubparagraph=\count100 \c@lsubsubparagraph=\count101 \ptrfile=\write4 ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: pdftex.def on input line 80. (/usr/share/texmf/tex/latex/graphics/pdftex.def File: pdftex.def 2002/06/19 v0.03k graphics/color for pdftex \Gread@gobject=\count102 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./developer_man.aux) \openout1 = `developer_man.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 31. LaTeX Font Info: ... okay on input line 31. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 31. LaTeX Font Info: ... okay on input line 31. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 31. LaTeX Font Info: ... okay on input line 31. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 31. LaTeX Font Info: ... okay on input line 31. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 31. LaTeX Font Info: ... okay on input line 31. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 31. LaTeX Font Info: ... okay on input line 31. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 31. LaTeX Font Info: ... okay on input line 31. Package hyperref Info: Link coloring OFF on input line 31. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count103 ) LaTeX Info: Redefining \ref on input line 31. LaTeX Info: Redefining \pageref on input line 31. (./developer_man.out) (./developer_man.out) \openout3 = `developer_man.out'. (/usr/share/texmf/tex/context/base/supp-pdf.tex (/usr/share/texmf/tex/context/base/supp-mis.tex loading : Context Support Macros / Miscellaneous (2004.10.26) \protectiondepth=\count104 \scratchcounter=\count105 \scratchtoks=\toks17 \scratchdimen=\dimen108 \scratchskip=\skip43 \scratchmuskip=\muskip10 \scratchbox=\box26 \scratchread=\read1 \scratchwrite=\write5 \zeropoint=\dimen109 \onepoint=\dimen110 \onebasepoint=\dimen111 \minusone=\count106 \thousandpoint=\dimen112 \onerealpoint=\dimen113 \emptytoks=\toks18 \nextbox=\box27 \nextdepth=\dimen114 \everyline=\toks19 \!!counta=\count107 \!!countb=\count108 \recursecounter=\count109 ) loading : Context Support Macros / PDF (2004.03.26) \nofMPsegments=\count110 \nofMParguments=\count111 \MPscratchCnt=\count112 \MPscratchDim=\dimen115 \MPnumerator=\count113 \everyMPtoPDFconversion=\toks20 ) File: quantum_espresso.pdf Graphic file (type pdf) File: democritos.pdf Graphic file (type pdf) LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 42. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 42. (./developer_man.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 2. [1 {/usr/share/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./quantum_espresso.p df> <./democritos.pdf>]) \tf@toc=\write6 \openout6 = `developer_man.toc'. LaTeX Font Info: Try loading font information for OMS+cmr on input line 51. (/usr/share/texmf/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 51. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@encoding' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@family' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@series' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmr/m/sc/14.4' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\ignorespaces' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 66. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmr/m/sc/14.4' on input line 66. [2] Overfull \hbox (6.47005pt too wide) in paragraph at lines 86--91 \OT1/cmr/m/sc/12 ESPRESSO\OT1/cmr/m/n/12 , con-tact the de-vel-op-ers via the \ OT1/cmtt/m/n/12 q-e-developers[.at.]qe-forge[.dot.]org [] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 101. [3] Overfull \hbox (26.44356pt too wide) in paragraph at lines 192--196 \OT1/cmr/m/n/12 tic-u-lar, check (and up-date) the "Road Map" page \OT1/cmtt/m/ n/12 www.quantum-espresso.org/?page[]id=564\OT1/cmr/m/n/12 , [] [4] [5] Package hyperref Warning: Difference (2) between bookmark levels is greater (hyperref) than one, level fixed on input line 265. LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 299. [6] [7] [8] Overfull \hbox (37.42511pt too wide) in paragraph at lines 445--446 []\OT1/cmr/m/n/12 - $mpif90 is the par-al-lel com-piler, if any; if no par-al-l el com-piler is found or if \OT1/cmtt/m/n/12 --disable-parallel [] [9] [10] [11] [12] [13] Package hyperref Warning: Difference (2) between bookmark levels is greater (hyperref) than one, level fixed on input line 737. [14] [15] Underfull \hbox (badness 10000) in paragraph at lines 871--873 [] Overfull \hbox (0.39813pt too wide) in paragraph at lines 874--880 []\OT1/cmr/m/n/12 The "restart file" is ac-tu-ally a "restart di-rec-tory", con -tain-ing sev-eral files and sub-directories. [] Overfull \hbox (16.47841pt too wide) in paragraph at lines 901--901 [] \OT1/cmtt/m/n/12 - general information that doesn't re quire large data set:[] [] Overfull \hbox (22.65341pt too wide) in paragraph at lines 901--901 [] \OT1/cmtt/m/n/12 - pointers to other files or director ies containing bulkier[] [] Overfull \hbox (35.00342pt too wide) in paragraph at lines 901--901 [] \OT1/cmtt/m/n/12 data: grids, wavefunctions, charge density, potentials, ...[] [] Overfull \hbox (4.1284pt too wide) in paragraph at lines 901--901 []\OT1/cmtt/m/n/12 spin_polarization.dat contains the spin polarization (rhoup -rhodw) (LSDA case)[] [] [16] [17] Overfull \hbox (4.1284pt too wide) in paragraph at lines 1234--1234 [] \OT1/cmtt/m/n/12 - (info about starting or constra ined magnetization)[] [] [18] [19] [20] [21] [22] Overfull \hbox (16.47841pt too wide) in paragraph at lines 1234--1234 [] \OT1/cmtt/m/n/12 link to file "./K$n /evcm.dat" (optional)[] [] Overfull \hbox (28.82841pt too wide) in paragraph at lines 1234--1234 [] \OT1/cmtt/m/n/12 containing wavefunc tions at preceding step[] [] Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@encoding' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@family' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@series' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmr/m/sc/17.28' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\ignorespaces' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\f@shape' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\-command' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\font@name' on input line 1238. Package hyperref Warning: Token not allowed in a PDFDocEncoded string, (hyperref) removing `\OT1/cmr/m/sc/17.28' on input line 1238. [23] [24] [25] [26] [27] (./developer_man.aux) LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right. ) Here is how much of TeX's memory you used: 2968 strings out of 94500 39448 string characters out of 1176767 89866 words of memory out of 1000000 6058 multiletter control sequences out of 10000+50000 12045 words of font info for 42 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 34i,5n,41p,259b,330s stack positions out of 1500i,500n,5000p,200000b,5000s PDF statistics: 380 PDF objects out of 300000 77 named destinations out of 131072 323 words of extra memory for PDF output out of 65536 Output written on developer_man.pdf (27 pages, 239558 bytes). espresso-5.0.2/Doc/INPUT_PWCOND.xml0000777000700200004540000000000012053440163022160 2../PWCOND/Doc/INPUT_PWCOND.xmlustar marsamoscmespresso-5.0.2/Doc/INPUT_CPPP.xml0000777000700200004540000000000012053440163021136 2../CPV/Doc/INPUT_CPPP.xmlustar marsamoscmespresso-5.0.2/Doc/user_guide.log0000644000700200004540000002541012053147350015725 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2012.9.4) 21 NOV 2012 13:54 entering extended mode **user_guide.tex (./user_guide.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texmf/tex/latex/hyperref/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count89 \Field@Width=\dimen104 \Fld@charsize=\dimen105 \Choice@toks=\toks15 \Field@toks=\toks16 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count90 \c@Hfootnote=\count91 ) *hyperref using default driver hpdftex* (/usr/share/texmf/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2003/11/30 v6.74m Hyperref driver for pdfTeX (/usr/share/texmf/tex/latex/psnfss/pifont.sty Package: pifont 2004/09/15 PSNFSS-v9.2 Pi font support (SPQR) LaTeX Font Info: Try loading font information for U+pzd on input line 63. (/usr/share/texmf/tex/latex/psnfss/upzd.fd File: upzd.fd 2001/06/04 font definitions for U/pzd. ) LaTeX Font Info: Try loading font information for U+psy on input line 64. (/usr/share/texmf/tex/latex/psnfss/upsy.fd File: upsy.fd 2001/06/04 font definitions for U/psy. )) \Fld@listcount=\count92 \@outlinefile=\write3 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count93 \c@lchapter=\count94 \c@chapter=\count95 \c@lsection=\count96 \c@lsubsection=\count97 \c@lsubsubsection=\count98 \c@lparagraph=\count99 \c@lsubparagraph=\count100 \c@lsubsubparagraph=\count101 \ptrfile=\write4 ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: pdftex.def on input line 80. (/usr/share/texmf/tex/latex/graphics/pdftex.def File: pdftex.def 2002/06/19 v0.03k graphics/color for pdftex \Gread@gobject=\count102 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./user_guide.aux) \openout1 = `user_guide.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. Package hyperref Info: Link coloring OFF on input line 28. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count103 ) LaTeX Info: Redefining \ref on input line 28. LaTeX Info: Redefining \pageref on input line 28. (./user_guide.out) (./user_guide.out) \openout3 = `user_guide.out'. (/usr/share/texmf/tex/context/base/supp-pdf.tex (/usr/share/texmf/tex/context/base/supp-mis.tex loading : Context Support Macros / Miscellaneous (2004.10.26) \protectiondepth=\count104 \scratchcounter=\count105 \scratchtoks=\toks17 \scratchdimen=\dimen108 \scratchskip=\skip43 \scratchmuskip=\muskip10 \scratchbox=\box26 \scratchread=\read1 \scratchwrite=\write5 \zeropoint=\dimen109 \onepoint=\dimen110 \onebasepoint=\dimen111 \minusone=\count106 \thousandpoint=\dimen112 \onerealpoint=\dimen113 \emptytoks=\toks18 \nextbox=\box27 \nextdepth=\dimen114 \everyline=\toks19 \!!counta=\count107 \!!countb=\count108 \recursecounter=\count109 ) loading : Context Support Macros / PDF (2004.03.26) \nofMPsegments=\count110 \nofMParguments=\count111 \MPscratchCnt=\count112 \MPscratchDim=\dimen115 \MPnumerator=\count113 \everyMPtoPDFconversion=\toks20 ) File: quantum_espresso.pdf Graphic file (type pdf) File: democritos.pdf Graphic file (type pdf) LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 61. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 61. (./user_guide.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 2. ) \tf@toc=\write6 \openout6 = `user_guide.toc'. [1 {/usr/share/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./quantum_espresso.p df> <./democritos.pdf>] LaTeX Font Info: Try loading font information for OMS+cmr on input line 77. (/usr/share/texmf/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 77. Overfull \hbox (3.32571pt too wide) in paragraph at lines 94--97 []\OT1/cmtt/m/n/12 PWgui\OT1/cmr/m/n/12 : a Graph-i-cal User In-ter-face, pro-d uc-ing in-put data files for \OT1/cmtt/m/n/12 PWscf \OT1/cmr/m/n/12 and some \O T1/cmtt/m/n/12 PostProc [] [2] [3] Overfull \hbox (4.77907pt too wide) in paragraph at lines 222--226 \OT1/cmr/m/n/12 help, etc., please send a mes-sage to the de-vel-op-ers' mail-i ng list: \OT1/cmtt/m/n/12 q-e-developers@qe-forge.org\OT1/cmr/m/n/12 . [] [4] [5] [6] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 412. Overfull \hbox (37.16194pt too wide) in paragraph at lines 445--457 [][] [] [7] [8] Underfull \hbox (badness 10000) in paragraph at lines 588--589 [] [9] [10] [11] [12] Overfull \hbox (15.46945pt too wide) in paragraph at lines 820--829 []\OT1/cmr/m/n/12 Working Fortran-95 and C com-pil-ers are needed in or-der to com-pile \OT1/cmr/m/sc/12 Quan-tum ESPRESSO\OT1/cmr/m/n/12 . [] [13] [14] [15] Overfull \hbox (9.35583pt too wide) in paragraph at lines 1026--1035 \OT1/cmtt/m/n/12 http://developer.amd.com/cpu/open64/pages/default.aspx\OT1/cmr /m/n/12 ) can be freely down-loaded from [] Overfull \hbox (12.2807pt too wide) in paragraph at lines 1038--1049 \OT1/cmr/m/n/12 Linux): \OT1/cmtt/m/n/12 http://software.intel.com/en-us/articl es/intel-software-developer-support\OT1/cmr/m/n/12 . [] [16] [17] LaTeX Warning: Reference `SubSec:badpara' on page 18 undefined on input line 11 58. [18] Overfull \hbox (9.75371pt too wide) in paragraph at lines 1228--1235 \OT1/cmr/m/n/12 Next step is \OT1/cmr/m/sc/12 Quan-tum ESPRESSO \OT1/cmr/m/n/12 it-self. Sadly, the Ap-ple sup-plied op-ti-mized BLAS/LAPACK [] [19] [20] LaTeX Font Info: External font `cmex10' loaded for size (Font) <5> on input line 1313. [21] [22] [23] [24] [25] (./user_guide.aux) LaTeX Warning: There were undefined references. LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right. ) Here is how much of TeX's memory you used: 2979 strings out of 94500 39479 string characters out of 1176767 91125 words of memory out of 1000000 6058 multiletter control sequences out of 10000+50000 11252 words of font info for 40 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 34i,8n,36p,226b,260s stack positions out of 1500i,500n,5000p,200000b,5000s PDF statistics: 345 PDF objects out of 300000 88 named destinations out of 131072 243 words of extra memory for PDF output out of 65536
Output written on user_guide.pdf (25 pages, 262159 bytes). espresso-5.0.2/Doc/INPUT_PP.html0000777000700200004540000000000012053440163020667 2../PP/Doc/INPUT_PP.htmlustar marsamoscmespresso-5.0.2/Doc/developer_man.toc0000644000700200004540000000644212053147350016422 0ustar marsamoscm\contentsline {section}{\numberline {1}Introduction}{2}{section.1} \contentsline {subsection}{\numberline {1.1}Who should read (and who should {\em write}) this guide}{2}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}Who may read this guide but will not necessarily profit from it}{2}{subsection.1.2} \contentsline {subsection}{\numberline {1.3}How to contribute to {\sc Quantum ESPRESSO}\ as a user}{2}{subsection.1.3} \contentsline {section}{\numberline {2}How to become a developer}{3}{section.2} \contentsline {subsection}{\numberline {2.1}About \texttt {qe-forge.org}}{3}{subsection.2.1} \contentsline {subsection}{\numberline {2.2}Contributing new developments}{4}{subsection.2.2} \contentsline {subsection}{\numberline {2.3}Hints, Caveats, Do's and Dont's for developers}{5}{subsection.2.3} \contentsline {subsection}{\numberline {2.4}Guidelines for reporting bugs}{5}{subsection.2.4} \contentsline {section}{\numberline {3} Structure of the distribution}{6}{section.3} \contentsline {subsubsection}{\numberline {3.0.1} Libraries}{6}{subsubsection.3.0.1} \contentsline {subsection}{\numberline {3.1}Installation mechanism}{6}{subsection.3.1} \contentsline {subsubsection}{\numberline {3.1.1} How to edit the \texttt {configure}\ script}{6}{subsubsection.3.1.1} \contentsline {subsubsection}{\numberline {3.1.2}How to add support for a new architecture}{7}{subsubsection.3.1.2} \contentsline {section}{\numberline {4} Algorithms}{12}{section.4} \contentsline {subsection}{\numberline {4.1}Gamma tricks}{12}{subsection.4.1} \contentsline {section}{\numberline {5} Structure of the code}{12}{section.5} \contentsline {subsection}{\numberline {5.1}Preprocessing}{12}{subsection.5.1} \contentsline {section}{\numberline {6}Format of arrays containing charge density, potential, etc.}{13}{section.6} \contentsline {section}{\numberline {7}Parallelization}{13}{section.7} \contentsline {subsubsection}{\numberline {7.0.1}Usage of \#ifdef \_\_MPI}{14}{subsubsection.7.0.1} \contentsline {subsection}{\numberline {7.1}Tricks and pitfalls}{14}{subsection.7.1} \contentsline {subsection}{\numberline {7.2} Data distribution}{15}{subsection.7.2} \contentsline {section}{\numberline {8} File Formats}{15}{section.8} \contentsline {subsection}{\numberline {8.1}Data file(s)}{15}{subsection.8.1} \contentsline {subsubsection}{\numberline {8.1.1}Rationale}{15}{subsubsection.8.1.1} \contentsline {subsubsection}{\numberline {8.1.2}General structure}{16}{subsubsection.8.1.2} \contentsline {subsubsection}{\numberline {8.1.3} Structure of file "data-file.xml"}{17}{subsubsection.8.1.3} \contentsline {subsubsection}{\numberline {8.1.4}Sample}{18}{subsubsection.8.1.4} \contentsline {subsection}{\numberline {8.2}Restart files}{24}{subsection.8.2} \contentsline {section}{\numberline {9}Modifying/adding/extending {\sc Quantum ESPRESSO}}{24}{section.9} \contentsline {subsection}{\numberline {9.1}Programming style (or lack of it)}{24}{subsection.9.1} \contentsline {subsection}{\numberline {9.2}Adding or modifying input variables}{25}{subsection.9.2} \contentsline {section}{\numberline {10} Using SVN}{26}{section.10} \contentsline {subsection}{\numberline {10.1}SVN operations}{26}{subsection.10.1} \contentsline {subsection}{\numberline {10.2}Removing conflicts}{26}{subsection.10.2} \contentsline {section}{\numberline {11}Bibliography}{27}{section.11} espresso-5.0.2/Doc/INPUT_pw2bgw.txt0000777000700200004540000000000012053440163022177 2../PP/Doc/INPUT_pw2bgw.txtustar marsamoscmespresso-5.0.2/Doc/developer_man/0000755000700200004540000000000012053147360015706 5ustar marsamoscmespresso-5.0.2/Doc/developer_man/img9.png0000644000700200004540000000032512053147355017265 0ustar marsamoscm‰PNG  IHDR#óÄ$PLTE³³³¨¨¨œœœ„„„xxxlllTTTHHH000$$$ì㛋tRNS@æØf_IDAT•c````aÀ Ð¥Ø8Atn- À$8àz*gÎĦn7  JM‘É€ ,‘dÁ`&v3qUð)`êJ€0Xf:@…ºÒQdµ´»a`sû"äÎMIEND®B`‚espresso-5.0.2/Doc/developer_man/img14.png0000644000700200004540000000070612053147360017340 0ustar marsamoscm‰PNG  IHDR4=g^g†0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfDIDAT8Ý“?Oƒ@ÆŸÒ£\AÚŽÝd2n26ÑÄŽŽ7t5á#0:28;Àà®#nÜdôcø¨1N& ôÐ;Ê)ƒšè3¼÷þî¹÷ååPjTEˆêùØ…µ½]*æ 2¤iñ£í•²æM¶ÒjD·—Ÿ—F›_öÊÕ^¸G]®§ÐûÍWóÜkƒžbÖN¢çîðÕBl}!AÐ<ù"9O†UÌ8«ÈD2ˆ/Ш€4M9Ù6âìL À8?,˜mIEND®B`‚espresso-5.0.2/Doc/developer_man/img8.png0000644000700200004540000000112012053147356017257 0ustar marsamoscm‰PNG  IHDRb/J20PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfÎIDATH‰í”½JÄ@Çÿ—Üé† I!X Q›kÄ ­E {|€Ë ÑêÊUQÓy`iwmÄÆÒGŸ@}SXX:³ÙœždO'‚øƒ»É|dg²@I†(Ëñ 3Í ¸ã–8L H}ÞÉ=’ÐÁœ¨Œh½ŒIW ö9Kmlz/Ò!CUÒ Ò±aŠèÙµ‹øöB"gàsðÝ%!;´®"æúìÅ$[@ßUn»j!,ú%:Dk|០¥±–±}ý1^ ä_»Va=#i¤Ôdà$"Z5Xâ Áú|n]ÙCLëM“OQž£HçyÍY%,¢‘òb,»²ˆïO•yçXuóp´4±t¬ÕT@õh×Ä7èïnŒ.§×ƒ¤Áò˜™,‚ Ï[ÁŽúo…Ÿõ[ä½RX¡ÇÚÀzˆm8C%Ý›þpߺ„ÓŸ”ÜxðÐÃ9\É_»-•RHϺgÚ㊾à@_ì‘’¼ICyD—‡HÓt_y°5ƒEû´™C¤Qy¥p”јË…’(s (2†L[¯FÙë÷ÐÔ8+S¯&ßÀQZ=:þäëçÞ±ù¬ëa_ØËõâiÜÆuÓüóÔš\æ (ìéÂÿ¨IEND®B`‚espresso-5.0.2/Doc/developer_man/img6.png0000644000700200004540000000046112053147356017264 0ustar marsamoscm‰PNG  IHDR)#ŒÒ5-PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$.7utRNS@æØf²IDAT(‘c`€n*ÁÁ"9@ô‚’Lðc烳Y 8XÁœ#¶î˜…Ne``C0Ù±H3ì„‚ páœ@*ˆ%Á"PËrt4ñAÌbEˆÂ ;`Ã*êŒ)1ÊÐYY°0 ‹2ð&p0°)00  ˆr73@˜ p¯C’{7š(ÐX ÈDW !¢l}mHVÎDµŒžÚ¨=µâIEND®B`‚espresso-5.0.2/Doc/developer_man/img18.png0000644000700200004540000000036712053147356017354 0ustar marsamoscm‰PNG  IHDR#ß½0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfuIDAT•c```àâ 0`΀x> pù\F8]1p‘\ Àú9°(ù¸MØ’cf‡¸L²3˜(€h0Ol&H° `\ÄTçð Ä3¡Ôf>f`0`ø—‘6€±Ä‚H³ ;ø/" ÚdáÀIEND®B`‚espresso-5.0.2/Doc/developer_man/img1.png0000644000700200004540000000025112053147357017255 0ustar marsamoscm‰PNG  IHDRšÚÒÄPLTE³³³¨¨¨œœœ„„„lllTTTHHH<<<$$$DªtRNS@æØf9IDAT™c`€f(Í Cp.2@D ‚ƒ€¦ˆ©¡áSA,Ö @ c0 XLÓ‚ÚÀ H¡ú=IEND®B`‚espresso-5.0.2/Doc/developer_man/internals.pl0000644000700200004540000000113712053147360020244 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate internals original text with physical files. $key = q/SubSec:Inst/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Bugs/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:CPP/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/Sec:SVN/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Conflicts/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; 1; espresso-5.0.2/Doc/developer_man/images.tex0000644000700200004540000002401612053147354017703 0ustar marsamoscm\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage{html} \usepackage{graphicx} \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1254}% $ \Gamma$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1256}% $ \psi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1257}% $ \psi^{*}_{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1259}% $ \Phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1262}% $ \psi_{j}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1263}% $ \psi_{{j+1}}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1268}% $ {\Phi(G) + \Phi^*(-G)\over 2}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1270}% $ {\Phi(G) - \Phi^*(-G)\over 2i}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsection} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1280}% $ \le$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1286}% $\displaystyle {\frac{{i-1}}{{nr1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1287}% $\displaystyle \tau_{1}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1288}% $\displaystyle {\frac{{j-1}}{{nr2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1289}% $\displaystyle \tau_{2}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1290}% $\displaystyle {\frac{{k-1}}{{nr3}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1291}% $\displaystyle \tau_{3}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1293}% $ \tau_{i}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1295}% $ \tau_{1}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1297}% $ \tau_{2}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline1299}% $ \tau_{3}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \end{document} espresso-5.0.2/Doc/developer_man/img10.png0000644000700200004540000000062412053147360017333 0ustar marsamoscm‰PNG  IHDR0=nµÇü0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfIDAT8c`NÅÀÿÿ?˜fh`À þCå9‘ X Lt  °3 €Æ±BX,Ølå©G1Ä x1›‹ìC`'O@âð£Èú¡ôâ6ö `æ|`†?.-TP`[99aÈ^dã$9à?¡˜e Bqtlàð€' !pŽÂn„2†^)….àÿb½*ŽÊåtÀ¡ŽŸ“ãì ¼ ÷nh@‘˜Æ€]GÇdqù;pÙ>Á\_ˆ’Hôo`ùÀð‹ýºŽí œ86`è`½ÀËä o€!ÁíÀàÕÌÐd±tþn!ÒùCüÇœŒtÂÿKŒšIEND®B`‚espresso-5.0.2/Doc/developer_man/index.html0000644000700200004540000020573512053147360017717 0ustar marsamoscm Developer's Manual for Quantum-ESPRESSO next_inactive up previous


Image quantum_espresso Image democritos
Developer's Manual for QUANTUM ESPRESSO(v. 5.0.2)


Contents

1 Introduction

1.1 Who should read (and who should write) this guide

The intended audience of this guide is everybody who wants to:

  • know how QUANTUM ESPRESSO works, including its internals;
  • modify/customize/add/extend/improve/clean up QUANTUM ESPRESSO;
  • know how to read data produced by QUANTUM ESPRESSO.
The same category of people should also write this guide, of course.

1.2 Who may read this guide but will not necessarily profit from it

People who want to know about the capabilities of QUANTUM ESPRESSO, or who want just to use it, should read the User Guide.

People who want to know about the methods or the physics behind QUANTUM ESPRESSO should read first the relevant literature (some pointers in the User Guide).

1.3 How to contribute to QUANTUM ESPRESSO as a user

You can contribute to a better QUANTUM ESPRESSO, even as an ordinary user, by:

  • Answering other people's questions on the mailing list (correct answers are strongly preferred to wrong ones).
  • Porting to new/unsupported architectures or configurations: see Sect. 3.1, "Installation mechanism". You should not need to add new preprocessing flags, but if you do, see Sect. 5.1, "Preprocessing".
  • Pointing out bugs in the software and in the documentation (reports of real bugs are strongly preferred to reports of nonexistent bugs). See Sect. 2.4, "Guidelines for reporting bugs".
  • Improving the documentation (generic complaints or suggestions that "there should be this and that" do not qualify as improvements).
  • Suggesting changes: note however that suggestions requiring a significant amount of work are welcome only if accompanied by implementation or by a promise of future implementation (fulfilled promises are strongly preferred to forgotten ones).
  • Adding new features to the code. If you like to have something added to QUANTUM ESPRESSO, contact the developers via the q-e-developers[.at.]qe-forge[.dot.]org mailing list. Unless there are technical reasons not to include your changes, we will try to make you happy (no warranty that we will actually succeed).

2 How to become a developer

If you want to get involved as a developer and contribute serious or nontrivial stuff (or even simple and trivial stuff), you should first of all register for the QUANTUM ESPRESSO project on qe-forge.org. Please introduce yourself when you register so that the administrator knows that you are a real person.

2.1 About qe-forge.org

qe-forge.org is the portal for QUANTUM ESPRESSO developers, contributors, and for anybody else wanting to develop a project in the field of atomistic simulations. qe-forge.org provides a CVS or SVN repository, mailing lists, a wiki, upload space, a bug tracking facility, various other tools that are useful for developers. You can use either CVS or SVN but not both together. Note that the usage of the wiki provided by qe-forge.org is currently disabled for security reasons.

You can open your own project, retaining all rights on it (including the right not to release anything); or else, you can register as a developer in an existing project (or both).

Currently QUANTUM ESPRESSO uses the following development tools:

  • SVN server (with web interface to browse the repository)
  • Bug Tracking facility
  • Upload space (with download counter)
  • Mailing lists q-e-commits and q-e-developers.
Everybody is encouraged to explore other capabilities of qe-forge.org.

Once you are registered, you need to register your SSH keys in order to have read-write access the CVS or SVN repository (if you have been allowed by the project leader). The procedure is as follows:

  • login to your qe-forge.org account
  • click on My stuff (menu on top line)
  • click on My account (menu on the left)
  • click on Edit SSH Keys, follow the instructions to add your keys

If you want to become a QUANTUM ESPRESSO developer, you should subscribe to the two mailing lists

  • q-e-developers (low-traffic): for communications among developers and people interested in the development of QUANTUM ESPRESSO
  • q-e-commits (not-so-low traffic): for commit messages.
Subscription is not automatic when you register: you should subscribe using the links in http://www.qe-forge.org/gf/project/q-e/mailman/.

2.2 Contributing new developments

Various procedures can be followed to contribute new developments. The ideal procedure depends upon the kind of project you have in mind. In all cases, you should learn how to use SVN: see Sect.10, "Using SVN". The three typical cases are:

a)
If your project involves changes or additions affecting only a small part of QUANTUM ESPRESSO, it is usually convenient to work directly on the SVN trunk.
b)
If your project involves major or extensive changes to the core of QUANTUM ESPRESSO, it may be a good idea to make a SVN "branch" and work on it.
c)
If your project involves a major new addition (e.g. a new package), or if you do not want it to be public during its development, it may be a good idea to register it as a new qe-forge.org project with a separate SVN repository. It is possible to make it visible into the SVN repository of QUANTUM ESPRESSO. It is possible to restrict access to selected QUANTUM ESPRESSO developers, or to keep it private.

For case a), you should from time to time update your copy (using command svn update), verify if changes made meanwhile by other developers conflict with your changes. Conflicts are in most cases easy to solve: see Sect. 10.2 for hints on how to remove conflicts and on how to figure out what went wrong. Once you are happy with your modified version, you can commit your changes, or ask one of the expert developers to do this if you do not feel confident enough.

For case b), you should from time to time align your branch with the trunk.

For case c): if your project is ``loosely coupled'' to QUANTUM ESPRESSO, that is, it just uses the QUANTUM ESPRESSO installation procedure and/or data files, there shouldn't be any major problems, since major incompatible changes are very rare (note however that the files produced by the phonon code change more frequently). If your project is ``tightly bound'', i.e. it uses routines from QUANTUM ESPRESSO, it is prudent to notify the other developers.

2.3 Hints, Caveats, Do's and Dont's for developers

  • Before doing anything, inquire whether it is already there, or under development. In particular, check (and update) the "Road Map" page www.quantum-espresso.org/?page_id=564, send a message to q-e-developers.
  • Before starting writing code, inquire whether you can reuse code that is already available in the distribution. Avoid redundancy: the only bug-free software line is the one that doesn't exist.
  • When you make some changes:
    • Check that are not spoiling other people's work. In particular, search the distribution for codes using the routine or module you are modifying and change its usage or its calling arguments everywhere. Use the commit message to notify all developers if you introduce any ``dangerous'' change (i.e. susceptible to break some features or packages, including external packages using QUANTUM ESPRESSO).
    • Do not forget that your changes must work on many different combinations of hardware and software, in both serial and parallel execution.
    • Do not forget that your changes must work for a wide variety of different system: if your code works only in some selected case, it must either stop or issue a warning in all other cases.
    • Do not forget that your changes must work on systems of wildly different computational size: solutions that may look appropriate in crystal silicon may gobble a disproportionate amount of time and/or memory in a 1000-atom cell.
  • Document your contributions:
    • If you modify what a code can do, or introduce incompatibilities with previous versions (e.g. old data file no longer readable, old input no longer valid), report it in file Doc/release-notes.
    • If you add/modify/remove input variables, document it in the appropriate file
      INPUT_*.def; if you remove an input variable, update tests and examples accordingly.
    • All newly introduced features or variables must be accompanied by an example or a test or both (either a new one or a modified existing test or example).
  • Please do not include files (any kind, including pseudopotential files) with DOS ^M characters or tabulators ^I.
When you modify the program sources, run the install/makedeps.sh script or type make depend to update files make.depend in the various subdirectories.


2.4 Guidelines for reporting bugs

  • Before deciding that a problem is due to a bug in the codes, verify if it is reproducible on different machines/architectures/phases of the moon: erratic or irreproducible problems, especially in parallel execution, are often an indication of buggy compilers or libraries
  • Bug reports should preferably be filed using the bug tracking facility at qe-forge.org:
    http://qe-forge.org/gf/project/q-e/tracker
  • Bug reports should include enough information to be reproduced: typically, version number, hardware/software combination(s) for which the problem arises, whether it happens in serial or parallel execution or both, and, most important, an input and output exhibiting such behavior (fast to execute if possible). The error message alone is usually not a sufficient piece of information.
  • If a bug is found in a stable (released) version of QUANTUM ESPRESSO, it must be reported in the Doc/release-notes file.

3 Structure of the distribution

3.0.1 Libraries

Subdirectory flib/ contains libraries written in fortran77 (*.f) and in fortran-90 (*.f90). The latter should not depend on any module, except for modules kinds and constants.

Subdirectory clib/ contains libraries written in C (*.c). Functions that are called by fortran should be preprocessed using the macros:

  1. F77_FUNC (func,FUNC) for function func, not containing underscore(s) in name
  2. F77_FUNC_(f_nc,F_NC) for function f_nc, containing underscore(s) in name
These macros are defined in file include/c_defs.h. This file must be included by all *.c files. The macros are automagically generated by configure and choose the correct case (lowercase or uppercase) and the correct number of final underscores. See file include/defs.h.README for more info.

3.1 Installation mechanism

The code contains C-style preprocessing directives. There are two ways to do preprocessing of fortran files:

  • directly with the fortran compiler, if supported;
  • by first pre-compiling with the C preprocessor cpp.

In the first case, one needs to specify in the make.sys file the fortran compiler option that tells the compiler to pre-process first. In the second case, one needs to specify the C precompiler and options (if needed) in make.sys. Normally, configure should take care of this.

3.1.1 How to edit the configure script

The configure script is generated from its source file configure.ac by the GNU autoconf utility (http://www.gnu.org/software/autoconf/). Don't edit configure directly: whenever it gets regenerated, your changes will be lost. Instead, go to the install/ directory, edit configure.ac, then run autoconf to regenerate configure. If you want to keep the old configure, make a copy first.

GNU autoconf is installed by default on most Unix/Linux systems. If you don't have it on your system, you'll have to install it. You will need a recent version (e.g. v.2.65) of autoconf, because our configure.ac file uses recent syntax.

configure.ac is a regular Bourne shell script (i.e., "sh" - not csh!), except that:

-
capitalized names starting with "AC_" are autoconf macros. Normally you shouldn't have to touch them.
-
square brackets are normally removed by the macro processor. If you need a square bracket (that should be very rare), you'll have to write two.

You may refer to the GNU autoconf Manual for more info.

make.sys.in is the source file for make.sys, that configure generates: you might want to edit that file as well. The generation procedure is as follows: if configure.ac contains the macro "AC_SUBST(name)", then every occurrence of "@name@" in the source file will be substituted with the value of the shell variable "name" at the point where AC_SUBST was called.

Similarly, configure.msg is generated from configure.msg.in: this file is only used by configure to print its final report, and isn't needed for the compilation. We did it this way so that our configure may also be used by other projects, just by replacing the QUANTUM ESPRESSO-specific configure.msg.in by your own.

configure writes a detailed log of its operation to config.log. When any configuration step fails, you may look there for the relevant error messages. Note that it is normal for some checks to fail.

3.1.2 How to add support for a new architecture

In order to support a previously unsupported architecture, first you have to figure out which compilers, compilation flags, libraries etc. should be used on that architecture. In other words, you have to write a make.sys that works: you may use the manual configuration procedure for that (see the User Guide). Then, you have to modify configure so that it can generate that make.sys automatically.

To do that, you have to add the case for your architecture in several places throughout configure.ac:

  1. Detect architecture

    Look for these lines:

      if test "$arch" = ""
      then
              case $host in
                      ia64-*-linux-gnu )      arch=ia64   ;;
                      x86_64-*-linux-gnu )    arch=x86_64 ;;
                      *-pc-linux-gnu )        arch=ia32   ;;
                      etc.
    
    Here you must add an entry corresponding to your architecture and operating system. Run config.guess to obtain the string identifying your system. For instance on a PC it may be "i686-pc-linux-gnu", while on IBM SP4 "powerpc-ibm-aix5.1.0.0". It is convenient to put some asterisks to account for small variations of the string for different machines of the same family. For instance, it could be "aix4.3" instead of "aix5.1", or "athlon" instead of "i686"...

  2. Select compilers

    Look for these lines:

      # candidate compilers and flags based on architecture
      case $arch in
      ia64 | x86_64 )
            ...
      ia32 )
            ...
      aix )
            ...
      etc.
    

    Add an entry for your value of $arch, and set there the appropriate values for several variables, if needed (all variables are assigned some reasonable default value, defined before the "case" block):

    - "try_f90" should contain the list of candidate Fortran 90 compilers, in order of decreasing preference (i.e. configure will use the first it finds). If your system has parallel compilers, you should list them in "try_mpif90".

    - "try_ar", "try_arflags": for these, the values "ar" and "ruv" should be always fine, unless some special flag is required (e.g., -X64 With sp4).

    - you should define "try_dflags" if there is any "#ifdef" specific to your machine: for instance, on IBM machines, "try_dflags=-D__AIX" . A list of such flags can be found in file include/defs.h.README.

    You shouldn't need to define the following: - "try_iflags" should be set to the appropriate "-I" option(s) needed by the preprocessor or by the compiler to locate *.h files to be included; try_iflags="-I../include" should be good for most cases

    For example, here's the entry for IBM machines running AIX:

       aix )
            try_mpif90="mpxlf90_r mpxlf90"
            try_f90="xlf90_r xlf90 $try_f90"
            try_arflags="-X64 ruv"
            try_arflags_dynamic="-X64 ruv"
            try_dflags="-D__AIX -D__XLF"
            ;;
    
    The following step is to look for both serial and parallel fortran compilers:
      # check serial Fortran 90 compiler...
      ...
      AC_PROG_F77($f90)
      ...
            # check parallel Fortran 90 compiler
      ...
            AC_PROG_F77($mpif90)
      ...
      echo setting F90... $f90
      echo setting MPIF90... $mpif90
    
    A few compilers require some extra work here: for instance, if the Intel Fortran compiler was selected, you need to know which version because different versions need different flags.

    At the end of the test,

    - $mpif90 is the parallel compiler, if any; if no parallel compiler is found or if -disable-parallel was specified, $mpif90 is the serial compiler

    - $f90 is the serial compiler

    Next step: the choice of (serial) C and Fortran 77 compilers. Look for these lines:

      # candidate C and f77 compilers good for all cases
      try_cc="cc gcc"
      try_f77="$f90"
    
      case "$arch:$f90" in
      *:f90 )
            ....
      etc.
    
    Here you have to add an entry for your architecture, and since the correct choice of C and f77 compilers may depend on the fortran-90 compiler, you may need to specify the f90 compiler as well. Again, specify the compilers in try_cc and try_f77 in order of decreasing preference. At the end of the test,

    - $cc is the C compiler

    - $f77 is the Fortran 77 compiler, used to compile *.f files (may coincide with $f90)

  3. Specify compilation flags.

    Look for these lines:

      # check Fortran compiler flags
      ...
      case "$arch:$f90" in
      ia64:ifort* | x86_64:ifort* )
            ...
      ia64:ifc* )
            ...
      etc.
    
    Add an entry for your case and define:

    - "try_fflags": flags for Fortran 77 compiler.

    - "try_f90flags": flags for Fortran 90 compiler. In most cases they will be the same as in Fortran 77 plus some others. In that case, define them as "$(FFLAGS) -something_else".

    - "try_fflags_noopt": flags for Fortran 77 with all optimizations turned off: this is usually "-O0". These flags must be used for compiling flib/dlamch.f (part of our version of Lapack): it won't work properly with optimization.

    - "try_ldflags": flags for the linking phase (not including the list of libraries: this is decided later).

    - "try_ldflags_static": additional flags to select static compilation (i.e., don't use shared libraries).

    - "try_dflags": must be defined if there is in the code any #ifdef specific to your compiler (for instance, -D__INTEL for Intel compilers). Define it as "$try_dflags -D..." so that pre-existing flags, if any, are preserved.

    - if the Fortran 90 compiler is not able to invoke the C preprocessor automatically before compiling, set "have_cpp=0" (the opposite case is the default). The appropriate compilation rules will be generated accordingly. If the compiler requires that any flags be specified in order to invoke the preprocessor (for example, "-fpp " - note the space), specify them in "pre_fdflags".

    For example, here's the entry for ifort on Linux PC:

      ia32:ifort* )
              try_fflags="-O2 -tpp6 -assume byterecl"
              try_f90flags="\$(FFLAGS) -nomodule"
              try_fflags_noopt="-O0 -assume byterecl"
              try_ldflags=""
              try_ldflags_static="-static"
              try_dflags="$try_dflags -D__INTEL"
              pre_fdflags="-fpp "
              ;;
    
    Next step: flags for the C compiler. Look for these lines:
      case "$arch:$cc" in
      *:icc )
            ...
      *:pgcc )
            ...
      etc.
    
    Add an entry for your case and define:

    - "try_cflags": flags for C compiler.

    - "c_ldflags": flags for linking, when using the C compiler as linker. This is needed to check for libraries written in C, such as FFTW.

    - if you need a different preprocessor from the standard one ($CC -E), define it in "try_cpp".

    For example for XLC on AIX:

      aix:mpcc* | aix:xlc* | aix:cc )
              try_cflags="-q64 -O2"
              c_ldflags="-q64"
              ;;
    
    Finally, if you have to use a nonstandard preprocessor, look for these lines:
      echo $ECHO_N "setting CPPFLAGS... $ECHO_C"
      case $cpp in
            cpp) try_cppflags="-P -traditional" ;;
            fpp) try_cppflags="-P"              ;;
            ...
    
    and set "try_cppflags" as appropriate.

  4. Search for libraries

    To instruct configure to search for libraries, you must tell it two things: the names of libraries it should search for, and where it should search.

    The following libraries are searched for:

    - BLAS or equivalent. Some vendor replacements for BLAS that are supported by QUANTUM ESPRESSO are:

    MKL on Linux, 32- and 64-bit Intel CPUs
    ACML on Linux, 64-bit AMD CPUs
    essl on AIX
    SCSL on sgi altix
    SUNperf on sparc
    Moreover, ATLAS is used over BLAS if available.

    - LAPACK or equivalent. Some vendor replacements for LAPACK that are supported by QUANTUM ESPRESSO are:

    mkl on linux SUNperf on sparc

    - FFTW (version 3) or another supported FFT library. The latter include:

    essl on aix ACML on Linux, 64-bit AMD CPUs SUNperf on sparc

    - the MASS vector math library on aix

    - an MPI library. This is often automatically linked by the compiler

    If you have another replacement for the above libraries, you'll have to insert a new entry in the appropriate place.

    This is unfortunately a little bit too complex to explain. Basic info:
    "AC_SEARCH_LIBS(function, name, ...)" looks for symbol "function" in library "libname.a". If that is found, "-lname" is appended to the LIBS environment variable (initially empty). The real thing is more complicated than just that because the "-Ldirectory" option must be added to search in a nonstandard directory, and because a given library may require other libraries as prerequisites (for example, Lapack requires BLAS).

4 Algorithms

4.1 Gamma tricks

In calculations using only the $ \Gamma$ point (k=0), the Kohn-Sham orbitals can be chosen to be real functions in real space, so that $ \psi$(G) = $ \psi^{*}_{}$(- G). This allows us to store only half of the Fourier components. Moreover, two real FFTs can be performed as a single complex FFT. The auxiliary complex function $ \Phi$ is introduced: $ \Phi$(r) = $ \psi_{j}^{}$(r) + i$ \psi_{{j+1}}^{}$(r) whose Fourier transform $ \Phi$(G) yields

$ \psi_{j}^{}$(G) = $ {\Phi(G) + \Phi^*(-G)\over 2}$,$ \psi_{{j+1}}^{}$(G) = $ {\Phi(G) - \Phi^*(-G)\over 2i}$.

A side effect on parallelization is that G and - G must reside on the same processor. As a consequence, pairs of columns with Gn'1, n'2, n'3 and G-n'1,-n'2, n'3 (with the exception of the case n'1 = n'2 = 0 ), must be assigned to the same processor.

5 Structure of the code


5.1 Preprocessing

The code contains C-style preprocessing directives. Most fortran compilers directly support them; some don't, and preprocessing is ''hand-made'' by the makefile using the C preprocessor cpp. The C preprocessor may:
  • assign a value to a given expression. For instance, command #define THIS that, or the option in the command line: -DTHIS=that, will replace all occurrence of THIS with that.
  • include file (command #include)
  • expand macros (command #define)
  • execute conditional expressions such as
      #ifdef __expression
        ...code A...
      #else
        ...code B...
      #endif
    
    If ''expression'' is defined (with a #define command or from the command line with option D__expression), then ...code A... is sent to output; otherwise ...code B... is sent to output.

The file include/defs.h.README contains a list of definitions that are used in the code. In order to make preprocessing options easy to see, preprocessing variables should start with two underscores, as __expression in the above example. Traditionally ''preprocessed'' variables are also written in uppercase.

6 Format of arrays containing charge density, potential, etc.

The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array psi(nr1x,nr2x,nr3x). FORTRAN compilers store this array sequentially in the computer RAM in the following way:
        psi(   1,   1,   1)
        psi(   2,   1,   1)
        ...
        psi(nr1x,   1,   1)
        psi(   1,   2,   1)
        psi(   2,   2,   1)
        ...
        psi(nr1x,   2,   1)
        ...
        ...
        psi(nr1x,nr2x,   1)
        ...
        psi(nr1x,nr2x,nr3x)
etc
Let ind be the position of the (i,j,k) element in the above list: the following relation
        ind = i + (j - 1) * nr1x + (k - 1) *  nr2x * nr1x
holds. This should clarify the relation between 1D and 3D indexing. In real space, the (i,j,k) point of the FFT grid with dimensions nr1 ($ \le$ nr1x), nr2 ($ \le$ nr2x), , nr3 ($ \le$ nr3x), is

rijk = $\displaystyle {\frac{{i-1}}{{nr1}}}$$\displaystyle \tau_{1}^{}$ + $\displaystyle {\frac{{j-1}}{{nr2}}}$$\displaystyle \tau_{2}^{}$ + $\displaystyle {\frac{{k-1}}{{nr3}}}$$\displaystyle \tau_{3}^{}$

where the $ \tau_{i}^{}$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the at array: $ \tau_{1}^{}$ = at(:, 1), $ \tau_{2}^{}$ = at(:, 2), $ \tau_{3}^{}$ = at(:, 3).

The distinction between the dimensions of the FFT grid, (nr1,nr2,nr3) and the physical dimensions of the array, (nr1x,nr2x,nr3x) is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have nrx1=nr1+1 to reduce memory conflicts.

7 Parallelization

In parallel execution (MPI only), N independent processes are started (do not start more than one per processor!) that communicate via calls to MPI libraries. Each process has its own set of variables and knows nothing about other processes' variables. Variables that take little memory are replicated, those that take a lot of memory (wavefunctions, G-vectors, R-space grid) are distributed.

7.0.1 Usage of #ifdef __MPI

Calls to MPI libraries require variables contained into a mpif.h file that is usually absent on serial machines. IN order to prevent compilation problems, it is a good idea to follow these rules:
  • All direct calls to MPI library routines should either be #ifdef'ed, or wrapped into calls to routines like those in module mp.f90.
  • Routines that are used only in parallel execution may be either called and #ifdef'ed inside, or not called (via an #ifdef) and not compiled (via an #ifdef again) in the serial case. Note that some compilers do not like empty files or modules containing nothing!
  • Other #ifdef __MPI may be needed when the flux of parallel execution is different from that of the serial case.
  • All other #ifdef __MPI are not needed, may be removed if already present; #ifdef __PARA is also obsolescent.

7.1 Tricks and pitfalls

  • Replicated calculations may either be performed independently on each processor, or performed on one processor and broadcast to all others. The first approach requires less programming, but it is unsafe: in principle all processors should yield exactly the same results, if they work on the same data, but sometimes they don't (depending on the machine, compiler, and libraries). Even a tiny difference in the last significant digit can eventually cause serious trouble if allowed to build up, especially when a replicated check is performed (in which case the code may ''hang'' if the check yields different results on different processors). Never assume that the value of a variable produced by replicated calculations is exactly the same on all processors: when in doubt, broadcast the value calculated on a specific processor (the ''root'' processor) to all others.
  • Routine errore should be called in parallel by all processors, or else it will hang
  • I/O operations: file opening, closing, and so on, are as a rule performed only on processor ionode. The correct way to check for errors is the following:
    IF ( ionode ) THEN
       OPEN ( ..., IOSTAT=ierr )
       ...
    END IF
    CALL mp_bcast( ierr, ... )
    CALL errore( 'routine','error', ierr )
    
    The same applies to all operations performed on a single processor, or a subgroup of processors: any error code must be broadcast before the check.

7.2 Data distribution

Quantum ESPRESSO employ arrays whose memory requirements fall into three categories.

  • Fully Scalable: Arrays that are distributed across processors of a pool. Fully scalable arrays are typically large to very large and contain one of the following dimensions:
    • number of plane waves, npw (or max number, npwx)
    • number of Gvectors, ngm
    • number of grid points in the R space, dfft%nnr
    Their size decreases linearly with the number of processors in a pool.

  • Partially Scalable: Arrays that are distributed across processors of the ortho or diag group. Typically they are much smaller than fully scalable array, and small in absolute terms for moderate-size system. Their size however increases quadratically with the number of atoms in the system, so they have to be distributed for large systems (hundreds to thousands atoms). Partially scalable arrays contain none of the dimensions listed above, two of the following dimensions:
    • number of states, nbnd
    • number of atomic states, natomwfc
    • number of projectors, nkb
    Their size decreases linearly with the number of processors in a ortho or diag group.

  • Nonscalable: All the remaining arrays, that are not distributed across processors. These are typically small arrays, having dimensions like for instance:
    • number of atoms, nat
    • number of species of atoms, nsp
    The size of these arrays is independent on the number of processors.

8 File Formats

8.1 Data file(s)

QUANTUM ESPRESSO restart file specifications: Paolo Giannozzi scripsit AD 2005-11-11, Last modified by Andrea Ferretti 2006-10-29

8.1.1 Rationale

Requirements: the data file should be

  • efficient (quick to read and write)
  • easy to read, parse and write without special libraries
  • easy to understand (self-documented)
  • portable across different software packages
  • portable across different computer architectures
Solutions:
  • use binary I/O for large records
  • exploit the file system for organizing data
  • use XML
  • use a small specialized library (iotk) to read, parse, write
  • ensure the possibility to convert to a portable formatted file
Integration with other packages:
  • provide a self-standing (code-independent) library to read/write this format
  • the use of this library is intended to be at high level, hiding low-level details

8.1.2 General structure

Format name: QEXML
Format version: 1.4.0

The "restart file" is actually a "restart directory", containing several files and sub-directories. For CP/FPMD, the restart directory is created as "$prefix_$ndw/", where $prefix is the value of the variable "prefix". $ndw the value of variable ndw, both read in input; it is read from "$prefix_$ndr/", where $ndr the value of variable ndr, read from input. For PWscf, both input and output directories are called "$prefix.save/".

The content of the restart directory is as follows:

data-file.xml          which contains:
                       - general information that doesn't require large data set: 
                         atomic structure, lattice, k-points, symmetries,
                         parameters of the run, ...
                       - pointers to other files or directories containing bulkier
                         data: grids, wavefunctions, charge density, potentials, ...
  
charge_density.dat     contains the charge density
spin_polarization.dat  contains the spin polarization (rhoup-rhodw) (LSDA case)
magnetization.x.dat    
magnetization.y.dat    contain the spin polarization along x,y,z 
magnetization.z.dat    (noncollinear calculations)
lambda.dat             contains occupations (Car-Parrinello dynamics only)
mat_z.1                contains occupations (ensemble-dynamics only)

<pseudopotentials>     A copy of all pseudopotential files given in input
    
<k-point dirs>         Subdirectories K00001/, K00002/, etc, one per k-point.
Each k-point directory contains:
    evc.dat                wavefunctions for spin-unpolarized calculations, OR
    evc1.dat
    evc2.dat               spin-up and spin-down wavefunctions, respectively, 
                           for spin polarized (LSDA) calculations;
    gkvectors.dat          the details of specific k+G grid;
    eigenval.xml           eigenvalues for the corresponding k-point
                           for spin-unpolarized calculations, OR
    eigenval1.xml          spin-up and spin-down eigenvalues,
    eigenval2.xml          for spin-polarized calculations;
in a molecular dynamics run, also wavefunctions at the preceding time step:
    evcm.dat               for spin-unpolarized calculations OR
    evcm1.dat
    evcm2.dat              for spin polarized calculations;

  • All files "*.xml" are XML-compliant, formatted file;
  • Files "mat_z.1", "lambda.dat" are unformatted files, containing a single record;
  • All other files "*.dat", are XML-compliant files, but they contain an unformatted record.

8.1.3 Structure of file "data-file.xml"

XML Header: whatever is needed to have a well-formed XML file

Body: introduced by <Root>, terminated by </Root>. Contains first-level tags
      only. These contain only other tags, not values. XML syntax applies.

First-level tags: contain either
     second-level tags, OR
     data tags:   tags containing data (values for a given variable), OR
     file tags:   tags pointing to a file
data tags syntax ( [...] = optional ) :
      <TAG type="vartype" size="n" [UNIT="units"] [LEN="k"]>
      values (in appropriate units) for variable corresponding to TAG:
      n elements of type vartype (if character, of lenght k)
      </TAG>
where TAG describes the variable into which data must be read;
"vartype" may be "integer", "real", "character", "logical";
if type="logical", LEN=k" must be used to specify the length of the variable character; size="n" is the dimension.
Acceptable values for "units" depend on the specific tag.

Short syntax, used only in a few cases:

      <TAG attribute="something"/> .
For instance:
      <FFT_GRID nr1="NR1" nr2="NR2" nr3="NR3"/>
defines the value of the FFT grid parameters nr1, nr2, nr3 for the charge density

8.1.4 Sample

Header:
 <?xml version="1.0"?>
 <?iotk version="1.0.0test"?>
 <?iotk file_version="1.0"?>
 <?iotk binary="F"?>
These are meant to be used only by iotk (actually they aren't)

First-level tags:

  - <HEADER>         (global information about fmt version)
  - <CONTROL>        (miscellanea of internal information)
  - <STATUS>         (information about the status of the CP simulation)
  - <CELL>           (lattice vector, unit cell, etc)
  - <IONS>           (type and positions of atoms in the unit cell etc)
  - <SYMMETRIES>     (symmetry operations)
  - <ELECTRIC_FIELD> (details for an eventual applied electric field)
  - <PLANE_WAVES>    (basis set, cutoffs etc)
  - <SPIN>           (info on spin polarizaztion)
  - <MAGNETIZATION_INIT>     (info about starting or constrained magnetization)
  - <EXCHANGE_CORRELATION>
  - <OCCUPATIONS>    (occupancy of the states)
  - <BRILLOUIN_ZONE> (k-points etc)
  - <PHONON>         (info for phonon calculations)  
  - <PARALLELISM>    (specialized info for parallel runs)
  - <CHARGE-DENSITY>
  - <TIMESTEPS>      (positions, velocities, nose' thermostats)
  - <BAND_STRUCTURE_INFO>    (dimensions and basic data about band structure)
  - <EIGENVALUES>    (eigenvalues and related data)
  - <EIGENVECTORS>   (eigenvectors and related data)

  
* Tag description

  <HEADER> 
     <FORMAT>    (name and version of the format)
     <CREATOR>   (name and version of the code generating the file)
  </HEADER>

  <CONTROL>
     <PP_CHECK_FLAG>    (whether the file can be used for post-processing)
     <LKPOINT_DIR>      (whether kpt-data are written in sub-directories)
     <Q_REAL_SPACE>     (whether augmentation terms are used in real space)
  </CONTROL>

  <STATUS>  (optional)
     <STEP>   (number $n of steps performed, i.e. we are at step $n)
     <TIME>   (total simulation time)
     <TITLE>  (a job descriptor)
     <ekin>   (kinetic energy)
     <eht>    (hartree energy)
     <esr>    (Ewald term, real-space contribution)
     <eself>  (self-interaction of the Gaussians)
     <epseu>  (pseudopotential energy, local)
     <enl>    (pseudopotential energy, nonlocal)
     <exc>    (exchange-correlation energy)
     <vave>   (average of the potential)
     <enthal> (enthalpy: E+PV)
  </STATUS>

  <CELL>
     <BRAVAIS_LATTICE>
     <LATTICE_PARAMETER>
     <CELL_DIMENSIONS>  (cell parameters)
     <DIRECT_LATTICE_VECTORS>
        <UNITS_FOR_DIRECT_LATTICE_VECTORS>
        <a1>
        <a2>
        <a3>
     <RECIPROCAL_LATTICE_VECTORS>
        <UNITS_FOR_RECIPROCAL_LATTICE_VECTORS>
        <b1>
        <b2>
        <b3>
  </CELL>

  <IONS>
     <NUMBER_OF_ATOMS>
     <NUMBER_OF_SPECIES>
     <UNITS_FOR_ATOMIC_MASSES>
     For each $n-th species $X:
        <SPECIE.$n>
           <ATOM_TYPE>
           <MASS>
           <PSEUDO>
        </SPECIE.$n>
     <PSEUDO_DIR>
     <UNITS_FOR_ATOMIC_POSITIONS>
     For each atom $n of species $X:
        <ATOM.$n SPECIES="$X">
  </IONS>

  <SYMMETRIES>
     <NUMBER_OF_SYMMETRIES>
     <INVERSION_SYMMETRY>
     <NUMBER_OF_ATOMS>
     <UNITS_FOR_SYMMETRIES>
     For each symmetry $n:
        <SYMM.$n>
           <INFO>
           <ROTATION>
           <FRACTIONAL_TRANSLATION>
           <EQUIVALENT_IONS>
        </SYMM.$n>
  </SYMMETRIES>

  <ELECTRIC_FIELD>  (optional)
     <HAS_ELECTRIC_FIELD> 
     <HAS_DIPOLE_CORRECTION>
     <FIELD_DIRECTION>
     <MAXIMUM_POSITION>
     <INVERSE_REGION>
     <FIELD_AMPLITUDE>
  </ELECTRIC_FIELD>  

  <PLANE_WAVES>
     <UNITS_FOR_CUTOFF>
     <WFC_CUTOFF>
     <RHO_CUTOFF>
     <MAX_NUMBER_OF_GK-VECTORS>
     <GAMMA_ONLY>
     <FFT_GRID>
     <GVECT_NUMBER>
     <SMOOTH_FFT_GRID>
     <SMOOTH_GVECT_NUMBER>
     <G-VECTORS_FILE>       link to file "gvectors.dat"
     <SMALLBOX_FFT_GRID>
  </PLANE_WAVES>

  <SPIN>
     <LSDA>
     <NON-COLINEAR_CALCULATION>
     <SPIN-ORBIT_CALCULATION>
     <SPIN-ORBIT_DOMAG>
  </SPIN>

  <EXCHANGE_CORRELATION>
     <DFT>
     <LDA_PLUS_U_CALCULATION>
     if LDA_PLUS_U_CALCULATION
        <NUMBER_OF_SPECIES>
        <HUBBARD_LMAX>
        <HUBBARD_L>
        <HUBBARD_U>
        <HUBBARD_ALPHA>
     endif
  </EXCHANGE_CORRELATION>

  if hybrid functional
      <EXACT_EXCHANGE>
        <x_gamma_extrapolation>
        <nqx1>
        <nqx2>
        <nqx3>
        <exxdiv_treatment>
        <yukawa>
        <ecutvcut>
        <exx_fraction>
        <screening_parameter>
      </EXACT_EXCHANGE>
  endif 

  <OCCUPATIONS>
     <SMEARING_METHOD>
     if gaussian smearing
        <SMEARING_TYPE>
        <SMEARING_PARAMETER>
     endif
     <TETRAHEDRON_METHOD>
     if use tetrahedra
        <NUMBER_OF_TETRAHEDRA>
        for each tetrahedron $t
           <TETRAHEDRON.$t>
     endif
     <FIXED_OCCUPATIONS>
     if using fixed occupations
        <INFO>
        <INPUT_OCC_UP>
        if lsda
           <INPUT_OCC_DOWN>
        endif
     endif
  </OCCUPATIONS>

  <BRILLOUIN_ZONE>
     <NUMBER_OF_K-POINTS>
     <UNITS_FOR_K-POINTS>
     <MONKHORST_PACK_GRID>
     <MONKHORST_PACK_OFFSET>
     For each k-point $n:
        <K-POINT.$n>
  </BRILLOUIN_ZONE>

  <PHONON> 
     <NUMBER_OF_MODES>
     <UNITS_FOR_Q-POINT>
     <Q-POINT>
  </PHONON>

  <PARALLELISM>
     <GRANULARITY_OF_K-POINTS_DISTRIBUTION>
  </PARALLELISM>

  <CHARGE-DENSITY>
      link to file "charge_density.rho"
  </CHARGE-DENSITY>

  <TIMESTEPS>  (optional)
     For each time step $n=0,M
       <STEP$n>
          <ACCUMULATORS>
          <IONS_POSITIONS>
             <stau>
             <svel>
             <taui>
             <cdmi>
             <force>
          <IONS_NOSE>
             <nhpcl>
             <nhpdim>
             <xnhp>
             <vnhp>
          <ekincm>
          <ELECTRONS_NOSE>
             <xnhe>
             <vnhe>
          <CELL_PARAMETERS>
             <ht>
             <htve>
             <gvel>
          <CELL_NOSE>
             <xnhh>
             <vnhh>
          </CELL_NOSE>
  </TIMESTEPS>

  <BAND_STRUCTURE_INFO>
     <NUMBER_OF_BANDS>
     <NUMBER_OF_K-POINTS>
     <NUMBER_OF_SPIN_COMPONENTS>
     <NON-COLINEAR_CALCULATION>
     <NUMBER_OF_ATOMIC_WFC>
     <NUMBER_OF_ELECTRONS>
     <UNITS_FOR_K-POINTS>
     <UNITS_FOR_ENERGIES>
     <FERMI_ENERGY>
  </BAND_STRUCTURE_INFO>

  <EIGENVALUES>
     For all kpoint $n:
         <K-POINT.$n>
             <K-POINT_COORDS>
             <WEIGHT>
             <DATAFILE>                  link to file "./K$n/eigenval.xml"
         </K-POINT.$n>
  </EIGENVALUES>

  <EIGENVECTORS>
     <MAX_NUMBER_OF_GK-VECTORS>
     For all kpoint $n:
         <K-POINT.$n>
             <NUMBER_OF_GK-VECTORS>
             <GK-VECTORS>                link to file "./K$n/gkvectors.dat"
             for all spin $s
                <WFC.$s>                 link to file "./K$n/evc.dat"
                <WFCM.$s>                link to file "./K$n/evcm.dat" (optional)
                                         containing wavefunctions at preceding step
         </K-POINT.$n>
  </EIGENVECTORS>

8.2 Restart files

9 Modifying/adding/extending QUANTUM ESPRESSO

9.1 Programming style (or lack of it)

There are currently no strict guidelines for developers. You should however try to follow at least the following loose ones:

  • Preprocessing options should be capitalized and start with two underscores. Examples: __AIX, __LINUX, ...
  • Fortran commands should be capitalized: CALL something( )
  • Variable names should be lowercase: foo = bar/2
  • Indent DO's and IF's with three white spaces (editors like emacs will do this automatically for you)
  • Do not write crammed code: leave spaces, insert empty separation lines
  • Use comments (introduced by a !) to explain what is not obvious from the code. Remember that what is obvious to yoiu may not be obvious to other people. It is especially important to document what a routine does, what it needs on input, what it produces on output. A few words of comment may save hours of searches into the code for a pice of missing information.
  • do not use machine-dependent extensions or sloppy syntax. Am example: Standard f90 requires that a & is needed both at end of line AND at the beginning of continuation line if there is a character variable (inside ' ' or " ") spanning two lines. Some compilers do not complain if the latter & is missing, others do.
  • use "dp" (defined in module ''kinds'') to define the type of real and complex variables
  • all constants should be defined to be of kind "dp". Preferred syntax: 0.0_dp.
  • use "generic" intrinsic functions: SIN, COS, etc.
  • conversions should be explicitely indicated. For conversions to real, use DBLE, or else REAL(...,KIND=dp). For conversions to complex, use CMPLX(...,...,KIND=dp). For complex conjugate, use CONJG. For imaginary part, use AIMAG. IMPORTANT: Do not use REAL or CMPLX without KIND=dp, or else you will lose precision (except when you take the real part of a double precision complex number).
  • Do not use automatic arrays (e.g. REAL(dp) :: A(N) in a subroutine) except if you are sure that the array is small in all cases: you may easily exceed the stack size if the arrays are large.
  • Do not use pointers unless you have a good reason to: pointers may hinder optimization. Allocatable arrays should be used instead.
  • If you use pointers, nullify them before performing tests on their status.
  • Beware fancy constructs like structures and pointers: they look great on paper, but they have also the potential to make a code unreadable, or to confuse the compiler. Also, be careful with F90 array syntax and in particular with array sections: they may turn out to be inefficient.
  • Do not pass unallocated arrays as arguments, even in those cases where they are not actually used inside the subroutine.
  • Do not use any construct that is susceptible to be flagged as out-of-bounds error, even if no actual out-of-bound error takes place.
  • Always use IMPLICIT NONE and define all local variables. All variables passed as arguments to a routine should be defined as INTENT (IN), (OUT), or (INOUT). All variables from modules should be explicitly specified via USE module, ONLY : variable

9.2 Adding or modifying input variables

New input variables should be added to ''Modules/input_parameters.f90'', then copied to the code internal variables in the ''input.f90'' subroutine. The namelists and cards parsers are in ''Modules/read_namelists.f90'' and ''Modules/read_cards.f90''. Files ''input_parameters.f90'', ''read_namelists.f90'', ''read_cards.f90'' are shared by all codes, while each code has its own version of ''input.f90'' used to copy input values into internal variables

EXAMPLE: suppose you need to add a new input variable called ''pippo'' to the namelist control, then:

  1. add pippo to the input_parameters.f90 file containing the namelist control
                  INTEGER :: pippo = 0
                  NAMELIST / control / ....., pippo
    
    Remember: always set an initial value!

  2. add pippo to the control_default subroutine (contained in module read_namelists.f90 )
                   subroutine control_default( prog )
                  ...
                  IF( prog == 'PW' ) pippo = 10
                  ...
                  end subroutine
    
    This routine sets the default value for pippo (can be different in different codes)

  3. add pippo to the control_bcast subroutine (contained in module read_namelists.f90 )
                    subroutine control_bcast( )
                    ...
                    call mp_bcast( pippo )
                    ...
                    end subroutine
    


10 Using SVN

The package is available read-only using anonymous access to the Subversion (SVN) repository. Developers can have read-write access when needed. Note that the latest (development) version may not work properly, and sometimes not even compile properly. Use at your own risk.

Subversion, also known as SVN, is a software that allows many developers to work and maintain a single copy of a software in a central location (repository). It is installed by default on many Unix machines, or otherwise it can be very easily installed. For the end user, SVN is rather similar to CVS: if no advanced features are used, the basic commands are the same. More information on SVN can be found here: http://subversion.apache.org/.

Follow the instructions in http://qe-forge.org/gf/project/q-e/scmsvn, under `Access Info'', to check out (i.e. download) the SVN repository in either read-write or anonymous mode. The distribution will appear in directory trunk/espresso/. Branches (i.e. sub-versions) will appear as separate directories.

10.1 SVN operations

To update the code to the current version:

  svn update
in the directory containing the distribution. To see the difference between the current version and your modified copy:
  svn diff
To save your modified version into the repository: (read-write access only):
  svn commit
If you also want to add a new file, before commiting give command
  svn add


10.2 Removing conflicts

When you update your working copy of the repository, you may encounter two types of conflicts:
  1. Somebody else has changed the same lines that you have modified.
  2. Somebody else has changed something that has broken one or more functionalities of your modified version.
In the former case, look into the conflicting section: in most cases, conflicts are trivial (format changes, white spaces) or easily solved (the part of the code you were modifying has been moved to another place, for instance). In the latter case, sometimes the problem can also be trivially solved (a variable has changed name or has been moved, a subroutine is called with different arguments, etc.)

Sometimes, the conflict is not so easy to solve. In this case, you can selectively update your repository at a given date, or at a given revision number, using command (ARG=revision number, or {"date"}):

  svn update -r ARG
In this way you can locate which change is the culprit. The web-SVN interface:
   http://qe-forge.org/gf/project/q-e/scmsvn
will also be very helpful in locating the problem. Of course, communication with other developers will also help.

11 Bibliography

Fortran books:

  • M. Metcalf, J. Reid, Fortran 95/2003 Explained, Oxford University Press (2004)
  • S. J. Chapman, Fortran 95/2003 for Scientists and Engineers, McGraw Hill (2007)
  • J. C. Adams, W. S. Brainerd, R. A. Hendrickson, R. E. Maine, J. T. Martin, B. T. Smith, The Fortran 2003 Handbook, Springer (2009)
  • W. S. Brainerd, Guide to Fortran 2003 Programming, Springer (2009)
On-line tutorials:
  • Fortran: http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html
  • Make: http://en.wikipedia.org/wiki/Make_(software)
  • Configure script: http://en.wikipedia.org/wiki/Configure_script
(info courtesy of Goranka Bilalbegovic)

About this document ...

Image quantum_espresso Image democritos
Developer's Manual for QUANTUM ESPRESSO(v. 5.0.2)

This document was generated using the LaTeX2HTML translator Version 2002-2-1 (1.71)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -t 'Developer's Manual for Quantum-ESPRESSO' -html_version 3.2,math -toc_depth 3 -split 3 -toc_stars -show_section_numbers -local_icons -image_type png developer_man.tex

The translation was initiated by Layla Martin-Samos Colomer on 2012-11-21



next_inactive up previous
Layla Martin-Samos Colomer 2012-11-21
espresso-5.0.2/Doc/developer_man/nx_grp_g.png0000644000700200004540000000060212053147360020215 0ustar marsamoscm‰PNG  IHDRQд~ØtRNS¿-Mc%;IDATxœµ”ÙmÄ0CŸ µÅþ¶u°l¸|è´­MHB@†0朢´t$Ž¶Í ËÀ68é°êvŽÛyð@N€]Ìéaášb¢.¢ö´®k=ÌÆi@Y`¶÷"æ²þò>’Ø~RGI¸”–4JlßZâ4F¸›¬Óòv¾b­'¿Â¤Žo‘÷Ÿ9û}Ÿfy7[O±ÓF7õÊÆXX®£P¥ª‹H€D“¾Wu7µÉå܊­Ò—[|މ#†Ï:ŠW"¨Š 2á®Ã¨'Óïâ Ýb¯ Ÿ"N±ÝDá&±.QÑï{y)Z—#ÑCŨø[Xåíº¬²*múÙŒ="š¸9…»î«öb]nF;ÝœêÀvþ‰zzÿ§ž_cšy"ú6Gñ:‡çÛ—IEND®B`‚espresso-5.0.2/Doc/developer_man/img5.png0000644000700200004540000000041712053147355017263 0ustar marsamoscm‰PNG  IHDR# ãç3-PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$.7utRNS@æØfIDAT•c`nA§ˆ³ŸJ?v>Å" ÒÄÀ`ç"Ò&6ÅŽ$Ä2&4€¹ 8”¤3L^¢žÂK Ò"pû"&0p€°YY°0@9 ¼  l Œ wC0cB?ˆÉÞ aµA&²ñLÞ™Tp<QýNúãzIEND®B`‚espresso-5.0.2/Doc/developer_man/developer_man.css0000644000700200004540000000157312053147360021246 0ustar marsamoscm/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */ .MATH { font-family: "Century Schoolbook", serif; } .MATH I { font-family: "Century Schoolbook", serif; font-style: italic } .BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold } /* implement both fixed-size and relative sizes */ SMALL.XTINY { font-size : xx-small } SMALL.TINY { font-size : x-small } SMALL.SCRIPTSIZE { font-size : smaller } SMALL.FOOTNOTESIZE { font-size : small } SMALL.SMALL { } BIG.LARGE { } BIG.XLARGE { font-size : large } BIG.XXLARGE { font-size : x-large } BIG.HUGE { font-size : larger } BIG.XHUGE { font-size : xx-large } /* heading styles */ H1 { } H2 { } H3 { } H4 { } H5 { } /* mathematics styles */ DIV.displaymath { } /* math displays */ TD.eqno { } /* equation-number cells */ /* document-specific styles come next */ espresso-5.0.2/Doc/developer_man/img12.png0000644000700200004540000000073212053147357017343 0ustar marsamoscm‰PNG  IHDR2=j@Á0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfXIDAT8c`VÁ"øÿÿQ@Là?Dk‚BdÆ\:@€Ù€»Y@ðYˆ hê ¤@¨di~° æ†(:ÀàÏ0 qJ³€Iv2ý~ó1€7”QÝÅÐÒv,°qƒ‹D³È|Š%¤ ¼d+/Š ¯…‡bÖÃbò>V  y PFSë‰ I«#?ÓD ÜÀLBœLPÞ%†-.Ä:vàÿ<ÏŠš9p)ä',ÃêàSÏJ æØ PeX>âÒÃÝ€"¡1G˜Á$‡Ã%œÝ8d°v¬À.ÓÀÀü»Lãw$.SÀo~vþ‹|@¯ñ6 «äXÀËÀPb²¡Šò ŒŸØ®YÌ ¨Ù¿ƒqGË ëþÿÿh!?\À\Ñù„dæ|Á+IEND®B`‚espresso-5.0.2/Doc/developer_man/prev_g.png0000644000700200004540000000050712053147360017700 0ustar marsamoscm‰PNG  IHDR?šJtRNS¿-Mc%IDATxœÍ”ÁuÄ D?~´5ým9î`ÓD:p9€cÇäm.™ÂBBb$9d¾b`Hí¨ž°UI:Bu:±éΓE»-'ƒ}› Øã²ØC|,¤÷tÇ%ì„}yF²sP©ª=šT¯’„¨Â.¢+—9döGƒ+WZ­~paòâÛnP8ðã9ÔâÔ5îil u9ä'»öͩβ ý²‘ÁÖ’á_¼ÿ¹+þxež ôŒUþ+Ôi„Îÿþ@i’ZfG-Κ6)nsU~!ÃL,À’cšˆÔwámP,ßv®zSßñ§Hµ¹Ë=hy™êW:þCý>Gæõ'ÿoå²i=Q)ÂIEND®B`‚espresso-5.0.2/Doc/developer_man/WARNINGS0000644000700200004540000000020012053147354017054 0ustar marsamoscmNo implementation found for style `graphicx' Substitution of arg to newlabelxx delayed. There is no author for this document. espresso-5.0.2/Doc/developer_man/img3.png0000644000700200004540000000040312053147356017255 0ustar marsamoscm‰PNG  IHDR#ä!Œ *PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH000$$$,àgtRNS@æØf‡IDAT•c`.$ À@(`àà``àtÀ¯Œ£Hø²ó‚9,Ñ"-Al—²3x*€ù] LP³&4€E.€(IgdmìdYFŒs8¤4`< •,M`fÄ†Ž Ð`eeÝÀbÀ°¦Œ'ƒMÆãjf,@2™ÍÔF7òfÎ× IEND®B`‚espresso-5.0.2/Doc/developer_man/img19.png0000644000700200004540000000037112053147355017347 0ustar marsamoscm‰PNG  IHDR#ß½-PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ ükÄtRNS@æØfzIDAT•c```àc@æ h€%…Ë÷€Ä`btÅH@ÀDr1\Ø¢`Qòp›°$ÇÌfó0@ì4ÓV ‚‘lC57o6À¸ˆ©ÎáAˆg20¤¸€™—AŽj€Ë°L€2˜.1="Í2ìàök hÕ3X}IEND®B`‚espresso-5.0.2/Doc/developer_man/quantum_espresso.png0000644000700200004540000011316612053147354022044 0ustar marsamoscm‰PNG  IHDRµjê© pHYsdd–ÅÝFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 ÌÈu› vpAgµž½†è€IDATxÚìýy¼mYUŠǘÍZk7§»}µPTÑ ¨”H"*ŠŠØ!1ñg¢Q_4jó’¼ÄgòŒ>QIÔgŒÆî)¨ØD ÒŠÒSR@õu»Óìf­5›1ÞsŸ}O5·€*¹÷V±¿Ÿ[»ÎÙgïµÖœkïù£ûRU¬°Âß6åýçó=^IDå÷ *¯'‹C•dÿ $JRŽ­Ã_졯°ÂÃöb_À OˆÁeu'0hÁ J‹ÕŸd°  ¢û>ÎBásO*¸¼˜}^‘Õ&h…. V̱ƒÂ=LÖ%(L1ÊzO‹ÿÎÆ=ïûð ”îóØçYœ„W̱ +æXáAB±ô8À’!èžÏzàå‘îN ²ü]Iï×ݵ +ü­ƒVqŽ>Ø÷S@Î=·Xæ—ëþâ5÷Í)¤XØ-DË` P°î{±Ê9ÌÅø +|6`Å+Vš…æÅ?Rä»sÆò‘ÏgðÂFæÜ#ö­e2c‡g¬°Â +oÕ kÐ}0)š! *¢$ Í奙CU‰ï{ÝÀDDD-,"M†ˆ@ì@lA eðŠ?VXá3Žs¬ð·½LŽ…6IsÀ"”7,ßU~0狜sá "‚rù5‘S&"Ã䉳£j.öd¬°ÂÃ+oÕC À(€¸ðCI€›sþœ¡†O9€ Îå¼.x"{îx‹ú ÚC2$#'H@ÎÐ HV¨*i&‰$‘$«$RUeªPED5ƒ„å¾71\bd@,Ä 6²d@“°!¶j™Ø*Á’±`6 §l0óª1„ÓéÀ,)ˆB°«ˆÉ +œ+›ã¡ ˆBT¤J¬¢È £(ÛóxdWþœ[_‹£ ˆ(RDDXZˆB$";#C³æXX$«dé­b@>«B‹5ý|^¦Þ`°a°’“Ù~(1Ø9M†Œ%1–ÙG5”„Ǽυ`ÕLt€thtîÿ+ÒXa…ûÇŠ9z r„HT‘¬¢2°Xb§Æ[ýôMeZX¡¤¤Òm¤*ÈÈ šT’HÒ,Œ9T5'ä^s†¤Â6Í™PH†(H‘÷ã “* P‡9ŠT*þØ/ŠÒÕ”d‰=³Sr`£–32–Ø Y%ÇÖ)uÍ"XB¬XDÚ`•eÎ)­ò{WXá“aÅ1@¥Gî:HOY ¢" "fÃÆ)WŠd„>íísÞ¯æãk,S Éœ£æ ’5÷š£H†Î 9jÎHPì‰4¥Å»T!ÍPE>çXðG uœÇæ(Ùºû‹>)qò`Rö rÄd4lÙZ#¶Ä–’Û…©a˜L@f€Š»jap)ˆV…+¬ðI°bއHZJ†)År„$ÒD‚a&†ñdj‚ 6Õ?Ñ¢C‘T‘zHÖÜSŽ$As”XdŠ,$ 5G–¤9€Ì¡ºÏ² Ï|JŽe}8ÝwvoÖÅóDeY_¼ŸÅ Á9Pò v¶”Èrj±[ÖLla-$@<Œ"³ÈV1A‹Aó@=}+¬ðÙ‚s<Ôöæè§SHÉF2©@ 3` ØÂ JÌÊDôé)Ò¢>" H 9©$Š3•„!=$RîŒM ÒA9A稒He?ÎeêÔò‘Œå}¿Ó~•ßy˜C%`iaÀŠœ’ª˜4õDÌP&q`{°bãÁL’@ÖÃ:˜v?Šnj`ÝÏ5(ÑŽ{¬°Âù±bއºí;ív4ÎXzh†&Va0ÁÈÁÀd[;øO9 T¡ 9 öš#RPJSÊIrO¹ÇÂ](G‘¤’L9©F*^)HÖý(=b*Ö5þ\e h‘ Fça#‘ª™¡Ð\Â쀘, UdҬ˓ 5™ÂVÙ‚ð dÀ^­'×ÃzØ d’fËê`ì²F@€h…>›°bއ4Ì%¶gf´K"{ˆfÓ¨ïÕöãO÷ Ф9j {¤ ÈIÓ’)õ’;N¤Gì!A¡ª Íši‚Ê"¼a,ˆ˜-[°3ˆ(¤b|…Q8ÞçÕQHd‘û«ÅÅ™$‘f ’dÕLšÍQ([˜Hì…qVI”-)Œp„$!ˆÛoŒXÃÌfÅ+¬ð)bÅ—(`ËrI.†@2ÃäNšOM?AØEš ÷5`Ëq 7LT³µÉH4* Œæð=޼ðQBqý(/âè (N#e ‘b„HŸ¤Kª¶#rOÒ"Ï‘{ä’¹‘GìaZ'Æ‘AMD Â`‹E^,««A¤D3³,ëÃÏ•ÖÜ•kf•BQ"¢ª–TETK‚fä>§Ê;"AH[fËûŒWÃ8¶5L%¹–T“«È¸&ÍÁ®F¬aØ®ñÝ‹a²o†¬jÔWXaÅ1ˆ ÌgˆSäR—S‚fKi •L=Fq")\1ˆhÖ”E„b@Š#RÜC:–Öä@©ƒ$ͽÆ^¤¥I# ìk!cÁ¶"öd ÈÀQâÏE„0 Àø¥•1e*vŸ#&kPÖlR…f³ˆµw¤ ± ‰Ä–9"'≠gT4kJªj$ÁJ¶‡ °âÕ856"pЬE…ŒUãÎ ÂËÒ½¶Â ++æ¸dq[pÕœ’ ÛÒíIØå<#é5&U(œMM=l¥Ì'&&Û¸8»ŸÕN”¹äÝjÐÔåR ¦ŸPNˆ‡ii)µ, i"H)§$ÈXdÊ2×k%~ca=Œ°]ÇBWÊ€÷«ù2Uyo o(/Ã!ç¹R ûs! µ«B!©…d*þ+‰P¡‘’£­$HP ÈY5HÎ{M†mÐäÔxr5'KÖeÞ¶dr[CI4cÀ€Hµ0ÈÂ.Z±Ç +`Å A$’sæîlî÷´ß52§ÜsΔIˆ‘;h¤d¬µ+&ˆI˜Ÿ·ž£PˆB¤¥8Õ0¥¨o9GŽ3„)Ò qN9²däm(‘Ã1°c`7ÁlaÌ>s;^Ѓ±Ë0¸ë(”QÒ«ˆ”ÎÛñIbXp,¤sÉïe[AD4B9"gp½_{Ø“Hk²¡9¶*‚Ü«––eë‘ ˆÔXÒ ÚS’D’öb ³ƒuD XÝï=µ*/_a¬˜ã’Å=" *"'{v‘gÐÀI l”@¬1œ Ù³|Ëîïø¤yŽ4AœØ8—Ü›{Ä âaŽØAJ>‚Æëájk؊بÙ$"eGÆ©q0^%âl†DD‹Ø¸a2JÌD`ß/ ¹‰XÏèà T•P|V ”T`H†Fä„Äfæzß é =²Eò,Ä$")HΜ3rDîaJ ßA#I„”ÐN€u £Î¸ ­¾)+¬p«ïÃ¥ ÕsRü9¹5q.ýLÓ”$" 2  J0ÄpÙÃÒ{o!OË;s„=Š3¤)ÅÖH@W’n÷¦ˆ-PClÔ À¦‚k`êerìׄ ŒUv°ØÃ%cL‰°%c m(’÷[q°Ü2¸óõùàê`´¡« EÔdŸ9Š1a"²dI#r@ö$=Ègtš£«+¤ èT{ÉrfIˆ»ã =r7DŽÉA€ä¡:€iÀʰ² u¬°€s\ê8¨dLÄÌD5t-r$È epNDJ`ïà+¸†r‘.bàçPr“(žÕØk˜Q?¥4Gœ!vHaí§H3‘¤°ÌžLý˜ØÃzr² ›Z¸Rbª7ˆö½U¶Rc‰‹þ¹Ea%°¡e“ðÂÊK…ÁÅ@Ï£>"ç¤y_ Q8pB‚´"I$"Ú‹$¤€\qŠ0=™93¹gÓRjIzeì=r€‹š³Ú@¹"c‘™œ‡fdØ [3ÌJq…°bއ–aÙEöªPIQCoRG1#0™s&Ã!X9Bï# [lÉa‚Ôkì8µˆ- ¥ˆ0…•¹JŸUaر«à×ÔX6žlCvW±©@®YÄÀ‡ñd<Œ%bˆ,$vX$o·(¿×(Ï—•KÈw.(”„2bbÀƒ°$HŒ¥ìØfä€!‘‰™ ®Bò3RVi5LȤEQŠ…ªB„­#ji¿Q-Q^2´Št¬°VÌqÉ A-¨RŽ Ö‚ 먅ÄPkRK3A«":§ì¼¯0€Ïư@CO%F ÷8íh!Eô-B4EžIž&m}'`@Nh€zÄ՘݀LÅΓ±dåFìfȶñ}5""f6æîÒî|·ã¾ÛÅÞÃwoÜÛ!¢{†ˆ†Œgx@a3RDZAÐ,dåJSo¢[ ZØ_#µ'΂Õ͆Ò0·B®’œT…¼ô”+°CµUR¬PR!*_\"l…rX1ÇÃE\Ö–NPT‘R§1H¦H‘CÐ"î!Íf¬00ž¸2¶«ÕVdjX§¶&SÁÖdd°5l SÂØïözñ±pÎÃXäaŒ–ŒAna4(@B‰Á°B3’B2RÔ®Õ ²DšJ¢¨’ ä1ÀZ€Xq7ÄVøìÁŠ9.8×HC÷Ÿ 0/ÅsD 3ıEî´›˜ÑÏâ‰iÆ9›ÚØ~Hn;‚À6°ŽüÖÁÕ°%b\ÃxcˆïÁ‹¬Ù‹Tk­0 eb Í,‚\#÷à<;‡d5÷–¬¤9kžJh äjHG9J9%4™µ*Ò Äd À J0 YQÇ ŸUX1Çà ºŒmì¯æ¤@N-ÂaaJqJ¹ç°‡Ô#¶è÷fИŮ‘«¸ZƒÁÈÔ5dkTc**¶Hš[{”^Dó#”A &Œ,”³AîA-Œ‡ušœ&/©7&hô¤E%—‘æ”#¥^SO©*9W6÷I3HU²ª# %½˜É @(b\+¬ðY„s<\°P£º»åQê0R‹4AØAØE?A˜S »H=âa&)23ŠWªÚT絑©©P5„õäÖ`Œ€¶ø…îÍ×mµÜûï·¨] ¹¦&6ƒd(¹\æÀˆ¼ 4½¥0e)Î$ÐÍšIUKC”˜ÀDŽ˜œ<° ]a…‡2VÌñ°Cé§*"&ç è¶ÑŸEØC?Eè(´ÛȽäVR$2jkrkpCn6àjruCõCØùlEvæR»§J²Hqºä>@½FªÈtîy"€,¸)]LN92Ï•­–.OÖ‚ØRèQT9Îe†Å’éIh¿-•k ûUÁ>Ûp©}ñWx (R}´æSÕœ3çlº â4Ç Û÷gè[í#õSѨˆd¾ß@uvhë`ÛP5"7†Â5`r8§Ü¤ˆ•÷MŽeNíE“€UÄ ”¦QûmÎ j@Þ0y6¶º%"ãÀ°Ê3æ€$Î9G¤e€§‹D£*3Ä~%hµÂgVÌñ°E1;(Í%Í5Ì8ÍJb¯©'‰D‰˜ÈU¨‡¨×áÖ•‡dk°‡«áø®F©Û¸û¾še|ûíWéœ{ìb“‡€dZhañ~æÓ¾W‰J [ c@š-Ú¤»Ò="E€˜æY³‘Ø(xS‰2#)A©RÓ(5Ê•1*KjZa…Ϭ˜ã¢cEÓ}馅v, S„@ìœSBÞÆì,Â'x¶Ë;=f‚6£¦vÙz!9FƒÜr{ M#7¹j»Kq·ɵŸ±D Sª×PmÁÊn#¹5ÓŒM5˜ÛƹÊùü®VPYÈÝbqûŠ!8øäÅžÈp7§ÕÕò)^tÍ`à ¹VœBƒ®‚ZâV™‰†¬Vt;çÀíÔ$a[ë`‹2N‰¡BÔ-ŒCub¿¸=˜h«¯Ø C¬>Ö\j ûö"wd &v#8æ¬Ä™R›CgBÖ¾×.ð<¢OèT@ä•T` &1CBgR‡Ð#všZŠ}©×Ô«döØ nW“«Œ­ÈÕä*[­3[Øì[V¿‡³Ÿ,(ÃV¤dH@Ž "ŠŸsê…(r„‚âšÀLdVÙ1Yx eU¦¢mEPR¢sþ¼VxXaÅ¥Eì@ 9J "¢Ôiì{2•f &ïJ¿ƒy«³.ïu<íыƜ‘(dƒ¬dÈ0 ¶c7¡n€~*ý4w{ÜO´ß•8' E½ ?†Á¯±ÃÙá+_m-J Ø’ÓKªPóp-v[T~0QJQ!V €-4’$PFè‘:HŠp54W†Ò¢7ÖŒ¼%v€Qp.É\ôpµ>Û±bŽ‹ Y%‘‘¥©CL„9ÅŽr;Ê ä]î÷0ítož÷Z3‹œ)YœYX%PFèÔ6Œñ@û] {hwr¿Gq¦9²1pµV›äG¨ÖQ­Ã¯s½Žf_Á­ûÝ]Pä‡õÆ™K¸ŸœYôe;‡ØB3Q¤rÀ|[A"   d TxÈ\‘1™ @¡w“k\a…‡VÌq‘AHЍ©C ”{¤–SÏ)*uæHìLs@Þ6ý6¦3v4OÜIHÀF‘3‘ z… ”yù”Âu»Úo£ŸªffOÕõ0û-öö[¨6Pm¢£À:å’šB¥:îáÌK‚ؘ å'!ƒT¥í "Eˆ î@XKIʱ`!vLcKÞb¥‡õ¬­ðYs\ttƒvS-å©Cj‘"Q@ì{°GVpDÞF¿‹¶Ó>RP$†4U%UA”(ë¼Ç¬CwÝ÷{$‘Œƒh³EÃT¯;7B½‰z ~ ~[ƒÍAÍZHAë¬!ÒýH6ÁÌ–l b®Æ9Y… ‰]4²…Дd Q s²CdPú¬#,È’Y¦U…à c¬˜ãb#Ì¥ë$L¨Ÿ"·ˆs¤±S*Ìa&€"òDºzJBÊ(ÿ$ƒ…p†qD b(QîæAÚ3è[¤³ ^˃C¨¶L³ 7D½†z n [+[ -ê!@¤³>lé#Ìʲ° ÀŒJŒq‰ ¬‰2kÖœ˘ävF)q7‡É²d˜P{P­Èyó°±VX1Çņ†.çVCG±7¹Elgˆ!˜ØR /ŒD¹“Ð!‹ª"À”péñ§œ ìÁPÄ,¹æÚÏ9G†õ¨šlb‡ÞØ…~¶‚±$À |®+H!‡sr•B kœS|| "FÈhT‡š:TŒ(Æ{{&#p-û¹:²Z˜fc5ˆ«NP+<±bŽ €K\•‹„0Ñ~Jíi—ZôSô{H3Ä9ŠdÛv9v$i}K ÄhzFT RVp‚ Ê%–µ5V0F-e1ê4›Y¶n]‡iýx®›zÃ×'~ÃÛqU‚€ f±ˆ@sîš o=¹2ÐýoBѹ²`À{6ŽÉB!.¡NÎx¤WƆ¤ÝŽÆÖBጶ‘X †`›aÃŒ2 k^œç…\õ’+¬ð °bŽ …²R(¸ü(¡•~Æ¡[Ìh_ÿ¼dåržkê³$Hla1IîÎ{|&"XbÃL9³¢–á+ò5ì€l;„TUcm cîÎ +Ë> 8¸¹a7ÔÔeUS ‘ûFÓœ$"´jgD”Ü€cg°3„VMGvÀÌ÷©ÿ¸¢êX1Ç/,ašûí¦Òï vÚïQØãÐjî$Çœ³Õ©¦žÈ¡)rÒ4½ß33“”8+ A‘­çQP¯£Þàj~~Ã×Cpvw¿ÄöQêùØÃ5ÀT“1ƒ"sÊ-º½ÜM B5§(pDµÒ€L[‘^ìa¬°Âg+渠0A =”û=év©ß¥Ôi¿GýqJ)DlÛ˜@ŠHf™Ÿ÷Ð*‹nÅÚ(9R†“u¦nP¯Á¯Ão¢:„z Õ:\³êØúðwN}ª("»LD\—¦’“ÀBº3×å¡Õ8U‰„hx@šˆšf×Àz°Â–Ç,ÝSVÇ ¬˜ãBa¿¶šæè÷¨ß5¥gFì©ßE¿‡4GêLJ,™PÊ…dJ ÌÐÄ’Ï{|UU¥â¡Qy‹Æk³†z Õ&Ü&܆ú ªÇ¨F(}fµ”M/V%ÏK”›•®à‡È¢êbn¥Ê&Ìlš£›*í!ôjÜ*pŽB£¶«á,¬dŽVxØ`Å 1C$ ¶è&èvÑï¡ÛÅÁyê‘"‰ ¶H‚,HR"á I×óA”¤%üŠì *³9¤j Õ&ªMõëä7´k5`kUíë*;á‡sÕ§ RJ³qdXæš|6`ø¤õ yŽ~âú©´{úm ¡÷àZW[çÁšÜÑÒªéjŽWxX`ÅeÉ7r@?Õ~º=t;èö—­^gH=$åMKÈ‚”Ë!ÍÐóæx2ó~ÿ 5”­µã[#T›¨¶PmPµ…zëAv.fÙnvqiºHÀ]ùRI©pqñ[±±µ1.…¡h¦Ü"Ïgˆ-R mò³d{p S«ä®2¬¹ÉDdÌ*±j…‡VÌq!šEbÔØR?7¡“Ø!´æZ„¹“%gí='¡˜) BˆDbîgÉ¡E!˜PYx k²CØ!ì~×ÀyeÎr ý•ÀÒ½!³°à*‚jŒ¯8Wäk„üÕ@ʦÛc6¸ar# ©Z‰>çÌÌ™c…X1Ç‚ɻɬwÙÖíÄLnËÓ3èwÑžd=‰0ëÐôQ8e¡6@"È@VTB =¾d•4r$KÄä9Td$›ÔÁh¨<=l_ë¡øµTitH†G¨Ù4ÆZˆÅÁxÉNÝ+,A5ŠÞíâw^(xÕ—ƒ×U+IjbD37ƒ™Ë±Ÿ¶fÖU´_q§=Ie 25ÕÇh°w4iEEUäÜ{·Â +æ¸P ‹’È¿ptL4ͧH]Щ èbÖ4ejªš"šÀ€JÑóŽ…QHADJÅE¥†`3¨¹i`=›†ª±õ#ø†M%‹b´¢Yr±'ä¡ b&ãÔyr |[œÔŽöm‹º%S“k%Θ|î[ã:Ê=—•+Š^á!s\(¨`%ìrñ¬†³;ÚvÚ%öÔîú¬)¥”ü"¢Y!"Yºƒ¤ÀDJ ¢}ò'…1Ð gìx Ã5Ø1ûM­i¸ä|ο¾ºïÌpžüõâ:ª]Ôc{žžŽ¹ÓÉŒ\e¬cSg»Ã évÈ8ãÇv08à\‘Ç m¬V r,eéwП¥þ¬íÏ¢Û¦‰AtÖÑ,¢ôB)qLh…”²ŠpÖ¢wN Ê &&&µ¬L`)kA­Š5f8B³–ýº©KuÕ&ܦZv /…+< 0ØÂP¯#î!l PPÕ¤“4kÂ×Öxµœ©ÛeçƨFd Ò´ýbb…VÌqá st;ÜžånÝm‹©¥.ši@›ÐA(dÊ‚.“åŒ,* RßG‘…œ”!VÃd˜˜ÀJÑC­å¦É~ ·êH®6]׋‹ e~ð ZZ? Ī·(ÎÐíiŽÔ¬7ÏyŽéõÔ8§Î² ;è-âÒܘZ"Ä«ö+<´±bŽ Úî¡ÝÃ|ŽY‹YÀ$¡K˜Ì½ W„Ì)£ÏPER&¤”ë1 ‹E‡&r† +,2ÖÚ4R¨Þ@uHëuñ ‹Ò¯i‘„+Ûî°Ÿi¨¬ÌâF\­S˜¢Þ‘Øó`Fs>;E×b:#gÉ0¬…ßõè'ˆ-\n€o¯ðÇŠ9.t±X$é§h瘷:²—ÌL´:M4OÔ)z JNÙvªHY3-ÏóÂÕ±ðY1˜‰ ²cã½1Q5´õ&Ü5#r(é·º/N‚Uî„–Ú@¨m´ZCš S7—ÁˆG\oËÙO[ñÞ±s°{0•v{觨ÖÁ•‚WîÂêX1džjŒè{íSîrn…Û(]Ð.Q'Ü)zhÈ’Dº@¢9k ’ÓbÙgÑ&"bff^´Î&‚±’Õ;‡aƒÊsU‘o`r•€ haŽbˬnýÂ~³+%[Ã605¬ÏUÍͶAîzê*î#ú^ë¹ö­ô¥I¬+m°X- ª è&̳[èlc÷æ˜XÚ‰¦ösA§ (>):›2²"Ë"´MdÄ g0ÁF•ƒ:o)¤úò-l t´–›©¹—‹_s8WƒF‹¦w0¸hÅQEÕÈ’ RJ6Dø@—‚«½ô¡5ÞÛìˆ*YÊ€"90J UBå N`…#Àh‘•„È  ’¡h!7© H"r@¶¨ ð0†ˆBVv´‡Púë"Ì>]”º/ƒÉ„z ãã¹ë8n¦a§‡j:kÝ™}3Ëu4aHN¨äṽU•¢*T~±nÁ +jŸ©Ïè2z ¨¦Dm‚ªæ¬""Ê âÀÅÛD `Fv‘‚á‘1ŽP7dkØšMæ!×<¨‹þ €÷»š+”yá´±Ö3# |L§•I"’B HA1FkmXSµ†Áûη°(ˆ6™$[ÉöôÙ“·Ýz×ïþñìôö™›>qæ¦[¦wž’®« ;çØÌçm¯„hÌàèá#¾fýÊËÖ¹ü ¿¸¾þQ¸ê¨z'° N†;`£´N‚ÃÌW„~à |}Bû›ÅÔÖ×h }Ö6PkPÏ`‡fæ[Ι ëÊU¸ÂC+æ¸PP˜¢cž]Ä ºÛñ„dÚK›hÍ,£tŠ>k’Ò5V³Š€u±ßU ± ä"m«0@€²¤µhƒf€jÜû òc2õƒ¾îÏÐlˆx¹ïVÌí:[ÄI@å»Ú`,” LF¶J "˜Ì95p虌’íAx™"ŒZ+¦ý¡·ÿÎk>úÿK?|Û`¯ëÖ’Tª.c]„XTT;…ÒPÕ9ÒígOÚ¹åmï‚5öÇ~%S_qìŠ>ûš—|ñáÏ{b½¶QÃNŒmX­z/HŠ®ŸOâ°9‚Ù.ê†Cðnj;3±<°âwÀ•4{èwµ› îP鳡Ùâ k¬˜ãBA…À€°(bÆ< ºgt/£‹yÒcžLEÌœF L,©Ml˜D²*$  %ÈyŒÆ¨6xp ƒÃ0½ô¨Åf›Ö†ˆHÊÌLÖ üÇ?qö÷ßxæÎ“ÕsŸ|øi7Ð`Ë2eH”臔‡.€lѰµˆ©àHq¤ ûðÛ~ýÕø­×¸›îÜèãÕ–²ÍsŸš™‘¬"DÉa“4e``ˆÊ¢QLÀ˜ÙZ[ÅÓšx2ÞüË¿ñ×?÷kæØáë¿ê…Oùê/?ë©0&;ì É¢¶öòkqË)ñgÍ` à RÛ󞧪F3g;á~Wú]évæp Æ]r7f…>¬˜ã‚aá&'2F§˜ M”¦sÑi¬°ÂƒÂŠ9.H3`¡‹Tþœµ4&™úl"©,‹»õÜšO ¡ª-Ì¡š5ˆT# ;Ò±->¤[Guýhö몰 ât©ÝbeÉÆ(TÕö™3öó¿<5©>´>˜ö {rçm?ºõŽ÷üá?û±×:K g‘¹DŒªIWÌ©÷½ã5ÿÿWœýÍ×]Þë¡ÚÝ:¹k“ÉÔuë±ê)êx°qÙ‘öE_püW^õÄÇ®}¶6Py0Z@ÊÈ‚íÝé‡oºëûããŸØýýׯ;îŠ{»l$ 8»˜ü´?Ãݱª¢÷ôwÿÎ?=éñ_öß¿ùU_*Ò£ñú‘8]CSa<°Þ¥iÄ,†‰T®Ç¨Ã`OÚêw!sÐ¥g ®°Â§ƒKkYy8ƒýZµ„,2rí’›kÑAqI)4*¬!”Žƒä¡J0ç„ 0Ž0èxŒµ1×i0Np¤_’u9gÃçr…c×ÝqÇÓ¾m²áiÑ€ˆdÇU“Lúè;Þûì$›!(Z¿Y…)¼õ_ÿô‡þë/®ï¼fTO|¿ÚõÚϤ2Â<ØáøI_üìk_ò¥_ø÷ÈË‘¶`‘ ýbæ`”0ÎÂ'{âð#Ÿs㲤ÿë»øìöîÛÞý7¯zÍ-¯}:][!õ ¢v›¾6ï¿é×_þÝW¼ôK_üoþ™>öZ3X‹M¥•£¦6® ±G—â,»&rסk%Ì4ÍPª‹}VXáã’[V®ˆ9'ã”8+Ad LÎ)IfÑ"‡Tè…”´x¡Š_G—q¦NrcA …`ÄØ1Ú\;¦G qô‘iý }ŒQÌAæ!´àÅÀ9+1Ûò:«~>§g{Ô¾àÚ;Ožü³·ÝøÛ¿ÿ‘?}óçÌi: v !Nœê僵齿¼ñO^ôcÿÛ‘—U_D£¾]¿iVínVGu‚Ëvîøþ.ÌnÓù£híÑ«ù i¬˜ãÁ03@Ø/g€ƒÃ°PT…jqâh¿ÿì9¨jÉÂ….Añi™°YÓà†›Î71`siºDŒ18ÐõÜÕõ‰'Þ¥Ò¥n4´ÔCsc«~ÖÕ¾ºí W LÑ­aÐDÀÄ?ÿ…_úÐ?ÿ »U団¸=Ù@uVõ#C¾îËŸýÿû¶o?æQ¸ê¨Ú’¬ËµAžD3¾¿ ´*˜윳v]'“Ù\eÎ g«‡¾äéOÒ#o8ûÍïüáÿzû»ßëÚÙ¨ìq·öâ7»ü{ÿäG¶Þú‘—üëïÅÖ¦9zÕáã;ó7¼spt¬}¦6¡‹è#B/¡×Ø™ÜÃ>dH}…îs\ °C€eEN #ª,5@T…"*Õ¼XÀÊã~`|!·`ˆ¬€Ùð86Ôµ«±q5c)6 ûK³I¬@™-— c›‡}ñËÿΟþáìÝvK£q­æDÓ¬££'>ÿ»ÿaòÕñ>’O"“7ýÓ¿û?~§žMCuÀüÌ´Bµg«ÑSžøüïû¶+¾ú]„ކÜ#… k†Ÿ$—iÙ¸$%™ÏçmÛ6c¸².t„°6vãÑk^ð?½ýgïþð¯üöM¯ý_¶ï׆ƒú)æ;æÌo¼úÕŸøØ‹àe¦:úÀ`ÓÏw÷êšit0›Ó¼•vŠ~‚~²bŽÒX1Dž¾¹@¢P…Q­CBJ ¥PT¥(…Óçû{tFikˆ š³[5ŽÓú5fírئèñYfÕ¥Ìâ%Y–Ž“a-bŽDGèÖNÿîk6ÛBúøl2úÜ'áÿöÃG<Ê ¶Ïü÷—ýýúÍïÜ"µŠˆ´³ƒvóÐçûß»î;þ¾ZUU3Q*ö°>JŠ&1óù´U´!‚®ëº®K)©êÔ²H›3tͨ2Nðc¿ý~éÅ÷s¹ZLîÀ$£É´1æsê&ˆSÄmàš‹}+VXácÅ $ÂÏhŒŽ½*Y{&²FmB'Y³*h¡U%ºÌ­R (|3”¡€‡;rG7yýjðÊ%¸Qº@]z&Ç~ôF…ˆÄÌ슴¦<í†k¿à©`q6¦¬ëf¿üU߸ñç8¶¹¶ÓMÆg_ïšúq/þ²güÐ?ÓËNœìãØ 4bî›Ù–ˆEîÇmBœÏç1FU]:Ð8PU¹qSûʃ: k ©Mê17M}ýãžõŠ{“>ÿ×ÿÙÉæÎyë$¹u÷wæ_zÓºþ–z7¡IØë±—°1C?¡~ýÞž+¬ð °bŽ .ë>³5¨=Æ–b¥D*Y]$®ˆ#†U”S¦¨¤ Q¡¬*²_á!P(‰ª0•1‡Žàð!»v¦‚dC¦ø¼˜Kô*ÐE19áD0 ZLÆ ñô+Ÿöõ7}b²uûìZ5>=ªw/ý™¿êÅ_¢kÍv­ªª’ÖÌ)ƒ3²Ã@TØžwBH]×õ}¯ª¥š½ðÇÆÆ†3Æ{ †ÀìÙ0´~!½’¯00›ßú²ï|Ñ ~ú/Ùã]7qMØÈuÞ³¯}ýž4¶WïEô2É:gž;™ï¡Û3ÝŠ9VxhãR  >lQ,0‘ax‹ÚscÑX­µÑе²¨kjý¶øwÏÚÔåԥ܇Ôö¹ï% -âüb߇VxP¸$7¤Gä‰5'Svvp\·v2o%šT:’>ª ¨"zA—SH9g;Ó«ØÖØžç]5„‰Å8ƒÔ3±’ѰvT¯KqüUã² Øß ^*\ ÇÐ8‹Á®\["´ÄYu Býüì›ßtÓk_ß}à¯×£LÝP¢4—{ô—?w|ÃÜÕ—»dÿç¿ÿÓ?ùËzèvgíšl¥Ó—]þµoz5®zäZê~•ÅÒ¶8à§3€¹/¿]Ji6›õ]df&›sch84McÊAÈ.æðÜ*`¿?‡€¸ãùç=ãùoýõßúÊ¿W¿åyÈb¦ƒ¹tëWü¾=ýì¶9|§ƒŸË–òN‡S'»ã§lÚ±vC™dB0°»ê¸ÂC+æ¸@à²FÃ:xKµ3AGC‘„”@d6¤±ôû΀1°†ZÅþP%×Ö ñà’ëÃ!)ú²Ž;‘³¯\ìóš#té–_û­×þäÏ„›o±ÌºÝjäéììðpë”Ê_¾ú·óGŸþÅ_tÕðÐÉ_ø±‰“¶ £fÔÒ-[kßø?U7z~ ¶ò~ÒÚbiŽ1¦”þÉSUÎ9gŒ¹Ï·Ü0©v/ýÍŸûù§¿¨¹éh,6«|z·oôÎ0ߨj Mº^5VÒgYÄñÞºòx &í°Â}aÅû2醪õƒŽ$Ûl‘@ŽÀ€I°ž¹gM‰¢ (’€,*³hç·(ÖÈ¢‹^O¼áyãJ?\»Øã»'j¶* ý$cXIs³øøM¿÷/þÏ;_÷ÖGËݼGZÎÆ~¸îºùŠzÈ™›>úþ_=}—Žîî_Ïå/ÿ&<¬}ÀmGʺ/"!„BÎû ADÎ9ïý=^LDŸŠÍ1#ٵѱéuù†ÿñŠ„ËÍøl¿KTíw[Ðí¬;ŠYʳ]LN#÷%Wn?ñú€í±Â —ŸIÓÓaGkÔ›~¦Ó½õCOý§ß¥W^­ xDR¢ñ±]ú©2‡1Æ{ïÜ"æÁÌKò‘”RÎù|t²o À Ü›ÓÃê9ÿáß´G¯0ˆ>eâê »[væíSì%¤¤9Bz°ÿ ¯ä+TU5ç\¼[÷ü]ˆéŒnLm®:ñ?ðýÖ¨ÉZß:wjÚNOO11&h.5†ªyq…¸$åbVXá¾pÉ­8W$;p€GÈÕF]•šcâÖÑ9L†‡ÒÚ0o˜¼A²ieÓè¡jºÎXwÝaÖukz0Q <Ñž†ä™FˆáìµHælÝ_r÷ѹa®$+éôÿýýºÝýøØŠu9¦¹%©C3 d õrGMMö”íYï5×sçËñ¤Wüp/ˆ‡À†*F fúúŽ”¸·ˆˆHΙ˜1÷!¥¬ 2)+HŒ¥fPCªÈYRÅt:N§'OžÜÛÛÛÙÙÙÙÙ)ååç;Ý:P£¿ ‹fí²ïù»“g<'2R¼ehú]³þ¶“Œ³Þíí4á¶@>fJ¤â8Ìå’»+¬pßX}T/ÑO"ÃÎ8Ͼf_Ã7¨øŠ}e«ÊTµ©Ýyø¦ïÿÞí·Ù;±ßô³öÃ7ÝœÎDfciQõ—`s—Þm\a…ûÆ¥Y}˜B È ÎS54õqL@‹dÀ X†ñ° Y€¹õ@oš\G ØPià]<à«È^‚Ì¡ºÔ«ˆvNž¾ºvó˜õ<Ÿ¸Î™q—'5¸ÍMÐ6[W\õÈð2T÷4/î?Ùé-˽ªZç””ªƒUåK’(Ü ""©ÌyŸr’ÕÝ`ŸóŒ­g>-ÿÑ›«È]4øøîì1³!ú¸èÃNˆnµ…[á!…s\ Ðr!å ~ˆzqtŽXl` L€‹ÈMä-œ%5¨lYêÌ~Á‚9Îþdc!ã\а£ÁÐæ)áVÌq°…ƒ-ÜÕH† iÁ’Qb2–L³B´ˆS•º*|A*$¤(úá¢ÖÌ%Y]ÔÌëÂ!jœíBÄù5k)£õ´Ö…yãú$õÆæ£^þÕS GûÞ§O…6PZÕ8ç(?´](ù¸…–A‹"wˆý ¹1¦XÖ²s®¤]1óðSìÁyÁsݵìnüð†F„I«7ðôÈ€- @ ‹¬¥vòbß¶VøÔ°bŽ R()ÈÁÔðkZU’æ £l¼†ž8"‹ªU-yDL¾ÉG dB 0v àK1\%0ÌÚ÷ÔØ”Söf6‰nÐ Åû|¹fáÆçiVʵ?üÔÏáÇ?¦‚#º›æÇ²Þû|ÛÿÂ%ª(S•@±½OªcÓ4Î9kmUUÆðþqä W•<Ý`s( Ö>á›_òæø¡u_ï¨ ýú·NŸ‹ÊÎ"EvéÑÿ +œ—à’ó0….šŠgÖ£q³Fõª ®6QmÂo°ßäzƒê ª×ØoQ½ ?¦jŒªV°. ‘å!0ÍÜ ¦‘€ˆŠ”àã?ïÉÉ›Ÿÿb‰M”®6&ŠXóøoùê9œ‹ƒdÜo¨c{{{gggooo2™´mB(fÇ2Ð}Ðà`æõõõõõñpØXËË/O±´6˜Ù1"躿ûUîèF ó™I.Ù³»Ým½ k*zS®°Â%s\(`ÁPX¸Š\M~;„’²Âàpø!ü:Û5˜lÅΗEE÷ÿù¥ŒÒ"éR”X]8¼ï³ è©_ô<Ônšúó½^ ™yèÆÞd‘_ñÜ€Œ{Ù'%q?ç]fâ–_—¹UËàÇ=, cL±3rÖý#`¹„ß×§›‘pdíÐ5—yÇÜ8´Mýá܈ټ\Å+£c…‡ VÌq 0`b‚­£?GÀÀk3Ðz]ýøãð—Á‡;'¸ÞÂp½oŽ›Ëv‰ÌŒ p†Á‘’I¦òˆ—qˆ:O`«†„—YwÕ#ŽG·çúžRˆš¤ŠvÙ9Á¨U É‘ÁáSso^ñe_‘xc=»4î¾ÿ¤ûòeº3WUÕ4Íx<ÞÚÚ:räH15––G ˜‡ÍB‡Øì[òâ8K»dyÀÀ"j`P#l\þÿÁ.5vÇãáÜDùíbzmU+jÈ„$1IÙdYìR¾¿³–¿–×/ßÒ‡T.µ´U?xÙ ,Oqðçe^ÙÁ׫j’\^Ð…^ì]–/+§ˆ1–D—´<ò¼íåÀbÌ(ý eṌ1«žãÍ¥—RDU–a* ÐbH1ëþÅ«,¶$ Hyž šÎˆHÀÀtiù H‡$"ˆ˜©ìB‚è»@Ì è5@ßc{q/€½nY4vqн è Š®ÍH&‚ˆm`"@ÎB¡è1;'0r*£– zô@Ä$§@Dv€r„èº941!*ÀˆØö€èì1Ef€Bæ@‹)¨Ì0E–³@ ’ º Éô@Ô ÙCšÅYLÊ+æ¸88·ÿukäFäF´°9*xÊÃTp| WÁUEoã’ì,~>Dª+\¹ì­£_õÿðκ:$Þ)YCãíÍÖ¦}ËéãëªôQŒ ]÷è§>É–àú§¿ ošf4mlllmmmllŒF£º®­µåC–ä± §ßÏ=Z…,Ý\ ‘Oj”ˆ&€øQ×]˜Uµ ½sîìé3y23,4CT `kïö•ù$^2c(gíºÀ fˆ ï£÷v>Ÿ(…ñÅYB(KpQ.Gµ–ËÄ”1Þ{ }è+_íHô}_X¼ä.;çœsÓ锥¦ÒZVEŒ¹iª¬*žÃ2ç)iJj-bÌÎ"„CH1ff¤$8Ó*§(Ov}G g³Ž‰C å:R"e1®Œ§óu´È3§Ç±7ŠSšžžR{ƈDpbV‰Žd=‹Ÿ´ƒÝ #¯§Y¥g†íª àæÙœ0Ò©¾®Ý.Ù¬èGŒs‡Ýt4§@ ½ã„½Ó vˆYÄÙjw\ÏÚ@¤@Ä8™)rë +zìÝá±7Àh{óŽi}zZ¯Ä»!(XTn”´ßY—™ÁÔbjuow½‘ &,šžY€¢XÅéÐažÑ"M†!`º›‹óœ±¿_j°„jšÜŽÁÞXv†¦…îíTóO ÏQø*B~pïÍòâ‹êÁôÄÚ©FOÖir”‹BÄd<ª¡z +ª ò^%Ïb5¬z!ØêÄ7}Óã?ò1ù©_ÚI3©³6ÔQH’YÍ(eECãB¯×>÷YÈ Õ§?Ö"“~oJ!A*°'¬ý$Ÿÿ%1,WÕbÓà@Çܯ%$ €±þ„ÇÑ¡u{fCtµŸìíìÝtóÆ“N€Šû‘ª]ûgoÏ?øÁétꜫªj6›]yå•7ÜpÕW\vŸÇõ«÷äÉ“u]¿ìe/óÞÞrË-¯{Ýëæóù ¿ø‹ó˜Ç7]¹øB~m^óš×œ>}ºë:UuÎF£§>õ©×=æÑ÷É£?õŠŸ2Ƭ¯¯Ã7|Cá-oyËG>òfþ®ïøNìÇ~J¢sÎùU¯zÕd:/'²Ö†¼÷/zÑ‹Nœ8a -ìû>þÉëßxÓM71ów~×·ØÛ›¾êU¯RÕ«¯¾úÙÏ~vU9@–z0ÓéôÆÿúÝï~wÛ¶âãž÷¼çFùð‡?ü§ú§}ß眿ó»¿Ç9…P™Op”[?þ‰×<ûËŽö4MmphZ“ŽùºŸû±CÏ{:†ëņàŠ=DÞwãÿúáŸü«·ýÙ‰n:=m¯>\Ûõ—ýÊ÷Oú¼Ë†›öLì¡S†=³ûWü»_ñ‹ÃYØ mçä¬I|ìcŸþ-/»ê;¾qî‡}Цª²ë=° Áíwüü¾¸¹ó¬8hÒm2ÎV—Ñ3¾òÇþm¼ö 6Ì1ÇUèÑäî=?õÓïÿñŸA»·'Ýfr»ÃcG_ðô—¼âGâ‘CÆ7VAS-=ÞþþÿõÿròÞw «Í½ÔO|õ·~ÙóÿýOÕ#Vd‘Ò|F R^»ýoþç·ß©wÐõ•LZkÃ_ô´gÿÊÞݺ¼äƒ e&©Ü|ò=ÿû÷~è9=¹{¸WÞNCwøEÏxáÿ\ýørSV6ÇÅÁr'‹j Õ–VZm¢Ùf]šõÔ¬£ZG½‰Á!­×QÙ9QÕK¯¯øù 09'SUÈð†§]ÄpðÜïÿÇúŒ'ÇÃ[œ@1õµ„5çÉžd%­Dƒ5ÍÆûèœhdŒ¹ÏŠñ²áÅÝ{4ݧVÕ}Þ¦ƒ¦Æ½;>ÝßÊHœß|죽­ˆ(çÈ’öþú¦RÀÁ€‚Ü~×É÷¾÷½ÛÛÛUU•‹1ž:uêïxÇùŽ_èïm¹ž¾ï1ÓéôÕ‹eøïÿûÏœ9Óu]±Œ1'Ož|ûÛßÞ÷çBPuV*ßô]/·¯TޔˇÖÚ”}äÃÍI™˜@]¦“9“õ®^ B†w“Ùñ®uíigûzÄlr»ìk EKàÒ‡_ÿ†í7¾åÈ-·ÔýôêõÁÖ­wð]·ýþÏüL‹I`ìx¡<¬Fµ6ó §ÖGî2µ×e¾ç¯ûáé?ô!l+‘Ô‰Œ­±?}æP˜6³=;t[ÌWL'³7¾å-?ýÿ„~ `À¸m/;UÎÓSÔݳn²³9$kãäT–9ƵNØfX6Ĭ6ÿü/îºõoæOã¤Ë³£1þO¿ü¡_ÿ­º5„ „”ñßý/Û·ý™?{²Ö0ô°së»ßöW?ô£ €¡D¤¼àîº÷ýáënþý?X;¹sxm3ä´½wúp79ùæ·¼ñ‡~øÜïA.+Æè½/EUU•ý'½(¢…%sùS>ç¯ÿìmΛ”³g7ùÐÇS2Ö–F]"§·Ï†F£Ñãÿøº®‰èƒüàl6»í¶ÛÎwôãÒrYPµvé}Z&*ºõÖ[»®cæÏýÜÏ5ÆÜ~ûí1ƽ½½ù|Þ4ͽ+ðsÎMÓˆÈ?øÁg=ëÖÚÑhÔu]™Àê@…¿µö™Ï|fˆùÆolÛ–™o¸á"jš&%qvIÀT¦×Zëœ+'\æ^/íÂrkD¤0u©Ö´Öªjß÷Ö6óywêÔ©òú‚j^¸Â -©Î5Œ3~Æéøó¾ðÄ3oØÈÃÝT ù¨”mÛz­E"§qöÁ?k:uûå¿öÏ¿cÄaûÇu’sûÛon~è;$õ¾Bæì ?ág·¯õIèúoz^}äò3oÛ™×¾IÛX¥ÄÖÌ@!f_çmd”@†‰ÁΘZSV(YÀ“d ÆÜ4Ê„›#zá`2”(K²•’æä÷I…á¡á žÿå_ôì/úèGÏüéŸäW_½ó¶÷´ÚöÈ>ÛÑµ×€Ý XËÖOWN}).²¬I)ÏÉA?Õ¾ÊÈyi©Dt»®ëû¾Ø+Å–R*‹û’B>Yq»B‘1~ã‘W#/n¡#t·Ü‰EÃ/ÉP ‘ª‡Ãñx\ÂÌ\×õl6;ßÑ )îGÂQ`)òxoË#„0 ˜•+ãñØ{?™L–]I–{ÿr|ç\q+…vww™¹ÔNbß,Xž¢lùuAcYU m¤$"Rùe×,-lŽ«³2sñG•”Ë()m å1k‰( n»í¶«¯¾<„pÛm·¥´È"[¤,L&"(j¶ÆLZMD Å4´†mDS¥VÁŽ@bÎFÙιÍ*¸µ›£æñæ|^,À›¨=°” Ÿ ýÙa½%õ@Ǻ;»jt˜šÖ븘#nl­ “Ú¤Qegýa ëv§ÝÙ™ƒ5³ )5•@6¦1îW]LH1%À¯ˆk£‚G7ß 1h»ãœªÃƒ#a*zxŒ0Íõ†i¼H0{ç?w˜7û1ÌÚÔÍLuxcˆ#öp•Å cbE²Æ&©nïuP« äì`–ªÙÕd+æ¸hX|9÷ÅD@0ŒY‚Pñö¨"+|_34ïws¸ÔA bˆ5 Ù ;CÈ ¹ñufÎaqøøávcãÝäªíÙVÃôš-ÈdtÜÍC˜ sê¡v8î²:ÍÇoÍ uÄУ‰€‚-˜9Kd6uº½ÖëÇ’!GEÈ*€‘ 4‰úiu¨ÚÖ9‚l{÷ìWþûÙ¦_ÇÚ° ÙAÜÑØC¦-d¼þ¼ÿúïÂF¦£›L E b Ã" 5[èIÛrs *ÎqŸÚf­¹+n»UnÕ¥€Åwãn¹R  ``M3ÑHç0WžyÌ|ó–,w5ª ‚FN15Íl§7äK/ãÊ–ìâÀÞb ¬É¬ßñÞŒ¥O‘÷ÆÚÕ—uÄGrû@ã:Ë+f.á_"*Ë\Ù§¯¯¯‹àÞVG×…étšYC%cÕ”£©‚Õ„$Å^éû¸ÜÚŸïJj4ùl àªË“Ï”ÓPBwòƒ…ãZåŽò²j¤l½—;ñûì¾¶ã¹¢÷{WË.afc³%¢ÂLÌV•Ê3Kkã ¯ÐdùõøÀh4:Xé‚ýd¶åB_ºä¬eJêÚïG•1TþàL—#™ýŽˆ„®ïÙ˜,‚(F³”®*Ƙ,‘ÌÀ™3g¬Å7ÞX". ÊÑœˆŒ³”¡ŒHÖÛ¬HÁ wS:SõWóÜc±ëLh ÖTÉ¢ª®êDk92°Ýd¯{B}Ý`o†ã}NeŸÖ€Ôzm²ó¡nlu'M[š{À0w!Ä`XÊV0fX®"¡ÙºRF£è¡Ó<Ñ­dooÏNÃS0¤Œ&C]“Ž@}7&›Ü¨­˜È¬£Û±4Xud=µ@SC<2zèT?yGÊð\=ï9CƒÄHÀ@H[aAG=Èð]ìê0?=âiÆFøòï0zäªÒÒÁf¨5LŽáñ(ÎP³I’í± ;›2lB³üÔ­r«.Q(t&Xc㊠H‘—¶ È/9ÒødXü¦Ä¼XD-›âáyð(Kg1Êæ"çDÄ|·´”¤ëBß÷Ť¸w.ÖÁ|i‹|ªƒ`̾¡IJȺÈ:g}æ7eœs]—RÂÒ@¹ßÛ¥Þûâ ;{ö,>eõÉÏŠå±»;;{öl×u…Ø–ù¾÷†P·áHnþØîÛÞvæMo>õÎwxD°”›š³Xl™üîd^Uk¿ýÍß‹}¼éZBk‡8Iš½Õ”Df“rœ87 o=øDD}ç™CópíàÐpU ¦Ns" b8{ÖÌNUmÇñ°ºîì®çªg9iPT ŽÎô3ÑtLm|ëûøõïp¯ý3ûñ»`EöI q@Kµž˜‡;ÿðOÞû#ÿiýc3â2³Š$¹¤¬QY$˜py4ìüî›ÞõçßñoÍ›ÞsXj™¹žq³bŽKJ´Ø«Áy®=Ž,c‘:gd(#Ìé!UìgbêBPWJë^,ÐŽ $—çƒDYè , £ü°L‹ZrAŒq6›M§Óâ,*î”’ºŠ»ÇÕ—Ç¿ÿBÂA„I&ѬªL$½û÷Vˆ¢â˜“”RÉsµv‘=uÿQÕÁ`°±±Ñ÷ýÎÎÎE¤ n¾ùæS§NåœG£Ñ²ºð>}µó[~î7~ï…ßü[/xù_ý_?…ݽ9Ã’1ÌtáQOyòðêk>6ï蕯ÿɧ>ÿ­ÿâõ½æÞ11@jç¤lö6«³¹sàÁ,Aç&îØÚݮڅ౪TäA)÷TÃïíî¾îOξú ×sUM­!c'@'BˆH‚ÈvŽyûÔýûŸü¹oøö_þšøž_ûMI“))P2:À#›g=jzÔ«ÌoùÉ_ú§¿ä?üïhv‚4L`…îû?¸ê+_ªk'Ö3þ•ßýïÿ–þè+pË­ñSœö{cÅ—(²°ä‰á •ìïØÙ(,Ýî§Ý’û¢âÜ®0!32Tг1í«þVÎX*–òéåɃ µªèº0ŸÏçóy18ŠrI/©ªê€éneŸ´%X£ÊÅa'0û ¾GHFõ4w,ŸN§õWõ®w½ïæ›oŽ1ÞÏÊ[L«Á`pÝu×»­$|¦¯ó|¸òÊ+EäŸøDI#Ç… Ï÷úˆÅÔì1cö5{P•a I’B1<éûþÑ3¿ï;îó—9ûþWüü/|Ýß;õs¿±©‰C0YR&‰}èCˆó®ž„çõoû?ñêÿò_n9uj>~Þ žÛ…y*®ÑÄ´ !vƒÓ[Þóº¯û¾ÿ÷Û`zfç–ÜçËŽz€Ã¦xÊç‘ÐÌ‹C$X+j!HÆ~—“p/ù•W\ÿU/º¥ñ»ªéλÞ÷Š_øµç}Íì=ï3ÈJTôŽJ•§üÂO>ë[þþ´ò·n†Ûg7¿ÿ_þè¯>ûkgï}ᆱ8Ç% ˆ4)Y"XƒA…¡ÉM¤^(°$”Ðîñ"ðÐØÐþ£ª–’3_U3ÉÅMïÀ¹ $(-¿&ŸþYî•’ËûübOxï‹£?gíû~>ŸÙ%ï}Q\÷UÀ9“’ÝŽEàäÀæ¸õuÙ¯“!…2´Ê{?v!ÔrKnÕ|>ÿ‹¿ø‹2^cÌÁ2ÀóMæu×]÷ö·¿½$8=àn%‡J)Ýyç677—·à|¯¦fwh¯þ¦¯xòË^ìܸçãQ%@Ûê &¶ÙígëÍ•ßþw¾ç«¿ü¯ö_õë?ÿø®â›î|Ó¿þ±¯ý–o°uŠó‡™€Ê™»kÖд{ã/ÿÖc³Ó~ûoímÍÃW#€9Ï mÙ¶ƒæØ3>÷¹ßù-NâÜyßYÔ£0*uÔ® Õá­/ûÇÿàø OŸi=öÑäjáý~ 5P·nrôØçÿÌÿý9?ð=¯ÿ¾ÿxöw_¿q¦?5»åÏ_ý»Ï}ìå4Þ0`[ÄE4³bëkþÃ÷^ö÷¿øƒ?û ñK¿qghíÞ雾÷ÇýÉ+Øxh,7Ÿ… HÙ„$Xk†ÖF¬‹½zÈmw‘t«sc[¤ñq¢áÆZ&-‰T†h²½³ayÁÅ2ëi¹è/ãŤ Šù|>›ÍÊÒY×õp8F£ÑÀ9ãœp!©eÊoÉýä—’ó°½S¬Š"®´¾±±à~˜þx‹yÑ÷ý`0(Å(›$Þǽ"c\_– þÅM /6S)5?räHIo»›ÉƒgBüÈk¶ž÷Eãg>ûÈÓžV_e’€ž€f°6!7©®¼âÿî»ÿÅ[¿¾æÊ>µ£6€óèØŠQœÌÃî¤Ë]½1¾ò©C›Íóžýåÿöÿð×_ab¬VP €½«çÖÙg>é…¯ú‰õÑP ]vå#üc¯‡ 1IçÅ, 4æšØ!?ý©ü‚§¾ä9¸êJEU‰wla 9A2Ø6$ õšë_øóÿñÙ¯zÅ6ñ•<>õþX.…¥`@éd*ë5æ\]{í5?ôÝ_ÿ¿°n†£³»±éðXÙ—,ö…K8k†5Æe±¤¬[ÔEc75H‹¼¥‡ Rèb¹4¼qhëfcT³*DäÌ©Ó'Š?îA÷:*ù£ æ8 RÜV)I×umÛ–ŒÕ¦iŠ6âÒ_²›–šƒ÷ÈXÅþ*|ÿ6°pàì©ÓšEI³*ZÛÜ(Jd‹‡ ?( züøñ—¿ü›TñWõWï|ç;ïÇÛs'®¾úê÷½ï}÷Ï4Ÿi­":qâÄîîîý‹Næ÷h¢Ê6¹£é¾+›ã’†öòhænAÚœzFÑÎ|ˆ`ùßÄh42ÆH)sÌ2ÙÝ…üít-Ŧ–õËðF)P˜N§Ee¤®ëÁ`à½-r³T‘RÆûÁðø²Éù§4\"dUÅîîî9%sÂ`4$(èÁg|2”rñ3gÎkäw?¹I‹ºEçDpÕUW]ôîSUUmll”ßǬ/¹OŒ\2.µ&&‡™²vÎ œ•b¶' ¡.â¶{X 8¶v¥Auçt¯ÙÜRr¾W3 Ø*Þέ¾oû¶ô˜ãaTÏLÁ‘ îŠÌ¨ÉXv€yL[yx¤ojq_p}Ìé¶wÞØÄ˜"T)B`0MQØBlƒ¡Wç{T™(u…PÀ ‡Ì‡˜ÆI£ápv襵ý¦«†}¨T!y¿áô¾$~Î {"#xL½fo)¯"äC4ª°Š*ÜL7ÇyË`Sys$¶ØclÍþ¶³´×Svþ| É*zl8 ëŸñ¤­yÅT\3­¾ù=sÛ§¤Ë6?[j?šMÌ<Ÿ‚#¸â¤*µfvwwÛ¶` 5M5 ŠWJuQˆÀg™€ÎøØ'CV4°‘˜Úõõ1ó'«ê”»ãH9¶ïxgHy|p:B=ùÊÏÏB.Át0‰AÒS 2D&%)KtŒÙûº|OKBêrŒû]ClJ¼p™¥ª|yK!Èõ©ëz¿¶EX¥˜Ë fì'ïb?,¥ÄŒ+¯¼rccã RÖ}L¾4:‹{T„t±IXú*"¡e‰FS ð¨@E sN‰ŠF â‹y°FC?ƒF•tÕ•—3©w¦®4G‚€¬L5ˆ E2YlÈ£3â×yö ƒm@¨FµFëhê`¦ŽøG_þµ¿9Þü•+iæí㺳ƒéY›§©¢³#  öÂMOo UëÛ“©Çp °@]1 €èfôØ*«³º q’8_ù¸ç÷­õÕ¬}ÓïTH­áªŒè…ZØޏFÙLŒ™m;œ®0·*HZЉ«ŒjÐæ?ôOxãÑÏ}å‹¿UlÌø¶ìQ$$X` Q¤ß°—ýîåúËg½Ô(kÑg›ÇšfÔ‘5 ÑåJ¹Šþ8Ú °EGóíhÏÅÃVÞªK‹ÞXǾâºF=C•­·Â‰$;‚Î3Úo=d¶ÃTº?±+ Y²jãìí·Üüô,ÉÀÕùÁFbz–ÊjXÍâÂrÎ5µ/’±Ë×´Q°_XGw—U¿‡ íý…Èí7~¸¶F‰|Ƭm½±Uª:áÈ¢ {0¨jÎ Z(|Ä»®+ˆ8 `>Ÿ[kƒÁtÚVU•s®ëºÔÇ/\Úr€…ê–FÆR§¤LÎrÔ›é. ï}ÙïŸo¸Ëé]J»ãîÊÄe×××O:e­ÝÙÙ‡³Ù¬iš½½½º®‹×=n_IjðÞ[k¯¹æš£GZkÇãaÛ¶…ü€¥×¯Ì:@ÞÎúzmKÓ„Ý¡È|îÇC8Õ²{/µûY¶žÌÒÖÚúúÙÓà8´ßL"¤!Ù ÂÀù „¼MÌÌ<¼Ÿõ“‘€ìÀ€01;ñ¶C8ü´'¤Æ ßuãÇ¿  Èä¹|Dc\w\ïLêÑ H0¨zJÚ‡(€ ŽñPó¡í—£ˆ{8Õ®sì¶ÚE² %׆«Üdû®”;@¯›1žƒØs »…fóÔ’×v&gÑÞµmÍx{Ô½‹LÓs\ò`€k[h8ÄxŽ¡ÐÔØ½INÐo·fz{:v¹GõàOu! AUIi®ºj64qª’Gµ?uçØžÈz%ÎPÎÔŸî–«^QL*ÏóÁm¸ˆ8皦4Õýp@iH'"ÖX³_Ƿ߃Ö<×ù […BÒmïzߺHGZ«‹¾yôµ×YS-"˜„ûÚycÌÞÞÞ[ßúÖápHD·ß~{‘›}Ýë^÷øÇ?þšk®)@)7‘ÍÍÍ3gÎÜqÇðP¡¢‚®ª1ª1‹|³bŽ,-H(Œ{ÐÎýÕOĈ}q‘¾ï ë,¨°ONGŽùЇ>4N_ùÊW;v,„P´¹.»ì>Ú, 9ËÁ×ÖÖ67×—7¨ä;œKÃSå}ÑĤre3>½7ûÐ/þòümïÞIØ5_õ/ÿ±y£LµƒEEM–ãW^};ªÙ´ûéžså#/ëÿüí­O×_ Í9MÛPRh‚±â\Õ !Ò`v~§êlj×Fƪ.Ï£°}⣪ÍMÜzò#oø‹G|÷wõRPR©F¨%7Y1¼ù‡ÿÓÉŸþÕlÖŸñyOýß¿Gœ%Î@¤ÚÏDó¶wÿöÓ¾t: WΦ{3|üµ ÉûE¥¼?-þñ6ïz·|âæ_xò³‡G··gYÎŽj`Ñ¥(ŽÉÆã¯Ý~ üÞί>ç«êë® ·Þòˆ>ݾ×nÎQÇCf«úY¢E×r˜ÕƒFN׆ž€žœéÒäwkóxiC*±`”È~Ó4{”d¤œBšMfïx¿·$€ýdý3îƒ"N¥›Ó’-:dŠLúr¿Ä²ý_ùuéÌÁ*²}¾G“¨ó!È:€â–;òíwQNArE.Gƒ«®–ÒÒ•!U]_yùUëëckùÎ;o¿í¶[î¸ã6"I!t·ÜrK,ÚæË½üå—Ÿ8|xkmm´··³½}æÔ©»Œ¡µcÇŽ-ûàâ€IB×÷­1TziJ¡mgEÀüÞD˜R¡+Eæ’¦R ço©,5"´ßu±$Fã€Öýå—_~äÈ‘¦ibŒwÜqÇÍ7ßLD—]vÙe—]VZ ,)ªªØÅ")Š£Ñ¨ˆGY¼‰[E ô#$§ mŸ<}Ç[þrç ~òÏß±»½ÓW^5‹¾MåõÜg™Ç]÷q²Wß¶·óæ÷ˆX>råS¾îeÓdØ ©Râ¨#¢Ì»t[ }å=Ÿÿóéª H1bzòÓ„`+ ÈeOx\ôÓŸ¸=Ö¡¹4°äÈ‘zÓ1{rgÞõÁÝ?ùó[^÷‡gÿê=AP x Ufðù_ó5[ÇáöºÍ¿9Ý|ôäœÌÇ÷„/ûb4 €DÁã@ñ¬oþSSŸ<{¶úèÍmg'šÒhóÙ_ÿ-PØò5$¤ró›æ _öÅ©£õz=}àÆÓòöñ;oiû4lŽ|ÙK¿e9¾•Íq)C@P£~„á#Ÿ×z»m´2è“ p¦7»·0æÀÖžÚO D€‚‰³&o{ÕóžõÑ÷¼·©½ÎæÞè~÷oxÁs:#õƒø|'þrY/·û.{®ëºiæ{÷ÝýZª±¿·-Î¥âíYîèï?·J¡bØŠÞü–·U¡7¬¾r¯¹‡ J­`.5[G¶6ŸóœçÜ~ûíwÜq-²è{g†Ãaß÷UU•!Óçq»Þ{ë­·ž>}ÚsìØ±Ë/¿üxÄh4ºÏq?~¼¤‰³Y[[{ä#)"E@w9¢å ùÈG¦”Ž9R;†û-ìû~ss󪫮*>·òäÒ'VžÉ9>|ø†nØÙÙ¹õÖÛcŒUUmnn^sÍ5ÇŽB¬*·¼†œóp8c €ÒN5[®_ô¼gv»·Þxcû8~Õ¡gÞð¨oxéÜU ˜ð5´Ä碻þÑ'¾æËµò§Gîðù&"÷ †¼±<<ö‚ç`o²öÔÏQ0»Ñµ_÷U"¦ÍÚÎÚ ž„˜3•&K|Íåæ¹78£)¦Ë›µqÈþ󮇯pX¦Óû ú<ò_ý÷Ø+ÞóÚ?šÍbØë.Üu/ÿÆ/9òù7(ÌB_ÝÀ”î¿ÆÊwóÓŽ˜_ûGk³3°¾½vë_úÂök¾rB*L\ôP˜ã_pËÞðÊ?ûõ?~òGgwÊôŠI?yÔ‘Çý×î¾è9G—_䇌l÷gdÀ!ƒú»ú¾²ú›?ÕÿMú›™ûØÙü‰NÏNÍ é‰Çݽ/ü6 žr±/ùST\¬Ô!çîäÞú?¿òÖjÔÓY_Ýå×Í»_?«ì0Ü4‹sÖb·!õι¥èáx<^4Ñ»×÷7¶&ç¼··B‚Y´¥ãì½_[[[n‡ï_½#æ$ÆV]ÿ¦oûGwüÞ«‡¡Kä&Ù>æ~ëÓ~ògÜ 3„Râl33;%dÉ)¥ÊWK­@yŸùî6—ª Ê’ ›˜âRŠˆ‹B{ø¬Zš#5uƒ¢ï61„ü8éuÑËÏ; å…àüýHl•ZË2Ï]×–=ȯ…ÿ–SB*së½MI¬eR?8Þ¶m›¦)­A–¾Uå$À ÐQ¹ ±€Î:‚ƒ¹R@ h>éy¼µ Ó”E³q`•)"x ¦=ÖÖc®GE¨Ä Úlå+Dt 1èx@çñ'¤mH@>gïÜÁpÎóaÕA·2¡ï€„fÐ÷YëÁ8ÐS0ÎÛÑîaHš#Y‡P¤z,Â>ÄŒ†ZJ _ „z%1z !8ÀX%DɎ;Ï"ƒ( {Dp–B#@5A J0îöÆÙÔëèm; MÛ¢±èÝÙÊ/÷§+›ãR†–Æ,0µ©Ç i\ÑZƨ2kÜÇ©ž$lߎS·ãê‡sh‰^9ԜɚÀ|üɯ·Öw·ï¨4{Fºù®“ïz÷ÖÓ¾àtˆ@9ç¥F÷2Ja­­ªÊ¹ûøäßCœjß±NƘœtù׃;èOçpb÷ ªÛî¼ëmïI©”)Ð|èýügôl0Ì` € 1/JÙ±ŸÅÄ¢RX¡X˳— 0\*­ª–Ÿ±_¥ïëTU&nêF¡9gkópPÈý`þ1äŒåëχ¥[¬ ¡®kÜ]æý์1)I©¡)Dμ %ŠãkimC)I¹­)I¡³:#¢ ".òQ‰šàÌ®EHз8!a¬¼ %êXsÖ¹Ó!8àíÿ×Þ»[–_õ}ßµÖï÷Û¯sϽ·ûöt÷<õF ˠшÒXŠ%c‚dŠà Š ò!ÆÄ)ã¤â`WáÂT¹’8åØU.ìBئ p¶*À8HKB$02x`4¯žî¾ÏóØ{ÿ~¿µòÇ>÷ôížiI3‘Ô}»÷§ºNŸû8÷<î¹û»×ë»`"‚ÙÀĨ‹²æeYpÙÌs;¹É9ƒÂmÃû/]Ø!À€"ç(Ò \í hQ=V›êYB„}šœ™Á¢ë'+0ªá7K PiBÃ^ K C7eea’œˆÏ,’€ ØÍ‹3¡ÁêŸöÑo©O«¶<þ,ƒ±&d‡<Ùd8ß#i@Ås,CqZŒuŽÓ€ì eàÒ¡Ô…U€–³ý~wïV?ÄGæ5Ta` |öìëÞøu\â%Çd‹£_ÿÐGVËd_ëu놨á°5ÆCÇ5ÔkKÅO¦­N®_]{•?ßôð†Þì©ÎÑí=þD÷Ô%%™d+Ïnî<úæ~}„Æ8Ô`ðÎ{ç‡PÉcbœhèZ·­K/Ò†oŽiÕ¤¿Ž6†UKëgg°¬™@kÈšOJàu–À°!.zp¦ÜŒ¡w`-½«Ÿ,Çļžç6cu]4C×ŵf¬+"ƒßÉúב³ û¸T¯÷Óþª [ÙÍÇcN ìr0‰a«-ÊŽ]Š`ÃÐä@«ÖU DÃTæ6¸ŽØ0_,æd‡È>g -A=J÷Д0Ñ›¶o„ekM‚if ¤— à#DLÙB‹íˆŽ‘  >Ñø+른¾ìÍ‘Së´%‹$KÙÏy™ªHI@höùx°T Ó4œ{µ¹GBQ”³1’ fmns¿ú5k‚JLß9%ÁÈ#Oóµ™ó1[u»Ê ]èÓ×ßûeéSù.ëï?#O·ñéèžÔ”RùoÂw}]üš¿ê'÷t¨ÌP®nÏ‘ä´ züÎOÿ³×ß@Ú?lòWu“Ëõæw<ù©+U½ciðxÔØsQøhÞ7M¸YzhýnÞÝÝïûÞ¹Ð÷½÷‡ÜÈd2©ëzõÍ'VÌžÔƒÁø}ww½»i(ÏÆöööðáºL €" ,FiÈX«*±£Vìþ«ÿâ=õ/|úçÒiÔßúöo|ßϾð¸u–P##_X¡œ¼ù ëSàˆ”½ZT@êsÒ\–ÎèñgŸüÍOíh–¦¶ƒ«ó*¼å]ê¦ü–z˜Œ|‘ŒÊq»Â'«·ŒPK½…jŠ=Ù¬pÐʆa*¾[¤ý}wy7í?…éYWÖ‘0˜.ª½çϽâ[Þyðïo {…U‹ƒßú?ö®ÿêÚê>vAU›,_ÀEwA89š0tâºa+Å‚ˆº.¾ ]ÕàxÃ7›Yï“"x'Í|ŸDðç5—ikKÔ.º/ì¼íÍ7»k}ɺ‘‘¯ £rÜæØ°Ò›Br˶6ÏòFÆcC1UJ>8p—hïs8wÅ&·²š…>·ú)|Q$凿÷;ßÿ3ÿúÁ˜k–Ÿüä³øà…oÿžž @kðN»>_à}»Î2­7¤Vƒ©øóxú¾?ií·.GŸTŽ“É.GÀ”8(‹n(g>þøg~æ÷–ÍeM²ˆ3¯¯y÷7`ëìÍîWìtü¾FîrFå¸]9q^«`‘Å4ûí\•®©Ð¸4‰~*˜xîzì/ÜÑçpô &÷³o†i;ZõõžŽ#‘C(Þôº‹ï~{û³¿T÷œKžd|äÿø‡ßþMßа,ļðçy^CžjPŽõVíáKCÌñEæðN΂¬c—auÇÉO®ñHdp0‡™b,Ø}èïÿHÙÎgÝ‚z7¿÷@óòoûFÐÍþ饛Ќ|Å•ãvåÚ10¸@±©Õ¶¶” 4µnæ› 0ÇaëŸÆÁ3ØÚ' ~_‘}_2Œ’¯ýËÿÍÏ|àßœoÑú°`‹ýÁc?ú¿ö¿ÿžªä##O$4œÉ¾öžÁ2ädÌã!ä›7TÈ×£×kí9é¼´úýœØlAD¤*FT›0‰Ñå}ä3ïû?·´Õ‚&ê:í^ùÍﯾTÝìÁÿÔÍ¿42rû0*ÇmÊÊîu}bëJS*7¹Ü@½ÀƽéQÇ›¤³6ÏZš_ÂÁ%̰‘AbÃÞ§S”4gLàå­œÿÖwÈÏ}Ø-u¯± T|ìGßûµ¾>œAٕ‘ Ÿ·ÿó:Ù…ÕøÑçu6#¢¶m‡¨%ç¼Þ´±±ÄЬPfeî5+¬À—’7ˆ‚Ðí}úßýôßükoXö]$¥3{Eƒ7žÿêÿî›MȺ†Gu9åŒÊq»B×þ_ù%³JŠÁKU¸*pAðF1¢kµ›ébývb§gËlhS|àñŽÿñ/Ý·ÕÁ獵çŒý¯ýoOüÊ¿ÝÊó´hø• ­EBa˜°”`†©*èÚXø £Ï7}z>«‘ìã"Çúæ8¹# Ïj f €'âo}F@dàÉg~ê{ÿÆ}4yÜi]ÔäÓQºü®÷¼ š¨Þ º±Ó“DyAFå¸]¡•gÕjï ÎKQ£Ú r‚ªASPü4pÃ(æs,h¹ŸÃâ ‰(ã´Œê4å%´ðÀ™ïøû?ü¬“pκ¸ti³]üî÷ý­Åo¼ŸÆº„‘am‹."e°Šx×Co *Nú¢?ÿÎ×k*p¼>v½Üi¸ùP#!BKèØVÆIY- »+´Äæ².ZV¿{ù}ßñç/>}¤G½V9çYÚ{ëŸydûkÄÙ3VlÁ•4#§œQ9n[ÖÛVÀCÉ‚= Ê©•›¨”5š’7¼ND«¬‡3ÌŽ¤;Òų:{ñ†Óôû%d¡ ˜·ñŸ¿íþâ÷<Ѧf2íf‡³-{î÷>ñ‹ù–‹g»ÑFˆÒ$ PFÊ009ƒ[¯ ¿áǯۢž_$?©4ƒ«àɦ©!þX •^×ÕØ°ýmŽ”X|øûþgþÍÇ–Úî¡ßYÒ^¼zÿë.¼é=ïèÃgÎõnä@_Š5ë##·ŽÓsd¹ëࡳvð´ì)Ô¶s¹eÅÕêJ›—jÂB±X"ÎB¿k‹gÐî"-OIuÔˆ=Ôw‘À µ‡ÿ§ï?ÿ-ß\F¹Jz®(ݤºú‰Oýü»¾ÇöŸÅ&º´h‘æÐ^¢Hi½ìz]ÉXsCCíú“Ï9çuG/Žeæx•ø gИ4er¢ÐVã¼_J…Éîå_ý«?xùçeCx?ôÍ™ºˆ/¯ßþíïÀf ­³ uTnrº¦ûGFžÏ¨·)@ƒéå°3ŒD]™ÃY+Π:ƒrbUIII“àQ`Ñ£=ä~íeÌŸ³Å^À©©w†¢ëÄ…ùl^SL7¿åïþí+“êüù®<ûœWÚÞ˜Ôþä¿ý¦ïÆòrÁ¾€E¤ N@¶~ý»>ø›z«:LyëÌ×õÖÞÿÉßÿ;ÿí÷?ñó¿BÑ8(2QmíuxRÖvè_p§ÀÐXuƒ¨œɤKä9ƒ¼óHØÿÍOý½ïÿëñ_þò½u¹ë;á"MÚ«ûßôžÿì·¾j&Wü¹i—ËrúI…˜Š2äS ŽŒ¼0òC?ôC·ú1Œ¼0ÑñÿBÄCŸ;5B-õI,–°y/KéYµ#⢙P(²cW•€AD¸÷€A=¡ŽÕ·„2€¸A¨áA F ì£Ú¸÷{ßôÇ>ñ‰ïž¼tΰHóÝ ûcOîö¿û½ _ÿÕmYÌ]P_¢Y Α0&R3âªί\BÒ`ƒn "#P‚ˆMA„ÝýI©ä.‘™¹í¦&[UED ll’ÄG–¥†BÈúOýÄû>úëýÖ‘4BEC~6¿Ôïì¿þ=¯}ÙÛïµz^Lߘùœm݇éElÜ“%]Äéi˜y>£rœ2f¹¥nÆñHâÚ!µÈ‰[¢9•" h¸˜Z± WB&$Ž$ ³è@0œ’†ÝJ±;?Ú~õƒý#¿ö_,ûìÏ—îOè‰||ñë¿{߃÷M.ÞïHžšX`ŸÛçK5ËŽÔò&hÓÕD«’õ’”,³ö•(SNœ—¹ŸÍÀFl¯:²˜‘μùfB ”á0wê •ÿôGÿÏ÷ýÍßùßÿö//¶­BÓ|oùÌæyyóŸ~øÕo|ïLhç,üy.¶yr&ç94¶ÐÑQ9FN5£rœ:2C‘;Î-i ma‘¤Ž%›v¤F¡F95ßÀÊ5³ÀDÃÎQ0@§äÈe@á”Øíl?òÎwþƯÿÆÑ•=žuó³þÌalœöñ?üÝö7;¼ç‘×Úbßz¯…ÓÚ{ç&‰|Ò¾vi£®¢rJ{ê{qâ@³'r`ÎêI|ËLEÌÒ¥?Úá^Í'Û›TF$”é°Êé³ïý§ïÿÞ¿²øèoîHNyF’-¡ÏWÎ?T<ü¶W½ìáûèÞ)&“Äo܇ú,M.PsRب#§Q9Nd 0ÌRÜQŠ²æ¶€ÝÂRâP¢Ø€+ÉŠRœC(Iü0^È §¥/tŸâNZ®½pæáwãç<>¹÷ʽn&:§nZ.Ðï}ø£Ÿù¹_HWŸå7|Õ„­Ìi––WJ]NËåVK˜¼‡÷‚gˆAŒœÁ)DÙxïp‰Z³(T,¸'îJJÙrA4%—.¹ÅþOþ_üK?ðŸ~ôŸ?¨¦žÉsqa+3>¸ðPó†·¿ü¾G.b[SSaz¡w›~ã~4g0¹å&Èoz´±Ä8rª•ãB À4Yî9uÐ5 Áú}dïj %9Q.Å3\€fOÃf=œ'Ä*Œ$;š‹£ÍÉëÞý®œú?øðÇP×ö.l§*íégâgÿÃûîÊÕÏ„‹ÛB›¹ªsSÌC•› ° ¬@†ÐÁÕˇIa$¡j²/+¥IŸJÖP©]~ò3?þ¿ú?üà¥ÿÄ“›U‘SÚ;ÚPSoo?›–¯äü×¾õ5g_3ÅF3NÎô~§š>Ø×;\Ÿ¡ú,Ü$fÇÙªÓóŒ¼ô»MFn; °Ng—õðI:ü>iË«¶xJ–G¶w Gäl]ÀÎCØ<—'¯”3ؼÕ9„MHXý„S¢€Æ.ù"¬õδ'¢«ýÈ/þ¥^>öé‹“ÚõÝ~èg\pÛ”‹yŸëæÌ£¼ì¿|×ù·=ºùÀC\5KôÞyšj9ƒ}‚„“± ëºœ£ŸõåFU¦öàýþ?ÿ¹gþÍ¿£«»M=ëQ•³ùrêŠ U}yvÙ.Ôü›}õ½½œ ØÌZij6±ñª—¹âžvçåE½-“H:ã°:u¦‘‘dTŽS†êjt!µ{8zVfOÐᓘ]Ñå%Ì÷x~ó½Ü÷Vlºû1=—·^%õL/¢¹¨ÕY Ì™êÐ}t XF”~ž–¥÷³)Y: †Ê|þÄßý'ýïÝ‹W·¼/ç}ퟣ.°‰Ëqšúìë_{ÿ׿Þ}ÛÛ/ÞwosïE” `0ñ€(X Ìöw]Lq¾8¸|y1›µ¿öÉßûÐÇ®|â·ë6Ù"!yÂÂq^æ3ÍÖ¼;ÚÕÝGßý†GÞõFèU´{ íª-:svŽÚM_Vœy5´Y^|uYN©Ü àX°-1ÇÈ©fTŽSFN`©Ÿóâ9™=…ÃÏa~Y®èâŠë÷0¿ÒdÕÎØ8“ϼšêm4ur‘š Rn‚œæÌr:Îy ÈíÒ¤8Ã;@2ˆ†¤]Gÿñ³ý/?òØOþ¬5î´. fèÛ`,Y‹˜&æ®X ÂSSŸ{ùË'÷^<û²­*©(À,Y]ÿà±ßî/ï<ùt¿H1×i?sáÕ(Å(ì¹ð½æÖæÙ=ôæ¯~Ë·=^Iiñ;]ÿ´? a²™ËI,7‹­‡¬¸À~Óó݅ׄ¢&©a‚&˜%âqŒ|ä3*Ç©£$à ý‚æÏèÁéüŠtOä£=ž]æùUÌS]9ÁdË6¤ÉYlÞ‹æ>›œ§É| ´H 0e"càÔøb´€ÔPê#>ý?úã?ùÿÌû¿îàÒ2FrB>ôffvfVØ`f I ƦlVÅãñr ƒ}Ø÷Žs5Y)ÃiÏBòûSûš?ñúGþÌÃçþø=}{îstù9,Ú4)]]ccÍÙXÝcõýûÁ_ÄÓ—êu¹ÄfÝÅØ§ä9{©’BübÒ¬¤D¡ÉŒœøÀa׳Û8*äèâ=¯xç›ÿô·¾më ê–·§/çn7Ï.ÙÁ36»*Ú©df œ¢¨6QlJ¹…bŠr‚²ºÕ/ÓÈÈ—…1æ8u$ƒ3ÈyŽÅemøè’-v1¿DÝe,¯ØâJêŽTsvPmbz“‹©¹×ê hv¸ØpL&ƒ_àÐle åSttˆƒ'$Ã``ƒ¥¬¤Rx[<ýÔÓÿþãŸýÔcóýÖþ•Ýùîž$- Ô%IêRp—¢\&ÎŒP7“é†{Ë›^ùð_õ–Géå¢&ôX\År7=–Åìi¿÷f—Zà<ª‡PÔh΢>‡ê<šóhΡ˜"lÞê—jdäKÏsœ:V=Q4,n’€0 úÎ2,öl™,‘%†YZ -Ñ3Ú¾vReà‘$ž¨¦¼ 4;÷Ó¡€ FÀ÷Yò, ¤ÞÅ‘W¼bûÁÞþž÷ g̳çžëf˽ƒÃç®^ÞMí2sb'õtsçâù­sÓí-ÜsE@#^2¤@Ç‹–çGX.j=tË}w¸‡Ã],g&DÕõ$¹©+øM„m ›¦äj¸âV¿J##_Få8e¬öv¬2ÈÃ×&‚圲¥Ô«%ošÅŒ;oyI)¢;„/!AÄ9BŸÙD’kä8׿NƒÝþ ðjQ;#3 8äe‰¢†sjÈà°ªßL«ÉÆÙAïSƒfÃ+ÌÀÌ9%0±Y" îsp9Çç;„öðèòt~Ë],÷`=‚§Pf7ͶAÕ†ú —Ûg9l›Û0©ÀrJr##/ŽQ9NCr‘¯X¥;‚qްS¨A‰, 'UClyy)ÀžH€§æz"9²ò8’áÓRæ0SˆÙJüp& XaCµŸRFK&Žü µÇ»yUÕ³OÖón¸žˆ=RRØ\™ãê³è§}‹nÝAއjKqž‹ gÅo¥bƒÂŠM”›(·¨Ø0_(ä´Dp##/ŠQ9Nùút’”$pZqhZ¤i nAÎkŒ{’%usHe®"aKΈÈ*èøZÍý´(G @Aj,R„&X=T@5c’­¢à¡9A¦1Ax€uÐZ°¬59qn—GùJÆÑ•ª˜—q¡ý!ÇyB› ËB,ÞûÒ…)Â6‡’BƒÐÀWð%\’SÁŒ¼HFå8eøëì¼®{”gÀ RR‚rfŽqq¹¹ëæÔB’`$?DbÔ Ø†ßT °®×ëéjÆa¥*·×äàðÆ .Ž „5P¯-à†ëL€¿ÁjÐ!6Y?ëMÐ#A[Çus^¶Xa~íæO»”`ìÊ‹TÕ°­åû†ÝüÔÊ{ÐìP9…1Yrš å­~©FF¾ôŒÊq§@ äKÎ%¥©B¬áÕB¤Š˜!¶ˆsr>sMª,R€*Às ºÎL‰×t3îäõ§ °­V½–‘34Z×YZR\¢Ÿ£_ ÿ(µPyržCP"Tä*ø ¡‚¯ÈÆaº™ýpGîTFå¸S  !Jf‰¬EVã‚XЗ«yëœ,u´Ü‡E¥Š-$063È×FÞ@<2@ &€Vä;:qt·l¹·ØZês{H©åî€ÛC,¯byí>õ™7qRÖ¨¦(§¦Søå6Š „. Î2ˆÇÈÈÈøÎ¾S ¾‚™i†¦¬€«ˆE¸€²Z77í©ŸÁ"»-A„˜ÍÈTI¹µb›„=e‰èô´[½TŽ]x³i¤Ü¢ŸQê­Ý—ÜswHíUÌw±<°~A³›p(PNPLÍoR˜¢Ü„Ÿ ÚFh&`gƒ±Aè´”FF^£rÜ!ä!ÙB¾¢œ4dS€–£AœÔˆqiš³u{°n¥fC±V*{Qˆ‘£c{¨;%À9GÄ%ºúCôKײ.©ÝC»~†Ô0Tg¨(Q6&9lŸrØ¢¢±r“|€x¬¬àOÍ0þÈÈK`TŽ;2( â!5ifÀ¸ÐØ‘ b˜¨;ÐØZNh÷-w…̈ X4*ÔyÑ ®ƒàø?fhBŽ–Zêgè©;@ßr»GinÝÒÒ˜ ÄÑ EW#LQmQ¹רoDëMït\¹¹•ã :xˆóTT€*±Ó©EO0X†Ìà™õKI ¢%Ãp ‚F5Ï¡0URƒ(¤ ð{Ь}Gqiý!wûè—Ô ÎÑ › ÌWäk (J„ ¡¦°)Õ&Ê)¨‚x–ýAW㚃÷ðúºÜÝŒÊqÇl«Ã¤ÈÎP4ƒ¶È¨‡EÒå94jj3Í™ ð\ÈAÕh©0Áž1Ø›°O½æl©Õ8ç~nqAq‰8×8ã~iý‚RgLGE?H€/ÈJø®¯V ¦Ç3‡—Ü©ŒÊqÇàpí—Aªlq¨Ò(Á!P_Akò¥Ã®ÔnIýÂÇ]ä%¬…¶èOYRÝ„°õŠÐS6b«)ˆ‰N¸\­œz­—nÑ[+ë©"33J²zh˜ØÈbÌ9RžiÛb1siAº@Ú׸ßÇY9{ ÙÌ\r‚²¡P{©·áj S-7©Ü¢PÃÐñ³¦2GFîtFå¸Ã!7eíȲ‘FøVAYÙÈ4#÷PEjÑ/àÀ‡W@àÉLA Η@<¤­hð¢îÀ®ÕÏi5˜xK‡?ž¿%—hHѰŒÏ´Cì4µ–Ò’b˹£¸@>D:¢nNqØ;q¥ùš|M®„óp5\IE-E_@VÎY##w£rÜéøMB/ZØ`åD.#;tÈý –ÑwÐC¸Žá¹#é³U„ Ù›xvžƒ"FF+•NñmoeŠæ„Œað¢ž@ŒÜ#·HKKöKˑӂb‹8C·x„xDý¡Ë½!8ò5µ…¡¡PC¼…)5ªm¸Ú° 2F鹫•ãN‡jøˆD™Ð)C—l¨Àpà‹ h´ØRê` ±Bê‘; =cJ‘‹(L`4CØ CìÄ!ód¬q«R6ÃcŒ¸ˆŽ?a€µHq´DZR¿¤Ø’&Ä#J-ºÚ=ô3¤9´ÍÙmr(©¬á„F}#EWÚ¡*7àjƒ_?å1E5rW1*ÇN˜„|€I•-÷¬¹pýœ809°CïÐ/(÷€".aù¸b‘ HÐR±zäà  ÅâŽ3ülljªaîIy½nĦÐ3¤9R‡Ô"ΗHs‰4¡;@jÑ¡?D\B3Hà ”[æ=…©ù:»~ÄBIå|© >jëà#w£rÜá ÃÌÄ_€b#K-GöÆÄA\~í‘3ÔÚ•X†ÒR\‚x¸)á H‰aðÍÕ ãÒÌà|KS7¤ 2Ø›JÈ=r„f¤9r‡~‰¸DZ`Øy•ÚäÎâ ¹5»¾†ª6IŠÒ˜4S+6(TjH9=ÎΑ£#w£rÜá0z™1ÁUDÄ`áŠJEê3@Ì2è‡Å–b ËŠl©ŒÍ(¤„וr¸±0ßR.!Þœù‘@ÄbdtË@H;@¡9®d#õf†8³Ü#.)/(.çˆ äí L$Üü¤¦Â‘+áø òS*6à+xÐ0°Áݦ×ù_ŒÜéŒÊq‡CÈCW‘ƒ2¸`o‡°šUKCJ 5©B“ªš%$Hà $ !ˆ‰ÚÐëÊ1+˜û3À@t Û4“eÍ=R‡ÔC{ʉ4§ØRN–ZN-Åq~-uf‘X!B!À×ê¦Æ K{¸@¡¤0ŸÀ7€ÕâvàdZLó ôtŒÜ¹Ðà¤=r·¡Ë«–zŠKôGœæègˆshFœ[ìr¿´Ô±v‚dPÝñð%¤‚+L sX8L@<有7q8s`v 9‘dë¢òuËøn0ÇÞ–fÆr²sIOØh 0˜¢ë424Ã2ºã˜ÃzäÖR›sRK¾=$ë¡s¤#t ôsh†ZâŠÄ“/Í•¾"_²„X5,]MnаÙ»õÝŽŒÜåŒ1Ç] û Ìh(&rËD$€1“Û½#4[7#ç‘{¸¨©0W’Fg9‚à Ó)Œ‘)Q'°"È1]Sˆ¡_ÖÖ[¯S"˜]7º~,–XNf–)%ÓLMÐ/€ *­årÏš©›™FØ"Ç%RG 1³5Ø‘ Ê\©®  ¹†$oàK¸°^w522‚Q9î^\€8b†DÀÎÄYŒÌŒ\’T”–È-â±U‹––Èœ§ÔÁÊi;“ìX ä’R W9…ƒ° HˆØÈ 1Ã/"aµ|p—½~ð›†hØ0:f3)icKh2Ë”£j"ÍjqIšM#é’Ò’s‹Ü“Et ²ŒÜ‘öªJäáØS1…8H )LJöæ¦ÀÅ9à °Ç53ö‘‘‘Q9îV rñÞ8¨‹ÌMH\@*À…r«¹sñ€AÕZN‰¬…z0³/Á 5¸Cì "`”ˆÀäŒ$ÄĽDBD""0l–1ìžÙj#á Ph6dR3Ë•a™,[Δ{h"Sh6]š%&þb‹´dëâÐjlÌL˜+øR 4 ’\ß ”OåY¢á©[…<æGí•ã®EWãrdäì •årRn‘ æR”¬ P%MœÕ)eÄDš{f)ÁÜ‚— b €åðyˆ‘’`D  D¤R£ëc˜`"@Í2Ìtˆ0L àÜ v,ë:Gž[Nª©£ár¥1a0‘xâ~i Á|Aìà*øÊ\ _“¯á<¹jÓ°ã—ËV%–±Ð122*ÇÝ Ùj^ƒI@d$ÄžUa9&As \Áu¤¦Ébê(Gµž4ÁrR#ꙹ–¥€`C ’![5Xt;°cv+… A†Eç×p¸až ´šY¹ëcŽ‘ëÈC jš‘;MŨªÜï“eʹãÔYn)'hι[4Qަi5‹GCÅ[„a¤|X\á‹k¶×]Þä}¨ƒŠdd]¥¤Ô`kA€’ŒXÁ«8ÆUÄLˆÈ™sàÀÌSo\²/LØñäž[ý’Œœ>Ƙcä: ò3Dö"ÄT šIYÀBÉAzhæLÐL¦–±74dl€Œà¡@`ÆŠîdÂg}]orsmP‡–Ü!±¦Äƒ™H„Ęˆ†‚ÊPœ‡øáCsIL<8ˆ”ð%±_ ÷ŒŒ¼HÆ¿œ‘ë …V8XÀ¢„ ¶cÁˆÔ!÷È=Ì(Á2L)§!ìJ$ÑÊmÑ f¦Ç©Ç•çë‡Æ?oh¨ÄȘˆ`z´Vå†xb9ˆLàAì‰üÐvl~Bì Ž¯¥°üh652òÒ•cäFèÚ!)àPÔ =R‚ë‘"4BËÚ×*Õ 9çÀ2T¡ÃX_†éÐëjëËc yáM‚&CD¯†?†µV 1Ùà}ÂŽØâAñ«˜c,ÄAG,p@n\>2ò’•cä:Ïó _õAÀ”¡8™¦¡ÎÀ4Qî!zìbþ¸'ÊW!HZ'”ÃŒ†+|“l•›'²@$ƒ¨2$6„$Ì f“Àäà8¬”Ãy°# DbDÄÇw–Ç?€‘‘—Äø‡3r+Ù8)%& uˆ‘ƒ)é0%Ë–i´œÈ²Y¦\˜ °lN‡O`_®~îqÀa«‰¿|ÓD4D?ƬÄ06&áòXBìˆÙ†I*T˜%¬Æ×%8¯œƒôk1ÏxŒŒ¼xÆÞª‘Hލ×t¼g|=@W—«} ‘Ó0ua)ƒÌ,›eÓÞ ¤¤.­®KUqåX9#²1ƒ¼²(ˆHc ó†Cµƒ\Bì§Ì OÌz½@ص”±Évdä¥0Æ#7°NäÐqýÈ 'D€¯áP°B´~Ýêg92r71*ÇÈ—…|âäÿÚ¸™Ñ‹s)?iK2ˆÏð¡[еOãlßÈÈW‚ñïlddddäÅñÿ°u&ÆGB¿®Æñæú„À-¢RIEND®B`‚espresso-5.0.2/Doc/developer_man/img15.png0000644000700200004540000000000012053147355026613 1espresso-5.0.2/Doc/developer_man/img19.pngustar marsamoscmespresso-5.0.2/Doc/developer_man/images.pl0000644000700200004540000000712712053147360017517 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate images original text with physical files. $key = q/psi_{{j+1}}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi_{{j+1}}^{}$|; $key = q/Phi;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \Phi$|; $key = q/displaystyletau_{1}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{1}^{}$|; $key = q/psi^{*}_{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi^{*}_{}$|; $key = q/tau_{i}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{i}^{}$|; $key = q/displaystyletau_{3}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{3}^{}$|; $key = q/tau_{3}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{3}^{}$|; $key = q/displaystyle{frac{{j-1}}{{nr2}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{j-1}}{{nr2}}}$|; $key = q/displaystyle{frac{{k-1}}{{nr3}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{k-1}}{{nr3}}}$|; $key = q/{Phi(G)-Phi^*(-G)over2i};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ {\Phi(G) - \Phi^*(-G)\over 2i}$|; $key = q/displaystyletau_{2}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{2}^{}$|; $key = q/psi;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi$|; $key = q/displaystyle{frac{{i-1}}{{nr1}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{i-1}}{{nr1}}}$|; $key = q/le;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \le$|; $key = q/{Phi(G)+Phi^*(-G)over2};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ {\Phi(G) + \Phi^*(-G)\over 2}$|; $key = q/Gamma;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \Gamma$|; $key = q/psi_{j}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi_{j}^{}$|; $key = q/tau_{2}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{2}^{}$|; $key = q/tau_{1}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{1}^{}$|; 1; espresso-5.0.2/Doc/developer_man/labels.pl0000644000700200004540000000225112053147360017505 0ustar marsamoscm# LaTeX2HTML 2002-2-1 (1.71) # Associate labels original text with physical files. $key = q/SubSec:Inst/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Bugs/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:CPP/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/Sec:SVN/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Conflicts/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; 1; # LaTeX2HTML 2002-2-1 (1.71) # labels from external_latex_labels array. $key = q/SubSec:Inst/; $external_latex_labels{$key} = q|3.1|; $noresave{$key} = "$nosave"; $key = q/SubSec:Bugs/; $external_latex_labels{$key} = q|2.4|; $noresave{$key} = "$nosave"; $key = q/SubSec:CPP/; $external_latex_labels{$key} = q|5.1|; $noresave{$key} = "$nosave"; $key = q/Sec:SVN/; $external_latex_labels{$key} = q|10|; $noresave{$key} = "$nosave"; $key = q/SubSec:Conflicts/; $external_latex_labels{$key} = q|10.2|; $noresave{$key} = "$nosave"; 1; espresso-5.0.2/Doc/developer_man/developer_man.html0000644000700200004540000000000012053147360031226 1espresso-5.0.2/Doc/developer_man/index.htmlustar marsamoscmespresso-5.0.2/Doc/developer_man/images.log0000644000700200004540000002061012053147355017661 0ustar marsamoscmThis is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=latex 2012.9.4) 21 NOV 2012 13:54 entering extended mode **./images.tex (./images.tex LaTeX2e <2003/12/01> Babel and hyphenation patterns for american, french, german, ngerman, b ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur kish, ukrainian, nohyphenation, loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2004/02/16 v1.4f Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo File: size12.clo 2004/02/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texmf/tex/latex/hyperre f/hyperref.sty Package: hyperref 2003/11/30 v6.74m Hypertext links for LaTeX (/usr/share/texmf/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texmf/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2003/11/30 v6.74m Hyperref: PDFDocEncoding definition (HO) ) (/usr/share/texmf/tex/latex/hyperref/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive and teTeX ) Package hyperref Info: Hyper figures OFF on input line 1880. Package hyperref Info: Link nesting OFF on input line 1885. Package hyperref Info: Hyper index ON on input line 1888. Package hyperref Info: Plain pages ON on input line 1893. Package hyperref Info: Backreferencing OFF on input line 1900. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2004. (/usr/share/texmf/tex/latex/html/url.sty Package: url 1999/03/02 ver 1.4 Verb mode for urls, email addresses, and file names ) LaTeX Info: Redefining \url on input line 2143. \Fld@menulength=\count89 \Field@Width=\dimen104 \Fld@charsize=\dimen105 \Choice@toks=\toks15 \Field@toks=\toks16 Package hyperref Info: Hyper figures OFF on input line 2618. Package hyperref Info: Link nesting OFF on input line 2623. Package hyperref Info: Hyper index ON on input line 2626. Package hyperref Info: backreferencing OFF on input line 2633. Package hyperref Info: Link coloring OFF on input line 2638. \c@Item=\count90 \c@Hfootnote=\count91 ) *hyperref using default driver hdvips* (/usr/share/texmf/tex/latex/hyperref/hdvips.def File: hdvips.def 2003/11/30 v6.74m Hyperref driver for dvips (/usr/share/texmf/tex/latex/hyperref/pdfmark.def File: pdfmark.def 2003/11/30 v6.74m Hyperref definitions for pdfmark specials \pdf@docset=\toks17 \pdf@box=\box26 \pdf@toks=\toks18 \pdf@defaulttoks=\toks19 \Fld@listcount=\count92 \@outlinefile=\write3 )) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count93 \c@lchapter=\count94 \c@chapter=\count95 \c@lsection=\count96 \c@lsubsection=\count97 \c@lsubsubsection=\count98 \c@lparagraph=\count99 \c@lsubparagraph=\count100 \c@lsubsubparagraph=\count101 \ptrfile=\write4 ) (/usr/share/texmf/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/graphics.sty Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texmf/tex/latex/graphics/graphics.cfg File: graphics.cfg 2005/02/03 v1.3 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: dvips.def on input line 80. (/usr/share/texmf/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (/usr/share/texmf/tex/latex/graphics/color.sty Package: color 1999/02/16 v1.0i Standard LaTeX Color (DPC) (/usr/share/texmf/tex/latex/graphics/color.cfg File: color.cfg 2005/02/03 v1.3 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 125. (/usr/share/texmf/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texmf/tex/latex/base/inputenc.sty Package: inputenc 2004/02/05 v1.0d Input encoding file (/usr/share/texmf/tex/latex/base/latin1.def File: latin1.def 2004/02/05 v1.0d Input encoding file )) \sizebox=\box27 \lthtmlwrite=\write5 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. Package hyperref Info: Link coloring OFF on input line 140. (/usr/share/texmf/tex/latex/hyperref/nameref.sty Package: nameref 2003/12/03 v2.21 Cross-referencing by name of section \c@section@level=\count102 ) LaTeX Info: Redefining \ref on input line 140. LaTeX Info: Redefining \pageref on input line 140. \openout3 = `images.out'. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=721.41339pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 180. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 180. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 180. l2hSize :tex2html_wrap_inline1254:8.2pt::0.0pt::7.92912pt. [1 ] l2hSize :tex2html_wrap_inline1256:8.83331pt::8.83331pt::8.65688pt. [2 ] l2hSize :tex2html_wrap_inline1257:8.83331pt::8.83331pt::13.40694pt. [3 ] l2hSize :tex2html_wrap_inline1259:8.2pt::0.0pt::9.07355pt. [4 ] l2hSize :tex2html_wrap_inline1262:8.83331pt::8.83331pt::12.62491pt. [5 ] l2hSize :tex2html_wrap_inline1263:8.83331pt::8.83331pt::23.48618pt. [6 ] l2hSize :tex2html_wrap_inline1268:12.09998pt::12.09998pt::59.29044pt. [7 ] l2hSize :tex2html_wrap_inline1270:12.09998pt::12.09998pt::59.29044pt. [8 ] l2hSize :tex2html_wrap_inline1280:8.25pt::8.25pt::9.92088pt. [9 ] l2hSize :tex2html_wrap_indisplay1286:16.48517pt::16.48517pt::27.53748pt. [10 ] l2hSize :tex2html_wrap_indisplay1287:8.25pt::8.25pt::10.4403pt. [11 ] l2hSize :tex2html_wrap_indisplay1288:16.48517pt::16.48517pt::29.06525pt. [12 ] l2hSize :tex2html_wrap_indisplay1289:8.25pt::8.25pt::10.4403pt. [13 ] l2hSize :tex2html_wrap_indisplay1290:16.9514pt::16.9514pt::30.04291pt. [14 ] l2hSize :tex2html_wrap_indisplay1291:8.25pt::8.25pt::10.4403pt. [15 ] l2hSize :tex2html_wrap_inline1293:8.25pt::8.25pt::9.0842pt. [16 ] l2hSize :tex2html_wrap_inline1295:8.25pt::8.25pt::10.4403pt. [17 ] l2hSize :tex2html_wrap_inline1297:8.25pt::8.25pt::10.4403pt. [18 ] l2hSize :tex2html_wrap_inline1299:8.25pt::8.25pt::10.4403pt. [19 ] (./images.aux) ) Here is how much of TeX's memory you used: 2744 strings out of 94501 37125 string characters out of 1176790 87925 words of memory out of 1000000 5930 multiletter control sequences out of 10000+50000 6376 words of font info for 23 fonts, out of 500000 for 2000 580 hyphenation exceptions out of 1000 32i,6n,23p,204b,241s stack positions out of 1500i,500n,5000p,200000b,5000s Output written on images.dvi (19 pages, 13628 bytes). espresso-5.0.2/Doc/developer_man/img2.png0000644000700200004540000000034712053147357017264 0ustar marsamoscm‰PNG  IHDR#÷öÌù*PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH000$$$,àgtRNS@æØfkIDAT•c`.bA§n¾ì¼@’E@ÄI ÒT6Áå0õMh2/00H:Ô±cê$ °ÁYP##&0pl2XY7°0€X <  l WC0cTŒf*£ ° ÎÄÜ7ÑIEND®B`‚espresso-5.0.2/Doc/developer_man/democritos.png0000644000700200004540000002310112053147354020564 0ustar marsamoscm‰PNG  IHDR9Yr¼£-PLTE32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿ{èœ pHYsVT™bUˆ vpAg9Yû©Å"ÒIDATxÚí|pU¶÷d¾Ñ}Ó¯i¿ž2»©"µ¬hÔº° jõ¼éà€Ês‰SQˆfã.DdDÄW(Í qÍú2¸,¡}\ž!*Aê… ¬¨$$RB0HHB.¤ÏtÕ­wnwÏßtObj«¾úª8J2Ó}ûÞs÷wÏ¿¾à Wddâø­Àÿ·r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘ÊäF*W©\An¤r¹‘Ê?¹#é—ìnÍ,¶}êì¡ûN©Ãèž5üv8 ²\:²û£#})›ôíÞ÷cÜW+äÆŽÑelöíw/ÛqvÐíœ1ɲ*rK­tWÚŒ{^˜hyýPñXAð¤{D>ã¡RrèiÖЃ Ç,ˆox\W7kü”™OïŽÕü#>uÝ ™–Ðó•SªeœÚ1äŽOXwÈ7^àD¾.S$ ß’.2LyÛÍ‹‡l9ÇóâÌuëÖ®]¶`j&çÁűñ}eó|öºxY»;zæ!Käv‹nÏÛ‰—.M97'f,Øy¤O#Ç÷>›Åëc ¸çv‘C¢d<²-Qß¡wô0¥<³ “zQ+^»öÙ≸Öy.Ó&ÆÐÇiÁ%‰…`Ÿ{Ü‚Á‰Áœã87 Mï6›ÐƒŽ7á"™nîA‹6VÈqIœc]8÷X}°ß­kE>³w庤ë=¸5+ÿ @ÕÙí£6}én÷cNwðœ`ÙhÄð%ìV8Ž ÔÍÐ`Îñ œÛ‡Ë3ÛN ÃèÒ08_~ìð£ƒ9‡‚.Å$BgǹinwÁø#ÙGàÞvzܼ¹Ä§pýslÇdȼ;eQŽ›Ÿj=·è§Ïã<3çn¾Ç˜p’šE<ç&qœ`“i1éA³ ä ÕbW[qŽÌ9—7§¯ÜdÇ9’ɉ¯©ó .kÿœå">S[…»ú[j/Á ·³'1’Ó”‚BˆãÜήJâMâ\7n ûZ·Uá§n ‹1lΡ×â ²í8׃b/@&Ç'Þß¶çs ™ÑmœÛ%‹ö4΋±L·{"BXTÝÐçÓyîÃd5= œÃPuJ!gQ…—u“alrô2\Ρ'Ã} ›œA‹CHÔ÷ãË^艿>…c¾RâæfšJ J“kÑs5Ò‚ _¸Ä¨d Îw™þ)YMHà\økã yo<Ù7‘ųS’È?\ÎiЇ¶w5óæâ1ËVèVÇ¢õêÆi¿÷èi\ Ì@à9Ñ=&Šð©Ôx`@…{©ž¥CHKÌÎ_€ ]¦áÙ‡àÇR÷û¬àŽTwÔI¨/,ˆ/Ï ›s4¤ÒÓT_L³ˆÞ\ \ÇÙ,EÉá…ëbªO‹|:Î>B¡ç´Áì6µÖê­n÷ݨ<ïöСĴsêéCóí‹f­&5ç€w{*Sv«mÃ,Ëðh„^*æŒþħãâ­áÛ9:Ö­d¸˜n.A"#ÝÜ[èÅX(˜éI%oæ:ËxwFj4`&Ç¡%|ˆã³èP‚œYå'ÆJh¯™>;5çpxv¤îw¯'J ¶.Šz0V6ç(Ltë±tøfœø¤8¹}б£Nás‡ô%BŒs¢ÏmM 0¤V±Žfóœ]ýÓ”p1ÇcÆ3Åíž44r,%ÆøÕF…[["]¤äÜ>7êö‹‡¡S´jÔãÓxV{H_§Ú"gÃ9m"ÏMÕ3)‡ˆ$ãï"DFž´7vÔc0kúÇ»9=8 »Ý)­3Žõ^8˜ÊqÃ@Ž•¤Á³ºÁ²áÆïã£ãö™vä[¤Â¶h“7DNG )åÙFíŸâtRþÅã?¹Ã¬>‡)ÎXŽ÷Ämí!8én!eJ<M‹)‰~‹U†·fs¼ o;kθ‰ã5Ÿ­— µÇ«èøp„w³ú¨x7Å^É1ë:p£Ñ¬Ô›JÏqPàÝÂøXÛÔœÃБLAº}h(l,Šþnaøœ{[póh&†VœÓ„xv¡ÝæøÝTÅ1þ‹Tó0•'Ø»¶}pÎ6ª¨k‘³Cäüf5blëtˆ¼z05¾ÎvQT$ŠçGë{ð/ Ÿs-žhO6vîBKã½!›†ñ/Fc"ÂJ{:/5’ÅGJ®ƒåT¦ˆ†Ÿ cÉÛ6<ËA‹`ÖçÔlì4Z‚‚sªú{5dÓ3ÌF;mÔ\úVIvïÐN.çÎg¢R« òØp}BzÜj•QœÅ´ãŽøu]É'ØquÀq 17+EìF®{¬ß³|;FÏŸ¢ï!à0vÝÛCqpõxa•eÏôEu¬>ÝKé"Ÿ„/á8V4çŽ\‡?’‰ÚpîA.!Ç$*{-ˆ®?ÎÀø« m×a˜añz‘žÎÆ µ4•¬å±+ƒôy†[Gîp¤>á±ûH¡wΡœJç8“XI²,®æòª“xT–Ÿ‡sÛÜ,ìý—p{âF<ûÏq|v\2€ÉèlvÖdL"íGÃËÞñƒ÷BûAμd©æ`Îaʸ•^™¸*›2DÜ.Qg¡Î7ÇêrÚV85çÎn{<‹Õ¥ø™±G-9§ç¤ Ù`ÜÇ'½^"ôÖØY'X«ŸÐˉ¾óT÷-ðx-§/ާæ;ëØÉ9a|edåû*'éŲ‡ô:-qï!Ðióf014çX˜4FÀÉf­º¶Ó¯e!áøŒ­¹l$NFiV+Pí9—ž™™Éά鰉 /PÙbz2d«˜ïœbÝTZ¼òä'Zš#;3˜–aÒƒÏþeÕ‚©ìÄž(®Õ’žQa·~ËÃß:ûÙ7ž=^À(=f†ÿà„þ£ˆš©9ÇÐùi¨¤[à³rŠ_[÷‡œ,œ0Çó“NÇ­ôd³£.™Óþ¸jæ7’™9ZsÎ(’ë8ÑSœH&\ÌÄjºû1J§q|r݇)kR@ÞááŘ#ë<¢~Sðàæs3<:NV0V{Í£¡cgHS—‚È–„:ÚYì(£g˜œc*´Ü*èUQ^?”‡ŸÄìÝ ÇºI"Çʦ¸`ÒoØ!Gp=uIGu3sÞèK<ÖÎ6oGE|ŒBæàEw›”õN=æ©Tèy.‹÷°õAÍD>sÁYë÷×zVÝÄ3z°åøÌâÓQ¥Zx{ß oóýªÉǿÇ Ѫz ì˜&Š‚[÷g¼Gœ²-aº„1“ìÌfgm9· ÅbŹ×_¯|å¯ï~t ›¦À»o$ɺ½”V¾¾nPxvÄœ'TV¾/kì¸áë ¦egfOzð¹Ã*U5j#NW.˜’™51gÝqgÔ{Þ¨Œ? ÛP£K†š Œ¯¬¬´ªŸk)½£8gâØÌñ9Å;úôCrƒþhÕ}7ÉY»û¼šâD«º0¯F4ëSD‰B£gË’';%ù•Ÿ¦ª_àŠâ5UïÉb´xíõsÄ8w•Ä?§E#áD•›T‹èÝ©ö«뉰P€UÕ¸²³ý߇°]}Ë®-U:=øØX4ek1Ü14Ë«Ch2ÔófJ-4Fûøÿœ¿Ibò.ó÷ÇV7W†¢‹ª‡‚ÐáJõ¬ÐˆzøIT±A®4/¯¨¬?|?7%ôÓºŒ Ûtê÷õ__,ÏÍ}ª.Ú oIô£’rse¾ù¡:ùB*iHuÿÃ{'r˸Î+rpž÷.œK›´¨¤¤d(:0B…O‹Q»KªÐ?zñÇÀ )°|užTÔk6D‘¥‚^¬·ë—¬””ÎUüíÉ7.n ÕJ òœYx­ÃÉÄáÀÿÿéÈAÁ|€þ’»öÐr!Cî“i γ¼Õ 0Èè¹é2Îz½· M­Z§7µ@0:¤\AËäÖý7ËE]hcZýI7~P,ÀÞ(Ùkúá(§ÃéJKKs¸\N—럎™_aó½pB>8dÔ Á<«{ÚzYÂÉ‘¤ÔÒ“rÕw ~ÑáŠqŽÌ¨ ÝÛmFðú™†ÞŽÄëÐi©RlUýýÿAÂ9FßyOþÃ.]¼ô™TÓúª{ÈAA€Íú ¹ù¤TQ[[{Œ†žœ;¯±,·U(ÏË-»ˆ¿CsçW÷ÒàSy¡ö‚ŽÏdå)znuî¼*|²v^QG¤§ùþBüå/QÊè[’ù×À‡\ ÍÍ]Ï8·¿0w ¶öUÐl¹dõüEÌJµ>‘ûT¨Ðè¤]Ùݽ8šÂ幡^m¹ØC·ÌË-½H; žÈÝÏZtúåÀÚ\”[ø¥Û ç\ŒÎëdškòÖçÇwã¯F£übô¯˜îò7²TÿöÞoÿïÕ®vÇtr'û6Á9RPÀŽávKÕ'$9A)è“å’»!•‚%p‘,R«•BúïòŠÖVéX³O)íÂé Ú£z L䔊ÍJ‡Ö }Y8ý‘þŸÌ%+Y–äzP™ôz{‰R¡ÕH”ø”``úQzT‘ƒ²¢èQ¸V+ŸŒjƒ¹R )þÊJòªTÐT®Š”<­]ñ¿Ä0"]%X[‡Ïû¤íZ…R´5Æ"—ÃqUÍ=׸\¸cGšÓáJsŽz¦ŸÝøÛõëUÏǾü‡ëª7á«[\¿<Ãîlír¥ýÊì¤[¹~ýßvÈ-bœ£]Ê®J}ï…ž^µP3J¼¥Ðji@“j”þ  +þB šå£$€ ÒF`£rð¨úÞ´r‘Ë¡(€s…’rø=¬Hß‘%8 ô÷·É5€œ«–‘œ òºÒá­"½ì—ŽE4;(5uõ—äboíde.픩÷ÕþþZ¥ý¤Tk„°YÕÀç^¨bFšüÜé¼úÃL\ÌÎ1øpóºnÔc¹ð+xý6½åR—ãPáÌÏÒFÇêXb»´3F/¯0ÌIJÎÑZé\«ÜHXø\€~¥šn—Øô…¥J¿†¾+™? %ðÄôKP*ûŒÈvI$è=#o!¥öZé{³ß«uÒF ]Rð‚Œœ–ää: ¾JrWÈ!4kë ƒ]R•©˜V¢L—I9’ªîbv®W$)tB1Ý[ÞfHat¬\ŽÅ®#YÞ¿ 7jòsò¯Y³8ν“¯F?{¯^Ìú ¡Ìg ?u8®Ç¼KÓÒ~Ãf»Iç0¶+Ü6Áî¶³sçz•ÇÚ€"'éœ p¸¤·(|Sè5â…RœüQ9 ôÓni{·o‘Ñÿ åX+³yè!°§ºOê¶6"ç ZBΡñ¯ÿr´†A“sÚ¯Ž´¶VÈ{êöÔVw–cä±YFÎ5œ”Êë>ÙS…¹ÙÔ^¿þ~¨R:*â"”ÑÇä H˜9»n»öšý—Q£Fý‹ªÒc£‘|ÆÛᯉ¿g ';÷è1,¿Æñßw­Ã5Á@îçù蔩-rȹÞúrúVfu5R@2Õ2V4)e½j…ôq«´òÝURª5O?%sa£\î(‘O’Ew0¯Àd(­ Ò|´Xߥ·ü°BÐŽúʉÂ@, þRl¹šTx?ÓÚŸAÒå÷~p™ž Mo<)UµÄÛº‹BH¡Ê¤ÿ9¨•÷œ”›LS€œƒÀ¬VÚ<#*¼‘9ÁI„áyÜjw®añÛs®4œZøÒ8gÚU˜ÕB3xêx¹ÒÞÔŸ r8ê;ò¬ ñ· S!IQ¤‚c,–½^ïêpq®>.ÒÐrËABÊeÅ/¿`pN>JKMÇÒŸd¸E1š†¿3:h,l9è—¼^IÞŽˆ|0}QµO*ÑÚdy–¸¾rúw‰€¯ y·’vúd?îÂÈ&í*’¿"­èGÓècqN…LéVY·sè ¼RP‹qn+îÐö’wºï(Tø"sÒ^q¸Fç;\£>DgX:§SÏö¿B(Шˆ˜Î¹{ñÆ7úŠ©ã\:`ïÝöžË™¦»š{6<ìt^eϹ]7ÖÕS€“¨¯%jÓŽmE \_v½>Xê¢Pƒ¾ÿLÕ9²¿†ØSjC»Ðüj¾Y5²·ô³Àš«p]ûÞ*«g¾LÓNT”üï4v[W4á’oi†VlQý&»k¾«.­-Šf ¶V¯ØÒÆK7wiÞBÃØaU;c×7£1|ËHóðz5Æ¢ýÕ/Õ vØ.ÒÅNǽãðÏoÐЭùÓ›þ¼u«ávÕÉHÄ l·"çTläÒ:h÷ O¿ kïMP‘}ÿ¦oùž…ˆ¹-rzɨLh¬ø£±BûO/Öi`dè:¢FÄô`kËþ^g¤:¥ÿ wzÅžÂn4½üc¶³ÆZ¯´‡õÏOTHÓôSX¬`KŒæa0+ØDºÕm†uµi¬þ¤þÖáZ8Úáúý8§s °”Z$Gùδ[ðãWÈDä`Ôrµyà/½Á߈öÎd˜ìtÂ+_ÞH‘·öœT5°Ou|ÏÝß”ª¡–º‹ÁC:Rqn‰wVA#Žè vËqIÐêBˆ«½º ‡h.R= I!ýå¹Óý5‘o/)³ÊmZvÊõt8^êtü†ñ Ýä{‰¥QdÖmÌιtÎ};t´yg Ã{)îÖ4†RrÃ×t¡3çH?˜'}6,˜œ‘c…#æZ5ºŠ ¹ ¢â-S/l^¢ø[î×¶™.àÖ®ê%_E,’ׯ–0\©\!gäØ÷¢©«>g5<î¾ N×ÏÖ¸¯ ÅÚÿ†H¾Ë1ynp¾A ä ¼ÆépΡäý hýŽ_Ò3¿ ©9•ôûŸ.ppNŠ­»Vô€UöÂcdtr3Zm_oÜí Þ'ÌOÁ¹´yzÛÇjß]R ÐꃴqºE¹«KŠãÊî§'¥Rk%µF´ìºÚõ¦Ëéx'¡úÃöñ-ØàSƒs½Øàæ­G‘s£¤lÚwoÎaV1ç9 ¹Öe#  sz„s˜T”äÚ´c…$ ¯—0žQVÇnÚ)Ù!e±=Æ8ÕXtsßdÑ+ L"½”ùÑ›^¶]S'8\ã;7\åt¾—p9çÄ0WÓ9Gˆ:Úåø™¡ ¢ÄÊìœv·ëó“ßšsU¬$TëeQ]]îý{Ð>Íóæí¢ôrÙ,ï“O–Ñ-y³ò.w>éÍ­ºpNÂßœ ç>Ë}»$Rk»°Ü;kõ<Œ+r6J‘m‰iÜú¹³î¯^îÍm¦Za3……½M²<ÿÂQm®w‰‰Y$YÈÑù@3-›‡Ù#'rÛØŸsȹޕ~pQ¨U–siUlšëÍݺ(ô®Ž¦à —#íÑÉFäÞIœn¾‘ ü9·Ûý£^ìËs¥/ Ú9´y׺ãFÁœÃ\á~L¶å>o¯ê+Ìû÷Þ_yžÔDV(‹J¹H-WVÈ/”)ë»$_żéÆbä\ƒâÛ8+/Ò—\²D‘0"&J9 üM2‘-ÒÅ ´²@‘Wúó¨6£ŒÔÉ¥JÅ×»ÐèWËüç’n³0 y§¿tYëÄT0(½0_–WΚK[¥cìO—ÔHŠä’劲ú»€\r5­W|yR™V­Ê£V€jw"m6´&síœí¡ç4‘˜jô6ÜáÁ¼†Dù˜wL¦Cq. K»°‚@{{+FüJ°Èzù»ö“%J9À )å˜y–*m@¿¯ïTJI»Ülr.‰ÕHjÉveÁ/åfBñwÉüû›P&“º1Ó³®Wé.©º  ¤†oC±ÚþˆB]¥ò"úƒÜE œ‘VÂ)´—VùrŽÙA8(¯€2?Óêc…’¹s£ŒIÄŒè¬ÂGY}$ëõ®÷¶1ƒê“shç.›9“QNç•’w±ð;ˆØ+tHÎÍøûi¿"+’¤,"µwI/ŸÕÓeÜ®±Z «d9> >@F}`<[” {”“ZƒQÑB˜ 9‚?à¨üAdu %y ÔJýzÖU¢x›XÍ¥szã ¥ŽÆ½ Åàû?¥¶3ÓõÛ T“¥^–ò53Îí¯–»14ž±‘Óˆ\Õ/3ÓÐ,5²¡«£¥ud‡È7絋ß9“8Û…ç¸(çÐÐMv:æè7ÚjlËv+ÑÂ×8Ò¾ŠsdQÁ÷òJ–ü²ys3t’ ¹5èo>ØüAÝwzu\ÒrÎu{oÓ‰;†öFü+&°¸Íš¤ô¯Ÿ²ßÇØ›-ô­A¡×È’BJa¹.r¤›û_‚¾îöÀ\@ßzFi0^ü€á6ÊØk±­òÉ©‘C{YüìÿÕýrúõV©•Ð.e%}ÉO©TÓ§,Çö5òÑ­ŠJÿ.ÇMKÛuµ“•å~ñ+Sn@¹~± ÓOs³QizX^ãpÞɌ˟¯Å—ïtþ’êy…Ëqƹ‚4Cõð‚¿ö+¡—|]MÒÁ=JMÿ7þ"˜‡Ö9$A9rîceu×ÅÒÕJ=ôKú[BJ@ÎuR“sa[¸„Áì%]^oí¹ð‰åÒ 4‰y ícåøÖ÷ûJ ä~ ºKxëè~ÃËTHµ—”íêIÉ<챚"ç]´â.Ò%7Âý'è òjx}«T Á»jIà T)”ÔHñ1/í¹­{ƒÜ™¿YÈ¢BÖ ª¿fga{EqæÇhfðàá´nLÊ7¤-dó‡é퇶v£ºÈ×û½OB_ФT4õ’è"MxQBÎUø0A}A–”YÛ;™‹ãܧH¢Ï κŸVôš û¡×=°WÜqzS0Dýe—k°áÆÃ.©^ë H’T`DµPˆ#ŽBšÒ {d;Ò´…¢¬ hç´Z…õ¸‚¾êÓW¢k¾$O÷£›e·[MùêÎkqâp:~»q®kÎUŒŽ“(á7]W?ßýþõ®qÌV÷oW;¯]JiŸ Ó¯LÆpÏõ¯Kí8×ÜL¡{Wé¯ T5èªn`:šBMaüÕµ½êXS3ik`~éDU¡ý»: l7v'im¢».ÓÎZ=¿Â\àDuu{f]¤î¤q¥­6´¿_oú…ÚÚ±+ õ?ôÃѪ“”ýLë¯ÿM|ýæ3‘>¤mKtÝÛÏ{¤¾Cë¨ ‡aO¨‰’þúN :ª«O4T >îÀ8{Uý% '÷h«K ûW—èþôÊš5k–®YªË;Ÿü~ñíë|”9 þ›>âÿäN»fòÝC}‰7b¸Bÿÿ|Èšå?¼˜ÚÖJ"¦™°šI¤a}#32K$’Ïk‘¿ËLõÚÕbõ ,7×tcG0Ê8ÔL|Yqƒ­‰ˆ1yÄöY¤rC¢‡P1M¿¨êٽрh‘š¡!Th"¢ë&êÀÀå›{˜ãa/‚YW™Ff’¦#™Ð_T‰Ñ©rÚO;aý'Èhâ‡B’¿>¨3<`È×èÉ}’¸oª©‹þî êjðù Œ"—.ÿ ‚gÔàõ]hIEND®B`‚espresso-5.0.2/Doc/developer_man/img13.png0000644000700200004540000000000012053147356026611 1espresso-5.0.2/Doc/developer_man/img18.pngustar marsamoscmespresso-5.0.2/Doc/developer_man/images.aux0000644000700200004540000000060712053147355017701 0ustar marsamoscm\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi espresso-5.0.2/Doc/developer_man/img7.png0000644000700200004540000000110212053147357017257 0ustar marsamoscm‰PNG  IHDRb/J20PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfÀIDATH‰íU½NÃ0þ’´à¨” ‰ É…¥02d``£@_)0ut)?‘(#[×J,¼;¯O­Ü9NTU¨Ÿ”øìówwö].@Š‚QŒ¢¨HX¨}¾Gá<„ A x¦z$¡ññöâÎ3ò”½´ÑôáÁ¡#xÑÕ" 0üÚJð³ ŠÀi„ªß!ñd]¨6›è(Ö¬…£5­á$P5=lzBc¢ªßVa—Û2O³ä—Žçà›n¿!´"J2p-“º}]Xâr ƒÒ¨ºèÐÒS…oA'ùUžWYÖVZ‰5â f6sûþ\êGº—`k쇭E¡m‚àÜ ¦ŠrJ{6XôrUõ\ÍMžbaü³hþ8f\o Žõ»Úš^?˜{©°AÛšÀN Gpajcƒú殯çÚÔ=ÜÁ¼Ô²õâ¡‹;ÔíŽÒ ¡<ûYÜ*ô ãz†4 ‚ÉûT”Ô<ö¢«èL3X;‚*1D¤-… ®Âj'õ‘,RC²ŒŒÁhš1;ÇÄ<ƒ9Gù»ÊËÕì8§ûX–‘ýb ú/K8®Ê’”üJU.ãÏåaQéSIEND®B`‚espresso-5.0.2/Doc/developer_man/img4.png0000644000700200004540000000035312053147360017255 0ustar marsamoscm‰PNG  IHDRž/ù0PLTE³³³¨¨¨œœœ„„„xxxlll```TTTHHH<<<000$$$ êYËžtRNS@æØfiIDAT™c`€‚J B500ô3p6Â$ù8Ú€ä~‡ƒ|Ó>‚Œ8ðAH^ø $Õ?7Àe‘Fÿ‰ËëýŸ&0£ß¿ã ˆõ›¿HHì Xš)~«Tïü@½BàGê›IEND®B`‚espresso-5.0.2/Doc/Makefile0000644000700200004540000000351012053145633014526 0ustar marsamoscmLATEX = pdflatex LATEX2HTML = latex2html PDFS = constraints_HOWTO.pdf developer_man.pdf user_guide.pdf plumed_quick_ref.pdf AUXS = $(PDFS:.pdf=.aux) LOGS = $(PDFS:.pdf=.log) OUTS = $(PDFS:.pdf=.out) TOCS = $(PDFS:.pdf=.toc) all: pdf html pdf: $(PDFS) html: user_guide developer_man $(PDFS): %.pdf: %.tex $(LATEX) $< $(LATEX) $< clean: - rm -f $(PDFS) $(AUXS) $(LOGS) $(OUTS) $(TOCS) *~ - rm -rf user_guide/ developer_man/ - rm -f INPUT_*.html INPUT_*.txt INPUT_*.xml developer_man: developer_man.pdf rm -rf developer_man/ latex2html \ -t "Developer's Manual for Quantum-ESPRESSO" \ -html_version 3.2,math \ -toc_depth 3 -split 3 -toc_stars -show_section_numbers \ -local_icons -image_type png \ developer_man.tex cd developer_man; \ for file in *.html; do \ cp $$file /tmp/$$file; \ cat /tmp/$$file | sed 's/HREF="http/NAME="http/g' | sed 's/mathend000#//g' - > $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** Developer's Manual created in developers_manual/developers_manual.html" @echo "***" @echo "" user_guide: user_guide.pdf rm -rf user_guide/ latex2html \ -t "User's Guide for Quantum-ESPRESSO" \ -html_version 3.2,math \ -toc_depth 5 -split 5 -toc_stars -show_section_numbers \ -local_icons -image_type png \ user_guide.tex cd user_guide; \ for file in *.html; do \ cp $$file /tmp/$$file; \ cat /tmp/$$file | sed 's/HREF="http/NAME="http/g' | sed 's/mathend000#//g' - > $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** User's Guide created in user_guide/user_guide.html" @echo "***" @echo "" espresso-5.0.2/Doc/INPUT_BANDS.xml0000777000700200004540000000000012053440163021177 2../PP/Doc/INPUT_BANDS.xmlustar marsamoscmespresso-5.0.2/Doc/plumed_quick_ref.pdf0000644000700200004540000176530612053147351017121 0ustar marsamoscm%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (subsection.1.1) >> endobj 12 0 obj (Overview) endobj 13 0 obj << /S /GoTo /D (subsection.1.2) >> endobj 16 0 obj (Collective variables) endobj 17 0 obj << /S /GoTo /D (section.2) >> endobj 20 0 obj (Step-by-step metadynamics calculations) endobj 21 0 obj << /S /GoTo /D (subsection.2.1) >> endobj 24 0 obj (Compile Quantum ESPRESSO with PLUMED plugin) endobj 25 0 obj << /S /GoTo /D (subsection.2.2) >> endobj 28 0 obj (Running metadynamics in Quantum ESPRESSO) endobj 29 0 obj << /S /GoTo /D (subsection.2.3) >> endobj 32 0 obj (Units in the input and output files) endobj 33 0 obj << /S /GoTo /D (subsection.2.4) >> endobj 36 0 obj (Postprocessing) endobj 37 0 obj << /S /GoTo /D (section.3) >> endobj 40 0 obj (First worked example: SN2 reaction) endobj 41 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 44 0 obj (SN2 reaction in vacuum) endobj 45 0 obj << /S /GoTo /D (subsection.3.2) >> endobj 48 0 obj (Choice of CVs and simulation details) endobj 49 0 obj << /S /GoTo /D (subsection.3.3) >> endobj 52 0 obj (Metadynamics with Born-Oppenheimer molecular dynamics) endobj 53 0 obj << /S /GoTo /D (subsubsection.3.3.1) >> endobj 56 0 obj (Free energy reconstruction) endobj 57 0 obj << /S /GoTo /D (section.4) >> endobj 60 0 obj (Second worked example: H-H) endobj 61 0 obj << /S /GoTo /D [62 0 R /Fit ] >> endobj 64 0 obj << /Length 1058 /Filter /FlateDecode >> stream xÚÝWKsÛ6¾ûWð΄(ÞÞWž¤S׎¥ôÒöÀP°Ä1Erø°ëß@ê‘(Ót’™&¹Hxî~øvñ-øruñÃ5 #X)&“Õ}b¦–ðDŠ)!:Y­ÿ@oÆ2¥¨H™DiÆ EK3Šîa44:WþßùY†60>–ë©×Ôé_«_À‘=vÄ(ÁBjàâöWØóö~?OËOpi‚ ç|Zýäñ Û¸‘ã…‚c¢æuoF*¯ÿ7îüú$£šaCO2&°%J…¥‹å-ؼ[,—7Ñ,g ˜ Å\@Ë•M2.±°4òr¹ÍëM>¸$ÈcÏ'Dôxk¦0ãLxÇØrfÂÖåëåò§°“i´J C]éúÁE„ \Xÿ!¢¯ë¼ƒh´õ{â༈mF(ôè[$à‡Q)‚oX¡¹L2 §62ân`}ràpŽ ôúƒ Š­”? p#"ršf–hô:îÑo<´‹Ð-›hàKf;pr° ¥6&!ädƒiÈ9‚nSfëK÷f$E8Í$L|CÁÏÙNµæ‘:Ïÿ)Ml¢é²©*W ed+æÒc*%Ê»2‡À¾«\ŸfŠËïŠ~.G³9¡ S©¤‘)3u9„ o³w>cŸ³~êaZ¢ I›¯ŸkÏÙ.dpÑÇÉ"¯|¿«|(}«©a†J¢ ÿž×6ÂØçõe³kËÊíeëh£Ù²Z|D·Œö u·ˆË¥½9ëž3L(7{™œ5´÷h¤W•ÞS£‚`C÷«ÛjÜ”p¹9_ BDŤz UÒqšîlŸîwc]—õÆç¹›'ÁË×>r1jpÊúÃTIda?›bŽVt2óÅ®F`BNLX‹¸}>ñ¶.‡>Jˆyغy ‡ØÌëul4£çi×èOBE5ë>رV~]7\ž“=(cÓño}lú¡íàPk Wijô!=˜¶ßiŸ¬‚<ªàUÙކ¨lO¾ú‡BÝ=ø¦[Çq÷w$°­ÜÞ#Ü…ßXœ û]^ÌJ¿ *> endobj 86 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [85.177 514.5588 178.7426 524.8535] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 87 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 500.113 179.4517 510.2749] /Subtype /Link /A << /S /GoTo /D (subsection.1.1) >> >> endobj 88 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 485.6672 230.2426 495.9619] /Subtype /Link /A << /S /GoTo /D (subsection.1.2) >> >> endobj 89 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [85.177 457.1907 339.6766 469.8101] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 90 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 442.7449 409.1832 455.3642] /Subtype /Link /A << /S /GoTo /D (subsection.2.1) >> >> endobj 91 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 428.2991 398.1852 440.9184] /Subtype /Link /A << /S /GoTo /D (subsection.2.2) >> >> endobj 92 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 413.8533 308.9937 426.4726] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 93 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 399.4074 206.7961 411.8939] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 94 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [85.177 373.2556 318.3496 385.8749] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 95 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 361.1344 254.5609 371.2963] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 96 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 346.6886 322.0654 356.9833] /Subtype /Link /A << /S /GoTo /D (subsection.3.2) >> >> endobj 97 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [102.7359 329.9181 439.2207 342.5374] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 98 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [129.6597 315.4723 304.9312 327.9588] /Subtype /Link /A << /S /GoTo /D (subsubsection.3.3.1) >> >> endobj 99 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [85.177 289.3205 280.3961 301.9398] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 65 0 obj << /D [62 0 R /XYZ 86.1732 786.281 null] >> endobj 66 0 obj << /D [62 0 R /XYZ 86.1732 761.3744 null] >> endobj 85 0 obj << /D [62 0 R /XYZ 86.1732 530.0009 null] >> endobj 63 0 obj << /Font << /F18 69 0 R /F19 72 0 R /F20 75 0 R /F32 78 0 R /F21 81 0 R /F34 84 0 R >> /ProcSet [ /PDF /Text ] >> endobj 103 0 obj << /Length 2916 /Filter /FlateDecode >> stream xÚÍËrÛFò®¯à‘¬æ™¶rPlÙk—;–’­]Ç€$T@@!ËÊ×o? ‰RmíEó`£§»§ß£.Ž_*½6”"Ö‹Ë«…3¡°J.¬NB-µ¸Ì>.Å*BÆË×+±¬VJ,Û]½ `̺M {EM?|º|süR$ !Â$Ž%¢‹4¡tÚ¢÷oðçsøsö‚Á¥ƒ+&Bø ¡?ŠO«@ÇvY4<¦<Ü–Ý5žZñò ¨[";¿Þå9ÎÜ2¯òBÞóLa]nº2m=Õ|‚·u™ãUsß´ùÖŸ~wSlVÒ.oùÎéØßäeôÔB‡@ˆ‰A®óö&œ*‘Ë»¢½áYSosžÕW<O¶uÓòìvà9·@³È?dâ2»GNÒm±ipCã, ¼A–ŸÁ‘ƒå¦ì²~¢6eÚDx4¥¸)6i¹ b!—¿Fqôê2úðŸâìùÅ3þñÇÓsÄþbE'à΋·ˆïèìòHÒh!2–¡‰AL¢C©¥[l¶G¿}ü-²£hñæ( UââÅ,¢P$‰\lT áúuytqôÓ€00c”? &OuIƨÊBì& |÷våäòßžâÓ󇳸å¨2Þ{z~þþØð‚½ÿ9H7›¼Ìq±¾Ó6Ïøî…IÂ$±ÉT”(?ÚÙù Ä¢—†¡É:(ª5‘–îÍ"³"”Mo?u¤ÈU‹C·…o­]ž]¼ÿp$]\àî»9ëÒ…‚$ÛçéÙÔ¤dYÞ„Ì ˆ+”JÚ)7/Qrd\Jª±q) ꔎ­ªñ›½ÅU¼^Ó9kv¾»ªQ”[jÆpøIÃP)‚¼CL„“½ŽÇJÖã6­VÒõÕ»ŒL¦·d:é6ÇφËóV Î/ŽÜ›·Ñ8¦ãa` mÑl]±Ð6]Ãk¢Æ5I ¬¯ÁŒpâìêuI®W]ÃfÓ¦%òVħŠwt>žËs ÿÆß”ÇÓt½GÂÒ©Á¢b>L3¼*öå§g|ñ <ðùz——eÊ; "ÙÞ–LßXWߤ»?î«æ·"Èïªõ`–ë´É=TÓ߉9ßõûç/Xµæ¤}IÌ*p·õU‹‘k%Îs$TGË»]ÑX+†.h4ËÓ/^ãvðœ÷Ë”¼_—^÷ •€Šú/÷j‹ ‹‡¬¡gÐMÜ0&³^”_H¦º·ªÊâ÷G›s0ô>mæ(¬¡0òh~™; ŠH9@ìÓÛ) 1mT³Hù¥˜ä­HiÎWP—tS˜´ ¬ÀÁÂýqQõB’$ny8¿n™n†:P‰dHÁ`Š ‘€Ð{?V~wS79ÿYPQkR7JÂa/+š–6Àpvßþ[uµO éÌ•˜@Yú´˜BX·Ëç$ö ¢]ÎÉÌ…Ú™ÞÓ…«À@"ü/Ìà‘~ô¹-I™üšE⦪= m:‹¿ö‚>ÐsŒJ[I†Hyà佉zŠÑƒsÐP yz(ûÕ“óèÃç¿ÌÚ@àyŸéÂC& ˆ@6h±Äß,B›(Õ{(5'Î8L”…1äÓ©ó_¡ùÞŸ>H85c‡ úý*Hb»œÅ* 8ci¦h³Y'a€U¡ö äà(U§ÖÊíÇÉè@¤Hñö>£¶ Vi8‚ú49OÁakÎó½Ãu{Ü2ëÓÒ ò–tˆ÷–¾Jâ,;‚{ŸÞ8(2FÎt ”¶CehY錘„‚h yÀ‡:1|áïç=5¾ÁÃ5óê =qp&Òp“sÈ$dÎGÎ2§`˳Wˆ¹–|ì~§‘zBܯQͳ)±O³Ç4«]"íŠ{\ßÏú% Æ}ö÷yy€¢hHÀŸNð=A“.–‘ÇI²Pä£pìã.–¶Nú.–T‰Xl0š(“ô;ûX=Î`Œ”úXz’i€p¡s1§,æ¸MÂÄ€mà 0™B8ê@•AKšÕ¥B õ5Z¢ÿµD=–è¿£%à(dhàšÁ•ˆããb zèÈ„.V1UR°à$ä®/ÿÒ)œ’îO ‚« ;Ë«z_Â}›>HÃ$óC±Í«¼¶vqƒç¡™Vïxûˆ„M°@uSš€ï}0ecé;³ îlQH»<99HiÀ>ÕPo MñÏÆ- ’†Üv¨s74[lD\“`ÎO1”0/¼,¯}•Qùæ(使Q°ñqiÎ*!˰² 4 mþç.íOb v„÷éÀ%„U#1;…\±šM4T(¤™ñz†DÈ Ày±Müg>ÊB5n±ËLš/õ GéîçOœœáýN kO%Oí^qÇ@I€wð”qhc%¾&ôø¬ÿ0c”äÿ8ƒáhP7I»OùAaŒþèMdÿ¢ û&'øuië!· ÷Ef 0ójj”Lþ†kÖêð æÑ? HŒ»NsäØÐ%±zúRuTU9¿ñÈ}dP ‹å)dæVyõÏœ:]&æ&ÏmѦ³¸zä@ôÅíŽbÛ‡ tiˆ¶£†=ή|ŠŽs $ÔØÇ:ZÍQ„ ÆÕnø" §Ðõmæ›1D©õÓÜÇ·)í3$’^sËœ¹,ëáÑaèX,(Ì¿IßjòYEXvÃûÇø1šãܔދ798Ãd(€ÊÎ#î‹[i÷PPåîþ¿Æ—kãè[ïC»7û‡sÿ,nÜã´ñÅìíòM]AYÔm¨Ó†?ÁV·k0ö\Ê{làch¤ðÍj×ýÂM­æÉ¡Ÿ?úçJ;ðqqˆÿX@ÔÂ߆o/ÒÎPøÁ<åá¦höùË}å¾oQe£§FÌO.Y¿0•¿ñª½ñ„Ü÷EÞð‡•)=wb‚w)•˜ym+©yÍïýqßNÛí_Ì’ýSL‡N}…uîuÇïÊC§$‰¹½rËoPØÈÑ;Ã/[R ’wvùmWö—Æ[¯Ò®iŠ´šC¶Ù7øü·¤Í ¿9f™Ù–؈Tb¿æþµìãã8B@Tendstream endobj 102 0 obj << /Type /Page /Contents 103 0 R /Resources 101 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 100 0 R /Annots [ 105 0 R 106 0 R 107 0 R 108 0 R ] >> endobj 105 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [125.3402 722.1382 133.1857 731.8352] /Subtype /Link /A << /S /GoTo /D (cite.Bonomi:2009ul) >> >> endobj 106 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [161.656 635.4632 169.5015 645.1602] /Subtype /Link /A << /S /GoTo /D (cite.Laio:2008wu) >> >> endobj 107 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [102.7359 574.6911 396.6626 588.6388] /Subtype/Link/A<> >> endobj 108 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [102.7359 545.7995 357.9028 559.7472] /Subtype/Link/A<> >> endobj 104 0 obj << /D [102 0 R /XYZ 86.1732 786.281 null] >> endobj 6 0 obj << /D [102 0 R /XYZ 86.1732 761.3744 null] >> endobj 10 0 obj << /D [102 0 R /XYZ 86.1732 425.6252 null] >> endobj 118 0 obj << /D [102 0 R /XYZ 86.1732 327.7422 null] >> endobj 125 0 obj << /D [102 0 R /XYZ 86.1732 252.3933 null] >> endobj 101 0 obj << /Font << /F34 84 0 R /F19 72 0 R /F21 81 0 R /F20 75 0 R /F41 111 0 R /F38 114 0 R /F39 117 0 R /F44 121 0 R /F36 124 0 R >> /ProcSet [ /PDF /Text ] >> endobj 130 0 obj << /Length 3329 /Filter /FlateDecode >> stream xÚíZKã6¾÷¯ðžbc…oR“Ía“ÝLi $9¨mu[ˆüˆ$§§ÿýÖƒ”%[îé&Á.0—6EQd±ž_Uõ7·7_¾Qr&e–[«f·÷³à2鵚y“gFæzv»þy^þ±P~^6O‹_o¿ûòÃ/´ÌDÐr&hé/B›¸*Ÿù,÷Bâ"‹kÜl)3ŸkÞô-/C™K˜:­û់¥6jÞ.–rÞ-ä¼ÄÁ¡ÍKôüvSâ{=/ßwe³+`AÍ¿+¾Ø¦ðËbýD ¶ÕŠvû–HÞý°XÂ÷ýþ»… ó®*j~]¬ºj÷Àãý_ÓÄ=µ]¹åI<¡ÃËÍ–ÆgÚú÷6™16§ uÕ¶œb¤r™sÀ$fd7ÅžI•«¸¢‚;h úΫXBH–ró;|˜HUx—Ï–ZgBGý4!0—et˜º.0Ÿ‰Ü…Ù`²}òè :Òþãô^!·ºW¤g¶1qÑû©m€Vô$ü!j¾UÊõ4˥δ×z¸ÝÒ 3ÿzR„ ¡’ÿÆKŒ™‹ÉrãNjXZøŸ ,,ÐÚÂÀeÂær¨  +½£áu˜©,HhQâ›ÉÓg`³Ó²¯'N•"3!Ø c6bt ·A¡nh›¡nœ©Ì \ô´ê«I”5‰½jb“)°°?‹¢×¯_³©‚蔕`öŠo?ŠÛÃTæ‚sûïݤóÔ¸;=S:3ŽE\¾?Lê!ìn•¿°#¯ªõ/BˆÉ­@ÈpÃ>Ù‡ÿi›5gg)‘_Üm|ÓNíÔY6³Ò¼„b=vÅ 9#­T^ÁÖÁ õ`|–¿Ô,ëðv¯4´…¼øäÁb2ˆ›ÝÞàÄLδS™ À/Læ%˜êj{óûÍÏ¿ŠÙúF̾»Ùz0…Gx`9à7¶7ìÃHŸ&ê›oþÝï¸ì·\÷üæèî-„0s9lè‚Ùló8 ´B:ˆK>Icte øÆƒU«ýp¿³£a¨•ÖxãžØzgHˆ‚`â*F7ðÚ!GÆËÌæ-ëqS6“‘W<‘}äý¤J£ÎÌ“´fKŒ Wb ¨—ŸÈøôÇß§º\¼ „*0 Â+„L8þcaí¼¨ñQÕ=¿ý‰¿*:þ½˜¤ A@F¯íüÞ¦A¨?øTlK€‘TÀR‘ಉÄoÆh¡3«ÀcGdÇnt]‚®›]ÕU#*„‹÷ü‹XqâA3VÉ­]…bæÃP,Ïò\¨!£[•x¼îYã·QÛª8‘º!è[ÁÄÆo?Åu&ÎŽ1ι^‚IL{Ûœ¡2ò¶8¶pj<ò±Z_§ŽL~øÇNä,¢™L‘ì³Ø­#Ëw¾o´ÿ/Ï 5 ’ÅçxE=–îs©Aj#@>! STpÄë›j…üÞð#gð|)§ù“`i Ãõšî³ÎH;%„Јøw …àèãÞ0x‹ðþtÀixY4qUM'=”¯÷òôõ}SÆ3²¤eO<Õ›ûbß?VuÍ£;J±h³5øàPï›rD^8$‰(ÚŽG$lEǼbã(d!—ÝïîˆËåÉÅhæÄ¥~IöØvÍqÕѰðÐì)fHS—<óH| ráéD®d&ÃR+ÊÓ1Ñ‚±CV=D©HL–›=O¼ÅTU«ù;  ,Ö¯˜¸ê>¼‰Ÿ\“ÞYŒSÈÞ°}>o·’ŒC¼PÃCü¶‰+5HcÍãj¢ûýXr~[?ñltm4n.8Ö{3xËâÄQÏ:nµ:6”ø¢ª¨X t"ý†wñ©+~C ÊñíX–›A½ß=D÷«cˆú=!ÿð¢MÝ6=¡ëT‡g>.(ÜЛu…R%åjÆ©?€åƒb·£¨€ÏÕnÒb·WJ øÉªè³ò¤PðslËõë)»„˜¦ÂÚLç^'ï篔K‚ ¸¼C¢Nð‰08x":¼¼ñó/JÒ³Ò‹õ–Fë†Q WG!<ñã¶ÚUÛØêy•<–VºøžWPLç$S„q½Gvë˶›<æiJÚb½®£Ïˆ5šªÌíiÀøAŒ.Ž\ÿk^AÄã§Ç-Òm$¿é6TKѪhË4 @¨hE*Lã6xæ±^óTböÔ%ºý‰G©È<[¶Læ~wñ†HÀ±*[¿q!ާË÷UwZ}Ÿ”x¿}.ÓÅAé¶§3v‘’¶+šÁ.¤ÈÉ7SÉ w(¦nµ+Y—{Ë¡JÔ~76>bUtâÙ¤Æ'-†8ìǪ<àHVykH ¬Ç0UF¤òðº|¿9ÅÔîT8CGˆë ù®÷ÑuâsÁ?šâ Kžö¸:œB^OÝÄmÑâo{จ;ƒ&˜ Þwn‰\1‘ "Â'Ál48ŠFC¯cÈÅ@‘äÝŽW°^ãhU¤X?î¡‘óÑ4êbàîáÕfO Žgô¬¥®JZMàcê:rí’ëν*ÕY/4¥wÓú>r p<}[FË^üØFaòê*ÌÆ 3MùÀwË"Ž(&Î<-•“·ó»¢OâmÛCGôâsJU`xÍñã¤Ç£ôá‹ÏZ¬Eé—¢ý²B¬~y&×~pþJíÓdù0§t ”ãÑ#yò¼ø¾="\_U1‡BãÂi²,p)œ¢¾×ÖŸeP”êAú&G®lA‰"è Û^ËïbÊ‚C&‘xð)“6Q™`â¸[—MýÄå{x£~ gkÐÿKæk,ˆ(Â'¾N•ƒ¨*˜Rè¿MVœežA©‡ú?÷„¿†¡òÞ|¨§2¡TJßL'¬JôU——Qÿ‚ÒŒD'èXrÕÆ.ŒÐXø:CŒ€‚‹Þ ©Üb$$=B—™;vX˜•à»”$þ«êꮩ0šâìCoQÕ+B˜O‹€É è8¢òT„´ópý8tÂXAñWŠýu<ðäw󑾯§2ƒ”‘(ÆAÊÙùŽÌnIÎiÇ;'òáõÈoá:Nü`\|dÊ]oP¸ ÚNEdFdEFÄFm7æÝ Fõkž;µ‰äTê¹’ôãTDб¼„¿€Ëõõr`‘2.Á…&ü¥ï…c˜s®€^gÚôu¸õtM„¾4¿\ÃvS‰ó„?aw¾éªÛ7” ” <j[Š{{žØ7ü»Ý§\ŸnyÀ ºð âÛŽ|ÁkaÜ‘£ËÜuëKûê,ú"àÅšB¯Éó¢Ô&=UǸEÚ ÁÏ0 ‡yŠûwlSŒõ™4{‘0Î~îEÆ^äUÿ äTþ­H™ c>·"?·"ÿÂVäXÆ>óÆ9Æ ìXS—.3ÖTר;×5UdVÔS ÊïR©'dm3£Cªº-¯ !+Á‘(Ì8þÜ(ý ÅW¥òÏh”ú4JC– ± .ƒQŸ¢Q·\÷œj”æ ÏØPTÞBìŠÐì/o”º|Ø)U‚:¤Â Ú¤F@ä ˆ Ÿé0hŸèX¹5‚ñüî¸2\¶mAx –`]_1´Ã@.mÉ“ÿ\oñ“AÜ7×®Ÿ_^9Êw’eŸÿ“TÖ3£{SHn™Jì=°ú¾ý)ãÁW’yed‚féþ¹ÁýƒAqZý]88 Gÿh5D[û¥ÂpÅê~Òç$ͳPcµônð/`àǸð ów*îÁ|*=ć’œ°ÔUs$ÓæÑ",DÅŽó$õNð%'/8:kÿàTOT×pŸ˜bÁä„<ãIµ9Úc¹£…Q¡Oa¸çZòä¸C;¥LáŸpÏõ%!' º÷ž±wœ úAZúlß‘µrÐ]ÎçßÇ–ÓÝw¹[~FUœìvâN½;~†zõ ©Àãú@´çöHO(‰ ˆÏTAŒÿר-äî=F¹'¤‡šë,èbA>Iç(ႉ–ëÁ±©c¯…@¦ÑT«˜ vê[C‘ÒÔ¥­VGÒ‘%Ò×ÓÀ7øzkŠqÃ5ä> endobj 143 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [423.5952 184.3131 431.4407 194.0101] /Subtype /Link /A << /S /GoTo /D (cite.Laio:2008wu) >> >> endobj 144 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [436.6018 184.3131 444.4473 194.0101] /Subtype /Link /A << /S /GoTo /D (cite.Laio:2002wm) >> >> endobj 131 0 obj << /D [129 0 R /XYZ 86.1732 786.281 null] >> endobj 132 0 obj << /D [129 0 R /XYZ 86.1732 732.6488 null] >> endobj 142 0 obj << /D [129 0 R /XYZ 86.1732 318.8183 null] >> endobj 14 0 obj << /D [129 0 R /XYZ 86.1732 165.5917 null] >> endobj 128 0 obj << /Font << /F21 81 0 R /F38 114 0 R /F39 117 0 R /F44 121 0 R /F43 135 0 R /F36 124 0 R /F40 138 0 R /F41 111 0 R /F42 141 0 R /F32 78 0 R /F34 84 0 R >> /ProcSet [ /PDF /Text ] >> endobj 148 0 obj << /Length 2864 /Filter /FlateDecode >> stream xÚ­Y[sÛ6~÷¯ðìK¥™ˆ&@$3³ÓÙftš‰[»Ù‡$4YÜP¤CRqÝ_¿çÆ›JÏ:í¾ˆ xppðáÜõÃÍÙÅk£Î• RkõùÍî\…QàÂØÇ& ŒJ£ó›í‡ÕÇPÅëO7?^¼Ösj$QèÎC¢ºÙûÇõ&ŠÌªÝ×kµ:–[~ÍKŸ5%}‹VÛ¢íŠê¿íz£V{ž¿]ot¼òÝ~ðÇûŠ—w{Ï$EUtEVòKÛe0ñÈâNÙ‘ä5Õ@ˆHšužfðR‰lø–ÁáàeclJÇ)*”¢óÍ¡ßf[àÊηƒ1‡nÓ£±Ñ&ÐZ›o†N§"íŸNÍjëÛ¼)žB9Ê’Çr·eÍø/ÿ•päs´<×í6!FÖ5ýKXcí*ƒ5ɪ7¨ûղྑÉx•ÓÂVø×;&(˜ƒo6KØú¶{†öÛ0,¸TØ–N|< [²òô!>E—h뎿 ãlÇg«ùS™5¨°õL§+\H4E+äEÇχo… ¼Ÿ×#ÇŒYñ•4¸K QWÆ­gˆ%=†y;ÑsX´k¼ç)ºƒÊã­Ü=òT{lvYî g6&\]àlÄfýf‡”QÏ/øê/f¤WwMH>´üé;ñ€¹UÝíÁ°Õê;þÆ8ÀShËâ3.eÕv ˆßÉÖ­—WäUdUoŠì¶ôíœw^îK?øÑ§ÈL5@ÔI¤*¦¿zkc‹kqÍ}Öøæ<ÿ€oxtK¬qáLãt„aœŠÊý|Dʬ¢ oÀ#^]^_ýr R]_ãì»%±Taœha“5ƒv5*kìÀ„ÚŽùçþ墵hç­Âx~­Ï3—ùúà»æqÓø’ÝDb樣ŸaûÖ «ëc޼gÚ¬å':uòª9Òú’‚ΓŸç›KìèwiÅÞoòcÂc‡Kñö›C/Ê-nõ¸däûë.MaÐð5.➦õ J0¤=ž" ÑWéÂöw ¹vQ2¡o„¬âËQ¼èZô6;’¨ðVTüd…†UmwÜ %˱p †ÒŠ<Ón|–w.¨Z¶ñ4tQôå~O°´ãªö±íü¡˜ÁÿÏ­¾Oˆ®e[T™HÇ““GG;qŸŠ¢‰³1cßp†`yYÅqÌürl9Àò[Wósë;Ÿw3Ÿg!òx&®rñ}ƒÇpìd­ÈRWÛé«g)ГqzAL–®eÌAêž-jüäRHáàîä¤x¬#ûôAf7ÊÓÎBÍDR%õÛo ¸ªÈ7½NdÕ Æ|óBR”e·ÿzh:¶)"†q¦Ý]n=ÎS8‡ç«÷äø¥@ÚƒHƒ€kŠŠuI¥S]ÒÊ žèÒÕO ô¯oáçòŸKš¹ Uª§~Á»Ý³Âó¶"D@î« ‡3rŒR¢Òg9œœ¢ã ïT8éÀ9•>Sº u:bçÚÒø^ j£IÂÕ –òn‹qI'm\$;_Vl7wø NÃÚpÅ1¡¤¤•,'_áø=›¾g )¿TµØ™µjŒpkÁAÝ–­‚D…hƒœNPi¬~"È‘^EIôÊÎÓ:}°Ý/—××ï–tI âXØNp‰!ˆYC ¸MðA1û) +0ãkŠõ÷›Ûu(mZ~å  ¡,Ûb"Re‡yèÁEÂÛ±¤€Ñ;ÖagDÆ ™Bıd šÜ—’ v´àF* §ŒþSÙÁ„M¥Œp‘”d?*ðH ö;Àø)ýó…ŠÎÅQÿ}y$uëíöD×aQ œT4<ßïðP†R8LÂŒ7ïûkŒ\pFŒ‹°(äÚçg/èðñ™÷)À`ö‹ºiÂ@'&~ b§#Ä8¹¬‰*XbÝßÔà ßÉnq„Êý5ÿ€@È SÀáuÑ w5 {W“@žT–ÅÒ¢òò‰ƒ)Œà`WSÙÇÈQ”ÁÅRQ´}\ž2–¶õ±ÉeL>RÏ}ªw'Ÿ(5oeÛšyôÑs!Pn¹0à@ ¢ÕÙÖoSU°qÈÌ“‰jøtò|3:½c@ØL„ ¤¹>k% ÃíóàchÃ}ŸÙu÷//.àùÅo+ÁÝÜù€Ÿ|#“ôg¾Çf¹’z¢$g—7gh”p¨sã,x´PŸG¡q 懳/g>…çÛ³ðüdz0€LÙž?ÀK¨4Õ燳(°J%ý{yv}öóÀp3pÜLYþ€½œ9œ©K&;SWcûw‚†ppµ˜*FÀ>Œéª¾=W|=T¹ ëduŠ3}Š3•­€3=/Úüpñý5þˆgdà § Q i¨þ2žÇ͔垑E@¢qç%< ð3i˜ÌuýfpÃÄ`odìIw\°d'ÉS Óðy^.„jÕölv †0m,yƒµ¸[ljh‡i%œ°Ò@jï)³jl=ËÂJ;PÆRòCQ‡Læ~­Šß$M“ 4‘›»Î¿d6UŸL¾/…âmÖ›Ô8´Ñ#‡áES®gBÅ)÷áa–ïíž3¦’_Qã|€–¼àè‚ÅlÖîñ3׆ Sv9·…è i¦¯¹°o¯áøØeA‰„—t©79^,ªƒ‡ü¼æ?á<r:ÖA^Cotœj+ÓÛˆâo£/\ŠùHb"$õÞkVmRË”óˆÚ´´¥K\Jñ Mô%Oøß|~Cú‰< íkØ0|ù7þˆW‰ ~(*Cäºáº /¢²¡‹É7‰ OÎ/kÇã+Å ;i@[|v«ns"¶,–v&R¬ÔŒN˜}d'm ^ÑRõ$«©L(»‚.¿‘YØ„•Þ—Åï}é3¹Ž(å›gêwRôUo¯v3ÅCb-@™«TçKjʵ²£;âæŸ4 ?Žù†©WñåX4~|0Ÿ¸Ü„(oA%fœoöXך(šé4¾:oÒeÆas¤úɺ̀CwC^Æ–³Ã+ ¿¿X|„5QŸ+cGý¾ãíúœ'2«cÛm›ØÚÕ?vvŽI<òøwÂ1ï;Þ»cÉsy]mÄùk%%$Ù3û@zG.7›Ü#¤ªÿ9¢_\ÂE?0÷ÒY:w.í“VÒÛÏXÏ)«@ê#ýS±]<=¬ŒU4¯½æÜSéèÏ0!ÑŠ‡"<“ôCH–v´޳œ^ƒ"KW/§ pH|pt÷ûb´ÓQFI> endobj 150 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [307.652 301.0275 500.2439 314.9752] /Subtype/Link/A<> >> endobj 151 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [186.3645 276.8051 385.7849 290.7528] /Subtype/Link/A<> >> endobj 152 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [244.3133 180.9114 252.1588 190.6084] /Subtype /Link /A << /S /GoTo /D (cite.QE:guide) >> >> endobj 149 0 obj << /D [147 0 R /XYZ 86.1732 786.281 null] >> endobj 18 0 obj << /D [147 0 R /XYZ 86.1732 434.4139 null] >> endobj 22 0 obj << /D [147 0 R /XYZ 86.1732 397.3098 null] >> endobj 146 0 obj << /Font << /F41 111 0 R /F21 81 0 R /F34 84 0 R /F20 75 0 R /F19 72 0 R >> /ProcSet [ /PDF /Text ] >> endobj 156 0 obj << /Length 2640 /Filter /FlateDecode >> stream xÚ­YYsܸ~ׯ˜GN• Ï­Tªl¯½Þ-;öZr*‰×µEÍ`FŒ9䄇dýûôpHräݼ qvî¯yvyvþR+)E‘$ju¹[å©™V«,.D, ½ºÜ~ 6Ûu˜È80kôGøéLÍ~Âøý'þüë|ýéò—U´ e,â8)h³8‡© .mvðSíG"°\šÓÒC SŸ 3C>õx€_³ÅÅç/u¼‚Õ:N餰WÇ"MeF{Õ:”À_©’à=öƦ©šý:ÔYÌ€Cåö®A&ìT›'“ Â^ÃLT4g¢T&)à†L~‰HC´àl°; ^\¼{ÿh^\àè[KFÎ¥Nt %dš²h.×¹ Úu¨dt(–Ûy0\nÀ©ñ´îÐÕ9ô¼Ú8\oƺ*’pÿ&ã(¸[«[~ƪ&É­é7]u´g“ønE¢gYѶßí—Œõ–‡®ðîÔø~ å`ìtÕø.J%¼ \J¹Eð…ªÎ{S P9Õ/à¡“”µýP¢~lËÎÎT é 6­®P{‡×À[t' ›=j*Ežê‡ ,ŽŠÇ˜T¹ˆ‹Øi `ÎOggn@Â:Ñ22:ÍÈS€90pGpj-E¢î Ê|1›qÀÛÀʶ^Ûö±CBûÎ" a³çæØƒZ`3 ®H.и­†kn•üA%åÞ¯–±ˆòLÚ+…Œ‡È axë}1ÐäT'“èN*)DRÈt‰Ê/×¹ PMñϦj·Ç#i•i®Mu0ßå Î⃔ÚÐcÒÖšÐÒ-4=ñë€ð²B™b¸EhøÂX"ÎÌ/£Ið—“#¸EÿÚMµã4ÈZìÕ‰W=! ûyÙ¡óÂC¿[Ûw뺪15Z®xÓÖï:]Mµ þŽKn޽ä'=—Üï_òÛ^Pà´õ‚òlƒss ɸH‡'ßdž ]6sh´dƒpÝûÝój׆¡@¤”á#ñÕ&Fa¤”AmCÛô,fVQ Ú·˜å¾{ýáÍ ì#öŸCUWCeús–(´÷Çp-„™ï¤’ù‚š(~-¨{èºßT]÷瘑ðMm0Ø!"ÃC‡ARqž«¥^s² é oe I1GM$í– Ð”ýgÛiù˲*ÂQ ¸ yBjhï© ¶×‘ÑÁ¶’¡˜—Z“´ôÁ,z{ ߘçÛ`B)X!¨¿¯±Œï=¶§€~iöm[H ÁÉÀ iôº<ÜŸ¶G1œ“ôÙB’ˆ$Mä‰õ}[@É=` ×$Êe™ITWà…kî.€Võãá@/“ã‘­—Œ‚ŸÊ`©l,IŠäª-w¶c7mœ6àûYÅÃD³õ‡Üùt^{ÚŒ9Oì H¸½iéÜ÷ÚÆpƒC1*JÍVq§ŸJ£Ð!o"vôÊÐ{¶·û^ 3nŒï¦9 ú*É´_üà3¯h™x»KPÞ©“æl»w•Éß=ªM«q…ép²ÄI-0¥Ö®!ëýŽ©ôÆ»¾"ÄT{Qð|¥íú&NØ|5#f·7<Ù¬ÃTèõ¸â—Ša ²Ä«ž tD|0͖놊ñ¾coxEiOCœÀüLÍ6‹ïÁ…O¿¬#ý:q©þ_ØG’‚Fû”ŠÿØg)†s’^7)…J"}bíÁ>ïë"H¤]þu¯˜ÅÁP~&œpÎãSB;ƒ“¹òÐŽ9®RÃ8r° tÔ I–¤;vJ¤¤½°n´ˆ;«”´tk³¿´Æ<Œ6 ®+ÃôO˜ ¾tŽ ìx5gؘYð¶TŽË±·vÃ8 †¥…ÊÆÁxYÕ¼aY ï}ªF<¿òÜT§D@É  »Ÿ ú›²±uYŽnmz׎.>¨šm›Ù3JžJýZ¹2€Oå ÈC„*¤æä­4`þY²“Xú ÿàÓCXÅ€FÿÈÕü8ðêg$ï°È\jÈìÿ9¨!çÇ@åÀË´ÝJ ÜrGòGÙ©Ï–b„'Igë÷ iNGÌEb3rĨí¹êGßaâTÓcaS¸Æy€+tk8j‘•ª­mÍunðÚŠëÆÊå•“½Â­èyüoÐyŽU9ʘ|õ ér’c:&ñÑè ‰¿ÿ©¦$endstream endobj 155 0 obj << /Type /Page /Contents 156 0 R /Resources 154 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 100 0 R /Annots [ 158 0 R 159 0 R ] >> endobj 158 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [247.0408 648.2569 254.8863 657.9539] /Subtype /Link /A << /S /GoTo /D (cite.PLUMED:manual) >> >> endobj 159 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [353.8292 152.0344 361.6747 161.7314] /Subtype /Link /A << /S /GoTo /D (cite.PLUMED:manual) >> >> endobj 157 0 obj << /D [155 0 R /XYZ 86.1732 786.281 null] >> endobj 26 0 obj << /D [155 0 R /XYZ 86.1732 701.142 null] >> endobj 30 0 obj << /D [155 0 R /XYZ 86.1732 504.3383 null] >> endobj 34 0 obj << /D [155 0 R /XYZ 86.1732 390.0585 null] >> endobj 154 0 obj << /Font << /F19 72 0 R /F34 84 0 R /F20 75 0 R /F21 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 164 0 obj << /Length 2029 /Filter /FlateDecode >> stream xÚ­XÛŽÛF}÷WèQV ›w:‹ñxNàÄIFñ>8Æ‚&)‰0E "å±òõ©SU-RmÀ/dw³»îuªšÏO¾»3éÄ' Co²XN’È1±ïMâ u“ú“Eñfúf>3Ó¦ ÇÃlš`jð §­8Îlî»I<}+ŸþvC÷†Ö_w2_¶4Ùɸ_Ó¸”³K,—ÃÃÝŠYìh¸ßÑc™åØJÄÍìíâ—‰;™›À ‚0 ˆƒ»Š…œiè gbš0ðÇbn@,Ö² V¼ØÐ£« yãÈþç·4¹û‰½¤ÇBN<¥áS5‰ëÒäRÀd°Øª0j¶ òÍXˆRý3˜ü——–;ûÛ°¼ïé±¥§¸âÓ&?|Nö%ìúQUuÌ©"ž&cE`Èܪ¦TÁ ®ŽY„èµÍµÑmw´v{ÿ™TƒŽí“Ëb¤v¥Go(aLä$IŸê’íqì6(T«¬¦G}ãy† –÷5†=¤-޶™ŸÓ`×°´Aq™µÕ‡ïptÉl$ÖØCkèPÃ*Ê9Ûé¶‹RÕO`#ñdBþ«DS&‘ãÑ$¤mÀ0xǘ¾ùLV¢e;2J¹çF™³Ý¾ç§µ ôåƒf0θfå*6ì¸o>_nkêÅÏ4y‰¶ãåýe±ÅÎf+Å^€JÏ^sç(”ZÕŸÑvÉ–G=/²þ²SºÞKTõõžl¤Ç\‡œ7ºØ]òi8àær7¤«æáŠ‹7§L•54q€g½-CÃÃlœ[ßÝùÁÄÄŽGŒÑí’È~ꤾ±È>Id¼pzWI?b¤NP Cª¾¾G±ð~æK²c­ü˜AÚm]¢ tÝéýo€hùˆÂD‚åC%D?ˆ<ÁK86±ˆ€>ý5 rÿÓŠˆè̙М *}˜EãI¾ßo„‰gÆ]=˜xމ"ñÿÏt. 5ú5À#øbZæ½ÈI„1iìŰe@Š?TyÞºng^‚›Ö3¼\’[wÝRm¶u)ã_Öå¦Ê3% º@£hÝüP‘3E~w,¿Ÿø46!)ùÿسe¶ˆhLŽ´{N¢ðöþwbõçíýý«k†‰=Ç=_éæd\’Ý›Ž¥9½#…ãù©ÑC¿#1ÿúýÚók,j—Ý(ÒÝÛz¿b,½ÂM§‹µ2[µÜxÊ„úB~‹ƒ0¢Hc¤©u»]§†‡ß]¿/ºfX[P¥¢D±›äÔ4T ÐøSƒQ¾“vã©æ‘‘¸êÙYØP”Û*ï9hW¥«wÕ B#ºa¸éi›Ä±Ëq|Jî[œõV˜–6ÈiÇM-V èRꤱk8 bãápB‰ä'ëó·KW°+0®C·YŠ‹ÑÞ¬)”ú _ €<Ç Ïª5G;¥ †bŠ1ç .N›Êb“ëÆw—]¥ªÎuvSÖ+m@•².’D²?§ƒÄúÌ v3MTEÞ®‰aŽo­Ü L°â‹sÖ7¿o$w›kUUÕ÷lçÿÍ•º8:„¾W‹õ&zë|èüÀ‰¢ óèn0Y·^y)¨ÆH·”ñ ~'øq Ž£˜]Ò.q±(ûŒIÕÝ£h(.^X}aµ£2½5FÕ¬dx€ÆT5yBq±¯ e^Jƒ#žÞ¶·Ä8oëØjMæ³ùŠ÷ïê²³„.©ÊåJØ·ò>¦ ví»²xªIqé±›I½ØñӨ״0ñÕ´0NB ¸ô¼êä>ÄATþxüÜ™{6n~ }Öò<ƘçŠQ–éRÞ[Ü'¾HŒà+ÄXÌI‘]Gyù͵¼-Û_ÈšQòÑj÷Sµ¢¡ºs÷Íø‰sóÀÑw ܲî§2ù˜©sx|îÚW®¶èc,µ[u²‰QžTWui-”ÑJ­hAEð’—,JÑS}~SËŒA«¯.Œóð¿¾#qKy~µV®ë¸±}Q­0Ž%Þi­JTÒ'IÓ³qóÚ#$‹(›GˆCÒTþ þ§©m¡\wÈfL¶ T‚7(«XÛwâ<:Õ[ªÏ8ªš9Ì÷Jn\ÇÒÙ¬Ëjƒ–'6-¡ 1×iq˜_CûFï$ÒåÎ}êå€>Ï^Í}®øã+ú¯Zùñ´Þ ‹|ÄŸ¢Ñ³ »)9øŽ gùFZ:E®´v^DÝTzìÎ[;´uhâþÄÿ×û{Qþšã|Bô¡CÜîZ¾±rÓ¤a§N”¤ø~äxA(ÎðñÉíâÉ¿ú,Œ·endstream endobj 163 0 obj << /Type /Page /Contents 164 0 R /Resources 162 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 100 0 R /Annots [ 166 0 R 167 0 R ] >> endobj 166 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [289.6656 365.3097 297.5111 378.7805] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 167 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [210.4918 338.7426 218.3373 348.4396] /Subtype /Link /A << /S /GoTo /D (cite.Ensing:2005p53) >> >> endobj 165 0 obj << /D [163 0 R /XYZ 86.1732 786.281 null] >> endobj 38 0 obj << /D [163 0 R /XYZ 86.1732 468.7219 null] >> endobj 42 0 obj << /D [163 0 R /XYZ 86.1732 434.2744 null] >> endobj 46 0 obj << /D [163 0 R /XYZ 86.1732 320.0211 null] >> endobj 162 0 obj << /Font << /F19 72 0 R /F34 84 0 R /F21 81 0 R /F20 75 0 R /F42 141 0 R /F41 111 0 R >> /ProcSet [ /PDF /Text ] >> endobj 172 0 obj << /Length 1464 /Filter /FlateDecode >> stream xÚ­WKsÛ6¾ëWpÒC¡N‰ÁGn¶eÇjìD‰•æÐt:4[œP¤Â‡ÿûîb[Nåt’ÉxÆ‹}~»K‰ ‚?d ©’ÖOeœåf|"®¥ŒµeÚÝÃíç‰poáù|#‚Y;y; ÞÞß…^p¸+ùp9y~"E ϵ–Áò*"áq.t e•Hâ`¹ú‹T×c7ÌLC%S&`ûbÆ*aHIXÿi t3”¸¬‰Ö^ÑzñZÒ¦3E9T-óêÒ'ÝyÆÓ,}åöIwáô‡RiVõ´–h9JØlÇÁ¬ˆx[ 몡ýŠÞ€Š¾¦2cwD¿ÌfS`€ˆ4¬ JêF`ç“%>§ÈH³±¯šk÷Â¥÷ ä:<¦ƒùBPBé͵ ­sÑc§Ê¶ë¼q5l .ˆMäíCBQcàÒ˜½¯|Q„½÷újn•³­¥˜q…Ä÷[0$e-Zh´e¨Šº'îÂè{³r­ó´÷Žáþfª5+jӔް“¶þ÷ÇžåÖ³ÿ@UÅ»µÅ ÜØb#Ÿ:U–æËd'¥r·-ÛÚFõ ±NÂeÑ{a½ð@‡qû`™«‘‰ÿ…3É‚Æt×w{Ó6íÇH(àKu‰$fRÓùȽ#Eh ݵ‹:Ü­ Á1%fE8­U^xLvò£hWAE7 5zÐ<ðvÃÚ.ëvƒ¹´ÎÀÝ‚–ºéJè»*ö¸)2ìzûì™ò1Å1|äÔT¤> endobj 161 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2_reaction.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 175 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 841.00000000 403.20000000] /Resources << /ProcSet [ /PDF /ImageC ] /ExtGState << /R7 176 0 R >>/XObject << /R80 177 0 R /R79 178 0 R /R78 179 0 R /R77 180 0 R /R76 181 0 R /R75 182 0 R /R74 183 0 R /R73 184 0 R /R72 185 0 R /R71 186 0 R /R70 187 0 R /R69 188 0 R /R68 189 0 R /R67 190 0 R /R66 191 0 R /R65 192 0 R /R64 193 0 R /R63 194 0 R /R62 195 0 R /R61 196 0 R /R60 197 0 R /R59 198 0 R /R58 199 0 R /R57 200 0 R /R56 201 0 R /R55 202 0 R /R54 203 0 R /R53 204 0 R /R52 205 0 R /R51 206 0 R /R50 207 0 R /R49 208 0 R /R48 209 0 R /R47 210 0 R /R46 211 0 R /R45 212 0 R /R44 213 0 R /R43 214 0 R /R42 215 0 R /R41 216 0 R /R40 217 0 R /R39 218 0 R /R38 219 0 R /R37 220 0 R /R36 221 0 R /R35 222 0 R /R34 223 0 R /R33 224 0 R /R32 225 0 R /R31 226 0 R /R30 227 0 R /R29 228 0 R /R28 229 0 R /R27 230 0 R /R26 231 0 R /R25 232 0 R /R24 233 0 R /R23 234 0 R /R22 235 0 R /R21 236 0 R /R20 237 0 R /R19 238 0 R /R18 239 0 R /R17 240 0 R /R16 241 0 R /R15 242 0 R /R14 243 0 R /R13 244 0 R /R12 245 0 R /R11 246 0 R /R10 247 0 R /R9 248 0 R /R8 249 0 R >>>> /Length 250 0 R /Filter /FlateDecode >> stream xœ•\ÉŽ$;r¼×WÔ¤¸/w:é0šOxÀ,@7„úý13wF²úeT²1À«d¤‘AºùF÷ìù×gxÄÏÀÿùß?~~üÇÿôÏ¿ÿßÇ¿>Ó¨¦§iäGÂߨsz Ïÿüß¿f_.˜MÛ¡óZÛæ:j:Ƙëã[âx”Clñô\qŽrz°”Ú-ò«üS­ñ—“;,¸*eâÑWôW'Pqu\\mØÞ‘µƒã;¶Žvál`­×È×l½¦áOlÅÖp8;UzC׎ÍoøÚ°ßóu\|í(ïøÚÁõ_G»p¾ö…Û÷„íÐþޱ ü’1û4FXV_ÚaößúòT_4½´­¾Ž€Î׎}i1æD׎}©‡æÜÅÖŽ}©‡Â[;ö¥ÊH\$kGÖ;ù;W;¶Ý[W}Ù`êß×½u›ÆÕýÖ´NpÎÔþöwQkÃæ{§iLmÁˆÚ—½u¯"jG¦7Fµa¿ñ‚9––÷Ц ù&b ÉÒ ÎYÚ ùÖÿ:K;öÞUKG[0–N "é5ð%G¯¥ÿgŽ)„tÈÒ†}ËÓ Ö˜:A^\YGàÅÖxñuvÆ^Co8{ÍÆó{~x„âœ1L×Å‘XXŸú'ü‹+¼‘wŽ'çh'ñ7&‘¿1ÁÈü Fèù‘ú-ü YNìc ûÌÔÇ^®¼å>%È¡7êã8·p m…Á3uþêK ó×ã½L÷.³o£ô>¾ÙÆ/ùYhñXÊ5—r$e™²óWGß{ˆEßVì!¼#¬s·aómJ½¸ÛÁ·1cqw²‹EÝ v1w„uâN°‹·8Â!k2¿!í`I§ìé„]ÈòÒÔvºžÐÛ p‘õþý‹ª÷ÈEÔóõ·7áÅÓz›ˆ9Mi̶î å6s¦¾€o/­âê ôöêtíàw„}Yø…}¿³°£]8mGX'îË&ޙخï|cj1¯ûC½ÕÉEÞ¾Õ #oƒ¾3µ3¬s·o!¿ãnßjæâîd‹»ìânßÄ­Æ/îvð}éŹË9¼½«,ꎰbîéÌa¹ [ßZÝ~ku'»XÌ`sGX'î»x ¥Ÿæ#gXñv„tÞŽ°ÎÛkìkÚ6ì[ÖNö°X;Á.ÖŽ°ÎÚ÷X»6,Òâ*ÉÜÝG.ÊÞ#°÷¸E×{ä"ëòË5è¢êBÞÝX/¢Þ¾ý¢é-ò"é=rQôÒÙ¬#öņÒÏ#l‹ºcuZIó—Ö­þ·ûhmÎã>ZOã¸Ök;î£õQN[‰1ÿÚG»gBœõÇœ³ìâ줴8;iç-ÎŽöàœmØú–´“…iGX‘vÔStÒŽ¨i'­¤EÚ†m·¹èbmÇw´½n&½¦m_ø6o]¼íàÛ»ÏâíD‹·#¬xÛ·p›·.âvðm)K̵¶œ¹ Ûn‹BNÜŽ}™Ù k¼íØÛîžó¶coÛ{NÛ†í·gsÖŽäà¬aÉÚ¾ƒÛf “¶cï¯âäì¤Áä”mÐ~«¸NÙŽ-oLíu‹é¥¥íËÞÞuœ±{Ú±)8aGPòµ¿ÿ¶wé|íØûæ%ù:êŸ_'P§ë¤Ùäl´úœ­ Úß…³}Ù[GîlÌÙ:‚’­£n£‘uDquÔE[l€/¾NZMc'¿‹³£m,ÒNÀkGàÅÛؘ;ê?.î¾›5’¼ßè¤çœÄóÖ’yÞ t2cKFèù'õ7&±¿1äþFÒ¾>ÿþøçG •WžT>âsÂŒhÃÏá‰Ã˜Ë_\ÃÊë¼F1öòhü•L5ãÑ3ñ|âÝ@C¤UˆðÀ.b ã‰hé;Æä¨b\ãÎH)=òÄ“<ˆñszª;ÄÈ5…ÅpLÈ€KcÛ\zôþÙ^•±ÉÑðŠa›iŠoFMÎíâFq²[0W5?:g”ø€Zq¶Ù‰È]"‰MyñÈkˆ{ §Œš0ŠÎ3âÔy# È6G虸©ôÀM%ö œŽPú£"ÏéLfÞ9Û™Su[O” ¬kfÍHÙfd»]ÄÎ/0¬Ò9N&‘´G ‚ÆË$¤JÎX4; @²ÁT»LÍÐðÇÇ?\g-ïOŽÖ âqS·¥žOJ¶ÛÀheêXŠuÈ$ÀOzÒt.ÈN*9`¼ÔRùŽ1x@‘hª7fµ5g|ê|Ⱥ¼¬!ô°»–û“„—³JbÂt"7 ú8,‰*½QLí °q±Ÿ ðõüññ·X¨4¼ós§‰b*üež`¾äRrй{ÃV ¾+ n6ñšlK‹ë”*ÄÓuØU*C™‡T÷Ï ž(ˆfäõt-²\‘t—K–†Ð½¤Ó%H\O`=´šÔ|Â0í\ããŸ6c=a­ã ‰*Õá`«½£õ1¹"wD…§p®Œq‡4¬+wj» ˆí†±ïàz²‰E¿„p}颥 Ε]…ø·@Óµ™‚çcÃ2Š,àùĨqt3ôµ>H]›G݆´yøHªtÇ!éE3ÔlÈèMÕ™kquŠ3%££PŸ:ŽÉïaw=4 rG!ú˜x†¹!@u×xJo³¸…%…aša%&¨RäúÓׇ3¢‚H£«#%ö;ƒy…*ýd R9C”ïPwÆ ®X(œˆÞ1Ï`>o¨¶c^ÞhÖÃŒ7ÃܹcW1Üó…ÈŠK"šÜmBÔéðŠòÈ®AU!h@8=ÌÞ,wk9XÜ5jÐÚ¬þÂP mÈ«¦¬7Š–-ÁBÊçÈþ„/ Ié\:e=§ÍÁšEúþôMòǦÈA:÷s #³|•ÉfùÆ çšeâSYEÅ™e ˜ïÔe) ³LQ•‰$ :¤j¶¯1©k®ÀEyj—/¨È¹_˜÷]±PVF0=í§¶Éáao4ÌÂòP}þ2.+è®'° ¹S該Œ:Í'Ó)É6UMj5½zæ#¯É1Ør9£(&\dßÕ 㵓i¤à³™‚ã4ÚÁк¸+kéÍ ¥"Ìagè¶£é¡N•{ž ™Þçø‹Énqh@û ¦|Ø¥_4§®û žÕ÷å‘¢yÐŽ¬lfÿ&m0Äc' êɤÙ-NZ¢g¼‚S÷ɾ³#Y6H5oØÖÊ>‚e×MAùKƒ­é¼àç瘤+¹žÀiÒg5fbº¸3ënA^I¿'ךîù®Á)JM˼:•!š3kv`^sü6ɰ@QXV_lwÕrysEÒ6Ä´+–rÏÛ³ê:‘g)20ÝTÈ~¶h×}”[‹ƒnq¡ƒ÷#<©v›AH2†§9:°˜,Œ9ùéw—Þ}"Z Ñ.7v*K“}Ì pÛ}G$6Ø1Ì–д‡eâ¾Kè¢Â9Œ¡øoEÂ-Mý3¨›¨ý 5VyKÑ&Ðnï>µìvÇL‡¢e†Ë!?ç–9»)ähט3pδ# tz-¸™_Ý’"»ÛÓ)Cþ'¯ÀêO²™rž›™53½™ÌqÐä•Îlq˜žºË·Î”ÍÒà"§Ý9”õ䡳ٗRé)¤|é¾T¶0 j5OhæÑâF¨ÆHž–jB³øÒKôàÆlAÞ…î*Z¦k3HÕ¯1Sƒb3ì 0AOÂZH|õdZŽòã9ëÅ“*¡0@S±'sä/®í‹Û{}ΟŸ°:Òê—'…ÜW|xuÒcvÓ'HÀrŒÖ»'Ë#Zn!½aö2ÌaDóIN~%#ÔîÖ¯«x.÷•u%«3ZãBxþÏ‚Æ:©)õ¬à¶ò™Â¤Š•0UzÒðÇs˜“ w«DÛxõ¤j˜è…þ4ºÐ¬~YH%3Þ¤Hã.RW™%±dÖ´ :ˆm°+Ü™!Q !6¼º°x MH;u¨’¦®UIõ¨úYrÐ}ãÄü³ä¨àXñÑ=¥äÄj €ï³r½£¢~á0¶kL¼qJv)‡W¸ñ/ä6©d ‡4¿WxFÌÀ“Á½^taý)AÞ@€ºiß3 KN ïH8EÊ*”ÄK#ÿÁ#<>w•šŠ)U] 9£6z˜”òUž=±®Sxއç¼Ï'Ð都¦´.½RÑJ,Ǧ”a¦ õüÉüe¢Ò™va‘¥ð‡‹,€Ù¹ƒ~phS¨—‚ÆÅÔ¥èN°ÆR(ÕXŸV¹5#ÒÂAŽj½xCµJ(ÈSY/QèP™Â"\ð9VÒt#O9*pFÖ\œÓè¢Rˆ4e€KÒApÊ3¦2| 7ôƒšôž&­e…?±>F¥‡Ê1&«P볘$¡B2›)É.9TæCk,C,ÚÃ…º2Êap4en ówµnìÁd”}j ™×€7_ãQChXŒ¦{Hô 7J×°ò_Œ³Óž©çDÀ_Wn&ªõ€±.ÀØ~§B7½YXìšÒÞAKH2=Æ™z©,#}n窙ã‰ÍÚªÑIɪRšÍ)¸1QÙXæ ˆ…æ±>7S}®Jî5)s‰…î„UCó€Ùöay6<šÎ‚}AJ²0Í]ñ¥Î ˜C1 Osqì3Êps»A§™˜©®±¸ÔÌ'"šÆjYQ!|G4n´ Ùe³¸€¨d¶]î‹Õ<}¥|¦º4Š,‡®2‹4Ã"’ÿ¿}´¡­ÞT¼!r ­Õ:ÛsXDµ†¸XËe²ª20æ](Z³J•õ¦ODtè6g°€Œì±Jý@Õ˜›Ê•|ôãSM~ bCb›=ÏÉÔ:Œ§.¬ô7MHÅ»Y‘ ƬpÀô@‹‚'x6dÞ^ùU°$¯)ÙÆ‹½|ĺg׿§—È'× ‘8È^>Mܶ ”ŸÙr±Ñ¬ÉZ.þeÖ`iÜ©.ÿÏ'Õ[Föo–L5õ ÆaoîÑ.ÚmBµFçõY[ÕumªâqU»ë0ze½X@n?ò·:ܰ|Ÿ •ìÜ %U”t ‚ª®‹bUcƒ‘Ù™.ðÄ#ž°à9«*DP•fȪ†$Öæ5¦âÎ8—âÊÒ7=¼†ö¢Äàzó„™|aÒÔÙSÑmªÃƒ±’!¢0kê4tõ-‚®†Ð &/ÍKl€d÷ v2:ûDRh•—;ê}}U­@¡Véĸ Ïn‹Y™Ó ŒªÑãA°r89ã”â]¼!j:“"»a'»¤u:ª>6D’Qh.›ßS*'@4jµtßUh~/Ñ c«†PÑŠ ¡…Yõ…Ì`®Â@1sZã-ãkQ¢Löç’U¾aX׈=âÆþueW(dzGc ðÇlÙJ:’*óœ:.³)eýh|§D¥˜NÓ3¨å•HlÏÈ#õ.ä@“ˆ¬Ýë°ƒ„å°O5,;3˜ì×\;³‹Øíº\liz—æ—ÝÈ—[5˜wûÀàcÚ´«£,´3¿°ŠŽn›^]¥©žç´r ^ÆÒwTQ¯öàLDWó϶n®F$LÖäÏRÏŸ_¸aKö«X±ý|>Ñ?  Ð£_ÓM:ÓTªZ¶~Cg W1€yÅJÞízgõÃtÚØ6S\w8Rãý*¾CMñÎë‰Ê)¼aFŽîf1Ž|ù±=)Ê;ð¤À %É$sè×B®ìRw»=¯k[/%™n.D²¦ ß8Ž®}YuEÎÖìÁêQW¾Ø£}0ú+}9ÃI,³f"`I,€°ä#.|ÌÃ+õz>ÉÕ×TŽ+G28c˜MúÏ8ƒíôh²§C`Ï“…(ºxIœ£¨À=ƒ:š> endobj 176 0 obj << /Type /ExtGState /OPM 1 >> endobj 177 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1080 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?Þ7õ—u¬ö¹µ —ChÌ÷jž˜M׈ìb ówôÏÝËJ§qv<Ö·-ëR›Qhó Æ¸pçã¯C×Þ€;ú(¢€ (¢€ (¢€ (¢€ (¢€ (¢€<¶I*”ó`j9n=ê„󳑂îÄU$ž€ mÍÃfc€d“^ÃáÝ?û/B´µe+" iAláÏ-ÏÔšæ¼àójcÔµe?jᡇ$y=y8<“Ǿ½;Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Šñ‹-XÕÓ}•Œ¯Á>H=ÁlgðÍw>ðdzDÉ}}(žýs´!ýÜy㌌“Œò}zqšë¨ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ÿÙendstream endobj 178 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 2042 >> stream xœí›;k]†×œIbLâ í"ølíURi© ^Å2 ñ?ØAÔN°ò¤•˜X‹B,ü Mr¾×y3Ë5{ÏÉwÅÇLÖS 3“sñFê”ÐèŽf1¸|ù2$Ò¦Êb:kPhª&ñš(NâXšŠ׺•êw£Ò•û' ;ªxnnŠYÈ +—'ùäYl³"îdt¶ÚCš•º{±Ší¶óŠïܹóõëW Õ¡¢¢5‹óŽÂŽ]­Y!™b…O”f'Y¬b»ªøöíÛLF0Ê–ûì®’,nUœd±˜±noŤ5‹ÅŒu»‡UüéÓ§»wï2 ð Q³ZÂŒcÍbm?`umHÓo"ÚJ³)ÁZÖœ‘îöÅäüùó4K¡¬\òŒ6pƒ­qÙ6õ¦µÜ²5ƶLªb>f7:º«øÆ_¾|¡Vż–%¬ÃΡóŽ‚ZÙðBö õ6¬‘ú»Iè°âµµµ[·nÁãT#˜ŠáÆó,¶~µ™Û[nkVX¿R[Ö>wgg§HR¹‹œ>}Bgff&+Í:ÜÙéu>âÙY·bæ¾Öx+ª6­b5¾+ºÓŠ_¿~ýôéÓ#GްŠQ¹ôËè Dm9’Q.©èQUÜúÛS°Ö)]'ûÝV fgg=zøðaøÕAB!Q`=ž)ÌÔÃÊ-«%4-ç<Ží´Xš)‘ˆ–Zq竼zõêÉ“'Ç׬Ð,ÖõŠ<(ØKhªâ$ŽlPð0ÙÙ©è¼bpêÔ)Ä1 ™=-«â¤u³õk«xÐ\¦híÛ,¬hŽi­YÜŸ ?~¼zõê±cÇtËÓÓÓ4Ë,Öˆ° \ÒQ؈ÈCÙ’·Æ‰bM étÓf9yò$=&2cG:[ÈšÅLÍå"CFOðrÅÒÌëº'Š/]º´±±1]ÁZFt°„5.fU³¬?U±4—’AOÚçY,f”Óýž(–jy–Qˇ>tè«8™ãÙ¶AaEKÛ’qÎ…‹þ(F"_¹r â…Œrf÷ÆBfƒló¡l^½¶S•;È–u¤™Òl$òá®?AAVVV®]»†ˆ€e(Ö)µ e;ÐÙ)µ˜ ÈKØrQO7x8̺]ë¡bpâÄ dRå<|øpuu•]††TÿíI÷¥ùß ´–ÿô¿Eñë×/œÿùó'öüøíïýP¬Àõ½{÷ÖÖÖòû‰æ~@+WÌ ‡C–-ÏonnÂrTñHîß¿ÿòåKì •†ki®#C%ì«hœ„PíÕ(gž={öýû÷¡øo€k„nüäQÝÔÅÊ…M¦Ä™3g°ƒ-~ x̹sçø ¡ø_°¼¼ qØ&'ét¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(v'»ŠÝ Åî„bwB±;¡ØPìN(vç/÷“4Üendstream endobj 179 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1082 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?å÷ÓKÔe!’´¹ÉÊL^£g¨šJ‰¥®R‰+=W’\w«ÚV©krÓí^E !ùQzucÆyéÖ½ÂÞ‹L—íz©Šêí[1ªcLt<“üª[5ŒLoø&i§‹QÖa)ÑÛH9sÆ Oc×ñ×Ó¨¢‘ QEQEQEQEóÁœzÕ‹{KëÆ+kgq9iÄ̓Ü ÷Ï->_‘~^œt§Ó¹<¨ñÝ?Àšíük$‘Åf‚<öÃÙ#èq]~“ðëL³‘e½–Kùä+ ‘öþÉüN9é]‡a‘Æ‘F±ÄŠˆ£ ª0öú( aEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPÿÙendstream endobj 180 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1121 >> stream xœí™ÝNÛ@…×Nø¿âY¨üH¼ Iç!@©¸àŠWIBoC:ë±×³¶“RUçç|Béf@ýÙ$‹ÅÂ}[ŽNN^ßß;;;éÖVÒé$Ý®MSÿÕé¸$‘…“u’¸lÇ/tSÙ¾üœÄ¼ê£ìß|‘o†1öÍÓe$ßZ±2¸¼üõòâ-‹ÇÒo¡ÛYéVkЭúôá eúÍæmþmÊ—-·A±°¹¿ŸnnJ§RÈÝ®ü‡e‘W®ªÄ~½ŠÍ"è®ËÌÆ…,ÄaÒzŇÇdzù¼»»+K¹¶Š±os#”sm+ºQneÇ5¯þÂ#±ßÅÂÝÃÃðæÆç²T«Æ…|­º6r+f£Mçê®õ·DíWÊyÑ&ÅÂd:ýq~.~;ÙéÕ².ÂhÍYáŸ:WFG±vA\c(»UAìZÉd2^ßÞ|4‹SÍ =ú ÝQÑAq®OŒšßæ¯õY\¡?þ|~ö–ÓÔ熀¶Ùh]kÝþÚ`ÚÜÕ‘h\]åќկ/›e¡ë0YáÌIèl-o£F¢±_ví:îêHhˆåßIfY:?÷ª83›¿ÆœsqýÚs¯XU1mV¬HñJ!Ëkg{['@§6‹Ù¤l'êÃHmÒ+cD1Zµ®+¿=iÜmã»»‡§§W)gmÝB÷fµjLÛ1¯©„ãxÅôѶ¦m5ݽ=?þi4ËÙÅE(êpèÕg¿Ê¦ýÉ«¸µR¬H@žúÓO'”bêËûhÐŵ ˆŠ·ñÜËÜ®bÅ‹>;Kõf.\Ñ1ÍÖq'çb¬±eT.1ÖS±2‡××:žèœ’Ï #I|aä\¹£TƼ%…¼ÖŠí;h™¹ãÄp¡ñ0—ŸKg?gÎ@«”ŠÒu\ŽFšÓeW¹9 ⢩/妦‚ŠK$ ûýþl>—Ä·š®IòѬ®«s ¡¶ GÅËèN¦S½àÏD‹:|t¢46ËÄESñ*¤®{½žÞoˆ¨ð‘JÃàW¹Ç0V©øKˆk9%+îõ´§Ÿâú'& »EDxã÷÷ÓÙÌi­Ý…é1réYMÅÿ…V÷íím0µ8Ìf^ñçgyÁOÅ &T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅpþ—»%endstream endobj 181 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 984 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ cœ.{Óª‰Áæ€Ë!+чj–±f’HdG÷—Öµâ‘e‰$_ºÃ#4ú(¢€ (¢€ (¢€ (¢€ (¢€ (¢€#g¨$n 0ËPÉ/ÁÈ4í à–žÙ w§ÐõýVžN SÓn<­rHJwÈãõÅuÔQEQEQEQEQEQEa™ E$‡Q@§àÖdRí‹.¿ññþ„(¢€=Š( Š( Š( Š( Š( Š( ÿÙendstream endobj 182 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1811 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?¹â_,¥®´0#”’ÏlN¿ÜþïÓ§Ó礼R4R£G"¬Ž0Tú^ÿX^$ðͧˆaO4˜ncá'Q’¡ÇòüòîKÏ!Y*@õ¿}à fÒ)$ »T<,lC°õÁü2åÞ'1Ê©ÁV#ð§s'àz]õLL)|ÑNär–÷Ò y*Iªžh«Úd€–Ç^)¡IY\Õ´Ñ£uyŸDàVÔš6žÖÉl ¡*Ç''<ÕKI2mYŸ1dƒþz>£¥j’<éÎwÜàuËD±™<²B¾x'¦?ýuBÂÊóU»[k^iO]£…¤öõÛͤÚ꺥”¬Ë †ØpOÄàW{¦é¶šU¢ÛXÀ°Ä½‡R}IêOÖ±žŒôðÏž ³3ޱРRˆ³Þcç¹eù^œ£~5½EHQEQEUk½>Îø(¼´‚ãoO60ØüêÍÈÞü=Ñ.0 ‹B3‘™ë»?¦:ÖTŸ P±òµgUÏ  @ÿ¾…z6_†3nÕÐrs‹r~ŸÅUµ ÿÂ9oÂ]5ÊÊû” ´à‘ÆO½z•gkÖ_Ú-ݺ®é Œ´9¨¦™2Õ:²~‚¶íä(êè9¬=ÜÜfb±çñ?Jô+KU@¼gÝ—'ó5¯:Gœð²©®Ç5ª«EqæBJ°"DoCÔWik:ÜÚÅ:D í‘DÐFðí1©P0: «¥ìˆKl¨Fw:`ú~9¨”¹Žº]+«ÜТŠ*€¢Š(¢Š(¢Š(¢Š(¢Š(‚Ô-ÿ³õ¹áUÛ2?¡þ™Èü+¤Ó¦Ü¢³ücn­/ó“ 6yÇQÿ³~tiSptêw-g¹6ÚŒoü2~í¿Ÿ¯ó«°6R«ê1–„•ᇠú»E5]ÔåXdQN Š( Š( Š( Š( Š(  zµŸö†™qj×å9ÀÜFx> /Length 579 >> stream xœí×íJã@@áŒ,w·Ê"øGA4—$Í=õšìý(f’ì›L­( ûQÅåJ˜¶ÂÃðf’~ÔõÐ÷Õ0l®ãbºŽŸœ‡®{]t]ß¶CÛö9×··«Õª²ß•ŽnnÞÈëo˜hYLÄáÛ??×wwâþyéðúz½…_d߇løæ¸±n‹år¹ëÛþL¥Ã««÷[8d£içÖQ997M£ïß–æ——e ÇVïḞ/Äe Ç×ÕÃC]×»¾áÏWú~qñ‹ù0}â—îé)æïzƒÛ?•¾Ÿ¿!.ç‡ÁQÎÝ㣷-K_ÏÎÊä­6¾åð×¶]Üß;|·,œžŽSx›Ão™Âñ·óaûÒþÉIÙ¹›§\Ì߯ôý Òìøxܼe—7‹ºŽáàáá£J_æójšÅã›±'_ ´7›•AÛ¶™Úõ-ýo%.ÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1ÞOŒÐ×3endstream endobj 184 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1581 >> stream xœí˜ÁnKEËŽM‚„¿‚²`Ÿ! làkQÄ>=9! | $ö«îê©©é›Ç×IÐ=2CÏôx¥ÛÕ3Y­Vò§9~ûöèõë½=™N§wî¤Ád2Íôt2™¤ãÎÎd:Õ‹~´_Ñ’é¯<ö©îJÝhq¶¡~j?íå†pLWºÓ2¶²\¦Ëz¬¦–K½8A(6ggž+ÚèˆeëN}ÊhkYê÷+Ò©Ÿö3V‘º„M¥t*×ÿ'ô†í)~~ttúáÃd>OµlŸ&1Êx±l-O$ÆBMDlþbë£è=V°ƒ8º¾ºZmG±rpxxúþ}²œkÙrC\®-†^ÑM ×ËÝš \¬""Ö¬3¬åñ%Nd°²µNc\tÞ‹kU ]î*çç‡GGß¾M†¹lZû~Cÿ¨t®r1"6Ô²ÔÆA|ö ù+CïmçàrmÖ—»ËËíU±±X,ž¿xñéëW«åâ:[žÎçzƒ•¶xìF³­z‘uål]„ünVD¹îzhÙ3ijxÄu·Ðm»Š>4b9ÏçE¨ÕugyкŕPÍFùÑëšåѾ"¤Ä¨èM ][¿í©Ú×*¾ÅÆÎîîto¯äòl¦u]üZµzß6Œ‹Íq¼¶©pÅö°kr¹WaÕ{H_Î×ù-äkS¬$¹óùÎÝ»“¼ ôЬ{ÝQbÓ¶fÒ_ÙÐGâr#"ªlW<7X-}1…óxùóçuV±¡é|øòåù—/ÓÝÝ¢¸ûˆ9ríbÕ)ËÚD6<7b:ûS—Ô^·ãZS–¶±#®ŽÖNl¹[Gz§ñêUŠcïçDF7ÙbK¢4±3ZzÅÕr· ;i÷¿¹W‹§vÏå¥x\H)í佋”¢øzƒ¢B+ZWÂó‹‹´fÝi%œ”×F’åŽlIÂ{Œd-¾ÖhisYlجl•ñ¦ù--Z®åR¶ݦNWß¿oiw÷[œ}ú¤ZÏ?.¢}“bÆ¥ï.â®Oª÷Am!­r£U,±9Ýq¸PUÙ1—O®ñ>~Üßß¿qŠãã㳋‹“wïRzh×lýF›ÑÞÞ «ÛNõŽ­:õQ9æÿ†ºl»±ªUKujp‡gõ›¾ÀUlhL/ÎÎNNO==úî­Új‹Ôcc,—WÚí¯Z@{Ÿk—- bGìUl‹^®\ítJµ¾yóÆä–ß{ÃZÑê:5R⢌»Ó4ðÜÐ'o܆HyvÕu ýì°„W±)6­ú¯./—?~x-«S+Û(·|[¡ØÐ˜ÖŠÖô°üµôH/7$¤sÈ ».U_‘ê=¦¬n*|} Zû•Í›ßÜóÚ=V³­ÙþÞ"ÅŽö)@ ÕÝ¿¢ómá0=JþzE{· WÔQg¼ÝÛïòõ-9 -Ä/Í:·RqD#$?9±ÄèÛjoéô»èHDÑ6+ᵎÝ6Áz³‚ÝcNUîo}Ã[¯ØQÑ’§c6®ŸÔùç÷©TõTÞäy9w;o®­å²Ùÿ§5ò÷(nQéj§WŸ‹Wíï?|¨™þìéS›ÒeJgýN=•Îìù³âáb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†ó/§~£endstream endobj 185 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1542 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?èóM&£ÝFêî>Zɦ1¥!ˆÎ*68¤RCZŸk}5”¡£9OâBx?ýz…š¢sIêkâîŽÂÆú+èwÆpÀ ÉÝMZ® —´¸Y£$<€q¸zW]¦jQj0oO–Eûñç%kšp±ìa몊ÏrõQPuQ@Q@Q@nê|$Õ]Ô ×aóv:»kXÞÌÕ- Yj ]I¡M§‘L¼¾3ŒT¤îtJTÜKRƒ5FÆœM1©™"'4¶Wòi÷‰U CÜ~Šó «®ð5Ð’ÂâØŸš7þËñ²š= 4¬ìu4QEdv…Q@Q@zÊPàÒf´õ¨’)NÚÇÝ]G„Ñ.hÝQî¤Ý@¬HM4šajijaXÔ.iYª&jE¤E)­?ÏåxS÷Ñ:ìßû-dÊÕ7‡æò¼I`Ûæ]¸$ ŒþÏáQ-Žš:I­EV'¢QEQEyÝåã\9f5[uW KººOÄû¨ÝPn£u±1jajŒµ4µ!Ø{5DÍMf¨™©\´†ÊÕ?‡Žïéãæ?½t€ý_皣+Öƒc3ø®Óå ±‡vÎ8ùHó"¦Lè§QëQEdwQ@Q@Gº—}EšLÖç•b}ô›ê Ô›è¸ùIËÓ ÔEé…é\j$¬õ ÉLg¨]é\µ&’ºÿ†¶FK«ÝA Š CØ“Ë~# ù× <˜ìÓ—áËh¤\M&e“œòÝ?!Ç¥CgM8õ7h¢Š“p¢Š(¢Š(Ç3HM3u!jØól8ša4…©…©¥ª6zFj‰Ú‘i ÏUä’‡z®wK"ÇÜîB¨õ&“f±‰ÒxHþØ×Öi6ÖX•Áþ&çhüÆzöçü¡>ƒ¢ù3°k‰ŸÍ“|¤€6ç¾1üë ¨7JÁEP0¢Š(¢Š(Ä÷R¢ŠÔàZ˜ZŠ)ˆ™ª'j(¤h‘ZWÀ5è¿|.!Š=fø+K"î·N»ÿ÷>¾½ *Y¼QèQE"‚Š( Š( Š( ÿÙendstream endobj 186 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1557 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (ª:ž£ ³.÷s…Lã>¼Ð•Å)(«±÷×ðÙ'ÎwHGʃ©ÿëW;=Ü×’™ºtQÐUY®êvž\on¸éNC]0‚GˆÄJ£²Ø»mnÓ6qZ§¬Qd‘šÏ´½»“RO©<£cñª|×ÐÆÉAó+²9@V SsP—ÉÉ¥ÝVsX—4T[¨ ,utQEpŸRQEQEAyr–v’\I¨3ßÐW sy%õÓO/Vè;(ì*ÿ‹56î;(ÝLq|ÏïóÇà?Ÿµb£VÐVÔóqU9Ÿ*ÙÔªÕUZ¤V­N‹A©Áª°jpzdX±º—}WßK¾‹‹”Ÿuú(S¹¢Š+Œú@¢Š(ªšêéú|×N7yc…Î2zùÕºä|wuˆ­m ³wãüÏåM+²'.X¶rÆf–g–C—‘‹1õ'“S+Õ55*½n.JåÅz=SW©Ó¹›‰l=8=TO Näò–wÒ†¨Ô€ÐM‰A¢˜ ÅcШ¢Šä>€(¢Š+Íüc;Iâ)ô‰Ó¿öjôŠòÿxžóþÿ -Tw1­ð™ÀÓƒT©Û«CŠÄáéáê°9§©¦&‹jÕ*šª­R«S3h²¦¦Œ8QZ¶ôH’YÆþÔÈhƒì²`¦Ší ´[ QSΞeš(¢°=P¢Š(¯,ñÇŠoàúשהxÔ2xªð° 0B=ÆĄ̊îeU^&Xjx5YZ¦SVr´Lµ ¨”Ô€Ó!’ ‘Z¢áL†N­WlîÚÞ@Êy˜ <52Z:³â(£ŒÑ\°z(§«ÑEÎ{EP^uñ*Õ£¾³½rHÌG¡SžO¾ïÒ½¹ßißÚœ Ì¶ß¿Nq÷~÷þ:OãŠh™+£Êãl𰆍ÂÝ*Ú´rÉTÔ€Ô jE5FMN£œ Ø~isLÍ.iˆvh¦æŠc×袊ÀõBŠ( Š( ñŽ’4}~AŵÇïcç8ÏÞÏáŠÉF¯Zñ~ŽuXá^î/ÞA“ŽGQøŒLâ¼}X«pU”àƒÁ©3ļ­R©ªˆüTÊÕg;E€iÀÔ©á©Ñ6hÍF—u°üÑLÝEcÙ¨¢ŠÄô‚Š( Š( ¼÷ÇþEI5›% Àæå:þØ÷õõÎh¢3„ò*uj(«G<‘(jxj(¦fÇ¥ÝEÉ ÔQEÿÙendstream endobj 187 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1431 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¤ ¢Š(¢Š(¢Š(¢Š(¢Š(¢™©,k$lR;ƒN ¢’–€ ŠV+ÈëOn•Vn”j7 aÞXkrlî··ú¶áúð= Ûë@ EPEPEPEP-ákÒúP‡0¹^¹È<ç·’\× á‰–=VH™öù±£Õ‡?ËuvÖÑ´‹¸p*¥¹•)^´²S·ÕW&6Á£Ì©5,3Õi^‘¤â«É%T¼Á¯èWFâÐÄÇ/Ûõ¿Ã𬫗ëNðÜÄjwvx·ŸÀÿ³POEPEPEPEPÅ/“}€ãlŠOÓ5è:F¨†Ü«çޝ3¹n uv öÖ¨ŽA~¬GLÕÌçÃìt·bY28ïYbâöŠƒ Ðiª &÷ªmsPIs@¹›­IáY7k²úwoý kêëƒZ^V›S¼¸ÇÉb<û“Ÿé@ÍQ@Q@Q@Q@#pÝ«¯ß\t¼½…N0\g5Óy•R1¢¬‹Eê6”Žõ’¡yjM‹qU¥¹÷ªòËÅg\O€y ÞÞ5é^ÓN Cæ€'¸ýô˜ížƒ§aÇ5ÅxC}SU”á~Çhüë$ÇöʽN€ (¢€ (¢€ (¢€ (¢€<2Àæ÷Ì$â1úž?ƶ>ÑYÖZ>ªújjö2Ím3­Ž>èçµA<³Z¶Û˜e…½$B§õ¦Éв5ÍÅC%Íe­ÓJʱ+;1Ú¡A$ŸAïZV>×56MŒ‘FHKݨ¿<‘ô‘EK‹°høÃ7¾"Ý)cif:LèNþ¿tqžœœ×S øÞÒAq«H—²àb¿ºCøýïÄ×NÑT*…P€A@ôû(të,í—lP¨Uàdûœw'’}MY¢Š(¢Š(¢Š(¢Š(¢Šdq¤1$q"¤hª¨ÀP:; }PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPÿÙendstream endobj 188 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1708 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ìõ]`f†Ün”pXô_þ½coyd/#vä“USб…`O5Õ¨ž zÒªõØÓ´°y†O¤¹¶XsMUòÓ ¿­Tšé¦lškšþDKÙ($·4f¡ÝK¾¬ç°—’4vS¼}cb>¸¯?NI5è;ë½Ð›Ìy-J’O–xǰÿ"³šlëÃN0ºf!éTîÖ„öÓÃþ²ꦠM*öõöG "÷y ?ϵdÑßEjÙ»áKuI3ðZáÉ'Øúη!¹šÖMð¹SÜv?QUí¢ÖÀ°‰n=ð1JƶKKt¦ÜÜÑרÞÅ{xÈ üIžV­WÄ¶Ó arŽ;úûë4Mu([äÙ,x;sÜ~UÏ(Xõ¨bMæQPuµJ­U©áë¬ùæ‹a©Áª¨zpzw'”³¾õ_}踹KéU²Â«n¥ h 5„¼c¥WÔìÑ²Ž•—mzðt hÚêrÀ>V"±Á§¦KF¥ÍëÎrÍš­º«†¥ÝA6,n£uAºÔÂÄÅ©¥ª"ÔÂô‡bFj‰ÚšÍP»Ò¹i·4Uw~h¥sEêj@j5"š¢PiÀÔ`ÒƒA6$Í.i™£4Åaû¨ßLÍ4šÄ»èßP“M-EÂÄåé¥êôÂô®R‰+=BòSê $¥rÔE’NhªrËÍ76P4ªEjª¯R«U4Y N  N A6&ͨÃQº˜¬IšBi›© PM0šBÔÂÔ†¬Õ5 Õ="ÒÞ«Ë%+½ZÐôkŸjKko”Œs,År±Sî{õ-›F&‡ƒü/ÿ $×2\¼±ZB6‡‚Î{ ‚sõ´W¬i:m¾‘¦ÁcjŠ!Œ±Éby$û““EI½ŽLÔêôQVŽi"@ÔðÔQLÍ¡Á©wQE1 ºµPKS QE"’"f¨]袑¢DpÅ-åÜV¶ëºiœ".q’zs^Ëá?GáÝ9£/æÝM†žAÓ p°ÉüÏÐT¤oQE ÿÙendstream endobj 189 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1683 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀww"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ +Ôuãæ¬XaO2õϰùÑV©¶rËN.ÛQPuQ@Q@Q@Q@Q@`x›R0D,ââIW,Üð¹þ¸5³wp––²ÜI÷cRÇßÚ¼êk©.îd¸”üò6O·µ\Ù͉©Ë.¥„8TJÔVç”ÑéQEržðQEQEQEQEQEÇøÚøî‚ÅÆ<×þCúþ•ÌÆÜSõ{¿¶ës‚ ´„)Ôp?@*²µmæÕ|Òlº¯EWW¢ªæ§yý©/÷—ò£ûRn>eü«}¤ôCùÑþ‘ýÃùÕZ=Œ¹ë37ÿµ%çæ_ʆÕ&'†Uú ÀÿHÏÜ?í'øçE£Ø9ë37ÿµ&Îw¯ÓƒS›ûàþ°Ò?¹úÑ‹Ÿî΋G°sÖþfoi;?!Ký©7÷×ò¬ \ÿsõbçûŸ¨¢Ñìõ¿™›ãT˜Ÿ¨¤þÓ›?|~B°?Ò?»ù‘Kþ’„þtZ=ƒž·ó3{ûNlŸœ}0*½^âIåG’6`6Ž V>.»úŠ‚óÏûÆåãËlóìh´{ Jµþ&shx©Uuj5fu´LŠ‹u ÄÿhoïΗí-ýóùÕØü®¿Þ6‘ÿ½)õöëMÁZó€X['á¥éíÀ4¹Í}ƒ*}¥¿¼:O´7÷çW×ÁéeìÔ’L§ÛîÓu°„ùÖ$ã;|ÆÏÓîÑÎÁ™ßhoï_´·÷çW_Á:ò¶´qœdJqõäP¾×[«Ù¯ÖSëŽËøÿœQÎWe´7÷hoïδµÀGïlŽOüôn?ñÚhðFº[´þiÇooÔ{à竲ÚûÆ´7÷çZÀÚá2Ù v27?øí4ø#]ó6î´#ßæœwã¦{zwø9ÃØ2ÚûÆ™4äÂãqû¦´á×wºÓ¿šp?J'ðF·.þeœT’©#dý2¢—0ýƒ9õj5TGâ¦Cšbh°¦ŠE4S öš(¢±=¢Š(¢Š(¢Š(¢Š(¢Š(ĵ«Òµ‹›6Î#žêyò¨cn+³ø›§œZjjXã÷1Àpñ7iœó‹Šh¨ÔÑTacÜ(¢ŠÈï (¢€ (¢€ (¢€ (¢€ (¢€+ßZG}e=¬Ã1Ì…ã=ùï^#yg>™5ÊâH[Üv#ØŽkÝ«‹ñï†åÔ”j–ŒÏ=¼[3½A'+î2xïüÚ&Jèóäj*´rdQWsÄ÷ê(¢³:‚Š( Š( Š( Š( Š( Š( 3ñ×…¤²j¶y2>f‹<«19a“Оݾ (¦KHÿÙendstream endobj 190 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1733 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?Ôz¹§jÏdDR‚ðz«ôª,Õšë’OsçéÎPw‰ÝC,sIJDÁцA%qZ^ªútØošÝÈÞ§·¸÷þuÙÆë,jñ°daGq\Ò™íQªª+õET›Q@Q@Q@Q@Q@5Ôm]gÏ" :Vφ5_&qa;~îCû¢O ÞŸóúÖ;ôª“ ƒQ%s¦”Ü%tz•™áû·¼Ñà–VVe[oÁÀã±ÆãZuÎzéÝ\(¢ŠQEQEQEQEpÓÐM1užC^«IS±ªîjY¤MêßSk2ŽãIÆÖþyé]Õy!™­î#>üN~ æ½b)h’HØ2:†V= c5©éáåxØ}QPtQ@Q@Q@Q@rZ˜ZšZšZº cP9§3T.Õ%¤A(ÜÛFy8â»ûKƳ´†Þ6Ü‘(U-ÉÀõ®"MÜ Ÿ1qù×Iþ‘ýÃBIî%8Û‘Øè?µ%õ_ʪÊ;¡ü+ž?hPÒÿ¤ÿpþuVc.zßÌ΃ûR^y_ÊíY}Sò®ý'û‡ó¤ÿHþá¢Ñìõ¿™Õ%þòŽ})F©/ªŸÂ¹ÿôœ}ÃGúG÷çE£Ø9ë3:íYØü©?µ%þòþUþ“ýÃIþ‘ýÃùÑhözßÌ΄j²ú§åEsçí?Ü4Qhö´­üÌÉ-L-Q–¦©5H{5@íC5@ïHÑ! í•O¡kí,ˆþu•;â¶í<'­^iñÞD-öÈ¡ÑBƒÓûšžkªND?ioïδ7÷]Oë¬96‰Æ~iOåÀ¥×xùìùÇšxöû´sØ2Ú[ûçó£í/ýóùÕ¿øBµî8¶ä‘þ·§¿JQàx€OÙF@àÊxý(ç`ÊioïŸÎ´·÷ÏçWÁ:òž «óŽ%?Ÿ#üâøBuìu´éŸõ§òéG8{SûK|þt}¥‡ñŸÎ®¯‚5Óœµ¢ãÖSÏéJ¾×Iåì×ë!ÿâhç`Ê?ioïΊ¾< ®#ͲæFÁÿÇh£œ>®ÌâôÆz„½1žÌÔIê’šïUä’“f‘ˆèã{ËÈmb I3¬jNp 8çíö–ëig´rÖ5úŠòÿ‡ºs^ø¯O“f¥ƒv.xòÉüzµfθ+ ¢Š)QEQEQEQExƒ5DÏC5BïZi½Tš\ |²`ë<áfÔ®#Õo‘~ÃÌHÀ1=KfщÜx3L}+ÃvÐOŠáó$£¾âxϸGá[ÔQRlQEQEQEQEQEx+5W‘袭œñF‡†4ƒ¯kÚ6D/3Ê;uNµíÐä0¢ÇªŠ0Š* Ñ%Q@Š( Š( Š( Š( Š( ÿÙendstream endobj 191 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1710 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ F`ªYˆ I=©²ÈÄÒHÁQFI=…rzŽ­& Ûà…Ï-îª1r1­YRZîXÔ59.ähãm°Ž?Üÿ…V‰KZ¬‡Š± ¾[†®˜¤¶<:“”ÝänÙéë°3ÔW‹d…ªÃTp»@ÇãUžv‘²Æ„îÊœ©ò(ÅkÜ“uªÔ»êÎkî¤-Qï¤Ý@Xy4ÒiË¿ÝÔr+'ÞR)!¬h¨ËQAV;J(¬Ý{P:v™$ÈTLÄ,yõ?à2kˆúFì®ÌŸjî¶1òP‡úp?\þUˆ†©#—bÌIf9$÷5aZº"¬´œåv[V©UUjxz³¢Ðjpjª¾Éå,î£uWßFú..RÆêóU÷R怱Òé¢6AÒŸ¨ÛFc$ W= ËÄr¦¦–þIÔÙÞ÷:Hû>G™VNŠ)ŒÙ9¢™‰ÝWâÍOíš‘¶Œ&Øíú¿ðü+¿¯'¿˜O©]L¹Û$®Ã>„œW<7=¬C´l:7©Õê’¶*UzÔóÚ.§‡ªéáé܇Ðzvúª¤SNäò“†§ƒP)§ƒA-J F (4ÅbLÑšfhͰìÑL&ŠÇg¬ÊaѯdS†XŽ+Êñ^•âó·Ã7§Ùô1^b­ÅsÄõëî‰ÃSƒT!©wUœÖ'R+f« ‘M2Z-+TªÕYZ¤V¦CE•95~ÚÊI†UI¬øyƒ5Ûèâ/³.1CvBŒ9¥c˜¸¶xb«æº]xFŒf¹fni§r%Wb\Ñš‹u©“bBh¨·Q@ìuÞ1ð½ïNˆyÿ}k˸¯_×!kþ$RÎÐ>Ð:“ƒ^4ÅsÄõj­KA©êjºÔÊjÎv‰…H*%4ðiÉ©ª ii’Ëø9­KMR[q…jÅàÔɱ«u¨IpijUwU`ÔíÔb}Ôn¨7Qº˜X›uj)U ‚2 x~¥Úê×–é÷!ã@ÄW¸×“øûN’ÇÄMsäÞ èG÷€‡ò?`ZjèÅŒÔêjœmVÕ£–H²¦ž B¦¤¨Í¢PiÀÔ@Ó ›Í.i™£4Ä?u.ú4„Ð%ßFú‡4ÝÔ‰ËÑUËÑJãå=–±¼S£ÿnh²Ú© 2‘$$ô?Ä=³šÙ¢±=3ÀÓr;$ŠQÔᕆ#±aº¯ˆZÙÏý±mîhÂôrÏÇcŽ}ýs\trU¦sÎ%Õj”ª¯R«U´Xœ @œ™&ͨ·Rî V$Í!4ÍÔ…¨‡L&µ0µ!¤)4TlÔPUp¢Š+#¸†îÖ Ûi-®cYamdn„WŽø£@—úˆMÞe¤Ù09#$ dê29ïúŠh™+£1¦V¢Š£¢@ÔðÔQLwRd†êBÔQ@Æ–¦¢ŠCDlÔQE"ÿÙendstream endobj 192 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 716 >> stream xœí×ËNQ€ñ¼0h4qåÂWÆÇ0š´ÚéÓ´¦}·ö \/ ÓÃÜdíêŒß3žAœ_NþŒq’$‘‘ÅÓIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãÅ_oo³ÕÄ:û©Õ’ѨS¯·kµ¿ƒÁy³ÙÙÞoèÖë+ý¨µøêî._ǹ´ÎÙK//ÉxÅñy£ñ§ß¿hµ.ööVô™?Xñõý}”±†›8~=Ëi“Û ;ínSýd8lolh­ß/¾~|œü.'rºHŠÃ›]Ëãœû–×ñ8\Ãoon^ìî^îï¯dk^A\6…»ºXäÄé )'I¸þ8>w½fsÙ[Y×âoOOÙ*©äÙÑÍ)§¾³‡:@§Ö­­ŸÎÒ·³Ž½Go(¿žåò¶:”ËÛésíÝF£·³³ìm­Sÿ'Žær¶H‰+s£´ÎFG î÷Ãú¦×ûÌÊ‹EôÞDŽ ñâÊô(®ãÑhÂÃáÍÉÉ焞ûº‹á¨:(ŠÛ\y½˜Îá_˜iëñós·Ùü}v¶¬Ý­EUâ™AñöŽŠ¸üM‹t>1²»ò›0@¿NOOZ­¥mrµÅוfp£7†ÆÜ3\åÁ¹üSö$W>A—УÑåÁA˜_ŽŽ–µÓ•õ!•—Bendstream endobj 193 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 639 >> stream xœí×QJQ€á;IP7Òµt9ÝI)HwÒ6ºßÒø ø”@£¨¤çιIŒÑ¶ð?ùÿ :‰èÃÇñÌM³Z­’‘5ÓIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIüŸM>žÜÞæ›££ï‹E3¤¦IáÙä6¾&‰ÿµñÍÍôññ÷ÓÓôù9 ¶WÆZÐü½¼ì“øýbNO‹Óå2kŽF!Ø lJe`ë}ycý›íPK¼·ÉýýñlÖ ‡Óò/²ÑpØMn¡ ëøéöw7íÆHNñ«î—ËËÐÌWðõc[¡·F8íàn'ñº_óyP__7ýBè@Û!í”û݇Ûì(Kœ›,—á{zw×­Úº êðÖåP¸7}7Lw}“ÄÑç³³¼F£ÁÁAÕîöÂws ÿÅüvïXâŸWW1¼q°ívnݼýðn²¦"ø&qrŠ7ûvq1Ž íðÖͰ&~cr7Of{žr/ ?ñÙl<ŸÇg‡,[¹õ@VŸl)½Oœ¶q]_ÏÏ7³ÆUÖB9„Õ3Y™å×X‹k}Yþà^èþDœZÛ?ý}Ʀendstream endobj 194 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1138 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôI$òÛŸ»ßÚ¤9‘Tî 9¨,®Y.E¹GÉÐã4©EPEPEPEPEPEPEP ›­e^3'·¤0>„UÙd¬Û·Êé-çK˜hÎUÆ~žÕ-ax^ãÌ·¸€¶LO3Ðþ¸5»@Q@Q@Q@Q@Q@Q@Ô³VuÔß)¤–àzÖmÝÀ y  ÿɾ}@zyû5uUÉø [^Ü`âIØíý•u”QEQEQEQEQEQEåó\õ沯n‰B$žê+›‚3ÍjøO“S×Å܉›[/œ’OáQ÷³ÛÔP¡xwNm/Dµµƒ*®éûDä|g…iÑEQEQEQEQEQEQExÞ“áíOÄnžU™m­rýïÕ¿3ÔŠõ/N·Òtø¬­¬17’IÉ$ú’jkKX,­c¶µ‰b†1µQzSPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPÿÙendstream endobj 195 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1724 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ k0\g¿JV!T³$ö¬ä»óä-ÑGÝÔ¢:RÔ)(#š”hh¢Š(¢Š(¦±Åê(¢€ (¢€ (¢€2uëÏ&OÏ/^z(ÿñ¬ëiÀj¾½rdÕÝ0@‰B~3ŸÖª$¸ï@wÖ¬-Èõ®v;Ÿz·¹ï@k>z•dÏzÌŠLÕÕŽ@»±ÅZ(,*¨’”É@3QUZJ(BŠ( Š( Š( :Ôä)¬^yó›ùÔk.hñ@þ#¹P ‡Úã=òOçš«nù  (Ïz¹¤V|mVU¨ZÚà+‚z[¿mƒËݼ}+‘WÅJ³ã½kùüÐf¬Ñ8õ Î=hûOEf´ãÖŠì(¢Š(¢Š(¢Šâþ!X³Am¨F¹Ÿ.Sß9ð!\µ¬¹ê÷Vñ]ÛKo:ïŠU(ÃÔò}BÂ}S’ÊvÞ ˜Àu=ôúƒ@Q½YW¬˜f÷«i/½h£}TÒù´`ÉŽôÃ9]¥÷¨d—Þ€,µÏ½™$Üõ¢€=nŠ( Š( Š( °¼S rÅn#º€–‰Cžª}Ž>Õ»ExÍÌ7Z]ȶ¿… ›¶’G¨#ƒøTÑÜZíürb– y[s—ç¨ÀÇkÏdÓ®á¢ÄÉíÃ~T¤·ÖçZÃ7Mm•Z6ôaƒNû`õ  vœzÕyn­f=êâ«Úf‹«kl¿cµe„óçË”^ÿ†h¼·JZ+ºÒ~ØÃ6¬æöVèªÌŠŸLOãEv´QEQEQEQP^\-¥¤·÷cRqœdöpÞ%¹7:Ä«’V3°LuýsTÔ`T™&fbI'’{Ôç@®ö²áÔ0ò3PøcJ·Ô¼M R[G%¼JÒH¸À ãý¢(½“ ]/Ë6[kË÷^'qdŽËœãÛ'ô ¦×IÓ¬ß}­…¬ŒnŽSùWh¢€ (¢€ (¢€ (ª²ßÛÆH2naÙFi¤ÞÄÊq‚¼‹TV[ꤓåÅÇ«ˆê7ñ±~‚­R‘Ë,uÖæÍsþ/¹i‰ûÒ¿è?úø©¾ßr?Œø®kÄz‹ÝÝÅlûI…s‘Ç_ÿPüè•7v:XºueË™°/$‡„Í€k3¬ÊÕ$Û¯WЬ†¢YÚ„ØÑÄ7ö-ú“^q¢Y¦§âk;yW|*ZIl(ÈÏãø×«ÐEPEPUo¯VÎ5% ³œQETUÝŒ«IÆ›hÅšö{Ÿ¾ø_¢Š+­$¶>vs”äî8S¨¢™˜W¨ÎÒjÓʹS¼ôQEgSc³ñ6Z‚ô0Úêsê(¹l)¢Šæhöéɵ©kÁ7©o¨ÞÎaÞÊ«ìà€I'¿„~UéhÁÐ0è}h¢›Z")ͺ’O¥‡QE&áEPÿÙendstream endobj 196 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 389 >> stream xœíÒÁIEQg!ĵ Ù¹Q®ÒƒÄ6#ZŒ}XF¢]¤‡8ãXÄa`¸‡_Àãò‡iš." %ÖJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•˜+1Wb®Ä\‰¹sÃçéôrs³ôŒ5Çé÷÷õööe»]zÌ: ‡¯¯9ñ4Žw——ûýÒ{Vh8|_Œãx>OóãóõõÛn·ôªUž~~æ²ÿ7ÿò|çóýfsuõþð°ô¶•øSÆ„$endstream endobj 197 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1016 >> stream xœí×ÑJÛPÇñ“´µÖêÀ A¯­»õ%+{·ù(8_EÝ^Á'Pë…è•‚mA«6±Ýÿä4'ç$©”±kÇïK i'#ýðçŸ4ÇŠ! HŒŽÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðH ÄðþgâÎpxòøØZZÒçQÔªV>=©0üØhöûí••“Á@Žòg8Þ{÷n»Z½Œ¢‹——öêêN½þ·.cá‰EäÇý}†—qT*ò’oPê£dŽöD¾¯ýÄ|wG`¢1é“ä¥Oäí뫜´›ÍV­Öª×w–—g¿Â…$¾x~–©<ìvåâÃZMÈ„8;Š`ŠXMU 6'É×ÏÌÛÑhrnßÊ_¤GáÞ®T¾llÈ?Íb½HÄ"»s£GµZÕšfNS٠ו-žäòq•áN§Û›es’B¢H¦[VÊ×ÍÍ·/{aˆz=Y Ú×.”¸wЬ¥/ùÖŽõØ.‹kG;Ý!2Ëæ¨ç:ŽÛkk;Ƨõõâ•Ï;ñQ·{p{kÆ6”Wafõ[¥¼Íà+Óæ7m\dW¶T\së䨹å$íý­-YÖï›MûÿÏ)ñù`pñôtpw nrÓTrž ¯üA¶v•R)ëøªÜDYý·vMO¦Øì ç­L´9þÚÝ\ü îçNGnbÁ•m`Önz¢,eé Lì ²¿Ýû¡~%ÊçóEüýúú¸×“… ÇÖaì3Ë©¯r¬•ÕÌíâ7•óß½t«éÄʼó•åŸFᬎy!þvuuÜí\Ï×]¾î3YaK(wQ¨é¥ùƒœóUÓ3Ì Û§ºt5›½¬_Q$ǹ Ö¾ý¾^»öi¬øœk¦ØÝÊñÍm†¡§Lqª¦L´;ÈÎFv÷†žâ8Vó@üáôT6o¶ÜDzÜðÚ•ʈýcÉñ,¹¸î'î»%”rG8Gìmg¹õÉOÍH,·‚½³3³¹¿¹›×ò5çaº1TB™]wá'\ÉþÍ}âëÒ;žrq•¿1J•nƒæ1ã7ì§endstream endobj 198 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 286 >> stream xœíÐ À0 À°%ÿ¿\º+Ì`HϽ÷¡4×,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³8gqÎâœÅ9‹sç,ÎYœ³87çœÝý:ãÏ^ò6a$endstream endobj 199 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1045 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvw"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ºn­A%ÈÇZ¥$•RiÈï@çº<Ô¾µ¤€f+U29ÆFz(úäçð>•ÍÝ]§šôÿhÇGÑPN€^\~òcÜz.}‡oR}h ¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(È$ž³în°:ÓbW¥…´÷%~ð†2øúâºï x!¦+y®Ä@Z+mÝ{üãN3뚥á?¶²«©‡K#ƒjpÒàŽOû=Gb}»ú… À´QEQEQEQEQEQECmÅopƽ5 à*J( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ÿÙendstream endobj 200 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1727 >> stream xœíš±NT[†÷™E™Œ¡£ÑÂ*‰‘y;CAè‰5Ɔ‚ Â`(¦0±!&¾BC‰&Æw QáÜŸósVÖì}fî½Å*æÌúŠÉžÃ0#Ÿ?k¯½Yžça8ét:SSSÍfóÞ½{x:66†Åøøøýû÷±Æ¢Ñh4.ð‚¬€³¼!®óƒøT#ß" y=ÖP*o¯ ¯â—/_B1´ÂEz+à?­å¸ÚljézÅàÓ§OûûûSÓÓÓl0D±Nq´e‰èg~JZˆ%ª"4Nó^n-»b°¸¸øèÑ#Ô ”˜Eй¦)–ðr»,7-Q"Ó*JË|zSPÅ ˆðÌÌ ÷=¤˜M[´ã‰Vª×%B\‡ªB!™Mé+ w?*úíŽt»Ýv»* ?|øp¼D dÝÃEAѲðÑQýÖõI1øðá×/_Z­JІøM-ë§G»´h„kÚ*w9Q\“ƒ³³³µµ5” T Ä™çjeÑî ÊðÕ¬> /Length 784 >> stream xœíØßJA†ñýzPÒû7-‚'‚"bˆˆx/æŽsO¹E³Ùí·3»³›ŠU_ ôy1&i!?Çog´?ççeYfáVE}Ÿeíãå—Ê<¯Þïü¶XTÏ7ª—‹"Ï··å|>›ÍÆãqößg¿ÏÎ*»Žc )W‰#k‡ØY«W#ñ|¾¸¹™L&Óéô½?ÝZdÃÓÓš56¬K²Òÿ ¶O:qºz_¼þ†ëËK'~ï¶.ÙðääAÑ]×ɽY¹íNó!Þçyõˆ“„šì×ñq ê|Íã¾x³«™|ãpÄŽ[Üßý?õ)üÞŸk²ŸGGq‘fá×Çi8ÔšáàŽñ‡Q„Éë“!Îßñh„ìƒÙpÑï-ØþâM߯Q6Áו}ç€ïcÙ÷ð«Ý:v&o:]ÐzK˜ÍÃÓÙ·ƒƒ–2Íâ]›v¾a\wwõðõÉ;9.›ß§³¯ûûÕ×dºº~—ϾçW<ï3³½½êk—¸÷ ܧý™ŸÜüNnÏÏ6vwÓF¸Œ‡´Îþ¡»„ãž÷úêŠcÅ?e_vvÚ]Zçïí3a ÇÍ;³dŸ··W¯iõ hÇîëïaø¾,û´µ•™-…»Gä°KcÛûšl°¹™fqur‹Gd¿þ…S\½‡£Wd‡Ã4|µsðØó¾Uöa0HcarqÁ´}ó̱¯__­¬YQ¯càê2®fê –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –÷ݹQendstream endobj 202 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1494 >> stream xœí™ín9†Ï¤¥-üBâN¨!¸ÚîVH q3Mšw“Џèì±ÏØslO¢]­Þ6…÷Q4õ8%OŽ^›®ï{¹Yž<~õýûìÞ½nwW¯2›uúÚÙ ¯ÙLºNv ·"áªtÄ×ô <oÃÏtkä2Õm;é¤ñ(Ê †Ét ·Õ¸ï»›W¬ì?z4ÛÛ´îîšMѸ:ém2kê[¿öäý,]=êöîÒ¸–žþ†4öo„—¾'G•"ÅÌÔøvk!úúU-‡ZÖšBƒëT°f¿R<ˆgªŠ–²fËr.æÍW¯Ã½Õ—–[×ýõu[Âá7ÜŠbåäôôïƒâhy¨Y+çt2ÄJµÉ û>$—jU¶>4 }Ø>lSÂöØ´Š& ×Y´¢Š§ÊùÖ+‹åòôÍ55;8ÌÆB¶,1írcô›j9̸y)]KÊíd.ä<ð”ZŠd)Ìf¡Qq›È·©8³ûàZ¶¬£C.¤-}>šóz(2V´H-ºŠŽ4ï“·¢Öâ—µF®¸âmW¼­P¬ìR³œ»‹±K~­–%¯„e‡Âtò¶y“1ÙK ‡ÜQ¤PÞvÅ<}zùå‹E³)žXýü&»‰ ÃÊ\ÚµÔŠstŒL®oÒDDY¿En\_o¯be>Ÿk4w¹™3¹>:R×çM·n˗憭DŽåŒ_Çdâ\b(^7Þö*Οœœ¿{·sp`…<îúò&°lÝÚ´ÝqÊ_²¡^¼k{Ö;µ Ëî$¨ÿùs˜ŒŠsnÜÅÊjµÒ50ä†%†ÏÙ¶»:ÁXçZÖ6ÃcSê“ q§k’bWF­ã¤Ùƒ»¡ØPÑÚ;/ß¿v%ù4.5£k#5y2µë3Š=^#ºˆŽ´Ü *¥Œo6F°¤¸¸KŠ ýçË—zÕ½‰:-³wêJ;Ï ù;ˆTmFµ«žîØ|ñæUÎå¯/ä»§Øs|||ñù³¾rW¹‹ð¸_VÜ»#ÍfÑê×ÇB›Â©¢G¿–Â1šï@Gñ/ ²Xœ¿}ëÿßdL[ËíÉp›ûܶ“[·“ú,-\âBœz¿:ØÂ ôÿ!ˆžÏ5F†s}Eó:RŠÚ§v‘âÛ É=r߯«ƒ4z冗ÊUãq oý:Š3êZ,C®®ôóÛæER·[íb¹ËBûtxŸV•63îß, ,7¢ÜlVÑï[¶ê¤ êVך«ËKK†‰¢–r?’åJ:*‹°ªÙa¨BÓÕ´êoÔ«ÿ7üâŠ=êÚ‹å2ˆÓŒÖpˆ©¶×Ö è[f6ÖûõCÓs@Ÿ:ŒH¬YLò)žDãÛ®«‹ Õwøø±zÔñÑ‹V;úÀÙÙ™zÔé§¿»â€ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨Î?XÍP6endstream endobj 203 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1321 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvw"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?å7ÓKÕs%4ÉWs—”œÉQ´•KïV4ý/RÕßnŸg4ã%K„ à±àqêi\µ¼’]‡ü©kF‰[Ø1¼†tÏ;G=º]‡†< o¦?Úu3åÁQ¶2™H9Æ~÷nÜb»JW5Q±^ÆÊßO´ŽÖÒ%ŠÆTžjÅR((¢Š(¢Š(¢Š(¢Šð[M.K›Û{o<)šEŒ¹ÆH¾õèVŸ tèÜ5ÕåÕÆ1ò®\õ8ú\׆íÍLjì (|ýß›úW®ÓftÛjìŶð¦…kŸ/K¶lŒ~õ|Ïý 5¯ikH¨Š0ª£aO¢‘ QEQEQEQEQEQEæÞˆ7‰,À,Üqü&½&¼ÿÁщ> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€9xJ-q~Ók²A@Øádþ,Ðt?‡ÓËo-®´Û¦¶½à™yÚÝǨ=÷ïUSRÓlõ[So}MäÕO¨=AúS¹.)ž²Ô¢Jèuÿ_iîÓiï-xÂu•xç áÏ=+“fx¤)*4n§X`ƒô§s'èz]õLKNó=éÜŽRÞú*¯™ESßh¢Šƒ¨(¢Š(¢Š(¢Š(¢Š*­ÞŸezTÞYÛÜû¦X•ñôÈ«TPx³I²µñ¶ö‘"E_•¹ïŸZÇ:Q8+9Ýs]'Š•¥ñ-ä«ó.@8í…úVjô­Lä©)E™-¦Ê?å°ü¨­7ëEBU${EQYEPEPEPEPEPšêL_^½$“‰˜~G†Þ_š5Ϩâ¡ßæÞÏ'÷œž¹ïVÇÝ M'¹F[hTñüy¢¤œóEUØõ (¢…Q@Q@Q@Q@5ÎÔfÈɧU]IÌzeÛƒ‚°¹ãýÓ@ih9?Z¿ü5JÌqWOÝ  wš)'ûÔP©ÑEQEQEQEQIH¬§OZuPÖäX´[Öv ,¹>¤`~¦¯ÔW0%Í´°J2’)Szó;1òжßvµ›Â·Pò$ŽTt†?Óõªòèú‚Žm˜ý?Ê€0§?5²žÔ®[%#„doè2h òŠ( Š( Š( Š)®ë3±Â¨$Ÿj¯{8Eó¹ý=(‚@®yo^âá¥sËzJ¿ǽm‚ -f¥ÇjU¹÷  ´Ue”žõ*½IE7p¢€EPEPEPY~ ¸úTŸÞ”ˆÇ½@kR¹ÿ¶Ý2ÛÏú Prãe.±Þ²^*tmÔµÆê·µ‹‘W"—¥nAºOº3R–(pÝj=6â3 R@n¼Ò^̾h AÀç7›EQó}è  š(¢€ (¢€ (¢€ ç|löa’e<þ#Ί(ˆ†BÄV„GEi2±Q@$Ì;š˜LÞôQ@óQ@ÿÙendstream endobj 205 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1274 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?åõûAºÞÇò°ù%L˜ßŽÄÈôª‹%{ާ¦Úê¶Oi{™ àã$GBèkÌõßßéÛçÓ‰½¶„÷«ø½Û‘ùSLÎP9õ’ž¨ï(Å\e8 ŒjA%UÌœK›èßU„”¾e;“ÊXßH^«ù”†J.¤ÅéŒõ IQ<¼R¹J$Í%W’P*Ö›¦jÄâ+ i&9Á`0«õ=z—…ük¢ª\]lº¿ë¼Œ¬gýœÿ?åSsU™ð‡‚fºš;íf–˜%-Ü•vlŒ\}Þ½ÿ W§"ª"¢(UQ€ÀE#@¢Š(¢Š(6÷AÒoüÓu§[Hòýù<°ÿÀ‡?­rº§Ã{iY¤Ó/Û‚DR ëžÃ9Èw”P‘^x^·'ÈX.×v— SRβçðî»o3J»?õÍ úÿw>Ÿç5î4Qqr£ÂWDÖÝ‚&ÿ$Í»ÏÔU¸¼#â)˜Ód^z»ª×Ôû/Q^×E*<ºÇá¶¡+fþötÏH‘?€­uZot;íÚò@sºå·ûç…üÅtôPUˆ­íáµ…a¶†8b^‰…Qø –Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ÿÙendstream endobj 206 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 326 >> stream xœíÒÑ ÁQÕyH$&;¡b›2„û{o„Ë ëºnø«éxçyÇí~¿Ýí‰ §ËåõùŒ‡Ã0MWÎ×ëóývqëWù±,·n÷»Ä9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ¹/Mláendstream endobj 207 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1449 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ÛcQ5+TlÕÚ|ÊE›-Fkù~xT'ÃÒº->ú+ø7Çò²ðèO*ÃÞ¸ö4[^Íc8–3Ñ”ôaéYN ø|D ìö;º*½•Ü7Öë4 •<z©ô>õb¹ÏY4ÕÐQE (¢Š(¢Š(¢Š(¢Šæ5h–)^õ–MYººk†ËURk¬ùçfôÆ ’¦j‰è) a¨I¦Þ,è2:2úŠô0r2:W™H2+¨ð–ªfû:PKÂ¥‘ÉÎW=? þ_JÆk©èáj[ÝgMEVGpQEQEQEQEÁ“M&›šBk¬ùë5S‰¨ØÒ-"'¨­®šÆþ ¥Éòœ1à‘Ü~#5#š§7J–mgsÖUƒ(e ©t4µ…àë>ó˜Y£?ž‘»\ìõâî®QE (¢€ (¢€ (¢€<ïu!jfêijê<-Q³PZ£f¤RB;UIMLíU¤jLÖ(ë~»¨FXìSèNìÿ!ùWe\OÃÓ—Ô‡ýsÿÙ«¶¬%¹éÒøQEŠ( Š( Š( 1ÝM-Qo¤/]bBÕ50½FÏAI íU¥j{½T•ê[5Š;?‡$™µ"1·çŸ÷¿úõÝWðÐ’uCÛ÷CÿC®ò²{ôÕ¢‚Š(¤XQEQEQEä{é Ôé¥ëkžg)1zž¢/Q³Ñr”G»Õ9¤ã­9ä¨m “PÔ-ìá8yäXÁÆq“×è:Ô¶mž¥ðúÑí¼6²H72´ ƒŽÿÐsø×QQ[À–ÖÑAÄq E€ –³:–EP0¢Š(¢Š(¢Š(ÅKS R3TlÕ©Â3š…ä43T=I¢BI-zÃ]l/¬Ü§ï$Ê[‚>ê÷oǧà}k…Ò4»sRŽÊÐrÜ»ãˆ×»÷[x#¶·ŠWdQ D_ET¶oØ–Š(¤XQEQEQEQEálÕ5V‡" v¨£î®á¶Œ€óH±©n€“š(©fÑ=»Ãº ¯‡ôå¶·ùäne˜Œ4ëì=oÌj(©5 (¢€ (¢€ (¢€ (¢€ (¢€?ÿÙendstream endobj 208 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1664 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ Ⱦ֒1[+ã—Ï ­G®êb6‘eq‡?Ý·Ô×>œV°…õg'ãîÀ¸Ò<Ò$bÎÝI­ +9Že#b´a¿1&nöÐó"×5çª/ÜZÅ õɬÖaž)²Ý¼§“Qn¢7KR*8ÊWв&ÝFê‹uªŒìKºšZ£ÝJ2Ý(…-E5•‡Ph¤;mQ\GÓ…cøƒT6ÞTd‹‰ Aû£×ü+Y˜"–b¨É'°¯<Õ5?í;ö¸ R0¢ž¡G¯æMTUÙ…yòGMÄŒâ¬+U4j™^º!¢Òµ<5VNLÍ¢Èjv꬗};‹”±ºÕú7Ñqr“î­-,£JV6ê–Ú' ½¨eGF™×´°éEsãW“mýh¬¹%ÜîxŠOì5QX¡…âëÓi£´jFûƒåõä/Rqú~5ÂFة㠦Ÿ^xÿ†Tê2OëúV2šÖ:#Ï®ù¤\W©Uê’½J®ç3‰p=8=TNNär–ÃÒ†ªÁªE4Éhœx54ði’Ñ(4¹¨Á¥Í°üÑLÍŽþŠ*9˜,236Õ Inxã¯È} ä·—?j¿¸¸í,ŒãèOÀÕYŠ5lyÍjOºœ ÝJh&Å•|ÔªÕUN*Ujd4ZV©ª²µJÍQ›EëxfFjÔÖ¹`*Ðð茟›÷­»õ‹ìí£Š\Öv)Ræ‹•ö8“ÁŨ¹ LqÒ¢ÝTcb]ÔT[¨ ,zE2ev…Ö6ÚåHSè{Sè®SÞ<=Š”5Gw´¿¹¶'q†V8ÆpH¤VÍhq4XSš‘j52š£6J´áQƒO™ ”5H­PJ(%£NÒõíÜ8Å[¸Õ¥™v–â°ÃÓÃÓ%¢ËI¸æÕ\=.úb±>ê*ôP=RŠ(®cÙ<›ÇMcâ9¤ÃyW J¤Ž3ÜgëüÅaÆÕèß´öºÐã»C=£în¹ØÜ~;OÐWšDÜU&aR%Ô52šª†¦SVs´Xœ D¦ž 2$—54ìÓ&ÃóFi™£4‰7Q¾¢&šÄûèªû¨¢áÊ{QX¡ñ$ðI €2H¥A=kŵÍ*] V–ÎC¹>üMŸ¼„œÇ^0}Á¯m®7Çþ›S‚-BÅ<Ë›uÚñ€KH™ÏàçŽù>š&Jèó´zZ¨£v° ƒ‚j²¯VŽi"Òµ<5WV§†¦fÑ8jvjÔ»©“b\Ñšu¨‡“HM3u!jaKQQ–¢ì{eQY€QEæ¿4lÝ5kP‘¬Ï²hDZ ¾>æ¸Äz(ªFSDêÕ(j(ª0cƒSƒQE2EÍ¢Š!jij( cKQE†ÿÙendstream endobj 209 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1713 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvw"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?è·R¨÷Qœ×qòÖZ£cJÁ‡jˆµ"’õ£e­É ºÌˆHû¨ü¹¬Æj…Ï2IîtR©*nñgt޲ t`Êà ƒiÕÇé»XH"—æ¶cϪQþ׫PÊrÈ>µÍ(ÙžÕ*ª¤n…¢Š*MBŠ( Š( Š( 3}\ÓŠ´¸j覷†q‰bGã#‘ô5™.Š‹ÚÊTõ ÜÏÿ×] ¢{žDðSޱÔÐû¹À>™õ©lÞ1:Ïè°è:LvqÏ÷¥“ûîzŸ§aìjÑEI¨QEQEQEâ© QEjpŒ-Lf¢ŠE"j‚GâŠ*Y¬N«À^‡ZvÔoˆ{X$ذÿ}ÆÍÇÝÁéßùúÍT› ¢Š(¢Š(¢Š(¢Š(ÿÙendstream endobj 210 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1834 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¬ý[RM>Í3ýÅþ§ÚšW&RQWdš…üv1‚Fùî¦qŸzç®.æ»4ÍÓ¢Žªm+Ï3K+w9&¤S]‚GˆÄJ£·CJÎÍ®: ½5‚CKdÕ+[ÿ"0QIq|ó gНzþFIÒPwWÆ (ÝPî£uYÍbmÔT[¨ ,utQEpŸRQEQEAyr–v²\I÷cúúθ[‹§¼º’â@9ÎaÐÊ®xŸV77gÄ06ƒ÷›ÿ­È¬”n+h+jy¸ªœÏ•l‹ˆÕ(j¨¯R­N‹A©Á©ú}Œ÷ÍûµÛ<¹è?Æ·mtH!pò¹˜Ž€Œ/åRæ‘¥<4êj–†á˜úš™m.˜à[Ëø©Ôªª(TPª:0)Õ×ÈëYzë#“6÷#­¼¿÷Á¢ºÊ(ö¯°gÇù‚Š(¬OD(¢Š*–­{ýŸ¦Ou·qŒp=ÉÀýM]®gÇ>V— Ø3IÈõP3üöÓ[“7h¶qhÇ9=MXGªjjEjÜòÚ/+Õý2ѯ®Dc—aÚ² YV5êÇÚiá …8TÊV.ww±³m vöéC£RÕh¦©ƒƒXžšVÑ¢“#ÖŒÐÑEQEQEWã»Úµ¼Š,ðyÉ?ýaù×}^eã) ñ4à‚ªžãh?Öª;™VøL ÔàÕjvêÐⱫ¥n<ÎÉÒºX.1Šæ´Æ }Mi,¸ïYÉÝ´£ËtÝqVê¹øî=êä2ò9©56–rjt’²â“$ZK<úPÂJ*§™Ž3EhQEQEW–øÔ2x¢à±ÈeB¼çh‡ שW|G„ǪYÜs‰a)í•9ÿÙ…5¹ExœÀjzœÕelÔÈx­F+96 y$ÍbG)G±­(¥f÷;!ð£N#ÅZÈ5F&⬫R,ц}¬¥l®¨†ÇÏŠæCSÄÄP¹Ÿ'9¢²ÅÅÙÑEQEW)ñÐÍááp ³J®r9 ü¼~$œWWTµ‹Õ4«›'b¢dÀ`3ƒÔwä ÕÑâ‘¶jʤ¡âvŽUd‘ VV*GPG­Y¸­Ë$M!†þé«¶Ó5Hax5NÐI±Â}EL—SJ2û'GœjÊIïXðO•ÕÄ–¤ÜÑK¾© i|Ú²_ÞŠ¨e¢€=6Š( Š( Š( 6ø‡¡ k…Õ­c}“6.02¸Ã{g§×µÇÆüW¹ÝÚÁ{k-µÔk,2®×CÜžõâºÖ™6‰ªËg(mªs‘ïPAïè}óT™”ãÔDj{*È»[ÿÕUQêej£¬f·}­÷OÝ>µr+¼÷_!”ƒ‚QP5¹S˜_잟KchÕé#]n}éßh÷¬O2tûѱúsü©ßh“êäÿ¾MMy—s\ÜQXÍ<¿óÊOûäÑ@]ïEP0¢Š(¢Š(¬Ÿè6ºý‡‘p6J™0ÌZ6þ ÷þ¸ ¢€> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ *ž—§aÌjSvC)9ÚGQW(wWAEP0¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(‰ð]ð†úk'Î'Ðç€G_Ì*í«Ë4É ZÕ‹«”Äè Ž þÍzT·0ÃÊñ°QE&áEPEPEPEPEPEPJì‡r’yv5ë°MÄÍnŽE§È#"¼vvùMz¾†Iдây&Ú?ýUÌåÃõ/ÑEPQEQEQEQEQEQEâ“·ÊkÖôNÇ´}?Ýãä4Ò¤H 3°PrkÛbŒE F¸(Àqì:UHаú(¢¤Ü(¢Š(¢Š(¢Š(¢Š(¢Š(¢Šñ] ZãÄšlh»ÏÚˆëÀ9? 5íUç lK›½M€(ƒÈCþ×þ˜üëÑé²`¬‚Š(¤PQEQEQEQEQEQESKÓáÒôè,­ò¡] ž¤õ$û““øÕº( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ÿÙendstream endobj 212 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1579 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?è/5)¯Nßõqpçê{Ôp¡‘ÂŽõQ X†S+±$¶>v¤¥7y3~ÞÂ$ˆ3¶MS»1©ÂÕf¿‘—¨ …ŽIÍ$îØêN*1‰wRî¨wRî«9ìKºµEºÔÃËS SÖ'q ¨¤VO¼¤4†±¨·²8xÙ‘‡FS‚)KTLi ý/Yó¤K{œ# &~ñô>õ·^}'"ºêþn,îXo÷nOÞö>õ„ámQëa± û³: (¢²;Ž Z¤ UUéáë¬ùæ‹!©Áª°zvúw'”±ºõú7Ñpå'ßJ¯óU}Ô¹ V:­5£h¦qQêѧÄc5…äŒ)â=ô“.ÖéQËï\éöÉÓömóQµ<œÓ QŠ"z­%YjÅ&iµðö ·úr Ÿ:@NIãƒøÿÃ[ÞÝió4–“™†Öà¡¢±pÔô¡ˆ\ªãÃÓÃÕ0ôðõ­Ï=Ķœª†§©§rZ,§ƒPO‚Z&—54ìÓ‰3Fj<ÑšaÄÓI¤&šM°Œj§±¨˜Ò-äëE#žh©5Eq%H­U–¥SH¶‹JÕ"µVV©©™´ZNNjÛirÏqÐÖU³5së]æšñ4ÚW§­ Ù>yY»•Í«Û0ªÛ« ñ ųå#us[¹¦™œ£gb]Ôn¨·Qº™6$-M-L-M-@ì9š¡f¥f¨™©Çnh¨¹¢¤Ñ"Ošx4‹d€ÔŠÕ4¹¦M‹ ø5¡¥,HXâ²A§¦KF„×O1ù‰5ê®—}رº“uC¾ô‰KSKTeé¥è‡³TLÔÖz‰ž•ÊHGnh¨ù¢•ÍTG©§ƒP©© %šˆp4aù¥Í34f˜¬?u陦“@X›}êi¥¨¸Xœ½4½B^˜^•Æ¢LÏP»Ôlõ ÉJæŠ#žNhªrIÍ75Q4ª@ÕUZ¥ TfÑ`5(j„5852,Kº—5ê]Ô Ã÷RLÝHZØqjijijijCH TlÔ3TLÔ‹HÍW’CK#ÔdžUŠÞY\áQfcè¤Ù¬b^Ñ´[ï]Ɉ@cMìҨȞë~ÒcÑü?m’iK>ÿ½æ2Ó§áEAºG£ÔÊÔQVs2@ÔðÔQT@»©wQE‰ºµP1¥©…¨¢Ñ5BíEZWÀ¯NøyḬì£Ö'+-ÍÊf.?Õ)ÎqîxçðõÉEK7‰ÜQEŠ?ÿÙendstream endobj 213 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 2462 >> stream xœíkhTGÇçÞÍfã«Q« ”¶ÚBU*•ZS|!j¡Ø|©TëÑh4´6ÕVT|VQDZ|¤F‰b}‚/P¿ Š1o“ø ¢&‚¢ˆ~·3wî=sfæîîÝu÷ÛùÒ]õÓÓÿyÌÜs·oß2R>åâ|‹ç]„8ï"ÄùUÛ«W„8ÚÖÐp®«‹çKÛêêÎvvº……„8/ÚZ[+â· @üâœkÁ•+íoÞ8ñ¸‹¹„8ç*©©q ×ã+(».!α¾>qBø/çËã—óåquòîÝíMMÒ"Ä!έî<þó¥K±=4¾d¹Ò­­ݸã.\TÄS“|‡â\itU•Hqœ2‡Ë8]/„ qtçÙ³ŸÎ“|yüò\'°z?þBü.úbÏQ¢ñ‚מ‹Ï^3øMˆ³Ö‰¦¦M׮źuS%Gû.!˜¢8kµ<}ºñÚµöׯýË\ð¥(Î^sª«Û^¾ô-ËBBúØ1!ÎBÍ]]?òF¹°Pf9 +>x_%b΄8}¾}»Æ7 Ì‚vCm„8 ý°ë‹¢@ pniÄÁoBœ™š;;ç>ìÒ¼BØç ˆåWHwtv—‘šŸZ¢Ã½6 Šâ´*ݲ¥¥«KÙ‚ §;¨,6È(¢êãE‹d;§å7T6hëbJwQTºiSó“'æ RÆ&@ùç Ýùÿ† Æ„8…>Z¸PÖZ[üïÏÿÑ×i§Î4J«#W¯®>rDÜ;±û·±6´DéNYE ýqð`ÍõëêÐSÏi˜2óPª¿Â52¥»úpÁuAªÌ||ŒÙᬠU)ÔðàÁ÷ë׫£ è’er3ìX uÒäÅéÅøÏª*ÿ€!ó#È‚] î¾Q° ¨ /Õ´Õ«›?Æå„ŠPÆ´Ævá r#ƒ’ƒÛâˆUE ÝÔ¿ÌŠ_†(cÇ_ ±­æÎõË5ãĨ!Ķ)³ \£t®†û÷¿[·N]Dåš_™±€²TrÖT‡K ^³&$×a‡ÕÍÁ(à˜DJuq2 ž5 _6Û T1Ë´H„ØÔàÙ³!„Í(NÒtp†fÒC"Ħ͘w³¹Pfa…Dð_D\þ !Æj¸wïÛ•+ñ­a•ëÀ(XÊ¢™±LˆMñ(5 \QØ ¶æà»È{”î ‰(®¬ /'¬¥»lT÷.Gì•*4ccpÒa”hFüZ” ±¦ÏŸ_¹oŸÿaÄvº #+qcª„XGüûÞ½ö($Ý1fúr¨È‹ }S^ÞØÑ¡¥;lÄxF!eOÚŒÐ&Ʀ.YÒôðaÄtÇB¼à+z„kÅÎÕ—/kw/QßlÌ‹Y’yмØÔû“'kÊ|íÖζ+ä ±¦_w쨾xn`†WL·cfÎã q*U=ûÛ®]ø’•A9´.f8„éA„Ôªok›ZVO~…D1c² aIŽ”Ô6zî.Tu­­±¹ ˜Ñtà6\BkbM¿lÝzøüy­hKâÅLOz¶8öåŸbM‡Nâu[Ò(6JcÆ úF’$Ä!ª»sgÊÂ…fëœ=‡ÔmŒ™}6=fžV}ÇŒQ{×Âøšþàh9|טº»pMš?¿ñþ}íž òÍ‹­‡î̧—è¹»PMš7¯áÞ=ÕC|QkÓ8d)Ôz¤QÅÆUgθÖÈX«‘- @Ù\–@E›­Š ªNŸ6ºh:œ §i™ 2~À†*Фê3j”_· ÀåAëÑ0ÅÛ‹ôkBl«÷È‘ðP®¹KÉÑ–-…x1UQT<|¸@,—À ³À€Ø¦lL6(ŠCµ|íÚC'Oú#MÔ°…, 3ÒÁ¢8…ŠGŒ7GÈÍeÖ¾j £ªxØ0µf)ˆGÑõ¹Á26ce 2 ìÝŒù“iüôéõíí¸4v¼•â3ìyuÐî%Ã+(Ý¥U¯¡Cý툲¶˜—h8éÑH>¢n76ŽŸ9O5¹ŠßX¥k5ufëAE õ2vcJ¦j©½ ×Å4ÌŒ¨Ú††q¥¥>e´áJ5~a{®BºBœBc§M«ki«^½gÄÄû%‚ZBE·nfÑFˆSkie嚉X¼ÜGnL±'ÈA[4 qDu4H!†(Æ^¬×mzΉŒ"’º èxoNâ”±ŠbkX%£SHª­«ãŽ,(ÃZR{1îô¬û†„8½Šú÷wx‰ýÅ¡/š@v FAÝ]úçàÁòU«8_¹HÞAkM;Ö­™Ò]Tq¯(™2¥€#æ^ŒÞ5 d5¯°U q$•UT8~¼ GÿÁR»®@«É(¢jñ²e¼@.èÙS½€ØÈ{Úxu Eqt™8±±£. %Ë{ÐòQÑ–Š ð_¼cI‹eiÇzEAQœ™ýú‰ê8‘€…¨šyºÖ.Bœ‘ {÷vyuÌ{ýžTÏ{æÅY2ŠŒt«¶¶dòdîê}‚Ø.¤çÖäÅYêï–VVJÊ*ï¡ý æ&SBœ…âÅż ˆãqµÉú=´€¼8{qSŽymˆzý(°†öp³‚g¡ÅååbTÏË× BÞƒ‹xˆLˆ³S¼W/ÈÞL™É‹úÕBBœ¥nݾ=fÂÕRÃ{ÑëU(ݽ«/[¶¿ºšWÊ®,“½6$æRk÷¯ñ»è«qãêÛÚpu!¼:=ù›¿»D×—HÈWµA½¬kBœöé#«SjèGqN´¨¬Œ—q~,ÃûI¥Wâ\‰ûr]K‹|?©ö¢hBœC}YRÒÔÑ!R!Ο}ûâf„ç^£ÇŽ­om…;Zôÿï/Âendstream endobj 214 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 499 >> stream xœíÖAjÂ@@a#("*¸Á…Úæî<ö.méEºémJ"¢Þ˜tÌØÖB7]~†$EQ4Œ,‘˜Nb<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$ÆK^‡Çñ¸ê1n¹dµÙy~~²lÖl¾¥iÕ#ÝZÉj»mßÐéT᜵ZO“É}·[õl7R²ÞíÑ7ˆ¿6z¡{½ª'¬}Éz¿[|>t$/ñɲ÷Å¢ê!ë]I€óü²Ë×/yž—WǼÝ~žNÓ~¿êikÙ…øÌZÊ6Ê-Žè?ëœewN€~ÒÁ ê™kÖ_ÄñÒˆŸÑ:Ë"t8?–˪g®YWÄWûûëü¾£Ë^ ‡/þØý§O¢ 43endstream endobj 215 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 888 >> stream xœí×ÛJQ†á5“‰(Šé¡GU/¥ Ð)ÝÜJ[Á;)¨7á™'Ö‚H=Óã.&ý'+™¬Ù¥ð±ï‹Žk7äaùÏ$ê÷ûŽ”E«ƒXÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by˃XÄò –±<ˆåA,by»v{«ÕúÜhØÑN¿¿{·Ûéìt:¶^™q½žýy|\©ÕV“äËÒ’}ÿúÂÂËÿDl4ÛWW‹‹[vÕj.Šì#Šãñ7Ù•,/cWü¢ŸfâéÒÜm±>?oôÆöå¥+ÿîÛ'þx|ìâØ@SÊ`4M¿ø…/Ä-dDÞ·pjŸ&î½Þû8Þ\^þ}{»6;þôÛ$ÞnµLpçú:¶v{Þ7d™æ  8Þ4»8&ö'~_Û¢Û]©×m¬Öëf½67÷Öˆ¿5›67Ó=kj¶yû·,啟ÙÂÁ"„îg⃵'rÛG·ëw÷t=::¼¿’$N’áT5S›M?j½²«`&øzÓÑj|)ØÎ¹¡a n¡õožíÞÜ ·j6‹â´Í|«˜Ï•uÁvvù1â“zúˆ:ÍÓÓt$I:ü°ãhàY»øß¶°{b»<ñðÔ?l””§‰Øã¦÷1ÿ„à‰Ëû×¹Âv‡ïåNá^çJ£# SCüaoÏž RÖì Ì/ “·Ìîb÷²[\¡ÒF®˜ÅÎM+ñA»ý£Ù<¼» ·mv[¿}˜@\8uyÜÉÐå]\ò_©¯ø×ùùÏ““læŽqG3¡@<ö†¨.,΄—lä‚lx±ò¾—ÌxÕÄŸö÷Ó2? ¼¯¿³yßìè·óˆØ?¢¥/iâdxrþfo—ƒ*îxî _WaýË Eãendstream endobj 216 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1409 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvw"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôšJfñHÏ@ ”ñYw èÛãb¬½­ ³î ЕȺ¶Y8 Ñ€ìjÍah’¢]Ï`@ ƒßÏó­Ú(¢Š(¢Š(¢Š(¢Š(¢Š¡æR*ïHg÷  O%QžN #ÍïT§ŸƒÍ·fÐâ}‡^+±¯=ŠVmbÁW$ý¡:zn¯B Š( Š( Š( Š( Š( 8\ZCp=k9¤Çz‰ç"€4^àzÕîF5RKŸzϹ»hkÃÊo> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ ˼¼ÝraFïc¹ô«··ÖÒYÏ;Ôöýk•†s’Xä“’}h¤‚l(欬€ÖW#š²—#Ö€5ò=hȬå¸ÏCS¤™ï@¨¨ƒÑ@QEQEQEQE•â9V="@O.Ê£ëœÿJåN+¡ñ#IŒŽ‚eÏäkI½èU'Çzµ Ù#šÉ‰³Ö­FÄ(j)+FÚ&•7g¹øæ>µ±c¨¤pìtèE[Î NâôJÙÒŠÙ¢Š(¢Š(¢Š(¢Š(ƹsü%ÿ¾ÀþµçðK»œ×©ê‰aqi!ÂÌ…3ŒíÈëøu¯#T–ÒæKk…Ù4LQǸ  ¸[V‘«2 8n7  ÁªEЍ¾€. ýèªEè @¢Š(¢Š(¢Š(¢Š(®'Ç:Qµ‹Dc*sp;”7~sŽßJí¨ ¶¸ÊŽjüs{ÕÿxJòÚú[­*-£åÌ1ðÑà/qèÓsÍÃv§Œó@«/½?Í÷ª6GíS¬a±ÜŸA^£iÖÛ FcÉgq†_z+ÑÌ1±¡éÕGn”P”QEQEQEQEQE®øVÃYß.ß³Þ:ÿíâþu¿Ey´>Ô4;Ñ-ÌËnÄ¢> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ *¬·öÑ3+I–^ª£?‡¥T—Uc‘ xôf?Ò­BLÂxšPÝš´V ¼¹aƒ)ü3°ù›êsV¨¾§$³-“:*+›ät$~4ÿ>pr&“þú4ý‹î%™G¬N†ŠÃMJå>ñWíð«qjбĪÑûõœ‘Ñ e)õ·©£EE ñN3ŠÿCÒ¥¬Î¤ÓWAEP0¢Š(+‰–Þ•*£$ À¸Ôg¹$òãÏÝ_êh¢¶¤“ÔóqÕ%E2&1EÐy \ÒæŠ($3HMP 1¨¢‚‘f·FÌŒ;©Á­Í+R7DÃ*Ÿ5WqnÄgÿ¯E•D­s¿9*‰'¡§EW1íQ@ÿÙendstream endobj 219 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 470 >> stream xœíÖAÊ‚P@á?#h(جI“¶àþ7T˜¦fþ—ÜA¾ô8g N\>.ú6ó<ÿÙ—Û¨ ¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊD*©L¤2‘ÊDŸ+ÇÁiš¶ÛmÚ²lí.7Ms8RM“kk•Çq|<»Ý®(ŠT3å×Zå8Ê÷û½,ËT3åW‚¿ß0 mÛî÷ûØè$3å×Zå×ë5¾»^¯]×ÏçT“åTåçóy»Ýb£ãÊq:R —M«”ãløÆ}.>qÙˆg¬óårI8_­RžÞ-»‹Ü÷ý}<«ªJ8å¯÷¹òB¾ËG#n¡/¡{]×uÚAº=­è$endstream endobj 220 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 372 >> stream xœíÖ1ŠÂEÑQ¢ˆŠˆûß›…uÀJ‹€\Ûܻ§øüÕûýþ+Ù*b]ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó"æEÌ‹˜1/b^ļˆyó–Nüz½Öë5X:ñZ4ñ4M›ÍF¯,”xú¶ßï°µPâûý~<‡aøÁÖB‰Çv»˜ô|>Çq¼\.“fßÛív>Ÿç+ñÿ7‡ëõz:v»Ýáp¾é§xî;O…$endstream endobj 221 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 13 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 52 >> stream xœíÐ10¡¾Ñ© ¶C·íEºŠµŠ¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹q &çendstream endobj 222 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 13 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 53 >> stream xœíÐA0¡Ù?´¦Ø½ ³»ÏÆrÀrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrá¢<&çendstream endobj 223 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1132 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?»æÞ´Þ«DÒZ¶×>õ—<jœ’ã½Ršãó@.nð5ÔxÐý–çPs;ì#øW©Ü’?à5çÄÜ_]GkiMq+mD^¤ÿAïÚ½{ÃÚsi:¥“¶ù#L¹ÎFâK6=²N=¨JŠ( Š( Š( Š( Š( ,3{ÔO5f›¾:Ô^`u  óOïYÓÎXí@Y›€ d“V´Í/T×dÛa 1Žgùc^ýyè9¯AÐü§i ÅÆë»ØÈq#œ*0þêëž™â€#ð_…Ž^_ªB^ úê{Ÿ¦=úÊ( Š( Š( Š( Š( Š( %~Xy€µýã'9_”ÈÇ8ôÍjZx+BµpÿcóØcý{‘ãô®ŠŠdq¤Q¬q"¢(ªŒ=…>Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ÿÙendstream endobj 224 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1097 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ æ¼y¿‡¼ÄÎ ™]±éÊÿìºZŽâ¹·– c• 0õ`Ð’ZË9­8ŸYW¶S躋Y]}áó#޹ 7éVa˜`s@Èõ(z¡£Ö¦Zµ¾Š¯æZ(Ñ(¢Š(¢Š(¢Š(¢Š(¢ŠÇñ…¹b#'eÄYhdô$t>ÇŒý+˃½¼ò[Ëı9G„öšÅÖ|3§k¤š3ÉÄp߈è@{ùïS¬Þõ³ jzi%{@p'ñê½GéïY‘Þçø¨s΢²ß½í4QEQEQEQEQEQEá}PróØF$'%ãÌdŸS·ükfŠâæøu§6<›ÛØÿÞ*Ãù +´¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€?ÿÙendstream endobj 225 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1229 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ãÕê@ôš¦›}£\˜/­Þ3’ñò?º·CÔ};Õe˜UÜæp.§oª‚Zw™Näò–wÒoªþe!’‹‡)9zaz„ÉQ´¢•Æ¢LÏP¼”Àí#ªF¬îÇjªŒ’O@uoÃýbô«Ý˜¬b݆w>=@~dR¹¢ÏiÚ}æ±z¶¶1$=OdÆIì+×|7áK ÛËIï‡-rËóÈùs÷F8ëÞ¯hz%ž…eö[%m¤îws–sêMiTš¥`¢Š(QEż7P˜®aŽh›ªH¡”þ¹-_áî›{!–ÆG°sÕTn¯]§§àqÇJ쨠!»ð¿j‘-î¸$ˆdäß@~ž•‡>—ªZ£=Æw"îfhX¤ãŠ÷ª)ÜžT|ö|Ð2cpû'×ÏŠ|p]M(Ši䕳„HÉ'xô \9Qâ6ž×ï˜ôéQ[ø¥!?Ÿ5Ñi¿ '•MNøBsóC î8ÿxðàkÓ(¤;#FðΕ¢övÃÎÆÓ4‡sž½ÏN½±šØ¢ŠQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEÿÙendstream endobj 226 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 536 >> stream xœí×=nÂ@av±1W‰H™ãÄ”ŠÓ„Ÿ&ENƒ”‘¸ yf Eª(0ÝŒ\¬,ª§Ýu:Nû[íb±ÿøÈuê:ŸŸ4Æ3È9Å‹”ÒyݽI©/ñ?ª§ÓaÓäÑ(UU<¹ªzÍ‚{YÄ/»ÿ@ât8–ëõ×ñXˆË,ÇØÆú× K|SÍl–›¦÷ а.²gn‰ïÐp<®&“@ì6å2¿±¾ òuƒ–ø¦ÚÕj÷þûr¿]œ¹?÷ÊhK|{ÏmÛ]3F£\öåB|9ôº7ß^œ~OOý5îzú•–ø^…òËëëç÷ww‡«ë˜âr“Ëß·v¹Üì÷q öãÄqw–ø¾Å8‡rœ×@‰‘æóØ4âÖ,1ØÛv»Ùíº/@‰é$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ$Æ“Ob<‰ñ~ô„(endstream endobj 227 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1857 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôškªº2:†V Œ‚)ÔPŸx¿Áo#‹Ý…{XÔ(ïóqéÅp ! U²{WÐå10jšäòF”ÄjêÝŽ2}yï銤eQ¥¹Î,žôðõÙ\ĹÚ$ìÔ"l‚:ƒLÎÉì]K¾©‰…;Í¢âå-o¤/U¼ÑM2Š.¥‚õ=@Ó šÊÊûS”Çci5à gbä œ žƒñô¥rÔÞN:Óì,ouk±maÍ!ëÂR{ ëôŸ‡’\Fú´ñGmÍ,L„ÿtœ`}A?Ôz›¦YéV¢ÚƆ!É Õ©=IúÒ¹¢ŒÂv•§¤w6Ö×wDfYž=Ù9<ÙÀ1œfŠèè¤XQE›¯ßgè÷Û!×qãçøW•Ž^»ŸÉæË³°&î:‚Iÿ ãžÖHy*JÿxUÄæ®žägT/7åÐ;÷«Žp*˜‚[ëØlíñæÎâ5Îp =N;¦©˜ÓWfç…|·¥Ïys4Ðb–þY§RsÔg·­h?üìÖLðÛ$®îk¾³µ†ÆÎÙ*G°þµ=dwXóAðÊç':¬@qÜŸ^{úsú{Õ‹o†1†SuªÈëüKAOàI>ý«Ðè ,r¶~Ðmˆ2C5Ó3J’àƺ[{xm`Xm¡ŽW;R5 £'<ïRÑ@Š( Š( ™#¬Q´Žp¨ ì)õâK¯#OòÕˆiN?×úP-p×·òLÃŽqè;Ê›°‚21Ȩâ$ÔŽp¦€3.íàÁ!vý høHóµyu7Så[Dž®G?’œÀ½«#P›jkÐ|nÖþ²·tªe%OPİüpE;’¢–©tQE"‚Š( Š( Š( Š( ¸]rìÝê09Pv/ÐW]ªN-ôÙä$ƒ°¨Áç'\üïš™¡¸|)©‰À¬ûé¶ÆÇÚ€+é¶ßÚž"²³e“|€Œ‚«ÉëŒ~5ëuÈøO1iÒê}û¶ÂŒrI©Ïé]uQEQEQEQEQEsž,¸ÄPÛŒrKž?ýk‰p+¸Õ4øõ Sæ.LmÓü=k’¹²¸³8š"£³uñ  s6cÝ+ÝO¬ED³¸7 ±ÀÏâkBîLNð“^ëÆñÔ˜lÆáÇ ç€?,ŸÀP£ZÛÇik ´ ˆáE98¦¦£«¨e9ê(¢Š(¢Š(¢Š(¢Š(¢Š)®‹"u §‚È4Õzvá@÷:›rs-¤}1òå–)ÐÚ[ØÁäÚBÇ× :ûŸZ¸ÍUån Rmi.â7F~ðþ¢¶ƒ(e ‚2ïX7\©«Ú$ìó˜Ø©ÏçýhFŠ( Š( Š( Š( Š(  D²7¾eCyuçê¿@J‚I85OPÉ7Û‡àÒx~b5[ˆ³ò¼{¿GøÕ9æàÔ:Áÿ„’Ƭ§é·?Ò€;z(¢€ (¢€ (¢€ (¢€ (¢€9”ÓüÓEÖ”Ô2Lph¢€(\Lpjǃϙâ‰?vÿ¡-PuEPEPEPEPEPÿÙendstream endobj 228 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1623 >> stream xœíš=K3[…g2ñ31F´±ÁÊJð‡‚Í ‚ÿ@°´¶SãO!…"v–Z‰X‰ˆ‚XÄF-Ä4*êÝÎv–;gÞîGö½àÙ«&“É$yfe½ÏIøññ˜4bmbububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububWÕjµµµµ4Äßz{{{yy!¾a6ð²†ø[¯¯¯7›Í6ö²†ø[dáL&ÓØËâO=??ßßßwtt455bU*â›Ïç››› qãu||\(("1¹8Š¢Æ^ßwÄûûûD¶½½½¥¥…¶4ÖE±ø^#¾¸¸¸ºº¢ˆ ¾äß¶¶6Ú2åÖmþ"~xx888(‹@Lp 1Å1í4*”=E|xxxww׋˜6Ç"ÐQ"¦Œ2ùߘÚGÄ777{{{Ád[†K4ÉÅ¿E GÿcSûˆxccƒøÂÂD6‹Yƒ/¶¸yû·ÞÎ;ħ§§GGGm±8‚y|ã `·Â¶ð2oY\o„BõßÑ;Ä›››Õj•7%bÄÄš»;‡/;—-Œh\>N;D’vx‹s>ú†¸\.“[s¹ørJMv1²‚ ¸°0v@Ѹô|ÿÂü~ãÿVkkkOOOÜhp2€o6°"A™®€bÐé!3䘗Ïù|¡?ˆ©ËX__'ÿ¢È ±‹9  1YND Ž8íó…þ .•Jä_ª"n“3•øÂ§2”ƒ®dM™€¸ñâ—‹—––È¿<¦qD0b&ÈÜ iN9!íÔ_éå5–÷ñåååêê*WiÜhÈŽÅ­Ü'è¸Xî \˜Qãâ¹¹9Ž` ¼,¦#p4úŽ ö²L ¤³¬%d«Âiçççá\§T`_£(vz Ùt8¸e·-Kiçà br1—îXCd¸ÌZ&ƒ42²XzÖé±#oŒ/ˆggg™ ¾¿´$bÇÈ™¤¯#Vp:¶21¡aÓ#Äççç+++Ng‘.D†¦o¶ÎTQ:($t²˜///;ˆÓUAúÈ pª WššËg½@¼»»»µµ‰ NÕ@³<« ƒ5Hª`æÅ¯å‚ZÞäò¸J=ÎׯÁÄSSSÝÝÝò.C6¨-oCÑÚñɲ|v\‰V¶å²#–/.^\\¼½½„”äù|„G69O$; ÞÞÞB¡@eø×Õ|@L.æúÈ –.R«s.Š ‰™ƒ$É$x±XÄ¥|AœËåäÒrFÌæ‰mƒxZ2;tÛ Î…3ÄIèdÞÁÁAºx÷Ÿøììlaa!ŸÏ׌ò¢œ¥[Ì?ÈRAf÷/2¤‹é) â¡¡¡ŒXßûùˆ···ËårWW(¢œu[ fƒ7òá™îåðð°ü?q¥R™™™éììL÷Am-ÀuN«ÓzÈm”Ì. ôõõáü|Ĥ‰‰ â9R%/¸8ˆ}ÍË”…å0"‚kdá3{zz¨F¤A¯ìâññqr± M9‡Ä|1ØÉ¨•t”´$i#ãÆäbQ Ã+^ þõëþØš.ÚøVûÓA!_"kjÙ¹äõìÏ÷ñØØªÎPÊ(eçf8ÕˆÓ”ÓºŸÃ#¤ˆGGGég‹Õ '[eAV1‚Âé ed‡Éì3îJäÉÅäääõõ5º)^쀋l­aíÌF &ìeˆ{¸T*íìì°I3b… ææÿQüYK/ÿ–2¿—¼C¹øäädzzÀßëLiK'Öw±ƒ8LÖLkI###rYþað¯Ešuʆ¦í¡WDÐendstream endobj 229 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1071 >> stream xœí™ÍNÛ@…çVUiÕµü”²`Á‚bA !„‚¯AÞ‰w‚ç!@âôÎÜñÌØŽ€¶œ¦JÎ'Ëf‘›3wŒ¬_]9eìq† Ây\ÇU'íI;tBçë™8.Î6È3UU==ù™ÑÈ…yøc8¬ôxxÐqooïööÖÍòóòÒ%•FÒ—\›D³\kçÚr5XJW‰i0©M¸ Ø¤WƒA¯×›1¹†¬]\D§"YœSi'_Îå*NŠÕ”=ÌæŠ.ê7Þ¡:ã-ë¡3æ÷ñ±}}ss3=@díü¼µëä±¥ßeñj‘–Ò›ŠS8èy4è*·ßïOKùqv毭dpε¢ –Ÿ©+·ñ£­âµð xÅ!y](^™m¿Š¬žžúë¤%.ß–AÑ¬ÜÆÊfÅkNK×Á¯i…5ÍËÕÛñXÃW#x:ý_!«''í h–s+pÛ)áY˶mK^­ßzqÓß›¿Š¬7´º\Ñeç,.nËN#v`E–gÔ©%Ãp8º¿ƒ¹A–Ž\!wBJ8{× åT¿fVKµuñú§ÃBç#bžü*²tx语,îÞ–…ܹ-§•-o1R#1ÎI8”ÈÒÁA·x]iÖD[Cæš¡QöÖŠ¥|Ðd‰•ºà9YܺÈ÷ýý†b×.Þ8®1WöÈÍM‡mÛr ‡[ÛkÌÞ¶øõÈ·Ý݉½škm”[e›&SÏ[´ ÖùÚ¼nÛ´rg»ó}YÜÙy®nufi)s.såšÙ 3¿¡x=òu{;~ýË­å7,e>[»m¯­rö~'d¼5 /"_¶¶&„o·E«{^®Bæ.¸Î‡ù\Í^D>on¦qNaýî—«œsÖ{•õ‹7Ôµ¥-“a"òicÃ_Ë·"1:Ò ³ò%z±[Óg4s{i~ˆÿù¸¾®ÖÄr¶Ø;Û'×é%zxL vV_ï¾9òae¥ñ¶Á^[P„4ð«\H[ímM+kö·÷‹‹¸ZÈþëH}˜ŽÕ¬:eÍþ1òna!ÿC(Ä‚­]z¾»»ã ö÷ˆÙ4Ô)CàÍîÐP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8T ‡ŠáP1*†CÅp¨áb8¿Dçoendstream endobj 230 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 1168 >> stream xœí™KNë@EËNÂOLØ I °@ð†¬&ä!ëIb‹!yÕ]v»ýKx“+%Ü#˲;&‡Ò­j“,—KÙ†£Ñû×W÷ð0étâC’$IS=ÄŸÝám]ÐíVÏŠ>àoÅßf‹ùmÊZÊŸTcIþX…U‘l–ecçèH%¦;;i¯§¾Òn×ýöªÛäzƒÙ…©7A±èòŠ˜Ö`6¶„Ffë–ía“.ìÙPËãÉäÏÃCÒíꡢ݅¢¡œSï=fgUêZ¤´.ÒP×F¼­´Róéþ›hY™N§£«+U¬í,«Y–<.œeâ \âB¥í¥7ç†U}‰uq!åB– ­ec:›^\¸ÜPѪ[µšßyŒT 9׌—*:¾VäÇ¡lÄ¡±Á–ÅWôãÓÓß××tw×E‡ù­•v)V´ÄÆ¢®$F%:VØ‹>ÚlËÆðìlþñÑÙÛsfó©#õ×™eÍ·¾ZEKůiýY-o›eåöînòòâÒ#—ÛÙÝ-f Ëßú¹qäYQÑ­‰Q«ëíIŒ ýý0ái†˜Í4 e¿ÅŠHEw¥ÀíË›C£‘Hérs'¹LçóÓËK5Ø98HB3 =Л_¶…åZ4¯é„Ê­…IÝç–Õràäüüíó³Hg6jѬŸºÐu‹ ¯)LÓöUÙ­DÑÑÍÅ~$¶º­–m†nðð;—b¶‹Û`¼3ŒÆ)gÅ·!¯«>·21bnïï'ÏÏÙþÐÏv’ïSJÓ´Hc3tÔn¥i{ÝÈÖv¿6''zÖiOKÛmalÂ3Ý•¤Yœ…{8DD›åöÁy;»ß t 3²÷^±o<ÂT'­³G1ÏÅ~CdWfŒ_RË´´gó¹›öt#ãß+UçúK%£üZcmt„Nø-ƒáÐeˆ"7ô:”¶HØ ;SåÙ£mŸòëºßZ4CtÓ8{Ï^}ØgM2ßš[-‡Oâ©Ãò!®h“‡†M‡¿Ùràææföö6ÍÜ@âßíI¼sÉ`¥¸°YÛÈ£¹ô^Ÿ–cT·î5µÕTš¿{²™¯:i„!ÄWzé[“¾õ -·1ÅÿSf¦®®{½PÎY€D{Å¢ËÕ+‹-¯A³»ßïk«ÐÇÉ$ “¼7f]1Ìpßßá°\,ìZþ?TºžÕ»^ ƒëëk[´õ¬.ö@0pçãcZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–Ð2ZF@Ëh-# e´Œ€–ü?“’×endstream endobj 231 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 119 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 265 >> stream xœíÐA0¡Ù?´¦Ø½ ³»ÏÆrÀrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrá<[d"endstream endobj 232 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1720 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?é¬ísè*ü¶i }³Tmõ%@ úÒ\_¼þÕ×ï_Èùôé*nêòä8¦æ¢ßF곚ÄÛ©3Qo£}bBi„Ò[¥#+/QHvBôæjš‚Ò/iº©³aÙh ëÔ¯ÿZºhÝdEt`Êà Žõ¹«^¨ú|à1-nÇç_OqïüëÂú£ÑÃb\}Ùlv”SQÖDWF ¬2<N¬P(¢ŠâCSƒUPôàõÙsç9K;©wU}ôo¢âå,n£uWßFêƶžßšÙ–Ò6‹§jå"•£`Aæ´TqÓÖ¦I½éNMI\­{“)¥S&¦žc+j¹¦d1A!â§j…úR-¾Õ¾Ïp,çsäÈq'î·§Ðÿ:ìkË¥\Šîü5wö½ÎH³ûc§éŠÆk©êaª]r³ZŠ(¬Î³ÎƒÒ‡ª¡éá³]W<.RÈzPÕ5 4Ñ04¹¨§LV$ͦfŒÐ+&šM&i¤ÐFôæ5E¢ +K—Æ×XòŸ*ämÇ£Aþcñ¬Ç5RGhäYáІSŒàЉ+£¢”¹d™ëtT6w ug‚TWŒFh¬Xój•Zª«TªÕÐxíA«ÆÒ(ÍSVæº=(ä|¶3NärÝØ ö²"ä©à×m{Fœt®*ë +ëBwJnÌMÔn¨·Qº™‰3HM3u4µaÄÔlh-Q3R-!®j¤Ç­NíUfnµ,Ö(ô\¼>ˆAÌ24y=ùÝÿ³cð¢¨|=™[O¼„¹&O±P?öSEb÷=8|(äE=Z¢á[k'V«ö7Íl੬ iá©’ÑÑÜërMÜÖKÈY²j jpj h±ºÕê7S‰·R¨·SKP;¨Ù©…ª6jW)!]ª¤ÍÖ¤wª“?Z–ÍbŽóáÒ·Ø/_)˜(>áú⊵ðú†Ä„ä\Lò`0¿û-“=«$pÀÓ¨Á§ZžpüÒæ™š\ÓíԻ除Íb]ôo¨3FêÄÛé Ô%é¥è¸r’—¨Ùê6z‰ž•ËQòU+‰qš|’Uÿ ÙKÄö‘óåÂÞsŸ@¼ÌàT¶mêzÆ‹eý£ÚZ¥¢Œ*0 u'óÍzŠÌë<`p5jpjØó¬Mš3Qî£u±&hÍGºÔ‡M&šZšZØRj2Ô¨™©¬õ ÉCµW‘ø574Q,µê_ ôå¶ð÷Ûuã–'!AÚèOü ¸/ øvOê“Ê´ƒ <ƒ¹è zœz }ö¨ãH¢HãPˆ€*¨: –tEX}QH£ÃƒSÃQEhq1Á©wQE2Cu&ê( –¦–¢ŠˆÙª&j(¤ZD=6Ú /ï ³„¨–y5,p'ûQEK6Š=ÏEÒ­ô]6++UPe›27v>æ¯ÑEI¨QEÿÙendstream endobj 233 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1750 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ (¢€ (¢€ (¢€ ÃÔµs¹à¶ãV“ü*S\,d·´àƒ.zúãük!mug‰Äý˜,IbI=I¢šŠ+sËggEWô¡EPEPEPEPXž%¿6Ö‹O¶Yºú…ïþk\ÜGko$ó6Øã&¼ÞK™.®y›t’“Wvsb*rÆËvYCS«U5j™Z·<–‹A¨¨QL‹EW!ôAEPEPEPEP#ã]D/OŒŽq$˜<ûëùW/TºÜÏ6¹zÒ‘3 ú)ÀýTVÅmæÕ|ÒeÕz•^©+Ôêîs¸—ÑUƒÑEÉå;ŸíY8ùSõ£ûVNëëX^UçüûËÿ|š<«Ïù÷—þù4ùcØ^Ö¿ó¿ÚÏýÔýhþÕ“û±þµƒåÞϼ¿÷É¥òï?ç„¿÷É£–=ƒÛWþcwûVOî§ëGö¬ŸÝOÖ°|»ÌãÈ—þù4ywŸóÂ_ûäÑËÁí«ÿ1½ýªùû©úÒÿj¿÷õ¬ —óÂ_ûäѲóþxKÿ|š9cØ=µæ7¿µ_Ÿ•=ºÐuY;*~µƒ²óþxKÿ|š6]“ ºhå`öÕÿ˜ä|Æ‘‹»v9$õ&ž WV=úÓÃVg[DÁ©áê Ô Ó&Å•|ÑQ+QA6-j\ç>|™õÜhþÕºïq/ýöj!áoçþAÇþÿÇÿÅSßÂ~!VY+È™8öäÔó›ý]:­Ù97çýóGö­×üüIÿ}„x[ÄdÿÈ8>?þ*”xWÄEÀþÏÀÎ7yÑãë÷¨ç«²_ík¿ùù—þú4k]ÿÏÄ¿÷Ù¨áñýOýÿÿŠ£þÿÐ4ÿßøÿøª9Ãêï±?ö½æsö™sþù£û^óþ~eÿ¾ÍWÿ„cÄ_ô n¸ÿ]ÿ@ðψŠçû5¸ÿ¦±ÿñTs°eŸí‹Ïùù—ŸöÍX¼‹™ï³U¿áñ3ýšÝ3þ¶?þ*†ðψ”s¦·á,gÿf£˜=ƒìfÍ<5V«a†zTŠs@Ú,)©¡SR©¦C$RE2a¢Š+Ô (¢€ (¢€ (¢€ (¢€> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš+H×EÜ‹orLGÊÀðçÓØÖÝ6­¹šš¼BŠ(¤XQEQEQEQEQEQEæ®Ä‚AÅwšN š•’̸>WQü-\#Š~“¨eêI;b ¬€uÁÿëâ·š¹åáêr;tg£QH` ƒÈ"–°=@¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ÍžªL2*Ë­%t³Å‰ÚxCPû^˜mß&K\.}Tçoò#𮂸\„ÔnmüµŒ8?ø÷é]½sËsÖ¤ïQE#@¢Š(¢Š(¢Š(¢Š(¢Š(ÌXÕi HÍUÝ«¡žñZÆyeüúô¦Ÿ øˆþ„§çÎN^ôs‹êì_íùìÿ÷Ñ êW'¬òø¡¼%âBÂÑŒ|¢dÉýqMñ ~À@ó£çÛïQÎWc†¥p:O ÇxÒNätžOûèÓáñÐ~Ĺ$ñç'­"øSÄDób'¬Éþ4s‡ÕØÿí;Ÿùï'ýôiF©r:O ÿþOsþ€8¾Ÿo½J|)â,öÉÆ<äãß­áõv?ûVëûD˜ôÜh¨áñýOýÿÿŠ¢Žpú»(´•ZI)ꤲqI²£³øsd—:½ÍëM¢UÇñ>F Gã^•\—í7ìzÚÜ6õ·ç¸AÂæàUÖÔ3®*È(¢ŠEQ@Q@Q@Q@Q@$•{ÃKkºôÌ…­ù“õ`ê2:g§ãYLZGXãVwbUFI' ½§Âދús@²yÓJÛå“n2qÀÃúšm™Â&ØzRÑE#@¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ƒð/„ÍaÕïÊIpê$·E'©^§Õ¹úåÞQEQEQEQEQEQEQEQEÿÙendstream endobj 235 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1746 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¬-WZ3ÛZó ùZOîŸAïM&ö"¥HÓW‘gTÔͳyŒÊFKv_þ½boy_tŒÎǹ9ª¨{žMX‰Â¸'œéŒTO½iUzìiÚX<£qàSîm–3È¡5]‰µVªOvÓ¹&šæ¾»5IA(üAš3Pî¥ÝVsØ—4„Ô{©7PM1cÐTlHëHiôû[éì›16PžPô?áP³TLi5}Ía'tv7qÞÛ¬©Áþ%ÎJŸJ+ŠÉ –ŠGˆÆQˆ8ü(¬>Ç©b·¼µ:ÍnüYY]ÆiHœÇ-ø…q¨kÑ(©ŒùM«Pu]îpJÕ*µu×V×c÷ÑßÞΰ¯´Im•¤¼ØÆIÃýkXÔLà«„œ5Z¢ˆjpjªœ´¹ÉÊYÝF꯾ô\\¥ô¨ÙaU·R†9 ,uVñ¼b©ê¶‹]j…µûÀ1ÔRÝ_´ëŠ›;ÜÝÊŸ-µîQcQ±§1Í0Ó2DLy¢†ëE"ÏC¢Š+”÷Â’–˜çŠÀÕt¤fim°ýÌ`ð®x±RA#‚+±¸äåuHŒwEû5k tg&‚·æ—M‹ n;¤éžËM+³:“åÍ€À \Ó3FkcϺôÌÒ@X—}&ú„šij.¤åé¥êôÂô®R‰+=YžŠW+”Óóé?½f³Ý#ì{YÕùàÆAã¯jªoó÷A?JÈô In=êÅÐóU÷Ë)çäç&¤†ÝUù.æzšDJ¢AknòIæÎ¸Q÷T÷÷5¤ @œ´Z“nNì›4¹¨·Qº™$Í!4ÍÔ…¨ &˜M!jajCHVj‰š†j‰ž‘i?4Uw~h¥sNSßëÏ> /Length 2311 >> stream xœíœ½kTAÅß{»‰&ënЈ‚66vŠ`¡6ŠˆZ‰…–A‚X)b!*¶ ŠÚ% ba+‰A‹àG6DÑB,±ñ#z÷÷äî}»‰&™jî)–·›Í~{ræÎ™—þþý;q…TêˆCË—#.G\Ž8¸qp9âàrÄÁ刃Ë—#.G\Ž8¸qp9âàrÄÁ刃Ë—#.G\Ž8¸qp9âàrÄÁ刃Ë—#.G\Ž8¸qp9âàrÄÁåˆðIÓt)ŸàˆçÓ÷ïßËår–eKùGÜ^?~ü¾¥RiåÊ•Kü(GÜF_¾|,===ÝÝÝK´pâˆ‹š™™‘p¨V«Ý¹ñ2ëýû÷¿~ýZµj•Àíêê’GÉŠ%~¦#žÓ·oß>|øP©TV¬XÄbgAìÃݲibb¢V« \A,p»r•r-¥nsÄsšœœDþ1ø¢n[4eGüW¯^½úùó§T€[Î%Y±èÄpÄ ½{÷njjjppCœæË8†£AÙ7ôøñcño__F9¸|q¡)KbühGœÔëõ7oÞH!!µ°â˜:(„8£˜û—€vÄɃúûûe¢,å0ÈÒ¼´0ýKÄi.€†©;áŽñd®ÞÞ^ †…ñ¨ópq5h*iâNñ¨_»vM aÎ5PN@ÌÚmù«KèQ#¾yófO.Ââb d ³"æ#^!Sí\ó”ŠñÝ»w¿~ý*4Wæ’ º˜†ˆ•¡; :Nühç¹|p?yòD ‰î¦4b3Ä™BB§:¹àúˆÉx_½z•³ /ÃÂÆÈ+££¢Êýâ_ËljøÒ¥KRE`.p±©…yAjŒ ¡‡7ði›Ú#BÄ?~¼}û¶E;˜’ `ÁdÀSù-]Ài«Êãìì¬Îhù¶È7RÄããã2c›@@]AÛ2ôtƒ ñQºº0¿8ç÷ÉX§gqšNÛ Ð|µ“æà¦IÔ|sïŒñèè¨Ìè0…Óˆ Úmôc’Ç~Ä6ïgÙÇœ‰ñùóçu Üâ85 i›×ͺۙ5›ŸÈ–xƒâܹsÄ&4‰2É /Ó£Hò@ÐuijÖøN#EüôéÓ‡ꦥq1ÞFÖ('ø!ü]ý=ñ‘Yü·2‰ ñ•+W>þLRfø"YóHdRu«îvʺÑܨ»cC|ùòåOŸ>¡>3¥nIm™HUó?…s‰Ø”%5IaY-¿R©T¢C|æÌ4}´õ˜Åxá‹vرvÖYAÏ"XøÈ›kµZtˆ‡‡‡±YM§§q1#bý63É..ŽèaPÕjµâ'NÈ?¯ñ nž%…Ö52ío>A×4²|—«W¯ŽñÐÐP')›%=Ñ ‹uPè¢ ¼5kÖÄ…xzzúâÅ‹œ:3@ÛÙ bæ¢Xk ³ü¯3.Äõz]¦vzjW,ÚË0ÕÁ¢ûp¦¨@§ B²;.ÄSSS‚‹¡Y‡µ MSƒ3.Ö-Mãeö å1ƺøèÑ£@lþÁ /Óy yuÙ4ŽùQqšÆ·êqäÈÔÅ4©adVH‘‹_‰‰ï¬u\Œˆ<ˆÕ ™Ãšü5¯‰W=ÐurqQèl¤q¶öíÛ'ˆ±j§CC“q± ŽÆÂ©ZŠ6¦ŽÑÅ£££7nÜÐëù µ"—á[L S„ájÄ Zt±!¹~ý:iÒ›"®æƒBGJ[…?£‹E»wïFV%fbzÁ´ÜºrjB#U^ÒºƒÂ¸8‰s7ÐñãÇgfftçWïêäbú}þá.)ì…ñ… =zÔ˜wå¬7\é#4ºK[§ fþPíž¶ÉÉÉ¡¡¡R³¥KÊ|XlÛ› Y,ŽfE¡ÝéÒÊbE¡›™Ú%ßx)NÄ¢/^€²HŒ,c°;gÍE#ŽxºnÓBS»‹ÛèСCR Y÷¨V«ÀÚv'J±†ë”Å,3’È],ºuë–ÔÈ’ÂW@c5[çM"1ƒbÊ>ܵhÆ pq­Vãh´:‹-7Ói[0+Û"G,Ú´iS__ŸÄq?È‚²®Þ bÇ©ê·1%øèˆFÄâbñ2™S.˜º¢SK3ñ €6nÜ(|ábf±iÅejK žÝ¥­ÓhË×] J¯[·Ž»X`çbãM7.Òy[nis¿–#nhbbbÿþýëׯÇL¯ÜÜäªO;=-ÝÏtÄ%”;†ý;M¸eu*+~óıî²–æÑæÍ›KùÑâ‚©`•Ÿ7öHdjA:QìY¼€öìÙ3==ù4“ê påÖ2™A¯“‘±• z2“– Ö÷²æ©GÏÔΠT×åS|T†³çŽØèìÙ³÷îÝC{Mβº-– Rµ½jž®›»¸£ž?~àÀqÁ³!òT¯}ÐÎI~/iîêdûp×Q§Nºÿ¾ÌG˼¹˜>ëÁ î4q/¬µk× bô‘.F]¡[õ©j¼•š÷sÄÿ¤;w¾}û·3FÏ3k·m»¤îcSRw³Iñ¿h×®]õz]\ŒU¨bo¨¤¶éÑGÑñ?i|||ïÞ½2úá¦Ü\¡C™ó=Œ~0uâ.þ/>}zdd‰!(q'¹Nšûá_@O¸Åÿ—°bÝÓÓ£»lÕ'ùT;i¶çG¼> /Length 264 >> stream xœíÐ10¡¾Ñ© ¶C·íEºŠµŠ¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Ï™d"endstream endobj 238 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1513 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀwv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?èI¦“LÝšx‰ØdŠí>^à ¨ØÓœ<ŒT,Ô 'qЃ[Ú^°—;a¸!'è@ÿýjçª 9¬å#ª…iSzlz ‹¢k)vÚ_’tPfÏ™ÉúÖÕsµcÚ„ÔÕÐQEŠ (¢€ (¢€ (¢€8èØn®ŠÅ#xÇñ\ 5jÞñáû¦ºä®¬x¤¡.f®lj¶è‘Ú¹Ö<š·=ëÌ0OLœšˆSjRm+ cQ=JÕP®dx¤Y#b®‡*Gc]Ö‹©®©eæà,ªvÈ£±®AVü?|š~®)ÛÃËbz žçýk)«£· S–VèÏ@¢Š+Ó (¢€ (¢€ (¢€8<Ñš4¹®³ç¬?4Òi3M&€°¤ÔliI¦1¤RDOU'­9ªÒô¤Íbz¨ÿiéQLÇ3/îåã0ÿƒÇ­i×àk­—÷V§•Ž{©ÿëþ•ÜW;Vg¯N\ÑL(¢ŠE…Q@Q@wš\Ô[¹£uu ‰3HM3u4µaäÓ ¦–¦3R)!ÕyO#5W‘¸¤Í"‹~ŸÈñ‹d€dÙÀÏÞZõñû)6ê¶mŒât=Hþ!Üt¯`¬e¹èÐøBŠ(©7 (¢€ (¢€<Çuª Ôn®“Ʊ>êBÕêBÔ‰KSª2ÔÆjE$+5A#qCµW•ø©lÒ1%ÓØlXîh#8þ!^É^?á¤7(ÓÑX%ßÈÏÝ¿¥{g#º’² (¢¤Ô(¢Š(¢Šò=ôo¨‰¦“[ž]‰÷Ò¨7Ò¢áÊL^£g¨‹Ôlô®Rˆ÷’«K';ÕIäÀ©lÖ1;?†ö‰s«]Þ1Ú UR¹åóÎ{p¤~5éUÏxOm?Ã6ÂEÛ,ùÇûÝ?¡k¡¬ÙÙdQE (¢€ (¢€ ²@àp£žƒ'ž3PÙ¼bt4QE#@¢Š(¢Š(¢Š(ÄKSKQEjpŒ-Q³QE"Ñ µW’LQEK5Š='áï†ÖÝ5›À<ëºëå©ïõ? úšï(¢¤Ø(¢Š(¢Š(¢Š(¢ŠÿÙendstream endobj 239 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1595 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀww"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš(¢€ (¢€ (¢€ «}}Œ[¤å›;¦ê:„Z|IrÌÜ*Žæ¹[›Éog2ÊÝ^Ê*᜸Šêš²Ü±qw5䛦nEIm•ÀIM\¶¹òN@Ít­6wc‡’6°E£­ùbs¶Š£+…Q\§ºQEp¿²$Ób$Ç?î×»‰a€Óh2‚qÀ?/øáÕªÖÇ-EïCT‹P!©”Õ´J)⣞ 2 8©ªiÔÉh·¥kV-fd‹`jÀ O L›ç¹iX’sER EØõj(¢¹Ïd(¢Šæ<iö I(5³¬ƒŽq§ùçð¯-GÍ{¬ÐÇqÊ¡ã‘J:žàŒ^yjú~£qg)ËÁ!BqŒàõüzÕ#*‹©:™MUF©Ð՜ͧƒP©©¦fÑ 4ìÔ`Òæ™6$ͦfŒÐºŠfh ,{QX QEWñ/Iy"·Õ¡R|‘åMì¤åOàIˆ®ö£¸†;›y`™wÅ*”uõ`ŠÕÏ ªÂ5;ZÒn4-I­.>eûÑÉŒ ×ÛéUãz´ÎiD¸­RUUêPÕFMƒNÍBœ™6%ͨ÷QºX“4T[¨ ,{EQXžQEQEâ-Û^±òfù&L˜¥”8ýGµxõå¬úmüÖw ¡m­´äz‚? (¦ˆšÐêej(«9ÚœŠ);u¨¢ê(¢ŸÿÙendstream endobj 240 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1000 >> stream xœí×ëJAÆñÙœx¤~ü¢µ (x=Ò;©´—Òjié}”Öö6?TÅ/ žP j’ݾ3³;™¬»1fó´ÏŸ&‰¬úóef ¢(R Y@bt$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†Gbx$†GbxÃ!Þ¼ºÚmµdñ«ÑJ%%¹tè…»¾¼L%™OãŸ! õ" jµP®E/ÇÆªÕ§õzñŸð?68ñÆÙ™hnÓ RQÖÔ8je* ù™¾îÙ*[îv[±áÖk³hyˆøcä~ñÆéén³){í¶€år<°å²ó•ݺ‡¯›ßä( ãµ6ÏòN²qy~÷äÉëÉÉÁã^_Ä;×ׂ»†z`Í>XY;­Âi^ꅧܵÈ,sÝÖáA;ëºÕš¯V_ML< ë{ˆ\\|>?×CZ©XÐøÙÎlj¡rqƒî—]ßÔäÈ¡{¸*™îX¹Õ²[¶æ–u»½6=ýfjª²\âõãcñ-U«¥Z-ž\s|ùB¶o¢ôá^Ê ô]q;ÅúÍdßPfË›M9$ßÏÎ.ŽŒ l*ƒxmçæFpõ¶ ók6ÜÀmîLK|•wÐõékËPöY•JϲUbû¾d÷Å|¹,Êææ º ±ñŸFãÓá¡>Ç k|‚Yå>}Õ Ä™{…Êêî0öõ¡Íã÷ÊÊ0p†SLüñààç奞\ušaíœi9ÛB&qò*:{—P9Ä*çÃ; õ›ÎZöÛ[Ù7¾,- Ũ`Á÷““õ£#7¹·³ùÚ;3ßÑ'NÝŸÅ—¼~;õôUî‘2½kíϲ<šM -Ï_——GG‹)*x¾µeïºÎ4wÛ௕Ê;ÜÒÊñµó­S@ê69k„•Û‹Yåî1,±û4 õ?‡Ö:9 ¿­®¥´àÅöv¼9¸2o„Ówi)Í»ÊñUûdº×üª®M9c£èÞšÝ]dþ ·»óB½.Ðogfž{pÅîBendstream endobj 241 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 276 >> stream xœíÐ1À ±"®f0ËÈT'ÜQ¿%2î½¥¡¸¦8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§8§¸õ®¥84÷þÎù£gôendstream endobj 242 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1754 >> stream ÿØÿîAdobedÿÛC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀvv"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?ôš*¢ÊOz™^€%¤=)»é¬ôÜŽµž.šÒç{sáÇ·­]‘«.óè ò¥¬½èÏlð¹à!GùqÇò?•jPEPEPEPEPmº´¼¯OZ•‰Œá¸ªº}ôh…z[«µ•ÆÎ‚€,ù¾ôÖ—Þ©yÞôÓ7½X’OzϹsK$ÕBæ^´gASZ1“62õ#Ÿä uuÂhn_Ä–˜ä äý6î袊(¢Š(¢Š(¢Š(‰YH©EÅRßH_Þ€4>ÑMkzÍiHïQµÆ;Ðù.}ë>æç­W’èzÖeåàüÃó “ÁÉö¯<¤¶ñ£麻úå¼§½¶Ž×sFVk·Þ20vúŸÄWS@Q@Q@Q@Q@mæR+<\{Õý6$ž@ÓrŸÝéše¶ÃÈÞŠ3íN¸Òõ$Œ»YÍ´ ð¹íšî´˜â†ÐG Lç®¸Ü„â€ø=z ìôù· Îxž?³ëQJ*OÞÏÞe8?¦ÚÐÑî2f€:2*»¯¥„çkËéžÿÓò«ƒ‘ToŽHîd¡Ïé@è¤V ¡”‚È#½-QEQEQEQEQEbx®Óí:;Ê¡Œ–ÇÍPïg?ìäþÏi×ñÛíyô©®í•]J° ¤`‚2¯)Ôâk ræÔð‘?îÆs„<¯èE4®ÌêIÆ7G\uË™qå‘ú ýhÔ'¹6¶ó¬Ò뵆î2¥aÚI9­ËwéòÛËœ}èÏ¡®ŽUÑC«&ß4/]µÎœRLy¹SÏ$uŽ? ×®SKY4û‡•"ídì}áÏçZgR¸=cè+7IßC®êj+™êlQXßÚ7þ¦)F©8?2FG¶EÊE¬}lQYÉ«Dq½O·"®EqÃ1È­íßò¨qks¢©Ïád´QEI¨QEQEW!ã-+íWöW²£ÑÈOp0F?3EQÜʾ”Û"µ³ŠFHîzÕÕQ]hùÉ6÷)ÔQL€¦š( šŒä0`H äÚŠ()-µib`³þõ:gø‡øÖýW5D“ÐöðU%8¾gp¢Š+#¸ÿÙendstream endobj 243 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 2125 >> stream xœíœ½k]ÅïÌnÞd7ÑhV´÷?° ?ÿ-ÄFb£•_M* ‹XX‰ ~5"ˆ…‹ba°ÓÄ &D#A‚€ï“=™³gîDM|ß[ÍsŠáf]§øåäÜç¹÷Îd?þ ®²fgg³,þ§§F£Ñl6íšçùFï–9âH?~üøôéÓÐÐP«Õ2¬ƒƒƒF”z£7tÄ%-//¿ÿ~dd„þ5¦v5ó6{ÂxC÷tÄ}ßééév»m6ó¨¶aEJØçyO–$ë¼­#î«Ûíš- 1<  c`Ð .pÛ`=ŽvÄ}={öÌøš‹á\&"Fæ¤GÄüÆÔޏ/s1, Äv%S"qû2¯m?f…ô¶Ž¸/sñ`OÀʆa^²¶ïç…€U¡‡WG¼ª©©©¥¥%X……r  ¢2åˆoÒÈŽxUÏŸ?ŸŸŸït:=)eu.ÆDLš:õqÀ™Ð¯èæÍ›VKŒŽŽ"ÈW±jPTý«Y¬%ÝÊØ_»v ³:fD¶sÆ‹dÉ]Q2šC‘¡ÀÜŦ‡ZÓlLÑq€¬v hŸµV:Ð>Ý­ÊÚ¹/^À¼ì蘴0á21‚˜3!n¨ˆWÇ5Glµð‡P. ”W&F(ÓÔI×~‡RsÄ“““(Ô@V±¢WÆ‡Ç Öº8TXó>¸ÖñÕ«W£aûPka€Æ&-Ìr ß×ê‚÷q¯èÉ“'333X·dò*¾¨œà'¡°°Î{ô¸Ý߯;â[·n-//s9X§2PƇÓÔL[Ž5»Q{¸‹WtñâE.ú0|£ªKûºPdà†^Q‘—Wà¸8—ª5âK—.q߈ˆ.¾¦¡¡}G.+Dêb"®{PLMM=}únˆ´7Ëd5G»» S"C42;ú»xaaáÆœë˜§¥Æ,ë·š¹ä¨ 9fã×±UÄKKKtqÿïZ„of²ÄΚW›@¥Lúýò®Îˆ¿}ûÆ=$­1\ȱî3邽.x²9¬{Pœ>}ºÕj¡†Õ^#+o[@QãG]cøò €OwáÁƒ¯_¿Ö 04A"Xƒ‚øjOýÝh“‚_[£Ø(©/âñññv»ÍH%  K½E›97“ÅøFYšÅuwñ‰' q4eiP„¢KV^¬è³sY]c"3@Vÿ©¶ˆ­µûúõ+6ëòòBp.ÛQ½EVÞxÖf¤_ŸÔñíÛ·_½z¥Û J-ôøVs*Ë˫ÚàÌâºW‹‹‹QyKLQ©@^Õ,Žøòпam_¸páË—/8¾¦U»8Èš›üJ™ÿ«ÊºÖÅõë×_¾|ÉÍ$µ*WË´g‹‚"“•åˆomø×q·Ûµ8Æt·f·¦îVÄYy½mMÿßä‡öïß?22¢Å²Úÿfº«º8+ÊêPsħNš››C1W²ëÜ(VÑtZ[ÓÅ™®ÕÕñÉ“'?þÜ,6ö[­ùêZ%{?­á¢éÎ]üKíÝ»×Ì Ä¬á¢+ÌŠj]¥ìYÜ×»wsty7oÞÌ ÖDÖ¾®šÅ¿ªÛ‚tüøñùùy0ݺu+¶òôA„õ þM‡š»ØtôèQ›ñŒ©±¹ØkQQ=yÅU´_ñ]ÃË5G<33sìØ1œ|Åùm=âÅ1M½Îº-8bÓ®]»ÌÂ6×mÙ²…G4rŠPÛ? Šˆ2g¹FqJÓ³xU=ºråŠQît:†8ÊŠ¼Ø‹CÝ!Ö/_ëap‡ÞÓåË—-%ÌŃ…´tÓrMO]æÅJE^>—sÄ+:|øðâ⢹݇Ñd±m‹èt×àÃâà.¦:ôýûw›ô|úŽ&ÀÈÑy5²åãÆ¹ÖrÄ«zûöíøø8Þ‘`Xù)ã"—E8®ÊÓÑêâFqè88âHVZà¹0Ä1f<졌kTŽF“^sÇÁ+ŠªvìØ±mÛ6ƒ‹G—`a°fÇûrrÄ"_š:x«¦§§9²iÓ¦v»­YÁˆuж?H9xPTµoß¾……›ôHYvl÷“l£¼UšU†‚»¸*‹ ¬ õ„éïþ@4W—4£IÏ]ügíܹsllÌhêl8ûEˆiç 9:â?èܹsÝn×ಀcõ¦ˆI¶Ù{ „åZ#:Dëˆ×ÔXO Œ·‰!‹1fݦ žæ†»x]²ÎB‰Ì2ö{šyy9x]¼YËwàÀ·)`ÔNI&n En°4vÄÖÁƒçææÄV5³Áã {–Æ:zoLNÇŠe³°9šÏß²Fæ5“óÞŽxÃ:{öìãÇ·oßΈàK@ŠÇN£Þ:¯ùùâ¿ÐÝ»w'''1éÁË:õi×—ëV“#Þ,(,޹ÿ¤¯ËcP°1 þú¥¿S»Ý¶\ÆÛa›ÅÛwÕÈz(kå™=GüºÿþùóçA6pg½g›òÌð ø/Ú³gÏìì,_cJÊ=ôå5¶ÿƒvïÞýñãG#k½>“ÖÈŽøÿÑ;w&&& €Û¬ù“ü)tïÞ½3gÎØd¨'µqB½yóÆÜ툓Ë'—#N.Gœ\Ž8¹qr9âärÄÉ刓Ë'—#N.Gœ\Ž8¹qr9âärÄÉ刓Ë'—#N.Gœ\Ž8¹qr9âärÄÉ刓Ë'—#N.Gœ\Ž8¹qr9âärÄÉ刓Ë'—#N.Gœ\Ž8¹qr9âärÄÉ刓Ë'—#N.Gœ\Ž8¹qr9âäú6!}‘endstream endobj 244 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 705 >> stream xœí×MNÛP@ák¤$BBAÀŒ0¡„v‚`©…Ðî†T]Jøùé³_B¬(¡£#'åYÆxd<]?ŠñxFVHL'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄxãIŒ'1žÄx㿞žÒ£Vë¸ÓiúaþÏŠËÛÛr!WÇx4J·ò9F£ñp˜îmlœw»çÛÛ ?éÚV\ÞÝE–ÍÐ5âòz8Ìw>EôÛíd}¼¹Ùäó®aÅÕýýnÉœ/ÒžÞÉ«{<”çjiÝÚJ7¯÷÷›|ðõ©¸zx˜ÉÖ¡3îÛE54òE:ƒ~«•Žë^¯ÙXý&Ä‘EL–mÔæÆd§¹‘‡u>W˼tOÖív¿ÓùqpÐä{¬pqÄ{Êy-çÑ1ý$FÙºZàÉú÷ÉIs/²º-!ŽÚ¸ˆ˜­ß7å¹]£çç4 Ó÷ðsÖ6í_Ä1ûâÍÏèúºÎÄ//å˜~}½ØÙùyxØØ;­X‹fqD,Ç‹?ƒÙzºÙ(?†ÕE‚Núæô´¹W[•ÊM[ÌùÆü޼Y®Žüëür®mìò‘¶oÎξt»Í¼ß 4ÝÇ߈¥‹·v1ù$ÖÚhÎûtq±»›ô÷ºå¨þ»«áƲ‰\ÿp9ñl‡—•󺮬/öö¾õzp9ÿ`…˜Bendstream endobj 245 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 720 >> stream xœí×ÝJQ@á™L¤öáÚ›BŸ¤´}”¶¡"H«w‚ÿPÁˆ?L÷ä$'“a¢¥Ðu‘¬'£Þ|l÷Œe]×…ýçJ•T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•‰T&R™He"•ÿ½£‡‡£ÇǸîF?g³8¿ßîí5‡ª:~zJ¶ñ*olr{»?¼¸(ʦb0H×¢®Ë¸Fñ1•© ;6~^åN_ÎÏcŸŸ“é`8lîÎY›; tîžèV7ÛµTk•S“ëë˜Üø/«ª™Ó‹k o:'Ä Ú4È9g9÷ãêêëåeƒ›|ÓZˆ¯ªj¾¸çŽårŠ¿ÙÂ-[ç®gš÷Uþ=›}8=MšÍZÈ Ùä^¼îÛ©ÞåYþuwwtË7(ãq~¦­–ÃrÏæóÚæ]^ðÍeÛRŽá âÏÓé`4*‡Ã`M×ì˜G¸Í½iUîéÓÉI<âb34+"|c GiQtf¶-»Yyù©ßzMu6ÆûÃÃæÿ‚ªjˆóð¦Ý|)¯¶ðò-¸G¹xå¥"¿ØuÛú§ß÷³³Ø“››Å+D˜Î}WO¹ùDw—og~{¡{?¶[WÝZåwùýw±%’o~Wkû•‹bíI˜û‹¼h‹÷ò·é4®ñ”kˆóŠXòêÚ‚n¿Z4m8ôoá|³óu‘oלذendstream endobj 246 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 438 >> stream xœí×»ƒ`Ⴠ€Hhþ{¡ÄÛ¾Ö]³ y¾’µF«_P¼ßï‘ ÓLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31ÎÄ8ãLŒ31.#ñëõ*Ë’žòXI[SŠ¢Hô@I‰Ïó\×µ®ë„YO“wïû>MSUUß:/qœÈ˲Ìó'FÓ49CŸ /q Z/±ËmÛæ }‚ÔÄÛ¶ÅqרåÝu]Îè{å%>/ÛŸH·ßP9ï¥-‚Æ */—Øå¾ï¦ß+éÓã8Žèûùñ¿ËñdÇaè?p¯_ Üå$endstream endobj 247 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 384 >> stream xœíÖÉjBA@ÑhÑÿÿIq#(Nhî3øÈݳ¯Z\Ц'ÏçóƒÒDâšÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“8'qNâœÄ9‰sç$ÎIœ“ø Çc:¾;%ñŸÜn·¡ïr¹1+ñïî÷ûù|Þn·ãÆ%þÅét¯×ëù|>nƒÄ?9×ëuè;<³Ùl܉¿u¹\öûýf³Y,à KüŸŽÇãn·>«Õjñ2ôý|±í Š%ˆ$endstream endobj 248 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 262 >> stream xœíÐ10¡¾Ñ© ¶C·íEºŠµŠ¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹Š¹òHa$endstream endobj 249 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 263 >> stream xœíÐA0¡Ù?´¦Ø½ ³»ÏÆrÀrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrÁrá2•a$endstream endobj 250 0 obj 5403 endobj 173 0 obj << /D [171 0 R /XYZ 86.1732 786.281 null] >> endobj 168 0 obj << /D [171 0 R /XYZ 267.7031 540.7622 null] >> endobj 50 0 obj << /D [171 0 R /XYZ 86.1732 373.4314 null] >> endobj 170 0 obj << /Font << /F21 81 0 R /F19 72 0 R /F36 124 0 R /F34 84 0 R >> /XObject << /Im1 161 0 R >> /ProcSet [ /PDF /Text ] >> endobj 253 0 obj << /Length 3372 /Filter /FlateDecode >> stream xÚ¥koÜ6ò»Å4Z\–!)J” øƒ“8iÚäšK\·‡¶(ä•l ÑJ®¤ãó õXË{÷eÅÇp8œ΋ûüìèÙ+­VJ‰4Šôêìr¥d(l¨õÊšT•†«³ü×໢-Ö›0•ÁíZÛ€Ú*È‹n»Þ¨ ]« ¼XoÆ™‹¶,~“*ºãEýµ[Ý!ø€×ˆ¦Ï õ…Wì»"g˜²æ‘&aÝïgß?{¥Ò):RB[ [qïßäOïàçô%ƒÏd”ˆ¬5º¬oö=ëM ļZ'*hÖxš)ÍxJ¢³¬÷j*)ŒL¢ÕFaL”:¬t äDCŒÈ÷Û¾lê§€CÇÁMUd]Áíë A?¯uBÜ‚vƯD>ñHÖó·€R‰Ðèô±|"Qaì wY$ì³ê×–ü.øxZ¥v8^BÀgÄŒ$º»R1PZñø?øƒŒªà0yÛñ#µAÈ­mðÛf·+ˆ~Ä@¼¼ã~UÖƒ’^$± 4JeaBo¦ ‰Þ†8…Œ”W…ïÞ†·ÈµKüÚ€˜E¬¤™ó¢ß·5ž-ÒASó·¿HUiKgmΓï@rÒùlWn;†b¿zYºa*¤ Oì),yó~¾;[oàБ~Ôù624þ’ìŠÌSÍ „ÆuQ^]“ÞºãªK¦ÏÑ„ên…’6óàu¶ïºÒaL‚’¾(Bj¤âÞ8u¢Iò}¿&Mw’…é 5£/øâ”¸wýízcÒ„% ýué6غKUðD^’!AY½-PÖz)Œ(ž#â¾nyâ7yúž7°\!r¦tØ%+%!ñ¦ŒŒÔ’ÄB§ó¶/~ÄÐá~N>,Æ"UÊÇZ‚÷:c&ãAÛf—µƒaÖA#Çá>c:ÛâŠôÜÝǽÐ&?ÈšÚÞ¶eß{»B䘠¼tk\¿©/¦‚D5Lû·hKæ´±í€ÔǨCÛ‘Uƒ½Câs2tF})»¾C¹¤æ¡tsiÈ!ÜV/Ñ“)>Aïñâ”ÝÇ[7LÅŸp‰pÙˆõf¯»“,CnÕ–;Í¾åÆ‹sŒt {ÖÐØÑTŠ¡9SÙºGïœcQ»@BAP«“Þ Âf 㘂Ñx”0Íæ1}Š{$e+Ù|DμFGpâžEÆD‰ˆL ù}^n³A—:ÞÜŸÛ·eŽÑ6]ÆC~z’ÛàyJ‡7§LPî ™os”ME~÷Àâ,N˜pÖ _Ú8ÿ¯}ö²m¸™7d°{·ŒdF >rt€;JÁ‹í¾âÃb¹Á¨±H ¬O±Ür&†®ŽœÍžÜ?4ge†ÆWRš p¬O0°deÙ½8×HC—> ˆ| ɘGÊ3#$jÇ#.+ƒ½7P-ƒTå®ìyjNyOÒè ‚i€íhä4tærÍ ‰„ÿO?£>bˆòvÑïGB*åC™¬^´X`i ¹¼WXxûÔF$V{5ÿDÇ»sÊœÎéŽÐ´iT41†² øð‰‰kÐDm ™1L¨ön„d4yqÎߎ­Ê4’‚Q–“ò³£­‰‚Á‚^±[rø]¹ÁL=ÏjãÏ9L®¹~–蠻ɶ®™m·¬÷]yQ¹±Á›&¾ÒkJJvö•÷îX'/ëêZ!„UC81¬ž^ W¥È*‡¯çûÙy:z\µuÐÕñ”„aÐÝAŠ´ãöíuQsk˜)€ e„îмg&´_à‰Ï-v»j 6y-÷±>PÖ÷×Qn7n°¤ó˜´Â©ó¥£·”Ãí´ š‡Wr$‘En•ˆ¤ÑKaVÁ6cµâF˨?`ò$u›–ˆÖXö¥pZ™Û¼h]\Î}Vó%ï…2òDòëïÞPžøÕýã>ó'¾Ü×[@“ÊáGvÜñWG+_$ƒÖƒfœÏSvΓ‡ZDÉaIÀ1;3¸¡P…oî·|pг°œvÆX*„øèÎhº²"µR!d,mÐG ›†\<¹%’3ܨT:¨#ŸXD¡²«ÉB*€-Pc4¼­î£1€]m"’ã%d`¥u:–?¬7V'ïÎ0Üçd1ÄŒ…U27Y$5‚+f“UÙ¬M¦ôš²D(+G=•‹¸|sP½Mƒw@"¤DÜYTB œ½ÆþóÌ6Vž£?’¼^ñÙ_Ý+|@–`e¬!E§¢±¹_ø€kWøÐaªV»# ’#ˆ,ÝÈaéÃãÜL‘RécN(˜CÈh!E12*âê+ÆØ ËÊ.ùclÖRÚQ+S-#Ò0Öö8øø‹{,†ì’ ,-NV¡>`eÙoƒE ¸D°p7a;ãjVX[´Î‘P&ö¯>?œ®÷ï)J^HRŠ†Âøð›Cn ü¡œzxé ¬yÒ¥ÙE[güꃓûºìyšòòк?œTìŸ.¾m€ÁUä#ýÓ÷½ÁCâd( e¼IëÞ‰ïxÑÃQm2w"—à›‡pGM"×{ÞŒL:\ÚÓ_«‹õÔ¾°ãB#É÷ËšpâJ£Cty¼ÛùèÂø÷E3˜í¹ƒ€ŠKn1Õ°î!ãÎãºÌöUÿí2gS¸/Æþ½s3b³,¬X„©Ö_—Õ#«6ø9Hš"]EïDË›áÛÉho^Ü«6 #›Lèט£9‡Õ7¸µ÷ß0MÄÅ’Eæ\,+VáÈ•`°á^б‰O‹©¾E­\ÍÒ˜émÜ»¬åZtÎäq­zF‰ ö¿R§VÖ|ý]9Å"ÃK"æì!ãö_ÆCæ,¼ÈÀ$ªä@d?_95ç®XÄORJªð{ÙÌß~iίjºƒxDìÿÕóÑ Ô_ãè½2+bÿ¾:6{îl1œÓI2¼Ð;»„¥ë­ )‰$J êOÜÃ*îhzK¾ãQ_FÃvÝ¸Š³ŸèH/þ hoèÜ=¿ôØ¿8¹ûcãÿõàDJ ¶üå\p-ljñêù¿Bh;ÖèðÏ lw8àç%ýqúË¢ùÙ@Û€ƒÑ°¬}³ÅÒF©ýA‚‹˜*¿T”z|Ôï+æ3Ö|ŽñO`d‹/@á'Ÿ<]J¶(O¨p³=e„Œö=~‚ùþdi°² zK¦¤?´A)Žq[zïhpðnKo„"bÉ`Ùßt¸v"ÛþÈKfÞÁqijÒàâI(§ëLðŸüŸõHÌÍoBWçx–c/ñ‹óuGïˆã_¸é/rù(¤ñ—HÈ—9!Ìϧ®þµ$ÊgK{ƒ{ß ìÖ„òÂóúóŒuÉýc3­Û‚ C@׎Ã+©8ÀŸÐ­p¹È‡ß‹ØRð?‘L0'Å…Q'>Òý/e ç>endstream endobj 252 0 obj << /Type /Page /Contents 253 0 R /Resources 251 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 174 0 R /Annots [ 255 0 R ] >> endobj 255 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [367.9792 733.9772 375.8247 743.6741] /Subtype /Link /A << /S /GoTo /D (cite.PLUMED:manual) >> >> endobj 254 0 obj << /D [252 0 R /XYZ 86.1732 786.281 null] >> endobj 256 0 obj << /D [252 0 R /XYZ 86.1732 443.7323 null] >> endobj 251 0 obj << /Font << /F21 81 0 R /F19 72 0 R /F38 114 0 R /F39 117 0 R /F41 111 0 R >> /ProcSet [ /PDF /Text ] >> endobj 259 0 obj << /Length 1346 /Filter /FlateDecode >> stream xÚ­WÛRãF}ç+xÚ•«°˜ÑŒnTHáœd &/IжŒ]‘d—$/øïÓ§[òZ¬ìV^Ú£žéÛéËŒï^èx_k7ö}o<£¥rÃHï‡6v­ŽÍþxú§3IÚÉ2"ÓœÈ_ÊW=úÚ:Çò£\Ú ‚/dJT þÿ²¯ö‡ÚºÖúñkúÌ÷é‹X_‘ÐV=jåÅ­x⦓›UÇé=Y/¡óžÈdN$)‰¦;‚¾3$Žî 0ÐÖ¶žfÐ ç{q|Wí5üE¶„áeGVFæ$JøôЉϳlŠ×E ë/÷ÛMØ4/6‰gûM jC$ï çj¸±N]–êȵ>Iu :luz‘Å:`æ. °„KŸ|¡D|˜À‡â3‘{œŸ—[O¸4…ºF}iÊ´õ R »÷°\'_—aØHÔ d—ùJßò~µ-±ô™AC33K΂£;&ò±bLø{в[à)˜åǾȤìþgÕⵈBuCùŠr®!š²Ö¬Ê”µ…Xôêk´ WÚ†Do(÷ÕúN¬‘ȱ§Þ,±aàjŸ†\GÏɘ¤¯?"ó·7Dϱß²XŸÔiÖ8ÈŒÎðÑ!O&©~¨È°õñ¤¢9wï`â¢/¨Ó¦·¡‹ç‚V!r „º£¥Ü¨#rsÑ—ûËF?Ô…±ÝQwùBÝg¤jæ]£o‹Ønk¾DìæšèíˆÈx„åÕ­¨‡¶%5b_œŸQQÈS̃Å(bÿ@ž4u®o0j‡(Á˜v­ã€˜¦ ¾#\½]Îf¥“~ëq€2no1XÃJ¼íhø:£VëÀ‰¹H4ÇÇfuø.‹A[ Aú¤1¯Y¼l,F<®¬iËõÔX´.xÚ´ Ó»1‚mÄá¸uÛ~¿ÅÐ Úä°­˜íFßh1î³È:A, Ûw¡¶yäÎeÔ€iúî£_1æ¸ÒGW¨ô¦Æ1íò<Èá…§;¨Ð¥A„æ \£µ< F• UN=_T²JŸYÇ*KÀ0ÎÓÀ ñ¾À&½OðQΖ%Ý­ÆÄN"Þ6(ù®êtÕ(¼úc,‹Og"Bþ-éA1Ä;‚FqU—kºYÅ\˜ÁY™6«´HqcöqÓÌÖ6¢ÎÝU.ùå¦mIr—œÅ"  SYÜ^y²(ÓdR˽áRïŒ?mxw]¼ÌÓ:™âeQ$ùbR‰þj‘¢uÆWÍbYÈa⯲M£'6 |’îóVuó²zB9­)íH&¡~±(«ú?jZ1N’epÒ°“@cvã¡¡¾B쵬“¾ôi¸‘¯4åŠo~í…;éü ‰¼Æ¥8îKC໾²A#·-[²^Ï“ZV‚šÜª“EQ §j'OÅ©U)p–ëFnÆYÈ{ý ½KŒßço—VÑè âætµý;eŒ-Ò¿¥.È4ÈùôÊë¹”¤ÿ‘öxš§T;Ý6 >GC_<‡~¸Š*~Ò©Û&£nž½£¹ŽŽHp—ô.¥~??¡3<'®~V,æð ¾¹Ë×[ŠÒ³§ @?òÉÝØ¢Pn—G÷ÎÇ{ÿâúqendstream endobj 258 0 obj << /Type /Page /Contents 259 0 R /Resources 257 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 174 0 R >> endobj 260 0 obj << /D [258 0 R /XYZ 86.1732 786.281 null] >> endobj 257 0 obj << /Font << /F19 72 0 R /F21 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 263 0 obj << /Length 1238 /Filter /FlateDecode >> stream xÚíWÛrâF}÷WÊ‹¨ Ú¹h4’SyÀgÙØ@b{“ÍÙ¦Ã`;®ÊǧOÏÈH`;Î¥¶v«üÒšKÏéî3==£ƒlïÍ‘LkR†©1ª–]Ô’8”V«šÒ0’©®e“_ƒ?u¼í8>&1ܯÿ–½«‰ZCFa™t£ÔxK¢ Íßfõ†‘Q ¨ H A­†* Ψ3€fÖéBßi3>ŒQø˜€Gú$zC +{]§2h¦½m…2…³* “TÆgû u·](P[=|J¢9p#GL·ÓÆLï‡ÒGÀ¾ÀÓa•¦dc™Íuj§yì–qçÄcÃòÑ ÚžÅã±`Ÿ¡;?S§Ëä«á[vB‰CÆÄ²f·…XöÝÚÂIýÕzP;ó“>È&–õN@êÐþÎ9‡Å`}Nbâ†Üzeðž!Гâ{Ÿàî UÝŒ!ç 6ý6‡ºLÁãL³&2§'ZÍAv×ïõÅÖÃRÞuÛÙpà õÏßÿBnïo’îy/*ŒÓoìI¦02:’˜ùÄógBóÉËÁtéPkkL½&Á—žê9°åJÀåè¬éJ{µüas+åOÛg¸¾ôû®òÜ18<é^˜à7n«Õ˜…Ï’Ÿ Œ¾ßM¿Ä]Õ çQÕ=ç=Aýlww¬E¬ˆ0é3t³Uˆ€’C¸~^2h8®pc©l®ç«ðŽ%±³V…ÙÿbÜ´½³PŒ<Í+Å/¤X½fñg¤ø5‹ÿ!Å¥göæŠlñãî´ô:|x£Bó:ƒÂǧÿ™/£7GJ–ÿ¤ A:´Z¸WJv5]ÕÊŠ`Ïf¾y_W6XÚŸºQgí:ùm]%ANU°¤ÑûõÕt~ISqP—Xû0úAÈhÎúa½ɘlæNo:Ÿä8¥Å…­iéâÚÁìÒ+ÁÜ 8ùÄ-£[Ëe>^ÏîÝva–IáòLæ#c‚OKvÁ®7.Bè ÌËЃÐyþ>úéÕâ:÷YÄÓÓ>Útÿ1šD5‘¿ýÆÿ÷áŒàhú' œãPÐSçÖ¿‰Ç·xøºöíïSêŒV¾Gí»ÑŒäÌPžÂ°©EhMj«\Šð¡²‘ß"±Q¸,ÿL£fêg ô•Œ¡§c¼Ž#?ëѪVˆêìŽ —HÆVê'«¬òpÛæó³¥÷{Ãê0QZU|Tù§·àÁáfŽSðÁq§ªàú .ŠVþåÙm*œ{[Þ}^.œµè).¨Fà2F´*­p|±1V%‘ËŸmä×Ä…Ë‹ø).ÂÅ Ç;\(4mÄ%Ýu)DüµäEò|R‰ýWÕ3"ŠŠ" fÓx7/˜ d—´_;ïiÂHHI…< “ÄÙ–¬º×Îöþ/ÅhOendstream endobj 262 0 obj << /Type /Page /Contents 263 0 R /Resources 261 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 174 0 R >> endobj 264 0 obj << /D [262 0 R /XYZ 86.1732 786.281 null] >> endobj 261 0 obj << /Font << /F19 72 0 R /F21 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 269 0 obj << /Length 1605 /Filter /FlateDecode >> stream xÚ­ÉnÛFôî¯ r¢€h<+9Ì­IœÖEšÍn.m´DÛDHÊÉ8þû¾e†e%hƒ\Ä7ËÛ·yz~yrúJ‰R¢pN'—׉’VdºHr[« “\®ÿJ•\¨T ü!h±4ÒûÔ,näð“›A?–.ä©>âá`8•BF„Q­AZÙtJ¨rbXÿsù{’¢ÈJ–Ê k]ABîÉ·É¡¬¨}ó4\f§¯´Ú7ÐÒKás0ÚRgÂ)«‰ùy”œJ‡ÛŠ¿¥²Û~àESwa{ÂxE¥[€hS§5€=ƒ%~dÚ×í]P¶U[ÖݺÚî(l˜UMÕVÝBçéÐÇ£rwiñ€'X¼†3íÓ/¸ÔAüª\áî-Yy©ráÀ¸3+¯6ÍØvb±t:Kß”mÕ< *p®ÛŠ!RU "d°ç$3ÉÓRŒÿ ™üuu]ŽM¸WÙôrßôÚ9á¤/I¢¼‘AÙ øÛÅÒ*™ž]¼ÖÎ..ÞóžÒHH€XêiòL7Û Ko…TZG[xÂþ²p.-›õ¶–,|Í {´ô=ÛŸ6^|ì¸ÆëM³Á3ºP­ùà Qft ²²)ºt[oÆ@—ëu=Ô›Á†wïËàí!„D]6L¤ê¦È»©«@¥æK[+×ã DAµå\Ýà-²êAÑÈ!y Œúî5Ðúóø9{yÌ&…RY¸ ¡`ò,½$M »ŒÛá—.]¡Äd*;¾Q÷üCøª.{F@ýýþˆŽn†š5D ²94¼ 7p^b`< ¹ÖÝcîñ×CÈgD¡ÕÜtœ5À €ïÖ (T_‡jÛ!#\}Gª'¼zŠ(Ž8ϨG‘/'Æ3oÎ(ibz$Ì-„yžçAfòº!#ÄbL‹›j` ±ÞVÃ-Ûv›úS¬ÔðyUß “OuøžcÍ¡’ülbE)9tø8ö t t“XB‘V;oCI¢;ÐÑÏd’¨ÖÌ"eìfÞA¿j¨÷P=ƒ5À”ñvÞ‡à¤-c©ƒÃ±¯¦û¼3¥~Û~+. ÀFæÿ;.ÐiÏÌÑ¡œ0f µÕ MŒêf«Çò\¡AØ\èL4ˆmÕCKëÙ”T8 é•üÙŠ>öÑÇTZÊï19)ès—lOÎ.O M2ñ™P¹Ñ‰ÁZœ+›¬Ú“äs¢„6ž´‘3N?O¸aãô¼ÕÉËÍÉû“äýt¶Œ„—û”ŸãÃqn8°ÉUÅBdø„D €ÔcŒ P‚ìŽ*Ä‚ †‡†ø a(@5Ú&(Û*€S*é…–Þ&VB‚GÌžST÷5F·‘±ºHðZ?r‡<C´‡¿x ÷bÔKj)\nýô|P¶©°³(•ÞsœßYœûíJþ@zSï~èʶ^õ|iERÌ•;#È|/¹Ÿ Òë‚9¬'ys”ø8àRÞXÇYf„ðlšêhf)™Yt|'ývŽfÁ¾~q´£[¡­Œýÿþ¶¯Hf²á6Œ2Ô]š ~$Ä}?ð-n3j×~ÅûcÏE8¢®«Ð!ûšj b­Ç-ÕK¤ØB íõA©‚§5%2˜mRê¼ÛK¾_‘qxŠcA½ «éùü4Äðm²<šw›ÍôûÔ&:&±’ã—ÄòÊÓÏ_–ç“ý‰Å`‘³8^ÑÔ¤2Át/¼ï±ûå8vIoñŽÚŸvÌãigÿôñðEƒ—^›ƒ*·¼Ô|´Rûc#¹å( ÿ- q0ôX6 …šh=ÓrÂrxZd?[Ãâ‡4œ§¬¡Òߟ¡MÏúL£·ü4C£g ÄÖ†çl§)Ù> endobj 265 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2cv.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 274 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 354.90000000 210.00000000] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 275 0 R >>>> /Length 276 0 R /Filter /FlateDecode >> stream xœÌ½ ì¿ëYVPKwa˜P {ƒ˜ís¿<÷Ë®‡04užD¥@eaýý,¨`m¥yé2c‰ ¾`h‰æ"´)*–c©‹Ä˜ éBM«=6šZk«ë k{úÛs}>ŸëºŸÿ¿ÿƒ;×ÿéIÏõù}ïÏs¿_÷Ûu_÷·nûsÒ¶Ûÿôßo¼}乿·oßôGÉÏ9¶?öȾýÎGrk§œ÷²Ý>’§Ë7”Úšþ\jiúë£'ç›ùÖ­T|ðKjÝÒ<,É>þÛ¿ê‘ç~ÕïÞþèþ¶ÿö‘çþþ3Ð#ÏýÊ­žÿÿÛÏ—oé‘çþަGö=òܯxî—ùWœð÷|é—>÷«·/9ùò—Þ|Ûíú#'å·ý¶G¾êwl¿ù‡¿ûyßÿ¼÷ÁýПþ_ÿÄöáßýþ?ñ}ß“ßü’ïýÙôº¯}γ?kûKï{éK?øo¿ôîîÉÇßú7ÞðÖWýÀßÿ‰Ÿxýë¿á5ŸúŒí‘ÿâ«¶ÿJ«i?ÿß³F¤ÌùOÈžÿòè}™«çOee®Ê'”«¯}çcgŠ?úýϾû¿>å×?ûƒO>þøc/}ûG>ôÁ=ùøc¿ô‰·ÿÒ‡žøÐ=ñ²g|ç³®™¹EVLVFøgdƒ½?gÆQ?陸¯åÔÕZÞ/›½ONËKû© ¼¶T]úõ¥¿?úñ9J{Ë]–rM—Þ$èÙò™1ÿíþ¬Uû­Í‡'k÷µÊ”˃Êýk–WNU‰µÎk%z%ú¬DÿíAí³öuß_QÖÞôç¾òyïû¡ï~Ë?úó/{þ¿è]oü¢¼÷u¸{üu?þ±·þ¿ùâ—ýø·>÷%oþô7ú·¾÷îg¿ñ w?þÖ—¾ý«_õì?ø†7¼þ>ï·Ü§*S;úÊ£Ï!`þø÷5Ñ6އ2w÷·ÖV4ä~‚­õßC¦Å­u´K[5àõÈXüûÆî4fùU÷~øÿ5ÏþØÝcïýÐÇ>ôäãï}ìíO>nÿ>ñÆÇßþö'ßøøÏþÃÇ~龦˜÷ž/N0¦ÉúQ3eýö€<§}ÿäeå¾v—÷ö rýÄÚÝ/Ÿ³ON»Óª†r±õËý•)X/¶&ÿùœ¤ö«½²yÍ›Þ÷ýÏÿÅ/û²/û?øÎOûù—~ìÕ/|×ÝÝ ßr§ÞóÚ»»þÔ[_òÆoÿ©ÏøÂsÚÿªÏý¼ßó)Ïølf«]²Õ.Ùj÷f«= [«¶Úþ”Ùúd Þ—Bo¥?d…~oòzz˜“ןºn?IÉ;§À«Í:@£_Ôj_šmê¡>ç<ž"k©?m홺kÏ»õÏG?|÷Ç?÷û?ôøãÿì²Î¾nìù¡®ü´?t ë¾ôñP§/=tõ{Î.½§^{O½¯÷Ô_¶÷¤òIê>×)ùSïC0ð¤ú÷žú÷žãáë=ãÚ{Ƶ÷ŒûzÏøef‚gïéãß1+yZSwÏÛky÷Šýä;Þñæ·ÿã—½ø_}iÕ¼ãóßüž÷¼÷#øKïž¼ûÛÿú§^t.+¿ý·¾ä%ŸñÅûkžbX]Áß—¾‡¼c‡¼c͇®~sŽÃ!Š\\åëZXèÁ*§‡®C­*ç¼?ÄU~øÖ¥÷¥ïßU·Ÿäô•§®ÞOVj«?µÕŸÚ=ý©=e²­Š/eþ«qPyMe{èJþ¾ô=ä=«=ä=«?tõ[öeưGÏÒ_}×vÿåzÖ|x{Ö²ÊþPYå!ß™(ûÃݱJzø:ÖÕ>hu¬ûŽC>®c­ãRžºÌÿ¶h¸–t}èJú¾ô=ä=©>ä=éxèê÷)Τî1»·gÝwŽÅ®U'3‰ÌΚ,Ôi9,O'‡u*‡?z÷ÑöÍy†ÞöŽŸúúþü{¾ýó¾úÅßó†ÏøœüW÷7¼þþúç?ë;ŸõŒïôR÷Y—ŸãA%ÎôŸHr~äO<~÷±glŸzgÛåÜÒžxbŒÎO'ÂUÃ_ûwÿÅw|Ö³ÆËÿØ~äåÿùþÑ/zì¯}éwwOðÆ¿óÓ÷>ã³?åã5˜¨öÀãt&jüÊõoßøë^õá·ÿü?ö÷¾Ðºó“ï~åO½õßþþ7|Áçüó}ïÿðW¿ô‹ÿão¸L4›·b«¸d§ýŸ²ÆVütÆì­ø¾ò×}Î#Ÿþ/ÊŸ|ñ§}×§}Ïý´ÏzÖk>ýŸº½åwmÏ{óÏmïø®Ï|ç§ýÜ·\ZPè:KXÊåA ’²ËŸ¨²›÷ïß]þyÛÝ{~äñ{Õoøº/ú /ú‘Ïûêÿþ·~óû^¼ÿµ—<ó‘)!VáSØý ªð‡ÿÁ§¾é×üÌg½à_ñ]_ö©Ï|ÿ¾ëÃßñÒPÝ[o¾ðõ/þ’?õ¶·½ùÓïI”—U6=œÎ…ÂS–ÕÓêl—²ú>óÕ¯ùûçŸ|îÝÇîÞøÓ_ñݯø¥W\u w÷Äî^òSw÷ô‰v÷?þ=Ÿû?ðgßõØGŸñ¼_ûàV[êƒtﯤվæ'þÌ·üÍË‹oöïzó3ÿƒÿOŸò¯ÿßþäw¾þï}ñþúo8Ãßøâ«Ê©ûÚÏí©oǃìîêþ´g u÷¦ñšöw÷ÏÇ~×£w×d\NãúY>LÅÓ_/jîmñýîÜÏ¿Ì>ž]5õ~lõAµÏ!ðéõUUÃxÖ·ü'÷dù=ù#?v|æ3ô³ÿÔÿùo{ÉglÿÇ_øÞg=p§÷l—ÉÌ—˜".AÊ'¶yÓŸûÊíå/ÿ¬ýÆ?ósÏÿéWÕO¿úÉÿô¬‰gžJå?|òÉ×Þ½ä ö%¯ÿ™~Á/üÌ›ÿÀ= ú¤žrVKgY=°zzÊñtÆ¥ä=å‡×~øë_ûº¯ùÀ‡?𺻯¹ûèï?Jáu}äî±Ç_q÷Š=ñž÷¾ãŸÞ3P¶KQ§*ªöô‹ªyQ½ê¾ø×|ÍKžÿþ?ñ=Ï~Öñ?¿òÕw}äC¿ôÊ7}ä?{Ñ÷}ÚÏ~Ógmßø¡'þísûàãÿjÿ;¿ï~á?zÓw]5˲f›¦r¤mÿ?³åcµÒyæ²>h®”§ÝJ³·‰¿üß}îgçýêüèÿøçÿôö®·œ³Fþó`æÙeÙIs5$Û¿zpCšO¿!¹ÒÿË7_ý¡ŸüÈcç¿ï¸{â½Oܽùy÷ןÿ¾ûï~ÿã_ýá·þØËï™»æi¶ÙRmQó@ Håóq9üåAt»ò?çY_ðÙ/{Á ~Ç?ù¯ýÌ_üÍþŽóßWþà[ß}÷ö¿òÌ¿ô",^^q÷ýéŸþ»Ÿxüm/|ÉÛ^ø™ßþy_ø×^ø^ò_|un-×—a‰}à £<}u=ñõ¿ô{õÇ^=þöÇžøºÇò­?v÷–w?öþ?ñá|ècæÉüË»ïxùãO|Ýë>ôÚ<ù®WÞ½üëßpQ©³ŽrªqKÞƒúå¿G»ŽsÕ¹ïvƒŒ÷Ê~ïï|$vS L]Ô ùbµŒrYßÖT´rÍGÁý%cQ2Æ8ÃãžÌ)ÕÔ²snjᲅžøþDø‰¯O1×Þ”ª…NVgu¨æ©²xw°(ã,ðÉÐgJ³‡dŒL•˺âûHäš•ª–Î0~¥Éec´3u*%“K”QËàó.ŠËÆèÈã€\<ÄXüöÛBÆb*ÅTˆËb–Ý=¤«Ï3ÆÌš={\VHÄX•â¹1˜Jo@Lj8æ¶n0¸l¬zÆXÅ9e䌾ã ܯwÙbeMA³é’ß¾±zäùÖQèó!žËÆ:Sz¨DM{0³8 ¬©Ô*·@cÅÕ³ñz¤â¬åH;ä¹âøBÃecä5yòbDŒS7åÒBÆbZ½ {´»a17ñ\6Ö™Òá׈Îñ%E¿A/?ö*ÎBÆbj½Þ iÓö“%;§ÙÏ8ë|;NUÌ–Š#ë¦RZÈ 1*ÍD¥Eˆ3ëzLZȘHkRʉj´¿yÆ^a§ÇzÅYÏ'›õpJÞ+ QÈ´Ðéò²·küDG”À,'R®²ËÆÊÃ-åùA¿æŒS/ß+û¼¦ƒ¨¯ü nô`c.t2Q›g~TJ@#óLAÇeÅLÉgj[boÇL ‰8‡Zw^ÈH«÷ ¶{?ëíü ~)”ŒÑNöÎßZÚ2ƒÉ°.[hËË1Þd;{&qy=—…Œ…4No¼©:ã….…ÒÕïãdMoMÚ÷ìÉÆ,*Á²1Êä%T{Ä1O¤R).«ž1zIžòá„ý¹U¿»±Ä\Äj%˜ˆûP˪ iöÛ€D=óLAS V—e)öÖxÊ=Ê£M‹ƒ¡…NÆ¥v¨DˆF”È9Ýiïj»l¬|Æ«1y®ø‚—ÈBÆ*ˆY%ÔCß}Û~uw,dL¤YZ¨‡Þ;ëÆ÷Æ¢d Kíd 8êmäL ].ß)e\ãê¹EÚð dÇ»¥Ÿ5¿õR²©:2FBžýŠ P‰zÂˆÝ úòá²±˜N]R6¹rVvÖ×Fu×\6†Åõ½õÃ5ÈÙ§ÁW´…pÌ´zÝżᬯ¡O7JÆgœªé­7YÁ„Æn.[è‰Ø µ)÷,âj¨ÃæòÉ8˜>Ô#定,g|%Õ(YhKWcÍn}x1&Ô]sÙB#e õGyªk:ÙÈU§d¡ÛÉÛY£ÛØ¥ÏÐoûDŽºËº#”ä±w1“ʸ/d,¤Nsu¢sõb—Щk;¥«¿“Í:IÛp- 6Så²…f Y/&쩚gO“ËÆ¨gLÞVN9fÅ쟺8?\6ÆøX3k1º> ‹©T ˆj´¼£â+ƪúÞY“»I‡êú`Œh/Ãå34ƺÁkã”[£Ÿl”È d¡óÉSnÃÛ(z‚.M—-´åa°gPªÌ!‡ë»¹±ºÃËhDŽÛ/g™“’1Îôa† IóË‚eLéè¹1JŸáÍ=4u3„TOJ7V“glÌá¾Íä!˜(Õé²…Nˆ ¥ yf•jC\^Ÿs!c|ÁÛÐjWg›Ò@uwÙXöçœr] Ä\œ³±Úì< c1Ëù %cŒ“Í’·ôÓÙv„uÙB[µM«[—»qõ¤T-t²0K>öiNí4¥êî²±Î46/Q»“­#ýœ —”ôÈiOêŒçÓ®q¨¦Fj']ƒÜ(dŸ·²ÏžPâÒ±îžD©L†«š.ÐØ“Ó %¸Æ­aIѽ¦7Vãö™æÕ¿é.YL„¦*5] 1™-+ÆÊÒv5ÒÞ½³âPW<3J ½Ïþ`¿åÆ::›@Ú5žagÐXyýV÷~ùAò~6+qªÿÝö$üK}f<¥¦¸5_àÉÂ\öü„—ášëž焪½À˜Ù>“½Uœ l#Ø÷Ï?¨¬ò³0/cÂá3¢º3Ú(â&Š ±™®º'Ì{ v6(ÅPÓ’?½›ÓŠ\‚…DdMà¸$hÌÁH<Å„e¥8 q/¿Á¸)¾ pÔ`ÑÈ¡• 4fb$ʉ`Áf"šÊ¡\ ±™ï;‚Ãg϶¿–¸±qþZŸ)ÞZN0£”ÉG­ŒÅÄw²Êî,» ·“#Ñäöqþ5yèJ²J³^ ±&#õ,¡­jbÔZìÕz'óàÄ%ìmÀ’ƒm qMW ÷Ve t\MJÄ+€±˜xl²8¨œoân^ÑÆD=Ëm“·D±+"%aK=c0Vg\Ð µŠÅ¨1uªGc1¹˜º9ÐÜí¬F †_‰7VíV-ÀÊ¡)´Ç¯] ±2ëÍkÕSùšöÕ¦DcUãd¶ ÏY™TBÆV/7íŒAu0P %©ŠÒ MØ.И]-X)ìjÞÂbij9-€1§õoqfÓÓ‘žàdLöÁš$S,SN1I4†)3L9)jÆé]‹ ÚƒÝ¾² ºj·2Ê*ýÑ/ИLj‘þl¡?ª%ÛsµK4”jfý[*T_Uê”áƒÉMäTgár$ÞXu›&άy:bhj ]õÐ/ÐXèêizýQwåèù•C[T`L O¬A¦Ý[Ôë”îh ŽO¬qŒM Í4ø4o\ ±à¤ÉžÃ˜ïÕwõFc㩦fÔ;{jêw㉟õYÁÚæPšTjãOvgª—8a¶XRØ*‡DcYÒÙ"!z{<yõ”^ ±˜pU8ŒÓгB-0ôì”h,›ÝJ<†BsªÅö;CS-´/oÅMiPIÏ 4&œ¼?)ý1/iH JcJ¼±F`¶ Ä‚ah¥Ããº@ciªè­A9XqÙÐÇÀÀ˜6aôñ`~TI ®c¿@cr«M Á”£}v&GxÇÀ˜šË’§œ8«®|{cÙÔÛç€RœòÌæ ZÀ p²4¨ó©¨ÖÏôùÅ©¸+GmË@JѲ¨ v,´Ž=€± ãBí$-µxRuD Sci=À*íJá°t`vu$‰Æ°¤vµ ­” Åß>€1˜ÌŽV¬Éø®V<¬‚#ñÆ*ÛÖ6“õŽ’Qè¦<²ÔÒ ]~o^I¥ãe7”Ž!ö›InÞÞŠJÉÙÓ= ò'ÇNbÍ£‰(4#ï(ñÀLô1ÀiÞ@È* %ž%Ãl‡¦ÊÄá)âò2G` _º‚C0TâòeˆÎ#8YœOïØŽp ½N;…;ƒq®bqƲ„ê(• NR«/¡™ÂÆbr±Åå@»\ÐZ‡%€±š/çob¢N¾Kcå©­€*®Vá5ØJ¹ŒÉdö‚¶‹eIÐZö(n3„]ëX‚XÅZMýZ.ИÚÒð²¾l=#5E¢±l ‘Q=íFgךï¨h,ö~­nÆJòÐöŠ6ÑŽzÆÖn‹jJ0öÑÎjÅn¸Œ9mH4ËDrIIò_àIÄT{¯cæ&­ôöó»hl•’QòIÈlX ™˜Ãs¶Q°!ؽ–•MPQ5S›2DZQ-½SÛ2B±/c§Å“Ýû dŒ3¥‡™‰$ÇBÆ@b«ÇÔWö›²u¸|cU¯=Î[Êmå;ƒÚ¾:Ž…ŒÅ=U¯Dî¦`"no\ÇBÆä«r@´ZV±½]}µ¹l,ÛÍm^÷ç×¢aîôBm6—OºŠòLEŒbW.cl£EÅÛw"KûàÀÓ\6ÎA¨LÊ£ŠØÄÞ\>(£QZÊmˆqÆèeÝ\6Æ™B/g“W)žÂ0U.)Ä©£d9¢=ëéü;¥NÉB7œG¡†Ï/4…Äy ûGwÙBãôˆC eíöÓ¢À¬‡á²1x²FϸœÑtâfÖë)³èX€A:<$bòRè ©óÉQÌ1ÏZ9“Êì.«nM&÷Z˜§»Þ‹ÇBÆâI¹Ú5ÑêÅOÊQ·ÃecñÌœm'æj‰‡9¶S*†ËƘf— XNyiyŒ [5´™hhÕ´˜8Ø 7YÅœµ´8m6_ÖîgšÍëŽÿv/ž»±1h÷¢R!ŠSücþ¡­Åc.dLع. ŠÝÅì͵sL—Õ·ê“àS>òŠ 6LÌÑtÙ°"R®vÏW3û'ü}Rº±z5ë2ÖðÉš KÀÈÇBÆ % —Ð%ˆítÙXH!¶%ÍN-ïV†mwÙÇV´€6¹ÆžñAËDi¨¶/d,ØRúäh,ËJ2ËV´…Òv—5¶¢…"äØ9a.š¨´}!cÁ®Rnò…j´Ðn¦¼ ,J'ãœýfl@˜Ä: 9¶<<7.[è²edO¹¬-ÎkûBƲ4fZ Å©åY_[ÖæCK.«m¾¹¹Gi£ghð–\6†õàL NÙ5¸Ù/k„mÉecL»­8Ny°Ãbïb¸|cukîH¼ž·Ür0£Ž…h-”¥fº¹xµÐkg/ɘp·DÉ–ÊÌ67 ‰þ›¡ã©…rcè±1<äጼeiÌ–]6Fß²ô ä¥+gÝ|{Ü,¦ü³™Š/²ï¨ã@«Sæ…NÚbÖü€¨¬Â9BùvË.+o¾ ¹®Ô ´iç,d,«½RœëôdÌäZ¡d ë™ m½ÒCž1bÓ¸JòL]gÙë ]!¡7<¥e!c mÒ”D5t¥Ù¼Ujžc‹ä«Õ­ê8rœe6h·0me!cAçiI'k:ëÁ³­V(£l¶ÕwKi²Ÿ˜ž[‚¶º‡èY§ajò²m´5tmT2l¥„BÙèhó cQ2†ÙM&Ö,ì–‡ÍãXȰÿó^'‹Å‡Y V°( ³OÄ|’ö)ÎúÙš¶µÌ¹7e }¦mx=Y’A[C´¨ê²1hIä"ì цJÚìÙÖNI;…6†3Ú±1h›(mFkjë±M›µæ§i§ÖìÛáíô”cö¬!c´øå¬Ëõ%“gÔ9m ±ÕMÀ†Rl´GTyc¶§}î³^N¹<(Yè3uXù™ÔeSÔ°@ì8œnÍe ë=OKÖù´õÑîšµ¹lŒ~rÕ.LŽ™ÚY+°…³ðUVqÍf£ly&yË£ÍàÁ°.Ÿ¡ñ­ŽMhÉÝÝ,Ú”—‘•‚[Ê«ÒfPGݬɮµ!ë¼^Ÿ@qÎm=Ôí¾ZwÙX6ÃWû8–¥˜1Θ}fÓ]6Æ™RÍlL1³i´d]w—t²®iãäumëAÎ2:%óv½[\¬S[3)$V_I½®/d ØíMõ<®sô=[j‹£õ–gÍÖŒÚÜ€;g-|¤vP²Ð–¾Éº=ê=qí'k"ZŽìßg= ºâ(a©ÖÆŠ½µKjMµ¦5 r92Ö>­ÑÀV„œ J'ÃVŽX¡AÒ ÍV:ƒ­}P²–ºÄ:=×¹ªÚ‰ —-4ÓÅÒæ[©0ûA×RÓec4[I{½jíN,ødÅÔæBÆ¢Ÿ·O °`¶¾:¼'L—5OŽzɱ¯bî׆Ï,§Ë7V§V^¿'#Z;maÝÙ¦ËÆ@:+ÆKÊ]#¦ÙúÇÐñ|O.ßXÝ©GÞRŽ «¼¨ãÔ.uܱ:ô:Zul}Tf/>´"1‹ñQ½–е?gÌ=øü{ÞÕ—ÏzTŸ‡Ô›B2f´‹ì²…–CxÈÚ9kÃJ±f—ašÄs0¬¼#5•z —1©ÛÀ€Ü¤Ÿ¬gzÎr íØÏµ kSȱ6;kç Åð”,´i4Ö¿i´]!“§4/d ¤.{1­>g>ëÅ4+.Ë^ûÚ½^UdÐ6i(.ƒVÊdPÃ9£jLê¥jL²;“ iL:kïvYHJ7VƒgH–³¥/+$cc*\¶Ð´âf9ЊÛSa1¢î % }΋ÛIµ±‹!1“×7ªË3#Üô¡§êÕeci¬ÎÉ1 3f;ÞJëBÆÂ¬È[*Q´Uë“­þ d ܳ@hܲPȬy¯ý…³^ Ï9/$o º¢Vx,d ÞGñ–Ëû(Ѫóº«ÒuSæ¬Í¸'còº%û, »ÍýpÙ¢q4¢¬Ýfë“͵åá²1ÊÖ\[šÚò¬¬|ο·]k ³>µV‚$]ѱ#Ö´ßÛBÆ@ê²ç(väíž ×jvwƒ+µŽužj4Vi]ë7¥´-d ®/•;®úbEh}óÐJª7—OÖ§J$é¶¶ÊexJÚîî¬YÜŸcHÄL­×\¶ÐX SëP–î³ÕÉÁöÔ)Yè3UlO&y{ÂZíð÷…Œ›¶žc cåøì©æ ½S2ÆÜÌVå–Òl Ù¶ SµÞ)ÝXýmf–wK©W…ä­hÔ}wÙBó~2Û o'«çœ+6îïÚ=îîÚM îíBÒÎ.W`F\ØTp•V`RA¹Ê¢ÂúbÁ!;e)XåÙKÁš’n ¥ûR¶.ò]©³¶bO rìHuŒ64ûìÃå“Ñ”FŸ’eói§.Ej¦M‹¬ÓLŸæõ·•°KãM,ßËíc!c™æð=[¢µ£k}1SOÏ];æ†;•†zå¹êöÝ]»É”ÿ~ßrõ¯÷Ø6bÆ.?5zÆ= jý\Øj!ë.…Ý‹oM—o¬Í}µr·GÜÆhø®ôÁ\ÈXößœ¥GˆŽÌq†D&%c”3<ÒkÒ¡žÓ-Fkev·+cµd7¿ráw±Ë«Œc"¬ËšéBl”½tÛk§Ž·Q9kŽeãrö9™Éq3ãU–ûBÆÂ޼k!¢¥‡p2À|P:v20Xvisëj»çÆÑcwÙBÛi€Z ÉaÖ±ò)ÒÙc_ÈX<½ð:Z:ûÔ'E+E»Vgi\õº•¾ýXéK Ëþ[š§hF*­Çj¯Öv2ŠÊÆv;Šëtó{v]v2[•r;›uOvvëþ+ ljg—ƒ †ËÆ fcÛ fSû®KíüØ$ }ê³#±†¥sµ>zÑÓœ¡VÝÈòn•¦ã¢ßE=d˜>²ËƲs¾"ŽóEï=WßS›)Yèi'„¬a»Ã®ˆKZ‘síCzq$žEªµ-Ýh> ã dŒl瓬YíæZHœ(ÏÁBÆài¨rÔBÃYŸµ½ñó—BÉvV[ÚfE!óÖ°³bó솽J›…7ìiB’Í1wŸšvâ¹~iòÔÁ= &BmÔøMoã­[ßv?ÓïŠCŽ•wéÆ_Ú$4´Ú$4¶Ê…­Ç¶ÉS²Ð6CŽO©ËÃfðõYwíãŽì»¾&uùF‰÷‘¡=ªË7rÓ Yëž³ [ø¢¿žõæß0Is˜‘h­Ào»l¡§¾wër÷o·ØKµ°Ïám·ËçücÕV7gÖ¶¿Óqb=ìÖ2ΫM:­Øñ÷ýEîî µ¦ÁÛËÞ i•[ÛŽçÀ=ðq$­§†­ä°î‚¤{àÜï:aÇBÆàzN}œ(üX_ô]­q¸l,[GJO™'Év–;v–;vO–;´sÀW¿:Ž…Œ4ê\J(|Ÿœµc,Jưý0†®v·”!i(†ù8¿Æ_z¾yêÆ²õʼn9ýhYfEÆo˜TüÛ²…¬ú«Ýñۤÿ‰8¦7—Ïдã7(7ÿv7™¹o.#×ëq›±ÇÃÑ) Ümó_¹Ûß# ? ÖycÓv¸x_Óv¸x[Ó¤¸«i[Â6ûßmSX°û»Þ-çö ¡âz#Ðä–ŠNÀu]@îo¬îŒÁÕÄì#ª®RaÃo˪¨kíü¡—g3Í=¯Ô¼¯î9æcëQ†vb±ê•5¯¬y/‹Që® ÝžL^›È»Ê_°D Ø=ЬC´¹0fö+K·9î‡pÇ;j`îãžÐõ ¯Yî«[_üu¦Æ<üòð-Aë;OQ Í”ýF×À%ŠÁÚìë6ÏFì†0Â0¯P`ƒA k‡ÁÎ%ί©$S€«z\oR~w/R²¨†:ÓÀXT_0«s0=…¦´¨œ)€±LhYIëJ{í~˜ý’%ª©±þya¡åÁðŒÁdrtÌYÐJJY`¬±Åýr‚c¥Lês+€±¤IÉ’uVƒŽGâÉ0 ¦¹e™k6ËvÁF) `Œâ×Mn R¬‘†îQ`²=scñªÂ`+aš5랸G÷Y’ß2™¸6ѾùM% MãþÎðŒ¡Ëäèú”³ª_Â0VcÍu‹ƒ Nû&îM`,™¥ùÈwî8nSÔX2u_B ¿Y.ÐXLªÆ@‡±ö›¸/³H4Þó%£òz Bë¾޳g ` ÞD€ $ò„î¼c3qV‰Æ°InS,]¡qB%Scʧª3φߋ )ÀIâTw2‡ºß±‹ä÷!f܇˜qb^ïCL݇@T—-8ïB Vü&„ê%ãa¦öpÙ(6ç” *‡nz‘ýS% m÷غ"µœ¹ê+ÇBÆ@òäL@(| L»ÿ ýC»W1µ‡7m¶[½Ðw]ï £ñ{`¸l Üv ‚¡,ýbwÊÙÄù}ÉÆ(ç* +ŽS>|=5í¾ƒ7Ñæ²1쾂¶É1;›…7/{sÙ¼ãÀ Y·4ÏêÙ&‡ùFÉBŸ©ÛÙ0Í«Œ*±OìVð®ÊÄøÁ؇ÈS{V ¼{aeÀ›VJ¼wa’ߺ˜v¿J§Q²§À¨I󻣈­3Å.[hZ… Õ”§Òm«HìDÌNÉBÛ¹©ênÚÁb¸åÀì +NY µ(w[OzÝv—5e3tKyÕ­yÅ’Ýéì.ßX­m#y'Ù•Áµ·Zw_ÈXH«¦;B1Û1Ac÷Ô¹l,;cUê̶%NU¸jäù+×…uB 4Ö ½dy½Ø‰¡ö÷LSôîqØé¦ÇÑuëÚ[ÃecÌ­WÏÉÜzì­NŒºjy¸|2:­ô˜?ž»:£‡?9óiÝu*1ÍòL§ËJÎ+©1‡ËÆÀ>&­Ð\_Ú‰¡—âÜà ¡yTrß…&÷Øï<ë'ìçÌa!yÖiXHB޵ ï]ñ„rN—Áý<ôÊ:§´½÷áx®Þ%ßXmnÍ'Ûc¯ÆÀþ<üRÿ6Ý|¡¦lº+#Tö`Žíàˆ1)ÃN‘ÞQ°K‰}ßL΢µm×ÂJÅÖ'ƒÂWJù ¾ QhÉ«ü-Ý|¶Ï£Ñц6‘o)‹‚ƒË¤†ÓÎ݉@eQ›üÍž´&Cæi.š©æNép5wæ·êhÀN Xp³…V[19NxG°âÄKw.+ÌêxA°V6 È2Ñ·­˜Š[.ë~Ûr©Ø"€tHãÑÇrb‚’ ŽÃÈHÖæÄ1E%¢Ÿ[áBÀN(ä꬗­@W`T`Òc5¹•CåuŠºÆ<ÑmŠŽçO‚ á ¥DÙ¶èµcê¼Ô‡?˜wøiAlWι9uu¶$%¼R×¹è£è¯y²p3Eú–±±hlÚEm²ÙýY¦®_Ü Ä÷ÚrcäÙ‘x“áP‰ȈΦi9úJîq ‰¹š[¬~‚YcŽ"Ï ‚ˆSÑ(rÂ(rt`ž<â:1q˜g[„Îq3å ŸãbŠÕtÜK!ˆk)º?›¥uMØÝOéN±;­rƒ2¦º3»( ñ5mwiTé[Ö…Cë¼F×bWžÙ²Ÿ3è:¡½ ÎïЛé²ÇîšC«X‚È([–©¿UÞF×?XZðïXZø7²5Æê¡q›+yÕÁÂ}®=š`(g1ïÓXHô®òÊìËΚa 7Cnœ ODn› °L3­[›Æñ6•öÁ¤’ôðúþ¥eáVþN&E°LcŠaú2BW¼-ÐUÏLXµë= ŠÍg>¼wïš+í ‹7öCs^4—ÝÀÇÁÒɤ–½ü1Uÿ2ÑAhÜBÕ!‰6²ëôæýîu xì«–qŸq¥]›pËU5¯˜~å¡óV}¬—IX¿ÙX\sO²š×òÙÙŽ.æîà,ß¼˜œåCŒY¾íP¸FMÙE·qô /knÅuò“Iõ¯†{«¾íðe*ÀD‚w‚XøËÅÝá}NîÜ­†¼á¹?‡q¬Ín?¨/J•7ΙhíMqFèv©]âÉé‹kˆtålA0‘àÈá5˜·‘I¬ ûñ[‰Ss˜Dë<ŽŸ<˜;8#áÁÜÁ9‰€ÏJ¬Ó­ fi¼ó=´£‰º²f-©ÖhI67VK2Ñ[RJŒW_w` ΋9ûèG÷z`<áöÀ|Â_ì!wàÖÉñEæ±: *²°\t™’ÝÜgõéØ×¬>•åu…`ÍêÍq¤yA‡"¦Ú‡êÙúº‡F”Ù5ß± XHjríGðáCñð\:–a¿UqÜ Xk·Ä{ü;µÁá¬Äá„,º¨Î2EÉ–uP£ØËZ öùäqSÔ,ÕF¡©òYãPœ x‡×k[,zJðº%œ«vma«–Ý(‚5¶zxÛÂÏCc)«>Ò€%pU,=â8—³Õ5Ts`,,]³ˆ«CVa¾•˜ÚÐV¢U²ö)ÞÞмjfÛiÀàjœí‡ x ²Uíî)ëÀj[™‘2[š¯”a »~í ‚‰ÝÃî_å’}id{¥‘ûÐf|T° ë¤ÒÔò§.f t3«m†¦xƒJ¶ÍDÕ7\s(4âV_íÀà&¦jš[˜^vÕ6-Y§"vï·«§Ÿ·HôËpv+ÕÎ ŠëP»Iâ; i8«k3ë– ¬…³º¶<Ø×E0æ–5³+%»÷2Lós”üXÐXc¢ÖèšeÕêaw4˜öA,Û.ôzÆ•…öû¿.kÈ`‹·;øºÖºsŽùØt–q\“X{8fÑ–Õç&E0ì~‰Â[z#47K]ÍÁBR«ë=Âp:lÕ¶¹3î“»v]­ª×~-ÀXZ‘·M¤¦°°Y©-Áôvg7M[ñºPcuóbÙ}ô2¿T¾Ó˜w`ºÂZýI°¸aÙÈr÷.•²¦î!¶*É¡ö,Uã¶cé¡×Í 0®9d\Ubt%¼Œ¯Ö­{äË1íæ‰¯dÆ%_¶U¹“CŒ3±Ýë}«{„†B”ñ˜ÌÆêî#2ožÄºˆ':yÊxMS½*'`6½Œz+PWâùµTNÀâ¡똠y-ãMÅD ¼dÉðxÈÒC·­Ê©¼à Ü ª·êí`®6Λ(\!æä,$“ûà‡ï„§1Ã#œÉ…K8«ðð °œÂY'ŽßP©ï»ùBãf w¤ruoÞ rxée8«è¾“C l[ªþõ\BãI虺 Xضt]#¸´u~z$²G Ëîºd¦W`š‡¶Šì‡òã x (C­å9p&ä,Dê+Ò\ ®ÞžûjQ笵s„ÌE°ü-ÝJô±‘o+Ð{@â°K‰§¢]ý•×`|Œ´Nï^ƒì©°æÖCSÚE˜´Z+½p†ÌË•æUÖ4žÃ7þn XY§Ρ{='ËX´‹AÁZVIx½ÃÝY…‡7$‚ºRˆ…¬{¡Mœ5¹#ÚÄy“û¢u)Ñé‡Ï­ì$vT×Uç€4Š÷Sq!M]žQô¢ÏàŽý'î øŽO“‡Ï¾xž<|öŃçQ#ÿ€köeЭ‡k¼â¾HÖ\€ îÇó‰£Áy¾†48Kð]yëöCí«SãÀë}l 0ÅShxLñ“RžM?+åÙôðÓR¹ÎK³|+{ïí ‚$ïùtËœ–fƒÍ¡×n?Âù²5„ð¾ 0/zŸ¶†™:®; Ö‰»X4š Öˆ·ôìQ§xLÏš@¼¦GpÑ>´=,*M`ÁZ1³D /S4ÑÉÕ—š\­ñªÉÕš€¯ÖÌcºU‚Ù`L·I0Sé{.ˆ S-a8 É­j=¾^±wp&ÏmÎ%ÄT¾Y©ª˜rm y†– ‚•©·}Â5+ã»ôs{A°‘älš‘ï‹Þð ËyJñL·7s3ÝNÝ 4¼N¢©3q¤Ñ~;±ºñ´½¤åÖÓVïn>-¹ƒæÏn%”çSÏ]øn”ãzÉlÈY3ØLzf^)fíäI«âiµØÁ‹Á 84ŸO\e%;rñˆz0³›êÛ+a›^°–°é ÉÑdtÛÎÛLÙ/LÞ¹‹V#|i6¼ŒãÔôä”°}AOšt×zÕd_Šâú° žÎŠ—MðzVCâAlŽ^ ¸^<¶Š“Û7p—8«ðpPÖ–Ïor,æ‚`ÒBßãÌÉ%αåè1Ó˜eËÑcìøëÒcÐù/¼Á¬ˆ3¸8Ó¹°é‚ÍS\÷toŠÛ½)n÷¥¸/ýºS £¨E¨®‘ûXT÷Áb½Ìy v‹ì@,‰Ùüp¹Øù–!úÁ2U@ÉJ›02£%‡çß‘BÊe²€Å‚£$ˆù—¹dÓõÀT“°šö¸8ÖHE·lœ!Ôä,$·(.€qU7¨‰"玷}å­Nïã4Ÿu/nÜÎ'áËuO=°F(Þ¢é0µý:&*-º€¨n:lw( —ª5Q£Ú?ªw;ThºhƒkÞD-Zá'7Q‡–©´AfO™™rú1‹y¿¬2*´ªÞª"”¥EiÊYÄrÖ ' àð–„]™ÊÒ­Ù±0ï®EµáÓXÝ 6kîn®YÍ⳪<ó2Õ,²ÜTÊ€AkO¦ŒÀ ÐLÑóa©dWáhdj•ì©&ú«RêÚ~e0ñ™öõŸx¯®×¥Ù*ÊÜŠ¶9GR) ~ˆ<×Áu¿lZY‡¹¦•ukÔK\´ÝT΀E›O掠EþÜmlªÅýÆZ5Ëq,Åe‡)“›GñÕ¬ÃÍ£xÊ}¸y”à2ª|àE­¼:ÉUKç)˜·ukôÍŠkuÖ\Ö¿lÊÅÂd”›¾´n…­‰ól¥ È“ƒU MpÉ¡xƒJ· ±ê'€ ;sé•ê Ø™«õ¸v©|ì… µ: Éä¶²€0˜™Vóq× µüE:«êxÈ ¯Ù2;x—ž8€…äJOð,ËQ‰¸€5õù[r‰ ¹9Ûá#íô2ø¼;R;8"_:/ôØSˆ^û:B\qšKo×[‡0í"ºë:ËÀ¦Ê‰··â¶ ˜Hz´bÂK+6wÞ*·–å·Üª_nË!º×ruú£w[,,S}ô&kôæxp{¼6Æäi×é¾CnNއôu£F6wój z¡©Újs+M­Ó/ï•u1Rí{ø´ªç}•¾bdí ‚‰ƒ¯Yu¶Z·M|¶ÏµÈ^ã<øê^ç<øÚW­ÛÁ—›<Ù81ÝäÉÆ‰áæï‘‹ÅÓ7¯¡¾ ˜<¹‹Ú¥§ŽÕ>qæeÑG©YCXÇp5-‘XWÝX<‹`Îâ× 4Y\…T€±gêl:«` œ¢½4k¾ûqx­óàËçÅu,’ý‘p.˜ìô·™ÁúoÖ._5ÇsûšlS'àú+x@äÁ3ÐãìFD…Ÿ™û©1¸‡§«ÐM7âì÷lÁº`0‘‹ØŽr/°X Ø’{òH6i»lšïÝ:ê—üBËh‰¡7ãµÊÐCóZh­µOÎ÷ÀEa°ÃGª‰—‹ÛÚKÚÄ<²d0Ïô´Ý¢ìÆ[¼±—üEÄÄË$ÉßDL¼³—üUÄÀãç©ùZ¿Y‰W}¬¥œr÷V³¥¶ú¥ñ J/Ç7žAéÑùcªô€šBÑ04ÑON¢éfâ뇉¤‰/ róÃNÊšO-ìšMòK§Ö:NT£wZ×yy%ù›&‰÷W„Áfú}ÂèxÍ­‚“ìýl–dîwØY™¬ý ‡±Ÿ´K—‹›ÄþÉÏý¤8 p\ÆŠ©è5¾pÁøBæã ÄÇå –¢è%Ø–‹è@«ðšPêÑãëƒÍܬ6G¼züa.õ:-FìúUâûãÖVì;YífK#yýR«Ä± t“æ%>VŸÂžOx½¨n–†zI dlzÖ<,t$ÏkVã'òEŠ]13ÛW¢ …³¢Äµ|ò7«—óÉß­J\ø'»*ðºØs˜ÍA«b[±'¾Õg-ƾ“ÕzNÙ/®I«ðeºÄ‹Äy}âÁFÒbÀ‘¯\éq)ñݸÄ+–‰oo%zfJ|­+Ј8ÒsyºAëð2¹u4.ùkŠÅ¹ vR¼ÎOŠy}aXx±%ƒYŒ·«µgwÆd¬í#X•%¤VBä;RGQj[ ¦ÊV1ªl=ÎRV¹7É` Ô¿Z‡×õú½,¦9«LæJ˜Í¾ÉÜ5É7h ÖÆ›Ús)Fç÷\¶ Úc¸Õ‹ãeõ‹i¤øÂã •ý3¾PÕÿâ ÕRD[g;šƒ f3 T7æ@ ê4·9úƒI臉Âc¹±Ç'’–õG— &´¡XºËÒm>Òô 6f£.ô¹žã5Û;*SEÃÞ›9¨9…ä)ÕêÙ~‹˜i©/«¡¶â<˜ ÍF 05ö°„…|þ`×oS»Û \!0M[ûá1Ñ:=–þèj£#˜ÔÖIm›¨z_9˜ßåm acwŽ®S„ËÒ*R©v¶ÑÛSm¨_F ú­wŸƒ‰·Ã…ÁF>š[^ ÷u}ß.EÇl`îk6Ð5èÇu6@=Ò|«ó˜ &tIxTîëÄéhJ•÷®yÁøÂxÎ=sœ®òOë Ïv7%ß ­ØliªÝXn¦3Ú½%1/Læ¢GI¦kIâ óMNÉ`ã5µãxk¤ViÑãçƒÉYaôxâ~éñ=Ýózî¸~¡Ý÷…öq_(÷ðË=ìqwÜÇdê˜ã¶“9ñ\OÆêù¶Ý‡FÓó‹”x5ÅZ JX­¥ë ÍR 9Àâ —æB}÷ÖØU¦•Ì@`ª|Ù¦J×[„ùÁ×–sK’Á²KËšÜ}÷ôànC´Û–.Ì~o»%¾¶[Û{ˆÞl‹ !°1ÿŽö9—x4´ _©It ™ø:yâ-¬Ä÷Éù 剎cR÷uíg„ÁÖ âð6Â^»Ž‡ùÈï4iI2˜–~ZAîn€M#—¥óZ¾`0™~?ªîë¬ê°]‡î&¶ŒŠ¶iíãž6múrY]J›„Nlù‚Á÷há«NœÇEß·ÈØ\MD»Ù×8æU“·|Õ俬ôZ÷÷iò)'f 0•¦GÈOÉ›í5tê™S/ijk#¡Ù)û‰ž´_êLôh–4kUÈ÷òùÄ”¾ôB¦ki25J&gâ;ü­H¾AË0NS+1FsFÄ Î%%‰aF„|um^ù¬¤É`™vÎS­Âç1†Þ©ï ê{‰w #B~–Ï{Š©ûáC« 6Óí»¶Ž×)„-&÷q|òm©?¢% OljGš­{Á`3>ûs¼œ˜Ù¹cê~``B7hö-ïÁ³ñ²˜œrׄfx@`jfË’&¾kÒ¸å/7Ü ›smßu¼Ük™G½D?Û©’ÁÄêAmÓäæm‰û Ãý`µã‚Ádúˆ“x\â<õÛÐ(sHsÚw”ÓSž>¾HoLõè#±¸1Õ£…¢Gsjrÿ»ÀÌd²¿ ùþ·mM¥é»§í&Smžs²¦]ióLî>ÐxV(®5ì"põa‡Ñ¾¢mØy8”Ã~YÑJoð¥ëÄ[°‰oG§¦=‡"Q ¦öA”Ê@Æ<´+ÂT ÕH%ög|ÌhÀÄžŽ5öHŽU2Ú«a»jÀ¤j‹Úåqg»q3Óü&&?÷µö-âq⛫gK‹Ð8‡nÀ¤¡Ù¨#wãÒ¸ÓÄ—åNf 0¥“'Q8ñU/¡èíÁ4 —вû§ç»äÞÕmZ¸0ØÒÖÞ»„—•Ù&$iS½XYû¸¬®ˆ–‰´Çúv¿`°ësbv»ð:ߤY²fb\0¾p™Sß.¼ìAÛQ|¾~ °Çuî´vÈ›ö¢]Ž [óÙˆ[¹»ÄÝ0óv~ ´ÌؽdLŸçK¾5¤–ÀÔœZF;¾äVuÌGF 09çŠSùñ8RÄÞ;%ƒ…9wVëÁ¬Éšcó{3Xšo«­k¶íº¢Õµ¢˜5Ö¶ðÕäXKHŸ¬›lLîD´¥­YíjÇM+¯ÏyÁø‚Ö2ÑVòj[úÂDx²%ƒYÁS+GŒ®)8}Ö¡øÈ;›3ó%­6©¿¦´ß“Î~o*}_!‘Ì¡R"S;®ŸºÊ4“ȘSå«ö¡Òõ™Vï—Y{ß™/k÷ƵÃÒ¦ÚOpÖ¾_0ØL¿{j¾‚XZû ÁOû=ì{¹÷3Ó½q§t_Üí¾¸ÛÇÅ­Ò-ä[eÍÖ¬5D´çqmÍÖ W[¶îºZ2еk_Á¯ôtÁ`k·¤:_»%k>½âHrXÛ±ѽÝÇGKí)ŒHïƒIÍÒ"ÍÚ‘X©ÖN”·Z*;a|¹hÑâÛµwâ –:•{¶åâˆö7|µ.¦Nø‚{Á`375øÚA¹|ç~bK¾A‹Ù’¼5SŽÙ´‹{9èù‚Á¤¶ñ‘Éq]ýX;RnPÔóã <õB÷SÍhV}Ø‚³_‹d0ÎeÕzì›»3x¦ÊSgnÏ…Ümvä÷ðºí1ÈÃb/’ÁšvîÜÕj¶.h¥_ø¦³†ìD§±à“|Ì:ÒûÎR:÷‚ÁFºkôâ#^ØÃFLÀ– fµÓ{o%ŒÈànBåyM¯ÀBÚ+ÏWùy —²3˜§¦¬nUD´lФOjä³^0Ø´Xù®—|r/ª(§5±¹ª(Ê­ÐÊoßRxÁê5˜gŠ{s&ZΜ9L2òçt0ÉÊŸÇ$3GnçoÏë,û’~óØR\'ºÜ&‘6Én·Ô Ú$ûJ^¸,›?˜ÃùøÀ¦·n"?±´ ¦¤×%ì"È7h#|'óÖå ¦†t8Õ‹)§ ›#¿©c—áC<É`ÙÍçé­dƒ!1xo9Ææã‚Áä­lŸ…ó¡;÷ RhîvÁøoe‡æ^šÛ6·Ì½¢óm÷²k´p¼¹ê•û |8VÇP@`2'ÒB¾kÔm!E¯knÐ:ÜŸÀ­£K¯£6á#ŽZ) 7Õ€,ܼ§Ý÷Q²]0Ø´t¯‹Âi9^´-98ê¶_»d0ß9¼•œÜ¨s—!ü,ô~Á`ÒfÐ÷ÀÏ´â¬þ"øÀžëAE¡åZIúD^.zdLîRÈÓ…#¿ÍÃ==kîƒ-ûLÏ•ðq))xúð6×·£½Zã*ÎzKÄ~ 6óZ×½ˆ¬b»;ý(˜‰ d0íñD5U]ŽC|Ó§ÛsÛœáÛõêIWv½zÒN¢{¼¢ÏÔ(0€„r—HÀ·‰l×BÄ}în>lû2†è¦ÃT“^TútlŒ¥ Ü…JÇæÓô½HÚ¾Oߊ옕ÏípmDÚ™ûŒ:žnPáºq+p©ZÚ<ûù ¦OÐò„.¥éô:œ0—eCZxR«˜&Õ½ùgòЖ sê¹ X–¨3jÂ5¡æyƒ¶±|pÐ4¶dz´ Ü0ÖÞñ“o-s&ÏZöÒŸüjAŒzƒ&Ö/cwË‹~Q£ãmCÅAñÕ¾ õKÄa…+/hcwîphm^Ðèà­s;v`Y2åñ`ø×ö»{t·­ÀîþÜmϰûõf€åËû‚ÝçB4ë1ÂD¿Çlˆð2²wýJ¸mÂw¿n{ð=¯ÚßúºÎÞÞSð¼± ãŠ3‚åÂæ•`/6n`ó²Ï…=·X§ä̺Šà2ÈClj[ÙXFoÞŠ¢…Ù[ˆÞÃíÂJ¼áaVâ €Kßæ{ˆlM4™kTÁ¼/sLµ>-´0=nrÝ;.^ãµÛ,OóÍ—¾fO(ñ¶™-ñ¶“-ñÝ4OhŽz#;wúxn p¨5{‘kÛ\×{#…·Tã= vöÊ=%ÍðÊ¢ÎetÍ‘àð ¥±ó¢#s_€Åû˜Ê=€žGµêÚª¯‹ízPu3v» T݆`°Óº«ºö¥q—/Kd «Á¥ƒë²l E°ì]0Õƒ½ –=4n+ÏŸEÌÝv¿ÚIk²â¶U£.¦%¸¸O7ÁåÕmà}51)‚u&6+¶S<".]mö¸ Iö‚Ëó½Ù¨É[²Ùš²™^VK¶wÕÜ]=ÖAtyË ÏÆ*ˆð²¨"ù“Õ˜¸æÎùƒ€Ï Î \¾«í¸/|WÛy_ø®X›2Ãföy)Í2³ÍL³ŸÌ ®ƒYTâñCyâñCXâñC€åˆ‚þÂ[ИÐá‹Kxe#Ò‡0‘xé×v¶ª—Ç1ý]dzø«Ž}|¦WÌÌ=CzÅÌ] $¶‰0ƒeÏR²å5Š`Ð=9ÛÁYÏžBO ü¥9ƒNø¥J— ÞŠ±AS|¼mAcÒ;½Ÿu.£N»q('f,f,=.=·9É­â”èí¢Â¶ÂÓ>3–-|YÌlY‹´ž‰þ²»|å ›+XxÒ\†êŒºk8 ŠÓß¾}A0¡<ýÄHp½}a稺è>z\s·T]r‡èf»ñ†¹\r?A. ¹Ÿ …~4bÝzúIßÌÀ2羞 ³ÆÝ×9ß°ó.í2™‘ï2™y‘v™&\\úúfÈ¥%•ÌÌ@â…æ¤&I䀮,¹=3s ·î+³WúŽí+KßÔù‚Áä†oì:^[»Nq»Ò*Ll@ªaVlU’1áÂÒ7_f 6H½ %l‘Æz„wûÝõé,ÀÔ†¨*Uš«3íB²÷³Ó.1û`O´ÆúÉã­M©\°±y¨•|‹ÓñÚâ´V¯wŒÀ¶]iö…Ñ:®4;7½f 0->ü­½:×k)ö{½`°™ ?\ÎëpyÚqWvƒœYÝý`àV(/ã`úJÐ à^0غz%¦«×«Ä0Ûk•lL3½Í\zSö•·¹û\שÍãgŠ·ÆÍ+hŠ§Æ‰–þ¤£ô‡ÏzÁ`3õ¡d„—Ù¢)¾žÎlŸUl|+j‡Ue1yµ:Jù¸`°y¤%­ã®KY›B)R¶‡d0Ç_Ì·.»¾5Wëò¶ù’ºA+ÙäbõÖѧèÉ"Ém’+.jÚ$_\ŽZÄ9â€Ò¶…!ƒe)æÆ4eß—ž<î*Ò+G °*¿NÝ"ÚÅôIñ‰ í”'÷'™{øÕõºÊ´ã­x–l¶@`ZªÝ€èò&7žåRÜ ›éÑ>yE|]×™¥]ˆgk—ãáy¤Ëá0Ðåhxò˜+ža£3ŽHÝ>3-ž/âË{lÐ+Õ÷l³_ìºÉ=ß­P]ôfEZ¨q»d°r¯v‚ƒrg0v?Ô™ý‚ÁT꽎„—9ß´c®Êƒg´!ƒiéÞÕ6Mv›“Ç[ñÜüìlLj…·IÇk. }Riþ?»d0Í€KOÊnþoïÈÉ8Àª›ü„Ý:ZÕ&µÌ%œý:É”k+T|Œ;`’ÀÞ4$ƒe)Þ½uÀ)‚3hˆ  î8Íuä3]è =8ÇáŽΜîḲ›MO»€W¹I`§_‰Nê¬Xþvµš_ˆÁ85oÀbZy¼îÈ×gCÌÌÕ” 8M­`ƒË/1’ÊRµ2/̦zð%®«š¾¨³fñœŸ!Ç*)È1f5|-vJ¾Aop†wëòáz´)Væ`K)V]ù«æåGÎ.À f¹8Î Z†Ç|C~€À½`°éà"ÆWáË Í€)uÞwÉ`6˜ÉÕè$C ¤=ääËÒî×ç‰Ö+N³+öAf 0•rµZ¹éðÚèHAö8Ý 5lrJtëh]᫉>g¾©&õ[S-ù+RÔ ØêÊû.,˜/©–a¾äít îªT¦@`5/÷[Gë -)Ýà^0ØJ·kÁ)c¬¥R²;?Ø–z?l:–)ë¤Q,·±2Oôw²Î|SÃuÕMÄ|?‹šbF~iÚBID—÷ÆmÙ†rozZ›¸”¹¸ùU‚IcX÷Åœ÷|Á`2Ý#ÚMÝÖÂiF±u2'Y2˜-íVòᦓf°<:9À¢ÆÃÖŽ£xOÃy–Î:Çä £_ýÂÈF¾‡ÁÈ4ñd]0˜E}Èë§0>šY}^K´ì×òL÷”fº§,MS0®æÜ ›ÚOÇŸŽ8ÿ”Þ˜bKÓt¶Þ(:É·]­´\Ú¨Íð½…šìí3sŸøÜðÉ SÜÙåÚGgØVŸ›\e³®‘à k›ÜQvgA™o,ÈÓX &µ]÷‘cŸ}•ˆô~­’Á¤æ «yË£¬ÞR‹k(k ®¡$OÏWª×þ\Å7–°N?¬¡CÈ“|ƒšß=»Jž^_©ß›ãzÁ`RÇQbùZbºfÐhQ§gÈê#…äá©ÌH Ëð F3Õ'Rïe(3VåàS\•>¥ßSÓÕƒ¥|HËRZÕæ y“3¨£/‘ã‚)ƒ×â%"ÜV‰Ðx•cÙ!LÌo3Y™cšH 9$ƒÕBW;Øb“iᯕö[ Sœ“Òïq¤Âs׉™yä i_ù*šÝ²4[ 0ep«vNT½LËeæw2óÀ|×Ç' 8·úÜ4GÍ{“ –™Újœà¬ÝõI¹ÌºON °hf+]s\fë¢&7ùG¶_{ 0±ú,Ñ&6¹H“«õÙûƒÍ•¾FwÇ5Æwjêg{³ 2˜ƒ»·.Oo_dÉtÉ7h иuyxÉеHwô@`1ÅU<¢L‹Y}¹KËRZÄ1¹ƒëuµé,®íÕ®…¢ec­^¼$G 0mUœ¼ê*CìÞ$¯¿ÌáûF·ŽÊª?šŸú.Ræ{[±‹t†GúsÔ/ñÚE²Ýð:Ø’oÐ6¼ïu+¹ì‘Ohª,-? —½¦ˆBË›†È1·À¬›^„¼us{«×ë¯3˜–êâ_j«„hvš S4É´'æD¨zK°ÕyN,),K÷îíƒâbh'ÕK{^°1åŠsDm팵Ó)zë v†ëLçÂ!楄l‡X£ò” öŠ“Zdž'©ÉkN/Õ´_0˜Ü'Ž’¾”-\tz‹O{ °;L®Ûá,t1¡Á’\9œÜ ›f´1{$NáКƒ;þ'[²1mÍ¿wŽÅs÷30Ìž×5YÚe&À-ê-û³cb25p¼v2‰”ïÒBÝ[„­á÷â%œi!sÔ5¾¹Ê–«ø{:'3˜Ð€û.&Q fÙôœc¶·ñdUœÍƒ, ‘!ÆsŽV±ÛäÌÐlä''†f ?9/„ÓBÚQ³Óî}b³7'Ð1f‚açsÞR’°Ê6KÔŠy%^Í„‡uE,`á|N¥£“;ŸÚa~ÉI‡“g ¦ƒLŠQ\ÓN5CSDh;àLªïmÆPKkTêË”€ Ú®6‚´†Ê‰²‹tpr(‚17:}„8ôFhæãîºñd,h,Œ\~é_p=ÈŒn½~-=<Ág{@Ò„?«®ðŸí=Å®I±U±lzoF,©xnè.Ø2Ý[Nòï%IØVYžÅ@‡-'3ë1o«n=üMQ›”™*v•bu,dU’=ÊÒÞsŸžúêÀXö|ïÛºjÕ·µ¹rVÞÚá920.ùA:¸zà ÂrÒ ðj¾€HöŽ»ëÀs½*–ç¸æ4þN3àô× NÞ‚`ÂViD: ¶´Rj\t1)‚ebPk˜è ͳâô:Æšâ *{;Š×»^Ò@hMyÜÇ‚`!¡{”-Í­æJ™Yyyž`–-öZ \6Zx)ªv–ïá,‹¸jÜ"Þ6ÎW«ëÝæ¬¶ÕÕ ÄÓÞV}›Ÿmœ,`ÍO6Ö4•†jõ’š°híËP}›ä¬¸­H?6Š7¨ì­p­ Ñ—Ú hžBžá€Ù¬òðE¥uö"­Õ(‚Q·ÌýCKöU˜ì*Ýmósd€²¶^xÆŸ•“î,šÈ*74õü˜MiULÁ˜[.jfŠê­”Ö¤¾:æÍ>÷hžy±Ï¢;\ dëä9G¾€™OžÕ@½äk¥¥SãLlRxO÷£è܈”á‡0Ø, zƒ•Ãüød9ëLfq}n -}ŽyT>&²¡Õ /zýX¯Ü#LžÏlîa&MpCÎ^–¹ÃšE0²½ ¦š·wÁ<4,b¥é‡0hÍË6IP|$µ7á|>ž¦°Ž-VuiK¾ §YÃtä™ ‚æmýìÜ…»ciRìâ9Ë0Ñ·ÆRó·÷²ÝaåË{VÍzw¢¿ºgÝù9| á€ä • bS¤hlU%6‡þn•_2q•”Iè±¹ XP†¾>\ ëÜ<ŸÊy§Ö© ³êø﫽l~Ft†/q‘ª6._ô5WÁ•gà¸qp¦½Ž;—ž J!ÅTï¦Ý\ˆ3Rh ŠÝxÞ Žíx^%Žýxˆ¼uïƒssž ,Ê‚`á‚fô;Â0AD·ï Îù‚Ì·Ï`M߇æ(Á]gó“àïoYEÇË]cñåÄ{¡ž†º ˜¼OêéϼëZÛV¹^’ÕÁ ª|¾Ÿ PVra˽Ä\€…ÅpR ðDëîÃgÚ6Ù>Óζ.QŸ¶>™öIÛFŒ)‡°šñ¾XcJÆÓP)ÀBr±F°Î¨¹‡ŸŠ`œIå>DßÀÏz1ÝËöXÐXXèã|k}_m¥‹ÙeP~Ë2(‡èåVqqAü ÍÝÛ†²ÚÊtª?6`á ¾ú$AôÊs…Êw¸²] ã+\VÍzƒ‹âqðj½§ -î²—hÕ¼”¿tR1è%Øó\`Nß“XÛàgµm3Æ—æ,s à-ÉÀھ̅ TÀB¢yCöÝ‹ÃN•vßËÎ=ˆö Oˆ*ík›K=ᕹ*’G„L[ZºQˆ'¼Ð÷eû~ÒŠ[¾Ÿá†Û½Kö­%[]¤½P‹wÉ7¨sZÕߺ¬›í™«í´‚uÁ`2¹¾g븭J°3%>Í•íØC.1¬¸# É#J’¶ú#â¼`0ëŠãváµ»ŸáàdgÛ’Á4›yiZ8HIÁ(þè8Àë1¡²Tˆ\šh1)‡-¬ !ŸPd¸5ñ«ÝmºA3pÛú[G}5Qž)¥®8I[ÿÆ8…fÄ9qBžd°*»•œ“×Î’B÷Ï@`µeù.tQÿ:KòYež 6O²×£ð±êgJÒ©³º{"kîœH²oœg)Å|s^°1u†Z¸ì—T›ã§i¶YÄûŽPÉ—ÔN;mdLÉ`™e°Úähn•ý‚ÁDêKŒ^—¬çem}òÝ7½Y~ëhMij/ÛãÌ#S 0éÂJë%Ù“úb<Ó6T<ÉÆš<ágþy¾ï ØÒŠ! œè‹arèž!Õ#rvÁ`º«×ñZ´ä±,‘JÚò&ÏeWCÙÏ[³,A}ÕÇ7â–V–©¯û„/ ?èÃÇ_{x^ìáF·Ž.C°Yk‡´$É7hÞ1ºuÙm¸—¦—BÀº`0iEU¢‰/šÙ,Bé"—$ÌÂGÐn]Ö8Óø×%‹6T´Çjn‘½¡U˜u…¤]Ùñ(Ó€Ç|I—áüÖÀ¹dÉ`˜«Ã}¨Ulð©.ãô•BÉ &ÒÛ|½àø²d€ÓC×È%ºAkØäûÖÑE#Ëù!g’%“Ž1‰b2ɇ¼s 0ÍͪsDk”+{ZÎxs)Àä³Ñ6–_0‘†¾‹L¦³K¡î̇²Ç̹ž ZO äâ*t2ÓdÈ,"·€Æp—ËÙv©ãi†\øC”^^®šÁijž¢L¸­õœ­Q½è)…ÄÖ\y°„Ø ô ƒîmXýºÃT0órŸjíb9_%êk‘Uüa…äÜ {°å¸~ñgÚú±œÒfóNiÏÜïË)-ÑrJkõì.³y'„ V†ÓQµw‘ ÆP÷Ø.Ì¢Vï1µûˆÓìC[Œ}G °åžThzE®T+µÃÌÆ^N !¤[œ®I"Î@`š6Ym{x Ä´ïøÞ¾9nºAûØô†Ï­PË«Vx숞z\0ØÔÌÑ[‰Û¥¿fhg×kG °MCûÎQx0}B­ïmî¸`°©µk´Wiñ¥eàF•g.v‘ 2˜¦¹‹úGCœQ6½ÀN °†»%½u7CLŸ öì¥Ü.l¦~’&.«¬ÍžôØ•ZÉ7h#^ ¾•|äH--ICoµ S–°Þ.ˆ/£~¡;UŽmM2˜•ö¦·’yX²ÞâÀ¹J ,Œ½-­ÅiÑ­°Ü ›©?‚O<._€}ið ›ÔàÂ^ö¤…ieN{ cºe*s+Ô"¿ýbI[z 01ŒÏËÌ ËXgwÚ¼^€.ýÕo‡yË ¶nˆyÏð;bKÃÞÔOŸË6fÓÑÆqKkõ:Yœún@ öÿKÙÛ¼ìötéAM ÄQ@÷Ä h~ïÞ»>v4¤Ûh#’è=Ph ÁQ?G1š’8r,8THD2p *ˆ‘8È ‚`$ÑîµN”HB÷ë^×ǪºOœäñ² /°?åŠ3N! &V/n/>— -Oi)Pf"°h±ªÙ°íWóZ°EeŸJƒ5à —Ø®º‡‡rÉ64}¡UÄúÎmhkCìQÃ9O5G«X§¡‰Ê¹Æ]Û¢ºVæ†ÁÆØxy¿Ø–uÕ mRñ¦BåwRY~Ø­R¿Î´M©Â´øL=p×w~WeA°¢«×õ޶¥[âç·ñKÕª˜°æ×JÀß«0anž9†³÷ê£ê_¹Ñ°v}›‚ð«X¸iЬ€Î/uv«L~¡Ú_Rf#i]6­ÑÌ«U00Wºõ^1S²•Wã±­CÏcn“3|‚înñ-?k3 ÆÉYû¯¾t|;3k¾êº/¾D)Ç<³Žx Ýk±ˆ·Ð½aº7àÖî»|ªš[[ÌÉK˜ ¸Vx CI÷º²µƒÍ¹²×–‚kuùTc„ê “I°JDìP ˆh. SÕ#ïtA°pãV±n:Ö§:Ã#3dI°úëvö° véx„;ûn_¬xGÚ5\‡"¨ôrœ”‹:º»&7~%°mì¾Öj­÷uTòi ë $À:&Ùð!wŒö‡· ˜x€œ3.½jÃYN1™+uj¯{¸UsÅ˃tí6£ñ²äø Ï*Ü\ƒµÛ,Ü,·Ì¼g‘ýý “Û6ñ^í6NÉ®VÍ%®úøm,.ÕÇFöñXàZ‰+!¯°£¬Uy€±4è nµãÛ,,4Õ–F¶fh©nͤøöÑÌF¿ä>šI8ÖÑÌp0?8?nƒI°n¼nÖìA¸4.ííS.Çáo Þá=²Å \k}k ™kð…ªÝVS×É1¤Ùy ‚yþ´™nfç<2N¶½a&Þ©æGtX~™õ¬ft´:†c¾ë¨þU;>ˆÒ¸¨U@m.N X9L8–UËS¯aB›`5E¶‡×XÚ#gTsA0çG›¸iŒ¿j“ΑãÎ\0Øô[n•”àÒHµˆØeµ6 À|n?g–}Zcä.›Òðð°w·.Î1ÁeMŸâaElÄÖÂÆçxX=°ô¯Gë~€…m<Ø9f3‚¯öÃ,ÜôÁžAPÜ7Á«ø{¶Âh[ûE¯UŒäÅ™b? Àº~j«ò€ƒûü=ÕÀšÙ2¢!ì­©¾F]oCà‚¶!ƒ‡àiH2xGÀá>ÂÃ_ Z· [c4ºN°ÂEpÙc<iw]žÀšKö]Éœy ^úòµüŠ=²ë|O¸Ö¥-‚XÑÔO0/5ÅïKˤAÁ+¯~.&Ï?×Þ%O¢ÑûÿÕ/0›ªì{{‹m°Á=Á~1 nY-á5¬én C k€¡›%`ä5šb<_;ª=ï6’9—UD´=¶(¡™Ò°I‰à²)á&á°ùÃ)YŒ\Ü$68œ9Oy*ò5lÈ¡ÇÈëâ4M¶†×LÒ1ð&È2K7O´;G²ÊkØè¢°ÆkØ@*ÀLÿ–<÷² ˜Ô–¸ïÓmÊÚåì<Îp~>½jâD~xÕD8ת) U'WF1wŸ3«êýQR7ùþ÷8§TYàÎÔkECXº°sÙti0 ‡<u<â98%˜Ö!tj¡¼ûÌðìcäõð.ï¼"Ÿc»f+ëëXY_ÇÊú~¬¬S•}¾-,ªŸ²Ï®>ÿTäÒçõv/m^5”Wzk§¡Ac_3 ÂÆ?€Œ/g; ¦(w;Œýî/ ]î„”A‡áþdTÝÝ …Üw%íСŽô|OÝ Ü¦ævgñTßö%îm}‰Ÿ*__b€õ%æÇ!{_Lο²^8ÿZãeá4VoÃLÎiù68Y÷Y¯§=ß «rê £Ò­SŒäð~C¯œWómÜ``>ëVÆ™£ßF,³=ÿÕ­CÜQÕ¯ÛÇ¿ŒŒ~¡N¯ÕM¿ ÀÂû>ehK­¿xù¦5KÇÇý¦fM`ä[K»j¼Ôm>U¾VËk—¬oKkðö•öÕûÇ*]pY=Æùï;ç%ÃÌ®¤ßÖ¼„]ÿV{`aa«ö¨õ¹k q»B,°pÓ§X5Y=ã¦>¬žQS£ê3f*AÙî—Îv:3n¹ç·†ëôí[¿¼n‹sá>~M`Yp¯Ã¬ìüy,?ßs¦Á«çLƒp›i0˜ÆÂifÜ|çα€wŽ{DÓØ3«öÉ¢xg Éu:=P2 ‚1èU€¿Dà™oÜFWN&ÁnÏïxäîÛ"Ïsh‘[jÚC$È=DÖ7[îcA0±íšßÀ¾}[îëÕì¤*ÎY4;©êážÁZ>€å¤ªßÜz=Ì[LîÅf ân쪯;¤'™L~¡Òc[Yõÿj^©ph§Ê€¿&SlÎ^ɾÃÁÄž¶M$ Û²Œ@rruŸ‡Ý@E99BÒ;WŒ,WÇŒ\Õšè“Å­ [¼¬èý†w{½ªÏˆ±kåÕåp¥›· ˜ôüäž-g-«oc6ä +ÇÇX¹8"8ÄŠàŠ°ù*žݧ˜áÙ&[`y•µ‹Ûñ±`ÜɇeÔIM5 àuNTÈø¾N郣ú­AFÒOvúÂC÷eIÔNTϩݒì2 ·É™¨€5± ]¼Wv__¨ú×5òÝF,ÚUo“š6>ëeVÜ.#Í ÛnÇQ¢Ë«—8ItùtG9ºz¶žð³•õÄ!àÊ^]ºí–\À±±q?Ý=§,6n½fû»Ú£ÑF5¾.QïbfD£õˆ`}KùyI=)½o\^­óóryµ.Ø·kÞÖŽÇ·TÚñø’J#dÏÒƒ?Îò`”ŸR+-`7N<$·ÞZ]LÜpÉšjÛû‚10/¹‹f`×dHÞYš—,oo—# OÇß§£å>ÇÊÊW¤\&g–†jÛßqÎ]ò44§yšp; ÍcvîÕLÜ.WkÅëµPª¸·µ#ûZY¿T¶~Æxð%Gȶ X?í;ììÙy‡#;¿OÍÌñ*%Ÿl¼Êú2i°&ŸNcŠuùô.SV+±7Á9ôÝ ‚É Úœ¡x½>nŠ×¡1½õØU¿·‘¾×µ0´sµp7°pÓS-߯ÂÏNš¹»Xý•GfÖirOOCù§¿±ä–ƒzûñ¦&J®÷9—ï}ÎÇå|_À{hOE†ï.r˜üBå‡ /µƒpßåÒ¸$£Ó+©xݘgË…—€x…ù`ëºû\¼ž _î»l§¹n©¶Ý¦îÁ„‚ÞÖg„›ýukŒyQ³Öxn™J¸ÆƒË>¹üTŸÝc>ˬ—Î~?ÕýÒÑo$mUCc˱ù^0X˜c7¯K×Ê$Ü5®®Â}Q£Õbø7j´YDÒ‹ìôMï÷^úö§Ø¦£îÓè„y`ñ ‚‰ίáö]{æñé0,–ªé0ì©úå0,Àæ0ì¦m'ÝMQ;Øé$ÚÁ6ÔB1ß¶“¼ˆ›Û¹ª ·K6×áv©qõÉn›kvönë¨{,MÜâ˽î—¶CB:€êvIHoQÝZÁå–ðcOºØ‹%§‹½°î—j'V$nû4ðTíL0pÓE€ž¬²œ”…î5”…Š6”¬õ5;}¿Å2 †ú"غ&Ä}ˆe, µ:JOpɯ<ò[%yâý©òµ² °w¿¹`ö'UkvyvQ¿šîÒn­»W‰…³5_ã832t4€Œ M°t^·–Ì“,°h7Àº!¨î9Ü@±-)÷YnÛ’rCæ¶-©à²%}ª3< ‘É䪦Ôß•ÌÚ¾©o¿YÞ Ü.×Ó^Oß8›»=ã˜ÞëyªÝ;=HzŸç–B[56ÎÁ¢~Ûµ&EÖª7j¯<S+;r,ž÷þÛ„c‹C{EÝÜ8«5sw¨¬´ÊŒ¤µr÷§öj|j¯Æ§öjü¨½ }û`;};÷%£Ú½‡‰dÎü¨µ²%µ¡ÃþCj*ß á²ò¿©µâzx\`â¦];Ø›¶¥ÁS¯É³±:O]+|Šj¯é³ÔÉO®´¨ \iQ:Oµk¯´B?9k müäê8Tö“kc$½2f§Ÿ\Ë žãaË$ð*œ:uG—¾¸cëøÒ÷laZp‹15αܢJ"ã—²©âÔS[Dƒâƒ—D ò »´‘ûôÀy(HŽ¢4XqŠ&’LÛF’Ýþ<Ô5K"°prò`ç4rï¤QÆyX!Gݧp°é9á°ZNø\š¹qŒíŒ]ìÍ ?]ÓܲNç‰{9­FçÉa°+¯5Ì'^úôè—ãùŠ®)vwD‹ïF«ÿ ¦äav[ 0y²’~캑fç9ÄL&Ÿ@õ 4“Ù3²Ih>þBÛˆ_PÝŽ„†Î¦ænLžOõ¸lÏ9áA‹l¥ÁäùTµxу§(uÞw´D`ᥠ•Föy0ÉÛ^­bQŸ±À£x¶ö]¨-¯VSQ½½5Ë7½“]SQÀïl;|ªµG;áûÕ#Ã,÷š]F{Ùf¥D9Þ£LåæÖ,‰ÀÔÜ—-DÈ»\“žÓûØÜãú‚ͧ¸²¯ÓhQ¿½1;k"°ï͇Ѳ`ŸŠúÍÙ.}Œœ Ý2µêàlW(ƒ·ÄöLÄ¡%Oé/´F_ýî´O÷it)]w™,Œ,ZùϤ'ÇRýîë†Áæz§d½÷mâÓ^¯ mJƒÙà-K­Q\Íà=XEOðÂ`âþ/«o„Ë:y1c÷áònMl5 ïTÙNÃëÖÚUÔø’ ÷Ù6 6ƘT»¯ṲGG­©gKl®6´¦6òš:üêŸWŽ -˜ñ ž‹õíš¼ ®÷fK&ŸàR;#òzob‚*©Ù• {CíÞ¹ÌàJŸÛ¤³'‹û'Ü~œÞÁp»å^•ÚDú¡gºç]ë®(»‹«‹³è-èyÜv*<~qîs+ Ö…Ý8µìÅ™1ø{~÷†ÁÄè‘»„Æ+–+cž§•÷sl¿Àû÷ÊÀ¸­Þ.ûè?Ø÷æéŸ¨®Q…»§Æ²‘L>‰Æ3¡Ñi(ý…œ¢Ö ‰9nœTQÌ‘,î˪ YWA×UçiOÖsllÞw~å…WèÄO®(çTLòÔNÀ1ãü¼æ<¸fÿášý¸fìûÀ뜉ÀŽ}foËÕUŸGr÷wÎ ƒÍ‘%¿&Â˶±DVôå97¿0ô¾³Í鯹 ã>è) &wÁÕ^‚“olªå““,=Û…íI'£?„¬Çé6mdkcØ÷ˆ­QDãÎÃÚ0˜E¼22^+£yëªaÃø…¹êóûÂËúi†ÇSe?ÑZËkù$ZÖdó¾×o{ï¿ý”¿ö{K¼¬Ùæ==Ê‚ŸìºØô븞ÛQÆÍ=7 ¶Fðäs—üØ~A_ßý¹aü½îö{âkídE éæ'Q:²×L{“wãã¨2@_ñ¸×ý÷D¶B…ZÆ/ÝZÌ qÞ³-­øñïmhÒö0Yx•ƒL"ŸÒ`”Ó†ƒå¸6 ¶ô~ÂË‚p†‡Ç Šæ‡­4˜7g<ß¶…éäþƒÜ Cˆ ƒ9t¾&ñÜ®x¸_\‰¾ÐZ‚›5h®15‹½ÌÝ0ØšÞæs¼N•Ï©»ñ® ãø4ywÄ%ÛVԻ㛄¼$;Ÿô»PIÿyø[¬Ë’L=‰˜š'³,M gÆP‰ö²b¨­*uìlæáÖýyžòóó}—Ô‹êz÷«o8~+uZ‰ì÷ëð·ÕC´žµê *ÙcÜaý±}–D`r.<ÙF‰ŠNÄEÍCsYU¬›ZWSbpV>ýœuÃ`J;—Ï)íÜzNîe]ƒãCM6ßóÍqåÒ“\föµ¾z˜‰¾ÐN¢Gd{;׺ LÝ•˜‰À¼ÁÅ*$/¢QóocÅž†9H/Fÿ¸V߯Å=ä?\KïÒï®oì"¶ß}?Ÿ34¢ë ÝÇþ†ZÛßÐö†¼GÁæL>f™‰4ÏŒ^µy—U—ØÉPM"õ¨qE³…;XÚÅ`êîñUo“ïïNL®F®¢÷~ªÝ™‰}Žk·Ò`a‡åR»†G4íFT>Á,ÞsQ®=ÄÄn„fCi°°£ÒÕ.üv¶ù‚"I¸íç†ÁæsdOÞúâI°?ÄöÒ`Æ|V}éì Š á6sž“³À;ÛpÍ•pŒ,(1Ù&ÎD_ñö¤uP=Ð2ètËMg=ĶŠ6b»*¦ë• ^]íïLVÕ‘G”­0vêå§¼ÙqW®ñîƒb^ü¥änlŒ-õJ>qÛ~÷Âï 7Ï€Àæ3ð;c”ß™ÐtÖ&žÒ_hñ U­$4jÉàÕ»8‰Àâ7ñˆF2ç²òz˜‰À¬ËÂK(5#Eê0·llj×îäS³yl¿@]&×BgI6Ÿaˆ+=g2C—Éñã,Jƒ­fW; f7ƒW—UYásÚ••ÓÌÛo‚8mË¢†W¬«‡ŸìkźZã’Fë€ËY6 6íß<·6^skn—ž­ù uÃø>MõÝ ßë]‡fÓ‡ÆKlí ÏÒòÉoد-&ïfð­ÖD`òInÖ„¢Ö)öUÔ8´ù¾f¢/´–ø•|›¬Ö5i?q²ÍÖD`Ê*Žm½È&nš9ŒÁKZNÅ¥Ó¯ Év;jœv !k‡m¢¥ØÒAiÏZOŦó>èÙ6 &ï{Õ;qî†FM/«r¶D`‡ Hö> ­÷ÉrÂ{Ü0͘‘…›·mÒøN«ˆY˜Ã7Õ»Ê>EïŸ¨ä›‚Õ ë¼) VXÙ\n'aÝãÞÇ]…;Ÿ¦mLÚÚÔl+Äk]J«óα¦';ìùrœ 4¶Q†ãŠá=Ü ƒMK¸Ãµ(\Vï‹f¨eôjÛªÛÿ²ÅR:[Fh8éØª„jîäyh!,õÝé™ \ÕΙÖ†Áä]ÏlkÀË?SÔpX·yÒ]m¹öÝ(õMf~Ëî ƒ-{¾lkÄi]ÉñdL±•3¬ß†ž7¬úN?oh6íjìá$+Þeó“¥½m¡¢–`nvÏSoö“‰šÛmìŒ| w"0ã®|{jv]“–o“¿{'SVp¼Ÿ.8G1’Üj Ci°ÐþùfΖÍ;G㑬ˆ#ê}¢´Ù.T¬†œÌD`òž¡ÇM$MnÔhÈ\¿#ÑZƒÇïFkž”ã{ýH¦FŽBÅ_Œ‡®8•¶D¨+ŤeÚi£>CÂ+M¥ÁÀH§«àú¾†,¦sž;7 ¦Fä|:Þÿšçž°›|£³8Zj´GKUzú]Ê^Ú;ýçÜ0˜²Ðs- ÏU°žÎ{š‰‚ ‹ë–5u®§s¼™¸D¸wÅ%޶ðRTb¥G2t7|’™,ÞyS{"Òù£¨O|ŸBvJƒ÷«Y/Ò·ûwh©øp%;Aµ£[_J3ëöÔב̉ˆ°~#s½-0Ù¹“§ôZB°NµŠà¸Íp×€jËu$K–Ž|:¡žÏ7ñ¶|—‰ÀŒ{.«Mà-ç]r¿`qÏ ƒÝxÝä7ÕÓú…ËÖü%BàÉ–¿Ä&Yò+-;þ¨O”ò5ÁòÕæë\Äc|Ð;1wÃ_ñä‡Þ’ßÄ¡÷´~á^µrÞY+q¬ÊµÂtÖ w :÷î3XšÉ]äy?Œ#,õËu) 8|cG3®½µ]‰Àº·ÖF´µ6î ðôÃL&﹊It'sŸI^×>¼Îc›EmsHîôî{º6 6Ç<Û ß«>1Rø[ÛÁB`cä8ÌÅØ‘ßÅ0÷ʨåå*‰Àlí+g£bê.X×%˜|·"ÙeEý²®À+®·h«ž‘ÖyŒrÙîÙíµlL~q{sÝ-Æ1ŽEé`Âfš+u¦½Ky!^=ujWnÑ&V+FZ§]c¼X}¬ ƒéÑØõäñ8ïvÏÙ†j"°ûÞ†€Vº·žoµ&“#`Q"ò(ÂqC½¨* VŒ—8Ó½ X–³Þ«Ò_hOšó¦«k\qêO¾µš,Þë¡7­ñù23®|èZJƒUsE‹´½DÄ¿`[òrµ ƒ)ûìlóÄ鉞ãEËÞØ}¯ÜB÷Æ„%9Ÿ¤) v2nµ ¬ÕÍàÕm¿Aó á`jŸÀ{ÇÆeõCØ1s^ê¤Á¼°¤öàèÚ`Ð~™{MWKížõíò^ƇšcgOfÛvêˆÚz3<;É+v¥Á‚M¶®vsGM îÐzOûêS6ÙÙtrò\c¬˜ï¼ÛD_hØ=Î6²öNÁÔŽ-{EO&÷FÕ›„²7Á¡ä5™Qƒ¿ÕuÍŠq?íÌöÊÈÅBkmsÕO+‰ëÞ0ØÔÆ­ñae_@tc¶Û[i0´Ój'ñ›n·ÒvG÷†Á¤NËûñÆé™‰#ÇÕtM¥ƒ «çÂk"Ýóšqzï·Ò`Ä_ª«HË6¯\Ò^ºÇD`ñŽi1cTµR¹ )<=RD`vœ,wwkoÅÔ¹pŽY#˜².ã¸%aŽ\´^ö7l$s.«j¢eU5Rö®¡ôZBXÓUµŠ¸k÷.Y*w¾Í‘,Yðñ ¿SX+Û:â‰À¬ËZhYG\²Wöç57 ¶l…ý„ÛúŠwZ“­4˜´&‹VÂf0‚±¯˜¬¸÷Yïi›K1yõ#ïvÃÁæŒÿXõŧ9·»ec²•ñ‚ÅbÜc30†Y6…ñïÐÌTÈ{/$+‡Ò`E)ÍXGþˆ`¬§ s!!°nøËð“ÚjšAz×(TcÊ»F¡SÞ5y‡6Œ‡ÎÃ;åHô…Öðš9„Å”ÿXf^ôf8Ýç8}NO¬&½Ž¸·rà8×¼ê-¦Õ³å0µ¼fbæšSp€BÎÉ$áíD•Wu à''—ÍÔþÒ×J¡š˜þY ¬) WSÆïˬç6O2êc°’ŸÞ¥Åý¨ª½íƒÝpí†ÆáC³·§¯ÿçÕœ`•º|d•&Á(X á5¦ç ÙÁá…ú^z /tÍIã9¶DÈšg„µÝ uFå g iÛ šf¾×r€÷B§î  úηƒ¿v1 FÄæ•#é=®§ºä廄îû¦~4ß7•£‘gÞ?¼q æù§›#1KÝ]ï Çâç¥ÝM&Á¨p5õ]Ik 9 ¸½´ç<Àçä § >fo¸tšÑÏïl7åJÿÓ%ÂxÚÿ4Áj1á ’Ñ{Kø‚ìœa†³È®g}’·ç—4šÐ&Ý:j‹«ÚÆyû¥¥u)L‚ΘÕð+574ìªábF<,£îxNݸÁ•Éó‡bä–0…e<]$»¢ÅG5…‹d–f¥o¸÷û®¤û?§SÓú8¡ÏÀBsUú4ð %LDÛé·^ ¾P±¯:³¦ŽWËÑij/©VK5+èÕï>@;òÇKJéˆû(t|H%d¶³ë¹¾'²qÑg%£J_>bI°f±êŒzð*ͬ¸ÍâV„{¾òZáUSWbŒñ*~’ç~ó9äÔo­-V 6¥æ›\+åèÆ%{O3æ³Þ.Ùslý&<‚r‚6'ŒyÕ¬˜·LzÕJç4*mA°â†Ó\ˆp³z*J^cŸ×tÊklT³¼Æ29Ý‚ä ˜wÑ ÀˆH¦u·Ûv¸ö26,L|f „+惎ªªàäé›èÔø°O°â%VÍE<‰NÝhŠU&“ÁáàW-äDx•ú,¡üÈoTTôö] P×øÆPî6 ×,[ۚť™Žà²sª-c'”8ŸŸV0q,°žíÙ¾WDS°piöDŽ+ôYU8üÐÕ•€c¤FÅetˇÕ2êjTxFjXž¬¢ûãG&Y`ÅcÈ”‚`äLA*§¯eVÉx¦%ût «2é…I0*Sõþ²?¤ÂXÃãciŒê6Á˜t—ÛaÆêêó3¬LµÆ cT­1‘ô³rÊo £ ~K dTµdK¢³ÕEa2XÒªîb¡=\Ëi?X]ûmb}½ž—ô³–ÁäÂÚ­ñçÖ³"þœÛD53âϹM þ\Y¬hŠ“3zdœ¸B§õŒ-gPüŸn>=žÇRc–|¾ùš«µÌ×\6—á^eV¾­Êä*û¡ëÍ>Iùz‹î—T=U0p›ª'‚¬§gÉ8mò–½Ó'MC 1{¶°äÓèäñ#ƒ=£€ÕðóìT,G5-¶Ø¼Â®-ˆ÷kŽ¬ÊØo˨xQy¹£Š¤Azn˜F”‘Ô¼2 ù8[ HÇ©:$²é~„ 8®a#jÒ`ÅÝrvÍ´°Ôøœ‡¿æÔùƒÉíÁUÿÚÆ\¿p»Ròžln_šË ÌÅÄFªßhO&6-ýJÖ‡kY¸â3˜|ª=Œ¬ø¨(¯™è m!îÀ× tÛ5åt!ŸtÃ`sÛÒûoÂç¹=/üº×öD`‡»ßì·­¼Ò™ïõ¿ä:¸‰gÈúË-x1ulgw"0õjšrÓàö^q|÷Ò`á¾oµ–`øÝV;Zð}nLº1È7Ðì¦aÝm·£†‡­t0C‘tr È´—€5”J§F´[i0 jOíãg-bÈŸàNïøP»"òd¦Â5ŽgÅu$³G-¸í@Å´møDŸÃ¦íX¼‡§i¡"Ÿ3÷Ÿ5èqyÊðo?‹…×ñüýþQ‘B§nTþÄ÷oðW¿ýìWÿ¥×¿û'ÿÔ¿ñígÿêSìÛÏþ…gQðígðüòëüö³_ùµóÛñG¿ýìýì—ù=ðüÒ/ýì_|ýþGòËÿÖןúþoþ;åüo¿ú+¯ß÷—ÿ§ÿøŸøÝ¿÷ÿ3øÿÊÿògÿ‘_ü_ßßûóÏÿ¿ðýÍßúùßþÏþÑÿôþÅŸ?ÿþÜÏÿƒóþ~ë7ÿúßúµ_ÿ[¿ö‹ú÷üSÿÕ¯ýk¿þý³¿çŸþ…ïwûç~õõ/ÇÍÝl}ÑH9| ýÿÜlÁÍÖ˜›-ºÙÿä¿üÿÄïü¥ßùKã¯ýÎoþ±¿þWÿæþóÿþ·þâÿý÷~óïýá¿û;ÿáoÿ?ÿûÏÿüŸýë¿ùÇþ‹¿ûWþþoÿoáçö_ÿo~áõ»|{Ï{çí=‹BXê…N༽Rq{åâöJÕíý•ŸÿæøÅŸÿ¹¿ûWã7þÆßþÿÌÿ?~éþ÷ïoü“ãïüÿëïÿÉ_úùoÿü¯ýŸÿÝý¯ÿÛ?þ§ÿ™_^Þñ—×/¼xwÏýt·Ÿàãõ¯üóßR3-Ÿårs¼KÚ&y£V:ý„â@œ[Œ]Ò6I°xúHúôk?œô•ÐÒö! ¶ôëò8¢ƒI­ -mÒ`œ­sàXX+·en”æ¹( âÁ$ 2´´}Hv …>hÃä°Ürâ—¹=s£44§¥ÊS"À-7x›¤o’`ñõ¤ïÂt¯ò)íÒ`‡ßzγS;•[¹=s£4ý ¤§Ânw&ŸÒþ! 6¼§ŸWÒ—€%}“<,e¼ä1ç§eZql³›j¡ËÅS¬Mn–ÄÅVø°sȳç¯t”G`ÏR÷& OOréÁcGŇ —ÄÅìT*ôÎåä‰ÞHÒôçÈ\p PWä'I‡‹Žd.‰‹ÙÙ›O¥æ™5Jmôù!uáåâ§TuÞïâQÊ/&™‹Å©t*•ê¹*áüÜ$*¶œÂÃÊ#Ï)lF,ç&A±²»Æ/ÚŸ¡Kâ¡à°CQžÂçBëô¡Z°6‰Š•#j.›–Ã&-L2vÀÌ\8\Ä/¥MžLkÒ°s—ºðÌñbz&Ìjh$›¹,°Öî©ôîúð+aý®ÍQ©ÎÜËÆ/à+A•WÁ%ƒ °£±ÕÌ}lt´IXle›²¤Iõ4 9\RÞ\À𯛧8ÔžêËMrl’·û¹7ÿ ªÔŠ›äØ$Áâk’jWΨVÞ%Ç& ,|r[ú•aRrl’`}øŽ*åÃuT)ŸÒãÇR…~°r£.nÍ›©»äØ$o÷ù“*x9<œœï’s“Kžs{€RÏE?¥ç‡4ØðcÈI?Œ”¸]¹gæFéÍŸa‘sÛkÑ]rn’`ÝöÆVàÖÆuåž™ûvOË!¹5ôáÊú)=?¤¡€çËá"@ ¹-ÔvɵI‚–;¶ƒC;ôh»äÚ$ÁÂp™VEva¨6Ò>¥×‡4Øm[$p¥¦6ÒvɵIÞîÿ7,´Jã ®í’k“À„ƒ2¾¾3Òm»äÚ$X©ÄXß'8.´›ƒ¾KÊ&j¿He;ü<€ÖwIÙ$PnKü^Ö Ÿ 7½ËÇÚ_z¬dã êðökÿ”–)”È`ä þ`Û커ll-Ü œHòC_¹%s±‰ ²ç-<àsxæÒ?¥åCŠM­ØX’4Œþ+iï]R7É[}> ¬8:.?„õCˆñOú$n]÷÷%˜Âú! nÇv\ð:îœÌ¬™e¹­§jEØ\K(÷áwY0çkZƒöL%¦Ââ íüºòßêùÓæq˜JM7²¶Ë‚‰—eM-ŒÒ¦TµB%MÌúb„X­LÎnGæ5çEIì3º*q×Óµ<>dm—ó~ kÁÆýš—ŸiËo+ÿ­Þž;ɘLy#™(em—½¿q¥ 0ÅAC»Ÿ[~_ùÁ¸^Ç’žéen„Ï-¿¯ü`Ä2¨™Áî× ©ÑÜòûÊƦ˜K5€´óû‡Ê­Ê‘í¤±ºa~Èú. &´2iå—•ŒûUåʽ>-¶ÊHiç—•ÿV­ü¾wŽhû–_VþûÅG1Òj$½·üºòƒqE¬w^ý¾"Ô;ïêÞòëÊF´“Ê'D j|ò{˯+?+ú{½ã»¢~xoùuå¿ÕC[1¨›õ!«»,˜4ÜæÝ!=xw[~]ùãÉó1Ó:ÂÜ\#ߨòÛÊ ¶ÙY›}dlùmå£<ßzõ¶ˆª­Ý^¤ßVþ[=´cMQ9ÁªBiæ·•Œx]®ó*©ËÈIȲ¶Ë‚ùÌãtÜ9ì}Ôiç·• Ìåò­å{ûµ]ö0;æq!‰ÀÙü²ÎÌëÎ{«·vXNT̆åÓÊï+?˜ëžüu¤+Ëï+?]6fáÌŒ&fH1¯÷4;«P«ÐSÕùŒtsËï+?S‘Ãk˜Ê ÞIæuç½Õ;ë›3"ûVù*£ à ñtøa+•æ˜f>Ë …E76ÚQqææ )æ…thG‰Á¦ì¢‡¡¦ì¢GèȾ¼É‚y¿†Öí¸_C«¤½æ¸Wþ[½rÈ"½Ñ N&éB’©dš«W¬îlŒ8† )|•‘ñQ9œ}­:œ} éê¾¹òƒi3h˜µËTr,&®+^“¥ÖÓÝœ•ÿV¥5ZÃŒd|ž•Ï2óðópUÁ5ýÆÊ¯cå?Œgl¶c«›íÔ*ÒÎ2ËÙUå‘=·äÛÙ•ÛÂÜeÁ,¯©¯Zœ©™úª!í¯Ý\ùoõÒ)µƒ¤Mé„$SÉÔ9ðüÍ”"ƒÆÍSz !ÉT2u5ìiTŒPoSc"Ò-çÊŽéa-Þ°U=±Wšëö¹òßß"¯w¯ZÃiö‡´ósÛÕb/æ™ÆFS¸IÆ–¬ü`àèàqÓv¨ÎÀ¦ðø·¿æ0³ÃnM¼Mpl‚àpçÎ,(IŽË¼áñ! nÁ$F²´rÌ}«?Ÿ‡Œ‡›-áôë§ôü[› ªbí‰JËmhéù! võækp+¬ÍÄÜ%ç&  ù¤lTŸÒZz~Hƒ&pÒé4ØÃI£C`ɹIÞêóç­…&E ö$97É;ú=dˆVФD…”€$×& ÎBààp÷ÆÊ½27JS9‚o“â__J®M,¨F4@ƒ"'­í’k“¼Õ×å§Iƒ ª%×& –Mø˜Jƒ‚U—%×&yXPhÕBiâð5))›$X4ÌÓiô&'ë2¾Liù»@©&Ü®cäé+·dîÛ£[59N€†%e“KZhÔ¤œïcOÖ€’²I‚ÿôxOñþúÊ-™¥©j–®´QUR¤-mýSZ>¤»"þž7T%tv¤rkæ¾ÝÇí±£ÉòÄãÇý)­Ò`ËŽÇlÙñ˜ý)­Ò`w˜Ô€Ùa ÖÊ­™¥i¸ãç¦{´ê·rJë‡4Øa¾ƒ_-\$T„ÌER¹5sßîßôôÌëg…é¶%m“ ¯‡QA]fÐ!%m“ Þ5…u…7%°¤m’`a`¬œÞ ¹ÛÁüfì’¶I‚u#:*8pÌë¬Ü–¹o÷oF|m´?ioa—´MòþƵæcÊßè£!4’%}“벟à`…«3žç.é›$Xì~šœžÁòG@’¾I‚Àû‹dãÝ­Üž¹o÷ë+·&'g°r3 ¤o’`á¥t.Zèƒn" (é›äa…I³õ/ùݰ¤Ý›$Xu¾+¨³ì‰ %uá´6nômi.Üåš¹IXl}KØ·›UrÞ·™R¾»#7˜‘Ä®$“ýöxpk¯²…Aópwf+`$™‹Cëbž{ÈSw8d .h© ´öøüU=™ íHÂb¹;¬þ=ðÅèœ' |1 ø-›äÍþ=´QÞ ÚþK lcÂÈœØ?ydM¬¾Öx´›$XôúŽÌèÊ °—o’`ÍÅ™‹1Wù¹•fÿÎ{ã¼(ïîúºðºÃyÙÛqp/„®s“°Xº$íÒóv;8‘„G&/ö½ÌÒ}´«ó„ÉÐ)CI]8ó´ O½¾ÃÕw¸IX¬®;D:bØ9O:l(© çáa²Ô ç¥@JŽM¬ QìÁ¹ÐlÁX¹GæFéÂîy |á `ì’c“«a@'’˜½0ÉÜ#s£t爀šâìˆzZJŽMòV‡k”ðûŽºÁX¹Gæ>¥Ã#å­ ‘gEní‡Xrn’`q@t½Êɸk¶~JÏi°‹= w¸Ç>>“Ì=37JW÷,ÏQñ"c—œ›äÍ~݇ï¯ûv¾Rrn’`¥çÇ^áÖm ®Ü3s£´¼<úíN¿¿Oéù!}Øô?‰Ñ¯Áý$ƾ¶r¯ÌÒùÝ䪾›”\›äÍ>íƒÈq–8ƒ䨳I‚oJÏðã)W­L2÷ÊÜ(-ŸŽè^¬{|hŸÒëCìðìxò-L» d’¹W澿ñˆõÙåi½s>Ô$ÞÐÒò!}³/Ó£dÇœˆí®¯Ü’¹Q:¼8ÊaøG>»‚ꤤl’`qò¨hC|©gW¸FÁ”–i°¿Á× µ§¯¹KÊ& '“Ã×äüèô5?¥åCúf?¹Ã#ÃT ‘TnÍÜ(Íè(}Ñyç“Ê­™¥9£„Á}íbzù•€’ºI‚ g¯áe÷ôq}Kê& Vç/ªgÓxÓ~†aÏa—¾ÙǛΩô˜5R!°¤n’‡ýÖ]}­Á$s[æFi „ ›õ"Œ»¤m’`Ìÿyý8ŠÓt*…À’¶I‚…á°A=G#—³A?g@IÛ$oöñ†³á³÷l8.ËdÍñ ém¸…͸%á±7ƒ–XÒ6I°&¯ÖÂc7 v (i›äaÅñš¦³/1âŸM'_,é›$X|Jrè}¤x¦¹Kú&y«^)’×Y¹=s£t‡WV”îp‹Ò+·gn”¾y]Œ7õþs!®÷™«ô1‘ÎÀ`–›$XÜd«dÜdí’c“¼ÙÇíŠ(V§]Xrl’`ÅËۻॡ%••{dn”æÖ¤Ö³7•CU+ZCKi°±M©±&”BÕcaÙ%Ç&yG߯ÏàûM¥P…£bJÎMòf§3§n¸ayÄ$sÏÌÒñRN^/‹¿¿rÏÌÒÜ¥”7½Ý<­q¢~JÏi°áo»€ wÛ¬•{fn”æÑ9˜DÜr° ›IÎMòf¿.Ø1¿cæS±cޤr¯ÌÒ×KQïPõ0h ’ʽ27Jó¸!G,*zh% ɵI‚ÕpàœöRèA$•{en”ÆpW8ÂQÁS9Ƶ]rm’7û/Í8cÒŽón+÷Êܧ4b»Ã…è 7êp!ФrKæFiÒÆÄMeNÅ„€$e“«øðr°bôÈÛwIÙ$Á¢²!yõ’ù)-Ò7û®Ÿ«¯çZ¹¥ïÏ…·Ãëàíð+·dn”ÖqlÔ•9ªÉ¾KÊ&yXPÚÀ 8 hÐa¿˜TnÍÜ(MENR16“‡/ÔÖé[}V.^Âc«†£/Kê& V·Â%XüÄÚ%u“ëVe‹Gè9Ðý)­Ò`O¼"qÈêÀ’ºIÞчùÀœÓßRéÈõž¡¥íCúV÷öøsŸ»Ç.i›$XxY¨YªuPãcå¶ÌÒmûFI¡Ã¯×Ø%m“+½æ; 0|g»¤m’`qؓ˹›ª*÷i†–¶é[Ý^+Ñ“$­C ,é›$Xx9šuÄŽnÎ:æ.é›$Xq(äžšJ¢gÎ]Ò7I°pÿš%Lܽæs—ôM,‹×"¼Ö.é›ä­îÝ«sì]1ÉÜž¹O騗 ÅØT=+\=1YØÓ37JkXd› g«Vm˜}áCìµË<ÖV{̇ûß& –ÆÉ&žÆÉ&æ‡T…kîå ßèsFÌ€ ô9L"—¤å «<¹/ˆòt^‘@Ë“Œ Íx–Ë<¹¾0óCêÂißt‡§À6`„z§À6€Iä²€,nEAÀwš ³àK(@‰Š#£ûl}(©òd={ÈØ$Áꎾ½Ï #“E27Jë6¯APyMâbÕט>¬8‘}ùÎ6 Š]ióv+Þ X‡¬_dÁj(© §}+ú7ÏJØÁ`§ŸIä²€öÿoD:Ð*=¼ó§Vé^ÙÏM,ÂÖwŠÇáÎS_*CÅæ‡4Ø· Ž‚ç³åBÀ;Ó¹æ­('‡«^RÎQ}þÐö '1õ±²KŽM¬kÅ!ð"¦06–›$X‘š˜4 9ô@‚c' äN0¾¡|f™eiCx 4Ò°$WšùÇÊ£OkµâÔ™v¤¬ü‡ d%§#m%‰´óÏc³ž¤rn`ZMÝÜĬšiåŸ+?%N[ê%à D:óÏ•Œ‡>³[†CßY¡–ÃÀ&{£_§5‚hl®[þ¹òƒ1äæ2Cº_L;ÿ\ùÁÀ™B™R«9duH”²s—=Ìë|Ý:wŽ&‡ÎE:ó¯• ØYcÛ˜6É7ö•nêþ™ÿF¾±aRoì^"żËyQ²Ëk”}Ò:3Ž´ó¯• œ%„)È@¼a ´ò¯•Œp=«®…OWnmË¿Vþû•õ ûF]=þ)Íü²òßè£ f®8È )æçEÉpÕ«'ëOÚOÜ·ü²òƒÓƒ0l¢†½Ã²‰iå—•Œ[ÑÆóž< RÊ+w…'Eºî‡gEºîèCVvÙ½³aC$N17ì‡ Å¼ê¼(y½?f÷“â—ìμê¼(ÉS5j¹:o£V}Èê. fœò)`5¹ˆŽ”òªó¢d¤˜Wœ%ã|ž¼…üCŠyÅyQgñX{¢åMÖ²¬ì²‡îö±›»xH1¯:/Jâ,ž"4LyåRŒÂÖáýï<Ø´n*C‹»WnÍÜ(cx¼©b(½rkæFi½“›„Ieƒ}ºZZ?¤ÁŽcx:þ=CÝpèü7%u“¼¿MÔo*Ø&f}’´MòFŸT ΉP›Ø£@R¹-s£tõÖT” 1%m“‹aîfT4Ø¿ avÐi°¯ÔÜ·™»¤m’`ñÐ'9Bå˜5vIÛ$oôÕóäsÃË)߯\¹=s£ô¯š¼~ì.^ZKXÒ7I°°v󻙟Òþ! vÀÆ;ÄÆ0ïpåöÌÒyX,ÊS9Ë·0wIß$oôçóÒ[tüŤr{æ>¥‰9òÑqÎ×¢JŸì_™å©‘-buq6™ vó ã½<%¡¡åkòpro¢àQ—€Ö¯Ó·¡i$o“©`uÏ  á"«[Ê4óQÄšÑy*nQz™Âò™Ï"²ÒTTX›?¥ˆ`pž2”-ú ÅAm| ¡O`dC¥ùá™åeˆÒõæ¨Qh:Àfl¹Š·<ß6ypl KµA^棈ç´v²dŽ0°¢ôµ6 ¦3] ž­²ž¨]h7ëéÜd.(oZälZP>%iA)ä…èØDïoÓÈXcÔ.ô“uvm2ìÒÉO! ¦Ðâd>‹—¯6^#Ps»½6 f «Iõ]‡õð3~¥ìÜd`òŒ‰¼ôÉ#Àó”Åìäç‡<~gN.Ü<ŠÂa»mùWæƒÁ''чQx½ö!»6ÙÛCÄáà×Nû]› Ì_5póX î¶å_™GÖéÖ©c)—ÛnûA~}Èñ s ©>žò¥tµ™ÿÆèÀÑœ½=§€Õ?de“½5J4+<žÂq où%óÁ€E:ë‡ÇSXo}Ë/™­ªev*ižmHœòò!Ç/Ü8²`>¨T³?de“©ÓÏü ú€ ?ˆýCV6Ù[£E«¾'Rñß²ºÉÀ¼|ˆá)yùƒÒʯ™-­Í!2ëCV7˜íã.ÛÇ]~Èjûá.ûþô:´¢7sÈjÿáÍŒýó‹kãþÕñY<Ä2!ã)– ÖØò[æƒAÛëÎßÓá•ÉkYÛd`†ýõÍoK_áI!¦ß2 žPÉï ¯ôüêŒäíCþÎQ½f`T`o[~Ë|0Ž„ùЧÂ|½YÛd`rD=ý®y¤Å_§¼}Èã:FZ¾õ‰‘–µ1·üžù`ä¸ ŽNòzóCÖ7Ù[£Cï»0G›Óæ–ß3Œ¾æ³¯YÃÜò{ßg <ÉŸL ¨ˆõ!ë› Ìç9ý­ŠÃ.g/”²¾ÉÞ ðKЧ@kç­øq‰-wùŒ/ÇQá†ñ?Bz7lÿ•f>ËLab{å–ùÜáœCö?D)CÉq­6sëuÞ­ÎPçÝ~Ê]¾nw‹ÓÓÙ‘†¥™Ï2·[8Ï·Œ®+M]o—¹döà†¿“gÌØ¦¿¢@)Cɹ}Acëe|§a? ßé¹òY¦øò¬ ÷õžrDØÙKD™KÝâ´ ý•E½GÂvŠ´òQff;åI—!s£§$±ì[îòiÄ‘ahëë)H;_B%G…MÌØ†\`džÔ9¸ÀfZ ï™ù`p®«Ã=§w£ó=Æ)Wùq­>'ažOv‰3êb®|”a>ØÃË–dþ#†¿H!ãÁš[-±~ÈÎMöÖ¨A=VYñ©|¦f>øªù]×ê7ÿe”²s“©ˆ›L"ìÔ'’ìÜd`Æ>D÷˜‡múô˜P?dç&S›zBíIè?dç&{kÔÈ•éÙŽmÝJ”²k“ï.GÀØï9þµÙµÉÀäEó7¬iÇÂß°öƒüúã ÷ØÐ õØÐ>d×&“;^OŸM;þú¶äׇü­¤×|cXUçû]›,˜ØªlÙý`+ÿrZù%óÁà®WŒ´„ý¯…$+› ̘Ãà÷)iXü*­ü’ù`p.œó áé9ê?Èˇüí‘Â×ìÛ5·üÒ?®‰÷åvÒñ¾Ü†ú‡¬l205ö»æÑžUýyùÇ/TÌ‹="ÞðŸáÑòþÕM&GâÆ7OuÛÓ¾ÉüÕMöΑÃmëÆÈá–wÈê&³¯q#öÛ=¢Ü[~Í|08úÞœ)Üš=s®pÈê&#ð$#ð$k˯™ÿÆHÁçôøDUÛ}zô?ÈÛ‡üã‡k+fv¶ Z²¶ÉÀäšÃÌê¹þ—Ð’µM¦Æ_¶L*àî‹mv|ÈÚ&óæ›ï kclù-óÁ××úµñy-Œ“55áf‡u8·üžù`à}q<™x[gæ–ß3 ïëMMïë=ÎäýCŽ_@{âªb¶ÜõFÚù=óÁè{O‘«7õ¢ù!ë›ì#¿gSîv¾œV~Ïü`ÀW‰œAÍyv7²Œ%Ûj—Ô¾õCL¢"æ.sÉ’LøØ¨äÅH‹ó*L+eºÎ±Ä¿Ðø¥¾¨”küŠé+~o²·F»µ€/Îôk!dKöÕ{°ÛÕýSrp—êËéSãMæƒA=ÜÔ“µK϶ËT²]~>èã8ÛºBM×8 CZù(Ór&¥Õ7—TtTàQæ’í ê:¹Ö‹ð‰/šÿ2²Œ%Ûš‡¦äuürZ+Ò‘ù`Ð5æÈ«éPe^ïS®ò–ãÂM¦g”× §™®¿s—±ä6Û¤V®pŸï¢Â®pЈ2—ô Fƒ§#œò…@Ï_N—’£GéWf]®JŸruy*Ê]‰¹ÉÀÄøé8.Oi`Çr1N¹Ê¯X/OÎú|=%‚åêW>Ê”3Ÿ6 ÜϾ¨¶cl’D”¹¤w»1"\œW]ðŸËÓÊ?2Œ°m¸\±Û~5×_ù› LZ6ÈýÙSšXþϧüøãÚK4ø ŽuÍþ› LŒ«çí•OÝÃuZ~ò·F‰S§pn.º†Ù²c“3v¢}£Si埙Æ×¶Xz˜†|-$Ù¹ÉÀ,v è¶ò ­´òÏÌãëáïÝE Þéï¡ð’Ÿò·F ;Ë~Ê÷å-[(eç&{çhqXowÉ.ÊZ=㔟rüÆÝƒ8F†’ìk!ÉÎMÌë´ô§‘žö‚®´ò¯ÌƒÖe®æ&ó27‚ö)¾>ÄoŽ“[¤WD.äÎ)’ʽœûö81õ9`ÌB} Ú.¹–¬xC³ðÃUéìüò´]r- Xó5O¾¦6#Ž#+÷rîû›,•ÆôƒbOi^~ ýSZvé›cÄàÄúz®?9ߎ¤s‹sßâXÊLކ}—”%+^ŠM(J³cMÖ5ŒlR°ïý}"ü5ý}2©Üâ\”Žuè#ÊÈ…úŠö]R–ä;SÅYƒš—H:·:÷í>ßîFHŒÃ}ìþ”Ö] v<ÚímF¢º½‡ ˜ÒºKÁ~ 7h¯;b¤x6yï’º$`E…ßùU„C¶÷§´îR°#Ø¡[âºuÝ»¤.ÉÛý]&—¢òkvï’º$oô÷qú}1Âgæ’´%«dˆŸ§`É?)ie‹ý}ý'*2°&óSÚv)ØÑï 1ý>Ç.iKòv¿·Ïë§(,ç×áø”¶] 6dëÀÊ´eÛŸÒ¶KƒýôÎVë.9—,¯·A wšíeSzîR°ï}¸†³›=¸2©ÜÓ¹(Í£öì­ŠØÈÞZwɹ$Áz>¦M^ÏÂÿÕåó `I®%y»ÿwš'Ϊh¹ ɵ$`ÅËéœL8:çå’\KVL ØÛZLÙ×Úʽœ‹Ò1LöGðí½siŸÒk—‚3S·ñ3S·ÿ¶K®%y»ßßúžaþtë{Övɵ$oôû€Åíëë»»÷OiÙ¥`—×ÝýÏ'âž~ƾKÊ’€ë¦A'ã¿ZzXR–¬þ6W}¦¯aKV€””%y»Ïž)¸óÁã"’”%+^’ÃjÑq SZvi°Ÿ‰ä *>‡Ljè#éÜê\”ÆbŸZ7'm·$©KVÕR¬xæ’º$o÷õi5m¹¹âw_»?¥u—‚¥> j‹Î¡ÑØ–È¢º‰ÀC87C+n'÷‡¬n²÷7Ê‰Ó ê(šÆåñ!k› LxòÄ GÒlJ”²¶ÉÞâÀ›¹À§×ÈÂKÞ>äøìÃÞA,>¤æö3~·9~áFˆ5óqTÍãõøµM&¨ñ`PÑq5 2’¬m²`âøšµ·ÇÖ¬Ù%JYßdoRƒKœ_´ùƒ¼Èñ |‡Ötd³&TxÉû‡¿€_d÷Â6Ú«#íüžù`p_–‡ÏŠŽ´ñø™‘d}“9x޼ÁÃs_N+¿gþÛ#†6ÐÁ"¶nÅ8åýCþÆèZ—·K­'¿¶Üåó\ûî´£~ û4{—±ä½Ú3õfm*uj­Œª…Mf÷ÑÂð´é³…J3Ÿe¼ë¨aå‚CyÚÅFÈ×B”¹äð÷áÖ;Ë7D<ò }Ê]~ÙÇ„’GûÁýÚeÛ"ËXrÙæ¹àãä¦ÚíÞ$s—¹dÎ|è†ïð5ámïð5wKn_QŽ"·-éÞ›!_ Qæ’ÞÓ,ò·ç½ô*g|Þi7î9~Èñ á{Ó÷ }œÕ3­iýÈü7FÏkR˶®y}Ê]~»&ŽÅæ› }ÛzS×.cÉíMi4QíÐ.ʵsí2—ÌÚ‘ŽwUú6îéQæ’ÞÕ+мù<@¥¾­únwK®³Ez5ê«tnÔMQæ’ÖMVjàôé¯ÔÁiV@”²c“½×è‘£ƒbXæøP~rüBùŸ¤Ëñ©ü ?>äøŒ€¬£¢:ùrZùGæƒÁqùÊ»îz;¾æòãCŽ_ˆQšÖ¿±.iÌ´ò̯QäpÍ*(fqÝ–äLJüýMîœaârê஋ìú!;7˜¡m~ƒ¡‡»N¿ßú!;7˜Ô´ÝÉå8}$ûùù!Ç/ôø‚'¿¿¤nþ2JÙ¹ÉÞ9šœML¢!æ‡ìÜd`âÝUÌ©{$óCvn²`†¶í,”…îìdµ-ÿÊ|00.Ÿ—Ÿ‚*9š0}-œòëCŽ_¿'¿‘ðaPù…l[þ•ùïAN/]ªæ^×§üúã8ÓžþfñŒÝyù«Õ~_rüü@ óÃÁª÷'–ìÚdoŒ(øm9UDÐô=j¼äåCŽ_¸ìXî„åW‚iç—Ìç(røÀ6=2ëÎ×Â)/rüçÞðæó”'‚GŸD’•Mf¸YÕ¨Ãå*ë·où%óÁÀø|P/O@¾#ëCV6Y0ëAï!!»á]•ó¦{˯™ÿÎ‘ã¸øMæìïhü*ß²ºÉÀä;¢z¶òÔÝA½­‘du“Ù ßÖ»¾›]Â~¥¬n20£ Ïl–ilEå8[þedQÛDà•×äÎyøâžÜQGR¹Í¹( ·:ÞW¨˜Lï:¦´íR°;ë`öOÖÊmÎ}{d˜%¯E-~^ëSÚv)ØxY—»Þ÷lî…ãSÚvi°Ÿié<=‘{f¥³z7wI_°â—r=zrG`I_°êk ]©¾æ©ë¬ÜîÜ·G»Ñ}ŠaäÈ»û”ö] 66‘ô1CëúÎÍ]Ò—¬ù…Ó›ù$;g=såv羿)¼Ëð”¦áêÃ3ÁœðÜ»ìë嘞°tDOKP¬¬ú²šŸ,ØGp¿Ž@ËýºŠÉÄÍÅ@ÃHps•  åý$`ݯ[ñlyèV<KPì^oÛ77¢_+ÀÔè×”¨XuÛx]nXÏö¬õoyaHI»¯5£.ŸŸ'ÆTºùÝ"„Åîür¡£êØAÃþ¼N$P¢b¶ 7,ýâ{?c7šoýÌ\h~ãPÎ5DQh¯Ž¨1’°X¿Ü¢Æx5OüÚó¢ºg…RÅú6”¾Þíð¤¾ÞíðüªðÚIdÈÆé>š+ãt\êåKVy5O¬ÛóšgÝ9åžKV$ 뤧]ÇÂL) ¯HYOFU.[xaäªI-'§sßîçÕ6Œ VmÏ!h© /›*zì¤2ÂάùŒR^;õŒ1}õŒ1}tîá\”^j:0"Qí÷£•Oé±KÁ®¯Ò’[¥’ûHɱ$o÷ûâ¯J£2ÏßÁ”»l(@méÓ°cŸ–´‚)=v)ØÊn0竨_”•{8÷þÿS(“ñÝlt7AÀ’sIÀºä4‹F…ºrÏ+}éªß_ý`y€y±KÎ%+éjUñ|×à¨Zwɹ$`Ý/mÑ…EºöîTîé\”Žaò²U=)\¶yLé¹Kƒ}›´³í’ëødA}o})‡ŽËÚTÁ”^»l¼$NÜiDtqN/ ɵ$`Å['Þ±+÷r.Jw^”åÚ„Xr- X#\“^¤YWmå^Î}»‡šå©»gKm»äZ’7úx@¦ØA+Mû.)KV±MDΔ} ’Ê-eÙÖp@MƒzˆMk{Á”–] vÎoêÕçö,IY’·ûtåâ£ÉPŠuÔwIY°00R7Í3•:kIÊ’«>ƒ£zÜÓY«zâ½r«sQ¢íÚMc2÷§´îR°ë«yiÔžyóª %uIÞîßírÀ‡¹5÷ûSZw)ذγҫÝ4ÖfJë.{Â%0˜‰/%•[ûF?º7è7¤{WpIÛ.û‚S0#îën¬ÜæÜ·ûwD¢Å`žRLiÛ¥`Çkê9ßÄþYÏçø”¶] ö 0Ÿäà¨:Vns.JÒY3Qžö"°¤-I°žÖ×5ó~Zß­y÷\¹Ý¹o÷÷ÎíCF^¾¹³H`I_°0‹÷6SÃ&¸= ¦´ïR°c~ܘ_'s—ô% F´µhP·Ý´Â¤/ XcÙ ‡ª´ HI»1ûýÍ#n £Òͳo’ô%y£ïC†öMo47b8Tõ‡%«¼n«˜Â¡ßmý@Ë^¿$`ÁîêÚÌÞÔäP¢bÖã„k«þΓœŒÌEéw‡>~ߺÖ ‡®±IXlä,…ÆÏ·ž–‡žg“°Xú±—I·7þú1Xô¥’(6Ö~`È©ÕdÇx©u&W cIÀª¯p&p þ’Êãôx1¸Ü<|oXÒÛ» áÿ×Õ×\YËó@î¿(nïÿ;‚YÏ!ÞOúƒªT²xVm©T@s±0–%Jãuê«tÌ‹L&êq“Å> ŽÐl)ƒÏ–9MMfûýš×D— ˜Ù:s\,”¶¸ª”UÒW›º@ÄÍ´âÔ’—¾„†ÕÉÖ7„øzÚyÔÇýëðZÙ¼%!n¾—ó! ’søbüÜ"n¦è¹mó²°óêm»¼,ì¼Êæí=TZX#Ùoúð×âÀìƒ<ÿCÑ6ó¾‡ÕÍæ:(4]{]QãÛûsÿa­©¨ äb WFÁæ´‡sëýœ/#×AÀ:ÿU=ÿS=Úëóÿ éÖBT¶›‹^{)wÄvññœ4]{­“O¢N^u.ˆZCéb WFôoô=íÌ ‰ç½}Ñ;£`We­ ÛÏŠ+ï­)í]O. K|M­«e…¯¥5·zgìá%íÁ5O)Õ2rä‰~Π/ë,Lƃ]pä>Xé=Ãê þrÁ‘ûó¶Á•NÃvµR4 B å `ÁWê}Íz ñ6w1Ð’Q°†,`6{}“u´EÚGýêãBjÄï·¿èÈ(Ø-¶£³ŠT±…@FKûÔyÿï,680ªê¬Bè‚#ã `ác¾Ä•Bìq¥_tdìm3ëdn›W'ëh‡´úþ6óáo&®iïZ£B1P÷³JÅšÆ/«(Öø=ƒ¦åLiõû¦%MC’¦õN. uã³â‰˜l%¸ú$3!nÖÕ×çüy1 ËúôhúHjJ k¤Ža‹¯`×°ËŠ ŽÐ¬ùþ+(A^c´ äMñG1³vbìó1ó>™i¦Yy{ôŒŒ‚ä±Ê{Ï<³Á»'Ä͆~ÛÔ‹Ë]'öúºÈ- ´–Åðªf·81P5óå¢P7>³_V€Ç3¡,˜çRÖtíXëdG O!+´Çl)«ëÍ;!4«ª­ÇÂQœ”6f"™ªø'1P ÛòÊø1}“•±òØ“}¿Ÿx =1'ßšÒ^Òºà×ðÆdØIK9(ôÊ(ضQß-nûUU†ÈuGý;"E“a'}í¹è•Q°Xb>)c<ÏÔG®ƒ€µÚ)ü5Ü?íN!ë Ïÿ¼PTUùB¿«jºèQ°-3—=ÀRÊüùoG{Kû¨Ÿ7ŽÛX#´q<ç‚#÷AÀ‚{dtY÷qw¹ÖDZ18ÎýÏ›ò@ÒÂîQ£V m±¸èQcÛ¶áM-™,¼iÏH9È£¾Þ8Þ›?uŽ))ËNÛ¹»Ë tnïá‚#å `õخﶽӴ_…@JO;ùÝ,VÐ-2tÅR]¬ÇS$lÛPO]·0¿žÇž‘rGý¾k‰öd޾Vp»hÉèð_ª09U­êZ3 výqZ Üê; ÿQ8H=XŒú³‹®2ü©©˶dÛ?oº¶Jû¨ßûz æÆù: ©‹ÃOúL6 fé¸àH=ˆ±Ú;åj.›®\ã…¦k›´°Æ°³»=„匌´ƒ€Õ~^˜|¾Gòzåhº¶Iû¨Ÿ%C±¾÷T®ѶŒ‚ÍO{þ œ æ~,„´ƒ€µ^ÏæÝ½NŸ5¥mÒ>èçÿ!òá×€²©zÚ3 öûiïýöu›Óûó:Ú.í£~>µ‚µO¦V·¹hÏ(ظ=·žeNU7=çë‹öŒ‚=1æÛdå"4]Û¥…5>æk\)ÄWúE{FmA'ÆQmbŽ{ ³éÚqÅÎèÞ·£ð4«´GUj›·I£†£T±ÔÅ@GFÁî'ê2- ¥x „@FÏñ˜É°Sø2†¤ÂÓí/:2 öò$Yp—Oxþ¹È8È£~?cô¹ÏDëŸÄƒŽŒ>ðÿa¶ÓÐåÚèI¦úØAÀ²0”#½G{ÿ~ZWBÌlêSÓÃP•,Ì«r<¾®„ÐliL>çðÍ8_³á{q²é^xŽØ¡Óûÿº¦® bººêÆõÜK†£nçBhÎLˆ›iN~Z8ŠÞzYÌŠ^M÷áKZX# ÅñÞb´Š#A|$¸Vûùv6Ñï» I- ôíÎGr1ÒÈÄb Ò"n¦ädøIEâãTª!ï¢P7>ä§…¡Fp·-¬3!0;ul3óº[Œ˜y=. ŽÐ,jrÙ²ÏÅ™ýUÊos¾ßš®5ƒ­ù~öuχf}Ï”vˆ›)Szr/£*‹5Îmqˆ›)âòvÌ“E½Ê<ùÕ„ÀìäWOÜ]ý.@~âfZÓkÏÿÖ·¹õ€­ïv\yÔ¯·Òn÷{UNŽ‹^7É/O“ð¬fèJxv˜¸V¦è”º×ð_q¹”k\ï?øõÁq¬å׃iZ—FÊ”»ö¨Ï¿ÇbWe†Öå}µ~°+aú>äF§à™“~¡}°;a`ÖÈ$±-%”c¶ëïЃÁêˆú [^-Qß{’¿?8Ž0~¾mø–‡¥÷¤ƒÝ {älc!2™%ÄÄ—„Ý “w,^"ž—ï‘ö~p;*#*価¥x<¤ƒ•„Yþ‹ìp=GKdÿ/GhÀÉnÀÈLúúG>Ã7«óÿÙ:ç?xùà8‚ßOçûýtö+ Óò±Tði!WKÕ  ¬$ìá³£â¹YáÙÇ?xýà8‚åd1¸¹ŸÅ¨'Û®¯¡ŽSiz^=7kêyÿàõƒã¼—†.ÏÏÒ(Uràõƒã–¥ÉœÅL-yœñÁjÂÀ„‹Vìkyº–Bc”\?°ñ›9kº$mq!‹µ¥n¡~äM¶b¥kÒ_«Í/Ú2 6\¶FÁ¬@¹5Fv1ЖQ°ñºÕ<ÅÌH;XHÒbbãbÆ3]p¤¬õ¾Ûã:×û*«ÌH;È#/²¸êz1S‹ë±)iyà= ‹‡³Þg4³¾hÏ(ØõÔxY«žú/é5×~Yñy¯ÅIþB ´gìeC`¾M~áéÚ.í#oá«l¸K’¯¿qÁ‘~‡žbªîåš#=e+#ý Æz_‰¾þÊj£úº,kJ;î³&ká1‰5 8ÖW¸èÈ(ØMë(ÖnZ_¦P;k+è&ç?F8“ó".82ò°÷OV°]ïn²²-š®ÒÂÚ&â¿ÙþÁùçB ã :»R_)Ì›ú†q1¾pfFÁ.g^†¶1gaB f–æ+Ø×‡ï[ÿšrÊ¡ŠùAi<ïóôÎX ±¯X!aMךA¬ŽXÓVº.iú¢†?âûc,¬*hñŸqñküoÔÏn)Ër¶ø mKÒâÿnKÚG}|h`¸™ ¥Q£‹÷Ç?Œ4n´h¸VÌíÛŠ±61³³–Îû|ËÃD­‹ŒÐ®%-¬15;ýXfpù9B³qÅ9Ö¯k‹¡miZÚ}‚˜½‡Ó°4Ó²™¤¥y[x¼Œ>ìë±¾|¿C±X{AÌκóeÉXZ™¶-MK«Ö ÙY±¶˜³O?s¶âù/”Æ=õKÉÒÓ÷Sí×µúÔ„@̬ŸÕ§ËÓ±tw˜¬¥øš‹BÝx§»³àóm2›Mja lŠm©Xz¯nËÖÒB ×AÀB^·—àk¹qß ¹Vû5ÅÂl÷¾¦(„@®ƒ€…À—†íÛë01¿è•чý¿2%zW ޳—Ö£½¤…õFZ ¬ß&k‚¢éÚKÚ}ÝÎM¯ÎüàJï‚#÷AÀ*ŠÍm ñëM×ÞåÄë6£ÞŒ^mt‰Ê¸– ŽÜyØÇ#‚½[ŠnCäþD¶·¥^©Ø~µª:a&ä>XH»RŽÉ†×ªÊ@¡xÐ;£ÆFò•~ù~y°ôÂAÊAÀBœy»,çu\p¤äa?/-íw´T4Ž‚H9X)ßk÷” !òÉã¼Lá'ùö´¬JVFÊAÀZ¿(m³-5kÆÝÈH9Xˆ‚«îéî Šëè_´dôa?÷Ü»=neä¡éÚzŸŒ¼]«2û¬p€gü¡éÚZO¶ß®\AÀçzpŸ÷‘‘z°Fúå--+ž‰‘‘:>Ï,%Ƙܮ1Þ_´fôa/Z›hóaU«M8H=ˆ±ÚE†¼Ã’Êøš®mÒ¢·ñ xvœ Ž´ƒ€ÕÌ“øù_/RõÝ !v°àجO­¸‹¶Œ>Þù9í¶±Ðh“u´MZX¿7…›fÙ\]ã^ZÖ”¶Iû _ÃEóÌz5Έ»pËVIo£UÒ{je¤—Ï{ }Ú·b… ß}ÈGúAöëÆ•2{Ù»•ÿÏ:Ú.-¬§…ùi=ß{ù:Ú.-¬±,@«K7F£]kO)´gÔØã²ú¸ÀÞ!\çì1š®ÒÂú:Uéoï/:2ú°O÷ð6* ²32V?«÷îg=!„@FÏë 9ŸÐõÆù„®¯4Û—q¥ë7âí³32—¨ÿàxCu(tdôa¾v½\ïèhøÊu ZÕ³³¦}O- «þ†GM)(¢ ³OÝèÖéעÿRãwœÛV¸n2m…ë&KZ(°íöš× ¢ÏÐHÔüŸùëóÚp´ØL½ö¥ß ó ÆZ÷OÛ±«t£ÝX)Äï¾V‰“ƒÇt‚`fÔç•Ø–GÀ»b Z7ïÊ-- ¦VBnæ_n·çzwgÄÍf Ö´S’cŸóΖ5¬ñýNk|½ÓZZhO¤½¹<@Ïæ¢g<%£2NÏĶ¥Á}…̃Ðl$#Ü‹,Æ·Y‘Y|a º­g¾ Eç:ÍNË©Iδè4ÒÒ |0<æœêLȺÔ#KFÝXècÏæef0‘˜5ÀªG{I kf¹=󆜑‘ë û÷òq÷kø >î¦Èu°!.WU|˜M×^'jl}§t{ݹÖúi³òbUÀ´W9…@®ƒ€Å€u# ¾p$8räaÖ|e¹¬8µ³)rßi&³ØÔôŠŸb1®…?lºö–֘ʜnÚT—32r¬ñž²èÊÆoû›ÂA… M„g^C6â3.¹ò°O3Büšm³éÚ{GÔø}z­ÕíçïV‰êö+ë)«à”ÁƒØƒùEKFÁn¿¯Ñra+¯›¬£-Òšk·‡0‘‘r‡}™ƒ<°æÃ¿?)ë½5#X¯°ƒ•‘r}§¾€yˆ ‰í. ª ¯`2°,¤t;ç¨k¨a€ÆÒ;ÉK·^Jã ×ü°g+”óZ§@¤ÕOŒç•'¯4ÄüB“¾† 9‡RwÖ« 3¦Wô+ñš€~‘óƒµ+ÇÀ¬ãHMWœz*ç?xûàûü}uuƉ¨µúéü`-a`2bM£Õd%} =ŒûO¹f–¼/ùíùÞ>8ް…ßvP¼õ% Lƪã÷fÀ;†ùÞ>øCßð‘îÄjDß^f%}=UEɨ¬…ú§¶ë{èÁ`­ÖÊÁ¢48"X¬' L‹úwýζë½ô¬Ö&#ÑCw¡Uå5äÀûè'|k[ð­6tŒ×ë 3æ°ûµõ’Ú÷Ù“ÒÁFÂÀD¼¿\¼›RåÚl$ L«µ]ôTÛ¾¬¥ë‰ßl$ ÌÎ#qåU¡ÇQûƒ„=î58óZ¢&4Ÿô#ô` Ú¶†_õ¶5úÚl$ìÇÀ¹½ìY¹‹ò ©þBÜíë}žˆYtDðmÇ[R –µ¤s×s,p)·8÷—}zËš÷¨%ÎmRsgŒ–={âHäY›oL¶ý…9Cüpõ…¢¯%e_+rõÁíï+ë=¼úm{³6¾Ñv=lZ¼ÿX`´"¨ýÚAjˆjKrÌ-Û-ïi^ƒÓ?¯eýÝœÿaÛõ°Ñ¼P±¥&/߯ÎÚͯîèiï0L ÜMÃ.åñÒ§G.ÇÏdGX¶tß$Ÿ=rI-Çé]x‰¿×\Ê3Ø_\öóÁp' L»oúÌ~{ñÏëþIŠOð00á‡9õÚRâ·•$ÿèÚ ÓvÌž|ŠíA~ñ)(GêÁ€çmžv\XêÙ+Õý…¸Û÷ûŒÌs´¥Þe+‰ú­ÞU2ËQŸbešQ}ÑxÕv$ÇÚ_¶¥¿BFáÿ»ÉÔùï’°+a`¶ß­RYŶ4¹U+Ë¥À®„Ùùëâª!N­ý9ðëƒ?î-:Çi·ï:Gpl»þ =v§0ÑüZYóÌÞvýúÞgå»ân”ø‘äØ00 ÷ÏÚÓYI‡ xØÞy¬òܯ°}°;a{‰î¾ÍÆqÃ}[Kú;ô`Ø}Y|Þ‹AE?oK‡ xÔî^ ‘-”‹ù IØ0c¾?ÅÍ”ò>o›£1¶]_BÆíGðßžõœ‡Ç³C¼|ðÇ=Áð úko’ÇÐ] ¬$ L;Òà=ëÖÞ¼—=éKèÁ€gåf´…›†ßÜV’°’00×ïf!‰×òm³ŽÛҗЃO:u7)é~~°’°Ç{¿RIÊmc4e’¸XM˜ÕŽ#;LÒœ(¥ÀjÂÀ„ƒ¾cPÚô+ãƒÕ„ùzÓéÅ9^ÛWZ^›ƒÒÁjÂÀ„']Wp)×`ÿƒ×þ¸7Xî lĶÜKŒ¤¯¡7Æ;dñv†M“¦|õü`-a`Ÿ®¡§qRÞzVç?xûà8Bûùúð_‰‹wþ\:XK˜ð¨+î$>æøãÞ£Æóoc¼Oû`wÂÀ¬iŽÍÖÅ8JÝ þ¸l]óÒjÑU·ðûƒã¶ã#¿LlµÛÍjélK‡ xâ~…9i%·¬§´û첞áþ^>8Ž`9gÇÚaïÂñ-ÚҗЃÁ<³I¿Â,´rѳôVö¸ál¥`7ÙåW™ô%ô`lÄôßmÄô¿}°’°žWRx%¾cXçUŽVfQ”Ì‚}ÜüœãƒÕ„ÉxŸß5ßiÖïçø`5a{Œkj´€f/Æ« Ó¢~þÑÀEO2’¾† Æûªž`í¦'|üƒ×nG@ܯð]†ˆ`ç»l&} =ŒôÅsè‘ÀxNç?xûà=EV B1Иj [f‰‡“èÆÎ µ‡d2(™fæOëÌH;Xë·ãue9gñ&›i‹Éd²1çÌÇl3#í ½ÂÚzüßÝ.ê+#ý `Uß¼Ø~¶ÜMi{à ·]Ž’)e‹te¤¬qÖ•K)ÓŠô‘WœÏ1“sô,3yÎõE{Fzƒ¹üÿÚ¯¡ÿ_GÛ¥5kË1ãÚ[•<¹âM×iaÅeU1O*Ó8lÑ‘Q°m¡]%–q& M×iaõfü¨-L+ã÷.!ã {ûˆ—ÿžQ–B c¦Jµ¯¸mñ"9VÐÖÏs´CÚ½Ûί_ â‹yè÷q1~Ÿ™Q°‹W·|M‹W·DÓµf0â÷ÁÇ\÷ôÂÚwÝóÏ% uã}ž¤iÙE7™–Yt“ZèÛÛ†ýö+›VùŠÖ¡…Aô:–PÜqe\ÁWöAiÜÓxÄJ)NÝÁÛ*éþÝ 1³~{‡Áró=3 ÇKÍ÷ÌØŽ'HèþݰÇÁkú6±Ã›Ô ëW¶UÐüØ«·Õ_k´- ôýWX<‘ŸñÖysÁš©Ü+.$À€³l]:¡…ÁÖïÃÒ‰¾7FaU¾ê{cHêÆó<ãïajá¹Þ?µó\%´0è:×Ûå+'¢¬Âcåüš—÷`ia´H9êäM.8B3íÝT *+Nr†×idÓ?¼öˆê…™ ”gf‚Gë]è~]y؇‹^à¶×TÑÛB¼Ú÷A{zï_)bYVH«fä:Xæðb™Be)E­ap1Ð+£`·_áªØú>U…«bÑtí%-¬Íí•;®b‹«ü¢WFöiF×wHä£k4]{I k»S¼ï–<2x×ëÑ^Ò>è¿ÿ½ª Hí:%1Ð;£`—Ÿ¶|/–O¢ß)r¬ŠÃðÚ™.ƨ-!÷Aöå²õ{XºXÑoÕ2r¬éi]`MËz+#÷AÀB:Xõ+„0ü 3rÄX– Æ‘…Õt­q éÚ"-¬oxöqM¼ÙË{FÊAöiû°§¢äŸ7][¤…u÷”EØ[¢ˆüvÏH9Xp{ñë!PÖâ—í_´dì;;ËÒ¾NRVÚñÉú·½r.¿{ªß¿Œ”ƒ<ìß]Šæ„»æ!RVýõ^ɱ҈•Œ£­ÒÂɳšÐ«^QoÎñEkFÁ‘­Q¬.ðˆwîÈH)‹Ãú¶ææSÆ"‰ÏßÈH=ÈÃ>>´0¤b ¤;?2Rb,+ˆˆ|£bkz²Øtm“ÖÈ_ð÷‹$ú›`f¤¬9õÅ2NcöÜ„ƒ´–rí ‹ÊzvC)»‚–³Яç­ûŠÍRuÇgFÚAÀÚ88o³ûy޶Iû Oÿ‡Š|@X/qò)Zé«x}†bŒéþam/QµÁú4Èz†q“"Dñ =£û÷ô7üâ–)lJÛ¥…5“`=m¿Zm—ÖHT¸ãÊ ¶¸²/Ú3jìqy­Ž÷}~y­6];®¨àQ˜ ¸ô•ÂÙÉ¥o}ا=Œh[|ztM×iaÝýÃö¶L^OÎÎÈ8XH[àWhEøÊ¿N)Ëj¹ø•Y%¿²£ÒŸÐW\ÄW÷EGFöå­ì®vÙz|¿„À¬{gÓ\Uß®ªµöhR ­µç”ëÖDlÃÅlÍӺآWfìñÛ=®ðV\aB`–Þ4ˆ>íé×ÈÂP—_f‚hçÐÃ^½W\©•…ºãBdvÏ&+¶°7rl¸) ³K{±–‘Ç^é Rj¼Ð;c²lºR‹>]ì¶„uÑþÔöî²B†W|šäx½§IVÆd©UQÖÛ±š<̼]d=mâ]`±¦‹Vœÿ¾8Áöpçú½çdœ 1út3†à’cny+†Pw‰YÈf±'ŸŸDÛõ°‰¹ÉʸÒíÛY¼–”}?‹…˾ž7ãÆ\gß$Å©) £å‰QÛBR_õ&扷˜£eú*aœéæ ¤1 uóÝ"É_.;a=º—‰¿»ÅŸn¾_Øvýz0nÁ‡ÞEßö.üúà½Á{<þšw*œóA[ú+ô`ðd`NŸý &ýz0M*·Ÿ…Róó|°+a`.Ø•°ÇÝË”fq%V ð¶ëïЃa÷eòÎ"žtñ®·¤¿CãFÞ <ªäý }°;a`"VTȳ6gØvýz0& 7ÉøQÕXJrà÷Ü Ä:óf¤XƒN)°;aÆ´XQe†F³ReîÛ®/¡£ðì>™Ô?ªšk’xùà8B³kàݳR]¼¯=éKèÁ€ÿ¬#ÎIyÇ9ÿÁËÜÔéÿ§E§/ÿ?“¾„ »SZ]lû«ßª)Cé`%a¼ÏN”‘¤VȬ& ÌbWàCôf‘¤æ»Ù¹XM˜Œôsº˜•lå9™¬&ìqoÀ˜ˆ~_:ç« ÓîWå[l úÏ·ØHúz0Ù×äRc©iæIràõƒÛ,fÔüÍi±¤æoΙô-ô`0¢?äYGj[žwþƒ·þ¸—hLµ?wg.)ÚҷЃaGXz›YHI; Q:XK˜Œç+4ÃM‚nÕ|ðöÁq„eGŒÿÖ¤ÿëk sóXΤÔùÁZÂ÷]qÖfc²®,¥ÀzÂÀ´ûÆ J«•­•ÿÔv}=ð·]Ù]Yf]Ù_’ïG°…Wkë²®¸ÚÖ&ó´nƒS1¶ç¡Øÿàýƒ?î9Fôâ…UZêáëƒõ„s`m–þ«ÕYúŸ÷ “+²8•ߘk68Ç/ɱ‘00mEVužµ‡³’~„ ®Áâ )VE»¹DHŽ„=î5†ÖÙâ!ßêOR`#a`n¬z'ÏÚ>ÛI?BÿÀ[àÜêóÜlÅwQú;òñG(†;ÛÚÛ™GO›ŒÊcNr(q>G1Yî¸ZbºVbºÒŒÑ2ªø¿òäožµ±Ÿ’·©§ÍÖïÇŒ1n®ñÚQâ·†$ÿ ™ 3¦e©Ìbé–O¦:‹.õèq Óón2)qþ@1Yj^‚[ý[ ws§?o·ãU´à+u¬‹$£3—áOmg­ÐƒÁÜßè¯0ÅèÖN! —};ãË×%þÒÊÌ?IÂhYÏ–cž‰Ò™Oæ9*.9æ–‘§áÏn#¸ˆRFË3Çâ¡·àRžÁþⲟéô¸üffhóõåìŒÉR_ÔÙcü=‘aƱ3Û>vÞ¡Cdä(Œ¬Œµ°Ç½C£wèÌ$c_,GOy ÷ Í72*ÝGo¾“QÈ_G`3»ç”1ÇQ’cWÂÀliÄi[žÑ(¤ƒ] ÓÇÆqÕ>6Ž«þ¿>øãÞ"§¸#¶J)°+aOxŒªi/îª91É_üç0Máx¹3׬r,í’°;a`ZÞ¯ÖîtË7«ZÖé`wÂÀ„ÿ-M²é]8Î”äØ°Ç½H)|¦ìøLµ¤¿Cÿ„÷( œwŽæ #ê’»&ç$ºâf\waTË%awÂŒY0KoK |íð-ĶëKèÁàì³=:óÎnf‚Hªò4³¢Ö€ßiÔPTR`%aOxŠkóN{õ€Â_¡°’00Y•aøHiûÿøÁJÂÀÄ^ ü,ûìb¶"Û®/¡ƒUô}Í嶪Nÿã?xùàvË3‹UmÝÆn±æR`5a<ÆV‰>|zSk|áúÁÇÔ0SÏø>ØÌJsÁ‘z°Æ©ÌÒÇ85[ RG®ÙÒ7°Â`A|ŒÔƒ€µ½rûk¶½n;›®­;ª¹»?XŒTux¡Í!í `Ù}YþŠ…OØþ†i«ý<ÑÊ2< M×6iam>uiÛR[ݺhË(Øó·8ض,ÙÅ18š®mÒ>êû‹+Wø%³¸¢Å…’ÆÒª–ŽßmÅ£†_nÅs¸¾hÏ(Øå7YçȾÓëYSÚ.-¬OÓƒéÑ6=¶ë‹öŒ‚mKçô²ZØàIÌŒôƒ<ê÷³ñ À»rN>+#ý `¡j˜»6ß•ÌÏ•‘~cÙvcš4±2ÛSó)Ë~ðÉ•ü‚œ\qà‚#ã `Uß=ü5«¾{8šÒŽ{Š{¿qo1üšqç÷ÛnÃÙ`CÜòæû‹ŽŒ‚½¼ !¸ËOôçB ã `™¿Œx:+>F¬ÝÅ@GFm‘uÔ¡.ÃJ2¢ 5›·÷]iõ÷á5¨ wÈ^…Zâ}8£`cu‚&v¸.ahÖ‡b 4gÞ§ÏÕ-_ãµ-)YÔ?,ܳ+Ålà·êÊ?sQ¨Ÿ ´>÷ÏÓöÇõ6‡ßÐÂ@1+ú€®§w`¸Õõd»ÏöÊ(Øv»º&7Xƒ³kæÃÅ+zuFÁn¿Æ‡-ÇèŒ|XÓµfÐ÷à]n|{ñ7¾×\ð÷Ú:Xó×8ádGã<šÝ=›´ú«þß@þ¿$ÄÍÂ3 ÒÆ}hËÀÍâ>´ˆ¸™Ö“ö·'·x*K‰Êèâ‰Ü%ÕL7ðŸ­lÒóˆ\‹ç±|P·ô<î»{¿Æ=v÷†ˆ™}¿ÝDù™QFœä/ÄçÌ(ØXâÕâ?…8ãý n|2c¬¨C$Ù—|äAä:XXÿÅÑ{så(ÃG®ƒ€e«=ýL¶ÚÓÏs´—´ú~Ùº+OÕ¢»R¿è•Q°í6 ãXI¶jGñ WFÁ^¿(œ4êúEU%r,s1Eµ4æã«jiR<è•Qcß·Ö«}Íõ†Ö”ö¾ÏZCöýøc¾k|©Q<èQ°q÷8 ?0'Q9;OAÈ}°¬†¸îx^ÿÂAÅ´7Ywú&+#÷AÀÚ/¢§ÏÊd«²€ ¹òÈMóxÒª(Ń–Œ‚ÍÛ¤÷ BrµêÒ¿hÉ(ØÍ—u‚û Z© !r°:Ã÷ :yõ7JÏH9XÓÖüÕçÊH9Ⱦ Þ—èÏ5Þ˜ý‹–Œ>ðp<¼žAÇË+©«hݧíèâ«AÑtm-g5('îÃ%ƒÒÆHŠ EÞ#°Ìí³ [¡Ïž3޶Jû¨ïk× ¢FÃ.Z3 6^MZ#:“‰õ£Z3jìfé|[ηÉy:4]Û¤…µ¹–®$[nÁÜ•ƒëb -£`WeeŒY•«¦k[=¹ì÷}¸=„파´ƒ€e·§{†kÞ·gFÚAÀZ6"$gÙhŒ£mÒÂÃÓâöº32Òb¬nCT"VýÚÿûu´]ÚG};ƒ²×p1ОQ°1,eFÆ@ m2Wƒ‚~°Æû™ 'åM­ûH?Xæ&¹ôksÄ.8Ò–À–¶Ô­)Ͻ2Òò¨_k¯ãÂü&ív,1БQ°‘®ÅÉ&~Ñ,ÎC‘q°¶ Ç6Ôå[iíÖøèWö7ÔZÊ t1БQ°m@£µ=mÃZ132ò¨¯å,öí¬ŒŒƒ<èãñ?OŒý6g°] âfš¿¶ ÷髸f°.Ù8¿÷ ÔóÊŠ[O³‹ñ4ÏŒ‚mÓ_‹LL}-ÒB=f¨õt[…H %®—DL–Z > »šßJÓïJÆd9u_êãêÆXœìR$›Òˆ‡=a`2ÿÕ÷#}­9óê;’JÜíÏŽ¥¯¦r?O°1ûêÌ£§M gZ¹.ˆë»UíU±‘+Á‚9(ßdR¢_–äŽy% L«‹ËI¸iѲÂÙ9´]›¢¹9n+p-ÒåŽx6s®;óÅeVñÖuÅk}2›o{¶©§"åÃ+¸rŽxz=g%“¥fc`Eîg¯XàÞIòq^G°J+øC•?—ÎçÁN˜\I¦‰½ÉˆYÕ¼Ÿä+ÜÒǶª)€ÕeºÏ%c´ìq§WyåKlúš)¾Ý$9v% L®(ëºjÎl×¥«®ÿà×ÇZT;ˆ¥±R ÚÒ_¡ƒQ1¾'cfžÇè’°+a`NDÓȳÕP¬C‰¶ôWèŸðña?µjJ~¯þƒ_üç &:fó¸$æ@$9v' L[W¦•†–r|7­C¤Ø00}•}CóUfô íƒÝ ³§Ufk§4¯D)°;aOxŽÆÓôµSSI*Ùã4ª&cbõ1gó 4| Ú»fL‹Œé?±ˆ™þÇžôåÊÿcbMës&#fM«w$^>8ŽPñD‰_^UöOR`%aOx¦½ÉÈYÓ· äÀËÇxçÂG0‚5p$òÁq„•V.Zy²³ª‘R`%a`nÒÉÜþœ“ùÁJÂŒi±²ªäiq´¦¯gH« {Ž÷à“AµÆÝ=\V&W³bådeÇÆZ–. « Óü2'ì§ÕulœÇG[úz0è‰9ôäØOì_HÂjÂÀÄÚU>§có™ýó¶ô5ôOxŒXaÀL¨³þÀ僷Ž#¸v¾¯tpök ³E}iÛ.W•§Ñ–¾… ÷Æô¬Ó½1}îü`-a`Nxqý—SýêÏ¥ƒµ„=á1ôàOo‡ùÁZÂx ¢òåËï|ýúïG(ÀɆ‡fÿXIßCFå1ù|,÷Í|vÖë ïa¾9–¿Eþ¼-}ýÞÁWXO¯¾Íµ×. ë “÷˜XèôE9¢Z¬'̘µÌåM7ª™Ë×î6æÍãò¹bÇÆùK—„„iÙš¦œ¨¹­9LH {ŽgДúôªÛšowùàãƒã¼ZýÎ]³ÏêxÉŽ# 2½Ú^ôpj»~„ VÿâZ@n—ÑÌß‘ 3æDí/ß,«èXU9‹’0ZžªYòÝ™á7þŽÔ³‡©+˜¼‡\µ³XѱrE$b²ÔŠžiU¹‰ëk9øûÿ©ÝÜ/… #Oý‡”•G)Y¸ìO&¥…Ÿ_ܯÕÚïôèi£5Šò¬Vµ|%+YI"&KU²šÌ‚‹äüu{ö†?»’c|±>8ŽÐ´z |“j°3FËš˜¬ý¥ÕÒ‹9sU«©]ÜíëYMm ¼wÑ^˲çªöñ€,ëÙÇÃ=ˆ—ÓX¾BŠ«8$ìy¢ÚÆd¶œ¶Š-‹¹tÚ-6dá²?qW[qG [qGí JÂhy²¸ á.Å™¾Í™“e¦IJ¶]ÀÞïÑKçÌ-O±{›cžÅÑ]áxÈ%ÇܲÄxhkšÎªuh:ïwûrÞm 9tþ!·Î¡šôWèÁà,‡ËóêUøõÁq„³ ¹uœß`ÛõWMsîAnNX²vÕ{ú‰úÁ®„Éû§Ñ7gøÞ³èi¨ÿà×Çf…È^Ü¥çÏÛÒ_¡ƒ+ÐTaz1×îVýi—~}p;Òq5/µ,ë.æ¬(vߟ9+÷&—‰-Žö.­ “øýÁq®ü«Î§4œýÁî„9Põíº+;#ã `a±„¦?Þ¤Us£.:2 öð¦ÐÔôÆWjÕ̵‹Wô¯Œ‚]~õvæÛlÎ - âICÀ¯rëƒ9ÄÊ=\(ÞV‘‘ƒdd„Š5°Ï×ÞhÏkŒ„¸Ù’w\2t¸eè.|P7>ûá­÷ã³*Õ©MÙ©&bfíä¦rÁxeEn ÛX醂#4kªvc«Ûý9·µíþü£éOÿªéÙG¿ÀF#â. uã!X,ñÈðÙf%HÆÕ\ âfЬ­µ~k‡¬Èmãš"4©…Ö-8…ÖÜÂtFBÜL18«ä)_VÈ3ÁФ+¬Ñµã×ÅÓßâ×-ÔÓ¯‹ÑMcéŽn:«²Pp„f]5YÖ6ßÙuFó]çKˆ™¥lò…x]ÛÁà àÌJã^{ãÀ´EÁ~•¡…V<±ow®«ÞGu®·vÁ‘ë `á•ã}#gßÌõÕ~ûÙïÚly4G{I ëŽSúÛƒ‹ ºönr1Ð+£`O+hGæÛä>Xhºö’öQߎõÚ›ë¦vœë‹^}пqrõ}|…Gn:ÅžW¥çs]ñ¸þ…hÏ(Øæõk¬âëÏ…@úAÀ‚{dižäû:ºàH?X*\ –ýCC­Œôƒ<êó}Çÿ7âú“xОQ°ñ²a€w/w¢df¤ÄXï;î¼qÞ·Üy파ëó&Bò/Q®Èó/T˪Âêú·Õ…Õÿ¶32ò¨¯G9‚Íq“ª¸èÈ(ظkœáÚ¸y3_.82–Ô»²~=ÞN;#ã `á›þr„ꬌŒƒëýi¾ˆ¯Z]Åî+ø Y?kûØß9–¬œ¡äXÒ?çAÀÂ~ì5„?&Á=Ü<Xï´ùõ½ÍéW'- Âàó¶y>ÎkÆOû¥ÿ)£2>ù:{î_óF¯ñ+xý" *m³SÙˆ}Ÿ‹/Þ¯O|Ïcí… ¾,ƒf±*c/~ÏóÞüžç=¼âf±Ó^ ›à¼MäгٽïI k|´cqhå pÅÚP \6êfZ5º—}²Wr,M¢’!- ´³ ûw½üÿ€Pýÿ8ˆÌb<¿™c¢'ÏsLô알ºqMÏß.–!DfÁ)þØ,~×¶´°F-òÁÿ³\eó*‘™"É{[™x>«…é7Þd¹¨V ûsina:ã 2›ÁÂ|‡g˜¾¦=ÃT¢òOÝ8òOßgòúq¹h½êÛì¼ õh/iaml)zº1/RºžïúE¯Œ‚]£®ýk\£ª=…@®šêÝ{¿.E¿2“Ѻ~åúE¯Œ‚›Uœ ¡;3#×AÀZéŽZZÜÏš‘k}ï%²ÎŸOAã3R3rÄX–‹æ³ûÕj½ŸÛ§È}Gý» Ý3&¡mÝÏöEÛä¥m_säžym[zgìáwüX‡ýÂAŤ3gAhÎÊÈ}°öÛáõëZnÚÐ/ß2rä Wà›ùVFëªïæ+1Ð’Q°á;G!Â.df¤,›¥W}±\%„¦´EZX÷äïñ#Ëß÷Œ”ƒ€5,¿óš½ÍF?ܶHû¨ï7ïÇxC5ïß=#å ú¾‰ÿ#g–'ÿû‘‘z°ŠÏD½fÅg¢Øtm-1?eýÝɰÇÇüåçÈH=Xݳ©«ÅL™M¦´µG޵÷ï~ñ¾ø Š÷kd¤,¦‘±§2㬱ŒÔƒËRÉünZ‚™ßåy´MZXcP‰¯Š×ˆÃÍMFFÚAÀ²&ï‹%–-Þ¯y´MÚG}¸>ážcƧf¤,Ü ¯¯ðšb„îõ\Å;#ã `5ŸËvxWÞ Ÿê˜{Ë‘q°æo^zCìW¨zw쌌ƒ<êçó¢×ÂxiVz³‘q}ý?$ò˜7>} šD¡nÜÎ/ðú»é%Æ^ãWðúbîè uhJœbs~P7î霆q b&fýüðSïÝ㦩w²‹ñVž›7­‘ ûåH âfC¿ãºbgºzßWìKGAÌÆ¹;#ͦ+ŇלºÒûƒºñXÅëc½fÅ«c±éÚ»DÍ,ëûχÑÅñ|í‹ÞÛ|ªþ÷f?–îJËÈ}'ú¾¾ŒïFW ß®}Ñ;£`ã6qÄz7ÞBú±–‘û ÆzhóÒõts°ºÒž‘r°~ÚzŸàáŸEo”þEKFÁ®¾'èkZ}GP4¥-5ö u?0|—­× žÀwÙrñ %£`cØÊÄ›sМAtÁ‘r°la”_¡Õÿò+<Ú"-¬¹ŠO¥ø<öŒ”ƒË‚O·ž J5=]##õ ú¾°oÊ8ò¦ ¤äa¿ïCoœ÷MÛ·Þ7##õ `_÷ýÿ^ÃWðÝÿ(RÂö>çüšBôYg‰ÖŒ‚½*&ÿïŸ*ÉC8H=È£~ß/þ–x¯÷Ê_yf¤äaßïÑŸl³×èk3#í `YTŸ¾p6„þ¼éÚ&-¬¾ïÁöÅ1ÐÌH;X3ý*¶—kü^3#m~~/ÜFÅ@^SDN.Ý¿ùE[FöwÆ\êýŽqASÚ~E¦ÚÖã}Ë;X@ªÈo¬Œôƒ€…°“ÿ Hùï´2Ò–!~&Óûy޶KûD¿¾t•ªºë‹öŒ>ÞÇ/¿ V+ÅïÂÑviÍa&|!܋◚®ÒÂ~ñâ/¾Îç³°32Võ%`Us'þ¿ìŒŒƒ€ÅO}?œdñsedäñ~­¯2Ë¢ú^3á ã `­ô\핞¹‘±>ÏÃJ“þŠ…/z²‘qcYX‰>Ûv b½6Ý“Ï;ªèX?þO¥{À€¨q›‹1¦›}¼OsþËjs*›ÔÂ@sb·•B¬q&+’çIÌF:9]d±@âEVBܬÇ]°5O‹œ ÇóçMJ§´úðg‡çZ¼4¢¿A)z¯Œ>ìÏ,Yþšš[äÕÝ¡E‡¿ueVqøyš-æ¢uha°ãؘðì~tËŸ7[qŽiÛ9ë¿y…ÿKB`6Òÿ‰O$V¼†Y!ˆ›5½¥·-jô7]y eƒS³zÞLòJj¯a±BŠb%ÄÌÚ}z+$¢BÜkˆ©QTˆsÁšµK#8«Œè»äU pTß%‚˜­ãçXì°éye)Ä©'¶|P7žç©}ûuÕ(¶¼c¡ªñ-„ßîƒ<ö|^Qå­+‚è«ê)r]©ú[å–c…þª°"=!×AÀª¿Â9©‚2ˆü¥ëÑ^ÒÂ1$–Öâ¹ò°_—®çð1ˆòçB ×AÀZ¿¢ï¢b&}1Aä:X#Õ¸{GÜ¿/zeÔØNªü,Ì4ø¿µ£½¥…5Hü**\âyZFîƒ<ìãÅ+B½†ÍŽçW×2r¬÷æ0Ú\P꽿í--¬Q×°ÅY Î8Ͻ3 öFÐL+u謣½¥}пùïùѼġ~«þEKFöó¢7Ÿmx^õN4á å `µxžQÚÏy?ÚÒÒ3ΨÒÍ·!IïÞ‘r°¦êÀ²¸¼ž¢ž‘r°ŒoñAœñ?}Ñ’ÑÇû÷àûêÕÍ÷Õ8Ú*-¬‹×<¬¶W9+¢)m-QÑú4Ü¡~ †”ôëb 5£`[d¬ˆk¯œ"fFêAÀÂ’pÎ3/lH32Rò°7Ž÷˰í°ù뎣­Òšõûü7¿;ïóßüžÍ£mÒÂËè—ü9CK·üùü¢-£`×4>° SŒfFZÍ#ƒÂpGº…&Ž€]p¤äaߎï?[|߆i#‹6ųiA¦xjgFÚAÀÂHÒ=ÉÔ°ò/yžƒËR•4Kfë5´úšB ýNë²­_ÿ‡%áâq4©ÿm}ўч}¼y.«½åÕVFúAÀ²Ooç |ý±)m—ÖD.Ž/\º9¾Xékÿ´Xµ=&µ{„ƒôƒ<èÛÿaØî(CKŠÈ¸èÈèþ>ã.ÛÖ7ò7ÛG;¤…uÃT¬¹HôÏ›®ÒÂ1¤JßÈ€Ò ×Ükþ† ì·éßûh‡´°ÆÇµ"wLmЏž‹ŽŒ>ìã̬õ 1MYÏ+r_¡ü†×>®¶ŸçôÊÇ1³y'6C#ÑÊð‘F©¥ñ<#UÛ¢4"jVb:bmâw=ÇÚø*öyHÖpóJˆ¸™f(­ÏâgZ6_JFha µ<%GjŽÕ=*ßèëN{4„u§=Nâ‚¡¬ƒ€U߃r*¶–øó&µ0Њ‘â ¦k³ÆÒ=õýmEÀ—¾ÌMÄÌÖù2/ Â.#¯Ùú-ì1‚¦kÍ`½ŸZ5TL-Ž'\ðñÄ:ˆ±ÞmîÞ^ß”ïÞÎ&µ0èz«±\©FƒÌÔSåP‰1VÜ}ا—ÿJïÁ—ÿF%´0ˆßç¨[#¬‡¥qÓ:´0Øqeö8pÇö×ÈîØî‚#4Ó^ßCð‰~ïã.|žKhÍ`{%=ëà óAÏØ•¿IÍÈu‡ýx{xG>Û{@=ÚKZX·ßVì¤ÖWP\B ×AÀBJüPŸÆioõêúE¯Œ‚=߃mqm£p/mé@W‚À[ÿq+ðL¸/Hk†®=ìË^#¡ÚŠT¯‘àm×ßשðJ¶W¸>ªU¼ôõD)°;a`¢rÉÕƒKyûüþà8‚ÉqZTÐøsé`wÂÀ8–¦½¹Ší¾5'îòÁïþ°¯ß7RÝ^kk#ÓÍÛ®¿Co ì´ÅO¼Š¸øíǶëKèÁøÔ0y-?5LB¼üSã¤Vìµ5ø»a®Íß³'} =Çð3B*·Ÿïƒ•„=ìÿw‰——í¨ZâíÕ?XI˜‹ÇÏÚÍYI_BÆÆ¹ +–N¯Ò?XI˜1­  W«è_Æl»¾†ŒÂ#8‡’{ÈñÁjÂúœG¬Xü ›¬%ìqÏP4ø®¶jѸœR`-a`6íý^­—ïýîm׷ЃÁêRÑKX°D/šÿàíƒãVaŠÃQ+Eg; ’™ô-ô`,>ƒºs¬ Xôm%9ðöÁ÷ zö­"´úÄJúz0Šõcy,« XŸ­Öfe¿æÝce@î"(IXO˜†ùPm¡BïÌJúz0èI¹ü§z h® ’äXOØãÞà.γvwVÒ÷ÐêþÝ‘ /KÆNúz0n¾cô,°à}ëYÙÿàãƒãÕÞrÁ7iûƒ„ zir¸²ॹcÉþ¸—¸ )«}uþ†;éGèÁ°êQ\ÂkÓD÷ŵ½l»~„ {D7çz¹×† [o/ñòš cX= Á¥­ç…b 4ÞéiyoÖâ¸UÒ\œG“Zh^¼rw>­Oj0-­^rQ¨ŸÕKæVu&ª‘ZÄØcµß*q¦æþs¡ÄY–ùNíXYéXûJêÆõøö5m+?2ç{’JVhÍ`ŘŸ;óiˆÇxÏÒøb 4^ih;ôé%c5s§Þ?âõ³Öû±¯ù«Ñ;5÷AÌμ·ØU’ A§XCé¢P7>k(ë¶E>S\ûhžb&fý¼Õ7¿üYüòod%ÄÍšFo¿Y†öŽ bþBô½òüƒO÷Fíõ¾îÈšÒ^×YwÄræ,§ËB¹—£xÐ+£`×ÈL¯V¯Dyé¹jÊX·>oGeN™ÜIE‚#×AöûQüLo³ûyŽö’Ö Ãëte¹¦H·_—5ù•eä:ˆ±n›"eOy/}0šiMioiaÍ9RŸaÕ𮘚‹Þ}Øß»×?« kpº˜¹– ”€esÎÁÊÈ}°¼R Y^§„¬ŒÜk#íœôÚ?6¥½¥}пÿãVL†Àw5F¬\èò <ìßͽç;|jî=ûÑ–ûÿUK5j7Ÿ}Ëbjìýh‹´°f®Ò¤=s•&)kF jéAªá e¦êAµùŽZYPÓD‚#å ûrÕ G³ð’æ> RV±˜59Å"Ödm•ÖˆÅs·³ª\á‚#õ `¡J9¨PEÆÑViaͤOyS¸ùªÌŠ­}Øý#ÌBEþm†¦k«´fÝ,哽ñý–´9Ë?oº¶I kÄܵö¯Á­ t1ЖQ°ë‰·×DŒB ­æ1K6•Êû4çý›iyØãÃÅÒËã«B í `-ÃÈY†q´MZX3îNß7u§Wœi1V·¸»<˺=ŒüçB ý >¯wo$ñ=¾«¤Ø•°çö÷ÿýïúýŸÿñž–+v/¤Xý¡ú6½|8v¸ÿû¿ÿ \B¬endstream endobj 274 0 obj << /Producer (GPL Ghostscript 8.70) /CreationDate (D:20110523163649+02'00') /ModDate (D:20110523163649+02'00') /Creator (GPL Ghostscript 870 \(epswrite\)) >> endobj 275 0 obj << /Type /ExtGState /OPM 1 >> endobj 276 0 obj 69542 endobj 271 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [305.7915 618.4633 313.637 631.0826] /Subtype /Link /A << /S /GoTo /D (figure.2) >> >> endobj 272 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [255.5294 589.5717 263.3749 602.191] /Subtype /Link /A << /S /GoTo /D (figure.3) >> >> endobj 270 0 obj << /D [268 0 R /XYZ 86.1732 786.281 null] >> endobj 273 0 obj << /D [268 0 R /XYZ 263.1487 307.1087 null] >> endobj 267 0 obj << /Font << /F19 72 0 R /F21 81 0 R /F20 75 0 R >> /XObject << /Im2 265 0 R >> /ProcSet [ /PDF /Text ] >> endobj 280 0 obj << /Length 1534 /Filter /FlateDecode >> stream xÚ­WYÛ6~ß_¡Gˆ¢H¥OÍÙM‹$FúÐôA±èµYr,¹›üûÎp¨kW»mš"ˆL‡Ã9¾9VDþ‰ÈfL%£4·ÌX)£Ýñ*ú &5OSbš­áôó•wáñ룊ž·Wo¯¢·ãY2Næ’Ÿn¯¿”"‚åZËh»$7Ì™E©I™2ÊDÛòøeu}9oDì6‰’&V°|²IR•ÅÛƒ§eq_Ãéi“À·žÓ¥.ú W árOËgºÍŸÛŸ¿ùüýDpÅ$HM3–rz_r¸È~ü Dpk½LÃÇXø¤2‡¯ÿÏ`bÍ ì4Þ‘FâA>^7 Péç°QwOAéÈä,7Ü*R–¦Úz%'ýÄüÖ&:U íQD²*C¦÷š!?¹Ds…@Ó†*4Q¦Â+ŽËÿÛÐüŽ¡ÿ=†ÞXb9 ‚žHÍln•yspg÷„øÓ%?gB¦Ù’ý#fM8,­â@¹zM«‘=Eøv bÜ#-wm}96t¾k›´q_TMG”¸‡ÛÙ+PV2a3=¼¶ªgFË4°|äšWáÍŠžt禨I£KSõtÖî‰2ðæù ¨Ï­2oÕnûCyOFå’åÊæK¤¦ [SZæÌ >(‘¡¯B?ýíÍs0Eµèéw® ÖƒC(¯ |È»¾«Š©Ü sAQQÞ¨P8ºªwå«XHË€”È”q¥ì7cÁÈxßÖu‹®¿AªæÉ”*pºC"V)*f:•Õ Ä7ŠÛ9:9#SUÒ¡ÌÁrd|U\:°¿yDº‚ò3] —AÙ÷' ¤Èb˜ÈóbÈLuÙª5³SVÈhƆ¨[{4e°PáÉwk²rƹÕ3ðÞ+&}( À6iÄ$FàÿGˆYpU3Äeðü™Ê£Ò`qfnÕGWÌ1öìêB†¥è4þ“ò\ :¯C-ƒ6”OX3ߌ5Ðo´é.äà!'õ]È}³‚´È¦,~…Ü”Q>¥æÕU×°9kN‘Tr®¦((µ²ŒeZé2õ SÑŒí©G᜛~¦½ôžâgî‰_ÑɬýÎøAÁcFÁüð=¬‹.T·O—~a¡¡²zȰ UKÁÊQÖ_zÔ7Ÿ†Ö‚¥ ×=dÞï«K–£ôÌ ó[pÔ/˜zðÑSË4¾×Ào]Ñ ¢Á’KM$ïˆúkàkˆè«½«ë¤wGªóa¨qIìGç½W~mŠcµëˆH@?bFL¥ïu ë¢<`ꜻåùÆ} Ás_Šã©vX•0Úð[ÓÅöà­SÊ1GÛ›ªF•Œ? & ùÒ¹’È}K¿;gŸÙ 1¬{aáî`´˜Ÿú¾?çÚŸ]xÃ5îŒ^þJ¾é.ä5åRF{ …T(зš?º¹Di£›Á¤ôäbrÑò>M€¯!ªRXJðÒi‡CSKË1®ç¹G2¶{zNñFÁƺåñ—/Ð%©r2IL×kpBºð|he/€ñý>?¾ƒÏvµ%i–ejÀúÁyé‚’[» qYbp'óVÞ·–iÁ‡æ}ª±:{ÑŬô^…Uó ‡Ò´œÌö=z»ãƒf†¡ª›ðìO¯ï—_ÐôÕŠ‰ƒèÈÌH|º u ›Ìeô³ÈH_¿ÙଫÈs€,ymCdŸVNŽDâÙ PðÉ‚LváfÕ$Z­¹ôãÎÌ1À~¾œÐ›ô”ÈÆK$úüh„íä kÌê¦òUåàJ†È"Lpë¹1ÉYŽú—Ά™H¥fìµ"­]x;”XM%6gW”¤±Ïl ŒÌY Ø["‚öä3©5þkb¢ ÁÍzõz×ùúë‘ÿSUt´:ù8¶¾PQ‡óSG=]>êÊ Zº5´)Å=zÐå2m‡ÚÇ)»Þx>”n ž¦BâšM$…‚F%q4ƒ¼·d¦xvõb{õ7AV6endstream endobj 279 0 obj << /Type /Page /Contents 280 0 R /Resources 278 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 174 0 R >> endobj 266 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2cvs.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 282 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 351.40000000 210.00000000] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 283 0 R >>>> /Length 284 0 R /Filter /FlateDecode >> stream xœÌ½ ìwÛUXÛú,‡2câüG nÏþ8û#a ˆƒ0S´É`„:::Úß.¨`-ZDg¢± ÔÑH-Ž1Ы¡bÊK©ÉÄÌ`I¼¦{Ûhf¬¥µ—‹½½÷?g­çyÖ>ïå½’[‹í½7í~þç·ÏÙgŸý±öZÏZëÛ.Ûé²Ù¿üÿßwsçÅ¿»_þནØ/üÎvùwrkG9oårs'O•¯wJm.µ4þõåG?xçÛ.¥ú ¿¬ÖKšÇÅ’ìæ¿íëî¼øë~çåý‘oÿïï¼øŽÝyñ×^êñ¿¿íë¿ú’î¼ø·cº³½â΋¿æÅ_ýÕ_sÀ¯ÿò/ñK/_v\ùê¯ß~ó?þÑ£ÊW|ůûí—/ü«¯É^òÑßüWþÊŸù?¾ëò±ßùÑ=úÝý¹'ÿЫÿäϤ7Ó/záå¯ýƒþâ¿ùòÛÛ'ï>òão}ä~è¼å-?ü-oüÌç\îüW_wù]|±š¶ãõj@|9]ò×Ó•—?íåêq©ŒO»—û¶KGÛ%~©Ûýú¿[ ÛÓx4à{üÝ©ì÷|ËgxÝýÙ¿îÎ×}ãßý ¿çòš¯úàÿÅÏ>øý¿éÝßó—>øØ¿~ðööÇþÎW¼â-~à ^ù%?öwÿá—=üÎ×ÜÞÞ~øöß|Þí?õYÏyÉù#¶4NˆQ—ü#êÊËÏoUü­Úñ!Ÿñ­Ê'ôVßô‡Žü /ºýÿ>ã׿蟼{÷¡ßûÄã¿øÔ“wºûà£ïý¥Ç}üч}Ís¾÷ù痹ūX™/‚?ûkà¯O‰ãÆ^?å/ñ´‘7Rÿ¤¼ïë}jF^ÚŽÅ@_Ë?/ø÷âß_þËß(m-Ú½R®é4›õZºˆÓµ§¿Zµkm~ú¼ÚÓFeÊå~ýþ‰ ËO¯7åG¬už?" >¢.â#êÚýÆgí÷›¾ÿA¯öοðµ/ù…¿òúŸûGñ5_õŽ/úà;¾è‰¼ù±Û»oþ±§ùñ·¿ê5?öm/~õ»^ð®|ÛGnæ÷½õöÇyð½/ýýwo}ëÃÿø ¾øiKej{_ïh@oˆ x?üý~C´ýÓòíž>Z[½ß–û ŽÖ_…—þ­£Æª}G\ÀwÄßï³w§1Ë'yßû«ÿ÷¯yÑS·}äñ§òîGzï“wí¿Gßq÷½ï}òwæ>ôKOŠyëù4áCLæEJʼvŸ<§mûÔ½ÊÓÆ]ÞÚýúõwÿþ7ûÔŒ;žjP.v~yúÇ$¬§¶„ÿ|È#©}úlZÎ|5/ù‹áo|-€û¿Ô>öOË—:Í–]ôø¤ ÍVžñu?5#sö#“eÿ€ú;?¡`½ïR2Û¯ðVÿ‘©mÇ» è¯Â¿òMˆîÿ")û–õ©“óÒXJÿ¤¿Tê¯ð‚ÿ±à! Œønº¢/'|¿ogKcÿ4{µ£¥U‹¾±æã¯ZòîÿJyÛú§×+ÆåÑèñI—yÛ?ÍÞ4—9מM€¨+ú„ÂÏðËøUyµOÎÁ¦ïñŽ^Äâ¯z? gx»žÆ§íÛGkßç'o´öö«òÒŸøh-ÉÆTø·Œ+:ß,Ûü^íWûTp¦ßŠ¥Üç`ãè^¡æù©}…Ó¸+µoŸ´qwÜìWx³OÕÁæi˜{,6÷~¼§zðõö ïXÆñ¿iË÷Ó?웽aÏâ ÷Mßîá7|ö×n¿åù_~ù…×ÿ£ËoùGoüÜ~îƒ_õÜ}÷~ì»ü·ÿõǫݾåɽåÃßñîÇgÿÖ‡æ[þì»ß÷ðcêO¾áòš/ýýßúMÏyÉgé{Ôɶvok¿ß1³Nokm­“mý‘oj×þÂ׿ÿÞùþw¾ÿ]ï|½ýû®ç½þ…Ï}ásý Ÿ÷úŸ~çïÿÏþåë~-ÿ}Ágñß—¼ý¼îýoÿúÏxÎç>½¥Ù{5Ý×(ƒ–ægÓ«ÑÒ7þ­7|óóÿ‡¿ü¿ô‹ïþ·ß÷[¾òu_õÇþÖ»_ñ_Ü}åŸì£?y÷Íoþ‰õ“ïþð›>ð'þ^ýðÛ_ý/xÎç~†šÖ2š–Š7í¾6ž–­iéÙLÖ–õÁèkío¸ó‚^¾ïUÏ{Ýó¾ÿ=ï…Ïã Þñ™—Ÿûo./y×Ï^Þ÷ºÏùÀó~ö[ïÓW%{ƒúýįš?‘¾ú·ÿü©p{úç=·þ‘»?úŸ÷Ê/ú¼WüȼôÉú…WmûÕϽóœËgÆä¯ñ “BÓ3Ÿ”ŸÕ7\'åÿó3ßùk~ú…/{Ù×¼î¿üÌç~ô/}ð˜/³Æ½ïï½ò‘ëo}øU_ö?¿ç=ïzÁ=Šqe+Ó±¶ÝOkÃqµb}õï>ç‡ßøã?ñî'_|ûÔí;~òk^ÿ¿ôßûüç|oôJáèÙÑ+í¾ZãâÃçÙ´ ¶àîí?ÿßÿù?ôCþƒ}ü4õïµyÜïÅÿCFíßòƒßúöW}ë«®ÛëÞõÜ_÷ªÿå3¾÷áÿëû¾÷á¿ÿ¥ÛÃßòð·üÿôUgA¼j_8z §|Ùï;d±-ü²]æß÷b[øþòoxþoþÜ×¼ìe¿ýŸ½ö³>ç_|¡/—ßó—ùÐí{ÿæsÿÚ+ìH{û·oHÿôèÑ»ïùÆW¿ç?ç;¾à·þíoü=¯þì/½G «eÒL˜Üï÷½jyÖ;X-±¾ÿÒï{ꇟúáñO=úÊ»o{äGoîC}ôc~ìe?õƒO>ö/o¿ûµw}å›ÓO~ð{n_ûÍo=æÔ×ñÛÕ~?ËlêÏZpH];ÍùìöO|þ¿{÷ý'MSb÷ØhìåþÝ“¼{ög³¥¤èžýMûæ7½ù÷>ö±ÇÞ|û{o?þ GCþ×7?ôÄíCw¿óö;ŸzôÃyß?=­rú^£?CƒÊ³ÿ^1¿þ÷ïÿ¼ç=úÂ÷S¯ú¥}ô#woo{ìCúÀ_òc/zÅ¿ý¾?õ»ŸsÇ?zìßõâÿä‘ozà7ž&¡–ÄbÚøm·yðLKbyV‚^]âÐ×^^{üS¾è¯ÿî¯øÁïþʽï‡ýë½úµyì½/}Ë?ñEñ=ï|ÝyMÊgýsí÷ï³ü쥴Ìé8¾€Cè‰'Þó–Ïþâ¿ù÷ßö®|ö—sð܈´Ç.–æØîß7iÖÛXR#>ÏZðäã|¼þÿý¾w|äüáÏ?O¤¹†ñœù†ñ|öÃXûÂ_¿¾ôñ·=ñÐñßûnýÈ£·Ç6H¾ùøïC}è£w_ú±G~ôµ÷tGŽ}"÷‘L½o‡äg½S$-ÙÿÛ›oŸüÊÛÛ§ÎÛãZ˜sŸ®¼ïz÷é±4ÕØ^Õ};ž}c‡ûÆŸ}Ñëöç½î2žÿ—_òK_uˆÞ_÷oñCýä?éâÆ1¨Þt÷öÕïxíã~Ó{>ü¦·þл~Ý·þôþô7~ãïÙþßûöSƒóˆy–Çôoz¿;g?ÓÔà¿uûï~êÁÛ_öÏ=ßx­y¦öL­øTíi÷4oÿUiÞ¼&¿í<ñêÇžzÏ“½õî7ÿü7|䑟ÿWþøÝG?üâÇŸxé“O½ûöÁ¾í‰7¿â©ý¹ï¹û=?yj{´®l[}¦Ö•þì7í¹÷§~×íW=tû¿ÜÝWþäoøgøöG¿ëýÛÇÓ/Þþ¢ÿõ‘=òÓÿúßþÓï?[}NKFÙÊü´däµn—­Û÷Ê÷“-ó³_¹µ}|á_ÿŸÿ¹ù_ýðËþÆÿôÿÌåƒ?÷è£Õ÷ìû5D¡’Òx¦—§eîÚ\ßtûèøœÛï|ümï{ß»ÞûO^óªŸÿòþ¿ù}¿é]þðGžø#_~ûäíOü«¿÷Šû«¾ãK^},UÛùÓè„–ŽÆíó™úg´ô,Ú¦íåm·ÿÓ¯¶.ù·üöNGÓµ²¤ö+õʧŠ^úÀ¾mF¢µöwÿŽ;û0ÛÑq½¹Ó‹×;mKG±¹µÖ‹<Ú}šVðøÑN“í Z­ÝaEUpФºOü¡Ö>Á£vÂÍvp#‡Ø‘mÛìÇ`zµÀjz½Æz^«E-{©6½‹fx¶—Ú«·ÂŠ\¸–2Þ€÷ª'hµ:ZÈ6ÑÍÔè·=ÀQ³àU«÷3÷ôËù*»·°±xÔ¨þ{o¡;[XÙKmè'xÔÚqë*•`—ªyÓŸovu8j‚óRŠ×# ·¥ïp´…ß|8jïpÔá÷vÐôµ›×ã§è­¾àQÓ¿k*™=M¸Çwö˜býÕ‹G-S;—ìýëÅ㲂$ÛÞ3‹×ã‘Ý~½ùÓ»Þôå@§¨#{9Á£VB§¥Ž«„µ³e}›þÎ^“Å£V6³iB Ü‚Ê_'o±¿zeñøµKʱ‹Ü°X3~Ù+ö†}pÔ¨è¾Í{„ `uŽ ²Š{?Á£&Á†Y'XŠÞgÇÍ’?s8j6o@žþÌÆÖð™ ƒó7›ŽZ#£–¿@É|¿agÃx)ÀÕnaºŒ1%íj!9ŸÓfÃÈ®Ç-|´ßãy›^k`ÉÃZ?j€£žÜ‹ßO݃Z¹à‡Öú±8jôF³7˜`ñ çvŒåѵödu0¦Ö‹Qq“žìZpÔjxðÞü~lÖ£áV€1Oð¨ÙÉŠصŒŽwß­WæਉµÝu7:{eš&kÇw›9ÀÕnaÄU|7€¦ï67§ÄRµlÑ͹ó~vͯ™1~ ÆëÜOð¨Y|¨eŽuÁª]búÒwÜÛ¯¶GM_#š›ß bE0é÷¸b½=‹Æn±†mÉ™-V, ¿îèò íOÛvÂW»ƒÁ4ùâ€9Ë×'«§¾ÆíÒ¨÷Þ>UÞàøË†‰¿('lwÀš•8 …óÖâ©úüjeÙjšQ,ùvÉòœ¬ÝnÝs?a«‰½25µ‰8Fûñ—´îÝY¶šÖùiG[¼ÌÝø@•÷ôk#Õ·5~âÍB½±&V«´;_d›¬&Ö¸ä›K 6XÓ–¨TÙ÷)²š¶.˜oèhŸñ~Æ :6@¯—Y¾Ú=ì]sÂý¬¼c¥d[Iâ48~ÈjÙ.’I-@aÉ´Ûy«Û’ö¶ÚcjÓ{—CÉö”øµR dµm§Ú&¿´£”cì ;ìÞ~µ²šÞG'N´j²U¬¹ï~_¿6X¶ZfýÜzÈÊÖM¨á^ c°%3Õ:*©ðš¡´•h%V¾mØtçÐwd5±fnwšª9ìí)hÚJ#tµûý´QÔ$«g&Þ¾ñ«å|ÂVÛ§ðÑU]÷îZûÌtãÁ¸…'ƒ#«éÏ1po ÛŒk«¨¹²šØ­Ìbz³Ð®šðQ›[ «i;Ö–Ô^GuµÖ‹Ç}U·Ÿ°Õö?–+Õ'.ëÆ·Ø4Êódµ‘wNU=× T„³mâëm'l•]”˜CÕòMpƒcžO—Q\³¢U;æôìÝ«Øô޶ΟÏâ÷ã¨(yAãnÖ¥“ÇÁ£øF;ûÆëeA«í熹ﺷñGmoõÜ9×!ŠN.<”[§V,ÂÝäÓ©wˆçVóQ§¾»ƒ Lqs\ëVËÅÒébµëݧÑ`Œ¦©¡PúÑÇÖ (ÞsãûÕmA«é1¦Þ6¯÷ómahµªiA«íSrÄws8SlJÅ·†1|ÖÔ,pµÙK6pW“SF×Ôâºà5nÃ#ZÜ5Z¬ë¸º \ãFu;ݵ³oë±MCŒµk]Àj“bì Ác§|]›V«7Oq¿=îgµ|ñ.*¥}°Z¾XöÉûYµ|ŽtÓÓž®v {Éîb:Á ˜~ì\›_ó~Þ«€Õò¦v?N Pq@¿#$ƒ}°ZÞmrÄ‚½öã Ú×Q´-_zFÛ¬¸«e>Ÿ;¨Çf¶ Õò1Õµƒ†ïÙñ‡ã~\;$­ºå‹¡oPì™ïÓŽîhØ5[AÑ~}lû­{{­Ø7 F­wÑèkMÀjoØ4ò¬qu@«ª7´š> [Q]À¶jû¢IúéÛ‚VÛçgKª X£6Žÿö–V·5»‹ò;F €½+jù‚¿£_ú.`µ\ÚÑ7M½Ó÷|Ùe;rX­ãð¶ï”Œºù½²ÞØ´š>Ô÷¢º€-jÒwì°£5‡‹÷»¯*¿ú8~²ûú‡P´Ç劭Ɋ;ÏÇOÚ¥òˆ|)Vã§«vûs OmÞS3 X-_ kõÞ%èûÇ+Þ†ckñâQc³¤º2E:±?±Ž¨Øf°>5ëæ-#(lÙ<¶cA¾¿yCÑjó¦àdbÅc=篽¥ã÷YÀ¨ÒþRÅßP`¢ÖñÃݯm~mp‚µu‘m{7úÎZ>)J)» X-ŸÅ¿³)ãªW°ÇÇL«eï”Äå6¢|ÞüœXRa½¼àÕnã.sè®WmÈìe£wlª Zm_¬òhºwó{·¨íݘ'à @^ÏTØfú™Ê^Bˆ2¨]íÞÙ¯u­ÖѽP’ HIvm|ÜkXcç¦6•ñq oR×ûÍ­¦í¼ëýÇz?ŸÓ™3#ã»ÞÏ'qÞÕ&À±Þï8-@I”MkeÈñ3«3PÃ~?ô,{¥‰ç è¿¶w«øµ½YÕ¯‹?l¨e ú{¹CטpXâpsôŠdµÁŠW¶w4ÔØì;«ç >;®ø·Âq'*9ޝëS¢ðû X-L£„o Põ•³ î©ñ$à£é˜Ü]bo9Fq9 ú´¢è£w\ŠŸ„PE3ƺFõ‚W¿—Oe‡uÓ¾œ¡FÀŠt\°YŠfb­Àz˜7Öj€l¿®VÍoÜfj†;,3ž¹ÛZyÍ‹¾–ØjŠõÌŠ”;2ÎG•ëY°® Ê-ÐU+{ÀPûv«e¡BšÚf`®–›æ¾ñ о¢Ía?Žà òNiò¸"pž+l‰ƒ%Mšòl¯ªµ øZߎ=•û–ƒ¶jíOWPÃîµsŸ9ŠC-«™›ù 6íìÇ}ú’ÌÏðõ¯ùøO8Q5ŸK ç©ÝgAã|:Ö‰!<œÅ£iš\¶©BÍž lm…×|WuQ‹»'€NTǹçÒhp:® X-“ eS-ΛÃÕî­ñ¼5Ó‚¾ïwÏi„#Î~&@´èËMà ¡£©/¬¾Çbß&e ]2±[WÈ%&.WÉ2›¿ÏÆ¿»7µîÑvÊñëãDD ÝÎCø{²C“îaŪ{ˆâ¸š€KVá!¥H Íw•{‚æß€Õr…É!ÚC¶ÃQ† *tZMÞjM¶zM)6í0Õ¡ïòW>æì ÕžoÅÙ$[V?øø}*Ï@Ç=¦NMVßƘíÜÈ^#{#ÐVCª¹~È›#I¶ÌVëJÇ&ÙÒ@‰9Ú‡~áµ$àµÒeèlä`ŒúñÁGéª%àR¶'9.ì1*»«4FÅoVkø¿Èû%lûc×Y` x-;BKž7Ð×YàXnGœ ¦€Õêv Õ2p:AøCÎjIš S]è)NµMI0PE¯µYÃPc»ÌMïuÌŸcââ×(úùÆ*fœnLÏÁ“C÷wnMÏ^ÐkmÞ~-À™×÷ò¥|jtÀ¾85>`Pœ!„§1R–Âíz`éoì=8é~cçL0ÎÎ8wµ¯ñ^Z‹ Ãtœ æh×<:Sšwa€:¡ó€ê*`µŽé7µæ:Xk®™©'ô½¢h5޵fBáEi"ºw~h{YÐkÙC#H¸4‚}; Ív/(úIzw'ë¥Ð6}Ãêá,`5¶AUá @Ú¶uàvUKW=>ª™ò~§ïñI·vM¿ŒôyÚ÷¥Ð;ö)î²ì޾ÙnCÝ…•ul°Em’$Ú8aWm@ï¬,\£CMSb*]t…~åh¿:PðÙ›vÓÖNØjƒ²i½n1ÜZ6+BSì¬v±oGaËM-¹o‘ZV¹êÈŸ¢7r´lq;,)Ð7e–­Vr› 4Nn«’Re‡}%Ÿ®¸J€wò•ÈË)Q)°7X†µg¬V‡ehƒ†‘¨PèÙ+¬UÔÉõ@®¬£¥ Z<"mý;­”Z×÷ý„]9«dæŠ!¼Ç’a:Ã~µ°ìÊH·RieÚÆS5‹q½§¦+ÇÒº“—‡ÔÇÍ-®lC\-;ý¼f(/«V%Av=(}ˆ] ˯f;qN1fj¢9ÚWªZYíBC¶¯WB…KV™n‡><³lµÜÌŸ¡A÷2Y9ÉT2¢æe7LØÞoT–’»€HØ ­‰`œ+‘XV_¢ö.Ô—¼x+5?•eϰ\–ä=Q¶@n>s¶J¢ÂwFcX´§ã>ÜbÜ•¡µÎä<'Õ-'| +^)ªOœ ³·:óͯn,»5t:ÊþŽ2ù"°+õ݉Ü^ëw¥×P]=sê1d|Ö§È­Úh9d¢š9÷7[Ãk¡õå+­ë5Ñònå*»»Ñà*YeçØ} X^nYÍbgv 4}ËœBa¤J‰(tJÓVØê힃ÅëiÎÚÕe'/î”L†J»ïFvÆL8 ¢ÃQô½EnEóq÷u2Q‚¶wÀ ±ÏÒÍÞ`×öG-¬Oûî!‚³Gbç\éPåcvçîNØb{·ã̱;髳hd±cþì |Y±‘î…s^jÎn K­ùÂÐ]¿’š¯'$84¿¨ƒE# Úã@mô¢¨xæç"˜ñ÷þàé/xHŒ"´àõzƒÁ`3°}7‰pµ8j¶‰D¸â h“¨à»uî2Üt:7™$ÒÎ=F0¶˜Š=«ó$#áõLoÇÍP[°Gmsòì>NëÎâQËüÒºk]Q¤ÖµK²û‰ýT^QÙýTîÅÁSy\4hÅ©Û ^ïHU"!áÈÚZÊž/aôŽá*º6ñ¾Ûøñ.)¾Ø£ñMòé;îçwIÖ8WaªíÞ‘Ï7JÖȯ°ðkäËÄ_Àd¯Á*ÞNØkgÔ^1F߉XÜ]µÄ5e_"Øß°¼‹b^ GzòZv‡NkhßÖjlM9µ¥bÔ›`Œ÷’ötG/Èf  ±×N¨­ÝŒx™-Í©òø½®@W®¨5v;G§Ýê¬Ê½«ò½íäÞE´ö.•;@ ß»æÊ%@´,&òumd¯òýÒå•Z¹oõóÞ\ƒ£_i®âfõ˜ V¦ºc-\’À›ÁkH¨Ib‚^­!…œðõÝ ¨¨¿Y8Žö‡äd£¨Æõ@.ÿØ˜Ò ´Ößì_«Ð‚e—·ì gÈi^Þ%¥™^¾^aùJ’šp'dzS¼’È(U’ˆŒçÀ£‰ºg¡ªgÙÚ\Ãïdt¥?K ŸG'_k=aXv‰Û¾â £\tªÀúSaqÊ)Õ¢+18+DU´•ä}ûBš,»®Þü¼ååý)]=N0¼qž_*¨ã<­0AˆªäÉdIòlÓβŸ˜¼Î†ó’×àêèþj|c÷W«N.€ZÁËè!?â+ð´rÍ>|ƱžU­§›Åc/ùY’dß­Ñûþ†å ûšÑ×Áž[ËÄ™Øß+—kBLwL‡9ÂÆœˆÍ})ÂË5ÎëEš€çõ"­€ ³Nàs½v‚®@/°.à©¶[lü­f©z©™¦ÞÉ‹z%#b¹@é]ßqqqòÅš¤WAŸû-€;!£Un{ÐÄ¢ícvƒ[sÓáðÕÜšÃ^ŽÜ¾æR¿c™xGãÄDï8¨á:ØÍTR)Cõ=€é¦²$\qPÔg JûÊS}O'hz0¬á<Ó Æ‘¾ÙI¢R2sÚ@¥Pâ<ƒJ‰ Ä2Ú"*y'´FTòNh‚¨äïÄŽ1©*ÃÀôˆÞì\»Ž.»ö¼ αØïÜ«¸Ö ÆRïºÒêš"×”V×5»j´º¦Eê™k‹]°ÎØ«õ Mì¶6¿ê¶9žk `vìe¸RC$ Ûƒd·>Tsu£CÝñM†èÂ׿É[„fƒ8½öMÀ8|9¤™Ò˜ Â:…r @1~®M³ÉÇþZ!ôà×Ü…iY+û µ°>Tž]GXIÒIƒ+¿JHþÄrâ왉wõ'°Z˜è~F Â¯îšžw¨ðX»MÙ[Ðò©9òч÷è6%¯kù<æ f­?3À¦ J]=@èê %j²j>Ácœ0‚ õX„5ÔX<bq¯5ÀQ³0r‹[ÄhÓ©­ýš¥ =&ÃE×'F©²<¸b"Éÿ 8e»IÅm¤{eñ˜&)×h£HªÅŽ!•}¿„&ÎÁÕL”|Ç$(Ü2wœ˜Åwhé-8â(pæÆÌa4ž¼#xM€«B΀ù!Àu¤9Ãá´É¢YxÓá¼ E¸V—4K2x>S뼨)l!ì¯)‘™Ì€$‰üK†1Idm ?¹÷S,ÐGJV§Ú׊Këk]ÖÕW8£vÅZ€Þ¦+Ø኶€-´Ãô…=­'ºª»Ǥ«ºß5‹k˜qMʵ}A« ÏY©û:Fèx&Š4°ñL^i ãy1x~š+¡Ýkˆ]Y«‘< È»¯¦^Ù˂ƢôÔÔ+„«Wà>Ô &€ûPC ^F;N„Mü4(šw¬1ûpfªûîBAФ¡ÛÍ—XAì)»â‚ØSv…q°¢‚4ïP¸ŒÂKà]ëˆÊé~`,Ý hÐMÀj¹rk­– êY¾½ïš9 WïA½vY õÏ'æõ˜—J„„¢³½ë¥ÒÁ½Åä‚à{YmpB¨VÃ÷²ŠyA0ÂÁ}ãH‰ïW¹OT˜"d‰èÞÑU àm]Ê {g+5¶àr@3BC•¡Õ|®«ì¬ÃµR¨ËÊ NˆÜ \Qäf˜à³"7CÂåfhì›K¡[PGñêÞH—B— +†C“TàìH‡,Ķ£+"á hæ ß¿ym&«ymùAÊ%+ŽhE;E;üÏŠFáÚ©&ý“9[ž«È€¨YfÀ²¬óh^‰ÜX–rcdf˜…­XÄ ?n~ÉPwÍ¢ýúdŽOV,r|š­Òý5͉¢ýÚÝráàw‹dˆ8y„Ëâ‚VËÅ@„2» 8c—ðæt8'­Ö1ñ3ÂUxQÁ*Ìm2“ân“¹Ë1üè€Üän ˆ!zè&Á5ÛÎ-ŸO«µŸkí§Z}[µÊŽ=}Ôil¹ûjê-âêéa€¿FÑß¾]mÏ‹EZã§/ˆŒèÞ¦%©‡ýñ7,Šû…Z‘Ì0ç‚^ˇ£äÂ%9˜Ó¨gþR:œ¹·¨gËáÇt ö3sÐC2„@Q|ÿé+s‘ÛÌl Z-„éšpœæ{ècçcQÁÎÇ¢‚ jçA蜊€,˜UY8'gkƺÈõab™Œ¹¼ ¯X5õ€+dÇÀâLgÛMÀ×$¬ÔXùd§¾ VÌ8°±*d(0¸*,$GqùdЋ&pÕ²Kƒ@XÌŒX¦ÀÅ+|$ëd ŽÊ0/‡bðEà ÏÅ]NdN.d‡ØC …í;Xé¶£ì ¥{±Éòؾ”d¢èû“9-ã×Vúµ5Z’™éJwÉe¦_ÝÑðmÉdIêMÀj¹Xú6Üΰk0Îk°Á6cìºÓŒe™1§® Š™‹YðÄÌ,hbKÌ}ö<óËmØóÌ¡·¡½¨=¯¹èØñwí×.fÂÍÈ$jq€Lìr{ÁùHù}$ñ˜¼½¼]Lâ좃ù5qÁp?¹NX,0µƒ]ÕÞ±§Z\žŽÕ‹ÚOAŽê+è΂.ãyÜ"QGwÄ„EDG×;d¼dqˆBÎ¥Ô%ÐzÙôø{åß{LÝÊ¢™:}(\w½6Ä3Q× ÒÀXÜ0óJtÚ(º\\üÆ7,._­Ýÿ}çßM{øY1¤uëþ¡368TCgl*†Ö+ÂuÆÞ]Ä{\ï§ëǽó=÷\Ì }C<-8Ž?c ÜÍ4Ga°ã—]{ÚýLyËÁ>·_víÞûL9aãpfЯõ¸FÍ9ïGPô¬šø•Ä¿›)7îdŪg r©G»€Õð£ C¾hU‡À<%Õ² Õd;c»e÷m`“ÏôóM>g‚|ÿá}`.x·c*L©[ZÄ0œ7ŒBÄ(wät8ab< iH×9a­4aÝË xAÿ»—µ\šT¹Ü4-„ ‘+< ¢È ŽVT-…LT¨†²°+;àª*÷Rá­!ïü ]Õ¹éw£»P’Ì’ z'DÑqt]¡'¡}"J¡€šªT˜ÈIUzÉ¡“¢ R`•&ó±Jc{Y>)ÚFVz¶ÈMäæ~©ï´È¾:¤Cùª`­X?½œµ€nÔ½S3—™Ñìzˆ(‡qÝLÖYçU§ZgW\uZZ‡UÈì¦HãõzÂnwÝl–û¡px·Lpq<8nÈá®ÏT EA†ÅÀ{hŽ Öï#¦hC5à¨E[Á„ó,ãì ×^DiÎ,^¡í.ˆÐìEÆg¿Bí½)ººa$v›\&M¹ÀÜéÒr¾ˆU !ÝH`9ÀQ d68]TN¢Nâ fÇ-Ì ™ÏiÎËp´ `‘áIœpÇ<ÙöåÞ­ýpìH,šÜ©6îÔáEºt4Ù%ë?€¾i¢t % ¾i„‘á›f"Yºeb"Ï<–À Ù›Ë A„2Þ7¿#gj `3®º ®8­ÇNÞ“>»;EvQ[èçÔ–Ç"¬9)€­*pEB=‘/¸yÊqºÑ¶À²±Ÿv¸â yÒòÝ œ–\•jÅΆ‘w¥í\kͰÙ$³H½†œ ^”þÂrSB\ÓðRB0ÓpRŒÓi7Þ·gÖªÓÍKÇm+êÜßݺo‹*>Fn+Ü ,£‘ãncïZï†û¿ûzçE­wòX§^Û¡±”ûŒ%?а„÷;dÄ¢I¾XCÈîÓ)#íp(1Ib—oÉ„‹}^‘Öo9á0aƒ¼p&öl¹á3yÚÒ¶3`ÞœŒ˜–‹@„ר?…® =øMȺПå!ó´SìE­ÞJ +ŒŒ(|À¢šÊ¥aMåTƒP¦r«’cÍæ;ëõmÕÚOuö{jÈ©Hí'ìÒ,7dµ•øÔÚÆè›Èjw:)¡ˆÆÉ€_.…ún»_î:@+Öñ†óuqi ä’;M@G%Ò£ ƒðJi ä5éZƒgÍx&Ýîc ä5á(ÍQ8¸mÝÅ 9 nðÌËrÇÛà”¸N r•cÍ@ÞCh;O(@-N(`ˆ6¹´ ߱ׯVM’Jàà© YG„ÞF ÿ®î©¯ÃQ“‹T{ ‰\éØ $Ç¢Ídûú>žò¾'i•'&*¡gùÒ {‘¥­ôò•C¬5(Ó\3Ç® ßõÜñ][À-åDbx#»f`Îvn¢PãÎÂ…µ ݱ¹ µ "±BSµÈGN̪FpÅqªóôÐ¥ÛÆÆê o,­È'$¢HïÓ©3ö ªJú£ùÏH_20‚¦5à¯3VË äüÜ‹Dd‹F‘ߢQ$Ä·p áðQdœ ‹~çq#íÌÅ¢å«Ú=*‚ýÕ‹œ˜Lá5¹ Òõ}r¤ÃüàNH8c/l&MdäÊ,ÚÞî·ðýÖ‹EÎú–pØõn¦+NÐßyh5hïP¤îγƒ!ŒŸgC?O †0~^T?ÓÛ§Ai®÷öæ)‚îû‚ÚÕ{Db°Óë),C§P¡˜2ë…›Êopœ.O ¾†Ë(òdŠoNç.|sÚ+ü3wÚ8ðÍó˳fu_¢/7,|Ý]Ô‡AIA}Øîkõa¡ƒg3W†}pÔâ<ö•A@N Xx\{šY4÷¨;ýøêKn^…ÎÊ|MMÃY½«ì¯®³b žÊ°)Ü3j?AÓ!±“òig­>ÓQ¶y¸Þ&Yçk©ká¸\zÐ.Wó º£šÂPiŒ¶´÷±Ç¯0)•g®+èô²tÕewÆh™M{OÁ­ ïš ¡¶7=¡Œ÷÷ îÞÓéÞÔ]2Tó|·*àÄØ"ê~ëÄdz»M}GwlÆ7÷b'£ÊƒkHÃè¾àÒ/º ¹´‹–nÑýu¨…,^áßC ¬ =Ò¿ö¦™à±0ŠBü08™f‚ËÀßkfѾž-›lEFÚ¨œväDÀ‡ˆÐF ƒöp<†›œ{™!X>T˜~ u¯4œ‚Q,Òr2@»Òll6ð|[Œ\i<¼CÇ%$·þ•l>Wæp•š#WUÃý0¦§}¦,f€ëJ3uF®\ÍT5#À]·³âl9éllÝÉÊC´lt‘ST¤¶$vS»Ï‡$Šq^±I\šD wue’§‰«QS¨ÝýÎ+¢”¢IrªE“< ¨ Mr*^~®òd†[¡Æü¶®&ev[”ÅGö(Ëë×J kD]K  ‰5>†byG^Woi䃅”Hdšä9CCµ9]#»«Ü•šGÕf2a3¢›ç-ÓDú)º9ЊÀ•Dš‘»R>a£¨d#¢°pØŽŽ!ƒ x"mµ#« q}ˈADKPÊ%GôúÜrD¯ÏažT/+²ªJÍê‘3¶M1:Ž>™ò@@jÖ8`xÊ/M¯y6 Íüè"šó§ ºF0:Ä! )arŠCÒ©É]EÀyM ‹1…*èb ¥•-»#¡èü)ã³1™»Öñ×`“i–B6RŽNÒ5"¿'à\éˆu÷WÝh ë$窱“ºÆè?׸29è~k[ÙDL¦‰l"&E6+›ˆ…>G|Usý¿ ¾ê±SYÖNÄ`²"ã«2XÓ`<õ"puolŒÀî „›—³#ipZŸûƒ1B’ƒ!Â$t 0xõw¹¸À¯¿k…ËÅŶÿ®,)¶ýweI1)¡+KŠƒ•%‘zºHZðFêbË!VO]Žpñåàb&œ‹*ø:3*ú:á ¿n.ü+cgp2ç¸(J¨ƒ¾FؾÁgÎbEàê‰ ÐY,ÃyNÎb¼†Z»À5nuCµÊXùžö6V¾§Ý\ñ”{ÄÁÊ=¡²)r_ÉR“ †¡‡p/ƒ,1,÷¹ S…Ý÷L+8à)Œ¥±‡÷ _'+ÇŠ?î ’‹8!òrÁÝ/òtÂÝ/2u®1ÔŒø/gÔVœ¤]/»\ ,gT X¾cÆY(ñÝl¬|GŒ/VÎu(”våáüùÑ"ä˜E4¯"¥«*w–±·j¼¯•;«¹ Z•7šâª´áÈZõ¾„+ix§ç¿>Xcæ©Óëƒ_ŸpzÂiºfºÝ ¸s€7Ù ”  'FBF B ƈ0@óE±qRVËrgÊ5ÙÁÊžkpóØP¼²zq§.G÷ú“IBñ ç×B/†c!r ‚Àçd¸"%8'ÃqI@4vK^Œ|Ši”ÉlŠGõÊ\Š(*x‚V元㴲92pµ2A–8¬ø­2óiì5\ÄüÑr+C;¶¾j¹#3¯íVË…™¬Œe¦ò¬å!×:ËGK·6³òЭ͋rkC*éÜ•ÀkØ€È;Ÿá@öu¨o™ã¦(&ù€)ŠY>äZ<<gåýâ9y=%ŸžaÖ«,÷Ûd³ÚÙ).‹Êàà”«£›ÂÉtAwùñ®ŠŒMHÛºÜë1Ô³ÖIxWÈeSDe »ØÂ öv˜”ànGËÝ Š‚~uO2‹+%óïn{Ö¬(¡ùN^äŠ#Ž\;iÆ ·PÂ}­ØŽmZuÛ‚¾Šºœ$jÂ%PƒuDç6K‡ÃŸruzxRf‹¶šÙ¢m}Ž8“me‹6Êã.r†… ÛÅÍ0Šä.j†ƒÅÌ0É‘lMrW ÛbÞç]’{„±5v8)6¶P’_cÌp’k¼¨Yi]2–sv…Ó´“Í®}Á@[4³gÛœ:758ÄdÏ´‰˜çÙäY¢g4ÈÚ5»AÖ¶PÛ-3ª·ÉT ·w¼") ‡¦ÛC ŠÚY,³UÓꪀհ&DØôµ.XÂW™\=m•L®Ç‰u^dru°L®ÇyÒeïBêŽÀU¼Ž}‰@û’%kírÙª¼.Šï Èp¾Œˆ8`ö•JÇŸ½ré8<%Ó±„”n˜(™Žg^H2±ì‹ŠÏç‚Ç éž¯bÀÛUT¢`<¸LU¨¹T¾2¸?œÏX–€¯ÅÊàˆè(Jáˆð(ÊáH¢%œþÇ„ŠNe³júÁÉ÷F”'mЖOsºŠÖÜQ§ó~,1ÂtÒ—ÈøajDÊiØ &Å4&U¤”FBš‘J'¥#‹1¢´ƒdD™ ½öKH”s"+Êfáó#|GÞWÚm›Ìur‘òû‘üºÑ1Œ×î„‚‘çá+\!fŠäF·u­áæ«§×O·§mÜ™ŸÂío›è»‚Qî!ƒL†;ÁÆs+6ž[ Sœ[±=ÙQ´•~Œ½µQçG˜Bå·3"WVíK\[w†€âê*ëk…?¹Çž5¡ù‡nN€®Õ5c4iº%059-xŽ99-¸OÓrZÀ‹Ëp×OÐ & †0vó(!´«u]3·“u×꡾âý0 r‚SD3ëàñp¢È$)GN:Ü1€ÕJ¸…›{èäsA¯4˜aòâ~þ554ø=Í¬È 3œ[F—!µî‘!dÂpˆöØÚÊNo¡t®H´“¹ô=Ÿ=N›÷;‹ÖëÝjx>/ÒÈ^¥†Ç7†[øz P¯g2‡q³QÓÏͬ@Œ‡"£pó@“™´ T&m h•~h$‰ìém¼Ó-\qÐ>íJp*Jù÷ÀÍp¨ésˆ€2ÆÎ(vÜÌöýš ^Ç7 ÿ4=ºëì«#ÐÏôIÀW Vy.w‰.w¹-wOpÑ- FGcˆÑÞi>A‘qsãܯJ[ÏinÀQt?§Ø~}õIÛûê³ÎFDoÀ]‚_!¢øà.Á/ À/à)ݲk½Ü-»ÎË]ײk¼P¤¾ –}Ód{ z>A§Mâ9¤áË[!Ý(×k€k„tÜ€òæipßì'xå&m3 W5‚–ûþÀYÝç ¥7‹=0æv÷šr@ÌÜÉp­$±Ž8½2;YzTI­Ì®eG‘i:˜‹h»u0S؃¶ëß-ƒb—´6;¥«9Š"|N_öiËŒh$ „‹„C¸wî,^‘V1¹ó–s–h‰®¥ÄôÇ„F­ÆÆLyœ0Gx†Ÿlsé„-.!¶#N ³}lÂÄûzÂNÇæ-—xá#È#Ò­xk,»]Ð6Sw@YÑ6ìót(fT|vž¼Ù¬áA wº.³|¥ A‚+?Êòä7ßq/Uj ?ÆXkä´ ´Çû$fY˜‰ewºžØÒÿîåªã•¿udcšÜ‚çnâ< ò0a]H 3Å<¨Iq¦˜Gu“n€8­HS9ÑÙçü\OH¿ƒônÄi)ÞÂ^®êý„¯á0¯xœË>ì;ƒ\óg «b†k¾ò!Ë5Ÿ¬¥ÝcÔà*åؤy^Ñ£ [òg×k «]rcv¢•]ÁÅpØ¿ËV«ºDÎ ˆ.GDÞù'F (æŸ`;”Âcbd×e7§d¸Q¹Édµñ~Ѓ”@×È ²eš`;¨©´gÅF2KcŽ»Ò>6ü—œ3Î:Ú²LNFÝØ\¨,ƒ0DÞ”yÂVÛ¥õiS½a cw¿Ü÷ÆÌ ‘¢Ýs D^w÷àÜVäs»žH1` h§³<Üåz:Ë˶ÊñçH@Ï<ÞMÀõen– s@ŽK–*hBal có÷›P«xQ c$$›aI º¹‡^}ÏF˜©‘´¼ ¸ ÑÛ o"å¼³@S¾ihV=Ïb®*”ƒ¶žev÷HÙ>\Mz¼¦O8Ø—’sÚ^ à,à*Ùí2#>¡StBû!£9í(ºÚw» Er2ºÌÇÆ9Aµ0³Çt¾ž›HÆ j9_fÒ½‘bMÞˆH±&bD¤X§H±¦1ظÌ, ¯Ï µk ï¶ÁYSÀj¸Ð8 £ :P¤,%2hβàUÁ ¥, a%o¤Ô iö­¶v”T0‚Ž'j¼&ã÷ âÝ;•WÒ_åíØîº êÙVÄî‚z¶±» Ž"õ ªJçÑ(c§ëÜM3È*Û°`äŒÉ¶—wç‰å´£xÔ2RO÷¨(2wvFP•Θ+"Rç>”!"5nc„=¢~ò Ûƒ}“ʹ 5³ÏŽæ[Aç•‘­œõC°Z®„g]€ ¯l±Ê6[Ýæ¦‰l1w››1Pdd­lVºæKr6Ý7ؙ٨©àsz±1ÛJF8]y4g,â;彌Õ§¼GØBÞËv8¨ûàø¡[z›ê՚Çz¡ZMp¬ÚÇòV¸§ä1¬f³P–…W Äž’͵IÏlÎMâxfóiÇ (+™X1 À«DÀÿ R$ ÈŠâÊï6÷WF¢7›c;LÂ^Tâ€<]úDìÔ‚4³ˆžš‘ñS Aµ˜Þ8»UÙ Š×£˜ÍÀê|r/NòÉ7Ù}ʶ X ³¯óñ -¸ =Ô.LA¨Ã ¢ÏC!&@y´˜x™IÓ*Û°ZÇÄ– hZÌ«VJùTË‚¹F-§Z0 S/ Nf —™f@Á0³úÀÔDÑj&û~Š"%ó6¸¸ ÀÅ-È+.®ÀŒZÞmn"›äIKš%¤¸ÑP´füö¸Y(2ï±öz“AšÍEéQ!ÌmØ3]f¥¿P6ã'2d‹Ð O[ÞiÚŠ]²ôðÁÕï$`5˜¯OwгÞ x*ȰÃ*¢kä_R&! ÒQÛØµ¼J"èIµë©¶ Õ½X¼&jô$ ô2‘]3f"»f°ÊDvlK"òÉÙ÷~ê ÷¬RÿÕL©Ç½«\Ôé¾X/¢†=XRRgnf=£kää×sbƉGï×Ûéí|Ž—I§7£ÁÄúòÒ‡zÒ‹èÇKoêÅKŸ<“áJð *ðà¤{¾öÜNßzn§/ÝOßY12(·ˆMœ€>Âü³÷øšÎ}ŸÆ'gAXc“3ƒ˜ Lo‚oY¼–s£¿õZ=fÓ–`E|ô¹¾çe䵸ì=6Œƒ*àµ&^µ¼ôËöБ$ WŸßÇPÒ~b`„êʺç2R¬/#á›|¤‹¾×!ЉÆ.à5ÆelñE°ÎDX«×à] ÖªÁ5 Ö`Ÿ¾#k­$ðZNѺä j…CœŒ;6¯åÝ•2W?¯•UËhþSç‘ÑÛ‡t7 Ó{±ª§ñI žß¼žÁþÁ3â<’.Џ’-"®dó=SÄ€u²T‹àYcœžEu w™rϳZ÷™=Þç½ô>VŒ÷éö®©ÂbVŸ-ìÅHZ‹ „_V¶ø p€È?îÙb5ÀùEÒýÀ4RÈW²ÆÚÝmäÄiÌo¬1mÑ‘cL[p–ÓNczCNÙ‚cÝÈ–§‚+å^q€qéSÒѰ½\ºrOA͹‡Üšü4Ö:ü†à$±nÓ·—!'wƒbNJØ?P”¿îæ ]iWÉÍØYº¤ü~ÖZñ8Ò©É,àßtê?Ã~ÄÃvï’îÙ½ypÒî-»w1£R÷u£Xr6衊epƒæÊ‹Dó’Ž>TlÃ’“€Õ8ºMÑ æzÆ”œTÌ 9©˜•rŠCÏèðéàûæmA{Ž«!gA0ŒëÇë»°©¶ XM¨àЀgîcS Ïo;—…ç·ÇÂóÛÀÉó{kÆHŒó«€}³n,F”ÐC¾-®ïĹÍõN2–<`âcŸ$Ç)Ƽix ÞŠ€Ÿb̵¦k<›kÍšOÝ4š뛀õrQD+ŠÍ1¯D€Ì¬«'ΩÍÅÑ‹f!€%­mA?‹¸à>µ~8ìá-›-޼ÿ³¥ ÷ÿqÏt÷¿åýÏc@Ç®ƒdqp:îãÇ?;ô¬=Â'8¢„é%+(àæ!ôc!›Í^cÁ1¬±`[Ç¥…¾løª_/Šèâ Ÿôe&Òw„º€ï0–è!4^5r‹½\ÂŒâ¶èÀÔTÓ5ŠÛ"8Nµ3¤Žš(^!~4ʽV”Ôk8â¿e3R Öf¶Í»q‡³b;ŸVâ$Pg8Káħ§3ˆ)´† ^%þ¶M=XV‘](hãÁÄ:;cR»4ÆxÈxöøReA—a­+÷øZÈŠvú^¾4+W¥fe+£¨¬|e‚áYœ-ÖÚ¾ó-PôZGK+úÒŠŒÅæç½¨Y€gŽ=Góe[ÙQËš Id¯åÝ MÞ­Z[H· FÍ:â´âuÓé´bLû¤vV;ŒrßÔÆ:×Ùí¢DÃÙ³†µè¿rQšf€~î;kGh¸Jö®”ößë‚Øö­¨Ý¶#}¸KŒ£™ìŸ‚âRz<áo—füúS}©WÊ‚¨e0Îë¶Ö ÔnýžÚ¡)GíДŽó8¼ :‚¿WÙ“Þ«”¦÷*­­qWJŒ»RbÜ•ã®ì1îLÉ#AÀkl—g#K+…`RE½*pÕŒc,€r¶2äÙ5F²Gåññ”=ŽŒ I'pŸh94GÛ‚VË'Zf$;B¹ƒYmzká¾CÀjv(—½Œ”!†A7œémägüLÇ$h䥤ùDg,¶´×­&|°´º®õ6EDȰ(‚d—a|1O@ó ‘ž`mÈØ³hmÀžEk€¬ ‘œ2ΧØpð^ÕŠj¤½ªõÔÀ¾VSãâíóÌ‚H;níGl/î’ð¶C¸ÙiïßP4îÀñËÙ÷¬X‚Ÿ0"¿Y6›…ò›e3S(¿@DŸÌ .…^Ü%]Ï 9­».ž ²(î+ƒá‚Wå" GmÂå‡äÊ»B|ðfŠñäÊ»‚|®(3ÏM6ÇsÉÃñÜEõåxEG nHZÐjú2,©‹Pžs]A”.ÁE繂(89^TìS8µŒÌu­3û¬%±S¾Z/RS” €`Ž\èÄÁ 3/Ê>†ý¬Upl’€3|`x/€% Þ_9馀»UûƒÁ¥"— êpexëV«ÑPáWÄ'´Ãã/›^œá—MyN×;/Îpiµ³‹Á‹Ù/MÁ( ôŠÂNH°¸Ë+ò?¸{,ò?xQùnC&·‰â•™ç¿ÒóË)¥ugwËÂçé4e ãæ ¯° &‚„û5«å‹¼žP"—\ ЇNÓ‘.Za`1Èày¥áŠy¥‘‡%òJž2(ûLé`ia¦tDºÁ„êtC 87FNQ„\¤“S‚"#´¬Újé1#˜/ÛœH™/Û¼L™/Û‹r/E¾7Eïe¾7Åïe‚7Eð\aW,×LWž(#âȲâÜÈ@â`%‰2O]YC¤‹éiJˆ]DOaqÞ®uÌ–ò®UÌ|gºÖ0kCµ.7æÚôð+>h”Œp.j¨5\ôeóhRÔcO%¤HÉFH—©ÌÍÔ¸‚¢;Ûƒ"fƒ¿F˜'b E'¦ác,g(ë˜kpÄpjc¸Ã©`È©Ýh)Ìh1æ4j ózQk, 12! :Ò2šÑû-aY,qËuš±…`öÂì Y¯áE¹×šOÄÀúŒŠþ.æÁp=^ÔÊœü¬:@˜FD²`H6 Ý”( …ùü‘e™&ŠÆ–?–ÄAG±+º, ½š€Õ ñἺ‚èÏÆøD7Èx¦`Ež"-9ˆHÚNÁ mb‰áä5kÉÂÙ`…6±Ô Îd’C3™¬ÂÀLVTX&ÓæMD\±Èû“y 6£Â2c™Qa™Äw#¸Þ"¶>œoŽî·,+ä¾k—˜ NƈL×d„¦b™ 3™Èa×b?Ë]w8 ˜.6Ngecóú>hŸnúri_núúê%R`»êÂÈ´ƒíä¡ÚNÁ“'j/Çq€'5{8*Í"NÊÐHÎ(©=}QùJªÙ™SìçvÓ‘«‘ê2pðFçuDºô^2â=ŸgDˆ`Ì·=/¼!‚/‡s0?Ð8 …á…ÏYÁe‘.” {`áxÑvŸpœp7wó˜#FËôâ1v7§&¡Øå þ~C8Ñ–4 ÔýAwé\Bÿ]÷Æ–¥2&¸ÂÁsã&,Ö•‡ ënœŒ¤»q¦Xè=²íæ*êšY´¬öŠárÍ‘ˆüæK\èÁv ŸéÂoÏ…ž0ÅBϬ^‰_U×iæ½7š¤õ¨0J{:®Äaæ ¹™çáÚ8ƤaÅú4 ÖY¼"È킚“jø5 =€jð:+81Z¶­vmѪ±Ú”Ô åÔÚ€©ØäËã E¤žB? .¬u;Aëy|e.®‚±¼ÊzK€ëð~ñ ¼4ÿa@0´»e‡%0/cO]*ßn‘@·îx8…>„,!´‘Œ†Sð ÑžïºNßwŠûb†:ºóÏÁõý¯ôèŸS.ùôÒg„¢{"õàPùÊÈ»ˆ È(¼I–Hj9Ó֬ЎÅQ¼ÆCK¨=­¼©l¶ý2#Vy¿ÌªAx:FÄI±Á&%z¢ˆd…Ú,pnUÙ¿Û3gBÜw/ÓÏ\&;¯w•-qˆmÉt¾=Ê3:Í(6ÃĦ¢N™3mîpŽ•&éÃÎÜàðuâÇ®S5‚ÃÊ1jžWæv ÍqÌqOX“XxÅ2P &±œCt¬ÜôŒ‰LÓ¾ëB ak! "j­—y¤qƒ>2’ÎNBÈt^ƒ;¬:­A¹“¬#"ªl¸zô”KWŒcÅ´ˆŸ yÒWPƒL¾„Ëè»íɬ¼¼:¬¦¹DÍ0š43ùF­±™}×R°ZÓm²¬evèå,‘ä?ÅzeA7õСŠW3]ª¢v1Æ &pu?ÐܳȯÈÙ45¸ÿð ¡yÊaÆò?‡! ðdÊš%˜Ž}¶„ûR>º œ—–Ñð¸cušÓ¨ÝÈæVþ×RÙÓ~mA;E8±<òŠ˜’ónRì-%#È¿beXj3W¾ã6Þ—r1!Œ˜“Anà<–18à<–äÎct³‡ÈÄ^Ò¤“ÚQ½ÒE E:¨•'+»érÆÌÕõôtàÍ#ĶüfýŒÑaà46,Ä¢’:d‹E›)ƒd Y›)8(!d£N]<¡±š_ãÛ@YÄ<J ¨*eGÑkLg9ܰ(’³]†#×ñëNG®l—áÈ…¢Ü_M[¸ƒf[_ OŸî\xúˆÓg†å¼tõZ[ÐkºÉYt¹úÎØ' ØJT@°¥ª€8`Å*Ú@±-€ïÙ2×Ù”2wÅšåÔ\`±ö_Ëxmé’¡ÛŠ5ZâÌÍ*X×µG?…Ë—¾`ìSGm÷ôj¬+`5áo¶£Œö•äµÊ /àµüñM_Ú€(%ö+œlï¨pe°ÏX¿õ¸ìrc¹`Íô‚]4KðjŒÞFïèx/³JƒVnvÐÊMÞénEÑÊmÐHŠÊÆyÚ«žslJ{ÖS ìë柦µÄ„^ÉPÆ^X®jÖ*b»kél mÁA¢s°(t6ªöq"N(7±“-”Ò NoÙ¢fïš‘5{׎cÁµwí8ÚÚqÊ„ßZ8ôšîÆ6£-.‘/÷¿™\ªj¸¢JC°œ©ì•šFi-3ˆŽÎ Фƒ05fˆ3M_º¦oQ©éë®ïç7sýj®;ŠW=|F;šÂ zWÚ‚×õèyOKB7“ypéQ{A'Óxk #«v—Uµû‚^<ب òªmÞxñ½†€Õljä @ßNµ ¢wŠV£c½c¤h‘ÍÝ¿'þEÿµ´ùk3gëצÈøõÌ$}gÓdƒ Žb‰_ÆÌß \Ejê‰uÔ¨åÇîsA«‰#{Œ ÀÓØ0mÉu®ˆå $ËíTëxu?Yd ûÜýd‘-9^÷“ŠGFì"û‚×hwì$çÚKeÂÊš ¦ŽÀ”Öu˜b¹–ÂËUÆXµ¶0¢æZ·Èê“k^ù€–sXÝ,l“j߯ÆeÆNf`_òŸë3&$þš¼–+ÞI§ÒÆ.Ò¸jX àìſދ—cG6&£>Œ š|1#,Í&@ùb6Õ20W-SÖÞE—~ŽFÂ=6'yg› ?'o„¢‹WÓ3=A(¼x~4ÊruEs1*¢Ž¹ì¥¨cNQÇ2bŸ„&—vŠX–“©æ8Àršyû@~ú€½Þ™BrÏTÀ»Â;òSMBd˜Ò4&’)ƒ²QAšK>a?É¡bò ‡m+[„Žã~S ?kZÅ×Ñé„ëý.v=®Š\Ï»êxëhQë3clãø’G «‰”8ßB"}g·ºËC8·@~÷4kì‰ h¬ÞòyüEmª'ì§ØåµBœÒÒli…Ç>®²ÚÉíÔŽÒž:.áHšËNÒõ´qP‹x¹†VÄÇ@ÂÆÈŸŽ®ÎØu„q&¤$1XõŽ\-Pèa˜`/PS(.XZ“"IyClµa£MŠ©$¼BJm´žË 3#ð(#‰EàÑÀsi»ÿÂ^Þæ ;w” Iœ—,¹1Dn¨Ìú ;¡oŠ3†j=éÎ<ò+þw/wåfò”¦‘p§r2°µ]lL q²R$Ç~-±|E$GÏxrÃrÝD ÆJV&X°=h¾ŽL‰¨&˜D\s¨‹ƒfCc”˜~J#!éÒî k‘TÆüþ¼ì„]OW‹VzYvg˪’j$œv[íü>@+`ân+m˜E,lg »È^­'dZ–sÄ3~+¯–@N¤µÈ`´rþ0ã@Õ @²¾¤@qLÏ—_.p¬…‰”“*c9'UÖ8²LªÌqÂËWý½̘e«‰·„ÑÓËÚ¸®ÌÀè;¸®8C¸Œ“(î#Iyh‡ã$µ#@݇ßÄ©ž_»y5ÏÈÝ<†ŠŒ 6ø ~ †[uB2PðÞ’(¨±nTeƹIˆ¥`Äœ„X ^T,…žØ},‡Üe½·P¬ÊÒŽGñô‚pIÞˆ{‘ä!GO//‰¶¸"­¼¼$B= ÊBê¾#"`šËY?ð'ÈL%çð¦)" TçI¾  &$y4ŽˆGÅÓ\O'hôÛ7#Y–°Dmd¾*`r`iRð _s|ËA³RÍ'xWsÐ\0|Á _´˜ö ŠG‘ö ´¢ù‡ãú^Î× ö¥¸7àÜVôŽíB÷5»À"…X=Åü00WL;HmÓÕÈ%ðˆ‰þ¼Áx ~EÊdK0?•$°g«£¨$Åê¬(èLß›aôs`WБˆJÀíÙÜÆÓp¿bs÷âQÃRh÷øD‘©>`$LÃbe°ÞçAß0G"ȦAŠSM'h_=¯y0(N¾ïW…¹`ˆ].‡ ÆŠT‚ÕÊqë”ìÀµæƒS¸ù"TÙzú>D– `óÀ¦0ef#¼OñC¥ñ)Œînµ(M„0í_w¹}o,Úl—„hx(v%ÃÉX~œT;ÛÖ»±û<à<Û½ÕZ£r#ÜÚÏ”’l;­lÇÚe= c‚q›ŒƆJ0„ ÈØŽ˜:W&0ëœ1L~Ö8Û{hÍ»/‰hkvÐ<“èùÏÜ“âë˜cbi¯ûÎL¢ŸƒÔ}uÜÕPü^"øº«áMªuŒu™kÅX—I‘VŒœ™g TÑö5¹…Þ8ç7öSû¢±„hϼ6¢"xáU9q¿§`ì9<;6§!仃ë|÷ÃÐMR€†É¢HiJò„DÃ$W$‚D±Èqg»$ cœä웼ü†±ã‡þ”¬¸Š°óIô>„¬O¢.ßbª×õz‚ædäRÔAÁ8ªL—àÝ1;‹G-—ÙÝb_då$¸±®’LàF¶J2„™ þ:’·Ƚ¬ð²ÈD TCäUÊé[=awèò{)¶¬ð¾2YPj¬”{ ç@û à9hgÈ'Kǵ¹ÇÎøY:á¬3ëä ä:yBa¹NžÂëäiñˆO×K «m'Ÿ8…­\ìÉ6Ûuµ‚SÞ錴Îè–»çtuº"iª‘.ÇÑ)]Ͻq}žðõ³õ%Å-^¡‹¿L¿Ž“Ë~î1 R‡£k˜-Ò•x©(kh.®ž®ç@¢#…íâÀþ5Db¸$P£+‰8¸@JæSD¤-ØݨÁY8&‚)÷ð öm¡ »oéÄ—FÌüEí ‹ë~š.Ô Ëõ'š¬£Œ‹T˜Ç I{)ºË—(õ(¤ Üɹ,mHi¬¦¦¬>Zz‹DÀ3 øÊY–\(,©xò?x‡×eg•[/ø†£,×p÷}Rš±„$ˆÇžä'kœ­q\áñ—‘ØW© ]M°kú@½ ”)‚&$p>®B£Ó¹®5A“%ÊbÊz^F¦é2z€Òt£@iºPV“Ú=Ñ–HÜ[ «5<ñ–èoè˜èëž™. +nBò"!%/ÂBK¯9×Ò°3Úñ{i`„—Æâ„˜×›_m,»öo¸î:Üÿ5¬gdËqÕ‘ÕjîÒ&ÍŸ÷O„ƒö‘©­lsöò•Ë :`”L1í¶®oLôwð9÷Ý“*qdµÙ.2½”‹ܲ]øÛà—²³-‡¡­°Õ¤ÕQ£TxS0V^&PVf&…"7à9;SCÞ'õ-b%Nu.¢%Nõn£}rõ/ÂdÂÒ›$sbÔ"žæÜ©‡ƒ›j™‹š¶4“e7B~ØÔÖ~’Í,àß«ÕA Š…oæjrý4)û!hÈ—ÆÀ  ÿ¹—“‡v„Ÿ•À–ð¢/óÌ50­™^¾NJIÄÐ+ <ˆ»?;ÄhòÁñ3¦Ø!Á± DÈ6YÈzùuYæ¢å æ`íæþ=èÃÒcA~lðï=A¶,`ðê4Ž ¸í ®TLKä@ìHZÊú‘Ny¿3ä´F5ÀÈý1…¡lʘÁP7eLu(œ²Š8à`¥*àüvwÙË@AY³-f —š=B«˜É¢ãˆéà`1`·m 甜îžW é  N™!sÄ8ß´šˆ®#† á☠äƒ5æ)àœsgS‚!M²Ë¨jz]a´Lõ±‹‰èàF˿ߖ y±à™Q ¦ ApM|‚î𢀿Ae¸w1l¼(ÌܵO´lᣓ©\ƒsh9N Qß[e|ÈØ\«ëØOk0d^IR¾‡×W•Ô"wUø)•ء2œ¢÷Áž,€Ã)"@Ã)ò뛵«‚eh¦.„BÌ»S¼áE•„΂Ìnè,È j 2ˆ@f–º‚q¶ÈL¬ËT^Àù÷¢ÿþ…Ñ·àME‰,ÆSQâ+qv†JÄžaÀjù.OØõ,ïÄ6VOWÏàdl,±±º;¸ |`Ý”2Èr/0e#e…ëQˆÂÖ#@á1Þpϧà„Þú2¬†w*=+ä[”²ÿ2µB¦TÀ„ 9i†\-§]–/Á(VÓò)=•ƒ}ÕBþžgº/h5½ÂÔ»Gó»Gó›Lf¸S1_-V|Ž$]Àj;X^Añ- Ñjiõ·G­Æq&€PŽâåÝaIÙî%WÔýÿ»z“lÉqHtž«ðä{j5þçmCw\Û/ÁPùGA ¿”ËÕ° f˜ßk“„>ÀLñzþ@½{øäÅ1cW0+ÐL­)Q;vÖæÄÙœª€Ã“Õm–i7ÀÕg¡Ž„OQÿqù÷]„>f;ðÉcÞ>Z¥–DúëfCš¨Àv% D`³z Ÿ^3œºøÆÜlâ‰g/¾1Ñœ~c: Vô¤<ÖälCï Àö›ú¨dáFdƒŠÇ{˯IvC]¾ù 9*°˜:@ô ÉÐ%AN€–‚œ¨Í° í¼Œ1ƒÃžÅ’gŽï,Ïí¾Ï¤G˜PÉ«0}ÀðÜí0ÉIC¢ƒIC¢IC¢C¢øã íÃ,1b#Ø8.å¶}ãa’_dK‡~‘.)Ôàpûøÿ±Ãù³"èÛ«²û IL`kUéw‡ßC쬮‘€wˆà+'Õ¬ä`~?+98©f%á·’ƒUଢáèÌ¡žCš/yD‡vŽR¦6H€]jƒIN¦ ØV G‰ Š¹JœÙŹ€~dëg¡u’ŠAlm$‡ÈA¡D m‹TUØÞ¦Ô*qiõ(îX…# É„Q³¸ªñÑW­Á  5vhá²=ãIoWÑ('uhêü`¤_y÷üF ¤h*“Q¢¨+=Û µs•ܥİP—ƒgQN·>ã¹ÂH7ž‹»ÂéÛVÊÔ¥>–in‰h¸DÖW/L'Rt9>_½Y>Òb3™¸6 óóžd]~Å„¦©·úÝNp•úÁ $èwê 1>i®‹›T~(*¢ôCLw:S|&ä–uk¥[žšukÅž5ªs+¶ºIœâ¡–ˆTf|XÕŽŽ1´v2—ѪA½Mg畼ï|þ¹Mfç}¸Íe÷ÄwWÑEm ‚ü jº¨-`†gîhóŠX‹u ÅJXTþ-ÖÂ2̈? ehn´·šAQ=z°©ú° áEvÇ MgÐ< æŽÒ¿™ýet¤ñPL„)’e°Ò2P”¥ëeXôw~`¨þòÒ¦ì/aÖ‚MPíEj‹=¨@(ÿÆÏ\¦¦¡-É£“ä)^Éy'²Ï«0“C2cÜ´ò[¤hŠÍ’#ESl³L/4ÒʦŠa²žÖÇnZàèÆEŸ¤.5¡ó'Dªb4•W˜9¤ÑñQT5ô˜&Y.þáGë—& JãÓ$Á`Yëwê 8o¾e‚Aê,úr~*˜¼#qM'õ\{‚ òk¨ç*`;G>ûSox¯øXÌwšÄ,˜¯7'—B£Î,…‘NC…у[½ºþôÝ• ôqÕ ô]¤ïÖŸ’ßRÛªh…BïT!,AJÝÇ5]ñ‰šAî¼YjÞ6fä ÆÜ§:`šN4ß`˜ÈW3>ÙK—e™2ý¹Ð..0LFÍÛ>›ѳžgÏÀôdÒ]xOI^*´¹#s©ÐèÎÀ6œâ}b¢dO¡Ý]Ws¦ {[ÞE \±å]‹…-ïÒò#¿ƒíNu¼Ó¢v¯qÞÛ P7—™ôÒ\cÒâfIã«-Mm Y»%x‚oc[×Sà¨c»8Fý機ƒ¨•Œ]W“½õçØ 3ä ðöÜ".âÝІ˜ÉÈXàc´HðŽ#¢~býk åoü‹ÅyŒJjzqŽþcs¨ö~€Ú‡÷œ˜Ž»>@Äs¦Þü°²/ΞF°WàsK÷ºéO m{&J¼0¯Å» åYmµ¦cSU‡ñçjQU“|rTf©y"ÀY$N®…÷™y¼PÆdãõ5A=D6#Ë:CÖ±8OÙâ<)AæIÁvnŠE½ó§A˜ö(ü cQšh~1ó~'çŠ{&д„ÕVQwD,Î_1ˆXœõlÉÜ ÃŸwÁ϶š±Î}ŽÅFÑÔÒm«0£õ0žÐCÀ*Ø@f‚,±(Ì5Þ=APµ÷¦Ñ²àáO–ñÉT3èÇÅéX‰ÅæW™&z nú±èLj=¨f~à¹b)™‹IÆ Xêg4½úUÎ%„TEý˜§ôdáSHxÚ&o‰¥6 ß ÔÎ3-Îò±¤Æ@`ù/)Â<&_S¥tD·Kóø;/•ÖD±Ò—L…Ê…²P²èÞé–þÁØe0JåÝ®ñÙï–X^%µ­ÌDØá”­èC"–¾»#Y" ›v&’qrÖÄ9¾Ž9Vy·™7‹¤#øro‘¼›Ò›–QhªL"륨ÜÒŠ)ŠY3Å0USÞÿ@à» 9É=Sý§øjSá­Š ÷–ñJ7À¶Ķ"³‡€jµ9H }Jêž—P´¤@:šwVÉ6ëyfÓ5«LðÌnWX*%A’;9½,†¥—ÅPæ¹×[7ÉY3Ü‘ƒ1×àpÛëm%³Ñáý”yl‚c5üóYk™ásßùm‚ùù.2 EÔ7ODÄ¢+`uhÞ ¯¨ ·Ó Ѽ3Ký J´äå/ß×~ z“fÏÎ)c'…[ +Oª"ÂÚ“*ˆ°ú¤áqàƒ<mçPŒb¦¢c•„YJV¸+Rù<HU=ÏÝ”Šçœ2bäväS>DU“O9áyÊcCikËÊáPbì!‡ãˆ'ˆÈš‹Á ÷¿ƒ –Ùvéõ §(*Û9ñ֥sŽc©Kç,'ày.âÍ*RŠ}Q§ªLD›»®T4­'ÜAÅñ‚;Ø5B„ì¹F( gXü–9*´Jh ¡£²iNv1‹/Œ^¤ý ÀÏs¹§|¡ÿ(na“h¨YØ^ žGª}ç§õ@ôŒG/%^ùtÄ?Ÿ¶–ÜȈ'Ÿ’àcÆGÊ£‹]z?© нÂ<õ.´]ÊÒ"Ú.ee}–²°HðÔu ªs…AÚSã ƒ2)+ ¯0:Ä—™Å™l"ké’öÿòY»ŸÔÛfõþŽZS†°ÿ±o^ã…n§w'!úòó¾ µ]x覬P§§VQøè¦TQ€RQÈVÅ»Ro×½OnMÃÄ´T¯|{ ÂÄUú+ë0ÌÌ^>ÿ}à§gþnö­Ÿ3ÅŸo©ÀãYe˜› )έâ½z_y]òÊ çÈkó¯Eêu'x§øD,ôÄ6Ÿ¢Éûë”_¿äÎß‘ÖáqÒt •ó\¶*Qð¼·îõ>VçÃQ?OsÃÃã¼Ü8ð±6N–À ¶£½C?íæ;ÒÌz®fGÁ£æÅÂúÆ1’ÏÆÙ„AÒÆÙD gzt§if=0¶«7Üg¾ÂæÎ,¤ÁÚ¶–óf€Ï¬IÊ#sŸðèÃPhî%ׂ^|¦˜ÄºVhÛs¦­Òä€í9èmtAF¡c4HRJH Í‘3rýu囘ÃÊ¢kmòëöq`]bºtp’L—Ö"¦K‡àgE|dr"Zb&'‚*fr&'„Ô†VQ¥Êú:Ö—²ÉfÓ‰d*W*ñ±®®¥âðnCðÔׯæuïg®²(aFÀ 6­>V{˜Hk'ÄæÃtë`&M'â#3ø&Gfð=Ž`ÍØÚm†ë³ÿ:øÚkv6™:u!þ7š&-”0µÑ¾«²ùèÚsEÓ;.J NýÎbðØ”YÿZÊ :ƒ 5Ag$>è ‚á1²-:Î[G€kÉ}-Ár]·ì©Ìª)óÀÇž¥+£2JÎ''¬ eZü¶,7S£i*°Ë%ÉÌ¿ZGéÖ´3<Iµ›ùéußǤ÷¢~³>¡‚söê±áTĉMœbƒªxS°nªÜE3¢4 ÜÂf[…ùªËgD-7ú ©m—õ1жýºfiß=Y2§<ì}P„ñP4§ë%”EYw<à‹e‡7¦¢æpCŽêFD _üog aÈßMS5Hû*Ø‰ÇÆ*ÙÜZèSõæÖAhúöDöÖ“»—ÛV-¿[Ï,ÚùÀn)¸¢À‹Vë¡@·ïÞ `XOõ]àn]àñîKÍÈÝvú~jŠW ¹Ãk0î¬føí]”¬ýSSF¾|ºœãí $ût9¿ p²»”)tѯtC¬×:m©Ü*áñÝD¿ W4—š¥dn Hƒ;¶ºD}Y 5vÃ’BeS$š±ŽQˆn!èÂÈ-ÆP¢àQù4ªÂ1ˆAÓ¥1hy46‡¶ñûHÍŒüŠcÝü´;Ú­_²íÊ rS3ò8Á"cÍá\0XÈÊ\jF88ZˆäŠº%ÍPޤbi¼ _Kã…È[/b/^™Çžyƒ˜å3ãpVæÒjšõ”nв)ŸÜg3ÌH[“¬x'½|`dì”úà54¾†a¨!IÏàûHѳíôdSs ™TâBÀ».Hx¿FN6¤”'t ©ä )C yRáPw4W‘àf› "¿,Vå¦DiRFUlÈ'²@t©&¡ 𫺑tön:Ê|2û…$µwÒ¹VZ¶cŽj3ÁãTn‡Lœ<xñçÂ[Dàñ÷ÏYôsr€?ùÑ2>epÆØT|7Ëì¨È&5 7×¼(‚ŒÀPØ«jm6ú OÈ‹àH*'zÆõ³øŒ'~ƒ.Å…#HÓQÖÇü%´ÐoécE®Y@¿GÔ‹nÇÙëñî²§~¯àa˜PÕ®+ã4ÚbœÐÄO3ÝD¹U½7T[Õ®‰òªÚ3IyÕ;‰PzL©Ãò¹ EÈ”w!Èwxl_ŽóåƒE#)ÉæÝ¾zžŠx©{‚w¤®ââa¤КtÒc·kG)RoמRœàf¹,žûÊ)XêóN~{âlºœ'æÎ·c5CH+†Š(^—ߥÑâ-AL[$ª~QH‘¢*7¥u_ͶŠ=ÖlH*w¬Ù ™Õ°fC³kÍNvÇ"bm5#çg„š=×K×WEyeçÒV6]ðäÓ2ýsÕ·G¼M6)އñ‡£ |¶qd¨9(ÒÆWTP;ùŠŒxÏOðãØ &½·š‡7سÚùí ¤¶pvÊ…C‘8w~[ÌWŒÔ÷• {õŒÔÛ×÷5í6Ç/€emJ+`…¹íç©’,+)¥ÂÅZJWSF Q<ÖH ¢DHMcõjÂþšÊ‘|i]è2F-BŸ1;ÝxVnIn]fïÞPü^L¡çdôþ94‡˜¹ŠÚ±Ð‡ÂÐ’Èj󓻊 ×HÛž«%z°ãø' ~¢S—^†á®‘;’ÍŸÔyT½]ÞkQé«9'­¯æXœô½šƒqVÿ:Ѹ ”ƒÆ×N²k7÷ãOè1ù5 ÕRÇOBµˆ³I¨6>„êëîç‘(4hÂ>‘ h^‰Ä;{WÍ-)×¥«=éá…ÇÛ¾Éÿ£ï²t­þh½œ*W°\>YDGÏ)´4¬d^¶ÚØo£—Ž·¼^Bvš\ \jco%uI·âüí Õšùyþö®tÿíçAñ œ…îo퉢'~³ƒ‚DYk©t—Ÿ®Dˆ½prhR}&2źb1*}æ[mD…âµ¢ªÛ#³˜ñü× Y%Bž4ÞÓIˆ™„j_\@=Û+rjfg€èD-˜KN{G2§8òÜOÉp9P; m)MU1ITûïªÈ¢Ú‚×EÇ…·cç"-ô6íb€uš½ØN-tÑ™ü¶ˆ6ggQ¹9[‹&>9Á—ÓÞÇ•èAˆjbÿ:`Gγ—JehßÜ=§Ä†!O#G=!mZURZ@¨«Ê@&¼T§Nˆ²ª”:V•Ås*.RyP39Šíª5‰Цýý#¤ðóè’ Êý%®'G2^á]᎛w…ÛsÞ¶}W\Rå°Ó¼?ø9%X~ÿ²$+ŸB)Jq;úÒFµ¨´©Oä☠t…a7D0 ãnwÞØvä ë¨âØyÅ0òŠD'°±`™É®‰ž(ÁSÙz —™ì'ùƒïò‰š”Ý?¡¢r”ø·”½òóýÁÑ[R^¦-gL&š?Ÿß5ÑÅ’û'ö?£ÃiRñ%~í=–Š\¬É>h;ÿ²åj,ݼՎ U¦,õD[Z#®?uÉkMô°j5é_B9r½S©fJW¤\š{ëEÛ/Wš_b®e*¸Ò×è¦uèu ô7¾å¦Ä‚Àí’æ(ÃM¯›Ö©Vg¦©À1Õ*Œ0ÊZ-ƒÇ…Õw“2éa–µÂšô¶É`½DÉ6Ņ‚=Xd~[¼Œ®Ûâ ª*·xá}ÄP-‹àQÇǪ÷Åoó¾ü×ïD½OÙ¾A”ô¿Sû¶Ð@&ÆÃøêý̽†.¹ôý ÌÓë½<;½¯nÊ!üvq¯ýôºCÙŒâ•M6D„Í­¶Æt´dS9Ù„!^ù­%ÃÏ÷šXì…ê"»WÎ5«TIA4ÁcœEÍ«ÅôÑ ÍX“Ø€KÐUªÅ7ÖT¦þµç_ÂÊjLNeÔ ¾/[fÅ43í—`³¬PÂfYF  eÔÐâ—àš·ÿú2¦=È¢4dÚ‚,*¦ÈŽÃÂÔb®ü=Ôb®ü5Ôb6°Ø •Ý¡BÇÅC5Œ3]p0)ThU° †ðÅRjhUH^M¿ù ÒŠZ0H?%‹0aNÉ"‚eÉ"rvh0IËÅAƒIº3L Ø`rK6FwˆÜèá{DFu÷]"ç>ÝÊ”êÙ`^Å&5ïZ™R‹³ØÐh¶øN»J=Ò;¡ëœÂ;)»Ó˜êQþ[ 44šw1,aвÈ iŒ3Vk #M»Ej‹g±™ÄÖw&òEºk,¤l¢É½‹ddîE®3Lê]‹²ñ¦±¥EÝxsX1ŠË›ÃŠVl¬5e¡±PÔ¤…ƺPÓq!z§TôM)¨øÓ‚82P¡á.ÊÍA]–°7‡uO`—rÜ4Vê7(ö>µ½I$ïUÒañê["Í¢záÏøm.ÿõû¸wÉŒ 6!.üoÃ`æñŸÃ‘î2ã¡B¯Œ¢ZGÝðÜeÖ5vÞ v$ó$BØ%HÊË‚c˜]\é„íòàJ— žòà,ŠaY `3ØH«Fé§ý·FÒÞÞ˜DRži1À ¹ÛÚT«k ªi©[’ƒl¦Ê”^ ~r _#E{Vƒ¾ß¿ jùæèÍ), å[Zö6ˆ^|KHØpiÚ– £îæ^¢gý÷ÈYžª?nfŠ—¯À0né¾ ösßZlÓ$–Î&z½/"¥TдŽÊ~'±s¬i€ÐÚý³çAÒmJˆaÌãYk€^Á£ô/{ÁüÖb±ÊQÚ·ƒ"ê[•-¼Ê↗›g"ˆ‡y&‚Ú˜g"€3é»ä€ÈïâÕß5?ßå]ja0d¬üe¢'¦é‘¿ŽÕ;ç÷aAð¹–.`Çåsù:Áú\Ëû'?ÉÐ%áúf¿\«°9}¿úPí žŒ‘…0q²§x Ÿ«ñ.I寅ˆƒ% Q†8.ý}sý×ÑÙÞ»—í±Òuþßž´Âs—Ûm€·k@ɸxõ/©? a稶o¨ÒêýÖq0&¡Ž…oþ] ŒEýK×à7?”»K@îf€10¨ÖÛ#`­óšQt¦§MÀ8ã.–ÇÇ*ðcÀ(ÂÅqp<¾™Z0Íá…Ø¤òÒFSÖ=ôÞ”wAš÷DP¸-Ù °ù0„Ü(‡¦­FÉ2eV±2ðІBÆÜu^œ+¹ë¼’ÊÕ¾Qy_-ßièš"Žtodx|¼É&âãïiíÍ\{¾s“¸•Ó¶=5¨œvû!Hʽ–›)nÎ4XÊ›Ȥ)á‘8RuTºlô¼µ:ö #GµH–œk×m€^qY˜54™1Ì«¸DO&¯¤ôì?×2NaŸ³á3çÏý š+WäQü䳸_ýW½8ÑûòNoÕ»²Ò ðl4)ßÿ œ] õÎO|¼78G­,5ÊèÆuÏŸeùjêýY úý9ê ¬æ‡7d*ö~2 µWÅÀØìù² Ï¿ú:0ÞÄ›a6¿Á„GžûšŒCypˆ÷#§¥ÍÓ¡5’X?òfâÈh>8£or7¢ëÕ£Lÿ‘¬SƒêOGâ€&Ó–¨Ç´o(Np4¯!8Á±¼†ÆGr4=ŽC}–%<áÉò£$ Ôj)ÉÂf÷ØÚ8wi”4@úoFü_¾›Ñtœ'céh:’þÌŽ#]3ãHï@žÇèŸ8Ê{ök &,‰«§ËßÁà=d®a@iÞ]ˆ+àBÜø.ÇñcO8ÊÐ÷DIߢ¨?þúvü%xE´;¬ÁÓ§×!›½_=|]ÙÔ¯º¦Ý¥C™U‡QÅq˜ÿT$G ÷Ö­ý(‡ûÀRh\|O³¹ó>`ùÃ<gÄÁL'Á1?ûßálëD†-®y žœêr˜Q,ѯ¤tÍ˳¦zrù«gëîê+Ýá/[è…àã<6‰ :kîþ Þ€é|+ÀɶFn|¶Œ( ×*þŸÀ8㙂6ÙïÀÇëï¢ çé*Ån6Ñký(ÇæòýÞîÕ¸ïOTãRËbi]XY ¿¼¦ÌÌhe:“"2•¼b•©L]eul# óÓÉÅÐ ‚fhÚjƒ:Ë ¹b˜CC¶•œÂã ¦ëâî%h®‹»—`Ã.î^Ðôî…,[ý}/Ñãæ£Ë>îË¦Þ À‰ß¤ç EŒ*ëN¿~àc˲ӗðÓ»ÍOß9?=Gùôå?½Æ÷÷íÏïëóóûò÷a"Ì;@Û–¼´|É; xî@x¸/ÇÕ# ³U8ÌòLp"êâ¸p?*ŽËd6Š´æ–V¬±dÊw CùQ"߀ó \13X¶òdKâé ^9<\9±p)FÂŽr`ÒYÒ³Ë=å‘Ý¡€R8I@‰MÑãêÄè|`ßg”‹lŽqg„‹@gŽ)¿^=3“1d^rå8”™Ðåµs¡Ë;]&@—wº‚g§"K‹kÔ˜¡ר1?-®QÑô5Œî-üTcXŠiÔ}—ã i[9-›®uàc‹¶y;Ó+œœ5â!‘áã¾¶íÃ÷J«h¦ÕãVˆß9õ~ ø;L 8§¸Ž äÌ]TV$3wQ^eîÂÀ{Î#ˆ`½˜: ãK@šûUI ®ß”'¡m’4î°uÏ-«%]éû>0zÊnIwH0iÆA´ÐÚº!õ…•uîFÌœºsUÝ´­°h.×|ò¹\/ ç ~¤sÃmÒ²µ²|u~v'Hë¶Vl/©O-&õ©M&Ý;¬ÁG2wšÄpßmg²v"³üåìLlñðÉÔn¯›ûC6›¥s©M¥÷­1^3ô¾5h†Þ7Ã|ßÞ‹¸dÜõþr6£W(P ^Éæ4ëf06Žsò-LO†˜3ÑTfªqöÜ­^>÷*~VÞ©yŸ*ýjœµh´Î :­„3‡NøÉ¢ßÜy1›ÍX¯ K–a)A–Þ¡ðSÚ ¢ä,üt‡èÄaRPJùŠ÷Ñ ëpJX´äæT<Òx«žî÷å^Þe¢Ùr(ïŸhæØË zŒ©êŸ@ËkHmÖɸ²Òp(Ö•‘á¼È "hær‹Å]Å&w Ô*œÜ%x—@-À)CÇjð`xD¯®±½l¸#§æq¯<ôާ˜'ž¶ðlLî™öe½ø\pÏD0½gZ‘Êó. Gô-Îbx‡ÆS:ãü—ű¾,Žõeq¬ÿ²8ÂzllÍG|OÔ(¡9U¤ oPJ«¼]%­QJ«°éq=ØO#HËàѹz­pÖj!¢ î(Nƒ±.œg7jÖèŠAªçÜg€Jòw8Ö‡œÞGS/ƒ“ò¿Cù3ƒá_OÝ<>¥œgŸRÎЃO©@KÆm=Ö½ø­f–ƒf^9.Öa•ó»(>­ï¢ü´OjWÉ3ìùÉd“¿éGû 6ïüŽ™ÿ?-NW×°›û:Wº÷û\éîèK\ÜîõÀüüRöøœOô"Í6œ6VåvØ…Ñïsp z’Vèg0 £k,·Î§Ë=CÊG}A/çMèãÇâ_ü˜C«Q*£|[4ûÕòÙþ> ùt'Ì5YóÚZðX”q×`á„Ê]ƒ…î*·º3<Ìï¨^Nãá¨_n^çFÙróÚà¬s‰œŽ¯q̱$˜Fª–Ï)ááÁÇãÔ.Y¦²‰^÷¯j [A|Í I}r`C†Ñ)‚æø*{ÔÛ½ât”¸gö:9”(¶v)Züá1!Øç¹ÄE­Þ3­ûÀÇ7¤z"¸>×r¼¹q”ôÌ TOv4ó™]š&SóÆfüu(\’wˆ¦Y‡Áxh6> ΃=³jÐ"l¸EpL®¡—™†ìÝ€q“_K3vn¦&_fÖoôËñ S–ódzkÞŠØn~g“0^D¥$‹‡¦Eñj¤Í-4Rƒ н³}/è¯{g pv¶q{F·¢}ï`ëu$À‰ž2ï܇ìB ÉÄ4"{QG X@©×JÑr~V©Qîã˜KÏB³¾?vž}ì<ûüØyö¬}ŸÙ‘ô1“y]Cñ,9Ûè×™͵ë1rµÀZŽ\/~V ‘|”±rPd«œ™*£éU°³\Îe¬ï>Ñ 1Ï¿‚‡ýzÅ0m;‡ÁƒüÓoøé8O/+‡Ø(Í za32ÌFÐ(SîÅ\™¿í:Ì,Þº™„O+,_ËŒ } ˜6øóaVašÃ€Á9\ N¯SAÚôÚ– ¹õb1" .Ú¢‘Ï-0íïw#”Fó•BKVrÕ -YÅo#°‹9˜®KWôÄ…é ™ØöÉLÌSš¾£Ì6–QÿjAê6µ)e Ù™²¹g­úÌL6nSÉ>#èfrn¨Ø«D¯ædä_­¹UJÌ*‰'}Y:<)Ø+`'G®$ÄZåJ‚ö<…‹Úóh/QÂõÙy¿²Vϼ_ çgçýN¡ü åq¬¹ ªæ°^.¨³#ËM­¹ËÁX÷#"†fþ–R²î#¢†GX7Ž´,ÇZ–ޝ›–Ž °Žtll”{{±3÷Vf$â|wÎÝЋÇS¬vF4aÎň&›Šhªˆ/Öú3å»TêÏd*ý•FÐwDÞ9%Øv:£ŸO瓎ÄD˜?)1ó2Z\b––4?šf³,eQ[…’s ,9Ö-š|ˆ)RT¡ªø§´ –âŸE%©fYîŒÂRp[ˆ;8‰ÛÞŒA]\6f °+#ÅÝ6*èFKn©çÒÆ[`Û®‚Óõ¦‘0µ¯7„9Åoª!ØK˜pKi‚Ü’©  ·¥"s•Z•‘»J¥ÊHY¥N%@®&!ø¿y¿pÞ¯ÒÞJ¦ïÊ{Q³ä6xlø°iÙ p[°äжL4ç’Õv©£ÊhÍ;4ß5Ú}Éz¤éÿK$`}Œ·yW‹¼°î]¢¤·Ác‡Êû’9 @³=ŠFb8·22†™“‘2ÁŠ@û@—²X^ï»à©r¸X.o}R”nË“ÐÁç¶:‰ }®T'Äu4ï[MxEÂ16‘–Ü A'(VPù€îâ’>àŒ'íÅ8Ç„½5Îá¾>ðùgo h×e˜û®¨U¹!~:¼=C‘ñ‹› k"(ªkBÙP]ª…êz”¼€)Et¹Ds¤†ô¥:½¥¬µ* 8àÌ5„HZ3Ç@Uk4{“)gy2±´D–LÚFx3HfëG~$¢ ©=Bµ÷ƒú&qׯ­fˆÛAé6‹hÊ:aÈj œ®1¼=d£@•ôó²rþ i¾ Ù¿­ÃàSÜ·dßXÁ^”‚`“L^¼3qCž¬éL:4þ.¼¼0²é*^(‚bý ™Eî¡«Èý1›Z¹6ýp™0&éGéÞ €ÆAný eë¹õ+äŸr‡XÈV5Ó;¶˜…QènVŒœ± —àø_4oWë+]MýÈ/ñT³.ðd|¬U¿ÿûŒóùç¨ÔûâYÇ©‘I°æØ$/Sj(ÉY•sz«4™°ÍJÁêK¶Š«/Y1¬¾ ´úT®£íjbÜØú &, Ç&dÿ86µcSm96©N!²k¥ «cŒå ’Œ¦jJÉ[,—Dé**r™8‘Kï‘`I©DîÂ$Ž£~ùÀyfoq “:Iì…Ap‚wVË?[Ídt˜Ù bv2yK\ì ’wZöü‰¹®©šÚt‚âÑ3wS!A0ê(ÝY¨Átc²“‚»Ü§ÞÚ‡s›zkÎmé­]¸PnÂo-…Ôs‹,„dÛ,”¾Í\>Ý\kl·cm‚ Wlk¡A¡ñÛ{&*»ßÞ5Ñ€ïö¾Iðìœ(¼¸m¥@Ží¶™™¹;ÅèïòYÃáÏ©^H¾û¦x!i¼›Ú…–.¼v‘äÏ•õ­ÿS¢ÀšAG°ª„7›”›; ‰ ­?«ÖëXÑ–Ô‚þ÷NçõXð§ízŸ©K¡Ã~ äb½r±bH9€—!7Z£_è×é;WêAqóú58˫ז׮ö‘Õ«IL‹Ïúa©½ÃÆa¶œèNÄÛ—£1Ÿ/G b>_Žœ(Aþ™ Ã?3àñgÖA2!á_a¶Sæ­–(|7ו`ä>¹Š}Ê=^1€8"6èÜi ô4ñÉÏ>¥Æ3b@=ÃŒžgNu²å],£Ð#ËÍu ¹Xœí}ã:0z©êÚûM@ó”s{>¿Ì}¬ëÇ Oå&Ý\d³A=gÙl4Åšø+l³ÑÄD¢ÕS5xl–£h˜€wu¯§ŒvöGS *ØÖa"h·éQÕK™>Ù„dcCjýÍYm+¥¶?b3þz…X­"’•ÆGÒHŽ c:¾A5%«> fÖ¬P[{xTa¼Ø¦n…ñâ4„L=²wkÁ ³{ÇaÌÙ½ ûé=.$º1º”ó†H$³äh 2ÄÛƒ¥ƒ}g –áݾ{bŒÝ½(„BuVV3wʳ²è¹SŸUÀ­S1ìÕ HDà˜*àQ5ŸÎèå\l"2g7üo4m4F…‚Ϊn*PZ¹PÈ€r̽Zp’‰eWT¯ràcùIkù-Ÿ²ÜÔ•‚zd[ŒS”qñxV¡BôÎŒw‰ nsô"6ÅÍ£À‰\0ÖÇ:ÔÂX_ã{Å`«Š¹2¡î^> endobj 283 0 obj << /Type /ExtGState /OPM 1 >> endobj 284 0 obj 39447 endobj 281 0 obj << /D [279 0 R /XYZ 86.1732 786.281 null] >> endobj 277 0 obj << /D [279 0 R /XYZ 259.0842 488.8195 null] >> endobj 278 0 obj << /Font << /F21 81 0 R /F19 72 0 R /F41 111 0 R /F38 114 0 R /F39 117 0 R >> /XObject << /Im3 266 0 R >> /ProcSet [ /PDF /Text ] >> endobj 288 0 obj << /Length 1746 /Filter /FlateDecode >> stream xÚ…WYÛ6~÷¯ò$1#R”(å-Ûds mѬÑ>l…V¦m!:Ù¸¿¾s¶œ:¨,3Ãáß oÖ‹·JRŠ‹äЩ ˆm’@ô$<.‹óú05Nºò… Å4°<¢®]ocñ‡j´”: °ãï¶èypΫ4ìñš§.'A£©ï½ÿ`!a cÕP’:*Nå›sŒ|È¢ÓŽN‘©ß¥Ûÿ%Ñí›;øH^˜4ßÅ8@I8æÛ4Vu5²ý¯`\’O”9È&8¹AºÅ›õBÂj@¤‘È€&3¡re³øº¸ˆ‚Í" >,"çY<Á$2ÏUÐ,b‘æRùy½¸[üq’·òWs‰7ˆÛ—ÊÉn„ü':Tr_hPê\ÉÔX‹4•ÆÝ¨Ø >puJ ¨æPÕdì T-á  àR²¿aÄv““40„¸°×ŒŠˆ$òÌ Æ1ñ̺còñ€Ä÷å*‘:\mñ”šÏÄ…wï?ÂäãÛÆÓ¦‘'HjXP0†%2à¡¥Ô!2åX[ §ÜðŠŒ`1—ÄatÍÒˆ¢É]AÑÖdH/¨bºvc2|» ÓâÿWl’§ÂdÆWÓ­E÷Ínp­š¡U;޲;#$ÞÀ'Ž^;O2Òeû'Ñ"Î-¹$À´,êaÆ{ã!ÕP±¹XÊT cd~ Xò ØRˆì€‹cž •7¼ó´ïÛ¹ÁÊ@¯ P3i…W€‚00öزB“ZÇþøÓ„U2V⛋¾í7W³!¹”ÞìÏ©ÖèÅÁiš­±¾jÙ~àÒn1Õ'­¸v“aT¦D ¿KÜáRÑ ÊòSMÊâ”P †‰±‡ÊÔ,·K^pÄ•¢8=»û'­´xØG»eTò|Í$ˆ¯y·rçüAWßÚ3;@~åáecÐàÞéŒ_þ¼V/†òsF ê}@Z_"”¾ƒê§ÚÁ/¹OèxÎöYb­æ’ãÐÆ—d?z,ª|!2uW:¨=Ýyë„xÐ[@Õ«Šv†XT¢›‚ðê”Úó[½ršb#ˆ2ÝX†»ÉiïEên¼ÀË4Œ_óês²ëqi×R-G¦—×ñòjZZm:<`¿o®;ƒIž…CÄ@ œg qON &ü_´cŠÖ‡ #<‘9kçê/º`¸äÒ5»:¿/®;ù¸çõÆ@ߊ¾ŒÐqêK¯¹(xZä&ϱP_)”Fމfc*Ìž×-¼xßèàuõ7˜•`/x5—|óß§“Ìàɤ"(h#5æ¶ÚM.›ñ†/ñà}Ìi†ZJ¶3Ôú@$Æ­ïÎJGÙñ"ï~Sþ©I…¹ÒžF(™hŽš(JCeZ¥©È€•tÓîApg©Î“ AÌ 2=¾,cE­,=på;Ms¨=Þà}ò<|·z÷³ç@*T¦³ós ÅÄ|ÇÑ…L erׄÔõé‰`F1ÛSß |Øáýµv Ìg=?†¯ëùï3˜<0Å9qvR¢9ðÛŠâ×A¯øö` vé¹V²FWò‹± ”×8p®Òþ5Šƒ=ŸŠö½Z^oºÚ–†8CD¨ÜÎM‡·dŠß±mp–h÷ eÏDmÀsv¾C§·Cç$ ©`Î÷§Ü"ý•Œ1 ÆáµŸ¦1§²Œ}jý paöÐendstream endobj 287 0 obj << /Type /Page /Contents 288 0 R /Resources 286 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 294 0 R /Annots [ 290 0 R 291 0 R 293 0 R ] >> endobj 285 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2_fes.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 295 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 345.20000000 151.80000000] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 296 0 R >>>> /Length 297 0 R /Filter /FlateDecode >> stream xœÌ½oì}mVÞÚhó¥©I¡iRέIå;çÿt¦ÔBšiõEM(àX]Ä0—#mÁ‘Æ„Ê 5)IÅ ü±i}¡…‰éÐ"NŸQyÑÄ–&d’™6¾°i`ÈÀ3?ÏÙ÷½îûºÖ^ë<3ðžÀïÌÚ×g³Ïþî³÷¾®û¾¿y³}Ùm¶ÿéÿÿOâµwü›—Í7þé×ö/§ÍüÚvó‡_;Ü÷ïNçûÿÅk»Ëe»Ù_¯÷ï}íßzí°;žŸTEÚ_íw‡\|Øm¯›ÝyÛ«ÛÍ7¾öÍ›Ãqyc_zö»ò“Ÿüù_ùS_öêWÿËÿ÷c_÷×þÆ{¾õ÷}Ó7}Á¿¶ýæó6¯ý_½ùcüaïŸüzóûk{ëûÛi»Ù®÷ÿ~ÛíŸñ¸ë‹>ÒqsØnŸÿR¤ã¯å#ýàw¾ó»ßù ¿çû¾ï¿üßþÜæÓä>ýñoÿÀ_xã?ø¦ÿì§v?ü'^¾è 7é¿ï}¿ôO¿ìÕ«7^ÿÈ_û‘|×õ|èCüà¿CŸíty|Kûó­}ºónqnŸîr:lv»ÛãÓ]vÇå;ÝÏOw_Øþ±O»!ùt§Ïý ;õO÷â~àÕ«W¿úÝ_ôêÿùüñ‹~é×_ÿÀû>ú+Ÿú¥Ï¼ñú^ßÇ?úËŸúø§>þ¿ÿóþÓßÚ?ÍárÙìO»Ç'9îNv¼´ÏrZ¾Ývûø4§Ýýýnñ“ïýþù¹ü$ŸÓ÷4>É~Ï¿½yÿ»>ñ‰ôwÞ÷ç÷OÇ÷~âÿÉû^½ú¡ÿù+¾îCŸ|ùâ¯ÿ}?ô£ûK?øãï¿ÚO¾ú§ÿÒ«_ù[¿åóÞÙ?Òý€ÛìûÇGÚïÇà~ïvûÃy»¹î–oî¾Éã×Õ×sÿP÷]±|ò·øCýø÷|Õ;ÿñ÷}çßû»ÿÍûßõáßû‰ÿÞ_ùùþÅW¯ÿð}æ#÷?£÷ÿÐ7¿ã›~ò·ýäoûæŸõSòG^ýÐGÞ÷ѯù®/úwäG>ø÷¿ø__Ùíº»Ããn÷÷£o{ó·;6ç}ûx»ýãìG¦}÷ݲ¹îßâƒïÿÏö‹>óê?ÿ©Ï|ê×þ}ãõÇÿ~üïô£o|øõŸúÛøåñ.×Ëfw;.ïóºu»›ŸÜv·óã¸;ÚŸ×mÝ/ë¿¡û—´Ýï6÷ÏûVx?ðU›o»yïKÞõÏ}úÛß÷îûAö³û±¯û®ßñ3ïùÒÿügò·½ûÝøÿ…ßþ¾ÿáïúþ×ö™|Û'¿õ‹¿æ/^øÔò‡¸ü^-?H÷?¨ÕÉârÿqØßê“ÅçþKµœÛÚ/Õþñ~ö÷ïèñfÛé°ýLí–‹†í~}²¸ï­?Yüš¥–_¢ö+µ?–_©C;¬–߯þµÛo—ߨCvÜ펧åGùíø+Õ/ÚÏÔþtxü³]Ë%Gÿ‘Ún×Íù˜]"íÇÝæš^ÒþÆüHµ‹¹þ+µœªï?Fþ#Õ.ýGêt»ÿû”~G§û‰ãœ^ž ~¤ÚÕxÿ•ÚßúÏ”lüCuÛmö—ägêrÿ¬Çô2ö7ÿg*ÞCµ “míÇê´}œýŽ{ÿwûˆû]ÿˆ÷ïü°9í²Ç~·|Âøïàó_ýòøßö^d§=þ&N‡·úÎæ~ü÷»þÑ—ù—ÿ®ïý‡ÿüO¿ï3ßÿµŸxõêkÿÞ«þŸOþåW¯~éÇ>òMþÖû‚ùþ#ñ]¿ó‹ÿèçÞo÷·wiïî|ÿ¾ï¿eé•ïåñÞÎÉÇýŽå?Ù=¿ý>(_@ÞÎÕÛ{ümöÃóv™‡çí’žçmvÙñë:<Ï÷?û·Ó·¦‡ç5;áüÚÏ·Ûå»´ûáY¼½ß˜Àvž¯§qžÇÍr8¯Ùýÿ¯ë¼¤çÜ·ÉxNµýÚŽÀ·Û 'Èâíý¦__¶ƒór9Œƒóñïìà¼\²Sü¯ë༦gÜ·ÉÁy9gw¿¶ƒóíöAÃÁY¼½ßœ;ºvD^Ï»qD>þ‘×svVÿõ‘éømrD^OÙãƒ_ãù6û á»x{¿¡OJÚx;ΛÛ1¿±¹Þò›[z¶}›ˆ·ã[wcóvû üöîâ[ÿö~ýÏ"ûãáíaÞÓ,/²Cs·=¾åw5»mzâ}›œ»íþ­»¯yÛ}Tzôÿ8<Ÿ¿¿ßØgÿý°ÜíçÎò"=,wû·üVg·KOÃo—Ãr·{ënvÞvuw™ŽÔöX½¿Ýås>,w?m¾šÿùÕO¿úO~çwêõ×ÿA<øZôc~3 ²:±ïöé‰ñ7ñ/û2Þßö~©—þì\>÷7çûïGÿÖ{õ®¼úH{/Ÿyýëÿæïø¿ÿá·|üÏýƒí¯þî_zõKËû‘ŸûÈOü“¯û–Ÿøóúþ¾ö3Lr¿ÏÍÔýçþÆöýý÷ÿíü—|û§¾û¿þú§^ÿ³ŸùþÏ|ÿ§þÒñêcñÕ'?ño{ý>öÃùÔÿø‹ßñé7¾áo¾þÇ?ö7ÆÕÙýú;mΧj–7vú\ÞØaÜÃÜ¿ÎÿúÏüò»?þ‡þ½ý·~Å÷ýÅWïþ†oø•ûnú†ŸýCo|ègæ=ßüýUüGù‚—ßÿ8&?ï¿¥[…›Ç©îO}ããÁÿý<nË£ÿÇŸíáp½÷ÿ~qtËoöî²8¤³Ö5ï}ͤ†RדÝåvÍ™F5”ºö<w]R)ÕB¥öÐ_/É’ma ¤„Ç«}u8Ôt“: ínù÷±ïÇŒk¡ŽB»]^ÎÕ¨Š\·¿-ÿ>_3žQQqYXû刹^Ú>[ÑLj(uËs½ír¢Q …ª+·í>'šÔPêúqrk‰‡œk¡ŽTÿxÕ“Ûþ\³Mê(´ý8¹úþËÈê(ÕËÑò¸—,É&uÚ刹w9Ó¨†L³[Ž—Û¥ï»H3©!Wí–ãåv=æ<£ Õ¹ïÛ)'šÔPêÚ÷¹ßnÛžJ¹êx¢?ö×»[M7©£Tú«Ã¶f[¨£Tïûëcß›9ÝÂH W»åß§cÍ6©#Un—ŸûÞ\3MªÈu‹s¼ßÞoºS¢Q ¹j{]þ}½e4£ ¢âÚXí›Ýï¶m_­x&5y&5ªå(:û>êÇŸ0-ÔQªû7{:-û«mRG©îÇЩ]¹ïÏû„m¡ŽJ}êGÑéq?;)Û¤ŽJ݇WÜÿÿ²7·+®Q ¹ê´|ßçv çžI …jù¾—Ñ`÷úŠgTC¡ZÞÑyœìI3ª *Ú•ã©ÃçCßOýìHD UæÕPé†i­½IµPE¥íæ–{Ê5©#×vûLM=¦šT‘êšÅ =fZ¨£Ð6%{J5ª¢Ð¹ÅJæ*Xk‚­%öMjx¢tS‹M>¦ÕPêÜ8Sƒo2Mj¨tÃ2‹æs-Ô‘ê7nokOÉ&udÊfq­L=¦Z¨£Ð6«U=åšÔQhÝn%{O¨F5¬UÁÜ‹˜&5>dßSs[DŠZ`++»X¨ã‰¾™«d²Q¹nXbÓ?éñp9õOJÛ¢âôÕFÖæ ÷±PGªß cKÍA%›Ô‘*›NAfšTQèÜ>ck™F5”:ÍÈÆà$U°ÖtË-U5'Ѥ†'JÿvÔ d®I•Ö-­h ÙB•z[Á( t [ %l†½¥v¡²MêÈ”ÝÜŠ6!S-ÔQh›’mB¥UQè|Œ#›„“hTA¡qWíÁÉ3©¡Ô-¿)Á d¦I¹ÒM¨h ×B•z˜gb¶Ÿã¶Çó­Ÿãh{Ô´#XÜ­úÕ«ºA¥–áä™Ô«ºý¥f!Mª(”˳û`23ù% ­‘r–_¥•]È=,ÔQhÝ~UÓPÉ&u”j·_Ù·FBÿV‹Rz$×i´5RŽ»cjVr“*J¥¿V³’¹ÉU.m’Õþ­F%wÉlݹ5RŽ»yj\r“*Je=«ö%S3vn‚äcZ£‹É},ÔQªÛXÜèd*;µRû¥xò¡²dn†&FU”Êþ·¬ö&QMj(uýä,N¦šT‘j71€ýL5ª!W óQ­ÎI4©¡Ò ëQ O¦šTQjÝvTÓ¹&U¬•íâÖ Í•ÝÉd u<Ñ÷CRíÒ@71D†ÛNÆ6îe|b´:ÙJµPG©nÖ£ZJ6©£Ð6û‘NfÕiºù¨&礙ԫšõ(F'óŒj(TÝêQ£“ˆ&5”:7ƒÕ)\ u<Ñ»å¨v§ÒMê(Õn9F«“Ùê(Õn;ªÙ©l“:Ju³Õêd®I©®™jr2ѤŠ\× H1:™hTC®jæ#D3ª *Â(E1:‰gRÃ¥Žjv2פŠRëfc4:™l¡ŽRífc4:•na ¤„ Žju*ݤŽBÛ,Çhq2×B…¶lq*Õ¨Š\·mf8[œ“gTATЈB58™fRC©sÓqÊ4ª¡Ô¹ÝÎIµPE©u³1ʶ°žÜrT³Sù&u”êfHF›“Éê(´Íxd›S©FUº6j–-ÎÉ3ª QtÓQÍMb™ÔªÜr$ƒSxF5*7ÕàœD“JÑâd®…:žèÝj<<¡›ÔQª›  N&[¨£Ð6»QíMåšÔ‘h7Ãpds“™F5d7ƒµ9y&5T:7ÕàªI¥¶YÛ’jREÔuƒÍmH57™šÙŽsk&UJOÍMæfÖ#o’æF¡žÚˤŽT½™cÅædnòXel‹œâSy®,ÏÙ#y˜$[£dùždTûUQ*eÄçå˜É#´±%ÖŒîºÅq¡ÇU'¦‹PC‡AǾ¨6¬Ÿ…*`wÕ­Êÿ¤@ÎjÓV®ìRîèÇÇ-†º·>±€úÒ˜2 µah±½ƈÜ)Cµ:nfRE®kãÑ‚ƒÊL}‹§Ëö0\û)Bt/ýSiÕàí”à.Ak–T´T©Q@ß/³ãÀV÷3àpæØqÕfFUTÊ6M×I4ª *ØZù¬“g¡ŠRÛ>ƒz¬Ê5©#×6onå­2×B¹¶Í¹òU•la $ú{[ÁUUr}¬‘ °^Ñj•fOŽ6–!G6/L}ØÐΤŽ\ë³CŠËT£Ö*vþ‚;‰&5”º9{î†\W¦êN;Þÿå¿n$B…löM0c¹™I¹î Óí#–©ám>¾\›,CÝL7CüYmgTE®k†ƒz³D4©!W5«A½Y!šT‘+4ïpæ˜iREªsCSÝYfÖljP›Éæ-·2ª¡P wƒ?;™õß¼ˆP"ýµú³Ú°þù%ž@ýµš·Ü²¾!JdÛiêár³ú2ŠD(p>jv¢¹Qyý7(X>®Uì]êS_“. š~&7K.ée{”4Í>¯vʼqß%© VßwöÈüì¹-¥ßÜêúrÌÏž[ã Ë_« ÌLª(µmMQµ}™š¹Úskðm`îc¡ŽT¿qCU­à@O{nˆ Ñç’ ~°à-Ô‘k‡G«®°’Mê(ÕîÒª7Ìd“*ÖÊ0è4zÃL¶Pǽ»´ê+ݤŽRÝ?Gw˜Éê(´mtô••lâ?œÅmwBÝãÝÑÀSu†Ùs6©"Õ5¯V=a&šT‘ëº_˾0jÈUÝ«e_xÒŒ*ˆ p|áÉ3©á‰²ûbÁf®I¥¶{bѲ…:Jµ»³Át [ %lÈ£UgXé&uÚæÓFW˜¹ê(´Í­e_X©FUäºîײ/¼såsŸÌ³åíQÑ|ž×àk¯ÌqÛ£¤ÑÞásŸú¹‰â|'D™›•ÄD…Šé.e0”µcýv1Ê¡eýðV„¨Á>pPÜemZ?Ä"TÀ6ú/8˳UmJ9Ì­¶à*s+ÅÓXè)A ܸƒ)f37 èÃi.aëd(RŒæÙf÷3ÍËíþ‹;§·žT8w¨‚ÙÌÍLª¨´>m%ûÊB oôt¹ªë}¢QÍÖ=0YòÕ­Nje¡ŠJëÃÖÄvV®Q•ÒG§ÛyRMj¨tnIÓ™©&U¤ÚBË™™F5dšCfSOšI ¹ê°6§™W«C‚vXÓ³I}d 2[j*S“*ÝÁƒÝL[Y˜&UäJTŒe¦†º£1¿S„ è¼WÆ27´PG­÷GÕb0+[ßðîr;«×ÝÜÌèÏ›ƒ½<›øq;®*H‚ ·o¯ÔuæV&Uäʽ§Øyf¦Q ¹j/Ó67'†x&5䪽[Áä: Ѩ†J·of¡šË“X›$A„íz£å•zÎܨ>¶I„ ¸ÏLlnVŸ#H„8vRt›¹6àx‘¡‚î}u ›ÔQh›o¬5SMª(tÍ9fš‰F5äªáRžQ¹æ*+ð&< UJqÎ.µR3'Ú·FIjÿV‡zö0©¡PõG+š©É-£l'¼~{«uè–ÜìÒö¨h}Úañ¬¥OæÏ­‘s†£«ž5wÉ|ã¹5RÖãÖ~5w©Ÿ…)® ¢Žv5·ª]cV!'¶6ůÖ^Oì\!ÇùxÔ`VÏVõc4’`óqœË«hSs³ú ÈPA}À¦ÕÚ°zŒ9$¨p§ö-{šZÕ&“ˆOa¨·ÛÓ¡aý(\„HÁ7ÇĦֆµ¹1DÈ`î?­LêÙª¡Û9àåvÇñã>ä4'ºm$^µv“×Ç¿†'}œÆjô!gÁ¯>’±*ðÇá)NºO3›áÚÀ¡•Í­¾ÉîxÞ=,CŽ<Ðhïabk;mp¿›ñˆ)CŽl0ÕÙ–f&U亃 ìv_[¨ê¨ÔþD0¸ÛÊ6©£RïûªÅÁÝf²…:ríÞW.Þ [©FUä:¶(>÷$Ukü™b0´'¯>ÖH‚ ç‰Ûܪ>Ò†®=} ~÷ldRCT¹‡Öuâv Ó¤ŠZ»kö²Û ö~ânð!îúÈÁçæfŠ¿<¾¬`½ûƒý ¹óÖÑéÞ­½·Ùd˜û¬BJ}¼j¦¯šÝÚ/ðwóâšdÈ€»6ª^pnµ {²ïåq¨_]!Çm}o¨9ÎÍLª¨´[pÏ9SjX«Úµ§ÏÊMr¢>Ù“,B õ×l–‡†Åá0¨hÛ¾³8å³O},“9l+ãÊ¿>é ðñoY¯97«ýI„¸«,÷Ãj§'WG¢BÅܹ%®¹v|¤˜2TлÖj“sÃ'i‡)BÜù˜ÿh’s»2†À"TÈ-b“‡†OæB˜2”Ðá­«I.-ëiD†êã¯Õ1×–å}&©ð„)£Ò‡ËŸ ÛŸ"”ÈþýûœÛ=±ö»sœ“<ÿ :÷ybëwòšÅ¯ØDç.¥©¿÷Õ¬×-õÙ㉭?öqÎòE¨éH }Lê(´¾‡Éajbí_ÈÚr,ýx¥6;¡Mj(uÍîf‹‰F5ªfu«±>y&5ªfž«­ÎD“*åøA;ž‰F–ûÃ~¿ÎáÚí¿ïV·XêdÒ›Ô«ºÑͶ:óŒj(Tnq«­>‰&5”:··£±Î\ u<Ñ»Á­æºÒMê(ÕnpGcÙê(Õnr«µ®l“:Ju ]¨±Î\“*R] ]ˆ¥.D“*r]·»ÉV¢Q ¹ª[Ýl«OšQQ†[«­>y&5©ª(µnjGC]Ù¶À‚[Ûjª+ߤŽRÝâÑNg²…: m ZL;=Rª(tÍæžv:óŒ*Hnq«•>Y&5¤*7¸ÙNgžQ …Ê­mµÓ'Ѥ†Rç¶v4Ô™k¡Ž'z7¶ÏOè&u”êåške§3ÙB…¶Å+ÄL\“:íf˜Üd§ Ó¨†L3,nµÓ'Ϥ†Jwõõ¦+¦I…ÒÍîCÁÌLsßkŠ}^^EC}ö°PE©mÑ6Õ•šÙæ¾5 NÛãÑLŸ=2«œ·FNòÐ+#];%ƶ(7ÓqfC=ôªïÚ‡ÎMÏàªS³ÚÜf *â¹%ØV×^Oìm!Çu;˜=õÙ¦~æ3ˆ îËföülRúÍS€ æ£bƒŸÎ­êçm$B…ljðÒ¹Ym“9ÎMΕ›ÎíÂCÏÅ;UÇß§Y®°î"Ч®-ã[z´:D¨€‡¾Ö¶zéÔ¬~¦-"ä@ŸH‘ýôЬ68†°=  vúl¥è<Ÿd0 ³²Ò¹UÀïh¾{–¡‚úSÏ`¨kËÖ¤%t^dñ©BÅÜùô÷ì¨s7¥NqÆø9þÖ¾6Gºé³Q@ïi2ö)A…Û‘ßMvndTC®Úû½ÙëD4©¡Ò¹­uáZ¨#Õ?^‰ùÞÍu%U‘ëvb½ws}ëo•$Èaîìß[™TQiÝA &;sMªX+» ×ÿ4VŽ:“-ÔQë·4н;ëJ6ª"×m»ç\õɬ!nS›>´[Z´k—ëý[˜1„©BÊÜìîw„íÛêÒMéÛCðýw¾bxdíünge§ÏNž9;Q àíÚ}‹xéÚIèÛë1<4Hi»›'ØLŸ}· N}yü&N/ÞHQ;Ÿjå®ÏFª(´»«»êê±+Ù¤ŽB½kYÞ••Îäzg² )qv vz訇Ãù83 ¬CÉÝ]Û”ï䫇ŽåŸÊÐ ¥ínâÄwS}ö©Oµ$A ÛÝÜ}VK[…_ÿ ­ü=E(»[K¨ŸÎ͵×aïïØô\{Þ³òѹՓ4Ë#Ûé0øèÚîIdaÊ#ýÏ&øèÜN¯ÝwÛÝÜ÷S„°ß¶îdæùá¡s»'a–¡„zBA<ôв L*¤ï–h¡KÃ:5-2”Ð6;ZèÚòÉü,D‚ݸá¼tmødv€)C l3¼G;›eóðö(Xm~{µÔµOnó37cù>VKûÔ6¿si¯ßžZìÜç™Õß¼ðŠå‹¤ó—È}Ä¢Ÿ›¡@xD¬wÁ›TQ*û ƒðÂ5©â‰¶YãlÃ3Õ¨†BÕŒvµà'Ϥ†\åg+±î™hdÑ?Ìö3Go•f³ O¦¾QQF“‹ O<“ž(ÝW+ž¹&U”Z·Â£ Ïd u”j7ã ¯t [ %L;ñJ7©£Ð6[<šð̵PG¡mæ8ÛðJ5ª"×5{\løÉ3ª *xT¹šðD3©¡Ô¹1Nf¼0j(un‰G3~R-TQjÝf¼²-l'·ÅÕW¾I¥ºYãÑŠg²…: m3ÈÙŠWªQ…®ÍpÀVüäU)š=®6<±LjÈUÝ'+^xF5*·ÅÕŠŸD“J[âÑŒg®…:žèÝWC^é&u”j·Ä£Ïl u”êfŒG+^Ù¶@¢wS[­xåU‘ªZLCøÉ3©!U5K›ÍxåÕªÜ Ÿf<ÓŒ*ˆŠn»1®füä™ÔðD馸òÌ5©¢Ôº%Íx&[¨£T7[Ò‡nç×a++6Süé0í6¡@îÚušúù¡]kÑ®–^.Çû×?ŽŒ)CŽôk4µô¥â;’;¿mË€-˜<}nµÀ{ðñ¿q#Î0EÈqM Î>7Süýš~7,ì)B…ô‹À`øs»Ðà~˜ÈŒÿ;_G*›/|öSÜðÉg`jìxÍQm¾dþ\„ xîSø‡ ÀlÐGÞRà ó$À³çL$ÚÕf$C }¼Z% ¤Y}êd¨‹³10Õ×9"B…ôÓ…D´]¸N£¨È¡z]¢³•^ó•ë`:ö=Û_k `6ªsœ$A ¼Ÿa–Wàfõ¤$Bôå 4ÀÍžä ¦Ð/iWnX¥E†'Xo+!€ÐôÉZS†ÚŒW H»:O"ä¸[à·ªZ *œ®’˜Þ4œp˜Ñ„€ò‰40Û<›àHÁ„ÈiŸ_CÜ£&xN##õ_­U€û¤ÑÚ%Í_k@{=‹'%žiíshB€;%ñ„~ÂM¾ÃCP@X¨£T÷¿ ¶I©š0 0ר†\å÷±«ÀÁdšÄ öþ‰ÇÜZ7¯$BÀq£J]7­b„€¨ª(µnã‡A`[Ø)| (ݤŽB»ØV«ðs-ÔQh›•¯ÑåšÔQh›ÏÁfÕiº™¯¡I3©!Wu+ŸƒÌ3ª¡Py¤Dƒ“hRC©ó8Iˆ×BOônàK| ÐMê(ÕnàÇè³-ÔQª›ƒʶ°ý´ó98 \£*RU3ô560y&5äªnést€yF5äªfçKt`ÒŒ*ˆ 5¯Ñâ™ÔðDé¾Ä„kRE©uû>F˜l¡ŽRí~Œ(ÝÂH ÓÆ×耲MêH•ÍÈ×È3Mª(tÍÌçÐjHUnæsh`ÒŒ*ˆŠn[_úÐÐÀä™ÔðDé’PªQ ¥ÎM|0ÕB¥ÖMüP¶…-ð„ÐÌ| (ݤŽBÛ }0Õ¤ŠB×,}0Ѩ†\5 ýsÊ3ª ×t£?F&ÏB…Òƒ Pjr‘>¶FIjÿáêb¡ŠBÙÌ{‰j˜Û£dõël pŸäfml‹ŠÓÍ}Ìzo)I)AóEÃCŽ€[•ãåIƒ”¸™s´K€{Õó  rX[`{ ˜ê¹ÚE„xöf Ðvõ„ê$Cõ È5F k?ŸDX»#Ýä$vOFž³ ôH „îåk»úÉÙ!ǵñÈ«ÁlU­r ;É«$6,‡‰)w3ŸIœ@;Öc‡9nÛ¼vÍÌFá1/†0ÈYîNI’€ûÔVØ Àu‡Y¢³Mm ÐÎbˆ€ÚÔŒˆP w~VÖ AhØš´“ÍËeû˜â_¢ý9‡îüì‚ÜPœÇ¿õ$BÜ]šm®1nÖð»eçËyy­a‡näÀsße%àf¿;%èð Â}~ˆ$˜Í¿d54êÐD¨ç¶f' ´ÙÒ -ïä°–Ô’ÈÁlòä]»ÈNbЀÚ<Ùß,B…<Ï„BO!„f¡Áét¼pb×.è2\ÿ·&f#“¢ª¹‹¾IH0Ó¤ŠZ{rË\ÓL6©¢Òzr.Ä ˜[/$B<õÃv5à†Õ¡*"¤Ðû+_^$D ´!·8Ÿ·Ãm&r ¯‚ܬÁ›ƒôr>=&0Ð8ÄîBaˆlW4f¿=Ü4 á‡ðàƒà)j ­x¿|9®ç‹L½°k“*EXó} ‡UÐ`6 øû¥OXraçÓ*Uб’ƒ† ´¥I•zß¿ÙU¦€Ùê¨Ô^a²”­;àøÈІ Ãh±¼38B  ÃÑq¼ÿ\KÈá|è!‡n|1>0›ÉŸÍýe,A<¶ 3(BZÕ?áC„wtG_ÔJ/¡·óo¸tC,ÃÜOŽñnV_þ‰ ÔÐC@[> iL*èeÙa«(7¬ó®"Cäi™þ…H°ÊP” 4¬oÿ‡NÒ»u«7:Œ$EœS$l(P ížÎÈà2”ж ƒf ¸Ý›.½ÐOЊë÷RþŽ5bÀ͞Ś÷]±úÁ"Ü) (Ì­Q²–+„U¼€ûdáÞËûhÎ@;™Ô‘ª7žª )æ&1ÿªV€±sCÐ@ðê¨Ô#T ƒÀ6©£T÷¿©W`²I$áaßy~Qsû?8Î`¡Ž'únz…ðÒMê(ÕÝôŠÁa[¨£T·ˆ€Ù¤ŽBÛ‚;`¦Q ©¦Å4n0i&5äªàÀóŒjÈU=ÀƒI3ª *tf€8˜<“ž(Ýø×ÐsMª(µ>‰&[¨£T{%ÝÂH Óü—ÀA`›Ô‘*›ý¯AfšTQèZ€£L4ª!WõG &ͨ‚¨àÙBÐ`ÒLj(unþsà€™F5”º~œ¬“j¡ŠRëÁ“8l [à Á­ ¾I¥ºÙÿ1nÀd uÚà¸Rª(t-ÀqƒÉ3ª Qx@£“eRCªšÑ0Ѩ†RçÖ Lª…*J­GPbè@Ù¶À‚ÇPnOø&u”êÐÐ’-ÔQh[ @#Ê5©#ÑnF€CÌ4ª!ÓŒ €†&Ϥ†JçO§Cô€©&U”Úå)¯D˜™… |[DϰŠÌª(µí{âØR“›‹±5 NÛã9 É­m‹œÒþ8O‚,CÝP€cÚ®Ž¸Í}ô:˜½ž X„ éíBô@†»ôÝœö”d¨ n@Hü€Û…ç ;ÚA.ÁÖî†N'ˆÑƒÙ¬žÚ^D¨¡Gßï?ЖÅh~Ò "Ú>‘äôªþ9ΧMÔì4«Íÿ©AMlS2Kø€{ÉSÂËãùÑÀ»9Ì'á]ef«z(¬ˆP w>›OÈhÃz¼'ÉP@˿9~ÀÍj'}H îw>Ë¿cô`¶©½7!OZ"Ú¬v®†ðÔR@¸¨ÁK$A„u“rypƒÒªáÛŒ$/çÇzbc×° ôØÖèAhØZ´sÙËy{™ÃGI†9VXÐð·[ð}Ýà—Óò ñˆ‡°¯ãÜNŽ×*fá(Xžhìá܌ȑcÕÊH»ú0T¸ñ*f3 UTÚ6éí*† äzoˆ öñï¶¾‚´aý}’ Ðò®BÜ®áÛÕ;þá§…°Ä©ÿMäÐ]{¥1m¨-.û™ª"rä˜CƒÜ®á›õr:o)%3EȲ¬„ǸÕoÉÍ—Óñq½rí*%¡mÇ4’D^Þ.ïø¥<¦rëÉú˜C†Úâp˜¿—"CÝzlOЦ¶@IØö‘ýPPzxÓd«Ì±ïGL‚ÜÞÂä‡íª~©G L Þö¶\±„t÷ªG!6“4d¸UýçJ"d8?ðC6á•yùp ).¦°-¢éiö$Y3EÈ{šÏÁs ÒªŠK‘ ;µëûÎ\Ð1À­Âåò*Ðä„_8äÐSÿD‚6|Îp*`KÙ„<ÂlUϱEä°1Ñ…¦¸•NoFË“)qC)"p·'PL `ÿ !nöYÄ%ö–ˆÀ¶³5†ÀÍž%\„ØÏCVúŒ$™bO!‰ë£Ê› ÔJáÙÒc ‘éópAÛ•©†%o¹&^f¯lY Þ©Ÿ¹V1í”ÍàÀ ÔÄvZ“(‚öª#;H0§ÿ;†fgá¿ i¼wN'h‰4øf¨ý0Ј„›ÔªÚׂ B´PG¡íjd“èÂÔ?„™ Ž<óÀ*˜À± u”jÄ`‚Ò-l”0‚!˜ l“:Råb’i(A˜&Uº `‚jÈU=0ÀÁ„I3ª *d%LšI ¥Î£O`¦Q ¥ÎC1ž0©ª(µˆñe[ØOЈ‚òMê(Õ-¬à L¶PG¡m¡ 'ªQ…®…(œ@<£ 2E h0a²LjÈU=.ÀáæÕP¨<( á„I4©¡ÔyH Ƙk¡Ž'z hDAé&u”jŸý"Ƙm¡ŽRÝ+!œØ¶@¢Ÿ‘ '®Q©ª…4š0y&5¤* p²æ¸¡:úËC&IRøâà p ]e¸ÝGŸe¨ §o𬂶Sã}ÿ“ÆIЇ9nLŒÁY…Ù¨6*‡kT7®}GŤÂl¥ÏúÏWÚó,B õ©6%±  K/dhPñv}Š +ÌNò#X²íOs0IÃÂ=¨ ­¾à^NÛÛtH„ù0]Ú<Tf ßwÌññ9\î)B‚Ûö™4 Àšõ“)n{ó)!†³%ôã¬ü8"W RضO@À™…ÙĨ‚D±mT!¯0Y&5¤*¥±&>ÙoS„¸õIV¡nÐ þ"Cõ=‚ ¡¥…-Pèû+&v}’ )rë¨Kàvõþ  à¶ÏÌÀ±nU›C‚¶mWˆ#Ì6áo€æÐ' ضO” 1nÓÐÍ"z9^¶”L™"¤¸íyNó@æ©4[ð})ø—ãéz¡i%\ƒ‚¸õÑüEà^¾ìíãáÑCcy !5ƒÚýÖU avjì6ÕËñp:Äù$¶cõ‹zêWãšB-µÍý‡c¬2U¨˜¾dUÌ%HG uTêc[¾AJ;ew¸…™$¶}Å‚ˆ|üÛÍuÍ p»âû$rÚ©ý[ãܧ<Iƒœ6&|˜éîSÿm RØvL˜ ÙƒÙH/7všdJ°ÆÛùÅ3š=àfeˆ4(‰í~ô½!‚ÀÝê × Âµ«' P£¼x,>áè)AëÉ‹-ß*{0›=™¯‚E(‘sŽNhCHð|š#'rbaŸôzÓxD?d¸åß<àF!qžÑ‘Oq=àZý0„DoŒààÔêá#$úlÃǤtñŠ,ûlã—¤¦yà•-\Tç#–Óú*ƒ0›e“<ðÖ(Hn“k Aûd †¹=R¿â$÷ÉR ¾- Š¿Šq„ÙÃB¥¶}IIPê: Ñ#, íVÎ%L°QQqj¬öÖB–x² 7}¦28ÈtšEМƒI…¶eb¹ê(´-À¥UQè?L2“gTA¦h¹Íˤ†\ÕS”AžQ …ÊóšA˜D“Jgb ¹êx¢÷,€&”nRG©ö,@L!0ÛB¥º%bAÙ¶@¢ŸÉÎ (רŠTÕò)š@˜<“rUKp AxF5䪞  ÑŒ*ˆŠ0%¦&Ϥ†'JOh¹&U”ZOÄ“-ÔQª= SJ·°RÂLh AÙ&u¤Ê69†¦˜iRE¡kùÊѨ†Tå©Êͨ‚¨Shþ`òLjx¢ô4À¾äšTQj= SL¶PG©ö,@L!(ÝÂxBh™Í!(ݤŽBÛrš@`ªI…®¥S8ƒÀD£rU÷ï9…À<£ rÍÈh‰ª(µ- )åšÔQhû]~È07K,Ì­Q’<# 9î“¥ æÖxÂêwñ!À²ÄÁÜË'ž yî“¥æÖ¨HíijÈ$p—:y05Hx·w©™îTÏx@"d8Ä<‚4«oVE† ÚÌ;±óõDSæð$Œ ýJóihPð¶>¨p•E˜Ýúï|ÇGÀdÌ)Â"Èí©…S(š- úôåp;Ýn”—h"ä¸Óœ ¢§¨MÞÚ3âÃõºÓ59¶}>Žȇr‡,ÂlÀ÷>S‚ ç>€D¸•Q •Î0$®0‰F¬5‡N\^i&aòžì¿)A…;¶pˆ¦¸UøÖ÷ãÏŽ4ÈyžÌ éîUS$B¯% íLªHµô­iA¸&UäÊ>€f˜©ßíNÒ §µ¢„¸O8¶÷“<Ç!¶mˆn;¬ ³É‚íË7½Î÷³Š„!¶ŠB8¨Œ>Çò*m05xÿöOçÛLp°5Ó-‹;ÐŽK—ÇL-óîáxÚÏ蔡‚ú ÜUî€[¶-dúr¸ÿϽÄ2TPŸi<Ц­Í¾y÷&ÇÃ8|Xˆ¼¹éìH=MêH¤ã…æ„Zï¡àmgZ³Ü­þNI„ 9Ü p³pÔ?®7$q¢l„Â|èlˆ ÌFõùš$¨pm‘²AàVí2 ¥ªï‡ÓÄOr`ûy]帙˜Î‹)ì! ’!GúJ}« ‚¶¬“™"D n1^I#hKcãtžÓŒ rܶ5’$5Ò)0v» $ ˜›ÿ’DVå,S‚ØLnM!p«7ËIøjƒOp1‚ÀÕ0Äá8 o‘ÕI Ÿ³‚ƒÚPïÅ·sUÉ¡AÉk‹Hpaö ƒó™Ö ‚z„¼½J3ž?®´OBB"Åù'ølS² Fž’P¤ŸmN‚gyHs+`{ý¹$%h–‡2(1¨_D²1&±žéÁ·FJé§ÆU aöÈæwà­Q²Ú;Ô$‚öÉÓLÎXíßšKÐ)«l„S…³müÝk@»H¦an†'öŠ3 Œ7ª¡Pµ/K““g!ÉððÎw2·W[r@“ š0©£Ð¶ôç˜iTCªiéÍ(LšI ¹ªç8§À<£rUËHNaÒŒ*ˆ ›@s Ä3©á‰Òó’U®I¥Ö³1§Àd u”jO Äœ‚Ò-l”03šSP¶I©²¥4ŸÀL“* ]KpB‰F5䪞à„¤UÝ!ïnmH(LžI O”ž^¡¬‚Pj(užY¢Z¨¢Ôz^ f”ma CAˆ,ÌFu($XãúDþ9$´ Íêp‰P#Gš€Â ÒîI<Á%¨píiû*¸0[•CDƒœçyðUlAûÕSƒŠ5Ø8HxA›ÖS  ஹ´«ÐÂl&ch%n‘ Åíü±£D´•fxäÔ¡[ŒFã ³U=•/IÁúW-1iò‡u˜¢øÎ¾pPAZÕw‡n{Ër³Qx¸½Í5/¦Ö¬Ëvb\¸•>\¿iÃc èÖóOQІµ7D¨€=¢ù„ÙªtÛHœåÓl¯Ò Ü«ö|D†ûðÝÚþÐt‚6\Zô•_›D÷ôI† ¸åHƒ§¸UC·³äËýVb»‹w r\¨Êi$èûUêý^’}‹ìæA'(PŸ…ܧL¾“·i™8<áS×Ú㨹µµ«W¹ne¡ŽT|óÁÖ!¿ äðVi' )Ó»i‚›Õ{˜DHh7ŸQ&¸U€_·3¤0EȈ´Ï5ÀÀÍêDHx·›äœ[5x %Þá§ÛvÌçÁ2$Ä{¯å…ÄB³'ï}Êo7ÊF4'IÕû|H°"Ý®Ë_eÈ8Ìõ_ I°nÍl’”7YÀŸöÇÏåýªú0ÜW AÝü,ºJ7Ì>|l¯÷ËoÆ/H„”x;{’!&´á£Éů÷ÃuÌÂBÜÛXxD³ Ú´5iëh½ÜA÷ïAR>y¼µsê*ÓÀíürUñÀî—\c¡ –!!Þz~ArÚ+ÐO‡™ï*d¼¶,š¤¸Ï“2$X£N-T² Ü¥7mB²ûWz¼^êM…xë‘ 7h¯pÀï·u¿s%DâíÒ¿×oàfõ9‹Dˆ¼åZâv ™ˆoàfz™r¼_ÄÆ¡™ÿ9qç¯9ßÀÝêÜá ÂÚ¿cªa¶z2%‹Û^!Õ Íê‹s’!A>*mN6p«zþ W %Å„¿ž}>‹Ð…'#r¤»ÎlížLQ±ñE| \³ì³ØÅ¸KŸËôÑŒ&iè¢ÃúlnÖÇDÃ:v‘­d(2<Á.Ф´a{Œ1&[l±,Î]%wÁ8ß!šo˜­Â¼ºÆ” Ä-gâU¶›=™F‚e(¡íç xðã»t*‰| F¶©NB°!YÄ#{|'2Èåz„3¡Yxøxžóƒ  \ÿ3 A‡Ù*›Bbn‹‚ãÓThÈ{d‰¹5J’¿æ wÉ"¾-JŽ¿Ši‡ÙE"¼Jˆï ?h “:ž¨—ßg‰N0×$×v÷Ý 2ìhz>p¤Â¤ŠB×b `¢Q ¹ªÇ8þ0iFDO“fRC©ó@‡ ˜iTC©ë–Û*1©ª(µÝr‹!ˆÀ¶°ž<Ž AˆÀ7©£T·HBŒ@0ÙB…¶8¡T£* ]‹&pbòŒ*È=” ñ‡É2©!W¸‡ ˜hTC©ó8B ALª…*J­ÇbbBÙ¶À‚Gc$ø&u”j$„(„°-ÔQª[,!!”ma $úOà „rªHU-  1ˆÉ3©!Uy@£Ì3ª!UÍh‡!&Ϩ‚µF'HX…!&ÓBOÔ‘8D`›ÔQª=¢¶PG©n¡„„P¶…-è7#š°/¹FU¤ªLÐÄä™Ô«F,cL4ª¡ÒP‚!&Ó¤†•îDS¬CLµPG©öX G!”¼¾è›[£$7ëPw±PE¡tGYc‘œEXšØÃ|ÐnÉe:mœÕîòBä»< 5L Ür—âÜêI¤aŠÏm  ;p«p?wšÎ:‰á|¹íwàV!°¿£i(¦З\‘nB ´Â‰P!ÝÝYE¸ak*¨‡ bð!4-¢CÍY @„žõ •!B܆ÌDÒ®r#"ÈûõBÃÚ²6$2¤ØÍ\ÒV"Ú°~7DÈqa}˜ÍêÁZ"B…l‹dJ B›Õ³ RÜÁ&AˆÙ(äŽ×/qÖ¨æ›^|G„ µÒ1ÿÛËm¾o¡„nÝfá@DhX…"TÀfÁ…0ÄlƳÞ=%ÈaþÇ´ŠBp³ÚFRìæv›Kyx B»d{VÅaźµg¨«ÄlSr"B»ùÐ;‰@h«æfµ‰d^ö÷;ìã˜*ÂEHyk¬÷†ÄlÓ°íAöýx¸„lÆöæÉ ÂÜü×%¤f‡…ÚƒewìýO6Ä2Ú”ß ìæ#œ%ý ¼Ô_îgßËð‚¦9oØíˆàNÆ5äª#­Í1#DÔ7HŸž5ÈyÇF£Èƒô ;öôp^f £¿é5ʧ‰i‡Ñ&pé8` rœ¯û®aiUfSƒœç#É9ê@}|ßè0²4}{dœÑA"£ƒq¹fÌ=2ã L{òEurT›ÆÒ ³A}àûæÅÙö ª4Ë0,Ô¾NÕËýŽãvÒõ>nmnëK|HŒÚ,ìGŽòq*¿_zï%dqóhÙæ»cv-ìc[ýäewÿÃÎfr gJcpAÚµm”—Ýý̾{†dÈ ›k;T9· ­»9µwöñ~@ÉŠ[ó›èzói,$²0ZWj®·UÌXO>p õeGf&aâÃp<ìG$¨oŽyìÃ[³q$ˆ0ñí€msößÿ ×Óðê‡9êd¨Iý;%È`§–XájSG‚X„ ×&=\E¤WˆX.c",Ña }ü¨Òl=z Íêéd†)¬yò:˜m4ASk‘OY;àJÈCÐFCR¥!úŸpˆÌFz[sÞžÆâK$Aó\NˆH³vSölÕŽ>ú¹€Ú4<íÚÝk6¥ß!ÇùcƒUä`6kÁˆlõC¡DöÙ;Іõ„S…šyå‰"âtãaKºÚ%‰Çjš;àfò,‡Ç§o«›ø1uÀ}²Äo'¼ÖMãÚKr sC~ü­RÜÂB¥ÚçøÐ ƒ²² Ü•'Pè•– 4¥Œ*È=! I„É2©!Wõ|§˜gTC¡òd€¦&Ѥ†Rç©€˜G`®…:žè= ™¥›ÔQª»ó±Ê#0ÛB¥º%TB!°-lD?3”F\£*RUK haòLjÈU=%ÀyæÕ«F>€ “gTÁZ¦@ˆ‰„É´Pŵ§4“ l“:JµgbÙê(ÕžQ‰y¥[Ø)ad4Ø&u¤Ê–‚0Mª(t-!ÀI&Õª<ÀI„I3ª *ÂDšD˜<“ž(=p*¹&U”ZÏÄ<“-ÔQªûñ²Ê#(ÝÂxBXÒšHt“: mKHA¨&Uº–à4jÈU#°OyFäš‘ ˆi„I´PE©mÉÍ#(פŽBëIM#07ËÌ­Q’Zn ¦¸…:JuûÆ8 ÜõëÜ9ç2ÛwY_\ëÖ¨XþFr±Sc&Rèã•[ÔœFàv!qpœø!A;·¥(4‰0Û„´Ám.0@ä0¿­–$7 iƒ6Nrç §$wòI64‰0[Õ“’k\Ÿa`¹]¥¸Y=-£ÈPAÛ‰AІú€€Vw rbóÞVÙîVOŸ 2äH7ûcú ´¬3"D ~¡BöÙbø€ÛÕ³ˆ 9²­ñáa=îW„ȱ·¶À5gB¿`×Ó`Ë!BB»ùœ«ìÁlUz’¢A ¼µ‰­9} j»Î5ÈX‡–) äÁèÐ<šCË»Üwæq̡зƚ±§™&fÚ`Ðkw‹%È`cêÊH›…݇ܽìNû9pÛ%Èa>äVS£ÍÂíóԼ쎧9•ÄØ+Òã\Ñ­°˜7 . Ý–?Q4iò®sí‘CÐN~?Ãmˆà®îSI •o{*²®#!Iêvöõ6|Á)A†ó½£9jSS‚êÚþÖbš˜V‘éü‡VÂlo¯ýšÜßÞùá“S§ÀÏ€mjÍ"P£ðÁ™<$¨ó<ÜbÚ<Ù¥$B ¼ÞúŸ å´U}”uRÖÕ§‹ Á„ÙgïΧ%wðáq5âS‚w i†MV û¸D~ð—Ÿ Nì38ÁÀÍÕ¯h4š@­{·¬'õò°¥ñ‘—íéþ|¼Í…?m_A¯ÍBŽÁj÷èp^Ü¡G‡íí.Ÿÿ …O¥µ¢^ÇZ”R~K‹%¢¹O·Óež¢zŒbQ"gú±¨9†Ñ­øûÛáþkãIŠk“ýH Ô«5héýK8<}/ÛËñxÞ÷ï`(‘3}è8'¨Û“#¨ ¢®í~S³EùC6·G¹ºÕ(ñî7÷º¼8Pð"âÚ$ão 6ebηGÆi?+šhü'“i RP{Áiê湸]ç$®@Žò¼ Çf½d¿œc%°!@ò '²œÅ¸èK¤vsÍ•,eX´D§ÖY‹ö˜àå´{„}4kái…yãE:nI³–·hü_N‹á¬y Ÿ´Dp|ã¥Ii%wÀ·yIT8Ÿ\Is Ò,ÌA·$B…<7<†¸ÌỦ-ú¯~†¼´h‚†´]²›ßH†ù¨´ð€¦¸Y=¦…DHqË!¾Ê/p«ðŒŒ—Ð` ¤¯Ø±)m¦Ï÷d ¡ÀµFœc˜mÂóÈ9ŒhlÈéÖ¹ïƒ$`áF`Ì@ÄdEArËžÒ YºBr¾-JNKZÄÃì‘e xk¤öJƒ ÚEòsC”ãšhà&U”Ú¾kWi&›$ù…ËœÁ+-qÀÉIIÕ«ú:’m žQkM˜Û@Ó “hRÃ¥§ 4áÀ\“*J­' bºÉê(Õž1ˆé¥[Ø)a& 4Ý l“:Re›eCS Ì4©¢ÐµÜ å„hTC®êiÊ5ͨ‚¨sh®aòLjx¢ô”æ˜kRE©õ„AL70ÙB¥Ú1Ý t [à ÁsšpP¾I¥ºe b¶Éê(´-ýÂÙ¥UQèZþ…² Ä3ª QxÚ@r Ä2©!Uͤ§˜hTC©óŒAL7Lª…*J­' bºAÙ¶À‚§ NOø&u”ê–3ˆÙ&[¨£Ð¶Y64Ù \“:íÆœm¦Q ™f¤ $Û@<“*ÝHh©&U”Ú–5Ø—T“*¢.Ìe é¦f †¹5ž°ZÖ@ó ÜǤŠBÙRšl`f–^˜[#çŒÌf¸K–_˜[#e=^µ=¨ÉîR&X„צ ÑDƒ¶ªîT…œè·’kˆýê’¡‚º›+ñnWßž Ö°>‘@{ã ³U° *â±åD4ß Ýt‚ÃnäRãÔoQ2d_¸>¦¸]˜šq?Cö$BôùYC¼Ûi„¡x’ F{ôQ!Û ­Ä¸Y/ÐÚC‚Öç)XEf£ê‘Hâóô¾W ¡Q-\æ´žC„wô)$Ì@­4¬°£Ù¦9Íç Aî¤a…Ëu¶h>J Ü^=C Qn×&-‹(ÜÎsÙŠ)BÜŽpǸYa¶ëÖ¬f‹üÃÄ,ÃìU?³jè¶ŸÝ$Í  ë~C„x 2Ì^:.qÿ0ëCÜbwó°E ÝÜ7$ƒtj‰‚];xî›í:!ÅCƒŒ·¹µ™š%ÆÀ}žÄ†kÔ\ƃS Ôä‰å=$Haèæ@µ© E]Û“OŽ3Œ¹ô8 §™³ØY'kñ<ÏÍc;š'³½Ÿ±ws¤-.|N‘„Ú]=M6H¿¥I_gg¼ó1÷ùˆ^øìä+ìu†"8à@ [‡6Eó½Ãñþ6f^Ÿ¥¼¥0\Šªé:PòÇÃÏžiŒk›¿¦>^,ÿäÀw »i4h'Od\}¨oDë]CÜ®ú"ÚÔù3šqõ)&2p÷ÍiØŽ¨Ý2_÷hó ôˆ†kd[0‹³£Qu¬>Gи¶SDµqå11šNóý‡äÚœZV"a^ýBãÒ­j±œÔF~£-ü0¯'Ó’‘ÝŠ}ÓÎÆ-Äá:äIJ I êöæÅ,F>ŒÕ@FbB[.]ú•Ù½Ëý—îB?»žë¸úâ}kì¾ùðššà†­C ¬¾l¯ßÃã’s¼>fŸùŽ«O/±Æú5Žæ&¤åÒå´=Üvdú?惺^ŽòèZäÜmëH¹ ê¶àûÅ-½ã·²—†Ûû­ây<®Íúޏå‘Ö*21)û~ö9miI°™í¸zîl½x¬TSÒ°úÍñÏeàžˆà5,¿‚eJ®‘ððd#—{ök›`;(¨];”ÚÜj÷Cé¼».ÿ:.»~>e1rð˜…ÒòMO®DÎl _…XÅìÖrNûë²›zü…W7R×°áès¶B…9AènŠ¡‘þ‚2ÔèyèãèSmŽŸõ4b1:¼éDšfCQ¾¶iYPŸ:öLÀ±lŠ&-¸Y»Ëʦ†#ÖÀlna•t’ݤ¤¡öõJ$´ÝOKÖb½ Mq\ŽyJƒÜdµûBÚb¶Ò‰1ŽØÃH‚pf>Çüë Y iWºjì© (mÖO^†9îÒ¬wMZÌFú̈mþ©@ÎjkÊHÌ‚»èî~ôx¤IÃ<³'‹Ù&<¤YS‡)jß&œ ñŠÙ¤}E°þJÊ‚Õ W ¤µ“³S²±l7!­V‘z2áðz±‘Šøxʼn‹Õ‚#뼆o‚ãq]Ì&5”ºåj}¹`jšùèy…Yvo‡hnC[e3‰óœ âtéî÷þBc&:Ljx¢ì6€&1„kRE©õDDÈbÙB¥Ú1¡t [à ÁsšÈP¾I¥ºe#bƒÉê(´-!ÁY ¥UQèZF‚³“gTA¦héˆÃ˜,“r•'#8!D£Jg"Bƒ¨ª(µžˆˆi e[ØOž‰ÐD†òMê(Õž‰ˆi f[¨£T·dDÌb(ÛÂHô3!ÁY åU‘ªZFB““gRCªê Ic0Ϩ†T5ÒœÇ žQkM˜Õ!ä1ˆi¡Š'jÏDh"CÙ&u”jÏDÄ4Æ^ר:JuËEÄ,†²-lD¿éˆSÉ5ª"Uµl„¦0&Ϥ†\åÉIb0Ѩ†Jç¹ÍbÓ¤†•î*ó:„†P-ÔQª= Ái %g‰ ß%©%#bcv±PE¡lIMb(5K\ÌíQ²–ó€¤1¸Ëú"tn‹œÒÃ1‡1;¬/›uk¤~–†v©ƒ®AÅ;·ù,8€1û”ñŠ)@:{ ]p›rú?¡Búxl _Ʊè7ü9‡xˆBý‘eÈ_pðh³ñ÷€È¡úmyÈ_p»± å/I„Ù\¾Ààv28C–ð$rà¶/?Òܬ\"2¤ÈÝÕã:šÁІœµè¾dDÚMt‚Ü,óÞRÜJ“¼ôÄ Cùc›Á˜mÊI!HжóÃHRÒ+ï¦Q@ ’1!FÄ^hµ‘̆å§8ºiëR¤ÐKŸÑ…C³Ùgñ- !Ö@îH$ƒ[µ£hy«£hÉÖ<Ž¢eà(‡GÚ<ÿ´…äp5+Òýå@Á‘ÓŽ‚#ô31g3F£7·´]†n×Öþ2D3F³ªÃý>ô¾#f†äêÙÞ쫉kBCšVûéø¸'Q’&F_‹$4¨eëÑ&çïú¶<¡<ÉqL  —1éŠ$4¨á›ÿÅM)2ìæâv1%4¸ÝÒ¡_ŽÉ/F@odIö—ž$Qàciì÷®¢³ÕBï3“½Ü?ÅýO®ÍZ¿D!)GâáÖôþý¼ x†4{tð1ë÷‡Ý©9‹íâe„H¶—!!äÅWäxÆhÕØ»6»Éd÷…­F€dyvq4_†`ÆhV½ûeeŠ‘\|:±|æ‰;¶ÇuËö=´°5mÆ™$é³a¬¡—¶N¥F3F³ê¬ÚÜ…>„H€sÇ„dµk¿þÇý'yL·pÙö«##CßÉ1‡g4¤¡\%€]$¹ ¯M΢Ù©HÆD9‡Ã\ö…$È`c­Îih£…žM/65Èy}’ ‰jPŸ–Š^ÆGòt˜iŒ!Áuöi&BHƒÚÔ70,B ¼_ãK´c¤4¤Ý“é>¦ s„4¤ÁýÚ¤cÃGhÍ“$CƒŠ7ÖÆÑœw+ï³Iƒ’¸é kp¿öˆ Mn:þ‚g”dç÷9Ògû1 n×Ò}!¿¹‘@ÉÁó< ²]¡hP#´Ó¬OJ2$ÈGò xÊkH³ðüê4Ëä0Ïm†ÄÆlûë\`eJPáüO8ä6¸Ù“àÇ¡@ê|žÞàfOâ.ÁÖRÛö*Æ7f«:þÁ”Äþ‡,1í–…@|k¼ )–܈ÊáÏ"Zâ—·àȃ%þ í‘Òè•Æ:¤“I¹²½ãã`¦Ä?æfÈ-ó‚ 7 {<‚§=ðPÆ™'±X:fLÄB¥¶Û<«@‡²-l'„nj¨#ðMê(Õ«a[¨£T·pEŒs(ÛÂHô3dÁqåU‘ªZÌBÓgRC®ê1 t0Ϩ†\5é˜<£ ÖÈbé˜L Uê(Õ-PÁåf¡ ß§E-4Ì1;d¹-rJSh˜ƒ;d‘¹5Òãß4-HÒ¡k¸éì’ã˜}”L«ªòìë±lFœC›…ÐFˆ™œo3aX·çb”c6Ò[­Ýq¦!9ûû¸>Y„¬Ér:'ÍÊ›E•¡‚hr£·×†ahÃåÂ&Ý5J‘{÷ØcŒƒJTCæÑ*h»åAm¨qnýJܤ _!·µ²‚Ëö²jÖždìÚZ >ÒŒ¢&[_&ÂîW*Ë¿c„c6 Oaô¾Y„8r9äÐf:b¨9š#fÒD¨€û¹pËÌrÌVË3°¹ p›‡€B&>˜gÛ¶Áã« 7ÒœÆþpÑD†¹õçךâ %©A“br$'$Ä!ížÄ4¦°=ÖnbÛÛed(¦9°ë“üwjSVdK€ V„3³KìH  ³­ÍÂ͉ éR?cw ÔÕÿ"9°1ZãJÛL÷#LÒW’‰´kõHVct©2ÇÝ¶Û Sˆ èã)­Á­ÊÁÃϸ9Ò³S”Õ˜­*g²4‹§5¨ÙÒá²o3ŸP‡v•@¹’öD6B7—“-”Õ fß×½÷|ž§J.máØ'– 9Ñê³x÷$EõØ+g5¤]õ´AÀž(¹ôU}¨¯à&iÙ®ñm>:†Žã+:¬ˆÍiuGÜMèÙ¢­ÝD±’6'vŠÇ•F7¨eaF÷‹µ.ñX^‚½\Ú¬!¶A ßÜ®g1ìåLËÁÌȆ´|sãžåX£içIlCšV'6™Ü™ø7¿Â^N”÷˜¡ jØþ<Îm‰:tÛlx3brñ¹hÖØ£'>(¸! —}9ý·kºž0éZdTÿÉ äw[ðý’óe{¿)<Ÿ(4ïù’‡pßbœÛ˜v‹ô<؇Ó~ù*ú=ÀL—<„È€{÷é%»AÍZ‡cŸi…:\ü+žRäØž¹ jØöоÏ3÷P»Ùh)“)F†=päcä6¤eûš¯m%:·e%(irî—_Ú×[â‡4ý,3]ŠÚVD ÙÑîͯ:XŠúÿ3v.éŽ2=ž÷*jß¾Þ=ù5éýÚ¤RR„\5+W>¾`È|Sòï2§¤Éu 0®›Žç6Þó×µ°ú6ÒdH¥6µ0¢6ÜU*3•Tn¶ÆŸPŽH×Àeï+”Hig}_æà˜¾˜ÈTHåôž¿ÌqxƸCš}üŽñ_²Íw1]¯Èçc3¾9ÝÝi¤µT/ñ§ ȽñKh¤öÛ­›I¦70M Ç€ ÄdÄd7|¢2]ícyã78”' ÖÏêó$”Òøº­g"880ûôg2›ÀÜÌ€MìFÄ0ü1ïU‰.QXµ2³Ë¦7(*áP"DÒYÎf/ÄoPX¿ý D’íÆüú¡N2În`Xš•Ücoɤ5UF Lˆ¾¿Á˜Dû—ÊÒž3#—æš¡s4ˆ¤54®$³Xq x¼üðÓ²%câËa7¤bLÐÇ:e–ãÆ˜‚GKëe‰îHI'K«V|Àr%Ä’R<Έ‰ Û3‘Ñðš ‚ñ6n|ÓÌœ4.­ÚèŠLv ÷™Æ¥UσÙÁîg:BJ§,˜ìHÞ'K©T΂ˆòÓòÃÁXŸã‡ÿIãÒªÇg)3ä|¦qi´JYÑ‘|O—BûÇI d:Ðó„1©4NY0ÓñÀæ&0&Î) &;Ðõ¤QiµÊX¼[דF%ë¸F¢:е"7âhùá5ÖÚ×9'J£Ôw‹ˆò,¨ 8Z¥*ˆè ŒŠÜˆ£¥púã\2˜Pqv¬T;•¹¹óuô¼¡!Èdb…™Sˆt`ÐlÃ$ÒÙÍÉÐ tDTºÁÐÕwÀM6«<’ìf ŠÑ+/!ÕÞ"¡H:÷¾s u`ßàA“Imø´ƒ ÓÛÓ¢q(Ф3|è§qÓ›kÛ˜ówÌœŒBýŸí6!–ƒÓ”ÖÐÏËW=c¿y‘4–ß×lü›I ë§@$¥Ýj}Ía:eb•RçŽ_cML$¥.¦ÍQÊk(Gä“¶Áš\©¬Þd’#‚”×Ð>°ÿ½—5vüHËEoá‰æà0Ón=ÿ½®% 0‘”v‹ÍÁËA:—çýKŽÍ·¢¹@îVZq"• Ž#¢”Ô¨˜HzS»¥f–#EŽ˜²e6Ȥ6ýèŒ;ÔÆ3´ºo‘q“Å ››ñDs`ÎjÃ5rwûóÑÖEÈr@Æbc äf„‘Ðú”3Ñí…ã¡‹ãLs@¯Dmüïiü³9nr³u7µí­Ht@X·¯\W99J†º˜;&U2Ñáaí^àÍj  TJÛýP`¹lWÅÇ7Øé+µs³Ý­eq¨+Z‹¶s€…KýWŤR›¾JX»õ?t EÅr7þ³Û›ÃlEŽ-‚ðMY?Ûc,ßÌk£Pvk4~·}ØŸEtjÂ{ÖN‰½¶ å’JmºÚS'Æ5c}é;^f¸TjÛÕ›ÖãagŒÈýøÉÇ7Ü©}‰ƒÒ©T¦³çñ72žûlš½FsÐd³ÊÍöa¯óùHKm¬$aâ78´[ZמAœÄ‡²°¶ß@d8(´]ú~~eR©MŸúO¢7<,ý რ¥2|Z‡"7 ìïïFH¥¶5VÉ ˆÓÏÔsþØÄç6>S&”ÊPÚð ¿aC(•¡-‰0¶a#AyÃ+á{)û½Þ ¨Ä~` »ÍÖþÚÀ˜áüýåÒIržÉFãF|ûØ’7£sò˜4ÊM/]‘Å GýÓ÷I_êô;eG&Dps´Ë>†0<‹?Õ™&„R[> +HvdÞ™2òââ$`ýý¤¢ E*2òÑzj@„é^þ@FžI–ax˜^Lý*„R©Lúâ‹AqT6Š«}?×Ïg#öi¿Û:±CLŽëä²_Häf6®³máŽÀ RÎû­ÿ÷nûóæÊ$Ö|¦´Ó»OÂ30Hïv¬SÌUÿÁË?¸D*3½ûËXÄ çYQô¿çës51p$DRØ]xûôc,ƒÂúÛXPIï©¿E‰ÊÀ<½?ôVÍ.Í€ÙçBa¸ÚrüÆÀ8¡ðòŸïØ™A2éLí[LTòž˜ô7¢"é Çd“ÄsCv˜@*#oÈ“‰Œˆùu H:ËCŸ+0)¬Ç:\$µÝGë>A?€ŽHc¦sôå‘4†û&ã~À!’ÖržÔn0V0/­›6úa ƒ“*˜#Ž—ÂëÏ­|ˆ!˜Sáq´4Nö(Øs¦qiÕúŒÍH¾ˆsøaÒŒ_N„;ÀøLøÆ<¨8†"‘ñ †?Ît„”ˆI0 Áî'K£UP"ƒè{¦qi´ciÀ v=aTÝX1@0üN‘J1Q ‚2Àë¤1©UŽI šŽ'ŒI«3@"£áz¦Qiµ†Gd4ƒ½Ït„üp0D‚ñ ö?i\ZµâÌ@ç3K£Õb+Œe°ïIãRh•@(ƒ¡àxÒ˜t:$È ÏƤÓc4 u8yP‡T­TÒ"£îoBãÒª †@ ƒ+èÂŽ–ÖiþjÝ€ŒÈ9Ó¨´ZE"È`ß ¼ˆã¥ó²$„e`N^ø±Òù(ÁP$è+µËnEBjÿø…I¤6s"ÁŒˆù^˜@j+'%2–A?Ð Ig9Y 38î~2©-gÑŒf`œÚÏÝŒ_„H:×=f8ã€ñ¾wÆy/ˆdË9+Ÿ $Cw{"Aò´· t\õÀf¥Ûì7¼B!’ÒnµÇ„gpA³¤4C$³Âhe{! 0¤‘GÄìÀÃ-k]$µ­aÝccî!FˆDEÒY>혠‡ñ,М)ŒD·ÏWv‹=[Æ4" w&ÉH<¬ÖJòÒÿ][ù0£9Ã{~àÿ{ËÓ·mH:ÃÙ)ˆI Scî {>Ö÷“’Å6ÞT†º@qc40Œg%±5ɤ²üÌF;Ïà<å0´íßçM%1Lbû+²ëŸÏÛÞŒ`4Rš²ÞÙä±-^/fj¤òÒ g"4"Cg˜µ³•·@rdVϸ«âŒ4,†N`Oxdè¤ð;lÅ OÒú¹Ü†~ " ãfùT¤€ø ˆê8Œ¨ïR©,½ï 1×Õ¸ˆêø!•Òv×)H&4 ®«¯ Ó’Ê’˜T ËÝ;àŸqíi߃RélŸw8¡_¨ ©T¦V]ˆè ŒÓåÄuV°ÇåÄHmæ!ˆÊ€ ËÛúÀ½¿¿BŸÃÌ]#¥ß¦“ÀŒc@ΰ¾:œ·÷ûëôºnº™¹p­Ü<¿åôL,äiÄ\z½ptd5àî¼Yé¤6(³Iôˆ.F®‘à†§é{ð˜ÌÓ|h9Ödr³ÓµÙñÓËȆ ÷Yû*¿Ã®Òkûè‹A”¤¨õ<×'k×HåæŸ#30§_B‰Ôf³¥ ¤ÞŸÙ‡–çA$wC Ç  3Æ¤ÒØòC¦-Üï;)í6]ø`Ò‚‚ô›¤$¿c¡’Âoû(!˜¤”gú›P’Ýk|UÆ—>ƒõ_?ÔJé»éeS”¨1ó*ƒN&Ža…Z*_»HOLfþà ÕR;ïP'd’œùã´*¹û]ßMb,’úoOH¤2óþ7 bô×z5ÇXëqŽ< V¸ÙÚ%5£™ØÏ¨zµ¾™b©­pâ¨u@ŠŽ3ã¿Ñ 7Ãc-øÞûsbcŸå{%}y?¾gáÉ÷†P*C/òB8„õØsH¤´û(ôa RœcÕæ™ßë•õik¡(’ÊNWÒ Æà tãt½ØŒŠèíje÷ÑÚ c`L‚9Þ¨£1RYEÄ‚á!? ÔHí—{ÎLƒÓ¸Ba!“ÒôºñÖÕæ/0.Uæ@ˆ#DRÙ=ÆïʽÀ¨U9P&µåä.Áà0®Î1w%2&ÇJ;g.˜Àˆ¨GHän7nÒW½ƒa q`{IoiÕF‘Å ¸æp‰´v¶€O,Dý€9B"u{Ɇ%˜´ J Ïëßó‡6±œW±q¼4^Úe‡I L©(Ž8ZŸ(üñ§(#²‡/Qqt]D$r˜ÊÀ”“F%ët©Ð_AÆ1ЕŽ8L~˜è#`:Èþ$rãbÖTÜâAå)2•ÔǙƥU+%ÁT;Ÿ4.VI d2Ðó„1)5JJ0n'I­RR‚˜ ô;aLj•1He€ß #rפ‰ÊÏ3ʵ‘Ìe°÷IãÒªŒÈLzŸi\ZµÒ™È`ï3!…> $2Ø÷„Q)UÊH0‹~'I£ÒR)Hc ß cRªt%üN‘»&•¦ "O“Jã#ÖÖ÷¤QiµFGd.Ï4.­Zé‰Le°÷™ŽV¯”rì|¨4:e$˜ÇǓƤQ?D:ž0&ΉÄd„çIcR딟ÈDyži\í|§‘ËH¾'ŒJ«Ô3“žsÇJãbÜD&20¥"%ðxùá·ÎÇLipÚIãÒ©˜`.íBêm4àhéœv{3›IƒÇKé÷'šŠ£ÁIÝ…kh¤v3B‚1 Hêa Hgç„ÁöÈ‘t–“`TÃø†úE¢H²^³;;Á †%ãõV%DÒ[¾Æo\B50.ÁØß%DR>´¸FÆ40Œ@ŒÙÐX’—ùŽ«úeHƒóøvö<°P [cìÔà8½Ù×>>ù(Éúš ›­³>MÆ3"ˆŒÙ¡!’Õ~¯+÷½hä8Å0ôÙË Fb2éL­·!ØoƑԆ6 — Óy¨¢Q0h¤ñ[lj!¡˜¦8ÆgÖ¹ý\µ"YŒQ©+ B¤féìœ6¿ýïù|>¢ðFˆ¤¶£!Æi`”N)ju™ÿÆ»¿6!’Úð£+™i`Ò˜ “Îc7ÞÕ:‚0]+¹y}f"3"c¸Îr5ÿ]¿sg;\!•“VÆe.2”À˜k¹ëëPŠ+¤ò² @30cÌfßêMϪÖÎŒèTöÍïØm5áŒHRã3ÿ£…Éãýz~€9fq–ÂòeDá×îàÌA$‡í±®l£DˆÖ•ÃзÂ1’çæ‰ÙUÚT;Äá SãW ”Jc¬WàÿcDƒ"[ÃKÕ›TjSkÛ• üë–fTJíº2Þ1ßJü±°*©ÿlŸ¨b˜& ëm´šæ¥ÁØ8Z¹yn»¶GaPÓFÀ,NQsÕRøn›‘kPây®Ïþ^[e.X²évÀÊÕ–”Õð¼ð=’lü¡Ü,Ç’­}z2©ýŸ±Ôg³æµ·'¶A¹¥?Œ](B-µ³Wã ˆ2õ½WÔ’Þû@¡B+µ«áŒs@âÑ+þ?¬¬NH¥²½VÓç; P¿%Ûûݯ҇V ×MWTˆíÀ´aŠ\+…çvX™‘€0íÄ1)TÓpûPÁµró4bÈú‡óPh¥ò´uD$= M?&ËGÏ¡À•I.¥Ôž›¾VDyxV:ÍÅ÷ J«¸R*G«À„¤õÞ%´ÒùúC"< ó¾´¡•Úw¶¥AÎóþåÍv­Tž‡®¤#îi?ð³ÐHáæß~¤< E¹Ë_E“L(•¡-Èg¾ÃÃ::5º¡Tj[­ŸÈŒŽ ¼ÙÔ{Æ(:ì4е¼Ùv…¤ĵÁƒ[7åXEÃë—ìâÐþw§=<ì-)í>¶®‡´ýàE¦Dj³·GD{xLÙ‡@j«Å ñ1ÃÛÚº`íPHåeøÀØ57Ò~¸ÔF^â#cäõrA‘4–ë¢p ‚Ƭ¶‘u‘Ôv¨-2!ˆI{xÖÕ·¨¸@²‘¢o£ñˆ˜Dˆè~ P&#Ò2â0.‘":‹Š“"¥¥cóÀÀ¬ʤ3Õ_ïêÁ‘íô, ¥µWIŒ|¤Ð4Ŭ“…¥Ø‹U™>¬82‰Šë©‘ÐHã%EþõY1GKë¥ÿFî3*bÄŽ•Òãw¥’-<‰ù·:%ú\¥$F¥ÑÙk—Áp%Z“ÖdÜ"'v„ÎĈ\Ábõ.þüoŒÁü³%'K©T&ƒÙô/íOH¤ ß²e· än³ZS"âA<`xÎz;ÿ]ßÑðt”V‡õ*fbtä>‹öG¹ë×ó{ÿÄŠ­¶‡×ÉA G†6u¿h•×k{\¯ú\’3l嘿§ÙtT§°-o ÁÈve`[ ý±tÖ‹–4„"u7ìhÞBP´À,³M¶Üwà âqÃÿ½ÍòãÑæ Ö¶Q*µík¾x ¡Ð¨Ãr©Ì¯Š óÑ!ûcA+TRømäIœ ¤¿¯Ÿ£X ÛmvG4„âþk0­Tžo­¢XH$ ëeÿ¼Æ€,ÑÔÉÝmö¤a$r.óÙÃhùã»*ƒXQ‰TfO+\A  ÷ãXGu®yæwPŰ*;%„2ùA7çÍÖ‡Q$••óϸ…áëB/ºþ:¦âFéþ2Ò‚°Jþ‡÷7ÔR;¿´òIâ> Sážç[¿ÄðùÔ‹!ÀT¬ÌÖÝWë™û Dýè†ëQrµT¾›â@~@ZËó`J¹ûy(¤B"©'¼+M(¥öÜæ[\¦ýÃó7¥Ôžoïucì„'õ¯ýhWhìŠqà6N¥›ÕtÈTˆgµxØÅ"¼b šµñ+*ŸL4„GÊ÷7FiCø2(§íËö„<íG'ƒ!ž×ŒÝ ±XŸŠÊ×z,f0„RÛWÌ[•¡\*óëË1B¡-ô¨i¥ò´ 1âD"M¹Ì_5”B(µ¥uò Vãþ~…R©m­Þ³"82fSMhko{HåfzyB¤ÄýqâR)M½©ó"ÈÔ‰W)™+j9ì2¦²Õ[¦F Nôª$`H¤°úh7ÖÌŒ@ŒÞI•-g@$µ¡þF07BQý–‚Ia·.zÕ¹H"ðd[¼Ô(J¤r»*CŽGÄŽpRÚ%¢ßcÃZ 5håhä£#”¦úš'l‹õ›)üV]kNä&)zâÝpµf"²-ëX!+íì«E F1€rMíC‰•?Þe¦´›-…2?Q<å67‹LºDRz™Lp C(1oÎ:é}hãøg2…3«(“Úr¢" Ž`X¢O”1"ÄEAÒÒNß파`ØîeR˜^€Æ5’ÂZîÄ5RzqåçF ©bNðhi½˜@z„S*îÄŽ–Ƨ««bwò³¦Ê3˜%áª*8*­Ò¸FHЗȓ8LZ{Y™CÁ€“8ù?ë8Áb#Jw G‚lÊ cÒ¨”î@Š$ÜN‘J1¹&HÂë¤1©UÎt G‚Ž'ŒI«3š#s$áz¦QiµÆrdŽ„½Ït„üp°ú1Ì’°ÿIãÒª•:J 9Ÿi\­rÄ$ߓƥÐÝ zž0&¥FÙfHÂí¤1)UAv I‚Ž'ŒI£ ¦ƒY’ðâ!cjúÞõe[¾ç¿àZÖ9á˜ü®“üÿîÔ$éÌwÑ÷åuUâ Æå8Œ¹ÙÎ|âF(r¤<_³{tѲæF¹³2Pi<æ23‚‘#£èÿ¢Õe”r ±¶»Õ; n„#Ó.ÛXï?µ@¹,K0.Éx·µqfG t¤Ìó#–°Â¥RÛz‹œD@äH)û´ HjCÛŠÅØ…ýþÿPKé¼– ä$þÃò¬)¥rÔ…læFÊnh©ì¼TLf?¸•oÌ_¾öí©Ø@myØKÂ즭yQ¡eRš&hä³ÜÂ@¢ï3Ð)ë”­”ó`ê#BÚ©t”Hcf/‚Ôc#¦Ö-ŠŸ8£96ÇJv™lÃ8Í0øA 2GKë¤êÂ*¯ð%l¤)¬NúoAra•¨¨ò„§Yè‘1 8Ó¸üÐÏoÂHØýXäGŽ(2ÿ_A ÂA/9iLjÕ5 A¿ƤV9¢PHø0"wM*â‘¡ð<Ó¨üP˜ÁX{Ÿ4.­ÚÀŒŒ„ ÷™Æ¥U+œ‘ö>ÓRèÑ „}O•R¥ ¡ àwÒ˜4*E4!¿ƤTž8ÈJ`lDîšTÄ#ã áy¦Qù¡64ãõÃû¤qiÕúï „ ó™Æ¥Ñ*œÁ8ûž4.­v.Ò‚¾'ŒI«› €çIcÒêÆ;Î@yž4*µrnÌ8ºV¨F-µ“¶_Ihfœ4*Î ¹0‚®'J«ÕB. „ k…|ÄÑÒøP ‡A0¥Â4ðxiÝô]b<„“Š’p¼Ô^֬ᆇ`_D!B2éLw{)'’B òð+dJi|=gNfERdº\¼’ ʤ2Ü´ “"ÕòÏ(’Ún³"-È‹`_zÏ%x Y¶9¶{ë¿‘‰ºa°CàX6àXÌH¡ƒ—Q ™‰ ¦B ¨"‹¤7}êKÌÇ%*d}'ªåõAªíö|3/aL„Ü–'ÕjÉ~Zi‘”5ügî2),£câE(î") W…µ)‚QÌ‚P±Imç•<˜Á0§ð¢!Hƒ<`'DcùT"I‘GÞ Q— 1‰TVsí:“"óƒ ‰4v‹‚ÄŠ`ÐÄ$Ršº‘)‘¢-Q¶.¦ h¤ö{ÚûÇ §„YkǺpʲÌÖQé¼»Cd„ ™_ÖÇõÚËò\eA·Í“%\£ú9JIéøÑÅ6fF8Kñ—î5ü^áíp¸J*¿‡b@J¿÷Ïr³9¨žŠã"0&™ohæd3ð,+ð,ä•B¡´vSäû³εX¨…M_Æo2âaÃýµÍõ„}¹æ@ÿ8``Ë%“›Ýr<ôABE<ªÛ6ªó¶Ì_Òv ŠPÜX¯¨Š‘ø’­I¥°Ü­„~‚D"nøÅHn@©Ô¶/[ÑgH„Cuuç=KÄ@qzï!r©Ìÿìºòϰ…ŽUª¦‰«äæ¶Ù>· ˆ@R»];z4 ZJçm·V@€‰Pæ?,E‡Z*_Û6‰°ä)2૱úý)Q¬e®Ÿ'#å4‚pPÎbû<'¢× °¼ž °Ü­ìԃ܄ çç÷.ñγÌC,ãt_Z­w%"†«ö½®ú=V’ÅRyÿdF0äÄ1©tßÈ“8ŽúGÏÞmôG‡D*³•Y§B hxzã¯k;DWse¨2\ 'q8„‚2£¿t“Z©¬A“8â=Å)ŒôéêuhôŠ8•WS!«g=™hD(µPUŸyÛI”R9[Àì‡g8"µæ©î@¿LÿX©ýì¬KPgå6 ü„HjÃy)xc9 ìäQi”¶øO¼¹þÃ;jiœ±HÉ$6 ±G~œ60¥TŽÏ VÓþùp¥TŽDy8ªi#âw—JiÍšÕ€8½(øÕ±Æ„r3Üÿƒ&5jD˜^>]¿pŒ{èž’@J.¡t¦5ª-{<‚*±÷ÂöП=Æ4 Níï³döò½Z·ÚÍ2˜’K)•ãnWØ€´qQ5 ‰Tvß; ãÛ€˜ál•#¿ïáÓ1‡y¼T>†,3³á zùÒùŽy»@$‰V*¬®y¯ñˆ™ ˆQæ£èÎ ©íÞú4™ØÀ 5Ø´&¥5MžÄN½l7o¯í¹f^ãt2Ew|yK¢J¬°Dc»ÎIb7Rd»9(DÒ>µ_Mâ6 LgÊ ðä$K@$µá{|þ·Áa„~XË#¢KÞ/dKØÒÛü0¹i¢òõCB$¥Ýܸ LðÇá[ÌX&©#ñoŽkg¡C$ÝüÜÃA ‰’Û!ÆJKÍd€#bÚEIi¥Hþ8ÉÁQ÷E—8Z~úÇ#÷¥'<¶ãJÆ#f8(¡â?âhiô˜Aü‡$ÜhLs„ù™F¥ÕγÜaïx‹Üر4‡Ž(iL"'ŒHV¤ÒÄt€ßIcòCi„³è{Ò¨´Z£+2ÙÎg—Vm|E&;ØýLGÈå,˜í`÷“Æ¥Ñ*kÁTºž4*Ny ä:Ðñ„1iTJü ×n'ŒH¡pÊ‚©p;iL]ÄvëI£ÒjÇ’ÇëXSk—F«ÊÌt°ó™ŽVÿœúWë}¨´J#0˜ëדƤÕiq–Ìu kAKÐñR¸ý‰v*‰õओƥÖjY f=Èõ¤Q©u^ƒØr­ˆ‰8ZZ/ý7Ò˜q˜dÍ„¨™ŽsáX1x´´^ã!ÒƒS*âÂŽ–ÚGBã E© 8Vj— š,·„`Eˆ¤0ücµ/×Q ©€" ’ÊΤÜh k/ Y&馀çHq‰Û€Ž,.’ÚîmÄ”p騷¹[ÍšºÒŸyŽbnc®em2Ë·7–/5D®ƒÃ˜Ý˜-8ySå´{Z™–ÌtD˜Þ Ýk)²F:ÇU7™P§µ÷s(“Îrµú Lv``b7´£€'#[*Ëõc¼“§ô†·lÕ6ÄŸh)¼Òpõz8ÄvP\"8´OƒÑ'&’Îr}ºƒ¢¿±&ödu}nV£Ëîêˆf7æ,!q'Þò¥0ô.,ÈvpX»'DÒ.Fæ%¾#Âà _P"w»YýÂÈ f<0lÔ5=B$½å¬jƒ˜†ñ¦*¨ì©Í:2àQ=©?;8 ƒãZƒ…rwýóyy!±8ª""ÏÏ\& ©–û¡/?±¦;\uâ—<æzJèäîøgß´ñA4Ìg1j¬ëC*w˧âL v`Øðÿž?õÉc½IeçÝc‚ìà ÞÀ ü´Ã™Z)]7ìå\‡ç€ß]"B)•§µa¦Òúýê¾ Z©]'¹A€äé þ±MòŠÛ„D*3ý¨3à!ãˆâú!‘ÊjÅr'x@ÌpþžÒf‰y è‰j•á\Ⱥ܃†·­/]¨ÔÃØ.“HaõþÌ6>D~DÈÉcR¨Þ:;M€û韭Õxµ1DRÚi‚; FɘÏs"cOù3ГժS$«…»ñ@-•¸£×ûú¯á{]\¬ˆ(.Sš) €„èÖKÒ<Æ7܉“Ç†Ä ø@e“»CÛëí‚7ym¢Êqf·gFH‡Û«'sy[ï•Hme•¨˜õ€˜ÌÇènfGM `¨ìü¡ôƒ½q‰Ôf¶ž›@Œ:yT*m< Ѓ]{¦-DRÛ&¶‚ùCm¶P$¥uâ!°ƒ¢þö µÔÎv‘ƒ€$¶Ø"t™™J¹9^¯®5–It‡§ý@.Q#¥ß¾z ’@;(I/9ÖE¶ã’Cïø BÙmñÝÖ~ä2Ü‘#cÞ¹~¯Éžß7á“ Š¡„Xjã>`¸ƒC"ùõqJåRZ?å×`<8²Æ¶gÙ=cQ¥& èáiíI¤´ûØ—€yŠÒ;êâcˆ¤6t †¨ˆÒ;æ‡Nä8üé,ŠÕº»™}ooõߌ|@ŒÞìï:³h_hàQ†Fj7ëÝHÌ& óYàá¿÷÷~áÍDÊû‰< Û}ìÏÈ´G„¥ù›hÚË"i,×""A{p Nq錫ß,"—²®Fu”¶ó# ÄG äI:½™B&eÌ–v†«3ïQ¼7,ª£B:·]è3êYÌ‹ÌO)FØÝL/`c¾ ôàÀ4‡ ÍfB%µ£}…ëi<¯xDH¤µ3ƃ‰ ãeBFB$­¥ÕgAæÃ~`#&‘»Ó þˆ¨ ‰cå¯Nw…:Ù:ò7Å>{„8 €#p¬´>#ƒ9Ê t$“ÂâUvI0šŸ4*…Îá D‚®'a"®ñŽ‚6bp!—œ0&­nΧg \Ï4*­Ö Œ„$ï3!? Ì`(„ýO—V­hFÆAÐùLãÒhÐ`„}O—B˜â èy˜š‡HO8Hø4&.0 ÄBÐó„1itŽh$0$Œ¨`F‰ÙñÓ"é,­Ñ„†ñ®„9ÿAËã Ù­z†¿Ñ!FˆÍÞòÎñ›éu“g/ó!8"ªŠ(“Úò­ox¦C0Ž7žÌ-WȰ¬Þ‚©°|V¢ŒH Ó9ÝçàE‚`Ñ.#•Ý¢Ëú@ˆ@̰¾Ç/ÙG§5v]ÓÏhH¤¤]Dsá•Åá•ÂòÚàõ¿Âq:õÖ>CÏ׺á2©-ÊÊd4ã²\¿Z°€L*Ë^&:„ÓÚ™>”ÉÝñÏÇÎë Á°an½]¾ç›ãí|Fˆ¤ðû¼ô}&&st´(੼쌃L¤(ùa%<€üp”VJH÷¡`ƒó*yá› ¿ß§ï?‰¡ D~ëë5€žççñ>ZÑ[š›å¡smÌ„@˜rZp¹­ˆcÔÊ1¹ÓÂô©ÿL4Äu[7·åÚk©ìJˆ¥²]í‰'„BGÎ÷¤§¯Ô{ù\XŽ¿5@°XûÒüZ ø3!ªÛ]‹j!¾·Ý¤RXî»P!(Ä£†÷öÒ.AÑ–fžóƒ[Ùø6´^…@ÔðŸšp+°^•Lte¥¶|FÙ“ †xÐð.ÛÐØár7Ѫ׉ û±ì5™An=³ŠZ)\£’ œ¨PÉúÌÛÔgÿ4£V¶ÃÀ˜Â»ö ™ý"gHäf¦+ÐdAíò|(¤s{Dñ’Ç-%s Jm9¨ò@LŒÆµYBA<à†{lÆ(„@ #C7ˆË×JGœQÑùÐlöý§ñGÀ‡@ˆúΟæë3þ±&&ÒÈ ê: wù·òÿý_HcEUNž9$3+Ê©³òDb…¬Œ :ÄCúÏBäf5–™çÅTBD &s+QÞ)$ÒÚÍoâ"4¼Ëª9&ÚÊ8(Fδåñ¶ú;ˆ‰`ܸ»ÐŽjß»‹ïù×{]†D*»ïõ½•Ç@LƒôN7Ûü÷½Å\Öp‰fŸ·‘  qk;w ý÷ض-šÛ€HjCû]bL„†Qd4Rú­‹‚ƒÄ‰@ŽÎW\¶VúÇñ•q¸d½ã6ìàÆˆD o¶B©,’ÖtµÅÚD‰p¤ÎBé9/ž,ËÇ^›Êtudˆ L{©V(€"é _Ê~0%‚a:Íh½¡Ž/Ф0¼jw(ÚC˜Eñ4é#ê£H*;«JÄ€Eéüq±ËEÒÎÂã™Á¸4û]ÇQ$åGIfD0,- ¬€á„H²ÝXi¼c%öãÚE –É[-EäG¶‹>(“ÆÒKž$d+à—¿º%”…F+ìäßp{ÌI…´ ~GKë¥<‘$”‚ø &¥Á„)!ëƤTù;ŸP”p<5¹°ŒVy½¹’Ç ( HåL£òC='xRÂÞ'K«žë '!ï3K«V°#Á$ÉûLGH¡¼aö=aTJ•ÂŒ‘„ßIcRªü@”O“FhÃ$áyÒ˜Üu\Ó㆓ ï™Æå‡^ý‡÷IãÒh b¤}O•V9'½+!ßù€£å‡— „šPÎI£Ò(µC%èyÒ¨Ô:¯ÅÁH ºVÀG-—Vã È3N“R£^& ¿ ÷À£¥qÒ9˜pF{øÑÒøØëÆxId¸+ÏÎUT·Œ3E‘t†ÞäX ëaSHç¦Nn˜I$ýÀ=P$µáìWx'M8ðöB)¯GÀ‘ §©ÍœÇÈÌIDñůÎÍ3³ÙKTZΕŒÌp`¢¸¡Ȥ3}Y5¤O0Žï°‡‹Kän¦ƒVæHìI1_‚½[@".#{BAÄçÏÆƼˆÅ ×ª¤A‚N ‡ïö°/ j¤öÓ«‡oÂiÌ•<µÖ.‘1?²íukd$ R'È/tÏ%r1Ë>©˜l·nÄA|'¯›D‰ˆY•]¬Ì^úB1i‚AJ“XïÚí¢‚‡1‘Ô†(°b” µ»iB"…ÕòÁ¶>F˜DH=3ƒÇKédÓ(D™PŠ’$oýZú4s /Ë Ð¶[^´AiCÔ\?QþÅ%R›­XQÅØ ÒI¶C‹Î|ΞöÉÔ~»>!²£Æì n¢½x€}…,*·Ï¦ív*‰”vÖR9Íý² (åFæ6Éu[ލ§â©í´d%¢s°Úñé¿õù|2r³9¬Î\æI<¢ÞE8 €]ììT¸öQD¨„ò>mÌÇ„¬¡/Z8¤4U’1°ˆêБõ³é.y—I2¥4žÆŠRAгNÅ÷ù¾—¯‡P:So¹H ÄéÁÏö2S(µ¥Î…dÄÃtÓ«n÷ƒM¯°5¥R˜î‡Ö™!„âFFUŒäðb'.–»­s"“@˜n ¾®Tx™F/ wÙ÷mâ.d÷2¢#¡$5Ü'iˆ@J” A©Ô¶³  %§{§'LÆ{§M#•×rÃTåûm×µ÷YŠÇ™—q1—m¤`ºÄíqlϹz í±B ÕœÇeÂbÔ{”¨¿¼g™€É½L‰4vs–—)º±/oç\"µÙø'S&óãU‘”v†5 iÂQÊÀ@¹šq f~oJÃYn…IˆÞÐ6H1oå`B”«·üWh4³0÷.kL5¨ŠÓïå\0õµeça¬Oag`1'”04½ÓB f †½f%@N ãÃx/È#€Mü *óð €I¥W 1ñ€|:¦<(i*¹X@L8hü*|ï·Ô‹ÆEJmi 쀘D”?«j™Nn~ûøéÑ—xÒ°ÿÝãÆ…RZî‹1€™@˜^Güj|gB)-£b a&Ö]cé.ž€aöÇË`˜li¿ó2@½âýUÅRYÿ9VPŠ)s’rícPÌ¡e·î–z‰˜qSÄ~V€û^Ø}¶„Œ)̼Ö"á&4ÜõÛú}Æëû½»»‹¤6œýx6Á ´#Jq‚D’Õ¼©ÖNB 4œ4¹0 = c?u•ãºhRBN(kØ{¿›ýµE§ÓHív({‘Y“HJSD ¦ODRZ_›L™p܈𲹳n21«-M×¶¶ ±&ªtÖºù/QȤ3}¢2iŒÓ)Lۧ廘‡yíÁðÝfÏyŒb`WHç¦÷ ›@ÏEcÅHevhÇ™™PP;YÏ2©-í*•@Žk×2B$­¡³) 2‰¸´uØY$­¥B%Œ˜pÜ} —Ö Ë«`‚9÷•@2l‚¾g—FkXÃ&ì|Ò¸üP+>´·ÎRGKã4'¯o¸ æœi\:µÕü`ä$yH/¥Û¯û ¥T@‡+•ÇAÍ‚? ÿ3J£´Š.¡°k…ØÑÒ:YãÄP"£Å6C w«É7ØË4Jý CB"½¡–çHX †µ× (’ÚP t$(£Ø»¶€Hj;['Ë\ Åõ`ɤ´½°K lÁ“Hm¶ÍWûF¤DTºÖ„Ö0$’ÎÒ¶æ'.…â˨’ÎS›$,Ó²EÿI¶SZavm¾#)ÇtÈì™AðÌ\bimµ°CBS8’ïUfÙ€g^óú¤²|xÂS0Žî³æ0ƒg\$¡ö#LŒ †)'Rõ ‘4†vQO˜ …ñ®‰¹£šu††í¬% á)¤7Ñ㓉­bQ ¥Õº¿!¡)£ŠÞ¾ÙL”Ã3&’Úð©Q§`n‡_$_b jfÝ€šA§Õž&s)‘¢ôÉ4ÆÀ(‘ÆnÑ_bbS0H”UOÅss@3ÊD^Ëvç\"C73íúÅñ¹nf]žg#Fyê“ÏdJÄ koãlû‚›±9œÆÒî9OIqJ¡è×ñ¿Çà”žY^DÏ áÇ~g™P¬4ã÷=»Dç#—Héö™ÀLT0i¸ÏB¶ÿ}?Ã/æg>v™” ÿ|PÎÅ( j'B]"•ÕR/2\g÷ªÿÖÑþ…Ù™Y‰þnvØe r*£÷èZÚ!m“UxÖW9OÓ­’Û,2þ=úÿšKiÓÖ~1Yâk½¥qJ¤,s`½¶‡ÎŠ.sýÄR?ì“Ä Eò<=ô¢ßçJšK¥6]­† 1+¨\Ê­”É6 ºIÖ„TJÛ]ç.˜ZI‘ʧ|´ò)ëÜŽj¹;ÿÙ¥=[¡¼0+Uá‰VmrÀF÷ %Ã}3Ò†ÞZD†Ð½ ¸f?ž†ÖdË÷œDpÂFÂsŸ»{£.>pS(µ%6- lÅÆÝŠÇRYÙÊ1S+ò÷%·Jiºéfg¤W L ˜×ñÌL´ 0¥Žsq¹Ojű•¯1¥TŽ^†ˆÑÌëWkQ$¥-®¼Âq€yØIDRïâè D)üRf‘Tv‹²)°PŒ‚ey–)‘ ˆ—À=<↑D •¢ÙÈØŽ„®¼ô°áIch͈^¡¨›û¨IhÍœ“.ìôtBôÕˆÒ/Úu š@jÔfÜr¿?VTˆ¡•ÑwîZÐU_Eº©™K¯aî^ÄA7Üêm¯tQV¬5¨pÎбJiÒ¦!3 !L¥ifÏÆ µ}Úë"¹Û]ÿ?Ÿ&‘*tûf{=‰Hi6>Ü̪@Èt‰²/.‘ÊJy…;?Í›°wÑæÌÈŸ£§¾¤© 4eÙ”Ý~ïÕdÌqyq™‡URE™²~Ê+7H²”ÒzÃb0¶öϱ#éw•PKí¬_V‚W0qüÖ×uT\"…Õ®ðR†V f8kÓ4Ft߆s¢Xjc+WÁè …Ž‹Ò¢«b ±”Ƈ?ý®@¨^Â{J¿„ÿæ=°îÌnðka|@1ÀW(Tï¤nUç%ê„m¦Xjc;#ʺÁÛølïÕ5M …ÑÇ.3Äâ!÷hìJ ©Ý¬£ ç´ÛU\"¥Ù÷~q>bŠ%‚†sôï{Œ°q…tn“Œ`Š“Òž£q…”ÍIgøç=¢X0JA˜²I¤4[íâ-Ñ+„swÔ³'Ò™½ÊÔ Fé¤fQT™eR˜^¬Š½ H®pœNÊZçž@HL!µ×>¿H7r%’Ú)kIgyØcäW8.MêÇnÏIghŸ~äW Š%  zän5áë0”èˆâå”ù_cW¾­)C/ï22-kÅ*i=矕8Ì«˜8Zz§ù˜IÌ©(˜8ZJ/|Tó5°Óž(•Ì×ÜìQæW˜¯áqiÕúJ"¼Â¾Ä»ìðGWƒV!Že‡?6F$+6õRt‹Øp;Ýr±TÖÄÆ!a~…Ù˜“Æ¥U+E’Ét>Ó¸4ZeI˜[aߓƥÐ:OBä zž0&…ÆY&WÀï¤1itÁ’¿B®'J«UÊ„ét=iT²ŽÊ’0¹‚ž'J«4†Ét­x;VZeK2Ãg•F©4+ìZq$q¼^È”0¿‚9'J­TÎãFª kA¤ÐñÒx©ð*)¥ Iühi|¬7ð+ðƒ%1ܬ– DÙ!–ˆúA“ HzSëïpŽüÁ”„L:ÓÝžwFZ02]F Y‚2éLa¬…#]òŽê “ÞÔ€Â[0°cK\ Ù¦¡2ÔA-ÇÌ"© µÏc-)¬åJ@%µã,BL eµ„7Ф²{C’q KèÐцdÒ™ÚºA-ØÑï¡‘ÎïaŒJæY"­¾wa…t~$˜…Ó4Áª›ÌulÂn´ÿIgºT„ òýÝ`Ii¸ÄÀLœ£YñÂ&ßÿ")íÖY(ã,¦l‰µË™[ý¸±û‹»éuhï'`-)ŽoÛçÇ;Ú¸Hj»§’µ@N6x«Ýx†ÈÍ%‘ÚlQĹŒÑí‡ó0°¤²Þõ>‡Ù U~eÕkð+³$’“8³;ÌÝvן ÄZ(î¯û~A*•¥MkÚBaŒ°@ßñ›5œ!”ÚÒKªÜâaÃ_K+À¢W$†ßì.,­©A†[ ndüÜ{b©ÆžêB¡º€V6r‘Ô†¶î̘ Dõ¿}ÂzˆËD—ÊÍt°6Gˬ *2³|ô …ÈL¼®•ÎwWH ˆÈûpf÷¥Æ»câdyÙq©qÖ øãåÓÇñ^…ÛK!"¦]8I׿¡¥ŠÓ(“»¥÷. Ú…ƒzÎÀ$r7Ò¦̺xÀp„6;zu Îr8ÃFúXÈl´š)ôIãâ7úæMœÞ+†‚F×G6€â[ äÄ1iuJ±Ð~úä¢k“žH±Y°#%TÈâ? &Hifôõm¢ }롺ÌÇðîÝt3ü¾gZ4%`–[禺²ÌHac°a, LYMÆR[­†JÆ1úu¶cAÁ¸B·yöG’R†1´(ú^üÌ3¤ ¤2zèßN$‹´§®8^*Ÿy#O $ŒSî\Ì&F—¢²y>²!Ï·¦%tÅÓÚŸ ¬SÒ&´R¹XOÆ¡JT`t›­r¨Jê¤ôÜu­ØÎRŽöÞw0Úø™T Ëýeµ@[‰°¿3Æ!”ÚRWo3±qŒ|—¥Y@,wãï%ëü¨2¯B‘zó«×gˆ¥²µ*™VÈ´/áímyP#¥ßça¯ A+”¥û5ž:3ò½Ø7‡^\$¥¡Þü&j‚t`Ìs9“i0ÍÇPi2Ò;ñÅžg‚V gXÏŠÉqâ¤æð¢5•纼ô‘+œ§û†î]Q$µá$ˆ[¡¨n#j¤tÓù£ ®`Rš£{ݱšÏ °š0¼¶6®Âð †é £·:>Qþ%DR¾æxW0¬~E‘t†›5̯`ÏOC×uIg¹[åæW0ާ𱥈än¨‹ñÕ“q~ãx[ ‘LZSE±˜cáÀ´þm…@&µågvYb†…âÒ24"™4–\xÆÊäp`»žÈBim_aš…C«¶Bq¼´n\[æ(’ªº-x¼t^ãÓ,œS±0q|Ußîâľ©xVÊœ0Û›pT¾eH¸ ã cÒ¨ô91~g"_.®b¥Ú)6ªŒIæZ˜š9ÓRèƒ4A®…}O•R¥œ -áwÒ˜”ª LjAÇƤÑ9c’¸–ðúõ,ï%jÞ€HjËq¢ sá¼1geZÔ™9œÇ+8œdù‰fN»`Ô°ÖM©W¹”×Ókš˜B*'kñ„ˆ‹'¤ùH¨“)ŒŽÏ•€¿îîs¡†vxš”Kýu–ÖeRدùE"Ä%‚4)šêŒÒïÁᇷʖúudÈÂþ2q©T¦«r ¸@Øð/šêè‰×P•J²ÅI"¸Â:¸äõš @@*¥éîÅ€oÀK\*¥í®×ÊlÀ¿®[X [C0ØB‘Š˜hw7@L&½(ή·Twã?»U¬C¼GÂü}ÂýÇz…lή°åÝÐ?¼„·@˜B,ë,‹•!©Ô¶Î›â’"dùLÄ V©^^«ÆÅRÛVcF\ R!Ýœš —ÈÍìz~»"È€ DE¼¦Õ¨¤ó\°Bó-”§¤ÌkV ‚åHÀ}\-¥óvØ “Hý‡UOTKíL„Ìä\(S™¢Â@tZr±Ümÿl›(„»@œ.:et±É¯5“q/¯=4%Ò˜'hLÄÜÀšQ8/`{Æ7«DÒ81=‡"© ­`ó16ü­ËéuUóÚ&æ"© ­Ô‚2¤8LÕ¥hµÂc¦”›ã(ibøiFeèø>Å÷ØYò¹p;¤z´Ba݉ˆ“@½K,ªi‚DJ»–ÈbHbôNù^X’œÆíø‹ šàc Gw¬Xù—ëbÒIIgù±–PÎÉPTšÁú/S"…Õºè©àÆÇxŒî>ªª¿Fj?Ã&Ãi4£…]§Q&½©5@DN†uFΫÀèÝ!@ÎðdË9‡”8ˆkiÛÒ R©mµ²‘2§3ÙÞlÇyß* RI–cqÛZŒ)ƒqJ“ÜÛìøj-H¥±Ý½& ð2¨4‰–¸ú ò;L2uR:îF$3.ãYÃ^WV #QÀW¡Ji¹[‰º Ë@ .[-}ÖÃþ Ke tà2©ÀÊ‚ù.•ÊÒšfTÆãZ`Å }Tj[;‡20C‘#§ØVíM @,µñÓþ0Bf R¡˜Õ]@*•©ÅŒËP ®†mH$µá½¨¼E)rSÖq‘TvZª=“24–ë=ó¨’ÊÏ: g>†Òt R¯S:ØôÒ¸oºPÄ å*nó»“«¥òµIqFd Q—mßÏù·Ä²­^©ѳÏ“\uÁ !H뗞Ǧ٠ó ¥TŽom/F¤Œ'éŠyt‹Ò+%çwl•39–8ѵ~èùòôg "© c¦–xŽê)…Ii7_ f0F©Šè¤ÅœãÑÚ7l4îä©åTð¢$TÕ·Áò¼­.zigÈQ3õƒ`q‘üŸQïïw]ßÉYw ©žGËô̯fg *?sý•DªÇêøÜ,™z†‚~ð7S"…‘½y‰ñáZ–³A‰”v ¸yWQ=¡"© ½©ò3¥\]T Ñ» §{¬¶M2üŸ»±3ÔBΙ¢Xjc/C …êwÔ'LgÜÕ@¹ZjçMkó$€2GȬRÊ?QQÛÔRùêš#4”¨?áUï¤Ii·+؈ Äè…Ú1‹FÂ…à˜þ1Äg_ Cn€Ý;ãQzÕÿž¿ÞÐ\óã H¥0=ìwéŠ÷.úźv ,×mÑŸ;ì™TJÓÃ*­?qzû¨…¿·×ŸóÇË‚äsx©§›ã¡4˜5î|gÙâÿ¾ïìu‰·ÞsX›Ýç9^dh(¦Ûã ©œôã—ÑÏh§IH"…Ù÷vÀjþ=CIiwÓ$ô€íÑ:kµã÷í™ï,!4ÖN€…B:7EØnìL$éÜ`±_ER® ô¢v†ãÒÌfŒf¡¶×\¡ÁT@ѤÀ4ù=ÚC$µÝ+7v¡aifz%¡F:GÇc£á´´pð†J(&’ÎÐáÄh"Š×S¨ än¥+÷ÖæíÐDTZrÂ*4(’ÞTO ¡áÀ´2‡uhB&µ¥^îÝŒK •X‡eÒXÚ‹Æ ¦ÅÖ(€2)M3€³ÝŠú3~¬ÔÓ`ð/p8VZ#S§¡” ›‰£¥õ²GÕ`Ê crWÍÂ.óãu#i•ð „Îj8j˜?f½€ïçðûVös‰än÷çP|iÓ’¿š ™Nnn‡­¥g˜Æ“”jÙæòý±}‡®=_ë²½ùñæMwÛï§m>$¦†";²EÉ ÿL±ÔÆK ë@db[l—ævýôÿsxÕ¡lºPZ'¨ˆÓYî_•RP,…íîØ5˜à¯”¢—=Îi3ºÂtÏ";ÄÕDœ!÷ &¾4MR©L½£5©ë ÷v<^Ô‚äÒ™¿œÍ Ćb Ù'—9z½e0ÐnÕï¶suá†×@¤‚!?ª¥Xjã§åĆ"5e”G ß„ b©l!Ä>é·bƒR*OEî2[i?èIeg—nLÕPT»4"© ×qZe¦fçžH%7IVë™ß<$j(f¬–ej@#Ÿ-äSCI å‘T–A~UªË%ä'Û)[”pš üÔ°ˆ¤´o."5£¯øú~jË.h3c)¬¾—¬óIPã! ä”MÐ\ …Õ¦äbi D?ÙE'(ÔHåöPŒ 9ÎÑ/#Ôªñ/cˆ¤²{Î÷’è R`°jÝ4îœö1­Ô®óªÿÆÎ@æ?°•¨–ÎûÐ@ÏPfÿ£ê)¼v;™0<ã)½”¡”–»q Ð@ÜßÐuPJåú½îµ— HÓ;-ëÞ´›ô˜ÖqÎg['çÆ‡­ôg~ÆÃ†Tõæ³Zœ%HŸÃ. *Û >BCí­4ˆ¤°û(ê †Ð¦ìQìI6ZeUé äg" M‰D™[Hiµ.Ëü™F€RxÔ÷›ä€Ì<^j«uq"#Ã3TÏl±@:;¥³nì ‡é¤_±½…RØ^sYÃ:+ZT£‘”v«öËKÜL¥ÙÜh©Í¼›s3•¦¼cK'Ф³œ«' œ¡8^ˆM¯¨‘»Ÿ®°{g¦DÎP/šÀ¦`–Io»ñà ‡ÒÚ’õ ÆÇ«Õ”¦Ç¬¾“ Lëc,ç2©-Œa††ymºB LzÓÔØ™ Æ¥EO¨Wc i¼4%Ã3‘SU¬Á£¥q2Ø&þÍEÅ?Z~ú0@³éqGoâØçÿNà %Ø ßÕì1Ò…pš”DÈÌB–µÍ|{n8ÍB¦<.­z~¥TÃÞ'˵"4× ï cÒ¨æY2A9áxvsA8{T™™#»^C°Î cÒèuaÀ&™©ÁÀH ʤµ]½µS5úm ™t¦o„qŒªÁ8¾G\ž£Ä1²?«ž-+»×ü&'ªÃxÈÜÌÜϪ|]a9îç# j(LÙ¯òúñ†Ä!‘ÚlÑR9Ô@ŒÞýß;4£BJ¯Å*†Oƒ9ÃÛ ÄÌ• £}T"Ý2É"Äi"¦›‰ã%ûèŽû†&–&Rh§“okÒgÑs|mø±«D‚j0kÌ;UeŒC"¥ÛgâT¦‰ šÒ¢:0$’Âo²& ÒpïXÃJ0¡’ÚϺÀ0IYû*H )í¼v ‘4ÔNR^zä}Þ+™£å55¦[·¹Tï[çœô$~†P*úeLãQ d©Š´¸P Ëý°rB £8‡Þµ ÌCûfKi¼[ÛEFi(täTÅ٭눥4þþzŽJqfõGL(ÉNé í*–0ú;øR©mgç2Àh(®b&Ê0¥TŽ«vbv&²zd%R™Ù'ŠˆúM¸H*Ë/˜ˆ”(]ãÑ § N¸F*7%t”Ç¤ÒØ'™ðûu¸Fj? äœ1"7ÅFn sq¿“ǤS*•ŠL 9ê9«€¥?rj¤òÒ"€™gñ”“ǤRÍ YIž ¿¤Š4L3\*ó?»-›·’B±Öâ1L*…åf‹ìL­x˜ºWEo¢—+¥ñ´<àV íŸðš!”Ÿ–À­øÿþ3Zóú;Xc‘>òï`Íœ¢/L­ Ð+÷Ïp ÕÑAWëÀ ‹çe¼f‹íq¸4Fú !,rl«Jƒ"i íÕFŒ…ÃnMª¦cE˜*CaÁ(…3¢ZŠ‚ÁÙØsoía¡± ”èÊà„l~"6›-"ÄAgŒH¡°žLΏS&‹àvFV÷‡HˆÐ7ÊKÃÌõJãgT"•™W+PB†oYÆr3œÃÓ^ÂTVë]Ð EvÛt¶`â5S,…ía?C ­@à¸k­ª—‚Dnf¸"A+¤›SŠ–Ã ‘Æî£]„W ¦€pTFÚqЕh7@ #/Ö’ÈŒÑ9$ï E†Y%ç¦5r^á¼4·¦71N×L™Ô–v}”ÀŒÓ™AÛS7/Bl´NQiø=•ÌÇ ¯`ܰ6ïú‰7¸Æ$Ò>µ´â+Ä“×sú'Àšu4Õ.¬Þ5 1:ã>»'íH+Hjñ*S+Æë¯=j†€LjË}~Ÿ2±B¼X3·N¶dÒ™V‡&+)4­j­€u Pzã¹VÈÜ ‡¶«r!’Îp’(™Y‰°v5‘EÒjAÆV8,­‚F/”IaÄ Ò+U‡±c¥ö˜?³+á_*q¬´>ö¸¢iêöš¥aý7—Æ ÇªÎTL<ÃX¡„ª¤b8÷àaòÃÆ¸’åGÈIãÒªçùôƬ ÷™Æ¥UŸÂì {Ÿ4.¥¾*‰|Açø–‹Sùþö}ÿ=æ&Æÿ;K’  bÎ4*­ÖX¢X’óIãÒª•UÈ :Ÿi\­Ñ$L°°óIãòC­ɳu®8•8Z§9µ•L©(•8Z:§É˜0Â)«GKáô'úÇ‚«bÇJãBEp&«þ=©©Í#AŠ…bzZÅ%R›M¼d)C~*&l¤ëÙº²––I¿èÑ%ÒÙmÚщŒbJ…ª°„Hj÷’@™_Á0¾ìŠx,“ÚòE­®&¿Âq̨À…ʤ°¼€ ý7³+FÉ\æÀÆ–@în+2ÄØ &%ˆФ€H:ÃÕÊÝ»‚Q‰‡â(.‘Úl^ɼ1=?â¹[MðÁ*”ºA?È‘Hkhlv†W0î5"é,m‹÷ \ÁÀäʤ3}飌­pdâG^¾Ó€…ÒÙ:{„ø Gê}®¢ó¾½›÷ñ6œTR†W"l˜OdÍw ^óšç…Âp9Œ;b€…ãUYõDÿý~Çó™4¦‹–é@Ž…Â†ùõàǾ½¼™‘K¤°Zfåİ@Lš™Åã°Y¬‡Ne8wÐ0ÌÂaiÛVb1‘Ô†ŸCÿ™Y–ȳE^å:ï8h)ì>oe…ÉÂQ:ÍUÕ`™Ô–ƒ4f¡°vã˜K¤4ÓÍ\‰dñ1¯x¯Á¢ÓÛÌ*,7¿ãM®f´Qõ€ÅÓ¹YŒç¹Yÿ9ì÷… 9º«ùšˆ=Žç>ª¤øFgKa»Ï.lµ`ܘJ¾Wû…W@o.©–ûlU…P †µ@‰- ‚T Ó]/g°¿n©$˱þP˲@\|¬€Ü¨HjC#e¡¨l‚i¤vÓ[L&X<å¯k ”ÂP£ÀQºþ«Ôhåîê½Wˆd´Pï–g*¥pÜ ïO0K¤<&¥Î= [aÏ¿C –Òy³[J„[ ±ˆVGS)…ãfwÑpñ´öí„b6 •Òw³)Æ`(ó¯|ˆ¥1öB6LÉÒ×ïü¿Û(¹*Ò¢<ïå£/?˜{½®;Ê£nãŽ|Û­NKbdçùÝ¡µÒ:…Ff(s•½±Þô¼æBPe:þIÐ „Ý€žÍx‚Hi¥/xÂe FžͱöÑI††X,Ã1‰æA&‘¨.n!ê:ê.±ÙB<ÉΘ bhîO]ÁÅEÒÚ`i ¨G›L 7£ÁcøA,‡Ü¬q¶ Âg֪͌ñb¢‚†û,Õ@]ÙB!µÛËëÛ0II ÛéÍ5};A±ÔÆÛøD2JC‘z{l¯|šŒ3X¨¥öõ~aÈÒ`¦BɺW†(…DJ»kGÈÿnü  ï¢x¢6¦âg·ÏþÝVÿ$h(nÜžÍÙ¦ïíÓ÷×ñ€2“õR),ëÆôŒ‡éMæ2I¢ï}Ëö37ƒuÌg·6DÙñxé3&l’ô6yWŒh+NWÌñ¼&9‚ñ9&ors´e:¦g mÜÝ¿æÍÍ÷Ô»}ã)í>O{1=Q:ï¡S¸ÿ=žß¯R°=!’ÚðPl†ŠÒMF/sõîvA÷|ô3_Ø­Ë|©¥ÄòBÂó·ÉážÏp:­‹âLÐDFšÛ;|R{)ÅÆè å´Ÿ(’ÂðšD¯@g0ªF‘vë³ãp0¬BNª 0v¬t.39™H¨›8Vî>fdNS*Æ—ÖÍ^dh8‰8;LZ {ó2Ag•Vkå?“¼Ït„üp0–eùáÒ¸´j£d2CƒÞg—Nm¬p"pØûÒæ"\Þ\·eŒ9Ó’Xš tN“»«®dІ\Ï4.­zh‘¢I¾'ŒJ£›I7‚&\+F–ÖËèfh8é¤q)Õƒ*™ž­sÅÜÄÑR;³-Q3˜qGñhi|Æ,wâf0£eQ$á˜\'rƒ~ð1&‘dµa‰•DÎDLOÈ€D:»íâPPOɸDj³9ù“øúAÈ„D:;ë7ø K—Ak|O@$½¥-¯Aƒq鋬˜D:»§>_¦g"ˆÀìëo¸UÑÑNB•™Ö<'xc˜a¹>â^ÀÅ$R›é$tg"†/ÃÀ€D 3½´ÉØ Æ$‚åe=@$¥ÝºÄð †)ºÿÔµ{+#XϜڪ-W´>C‰^%• ð™t¦/…>“"Ð+(”ÎV?G ŸáÈD¯DQ”ImiÕ2:ƒq|;—òyâ“ g…’:ƒqL¯\û2àã•€²éµÑÄg8Žoþ¡G‘k¤t[ÞXÍ&¨™HR„EÏ21] lÏrX ÂКû;Ãa:!Rô—‘t†ö½Bz¢ÚýN!»Õ˜xqj"¡34Üëš+(’Æóc3Ÿá4çš‹u8Ïå©Ýf§)"g¹Žõñ‘, ŸÌ¡–@-½÷x@ü ¥þ+ñ3¿i…­ÝI þBQ@%¥Ÿ½7ÒPÖB/TeÕžïyÀž.!6¥æuÙ$×Hå¶r•ªè?,M“,“Hm¶Ú3´†‚N“Zç­€–xÑÁ¯ÿË]!7§œ\oÈŒçôÒHã¸/ŠU4CIg]+•§®d\ÆÓô,S5eq$¤RšÎu0Æe(ðï?M –Êù;¢<°3§\Ï{ß×Äõø…“+¥ò›9ÏxR†+n…z^@õ°S4¨r~2†±m,ø^M^WÈ/£z¬ÄIieR‰(p‚¬‰îÒ¦'Êó$«‡rLÍÜŠó@£q¦E¬ÇЩ›Ûj5R¡¤r ‘Ô†öWd|ÂÎ*û'HjC[ÏÏ ŵpY|Q/ûìu›0Jþ"/ÔR;% ™= )ݾ¿ãAâh é¯(=‰ån|Ý›LÛàh8pdu,uïQ?—T*KmHHMD;ÂçkÞîD+¥íZ=GÚg¾FÙðx`D ÿ¹?Îúú„‚¡>ÇbEwnž»8†Ñ@’n„™—IëëøD1™)d£åMÕ>41\¿§°1÷+ô ’=¶HX¸}6fˆž¡¤1%47}o£JK¤´[—E›=<9Ãxn+ó& =Çb`{­ËËê(1AI:ÉçÕ”õ—Èž¡‘Òñš–WDÑ`Ò˜dõÞékzq…N«W"€Rt†XWXþÛO¯PŽiìÖ‡1€ÐP”N¡ëê§ø¨D:»×øž'x&‚ÒŠ‚ÎÃÞ³> ï13]P߸”ŽÑ3¥k!¶[Xy-¢{”Ó걉ÕÄh0Kq¼ÿ¸‚K¤6Óu‚h"&­oAašPHí¥Õa?ƒ9¼,7W.ˆð™½¶JC=%?ƒQ¼ ˆ ’\"µ™Ã_ÄÍ@PZ=np²q›Â0„ÍPRÇÄÑÒ8 Ÿ„Í`FÇÄÑ’|•A× ˆ‰£Ý©|•Á± †‰£;xGÿ~†d0ƒ0˜8LCUn½«6|¢E·ªFo¨ ƒ2¹kŽK«ž—H7Hf§·˜Ç¥U[]¥É$÷3!¥‚0Ë÷“Æ¥ÖëvClÐùLÍŸ¼¸8ŒÏ9„Ë0„sÒ¸´jý7Ã2è{Ò¨4º97¸ ¹ž4*?´c}Šñò­àš8Z'Å62(ƒ) ƒÇKí¥óß ”ᜪM/—:!*ƒ|º¦:4&‘ÒŠ*äLH&Bº_THíeóóÄÉ`N¢a>~µéìf­·LÊDT¢a ·H¤³Û¨hÎde0ª»b@t~o£¼—¡´ĸ{(¤ó{ÍæTLÊPV‹3³Lj˧q™–áHâb°`! ¥4¾pù†7Ñ|5K5^L$µÝ¢Ü “3”®ÀOP&!‘ÒlvÒ!rc`™µ'k€7&Òjµ•(âf"„oIf±Ø zd¾Y)má4Uff"JqåÇ}©žu7&¦1t™™áH½aó¾·Ú<"èžÕ+%•¦6ãÍÄ *3o mZšØž×dO2\>Z$†x Ó»Ùá=WÀ陟ÇìvÝ÷A+Ge0GY•ùÁ™…-æ±N57»Åz¤$H£ôߺm»Gt~OƒK”Á4¥Uæä„•0’ÇDÒYŽ)-e0j˜O쎚H‡D²Õ˜`9¬qF&rxOs!‘”Žë'—HŽUÙb”IéùqhŠAÊkg²H%¥ãa—† –á¼zßÚ,\ª¥ñ>ôéÊ!ól‰^t2ÊÙžÚcåñ b:ÁÍxÜð/ »h#¡ |û¤¶»^-#;Cqc¶õ*k¼ólë\-q¡†»u?dnÆ£toåcD°·Ò°—Iaè=d2/a#Aa¡ºÓj¥öõç ä %þe1©”¦›þ`2Cãaÿ@ „R’£R–… ¦ˆ_}7@*í¦5«¦Á¸‘PuÝPPÒxŸm‚\7ÇW‰çx–®å½?™a™0c ?ÛÜ:V¸*+šJì– I%wGÿ'¡3”Ôÿoïjåj¹»¾Œ˜I` $ê{ð« ©¥v~Ï(6”ù÷E[×Jã:~-¯ñ¬ö“½Å¦L’ÙX}·¦DÕDT y ÒJëìõwœ«áÌ~…þeŸØPKéëx˜©Lå€~@Bµ4ÎFdVC©?†X*c@D€¯À_Í3P›“±¼e¥{ÇÄ¥¨ï“ìÆº|knÕ}êÂ_!’Ê25ó×ßµPÊÝqvHKÀ d ûY8Ûpb©lŸÖYËÙ›ø÷?ÁµR¹êÒ0Ó7”×¢«$’Òn,ø1vCA¿È#WIãg07ô×ï’ ¥±Ô&ØÆÃZ8j V*×Ã`'@n(¯§)ßVÃÄ´Ò¸êû‘ŠþÌ4ý¨j—<œµI5Èñ‹ñ̇©êOýkùñ>m –Úùe Ê¡Ô|Qñò>j®‘ÚïiÔZ`9˜£hLY·h äf¤¥[º` 'Bþ~©BZ©}_Ú#ЍJüø+ÔRù¾Ú2ÿásŠj© ÀË<åþb%¹TæÑiáŠýë¹ÄRØîóm"0↿ò0Ü8êÍÂL*•¥vAb0ÂÆMí϶Q!•Âô° ç`˜Þ”ßFi]+LJ>‹áC`8æ¼J Ò96æ.êvQ.Æì39`t D7!­ºuíûf>žX˜@ £’ÐñˆZt vnÞ1jÈR[éoB†s fxdž²Y9,à!Ii¸.O(æãˆ…éÄ¥WŠ÷N ‰tv[MüD”ιÚ>Äy¡üÐImø±W1Ó¹ï¢Üxˆ¤1\Þ™ @ˆÒ…€¢;J¤2ÓÓg†t(¨]¾`™Ô–ï‚ûIq„ãb éÜ6k­”AÈbçÕ_P$ån_×á@Zf³ÏEÖ ¬6¥ÛÁ¸´H[æC"™¶Lcf'bÚ¥M”Hm¦uj³ƒAiMöå{ÙQ$…!Â8Œí`Ûcs(Ic8¿ALïPXÑ Ž–ÖiÝsQ+ÏéÕG™Ýa2èLGH«ØDð°ó £ÒèæJîß ×‚Ð¡£¥õš“L𤤓ƥT–F!³C¾ïcÇJírPk­Ië„Uø&Ž•ÆÅ€ Du0!Ÿ±1”I¤³Ûõ)"­1l ÅÖB ÙHÁÝB2«Aü‹x¯dË å¦˜Öá8þ5‡bw(“ÚRWH®ƒa È.N ’ÚNWn´†1‘ƒTIáy!+ ¶ª“²ű[Š^Öð+™9ÿˆâkXm¤Î(ÑÓ^öÒr1®Žkqx”IiiuÔÁ0Åq¬žÌ,ï Ñòp„Ìù°5Ô„ëD”R3ÖÈv|·#ÒËÀÖðex c;Ç[®O?òD«-¤ÕŽYØ';˜¦7oE«_–Imi+7^‡#ÛM ,”Öx±a‰ÛáØs!?×ß‚‘Q&é²é_FðÅ¥}2s£°E—Hj»Y_à ÒÛÿª%’K¤6{(ñÂäNÄ4›†P w+ïNtv0g̲\èåõé¿®³ÜURZ~´ÀQ;œÅ»©¾wë›CK&’Âí3Ë(°óÿ;—ôÖužYO%#Øe[¶4!·Î?ÿƱ ¨dµöʦª*ñEò%)Ã5Š$ŸÓÃD¦ÊÉ>rÔÏÒ’·ÿ}îïá "i,ï´F¤Åé¦8-¹›â´M”1E§MZm­z“  ûó®KÁþ¼»÷ ¸¢ÃnÏîøÐÓð!²¹ CXŽdO­+ÌÐ3ˆ¡dõ°‚=î úß] •ÑCûXz㺦÷¹˜Ì¾ñ½ Fúb$Ö"ôÓ¦x.}Ú¢Sˆ¥´¥Z>÷5°]Ð󎮕ÆužÈ2s㉊ï)t'…òA¡•ÆW©&$n8ñàPKíË¼Ž½Ñ©ë…¿7ìr­”¾ ,¸ $*lP×½•~A¼tCY¿À5w,ýRj¿8†nî\úåwzÄ•²:>°~Ϥn I—PÏy»K¨€M¹T*˧b*€Ý@ÔpÿµÝ  ¥2|ګȵ—ï Ê¦L²ÝxrzëWšiúóæ tR;>í-v䆲ڗ&êVM¡Ô–¶ÆÜ „é»Ïf(ðÆFÕJmy×*5‰»¸ù"‘¬†P¤€ ê)8×Háõy˜?$ÐÆsôdó{="ÐJã«•Ž¶¡¼¿O›®•Êó|³ñ¬–ÜtZÇu’üf¡÷3fYÞö‘Xjã]ßl‚n(²'›¬+Sˆ¥²ÿDâãôeú½'›k¥ò|Y•äm0O™šñdÕV±q­T¾NÉ&Ú™¦)Ûï…V*×ÓØ“„Ù@bÿUF‘”†ó{Íx Eéî‡ß:K…X*[cG±¸ñ8Zô•R‚Ä@ ·¾Ï‹áá¿46¥Ôk_)½c è½”,§÷Äš-:º‹Æ8 ÃﬞŠV&ÎÓÚYIawÚ——hŽîãÞö;Óó¹)ÝÖq‘t†³œ 175濪i ‘Âì;¹2ݸœa]íØ‰ÔnÛmWÎ%7¥³¶“q–¡"hª¤ðüNþÍ/07œ¦“×¶åsΔô2&(Û}À à‰(žt‡]°,’Òpów™ÓU -‡bõÝ€Ú´t\m¸Û‹ÌMDµk)!ÕJ×åµýSFn (A5[°$’ÎÒ›@r“TƒånB&©7‚ÊÈ F&°f;8hîúhL½£7™ ›è¦2)M5 ã~ÁlL"µ™31 àDÐ/ˆMH¤µ34† « ›8Z /†nй@kàèÜéÅ΄ÞPNØÀÑò‹ªr.íÊ Ãºh‡Ika8Lq0âJãò‹Þ€˜Ç/îK«6 &ƒ8è}¥qéÔŽÄ0ŠÃÞK§v$†Qt¾hTå<¡.ú^i\Zõ¸b„'9_„é|!‘ Þè˜Â2 à ÜsѨ4:CcÁA׋F¥Ô~Ëã ¸A× ×‰£¥òÑ®O xƒ^CÇKí¥+t ߤœ¢œ/—Vº‡2ø MåtL"lõ8Ì8¸a,Ô^WX$å,uƒ‡µðiˆ¤¶³•‰°öÊÎ"é,_TèUÅ¥û“çRȤ³Ô}å„á`XºÃÚá5‰ÔfŠé‰b­µx.óAO¨7Ä^w%±¿Á”„‰k±ƒƒT"µ™hgô‚z´$RÚm¶—±Šâû|jÖ"i µ4cFo0ŒñšYÈ6À k?ZF‹¯„Þ`œÂ5VŽæñ0™t¦¶"½Ð7:åÊNJ$”Öøf݉ÁáPÞá1'®€ºcå!6¼Ï·Ð7§O»ÞHyÖ‘FNÈÖ(JË›­¥-ì G¶û`X(¥ñ÷ÙÖÞ!dp8R§fk¥ÇçÉÜ+í¸Hj»ÀgâýA£ÜHâƒô±šiˆC9:G2AžÏéåÝÄT!¥Ù©ë‹LàDH»Q ’œæ,ÌøèȾ¹5÷óV÷;µYae¦åaÀá{Ûêøœ†öð)Œ½ŒfìÆ#ÆüÙ¯ý™P*…éñ„Ê@ÜPàH):4éÆëÀ„û„gëŸÃûmtC‘:“¹öiòBõ.•Âò}X‰!n"îÏ-$•ÒÖ¶2rѯ+†XjãÍ( o Pˆªâî®ÂÉ;âdêÆSúIý‡W­”¾/‚ˆ»¡Ìô{¥˜PKílK‚ Þ@¦’/÷}?'ù2€<ŃL"µ™ÜÊÄ D wëž÷忾Ÿ#ƒ^FE×–›¶à"æ†Â†ÿý|ÌF¯Ç÷¾-ˆ ‡±_‹Ýf]ܺ uþ\Nꬫ@éÊne¶ií¨@o0$û~+o TFö-&ô&"†ëçöf6ó,ä0ÐÝ>!«•Ò)„Þ@„¾çvWÈf®A¤¯Ba¥?|òeHed?n<@±ª ÑC€TJÛÃúç0rºßf6¡º}NïïÄÀv~!RƒØT‹Ã-EÔ Ž)¨à»;E iÜλ×ì1èR†qµÊRÖè‹`›ˆ“\¶¡ìþ|3tn·Xm·›V0AÒ†S†uµ¿DRøB1?+¸I:9êÇ ®S@S"•™U…KŒ é$òºC5ÒøÙ´gÆl0møÏþ‰7ÈDÒXno÷å˜ Fé.!y1¦€€¾ÉVºÒnµæÈ&¢tÉdßõÙK¤€6û´tž/ãk˜¶áD]ññfgp “ÎT¯¬‰¶Á8]­²áZRÍx ImwPAãl(Œ×ÛæbAo{‘JS[¹fÎ&E¦C-wDÐa/Qi:[GeÊÓšçíŒ:>(“ÚR¯Ž‰´á¸DÔDQ”Ic íÀœ¦yPÕ•¦‰£¥ô1*%s6˜R´«¢ãeqcÒ†½+NçE^5?4Kô¼Ê1rFN—ÆË^ËT è•kÿãS ÆÆ(˜º»˜6u71Ö“éî)ÆãÒªÉô »_é)ƒyüâ~ѸÔZç`2}ƒÎW—Vm, 8ì}Ѹ´jel˜¿Aß‹F%é^³‚ê˜ÛAϋȜ/Yq›‰¢66щ¾Ažç‚1iTs*w!oÂóJ£ÒimÆŸhö­H;Z:'[Q!Ú&2*NÇŽ”ÆCÿÍ”M¸epàXi\´Ô6èßžïC"µ™57`¸‚ØËà€D:;ëÂÁx …ñÕv­ ô&ø'*Äà #|fNI!þc{‘+Ã}öÿ"°£øngâ„ÿ¼nÿ°ÝÓþ†k0Œ š{Ü¢FJÇ/ù¢]ѰÁ$¾ÛÔ-ÚHþ<ŒüIV7êþ5ñšIwÈZÞÀŸûà™) œá b€fÖ]ôçÆUÐp³E†k(Œšù8øÏf5ó³¡"OÅi®¡0Æg¨›Sˆ¤3Ü¬Ü £5§àŒÞrûl@©Á[ÎFH Rƒq#`6šõe€l!»°¼Ù¶êªáÈô\ý•Y(¥ñ÷yiœk8”7ºØ ¢ã?7«¿UYÞíµÏH âƒÿûpN„4R;ž³˜#56f+¼˜Ìã¼ï^è(dR8žoìfX F)䢭¹’ŒKdñäÆÀN®´yãYë¿ís•ò8¨‘ÚO­ášM¿'ó ‘ŸS÷þ/VÇl:F`GüµQ tRø}®ãâk iؿι¸£µžÐ?ÚÇ©0•¯0ò;æ.Ã×ëõùÞÿø:ŠQ@‡ò¯«¡~4˜ªñ ?÷‚P ÷µHaªÂþ^T ©”¶ïùKSq.–€TVËM?-ÌÒ`Øß+·(–ÂV×.«áÀv‘;Ö¬B-…ïë¥XA5§$Ào—³ùë"Wƒ9Ò3¡”ÚÕ1äj0OÙ™_뢸T*S«$•¹üªÄR;ŽŒ E6¨m|lM)µç{²9ŒØxÚ°ÿ~£ÇeÊã½½qH¥2}cÁϦÀ‘2¾Ð¼ _q”Km­…Œ²¡HÍÐÍ!˜áý\*•¥ÝH1`ãa»ëHoÈ+ËÙŠŽàÓ„µP¡îŸ(ДJeªÔnÀ5¥ï³ösF÷è1hBYí&BP ý 1‘T*S[Óc¸†¬°"k –Úx–^!Ê;àX—J²ìÅCH” Äéùo­†P,µñÝþ$€m(RϯeA¥)‘Òìí­«ˆ²ñ˜ G¤Ô¼gW-âhÀíO¤%”²z~kvÍ4 i ëOdÒ…R¾ŸF…!JQíç|4 æç+”ÚR[¿Hƒaâ2.”ÊÒ–¢¤0}rôû ûû(He1ÕÔÉ+@š;ŸkâùÿsÕ;FÊ|¨ìÇÚJëÃëNC±cr¤l") OÃ#2QaÃ=švCû(Iix*ßÈ\ E‰´h#õ9³=ˆø9µß\e7!`k føjg¹/íÿÞlÍRm· 8FÕD„’3Eã(Hmõš/-R53¼ëÆQ&‘ÎîTú‡¡šRhÆ[F½}Ë%J¤0³z3¦Á ]ð¦QcÓ !?¶²´´’iÕpÜðÁs^ ?ÛØVÑî^ª'15Ç«0Ïh^DéDŽ݊Óp^»ÄBélßVÛ±ŽlÂB$¡^¡RQÍ ¤¶Ò~N¤¡ v’eR˜Ä€ MŠû–1‘4v©NÏÄh"ÊÖz£`+­a'Ò`F…ÊØ±Rø06®$ÇÊc>X¦yzHfyJ7} _m!2v˜4övex&ì¯4*­ÖP«Ï$ï+!¥",„Ï$÷‹Æ¥Ö:À’Á™Q[<.ÚFgØû¢qiÕ±ˆÍ`˜BÌEaÀHeõ¨ œˆÑ{½²5Ф6Ôµbf8JïT­ã3ªT†HJ»í\œˆQ.FoÞga yn§“VˆÌp¤"1³tê\*u¬çv"Ô“ìR ž@e"LQ}¬ùï1¶í0Ôs³žµ¥·)cT†õ)þ©»2îß6ÙPÓÇdR›êãwFe0mÌ@x¹—oC ‚yîðÙù¢¢:É`Œ²0VðåóMg×Híf'e ixÏZ¬ÿmŸwõpo—Hmç¯q2Ä>Ø[)$Ršç Ý`ŒîñÒgøÿ¾½­öóhÍ@yfý¤ÕóЫÐ2˜¥sb÷¹ 5Q¯ d8Ï1_öÅpwÏköB+Íl5øŒÞûãó¶þ¤öC&ÚÊ®I ÇxÈðÝÞ¯é;{.*µc©­nó”Åh Äd˜$ 3…D*»Ÿ]ïBŒá;ʧ_Ý~èÄŽÞÌ$—]·'0ãîjxÛ'©ÍÙB …Ñ~Zû,§a @]•ìô›‹‰èŒã¥ôÑß Pw××ó¸ÍÏ×\Ÿq8çö4'L6ý'!0n®ÍìŽè-ä̪;ht×· ŒÈŸV­0æ`Ž1À«™•J  ﺈ¤6ÔºU™|¡°q’˜½.¹ ÔŽ¨ŽÝTÆz]aî…"ÿ<…V*W;/eÞGįH-¥óÛ {d^(Sé–²ì—i¤t›rzñŒvÝÕ—ÕĺòeÌåEk‚¿–A©Ô¶†qè‘Îâï­K¥¶PB.—¯’B*dyœŠ:ƒ“(üJÄÒYë< ’.©÷Cç$¯â~(ÚšT*ËÓ b\‹DÆ çüË—…9À©Ì‘9M‘ùàf®4*vqA¢…]+ÆŽ–Úg–qa¶%ª21q¬$—û,2§#ׂGË/^†}0ß‚I‰{Œ¶{(’ÎÒ±•Œ¸``ºFAs'’IkªÜ C.˜H™(Ö†2é,mC2a.Çwóö@œÑö³±³mdq°Äý:E„ éüžÚ (—”¤·fVë ȘHj;]ø%Æ%bô¦ÒKÇ<ü¦,R݉™tKD('îÝ—vï°Š)Í¢ž R.¤$KQ2$ÒÙ9š”)—Ó‡eª½lÁdp@$%õ¹2Ì…ãÿ÷·ºå”Xœý†,[êjS]0ŽA–¹PÛZÞÞ 9Cq ±x]— XH%'UÃqÊ%%¦çá¹;hœ›í%^l¿±Ã2Q.˜v£ŒŽ7Èâ@‰2<õÌ¿à-˜5& f!¦ÿ¾OÖo/|ƒ2)O­M…€ 'é‡VtÝ>'ÄoôY¾°²Õæ[#?¿ Îåh%œÅPû®'âŃþÜ/B) Cê¢þm™B©-±VöT‹ ¥°|XÇyk”c=ª¥ð}½¬ÿp/”ˆ|K]é%ÄRÙN"*ñ/¨ÜÀë|X©—›ƒW ’ÊÎÖ{Ãa=í‚2éL­Ñ0¸0/›—“q‘”†F«$¢†·‘‘þ~«s›‹Ê‹Ý®«_ÅPÌp¶k•Sª“Ô)­¼½•a1°ü®~"³Ã¥0·¨Ìĸùp´ é>1Î~¾Ò£×Íjóã3aã¾XœÎ=8¶ºC); OÛ1êSÁNêlw'uÌd0v d.ƆkÙÇ)Ò™í†é ƒAúí.ê8EÝ„ÐJíûR‘ÌÓ³”vÒ¤³Tti ­TžZÙ”H¿·[r©¬¦ß>#ãŸDÂ@˜žÈ'‘[·Zr©,–~NÏ8 ÄKQÕ;…DR> ¾†¢:˜ )•ÚôYð6ö'øâ2Ivcm[/ˆ¨¾Ä‚ùèC•K«ŒlE,†"ùFf)àB©-mZ*1×b)~>C©”¶‡>[à vœ³êÐþ·H¯§“=‡÷KCC-€¢¸ò2•¨˜oe”¹–)ÍN{“—Á%bfM»ísïb»‡\ ¥•Mò$RÆC”„Y»rÃñR:JdDRƼÜçuó[þ„Ï9ýÃoq«D” e¥¹Kèµ"©ü|r/“25Ì£ÛÒóx0Ä34Òù½í•Bb³ÆÔ´o±Ô^–ò¨B7ãe\&RÒŒº~QäÑõB6ÒEò»¾ ”˜´ ŸqDy6+.V[>­ 3)Ž×0°Ù’i¤óÓ/Lâe"‰]¨ÁRH¤6{Wð ñzÑĨˆç™í•JÃÃ(¤e0,ñ0Û‘Xž÷I¶;*ø&‚Ò:¾¹DòÏ yØÌ@€ÄÉ`T»Òˆ"é,€aXãÚÕRIchL&f0®àbèxiÝô¥j&ådŒ-J!b2*"&Ž•ÖG¡¦e0ƒ˜˜8LZ cW˜Aû ƤÕµ’y™p½Ò¨´Z£V2/ÃÞW:BJ$W^¿¸_4.µÖ{‘e^¯4.­z^昙IÞK«V~…ˆò½hTX7°_aZ=/•V© ò2èyÁ˜4*åa˜• ¿‹Æ¤QÍÏMblÐó"–æËüÕ0"FG•caV†œ‹F¥ÒyÍbcȳ¢jâhiæ³2˜R±5v¬´>ZK'Ó1‘Qµa£¥vrÌ%C1œ”®Ø …ÒOØ…±åjÍ2©-_Ê61ƒa|+0±gFwîî°í9[°Œ#´×úâ¸c•ÿ Û/ŠB4³1ÙÂÉ(“ÚÒöÿ1Cq-^"é mÎI c0œÊŘD»Í ¤e"Hav­ë27oÁ£+­ÙHËžx®ÌÊDÒ0ÞHiFD$’ÞtsaV†•‡±r˜s}ˆc§*ËMÿͤ †é3Ù³ óh%ÿÂëvTÔ æè¾ ­Xôßçc÷|9“") ¿Ï]Qþ&øŒRþÅÚÍíPñ¨H*»M«$CA=ù"©ìŒT$†r÷ò}qfGRXH iWÏkª6óxY|Ææ—»ÕÏ!Æ3”y©ú …@:3ý801cÆhé7ô¾í»1®”ÂóPô9ÈÒ ©Ç¬ îõ†ïÇë1k«„T ËϧvþΉÀ‘ñ|MÖbþê´œ‹bé¬m.›IŠýsúÄR¿O{wˆ†Èn§èw£è¹‡s;Étn›%"ãtQí5é#XT×ÛÉíL©¦ïçüƒ€ŠÁ°`_¦P*Co:”¨ûö¤RÚÎÊÌÅPàHy>¾m²ÿrZÓ‚PKá;—™‘Š´a{¯9öý µu^§×Öq¿±HþœßeFb{8½ózOv'yÚE‰˜Hûû,B)-[D(Â~_¦@j+o“E@Œ‡üòâB©,½KÂa îOð¤RÛNF ŠSô¥¨èËî]gVK›:` f§¾3k5 `wC(µåY26÷çR6‰¥4>ì¼ÃH …þ„XJcgHŠÁH½‡½Ïæ+ØR©MVt± Ô¥çÛì=KÏúŸÏ”Jmk”ƒ182ªZŠÇvDýàÕÕÔn÷Œ8M¼•~xn·×žûÓždªµ+0õ_;¤èƒ­<: ²zéÂc<ªsWZÔž»á#l9–ËýGBd ®ý ¥ ÏqŸý°*Û½ o ðÞ—JejÓ^ ÈP`÷YÒ«v =‡õ¬ŒŸÀ×($“"ÛO¬Uÿ±¬¶Ÿî?‰¼°ÎÝ8k×Éêö´Ê<‰’ñ¤Î\ûAËsx˪ÂV | )Cq~˜\*•åîˆMp2ÕmƒÑmHFó›ýöh8žà'`’(S^eÓ‹Üç?¯7ÂgÁó¨Xjc[fBZ†"Ûù—Hivz§3âe<¦O”Vç³Bo0¦åbP#µßY™á$%cÔÛøzCyl.i5Ûns!37žNò¢ÔV 2hžS sTfÛí¡õU— ~µ6J“)7œÇ4Rû½°X“xâû(H*»SÍ2+ƒQJÅx'%-ìD0ÏÛÊ ­–VŽS6Æ»)ícÛTð<:{Üê''13¥Ë ÖGivôšDK¤6Û­öQBf(L—K¬“Ò-RIï:–™ˆœIyÌÇP%ImgàW"g"Š×«¨RH¤³Óuä…œÁ0&d ŒФ°ü™Åô™á¨ÄÇ(ødÏadO2s&s3õ ƒ"i-õ•fn†ãÖÅZ<^/¦lì'̩Ș8ZV§ hÔæ| -¿xé_p¶9J£4€… r%Ò&+Z]¥Ê.™ Áˆ+K©GŽ…ö¾h\j­S,™žAç+K§vŽ…ùö¾h\Zõø"&z}/•¬ÃÚ. 7ƒ®W—V­ZdgØ÷‚Qit m9ŽI£R–…Èr¼hTZ¥12ÈÏ ëcÒêæ'f!oÂõJlÍ—fy:-óÇF1óIü 39ŒJ£›ÈÌË€gAÚÀ±²ú(?¡Ó~™—¡”ªÞ /­›q0ÈÌpRՉɎ–ÎÉÑ—ŒÉDNº´ Ïã5fjÇ9=“(ÎKô*öc ™”¦_ÅÀde0®ånC"µÙ¼CZ™ˆj™aIg©0@"d8®ežQ&µåݪ)1#ƒq¬Yý@ñyjš?'L†ò˜8ŸSä±é“ÆVO[ ™I‘‰˜Ç4!“ÚrŸ]¬.ƒqJÝX š¹¨<¡Imy7zˆqNÑPéð§”Ikz³†DÎ` Ò1^uT÷+Ô³=éa»›}ô9QÃ\«<×M?²þÛ‡D:;›@$v£”±G¶¼9É•HmwÚd7Á3‘“¨ ã)œÎ]ûy!: iJ# ß‚B*§ûøýžÁ ‚¹ézÃwªö†@ÏiDÆböy&W³ Ï@"2-øüù¯GÌ&)ÝZ)}g_ Æg(±›PÕ-ÿÀúè@a«S‡„Ð@ÜßûRM(•¡ÍõgtÆÃÚ}Þ§¥RÚΕ™ŒÍP¤â1Eml[Cµ¬Î?ï—½3DÎPf·ú¥OB,•íSßa"g nøÏI "d|í3¤RYÚõ„èŒû{u5¤RÚ¾æóÓ3¨„Œ’Š´@¬ô¨ƒ>Û\~K®ZEE) bg O)™÷¹gJF‹†ë3»‚T®Oove ¤)0tÊàž¹¶½é $Ó3‘Ñ]ØS¦'$R™mãmf~†bØb³í÷!’ÕÎê”0=1‰ Ñ>/ŽõÜ¬Ê ;Í’*ŒÌ@‚B,P³e̪Ô³kSµÂJ?Df0äÂ1)UÆUƒn™‚‰NJóx)|¢¸Nâc<ã$RÚ½ì;†¤ )z5o!¨Ð–I¤6s€…HÑ/Ç£n&q¼ÔNN¯$Pr‡ÑRîÔî5Ò9:²B¬ ¥) £µ;ÆÕR;ë³cÆd ó_`PKáûžý¼”¡Ä¿OÚ!–ÂÖ)‚e0P‘˜}îoG$&$R˜½J,0,ƒ1ÿÅ€X*ÛI©.C_–C,•­í a\ÿŠy`#$2wrïc¼ ÌÄi0Í‚U•˜8ZþpbšÇ*^%Žn ›ŸŠŠÁ”+K£Õ2HL²°/ò*p ´&ö¦Ô-®&­Ò´´b­%‰dIm­x\:µ3%̲°÷EãÒ©*a–/•F©ÄI¦XÐõJãÒh•*AŽ…]/•F§éL°„ãEcÒ¨”)a~/•V©…aAÏ Æ¤QÛD 8^4&­Î(•Ä°ï•Æ¥ÔÿD;¼DÀ°÷E”Ë—ýxÁªìº¸í” “,HÇT¼J-¿xéOL³`NQŽ–ÆiÎh1ÉB)GKçätJbY(‰/;„àLz[+‡š€MW7ì½2iMµoVÆY0011Øy eR[¾jB†ùþ‚º/…L:ÓªÚ8Ô‚q--Œ"©ìÚn‰q êPgÔHív§27޳`VKj£HËM׆ãe¾KB2)-gNKŠ#NÞºÄ#p£gåÆR`cIô`Cø‡Dj³M±ŽŒ¯DPÚ™0ú0ds7¾a5¼yç¨ °p ? Î†@Ùܬìváû}¤³_›9Τ}!£p67#Â*á/α`˜N ìŠ"}çq^,eRYž:QÏ4 ‡ {ïf„Å]B%•Ÿ!%È´@NO®˜@£1×2Ž!Ñ:|Ž–`ÿm·ïŠÃïMÜæ®Ïêx¼¼º³,˜ÕΛÞ¸ÍÁ•JeúÐZ1ı@˜®1üV-<¤RYÚXfY n$T]ÐÛÖR©lÞ6—Ê, ¶ëI›c.•ÂômÆX n$Ì »ÿÝ>·¥÷1µ9OÔÁÝ̵˜ÊÔÛ0ÆŠ«<&;¤óØÌ’¸RjW¥îc¬±ì9¹¾†U™BYì^V[0,¥”Š×q‰•Û¨ã‚Z)}_Ú¥‘NüR%ÔRùN¼ Ìë躳S[µì/‡lL"•Õ½€a DY•h,£µÉ¬y¾¬!3}aE!f7ïÕøùŒXÞïð)̼AÑ+ÓƒO!‘ÅLk›XeœÄ¯@”r*eÍIg©ø,c,¦¨JY¹ÅERÙÍò)‰` eT~­Øb©l­äaÆW(´ÇTŒ.@¹Tæ?ï[´žšü Eþ¥2¥²:GÈìŠG)ŸR•l ÔVМ ˆù›P ©Ô¶Ø™j²+§|JQXÍ^û)“ÅN‹šÌ·”¸•ˆjï%°ÍÕ¬×R;F'¶i-œr? âq©Ô¶§E¸ žÍM@*¥é±i©W ®ÃS¼‰He5µ¢ Œ­@Øð/ê¨2RY-Ÿör%\â:<ªk Xjcm–†À êÂ/Å\*•¥Ý'2¬âa5È1Sœªñ®Z‹£Mb%LÓZ<€DRžÑ–ÊŽjôA$…ÝéM¡N ´¤¿ûn“PHéuêG”™HÆybþœ;ÏÃ]"¥Ùé%^E %´ðß›A¯Ä)íÎ;²+GÄ4´~!‘vç,ßX Å\1&…æ´y.Sܫߪb‡Kas>¬’ €)ÀÓÐ9Ž—Òé| Ì¢ý~1CuVîcü|)2RZYOâĦxˆÒ»ör™43'3`5À‡] ¢S ¤Ýa©Ífÿ âS æBÄ%R™ÍYæ…L Ýqu([€;®H$µá©]ºˆL¡¨á^S‘¬v£ïÎL"8’t‚¯ê'©Ü¶Ûp‡S 'MPBéÐHí¦xÂ)”CÊóÔ¯£3*‘ÚÌVNÆOfHÀf^€fÂJ×£­”ѧD#(c%tÆÖFÓía?3¦Â‘:g®[ƒýzʤ3}ZU0P×|ìH@$¡vŸ[@ŒS¥j]D2éLßZ’QŽã—ñå"˜æµ#LƒvU›™˜J¥…"-=O Í06›—¾©PTZêÚ©r‰¤µ„23©PX»T‡"©ìEÈ” †±=hA™´¦ÆN0²Â‘˜ÇKë6‚V0§*ÑGKã“ËȬ)ðRƒ4ÙK)„X2Hã/€$Ü^hXÂú¢1iuö®g|}¯4.¥>€„¯$ï‹Æ¥Ö:H’àr¾Ò¸´jÅI_aç‹Æ¥Ñ*P‚ð z^0&Is‡EÆŒ®„ßEcÒê'Ax/“F¥( ƒ+áwј4*ÃH]AÏ‹F¥ÔþD’ðô½hTj¥Ý0ep…|¯4.Ú¸EÆ^’÷hË—»xL’b<0Î+—’Q•@b*Ì–ÖkÎ;$X…“*Ô%Ž—_ÜÆóIV0©h…GKíôVÌ'*”Ò^wX&åü32Ÿ’"9„š ¡PJã/ ¢ §Pá@¾öS#$Ie¶W‘Ù”ˆjé\Ig©+HD§pXˇHj»Ç »D 1Ño*¹cÉFT¸Û’í¦DßFÏRž„Îܽ\Mij'rFS8°}$‘t†Ú&)¥3V†E»™:£uK³»¾¦PÐx‹,ϛѥÙÅð ~Œo/b)4¬çGÄŠD#4³Ý&4ÃV·}¾ú ‹Aú$ýÔ·tÖW&hÆŠb6–ö'…ÇDƒÎŽ{—e§fL&µé©ï"Á(˜•&tŽûƒÊÒÜt)„œÆD‰­X0‰):ÿXu …4n‚Ix²Ï-i!”Òôxé?‰H0|?æ*Îûx¼Æ4ü\zWlƤRY>ôõ@Æÿ¯ÅÞC*µ©nÝ"ú%}²vnæq5†¾á7Ó(6ü_‡nѼ٠’õºnÆÊ¼¶oçg…u-í=韠Nô9~²3S,•íì{D4 Äé:`µO=$²ZéRuP DQ“ùÙÇõQ}„\æa4Kö}Ù’(”8BfÉZí…5C)¥çËVæ˜Cñ4%MªÎAàJY<©d S(§KíU]”Hg§ Q0fáMÆBšó1J›¬FöI'%"~¡M\ µ•-²0‹1¿0'.‘ÊXâQ (S'ûí4o—Ha¶Û’h&R èâQi”ó«Ïl ¹þò¸HJCo냌 ýò¶M,FZZÄBˆQñ…C7[AÎ|Ò™Ù%( Z8”§·Àr‰ÔvV8+*… }¿unTašPKí¬£*”©g)ªg&åm‹ý¡–Õ÷sÒR<HHSåxg%®&”Åîó}ÿLlŠ)òšµÆ&²!Fc­>··5C0…r*ØÑ Ö ‰ÔfúÄÂhЇ´ÌñœdÐŒ—Êʆ;Ö‘Á–SX(«BOt{$4Ø|Šmõ"À` vJŽ!–Ê6ÚC‚‘ß¡Xjc;&>…c;Eï]¨9ìï©Ì¿WÅÿeJ…b;Y_Hgjæ:êj{èE)ˆëh”èêR©,ŸVk8Semò9]<FÓX?œÊR÷J0¡âQú¸°-ëâNÒ< äHv6©Ât )"²VûÐsp4{P4ÉÔÃQÀŠ<N/„DJ»3Ú@ž1‰ç¸þIVãAlÓ7Ñ éy‹Hi¤Ò)ÔR ‘ÚNŸ•˜N˜–C‰TVOå:™1Ê!\$µ¡®Ö1ÃAº#Ê+ŽÌö§JטD «M›L-D ä0J¢§kÂk´/Ií7Ëõ&ˆ¢”&Y·‹B*³íæ-ƒˆa,ê1ƒDj·í¶ë‹Ä $)ªr(5·°1Ô~o+Gƒ &)¬â{õ&Ò›!‘ÚÌ|ÈA WÑ»0Bl”c(í¶ÍÀ,ÂY(lx¡ðÙŠ@/ÚSYnw'`f¡@e·‚çÝœÈ È¤3ÕÞh Ê‘ ¬ÌÓ:‚7Û¬³ÖØîÆú0Сb;m£8<ª¤ó|yMâY0™l)"é íûš˜Œ£U j,")-Ǻêü É KëW^äÄÒXóÄB´DL¢V ¥‰¤64®™––Ö•KBê†J×°áD)ˆg¨ª¡P+ÙÅ0 õYHL©x<^þÁ‰«¨;ºglô¯È-èyÁ˜4*eL˜g ¿‹Æ¤Q)aÂ< :^4*­Ò¤ZÐõ‚1iuF—d¦%\¯4*Öé¦ZØù¢qéÔÆ­$ª/•F©„S¢aÈõ"âåKJÜg¹’ñ¬ãcZ&… $e*þ%Ž–Æi'B¨Q ýÅ.D!‘ÕN«†<‰ny®˜MB—÷sAit5«6Ôâþ¬`T{©ÍliAU"ŠîÄmŸÖ„i@$¥~ÁWT…õ‰ÂÚ’ÎÞ ÕØõ§±µ¾­p$?p}îVRóº!RÆ[EÁDT»§%RšÝÞF¸BAÃ|²îÿ=žŸßÜa&“Hg§KŸ ­@ÎUXG ë½àHJd5;õÄ»*˜£sp³²ëçCñ­&ËL}lÇói—Wᤴ-.*ݺF*/ûdf\Åst'â/Ý{P)¥ëa+™W¡ÌŽLùÞ¦ìÀ×DM”Ò\qäV(Tù”‡îJ»íÏó¶m¼ŒnR©,'gDÔŠGÅÝ%K½u´”°5§³5høöaÈ­`ØßËT!•Êöç»èú¿D­`ÜH¸ïs9vyàáRY-u—yˆ+çœ:ç•ÇÐHáåÝY”aüú\Ý^y½ÔM)¥çKïWñ¤a^Uð•^“I2 ØÖo+³*…+Ö?Ôã%Òb¥˜U(LWÜ‹%¡‘Úo¾ ‰S¤a MU”ýRІzõ¬vóu&V…‚8ñ¹™/̬>^B²Ý·œÆø'Ò*£ÔHÑ«'²8íÖ^‰0̶ãPßñ‘†ÆVo·Ýjf1§BIj^¶r‘4†F¬¾QéõxjZÑì¶´ºx½nÊú$nR”O©úù H »×¦•vˆ]¡ Ì¨hs6£j^ÖÕbµÓ™] _øIe§-2¹BQúm×YyâS¼Ê¥¶VêÀmñ}@pØÆÚÉ­¾ºóš°Ìû‡3nh¥ðœ§YdW K¯sÃ|bT¦B §·•¶CrÅ”Mñ¾qk!.SIåöÚ%ÐÏæÚMŒèpR©LíÄŽø Å)ªx:Ò©ÀM©Ô¦ï(%³?8Jï^nÚð”}#Äfº4Ól×Ò!\2æ•àSÎIŽ˜¢wÃØ(Yš~~¹ù#A+¨PÊ9ï/âîNÛÇ8bàÈöØŒb\#;$åsÙš×Ki|è“á*©÷ãš)JÆ`óËjûsØÕ‘ˆëÀÅ ¬9ô»êódV<ªáصªP5O#OcAf…²”Mùµ}‹i¥ò´2t ­xZOù‡@«ñteÅY3²AŠTå@P$åy×–R®P”B$E SHå¤ÐS+žÐ?¹†@*#=Ë$^C”˜˜EMï×Ã_gÐÈê÷sÚƒ +œó 41%RYÍ’3«xD‚%¾O{ŒÑ<ÇhÈÈNe «@H‚$‚V …ÔnV‘–yÈI”Dôe‰fÛí†Õb&®)i“Б¤ÑÉÇÕëó“Ñ3€¬@ ÓŸ I€?S µ×¦@ÆÿV\ŃtöH§ãRašHí·}¾µã'‚URÓÑ­†TR[n·‡²(ά¤,å;6Ý øxîÀ¼¢Ì”HåµÝžF5ddÅ“†õ †=AˆÓLt޳$ S+œ¦ó‚߯zßS3Ûb¯~_ÊB›F1µ‚I:™ySÂÍî©™"©ìt=+!+4¦bu PÜäR3DRÚm7…–ZÁ(ES´ü…û€ÔÌŠì•á¶)ýÃÐ F sß49o'©±%c¶›õE QÉÈ Æ1”2[ƒ!X£2ém½ËA+)tÄxõôy% ¼f»[ùÒt7ü‚ d$åÕBB#ßK1‰Œ«`š.vضÞù#®f®¦¬¦ß™}m.Ÿ Ç1’2?¬Õ¼¬^Îbxß⨠†¥E&hD2©-ë¢ÄÈ ¶Ëd(“ÖÔ^ÄV0.‘/Gfj`jÜ ñ‡…Y‰¤¢q-­—¾LÀ­¤”¢B‹-¿ùd^Æ*îHš®Â ']¿°3ÙA±„UVr&¦!d ÆY1+a}јÔ*çF˜WAÏ‹F¥Ó:7´ ú^4*R¹‘Ì© ë•ƥю/<‘*ìzÁ¨4:M'N/“F¥ìq*äxѨ´JeGUAÏ Æ¤Q5¤J8^4&­Î˜‘̪ ï•Æ¥Ôÿ5´ {_4.µÖ¹‘̪ ó•Æ¥U+“´ ;_4.V&ä\Ðó"’å .l£:ɼÍö±q_œØ$`*®%Ž–ÖIÙ $S0£j1dÇJíò¦ÆKN¤DÂzñࣥqÒ¿qÎè.x¡‘ÚÍvé9|†ºj!ÚêU€-Â÷Ø8$R›ÙŽ;&Q(ªe‚Q$åh¹™I £ûÇù¬=Q×Híf›jŒ‚YzûkM3ŸQÆEÒZZ?¾Œ£` >)(l2k'.c;©KÃÍVˆ‚a-€"é ­1ø‚¢`àxôB+³Ä:3³?qe;øù")¨ÏÞUÁIiw³²ö ”a:硱lÈŒŠ¤³ô·Д×ï|r‘Ô†§N˜1i>óù¶¶Ð~¼$—1[²ÈbPŠû7›ç¤~@3§vå*,{™I8_»ðø{(¥t=l³V†Q ±[”PÖ%šÃöäÆomŒÁ@ Eêòvþ¯ZU ­¬®ßm½ãŸÀ¤@–®m}Ïͼ¶¥g$§ffI¶{? HL°(¤‹rÕ†q”He¦Ë&À pÈXCüµ1ŽI¥°|†‡ŒQÃ{N`Ñòg¼$¦“Âïå}‚ŠâY#`Ûßï--kÖ@f^¶†^ùÚ)©J«ÑÚtj¬uG«“Hmf§Î̤xÐp64Ïw)+-©íl±,#)6¬Æ³/^7Eh*S[öC0…âQÖí0‰”f»!0Åc†¯-ø» ÈÌ$‰V«ÝMáüå7†16›ÇKíd7)‘pÅÿ—êx+q”ГðZ¸˜Ñc=À˜Ýš¿•vFÃ}BQŠ ÍU›5Z4Æø•Õð¥y¤O FѦ¹ñóÛììíýƒ¦@’Íà¬!“'1\mǧ/2óHgö\0Y82ï¿c©Œ^³ø R&Ðs$›uN ¥TŽÊ|0_YÊ‘ +•”ò¾2¡•Õõçm=F€0Á´_˜CSHáô¾¯¬J$(&©¼4b’ú\ðË„Wç‘ „™@˜^rkLR©m_JxfaŠ’,…Î& î0Œ>µÝ€lU-C&Ö°‡]Q*±M8¡Èqw¥ßLnCèЖI¥4=&$”€ë€á(‰„R)Lî´¸ E*TrÌ۠ϧü{9÷ŦdT.•ùçf͘N(¶Å¬Ï×;Ke«gÂM0nø+oƒXÉìWpÌ¡«åKK· p‚a X9C)•çÛN KŸ:Ê®8S •vQ2ÊÄKkâx)|ÎYĆHЇ®²‰K¤0;'#”ЈQÚcÓéíóÕõ§DIegæÌ—PÔp¯ú–€H:CÃ4¨ù0ÔV:cÁ‰Gô{BB •‘ݽd‚!‰Ìˆú ‘Ò.žÎ5Áœ_Š)Êésº1¤!¡&“ø‰Y‹;V~ÛM? ›PÓÐJ94RÙm7½'"ÜbZp"’”Cxj9Œ›DŽZ{Íy ÌIg©ÍêoÂqÊf¼uÞuž®ƒˆ™2©-w%w˜6Á0 2fåMàa†Bj¯—–ÖAÚ„stRN»†ø°0C$…áwÒJqDM8J‘²»Mˆ¤²³ÕãDš`C³øÁ0; 0Ùð´"!H›`X;!iì¶Mk§ m1Ãxîõ[à`tEŒtù^+‚3Äó ÌvÓZ;¥ÙÃ^äL0H9’¢„xH¤³{*h”ù’ˆÒÉùª¨ ‰¤6ÜõÍËd ǵüé¤sU؃钔Ø$ “Úòm¥@ˆ-¡8âG°°=Ф3´EO¢K0,$±M9$ÒÙy!dK"(­HégÈ—ãÜK²2R'3%”–Ѡω¤³t\„ÑäâHB&©×JaÆ+Ž$Ž–ÞiþÌœ æµSàhùÅ‹*¼$ú¥áTJö…}üHÄI¢_œ)Áä±PB„‰¶¿h\ íUË!ê=/“J£HÓB›„ß•F¥Q*ûÁ¬ »^4.Vé$MÐó‚1Iš+‘$Î$ü.“V7.3Dš ãcÒ¨´hQ&àwј4*c>ˆ3!Ï‹F¥ÔþñÁ¬ ú^4*µÒiL™ ï•Æ¥S;ñÁœ {_4.­Z©¦LÐ÷¢Qɺ¹â« &èyѨ´JÍG6=+Ž$ˆ”/.p›5D¬ð‡ŽÎgËD™ ËrѨtJ'F˜-AߊJ‰£¥ô4Çü éLá«õ2‰4f\Ôå™bÒ55ª¡Dj3}>Hx ñÝÀ#a/VO¶²³ILL0(!¶¯(äb Y½´¦‡®Of¶’øînÇ_EÒY:Ê€IŠÓ[Ô²‰¤3œ4DÆK",ݿߜbg‘”†é®x ê£Yœ[ðƒQ¡”Æß[]åv1áÈö©eRÚ<Ç—`\ó MioúMHt §éÜLY%dR[j™ÜÄ–`X¿ù D’íF‘›Ö_ÐLÓkUË’Iã:g"3IiÃnQøïóA8¦b)¼¼¸4!&‘Â)£Ûü}ÿ¼Å‚1¡”–·G ÂÓ:„7Ö‰mï(–Æú=;aB¡o±¶ïÀ)˜@œ®kÛ¤m91”R9> NqÆ’†¹.ÿf–d ¤2ÒM”È—¸ý?,OšN·×[ËZâ)ÿ°´J)_¦B¸³p=¸é„Z©\u‚ÀLPV$øWHr‹Ï¶y>s%£kïeYIgy³"+Ä–PœRsÆÝWs|±3qah„D¢J ª'P$…Ýng†Ì•PØð·êâßóüù¹D"ùb‹„«éÏþÖ]BaÃݶâÒŽðÉjf›¨3`AÃÙª¸;ãäËnwÕ•¡Ýb2BaËë2®ÀXåÁÒÐÞ`dP0jyO­ºK(dñú&ìÚÍ0á'˜3>ìX&Å×|Q$¥¡ñ%€¡PbXÛí¥_R(…`©¬Œ¸ÊŠÇ(8öyô­œËc Ç„Dj;[zc…¢ÆÙQ¿7|v·Ý€Ë<—ãoñ£ñO R NOì¿Ö/1¥,~o[bÅ“~cN\!¥×¼.1)JžüV +¤R™î^âe)5Ü?'%-»Æó7fæ}fì^†n0‹Qý耣õäšyZ5£ÂÖ¾ùȤPàH)zàÄ-†I¥6U®.ó(§<ï6Û'yç›I (9R)L͔ģP¤!·ÙÄ/îø4»§/Í»AÀ¥PìÈ™íTÿû<·} Ì1FgR©Mí3)ØaÖzú†æÀþMÙVÉ4æQ(PÉ“÷ü잟“Ç´Ž“ ™b©l±¡’1)7ü«„h:©ütÞ†x”ÈIÔ <˜„@*£Óʺ‚JžTE!C"…Ù©]üIˆ_À“)d3ž¨ìyƒPè¤jPéÌt±qÑMU‰‘y¼T>¯yúÊŠg(k2—üîŸóÀÛk¢€Dj»ê¶‰BQʆèom2P2Vµ#þœz{€4 Å$0dòÓÎÈL0„>7$V"'¡(žÒÏ< Dj¿ívw€%&8+á÷}GV&æ*ÇǼ’2‘Bi ሶ)(’ÕpVr—ÁĤ`˜NüX=\­& ÌÌÐHç§œ‘)˜¤ÞES–Hm¦uÝ“1¼£ [WƒDj3¯»Â< FµøФ·Ô}H„¥`OåÍ{& fö7ò2hæ\C)¤ð†5 ŸY ™y½™Iv›óV¥p”Ú[IIÑ4£iì¶ùÅb,£~áCB"¥Ýv§J¥`”R"Vqd^õ ›™|+Ëíaqˆ§pœÎ4{œ-3Û¶8“ ŸöC*6Ìc£¥^ä&<ãéìfé˜ ©`£(³Ua4ÉÔ¦/¢[&¨Âº”`uÕ±½Ž‹¤3´â"‰R‰°D¡¼cÙ$ÒÙM‹ Œê)Ia‹¥L¨PXO¡€HjCGG£Bq‰EÙ×:2¶hÛ˜BÑ—&ð"%dR[*yH k×üP$ÙÎpˆŸ |Á°¢‡/­›‘Ì©pVÅ¢ÄñR¸e6Ý+þÿ…šù©8ÎB…­ŠÅÄK „J ¸`T*Õ¤IˆM¿‹Æ¤VM–éô»`L•²"÷Òí‚É ª:ÂDJ¸]4&­n¼%D¥ ãcÒ¨”a&%ü.“F¥”3)èxѨ´Êù#2]/“V7¿°™K×+J§uB„È”ä|ѸtjgD˜LAç‹F¥Q*#’™t½Ò¸4ZåDJa× F¥Ñi:3)áxј4*­{Ã$ :Vô ò*Ÿ»<…¾¼ÚÉí /XÇçD¤0éRuø‰ã¥öš”IæQ0§¢Yðxi¼¬æã(œô Ñ2iMǃA)Ææ³Vâ2V#¬”nx;ÄPJ¥Û–(¿†é ½ ³)—n¼ž{üö!’ÎÒú¾&6ãø®{7…F:?›oÌp å%ÊûíðX&½í êºèbJ ÔgM÷ëØd 4ºœRØm¶˜µ€)¦f³áËF„Æjà5–ºÆJ` ‡Ñó¶­“>£")íìÑ+s)ÕÏž€DJ»èÂÃL FéœUUhDÒêŠ é ¨·P ¹Xa™ÂðeEZ!á(¾9€&z!’Ún–;ÉIDµ·5,’ÚPg@x„ãø¶o>ÙæâMzJ[›ÎK ‡êͱê;à •tž6)º$˜¨Ö«rÖ³ ÔÅ&'KÓÍÙ#I‘ôŒ¥Å'uÑb¦…å÷FÙÇH(.=áŽå~]6[õª í.$ÆSXDÒ逄’`Xš0šëJºØ„Òð1æH‚Q:=WU‘d»QÉCOk %Á¤1­XW@ ‘”~§¿JÄ’`VÚf¨=ÓtQ”~‡Íï0EIºàíê½®øwYæÈËÍ[$%Óã®MbH ðïËjüóvf ŽTNä·f7!–Âö­Up Á8]Ç›ÓÝ q^uD9úìJã]B+¥ïËæ$D]O}·¼žën¡•ÊU»dòúå`Ie7õNBAÃÛæ§¿‹o»{»H*;ç) ±è®uîÇ¢»¾Ç º˜DJ³ýTꇰˆζÃÔìbb³Ýf/,Á˜ál5Ø}MÀp—}²P…ÕkeT""CÊî²kÆÕhWâ€pˆ¾ûë<™DÝ]ÅXÌì†q¾ÚBàkf¹(\»ùÄ“x„þ¶úó3€\ô{^Yís¾¡ùry!äBNö]C¢Ä~áQæá²Ølã­ÑwXPÅ^ƒ¹‡ —c".‹“µM”Æ·øñùÕ÷sØ­÷ÓHedK|’DÄp-‹š„@j+‡B˜Á qâ, >›i ]žséfõþyé·éJ!UÓ3ïLcRY ßv'ʉG+ãö½?ùñòZ7ì§:©ŸúP$ÔÑ"P|d ¥2|ycE<¦%Evï14e’ÌFAÛìž7?_}Ñ«&4(•Æøp<‡H IZ ‹Š‚D}¬Kiì`‘$92ô ÅAÎ÷„~C*µ©qX‰%ÁH½a´F4Ð{q,ÂùâEAVë/ï0 š„BGN4¤ñ² o»t„V*WíSË ¤),²ô£Ñ‹p/Ú¥ruÔ ‘@’Þ°ïú¹µvÿjLÚe¥2´3$¥œÈë=nÙ¿u ‚»pV§Ý¼0A!‰{Ÿl`[/ó’ÌÎûøê2E1ú€ôÐRÛç o³i¤He¦Q3C1JŠœº9â»´´û«"©ì´_L¢H8Šy‘‡"EÀ¸œsÙ¯´´·XcbÄŠ”9å2I¢ÂlÌq'’ÄCtÓÅìG{ÿÜÍá)Œ>O›V,…@HQZÄ[ÈÌëøD\¢Lå·ÝîÞÊHHJOÿÇ+ÌC#•ÛCÿŠŒ’`Ò0ŸÍ+Îeʤ¶Ü½J Ð$§ÌÈ€.擜£.S#µß øgI0I']ªþÈ ’l§T¡€£$¹vkðó&XÝQZ,†I(ŽˆŽy—´ËÛÚ]UŽÛlD, eé|—WÜÐ>ºD»L~iµÛôymI0L «¹¡œL»X»®Åô;ÿuY%á8´ª³šW/*“ÊðŽuY #Á(œiœåµu™=¯+³‡ÕdùqˆcÃqÀkn©Í¬1\H"¨%8P"«Ýdì5ÎðÆñ,ï¼pæb_ÖÎV·´F’Çq‹)wIm7«M3D‚QLpLno"..‘Îî­­2>‚aPÔ3g™t¦^¾ƒŽL zjÐåe°BizÌG‘`c"³Üq.㡸´; Ía„ÃÒŠJìêE‘t–Þp 1 K ´Åq‰4fö†f„$¢&EHH$¥â‘pXЏHj;Å! c…]!Ϫ¥N "&«kœÜ¡ŽG ¿è‹YB,lRA,ÙGŽ¥€KÂXüÏí*·˜ÍC{kÁ¨Tª‰u0<²ÃÛ€cҨƒ:$èwÁ˜4*íh ¸]0"IqPÂGÀí¢1iuŠt @‚ŽŒI£Rœƒá‘ð»hL•¡Œ çE£Rjä`„}/•ZéG†GÐ÷JãÒ©ä`|„½/—V­HÃ#è{Ѩd–ap„2Âò„Ž”0˜åG‰œö¾%ÒÙí; $‚Q|W4ÉayQK#¶{êïÊpHÕX1/µ“ÖÜ\Ì!¬ ÔHáø3^Úÿ-,gõÏ3 “ÂP//+‚a¼ŸI&µ¥³IÔJé{è÷ŒiJì<´0º±+‡Mÿ,¶oûÈ3 cqèuh]ï›D¶mA®|¥Ršz©{fA pdèúIjL©í´d;À 2Vû~¯bJYü^Š&$’zÐ×ÍP+•«Ax PâXtµ6ß¾"a¬ÊË6%V†›2@ÌðµòÖ¾þçxÊóîpŠÙèj±ñ(€x„®gC%ñâšrWßÊl×^ €@Ìð.Û—„D ³];ì1þ!¨ X„B*']¨Êô¤ c;¥x-øàRvÛ— ö]û @8f8ÛÖe_Xs.åe\ 3FüGD ϹB+›€¥ì§c)ÉË{9j®M~b ¼³)F®–~ãœÄä k[ž£Ž!‘d5JkØÍQFA èRDÒYCâP…-iìT4ERÙú‡1ú7邃Â*&‘Âêµé/Id„Œ“†þ’ãd¤; ƒWùJd5ûyé.“!òÐ\heõ|c1ãA0í®¨–Â÷=Q€€B8O/bUw5“HaõÖ›¦Aú3¡†ßÏÁÿV Ä£º»žèý‚R)LoÙ”ŠTc-ۘʥ3:C ÅŽœ¢l‡ð2lÅ‹v¬¶º¸‘ loFÛЊ—ùYlߺ²ŽŽŒ¥rÇDJ&±2µR¹A¼ž9+ÁÙ_Ù)ÕÆnÚ˜ýð€áy×¶ 8•¢Í> «S™ý€áüœÅˆè©"$R˜ÚƒÉa¾ãó]rpÄ’œ´tÆøè3ö î˜åÌHùJ¤6ÛõwèBú§6Heôžýõð€´¿`ŽHe¤]Èæ!=Ð"Y ¿øÃøÛõàœ_€Ž)‘Õi»éæûóð”a[÷|AÔ~^5AÎbœã;]‡T$¡¾¡„yDÎHxO½0„ò8A1#^ÂŒGÄ(já•9¢GJ¤7´:TÄy`˜ÎÖxäÇÝgS\"v|M”GõûŠ@"¥Ùv›ñÀ0̪êfLZÛI* è‘Ó|ÙPImg—M†< ŠX‹T- tfà ñÀ _x “Hgçˆbô oa©­Š`Ì#b~á,B"Ý„"óÀ(b,¨):ˆ¤6Ô‹ø‚w`M ÏÆ“C•ÔŽöÅM„ç%Ðb‹šæ “ÞÔ6©éÁ‘ͼ9(¤ó³5/‚<8‹( nù"é 'øŒkWX&…©¯³âÁa¼TI¤´JDˆÃÄÆ°™—EÒZjï<8îŒ#dR[Œû⑬†ˆ5$ÄÃ*”#Ž–Åéh\ ”ÃEÈ„!ìY€plK%Ñ¿¹M:˜£MÂË_¯zdðÄQŽ8L*ƒ‰]0àÖJ­›è"èxÁ˜4*E/öÒí‚É ¬Î‘p»hLZ¾˜ˆy ãcҨƢ7Càwј4*Å.ò Ç‹F¥Uv¨º^0&­Î‹ z„ë•F¥Ó:rÁ¨;_4.Ú¡ F=Ðù¢Qi” ]dÈ]¯4.VÁ Ä<Øõ‚QitšÎG8^4&Já‚<Èñ¢Qi•ºŒF¨¹^0&­Î`F=Âó¢1iuóÓ²@"è[!ƒ|‹}Õ˜óL:æðBTpˆ)«‡bºÜ€øÛ…Io½8Q4¤öÑÒ wPF‡„Fj?»ALtf%@$*”¡H:ÃÝÖ÷3á-™Ë2ému²˜`äûê9EÊó@íîó;±ÕsÝ ‘ÎN-ˆôÀ }ÊS*ç¿ï¢‘?¼»DJ3;2å1¼‡ú††@j«Ù (ÃÓo!‘Ô†ºÖÀhG ëwí€LJËÛ>g¥2ÚA4µö¸}ž$ß@™t¦¶­c<8tÌ7Ϊ‘´` Å6©Õ¾§Î¨#ëÁy:a¬ŸÞh)¼æ@æ;r(cP>eR[êÊ/áÖ®a H;C!úÀ(^~™ß2R~lÍ·¶›Ô­ì B² Lz`Î/4Gˆ¤3œ?1éaͱ#–P:Íå½Dzì„&¬tG-81ûcïG¯ô‰'3§¢QÞ£¤QØGßÊD‚$:Åÿ|ÖƒœWÑ* …åa¯ 3!ÖÞ÷Œ›‰áïB©-ŸÚ*'1!ÇìG”îœŲÿ/oÇcLÅuäÇ(*áðʬҒüìTÀ<ˆ'57žväÊ${ O+èÏPä14U6B"¥Ýç‘dþ@` o¯Þ‡TB"…ÙiÍ+‚A ÌF„ÔKER>VÖ„£ô©b×g. \97¨‘Âfúü–Qä­ëÛÞºNÑ•He¦Ÿ›LˆPÐpÿ.&}¿§~øÊs¾&•¥ÝQ1)BqL„wì Ë>/R•á9«š +Aý„Haå¼á"ò â©Ü¬ä#ò b ©œ´ÖÆB‹D ïöØ ¨‰¤6Ü­P#)¬§C\$ákÁP (MT`iH6šÅ/ Ô`f$b~áBB"½¡öŽ$f£~!BL"¥™¡™‰ ~㉤4üœô§!“"§DÈì¦|‡—&DRZ~'ŒæX K³fÊ É2ënTfvŽZ(‘ˆRP£ª¼A"é,•!O”Çé„âMOÆßËb2©-#GJ„Âh¶ÒÎŒÀ±<Ï XÂlÒóv…ˆbRºœ DzCÛ!œTñ$q¼Ô^ZrrA0çšeÒXjXÂ@R`w×H2)L¿$GI–¤ÀþÖdR[êìéB€`\zö€Â$“ÚÒV"ˆá8~îæ6¦‘ÎÏvÃIýîÈj5)´«C £óÖÈõû/G=ðœÖØé–SAøŒÖuÐu‰”f7›X[0ˆê§ÃH$¥Îb-ö;ÒH(µíi_‚¤È1…Z¶è•ÔŽ6±’L‹óã lj?˜ÕJé{xéç@(oDèæÜïþü±ªøã5F&­2¤RY:@$ˆ‡éæ§®vàfßÞB),ß¶"œQˆÓ5¹9³Ïkr¨’ÚÑkÆBi#`¶Y¢•E݆áÐÊÍèŒÕùõò)F„@ÞXµïs™I6£4†MŸ1 âÃõó«>´ÆÀ¬ßœŠ–’­Íü•"bòt4†1”Vûi@ â 2|˦0!Úê€J(‚`Œ¢$³ºŸUٹˆ?»Ýi BA%€Î"ÞÊR:ióš„xÆ0}=߯>(ª|Šu+Ì ¦„b†÷~?PѽÖ¨è¦®Ê Ê8 â!J½ÌmÛ¾<„Šñ4hô¢?>ñ!{jÞRWj‘t–Zº 9ŠRdž¾½ÐpŸ©¬l’3"£ ˆnÞþ~e#Œ@ µ™nÔ":„c†w]DÄE²Ú}¾ˆ”L:bƉCa•QBDûÏ;·¢•v£—õ;É\ˆ‡ _è}u÷‚ (‘ÚNQKæB(hœ¥çò|2¼Á¥R™ÚŒ1c!7ü´a²PïJa±/åâ:ËTe4òÆÕ²lœ†")ìÞÖ¦¹ ÞŸ®’+FõÁ°|¥R›ÚöJ&Cd¡GÐùJãÒª•."ò$9W´‰ñ%_(a›…7Æ…wŽŒåŸÄŠ“Rq&q¬4.ZI„)LèïJ@$¡Ýž%‚aé¶JŸj€cÑ^§µ=|$B$¢ZÄ$Ò™ínBAéî?ú&¢HjCë dEñCÒóýÚ¹ÔŠNÂVfú8¼`!Ô?>’HJÃí´^=ˆ†pÓ%ß⎀„LJËÏ—eü›á c¾D{Qºâ"©íœg`@Ø0™•Ú _Ñâæåíˆâ'ˆ`ܘïç,MËÍéŒÂϦh‚Y:Á© þ»ïßy²Ä°èôXexÚÃi&C0.íYœ;Õƒ_9õ_=ÎÍ~@&„Óº½¨^…<´R¸Nc ‚y#`îa¢bðÏ÷,1R)M}å†ÑTÄÄÊäÇ–Θ9Àâu(VÛ÷Ó« q¿lú$¯ïÿ $!¤pÉö8_.Ùlá ÕÒx¿¬†b"”ú d2%R›étqÆDo÷é÷Ÿ›‰-V|_±rÞ‹ía<@B Rá’c–&›­ª|û8 ,§¥¬Æöñ™@GŽ”¢½Œ’š°ÌkÙöç˾ü kˆá(›d:YÝlÉ‚‰Ïw£uÛHiõù#ÇD„@ˆR ˜§º.‘ÂìóMÿ$Bz8;$’¬Æý±3  _pIgi¡¸úpÔ~/û} ¤„|¼ý¹"òÿ);“ìÈ™^‡Î¿Uxu²o6£ûŸ¾L1(Rö›•‹`g+E\‘µ—Éᤞû`*Ë5§…™: ?–;³³maü/!”sÀ}, j·óÉ¿˜„ ¡¤t!Êô‡+йÙ[?q!‘“Øíl x•)Aef Â1FltÆl¬%ÀÊ•€õ²³µ„…pNº·„9µásŽò$„£ú¸|^çktRˆPÛÙÙøá°}\¾Cš[ñËòÒôìŸTŠ„¤È}Ü/©éŠ“ ¥éùÌÝR"Š}ÈX–¡¶ô©„…h àïÛšÚ2”¦ŸŸn{Ò„ÃüV .Aeåó/w@H ,Bgi_© Ñ8Á>â^3Ò ö[|†!œ•V3c!–4ØûÙ¯­WïhN³¥Øjb‹ÈЙZӌĂh`ZíÝ&ö2µâ÷[V–~nœ) Tc¾™…YqŒµ6}¥Þ)þA‘B5f¾Û„YñŠÂøgîË* ¢‰ö° IÄ«Xà½ÙD"2AýNˆP.„AùëP¡óœ…ÒœvÀw„Ùn²óÙÞÑWq|<üügfA4«Ø^ZGã'&A¸²ç<øØŽM©™M©˜ŽOÉ~Ng*‘¢jñS9 ÷Á6s‚&©ÁLˆÚª¢ÖMVƒ™ðTA©0NCyðRC£2Nƒ™öTC£²‡R‰ðRC£ÚöÄ•Ç!U´J'4ˆ ×A5´:g32®#UÑjÍÈTˆztJ‡â3” Q÷!uÔÚEhd*„Gª£U§¡\ˆ:©£ÑZ_¦BØsP YÃ}<” !¿!5´:£4ˆ ÇA54*ç3” Ç!5´:g32¾#ÕQêˆÍP.D½‡ÔQk™‘‰v©ŽN½è eBÔ{H­Ú¨%BØwH¥Îˆ!åHرâF‚ùB'ã &âµù%) 3&=âÇ¢ó±;ú ìHHP›­ 4ýà°z„e(m¿´…ô>YˆF&Š„N™I†ÚÒg*$„ã8’¡3´[ì‘°öÚ‹4¨ý.Ö±„(ÉI¥Ô—rI­ìRÁ¶jÿ1IHÐÙÙò‹ð¤k%¸µÙšö“Ùˆ²E$ëéãß•NY}1*Ë“]Q%øCãlÝÎ^-„…áZhKèGÐ#!ÂÞîm»ùà ãF|à¹p#¤BågË<ŠzHRÇŒlm &š2µ(\çݪBzpš#·5 bÄþË™”—wôËï%ÁëD#yÖ.ÇÙŽUÑ’d{•“²vy*c?ÀÀ‡ÚÜçùWðÜ.AeµˆDx¬ƒEÞ—SÞ’´÷¯)¡Eéûð÷ {Hªm«Æ †Ï3ì $Cgj{Œ|HØænÍ=¶ a»zÁ(¶²¼·òwpF=VÌæ;ŸÒŸuKÁ(g$*;'ö Ýùý5'¸µ™ÝvǸNJØ<ŸÞ‡ãöxÜçëÜÆÎãa÷–&Æ#ÜÍrµ{¦O¼N6{œ¢çÉ}$1›·wRZäÒâOÖè£l÷ð³rdÎÛxŸÍyÛx_Н“%¯p2R ÊÉ¿tX/·ÇiÇ“PJÿH»…QüþÂÜÄ•ˆ'ÈL™ÆÞj>™™ý ˜í â»f'8BdŠ¿6²áçè ñüÚ˜¨ËI?³]‚ÂêaíØû!›ëãK‡ßq]üKP™Ý e`òCc¶ÏÓ¹e&=ClÆ*?Øûú‡§Â”¸E|NN¶/H¶í],NÅ{ã$×ï?¾À™éÊ4Fñ4‡¯£È*4žOû†fD²¶/´yû4c$ÔûdJQYÚî`F?VØæ>ïžæÙ4Þ8„t¨í©Ì‡dmgßÝmtÌM3{d¥b·dÛÏ—?á"A|Pà–`X§¡Ak!EeºÐá=(nKØv£6näö¹0¸þÈD´¢65,”°ÛNç=Úÿ¾ Ï Iš\&—² QÚé³À´y_ŒïN-C–;£`:ü =Ñ5n™‘”¯µ™døƒb ï¨ÆDºµ•í5fèc…l¾å@– 2ó®™ø¨DvP3–¡3õE?$Ю[ª¦Š!Bm8ŸÚ„}P”À—÷粡°;Ÿü{›ÈM2ÀÃÆ"Ä÷ÔäR6 j·ïmàö“‘ÔÞg@ÔfþÅ´c?8jóŸþ]ßï÷IÙ”)Cgêý1…Ñ@b=f«CÂSì#¥vóW‰p ‘“îñ0Ò‘ðy‘­ìzzu…Q $‚6ó¹ˆóïs5q‹>$è × &A8ÌÖ/¬ Àºj$NåùfJEì΋R $¢Œñ¨f“Ýùl¼Næ?8,1§eRåìßG;Óïr‰5ƒ!ú#…éÊ7¶]"Tf×%¡ ÄvPçY¡6œsW˜ü8íuš/.BmgõAf¼Æ»p7 ›¥Ö }p”..J/¡·\°…’xÀv„åÄ0”úà°®#D¨í‚¡Ì‡%ªÃî[2Åf¯t–ö…’ˆŽë§I„ÆÐÛ³$ÒCâzžCdèL AÄG < ;\„Îpmþ3óQi"&°„•s öˆ ¢ùºÖËfÒãšø‚=ËáG£pÊ\G8WŒMÄIöÚ~Ê\‡&tZ½?~ará¿™·¶JÂD¬Û‰²™1YÀ †ÆBí¬W›Œt ýÏb+Š>ÄjèÀž¤št…2<ª‡khTÆW0ÇÁ~ƒjhTFW0Çnƒ*HŠwÔHG¸ ©¡ÕWÁ;ª¡QÍ=ìDqB„½ávÿy)Ο•Úพû zGï'Ìø†¤õ—¬K‚Æîüža pPÔtvþ’J‡Ù*JÙF$Dè-¯Ñ™$ ŽK‹LÜH$D( O6¢2!•÷æNa&§W@&ÉÎàâ਴š:·?'b²VÞ*»·µ`„#Bú;ýxì]æ\$A6–û¯7–†…ßë±C@(Çî¼½ÍÆ÷1„Æn,vªd6,ßž¯aR#¢~Ù^ J¿§Ýá/¸'möŸˆ­Ûú„=Ö‡&ñ$÷kÐ$êé kPÞ¶»w<{ ´(}~±–y ÊÜbÎ÷o‹fݵ·Và%_‡¯œ}aIñ IÍ÷ìoí\.±P÷†ŸŠ?<pPÔæýyŽg‡ Úã *3[EÌøÅXƒ9þ» zûÞYÈp‰s;;š®³H ²½óè¢bMsZbM˜+³‹Åɱ"Ì3Ù¨³%ë7.&Û–¯Ý´.GØgO*´¨­.Û/-‡$g@TfÞu+óÔÿÖ,Bmx™·rÖ?Ò!Beø Ûþ),e¦":'…{«‹ŠƒB ÀÚv96ßçõå¿ñ’ 6³/Oå8(æ€×XTf>9 É@šm:]ò°}{£»ý“ÁØ>ð>_®¶kO<ÝÖ]š“Ûu&b¸Zz0µÁaý'÷v²¸?‹®|ýŒ+“”Ù‡,Biøô×£r¶ù+ôm²õù€ÛŠÌÍŽ Lžöõ_Ïn„oPà–°ñ°ú%m»ž‹0±í½ábÝXQ€Ü'ó9èt>ÇÉ.A&†l–AkºAq[ÆÜdûwúœÂ|?Vé )j[k2§èÅ{»Ÿc†d²Z­$KÛ>Utƒ¢ ÙMñw&Ö+lïiû Dqp–1 ³ÓͶ¸’9U*½ýñ†#"ŒY-ò¸ÅÇ`gµa~ò) 2 ä½mSýû®µÞW£ ¡³44˜I‰ÚÜ·™ ?Ô.j1&¶ ¹·²‡<ó+¤çÊY‚ÊÌÞ5™Ü ÍÝX`ba‰/ñåŒlùóöNÌnH”ѳãÉú:]d‰½BvVçï[ù¹±bâ÷3ÀJ¦µÝÅ'湑¢ŒÎ¸Û¦éúŠr°dÊP[޼Äpgd†mÅz?*‚K|+<û௻Áyz#…}^)^âsR;[±$ŽCCÖ°Mß5çŒ(G‡jÓ×ìO’HÜÖæ<™9µÎQR¡t<ÛyÝåÐ<]ɘãÎ8ñÛÖKÛó9:4Ò¨ñïó.Ú®+99;LTYú™ZÂ98®_ì!:C_¸¨ƒÃÌÞö­òçȉIÐÙÙg#cLˆMšX—6¹lÂFþJUœƒB´q‹©$Agçç|‚tpT‚6îï›Ø¤ÍÚnMBÉ@G„™}9|…Eè,Ÿ6q(ãx€m°­îuh`7¸‡‹PÛ-Š"#vm°­¥3 uhà¸2”¦?±ï L ñ·<ÈÇ¢T†¾@“¡‰ëá ‘¡5udAðŽYAq< 7E:Ø»j‘GhÒá ì\a|ü—œU¿êÛO·º&îŒZÜÄ»òZMG]Î*Z¥»f&ä+ØF×ÅÄm~úÃ@Ç®ɪ¢R¡+û ©¡VM¼"0õTC£2¼â\º ª +¤†Bá6¤†VwÿÉð;ª¡QZ¡ Gø ©¡Q9V¡({©â@ëX…ì<¤ŠV;7±w0ÇSGªHÚ± Å9’÷::õ+çç!U4J+2ÈÁ®#ÕÑh ®`”C]UÑè,]AŽpRC£2´BAvRE«t°‚qvTC«óf,æבªhµŽø$˜#ytJ‡Â*çHîCꨵÛñ{”ƒ}Gª£ÑZ¡(‡ú©£Ñ^Á {ª!kæÙ°e+Æ~CjhuÖ’…ñv,¾œæñE>콿°«y“â m R!|4:/ßîJĆ&@!Ck:ÏS³ÁàGˆPúEÒŽ×à¸tZÄ‹ÐYÚ®bâ54îújK»g}‡kp\B>hhŒÈP[.D##™¸jE)B´ÆgoÇ®ðFŠíïä :Ó¹Ÿà Lë&çç;#&ë[XNnBá S„Ê’ …å÷^™íÌZ𠎲å=ŸÜü|Ü Ñp *«›Ð ݈[©]’¿÷1&°ÄWò÷†o?gˆC£ôÆÏçÐÕ?"\ƒÚÍø&F8VF³G0ï7^|‰mƉÙ÷Móò«sE8VÐï;(!Dg:_ÂqPܶÏ4îÖÝ­kÅ|¡&gï¾’MŸ¯ á¸v¯L“§Í€¨<}‘6aœxp¿7«Pyþ<ÏÖËDà ÉÚìç¸oÙ¶´Ï"N~¸wÝþ™ø Ê3Ôäý°í>BMìsšP¿åhïkÓÚäÄmËxÞ-)!7ßS 1*[ƒóÎq¶%}»< 5™ï党ؒäÞÈ)Èj¤ÎZ’lð˜b¤N²³ýiÆ:vãtÖ‡ØúNY ÉåM  YùP6;Vˆ¹–Ã…–µ•ßG'`Çdo[û%äär'ä$ÙÙ—º`d°ÂlǾ>.tâ³Ùöf7ãÐA1C«¨tÞ é qÜýéÛVääJ6 j³õƒð+&¿ÀbfJPYݤ¥ˆÓbo¹mˆÒö–°û­‰+±¯áÊÌ»g(ÃAA=ž¶m]-Ääæ0Oáû°ÈAi[Àq{%WBý¶ëô‡ ∴-`â©ò±ãXX‹Æùé{œBshª!ï‰T ²D( ¿›cÿÛ3eßp·9„¾áÖ—‹QÙúÛTI‰l‰óê9²Ä¨ŒžsÙ#ñÙr!«UHQ˜¾N6á%±÷*„Ĩl¯óýË<‡þ ™RÔ¦~ùÆHÇ ³s¾×mÎù¾£§ܘ‡cgóýÇËû)Ô±"6ߘúry­óÓ 1³6èÿK`)ý:Ý–ùR v»Î¹7BtpÎf=ü5A̓Рrói uHÒf^7ðX"T†?o_H`°ƒ‚úË  2zñ`œ×I Ù¸Ùvïç$ð³^–…5ÑžƒR6ëy“{ Š“4™Ô~Ÿsoÿ ˜è ¤þšn)P{ùû&Á‘³YÏØõu%¸‰]ÕvöA¨,‡D ò²×õíóf¼*lrsþ¦0ôñLqHœQ“¢¸½ ­š¼ ÉЙ®™)™âÐPa5æÕ’ 'u¾kp ³šÙßw²Dh Ïþ™’8ŽSNãú}c)mr6è·¶»l ‰áà¨ÍÞÖ®&œ+œÉÙZmíìÖÒFâ78H9Ñ‹?ýÛÛù¹àŽßà0%5¾#lR[“³/ŒÕ¦w d’Cã„Øxòäˆ%Bmç_PÊrPT¢5¬YQ&þÒÏv³ ÅöÉ,‡„%^ã‹Ã"CgjÝÍË¡¶îé=<æ{ŒˆcU–¯9)G(; 5B„ÚÎî­JG©¹!Baø³z](ÁÁQ„FˆPÙÙæôŽÜà¨~µ\d¨-,¡ì†ð!Ckê\Œ²X°t4vN‰ÔçbóCŽß(’ÔDChä^ñq|Åœ©ñE&78©b3øx4^NQ(¹¡ICê8PBqk…ψÃÐXM¡Ü›©¢ÖM¢‚É vTC­š‡˜Ü·A”ŠíÓG¨ öRC£2š"È õTC£ºÿìy“ >‰•‘Êm°ã*Z¥sLo°ë Z™ÝבªhµNPdvC½G:¥ÃQJo¨û:j­s;v㩃O¤ŽVmdÐÉyHÖx b7ÄsP Y#Í/”Ü¿!5´:c)˜Ý`ÇA54*§(”ÜÇ!5´:'(2»Á¾#ÕQꈠPzC½‡ÔQk Øqì#‘ Å)Ækž™f,C’Š19­›·Q&C³z˜dèLïF1(“Áq-Öd³í,Ýù ¥18H€ð*̈Ý6^*Ä1i ÓK³¹8D¼ˆ %¨í|.ïŽÂˆ0E9lKOy‘…rT–gŸe±c04Ò.îçÐUïçÌĈ QÇg¤p)ÒV>ª¾¥K„ÚîZ`”n²ÛY…±v…Ùém?1…Á1¶à·:èÎ ªÉ‡˜µÙ}., ƒ1醸Û9Ƹ¸{«íœýt*ŽÈÑ…æÓóùP@äí¥áÝ‚0$ÈîÇ´¡9Ú“Û%¨¬|§(Ã+fÛŒ(æÛÎ,.ωˆ„µ­¯k+~!‘¶uó¶Þß´uw²‡ñÉ©¡0(tÛ„²6$<-f¾J1)jÛ'§Yn—ûÜ"Šæú±)Èb”¶¾ë†ó"››õï úbe´7·ÛWQ"Áˆ,·çÉ9Á.VÎf^ N°¥"Dž‹Éž~ů åÙŽ¯õ»–_[Ø]ˆHv#¾/Ç[Æ Dë2°Ý·)4qhI±3Ý6u_<澋û½AHQ›Zók4(î/¼ÎÒ¢rõ;63§A‰}Èz·±µ³/‹ ´¡©=In–•óçÉÍ0çYÀçâþžlçf&·ÇÄKÄo5’HdÇÊêíg× ¢6}ØÐ!<$®Í Úb©Qùú ¨Â”ø‡Uh±sÝT—QJüÃ[œÕ¨m¾##’h¼œmÆ)/·d¸•§m_eØc¥mö¯¹UîŸÞÒcŠ¥(LŸs“â¸}}Þ¹Ö'‹‘–aoùót¶Š@êÛ'r,å+EeioâŒx¬°‰æ!$Eej_? xH\BE|†Ìã»ÿpeŠQؾìáb¼ƒÂ6÷b~ÌkuÏq!övvz”ÁŽ´y“c . å:Ï/ö¦s\Œ@W‚ÁžøEåÞÎ÷j2æAQ ‰PÚ‘H‰3XÄv*ÿ?oÞèMB2t¦W©ð¡qv"¿¦¾|^2¾ãêÔfþ–p2\Ķ@ÿ]¾ÀW‚Qîó¡²[#Xú(½¼ù¼ŸÔeŠP¾È øƒ‚ŒïXãX¸ÛÇ 0Z0GÆ>VÈæ[Íb j;ëh¸JW’4‹…d¨-ý›6±g|ÇÆ^Ø49ÆRü šÝŒû_ózýà¬t›MÖ zË'µ.ñµ+‰3¬Ã–f>5ïËb H„ÚÐ./2ï!aFtø<Ùçå-DX†Òòó+n?eÞCmuãnýsüSÈGv¶Ÿ¯ñ=J}h$³Ë9Zd„µá–¢Ü‡¥ ûH.år .%Þö GÛá“Yn ¹µ™-!$â#búÕ1’ ›Í.þ7(ñÁQfoï+çÕI¹Û/Þ8ú"nÂ>8/­Þcí–Dè,ýƒS¡‰S¬cvë™hÊ¡3|‰„éâêy$`ŠÍÆ« ·]C…>8JÁŽ M’ò’‰;b6ÏòA ë°×½)/j²³›oP>8êìp :;ûðà#bp 42l&CRa|4'/òМ ëˆãQ¸%ÈCÜ ¨CŽß#'«ºý´P$«Øýéñsƒ°=޲ªh•Æ]dä#\êàÃÐX„¡À‡Ú©£Ðþ,ãÖxª¡ÒLCpRC£2ƒ¡öTC£Ú>Ãú·A$Å“Z(òÁnCjhuaô¡ŽƒjhTŽ_(òq’))QC«sô"Cì;R¥þ‡Ð Å>Ô{Hµvø`ç‘êèÔ ¾PäC½‡ÔѪ ÀPàƒ}‡T‘u—ø‚˰ÇS§¤P­Òò ùÏA54*C0ø ¿!54*Ç/ù`Ï!Uh¿Pðƒ‡TÑj¾ÈÐ;TG§^†bê=¤ŽN=! …>ØwH¥ÎZµ(îÁŽCªht†ò!ŽƒjhTÛoÏȹ ª +æ)­! |„ÛZƒ }°ç ZÝ|…ìp‘p­ðÆA¾˜ÅãÌȬz‡ƒx(JRá!qÆ<¶s…LtHÊÂ2t¦wgQ˜ìÐÀtªní&ˆ<¹?˜;QCÇA„숨„†òN Ô^sšKÆ:8)]ÛÍJV«ÒÔ®ÒÖ¡ý= $Cm雞; ƒû›>D†ÎÔîHP‡êʉM0XèI|Æ—–73$°C¢Œ Yƒ~ï1ÉvIPY­x;(&Ý­e{QŒœ|%èìì]–à޲û㪖Æ$Bmh[å íà¨mí·ìM"TvïÙyCèÚ¬oø¶ÄªeiP»ù \±JÚ¶#ö“d.ïëœcJ”®/_ÜÈL%6û)*" Å×Ç+cïÌ©‰ÝöžlXÅ·¡È'êE-j‰C9y3—ùÏÓf21×!‘F¡Øôi¢Pˆ p)ö†þ•àŽ3þÄ–j…?YKÑØ:°”‡Ú é÷—‘4¼»èÔf¶¥xÇ 9âZ–Éi»ÿÛ_Qé »]¶¬çm×í;Œ_P(­ŸvwŸbj9ŪÛ„…ïódƒp”g Žõõî@¥Eá9÷z•ê ´–¢EK‹½ëç¡ppFˆʳ-öÏ[4ï°;ôJTžï9ÉFIJ³€ãž7¤Fåëë‹DthbK5Ù¢ú$O6-jW{véˆ4³·}#í`q_ÓRÎÌ3%ǧSsœËôK‹Œ¥Eíê쨉ӿ—¿biQû>çÈF9(ïOvhQyÚ2·¢”ö‡·\hQ»Úâ³”fLˆ5:KŸ|®@áô´ E8VB…€œÉÓ¦<íýV'&88«ã@èa_RÔ¶¾{D Çm Å´7;É[¤‰]ì ýNå7V”Q çù¨/ džPiò Î$Y¾ ;!†ƒ¢ì¼å2‡ÉÑyËûI”ÉËÿ½áe~¿0Á±‚Œ±{É™ùncb¼l²{ng<ŽVű¢JÄ_E„™Üm†Oéiìä ´dIP˜½mæZÆ7(&! Ô-E¨ì®þúI‡„Ùɺ]|›˜® V¡òüœ6Ç8œ{™e­=|æ O‘ öfOE>üì—ƒìæd»É—χ×âæY„ÚÐ/D•â0£@l*Bêò±D( ¿W4ó'9(ÊH5—e¶»rÂd5ùH^v!æë‰âˆ$½pœì­p&6ê¢3´Mêrp˜¡ÕP¡6´kˆÄÁazE=?ò'jB2Ô–s|Bg¨†í#ÿû~Œ-Ž‚dh,ÏkŠa—nBÙú1hbÛ_¥ÝÙûB*ÀAQhXÿÕ½‰1“¯5ÇKøGÙZLÕn•D¨ ç`…78J+uB%*;o¢˜ð ŽJ˜Æ9†°„Ÿ³ñÂpp–P:#¸ÄÖj·Õ…&‘Õßß%"t–ÞÎmGph¤r³S°&¾Ü?iöÍâ84´]ï$jGûRTŒC²¬aëyš¼4Ivi<Ž¡vl„¥åï6'˜ƒÃ€¡²{k³G98*™Ç"­¨P;N’€‰ͪÈ[ÌÐ(}œ}`¢ãÆS4~â…ÂtÉ…è’Ìzì=+RƒÞ˜m²õí§š*éI†*!/'_”áH| UÑ*í¹H ‡ø2©!¢°ùYT1É~P•jRJoœù‰¥jÕä*˜ß`¿A54*ã*n¥Û  ²‚š[dz#܆ÔÐê¶'DvTC£Ú>†Á~CjhTóÅ+ ‡z©â@ë<“ê<¤ŠVë4E¦8Ni< ×Ñ©O¡‡z©£S?mœŽRì;¤ŠRg4E¦7Øs¤:­Ìo¨ë *¥+½ŽCjhTF÷(½ÁŽCªh•N÷Ã!®ƒjhuÎQ$‚ƒ\Gª¢Õ:G‘ õé”?DS(áîCꨵ“¨ÈüûŽTG£5®‚ uTE£3²‚ ŽðTAVp»ŒÄo„ÛZq=Dqˆã •BqãZ“™ã`ß‘ê(õ?ë$üh4>óH ÊhOgIÎÍîBδ†dõ§ú"CgʘÇü·Æé¥ w#\"Ôv׊‰ twŽ IP›Ùí Ôà ¹Ì y…&±4v~_*áe48+]ÿÓ->$Bièßð™Ðà0]™;ì‘XÈÚÐ.ú…Óà(»{ț¾¢ëéR ö:Û/*¥ðMU¶÷FìˆïË«Óvº~²@é I±õËÕ¥ø}^æ$Bgxµ¹-ÌgpT¿¬»$¨ÌæÝvJgDȶ]†Y TNÞ83”³yOºèßùz½žÖãA"T–?/oi£,†„¥= ï.2¯8=òò½­-gƒ·„ÙÎ÷ßçµøm”ý}9~—rÎLŽø޽­½c™Ã8#Fv#h&Ê3‰‘MŠÒrMœ cE)Rô+YwÔ‡{ç´™ßQõû}Ü,Fek×Ò(1´eJQY.t$¡+ζ8Ÿs‡­Øâd%jWæ¤ †$îRÍ_:à ª…AAælÍ‘’ó 2ò)BŠ^¬i솾 Ò,j¯ÙÔE J9bt–…ÛÓöt³ Œß›"¸;»¹kùŠdDÎá Ö¢rõ¹ÄXh^ÄK}jQ»Îm}f,"íLN(¡Ž'ë á@Eâ+(ohÖVK˜¢Ï¿ÐS‹ÊóU+«}2ƒã %*G{ñ)KAYö¿ÍVTŠb, önßÌ|”ˆ¤ ”ßqŒ©CåçŸ}¢XYöa^L*‹¦%$Emëßà‚Rh¤!v³6#Ô g‰QÁ#8n_Ú³C˜×hŸ±¤H–ßßñé»ÓŠTPœ¼æSñø¼VOÛ-î×ïŃo›ZRÙ¾Ö0+(²=½9]^×À?.ó˵²õîM™¯ ÈÔøœê<î‚„µ±}¢)i!‘¬Æao·à â,(¤?yuö6v}—ÑŠЃÔ,Aeöðn ¬;ƒ_3W6Ðfa›••­P RÊ”Ï3¼€=æjj6:ŸNņø1ïaw¯TfkD‰$÷ ÉbI°·³ U[ÐØfÔÄsÉ¢Bçù¤ ¨Ð¼´Ö¶üCƒÚÏOyw§ )!S E†ÎÔ7çJ¡‘ ™8Ó_2”¦?¾§)8‡õ·Í- J+:HAAº<_¡ŠzÈÀ›l¹F•L‘âzdÂ5èüÖV<Ñ”:hÐô%ÀÞJh%*"¦â&âXüâ£T×*Ž"Žníß™¯à”‘êh´þ((O¡ÎÇãÀÍž g›$E†ÆÂ:¦(]ÁæCª¨uð!¾BÕP«&÷@|¹ ª Tó lEx ©¡QóÀ|û ª¡QmOF¢+®4Ä„khTÆ;(]ÁŽCªh•N;0cÁ®ƒjhuÞN%á:R­v~ê$Â"{tJ‡¢˜±ÈîCꨵ“…È|Å)0á:­1LX¨ë *LW„ß  ²B:R(YnCjhuÆ:0[ÁŽƒjhTN9(YŽCjhuÎÚd¶‚}Gª£Ôÿá tEòRG­]„Câ*Äy¤::õ䔫Pç!u4Zc˜ª`ÏA5”#”¨·!54*û홪`¿A54*£”©¿!54ªù:IT{©â@ë”°â<¤ŠVëäDâ*Äy¤::õ}¾R•¡Þ‡äÅ ¸ÎÎZXÕY%)˜Ù¨8Œ8{'Ûjlg߉¥à”âÄŽFçt÷"JRpNÏb„£a QHVº† á‡$Bm§ä…ý$QýÕ‰Pnè„ýRpTÓ/ j3Ÿ}š8Šƒ›B’Ûɳ£à,½ìŸ³¨ôpËy––0 3cv}ÄRIÍì4Û/ôIÁQ¶\´­>hŒLˆÐ[ÚXdA*8Ìnnò>´OZlY”f'¿U ‚‚ú»¾H‚ÎÎÛÔ+T!a[@=ñ%Dè-£“‡Óœµ­E—­¢]ÒÊà®LU¬[ŒŸw kC’ 2ó>ÈÊRHµôxÚÏçõüÜ6‘Ÿ¯ëщ¥Eík{vŒRPÚf?åþ;½.—ç}Ãm^·ËóЇ­¦g»[Af¬˜ÍùËÕlûŽ÷×ëºí·Ì;| ö°‚ÂÐ)(êOÍA6!K #ˆbmÞ‡Mï]†d¶m³¿˜½¸§˜?4YBÔ–=“Áa¶÷øš;]sëé$Ó]–•éd>?Aq¿ïn²•­/¸*M!‘[ÊõÛÇ<á*ÑYc‰QÇF§¢iHÌÑ€ ¢2õ[’•° ¸_7šC‰ÚÓ¿´ 4ƒVÊî/S€ÆÊyâ+VÄ´2ÇÎgÛmuH0S+å ½kÐ8>m^<1šdLÂak™)Eié­¶ˆ¸¿0¤Eíëë± \Hæà**%ý@`9þò¸•áÛþ)lÅ :x…„…ÓÓn Vª‚2~ÅÈB‰Êó9PAY@3–{Ëëü|É(Å%(c‘‚1‰Å¨}{“€ 40ã:_çñh­ãú1›¬¦¶ð›pŠˆë°Œûå;îÄÀ¢0}]쇄RH €ìgÚ>'b‚?^ÊTÖkx‡Àû0c‰QûB¨b™°ŒÇ;&µ, J³÷Ù$¼‚b ͸Ûîõç[êÅ ¶ºÙÃDpÅ 04ÃÆü»\ß—û(æáØ›<˜Ä˜XÅ2·ÓwëÃñùÐYWq8*ßwa¬‚Œ_ÓLÞ×MÙ(­¾ æODUDˆ]ÍØ½êz5³ŽÇÞɶå%!Då1a77ø„:>6z?kò™` Îê¯òH„Úð)ôÅÂ(8Ì`‰5k„šBŠ µ¥‡$šBûË`’¡4ý\žÂXDÇ3QuÌ$ »ó…Ûq8IÁA²:`Ÿ\L{œíÝX™9Ÿ( ŽRV‚›‰’¥ÍPeŽB¢-a¨Q6‡W­l×tþŽ‚b+q¢Æ!Agg+z‰£à(%%fO¢<|öqeèLc‚(8LÛWÌÎ3“ôX"t†ÏÄ^LŽ‚ã)q#J%Dè-}‘*q˜î×2‰hG‘kKûÔÝ1§ëœ«°áöq/…F©ù¼ÅÊ)ß;­ìÞÔec1Ô®ý’•×o”è Éé) ‘¡±4B@ŠW±q8.;Îo¬±ˆ’ØÃ¸!ÂÎì}žŸ’¡  C0ìèß÷檻Ÿ²µ¡¢1L!Azrüímµ¼§••µûa bX'‹j¸ˆŽd2Ϩí)M4ÅJÐ>×Ó"¨YÚn.ˆüoÇTHXßË‚Tè<ýú&s’¨Ý,>ïžÕCdèLÒžÃÈŠ˜. ­W™ð6‘µ¶´³A!+8ÌÈ ÿñ8Ýmp J³Æþ’SQrÝì㘄üðï§Òòìç3ÂUhœñkÈk;[sòÃDè /ó£Y芈²%놺>l‚ú8_¼ËÇÎÊÏXw\EÙrˆ·ÿ4ÌNÉï[X[Ú½ BWh˜PÏoÇ…g¸µ]+]AAºJt¡á"$Amö¦vÂ/A‰ž¸^v쇭,Ö†Þù,±—è É"t–¾¶c+80ÑÔíVdèL_>K$ÓÚ2,Ciûýɹ&,4ð€£p;o€¢ŒED%’‚¦X“Ýd³à ”Â%hÌü‘fÄ"bŠõîu$öÞ®aûIà ò/` :­ §&£‚+NäZûÔí7N;WF+*ô#ûÌWø½È8È,ø@”F빯&µ`¡“Y’jâŠ]È\ª¡VM ‚Á öTC£2 âYº ª +¸QDÂ.žô~àZ=²_ˆã •Á‚^ß•ƒ _°ç*´B(‚ÁÎCªhµŽAdüâ*ã;´ŽN½P0Ô{HzâŠ_°ï*J5+Qð‚‡TÑè Ê øBÕШ¾YŠ^°ß•ÁŠ^°ã*Z¥£ `°ë ZC¿בªhµAdüB½G:¥Ã¡ `¨û:jíÄ!2|Á¾#ÕÑh ÌaüB]UÑè Ì!ü‚üUÒ,Bà rRC«3(‚ vTC£rBŒpRC«s"Cì;R¥þ‡PÅ0Ô{Hµv¡À`ç‘êèÔ†Y$C‡ÔÑh Ë!tC<+TƒÑŒïÖûùÆ(†WçâܵP°£B5XÇù$Ð…¦UÀ†ÎÉ6Ži°FHИYçŽLYpTßúNd(Lœ1ÿ­a Ö°¶˜ÄLTcg櫺ÊYPPOé“Ý…Zog!Az NÏæR öòµHA,"ÅÖ ÖØPë´KˆÝþ›­æ)·u`PÀ"búÅ’ ³ó ¯à0½GǶñ·Om99™ŒVp\ºÉ&â;•åê<’Ñ ´åÄ­iíwIt1,¬Béú]ø«q M4@£š„B2Ô–û“V!q›}tR¾ÝÎkî ËPY¾íò‰ðŠeM7®6 ùóåÿ\S¨]ƒÊën¬€°+Cùù>Ë`otž/‘ TPˆíQœmëþ{öùä¾êDxÃÝÂØ+$ò÷½–£²½Û<Á*(nóŸóƒhÒýÜ”5Ä¥¨,}iTÁ Š3ä:ïýäzû®tbÝf[° À‰Æó.DciÿÂbEYûëÕL“bæû€!{@ b8?L‰²à¨?´™B4–Öè!(‹2 ähËP˜q§ÉV¬c@l 83 ö-Kˆ­†öƒpÕ 1ã&¤(M}Ûž¨ û+ÿAô‡nßçOŸû] +áÿÅÔÆþ£{¤s³Dh ¿Ä‚¢þ@€ÿ‘ÌdË{ô+ÿñðn÷Ùñ[ÙþX…挨¡PÕ ØDx ­¡P}>ú·ˆ‘·¾ÕŠKPX=OÛï¨pÄŠøýB$í‘Â>’àŠûýmÇbtÖ6µ^ mÉ·˜F²Ä¨lgŸ‹GPàï_ ,Fe»€$$Ò¾@/“z ÐÂn„'œc¢;ãï<íŸIpœ<'j÷¾]®¯ë¶ó{ÍY$.ÄÞÎ.焈˜íæó}²=¿ßÏþ5×.¨ŒÖ^?‘±ùÞæ›ús"þ\Ãç\€Òê½öç…ŠX!vz¸z²ÝïÏÅ),*«»u\&‚"ìœöf#.ß&~ÚŠãmW‰{+oåÎl…WáB>¿ðÕÏ÷]€Òês>ìójX1ÚŽâsš¼@oR só“äÁiÚ”‚/VD†ÞÖ/P¡¡?¬AFºÂá4ymº¦²!vYç£ Ip\¿8K"ì }ôÂüYQ Ž+Æ]ÓÑ(¼’`ç …ˆ£Ù(½”àZ±ªNG÷è†öبrŠý9­›“ uÏŽàêª6n!3¹gÇ®YÇ|oT&d``BíUQë&ÊÀÈDø ª TÆ ¸Dx ©¡QÆÀÈû ª¡QÙC©Àă'rP jûìLÀ;©¢UÎSaÆ&ÄuP ­ÎÑ…MëHU´ZG24¡Þ#Ò¾6¡îCꨵbÈÈÄU&rhÖP†&ÔuPÎP†&ÂoPYA=22nCjhu†Ò4¡ŽƒjhTŽ/02ÁŽCjhuŽ.dh‚}Gª£Ôÿº Ø„z©£Ö.t!ì‚KãZã ‚Lˆë*´Ž/(8ÁÎCªhµ/dh‚Gª£S/€A± õRG§žƒBì;¤ŠRgP„âì8¤ŠFgýJ³`Ç ­”⻡mïþ@'¬:¿¿vXcVÁÇ£u›ßA;4BÓŠSWQ tüb¶¹Ïl„&õ0ó¡4³vÊDDLºî8E«’ 6³†ÂDpLâÒé’lIP›1D±ˆˆˆIHˆ$ ²ÙvÂèZ€ÛÌc’É6cœ‘Ë;€ 6{Û¶—²-—{‹åËõ±VŸC€ÊÈ»ªÁ¶º?[¹N¿Üc ¶ZÍ!ƒX!ýnD°³ú~о|ñEáŠéZhl½±ƒÔð&¥«í€0ÿ@iÖFã5÷’£Æéù¾¥q¿£A†¶9ɇe÷òÞæîîcÃn~Ö¶>1¾¢º7=Û‰|À-å|Ÿ÷šßoïÓyc­lÀ3sγ$ëfÿ ÆQü>†å>) 1œPF¢VTÛ¨c{0£1?Š÷¦>¸˜(û½YǦCíèçBDÒ›uÌ5j·mŒÚêµB+¨k×aëÿŒjØÂÒ>“ƒ °ßoÍ)*Ó«ý3g{ßïÙ©†¦¯ÜVÓ£²õ-êŒAHè¯] XÊûçéŸnÊDHêoÄÆ<­ÜÛ9 @ýÎkÄ8–lf±b¬F=åe*P8M¸ø‰ð?øUçáØ™Äf'¾`C€ÚÊÎʘš ˆß_.Dehûg™•XQí;tCjì)*S襤„¶ Ùݧ$…ñ\'Z‚"Ó×Èéý¾mç­FJ.®cŽÙ[¾œµÌ¤Äг/ÛÓœÃôù2|\h²qÎî¶/›(Ǽ„Äug «é–+Q9úN¡‘´è”ÝÂüp6ï““ NDÄæ[ö6c J»÷j~ ð„DÙùäšr¿®sà¡6´ÝI((¦?ýu’ÍW÷¶¨ŒO¬ˆžƒf J»Ïó]ã–ºOlgzwL:Ïûœ“’Ø ÎÛ¶˜oÀãq_=E†ÚÒ.AvÜ„&èfwˆ…í—fð×Âiˆ„ÏîØž!<|q¾°\WjŠOH\íJ"4†góÆ…„)&1?ð0 :;R ˆ Å#æ( Â;ì6le×ß·y™ºC'"JሉM àá *©wÊLø„F "1ßÅÄxÜçYRíéínw'öK7"Cgê'á;ŒBC0ao;=œ±ïŒŸÄ`¤ŽZ;‘† P°ïHu4Z¡P×AU4:%¡¿Adż`±ß^±‹p«@ F+ðßûm›ósæ‡}PRB©ŒŠ´ˆãѹͶ™‘ऊ±àãQ{YKM$4倰p;ë±ÁˆDÄ.@et³Å#"¢ëúGÔVWïp‡èµç\ò!lc¶«(Ìfƒ #"¦¿‡$¨Í2Ka 0•È šÊH"´–go Îp„Ä)]q¹Ñð— ³{Î6 Šˆ(]šw ºá )+ÃÉA(¡a¶ºæý]ç‚ ¶”¿³ü!B©ŽKKŸOE†„¥áÉ—GÁaý}l$Bgh܉‹à0»¯jlL"T†oŸÌxÙb¸Ýqôïr=ßÖmW`çô½&˜ë߉ˆ[Ä¿Ëò‘ÜS·¯­ìÁŒ„FeaQU²D( _¯9Eáв=Íóï»þ{ßB·ï½¡Eå:‡X!y[Äãó¿¯ÏÇÉ}[ß·‰ÜDrØ.J¶ýnÒÌß› Š3Òâ¨kº Qž¹1Æ9ÙÆØ{Þë|……&Šã ~>ü¶ˆ‹  »Ù¹è*¿mMzcuÀØÚ€zf"VLKVÄ”)ÃÞÌ>Ð2±bZ¢â|ÒÎOÇv¦¾f,P„þW„µqŒ@!4‚#ÿ€X,)jS_ÄW8‚ÿY,):[a+®;Ä£Ýæ>ù± Q[^wH\ÄŠûCW ’¢¶=ö t„ÆQNEY"Tv'c„Ž ˜¾­CHPXy‹ Á#ÜvjhT«ù…Säv”LJ£¹”.l‰ÈíS>z)­ï£!àð5ž½ùÏk²-EHhK3náxy_«lzóN¸ŠÛü7t|;QxjeüÆW‰ÚÓ–"’ ´í,gî¨þ;ß/¯«_ó……Ùû¼Zd,@‚C6_Ÿëq~NÙüR5$HVß?ùíŸô Žà ëBq²w³»ão4Q[Òˆ“JH˜v£øœ>Æ<Ž)AiFøƒ+GOâíLÌù  öú\ÈÒ„B$(Éèî­=Äíú9UŠcJP~ùjçXÐ(ë?Q ßX"Ôvvâš°ˆÒ ³Ù€Kà »´)Ìãž޲ Ko‡8ì9¸á"4–gÿ2MPÇYó ›ì1»Ï´±®û*»«G%(BÂÒU÷Fn ¶a2t¦ÞNDñˆ™ˆkÜQB2t¦÷޹àHÅbTkÐ9>xâI š§ë+óá8|8imë; ŽÐP…潄qxóÛÚÔ¿]v`G¦¨Ì!*tžþ‘”èM<  B†ÒôÇ÷6…à°Ä?X¯S¢7^×Iod+ÿKAAýb¢ˆÐYÎýia#RÜ2Ô–s_žùŽª?ÙÃwäí—LtD$TôC‹ÂéÚúVäC-Œ†zmÿ®žzh ñr>!5ÞȼFÓj#Ôñ|(‘Ûn¤~N=ì &;£4[©¢ÖÍq0ÄCˆã •q §ÒmPY!”†·!5´ºíÁ&‚ÕШæab"ÂqH ­Îå"ØuHZg”Ž`ç!U´Z'2ñЩRG§vJ!±ê=¤ŽNmgôJFˆï*J‘ ÂDˆã*± ÌE°ã ÕöÛ'*"ü†ÔШŒSP*‚‡TÑ*R`6‚]ÕÐêœOÈdD¸ŽTE«¯“¡Þ#Òág1ÊFd÷!uÔÚI*(¡¾#ÕÑhW`2B]UÑèŒX`2"üUÒÎA¹ˆpRC«sVùöTC«sJ!óá:R­Ö…ÌG¨÷HG tø J!ê>¤ŽZë”Bf#Äy¤::õd„HÎCêh´Æ+0Ážƒj(5F+(nCjhTÛo/dû ª¡QÍWL"*ÂqbGÌþÛÞï6cý¿3 Ê?jQÁ|8*·èÁôƒ¦Tì„ÒÅÜzÿf"$h̶“Y8怛p j³›Å0ú!-7á‡#Ûl§È—«ñŠ=DÄ5tv~• uÀN¸M÷Øau@N°¥áºÞÉàC ìé ¢4öïRàAá"Tf¾ë•À‡’ŽN„›ï %î³Љ¡±<ùùB"8îžjCß±Kä‡À!Bmøö+Q% 8ì XÔ~ö¡ å¤ŒP, *+[±OèÇ$xâz]­Y„ÒðåW4D=hTsËéç5t½,Bãõ¢!(êyŸm/yXYhP±„¨ í&YE(ªkQa{û̘RT¦'³$袚{ŠgÛâ…eœ½½Û=mA‘‡c-)¬o3ö˜¯Ì€2¾BT†vÄØÙ¶ ÝòÈÛ‚ë–qסò[01+ÇȉËÅpšëq’^öñ¨vÛG# ‰uXQ¿ï˜²µí-†‘øv•ÑðšÓmˆšx/¶d‰QÙ^çP!8°Û]~x×Ö¢rµiF$ñ½)H޽õÏÓ§-)ì ¡'–•í™›aLäâ‰%Aeušû =PÈ™0h¬ìŸBB¬ˆÁ$ŶéÝwÊ`ò ýÁ 7hÃŒÊõL.^û<{Îî³W½2¶Sõ 3æêûÞtñ3Š=p ½‰ö;ìäÚ £6¾:! ðƒÆÚ‡ÂÑ0!–£2ÿ|mŸd @H¤}"¯&AëÙî`^¨†ñÕÙбČ=¬°î{Êšb¨ñœÏHaû:ë@؃ĤøžÏÇÙ5® ilRT–óâ4q+l; 9½ì;å¼Î ,*+?‡RêBìÄ©šÛ”fï‹?@D>PŒì­ÈüxÔNkª‹"‘b½#Ì÷u¹=Çj³·ï+ò Q]$H†ÆôsgÃF}@ë"ñ´ ×Ûùþ z"T¨íº=‘œe× ÖûÿßíeSðÍØD¨í^Û»*‘%Pó;ÜÑ × ô;½&èçØ5ßÙvÕç3ýÚ.Aauö/»ôAŒ5Ì·(C«S`mèg¾ {иtI|zžÍ8û÷smj+ zà8kaƒRŒDhÆÕÿ±›ë\Î×$àAâi˜£…ÌX3Y×m6!)Ñ>Ö„S†B†Úr±Š;pÜÎ"t†öɸC8®_ Ó”tÐÀÄ2êCH†AU–/Ø‘9<àX†ÖÔþ"æ4î€jpj;ÛyN¬Cõ,IÍ|w}ûI( *h:Ù‰éq-†1¯c™³ûSwlCdT,Þkû)“šTñ ¬@ëçäÁµÍTE§\SN2ë¾Â3ðaèL&ƒÀ´ƒÚª¢ÖM i‡ðTA©°v'J:„×ÕöcÚAüÕШ¶GEYòRC£r2AiöRÅÖÙeØyH­ÖɃÌ<°óHu´jg2õ î#Òá‡åÔ}HµvR™yxèØ ©£ÑÃÔƒºª¢ÑCÔù ª +¤ƒ0ä6¤†V7_7Â=°ç Z3Ê=„çZó™|`ß‘ê(õ?Ä(û ÞCꨵ‹?ÈÔ;TG§¶–D=¨ó:­1Á<¨ç JqÌ;°ÛÕý'Sì7¨†Fåü2á8¤†VçìA¦Øw¤:ôN(ù îCêhÕNdê½Gª£S/A¹õRG§6 !Qì;¤ŠRgDŒðâ8¤ŠFg,1â8¨†FµýöÂ<„Û  ²ÂN&× ÌCø ©á@9_-‰—`ß‚‘p,ÿ}Þížð9Îþwã Þ@Åþ¼VŽEå2Û=Üì+*ÂFíâ›ÜÌ5„ÿáì­l¿Ü×®ÙA`DHÐÞ<)Kˆîp :;ÛN”CÉå°Žî j³‹eÊÃú"Co{¢¾“tÐÀ„KÐ%Bi·®Pw„C„éšð:ˇ÷­X_”)L1 nƒºD¨íVç(J×ùxtG(P»ùí…;Ƴì¯5¾ãô^«}"Cczò}ÍÄ9h丟ÅDVPBV3ƒ¨ˆÅ° °ÊrÒ‚;P˜B Ôb›à½€ŒÕbgêÛq ;P\Ûbõñ)jSƒu ¸ß›@„{Ó/t0ã‚tà0&®“ª@¸•áY{ZÌWÿŠúÃ~ø¢¶\ý„o ¸ß{,%j×µ“O¨¥€S€ÊÈ·£2ê°B@ ’ ±³ˆ‚˜_úaœ¸[ù/™à‡“ì€RâÑ&)jÛ³ö¹˜¸Dþþ² 1:cCp È?ôpYRT¦7Sìí#t?‚à ¬qõ×ga¼zþ ‘ÌÙÆ)á°ÝÈ jlRÔ¦ÆÉ)ü°Â6÷Ûc‚HŸ×Á}{ÅÎI. Ñð>OÉðu!fÂÁ 2r:õýzú9éù.È¡ñU¢r´½Bå(k;/©Ço, ³y’¢ô…l¾1~c£6‰Ëðó3±ºÇ UÆ(fsž$ÿ.Ÿoôõ “µß³Ä)$Ë@ß›]›øwbÐ>@³0ü| Ù…8Ë eÛÿ]_·Ë3†„•ßçRΚ*ù YéÚFÿ‘ …ã—sžO¢Àœe>åp — 6³6ƒ‰|ˆë ñ´'ÔéSÁ2^§À2Äìl§ÙÂ>pŒñ vmÿ9…½]Ö…æ’ 6ó«šD>D]ÃÚ6ñšÔTÆÙ¿P³Ýdâ½ D¦8.± çç95Í8;@ÜÙÞ™˜ôƒFÊ…¾.Bgè³iwèCÄ%´!vEƒÎñ¹½”{Hi‰nXþ<]¹ñ›‚`’u6„µ¡ñÏ xਤ!D¨í} ¸‡ !Bki¿¯¢¦ tóUJ@Æk®@vó6¡•VÿâY% :?ÿ:Þ³*¦ÁEëcLƒr‘Pð t,’‹ÐâY tôŽ·8â&¤V± qtG`8o ”§ ©¢S.!sì,,ˆÒèg±׃ˆ!u”J#”s`Ï!U4:£˜v`ÇA54*c˜v·A$Ńû)$Ö!܆ÔÐêæWóâ9¨†VçÌA¢Èu¤*Z­™vP@éðCÌòê>¤ŽZ»˜ƒL:°óHutêI(é ÎCêh´F0çÀžƒjÈî«(‡O© ZýÌ:°ã •S0Â:ãZs‰vß‘ê8Ð;{ Ôƒº©£U;{™ö©ŽN½ø¥Ô{Hz2Ê<°ï*JQJ;°ã*õù`âÕШì·âÝUsÞé&ØoH J'”z`ß!U´Z§2ñÀÎ#ÕѪ;ÈăºtJ‡¢”yP÷!uÔÚI dÞ}Gª£Ñ‡Àăºª¢ÑÃÄCø ª +¸»‚òä6¤†Vç qâ9¨†Vç\CæÂu¤*Zí|½ì˜ õ.8 ‡#ðßûîÃ*>GÚÿÊ@¸C %áÇ¡PÛ¥…€ä»?§#Ñxx›f$à€‘ ÃÛlQ‘ë¯ÂD†ÆÒ·æ3å ‘z¡*¨ Ñ_i^ȵŠLÈÄ-nãX"Ôv£2çQýÍ"Bmh‹ÿ‰sÐ0í«9oâã$]1–å÷´ÎÐ¥8L—™ærp îßÛyÍD9p”a«mªí ‡ñ¸…‘ çì$,­¾cõD( W›W…$ÌV;ÏöÚ¿}÷|ÝDØn§ù'_ ß!Øßð&2ô¶ç˜0 ƒFn!§›Á*—çé~Zh@ÈPY¾£…b·­—{—æÏ÷ëë0F¨P;^æs®´ƒ¤mþewé¡2üyù%;S´m}XSƒóy£HÖ¤ Ç8]'Ž¡~¯»³7‚;¬$»-õ17ŽcvÆãû]\ÆË:AWŽÞÉ—ˆÎêî­µ†'—± QZ>ß~ÿ>3ÖmjNµ¨ ¿crgù|ÒDg(Êî<>[{¢lªq_)*ËGQPØø†%Eez·Â=PXÛ²áì½BŠÊòf?õ@ahÖ°¤¨M¯óýªÜ¶tË;føMΕ«¿¢| ¼?KŠÚôl\ŒÀ÷;äRT¦ÞÍIðŽûq%*ÏÙ¤AÑN;ÀH„ÊnµjB¢@‡3wC¨ }ß^ˆ3wC vªm«ûä°‡ðäøk+ŒÉKÔvöhç@Ah㱤¨LÏa$Æ»®'vVHTÆ™»g$ãÕëD8 ýý#'ĨŒiŽpù;tRT¦Ïžà@ûj)f3m£¦ˆÊðÑ…ñË_§Ä;h¤a…û&LŸçg~»¥ékõÑ èa…ÙÉÃ~ªÆö‡2¾*ìܾÏÇË,•{X9ý9OPZ½msa\«uæÿœ«}¾ÊülߨŒ¢±#+ÂN0mgWO0C€Úê]Ò“Î?'µë7&ö†?ójî v¨ÔâsM¿~s× vó­hE(i³vûö¶>„bltv¾¡¸ƒ„Öð9WºÄYß‚1\„Ær±á=pXBÜmHá6¨±0;û•°‡’kN?g ãl°rmG#G{à(Åæt?‚2œ¯ ïö»fÜÃÐpŠmu‘¡¶´«äî º¤0_ýfÜWãŒÊÖ—øó ¡×tŽþFMÔ§õd‰Ð¾ ŒBÂz¶D( 7 îA¢È— 13Ô t@5°¡“̤ŽV=_/;l‚½ H"Èü·}\æ~¬WæsLS°„‰Æã{ͪÜCx¸D u°mïívß:ˆ{ÛÇND¨ 猀R’^3~/×ø× 4[-2ÚQéb—æ,Š¥¯’$¼Au9€'F’ ¥é·í‚m­3àÀaý‚Æ’ ²:ùƒ¡hCÄ(Á3GI‚Æîl· ÚÀA¶NµÝk½^˜µ™uZNXCÄØÚšw\==o«ÉIP™yÔ„4p-Hi‡h½ ,`¶K c5Õ«-×è %8Ψ[WXÝã‚Ç8û3 çŠS%hzÉ™Ÿ²##‰Ð[>`êãÒ"À=Zn. :»ÕðCy‡ˆJ4Ã9ökI‚ÎÎ6kv°‡ ,Caú³(…4îi*CÿˆK°‡õH‰Ð€!Àƒ„õX‰Ð:h@ÀƒDõHƒ+°÷J»éxˆ¬¨EèMçö¾BX WÙ«W/…®º;¿Ãâè€/‰Ø»©îÁŠ£ìZf!>ëiÈЃ‚ áÃЙ„ ÐC RG£5ñTC©1 Aq‡pRC£2 ‘öTC£Úþþ<\xúÕШ?Pä=‡Tq uø@ÁvRE«uð CìïÄv„…ÙNŠ^¼}möüyÛLye$ËöÊ)K„ÙËV3Æ@1¶w²Ÿ1~º¿O/â.LŒÊVS,A"mè5wüÇý´­†Û&ýÂ.nó“¦0~¾ýB(pK˜«ß<­âºÍª^ÐÅùäÈnûž6DB1†e·ï›­Û¶DÏ×Ä-ö–‹šâ”Z¨fJ„µ­ÁÂ3pÜïÜBHQY^¼ƒ3 ×µD°öMD^\_D^í2ØþI\…ý¡!Âbogw™eXA¿·B %*Ï“ÿ2H^ß D¨ ½GR uÀ*, *3ÿ¨TŠbh…%AiöùdÙ~’bÌyk÷_ñŽìÌÞ#^ðŽ\C©z¼©ÝÄbرÿÃY„Òp=Œ/HÔïÄT¢ñ\CA˜^Xi¿c>!Dmy1j„èŠJm\âãäºú)L!*Ã+YàŠj›Ülg¨‹°ð>î{K§SZ 0ûÊ(=½NHQ›Úê³B ×}íÙh…WøZéÎôµ¦Ò°@q[B1Âê‹C^aRìL¿/›N˜hÜN=樹Ÿúº˜¡6|sÛ ßaÓ°Í?^Ü®‡bC„Òðmñ2±@QFÃV#/HƒÊÍ–`Xœtžú|¬Ij!ÂÞî‹ÑZG(¨?É& *7»TØ¡ œ´™Ï˼·m\ŒàS†Úòéx‚ h—7'M¤ÉИž„Xô{ÃírO-ÞS,+»Žº(ݰ@Š’þ 2šBDèMoÑob¡ )°'ûI†ÚÒ¯eò¤Bçi‹×;ZAíšÞiNf^˜ _5­mýZ$Q *d‚Œ%:SßðJԦŕ35‹:à 0·Àa‰M°µ'+~™PÛÙÃ¥ÔBp !Ai6Ïs±ÀA-—@t~¾å­Ü‚¤c$èht^s“>Á ’Sá'Ýc/…NyO}$ÄñŒM0̰÷TÛG%±‚*8"ù´>0@BÓ”‚Œ~<ð8ˆRG©´. *<ôɤ*Ýö®fXAÕШ ! XÜU  ;_ð€¢ á6¤†Vçàã ì9¨†VçÈ@†.<mq4‰¯¡Ÿ ˜Qr7Ïõµ–ÿÖáØÙ)º7 M`BÄhãÖ¹_*ÈÄÍ~ïÆÐwµOà°~ñrIÐØ¬•çKˆ([v]#†_gB"Ô†W#HKÐ0¹IîzÚ¾°ž¸>X–?o»$,A‚ l°•èËçrõ;Ì\€½ÍÜØe!ìd°;±þ·çÛ_ß!@aôzÏ7saÃÙnúÿ¾hžº-t’›¥åËï°c aEËp™÷ÎÇ`Šçãö¸/Vâe·Kíí|K8Ó+jó¿<æfeÜËjˆ•àÉöé3F•AÈî®\»wÓi £6öÞäJ"Pd»½¶fH„µ©ßRœIŠÜRl·K'=œ}‹ÑYûB: j[‘Ó\‰Úó²½]Ži¿ï¤²•©oº” qh–0¥¨MÏ1Ç㜢~o“0UØ{ùŽpFVÎv@4vÑ8‚ ‰:€–¡³&PÔàvªïëÝ¡!Èï€`X4f«-D€ sð‡/ J3 a$Cž°%Aaõ´®û‰Dà˜_ÖbïûyEmïŒjâ?܇CWòä1õ)gŠ#ÈÔß>±BŠÚÔî@V âZ–ì½°Œ%Eeú’aáfÍŽ¦…Éò´}‘xCÁ(nK¸=æGÕç½tß^Js¶Þ]Ú¾.å@uŸ¦ïÊÏ5S˜•§õR"²¬ÍÔí±*œo÷u& NsðDB8e3žòç×}œn~æÄ"ì Þ¶ÏK$‚ÆlgkØÙvB˜Äûê„Yï7eVÀæXO XFßiÛOÌP„µTðñrŸ÷õ™0j«mMF¹ƒˆ0¶¹êþ¶¨ŒlKgÇDH¢±í¼Kˆˆ§ {Ãóüó™7ШîzkIP›ÙÀ©gA©oÏá`jC'”2HqÒ9Á_|ÂCÝ™ú2«‚© ÁìóA4„3Óµås{ÀbÀaº ÀÍI„ÚÎ7ƒvxÇé"Æ| áätaûùÉ1û„häH24–ŽwdÌ€p–¡5õ¿‰q ì¡× ó[[ý DVıØûð6û6à”(ã±s{·ÎP°ŽfèAa„ìZ¡qlŽ;;pÆhñ†ÐÒ£_w…عÄÎbnügÐ µ†:­mÿ3h ®ƒªht¤ŽZ;·ÿ3nÀ¾#ÕQk'À¸ºª¢ÑYg Æ ÂoP¥Â F ØkH êû›2n ~ƒjhT¾õ¯¸A8©¡Õù¶Øw¤:ô¾ñ¯Ðº©£UûÖØ{¤::õ8Pç!uÔÚ 0nÀžƒj(5¡(¢n’Àþ{Ÿfã€oÚªm°€PÊ.HBÒÇþžÌpF#ðѨ¶@yÍh„Ð`çöýçw!HQNéa„`oµ-te„€CÚëw¡²»l?0@‚ZD¨ìüV/¢$§½Ãc P9}>ÝçOˆœDÐŒQ¡³ô•„h ¯‰Í›Ï nðó¬Úòfûß!à8åf“ù 9 µ¥o<ì0Tá»9»(¢5>ù™˜àš˜„Ûå)"N6j´6´9Û &ˆ¨Íús ¼õ·–½$AeööË6f 8f[ÿÞÙ´Mþ|‡®[ã\ÚËïX#° 26W»Ÿÿ;:úñ~­guŽÂf­Ò'œ "¶­†9«÷ßù|}n»¼³B0¦Díj; ÊHÞRŒì>]_§ ^Þ xok[UJPœ± Wë=Al‚Ý}ºØ¿y-· è§­e–€â:*6ÙIŒÚØ.”&ÈÄ%x„Wô=1*[_‚Î$EþJ 1jãÙü Áú;•@jì½Ó’÷.aJQÎ7^b "¬k¶DKÑØúÆv`ø{Û…©Dç9º`¥ý }ðíâä¸mGZ¯‘ŒPÚï„b¨ ·ÏUå$jp¥Î'A Èqp ¥jÍiPš€×Pé¾TÅöOÈí÷gbê°s ê„ÈùC[%Dmé¯)8ì×·²ëP;^4X´ÀJú½óK±7¼iφێv0âàù²‡çúyÿn›éóÄ‘˜kƒ^™ÚÉ ³fÄÁÑ8"¢0|ìN”ÀвoÎÛü‹oÎÏ“ðšT IQ˜¾®¾Q/˜€ÚI€ Bû÷ùµ¿Ûþë4¼.„4dßù74@yvör±EröâFo›ñ¥°À °ó,»üsžõ]cŠám/÷½Ï=Cìoç…Æ’~^"Ojö°ŽÊæm×A „ùæw{Z÷·ëãö¼q{‡·šK&ßóH{h&°Œ1(Ç6„ÛÛH0-ÀIÛD m°yLÄ0ØâPm·:T0-AÖÀÀúø­S6âl_([Ù•Ðy~h%^ ‚´Á$m™e8Oú¢1´sná8ªo]°$¨ÍîÞ !“e$€· d¨^Dè,ý„2“)2]”¯Œ4]·pý™§_ÿS\ åIÓoƒA@Ãó:q†_ í@ÓUïÇUÌÊ :Ë—*( Â?I†ÖtûæO˜Çõ @hÝÒ=ÿà4õ&€eèmçž»2YqÞêN^Êì7¨†Fe¿òwž{@54*ß½Wb€=‡Tq -‰`ç!U´Úyá“™q©ŽVí;÷‰Hî#Ò>…5 îCꨵs?{ u4ZÛÉgf@]UÑèl'Ÿ™ðTAVpS€D „ÛZ7¨`j€=ÕÐêœ#I̹ŽTE«õ}ûÄ $@éðC;÷J ¨û:jícûìÚÑì;RµvîÝ++ ¾Cêh´¶Ϥ{ª!kæI“íß+'~Cjhuö0-ÀŽƒjhTΑ(-ŽCjhuÎ$^@|Gªã@ïûö $÷!u´j߹ϼ{TG§žû÷Ê ¨ó:jíÜÃgZ€=ÕPjl_IpRC£²]|¦ØoP Êþ~¦ÂmPY!7ì+-À~Cj8Pú®=ê;¤ŠVë;ö™`ç‘êhÕ¾kŸiué”?k÷^iõRG¥œ;øJ °ç*QL °ã •µ¦`Æ Ü ª 0ü÷y·¯! þÿÛ¸` EÙæâj¤<ÂÛ÷çBŠÊrµDXüÕn]n·õM Ág&ì m@·öWÝýœ¯Êð¶Uüæ[wgè/OÝ×ç°ßï÷f1jc{™Êæ¾FþR„•­?4ºÅOØ¢^R4¦¾c-þ¡…Ä’¢³=`®¡RçøÅÈï‰QÙÎ8¢$îO產²œ3C„XQÝK~‘¡ÃÞïÂýÇBI›´~q’¢2½ù  g4Ìø*;½áOJÆŒûÛû= æ`å´ñw·Bˆdø½h{¾˜+˜;àµ}=]o“²y\¾7<OÕ¶Øb0$²0}Ùn)ãf_°>éõØÖÍ>_°—÷õöXÃWˆÊð¶FO(°Â¬õÑݾ¢¾}¾^[ÐççÛÕG5µ¯/³+( ™v¢cwƒNt^Ï×°D¨ Þ—Å8/@1v~v·®þ—ëù ¦{ižpOö}?¬ 0Š© „ pF"ìÔ^Ÿãí½¤Ô@¤¤yë±X†©@ö²3h_GÞAœe—!ktÂç1^½X†Ööl¯ì„h¤]JÙÞñ¿Çýt)!Ciy^C62@ÀF!Ø…õj³1’¡3u¨;)½ |Ƈ Fw¦~nœ`ŽT"a2,„;Ü}RCiù´‡-s'¬€t'j˧½¾„$Hqº2ÁH†ÚòEs'üzMÂÚ…¡´K#'^‘ì™Öá5ûÆTû,¼‹@˜](˜tx ç †k‹;CWA×´ó]{Ù6¼"×¼ó½Ãâxì¼"`ß ðc÷ÃQ…H Âtí䈌5¬^Mç2Šgº?ÞnàDVÚ6¿àyÔUÑèl«Ÿ‘vTC£²~F ÂmPIq‘ÿ(·!5´:ßÞg¨€=ÕÐê|c?#wžN U´ZßÖÏHztJ‡ŸØØOPº©£ÖúÆ~Æ Äy¤::õÜÞœ 9©£ÑÚ?Ãì9¨†¬‘[ÿ%¸ðtª¡Õmì8¨†Få›û „ãZoìg¤€}Gªã@ïí'+P÷!u´jÇLR Þ#ÕÑ©çæ¿ ÉyHµvnñ3PÀžƒj(5¶½¯ A¸ ©¡QÙö>£ì7¨†Fµýý $¿!54*ßÖW”€=‡Tq õM} ØyH­Öá’ °óHu´jLLÜG:¥ÃÏÚܘ y©£RÎ ~ ØsHÎ6ù&`ÇA54*Ûäg˜ ÜUtk~F ÂmH ­Î·÷)`ÏA5´:o5‘‘‚p©ŠVëP‰"Ù{¤#P:üÐÖ>CÙ}Hµvnîg˜€}Gª£ÖÎ-~† òt¼¨¢ÑÙ&?Ãá7¨‚Ra¸€‚á5¤†Fu›츿4X¤þ›ïqÛúŸÿ¿m–3;@dBÄ‘¨æÂ_æØ¿@øh^ß¶5  -tà >ßå…Âÿÿ8{›ôF’]Ù¶_£àê#©?jBh›÷‰‡Ã Díûª•,„-dJEÆ‚»Ï@ú87hp€Œíwh­ ãÑl0Ä娘ãýñ(sÙd;àžŒøè@éTfò¼„A‹7V26@}¦Ý;éz (_ZUF¸ÎøljXSø÷罯ƒ p3ß0Õï)•Ã2„xÿ Ë]¸ßfÝçÔ>÷]>Iabº,³ÚÏïû³åßû×ßsN4D ò7–°ë¸7›ohgíx‰>M PŸù<‡ÐáüoFî^Çsåß÷kë¾ý“!t8¿wX¸Ña@Ös|ï°§<|Œ!Ãè°±ˆœÇ´åÑeÛËgb»®£A_iÙƒa¢iP€Zú‚Ô/ŸõÈ-°×úÎeøñ…Ì-2ö?AÝìØ a1!×C fÓ@CnA Hÿ+Ó¨Ànäà ~*³l±ð¹‡1V gXì8®ƒ»³][È Äñ*Ç[+Ü÷(CAÆ›O f.H¿¿}±q R?z3øJĹw„AÝì¿lÆpú’h9Kâ»¶7Ÿ8mÒ@ÃÚµ¡~Æ\ pÃ2P²µ/åÛã {,£Áº»ª#ÔÐ{|._J=Ž_Â<Ð*ü„Ýñu†@ZN]| *4…Ðà~÷a4C v|ˆx¾·\ÙçA‹Ûy’`79Þc¾ÌǸÇ×çG¼ËÑ`â܃ÓÁnqp}ñ½ÏÓÏï׿r=oØÐ$Aé¥ïïßÛxÊáa†“¨SÔÎ?ıkû5ë@! ȇ¿õ,3ÚnúpE!LÀn(›ùGÂ}<}y(„èoÉO“ÜL>ÐÒVœAÏógàih@»ùìAœ‹ðý“šW‚h°·t26  uŸ=ˆ zÚþFëÌ@v*›üÔ™†Ÿßœh¨°8€g¤‘Þá“ v#ný è¼µ*óÏï²wCìMPqËW¿„NÓܬ;¨€¯ÇDÓé‚ýH{Ýo ÑÃæ×4àZ7mWÏs þoèç¦éƒ~Š!Hü•m7h8O Ô}Nˆe÷ë4AÙ¥Aê²~òO(Õ¨Š!w¼äiâUP²5€Ìͤ†1w| d¢€‰F5 ©°û:QD“Æ\˜ý:SÀ\+u\äÃíë\ÒMêÓáöëLÁ—A uLéí÷uª@Ù&uLi/[f ˜kRE›óy™&¢ICÎ-?MѨ†!uüíË@ÍÆ†}¾‡Ñaã¾—ŽHËÿÞ` ÃèÁñS®ÃÔò¿‡2ŠúÚ§xðH7Ô¸µIÐ=ŽÆ Á¿£Úb_Ï=‘° ¸Ý8È÷ºÿæèÃÚÊà üj'v«a#ƒ5;“ï’:Cãž;OH»y³¦ˆ …ýú[Gž-Ø-fJE‡%¬«qbüÆK*ØüãíáýåKéŸ?¯2íð¯ Í•–NHŸ¾íûçö)ãq¬ü‰ö÷^Ô¸à±êr`è'íîËQ1Ç®û—Ì ìq‚lr|ˆØg&¬ ^dàaoþÑ"Ý—é0Aiw´Øg'¬ Oy%Ò ÿ~¿ÿ¬ÃÒL?a­í¼xàááïo;ÜÇñ¥*£ܪ|<<ö½Òa‡vØÀãö×ñgž$àFã'ÛŒ CùïÀ2=ðAw”†µA‹çsàVzöLä&äËÑnVÖ\ø‰4ÞÏÅ-‰éÿ–:BÀÍæ½ $†º~|t ´œw' &è2æ2M íºi¼WœÓW»Y¾þbÆáxÔN8”9ž&’•§D|O}d^ /Äأ:MÀ Lª³nøy–€™F5´÷û:G4“†ÔñÜ”YæÕ0¤â$™% ¢I c.ܾÌդЋl˜}*`²Ic6¬~(`²•:Ætxý:Q t+W %ÜbþªL(Û¤Ž.¹ì~%`ª•:†¬;~ž&PªQCÎ'Nxš yFÔï  ³D3©aÌ…Ù§yaÕ0æÂé×i‚¤Z©b̆ѯÓʶrZ¬¾Î(ݤŽ>»¼~#`®•:úì²ûO ЕhKóÐçùƒŒ ‡÷ÉuŽ€Û”)„œØ§ZXŽø¹E™C8VÒlƒO!0æxZ­Ê A¶7d”zܲt:A ­Ê½šß}߀Bh?ž·:À|=Ê>šÓïsÒ|Ã;‚õ³ÆTÊä7ò;cÍ©¢Bƒ¼­[N29PZ7õ(„3ÌïXËÌ€tñ©ƒ—Ž+·#)ƒv÷… e^€ù-Ô‡ÿ°|¾ïÍÊDÃ=>°uÀµ·?Ï p#8ð'Æ¿Ÿ¿çþkGu¼[¿¯±‰:,ÊÍê÷e–!V¤uÈߟ3XSÚj¼Át¨õ%(3»I1Ÿ?¿{“Š ƒ­Áœ20 úãéæêñüýHú¡¦vàaj4,àü{:>¿s¢Áßú5¼Øžg²“O4|¯-ýs¯jw<Ñð‘ó ŠÜª6g¸Ù´ÂÕ·<^Ó G=Ò÷×é€Ýjš•ðÅÒ1ÇàAœOÝJaOP3ïð~®ßd·p: 9†¸oØ€_<bÏHË£Ksd†ê¼çb'‘öå»lëlµs¾ŸÍ|·‡>ÉQ4È×OƒXsÔ¬ð·îüzïÊÍS k‹3ôu? P³ÿa^eÑ_ñV'v³²ÏÇæûÏÍ/Ĺ7ö7 ö¬Š´öY¿×üžU9!ë A6ròqºŠ’_±£}Äp†ý?²u`·Ù‡·¥Á…ø0}†®2 í¦]V|Žk.ì'ìon˜°†¨ÙôÜü|Ë–[øÎ¡…ÀVøîmÊÀnå¯çÓ|»YˆÛg öå P‡¤áô*úõþ°¿'âåáD}}¬ƒ#t€ú¦ÿþ|}삇Ña¿|_žІG«Ã2‹3õöZoy €»ùP¡‰õïßçÊßghÆ ýúé'u`·8¨ßߨÿñ÷á#õS ì7&\x@ÚøÐ¦ï7/C›‘@ÏŠû¾: °»è^Wkçœ= ð÷D Ê×ÓßãK#³Ôç€ç‰Çä£ *¸ìêyï­BÇó\õ:ðkb[ÏEØ L´¸é\†²“'ï3î_¹ÏAF0á~»nå?üóãÌ‘±Wo-ðÛïðP€4óÏNû,„{ŽVï&œï™¢#ÔÈ?òµ' d=Ìo'ÊP·ÑÝä䃈 ‡ù{ È&åãõçWUðߢg+ Ó(@6ïh=ðE;'¬Qm5.¤È\œË cÙªLÐ ™ÀH«ƒ¯¦[³ç€\ ^ìMA“¥W3E°¯ÆDʽÎÓ 2CÀž¿™M¨=ä¡™\0©¢IÒW¡¨¦Ê¼@^†áV¾úÆ[©cȺç)¥U1äÜÍó@òŒ*(‰¯eŸÃÙë@òLj¸H®_ce€¹&UŒÙõºYg„l¥Ž1F¾Lº•+Ðndåu@é&uôÙeìës­ÔÑg—™ç9¥U1äÜÌó @òŒ*¨ ^É_üÒLjsþ5à)&Õ0¤b6D§’hRØ‹¹2 \+u\äÃÇË,@¡›Ô1¦ÃÈ×9f[©cJ//¯sJ6©£Ï.7ÏSÌ4ª¡Í¸™× €¤™Ô0¤ÜÌóóŒjRþï×€ä™Ô0¤b*D¦„iRÅE6|¼ÌÙ¤Š1.¾Î0ÙJc:||Pº•+ÐnÛË뀲Mêè’ËÍë 3Mªrîçy€‰F5 )÷ó<4£ jbyèõû³Ì$Ϥ†‹dL‡ÐD€PjsáåËDQ­T1fÃÊ׉e[¹-áFf^g”nRGŸ]n¾Î0×J}vzžPªQCÎ=Ï$Ϩ‚6á{Jè@²LjRë¹DÓJ4ªaÌ…“×i¦Z©b̆ï¯Óʶr.õøyÁo&bhÿüýüçþÿ/±ŽäA3?W¢%ø'W`úùƒ]‹ãÿT™ãÈ:EPa¾Ž~­£•9i4îüGŒ8 ø¨mʆ…~2&M(|ð|B‚žG™ÈåV‡{hŸOØt G7RÀMôÞŒ¯Õ”…µÂ¸ÿþx?6ˆ m3ÞPÚœAëcGuÿÙd¼&ô¸¥-Ùþk£ñöÝŽ ‡}¬/múj¢÷×vÝ9“àß»3fKwöþÔAï“úvÁ2“p?v=ìaþþXÌ?·)·xéÐÛA‹mÄùg½1}ÿ}åØ@FÐÁ~C:‹öçFãÍôŒ`Â}¯»a¬þ©‘;߈ãß¿ßU÷<ßaУb™_Õþ»ÍAþð5ty"G0àb÷rþÒȇ¾}õúãããƒOHsqÆ…WßOz•³´Q%¬;Yg¦..ºŸ»ùÔÃÃ7çßSÏûÇëKæb­÷™úíÛ¤ñ×nEx}þ½Ìì•—{,Á0?¿hǃ”ý»—U4G€»~채'o¯ÈCÞ¹÷RÑOÍþ{p#£è¡þÎU?5›¶ºø~}=÷@ÂËÏê>?iB 4ÿn4n£q¼Òä0Â;ˆ¸~ÑOÍ\—³Òáïçþ·G¼£è°bDD?5ÔO›ïCÎ~þ}Búyì‘„W B¡ÇË£Š~jæüϧo=‘üÇÇZ{Q4È×:ñ"u?·*ô-”ÿð¯Fø¥a¾FþOT¶±üÿ(WBw=‡¿9Ó?úùñ®~Ñ"ãðz1ùÔlzòý|~å¬Á/!Èý=T¿›"}Ÿ}“AôÈ/:ž!$>5Âþ^Œï?4pðzð¸Áfþ½ŒÅÆdð©×°*?vcˆaƒ×GœQˆ¾ÐNíýî4;ú  ýƹTâï¹I٨蘎»ÇTÁŠ ÅýÆNdð¹ÍAnOwŠ:ßv«ú~·8Þ ý½(kÄטÏüÆg˜ÿ4«¾—6ºÜÿû7×¶ï Úãý«ãÿwOʼêñZ³”BOô›Q'{¯ýtÜÖ7³à ƒÄ„õçMqøÚÒß”w»”Q -òjñ¹ÝÓ~~òËŸ ¸¿o÷z\=>·ó=º $†»oè°Í/íüóÛéL‚@GŠ›°*ó©‹~Þ”“2‚ ßK‘úÜJ>(Ë9‘ÀDû ]ÍN?û”õiÖãrœA*‹ÑÏ6ÅÚûؽÌ¼Öæ0D¾j}nw±ú?C‘~XFõúÜD¯ÇÀòoaõúÚ©Ù@hxùgqû¥S3@×£%•sš.âóó2Œˆõ"[l?70©b̺g×ÏL£jFÖÚ«éOžI c.ì;fÕ0æÂ»WãŸT+UŒÙ°îÕø+Ûʸ ¬Wbý•oRÇ˜Ž *Šñ¶•:¦ô2ðbü Ù¤Ž>»,<û~fÕÐfÜÁ«ëOšI CÊ<û~æÕ0¤Ž±ýÉ3©aH…{WßÏL“*.²aÞÕú3Ù¤Š1³Õø3ÙJc:æ?Šñ/t+W %ìßÎjü Û¤Ž.¹,¼Ú~fšT1äÜijñg¢Q CÊ=<ÿ¤UP¼Ö¾øþ¤™Ô0æÂ¾³óg¦Q cn=ONÆ?©Vª³1ùQŒa[¹-áFæ]œ¡›ÔÑg—{¯®Ÿ¹Vêè³ËÀ³ëWªQCÎ<»þäUÐ&ܾ«çO–I C*¼<Û~&Õ0æÂ»WÛŸT+UŒÙ˜ÿ¨Æ_ÙV®À!f@Äû¾Ic:ì{qþ¶RÇ”^^¿’Mêè³Ëóñg¦Q mÆ=¼Ú~Þ§kRîáÙø3Ϩ†!žòŒ*8gd¥ýÙù'ÓJé˜aë_Ù&uŒé0újü•m¥Ž1}_ë¼€Ò›  À?¾³t@àµ÷›u?4Sq%šüA-š?ÉÍ|_‹–’2„ÝWþ<!t¸¥ó‹Ý—Vãž|”¡€s«²¡ o)Ó<}À¸c ›~n£·?–rÎÙƒ'ï@ C÷¨áÏã  Ý× ÛðsƒþîÒ¾ %n5¨ÚO~¹#öy¬̓õ™©A-_[Å>·áÛyKêñÐÁ²œ-îxÞ©Þ×Fz'’ÎF¥:ÜÃ_•DðK#¿ºÏJøzÅaA÷0÷ø¬-Š_:ém`·3:~p¼Ÿ€_´[ÁÇç©Õ¸]íN g…‰­–?Í·Ý9ƒ H»¤é—fn Þw[ðûüŠÛVÃ7ùÕôK«2‡páLs±Ep…}òÉ ËòSßÁbB#é ÂcO ŠÎe ½Om|ºáégˆíÉZÜßË×ñG²úÔÄ-RwätP0ïgíol :?[\lá°˜`¿±¬ŸU>7r­öòøÿ^¦>÷íÌŒ Çå¶,ñ©Ñ ìÞ79~c„ˆ¢‡ÆGUùÔpèA›ugöïAnWðù]›9ÿá›×¿o«üðañ{àà3NrœŸî[5þn4°×Îï4poíÎи)§_–.k&fíI±fV=7ä»|ê×Ý,…½>~ö¸ðb­£ÊüÝi˜èñ¹˜œ6xù‹oGŒ»Y¤ü¹—e}Æ·}§Ÿ¬añ¸.ø‘CÇ‹¿lUúÔmzŠÿ|~ñVÆ„~¹R±/Mçš ¡Ãù2D5úúüøyú’é¿—Û÷qÑwž8X+à+é÷¾¾ êò©Ë¼uNFÐâþÞæ$ŸOM湺à„ùTÕäïå7ð×ß+”Ìx=.~©‹Ï×Vþâø;?_ƒâwpFÐã~}ýôùܤìÖô÷½­ñ  `Ü?CìŠÍß=l{¤U0Ñhs~–ùÔÉÇP¿}w„Ï—ÿªß£G-Žà*?;],×Ï&Üòòjð¹•Îû®M„dÎà%Sø÷6xÔás3VŽ­ÎÖ{Îx=ðƒ7HwÏÍü3TìÒÆŽžSè‰_~F|íåŸûöîr_i¥w=.^?ÔáS+ÿ˜ÚÎÇœqkVûhU%¾4++ø´žc˜ ûúÚ²|ˆçS2† Ÿ‡NRŸ[Žw!4†Zg¾Û¦Ý¢~Nà‚è:ŸÕ¾öê–ôÇÕ¸ä¨ÒÏJ7×Nƒþˆu>ó»A€¸e™÷Ó© ÌÔ] 茅3`}a«Ø¯§,Hczý̈âW²Qc2”»jþ¤šÔ0æB·WÑÏ\+u\äC·«ìWºIc:d{ý̶Rǘá^E¿Ò­\–p ñ^D¿²Mêè’.ßUò Ó¤Š!çžD¿jR®ßYô'ͨ‚šÅôªù“fRØ éΪŸ™F5Œ¹ÐíUô'ÕJc6d{ýʶrZ„»ª~¥›ÔÑg]¹Ÿ?s­ÔÑg]¼³â/T£*†œ«wRüÄ3ª &hé{üI3©aÌ_ÑüL4ªaH…rWÍŸD“Æ\èö*ú™k¥Ž‹|w•ýJ7©cL¯çÊIô3ÛJSÚÅ»ŠþB6©£Ï.ùNš_˜F5´—ïªø“fRÃrùΚŸyF5 ©Ðî,ú“gTÁ9S–ÐWÑŸL+U\¤C¶«êW¶Ic:T{Õü̶RǘŽÑªù•nå ´„[hwÕü…mRG—\ê]¿0Mªr®ßYó3Ѩ†!åò5ÒŒ*¨‰²˜^5òLj¸H†tÿ¹&UŒÙîUö3ÙJc:6t¨²_éV®@K¸m¡¯º¿ÒMêè³Ç'ú:( Üf,€'ðÏñÚ°OˆÚû‹ÍŽ_§,kh3Çdô“Ô ÄuдëßõÏP‰Ÿäó'WºåãvsÏüi=J e‰éÿ¨=Êý_Ã.#9PÀ¨çÊ,î¥Þî ã)‚÷–ñï¿>Ë{n2Þ§Ùœ1÷…Ÿ Êm¥<`’hQÓª¿ç&z;ìïýÒÞ$!#è`ǽu÷ÜDïâñ¢>ù‹š{nã·ã°‚µ÷7ÏOâ÷<¾äâî¹ÑÁö0±: <üõ³aÇòi/]Êö¬´‡ÐáÜÆˆµ/|ß5i±ÖêêPïÁPï;ËÇ‹_qöÜÊo¯û}L½½N!t¸Çº¹£¾ž;ý÷LÁ3' *.&#ÈÙS#ßÔ`Ê<¿î¿?´«AXå·4ÙÙïîG–ÀøûÕò”Ó>ãta|5Gýb0¡9[A`ŸáÊIןOVhvF=ì#¾ÒEØïFNþ8Ž£ý÷ï“ÇWnGAô¸ø"¨°×f.Î|y^­ èoÜøa¯ uxã·xÈZàï“ÿõÔÊ´Š&÷û\w*ÙÈ Ñ²†6õ÷¸tß4Ëÿæúý\¬:}³fwÉ´¸¥Õ¥K#ã*šÜoü¼«1'bù Ò Á v(¸GlQd:µ2­bÈþ®&R›+ó⫸"hP¿?³^5y6™Ÿ¼AûûFD‘KýáþûÜxgp¦ýýˆœt;õ¸Ö+€fí'Såøn0¾së+Ô7réR~{ü½ˆ_LAÛ ìÅï6åÞ±³AzûßøTP¯ã—ÔñâQí8µ)üëùØ_b ¡þý&ܧ,M®äÆçýãµw—:Ö߯­¥ÕÕ’gŸy;&É çýø.ûÕ’k7O÷ôC‘¾þÞÁ<öÊ{bÂþÆBrµåÚÔß”º2ÝÇ~ÏÿY¿¯Zè㱞ÜŘsC?í3Ï{ƒqúkq||øPP1æÜìba|†Ð?c»æÜjZ×£'}û·A]yö(›°ÑêrŠ ‡ÅA6Å•s«²(þ¹Osã&äÏú US.íôó'myÇ!LÀø…]=¹4ÔÏ´_ŸÆpõGêɵeYP𬄕l‘U­ÇcnØ­’çë1Ò«.×^ÏëÑÒøQ'ñY¸³W…¦øö ªÍUáïï_^„!_ Õæ 7©bÌÆa"Í…kRÅ)ù*kÑ‹6²•:.ò¡°UŸ+ݤŽ1»Êsf[©cL‡À®ò\éV®@K ï¢Ï•nRGŸ]»jsæZ©£Ï.™ÍÚ\©FU 9²`mž<£ j‚W¦«4'šI cîø°:¢Q C*4¶ªó$šÔ0æBaWyÎ\+u\äCb«@WºIc:4v•ç̶RÇ”^2[å¹’Mêè³Kh³:g¦Q mÆ*T›'ͤ†!å#¤Î…gTÃZ¯]ªÎ‰hRØ •­úœ©&U\dCd«Dg²Ic6$vèL¶Rǘ‘]ºÒ­\–pÛB[º²Mêè’~s®ÈsfšT1ä|¸‚ºjR®µI ͨ‚šõãU 'Ϥ†‹dèléÌ5©b̆ʮÉVêÓ¡²«FWº•+Ðn¤³U¤+ݤŽ>»„vè̵RGŸu­-]©FU 9² N<£ Ú„+m‘çÄ2©aH…Îf…ÎD£Æ\ˆìªÐ“j¥Š1»*te[¹„PÙ_|“:Æôñ!÷$Йl¥Ž>ëŸâ‹>W®I}öÃÇ+R¼+ÓØ¤ãŸ÷Fš¹UþÓÍ«Ëpñålß/\ýáo[Ê!ŠÉ›3½YÂW¢%¼ïìUgžìó§W¹åc ˆ-×ã§n ¡öÛ3çFå¦Až´·è@KM_NMÊò‚< P"pÇZø´æ¥Ü¬áS w-êø£XólQî/Ñ&ÿÀ ´võ_Î ü^ØÚàÿu¿ÿ¼Ôä?çÙ Žûèì˹…Þ¾[û¢§Å?n$5 õN©ºòl"+ø¿÷S  ‡OhUåÚfÜK”BèquÂÉrn¤¡>¿>to€ûƒ$>£â®¬ˆrjâ‹÷_®Füaqø‡ÍiIþ±‚¹´(þþëwï »˜QÕg¥(ßÇ>Ï–"­»Ê¡h¹ÏÁ¾8’àwÚð¯_®Òß¶\zô÷Ùño-OöÞï‹¶°¸¯Î¾|7qªÿÈýû<6`ƒïï© æ0s唀mËwFû …GNIPÐï9¨-—VóÒÌ ¡Ãýø C±äÔhÞ¤™Cèp?t:À6äÚÊ´ŽsööëÚÉ+Ѳ†sªß,ÓºTÈ4uäBÔ/Òó­GÃâîz WGNŒk(7pn•ÅM,èóï•?üY&г⣮ rêc\CŸûZÛï«'¢i]n= .Ä‹¯ÿጣ¿kzpn3ÿXEh-Bfž ÊKA§’×£ãüÄ^üÛß_¹>}ÉíózK+Ðâe†øn0O_Ååè0¾PºÊïÝÀçø€â¿Ï¿Ó›J4°¿ßþ7û-}|? ûßï÷1çìå÷^õ'Þß«z¨g±ßÔÊ|ûFMqE¸ùˆ §ý½îÆcUàÔkä fâ?'H‚K/•ÜÏÄG=ì8¹¨¨oj#bûëøÄQýÏ=õ¼ÀÞ£s«á ¦†Ð ßïõh›}RÞÚνù>úÊOPH1ï1ôÈø0^¤7·“·óñRÂZþáûjôÀ¯Ïj¿¹]™üýÍÅÌ„Üf›87»XTœaþAbŸ¡P x6g¬5„êb©8pm8/)§z¤o+_í·´›—“K òªû.íÊGyÞf>ch·“0GÜ®[KþWÛ‘Ü%WõýTO{ç|=&ÖñHõ·öéÔy^u¼(Š ç"Ïã"ÔðR¯¡¥«O¸•*.Ò16¡J\Ù&uŒéõÓQ…¸°­Ô1¦CJ!^èV®À!Ä´Jqå›Ô1¦CMW!Îl+uLé%¨Uˆ+Ù¤Ž>»$5ëpfÕÐf\Q« OšI CÊ5ëpæÕ0¤ü߯2ׂzQßܪÜãȽï)‚v¬ýgõ-Mt•í}Ot¨ÇÚ^?䷴лJ1÷°¯FG¹oU¾¼w²eýÈ“6¾«!ŒÇúlê_ÕÞÉ×…ïïUäEÄ ÝØO®ƒíÍmÊâwß¼:uüz×ÀÖï`•ÞÜF÷Þü|/ƒW%üt´0?¡honäBþÓmÈ×Ïw.ÙçNÀweﯿͷ6R%ÿ~Ç+ëã6ïÆ á¿_µÉ ùã£KCòûߎÿÞã{ë×÷-š­DÏ:žQ²£þgiá’ß§Hþýøy~í ewt¼­¿û/“îÎ6óÒ? aB>[ƒ®ýŠ×9Îc'%÷é;ä{fàøsqßÔM§ Þ;ÓçýBÇ[ÿ¦ÿ«ö[š•i…¯÷Ë…øy¿ÍÑß_8 8µröÝØ?îÏû]ÜüÏs™ùBú{äÿ â»…q]$Ï&)Î4Ë úP>›H‹'Íòÿ£ ¼.Þ{³LkèbÖ[SvßB´¬¡ý=r +ž{óä[ôüûÍ´l2€Žtü<þßY}SÓ*úèߣãÌò[˜–5´¡8“C%÷ÆÍÏ  Eí¿¨xnê2údíïÏKÙÍMfUœ9?œlÇžÚ`Þ <èHïåÂÇ#ÞÔ¤¸ç¿_ ´0>_ Î´¿×¬õ©„•7µ™·o‰Î$w¨>³U|÷îâ¿%ÛŸ\ž—cBÅó ènnä¿Ò×f9Ÿ¿¾ÇÁ–ñ+„ é÷­O¶›Ûéf<Ÿûü M¡'þ¿‹ðÖnºfûþ‘j˜bhï÷(ñ&í-Í\lû¢Þ¿¿ÿž¼bþˆ …=âW§*ojT”6Pn¯Â››•=¡~hés†0!ã¾RQÞÜnzCÏœyþŽ2Œ7÷+Ÿ@i%†·ç‹ûÖ¦e‘xžœN)LÌ­³«úæŽúÁOV‰s Ô·ø(ê[ΫÄ)† ù¢•íK}s³yuøŽ`€•ì—;ÏFͺpº#Ç]¯Hoéщí¼×$QÞ\é¤v\;Ixç«ìN¾I C*|3{n&Š‹0B8WÙx+UŒÙÐÍUu+Ûʸ ¬Ÿá¢»•oRǘŽŠê¶•:Æt(確 ÝÊh û¹¨ne›ÔÑ%—~VÍÍL“*†œ+hVÝL4ªaH¹€fÕ4£ j‚W[Ñ4“Æ\hg–ÝÌ4ªaÌÅÐCUÝIµRŘ‘‡¢º ÛÊh ôûGew¡›ÔÑg—t®’›¹Vêè³K=³äVªQCÎå3KîäUP´.º*Ô0æB;³êf¦Q c.„sUÝIµRŘᇪº•må \bBtwá›Ô1¦C:Õ-l+uL饞Uu+Ù¤Ž>»ô3‹nfÕÐf\?«äNšI CÊõ3‹næÕ0¤B<³êNžQ献²>©îdZ©â"£"» Û¤Ž1²¹ˆna[©cL‡p®¢[éV®@K¸mñ¬¢[Ù&utÉ%ŸUr3Ó¤Š!çšE7jR®ŸYt'ͨ‚šÐÕÖEt'Ϥ†‹d @¼F®Ic6FŠî²•:ÆtH碻 ÝÊh ·­žUw+Û¤Ž.¹ä³jnfšTÑç–€fÑÍD£†”ë쯖fTA›ð5ÿªÆ“eê¿ñÏÏïZ%íßÃ]=„5ymµækÑ2Ö*ïbµ“oZCŸûðû°ê²•ÙHð¼ éÐÑ·êĹƒwÏkÑ0Šì^™?îýÎô¼çú«‹ºÖ^óð”%êÏÚ¨¬IÿÚ«±wt¼Wö]ÙÅbS‹q5:Уdúý$Üç5é@‹úû™¹Íx6)«Ò?÷Ú|‰ …bUT¶¶·–¤N¸Û¾¦2›鞘ÇÍ1Öìë=D[›vªÈæ6ªÙ?>¾ËÊ÷c„æ¿Yes›+ÉîL(@6;[èò¯ºâÝo6w˜õEa—M |ÍZsH)УâžùléÂjâçž¶7.Ç@ZŠR5vö(‹ø~¿¶çÍzØWïĹÕÅFûÃõ£‡Åak;oðå·­?^¯Çk¯#zœ¿5; ìlUÐ÷Uì+„ï¶ŠÇÖv:â -2† oÂÄts;£ú”¯q=©î$^|8„ïìT…—v¥Åçó‡ö®çYŒú¹©M.ÍŒj¨™µ#±û×jÉ“h¥Š)ûž˜½¸rç¯çaÆVÅ—g3“¦ÜG,ûWiÎÔù{B!´ÈãÑñgQçÜkþ©Í Î0ú—¨:§FóÖ ”ÁÄ‹O"ѹ—Ž:ñ)×;‚ ç/lÒ©¿¾»vû÷ïËý¹¹q=*g¹Y—¬bÑ©G™øºÿî}¶)‚ ÷¿ŠLçfåw^î¤Ã!LH¿i\”:7·¦áz\¬–< unçï/öÙ߯ýžHc±¾Õ:umèoŽâžÇïcoE¾Chqï„ÿ;ùôl$‹ÁϾÿ÷sÛ~E=ž±útn4[s aB†âV§.íŠ5Ï“”8„øå+Ë‹O—fêÌï´È™Sè‰ß®lÕ§k7ýh±^HúÇ=´ù½ö«/&Û•ÏD¯üêH =ÒN]Žæ4ˆ›§ÑßH¤kÓñ³(Ç0AC"•Î /–›g#pýº/BÛi>¾œBh‘7²éêÖ¹]³àœ®Æ@òƒĬKÆÊÓÕ8¡§{ÛÏÛý±—ïm¿²üÏlÜ«í¯«íIó{8>ò†÷®Æ=áVª¸H‡õVç®l“:Æt8ïêÛ™m¥Ž1λúv¥[¹-á–Þ»w¥›ÔÑgÝ|WÓ.\+uôÙå¿É´ªQCÎ 8›öäUPËùºÿVÏž4“ÆÜzæˆog¦Q c.ì·÷dšÔ0æÂ|WçÎ\+u\äÃ}«wWºIc:æ/ªsg¶•:¦´ÿâSç^È&uôÙåÁɸ Ó¨†6ã\m{ÒLjRîÀÙ¸3Ϩ†!ö[{Mjsa¾«sg®•:.òa¾Õ»+ݤŽ1Þ»:wf[©cLÇ,FuîJ·rZÂ-¸:÷Â6©£K..¾]˜&U 9wáìÜ™hTÃrÎÎ=iFÔDYЭÎ=y&5\$À«{g®Ic6ìw5ïL¶RǘŽMªyWº•+ÐÞŽðjÞ Û¤Ž.¹üwñíBµRGŸ]œ}»RªrîÁÙ·'Ϩ‚6á\]{²LjRa¿Ù¸3Ѩ†1Þ»÷¤Z©b̆õ®Æ]ÙV®À!æ0^|“:Æôñ\ª¾]ÈVêè³Ë‚“o/T£*úÜòàìÛ“gTA›p ®®=Y&5 )÷êìÛ™gTÃZÏñôÉ3Uñøçø™~®ïÚ®†“{øÆUœr‡Ó>.TÁÎÄQîû7¹¡_ƪ֙߬vç«Ñrüƒ!ëuípgß×b ˆŠÿ¨üy‹ø  EƒE§s“y¥;‡Ðâ˜(umT<ì¯EFÐÁ±è¥:·)[ÒJ÷Œ`€­'‡ŠuiUÖ›ø jVþËúLÈü¦\/­Ê&_ûë½#èP/ÿŠªZÏ&ºwåÚ²V¤ÿc+ÿ‚Z÷ªT­s›"ýsqE0àr9|¨un£Òÿ˜®`é¿Îò<£tÁ{¨unS¤ÿë;¬§àòê"ÙµÙÕ†÷Â\_QíÜJoû=ö×;#¨08ÁbÛ¥Qq_®²Ì~Ýi‹Áƽô*ëéèÑÁ€ uQl{¶R›óC»¿Rîåk½Õ¶s«yS_ ¡¾ÇÞœ~»vn¤èïç÷ÞêxGСâ¶õɱg#+ULÙ8xº˜v%›Ô1¥÷#ÖêÌ-ÿ`: xGp†­—þ¨ õluñâ&äzD¶½43ª¢Ïù9jÚ‰hRCŸú¿u:3­ÔѤß—«J]É&uôÙŸµ'}1ç̵RGŸý‰ó©É•Z~œ?s3êB[ëÄÕ’g£qÒ‰#è`q»óäȹÕü'1LПø³0׆eƒ•ýË+C˜€! TšS3/ã#´)‚ ÷ëËÒ‹0—f:'Öšc {¨|ÖæÚðbµw„0ÿþ[ª2ÏvecžïýKRCµc¼Jsm7¾óáämͪ:çVúv탞ÿ;‚¿NÒ<Í‹É%„ ùÇÑßHŒk»QS =14—^eâ–Nßœaþqù{}5T™S«qP˜#˜ëTqæÜªñÇžËÎzX¼>Qž.ö\Ï&ÜÞg½Jrn7~ÈÔZì-eeåÚrÞ{bþçªÉ¹]·D¯ÇÀJ­Î´S'Äózü'u9W!¾¯mä}¬Õ>UN=¬T1f§!{òBµ—a„°®²<ñVª³¡««*W¶•+pAe­º\ù&uŒéÖU•3ÛJSz©kUåJ6©£Ïú'åÌ4ª¡Íøž"ɉfRÃruM¢\xF5 ©PÚ*Ê“hRØ i]U9s­Ôq‘m­Ê\é&uŒéÖU˜3ÛJc:ÄuæJ·rZÂþåV„¹²Mêè’.±‹,g¦ICÎ*H˜ Ѩ†!囄9ÑŒ*¨‰²$\…yòLj¸H†¸ViÎ\“*ÆlHë*Ì™l¥Ž1Òº s¥[¹-áFâZ•¹ÒMêè³K]WUÎ\+uôY¿Y%ª\©FU 9ª UN<£ Ú„ËkÑäÄ2©aH…¸fYÎD£Æ\(ë*Ë“j¥Š1ºÊre[¹„ÐÖ*Ì•oRǘv©]U9“­ÔÑg]^‹*WªQ}Îå5krâUÐ&\]‹ '–I CÊÕ5KræÕ0¤BZ³&OžQçLY^5y2­Tq‘U­¢\Ù&uŒéPÕU’3ÛJcÚ…uUäʶršü-ĵ(råUÑ¥\]« 'žI CÊå5IráÕ0¤\]³$OšQ%±ÞÕo®’PÇ&ü¢À¹I¹ŸD'¸g-líÆPä77*;)>÷mB ¡†‘g^š•å-?zúüqïô ¼ñvô¡Á¥‘ÊyÞž>#hP‡%-œ›èS:ZRBhqþåa ®ŠžÿÜK¸v̈Ï6eãûG®nÏ*Êß„¯é»ª¿¹Ñ¸§ª„0"ß/ªÀµ™.l{²«‚~œqÏΨs£¢þóUŠ ‡=×?B¸´š÷àä-ÏM^º•E…÷¯¢è—Úh€ïoÑÿ8·’]~ip3hiµ>š8÷Ñýƒß¯[)ç=–õˆ5ÓÅŠg“ÚÜߣãÏÕ†3ÓJm6©úVîüUÌZâãß/5ßÜ­L—|ïŸÂÌÇ*ŹIcöï ½“®Q CnÛ=ãÄ4©aÈý=)×cÕâL5©bÈ>Öšu–âÌœw ê¡Ká¥IÁ~¦Q¤ZXþýY‰s£òªô÷NcKãˆ`ÀíoWÑáÙJ_PßEØÇ­ÓŠû ö“ çf¢‹åÜk‰a€î5ÈE‰kËò çƒæ2†ú×x=%. õ7æ×=—›Sðñ [¤¸4,Vú‘¯ C‹}ÿíM»¶ÔÅÛïŸßøBQ =2¦dŠçvþvÈ7¾þ÷çëcOorÐo|ˆçVã˜eFÐÃbgó"Æ³ÑøÖ“#8ãÖ²iÿ»ªçVó’p aúýõbƹÙl¿)„è¯üÕ‹K³2ðKgK =ÒßO¨/íÊ­<“‹c˜/Z?¿ý8·Ó‡²-{†Ð×FìÕ‹s³‹Ù9†¶[½¸6<bæë1ÒüÏìŹK·¼<®Å£Úð¬u&¯ž,}¿0^ût6½·ôJ[á‹!¯–>W×ïË0ôLú3ܤŠ1ŽZ ¹pMª³á§«¿ë·ZêÓÇ[““W¶•+ÐäoÛS«W²I]r¹juâÌ4©bȹ¯f/ÎD£†”ïMÀ^€­8óŒjR>-AVœhFÔIJ±a©ÅŠϤ†‹d8êÇÈ5©b̆Ÿ®nœÉVêÓa¨«Wº•+ÐnÛS«W¶I]r™juâÌ4©¢Ï-[ÍVœ‰F5 )Ÿ—xµ4£ Ú„OJˆ'–I C*5yq!Õ0æÂ{W/žT+UŒÙõ 99ue›ªsüóóµö]÷ïà_õ¶öKgA®ºÝ²†sb­ý)2œh¦5 ¹c©x*ð›Tüñ]ïþñ‘x²G ÿ>ò.J?ø$øPßÉnÖ´óµ8Ë‹úÖãÜ>…ПÇCô77š×¶g-ÊŸª¿¹Í¸f‚"hpo‰ÍG‡üæFãRŠ …±+íÍmæÍì9„·ž©¾K£ñãŽ`€-'ꛚü—ÿN/]ÆþsjñŸëå×§Ö·ŠúÖVå.ôÏ+žÂ<ŒsÑÞܪì~š+'%„·fD{k«y#þ aÆ"‘ßÜlØ–èaŸ~¼JonSôÈç3´‚„ÐáÖP(ïÒjÞO Cè®ÈyKŸñt‚L Å)¾Eyg“½¿èˆúÁ„{º›WέLªè“±‚P<83j8§üsÀ“ˆJ/¾€Á„{æÖôé§¹Õøçz`È{àÜÎJSúé T ®ì²tõí#uq¼Ñ`ßÎMê· , Mêè’Ç|ÙÉ ÕJ}öª•e¸rª˜’O_Íæ;‰^5¨ —6©Þ;¯J õ¯lqßÚP^T¿iAw†Ðãg­xon6;a a~¸Ç®Î›ÛsfÃýÓ­Þ[[Ž¿39† ºe(Î[ÎÚYbè‘Ë‹ñ.íÊ!éáL¡'®óUxs/YtMäL c}ûiæj»¹‹¾{£…³”AO‹Cº‹îæ^eŸ&:œB˜q ¾on7ïsN!LÀµs on6/é¦&`xfÞÜlVÚ;‚ ÷Z«ÛYvS£YgS=lIHÝÒèBfg ð¶mèchÔIì¸-#Dn•ÛÙ¡SØ|5F–?bÅ­]:•WcàD³pïo0tº=Ÿ±úxÔ/êþ§×ñ=$ΖŸðFU 9?AÕvMjR1LQ´¶P­ÔÑæo[<‹Ô.d“:ºäÒË*³™iREŸ[‚™U6jR.˜Yd'ͨ‚šà…ÕEc'ͤ†1j™u63jsë7öIg'ÕJc6†ŠÎ.l+Wà‚ZY”vá›Ô1¦C,WÍl+uL饗Ug+Ù¤Ž>»3ËlfÕÐf\0«ÈNšI CÊõ2ËlæÕ0¤B,«ÌN¢I c.FªÎf®•:.ò1ä J»ÐMêÓ¡”‹Î¶•:Æôñêu’Ùʶršüm«eUÙJ6©£K.½¬›™&U 9W̬²™hTÃrÁÌ*;iFÔ„,|®*;y&5\$cÄA•6sMª³1ÜP„¶­Ô1¦C+¡]èV®@K¸m¹¬B[Ù&utÉ¥—Ud3Ó¤Š>·3«l&Õ0¤\1³ÊNšQmÂå²jìd™Ô0¤Ö3Ed6js1ÖPd6Q­T1fC(™]ØV®À!´òã‚oRǘvµ\U6“­ÔÑg—`f•­T£*úÜR̬²“gTA›pÁ¬;Y&5 )̬²™gTÊцWË3ªàœYR"FŠÌ&¦•*.Ò!¬Eg¶Icz=CN2œÙ¦®ÿ?ë{÷WlJ~S ®~ܲ†.ãªZ|v²Œ+h~{L쵰ΟIéZ ”eMÙbK‡F~çµ8~&<;læ7+ÑóZ´Œb»×CîЬCç«1±žû,øm®µË¼_|D0ÀÞž«·Î6㉠ƒ=ÖzkñÖÚh¼eE! Àõ­$sÍÆ$;€t×ÍãÃ[g“ÿ6êk6¢ÅùÏŸøëÒêj©{„p ƒ-•²ýï>"'»îo¸×ÉxÕ_s«þž²$0òMJúZû”[á_{ûÿA‡ò틸Î&zÿï£Ã£jõµFÿ ‹]ó‹¸ÖVó6úC½­OB¬®µÕ<œA_ºü<¤u6)+õž¯<‰ž"èqë=5©ëÒ¨xŸ×/mE[KéZXœ$êšúð×=h&p‚ùGÏåGŠÏæVã_œC˜‘Ÿ"çv&UôÉÏ^“3Uÿ¢ôýã&àg'Ê¹Ùøôààñ a5SÕÍÍæu¢B\›ð«âæV&Uô9ÿP#‚›‰F5ô)?5šÕ6ÑÊ-odt øŒT]7µ±RÅ”ýt¡Ír[©â4Bèq»UÛÙLá¼Uµ„0!ý«RͶ_u9† ¹¶gWµÍíÆ9/¡ÆëBÑÚܬl¸MçPS0n™œ¤67œ—4K -6»©ÖÖ†ƒ^Þ ô¬¸Ë§J›ú”70y”G0á¾Glµ¥ÑÅfáA[ª—¥v6Qi½Ž± Ûþ}O× %Ge9ú–ÙÙ¦l»ôý¬¶ý;„xKŒ½QŠÍÖ~ÅYÓ¹ÜÃá5ÚÜpÞŒœB˜€¡ÝNV›^ØkŽ¡ÅÞÂ5ŠÛÖvÓV`™AË’…é§.¼¦k1PB×’Ú–¾¾§y=qµ“Õy-Éõà|*We6wé¤u^ –›e•ÚÜǤŠ!éfY=63Eçe. Uh3ܤŠ1é;°ÔþÖoë®aH/M'•D+UôI×Ë,² Ó¨Š>·3‰lâUÐ&\.«ÄN–I CÊÕ2‹læÕ0¤B*«ÈN¢I c.„rUÙ̵RÇE>„²êl¥›Ô1¦c5~UÙ̶RǘŽùEeº•+ÐöïKUÙ…mRG—\zY563Mªr®˜Ye3Ѩ†!åz™UvÒŒ*¨‰²ZUvòLj¸H†RVÍ\“*Ælè䪲™l¥Ž1à Ue+ÝÊh ·x³¦*»°Mêè’K*‹Â¦I}nieØL4ªaH¹Vf}4£ Ú„ eU×É2©aH…LfÍD£Æ\hä*°“j¥Š1¹ le[¹„jP‰­|“:Æ´;}-d+uôÙ%•I_ªQ}nieÖ×É3ª M¸TVu,“†”KeÖ×:ÿ›5 ©ÐÉ,°“gTÁ9£«žO;™Vª¸HÇÊ{UØÊ6©cLÇCÑ×¶Rǘv•\äua[¹Mþ¶•òcäUÑ¥–TVu<“†”keÖ×Ì3ªaH­OÙ"°“gTÁ)ó©+ ‹ÂN¢I Éʪ²™kRŘQ†*²™l¥Ž1à Edº•+ÐÞŽgŒjðÂ66Ýøçïg;ëãÿ»—Ífܸ†6sˆj²Ù̲¬ M,%-î:YÆ”ÌËÍ÷gÁâ©…wáÍý[ß“ò°õs‡Ñ›óíÌ8¶A/Ž:éÎ|éí3å¸÷_Õ´vÐû+<_j "o±Á:Éim4nâ 4œ%]‹•ÎzK«qæµ­x‹[_qÓÚ꿬ùrÄ-p ~±ÓÜê?Ö¢ß÷6ñ ;Þ1?ï²Hüqn4.¯‘®­;§UMÃ9î·ÿpç!´EO7ö|ßþÚOB aúwN%µ6onS ð¶î#±¦æ6z3þ{?Yöõh(¼N<¼tòE!¼î÷}SX"è`±2ŸÜ´¶Q=Á;çG=l}àW7m¦ått=:Òñé½jiî1ž‘*!t¸ãS¹héÒȸŠ.÷½Ö‹y¤•2Údè…bž•kRÇœŽ[E43{\ÞHLÄïµ(\<3÷'F8„÷(Šgæf&ULÙ¸?!®™©F5ô©oßu_]sòLjèS~v­ˆeæ‡Ud=Ìov¨i¦6ãÏ2GPaësw¸M1ÍÒêÂdf3r?V×Ì ÇW:aB~¯ÝÜÅ4s³‚}mãA!ô¸o>~=<3·š^ø9ƒ†wë¿ O¢™¹Vêè³®Y4ªQCÎ0‰fâUP²VY5sÒLjs¡~Y73Ó¨†1Ò·êæ¤Z©b̆ò­ºYÙV®À!į*gå›Ô1¦]þVÙÌd+uôYWÀ"›•jTEŸs ̲™xF´ WÀ"š‰eRÃr̲™yF5 ©¿¬›“gTÁ9SÖ%WÝœL+U\¤CùªpV¶Ic:”o•Í̶Rǘvñ[Usýè£W Éßâþ¨fåUÑ¥ü®ŒŠfâ™Ô0¤\“lžQ CÊ0Ëæ¤UPe}²Êæä™Ôp‘ õû9rMª³¡}«rf²•:Ætˆßªœ•nå ´„[èߢœ•mRG—t¬ªY˜&Uô¹%I6 Ѩ†!å øÑÒŒ*h¡†U5'ͤ†1êW…3SMª³!~«rf²•:Ætˆß*•nå \BÿªxV¾IcÚªrf²•:ú¬/ cY]¨–Fÿ¬W€å‘ýÿ®ø³þßå–ãÿC¯^tyb±ÎI2®`L-¡,晉Æ5 ¹C ‹ef^#¨óZ´ ÿâ‰g¾q MnËäôÊBýöÝý¶æ‹}vœd;oˆžWb`¬u¸$‘™>o… (Y©ý¨MþÃk/Ïz&…Ì.üçŠðXµÝ׿Aü±6û/»½Ö›·ÀÎì¹Õ¸š…"¸‚U»M5]³fýŸíöúR°;nív·ò³,+èëèoõȳRD›û I[m±rǯ¾Ñ‚o)ÄkK£*úœßÔ;ãdZ©¢O®£¸Õ+u4i”BOü¡SÆ—MæNF5ÔÌ2C¾}½jãä™Ô0åâ¡8bf–ãOj’;Ýéqq¿°â»Ü'‘*¦l9A‰Qc:$mÕÃ̶RǘvU[å°²­\&ÛÊ–å°rªèRKÚªNžI CÊGX3Ϩ†!åc¤‡‰fTAM”õ¿¢‡‰gRÃE2d­jbæšT1fCÔVIÌd+uŒéPµU+ÝÊh ·-lU+Û¤Ž.¹”­ÊafšTÑç–¶e=ÌD£†”°NšQmÂGD ˤ†!²–±js¡i« Nª•*ÆlHÚ*ˆ•må \BÕ~^ðMêÓ®k«f²•:úì’¶¬‡•jTEŸsm+z8yF´ 5L,“†T[ÄB4ªaÌ…ª} L“ι¥,CÒVAÌ\+u\äCÒª"VºIc:$mÕÃ̶RǘvU[å°²­\&Û ˜å°rªèR¾£fQÊÉ3öÆøçø¹_¶7þÿû%‚ 1{fË ÚÄ2¹Å'Í´†!ç߂ꇕjZǘ>„/ya¥ZÖÐfÖ®çÅ 'ïÂHûwºåßrÃ…¾%±¯EÇ!Ìv˜èÍ’é¼-céÁ¢…™aª—&lIëo’ÂÚã¿lõR³ n­%Ì®}u¬—VÖñ^¸n,>˜;k5$„éÏFµÂÚn\tB!LÀ[o¬ 9¿¯·(6øì«;Î!4È÷ƒc-}ÚàÒh¼e½#8žëpÓâ‚©Éx·]"pþ×W'¬­FÃN!ôÀßã"…¹Ñ¨ (Eù»õßµà¸an4n0*!LÈß÷ÓFŰ63®¢Í­¯¦Èa&×0¤Öꢈ™h\C“{?Xß“Tij¬ K¼ÂÓªý%œ•"†äËM­Ú_¥–ïÛ÷Þ~žcè‘~']¤0·2ª¡Ë¼dÁóO¥™ÔЧüf³ˆ_æÕЧüVsѾɛ½EÐÃüôIúr«òÓÎxŽa‚†+*6X[Ž/)Ã}ÉŠèÝ‚Z©cÈ–¥Ïƒ¼¾ð™D æG,µå¸iñΠ§½dõó™ÙçÂ’>ùÙÒÁ¶sdü<=Wº“{w.Övœ­æE±Á·lP¬ ®ö—Û]HXŽaƾXÿ6 g »Cèqþ²rò¿Ùj^k+! ÀõñVýoi7îàL)´ÌýʪòWºï›9„çVåËÎïôùj ¤º—{tJ7¯Æ‰ô9P;}צp^ŒOùÒÊ™©,rOÂy¢þC9OŠ™²¾šº*Þª›÷/Äñ¹Ý \Ø?uð>ëú•ToÝ|×0¤\¿ªæMžI }j X½Ì3ª¡O-Ë¢7iF´ —¯*y“eRÃrõÊ¢—yF5 ©®*z“hRØ[O±“êe®•:.òëõ]uo¡›Ô1¦C¸Õ+l+uŒi²Uô*ÛÊhò·­^Yô*רŠ.µÔ«*Þä™Ô0¤\¾²äežQ CÊÅ+KÞ¤UPºâ¶HÞä™Ôp‘ ñ/¢W¸&UŒÙ­Eò ÙJc:Tk•¼J·rZÂm W•¼Ê6©£K.åªr—™&Uô¹¥]Yï2Ѩ†!åÚ•õnÒŒ*h.\Uí&ˤ†!ÊŸ/js¡ú‹à%ª•*ÆlHÖ"x Ûʸ „jUÉ«|“:Æ´ëÖªw™l¥Ž>»¤+ë]¥UÑç–ve½›<£ Ú„KWU»É2©aH­ÏM"x™hTØ åÏ’7‰Fœ3ºÚ¶J^bZ©â"¢U4oa›Ô1¦C´VÅËl+uŒi×­Uð*ÛÊhò·­]?G®Q]j‰WÕ»É3©aH¹xeÅË<£†Ôz6‰äMžQ§Ì®¸­’—˜Vª¸H‡nÕ[Ø&uŒé­Uô2ÛJc:tk½J·rZÂmKW½Ê6©£K.íª‚—™&Uô¹¥rYñ2Ѩ†!å+ÁY 'ÍÒþâŸïß×6¹÷e"ßQu¼i‹+2ËÊáežq CοèÕí2Ó´Š!ùþ<¨~W™ÆUœr[ÔŠÍežq çÌ:}Oí-Óf“||‹{ÊáèÙß òÈ!~Ê›!æVèÆ5hÆÞs)5´Ì»ðÆ~æuÏ9Ì£ÈYîp^w@×¢£<Þ_Ÿjc™qÚ5…ÐâÖÖÎÅÅj³qɇÄÐ@ßÖW‡¬¬6›WPG3ªØØ¬Ìš#½-^ wûXm2¯ÈŽZÔRñlc©I1ÛyÛ›hQÇÙÂja¥É¸¢IBhpÏûa5ÉÃj›ÑìZ”ŸI­þ5›˜ÖЦ–ŠûªÄqßN a.k-j–›×ÐçüKVÄ,M«èrqò¸èYeWÑ'c)9ëYaÎßËŒ ƒý†Md1+}LŠr¿áàXÏ2Ó¨†)÷Æm*8g–‰¥ª*i“hRÃE2¶úf'ËT£Æ\¬ºVñšÌùTRŠ`Ä…¯Ò•ÛY©£ÍÇ·J¥«rç–;„¶>TÕJ­fu(!LHÒ©m-í†$¡®?³o½`q’AE}s“j[³Ñ¼°„0"ý‘úVm7žñÁ1 ÈpÀÕµrà éÉ1ŒÐ²ÔxWm9kÏLá‚éË}Yºr·Y{#Þ¶5ßSêÕHñ ÑZº4Bu_™äX¶RN§Æ•¸bÍš•N¬æµ“ö áÉÚ•;tb5®ÅÈq-Z…kö°RÅÔ ª;ª(Õ¼#Äåg·ÿõzµ»]sÊ{VÍ*{]S CÊÍ*D“*šäm P­B4ª¡Ë,ªš5i&5 )W ¬Z™gTÃrýɪ5iFÔDYêª5y&5\$Cyªne®Ic6tgU­L¶Rǘ^¿oNªUéV®@K¸…öTÕZØ&utÉ%>E± Ó¤Š>·ä'KV&Õ0¤\~²dMšQ5!+XU±&ͤ†1Ú“U+3js!<«jMª•*Æìz–œT«²­\ BˆwÑ­…oRǘvñYD«­ÔÑg—þdѪT£*úÜ ,Z“gTA›pý©’5Y&5 )ן,Z™gTà ñɪ5yFœ3ºfõ¤Z“i¥Š‹tw•­Ê6©cL‡p/¢UØVêÓ.=‹f-l+W Éß¶üdͪ\£*ºÔÒŸ*Y“gRÃrýÉ¢•yF5 ©Ð¢¬Z“gTÁ9³_ˆÏªZ“i¥Š‹t¨ÏŸ ¶Ic:Ô{•®Ì¶Rǘù^¤k¡[¹-ᶨH×Â6©£K.ª²•™&Uô¹¥AY·2Ѩ†!åô³¥UÐ&B~ªlMšI c.ħ*W¦šT1fc%u®L¶Rǘ_„k¡[¹„PŸ"] ߤŽ1íú³êV&[©£Ï. ʺU©FUô¹¥AY·&Ϩ‚6áBUUk²LjR±¦š--m,þY?ÝnV×ÿ_”+ù[ã †Ìr£Å¸2Ñ´Š&{Ëå°b\•j\E›;©øVæ×Ðe\¥’oe–e]"´©ØÕdWÐf7.&•YV÷'­®0–+O·*tË †Œ;Wñ¨D;ßבkÑRü¦U;œo@ÑÕ˜H²P×%*÷hdq\‰ÛI«5Mþ¼À˜#pKŠ9ÕV³7Î&à­:Ýl3ûâ³Ñ½õ>÷ukln·f9½Ë=¾ObM¹Åìž3‚v,MNc*-ÆÅ?;Å|9þ_J Æ›øÀ€ZºŽ4*7±¬ Í<ïÇ)ÊÅ”&­üÕÞÿÞXÎK4°e…‹<ÕF¦uœ²‡é¾©tU¢e Mb™Ù¢M“fZÃ[_1¤Êœ¿‡Â\_V§Òʸ†šò·Ó¿á»T ÔJsz½,UÙ&uŒéõFð$R™m¥Ž)½ÕrÕ©J·rZBþ[ª?UºI}v•ª;ý¬*¾];(1LÐßЮ·mPµQCμVMšÄÙ÷Q-,¾¢H¥Ñø¢Ì!ŒÀã½.‹Riu!ï„î`þgU¤÷ LûâR,V©ªåVóޏÂ2«å†‚2C‘~äru£Ü®Ó”|=Öú!)jT;u¢2¯GKãG¬G¹O#+÷µ¸¤T5úS™¬+åêÿQ×®GZm¤%]?+Û•² n#i#u_†Î5e£*jÕІí!.*Ù*Þ¨Š!ç¢R¥hMjR.*UŠ2ѤŠ&yÛª’µ(jè2.*‹MšI }ÊU%+QáÕ0¤\U’%šQ5!«>Uˆ&ͤ†1’’Å(3js¡'«Mª•*ÆlÈÉ*F•må \BQªU¾IcÚ5eÕ¢L¶RGŸuY)ZT©FUô9ו¬E‰gTA›pU)J”X&5 )•¬E™gTà E©Z4‰&5Œ¹Ð“UŒ2×JùГ*G•nRǘ=YÅ(³­Ô1¦}Õqբʶršü-d%kÑÂ5ª¢K-])R”x&5 )–,F™gTÃr]Éb4iFÔDYõ©b4y&5\$CSª e®Ic6eÕ£L¶RǘIYõ¨Ò­\–p UYô¨²Mêè’.+U‹ Ó¤Š>·„%‰Q!Õ0¤\W²MšQm"4¥jѤ™Ô0æBQªeªIc6ôdU£L¶Rǘ=YÕ¨Ò­\ BHÊŸ ¾IcÚ¥y£L¶RGŸu]Éb´PªèsKX’%žQmÂe¥JÑd™Ô0¤BU²e¢Q c.$åçÀ4©áœ“5™g5Ê\+u\äCOªUºIc:V W1Êl+uŒiæE‹¶•+Ðäo[V’-\£*ºÔÒ•*E“gRÃr]Éb”yF5 ©ÐŸ¬F“gTÁ9ãïD–ì:+Õd›Süóý#k=wÍ¿âHŸ×0ä–ËT?*LÓ*†äZT*†T©ÆUôIw›dI™gYÁùúã[ Ž49Æ´ ¿a£Ž”iÆ5 ¹µê”¼(ó,+¨ —,ÏãÐàâE“vácý…¦ç,·f´t°¬aH‰3}TÞ…•]ßì3%Ägñ Úcö²±åñ‰ö~p¸BQ ÚŸŠ&õþbWËɼFíòÕh9þÅfÍ©Î7C÷µ(þ=j¬ëíÊŸœk`\£5ºtò®lˆ3€+YNþÿã×qý ]ýoÎ’“:W0dŽÕ‰*9…7ÞÆ—NÀ-]IrjËšÄ2†"7“e\ÁYZ'Ó,+2ËŠÞLšqMfo2] &óL«’kÉ­XL¥NO!Ê`à­™zMéeZÅ ¨N³€­\€9O{o§©l“:†¬'«Ëd®•:†lìd|#“©\“:†,íf¼u%SMªhs²¥ñ’•L4©bÈÅ¿‚Í$3gѶ#˜pûŸ¦f2[™ÔpÎ=ø'R˜³ª£F ìR¼ðܬuw¢œõ¨Èû‰Ë’ޝÆÈr]ZÅ£v²rš<§Y5*¹“~q5.9U2f­“~|õËO~¤U“ú,;Ï*R¹<<ËÎMY~Ë]êγÞl³¾hVÔb£7ê5ׇîâªOÄ¢àMªr.ûT,2Ó¤Š1éÂå"3jR.üT,&Ϥ†>µ”«EæÕЧ–òcµ˜4£ ÚÄñô.Z1Y&5 ©ã©ËjQxF5 ©Ð|¢‰hRØ ÅWå"s­Ôq‘ŧ‚Qé&uŒéP|U.2ÛJcÚE_U‹Ê¶ršüm ?V‹Ê5ª¢K-å§b1y&5 )Ï,™gTÃréLr‘hFÔDYã(r‘x&5\$Cò©`d®Ic6_•‹L¶RǘÅWå¢Ò­\–pÛ¢O墲Mêè’Kõ©Td¦I}ÎuŸhE&Õ0¤\;“V$šQmbýªU©H4“Æ\ˆ>–‹Ì4ªaÌ…â«r1©Vª³!øª\T¶•+pAͧ‚Qù&uŒiW}U-2ÙJ}v ?V‹J5ª¢Ï¹òµ˜<£ Ú„ gÑŠÄ2©aH…ì#¹(D£Æ\h>Õ‹É4©áœ+««\d®•:.ò!øT/*ݤŽ1‚¯ªEf[©cL»æ«bQÙV®@“¿mÝ÷3rªèR.üŠVLžI CÊå3©EáÕ0¤Bö‘\$žQ§Ì½¬q¬r1™Vª¸H‡æSŨl“:ÆtH¾*™m¥Ž1}|~8éEe[¹Mþ¶EŸÊE%›ÔÑ%]õ©ÈL“*úœë>ÖŠB4ªaH¹ì#­H4£ ÚDH>•ŠI3©aÌ…ϨTã*†ä! Å+2Ѹ†6slX\¬"ó.¬æZw[H·½Ï-yÅÒÁ²†.ãË5ÕÍ´†6µÝⶇÊk´h\‹rCr‡ÉnTh\‡&½4a±†I6­aÈšR$¡šW£å¬5´b¹ƒq Cêý²]%ñ“ÚÚÉ3E ¡úIªýO.ò»VŒk£<’ že•ùÿ+r|ÿ8VÈ,Ó*Úܱ_°¨@%WÑæY*yÆ5hæÃY‡,-ªy¦U\'Eõi͸ú?êÅŸsÍ´ú¿êÅïsѤܪÅÛ¶šªø˜jTÔZTï%Ѥ†9·³àc¦Q sn=bÅ—D£ Î_ºÅhuyÉl„•\ÿ¦†O«&õÿÁ+ŠÎãZ£¬èêÿÕ4þ6U+õ ­ø~¤¯Mê¸ÎyǵN¦åÕ³FÌE‘üˆû˜T1fÏ‚O©J;+D¥èºÆV!ʰ¬ˆ<©¬; ÃÔhy!ˆ‹3uvŒ7©bÈù–»ªé˜iRŘôKIÔ Ó¨†!åâL$ñLjR®ÎTÒ1ѤŠ&yÛúŒ5jè2KŸ©¤KšI CÊ‹:æÕ0¤\ž±¨KšQ5¡kKžI Éõ¯²N¸&UŒÙeEÔ ÙJc:tYuJ·rZÂmK3uÊ6©£K.m¦‚Ž™&Uô¹¥ÎXÑ1Ѩ†!åêŒ]ÒŒ*¨ ^wW]ÒLjs¡nYÔ1Ó¨†1ʶˆ:¢Z©b̆,+¢®°­\ B(3•uÊ7©cL»6«šŽÉVêè³Kž±¦SªQ}né3ÖtÉ3ª M¸:SE—,“†ÔúU+¢Ž‰F5Œ¹P·¢êˆiRÃ9WVÜY'\+u\äC™©°SºIc:”Y•u̶RǘvqVU²­\&ÛUrªèRK¡©¨KžI CÊË:æÕ0¤Bñ²®KžQ献»«ºŽ˜Vª¸H‡8»_°Mêӡͪ²c¶•:Ætˆ³ªì”nå ´„ÛÖgªì”mRG—\MU3MªèsK¢±¬c¢Q CÊÚOK3ª M„ÆUU—4“Æ\H\vB5©b̆2+ºNÈVêÓ!ͪ®Sº•+pAp©¦ÂNé&u Y—gªê˜jREŸ[úŒEjèSKŸ±¦KšQmÂW€ª¢K–I C*ô-‰:!Õ0æB™‰ª#¦I 眿[Ü*®Š:æZ©ã"¿ž#Eô)ÝØå៿Ÿs2n^Yæ¬x:6€¦UôÉãû¢žN™ÆUt¹ã›B–Nh–4×n qŒ+hÇ">²tL²¬ M,Vü\ÒLkrþ-¬vN©¦uŒé%àÈÓ)ײ†!uè6qrI3® M ;ÅÈ1˸†.õXݦ‘Z£ãJ´„c-šÚ8b›ÖЦÈÕ}Ÿi–5´±sëAÒ˜W¢2Ü éúÂJ7®aH½¿jߘg\C›òï‡Ú6æ5J3¯EO¹¯…ž­ûóß ­ëËÜí!‡pþO®¯fn'c7š¾yå!çÖ"³Îô-Hçú$åßLvpëûLÓ׿œU ~(˸‚1%ËŸ•gYù¯%†ìß’f\9-1\•cecµ}Ä›mßJ•Ûÿ«é«©ÛÿOÇ'¹÷/k±m­ß‹2†äñgµmÌ4©¢Í…]«¶©VêÓaÚÔ»)Û¤Ž1^­z6f7>H®ÇH Ïvr€ÒÍ.¼_%„aûÿçýJúøó¥õë-çÖ"G1mÕðUWEW£!ÝZ+§=:×Wsî͆ƒñ/–jÖ ˜Zµny`Ô1d=ÉV™âÍâ"”ð‡,7SŸ–`“Æœ.öiL4ªaH¹ßR—–<“†Ôñù±¸4&šTÑ$oa¸Ø¦ Ѩ†.³ü–x4¢™ÔЧ–áb“Æ<£†”.6iI3ª &d©™z´¤™Ô0æÂm±Oc¦Q c.¬VõiIµRŘ]/­'Ÿ¦l+Wà‚°^ZÕ©¾IcÚíV±iB¶RGŸ]Ž‹mšRªèsËr±MKžQm —š´d™Ô0¤Üo±McžQ C*Ì–Ú´$šÔ0æÂjUŸÆ\+u\äíªSSºIc:Üjñi¶Rǘv·UlZa[¹Mþ¶Û4åUÑ¥–åR—–<“†”[.öiÌ3ªaH…áb£–<£ Î]jv2jÉ´RÅE:<ªWS¶Ic: k±j¶Rǘ·U¬Z¡[¹-á¶ —Z5e›ÔÑ%—ãR›ÆL“*úÜò\ìÓ˜hTÃrËÅ>-iF´‰°[jÓ’fRØ ³¥N©&UŒÙp¬Õ¨1ÙJc:k1j…nå \ÂmÝ/ø&uŒi÷[Õ§1ÙJ}vY.öiJ5ª¢Ï-ÏÅ>-yF´ w\êÒ’eRà ÃÅF‰F5Œ¹p[?Ó¤†sn¹žð«Õ¨1×Jù0¬âÔ Ý¤Ž1íf«Ø4![©cȺßR—¦\“:šìm[.¶iÌ4ª¡Ë,Ë¥.-i&5 )·\ìÓ˜gTà ÃÅF-yFœ3ºÌìdÔ’i¥Š‹t¸Uñj…mRǘkV¬š°­Ô1¦çÊÉÈ)ÛX»áŸï]²öµ—Œ©VcUg\Ã9ãÂK„³Œkh3ïo K5fYVÐ&ÞïÓIªÇòÿC¯Ž…aÇ_P¤‘Œ+SK}‰Tc¢q Cn©¯¢Ó˜iZÅôoYUjÊ5­£IoFjM™–5œnÌD«%ɸ‚.†LDÓŒkrkUcª4áYVPKõ¼ˆJ#Öùî%]‰ñ¾ó¥*éÆ5´)ÿÚ«Jcžq Cªˆ¶g%×ÐäȘ‰>c¢q ]J´Z¨3æ™VÑæcFòLy–5´kÊjœ¨lzÊû/ƒ¢Ñ†­Bÿ%eWrË ±N+Lã*†ärhE©1Õ´Š!¹LZ]²'ÜfÑ^Ÿ&õöÿ´pïtì"Ë5]¸W0éZ4Œå×Hµ1Û²‚6q˜5’lÉI™—*®®æM9,ònÿ}²âí´Pï&ïÖž¨x;)·ÏѤ†sn)ªÛ>®•:.ò*Üž-ݤŽ1]õÚ£a[©cLW¹voéV®@K¸Ñò7–hÊ&q·´Ý)·e˜J³dšÔ0æb 'i3a²ŒÚa„#{Fh£ Ι%sb5™š³$šÔp‘\OZgL5ªaÌ­§jQgÉ4©aÌ­'iÑgL5©â"ëb‹%SjR.¶T %Ϥ†>åjKóŒjèS®¶X¡ͨ‚6áZKô±LjR.µX¡1Ϩ†!:KZMjs¡²ªDc®•:.ò¡²T¤)ݤŽ1*«J4f[©cLû"ĪДmå 4ù[ˆ-Vh…kTE—ZjKñLjR.·X¢1Ϩ†!µ^»D£%Ϩ‚s¦,S‘–D“.’!´T¦1פŠ12«Š4&[©cL‡Îª"Méÿ_ugkYuÖñá%/ ˆ¦P1ôø¡Ô¤efŸý¾ LA„`3K:pŠ}šf|¡…ŒÌ%}™jÂ$$CÀHÔ˜ ·ÌDŤ‰mI¸Èè\°FAŠP2ÌÅî=®×½žgígô2ˆ×–\þëÿ?kïýìµÖÞ¿½Ï¨Š #µ"Ƴé(9-ÖâeSQö9´EK¢aÂeÁEh! ˆ‚¢Ã-ÐB0 “>³8F£©ÀTLz=ÈŠ!M†HǤۃ¬¢ñtˆZà”ÿ:"i<˜ŽI·Å«BcÉé({Ø"-J¢¢ìsh‹"´DAÑa±Çg! ˜† —‡Z¢ÑD &}gqŒ2i8ôñ—¿æB¤ã¿Y£ñt`:&Ýfí6h4"^‹U#x%CÔÿ¨GZY2ˆŠ’ËA-ŽÎB0 . µ(>£y@4L¸<Т-äQpà)¢×¿b€2!RqŠÛ£,ŽÑx60“n²bˆF³!Ò1é6Õ4@h<¢(øGjQ„åQQr9¨Åàɦ¡ìrX‹â3šDÄËB-ŠÏBE‡‡Yž…4`&}dq„FS©˜ôzˆ4š ‘ŽI·«‘@ãéµÀ) ©2„¥Ó1á5õÂáKN×pÆœûŽˆôå0BÐ8ƒ ¡è1„‹´á¿#oíØŽ¡[ŒŸ…  &÷Ö!£h<¨Š §Ã§”±L &\ŠQvÆò€j˜p$ÆØÍª¡è2_8q3š\EÉç‘#gRc©ÀUL8ÝW3R¨¥UQvZäE ̓ à°½Ea ¨…  ŠóVj4 ‚‚¢Ã¡/ÔBPcÃ@}E0&W1鵎#5ž TÅ„ÓQTŠÕX&P .ƒÁ(Vcy@5¸Fþk R£Y¶·D,g! ¸†¢Ëá.Ïx"PNÇÆB£™@5Œ]î8>Æ MªaÒçAi4‚‚ á« ¢…,  ŠÃV)>cY@5¸zFÁKª¡à1$,f4 ¸Š‚¯] ›ñL *&œv1xF3j(º‹ðM®bÂéøÁh<‚† —ƒc ¢…<  &<†§R|ÆÒ€j˜pYªÀ‹"¡ì±,‹3²LÄ˾úÅéM¦¢àõ/~q.F3©(ú<›Š‰M…HǤÛÓ)NÅx60“nϦ8£ÉÀT8kÿ~•û;fb4"§ø=œeT,J¦cÒí¹TDÄX6D:&ÝîØ€ˆñtˆZ ˜0ê)eb<ˆŠ’ËQ*NÃB0 e—ãT”‡Ñ< &\–RQÒ€(;‹ñüŠó°LÃ)NÏH9£¹ÀTLz=ÈK†HǤÛó©ˆEéµÀ) žRq>Æóé˜t[R“1š ‘Ž²×ñ*JÆx*eŸ#V”Œ…< Š˪8 YÀ4L¸\Ý06Fh˜ôyZ±1’ ‘ŠI¯çS‹²!jS<¡â|ŒçÓ1éö„*fc4"“nË©b2Ƴ!j‚Ôó*JÆx.%—#Vœ‹…<`&\–XQ6Fó€h˜pyrJéXÈ¢àÐãhŒ'¦#™©8Åí9cdQ60“nO©bBF³!Ò1éöœ*&d<¢(&ŒzZŠϦ£ät¼Š“1š LEÙç˜ec4ˆ† —}÷²±DAÑá©)#c$ ˜†IŸ§TŒ±T`*&½žPÅtŒ&C¤cÒíULÇx:D-pJ‚eUÅ”t`:&¼–Wq2FS©(û³¢lŒ&ÑPv9fEÙXH¢ è°¼”s±LÄËÓRBÇX" “>Ï©²D&0 ‡>Çm<¡ŠéÍ…HÇ)~Ϩ8ãéÀtLº-¥ŠÉM†HDŽײ*ÎÅx.0ï¨'V”ŒÑL JG¬8 iÀ4L¸,3¥lŒæÑ0áò¼”Ð1’DÁ¡'z»+¢c$"§¸=§âŒŒgÓ1éöœ*&d4"“n˪b>Ƴ!j‚Ô+ÊÇx.%—ã_œŒ…<`Ê®±}×ò4š3Ùè‹3ׯù(Sÿ?w\òf¬vM5nF×á̧.›YwÙ§G_¹áÆ/̬ûŒj6³îR%άûÔÆ3ë.Þ8žÉ6ͬ»dÝE]¢þ¼â¼óÖ]®bfÖ]´õ·oÄßù²²\pÁÌeÎù“'KŸœL–׌ŽùÕËFWêOí짪-Ï};ªRÝ>µÓŸZ–+ùÔÎê/©Ï ÿûïó?ùæ9³“Éâ?ì»ùÀâšÓŽñ]QÓéJQ¨®è÷q«¬ºRTº+E±‚®•ëÊ=OßyéhûöS7}èŽï¯j÷eOí^úåÉò¯Ÿ0yçÅŸ[Zº²eÏ7·<´wãÙÏíÝwõoÞsìšQß·1é[S$û6^y߯¾oÿþÕ§Û»ýÔƒÐì=õOn½~ióÇw~ùß²³fó±?¸ð³ÅÉ›¿tãòúbn~ó7þuÏž‡ž;ùÖ\x¼ï_c»WòV—NÙfBïݹ:î›úìæý¶®$T!¶y–* ½•ª$VRˆEá·õñ7v­ÿæWÞÞ°pÉo}âÄ î¾c²áÚk¨â¸öõ¹G–yáùÍ×ÿÓ·ñwçO^«K粡ED[¥D½òQûÎíüüæã>»eýÁ[¾~Ɖ՟ïØ=™=²øöާ|bÓíxæ‹§Ž®[\xsí졹góÏ=÷‹Oõ¶×Ü68¡Æªƒz$¯ÔEkò„¿›êÞ7žš;ï­á5ùîñk.ìûA†“.+Þ—áD]Ÿ›eEåîÿ6j5–ëqöª™Â~倠\¯jÈí²Úžø­Tn¥9íËAùNéhÙŸöÿü­ÓO<û´m6\ü£íÇŸòò9‡oUÿì¸kþÕÉþ¿8á¾MzßMnžìÿËs¯.̽°qË O¹éÌüÕÆ«·œüñ3eÍm'ú½Zd¸l‹Q+íÓ²Xñ`Yú3ãÞ‡Þ¾ny÷òîö;Ë ×Ì=:ÿíɳ¯Î<¼pxÃâòKoýçäÖís ×<¸xÿ‘¥WvL¶_»‡Žån(õ¹¡F¬V:3Æf(WrfŒß92Œ¿sxò{ܵ87÷"&É‘Ô_þÿã@6jx[UDZ(ûãØ¨+"ñ0åŠcQº¾Ý?YhO™Ü¼øèûö?¿móÏkvž}à¬}¯½öú‘Λ,M¾ó_Olzø±Í7}l‹Úm››~·©ó´’öZѬx¯¾Àÿî•“õ³“y[bËs× ß\Õùª±[«fIÕ/Ò¸fç…Ù@ݼ(}/µonî€ j6¶}›)Gh¯oT Z×yÝÙøRÍ„dS ?¶oüŽÔ“‘Ϋ£oiWjÒ¬Wã¢nÈn׫”8ºÈª.kmóª®KÒsóNèРTn7µê*Ö™®šç]QÚ_eS×}óÚ"ƒ¡gµ­ƒºîº<'†6ÞØ¢*2×™&k»6Ô@=j¬¨ËÆuF­?ò‚6k¬hr]ÆÐeê ÎK¡y«§íN›•uK›wb~Wuí:ÂYö~]TñÆ–™ª­NŸY¡ÎJ3A[uEÎDóõFñ‡”ãªiÆ‘OÿZ/Ùµ¥Xwe^TjŸ2g—Õ9ùÀj,Ø uúÖ‘-¯2ÄÔf8t*«ZÈrgY´«u>Ø1UÖå­q5m©*B»ti’Ï«…Ú,«¶)#[“«®[#ÖhYוº&áNõ/ôH4­àSÕçŽ`ðÙo?ï}« œm^æºy¦iu׆/¥Æn°_:SãÁDöG'”oÙ©ªmíÅúU;^ŸÒÚQ™ÛY½¡É¤æv@ê›6¢1ß‘1ôåêJ×nHWçy;ÜmÍ¸Ž·¾Ê»¼k¸‰#scjðYjô¶ÇH¿~µqPê/±“eÙÙCŒ¼i^­Ôäl’š êªV|#O¯UUöh#?Éš0Ï“š×LåšOè¦ê¶jòÜf=àêïê¦˶ju¥s#±iúUçekv °øðØÈÓ°š³{ÌÕ@RéKôx n¤ù¸2eÈlÑpßЉÙÛê¬q'¥[@ ¦•¦ë¹Ö7ÇÍnQ'PWvÃé«‘æêzÜi£mêÔ‡Sd#ÏÙu^¸»jۢ醓q#Íݵ:d•Ù-jÆ/Í'GS~Kçð`kÝY^«q2+‡K‹6+º.uýj£Ú•)¸h ÓJ³ºúŒÂV‹ê¤šh‡Ë¤VžÝëªt#„Z_Õ&‚/ÇZi’W Úm躊õ_š¨ÝŒ N£¬ijÖ:A‡æª½Þ™ý¥gß¼”‹Mm¬9Kó¢. Ö^ªµVÏÛº¹šY+zp;y*nÔj¨îÂ(@ ÂÜtê šîè5­åŽN½¾¹™çu-ô—¶¡¹Xk­žZÌîQ'nÖRC#5wûFÈ ;RòÛê/z­ÃHI ÂÄÚêµ…Þ™jIželgʪYüèùU1 nµ¸¥‹¾®JV˜cýaÃðB-‘Ú0?°öâÄÙ]kj­(+ý%|Ô!͘v¬/Ÿë®(ysqäQãNeª­¿ Ž|p³EO ¦ÔúëaÒZ¨5·$$—á½<'¶µZ?™ù:kº¨?Òd¨¦óSý-m/>­¾ л´Ô+ׂ9ªÁM{ª”jbÅ šJÕf—Îú22¯K¾¹ò|×êþÛu¨C˜èZ»¦W€¤½<Ó™ÙÛ,ðÔ4íÐfpÛEO£¦Bý…iÝ õfzaÖî⊶ Îo€¿:"iªSŽ*PݾÖgo/Ž?úBÁÔheNêgƒáM_lšCì¯Hë±PoîB,,Ùi{±Þôèl*Ô-Ì©Cšíº¢°ã§_ýÒöâtçÎ1wÅ@Ûƒ;*šÙÍøé—u´µPpîŠU/±*sÁGÚ˳ºêÉí…–[Q‡0ßuúªQXuöò„ç.¾ÃR…«ÜÓ=¹{€¤ú)v=¨APnªË.3y»ÿg€ u¦ZVU•…+¢^eÿ¸Ì»Ö¿|þùçè®—>ðí˻7¾2™l|Ö#à×îŸL=1¿åÉ›ž8ù#ÿÈ#;?xæǬ9mðLJ¡ D~ˆä§}$…nª•WÛ¦úG—tÿÊq“ê_µòþõäûñ{.mß¶þ•—¿¿õë^Âá[·nPýzáÀ›vžþüæsÿ…}'mØðkwð´­öÜáÙÉdy~ûk7yùí[8ù¦Å®ß×b¥^›7Ã]ýÖæ•陼µ[‹’]íê»@«é€òÚ­3‰'¿ËÚ]m›Ú×nak7Ñ¿jåÏøÚ½÷;cy2ûúâòâÒÜë³û—æô? OÎíß¿ôäÜ3ß›}›—§+C]ž¶}yº—³}º·®…Õ7ùÞëmr‘ݯ–íŽæ‰¿¨DWÛ¦ÆÃk¢G3¼>}祾q÷מýÁo[ÿäG_yò£G^ð­É܃,Ï?üØæm\¿n˾“ötýë“g®Û3y`~ëþËwžñyýf<¸öUjê×Õ¨«àÆüJ¦«ßÆüð¥T½â±<ºêmŧWKõ6t@ßeõ®¶M«7Ñ¿£ZÜyõH­ Ìâà¬î¸ë•·~²u2yà¯/ØôÈkkϼæc<þ½szz›îëäÍŸŸ ŠöTɬ-JW®­{ ØlëÞíJ¶m¤‡ÔŽ®d»L: VKɶµ4ż˒]m›¯ ý;Š5Á=Ÿ{I?¬ùή3&ÿqÌÏžqhinnvëþ#‹‡–—æfç¶.ì{qaqava\ûŠÔµêëÑUkg^¨uµÚ™7e…JíÄãv”•*>>ºZ*µ«ÞÃ¥ÁjÛTÚ?S©ïyÿîýÚ…».îMAˆ+ݾ:}õê›Ä¡võ_råŽÅ£x”•«¿Ra5̨rÇù{¸DXuKÞ6)ʼJuðñ}“€)|uÚúã7nCuú[·W jIß×-§¼fñ¾ï^z¯Ùo\èþ•3ÿ¿ôjšendstream endobj 295 0 obj << /Producer (GPL Ghostscript 8.70) /CreationDate (D:20110523163703+02'00') /ModDate (D:20110523163703+02'00') /Creator (GPL Ghostscript 870 \(epswrite\)) >> endobj 296 0 obj << /Type /ExtGState /OPM 1 >> endobj 297 0 obj 147944 endobj 290 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [170.838 666.1897 178.6835 675.8867] /Subtype /Link /A << /S /GoTo /D (cite.Bussi:2006gg) >> >> endobj 291 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [308.7266 453.1553 316.5721 465.7746] /Subtype /Link /A << /S /GoTo /D (figure.4) >> >> endobj 293 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [353.7358 128.4577 361.5813 138.1546] /Subtype /Link /A << /S /GoTo /D (cite.Barducci:2008ua) >> >> endobj 289 0 obj << /D [287 0 R /XYZ 86.1732 786.281 null] >> endobj 54 0 obj << /D [287 0 R /XYZ 86.1732 715.9199 null] >> endobj 292 0 obj << /D [287 0 R /XYZ 240.632 237.0173 null] >> endobj 58 0 obj << /D [287 0 R /XYZ 86.1732 175.3319 null] >> endobj 286 0 obj << /Font << /F21 81 0 R /F19 72 0 R /F34 84 0 R >> /XObject << /Im4 285 0 R >> /ProcSet [ /PDF /Text ] >> endobj 302 0 obj << /Length 3424 /Filter /FlateDecode >> stream xÚµZIsÛF¾ëWpnPMØAï@¦rð"ÙÊĉÇRâC’JA$$¢‚ FÖ¿Ÿ·tc¡ 9™Ê,6º^w¿å{ üòêäËs™/¤¹µjqu³Èœ^«…7¹02׋«õOÉÝý©LħÓ_®¾ùò\É1½2Â¥Þ/R"ü9µRœ.rÉÅéR&ÍéR§iòñ e²6%Îw0(ÖM¿ÛjÕâÜHc“nS2ñ›âжUXlÊêvsª2x•N¡³É)´:³ñçN*P.—¤jy<Á¡Ûmñ·«VE]?ð†û²…§rÍOëþjn‘íb©¼NÊ.–ÒclN ùÜpqºLµÅ³ꢫvÀ¹ÁÝ”Onvu½Ã•{àöÕÜM¤Ó €Ì/€^˜Ü©g.dEžg*\èëYnÀCY;‹v /rŸJ¢t†w>׬îtn7'¼2À| +?Ý1¡™+™w®·ˆ4=Y ·3‹L¤™Ïˆòǹ]s<ÿȺfyˆ.Áü’œ¶òÈIßœÀÙ=þR¡4ÕöD©ÁkóD}ryòŸžã²g¹ó|‰þ7½ X‰ðFº…ËPÞY:åoáÚùHsD‡`ű™¼œ»/«ÏÌbD:‘srÌ…ïmåjÞâ€o‘ •¦¾WŠ‚\,MêDf5ÜÀÁ›Œéî7徜ÛUƒé4û;l4ø|l£äæ> Þ ƒª©|ª¢æç7ä³6§ Y0ðmž}R4k<%<™yá>'?-ÒT™@R0ûbO0Xvåž÷¾¯º ¯õÇ^WÛ²i«]!H‰Üy!ˆ=hwÄVc pVnïN—6À€®;ìKÀf+UrElòÐÒ@'R7<<ûÁ uâ˜ÓíO¸,&ˆŠ·Ì¤ÛxƇÀúº*Â:Â'».‚C0΀å$rþÿ”ûÛHÞ¯šx-¼{:½s @Zã–2›G^\Ê æIƒ@¶ÞÑÊ–—š]8=ŒqØ®ˆM]Ó­ëbKf‘Ã-ùŒ8>?»äÁ§Ö&E}ˆÇÇ€¦Òd5X†b‡²Ø„÷ïˆõu]n‡3ÜL¯Ê†GÑÏ©4uÍü æà!ÄÜoŠŽ'Ƿ»0I„ßóêµ¶‰!uÏ/¬¤‚c —çêÿ ÓÓ0¢R‘jÃõ?PeY"gS@8-ÕЉøë'ت<ó¢ÓK7 O4'‘ÀÞ{Ɔý‰Hb¤ÏD’Èr9æ9I"¡…Hbr)ŸÁ%ÜQÇ[üħԓÙØ!~?‚Ë@µ£°pþ>ƒNÿš™ÌF´,·zªo8ð?çaÃH$~5{{¸QfT>:—* i‘¹Ï4 ‚úÙ@  ]Ͳq.•³HÁ}½Àyo^ˆH­ü(å|h;‚˜ H7'Š\ ç²üYY@ö©­E(`¿Ú5mWD”îDˆA¢™LÝ)´Èã1ІˆQFsç‚XæÍgä!Ý÷`€êíÓªÀšóü3 ÖŒäoRñ³+îËÂpŒœ{,ðJeqU…c4ÄãUÇ©ÅîвQ"£W?òï ÏÈ–òX,i€j˜ÜTuÉ¢•Ú£ø©hƒº³dÏÅÊŽþ”YkŠOº½µfìöúY·WÙ³ZÊ„ï8J¬Ÿuï¯çÏ8b{íP·¾®ú(—%7ŪÛí9Q1&¸ÉT²ÛóâàGìË®¨êðVï;—¤*ÿ|I ´wuY´_[FA9ºšêíf_6+Î_~ÊN‰‰TJÁð8-¼ÒÃÓâ|ÌŽz«¸Ážs¿åõ‚ð¼ÈÒDHO¹$ÉxZçCZ'ô‹¾ÿ^ùáü9{=§ƒ)£>œ :ð&rj¹&KGÖPH™ÖÈh²Ú…´lÒÚC~»Š78[¦J8È5bµpo}‹g¿ÂÑ»÷ø÷þ™½î™Ñ8¥‡S´AœøÝ<ð, 12ëá¼n’´·á e»ÚW×ÌjÍsHÃ3»àö’YŠîb¦ösh9§KUR‚æ¨"HelŠ((‘ûÃ}TÀ~=+%QÏÉ>êýxœ—( X¤Cí&ÐÕ¥%:ÏlHK$¦~Pà‚¹#žðóQVÒ3\Ž8¾|Ü^‚D "(¤T‘ŒÀ„u‡Æ÷Uùþ=›mBXw‹ÚŸ»¼°d" ½¼^/.áÏù øóêê{´YÞ˜×äQf‚å}Ñðo±^po¨O5 Ö©æ’¨/¶û g•9¡íl©¦ÜQ×èŽÁˆœaË«[Ô÷¡ 9üu„ „ÿ©ñb"ã²òÓ]]­ªŽ:ZX< ÛöR½D‰½»B ¼Ÿ…ýN»^V|Sç…vúßb–kj¨0hwÛ0º£@¸¢ÆÏì5f8D´P D¼ü†‹¶]Þ¼¯Z^‰HÄrê™8…5þ"†*gžÁ|öL ¾&M «­XuÌ ýj¶ùå…ÑFSëÌ<¡Pú'âo¦Ó(EΜ¼ •3Ž0ÊÁn×ð‘"ýðXþ~¨BÍYrMÂÀ•.²¢ì'f 4d)°Nà{.ko\Øp·2-0òÛ”sõx±åB9´N f­c” ÷êcÕÝ%SR7‰ÁÑ(ݪu¹Úcà /qW„Â]¯ ΃ž&Å eQØl—2€nßx8Pw¦¾†47f«û¥ y%ÊOñ¬üLLów5!qŒ»ãuz,@Ì·Z•Ó3…Á܂̓>šÀêº%Í:̆þO:—f˜øÀîØ›pâf_–KäP6ÜWyàùë‚ÛŠ·Ë°-Ö7`ð5·Öý"³ûÛ²C†L'°94k Y0l»Ãúó”‡J“ïv±BœŠnþ&\ ¹ã®î»s0!  .š¾oðo×,áÄKð>°…VS–`ebΗÑ)±Öóê¯{0© Nr×UôQ¡žXšèjDu3±2MíÉjôÚè#¬bS=Íp.I‡ ¦ Bþ=ÍT£õãf*£tO«˜ºVÜÓƒ9N­pÐñoh˜…ˆˆí¤ì(N´Å–d€Í#ñ&ìÛûê y˜L.:¦¯MÅÅZ oM2Ô«ª8m"ÿ%[y:Ús_ÞFÁǾqÆ` :¤©-3Þ5Çp2òJå M[õø¡<x! àoÿÂ#|Ã"GfÉ‹°¼¡Ê§ã§±Å(êO÷AÚ&4*v×5ϒ΂?áK½?á$²9ßu]Îád…xž¦!Êà€¨›6ô&Û0½.o~Z~Ø…—‘Ö»-?ô9?ÝôOBT#gù픢{*(®Þ0%æÐoèãhj¸p·ÙÂö,˜zN5„†úw"ú“D« äFX.b(<†û|„P#L>öá”eþ°D­1Eà d{W—CÍJª¹;t<$•–Ìa¨CE‚æÙRQ ¿X$®íc‘HUÎ㨉 sÖ“Oå¤1ÝHùêÿíeþ61’÷ùaD5y8PÊá]†îM]èÌ-À\L}‡¯0(êá«ïqó &RükÅ\V›N”òKŠ‹ï°º¦6K>þ —W4ÿšê¥•&±söòö"–™—áí·X²\¼yË ñÅTà}SËOáá×KL¢?໯w™Î±®Š…×l‚åËÅ»a™Eí ÅK¤ÀçòëW¸ó÷žÛôõÝ©Q,¯Â ¿ Óü&ÿ(þ¹¼xƒ»¿ÝWÍq>C~¯©—@ìgg°¶‘аÔRÚp–®u:Tü¾„Ëo"„Zná;;ò˜J¢/Zþ½áªê¨Û‡sUØzHkµKR¨o­‹ ±AÌÜNkaÍÐcï¥Âù‚'v& u²îœØ\@±rT/^s÷t©±."€qfâpÎ<ÙôVd©É?Ó 4ý±hüsÀLõßkŸnæ©8ÇÆb×}øRó¿}³ž4%ñ³&\íŠÛ­-Ëí–:ÕT‰r€¦ …+×Mx¸ß ¹àhÜþÂçö°ôA3¿*·ƒŽ®ûN8êØ …ÿf¢ímY4±Ñ›šå'ʇ9T`/342»yƒ•`ƒÒö-óñuû¨ ¤3a”«üþý } Èq9f9×2 2UP]O‡ÇÜ CÔ5Å‚9¿´ÈdT÷*†}®cQÍÀómÙ…6ð¸¿È ?4ÔÏÏpáRðÓUœ®‹¡Cô©º>lÃWx™§P"€=N?ÓÞ Æ0‡$dÚ›ìç€Ä )G_¦BÜc±ŠG¬Øº†¯8Ž_£}ŒœÎV:tÔaöL-U°P5GÆMY¶Q0ËÀ–UÈ2H&.6ÍÌñGú£æIøô<êÚ»QíGjê3£/&ÇæLÝ”øÜÿI‘‚ 9éŽE ;ÔÔoJv¿…cÔw[©Ñƒp•ê-U.²,„,i¢Gýj:yÂendstream endobj 301 0 obj << /Type /Page /Contents 302 0 R /Resources 300 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 294 0 R /Annots [ 305 0 R 306 0 R 308 0 R 309 0 R ] >> endobj 305 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [263.0657 659.9618 270.9113 672.5811] /Subtype /Link /A << /S /GoTo /D (equation.6) >> >> endobj 306 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [258.716 631.0701 266.5616 643.6895] /Subtype /Link /A << /S /GoTo /D (figure.4) >> >> endobj 308 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [138.2441 534.4894 146.0896 544.1863] /Subtype /Link /A << /S /GoTo /D (cite.Barducci:2008ua) >> >> endobj 309 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [152.2792 534.4894 160.1248 544.1863] /Subtype /Link /A << /S /GoTo /D (cite.Laio:2008wu) >> >> endobj 303 0 obj << /D [301 0 R /XYZ 86.1732 786.281 null] >> endobj 304 0 obj << /D [301 0 R /XYZ 86.1732 732.6488 null] >> endobj 307 0 obj << /D [301 0 R /XYZ 86.1732 632.0664 null] >> endobj 300 0 obj << /Font << /F19 72 0 R /F21 81 0 R /F38 114 0 R /F36 124 0 R /F41 111 0 R /F39 117 0 R >> /ProcSet [ /PDF /Text ] >> endobj 313 0 obj << /Length 1528 /Filter /FlateDecode >> stream xÚ¥WKÛ6¾ûWè(Ã7¥½Íæ\Š](Ò P,Ùb[KŠëßyP^9Q’]ôB _3‡3G/îÏnT‘(% çtr·N”´Âë" ¶V&¹«>¤Z.U*6$-3#ó€rÒóRçi;`ǧ«òÀBºÓaÏáž¿ý¶æ=¯J06К®AùÐñlWiÅòý®…NϦg§¦ß²´9 áVõ‚Q_J¦‚pàÓ+ØÝ*÷ÿ@³m Ùí:<ú¿ËÌ)›fdÇ÷< ðãÒ VМ¸¯ârY“–š^¿Î»w·ÓíÀ'À]kk2W•4:ãékÈzôôÜñ´Z_ÊɹpÝâåÝBÁ¨L@³…‡5®ðÂ8’Õ~ñeñá£Lª…LÞ.¤0Eî’t¤PE¡“ýÂ_(=öw‹ÛÅŸ}Ù¨0›j|1Cæ@â9À{°Œ £Ë¡éæoŒÈ¥6ñD«v™Á½Wà[ˆ>ìBÄì*î¡w>¸ÊÙô-Žk²“uų}\µZ¢mMŸÏ¼¶ÇP¸Ø8àÌWŒ«ú¸©«8¶×£eÒ´¯û²:c\”ûfÕ1¿²^®+‚éš=*v%šjÚƒXfpL¸Ö0ÂzÎkó‡Càh]vÍîÌ2—±7õWüâÁpâB=jv+°‚¡Õ6¬‘Ž´u}³'q ]ó²é2vóvË[Ë~ŽËõ†m! Mòé=~]‚cèf.sôË5KCGÈŒ1„l&ªU0Â*Æ@†éÒÑoÁœ‰„Dvâí}ô2,9s3HõÒo…QÙHP ¬u”ê„™/Xk)<¼ׄ]Fjªš¿¥2õ±Ž>aÊãÃ##öõ=E%€5.};tqÍq8ÌúÂçBYešâ&sŸ8g„TAÿï¿h̦*g’\‡€ ƒéÇ$¹ÁÁ>ÓóYâÖZ‰{ýê&zè¹ÃL‹O^dÚko¦ì>²þézŒíT‘Ü• ‰Çv‰QçànÏ ø::øžp I„ØÏSæväõuŽœe.ÀûÞ¸¸ã70G2Zºyy˺=2¤ËÔiÛî¢øKñpÌŸ¹çG[!­ñ?À)Ôl!á„ñÁ^Î]>èJåöšw¾Ó¯çô{) (¢~!:CÊ´= Ãy‡D§F~?ϙޭ<S1FÁœçµ°Áwõª:¨f2¼3é_Ë\ÓÕ£e&y°^a‰9Æz?r C¼bj˜ŒD åL.´ùÖ1?%0’–ݤ2Û¶è„S,ášX´Ý4—ÄO>u$~C79\N0:Qy!¼Sôþ'_"%µœŠÄDãÎ8ðìÍÞ%´@8É„sFµÙT/QεõQBšÂ7BQj ÿ%ìáÈÃÓ ðç|†¼¦r|5ÑÍ0yž–¨G~Û?²uôµÂHˆÔÌ*ŒF&zÖÖbQ[¸øV€æÁeÞêÔA¼Y¥¡NäwÆŠ–uué·‘•¨ë”w|)´™ÀõqgYU»hìžj„¶¹\7Œa!ß2öÿíqçWI`åHè ¤}ÃÅÄWL_Ó'4ºâ+buÒÒsêr(z*ÅAÆb¿ý¸vKuIuD»zvapßR­ EJ\UŽº¨¸ÇýågÊÍh~K”2<ùšÊŽžoú¿óÇÐKÁÊï÷QY;WÀ|:Ö`„³„ž’øãq9…|¢£Fãs•l⯙óá?&JÒ¹endstream endobj 312 0 obj << /Type /Page /Contents 313 0 R /Resources 311 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 294 0 R /Annots [ 315 0 R 317 0 R ] >> endobj 310 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/hh_fes.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 318 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 348.80000000 210.00000000] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 319 0 R >>>> /Length 320 0 R /Filter /FlateDecode >> stream xœíœWÕuÀÑ(àÅh 3ôÛéTí»÷÷¢t0q&qD*Û8vµ+ Aad:™jÇŽ±M*؆1&ÀdµWÀVÿètü1ãfdd¡u¬ ¡PËv_ï=çÜ÷î[¾ëä+·)ßÝÑw¾ïí{÷ž{ÎçžO5X;o°øCÿ¾í®¶Ž/ÙÆí÷¶‰vÝøFk\Ý&¼Ç‚ÉÆ]mR¤ã;Û¤2&}­¤¡oo s{Û¢†ÀÎT .â9ïý¹kÛ:®½¾ñõ{îûã¶Ž¯„kÚ:®i¨¶ŽÏÝpe#_5Ÿ·±m×^Õ8£8Rþ¶ýÁµ/†;JEw ·Tá–’7¹¥TpËîÙñùŽ+¯ü|o˜5«cncf8se÷÷Ýõ§÷†?¹üòøÌ‹Öl=ðØœ÷/»ì² ¾·{ÜÝC«çï)ŠùoôÙ·¶(mîëÚrÿ承óÊÆ«¦L»áŒ1ç¦áYipgÜ«&ƒ³ql¦Ét—Á'݉ӭ” zS#L”ÃÍ”la¢ÜÒDŸ.ªÏñ£Å7§ßyÿ¥]]g°5åØÐ5WáŸÉQ"ƒ,OE“Lgn¬¤öáŒ;¥iÃ-•)kh¦OAJ;ÂD?FƒÄEw#iÉã1-8}—¿½ñú8ÉN5}œnæà£`±#}oFÛ_p±ó‰úÑ7Q©ËáE40<ÝúðtÞ k®i,YI5í’1Ï–séJ«Ì6ˆvKߟh¸œ7uµ“²\ÎÃÓGÓŠÖ7NõTÙê0ãi|'c½[Ÿ¼fö§V¼ùú_-ž³åâ=[.>¶ý@Ñ»~ÝP_ØO¯[Ôѵ}Âö ‹ö¯Þ¶©X××½c_Ý´iÃ['Ú®R>ÛfILö[ž NçšØ°Òò”Û°²Í7ZlX©fûÍG´áÑ6ÕÒ†16i|ºõà°´á[v÷Ä@౩ÅžñkS ööötï8vøÐÐ`oOowÿŽ#‡û÷÷ô/n¯ÖðÊZ£l•N€¥â÷MìÔšf!ÒÉÙ©uÍh6ZìÔêf»ËG´ÓÑ6Õa9̇ï“HbBN,2¼’XæÕé$¦ÖtîÆºâ!9ã¬m>)ÅçÕ:–±.0lÎITÍçeDƒ›QšßKqù}H>âDO*„}ò¦Fˆ`!„½ðeßÛ3ðßÝE±î'—/ظ¯}Ú^ºî…¹aëâ8éâƒó‹c/5f6ŽÎKI‹G°tø- Ù²eÉ¡~Öt6crÈuY†ÂC3}Kƒ&©ù¨¹9í/}Ø9‹µe§Ì¢ÂÍFZ„OȤÏ‘Às&ðaPàB…`v°i}~ÉwRT#'–Τ‰%y„‰Y¯GÓÄòÚ‘‹ÎqŠlS85âurãïtwú`VQ öö=»©oÕaÃÚ°aáˆ1Fµ-g…ûúL‡íÑ8Uåqª2ÆÊÞ7+š*ç)y óTžæùLq|—é•¢Éç•?Ó8³4"‰ÃÑ~œ5-èI"t+ —4ÞâÝÍsî¸ãŽž›‹¢ggÿoÏÙrü²ÊLª%Ð4WÀî#'+wÿѬxóÍ׿×–³WÝñFÿöϚܻlsß–ûnš~Þ~ä[?š5ã³ ób=醓n\Ó| tÃ?ªn¾¹rÊO|wOÏñ1³ÏJÏ ù ªÄÂsyÓ¢£2 ÛŠq˜R%»þöª=òÆî=;WlùÌ9Ç_8iüýƒïô-½"èåÐC›¿°éç.ÜzÖ„åŸ^pß¶w¯©Š'ŽP5ËNf„/|Öxð‚±ÿ°kÿ¸]GØÖ5vÒŒiì–i쉉_ž´pÛÖ3·M8+þL9wFø¹iöóíSÏÞ:;3«çâÚÅ5äÜ5³*#`éZÙŒHyâš³Ïk›ð®|¸sÜòq+¿>nòø5¶œÙxóºÆìí¯5v.Ÿ´{ÜkwgQnéï‘Ú\4-Ƒ÷bK5‡_¸ëöÜÑ÷¾³ÿÐê‰CÿÅ{¾Õõìô׳o_òêŠù¨ê )ô¨[HÍÊF½ùf|Ò¬åj–òɦŒŸ~îâysÞÿþ¼ñvÍŠ¥—?>¸œ ¸kæ³›¦Í½èº¿qõóPsë’¬™ÖNƺÖl|üîç;ï-ß>öœÎ¿<ã¡ ÿöðC^žÁ6,ܰð'tÖjªÕX×ÐM1eZß3Ë5l?gÅîÃýnÚ²  õ?Wôö÷ÇzÐÆŽÞZìØ[¬Ý³øÖsNìʃ,x¶‚7Xëá E'ááC×Ï+Ü…CùvF•§€îðHÛPMw¨<É–B?žVæ½å[?µmÉäƒ_³Û&ÿ é¢ÁΫî}—M?§óÌ×gß,'vÞqßÐÙÛ×ùÈ¿ÇÚïÄ_ÏÀΉŠÇ‘m4­ßr€€je×ç Ox±wÖ@E€Ÿ_vÅÅ•jf/ #+GБi]Gåö²ê«Ÿº¹kÎÁWN¯¸luÑsìð‘e[ýÞ‚GǽzûäÆm‡û?hï9Ôû3öO_~ë­Ïl]žû– «‘!waëm:<f#E Ãd7n)çØ±·7NüÝ—/íZúÈEOoˇ6þ¨!§Ø’­kHVuˆBÃçkóæŒÛ³¥ã™bþëcßëÔ9¾Jõu½ƒmÛÛrëÖÙ¸ìHãÒ­+or4–,™¼à‚Ç_›óâêk_\=ø[ÅÐucÃÞòéÁÁµEצïvmØ6ú[Û¶ß´0÷tNÓñ 1ƒ8hL·‚iž4ö´^{ôÖµëo8:°¾¸¹8þ•ûÿõúžcEOïÅCýûöï|§fä2+¢ª‘ ([‡bÐWž?®òÏ_ê<ÒÝß¿?,ÝÀÀÞ½»Û/]7uÁÿ<ü­Ý½“BJ÷àÝvüFß-í9RÌ×Ñ»‘ÖQµ¾Žª²¯¸ŽK–È‹aC[zÅÑ«Áè»–ìØ1w#´[ß~»¹çÅ„’ Ñ\g¢u`7÷¼Kþþåç¶O˜8#à)¯Ü_0=‚ûóÖÝŸ§Aœ‘ÿáo¸ï=¼eÿ=2%s°è0sÁŒÁŒ}ëfœýƒ;ç~îXOøÝYôïï/Âo4’°‰Þ¶Ñƒ½söýxI¥Ü;tu›1}4ØT„ØÙVNCbiâûš“ !ËÔ E DmITA0 2oñ 3 ÈZz×3g¬ˆb0W5Š&&»^Ì’ÎÄw$¸óñ)NÅÃù†Ck¡wäã@=CAâKDÎ!Ì‹k‡Ã‰y1×Lĺ#‹¢b8Ît—œƒ£â‚ÆR&9¤âžxoé”õ çá{â6ë1%çBú†I дáŒD|7 ëŸØTP q.Mð^ƒ ¡©4t%‚ á¥ã]$¬MˆÌ ¨y] ¡¤w«¸¶A4a‚áxš––.3&ŠŠq=ˆeƒ+ú‹=)åÑ4¸uÁ½ Éñ hRƒrŒNjqP²0"Z ÷ XsëÕ–‘†¢X•„ Þð¬|0!áµ" ‚ÁJ:çâX²äªáiN‚Gn‡'ÉFÉE“ÁjaiéaBH”=]+ ÈB’=˜ ÝWÆ:‡´Žul½§gHð¤°<0ËÅ5,¡P %G÷TàJaè®:xS½=IÐ œ$l“Òh58¹0èSNxÐ¥œF)ú”sp.å9ƒc¾3°èT^Ó³úUp!’ѱAÖ±VS‚ °1o«‹ˆNx5L'¼òøê"Ñ^\ ¼rU24X—Jå€åÁb+¾rA“ãé¥.˜06 œ`1Ë“]g9ãh½ã9h½N0…xYbÖ QaÖ§GGÌzž˜  õ"ÐzÅ+ÌzZT­'æjyð­DÚ°ùZžì‘HffrÔu£‘¶A×"á– !mƒ e‚-—,cmÐ2ù8:cTYÎÛðâoD.­W#€·ÚÁ‰¸†©qÒ5â—dv£JÞâ‹!È[ëM·Žö·D\—HIÌuÎgÄõ´‹"q½Ì‰ëKÆFâú’ÆH\Ÿ7¸«ˆc]¼Ö€‹I’,ø¬6P7úiE] ¤ˆ¹‚ésƒã‹ÄÜp¬ræ[7‘:1×$uÙu‘lHÝÄ5ä.P8KÇfØÛ%ÿÚuI@Í,‚嬸Ç2þŸÓÏÖé‡ËRòŸ€$ÅeI@e2J›ñâ’Ä?^ñ/,£ ú…õö%ûTÎ>–±Ï‘ýà=f ŸµøàŸå¾ä_0ŠŒÚ¹Œaúÿ¼\Šü“È*àŸ°®ä_àrI?ŽO!ö1¥*öy ‰}>…¹‘}N‹ }޼ÈgǾMø,Wö,†Ð{†%ÀžÅ9B®GäY™‚I@žÕªBžu¬BžGà9•è€åp ˆÀó\æ¼ ÁJ;ï|u,E»@;´?¤碤'¦'Þ•±ñN¨Z|vŸñNR$ƒÄ“ñFUÄ;{S¢.c¶9ëLâÐÎoï8¯ñÎê<¾´`Î%ëDÎ:—ø ¬s¹ëjÑ¥W¦Î:FRtéÍYÇdÎ:n+Ò¥HY'k¬g­X'ê¬Ó6cÏH§2Ò™a¤s9çR]#¯‘|ØG´@úÑžFü£¨€HÖW2Pä T¾" ³eìç0¼‹ô yTÉ>NC@úŒZ‘}ƒQdŸIÑЕìÓ> ù‚PÑÏ -‘}&=égR0égÈñ€Æ”ñžñ:ÑÏŠý¬ÎB= ± ±/- Ï™$öá‚ü¼®åÕ!ÊL±²éz¬—4Žì ‹Z’Op]’O€öù$qÉ'=Ïȧ4+¹§YÊ#÷´©¨g0Ž$æ™ôD¢žÈ©g‘‰z`gÄ<•ÇwÎ¥l˜FQ²Ñ’x&#^É?à]Ša‘x°'Þ‘ÞJⱜxù•¼+óé,îCâ¥÷=yuâÙ:ñê¼Ëh—Ø×ŒwIjçýbô Q_°1íUuPA0^\VQý%]B“cPf„@ˆ(3’¯ { ‚È=‚ E>©¾èY Ax$B¶pÄ «aÐ"i÷% Z]†J€€@#d‰@<š ¨(tO”ׄƒjžÁ“–LS¦›è0„DZCç8D@ ¡ÒcІv”ArE„ Æ!¨|*§æ“ÊeT¾–õjÜ‚óWD N:‰~¬ËŠbD Hg"5Aš !P² i³ ²,þ qoB C<!l&üù%ú©œ} j‰|UÌ' –LäKuÄľ<ê“)rLôƒ-*Ñ/ÅyH¿TaþÑž“°Æ?ŠÞF `ÊcO3ðcc`¶5{kk%@–õXê´9Q%yÎÀªHëG ä%)ÓI äc­¢Æ@Ê ‘‚`ᎠÂÁ:QÊv©Ïbj}–T´GRÔU¥ÁŠ–±ì´Ð’”½–”±¦^‹U% Yy.,_™ÚFR^Ih]ÆÁ0¦ŠƒFÔ’a épP³²Õ¢¨ÀTG"K‘!¶Z| b0ƒm rrßHAlÚ KP‹1F)ö‹¬Z,ÚWa 5Õ”#S¹‘(¨ó@•õ>—v#d`YïÃdÉ@>Œõì—y—QPe¤¿;ÍÁÿÏtg‘ƒéàW¸Ûœ1И,!n¥Û\g –øËnsI@ŸŠlØmNMè7'!"0µOS¿9£~³« ¨l*BÇÙ' J¬5B¿éMýfY‡`¢a,A˜‚Hè7Órb¿ÙÕBB…]"‚¡Nb¿9] 8Y^¬¡ „@DÝ«phpCL÷†6µo ÛœbMÀ¡T ‡Îê ‡¼Öüð&Ñ‘hÈlIC–ѳ*&ä:¯ –ú ’:Ë*#¡d¦$¡Äì8˜L‡ºÌ©7AÔ‰m©ÏŒ=_â ¡^WÙgÆœ»ÌX1ij¬÷˜]FA—Fz̩瓺̉NÔgNµ? ,DbaÔ{ÎB^ÖÊ^3ͳê5“ŒÝfWñðdzÍ$ÿî6‡@S9'iUàEØ X»s"ºÂ¯.pO¿ÞsúõžÓ¯÷œ~½çnö?Ø;©ÿTï‹mÿ ÿpÝÐendstream endobj 318 0 obj << /Producer (GPL Ghostscript 8.70) /CreationDate (D:20110523163712+02'00') /ModDate (D:20110523163712+02'00') /Creator (GPL Ghostscript 870 \(epswrite\)) >> endobj 319 0 obj << /Type /ExtGState /OPM 1 >> endobj 320 0 obj 5051 endobj 315 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [276.145 466.9144 283.9905 479.5337] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 317 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [182.9456 120.8035 190.7911 133.4228] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 314 0 obj << /D [312 0 R /XYZ 86.1732 786.281 null] >> endobj 316 0 obj << /D [312 0 R /XYZ 282.2512 179.6891 null] >> endobj 311 0 obj << /Font << /F19 72 0 R /F21 81 0 R >> /XObject << /Im5 310 0 R >> /ProcSet [ /PDF /Text ] >> endobj 323 0 obj << /Length 1110 /Filter /FlateDecode >> stream xÚ­VKoã6¾ûWèVXÓ|?ÒSœ&m6ÉžÒT[qè‘•¬ûï;CQŠ-(Ø,Ћ$’3Ãù>~œÑêq¶¼2b†p¦dôøYM˜<2ÒÉœˆ7Oñ}ú’Öó‹Órâ»™??^//9‹#N)Ž®ŠX%¢ׄ[i½ã{ž/¤uñ-·`ñ ½«9‹ËªÈ¾Àœ2ñy¿V'妅µ¤ÞôkW‡~mÓôógaþ çð)²<¯ÊqÈ»ºšsÿ;W*N绹eq°¸Gçl—Ö®€-b–p ðL)UçÜgžl2|ƒ½`<¾„@‚Úø6©³2ÍóÌϳaþ3ÌÒ] .íëÞäžœ£U]ma=Ï’nŒI•›}†`ÜøÅºÛì ³ªxë­^ÑìÇÏÉû" z Ì Ò" àý%%ÎPöhÆ0€¥SÇÍ)(EÊ`ˆYp3§a[Ö þ¦ŠrRêà #Ö¥²0Ž%5h2¢VuZáA+žpƒRª}¬XðÔÂÜMx_yiÖÝ)÷¨‡3‡{øLßBXÔ‹·Á7pÕ/Sdpeˆá ê¤ÁÀlŠ &€Z§Gdp$CÓ#8¦ö˜n²éF”ˆÏRrÛÃñ©Ql L÷]$ˆýÏÓ‡I ÌÂU€sƒTc Aòw€0äÔ?2J´ìáÉž ð¾5>UÌú78<ίÚl“†ï—ªùУ| %‚rúÚúbPî|­(ÀW0_<ÜAØû‹‡‡¿&1A†pÀ&Ä8él˜;R%F JOˆ÷†¹ú¯¦ZÂÓW†õrj»3Šïß;:$ã„*ÍúKéü¢×ân‡ñO–vPö{ò½õ‡í—Ûb‘z…÷9`=®|W5‘eÛ¤ž®ÙÅã ·Î"`‚€Y¤©&Ê0­‹Ù÷ÙÓ363]Ï€IªÛÃîµs<*f‚(Æl?Îg³¯CÀÅqqr…å¿`šhaßwF¤[<]DØöG?N.„°Üý ÷š°‘Ä:i&2&¯ØNvEDm9±²8¾µêyJE}Gétp‡WùÛ-<.ΧTeØ2Ñ”")qã6ÉO°m©C¥xœ —ËYC¶Pà*VÛ<%ëªè–oy[¤›=z¦ÿ,7Õæ0€¿Kvê¨ìà)Gàv¹Ñ¥ÕáÒ®ú¾$CÙdå+‚T]±‚ÉßZ«0{f+T§°žøR½áMxÿ‘û³2^÷Æ]ÎÏž½¦Eø\M:PQj¸ŽŒ¢¯û¸¿‰ƒj›k¬èFwü+‰âtt‰ß»ž:®ñÃ/Å&ÐyJü þr<ÞP_Oûf÷ u?°êç!¶¿›Éö&@àVõ•ÍéO·6ê臭MZ›¢„Šñ±£Î¶ò5›v½>HJÖ}þr×û) sm†.Ò)‚~B| @|ÔÝÃïƒ*a ùIu龿ý1É¢šendstream endobj 322 0 obj << /Type /Page /Contents 323 0 R /Resources 321 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 294 0 R /Annots [ 326 0 R 327 0 R ] >> endobj 326 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [109.2392 602.5865 430.1937 616.5342] /Subtype/Link/A<> >> endobj 327 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [195.9013 578.1781 489.8279 592.1258] /Subtype/Link/A<> >> endobj 324 0 obj << /D [322 0 R /XYZ 86.1732 786.281 null] >> endobj 325 0 obj << /D [322 0 R /XYZ 86.1732 737.5803 null] >> endobj 126 0 obj << /D [322 0 R /XYZ 86.1732 742.5616 null] >> endobj 127 0 obj << /D [322 0 R /XYZ 86.1732 686.2727 null] >> endobj 145 0 obj << /D [322 0 R /XYZ 86.1732 661.8642 null] >> endobj 153 0 obj << /D [322 0 R /XYZ 86.1732 637.4558 null] >> endobj 160 0 obj << /D [322 0 R /XYZ 86.1732 598.6015 null] >> endobj 169 0 obj << /D [322 0 R /XYZ 86.1732 574.193 null] >> endobj 298 0 obj << /D [322 0 R /XYZ 86.1732 535.3387 null] >> endobj 299 0 obj << /D [322 0 R /XYZ 86.1732 510.9302 null] >> endobj 321 0 obj << /Font << /F34 84 0 R /F21 81 0 R /F20 75 0 R /F19 72 0 R >> /ProcSet [ /PDF /Text ] >> endobj 140 0 obj << /Length1 807 /Length2 1012 /Length3 532 /Length 1587 /Filter /FlateDecode >> stream xÚíR{8TiŽ–jl¥«bÕ‡”†¹ÌŒ• £%×4(3§fÎáÌL.Ù®ôlE7…zºèæ’U±*!lÛŠ.ro¥B»›Mn=KíÁ¶=«?wÿÚgÏ÷Ïù½¿÷{¿÷{Ÿ©‘»C(ÃŽ‘ ˆ €ƒ«—Ä@L6ÍÔÔ@`Å1G˜Dâó! T…ˆØ<¥¥¢HÀShH( Ì–Žx@¨@T cÀ&C¥!…åÀ —¢©f¡\ü­wÖ*LŠËP,Xr¸&XMcSR–ˆ†ŠÉ(€DQ†YL '©-€J&ãmd¨lÀR ˜J9‚ŽVV€EÉà‘cóû[ÛVRwú ኣJªGÁO3°·Ç£¢VlÀàSv Ȇx<~ì߈RA 9úʨ$?ÔÁ(•>‚D!RZS=.µÝ±)¥`ןUgdj±¦¼½“ÓÕ4©t]a\*‹õâœð0 !3^žz–¿¯\oóÃy.RÛóˆ«ó÷º}½¡÷ô¬ìü='Ï­KŠç”0½ôÔÛ÷™úÎ|ÉKqyøÚ£é;ŸJˆ¶ÔD‹¦^“­w>?!ë´÷;S<ð¤^g&ÝóÝXŸ×taR‹Æ\=uKGÝÑ”í'ü=[oÐc Öï‹ÛsÒ_÷¥Cý…_á\“Úc qàxÖ&‰¶‘u£K©®ÆîsÕ ãûZšjŒ³óʬŸG6I\}Qmywxk©]˜ÉýiÒìÈ>1<ã©Ï÷b]ÍÜ¢«Ù³&Æ?8hæ¦ijò{³Þܪ5L‹Êº×Ê¡b¬¥Ì1 ¨{^:4›ow70¤/3ÏOÀ¸C˪Œœ— ntöuÕ˜7€y‡ÚkýZÒ^WôŸÕÐYë­ó´9iy¾4Ïfåuöœ¦G[QüiÂõÁe±|«EEÆ‘áÕwS°ƒlSnR{Yq5þ>sNhŦÅÞ&,jž½ ¯_¡lEü«nfíŸêb{Ÿ;ùø4=þÙ"ïazÓµu‹õ9LF3íN$#»oCê#ŸèɽkQûê-¨NûŽ®ìäBJVÀž7NÅo’*ZBL`°×ü»RÅã ÖüZ«Êú~“dH³p½oЉ›á³ðA®Vø ‘¦´³Iÿdñ­CO:V©¸]E3’’½S÷?,ž‰²#l”1ç{8Ê{¯âô³\¯©¬° ŸlX •Q Ý_ÙPœ,”X·E$6Eó†¸M˜s^‰!ùB9Ñ£‚ž³iï„æø\½‘ûm3on‹c¹…üBmtÛ¸¼yÁãûn„îœÓyÀ©ÔÉnàø`Ÿ×ÊÜ­ï:ºKhÃ×à8wEºùTTÜZ—¹±óZíÆéÛ-Òt—ÖéÜ?¿| .˜6Ÿ®}¾3wyÊêî¬øŒ£Ù•»;–@ž’Ò+eN›Ž®‰xizlÆä§7Ñ{cR³:¸¡­[6kok¸i*«Ý–Yeœ¯ß/9,rí?âgwò›®>§„+Óv=kySµÒwc$7zŸºšq¡¦§-rRX–|¨:iAáU¼ÄóÝ?[_³ZºÞñ…[:d¿¨ ·Ío«ŽmõW…çy‹„Æ7R´ |_ =Èã7oïþÍ#HÒé/ŽÒ‡¼7®Ù› 2w¼v)ó°‘ÕW#ª£ï‘RkVÅó™+àåç„ô‡íf©|Ccì/½ç¶kºNÖ@^…g ?ø9ÍÓî‡Û}Ë6¶¤¬ëŽíîÎÑÕŸó6ñõ*8Ù™į6ìì8óP²øÜ›’èwÇ¥Hw®æ+fäåðϾº²“ý?Úÿÿ © WÀÄfÚDŒ]endstream endobj 141 0 obj << /Type /Font /Subtype /Type1 /Encoding 328 0 R /FirstChar 0 /LastChar 49 /Widths 329 0 R /BaseFont /NVYZOF+CMSY8 /FontDescriptor 139 0 R >> endobj 139 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /NVYZOF+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus/arrowright/prime/infinity) /FontFile 140 0 R >> endobj 329 0 obj [826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 288 1063 ] endobj 328 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 33/arrowright 34/.notdef 48/prime/infinity 50/.notdef] >> endobj 137 0 obj << /Length1 744 /Length2 1217 /Length3 532 /Length 1771 /Filter /FlateDecode >> stream xÚí’iXSWÆ+’QE•K¢’ ä‰ìE…a¤ì—ä&\HrÃMBI`d)› à@Eë´.(¢H-•­"K‘V@ (‹à¬OŸ±g>Í3÷|9çÿÏ{~÷=Çx›‡·™ ƒQ¾ÈŒB¤X77WK œ’Éxcc †DÊw„D°5 Ðé–`Ÿ˜ ¨æ€leM3·¦QñÆÀH0„.¦„e‘°ãÁ„øÀ …Ã<¥âo”‰À" Øq¹Àky‡xÁB‹†YD<…XSÂ`ÂÇ“–‘\ùlX½+³Ä‚÷­h*¡€é &(!Y(Ÿ+,˜'¹£ÊÓ`%ËëCsg1—ëñ–í—ƒúKâ!\É”'‹` ¸¡,ã(=¿csƒYˆ˜÷a×Uq¦ŸÃ…Å‚H¶xWG„ÎH Ìò@DÌpÀ†¸Bx¥óY’(ã[á ¹zûxìóÙùîbWz”`@þS¼²¦ü¹VF„!1 €L$“)J¡r¼Ÿ}p–Ÿ‰²>Pi–Â0H‚'+­¨4ˆ¥„Ï‚c£&ù¨H¹(ƒ‰lÃ/ߪ\–Kø¿þ‚½=«|fTšÒ’jAV4rü¿é˜b ƒù¢•G¢Ìáýš(£ƒá˜‰ïî@™6‰§¯+—:?ªÀ„[òÊ[n'}ŸgCíµÑyŒÝøñ l8¥¤\ÔÊÛ_Ib±iýú×íâšb½II]ÚMk7Îå{«M0GƒUîÉîÖkò ŽÿÞýÉ3Á¿ÍôE߯]90L±*Ò;¡ZÞÙ±øR™ð°¿{M.Ëh($«> û>ïK0ÿÂ-F»ÏßÓ ÌŸY¿Ô­_ÿ´-²gm=E涺ã‚"ÀåJö„iùèIOncÜŒ—Ǫ­úÖü닺¶ÖZa:ƒíÝôtaB*•g+íqÈhîsTIºùF·`]îcã´;1™O»Î©«9œVÏ>ѱ`Ö(g¨%èÅœŠ~–¨"á‡{ª] -e|Û«ÂnœLÅwdÙ?çûºø5C¬·eÚW·lyÞ´ýeSµ–cuÛÑüÎ!—>h€|>˜w^±iCgNÝjfõçZQØÞ/ËwKM’ós\+C6¡æš—ÒŠØ5­:Û^¬{4øÅÐH0ÄöBGÓÖ’?–ÕÈo‘΄MŒ7uÚ¨®Z‘;û¨âà’ÿëÚ³=~ãèþDrRª­Š5T6¶éïð^m0„nu×1¯ÛøNµ֓Ÿ|ã)³º»Xt$:IXðkcŠïx¢‚Ó©úØskmIáFÞÁ=‹…Ez¸ G<û“L~x#å.t®ÑFfÓÏi»þüØÍ~—¹À5¨<Û`ó.‘YŸr¼÷0ïËN K0¢.};çÎïºõUÙñâmgê§L~¶ h ¹fãÓ¹cº´¬bÑ®nþ.'ëŠ2i}mÀ¨•e\¬Œ©ÉÜ[“m2Ør5ŸQ³IÃä—H‰W•ÁîX·,?ß}ýäìÔˆ›³Ö vòÍbûçM©wM‘ï3úo+>rÆP„_ës×¾žßÜþýåEýA[™¨ßÜw÷кÒP[#­ö–’UòOÉ®ò€“—¥OW€ öZ&0ɸ­ÒS•͵‚м°WŸ¯˜Žè2›¿4^ªòõø½“NM×Fã-4¶½vѽÚë5¢Ùl`²O°ã§>nHñÓ¡Síâf«‚R^ü¶%xO¯.$ÖýJ·Ùº~žnXz·¥D°ª!kÚã“%áp4„öœÁ é€îEµ…G¥ƒMÏ´ýq†÷"ñlŸëùÕWÜ “Æç(RäSì“ZÑ;á¿a¸ã²6—Ì [ ÓK õ>]Ër_ú*#$¤ôö/EÉŠª OŠçcuív%ûˆ™•ÞÕ°¦»ÅBFô áÏ_=Í×ß1Kgu$xAøíDæÒzB·ËPÃÛñ–)Irf{ÕGÅÒòÕ;i÷c^¹zëîž56ÍôÌÛäÿðÃÿßà€Ʌ!L„ò ,ÿ/OL¹“endstream endobj 138 0 obj << /Type /Font /Subtype /Type1 /Encoding 330 0 R /FirstChar 71 /LastChar 71 /Widths 331 0 R /BaseFont /ISUPJU+CMMI6 /FontDescriptor 136 0 R >> endobj 136 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ISUPJU+CMMI6 /ItalicAngle -14.04 /StemV 85 /XHeight 431 /FontBBox [11 -250 1241 750] /Flags 4 /CharSet (/G) /FontFile 137 0 R >> endobj 331 0 obj [953 ] endobj 330 0 obj << /Type /Encoding /Differences [ 0 /.notdef 71/G 72/.notdef] >> endobj 134 0 obj << /Length1 745 /Length2 603 /Length3 532 /Length 1138 /Filter /FlateDecode >> stream xÚSU ÖuLÉOJuËÏ+Ñ5Ô3´Rpö Ž4S0Ô3àRUu.JM,ÉÌÏsI,IµR0´´4Tp,MW04U00·22´26áRUpÎ/¨,ÊLÏ(QÐpÖ)2WpÌM-ÊLNÌSðM,ÉHÍš‘œ˜£œŸœ™ZR©§à˜“£ÒQ¬”ZœZT–š¢Çeh¨’™\¢”šž™Ç¥rg^Z¾‚9D8¥´&U–ZT t”‚Бš @'¦äçåT*¤¤¦qéûåíJº„ŽB7Ü­4'Ç/1d<(0¤s3s*¡ òs JKR‹|óSR‹òЕ†§BÜæ›š’Yš‹.ëY’˜“™ì˜—ž“ª kh¢g`l ‘È,vˬHM È,IÎPHKÌ)N‹§æ¥ ;z`‡èû†;jCb,˜™WRYª`€P æ"øÀ0*ʬPˆ6Ð300*B+Í.×¼äü”̼t#S3…Ä¢¢ÄJ. QF¦¦ Õ† ™y)© ©@ëëåå—µ(C¦V!-¿ˆ ©& úE™@·…¹0½áä”_Q­k¢ k Tihld©`naV‹¢.¹´¨(5¯œN€aã§eÃ/5µ"5™ëæµüdë–¬éÛÚVÖ¹.¾°ŠUŸó牵/o²ˆØQ7;3¥6Øt^ bzÉ’W mí;,ž}QÂ+ÙzªpÑÉ^¿ž¸/‹„×líZ°,bBƒé~½Áâ•Í]Óxÿi«¿ò<\6cNë#i«ýEgu*ëÜü¢\‚g^Ê §¨Åû¾ß»Æ-¤4IKIÊüæ ö»Œbâ•wŸ_ý#­ÈÙwy_õºîo_®›«´S‹akÌ‹ºq‘úg·2±<«×§gñÓøQÕí{QGª^ªiè=uªàÀcµ[;ßžZÕ4UâQLÍ)Ùý M™OŠ)éÞ˜­ãþyþߺÃýWu¿çÛ:/Z¶ÂoÁ½û&¿º½LVøý™R²V@ÝÑ€BÀ5jÀ°0 9'5±¨$?7±(› gendstream endobj 135 0 obj << /Type /Font /Subtype /Type1 /Encoding 332 0 R /FirstChar 48 /LastChar 48 /Widths 333 0 R /BaseFont /SMWAPQ+CMSY6 /FontDescriptor 133 0 R >> endobj 133 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /SMWAPQ+CMSY6 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-4 -948 1329 786] /Flags 4 /CharSet (/prime) /FontFile 134 0 R >> endobj 333 0 obj [366 ] endobj 332 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/prime 49/.notdef] >> endobj 123 0 obj << /Length1 804 /Length2 1664 /Length3 532 /Length 2242 /Filter /FlateDecode >> stream xÚíRy8”{ÎvNMHÖHõR(ëŒe¬Ñ &˱f+)cæe†™yÇ;c_N:Ž©Œ-YãsÙ"$e©¬‰¬•-")Qñ }®¯óç÷ýõ]ßûûç}îçþÝ¿ûºŸGNÆö˜ †y€8ˆÆTA©¢ôc+{¥ŠDÈÉà žI†h&x&¨ tuQÆÏ PG(´ž†®ž&‡Cô ˜ìEbm´ „É< °Â3I •£AÀS€c 2ƒT …ØoÜ`ö „ýA¢*…ˆdð½È4„Ú†sš'hƒ‰~ôï-fpL9&‹DˆF ˆ 'BÍâ¼rœü7Lý,Žó£P¬ñÔ yNFëâ©dJпú•îÇaÀ "‚0ígª3øÍšH$ûQîš3ñ2Có¢€òDfàÈ Ñ–Ì$O<…nâ ø³ Nl›ÔpÖ¶–8g¥Íin¶lñdÓ!ˆþ—èw³Fý¨9ÙÀä@À©ŠD¢8DÎùþçöÓS¦4D$Ó8ë …ð0ŒBpö‚Si!(€L#‚Èñ«¦Jƒ˜œ+'’0À‚ÃÔÔÔ‚AÚ@¿º€Dÿªµ€3àG_ Å©I0øƒæ  ¯gŠÈ߃Àb¡À 4 ¢ÎC!µ‘€¶2ì߈?iÌÍãÄù½ö$sÂÁ@€xôÏy'WF燛fuð)ra½n'Z—Ý{Z·=²ÿO.JÎcK_Å¥.«…©"‚|û¾ìfÄÖ†ÚµãæÏú&²{×&üÝ'Rƒ«w»,¦Z½¦Ë.G¾ÙQSÙ³4«ÅeÓý¢5ÿÒñ즌…æ7×mš8Lþ:,³¥ÁÕ¿¼!íZÛ—JqŒ‰*•×±bûæŸ×Œy t)‰÷ygd¸wÌÖ*¥¡wP­ŸðjÖÖk¬µ“KÓÝG\ÅÓ{Ñn´ŽÞ>Ò3*…„¿g¦¤¹/.+>­úΗբt5£.JùD6­çp: 6­ÚŸÔûø•ThyF¸jÄpOTëõåqÙš=pd‘—+h–;³…œ9»§ÀpßÕ¿ègá¸^ç–×}†ùáwž^‘|RßiA%úÇ`æf®‚Ÿë5C‡ïªòô9] ¯ÚÑxúFJ•wó+¯gá¶P—õ·¿pUéž²pC|éŠ-“Ð@ Û{Ò$»ÕòD»³””û•íbã¶—bO͈>ר1$CñRû ´ë¸«uSvêóJ+º’&ž«BG¨IS4¯Â6œïvyÔ“ Ó娒èÜž•Â]Ö´¸øœËX_€žr/¬n”Ôµ>gG®í:lVºàRäÑïçAmÉzo/¦œrçŠáÊéØ'{ªJžÚÉ $Æï7è¿Z‰Yn@ûýÛ·Äì®x3uæÞb•©Ö|þ@ï­– ¥9¶åjz>`^àë ÇX’íäºáÕ~#ÿ ¡õOh¤è]{ªËVFS¶}õϽ-Ud¾wzkŽo¸""ÅbXUm‡|.¾î¶ýêÜ*Ès2|PKÒÜ%ík,Õ&ëmÕç¾d†©^¨}'¯wä$üÞL¢ô¯Á|™ôL¤ñ¹ÖÓ¹f‹|6E©ÁÆ=3Ø ]u%âãþàh¨§úÝ5äŠ8Io¤¤üýâE?4C2@9 6/ÐÊ“áÝIDVg6~(³ £«…ÂcÆÙÓu˜tÞ\ó¥'–FY9u-ñøAiìo OÛ®¨eº€4~ímV+­àñ¬­‡Üî";¯`Ðùh„bKY =9%Æß´,`6Ñ^hoÜ:2ÑÐÐÏS¢¿0…/”¶$NÃnMxÉâj³‰G'›çåÛ 88…\°L­ôÝi²ÒŒì¿xd2fâ®VX|Dâú”xb–^Nòe+·óšÓÓ ëÞOX˜ïTa œEhg)Ï,5üàð“)¼Þ“ö™#¼êsFφ•DvŒd™ÓEzLr›*üÜnwW»§û[šââÏ&Ù6¶;kÄðš_á^Ü5fñšæ5ý™ë²>͘5HÆûê?7ëdÝ *"ÉZ:Ùþ+N-»{úXº–Ôë˜4}vŠt<¨c÷ YÞî65=¯ôì˸_f“8çQ8fÛÙ”šÒUúd÷ ÄškOGV'YêÏ~PÎω㷪].÷Ij]/HS'âØIˆÛ™;Ù§k$%P¼‰üÙî5ìAªmJô­{sϬ”gŽÌ³¯V®ßÜrù8‹¹ëɃ(.ú+ƒbÉŸÇ€n6!±ȳB4c;’Y`™Ê½'î¶[ fŸT-D‡)†Ø¯_ê>V‰šÇŽöé–®¶Ž‰c„ãâýÛß9®¡Œ’ £FËœö›° O™²¸L£é’ )µ ߉ʻ´žrÝBåºk'ÚêÙ/Z$ò&½°:¥õŠí.ëY5ÍŠnUš½P3ÃÈPC?:!ÔL?6Ñîo÷Ðýþü}t‹·wíX„Cì]¹Ü5ÞÚÃ5Cyzlêçøý—ˆÓ” n=Éy„„/ÁDPȆõR¡½lýcMX5<òh‹è™â¯ó;±+¢§î8[Þ—±”ê}ü<¾Ãdʈt#þfs@¾WdyB¸Æîe>Á½gðÖ"25…šd]1¤û”BBŽk-aš)¢ÝÇða'þ¥>¬ov±3c¬T%&G‘Ç)ôQœu¡³¿#4ò›‚¤^}§™l’´×`¾ÜøêH_í§m%²>ò?üÿøŸ P@<Ì„¨xØñOA¶¡Ýendstream endobj 124 0 obj << /Type /Font /Subtype /Type1 /Encoding 334 0 R /FirstChar 48 /LastChar 61 /Widths 335 0 R /BaseFont /FNPKFW+CMR8 /FontDescriptor 122 0 R >> endobj 122 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FNPKFW+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/zero/one/two/three/equal) /FontFile 123 0 R >> endobj 335 0 obj [531 531 531 531 0 0 0 0 0 0 0 0 0 826 ] endobj 334 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one/two/three 52/.notdef 61/equal 62/.notdef] >> endobj 120 0 obj << /Length1 810 /Length2 1497 /Length3 532 /Length 2086 /Filter /FlateDecode >> stream xÚíR{ÈCÙ0Øäü‹ZcS¹!(ˆCcò !oýX¦\~hèÂú07ŒIýÚ˜ý9õ¯Ø_spp` #±8Àkc)7†³ÀVVØýÿƤó9ˆÅ[X3yœ_k,‚„ùô1›n+ɸ_t€˜×rAÉ@Á!¨ò(¥¬¶íÖ²Ø'ǘ®á=W}g‹³×¨È”d:5¹‡ª÷ýØD?š)ý,Ȳ÷^×ô}›í.z¶ñ}ìë•7¯µO¾±PðxÔókÑ jþÝܱú×g<ÑN? ,íB-’ø Ê%9bK+_R6sGBÜU}s”—jfxQ".¡;BõDšb÷ÃØ! ˆ*ÃÎqv5õlâôñÏ»ÞU5ÖÖT´l¼\5wÉ O]µg){fÉ–}%uº‰QÚg4» Ó¢&°ÔøO—‹ŸßOuÝ:™„’þøôºÑ©ÖÛg¬ë˜}¤™â¹‰>óH8ás5q&é~Whm©Ï£Sj‘: N_ŒBßÛIÌËÅkÚãmÎVRÜoTû]²&œ{'mÜd”’ ²+I‘â5TCõk¿ÍM6,^IfPÒ7ìÓ°[—t'jñ=% ºtð¹âl‰³…vLc¯È¥6½‚ñ K•«Š„?èþ,Byëk)ÃÄ„{0~,IÙ“k‘æºïiC“·uo¢ÜÜö,1ÖDëxZ‚1§È«”bOFoP]ó0É~ Þâ·Ñ½TÍÚÖ«ùTƒ5Q ´EêU%¤‹¬mÕÊÚ‰©N Á±ž¯J=y#Û¶mÖzQR—’\}Ä® ½¦[ZF¸”ÍP@kܰvÉ8œ¹ OÿxÇ·å·jÙ§X•Ê—;3÷î¡W’¬?žBKv>©·Ñ;¬ãÝ/K–E¼+:Ѷl÷Êñ™¨zûO½ºÑc.¹@zæƒ^† .p­Æ…¼ô¦Q$¹wís*ôö!“œ‘Õüàþ=/PèÖ†´IOLýp{ ²»ãÆ##Ms{ϧÂOÜNúè«IJà<×Ý+V ŽPžŸréYœ¬¼é‰´Ò~ŒREÌØw¾”ÛÞMìQgäUéi-ŽWs³ð=Ø­¯|_åï­ÅñZiT^jæTøÊ& ý“R 4ŽâgÆSšƒÔVušúÛÀ=ªy¬;Õ‰—¥”jý Ïèvo•47?Ë=<äòØ0¯µ¹~µ¦T tæŠsrÏÆªSž)îÝ_uŽ]^W`•u•T81_°÷X±rÜåA[ÿôäkî±B…ëC ªb•fW»Ÿ_Ÿ×¢ÅÞîC;bK$þÅ®jÅüðêË?¦fRúLê=„ýb­Í9Ê(®ïn#šÔð†îòKþÚ|’Žêðúáœ+ˆ1òÙeÞ‘„vr犩¦sˆ›gQÀ’—ªå]!iÏ}Ò*@ëa™‚uÄÎKqxTùK[½GÛè-Þ¿ö‰3êŒp¿hrãâT`r«Gv™J¾ÒçM*0òp±ÂIíÃRã;gÄC¿õA98NY¡g»Î ¬ÿÛ­K1hg©ãò†à{Ü…»hÆÌ‘õ°ªòŒê$Þ€•WkJ]´üј©‚ºhM²ÌK…4YöØ>ãÕ\…´A7mK-!ýîù“•ÓªŽiëbV¯á(‡XvìGw4E?®³ð››(Ò6Ûypˆs9‡F‡Ç;¿u—Tõ:¹ÐpàY Ô-zxš¨©Ö²ïVñõÝ>[úF‘Î>Ïùhã"'üí´æ"R^Y£¾ë¦Î'´]ºì>­yV5¹ÚÂcÕ®)å¶ÁŽá0~xåá£ÖˆƒŸ/Ú÷\´¥³×¿PßÜ+‹Utµ±KlmíÚ±¾à…-cœÜ÷®Í9BB~Ó~xs„ÖÓÊòz¶ì®Rá\{ÕhÑC‘{655N2žÓ!ÉÛ“•3¡“”ùñóÅÅßïúåÁÔû±¹Ë9¸ëŸ‘“:‰Ó›b¿ÅiÄkÔ­ˆ114ðô[‡,øNi•ºí‘ÙÀµö‚[žÑqI‰†Y7ðN¿Â½Y?Gõ3¿e¥ò. 6²›Šð=ñHQƒétÝX˜)YÚ\M`lSR úȈ+SžgŒÑ®rÖ@”µè¸SH$ï :¿æ¦ÖSËòlEi•)áPüÙ~Xdö~Èÿ üOЙÃc‡Ò8{ÿ[%V÷endstream endobj 121 0 obj << /Type /Font /Subtype /Type1 /Encoding 336 0 R /FirstChar 82 /LastChar 90 /Widths 337 0 R /BaseFont /LACVYW+CMEX10 /FontDescriptor 119 0 R >> endobj 119 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /LACVYW+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/integraltext/summationdisplay/integraldisplay) /FontFile 120 0 R >> endobj 337 0 obj [472 0 0 0 0 0 1444 0 556 ] endobj 336 0 obj << /Type /Encoding /Differences [ 0 /.notdef 82/integraltext 83/.notdef 88/summationdisplay 89/.notdef 90/integraldisplay 91/.notdef] >> endobj 116 0 obj << /Length1 978 /Length2 3983 /Length3 532 /Length 4657 /Filter /FlateDecode >> stream xÚí“eX”k·Ç‘- ’Š<¤ôÌÐÝ)‚#"ÌCÌÀ0 Ò9¤HI R‚„t) Ò*Ý %-ñŽî³·ïÙïÇs>ë<Ï—û·ò­ußœ¬P=E8Ú¡†Fa ‚)@Y[[SÀÁ`2NNe †E¢Q*0,B €HJŠ·]!a,.%*,%*BÆ (£c6¶X€[™çg8 èˆÀ ­`(@†µE8âkXÁ=´},(:8º?3\]„ ㆀ ’A i…,6Hè§$M”5ÿÓ wuúËå†À¸àEÜ¿dòx‘p4Êá1GX“tÐøn¼–ÿ Yÿ,®æêà süYþç þà sD:<þ¯´£“+´ÑpõÏP#ÄŸÚ´p¤«ã?½šX˜ÒJe〠"‚`‘?íH5¤;Eb­lk˜ƒ â—‚ÿS ~|¿t€¡ºzÚz|.ö— C¢°úøwð/†üfüˆ0HwÀ ,Cðøÿ¯“ù?z©¢¬Ðp$Ê` ì1_JHTð„Há Üñ‚A‚(4Ÿàã X£1d?·Š_<æàd ûiþe’@X˜ëß,Šg'üêÐðß&Id…vtü$@—ß1¤ô›ð ª“8¾§úß$O…þ&|7ã¿ m@¿›àï‚ÿŠ ä¿!>Õá7Bð °ÿ†x ~áîJI íî) $‰â‡€qQ°÷ ´rÅ`(ì¯ç€ßø_lÄ_ÂaE66Œ¶’²K¬Äåû¨f ñ¸ÜHÎ êi ~›,-¸6-Mý SÕ¯¸¹CLe‡,¤Lø¦U‚[‹Î2V*zuxê‚G©:Èiy2Sôˆ7­Öî? ìLoo¾ê˜¶<ƲèTÅ·9ξ7ãÖHôæÎWˆøKÆoáóG†O¿ûØûöÎŽ]N‚³I 3O¯»ó a¸2ýáx]…Ë餿Ÿ²Gs6ÆØ<5d?Iž,‘®ýÇpÞ–™ú›g›Üùm°‰É¤V¯=]èfƯb¨ÊS:Y)Ê+–Ô ŸÇ$£]|Ÿ9ŠxúL*ÇtͨWŸÐ¥Q$}â|Úæ;u çÿÌ•o×7®¸?e+H§MŒ_r|ÍÏ'Ý~Ö–f‰Vòú\œªßqðÔ²­YÞüe‰÷‡áäFˆŠ)u¾ÒûÛK ƒgשòûÓ X„`ž&‘_ˆBè6Á÷æ¹@J…¢ä\Åõv?â¥È ¯ƒMÉæ¼Cs?ö ­ÚìÃVê/>[— ˜*+!²ÒãÇ.4>h3È ­¯³+¿€q¤ˆEã/aªYuž›+¼·›!;Uo{*.êÚÞ³è:ͱ0ݪe´~¨côÉPX:ʯýPwY,Yxáû'ËG”Òzå]KJÃåèö=Óˆ€Ï®\*q—”ŽŽûmuiž#ˆ”6ÝÒ´$|Ðñ‚™ÎDìLhl‡MYo'ÛAÔx“m_–u±ö@·q]¬Uå²Ýæú®~­W]®žçʵfJua©°01Å´`¯±½µ@IÖXímrágÂöwƵ^©^GiÓ85Ví8×ßpЛ¹iŠ.vjH:-£ñÉÆÔKß;‰¾HÊ«ïƒòp:Ž<›(ÅYSÉÿ]Ñ­By›:IŒÌÅb¢£3>þšŽ;Tw2ƒ; eÈ{òåý$´_&«kdutV¿ÑO` •(º¯8–³æÀ2ïÔ@h! á·Í»UÌ{8t?ÛÒ¬T ,·Q^«•@k‰x]±)kžA\L}W!}Y˜øÒ½®ª—ÃK/›*ýIˆcx£¾”\îfQŽ"ôhÙè£Ì=™ÐM ¶á^±óã*9Â’_/T´¹¢_Ɖ ·côIJ&h`a“%{rñYånz¦'› ³æUf˜»~tw»nD’@Ä]7ªŠòã’_’ØfÀv–[ã­äzÛ²I†LÄ÷ PëP=Äɲ¸jc°;[jì+êl›gë¼*Ä*ºlý $âY7”˜kJäcÏäsYãÛÍ÷_¤ž:U¿ÝÛ…ðp¦‰æ ?“ Ut ßgÞõÝ ¤³®’SÍÞŸ2|~s°³šÊ ¾r=¿ÁõDóÁÁ4cI'®Ýx7F·sÕ¬”ñd¾±j.~ÕQ~1Ôö… Âî| –l›dȯ@s¤ê+‹–ós»ôtm™¢O”¨h–˜Ùç‡ô$yÜl¦aZç‹Þ´9 eè‚퀉÷y Sûž°¹¬±eJ|ßáÑû¯Ð)КnKi£¤§ê ¡D"¤âSÑ%q#W}(º‰Ì¬_Lòôw{Ѽ]ùFÉž ú h¡8kž.þfqŸ¿rü#ûµkóõKÛñ%¤lüÑ‹8‡“<ÝÛ’þ”jUQ…Ì]yûq8wëõ·n›föºF¼{RŸ0·Ù—­ÒjAó¹¢dˆGÿ²Í¥a«íùBœz–pYÙû»W}cï´“‘ÎðºQqªT˯N–¨iî?÷¿ðîÒF…s¤0˜´¨­>êéðv5’{x¶û:÷.€%çÍ%^3 ¿(»×n¾½ø8j©EœÄ¼ìg!6dA`.÷§‹‹âwãtÖ ³ýŒÉ+³>°„ÏÎc²;cüJ§Žèx%e8Mz<¶>ÑÁgRd·÷|c’ajÉ“Ç^{uOgø2?G}Nk㨨îÑW]MpÓüjÍv¼ a×ÞÃϽ\ú¦Îà%“Ì×oBN®F"›¦üMoªÞð9öÊ ¥d ÐLïXbö>>ȸ‘”Óñž,›ïÜô >çÜ‘>sᯌáÔÞ7È6à‘ʾ¨ÕCÓÜ¥71z¶è[Nhz4ÄÄA]®/=`£‹ìhwG\‘cØýn2h»Rå|¬¢°²íU®.cÀÜBN8°õâ”^+¥®p?2±™D^æëcÊI²k ïö$º”²@6uzê`ëKÖ¸å°gvZ Éi‘Ñz@mœü®ãN~‡½+Ò+§XÍŒªVÞ¾¸5#§æ2IålpÎÎtæ‘—0a&cW:> ßÿâÞÄ£S0ÇÒPOOí+éÔ—©ùñôþÞŒþL¯…¦7À˜¶$O㢘Y•ɱȇÔÕxŽþÛUfÊgà•SÝ…ÛMŒŠZ8 9ߪT„DÜb^.þQቋſiÃ/HQÁûÎT,rù¯zX¿²á¤w¹sª kfíH³Þd:áãÕvNU=EÑ~·/í”m†È 3j—É7 ëeCêæ‚é÷M'–3Z¸¸îÓàë$ðø—»îk4·çÈ §îöøì‰IB;J5s÷09„2‘\j>c‰±Òì‘ u*iì å-ËqGU=ØÔÖóüqÄ^–öl#þQ Ì'–4¦ÀÉž‹ÙÊ#Je¸j–™"[q0?ÃÍÓG:QÆBƒÜò‚DBtJ-LRË?NÑò÷çcDK;ЉƒH‚Ñ®¤Oµ0ÓµY5éÝí½å¹Û+±‰ÈÙ´Ž Ä™$ÆúM×üFÒ£Ù¦ˆY!Ú[ίº´ MÅÖ›%“]l.¸0Ò2Böv´B]EÂO—ôˆÎ\¨~豯–Îà†D”9E^ rÞ+îSj!S” b pèÞ5w‹b3”ˆ^wÔä¼,ž–9ÔWe7Î,Ó ¦²H¬1Ý,Òzx©kÛܼíÝ.Åi¤¯² EWJÐÔ—9e¶×2SIª£T6‹y–æÎ8@fµ¿X3€0ÞBŠúè;2%`6$–Æt–$m÷yØDO̦$Ä©Šcvaé°Š!þµuÆ=¿¤ó>êdªG g¨eœ-5¿ÝKÑši& ñ2Y™Šká7µ%£ uMå¤J.«_ȹŽ ™ù úZˆ,™aXÀN!ùÔTsUø,'ôæœbl¬òÞ]ݽµwºÄ Ó«x ¡äe«ù!%Kɬ½1É23c(ᘘ{µ«Ï9ƒ«h^Õ%äx»º›).où¿%,¬é©qxÒßð#ü¡«WñÁ·Á‡+ ÑËñ/e[OlJ<£=ùþ­æR³¦E¥Xˆ&¤eÁ3A3¦3çz2®ñ¹ÚkÀËZr%ƒœ>Žòøô¶iïàÍÀ?úDKl›"‘<´+bª/D£#„¯b!öû……×ÜùT·ò4 ±…¤&»‹iòæ¹6fhSÙêÛ¤à¬ÀâLUÕM«=§×¼^õ^çÍùŠöTÞ-2kÝ™Ûþ1a³‡¤²l`þTú*'W‰ú×ä €îÑT¢ðj·ž7$Û\'fÀÕ®½²ç&ð~•ý:‚‡n›I³µ@í7_ç£û/öúÁjšÇÈæ#¶Ú/¨ãdà²l£,÷¦¢¥Û®¡’· Ô‚®gìZozhêÙ½Ÿ'Õ¤u€Y­ëŽT¬õ½ßp=—L‡™%n”¶6¿#läsgªz.”·íÐNcÈÈÑ=ííU¸?âÕ@Õœ þ0Ž%§ýèpj¾‹ \e¯G)0UâùL†y§•+/1Õ¡ üzû\•Ä6ÕÏ#Êá|»¶1eb<†ÇÚ$I[º ÃÍÌ ¹ ûXåµnØ9¿ê£°ŽŽ€¨~Qö(+¡^¶’4²È÷&¥üî[f)Úè|žÄnƒóØl#öa–lئp²y3ÿN7•ZÖP«aþ¥ŒKF`²LPÃzVŠ7’/ëö·-匸¥‡cþ‰‹ç}‘dXÌuW0) Ñ÷¤d7·hN€ô4>›Dÿ²‡úRC'kièîgõôôç%)a9‰­`î(%‘›w„h_C» û¯\šŠÊ´M]ÀxE¥–FQu/ÊØ,ÚÅ(ý±£Ë7³˜Rß4°YKnH_-È=bAð\°éá›Åüîõ°oó:M%¹1•F´3¹¡y¾­^³XÛ‚Èþ«ûŒ¦ŸÙõº¹5Çlâ¶,ØáG_B¢lUºŠDe¤o×a¿yÓ{ûð q:?ºÔ{çËÑZØš –.è·È·YãäÝëªmJÆ7:$+t¼TK9— ¦ô€®sQt‚Ó’ÕL¿Ôg[—Ô{¾„ëu±•®AyŠ‘ž‚ŽOÈ[pÛ>Òƒ†×D›Üd¯~¯`Œâ®?žOݲM£ìd•õ˜Z(ªˆÊZajP’!è‹ù%-1ãŽWnÉ „®]!q°p£‹ýt23ÝùJñ)3c’âÑ¢rsf­YÜ]c€Šže‡í_Þ€_™²¸ûÆÅR“¯øþ>J¨s6©*vã‚`ÂjÈ!¡ŠÛãm%4Y¿¹'K›C‹ˆÈ®5$wÓç~`¢:OÕá]ÈÓjz¹RY4÷`æØ¯¼[‚ŽÙw=Õ¢wSû}Ï;ûrchvýpæ<=å*NR5 ðÀf5 ­Lòý\‹ø8k'´X©¶úÚ’½ÔÃÉÏ&Näs*Ökeý[ïP®NÞS©Bð¹Ü3êˆ:m¼Q_àeþKÅ[·ž´Ñä5ÚF¨,Æîʼb'5É­ÿ?²ÿ/𢀕†Á¢a{²ñZ‹endstream endobj 117 0 obj << /Type /Font /Subtype /Type1 /Encoding 338 0 R /FirstChar 11 /LastChar 119 /Widths 339 0 R /BaseFont /APRSMS+CMMI8 /FontDescriptor 115 0 R >> endobj 115 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /APRSMS+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/alpha/tau/period/comma/less/B/E/G/P/X/a/d/i/l/t/w) /FontFile 116 0 R >> endobj 339 0 obj [682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 295 295 826 0 0 0 0 0 801 0 0 779 0 828 0 0 0 0 0 0 0 0 674 0 0 0 0 0 0 0 874 0 0 0 0 0 0 0 0 564 0 0 547 0 0 0 0 362 0 0 317 0 0 0 0 0 0 0 384 0 0 762 ] endobj 338 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/alpha 12/.notdef 28/tau 29/.notdef 58/period/comma/less 61/.notdef 66/B 67/.notdef 69/E 70/.notdef 71/G 72/.notdef 80/P 81/.notdef 88/X 89/.notdef 97/a 98/.notdef 100/d 101/.notdef 105/i 106/.notdef 108/l 109/.notdef 116/t 117/.notdef 119/w 120/.notdef] >> endobj 113 0 obj << /Length1 1237 /Length2 7996 /Length3 532 /Length 8789 /Filter /FlateDecode >> stream xÚí—eX[ëÖ®qŠ»Kƒ‡w/V´P´@±A$Xq·—âÖâR(îÐ÷¢Å¥PܵÈa­ýí¯ëìïç9¿Îu2ÿÌ{¼c<ãÉxß™\È ¥Ã-k·€(Âan^^1€¼ºº /àñ Æå] æ(öÌðŠŠ ž»9ø„`1Aa1AAl @îäåµ±EØäÙÿJÈ:B\ –æ0€º9Ââø¨aiîÐ[B!/€¬ƒ@û¯ W€6Äââ±âÁæåXA- ˆ † úË“ ÌþWØÊÍéßKî×GS¶¿m²MZÁa^+ˆ56HþØ òèåÿ†­ÿWtspÐ0wüKþïIýusG¨ƒ×eÀÜ€:Ü âûÏT}ȿ̩C¬ nŽÿ¹ª‚0w€ZÊÂl n^°À¿âPWE¨'ÄJ а´X›;¸BþŽC`Vÿéäq~û)ªhjêrþ×Öþ½¨e…!^z9Aà?Ù3ï~’ Ôð Ìó>&>^ÿ¾3ùf 0K¸fà˜»¸˜{aƒ¥øÞ¼(Ì â €x>:ñÀàˆÇÀãd|Öpì¿öõqëAæN¶æ…ÿ€¬ ˆ?‘Ç3r…Ú8þ#"!ÌÝþ›ùù ¸#ÄæO†àc†Óã–íþ„D K¸ã?d„›»:˜»Úþ‰@²è±±üz¬Wøo?Ž÷=PùC*ªHRûCšêèQSó¿IäQSëñ@Ú豃ÎzÒË?ôØAï=vÐÿ3Nð£¨Õ?ðñ;CþV¡ÿÀÇZûàãþ ï£ìøhÐéø(åú|4…øƒ|µžãÿ<¬rrpOon~0€›Oðñð€ù„Göýß-Ý\\ 0Äß?Gþßl }|J Oˆ%öÜ4ÜR<Ä.µ>¬ÄO¡`¬Ý•6­(d¨=´6MœgwIœxÒ¥aô%„þ„(”ÈZF˜²¯Z²²\¡ª—õéõÖ…Îõ⑲ç¥ë`Zôåôt8fEnÍ=Ýpjà<üÁt¾ìÞŽ^¥¶Í+œOµ…V23}wêgï?¼2‡óÞŠég ¶IN‹Z2Dï×rÜàÍž¼>÷±Â8ýœä~Žª{qÂ~/M4:Guºøè•RUò![É7óù…÷_}εµé¨¶…`õwd’b„¸¥ÄëSs¢q®þïø¼ýäãû—Ÿ¡„6Þ’e῟Æ~óLXøæï…ú,3^³=ÛF‚¬›Lƒ¾NöÂhëÀcjƇhµ\—®Ä}¨¼ šx0.oñ?Å/ÏŽkÂá8Ûóa•(}ì’ƒ_ÈÖæÿiØZ'Îë ëùW…8vjy.LnàóÏ~V)v ŒrÐþ:ͦɫù˜$¨'¼ ÷«PO¢>*N«•_½Kã»+lF  |$¬u2Æ&³zóûô§XPÞœŽeÆF&È+ï}„åaªwnV]-@´[ªªã,íŠºÃøà]Ó5çËçQÝ6ÄaVÍu`|÷­‰´óÛFòÚÀ?qÃgÇo‘ ¬‡«‰—úÒ{8ÀÄ1ô™nµ˜ºkP>HÛGí)ÁDR[)¥@A¤¤Ðæg¿oò÷0«'¬€f’·Õùí·¼áûWé]^,#Ãß´{ŽŽXg»3xÑØ*!=Ä(‰MJIªk|†»V`I Wrqúm”’íÓ7¢¶õƒµÙh€Âx`¬©7f-™'êm{FNõÁìÎÄbcLó)nSE÷µWNþWQÝpú†#þ@ÙQ¨XÒ)/yÌÃ¥"G‡Óqé\\6r°½¬“ëÙžï%¶²ë¬dØDk(;dfòPšCšÃëí4õ圾@ê÷ø§:Lû)•í¶¦ëŒç1E2<Eõ»ÙòR cë_Ú*˜¯ƒËŸ‘}H ·â?Þ8+ÉA½¥ð{ýð<} ëeœÝˆ5ÍqÿÚ†0¦Á™ây´p¯ÄIè›7-üº r'›v¥12¿5Óõ_e&³çW ØZb-`^¡¿o(=ÈAÆWKìŒÎ …ø%ÌÅdð¯æ¿“Ì‹ì ÎÄ|¶h¼BqÛétøSa)S"7méÑVsû$²Ë}Ägš~¤±§BÁlô)5í²…Ê7Që• Šb_É;!½xã]øûÕ³=*ö»¦K¹VÍBn´ó×»¥ CŠz3&Ï㎢dB%_šÜ¬z4ÎKÙ„ôúV:÷÷íçu­<ݧ¶…U­ÿ´»·8[ÅHDÉ\ -[ðøµÛrk ù•žíÞð,±wêPd…¶“wPmU‚…Íú¾fcàCÀ"BùËÊBXC\´ž\ ÇvYÍ>S"jéØ Èø ' *Úµ…ÌY¨@bÙ꣑Z»6í%ʶâCa­+Ž½Þ›ô¼a¼R_ÏÃ«Ü ÿCz¦[s§óEë.¥Y½>ÓL+–([i¢lŽ™™Ù…‚†Úl(ßΆ©E¸ÜÍ‹væòŠt08лŽÁh3vlW[|O~*?ÛË0g68ü6*§«Ø4ìMYTäg†Ä·‰Þ÷qz®åaT5–L±zpYhDF¢œ\Ï|7vS&¤ÍÄਚ§™Ê›iO¡™á~ ¤šÇð¡VòimÂEé~+'$»¡±ûeÓG],•§½©´ÍHŠî™ê’±“õÕ¨J½²Lmj,–¾ó…DÑÈhí<4š¡º·+y*7W å™nÇ"åO 6͉bÈ6ræP±¤Øpr/z2·\$ÆG8P¶¨²}ývâð-`ä¼M%ÛÆ37íM6Ãd_¿á ×p•†­ˆ’Àr¡Wt T¶,“P ŒkKõYÿä<Ö‘½†¦4¨µ%ع{æŽNlöª©†ã«ÔW<’”™À‡Ò =¬„à„c‰UÌvVéÆ%ÿlÒÔ-Ýþ¦¥,\ðé|&²¨¡âCÃH€ êž.$ ƒìE8¸—†OÑ»IÑ£+Îÿtö+.=âž,»I>hnD$’/ôà¹ÇÖSéðöçûÖI;Bή×ý½=q" MÜñ'éЮ·B–ƒ n|ýy"ì‹+ï_yä-›xUý~‚“¥zèT¹Åƒ¹3’ êç?-Ó•0Uöô]˜ŽoÈ§å ‰Ò ·É©²:'Ê!Í× ¹¦wþä¶ÙæÄÄ3ϳ\YZéhÀ¾H^Œ2Šè'j‰ü{¤6P9e{šrA±ŽŒ»e²ÉX‹©w~>®Í[Øþ›nŸŒ6ðbÇjUø©Q6Ù]&Ùwé÷BŽq¶âÉ®gÔ_wÌ"vZ™¨Åóóžx¼*`Jý­ƒqEWãÖJ½äžî¹Šôr$5Ýû½OâΗH£'?f±Z`ýSÂ~6÷½u»3²a„„µ–à‡ö–Ĩ(oáƒÝ7ÁŸeÚ1GöŽ­#.k~@NVo"vÔ®H>ˆ~òéÄ!g]SܶÇ™®öŠƒU.Ð<9“?=AÎ:2¤²ô\|H>' KÜ„ÁõɸIôÑ*Í„ØÓw¶í˜†\Ù´²£^ëΡÄ{¼ÔÃä#_9G¥õ%ͤuÈŽ£)-ùµ„ѹŽqñ~Šü4Q8]oE™E zåƒðP‹Ula-ŠÝ°e{>‡WÓüÎÕœ†N{Õ+‡F>_íˆ($ö´ÜFŽ8cg¬«är‹nîQ?ŠæˆøTdåõd‰—ö/zr®õcÆL}D˜» o/H4¨ôª4p÷gÜ~BFýùî? ÿèÙ.›ÕF\ÛäáKñK}5îàÂ\Ès–@®ß±3RëuAý&ÌX&h>úzâöÔ÷ñU 9ýÚ<þW˜hAÄþyKšÁ­Õ[Yi"×ó j±i„ñäë€O&Õtûf7ã'9"’Ë^dþ[çŒ4.…B¼!¢e´¥ÅJÖuZ“³l´Ã“š·Å 軞5\;©š[…xo–Ïʉ,]GŸ”Ã̉O¦ÌH‰ ŠOI×¶tcÓù4×X,as u\ýŸ–%é¹)yáçEGê“._·ŸßcجB–2v,tاqçÞ± ›`°°äWÔßuTíóLî å&%x‹ÞÊ<Óì7 B jáw²H÷`y*©œ.Ó`ÛÖË]J…ídwí¥;µ :S-Mž‹lÎëP×åbZ1§M‹ŸÆ­‰$6sg¼@GMÿ9`ž9§±JÏAõ»"ööD! 7¸©C»ÿV˜~gT–³Ñ¹<}.>íu§ëÈBÜ7[r‘º8YG€æWÏUá{“£¶€0®M@õ»>^*ú°®ç?q“–гH+$/VÞ qÈ×X»`PÖà~Å5¾VÅ‘´èð¬âþ2r~·£L”ÛàÞ5¥bðD6C@•¬ &1xm˜éÊÒñËÏõêŸ7rbVíS›¢ú>Qmþ6IV\°8$0Y~º§Mª;+OøÆÖ–؉ÚBoÐζ«­D\“‹çqÅY'áÍ¢=´agåõ´ê늀vèÝ#@ó0 èÊS’k¸¬.#ñ×àEÙBùžK²á`°½Mð—ã²è´~Å÷üØŽl«{J]Š9~Rµ?:ß~ù%ž´ÎdœGzP¦m\?|åz©L®1é†Õ¤€UP2dþaé³Bj`4yGX€øEiÏ×â̳á~ô9Üà\¬Ãš£UÃÕÃ¥Bø«Aú=*‘¾8VߪƑ úJ^¡‰aB 'ml¼ÔN,ÍNžè*+º-’èQ€ˆI ÕÁ«[öRÎ|§`­kœttÁÌD0è¾Ãé×íöºòS‹t§ø+º>@¾–KwTâwÙjJŸP2Ê©³áI`¬„D5H§3 ý͈SÀ`+—Ñû—ºwÒ¦ ?%-¢`BØ@ðï‹)¡ñ¼TÉ!•”œ?GEôÎ>ªè»î –ðPpίç ÿŒü³Y/9cÇí•Tôc꼩NôžÃó9IϽõŸõé­?NƒãôÜÈƒá ¯ë¼C°.g¬FŽzÃó]ëÜG¢3˜è§ügl·qË<O4š<[>îê€NÍÈAGñ*mÅIŽk"hñrî™û1c³iÜ ¸k/¦½+íl\NPwSp€äz¤¦ƒSöË]WÃkҔ㠟 9~ŒtÝÌú{Fó¢›­?qò{n«(5꨼ÄÝ:*¸ÇϼtxX™ûQ³§ßÓtäÃê.’Òñ ÷eÛÂ*.£hÄiΦæZºkP_w–Ï› Ëç÷™|"=iTõþ †Ràš(’¯±‰È8›nÄKº‘=Gš‰_¼ªvÀ¹×ÆåLcbÑ2Ù’;¤÷Цq5ÊÝÚE3Y+`R~_ºº%+ûlLÓ¡3f[. ç­êE«´‰ˆ7[Þd/"i lO",U©Z?Š›*ó- ÄIò4 È„Z>óÌ]cår>pbw£Ê':º4Àª5Âúòu lÀëHȇ[ñ;?6xøÍA¡·ñw¯Î~Ú³á©iêÞg"+mYËb¦ؾ¡…õz_D—t«*#ü}ÇÚëDî%Ký‰UŽ™ëïÈÙnˆ~m„”ü@¦Qav,RÎZnŽØñq`îuóû8?”•uƒ£†‚œc:ÊKç<*;¤c¹lñ›t77#‘=™Á°hb }ïˆnÅáæëÉþ}ñ}eû£×CAf†MŒ“EÈ%öÆshvÚQGíôç-Jðö?’"Ž8šòB ®Ê¾Ç‰ÝáÂ{T?V5»¶ºxÚ;älH3é¯ÜÙã'ÀýöÒAl ¹aTUBUDùöÏ¢ü‚Öß²Tã\…žŽÏ‡õ—TÉøáý*Ô…oˆ;§®û‹iE1±vaü´8Ü“}©ƒ¯»åj®~)é“s¦]_–š{D"4Ês1íËO+}G:90¦¯[_>¥ ã¢~A+Ò‰ß~8ZüJ!ü™t»ä°‰U´ƒ½þ>ŠHyïŒïÔôñ"«5M™’ô%ìò y±øÆ/„|æù‰¢¥™=u Ð÷¬[] QÙnª‚¿Vð¥(Ê‹[çF>fú!ˆ©Â?RJ¼ùLÜU &½‰ˆÿ|‘¡é~clÔQ0~Dú õ ¦©¾ÔØR‹©\AjþÎÛŠ2ÏI—i!º1ÁEðݾ¤=À¼­ÇÌÅ¡gƒ{’ùl\"¤w™&ç³qµ¢‡ÄÁÔÕö¤6ê ±T-òî»}â:µƒ]ÝÂ_^YCùOÍÇ瀼† dNȺøßä% uÁ+—Òæ+Å[9ž ä ¦ã:t†ƒÈ‹-¯¬"rr™9zr"™Wóå’…¨mÉ'Ž\§òq ç] ô ˆ§ o|Y®Öd´"‚bó#”ÿYŒ%ë «†Äò·KƒôÁÄÐÄoXã—•5¬¢¡;i–ܯ/Ž?t&ÕÝ=õ6ºœ Þ䙺?ÛI4€}‘£-! }çŠÁ9E;GHYرš2@D…¶oÔCè8•ä<Ÿb íoð±æxÇa¿øÔ¦ÌMbäĹË%åëÞIÁÒÕñ"*X%ÿ~ˆ”'íáüÜa²I¢ï²Ûš(J…DQ.CÛ„«ZÂ3oz‡ì€hÉX99Üq/âͱ‘b͇ªr·µ¼cÓ-ˆõo1ΦJ"ÉÊNÕv9  ¶sÐ;õe‡×L?ÂÉFPXp æ{útw¼ÄSïôl´i¬ùƒ5Z—ð³¶äÎR`Õ?;C.g&·¥²tÝ6t×}:¤'F#÷lÒ‚Ä÷“l±¼3ç)b ©dõ1 qy¼¢W²äZͦÅ6÷Ök<±£ï< ©Æ¶™ß·ðÕt•<$&ß Öu_Θ;ìô ‡%4– Ê§¨¬&jã¤J¼ÜÂm ~•àÍU¼ãŽM°£èJVÆ•¾æÁ8äóD8<’ªìÖ®2ò̈́̆L¼¿QdtƽGCéå"C{nÏïñ$á ¥‚†\ã²>¬uŸ ó±ï¡›‘Û9êÎf5‚ïIFD¦P°]mוgšÔ\|¶q½Ô’-¥Üœ!Ц^š_—!¤òCõcöÕù(îç¿Ø§!ÏZ´ WËeRâ=]¨LžãªüèI$|νò^{-ôžYa•Ê%1õÓÝ«øŒAý£DÑXÛœ ¸ªow¥u/r_„èUMÁºO+Š¢_VÑb.ç„Èç>aC 5m¼©ˆ¬hX¥Qr›™Yu˜´hm'ê²ÊËü »³*͸'«Kpñ~3%3U=¤;5K6ˆeëº5+ ò¼\=c‹fÞ¶’åp½hQ1}QÒ.‰t½Y˜„œÎ¤]ýìu’»ûµå,Ì)ôG!FÄ´gµ Þ)«MÂgÐï]èx,؈J6¯aÜxCÏZ”kn—3ìíTãçî±)×2«cǵ£4ÕrÔiÈÈŽU\ú¤¼Ÿõ×’:²~JÄ >æÕþ¼ûá›ÇXµ‹NïVÝK°æì­¥åë×7Iò‚~=»Ô¶H'$_€¥ óÛÏçÃV¶¼Ë¾oð »Z3?Õ‘ÈoUÕrB‘@í\Ëhì”à!l%Ø'L"jë©Á:N—'‘¢Ð­‰Þ=§ÁË•87îÿüΨGž¹lŪŒÖF¬Eõi—ma4ª¦Ï®sãÍdœ€iisÎÎ ƒwÝli˜tCÃè_ µÜr\:;èo’åöp§10€MöÁÎû¦R*ó¨ ðtýg­Ù&áF¤RFG Ü×½P`sG›ç}‚èËâYnë×?ês˜ÒÉF‹Ãø¾#³yœ½ÈÅèt}Ý iK{ÿ½J?Ã>dž£V4c€·|ñÐi©^áJËÁœ_¨‚åÍŠ"7%]ƒr”*‹…Tí¶ ™Œ‘ô%'³¿lê*<œ¿‚¥åmE,7ïóu°äÀ ý+§.íÂ3lEcãúw‘Þ×¼<ë‰lŠ;:î5èÔT¡œDÕ´*Åò½€Àg«°,°ŸxØîcWlÇÓêêzÉ’‹›”›ŒÂøÜtÅœ¤-jh¡Á”˜C©y:G+Ï1 À€ù…‰D.Ô<ÿd!ùí y‡ÄïH¥èóÒ¡móq’OO<ªzçË¡M0šOvÏÔýÃ5—œ¬Ò~¦µýÒ¢ºÏ^.©±˜9w×±¿×NI¡-ªN0µáíNå¼±ÏÍ;_t½…àÉðÚÖ´9™iJö¥í£3ж½i3Î4 Ï1/n­“€"¿õJ8§&¶ëèFm¬´O—é­Š‘ÈßH‘h´Ô“Xïëg z•Ö‡¬â¶–Öâ¿>R^×UOl¥Š‰–~±Áøy¡ÂÑ“¸ÁÐ!d%Ï‘Óùkc §Ér“ÜM¹ÃV^ðâ^õ{s× ‘Ejˆ¨¾KR×øõLÚ|&yqæÆr¦ä/0g‚ŸyÖŠ‰Ã¾VjýÖn.uËiÝ‘ók5?[r13*K 塿µ1À¸ñ3j·¼©É¤`²&Òͽm ZœfEðOâJ` Ú ÒŠYª›Ð÷i¯•ßÈ™úCcÒê¢IMbjŸª„«‰B =o6ÁëâQ¢$Øý£sbsSñ°_‡ZŽ|{÷F4¦Ô΃ñsoßÿÖèÔsëÆë‰®¿,šH ÍbVÁ9PGUZó& åtæ5ÿZs49à–è4 8j0Ñ~Iá›ØB1>Å3 ³°‚Ö† ªåi š9Z8çY¥iQCxîC¿bÓµ û]ØW¦ÞÓ¾‘Y«ƒ¨aGñOà×;Â=àÌ€M|ûù4¯ßÁý¸ɕՌܔ9Š{±»¥u‹¶“À"F4–ÍÑ7Ò&ší—AÊ ÆI.Ö5.ðKšÃ(H.åD·ÉÊü¬›¨‘XÂʦ®23!OÒÒÝ[eô2D>EŒÄù‹ZŽHT’ìYF“7Ý‹ö«û)åá°~ÌÂO–EÈ S¥8 _›_F†…ˆQÂ\gñ%­![é'•"E¾—oCš7[ó¥çÌ•x2}ß¶éy0‘‡À#œÊ1÷¦‘M Æ&˜÷Ä!ŠE=‰Ó&«¡Œ^½€ß +ux•V§cžøB ‡e“ªfuI¶©¿£ƒQO"¤[†8‰ 1;š-ÕO·“§Ô?ß¶Wx_/j¶É–.ÐzÚjÆÖ&õŽý”“´¸Ô“’ꛘ¸g¬\š5³ºóXް¨`ßy{œ–én/ÙYðeç€+­> endobj 112 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FIOOYU+CMMI12 /ItalicAngle -14.04 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/alpha/delta/sigma/tau/omega/period/comma/slash/A/C/E/F/I/K/L/M/O/P/R/S/T/V/W/d/e/i/k/l/n/p/s/t/x) /FontFile 113 0 R >> endobj 341 0 obj [623 0 0 434 0 0 0 0 0 0 0 0 0 0 0 0 557 425 0 0 0 0 610 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 272 0 490 0 0 0 734 0 701 0 725 634 0 0 432 0 833 666 947 0 748 631 0 745 602 574 0 571 924 0 0 0 0 0 0 0 0 0 0 0 0 509 454 0 0 0 334 0 509 292 0 584 0 491 0 0 461 354 0 0 0 556 ] endobj 340 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/alpha 12/.notdef 14/delta 15/.notdef 27/sigma/tau 29/.notdef 33/omega 34/.notdef 58/period/comma 60/.notdef 61/slash 62/.notdef 65/A 66/.notdef 67/C 68/.notdef 69/E/F 71/.notdef 73/I 74/.notdef 75/K/L/M 78/.notdef 79/O/P 81/.notdef 82/R/S/T 85/.notdef 86/V/W 88/.notdef 100/d/e 102/.notdef 105/i 106/.notdef 107/k/l 109/.notdef 110/n 111/.notdef 112/p 113/.notdef 115/s/t 117/.notdef 120/x 121/.notdef] >> endobj 110 0 obj << /Length1 811 /Length2 971 /Length3 532 /Length 1546 /Filter /FlateDecode >> stream xÚíRiTW­RAƒZ…bD <¤9¢˜dÜN;²Æ¡™I2šÌàd‰lž¢"Ô¨ÜPi¥r\\ÁƒRE„bA¬(»ˆ‚µàV: ÔSüÙþêé¼?óÝï¾ûî¹ßDZ s…(‰y‘Í…y°ˆW€y‹ÃQBã$áИ€]]a TË,‹›ä&paq€ˆŒÒR¸LN;Ñì!’ *1 — @h9¦d4$ˆˆI ŽÑZ* tè† „b*ŒŠÆP †ŠKh‰Ép‚ÅräKHIàòFÕQ#­hŒR1¦€cr6`,¢$¡Ð“²ø$óÆ8ù7L÷R+ˆrH~8¥úˆWhß3He”šÆ(@¢EŒ¦.ÇÞ™ ÀP\­Ýõ¥.2¸°r¼kà*/\ƒ¡Á8-‘)¢PaÃ8F £­0ñ á»ûø…zúØ¿Ÿëp3Á z‰6 Ðöp ¨™”(\ Á ‘9#á£ó$$$Š2à pE!Z³AL%±0À ÓLÃ8æó’f®&šx %)ÖÐX!ÀWâ„Z5„Ì~ñ#™¬1ú/ÈÑðe2æÝPG`'WÀÇ )Nà´vü8wwRËup\WgÆ ;Aü߈5Ea=¼hL–#µgòÇ0 &a5Ô‘’y›ÖfžÛr,ÁóHuþ8þ„×ú‚G F¥+Šöáh¼Xb#£s»rZ ·—±×ÕL÷“ÌË0¥Îšë·Eô6=^˜z(oÅ΂Þ1[›”º{Ò€ý¬.ß²õ˲öon±p+¡Z÷¦ØÎmè³MÔOÌF;ÝW¹òò~±ÉœÐ]sfÎpiøÁ¨qÌ4¶¶ña­õïʼn™ $=7ï.ö f«¼RgÕHGö!/ÚXáÒèšûáÕÛ-1ÓÑþ)AÛJÂ4O¬¶ÎLæ<»&ÎÓ¢«ªçXí幆™ã“¡”éi¥Q)Óx|äÂIùõ¡¹ý±ùæÉ÷ºÇˆÇŠÓõheÀ‹‰†ýIõÉŸµü˜ À’œû•f¦ ÷Õ©Œc×Dç{³€ùxó-îz™³MÛÅ/ßÔ¦4(oJa•”'¯|üt߀­ù³>'Óó+À×îv¦ya7&•[òœ…atÙ-–~F¾ÿªÕé[Sï©=t‰+=[›¾Ú{fìÂ]Sœ3UжÆ%·ÏI9'*å\U£ëÒ«×6[vÚÞ´]ý¥wí.]Yjz„‰QcŒG‹}ÌI‡0¼6ñÒœ8›e'¦NË(Ò(NÎZWnZt'¯óSMæA¢»‰ghÜ—C9Jß¼ÝgöGóŽј[Ë®q7XM¬–ùÙv¨¯XûNïÉ›UÂiß´¨µÅ¿¾ «oú~wø¸FTXùZ]¥s¨+¾gv™XTáVÍiyP™x§Ç†}°kËò®…®ƒÅhoµÆãæ³´B¨F—d=9]s«„–}à]Ú”ÍäSq¥Ên–ño_Ô<.õ“¯ÎÏ*Ú£Kó¶"çhÓ^P¿¼l¦ê~¨kì=t!zÕ­IIiÊæ=ÊØË~á¿N^£_|ú–uL‡Aô?Öÿÿ ‰C(šT"Ô:ÖŸg¥Reendstream endobj 111 0 obj << /Type /Font /Subtype /Type1 /Encoding 342 0 R /FirstChar 0 /LastChar 49 /Widths 343 0 R /BaseFont /BHJREH+CMSY10 /FontDescriptor 109 0 R >> endobj 109 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /BHJREH+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/bullet/arrowright/infinity) /FontFile 110 0 R >> endobj 343 0 obj [778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 ] endobj 342 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 15/bullet 16/.notdef 33/arrowright 34/.notdef 49/infinity 50/.notdef] >> endobj 83 0 obj << /Length1 1517 /Length2 8679 /Length3 532 /Length 9568 /Filter /FlateDecode >> stream xÚí–UXœËÖ ‘à4X€Æ!¸»wMãtèÆµqw'xЂ»ÜÝ‚ww  Ó{Ÿÿìdιœ¹šgºoú]Uµê­ZõÕ×tTêZ¬’`‡·Y{VN6N!€´Š“ ÀÉÆNG' …€\¬ì_ƒ\ BNAAN€¤«€‹ÀÉ'ÄÍ#Ä˃Nvpô„ZYXº¥™þêÄ´ƒ@­Ì@ö‹%Ä–à d Ðr0³‚¸x²$mmšphBœ!P7˜ “¶2s¼…XXÙ£³ÿe¤`oîàÿWìêøï&7Ô&`„I2`Š`{[ObŽÎ®ê› 3ù¿!õŸÉe]mmUAv¥ÿ{—þ«dgeëù?=ì]] P€ŠµÿÏ®o ÿ’“r°ý¯i\@¶Vf’ö¶Ç¿BVβV°º•‹™%Àdë ù;±ÿ§lÛþ`×Qy£­%Íü?õü»Qdeï¢íéøOÚ¿zÿÍœ¿¶;P+€'¬#ìûï_Fÿ1™Œ½™ØÊv xù (ä‰;0âxs¬ìÁÄfÌÎfïà€m‰/ÀÜŠþW9aZìæVÅþF»™ƒèw„Ànééh ±ÿâ°;Âêèþ°{A ¿‚v{È?ÌË`wqÿÝÎË cK(ä™8¸B`.ΰ]ø‡a&η?D`+fÿW ÿ‰ðØí­þœWà¯Ù:üÄK#ù›`)¤~l¸ôo‚­Aæ⇭@ö7Álå7€]á7Á²¨ü&˜êo‚åTû‡`9Õ,§æo‚åÔúM0kß³Öý‡`Ïûï‚ Âæ{û›`ó™ýCœ° Á ¬ ?ð¯ü0‹?VË?fdõÂ$lþ@˜…íÓ°ûœ0 û?¦áðÂ4ÿ@ؼÐ?ð¯cð¶Âå„i¸þ0 ·?¦áþaw(»ÇÓðüÿûy–’rððfåå°rÁŽ.''· €Ÿ—Ã÷ëhæ …Bì]þ¾*a·Â¿ÙÜ v‡@ 3ôÅ93áëÔ†°?™¼ÉR¤WðRñªu]ÓíÁ ð¶…#JN¯ÖjweøØ{H{”î÷dÎQm>_d¿:ŧÍ>î¹™îex5“/2Tæëߪ¡’ð”ÊE*òcYEµ´çSéÀÕÄWÑûO4®æ¶Yšê«^SŒåͽ´T’{úá%|ºQ?ÛÒ Häá¤'>Æ®bÌd¢}RäV ]Œ› •y¨¨÷O§pޝÁ>°–-¨Š0ï¡V§Ý cUXû¼p2ú~Q*¸OÔ2?Þéµ.ιȶ)š n”MW]©LŽ*ìVˆQ”û‰6ï§|áÍxÝpY®+ÃGv»AY¥Ãðc{Ì‹#ÄBIŒžÉA ‘‹ÌPLjø&*rŸ•Ó<¯^¢®¬†aB “ÓîöM¸è'åóeº"^—ü565V#ÕX idí R²e1z÷îd7Õ `èÕÇï¨Òϳ×áÞ™cíbdÎçCÓÛ8?šÏâ5ën#Kçd& ¥ø‘î8es`<ÍÏç–Œû‰Hi§Q¾åÑÍøËñƒ3‡jpÞ^”WÜÙÊšp„YˆF5Æ™eûçÒ—½9÷óUõÙÆžn<Æâàí'xW¼xÇ#ÏCðP¼½òÑVî£ØYî'mÿaT“|3Ò©‡|z±œ©ÿ¢V{‰ÙoÐÊnÖŒWÚ—^Nœ6lï¶rœ™ùp>æËŽra·ní~9Äfƒ68áó†úSÐpû¸î39R$Ívt™a®ø«¾‡rŸ ÝíŽ8Šø%…¦a;‡ˆ€²6ˆ†ä„ìȘw XsC›ãrÆŒÁ_+š÷䘜BB4reV¯K…ƒèËce9ªŸ¸æ¶1’1«Ëö:ä…_,ÅÊ•ÈòOcOÐJà±Q«ûÙ90ot6 F*µ«œwÒ0^ã¤jÂYaÔ줰.,- ŠJÒXíêJ;­8ÿ ^—yµö³q×¶; {"¢›b`³¬†Hªà6DÜ/¤er(“ÐeøGɹ»O†‘CA"ìqOºp±Ý{[£"á`’Ò#‚>FòžêƒìMYRU_¤{O6H5I…èS·ß" Ö¶Ç ·{¹FÔÚÇï¸^xÓýˆÐH¡#§lÒ…D5w¨\k¨ûò # ³œ£ËƆ_@ÖŒc–Œ9{ÕS;™âcݩ̡–ÛF¤˜~Ð+šÉ0÷'˜a{…Œ‘‚ì×@Š‹l$ÏQñEù>&£¼¢e…æ6ž9ZcdTìä¨"PW}+3ë¹þò~dd`»œywÖet õ¥-&ø‘”ÈÚG™ñë%U.OD©`q2sÞøªdûâ³à~d±¡ ûn§ŒSF'c]ÃEõí¹~æ¶/éÛ«–’såê—Ÿ(Ô:§,¦æì:”BÑ*ÛŒ;LqçôÀriny=RRfó¿lk[¯p)ê}#-×<Ç#iä"väìíiÅMRß¿zá6¸Wg·l=ï?˜¾äЛuœpÀLÊ ?ê^:ª’?i°Vvá)"º*àH5n§ßn¶fu×gÞÌFºe¡­Dµ7›’¬qFp¤ôÖöÊeS#d7¦úwßV¦À¹~=uEñJW4©ìk•|\\r³‹«×$e0 ÅôOtqb‡þz~{@ßæhq óéâjHzì›-ÒC  ‡~´?*BRÔ¢œÎ—šp׆½Ñp{Ð?DÄÍ51šIµ±c'X†°Ñ#'¾~Z|ù­fþ¢£v©¿å¥îÔœ¦'³ U@¸Ì¹¢weí|eó^Љ©±¥ñzµ=¶ñä ÑLÚ&Úc.€äEMéŸÐ‹§•+ªaöP{bêcBdÆrwBŒõö½iØr¾”sëp%º3hu”–j¬g<ÝéÕÛb³¶ÄbW^ý¤”N>·tÓíç6}ú¡Ö?ÎM’ÌSÃË䣵: †¹È=|#8R í& Ú;0)öLm)æ‘]}ºá=e+Ï9©´Y•Þ.Ò$¥ŽîИ%vFÑäÑ/DÅ{bIøžÇ€š\+³ HB>lœ…@ÞÖûÖ[×$À3IòQpýüVýVI­‰£;?ÒTY4Tã Ó$Ö½aÄ‹=Ò¯£¸ü¡.-@”ðSû+nïò…É¥Ð}S96/í­Í)ÍÄÍF‹¸¤”ðAë >iI¹ áDQù“VöÒåIE¤Óc66Í@ ÛamûCÈ”š~ÁªbÖ~Øc“ñ‡Ã (‰`ëåÁèÛŒç./}Åbï}=M¿úE‹mFóDR‘O ûR]&„dÅ–â_ñµ IyÈ×á¾Ò Þ´¾ägs›qÍY#—T™IŽV§RwœÖäÝqóöË+ž+ ý$.œöeçĈՙÐ<×Ç-øçì«Ì»—b,ÔªÒ.÷ò Ÿ.àÛ(»– 7¶Œ¹Å&³D1;ŸzŠú/í°øŽ÷}¨tN€þÁÄð²m©xñäžôòšÃï'd§h§X«‰›©¢zX<뮦‘kP•$,¨MÈžé/ð ’|ê@__t‚;ÙCù T“>ÄÝ0Ô¢7°Ò5 òð¹ÜJf`˜ —¦öY3c‰ÞŒm§6éßM+¯ËÜ\–ùœìP%(øL·k¡ ? 2mN¸|нp…ïáP§dv²@Fï¡«ÿšÍ Á_o ÂΉãeRÎõæÿIÇ÷Ñ­.;$:“9N/WD‹˜¸W][Ÿ¸7[ËsIà~aÖS<Þ*”Ê8øu…‚K– Ë’šE[ßgrÀº9ÕŽGÃæÌ ³Ð/’H2e¼J¾½nÀ•Àví e‰Íj`€¦•r¤@Ï,¤Ž~Ì`_â„6î@¯”„ä–ô(ìoQyØâý}´ŒA^3§cùÅqëšÐíCò°f)*˜ÀðàÒUWûíÃt®’ˆ)~@(V¬ÌD×Qs‘#œ+ð§FY|ZÉ[ãðþÃüF K4²ï" %ºùæ•ÝöuúGŠàR(HóÃK³ãú“¹ÂÖ€›¤ÙSìõ™\)ë Ã÷;Édª+/‡€¸§¸MÎp«j{„GˆÓáßÎOQ&ÉGnN£¦†ž%Ø|Qp–µî®˜5,ü™:¤Ɔ§òéq\Q 3mä¬Bû'Ürf`•·›êQCwÚVà‚˜Î U°SUìðú¬ŒÂ)>^ŠÞ»Â$3ª_C7jOì ÆlZÒ‰US"âË[þL„•5ðJW…Ò qÏÔ£—!Õ†=2ÚmDÀz¸åu€Mˆî&ÒÅž12´ËmÑG±–Mzy¹ý¡[iâÕ8‘͉-ž¬¸ý‘/‡G)r\¸ì±“Ú÷²Å”.áQø/¸3ÍÜNúà&ž<£•,ãøÛ÷Šƚˆ'·ïnͧtÏGfŸ Ê&ÑGðo Oú+"#~’" gºÉ¾â £>‹Ô“·ˆC%~:¹õð~mxå!õc¢§‘}Ýõé•!&üžV‚<æ\Áå,ë2¦Ó¼ÜmÍÍâïä*Ÿ^.RÉy!ˆfëä½£b†ëðnÔ›à=âëG0ËÙžÂhåíwä¡9Ü[f‡¶FŒOûÔq“E{pâúâ:—lÏœ<âºK6½ø˜2xÚ9ƒ>Þ3„hp츰ø §[~V;6”[o_Xn»Šf czBw\5ÇlÀ7Ù‹*ýªp&rÖ¯°ró•Bh®JXwÑk«Þo¢çÕó«(’`ågèÆ;¤§µ„V´À)ó€+±íšîÞ^T”šë_SyXTOðø¥¯_ºn’œ Ó,Ñd\' ËGgVJn•$Ÿœ[Kh8è.ú–§œIðTjÜsºÒô±¶i/=§?h]¯ä3¯}Ñý\õ¼¬ò­â¨°N{ ‘‰*[Bú—>"yqú×Kî×]ú£wl««*TÈ‘E¡¹T¯ì_6b7[¢‰s1ô5ŠL$ÊT’ôîì¶\ù ¼–2mkz`ØJn¨bpBÄ>ÏFÅC9j7¯óúôÔé^ ìÔ)ël„*¢{¾fî –€C;—®ý{zùÄÂ{ló³_úéãç.3@N.„‚‡O:û!¢k[ý¤TE©si…¥^÷L9\á†/Q;ŠLÓ‰â†ó:îÆh ³„^s?¾l¸Rï±½jhmŠÍÜ|µÅvÞ wY†þJäœæÇZÆ] jÕ3ò /”»­“ÁÔI^¿<×PŒÃTxXM‘ŸÆ»‘²%ò;™*rßÌ*×É(¦”|/¿(ÝÕcô`>ηûôŽˆÄ%A9T¬EQºàqƒõ’#èg=É|Ný'BIÑÏ¬Ý |bÀú*?«GÍ'Qaø°eʇ5K4‘cvlYÆ(­ÑæÈ6Ä[}ÜEÿš"ºãá|ßÄ/eY@Ìó‚©…ï¤Õ|~{ˆk¿4Õ¤hªÈw‰Œ¬k>!2Réj°³©'i²ÏüôÐ(ýTa?9=;#(tʇ‹ ËÌ¥FÄ~µ†lçJ}‰ä%8ņNRvˆ}¯@f®©fºö0,P•ϯ½¿P>¹ˆ oo™:nf}—©å„’Õ¸à@ÎéÑГÞ Ù(@.+müø9vLE}”y¡iŸ¡^²C—´Ï©^Íçq ”Í5ýaÓ£O½sçæ3²ðç*DÇ^Ï+Á^Ú邸*yã­iÔºÔC²GY:ô?:צt§÷=ÎRÛôî ËnÙõpO¹ý˜§†ÊõðàùÆå‡c²ÀAë)»ÝÄÍEr8÷î…ãÍ€·qE ­Óg¼a¶èõ‘كÊo™u¸ºÚ¶~¥÷®-6¯ëPˆ[#ô[˜$›Î¸ë-Êoeˬg†¦Bp :èdU:¥jBŅƪ²~åŽz|–0ûD |–À^„Xk4ZÅž#Æ?1™­HÜv6´mvÃ÷öEZ¯˜ùH4 Ò^?¹eG¨wþ€ñœì¾'2¦¼lâVFøœ\‘¹û¼¶¢¦÷¼ûÿ)¥Þg‡g‘­æ$¯ºle‹ê\:]Ï©±WjdÂwÖ¥Â}LC_«Uòº_ç’ÐQ$—"# ï<¨þ’¶h×Ìíà1œ _szÇþµƒZÏ=<ñÌ¢¡ DéÔô]Br ÒC†é‡À?Ç/\S+<½š-~3îepRÅ·Qª¢öZ1 G·Ê(N®Uʧ×[I!hnµ¹ÝXT™›9RÇÆô>ãÝÙÇEf>”ÌjQ*Þ®;Íü«hTë#Ì(hi_Ü'@¾/¾QZùŽJ\î·œFÊ'|DÙ:´¨Þ)¨$¬ ¶Áù‘,)Ýßä<?ñ6¶ík… žöÊÓI6;S¨Íœ3µK½3 ¼_<4}¢Å¹?'w‹×¬ý6÷Ív²)%Vc½Mý¾RAx ðuÌáB§”tS™ÞâiÄÆ -š’®5qs· Ï æ¼&ð)óJÇ,4--P”T°·z¼]0b«w3 ‹<Ù“EÏù…ÞÖ¢&©ká…Õ,`dQq ì½:ûîÌuY«x¯ŽI>\”ØEI¸‘¸1V+ÅÀiÙ›ëÕl?ÈýhSd¾â*pìë ØJ<‡PØ0#êÿ´ŒÑJ Â?Ü”:¼Ã¦¥ÆAš ¼éÒí÷Ææ"“û™¡¨µ_FÔF ”™Ùg< )»J,¿šÚ"•üž¡JÃðÓª¦€ÄfYtby²^`B±¥È„…#ãý”:z"rdlOŒ)bÍŒQ;®¡Ûûû§w’Ãûþ”}†ÕŸ±.o±®eŸó¾8éÛ“ù[×QìÕ2ÍùG\<&\ߨlFYç™|cñ>Šs®v\©ÃQóJåjØÏ~–`SžVÀcÔlùa!.“ô CKî"Ö¦'Ò²gœÅ{äAÃÝŸüaTšt‰wôœÂ@™F³¼@Å’Ýqºó$ô0îX‚dzÀÿtöý'[…Â[´6PVq Å~Kay¸ÖÁq6HþGÕèG%ÅÎ<.JÃa–Z·j Àæºä…F¬¦uÊ„&ÿ¹`m ßÑ,®‹­>¯ÅB,u ÁëZ"]óÜ\ð4’¾\›YPÎpÀá˜ßJâö6Ó·|1$^UPÃZ¡Ø˜zOªÑ—ÙÍÈåùÓÈàOï»?*ßò‰iåpo{¾mÈÿòàε1<*’Þùzè‰ÿà2ÍÝ×_; —ÔŸÔGÅ+çD~ÂÁÃ9s€ìF¢äqMòꋺëÁrS­½Ožá.ÎîyÄè<žo4úÊæ~ϲ‚lÂþ÷íÛJQK‚Jbšû5òfµ93¶:¬F…h§ËÄܸ˜¸‚3œ¦ š^·Rvº¶¿šê²„•J}=ÅVEá£&t 7‚›¦ñ}ã‘JKÆQ.û±üê´ŠÒùƒ³ï~€‰ç\Ëöú€üõ7ư^¥PQkî³Í•›ö[Qÿ•à²IQ¤(ócëc.ÆSQ–Èê;5£…X¨Ë×%$ZÑ;\ ‡¼÷5¬.z§\ÊkÏO)æ}>ÛêoåJ‘‘ÉtØ&G½i)“QÄë’™ºm?4¿A“€<7Ä™RäÈKäÇÑ5W 7àñ#;½e›3põ$IfZôÁ‚—s,sZƒÜ¦cßÒ¦]4®J?òߥ…·ÎÙVt×0V ‹AFÊØÈ uÑóÃH|ÅW“> vIаc+G’ãé«ÈSØ&dÞµÃÞQCd»á-ðKÈúˆ˜ n#cF ‚‡æÚ#ÏðžÓÏ’“À ¡c_c¿£·IdÄ”ýêÎÛªïÒ3¿„ ;Ó©ÐzzV!Q´1—D™”ü´ŸÚצ‚<¤?Nî°:vJ‹–Ñ .Ê?‚5ÃJ¦žo-ËÔªvû -²LˆkD<‘Ú!3wӏЧtý’¬\¹ˆXõ|íîØ ŸFäÓÅëݽ£®Ô²BÝ8Ljá‡xÅ’ž–5ã{={)/)Â?C5À,æUNœ6¼ÄM&X\'Œv!ÿ@úÝ„C-¦ !i©(GÍ®ýMÏ—S’¶œ½.ÑR!T;âyBäÛщ3UÊX!bùsê„Ú8:7üˆ—êS¦ìúÝ!5zµ;hÜ„/“.&£ë¿A=r(eLÛ!:,ÇÃÔìOz?Õ¸,&²K pø¦¸”/Sú˜U×ó8 äÇ]˜f«Û.v-OŸýu¼‰E‘?¬¹¯01yväò]¿zŒ_VÍ RƈH ½á5Úá”Âz~­;ÊžQÀQO·ï˜rMÊ^œù&±?ÏÒÝêì~ú3—Ü–îláírD'üþ¬3ØÑš+ ßrÌzQGMÇR¸2‡Gˆ>¹—±{­úeòq&25wwco•§w-RM]sºOM‘žž3JÄ–ü4Ií±Æ’æñXù‹„ç„Å/æýä¬AhØ\»¢¡?ï;[‚ ¥ÕÉaû¢Û×Ä@‚–ô¹jí#Ç™èv+óAq“_?†w‘ËPºI]£D·WfUEv[¤qÙ6׸MyX·Wát¸k/Ÿ,v±¼ñ0Ü­k:÷ž¤AëlM9ÜE4O@æØ6™NSºÊ4ÚK[¨^£Ëo~þÊeK®¨2L¿Á» Z}ÿ¹êñ~£ 0•*G=íj’äw±áÏ>Ñv•9°-—]#ÝøùÕêçÛð}Ó  <ö³ Ã|ãýúKÈ·LúÑálLe`nàÙvÛ³žO…5ÄMe3ÍÌ‚•TôN¨¯¤.hÔü}«ómÑLžÆ\âbl¹_ Wìáê›k/+ò•„èT%ÑÚ¾ùz·‹¤I¢÷›…£·Œ èŽ-yÉ)aqÙ¡Åý`„ªo-¿àt˜/|ø*ôó>«MhB¯·Os«†.·Á:±iÓJÌœ˜rG2{ø17Ú¯êýnN̬ÌõaÙÜ­$úU|‡§{‘_næóÂο|ÛÜuóæ<øœß‰v\wþÚ7®±BغµcÚ£6TPˆ¢{6rÏ£jlw…qøAs9¹8ßk™¿rn#¤¼éSÌæÄÒiEq*]*=<ÂË›4ô^ði£Wöfªþ…ºeI ž Ý¥‚n›NNÀ@½oGšm5;ñÙµƒþá0éÒ {ù5Î õÀÃó>'*½}—N.bC溤yXÊp! ~z%9ËHÓP`´b“@³¹…f¥áL¡"Ü<õNبÚþß:¿³¨3LÇ.µË¬f äIÊ5]ÚGpùFªÚ&`ªÀ\Ô–›„—aã$ãõŒsÁè{l$JìF¬ çÃF÷ùϽY`ºiNöõoEw­Õ`&‘¯Ta Ö½K¢ßÎÎÉÓŠ¸MÇ?;æ–Æ¼S—íÝ–dIóB£:Nžá˜ÿåWt_ÛøV¹Ý“#.)G+Éc_Ñ™³a(^¸{ZšY«_‰/ì¬ÒÍt~½£˜Öf•ÏÒ$½ÕæûrN (mbܱ}µd¥›ž©›`(p›¿ØÎˆ6¬(¼VJÃú³–Á54Aoª¿©x$ÿÒNE„°¼á2e'ÜV¶¸3:VOþP!¦á~*8o“ìHÕÂÄ#(ú:dY~‡ŒRÈ*uAN*:å4û¤SÑ\Í RøÒ£kÃ}`JE=ªe8EMö®giã¡`œ50+oéP–ŸdQ»ˆã4ó­^rniøR)˜„RÉÚ{ä•Úl.WÉmrÍö¢Éí'.þ}×íø (Ÿ{Gõ³îõ4–½X¯·$s¹J&S˜C­ðPÍTM´“š9pÆ<÷1Ó¬û®ßzøZ$ªóóÆT‹ú,/y‡‰a^xU[‹z&Eª­˜µ±"“‡RÈÜ{ð ©#*™ÔBKÆxlsx¨IèF¯-E†”M¸IŸ><Ø8]ˆ8èbW9Ø®}Eúqd޼b/áž5ÐÂ1nˆUõ-u§ª9=rô¨à‰ýð`Y |…9íK‡ø#–„ŽcÝí Šø«K/mêK¶¯‰ÕªßÈÍâïWýêã ÞU—!àtQ³ÂM6PW–ob¥–ˆ*TJâA)œ|®i#ÔÀžn,ìüz¨ée {Z+w¹W´_‹#î£VURö ‡Ø—ªV×Ðø`&rƒ“áÖØ¯4)¾Ùt[„Ž„ÂãË$T2䱄?°Bàƒ}Xá¦JfW¦ÃFýØ´öˆ­ôwOÊÛ'—Šùƒ¦å^ÛhUs×ç°(EJŸš´ö½tp-ºšŠM–{m–Ú7¼Né™ôŸÙ™ß a[¯º¿/µuåb?%àé,TÖUxmâ6-ÜIË5Ö}”0ÉŒ×ã|FÐZÞ^éЪµI1œ$羸Cß ÑGò\¦ºWK®þ.¹æ&¸£ºíÝ1µ¾,Á±v*{T\º«$Õ¯áž6 MüH]Ûi0²¨ò°cçö{Ó¯ïI.؇E¢[ýÂSíý¢…,ë#afL˜UÅ㄃ÑËC »ÎfOj4ÎŽÀß#ô˜Rp¦÷Ô¬»¶È6ì£Q=œ¾¼Õd2  æ~¢TÐ:‹Tºv 5öå&C6öbàRÃégiß õ2© Åa^2gã&Ü‘\­³TM^£ÐLù•jqÐÁÕé(e'f»C#b{?±‰‰w69Æan®Hn¥ôùÑñJ–' á¶È§äÙ…êÒáyÚ^ßÌœ^v(‹Ö]âþ*¿· JÕ•…xÁ™ð€ÆúS )ÍÙQêP¬Í1RµÖ¼!1ØúÞ#ó ×ÜéÙS #¯Ó”Ÿa:9¾UXA¨G"µr%-D¹ŽLÝ$þEÛdiÛü xx…z/®l‚òë c·òϚؑÔË&ë'ã¬fu³Æd‡õýˆ©1ûa¨újõþÇÿáýÿ'ø"™-uq°AmÐÿÒ¡=Ûendstream endobj 84 0 obj << /Type /Font /Subtype /Type1 /Encoding 344 0 R /FirstChar 12 /LastChar 121 /Widths 345 0 R /BaseFont /UMWTSC+CMBX12 /FontDescriptor 82 0 R >> endobj 82 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /UMWTSC+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fi/comma/hyphen/period/zero/one/two/three/four/six/seven/eight/nine/colon/A/B/C/E/F/H/I/M/N/O/P/R/S/U/V/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 83 0 R >> endobj 345 0 obj [625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313 375 313 0 563 563 563 563 563 0 563 563 563 563 313 0 0 0 0 0 0 850 800 813 0 738 707 0 880 419 0 0 0 1067 880 845 769 0 839 625 0 865 850 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 0 459 444 438 625 594 813 594 594 ] endobj 344 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 44/comma/hyphen/period 47/.notdef 48/zero/one/two/three/four 53/.notdef 54/six/seven/eight/nine/colon 59/.notdef 65/A/B/C 68/.notdef 69/E/F 71/.notdef 72/H/I 74/.notdef 77/M/N/O/P 81/.notdef 82/R/S 84/.notdef 85/U/V 87/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 80 0 obj << /Length1 2077 /Length2 14060 /Length3 532 /Length 15191 /Filter /FlateDecode >> stream xÚí·S|¥Ï¶°›¤“ŽmÛ¶mÛ¶mÛ6;¶:vÒ±;¶¾ù_{ïÕ½öwyÎÕù™›ùŒUã)¼õÎÈ+ÑÛšˆÚÙ:Ó0Ð2pâ É(20â3ÐÒÃ9š8[ØÙ 8›pâ3pp0à ¸˜á3Òã3°r2±sÒ³Àà ÙÙ{8Z˜™;ã“ Qü“Ć/`câhad`‹/càlnbÃÈÀ_ÉÎÈÂÄÙƒ_ÀÚ_ñŸNøŠ&N&Ž®&Æ´0 øÆFÎø†&f¶0tÿIØšÚá³ýWØØÅþš\MRøäI |€¢±­µ¾±‰) ¬ – Àäÿ ©ÿ=¸¨‹µµ¬Í?Ãÿ³HÿW³…µÇ'ØÙØ»8›8âËØ›8ÚþïT5“ÿr“11¶p±ùß­ÎÖF¶fÖ&øôÿ²pµp71–·p62Ç75°v2ùWÜÄÖøKÖí_ tªš²ª‚*TÿµŸÿj“7°°uVö°ÿ÷¨ÿ$ÿ‹þ0`u-Üñµèié鉀¿ÿù¦ó¿j‰ØÙ[Ø +¾££ àdˆß‹ßÂÖØÄßÄ LGkkç è‚X|S;G˜¶“ŸNØÄÚÙàŸèSÓ?È@‹?È@ë?ÈüOòŸfF@³ã?2ÿ`$8¸Ø9›Zÿ×Qøw >­‹á?çÈÌöO˜ã¿;üg63=>½£‰­µ‰é_Q†ÿŽþ¯d€³Ó?C8Yý Ôì­]œþjFv66¦Î P2÷°77ù£ÃÌ èÈÎøOˆ ŸÎÉÚÀÉüO„ŸÎÓÄÑîO0 ;[“3 ÀÞÙíO; ÀÛÙÜÑ䯌–ÙÎÅñOàŸ…¶pý+ ë8ÿf€¬“‰ë_®€ý§3ù…`¨ÚZü-ÂþÏœ­íþêÄñÏ06ÿeš8¸üÙiV¦öÅÄ韛èOà ð‡õÿ ¶ÐþC€¢"ÿ&6Àêˆþ!@i±?Xñ?øC€‘üC©?p‘þC™?p‘ýC¹;ÀEþª+þ!@u¥?¨®ü‡ÕUþ ºêTWûC€zÿ&ÀeNgèh`deâü'›ƒñÏsóŸ LÿîðŸ‡p¹Òý9Ê€9þ!@M£?-=`’Æá?›ýþsÿB@A³¿0mó¿0ï¿nzÀÄ-ÿB€“Õ_úëî XÙüuï¬lÿB€•Ý_°²ÿ ÿ9Ž!ÀÊñ/üçÙø VÎ!ÀÊå/X¹þ…+·¿®?€•û_°òø VžÿÂÿû (hçîE¸iÏ;;;àˆÒûüGž‘‹#àòrþ×»ðù6µ¼sLLÜMŒ`V—쌸‚-ÓZB+|EŠf+Á)ÍZãeûæ»aƒV€­KÇ¥(·Ô_ª2QŽÀðÜÞ°œ"»¼¦D/âÓ?Ž\õ2=Û±Ôo2e<í ƒÎ;[îÎY€å~nMT$kå\ ŸÈ“ +ÿ‚Ü ê×rmêÏ feSÍ´V i e"PDJw¨gÛtCJNÛœ òµ ƒj£Z¿¶ërùòR•Ÿô¡}wò“_ëkö"«Žíôâ²ù’µ¹AT´83^tQlV{ÇÛKM6ß,S i|ºíOv’«HQââø.¦wSŽ/màÆBÈD¾´#mÃQYŽÓÆ7Y~üµάGZêÕMÛfÙóõàªU¦fïã¢ü9+r…e 9'h›{® ÓÎ§Ôæ°íT!=¸U¨¸t‰/vD›;ô n›àÚQÈÙµÙh‘ƒ»òSoÔ¦‰gM“Д•Ñ»†bLšóŒkò?ASÊØ¥™>O‹0µ"\môDûÌk|Í8â@¾{·ËP|Bûh|fÌ¥Tˆï¯x3â&¦”Ø„i ¤Çy~-P·—Á’Réd»QYj`›N½Q6{D,ÈE q×»‹7OΞô¸yªU[|ÌjšÑ½ÐIWkOõÉJšqZ\Ò{Ô|é4uâÇèØ3ÖpÄÍ›sò u•L™uo:C @‹[B‚ü]¸Yÿ­6|ÈwæRÊá†9gƒÅ¼\zŒÈ¡,‰“Ù^þ½ôü1žÏì' œ·˜d¼R¨mvø‘®cGXkèéwई'´tèÁt\Oú‹dÚäïð½÷]#øw{®LY -§ßÝ…,¡;Ù|è aqÛÃRÛô}Ï»,’ENËMbA/|äx×Ç¿‘R>ã™ÕÍô²Ò ½ ãJO¥G:=þhÕ­S§ÿ.!ŠOÅä~-ߎA›žë&?„UÎsë"Î:wçìÎÇg)åçSRq|m’¹)™½)G®fÚg[®a”•895~Ÿ…MÕ¶>î"óE­÷ÑJ)]æ.É>©òÒ(‡±0Sú뫜Š8µøòó±"P­’j ¨ ó¯<ð9ÙÙ˜0Æae\Q…(=¯ŒÄq¸ýÄv½e¨öz^!PK dGs¢?IˆQßÊä÷™E‘½VýùXr¬8-ð'¿þd A5š¥Jh%J5ÅJЊœ ¬ü”Ú€+Ü·ÊÓ·AxV¼›\ è­¨«¢æ3CÉ3ãóc ‚ö®V=¹‰xì;—†ñÏ8•>Š—ì«aô¾{ñ0I®Šì¼/­’›P²ªPc<³—`ÊdÊÕ6ªOÅèWf~%¶n÷CÅBš-æzŸ¯e2÷`áÚÕ^‹ÛÈÞk¥j{#¢‰’Îíß.mÇî­øbÀväskgŒ£) ¾¦iŽ5«e³+xµbvÿc`£ž*¶Ð RûlªÑâYAyÆ<ÕM¯© <'.¿8z¥â4ü‰ë¸¸6½¹:\,äÖÍb+%ƒÊÃ_ ³mâÃl› ÕŽú†³³ËíS71VÊe¹E/ã¡?Û_î§q! š¾aqDëïдÃ^ÐIq58)¥{uÍö¤^9’ÊŠfwþœNÛÂ.®8¸™»àÝ[cÈtŒ§mîo ž…GoÂóLS@¸ÇÿÌG`¹{mY"w#.öo8N;-ž_¦ÄŒ±³(yð×lÖ *€òÌ”ìò£ñ.CÔeÐÇ¢dÕ]6£†—G¬bj¶Ž‘h¼3áæ-›âk»EÔK ¡<ë‰2ƇNšbzfžÅ=ÝÓ<åÚWV=–„US>6öDãÁXµª¸ÓVéó ÊHùžŽ dM¢\âäÈFth¸ÊÙ8rÔ¯6íy eRºRÔ¼)ü7·¶¸ä+ücl7~0-φßE±Væº ;„Ú>{ÉŒ”?…6°Wé=ÃÔìw¾Æ!ßg¯7­9WÈŒaž“Ë+ãIUÔšÆÒ·­ñ7C~ç“R¾G¬­óñ¶h4"¥ÊŒ]£wŒO6 ó4 §N-õqyô-0Gâ^Å`ãã-'nj™ý.·ýIGì³<­d×hw˜êðœÖ£Õ°/Fç¥(†Á€Tú•Ϙz¾BbSf÷'L’Ì/²Øâ€"Z_"§sþÙA½Ç?ÅÔÃ,à¥Á=KõãbeF žš‹ J¦¸·úÂx7hùQ$FJE9q[1µsÔ`-/vù´@ÙÆ”ôHKlmìÙ¾Ò·êìÝ¥²¨°» ¢3㘥Ÿ×02ÈUríZˆÆ¯1ˆ0Û?"\ÒkådhÛOÊOäÃqÑ®ÿ»yj—ÎB/YæL¾GXÜd.­ݘÁPîIŒægçJt£§œ¡L2"€×…÷Iñ ù%=YøªÌµ ê☵T]¤Ã­Oµå½®’¸+ÿ¢CþŠÕêû!Dz L'•ù3’n2·]¥‰g!rÖ’^äËÚº•MU|!ü •€[3kO,Q†yÜÓõäQ¦qÚËie*ªŽX³@…ÐÕ‰2Hœ®MnßœÈø2`aÏ’|’÷åAž:ŠÄ€š*•S—åy´t²ŠÙ¨.ð¯PëÄ¡ÒfÙBrÖã×ftJßaÒ­ý%!ÉàT±ø›Œ²<‘<õÌŒõˆ!ÉÙÜ…UºÂa«–ãˆ%ÊÙpðùw"sËKº~§×Œ&OÞ”L©Š[x,íºú~Z«&oì|v'¾¦ØÞr7;Ýú›@B‘ðb.lœ®¼Ÿìv_£oCïV.Œè\úSº&J™‡bÒZFŒø™6É¢ƒ,瑉ó‘}¦ä’slØjkv]Ú};I¦\ð”n…"Ê©f¾Rjs’‹ ”ÙVá#QbõMúZö+Ú!6FˆsÝŒO þò÷ç$).V>gè?fÊŽÛ­<ž1êY´~ TM^ÞÙTŽÁãl¢ð|‹/iãr¦ÓÖÏ–`ÄEªØ?[®Ë»û½˜5PÊ)é%cÕpK[ûïÜ! cÞµ£båxâÖj©™{Z¸³éЖUË1"ÔíÂÒ£÷´X ›p Fúx”JäµÝ‡®"éâÜðpXÑ@í"Í"ã¢Èµ~(¤v¢¥:§Ý¬P*2ªÞ©l;bqH°'=ª©žÉßÁ‹XÝ—{ެ$nÀXiUcóå¾ñej˜ò<±®õ¾$¦ÈàC4´mt…†Ë“¥má{IA§ÃÉb-* ‹ö3ʇ>!pËŒ“çÞ¾òÜ:ξAIμÇþAX;ÞóÆêv>v‰ª:¶÷ïwèAí®§ïÐß§kÅçÛÛñsYüž¦oÑ‚´H cc—Oì-½…ÁVû~¤0h'ݤ™]°Û-RÍWõGYÜH+z•íà4Ülhàò½@ÌÆêv¿Üèž¹W ¨5'GÇ}¶Éñ÷FM)<Á(Ø( •¬-}Î.Å­=¦u¸‡:1EgóÏóãjÃã¹èîR¯íeŠ3¡‡m-™mÄH.÷‡ëæ'² WuåÇ‹ԙخ™“±á_ Š>.´Y“ uòºÆøj¹·bóê™ø,-¡Lɨ <·ÿ!Õß8‰(ƾ:ëcü,$p"_ˆàP ]§Á’&=Î=Hס̛/È8³±¿Ú¸«Yex Ú¯KLþ8«à\AÒW3U©¯ë…)ÆbŸè ´7<™ÆšÖt)OÐF£ni=C/ÞAŒ, ûÍÞg‘ÏkÐSn†.‡õÌå%!룶˜× F8TA cÌ5ô¥NÈ‹‰,fžÍ§Ä›Ò›·¡Öbw¨µZ–À>ê6J»40®“›^Ì5~=%˜qyÄ•†¸ +‡Ðÿ¨[«ñ,‹¼c$èR`j)‡a9š5V¶Ö‘3MBƒ5£btíQJ‰¨Ù ¬›#ÏŽç„0âÝɶØÕAôÅe­Ÿ’ú´ŠaÕÍi WµúÚâ¼Ï0»ÕDo˜¹Y o†7øD&E$dMöÐì \-óH{w:eL}\I?¾fóÄV Idw”ŠñG)Bq«ƒÂÅËí–Ðòû€Î`oFm€qàκ•ÓÙ`"/ïutÃ1Œ™Ýi¡rn;—K\Žgû‡ù-ØÚÙÛ;Øû\‚5Z´ö¤K>+¾DB%ôL~I[}/ ßÓÓ¹p$ª‰Ó$Æzq:]'D¨ï‰_w“ìf—t .ÁÇ¥1gá륾ž­„\"ÛŒ²Z+vxÿTÑWÛ-¡Ï,¡4WwÀ ^†8ƒ¶·ð»{P¼R?d´SãbKß[óIΨVJmœæîĹL© 2Þ-@!ØpÃGÍgâwfÒÚ;s‚.ÃqÐrM)›üBcÚÕD+~žv¨åè5}“cÖú³çÖEé¶É­ïéd–«œ—ÚŒVç½54dj«µ3žÄZÔ>…¥.ò@€›´NoºoÙÐsëþŠZM$7çªÞ„’¤ù®còi@àØHîãŠàÙn’¹\\'ÛåJp¸õ†/9þK˜ŽpW•ÙùÇj~2n »ñ]”c  ~;µ3ÀŽ{Û.ǘÉ6Á"H¹n¦’Èô”0;pË–sz ÞYŽÕoJÉqÛ/%£d¿æ²„<¿†M®4 |p"PF|E÷ 8×Üïäö 8[Þ¢`i~t‚·Öäqr}†¤ôÚ }mê$åz­A€ÐK! "=·B÷OHlŽ.Íȳœµ¶sÉ[§[.Àš$ÆvŽ»íY=@‘)h2 #.Â>~wÿ„ÑÊY½ØdËp:ðA—ïy‡˜ŒlnþмØá^ñ¾ÈE–j£öKLËvt mJ¬¯Œ²)bÿÍ9ç3ƒå¼ôÊhos/s b$›ä¥„Á ¡W¿•€ Œ€Y*$ŽÝŽlm[ËP¼ž ²ÌÉj¢GÄeŸ ØÜ÷I.*‚§i4};ÄžðÏ~‘cVB_ºx@3¿ ZwÄXí/úÎkZÓ$õ”Vóaí`9:ZiPë®|z½<ÂfmqŸ_ÅÉC‡21eÙh+4?'€SE±uq+:’ˆíâFËž¢‹ÞÖ ݹDn…ÀUÅYØYQņðÝ×ÓB¸ê=Ö·c)è Ooì/À¯ÏF,£•¯¸-T ºC ´’l€ Ei?…Pj/ÙG+ùYHGŽü,^KSg<%°;[ßBgKæRKÎZR7¦¥ÇV£‚6˜AæS±µÇ5~˘7,àE§É‰6Ï4IO†‰]b§dA¬Æ0æjls¤l‡­dTÈlë°(ˬ¼ÓäÎ~…=¦¥Û!?í ’bôPb§7ϾDP Éã£X úÚ5ŠêZ”Zv§Oñ~Ã(Û‰4KpöªtâÙ)ÊŸè×RôSÉ ý·jÇjÑÕ99Žü$ëm×q2Ýv<žÚŽÖ …ƒ.–ÿN '²È»3ˆrÖÙ„É×^> žýUDÿè‰wRa©^Q®»œvâ¬ô¡BÁë°þô”Åðšòìï&‘œ¥t>ÂÈZ“Gf-Ú¨áÔGGÒô׃_ôÆjX5Ôd°ãÃ2¦RN³Ë%ìWÁ¢ilAupHJH¸¸¼ûÄÑf ¡M¬#t€KÀ/ ȼMT“ŒîË”‚Ü¥Fåê⛤WÀ–Ü:1ß±‡NxEªCÜ_!ñ ½ˆ‘^ _qUíâu¿ÝÉmÜ‹i'¦Ö)Ì%jý*@sIä^RNwÃ…_ªþêÆ/Ûâ'KÎ1]!Ù¥ÑbÈÁû‚˜mlT Óxî'ÔØ[LÕÃ1C„ÿðg©2¢¶oˆ¡ß_Ýç:›pÎÙYð¡m©QðؓĚ—Фõ4ëçÇMàÀ[lÁ°îþRú aÇÃö”ºã¬ 'ªÙ#…mJ5%ó-°ïK°5/r©Á«;î“„ T&³¬¯<… i&àŸƒe2ÏÂâ˜2Ÿ. „ÊDa`‰Õ†èÏÞ:|ÔPëã±2Ϯʙ¤75ÇÖßå{ÎxÂ]›•ŠÌ±@ÂA~^ÇqsO/ù|wЭ!ͯ½VMÞÞEürèÞlÆž¿syø…vþØ‘ZŒ­MÀFñ²?—¶*z=‹'˜Î5Vû<âú„ó0žü¢5zB@á×U¸Ö’ ¯…dV¦y’­ÀòiËz€‚ W'Xª;Ô¶S¹T-’zöÕxÇÌÉ×] ô­˜.´KãÄ¿]hOûÑÕ7e¼Fî‰|&ý:ÑS¶]ñÃg5ù9µèE›eùçJRêSoñ¦€!=‹üYª 8“p·äYs©dƒ${ßWé­!‚oÞèÏd5+ã=ÞÊ<•½ó›”°ØÒ_Ï4O‰HÕUùŒ¥Ç¤¼ôn‡Õ½˜çZâµ[OŒ©+“Ç E‘R;«ã tlËÛ |.(Ž_ß¹ñ»4h¡“d=O„z~¼·Åž6$;¯R O¬Qœ!+a[®|ö3ž×®ZáC|$¦>'%yè-ž½²Y¾6¿Sl´ù÷÷ù¡7ª®Rv…] g0¥¥Ä׊^©ý@ùE Ó\ç¹aª]+ê6«UIž†ƒ|2üõ`W¹feU6Ä‹ Ý§ŸÏï$’á—Dßæ|À¾-EÙ`Ý. Y—\‰¢Ì!­ ¾+IÃäj’>½Ì©2Ì“$Þ‹”ûÌb¬!q7Ök=´Œ2¾øá©Èšo|ë®D Qw4¡5ëT ªG¿tdäRSÁÎ#έl€m£ƒNÿ íô‚O›¢£Fü$d VÎ_^¤žë”ÜU0‚Må„{ˆS^Õ—D©¯*È‹€ærÄšÖlƒSæqèÄ™‡›ÖÂ,Úß/ævmX>§?"H„3Ð%ÆS4…ˆÝúµmIi*ebU¿5„ÿÎ^ë´7(M‚ÓÜU‡Î1,þ¶×ËÑ!¥~ÀŸßN ·¹ÑÅÁÛHè!ô@:JuÒ&ÅðóØb¨ú~ïa<"oݸ¯ÁÒ£–ÕˆK’áQÝ“Ïc²ý›@/´Å)“›:´QúREþí Å+Ód†PÞ¦ƒkß#bcþ¦«wÔìݨ Öhøùš]?œ¹w›Á~ôõofRLG©fp9g û6œ"Qou6¨?µ$ML›ß\˜¥\h…ô×Gê¼+y=ƒ‚äóñ*‹’Ö¡ÏÖrãã‰Ù|ÓgÕ¸Û!½§ã­ w@e£NûïìBë/ýue-wÕÚ_z1,ô„ÔŠ “"::™è^”~F›ûÂW†ÓÈ•ŽžÄ.¥µí#kœÖHBP§¡ôQx>Ê•ÁcBõ^É])ƒ½–¤wã}ž”õ»Â"Ç8­€*‡ÉªÑýæ{¤õܪ˜)2êoÖ‹ïÿ îºò ýËUÑÊÃ!Î[£‡ù¡ùýdL‰«ÉDçÃ30Q¢ÙÊ èqã¨Ðn2=ð,"Âí}Gâ7–0¡pgÑñmïŽ¯á ƒÇ8ÃÀéþ¤ðÛYÍ”µbN$-V‚wEDœyc” Ôí¶š«y$ã?¾zÁMo‰åз㙸™PÆãA!øKo=†v )“ûÞo¯ØÂò[EÈ…“•“AnðµàÂæ¿µ%ðdÑ/sxÞDÀO0Ïl¦uI NZûIiºý‚AöT@¶7-œE¥ï{æë˜°¢$0‡¾›Ðyò%‹«Ée•ú)¨él&ŸWì羓G Æ¿+z’)¯'ÁÝí ï܇ÿ Ó®jfïjmêò"K8„›ˆêÃ^Û0ä2¼ ™OÖ+–Oã©°•¢¸‘®z¹f–k‘1†Œ@~ðÊ`úFuÊvíßÑÇlŽx8¸‘„´¢’<&…t tÿ$?nƒ—!²éČ͵ÄgÍ<—PQºç>ZÖ§û•5œ²E£ï2LГíó,ŽªUµé³’OŽ%.?šÊéò²¡¬øÍLÂÇvW;¢Ê¥˜7Ÿ0³N¥;Ì ÷bíL~6^‘VçyYÏár)?/µ–™ÒÍ·’@B˜q€nQÜæþ0,%Ë:†7õ“ ¶©á)Òï›1 Ðè$n_b9âÇ ñt×n#9ÒˆCˆ%í) ú0‰ñØ0{®¬W"öÞ÷Mt”)bĘ;u©VÕåÙvÁ@”õÍàí'þ‡ò:ªÀ»sG>³œhB§ÉoöþÛP°`àþ—Š@$¡¸\åýòšú)+ðÐaðxÞ ähÑ dÉ ]›J’é5+W9ø)‡Aœi²‰¢ÐfƒxEÐOßœ[¡ä€¶GÇé]z5,4y‘§ë ßÉö<÷ÂÛR %tQ6 $¢L)ÛlØÕA¸p{Ssoµ¯_ÆAß5ùøíõôÄœBÓ†Œ¶ûÔ’ô£wØí©ùÒȺüpc4âÑh@ê*w ñšŒ<{¸/ßt[yÒ5‰Òç·v˜8vïÑ0éžËG&Ï/ä ?‡Š=ãVŠ:~üá¿€îoÍK8\:C¢<ÊÁ)eýØ‹»Õa×4°«#fªõÜŒÒÝ^1…š Æ!òv.TÙnY¦®c\põ+e:Ä’E¶2ˆGdr`X¼BQ­Ò…n+rÀ˜KÝS{<Ãcùò\o=w„.ê÷¯ç¼Ï=×2¥PwO‰äÅïÈCñ„ÕD×·úòl_¡%^»Bes…ê›rxŒšô•º²’ÚúL×wøÝ_ƒªÐ Õü*½ëÛê§\Ð-‡ ù@¡4ÝIk‡ðqÖ‡Ú©M˜ÅÄ™1}3Ý'ßpXnÒ«g+c:+WÎïjfÏË23³·kpp]w䛊൯®Ê¯CãËÕÌšk s²k ÄpFTxëÍtgf×§Æ?ø82¡½§}w-[d8 ŸùϹŸd9«Zo„£âÍW€|€&*+¤¼xvî¹’%Ên*L†¨¶­ÜHßaÑ÷¬\?Lª¦*õÀ‘ÙÛ/WwVp÷ ‚ò¦h±•Ùއs4aï~:6]ÖÖÛ@ƒì‰ò‚-Ãwk3å{žÅ6Tl2J;yÆø÷åÚ CÍ,;’u¼ÎõžÍ›AûÈ,ø‰°¸[WE}Ê"ÝÖdy=kUI¤u`-MY'‚ˆ¼@t—(œ?Òdžö®P\õwNþ$¿*ŠÔ¤ÚáqØÍœöß+‘Á»Šƒ@ͲG䂹ôy«ä2ÔóÍ Û Cò<ÂÉèéy´ ¹½à|… .D5KáÝ82äÀ†€Å—ß! e/µàŒ}e¾bàªìÚ,‡0ÌGG¡ü…Df0…V‘Pï)qÉ¥8„椇îÓwä)'ºœp·¶î?βèkše@•ñÿr`²¸UÚ°~šQ$óò®>…žò°ôìªxY:[ÎQ)DcòØ÷æÊúbºŠT©ii~µ;™b±VÉ~b»jGrE÷R3Ò¸o/GA— Ïl"f§`©(P3¸6T ŠÉ÷cZIgçשtºY‡$r¸aÇ ûﻑsŠÊì#ÿjž®I‚V˜{Í“Þø˜ ?±sTybaF-á!í/<~‹ë0]00)à±µ¡NÍ’5AFýš‚zW?LÔ!6Áį…WÀ˨ÄñçXˆV*:×|ºÙ[Í>à=f{Ѐ¸s!<9ê"0ý%üÊçÛϱ˜[çfå}áô½€3 ǃ¿÷•ûÕ½ ýzXÞ°`ã»·´!Óa[ô4sëÕ-Ô„]ô“oŽ'€=£éhºÐ L‹õ}+.r7Hû‚î½Ùc³~Ä|ñ!\Çt…}9³p¢ŽsÂ5¨õ}Yß iˆw¥3Oºøœ³PTÎ.ÇÛòÞ‹£ÐWc=i0Cûvû¦Ó2õœy1þ(zYÎOô/d¢¢îeJ£Š"¯eíªüìAn–Ð ö¤˜^=³|…ÁÜû»qnÊ èÝ´è›è¯p?zH× o¢oÈ/K‚ÉÙ7G˜`"½ç\Îïx¸N™Bp¶ }çÛñËÄù9¿@# ©|wñ2_Û`}æŽÕמÊ.óÀ8~M‹^ù]Èrì¤ÉèE?<a*$ ÊWZÁÕ _œ<¬ó´»È]¢éÙö“L¦B0Ôµ“§£è bçîLIͼ’Oh™½T쮟¼à.Ñ¢eº ‚† ŽB'³ñ Í³]\ætäP|Žê:‹»Irž½Ÿ}«lz•¿+ÔZØq{óƒ V‘›ä?x ÃH^ß\ ËaZûPùX®žˆ±2Z¦®Ã bpî4»GË+yû»óšèõÍcfíY`ý+U*毓V…£ùv¶¼äet‹×±ÉX®=ëôU©^è`qMæù9ºNÀIy¸i…!°Ú !4ÏW^ØÙ]oŽ—oМØ{Lõúj™Ê⡯m˾TäXÛŒ’Ö_BÆ„9)ZÙ{Dµ¹;,tŽ8·ôôÒçð=leÞµÞØ éw÷ô8>˜µS«Ê(àºìÌÈ,§cm¢2<µÚ‘c= ˜ÚÒôÍ|ÞÇF5bm'£ßzÂt>VƈM› à [óz®ÈË£ä÷k<­$õjÐAŸø5zõ<Öv¼¼ {ÿ£E–ªŒÓV¢÷ú(ξ©Ô¡.jšÓŠüÒ‚GßS~f¸O$U¤²â¯)ßÞo©2e-;Ãg°ò%¼¨QD™§ˆ¤ t€wÆq; a£¸$ò\˜-e¸\_L˜p¤Ð…Ŭa+Ó£±¿V‹€<]úŠ[4ðv¬}²ÏÞ¡¢ ÏcÝ>,ql$ [Má.¯Ùz1‘l²û’36êTûé¶WµÛVm1ÝÍ#å†õÜt‹ “¥³õè‹Ø}úÛ,AӀܨ\Î' O¶rÙÆ¯p+€Üÿ¦Dª–œVº® ]g{¨¥UdA²~EûÍ®b«)À­CÐCÎø.üVš¥4ìjéDƒ‚­Πƒ}{æÞ*mßáü‹1¯ÁÜö ÅLøÕÒ:d+7ú¬p^vê&Iu¿I}$ÁG¦uÖSLÄÆ^¥÷»LfCÇå‰%Òiÿû.õ²;17û‡`îÞ¸ô[¿Ç Ñ0Œˆ:]Ë1^7¨Ü»¾†Ô•^_ÀqóìöuÏÒ¥kCÿ÷Í áuŠWÚ´Qð—˽•Êú/MÙ–+^/OÊ©[$bÓt3¥¶Í—,.¬¨*'’5<,dß`¢—+"Z.°×7º`No.r%ã-Žæd~þjÇ%aHj¹¥Ï¦+Çã:Âx–€ÁåUÖp¦$• ÎÇYyßbRÖOyƒ%4nTÏŸ~?ö9甜³Cý¾”I…¹d…V²cÃû†õÍÊh¦›®NDõ´~S÷,n6cÈ ¥jvc©Ôq,9ìƒ6IÑUÇ9ÇÌ,¡áÛ GØ¡×ûçpA`*áÏ$sâÀ+Èh-{mj—w4¹ÖÖÉZs ÝœD=‰lšp#“^–jñ]…f¢U’Ú£—Ã_?ö©éå-ŒÏ‚#TŽÝ²ZNî˜87ói´ÎÈYÝ>4^ʃÏ×<Ý vx÷Šç¨¢ˆÉŸ Ï6Z:HYž÷ÞØS4ÚË“ïa·ÿpÍy{;Ñûè˜?À;W¼2 ò’‚ó°ÛGp÷½½ð›Ôa“¿H2ôEò3_A( óJ.?l׸¸‡Ÿ/aô5ZIÂ?½j×z°N擃”šZQÌB`âÜTÇIÙ:5K=K·=ºÈìûT‰DÆŠÛ ­ã|3õùªo†FN‘ ÜéãFWâ¾oÂÙá-Šy8S:çû„íànZ¶´ÂyΪ8;œíü<@ò »xR¦¸Ú×™õ#V3«ŒÙxv»hÑ+°­K‡yA-SvdÒúÔGËõû#|šU»ì«ã%\ÇgJuƒH:œú;ÃWŒËðFbqº~šèö"Pµ{Í”_—jvd‘ѽ |60.uV*µc©0ü¯è/£OR Š8»ä¹ä6™=j_E,«M9ÛiQT¬)‰1ÝÌ£ÌòoÈ`ì½Ö™e¡®Y9z0¥ßŸ¬^ªùôŠ:µØ-.â–àl={+Ô¾{¶ŽO¨]Ÿ³ExÇ£“;F(N~%sÍâß$¤ü ?Õ9/uÈG¸{TAt¾Ð‡µÈ\Ǹkõ>K<­<~Bv±f±ù¸ÚÅX˜Úñ†E¤ü0ÔUŸJÇ«Ÿâø¹Æ’ôµz‰6SͲ‰Hf»Za”‹¤|‰Qî¤DúÃ>šÝ•5¢¼9x÷}eDBá%8¨! ^ïÆs,“btòíòÇÃ}#2Ïè{Èþ’œ”ð*ÕñØ*¹ç˜£@ûz$uAAŽ†Û¾`FdÒÄÍí´Áê±(EÙaqn‰84ßAhSö±3*öøä|e"¦ºËŒ-A×G)Wv/¢z[;Š1!vNhSg(aý;F£È:½{ nÔl ­çD˜ÖcÐN e¦×’˜b¡»˜Vú‰³Òñ1øY¦4‰t½ìŒßüfχüb}ü«Š® §;d»L¦ýs÷5"‰×Í™Ç_ŠÁKVï„®žÈÜÒ*[p”eºœË „€`P¹—ÔÎ>¬¯1Vt¦tl‹£ÿ~®.j<’ÇÁ¨0µ §ýØ,Bî:¸ß¥Ö æ./óø,ÔC‚œ”pžõmg«Þzá¸p%‚Þ½\n:UÁ|ªEW[OÖèEó…=u–jŽ¡/J (™oíHBß±3Z9Rœ)ì·óáÙi'n éz}m­AüKãG:vU¸xÉ7ü ºß_éõEë/ÂÔEã¦äõKìéŸ~³M>[m#ÙN$ŒÅ}ÔºV¨ûbG¸8™úŠÌdf;n7µ¶r *µ}Š—GS8飗×ì£7ù‡—¦)YžÄÖNÂCUó-›éñ$9&a$ã|×'‡0ùÖ+’k‡¤Èô%%È÷G2¦qÒ¯«'Ž\6•dŒÅ %= )(;R7Kí²Ó¯“!ëßCìÉ ?dƒòƒw<}¶ èÄ‹À³¦‡Ëù ~ôY;]­žI®ÕõÕBC@êÂ`- òÏœûó°¸Á \%vô@ðžû€][Uù2ƒD–|^íOHv‘(aøâM¸ºÒ›5ˆ ýÒ#íû&…KH¤•ØÑ!x7ÆžÓŸËl3RhÌãìÚ”â'Z-Êo:22GQFߟövƒ! fIÚ¶B“êFs¾åNŽ‹’¼ žÙÇ]gWžÒFñ•s¬à~²îëÍ.ÇVýñH˜Ä}Íž¶êœ |Â,Ï7Ü€»ó˜ áýçcØßNG¿¹ ˜yõ-ÏŸº‹D!«X7ü¾ý<ž>=bðý´Ò ˆ9¤®© ª¿¼ã‘SÌ6•+[eò1gpªøt: }¼:»^$°g†´×ü5³a Õè˱¾\þ¶»–‘õÉÂúÛ™ýÚe­Šsµiý³ÌÃmmŸLÄñˇjî—W5në"ÇkzŸyÚ#Å£âæ–4SScb©9¢²»´0‚ ñ5¦¥#s?Q}®*4zwéºôQP+?Ÿ/µ”zŤ(à°‰t®Ø9¯²ºhP1ÀÒ£B|·xÉñ{¥a¥ÔEé[I ´^Þ?ëv§±[b9Iv—!Að¿®ùðoH!T)rˆ˜ÍûSˆØnz Ç͒ĄȾÏýl¯bÃ6ÌüÞ…OÈ˯VÚ–”¹?­ñs'â¸;Q§-yÃð”Æ„µàó•†éêëWÖ¸dsAî -$jÇà•Â$ÏKKðž•_é·¼±ÂÒc>Lͳ'^Iê;ãy¶—Ôƒøª_ÂjÄü&•ú6%Ní¸€0Ö+½Z¥=p¢ò²¯:ÙÍt`™£é»mÐ!)K,Dˆ8Ú$ßM¨Pó€/fu¨Œœ$ß&ÈA£ì§wzÒòaÊ °Ú–÷Ç7T,|!„LhŠ!{yeÛGgŸ4ã q{»ÇYÙ1Ë¡­ªQ2gûxèx~®#sx"ÕÅÀ|“Îòw so˜÷»PÇÿÄUöîǺÒIÙÍb¬£âÒx„K­/°wÞ¹+t2P¶‡ÑßV½ïM~ìvAûáæP<~Up[ƒ»-U™£ýÀfßlØ_Ü™Js?½c;­äE(é|dÖ?ª• ãù$ÕHŽçÊþ^Î(âY`ðÅ÷¨ÍÇ6,f7ü-32hy>7·šÙ¥qµ=½~y7KpllŠG9ÉÔ.',€­€Å ›ŒHÝ=å¶í½t€Á¬gBVε%)œX@_Žsé Ä+üv“;z=(Iý&bZ§è§¤›2qÒwÍœõ÷I*'oE”IÄ«|ïy—ìYï-ŒÏICpªý,ÓÙm?´Æüï·»Ëu?÷ÄÅ_y÷1ÎJ?´d+A­ÛL8®®"˜,óžÖ;îAØð,èNÏ^Æ`‡³¹>¯OüÏq¾P…1ƒSµGlt ±„èÐ'+¾òQY¥£m îÐEÓ}ñÎ’±üŽã)ú;9ÿðù¨<ß~‡ ÆCÆ£¬Yݲ Ù,}ÜԻ׎"ÄßyÂ5--ÖF¬·å¨ë!fÀÏûlÂ0¯Ö•ëI­ió´Ëm:ÍJH¨–®A#ï°Î¥$‹éœXLÑÅŠêî,ttŸ1öz6ýwmX/(¨¤°}– Õññ%m„y>ðC6>ÛshYMa ‘¸è:jô}äCr‘ùD9?[^…% õ€@d0ï‘$ÙmCËÈrT< ¬u%ôJå(ÝØÇî Ï¡5Ï ù‘¥ïu›_9$Ûa£ÂuØÇ¢U¾¬ƒ[šO¦n¾S'Á ù–VÇÁ<–}¡-}ª ó¼?L|_õ63¸TlA¸ÁGôÞäVWzòí _ÍɈS­‹Þßî!Çý²ý¼Z|[“‡$´á™+éc+t+®8¥õ¾‚Œ©Ѷ0פ ’vµ¸ä \ïÖƒsèqØ\ô܇¦Õ­¯ÉHÙ%mÊ*Cª7*»ýºTD²Ú ÌŸ+iƒƒÌA„ºÝ‹GìAb 2Ë"ˆSO÷’œyð‹koÃTìÚ'9öãk2H/KEŸê¶_E¼ª ‰ég;Ð,úðylOÀ‘ݯé–VÁn<%~zÞ0›†Ÿq{ðc^Ňó+û]ÄêIWØ‘D™Ím öjÌéH[ÊsZ¢Ãð8%Ý þò‚éÈR+Ní©!Ÿ±Z24Ò±ŒÊ7 Mc/§&²ƒXZîo83‘O)éÆo¨Ä‘®Õ’ú<=ƒïêxJ݉ù°ÂÕ¹Îh@$Ù3!øO¹¹Jw§)a¬ PYÓ?Ã̧(Žà÷Ê’_ŸÛ^ ÒZ$•øethå z°Ìl« úÜ\pûÂ~êâÜœÄaZöœAo!˜Íþ.ÙÒ\¼ß‘í¥ñU«Ÿžn8J‡z5™3ùá·eÙÆ¥lDnô-áMÝBƒÞ<z?ä—Bœ¬4©xîCÌÐ.]ll¾‘vRC„ BZt?´Ù#J®T7B×HÇÒ`gÅB#rŠd’gmîWy欕ÿT åÏCþð™oÇø‰9;<ÇÙ\ë‘e?ð³)¥Eè݈‡µ0 G±(ÌgÚ DPóMM#ß¹ŸÖ¬Q­[+ÙRÛ4"à!Õ]èA²~àd\¯ œ£ã:“7ÊHÂf+L¹<»ãféh:¡A·B”ÐqG6\2*à¸Ot‚8ߦÙsq£WPORt7†’ïØŒŸ±"'ZÂ)_¾ÀâÀ‘DãÙÃðýî´·TßÔò—‹(Wø 4¼YP-V|çd‹$Ï ~cÙú»Zf詉g`;ëÛZñFã&0K•Í žÞYÞvëz:‰v©°óŠX•~Q2KM›±`èOtJO±ƒé6.H\œ®á´ˆ¿›¯â5OÚú›åg•Œöߪ1”(B ɦ‚Ë®Tà}]™.?Eay~Á%û–õ~!ú0%Ñ¥q6²B¯;€ã¿óãX«TeuÀÂ15˜Xêõ¡‚NÚ*«yû¤ó(¿Ì¼Q²~úaûƽ/ÿ}™4j@e5MA¢Ñ+„9×l`«ÌuzyèrNâsOEe²¾†̆¤+h‹;™£ŸRŒþÿáæÿàÿY›8:ÛÙ8ZÁüã"gÔendstream endobj 81 0 obj << /Type /Font /Subtype /Type1 /Encoding 346 0 R /FirstChar 1 /LastChar 122 /Widths 347 0 R /BaseFont /VZNVBU+CMR12 /FontDescriptor 79 0 R >> endobj 79 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VZNVBU+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/Delta/ff/fi/fl/ffi/ring/quotedblright/numbersign/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 80 0 R >> endobj 347 0 obj [816 0 0 0 0 0 0 0 0 0 571 544 544 816 0 0 0 0 0 0 0 0 734 0 0 0 0 0 0 0 0 0 0 490 816 0 0 0 272 381 381 490 762 272 326 272 490 490 490 490 490 490 490 490 490 490 490 272 272 0 762 0 462 0 734 693 707 748 666 639 768 734 353 503 761 612 897 734 762 666 0 721 544 707 734 734 1006 0 734 0 272 490 272 0 0 0 490 544 435 544 435 299 490 544 272 299 517 272 816 544 490 544 517 381 386 381 544 517 707 517 517 435 ] endobj 346 0 obj << /Type /Encoding /Differences [ 0 /.notdef 1/Delta 2/.notdef 11/ff/fi/fl/ffi 15/.notdef 23/ring 24/.notdef 34/quotedblright/numbersign 36/.notdef 39/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 63/question 64/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W 88/.notdef 89/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 77 0 obj << /Length1 911 /Length2 2997 /Length3 532 /Length 3627 /Filter /FlateDecode >> stream xÚí’i<”}ÛÇ©l# ‘¥rÊ®˜ûY²uË^1Ę9aÌ0Æ2öDI¡¬!Qʾs!²ïKDÈ–¦ÅÉÎ3uÝ×uõt¿|žWÏç9Ï7ç÷8~ÿßÿ÷9ŽSXÀØLRM°ux’$\ ® hšëÃ¥¸ ",¬E‘$,¯$Ê\I hx`¸" W†É+ËÉ@„-‚+™ˆÅ8’1-ñ"@Ã$bQH<`ˆ$9‚.T˜PXD–4p8ÀôÇ wÀt‰ž Z ‡h,Š؃,ý‘Hï@þ,£=\ÿjy‚Dwj(@ŒR FDð82€ Ð+ê] 5ÉÿF¨ßÍu@¬è5Ϭ²…²9asÇ/^·¢ä¦xÊ5üÚ|Í ¡Ãlm,'ÄŸ&™1,£>[ß8ÔžÚÚÈê’r÷ÃÿœkŹåQÁõIÏZºÂ}„+<ãY ?’ýnho-À9ðõÔó#´à|<Ä&µú_qàUÊ䃮í/º„tÂÈ‹ö“ÖIëû#<ïûÇY•î¥ÊZAèÆ-‹e· ÇÆ5û­›^›¯c(¡¨9Tlù¿÷›Zª°ò®‰­“K¡9ç4Þâ#³?°|ˆ×5´xæ¥Ì„”uãæË -É`V±PÅ1l·«ítÀÌ ½>*ÚíåŸ_ÖG‘{ß5-¸câI~Y±ŒÅ3ñ¦˜˜0Ï ]y5ê²Ø­ôÖèó2³Ô䫎Š;½²¼Òy¾$ zai-0_Ç’)4À€ìRð°}y?…SÇÒqÿâ­ J ®ùÒkB÷ Ée®ÿ¡í7¥Ü¦‚Å™C^©Jm 1ÜFçUˆüo \"éU¼xÛdl¶™ßªà鹌ÍÕáÅí7ÂëÇ*µ"H`d<†Ó¹’qxåίC$©âIðzýÕ¯É]#Ì©tåÑ“{è1ÃÍ•eÀ+oˆw_\´|“dsþãþÌ™%A[æGMãoOæ?óÓ%Ì#OªZ‘ämáéã«4&ë×{4›“íFB›bªÌŽù¶,n cçж*^±{¶lÈtY,J4‰tÎØ¢é+™9 k·d¤­ë%â,ß)3—SêbÇFóFÊÃÖƒ"Èqš-æ|In÷VfÓ•†ì‡bì•×my·$¹Õá<µÂë<›ÃYeü;¡1BËÇÜ–‹_­Cræê¼N-Þêiå š›lá¯ÞXzÕ[ z9Ëk{éj„gë2Ùº‰Û猉åÇäÜsÈX†Ñ‘OŽŒæ_>S¨¹Öà.#¹dc¨‡ç¼,ír}zV­Mu+´Ñ,07¸é¿š ¾dË(è{À¸´§¦ncÝ’Ÿe&ä}5î¼*á4þöêþ:ç´Oõ͉½"ŽÔi :z¿E-uÓƒóLEòç&O=·1?]qÓ¯­£Å¿Ô—ÅX3<Øá;À¸“Î<®èöI):~:¥nyñ3M)}XC§Þ·ï5ÜúˆkÁþüCOšq^®Ù­ ÍÇý+R ºiIçeÆ—nçÊOQȈAY²,2§J/Ù¾9ô]J¸DÅÓ|¶P UØÏ¯S«Wwcµ¯cn®ÛJ»m·u`:KG¯_Tôî, ÚÉ>Í© ¢YÇs× !/Z¥Û¼ã\ýˆÖ5©ª;DÇ7ãâ°ïƒòÙÌɃR¾Íwå„çÍnCJßÅ_%¥üP®„AF@õ»Ø´­™Ô›m©(I|a©;ó¢ÝIërú;<–Æ"qØ•ëÑPßý\J˜¡žVXJ‹½•+QãÁ×W´1^ñ~ÿ(„çp €ù8cÈ•/2üÄ1ÚI]É~Ö¼sÊqšøøÚ­š/z)÷·¾u™-& À+û'w÷+¥›¦ãkf˜Êtl|F¾ÉŽÂ¨¹†´}skO–~¡@ñɯ@mNBhEš+¦Ë-¬QÍÛl¡Òmi¸Fjð²,G¿_Œƒ¢Ì' Ö7a«>+¡à«°DH•{7ßÔ“ÁùÛÍ,ݹú>CÕ Ïâ:îpõñßϺŠnGÄ_Z°ÈÆS>•™}XÚ Ê“Õ”÷ÉÍÖóY”.m59]—Ì0Ÿî¼íÎ+aúÊ"1'öúzòt~Ë–P;é²1Q"C]xK>ìb_h÷C»†‡Lñ°Å ¨ãéì«ÎZ{ws¸“d+\¬‚Nõº«O(Ϥn·£ìd9³É±kÄÈÜØÈOé,UÏ Æ™QDû#<,aЍa‡(i»˜íÚ¸3úŒÿ¹ÙqSWZc„ødY oñ®yPÞÌ@ýBpo„‘S‚T›ÕW“¨ºLÚ–3ìþú-Ì õ!I¼³mÏB6±×t/ ³ËION—.Ç1 @ß-H¼wŠû\(a“SðUEó‹ÄDú’ò®¬µ¨ŒæZ‹áˆ¸•'[­ªGkz냠¡!_Þ_‚ýÈÿüŸ0@á@$‘DpA!ÿ6“jyendstream endobj 78 0 obj << /Type /Font /Subtype /Type1 /Encoding 348 0 R /FirstChar 46 /LastChar 117 /Widths 349 0 R /BaseFont /NIRZMZ+CMTI12 /FontDescriptor 76 0 R >> endobj 76 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /NIRZMZ+CMTI12 /ItalicAngle -14.04 /StemV 63 /XHeight 431 /FontBBox [-36 -251 1103 750] /Flags 4 /CharSet (/period/C/M/a/e/g/h/l/n/r/t/u) /FontFile 77 0 R >> endobj 349 0 obj [300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 700 0 0 0 0 0 0 0 0 0 877 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 450 0 450 500 0 0 0 250 0 550 0 0 0 413 0 325 525 ] endobj 348 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period 47/.notdef 67/C 68/.notdef 77/M 78/.notdef 97/a 98/.notdef 101/e 102/.notdef 103/g/h 105/.notdef 108/l 109/.notdef 110/n 111/.notdef 114/r 115/.notdef 116/t/u 118/.notdef] >> endobj 74 0 obj << /Length1 885 /Length2 2823 /Length3 532 /Length 3443 /Filter /FlateDecode >> stream xÚí’y<”kÿÇe‰Y²dË-K†˜a,¥ì#˱YÓÌÃl!BY‹a˜id‰éX²%¤cì’ˆC–¥Nh¥ž©óœÓyzþüýþú½~÷ýÏýþ^Ÿës}îï÷RV°wÒ0FÏ¡-ˆŠLf˜Úš:™Â L RV6%£}(X"Á̇‚6`úú0À8ÀôÜ@[×@[¤ ˜I¡d,Æ¨š‚¿‰à€1MÆ"}€­Åg{ }p€‰ESB5cpü¶#pD¢ÉÁh”&PX$8‡Æ` È·HV_"ÿ³Œ "ýµŒ&²Cªì`€E$àBÚ±#²ÏB³“üo„úÙÜ"‡³óÁ³ÿ³Mÿ%ðÁcq¡ÿ–ñ¤ š ØQh2ág© úÏt¶h6ÿóªÅ‡E084ý³„ ´À† QöX ÒðõÁ¢¿×ÑÔÏ!Øûbiaîjì¢þ×L¿¯Úû` çPÒß¾ßäßöƒÙ"cCw¨& c Ùï__ž?fN@QXÐÒÑ|ÈdŸPûö°IƒX  CØ‘!š"…½`w%ð%’AßFª«@Ì¿•¾œM¿üMzPbÿƒ`ÄáiÇt€8ýMìYC|þ&”mŠÿìF@ÿ@]Bù²÷}Çÿnª‰ 1$ ¦ hhé° ‡phÄèAd2š@ù~cÙ“ù‹}±ì9¢Ñ!h$h|”ˆ4Œñ¿UÉüN)8P6»8æÉ£«ÕÙ†š+¿Š“ëúœÑÞŠ\ñÇ2…3׬… |uf¤jÃ;œ WŸ‰tŠ9N¼¯‘+^œôö!|^Ââ¸ü<©Nýõ„âÖtð#žr›e<_j-‘»dltgãR@dïÌ8Jq!äIo°É@Ÿ^š¾ÑóiÕ’x‡8^Ø)鑳µï˸TËÔ`À¤`¶~Ý–k$ûØö(8Ä÷E/ºÌy~co_¥¾@ácÖmsUî_TaóqÔôOí£‹˜¶æWqO. ƒÄ¹¼2æ8Ϋ'Sý,’ôvñ/U²x‰²·°…åª^îâÉ÷èiD9ŠœË8KN¹ì¨Îþ¼Ããš§f  M*× çƒ”{’™¥Ö! ·WÚ$צÁ׆îÚWÔ?í9M_µHFÜTÓ–//Ù¿åê­=” 1) i51í]qjjgšïxìùõmyBÝõhדëéö¤4áSÌ·xöpÒ âù–Œ »FÝ-Š '^ö(ÕGöþÊW¦—¿ëó›yæà~©¨b©,ò~<àÙÙmß#ñŒ¤±?ùt¿Ø8$ø)¿#óyªðœ’Þ`ÃÆËþ0oáÓÑîö5pæû³ø®s­;³¼_µ]a™N›=mûº»Ð),—ÉÊž :jú3ê)c.Û®'˜TÕ:µ´“XL]¾©û6ïè¸òiüHÜ–ñí YVã+M\„—°Ä»Ô‹qò2Çý?.aí%Erôäûެh ÝܹÑ[ñt8êÚ æ2X=¯ <ÔrO€}F‡cy ýu]²—c¹û=§)â©Ç*‰4 îó®Þ‘áÝt°ÖZÉyá ’VÊ\ f.zµaðYév°¢¸µÃ¹í¾uÄbšòÐù‡•ƒwñO"É£2c ¸;Âe;¢P 6£wì{Ü× Y†¸I®£KÜmã„)¸Gl’G*¸é¤ØV~v†t."@¼R®{ ÛxDG;ècµ`éPFLºWÅT·µk§;uQË)ý„D¡`¬8|,–§·ä*jyLs=@ˆÖ §Iƒ9zŠˆÂôdë…‡o<ùøß‘}`¹ÕQGëup»-j2‚pðn¿/_¼}˜ {k£¿ ÅãP'ø¾Óp¢DšY#8©âÉ”iüt»Á©³‘Aó¦ZˆKé€ .2ûÒ†‡qqB'3­]ÎP(HÚ½id·Ù÷‡•  ”DlâÎä¡»j:R÷·3´·‹ÉwpíC&¢e²K©ÉFù[vצó ãu‰ÉÏ—ÂÈÒ¸Šçjz+¶-ÃZ®%-/v4Ýö‚Ûb8$Ë÷”®"B†,Úr¬­©— Xm.6mV&cvZ9Zã ׇÌM¤ž€í°HͬIÕ,¾ÇVÉÃÅŒhÃãµáž;uÎb  Ê3â%&ŸÎš[ŒÌ˜\7ôºôm„Û)Íÿ¹og½òdqÕØÂ‹]GN‹çжý ä¼Ö.3Í-z'P8Ê“+ä©MêœÐížÔ–þ” äNýu1Û×Îâêy˜Od Ðz»žÇs:Aìöå"L™¾,r«ÒÂBr.~Xï™[F™Û«e°C´½¥DÞÖг½ÖZtô}KúÙ¸rU§´9n»åz¾É»»UÁ =]ÊAo4×xéÈH줒¢C»^iØÆõÖãÖ®´:ŸÐÌ2%yÉ;&+ÿÚ]kyó]ðÓˆ/ÕŰ3JÖ$úƒå>ˆ*Vsaà%Çß(³{Ze¡gò!);<;¸™ØK‰ ŽqÑM9ýR†’¦5_ètêT©,çbQ*Ì=³ë4¹£Úòˆ’§¨>ˆ±îî²”àéÝ•)Íc~rªlI¡‡¯3¦,ë]…‹²ãyÆ^WWOåO6]©«7+Î_,(`†Oêá]:ãe—u·20uçÆ¹ÆÛ;\ÍŠq|%'/"1wA.xýÈ“ Þþ6ãaQ·÷Fc_99”¦™Ê^×N«$ÅN•üÎ/¨­3;¬¦B-åÁCšˆ¹Ô)}>uêgEmq*vIîëÝÞ\Ùg€eåÞî@ÈÂÀË^ܨð¢ Iá‚PÙ—UŠÑu9a q…YTæ\sf‚Â=¶:A©t<¤¥³PZ•îÀßì Š˜žÍ|oÕXÖyë>*Ó™ÏM'fÔ»õËÁy fVUò?Ä„ÞÒLhÅ=»f1k“oµQk®ægG¶¾ò©"W]Àg5ԇ˵ôžUýt#‰t×CŠÒ¤Iâ·™)ð;N¥ »£Õ˜pÜÜ4÷»Õù{Y¼ É©8ÐkÑ– gƒšŽû2ò+ %€¼ž¹à-ÖFÒ† ÝÞ©VRøÔ/ˆ"…‹õóg®'äN ʪjQ¥ÇâG‰×zŒåZ.Û¸”¶k[­Ýõéc6ê1É…jk·b@зM•⣦ö5}¿Õªë”’^ˆt ù ïF›‹—”Ë:ëQqÀ?wý­øÞK,5õü'soªé¯®VTc:‡ÛRC­÷q¹W™tFW©Ð‰ k‰óŽ~gáòçÜCr¿Ô*à_&$7©0FžÌHVÞšr£ið]åëy±#M)lA•A»¾v*vj”²ÙP"[u´¿‹ ³æàª^õèrùMܼ¸ÍÒ@s¹YU’PMÚÒÔëB.@È*ÓÔ8DëF´{hDƒË¨k÷ ¹çò¥µé»”2ù­Å˜VÝvþUþyµ¯7ëw¿¥G§»Ú 4d€ór…:XëË'oÈ §²)u_­yiýqI}QV¼——Ûøê@ÓlýJ[á&ðÊú„kܾ¿H¼ÒÇw¯CÕOJ©ôФ…VwC‹ˆ6•Ïy“à$K$ÌÑNgåY–ϵRÇ^«?œ‡…šl¶ÇÚ?#•œz‹o¼N¬9+Õüî™~&ý¸?˜ ¬¿Ù­?s¸×'dÐ~³&À=Í1ÈW0»òþñ•5µÙc¨ƒG KÌJ$N=V~bT”óFjF_þdV‚D‚²¤˜Ò$Ó¶QÄðNM»ï„wÞǯÒÔ•÷,j¡Ë†,xܳ»ÝféàóòÊ 10-Zï]â“óh\”Âf¿3ˆ&Ç WBgKäg§[«,ê|Ðì~3ÅÕ\º/ºÑ†^k‘7O6ðÕ<_`'45ÖŸ³G2qK­ûnââ‘SïøÂ»®Ý| ¨©+…fC#7²}fähnª«^’d†?2Âo/~íGÜÕ X ¢Å|ø ¸÷-‹ÿ«ºtñº#Ý­GCúÀ}Ù§+ï·žqÐ_¸ñ3†¦Ž/Z¿’>T]9d&>tåðÇöÝIòÔl3.{±±Úõ7)Ì]õo³e©üª>¢õžÍóbíG=¿»¦2æ[ :LöVÀ bÜV£û1Dèÿðý¿Áÿ $íC¦ñ>äпmÍéNendstream endobj 75 0 obj << /Type /Font /Subtype /Type1 /Encoding 350 0 R /FirstChar 69 /LastChar 117 /Widths 351 0 R /BaseFont /GFEXAW+CMCSC10 /FontDescriptor 73 0 R >> endobj 73 0 obj << /Ascent 514 /CapHeight 683 /Descent 0 /FontName /GFEXAW+CMCSC10 /ItalicAngle 0 /StemV 72 /XHeight 431 /FontBBox [14 -250 1077 750] /Flags 4 /CharSet (/E/O/P/Q/R/S/a/m/n/t/u) /FontFile 74 0 R >> endobj 351 0 obj [742 0 0 0 0 0 0 0 0 0 844 742 844 800 611 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0 0 0 0 0 0 0 0 0 0 0 747 613 0 0 0 0 0 591 613 ] endobj 350 0 obj << /Type /Encoding /Differences [ 0 /.notdef 69/E 70/.notdef 79/O/P/Q/R/S 84/.notdef 97/a 98/.notdef 109/m/n 111/.notdef 116/t/u 118/.notdef] >> endobj 71 0 obj << /Length1 1996 /Length2 12199 /Length3 532 /Length 13305 /Filter /FlateDecode >> stream xÚíµUXœÍ¶¶ ÁÝ=@ãîîîîî4îNp'@ã 8Á]‚‚w î<8¿¿9ךd­ÿpï£}mú„{T½õÜ]£º^*2U &1Kgs ´³“3?@BIS“ÀÆÌŠHE%á4ó°uv’4óòØøøØbžÖvV7?'?'7"@ÂÙÅ×ÍÖÚÆ@+A÷Ï$€˜#ÐÍÖÂÌ  dæat¯aaæÐp¶°zø2Äêÿ<áPºݼ€–̈llK[ €9ÐÚÖ ‘å#9'+gϿ˖ž.ÿ=ätsKhÁ’t°¢¥³“ƒ/Àh…È¢ì ΂Mþßúß‹K{:8(›9þ³ü¿véÿ7s´uðý¯ÎŽ.ž@7€’³%ÐÍéOÕþ[N hiëéø¿Gå<Ìl-Äœ¬€Ö—lÝ¥m}€–ª¶67Oà¿Ê@'ËÿíÞ·°ˆI©‹«‹3üWCÿ5¨jfëä¡éëòŸUÿ™ý/f{cðö¸Ùú X™YYÙÀÁŸÿþÏè…I9Y8[Ú:O7ÀÌÍÍÌ|4ÀÄðcØ:Y}@°0 ³“³øxOVÎnˆÿô“ƒÀv0sü§þï'€ÅÕÓÙhiîðVä°8y:šÿÓwk§·2/€ÅÌÑ\5oê|ÿµÂ¿ÛÿßeNV‹‹™ÐÉhõW•í¿ªÿk2ØÂÂÙÑÑì­V°ñu±¾ÅsrƒŸ§8¿esòXÜÌÜmÞ*`Ç@7ç·XÏÙ øæ{yx¿spºþ¿»¹›™…=Ðãœh>ŽÿÔÿç™æKx‚‘nîÎnom_Œ,oÇœœoþFà|‹ÿ+XÀò/ü§ïá?Çô/{Xÿ…à ±ù Á2¶!XÂþ/[8ü…`·‚ ¬áô‚5œÿB°†Ë_Îuû ÿùeü…àVxü…` Ï¿¬áõ‚5¼ßüdñù Á¾!XãÃ_Ö07û·Èÿ}_‹‹;ûø1±˜ØÁ×x.7WÀÿ˜fá龤<þõ&ßùÿÍV¶àè´@\Zp¶·Ëh‰,”*šª€¡‡·þš¨ÜØ3Û…ö3 Òáˈ‚+ýzƒîceê>Ì>©÷3‘{L§¿Ú¸ôyˆkbæü˾—é~Ö‡6"Ý«,%ß=ò»°´Ž–¹ß¿¸ UfÖGËSõŠ>_ ž¨ÒJjÀ­’Aôx5õf‡sóèJg9hEE4Ps©£gº–GsF­y£§&C¯M†ÚEÁ·2¬\:wzb>Áç§¼˜@YŽk›¾`½Bv°rd‘ÆQ‡ˆ ž­.äRÖÜ/ºëE4êÛ}_LÌbT¬p{ìw¨HFõ²QMÅžæue4\RÊõ¨²¨?µ;eLŠJÄÇ(ˆ[HlIm`ï%ÒÎm¦6óìˆRîogÝCŰ›æsæëW4tYP*?¬ÓM‚Ú’çË¥Ý6pܯAÙu¶Ìö˜ š°9†ÈÍvƒ|?ÜB¥ÑãH»+4ÂNhüÞRÁnŸÉÈ>Ø kE²ØÁV´®âa+õ=®E¨2Ü( ëÇÔŽf¶Ùàö÷ÂM½d³{æx Db!¥¢áš@Éó›À²‡=KÿÐ ºRýö)JæÝ)ƒu¨cºÏXÄÚ3‹Ô€z{z ˜.®ñ´ó¯þúþÙÆ“`éÕ5ža–ËkW¤ÖsÃ"Ýʪ"Á@ý‘…oF±}“íô¼tÄRŽ&—IÎÛ¿dþ !`œä˜ÝÌjuo ¯àéFÈxñ\Ôaμ62ÃCͲ‡,çì8hrµ¨«žøYßk?Ö}¾ð3‚Ž•±q—]osÉјÐ^›ÅlâÃO®ÕxJ5‹TÂh…äM!aº Ⱥ÷C2®;G;ÖMä+¼î؜ʷ? ò †o[±‰bû2ôpQÿçÐo÷èû9ßÓM¼[&¸˜¨7z}èÝhm †=ifÑoÂq·å8íû|í­äk¦[×ß<~WðE×lI·×ÎÈË\Ø 1ã Q–ýÞƒ]¸Ó¤¯ $0­'‡SªX¿.§DtäBwt ñã9<2làQlï~&ÐZpSy·hÛ§QOoœÉÜípËæ)þ–Úû½µf|õ5í2ü—¸¿÷\Î-OQñÀjÁ·(›O×Ëí„H@—fu£$eD_ï ¸:Š0ê_qß°ÊleY)CŒ(ÅCãÇÍ2&%؉+Kº ¨ì}§öìgSÚJ?~ ·—¥™(^–(v®›FÉPcM„j8÷Р뺖–5ü’ƒó-`Ób),<äeg9,’kÉý‘”Z˜Kc¿J]¸®£ÙéTÌd:eàë¬éƼ®ê_ ¾AÝeÊcø&®Ë§Hä¯Ö>)¡iè[Z"7ó`€V2²ÑÕªÉ̯2bé°|xB  ÿBnE¶?ôµ–êÒÒ«”!›"WTO|º–÷3׫^Šÿ#Ìq¯%/Ú ž[š®4›vÆ;ýÍÛ@î¿ÉŽ9#àüÚÜñ±†UKªqˆ¸ ®g »Mdôäs¼œ Ç0‡f mÔ«—¹ ¶[,aŽÝúÐ$ØQŽ$2“£>§«vZZyk‘×ÕjäPË"á0arA7ëÄãÙ¯D.È+ ¿ÒÑw^5rOØÅ=Ñ%¯I‹‚á[0K­˜J>–Us Á»£±Æ…I5M°ô§Ñ›¥-¿{•WÆ¡*ŠèA]ºçEr:,^‘v:Å×±Kºø ÿþª­½˜}³Ä6;{’)µ°"ººe“÷dT»Ôa‘¾mÅľ;Ö5Ìn:Ý™1Üæ}T·Œ‹ÜÕ¤ :µ?NØ FÔN²xãbÆ+ð´€— þ xA¼““ÈÊôû4%ª–Uñ4ê3c›Ã¼Õ&ŠWÐ Z½<§t%M‰hÌ8Ò+àa o컵\è2]-76_ŒˆþsínZá³¾CxkŠXÕ¹’ˆ… ÈZw3NO´å ‰h¸Y4¤äR÷wGû^Á¶îÊ—ÁaŒP®ÁéK¯ füÌ^¬%´Ûfb- + S¨ñ|1\îp]'ù×^:.¶ß[ß‚ƒÞ<±Ýw­õ•¸aÑ¥‘Ç`n0i^jÐS‹)2ýʸú¦?”ð«UÓP3Ý¥I~häÙ…ÆfŽ¿f‹y~Î`KquW]1ˆ2ݤmf¾Ô†6å8ú(¸ÜY¨³då©÷Ó!sæ`ëÛÿE÷‚W‡š¾¢Šˆ2ÖoZœ&d†VM@Çû!{¨gÒÈÏG !ª±å&Ù°t‹»ÉÍÚc¯ôIÉÅún$sN5äBõd¡o¾ ÖÁ*Ƽu“BÈáI×u9ì‰GîÅã;¤¾ª´µª˜ùò2%ȱÁáÀ‘)¿¦ö vç!,Ð6ó^¡Åàj²åÏuG:-×ô0'÷¹‰§sI™|ÄqõëŸ*3T·˜]c¡Ã…€™ƒßÆ66L¿o'^ƒ½Á§#ê°NÇeûU[ÄþÏ…ú…-YX’›ÅîÇ^¨Ã\g¡#èèÜDsöbô…”3ѹÝ-YyŠ/†¦¼q¾3žÙ»1tм'ÝÇù#íl8%--©A<ŒQè¾–C&óµÅÁzC„l3::.æf©:»Ò´…qÈWÇVBûdä|ê³_l˜©ž¬w—@½."YV(c•飴w•wP³õ÷‰›¬"ï{|PŽÆã^ Œ´‘-»¨–éwù®–'ga?e'¥:œ« œ>•”E"ËS'ÕÜ”ʽAVñÁÜ« ¢¦†h˜Ó¡ô¡—øœJ·*–A€HÄÐÓ—:¾½îþ¼÷«VóÅÊâð¬ΚÉ1ÛaÅ1EÉ]Ð[~S¡  %¿ÿ0[D·«Wfìßv(Õk±=—r óÔ‰ºJAÀסâê`saÐ×®cÆŸ$%¡í®¿<`¸ÍTT Ñ>=ê«o)å=¶Ò9ýݸë9dz_†Ã/|½üñX²i@&T6ÅÊ2‡²UN?UQ×yO£ìf_k%`QÅãl•b1Œbs­`Ä|ÊŽó°kÐ}ÃB°‹¤F”‰öâ\èÄ?jŸ¼æÇʱÃH˜Oǘ4Íg}hœUÂév5á[eóŽtïKdéæ0»—ôßP•’aqÕSC¥LjÝ>?±z:×q–L‹Â9³î-(Fk'Åç\GúÎTË!ê¤òrd@Gý~t¢ãç¸9†•ÛŽ£6îH“~V7såû9,m,Ñ ×ÇóìuAŸÊ»ªÙó¯ìY«hKäò]–m|×Uîaª£¾»©ÒÊ p:ütG¢s7ܾi|½}!ˆl܉0m<ñ| œî¿’WLÌ,Ô†H Ž’?íeËQ™ÔÇŒ¼Šóje'ÛÎÜœJÏ·”sÓ“oÜäžKUÃòl±cÑæ3áFˆjôÿ`ì—}ˆ¸þµ*uð.­uvæšQúÇaI”;UÈ Òªkš6 ©Ô0çã?ݳ^Ì‚SÿÎiaê‘NÜ=B¡x;¹D¥ ¦õâ+;’ ‘c«‘¼ò¶Ó—à«O[u3òÃ)3‘”ѧu«ßð»üõÓÈ]*Ë‘}“+ËL„èm“Æ{ÙµÃÆ^ênç3?Šæ›KHkÏ>usÞä({8mΗÃ4 v÷Å-!»`ÂÔýÁJÐŒáN¦Õ)/[Àµûõ$!”ŠmÄîéGž‹K¢æ’¶ÈIµÕþ ø#¤pëœM }j§:0,A ײF{ $+š£¹v"ŠÁVl}æé að¡épì:f‡mD˘Þ8ÝÀÇB É±;·­ÇhS`-ªë¬w^îX¥0k$]irHžDóÖ¹Ôeÿrïd…ïñ&ú×tüöò¥Üäk…îdƒÂ*6e ‚Óˆ=›GêóÓÈM”fyäu­»Þ‹œvï{•§üÁjºLÍÝ+Ì5ÁõRòËvL“tΪÙÑ—Clk- ù\9ÇçsrÁçª#Ù»/Œ´lVñ>ª]5hp¶÷sEc°è¤È¹¯=çI–¿¶I&ÏlUM`zÒº°,í]«›—~)ÆÀ¡jpo8ÀçáS¿*èd‚…dTN¶<þ Óè$æ1Zý¾Ä¨©Û[Wð˜È.†±°ºINéÜ¿– ®c×ÔòCSTüÁ¢ U˜›€fñeB{ªu¾]êäìPåž7¹–Ùš«ÑÄTáÎw™+µ˜*ù‚Ú¹â‰Ãçë—rmõqt‹_†Å¡JË#«i7A†[¿/ŸïÄim¶i&>󷼃(’?2±~×½r~îNU•Y¤Zù\íY ]>…åmBz#@ìfýäß©nxÒG­ÒÕÿÑÞWÎ2 îloÕrõpȬB]î÷>ìu §2ìï»…ðyV¶¿ûøÕúàþS(ãÞ«ÿŠSM†^’&`L6LÐHxû‹+3÷v`÷4‹¢HÇAáÇ@ÄpR‰ìsâ÷d[ ð~ DÛ\æðZÅ÷éûâ‘ßO“.—'‘«8X­Ä{•Kê‹¢Ôªó]ãr÷ßO! ?0Uru»zŸé7رýAAŽîÔã}\x¶œú½iŠU4=QÎ7´q ÜT׃\ÿ–8f{—žß^¸Ï¼J£qàœÂ\’ƒ›ÀvBídD*^JÿsÉÿ»ô-Äþ“à6Á¡}«z¤O%2žYÿT¦aÍC¹{/HÆ5aj %Ì!SÕ®˜Ï(Ü1s$ò—l'ÕwQEYDâü'WÙß4äò¹w¹ã I¯…d®³W펷X$¼4tÂcË j±'ý\M8eöÔÝ·Ã>$Ÿ¯ï…¶&÷NÍÃÎñ=~Va‡/&ÂÜí~0·Fçý–öX’^ºÓ ÷üNTþÛ< Abì½^Œ!¨ÎÜ€ßRAßÕÆ4ºýéde™$ZùL–Ÿ_å›Úf;SVëKú¾ˆ‚ðQ‹ƒ ºtYTÀµa½·ö‚!‰ût¾E¿ò³…$¿¤¥²ÂàS+®ÁºUê¯ÆN måWÀf”©üz8ŒG¸9¡Ú§êL ½Î(ó° &KƒË€Bå¾üç“îÁÞ̶¤´É±n€eWØ’ˆ—XcÌ8—ƒ,Õka@ÐÚžÝÉ‚iß0´ý‘#›ÿkå·c ­çoËo$bô!É‹¹Wj,h¨ãØwm†YãUª’¥‹¥? ¬*ãØ?ì0Y)µ» L¼p¥Ðwz>õ½DŠ@…Ðñ½¢¢;íÍT×¹-0ö2Zœd"fÜ™ê‚ DA)Øk·Vã÷¦ÚçÚËD¬0f«Óüä1µjëèŒúÙæ?€„b¨ ’öǦgY;Øg´Àëz‰ªÔˆFcÚu±!讇§ÑÞyíR ä•™¥®æ(í<ÈâÅ%פ‰˜ ƒí R]7Y¾pì×2×F1r3QÁ¦uÊÏÄPÁ÷=Äõ`Úqr*ßy5 èÖ鄎Þ÷è)óÕ°mÃzé"HIt‹•[;€rUAÈ–þœû”GÅÐÒOŠIÎ&vKÐA%ë{¹KnʸLQ‹»³2Ä’ ùM.Ö¾g™ââÔaƒÃ»¹ÆZë4t5‡£gïR°óò·†à@1¥Q…õ;€Ý4Ïh ønl`…„é#¦d3×U2–߯µ8Y½À.ÜØžÔÚøNÙ._é”c8´q4DÝÞ¥3¸æw©ÚÜ ò»ˆtù­ÇUÓy?+Ù¦Ÿyµ»f…Gffù®ö°E&<†yùàUkæÇÍrÄ\K`l\sèxŠÊÐùçbÓ u‹ÈE:d«378SÖŒq¾cy ‹ˆ3-ŸM{yj3Õë/l:AQæóèÆØÅ~Õv-8?Í›Ùà·;U5füvÿÓíBÎìZîžÿCÿÚe³P¾2vË„VJM®¬Tj'6YAÕ–IQÇk-ëFéý̬’Da͆AKXûuóf•ëÙþ©ñ Õìwkªƒ8¢Ö–¹D©Ÿ¶ö”Jj6œfŽ7ª‘³Åäª!FQ•(ÖL8–&Ö (_е«·+Œ‚ º(Ȫ¾'ÑÝòóÿ£©R CO·á‰+ø£¤š¶-1‰ã>#÷ÈsöO]í!í!麘©FÉi{iFü1‰s©!. 1—À¡rãNݸ·^™X÷n)$d´dµŠN2$踯Í%i[îpË_ä ]Ör†}ÈX¨4×¢‡$FkC¥,½¼O¼¹’Ö–7Û§eÊ8fÜ5€‘ø4ºe'Î+n|ÞÜÕœ‹8c¸%a2$$£eö°Ó;ƒó}“áIÚ@ µ¬Ük|úlF³$‚™p#Ì&<ÛHöîL~oá˜ÒO7ïò³u:qºôìœ`¹^zªØ8jV Ðþ¬­w]ã^‘4¯ïW,#ºD“ WàM?SzkµëäÚ-Ue¹8¥ÔËï<É*ñ¸£>ë€z8œY‹öÆÄòÖìçÞ!÷èÔÂÓg{UÉC~^Æšök4?Õ|j-B·g† MN1…Ù[$ç‹F¯ PWlÇм{ž¹œÿ’´šÂÐ8œ´eÀâ~žA(A­r"¿¤Õ < ËUEº ^ïÝ€“˰¢ùNZ~4mFgu0Á†7BË”'ò¹VWP(Yò®'Y¾©û'™‰Sñ•œn"«Î’JZUé<†whýê¥Zo›²Z7è9n ’ì—d~{¨ý„í%–Æ’6èWò{†i®€Ñ|Õ[n¤#ù†ÊOœf"ö7TñíM ?»·HsT¸”ÂZø2—-§°xí]Ñmñ)£x&’\å-Á}ÑYN+\¼!<Þa0ÌWÓŒŠ+…W‡&ÉñIj@Ù´§m}¶Ð3í)§õøÐS†Hi’…ÆÔ-Ç|nTp~¥ö’Þ“LŒÁr‹Ø\sNJp¥¬¾Ë¼u[gvɾdtë­Ž ³ÁÒ"è®n è±jR¥æû6òº8µðŒçBæ@ Ï A ¹ëü)C~Ȥ•Ãîþ¼<Ö—¨|Á•ÄÉ®éu~r}rñ¥$ø«n“wS3’c‘¸]*ÄøšG*Íð xÏÈ€.Œ3²xQ?-bïg5ÅÍawë 8*ðqV±Î»ƒÓ<# A'ÙOÿ'f(»ÄæpkÊW¡$ÿŸÍ¨ßg*€·ÄFýæ`»⿉+òmBŸ‰Åô¼7¡%"sú"¾Q4÷pJåLÉ~¢ü^®÷~M~¼û\ï‹æTUŠÜ·º$y£z€RvýoIÃÏ>eÕIËSÈ» a½#øöÉ«^ÛÓéç-¶”£MÂK]jWY›]I|±‹Ëí´ëx×4–š£,¹Ÿ©pB¶ù ¤¨ïð¨ß†]kƒø× ÷}¤VR#˜w€‰NOjcé¶ÑuB»hå ÑvÒìenN' ßC‘¦“’\zôÅ1X~}vÙ”ûh^™+ ,Чs[‚­ =h™OüʉsÁ¶û)€´Ž°s;öñãÕ1ý™ð±,á€íz<é Îäf¯Ì‘}=·R†=¶p”O ÕiŒÆå;óŒÜ–Œ2 :;œbtgÐìƒ18 #Ö·•™8U¿Ì•‡Ž”~¿Jh†[õ%©Í-çK%Ȱckšž®µÅþÐ3°F”ÕtUIm]«¨^Ñ–ás­Nh/–¸¿N¦× £:DZ?¥qV‚`îuO“HœßŠ»nÿ#¼•x}Õ%ý‘o”gš9þÙ‡Þ&ÍÏXÜpºmíÅ©B¹èêV:âËšòµØ†Sêê;¢°ß7Í?=+\x0ý´W|ôÄÚ¹¹¾jÎnw6‹-=İØÊ žÞHâÖ _Y‰ ã5©CØÅqI»(=Û~wœÍ]]UrvÓ!Óòܸï´FXԉƕ‰ 푨8$%ÒL!S§º?PÓf mÃI»ý¸2õÛØ”Üû÷EvƒÝœl¤kG©ˆ[õ½ö- ¢è{ΰŽq¯¿0òµ¸Hâ{î•6¸¬Ö«Rüv¶8~úsUK‡Ø¥˜JÓÇý›xw˜Vª™uG,ÅB»²Ú½Ó¼ãg†GMŽJyè…¤H ®òÂø©ÅäÑêŠÙ?&NËQ»y«>»qDkºÙï;X^Ø›%%º6Q.?a×Móñ*¼(—"4ç¬ÝŠî'„ìõÿéWéÇP&d‰n˜¤ÊlGkâÐñr3Ï8Ÿ«æÁ+ú~¼É*A¿A>AoÝ ೘ðY ‡=«WɃ´‘{9‘­}0á0ÉBÑÞRÖßñÓåûY¸ºªõä*Ó鯫kÓ¸ÙÆéÓ{ƒ“—Pmq‘Ô2²(¡CÆ?'ÚBlIw¬-Óñ©¿™ ê5=^¥Ã€ðCìP\°&çe‡#µYÞTÝØÊÆë;—BáðêcOôqÍ'ì.¸Ia–fJ•&u(æà›‚zeÍXú SX=:ÆFþä½ÞÐhÏMcñîÍ!a~Xh¦b.ù)=—_Ïæy¥ŒÇα'w–/hÎK9}¦=>‘¿»(w†Vd û’0˜Æ3÷ â{¤-rº”E™¸g0’:¤}œÊŒ2¯|ãЀP‰SFÛ$”X($“M»³ÔÀsjë,¨!;ê39:0™cÿ´Œʽ~¾‚È7T,ƒÝø=mͲ Y­]ÞYzæ¶!qµ˜Ž ”ƒVãý•ºq†÷Ë¥—ÕJ_E¤ÅÑ&3¯æÐrlÓ,Èú¤C ;`éÇ¢žGð„r¶Ž ‹MšKrê7]#¤ •—[!?ª‚CÒ"úrxîHT™<Șð«ˆÇÜ|f.ƒ <­»EϤøÌï4.5{ùdµ,€CPB Ôjn„VœhxQ¯\{@Ž áoVÜwÈãÞWsF8Gô1ÙRµþfð$¬6v&…fÒºU2äÙíç»õâñ:çgÚ‘<#ekî]œïD¢#VÜ{]·#•ï¸þàP¶5¸^ß)Ì™#,KEñ€Þi§æÌ²µõ|Æ:­ˆòÍh/KÒ5Væ¥X[2Ô°Ð?Å%˜y}Ø¥=“9Î'^ΫïCaíîžw¦ lÇÏÕ¢ciY<š"oêNËÑáã$õ~ž…P”¼ølíÕ^ÍÄûÂ\Á›Âè¶ŠËæÝ¡(¹N[çžöøâæX~›¸¢h}•Ì”:×™§-*‡'HZå¡t‚®Qì‚3½•µ†°$ð謆عL€±í`CðSx$ž½ÿ¥rì}¹PLÅ3$©Åš` êb.¥«£'ÔË$ Ÿ ›h½i¡íDNe~kãº5õA~ÃCh¦ ‚AT³s2EšÍÍ­}€þІ<Ó…kÍÀÝçèSEè–£mRÜøã”F‹f?R6ìb¬¼Cr$„Ìú±ˆS1Þ/ˆ&yö·¢jJáWçÂvü%e?Ñ#NWþn#6GîQ¼9zäD³¶‘1L: ×y*(ÒïÿQɱ…fmzr²_5; ç¶Ä¾ÚìpÝJÍ{Âwã÷r%l×z}øaP* d¢'s©ì¼êjW¢@XSãE<¸( g†³Ó)"Pw îµ³Ðْ͇ è°öðm,Rôíx©(Õ/ÞSJQ0ïj lÔ=äÐêÒ®Ì*¼ó˜¸ß%gäóU·’σ¤&–k4òoé´á Ž Ú§%¸’²1B¯ˆ4MˆKÖÁ>¦‹$åcîxZŠ¥àÊ+8Ç—£Y°¡Ì¯ëxÁ†®¥[¹æ¹Òµï|õåZ5=/ŸÌ°U–™;F}PYþ“BÆ.î–nUÂÜÆ•Å . þšýë}ËËÐjÎbsÍ"lWÑ<Í šÚA`‘‘8¥‹KK{I™òãaïܘž$Iªï¦ÈÌí'>ŸúV”æBÛÔ¶`ºµˆœt1— ;I*ÊLõ«b^Ç,5 Ò1+‹šI[w/vن㱠_ß™>î8 9ÊÔáÛ`T?˜‡’Ý·gÿü†JjÁg:T•`SJ"Œö‡n^Uè®TH…vÃmˆ2Ïsñ¼ N+S«¾·¢Ûø4-kS¼™뮼gd §,ã RnYÉ$.„X/í3Òˆþ–óÌåûÍèrfN™ÌÁ>¯ ß’Ö³Ù‘Pv`bæO#†Œž£Ûý>”I³¾þ;šÛ¥´¢BŽK*‡×ˆ%Á*ø²éдÁ6E9LzµäÚò<±ø°þ½ÆY!PË´é÷}Ü1Ïq«„6ÇW²¸¡Ê¯ ë#5£b0Mç]¿åGÊ]Å3<ÊSÓØ¤“2ßÅ$ìðçÈq¹YzéÄ¿JǸI(Ĩ÷Ã$/BÚØ(M€ŽõKÌ Þki.Ç| ½ÊV•‡AU#¢ÖʪÅk 1›2¹I8 .iô± ŸWÅlçb~ï÷_ßë××K~þyÛ+Á¡d^f#Àk¹‘vkÆ÷I€uÍf r§ 0?XeYD[G×NŒ µ÷µÌæœUó£®6_³Åù"6ƒ©ù F¡@ä!K„T­Þ%ehÓ[d-ì‰ò&M”KÖÏ’'b‘ÚfÄÔÚÆßR¸¡8çCJÚÕy/óNjË~‹Å$ÞÅ GËM6V³’ÌÅsIÿ•heébD¡æ ¤ù\#4|\~¥U»™¯¹9 üö4I׎¥8Å'×*õ›¼fúÞ”<Òp 4§[Qx7Ùu¦—x¯VÑZ*ÿÅe«Àêg!´›IÌ‹ÆHdã•#®¦i:±ØåjûP@ý@[î‘å IŠ»e~jÌ'ùB®"ÒnMμ”úÉbîû‚²öOæAêê&}ø¥Ô]¢ÌC-º"›9ÍJâÉÌ„ÊÀ€Á!þ¡øždâÝB’¯ŸçK𽕯ÿg<]κÚûßò¡[¯ËÁP0 ¼­þØ ^D¿ŠðW(+÷Ô\”~yà$Ç |Y(`.ŬÒÙŸvq4!e¤àª'©L'eQHL)KÉ &÷'u_™°Ó¨eã‡Îy¬ºX5¿êÌX*¡Ž%÷œbºÉ™%®÷‹óE²[P8ŸIâ·v Ž3Ù$ïìîÙ³ã·o(¨ÌÐC|aNCä¢?“±^_”¨+%òN/½ã)Åò{y·¾¸#”"ž!À‹Nº–|NbJx7Iq´£CKŽ.ZOsièX6nxyiû¦I>ÿªÕP­}b†àåT%í-ôdY%å1›¤ÀжvÀÞ„ê½Åß ‚S´ùâœ!®F’ +Ñ E6€W^ ]I„®ð狤.Zôx¯ŸkPïC‘Ð1µ/@šÏx”|½†7Óøss¥ËÕƒFýÓ¸R´"r,Ç@ÜlZÜÜËÕ_ÈUꑈÏf³GÈ8°‡ñ·e-Û³S5thÉ\ŸPø‚hSÆCֿ˨$bOÙðK6kb•Öø¦Çú•b17ÓS>ËŽ¢”¾#˜­hq}(×ä=ÕÏ¿¥n¡º}­ÞdÖšÌ"¿J€Ÿ.IQ|Úc¡«@U!(¡¦–ñʬ(ò‚jÃ!䦑(ˆzÔg¡µëxÔZºjó$ß>Á’›Q©Xs\º/pcökÿ–Œæ© êxÔqe^–͆°´¾ðe “ ˜š´Ö„ógÒߨƒ§OCYáeáG3îã'@†÷+»­vᑃ„Wíý/IKI ‹b˜‡·2f8‡YäíVë‰VU+¯›¹Str"æ‹É óB±eœúÊvŸ> šó«†ýiúY‰ŽdJtÓÃõ¥ í0)}:×ß-s[ EÜ§Ô ogH U©žâõêàú£sólÀ6mZõ¼s,jÉó÷%(©§»[‰dìžøYµW% äOÂ^RórñäH_‘# ÜT^÷`_ XICc”bÃóWðqÄoáy’‹ÜŠ#Ieg×úJyúˆµ/, œiÂ;áÂ8\)/ªh…!¨ûáÖR8kðVpN7«xýûf¬Ç—=àl$n-¿lj6޳ͷ³„M‚ØÄ– ôå´—KŽ’;ÑïSõ¯7x2ç»J®ÇXÿþ!þÿ üb  ™›‡³£™›=âÿ‚ÉW endstream endobj 72 0 obj << /Type /Font /Subtype /Type1 /Encoding 352 0 R /FirstChar 33 /LastChar 124 /Widths 353 0 R /BaseFont /AERBRB+CMTT12 /FontDescriptor 70 0 R >> endobj 70 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /AERBRB+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/ampersand/quoteright/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/underscore/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z/bar) /FontFile 71 0 R >> endobj 353 0 obj [515 515 515 0 0 515 515 515 515 0 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 0 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 515 0 515 0 515 0 515 515 515 515 515 515 515 515 515 0 515 515 515 515 515 515 0 515 515 515 515 515 515 515 515 515 0 515 ] endobj 352 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign 36/.notdef 38/ampersand/quoteright/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater 63/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 75/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y/Z/bracketleft 92/.notdef 93/bracketright 94/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef 124/bar 125/.notdef] >> endobj 68 0 obj << /Length1 944 /Length2 3352 /Length3 532 /Length 3991 /Filter /FlateDecode >> stream xÚí’y<”}÷Ç­YB–$û5Dƒûš}C¶DhÌ\ÆŒcË–Æ®HÙ…¬5vnR¢äVʾÜɲRÏÔý»ŸÇï~þüýþz^Ïuýs½Ï÷|?çssÄ V6Òº(œh„Ã¥ådäÔ} k9@NF–YLLŸ"ˆhÖAÕ9559@×ß—ä”ÕTÕå™Å}œo0íáI ú?“T]€F"°€‚è úP4 `ƒC¢Ab°  ‹ÁÖ?oøÖ HQ2Ìrr $n Ë ûiÈëŽTþ £ü}ÿ: ~S”bR XDá°˜`º3Ãà8J-âäÿÃÔßÅü18Âç§üÏ&ýÛ1 þŸœ¯?$8HÀþ=õø§7 …ö÷ùû©)A#u±ý3„ö3B(+4é ¸#0~à¯8ˆEýÝ¥o¿,ÀÌàF¦ºRÎó×™%ÚûþSõgò/–ûSºC@N²2²²r”DÊû×—óßjb‘8KY%eA ‚™)›A!% D@cQ`Q Ãd°8"å @éIàŽ#0ÿ§ª»ø3ô‹ÔÔòŸ$'+ ÀPG’ Ayæ~˜ÇT`žGP €¡  óþÊQ a ¥îR¤GP€ EÊÿR~!ðþûLôôpA!Ò €´¼’, ¦¨¨(ª…ý¯<¤?b‰¿Ö2Ø¿ØMY ‘ÌcÃ8¤F”WFC 9ܰ¨·Œ^’ZÏ£ñ6¼®m õ8i4…SÚm†—œxä°WžÍÅ6O?/¸Ïï—ð$ôbÑz$þvæÐÁ|ÀÕùìk¿ñ;|ζžóÙ%-ŸhiÜ^Q¢¶ìŸxMN½\ü2w£s¹À j`»À0¡zîPÿ<'JYÅÁ(cýH\bÍž‰'Ç)Æ~dO½C÷á)Ü+–±Iêý&î‰?ç^ãý»® .÷ ˜¹kVé‡hs‹ùåk±iEo3ÄŠ%êœ*ƒÑœûòIêÐo¸î?€’Ìc—ðˆ¯Ô­5l99ŒÞïçWßEñiUwî@-WÏ#u¢›áSû^4Øôô!;~ªoç‹­×´ñ£Úeuc$“Ó_F±U9Íßù$xè"ƺ¬Šå,Îÿýû·úö+ò¤­·ÌnÔä>X¬²l®]Ý)š SSu¶æ6î(+Oj¤7õÇ6'mV_0 %Ÿ©x£9dˆK:®œêå´ —IËLÛýÝÒ”‹`ÿÔè‚hLÔÐÙ;¢&è¥éÒÑÊíiÕÆTB?™CÎM}ô¨êúÉñ8oŸªˆž}Æ¥—´ê¥›Œj_\Sé_œ||:д…ph¿—ÝaŠù -ÝGË‘ëH‹}q•5`Êð%‚ÝpVå!èwœŒ½†.h—ÑXAðÉÌžÊ 7ÿÒGÊmIÐAœ8Ç ›ÊßË9´£u3Ê8AZë`+¯Ý¢ezÂQ¢’ÃÙ¢­ã¢ÂÍ[¢EFWÅ çl‘+xrÈÇ63µùHÎ4O—˜tÃ÷“å(3³ûÄ3>M ™Rª= â‰Ïˆ 5ϯ§L×~ “ÆYôŠöm²J*“¯îJ¶ û©sШÊ÷x~w‹+ÉÔß„X$“Û:v¯SqAÕñ»Ðys¡a)wšbWâ´j­¬<Å_PŇ„A »‡xQ òE-b©®R‰0öPœ=;qÞ[ â,?vk”£J m‹ñX Šrã¨5Smë¾wðÍŸ“ gîä‚Ãܾo{î)Bo…í{ÝŸÙ *_–ÚäêF“^k|„Ÿž}"þqÎ'Gg«©ü§Âx¹›Û³$êÒ{o¶y^Ýϑҵ¤Eô+:@Ó+ŸsT˜÷ãQ‰Ìg’ßv¿wòåã2Œ°˜cLË.ÒërNA‡6‡¹KVÊœ£Oj3t¥¥Mw­…Ú¬¿÷‹>QXv˜÷Vò¬qÂÝ[áQi]w¨˜áöþ¼ VzÔÆ9 Z*8 :ïÎùD|q<ö‰ÄÖzÌÌ Ñ‹ì®†£Xôy¾Þ3Ö+‡5é‡g¤ª)——”–35Küqa4;ÉóÅ1âï=>å"©ñ9+6#tuXyooÞ×VÎõi«Ü<óbÉì1&åP~B@K[¾MqÇ©ÊðfÏ›¤·Á96ë^˜8pKÀÊï æ0è4ßéAUXZi®œöY€›.òš®tïS»Š ŽÛð ”j­W;÷L߉ˆvól¯` /¤g)TÄàë$ÝV¶ Ã9Ã)Aº_ø2ï¦í$õ‡pºá.³–Æë¢ýŽ·ÂÞRzbÌ{<ß&5D/vQ`|­ô‡¨÷ò㉺ø±1W{YÓjÿ·Øàè‘âm–¾æ÷l¬ÙJq5"Öº³~ÞõöZG·Œ…’]6½Â‘7T‚ØòNó2ѯJ‰¼b”ŒÜÝ«²f¥=&ôe X!Iõ¸´l(ŸéŠcz´#FH* ÚD ÝWÚåxcùÕ ŽTOvá÷CÔ\;ŸkIs*âº^‹¸] ó«[K2ø_ß׋Î&‹³ò}T › ¦½¹n6,*v?¶N §`:?üm¿& ÏË+{>ühß5É~éëšÙ^¸éÐEÛÓ|¡1¥k1n‘ÆŠ§E(ÐüðÎxÔDÿ]õѵ]ª¹×]—iœ|Jò\ïV±B© dž×S&Jíš*¥KO¾K›‘°ÔÞ~>‚¤’$l}Í«ÉÎнǶ0e¿Ì„=>?¬«ÏT’#‡÷ÒOÑ8*^âÑs“Üç>Óf±©YvÑ7xŸDdç‹f>à U4`:½ík³hµÒZ3ËÈc¿Ò‘IþÏ“&ºµ9Î~Í ýsmgHvü|Ou¶³J/4¬|W;kÿé¹Û¨q‰ —³å»‡9ÊÓÍ(é{Î@GÎ}ŸQ&•ý9»W÷£%7ü –4Ù_ ¤ÑwéÈð¶J©6ùƃ(ÞQÍK¶ÕR$^[ù}Æ|ûgÂÕŸ@=ބɬÒGé|Q^‘ªÇa¬òëÓ—K/¯<­WÝ@TenÅå$¼ö¦ãz ï ò0xgù¸$¾Ð&¾®HþœÃì%©ã‚"0z3®Ü—™áú^Áßâ´LËšØÜ$6®”‰‰ ô›UÆÍœuèõ7Œ½ÃãNÞÍwâSó%¶’–P£™ó >á«0‡,üUï‹ø^#Þ|`ÂÇ8æU½Šgx´]7­êîHÿIøÉCž&!cRˆ®¥+èªWôê6Æ@`d‰rEég!—Sñ© ñÇTæ„–¿<ÖU‰o²~ï~ÝvómÁgm¬då»íLÃÁ~ƒ ˰/cý×Mº_yÉ_Ži9y€©×Œ »Zwž‘Øð:<®ôª[ÏŠfÞBâ Lªƒ„šâÔÈ¢ËíÌJosŒÁ«ºvtu‡¬'°„…@g#Ö¨z*o_]û˜¸]‹MbQ-aºtP«—~þÂíßA?ì’ÀÄžö«¬ôhqË)íõy;ëK¨‰XÚqÝ»½¢~…Äñ  ¢<¡ÞÆ4&ýUšá´ßÍ<}í÷Ú›¾}ºë®˜´È QùŽò ½ÎŽcø‚Í.uO¾„8,U±$“q­ž£€ô÷îè¥Òž+/²'ÂïbËé¤6‡ôŸ&‰s`õL¹* .˯îœO>>½u#Á›#b¦÷’û"!?F·O“qŒj$ÎÚøz?®¡x8SÆphš»ƒµ>®IKÞŠöïòkOÉàÌ@k7Ó¡#õžšÃNjv*³ÀÕʳ4=§i†4| ÏèTniW—¸ì–>îCpMçkà)ëÇñõ¦ñÔÙLR=®"𞬿˜_}îYh˜”“€'CxÊÜÜZs7Rjì´ˆðt-‡{Á»æ<»µ@ü+ñ hNú²íâáå±jOÁhqWB­}LâÞNÎŽv›zÀÖiíˆmó1á¯ðoÝë…(ÎAgApÄDKävØ¿°ÞÌàKó´¬ßJ-¶{^t;êq_£ML(xÈ?™wwa|Næ“Ï”I<¹Êî+ÈX@£Rß°lÆ3r³K™%ò”•Ñ"ÃëØ"ÞÐ cñ{Pêý‰´qlLêNÛ°Ë3t‡hä}ÿF¬d"11Á½.ñ]0ÃŒ+7@7{¶ÛJÇÂ¥ÖÁ‰NñQ"s9uÁ”dÖ -éЫ5­mS‘sFäãFø¯ù¥Ša1š:‰ƒÁ1÷ÖeèÆÆÕ¡É.Õ›a`qA{|ö¹bØe‰ŽB ¤ªØû™zmWq°vãg(&Îö°ìš(;v%›gɲÿLJù¿ÿH ˆ q>‚7ó?T1ô8endstream endobj 69 0 obj << /Type /Font /Subtype /Type1 /Encoding 354 0 R /FirstChar 81 /LastChar 119 /Widths 355 0 R /BaseFont /KNMFIA+CMR17 /FontDescriptor 67 0 R >> endobj 67 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /KNMFIA+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/Q/c/d/e/f/g/h/i/k/n/o/r/t/u/w) /FontFile 68 0 R >> endobj 355 0 obj [720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 406 511 406 276 459 511 250 0 485 0 0 511 459 0 0 354 0 354 511 0 668 ] endobj 354 0 obj << /Type /Encoding /Differences [ 0 /.notdef 81/Q 82/.notdef 99/c/d/e/f/g/h/i 106/.notdef 107/k 108/.notdef 110/n/o 112/.notdef 114/r 115/.notdef 116/t/u 118/.notdef 119/w 120/.notdef] >> endobj 100 0 obj << /Type /Pages /Count 6 /Parent 356 0 R /Kids [62 0 R 102 0 R 129 0 R 147 0 R 155 0 R 163 0 R] >> endobj 174 0 obj << /Type /Pages /Count 6 /Parent 356 0 R /Kids [171 0 R 252 0 R 258 0 R 262 0 R 268 0 R 279 0 R] >> endobj 294 0 obj << /Type /Pages /Count 4 /Parent 356 0 R /Kids [287 0 R 301 0 R 312 0 R 322 0 R] >> endobj 356 0 obj << /Type /Pages /Count 16 /Kids [100 0 R 174 0 R 294 0 R] >> endobj 357 0 obj << /Type /Outlines /First 7 0 R /Last 59 0 R /Count 4 >> endobj 59 0 obj << /Title 60 0 R /A 57 0 R /Parent 357 0 R /Prev 39 0 R >> endobj 55 0 obj << /Title 56 0 R /A 53 0 R /Parent 51 0 R >> endobj 51 0 obj << /Title 52 0 R /A 49 0 R /Parent 39 0 R /Prev 47 0 R /First 55 0 R /Last 55 0 R /Count -1 >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 39 0 R /Prev 43 0 R /Next 51 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 39 0 R /Next 47 0 R >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 357 0 R /Prev 19 0 R /Next 59 0 R /First 43 0 R /Last 51 0 R /Count -3 >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 19 0 R /Prev 31 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 19 0 R /Prev 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 19 0 R /Prev 23 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 19 0 R /Next 27 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 357 0 R /Prev 7 0 R /Next 39 0 R /First 23 0 R /Last 35 0 R /Count -4 >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 7 0 R /Prev 11 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 357 0 R /Next 19 0 R /First 11 0 R /Last 15 0 R /Count -2 >> endobj 358 0 obj << /Names [(Doc-Start) 66 0 R (cite.Barducci:2008ua) 299 0 R (cite.Bonomi:2009ul) 126 0 R (cite.Bussi:2006gg) 298 0 R (cite.Ensing:2005p53) 169 0 R (cite.Laio:2002wm) 145 0 R (cite.Laio:2008wu) 127 0 R (cite.PLUMED:manual) 160 0 R (cite.QE:guide) 153 0 R (equation.1) 118 0 R (equation.2) 125 0 R (equation.3) 132 0 R (equation.4) 142 0 R (equation.5) 256 0 R (equation.6) 304 0 R (equation.7) 307 0 R (figure.1) 168 0 R (figure.2) 273 0 R (figure.3) 277 0 R (figure.4) 292 0 R (figure.5) 316 0 R (page.1) 65 0 R (page.10) 264 0 R (page.11) 270 0 R (page.12) 281 0 R (page.13) 289 0 R (page.14) 303 0 R (page.15) 314 0 R (page.16) 324 0 R (page.2) 104 0 R (page.3) 131 0 R (page.4) 149 0 R (page.5) 157 0 R (page.6) 165 0 R (page.7) 173 0 R (page.8) 254 0 R (page.9) 260 0 R (section*.1) 85 0 R (section*.2) 325 0 R (section.1) 6 0 R (section.2) 18 0 R (section.3) 38 0 R (section.4) 58 0 R (subsection.1.1) 10 0 R (subsection.1.2) 14 0 R (subsection.2.1) 22 0 R (subsection.2.2) 26 0 R (subsection.2.3) 30 0 R (subsection.2.4) 34 0 R (subsection.3.1) 42 0 R (subsection.3.2) 46 0 R (subsection.3.3) 50 0 R (subsubsection.3.3.1) 54 0 R] /Limits [(Doc-Start) (subsubsection.3.3.1)] >> endobj 359 0 obj << /Kids [358 0 R] >> endobj 360 0 obj << /Dests 359 0 R >> endobj 361 0 obj << /Type /Catalog /Pages 356 0 R /Outlines 357 0 R /Names 360 0 R /PageMode /UseOutlines /OpenAction 61 0 R >> endobj 362 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfeTeX-1.21a)/Keywords() /CreationDate (D:20121121135401+01'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 363 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000009278 00000 n 0000509653 00000 n 0000000054 00000 n 0000000084 00000 n 0000009339 00000 n 0000509581 00000 n 0000000134 00000 n 0000000161 00000 n 0000013772 00000 n 0000509508 00000 n 0000000212 00000 n 0000000251 00000 n 0000017732 00000 n 0000509384 00000 n 0000000297 00000 n 0000000354 00000 n 0000017794 00000 n 0000509310 00000 n 0000000405 00000 n 0000000467 00000 n 0000021238 00000 n 0000509223 00000 n 0000000518 00000 n 0000000577 00000 n 0000021299 00000 n 0000509136 00000 n 0000000628 00000 n 0000000682 00000 n 0000021361 00000 n 0000509062 00000 n 0000000733 00000 n 0000000766 00000 n 0000024172 00000 n 0000508937 00000 n 0000000812 00000 n 0000000865 00000 n 0000024234 00000 n 0000508863 00000 n 0000000916 00000 n 0000000957 00000 n 0000024296 00000 n 0000508776 00000 n 0000001008 00000 n 0000001063 00000 n 0000132312 00000 n 0000508665 00000 n 0000001114 00000 n 0000001186 00000 n 0000405595 00000 n 0000508604 00000 n 0000001242 00000 n 0000001287 00000 n 0000405720 00000 n 0000508529 00000 n 0000001333 00000 n 0000001378 00000 n 0000002565 00000 n 0000005192 00000 n 0000001428 00000 n 0000005010 00000 n 0000005070 00000 n 0000507488 00000 n 0000503219 00000 n 0000507329 00000 n 0000501794 00000 n 0000488208 00000 n 0000501634 00000 n 0000487693 00000 n 0000483970 00000 n 0000487532 00000 n 0000483307 00000 n 0000479401 00000 n 0000483147 00000 n 0000477869 00000 n 0000462399 00000 n 0000477711 00000 n 0000461306 00000 n 0000451458 00000 n 0000461146 00000 n 0000005131 00000 n 0000002794 00000 n 0000002947 00000 n 0000003106 00000 n 0000003266 00000 n 0000003419 00000 n 0000003579 00000 n 0000003739 00000 n 0000003899 00000 n 0000004059 00000 n 0000004212 00000 n 0000004372 00000 n 0000004532 00000 n 0000004692 00000 n 0000004857 00000 n 0000508043 00000 n 0000009527 00000 n 0000008318 00000 n 0000005322 00000 n 0000009216 00000 n 0000008484 00000 n 0000008649 00000 n 0000008811 00000 n 0000009016 00000 n 0000450950 00000 n 0000449125 00000 n 0000450790 00000 n 0000448050 00000 n 0000438978 00000 n 0000447888 00000 n 0000438136 00000 n 0000433198 00000 n 0000437975 00000 n 0000009401 00000 n 0000432759 00000 n 0000430392 00000 n 0000432598 00000 n 0000429996 00000 n 0000427475 00000 n 0000429837 00000 n 0000009464 00000 n 0000420417 00000 n 0000420480 00000 n 0000013834 00000 n 0000013108 00000 n 0000009699 00000 n 0000013584 00000 n 0000013646 00000 n 0000427159 00000 n 0000425742 00000 n 0000426999 00000 n 0000425435 00000 n 0000423384 00000 n 0000425275 00000 n 0000422893 00000 n 0000421027 00000 n 0000422734 00000 n 0000013709 00000 n 0000013258 00000 n 0000013421 00000 n 0000420543 00000 n 0000017856 00000 n 0000016977 00000 n 0000014033 00000 n 0000017670 00000 n 0000017135 00000 n 0000017322 00000 n 0000017510 00000 n 0000420606 00000 n 0000021423 00000 n 0000020696 00000 n 0000017976 00000 n 0000021176 00000 n 0000020846 00000 n 0000021011 00000 n 0000420669 00000 n 0000026157 00000 n 0000024358 00000 n 0000023639 00000 n 0000021530 00000 n 0000024110 00000 n 0000023789 00000 n 0000023944 00000 n 0000132248 00000 n 0000420732 00000 n 0000132374 00000 n 0000026035 00000 n 0000024491 00000 n 0000132186 00000 n 0000508159 00000 n 0000032926 00000 n 0000033101 00000 n 0000033148 00000 n 0000034382 00000 n 0000036636 00000 n 0000037872 00000 n 0000039205 00000 n 0000040342 00000 n 0000042307 00000 n 0000043097 00000 n 0000044890 00000 n 0000046586 00000 n 0000048297 00000 n 0000049882 00000 n 0000051744 00000 n 0000053581 00000 n 0000055468 00000 n 0000057332 00000 n 0000058259 00000 n 0000059109 00000 n 0000060401 00000 n 0000062279 00000 n 0000062879 00000 n 0000064107 00000 n 0000064604 00000 n 0000065803 00000 n 0000067742 00000 n 0000068737 00000 n 0000070443 00000 n 0000071918 00000 n 0000073528 00000 n 0000074956 00000 n 0000075493 00000 n 0000077096 00000 n 0000078914 00000 n 0000080781 00000 n 0000082769 00000 n 0000084036 00000 n 0000085769 00000 n 0000088443 00000 n 0000089153 00000 n 0000090252 00000 n 0000091815 00000 n 0000093440 00000 n 0000094683 00000 n 0000095364 00000 n 0000095947 00000 n 0000096208 00000 n 0000096470 00000 n 0000097756 00000 n 0000099007 00000 n 0000100390 00000 n 0000101137 00000 n 0000103148 00000 n 0000104983 00000 n 0000106266 00000 n 0000107646 00000 n 0000108122 00000 n 0000109996 00000 n 0000111900 00000 n 0000113868 00000 n 0000115768 00000 n 0000118291 00000 n 0000118766 00000 n 0000120433 00000 n 0000122182 00000 n 0000123394 00000 n 0000123881 00000 n 0000125789 00000 n 0000128126 00000 n 0000129042 00000 n 0000129973 00000 n 0000130622 00000 n 0000131217 00000 n 0000131690 00000 n 0000132164 00000 n 0000136394 00000 n 0000135962 00000 n 0000132510 00000 n 0000136269 00000 n 0000136104 00000 n 0000136331 00000 n 0000138126 00000 n 0000137942 00000 n 0000136516 00000 n 0000138064 00000 n 0000139711 00000 n 0000139527 00000 n 0000138209 00000 n 0000139649 00000 n 0000141629 00000 n 0000214107 00000 n 0000212248 00000 n 0000141479 00000 n 0000139794 00000 n 0000212122 00000 n 0000211814 00000 n 0000211968 00000 n 0000212184 00000 n 0000211569 00000 n 0000211744 00000 n 0000211791 00000 n 0000254260 00000 n 0000254324 00000 n 0000213985 00000 n 0000212371 00000 n 0000254198 00000 n 0000253953 00000 n 0000254128 00000 n 0000254175 00000 n 0000256458 00000 n 0000405782 00000 n 0000256300 00000 n 0000254474 00000 n 0000405533 00000 n 0000405048 00000 n 0000405211 00000 n 0000405657 00000 n 0000405366 00000 n 0000508276 00000 n 0000404802 00000 n 0000404977 00000 n 0000405024 00000 n 0000420794 00000 n 0000420857 00000 n 0000410404 00000 n 0000409409 00000 n 0000405905 00000 n 0000410216 00000 n 0000410278 00000 n 0000409575 00000 n 0000409732 00000 n 0000410341 00000 n 0000409886 00000 n 0000410053 00000 n 0000412297 00000 n 0000418426 00000 n 0000412147 00000 n 0000410539 00000 n 0000418300 00000 n 0000417991 00000 n 0000418362 00000 n 0000418145 00000 n 0000417747 00000 n 0000417922 00000 n 0000417969 00000 n 0000420920 00000 n 0000419727 00000 n 0000418537 00000 n 0000420292 00000 n 0000420354 00000 n 0000419877 00000 n 0000420087 00000 n 0000423256 00000 n 0000423126 00000 n 0000425660 00000 n 0000425636 00000 n 0000427389 00000 n 0000427365 00000 n 0000430273 00000 n 0000430215 00000 n 0000433044 00000 n 0000432999 00000 n 0000438656 00000 n 0000438386 00000 n 0000448654 00000 n 0000448348 00000 n 0000451315 00000 n 0000451185 00000 n 0000461996 00000 n 0000461651 00000 n 0000478830 00000 n 0000478399 00000 n 0000483723 00000 n 0000483535 00000 n 0000488046 00000 n 0000487906 00000 n 0000502662 00000 n 0000502302 00000 n 0000507838 00000 n 0000507710 00000 n 0000508377 00000 n 0000508455 00000 n 0000509762 00000 n 0000510963 00000 n 0000511002 00000 n 0000511040 00000 n 0000511169 00000 n trailer << /Size 363 /Root 361 0 R /Info 362 0 R /ID [<4173405B25C2ED13FD0192DAC6602C7D> <4173405B25C2ED13FD0192DAC6602C7D>] >> startxref 511432 %%EOF espresso-5.0.2/Doc/user_guide.toc0000644000700200004540000001003412053147350015725 0ustar marsamoscm\contentsline {section}{\numberline {1}Introduction}{2}{section.1} \contentsline {subsection}{\numberline {1.1}People}{3}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}Contacts}{4}{subsection.1.2} \contentsline {subsection}{\numberline {1.3}Guidelines for posting to the mailing list}{4}{subsection.1.3} \contentsline {subsection}{\numberline {1.4}Terms of use}{5}{subsection.1.4} \contentsline {section}{\numberline {2}Installation}{5}{section.2} \contentsline {subsection}{\numberline {2.1}Download}{5}{subsection.2.1} \contentsline {subsection}{\numberline {2.2}Prerequisites}{6}{subsection.2.2} \contentsline {subsection}{\numberline {2.3}\texttt {configure}}{7}{subsection.2.3} \contentsline {subsubsection}{\numberline {2.3.1}Manual configuration}{9}{subsubsection.2.3.1} \contentsline {subsection}{\numberline {2.4}Libraries}{9}{subsection.2.4} \contentsline {paragraph}{BLAS and LAPACK}{9}{section*.2} \contentsline {paragraph}{FFT}{10}{section*.3} \contentsline {paragraph}{MPI libraries}{10}{section*.4} \contentsline {paragraph}{Other libraries}{10}{section*.5} \contentsline {paragraph}{If optimized libraries are not found}{10}{section*.6} \contentsline {subsection}{\numberline {2.5}Compilation}{11}{subsection.2.5} \contentsline {subsection}{\numberline {2.6}Running tests and examples}{12}{subsection.2.6} \contentsline {subsection}{\numberline {2.7}Installation tricks and problems}{13}{subsection.2.7} \contentsline {subsubsection}{\numberline {2.7.1}All architectures}{13}{subsubsection.2.7.1} \contentsline {subsubsection}{\numberline {2.7.2}Cray XE and XT machines}{14}{subsubsection.2.7.2} \contentsline {subsubsection}{\numberline {2.7.3}IBM AIX}{14}{subsubsection.2.7.3} \contentsline {subsubsection}{\numberline {2.7.4}IBM BlueGene}{15}{subsubsection.2.7.4} \contentsline {subsubsection}{\numberline {2.7.5}Linux PC}{15}{subsubsection.2.7.5} \contentsline {paragraph}{Linux PCs with Portland compiler (pgf90)}{15}{section*.7} \contentsline {paragraph}{Linux PCs with Pathscale compiler}{15}{section*.8} \contentsline {paragraph}{Linux PCs with gfortran}{16}{section*.9} \contentsline {paragraph}{Linux PCs with g95}{16}{section*.10} \contentsline {paragraph}{Linux PCs with Sun Studio compiler}{16}{section*.11} \contentsline {paragraph}{Linux PCs with AMD Open64 suite}{16}{section*.12} \contentsline {paragraph}{Linux PCs with Intel compiler (ifort)}{16}{section*.13} \contentsline {paragraph}{Linux PCs with MKL libraries}{17}{section*.14} \contentsline {paragraph}{Linux PCs with ACML libraries}{17}{section*.15} \contentsline {subsubsection}{\numberline {2.7.6}Linux PC clusters with MPI}{18}{subsubsection.2.7.6} \contentsline {subsubsection}{\numberline {2.7.7}Intel Mac OS X}{18}{subsubsection.2.7.7} \contentsline {paragraph}{Intel Mac OS X with ifort}{18}{section*.16} \contentsline {paragraph}{Intel Mac OS X 10.4 with g95 and gfortran}{18}{section*.17} \contentsline {paragraph}{Detailed installation instructions for Mac OS X 10.6}{19}{section*.18} \contentsline {paragraph}{Compilation with GNU compilers}{19}{section*.19} \contentsline {paragraph}{Compilation with Intel compilers}{20}{section*.20} \contentsline {section}{\numberline {3}Parallelism}{21}{section.3} \contentsline {subsection}{\numberline {3.1}Understanding Parallelism}{21}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Running on parallel machines}{21}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Parallelization levels}{22}{subsection.3.3} \contentsline {paragraph}{About communications}{23}{section*.21} \contentsline {paragraph}{Choosing parameters}{23}{section*.22} \contentsline {paragraph}{Massively parallel calculations}{23}{section*.23} \contentsline {subsubsection}{\numberline {3.3.1}Understanding parallel I/O}{24}{subsubsection.3.3.1} \contentsline {subsection}{\numberline {3.4}Tricks and problems}{24}{subsection.3.4} \contentsline {paragraph}{Trouble with input files}{24}{section*.24} \contentsline {paragraph}{Trouble with MKL and MPI parallelization}{25}{section*.25} \contentsline {paragraph}{Trouble with compilers and MPI libraries}{25}{section*.26} espresso-5.0.2/Doc/release-notes0000644000700200004540000012323212053145633015563 0ustar marsamoscmNew in 5.0.2 version: * DFT+U with on-site occupations from pseudopotential projectors; DFT+U+J (both experimental) * Calculation of orbital magnetization (experimental) Fixed in 5.0.2 version: * the random-number generator wasn't checking for incorrect seeding; under some unlikely circumstances this might lead to strange errors * k-point parallelization in v.5.0 and 5.0.1 was affected by a subtle problem: the distribution of plane waves was not always the same on all pools of processors. While results were still correct, strange problems (e.g. lockups) could result. Also: there are more and more machines that are not able to produce the same results starting from the same data on different processors. Charge-density mixing is now performed on one pool, broadcast to all others, to prevent trouble. * upftools: fhi2upf converter of v.5 introduced a small error in some cases * Small error in the calculation of rPW86 functional, due to a mismatch between its previous definition (Slater exchange contained in GGA) and the check on the rho=>0, grad rho=>0 limits. Note that a similar problem might also affect hcth, olyp, m06l functionals. The new PBEQ2D functional (introduced in 5.0.1) was also not correct. * NEB calculation can get stuck if the code tries to read &ions namelist in the PWscf-related input section * NEB: spurious blank character appearing in lines longer than 80 characters with Intel compiler (same problem that was previously fixed in PWscf) * PH: bug in symmetrization in some special cases (supercells of graphene) * PH: bug in restart when the code stops during self consistency * PH: ph.x with images wasn't working any longer * PH: electron_phonon='simple' wasn't working together with ldisp=.true. * PH: images with a single q point were not collecting properly the files. * PH: grid splitting of irrep + single q point + wf_collect=.true. was not working New in 5.0.1 version * vdW-DF functional and DFT-D extended to CP (experimental) * PWscf: Noncollinear/spin-orbit Berry Phases (experimental) * New functionals: SOGGA, M06L (courtesy of Yves Ferro), PBEQ2D (courtesy of Letizia Chiodo) Incompatible changes in 5.0.1 version: * Variable "amconv" removed from constants.f90, use "amu_ry" instead * ld1.x no longer generates pseudopotentials into UPF v.1 Fixed in 5.0.1 version * Funny frequencies from matdyn.x if masses were read from file * Stress calculation in parallel execution was wrong in the Gamma-only case when ScaLAPACK was present (v.5.0 only) * Misc compilation problems with old compilers New in 5.0 version * More ways of calculating electron-phonon coefficients. * Full DFT+U scheme (with J and additional parameters) implemented. Should work also for fully-relativistic calculations. * band parallelization for Green function sum in EXX (memory replication). Incompatible changes in 5.0 version: * Postprocessing codes dos.x, bands.x, projwfc.x, now use namelist &dos, &bands, &projwfc respectively, instead of &inputpp * Directory reorganization: whole packages into subdirectories, almost nothing is in the same directory where it used to be. * atomic masses in the code are in amu unless otherwise stated * Options 'cubic'/'hexagonal' to CELL_PARAMETERS removed: it is no longer useful, the code will anyway find the correct sym.ops. * Options 'bohr'/'angstrom'/'alat' to CELL_PARAMETERS implemented * -DEXX no longer required for exact exchange or hybrid functionals * PHonon: input variable 'elph' replaced by 'electron_phonon' Fixed in 5.0 version * Missing checks for unimplemented cases with electric fields * CP with electric fields wasn't working any longer in parallel due to an unallocated variable * VERY NASTY bug: exchange-correlation keyword 'PW91' was incorrectly interpreted (PZ LDA instead of PW) in all 4.3.x versions * A few glitches when the standard input is copied to file * PW: LDA+U crash in the final step of a vc-relax run, due to a premature deallocation of a variable * PW: constraint 'atomic direction' on noncolinear magnetization wasn't working properly * PW: tetrahedra were not working with magnetic symmetries, and not yet working in the noncolinear case as well. * Velocity rescaling in variable-cell MD wasn't really working * Workaround for frequent crashes in PAW with vc-relax * In some cases spin-polarized HSE was yielding NaN's * Two instances of an array not always allocated passed as variable to routine (init_start_k and dynmatrix.f90) - harmless but not nice * disk_io='low' or 'none' wasn't working if a wavefunction file from a previous run was found * CP + OpenMP without MPI wasn't working with ultrasoft pseudopotentials * Bug in CASINO to UPF converter * Bug in k-point generation in the noncollinear case * ESM with spin polarization fixed * Weird problem with irreps in PHonon * Bug in turbo_lanczos.x . Restarts of polarizations other than ipol=1 or ipol=4 were not working properly due to buggy test_restart routine. New in 4.3.2 version * A few crystal lattices can be specified using the traditional crystallography parameter (labelled with negative ibrav values) * A few extensions to PP format converters, conversion to UPF v.2 * C09 GGA Exchange functional, courtesy of Ikutaro Hamada Fixed in 4.3.2 version * Bugfix for pw2casino: total energies should now agree with pwscf total energies for any number of nodes/k-points, also for hybrid functionals. Note: bwfn files produced before and after this patch will differ! * Funny results in the last step of variable-cell optimization, due to bad symmetrization in presence of fractional translations * OpenMP crash with PAW * Removed lines in iotk that confused some preprocessors * More glitches with new xc functionals, compatibility with previous cases: HF, OEP, PZ * Variable-cell optimization at fixed volume broke hexagonal symmetry * NEB: possible problem in parallel execution (if command-line arguments are not available to all processors) avoided by broadcasting arguments * PWGui documentation updated to reflect cvs to svn switch * Some formats increased to fit printout of large cells * PW: the cell volume omega must be positive definite even when the lattice vectors form a left-handed set * PW: a bad initialization (of becsum) in the paw spin/orbit case made the convergence more difficult * PW: couldn't read any longer data files written by previous versions * PHonon: problem with the D_4h group when the matrices of the group are not in the same order as in the routine cubicsym * Yet another LDA+CPU+U fix: forces were wrong in spin-polarized case * PW was not stopping anymore when two inconsistent dft were given * atomic: default for non-local correlation is set to " " AND upf%dft is trimmed before being written by write_upf_v2.f90. Therefore older versions of pw will still work if no vdW is present * inlc label for vdw-df is set as VDW1, consistently with the comment and needed to avoid matching conflict with VDW2 New in 4.3.1 version: * New, improved version of GIPAW (available as a separate package) * Effective Screening Medium (Otani and Sugino PRB 73 115407 (2006). * CP: faster implementation of LDA+U Fixed in 4.3.1 version: * atomic: behavior of which_augfun='PSQ' made consistent with documentation * CP: LDA+U buggy; PLUMED wasn't working * Misc compilation and configure problems: line exceeding 132 characters, syntax not accepted by some compilers, pathscale+mpif90 not recognized, etc. * PW: nasty out-of-bound bug leading to mysterious crashes or incorrect results in some variable-cell calculations. Also in variable-cell: last scf step could crash due to insufficient FFT grid if the final cell was larger than the initial one * PW: minor bug in damped dynamics (hessian matrix incorrectly reset) * PW: bug in LDA+U forces for the Gamma-only case * Electron-Phonon code wasn't working any longer in serial execution * PH with input variable "fildrho" and D3 were not working due to inconsistencies in the calls to io_pattern * PWCOND: fixed bug when the write/read option is used for the case of different leads. * NEB + nonlocal exchange (DF-vdW) or hybrid functionals wasn't working * NEB: incorrect parsing of intermediate images fixed * HSE numerical problems in function expint * XSPECTRA wasn't working any longer due to missing updates to read_file_xspectra.f90 * epsilon.f90: the term 1 must be added to diagonal components only! New in 4.3 version: * CP only, experimental: parallelization over Kohn-Sham states * Dispersion interactions (van der Waals) with nonlocal functional * Additions to projwfc: k-resolved DOS, LDOS integrated in selected real-space regions * Constant-volume variable-cell optimization * Non-colinear and spin-orbit PAW * Penalty functional technique in DFT+U calculations (CP only) Incompatible changes in 4.3 version: * pw.x no longer performs NEB calculations. NEB is now computed by a separate code, NEB/neb.x . NEB-specific variables are no longer read by pw.x; they are read by neb.x after all pw.x variables * NEB for cp.x no longer available * iq1,iq2,iq3 removed from input in ph.x; use start_q, last_q instead * Several global variables having the same meaning and different names in CP and in all the other codes (PW) have been given a common name. Calls to fft also harmonized to the CP interface fwfft/invfft: Old (CP) New (PW) Old (PW) New (CP) nnr/nnrx nrxx nrx[123] nr[123]x nnrs/nnrsx nrxxs nrx[123]s nr[123]sx ngml ngl ig[123] mill (replaces mill_l) ngmt ngm_g ngs ngms cft3/cft3s fwfft/invfft ngst ngms_g g gg gx g gcuts gcutms ecutp ecutrho ecutw ecutwfc gzero/ng0 gstart np, nm nl, nlm nps, nms nls, nlsm Fixed in 4.3 version: * CP: Input external pressure is in KBar and not in GPa like it was formerly in CP. Input value for variable "press" in cell namelist should be given in KBar as stated in the documentation! * CP: incorrect stress calculated in the spin-polarized case * CP: memory leak in LDA+U calculations * CPPP: spurious line in all versions since 4.2 was causing an error * PW: LSDA + Gamma tricks + task groups = not working. Also: pw.x -ntg 1 was activating task groups (harmless) * PW: corrected an old bug for Berry's phase finite electric field calculations with non-orthorhombic simulation cells. Also fixed an old but minor bug on averaging of Berry phases between strings * PW: problem with symmetrization in the noncollinear case * PW: tetrahedra+noncolinear case fixed (courtesy of Yurii Timrov) * option -D__USE_3D_FFT wasn't working any longer in v.4.2.x * PP: calculation of ILDOS with USPP wasn't working in v.4.2.x * PH: elph=.true. and trans=.false. was not working any longer. * PH: electron-phonon data file for q2r.x was not properly written in some cases (-q not in the star of q). Also: questionable syntax for formats in lambda.f90 was not accepted by gfortran * D3: k-point parallelization fixed again Fixed in version 4.2.1: * CP: problem in electronic forces with OpenMP parallelization * real-space Q functions (tqr=.true.) not working in noncollinear case * XC potential in CP was not initialized when condition (rho > 10^(-30)) was not satisfied; this is usually harmless but potentially dangerous * CP could not read data written from PW in spin-polarized cases * In at least some cases, cpmd2upf.x was yielding incorrect PPs * support for MKL incomplete (only in packaged version, not in cvs) * glitch in pw2wannier if / missing at the end of outdir * linking error when compiling qexml * misc problems in plotband.f90 * the new G-space symmetrization was not working properly for the magnetization in the noncollinear case * CP: incorrect results in parallel execution if the card K_POINTS was present in input and contained a point different from Gamma * D3: Fermi energy shift was only symmetrized on the sub-set of the symmetry operations that leave q unchanged. * plot_io.f90: for large celldm(1), there was no space between ibrav and celldm. Courtesy of E. Li. * A problem in projwfc in the spin-orbit case introduced in version 4.1.3. Courtesy of R. Mazzarello. New in version 4.2: * Removal of duplicated and unused routines * Major reorganization of the distribution itself: external packages no longer in the repository * New package GWW for GW calculations with Wannier functions * Grid parallelization for the phonon code, code cleanup * Better OpenMP+MPI parallelization * Real-space PP non-local projectors (experimental) * Martyna-Tuckerman algorithm for isolated systems * Better q=>0 limit for Exact-Exchange calculations * HSE functional * Bug fixes and output cleanup for cp.x autopilot * Parallel symmetrization in G-space Fixed in version 4.2: * A few occurrences of uninitialized variables and of incorrect INTENT * The value of DFT set in input (instead of DFT read from PP files) was ignored by all codes using the data file (phonon, postprocessing, etc) * PW: glitches in restart (now it works also with exact exchange) * D3: real-space contribution to the Ewald term was incorrect, since the initial release. Since such term is usually very small, the error was also very small. Also: preconditioning was not properly implemented, causing unnecessary slow convergence Incompatible changes in version 4.2: * changed defaults: startingwfc='atomic+random' in pw.x (instead of 'atomic') * calculations 'fpmd', 'fpmd-neb' removed from CP: use 'cp' or 'neb' instead * calculation 'metadyn' and related variables removed from PW and CP: use the "plumed" plugin for QE to perform metadynamics calculations * nelec, nelup, neldw, multiplicity variables removed from input: use tot_charge and tot_magnetization instead * calculation of empty Kohn-Sham states, and related variables, removed from cp.x: use option disk_io='high' in cp.x to save the charge density, read the charge density so produced with pw.x, specifying option "calculation='nscf'" or "calculation='bands'" * "xc_type" input variable in cp.x replaced by "input_dft" (as in pw.x) * ortho_para variable removed from input (CP); diagonalization='cg-serial', 'david-serial', 'david-para', 'david-distpara', removed as well Use command-line option "-ndiag N" or "-northo N" to select how many processors to use for linar-algebra (orthonormalization or subspace diagonalization) parallelization. Note that the default value for ndiag/northo has changed as well: 1 if ScaLAPACK is not compiled, Nproc/2 if Scalapack is compiled * "stm_wfc_matching" removed from pp.x Fixed in version 4.1.3: * CP: electric enthalpy wasn't working properly with spin polarization * PWCOND: Bug fix in automatic generation of 2D k-points * bug in PAW negatively affected convergence (but not the results) * possible out-of-bound errors in divide_class and divide_class_so * non initialized variables in PAW charge density plotting Fixed in version 4.1.2: * fixed nonstandard C construct in memstat.c that picky compilers didn't like * PBEsol keyword wasn't properly recognized * call to invsym with overlapping input and output matrix could result in bogus error message * cp.x: update of dt with autopilot wasn't working * for some magnetic point groups, having rotation+time reversal symmetries, the k-point reduction was not correctly done * wavefunctions for extrapolation written to wfcdir and not to outdir * Some constraints were not working in solids, due to an incorrect estimate of the maximum possible distance between two atoms * Parallel execution of D3 wasn't working in at least some cases (e.g. with k-point parallelization) since a long time * restart of phonon code with PAW wasn't working Fixed in version 4.1.1: * newly added DFT-D wasn't working properly with k-point parallelization * Gamma-only phonon code wasn't working any longer if pseudopotentials with nonlinear core correction were used * Check of lspinorb flag consistency between left/right lead and scattering region in pwcond.x was not working properly; wrong print-out of E-Ef when Nchannels=0 also fixed. * Check on convergence of variable-cell damped dynamics was not working as expected in the presence of constraints * Velocity rescaling in CP was not working, and it was performed also if not required when ion velocities were set to 'random' * ESPRESSO_TMPDIR is caught by gipaw.x as well * Phonon calculation could not be performed with only local PPs * Small error in the definition of the saw-tooth potential for slab calculations with E-field: the "physical" dimensions of the R-space grid are nr1,nr2,nr3 NOT nrx1,nrx2,nrx3 * Misc compilation problem for: gfortran v.4.1 (casino2upf), pathscale 3.2 (mp_base), xlf 12.1 (buggy compilation of iotk) * Possible memory leak in PW/update_pot.f90 * Spin-polarized calculations in CP had a bug since v.4.1 when using parallel distributed diagonalization ("ortho" group) * FFT glitches: Nec SX routines were not properly called, OpenMP was not compatible with all FFTs * augmentation charges in real space (tqr=.true.) and k-point parallelization (pools) was not working due to bogus check * fhi2upf.x : fixed segmentation fault in some cases with ifort * OLYP XC functional was incorrectly flagged as Meta-GGA (courtesy of Latevi Max Lawson Daku) * Minor corrections and extensions to the documentation New in version 4.1: * New exchange-correlation functionals: PBEsol and WC (courtesy of Willam Parker, Ohio State U.) LDA with finite-size corrections (Kwee, Zhang, Krakauer, courtesy of Ester Sola and Dario Alfe) * Dispersion calculation with DFT-D (Grimme) * mixed openMP-MPI parallelization (very experimental) Fixed in version 4.1: * the sum of all nuclear forces is no longer forced to zero in Car-Parrinello dynamics. Forcing them to zero was not completely correct -- only the sum of nuclear plus "electronic" forces should be exactly zero -- and was causing loss of ergodicity in some cases. * symmetry analysis for spin-orbit case: a few signs in the character tables of C_3 and S_6 have been changed so that they agree with the Koster-Dimmock-Wheeler-Statz tables. * a problem in the plotting routine plotband.f90 could yield wrong band plots even when the symmetry classification was correct. * serious bug in plotting code pp.x: all plots requiring Fourier space interpolation, i.e.: 1d, 2d, user-supplied 3d grid, spherical average, were yielding incorrect results if performed on data produced by pw.x (and cp.x) using Gamma-only option. Workaround introduced, but it works (around) only if the desired data is first saved to file, then plotted. * stop_run was not properly deleting files in the case of path calculations * Coulomb pseudopotentials in UPF v.2 format were not working (courtesy of Andrea Ferretti) * electron-phonon calculation on a uniform grid of q-points + Delta Vscf and dynamical matrices read from file should be fine now: the Delta Vscf saved to file are no longer overwritten at each q-point. Also: the xml file written by pw.x is no longer overwritten by ph.x. * nasty problem with C routines receiving fortran strings as arguments. The way it was done may lead to stack corruption and all kinds of unexpected and mysterious problems under some circumstances. Now fortran strings are converted to integer arrays, that can be safely passed to C, and converted back in Modules/wrappers.f90 * USPP generated with ld1.x may have been incorrectly written to UPF format v.2 in all 4.0.x versions . The error may have been small enough to go unnoticed but may be not negligible. All USPP in UPF format tagged as version 2.0.0 should be regenerated. Fixed in version 4.0.5: * option calwf=1 (CP with Wannier functions) was not working * more problems in symmetry analysis in special cases for C_4h and D_2h symmetry * various small memory leaks or double allocations in special cases * problem with effective charges d Force / d E in the noncollinear+NLCC case * calculation of ionic dipole, used for calculations with sawtooth potential, used wrong reference point assuming the field parallel to z axis (while it can be parallel to any reciprocal basis vector). All relax calculation in non-orthorhombic cells, and all calculations with option tefield and edir/=3, were completely wrong. Non-relax calculation in the same cathegory were correct, apart from a constant, but system-dependent, addictive factor in total energy. * generation of supercells in matdyn was not working (since a long time) * PWCOND: two more small bug fixed (in CVS since june) Fixed in version 4.0.4: * Structural optimization with external sawtooth potential was not working correctly (electric field disappeared after first run). All versions after october 2005 affected. * problem in FFTW v.3 driver in parallel execution (Davide) * option maxirr disabled * memory leak in pw_readfile in parallel * the phonon code was not working when wf_collect=.true. and either ldisp=.true. or lnscf=.true. * incorrect make.sys produced by configure on some IBM machines * rigid.f90: the fix introduced in v. 4.0.1 to improve convergence wasn't really correct Fixed in version 4.0.3: * CP: array qv allocated in newd wasn't deallocated in all cases, leading to either a crash or a memory leak (Ralph) * Task groups bug fix: array tg_rho was not cleared at every k point cycle. This was causing problems with some combinations of "-npool" and "-ntg". * PWCOND: a bug with some array bounds fixed (A. Smogunov) * Problem with the generation of the atomic wavefunctions in the projwfc code when a scalar relativistic PP is used with lspinorb=.true. * Bug fix in symmetry analysis for the case S_6 (reported by Marino Vetuschi Zuccolini) and also in: S_4, T_h, C_3h, C_4h, C_6h. Fixed in version 4.0.2: * Nuclear masses not correctly displayed for variable-cell calculations * Probably all results for EFG (electric field gradients) were wrong, due to an incorrect multiplication of "r" with "alat" inside a loop (should have been outside: routine PW/ewald_dipole.f90) * Calculation with fixed magnetization and nspin=2 (using 2 fermi levels) was not working in v. 4.0.1 * non linear core correction was not detected in FPMD run * effective charges + US PP + spin-orbit not correct in noncubic cases. * symm_type was not properly set by pw_restart (used in various post-processing including phonons) when using free lattice (ibrav=0) and symm_type=hexagonal. * CP: conjugate gradient had a bug in some cases of parallel execution. Also: default max number of iterations was not what was promised in the documentation (100) * phonon: alpha_pv depended on the number of unoccupied bands in insulators (harmless). * fpmd was using wrong forces propagate cell variables in variable-cell calculations. Also: interpolation tables were a little bit too small for variable cell simulation (not really a bug but it could be annoying) * Minor glitch in configure for pathscale compiler. Note that in the machine that has been tested, compilation of iotk fails for mysterious reasons if CPP = pathcc -E, while it works with CPP = /lib/cpp -P --traditional Fixed in version 4.0.1: * Some scripts used in tests/ and in examples were not posix-compliant and could fail in some cases * In cg calculations with cp, the case of no spin multiplicity (i.e. nspin=1) with odd number of bands was yielding an error "c second dimension too small" * rigid.f90: sum over G-space in long-range term, used in q2r.x and matdyn.x, wasn't really converged for sufficiently large cells * too many automatic arrays in "set_asr" called in matdyn.f90, causing a mysterious crash for systems larger than a few atoms * incorrect call to "sgama" in matdyn.f90 could lead to failures with strange messages when calculating phonon DOS * c_mkdir is explicitly defined as integer*4 in order to prevent problems in 64-bit machines with default 64-bit integers * PP/chdens.f90: incorrect orthogonality test for axis * GIPAW: 10^3 factor missing in conversion * GIPAW: paw_recon[]%paw_betar[] was not initialised and caused NaN's with IBM compilers. Courtesy of Christos Gougoussis (IMPMC, Paris). * Minor glitches in PWgui * cppp.x was not working in v.4.0 * Workaround for bluegene weirdness extended to complex hamiltonians * PP/projwfc.f90: Problems with file names in systems > 1000 atoms * Workaround for ATLAS bug causing random crashes * Minor bug in helpdoc: adding syntaxFlush to linecard * Incorrect dimensions in PW/local.f90 (courtesy of Zhiping) Fixed in version 4.0: * Unpredictable results when the output from a spin-polarized CP calculation was used for post-processing. This was due to an incorrect treatment of the case where the number of up and down states are not the same. There was also an inconsistency in the treatment of the number of up and down electrons, that can be in principle real, unlike the number of states that is integer * In MD calculations with PWscf, there was the possibility of an out-of-bound error, with unpredictable consequences, including in at least one case hanging of parallel jobs * Due to a bad dimensioning of variable hubbard_l, DFT+U results could be wrong if atomic type N with U term has N > L=maximum hubbard L * a few symmetries were confusing the symmetry finder * serious bugs in Berry's phase calculation. It affected only the US case and only some terms, so the error was small but not negligible. There were three different bugs, one introduced when the spherical harmonics were modified in the rest of the code, two that I think have been there from the beginning. * various glitches with wf_collect option in the noncollinear case * mix_rho was not working properly for lsda with data saved to file and double grid Fixed in version 3.2.1-3.2.3: * CP in parallel execution had a serious bug if the third dimension of FFT arrays (nr3x/nr3sx) was not the same as FFT order (nr3/nr3s) * restart of pw.x in parallel could go bananas under some not-so-unusual circumstances, due to bad setting of a variable * various phonon glitches: pools and lsda, pools and dispersions, option lnscf, were not working * incorrect exchange-correlation contribution to the electro-optical coefficient * check for stop condition was unsafe with pools and could hang pw.x * fixed occupations in parallel: array not allocated on all processors * Yet another problem of poor accuracy of routines calculating spherical bessel functions - harmless except in some cases of pseudopotential generation * DOS EOF characters present in some files could cause trouble during installation * restart in phonon calculations was not always properly working * possible divide-by-zero error in dV_xc/dz (spin polarized case) * gamma_gamma symmetry was not working for open-shell molecules * T_h group not correctly identified in postprocessing * missing initialization of rho could lead to serious trouble if the physical and true dimensions of FFT grid did not coincide * Ewald real-space term could have been incorrectly calculated if an atom was far away from the unit cell * Some variables were used before they were initialized - this could lead to crashes or unpredictable behaviour on some machines * lattice parameters a,b,c,cosab,cosac,cosbc were not properly copied to the celldm in the case of triclinic lattice Fixed in version 3.2: * In same cases the energy under an external sawtooth potential simulating an electric field was not correct * Case ibrav=13 fixed for good this time!!! * Bug in PH/clinear.f90 for cells having nr1 /= nr2 may have affected new electron-phonon algorithm * Poor accuracy of routines calculating spherical bessel functions for high l and small q - harmless except in very special cases * LDA+U with variable-cell dynamics/relaxation was wrong due to missing rescaling of the integrals of atomic wavefunctions. This bug has been present since at least 3.0 * Parallel subspace diagonalization could occasionally fail; replaced by a new algorithm that is much more stable * Restart problems in parallel run for two cases: 1) with pools, 2) with local filesystems Fixed in version 3.1.1: * Methfessel-Paxton broadening was hardcoded in the calculation of the electron-phonon coefficients (ngauss1=1 in PH/elphon.f90). There is no good reason to use this instead of simple gaussian (ngauss1=0), which, moreover, guarantees positive definite results. Fixed in version 3.1: * various problems in stress calculation, both in PW and in CP * in phonon dispersion calculation, the threshold for diagonalization was not always what was expected to be. Minor numerical differences could result. * the new algorithm for electron-phonon calculation removes a serious bug in the old algorithm, present in v.2.1 to 3 included: when electron-phonon coefficients were calculated together with the dynamical matrix, the symmetrization of coeffcients was incorrect. Results from separate calculations were correct. Fixed in version 3.0: * latgen.f90 : case ibrav=13 bad * kpoints.f : case ibrav=5 bad Fixed in version 2.1.5: * bad forces and stresses with LDA+U in spin-unpolarised case * bad printout of Lowdin charges in projwfc * FPMD had a problem with some types of UPF PPs Fixed in version 2.1.4: * Incorrect initial guess for occupancies in LDA+U (init_ns) * bogus error in postprocessing with local pseudopotentials only * several errors in third-order energy derivatives (D3/) * checks on several unimplemented cases were missing Fixed in version 2.1.3: * case ibrav=0 in CP was not properly working * forces in CP with core corrections were wrong (reported by Giacomo Saielli) * damped variable-cell dynamics in PWscf was not working properly * lambda.x could yield NaN's on negative frequencies * option "write_save" was not working in parallel * diagonalization of (0,0) matrix in init_paw_1 * out-of-bound error in readnewvan.f90 fixed * FPMD: bug with UPF PP when betas are not ordered as l=0,1,2,... * Possible out-of-bound error with US PP in some cases * Martins-Troullier norm-conserving PP generation had a small error when rcloc > rcut(l) * the default for relativistic vs nonrelativistic calculation in the atomic code was the opposite of what was intended * electron-phonon calculation was not working properly if called after a restart * Parallel execution on local filesystems (i.e. not visible to all processors) could hang due to a bad check in charge extrapolation * When imposing hermiticity in matdyn.x and dynmat.x codes in pwtools routine dyndiag was actually computing the complex conjugate of the dynamical matrix. Eigenvectors were therefore wrong, while eigenvalues were fine. (thanks to Nicolas Mounet) Fixed in version 2.1.2: * The phonon code was yielding incorrect results when 4-dimensional irreps were present (i.e. A point in graphite) and ultrasoft PP used (reported by Nicolas Mounet) * in some cases ld1 was writing a bad UPF file * in some cases the charge density was not conserved during the charge mixing * various problems with potential extrapolation in neb and smd * variable-cell dynamics and optimization was not working in parallel * Berry phase calculation in parallel should have been disabled * bug in readfile_config when restarting without a "*.save" file * crash in pw2casino due to bad call to v_of_rho Fixed in version 2.1.1: * memory leak in Raman code * disproportionate memory requirement in phonon code with USPP * dangerous calls to read_restart_tetra and write_restart_tetra when restarting with no allocated tetrahedra * vc-relax was not working * projwfc failed with lda+U * incorrect automatic generation of k-points in the non colinear case: inversion symmetry is not always present because of the presence of a magnetic field in the Hamiltonian * electron-phonon calculation was not working if called directly after a phonon calculation * PWCOND + FFTW + parallel execution = not good * cell minimization with steepest descent was not working (CP/FPMD) * various Alpha, IBM, SGI, SUN, PGI compilation problems Fixed in version 2.1: * various T3E compilation problems * cpmd2upf was yielding incorrect DFT if converting BLYP PPs * some variables not properly written and read in restart file * The value of gamma_only was not correctly set when restarting or reading from file with option __NEW_PUNCH enabled * Incorrect calculation of eloc in pw2casino * Two serious bugs in the local-TF screening : possible occurrence of division by zero (present since v1.2), wrong mixing of spin polarized systems * cpmd2upf failed with some files due to bad check * Intel compiler v.8: wavefunction files four times bigger than needed * compilation problems on some version of SGI compiler * non-collinear code was not working with insulators and nbnd > nelec/2 * multiple writes to file in parallel execution when calculating electron-phonon coefficients * various bugs in LBFGS * NEB + LDA+U = crash * compilation problems with __NEW_PUNCH * planar average crashed if used with a cubic system * Gamma-only phonon code not working for Raman calculations in some cases * yet another bug in phonon and k-point parallelization when reading namelist (phq_readin) * options startingwfc and startingpot were ignored if restarting from a previous calculation * pw2casino interface didn't work properly in spin-polarized case and didn't use variable "outdir" * minor bug in pwtools/pwo2xsf.sh * serious bug in the path interpolator * phonon, post_processing, various other auxiliary codes were not working with k-point parallelization (pools) due to double call to init_pool Fixed in version 2.0 : * wrong results when running Berry-phase calculation in parallel execution: it was not implemented but no warning was issued * variable-cell code was subject to overflow and floating-point errors * phonon + nosym=.true. was not properly done * out-of-bound error in Berry Phase calculation * out-of-bound errors in phonon if 4-dimensional irreps were present (also d3.x was not working properly in this case) * Berry-phase calculation had problems in low-symmetry cases * phonon with k-point parallelization (pools) was yielding wrong results in some cases (since v. 1.2 included) * upftools/cpmd2upf.f90: wrong conversion due to Rydberg-Hartree mess * PW/input.f90: lattice parameter a converted to wrong units if input is given as a,b,c,cos(ab),cos(ac),cos(bc) instead of celldm(:) * Wrong coordinates written if atomic_positions='crystal' (thanks to Francois Willaime) Fixed in version 1.3.0 : * PH/elphon.f90 : el-ph calculation in the US case was not correctly working in v.1.2.0 (it was not implemented in previous versions). An US term in the calculation of deltaV * psi_v was missing. Fixed by M. Wierzbowska and SdG * various problems caused by too short file names fixed: file and directory names up to 80 characters are allowed (thanks to Serguei Patchkovskii and others) * LAPACK routines DSYTRF and DYSTRI require some character arguments (like 'U', 'L'). While most LAPACK implementations accept both lowercase and uppercase arguments, the standard is uppercase only. Various anomalies in self-consistency were caused by lowercase arguments. * Incorrect Make.pc_abs fixed * PGI compiler v.3.3-2 on Linux: PP/chdens.x coredump fixed * various T3E glitches in v.1.2.0 fixed * PP/work_functions.f90 : STM maps did not work in version 1.2.0 (undefined variable lscf was used, call to sum_band no longer needed) * PP/projwave.f90: symmetrization of projected dos was incorrectly performed using d1,d2,or d3 instead of their transponse. (affects all previous versions) * PW/new_ns.f90: symmetrization of occupation matrix ns needed for LDA+U calculations used incorrectly d2 matrices instead of their transponse. Thanks to Lixin He for finding out the problem and the solution. (affects all previous versions) Fixed in version 1.2.0 (f90) : * dynmat.f90: out-of-bound error fixed * pplib/chdens.F90, pplib/projwave.F90 : compilation problems for alpha (found by Giovanni Cantele) * postprocessing routines: problems with unallocate pointers passed to subroutine plot_io fixed (found by various people) * postprocessing with ibrav=0 was not working properly * rather serious bug in cinitcgg (used by conjugate-gradient diagonalization) could produce mysterious crashes. The bug appeared in version 1.1.1. * pplib/dos.f90 was not plotting the expected energy window * pplib/chdens.F90, pplib/average.F90 : wrong call to setv could cause an out-of-bound error Fixed in version 1.1.2 (f90) : * a check on the number of arguments to command line in parallel execution was added - Intel compiler crashes if attempting to read a nonexistent argument * tmp_dir was incorrectly truncated to 35 characters in parallel execution * variable "kfac" was not deallocated in stres_knl. A crash in variable-cell MD could result. * an inconsistent check between the calling program (gen_us_dj) and the routine calculating j_l(r) (sph_bes) could result in error stop when calculating stress or dielectric properties * errors at file close in pw.x and phonon.x in some cases * tetrahedra work for parallel execution (ltetra is now distributed in bcast_input) * fixed some problems in automatic dependencies (Giovanni Cantele) Fixed in version 1.1.1 (f90) and 1.0.3 (f77) : * LSDA calculations need either gaussian broadening or tetrahedra but no input check was performed * restarting from a run interrupted at the end of self-consistency yielded wrong forces * projwave.F (projection over atomic functions) was not working with atoms having semicore states (found by Seungwu Han) * stm.F : option stm_wfc_matching was not working properly if symmetry was present (no symmetrization was performed) * dynmat.x : displacement patterns in "molden" format were incorrectly divided by the square root of atomic masses * d3: misc. problems in parallel execution fixed Fixed in version 1.1.0 (f90) and 1.0.2 (f77) : * an inconsistency in the indexing of pseudopotential arrays could yield bad dielectric tensors and effective charges if atoms where not listed as first all atoms of type 1, then all atoms of type 2, and so on (found by Nathalie Vast) * phonon with ibrav=0 was not working (info on symm_type was lost: found by Michele Lazzeri) * the generation of the two random matrices needed in the calculation of third order derivatives was incorrect because the random seed was not reset. This produced crazy results for q<>0 calculations. * the check on existence of tmp_dir did not work properly on Compaq (formerly Dec) alphas (thanks to Guido Roma and Alberto Debernardi). * a system containing local pseudopotentials only (i.e. H) produced a segmentation fault error * getenv was incorrectly called on PC's using Absoft compiler: the default pseudopotential directory was incorrect * out-of-bound bug in pplib/dosg.f fixed. It could have caused mysterious crashes or weird results in DOS calculations using gaussian broadening. Thanks to Gun-Do Lee for fixing the bug. * a missing initialization to zero in gen_us_dy.F could have yielded a wrong stress in some cases * phonons in an insulator did not work if more bands (nbnd) were specified than filled valence band only * electron-phonon calculation was incorrect if nonlocal PPs were used (that is, almost always) * Real space term in third order derivative of ewald energy was missing (not exactly a bug, but introduced a small error that could be not negligible in some cases) * bad call in dynmat.f corrected * compilation problems for PC clusters fixed (thanks to Nicola Marzari) Fixed in version 1.0.1: * recovering from a previous run in pw.x did not work on PC's * recovering from a previous run in pw.x did not work for stress calculation * poolrecover did not compile on some machines (thanks to Eric Wu) * PC with absoft compiler (and maybe other cases as well): bad type conversions for REAL and CMPLX resulted in poor convergence in some test cases. DCMPLX, DREAL used instead. * Asymptotic high- and low-density formulae used in PW91 and PBE unpolarized functionals gave a small but not negligible error, leading to bad convergence of structural optimization espresso-5.0.2/Doc/INPUT_CP.txt0000777000700200004540000000000012053440163020474 2../CPV/Doc/INPUT_CP.txtustar marsamoscmespresso-5.0.2/Doc/INPUT_NEB.xml0000777000700200004540000000000012053440163020616 2../NEB/Doc/INPUT_NEB.xmlustar marsamoscmespresso-5.0.2/Doc/quantum_espresso.png0000644000700200004540000011316612053145633017222 0ustar marsamoscm‰PNG  IHDRµjê© pHYsdd–ÅÝFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 ÌÈu› vpAgµž½†è€IDATxÚìýy¼mYUŠǘÍZk7§»}µPTÑ ¨”H"*ŠŠØ!1ñg¢Q_4jó’¼ÄgòŒ>QIÔgŒÆî)¨ØD ÒŠÒSR@õu»Óìf­5›1ÞsŸ}O5·€*¹÷V±¿Ÿ[»ÎÙgïµÖœkïù£ûRU¬°Âß6åýçó=^IDå÷ *¯'‹C•dÿ $JRŽ­Ã_졯°ÂÃöb_À OˆÁeu'0hÁ J‹ÕŸd°  ¢û>ÎBásO*¸¼˜}^‘Õ&h…. V̱ƒÂ=LÖ%(L1ÊzO‹ÿÎÆ=ïûð ”îóØçYœ„W̱ +æXáAB±ô8À’!èžÏzàå‘îN ²ü]Iï×ݵ +ü­ƒVqŽ>Ø÷S@Î=·Xæ—ëþâ5÷Í)¤XØ-DË` P°î{±Ê9ÌÅø +|6`Å+Vš…æÅ?Rä»sÆò‘ÏgðÂFæÜ#ö­e2c‡g¬°Â +oÕ kÐ}0)š! *¢$ Í奙CU‰ï{ÝÀDDD-,"M†ˆ@ì@lA eðŠ?VXá3Žs¬ð·½LŽ…6IsÀ"”7,ßU~0狜sá "‚rù5‘S&"Ã䉳£j.öd¬°ÂÃ+oÕC À(€¸ðCI€›sþœ¡†O9€ Îå¼.x"{îx‹ú ÚC2$#'H@ÎÐ HV¨*i&‰$‘$«$RUeªPED5ƒ„å¾71\bd@,Ä 6²d@“°!¶j™Ø*Á’±`6 §l0óª1„ÓéÀ,)ˆB°«ˆÉ +œ+›ã¡ ˆBT¤J¬¢È £(ÛóxdWþœ[_‹£ ˆ(RDDXZˆB$";#C³æXX$«dé­b@>«B‹5ý|^¦Þ`°a°’“Ù~(1Ø9M†Œ%1–ÙG5”„Ǽυ`ÕLt€thtîÿ+ÒXa…ûÇŠ9z r„HT‘¬¢2°Xb§Æ[ýôMeZX¡¤¤Òm¤*ÈÈ šT’HÒ,Œ9T5'ä^s†¤Â6Í™PH†(H‘÷ã “* P‡9ŠT*þØ/ŠÒÕ”d‰=³Sr`£–32–Ø Y%ÇÖ)uÍ"XB¬XDÚ`•eÎ)­ò{WXá“aÅ1@¥Gî:HOY ¢" "fÃÆ)WŠd„>íísÞ¯æãk,S Éœ£æ ’5÷š£H†Î 9jÎHPì‰4¥Å»T!ÍPE>çXðG uœÇæ(Ùºû‹>)qò`Rö rÄd4lÙZ#¶Ä–’Û…©a˜L@f€Š»jap)ˆV…+¬ðI°bއHZJ†)År„$ÒD‚a&†ñdj‚ 6Õ?Ñ¢C‘T‘zHÖÜSŽ$As”XdŠ,$ 5G–¤9€Ì¡ºÏ² Ï|JŽe}8ÝwvoÖÅóDeY_¼ŸÅ Á9Pò v¶”Èrj±[ÖLla-$@<Œ"³ÈV1A‹Aó@=}+¬ðÙ‚s<Ôöæè§SHÉF2©@ 3` ØÂ JÌÊDôé)Ò¢>" H 9©$Š3•„!=$RîŒM ÒA9A稒He?ÎeêÔò‘Œå}¿Ó~•ßy˜C%`iaÀŠœ’ª˜4õDÌP&q`{°bãÁL’@ÖÃ:˜v?Šnj`ÝÏ5(ÑŽ{¬°Âù±bއºí;ív4ÎXzh†&Va0ÁÈÁÀd[;øO9 T¡ 9 öš#RPJSÊIrO¹ÇÂ](G‘¤’L9©F*^)HÖý(=b*Ö5þ\e h‘ Fça#‘ª™¡Ð\Â쀘, UdҬ˓ 5™ÂVÙ‚ð dÀ^­'×ÃzØ d’fËê`ì²F@€h…>›°bއ4Ì%¶gf´K"{ˆfÓ¨ïÕöãO÷ Ф9j {¤ ÈIÓ’)õ’;N¤Gì!A¡ª Íši‚Ê"¼a,ˆ˜-[°3ˆ(¤b|…Q8ÞçÕQHd‘û«ÅÅ™$‘f ’dÕLšÍQ([˜Hì…qVI”-)Œp„$!ˆÛoŒXÃÌfÅ+¬ð)bÅ—(`ËrI.†@2ÃäNšOM?AØEš ÷5`Ëq 7LT³µÉH4* Œæð=޼ðQBqý(/âè (N#e ‘b„HŸ¤Kª¶#rOÒ"Ï‘{ä’¹‘GìaZ'Æ‘AMD Â`‹E^,««A¤D3³,ëÃÏ•ÖÜ•kf•BQ"¢ª–TETK‚fä>§Ê;"AH[fËûŒWÃ8¶5L%¹–T“«È¸&ÍÁ®F¬aØ®ñÝ‹a²o†¬jÔWXaÅ1ˆ ÌgˆSäR—S‚fKi •L=Fq")\1ˆhÖ”E„b@Š#RÜC:–Öä@©ƒ$ͽÆ^¤¥I# ìk!cÁ¶"öd ÈÀQâÏE„0 Àø¥•1e*vŸ#&kPÖlR…f³ˆµw¤ ± ‰Ä–9"'≠gT4kJªj$ÁJ¶‡ °âÕ856"pЬE…ŒUãÎ ÂËÒ½¶Â ++æ¸dq[pÕœ’ ÛÒíIØå<#é5&U(œMM=l¥Ì'&&Û¸8»ŸÕN”¹äÝjÐÔåR ¦ŸPNˆ‡ii)µ, i"H)§$ÈXdÊ2×k%~ca=Œ°]ÇBWÊ€÷«ù2Uyo o(/Ã!ç¹R ûs! µ«B!©…d*þ+‰P¡‘’£­$HP ÈY5HÎ{M†mÐäÔxr5'KÖeÞ¶dr[CI4cÀ€Hµ0ÈÂ.Z±Ç +`Å A$’sæîlî÷´ß52§ÜsΔIˆ‘;h¤d¬µ+&ˆI˜Ÿ·ž£PˆB¤¥8Õ0¥¨o9GŽ3„)Ò qN9²däm(‘Ã1°c`7ÁlaÌ>s;^Ѓ±Ë0¸ë(”QÒ«ˆ”ÎÛñIbXp,¤sÉïe[AD4B9"gp½_{Ø“Hk²¡9¶*‚Ü«––eë‘ ˆÔXÒ ÚS’D’öb ³ƒuD XÝï=µ*/_a¬˜ã’Å=" *"'{v‘gÐÀI l”@¬1œ Ù³|Ëîïø¤yŽ4AœØ8—Ü›{Ä âaŽØAJ>‚Æëájk؊بÙ$"eGÆ©q0^%âl†DD‹Ø¸a2JÌD`ß/ ¹‰XÏèà T•P|V ”T`H†Fä„Äfæzß é =²Eò,Ä$")HΜ3rDîaJ ßA#I„”ÐN€u £Î¸ ­¾)+¬p«ïÃ¥ ÕsRü9¹5q.ýLÓ”$" 2  J0ÄpÙÃÒ{o!OË;s„=Š3¤)ÅÖH@W’n÷¦ˆ-PClÔ À¦‚k`êerìׄ ŒUv°ØÃ%cL‰°%c m(’÷[q°Ü2¸óõùàê`´¡« EÔdŸ9Š1a"²dI#r@ö$=Ègtš£«+¤ èT{ÉrfIˆ»ã =r7DŽÉA€ä¡:€iÀʰ² u¬°€s\ê8¨dLÄÌD5t-r$È epNDJ`ïà+¸†r‘.bàçPr“(žÕØk˜Q?¥4Gœ!vHaí§H3‘¤°ÌžLý˜ØÃzr² ›Z¸Rbª7ˆö½U¶Rc‰‹þ¹Ea%°¡e“ðÂÊK…ÁÅ@Ï£>"ç¤y_ Q8pB‚´"I$"Ú‹$¤€\qŠ0=™93¹gÓRjIzeì=r€‹š³Ú@¹"c‘™œ‡fdØ [3ÌJq…°bއ–aÙEöªPIQCoRG1#0™s&Ã!X9Bï# [lÉa‚Ôkì8µˆ- ¥ˆ0…•¹JŸUaر«à×ÔX6žlCvW±©@®YÄÀ‡ñd<Œ%bˆ,$vX$o·(¿×(Ï—•KÈw.(”„2bbÀƒ°$HŒ¥ìØfä€!‘‰™ ®Bò3RVi5LȤEQŠ…ªB„­#ji¿Q-Q^2´Št¬°VÌqÉ A-¨RŽ Ö‚ 먅ÄPkRK3A«":§ì¼¯0€Ïư@CO%F ÷8íh!Eô-B4EžIž&m}'`@Nh€zÄ՘݀LÅΓ±dåFìfȶñ}5""f6æîÒî|·ã¾ÛÅÞÃwoÜÛ!¢{†ˆ†Œgx@a3RDZAÐ,dåJSo¢[ ZØ_#µ'΂Õ͆Ò0·B®’œT…¼ô”+°CµUR¬PR!*_\"l…rX1ÇÃE\Ö–NPT‘R§1H¦H‘CÐ"î!Íf¬00ž¸2¶«ÕVdjX§¶&SÁÖdd°5l SÂØïözñ±pÎÃXäaŒ–ŒAna4(@B‰Á°B3’B2RÔ®Õ ²DšJ¢¨’ ä1ÀZ€Xq7ÄVøìÁŠ9.8×HC÷Ÿ 0/ÅsD 3ıEî´›˜ÑÏâ‰iÆ9›ÚØ~Hn;‚À6°ŽüÖÁÕ°%b\ÃxcˆïÁ‹¬Ù‹Tk­0 eb Í,‚\#÷à<;‡d5÷–¬¤9kžJh äjHG9J9%4™µ*Ò Äd À J0 YQÇ ŸUX1Çà ºŒmì¯æ¤@N-ÂaaJqJ¹ç°‡Ô#¶è÷fИŮ‘«¸ZƒÁÈÔ5dkTc**¶Hš[{”^Dó#”A &Œ,”³AîA-Œ‡ušœ&/©7&hô¤E%—‘æ”#¥^SO©*9W6÷I3HU²ª# %½˜É @(b\+¬ðY„s<\°P£º»åQê0R‹4AØAØE?A˜S »H=âa&)23ŠWªÚT絑©©P5„õäÖ`Œ€¶ø…îÍ×mµÜûï·¨] ¹¦&6ƒd(¹\æÀˆ¼ 4½¥0e)Î$ÐÍšIUKC”˜ÀDŽ˜œ<° ]a…‡2VÌñ°Cé§*"&ç è¶ÑŸEØC?Eè(´ÛȽäVR$2jkrkpCn6àjruCõCØùlEvæR»§J²Hqºä>@½FªÈtîy"€,¸)]LN92Ï•­–.OÖ‚ØRèQT9Îe†Å’éIh¿-•k ûUÁ>Ûp©}ñWx (R}´æSÕœ3çlº â4Ç Û÷gè[í#õSѨˆd¾ß@uvhë`ÛP5"7†Â5`r8§Ü¤ˆ•÷MŽeNíE“€UÄ ”¦QûmÎ j@Þ0y6¶º%"ãÀ°Ê3æ€$Î9G¤e€§‹D£*3Ä~%hµÂgVÌñ°E1;(Í%Í5Ì8ÍJb¯©'‰D‰˜ÈU¨‡¨×áÖ•‡dk°‡«áø®F©Û¸û¾še|ûíWéœ{ìb“‡€dZhañ~æÓ¾W‰J [ c@š-Ú¤»Ò="E€˜æY³‘Ø(xS‰2#)A©RÓ(5Ê•1*KjZa…Ϭ˜ã¢cEÓ}馅v, S„@ìœSBÞÆì,Â'x¶Ë;=f‚6£¦vÙz!9FƒÜr{ M#7¹j»Kq·ɵŸ±D Sª×PmÁÊn#¹5ÓŒM5˜ÛƹÊùü®VPYÈÝbqûŠ!8øäÅžÈp7§ÕÕò)^tÍ`à ¹VœBƒ®‚ZâV™‰†¬Vt;çÀíÔ$a[ë`‹2N‰¡BÔ-ŒCub¿¸=˜h«¯Ø C¬>Ö\j ûö"wd &v#8æ¬Ä™R›CgBÖ¾×.ð<¢OèT@ä•T` &1CBgR‡Ð#všZŠ}©×Ô«döØ nW“«Œ­ÈÕä*[­3[Øì[V¿‡³Ÿ,(ÃV¤dH@Ž "ŠŸsê…(r„‚âšÀLdVÙ1Yx eU¦¢mEPR¢sþ¼VxXaÅ¥Eì@ 9J "¢Ôiì{2•f &ïJ¿ƒy«³.ïu<íыƜ‘(dƒ¬dÈ0 ¶c7¡n€~*ý4w{ÜO´ß•8' E½ ?†Á¯±ÃÙá+_m-J Ø’ÓKªPóp-v[T~0QJQ!V €-4’$PFè‘:HŠp54W†Ò¢7ÖŒ¼%v€Qp.É\ôpµ>Û±bŽ‹ Y%‘‘¥©CL„9ÅŽr;Ê ä]î÷0ítož÷Z3‹œ)YœYX%PFèÔ6Œñ@û] {hwr¿Gq¦9²1pµV›äG¨ÖQ­Ã¯s½Žf_Á­ûÝ]Pä‡õÆ™K¸ŸœYôe;‡ØB3Q¤rÀ|[A"   d TxÈ\‘1™ @¡w“k\a…‡VÌq‘AHЍ©C ”{¤–SÏ)*uæHìLs@Þ6ý6¦3v4OÜIHÀF‘3‘ z… ”yù”Âu»Úo£ŸªffOÕõ0û-öö[¨6Pm¢£À:å’šB¥:îáÌK‚ؘ å'!ƒT¥í "Eˆ î@XKIʱ`!vLcKÞb¥‡õ¬­ðYs\ttƒvS-å©Cj‘"Q@ì{°GVpDÞF¿‹¶Ó>RP$†4U%UA”(ë¼Ç¬CwÝ÷{$‘Œƒh³EÃT¯;7B½‰z ~ ~[ƒÍAÍZHAë¬!ÒýH6ÁÌ–l b®Æ9Y… ‰]4²…Дd Q s²CdPú¬#,È’Y¦U…à c¬˜ãb#Ì¥ë$L¨Ÿ"·ˆs¤±S*Ìa&€"òDºzJBÊ(ÿ$ƒ…p†qD b(QîæAÚ3è[¤³ ^˃C¨¶L³ 7D½†z n [+[ -ê!@¤³>lé#Ìʲ° ÀŒJŒq‰ ¬‰2kÖœ˘ävF)q7‡É²d˜P{P­Èyó°±VX1Çņ†.çVCG±7¹Elgˆ!˜ØR /ŒD¹“Ð!‹ª"À”péñ§œ ìÁPÄ,¹æÚÏ9G†õ¨šlb‡ÞØ…~¶‚±$À |®+H!‡sr•B kœS|| "FÈhT‡š:TŒ(Æ{{&#p-û¹:²Z˜fc5ˆ«NP+<±bŽ €K\•‹„0Ñ~Jíi—ZôSô{H3Ä9ŠdÛv9v$i}K ÄhzFT RVp‚ Ê%–µ5V0F-e1ê4›Y¶n]‡iýx®›zÃ×'~ÃÛqU‚€ f±ˆ@sîš o=¹2ÐýoBѹ²`À{6ŽÉB!.¡NÎx¤WƆ¤ÝŽÆÖBጶ‘X †`›aÃŒ2 k^œç…\õ’+¬ð °bŽ …²R(¸ü(¡•~Æ¡[Ìh_ÿ¼dåržkê³$Hla1IîÎ{|&"XbÃL9³¢–á+ò5ì€l;„TUcm cîÎ +Ë> 8¸¹a7ÔÔeUS ‘ûFÓœ$"´jgD”Ü€cg°3„VMGvÀÌ÷©ÿ¸¢êX1Ç/,ašûí¦Òï vÚïQØãÐjî$Çœ³Õ©¦žÈ¡)rÒ4½ß33“”8+ A‘­çQP¯£Þàj~~Ã×Cpvw¿ÄöQêùØÃ5ÀT“1ƒ"sÊ-º½ÜM B5§(pDµÒ€L[‘^ìa¬°Âg+渠0A =”û=év©ß¥Ôi¿GýqJ)DlÛ˜@ŠHf™Ÿ÷Ð*‹nÅÚ(9R†“u¦nP¯Á¯Ão¢:„z Õ:\³êØúðwN}ª("»LD\—¦’“ÀBº3×å¡Õ8U‰„hx@šˆšf×Àz°Â–Ç,ÝSVÇ ¬˜ãBa¿¶šæè÷¨ß5¥gFì©ßE¿‡4GêLJ,™PÊ…dJ ÌÐÄ’Ï{|UU¥â¡Qy‹Æk³†z Õ&Ü&܆ú ªÇ¨F(}fµ”M/V%ÏK”›•®à‡È¢êbn¥Ê&Ìlš£›*í!ôjÜ*pŽB£¶«á,¬dŽVxØ`Å 1C$ ¶è&èvÑï¡ÛÅÁyê‘"‰ ¶H‚,HR"á I×óA”¤%üŠì *³9¤j Õ&ªMõëä7´k5`kUíë*;á‡sÕ§ RJ³qdXæš|6`ø¤õ yŽ~âú©´{úm ¡÷àZW[çÁšÜÑÒªéjŽWxX`ÅeÉ7r@?Õ~º=t;èö—­^gH=$åMKÈ‚”Ë!ÍÐóæx2ó~ÿ 5”­µã[#T›¨¶PmPµ…zëAv.fÙnvqiºHÀ]ùRI©pqñ[±±µ1.…¡h¦Ü"Ïgˆ-R mò³d{p S«ä®2¬¹ÉDdÌ*±j…‡VÌq!šEbÔØR?7¡“Ø!´æZ„¹“%gí='¡˜) BˆDbîgÉ¡E!˜PYx k²CØ!ì~×ÀyeÎr ý•ÀÒ½!³°à*‚jŒ¯8Wäk„üÕ@ʦÛc6¸ar# ©Z‰>çÌÌ™c…X1Ç‚ɻɬwÙÖíÄLnËÓ3èwÑžd=‰0ëÐôQ8e¡6@"È@VTB =¾d•4r$KÄä9Td$›ÔÁh¨<=l_ë¡øµTitH†G¨Ù4ÆZˆÅÁxÉNÝ+,A5ŠÞíâw^(xÕ—ƒ×U+IjbD37ƒ™Ë±Ÿ¶fÖU´_q§=Ie 25ÕÇh°w4iEEUäÜ{·Â +æ¸P ‹’È¿ptL4ͧH]Щ èbÖ4ejªš"šÀ€JÑóŽ…QHADJÅE¥†`3¨¹i`=›†ª±õ#ø†M%‹b´¢Yr±'ä¡ b&ãÔyr |[œÔŽöm‹º%S“k%Θ|î[ã:Ê=—•+Š^á!s\(¨`%ìrñ¬†³;ÚvÚ%öÔîú¬)¥”ü"¢Y!"Yºƒ¤ÀDJ ¢}ò'…1Ð gìx Ã5Ø1ûM­i¸ä|ο¾ºïÌpžüõâ:ª]Ôc{žžŽ¹ÓÉŒ\e¬cSg»Ã évÈ8ãÇv08à\‘Ç m¬V r,eéwП¥þ¬íÏ¢Û¦‰AtÖÑ,¢ôB)qLh…”²ŠpÖ¢wN Ê &&&µ¬L`)kA­Š5f8B³–ýº©KuÕ&ܦZv /…+< 0ØÂP¯#î!l PPÕ¤“4kÂ×Öxµœ©ÛeçƨFd Ò´ýbb…VÌqá st;ÜžånÝm‹©¥.ši@›ÐA(dÊ‚.“åŒ,* RßG‘…œ”!VÃd˜˜ÀJÑC­å¦É~ ·êH®6]׋‹ e~ð ZZ? Ī·(ÎÐíiŽÔ¬7ÏyŽéõÔ8§Î² ;è-âÒܘZ"Ä«ö+<´±bŽ Úî¡ÝÃ|ŽY‹YÀ$¡K˜Ì½ W„Ì)£ÏPER&¤”ë1 ‹E‡&r† +,2ÖÚ4R¨Þ@uHëuñ ‹Ò¯i‘„+Ûî°Ÿi¨¬ÌâF\­S˜¢Þ‘Øó`Fs>;E×b:#gÉ0¬…ßõè'ˆ-\n€o¯ðÇŠ9.t±X$é§h瘷:²—ÌL´:M4OÔ)z JNÙvªHY3-ÏóÂÕ±ðY1˜‰ ²cã½1Q5´õ&Ü5#r(é·º/N‚Uî„–Ú@¨m´ZCš S7—ÁˆG\oËÙO[ñÞ±s°{0•v{觨ÖÁ•‚WîÂêX1džjŒè{íSîrn…Û(]Ð.Q'Ü)zhÈ’Dº@¢9k ’ÓbÙgÑ&"bff^´Î&‚±’Õ;‡aƒÊsU‘o`r•€ haŽbˬnýÂ~³+%[Ã605¬ÏUÍͶAîzê*î#ú^ë¹ö­ô¥I¬+m°X- ª è&̳[èlc÷æ˜XÚ‰¦ösA§ (>):›2²"Ë"´MdÄ g0ÁF•ƒ:o)¤úò-l t´–›©¹—‹_s8WƒF‹¦w0¸hÅQEÕÈ’ RJ6Dø@—‚«½ô¡5ÞÛìˆ*YÊ€"90J UBå N`…#Àh‘•„È  ’¡h!7© H"r@¶¨ ð0†ˆBVv´‡Púë"Ì>]”º/ƒÉ„z ãã¹ë8n¦a§‡j:kÝ™}3Ëu4aHN¨äṽU•¢*T~±nÁ +jŸ©Ïè2z ¨¦Dm‚ªæ¬""Ê âÀÅÛD `Fv‘‚á‘1ŽP7dkØšMæ!×<¨‹þ €÷»š+”yá´±Ö3# |L§•I"’B HA1FkmXSµ†Áûη°(ˆ6™$[ÉöôÙ“·Ýz×ïþñìôö™›>qæ¦[¦wž’®« ;çØÌçm¯„hÌàèá#¾fýÊËÖ¹ü ¿¸¾þQ¸ê¨z'° N†;`£´N‚ÃÌW„~à |}Bû›ÅÔÖ×h }Ö6PkPÏ`‡fæ[Ι ëÊU¸ÂC+æ¸PP˜¢cž]Ä ºÛñ„dÚK›hÍ,£tŠ>k’Ò5V³Š€u±ßU ± ä"m«0@€²¤µhƒf€jÜû òc2õƒ¾îÏÐlˆx¹ïVÌí:[ÄI@å»Ú`,” LF¶J "˜Ì95p虌’íAx™"ŒZ+¦ý¡·ÿÎk>úÿK?|Û`¯ëÖ’Tª.c]„XTT;…ÒPÕ9ÒígOÚ¹åmï‚5öÇ~%S_qìŠ>ûš—|ñáÏ{b½¶QÃNŒmX­z/HŠ®ŸOâ°9‚Ù.ê†Cðnj;3±<°âwÀ•4{èwµ› îP鳡Ùâ k¬˜ãBA…À€°(bÆ< ºgt/£‹yÒcžLEÌœF L,©Ml˜D²*$  %ÈyŒÆ¨6xp ƒÃ0½ô¨Åf›Ö†ˆHÊÌLÖ üÇ?qö÷ßxæÎ“ÕsŸ|øi7Ð`Ë2eH”臔‡.€lѰµˆ©àHq¤ ûðÛ~ýÕø­×¸›îÜèãÕ–²ÍsŸš™‘¬"DÉa“4e``ˆÊ¢QLÀ˜ÙZ[ÅÓšx2ÞüË¿ñ×?÷kæØáë¿ê…Oùê/?ë©0&;ì É¢¶öòkqË)ñgÍ` à RÛ󞧪F3g;á~Wú]évæp Æ]r7f…>¬˜ã‚aá&'2F§˜ M”¦sÑi¬°ÂƒÂŠ9.H3`¡‹Tþœµ4&™úl"©,‹»õÜšO ¡ª-Ì¡š5ˆT# ;Ò±->¤[Guýhö몰 ât©ÝbeÉÆ(TÕö™3öó¿<5©>´>˜ö {rçm?ºõŽ÷üá?û±×:K g‘¹DŒªIWÌ©÷½ã5ÿÿWœýÍ×]Þë¡ÚÝ:¹k“ÉÔuë±ê)êx°qÙ‘öE_püW^õÄÇ®}¶6Py0Z@ÊÈ‚íÝé‡oºëûããŸØýýׯ;îŠ{»l$ 8»˜ü´?Ãݱª¢÷ôwÿÎ?=éñ_öß¿ùU_*Ò£ñú‘8]CSa<°Þ¥iÄ,†‰T®Ç¨Ã`OÚêw!sÐ¥g ®°Â§ƒKkYy8ƒýZµ„,2rí’›kÑAqI)4*¬!”Žƒä¡J0ç„ 0Ž0èxŒµ1×i0Np¤_’u9gÃçr…c×ÝqÇÓ¾m²áiÑ€ˆdÇU“Lúè;Þûì$›!(Z¿Y…)¼õ_ÿô‡þë/®ï¼fTO|¿ÚõÚϤ2Â<ØáøI_üìk_ò¥_ø÷ÈË‘¶`‘ ýbæ`”0ÎÂ'{âð#Ÿs㲤ÿë»øìöîÛÞý7¯zÍ-¯}:][!õ ¢v›¾6ï¿é×_þÝW¼ôK_üoþ™>öZ3X‹M¥•£¦6® ±G—â,»&rסk%Ì4ÍPª‹}VXáã’[V®ˆ9'ã”8+Ad LÎ)IfÑ"‡Tè…”´x¡Š_G—q¦NrcA …`ÄØ1Ú\;¦G qô‘iý }ŒQÌAæ!´àÅÀ9+1Ûò:«~>§g{Ô¾àÚ;Ožü³·ÝøÛ¿ÿ‘?}óçÌi: v !Nœê僵齿¼ñO^ôcÿÛ‘—U_D£¾]¿iVínVGu‚Ëvîøþ.ÌnÓù£híÑ«ù i¬˜ãÁ03@Ø/g€ƒÃ°PT…jqâh¿ÿì9¨jÉÂ….Añi™°YÓà†›Î71`siºDŒ18ÐõÜÕõ‰'Þ¥Ò¥n4´ÔCsc«~ÖÕ¾ºí W LÑ­aÐDÀÄ?ÿ…_úÐ?ÿ »U団¸=Ù@uVõ#C¾îËŸýÿû¶o?æQ¸ê¨Ú’¬ËµAžD3¾¿ ´*˜윳v]'“Ù\eÎ g«‡¾äéOÒ#o8ûÍïüáÿzû»ßëÚÙ¨ìq·öâ7»ü{ÿäG¶Þú‘—üëïÅÖ¦9zÕáã;ó7¼spt¬}¦6¡‹è#B/¡×Ø™ÜÃ>dH}…îs\ °C€eEN #ª,5@T…"*Õ¼XÀÊã~`|!·`ˆ¬€Ùð86Ôµ«±q5c)6 ûK³I¬@™-— c›‡}ñËÿΟþáìÝvK£q­æDÓ¬££'>ÿ»ÿaòÕñ>’O"“7ýÓ¿û?~§žMCuÀüÌ´Bµg«ÑSžøüïû¶+¾ú]„ކÜ#… k†Ÿ$—iÙ¸$%™ÏçmÛ6c¸².t„°6vãÑk^ð?½ýgïþð¯üöM¯ý_¶ï׆ƒú)æ;æÌo¼úÕŸøØ‹àe¦:úÀ`ÓÏw÷êšit0›Ó¼•vŠ~‚~²bŽÒX1Dž¾¹@¢P…Q­CBJ ¥PT¥(…Óçû{tFikˆ š³[5ŽÓú5fírئèñYfÕ¥Ìâ%Y–Ž“a-bŽDGèÖNÿîk6ÛBúøl2úÜ'áÿöÃG<Ê ¶Ïü÷—ýýúÍïÜ"µŠˆ´³ƒvóÐçûß»î;þ¾ZUU3Q*ö°>JŠ&1óù´U´!‚®ëº®K)©êÔ²H›3tͨ2Nðc¿ý~éÅ÷s¹ZLîÀ$£É´1æsê&ˆSÄmàš‹}+VXácÅ $ÂÏhŒŽ½*Y{&²FmB'Y³*h¡U%ºÌ­R (|3”¡€‡;rG7yýjðÊ%¸Qº@]z&Ç~ôF…ˆÄÌ슴¦<í†k¿à©`q6¦¬ëf¿üU߸ñç8¶¹¶ÓMÆg_ïšúq/þ²güÐ?ÓËNœìãØ 4bî›Ù–ˆEîÇmBœÏç1FU]:Ð8PU¹qSûʃ: k ©Mê17M}ýãžõŠ{“>ÿ×ÿÙÉæÎyë$¹u÷wæ_zÓºþ–z7¡IØë±—°1C?¡~ýÞž+¬ð °bŽ .ë>³5¨=Æ–b¥D*Y]$®ˆ#†U”S¦¨¤ Q¡¬*²_á!P(‰ª0•1‡Žàð!»v¦‚dC¦ø¼˜Kô*ÐE19áD0 ZLÆ ñô+Ÿöõ7}b²uûìZ5>=ªw/ý™¿êÅ_¢kÍv­ªª’ÖÌ)ƒ3²Ã@TØžwBH]×õ}¯ª¥š½ðÇÆÆ†3Æ{ †ÀìÙ0´~!½’¯00›ßú²ï|Ñ ~ú/Ùã]7qMØÈuÞ³¯}ýž4¶WïEô2É:gž;™ï¡Û3ÝŠ9VxhãR  >lQ,0‘ax‹ÚscÑX­µÑе²¨kjý¶øwÏÚÔåԥ܇Ôö¹ï% -âüb߇VxP¸$7¤Gä‰5'Svvp\·v2o%šT:’>ª ¨"zA—SH9g;Ó«ØÖØžç]5„‰Å8ƒÔ3±’ѰvT¯KqüUã² Øß ^*\ ÇÐ8‹Á®\["´ÄYu Býüì›ßtÓk_ß}à¯×£LÝP¢4—{ô—?w|ÃÜÕ—»dÿç¿ÿÓ?ùËzèvgíšl¥Ó—]þµoz5®zäZê~•ÅÒ¶8à§3€¹/¿]Ji6›õ]df&›sch84McÊAÈ.æðÜ*`¿?‡€¸ãùç=ãùoýõßúÊ¿W¿åyÈb¦ƒ¹tëWü¾=ýì¶9|§ƒŸË–òN‡S'»ã§lÚ±vC™dB0°»ê¸ÂC+æ¸@à²FÃ:xKµ3AGC‘„”@d6¤±ôû΀1°†ZÅþP%×Ö ñà’ëÃ!)ú²Ž;‘³¯\ìóš#té–_û­×þäÏ„›o±ÌºÝjäéììðpë”Ê_¾ú·óGŸþÅ_tÕðÐÉ_ø±‰“¶ £fÔÒ-[kßø?U7z~ ¶ò~ÒÚbiŽ1¦”þÉSUÎ9gŒ¹Ï·Ü0©v/ýÍŸûù§¿¨¹éh,6«|z·oôÎ0ߨj Mº^5VÒgYÄñÞºòx &í°Â}aÅû2醪õƒŽ$Ûl‘@ŽÀ€I°ž¹gM‰¢ (’€,*³hç·(ÖÈ¢‹^O¼áyãJ?\»Øã»'j¶* ý$cXIs³øøM¿÷/þÏ;_÷ÖGËݼGZÎÆ~¸îºùŠzÈ™›>úþ_=}—Žîî_Ïå/ÿ&<¬}ÀmGʺ/"!„BÎû ADÎ9ïý=^LDŸŠÍ1#ٵѱéuù†ÿñŠ„ËÍøl¿KTíw[Ðí¬;ŠYʳ]LN#÷%Wn?ñú€í±Â —ŸIÓÓaGkÔ›~¦Ó½õCOý§ß¥W^­ xDR¢ñ±]ú©2‡1Æ{ïÜ"æÁÌKò‘”RÎù|t²o À Ü›ÓÃê9ÿáß´G¯0ˆ>eâê »[væíSì%¤¤9Bz°ÿ ¯ä+TU5ç\¼[÷ü]ˆéŒnLm®:ñ?ðýÖ¨ÉZß:wjÚNOO11&h.5†ªyq…¸$åbVXá¾pÉ­8W$;p€GÈÕF]•šcâÖÑ9L†‡ÒÚ0o˜¼A²ieÓè¡jºÎXwÝaÖukz0Q <Ñž†ä™FˆáìµHælÝ_r÷ѹa®$+éôÿýýºÝýøØŠu9¦¹%©C3 d õrGMMö”íYï5×sçËñ¤Wüp/ˆ‡À†*F fúúŽ”¸·ˆˆHΙ˜1÷!¥¬ 2)+HŒ¥fPCªÈYRÅt:N§'OžÜÛÛÛÙÙÙÙÙ)ååç;Ý:P£¿ ‹fí²ïù»“g<'2R¼ehú]³þ¶“Œ³Þíí4á¶@>fJ¤â8Ìå’»+¬pßX}T/ÑO"ÃÎ8Ͼf_Ã7¨øŠ}e«ÊTµ©Ýyø¦ïÿÞí·Ù;±ßô³öÃ7ÝœÎDfciQõ—`s—Þm\a…ûÆ¥Y}˜B È ÎS54õqL@‹dÀ X†ñ° Y€¹õ@oš\G ØPià]<à«È^‚Ì¡ºÔ«ˆvNž¾ºvó˜õ<Ÿ¸Î™q—'5¸ÍMÐ6[W\õÈð2T÷4/î?Ùé-˽ªZç””ªƒUåK’(Ü ""©ÌyŸr’ÕÝ`ŸóŒ­g>-ÿÑ›«È]4øøîì1³!ú¸èÃNˆnµ…[á!…s\ Ðr!å ~ˆzqtŽXl` L€‹ÈMä-œ%5¨lYêÌ~Á‚9Îþdc!ã\а£ÁÐæ)áVÌq°…ƒ-ÜÕH† iÁ’Qb2–L³B´ˆS•º*|A*$¤(úá¢ÖÌ%Y]ÔÌëÂ!jœíBÄù5k)£õ´Ö…yãú$õÆæ£^þÕS GûÞ§O…6PZÕ8ç(?´](ù¸…–A‹"wˆý ¹1¦XÖ²s®¤]1óðSìÁyÁsݵìnüð†F„I«7ðôÈ€- @ ‹¬¥vòbß¶VøÔ°bŽ R()ÈÁÔðkZU’æ £l¼†ž8"‹ªU-yDL¾ÉG dB 0v àK1\%0ÌÚ÷ÔØ”Söf6‰nÐ Åû|¹fáÆçiVʵ?üÔÏáÇ?¦‚#º›æÇ²Þû|ÛÿÂ%ª(S•@±½OªcÓ4Î9kmUUÆðþqä W•<Ý`s( Ö>á›_òæø¡u_ï¨ ýú·NŸ‹ÊÎ"EvéÑÿ +œ—à’ó0….šŠgÖ£q³Fõª ®6QmÂo°ßäzƒê ª×ØoQ½ ?¦jŒªV°. ‘å!0ÍÜ ¦‘€ˆŠ”àã?ïÉÉ›Ÿÿb‰M”®6&ŠXóøoùê9œ‹ƒdÜo¨c{{{gggooo2™´mB(fÇ2Ð}Ðà`æõõõõõñpØXËË/O±´6˜Ù1"躿ûUîèF ó™I.Ù³»Ým½ k*zS®°Â%s\(`ÁPX¸Š\M~;„’²Âàpø!ü:Û5˜lÅΗEE÷ÿù¥ŒÒ"éR”X]8¼ï³ è©_ô<Ônšúó½^ ™yèÆÞd‘_ñÜ€Œ{Ù'%q?ç]fâ–_—¹UËàÇ=, cL±3rÖý#`¹„ß×§›‘pdíÐ5—yÇÜ8´Mýá܈ټ\Å+£c…‡ VÌq 0`b‚­£?GÀÀk3Ðz]ýøãð—Á‡;'¸ÞÂp½oŽ›Ëv‰ÌŒ p†Á‘’I¦òˆ—qˆ:O`«†„—YwÕ#ŽG·çúžRˆš¤ŠvÙ9Á¨U É‘ÁáSso^ñe_‘xc=»4î¾ÿ¤ûòeº3WUÕ4Íx<ÞÚÚ:räH15––G ˜‡ÍB‡Øì[òâ8K»dyÀÀ"j`P#l\þÿÁ.5vÇãáÜDùíbzmU+jÈ„$1IÙdYìR¾¿³–¿–×/ßÒ‡T.µ´U?xÙ ,Oqðçe^ÙÁ׫j’\^Ð…^ì]–/+§ˆ1–D—´<ò¼íåÀbÌ(ý eṌ1«žãÍ¥—RDU–a* ÐbH1ëþÅ«,¶$ Hyž šÎˆHÀÀtiù H‡$"ˆ˜©ìB‚è»@Ì è5@ßc{q/€½nY4vqн è Š®ÍH&‚ˆm`"@ÎB¡è1;'0r*£– zô@Ä$§@Dv€r„èº941!*ÀˆØö€èì1Ef€Bæ@‹)¨Ì0E–³@ ’ º Éô@Ô ÙCšÅYLÊ+æ¸88·ÿukäFäF´°9*xÊÃTp| WÁUEoã’ì,~>Dª+\¹ì­£_õÿðκ:$Þ)YCãíÍÖ¦}ËéãëªôQŒ ]÷è§>É–àú§¿ ošf4mlllmmmllŒF£º®­µåC–ä± §ßÏ=Z…,Ý\ ‘Oj”ˆ&€øQ×]˜Uµ ½sîìé3y23,4CT `kïö•ù$^2c(gíºÀ fˆ ï£÷v>Ÿ(…ñÅYB(KpQ.Gµ–ËÄ”1Þ{ }è+_íHô}_X¼ä.;çœsÓ锥¦ÒZVEŒ¹iª¬*žÃ2ç)iJj-bÌÎ"„CH1ff¤$8Ó*§(Ov}G g³Ž‰C å:R"e1®Œ§óu´È3§Ç±7ŠSšžžR{ƈDpbV‰Žd=‹Ÿ´ƒÝ #¯§Y¥g†íª àæÙœ0Ò©¾®Ý.Ù¬èGŒs‡Ýt4§@ ½ã„½Ó vˆYÄÙjw\ÏÚ@¤@Ä8™)rë +zìÝá±7Àh{óŽi}zZ¯Ä»!(XTn”´ßY—™ÁÔbjuow½‘ &,šžY€¢XÅéÐažÑ"M†!`º›‹óœ±¿_j°„jšÜŽÁÞXv†¦…îíTóO ÏQø*B~pïÍòâ‹êÁôÄÚ©FOÖir”‹BÄd<ª¡z +ª ò^%Ïb5¬z!ØêÄ7}Óã?ò1ù©_ÚI3©³6ÔQH’YÍ(eECãB¯×>÷YÈ Õ§?Ö"“~oJ!A*°'¬ý$Ÿÿ%1,WÕbÓà@Çܯ%$ €±þ„ÇÑ¡u{fCtµŸìíìÝtóÆ“N€Šû‘ª]ûgoÏ?øÁétꜫªj6›]yå•7ÜpÕW\vŸÇõ«÷äÉ“u]¿ìe/óÞÞrË-¯{Ýëæóù ¿ø‹ó˜Ç7]¹øB~m^óš×œ>}ºë:UuÎF£§>õ©×=æÑ÷É£?õŠŸ2Ƭ¯¯Ã7|Cá-oyËG>òfþ®ïøNìÇ~J¢sÎùU¯zÕd:/'²Ö†¼÷/zÑ‹Nœ8a -ìû>þÉëßxÓM71ów~×·ØÛ›¾êU¯RÕ«¯¾úÙÏ~vU9@–z0ÓéôÆÿúÝï~wÛ¶âãž÷¼çFùð‡?ü§ú§}ß眿ó»¿Ç9…P™Op”[?þ‰×<ûËŽö4MmphZ“ŽùºŸû±CÏ{:†ëņàŠ=DÞwãÿúáŸü«·ýÙ‰n:=m¯>\Ûõ—ýÊ÷Oú¼Ë†›öLì¡S†=³ûWü»_ñ‹ÃYØ mçä¬I|ìcŸþ-/»ê;¾qî‡}Цª²ë=° Áíwüü¾¸¹ó¬8hÒm2ÎV—Ñ3¾òÇþm¼ö 6Ì1ÇUèÑäî=?õÓïÿñŸA»·'Ýfr»ÃcG_ðô—¼âGâ‘CÆ7VAS-=ÞþþÿõÿròÞw «Í½ÔO|õ·~ÙóÿýOÕ#Vd‘Ò|F R^»ýoþç·ß©wÐõ•LZkÃ_ô´gÿÊÞݺ¼äƒ e&©Ü|ò=ÿû÷~è9=¹{¸WÞNCwøEÏxáÿ\ýørSV6ÇÅÁr'‹j Õ–VZm¢Ùf]šõÔ¬£ZG½‰Á!­×QÙ9QÕK¯¯øù 09'SUÈð†§]ÄpðÜïÿÇúŒ'ÇÃ[œ@1õµ„5çÉžd%­Dƒ5ÍÆûèœhdŒ¹ÏŠñ²áÅÝ{4ݧVÕ}Þ¦ƒ¦Æ½;>ÝßÊHœß|죽­ˆ(çÈ’öþú¦RÀÁ€‚Ü~×É÷¾÷½ÛÛÛUU•‹1ž:uêïxÇùŽ_èïm¹ž¾ï1ÓéôÕ‹eøïÿûÏœ9Óu]±Œ1'Ož|ûÛßÞ÷çBPuV*ßô]/·¯TޔˇÖÚ”}äÃÍI™˜@]¦“9“õ®^ B†w“Ùñ®uíigûzÄlr»ìk EKàÒ‡_ÿ†í7¾åÈ-·ÔýôêõÁÖ­wð]·ýþÏüL‹I`ìx¡<¬Fµ6ó §ÖGî2µ×e¾ç¯ûáé?ô!l+‘Ô‰Œ­±?}æP˜6³=;t[ÌWL'³7¾å-?ýÿ„~ `À¸m/;UÎÓSÔݳn²³9$kãäT–9ƵNØfX6Ĭ6ÿü/îºõoæOã¤Ë³£1þO¿ü¡_ÿ­º5„ „”ñßý/Û·ý™?{²Ö0ô°së»ßöW?ô£ €¡D¤¼àîº÷ýáënþý?X;¹sxm3ä´½wúp79ùæ·¼ñ‡~øÜïA.+Æè½/EUU•ý'½(¢…%sùS>ç¯ÿìmΛ”³g7ùÐÇS2Ö–F]"§·Ï†F£Ñãÿøº®‰èƒüàl6»í¶ÛÎwôãÒrYPµvé}Z&*ºõÖ[»®cæÏýÜÏ5ÆÜ~ûí1ƽ½½ù|Þ4ͽ+ðsÎMÓˆÈ?øÁg=ëÖÚÑhÔu]™Àê@…¿µö™Ï|fˆùÆolÛ–™o¸á"jš&%qvIÀT¦×Zëœ+'\æ^/íÂrkD¤0u©Ö´Öªjß÷Ö6óywêÔ©òú‚j^¸Â -©Î5Œ3~Æéøó¾ðÄ3oØÈÃÝT ù¨”mÛz­E"§qöÁ?k:uûå¿öÏ¿cÄaûÇu’sûÛon~è;$õ¾Bæì ?ág·¯õIèúoz^}äò3oÛ™×¾IÛX¥ÄÖÌ@!f_çmd”@†‰ÁΘZSV(YÀ“d ÆÜ4Ê„›#zá`2”(K²•’æä÷I…á¡á žÿå_ôì/úèGÏüéŸäW_½ó¶÷´ÚöÈ>ÛÑµ×€Ý XËÖOWN}).²¬I)ÏÉA?Õ¾ÊÈyi©Dt»®ëû¾Ø+Å–R*‹û’B>Yq»B‘1~ã‘W#/n¡#t·Ü‰EÃ/ÉP ‘ª‡Ãñx\ÂÌ\×õl6;ßÑ )îGÂQ`)òxoË#„0 ˜•+ãñØ{?™L–]I–{ÿr|ç\q+…vww™¹ÔNbß,Xž¢lùuAcYU m¤$"Rùe×,-lŽ«³2sñG•”Ë()m å1k‰( n»í¶«¯¾<„pÛm·¥´È"[¤,L&"(j¶ÆLZMD Å4´†mDS¥VÁŽ@bÎFÙιÍ*¸µ›£æñæ|^,À›¨=°” Ÿ ýÙa½%õ@Ǻ;»jt˜šÖ븘#nl­ “Ú¤Qegýa ëv§ÝÙ™ƒ5³ )5•@6¦1îW]LH1%À¯ˆk£‚G7ß 1h»ãœªÃƒ#a*zxŒ0Íõ†i¼H0{ç?w˜7û1ÌÚÔÍLuxcˆ#öp•Å cbE²Æ&©nïuP« äì`–ªÙÕd+æ¸hX|9÷ÅD@0ŒY‚Pñö¨"+|_34ïws¸ÔA bˆ5 Ù ;CÈ ¹ñufÎaqøøávcãÝäªíÙVÃôš-ÈdtÜÍC˜ sê¡v8î²:ÍÇoÍ uÄУ‰€‚-˜9Kd6uº½ÖëÇ’!GEÈ*€‘ 4‰úiu¨ÚÖ9‚l{÷ìWþûÙ¦_ÇÚ° ÙAÜÑØC¦-d¼þ¼ÿúïÂF¦£›L E b Ã" 5[èIÛrs *ÎqŸÚf­¹+n»UnÕ¥€Åwãn¹R  ``M3ÑHç0WžyÌ|ó–,w5ª ‚FN15Íl§7äK/ãÊ–ìâÀÞb ¬É¬ßñÞŒ¥O‘÷ÆÚÕ—uÄGrû@ã:Ë+f.á_"*Ë\Ù§¯¯¯‹àÞVG×…étšYC%cÕ”£©‚Õ„$Å^éû¸ÜÚŸïJj4ùl àªË“Ï”ÓPBwòƒ…ãZåŽò²j¤l½—;ñûì¾¶ã¹¢÷{WË.afc³%¢ÂLÌV•Ê3Kkã ¯ÐdùõøÀh4:Xé‚ýd¶åB_ºä¬eJêÚïG•1TþàL—#™ýŽˆ„®ïÙ˜,‚(F³”®*Ƙ,‘ÌÀ™3g¬Å7ÞX". ÊÑœˆŒ³”¡ŒHÖÛ¬HÁ wS:SõWóÜc±ëLh ÖTÉ¢ª®êDk92°Ýd¯{B}Ý`o†ã}NeŸÖ€Ôzm²ó¡nlu'M[š{À0w!Ä`XÊV0fX®"¡ÙºRF£è¡Ó<Ñ­dooÏNÃS0¤Œ&C]“Ž@}7&›Ü¨­˜È¬£Û±4Xud=µ@SC<2zèT?yGÊð\=ï9CƒÄHÀ@H[aAG=Èð]ìê0?=âiÆFøòï0zäªÒÒÁf¨5LŽáñ(ÎP³I’í± ;›2lB³üÔ­r«.Q(t&Xc㊠H‘—¶ È/9ÒødXü¦Ä¼XD-›âáyð(Kg1Êæ"çDÄ|·´”¤ëBß÷Ť¸w.ÖÁ|i‹|ªƒ`̾¡IJȺÈ:g}æ7eœs]—RÂÒ@¹ßÛ¥Þûâ ;{ö,>eõÉÏŠå±»;;{öl×u…Ø–ù¾÷†P·áHnþØîÛÞvæMo>õÎwxD°”›š³Xl™üîd^Uk¿ýÍß‹}¼éZBk‡8Iš½Õ”Df“rœ87 o=øDD}ç™CópíàÐpU ¦Ns" b8{ÖÌNUmÇñ°ºîì®çªg9iPT ŽÎô3ÑtLm|ëûøõïp¯ý3ûñ»`EöI q@Kµž˜‡;ÿðOÞû#ÿiýc3â2³Š$¹¤¬QY$˜py4ìüî›ÞõçßñoÍ›ÞsXj™¹žq³bŽKJ´Ø«Áy®=Ž,c‘:gd(#Ìé!UìgbêBPWJë^,ÐŽ $—çƒDYè , £ü°L‹ZrAŒq6›M§Óâ,*î”’ºŠ»ÇÕ—Ç¿ÿBÂA„I&ѬªL$½û÷Vˆ¢â˜“”RÉsµv‘=uÿQÕÁ`°±±Ñ÷ýÎÎÎE¤ n¾ùæS§NåœG£Ñ²ºð>}µó[~î7~ï…ßü[/xù_ý_?…ݽ9Ã’1ÌtáQOyòðêk>6ï蕯ÿɧ>ÿ­ÿâõ½æÞ11@jç¤lö6«³¹sàÁ,Aç&îØÚݮڅ౪TäA)÷TÃïíî¾îOξú ×sUM­!c'@'BˆH‚ÈvŽyûÔýûŸü¹oøö_þšøž_ûMI“))P2:À#›g=jzÔ«ÌoùÉ_ú§¿ä?üïhv‚4L`…îû?¸ê+_ªk'Ö3þ•ßýïÿ–þè+pË­ñSœö{cÅ—(²°ä‰á •ìïØÙ(,Ýî§Ý’û¢âÜ®0!32Tг1í«þVÎX*–òéåɃ µªèº0ŸÏçóy18ŠrI/©ªê€éneŸ´%X£ÊÅa'0û ¾GHFõ4w,ŸN§õWõ®w½ïæ›oŽ1ÞÏÊ[L«Á`pÝu×»­$|¦¯ó|¸òÊ+EäŸøDI#Ç… Ï÷úˆÅÔì1cö5{P•a I’B1<éûþÑ3¿ï;îó—9ûþWüü/|Ýß;õs¿±©‰C0YR&‰}èCˆó®ž„çõoû?ñêÿò_n9uj>~Þ žÛ…y*®ÑÄ´ !vƒÓ[Þóº¯û¾ÿ÷Û`zfç–ÜçËŽz€Ã¦xÊç‘ÐÌ‹C$X+j!HÆ~—“p/ù•W\ÿU/º¥ñ»ªéλÞ÷Š_øµç}Íì=ï3ÈJTôŽJ•§üÂO>ë[þþ´ò·n†Ûg7¿ÿ_þè¯>ûkgï}ᆱ8Ç% ˆ4)Y"XƒA…¡ÉM¤^(°$”Ðîñ"ðÐØÐþ£ª–’3_U3ÉÅMïÀ¹ $(-¿&ŸþYî•’ËûübOxï‹£?gíû~>ŸÙ%ï}Q\÷UÀ9“’ÝŽEàäÀæ¸õuÙ¯“!…2´Ê{?v!ÔrKnÕ|>ÿ‹¿ø‹2^cÌÁ2ÀóMæu×]÷ö·¿½$8=àn%‡J)Ýyç677—·à|¯¦fwh¯þ¦¯xòË^ìܸçãQ%@Ûê &¶ÙígëÍ•ßþw¾ç«¿ü¯ö_õë?ÿø®â›î|Ó¿þ±¯ý–o°uŠó‡™€Ê™»kÖд{ã/ÿÖc³Ó~ûoímÍÃW#€9Ï mÙ¶ƒæØ3>÷¹ßù-NâÜyßYÔ£0*uÔ® Õá­/ûÇÿàø OŸi=öÑäjáý~ 5P·nrôØçÿÌÿý9?ð=¯ÿ¾ÿxöw_¿q¦?5»åÏ_ý»Ï}ìå4Þ0`[ÄE4³bëkþÃ÷^ö÷¿øƒ?û ñK¿qghíÞ雾÷ÇýÉ+Øxh,7Ÿ… HÙ„$Xk†ÖF¬‹½zÈmw‘t«sc[¤ñq¢áÆZ&-‰T†h²½³ayÁÅ2ëi¹è/ãŤ Šù|>›ÍÊÒY×õp8F£ÑÀ9ãœp!©eÊoÉýä—’ó°½S¬Š"®´¾±±à~˜þx‹yÑ÷ý`0(Å(›$Þǽ"c\_– þÅM /6S)5?räHIo»›ÉƒgBüÈk¶ž÷Eãg>ûÈÓžV_e’€ž€f°6!7©®¼âÿî»ÿÅ[¿¾æÊ>µ£6€óèØŠQœÌÃî¤Ë]½1¾ò©C›Íóžýåÿöÿð×_ab¬VP €½«çÖÙg>é…¯ú‰õÑP ]vå#üc¯‡ 1IçÅ, 4æšØ!?ý©ü‚§¾ä9¸êJEU‰wla 9A2Ø6$ õšë_øóÿñÙ¯zÅ6ñ•<>õþX.…¥`@éd*ë5æ\]{í5?ôÝ_ÿ¿°n†£³»±éðXÙ—,ö…K8k†5Æe±¤¬[ÔEc75H‹¼¥‡ Rèb¹4¼qhëfcT³*DäÌ©Ó'Š?îA÷:*ù£ æ8 RÜV)I×umÛ–ŒÕ¦iŠ6âÒ_²›–šƒ÷ÈXÅþ*|ÿ6°pàì©ÓšEI³*ZÛÜ(Jd‹‡ ?( züøñ—¿ü›TñWõWï|ç;ïÇÛs'®¾úê÷½ï}÷Ï4Ÿi­":qâÄîîîý‹Næ÷h¢Ê6¹£é¾+›ã’†öòhænAÚœzFÑÎ|ˆ`ùßÄh42ÆH)sÌ2ÙÝ…üít-Ŧ–õËðF)P˜N§Ee¤®ëÁ`à½-r³T‘RÆûÁðø²Éù§4\"dUÅîîî9%sÂ`4$(èÁg|2”rñ3gÎkäw?¹I‹ºEçDpÕUW]ôîSUUmll”ßǬ/¹OŒ\2.µ&&‡™²vÎ œ•b¶' ¡.â¶{X 8¶v¥Auçt¯ÙÜRr¾W3 Ø*Þέ¾oû¶ô˜ãaTÏLÁ‘ îŠÌ¨ÉXv€yL[yx¤ojq_p}Ìé¶wÞØÄ˜"T)B`0MQØBlƒ¡Wç{T™(u…PÀ ‡Ì‡˜ÆI£ápv襵ý¦«†}¨T!y¿áô¾$~Î {"#xL½fo)¯"äC4ª°Š*ÜL7ÇyË`Sys$¶ØclÍþ¶³´×Svþ| É*zl8 ëŸñ¤­yÅT\3­¾ù=sÛ§¤Ë6?[j?šMÌ<Ÿ‚#¸â¤*µfvwwÛ¶` 5M5 ŠWJuQˆÀg™€ÎøØ'CV4°‘˜Úõõ1ó'«ê”»ãH9¶ïxgHy|p:B=ùÊÏÏB.Át0‰AÒS 2D&%)KtŒÙûº|OKBêrŒû]ClJ¼p™¥ª|yK!Èõ©ëz¿¶EX¥˜Ë fì'ïb?,¥ÄŒ+¯¼rccã RÖ}L¾4:‹{T„t±IXú*"¡e‰FS ð¨@E sN‰ŠF â‹y°FC?ƒF•tÕ•—3©w¦®4G‚€¬L5ˆ E2YlÈ£3â×yö ƒm@¨FµFëhê`¦ŽøG_þµ¿9Þü•+iæí㺳ƒéY›§©¢³#  öÂMOo UëÛ“©Çp °@]1 €èfôØ*«³º q’8_ù¸ç÷­õÕ¬}ÓïTH­áªŒè…ZØޏFÙLŒ™m;œ®0·*HZЉ«ŒjÐæ?ôOxãÑÏ}å‹¿UlÌø¶ìQ$$X` Q¤ß°—ýîåúËg½Ô(kÑg›ÇšfÔ‘5 ÑåJ¹Šþ8Ú °EGóíhÏÅÃVÞªK‹ÞXǾâºF=C•­·Â‰$;‚Î3Úo=d¶ÃTº?±+ Y²jãìí·Üüô,ÉÀÕùÁFbz–ÊjXÍâÂrÎ5µ/’±Ë×´Q°_XGw—U¿‡ íý…Èí7~¸¶F‰|Ƭm½±Uª:áÈ¢ {0¨jÎ Z(|Ä»®+ˆ8 `>Ÿ[kƒÁtÚVU•s®ëºÔÇ/\Úr€…ê–FÆR§¤LÎrÔ›é. ï}ÙïŸo¸Ëé]J»ãîÊÄe×××O:e­ÝÙÙ‡³Ù¬iš½½½º®‹×=n_IjðÞ[k¯¹æš£GZkÇãaÛ¶…ü€¥×¯Ì:@ÞÎúzmKÓ„Ý¡È|îÇC8Õ²{/µûY¶žÌÒÖÚúúÙÓà8´ßL"¤!Ù ÂÀù „¼MÌÌ<¼Ÿõ“‘€ìÀ€01;ñ¶C8ü´'¤Æ ßuãÇ¿  Èä¹|Dc\w\ïLêÑ H0¨zJÚ‡(€ ŽñPó¡í—£ˆ{8Õ®sì¶ÚE² %׆«Üdû®”;@¯›1žƒØs »…fóÔ’×v&gÑÞµmÍx{Ô½‹LÓs\ò`€k[h8ÄxŽ¡ÐÔØ½INÐo·fz{:v¹GõàOu! AUIi®ºj64qª’Gµ?uçØžÈz%ÎPÎÔŸî–«^QL*ÏóÁm¸ˆ8皦4Õýp@iH'"ÖX³_Ƿ߃Ö<×ù […BÒmïzߺHGZ«‹¾yôµ×YS-"˜„ûÚycÌÞÞÞ[ßúÖápHD·ß~{‘›}Ýë^÷øÇ?þšk®)@)7‘ÍÍÍ3gÎÜqÇðP¡¢‚®ª1ª1‹|³bŽ,-H(Œ{ÐÎýÕOĈ}q‘¾ï ë,¨°ONGŽùЇ>4N_ùÊW;v,„P´¹.»ì>Ú, 9ËÁ×ÖÖ67×—7¨ä;œKÃSå}ÑĤre3>½7ûÐ/þòümïÞIØ5_õ/ÿ±y£LµƒEEM–ãW^};ªÙ´ûéžså#/ëÿüí­O×_ Í9MÛPRh‚±â\Õ !Ò`v~§êlj×Fƪ.Ï£°}⣪ÍMÜzò#oø‹G|÷wõRPR©F¨%7Y1¼ù‡ÿÓÉŸþÕlÖŸñyOýß¿Gœ%Î@¤ÚÏDó¶wÿöÓ¾t: WΦ{3|üµ ÉûE¥¼?-þñ6ïz·|âæ_xò³‡G··gYÎŽj`Ñ¥(ŽÉÆã¯Ý~ üÞί>ç«êë® ·Þòˆ>ݾ×nÎQÇCf«úY¢E×r˜ÕƒFN׆ž€žœéÒäwkóxiC*±`”È~Ó4{”d¤œBšMfïx¿·$€ýdý3îƒ"N¥›Ó’-:dŠLúr¿Ä²ý_ùuéÌÁ*²}¾G“¨ó!È:€â–;òíwQNArE.Gƒ«®–ÒÒ•!U]_yùUëëckùÎ;o¿í¶[î¸ã6"I!t·ÜrK,ÚæË½üå—Ÿ8|xkmm´··³½}æÔ©»Œ¡µcÇŽ-ûàâ€IB×÷­1TziJ¡mgEÀüÞD˜R¡+Eæ’¦R ço©,5"´ßu±$Fã€Öýå—_~äÈ‘¦ibŒwÜqÇÍ7ßLD—]vÙe—]VZ ,)ªªØÅ")Š£Ñ¨ˆGY¼‰[E ô#$§ mŸ<}Ç[þrç ~òÏß±»½ÓW^5‹¾MåõÜg™Ç]÷q²Wß¶·óæ÷ˆX>råS¾îeÓdØ ©Râ¨#¢Ì»t[ }å=Ÿÿóéª H1bzòÓ„`+ ÈeOx\ôÓŸ¸=Ö¡¹4°äÈ‘zÓ1{rgÞõÁÝ?ùó[^÷‡gÿê=AP x Ufðù_ó5[ÇáöºÍ¿9Ý|ôäœÌÇ÷„/ûb4 €DÁã@ñ¬oþSSŸ<{¶úèÍmg'šÒhóÙ_ÿ-PØò5$¤ró›æ _öÅ©£õz=}àÆÓòöñ;oiû4lŽ|ÙK¿e9¾•Íq)C@P£~„á#Ÿ×z»m´2è“ p¦7»·0æÀÖžÚO D€‚‰³&o{ÕóžõÑ÷¼·©½ÎæÞè~÷oxÁs:#õƒø|'þrY/·û.{®ëºiæ{÷ÝýZª±¿·-Î¥âíYîèï?·J¡bØŠÞü–·U¡7¬¾r¯¹‡ J­`.5[G¶6ŸóœçÜ~ûíwÜq-²è{g†Ãaß÷UU•!Óçq»Þ{ë­·ž>}ÚsìØ±Ë/¿üxÄh4ºÏq?~¼¤‰³Y[[{ä#)"E@w9¢å ùÈG¦”Ž9R;†û-ìû~ss󪫮*>·òäÒ'VžÉ9>|ø†nØÙÙ¹õÖÛcŒUUmnn^sÍ5ÇŽB¬*·¼†œóp8c €ÒN5[®_ô¼gv»·Þxcû8~Õ¡gÞð¨oxéÜU ˜ð5´Ä碻þÑ'¾æËµò§Gîðù&"÷ †¼±<<ö‚ç`o²öÔÏQ0»Ñµ_÷U"¦ÍÚÎÚ ž„˜3•&K|Íåæ¹78£)¦Ë›µqÈþ󮇯pX¦Óû ú<ò_ý÷Ø+ÞóÚ?šÍbØë.Üu/ÿÆ/9òù7(ÌB_ÝÀ”î¿ÆÊwóÓŽ˜_ûGk³3°¾½vë_úÂök¾rB*L\ôP˜ã_pËÞðÊ?ûõ?~òGgwÊôŠI?yÔ‘Çý×î¾è9G—_䇌l÷gdÀ!ƒú»ú¾²ú›?ÕÿMú›™ûØÙü‰NÏNÍ é‰Çݽ/ü6 žr±/ùST\¬Ô!çîäÞú?¿òÖjÔÓY_Ýå×Í»_?«ì0Ü4‹sÖb·!õι¥èáx<^4Ñ»×÷7¶&ç¼··B‚Y´¥ãì½_[[[n‡ï_½#æ$ÆV]ÿ¦oûGwüÞ«‡¡Kä&Ù>æ~ëÓ~ògÜ 3„Râl33;%dÉ)¥ÊWK­@yŸùî6—ª Ê’ ›˜âRŠˆ‹B{ø¬Zš#5uƒ¢ï61„ü8éuÑËÏ; å…àüýHl•ZË2Ï]×–=ȯ…ÿ–SB*së½MI¬eR?8Þ¶m›¦)­A–¾Uå$À ÐQ¹ ±€Î:‚ƒ¹R@ h>éy¼µ Ó”E³q`•)"x ¦=ÖÖc®GE¨Ä Úlå+Dt 1èx@çñ'¤mH@>gïÜÁpÎóaÕA·2¡ï€„fÐ÷YëÁ8ÐS0ÎÛÑîaHš#Y‡P¤z,Â>ÄŒ†ZJ _ „z%1z !8ÀX%DɎ;Ï"ƒ( {Dp–B#@5A J0îöÆÙÔëèm; MÛ¢±èÝÙÊ/÷§+›ãR†–Æ,0µ©Ç i\ÑZƨ2kÜÇ©ž$lߎS·ãê‡sh‰^9ԜɚÀ|üɯ·Öw·ï¨4{Fºù®“ïz÷ÖÓ¾àtˆ@9ç¥F÷2Ja­­ªÊ¹ûøäßCœjß±NƘœtù׃;èOçpb÷ ªÛî¼ëmïI©”)Ð|èýügôl0Ì` € 1/JÙ±ŸÅÄ¢RX¡X˳— 0\*­ª–Ÿ±_¥ïëTU&nêF¡9gkópPÈý`þ1äŒåëχ¥[¬ ¡®kÜ]æý์1)I©¡)Dμ %ŠãkimC)I¹­)I¡³:#¢ ".òQ‰šàÌ®EHз8!a¬¼ %êXsÖ¹Ó!8àíÿ×Þ»[–_õ}ßµÖï÷Û¯sϽ·ûöt÷<õF ˠшÒXŠ%c‚dŠà Š ò!ÆÄ)ã¤â`WáÂT¹’8åØU.ìBئ p¶*À8HKB$02x`4¯žî¾ÏóØ{ÿ~¿µòÇ>÷ôížiI3‘Ô}»÷§ºNŸû8÷<î¹û»×ë»`"‚ÙÀĨ‹²æeYpÙÌs;¹É9ƒÂmÃû/]Ø!À€"ç(Ò \í hQ=V›êYB„}šœ™Á¢ë'+0ªá7K PiBÃ^ K C7eea’œˆÏ,’€ ØÍ‹3¡ÁêŸöÑo©O«¶<þ,ƒ±&d‡<Ùd8ß#i@Ås,CqZŒuŽÓ€ì eàÒ¡Ô…U€–³ý~wïV?ÄGæ5Ta` |öìëÞøu\â%Çd‹£_ÿÐGVËd_ëu놨á°5ÆCÇ5ÔkKÅO¦­N®_]{•?ßôð†Þì©ÎÑí=þD÷Ô%%™d+Ïnî<úæ~}„Æ8Ô`ðÎ{ç‡PÉcbœhèZ·­K/Ò†oŽiÕ¤¿Ž6†UKëgg°¬™@kÈšOJàu–À°!.zp¦ÜŒ¡w`-½«Ÿ,Çļžç6cu]4C×ŵf¬+"ƒßÉúב³ û¸T¯÷Óþª [ÙÍÇcN ìr0‰a«-ÊŽ]Š`ÃÐä@«ÖU DÃTæ6¸ŽØ0_,æd‡È>g -A=J÷Д0Ñ›¶o„ekM‚if ¤— à#DLÙB‹íˆŽ‘  >Ñø+른¾ìÍ‘Së´%‹$KÙÏy™ªHI@höùx°T Ó4œ{µ¹GBQ”³1’ fmns¿ú5k‚JLß9%ÁÈ#Oóµ™ó1[u»Ê ]èÓ×ßûeéSù.ëï?#O·ñéèžÔ”RùoÂw}]üš¿ê'÷t¨ÌP®nÏ‘ä´ züÎOÿ³×ß@Ú?lòWu“Ëõæw<ù©+U½ciðxÔØsQøhÞ7M¸YzhýnÞÝÝïûÞ¹Ð÷½÷‡ÜÈd2©ëzõÍ'VÌžÔƒÁø}ww½»i(ÏÆöööðáºL €" ,FiÈX«*±£Vìþ«ÿâ=õ/|úçÒiÔßúöo|ßϾð¸u–P##_X¡œ¼ù ëSàˆ”½ZT@êsÒ\–ÎèñgŸüÍOíh–¦¶ƒ«ó*¼å]ê¦ü–z˜Œ|‘ŒÊq»Â'«·ŒPK½…jŠ=Ù¬pÐʆa*¾[¤ý}wy7í?…éYWÖ‘0˜.ª½çϽâ[Þyðïo {…U‹ƒßú?ö®ÿêÚê>vAU›,_ÀEwA89š0tâºa+Å‚ˆº.¾ ]ÕàxÃ7›Yï“"x'Í|ŸDðç5—ikKÔ.º/ì¼íÍ7»k}ɺ‘‘¯ £rÜæØ°Ò›Br˶6ÏòFÆcC1UJ>8p—hïs8wÅ&·²š…>·ú)|Q$凿÷;ßÿ3ÿúÁ˜k–Ÿüä³øà…oÿžž @kðN»>_à}»Î2­7¤Vƒ©øóxú¾?ií·.GŸTŽ“É.GÀ”8(‹n(g>þøg~æ÷–ÍeM²ˆ3¯¯y÷7`ëìÍîWìtü¾FîrFå¸]9q^«`‘Å4ûí\•®©Ð¸4‰~*˜xîzì/ÜÑçpô &÷³o†i;ZõõžŽ#‘C(Þôº‹ï~{û³¿T÷œKžd|äÿø‡ßþMßа,ļðçy^CžjPŽõVíáKCÌñEæðN΂¬c—auÇÉO®ñHdp0‡™b,Ø}èïÿHÙÎgÝ‚z7¿÷@óòoûFÐÍþ饛Ќ|Å•ãvåÚ10¸@±©Õ¶¶” 4µnæ› 0ÇaëŸÆÁ3ØÚ' ~_‘}_2Œ’¯ýËÿÍÏ|àßœoÑú°`‹ýÁc?ú¿ö¿ÿžªä##O$4œÉ¾öžÁ2ädÌã!ä›7TÈ×£×kí9é¼´úýœØlAD¤*FT›0‰Ñå}ä3ïû?·´Õ‚&ê:í^ùÍﯾTÝìÁÿÔÍ¿42rû0*ÇmÊÊîu}bëJS*7¹Ü@½ÀƽéQÇ›¤³6ÏZš_ÂÁ%̰‘AbÃÞ§S”4gLàå­œÿÖwÈÏ}Ø-u¯± T|ìGßûµ¾>œAٕ‘ Ÿ·ÿó:Ù…ÕøÑçu6#¢¶m‡¨%ç¼Þ´±±ÄЬPfeî5+¬À—’7ˆ‚Ðí}úßýôßükoXö]$¥3{Eƒ7žÿêÿî›MȺ†Gu9åŒÊq»B×þ_ù%³JŠÁKU¸*pAðF1¢kµ›ébývb§gËlhS|àñŽÿñ/Ý·ÕÁ獵çŒý¯ýoOüÊ¿ÝÊó´hø• ­EBa˜°”`†©*èÚXø £Ï7}z>«‘ìã"Çúæ8¹# Ïj f €'âo}F@dàÉg~ê{ÿÆ}4yÜi]ÔäÓQºü®÷¼ š¨Þ º±Ó“DyAFå¸]¡•gÕjï ÎKQ£Ú r‚ªASPü4pÃ(æs,h¹ŸÃâ ‰(ã´Œê4å%´ðÀ™ïøû?ü¬“pκ¸ti³]üî÷ý­Åo¼ŸÆº„‘am‹."e°Šx×Co *Nú¢?ÿÎ×k*p¼>v½Üi¸ùP#!BKèØVÆIY- »+´Äæ².ZV¿{ù}ßñç/>}¤G½V9çYÚ{ëŸydûkÄÙ3VlÁ•4#§œQ9n[ÖÛVÀCÉ‚= Ê©•›¨”5š’7¼ND«¬‡3ÌŽ¤;Òų:{ñ†Óôû%d¡ ˜·ñŸ¿íþâ÷<Ѧf2íf‡³-{î÷>ñ‹ù–‹g»ÑFˆÒ$ PFÊ009ƒ[¯ ¿áǯۢž_$?©4ƒ«àɦ©!þX •^×ÕØ°ýmŽ”X|øûþgþÍÇ–Úî¡ßYÒ^¼zÿë.¼é=ïèÃgÎõnä@_Š5ë##·ŽÓsd¹ëࡳvð´ì)Ô¶s¹eÅÕêJ›—jÂB±X"ÎB¿k‹gÐî"-OIuÔˆ=Ôw‘À µ‡ÿ§ï?ÿ-ß\F¹Jz®(ݤºú‰Oýü»¾ÇöŸÅ&º´h‘æÐ^¢Hi½ìz]ÉXsCCíú“Ï9çuG/Žeæx•ø gИ4er¢ÐVã¼_J…Éîå_ý«?xùçeCx?ôÍ™ºˆ/¯ßþíïÀf ­³ uTnrº¦ûGFžÏ¨·)@ƒéå°3ŒD]™ÃY+Π:ƒrbUIII“àQ`Ñ£=ä~íeÌŸ³Å^À©©w†¢ëÄ…ùl^SL7¿åïþí+“êüù®<ûœWÚÞ˜Ôþä¿ý¦ïÆòrÁ¾€E¤ N@¶~ý»>ø›z«:LyëÌ×õÖÞÿÉßÿ;ÿí÷?ñó¿BÑ8(2QmíuxRÖvè_p§ÀÐXuƒ¨œɤKä9ƒ¼óHØÿÍOý½ïÿëñ_þò½u¹ë;á"MÚ«ûßôžÿì·¾j&Wü¹i—ËrúI…˜Š2äS ŽŒ¼0òC?ôC·ú1Œ¼0ÑñÿBÄCŸ;5B-õI,–°y/KéYµ#⢙P(²cW•€AD¸÷€A=¡ŽÕ·„2€¸A¨áA F ì£Ú¸÷{ßôÇ>ñ‰ïž¼tΰHóÝ ûcOîö¿û½ _ÿÕmYÌ]P_¢Y Α0&R3âªί\BÒ`ƒn "#P‚ˆMA„ÝýI©ä.‘™¹í¦&[UED ll’ÄG–¥†BÈúOýÄû>úëýÖ‘4BEC~6¿Ôïì¿þ=¯}ÙÛïµz^Lߘùœm݇éElÜ“%]Äéi˜y>£rœ2f¹¥nÆñHâÚ!µÈ‰[¢9•" h¸˜Z± WB&$Ž$ ³è@0œ’†ÝJ±;?Ú~õƒý#¿ö_,ûìÏ—îOè‰||ñë¿{߃÷M.ÞïHžšX`ŸÛçK5ËŽÔò&hÓÕD«’õ’”,³ö•(SNœ—¹ŸÍÀFl¯:²˜‘μùfB ”á0wê •ÿôGÿÏ÷ýÍßùßÿö//¶­BÓ|oùÌæyyóŸ~øÕo|ïLhç,üy.¶yr&ç94¶ÐÑQ9FN5£rœ:2C‘;Î-i ma‘¤Ž%›v¤F¡F95ßÀÊ5³ÀDÃÎQ0@§äÈe@á”Øíl?òÎwþƯÿÆÑ•=žuó³þÌalœöñ?üÝö7;¼ç‘×Úbßz¯…ÓÚ{ç&‰|Ò¾vi£®¢rJ{ê{qâ@³'r`ÎêI|ËLEÌÒ¥?Úá^Í'Û›TF$”é°Êé³ïý§ïÿÞ¿²øèoîHNyF’-¡ÏWÎ?T<ü¶W½ìáûèÞ)&“Äo܇ú,M.PsRب#§Q9Nd 0ÌRÜQŠ²æ¶€ÝÂRâP¢Ø€+ÉŠRœC(Iü0^È §¥/tŸâNZ®½pæáwãç<>¹÷ʽn&:§nZ.Ðï}ø£Ÿù¹_HWŸå7|Õ„­Ìi––WJ]NËåVK˜¼‡÷‚gˆAŒœÁ)DÙxïp‰Z³(T,¸'îJJÙrA4%—.¹ÅþOþ_üK?ðŸ~ôŸ?¨¦žÉsqa+3>¸ðPó†·¿ü¾G.b[SSaz¡w›~ã~4g0¹å&Èoz´±Ä8rª•ãB À4Yî9uÐ5 Áú}dïj %9Q.Å3\€fOÃf=œ'Ä*Œ$;š‹£ÍÉëÞý®œú?øðÇP×ö.l§*íégâgÿÃûîÊÕÏ„‹ÛB›¹ªsSÌC•› ° ¬@†ÐÁÕˇIa$¡j²/+¥IŸJÖP©]~ò3?þ¿ú?üà¥ÿÄ“›U‘SÚ;ÚPSoo?›–¯äü×¾õ5g_3ÅF3NÎô~§š>Ø×;\Ÿ¡ú,Ü$fÇÙªÓóŒ¼ô»MFn; °Ng—õðI:ü>iË«¶xJ–G¶w Gäl]ÀÎCØ<—'¯”3ؼÕ9„MHXý„S¢€Æ.ù"¬õδ'¢«ýÈ/þ¥^>öé‹“ÚõÝ~èg\pÛ”‹yŸëæÌ£¼ì¿|×ù·=ºùÀC\5KôÞyšj9ƒ}‚„“± ëºœ£ŸõåFU¦öàýþ?ÿ¹gþÍ¿£«»M=ëQ•³ùrêŠ U}yvÙ.Ôü›}õ½½œ ØÌZij6±ñª—¹âžvçåE½-“H:ã°:u¦‘‘dTŽS†êjt!µ{8zVfOÐᓘ]Ñå%Ì÷x~ó½Ü÷Vlºû1=—·^%õL/¢¹¨ÕY Ì™êÐ}t XF”~ž–¥÷³)Y: †Ê|þÄßý'ýïÝ‹W·¼/ç}ퟣ.°‰Ëqšúìë_{ÿ׿Þ}ÛÛ/ÞwosïE” `0ñ€(X Ìöw]Lq¾8¸|y1›µ¿öÉßûÐÇ®|â·ë6Ù"!yÂÂq^æ3ÍÖ¼;ÚÕÝGßý†GÞõFèU´{ íª-:svŽÚM_Vœy5´Y^|uYN©Ü àX°-1ÇÈ©fTŽSFN`©Ÿóâ9™=…ÃÏa~Y®èâŠë÷0¿ÒdÕÎØ8“ϼšêm4ur‘š Rn‚œæÌr:Îy ÈíÒ¤8Ã;@2ˆ†¤]Gÿñ³ý/?òØOþ¬5î´. fèÛ`,Y‹˜&æ®X ÂSSŸ{ùË'÷^<û²­*©(À,Y]ÿà±ßî/ï<ùt¿H1×i?sáÕ(Å(ì¹ð½æÖæÙ=ôæ¯~Ë·=^Iiñ;]ÿ´? a²™ËI,7‹­‡¬¸À~Óó݅ׄ¢&©a‚&˜%âqŒ|ä3*Ç©£$à ý‚æÏèÁéüŠtOä£=ž]æùUÌS]9ÁdË6¤ÉYlÞ‹æ>›œ§É| ´H 0e"càÔøb´€ÔPê#>ý?úã?ùÿÌû¿îàÒ2FrB>ôffvfVØ`f I ƦlVÅãñr ƒ}Ø÷Žs5Y)ÃiÏBòûSûš?ñúGþÌÃçþø=}{îstù9,Ú4)]]ccÍÙXÝcõýûÁ_ÄÓ—êu¹ÄfÝÅØ§ä9{©’BübÒ¬¤D¡ÉŒœøÀa׳Û8*äèâ=¯xç›ÿô·¾më ê–·§/çn7Ï.ÙÁ36»*Ú©df œ¢¨6QlJ¹…bŠr‚²ºÕ/ÓÈÈ—…1æ8u$ƒ3ÈyŽÅemøè’-v1¿DÝe,¯ØâJêŽTsvPmbz“‹©¹×ê hv¸ØpL&ƒ_àÐle åSttˆƒ'$Ã``ƒ¥¬¤Rx[<ýÔÓÿþãŸýÔcóýÖþ•Ýùîž$- Ô%IêRp—¢\&ÎŒP7“é†{Ë›^ùð_õ–Géå¢&ôX\År7=–Åìi¿÷f—Zà<ª‡PÔh΢>‡ê<šóhΡ˜"lÞê—jdäKÏsœ:V=Q4,n’€0 úÎ2,öl™,‘%†YZ -Ñ3Ú¾vReà‘$ž¨¦¼ 4;÷Ó¡€ FÀ÷Yò, ¤ÞÅ‘W¼bûÁÞþž÷ g̳çžëf˽ƒÃç®^ÞMí2sb'õtsçâù­sÓí-ÜsE@#^2¤@Ç‹–çGX.j=tË}w¸‡Ã],g&DÕõ$¹©+øM„m ›¦äj¸âV¿J##_Få8e¬öv¬2ÈÃ×&‚圲¥Ô«%ošÅŒ;oyI)¢;„/!AÄ9BŸÙD’kä8׿NƒÝþ ðjQ;#3 8äe‰¢†sjÈà°ªßL«ÉÆÙAïSƒfÃ+ÌÀÌ9%0±Y" îsp9Çç;„öðèòt~Ë],÷`=‚§Pf7ͶAÕ†ú —Ûg9l›Û0©ÀrJr##/ŽQ9NCr‘¯X¥;‚qްS¨A‰, 'UClyy)ÀžH€§æz"9²ò8’áÓRæ0SˆÙJüp& XaCµŸRFK&Žü µÇ»yUÕ³OÖón¸žˆ=RRØ\™ãê³è§}‹nÝAއjKqž‹ gÅo¥bƒÂŠM”›(·¨Ø0_(ä´Dp##/ŠQ9Nùút’”$pZqhZ¤i nAÎkŒ{’%usHe®"aKΈÈ*èøZÍý´(G @Aj,R„&X=T@5c’­¢à¡9A¦1Ax€uÐZ°¬59qn—GùJÆÑ•ª˜—q¡ý!ÇyB› ËB,ÞûÒ…)Â6‡’BƒÐÀWð%\’SÁŒ¼HFå8eøëì¼®{”gÀ RR‚rfŽqq¹¹ëæÔB’`$?DbÔ Ø†ßT °®×ëéjÆa¥*·×äàðÆ .Ž „5P¯-à†ëL€¿ÁjÐ!6Y?ëMÐ#A[Çus^¶Xa~íæO»”`ìÊ‹TÕ°­åû†ÝüÔÊ{ÐìP9…1Yrš å­~©FF¾ôŒÊq§@ äKÎ%¥©B¬áÕB¤Š˜!¶ˆsr>sMª,R€*Às ºÎL‰×t3îäõ§ °­V½–‘34Z×YZR\¢Ÿ£_ ÿ(µPyržCP"Tä*ø ¡‚¯ÈÆaº™ýpGîTFå¸S  !Jf‰¬EVã‚XЗ«yëœ,u´Ü‡E¥Š-$063È×FÞ@<2@ &€Vä;:qt·l¹·ØZês{H©åî€ÛC,¯byí>õ™7qRÖ¨¦(§¦Søå6Š „. Î2ˆÇÈÈÈøÎ¾S ¾‚™i†¦¬€«ˆE¸€²Z77í©ŸÁ"»-A„˜ÍÈTI¹µb›„=e‰èô´[½TŽ]x³i¤Ü¢ŸQê­Ý—ÜswHíUÌw±<°~A³›p(PNPLÍoR˜¢Ü„Ÿ ÚFh&`gƒ±Aè´”FF^£rÜ!ä!ÙB¾¢œ4dS€–£AœÔˆqiš³u{°n¥fC±V*{Qˆ‘£c{¨;%À9GÄ%ºúCôKײ.©ÝC»~†Ô0Tg¨(Q6&9lŸrØ¢¢±r“|€x¬¬àOÍ0þÈÈK`TŽ;2( â!5ifÀ¸ÐØ‘ b˜¨;ÐØZNh÷-w…̈ X4*ÔyÑ ®ƒàø?fhBŽ–Zêgè©;@ßr»GinÝÒÒ˜ ÄÑ EW#LQmQ¹רoDëMït\¹¹•ã :xˆóTT€*±Ó©EO0X†Ìà™õKI ¢%Ãp ‚F5Ï¡0URƒ(¤ ð{Ь}Gqiý!wûè—Ô ÎÑ › ÌWäk (J„ ¡¦°)Õ&Ê)¨‚x–ýAW㚃÷ðúºÜÝŒÊqÇl«Ã¤ÈÎP4ƒ¶È¨‡EÒå94jj3Í™ ð\ÈAÕh©0Áž1Ø›°O½æl©Õ8ç~nqAq‰8×8ã~iý‚RgLGE?H€/ÈJø®¯V ¦Ç3‡—Ü©ŒÊqÇàpí—Aªlq¨Ò(Á!P_Akò¥Ã®ÔnIýÂÇ]ä%¬…¶èOYRÝ„°õŠÐS6b«)ˆ‰N¸\­œz­—nÑ[+ë©"33J²zh˜ØÈbÌ9RžiÛb1siAº@Ú׸ßÇY9{ ÙÌ\r‚²¡P{©·áj S-7©Ü¢PÃÐñ³¦2GFîtFå¸Ã!7eíȲ‘FøVAYÙÈ4#÷PEjÑ/àÀ‡W@àÉLA Η@<¤­hð¢îÀ®ÕÏi5˜xK‡?ž¿%—hHѰŒÏ´Cì4µ–Ò’b˹£¸@>D:¢nNqØ;q¥ùš|M®„óp5\IE-E_@VÎY##w£rÜéøMB/ZØ`åD.#;tÈý –ÑwÐC¸Žá¹#é³U„ Ù›xvžƒ"FF+•NñmoeŠæ„Œað¢ž@ŒÜ#·HKKöKˑӂb‹8C·x„xDý¡Ë½!8ò5µ…¡¡PC¼…)5ªm¸Ú° 2F鹫•ãN‡jøˆD™Ð)C—l¨Àpà‹ h´ØRê` ±Bê‘; =cJ‘‹(L`4CØ CìÄ!ód¬q«R6ÃcŒ¸ˆŽ?a€µHq´DZR¿¤Ø’&Ä#J-ºÚ=ô3¤9´ÍÙmr(©¬á„F}#EWÚ¡*7àjƒ_?å1E5rW1*ÇN˜„|€I•-÷¬¹pýœ809°CïÐ/(÷€".aù¸b‘ HÐR±zäà  ÅâŽ3ülljªaîIy½nĦÐ3¤9R‡Ô"ΗHs‰4¡;@jÑ¡?D\B3Hà ”[æ=…©ù:»~ÄBIå|© >jëà#w£rÜá ÃÌÄ_€b#K-GöÆÄA\~í‘3ÔÚ•X†ÒR\‚x¸)á H‰aðÍÕ ãÒÌà|KS7¤ 2Ø›JÈ=r„f¤9r‡~‰¸DZ`Øy•ÚäÎâ ¹5»¾†ª6IŠÒ˜4S+6(TjH9=ÎΑ£#w£rÜá0z™1ÁUDÄ`áŠJEê3@Ì2è‡Å–b ËŠl©ŒÍ(¤„וr¸±0ßR.!Þœù‘@ÄbdtË@H;@¡9®d#õf†8³Ü#.)/(.çˆ äí L$Üü¤¦Â‘+áø òS*6à+xÐ0°Áݦ×ù_ŒÜéŒÊq‡CÈCW‘ƒ2¸`o‡°šUKCJ 5©B“ªš%$Hà $ !ˆ‰ÚÐëÊ1+˜û3À@t Û4“eÍ=R‡ÔC{ʉ4§ØRN–ZN-Åq~-uf‘X!B!À×ê¦Æ K{¸@¡¤0ŸÀ7€ÕâvàdZLó ôtŒÜ¹Ðà¤=r·¡Ë«–zŠKôGœæègˆshFœ[ìr¿´Ô±v‚dPÝñð%¤‚+L sX8L@<有7q8s`v 9‘dë¢òuËøn0ÇÞ–fÆr²sIOØh 0˜¢ë424Ã2ºã˜ÃzäÖR›sRK¾=$ë¡s¤#t ôsh†ZâŠÄ“/Í•¾"_²„X5,]MnаÙ»õÝŽŒÜåŒ1Ç] û Ìh(&rËD$€1“Û½#4[7#ç‘{¸¨©0W’Fg9‚à Ó)Œ‘)Q'°"È1]Sˆ¡_ÖÖ[¯S"˜]7º~,–XNf–)%ÓLMÐ/€ *­årÏš©›™FØ"Ç%RG 1³5Ø‘ Ê\©®  ¹†$oàK¸°^w522‚Q9î^\€8b†DÀÎÄYŒÌŒ\’T”–È-â±U‹––Èœ§ÔÁÊi;“ìX ä’R W9…ƒ° HˆØÈ 1Ã/"aµ|p—½~ð›†hØ0:f3)icKh2Ë”£j"ÍjqIšM#é’Ò’s‹Ü“Et ²ŒÜ‘öªJäáØS1…8H )LJöæ¦ÀÅ9à °Ç53ö‘‘‘Q9îV rñÞ8¨‹ÌMH\@*À…r«¹sñ€AÕZN‰¬…z0³/Á 5¸Cì "`”ˆÀäŒ$ÄĽDBD""0l–1ìžÙj#á Ph6dR3Ë•a™,[Δ{h"Sh6]š%&þb‹´dëâÐjlÌL˜+øR 4 ’\ß ”OåY¢á©[…<æGí•ã®EWãrdäì •årRn‘ æR”¬ P%MœÕ)eÄDš{f)ÁÜ‚— b €åðyˆ‘’`D  D¤R£ëc˜`"@Í2Ìtˆ0L àÜ v,ë:Gž[Nª©£ár¥1a0‘xâ~i Á|Aìà*øÊ\ _“¯á<¹jÓ°ã—ËV%–±Ð122*ÇÝ Ùj^ƒI@d$ÄžUa9&As \Áu¤¦Ébê(Gµž4ÁrR#ꙹ–¥€`C ’![5Xt;°cv+… A†Eç×p¸až ´šY¹ëcŽ‘ëÈC jš‘;MŨªÜï“eʹãÔYn)'hι[4Qަi5‹GCÅ[„a¤|X\á‹k¶×]Þä}¨ƒŠdd]¥¤Ô`kA€’ŒXÁ«8ÆUÄLˆÈ™sàÀÌSo\²/LØñäž[ý’Œœ>Ƙcä: ò3Dö"ÄT šIYÀBÉAzhæLÐL¦–±74dl€Œà¡@`ÆŠîdÂg}]orsmP‡–Ü!±¦Äƒ™H„Ęˆ†‚ÊPœ‡øáCsIL<8ˆ”ð%±_ ÷ŒŒ¼HÆ¿œ‘ë …V8XÀ¢„ ¶cÁˆÔ!÷È=Ì(Á2L)§!ìJ$ÑÊmÑ f¦Ç©Ç•çë‡Æ?oh¨ÄȘˆ`z´Vå†xb9ˆLàAì‰üÐvl~Bì Ž¯¥°üh652òÒ•cäFèÚ!)àPÔ =R‚ë‘"4BËÚ×*Õ 9çÀ2T¡ÃX_†éÐëjëËc yáM‚&CD¯†?†µV 1Ùà}ÂŽØâAñ«˜c,ÄAG,p@n\>2ò’•cä:Ïó _õAÀ”¡8™¦¡ÎÀ4Qî!zìbþ¸'ÊW!HZ'”ÃŒ†+|“l•›'²@$ƒ¨2$6„$Ì f“Àäà8¬”Ãy°# DbDÄÇw–Ç?€‘‘—Äø‡3r+Ù8)%& uˆ‘ƒ)é0%Ë–i´œÈ²Y¦\˜ °lN‡O`_®~îqÀa«‰¿|ÓD4D?ƬÄ06&áòXBìˆÙ†I*T˜%¬Æ×%8¯œƒôk1ÏxŒŒ¼xÆÞª‘Hލ×t¼g|=@W—«} ‘Ó0ua)ƒÌ,›eÓÞ ¤¤.­®KUqåX9#²1ƒ¼²(ˆHc ó†Cµƒ\Bì§Ì OÌz½@ص”±Évdä¥0Æ#7°NäÐqýÈ 'D€¯áP°B´~Ýêg92r71*ÇÈ—…|âäÿÚ¸™Ñ‹s)?iK2ˆÏð¡[еOãlßÈÈW‚ñïlddddäÅñÿ°u&> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 4 0 obj << /Type /Page /Parent 3 0 R /Resources << /Font << /F0 8 0 R >> /XObject << /Im0 9 0 R >> /ProcSet 7 0 R >> /MediaBox [0 0 313 89] /CropBox [0 0 262 76] /Contents 5 0 R /Thumb 12 0 R >> endobj 5 0 obj << /Length 6 0 R >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 6 0 obj 39 endobj 7 0 obj [ /PDF /Text /ImageI ] endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 313 /Height 89 /ColorSpace 11 0 R /BitsPerComponent 8 /Length 10 0 R >> stream xÚí|pU¶ÿd¾£û¦_Ó~{Ê즊Բ¢Q7""èÂ6¨ÕóÒÁ•ç§¢ Í*Æ]ˆÈˆˆ¯X‰hVˆkÖ—Áe %è3àò Q R/$H`E%1 Ñ‚a IÈ…ô™®ºõÎíîùÝ=ß÷}ÿËÑdzúÞ>÷Üs?÷üê(¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥ÿot4ó²]Ó¬2Û§ÎÞµÿ´:ö¬ã·#éø£éòÑ=LÙepÏþ¤f2~œNãsï¸gùÎsIÍùãiu¸I­qר0½ L²¼¸l¼ x2="ŸõðG©trøÖуÇ-ŒíxB7gâÔYÏì‰}Åü=>uÝ8 šÇù5S=n‘q'¿qÎzôwdñï™s8…ˆn^'ýÃ#d¯KXˆ›ùDz<Ò¶¿Ù†éxOòMõµ,Qp»y7#Îíñ<~Áúiu}–Gp3™°#/x²^Žèèˆ)¬Û·ÿUŠy?¥{DÞ‚rbXœÌ{Øà†aÒþäáÏÝ#ðÞ-ˆwÚˆH)a¢ ‚(¬ØtbWnÂÇã(ª85—ŽX2…ëxþÛě۳™È¼(ò^ôˆn¯¶BÝö,ÏëE±g2MhC;*MÀ^W}nxZLÌû)ìá#RƈU܉ic‡hãNôèË2íhÂðí™"S)c»y1ËtäaByææô*­lݺçÊ&áRóüøsQ1q§#Râ´óÃG$yUŽ:Ÿºùà?€\hÿË4‘!Tˆ·7êuœ[Ì\×®’£ë²Pu™g¬õ¦¢P5„ª*.Ôä +·¸9ÒÊqó³H DÚ⺋–î!q±0îÎé›p©ÅÉí$J8=ËìÞøGÛ¯c`™´%Ó{„¶çŠLÅ ]p‡<¨†T•’Y¼[˜GÕˆ”8ãçÌËÈeÈFÈ|c0Äî@@%5 ]âÂÜÃ"'Lï¿‚Ó :-ÆDk[ ˆÜ¿0ñ’ý·' ÷·…K.Ç$²¤õ(ÇÊ=œÃæ¾5öÎQB û# ßÐe?: åßíx˜m‘ìíjd}4ª…€ÍOl×!âöƒ..ÌAI÷„Åäîg3nòu ™Îûýe0{i¬;¹´7‚8-ª›oQ“㉪é Gà÷¤vËÙ‡ÐÊÖháoÁûE7'ì‹ Žçl÷sh$r,V#^ˆY¨ #qr?ÕâúiyœMæ`ôÖ™,œÆ¤ ÛSà öO”Ÿ¨ˆ8O¸?œÃÀé6.†°eu¼Pe´• ðÆõS÷!î=Fîl9n?S­®^€IYû¨%ihc7ÇñRW3$0¿æºmwÚoN´0žÙÌ%‰QKšˆ0z,X@ kE.£¥g©I=qSM時vt-QEçsa`ˆ‹>€‚=Çb3šÄ¬„&±†o³Ðέ/ãÝÙ±íÿH2ÂaBs·Ý€„â¼Í8,d¿U ª­Ìo’>BëŽÞ!•,Ç•˜je)4B–£œþþ(pròä˜ QïÑwÌa>VqÛ=fغ9n}5Dœ¸:–ÃifËŽR+‚ÏÙ4Œð€ÐIœ{jÜÈv„áH<âð™*pÂ.ãÁ·ÝVÝ#pürDHbÓxwî$Ž(|ã Ú­ñý6"|œãNãú„ÈsÙ6€>N;®H4ôúÜã D$#ŽCÜt4»Ûm"nŒb8ÞÔÉvsÑ‘áÇ88÷x}°ßªëD>»·äú„ûý¸/k~;Õ9•í§6ƒ™n÷8cJwòœ`ÙhØèÅmU8øÓMP2âø8ÄíÇÕ™c'‚cTi˜?œ/?~DŠ£ÉˆCBgb ‡³CÜt·;Ÿ`à‘èpcŠÃ»‡¦#DœÈJE8/V2{ÍôÖ©‡»À³35ß}ž"ز<$ê¿Õ)j­Öˆ£0É­GС›qÞ“c莩Æv:ÏÖUœyn»h €‘¤°š1šÃs7Ó”*ãxLs¦ºÝ“Ó+Ž¥Á²R¨pkûp˜EJÄíx±=%[À˜)R§ê‰é<+7d®·W5â´I<Çb* ã—2œ¿‹2’£u¸«#þcXÓ3ÞÃéAY¨ÌíNQj뵂i7ű '+Ír™·c –*%⎊±ÁŸ%ˆ‹YŽ×>™UC=ãŽØ‹• 0ÁHgº¦r k˜!§ÙÛY)íÑ4€Ø˜:5â#RÙÒ.Œ"â*–*À®ñº—Ølóˆ5âÂå°É4LFÍR¥6‡`ª o¨v7@„Íb$‡°#ÝžÂFæÜbû=BB/ â41MDD¡ÆÃsqR²e!5™¢Â:]´AKm6³¸Ä&sÐDwä=º³~ByŸ0تƒ<çÙEhhŸ˜TåM•ñœ̱}KÓÐa«ýL¦›÷ÄE.©§^çæ¦§âªÁC¼ìÂ4Jf±â¹õº[#næ z\k“9œ@[öBˆJÓ=¼ëáÄÓáC-gU 1±ŒžHïâXèg.ð ¥ +­*LôÄØâOÄÁãƒÔ¨Ïrs¿±º¯Þ)ZG6ˆcá[®ya‰¸Í±–k=€…‹0‰:Fòã ä§‹GîÑ* #ço‘âB¡GwÜ;–4qCý®\É>TUÀdݸu"h‰¸ý‚çtceƒ8ŒÚ#åGdnØoÛ#]Þ9]a(ÏvjOø§CòÏ·øQÅaõ8LlÆs¼'f_§Adº…”iðT´+$z“YHHl³ÌUs9^Ð÷œ5âÜÄñOD»ÏÑëÍÚ¨ªÈðp”w³Š¨YØšb£ä›…¸€AhNê¥çµ)„òn!æõSjÄaL„ŠL¹ýh%l̉þ"Á²Å qo nþQÍT¡â4![h²9~UqˆßEƒUà<Ì÷AÀ öNm?Æ™sŒ¢é:Dlš4ß,R†}£LÓäªÐéðu¶k¢"N<6©)<Ê #F\»'ÂÈÆÆEME3w`ï¦càÁ‹‘Xˆ°RžŽJäðák2δÐð! yÛŽçX'hÌzœš‹L#Ç4ˆSÕר[ Î0m´Qe\=.ѱc k]]MFÜ…l”iµÄ¡;ˆuÒZ †ç0Ù¸3vU†³v¤Ãci\F•›¥! ö Ò=Öõ×oÇéISäA¦‘q€‹Ç «-9Ó?à¨ãõé^ÎùõŽó¬·z*qG¯C[Î>m÷—W•½ÿCŸcÛ üE G´ë1ñ³<„q&·w8ÄÒT²ŽG&VÆèó,·®¸#áz„þ€ìÃeÝ4ˆC:Éq&¬hyL•åQ'>ÇÂ4E´>>’ˆ¸í4ê7 †S+kÄ1Z =ÌŽ;qY±i‰õˆŠá'¾Äæ {ÿœõ'ì¡À Ï'Y£·=¼‡M(t4šS’I¢ý6bÆ#ŽIsq%LO:±q9Ÿ¥¾ûLÁÏà4rb ç;Ù ‹–IˆÛ3™%¹Se8–Ä…=j»ÀNÅËJE3ÑÃÂÞt wÄïÂsóÇçÆ¤˜€ÎaçIÆÅƒîÈD4ºìM>¨1ï´oQÇÙ—-ÅLF¦ž Y™5ñ‹²9KÄÍñsð8Ê|s´‡}Ø'Qqç¶?‘ÃêPü¬è“–ˆÓóÐ8v€ñŸð"‰Ð[£§™`~/?ònSÝ¿Ð#à½üÁ”j˜ä¬g'ㄉ5áu¬™¬ÇÖá´Ç¼s@wÍ›QDzıøhœ€“ÍYñjg^ËA¸ñYí4Re!¹ˆ›¬°B¦{Xy@µE\fvv6;“¦kMŒ{QÊ–Ò“G«YÅ#1($5ïö0Ó‰”âÈ®,&¤G˜üÐs^½pZ;‘'Šë´„gTØ£7yø[ç<÷Æss& Ýñ¢ÇLêcß9܉šÿ(,fjÄ1ßsa: éøœü²×Öÿ.?'Ìñüä31Ký¹ì8Köô߯ž5NÀmdŸ.†+âú'zÊâ¡„K_:w?NétŽOLš1MMˆ$B;=¼5`d½GÔY Üyn¦Ž‡Ï…ÅŒÑ^óèGäØ QãL¥°0| =®nveõqL„ö[½Êë‡îðJÌÝwÂ57YäX•׋Cðí´{#Lp5uÊDi³óߌÇe(×lŽø8…ìäõDG›‘õ4Î<ê£Tè>‡÷°åAÁD>{á9k¡ô¯¾‰gà`«)ðÙeg"Bµó>ú^Þæ=úË4“}SY¢UÁ@Ø9]·îÊx8u{Üt Ã%Ù•ËÒrnAÊlO‡Súúë5o ýåÝöÑd¼ûF­ßGiÍë듲£îÄì ¦æ˜0Yc§ __8=7;wòCÏQ©ªQ"p¦fáÔÜìœIùëO{ÞÿFMì‰gØŽ]6ÄŒÃ{MMU±\#èeù“ÆgOÌ/Û9¨‚KÖïG«ï¿y\þº=Ô'€°b*þÍúœP<ÑÈٱĹNMô>šªBB`ë‰÷T“¥É ¯s$ÆÇ˜»$ö9-Ç‹„ê±É¯ˆÎNÕ¯Jl#®’ªB µEDHß%V›VI>Ö]ÙRŒt ÍònIÒµ˜)¥ÐèG"æ"{%ï6??¶j\Œ\–Ö¥‚БRÝìàÿˆÃBŠ5U–VöàÅ÷ó ‘‚ÿC6lo<Ø£_è_¬((xº1Ò¡piäRI9ÈùÊâ¼Áa:úB*oNÕþá}·tË„ÿwM%ߘァÒ)-.//O§Pò¬®{¥jýºÄ‹¿†WJþk ¥Ò³ƒ?¢8Pªé¥&;þ»e¥¼bžâëJl¸’Üê”Ð9»èZ‡“‘Ãÿÿoë Š •ß½—ž”[ I»I꥽40ß²©Ya£çgÈ8é ÞZ´²j£Rj4jþ@dH¹šVÊ'­ù·É¥½h_:|- ?(ºÞ$ÙKúá§ÃéÊÈÈp¸\N—ë[qdA1„,ðÂIùPúÞ ÖSZµid çF‚’Ò@OÉ•TwÙõøE×Vqdf5éÛa3‚Ï?ļ/ tÇ߇ Å‘ZÅVÔßþ„›cì]÷=òز%ËžM5­¯ú~¼â ØÏ&ý…ÜvJªnhh8NƒOÍ›ßRYP‚’WT^ÂÏà¼u4ðta°«¸û3Yyšž_S0¿Ÿl˜_Úæ´ÀW‚¾r¥’¾%™Nyˆ´à¼‚ qJ –bï¼jÚŒ=—®Y°˜Y¨Ž' ž–Lº”Ý‘Í7€C å¨/YQÐVHþ½tëü‚ŠK´§øÉ‚¬GOöo¥m¥%_Pº£d~ñ¥È¼žEœ¹¦l{a„ 7þb,ÒÏÆÞøŠé(ÿ~£AËôoïýúÿ^íºaQ_´em˜É]ìÛm6*.fGlû¤º“’„€È“åò»#•âbʼn,Vük”ú¯òÊŽéx[žRÑ‹=üÒ“´_)ñ›ŠSª·(ÝZ³ôeÉ|ð…ù?U@V*²,Éåô23àõ¥Z«—(ÉSþÇè1EÈŠ¢ßZƒ|*"™_Hµ4¨øV*«È«Rqk•â/U µ.Å÷Séõ+†F|>OÚ¡U+¥Û¢r9WÕß{Ë…ÛÕápd8® ç˜g‡Xãð_¯G­^õÂwìË¿¹®z¾ºÅõó³¬eãX—+ã&“nìåúåÚ(n1CíUvŸTš.ö¨% œUä-…ÖI{Z¥`‹ô½Að•hÐ&#?”N›”CǤà÷¦]ì–›‰\¥~œ*”‡‡ßCŠô)WÃÿÐP§\ˆ¸:¡é"o¥«|Õ*²Áå€t<,Ù!©µw¨¼¹u‘U´Gj¡ÞW‡†”®SRƒoÀ T¯Ÿ÷{¡ZŠhòS§óêop0r1Ç´‡;×u£Ã…^Áû·ë=—¹Ï‚ g’1ö;V¸z ûeœ5¸¼ÂTÞbcö ÄÑé|‡ÜBXÐ\ê‡!¥Žî†Ùìü%ʆnü«˜ñ>å~ðB„ IÕP!ç!ì–zHÀ{VÞJI] Ò÷&ÿ¼W¥M@z¥ÀE-Éň8ô1@òÊ))X3,Ѥm0ŒôJµ¦`Z¹2CR$åxP¨½›Ù¸6|\‘¤àIÅôlu»™…½Òñ*9²>‚Pyÿ„Û˜)wÍ-Z²ví’¢¹÷M¹=ì}zõê+Ôdëø©ÃùS=Ô]–‘ñ+6Ûm9‡±WáöÛP×væÏ@Ü€RR«Þ½|½$}Œaä+l–WÉçYð­DÅI:âü~íé- ß”x@¡ç~Lö+C´OÚÑ—·Øà¿R9ÞÁì:äÔøIã¶DÔIˆ8ô¾•à[–0`"N[ê5⎎jyoãÞ†ºž* 9¶Èˆ¸æSRUã'{kÑ·™Òë÷ß‹Z¥»:&4ëpL¹ á2w÷í×^óÏÿ4f̘RUz|,BïOØú qø[ÖqŠÓy¯þSå×8þ;®u¸ ³?-BwL퇈hš)w£WeW#å~„RÃD«R9 VKwH«.Òݥ௠ZÛŒãP>6Éu¡îrùTq ©WtïóK0þðK¦¤•¤EZ€Öêû€ô€ï¦ÿ|çáX^Q‚€…ÀW=×jïgZ§’gÀ…ôú¼\¡çƒ3ZNIµD-÷ï¦Th²Áä½§äVÓ âÀ?»ƒ¶Í,€joxNp µðî³»Ö²@„m8WN-ty‚3ã*Ìd¡ »Çtu¹2ÞÔŸ q8ê;·9X¦Ã_/J¡8ðKŠ"g°ìõzׄ qMðt‰¾ˆF[R%+>ùEqò1Zî§°xn£ Ö¢äI†CƒhøƒÆâ•C>Éë•ä¨f,®Ë“ʵNYž-û/A^ý›D ¯Q·ŠöäÉ>Ü‚áÚ[*)>EZ9„f18Õ2¥ÛdÝÆ¡ðJ-Џm¸=»fJÞyÇ :/<'í‡kl‘Ã5æC´o†•s:õÿ+Ôz¦#î>løF_0u‚K××{·¿çrfè^æÞ8WÙ"n÷¦M ÇôÀ?Ȩš;µãÛ@‡6TbïU{)Ô£Ó?[{ž¨'öV;Ñ&´½Ú¨ïTlÁ=C,Þ…¶Z\Õ¡æ·*›˜Ó´“ÕU‡þ³ ݶ•­¸à[Û {Ô}¡ÿ¡¾úïê*J#¨u+·v‡CKÅ–n m[iÕv8¾iC·ŒÜï×a :T÷R=J‡ýÂ,îr:?¿B#·öonüÓ¶m†ÃU§ ‡°­ŠˆS±“Kwç Ý‹(ý*¤½w›ŠØû}¿÷/B•Û)N¯(µU{4V8cÿéÅ9 Œ\½FÄ€˜^Fc}Ùj†ËQúG¨×Ãx(ú²ÑôzÙÌ¢hÒÖ· ^ MÓY±ò,1º‡À¬Y '³Õe†t±i´à¤þÚáZ4Öáúí§s-°4Z §DEÎŒ[ðò+Ä!"0\¹Ú<ÐW„Žà¯D{g LqºÆà/o¤ˆZ[Ä%Õ ì“?]½çhMÕQKÍ"y €'ï®l.—?I×»_ŒŒ+’–0ê¸Èá(ët,¹ÞåØˆÊ™BEN×¶e:â(FycŒ‡à1¼~ Ûm£3Ãñ)úÙgÉ"G Ä-õÎ.n¡#!]¾>9&óYSbÙqW'tm¥Š¢ç)h¨ª`†¯>ü­û%ev•MϹ‰Ž„BËœŽ_1´¡ƒ|/¾ЏºÙ8—ޏ¯q{Ž5[Ö¢!¼âVîGCø%7|M9íGŠ}Bé³ Ä謭A Àª 4VWËÅÕÕçi¥âqËRÅ××ÞÐi^\Ä}];@ ¶hX*oX#aœR›\ !gåè  ™«;o9#J7:]?Yër¼‚Öj[ìë E.Çmˆrqð êÏP„Ö:ι”¼Z>‡ãçôìÏhJĆ#C¾§Gª78/EW]+}Ъ{¹€¡1Z¹š¬NÞ@LóEï“æU`m›ÄþÑBw¯T´îm™aQßꕢŷÊè)©ÂZH­ú¯v½ér:Þ‰ üÙ&¾;|j n;üÌlz ‡/Ú8@Àf|÷æ\f퇊£P0ŸŽŒ4è™F¦åv\åjU/5´xVYm"´#\¢CÀÃzo«ªè–¾Õ‚+‹HÂ\*}èG¯X®©·9\–87^åt¾ׂˆsbt«éˆ#DërüÄ•ÄàÉlœv ÷ê SÞO‹¸žZVª+ð²h®±à½h›æ{ wSz¥r¶÷©§*éÖÂÙ…WzžòÔ^@<}`<[Z{•SZ³Q Ñ‚˜QqÁ1ùƒð⣒ä­Ð é©V¹âmeU–ž-'•Fó"cî—:ÏÎЛA©#K,Ïkcˆ;P'÷aD³wXèUQ%^#5 *­„å·ˆFìî{ ûºüó½êY¥ÙxdžǨd/À¶É§º¥6TÚÊ:DçÐ7˜œ»Ñ£wH„ö*«èK>J¥úAeö¯—mSTú79fZÚ ÷³_˜tÒõKŒ˜~‚ˆ{„ÚâÌÐã‘ÐZ‡ó.fYþt-þºr—óçTÏ&\޳vŠ+.FÔ/úÚà€|)¯·U:´W©úÆW óÑ0¥R¨BÄ}¬¬é½T±¦Gi‚!Ic@Hùƒˆ¸j"µ_Ò*gz`6Ž’^¯·á|èä i%šÃB¦ícå"ämÊ+‡ò˜fÐQ‚ßÛHð¦Zj¸Ò¬øi·ÔDÊç#Ç:ŠˆClÑê»I¯ÜŸ¤/ÊkàUôªRîn Í3ó V¡¤^Š uiÿ½h©ØËš0á¶üÕ"޲•úKo¾±×g¯qŒeÆÉèÃD|cÆ"6¿ ˜Ò~hgã0¡‹ó¾Ï“Ð @")~­¼$û{I+Þ”qÕy˜”¾(KÊì=̳ŠîS„Ðgâ@Ý‚O+z•„ýÒ+È·›Þ øP_å•z츕¡°WjÒzü’$Á,”àˆþcÐf4ÀÙ B?¡(+)Ú8­AaWÒWóô…è] É3|Çé™ÄlU“¾ºëZg 9œŽ_/bˆë{ã¦“Л®«_è{ÿz×f§¿û—«×.£tÐ…9×ß§`˜çúçe6ˆkk£Ð·»“ 5O©ôÖ5³C­ÁÖ~ôî¨=ÞÚF:›™G:YÛLèÐî;Œ­I:ZiÏî+´§AOª08YW×Õˆ©iÓ†š~@ëÞ´åløÝéÜÚ‰\ߎóÀiêÖºB!Øl¥d¨©Gƒîºº“­ÇE‚»1¼>PÛt™Â©½:c'ƪ*ýaã_Y»ví²µËtzç“ß.Ù¨}]„4wÑ#ÕGü¯¢±×LY«;§/±aÆ)ôßðçCÖ­è‘%v‹üÃY„UI•ãt éYä á^ ÿe2Õ«T‹VL€°t\ÏÉíLÀ¨ÛP3Ùeå vz&|æÅ8ÈÝdáZ ‰œïAÁ4ý¦ª'ôF¢…ˆ„4\“ “.cˆ¨ÃÃW†‡i(dn`vR‡½ðe¬Â22‰ÌÌL3F25I%`W±Ð~Ü)ŠÈ¿!Fã/RIüš|gd2ÀÈ”˜> stream xÚíXùsTוþo¦¦j’™I%UÉT¹2Nl0‹Ù7I€0Ø`0`ì` Ì&ÀŽÁ@Ø@°Sf—@ -ÝRw«õ¾ïûòz{{o¯Eæ{ý¤¶@ä·ù…ª[]Oï{ï9ßýÎwÎÕ³VŸ½¯Çëñz¼¯Çëñÿ1x¿—&GF(µš÷¸+49þL¨­yZ§ &¥TVÈœøõ™À9ìÅphúšX1›Šñè‹ï…R!̈2ísýý¼×S-ñϦl71ž Õr÷ûò°ÌBÌ•¾–ˆ$¼%• ÆhÀóøxEz_ŒE8§£œËP*åT‡EŸŠr>[÷ 1bn¦«+ó¤ƒÒ¨ËÙt}‘ºÀ3ô˜.ÓÑ9ït'kf£-c¿úd•yÑ2Ó¼wík›‰­ÇH…HÈøæÓÜ…–¥«¤akXÏZÌÒÜÈ™³±ï¾¯V^XVàYϧŸåzû¦n„èB'¾2/\b]¶Ú±n£ue£yÁbßž}œÝ6ÕyŸÀ2Žå#‘ä­»`NðH‹”Sð$qã&P¥õ† Ç`#ïçû£»ð?¥¸üG^ jŒj¥œVöĵë  ßz‡Öj§ó¶D¤ŒsjÿëwÙ®î©É>^-‡OŸUÿÛ¯Ü} ‡qdÁ¹i‹ç/{J™tݲ¶Pa¨ðésÖ¥«xŸ–8,ëŠ5Ác'Êd_a#%²HÝT*ý°]Dï^+Øzã+rÄHüðã$z[„‚øSX§ÓøÖ|hK=R¤!bÉõ`q÷‰•«ˆ™2-KVF/|7^)Ág÷ŽOÀ¥„ œ³{îU‘#zõ7U¡’¸y Œ-Æ¢@Ï0 zŒÑˆ„I<»þ†Ô§1Ëò5¾/Z—­*gl ¶ áÐÏ_9Ÿ¶á¿ž‚Û‘sçí ëK©ä –'[-K«!¡€ž˜‰ˆtû®èù ¢Œ\øÜzš ôÞþ½J> ÷p¸3(Øx%ÓÙmš¿9"”‹îO>ƒòH[Œ×vŸ±dˆè|=ée!E¼.½?ÍI·=ä`Ê#ëòÕœÇc]Õ˜¼ùóøLu¤.J"z÷*%T:ãŸßÉtvá} ½-èý³Êº~A ’£*ã[óÀíYô¿ŠC´5¬KÞ¼ ãüˆÂªBÉàp°å$xˆÔ¦FÕ®­ÛQ˜"§Ïþé¢7zµŠÀ96~ûî’Ä=¢µ•s9'†×‹|ÁÑ;6¼Ÿúù6K?é´­l(¥xF•GÊãȪ•Dê*ƒºëí} &ŒÕbœ3ýÐC/ñò ÜÓþçï4¿ú½ù}°®LM(ä+лsŒE6;zeÿ¡c"@¯¦ÉešÊt÷‚-–…K³ÓS~6ôÐGY/‡ÌN¯5M®ã1$,­Ó‰B—J"ã2ŸàøB'ÿêݳ]ò• ’^Ê緈ͳY3uüdl6ä/¼Ù,ëèYW6O~nC™'Ëú+ÐËÉä¦9 J‰ØlËVhʾaSüê/Ôµr69÷w€À»]ÿRæŽWÒÚMó¡%(ÌTs1‹ÒhÅR?ŒÒŒõ¡Þ\ôrbQ«‘T¢Ÿ)&ãñë?–r:5£ÛG{v~*ŠÏíÞºÝìl8×u‡7‡ZNTkëUèU a^´jxãO¸¼Ø›ÖCð¡?ы߃?uÁÃÿ¾<ÑêKõe¥Õb5à<…ÞB¦«8ˆ7š):<þ•HldÜx…±XÑ‚-ˆP¸·í@^#ûò29JL}ÌÂ-ùyz׿­¾½û?@EvmÛÉÔøI´>Âî9KdÞµã?NŸg£ß_F•¬wž¬Û…½pSƒ­0tüÇǺ²Áûég¾={íbÔ¡SgjM¦ ÝRÛ‘JŽ ›<Ÿì†€tÆn™6S÷ÛRÚÒ;I¥JÔaá—â‚óJwöˆ“ƒhk/„ùAT–ç M&M‘ á€Ðx80¨¶X:dòîň^/¢!TžŽŽv cÁöÁ®áá¶þ§*£Qi4ŽÇCCØ×är¦C&+– 8#ì[©]i“™4Œ;ä²!¦C.5™Ú <ìïW›Íãq,O°&Â+¦v?Eì—/·¯^}ø½ 'W®ørÕÊC«W†[·éèÅWÖO·~îc9®µUvçÞ`ûcÅõëÝÍ} lj| Æ¢j³¥[¡ìV(l^/|îU*‘ûÖìv;û½½¿H£ÔhÀ7_$$Ó iµžpaÞëí}"Ôh‡ à,ŒXÖär0 ̶Þp(”ˆ!#ZŸöã=v1¹]£f3–º/® ÇC$™{§lïq»kD¡µZ¤\óbMÇ0Ö®mY»öØòeà;ý47ŸÐhìñxº±ñ¨Lf°X¼[¶œ…“Ù¹}ûÙ¡!½Åâ[·®åÒåvðP>b^²dÿÀ€nÆüÍÓ´ÖfóF"lC&·;”UÓq‚©À,™GzÃa° À#Éd8™À§D&mõxÒùl*¶Àâ1$ &ò9àiõz)ŽIf<ø£Q_8Ì1+’Jaý(‘ŠĘ ¢¡á‹e±M¥9Öìñ`n–$aŒ}±‘ËÅ`Ÿ",^ˆ³+е– n'³Ylgt:ã™ ÞKÂXެX~pÓ¦¯wï¾vQÑX xæÌ]ŒXŒ¶r¹áúõ®?<Ͱl¡XÜ¿ÿÊ7ßÜv:ƒßž¹»}ǹ\ŽìëÕ¬_wΨ{©\¦G1âªÏ„I‘¤ÿiL–κxŠ"ÇÁFé:!ªeÙ/å²&û¼Â ï‘‡qH(m÷‰fÏ&V \Ò,XÒ< |À@_$ ˜ ©„ŠâžWo!Ocw¯´ X è(Ž~ÁOɥʲfÍ‘µMÇŽ>h•áFT_äÚµÎãÇŠ½¦cC2÷ßÞùxç9¾À#7·ÜØ·ï²ÍæïíÕ45µÈå&•ʺ¡ùälè*OÄÔPÅÓ)w(€¸kvO8ʦ‰\GS ¼LfÓ(…¾HhÇ ±;âŠüT%N‡lb#ÈoœÔjÐ'ˆ×ŸjåþƒÁ5 G eíí#étV™\:“¿r¹½¥åFt=ňyóæSD:Ë0ì®]ç‘ànwØç‹^ýÇ“½{/%“ 78 zPŒ~±Z™P%ÅBi0«µæñìé¨Q ïà•Òds8@'T^“Ë qæK8­‚ll õÅæóЇ>.Nˆ`Ñ @E¡lˆ™ˆ_ü©wØ&ìF£ÆjkGÁÕhÁ%”!ld÷zÑž¡KÄ.¨2cvÑXe6á+ ÖYm}*¥øÆd€À S¤?QݰéV§·;0‹¯¡'þg PèìPlÛúmó†¯6nüú½Ú€ÄÕÄí–Nç\½êðíÛýy’¾p¡­£C ©<õÍ-´+]Ýê§Ouczד¥ÇA‚ß¼Ù[fø§4(Äð’‚`Ñ|Bx žI†¡9.”Hæ(  Yˆ¥R˰ú+s,UûE_áxðfÈ<žkî±´Ø…²1"Ïá-ž«“ÿ¨u×b_çr…ÌfÉä1Ýf³€„Bñ`(©Ó9P ÐìÑ ‹¯€+—§€’ÇF\Ʀ‰dfvG \)ÿ¡¹ endstream endobj 13 0 obj 4591 endobj 14 0 obj << /Length 15 0 R >> stream 32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿ endstream endobj 15 0 obj 768 endobj xref 0 16 0000000000 65535 f 0000000010 00000 n 0000000211 00000 n 0000000260 00000 n 0000000319 00000 n 0000000521 00000 n 0000000612 00000 n 0000000630 00000 n 0000000668 00000 n 0000000776 00000 n 0000009799 00000 n 0000009820 00000 n 0000009871 00000 n 0000014603 00000 n 0000014624 00000 n 0000015447 00000 n trailer << /Size 16 /Info 1 0 R /Root 2 0 R >> startxref 15467 %%EOF espresso-5.0.2/Doc/user_guide.tex0000644000700200004540000022054112053145633015750 0ustar marsamoscm\documentclass[12pt,a4paper]{article} \def\version{5.0.2} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PWscf{\texttt{PWscf}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\NEB{\texttt{PWneb}} % to be decided \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{quantum_espresso.pdf} \def\democritosImage{democritos.pdf} \begin{htmlonly} \def\qeImage{quantum_espresso.png} \def\democritosImage{democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \qe\ \smallskip \Large (version \version) } %\endhtmlonly %\latexonly %\title{ % \epsfig{figure=quantum_espresso.png,width=5cm}\hskip 2cm % \epsfig{figure=democritos.png,width=6cm}\vskip 1cm % % title % \Huge User's Guide for \qe \smallskip % \Large (version \version) %} %\endlatexonly \maketitle \tableofcontents \section{Introduction} This guide gives a general overview of the contents and of the installation of \qe\ (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), version \version. The \qe\ distribution contains the core packages \PWscf\ (Plane-Wave Self-Consistent Field) and \CP\ (Car-Parrinello) for the calculation of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials. It also includes other packages for more specialized calculations: \begin{itemize} \item \NEB: energy barriers and reaction pathways through the Nudged Elastic Band (NEB) method. \item \PHonon: vibrational properties with Density-Functional Perturbation Theory. \item \PostProc: codes and utilities for data postprocessing. \item \texttt{PWcond}: ballistic conductance. \item \texttt{XSPECTRA}: K-edge X-ray adsorption spectra. \item \texttt{TD-DFPT}: spectra from Time-Dependent Density-Functional Perturbation Theory. \end{itemize} The following auxiliary packages are included as well: \begin{itemize} \item \texttt{PWgui}: a Graphical User Interface, producing input data files for \PWscf\ and some \PostProc\ codes. \item \texttt{atomic}: atomic calculations and pseudopotential generation. \item \texttt{QHA}: utilities for the calculation of projected density of states (PDOS) and of the free energy in the Quasi-Harmonic Approximation (to be used in conjunction with \PHonon). \item \texttt{PlotPhon}: phonon dispersion plotting utility (to be used in conjunction with \PHonon). \end{itemize} A copy of required external libraries is also included. Finally, several additional packages that exploit data produced by \qe\ or patch some \qe\ routines can be installed as {\em plug-ins}: \begin{itemize} \item \texttt{Wannier90}: maximally localized Wannier functions. \item \texttt{WanT}: quantum transport properties with Wannier functions. \item \texttt{YAMBO}: electronic excitations within Many-Body Perturbation Theory: GW and Bethe-Salpeter equation. \item \texttt{PLUMED}: calculation of free-energy surface through metadynamics. \item \texttt{GIPAW} (Gauge-Independent Projector Augmented Waves): NMR chemical shifts and EPR g-tensor. \item \texttt{GWL}: electronic excitations within GW Approximation. \end{itemize} Documentation on single packages can be found in the \texttt{Doc/} or \texttt{doc/} directory of each package. A detailed description of input data is available for most packages in files \texttt{INPUT\_*.txt} and \texttt{INPUT\_*.html}. The \qe\ codes work on many different types of Unix machines, including parallel machines using both OpenMP and MPI (Message Passing Interface) and GPU-accelerated machines. Running \qe\ on Mac OS X and MS-Windows is also possible: see section \ref{Sec:Installation}. Further documentation, beyond what is provided in this guide, can be found in: \begin{itemize} \item the \texttt{Doc/} directory of the \qe\ distribution; \item the \qe\ web site \texttt{www.quantum-espresso.org}; \item the archives of the mailing list: See section \ref{SubSec:Contacts}, ``Contacts'', for more info. \end{itemize} People who want to contribute to \qe\ should read the Developer Manual: \texttt{Doc/developer\_man.pdf}. This guide does not explain the basic Unix concepts (shell, execution path, directories etc.) and utilities needed to run \qe; it does not explain either solid state physics and its computational methods. If you want to learn the latter, you should first read a good textbook, such as e.g. the book by Richard Martin: {\em Electronic Structure: Basic Theory and Practical Methods}, Cambridge University Press (2004); or: {\em Density functional theory: a practical introduction}, D. S. Sholl, J. A. Steckel (Wiley, 2009); or {\em Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods}, J. Kohanoff (Cambridge University Press, 2006). Then you should consult the documentation of the package you want to use for more specific references. All trademarks mentioned in this guide belong to their respective owners. \subsection{People} The maintenance and further development of the \qe\ distribution is promoted by the DEMOCRITOS National Simulation Center of IOM-CNR under the coordination of Paolo Giannozzi (Univ.Udine, Italy) and Layla Martin-Samos (Univ.Nova Gorica) with the strong support of the CINECA National Supercomputing Center in Bologna under the responsibility of Carlo Cavazzoni. Main contributors to \qe, in addition to the authors of the paper mentioned in Sect.\ref{SubSec:Terms}, are acknowledged in the documentation of each package. An alphabetic list of further contributors who answered questions on the mailing list, found bugs, helped in porting to new architectures, wrote some code, contributed in some way or another at some stage, follows: \begin{quote} Dario Alf\`e, Audrius Alkauskas, Alain Allouche, Francesco Antoniella, Uli Aschauer, Francesca Baletto, Gerardo Ballabio, Mauro Boero, Claudia Bungaro, Paolo Cazzato, Gabriele Cipriani, Jiayu Dai, Cesar Da Silva, Alberto Debernardi, Gernot Deinzer, Yves Ferro, Martin Hilgeman, Yosuke Kanai, Axel Kohlmeyer, Konstantin Kudin, Nicolas Lacorne, Stephane Lefranc, Sergey Lisenkov, Kurt Maeder, Andrea Marini, Giuseppe Mattioli, Nicolas Mounet, William Parker, Pasquale Pavone, Mickael Profeta, Guido Roma, Kurt Stokbro, Sylvie Stucki, Paul Tangney, Pascal Thibaudeau, Antonio Tilocca, Jaro Tobik, Malgorzata Wierzbowska, Vittorio Zecca, Silviu Zilberman, Federico Zipoli, \end{quote} and let us apologize to everybody we have forgotten. \subsection{Contacts} \label{SubSec:Contacts} The web site for \qe\ is \texttt{http://www.quantum-espresso.org/}. Releases and patches can be downloaded from this site or following the links contained in it. The main entry point for developers is the QE-forge web site: \texttt{http://qe-forge.org/}, and in particular the page dedicated to the \qe\ project: \texttt{qe-forge.org/gf/project/q-e/}. The recommended place where to ask questions about installation and usage of \qe, and to report problems, is the \texttt{pw\_forum} mailing list: \texttt{pw\_forum@pwscf.org}. Here you can obtain help from the developers and from knowledgeable users. You have to be subscribed (see ``Contacts'' section of the web site) in order to post to the \texttt{pw\_forum} list. Please read the guidelines for posting, section \ref{SubSec:Guidelines}! NOTA BENE: only messages that appear to come from the registered user's e-mail address, in its {\em exact form}, will be accepted. Messages "waiting for moderator approval" are automatically deleted with no further processing (sorry, too much spam). In case of trouble, carefully check that your return e-mail is the correct one (i.e. the one you used to subscribe). Since \texttt{pw\_forum} has a sizable traffic, an alternative low-traffic list, \texttt{pw\_users@pwscf.org}, is provided for those interested only in \qe-related news, such as e.g. announcements of new versions, tutorials, etc.. You can subscribe (but not post) to this list from the web site, ``Contacts'' section. If you need to contact the developers for {\em specific} questions about coding, proposals, offers of help, etc., please send a message to the developers' mailing list: \texttt{q-e-developers@qe-forge.org}. Do not post general questions: they will be ignored. \subsection{Guidelines for posting to the mailing list} \label{SubSec:Guidelines} Life for subscribers of \texttt{pw\_forum} will be easier if everybody complies with the following guidelines: \begin{itemize} \item Before posting, {\em please}: browse or search the archives -- links are available in the ``Contacts'' section of the web site. Most questions are asked over and over again. Also: make an attempt to search the available documentation, notably the FAQs and the User Guide(s). The answer to most questions is already there. \item Reply to both the mailing list and the author or the post, using ``Reply to all'' (not ``Reply'': the Reply-To: field no longer points to the mailing list). \item Sign your post with your name and affiliation. \item Choose a meaningful subject. Do not use "reply" to start a new thread: it will confuse the ordering of messages into threads that most mailers can do. In particular, do not use "reply" to a Digest!!! \item Be short: no need to send 128 copies of the same error message just because you this is what came out of your 128-processor run. No need to send the entire compilation log for a single error appearing at the end. \item Avoid excessive or irrelevant quoting of previous messages. Your message must be immediately visible and easily readable, not hidden into a sea of quoted text. \item Remember that even experts cannot guess where a problem lies in the absence of sufficient information. One piece of information that must {\em always} be provided is the version number of \qe. \item Remember that the mailing list is a voluntary endeavor: nobody is entitled to an answer, even less to an immediate answer. \item Finally, please note that the mailing list is not a replacement for your own work, nor is it a replacement for your thesis director's work. \end{itemize} \subsection{Terms of use} \label{SubSec:Terms} \qe\ is free software, released under the GNU General Public License. See \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using \qe\ distribution will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} Note the form \qe\ for textual citations of the code. Please also see package-specific documentation for further recommended citations. Pseudopotentials should be cited as (for instance) \begin{quote} [ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from\\ \texttt{http://www.quantum-espresso.org}. \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Installation} For machines with GPU acceleration, see the page \texttt{qe-forge.org/gf/project/q-e-gpu/} and the file \texttt{README.GPU} in the GPU-enabled distribution for more specific information. \subsection{Download} Presently, \qe\ is distributed in source form; some precompiled executables (binary files) are provided for \texttt{PWgui}. Packages for the Debian Linux distribution are however made available by \texttt{debichem} developers. Stable releases of the \qe\ source package (current version is \version) can be downloaded from the Download section of \texttt{www.quantum-espresso.org}. If you plan to run on GPU machines, download the GPU-enabled version, also reachable from the same link. Uncompress and unpack the base distribution using the command: \begin{verbatim} tar zxvf espresso-X.Y.Z.tar.gz \end{verbatim} (a hyphen before "zxvf" is optional) where \texttt{X.Y.Z} stands for the version number. If your version of \texttt{tar} doesn't recognize the "z" flag: \begin{verbatim} gunzip -c espresso-X.Y.Z.tar.gz | tar xvf - \end{verbatim} A directory \texttt{espresso-X.Y.Z/} will be created. Given the size of the complete distribution, you may need to download more packages. If the computer you expect to install \qe\ is always connected to the internet, the \texttt{Makefile}'s will automatically download, unpack and install the required packages on demand. If not, you can download each required package into subdirectory \texttt{archive} but {\em not unpacked or uncompressed}: command \texttt{make} will take care of this during installation. Package \texttt{GWL} needs a manual download and installation: please follow the instructions given at \texttt{gww.qe-forge.org}. % Occasionally, patches for the current version, fixing some errors and bugs, % may be distributed as a "diff" file. In order to install a patch (for % instance): % \begin{verbatim} % cd espresso-X.Y.Z/ % patch -p1 < /path/to/the/diff/file/patch-file.diff % \end{verbatim} %If more than one patch is present, they should be applied in the correct order. % Daily snapshots of the development version can be downloaded from the %developers' site \texttt{qe-forge.org}: follow the link ''Quantum ESPRESSO'', %then ''SCM''. The bravest may access the development version via anonymous access to the Subversion (SVN) repository: \texttt{qe-forge.org/gf/project/q-e/scmsvn}, link ''Access Info'' on the left. See also the Developer Manual (\texttt{Doc/developer\_man.pdf}), section ''Using SVN''. Beware: the development version is, well, under development: use at your own risk! The \qe\ distribution contains several directories. Some of them are common to all packages: \begin{tabular}{ll} \texttt{Modules/} & source files for modules that are common to all programs\\ \texttt{include/} & files *.h included by fortran and C source files\\ \texttt{clib/} & external libraries written in C\\ \texttt{flib/} & external libraries written in Fortran\\ \texttt{install/} & installation scripts and utilities\\ \texttt{pseudo}/ & pseudopotential files used by examples\\ \texttt{upftools/}& converters to unified pseudopotential format (UPF)\\ \texttt{Doc/} & general documentation\\ \texttt{archive/} & contains plug-ins in .tar.gz form\\ \end{tabular} \\ while others are specific to a single package: \begin{tabular}{ll} \texttt{PW/} & \PWscf\ package\\ \texttt{NEB/} & \NEB\ package\\ \texttt{PP/} & \PostProc\ package\\ \texttt{PHonon/} & \PHonon\ package\\ \texttt{PWCOND/} & \texttt{PWcond}\ package\\ \texttt{CPV/} & \CP\ package\\ \texttt{atomic/} & \texttt{atomic} package\\ \texttt{GUI/} & \texttt{PWGui} package\ \end{tabular} \subsection{Prerequisites} \label{Sec:Installation} To install \qe\ from source, you need first of all a minimal Unix environment: basically, a command shell (e.g., bash or tcsh) and the utilities \make, \texttt{awk}, \texttt{sed}. MS-Windows users need to have Cygwin (a UNIX environment which runs under Windows) installed: see \texttt{http://www.cygwin.com/}. Note that the scripts contained in the distribution assume that the local language is set to the standard, i.e. "C"; other settings may break them. Use \texttt{export LC\_ALL=C} (sh/bash) or \texttt{setenv LC\_ALL C} (csh/tcsh) to prevent any problem when running scripts (including installation scripts). Second, you need C and Fortran-95 compilers. For parallel execution, you will also need MPI libraries and a parallel (i.e. MPI-aware) compiler. For massively parallel machines, or for simple multicore parallelization, an OpenMP-aware compiler and libraries are also required. Big machines with specialized hardware (e.g. IBM SP, CRAY, etc) typically have a Fortran-95 compiler with MPI and OpenMP libraries bundled with the software. Workstations or ``commodity'' machines, using PC hardware, may or may not have the needed software. If not, you need either to buy a commercial product (e.g Portland) or to install an open-source compiler like gfortran or g95. Note that several commercial compilers are available free of charge under some license for academic or personal usage (e.g. Intel, Sun). \subsection{\configure} To install the \qe\ source package, run the \configure\ script. This is actually a wrapper to the true \configure, located in the \texttt{install/} subdirectory. \configure\ will (try to) detect compilers and libraries available on your machine, and set up things accordingly. Presently it is expected to work on most Linux 32- and 64-bit PCs (all Intel and AMD CPUs) and PC clusters, SGI Altix, IBM SP and BlueGene machines, NEC SX, Cray XT machines, Mac OS X, MS-Windows PCs, and (for experts!) on several GPU-accelerated hardware. Instructions for the impatient: \begin{verbatim} cd espresso-X.Y.Z/ ./configure make all \end{verbatim} Symlinks to executable programs will be placed in the \texttt{bin/} subdirectory. Note that both C and Fortran compilers must be in your execution path, as specified in the PATH environment variable. Additional instructions for special machines: \begin{tabular}{ll} \texttt{./configure ARCH=crayxt4}& for CRAY XT machines \\ \texttt{./configure ARCH=necsx} & for NEC SX machines \\ \texttt{./configure ARCH=ppc64-mn}& PowerPC Linux + xlf (Marenostrum) \\ \texttt{./configure ARCH=ppc64-bg}& IBM BG/P (BlueGene) \end{tabular} \noindent \configure\ generates the following files: \begin{tabular}{ll} \texttt{make.sys} & compilation rules and flags (used by \texttt{Makefile})\\ \texttt{install/configure.msg} & a report of the configuration run (not needed for compilation)\\ \texttt{install/config.log} & detailed log of the configuration run (may be needed for debugging)\\ \texttt{include/fft\_defs.h} & defines fortran variable for C pointer (used only by FFTW)\\ \texttt{include/c\_defs.h} & defines C to fortran calling convention\\ & and a few more definitions used by C files\\ \end{tabular}\\ NOTA BENE: unlike previous versions, \configure\ no longer runs the \texttt{makedeps.sh} shell script that updates dependencies. If you modify the sources, run \texttt{./install/makedeps.sh} or type \texttt{make depend} to update files \texttt{make.depend} in the various subdirectories. You should always be able to compile the \qe\ suite of programs without having to edit any of the generated files. However you may have to tune \configure\ by specifying appropriate environment variables and/or command-line options. Usually the tricky part is to get external libraries recognized and used: see Sec.\ref{Sec:Libraries} for details and hints. Environment variables may be set in any of these ways: \begin{verbatim} export VARIABLE=value; ./configure # sh, bash, ksh setenv VARIABLE value; ./configure # csh, tcsh ./configure VARIABLE=value # any shell \end{verbatim} Some environment variables that are relevant to \configure\ are: \begin{tabular}{ll} \texttt{ARCH}& label identifying the machine type (see below)\\ \texttt{F90, F77, CC} &names of Fortran 95, Fortran 77, and C compilers\\ \texttt{MPIF90} & name of parallel Fortran 95 compiler (using MPI)\\ \texttt{CPP} & source file preprocessor (defaults to \$CC -E)\\ \texttt{LD} & linker (defaults to \$MPIF90)\\ \texttt{(C,F,F90,CPP,LD)FLAGS}& compilation/preprocessor/loader flags\\ \texttt{LIBDIRS}& extra directories where to search for libraries\\ \end{tabular}\\ For example, the following command line: \begin{verbatim} ./configure MPIF90=mpf90 FFLAGS="-O2 -assume byterecl" \ CC=gcc CFLAGS=-O3 LDFLAGS=-static \end{verbatim} instructs \configure\ to use \texttt{mpf90} as Fortran 95 compiler with flags \texttt{-O2 -assume byterecl}, \texttt{gcc} as C compiler with flags \texttt{-O3}, and to link with flag \texttt{-static}. Note that the value of \texttt{FFLAGS} must be quoted, because it contains spaces. NOTA BENE: do not pass compiler names with the leading path included. \texttt{F90=f90xyz} is ok, \texttt{F90=/path/to/f90xyz} is not. Do not use environmental variables with \configure\ unless they are needed! try \configure\ with no options as a first step. If your machine type is unknown to \configure, you may use the \texttt{ARCH} variable to suggest an architecture among supported ones. Some large parallel machines using a front-end (e.g. Cray XT) will actually need it, or else \configure\ will correctly recognize the front-end but not the specialized compilation environment of those machines. In some cases, cross-compilation requires to specify the target machine with the \texttt{--host} option. This feature has not been extensively tested, but we had at least one successful report (compilation for NEC SX6 on a PC). Currently supported architectures are: \begin{tabular}{ll} \texttt{ia32}& Intel 32-bit machines (x86) running Linux\\ \texttt{ia64}& Intel 64-bit (Itanium) running Linux\\ \texttt{x86\_64}& Intel and AMD 64-bit running Linux - see note below\\ \texttt{aix}& IBM AIX machines\\ \texttt{solaris}& PC's running SUN-Solaris\\ \texttt{sparc}& Sun SPARC machines\\ \texttt{crayxt4}& Cray XT4/XT5/XE machines\\ \texttt{mac686}& Apple Intel machines running Mac OS X\\ \texttt{cygwin}& MS-Windows PCs with Cygwin\\ \texttt{necsx}& NEC SX-6 and SX-8 machines\\ \texttt{ppc64}& Linux PowerPC machines, 64 bits\\ \texttt{ppc64-mn}&as above, with IBM xlf compiler\\ \texttt{ppc64-bg}&IBM BlueGene \end{tabular}\\ {\em Note}: \texttt{x86\_64} replaces \texttt{amd64} since v.4.1. Cray Unicos machines, SGI machines with MIPS architecture, HP-Compaq Alphas are no longer supported since v.4.2; PowerPC Macs are no longer supported since v.5.0. Finally, \configure\ recognizes the following command-line options:\\ \begin{tabular}{ll} \texttt{--enable-parallel}& compile for parallel (MPI) execution if possible (default: yes)\\ \texttt{--enable-openmp}& compile for OpenMP execution if possible (default: no)\\ \texttt{--enable-shared}& use shared libraries if available (default: yes;\\ & "no" is implemented, untested, in only a few cases)\\ \texttt{--enable-debug}& compile with debug flags (only for selected cases; default: no)\\ \texttt{--disable-wrappers}& disable C to fortran wrapper check (default: enabled)\\ \texttt{--enable-signals}& enable signal trapping (default: disabled)\\ \end{tabular}\\ and the following optional packages:\\ \begin{tabular}{ll} \texttt{--with-internal-blas}& compile with internal BLAS (default: no)\\ \texttt{--with-internal-lapack}& compile with internal LAPACK (default: no)\\ \texttt{--with-scalapack=no}& do not use ScaLAPACK (default: yes)\\ \texttt{--with-scalapack=intel}& use ScaLAPACK for Intel MPI (default:OpenMPI)\\ \end{tabular}\\ If you want to modify the \configure\ script (advanced users only!), see the Developer Manual. \subsubsection{Manual configuration} \label{SubSec:manconf} If \configure\ stops before the end, and you don't find a way to fix it, you have to write working \texttt{make.sys}, \texttt{include/fft\_defs.h} and \texttt{include/c\_defs.h} files. For the latter two files, follow the explanations in \texttt{include/defs.h.README}. If \configure\ has run till the end, you should need only to edit \texttt{make.sys}. A few sample \texttt{make.sys} files are provided in \texttt{install/Make.}{\em system}. The template used by \configure\ is also found there as \texttt{install/make.sys.in} and contains explanations of the meaning of the various variables. Note that you may need to select appropriate preprocessing flags in conjunction with the desired or available libraries (e.g. you need to add \texttt{-D\_\_FFTW} to \texttt{DFLAGS} if you want to link internal FFTW). For a correct choice of preprocessing flags, refer to the documentation in \texttt{include/defs.h.README}. NOTA BENE: If you change any settings (e.g. preprocessing, compilation flags) after a previous (successful or failed) compilation, you must run \texttt{make clean} before recompiling, unless you know exactly which routines are affected by the changed settings and how to force their recompilation. \subsection{Libraries} \label{Sec:Libraries} \qe\ makes use of the following external libraries: \begin{itemize} \item BLAS (\texttt{http://www.netlib.org/blas/}) and \item LAPACK (\texttt{http://www.netlib.org/lapack/}) for linear algebra \item FFTW (\texttt{http://www.fftw.org/}) for Fast Fourier Transforms \end{itemize} A copy of the needed routines is provided with the distribution. However, when available, optimized vendor-specific libraries should be used: this often yields huge performance gains. \paragraph{BLAS and LAPACK} \qe\ can use the following architecture-specific replacements for BLAS and LAPACK:\\ \begin{quote} MKL for Intel Linux PCs\\ ACML for AMD Linux PCs\\ ESSL for IBM machines\\ SCSL for SGI Altix\\ SUNperf for Sun \end{quote} If none of these is available, we suggest that you use the optimized ATLAS library: see \\ \texttt{http://math-atlas.sourceforge.net/}. Note that ATLAS is not a complete replacement for LAPACK: it contains all of the BLAS, plus the LU code, plus the full storage Cholesky code. Follow the instructions in the ATLAS distributions to produce a full LAPACK replacement. Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige Goto. They can be freely downloaded, but not redistributed. See the "GotoBLAS2" item at\\ \texttt{http://www.tacc.utexas.edu/tacc-projects/}. \paragraph{FFT} \qe\ has an internal copy of an old FFTW version, and it can use the following vendor-specific FFT libraries: \begin{quote} IBM ESSL\\ SGI SCSL\\ SUN sunperf\\ NEC ASL \end{quote} \configure\ will first search for vendor-specific FFT libraries; if none is found, it will search for an external FFTW v.3 library; if none is found, it will fall back to the internal copy of FFTW. If you have recent versions (v.10 or later) of MKL installed, you may use the FFTW3 interface provided with MKL. This can be directly linked in MKL distributed with v.12 of the Intel compiler. In earlier versions, only sources are distributed: you have to compile them and to modify file \texttt{make.sys} accordingly (MKL must be linked {\em after} the FFTW-MKL interface). \paragraph{MPI libraries} MPI libraries are usually needed for parallel execution (unless you are happy with OpenMP multicore parallelization). In well-configured machines, \configure\ should find the appropriate parallel compiler for you, and this should find the appropriate libraries. Since often this doesn't happen, especially on PC clusters, see Sec.\ref{SubSec:LinuxPCMPI}. \paragraph{Other libraries} \qe\ can use the MASS vector math library from IBM, if available (only on AIX). \paragraph{If optimized libraries are not found} The \configure\ script attempts to find optimized libraries, but may fail if they have been installed in non-standard places. You should examine the final value of \texttt{BLAS\_LIBS, LAPACK\_LIBS, FFT\_LIBS, MPI\_LIBS} (if needed), \texttt{MASS\_LIBS} (IBM only), either in the output of \configure\ or in the generated \texttt{make.sys}, to check whether it found all the libraries that you intend to use. If some library was not found, you can specify a list of directories to search in the environment variable \texttt{LIBDIRS}, and rerun \configure; directories in the list must be separated by spaces. For example: \begin{verbatim} ./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math" \end{verbatim} If this still fails, you may set some or all of the \texttt{*\_LIBS} variables manually and retry. For example: \begin{verbatim} ./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse" \end{verbatim} Beware that in this case, \configure\ will blindly accept the specified value, and won't do any extra search. \subsection{Compilation} There are a few adjustable parameters in \texttt{Modules/parameters.f90}. The present values will work for most cases. All other variables are dynamically allocated: you do not need to recompile your code for a different system. At your choice, you may compile the complete \qe\ suite of programs (with \texttt{make all}), or only some specific programs. \texttt{make} with no arguments yields a list of valid compilation targets: \begin{itemize} \item \texttt{make pw} compiles the self-consistent-field package \PWscf \item \texttt{make cp} compiles the Car-Parrinello package \CP \item \texttt{make neb} downloads \NEB\ package from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make ph} downloads \PHonon\ package from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make pp} compiles the postprocessing package \PostProc \item \texttt{make pwcond} downloads the balistic conductance package \texttt{PWcond} from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make pwall} produces all of the above. \item \texttt{make ld1} downloads the pseudopotential generator package \texttt{atomic} from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make xspectra} downloads the package \texttt{XSpectra} from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make upf} produces utilities for pseudopotential conversion in directory \texttt{upftools/} \item \texttt{make all} produces all of the above \item \texttt{make plumed} unpacks \texttt{PLUMED}, patches several routines in \texttt{PW/}, \texttt{CPV/} and \texttt{clib/}, recompiles \PWscf\ and \CP\ with \texttt{PLUMED} support \item \texttt{make w90} downloads \texttt{wannier90}, unpacks it, copies an appropriate \texttt{make.sys} file, produces all executables in \texttt{W90/wannier90.x} and in \texttt{bin/} \item \texttt{make want} downloads \texttt{WanT} from \texttt{qe-forge}, unpacks it, runs its \configure, produces all executables for \texttt{WanT} in \texttt{WANT/bin}. \item \texttt{make yambo} downloads \texttt{yambo} from \texttt{qe-forge}, unpacks it, runs its \configure, produces all \texttt{yambo} executables in \texttt{YAMBO/bin} \item \texttt{make gipaw} downloads \texttt{GIPAW} from \texttt{qe-forge}, unpacks it, runs its \configure, produces all \texttt{GIPAW} executables in \texttt{GIPAW/bin} and in main \texttt{bin} directory. \end{itemize} For the setup of the GUI, refer to the \texttt{PWgui-X.Y.Z /INSTALL} file, where X.Y.Z stands for the version number of the GUI (should be the same as the general version number). If you are using the SVN sources, see the \texttt{GUI/README} file instead. \subsection{Running tests and examples} \label{SubSec:Examples} % You should first of all ensure that you have downloaded % and correctly unpacked the package containing examples (since v.4.1 in a % separate package): % \begin{verbatim} % tar -zxvf /path/to/package/espresso-X.Y.Z-examples.tar.gz % \end{verbatim} % will unpack several subdirectories into \texttt{espresso-X.Y.Z/}. As a final check that compilation was successful, you may want to run some or all of the examples. There are two different types of examples: \begin{itemize} \item automated tests. Quick and exhaustive, but not meant to be realistic, implemented only for \PWscf\ and \CP. \item examples. Cover many more programs and features of the \qe\ distribution, but they require manual inspection of the results. \end{itemize} Instructions for the impatient: \begin{verbatim} cd PW/tests/ ./check_pw.x.j \end{verbatim} for \PWscf; \texttt{PW/tests/README} contains a list of what is tested. For \CP: \begin{verbatim} cd CPV/tests/ ./check_cp.x.j \end{verbatim} Instructions for all others: edit file \texttt{environment\_variables}, setting the following variables as needed. \begin{quote} BIN\_DIR: directory where executables reside\\ PSEUDO\_DIR: directory where pseudopotential files reside\\ TMP\_DIR: directory to be used as temporary storage area \end{quote} The default values of BIN\_DIR and PSEUDO\_DIR should be fine, unless you have installed things in nonstandard places. TMP\_DIR must be a directory where you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). NOTA BENE: do not use a directory containing other data: the examples will clean it! If you have compiled the parallel version of \qe\ (this is the default if parallel libraries are detected), you will usually have to specify a launcher program (such as \texttt{mpirun} or \texttt{mpiexec}) and the number of processors: see Sec.\ref{SubSec:para} for details. In order to do that, edit again the \texttt{environment\_variables} file and set the PARA\_PREFIX and PARA\_POSTFIX variables as needed. Parallel executables will be run by a command like this: \begin{verbatim} $PARA_PREFIX pw.x $PARA_POSTFIX -in file.in > file.out \end{verbatim} For example, if the command line is like this (as for an IBM SP): \begin{verbatim} poe pw.x -procs 4 -in file.in > file.out \end{verbatim} you should set PARA\_PREFIX="poe", PARA\_POSTFIX="-procs 4". Furthermore, if your machine does not support interactive use, you must run the commands specified above through the batch queuing system installed on that machine. Ask your system administrator for instructions. For execution using OpenMP on N threads, you should set PARA\_PREFIX to \texttt{"env OMP\_NUM\_THREADS=N ... "}. Notice that most tests and examples are devised to be run serially or on a small number of processors; do not use tests and examples to benchmark parallelism, do not try to run on too many processors. To run an example, go to the corresponding directory (e.g. \texttt{PW/examples/example01}) and execute: \begin{verbatim} ./run_example \end{verbatim} This will create a subdirectory \texttt{results/}, containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system. In each example's directory, the \texttt{reference/} subdirectory contains verified output files, that you can check your results against. They were generated on a Linux PC using the Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain diff of your results against the reference data doesn't work, or at least, it requires human inspection of the results. The example scripts stop if an error is detected. You should look {\em inside} the last written output file to understand why. \subsection{Installation tricks and problems} \subsubsection{All architectures} \begin{itemize} \item Working Fortran-95 and C compilers are needed in order to compile \qe. Most ``Fortran-90'' compilers actually implement the Fortran-95 standard, but older versions may not be Fortran-95 compliant. Moreover, C and Fortran compilers must be in your PATH. If \configure\ says that you have no working compiler, well, you have no working compiler, at least not in your PATH, and not among those recognized by \configure. \item If you get {\em Compiler Internal Error} or similar messages: your compiler version is buggy. Try to lower the optimization level, or to remove optimization just for the routine that has problems. If it doesn't work, or if you experience weird problems at run time, try to install patches for your version of the compiler (most vendors release at least a few patches for free), or to upgrade to a more recent compiler version. \item If you get error messages at the loading phase that look like {\em file XYZ.o: unknown / not recognized/ invalid / wrong file type / file format / module version}, one of the following things have happened: \begin{enumerate} \item you have leftover object files from a compilation with another compiler: run \texttt{make clean} and recompile. \item \make\ did not stop at the first compilation error (it may happen in some software configurations). Remove the file *.o that triggers the error message, recompile, look for a compilation error. \end{enumerate} If many symbols are missing in the loading phase: you did not specify the location of all needed libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the needed order. If only symbols from \texttt{clib/} are missing, verify that you have the correct C-to-Fortran bindings, defined in \texttt{include/c\_defs.h}. Note that \qe\ is self-contained (with the exception of MPI libraries for parallel compilation): if system libraries are missing, the problem is in your compiler/library combination or in their usage, not in \qe. \item If you get an error like {\em Can't open module file global\_version.mod}: your machine doesn't like the script that produces file \texttt{version.f90} with the correct version and revision. Quick solution: copy \texttt{Modules/version.f90.in} to \texttt{Modules/version.f90}. \item If you get mysterious errors in the provided tests and examples: your compiler, or your mathematical libraries, or MPI libraries, or a combination thereof, is very likely buggy. Although the presence of subtle bugs in \qe\ that are not revealed during the testing phase can never be ruled out, it is very unlikely that this happens on the provided tests and examples. \end{itemize} \subsubsection{Cray XE and XT machines} For Cray XE machines: \begin{verbatim} $ module swap PrgEnv-cray PrgEnv-pgi $ ./configure --enable-openmp --enable-parallel --with-scalapack $ vim make.sys \end{verbatim} then manually add \texttt{-D\_\_IOTK\_WORKAROUND1} at the end of \texttt{DFLAGS} line. ''Now, despite what people can imagine, every CRAY machine deployed can have different environment. For example on the machine I usually use for tests [...] I do have to unload some modules to make QE running properly. On another CRAY [...] there is also Intel compiler as option and the system is slightly different compared to the other. So my recipe should work, 99\% of the cases. I strongly suggest you to use PGI, also for a performance point of view.'' (Info by Filippo Spiga, Sept. 2012) For Cray XT machines, use \texttt{./configure ARCH=crayxt4} or else \configure\ will not recognize the Cray-specific software environment. Older Cray machines: T3D, T3E, X1, are no longer supported. \subsubsection{IBM AIX} v.4.3.1 of the CP code, Wannier-function dynamics, crashes with ``segmentation violation'' on some AIX v.6 machines. Workaround: compile it with \texttt{mpxlf95} instead of \texttt{mpxlf90}. (Info by Roberto Scipioni, June 2011) On IBM machines with ESSL libraries installed, there is a potential conflict between a few LAPACK routines that are also part of ESSL, but with a different calling sequence. The appearance of run-time errors like {\em ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD AN ILLEGAL VALUE} is a signal that you are calling the bad routine. If you have defined \texttt{-D\_\_ESSL} you should load ESSL before LAPACK: see variable LAPACK\_LIBS in make.sys. \subsubsection{IBM BlueGene} The current \configure\ is tested and works on the machines at CINECA and at J\"ulich. For other sites, you may need something like \begin{verbatim} ./configure ARCH=ppc64-bg BLAS_LIBS=... LAPACK_LIBS=... \ SCALAPACK_DIR=... BLACS_DIR=..." \end{verbatim} where the various *\_LIBS and *\_DIR "suggest" where the various libraries are located. \subsubsection{Linux PC} Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emulation and in 64-bit mode. 64-bit executables can address a much larger memory space than 32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it is not guaranteed to work and will not give any advantage anyway. Currently the following compilers are supported by \configure: Intel (ifort), Portland (pgf90), gfortran, g95, Pathscale (pathf95), Sun Studio (sunf95), AMD Open64 (openf95). The ordering approximately reflects the quality of support. Both Intel MKL and AMD acml mathematical libraries are supported. Some combinations of compilers and of libraries may however require manual editing of \texttt{make.sys}. It is usually convenient to create semi-statically linked executables (with only libc, libm, libpthread dynamically linked). If you want to produce a binary that runs on different machines, compile it on the oldest machine you have (i.e. the one with the oldest version of the operating system). If you get errors like {\em IPO Error: unresolved : \_\_svml\_cos2} at the linking stage, your compiler is optimized to use the SSE version of sine, cosine etc. contained in the SVML library. Append \texttt{-lsvml} to the list of libraries in your \texttt{make.sys} file (info by Axel Kohlmeyer, oct.2007). \paragraph{Linux PCs with Portland compiler (pgf90)} \qe\ does not work reliably, or not at all, with many old versions ($< 6.1$) of the Portland Group compiler (pgf90). Use the latest version of each release of the compiler, with patches if available (see the Portland Group web site, \texttt{http://www.pgroup.com/}). \paragraph{Linux PCs with Pathscale compiler} Version 2.99 of the Pathscale EKO compiler (web site \texttt{http://www.pathscale.com/}) works and is recognized by \configure, but the preprocessing command, \texttt{pathcc -E}, causes a mysterious error in compilation of iotk and should be replaced by \begin{verbatim} /lib/cpp -P --traditional \end{verbatim} The MVAPICH parallel environment with Pathscale compilers also works (info by Paolo Giannozzi, July 2008). Version 3.1 and version 4 (open source!) of the Pathscale EKO compiler also work (info by Cezary Sliwa, April 2011, and Carlo Nervi, June 2011). In case of mysterious errors while compiling \texttt{iotk}, remove all lines like: \begin{verbatim} # 1 "iotk_base.spp" \end{verbatim} from all \texttt{iotk} source files. \paragraph{Linux PCs with gfortran} Old gfortran versions often produce nonfunctional phonon executables (segmentation faults and the like); other versions miscompile iotk (the executables work but crash with a mysterious iotk error when reading from data files). Recent versions should be fine. If you experience problems in reading files produced by previous versions of \qe: ``gfortran used 64-bit record markers to allow writing of records larger than 2 GB. Before with 32-bit record markers only records $<$2GB could be written. However, this caused problems with older files and inter-compiler operability. This was solved in GCC 4.2 by using 32-bit record markers but such that one can still store $>$2GB records (following the implementation of Intel). Thus this issue should be gone. See 4.2 release notes (item ``Fortran") at \texttt{http://gcc.gnu.org/gcc-4.2/changes.html}." (Info by Tobias Burnus, March 2010). ``Using gfortran v.4.4 (after May 27, 2009) and 4.5 (after May 5, 2009) can produce wrong results, unless the environment variable GFORTRAN\_UNBUFFERED\_ALL=1 is set. Newer 4.4/4.5 versions (later than April 2010) should be OK. See\\ \texttt{http://gcc.gnu.org/bugzilla/show\_bug.cgi?id=43551}." (Info by Tobias Burnus, March 2010). \paragraph{Linux PCs with g95} g95 v.0.91 and later versions (\texttt{http://www.g95.org}) work. The executables that produce are however slower (let us say 20\% or so) that those produced by gfortran, which in turn are slower (by another 20\% or so) than those produced by ifort. \paragraph{Linux PCs with Sun Studio compiler} ``The Sun Studio compiler, sunf95, is free (web site: \texttt{http://developers.sun.com/sunstudio/} and comes with a set of algebra libraries that can be used in place of the slow built-in libraries. It also supports OpenMP, which g95 does not. On the other hand, it is a pain to compile MPI with it. Furthermore the most recent version has a terrible bug that totally miscompiles the iotk input/output library (you'll have to compile it with reduced optimization).'' (info by Lorenzo Paulatto, March 2010). \paragraph{Linux PCs with AMD Open64 suite} The AMD Open64 compiler suite, openf95 (web site: \texttt{http://developer.amd.com/cpu/open64/pages/default.aspx}) can be freely downloaded from the AMD site. It is recognized by \configure\ but little tested. It sort of works but it fails to pass several tests (info by Paolo Giannozzi, March 2010). "I have configured for Pathscale, then switched to the Open64 compiler by editing make.sys. "make pw" succeeded and pw.x did process my file, but with "make all" I get an internal compiler error [in CPV/wf.f90]" (info by Cezary Sliwa, April 2011). \paragraph{Linux PCs with Intel compiler (ifort)} The Intel compiler, ifort, is available for free for personal usage (\texttt{http://software.intel.com/}). It seem to produce the faster executables, at least on Intel CPUs, but not all versions work as expected. ifort versions $<9.1$ are not recommended, due to the presence of subtle and insidious bugs. In case of trouble, update your version with the most recent patches, available via Intel Premier support (registration free of charge for Linux): \texttt{http://software.intel.com/en-us/articles/intel-software-developer-support}. Since each major release of ifort differs a lot from the previous one, compiled objects from different releases may be incompatible and should not be mixed. If \configure\ doesn't find the compiler, or if you get {\em Error loading shared libraries} at run time, you may have forgotten to execute the script that sets up the correct PATH and library path. Unless your system manager has done this for you, you should execute the appropriate script -- located in the directory containing the compiler executable -- in your initialization files. Consult the documentation provided by Intel. The warning: {\em feupdateenv is not implemented and will always fail}, showing up in recent versions, can be safely ignored. Warnings on "bad preprocessing option" when compiling iotk and complains about ``recommanded formats'' should also be ignored. {\bf ifort v.12}: release 12.0.0 miscompiles iotk, leading to mysterious errors when reading data files. Workaround: increase the parameter BLOCKSIZE to e.g. 131072*1024 when opening files in \texttt{iotk/src/iotk\_files.f90} (info by Lorenzo Paulatto, Nov. 2010). Release 12.0.2 seems to work and to produce faster executables than previous versions on 64-bit CPUs (info by P. Giannozzi, March 2011). {\bf ifort v.11}: Segmentation faults were reported for the combination ifort 11.0.081, MKL 10.1.1.019, OpenMP 1.3.3. The problem disappeared with ifort 11.1.056 and MKL 10.2.2.025 (Carlo Nervi, Oct. 2009). {\bf ifort v.10}: On 64-bit AMD CPUs, at least some versions of ifort 10.1 miscompile subroutine \texttt{write\_rho\_xml} in \texttt{Module/xml\_io\_base.f90} with -O2 optimization. Using -O1 instead solves the problem (info by Carlo Cavazzoni, March 2008). "The intel compiler version 10.1.008 miscompiles a lot of codes (I have proof for CP2K and CPMD) and needs to be updated in any case" (info by Axel Kohlmeyer, May 2008). {\bf ifort v.9}: The latest (July 2006) 32-bit version of ifort 9.1 works. Earlier versions yielded {\em Compiler Internal Error}. \paragraph{Linux PCs with MKL libraries} On Intel CPUs it is very convenient to use Intel MKL libraries. They can be also used for AMD CPU, selecting the appropriate machine-optimized libraries, and also together with non-Intel compilers. Note however that recent versions of MKL (10.2 and following) do not perform well on AMD machines. \configure\ should recognize properly installed MKL libraries. By default the non-threaded version of MKL is linked, unless option \texttt{configure --with-openmp} is specified. In case of trouble, refer to the following web page to find the correct way to link MKL:\\ \texttt{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}. MKL contains optimized FFT routines and a FFTW interface, to be separately compiled. For 64-bit Intel Core2 processors, they are slightly faster than FFTW (MKL v.10, FFTW v.3 fortran interface, reported by P. Giannozzi, November 2008). For parallel (MPI) execution on multiprocessor (SMP) machines, set the environmental variable OMP\_NUM\_THREADS to 1 unless you know what you are doing. See Sec.\ref{Sec:para} for more info on this and on the difference between MPI and OpenMP parallelization. \paragraph{Linux PCs with ACML libraries} For AMD CPUs, especially recent ones, you may find convenient to link AMD acml libraries (can be freely downloaded from AMD web site). \configure\ should recognize properly installed acml libraries, together with the compilers most frequently used on AMD systems: pgf90, pathscale, openf95, sunf95. \subsubsection{Linux PC clusters with MPI} \label{SubSec:LinuxPCMPI} PC clusters running some version of MPI are a very popular computational platform nowadays. \qe\ is known to work with at least two of the major MPI implementations (MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. \configure\ should automatically recognize a properly installed parallel environment and prepare for parallel compilation. Unfortunately this not always happens. In fact: \begin{itemize} \item \configure\ tries to locate a parallel compiler in a logical place with a logical name, but if it has a strange names or it is located in a strange location, you will have to instruct \configure\ to find it. Note that in many PC clusters (Beowulf), there is no parallel Fortran-95 compiler in default installations: you have to configure an appropriate script, such as mpif90. \item \configure\ tries to locate libraries (both mathematical and parallel libraries) in the usual places with usual names, but if they have strange names or strange locations, you will have to rename/move them, or to instruct \configure\ to find them. If MPI libraries are not found, parallel compilation is disabled. \item \configure\ tests that the compiler and the libraries are compatible (i.e. the compiler may link the libraries without conflicts and without missing symbols). If they aren't and the compilation fails, \configure\ will revert to serial compilation. \end{itemize} Apart from such problems, \qe\ compiles and works on all non-buggy, properly configured hardware and software combinations. You may have to recompile MPI libraries: not all MPI installations contain support for the fortran-90 compiler of your choice (or for any fortran-90 compiler at all!). If \qe\ does not work for some reason on a PC cluster, try first if it works in serial execution. A frequent problem with parallel execution is that \qe\ does not read from standard input, due to the configuration of MPI libraries: see Sec.\ref{SubSec:para}. If you are dissatisfied with the performances in parallel execution, see Sec.\ref{Sec:para} and in particular Sec.\ref{SubSec:badpara}. \subsubsection{Intel Mac OS X} Newer Mac OS-X machines (10.4 and later) with Intel CPUs are supported by \configure, with gcc4+g95, gfortran, and the Intel compiler ifort with MKL libraries. Parallel compilation with OpenMPI also works. \paragraph{Intel Mac OS X with ifort} "Uninstall darwin ports, fink and developer tools. The presence of all of those at the same time generates many spooky events in the compilation procedure. I installed just the developer tools from apple, the intel fortran compiler and everything went on great" (Info by Riccardo Sabatini, Nov. 2007) \paragraph{Intel Mac OS X 10.4 with g95 and gfortran} An updated version of Developer Tools (XCode 2.4.1 or 2.5), that can be downloaded from Apple, may be needed. Some tests fails with mysterious errors, that disappear if fortran BLAS are linked instead of system Atlas libraries. Use: \begin{verbatim} BLAS_LIBS_SWITCH = internal BLAS_LIBS = /path/to/espresso/BLAS/blas.a -latlas \end{verbatim} (Info by Paolo Giannozzi, jan.2008, updated April 2010) \paragraph{Detailed installation instructions for Mac OS X 10.6} (Instructions for 10.6.3 by Osman Baris Malcioglu, tested as of May 2010) Summary for the hasty: \begin{itemize} \item GNU fortran: Install macports compilers, Install MPI environment, Configure \qe\ using \begin{verbatim} ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95 \end{verbatim} \item Intel compiler: Use Version $>11.1.088$, Use 32 bit compilers, Install MPI environment, install macports provided cpp (optional), Configure \qe\ using \begin{verbatim} ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3 \end{verbatim} \end{itemize} \paragraph{Compilation with GNU compilers}. The following instructions use macports version of gnu compilers due to some issues in mixing gnu supplied fortran compilers with apple modified gnu compiler collection. For more information regarding macports please refer to: \texttt{http://www.macports.org/} First install necessary compilers from macports \begin{verbatim} port install gcc43 port install g95 \end{verbatim} The apple supplied MPI environment has to be overridden since there is a new set of compilers now (and Apple provided mpif90 is just an empty placeholder since Apple does not provide fortran compilers). I have used OpenMPI for this case. Recommended minimum configuration line is: \begin{verbatim} ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95 \end{verbatim} of course, installation directory should be set accordingly if a multiple compiler environment is desired. The default installation directory of OpenMPI overwrites apple supplied MPI permanently!\\ Next step is \qe\ itself. Sadly, the Apple supplied optimized BLAS/LAPACK libraries tend to misbehave under different tests, and it is much safer to use internal libraries. The minimum recommended configuration line is (presuming the environment is set correctly): \begin{verbatim} ./configure CC=gcc-mp-4.3 CXX=g++-mp-4.3 F77=g95 F90=g95 FC=g95 \ CPP=cpp-mp-4.3 --with-internal-blas --with-internal-lapack \end{verbatim} \paragraph{Compilation with Intel compilers}. Newer versions of Intel compiler (>11.1.067) support Mac OS X 10.6, and furthermore they are bundled with intel MKL. 32 bit binaries obtained using 11.1.088 are tested and no problems have been encountered so far. Sadly, as of 11.1.088 the 64 bit binary misbehave under some tests. Any attempt to compile 64 bit binary using v.$<11.1.088$ will result in very strange compilation errors. Like the previous section, I would recommend installing macports compiler suite. First, make sure that you are using the 32 bit version of the compilers, i.e. \begin{verbatim} . /opt/intel/Compiler/11.1/088/bin/ifortvars.sh ia32 \end{verbatim} \begin{verbatim} . /opt/intel/Compiler/11.1/088/bin/iccvars.sh ia32 \end{verbatim} will set the environment for 32 bit compilation in my case. Then, the MPI environment has to be set up for Intel compilers similar to previous section. The recommended configuration line for \qe\ is: \begin{verbatim} ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3 \end{verbatim} MKL libraries will be detected automatically if they are in their default locations. Otherwise, mklvars32 has to be sourced before the configuration script. Security issues: MacOs 10.6 comes with a disabled firewall. Preparing a ipfw based firewall is recommended. Open source and free GUIs such as "WaterRoof" and "NoobProof" are available that may help you in the process. \newpage \section{Parallelism} \label{Sec:para} \subsection{Understanding Parallelism} Two different parallelization paradigms are currently implemented in \qe: \begin{enumerate} \item {\em Message-Passing (MPI)}. A copy of the executable runs on each CPU; each copy lives in a different world, with its own private set of data, and communicates with other executables only via calls to MPI libraries. MPI parallelization requires compilation for parallel execution, linking with MPI libraries, execution using a launcher program (depending upon the specific machine). The number of CPUs used is specified at run-time either as an option to the launcher or by the batch queue system. \item {\em OpenMP}. A single executable spawn subprocesses (threads) that perform in parallel specific tasks. OpenMP can be implemented via compiler directives ({\em explicit} OpenMP) or via {\em multithreading} libraries ({\em library} OpenMP). Explicit OpenMP require compilation for OpenMP execution; library OpenMP requires only linking to a multithreading version of mathematical libraries, e.g.: ESSLSMP, ACML\_MP, MKL (the latter is natively multithreading). The number of threads is specified at run-time in the environment variable OMP\_NUM\_THREADS. \end{enumerate} MPI is the well-established, general-purpose parallelization. In \qe\ several parallelization levels, specified at run-time via command-line options to the executable, are implemented with MPI. This is your first choice for execution on a parallel machine. Library OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effectiveness relies upon the quality of the multithreading libraries and the availability of multithreading FFTs. If you are using MKL,\footnote{Beware: MKL v.10.2.2 has a buggy \texttt{dsyev} yielding wrong results with more than one thread; fixed in v.10.2.4} you may want to select FFTW3 (set \texttt{CPPFLAGS=-D\_\_FFTW3...} in \texttt{make.sys}) and to link with the MKL interface to FFTW3. You will get a decent speedup ($\sim 25$\%) on two cores. Explicit OpenMP is a recent addition, still under development, devised to increase scalability on large multicore parallel machines. Explicit OpenMP can be used together with MPI and also together with library OpenMP. Beware conflicts between the various kinds of parallelization! If you don't know how to run MPI processes and OpenMP threads in a controlled manner, forget about mixed OpenMP-MPI parallelization. \subsection{Running on parallel machines} \label{SubSec:para} Parallel execution is strongly system- and installation-dependent. Typically one has to specify: \begin{enumerate} \item a launcher program (not always needed), such as \texttt{poe}, \texttt{mpirun}, \texttt{mpiexec}, with the appropriate options (if any); \item the number of processors, typically as an option to the launcher program, but in some cases to be specified after the name of the program to be executed; \item the program to be executed, with the proper path if needed; \item other \qe-specific parallelization options, to be read and interpreted by the running code. \end{enumerate} Items 1) and 2) are machine- and installation-dependent, and may be different for interactive and batch execution. Note that large parallel machines are often configured so as to disallow interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your specific configuration (shell, execution path, etc). Item 4) is optional but it is very important for good performances. We refer to the next section for a description of the various possibilities. \subsection{Parallelization levels} In \qe\ several MPI parallelization levels are implemented, in which both calculations and data structures are distributed across processors. Processors are organized in a hierarchy of groups, which are identified by different MPI communicators level. The groups hierarchy is as follow: \begin{itemize} \item {\bf world}: is the group of all processors (MPI\_COMM\_WORLD). \item {\bf images}: Processors can then be divided into different "images", each corresponding to a different self-consistent or linear-response calculation, loosely coupled to others. \item {\bf pools}: each image can be subpartitioned into "pools", each taking care of a group of k-points. \item {\bf bands}: each pool is subpartitioned into "band groups", each taking care of a group of Kohn-Sham orbitals (also called bands, or wavefunctions) (still experimental) \item {\bf PW}: orbitals in the PW basis set, as well as charges and density in either reciprocal or real space, are distributed across processors. This is usually referred to as "PW parallelization". All linear-algebra operations on array of PW / real-space grids are automatically and effectively parallelized. 3D FFT is used to transform electronic wave functions from reciprocal to real space and vice versa. The 3D FFT is parallelized by distributing planes of the 3D grid in real space to processors (in reciprocal space, it is columns of G-vectors that are distributed to processors). \item {\bf tasks}: In order to allow good parallelization of the 3D FFT when the number of processors exceeds the number of FFT planes, FFTs on Kohn-Sham states are redistributed to "task" groups so that each group can process several wavefunctions at the same time. \item {\bf linear-algebra group}: A further level of parallelization, independent on PW or k-point parallelization, is the parallelization of subspace diagonalization / iterative orthonormalization. Both operations required the diagonalization of arrays whose dimension is the number of Kohn-Sham states (or a small multiple of it). All such arrays are distributed block-like across the ``linear-algebra group'', a subgroup of the pool of processors, organized in a square 2D grid. As a consequence the number of processors in the linear-algebra group is given by $n^2$, where $n$ is an integer; $n^2$ must be smaller than the number of processors in the PW group. The diagonalization is then performed in parallel using standard linear algebra operations. (This diagonalization is used by, but should not be confused with, the iterative Davidson algorithm). The preferred option is to use ScaLAPACK; alternative built-in algorithms are anyway available. \end{itemize} Note however that not all parallelization levels are implemented in all codes! \paragraph{About communications} Images and pools are loosely coupled and processors communicate between different images and pools only once in a while, whereas processors within each pool are tightly coupled and communications are significant. This means that Gigabit ethernet (typical for cheap PC clusters) is ok up to 4-8 processors per pool, but {\em fast} communication hardware (e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per pool. \paragraph{Choosing parameters}: To control the number of processors in each group, command line switches: \texttt{-nimage}, \texttt{-npools}, \texttt{-nband}, \texttt{-ntg}, \texttt{-northo} or \texttt{-ndiag} are used. As an example consider the following command line: \begin{verbatim} mpirun -np 4096 ./neb.x -nimage 8 -npool 2 -ntg 4 -ndiag 144 -input my.input \end{verbatim} This executes a NEB calculation on 4096 processors, 8 images (points in the configuration space in this case) at the same time, each of which is distributed across 512 processors. k-points are distributed across 2 pools of 256 processors each, 3D FFT is performed using 4 task groups (64 processors each, so the 3D real-space grid is cut into 64 slices), and the diagonalization of the subspace Hamiltonian is distributed to a square grid of 144 processors (12x12). Default values are: \texttt{-nimage 1 -npool 1 -ntg 1} ; \texttt{ndiag} is set to 1 if ScaLAPACK is not compiled, it is set to the square integer smaller than or equal to half the number of processors of each pool. \paragraph{Massively parallel calculations} For very large jobs (i.e. O(1000) atoms or more) or for very long jobs, to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use in an effective way all available parallelization levels. Without a judicious choice of parameters, large jobs will find a stumbling block in either memory or CPU requirements. Note that I/O may also become a limiting factor. Since v.4.1, ScaLAPACK can be used to diagonalize block distributed matrices, yielding better speed-up than the internal algorithms for large ($ > 1000\times 1000$) matrices, when using a large number of processors ($> 512$). You need to have \texttt{-D\_\_SCALAPACK} added to DFLAGS in \texttt{make.sys}, LAPACK\_LIBS set to something like: \begin{verbatim} LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack \end{verbatim} The repeated \texttt{-lblacs} is not an error, it is needed! \configure\ tries to find a ScaLAPACK library, unless \texttt{configure --with-scalapack=no} is specified. If it doesn't, inquire with your system manager on the correct way to link it. A further possibility to expand scalability, especially on machines like IBM BlueGene, is to use mixed MPI-OpenMP. The idea is to have one (or more) MPI process(es) per multicore node, with OpenMP parallelization inside a same node. This option is activated by \texttt{configure --with-openmp}, which adds preprocessing flag \texttt{-D\_\_OPENMP} and one of the following compiler options: \begin{tabular}{ll} ifort& \texttt{-openmp}\\ xlf& \texttt{-qsmp=omp}\\ PGI& \texttt{-mp}\\ ftn& \texttt{-mp=nonuma}\\ \end{tabular} OpenMP parallelization is currently implemented and tested for the following combinations of FFTs and libraries: \begin{tabular}{ll} internal FFTW copy &requires \texttt{-D\_\_FFTW}\\ ESSL& requires \texttt{-D\_\_ESSL} or \texttt{-D\_\_LINUX\_ESSL}, link with \texttt{-lesslsmp}\\ \end{tabular} Currently, ESSL (when available) are faster than internal FFTW. \subsubsection{Understanding parallel I/O} In parallel execution, each processor has its own slice of data (Kohn-Sham orbitals, charge density, etc), that have to be written to temporary files during the calculation, or to data files at the end of the calculation. This can be done in two different ways: \begin{itemize} \item ``distributed'': each processor writes its own slice to disk in its internal format to a different file. \item ``collected'': all slices are collected by the code to a single processor that writes them to disk, in a single file, using a format that doesn't depend upon the number of processors or their distribution. \end{itemize} The ``distributed'' format is fast and simple, but the data so produced is readable only by a job running on the same number of processors, with the same type of parallelization, as the job who wrote the data, and if all files are on a file system that is visible to all processors (i.e., you cannot use local scratch directories: there is presently no way to ensure that the distribution of processes across processors will follow the same pattern for different jobs). Currently, \CP\ uses the ``collected'' format; \PWscf\ uses the ``distributed'' format, but has the option to write the final data file in ``collected'' format (input variable \texttt{wf\_collect}) so that it can be easily read by \CP\ and by other codes running on a different number of processors. In addition to the above, other restrictions to file interoperability apply: e.g., \CP\ can read only files produced by \PWscf\ for the $k=0$ case. The directory for data is specified in input variables \texttt{outdir} and \texttt{prefix} (the former can be specified as well in environment variable ESPRESSO\_TMPDIR): \texttt{outdir/prefix.save}. A copy of pseudopotential files is also written there. If some processor cannot access the data directory, the pseudopotential files are read instead from the pseudopotential directory specified in input data. Unpredictable results may follow if those files are not the same as those in the data directory! {\em IMPORTANT:} Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally the scratch directory \texttt{outdir} should be a modern Parallel File System. If you do not have any, you can use local scratch disks (i.e. each node is physically connected to a disk and writes to it) but you may run into trouble anyway if you need to access your files that are scattered in an unpredictable way across disks residing on different nodes. You can use input variable \texttt{disk\_io='minimal'}, or even \texttt{'none'}, if you run into trouble (or into angry system managers) with excessive I/O with \pwx. The code will store wavefunctions into RAM during the calculation. Note however that this will increase your memory usage and may limit or prevent restarting from interrupted runs. For very large runs, you may also want to use \texttt{wf\_collect=.false.} and (CP only) \texttt{saverho=.false.} to reduce I/O to the strict minimum. \subsection{Tricks and problems} \paragraph{Trouble with input files} Some implementations of the MPI library have problems with input redirection in parallel. This typically shows up under the form of mysterious errors when reading data. If this happens, use the option \texttt{-in} (or \texttt{-inp} or \texttt{-input}), followed by the input file name. Example: \begin{verbatim} pw.x -in inputfile -npool 4 > outputfile \end{verbatim} Of course the input file must be accessible by the processor that must read it (only one processor reads the input file and subsequently broadcasts its contents to all other processors). Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even the \texttt{-in/inp/input} mechanism that is present in all \qe\ codes. In this case, use the \texttt{-i} option of \texttt{mpirun.lsf} to provide an input file. \paragraph{Trouble with MKL and MPI parallelization} If you notice very bad parallel performances with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by the latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default on multicore machines. You must set the environmental variable OMP\_NUM\_THREADS to 1 to disable it. Note that if for some reason the correct setting of variable OMP\_NUM\_THREADS does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov. 2008) suggests to use the \texttt{-x} option to \texttt{mpirun} to propagate OMP\_NUM\_THREADS to all processors. Axel Kohlmeyer suggests the following (April 2008): "(I've) found that Intel is now turning on multithreading without any warning and that is for example why their FFT seems faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also if you use the 'numactl' tool on linux to bind a job to a specific cpu core, MKL will still try to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to either link with \begin{quote} \texttt{-lmkl\_intel\_lp64 -lmkl\_sequential -lmkl\_core} (on 64-bit: x86\_64, ia64)\\ \texttt{-lmkl\_intel -lmkl\_sequential -lmkl\_core} (on 32-bit, i.e. ia32 ) \end{quote} or edit the \texttt{libmkl\_'platform'.a} file. I'm using now a file \texttt{libmkl10.a} with: \begin{verbatim} GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a) \end{verbatim} It works like a charm". UPDATE: Since v.4.2, \configure\ links by default MKL without multithreaded support. \paragraph{Trouble with compilers and MPI libraries} Many users of \qe, in particular those working on PC clusters, have to rely on themselves (or on less-than-adequate system managers) for the correct configuration of software for parallel execution. Mysterious and irreproducible crashes in parallel execution are sometimes due to bugs in \qe, but more often than not are a consequence of buggy compilers or of buggy or miscompiled MPI libraries. \end{document} espresso-5.0.2/Doc/INPUT_DOS.html0000777000700200004540000000000012053440163021103 2../PP/Doc/INPUT_DOS.htmlustar marsamoscmespresso-5.0.2/Doc/plumed_quick_ref.toc0000644000700200004540000000244012053147351017113 0ustar marsamoscm\contentsline {section}{\numberline {1}Introduction}{2}{section.1} \contentsline {subsection}{\numberline {1.1}Overview}{2}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}Collective variables}{3}{subsection.1.2} \contentsline {section}{\numberline {2}Step-by-step metadynamics calculations}{4}{section.2} \contentsline {subsection}{\numberline {2.1}Compile {\sc Quantum ESPRESSO}\ with \texttt {PLUMED} plugin}{4}{subsection.2.1} \contentsline {subsection}{\numberline {2.2}Running metadynamics in {\sc Quantum ESPRESSO}}{5}{subsection.2.2} \contentsline {subsection}{\numberline {2.3}Units in the input and output files}{5}{subsection.2.3} \contentsline {subsection}{\numberline {2.4}Postprocessing}{5}{subsection.2.4} \contentsline {section}{\numberline {3}First worked example: SN2 reaction}{6}{section.3} \contentsline {subsection}{\numberline {3.1}SN2 reaction in vacuum}{6}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Choice of CVs and simulation details}{6}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Metadynamics with Born-Oppenheimer molecular dynamics}{7}{subsection.3.3} \contentsline {subsubsection}{\numberline {3.3.1}Free energy reconstruction}{13}{subsubsection.3.3.1} \contentsline {section}{\numberline {4}Second worked example: H-H}{13}{section.4} espresso-5.0.2/Doc/developer_man.tex0000644000700200004540000015022612053145633016437 0ustar marsamoscm\documentclass[12pt,a4paper]{article} \def\version{5.0.2} \def\qe{{\sc Quantum ESPRESSO}} \def\qeforge{\texttt{qe-forge.org}} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} % \def\htmladdnormallink#1#2{#1} \def\configure{\texttt{configure}} \def\configurac{\texttt{configure.ac}} \def\autoconf{\texttt{autoconf}} \def\qeImage{quantum_espresso.pdf} \def\democritosImage{democritos.pdf} \begin{htmlonly} \def\qeImage{quantum_espresso.png} \def\democritosImage{democritos.png} \end{htmlonly} \begin{document} \author{} \date{} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge Developer's Manual for \qe (v. \version) \smallskip } \maketitle \tableofcontents \section{Introduction} \subsection{Who should read (and who should {\em write}) this guide} The intended audience of this guide is everybody who wants to: \begin{itemize} \item know how \qe\ works, including its internals; \item modify/customize/add/extend/improve/clean up \qe; \item know how to read data produced by \qe. \end{itemize} The same category of people should also {\em write} this guide, of course. \subsection{Who may read this guide but will not necessarily profit from it} People who want to know about the capabilities of \qe, or who want just to use it, should read the User Guide. People who want to know about the methods or the physics behind \qe\ should read first the relevant literature (some pointers in the User Guide). \subsection{How to contribute to \qe\ as a user} You can contribute to a better \qe, even as an ordinary user, by: \begin{itemize} \item Answering other people's questions on the mailing list (correct answers are strongly preferred to wrong ones). \item Porting to new/unsupported architectures or configurations: see Sect. \ref{SubSec:Inst}, "Installation mechanism". You should not need to add new preprocessing flags, but if you do, see Sect. \ref{SubSec:CPP}, "Preprocessing". \item Pointing out bugs in the software and in the documentation (reports of real bugs are strongly preferred to reports of nonexistent bugs). See Sect. \ref{SubSec:Bugs}, "Guidelines for reporting bugs". \item Improving the documentation (generic complaints or suggestions that "there should be this and that" do not qualify as improvements). \item Suggesting changes: note however that suggestions requiring a significant amount of work are welcome only if accompanied by implementation or by a promise of future implementation (fulfilled promises are strongly preferred to forgotten ones). \item Adding new features to the code. If you like to have something added to \qe, contact the developers via the \texttt{q-e-developers[.at.]qe-forge[.dot.]org} mailing list. Unless there are technical reasons not to include your changes, we will try to make you happy (no warranty that we will actually succeed). \end{itemize} \section{How to become a developer} If you want to get involved as a developer and contribute serious or nontrivial stuff (or even simple and trivial stuff), you should first of all register for the \qe\ project on \qeforge. Please introduce yourself when you register so that the administrator knows that you are a real person. \subsection{About \qeforge} \qeforge\ is the portal for \qe\ developers, contributors, and for anybody else wanting to develop a project in the field of atomistic simulations. \qeforge\ provides a CVS or SVN repository, mailing lists, a wiki, upload space, a bug tracking facility, various other tools that are useful for developers. You can use either CVS or SVN but not both together. Note that the usage of the wiki provided by \qeforge\ is currently disabled for security reasons. You can open your own project, retaining all rights on it (including the right not to release anything); or else, you can register as a developer in an existing project (or both). Currently \qe\ uses the following development tools: \begin{itemize} \item SVN server (with web interface to browse the repository) \item Bug Tracking facility \item Upload space (with download counter) \item Mailing lists \texttt{q-e-commits} and \texttt{q-e-developers}. \end{itemize} Everybody is encouraged to explore other capabilities of \qeforge. Once you are registered, you need to register your SSH keys in order to have read-write access the CVS or SVN repository (if you have been allowed by the project leader). The procedure is as follows: \begin{itemize} \item login to your \qeforge\ account \item click on My stuff (menu on top line) \item click on My account (menu on the left) \item click on Edit SSH Keys, follow the instructions to add your keys \end{itemize} If you want to become a \qe\ developer, you should subscribe to the two mailing lists \begin{itemize} \item \texttt{q-e-developers} (low-traffic): for communications among developers and people interested in the development of \qe \item \texttt{q-e-commits} (not-so-low traffic): for commit messages. \end{itemize} Subscription is not automatic when you register: you should subscribe using the links in \texttt{http://www.qe-forge.org/gf/project/q-e/mailman/}. \subsection{Contributing new developments} Various procedures can be followed to contribute new developments. The ideal procedure depends upon the kind of project you have in mind. In all cases, you should learn how to use SVN: see Sect.\ref{Sec:SVN}, "Using SVN". The three typical cases are: \begin{itemize} \item[a)] If your project involves changes or additions affecting only a small part of \qe, it is usually convenient to work directly on the SVN trunk. \item[b)] If your project involves major or extensive changes to the core of \qe, it may be a good idea to make a SVN "branch" and work on it. \item[c)] If your project involves a major new addition (e.g. a new package), or if you do not want it to be public during its development, it may be a good idea to register it as a new \qeforge\ project with a separate SVN repository. It is possible to make it visible into the SVN repository of \qe. It is possible to restrict access to selected \qe\ developers, or to keep it private. \end{itemize} For case a), you should from time to time update your copy (using command \texttt{svn update}), verify if changes made meanwhile by other developers conflict with your changes. Conflicts are in most cases easy to solve: see Sect. \ref{SubSec:Conflicts} for hints on how to remove conflicts and on how to figure out what went wrong. Once you are happy with your modified version, you can commit your changes, or ask one of the expert developers to do this if you do not feel confident enough. For case b), you should from time to time align your branch with the trunk. For case c): if your project is ``loosely coupled'' to \qe, that is, it just uses the \qe\ installation procedure and/or data files, there shouldn't be any major problems, since major incompatible changes are very rare (note however that the files produced by the phonon code change more frequently). If your project is ``tightly bound'', i.e. it uses routines from \qe, it is prudent to notify the other developers. \subsection{Hints, Caveats, Do's and Dont's for developers} \begin{itemize} \item Before doing anything, inquire whether it is already there, or under development. In particular, check (and update) the "Road Map" page \texttt{www.quantum-espresso.org/?page\_id=564}, send a message to \texttt{q-e-developers}. \item Before starting writing code, inquire whether you can reuse code that is already available in the distribution. Avoid redundancy: the only bug-free software line is the one that doesn't exist. \item When you make some changes: \begin{itemize} \item Check that are not spoiling other people's work. In particular, search the distribution for codes using the routine or module you are modifying and change its usage or its calling arguments everywhere. Use the commit message to notify all developers if you introduce any ``dangerous'' change (i.e. susceptible to break some features or packages, including external packages using \qe). \item Do not forget that your changes must work on many different combinations of hardware and software, in both serial and parallel execution. \item Do not forget that your changes must work for a wide variety of different system: if your code works only in some selected case, it must either stop or issue a warning in all other cases. \item Do not forget that your changes must work on systems of wildly different computational size: solutions that may look appropriate in crystal silicon may gobble a disproportionate amount of time and/or memory in a 1000-atom cell. \end{itemize} \item Document your contributions: \begin{itemize} \item If you modify what a code can do, or introduce incompatibilities with previous versions (e.g. old data file no longer readable, old input no longer valid), report it in file \texttt{Doc/release-notes}. \item If you add/modify/remove input variables, document it in the appropriate file \\ \texttt{INPUT\_*.def}; if you remove an input variable, update tests and examples accordingly. \item All newly introduced features or variables must be accompanied by an example or a test or both (either a new one or a modified existing test or example). \end{itemize} \item Please do not include files (any kind, including pseudopotential files) with DOS \^{}M characters or tabulators \^{}I. \end{itemize} When you modify the program sources, run the \texttt{install/makedeps.sh} script or type \texttt{make depend} to update files \texttt{make.depend} in the various subdirectories. \subsection{Guidelines for reporting bugs} \label{SubSec:Bugs} \begin{itemize} \item Before deciding that a problem is due to a bug in the codes, verify if it is reproducible on different machines/architectures/phases of the moon: erratic or irreproducible problems, especially in parallel execution, are often an indication of buggy compilers or libraries \item Bug reports should preferably be filed using the bug tracking facility at \qeforge:\\ \texttt{http://qe-forge.org/gf/project/q-e/tracker} \item Bug reports should include enough information to be reproduced: typically, version number, hardware/software combination(s) for which the problem arises, whether it happens in serial or parallel execution or both, and, most important, an input and output exhibiting such behavior (fast to execute if possible). The error message alone is usually not a sufficient piece of information. \item If a bug is found in a stable (released) version of \qe, it must be reported in the \texttt{Doc/release-notes} file. \end{itemize} \section{ Structure of the distribution} % \subsection{Contents of the various directories} % \subsubsection{ Modules} % \subsubsection{ Sources} % \subsubsection{ Utilities} \subsubsection{ Libraries} Subdirectory \texttt{flib/} contains libraries written in fortran77 (\texttt{*.f}) and in fortran-90 (\texttt{*.f90}). The latter should not depend on any module, except for modules \texttt{kinds} and \texttt{constants}. Subdirectory \texttt{clib/} contains libraries written in C (\texttt{*.c}). Functions that are called by fortran should be preprocessed using the macros: \begin{enumerate} \item \texttt{F77\_FUNC (func,FUNC)} for function \texttt{func}, not containing underscore(s) in name \item \texttt{F77\_FUNC\_(f\_nc,F\_NC)} for function \texttt{f\_nc}, containing underscore(s) in name \end{enumerate} These macros are defined in file \texttt{include/c\_defs.h}. This file must be included by all \texttt{*.c} files. The macros are automagically generated by \configure\ and choose the correct case (lowercase or uppercase) and the correct number of final underscores. See file \texttt{include/defs.h.README} for more info. \subsection{Installation mechanism} \label{SubSec:Inst} The code contains C-style preprocessing directives. There are two ways to do preprocessing of fortran files: \begin{itemize} \item directly with the fortran compiler, if supported; \item by first pre-compiling with the C preprocessor \texttt{cpp}. \end{itemize} In the first case, one needs to specify in the \texttt{make.sys} file the fortran compiler option that tells the compiler to pre-process first. In the second case, one needs to specify the C precompiler and options (if needed) in \texttt{make.sys}. Normally, \configure\ should take care of this. \subsubsection{ How to edit the \configure\ script} The \configure\ script is generated from its source file \configurac\ by the GNU \autoconf\ utility (\texttt{http://www.gnu.org/software/autoconf/}). Don't edit \configure\ directly: whenever it gets regenerated, your changes will be lost. Instead, go to the \texttt{install/} directory, edit \configurac, then run \autoconf\ to regenerate \configure. If you want to keep the old \configure, make a copy first. GNU \autoconf\ is installed by default on most Unix/Linux systems. If you don't have it on your system, you'll have to install it. You will need a recent version (e.g. v.2.65) of \autoconf, because our \configurac file uses recent syntax. \configurac\ is a regular Bourne shell script (i.e., "sh" -- not csh!), except that: \begin{itemize} \item[--] capitalized names starting with "AC\_" are \autoconf\ macros. Normally you shouldn't have to touch them. \item[--] square brackets are normally removed by the macro processor. If you need a square bracket (that should be very rare), you'll have to write two. \end{itemize} You may refer to the GNU \autoconf\ Manual for more info. \texttt{make.sys.in} is the source file for \texttt{make.sys}, that \configure\ generates: you might want to edit that file as well. The generation procedure is as follows: if \configurac\ contains the macro "AC\_SUBST(name)", then every occurrence of "@name@" in the source file will be substituted with the value of the shell variable "name" at the point where AC\_SUBST was called. Similarly, \configure\texttt{.msg} is generated from \configure\texttt{.msg.in}: this file is only used by \configure\ to print its final report, and isn't needed for the compilation. We did it this way so that our \configure\ may also be used by other projects, just by replacing the \qe-specific \configure\texttt{.msg.in} by your own. \configure\ writes a detailed log of its operation to \texttt{config.log}. When any configuration step fails, you may look there for the relevant error messages. Note that it is normal for some checks to fail. \subsubsection{How to add support for a new architecture} In order to support a previously unsupported architecture, first you have to figure out which compilers, compilation flags, libraries etc. should be used on that architecture. In other words, you have to write a \texttt{make.sys} that works: you may use the manual configuration procedure for that (see the User Guide). Then, you have to modify \configure\ so that it can generate that \texttt{make.sys} automatically. To do that, you have to add the case for your architecture in several places throughout \configurac: \begin{enumerate} \item Detect architecture Look for these lines: \begin{verbatim} if test "$arch" = "" then case $host in ia64-*-linux-gnu ) arch=ia64 ;; x86_64-*-linux-gnu ) arch=x86_64 ;; *-pc-linux-gnu ) arch=ia32 ;; etc. \end{verbatim} Here you must add an entry corresponding to your architecture and operating system. Run \texttt{config.guess} to obtain the string identifying your system. For instance on a PC it may be "i686-pc-linux-gnu", while on IBM SP4 "powerpc-ibm-aix5.1.0.0". It is convenient to put some asterisks to account for small variations of the string for different machines of the same family. For instance, it could be "aix4.3" instead of "aix5.1", or "athlon" instead of "i686"... \item Select compilers Look for these lines: \begin{verbatim} # candidate compilers and flags based on architecture case $arch in ia64 | x86_64 ) ... ia32 ) ... aix ) ... etc. \end{verbatim} Add an entry for your value of \$arch, and set there the appropriate values for several variables, if needed (all variables are assigned some reasonable default value, defined before the "case" block): - "try\_f90" should contain the list of candidate Fortran 90 compilers, in order of decreasing preference (i.e. configure will use the first it finds). If your system has parallel compilers, you should list them in "try\_mpif90". - "try\_ar", "try\_arflags": for these, the values "ar" and "ruv" should be always fine, unless some special flag is required (e.g., -X64 With sp4). - you should define "try\_dflags" if there is any "\#ifdef" specific to your machine: for instance, on IBM machines, "try\_dflags=-D\_\_AIX" . A list of such flags can be found in file \texttt{include/defs.h.README}. You shouldn't need to define the following: - "try\_iflags" should be set to the appropriate "-I" option(s) needed by the preprocessor or by the compiler to locate *.h files to be included; try\_iflags="-I../include" should be good for most cases For example, here's the entry for IBM machines running AIX: \begin{verbatim} aix ) try_mpif90="mpxlf90_r mpxlf90" try_f90="xlf90_r xlf90 $try_f90" try_arflags="-X64 ruv" try_arflags_dynamic="-X64 ruv" try_dflags="-D__AIX -D__XLF" ;; \end{verbatim} The following step is to look for both serial and parallel fortran compilers: \begin{verbatim} # check serial Fortran 90 compiler... ... AC_PROG_F77($f90) ... # check parallel Fortran 90 compiler ... AC_PROG_F77($mpif90) ... echo setting F90... $f90 echo setting MPIF90... $mpif90 \end{verbatim} A few compilers require some extra work here: for instance, if the Intel Fortran compiler was selected, you need to know which version because different versions need different flags. At the end of the test, - \$mpif90 is the parallel compiler, if any; if no parallel compiler is found or if \texttt{--disable-parallel} was specified, \$mpif90 is the serial compiler - \$f90 is the serial compiler Next step: the choice of (serial) C and Fortran 77 compilers. Look for these lines: \begin{verbatim} # candidate C and f77 compilers good for all cases try_cc="cc gcc" try_f77="$f90" case "$arch:$f90" in *:f90 ) .... etc. \end{verbatim} Here you have to add an entry for your architecture, and since the correct choice of C and f77 compilers may depend on the fortran-90 compiler, you may need to specify the f90 compiler as well. Again, specify the compilers in try\_cc and try\_f77 in order of decreasing preference. At the end of the test, - \$cc is the C compiler - \$f77 is the Fortran 77 compiler, used to compile *.f files (may coincide with \$f90) \item Specify compilation flags. Look for these lines: \begin{verbatim} # check Fortran compiler flags ... case "$arch:$f90" in ia64:ifort* | x86_64:ifort* ) ... ia64:ifc* ) ... etc. \end{verbatim} Add an entry for your case and define: - "try\_fflags": flags for Fortran 77 compiler. - "try\_f90flags": flags for Fortran 90 compiler. In most cases they will be the same as in Fortran 77 plus some others. In that case, define them as "\$(FFLAGS) -something\_else". - "try\_fflags\_noopt": flags for Fortran 77 with all optimizations turned off: this is usually "-O0". These flags must be used for compiling flib/dlamch.f (part of our version of Lapack): it won't work properly with optimization. - "try\_ldflags": flags for the linking phase (not including the list of libraries: this is decided later). - "try\_ldflags\_static": additional flags to select static compilation (i.e., don't use shared libraries). - "try\_dflags": must be defined if there is in the code any \#ifdef specific to your compiler (for instance, -D\_\_INTEL for Intel compilers). Define it as "\$try\_dflags -D..." so that pre-existing flags, if any, are preserved. - if the Fortran 90 compiler is not able to invoke the C preprocessor automatically before compiling, set "have\_cpp=0" (the opposite case is the default). The appropriate compilation rules will be generated accordingly. If the compiler requires that any flags be specified in order to invoke the preprocessor (for example, "-fpp " -- note the space), specify them in "pre\_fdflags". For example, here's the entry for ifort on Linux PC: \begin{verbatim} ia32:ifort* ) try_fflags="-O2 -tpp6 -assume byterecl" try_f90flags="\$(FFLAGS) -nomodule" try_fflags_noopt="-O0 -assume byterecl" try_ldflags="" try_ldflags_static="-static" try_dflags="$try_dflags -D__INTEL" pre_fdflags="-fpp " ;; \end{verbatim} Next step: flags for the C compiler. Look for these lines: \begin{verbatim} case "$arch:$cc" in *:icc ) ... *:pgcc ) ... etc. \end{verbatim} Add an entry for your case and define: - "try\_cflags": flags for C compiler. - "c\_ldflags": flags for linking, when using the C compiler as linker. This is needed to check for libraries written in C, such as FFTW. - if you need a different preprocessor from the standard one (\$CC -E), define it in "try\_cpp". For example for XLC on AIX: \begin{verbatim} aix:mpcc* | aix:xlc* | aix:cc ) try_cflags="-q64 -O2" c_ldflags="-q64" ;; \end{verbatim} Finally, if you have to use a nonstandard preprocessor, look for these lines: \begin{verbatim} echo $ECHO_N "setting CPPFLAGS... $ECHO_C" case $cpp in cpp) try_cppflags="-P -traditional" ;; fpp) try_cppflags="-P" ;; ... \end{verbatim} and set "try\_cppflags" as appropriate. \item Search for libraries To instruct \configure\ to search for libraries, you must tell it two things: the names of libraries it should search for, and where it should search. The following libraries are searched for: - BLAS or equivalent. Some vendor replacements for BLAS that are supported by \qe\ are: \begin{quote} MKL on Linux, 32- and 64-bit Intel CPUs\\ ACML on Linux, 64-bit AMD CPUs\\ essl on AIX\\ SCSL on sgi altix\\ SUNperf on sparc \end{quote} Moreover, ATLAS is used over BLAS if available. - LAPACK or equivalent. Some vendor replacements for LAPACK that are supported by \qe\ are: \begin{quote} mkl on linux SUNperf on sparc \end{quote} - FFTW (version 3) or another supported FFT library. The latter include: \begin{quote} essl on aix ACML on Linux, 64-bit AMD CPUs SUNperf on sparc \end{quote} - the MASS vector math library on aix - an MPI library. This is often automatically linked by the compiler If you have another replacement for the above libraries, you'll have to insert a new entry in the appropriate place. This is unfortunately a little bit too complex to explain. Basic info: \\ "AC\_SEARCH\_LIBS(function, name, ...)" looks for symbol "function" in library "libname.a". If that is found, "-lname" is appended to the LIBS environment variable (initially empty). The real thing is more complicated than just that because the "-Ldirectory" option must be added to search in a nonstandard directory, and because a given library may require other libraries as prerequisites (for example, Lapack requires BLAS). \end{enumerate} % \subsection{Adding new directories or routines} \section{ Algorithms} % \subsection{Diagonalization} % \subsection{Self-consistency} % \subsection{Structural optimization} % \subsection{Symmetrization} \subsection{Gamma tricks} In calculations using only the $\Gamma$ point (k=0), the Kohn-Sham orbitals can be chosen to be real functions in real space, so that $ \psi(G) = \psi^*(-G). $ This allows us to store only half of the Fourier components. Moreover, two real FFTs can be performed as a single complex FFT. The auxiliary complex function $\Phi$ is introduced: $ \Phi(r) = \psi_j(r)+ i \psi_{j+1}(r) $ whose Fourier transform $\Phi(G)$ yields $ \psi_j (G) = {\Phi(G) + \Phi^*(-G)\over 2}, \psi_{j+1}(G) = {\Phi(G) - \Phi^*(-G)\over 2i}. $ A side effect on parallelization is that $G$ and $-G$ must reside on the same processor. As a consequence, pairs of columns with $G_{n'_1,n'_2,n'_3}$ and $G_{-n'_1,-n'_2,n'_3}$ (with the exception of the case $n'_1=n'_2=0$), must be assigned to the same processor. \section{ Structure of the code} % \subsection{Modules and global variables} % \subsection{Meaning of the most important variables} % \subsection{Conventions for indices} \subsection{Preprocessing} \label{SubSec:CPP} The code contains C-style preprocessing directives. Most fortran compilers directly support them; some don't, and preprocessing is ''hand-made'' by the makefile using the C preprocessor \texttt{cpp}. The C preprocessor may: \begin{itemize} \item assign a value to a given expression. For instance, command \texttt{\#define THIS that}, or the option in the command line: \texttt{-DTHIS=that}, will replace all occurrence of \texttt{THIS} with \texttt{that}. \item include file (command \texttt{\#include}) \item expand macros (command \texttt{\#define}) \item execute conditional expressions such as \begin{verbatim} #ifdef __expression ...code A... #else ...code B... #endif \end{verbatim} If ''expression'' is defined (with a \texttt{\#define} command or from the command line with option \texttt{\-D\_\_expression}), then \texttt{...code A...} is sent to output; otherwise \texttt{...code B...} is sent to output. \end{itemize} The file \texttt{include/defs.h.README} contains a list of definitions that are used in the code. In order to make preprocessing options easy to see, preprocessing variables should start with two underscores, as \texttt{\_\_expression} in the above example. Traditionally ''preprocessed'' variables are also written in uppercase. % \subsection{Performance issues} % \subsection{Portability issues} \section{Format of arrays containing charge density, potential, etc.} The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array \texttt{psi(nr1x,nr2x,nr3x)}. FORTRAN compilers store this array sequentially in the computer RAM in the following way: \begin{verbatim} psi( 1, 1, 1) psi( 2, 1, 1) ... psi(nr1x, 1, 1) psi( 1, 2, 1) psi( 2, 2, 1) ... psi(nr1x, 2, 1) ... ... psi(nr1x,nr2x, 1) ... psi(nr1x,nr2x,nr3x) etc \end{verbatim} Let \texttt{ind} be the position of the \texttt{(i,j,k)} element in the above list: the following relation \begin{verbatim} ind = i + (j - 1) * nr1x + (k - 1) * nr2x * nr1x \end{verbatim} holds. This should clarify the relation between 1D and 3D indexing. In real space, the \texttt{(i,j,k)} point of the FFT grid with dimensions \texttt{nr1} ($\le$\texttt{nr1x}), \texttt{nr2} ($\le$\texttt{nr2x}), , \texttt{nr3} ($\le$\texttt{nr3x}), is $$ r_{ijk}=\frac{i-1}{nr1} \tau_1 + \frac{j-1}{nr2} \tau_2 + \frac{k-1}{nr3} \tau_3 $$ where the $\tau_i$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the \texttt{at} array: $\tau_1 = $ \texttt{at(:, 1)}, $\tau_2 = $ \texttt{at(:, 2)}, $\tau_3 = $ \texttt{at(:, 3)}. The distinction between the dimensions of the FFT grid, \texttt{(nr1,nr2,nr3)} and the physical dimensions of the array, \texttt{(nr1x,nr2x,nr3x)} is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have \texttt{nrx1}=\texttt{nr1}+1 to reduce memory conflicts. \section{Parallelization} In parallel execution (MPI only), N independent processes are started (do not start more than one per processor!) that communicate via calls to MPI libraries. Each process has its own set of variables and knows nothing about other processes' variables. Variables that take little memory are replicated, those that take a lot of memory (wavefunctions, G-vectors, R-space grid) are distributed. \subsubsection{Usage of \#ifdef \_\_MPI} Calls to MPI libraries require variables contained into a \texttt{mpif.h} file that is usually absent on serial machines. IN order to prevent compilation problems, it is a good idea to follow these rules: \begin{itemize} \item All direct calls to MPI library routines should either be \#ifdef'ed, or wrapped into calls to routines like those in module \texttt{mp.f90}. \item Routines that are used only in parallel execution may be either called and \#ifdef'ed inside, or not called (via an \#ifdef) and not compiled (via an \#ifdef again) in the serial case. Note that some compilers do not like empty files or modules containing nothing! \item Other \#ifdef \_\_MPI may be needed when the flux of parallel execution is different from that of the serial case. \item All other \#ifdef \_\_MPI are not needed, may be removed if already present; \#ifdef \_\_PARA is also obsolescent. \end{itemize} \subsection{Tricks and pitfalls} \begin{itemize} \item Replicated calculations may either be performed independently on each processor, or performed on one processor and broadcast to all others. The first approach requires less programming, but it is unsafe: in principle all processors should yield exactly the same results, if they work on the same data, but sometimes they don't (depending on the machine, compiler, and libraries). Even a tiny difference in the last significant digit can eventually cause serious trouble if allowed to build up, especially when a replicated check is performed (in which case the code may ''hang'' if the check yields different results on different processors). Never assume that the value of a variable produced by replicated calculations is exactly the same on all processors: when in doubt, broadcast the value calculated on a specific processor (the ''root'' processor) to all others. \item Routine \texttt{errore} should be called in parallel by all processors, or else it will hang \item I/O operations: file opening, closing, and so on, are as a rule performed only on processor \texttt{ionode}. The correct way to check for errors is the following: \begin{verbatim} IF ( ionode ) THEN OPEN ( ..., IOSTAT=ierr ) ... END IF CALL mp_bcast( ierr, ... ) CALL errore( 'routine','error', ierr ) \end{verbatim} The same applies to all operations performed on a single processor, or a subgroup of processors: any error code must be broadcast before the check. \end{itemize} \subsection{ Data distribution} Quantum ESPRESSO employ arrays whose memory requirements fall into three categories. \begin{itemize} \item {\em Fully Scalable}: Arrays that are distributed across processors of a pool. Fully scalable arrays are typically large to very large and contain one of the following dimensions: \begin{itemize} \item number of plane waves, npw (or max number, npwx) \item number of Gvectors, ngm \item number of grid points in the R space, dfft\%nnr \end{itemize} Their size decreases linearly with the number of processors in a pool. \item {\em Partially Scalable}: Arrays that are distributed across processors of the ortho or diag group. Typically they are much smaller than fully scalable array, and small in absolute terms for moderate-size system. Their size however increases quadratically with the number of atoms in the system, so they have to be distributed for large systems (hundreds to thousands atoms). Partially scalable arrays contain none of the dimensions listed above, two of the following dimensions: \begin{itemize} \item number of states, nbnd \item number of atomic states, natomwfc \item number of projectors, nkb \end{itemize} Their size decreases linearly with the number of processors in a ortho or diag group. \item {\em Nonscalable}: All the remaining arrays, that are not distributed across processors. These are typically small arrays, having dimensions like for instance: \begin{itemize} \item number of atoms, nat \item number of species of atoms, nsp \end{itemize} The size of these arrays is independent on the number of processors. \end{itemize} % \subsubsection{ Parallel fft} \section{ File Formats} \subsection{Data file(s)} \qe\ restart file specifications: Paolo Giannozzi scripsit AD 2005-11-11, Last modified by Andrea Ferretti 2006-10-29 \subsubsection{Rationale} Requirements: the data file should be \begin{itemize} \item efficient (quick to read and write) \item easy to read, parse and write without special libraries \item easy to understand (self-documented) \item portable across different software packages \item portable across different computer architectures \end{itemize} Solutions: \begin{itemize} \item use binary I/O for large records \item exploit the file system for organizing data \item use XML \item use a small specialized library (iotk) to read, parse, write \item ensure the possibility to convert to a portable formatted file \end{itemize} Integration with other packages: \begin{itemize} \item provide a self-standing (code-independent) library to read/write this format \item the use of this library is intended to be at high level, hiding low-level details \end{itemize} \subsubsection{General structure} Format name: QEXML \\ Format version: 1.4.0 \\ The "restart file" is actually a "restart directory", containing several files and sub-directories. For CP/FPMD, the restart directory is created as "\$prefix\_\$ndw/", where \$prefix is the value of the variable "prefix". \$ndw the value of variable ndw, both read in input; it is read from "\$prefix\_\$ndr/", where \$ndr the value of variable ndr, read from input. For PWscf, both input and output directories are called "\$prefix.save/". The content of the restart directory is as follows: \begin{verbatim} data-file.xml which contains: - general information that doesn't require large data set: atomic structure, lattice, k-points, symmetries, parameters of the run, ... - pointers to other files or directories containing bulkier data: grids, wavefunctions, charge density, potentials, ... charge_density.dat contains the charge density spin_polarization.dat contains the spin polarization (rhoup-rhodw) (LSDA case) magnetization.x.dat magnetization.y.dat contain the spin polarization along x,y,z magnetization.z.dat (noncollinear calculations) lambda.dat contains occupations (Car-Parrinello dynamics only) mat_z.1 contains occupations (ensemble-dynamics only) A copy of all pseudopotential files given in input Subdirectories K00001/, K00002/, etc, one per k-point. \end{verbatim} Each k-point directory contains: \begin{verbatim} evc.dat wavefunctions for spin-unpolarized calculations, OR evc1.dat evc2.dat spin-up and spin-down wavefunctions, respectively, for spin polarized (LSDA) calculations; gkvectors.dat the details of specific k+G grid; eigenval.xml eigenvalues for the corresponding k-point for spin-unpolarized calculations, OR eigenval1.xml spin-up and spin-down eigenvalues, eigenval2.xml for spin-polarized calculations; \end{verbatim} in a molecular dynamics run, also wavefunctions at the preceding time step: \begin{verbatim} evcm.dat for spin-unpolarized calculations OR evcm1.dat evcm2.dat for spin polarized calculations; \end{verbatim} \begin{itemize} \item All files "*.xml" are XML-compliant, formatted file; \item Files "mat\_z.1", "lambda.dat" are unformatted files, containing a single record; \item All other files "*.dat", are XML-compliant files, but they contain an unformatted record. \end{itemize} \subsubsection{ Structure of file "data-file.xml"} \begin{verbatim} XML Header: whatever is needed to have a well-formed XML file Body: introduced by , terminated by . Contains first-level tags only. These contain only other tags, not values. XML syntax applies. First-level tags: contain either second-level tags, OR data tags: tags containing data (values for a given variable), OR file tags: tags pointing to a file \end{verbatim} data tags syntax ( [...] = optional ) : \begin{verbatim} values (in appropriate units) for variable corresponding to TAG: n elements of type vartype (if character, of lenght k) \end{verbatim} where TAG describes the variable into which data must be read;\\ "vartype" may be "integer", "real", "character", "logical";\\ if type="logical", LEN=k" must be used to specify the length of the variable character; size="n" is the dimension.\\ Acceptable values for "units" depend on the specific tag. Short syntax, used only in a few cases: \begin{verbatim} . \end{verbatim} For instance: \begin{verbatim} \end{verbatim} defines the value of the FFT grid parameters nr1, nr2, nr3 for the charge density \subsubsection{Sample} Header: \begin{verbatim} \end{verbatim} These are meant to be used only by iotk (actually they aren't) First-level tags: \begin{verbatim} -
(global information about fmt version) - (miscellanea of internal information) - (information about the status of the CP simulation) - (lattice vector, unit cell, etc) - (type and positions of atoms in the unit cell etc) - (symmetry operations) - (details for an eventual applied electric field) - (basis set, cutoffs etc) - (info on spin polarizaztion) - (info about starting or constrained magnetization) - - (occupancy of the states) - (k-points etc) - (info for phonon calculations) - (specialized info for parallel runs) - - (positions, velocities, nose' thermostats) - (dimensions and basic data about band structure) - (eigenvalues and related data) - (eigenvectors and related data) * Tag description
(name and version of the format) (name and version of the code generating the file)
(whether the file can be used for post-processing) (whether kpt-data are written in sub-directories) (whether augmentation terms are used in real space) (optional) (number $n of steps performed, i.e. we are at step $n)
Output written on user_guide.pdf (16 pages, 190436 bytes). espresso-5.0.2/CPV/Doc/input_xx.xsl0000777000700200004540000000000012053147430023067 2../../dev-tools/input_xx.xslustar marsamoscmespresso-5.0.2/CPV/Doc/Makefile0000644000700200004540000000375012053145630015161 0ustar marsamoscmHELPDOC=../../dev-tools/helpdoc LATEX = pdflatex LATEX2HTML = latex2html PDFS = user_guide.pdf AUXS = $(PDFS:.pdf=.aux) LOGS = $(PDFS:.pdf=.log) OUTS = $(PDFS:.pdf=.out) TOCS = $(PDFS:.pdf=.toc) doc: all all: pdf html defs pdf: $(PDFS) html: user_guide $(PDFS): %.pdf: %.tex $(LATEX) $< $(LATEX) $< clean: - rm -f $(PDFS) $(AUXS) $(LOGS) $(OUTS) $(TOCS) *~ - rm -rf user_guide/ - rm -f INPUT_*.html INPUT_*.txt INPUT_*.xml input_xx.xsl - rm -rf ../../Doc/INPUT_CP*.* - rm -rf ../../Doc/input_xx.xsl user_guide: user_guide.pdf rm -rf user_guide/ latex2html \ -t "User's Guide for The Quantum ESPRESSO Car-Parrinello Molecular Dynamics" \ -html_version 3.2,math \ -toc_depth 5 -split 5 -toc_stars -show_section_numbers \ -local_icons -image_type png \ user_guide.tex cd user_guide; \ for file in *.html; do \ cp $$file /tmp/$$file; \ cat /tmp/$$file | sed 's/HREF="http/NAME="http/g' | sed 's/mathend000#//g' - > $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** User's Guide created in user_guide/user_guide.html" @echo "***" @echo "" defs: link_input_xx INPUT_CP.html INPUT_CP.txt INPUT_CPPP.html INPUT_CPPP.txt link_on_main_doc INPUT_CP.html: %.html: %.def $(HELPDOC) $< INPUT_CP.txt: %.txt: %.def $(HELPDOC) $< INPUT_CPPP.html: %.html: %.def $(HELPDOC) $< INPUT_CPPP.txt: %.txt: %.def $(HELPDOC) $< link_input_xx: @(if test ! -f input_xx.xsl; then \ (if test -f ../../dev-tools/input_xx.xsl; then \ (ln -sf ../../dev-tools/input_xx.xsl input_xx.xsl) ; \ else \ echo ; \ echo " Sorry, can not find input_xx.xsl html style file !!!" ; \ echo ; \ fi) ; fi) link_on_main_doc: -@( cd ../../Doc ; ln -fs ../CPV/Doc/INPUT_CP.html . ; \ ln -fs ../CPV/Doc/INPUT_CP.xml . ; \ ln -fs ../CPV/Doc/INPUT_CP.txt . ; \ ln -fs ../CPV/Doc/INPUT_CPPP.html . ; \ ln -fs ../CPV/Doc/INPUT_CPPP.xml . ; \ ln -fs ../CPV/Doc/INPUT_CPPP.txt) espresso-5.0.2/CPV/Doc/INPUT_CPPP.def0000644000700200004540000001170612053145630015722 0ustar marsamoscminput_description -distribution {Quantum Espresso} -package CP -program cppp.x { toc {} intro { ============================================================================= CP Post-Processing code (cppp.x) ============================================================================= The cppp.x code is an utility that can be used to extract data from the CP restart and CP trajectory files. INPUT: ===== the program read the input parameters from the standard input or from any other file specified through the usual "-input" command line flag. The input parameters, in the input file, should be specified in the inputpp namelist follow: &INPUTPP ... cppp_input_parameter ... / } namelist INPUTPP { var prefix -type CHARACTER { default { 'cp' } info { basename prepended to cp.x output filenames: cp.evp, cp.pos .... } } var fileout -type CHARACTER { default { 'out' } info { basename of the cppp.x output files } } var output -type CHARACTER { default { 'xsf' } info { a string describing the output format to be performed, allowed values: 'xsf', 'grd' xsf xcrysden format grd GRD gaussian 3D grid format } } var outdir -type CHARACTER { default { './' } info { directory containing the CP trajectory files (.evp .pos .cel ...) and restart files ( .save ) to be processed } } var lcharge -type LOGICAL { default { .false. } info { This logical flag control the processing of charge density. .TRUE. generate output file containing charge density. The file format is controlled by the "output" parameter .FALSE. do not generate charge density file } } var lforces -type LOGICAL { default { .false. } info { This logical flag control the processing of forces. .TRUE. extract forces from trajectory files and write them to xcrysden file .FALSE. do not proces forces } } var ldynamics -type LOGICAL { default { .false. } info { This logical flag control the processing of atoms trajectory. .TRUE. process CP trajectory files and generate a trajectory file for xcrysden (.axsf) .FALSE. do not process trajectory } } var lpdb -type LOGICAL { default { .false. } info { This logical flag control the generation of a pdb file. .TRUE. generate a pdb file containing positions and cell of the simulated system .FALSE. do not generate pdb file } } var lrotation -type LOGICAL { default { .false. } info { This logical flag control the rotation of the cell .TRUE. rotate the system cell in space in order to have the a lattice parameter laying on the x axis, the b lattice parameter laying on the xy plane .FALSE. do not rotate cell } } vargroup -type INTEGER { var ns1 var ns2 var ns3 default { 0 } info { Dimensions of the charge density 3D grid. If ns1, ns2, ns3 are 0 or not specified, the dimensions of the grid in the CP run are assumed; otherwise chargedensity is re-sampled on the GRID specified with ns1,ns2,ns3 } } vargroup -type INTEGER { var np1 var np2 var np3 default { 1 } info { Number of replicas of atomic positions along cell parameters. If ns1, ns2, ns3 are 1 or not specified, cppp.x do not replicate atomi positions in space. If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along a ns1 times, along b ns2 times and along c ns3 times. the atomic positions used in the simunation. } } var nframes -type INTEGER { default { 1 } info { number of MD step to be read to build the trajectory } } var ndr -type INTEGER { default { 51 } info { CP restart file number to post process } } dimension atomic_number -start 1 -end ntyp -type INTEGER { default { 1 } info { Specify the atomic number of the species in CP trajectory and restart file. atomic_number(1) specify the atomic number of the first specie atomic_number(2) specify the atomic number of the second specie .... } } var charge_density -type CHARACTER { default { 'full' } info { specify the component of the charge density to plot, allowed values: 'full' print the full electronic charge 'spin' print the spin polarization (for LSD calculations) } } var state -type CHARACTER { default { ' ' } info { specify the Kohn-Sham state to plot, example: 'KS_1' } } var lbinary -type LOGICAL { default { .TRUE. } info { specify the file format of the wave function files to be read and plotted } } } } espresso-5.0.2/CPV/Doc/user_guide.toc0000644000700200004540000000261312053165211016355 0ustar marsamoscm\contentsline {section}{\numberline {1}Introduction}{1}{section.1} \contentsline {section}{\numberline {2}Compilation}{2}{section.2} \contentsline {section}{\numberline {3}Input data}{3}{section.3} \contentsline {subsection}{\numberline {3.1}Data files}{4}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Format of arrays containing charge density, potential, etc.}{4}{subsection.3.2} \contentsline {section}{\numberline {4}Using \texttt {CP}}{5}{section.4} \contentsline {subsection}{\numberline {4.1}Reaching the electronic ground state}{6}{subsection.4.1} \contentsline {subsection}{\numberline {4.2}Relax the system}{7}{subsection.4.2} \contentsline {subsection}{\numberline {4.3}CP dynamics}{9}{subsection.4.3} \contentsline {paragraph}{ Varying the temperature }{10}{section*.2} \contentsline {paragraph}{ No\'se thermostat for electrons }{11}{section*.3} \contentsline {subsection}{\numberline {4.4}Advanced usage}{11}{subsection.4.4} \contentsline {subsubsection}{\numberline {4.4.1} Self-interaction Correction }{11}{subsubsection.4.4.1} \contentsline {subsubsection}{\numberline {4.4.2} ensemble-DFT }{12}{subsubsection.4.4.2} \contentsline {subsubsection}{\numberline {4.4.3}Free-energy surface calculations}{14}{subsubsection.4.4.3} \contentsline {subsubsection}{\numberline {4.4.4}Treatment of USPPs}{14}{subsubsection.4.4.4} \contentsline {section}{\numberline {5}Performances}{15}{section.5} espresso-5.0.2/CPV/Doc/INPUT_CP.txt0000644000700200004540000027210312053165215015544 0ustar marsamoscm*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: cp.x / CP / Quantum Espresso ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in HARTREE ATOMIC UNITS BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced either by a "!" or a "#" character in the first position of a line. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] [ &WANNIER ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 [ CELL_PARAMETERS { bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] ======================================================================== NAMELIST: &CONTROL +-------------------------------------------------------------------- Variable: calculation Type: CHARACTER Default: 'cp' Description: a string describing the task to be performed: 'cp', 'scf', 'nscf', 'relax', 'vc-relax', 'vc-cp', 'cp-wf' (vc = variable-cell). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: title Type: CHARACTER Default: 'MD Simulation ' Description: reprinted on output. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: verbosity Type: CHARACTER Default: 'low' Description: In order of decreasing verbose output: 'debug' | 'high' | 'medium' | 'low','default' | 'minimal' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: isave Type: INTEGER See: ndr See: ndw Default: 100 Description: Number of steps between successive savings of information needed to restart the run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'restart' Description: 'from_scratch' : from scratch 'restart' : from previous interrupted run 'reset_counters' : continue a previous simulation, performs "nstep" new steps, resetting the counter and averages +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep Type: INTEGER Description: number of ionic + electronic steps Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: iprint Type: INTEGER Default: 10 Description: Number of steps between successive writings of relevant physical quantities to standard output and to files "fort.3?" or "prefix.???" depending on "prefix" parameter +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tstress Type: LOGICAL Default: .false. Description: Write stress tensor to standard output each "iprint" steps. It is set to .TRUE. automatically if calculation='vc-relax' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tprnfor Type: LOGICAL Default: .false. Description: print forces. Set to .TRUE. when ions are moving. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dt Type: REAL Default: 1.D0 Description: time step for molecular dynamics, in Hartree atomic units (1 a.u.=2.4189 * 10^-17 s : beware, PW code use Rydberg atomic units, twice that much!!!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise Description: input, temporary, trajectories and output files are found in this directory. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: saverho Type: LOGICAL Description: This flag controls the saving of charge density in CP codes: If .TRUE. save charge density to restart dir, If .FALSE. do not save charge density. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'cp' Description: prepended to input/output filenames: prefix.pos, prefix.vel, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndr Type: INTEGER Default: 50 Description: Units for input and output restart file. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndw Type: INTEGER Default: 50 Description: Units for input and output restart file. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tabps Type: LOGICAL Default: .false. Description: .true. to compute the volume and/or the surface of an isolated system for finete pressure/finite surface tension calculations (PRL 94, 145501 (2005); JCP 124, 074103 (2006)). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: max_seconds Type: REAL Default: 1.D+7, or 150 days, i.e. no time limit Description: jobs stops after max_seconds CPU time. Used to prevent a hard kill from the queuing system. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: etot_conv_thr Type: REAL Default: 1.0D-4 Description: convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. See also forc_conv_thr - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: forc_conv_thr Type: REAL Default: 1.0D-3 Description: convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ekin_conv_thr Type: REAL Default: 1.0D-6 Description: convergence criterion for electron minimization: convergence is achieved when "ekin < ekin_conv_thr". See also etot_conv_thr - both criteria must be satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: disk_io Type: CHARACTER Description: 'high', 'default' 'high': CP code will write Kohn-Sham wf files and additional information in data-file.xml in order to restart with a PW calculation or to use postprocessing tools. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pseudo_dir Type: CHARACTER Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise Description: directory containing pseudopotential files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tefield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &SYSTEM +-------------------------------------------------------------------- Variable: ibrav Type: INTEGER Status: REQUIRED Description: Bravais-lattice index: ibrav structure celldm(2)-celldm(6) 0 "free", see above not used 1 cubic P (sc) not used 2 cubic F (fcc) not used 3 cubic I (bcc) not used 4 Hexagonal and Trigonal P celldm(3)=c/a 5 Trigonal R celldm(4)=cos(alpha) 6 Tetragonal P (st) celldm(3)=c/a 7 Tetragonal I (bct) celldm(3)=c/a 8 Orthorhombic P celldm(2)=b/a,celldm(3)=c/a 9 Orthorhombic base-centered(bco) celldm(2)=b/a,celldm(3)=c/a 10 Orthorhombic face-centered celldm(2)=b/a,celldm(3)=c/a 11 Orthorhombic body-centered celldm(2)=b/a,celldm(3)=c/a 12 Monoclinic P celldm(2)=b/a,celldm(3)=c/a, celldm(4)=cos(ab) 13 Monoclinic base-centered celldm(2)=b/a,celldm(3)=c/a, celldm(4)=cos(ab) 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) For P lattices: the special axis (c) is the z-axis, one basal-plane vector (a) is along x, the other basal-plane vector (b) is at angle gamma for monoclinic, at 120 degrees for trigonal and hexagonal lattices, at 90 degrees for cubic, tetragonal, orthorhombic lattices sc simple cubic ==================== v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) fcc face centered cubic ==================== v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0). bcc body entered cubic ==================== v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1). simple hexagonal and trigonal(p) ==================== v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a). trigonal(r) =================== for these groups, the z-axis is chosen as the 3-fold axis, but the crystallographic vectors form a three-fold star around the z-axis, and the primitive cell is a simple rhombohedron. The crystallographic vectors are: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz). where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tc, ty, tz are defined as tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) simple tetragonal (p) ==================== v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) body centered tetragonal (i) ================================ v1 = (a/2)(1,-1,c/a), v2 = (a/2)(1,1,c/a), v3 = (a/2)(-1,-1,c/a). simple orthorhombic (p) ============================= v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) bco base centered orthorhombic ============================= v1 = (a/2,b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) face centered orthorhombic ============================= v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) body centered orthorhombic ============================= v1 = (a/2,b/2,c/2), v2 = (-a/2,b/2,c/2), v3 = (-a/2,-b/2,c/2) monoclinic (p) ============================= v1 = (a,0,0), v2= (b*cos(gamma), b*sin(gamma), 0), v3 = (0, 0, c) where gamma is the angle between axis a and b base centered monoclinic ============================= v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b triclinic ============================= v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b +-------------------------------------------------------------------- ///--- EITHER: +-------------------------------------------------------------------- Variable: celldm(i), i=1,6 Type: REAL See: ibrav Description: Crystallographic constants - see description of ibrav variable. * alat = celldm(1) is the lattice parameter "a" (in BOHR) * only needed celldm (depending on ibrav) must be specified * if ibrav=0 only alat = celldm(1) is used (if present) +-------------------------------------------------------------------- OR: +-------------------------------------------------------------------- Variables: A, B, C, cosAB, cosAC, cosBC Type: REAL Description: Traditional crystallographic constants (a,b,c in ANGSTROM), cosab = cosine of the angle between axis a and b specify either these OR celldm but NOT both. The axis are chosen according to the value of ibrav. If ibrav is not specified, the axis are taken from card CELL_PARAMETERS and only a is used as lattice parameter. +-------------------------------------------------------------------- \\\--- +-------------------------------------------------------------------- Variable: nat Type: INTEGER Status: REQUIRED Description: number of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ntyp Type: INTEGER Status: REQUIRED Description: number of types of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nbnd Type: INTEGER Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) Description: number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_charge Type: REAL Default: 0.0 Description: total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_magnetization Type: REAL Default: -1 [unspecified] Description: total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified, the tot_magnetization variable is ignored and the electronic magnetization is determined by the occupation numbers (see card OCCUPATIONS) read from input. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutwfc Type: REAL Status: REQUIRED Description: kinetic energy cutoff (Ry) for wavefunctions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutrho Type: REAL Default: 4 * ecutwfc Description: kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1, nr2, nr3 Type: INTEGER See: ecutrho Description: three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1s, nr2s, nr3s Type: INTEGER Description: three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1b, nr2b, nr3b Type: INTEGER Description: dimensions of the "box" grid for Ultrasoft pseudopotentials must be specified if Ultrasoft PP are present +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: occupations Type: CHARACTER Description: a string describing the occupation of the electronic states. In the case of conjugate gradient style of minimization of the electronic states, if occupations is set to 'ensemble', this allows ensemble DFT calculations for metallic systems +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.D0 Ry Description: parameter for the smearing function, only used for ensemble DFT calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: smearing Type: CHARACTER Description: a string describing the kind of occupations for electronic states in the case of ensemble DFT (occupations == 'ensemble' ); now only Fermi-Dirac ('fd') case is implemented +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nspin Type: INTEGER Default: 1 Description: nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecfixed Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: qcutz Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: q2sigma Type: REAL Default: 0.1 Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: input_dft Type: CHARACTER Default: read from pseudopotential files Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u Type: LOGICAL Default: .FALSE. Description: lda_plus_u = .TRUE. enables calculation with LDA+U ("rotationally invariant"). See also Hubbard_U. Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994); Cococcioni and de Gironcoli, PRB 71, 035105 (2005). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_U(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Status: LDA+U works only for a few selected elements. Modify CPV/ldaU.f90 if you plan to use LDA+U with an element that is not configured there. Description: Hubbard_U(i): parameter U (in eV) for LDA+U calculations. Currently only the simpler, one-parameter LDA+U is implemented (no "alpha" or "J" terms) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: assume_isolated Type: CHARACTER Default: 'none' Description: Used to perform calculation assuming the system to be isolated (a molecule of a clustr in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &ELECTRONS +-------------------------------------------------------------------- Variable: electron_maxstep Type: INTEGER Default: 100 Description: maximum number of iterations in a scf step +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_dynamics Type: CHARACTER Default: 'none' Description: set how electrons should be moved 'none' : electronic degrees of freedom (d.o.f.) are kept fixed 'sd' : steepest descent algorithm is used to minimize electronic d.o.f. 'damp' : damped dynamics is used to propagate electronic d.o.f. 'verlet' : standard Verlet algorithm is used to propagate electronic d.o.f. 'cg' : conjugate gradient is used to converge the wavefunction at each ionic step. 'cg' can be used interchangeably with 'verlet' for a couple of ionic steps in order to "cool down" the electrons and return them back to the Born-Oppenheimer surface. Then 'verlet' can be restarted again. This procedure is useful when electronic adiabaticity in CP is lost yet the ionic velocities need to be preserved. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr Type: REAL Default: 1.D-6 Description: Convergence threshold for selfconsistency: estimated energy error < conv_thr +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: niter_cg_restart Type: INTEGER Default: 20 Description: frequency in iterations for which the conjugate-gradient algorithm for electronic relaxation is restarted +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield Type: REAL Default: 0.D0 Description: Amplitude of the finite electric field (in a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: epol Type: INTEGER Default: 3 Description: direction of the finite electric field (only if tefield == .TRUE.) In the case of a PARALLEL calculation only the case epol==3 is implemented +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emass Type: REAL Default: 400.D0 Description: effective electron mass in the CP Lagrangian, in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emass_cutoff Type: REAL Default: 2.5D0 Description: mass cut-off (in Rydberg) for the Fourier acceleration effective mass is rescaled for "G" vector components with kinetic energy above "emass_cutoff" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: orthogonalization Type: CHARACTER Default: 'ortho' Description: selects the orthonormalization method for electronic wave functions 'ortho' : use iterative algorithm - if it doesn't converge, reduce the timestep, or use options ortho_max and ortho_eps, or use Gram-Schmidt instead just to start the simulation 'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in the first few steps. YIELDS INCORRECT ENERGIES AND EIGENVALUES. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_eps Type: REAL Default: 1.D-8 Description: tolerance for iterative orthonormalization meaningful only if orthogonalization = 'ortho' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_max Type: INTEGER Default: 20 Description: maximum number of iterations for orthonormalization meaningful only if orthogonalization = 'ortho' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_para Type: INTEGER Default: 0 Status: OBSOLETE: use command-line option " -ndiag XX" instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_damping Type: REAL Default: 0.1D0 Description: damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " electron_dynamics = 'damp' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_velocities Type: CHARACTER Description: 'zero' : restart setting electronic velocities to zero 'default' : restart using electronic velocities of the previous run +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_temperature Type: CHARACTER Default: 'not_controlled' Description: 'nose' : control electronic temperature using Nose thermostat. See also "fnosee" and "ekincw". 'rescaling' : control electronic temperature via velocities rescaling. 'not_controlled' : electronic temperature is not controlled. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ekincw Type: REAL Default: 0.001D0 Description: value of the average kinetic energy (in atomic units) forced by the temperature control meaningful only with " electron_temperature /= 'not_controlled' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnosee Type: REAL Default: 1.D0 Description: oscillation frequency of the nose thermostat (in terahertz) meaningful only with " electron_temperature = 'nose' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingwfc Type: CHARACTER Default: 'random' Description: 'atomic': start from superposition of atomic orbitals (not yet implemented) 'random': start from random wfcs. See "ampre". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tcg Type: LOGICAL Default: .FALSE. Description: if .TRUE. perform a conjugate gradient minimization of the electronic states for every ionic step. It requires Gram-Schmidt orthogonalization of the electronic states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: maxiter Type: INTEGER Default: 100 Description: maximum number of conjugate gradient iterations for conjugate gradient minimizations of electronic states +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: passop Type: REAL Default: 0.3D0 Description: small step used in the conjugate gradient minimization of the electronic states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: n_inner Type: INTEGER Default: 2 Description: number of internal cycles for every conjugate gradient iteration only for ensemble DFT +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ninter_cold_restart Type: INTEGER Default: 1 Description: frequency in iterations at which a full inner cycle, only for cold smearing, is performed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lambda_cold Type: REAL Default: 0.03D0 Description: step for inner cycle with cold smearing, used when a not full cycle is performed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: grease Type: REAL Default: 1.D0 Description: a number <= 1, very close to 1: the damping in electronic damped dynamics is multiplied at each time step by "grease" (avoids overdamping close to convergence: Obsolete ?) grease = 1 : normal damped dynamics +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ampre Type: REAL Default: 0.D0 Description: amplitude of the randomization ( allowed values: 0.0 - 1.0 ) meaningful only if " startingwfc = 'random' " +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &IONS INPUT THIS NAMELIST ONLY IF CALCULATION = 'CP', 'RELAX', 'VC-RELAX', 'VC_CP' +-------------------------------------------------------------------- Variable: ion_dynamics Type: CHARACTER Description: Specify the type of ionic dynamics. For constrained dynamics or constrained optimisations add the CONSTRAINTS card (when the card is present the SHAKE algorithm is automatically used). 'none' : ions are kept fixed 'sd' : steepest descent algorithm is used to minimize ionic configuration 'cg' : conjugate gradient algorithm is used to minimize ionic configuration 'damp' : damped dynamics is used to propagate ions 'verlet' : standard Verlet algorithm is used to propagate ions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_positions Type: CHARACTER Default: 'default' Description: 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_velocities Type: CHARACTER Default: 'default' See: tempw Description: initial ionic velocities 'default' : restart the simulation with atomic velocities read from the restart file 'change_step' : restart the simulation with atomic velocities read from the restart file, with rescaling due to the timestep change, specify the old step via tolp as in tolp = 'old_time_step_value' in au 'random' : start the simulation with random atomic velocities 'from_input' : restart the simulation with atomic velocities read from standard input ( see the card 'ATOMIC_VELOCITIES' ) 'zero' : restart the simulation with atomic velocities set to zero +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_nstepe Type: INTEGER Default: 1 Description: number of electronic steps per ionic step. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: remove_rigid_rot Type: LOGICAL Default: .FALSE. Description: This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_temperature Type: CHARACTER Default: 'not_controlled' Description: 'nose' : control ionic temperature using Nose-Hoover thermostat see parameters "fnosep", "tempw", "nhpcl", "ndega", "nhptyp" 'rescaling' : control ionic temperature via velocities rescaling. see parameter "tolp" 'not_controlled' : ionic temperature is not controlled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tempw Type: REAL Default: 300.D0 Description: value of the ionic temperature (in Kelvin) forced by the temperature control. meaningful only with " ion_temperature /= 'not_controlled' " or when the initial velocities are set to 'random' "ndega" controls number of degrees of freedom used in temperature calculation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnosep Type: REAL Default: 1.D0 Description: oscillation frequency of the nose thermostat (in terahertz) [note that 3 terahertz = 100 cm^-1] meaningful only with " ion_temperature = 'nose' " for Nose-Hoover chain one can set frequencies of all thermostats ( fnosep = X Y Z etc. ) If only first is set, the defaults for the others will be same. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolp Type: REAL Default: 100.D0 Description: tolerance (in Kelvin) of the rescaling. When ionic temperature differs from "tempw" more than "tolp" apply rescaling. meaningful only with " ion_temperature = 'rescaling' " and with ion_velocities='change_step', where it specifies the old timestep +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nhpcl Type: INTEGER Default: 1 Description: number of thermostats in the Nose-Hoover chain currently maximum allowed is 4 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nhptyp Type: INTEGER Default: 0 Description: type of the "massive" Nose-Hoover chain thermostat nhptyp=1 uses a NH chain per each atomic type nhptyp=2 uses a NH chain per atom, this one is useful for extremely rapid equipartitioning (equilibration is a different beast) nhptyp=3 together with nhgrp allows fine grained thermostat control NOTE: if using more than 1 thermostat per system there will be a common thermostat added on top of them all, to disable this common thermostat specify nhptyp=-X instead of nhptyp=X +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nhgrp(i), i=1,ntyp Type: INTEGER Default: 0 Description: specifies which thermostat group to use for given atomic type when >0 assigns all the atoms in this type to thermostat labeled nhgrp(i), when =0 each atom in the type gets its own thermostat. Finally, when <0, then this atomic type will have temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4); setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C, one thermostat per each O (2 in total), and a non-updated thermostat for Li which will effectively make temperature for Li "not controlled" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnhscl(i), i=1,ntyp Type: REAL Default: (Nat_{total}-1)/Nat_{total} Description: these are the scaling factors to be used together with nhptyp=3 and nhgrp(i) in order to take care of possible reduction in the degrees of freedom due to constraints. Suppose that with the previous example HCOOLi, C-H bond is constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for simulations with many constraints, such as rigid water with something else in there +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndega Type: INTEGER Default: 0 Description: number of degrees of freedom used for temperature calculation ndega <= 0 sets the number of degrees of freedom to [3*nat-abs(ndega)], ndega > 0 is used as the target number +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tranp(i), i=1,ntyp Type: LOGICAL See: amprp Default: .false. Description: If .TRUE. randomize ionic positions for the atomic type corresponding to the index. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: amprp(i), i=1,ntyp Type: REAL See: amprp Default: 0.D0 Description: amplitude of the randomization for the atomic type corresponding to the index i ( allowed values: 0.0 - 1.0 ). meaningful only if " tranp(i) = .TRUE.". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: greasp Type: REAL Default: 1.D0 Description: same as "grease", for ionic damped dynamics. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &CELL INPUT THIS NAMELIST ONLY IF CALCULATION = 'VC-RELAX', 'VC-CP' +-------------------------------------------------------------------- Variable: cell_parameters Type: CHARACTER Description: 'default' : restart the simulation with cell parameters read from the restart file or "celldm" if "restart = 'from_scratch'" 'from_input' : restart the simulation with cell parameters from standard input. ( see the card 'CELL_PARAMETERS' ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dynamics Type: CHARACTER Default: 'none' Description: set how cell should be moved 'none' : cell is kept fixed 'sd' : steepest descent algorithm is used to optimise the cell 'damp-pr' : damped dynamics is used to optimise the cell ( Parrinello-Rahman method ). 'pr' : standard Verlet algorithm is used to propagate the cell ( Parrinello-Rahman method ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_velocities Type: CHARACTER Description: 'zero' : restart setting cell velocity to zero 'default' : restart using cell velocity of the previous run +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_damping Type: REAL Default: 0.1D0 Description: damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " cell_dynamics = 'damp' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press Type: REAL Default: 0.D0 Description: Target pressure [KBar] in a variable-cell md or relaxation run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wmass Type: REAL Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Description: Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_factor Type: REAL Default: 1.2D0 Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_temperature Type: CHARACTER Default: 'not_controlled' Description: 'nose' : control cell temperature using Nose thermostat see parameters "fnoseh" and "temph". 'rescaling' : control cell temperature via velocities rescaling. 'not_controlled' : cell temperature is not controlled. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: temph Type: REAL Default: 0.D0 Description: value of the cell temperature (in ???) forced by the temperature control. meaningful only with " cell_temperature /= 'not_controlled' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnoseh Type: REAL Default: 1.D0 Description: oscillation frequency of the nose thermostat (in terahertz) meaningful only with " cell_temperature = 'nose' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: greash Type: REAL Default: 1.D0 Description: same as "grease", for cell damped dynamics +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dofree Type: CHARACTER Default: 'all' Description: Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v_2y are moved xz = only v1_x and v_3z are moved yz = only v2_x and v_3z are moved xyz = only v1_x, v2_x, v_3z are moved shape = all axis and angles, keeping the volume fixed Beware: if axis are not orthogonal, some of the above options will break symmetry +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &PRESS_AI INPUT THIS NAMELIST ONLY WHEN TABPS = .TRUE. +-------------------------------------------------------------------- Variable: abivol Type: LOGICAL Default: .false. Description: .true. for finite pressure calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: abivol Type: LOGICAL Default: .false. Description: .true. for finite surface tension calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: P_ext Type: REAL Default: 0.D0 Description: external pressure in GPa +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pvar Type: LOGICAL Default: .false. Description: .true. for variable pressure calculations pressure changes linearly with time: Delta_P = (P_fin - P_in)/nstep +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: P_in Type: REAL Default: 0.D0 Description: only if pvar = .true. initial value of the external pressure (GPa) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: P_fin Type: REAL Default: 0.D0 Description: only if pvar = .true. final value of the external pressure (GPa) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Surf_t Type: REAL Default: 0.D0 Description: Surface tension (in a.u.; typical values 1.d-4 - 1.d-3) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rho_thr Type: REAL Default: 0.D0 Description: threshold parameter which defines the electronic charge density isosurface to compute the 'quantum' volume of the system (typical values: 1.d-4 - 1.d-3) (corresponds to alpha in PRL 94 145501 (2005)) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dthr Type: REAL Default: 0.D0 Description: thikness of the external skin of the electronic charge density used to compute the 'quantum' surface (typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr) (corresponds to Delta in PRL 94 145501 (2005)) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &WANNIER ONLY IF CALCULATION = 'CP-WF' Output files used by Wannier Function options are the following fort.21: Used only when calwf=5, contains the full list of g-vecs. fort.22: Used Only when calwf=5, contains the coeffs. corresponding to the g-vectors in fort.21 fort.24: Used with calwf=3,contains the average spread fort.25: Used with calwf=3, contains the individual Wannier Function Spread of each state fort.26: Used with calwf=3, contains the wannier centers along a trajectory. fort.27: Used with calwf=3 and 4, contains some general runtime information from ddyn, the subroutine that actually does the localization of the orbitals. fort.28: Used only if efield=.TRUE. , contains the polarization contribution to the total energy. Also, The center of mass is fixed during the Molecular Dynamics. BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR EQUAL TO THE NUMBER OF STATES. Nota Bene 1: For calwf = 5, wffort is not used. The Wannier/Wave(function) coefficients are written to unit 22 and the corresponding g-vectors (basis vectors) are written to unit 21. This option gives the g-vecs and their coeffs. in reciprocal space, and the coeffs. are complex. You will have to convert them to real space if you want to plot them for visualization. calwf=1 gives the orbital densities in real space, and this is usually good enough for visualization. +-------------------------------------------------------------------- Variable: wf_efield Type: LOGICAL Default: .false. Description: If dynamics will be done in the presence of a field +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_switch Type: LOGICAL Default: .false. Description: Whether to turn on the field adiabatically (adiabatic switch) if true, then nbeg is set to 0. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: sw_len Type: INTEGER Default: 1 Description: No. of iterations over which the field will be turned on to its final value. Starting value is 0.0 If sw_len < 0, then it is set to 1. If you want to just optimize structures on the presence of a field, then you may set this to 1 and run a regular geometry optimization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: efx0, efy0, efz0 Type: REAL See: 0.D0 Description: Initial values of the field along x, y, and z directions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: efx1, efy1, efz1 Type: REAL See: 0.D0 Description: Final values of the field along x, y, and z directions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfsd Type: INTEGER Default: 1 Description: Localization algorithm for Wannier function calculation: wfsd=1 Steepest-Descent / Conjugate-Gradient wfsd=2 Damped Dynamics wfsd=3 Jocobi Rotation Remember, this is consistent with all the calwf options as well as the tolw (see below). Not a good idea to Wannier dynamics with this if you are using restart='from_scratch' option, since the spreads converge fast in the beginning and ortho goes bananas. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfdt Type: REAL Default: 5.D0 Description: The minimum step size to take in the SD/CG direction +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: maxwfdt Type: REAL Default: 0.3D0 Description: The maximum step size to take in the SD/CG direction The code calculates an optimum step size, but that may be either too small (takes forever to converge) or too large (code goes crazy) . This option keeps the step size between wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite well. (but don't blame me if it doesn't work for you) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nit Type: INTEGER Default: 10 Description: Number of iterations to do for Wannier convergence. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nsd Type: INTEGER Default: 10 Description: Out of a total of NIT iterations, NSD will be Steepest-Descent and ( nit - nsd ) will be Conjugate-Gradient. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_q Type: REAL Default: 1500.D0 Description: Fictitious mass of the A matrix used for obtaining maximally localized Wannier functions. The unitary transformation matrix U is written as exp(A) where A is a anti-hermitian matrix. The Damped-Dynamics is performed in terms of the A matrix, and then U is computed from A. Usually a value between 1500 and 2500 works fine, but should be tested. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_friction Type: REAL Default: 0.3D0 Description: Damping coefficient for Damped-Dynamics. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nsteps Type: INTEGER Default: 20 Description: Number of Damped-Dynamics steps to be performed per CP iteration. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolw Type: REAL Default: 1.D-8 Description: Convergence criterion for localization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: adapt Type: LOGICAL Default: .true. Description: Whether to adapt the damping parameter dynamically. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: calwf Type: INTEGER Default: 3 Description: Wannier Function Options, can be 1,2,3,4,5 1. Output the Wannier function density, nwf and wffort are used for this option. see below. 2. Output the Overlap matrix O_i,j=. O is written to unit 38. For details on how O is constructed, see below. 3. Perform nsteps of Wannier dynamics per CP iteration, the orbitals are now Wannier Functions, not Kohn-Sham orbitals. This is a Unitary transformation of the occupied subspace and does not leave the CP Lagrangian invariant. Expectation values remain the same. So you will **NOT** have a constant of motion during the run. Don't freak out, its normal. 4. This option starts for the KS states and does 1 CP iteration and nsteps of Damped-Dynamics to generate maximally localized wannier functions. Its useful when you have the converged KS groundstate and want to get to the converged Wannier function groundstate in 1 CP Iteration. 5. This option is similar to calwf 1, except that the output is the Wannier function/wavefunction, and not the orbital density. See nwf below. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nwf Type: INTEGER Default: 0 Description: This option is used with calwf 1 and calwf 5. with calwf=1, it tells the code how many Orbital densities are to be output. With calwf=5, set this to 1(i.e calwf=5 only writes one state during one run. so if you want 10 states, you have to run the code 10 times). With calwf=1, you can print many orbital densities in a single run. See also the PLOT_WANNIER card for specifying the states to be printed. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wffort Type: INTEGER Default: 40 Description: This tells the code where to dump the orbital densities. Used only with CALWF=1. for e.g. if you want to print 2 orbital densities, set calwf=1, nwf=2 and wffort to an appropriate number (e.g. 40) then the first orbital density will be output to fort.40, the second to fort.41 and so on. Note that in the current implementation, the following units are used 21,22,24,25,26,27,28,38,39,77,78 and whatever you define as ndr and ndw. so use number other than these. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: writev Type: LOGICAL Default: .false. Description: Output the charge density (g-space) and the list of g-vectors This is useful if you want to reconstruct the electrostatic potential using the Poisson equation. If .TRUE. then the code will output the g-space charge density and the list if G-vectors, and STOP. Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2 depending on the number of spin types) or CH_DEN_G_SERL.ispin depending on if the code is being run in parallel or serial G-vectors are written to G_PARA or G_SERL. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: ATOMIC_SPECIES ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_SPECIES X(1) Mass_X(1) PseudoPot_X(1) X(2) Mass_X(2) PseudoPot_X(2) . . . X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Mass_X Type: REAL Description: mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: PseudoPot_X Type: CHARACTER Description: File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } ________________________________________________________________________ * IF calculation == 'bands' OR calculation == 'nscf' : Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! * ELSE IF : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) } X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) } . . . X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) } ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom | crystal } Default: alat Description: alat : atomic positions are in cartesian coordinates, in units of the lattice parameter "a" (default) bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors (see below) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: x, y, z Type: REAL Description: atomic positions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: if_pos(1), if_pos(2), if_pos(3) Type: INTEGER Default: 1 Description: component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_VELOCITIES { a.u } OPTIONAL CARD, READS VELOCITIES (IN ATOMIC UNITS) FROM STANDARD INPUT when starting with ion_velocities="from_input" it is convenient to perform few steps (~5-10) with a smaller time step (0.5 a.u.) ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_VELOCITIES { a.u } V(1) vx(1) vy(1) vz(1) V(2) vx(2) vy(2) vz(2) . . . V(nat) vx(nat) vy(nat) vz(nat) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { a.u } +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: V Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: vx, vy, vz Type: REAL Description: atomic velocities along x y and z direction +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CELL_PARAMETERS { bohr | angstrom } OPTIONAL CARD, NEEDED ONLY IF IBRAV = 0 IS SPECIFIED, IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CELL_PARAMETERS { bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { bohr | angstrom } Description: bohr / angstrom: lattice vectors in bohr radii / angstrom. nothing specified: if a lattice constant (celldm(1) or a) is present, lattice vectors are in units of the lattice constant; otherwise, in bohr radii. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: v1, v2, v3 Type: REAL Description: Crystal lattice vectors: v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CONSTRAINTS OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS When this card is present the SHAKE algorithm is automatically used. ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CONSTRAINTS nconstr { constr_tol } constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) } constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) } . . . constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) } ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: nconstr Type: INTEGER Description: Number of constraints. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_tol Type: REAL Description: Tolerance for keeping the constraints satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_type Type: CHARACTER Description: Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, Ed. by A.S. Nowick and J.J. Burton, New York 1975 ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: constr(1), constr(2), constr(3), constr(4) Description: These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_target Type: REAL Description: Target for the constrain ( angles are specified in degrees ). This variable is optional. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: OCCUPATIONS OPTIONAL CARD, USED ONLY IF OCCUPATIONS = 'FROM_INPUT', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// OCCUPATIONS f_inp1(1) f_inp1(2) . . . f_inp1(nbnd) [ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ] ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: f_inp1 Type: REAL Description: Occupations of individual states (MAX 10 PER LINE). For spin-polarized calculations, these are majority spin states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: f_inp2 Type: REAL Description: Occupations of minority spin states (MAX 10 PER LINE) To be specified only for spin-polarized calculations. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: PLOT_WANNIER OPTIONAL CARD, INDICES OF THE STATES THAT HAVE TO BE PRINTED (ONLY FOR CALF=1 AND CALF=5). ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// PLOT_WANNIER iwf(1) iwf(2) . . . iwf(nwf) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: iwf Type: INTEGER Description: These are the indices of the states that you want to output. Also used with calwf = 1 and 5. If calwf = 1, then you need nwf indices here (each in a new line). If CALWF=5, then just one index in needed. +-------------------------------------------------------------------- ===END OF CARD========================================================== espresso-5.0.2/CPV/Doc/user_guide.aux0000644000700200004540000000410512053165211016363 0ustar marsamoscm\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}} \@writefile{toc}{\contentsline {section}{\numberline {2}Compilation}{2}{section.2}} \@writefile{toc}{\contentsline {section}{\numberline {3}Input data}{3}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Data files}{4}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Format of arrays containing charge density, potential, etc.}{4}{subsection.3.2}} \@writefile{toc}{\contentsline {section}{\numberline {4}Using \texttt {CP}}{5}{section.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Reaching the electronic ground state}{6}{subsection.4.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Relax the system}{7}{subsection.4.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}CP dynamics}{9}{subsection.4.3}} \@writefile{toc}{\contentsline {paragraph}{ Varying the temperature }{10}{section*.2}} \@writefile{toc}{\contentsline {paragraph}{ No\'se thermostat for electrons }{11}{section*.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Advanced usage}{11}{subsection.4.4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.1} Self-interaction Correction }{11}{subsubsection.4.4.1}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2} ensemble-DFT }{12}{subsubsection.4.4.2}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.3}Free-energy surface calculations}{14}{subsubsection.4.4.3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4}Treatment of USPPs}{14}{subsubsection.4.4.4}} \@writefile{toc}{\contentsline {section}{\numberline {5}Performances}{15}{section.5}} espresso-5.0.2/CPV/Doc/user_guide.tex0000644000700200004540000011535512053165077016412 0ustar marsamoscm\documentclass[12pt,a4paper]{article} \def\version{5.0.2} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PWscf{\texttt{PWscf}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{../../Doc/quantum_espresso.pdf} \def\democritosImage{../../Doc/democritos.pdf} \begin{htmlonly} \def\qeImage{../../Doc/quantum_espresso.png} \def\democritosImage{../../Doc/democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \CP\ \Large (version \version) } %\endhtmlonly \maketitle \tableofcontents \section{Introduction} This guide covers the usage of the \CP\ package, version \version, a core component of the \qe\ distribution. Further documentation, beyond what is provided in this guide, can be found in the directory \texttt{CPV/Doc/}, containing a copy of this guide. This guide assumes that you know the physics that \CP\ describes and the methods it implements. It also assumes that you have already installed, or know how to install, \qe. If not, please read the general User's Guide for \qe, found in directory \texttt{Doc/} two levels above the one containing this guide; or consult the web site:\\ \texttt{http://www.quantum-espresso.org}. People who want to modify or contribute to \CP\ should read the Developer Manual: \\ \texttt{Doc/developer\_man.pdf}. \CP\ can perform Car-Parrinello molecular dynamics, including variable-cell dynamics, and free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED. The \CP\ package is based on the original code written by Roberto Car and Michele Parrinello. \CP\ was developed by Alfredo Pasquarello (IRRMA, Lausanne), Kari Laasonen (Oulu), Andrea Trave, Roberto Car (Princeton), Nicola Marzari (Univ. Oxford), Paolo Giannozzi, and others. FPMD, later merged with \CP, was developed by Carlo Cavazzoni, Gerardo Ballabio (CINECA), Sandro Scandolo (ICTP), Guido Chiarotti (SISSA), Paolo Focher, and others. We quote in particular: \begin{itemize} \item Manu Sharma (Princeton) and Yudong Wu (Princeton) for maximally localized Wannier functions and dynamics with Wannier functions; \item Paolo Umari (Univ. Padua) for finite electric fields and conjugate gradients; \item Paolo Umari and Ismaila Dabo for ensemble-DFT; \item Xiaofei Wang (Princeton) for META-GGA; \item The Autopilot feature was implemented by Targacept, Inc. \end{itemize} This guide has been mostly writen by Gerardo Ballabio and Carlo Cavazzoni. \CP\ is free software, released under the GNU General Public License. \\ See \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} \section{Compilation} \CP\ is included in the core \qe\ distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for \qe. Typing \texttt{make cp} from the main \qe\ directory or \make\ from the \texttt{CPV/} subdirectory produces the following codes in \texttt{CPV/src}: \begin{itemize} \item \cpx: Car-Parrinello Molecular Dynamics code \item \texttt{cppp.x}: postprocessing code for \cpx \item \texttt{wfdd.x}: utility code for finding maximally localized Wannier functions using damped dynamics. \end{itemize} Symlinks to executable programs will be placed in the \texttt{bin/} subdirectory. As a final check that compilation was successful, you may want to run some or all of the tests and examples. Please see the general User's Guide for their setup. Automated tests for \cpx\ are in directory \texttt{tests/} and can be run via the script \texttt{check\_cp.x.j} You may take the tests and examples distributed with \CP\ as templates for writing your own input files. Input files for tests are contained in \texttt{tests/} subdirectory with file type \texttt{*.in1}, \texttt{*.in2}, ... . Input file for examples are produced if you run the examples in the \texttt{results/} subdirectories, with names ending with \texttt{.in}. For general information on parallelism and how to run in parallel execution, please see the general User's Guide. \CP\ currently can take advantage of both MPI and OpenMP parallelization. The ``plane-wave'', ``linear-algebra'' and ``task-group'' parallelization levels are implemented. \section{Input data} Input data for \cpx\ is organized into several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are \begin{tabular}{ll} \&CONTROL:& general variables controlling the run\\ \&SYSTEM: &structural information on the system under investigation\\ \&ELECTRONS: &electronic variables, electron dynamics\\ \&IONS : &ionic variables, ionic dynamics\\ \&CELL (optional): &variable-cell dynamics\\ \end{tabular} \\ The \texttt{\&CELL} namelist may be omitted for fixed-cell calculations. This depends on the value of variable \texttt{calculation} in namelist \&CONTROL. Most variables in namelists have default values. Only the following variables in \&SYSTEM must always be specified: \begin{tabular}{lll} \texttt{ibrav} & (integer)& Bravais-lattice index\\ \texttt{celldm} &(real, dimension 6)& crystallographic constants\\ \texttt{nat} &(integer)& number of atoms in the unit cell\\ \texttt{ntyp} &(integer)& number of types of atoms in the unit cell\\ \texttt{ecutwfc} &(real)& kinetic energy cutoff (Ry) for wavefunctions. \end{tabular} \\). Explanations for the meaning of variables \texttt{ibrav} and \texttt{celldm}, as well as on alternative ways to input structural data, are contained in files \texttt{Doc/INPUT\_CP.*}. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs. Comment lines in namelists can be introduced by a "!", exactly as in fortran code. After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names: \begin{quote} ATOMIC\_SPECIES\\ ATOMIC\_POSITIONS\\ CELL\_PARAMETERS (optional)\\ OCCUPATIONS (optional)\\ \end{quote} The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''. Comments lines in ``cards'' can be introduced by either a ``!'' or a ``\#'' character in the first position of a line. \subsection{Data files} The output data files are written in the directory specified by variable \texttt{outdir}, with names specified by variable \texttt{prefix} (a string that is prepended to all file names, whose default value is: \texttt{prefix='pwscf'}). The \texttt{iotk} toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the \texttt{bin/iotk} script. The execution stops if you create a file \texttt{prefix.EXIT} either in the working directory (i.e. where the program is executed), or in the \texttt{outdir} directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state. \subsection{Format of arrays containing charge density, potential, etc.} The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array \texttt{psi(nr1x,nr2x,nr3x)}. FORTRAN compilers store this array sequentially in the computer RAM in the following way: \begin{verbatim} psi( 1, 1, 1) psi( 2, 1, 1) ... psi(nr1x, 1, 1) psi( 1, 2, 1) psi( 2, 2, 1) ... psi(nr1x, 2, 1) ... ... psi(nr1x,nr2x, 1) ... psi(nr1x,nr2x,nr3x) etc \end{verbatim} Let \texttt{ind} be the position of the \texttt{(i,j,k)} element in the above list: the following relation \begin{verbatim} ind = i + (j - 1) * nr1x + (k - 1) * nr2x * nr1x \end{verbatim} holds. This should clarify the relation between 1D and 3D indexing. In real space, the \texttt{(i,j,k)} point of the FFT grid with dimensions \texttt{nr1} ($\le$\texttt{nr1x}), \texttt{nr2} ($\le$\texttt{nr2x}), , \texttt{nr3} ($\le$\texttt{nr3x}), is $$ r_{ijk}=\frac{i-1}{nr1} \tau_1 + \frac{j-1}{nr2} \tau_2 + \frac{k-1}{nr3} \tau_3 $$ where the $\tau_i$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the \texttt{at} array: $\tau_1 = $ \texttt{at(:, 1)}, $\tau_2 = $ \texttt{at(:, 2)}, $\tau_3 = $ \texttt{at(:, 3)}. The distinction between the dimensions of the FFT grid, \texttt{(nr1,nr2,nr3)} and the physical dimensions of the array, \texttt{(nr1x,nr2x,nr3x)} is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have \texttt{nrx1}=\texttt{nr1}+1 to reduce memory conflicts. \section{Using \CP} It is important to understand that a CP simulation is a sequence of different runs, some of them used to "prepare" the initial state of the system, and other performed to collect statistics, or to modify the state of the system itself, i.e. modify the temperature or the pressure. To prepare and run a CP simulation you should first of all define the system: \begin{quote} atomic positions\\ system cell\\ pseudopotentials\\ cut-offs\\ number of electrons and bands (optional)\\ FFT grids (optional) \end{quote} An example of input file (Benzene Molecule): \begin{verbatim} &control title = 'Benzene Molecule', calculation = 'cp', restart_mode = 'from_scratch', ndr = 51, ndw = 51, nstep = 100, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'c6h6', pseudo_dir='/scratch/benzene/', outdir='/scratch/benzene/Out/' / &system ibrav = 14, celldm(1) = 16.0, celldm(2) = 1.0, celldm(3) = 0.5, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 12, ntyp = 2, nbnd = 15, ecutwfc = 40.0, nr1b= 10, nr2b = 10, nr3b = 10, input_dft = 'BLYP' / &electrons emass = 400.d0, emass_cutoff = 2.5d0, electron_dynamics = 'sd' / &ions ion_dynamics = 'none' / &cell cell_dynamics = 'none', press = 0.0d0, / ATOMIC_SPECIES C 12.0d0 c_blyp_gia.pp H 1.00d0 h.ps ATOMIC_POSITIONS (bohr) C 2.6 0.0 0.0 C 1.3 -1.3 0.0 C -1.3 -1.3 0.0 C -2.6 0.0 0.0 C -1.3 1.3 0.0 C 1.3 1.3 0.0 H 4.4 0.0 0.0 H 2.2 -2.2 0.0 H -2.2 -2.2 0.0 H -4.4 0.0 0.0 H -2.2 2.2 0.0 H 2.2 2.2 0.0 \end{verbatim} You can find the description of the input variables in file \texttt{Doc/INPUT\_CP.*}. \subsection{Reaching the electronic ground state} The first run, when starting from scratch, is always an electronic minimization, with fixed ions and cell, to bring the electronic system on the ground state (GS) relative to the starting atomic configuration. This step is conceptually very similar to self-consistency in a \pwx\ run. Sometimes a single run is not enough to reach the GS. In this case, you need to re-run the electronic minimization stage. Use the input of the first run, changing \texttt{restart\_mode = 'from\_scratch'} to \texttt{restart\_mode = 'restart'}. NOTA BENE: Unless you are already experienced with the system you are studying or with the internals of the code, you will usually need to tune some input parameters, like \texttt{emass}, \texttt{dt}, and cut-offs. For this purpose, a few trial runs could be useful: you can perform short minimizations (say, 10 steps) changing and adjusting these parameters to fit your needs. You can specify the degree of convergence with these two thresholds: \begin{quote} \texttt{etot\_conv\_thr}: total energy difference between two consecutive steps\\ \texttt{ekin\_conv\_thr}: value of the fictitious kinetic energy of the electrons. \end{quote} Usually we consider the system on the GS when \texttt{ekin\_conv\_thr} $ < 10^{-5}$. You could check the value of the fictitious kinetic energy on the standard output (column EKINC). Different strategies are available to minimize electrons, but the most used ones are: \begin{itemize} \item steepest descent: \texttt{electron\_dynamics = 'sd'} \item damped dynamics: \texttt{electron\_dynamics = 'damp'}, \texttt{electron\_damping} = a number typically ranging from 0.1 and 0.5 \end{itemize} See the input description to compute the optimal damping factor. \subsection{Relax the system} Once your system is in the GS, depending on how you have prepared the starting atomic configuration: \begin{enumerate} \item if you have set the atomic positions "by hand" and/or from a classical code, check the forces on atoms, and if they are large ($\sim 0.1 \div 1.0$ atomic units), you should perform an ionic minimization, otherwise the system could break up during the dynamics. \item if you have taken the positions from a previous run or a previous ab-initio simulation, check the forces, and if they are too small ($\sim 10^{-4}$ atomic units), this means that atoms are already in equilibrium positions and, even if left free, they will not move. Then you need to randomize positions a little bit (see below). \end{enumerate} Let us consider case 1). There are different strategies to relax the system, but the most used are again steepest-descent or damped-dynamics for ions and electrons. You could also mix electronic and ionic minimization scheme freely, i.e. ions in steepest-descent and electron in with damped-dynamics or vice versa. \begin{itemize} \item[(a)] suppose we want to perform steepest-descent for ions. Then we should specify the following section for ions: \begin{verbatim} &ions ion_dynamics = 'sd' / \end{verbatim} Change also the ionic masses to accelerate the minimization: \begin{verbatim} ATOMIC_SPECIES C 2.0d0 c_blyp_gia.pp H 2.00d0 h.ps \end{verbatim} while leaving other input parameters unchanged. {\em Note} that if the forces are really high ($> 1.0$ atomic units), you should always use steepest descent for the first ($\sim 100$ relaxation steps. \item[(b)] As the system approaches the equilibrium positions, the steepest descent scheme slows down, so is better to switch to damped dynamics: \begin{verbatim} &ions ion_dynamics = 'damp', ion_damping = 0.2, ion_velocities = 'zero' / \end{verbatim} A value of \texttt{ion\_damping} around 0.05 is good for many systems. It is also better to specify to restart with zero ionic and electronic velocities, since we have changed the masses. Change further the ionic masses to accelerate the minimization: \begin{verbatim} ATOMIC_SPECIES C 0.1d0 c_blyp_gia.pp H 0.1d0 h.ps \end{verbatim} \item[(c)] when the system is really close to the equilibrium, the damped dynamics slow down too, especially because, since we are moving electron and ions together, the ionic forces are not properly correct, then it is often better to perform a ionic step every N electronic steps, or to move ions only when electron are in their GS (within the chosen threshold). This can be specified by adding, in the ionic section, the \texttt{ion\_nstepe} parameter, then the \&IONS namelist become as follows: \begin{verbatim} &ions ion_dynamics = 'damp', ion_damping = 0.2, ion_velocities = 'zero', ion_nstepe = 10 / \end{verbatim} Then we specify in the \&CONTROL namelist: \begin{verbatim} etot_conv_thr = 1.d-6, ekin_conv_thr = 1.d-5, forc_conv_thr = 1.d-3 \end{verbatim} As a result, the code checks every 10 electronic steps whether the electronic system satisfies the two thresholds \texttt{etot\_conv\_thr}, \texttt{ekin\_conv\_thr}: if it does, the ions are advanced by one step. The process thus continues until the forces become smaller than \texttt{forc\_conv\_thr}. {\em Note} that to fully relax the system you need many runs, and different strategies, that you should mix and change in order to speed-up the convergence. The process is not automatic, but is strongly based on experience, and trial and error. Remember also that the convergence to the equilibrium positions depends on the energy threshold for the electronic GS, in fact correct forces (required to move ions toward the minimum) are obtained only when electrons are in their GS. Then a small threshold on forces could not be satisfied, if you do not require an even smaller threshold on total energy. \end{itemize} Let us now move to case 2: randomization of positions. If you have relaxed the system or if the starting system is already in the equilibrium positions, then you need to displace ions from the equilibrium positions, otherwise they will not move in a dynamics simulation. After the randomization you should bring electrons on the GS again, in order to start a dynamic with the correct forces and with electrons in the GS. Then you should switch off the ionic dynamics and activate the randomization for each species, specifying the amplitude of the randomization itself. This could be done with the following \&IONS namelist: \begin{verbatim} &ions ion_dynamics = 'none', tranp(1) = .TRUE., tranp(2) = .TRUE., amprp(1) = 0.01 amprp(2) = 0.01 / \end{verbatim} In this way a random displacement (of max 0.01 a.u.) is added to atoms of species 1 and 2. All other input parameters could remain the same. Note that the difference in the total energy (etot) between relaxed and randomized positions can be used to estimate the temperature that will be reached by the system. In fact, starting with zero ionic velocities, all the difference is potential energy, but in a dynamics simulation, the energy will be equipartitioned between kinetic and potential, then to estimate the temperature take the difference in energy (de), convert it in Kelvin, divide for the number of atoms and multiply by 2/3. Randomization could be useful also while we are relaxing the system, especially when we suspect that the ions are in a local minimum or in an energy plateau. \subsection{CP dynamics} At this point after having minimized the electrons, and with ions displaced from their equilibrium positions, we are ready to start a CP dynamics. We need to specify \texttt{'verlet'} both in ionic and electronic dynamics. The threshold in control input section will be ignored, like any parameter related to minimization strategy. The first time we perform a CP run after a minimization, it is always better to put velocities equal to zero, unless we have velocities, from a previous simulation, to specify in the input file. Restore the proper masses for the ions. In this way we will sample the microcanonical ensemble. The input section changes as follow: \begin{verbatim} &electrons emass = 400.d0, emass_cutoff = 2.5d0, electron_dynamics = 'verlet', electron_velocities = 'zero' / &ions ion_dynamics = 'verlet', ion_velocities = 'zero' / ATOMIC_SPECIES C 12.0d0 c_blyp_gia.pp H 1.00d0 h.ps \end{verbatim} If you want to specify the initial velocities for ions, you have to set \texttt{ion\_velocities ='from\_input'}, and add the IONIC\_VELOCITIES card, after the ATOMIC\_POSITION card, with the list of velocities in atomic units. NOTA BENE: in restarting the dynamics after the first CP run, remember to remove or comment the velocities parameters: \begin{verbatim} &electrons emass = 400.d0, emass_cutoff = 2.5d0, electron_dynamics = 'verlet' ! electron_velocities = 'zero' / &ions ion_dynamics = 'verlet' ! ion_velocities = 'zero' / \end{verbatim} otherwise you will quench the system interrupting the sampling of the microcanonical ensemble. \paragraph{ Varying the temperature } It is possible to change the temperature of the system or to sample the canonical ensemble fixing the average temperature, this is done using the Nos\'e thermostat. To activate this thermostat for ions you have to specify in namelist \&IONS: \begin{verbatim} &ions ion_dynamics = 'verlet', ion_temperature = 'nose', fnosep = 60.0, tempw = 300.0 / \end{verbatim} where \texttt{fnosep} is the frequency of the thermostat in THz, that should be chosen to be comparable with the center of the vibrational spectrum of the system, in order to excite as many vibrational modes as possible. \texttt{tempw} is the desired average temperature in Kelvin. {\em Note:} to avoid a strong coupling between the Nos\'e thermostat and the system, proceed step by step. Don't switch on the thermostat from a completely relaxed configuration: adding a random displacement is strongly recommended. Check which is the average temperature via a few steps of a microcanonical simulation. Don't increase the temperature too much. Finally switch on the thermostat. In the case of molecular system, different modes have to be thermalized: it is better to use a chain of thermostat or equivalently running different simulations with different frequencies. \paragraph{ No\'se thermostat for electrons } It is possible to specify also the thermostat for the electrons. This is usually activated in metals or in systems where we have a transfer of energy between ionic and electronic degrees of freedom. Beware: the usage of electronic thermostats is quite delicate. The following information comes from K. Kudin: ''The main issue is that there is usually some "natural" fictitious kinetic energy that electrons gain from the ionic motion ("drag"). One could easily quantify how much of the fictitious energy comes from this drag by doing a CP run, then a couple of CG (same as BO) steps, and then going back to CP. The fictitious electronic energy at the last CP restart will be purely due to the drag effect.'' ''The thermostat on electrons will either try to overexcite the otherwise "cold" electrons, or it will try to take them down to an unnaturally cold state where their fictitious kinetic energy is even below what would be just due pure drag. Neither of this is good.'' ''I think the only workable regime with an electronic thermostat is a mild overexcitation of the electrons, however, to do this one will need to know rather precisely what is the fictitious kinetic energy due to the drag.'' \subsection{Advanced usage} \subsubsection{ Self-interaction Correction } The self-interaction correction (SIC) included in the \CP\ package is based on the Constrained Local-Spin-Density approach proposed my F. Mauri and coworkers (M. D'Avezac et al. PRB 71, 205210 (2005)). It was used for the first time in \qe\ by F. Baletto, C. Cavazzoni and S.Scandolo (PRL 95, 176801 (2005)). This approach is a simple and nice way to treat ONE, and only one, excess charge. It is moreover necessary to check a priori that the spin-up and spin-down eigenvalues are not too different, for the corresponding neutral system, working in the Local-Spin-Density Approximation (setting \texttt{nspin = 2}). If these two conditions are satisfied and you are interest in charged systems, you can apply the SIC. This approach is a on-the-fly method to correct the self-interaction with the excess charge with itself. Briefly, both the Hartree and the XC part have been corrected to avoid the interaction of the excess charge with tself. For example, for the Boron atoms, where we have an even number of electrons (valence electrons = 3), the parameters for working with the SIC are: \begin{verbatim} &system nbnd= 2, total_magnetization=1, sic_alpha = 1.d0, sic_epsilon = 1.0d0, sic = 'sic_mac', force_pairing = .true., &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, sic_rloc = 1.0, ATOMIC_POSITIONS (bohr) B 0.00 0.00 0.00 0 0 0 1 \end{verbatim} The two main parameters are: \begin{quote} \texttt{force\_pairing = .true.}, which forces the paired electrons to be the same;\\ \texttt{sic='sic\_mac'}, which instructs the code to use Mauri's correction. \end{quote} Remember to add an extra-column in ATOMIC\_POSITIONS with "1" to activate SIC for those atoms. {\bf Warning}: This approach has known problems for dissociation mechanism driven by excess electrons. Comment 1: Two parameters, \texttt{sic\_alpha} and \texttt{sic\_epsilon'}, have been introduced following the suggestion of M. Sprik (ICR(05)) to treat the radical (OH)-H$_2$O. In any case, a complete ab-initio approach is followed using \texttt{sic\_alpha=1}, \texttt{sic\_epsilon=1}. Comment 2: When you apply this SIC scheme to a molecule or to an atom, which are neutral, remember to add the correction to the energy level as proposed by Landau: in a neutral system, subtracting the self-interaction, the unpaired electron feels a charged system, even if using a compensating positive background. For a cubic box, the correction term due to the Madelung energy is approx. given by $1.4186/L_{box} - 1.047/(L_{box})^3$, where $L_{box}$ is the linear dimension of your box (=celldm(1)). The Madelung coefficient is taken from I. Dabo et al. PRB 77, 115139 (2007). (info by F. Baletto, francesca.baletto@kcl.ac.uk) % \subsubsection{ Variable-cell MD } %The variable-cell MD is when the Car-Parrinello technique is also applied %to the cell. This technique is useful to study system at very high pressure. \subsubsection{ ensemble-DFT } The ensemble-DFT (eDFT) is a robust method to simulate the metals in the framework of ''ab-initio'' molecular dynamics. It was introduced in 1997 by Marzari et al. The specific subroutines for the eDFT are in \texttt{CPV/src/ensemble\_dft.f90} where you define all the quantities of interest. The subroutine \texttt{CPV/src/inner\_loop\_cold.f90} called by \texttt{cg\_sub.f90}, control the inner loop, and so the minimization of the free energy $A$ with respect to the occupation matrix. To select a eDFT calculations, the user has to set: \begin{verbatim} calculation = 'cp' occupations= 'ensemble' tcg = .true. passop= 0.3 maxiter = 250 \end{verbatim} to use the CG procedure. In the eDFT it is also the outer loop, where the energy is minimized with respect to the wavefunction keeping fixed the occupation matrix. While the specific parameters for the inner loop. Since eDFT was born to treat metals, keep in mind that we want to describe the broadening of the occupations around the Fermi energy. Below the new parameters in the electrons list, are listed. \begin{itemize} \item \texttt{smearing}: used to select the occupation distribution; there are two options: Fermi-Dirac smearing='fd', cold-smearing smearing='cs' (recommended) \item \texttt{degauss}: is the electronic temperature; it controls the broadening of the occupation numbers around the Fermi energy. \item \texttt{ninner}: is the number of iterative cycles in the inner loop, done to minimize the free energy $A$ with respect the occupation numbers. The typical range is 2-8. \item \texttt{conv\_thr}: is the threshold value to stop the search of the 'minimum' free energy. \item \texttt{niter\_cold\_restart}: controls the frequency at which a full iterative inner cycle is done. It is in the range $1\div$\texttt{ninner}. It is a trick to speed up the calculation. \item \texttt{lambda\_cold}: is the length step along the search line for the best value for $A$, when the iterative cycle is not performed. The value is close to 0.03, smaller for large and complicated metallic systems. \end{itemize} {\em NOTE:} \texttt{degauss} is in Hartree, while in \PWscf is in Ry (!!!). The typical range is 0.01-0.02 Ha. The input for an Al surface is: \begin{verbatim} &CONTROL calculation = 'cp', restart_mode = 'from_scratch', nstep = 10, iprint = 5, isave = 5, dt = 125.0d0, prefix = 'Aluminum_surface', pseudo_dir = '~/UPF/', outdir = '/scratch/' ndr=50 ndw=51 / &SYSTEM ibrav= 14, celldm(1)= 21.694d0, celldm(2)= 1.00D0, celldm(3)= 2.121D0, celldm(4)= 0.0d0, celldm(5)= 0.0d0, celldm(6)= 0.0d0, nat= 96, ntyp= 1, nspin=1, ecutwfc= 15, nbnd=160, input_dft = 'pbe' occupations= 'ensemble', smearing='cs', degauss=0.018, / &ELECTRONS orthogonalization = 'Gram-Schmidt', startingwfc = 'random', ampre = 0.02, tcg = .true., passop= 0.3, maxiter = 250, emass_cutoff = 3.00, conv_thr=1.d-6 n_inner = 2, lambda_cold = 0.03, niter_cold_restart = 2, / &IONS ion_dynamics = 'verlet', ion_temperature = 'nose' fnosep = 4.0d0, tempw = 500.d0 / ATOMIC_SPECIES Al 26.89 Al.pbe.UPF \end{verbatim} {\em NOTA1} remember that the time step is to integrate the ionic dynamics, so you can choose something in the range of 1-5 fs. \\ {\em NOTA2} with eDFT you are simulating metals or systems for which the occupation number is also fractional, so the number of band, \texttt{nbnd}, has to be chosen such as to have some empty states. As a rule of thumb, start with an initial occupation number of about 1.6-1.8 (the more bands you consider, the more the calculation is accurate, but it also takes longer. The CPU time scales almost linearly with the number of bands.) \\ {\em NOTA3} the parameter \texttt{emass\_cutoff} is used in the preconditioning and it has a completely different meaning with respect to plain CP. It ranges between 4 and 7. All the other parameters have the same meaning in the usual \CP\ input, and they are discussed above. \subsubsection{Free-energy surface calculations} Once \texttt{CP} is patched with \texttt{PLUMED} plug-in, it becomes possible to turn-on most of the PLUMED functionalities running \texttt{CP} as: \texttt{./cp.x -plumed} plus the other usual \texttt{CP} arguments. The PLUMED input file has to be located in the specified \texttt{outdir} with the fixed name \texttt{plumed.dat}. \subsubsection{Treatment of USPPs} The cutoff \texttt{ecutrho} defines the resolution on the real space FFT mesh (as expressed by \texttt{nr1}, \texttt{nr2} and \texttt{nr3}, that the code left on its own sets automatically). In the USPP case we refer to this mesh as the "hard" mesh, since it is denser than the smooth mesh that is needed to represent the square of the non-norm-conserving wavefunctions. On this "hard", fine-spaced mesh, you need to determine the size of the cube that will encompass the largest of the augmentation charges - this is what \texttt{nr1b}, \texttt{nr2b}, \texttt{nr3b} are. hey are independent of the system size, but dependent on the size of the augmentation charge (an atomic property that doesn't vary that much for different systems) and on the real-space resolution needed by augmentation charges (rule of thumb: \texttt{ecutrho} is between 6 and 12 times \texttt{ecutwfc}). The small boxes should be set as small as possible, but large enough to contain the core of the largest element in your system. The formula for estimating the box size is quite simple: \begin{quote} \texttt{nr1b} = $2 R_c / L_x \times$ \texttt{nr1} \end{quote} and the like, where $R_{cut}$ is largest cut-off radius among the various atom types present in the system, $L_x$ is the physical length of your box along the $x$ axis. You have to round your result to the nearest larger integer. In practice, \texttt{nr1b} etc. are often in the region of 20-24-28; testing seems again a necessity. The core charge is in principle finite only at the core region (as defined by some $R_{rcut}$ ) and vanishes out side the core. Numerically the charge is represented in a Fourier series which may give rise to small charge oscillations outside the core and even to negative charge density, but only if the cut-off is too low. Having these small boxes removes the charge oscillations problem (at least outside the box) and also offers some numerical advantages in going to higher cut-offs." (info by Nicola Marzari) \section{Performances} % \subsection{Execution time} % \subsection{Memory requirements} % \subsection{File space requirements} % \subsection{Parallelization issues} % \label{SubSec:badpara} \cpx\ can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon: \begin{itemize} \item the size and type of the system under study; \item the judicious choice of the various levels of parallelization (detailed in Sec.\ref{SubSec:para}); \item the availability of fast interprocess communications (or lack of it). \end{itemize} Ideally one would like to have linear scaling, i.e. $T \sim T_0/N_p$ for $N_p$ processors, where $T_0$ is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: $O_N \sim O_0/N_p$, so that large-memory systems fit into the RAM of each processor. As a general rule, image parallelization: \begin{itemize} \item may give good scaling, but the slowest image will determine the overall performances (''load balancing'' may be a problem); \item requires very little communications (suitable for ethernet communications); \item does not reduce the required memory per processor (unsuitable for large-memory jobs). \end{itemize} Parallelization on k-points: \begin{itemize} \item guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools; \item requires little communications (suitable for ethernet communications); \item does not reduce the required memory per processor (unsuitable for large-memory jobs). \end{itemize} Parallelization on PWs: \begin{itemize} \item yields good to very good scaling, especially if the number of processors in a pool is a divisor of $N_3$ and $N_{r3}$ (the dimensions along the z-axis of the FFT grids, \texttt{nr3} and \texttt{nr3s}, which coincide for NCPPs); \item requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors ); \item yields almost linear reduction of memory per processor with the number of processors in the pool. \end{itemize} A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache). VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: $N_p$ should not exceed $N_3$ and $N_{r3}$, and should ideally be no larger than $1/2\div1/4 N_3$ and/or $N_{r3}$. In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time. The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of $M\times M$ matrices, should be determined by observing the performances of \texttt{cdiagh/rdiagh} (\pwx) or \texttt{ortho} (\cpx) for different numbers of processors in the linear-algebra group (must be a square integer). Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (\texttt{http://www.openmpi.org/}) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem. Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the \qe\ distribution do) that runs on processors of the same motherboard. \end{document} espresso-5.0.2/CPV/Doc/INPUT_CPPP.html0000644000700200004540000004735712053147431016144 0ustar marsamoscm

Input File Description

Program: cppp.x / CP / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&INPUTPP

prefix | fileout | output | outdir | lcharge | lforces | ldynamics | lpdb | lrotation | ns1 | ns2 | ns3 | np1 | np2 | np3 | nframes | ndr | atomic_number | charge_density | state | lbinary

INTRODUCTION

=============================================================================
                            CP Post-Processing code (cppp.x)
=============================================================================

The cppp.x code is an utility that can be used to extract data from the CP
restart and CP trajectory files.

INPUT:
=====

the program read the input parameters from the standard input or from
any other file specified through the usual "-input" command line flag.
The input parameters, in the input file, should be specified in the inputpp
namelist follow:

&INPUTPP
  ...
  cppp_input_parameter
  ...
/
   

Namelist: INPUTPP

prefix CHARACTER
Default: 'cp'
basename prepended to cp.x output filenames: cp.evp, cp.pos ....
         
fileout CHARACTER
Default: 'out'
basename of the cppp.x output files
         
output CHARACTER
Default: 'xsf'
a string describing the output format to be performed,
allowed values: 'xsf', 'grd'

    xsf     xcrysden format
    grd     GRD gaussian 3D grid format
         
outdir CHARACTER
Default: './'
directory containing the CP trajectory files (.evp .pos .cel ...)
and restart files ( .save ) to be processed
         
lcharge LOGICAL
Default: .false.
This logical flag control the processing of charge density.

   .TRUE.  generate output file containing charge density.
           The file format is controlled by the "output" parameter

   .FALSE. do not generate charge density file
         
lforces LOGICAL
Default: .false.
This logical flag control the processing of forces.

    .TRUE.  extract forces from trajectory files and write
            them to xcrysden file

    .FALSE. do not proces forces
         
ldynamics LOGICAL
Default: .false.
This logical flag control the processing of atoms trajectory.

    .TRUE.  process CP trajectory files and generate a trajectory
            file for xcrysden (.axsf)

    .FALSE. do not process trajectory
         
lpdb LOGICAL
Default: .false.
This logical flag control the generation of a pdb file.

    .TRUE.  generate a pdb file containing positions and cell
            of the simulated system

    .FALSE. do not generate pdb file
         
lrotation LOGICAL
Default: .false.
This logical flag control the rotation of the cell

    .TRUE.  rotate the system cell in space in order to have
            the a lattice parameter laying on the x axis,
            the b lattice parameter laying on the xy plane

    .FALSE. do not rotate cell
         
ns1, ns2, ns3 INTEGER
Default: 0
Dimensions of the charge density 3D grid.

If ns1, ns2, ns3 are 0 or not specified, the dimensions
of the grid in the CP run are assumed; otherwise chargedensity
is re-sampled on the GRID specified with ns1,ns2,ns3
         
np1, np2, np3 INTEGER
Default: 1
Number of replicas of atomic positions along cell parameters.

If ns1, ns2, ns3 are 1 or not specified, cppp.x do not
replicate atomi positions in space.

If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along
a ns1 times, along b ns2 times and along c ns3 times.
the atomic positions used in the simunation.
         
nframes INTEGER
Default: 1
number of MD step to be read to build the trajectory
         
ndr INTEGER
Default: 51
CP restart file number to post process
         
atomic_number(i), i=1,ntyp INTEGER
Default: 1
Specify the atomic number of the species in CP trajectory and
restart file.

atomic_number(1)  specify the atomic number of the first specie
atomic_number(2)  specify the atomic number of the second specie
....
         
charge_density CHARACTER
Default: 'full'
specify the component of the charge density to plot,
allowed values:

'full'   print the full electronic charge
'spin'   print the spin polarization (for LSD calculations)
         
state CHARACTER
Default: ' '
specify the Kohn-Sham state to plot, example: 'KS_1'
         
lbinary LOGICAL
Default: .TRUE.
specify the file format of the wave function files
to be read and plotted
         
This file has been created by helpdoc utility.
espresso-5.0.2/CPV/Doc/INPUT_CPPP.txt0000644000700200004540000002136612053147431016007 0ustar marsamoscm*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: cppp.x / CP / Quantum Espresso ------------------------------------------------------------------------ ============================================================================= CP Post-Processing code (cppp.x) ============================================================================= The cppp.x code is an utility that can be used to extract data from the CP restart and CP trajectory files. INPUT: ===== the program read the input parameters from the standard input or from any other file specified through the usual "-input" command line flag. The input parameters, in the input file, should be specified in the inputpp namelist follow: &INPUTPP ... cppp_input_parameter ... / ======================================================================== NAMELIST: &INPUTPP +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'cp' Description: basename prepended to cp.x output filenames: cp.evp, cp.pos .... +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fileout Type: CHARACTER Default: 'out' Description: basename of the cppp.x output files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: output Type: CHARACTER Default: 'xsf' Description: a string describing the output format to be performed, allowed values: 'xsf', 'grd' xsf xcrysden format grd GRD gaussian 3D grid format +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: './' Description: directory containing the CP trajectory files (.evp .pos .cel ...) and restart files ( .save ) to be processed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lcharge Type: LOGICAL Default: .false. Description: This logical flag control the processing of charge density. .TRUE. generate output file containing charge density. The file format is controlled by the "output" parameter .FALSE. do not generate charge density file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lforces Type: LOGICAL Default: .false. Description: This logical flag control the processing of forces. .TRUE. extract forces from trajectory files and write them to xcrysden file .FALSE. do not proces forces +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ldynamics Type: LOGICAL Default: .false. Description: This logical flag control the processing of atoms trajectory. .TRUE. process CP trajectory files and generate a trajectory file for xcrysden (.axsf) .FALSE. do not process trajectory +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lpdb Type: LOGICAL Default: .false. Description: This logical flag control the generation of a pdb file. .TRUE. generate a pdb file containing positions and cell of the simulated system .FALSE. do not generate pdb file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lrotation Type: LOGICAL Default: .false. Description: This logical flag control the rotation of the cell .TRUE. rotate the system cell in space in order to have the a lattice parameter laying on the x axis, the b lattice parameter laying on the xy plane .FALSE. do not rotate cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: ns1, ns2, ns3 Type: INTEGER Default: 0 Description: Dimensions of the charge density 3D grid. If ns1, ns2, ns3 are 0 or not specified, the dimensions of the grid in the CP run are assumed; otherwise chargedensity is re-sampled on the GRID specified with ns1,ns2,ns3 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: np1, np2, np3 Type: INTEGER Default: 1 Description: Number of replicas of atomic positions along cell parameters. If ns1, ns2, ns3 are 1 or not specified, cppp.x do not replicate atomi positions in space. If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along a ns1 times, along b ns2 times and along c ns3 times. the atomic positions used in the simunation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nframes Type: INTEGER Default: 1 Description: number of MD step to be read to build the trajectory +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndr Type: INTEGER Default: 51 Description: CP restart file number to post process +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: atomic_number(i), i=1,ntyp Type: INTEGER Default: 1 Description: Specify the atomic number of the species in CP trajectory and restart file. atomic_number(1) specify the atomic number of the first specie atomic_number(2) specify the atomic number of the second specie .... +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: charge_density Type: CHARACTER Default: 'full' Description: specify the component of the charge density to plot, allowed values: 'full' print the full electronic charge 'spin' print the spin polarization (for LSD calculations) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: state Type: CHARACTER Default: ' ' Description: specify the Kohn-Sham state to plot, example: 'KS_1' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lbinary Type: LOGICAL Default: .TRUE. Description: specify the file format of the wave function files to be read and plotted +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== espresso-5.0.2/CPV/Doc/INPUT_WFDD0000644000700200004540000001024012053145630015137 0ustar marsamoscm!=========================================================================! ! README.WANNIER ! ! Author: Manu Sharma ! ! msharma@alumni.Princeton.EDU ! !=========================================================================! ! INPUT FORMAT FOR WFDD.X ! !=========================================================================! ! This code was originally written by Yudong Wu and later modified by ! ! Manu Sharma. This is intended to be a post-processing code and the ! ! search for the appropriate Unitary transformation can be done using not ! ! only damped-dynamics, but also Steepest descent and conjugate gradient ! ! algorithms. The advantage ! ! is that SD/CG can serve as benchmarks to make sure that the DD is ! ! converging to the correct values (in deciding the parameters Q and DT ! ! for the DD). The disadvantage is that SD/CG schemes are slower than ! ! the DD. It is useful however, before using DD in production runs, to ! ! make sure that the parameters (Q and DT) give the same answer as the SD ! ! or CG. This code requires as input, the overlap matrix. This can be ! ! calculated from the CP code by setting CALWF to 2 in the &WANNIER ! ! namelist (The default value is 3, for Wannier dynamics. This option ! ! outputs the overlap matrix to unit 38, and wfdd.x reads it from the same! ! file. ! ! In addition to that, you need an input file of the following form. ! ! ! ! ! ! 1 0.3 0.5 100 10 CGORDD WFDT MAXWFDT NIT NSD ! ! 1500 5.0 0.3 .true. 100 1.0d-8 Q DT FRIC ADAPT NSTEPS TOLW ! ! .true. RESTART ! ! ! ! CGORDD : Whether to do SD/CG optimization of damped dynamics ! ! Can take the values 1 or 2. 1 means SD/CG and 2 means DD ! ! WFDT : Used when GCORDD=1. This is the step length you take in the ! ! direction of steepest descent. ! ! MAXWFDT: Used when CGORDD=1. This is the maximum step length you take ! ! in the direction if steepest descent. if WFDT or MAXWFDT are ! ! large, the calculation will not converge. The code uses the ! ! parabolic approximation to estimate the appropriate step length! ! and if it is less than WFDT, then WFDT is taken as the step ! ! length and if more than MAXWFDT then MAXWFDT is taken as the ! ! Step length. ! ! NIT : Used when CGORDD=1. This is the maxumum number of iterations ! ! to do. ! ! NSD : Used whdn CGORDD=1. This is the number of Steepest descent ! ! steps to do. If NSD = NIT then it is a pure SD optimization ! ! If NSD < NIT, then the code first does NSD Steepest descent ! ! steps and then NIT-NSD Conjugate gradient steps. ! ! RESTART: Use this option to continue a SD/CG/DD optimization. This ! ! option reads the Unitray transform from fort.39, written at the! ! end of the last run and continues from there. ! ! ! ! The other are used for the Damped dynamics and are defined ! ! in the INPUT_CP.* file in the Doc/ directory under NAMELIST &WANNIER. ! ! ! ! The program may be compiled by make wfdd.x and then run as follows ! ! ./wfdd.x < [input-filename] > [output-filename] & ! ! The output file will contain the inverse spread (which is the functional! ! that is actually maximized in the code rather than minimizing the ! ! spread) at each step of the optimization. ! ! ! ! Manu Sharma ! ! February 14th,2006 ! !=========================================================================! ! COPYRIGHT MANU SHARMA/YUDONG WU/NICOLA MARZARI/ROBERTO CAR ! !=========================================================================! espresso-5.0.2/CPV/Doc/INPUT_CP.xml0000644000700200004540000020224012053165215015520 0ustar marsamoscm Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in HARTREE ATOMIC UNITS BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced either by a "!" or a "#" character in the first position of a line. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] [ &WANNIER ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 [ CELL_PARAMETERS { bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] 'cp' a string describing the task to be performed: 'cp', 'scf', 'nscf', 'relax', 'vc-relax', 'vc-cp', 'cp-wf' (vc = variable-cell). 'MD Simulation ' reprinted on output. 'low' In order of decreasing verbose output: 'debug' | 'high' | 'medium' | 'low','default' | 'minimal' ndr ndw 100 Number of steps between successive savings of information needed to restart the run. 'restart' 'from_scratch' : from scratch 'restart' : from previous interrupted run 'reset_counters' : continue a previous simulation, performs "nstep" new steps, resetting the counter and averages number of ionic + electronic steps 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases 10 Number of steps between successive writings of relevant physical quantities to standard output and to files "fort.3?" or "prefix.???" depending on "prefix" parameter .false. Write stress tensor to standard output each "iprint" steps. It is set to .TRUE. automatically if calculation='vc-relax' .false. print forces. Set to .TRUE. when ions are moving. 1.D0 time step for molecular dynamics, in Hartree atomic units (1 a.u.=2.4189 * 10^-17 s : beware, PW code use Rydberg atomic units, twice that much!!!) value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise input, temporary, trajectories and output files are found in this directory. This flag controls the saving of charge density in CP codes: If .TRUE. save charge density to restart dir, If .FALSE. do not save charge density. 'cp' prepended to input/output filenames: prefix.pos, prefix.vel, etc. 50 Units for input and output restart file. 50 Units for input and output restart file. .false. .true. to compute the volume and/or the surface of an isolated system for finete pressure/finite surface tension calculations (PRL 94, 145501 (2005); JCP 124, 074103 (2006)). 1.D+7, or 150 days, i.e. no time limit jobs stops after max_seconds CPU time. Used to prevent a hard kill from the queuing system. 1.0D-4 convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. See also forc_conv_thr - both criteria must be satisfied 1.0D-3 convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr - both criteria must be satisfied 1.0D-6 convergence criterion for electron minimization: convergence is achieved when "ekin < ekin_conv_thr". See also etot_conv_thr - both criteria must be satisfied. 'high', 'default' 'high': CP code will write Kohn-Sham wf files and additional information in data-file.xml in order to restart with a PW calculation or to use postprocessing tools. value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise directory containing pseudopotential files .FALSE. If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. REQUIRED Bravais-lattice index: ibrav structure celldm(2)-celldm(6) 0 "free", see above not used 1 cubic P (sc) not used 2 cubic F (fcc) not used 3 cubic I (bcc) not used 4 Hexagonal and Trigonal P celldm(3)=c/a 5 Trigonal R celldm(4)=cos(alpha) 6 Tetragonal P (st) celldm(3)=c/a 7 Tetragonal I (bct) celldm(3)=c/a 8 Orthorhombic P celldm(2)=b/a,celldm(3)=c/a 9 Orthorhombic base-centered(bco) celldm(2)=b/a,celldm(3)=c/a 10 Orthorhombic face-centered celldm(2)=b/a,celldm(3)=c/a 11 Orthorhombic body-centered celldm(2)=b/a,celldm(3)=c/a 12 Monoclinic P celldm(2)=b/a,celldm(3)=c/a, celldm(4)=cos(ab) 13 Monoclinic base-centered celldm(2)=b/a,celldm(3)=c/a, celldm(4)=cos(ab) 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) For P lattices: the special axis (c) is the z-axis, one basal-plane vector (a) is along x, the other basal-plane vector (b) is at angle gamma for monoclinic, at 120 degrees for trigonal and hexagonal lattices, at 90 degrees for cubic, tetragonal, orthorhombic lattices sc simple cubic ==================== v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) fcc face centered cubic ==================== v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0). bcc body entered cubic ==================== v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1). simple hexagonal and trigonal(p) ==================== v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a). trigonal(r) =================== for these groups, the z-axis is chosen as the 3-fold axis, but the crystallographic vectors form a three-fold star around the z-axis, and the primitive cell is a simple rhombohedron. The crystallographic vectors are: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz). where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tc, ty, tz are defined as tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) simple tetragonal (p) ==================== v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) body centered tetragonal (i) ================================ v1 = (a/2)(1,-1,c/a), v2 = (a/2)(1,1,c/a), v3 = (a/2)(-1,-1,c/a). simple orthorhombic (p) ============================= v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) bco base centered orthorhombic ============================= v1 = (a/2,b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) face centered orthorhombic ============================= v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) body centered orthorhombic ============================= v1 = (a/2,b/2,c/2), v2 = (-a/2,b/2,c/2), v3 = (-a/2,-b/2,c/2) monoclinic (p) ============================= v1 = (a,0,0), v2= (b*cos(gamma), b*sin(gamma), 0), v3 = (0, 0, c) where gamma is the angle between axis a and b base centered monoclinic ============================= v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b triclinic ============================= v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b ibrav Crystallographic constants - see description of ibrav variable. * alat = celldm(1) is the lattice parameter "a" (in BOHR) * only needed celldm (depending on ibrav) must be specified * if ibrav=0 only alat = celldm(1) is used (if present) Traditional crystallographic constants (a,b,c in ANGSTROM), cosab = cosine of the angle between axis a and b specify either these OR celldm but NOT both. The axis are chosen according to the value of ibrav. If ibrav is not specified, the axis are taken from card CELL_PARAMETERS and only a is used as lattice parameter. REQUIRED number of atoms in the unit cell REQUIRED number of types of atoms in the unit cell for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled 0.0 total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. -1 [unspecified] total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified, the tot_magnetization variable is ignored and the electronic magnetization is determined by the occupation numbers (see card OCCUPATIONS) read from input. REQUIRED kinetic energy cutoff (Ry) for wavefunctions 4 * ecutwfc kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. ecutrho three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density. three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) dimensions of the "box" grid for Ultrasoft pseudopotentials must be specified if Ultrasoft PP are present a string describing the occupation of the electronic states. In the case of conjugate gradient style of minimization of the electronic states, if occupations is set to 'ensemble', this allows ensemble DFT calculations for metallic systems 0.D0 Ry parameter for the smearing function, only used for ensemble DFT calculations a string describing the kind of occupations for electronic states in the case of ensemble DFT (occupations == 'ensemble' ); now only Fermi-Dirac ('fd') case is implemented 1 nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) 0.0 q2sigma 0.0 q2sigma 0.1 ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) read from pseudopotential files Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! .FALSE. lda_plus_u = .TRUE. enables calculation with LDA+U ("rotationally invariant"). See also Hubbard_U. Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994); Cococcioni and de Gironcoli, PRB 71, 035105 (2005). 0.D0 for all species LDA+U works only for a few selected elements. Modify CPV/ldaU.f90 if you plan to use LDA+U with an element that is not configured there. Hubbard_U(i): parameter U (in eV) for LDA+U calculations. Currently only the simpler, one-parameter LDA+U is implemented (no "alpha" or "J" terms) 'none' Used to perform calculation assuming the system to be isolated (a molecule of a clustr in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 100 maximum number of iterations in a scf step 'none' set how electrons should be moved 'none' : electronic degrees of freedom (d.o.f.) are kept fixed 'sd' : steepest descent algorithm is used to minimize electronic d.o.f. 'damp' : damped dynamics is used to propagate electronic d.o.f. 'verlet' : standard Verlet algorithm is used to propagate electronic d.o.f. 'cg' : conjugate gradient is used to converge the wavefunction at each ionic step. 'cg' can be used interchangeably with 'verlet' for a couple of ionic steps in order to "cool down" the electrons and return them back to the Born-Oppenheimer surface. Then 'verlet' can be restarted again. This procedure is useful when electronic adiabaticity in CP is lost yet the ionic velocities need to be preserved. 1.D-6 Convergence threshold for selfconsistency: estimated energy error < conv_thr 20 frequency in iterations for which the conjugate-gradient algorithm for electronic relaxation is restarted 0.D0 Amplitude of the finite electric field (in a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. 3 direction of the finite electric field (only if tefield == .TRUE.) In the case of a PARALLEL calculation only the case epol==3 is implemented 400.D0 effective electron mass in the CP Lagrangian, in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) 2.5D0 mass cut-off (in Rydberg) for the Fourier acceleration effective mass is rescaled for "G" vector components with kinetic energy above "emass_cutoff" 'ortho' selects the orthonormalization method for electronic wave functions 'ortho' : use iterative algorithm - if it doesn't converge, reduce the timestep, or use options ortho_max and ortho_eps, or use Gram-Schmidt instead just to start the simulation 'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in the first few steps. YIELDS INCORRECT ENERGIES AND EIGENVALUES. 1.D-8 tolerance for iterative orthonormalization meaningful only if orthogonalization = 'ortho' 20 maximum number of iterations for orthonormalization meaningful only if orthogonalization = 'ortho' 0 OBSOLETE: use command-line option " -ndiag XX" instead 0.1D0 damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " electron_dynamics = 'damp' " 'zero' : restart setting electronic velocities to zero 'default' : restart using electronic velocities of the previous run 'not_controlled' 'nose' : control electronic temperature using Nose thermostat. See also "fnosee" and "ekincw". 'rescaling' : control electronic temperature via velocities rescaling. 'not_controlled' : electronic temperature is not controlled. 0.001D0 value of the average kinetic energy (in atomic units) forced by the temperature control meaningful only with " electron_temperature /= 'not_controlled' " 1.D0 oscillation frequency of the nose thermostat (in terahertz) meaningful only with " electron_temperature = 'nose' " 'random' 'atomic': start from superposition of atomic orbitals (not yet implemented) 'random': start from random wfcs. See "ampre". .FALSE. if .TRUE. perform a conjugate gradient minimization of the electronic states for every ionic step. It requires Gram-Schmidt orthogonalization of the electronic states. 100 maximum number of conjugate gradient iterations for conjugate gradient minimizations of electronic states 0.3D0 small step used in the conjugate gradient minimization of the electronic states. 2 number of internal cycles for every conjugate gradient iteration only for ensemble DFT 1 frequency in iterations at which a full inner cycle, only for cold smearing, is performed 0.03D0 step for inner cycle with cold smearing, used when a not full cycle is performed 1.D0 a number <= 1, very close to 1: the damping in electronic damped dynamics is multiplied at each time step by "grease" (avoids overdamping close to convergence: Obsolete ?) grease = 1 : normal damped dynamics 0.D0 amplitude of the randomization ( allowed values: 0.0 - 1.0 ) meaningful only if " startingwfc = 'random' " Specify the type of ionic dynamics. For constrained dynamics or constrained optimisations add the CONSTRAINTS card (when the card is present the SHAKE algorithm is automatically used). 'none' : ions are kept fixed 'sd' : steepest descent algorithm is used to minimize ionic configuration 'cg' : conjugate gradient algorithm is used to minimize ionic configuration 'damp' : damped dynamics is used to propagate ions 'verlet' : standard Verlet algorithm is used to propagate ions 'default' 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. 'default' tempw initial ionic velocities 'default' : restart the simulation with atomic velocities read from the restart file 'change_step' : restart the simulation with atomic velocities read from the restart file, with rescaling due to the timestep change, specify the old step via tolp as in tolp = 'old_time_step_value' in au 'random' : start the simulation with random atomic velocities 'from_input' : restart the simulation with atomic velocities read from standard input ( see the card 'ATOMIC_VELOCITIES' ) 'zero' : restart the simulation with atomic velocities set to zero 1 number of electronic steps per ionic step. .FALSE. This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. 'not_controlled' 'nose' : control ionic temperature using Nose-Hoover thermostat see parameters "fnosep", "tempw", "nhpcl", "ndega", "nhptyp" 'rescaling' : control ionic temperature via velocities rescaling. see parameter "tolp" 'not_controlled' : ionic temperature is not controlled 300.D0 value of the ionic temperature (in Kelvin) forced by the temperature control. meaningful only with " ion_temperature /= 'not_controlled' " or when the initial velocities are set to 'random' "ndega" controls number of degrees of freedom used in temperature calculation 1.D0 oscillation frequency of the nose thermostat (in terahertz) [note that 3 terahertz = 100 cm^-1] meaningful only with " ion_temperature = 'nose' " for Nose-Hoover chain one can set frequencies of all thermostats ( fnosep = X Y Z etc. ) If only first is set, the defaults for the others will be same. 100.D0 tolerance (in Kelvin) of the rescaling. When ionic temperature differs from "tempw" more than "tolp" apply rescaling. meaningful only with " ion_temperature = 'rescaling' " and with ion_velocities='change_step', where it specifies the old timestep 1 number of thermostats in the Nose-Hoover chain currently maximum allowed is 4 0 type of the "massive" Nose-Hoover chain thermostat nhptyp=1 uses a NH chain per each atomic type nhptyp=2 uses a NH chain per atom, this one is useful for extremely rapid equipartitioning (equilibration is a different beast) nhptyp=3 together with nhgrp allows fine grained thermostat control NOTE: if using more than 1 thermostat per system there will be a common thermostat added on top of them all, to disable this common thermostat specify nhptyp=-X instead of nhptyp=X 0 specifies which thermostat group to use for given atomic type when >0 assigns all the atoms in this type to thermostat labeled nhgrp(i), when =0 each atom in the type gets its own thermostat. Finally, when <0, then this atomic type will have temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4); setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C, one thermostat per each O (2 in total), and a non-updated thermostat for Li which will effectively make temperature for Li "not controlled" (Nat_{total}-1)/Nat_{total} these are the scaling factors to be used together with nhptyp=3 and nhgrp(i) in order to take care of possible reduction in the degrees of freedom due to constraints. Suppose that with the previous example HCOOLi, C-H bond is constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for simulations with many constraints, such as rigid water with something else in there 0 number of degrees of freedom used for temperature calculation ndega <= 0 sets the number of degrees of freedom to [3*nat-abs(ndega)], ndega > 0 is used as the target number amprp .false. If .TRUE. randomize ionic positions for the atomic type corresponding to the index. amprp 0.D0 amplitude of the randomization for the atomic type corresponding to the index i ( allowed values: 0.0 - 1.0 ). meaningful only if " tranp(i) = .TRUE.". 1.D0 same as "grease", for ionic damped dynamics. 'default' : restart the simulation with cell parameters read from the restart file or "celldm" if "restart = 'from_scratch'" 'from_input' : restart the simulation with cell parameters from standard input. ( see the card 'CELL_PARAMETERS' ) 'none' set how cell should be moved 'none' : cell is kept fixed 'sd' : steepest descent algorithm is used to optimise the cell 'damp-pr' : damped dynamics is used to optimise the cell ( Parrinello-Rahman method ). 'pr' : standard Verlet algorithm is used to propagate the cell ( Parrinello-Rahman method ). 'zero' : restart setting cell velocity to zero 'default' : restart using cell velocity of the previous run 0.1D0 damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " cell_dynamics = 'damp' " 0.D0 Target pressure [KBar] in a variable-cell md or relaxation run. 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') 1.2D0 Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. 'not_controlled' 'nose' : control cell temperature using Nose thermostat see parameters "fnoseh" and "temph". 'rescaling' : control cell temperature via velocities rescaling. 'not_controlled' : cell temperature is not controlled. 0.D0 value of the cell temperature (in ???) forced by the temperature control. meaningful only with " cell_temperature /= 'not_controlled' " 1.D0 oscillation frequency of the nose thermostat (in terahertz) meaningful only with " cell_temperature = 'nose' " 1.D0 same as "grease", for cell damped dynamics 'all' Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v_2y are moved xz = only v1_x and v_3z are moved yz = only v2_x and v_3z are moved xyz = only v1_x, v2_x, v_3z are moved shape = all axis and angles, keeping the volume fixed Beware: if axis are not orthogonal, some of the above options will break symmetry .false. .true. for finite pressure calculations .false. .true. for finite surface tension calculations 0.D0 external pressure in GPa .false. .true. for variable pressure calculations pressure changes linearly with time: Delta_P = (P_fin - P_in)/nstep 0.D0 only if pvar = .true. initial value of the external pressure (GPa) 0.D0 only if pvar = .true. final value of the external pressure (GPa) 0.D0 Surface tension (in a.u.; typical values 1.d-4 - 1.d-3) 0.D0 threshold parameter which defines the electronic charge density isosurface to compute the 'quantum' volume of the system (typical values: 1.d-4 - 1.d-3) (corresponds to alpha in PRL 94 145501 (2005)) 0.D0 thikness of the external skin of the electronic charge density used to compute the 'quantum' surface (typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr) (corresponds to Delta in PRL 94 145501 (2005)) Output files used by Wannier Function options are the following fort.21: Used only when calwf=5, contains the full list of g-vecs. fort.22: Used Only when calwf=5, contains the coeffs. corresponding to the g-vectors in fort.21 fort.24: Used with calwf=3,contains the average spread fort.25: Used with calwf=3, contains the individual Wannier Function Spread of each state fort.26: Used with calwf=3, contains the wannier centers along a trajectory. fort.27: Used with calwf=3 and 4, contains some general runtime information from ddyn, the subroutine that actually does the localization of the orbitals. fort.28: Used only if efield=.TRUE. , contains the polarization contribution to the total energy. Also, The center of mass is fixed during the Molecular Dynamics. BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR EQUAL TO THE NUMBER OF STATES. Nota Bene 1: For calwf = 5, wffort is not used. The Wannier/Wave(function) coefficients are written to unit 22 and the corresponding g-vectors (basis vectors) are written to unit 21. This option gives the g-vecs and their coeffs. in reciprocal space, and the coeffs. are complex. You will have to convert them to real space if you want to plot them for visualization. calwf=1 gives the orbital densities in real space, and this is usually good enough for visualization. .false. If dynamics will be done in the presence of a field .false. Whether to turn on the field adiabatically (adiabatic switch) if true, then nbeg is set to 0. 1 No. of iterations over which the field will be turned on to its final value. Starting value is 0.0 If sw_len < 0, then it is set to 1. If you want to just optimize structures on the presence of a field, then you may set this to 1 and run a regular geometry optimization. 0.D0 Initial values of the field along x, y, and z directions 0.D0 Final values of the field along x, y, and z directions 1 Localization algorithm for Wannier function calculation: wfsd=1 Steepest-Descent / Conjugate-Gradient wfsd=2 Damped Dynamics wfsd=3 Jocobi Rotation Remember, this is consistent with all the calwf options as well as the tolw (see below). Not a good idea to Wannier dynamics with this if you are using restart='from_scratch' option, since the spreads converge fast in the beginning and ortho goes bananas. 5.D0 The minimum step size to take in the SD/CG direction 0.3D0 The maximum step size to take in the SD/CG direction The code calculates an optimum step size, but that may be either too small (takes forever to converge) or too large (code goes crazy) . This option keeps the step size between wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite well. (but don't blame me if it doesn't work for you) 10 Number of iterations to do for Wannier convergence. 10 Out of a total of NIT iterations, NSD will be Steepest-Descent and ( nit - nsd ) will be Conjugate-Gradient. 1500.D0 Fictitious mass of the A matrix used for obtaining maximally localized Wannier functions. The unitary transformation matrix U is written as exp(A) where A is a anti-hermitian matrix. The Damped-Dynamics is performed in terms of the A matrix, and then U is computed from A. Usually a value between 1500 and 2500 works fine, but should be tested. 0.3D0 Damping coefficient for Damped-Dynamics. 20 Number of Damped-Dynamics steps to be performed per CP iteration. 1.D-8 Convergence criterion for localization. .true. Whether to adapt the damping parameter dynamically. 3 Wannier Function Options, can be 1,2,3,4,5 1. Output the Wannier function density, nwf and wffort are used for this option. see below. 2. Output the Overlap matrix O_i,j=<w_i|exp{iGr}|w_j>. O is written to unit 38. For details on how O is constructed, see below. 3. Perform nsteps of Wannier dynamics per CP iteration, the orbitals are now Wannier Functions, not Kohn-Sham orbitals. This is a Unitary transformation of the occupied subspace and does not leave the CP Lagrangian invariant. Expectation values remain the same. So you will **NOT** have a constant of motion during the run. Don't freak out, its normal. 4. This option starts for the KS states and does 1 CP iteration and nsteps of Damped-Dynamics to generate maximally localized wannier functions. Its useful when you have the converged KS groundstate and want to get to the converged Wannier function groundstate in 1 CP Iteration. 5. This option is similar to calwf 1, except that the output is the Wannier function/wavefunction, and not the orbital density. See nwf below. 0 This option is used with calwf 1 and calwf 5. with calwf=1, it tells the code how many Orbital densities are to be output. With calwf=5, set this to 1(i.e calwf=5 only writes one state during one run. so if you want 10 states, you have to run the code 10 times). With calwf=1, you can print many orbital densities in a single run. See also the PLOT_WANNIER card for specifying the states to be printed. 40 This tells the code where to dump the orbital densities. Used only with CALWF=1. for e.g. if you want to print 2 orbital densities, set calwf=1, nwf=2 and wffort to an appropriate number (e.g. 40) then the first orbital density will be output to fort.40, the second to fort.41 and so on. Note that in the current implementation, the following units are used 21,22,24,25,26,27,28,38,39,77,78 and whatever you define as ndr and ndw. so use number other than these. .false. Output the charge density (g-space) and the list of g-vectors This is useful if you want to reconstruct the electrostatic potential using the Poisson equation. If .TRUE. then the code will output the g-space charge density and the list if G-vectors, and STOP. Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2 depending on the number of spin types) or CH_DEN_G_SERL.ispin depending on if the code is being run in parallel or serial G-vectors are written to G_PARA or G_SERL. label of the atom mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format
alat | bohr | angstrom | crystal alat alat : atomic positions are in cartesian coordinates, in units of the lattice parameter "a" (default) bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors (see below) Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! label of the atom as specified in ATOMIC_SPECIES atomic positions component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. 1
a.u when starting with ion_velocities="from_input" it is convenient to perform few steps (~5-10) with a smaller time step (0.5 a.u.) label of the atom as specified in ATOMIC_SPECIES atomic velocities along x y and z direction
bohr | angstrom bohr / angstrom: lattice vectors in bohr radii / angstrom. nothing specified: if a lattice constant (celldm(1) or a) is present, lattice vectors are in units of the lattice constant; otherwise, in bohr radii. Crystal lattice vectors: v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector
When this card is present the SHAKE algorithm is automatically used. Number of constraints. Tolerance for keeping the constraints satisfied. Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, Ed. by A.S. Nowick and J.J. Burton, New York 1975 ). These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. Target for the constrain ( angles are specified in degrees ). This variable is optional.
Occupations of individual states (MAX 10 PER LINE). For spin-polarized calculations, these are majority spin states. Occupations of minority spin states (MAX 10 PER LINE) To be specified only for spin-polarized calculations.
These are the indices of the states that you want to output. Also used with calwf = 1 and 5. If calwf = 1, then you need nwf indices here (each in a new line). If CALWF=5, then just one index in needed.
espresso-5.0.2/CPV/Doc/README.AUTOPILOT0000644000700200004540000003552712053145630015767 0ustar marsamoscmREADME.AUTOPILOT -------------------------------------------------------------------------------- Copyright (c) Targacept, Inc. -------------------------------------------------------------------------------- Targacept, Inc., 200 East First Street, Suite 300, Winston-Salem, NC, USA 27101 atp@targacept.com -------------------------------------------------------------------------------- This file describes the Autopilot Feature Suite as introduced and used by Targacept, Inc. This documentation accompanies free software; The software is subject to the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the GNU General Public License at www.gnu.or/copyleft/gpl.txt for more details. This documentation, like the software it accompanies, is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY FOR A PARTICULAR PURPOSE. -------------------------------------------------------------------------------- AUTOPILOT DOCUMENTATION -------------------------------------------------------------------------------- The Autopilot Feature Suite is a user level enhancement for directing Car-Parrinello simulations based on CP.X packaged in ESPRESSO. The following features are incorporated: I. Auto Restart Mode II. Autopilot Course Configuration (Dynamic Rules) III. Autopilot Course Correction (Steering) -------------------------------------------------------------------------------- I. Auto Restart Mode -------------------------------------------------------------------------------- Auto Restart Mode is an extension of restart_mode declared in the CONTROL section of the input file. When restart mode is set to "auto", control determines if the current run is "from_scratch" or a valid "restart" based on the presence of a restart file associated with unit NDR. When NDR, the unit number for input, and NDW, the unit number for output, are the same, a simulation that is system terminated can be restarted without significant loss, providing that ISAVE, the parameter that indicates the frequency at which intermediate data are saved, is not large. Auto Restart Mode implements an effective "upto" mode and is also designed for use on remote machines where simulations may frequently be terminated and restarted. Auto Restart Mode is especially useful in connection with Autopilot's Dynamic Rules capability. When they are used together, only one segment of a simulation is necessary, thereby reducing run_script volume and errors, and placing more control with the user. restart_mode CHARACTER ( default = 'restart' ) from_scratch = from scratch. NEB only: the starting path is obtained with a linear interpolation between the images specified in the ATOMIC_POSITIONS card. Note that in the linear interpolation, periodic boundary conditions ARE NOT USED. restart = continue a previous simulation and perform "nstep" new steps. reset_counters = continue a previous simulation, perform "nstep" new steps, resetting the counter and averages. auto = automatically detect "from_scratch" or "restart"; continue any previous simulation, and stop when the counter value is equal to "nstep". -------------------------------------------------------------------------------- II. Autopilot Course Configuration (Dynamic Rules) -------------------------------------------------------------------------------- Autopilot Course Configuration (Dynamic Rules) is a method that allows select input parameters (Autopilot variables) to change during the course of a simulation. This method allows the user to create a more concise set of instructions that are easier to read and maintain and enables a more continuous execution on remote resources. Typically and historically, a user issues a run_script that creates a sequence of input files, each with fixed parameter values. This run_script then calls cp.x against each input file in the sequence, such that, after the first, each execution continues with the next input file as well as restart information from the previous execution. The Autopilot Course Configuration effectively consolidates multiple input files into one, allowing the user to specify at what time step a parameter should change along with its new value. Thus a run_script becomes much shorter, and the user can easily see the projected path of the simulation. The Autopilot Course Configuration feature is implemented by adding a new card type to the "CARDS" section of the input file. The Autopilot card must be placed after the "NAMELIST" section but otherwise may appear before or after any other card. A favorable place is as the first card. Sytnax is as follows: CARDS ... AUTOPILOT optional card : read dynamic rules to set parameters on an absolute timestep (iteration) from either standard input or mailbox (pilot.mb) Syntax: AUTOPILOT ON_STEP = ith_event_STEP : varname = value ON_STEP = jth_event_STEP : varname = value ON_STEP = jth_event_STEP : varname = value ... ON_STEP = nth_event_STEP : varname = value ENDRULES Description: ON_STEP LABEL, must be in numerical timestep order, otherwise rule is ignored ith_event_STEP INTEGER, iteration (NFI) when rule is to be employed varname Autopilot variable, currently limited to one of the following: isave,iprint,dt,emass, electron_dynamics, electron_damping, ion_dynamics, ion_damping, ion_temperature, tempw. value Must be valid value of variable type (for example: isave, iprint must have a value of type INTEGER, while dt must have a value of type REAL) ENDRULES Required only for input (STDIN) if other cards follow. The event specification (ON_STEP) should precede the variable assignment. The colon separator between the event assignment and the variable assignment is required, as are the equal signs. No semi-colon or comma should appear after the variable assignment. There can be multiple rules per event but only one variable assignment per rule (and only one rule per line). Within one event, there should be only one assignment per variable. If multiple assignments are made for the same variable for the same event, only the last assignment will be accepted. Rules for which event specifications are not in numerical order will be ignored. If syntax errors are present in the AUTOPILOT card during start-up, the execution will stop. Example Syntax: AUTOPILOT ON_STEP = 200 : tempw = 500.0 ON_STEP = 200 : dt = 3.0 ON_STEP = 250 : ISAVE = 50 ENDRULES Currently there is a maximum of 32 supported events and 10 supported Autopilot variables. Events that are out of timestep order are ignored. A user may establish up to 10 rules (one for each Autopilot variable) per event. Currently implemented Autopilot variables are: isave, iprint, dt, emass, electron_dynamics, electron_damping, ion_dynamics, ion_damping, ion_temperature, and tempw. If desired, users may implement other Autopilot variables. See Appendix below for an explanation of "Adding an Autopilot Variable". IMPORTANT: Variables should have values in accordance with their TYPE, or a runtime error may occur. -------------------------------------------------------------------------------- III. Autopilot Course Correction (Steering) -------------------------------------------------------------------------------- Autopilot Course Correction (Steering) provides a run-time method of changing Autopilot variables on the fly, after the simulation is underway. Autopilot Course Correction (Steering) can be applied through any of the following sub-features: New Course (power steering), Manual Steering, and Pause. Steering utilizes a new mailbox file: pilot.mb. This file can be created via the user's favorite text editor and can be "mailed" by placing the file in the "results" directory. The user can also very quickly implement a single course correction command with UNIX redirect to the pilot.mb file. When a pilot.mb mailbox file is detected, the current event table is cleared to prepare for the new course. The mailbox file is then parsed, and Autopilot processes the command(s) before deleting the mailbox file. If Autopilot cannot parse a command, it issues a warning and goes into PAUSE mode (see below). The Steering subfeatures, including pilot.mb syntax are described here: a) New Course or 'power steering' is implemented with the same syntax as the INPUT file card for Autopilot. Remember that ON_STEP represents an absolute iteration (NFI) step. For example: AUTOPILOT -required ON_STEP=400 : ISAVE = 50 -events must be ordered by step ON_STEP=400 : DT = 5.0 -use valid variable types (or die) ON_STEP = 600:IONS_TEMPERATURE='damped' -indention optional ON_STEP = 600: TEMPW=350.0 -white spaces are ignored ENDRULES -optional In this example, when NFI reaches 400, the value of ISAVE will be reset to 50 and the value of DT to 5.0. Then, when NFI reaches 600, IONS_TEMPERATURE and TEMPW will be reset to the indicated values. b) Manual Steering is implemented with a similar syntax except that the card type is PILOT instead of AUTOPILOT and the user specifies a timestep relative to the time the mailbox is read, rather than an absolute timestep. The relative timestep allows the user to set a rule for a near future event without having to judge the current absolute NFI value. The user may also pre-write multiple mailboxes using relative event steps without regard to absolute iteration (NFI) values. For example, assume mailbox contents are: NOW:ISAVE=50 NOW+100:TEMPW=600.0. Assume further that the mailbox is saved to the "results" directory and then read when the NFI is 380. Manual Steering will reset the value of ISAVE on the next event that is modulo 50, and an ISAVE event will occur twice (at 400 and again at 450) before TEMPW is reset to 600.0 on step 480. Compare this with the syntax that specifies an absolute timestep: ON_STEP=400:ISAVE=50 ON_STEP=500;TEMPW=600.0. In this example, if the NFI is less than 400 when the mailbox is read, ISAVE becomes 50 on step 400 and TEMPW becomes 600.0 on step 500, and ISAVE is performed twice before TEMPW is reset, just as in the previous example that uses relative indexing. However, if the user misjudges the momentary NFI, and it is 530 when the mailbox is read, then both rules are implemented immediately and simultaneously. Furthermore, the ISAVE rule takes effect after the NFI specified. Neither of these effects may have been intended by the user. Following is an example of a Manual Steering mailbox to change temperature from a relative iteration (NFI) step: Example syntax for a Manual Steering mailbox is as follows: PILOT -optional for single line NOW : ISAVE = 50 -events must be ordered NOW : DT = 5.0 -use valid variable types (or die) NOW+50 :IONS_TEMPERATURE='damped' -offsets from NOW are supported NOW + 150: TEMPW=350.0 -white spaces are ignored ENDRULES -optional Example format for a quick mailbox change using a single rule is as follows: -defaults to PILOT NOW + 250: TEMPW=450.0 -single line with NOW c) Pause is a steering sub-feature that allows the user to suspend the simulation until the user can decide on a future course. Pause is very helpful when the user knows that a change should be imposed but needs time to establish rules and create an appropriate mailbox. Steering then resumes as AUTOPILOT or PILOT upon receiving another pilot.mb mailbox. The syntax is a single line with one of the following: PAUSE SLEEP HOLD HOVER WAIT All of the above perform the same PAUSE mechanism. The user can issue the command quickly through UNIX redirect: >echo "PAUSE" > results/pilot.mb Any mailbox not correctly identified with a AUTOPILOT, PILOT, NOW, or a PAUSE command, will result in a warning to standard output (STDOUT), and the simulation will pause. -------------------------------------------------------------------------------- TESTING -------------------------------------------------------------------------------- The entire Autopilot Feature Suite issues directives to slave nodes under MPI, with the fewest broadcasted parameters. All features have been tested under Intel 8.1 with MKL 7.0.1 libraries on a Linux-32 single processor and under PGI 5.2 with MPI on Linux-64 with 1, 2 and 4 processors. -------------------------------------------------------------------------------- ADDING AN AUTOPILOT VARIABLE -------------------------------------------------------------------------------- See Autopilot.f90 for examples. * Select the input parameter from the list in file INPUT_CP * Identify parameter dependencies, initializations, assignments, etc * Edit autopilot.f90 to add the following, where VARNAME is the name of the new Autopilot variable: o VARTYPE :: rule_VARNAME(max_event_step) at module scope o LOGICAL :: event_VARNAME(max_event_step) at module scope * Remember to add to the PUBLIC block as well o event_VARNAME(:) = .false. to init_autopilot subroutine o rule_VARNAME(:) = VARDEFAULT to init_autopilot subroutine * Import VARNAME with USE to employ_rules subroutine * In employ_rules, add conditional clause on event_VARNAME to assign VARNAME: o ! VARNAME o if (event_VARNAME(event_index)) then o VARNAME = rule_VARNAME(event_index) o CALL init_other_VARNAME_dependent_variables( VARNAME) o write(*,*) 'RULE EVENT: VARNAME', VARNAME o endif * Import VARNAME with USE to assign_rule subroutine * In assign_rule, add condition clause matching the VARNAME create rule as so: o ELSEIF ( matches( "VARNAME", var ) ) THEN o read(value, *) VARTYPE_value o rule_VARNAME(event) = VARTYPE_value o event_VARNAME(event) = .true. * TEST WARNING: Some Autopilot variables may create "side-effects". For example, the inclusion of a rule for TEMPW rules invokes a side-effect call to ions_nose_init. The user is cautioned to be aware of possible side-effects when adding other Autopilot variables. Last modified: Tue Aug 09 16:01:00 EDT 2005 espresso-5.0.2/CPV/Doc/user_guide.pdf0000644000700200004540000056374412053165211016362 0ustar marsamoscm%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (section.2) >> endobj 12 0 obj (Compilation) endobj 13 0 obj << /S /GoTo /D (section.3) >> endobj 16 0 obj (Input data) endobj 17 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 20 0 obj (Data files) endobj 21 0 obj << /S /GoTo /D (subsection.3.2) >> endobj 24 0 obj (Format of arrays containing charge density, potential, etc.) endobj 25 0 obj << /S /GoTo /D (section.4) >> endobj 28 0 obj (Using CP) endobj 29 0 obj << /S /GoTo /D (subsection.4.1) >> endobj 32 0 obj (Reaching the electronic ground state) endobj 33 0 obj << /S /GoTo /D (subsection.4.2) >> endobj 36 0 obj (Relax the system) endobj 37 0 obj << /S /GoTo /D (subsection.4.3) >> endobj 40 0 obj (CP dynamics) endobj 41 0 obj << /S /GoTo /D (subsection.4.4) >> endobj 44 0 obj (Advanced usage) endobj 45 0 obj << /S /GoTo /D (subsubsection.4.4.1) >> endobj 48 0 obj ( Self-interaction Correction ) endobj 49 0 obj << /S /GoTo /D (subsubsection.4.4.2) >> endobj 52 0 obj ( ensemble-DFT ) endobj 53 0 obj << /S /GoTo /D (subsubsection.4.4.3) >> endobj 56 0 obj (Free-energy surface calculations) endobj 57 0 obj << /S /GoTo /D (subsubsection.4.4.4) >> endobj 60 0 obj (Treatment of USPPs) endobj 61 0 obj << /S /GoTo /D (section.5) >> endobj 64 0 obj (Performances) endobj 65 0 obj << /S /GoTo /D [66 0 R /Fit ] >> endobj 70 0 obj << /Length 1708 /Filter /FlateDecode >> stream xÚåXKsÛ6¾ûWèVjÆ„ ˆôÔÆvǽԉí^Úhв8¡H…»ú÷ÝŲ¤ÒnÍLŒfD<–‹Ýû¤˜qø‰™ši£f©Ñ,5‰˜ë“Ùçg2M­£ÙÂÞçáßô gWk1;oO>œÌ>ìö$W,M¢pìReEà÷<~¡üÃ8I@ŽÄÌâ}A¼=9»VR1“1»]ÎDš0Î=KA1ųlv»ø-ºë籈Êî;x&\F?Õ¢¤á²‹¨›ÿqûó٥䇬,ã:Õ òxMDpž0L ­(‘ÌZi=Íï\óǹLá(wb¼Û†Ò0fœÁ¿2áOÔûÌbiAz ìâ,c‰I Œ"6óDD Jd 3 ý3Á¬Ö™p`“2™)R]ÌcËMtEoà»] Éh1nZµÄÖx¦#'˜g"´ &’˜¼w¤ëM…:?~]J ”¯'A†Íï$FG z9wÔ ®TìpN<ÌJÅJ–òt ŔҞ/íç<:Ï™!G)R¸¡ê.Àj±y¬ùÛx(k¿ð B©pE‡PJåå<“QÛ­¢¨‰Ðþ–4ÄÕ®Ëç2‹¶=-dž0p·jªæ.¢ÀÅUÞ=Ù"ñ¢lújÀõ-žsJ„›yŒÇ %±©Oí÷œ½£á8%d*¿<>Ç^ƒ›jmíZ‘]ßp½ó P<’½wµfOÄQ9䯄eI*B ÑÿÆ , ±s‚eî`BÐww0¬<òe]Cçîª*h ï¥kÇfA¤ýû“eöíØs:eÏjgÏËaù“TF"ý¶Êõ<6J|£¡ÀLC—xèÀTÉi· B¸® pùì˹ߛÂÎNc§e²o;›ñHP‘¡ÔÊ$;g %ŒiJ™è¦¬—qEi¡ìòÐ+WYAÜz+®Œë ÄU”Žàþÿ'ÿÌ„Q$ÒC¢r_—1ª~»—·ǸþZ¬äe„ä+aÜÒ•0XÓûZ¹ŒËÆ påaësÝØ-óÂ'‚ÂÕÅ%-Y„¹Ôˆ7€†z åѸuh¸Ú`Xû ‹@h—ô¼»¹F|®{´!ûU™Ët1§¢Lf‡Õœ¦jC@–­{¬1ˆc±+¸‘‘ÐS­\Ab™M’4t]€½Ž®v›ëºu]®k‰"ï¨}»]Up²ÔIô@=+¡â†K|Ä"Ü5š¸æê<@šyðC_·K­BÝ3Q #™TÊ·¹R Í™…m“»"ó“Kp.§bYžy‘‚¯õ¾?táåÑŒ»@æ©s\• M·Ókí;|Ç7ºÀqðê,ŸUu2Ø{2B*a™5™òÃè:ÌÆ5šãÚ9J¬[e„ÙXúF¿h7ÔIR4{îR="°èa„€H¡WJ…9,8ÈÛÃaÌ·‡ûóÛÃîV`²»·‘æŸw;OÔóÙ¬œ€½«œ=“a 8i—f¯{¡a<1Á˾žVíîщ4pW¹/κVd— OVy}ª5ÐÇ„X\f‡¦²©Ë`ʽ ê¢[L€(åußúQ Q”¦Ø“{:n¤ º dD›×”©[šWMï.¿®Çš‡²TíÅò0[íO†ö˜ÉéTàØ…ÿ:p¤& ‘•aPÑÕ’žM‹¸ > ¸;“+ißÕ/ù‚&tƒ0pŸR¨„kšßõþ«&ŒÃWMbæš ‘àk™°é šÆIª¢ 8áÆ•¯©&¤1W{^뎼<™ÒÌ*Ðÿ³W\8^ˆ#iÂt0ôWB‡ÌÀil tŸ•žÈ1ÝuI¦Uû/Uù½Ï.Ò¥*øö¾‘„¼CŸµ(÷ä{qÇYrÕ?=!ÄEô½A]L¾ŠŠz8Š£NÂòÞƒ¨†òݱ•Œ{¬V(Á°¿wUÏžžàÿ ?*Çãþè|–€¤öÒã°e.lcºž¼PËÏÆJ_fYÂ!íÇ*K¾´“‹Û“¿l…V/endstream endobj 66 0 obj << /Type /Page /Contents 70 0 R /Resources 69 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 104 0 R /Annots [ 83 0 R 84 0 R 85 0 R 86 0 R 90 0 R 91 0 R 92 0 R 93 0 R 94 0 R 95 0 R 96 0 R 97 0 R 98 0 R 99 0 R 100 0 R ] >> endobj 67 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 105 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 531.00000000 181.00000000] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 106 0 R >>>> /Length 107 0 R /Filter /FlateDecode >> stream xÚ+TT(TÐH-JN-()MÌQ(Ê ˜*¡¡„NÎUÐ÷Ì5Tpɪ”˜ òendstream endobj 105 0 obj << /CreationDate (D:20090714182634+02'00') /ModDate (D:20090714182634+02'00') /Producer (Mac OS X 10.4.11 Quartz PDFContext) >> endobj 106 0 obj << /Length 108 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 109 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xÚìxTU÷'½÷Bh*MŠAAlkW…Õµ VA¤)½†„R(„IH%ÒHïm’™¹åœó~ç½wÀWÝo¿E¿ûÞ'aZ&r~÷íš4ý߉€ @ѨÆù…uÝá:†O¢>O×S¡ñ/ÌlüI”×b RµO^“&Mšþ¤" wì´›%À.¢‹$f»>€º qùÎôê‡uÝA&Mš4iÒtc{ì*ë– L5zÕ·]ÇÈu )s<.SäŠgë¾³† Mš4iú3€u-Ãl¿îPüëýa×CÎå`3‡±Ô–&Mš4iú³å2/(\y´«Ž•ÌFDÕºò¿4`ܨ©«b[æ¬Ç/|Mš4iÒtË^ÛT‡éÀ¹`¹¤6[Ah1›©ÍØ„fhSÓuŒß¹MÔ£I³1Å@€Ë)xMš4iÒô'c„R™‰F;Ahc3çí¬fú nÐ^†ÖV ­%h-ÅÜXs‘ùÿb´[k¿úràï¨}5tÔ0c=˜@hI²ñ„ŽŒ†Mš4iús€£²,J’ Š&0´Cg 蘾†¶VÈ-%rS!7hÊEkÌáÆ²i}7Rwê²®iRC¶Ü˜Ã4åÓæó´©€5r“ZJŶ2©½‚èëh'÷\ÚÁÔ‰´Ò¤I“&MWKV#ùÖ—€ hj"€1YÀ®óÿÆ´ô/ÄŸ„’® 5èD•¡»nŠu{j¶¢äv[ÀØUÐ^ŽÞD[1i-–[ŠHsmÌeõ™P›Æª“¡*‰UžåF+iÅRqŠTÄÉå'äŠcôÒÉk”Å£]J€rþdZ™J«3äêL¨É†Úl¨Ï¡ùœ#´½ˆu”QÃ%f¨¡¤ í@J¢D-º¢äÊTÉUe½˜u§@d-[¢I“¦¿8øˆ¹~hw0¹“J;7ÉÄys™Ó‡¹«î_êeÕÊ[BÑ8G0£mÂ×dÔ`(©¥š ¡ñ<4äʵ™rmº\“B«’8#G@éq´’X(9ÅG‹fEQ¬è€bQ×4(ŠFãwƇDz²xV~Š•'@Ån¬2‰V§šL¹>]’¦,ŒkuT2c=35QO‰ ÁÚLgä*pÐk¶„h!/Mš4ý¥Àв€±}¡™eC½ÔQ/wÔÑÎFjl¡‚^Åü!n°îžl¸ºÎVù J$*ùKð’;¤ö:hçþE †rhí9ZF‡‚Ÿó¬ô” àâ~(ˆ€óáp! òBÐrƒ!wäî†ÈÙÙ;•ײÜ@ÈÛùÜBðá…áPÉï㸡E‡iñQZÇ.¡å)´2¥B¤¥Hn-“ÚªHg=34qÆ1™;eü“±c½«ËŒBB¹øÏ«thàФIÓ_Jx~„6è¬Ã‹üÖ2¹¥Dl*’š‹ù ÚÆ/¶«Íç$c à"_ÑpETŠJ ›€S‰?yG=i«šK„Æ‹ÐpêÒYu2w+øŽÇxQ47¸°.„Àù`È @@dípn¤o@K[–ú3¤®ƒ”µÜXÊO×4šþ37–±27À¹ìÜfÈÚ‚v~œß@á4)8…Ü19Åq¤,Ž”'ð÷ÃjÒI]iÈ£MYK©Š¬æ’ ÀÄ.SŒËQ¢Vüv÷¤0íÿ3Mš4ý•DüôÃò¤æ Ðu™¤6UªN•«3h]ÔŸƒ¦|¬G24r¾üP¾ÜAÍÍXLkÀ²XC#ÓWqTâ_šLR• '¡ì÷,XQ-ˆ„ó{Yn7ÈÞY[áÜ&Èܨ2)²ή6[ò*´¤Õª±äk›töGÕä”Uäì*šò£jù=÷3;·²¶Avä„B.wg"Yá> pqg‡¿«K§XeT§Bm¦R¸U†EYÆ:ÌÈü$‘ ]Ý%Wd@4iÒ¤é/%F‡ø¹ UIxh_:ÎIZÍ/õ¡ô(”Ÿ€Êx¨MÅWS3e¿{è_—¯¡ ƒv‚ØÆ&ƽ›V%UŸµP}*âáÒ1†a¨H ay½“Û ™›!cK]Ë“‚9»š›œ¼Š›ú}ÅÝØ©›ÐÒ6³ô×41õgnrê:’Â?Ûjnœ;$u5¢„çì:–²Ÿ$} ¤mÃè÷q·§ØÅ(ã)?‰ø¨É€†\h)À ¾¡L AŒhL4³Ã<‰QûÿL“&M!µ°º,z)žÆhA\†óA4/O˽pq”ãÇ»¬¯$¢þøL«q© õÜÅ`-¥´©‹c«Ó1yQvJbðUøËåÒì]${=·Ïù´u€>Åpvg„Ê ~àÓTŒ8©  ç¶³¬,k'¯ÐS‚ÜP´¼àkÉÙM³w“¬ø(N¥ŒMŠmèva¸WB“~dh+Ð8’Ò×CæVàÉ `¹ücáhÛ%Ç 4.%°ª¨ÏF­½ô岩‰r8ªñ+ÖÕœ®yš4iú ‰Õg’ÊD¹è0Éß‹¹ƒ¼]Ëá­ôÜ~TBîÈäÛ¤']ˆ’+ß…Q˜ž(Œîª­ú¥á™!ù!˜OÏQÒ%ÜÎm‡ŒÍ˜.IY É+ñu¿‡Ä%äÌrÎJÚ’¾•fî¢Ùˆ̃¢EGhi©HÆ<¾RÇkÔ׊†*è 84iÒô§–2èUÙÁp@¹R8Ú mÅPv ã…zæfÀ+|~y¿Ã>‰Ë õ'9m‹œ±ÏUî\:-…×@9Œ±}lsèN¡«¦©Í¥PW5¹P•.Wœ1]:É.DÃ…C9pn ¤ÿ)+ y;¹â¾a§¿ƒ3?ÀÙÕœ4s w Ø¹È „œÈÛ‹×üxnäG7)=AËb•x¨8•º•‰JÇuŒ¿4¿sY,–i•cÅ1äâa¹ð\ŒbèùÈãKwa8&Hêfš¼\N\*&,•N/%gV`åìZHY™[°v‹3« ’EË¥'9YM*f…óðƒí¨Â&wɨbãêZf5‡NµÎtMš4ýùÀÑr c w/dlÔUô=9½ˆœZ–CÜ×pæ{!q¥xvdü̽,mjȹ®ç¢<ÿ{”$&™ˆ` úK´¥êÎCÕ9(? eñ´$Fºx£IÙ{Xæš²ÃPüÂ>á;š°˜¿($.ÇðTê:dz=»Ñ)ØÞDÑ!¬È-=†‰†²8¸Çkìì¨Âþ <·k3¸…V—uMƒÚ³)ýƒP™ÀqÃÊOaB3ò‡‘GÜ%ÉßËrö°sþœh,u-¾ÃÄIâJš¸’ãCNø)éüܲwѼ¹`?)ަeÇ1øVÍñ‘ƒY¡¶Jfhb¢ˆxÕ4ø+{[4iÒ¤éF•ô¯à ¤á<¿º¦i›äÄåôô?[>>K:6K>öDÀŽ!Ä}-œZI‹iÊj1/›µ¯Ž®­üŒ41©U6Ô›Ú+%ìÝ;G+’¡8]›óá,'€p¤¯…ÔÕ,i¿’NÇMLX"qj¤ÿ 1p”ãÅ·…P´J¢ ü4T$5ñc?­.“mÌÇQÓyurk-†¶´öÒk[k¦³ÑÎCs>4å! ë³1AÏ]þ*—âLO£0ö•Yþ¹Ò7bž$i«äôb9á{𼂤¬ÁØZö–· ‚ÉÅZ|œ]:Ãj21(×ZF;”¾&ªTeìòäxš4iú³€ƒ¨‡¼Ô.Öæ²´Ÿùq-ÆÎfÇ?‚#ïÐÃÓÙÁ·HÔ;°ÿUvø1fåßûT>=ß”±•”Å^Ý»ôduVH-ç…†,¹2™^: E1†!/%‰À_83Àéo¸#'.‘SVÒôµôÜϘwÀÖ¼p,a*‰K±XpU™@k¹¿ÍêóN—*b-¥ØL±ÕJ§I ë¬Ãæn#ÎÅeBŽ+¼–ÑŽZ¼ggú@ÐW°örlWi.0C¤6jR *!R‡ònŸÒf¸²7CæZš¶’ÔùŽI\B“—BêJÈ\ÙëINÉçž Ð*Ïò÷ŒÍï­eDh©³«ãCÛ®I“¦?Y¨Ê\"+¶™ª³!i©tò+)æ=vhD½ûž‡ˆ ü%ÿD¾H¼‡¦Â‘7éñOMg×±Òø—ƒ?¯`À‘æü¾)›Õ&“ªx¬>â—îùüº}3w1 q)$,ÁFüWpj.œùÎ.ƒŒu,{ Ë÷‡ ìb4§ +17M°štZŸÅr¤æ™“¢­‚èkÌ½ÛÆfj±d=žÉ܈ ç–¨ÝÜT¸¦©ßLÆû3±.´áó £Ú+°;£å"Î9©É¢Õp)ÊÎ@IÇ ïSy;!g3¤¯â° IßK ‹9ûàÌ"H^©ß³ô͘åÏ V*¯Ž }jÒ !‹¿sN7ZŒêoC‡&MšþàÀ¹…]àÚ èÑåýÓhødØû? OBÀSø8O¢!‡ˆgáÀ?é¡·…Ä•èüÒÑ`TLmL_Ã=lͨ<…MsÅ!/LIsGã8³N/„SßAÂR–¸ˆ%/e©«Ø¹,ÇŸ^ØK ÷‘‹‡pÖGE2N©Í¢h3v¯ÓöJÚÙˆùS+žö 0ˆò™×3]96êz{=®ÊPw÷°ã(Ñ#´aF»“³¯Šµ”ÑÆR_@ër9AhE"&Ö‹£å‚H)?kº²¶È©ëÄÄÒé%ôÔ"üÑNÃ’V` qæF¥¢ ¡Yv *âH]k:å 6âL0|óL‡&Mšþà…Ëàõbm.¿ìg13¤½ÏSN ÿaûý°å>Øül½WÞvŸ´ý>xBŸ¤‘¯‰§—süb¯+ÿ£,Ë’$ñËiÚV†9*Ïbkza„=t©?Cò2H˜OOÍ!§æ³„¥´ZNÿ™dn!9»82”ÖìãôÒiR~êó á4Aë%è¨ÅÐ÷¤vìŒPëø!U5÷Ùuù=¿näª9‹]Qÿ)C‘D’ wg±sØ©E4ñ’²NÎØ&gмìø(‹5³£õ"†Ë˜¶Õ\“&M7®ðÈT.¸ùq+¨k6ˆ@jÏBü·ôÐÛrðclËݰz,|ýŽÛhX|,OWß ›'@Àß rªtf”D™Äîüh55BGkËþT• P| ÎGAN0œÛFÓÖˆ)K!öˆýŒœ-Ç}+%­$›YNäï¥÷³’CP‹“Ìk³hC´TA{ƒ EÑ$ËâåÊÞÿñÐ'uXŠâƒ›X[%i*‘ë‹H} ­I"q˜È(ÜÕÅ»XêVì:ç®Gìl8>N|Êý,Hÿ‘eo’s‚È…Z|ë‡ë³Ys!t\ÂA%æ!íTézQÃW’²ÁV“&Mšþôà—Cé!¹;¥Ë:¡U´ä“Æ Z~‚–ÄÀùý i›!yMX,ŸžÏ©N ÿ—c7_ö. aî'¥G¿h¯NÆRئ"h«„Î&0upd"Q*ÿKzâô¹áG%£×CŒ*; £–¶WcYoÇeTœFvìÇ„xÖn„rv%œZ±_ÂñY÷;óMù‘“fïÆèVñQ¹â ©;‡ìЗI‰Â¡ÿ¤T»á/I6ÁiÒ¤IÓŸ ßÝiǦñ*8HÒp)ZÍ€,±Úê ñ"ί›)ô—0*ÅÏOÉTúGüFöõ¹©›Dº*ø•Z,c3Vaµ”b¯_U2– b…8È7k60žú?_Ð_É'çafçìjì‘Ï – £ÄÒxR›Îšò˜¾ŸŠûØL*¥¨Vo¥I“¦?-8Ȫqfp웦‚C¹"–qxk5Ô_€Ê4(£EG ×OÅÔµpj1ÿ Ž}'>ƒ“ŸKg–áøÙìí8´äb.Ý«L‚ÚLl'×—ãLrIIdñznÅå~¹ÿ…¤kìQò$„hÂ5èíUÐ|Õ§Óê¹ü+ŽÆlø¹ü£âwÌfÇf‘#ŸÒcŸCÜ<,Hÿ ²wa§yYnl,Ä.S §Rws‡† Mš4ý¹CUWze‡HèðÓ²>[­‹ÀùH–‚s®’WÀéoàøç4æ8ú)ÄÍ„bÚfE[%1¬ø9´ÒÖ@öN,?.=†®²‘¡bkwÀJ‡&MšþÜàØ<b¯`r¼ø ^·Wb|¦"ÿ˜¤œ›ðêúä\züS9æCrä;Î,…”ur^()<€+“h}6m.ŽZ|¬ï’º‚QŒ0J(È7âçvU¥–ܽkœ";”H–„}¦FÚ^.5óO†U¥ÐÒ8Ø»;å—CÜBùè'ôèÇpüˆû¾´Õ4g'½°—GaVc²ChÃþm‰&Mšþ¤àX4–ÝÍÖŒ‡-÷ppÐð—M§–`"£µòIÕiZ¼.øCÖ8û#;µ Ž}AÎ$G? Ç>$ñ_áXòŒmÌJ°K'Íe¨m—°¯[¼Å+§ü©à¸r cf»d¦Z@Ý!~ÙõPÞ+UŽ˜@hW"W%ÐxžÕ¤³²x(ŠÆñ)é[pÇÇ©y4ö zä8ò>\^HÓÖÐs[.#YyîXçDôj“¦&Mš4ýÀaŒÿNºA/È5iRi )„Ü ¾¾£±óáÈLvôCvüCˆŸgCÖ&ÈÃÙéÜ1©JÂaãmŘÑ;”^Œ«ÚðºÆþ)‰èŽÊ*X*©E³W¼qõݪí‡2PY [ `¨ä?)ÎÔªJS!@vKß g—pžJ13äƒÓéá4öKš¸LN]‡{ÏóvӢäê¬ÜXD:pØ—6n]“&MÿOÕ}šeéQ.‰•( éÀAOm`j‚Î"R ÇÞ€Ð)°ñX9ÃS_†ùãaáð Çh²v4Ý:¦¡“…˜wå´o ê$Ä^Œ ¥üÔ\vì~; Ç>„Ó àìZ’á/äï“KO°ê$Cý9©å½ÊvO¢«'À¢Ñ0oÌNgasn‡E·Ë+o‡caçƒ4`’pà5–<Jcàü^š¹+N1þ~û,pä=89 Q’±™æ„ȅѤò 4dˆí¥¤£„F zåô£Ü‰ á jl9@ì` 8/±6Jãáb4vydn…ÄïÙñÏYôûìÐ ˆæÀý'\%ý€›GòÃhñqZ†sz9;Dþ»“#dnTÝEµ–&Mšþþ†Z¼J»O0ÚÙ,륎JÚRÄø5pS‘X‘4äAm‚éÜØû<Ýø´p |1 >Âf ’f ‘?Å>NçŒ"KFcüjýDºù!)d ÄÍ€ aôÜ)i%îé;2“D½C¾_‡ø/±^ˆ»!¹Áü›–%`g_[Ž ”:qç¸rÍÌ0¦Ã$FÿÊ¿eþÔFÎŽR¥R™ŒùŽóa¸Üe‘/°ð¾—àÈ;7—³ÌíPAËO@]:¢_Ô+y!­1P“&Mÿ5‰õœrc©:‹eÜÅ(ˆ€Ü=ìüœû‘¾²¶’ô­lO]"|ß!6L~óV˜:^/„©ý`zööÍlæør$Ì ³o§Ÿ¿ þF¾CN#aS ây8ô&œœKÒ~"¹{¤Ò£˜ oÌà NB&v͹Â<Àý¯‡Ýþ×Á¡t2èšÓNÑ]`&èlæ<• ¤ê³ré!š·‹œ]IâBÌ[$ò%ö<ìŸ 13良hÒ½.F ‡ØúDÐês5iÒôß;·:Ê¥–±:]*;ÅѸ-"Ç2¶ÊY[NY ©ë¤äuêÖo!üEøv´ôéP:}0L½ ^/ d¯Ü¦÷£ïöf3ÂW#aÞ]0çNúÙÓ¼Ñdõ½4jª67F>‡•T‰‹ÅsÛMöÓªDh8me˜X!8Ü•˜‡ƒ•ÿJæé}*5þ—ÎÊÒÜou2~’ -´í’Ô-UÅ‘‹áäÜ&¥Æàczð51t ²ãÀkrÌÇrüw¾žßÍŠ@U 4W€Á€uU˜-Ò|Mš4ý¢xKDsè[±…é+ >ªÏàÚÖ {!w'î0M[‡cÏ,å×·,qIøZ:1 #êG?–÷¼ óngŸ£oß ¯†WÁËé´~ôÍþðöPòÁÓì‘Ò‚;Ù×£å/†“¹#á»±¸U6x „OeGfBò2’¹\ˆ€Š8}C¾ÐR&ƒê^`ïæ2´½]"ÊpHî‹á˜¯lZvœ^œXŽ{ôSþ œÄ‚ž‚¯Â‰OYÂ7ùäm‡ÒƒP›‚KùVdʆÜ_¬dZÒ\“&M¿éÊf‰šC"˜„í¨&Xe"?”Xa„âhl€ÔUØ¡œð=Ä-ŸøBŽûRŽ)ļ ÇÞƒCo‰»§\¿º};榟§_€EwAÀ${N‡“_!’röàhÜÚ±½«€$Á¼U m¯D7èÕYWnôh¹UI¬(Šœ†”•85÷à[,d2pp„=Ï¿±ŸÉg—ÎŽ‚`¨8‰3L:(©Žÿýf+Mš4ýyÁ¡ºJ<„Š`j Mùre )>Ì]’µ“¦®…3ËØ©oå“óœsþ¡ý69ò6‰~]Úÿx"Ÿv<úkàøx;¾üë§·Áì°ð.ü$ìŽ}IK•9KÑPž Í… փܮúAÝà`8®ü}™ç$pôJËyZyZ*ŽF¯0ù&¼ïþ; x묿.žœ+ŸùŽfnb…ûhåYÖR†c¬ÕÀ¡I“¦ÿæ~Yí¥¬:™¡yA,kMYÃN/ƦG?%1âL益Xäólß?XÄd2 B'AðãÒ¶‰×Ç;C88GÆ‚qðÕh˜9 ÁñÝ8!ì82NÏÃ<{a”§@}t6ë&¨ÀóŒ)5E¬É©"Ý¿/Ú †j¹1G¨L‚‹‘$s;µ¢ßƒÐ)òŽ™ÿÃö4‰yŸÆ~É’–Óì]´ø(«Ë}5HíW‚ƒýP¤¦I“¦ÿÆ5,î³0ÕACæ5òC0©‘²#çÇgAÌ ˆzöMc¯@ØSüìy‚ÿC°ë~²eüõsƒÉGCGÆ×cáËQü>04üx¯éÐ4ˆÿ,ÙÁPšÀj ¡½dcWúÛL s÷ºvaÜ%¹k#¬¹ÒLn“õ•¦† Ò¥X!?L>»b¿ÂÅî;fÛïƒÀ‡`ÿ«ˆè´u,?”•Ÿ‚æ|0VjàФIÓJ lOîÀíŠ\±—¹’–)#¤fÁ¡·1¦þyƒçœÛ„-÷Æ{aý=°áX?ü4îºà˜~+ýp(ÌUU³GɳGåwÃŽÇ…ã@ò"ÈÚŽ“o«rik p»Z ¾7 Ý£ÜäËÑEÍ’¾Z¬NŠŽJY» q)¶?Kwü vÜ ¡Ç_ßñáÌbš¹ wšÔ$Ckž,‹]Ûu•ÿ 4phÒ¤éw†>ð›¡1—ÆzI?Àɹ0zû‘ƒŸBÿÂÿA²c"¬¿ÖÝ«î†åcÑ~KWÜ%®¸óúÇøh|É=Ž»ØÜÛ…£É†aÿsÂé¯!óg¸¥g¡©Lm„šd¤tË®ìÚÐd>âE¥–]Õ(ëå¦|±*Y.Ø• ñ_Ã7iÀ$qË}ÈŽ I8,öKš¼BÎÝM¸GY—$FB¤+Á¡±C“&M¿236’šLù|8I^ ñ‹èÑÏhÔ{› ~½Œ÷Эc¥MwÈ«ÆÓƱ%w⢅cè¢1Ââ;Œßÿ 8†ÂG·Áì10,ûz´°ä.y×cp|ª˜´rvBÑQ¨Êö F·PWlV¥æŽ? WäÎ)¼L|l ˜¾˜Ög2…œ]XopäC4¹sódöëb>O/2¶È÷ÑÊ“C‡$ 84iÒô‡ÈÑÆOg?ƒšK¡0Фn&ñ‹ æCˆþ'D> »‡ÍƒuáÇñ°ôNöÝh˜w‡Ò> >ŸŽ€™#àã‘ð ¿=†}4’¼3Tz} <µ?L¯Þ ¯ g # YÃ`îPaá(iëpä=)a–)}½\NjÓ%}­,ˬû ÔôÇx"™hg#­Ë'c c+ΰÚÿ†ð”aã8aýÝàÿ(|E>ö~gÂ·Øøa?kÈÎ*þ‹J_¥€Ý”Tí¸Ô¤I“¦#Ú)«çFC>œ%‰+å³1²Á©ô$Ûö¬?Ü KîbßÜNç€Ï†Ã§·áø©†Ðw‡À»C÷)Þƽ5„¼y«üÚ@2m{u ¼:^LgŒÀPÕ·Á×#äãhà8ñ1IúZÎÝ eG 9ŸZéºÚ¥ÚÁõ‡/D0µ±æ"\5Ë?ÛÄ¥px†òœ´y‚¸æNØt/„N!‡§âfÓôu W¦°Öb J;:ŽÌ5ï=פI“¦àH˜i¥„V%Á¹ $~®ý6„?˧[&«'ÒïÇ‚1ÜÅ ³n? o¦Ó‘×p:H¯ô“^êO£/¢±—З°WÂÔAlš¶z{8|8> o‡MÀ¾×!~Kÿ‘†ÚT¼è•µöV‡.ùÃ.‡ŒÓ×;jpåÓÅþ&5ö¿ Û~ÃVŒíCÄ ¦#H ‹ mXt”Ôd‚¡”që²ZÙ³&Mš~‹Ç¡ôH0‘–DÃÙïèÑ÷ؾ@àý°áolÕD²øNö•’zÿ6öÎ`ùðb?öBú›Éä¾äé>ôïÜnbOÝOô…I7ÁÓ·À³ýØsØ?±o¥/Ý Ó¸?2”ÍB–Ü“áw7~€\R‘-E ¶«»M™–ÈøOÁ¡l}Û µ÷³ç@Â÷ìÈgð¸¼òéÛa°únxJÞ?M:ñ $~#åîe—NBkÃåy¹ÚJYMš4ý6p¨#åü ˆû ;ÁƒŸ€­cᇠ8äË‘hzk¼:^Hžï¿ &Ý ÷Gz±‡zÁßzÁ½áÁ>p?¿Ñ ì÷fõ¥OÞÌþÞ=Ó&€©Å ËDZð—å“óä´-p1Z¬¿úzE38@Ëÿ‡¿G¥á…JÔЀù‹’þžÆ/„ð²µ÷Éó‡Ââ‘°ñ2™~;h2¶@a$4dâ6ÞnOjÃ5iÒô›ÁÁÚ¥ôMýÖPm{ÖÜóÇÀ#áý!ðÚ­8#Ÿÿ“náD@:Üß&ö„»}a¬/ÜéƒvG¸ÃÇ|û.6Ηñ;Üß›=ÐîC&÷æà ?ßOO“–òk](OÚë©:û‚™ÛÄ•ë^­_ãJÙ¿Î?FY2Òör¨J‚¼=rò*ünŠ~3æ …wÁ¶‡qÉÑ·±â:{Tž‚Ž e? êqhàФIÓoˆp0ÍBâJˆx¶?ÂÖÜC ‡Ï†±ƒè´~ì}ažÿܧïá€ð†1^0ÒÝæÎ†¸rƒÁîh·º0Õø7os‡ž0ÊFûÀñ‰ä³aàÿÄ}"e¬cEÇ¡æ‚(” T 8°Ó_ìʲ6ZäKé¶—•R]"´Bs$é[iüL Kï¡_ †o†Óµãéî'`ÿ‹û5¤¬eEQ¬é<“ÚÕ=äZ¹&Mš~8šLñK!èlÃò²»…9H òÆÍòó½É¤žì!?6ÑŽõÇxÑa Îò '©¿ƒt³ƒ|³¹Éôu’úØH7ÙÊ7ÛÑ~0À ¹À­œ)np§—éQo,ß ’¾ y›¡ü 4\’€u›î¥# d’&í7ò‡=G~諵µ”˜ ½ÊŽ‘,)ù+8ø.¬xHž5Xš=H^~Ýú0„NfG>£§—Éya¤.‹Íʯ@‡&Mš~#8°£ (5%ÌÅÔÆw÷×#å#á¥A0ùfx¨'Œï£}á6_¸Õ ú{B/wðso'ð°W[p±Aã7œíÁÁœìÀݼ™íåHoqeýÜà™~°t<;2]>·ÊTr„´—I¦–íså¦öÊ”¨¨Ì} ƒQe2‰jà vÊØ¯­DÖdf¾ÎïZb>~?Â$“r˜Ë]ü5Ô‡˜pF!‘Íô”•ÍMüŽF ::¡MÀu}ø8Lð.¢„©ëfMj@O¤æîM©«³{ú”(€ØM9â…ƒrÚr9v¦´c’<ç6xg̼ VŽ'÷ÃÁ©;“e¬“ËŽP}1@'Ã÷¨… 5iÒô[È¡x„šNÍõc`ÞöñéµÁðìÍðD/6ÑSCÝ¡¿;ôqc~NàfÇ1Áœ¬¨ƒ…l§£¶hÌŽ›%³±àvà`Iœ,EwKÉÛ†ÜbÏõ‡ÕƒȹÄK§Xg^ß`"—OßËÕÁjÚ(¯ø¦MÊn®>k¦.@WF}I’À¯ÛJ°H¡º9Üô@]•Å¿+5Ü µõéI%óæÌ˜÷ØäðAwîr¹y‡M=ö=÷ºÜîî½ÛÎÅßÞe›“{P¿Çy$õÍ× ç~ÞuŠŠAÔ3|+lü¹ T^ ‰ Zð;íÐ^ ei,ëgÿþKÞ3†°ÅwÐ-!l2D¿K“—J…‘rs.v­Z“&M¿=Äy™ ±³áÇ0s }í2¥}ØO¾Ç›Ü¡¯#ø8p^PGkjkA¬t’…Žèt²NG¬tÄÊ‚‡(äwmt¢N诃iƒ`ÓS0—É5Ù¸üôÆ“Œ^E ñ–@ßÉ/úùÕ~»Rú*0‚­sŒ® ðeP6)2³‹a¦ÐΣ„NÚ:²Ïž\¸`ëØ [Üo´ì±ÍÝk§«W‹g˜£ç>{÷ýv®ûl]"mœ#­]"¬œÚ{DØy„Úy9{ïpñÞáÑc·ßNûÞÁÇ$¼?³êøaÜ–Hô@ŒzdYT½þùvâëwvV]€ÂP’¸Â_ƒ€·Ê¯ß¾?Ž£»¤/Êqs¤œRu6tP¦•µiҤ鷘J ¦,KÇ¿„eÃà0¥{¸/ë#tûÙ“Öàf V`­ XáWÖÅ nL1“¥ŽÙX²¿c¡àÃB'ÐÁŒÛ ð%HýUIJ¶j 7âùô‹z`J©,JT&ü6ðO§¬¨yÝÖ‹s—”;lÐ7*9ˆ }eû9ciRÃKDqODõye¤ÈÏHžÿõ¶acüí{°ð9fããàaïaãfåbéjåfçêàµÇÞû»íÐõuì³×®Wˆ¥_¨…_˜U¯}v7Eë9SB]}÷¸ôÜf㻳ϰäf ǀРrÁT‘9¦¼§¥´ýlz>¼ÕôBOúÞ­0ÿNºaN‚#ïÓ´5rI ´–aŠI‹TiÒ¤é7C=jdùÄø~8¼:óƒq=a˜'½ÅEò¶&Ž:°1ó‚³€£ëâ…úGn¿mm VVøM+¼Á:éA˜7"ß“òw±–|Lj0èFöÎ_4F(7¼×7fÏœì;h³­kˆG¯]–A#'ÐSñÊX'î;™°„X1GBi'°&j>²[ô%ydÔ8|üñvºõÜîäèÚ3Ô­Gƒ{ˆƒë^'·`Ç½Ž¾áÎ~aüûÎüûÞÁ¶>¡v¾a~aÎî!În{œ÷8¹9»îqr vrÞãฮûN—}NQnÞü w;ûØù¿Û¼L­mRk‡2AÄœïh(–ò"Hü\🠟 3üÃG~¥ÌÍ~ÛÂÙ2gó{ >÷¼kàФIÓo UÉJ¨J’bçÂÒQðòp¸× †{cFÃÛ8X0KfR\ée\i¿¥5X¨à°R£Xàb/Oí k'Ñ“óL‡1c«änÀv —·1B»7´Öο›é:»½Î.!6öǬ=­=‚úÝÚ–‘Í] ‘™°„X1UÍ0Fd¹™u0{nl>4á±µV^Üû»û /,]#-Ý£ì|ö;ú;zírpß«s ³õröÝîä³ÁÅgGï~‡ï¸'å±g›thì„m½o^ïî³ÅÅ+ÀÙ+ÜÙ7ÌÆãˆ…÷P=ƒœ¼öZ»GX¹‡:xìróŒq¾yƒÎuÏ÷Ôƒ©C­ÃdĤEG‡Tž ¦,…ð—`ÁÃó=„É}àÍ‘lÑpøéÇ?¡ç~¦•§¡³Q‡&Mš~[Œ‡kƒ,Jqó/ ewºÂ-®àæö܃°ìö,Tj˜³WQCý>§†’à°KK“Ng²ÖA//2kìy•d­5¶§dµÓï†mAQƒVT&*8Z#zܲÁÍk‡—oˆÛ^ç@O¯-ÎA6.§¾[ F#æU‹ªð“Ôwpd4œK {ååÍvÞ‡t^Gíý¶[9EÚ8pñqóÞᆀXgï³ÓsÀÑÁc?•¿vMÇÉcPy @Ú€ñc¿?"nü—c2BMmG|bñ–À„¹K¸/È{ðN[?ß]n¾»<¼ö8»YÙÚ8FØyDÚùm¶ôÚ3ú¾–ý`(0nÖV`Ê_‡_‡ÅWúžèÁ˃aé°óIˆzCNúŽG¾üFt5iÒt# ëEˆbü %»Lr Ôâ =%p£I䎻 ÉhÊÏÎñwï±ÓÙ×ßÊóuÏÃ6½Bl}‚]|œ=v<û*¦ËA0*jë6`·4Ÿùê»m®Ãt®Çœ}#\ÜìÃÜ"ݼwÛ¸îvï8奆©8X³Z£EÔÙæJZ„*C§ø[1½b6&»9DZisiËáÈÔ×ߊè9(ÒÚ#ÚÞó€­s­}»‡¿›û^¿›>¬úüçÛwQ Õ˜J·±oÃÏ“×t<ìÏ êx¿?]0 6þ Â^ãç¡ÐV hÿ4iÒôï±ALX&$㾆ïo‡ç‡³Qn²½leMuVœœÜ•PbP–ü¿È‰›Áaiaä·m»]]«³žF”ŦB¼šÇ+s¼ ¿1¯l¯ Ž'ß½~‘½öZù„YûF8õ ròòwtK|ô%hkÒcÅ)¦8ÀÔfÊI6.йgµ[¨£k€£3wöÙùÆèz¬µí»w“…ë6Au…kj”S»Q*½®ðÁ ’½¡¹Eßz¾¸p[àþ'_XáÒó¨U¯ï½n^öN¡ÖŽ\ü‚\{ïòÐ࿊àBuœ]o x¨ñ]¸‡Û@xá&ød8,Ÿ€+W޾ «XMºVU¥I“¦ß"ÊD¬Ž¥D0ƒã6톽{övÔÆ¦ *;³ø…©u˜CW£XX|e©Óûê`Úñ"äí`ú spJ6aZù†< ®ª tôÞfãâá·ÓÑu§ƒSˆ›çNkÇ`G½Ÿ}¢± ÜëP*©„¤ ëv8÷ÛnçèÚc¿Oï0k×(k/îªüàêw`Ê?õ1Ç¡¤äN†õ²Ò­Dÿoö_\¹˜¤³Ó¨¯m¬«©/­«/kn®imjª,mHKª9z(êþ'rë³ÉÖ#ÐÍg«£Ë&;ÇÝ6îlý¶yûF¾3* ábxô øæí:˜ØŸ=ÛÞ ï‚­AÔ+4y))?£¾/Mš4iúwä j xb,ÿ cÝY?Wðpg[fcÑí_˜Iai‰v55”4‡%XÙî¡ \tÌRg¸Õ>¿—Ÿ UG@nÕbW ÄаÓìzÉñú·g†÷´ÃÂ>XguØÞõ “×6 ‡¨[†Õ–cÓ· “©±å䇟ísédá¶ÛÙ5ÔÕ3ÈÒ)ÂÒsm¯ˆqU†„ƒÐfêhcx.Óv%ƒAÍòüfÇK–i{{G]]C{m]c}Cus륶ÖÒöÖKíÕmuu­µ¦ºòšÈñS^ÛáÔ{§ÞŽ.{]í=¶ºùE>ö¸|Òk«¾ ãl #¼éþðò@öÅ(¶f<„NÁ©Åc0?®I“&M¿á:[m”ŽÍ…E·ÁKCؽžl¸ôu†ÌÅïìÚ°¼ŠÝ:[nDgÍñÁÝ ÙBg¸ÛV>.¤n}.àð óCÆàœÁzÝrÜÚÚco¿¿É÷–}.½öÙù®Ö9l3¾iûnL µ17Þ\·õÑIö~‡zìup tt¶r ³õì1¸`þ÷P]Ïá‚ ’bJ]锕<ý_ÃL4 ƒ©¹¹µ¾¾±¶¶¾º¡¦º¶¦²ª¦¦º¡±®µ½Å tH²‘Tµµ×¬ßÎl¬7üýföÞP¶d ìz”Æ|BsC¡µTû¡I“¦ßpb*×¾‚, ß ƒ×†Ñ'|É„8áv3íeG=¬¨ƒŽZc«¸ Ã¯jÏ8¹‚&ŠKbCuֲάm™–T™&õ†ÝÏw^< R-?ÓDµòHÃzÖT]¯°BÄÔr:áâŠ5Y ¾+ 2–_⾆(Ä@CÝáG&ûë\Â}\¢,CmÜÃ}ûE=ð˜1:d£ØÝ()-£òUIˆË@„_E(g‡$‘ŽCccsMM7îqT4ÖU××5ÕÕÚ€»qÆ.$ øB͘F7 2O¿þ†¿“ï!KO—žQ.nÑ6n»u®Azv,œdx¶?¸9ÀP¸¿LˆãÖ7LdûÞd™Û¡!Cû¡I“¦ßådeáøWðÃpxoùgùñ¾l‚7»Ã“ q†›™-s±–ì,8Dk Y)¬º²"WfCˆ¥÷8°‘ÜQG^GÞ1ÖéÀx¾ºtC¹Š¿=Žë©ÐóSYqr ,©‰‟ÔÍ»Ç?pPçsÄ£wˆƒëK·ýö>[œúž™þ>T—1ê…£B#&B§¹§üŠi„ ~å- ‚ÔÒÒÆ Î îkpã7ªªë›šZDƒ§ +3B8:ڕߣÁ(7¹ßžM-«×o°îæØg«ÎÖßËs§«Ï.;ÇÀž¶¦gî2ÙÛ@/ãÏô…n£YÈó¼ *ã´š4iú÷R»DŠ}ëÆÀcéôò 飽Èý>ô./æ ýœ¡§õr$nvÔÑ–9Ø‚ ±´¼Ü¨ô•Ëj¥.wL<¬`ÖÃ>G2µá15§› Q:o<ŸãºC¥«ÏÊÊ9k;«B‡O8èØ{›{ Îê ûW¿UÎ~åaЮçþD»2öƒ™ÅÿHÛ±˜J@ËñI¨üküE¹­MÏaÁ Îük§Aµ…= uȡ١ ï%@%WÃýÈö(,ÜÐ÷ÖÝ®7mqòØéí¶ßÉ3ÂÉw¿³c™s¶‡ôo>dz¶pÙñ‰ûŠhÿ 4iÒô[B4&5`uz>l ó'‡ƒåׇ§ûÇüÈD6Ú†xB?èë=ݰ1ÐÕœì±=Ћ¬h×tÎÙZ§Îª¢>ðí(\Ú}Nªÿ%’|y”Ò¤ëŽUç~¨ QW‘Áï& H§›äÔ3ÚÒ5ÌÎv·§ãgí7 ®ÙÐŒuc@ܨÂ3\°u…IøDDÏEÙÒú+åeÜ×hhhâ°à_Õì¿ÝØØŒ½8yWffäœ@/NV&bQI¤Ì<çâG\Á‘’;ô¡:ï½¶ÖÑö¡–}v:ºïsÔIÖ6ré7áewyîMÒ¦1Vy>Xû¡I“¦©2/rª3Å-‚ÝO³Õ÷Éߌ7}4œ½6„¼8@~ª/{È&úÂ^òH7á6g2Èn²§}ì•îrk¥kC§·Áú[ÐÙRkKÌžÛè„7›‚ŸÖל¿Ñ~^Ü“!a›ˆ’ºh»÷F{ZSOuÔ;”<ëӸǟÌ|èñÓÿ#þ¡É)¯¾×"•åkSGÔ7‹ƒmúDºß¬³9ìì«sí5¼½¬¨þ_èOá´jkk«­i¬¯kn¨oÁ„xum]]]GG‡¹`ø÷‡Ÿ´4†O|ò Î7ÊÉ/ØÆ=TçìÖ'ÂÕ¾ÑËô†=è‡}aÙx|Ô½N–qF;cêgÃ_OI¢h×5iÒte¤J UAƒ)a)„L±ååÙ#àÝìµÁì¹~0é&Ü;±'ç-ñ`#\a°3 t†ÁàeG¯‡…öqXë¤ÛЃoˆme7ÚÏk’%¢ÆøWBE^õM¯Û;ÅŠ-A[‡Ý·Þù×›6غm÷ôÙ¡s<èÔ'̱×O.¾k†Oýø“º9‹¶ûݶ׾‡¿ÛVg×(+÷]ž7 qÐÔøÇº cW®Þ3MMM*8¸©¾Fkk« ×{ȯÿ†ecÔUoë?jÎ}ƒw°oï@K— '»\{g¹—7Lôf¯÷„oǰ€©ìÜ YlVv2šU)àA[E®I“¦+O-eƒ@³ºöOÿ'aýðýh˜5> o †À3·À“7ÁC½Éý=`‚Üé ·{âZÀ^ŽLi÷3X©MÖ²F®88È=CáôÀTíFJ†u¶Á-H‰,"5Š‹<7u³k¿ãöƒbu¾Ñ:ÏýN=w¸x†º¹íµqÓÙÙ8m°sØáåÕs@¨Î-ÌÙÝßÞ)гÏ&×¾…»t‚$wü¡Ü U¤Þæthiiáþ… ŽºÚ&Žææ_RC}È寓ëCDVR,u¬ {Ÿ‘Áν¶¹»…»º::ÒÙ–x¸‹·ûÂ3¾tÖydz8W4Ô+c²4phÒ¤éWŽ-böv8ú.„OÿGáç»àÛq0g |<Þ Ó|L¾™<Õë úÁ}~pooèïÆ”Ú*ÁÊýà Π|1þ„ä„íF¿¡×ë95ª««985˜×ë;†+©ñëàhsáœäÎØÓí{ÅxõÙb§ÛãähåtÚÉ­þf/v¿}o ðÓƒpäQ_¡,±UJàÐ5™á£I“&M—R&©0N}Q¯Aè³°ã>¶j"ý~,w;ût8ÌÓ‡ÐiÄûÑçúÂÓ}褾ðd:ÔƒY!8dKÁ¡¸Ø¾³­,uòô;¡äÃëÕL‚Ø} Ö íXÍÚÚ¸í¹özx{xn·wÜ`mìéêÙc»¥=Çn'ïpg¿ƒv=öêÜÂízD8÷µórî{ÀÉÅ_çœòÊ{8ÀL`”¸ëòU‹‰¢ÈÝEœ*8›Fá×ñ«àPŽ} Kˆ Mk·l×9†yx9yñ-ÒÞ3ÓÕÅ0Æ^,-‘/[Š€Í‘<ùç„784iÒtõ¸ˆý ¢t)R–ÓãŸÒý¯BÐlëdݲì.º`4|9f—ß,¾=H~£{åúbx~0íElÌÓH¨Î–CÄ`¥4tXëȗ㡾@éÆó°dP:¹Û)næ±ãâ?.sôá>E€¥Ý>WïHGÝ!Nžaž=\½•|~¶~û{GºôÝmë½ÍÂ-Ĺ× ç£c0V¡¡WÊÑùã[qqTg'çD­"•õuÍíí’Dºïóûc‘ØB‚˜4"; ³9~òË»­½‚íøOÑsÏ~[‡²[½ar˜;Â&êòvb%£G¦C“&Mÿ¬1â§Ô¦AÖ6zjù"^†àGÙÎÙÏaÅݰøN˜?†ãCþl›9Þ o…ׇӻýd»®µ€:Gj£kÇ­O–²­[òô Ø#ÎdbD?¨¡CA˜ÂÂM†¶éuÀ£o°NvŠvîyȹgˆµÛvKÇ`÷Û­Ü‚œýœ}¶Ùºm±sñwõôôÙîäºÑýæ– ½uÈ `2áƒÃd2©Ù ³j›jªšÛL&ñJ·¢Û¹ÀîAY&„üÛ,9R‡\Ïø›kä)(ØÜkÔ^;ÇH{ß ‡>Ûí]Oû:ïö…G@ðß;«³°a“`§H8´¢*Mš4]-Ù *­Дù!,éGˆ§Cä$y¶Ýë8;&À’»aÁ:ïv˜=>½ >ïŽ&ý${V`áBítmØhAìlaõCüT6ÝxÁqQêFÕrS‘ü-Û6»ôJÐy†Zû„Øø†»ö pðÙiãìäìèdë~ÀÑ;ÌÑ=ÐÞ9Ä'¥‡;8tu ±´Ž{ù=ÚùSñëùþTxÎ~ÿ>‹n'¢£££¾¾}º:~CGsS;!ì_ÁÁ¿J’ÄY#¯ƒ£Míð4¡ÏÑDÄþsÛ«×úG::´òÜëÒÿg¯G‹†Žðæi÷UتH8–ˆ ¢”ÞiÒ¤IÓen¨š˜H:ªäò$é\ =½ ŽÞ‚Èi4xмë1²õ^²~<]=V^yûᮎoGÀ¼Ñ¦ywÈ“ú(CÔ-LÖ¢¦9dK[Nb©k>4]fÍ7à^ þÊÄÀ‘¡üàRÊƒÏø[;¸à"×k?]×yzDØx†:xmt÷³õqï³§Ï@îtW:ýæÊXó»Ë¢ˆB|Kijn­®©«­k¨«o¬VÆRÕ×7ªÙ ¦tÜ«#Öõz=G ÿk,ÙU(ó{߀*ÿGç?T½ÍNwç.î]áÙ‘ðóxZzPÙ‡ 8IK#dí߉&Mš®¼âej÷²†zV“NòÃáì8µŽ|‡Þ‚ˆ— øiØýºîŸÆÃÚq¦å·Ãâ»äÅ㤧û¨k›Dµd­€ÃÊtÎÔJ×óam Þp?¯¨ìhb¢QY,%øÞjãªø×G¸½W€«÷GÏ`+×w¿Ý¶^»l|J|}e}¬Zãôë½×û[‚(746WUs4Ô74ÕÔÖ«3FÚÛ;AÒë;››[›•Ù#õUUUüF2÷PÐï¾`ˆ9²ÍÍo¯S «{ˆWÏ0+«Â‘îòÂ;áÒajž^"ª„¹˜¤UãjÒ¤éJÚåyH­Ð|JŽ@ÖNH]‹V±3!z:ì ž…=“`×c°ýØ~¼q¬¹{ÌŸï§®—t¶TÙâ$YZrp0+ñäçJkà ÷ó Ø”€àPqù“Îó ½Wˆ­×õÀèâ»ß–³Ã3ØÂ)ܱÇ6{ßÈwBEþ/ÂM¿÷š_ÍPH’¤‚£Ó`âŽFeU ŽZeªau5çG#G†:{„G‡ÿÚ¨¨¹¹Yõ_~÷a순ôl˜•g˜ƒw€÷Ak—£7ÛÀ—÷Cá~Êt1¨`’4phÒ¤éÚ'˜ú_ÜèÚQÕg¡ ²vAÊR8ó œü ޼‡¦Bä?aïd~‚$÷ö‡`ë£òÔA²ª³c¸7ÖB´Ðqp€µN>³Kªn¼îܾ„󢘴ӱo´wˆ¥ûõÀàâaáîìfçbå±Óù¦‹s1hýÝ€&ä_›/0U!S“ µ¶é¹—q¥Ç¡òBrˆ]]Á+®¶¶¶–––ÎÎN£¢?üI4ÄD;ö=`ßÛ_çÂ?„]^íÿ¼›d…2Ù¨$€þL~1IKŽkҤ闱*óAÆÔfhÊ£e±äü>ÈÜi«Yâ"÷9;þ>ÄL‡¯AäTùw9üï°çiš"¾5\âàÀ¹6`fEœX¥´“§®9ŒnPu7DQlkïhimç°¨æ€àt¨oäVÓ5D]¦Î‹–Ž ½^°P«¾4ý£yke»1|Ôý¡¶=Øú°óüÉQ—;| d‡•ÐeÖðbM•È4phҤ骃ŒëÒ*@_Aj2åÒxÈßK³wÑôu$y M˜Kcg±£³èéá×¥C¯BøT¶ÿUéý»LœVJÓŸ%Õé$káßÌÜdRé14'1c'Ž®%Æ>,C\ý®ëqØyïq÷ݧsÜãì¶ÃÉçøäi ö\¡Rqðë9ît‚À=…ÖÖVî8`É-÷0ê10U×ÀaÁ­UœܱeªfÆ»)Ø:ÖÛ”Ú€‚•k¶Xyqèbï¾ÃÝí¸»¤…àcÂ_ ³8J™±Mš4ý2V¥Ì´SÏxÄÖZÌÙÅÇ àÍ ë!e$.†S àä\8þ™|â88b>>½×ÈIaÓ½ÈÉ Œ_eûnLp¨k\Meú«˜úøs;í]¶»_79`ïâälïbç²Íͯæ@„¡Ë“ºòÄþ·ÞGsssSSSCw"jkjjª««Õqîe ¡°C5•ííœWB5vuŒþ@f\ ÙaŸ{CÙΞý£¬Ü·;98{…Z¸W…|¯L}ç/`4©à`¿2ý]“&Mÿz2v+C픺\tVѦ¸”Å'Ø…H–» έ‡Ô!iœY§Òøùpx'ùò!“ ‚CY#kÉ¿Êü:{ƒ#'À ®1ºcU8'\î$Lä7V¬ßéî¹ÖÙízàðwêfáºÓÇ+ÌÚy‹‹/ÐæVu~ÇÕàø·—ý*5T/ƒó¢»_C¥'…9'®Ünhl掆ú”Ý}*(ºû8ºyñÇÀÁ?öv4œ0ñ¨½çNo+—0k¿“ó§A[›r%T¥x84iÒô+~+IÖš6¤±ê$ZK C~dCú.HÙ&¦m³«!~‘pæXs§`§æ8ì¨Î,1?޹–:Èß‹Éñ3àqØ]q2Ô”n9&ÔÎ{³›ó.'7ÿÿÃÞ{ÀÇQ]ûãk«mW/– 65 %< ü tL51Ièðh)@BHB¡Ü›lY’Õ{ï’«\d[ͽWÉV_moÓÏÿÜ{WËb°É#/Áâ¿ç3Ÿõz5s÷ÎìÌùÞÓ¾',&Wœcœ’£O*SÇÖ†‹Â’Ö$$Õª4ÅÑ“ ¬ôubþhq R d Xà{›Íæv»ERû­0o•ÿ•;.ü“ƒüo(Ö_çÇ®ì¬ÍÄ\µ¾**);"výÕ?°“?yhÓ[hš² Ê,Œµ&Ý¢¤ }+û+ÛßÇ‹lªx‹¼¤¡ìïüþÙ×Ѥ‚sîU|Úm‘6d<§|¾e|àWT€†òØ”ü#»=\`Пñº(”¤‹™\ø ³ò›pÖˆ<%YVhŸ¯ÏæOJ^D§¼ý¾É+2ç7ðHPMvKnò…ÒFÓä‘z+*Ô¢$é뼌·%9e\ŠlCØ–IÉ?d£?¡ƒáúÅø”Z|¿þf^7sÅ*‚W"üiv£)ó’‘½É×$ÚAF¶Ð‰á̃™þ̸L’ƒu“”DvÖøÓSN’ÈÑ ãVúÆBil¼^RE;Q ¬e›—=Z™-k‚É1Ǩ ØY_3yu‘iË"ixL>q²Ä}RNëÄS0³No„_Sæé°8#éšI‡Hß;ˆ.jzQ‚òÍ{ȳf= Ãû”Þ6åt o„ƒ°¯öä𻲡+¶ʵ-?æ58ÐÊ;Àá¦Þ9 | 8WJê’ȉe†˜|mT¾:¶*,¾^[¥ŠÎÕF.‹1†'­‰Œ­ÑçjâÍ[Bô‡ôu(8<˃ÂËË*/˜>D]ê74XŒƒ½~ß1A¾M$ZIð;ót“s"t…Úè}RIâU’£Ÿý Uîæ&©ÚŸifïx^” *j—÷ååHî1^„ÀU ^žçñš ;“¬œ×¬û"j0uý¥U™N§“íê–ð•Mžªk'àw4 ¼‚ ÿŒæ sœ€dÿ¥ÎC\Yq¤å—"©GÑÃyñ‹#£(qˆã#åJ(Í(„8섯Þ뢙vòê49À3‚úÓ+:ˆ és/%nsƒ U8êeo-ú?ùʘ‹@ÚRÇË‘?åš]tN˜¾Ð˜¡I´ì٩ЇT&­Dô€Ã³­uÇê´Œ…‹–,[ž‚o-^ZV^yælßùÆ/¯¨Z¹jufV±2NwŸI]ŽGN·jê%Y—_Çïì¤Ö2ÀQžßqÈr`Ö‚¼èk+ïÊTMY6i¶:©ðúÛ{–¬Þ«%„Tª±=”³Ú}§Ó§\“žœ«KΉ˜°D=)EYõÃÏÀ±“>.WY§N*V©§åç&ú_&¸åéƒ$Ê{œYbŒÉ Õ—/+SOÍUió'$w½ñšƒZ•ŠBI6‰ËMV÷¾åÙe}•*ºÄxY^ØÄ,Ud³Ê˜—¼é…'‚ û¢±=?ªÌã"Â"9{%Û1Ñ´Wêz;•Þ­pf«{”?/LФ‘qÕØQ’¨s™®Õxetý#™7½ýçŒØ©*MñxmN„.3T[¦ŽÍ×Ä•h¢³"ãš~t7©‘dt±ÿ‰ãDBÈ`ÀÁ,f}x¼ü,—ÀÃQ+:³ÙŒ«_|ƒj6;.ä"ÐØ·¸÷í¿—’ŠôQyšH<ßýïÏæ<¢Ž¯ÌïißÅTzËæ­;Û:ÚÚ;Ñ”@õŽø|ã£ù€ûãÆ¼O¨¥Ùj¿££ãœé1ßb*sÔí;v¶#ˆTU×2 1™L_4Op¦–qÌÍ[¶áG•U5háþ_¶ëêêÂa×dfãQ8gœ?~ŰÉ,ˆrÎfeEíÒ%)i«3ýc j vTVVû9†6 š;:ºp‡:'õó¸ÜÞµë6 ¨!”àqŠ$0W¹0&93vRaô¤¬ð˜|mL)®Ãõq¯¼!ñ.º°åïSý¢gÞu V÷çOÇEÓC¿â¡²õxOò‚8àÅÁ­EÆ„4uRçGsÑÉQEJèþÉè<øl=œ"Wyßãáñù-ÞSÿ³‡Sb§åh¾C7@¢ç¸gÑ(¹}s>(ÖÇ¯Š™hÞØDޝl¨P…·è“º>ü@‘yQò­ò9.pƒ³$fZuôÄuÓA×óæ"ÝÔ†qQ›nºÍ$ÜDÛZh»ùà'ËêÇ'•‡'ò hÂqÀ ,áž¹ªX±Ç] ž†VRÃý÷Ò¸?WysQÈ´Â'^û %m ÉQ'SêبŠ]§2vÞŠh%:¶‚)7•ë.Ý}÷/åQrfæ ´w¢}ý=¿h Ó¤©&6ä´çªb+µI]·ÝÔØC|œ<À²‡XP¤6<𸦰ƒgܧŽS°ý#¸áj 1ŒGžž¨øR«p#­ûdêÕwË@##»ÞþkfDB±&zM˜¶8"áDV&>ÙÃÌÛõ/p©øU%ªÒƒƒ†6X®8.àc²X,%!¾v´$Ä_`ˆûø셀íô±UîÑ…á Zcn„¶Â³îúÛQGÑ|H…™.;)p  þgZ—žÎ7>.ïY0šYgÎö±ýÛÛÛýñ—ÀŒÖŠÊj„üÔç¨.v¶u°xJooï9¦;aWõ¨™/Y±wß¡ºúfT×ø‰ÿ¬™Ù凅~‚nÔ.àýé»W©¢¼&uU†8ðè´´ ´)jjê-¶dÇa;:ºÐY¾<%eeZIi%Ú>f‹QÿË€ƒEv%A¤ÏL‚½-mea†²° Ý_@ÄÀâ^4=À98‚$’Í‹FÙH…,õ%å*C×ý3†À…s%.3Á¼ÀËdø}sæWª Ù:ýආZþEÒ´¼4óõ%ð’ùŽ‹/É¿ï§À[- 4·X6ÕCë6 VGNòÍ _“¸B‡§éôˆ¸*¨kîÙÖpæØb"!ÆyeŽ´àÅ,-÷<^ Qe§â’†¸ÇÄÁ2ã¤U]Ýô»‚zû"žÄ²ÐÜЖ=òÄ49Q%ª4 R£Ý¡¨Tž0•gœÚW;å±T7F‰Äq9H¯dý&Ößÿó²°È¢C‰.*Ã0¼©™%JLïþ ¨á7=PÕ#p°0ǰɌØo¼œ }™¾÷zy“Éìç$ñ«„6~ÂWFø•3¡ úÔÉÐÖ\}l‰ÞP_aȘB4LbEºcK{ê|Ü8˜+©²ª†á€ƒÂöGà`ñŽsb=LoW×4  Áôy{Çn¦xѤ:§õ!{;¯\•Žû–ÖÔ6âáøþü!;Ä2_Ø…åÊ*æ û°¢¦~ÉŠUKSRý¾,všx¾¾çŽ<]T¡.¡ã•—lÛšGZ6 ·wM|" X‚ÂI$ó í¾òf¦©ôMÚØòÇ_ÃGÀ;BâÑC´*P]$¥J&N0‘¼?¯Ü0!%.Á²¥™èÞêæ*•vƒ!©ý£HðœfvyY—.òóºò “  µ÷?ìFœPœ+ÕúÆñº­÷ÿÊ)‰£îTj.‘ã¸Î÷g‡ÆWF_Òûé|~ýVgÓF8ÙCê8ñ³+Ƀ«T}Uåøøòñq{gÍ’OG‹^!(à$atR`éfæ5jÊÕú1'$qûs¯CËêt£=ïƒÀñmAf®ö•8^¹¾¡zE"àáCiÀÍŸzÆÔy8àŒ{EkîQ®‰AÔÀ-]çܺÉKK]iVÕ¿þÈ8é¬Ñ7À°€y«>Î)¬ã8!ƒØ´ÛÓ4bÁÍŸ¾K²yÍ~à! ½ÆÂ" ›(M®+W]¨Ój‹Õ†5aÉŸIÙÚÑõïŽÊªº…‹–åæ 4Mº­}SÅÔÏ…EeÙ9¸Ôǵ=êêo8ò JðÍÞ}‡ËðDÈpzhzœ82£ µãõã9Ú„ÔФ¦‡ŸÛˆ 8’ò§°õ¹ vÛžY³ .¹v¥JW¡º|‘>yÛ¿Söv *f…Û pN’¨%ÐÀ²gáÒ4mtZ\×X¼›¯)«OLÊ Ó´Íý€Ž)2©×ó2ƒœÚøBƒ¡ù–Ûú›ëÌå±ë41=åbEß4agÌ«BØñéœ MbµJ›nœ´<ö»)Ú+ö|¸@öX s¬3M$ÆC+îº?7ib™J[g¸¤<階ÞÛ>…`"q£y"KL•t<þlvâUÕª¤šÐKþëÄÇ‹àL—>_AàøvÍ9…• âÏ~¸Üùæõð-èÐâ/à“BÆÁøPh~‡Sç¥øƒç²XyÿŒ¢N pdê<[[x™DÅyYù?—ËEÂÙĆ#f+Ëùav44,íßÄÚý ›-6«Íár{N73R|¹X8ðæ+gBÕÇœ À» t± 8Š4†,õdaÔs"oïØõï\¨/Z¼!Uq×®}¥eUˆhtœ8Ø’¾º¦÷Ç7 .ÅcñÍ7[¶îÀÁñ,˜­¼¢†™!çŽTƒ±^ÙWªžP>¥åÑÁî´CTÚ"­•Àb?³8eÉ5?¨SM)Žž²*D“qå÷†Wfã°<ïApÑY9Žk›;?E¥ÉˆÙýÊ›;>þ¨èžÛWY'unñr6ÑË)tåã«{V˜¡Z£®WEg¯X{EŽJ·2\W÷ê›-â ¶5c%ÓÚæÏ©PÇÕ"pD&¥Ä^‘b¼|לy’`±ám$Q yÁ0„˜4t -©Eš¨|ý”bUüš„äüë/wµíFKBä,žfอ§þòi~Ä””ø 麘*URÞÔGö¶ãÛ:§ á4]T„ãUÎwo†Ÿ¤8µLZÇ"phHòñ*¨zM!ŽøÀ“RUª·e¡þÑ_åE (pä铜ëÖ2Sœ––ý«ÍÔQSY­V’EqYó&ÜFÓD·Û‹†±2ú‡‡G¬V»ÓéFeÎLÄÖ¦œ…9ÃEÒû¿¢Žƒ£À,Dé²ëã8 ´‰yZ}aÜU ©ä"_A='òŽÎÝÿnà(+¯Æõ9b.Ôqc(€o.¸!pXm.¶'¢ ¾~SÀqðÐ1œüê´LüŠ¢âr²!1—ó¹ª4‰º‰­/½Ò¿±Î´usok;y´ðJrK…&mÈ6·•Øõt÷ùëûN›R¡‰ª )½¼¡Æ’%ó;’a•ƒŸ.iŒœÒ’°H{ISÄå…ªØÊññÙ—^ÍÞÅS¥-ÑÊ—G*®D×|×ÝüÞ}¤F# ¬Ú‚DÜdnïœ TÆú¸I}þCn^ëhjTzŽ“$*¶¾FŸuè ‹+jÃÃÏå©&W„$¤ê"Ö½ý¾è0I4F(±»Ž¤MHN›­!îØî]|}e|⪰Èô˜ií·Ï Ç·N<4!œ^Ÿ®ó̹¦ÇHSµ’ZE-­¬G€£ði‰­BÆm>¥07NËó¯d« y:ã(4Lè/)ÅW«+ý ÀÁ (Š&“‰ðªÓÆÌv@` € Êáp!X0CV¹HˆÃC|E«„‘c\8H¼Fâ})g»Ëô yÚ„\­¾áòJ 8ˆ›ÇÎ?pTVÕ!pÌýdAZz¢C Ç8P-#Üà§,ÀG}ƒÀqäèI4‘pKY™¶aã´8ü8J4Ò4“vÌ™Ë!jCz_¾@R`î =_Hä›ì%µu’EìßÛð½k‹UšFí•À»í r’ÑštœÒžYsªUÑU*ãÊäkÖ¨§-½¼éŽÇF²‹hXD潌×ëË]UõúKŠ ñû_x­jhpøÆLÏ’æÄò§>YX8>6'~²cC=êp‰P—p #dùf‚H ‰…ëA •¶#æ3¥Õ¡I †¸‚—Iå=ó›žàñ”’ê(—Õ}ÜÜÞP¨N.RÅ´Þÿ`8¾uâbÀA~ÿÞ&~é=ðˉpM¤¬'ŽGà0»c¼ŠÏ|”°–!à ·"G5%kM²ç­¿æè¢rµ†"1_—¸E 9ž=ÿp°Z –I‹šµ1Ža“Wa¸Î'n(„꛲۲ì®ÚÿÁ¼ª°øº¤Ëøâ2pŽ’C§Ç·“f lO8_p¼î†ó±›2LB¦Y ¯ƒÞôŽÌ^P1e…q’iÓFBL¸¦9€•˜¼”e‘Ü6M Í#á¼9º)™CÃý¿ÑÎ3‚]e”Ζ¤gê,7šWøÉž«™V¨IÜ0ýö p|+C`ΚµrêƒðüT¸)^Ž/‘V€>àð¤Ýw‡röŽ=¯óh8pœøÇl|”²u†B´;ÔñÛ?žC*?ÜÿÀjÊëõ² ³8Ðv ÊŸ’`0ÚC†6›ÃßÎÉW€6Ê슯þ<ÞÁa¦a+5Zª&_Ðâ ¹ø¡Ú8µiCqD Žlƒa×í3ð©¹̹ÑÖþŸˆq,\´lÁÂ¥£€{P!£>p 0Wjñ“§ÎPDø&ãÌÙ4šXî°ÉZWߌ Bb.çŽZ6×·ó£Ù"]¾“NA+Š{ ±¤DilYQÄ”Ê]Ørç#©š˜‚è«ÓGqÅMÖv’‰¤ì»¨@7'BíÞ½'\·Ô[LïX/-¸“F£[_LÇÝöÛ§³t‘ÚK)ÐàÀ^ðp´Ä›§¥éBçûs 5—®ÐOumj#Ó¢ I¡+ zY8¼©ÃéØÂ9È-{$[mÔ%áî{x ÇNIö1É£]#S(iy¢Í›rYqäÄ÷ÞŽoȬg¹1†¶ÚKžþxÜS‚^å&ÞªW¨JúÇÍ`7_„/"Ðt\Z©… ¼3ëêC“sõñÕ†„Õ!úÖ{‰ËAR·ä•¨Oák:©˜:7ØúI*”¿ ëßd±0 Ån·)ñ{ïry†h2Õ¨¡ák…ÿL/r‘ø­DŸ ç}šYfŒ+7Äo^ô1'“µ!mˆ@ôÒ–Ž,lj±j(¤0¼2uõV7H¨è§íE `Kng{™ªß±cÇgEy£í¨ð ³8PÙ2ý¼}GSÂxF0JÀ£•ãÌâÀ¿âQ4¹yE¾þùƒJ«V­Z²d |¾í/£(a–••-[¶lÅ ÆyE~,B`¸2µ¬¬âœÑØ›ÎÎÎE‹-]º´§çlW×n<4--ÃápÕÕ5¤§¯Yθ¼hL˜uÛ ö/÷nl+W',Ö'þx®·]€µ¦ô0Zž‚Psÿc…ú¨\ŠöÖâÐ"(2& Y¡¥5“ƒüR^:þ¾wßiŒˆ[mLìÝÒt¬—ÏßìÊÑ'–k#·üt:\ÏŠÌÔñ±eщžuåÄËD«×Iyˆ,° ®®FO^ëݲÑB .Ü$«‹g!ÜÓE8äI©H¡jJcÜw‹ï}˜ü“ƒyÕ(=/9ÐmÇA²Ôqy‘ׂ[¢¨è-?5+,¾õg÷õòůa}鏸›w:«žWÞ¹N‚«¢•˜Pn¼ T‘|˜Jüó0xRC…Dú ñ^ÅçÔ³¿«h|B®&¶B“«Ž*½úG ¹E‹µü/ÇˆÉÆ€cp´4ñ‚Ù,ÛÖårRNCW‚‚Úip4™ Ã_BÎR|5pЄ)3í±î…K#bjÔh^ÅåŒ×ïÍ\å¥ä@,ƒ•õ¶®v\T§gdŸ:}V¤Éø,$zžá”oÈÞ§¢ârÔíYÙùv®\åîž¾´ô,ÄŽŽŽŽ@6Zÿ•)-«Z•šXÀ€Wò Ξ=ûEó„UŽ#LTU×3¯]qIÅ… Q8–/_ޏpÎ/yëÖ­[¹reZZšÕj _,X„@ dIûÏ´«« Q÷ïë°XlgÏö±êËÒÒr„›ÅŒ’ÅÇÝÜ4$fÔ·­+g\øª„¤C|@ú-J‚Ãa£ -¸B6k2éå×?ôdþ8}}d$˜M`íïøñ]9†ÈTUÀ @“à”h9Ú†û?x¯V“5Áºeýùwro“VMàÊ2&UãZî|ØwWÇ ]R£!ùôÒùNð ±ÔB2»ß_X O*ˆŽ‡šjqr„bQ‘9Iä©Ã‰ÆiH1yNìU‹B ï¾¼Ã0ÐS¨›š¦)%õ€v/3‚xFìŽÏ_ª¢ËüáM XÁ6˜ti~¨~ë=÷áŸ\|pKtÛq‚]ša"ŒôYøA †SŒI¹qÉ-÷cìnÖ=ÞÆ×àã›à©iðƒ˜!‘žã:%Då}éåÄVþ_Î>úFÆÉCM)ÈLòYí¦ ãT´ýËã* «c§i$5_´÷_¸|¤ ¨ú~¾²8 U0!}cÝÞ/R¼¾aiº8ɤ43–ª‘‘?)ÇWá$H;yue]ÿÃʰ¨’ðÈ∸sæÎ/(,EPÀçÍ_ŒŸ°¿¬ œˆ+hÇÎNæª:sæÌ9'ÎÞ°Êqœ ޲òj?ïÏ+¨äSRRpž~ÍÎdöìÙƒÈ2oÞ¼ÔÔ´ªªš’’2Tþ»víù"pà±mmmhnà˜;à8ÂJJoâEpðRÏÖŽMÚØRµ¡âÒ+:þîå3ž”:Û3sô—Qhg¯@J­½àAœu ÄñxdÎÇe‰éºd¾ñü‡ÝéòåX8ó“ËBc7Þù0!¼,链ۨŠ]ûèL -¥ŸNGp*‚ ‡ß›W©I¬T©7ßü³Òû_w÷¯Úߟ—Áƒ%_(áÐ\w_ñßéªq%ÆÈòïÿ ûòk6ªâª´úu~pöx¶Í†´éðÖ5â×ÀEIQ!0^¥ŒSyo,·Ì8;VΊ-ÉÃH¨€©ÃYæ¶ýõÙšørclEˆ&=<²íÕ?’˜Šø5¸Tüõ¥Íæ` !¨ö{û˜{ ß pØìNé÷ç[Áž3”ËEüT¨¬€˜× Í@ÇÑ…½U.\§Ó> =y¹yÑjCu%º¨*ÝIJn£.rAxY¢~™)úÛÚ;QQ£Š.+¯Ä׊ÊjÜêêêŽ9Âücdéxȱã'7nÚŒˆP^Q…ûwvíöw6ô~Pزµµ¦¶¾¡±m:ü¾C‡ÖÖ5àQ6›-ÐÜ𭬪iݾÓOŠˆ;×7œw¥3ܶmMMMþö²þogaößS§NíÚµ«¦¦®¼¼²®®¡µuGÿh øsòœñ¨ƒâ˜UUU&“yÓI Üöí;ñc§„Ì´a†äK6àùÁ#Ç[¦?Ýpÿ/Ö>øXËmî¸åÑõ>'ìÜ+1BQy¶±ê~7ד[Ôú·÷Öß1£êÎGÛžzãĪ|°rnÿ~Š@{¼’”Ûý…%3Ÿ*~êSë–óþðN§—¹dE®þ±êïš¹}ÖG RpÇ3rjï›™ÿij`µ0nP)ÊŠG ŠK¦?¼ö¡‡ªï»¿qÆ/·=0³ýƒÙà°£^-y„ðŸâz’;“•]û«_Õ>ôó¼Ûhý͇·¬G!ÛòhcÒ•È!ʱ¼êçžÚtËm·ÍhyéÅîòŠÁ2íEËÂB@YJDͽ¡áõ?ì™þrÓ}O¸å±Ͼê¨_?l{ñ+XÚÚXaƒ{ëX …3•÷¯ž¾n‰“&ëEa¬®M‚Ê_ƒ{×:1Ú§’h Žö¼öö­[Ÿª‰-ŒŽ­ SbË¿ócÔ.–ñòuE’”‘ ±hŒ2kÿ××?h±øˆªÎã"ôˆ- c ÁAÐâÀ×ÁÁA?)î#_⺑hùŸ—kyêÅBclZW¡‰ÊÛñÚŸA&lH´ˆY$„”ƒ¦±H¬Ç·ßU©P°øÒV#lâ–âz‘%ÜÃ: ˆÔXßU·×ã–’ÜÂçÛ&í0Î d…£Ùøò<‘¯Ù-ÄÓß”Ý:tý)ó2³ö¤ÖÄã¦ç-8˜žQ$ßžâ(—¼‡DJldÄñæ ^ÀÁ³G8›¸?ªŸƒ…7‹¿½îW'pI*"Mƒ5Cwݘ9/ߪÉCü¯^rǺ^6 dO¼t•VSV[¢½|hÇN|ŒÐ_/>„êehÈÄ€ƒØ~²©á‡ÓÍr”/êáUßÐЉŒ™|‘qÄ ¡!\œZ7|ØIíÕ‰îâËoÌÕêË5êŠýJc‚©²µ‘Å”¤ü« ‰†Ô} LKÓ&D{³“òû|>Óð£ÈÂ! ßÿ3¿P öïƒû ’øYc€¹ñ¹XöèÆ #püó¡Æ9Íáó¼îçØhçtšbý§§ìè:©ß4"&Ó¾À‘I ,àA†£&;ðVÒÉOfI¤°†÷fôùyÂ(Ð? “8D‚mVFjN nôĽ4QžåÆ:¥óÆàxßž¬3ðè«$Ù¨ù"ùZÍûîq Eœ uÏ’õ”ä!Ú ‘ÌEXן*†¬ZD&‰ÅŠm”´„zéIJНÎ]m‡&‚™³Ñ. eE+u£Š¾ßx´Ã»ÄèRH}¡@=­J^0)í’”1¢W>\M/CÊOå?þž7NöN#a)1–ÞÊïÊ[À÷#·ÀˆwP‡u>4culTµF]ª,V%VÍ™'«‚øz憄Ze€2„ÿR¿‰eR!|X¬v¿¹AàcTO~ÑgÅŠ5†ÑNéõ Å ð‹ÉKŸ÷uC?p–u[r4S²uú2mDµJ—9í r€hcŠC¤ùú’Òç*Ö?37dé‹Èè›v° qçœþˆ€Ÿ©©*aVÆ—Žn¶@ÀÎ ÎØÿÉ_>açÄ\üß…†á—¡æ›µß ì-ÅÖì sl)ryº&§Vª[ô0Qd3‰P€/ç™urX[ FSûˆ9!1¦Ö׉âvQ ŠSXË/‚ìá5B¾@ùAª²$ôlc宊g´ÂBdWQRXY"'û’²Yá†OŸ{|¼%¤&±HEZ{Bº·x+™•GÀOåQæC+[jQNwÒ“„ÔÄàpJÏ:YˆñÊ…weÀÁ€ƒî×¾@„‘ƒ)þå,Ëjµžã9aÀ!Òg‹tÚµ}A¤S—%ÅŽÊL.VEäk ¦‚”¯¾àÜ.æ-(©°ô~e”¾À²:—AíÿÈiwÂ;×ÁÓ“•;à; .>0 òg8Ö÷ ózÐÃÖ£uìˆgÝ3¯–©J4‘©F]eDBýnO¯×çKü­D;­ß!Ïúh dôõ“WfnØl¶¯ð,Š—˜¹Á ?;",%r~ìp‘”J޶&ΜÑf#䟯þnMˆ&7fBAÔ„ºñÆò«®„Þó&30΢àÜ.ò-¨¡/nà`a8\'á@®Òü–X0æÞ¯^ª<2nšÉî'1°ø×Ε`éÅ壴¡eìü¾¢Ì™[·¦©“›Cc3⌅ªˆ•q x5ÍÝ%þ[’eHÍã/p^ 8<œw´<ÜÜ?€šßÜ××g2™<ÏW–ì1±;\þx:Û¹n »> õ—t÷$96ÔcÌF"pòTzÌ% º¸ì¨ø‚ð¨¢ý®7_WÏWûÚ‚[p šAùßGÇýÀAðÝÛǫų¹ÊÇ`ÙOáW OM†;§À•Fá&=üãÿqëþ=õ 1’ºÇù¡â,u=Q­Š-4Få©5UaÆ’þØs•GínÀQö§óŸ þ:\NV!>08‚‹Åâ§KúJaTêØÿµXíVF pÈà =¼<ËÀ±Ä ^496½öÇøûq¿¾½nœ Üd„7¯—ÊŸƒ}é`?ÊÂ#>ö´1ôûnÎܲnex|Exla5f« {>YNÂï`eä<[Ç_8$E¶Ø¬LÛ£¹Á€£¿¿?°Üû‹AÀ÷¤M9¥(ñ—™³7N—çóqì€âqÙCQ’Ê´s'Ï ¯ß¸Ø:úÚQqŠ”ÈX:öØ9aÚÀZ1óÕ¡I%ã£S QպĔK¯†-Û@ôXE/Ï»Ãèbb›Éd:‡'ö‹ÀÁ>¡Œ¸Ã~à`ø_Žg¬ˆÀsŸ«Ôf‡£­¤¸ q¢=½üÊï–EMÌ‹ªU'—ãêU–¯Á–8³‹49‚” ü[DðGÆ©_F@…#™ŽÃá½Y~ë¿à¹+aÆdñíï@æƒÒú·¸ý`:I;M²†öcDÜh3HfÒŒLÞ娩Z™Ð¬NJÓ—é“êÆ%6]u³{÷vž’®‘e¿¤´W ¹ccÙA“C%Åfw2AcS÷LF(üÀ÷xeE$ÌÁÙä¾­ÂÞ eã[Pý$dÞ'Ï¿E~ûZþ¥‰üsÉðÉ¡êIië»ÒÁ2bt~ ‡$ûØæ8BúææÌ`6Õ<øt¥~òÒqê IS ôÆÕcÞ­wx­ghf´7xˆäEôDc!—Ç4b98ðõ‹Ÿ«Âý<«‚ÅbéëëcÀáoÿDz2¼ Áo?D†.™³‘ö› ™‡7þþ÷¥‘“«5 Ë£ŒyñÖª"˦ÅOŸ ï ûV¸û6óîam” %(ÿ·2Š2£ËcÚµª`:Ä©Tv| ͯ(EÉ«î–?ºQøÃ4å¹iðÞõPô ²á·R×JèÞ¡ØúÆP:.G×í<çAq9­„'áàØ™´¤+‹“®(VÖÜÒ„ä UtÝMw‚§D +x¬Y2O¢x¶hnø£þàø°ÉüåÍ,>ÝÚ?bxx-¬šƒ%âúêe_›9ú_Y"M4D²y-/¿Q9­84f.z•^—­ ©ÐëýëíPógqãláx¹s  OÔíRŒ%(Aùw‡ä#ÉšaŸûx{?ß½v¯€Í‚êg•ìGIKÙ¿_ /]/þåZ%ãV©ñ)eÇ8R/öïqÌ´^áYÍ·Lhpð=iW-²¹«¥<þšã¤|cb¹JÝšXc˜’þƒ`Ç.p9Ò%Ó3Ú‡€£±exÁÌ Ä‘ÀŠïóìÓé ŒˆôØQ¦ÄÖ¿CV|dY4ÛMâEŽ8Ê<"œê¯äç«Ô1%¡19ê¸ôð˜†Ø¤L­êÌë?†Æ§…ÆßÞï‰ÍŠ£—0ˆ)C0(A ÊØÆÑM*Üv±¯ fAëß¡á(þ¬ºæÜ¿»ÅûÇ«=Ënâ«f([gÁþ¡» Ü}cÈ56'.݇ÀiB, õ¤¿€foÇ–ò¤k*T±%Qɹê¨2}B“*ê“ïý´§¨ÚÌÕ¾—Ø(NY LÁeÊ¡Äfw‚à_ v»ø©†|­ÉÍÁß¿C"ý×$'H´É&b•hÝÔ±ð¡g«TÆš˜äU]ž1¹>bJ…JÝÿÜO äYçÚû óï\W Ÿ·™tæÁA¸à ” å?(ŠGtôxOmòv¬V6½ uÏCþ½|êðîø?]ÍÍþä?k'µ/€Sµ0Ô^(¸2'µÊnº°§ý.]cå|-T¯ÛZZÒ¯½¡p|ÔÚШâPõšHÝ&U\IDòî¿ýðjÐÞ–^Ôýý0ÐÓ7áÌvao.lýš ¥J™·ÂìK³®ãg_éwBÍÿ@ëÇÊ‘R¥w«b; ¤rŽÔ¶Ñ¢9…¶%;õ2˜vP<ÐѶrÂåUêÄjm\^dtº.jY|Â2m̦»ñ´l$=—Eè•“Í3Ðk>{¢·÷Ì@ïððÙ~çÐ0¸]$kÙ){çI`]ôîW<~â=Ýý½g‡†úL&èt÷éï;=ÜïâX—4ÂÿB†’8y²íÉWs"&ä†GçÄÅ–ë¦G$¬V©JÃN=}£²t”?[^†sa÷¥g«â"¥¥ p%(Aù&€x³4¼O>VC:t´üꞅ⇠eî¼ÿ?þ®²èF(x6¼+ï^#Ÿlƒ³5¥2JjI—Êcˆ5—t¬$)¼:we^ÿ£4MB¶J¿,)6_YhˆOSÇdª'îë]0õÙ†zFúm#޳ÛàˆÕ1`¶ž0ÙFì¤0O$$W⢊Ÿ^ ‰\âì’ICNQv;=Ã#ÎÞkwß×`·i ¿·Ïj¶¹I[Mê(Dt‘ì 8§,OzZ@MÑÅ!aFM‘:.'t\ý´ˆž'¾ î‡â§ ñUqãë°;Ž–ÃÐàm˜\” %(ÿ9 á¡óŒ|f›r ¶Ï…µ¯Cõ3}'¤þXžûiÎ÷ ý^¨}Ci]¨,Ní„‘ã Ø_¢¯dyìÔŸYiïc•·’ÌÁ™SU?ÿU®qÚÆñ8ÒtºâØø¢Ø )¡‘™W~ë[¿?zêðÈÀYë@ß龞–¾#‹ÉéVì‚,Jþ³V|]^}Å• E𿦠iÿ40Ôß?Øvøäàð1ËȰÛN|Yž~°ŸÎÉÈÿÑmé㢛ŒË£ãS5ê<­¾>":G²ö Ãàÿ\ K;ÅÊ_É›ßölýÁ™õ`?²F»Óqƒ” ü§—à¨çx‹l:(h€®U°ùïÐø”=¹wÉ‹®“f_+n’gaÃß¡+E8ÜýàêÉãCŒ1Õ‡ÅÁ­‹”‡;HŒF—s׬rUÑyÆäÒ¨¤4Õ¸¾*2¾@¥©Œœ˜}yç«¿n]?l9}Êröøp_Ÿ×kõ}vú,ï@b}Í»»{zMgûÍÃVwŸÅ;©RŸ¡ ) ‹ªLºdµ.²ã§Sí¯Ý o‡Œ[ jº¸îE‚{³ø“MÊP'x˜•'Ó+cÉâ JP‚ò-ñV¡âdûYñìé`‰²c¡¼ñ©î9(}LY}‹²àZXz3ä< o@ëGÒÞB8Õ æƒà&ýéÆšÅAšàõÏàŽøad놼ïßš¦Š­ÓOn O(ÒG¥kukU†]|‘*2_›ÜxÇC‡W®²Ü+;l ŠÑ-‚ š]„sX"l%n8šÌë•!‹Ýd·÷÷ ôõ?môôvTWoýås%±—–ª¢Âcóà ùÆøÔ}aD즨É%¡êâI1‡_š.½w,™Y÷ÊÅwóu3ùÍoñíËå½%î¾ÉzDÛç}ƒÀ” å?©FGKD¯E>¤œj‚=é°m®¼îrÕsÿ¬þ±´üF1íN¨|6üIêJ…åз l'eâfiÑ¢"pÂ.Áƒj^8ž˜!´y‡ËÑóþ¢‚¸ï®ˆLÈ›XU¿$Ú¸26zMdlAX\‘*®H7eÝÍw~ýÇ7ÕºŽu«$;H6I²‰à¦aDBUâ´ö{‡Ï8N9Û¾õèÆÆ½Ì.ùÙô”È)Y uò´qùÚ¨]TVdLFxdeô%yÚ˜¥jUÇc×CÆ‹ö(,»Í½äÿ)ù÷AãS®Æ—¹ÖÉe?Øà±W $ð.Éz În…ƒоDÞ0K¬ý5”ÿrîäWÜèYùc(ý%4ýFj_$È’O7‹¦} ©³–¥1³â%ñ¯‡.Ñ97£ –X -¥ã:¶oÏó¯d‡Çè²µÑõãã«ÃâóÃ"3tÆŒè¨,£±P£­U3#Ⲍ²'\Öð£;·üüéƒo½s`Ö‡?úôàÇó|øé‰Y³›úeíÿ»;oò5k S2Õ‹Cuh\êcòu±ÙáÆ£l%·¯€ÝÅp²…s÷+’r2úM&Ö>(A JPþc±îN¤"€wƒå„|zƒx Xéš'¶üM®{ Šg@ÆâÊ[!s:”>©¬ý+lŸOÀ¥{³2r¸ÒäTñ*A…õ% ³¬¿½Ä/-KqQÞà9èÚ¿íwopeMDdñxmI¸¡T›¯AK¡@Ÿ”¯K,ÓNÀ­D“T ! „¹úØ\c\–!¶Xˆ’-‚låË“KÃ&äë4%‘ºBMx~XX¹ÚX©Ž)W’8?:¡aúÃ+ÿ­ó`ç;JÍ3q/šbæ½äÊ7ülþ³Ð>Ÿ?P$v·Âà‘àý” åâÙW r`ïQζJG«a÷reÛGJóëPùäÝ/¦ÿLμ Æ7IKÙ=òñ©7Ø{I^(é}ä[SrWJÖ$û“®Æ‚¾ÙJ,[@ô€Û ½}Ggý£è'w-2LÈÑL¬ÒM* ‹-*6&äŽÓ†Ët±Õ†„J]Li„±$B_ª6h¸j£‹t1ºØ¼_ƒ” \Sö ˸Á´GîÞ󔎥$êé7P9Sλ[ȾCʽ ª_„õoÁÎ…Êþ"þT‹8|Dr )‚¥)Y©$ÛG;QsJ¥Ž—À#q6Ñé/OJ5%+ñ¶ïnûãßs¿{Snä%å:´ ¢s£²tÑÙ‘š¨Òˆ¨²0Cuxd“6®TY¨ÖçkôºÈl!C­_£Ì‰¯Q%W„^’­¹4óò›7¿ò{SC…8ÐÉ{÷*'׋‡J¸öEÞuoz*ÁÜ+gÝ™·Cå3Ðð*lþt.„Ãг ÌGȯ” %(ß¼ˆÊ({ñ5‰°Ÿ”‡vÁ‰Fe_¾²c!´ü_RÊ îäòn‡’™Pû"lž])â‘*áÌNÁ|±ƒ”GH¾ŠVÈ@쎱cr°roxÒ ÃWѧx$É+ŒæÜJ¡Î=y¸¯(wÓÛoÕÝ|GÞå×§ÆLM7NÉ3LÉO.ŸT’T©M. / O(Ô'ç&eGN*œpUíU74¾ðëcËÓ•Ý ƒ‘«†÷AÏóÉ2ç aç‡Ðø*”> …÷AÉ}PñÉˆÞøhûög‰èÇVô” %(ß´È>šV߯×$;ºáìùh£Ô•©lŸ›þ ÏKåðÅwCÁPþ h~¶Ï=™Ò‰©—l9®¸mÀ¹=øhœ$ŠfŽ$Dq’ÂSNÝÑs oD^± ¼‹Ö€¸÷ˆ.’ zÀ6âsf츪8¿Eû²¯ =*}7e£"à*øºÊ‚P÷Çú¸{’ë‘É ‚@¡þH‡&I¢6 í²Ásüp×w†wCßû¾\Ø16þªŸ‡¢G à~(›!Õ½À7¿!ì˜+w.‡C%pz+ Rìƒ ïvú JP‚r‘Øæ0ä o[ On”CG* ˆ¯û#Ô½ ¥ÊÅÊå¿„úWˆÃªc)(„“õÒðvÅr€Ô5ÞÏʪ•±SßÁ3º)…Võ)ÊhY²2šE‹`9)Ÿí”6·c1l˜õ¿‡ÊÇÅ’G…¢JÕ3ÄÁ²ícew.û›eÓpžÎùÙ²|ìàRÝ¡(¢»–æåÒÀ›\É%"¥\W|¨+\4Í/N<š^NI‘%‰šþk‹VˆÃæ°ž°Z»,ýÞSE°/MÞ¶Öý^l|Á[;ÃUy¯§æQ±éhù¶§ÈÖÀ±r8»0ƒ¹-@Í–`µFP‚”‹Z$<eä”ÔÛ)o€}YÐþ)l™%4ýN¬}^){JŠ'v옯ìYGkÉ@Ø7 2O0Hù¬2>‹ßf6WEdvÖgicën§ ñÙ-p¬ö¤Aëyýß êq(›!–þ¯ª´þ-aËlZë— GêáôVÅtLñZ}D†8²Œq%(A¹˜}X"ð.°÷+C {3ÚеvÌU6½­¬{ ªŸÄŽò_Aýo`ËûбDÚW$®"Y£Ã{Hþg…ðжÈ#ýjiA¾­À!ûÓ’}„ó¢x«bï–͇ä¾6ùd#ȇö%°i–Òô&TüÊ!U=¥4ÿVÙò®´s¡²k (S¡·l=¤*Ó72|ŽŸ*(A JP.:HÕoGP÷Àéf8PH¼Rmó`ë? ù5¨zÊŸTªÿšÿ›ß:WK{óˆÝqf íSì=;Hsse4ŒŒ°! ŠÏ)ô­¿xJÑ%{F$G??´Oèk—N­U+iDü}Y)Šp‚5!þþ•Øt{ÒáPo„þÝ`>ž…¸=úú %(ÿ?†8›l;­ôwŠ'›Å#UÒÞ5Dïmy~«T>'W> µ/AÓï¤ÖùйäÂñ:¥g«<°¬§Á= KÍò%ýŽ–x|Û!—æÈ’WáFd[·!Ux­ê_U~£4¿.míËao†r°P<^/õÒ‹¶~IóÒäoÿu JP‚òíX:ûKùDàͧ ·M9ÝGªaO&t.†mïËþ$6þ¥ñ×°þO¤âƒø¬ áD=ô¬çúwI#{7iüÄ;Hï'é[­pfÉÑ/›OÊ»¡{­"WÑ¡QãoÐø:4ü!CÞøeëûr[* w¸D9Y'ÝæÃàCú,)K¦w9ˆA JP.zýL$Twqà1ƒ½LWÅ'›à`ìM…ŽyÊ–wÅ oAÝóPÿ¢Üôš°áoRë|iW:,…cµÞ3­B—2rˆTºMÀSvùÛ{Ù<òs@´œ÷I=Û”ãõ5v§Ë­saÓ{JÓ Íõo*­(í å®L ²ÕгŽô„%„TNyí¤B›Ñ*‚/Ë7A JPÆ (î#’e¿Ð·S9¹þ¿ö®„©Í+Ëþݙ鞚îI'tÛIÇqâݼ“ØxÁKœØÆ+66„„vÚ%Є¾ï½wçžOˆ%íôÔT2åÄ~§n¹ƒìz络;ÿˆü7Éy–&Ž‘í€ùH=ýwzòo4òg²¦™säñ!T{ÝTŒªrZ5–¨µB²ºmÁaM(HF·…µû4ÝÁóη½Ã6T!wóDÛeoôwfQv'5Ä*µ*b½(Wãf)l¦*>J±'4wSú϶ÜGèåéùä³?Ã6ÆΣ¦·Wø/@$GTÞ%Væ™qÐÆ¦Ú¤­E444Þ'´ ª™åY™sRü%&X\¸{Éy„ÆâFýì?èÅÑør'÷95;H±˜JÈ{d!"W’Š/Õ­&­E»ÃJ©NIEX”¡º±‡>~[Eu<«@yÖPžÑ ’\Íšµ¤(‡Ä¢[%Æ)ò„·ÈA¹ŽnM¤ä_‹ùûÜíGäLŸ ö«¹f ÊNÀ)Ã/5<š2ôŒ¸††Æ{&9¨]·#”uÂñ;z‡æ®‘ï"¹NÑØôò#búù˜Þ ‰¯À)þ~¤­âÃ*5e.ùøj-ê smEn6,³X]îèxgí±Îz×owÏ+Qû^Ä Ï¯¿U¡f^ñ;*…‚Oæì*ùZÍ‘ÿ¹Ï¢‡jìSñú¿1ë÷ê4â:+ïy¾F±{”xÈZ¬ÑÌ“Qg­V]ÊÐÐÐx¹CÀA}­$Wæåâ”̼©‡V&ÿ*¹zhü½ú”éC½ü èÃöM%Ï9 Rô‘L©Åiµh¯¤DcU­U27Ðô«ÄÞƒZíq|‡ƒbOgò6_tªÕpXoÀÑ«‘¤Ê,<";)Òcrá1f1øWá•‘û¸ö!û7|Á~õzý ÒV|ñöôÁð*z%ܤ(¡Yª ZÍ¡h«k¤÷·{PÕž¡ã¿ßm‰a’lãu²ÐØ,áÀ¯- ávÑA™Wè@Ž QèºÕv{³á¯?†—׫hô¯bê¤dñPsß›±'fj\f˜qÔú2kŽË®zÏ›Î444>@l÷Z‘µ¨ÜXS³k­Uz)šè ß&ï%¤­&¾Ä@ôè§ôæï8E§¾&O/¯ÐüÄ×òÔeí´ä¦åUcVÏU‘¶*ÖúòVw¾\zW@ݾÓÚ$-ûÛV•ø¨_[e¬„ñú36J ƒg)x £‘ŽãÊö¹zó‰ýý·“‡ù+Òÿ­bN‰ý¨Ø£\ Èj’šô9ËíµïÆŽY±†††Æ{Im¬¦à³´Óòd6寲Áª¡è§ü´H޳ô€Sà;¦ å8†tÍøçÒöwa;(¦+wŠéÁAŠ Qì%_>òµ´è#¥ÖËVþŠHÓ &?×;ìCUæ¦2×Ñì´YÁ9ÏW‰Ã´¶à“y2oñgù”1sC‘¶Ãh»ûTÿUM$çqš¹Hþë*r 6é©*?%KAUKÓF…Œ®›ÈnNìw¶ÇDCCCã=HiSQKvrJRâ*ÝQ¡j”ŠA‘uñ×ftˆÏIì—3½d?B_™ãŒ±Ï ÛÁºÃÕCîˤð=Š>¦Ä«™wËb@•fÍZJÖs¸Õ·j$,îPÆ;\ì¡ÚM¸um”åj3}+ój9L…€™uˆÔ„¹0Œ]ð&XÃq’&¨Ñƒòõ§,7ÔÄg4ýùÎÉÐ-1;¤b?Râ1åÞPÉKõ$­¯`ãLçw‰c›±ª]·ãjhh|JÄò€µÆ¥”ŸÂêºèƒÎU\Í\6=ÆÄ11~ˆÆÒøßÈö7rŸ'o?…n á*öX%^ÊÌ„ÌMKR˜*ó|ºªfVnD»l¶ËhU5Ö¬DÖV§ ‹¶ïçû«Õn샴ÐÙâªöê§Ýý r»Q .è« ->Ì_Õ,UÓ´’ r„Š>•w˜™‰vú ú¦"÷hv€}4}”X\ð›ûÌ´B·íôá½(×ÅÜ=”Ë“/ŒÂ¤(M«j˜V³xpÃÔUp |ÞnÕÔÚ¢ªÆ`o˜›¤Ä ¸¬ÏÝ¥ÐuæéêSŽHøO|AãÔä1ržF%ÝwEÅÜrá)°*=®²“Î+,°h$͵¬h.¢ˆÌ'9¹íUV jMôwíNÊí…G»¤°/ºÛ@þ‰5T‹~\FS¶¬žd³ÄoD62°¨-2_„aržŸ¦ŒM&‡Í…G&sbà†ò]QÞ³¦ë˜iÿRØ‚m_(×I+wŒ9÷½ˆ=R©”3Ë>Y¥µ4µJd®[bHg¤444>læ@Z £pEjðý<¤–œ,"Ðk¢¹{pdò]FÀ~TÚ¾cÿ`‚˹ã”tŸ•¾~Œ6Ì Ê(3È%‡±jÑIËÈ_‰RTUãði_Í¡0Ý,ªõµQ£V„Õ ±1‚*¶åÑaÒÞ þT´æS{ë­BËlÕÌf“häD=-+ ¢‘ËaVO2çT;j˜X¹Os·dh@ûñF\§hê1ùÃö¹˜8„Î1ç ­„®ÒÜmþf¦2oð.J^¹š·¨jèãíúÌë2¸††Æ‡ µ³ðN4a*²–••¨Y CzdÆ,õ1õ¸&=—LW/¤ÇäaeÿZL}úô X&úú(ÜqÂèmŠÁ+m£´Ò*z!dÊ!XŽWº<ÒȪ5øÐëe 6©¨VUµêr³Âa}Œ@&mc…ƒ¿‡C¬—ø§Ìµ<3…YOõ$¿Z¹2§Ê!Yô³Þ‘¹)Ÿô8K ™x¢b÷QÝ^÷ïÌ)š>†–cûa²¥¦IÇ7ä:CÞ‹¸J‘ï1)ŸxJé×*?…Xµ(­&U{Ó*j]ßõN•¦ ]v¥d‹$Úu¹Q6X”ÃTôó½/íXl}¨Âwep¼½ä9Ã|Á¬ƒ—¯ëö¯ùOé9IÞ \Â@Äì]Š<¤yÖ,Ïù¦ì(¬Ú¸Ã/Ͱ¡R¥beže‚¬ÅU-Å„‚ÍSÖ;ÁŸ¢þRM½–PÕ³(ÏšüË~Zrâ‘óLs£XžÎúbá “ó… _Áï„÷¼ôôHç1e?¬&¿¤‰Ã–Ä8Bî“4s–‚p_™R‰akPÅÎLÇLįS*ûÖšOaÑE «¡¬©e(¹¥ÌuÑ^Cr©–R¥ˆ\òâŸW‰—já9Í ªð5éë—î³ÊyZNU‡•íP{òkÃþ Æå¦{¬FÖ«¼A¡[Ø‚Ä7ùø#¾Ìóᬒ#”~CÙ •·xT⦂ª¤ä·"¸,R:0Ñý´ìEÝSØÁD¹7ˆÔ J>Cã? «†¹Ûæç½.gú„§×œ>m:O™SÇøµ™“ëž!ß9 } r‰>€sWÒ&Xefh%¬ê ¤Ô°©c?µc‘H]ëFajâÐÐÐøÀ³UVó’Õï´½]»[uµW‘\*ÏQÁK9e&)ùB.`Ø\…n:CŽ“Â~b;ødvœVî^Üç½çTઠ^£ð VŸÏÞÃFQì)ª!¬8X•°^àÈŽ#?ÆîÊÁ\“yE©¬PO=§äJ ÑÂCŠ3YÜE&?tüßaÁ+?¯»O90©qÇqæá:¦ó\hûÌð 9[Æï«Ô3l<Ì{h) ÊÖ<ãZŽ6˪ÝÂè0JÚ_ï´{éÿ60mt-Çѹ$»Dî\7 TOaGÁ«ò.V23Áê¡ykì:p#çžs4ÝGÎå8%§ŽKç å:NÓ'„û¼ð^F#S`@nŠàmºË ‚nÞÈØå}¨bÑÇ{ŒXæ”…g»ÁŸÆžb°}þ!?bîžÅAƒ¬,+‹à5p“¯_Í\d¶b„0ûQšê¤¤Ž¢Šá9N Ý ðM#öÀL ÉÌs•¡¥ *Π_·šÄŒ|nË$Ö ¼,ÖØÂ/ÈèÁwéC‘ž×ÐÐÐøgXµ4¾"ye¬ŠÍ²¹ºÔ®çÍRX,ä’Gæì”Åü5+ˆÈ¾#‚ƒ˜€ð]‘žKbúœpö²ô0'8„ë4ðé^‹û<‚OrfŽàUDhfm2ðö „ø–¼—!sÜ}äêež"ÇQ°ÃÔ1Ô\ð\§L×ÄÌ%áë­„oCéD m8ñœrvdÞ=²@ÓW--W—d³¤ÿÅ5444~!ÌÝ‚Æ÷àÝQE3mjØ=-ûP¡ÈØPSN¼`Õù¹ÇugVs‚žËÂ}†CN÷ öáêÛç9é>¯<ve+¤çÂ[£ûçÔôYäÁ\üh=¬/Ð[;}ŠY rƒÿ–ÁwIu ¦fo¡ê½o *Zµï̘*¸©èEV%ŠqõelHÜZÕÿâ¿TqÈn>fg£ÖŽobùf{()̉—‚(mÃ3p”Ò#(UwÌf#? ô0{‡ý‘ð]F: Ù¤Kjú"‡tõu‚…ÉÞ0]ÿ*Ät‡t÷JÐD‚dѯX¯Ydq›æï¡’|BéaGrãŠ_rQq|QK`—úz¶ªpÖÖ‰††††Æ/&8öí[½j™\©èÃhÀ> stream xÚ}’OHQÇ¿³%B¬e&RðN¶Wí`ŒÝõoʶ¬k¦²Î¾ÙÞÌn%Bˆ.AÖ1ºXÑI:†‚b]"è(‚—í73»îˆÚƒ7ï3¿ÿ¿ß{@](mšz€yÃÉþ(»;>Áê7P‡A+­Xf$‘v™lqdí}…䜛áãõÿ] ‚U€Æ¬ÇמöxÀáû¶iO:¬äÒb“¸M¤’1âWÄg³>žöq†[ ñ2ñMÅ'"()Y'æ±ld4ƒä—‰»2–’'&ßÀSg^™öÐ}8õ¹&›°€åwÀ¥Öš,Ô \V:k²Ý¤;©iÝR;;\‘Œu?ÊåÝV þ°ÿ¼\þûº\ÞC9¾u¥(J•IÒÀëÃ]ýÜàBS˜s_ QP5ûFz¼Úë׋Gõ%«t{3qW°D÷0vz ¼ü \}\ø$€Ôu¡ºmþÀÍ+˜…–ÍÙ¬C–;XØ9:Y„^g±BÞ,Ú\°ACioci]g®©Å·¸(ñL;òz±Úï9ÚAnŒŽÐIó ¨Üê­°4“I÷ÐÝ x#Ã{zwA¼¨j}ƒÎ…Ðþ¤Š¾Q¥óš=˜ò8Ðmèñá Ã(Äo{1±cÚÑd5¾Ué­ÊgÒ·t¶üÆlaȱi"ßÐ\.5æ±”šËÅâ^Å8tph0èk€!‰~D† TÒhd¡‘”»6‚ØÂì±–:>f¤ß&Ÿm×çŠäíxÝA4Ž…¶ƒLþ&ÿ–·ä%ù­ük±¥ªiÄ”¦¬?ûCqÌÕ¸m¥&/¾By#¤Õ‘%iþ 'ËW©¯:ÕXl©Errð'ñ=_—Ü—)Œi7Ò¬›©äê,úF|ÙNšٮͯ6×rm^™Ü ®ÍšUáHWü «Ãÿ5;¿?ÿͰhendstream endobj 111 0 obj 706 endobj 68 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 112 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 262.00000000 76.00000000] /Resources << /Font << /F0 113 0 R >> /XObject << /Im0 114 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 115 0 R >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 112 0 obj << /Title (democritos_03.pdf) /CreationDate (D:20110323170410) /ModDate (D:20110323170410) /Producer (ImageMagick 6.2.8 10/20/10 Q16 file:/usr/share/ImageMagick-6.2.8/doc/index.html) >> endobj 113 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 114 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 116 0 R /BitsPerComponent 8 /Length 117 0 R >> stream xÚí|pU¶ÿd¾£û¦_Ó~{Ê즊Բ¢Q7""èÂ6¨ÕóÒÁ•ç§¢ Í*Æ]ˆÈˆˆ¯X‰hVˆkÖ—Áe %è3àò Q R/$H`E%1 Ñ‚a IÈ…ô™®ºõÎíîùÝ=ß÷}ÿËÑdzúÞ>÷Üs?÷üê(¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥Q¥ÿot4ó²]Ó¬2Û§ÎÞµÿ´:ö¬ã·#éø£éòÑ=LÙepÏþ¤f2~œNãsï¸gùÎsIÍùãiu¸I­qר0½ L²¼¸l¼ x2="ŸõðG©trøÖуÇ-ŒíxB7gâÔYÏì‰}Åü=>uÝ8 šÇù5S=n‘q'¿qÎzôwdñï™s8…ˆn^'ýÃ#d¯KXˆ›ùDz<Ò¶¿Ù†éxOòMõµ,Qp»y7#Îíñ<~Áúiu}–Gp3™°#/x²^Žèèˆ)¬Û·ÿUŠy?¥{DÞ‚rbXœÌ{Øà†aÒþäáÏÝ#ðÞ-ˆwÚˆH)a¢ ‚(¬ØtbWnÂÇã(ª85—ŽX2…ëxþÛě۳™È¼(ò^ôˆn¯¶BÝö,ÏëE±g2MhC;*MÀ^W}nxZLÌû)ìá#RƈU܉ic‡hãNôèË2íhÂðí™"S)c»y1ËtäaByææô*­lݺçÊ&áRóüøsQ1q§#Râ´óÃG$yUŽ:Ÿºùà?€\hÿË4‘!Tˆ·7êuœ[Ì\×®’£ë²Pu™g¬õ¦¢P5„ª*.Ôä +·¸9ÒÊqó³H DÚ⺋–î!q±0îÎé›p©ÅÉí$J8=ËìÞøGÛ¯c`™´%Ó{„¶çŠLÅ ]p‡<¨†T•’Y¼[˜GÕˆ”8ãçÌËÈeÈFÈ|c0Äî@@%5 ]âÂÜÃ"'Lï¿‚Ó :-ÆDk[ ˆÜ¿0ñ’ý·' ÷·…K.Ç$²¤õ(ÇÊ=œÃæ¾5öÎQB û# ßÐe?: åßíx˜m‘ìíjd}4ª…€ÍOl×!âöƒ..ÌAI÷„Åäîg3nòu ™Îûýe0{i¬;¹´7‚8-ª›oQ“㉪é Gà÷¤vËÙ‡ÐÊÖháoÁûE7'ì‹ Žçl÷sh$r,V#^ˆY¨ #qr?ÕâúiyœMæ`ôÖ™,œÆ¤ ÛSà öO”Ÿ¨ˆ8O¸?œÃÀé6.†°eu¼Pe´• ðÆõS÷!î=Fîl9n?S­®^€IYû¨%ihc7ÇñRW3$0¿æºmwÚoN´0žÙÌ%‰QKšˆ0z,X@ kE.£¥g©I=qSM時vt-QEçsa`ˆ‹>€‚=Çb3šÄ¬„&±†o³Ðέ/ãÝÙ±íÿH2ÂaBs·Ý€„â¼Í8,d¿U ª­Ìo’>BëŽÞ!•,Ç•˜je)4B–£œþþ(pròä˜ QïÑwÌa>VqÛ=fغ9n}5Dœ¸:–ÃifËŽR+‚ÏÙ4Œð€ÐIœ{jÜÈv„áH<âð™*pÂ.ãÁ·ÝVÝ#pürDHbÓxwî$Ž(|ã Ú­ñý6"|œãNãú„ÈsÙ6€>N;®H4ôúÜã D$#ŽCÜt4»Ûm"nŒb8ÞÔÉvsÑ‘áÇ88÷x}°ßªëD>»·äú„ûý¸/k~;Õ9•í§6ƒ™n÷8cJwòœ`ÙhØèÅmU8øÓMP2âø8ÄíÇÕ™c'‚cTi˜?œ/?~DŠ£ÉˆCBgb ‡³CÜt·;Ÿ`à‘èpcŠÃ»‡¦#DœÈJE8/V2{ÍôÖ©‡»À³35ß}ž"ز<$ê¿Õ)j­Öˆ£0É­GС›qÞ“c莩Æv:ÏÖUœyn»h €‘¤°š1šÃs7Ó”*ãxLs¦ºÝ“Ó+Ž¥Á²R¨pkûp˜EJÄíx±=%[À˜)R§ê‰é<+7d®·W5â´I<Çb* ã—2œ¿‹2’£u¸«#þcXÓ3ÞÃéAY¨ÌíNQj뵂i7ű '+Ír™·c –*%⎊±ÁŸ%ˆ‹YŽ×>™UC=ãŽØ‹• 0ÁHgº¦r k˜!§ÙÛY)íÑ4€Ø˜:5â#RÙÒ.Œ"â*–*À®ñº—Ølóˆ5âÂå°É4LFÍR¥6‡`ª o¨v7@„Íb$‡°#ÝžÂFæÜbû=BB/ â41MDD¡ÆÃsqR²e!5™¢Â:]´AKm6³¸Ä&sÐDwä=º³~ByŸ0تƒ<çÙEhhŸ˜TåM•ñœ̱}KÓÐa«ýL¦›÷ÄE.©§^çæ¦§âªÁC¼ìÂ4Jf±â¹õº[#næ z\k“9œ@[öBˆJÓ=¼ëáÄÓáC-gU 1±ŒžHïâXèg.ð ¥ +­*LôÄØâOÄÁãƒÔ¨Ïrs¿±º¯Þ)ZG6ˆcá[®ya‰¸Í±–k=€…‹0‰:Fòã ä§‹GîÑ* #ço‘âB¡GwÜ;–4qCý®\É>TUÀdݸu"h‰¸ý‚çtceƒ8ŒÚ#åGdnØoÛ#]Þ9]a(ÏvjOø§CòÏ·øQÅaõ8LlÆs¼'f_§Adº…”iðT´+$z“YHHl³ÌUs9^Ð÷œ5âÜÄñOD»ÏÑëÍÚ¨ªÈðp”w³Š¨YØšb£ä›…¸€AhNê¥çµ)„òn!æõSjÄaL„ŠL¹ýh%l̉þ"Á²Å qo nþQÍT¡â4![h²9~UqˆßEƒUà<Ì÷AÀ öNm?Æ™sŒ¢é:Dlš4ß,R†}£LÓäªÐéðu¶k¢"N<6©)<Ê #F\»'ÂÈÆÆEME3w`ï¦càÁ‹‘Xˆ°RžŽJäðák2δÐð! yÛŽçX'hÌzœš‹L#Ç4ˆSÕר[ Î0m´Qe\=.ѱc k]]MFÜ…l”iµÄ¡;ˆuÒZ †ç0Ù¸3vU†³v¤Ãci\F•›¥! ö Ò=Öõ×oÇéISäA¦‘q€‹Ç «-9Ó?à¨ãõé^ÎùõŽó¬·z*qG¯C[Î>m÷—W•½ÿCŸcÛ üE G´ë1ñ³<„q&·w8ÄÒT²ŽG&VÆèó,·®¸#áz„þ€ìÃeÝ4ˆC:Éq&¬hyL•åQ'>ÇÂ4E´>>’ˆ¸í4ê7 †S+kÄ1Z =ÌŽ;qY±i‰õˆŠá'¾Äæ {ÿœõ'ì¡À Ï'Y£·=¼‡M(t4šS’I¢ý6bÆ#ŽIsq%LO:±q9Ÿ¥¾ûLÁÏà4rb ç;Ù ‹–IˆÛ3™%¹Se8–Ä…=j»ÀNÅËJE3ÑÃÂÞt wÄïÂsóÇçÆ¤˜€ÎaçIÆÅƒîÈD4ºìM>¨1ï´oQÇÙ—-ÅLF¦ž Y™5ñ‹²9KÄÍñsð8Ê|s´‡}Ø'Qqç¶?‘ÃêPü¬è“–ˆÓóÐ8v€ñŸð"‰Ð[£§™`~/?ònSÝ¿Ð#à½üÁ”j˜ä¬g'ㄉ5áu¬™¬ÇÖá´Ç¼s@wÍ›QDzıøhœ€“ÍYñjg^ËA¸ñYí4Re!¹ˆ›¬°B¦{Xy@µE\fvv6;“¦kMŒ{QÊ–Ò“G«YÅ#1($5ïö0Ó‰”âÈ®,&¤G˜üÐs^½pZ;‘'Šë´„gTØ£7yø[ç<÷Æss& Ýñ¢ÇLêcß9܉šÿ(,fjÄ1ßsa: éøœü²×Öÿ.?'Ìñüä31Ký¹ì8Köô߯ž5NÀmdŸ.†+âú'zÊâ¡„K_:w?NétŽOLš1MMˆ$B;=¼5`d½GÔY Üyn¦Ž‡Ï…ÅŒÑ^óèGäØ QãL¥°0| =®nveõqL„ö[½Êë‡îðJÌÝwÂ57YäX•׋Cðí´{#Lp5uÊDi³óߌÇe(×lŽø8…ìäõDG›‘õ4Î<ê£Tè>‡÷°åAÁD>{á9k¡ô¯¾‰gà`«)ðÙeg"Bµó>ú^Þæ=úË4“}SY¢UÁ@Ø9]·îÊx8u{Üt Ã%Ù•ËÒrnAÊlO‡Súúë5o ýåÝöÑd¼ûF­ßGiÍë듲£îÄì ¦æ˜0Yc§ __8=7;wòCÏQ©ªQ"p¦fáÔÜìœIùëO{ÞÿFMì‰gØŽ]6ÄŒÃ{MMU±\#èeù“ÆgOÌ/Û9¨‚KÖïG«ï¿y\þº=Ô'€°b*þÍúœP<ÑÈٱĹNMô>šªBB`ë‰÷T“¥É ¯s$ÆÇ˜»$ö9-Ç‹„ê±É¯ˆÎNÕ¯Jl#®’ªB µEDHß%V›VI>Ö]ÙRŒt ÍònIÒµ˜)¥ÐèG"æ"{%ï6??¶j\Œ\–Ö¥‚БRÝìàÿˆÃBŠ5U–VöàÅ÷ó ‘‚ÿC6lo<Ø£_è_¬((xº1Ò¡piäRI9ÈùÊâ¼Áa:úB*oNÕþá}·tË„ÿwM%ߘァÒ)-.//O§Pò¬®{¥jýºÄ‹¿†WJþk ¥Ò³ƒ?¢8Pªé¥&;þ»e¥¼bžâëJl¸’Üê”Ð9»èZ‡“‘Ãÿÿoë Š •ß½—ž”[ I»I꥽40ß²©Ya£çgÈ8é ÞZ´²j£Rj4jþ@dH¹šVÊ'­ù·É¥½h_:|- ?(ºÞ$ÙKúá§ÃéÊÈÈp¸\N—ë[qdA1„,ðÂIùPúÞ ÖSZµid çF‚’Ò@OÉ•TwÙõøE×Vqdf5éÛa3‚Ï?ļ/ tÇ߇ Å‘ZÅVÔßþ„›cì]÷=òز%ËžM5­¯ú~¼â ØÏ&ý…ÜvJªnhh8NƒOÍ›ßRYP‚’WT^ÂÏà¼u4ðta°«¸û3Yyšž_S0¿Ÿl˜_Úæ´ÀW‚¾r¥’¾%™Nyˆ´à¼‚ qJ –bï¼jÚŒ=—®Y°˜Y¨Ž' ž–Lº”Ý‘Í7€C å¨/YQÐVHþ½tëü‚ŠK´§øÉ‚¬GOöo¥m¥%_Pº£d~ñ¥È¼žEœ¹¦l{a„ 7þb,ÒÏÆÞøŠé(ÿ~£AËôoïýúÿ^íºaQ_´em˜É]ìÛm6*.fGlû¤º“’„€È“åò»#•âbʼn,Vük”ú¯òÊŽéx[žRÑ‹=üÒ“´_)ñ›ŠSª·(ÝZ³ôeÉ|ð…ù?U@V*²,Éåô23àõ¥Z«—(ÉSþÇè1EÈŠ¢ßZƒ|*"™_Hµ4¨øV*«È«Rqk•â/U µ.Å÷Séõ+†F|>OÚ¡U+¥Û¢r9WÕß{Ë…ÛÕápd8® ç˜g‡Xãð_¯G­^õÂwìË¿¹®z¾ºÅõó³¬eãX—+ã&“nìåúåÚ(n1CíUvŸTš.ö¨% œUä-…ÖI{Z¥`‹ô½Að•hÐ&#?”N›”CǤà÷¦]ì–›‰\¥~œ*”‡‡ßCŠô)WÃÿÐP§\ˆ¸:¡é"o¥«|Õ*²Áå€t<,Ù!©µw¨¼¹u‘U´Gj¡ÞW‡†”®SRƒoÀ T¯Ÿ÷{¡ZŠhòS§óêop0r1Ç´‡;×u£Ã…^Áû·ë=—¹Ï‚ g’1ö;V¸z ûeœ5¸¼ÂTÞbcö ÄÑé|‡ÜBXÐ\ê‡!¥Žî†Ùìü%ʆnü«˜ñ>å~ðB„ IÕP!ç!ì–zHÀ{VÞJI] Ò÷&ÿ¼W¥M@z¥ÀE-Éň8ô1@òÊ))X3,Ѥm0ŒôJµ¦`Z¹2CR$åxP¨½›Ù¸6|\‘¤àIÅôlu»™…½Òñ*9²>‚Pyÿ„Û˜)wÍ-Z²ví’¢¹÷M¹=ì}zõê+Ôdëø©ÃùS=Ô]–‘ñ+6Ûm9‡±WáöÛP×væÏ@Ü€RR«Þ½|½$}Œaä+l–WÉçYð­DÅI:âü~íé- ß”x@¡ç~Lö+C´OÚÑ—·Øà¿R9ÞÁì:äÔøIã¶DÔIˆ8ô¾•à[–0`"N[ê5⎎jyoãÞ†ºž* 9¶Èˆ¸æSRUã'{kÑ·™Òë÷ß‹Z¥»:&4ëpL¹ á2w÷í×^óÏÿ4f̘RUz|,BïOØú qø[ÖqŠÓy¯þSå×8þ;®u¸ ³?-BwL퇈hš)w£WeW#å~„RÃD«R9 VKwH«.Òݥ௠ZÛŒãP>6Éu¡îrùTq ©WtïóK0þðK¦¤•¤EZ€Öêû€ô€ï¦ÿ|çáX^Q‚€…ÀW=×jïgZ§’gÀ…ôú¼\¡çƒ3ZNIµD-÷ï¦Th²Áä½§äVÓ âÀ?»ƒ¶Í,€joxNp µðî³»Ö²@„m8WN-ty‚3ã*Ìd¡ »Çtu¹2ÞÔŸ q8ê;·9X¦Ã_/J¡8ðKŠ"g°ìõzׄ qMðt‰¾ˆF[R%+>ùEqò1Zî§°xn£ Ö¢äI†CƒhøƒÆâ•C>Éë•ä¨f,®Ë“ʵNYž-û/A^ý›D ¯Q·ŠöäÉ>Ü‚áÚ[*)>EZ9„f18Õ2¥ÛdÝÆ¡ðJ-Џm¸=»fJÞyÇ :/<'í‡kl‘Ã5æC´o†•s:õÿ+Ôz¦#î>løF_0u‚K××{·¿çrfè^æÞ8WÙ"n÷¦M ÇôÀ?Ȩš;µãÛ@‡6TbïU{)Ô£Ó?[{ž¨'öV;Ñ&´½Ú¨ïTlÁ=C,Þ…¶Z\Õ¡æ·*›˜Ó´“ÕU‡þ³ ݶ•­¸à[Û {Ô}¡ÿ¡¾úïê*J#¨u+·v‡CKÅ–n m[iÕv8¾iC·ŒÜï×a :T÷R=J‡ýÂ,îr:?¿B#·öonüÓ¶m†ÃU§ ‡°­ŠˆS±“Kwç Ý‹(ý*¤½w›ŠØû}¿÷/B•Û)N¯(µU{4V8cÿéÅ9 Œ\½FÄ€˜^Fc}Ùj†ËQúG¨×Ãx(ú²ÑôzÙÌ¢hÒÖ· ^ MÓY±ò,1º‡À¬Y '³Õe†t±i´à¤þÚáZ4Öáúí§s-°4Z §DEÎŒ[ðò+Ä!"0\¹Ú<ÐW„Žà¯D{g LqºÆà/o¤ˆZ[Ä%Õ ì“?]½çhMÕQKÍ"y €'ï®l.—?I×»_ŒŒ+’–0ê¸Èá(ët,¹ÞåØˆÊ™BEN×¶e:â(FycŒ‡à1¼~ Ûm£3Ãñ)úÙgÉ"G Ä-õÎ.n¡#!]¾>9&óYSbÙqW'tm¥Š¢ç)h¨ª`†¯>ü­û%ev•MϹ‰Ž„BËœŽ_1´¡ƒ|/¾ЏºÙ8—ޏ¯q{Ž5[Ö¢!¼âVîGCø%7|M9íGŠ}Bé³ Ä謭A Àª 4VWËÅÕÕçi¥âqËRÅ××ÞÐi^\Ä}];@ ¶hX*oX#aœR›\ !gåè  ™«;o9#J7:]?Yër¼‚Öj[ìë E.Çmˆrqð êÏP„Ö:ι”¼Z>‡ãçôìÏhJĆ#C¾§Gª78/EW]+}Ъ{¹€¡1Z¹š¬NÞ@LóEï“æU`m›ÄþÑBw¯T´îm™aQßꕢŷÊè)©ÂZH­ú¯v½ér:Þ‰ üÙ&¾;|j n;üÌlz ‡/Ú8@Àf|÷æ\f퇊£P0ŸŽŒ4è™F¦åv\åjU/5´xVYm"´#\¢CÀÃzo«ªè–¾Õ‚+‹HÂ\*}èG¯X®©·9\–87^åt¾ׂˆsbt«éˆ#DërüÄ•ÄàÉlœv ÷ê SÞO‹¸žZVª+ð²h®±à½h›æ{ wSz¥r¶÷©§*éÖÂÙ…WzžòÔ^@<}`<[Z{•SZ³Q Ñ‚˜QqÁ1ùƒð⣒ä­Ð é©V¹âmeU–ž-'•Fó"cî—:ÏÎЛA©#K,Ïkcˆ;P'÷aD³wXèUQ%^#5 *­„å·ˆFìî{ ûºüó½êY¥ÙxdžǨd/À¶É§º¥6TÚÊ:DçÐ7˜œ»Ñ£wH„ö*«èK>J¥úAeö¯—mSTú79fZÚ ÷³_˜tÒõKŒ˜~‚ˆ{„ÚâÌÐã‘ÐZ‡ó.fYþt-þºr—óçTÏ&\޳vŠ+.FÔ/úÚà€|)¯·U:´W©úÆW óÑ0¥R¨BÄ}¬¬é½T±¦Gi‚!Ic@Hùƒˆ¸j"µ_Ò*gz`6Ž’^¯·á|èä i%šÃB¦ícå"ämÊ+‡ò˜fÐQ‚ßÛHð¦Zj¸Ò¬øi·ÔDÊç#Ç:ŠˆClÑê»I¯ÜŸ¤/ÊkàUôªRîn Í3ó V¡¤^Š uiÿ½h©ØËš0á¶üÕ"޲•úKo¾±×g¯qŒeÆÉèÃD|cÆ"6¿ ˜Ò~hgã0¡‹ó¾Ï“Ð @")~­¼$û{I+Þ”qÕy˜”¾(KÊì=̳ŠîS„Ðgâ@Ý‚O+z•„ýÒ+È·›Þ øP_å•z츕¡°WjÒzü’$Á,”àˆþcÐf4ÀÙ B?¡(+)Ú8­AaWÒWóô…è] É3|Çé™ÄlU“¾ºëZg 9œŽ_/bˆë{ã¦“Л®«_è{ÿz×f§¿û—«×.£tÐ…9×ß§`˜çúçe6ˆkk£Ð·»“ 5O©ôÖ5³C­ÁÖ~ôî¨=ÞÚF:›™G:YÛLèÐî;Œ­I:ZiÏî+´§AOª08YW×Õˆ©iÓ†š~@ëÞ´åløÝéÜÚ‰\ߎóÀiêÖºB!Øl¥d¨©Gƒîºº“­ÇE‚»1¼>PÛt™Â©½:c'ƪ*ýaã_Y»ví²µËtzç“ß.Ù¨}]„4wÑ#ÕGü¯¢±×LY«;§/±aÆ)ôßðçCÖ­è‘%v‹üÃY„UI•ãt éYä á^ ÿe2Õ«T‹VL€°t\ÏÉíLÀ¨ÛP3Ùeå vz&|æÅ8ÈÝdáZ ‰œïAÁ4ý¦ª'ôF¢…ˆ„4\“ “.cˆ¨ÃÃW†‡i(dn`vR‡½ðe¬Â22‰ÌÌL3F25I%`W±Ð~Ü)ŠÈ¿!Fã/RIüš|gd2ÀÈ”˜> stream 32f06i54h64i88g;;j?>nA@pEDuÄÄHGwÅ HJtÆ!OIuKMwÇ(È )Ê!)OQ{Ë$0RT~UVÉ-1WY„Ë.2\YË08Í19_\ƒÎ3:b^…Í:<Í;Aae‹fcŠÏ=CheŒÐ>DÑ?EeiÐFLjn”nnÒHNÔKOrr“ÒQWuu–ÕSXyxš×UZÕZ[}}ŸÕ\bÙ_e¢yŒ‹×dfzŒ‡ƒ {ŽÚfi|Žw’}І£x“~‘‘Ûhp’’Œˆ¥€““Ùmr•”ŠŽ©Ûos‚–•Üptƒ—–„˜—ÞrvŽ‘¬†™˜Ývxˆ››”¯‰œÝx’•±Šž‹Ÿžßz€¡ ™™¯Ž¢¡ß€„››±¤£‘¥¤³âƒ†“§¦ŸŸ¶à‡ˆ•©¨¡¡¸–ª©áŠ—«ªä‹‹ãŒ’™­¬¥¥»š¯®åŽ”â‘•¨¨¿±°£¯°å”—Ÿ³²ç•™¥²³¬¬Ã䙚§´µ¯¯Ææ›œ©¶¶çœª··´°Â¬¸¹éžŸèŸ¥·³Ä­º»¯»¼¸µÆè¤¢ç¤¨°½¾±¾¿é¦ª»¸Éê§«³ÀÁì©­¹½ÍµÂÃé­¯·ÃļÀϸÅÅ믱¹ÆÇ¾ÂÒî²³¼ÉɽÊËÂÆÖí··¿ÌÌÇÈÒÅÉÙðº¹ÁÎÏÊÊÔÃÏÐï¼ÁÄÑÑÌÌÖÅÒÓîÁÄÎÏÙÇÔÕÍÒÕðÃÆÈÕÖÑÒÜòÅÈÊרÐÕØËØÙðÊËÔÕßÍÚÛñÌÌÖÖáÓÙÛóÍÎÐÝÞÖÛÞõÏÐÙÚäØÝàÙÞáóÔÓÔáâÝÝèÛàãõÖÕöØÖÝâåàáëøÙØßäæöÚßåãçáæèôßââèêèæêäéì÷âååêíëéíæìîçíïúåèîëðéîð÷éêêïòøëììñôúìíòðôíóõûîîñóðïõ÷òõñýððþññ÷ôùô÷óúôóöøôüöõ÷úöõúýûøýþø÷ùûøúüùÿúø÷ýÿûýúÿüúÿýûüÿûþÿüÿÿÿendstream endobj 119 0 obj 768 endobj 83 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 509.751 164.5694 520.0458] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 84 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 481.2746 162.8466 493.8939] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 85 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 455.1228 153.4721 467.7421] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 86 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 443.0016 166.1543 453.2963] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 90 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 426.2312 414.3211 438.8505] /Subtype /Link /A << /S /GoTo /D (subsection.3.2) >> >> endobj 91 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 400.0794 141.1032 412.6987] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 92 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 385.6335 305.3254 398.2528] /Subtype /Link /A << /S /GoTo /D (subsection.4.1) >> >> endobj 93 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 371.1877 205.5645 383.807] /Subtype /Link /A << /S /GoTo /D (subsection.4.2) >> >> endobj 94 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 356.7419 185.6643 369.3612] /Subtype /Link /A << /S /GoTo /D (subsection.4.3) >> >> endobj 95 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [88.5627 342.2961 199.4818 354.9154] /Subtype /Link /A << /S /GoTo /D (subsection.4.4) >> >> endobj 96 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 330.1748 298.0112 340.4695] /Subtype /Link /A << /S /GoTo /D (subsubsection.4.4.1) >> >> endobj 97 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 315.729 237.5912 326.0237] /Subtype /Link /A << /S /GoTo /D (subsubsection.4.4.2) >> >> endobj 98 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 298.9586 317.1614 311.5779] /Subtype /Link /A << /S /GoTo /D (subsubsection.4.4.3) >> >> endobj 99 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [115.4865 286.8373 261.3242 297.132] /Subtype /Link /A << /S /GoTo /D (subsubsection.4.4.4) >> >> endobj 100 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.0037 260.6855 169.9644 270.9802] /Subtype /Link /A << /S /GoTo /D (section.5) >> >> endobj 71 0 obj << /D [66 0 R /XYZ 72 786.281 null] >> endobj 72 0 obj << /D [66 0 R /XYZ 72 761.3744 null] >> endobj 82 0 obj << /D [66 0 R /XYZ 72 525.1931 null] >> endobj 6 0 obj << /D [66 0 R /XYZ 72 243.666 null] >> endobj 69 0 obj << /Font << /F19 75 0 R /F20 78 0 R /F25 81 0 R /F15 89 0 R /F36 103 0 R >> /XObject << /Im1 67 0 R /Im2 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 122 0 obj << /Length 3030 /Filter /FlateDecode >> stream xÚ­ÇrÛHö®¯àmÁ*Јޓ¬TöH¶Æ”6ÔÌ@${ 4‚¾~_j0[å Ðè~ýúåÐxsrzå×µ“ ð&÷ËIœØAL"?±}7Q“ûüënêEVQoËb:S^h=®kàBZá³ã™NV6ð†W®—Ï8YõÔµ^˦3—¾yc£a¸è»‚Ã_÷ïN¯!®†.S,*¥Õ|¤Ž’ª=Þ·£ò’šW.FóÆzƒ(‘_ì·Æ8Ï¥Á2•òÚh7V*ÿLÃjD€Ÿ7SËnº¯”¦¡6àæCÕeÔÒW¹if;£ñë÷2À¶Dêdü¾ë¥ 7èxÜÿ€‰¶”²£Ð’n1^ù{¶«}|„ç#ö˜« {0›ì~Zj¶ ¸ølO©¢BMÍJ¦ŠˆÂ'>Nq×¶œÁÓC„Žg=ucBV.¶¤N°+vü00¾ç«ˆ…„ ¥ŒotÆÄWÐ.qÓa€¥÷ólGaý/˜\·]£ä_š³Þ^ÿ'‡©¢j(]¯Sj:¡LZ e9Åd²k˜N·[ZȆ³“½ØÎ!D›iq}F~2† Ó!ž?1(dî‚G}˽0 ;vCÉ ÝáÈ!ÚÐwt“R•Í@)K ¡ˆ’'Ò“Ît'5Ü¡Xh¦ûƒ­5ÙyYä+ 61ß+&”­±ëe À=jt›bY4÷úÕKŠ8~rrî0`ÙÈab]–ë¬Ìeé Å )acÇzoæèÊ칕µó´dzÉÑdñ#-Æ{½¥`¤‰a§ÔÎ&ÀÌ…YΆ PêWcµÐ5À*´`yciÛ |×Q/¢Î6fY .ye\ö¤ïXoêbH¶ÐaélX*LÀU[Ëú\Ö¯(%.¨ieíz·†…™r«6æÅ({º©«Ìð?óƒˆB*“ m‹´7ÞÓ0±ò@ëpð°0¤ 4µñÝ`Aôýªî \K”#È™€üV·åßæ’ Öoå Ð_Ñh™½±Ç*{è:)NT”ñçT©ÖtP‘¡ù~¸×šÊÂÕ°ÐË\HÆÅs//iSð„ÀÏeMj­’íw/~ô+D2¢4-? v¡5¡Æ u )À|AÊÍv!Kæ€Ú5ªÿdåzX)ÓDXï6 DzëX¡»VîŽÀæ›z6Fýª¯(d|A{ ¼QÅ4š6OÜHÔœk©Ù¦óO 2ê<*ÄC%±˜²<7ðùÊÛDP•رñ¥1æº^ 4¿Á5&딓e‚‘"ÁÁ tÛ‹ýTFÊsÃýÊHÑ nÙçæ‚gø=äE¡ K$©žÃÃz8²#G¼¿÷Œ«Ž.ð¶9Ž­KØ=¿ûx9Ÿ¥Ly¶f&(Ž>š^èC±;„—¦§Î”É”ÛK®9Õ ùX`ªØöa5ÀårÒŠŽs¦–ÂoΩ—ûN‹½iîtuT ®ŒƒWûq’‚8f{ɽ)öE›Õ®£yh‹æR«^c­>ÚÖŒH_èïÛ‡`u‰’GÌqv\^l»®ïÿ‡˜@S¶Åññ-"úßkƒKô;r#S’ç®oetã5ö$Âß/¦d_65î"^pShR«1æ#°¼p8ìkæ“ø§˜úIâÖ×õ–Í3_7cœ†> þ˜Óü ÛÈ÷ÝQöÆ$CXˆÝÝ]£kýët /&aðyï0¶=[­°ÑH—¶m¤òì¹l,˜n¨î‹öê¾áÆ¿ ôç„‹ÿÉü#’á†þ„üð¿×è ÜÌö #¾qwÔ tåvHöÓ¨6|;t¢h8*‹¯ZgòÏR•ù fnH8Ãß0¼+Ùÿ¦vµ^^Œ²¢Bzõ­‘²²ý6?€:q‡¨.üðÅrÝvFí\¹·íךÝS3~÷íÚAèyc’=¾F‰[9ti:zò=6—ؘæ?ÏfÄVßé‚6ÿy¦r+ü¤û+Ó…VüçÉYŸô†o)dïñ-)ÎÉÕ]‘" Æ7™&ís2‹ƒ‹}nm…þÃÎöðŸ*‡]Ïx(Ÿ „8Ž© äw÷ÿN>í„endstream endobj 121 0 obj << /Type /Page /Contents 122 0 R /Resources 120 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 104 0 R >> endobj 123 0 obj << /D [121 0 R /XYZ 72 786.281 null] >> endobj 10 0 obj << /D [121 0 R /XYZ 72 256.4479 null] >> endobj 120 0 obj << /Font << /F15 89 0 R /F20 78 0 R /F32 126 0 R /F25 81 0 R /F36 103 0 R >> /ProcSet [ /PDF /Text ] >> endobj 129 0 obj << /Length 3129 /Filter /FlateDecode >> stream xÚ½ZKsÛ8¾ûWhsÈRSC¹%^Ï”§âØ+‡©Ù9Ð$dsM‘>b+¿~û”B'NÍÔ^,Ýî¯ô»õÉ럅Zá&Jù‹õfù‹H&®I°Xç¿;×ûmYT÷Ká´ËUàGNWãoèèGõ] 7¥æ¥]SÃãmƒ“[³ý¡(K~áf¹‚g»µL3óBQÊðÚ^þ±þõõϾ7eÊ…ùA²ðˆ§›vV¯yç!û~ì*/‰ÍƶçCó¢ÑYW7ûeì;.¾·Xù‰ï†‘Œ+!])UBo¼E¶£ÈIñ'tþã Y¡8%OgK v§éçž·twiÇ£¬ÞîŠwwE]ñÜîL[~hûl¹N¦Ûvƒƒ¾| qâì—~ìÔ=ïÚ¦øÎ~ú>Š»$ ¨¨š×›¾â¹U¿ÕüP7¼š’îaPo,³š¥‘«@d#{L²wºíÓÐsÒ*ç~¤ËÜ•ºEŽÝåJ¡sUê´Õ¼£Õ4öúh| c]i|¥aZòÞO­nþiŽø…4Pä†Ì†xV ²X4–4îAºýΜü¶ïê-©X'\“RQÍœy‡Òf;Øè>>mD‘1¢%0f˦N jæ 8p=kFÏAÚY{•ž‹ ´GUÆ%²´šq¾l˜ý\¤<t«mÖ»nŽ!¡WÉ@šS²;(ƒ?÷¸ûäl}"` ^vÀõ¥ ‘‚"^dÛ“?O~ÿÃ[ä'Þâ×Ï ’X-àÁsE’ø‹íIà†‰ðísyr}òïàj ¸š’|‡ÀsȤ+¸œaßô–àÏçô’ƒlQ^îoèèèPÒOF‡ÂÔXz¿d¥Òİ!ÉÀc‡ËyšlHà†¼h;4‹â¦'Cĸ± ™Å°$p})s §Wsâ€[JÔ1‡ÖrG§HÙžOÞB‡6tbQÝòó%CèvôŒSÂ\€C £EyhØ»¾ã!bê2Áó¯øaâkôl݆i£yÕŒZ)qHKGͪ'ŒÝP ù|¿Q±|æé ‡¢»›rnecÎÞ‰Ùx#`f¸ªŸ\âþˆ9VÏÔ€¯æè­dƒXZéHØáXãºp1‘ócîGúÞ %ŽÙ@D‚ní¦-–á£5i­ÏØ„=§ØðïhEüLÀƒã,Ó¸€v`¨vד\z0Òâ]C·Üc|}úªÁà)R‡Ê;¾ôB·¯§ŽHÈH|«MF¢«œÜ…¶¢‰ÌY£'!áøt)á˜uØØ•jpX›ZxÊ }°å†&LÂkQ‘s ѱÁ°ˆE×µ5‰ÓT¼¼K9†–º,Ú-¯ ã;ëÍø€é¾ÄW¦8dáÂ_¡Ô¬äK3‡s Xfab;¾ƒ±}&]` a[SYàÁ†x)bç ïIázÁàíO‚¡ŸÈ!jõM£MÌïùˆ,5ú‚1áÌíÀKš^*QÕ¾•Þṧð÷†0uŽP3¨š«sC€T ƒËÇáêâŠÏâ;Yí¨Ø |uƒøÂ¾Ø|ü5Ž•³Fú¤9L/E w”1Vz… &Ýž>“/àRi#J (š6«´¤üê¦I_0Á ÷3[»´½_ÝRBÞï̶©!}IG[ƒ·JÍ–­¡ØðÍ%MzüÖ\ƒÎíÝ*º+¡¤É³‚ÄMÈjð•ä¾rÎñ0Ž%‘rr géܵÃû~èú±ä#-ÀAšœ“.S|ˆ¿“ìÅ>¬ÅÎoäz²R õEË'Õ¨¨Û¡¹ø‚BÂx“oœ žZÔZìä¹8o§,Z›ÀÒ/Bê¦.K㲨rCùÆ&) [ ¾Õð4‚:c6\ÞÚIåÁ$^u–6yû<%Œ9B&剣XSð5\:Œ°ˆhFD¼'öÄZ ¤1 Àlm–9+Z`Šc4˜’!¤|À€7ÃÅËÓKØñaý)ãðýxQâÜZùFL­{Øw‘j‘Þ”½³z(†È¸ËróŽyä¢hÆx_^ÿv½>»€c¥IÈ.š>ëú¡>¡JtÄ&×¶¿u|oï´³Ìoyµ¯r¼:S×’ÖBÚ®@QÇ›cñìýÙ)ª(v.?\§¾΢KˆpM]™IÿI3 [|mûp«e«±¬ç{¾µ"ã`=wð9ÝÎ5+VRBì FùØèøXkÒ$êÈÜs;={ÿžw£%ã!;T8]>Ú1œ/<Ï;>qÅÕ³m(àIpLk‚îÄèÂÀ÷é¤õýåÊX ãô/OüÙ{4ÉY„ÀrÄ7{áD´}$©¨²ˆÉiááÆä“ôPo)áâ@†àóœ*ãºô£Î'Òà,©‹4õ¥µt¿(ñMÔ t‚­¹ÞÙ²pŸ0ɶŠ84Ã(™ho"y(\†GàÀáð+}Ï©N%PN6áɘa 2%›6âËl¦"GJY ­øÄ‰>áÉbÊÅN€·‚$„sQ>7áv 8˔Ũ¨ªƒ™»I`å½¹Þ¤}ÙØ „{Ip˜åð! >‹„—U¹?B„!®cáa!É(ÃÈÃlÁOn‘¹Þʇˤ[›Dr°']ÖCV a‘Mäof­~–‹›~ž»5¥ ”Ä6Ž¢·C6EGx7|V*ˆ¥ón†Ë3Šv&M…*™¹¶™ëÇÙzÉ{رѤbø“oŸÇk£I‡¯XQy™K;{hƒ&cMÖìÛ.ÅÄ&ò¿»³ÈÇAgÀû1¡lŸÏ=Ùc÷÷蘖ûír4r¨Ï‡¦ÓÕ“lqÂàÕª06Føó|¥ýîÿ$WêÆº((ÖfL8ºšeœ4‘­SNe¤äé䤿X¬?làOöCÖÆ"†” ÷¯wÖˆ°JB%ô G 3jðÛ` ‡÷L¥nlM{Xlú*³1‚³„aQ i¯bó“PZÞ¯Ïu}Ï¡©&yI‹q,æ£q`{Œ8Þê´"póc.¢pò+›ÃuhãÆwP'ÜK»¢s$}qØô=p€(žŽÍ?QÔ`C 8ÇHŒO)-+ìTÙ醸°1dx—ó€Ö¶Ü üOÆrÐ”ËØ±ã¡ÓC›Ú¤7Kά¢Ä4Ó`e’øš~!½%Ê¿¶ô2ù2pýhø<ò/$™½†?çàÏÕ§õq?8ˆ„ÄP×Ñ/Œþr?x ¸š’œéC•èz„«aŸé€±ÿ4Ûµ—nèEÑЊY©PØr»5J[˜ð`*/˜ÛèFW™¶×¹a|Ü~b÷H<{Ÿ~"†¢–lMN œ,gM1DnÞBÊ´1%NÎÂ".èó!䆅]ø:É âæ×Ú6õsçm¹­Ûnd‘Œž‰ÈÃd gR¦™LÞ&P“dS%p0€â3^?l!È›Öññ|Uw …4CóyÌl¯´Î'˜7ך:­·¶IÁï`ãä(šüBçˆOxynñl¾Ê`9þ¶"{L³®Ü)ÝcƒèÛó3ž^a£GiôÿvÓQ£@6熔oAF¾iæö¼x”ÃLk:?…¤”¤{ÍÝØAÉt•†"›¦pÇêzʰ6ô5`ÌÍ9Ó\`*¼À­zb‡òÃr³zú;¥~4=3Îrk9 wû†P¤„ ÞòžHUØ~%8ÀãâG§Çx'”a*‰"ô{Þ)!â'ðn ¸š’|÷õ‡w¡ dKˆPÃ>úü~uvŠœžŸ]³B”ï&%ñS3ø1Ù"Ï ¡ˆû;e›ü¦lvr}uy}¾>¿üð-ɨSp,H€ý-)lèŠ(’]Kq5%9'¤Êƒñhd çíGPýÛ‹3Ôýúìãõ·ú&°(°RqW.OO?1=ºSRÏHiG5Pš±ÆÄ.ÄÕ`è{À‚œ÷8\Zø0‰Jr¦=‰³¦WŒÃÎoÓ­[’ ÖRcÇq:¾6¨"‘t>U÷Ÿc6Œ¨Co6#íâ¶"æ±ã ï*çZφ£!ùã> endobj 130 0 obj << /D [128 0 R /XYZ 72 786.281 null] >> endobj 14 0 obj << /D [128 0 R /XYZ 72 570.1748 null] >> endobj 127 0 obj << /Font << /F15 89 0 R /F20 78 0 R /F25 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 133 0 obj << /Length 2804 /Filter /FlateDecode >> stream xÚ½]sÛ6òÝ¿BÍ=”ºZ(ñE‚™ÉC{ifÒizw©:Óö&)›1%ª$;ÿþöH›Šã4×X,û½ èû‹³o_I»RdÖªÅÅzá2am¶HM&ŒÌôâ¢ü-úW»ÙTÛ¥J£a)£~¹R™‰šz[ùa½Å¯Ž~—Ú9 teÿŒAÅr%#y”Kø¸¨âIÍ4»¦ITî‹ ±Ë€ kx\ÕÃuÕñ8?žõb”ŽÚ‡Kÿ8œT®‰§¼@îéˆîp>}¸ßKÓõÃò‹+™’&VÒc`€šØ^µ}=Ô- ¥qÃ5sü$¤d¾}¥@½Fh“zãÅJ=e ÑÓÙ‘ð#•^’²¤‘Zb¦A¨™(M ””2I˜³ ”ÁÈ$j÷(æ~iZæ8ÍyB$Ñj8É;VŽoY+2ª‡,M°Úq ^Ö]E&E`Û}@¨ú[µ¨ñ€ªdÜ`@Äx¿´†Ü «ó˦òš‰Çòè4Ni ‚¡<í°‡YêæÄ׉ȤL<ö9£]t ~‡oñ° »gs©Eª­ u´±g‹â‘}•Ø£ÿ%fÂ>üž@Æìq`Gú]£ws˜XÄ©“û÷ØÆ9ŸÖ]½½âñp ö£QÝ3_»®òêޖסeœ¼ixÀ†æÅm¾©ús3e;_£¿ö~µ$Ñ×(Ö¾âZ µ÷(uÿ|N\У ”=ÕèDl½øz¿·=üë¯çôà!U:ÒƒÖqtAÌÎ;K"tj‚õ)‡›9â*™s™G$=q¼675Jë+Ö™hß“:fçæámWÕzíÇý:ŸEgøüúæ'¦»Föñ¨nƒÚЙŠnYýؼ£¬ÜöS8ûØX˜,N¦ù§Èñ0R%·ÅɺÝoKÖ~ýÀ,DÅËöÞ/ÑmšÖû|ǨorJÃ{d²AÕÇ6z螉PlR¡NP[L}|RI‚æŒñ0W ´õTsþ”sºêBy!œMÎi’è9i#žºØ‡¥7âž“î6ˆÄô‹Lâ·€Ó@ä÷Kwð‹È-n»DÝæÈÂÉט‚åøˆ”kš_â„X¾9gZûž"87çÁÖ ©wÌËÉ}‹ öe«…”©ñ[ú¢«wƒ`oÑ™I–˜©ž¨&h—DÕ]UìÁ½°^9È×C»ëyX¯c¢R˜]•ûr‰Óœ±½Ûψ£b'bc²¹Ü'#ñïðûúbNªT åbå7†JO¼mùð!ˆq‹Æl»Ö-`€‹ÓYéC`ÔÆµ¨¼vT– ç̽Ô !áDù`°ëÚ+ê6<ÇÜ€_T žBµµ*1I¡¥SI½an¤æô£ œÓƒñ«nFbf 9‘")È™‚ÔýL®Bœû섵™à:ˆ£¾ÝxÑ|„Üù¦çÍÜÀ°®)Réì4ï¼ùe,³R:6IÙ&¼bØ„_‚Խ߶=Dñæ˜`±ßRÇàÉ|µ\%™ Ý$Ý’‹%NŒÛü*t5 Ö:Ыû¹<²ë¸U¹'W°Ž-nS_xqDE—Ž &Ô ø=HGF¾*£†›¼P4-ô”$asOþyS︩›†šN‘eöz(nJ¯©hÆI×C³7#k¾õ¹‘‚| þð˜õ¸O"92|sÿÝsuèÙ éCRχGš\;jr•or_-3îØ¡?#§  [Þ¼ëø¾ %HÉ,¸h¹i…ÖëmM+¿Žø×ywå‹*ÂÊjÛ×Ì(ƒkÊ9¯ìPЍ%JPv`u ļ9gnª¡í¸ÇÙ;3hÄî| ­DÞÑåhš=ƒ¸½ÀÕ@îÙÿ=•õ~[`Šö!É}Z];\ŒèŒ-õKþnªž%Pí)À}‡k:y#1ÅÇ^·g‹­§x,rSÏáØ®» yŒ3”´.øJ‚º‚ÐZ·MÓ¢˜·ì¿€Äþ+c°48οì[LZo¿û™áE¢•sÒáfÉ 00}ÃüYS­‡MKQ§“žƒlOª‚É:{¶”‡æQÇÑw[ÞDšÃ”ov\ºîGÆmnÀª»]“ÓµPÒ °¿³”û; —ãè—ý.\+F—PC9O„äüÑ€óÒC:ª6Õse#3ÐÇ¡lì°®½v¶¸WÞ‡¡:õWÆœí ªa’zš^žcùk“qœÞ«E»ÙÕMÕùœžÜU¡Ý©ûc‡bÀ£‘1þDUѰ6Ô9{è(÷ø-áçÔéõ|ûÝ›1zzD¿ï*áúä,£Ù‹ŒÉ„’*žÒ"Öò¾¦¡‡b‹õþÞ`¤ã•åþvõ¤íB`Óôá‘|éìÁÔ_LýÿSŸ"ØiÒO=tOŸ'QöùÁ ¼q|J5Ð ãDQB·ùПªa¾=Yzè'©W+g¯ËJ@kq¸•„K&™¿ÀøÑg°]°™dæÌèÍ/>çïðçæ#9Ë$"KlxY©šêð9ŸòKÑ?Üþ»ܡyyŽøøº…ÛgÒGW5y(M³o Ö •¦z’<¼~WVšèjüØèžy§xÇÀ^F³òRêpånŽÀ ÏV¼ö€€ŒUÜmDÕoœÓôjš ½[]·MÙce•úz1F©§§Œ}Sò´h¨œÕÔNàuš-~Z…ÁX‘U•ôM&ªÂ£¬Ê—ü ×l¤ïë&¹Àëû•çêõ–W ÅÆžÇ3¸Ë‹ ß]ÜÁÐsù_;áT¢žì•«ÃÎiVaß«Çz/6öêÕCèÊY—¡`á팸åÕ²Þ`/‹áldCȦ™ö̳emr ÂÒj¢ }@RfîLðÌÙɉ³¾¤ŒHâ4½ìÏg‘ÆÉ˜œúÛPŸ,i^p›¥c²úoD?M:8U6qlði¡•ÇÖ±H•Ïkþ©BÇ‹ÊI,éQ ÒŸ…ô6Ì@J˜×àR;Û|~ ²Ð_Ìq µH”\8»”£ªžSR"ŸŽãx¾áÅaÀ¢à8ûáâ  Ì…²\ê2àI%Bµ(6gžýöG¼(ÏâÅg±Ð¨ã[˜ÄP½2µØœ>!ÚU4g¿œý÷@pu ¸‘üÿk› ‰Z–©Ó³BZé‚ç„PÂ:7âÎbÛ•¦bˆ'V‰~“NŒ;NŒ6›3R¡ññ|„öÍìÁ †I6¶Ö»9k9V}šµÔ)kÁ…O(p¸§ËŠÌÅú„±ÁGl¥!ÃÇJ%O·•:a+'ÝgÚJ}Y[ÝÌÙ <ØŒJâgE–ÿvÖ=ÍXÐéAÏ}ÊXâcÖJRÍfötkéY¥I¡!g~žµfk$_ð§ ƒ\ a«³É›´Ñ£zŠ5”p,‹{IyÄ…§Ïû>cRë“1£…?…0PÑeÞÓ¥`ÜLû—[ ½ÍxË÷ô‡rÎý7>Ð ýE4ÔE…›3þ ¶@ÈW|ÙÀÇ…ðÊ_òrÇ]ú A·uïé`N>Á¯p-¥ô½wÑaÖ'°´ ÿfL^iŽS³øçLöÀ.§½CŸÎ»=BŽíòb¶á€=><äP{ÝÄó%½ÔÓâä…Šº|søû|F"ˆ «Ó' ¤þ²@ÉGRÈ~’‰@ú¤@ê ¤?M ÿO–…¶Èex9Ë„s)' òîÿ [aendstream endobj 132 0 obj << /Type /Page /Contents 133 0 R /Resources 131 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 104 0 R >> endobj 134 0 obj << /D [132 0 R /XYZ 72 786.281 null] >> endobj 18 0 obj << /D [132 0 R /XYZ 72 716.1571 null] >> endobj 22 0 obj << /D [132 0 R /XYZ 72 529.5534 null] >> endobj 131 0 obj << /Font << /F15 89 0 R /F25 81 0 R /F20 78 0 R /F32 126 0 R /F29 137 0 R /F30 140 0 R /F27 143 0 R >> /ProcSet [ /PDF /Text ] >> endobj 146 0 obj << /Length 1505 /Filter /FlateDecode >> stream xÚ•WYÛ6~ϯ0ò•Q[)RG€<4AH Aá>5ÅB+ѱP]•¨d_Ÿ9¨õ±r»y‘)qæ›ë›!ývûbs+ôB?ÕZ.¶»E’úZ§‹X¥¾i¸ØyÛ½Y®ÃPzE9زÉmÙ.…×à7áÝ/×2ñŒ]ÂóÛRÆÈ ϸ]˪TkÓ ¸ÅÊ#âzÇËGÑÛÛ-ù›}Y¬–oÛÜÊàÔO™F~(b¹ÈÅÏðX5=<å íà*„]Á Á†~F±ÃÈšâÂén†2Ï*Ô_¬Ã4ö!ÓÅZ(_)ÈjrpeKQ©ÀkwüË@JxºÖg˜£Ã2‘ÞlHBÆ~ˆt.¤F—!.¯&é«4UªØtÚÆùDe¨ì)VÑ•.GgÇÁI•–&ˆÕên´™]b-”®Æí6˜´¯D…5gMJ`U Â)k yÕ”†DÑB¨¼’(zD²bx#ÏCtÑÚÜgN^Ì´ ¢_{‚bìÀÛ”'Ú´–Eì¤Í¹¿ž„Ö;™(Îó(„’JG¿uG„o{ ,›j¥Ô¼e‘±)L?XdÎüd÷øæ 2þ/èw(kºo򠄯`ÈÒœùw4MNÜd=7qY”¹zsJ‹ùá,öc3ÕeÌnŽ^Àðã”ÜÏ8è cÄß—€Ðõ†ÉN/qÃM@‡Ð”%õ9Ì?Ò Ã”3kø Î:œT†Ã`M½Âc!ô¦ôáú R=ËwljÓs8¢¾6^æmU™Ü:`ðà)”«¹ˆÌW"«öj€ÔîE‡¬¹ºÖ½MG ±Däbá¥Lµ[¹öÉyáCÑ\¬}fG—i2Ø{kr ª1 co¨wûxŸE¸]&­Ø”Ï™â {tlÜþy‡ž~r1=2ÕMpþ|XºŒ.9ûv¬ðRA/ð n]U¼( î7f6w¯9áÇA„©4âã–fJ]æ.ºG´4,¥3å=­GnªjN¦ÌX´®¿íy#/pùÏG»n±ûf­Òx)kîœìÏSa*>9ÑZÏ·€ÓjÜÃj˜2©ƒ¶s¨¬šÎïK‹|Kî ô?Úk8_e¤Ïóû«+,¹ö€-[w•9uhÜtXqËoXÆIM½u™Þw¾Ó¹½S¯B[âr¤%®È#὞;´öᮥ&'59ù*§+ ¶!r¹åŠNgÐY,öœ­¸ Z(8åàG{7ð<G¿ÓÓí~$8ü’³(7;3èÂS¡#cE“­dŸŽF”wƒÛÝUˆí 4éÞpW#D1ùªapÆP õj jOïáq3 Þ N掫9“ä·ÿ–t˜O>}w’L¬^\ ³ìˆŽ˜e{fE\WACÙ×'U»fÈÕz˜ap5œ%ч/Û?ð®ðÞ¿fÖ’§È«];eï§ > endobj 147 0 obj << /D [145 0 R /XYZ 72 786.281 null] >> endobj 26 0 obj << /D [145 0 R /XYZ 72 686.0443 null] >> endobj 144 0 obj << /Font << /F15 89 0 R /F20 78 0 R /F25 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 150 0 obj << /Length 1695 /Filter /FlateDecode >> stream xÚ­ËrÛ6ð®¯Ð©¦:! €Av¦‡8ugZ'­”C&Édhв8•HU¤â¨_ßÝ ‰2å8I/°Ø÷ÔÅdpþ\ò¡,ÕZ'³¡Pš%2’C£R¦D 'Ó÷AÕŽD°]B-Tð«ý‘OF'¯†| ŔҩżÌjÚÁ`GØ a9ÜlùÝ –ñµ'Sጟ¢­Öp#PœߨM°µ¼éê€Ìü=RFG÷'å”Ènµ¥ýËtÖvÏ.øû;XÞœy(¦4würÞÇú§È¸äèƒu¢ÂF/#æÓÔ3š#dÕô¥Ù±¶o^Ã:¾‚er…Ûë±eñkäxSϱ€à$N˜"µ‘d±%sŽ´{Òë!2Á"‹bËñÇã×Iý«´é=ÚïP÷žXl|;©·ôqd/€§hÚ!“Lî}³;œöëËŽo¾ŸöÑê> –ªB~³¥ýdçÏ…>œÂa,˜ÆáJ`ÆEÌÞÔ›QÉg%v3{þÀ…¹I´ó§ECxØNÊU[Öú>ý:DCÎN8{ú<Ò:Ȉ(»Y@r8{I0´HíîãA¦Š+ðêû6ÛükøçãÛ  .'@9TR²R%L¦‰æËÁ?ƒ÷ùp:àÃWÎ"„ÞÁ3‘¦r¸D,N…ôçÅ`<øsÇ/ô ÃCŽ÷Ÿ9JÆLËCÉTØÙÏ}8ÄÜgsÖŠb‘ŠmÐ"“2qhÆ`Ç®b‹:ø E–"ÌËê\j|Œ ¼^ðÀ¨Õ¸V0ÊèîvÛP¤Ö´¡}:C.‚;DÛ\œ®(€ëcÍ£`½©žà. îæ$½²pàŒ ÐZ0ó‰T/-›&_cþµù’c½ÌwÎF2 ¶æ²¶Ú¸¦aLæhYVå²ü7Ãw $ªWªlç{­¿àXD=¦V'Àkú*6CÿH“ÀH^,€“L’€Þ;z³&«¤q¥‚°ç÷Z!¸AðÖbA<qiokknwŒn‰ÁÆk@"*iRW/Æ4¦èví.È•ågô—Ã=PxÇ£B²ú'äÓ¶^‚º=nÈë ½v‹ú¬½c!U¤!JW×M[¬le{ÐåŪÝdôžÙú¦€ª­·µX- Cl©°XÌB´4%ð­r‡n{æCOÛˆRÎb­bW\«;¬Â/½U˜0ÍS_…ºÌ¾‚Pž:ê6ßq½,Èè%¹ŒSP™ýiÀ…ÐÅhŒì¦$œØ>[»/è°¹[´•hŠŒ¾X0÷-"ŠšvÿbÌ,Ú•+)"—N‡™Óüƒ¸n}€½ÐÞß•ð¹MÌ7¤ÿ~b!¬"S 7ˆ[?K7•ãÞÔK7V]—Cà*£ä_zOì\²ksN—Eù·Ö=‰¯”a‰I|uþoÓ“-F連û°‡,d±hÁ«ÒûB}Ñü^à”jendstream endobj 149 0 obj << /Type /Page /Contents 150 0 R /Resources 148 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 104 0 R >> endobj 151 0 obj << /D [149 0 R /XYZ 72 786.281 null] >> endobj 30 0 obj << /D [149 0 R /XYZ 72 229.2449 null] >> endobj 148 0 obj << /Font << /F20 78 0 R /F15 89 0 R /F25 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 154 0 obj << /Length 2788 /Filter /FlateDecode >> stream xÚ­YY“ܶ~ß_1凘S¥ࡊbEräN²›‡”åRqg0;Œ†ä˜Çn&¿>}©lõþÂyÙ£Ýv IÜ!yû4aÏ]È¿Ú>?‘ˆqÊg¹ÊWìlÃ_LÖdA{W_rg]ÍÓà»kžôp°Õ¢3Z(­'•'t1Š3!Á}¯b“€ÏƒËùÜK(n¦$n9JB‘€lÆ­A !Ó8ý‚|zŠŸâSK%’ä‚Í©2†ÙLîpªÒü~Q]#!­Ýˆê4´<Y"M-%@ và”ç½”nf˜Lf‚×I!T1-³´~BðLZ²M¤†ítp5 QXúûÈê>Ç*Vs7˜Ñ¯56¶´øÂÒÐÎ*;³´jfiW 'Ç™»q»¾;õßÉÈm}ìK·þÍŸß´FØÄªaL6?χ(²¦Á[v„‘:{WXç rÂ(¾M¨Ä˜ /Žù-ÊÀt.´8Œg'§$x¢j_ðä[ÏúpÔ²n]@ÑÉ1«‹Æ‡$b¢p‘@ïC}á‚à|É¢N*‘F2vznÇ:¨æyØÙ–#«ÍÈ)“Âd*òNçˆnQz|ÚK³5ì+3…2Y ÞêsÍz ¸™’\0ëPa¤RãÖ”§œQ„‰ øÙ‚¨ÒÁ7ü÷u‹0õëEi+ ÇÉo‘÷./]"A÷ Z}v_ìa›*ø_ñ?%·nÕw¸Ó5Ö9b’¢Œ„/·ÚÑY±¿v !Ó¥<Çï71p0ÇŽ{œáhŸ{£Êîñæcøm(Kâýb ˆ] îj1ý¯+Œü˜Ø÷¯t¼â  “h® + iˆ¡LùÆïC>°G1[¶ãÖ˜72EŸ®F´vÓ‹IÉF¿‚¯[$yf*P寸 ­—è0þå/Ý/ÝsO´E«áA²¸ßKRQ_€ªS'…Ì$É\jûºÙR¤$à ø'áÕ%a†H9kƒ~’üÁ³›én§{Íå„FK ü—HÃÔgQïe$Ÿ(ÙA"ï&É%lDj¢![  >l©%^Ra´ŒN¤~"„‚7Îæt~ +ãiXtµÏ¾*:ª¶9¡;«åÁöàP3´6\ô”*ç!T†€4.|l]yð{Q|áÜhóP´ÞÑ9SÄö¢CDÝ# 9: x;X12ñÑáÈ“«µõ7Þy Ž2¢—Ųf^`ÈpbŸZJgŸ=Ì{:æ€<”ë9¸!Ƙd’˜PIºÙ°•»ytš{ΰ£é)ªóÄ(ËÐMfå·*æö4Èf_"ý1甿z1±ÀøÂo]XìŰ:øžWc.RŒy‹ŸycÇ6ÖœÚB,Ï}Ê*Ci–„ϰJ´ŸL)cÎ(õ³3ÊE˃T0B¸0¡å<ksBFã}"UªUð ¥péKiÉ>Zߟ»èïœ3œ8mtv5ƒ{Ó)û™®ïÎ\­ÆØ‰Ãöç¾8dE_rŸ.pu.»§l¯;ª¶G n^eqˆî¨ížC }íkÝtwÙÐùPХ¢ ‰wÜ.ëÑ.¨bž7O}áâge}úG’ñ¬Ús‰e²x(ÊOiþ±èºInz[L2åÖã1‡5LÇ\yã”gæþ‚WË0`s ]醭ŒŠYÔI±‘ì= P˜ê&ŽC@cyšÏ¨±íj¹É8Ž]$ãØ…6¥%.'€F]²à ¤söÊ8TqKDP€‘)ï¦5~AY3 ãƒ/T 8×Ê jHmÄ79!6È^ÆÍ¦­í6ŒØÚíx*˜ÍoZzšn0äü©ï ¹r{¸^Ú–_Ë4Ö ‘òPW 739ÖxpÎ> endobj 155 0 obj << /D [153 0 R /XYZ 72 786.281 null] >> endobj 34 0 obj << /D [153 0 R /XYZ 72 521.6484 null] >> endobj 159 0 obj << /D [153 0 R /XYZ 72 462.1216 null] >> endobj 160 0 obj << /D [153 0 R /XYZ 72 408.8215 null] >> endobj 152 0 obj << /Font << /F20 78 0 R /F15 89 0 R /F29 137 0 R /F33 158 0 R /F27 143 0 R /F32 126 0 R /F25 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 164 0 obj << /Length 2382 /Filter /FlateDecode >> stream xÚÅY[oÛF~ׯÐSBÃápÈa]  Ò6ÅnÚ]û­- Z¤-¢¼(¼ØU}Ïm(Q¡ccc`_Ĺœ9sæ\¿}wµzû½2k¥üÔ˜p}u»VòÃØ¬“(õ#•êõUþ«÷°+«âb£cíUEvZï¾lîp ôÚaWtÜ,›ý80Ù>»P^‡?5,TÞ-jtÐè™fl¶aâí2`³¹ñûÕOo¿×é©<¡±~b¡$Û¡`²¹Ø¡©+TÃwQÊ[þ¢;9ÅmÛm ƒ$•ñ®À^U¸»+Q²n¸Þ„6ñ£×ùQdRÚé·À,O8;ò¡¡Eœ.I¬B? µÄÄøÖ8ß,ñÐ~hT"ÁÅ&Ô‰— -j½Übׂ’Ë¡)Õè›Ø; õÚ‘'û];V¹¬«ÐdÝC/‹ûBg6,ö0šxE?ðl^ô[oÃÀü@Å<;ìx]¨SP—ŠÄ”#<ªP‡³ÃE ¡Ø:›þèà=Æè§¢Ç¸¼qçä­Ð¨f(Ù6lMm•¯’ væ´´¼Š}l¯àùA¬ÔdîÔæÅ&²©÷-ºP '!¿‚F5¶/Ûï;4EÆ^^œÓŸÆ­¼éʱæ1VlÛ—C‰K›¬ÉÉC1i_tˆ{}fìeãÚ­­Zxèé|îx§ÇÏ[´þrj`{Ø\¾Åoì•=÷oxÿa ¸‡‰Aú‡rà=çã9åÛB˜ËءɜŸ‚hâÞa0óãë8‰0ôÀV›à*­mȉð`@Θ„µw ?ù[Y¶ß²çe¼à'ò^#K÷šŒƒGy1% €ÙŸÀ‡±ðlyz¶ü¾@s·(EI¾Xô3&(Á_zmûš]pñlo—¢`³¨«oÑR©wa Ä÷Xpº}LßIêR Žt«÷W+£@¼V d%m£µ‰ßÚ4\oëÕ§Õ¯¿ë|¬Z¾N­Y?@'ðU õJûqªBׯV—«ÿL 7ÇÍ)Ëï°4ÍÅSIê›0[“ÏŠs>Ñ)î–´Å ÔT2RñØä¬ÌرcÉÇqð®åH¤ßœçnÑSQ)ÓÔ)<ÀÑùc…÷aàQÇ’*KßrgC8€!s½8EFy{p¾ùqš¹3¸ë S!¸‘¸ãhrñKŀӔ術s»¨ŠíÐͦï1pöD±b¥™üV²}Ùl ^CDÚ;† ÂGæÅžÇ¦š í:ëûB’/ÆP ÅM:å;·Œ)oÇN@&^Çáca%[Èéñ¼t†-œ–É ì&uÙ”uùW&Éw1'ëʼnÒgqvô?ÿ~>¼ƒŸëË_à÷=6?¼¿\Ê)ïN҆ʹdaZÂÜp}ƒŽr@¾ÆC—(«¿ß/ñùñ>;ZârägÉŒÕ*žkÛöXÛv× P ¥’c‘SRú_ƨ ÚÛªu%¾Õh‹5 ÄúP¥Ô?ô&eyVKä20/à„õ¶mG iëàn’U¦(ùö̪½ÜÔ,¥hiyBìØ±°5fL#gÁÄ^YÿèÙ~ z~R±óžãlbcà"ŽEô}ŸéæYè["³hÎqQìËÍía)wpûÕ;òŒ«ÿâJlþëÜG†ç£“‚°%þ\oÉú÷Ø¤íº™ Ú!ßÄ©¯øÃ¡ìç121’²õlFzQéËP ³¡¢ú‚ÀÅc5¼á×Îf ëãz×å{2}þõg5‡”<-àlu¬‘¤FÅ%LÖCå`Œ:Tó¥u‚¨¨ ðÓÁ'JÙý’¹„ÄÌÿð]ELj±àÌ»¶Êû%IS?Ñq*ùËyÆYRCȈdnAª5AôÕIyâ¸9e¹”CøxãÈPÌ-…íýgbbÔÙ(}A1Ç'Å4©$±šËI/]Ýâ#•õ#c\)|³d™ “ºÂâ"íìÄZ~¬’øåNË2Z§@%/(§ãø¤œ0­1YÿO–ù†Ó?B»dy+Onˆ*sŒ¾#rŒ„eYÎ/.p?ÈyJ°¿+Æo Z̺m0E˜€r¾ ¨+!`G¶EéÅpÙ!ÓQØôúWÒg,z^<ÊhÅÝÁ1ÅZ¹;ÒÓKO+o÷$Ô|?¢œF|²fÉuú6ÒJ4êRý9îƒD™ð`Ù Š¿ö ÃÍ)Çÿ0öUí‰î ~l ²D©R/'æÄñI9uè+깜ÏõãÅ¿R6Q”ú:Ñj~ƒøÂ_*6HÌù_*xã›>ÄÐ}‡ÎÛ…N ]ïpòp|ûòš9.äê52uS`è`«ÎÜÒu#¿‰CÑËšœÇr¼ÚhòãIŠËâà.–òÜsWýt£Í÷·s3qÂP®aô_ vë*‘!TóÇ-&B\‡_ €œ.Å@Hª E r7+ò͸gbŠNf(1ØÈmoÐĽáë>äˆ$”+ç9‚oÓ’åPD6 ÈÊ­Ü™oÆáôÁ?>Z Ë=N aF7×üäâ,;‰â¾ùüÅ‘¸•Y%—šFþ(:zšè|y°±~b4ÂêÔ·6an]”þ RCçèendstream endobj 163 0 obj << /Type /Page /Contents 164 0 R /Resources 162 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 161 0 R >> endobj 165 0 obj << /D [163 0 R /XYZ 72 786.281 null] >> endobj 162 0 obj << /Font << /F15 89 0 R /F39 168 0 R /F29 137 0 R /F32 126 0 R /F20 78 0 R >> /ProcSet [ /PDF /Text ] >> endobj 171 0 obj << /Length 2655 /Filter /FlateDecode >> stream xÚ•YKÜÆ¾ëWìIâ^Šï‡Ã”Ž!mC\²GÓ0c’³Êè×§¾ªj’³âÉeØ]Ý]]]ïªùóë·?†é]úešFwÇ»0ý(Kïò¤ô“°ŒïšzLgºC”{‡{ú5ãá>ŽB¯j§£À›OÕ,°ùt=ƒqäÕCˆ ïéÀg>ÉBèõµÑ½ƒ~iå¤gÌïÛÚÇ‘@öÒÉú™n-¼@“íÐOnÌYÈa¤ –vö2¼AÝ ×ÿþrÜ݇‰Ÿ$iÉOœO£™N8Ù6´=M¼ã0Ê`ÁAc¾«5õ<ò%¶ð»ßÈÀöz¸ªgÕØ8ŽÆÍ6ôjà1“€~ Ò`tÜù;¥‚y”Æ^7€‹Oà§’¢Œ=þŒ ð¸£DôÍK ~ig{˼ttqˆ½$Ê‘± ïçÊöB€2³½ÊäóÉô22Ä æŒJIäU˜)&«;‰ ;ÊðÝG_ žJ>S‡£m뎰0Ú- {O!^Ö`bGÂç Ž`Ö3¡ÓXNȵÿ5ÓØ™g²û ¾ ™4ƒ|\#”s42©zù²ÐD.½ÞÒUm Áòæ)˜zjf~ðÞ«XO¯‡"ò|^¾'ó̃ìî>Šü2ŽE_2lp™wa¥Ï‰JQžtÃjx²Ml-óêjRHô-HI½‘^‚ÇvöKEÖål'ó†£ +ľˆ}ÌC¹¿Gü{*bp²`NÆôŽSuCAFÓVÿq*ßl±3:>]§Ùtg;,BÖæ“"™˜‡ãlûO Øœ‚”ñ­ÚÑ`[sUx¯·9,«ƒã¯Cp}ö½Ê ÷Sr7oUoô˜Ð,:dªEÀ(óž¯`ƒJTômìtnA»Ã$÷„÷“LŽì`:™,œ¡ñW2yYBJÙ@¤Ÿ- œÌUFŸ-[\ÂÚ[Þs7ª”„âãð­ð‰‰±=^ÑÙz¸ÐÐáØ¥u*E†Ÿ•…÷ÝqfËUŒØ?âx¯ (”Ë¢CŒõ´8MIP:}튰Aлôö’|æ'`{ø‚0!0ûé†E,Ur´Bz72»ä¸|V6`N–h)òÊ"=‚ÖŒU£­ž#;2lnÈòçEœŠëYüÑ#ŽäíMðµ;âÏîb²á.O‰ú"?É‹ä0c™±ä0°KÄìF¨zF{ íÓ!M½j6YPl…ž²ð±cåŒld#ÞÒ4iôgÙ[CʾóÜi“"Ôöx¥ ô I@$uçÖΗFœQd|éQ†Ž¡ØH~²a›´_€M©U-£u;O"#t=‰ÕðAXªÝ[D} ²†%š4C¯#QŒúŽCÛŠkí;O|ýþo„ùçX¦• ú¿Å¡·?FÁ6ÍËB?EvwS^ÛG(¸\F~ÄÏœž<ùßâQiTu0žZ|OJöó'|ï y¯ÁpW:3ŒÃÏ9}CII€@ñøþ÷èÇÿ‘Dÿy:¿â<þ!%Ïð=¾>ýáñû]Ö¾IÝ&ä÷ÏD¥aŸ¤&çr—þAQ®€_ÊóÕÀºFŽIyƒ(gWF{A;G}ÚˆQˆæ1÷ƒP6UþÅ×Ç¥ç®çÛpŒYƒîÙbtCýÜrêгï£Aäï ê;D¬¨L%¨ÉÐöçË,Ã3gUg(ÌLªqk4MWÁWb,ˆí&‹M¢Ôû™£ ÃÕö«ùÙîÆÂjT öÂGGÈÍnÁá2=¼PƒˆPÁ~Û…Á1X=Å 1±Œ8ðRr(ÓÈÄE¨ <1ˆ­³r»4QàÄEãÀµshýÍ‚í2¹Ó*¾fš-çëâÍKçÍi`:)Ö Ó0_ÆeGõR‚!IHæ§HÊÚÄۛƭŠnc¬¹C®‰dï=‚XÈ$|°žÏˆëIp›-b‹:[ÂòÅŒƒÀ(ü œ()O‹7gÂ!É«XöH­’˜Øîh_"EG˜ïã¶èÝy<›Om2¸Y-ÒªÖ`u­Ñå÷}³P"²±g!‡`‰¿˜í&bŠAÒßl[óTSÂlS9ñ.Ê:ÏÊ?EĶNK» ºc¹¿QM93sSµr ôáüê¯nÁÙ2Ðt[ vøÞ¨ª6×kà±h œD²æññ7—¾¦NwÒü+S^zX´z¹@3m ,t7q×Õêã,zbÝ·—ï_Mû$gBžlcd»I\(™é¥V¿m¿`a8ª‚%C7éŒ9K•ûlϨÞyŽ« ÞÆpêd8yì}ØÉÀw_Æž4¦ôéQ¬\&V4s¼@sRAs¹5„”æd[£C×½ÀžQÌzrdRÄ¹Ì +bÛÐ×>ç&““nÁÕ]Á•—Ü;ª˜¨ËkfÙá‘L\¾Œô •Ã^h]CK”•q%ö 9•Ô­Ì7­ Gù.çô«öÌcŠÆ³Ó>vñ5_£, ñ©Jã,€ˆŠ‰¨ ¢ÛábB [ßcò ì:]“2˜~=íe§a–iDu @Yºt¢\"…í7« Oë· ð`|kºˆŽjf€ý²õ¥† žWi\mm«rÉ~ƒµÆä¦P^/2¶8AÒ›G½ŽÖýž<ןœÌNßÿ"{7J2†¤ÕÞ°G-µ/ „Nw©pÙK⩎ñ#’bÀ{ótЀCöFHÞìÉ>ý¢ˆ3=ò¨Î÷$I)±ÈÓ({¢8ÕÜ{˜iš–°\©í¥ ¸ÑAygJ¹ÝkAžÜtöÈñ8Üê39•Z½O²:lÿR¯Ý)ZÖ@•'›@…SŸúa\K,͸ [µöL¼_Òæ˜2HN]8ƒò,Ž:J´$·‘ÓöMÓÌ‘Ê:¾šµÄîç7Rǘ{㤤à¦àEó@Žº|Š @*¹• Ô]ôæê¨£©ºrÅÁ«_µê ÙîƒL|·«%-¤«N+.ÎË-ðžƒ8Z6yE²)Níiam±Uíöl*™—)¤T³oͤ׭®<}Þ?Ü¿Jttñœ*ž=Y£%VP­fžXlÜ>MKoRÏÝnù“iÏ'Õš¥P[dˆô·‡c€p‚†l˯†ÈãÐû@É˰4Ç7‡Îãp^ÿT!@WM“Q¢ô/ˆÂm/cd¬ªÀ½‚Xœx”y[9®ãÆp—­Æ® }×+>i¼ÓÒÞ1T£]¿»8ÆV6›~Ò?‰Z®§b§è8…5¸h Üëá¦4'úU¿üE¤ôWú]zA®‚ù~_#÷³<|V,¿6Î)Ö}ÖGá')ñíÆR ×¾“kihŸz A®…›à¥–Ææ,z$õ…ÄQZJ›öH4)I°§/ÐV§ørÇe!m–'¼rtà%÷póÉvÔÕ9{-/a†7ÚÆØcßn#ÌJfò$SRÊek‰­¯~xxõ_+H»endstream endobj 170 0 obj << /Type /Page /Contents 171 0 R /Resources 169 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 161 0 R >> endobj 172 0 obj << /D [170 0 R /XYZ 72 786.281 null] >> endobj 38 0 obj << /D [170 0 R /XYZ 72 300.6725 null] >> endobj 169 0 obj << /Font << /F15 89 0 R /F20 78 0 R /F25 81 0 R >> /ProcSet [ /PDF /Text ] >> endobj 175 0 obj << /Length 2237 /Filter /FlateDecode >> stream xÚ½XMsܸ½ëWL.kªÊC?]µÛ‘kµÉJNij/»[[4É‘XáÇ,É‘,ÿúôë8œ%'ÙT.$4ÝF¿¾ßœ½ùè{+¥Ü4 ýÕf»R:u£XéU¤n R½Ú¿8ßUçÊéZz ç¿m~\©Ä Â0Y­UàA˜²PÕÑxû;=ŠG´²†žUΓ֡ ïñ œWÔs_Ò£¯ññýšÕzVar¢Å뺪r]3•_ËF¾bMë EᛥUÞmhÚõOô¸ü@ßo>ÑóÍË‹›ã âçYSù$âzpדž¦~®áüÍ[D-swø^Zù£È%o®è=;õ›*œïÏ:ô\¥|½Zû¤ÉKBÖt¹¥‰¾rÏýÄéöøðœ‡s?v²ÏQzºNš?Xµ¦Á2¯¶Fà®EU+qÎj¸‡–²îxB^²$¸Åõ"TuíðššQ CbCÆ–» ÷0Ϭ0ZCÊQü<ÎC§nêGšbvHž]lÎõ’ô*HJÖÔ_E:qµ¦°æÍÙg¿üæ­Š3oõã™çê”Bô@¶”$›3íF©òíw}vsöIázÒ¸ž«|ÿôœ©ïêØ KÃL“§ôȱ÷¦éȬß“G9ð=Rw˙ۜº§<:‹Aš¬"_»Iú§›ô­ \SJ»:PvU?Žþn/§u!+uä¦JEf³(´Rê”.iêdEÉ?dÚ—HÀk긢cwâ¸Æ®Žtô9*•<ãø¤ïÔñc/üÈs“8 æžÿ|ñ÷ë—›Ë ˜{#þäY_X±{‚k%½ÈŒÖÏwç‰ïl®zêei׋“ÿ™—“¾—½ ¢È SïÈËO×7äãõ•˜œÃ+¸Èy«Ó@äòö¡ïHÚŒ§tºëj¥«ÛÊ{±j`€ò‰§`¡±k$¸{OUgpab7¤z{´æÕõÁ|G©ç¼G´/®.ÞÊ'«LÚ®n#»1Ví-$vKÒ¤0u¶º—FˆTŸÈ®…_5†¡>pdcßõµ§—x¬Zã©‘ê…r‹oön.p_}–ì‘ÄÊjévÖ°)ø¿ožÑ°€V\‰•X¸,Ïcní`wé]~!âge¢ƒ.8NÃ…ûœÏþ3f.äe#`V”Ñ›¦ k%c†»”Yiê*åÙÔšgúRfnMWÅãÒ&m²¥êËÂÚ3U.væÖVÅ ,*Ï`‰º¥~EÎß8aê{”ÖX¯Ó£cDW×G²_6º±|ûŒiLÞRüèf?³« ô³xp &ÉpAí¼Ã5z'd2&{GÌ}0wÉñÀþ‘ØStá ëÒ†Œ磻 ‚ÀÙͨ˜Pȹ }7Ô:>.‚ð %l¿¤ÚèePÓÎ_»öÕhzéYÒ†où—ÃMs±QgÀ†¿"]#­ /„$a,k³Z_Öÿ"¹¢G¿¸Ýϳÿ­X…ž¢@ìÎB&àdj ®!ÒSTîÎrºîaá“2"Ì àfÞÛXI™³3¥°Ñ.(> endobj 176 0 obj << /D [174 0 R /XYZ 72 786.281 null] >> endobj 177 0 obj << /D [174 0 R /XYZ 72 382.6696 null] >> endobj 173 0 obj << /Font << /F20 78 0 R /F15 89 0 R /F25 81 0 R /F39 168 0 R >> /ProcSet [ /PDF /Text ] >> endobj 180 0 obj << /Length 2737 /Filter /FlateDecode >> stream xÚÙ’Û¸ñÝ_15kªjÄå®òƒgÖN&»k;žyHU6µE“„ -å¯O_ (™råE@w£ï†n_üü.PW¾ïfJW›«$uUœWI”¹‘Ÿ…Wå¿÷íJeÎ^®”:½^­•òœa§»ÕÚwêû!¾i;è t1à§£]M¿úÏã?~~çŸPõ³ÌM/½òˆÞ=ˆ’Ô1=~3g¿Z‰Ó®€Q2Ÿ+Í;†–¿=oÑ…ÙàŽCs8Qõ²¸]=!` =bœ¶¶§WëÀ‹Ý0Ì®Ö~äF‘ʈC]éžîÚ¦wá\9;d9 B‡¿‘3öc^UœN^ æËJ) ¨KÙ×ð·ÖC^ÉYäb¾ÖúAײøŒ×¢@X3‰çÞœWwù*H/3HΟ¡Ca4ýFN3!m‰nt·]¡äðÒž½mJ·ýÌÂ-SÓÈšJƒ(Sð,oðV*vˆˆh@6Ûi½Ô[á~z†Y`¸é´.Ûd©‚عÕD*ïô+n[¥ÐֱϷ"Ä!4‘†?š|À ¦Ñ“iô€òÇ Ø•¥·=Lü *Y?µVÍúô¶ìr[ÜqåOy×%*„ìææ>*Ó‹œh.šOíX•|‚C’½!iÀ*™FÞ ¢³9ð¾]‹÷,Tqm,ðwÇ1ï6—%;~è„EË6£R¼}mÍÛ¬$ßòä3rp§kÙ(Ñ?yõî#»íë&qŒÜ5 Îyódªã¾Ò¼Â~þÆ_”jŸ“5ËQaæö ˜Ç»ö½¡T2œ.ÜsÛ’ž‘åȃ›€H O @™µ<„{¤ä“žGd—üVP°ï;!ãÚyˆÄ'ÙHL”(Z¬™Ã0§o§!ñuÇÝϦª,ëk Ã0Ù®w9êù]d0ØS¢½ÒHÃBàܽ^ˆÙ<dᙣ×-çæ rˆ,øÞïè3#m8»[lÝá8nyØSM§¿3çÄiby6½L¯­R(f–×Bë¨2Ï£õn)H°$õ±°aD÷8ȸ•œ—?!‹$J5“IÍË%‡ìæôP.ó±™"ÅwÁ]´UÉ#)®Û$|––-=Óñ:ùü@vÈÉ·<‘¥ëÉJ ÿ0 Ø<¥¿ÈÝ@jl!bo’‰öL±ŸFåð6Û̸þ;ö²‹M@`¯ö*‰-’ýÞ[ÛÀ0 âm-oüÑ•¹pÃßrÑr%“ÝÃ_ê.Ó<ÉŒ¼d¤?•‹ }<­TDŽJå ®uzkj?—8JX¥9÷|ßÖ‚¢Jó>‡A8\qqfïù”bp#Hâbî’W7¢¹+J"¢W¤ +d–p°¤¯² m#8mĉ6%*-a6È‘§f²€’*E0ÝwP3÷ ¼ÿ™"écÇR”[$—Â낵Nµ…°ÓZàÄÞlX,2; þ[¶nT"¡–…‘Ç~B„"QGðヽ)¿¬bôå‚„‘(.Q8G\ÇöpëÇq6ÇE¿Ä|éE´Yö8HãÔÕp„Ââ.Ç´Ö#èMºnÖÙõ…&èŒ .2ÓÚ- Kg¹ô°Å(Ib 4o-ZvGcë„,‰©úáþá’šSDXTcI"‚ÃF¶;+$oÎ^(W…i(=ä¿¥F.vÓXù²go37¶<¨u¹|)¹÷–~;£O€;N ꈕÒeyatjf¿qˆ)(T“¬ö¦Yÿ¢›Þ S-±ßS¾#}I•BÙST6“h=;ùÎåïïVÝcgx×±¦Áì0ù1iâ‰}¹çUÔ—NÑýòò ûû·¼`ˆŽh+l… ´|üt»ä\‰/å›8§` ÄìµéÑ *ݽà ÷o⋲⌶MBà*õÃ8àÒ•úQ×Ëáb-ž4bÐa|b1qæì[‹ùçH²kÈÆšƒÍÛ‡@õÓÛ‡‡‹öúngÖ l]‹ÔQ#ø½µ©ô0´V"¡sç²Å„™r£Ð;³˜»Qq3þíçŽ:“>aüà>¡}oŸ…ðE7‰ªí©|™œñÕRÌ7N $[À´—*bú'Œ¼‡žŸ3ð}dÁw›Ïlü>‡åÈ n.d:ÀB©äODEÏ­¦`úÿjñå_ƒ×\¾.Å LÅŸœÕ '€~ !r ÔûNé}:;;­÷ü~+FuŽÂÃÛx?ààäÈË#ÞŠ2ßy¹x’u‡ë·îs<ÕIœãsÉDF;a R7ͤ¥ýÉ0ßX”/=‘‘FyÀQ^óÕð˜7-߸ÈÜËK?â"[, µÒ¯øÜ0ÎX÷Pzé’Îõבì‹3ÙO¿o7 ¼ø 7ó‚ˆÐù>î}ñöñÅÿ$[1endstream endobj 179 0 obj << /Type /Page /Contents 180 0 R /Resources 178 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 161 0 R >> endobj 181 0 obj << /D [179 0 R /XYZ 72 786.281 null] >> endobj 182 0 obj << /D [179 0 R /XYZ 72 761.3744 null] >> endobj 42 0 obj << /D [179 0 R /XYZ 72 528.1241 null] >> endobj 46 0 obj << /D [179 0 R /XYZ 72 502.0054 null] >> endobj 178 0 obj << /Font << /F25 81 0 R /F15 89 0 R /F20 78 0 R /F36 103 0 R >> /ProcSet [ /PDF /Text ] >> endobj 185 0 obj << /Length 3522 /Filter /FlateDecode >> stream xÚ­Z[sÛ6~÷¯ÐäÅòŒ‰’íxf›d³u§ÙdkÏö¡ÝÙ¡HÈæ„¢TRªãþú=7R¤ÌÔÝI^D€sýÎ^Ýž½|«ÃE©,Žõâv½ˆL¦\™Eb3e£Ì,nË_–ßÝ^DË÷ïàçú5üü÷Ã{ø½¹†ŸÛklþóæ"ˆ#»ü5ŒCx]mïá·…·èâ?·?,ÂEYemœµW<8T0( Ÿ}™{Ý—o£x¼÷À%¼÷@•ÚØÑj·÷þ"0:Yî/tº|¸€Ö?¸å&¯níòVÌ7~ïÛŽGçxÿ ¯3å‘Δvñt•õÇðãqÊÙßoÏ"87Ì–j•8.\š(j½(6g¿ýòŸpQž…‹ÎBe²4^<ÀK¨¢,Ó‹Í™Q.‹tÿ^ŸÝœýk  ƒ1ÉWsÒtÊÆö¸2nu‡G«ðÀpühy‡—WÌXäü¾=à9Ô³TYf°$uÉì{¸¢å}U ƒï™}ë-.P`‡ïxÔ¾„lÀ—üêk_ì[ä_#¼ß‹€VöŸLïpúÆ#éoçÄìîé^çRÚiWáv®àç¼ÃÕ‹'RŠ#¥£Ô-\¢Ujœýr)õƒ1É9)ÅVea–—Æoð˜Åùœ´U.L’g…P5ȲØOàX,Àch–~ÊòC'cÞáÜ¡­ÎE.)y ⪶ ©œ2LT%'æð“ßø ššˆ°…GÌ«àé–¥´~úOû¿²»hY6ÒWÉó»‹\Îûwà…NÄg"£Lš€ªÛTeY˜þ5ñÅQ”~F|Å`L’Ä7•†‰œJ‘À09ðáýÍ58GôŒ¸ó‡jÏ­íÅS~S¿ˆ-µ÷ž¿ßÀA¡‘’9Ae¸í?>rò˜Œß!ðÖÜÜS4ÆalPÐa8H`!3 Ýâ3FíÇ×Íâß¡–N Æ“A²´À 0ëÌk’ÚÓÊ—ÎÀŒÆßÕH#s0ø D´NóÂðì!"}Ãàº*}ì‰FÃ4ÀßÞ=r»ö¿# ˆõ‘tÇìh¬d½•¸ lÿHþ£Ì $tE™È$³==$X»ƒU»½G¦™$O¼"÷žÃîÑS $Ç‘¼Áu qÀ·‚ · NwÙqè¡Ù唾є’ ñtL¤ð@ \{_wÜÌù!à ¹xG.i´É™óøUAη¬ÖüdMò ø¥Øn˜‡¾éHSd@¶ìY[!ºe9àçcÅš;šR¡"…Ë·©&5Ó?¬0’ÐL&ˆ´>!g"‘;oCtƒñ"~Fn¸UdkÌL]Bò£tù./}} #ЙX›°‡{:8Ún܆˻ ÅQ½!q:›b P…Æ&²žSJC~%#,†ÍÔÍÒ2ÊFQ$¯~ä1&…UÈhRJÕ(\r5`…Ìú$ƒõš*†º þ500³GlÝìQc•ÆæÙs:ZØU2GG|‹œrÖëŽV¢‚Ô  Dt?hŽUÐröóœ:9¾FL™L9G3ÀFֵʘ”!¥ùTŒÆ]²J=°/oûBÓ“ƒE*Œ¢¯w2@Ëa8ÑÞk©«ÆCþHžßêH™09ñýeÁ­c—ñ­ñ©1œAÂthùë`Ø l…¾ ð®†*R]—ü‚ЃQ°<—…œ~‘ó‡YGãÅ·‚Á´ÿ5Œ§”Ç0 Ý4#Ž"ùÇÞv±gݳy»áו±ý&ïwK¯^¨åµšó¢~zÅ> A¥–rM„ç l2þ‚‡Ó\ø„ar<ŒÁØQ5ë¡(Ö;·|«øùj@Ù~¿Ga^ ¥(ÒH®ÈÕjô7hЋZå=“Õá£pw®z"xQa’°»´ §ð¯†H8 5v­iÝàÍÛÛ9ÝrFÎ¥Ç:­…lÇÓ|µ§ áÍ[,4s'òÂANE,äà$Bm ÎÀk»]a8é8£§O…ßKNÅcÀ³«hCM1K–ß÷û€iÄ-¡O_›c?3— ‘=2k?ò(Ðñ™óg¬èPT{Ålâ…£©âŕؒâŽò±É7Uщ2\ïY´´¢ ®õ±Zc cš?rùŒtz³,ô(íõh(öµämÅßü^òœz® 2–Y/; ÿlb`l¶ÀË ô°"C:îÁb0Nàz9·™£0ËŸrÁ7؆ÝÏ•,ûcfñúLø÷Käž_z®'•ÍŠ8{šSXª4ƒˆc ¹ cH½¾4§(c’39…5ZÅ)ä—Ã8ò’kL£±¿ÎР̆ýqh­0I|)¿”^ê6L•M™J ÅÓx®\åuÍ 4~;æGÿÊIÒ2¶¯`³âNX¸ë‹f ™IìD –VŒéPÞ³²s {ý9ÑaZÕ yøö‰Ð¢ „wã¬r‘þòDp ŒIÎ –‹]|\7Oé$§û„ô2 uü÷ÙS|vŸ°ºÌ¸é>)sª±$£>¯]1àlKºA‘1}Й»m§¤Â4M§ž®¸;eI ÃPa-r_nm=½`Dp†)dÛ, EE¼ßZ=ci'… *Ä WR¬ÛJª×‡ .ä5¾åf½”ÉQˆ¹%e½n{2uS5Õ¦úCŠÞRÛ› \·^Zp!AQs€ žî¬¿û ~uv(ÅòUûõ½8°˜àþÔ©ôHÃ%Ÿ½(»ü˜‘Ñ­ë¾­>‘ÛølXÁk¡×Ñõ`_rãÈD (`´ {©¼.8f"ۺ˓ ÃCç%–Ò¥õ Ô÷³W¼±SÚY=½Ô*àï+_p,ɵñâTîOϱ{w>·ØU êíF×¢®ø ö]ú½ƒ×f…‹øYRû¢¿¸V”ùüÀØèAkv{«aI„šÊÌ-Aן*¾Œ¢P=º%F˜ÏšMô9á±;4Ë(ﵯÿÁÏ À-‡Ö#ÞHsÝœŒžJñÁž‰Sb²‰ÕýMv S&„bš ¤d—a*- §ÓÕúä´€˜©/çøÆÖÖôÔzà«Ô·ÒcÞ¦¶Çr|A µªõ¡9V2pg'~G¥ü€aüÓ¨ 4¥j$¶c…ÑC;DŠå‹,Ä2cUËÌ}O¢?UÖÍœùäïºÕÃÆ°£Ö¢À. l`²lð;ÌäCÜTMáybCa–Ä«•ƒà [yfÌ÷ü6Bï”á•eÏBQÉ|g)¨–½­êçL‰÷Ã8HÊx¨iqÀ«+Úêø·…c…6Îw¤¥o¸8Ã1¦1Â#l?u›w䌡›ò霷è/}»©˜¬o†¨.è07†ÔáçÑr)1Ý]ãþ‚dé~£‘ ôŽþôþ”¿ÖÕ€/Çÿ¨á6ôî}©fËN‰i§T/™½5‰TjÂ>¸uÒ\‡Tíîùë9¼ÀÕšÿöÀÅTÑ(|vCUU¾³Wˆ&BB¢X Êã¡A "Ào±Ly”X_½!J9{ìí“:Y|»Òìqrð¦âê°Äc9Ðôÿ.™\ƒ°àê|]ž_NþùP0èøR€ÙÅÅN7Wtç,.ù_Wë‡ùx]QúòX*˜ 1èh«´³ÿCŠ%Æ›»œ³xÌoŸEgXš2®¸´¿HO5KÈÔïûjuKâƒ`ó-ZHF¡GÛÑml}JvÅ—~½%ã'*iÇÌh K6>½6 *Ää2D¬(ï‹ãý_ØÄè¡Mur1ú¾JM Óa ±Ø¸Ò^³"Ý#óÿC狪endstream endobj 184 0 obj << /Type /Page /Contents 185 0 R /Resources 183 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 161 0 R >> endobj 186 0 obj << /D [184 0 R /XYZ 72 786.281 null] >> endobj 50 0 obj << /D [184 0 R /XYZ 72 441.5743 null] >> endobj 183 0 obj << /Font << /F20 78 0 R /F15 89 0 R /F25 81 0 R /F27 143 0 R /F29 137 0 R /F30 140 0 R /F32 126 0 R >> /ProcSet [ /PDF /Text ] >> endobj 189 0 obj << /Length 1829 /Filter /FlateDecode >> stream xÚ­XK“Û6 ¾ûW8—¬<³â’©GfögÛLš¤‰;N’ÙñJZ[S½"Éë8‡þö 啼tI/E‘ €øûÉrvñÂ÷æB°X)o¾¼™G1“¾”óPÂDÄþ|™~p>r.>-_^¼ðøx3L#ŸsN»ª|!œª‚!kõn¡Æ»ý€ÅB »-\ÇNÞ-\Éc§ßdzR-¼ÈÙ– /t®.Œ Œ>Ô øFOó>kWðÚç·¸NFN²p…³‡å¤ÈpÚé弚܀ Õ ³¨áŠÀ©›sx÷b'­+³©¯õ³Ì«¼Ì¿fG2nÚ,Cçî`•+$“RÅd\7¬÷ÆeñÄ !óc)ŒÛü$<„¡o¶ìò~³p}вͺÔœ,éõ ©ƒ“š<•¶vM]éoº‘CáxÛ1°ÂWÎRŸ¿î›9ãàÆHÍwð™ˆco^Î|ÄÂÞ‹ÙûÙ/îA¢;ù3àH?dsOÜ]z±†µˆ˜T*º kô¬öXx‡P¿ø6u‘ê×Û…RΪØ_kýìúº9‚¶CL3„£MÉl²Aƒ'œÈ3ŠWø™@¡J)*˜#‘pì@ª˜ùž¯¾IJÿ>Ü4AÓ÷XxÑ<ˆúqðýhݱH+šÀ#ïn>@q¬&„qÇñÿ¨æ ñÕ “À#S=[ôf‡ø®Zt®-ü¤ÏxàXUæD”Y }KöbH†ŒÏÛ¬Jöúu…¤Զó›ül°´2¶E¡g÷ ˜V5±â4Ù Óª¹¹•iÎ5˜_FÿAŒ«¬Gü{nýûF)üQƒE¡ÖZøÃîÚôîendstream endobj 188 0 obj << /Type /Page /Contents 189 0 R /Resources 187 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 191 0 R >> endobj 190 0 obj << /D [188 0 R /XYZ 72 786.281 null] >> endobj 187 0 obj << /Font << /F32 126 0 R /F20 78 0 R /F15 89 0 R /F29 137 0 R /F39 168 0 R >> /ProcSet [ /PDF /Text ] >> endobj 194 0 obj << /Length 3043 /Filter /FlateDecode >> stream xÚ•ÙŽÛFò}¾BðÚ,º»ÉæÀNlœxv=~J‚€#¶FÄòPHÊãٯߺšÊI^¨ê£ª»ë®Ò÷w7/ßµÒ:Ì­5«»ÝJ[€S«Wiœ‡±Î£Õ]ùKàšµŠ>ÃïðÙGøv;øìÖ«mð â ‚™PÁG½Xÿv÷ãJ­6:ãØæDfÛÁRû>¿#}ÿ ¾:„O¹Iæ!´xZÕ"–ƒO?;ÌÀÌ‹%¬º€•æÉ"ô;[—Œ%È OUÑ5m+#Iîj¤†`ï #îÇIÔ6ILÌç/¹tȿޑ?Ãç-ÏyOE,ÃË'„ ”DµEI¬7Z™ÜŸþÙêz¼§Cæ>_|׉=®9Ðñ1ã±GÔÙ‹ž·¸}À=Ï—ä¹CÉtÈw˜!ÆÄÝR]c¯ŸÇ3<XDC¬p˜™]gæë;dæOðyÿ ýÓ-|ß"øþí{ù¯ë“.%xé,ç‰×ÈÈð€Jäpþ3’{‡t^¾‹òs‹Ù¤9[ÌÆè0е%Â?¼[§6x­fÏPâ8Ìt®á ¸µw Ø—Iƒûõ¾´<6*÷è˜ @§@F(ûFÈLÇÕ Œ[¤6º’íÈb%|&;º–Õˆ¦Ë§–,¦Ú/`&ŽƒA(=!!Ô#üªÃú¾£{w '$2ÿº™x†®qã¾jÖ›È$xEú¥!Ðí_4’#w j7x¬å»!\’Â…6xö›EöGa–ä©°ÿ±÷@:†Ãß¼»cÞÝ*(zdzCEb:’ù-°ŽaÙõÀ;;vV„ô‚jd~×Éìã¾bÞ1 f!"+·Ûã¡ÙVyž$zlðZ¨%i b‚ì™éò¦™vÃ}PÊ»¾Ø Á¢F!ø5Ö ™©",ˆ8¼/Úò3u8ŒÊÂ\ljpµEËiË%ö›8LTêÙ/—Ù@‘EÎâKð@Tmp-‡£g Ž vˆD@°÷rëËúDbÀw42 ¡5‡7=1M…Ö˜èBsGoBpDÈ‘ ^£ÔLJMÕRèØZá$Qü-ä£þ2’¾Õ=‡qΤ#•aQÔn(NÁ¾¦„EY%‰9·>ÿôùùFì=ÉB¥v®»c‹I%Û5z¼€‘öÇ–êMPõhÈ— úËo²9 mª#ÙS ß-Ê üo¢ü¦ð%Æ[¬Á¯\ólpP)IZÌÜrƒŽ7?ñWàma1ÿžGh¡¤zKÓÄeí?yÚÞñ‰éÕÀÝÙúò(Ô÷fŒ'ñ¼A1çlç ‚÷Qâ“G`ìøw ×8¨%;e‚¥§&XÞ+eàÀÄQoѽDz{I© 3e¼`; `˜Týå6qͪ:zïNÏùêäb-zÑ%¦ƒgTIf&b6‡aÞ•TvSj¶t|¢C‹í Qž%﵉Ó,L¢L_x1JjÄ—‰»#/FN¬úmב¦ 9MÇŒàÏØ¹½õIÈ_ø*ÎóË¥*÷©0Ê.ñÂÂmã}“Û®¡ßS ²$ƒ4ŒMæ ÷Ò!Ë[ò#I2éÂýT1Pïé(ÙnbŸÅ8ú»ö®¨ì³|GÅ(ä¨4•Š0œ]ªÒ!_a|è݈håMäi1:ZШÕ|©†—ÕWŒ/¶6›*µZg2ŸõÏæbñ N(Ö>Á,ÚòŠ£ÊÌ4ˆVôwî™cŠ}ÒáM¬…ÅlÙ‚KÖnÇE;Œâeƒ³Õ80@qúQf‰­Î/¤%]Ã5 Ô35öå0eO•Þ·Gþt‹nå"…ÏóeùÑW¨aÇyùj“€sÌ£ä¢JÁ¸”cR ¬:Wƒ_w\:=C,z´íg<ÓLš¹G†)(xªv+÷A\Nk•¤Èà»\;LU Ñök®O:ðÐH#ˆ‹_>Í û³ÅíÖ¹’p-…ÿBiÖ;ÔíY’<ÕWÃ_z©Ý:)§¦ka FG-$û†`îEû—éàË)éÆƒÎš¶}‡Ìx¸žDÑÇ^<1d’ψY}ùŒ:¡`,*`Ÿ±!±Q9¶Eàf/Kܘä§&®!§¢þRb:ÝT˜Ò´ä©sEþ?ùîMì€1¦§æ ÍS¯¨>Vu-9Ìì, ×BÞt˜4¥˜I ªBúGyŒ}{¾§8>H†ºZcµ6`óBôNØà·†XñaŽ£àq².ü\…6¢™Ÿ»¿Þ’ú¦£KÃ<‹òsRæþït·®š9ßh™T·étd1…ð3‰ò%Ö“oÿQ«.Ü…Çr2•ûÅXpä)¶†Œwx£A˜»–“&±þf1wcï*½–lj«"@ÓQ¼DÚà“9jùxMÀM¢ ¬RKŽÁ‡BÔ›gÇŒ]íÈZˆ$b½4ùh×ÉÁž’=–Úç#/YÃ4ñmi?÷§Î-Ìì¸ ÅÞ)RMOîô¬®‡éSo‡&¸À kÏNr CF€yy*Î þ~¯ØajŽóÐ<™*Â’l'«ãúo¸æ-ηYË]M‰#8îÏ:Zß]«½›˜’V%`§SZU þþK- \IäQT£  ÿboXÌR"ÏÆÆUùénX.o¯üY ’È)ç¹[l¹Ã6£Èé'6×››#ž•þ_¹ýËûîX—çëÏ ÃD5¡žÏJÍ:9b,]±Ð5‘tK àˆHõÝñaÏ+Ü62'•àþ‘÷Õ´ÞŸt»ëqaú§>©‘öÁÚÕ®™Eoß§’'ÝP6j°[ÏÇ”þ1ÑÁô¿ ÿÔ šª)äŸcOiÁ9Ë%Q D§Kìc5ú–o…íºï®ô8Lbý{É_(WÕô×Ò+&/y°É/r×Ìæ¾Wñé÷* ERï#̵¼:LóHšœK”b¨~@ gÛ^}X §!©ÖÔ’8mü*û̬,¢ŸíúU)³XKF¡QSÿçelTyÁ ¸™e){/ûžòÿ&ö> endobj 195 0 obj << /D [193 0 R /XYZ 72 786.281 null] >> endobj 54 0 obj << /D [193 0 R /XYZ 72 379.6229 null] >> endobj 58 0 obj << /D [193 0 R /XYZ 72 295.2611 null] >> endobj 192 0 obj << /Font << /F20 78 0 R /F39 168 0 R /F15 89 0 R /F25 81 0 R /F29 137 0 R /F30 140 0 R /F32 126 0 R >> /ProcSet [ /PDF /Text ] >> endobj 198 0 obj << /Length 2707 /Filter /FlateDecode >> stream xÚíY[oãÆ~ß_aä‰VÎpxKPiÑE·HœEk (Ú>ÐâØš.Eº$µ¶÷×÷Üx‘4Nv7mŸú"ÎõÌ™sýÎè·7¯¾~£Ó+­U™¦æêæî*7W¹-•ÕeruSÿ-ªÚz³Ml{4Žÿ~còȽÆn=î]ï6ÿ¸ùã×oL¹¦¤c£2[fW1ú¯Iâ«\•y¬qI¡J ­­Vy™ðy»ãÈ OÙÒ™Jtœ_­VúAø©úûŽÜ0r(l7[u0ø÷X'<ÚWµ?ÊŽ f]{v±›ÔÒ\ï»õÒ±;pgܘ"z~Ølñú²à¡ÇߢPF&é[Ù°'ÉÀM®Š<¶Ð²ÊÚ´¤ ÏÃè¯C³F™Dòû! ;he6ÙZö’\©’Î[-#Á%…\{äýyð»ªá‘Ƶ(ÓqÏÝÏ(€îØsï–ÑáØT +ôW3 ‹¬L ¹[iÃ’DVTO@Ô“”Õfkó8úë¦0À³¯ƒøC÷nPû4Ù#CG²aæ?'»˜®Ê;6#ëÈ” ÒNtøˆ„Ì$,SF­«z¶5è4d.÷®çEžÀÁrjMô¹nyñC‹«ÝèwnÒy|"€Ãä©\»Ååú6$S¨4)' ºqG§%l¼Âgw7:9ØËÔ©YFàÜÔêÙw²esÇMC›É@ÃnMŸoq³&ÓæaÚHƒ%V«‹üL‚ƒ£¥´:“EX1KÐãOëväDÃàG²ET°"ª:W)Øï ÉT†Õàë]?µpÛ^ÔÁCh2ômùûÐûv癆Ø`[?J ·yæy=7ÇË£.EÇäR”X%‡ÖŽè»š»·|+jOBÐíK•Ö|^ÌDë‹_ŠœF«¸°z9Uͳy®’$?‹KóuŠ1…žöî`¤;ŽÜ|í¸Åž¡3™Úbb¢ëãÁõQ`¬A¹®–¦“¶8pón/'ôCª„S'Œ¹À·âÏ›M¡Å=ù2D*AÝxfS“çƒè²ñ© (lc%kò¥5èý - ºˆ†CÕ4ܼàgØù¦©F¶ˆAاÀåëe­H¡“ÂJ‰…^FŽùhù,>ÂÎÚèªÑÏñé?è‰2T»víJ¯C¸=’CDÇv‡ßr²ú"Lqš=k´Ti9Äè<‚ äZG¨°÷ÁcBÀY\¾ç¸á˜•ìƒ{ë„âäˆÞ:‰ïœtOÙ;ÕÎu“ÈI!èȤÀý(9Ü6î€ç–äÁ Ahc¬†‘‡ÉÎF¶wìÓáØ˜ÙÍ£'xMÿ •ªº…Êo6ÒLJI¸!Jv/®Ó•Zü\¢"-Ëvô üâý;’3n;þîý=€³Ó«—ÊÚvÈÏ ¾âŒ—÷í]ǽ)\aûÚïºFâôdd‘iJS(@–b¨6:µu༤Tp2:/…ڤѻ DôXL3Àr¨ÚBÙ(˜L™ÂæÌñ¬WO/dÃRZØUè9„é#54ì$þã0E|n’ûMW†•¢üe%S‘=wÜDëÁ)`èúL>@A™ I¢Iã»Q"K +/ÉT=»€küGðëW~´*÷;Ñ ÀOÎ3:Š®ýÿ‰Gk²íõÈ1¦9ìÀàW³‡ÐÉ`68‚pÞBPÀ‹,Ú³/Ÿl††?™Ö¹šÏI8JÁW°qšå‘Jxën¹1€YS| ž¦xhX`‡Há»VÂäIýðZ°EThÔ¤ á­­ˆq `3øF­9¡¹²À&âeã"•Ü©ó bÕªHâ©Ø´˜IðÿèÎ8âÈ,^I¶æR¯mÍW‡á‘TüümˆåíĆðl¿„g¶#8£ö„ÊÈ&© BISÄÅ€± MY²æÉ_%Y½$ žs‘åÉÖ'( ¼Òa5ïÛ–·Uuí%>¡b„ÏrÚãü¼ÐÈi‹ÐÙ“ØK,Xf&ÀYÌå°±5ù~q¢Ž¾ÿ‘ÛœÎ(M€Ë­4FÑ‚.úMÐn TØà$¢¦ŸÂ5§ÍNkÎë ·ið¶29­5_p9£2=?ñü°À¡¿ètÉç8]ò²Í,.×4SPíΦR‹ìL¯@Û+ý3+€Ó÷À+ð-@KDïxUP“”PáëªUùºi©4.õe³xfèÉ„ñâ÷’ ÈSÁÔºžü ßzÐÅ4€¯Õ½¤­ > Â¥m¬´±_=æZÜ&It?âÔ›ëKr8fg!Ðjls%›L¥% USÕÈï9°‚ÃÁ½P$|3• °P†ë¾u'ô®ò&åWñžôNãK\YŠ›óú S2‚ÐÜ’”aÁqZ^(¨"›±â¬Ä¥€}»ü @Ø»ýüØ5LØŽ`¸pfläe°›@áéL',ÂeæpôTÅÞ6²ín‚&äÝ·N°ÏBŸ‘ˆÌ'ßôs@ZÝ-oúðm;~ÿ#Çpõqº3–cÉLXtöz“ÍÐEy²áEÇ–D!rÈ9LiÐÓ ’Ç}Ï+tNz'Yü V{‡Â{WÏÍ,z¿] $‚ö£†O)‹>Ç¢î)çr{tü7 ‹ƒ<àÐ Ca8]ò"´‡Ùž$=¾Wávù'}¡b„‰NV¾Ÿ^µå¶xծʳ^¾o:àVÚüh.pù—Î øü\³Î ~›áã¶ä¨îÓ*†•—^𿙋þ ©ÿ{êÁSß!Í¿üÇóÙ»ßE¬Ñ—×h‚+ø=Í€Ï/o¸,äl Z¡ó³Âü×n —g<‰2®ÑaOƉNV²ÊĹ.R-+Y·ö7Æ÷´ŠVXðÕÚðéØ&‚ÁÏa'(´XŠ›ë€ ”[IHP·ºÖÕ ¾ÿ9UeVèÏ«ðúgP3¥Ù¤ûOä Ý`~¬¡Šj‡ùq¨•½Õÿ¿ëÇÛ)r?yY9ÅQhÎËÞ¼¹áÆ==ÕCø_Ò,Q¥±ùú_Òà@Zi6+hiü²H™Ø¤fUçÓ©¯¥ú´$ð3H¾üít#ñõ¹>‡<׿{÷nà·bz{¡ˆyeâT&+ñíI+aB§8ùê÷7¯þ 9{\Lendstream endobj 197 0 obj << /Type /Page /Contents 198 0 R /Resources 196 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 191 0 R >> endobj 199 0 obj << /D [197 0 R /XYZ 72 786.281 null] >> endobj 62 0 obj << /D [197 0 R /XYZ 72 598.4022 null] >> endobj 196 0 obj << /Font << /F15 89 0 R /F29 137 0 R /F30 140 0 R /F20 78 0 R /F25 81 0 R /F32 126 0 R /F27 143 0 R >> /ProcSet [ /PDF /Text ] >> endobj 202 0 obj << /Length 2730 /Filter /FlateDecode >> stream xÚÅYK“Û¸¾ûWL͉ªÚáŸNåà8ö–³e{²ž+çÀ¡Ö©%(g}úŠÒbâr勈Gh4º¿~è/·Ï®_ku‘¦qçêâvsQÕq¦³ì¢Ì ‘Öúâ¶ýWô)IËÕ¿oÿvý:Í—ÄЬtR\$D5šßv\¥‘Y]¥‘[]é\G[ê4+UE_yh=ìv+UF‡Þ® ŸìÐ õ§$OÜÁNÍ]gp$‹6PŒÜþÑÞC§¹³SÓÖ ñ!xto&¦=ì™fø›ýß"‰*î¾Ä7¿8&&.¸¹ÃóÜô^îu•fq–å5]ÐÁžÀ7¶¶¸¨³¿S¯…Ū›Ut3¾6ߎg·ØÛ¼{3ìi—[l†‘üõa ±æ×íǘYGÒ¦9Ç„ ÅôOü^§{åìJÁµ’*ûŽ×}´¦kñ€´ŽšŽÅÄò§¡Îö¦^¡;šö°–«CwØðwgvÃøÈm¦,àû€qOãÜ ãvÚrkÂWÆFOÊC*tw²‡?e!ØGx¶}èIyS”'­àuC-Š«<—Ö  ×yÔ£&ú&|ݺ9 ’>_]e¹Š†ýdw¤(B`FÛHÛß_Mo¾žÐDÓ<ºÁîGžÞÓMH‚í·°* Ø¶RÚÏ|X!.|M㬀Úà)3<Þ”Êh·PÛ^ÆðØéXÌž'ZzÍFŽé϶:×&’;*^àTmùÿxõóªRÑ?Qtiôæ-éÒ{XB÷«*^¼»}ÎÓ¯q F• \Í›N¹G7™·y4ìYÇߦç/J€¬¼ã}Ɔ@¨Qðø1«"̪³Üü³üÞýÓ6ú°µ³9{[„ïxèe€ÅXG¿âFwhŠ™"jF<ìu¤Ö÷†{a„… Ò#ø.¹ÕÀña¶ë˜Š\†,K³;'°ã v~÷ÞÊAA-ÝZ˜}³ Û&®N¯´‰h8|OpaÃñ¸•/»K1-pâ]СêéNÛ¶ò”Å¥VzÉ‚l’kôdô”[|åYpàWŽO*ºË¤‹".”*N5©Gý=óú?r÷þÐIC‚¨tœæ•’ ü9t<®r-*ŽUq¡+¯LŸ’$ Fa*N*í%äeyÐ79ɾµÃÿ¦GÕé“Á[]£.¡Su«¤*þ?Ê„Séè<2áR;¿¿¨úkðy†{nƇ’œ"EàDP33q“¸ Á&Ó´éÆ;cŠØ2LVâ8¤ë­¡ÞÄzªWgZÊqDm#9#ê¸{’Ö~AWOU^P„•çgñ,FæE(Ö–|\0ò"^R¸à>ó¡ô•„þ—䊯r¥£æÞwÃÚ°É /•#'G¯ˆÐþ»:“Í¡Þ&üæÐ|ýú–û®éƒ7ÊÒtpÔ:š´gJÔPʺi´w‡ÉÇl-/#ñÅ%o%âøÌ“÷#!ÒÞ]2‘dѶ™¸5‡×vOQe¯øBMN÷xÔS_VäZ)n„AÎ/)á&ýÚúµO±aº™Nb¬‚yÇKì|¬fwþ¾OZ·´c”=Ešÿè?F:ÀâëH´£çhg©Ž'ætÚ—çQ÷UÓÝ›;Š.y¿}óDn€ vIê+a,¯9³’ÈJxἨ» ÅYb~vßKœÐ4ÈZ‹møP-àžìºA&æØ)‡M0”(«X•™÷¤oCþ!-â¤Ìª£ƒPÁ€Z]œntæCʸL=ÅŽØ­¨šX"F+N›ðJóÓá Z9$¦åþJìQn‡‘%mdFÂ!”5N ~1 Aö\à^ù%e¿”/P@ÈŠ¦G™%'Þ%³tŽwÖ-G’ßÂÏõ¸ì‡|“†d>ÍfiæIèŒ ž_yW¸@„ûÚ .U$eyÜ-ÎÇЮ6¥‰wõ„·Ó–R¢ÀÖÄTåõ÷0ºÞ7£'é¤Ä­ÅLÜŒÞQf“{‚æ“É@ª|ÕüĪ„âxÀÎÍѾ½ÁßqF@³QééÊ›­4“¤J N€í·C#‰®ÏfèÊàŸF·ëé@€–Ì%À?.Ü$™O}ÍA‚H@¼FR ¾eŠA¼,ó%Ll pƒÿl,¥\~I2.ñI44‹2bÂ…Ó·7o¸ÓYÉq.…8yta‹û0Ò!f©´ä‡QiuÆñ‚ó¡.Ïl_á¤TŒ¯^dÚ@B9ùKÙ¨;¸9@òE\KJ×Ñ{‘vO·C–ž2—q I•hú·œÐ.ž_cú€¶ü£Ñí ŠÜÞ¢ÝÐ;Þ_‘3K㬞7%I’ô²¢wu–;CwØaú®8LÀïiU G–µ'XÂ!ú,Ö)€Îc*‚d‡Ø´»}gvb­‹2:Ρˆl¿üa רþiQ·¥ù{Ùý§Ck{6Œ« ’©wÃdB1 ¤\^¥,IasåCœ £bÉ¿د©ÌÍ3 ZþF­š KJ¼Ãiõ\ÌÆñ®¾~{tÇÚÚÄ?Ú{²#+eØ›I¬F¬1硒Àác‚lpäNh“ÄQ‰Š/³Ÿf‹ÅP3Pôp<ÃUmlÝ|Ú§"x‹¢ª£¿Êù=–pùê‹2p?tûZ£—^ó?ä˜ýÙJ™­Ùû+PÈó¿XÐÖ9±;æ:ºõ¡Vñ­äˆ%îzõ£;¤¸3ÍJ„{iØÍÐ3sPíæä‡/}PŒÖ âÞ…œMòEçH.Ù±b¶ª‰;B˜7r™òü!NÿkbŸƒ,**Úås‹KÞˆÏé¸{à ÝtÆ_$þâ„7J+÷`\É(õ™Ö!ѯ$z'7 Ù›§qþwšG®’Ü!èb…„þmÂFƒŽ agŽ€¿Ýú2ZK/¡$ã?1J¹Ž±Á“ R\1‚áA>ù•ÍZ|$ê¬ñ‹èÍU]ÁÎY†ž[›“3&G+ôâÒ ’s Çí“¿¯p`}d&pŒ`1+|$ Ñyqârꊹ2ó÷O?ÑÃàÃÖiôêÃÍϯà¨Þ½‹NâDiœ-ÓMv¨pz;0P©,|ÅQ¼×à>+}(ãOÄbƒÃU©Ï\þæ[ù A“½ÖÀ@Ì&§t'u êjWZþ0N œ}öêöÙ¤W™pendstream endobj 201 0 obj << /Type /Page /Contents 202 0 R /Resources 200 0 R /MediaBox [0 0 595.2756 841.8898] /Parent 191 0 R >> endobj 203 0 obj << /D [201 0 R /XYZ 72 786.281 null] >> endobj 200 0 obj << /Font << /F32 126 0 R /F15 89 0 R /F29 137 0 R /F30 140 0 R /F27 143 0 R /F20 78 0 R /F36 103 0 R >> /ProcSet [ /PDF /Text ] >> endobj 167 0 obj << /Length1 913 /Length2 3071 /Length3 532 /Length 3712 /Filter /FlateDecode >> stream xÚí’y<”ý×Çɖɾ…,—ÝÌ`liÊZdd'cæÂhÌ0fjÆ’6$e ‰²´!JÄh²Eö}M”}) 厞©ûwßýž~>Ï_Ïë¹®®÷9Ÿï9Ÿëœ¯¢œ½£†1–è Z d ¸&Ü0µq²„kpMDQÑ”¢É8"Á M ¸0¦øp}@ nÓ5DhCSb0„ó ʦ*?Dz€qHÂaÐÀMƒ˜50h<àHÄà@2M0Æã‡'B0$±š8Àâ0dÀôÇ ÐŽ, ~D@ï¯0–üwê4H eš”™&U¦E,‘€§Xе%2{L'ÿ¦~/nAÁãmÑA?ÊÿœÒäÑA8<í_ bP0… ’"$~—º€™³±8JÐïYK2Ãüñ  ×Ñ„éüÇ…ZਠÖGÆ~h|(ø3°¿;aN裡³½…‰““Ú¿Öú3iÆÈN´`€ýRÿdø/f‰„£0M Î2ß¿¿¼~kfNÀ±8‚? …ÐÐ$š1Ki!@8À° ©LÇPM‘Ì<0' øI[Õ1 Dø#ø“0J>CüÅp&ÀSèP ϼGtÔø1+šÿCzLµí/bæìþ!}êôÁ™ÿýÕμ’Pâ¿¡.ÓÈOüÏa›˜©áÚº€†Ó/Óô°Èÿ&ÄPH$@þy™+û›ýpÌ-ƒ Ä@†ú‰˜ƒ—Ó+bœ5Ïë|È¡*•qïÒÛ—Ñå5Æ õ’*;œ@™UÁhÁ@Ü#´¥ãÅP¬bB¢Â8¢)Ü=(ØÄ+¢r'Ó‘k³à齫9§‘Δ73$û!¸RmeXžñîôKŽÇÖsp½»KWØ ôo¯=Õ61´ç&VþcÄ+çëTÐyö]RëÖâQbq¨ y¯g&CxgH‚>Ö}j”7à >dž­ÿþ'£SW”4 GFoÖG0ìÙÖF>Ör=™EúU~‹˜X®t§Ö\WªEd³¨Ž\iÓÞé]Ù%]6Y¥=îåßñ_ìc%[Mé?VÉ=°ÙPDT|ûüÂHx¨©3úzMÀYaËýn.À”z*üÙòVÞ›>Wx¡êœ|Ï­¨’ó}Ïýs ñWrGšŠ¦Ý·c×- ¤±Tú×¼à„d1¢m¿ 8¥ñ£ÌvK:—·%nz/š­»¿°YÕõ’dŒÔGQ‚ʤ#á+š=C`nÃô‰µ÷JYÄz\æìÅñ„ÑJUºg_ÈqüŸ"+|ŸeÊ`Ü/«ítܽexD¯VeLÃÿ4²÷•Kóù¦›°ÖlSlXަ_ kßântÃ[@tb>¦y„Ð}U‚çˆ{²3ª%BO<3žnz1¾G/±î„D^¿rù$±°ãCwݹ¨Ä¨4±‰´¥®¼jÿsj²V–|ôÁ\DPvkuïðÓ†ÛÁùÁ® 9LW(?߇®/†V3òw¶i1ßìj nc¤`œ&„}¾™~ßÃeÆVz{&"­øéå®YÄXë{ù?Q§iU•+8·d6 µg,i\gw_ÈýØgѽûHD_5Jà 7Ûõ'g¯ï y¸yÊ}¬å½§ÐË…nÕ ?Y•-ªç}“pä∑«­7o#¾ÑX›Œìßê|*î _v¯ÿLŽA× q;õƒ$ÙÎ’ D΃½TvªWÉ=«/MN+…AN1{§Ãð²fï+¯äëF’ {ÁdX}²ÒW¾åèkº_J]w8XdG½4Åé œ/ã,‚”ÝŸBÏù|N\~}NÚg–]BiIM‚†Y1É ³g]?IÖ]¦»ÿÑ©ÞEþ¹ŠÌÎ §+†Wr5ÎK+%BüV“´–-ðë¢çùýíQ“îÜ l¿ó$géPÌÇ ‰ ÌžLtÚ£Úçê,ëá6[j˜Öti¦Ó$8ódÏ^΀lÅÁ³7ßÊ—ò¹D°È_åù0W`!ÒhÏÍå2²‹?SšÆÙ˜$(vôõ–yp䉻OÖY[8gN/‘[I{Õq{Õ§¯±ë^n«[U= ì¥õQù³lƨÑÉBT¨>»S/KÁâÃÍ’aæÈ'>7}sè\½ b.b!q>éÓ»U!Šú·L´£¯¶³Û¡A©·"$y]§£·å}–z'Q¶›­oyJçÛÐ$v_ÌîqbÀEB¿¼,o‹äUè¥Ø«Dw3ØgJ÷ ‚0k%+¾_¸Ç9[Æ«ìmHÙBàvnýå»]Bz¿7¥³+|xÑE—yÞ,ß› ¦ ‡T9ã·u‹ƒh«r½½H«Õv×–¹}#^=Ø1ey]mgµèr€ÅI¢ÙŠõtòFšY|¬ÞÍ!»È!‚}„"†¡ºÏ' ·âk‘|åÑ!¯êJimÞ®1xÿŒsé³#­°›Ê®Ý¢ol匛²,‡=eÌçÒ°kÙ©³ý!6ìÀSuŸ´ëÒá¢-D§}å·L' P鎃n–oƒîªb•Õ_ºX¯5ÝÍl„*#:uZ—ö>Šïµ^aô2:ÎV=ä¨QèÌšÚ1i^,™°‘|žÚk§WÓ­ò]¿»â®©#×dÁcŠòåà2[¥á²©·„ê’ՙؖ¬˜°˜ÁaµIo˹ó´¢£èË ëó< J¼†ˆ7^z9é–»ÂF]+-Uô~Êrá{ê`¾°lêÉk‘R%ZÀ®);±ð×2›ï_{êMK%¹û«žÓ.m@m4̦Á`;dæØ0Š‹ŸívôëpÃxg4kÅyH·¾h™¯Ö‘¹iØ3u举޵º=íõƒÑþÃÞ|Y:[®¶Eé±NŠ>-ŸÃÁ§Z,O°KÇ?f©“[íÉ]LÚçøåDáãþXŒ-PPˆVK`ÂAÙ¾›PÂ÷¢ê„>ûMXsÃ#€òìkŽ6÷é‚·–¾¨;ÏŒ'Õ'›Î#~Ž“¼VM|$˪á6—0-P”3åÓz®µG¯'6¬Ò $6ú™…<*ä¡Ym»ÐLcV®Œ?j]a©. ¯zÔf—Wg`&ª…þŠ*\ ˜!ƸK¸YNÉMï4¹¬ˆJˆ¹’~ã’m0¤8~G{;^iã¬Ö¢ÀTg¸b²V­€É|øµ Ðtcká’ä·.Áxî[â–˜|^´Áç|¡*}~5 Ã;}Láz‰[Ä¿­úA“ ´c¥R6x¤WÊéï=…‹Ì¹/^cÓ×T› Ÿ% ë$Œ‡‰ÜþÂÛEçªâÌäÒ„‰MŒÏ߃í*Œ?³¦HØ®óZ­ê2l9c.ܲÅ™ùÁí£VË1 B÷jò¼qrÇ©FdµàlÅýûy‚íKÑüuÁ–ìXõ^i[ŸdËGhéÚ£yÙIø <²â,W TÁyâùâÓÂ]kPð« 3·¥\™NÆn"Ê:´ªÃY¦ý +kÁÆç¦"G„í…Ê÷çy_ÛùßìöÒ¡N½)üó¸€EüôMM©äF³Þ›Íž=ìnz‹ëõ#‹:Û‘½ÞY¹%F3žŠDFÅçÇ'¾Èg jFQãG–¥¥xú?O©Pâ`­+RÔÉé™8ôzèLrxhRºe̘¶è™2õV…éÅ,Šycl÷Vî±_¶‘ôÛJâ"÷ýXëóÃÚøôÉ&ªú@#X阇ª62÷µŠó)JŸÌÿšâd-)2éçr'Bºë'ûÝ•Gs8òmV¬f9£¡He­IIià"¦*1C¨KíïëWw|÷=ÍÖ°qÕyb6&òA´o„T7¹s?÷Ó×ÁôO6F´ç;©Ø»°ÊS{HðíÅO£ÔdÔ&²¹›E¼‘·3å²£–ÇÓõ¹! 6OYÇ?+û—–O9_¹¡zÚll³›?¿‘2V°Á%l<¿—RèGÙk×§‘&Òp1iwùp´.½ÏýJ_ÇÚ{Å5ô´õ¦n¤Nàíûa®öm ý»—$aÿÃòÿþOÀàA4‰L B“NAþ iªuhendstream endobj 168 0 obj << /Type /Font /Subtype /Type1 /Encoding 204 0 R /FirstChar 49 /LastChar 116 /Widths 205 0 R /BaseFont /VPFBTT+CMTI12 /FontDescriptor 166 0 R >> endobj 166 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VPFBTT+CMTI12 /ItalicAngle -14.04 /StemV 63 /XHeight 431 /FontBBox [-36 -251 1103 750] /Flags 4 /CharSet (/one/two/three/colon/A/E/N/O/T/e/o/t) /FontFile 167 0 R >> endobj 205 0 obj [500 500 500 0 0 0 0 0 0 300 0 0 0 0 0 0 727 0 0 0 663 0 0 0 0 0 0 0 0 727 750 0 0 0 0 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 450 0 0 0 0 0 0 0 0 0 500 0 0 0 0 325 ] endobj 204 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two/three 52/.notdef 58/colon 59/.notdef 65/A 66/.notdef 69/E 70/.notdef 78/N/O 80/.notdef 84/T 85/.notdef 101/e 102/.notdef 111/o 112/.notdef 116/t 117/.notdef] >> endobj 157 0 obj << /Length1 745 /Length2 580 /Length3 532 /Length 1113 /Filter /FlateDecode >> stream xÚSU ÖuLÉOJuËÏ+Ñ5Ô3´Rpö Ž´P0Ô3àRUu.JM,ÉÌÏsI,IµR0´´4Tp,MW04U00·22²2*RpÎ/¨,ÊLÏ(QÐpÖ)2WpÌM-ÊLNÌSðM,ÉHÍš‘œ˜£œŸœ™ZR©§à˜“£ÒQ¬”ZœZT–š¢Çeh¨’™\¢”šž™Ç¥rg^Z¾‚9D8¥´&U–ZT t”‚Бš @'¦äçåT*¤¤¦qéûåíJº„ŽB7Ü­4'Ç/1d<(0¤s3s*¡ òs JKR‹|óSR‹òЕ†§BÜæ›š’Yš‹.ëY’˜“™ì˜—ž“ª kh¢g`l ‘È,vˬHM È,IÎPHKÌ)N‹§æ¥ ;z`‡è{E„z¸¸hCb,˜™WRYª`€P æ"øÀ0*ʬPˆ6Ð300*B+Í.×¼äü”̼t#S3…Ä¢¢ÄJ. QF¦¦ Õ† ™y)© ©@ëëåå—µ(C¦V!-¿ˆ © ú¹™y¥Å Q.L_89åWTë(èZ 44´0U07·¬EQ˜\ZT”šWN'À°€ñÓ2á—šZ‘šÌuóZ~²uKÖômm+ë\_XŪÏùóÄÚ—7ÙD쨛™Rl:/P1½dÉ«…¶öϾ(á•l=U¸h‹d¯_OÜ—EÂk¶v-X1¡Át¿Þ`ñÊæ®i¼ÿ´Õ_y. ›1§õ‘´Õþ¢Ç³:•un~Q®?Á3/å…SÔâ}ßï]ãÒ š¤¥$e~sû]F1ñʻϯþ‘Välžt·Vtl_]ׂhWÎ×V¼M\­|e¦ÂïsWgE²)šÜð: Àؾì¬|Ã×»7/)­ÙxÈXmyjVrŒ—ŠÌY£Ó˜±íXeö]¤ü«g¢àƒÐãžLë?=É;ãæ¤ÏÜpa²†G“ªòï[âbgüõtN]ýXüg_ÞÝ%kUc®>=ð#IÄÒþt|ŒÂí­yflÎ(zØXœìåöò’öu‰)O®DÝýñLÌ·¥ŒÜa!k¸Üš`»5y£…Ã.Ñïz÷4ˆ&wìúaSki‡¦Ï°Ë—²L¾ #~Ó™{¼«:Ï-ŽÿïиïÀÔå:æ8«]Ø”mbªñ©«nßTéìÈç5ï¯ü¿sc%WØí †„¶YÏÜþ¤K5ÛLZ23ñÕÿIŒÓ‚²c™Oz ñFì¬Óük3Óç,ôº¤žuaá¹&­ÝëzC :;ÖP¸F $ç¤&•äç&es( sBendstream endobj 158 0 obj << /Type /Font /Subtype /Type1 /Encoding 206 0 R /FirstChar 0 /LastChar 0 /Widths 207 0 R /BaseFont /JXUHDD+CMSY8 /FontDescriptor 156 0 R >> endobj 156 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /JXUHDD+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus) /FontFile 157 0 R >> endobj 207 0 obj [826 ] endobj 206 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef] >> endobj 142 0 obj << /Length1 820 /Length2 1910 /Length3 532 /Length 2498 /Filter /FlateDecode >> stream xÚíRiXSg‚YYn¨DeÉBØÙ‘¥†MD É $¹˜…ZvÄÈnª´€ÈZYÄÂXË# ‚Š´TKD­ˆØ ÓvÆþœù5ÏÜïÏ=ç=ßùÎó¾¯>çkì@„Â@ˆÎ2Æ 1V€“§%€A¢aúúN Ï¢@tg< ´0ûöav8`‚0æVØ}V¦bàEÅ1(ád°Çiï†Èp  O<ñ,2H{ðTÀ"P@Vp RŸLÀd‚Œhˆ„a0‘B`a`8…Cmäq§“ Àâ#MdGýQŠLq(`8ä^@‘Ñ©q$ÁP^ø-Pœä¿êSs6•ê…§mØ‹{ô·*žF¡Æý³Ñ¢Ø,xBDAÿT~Œæ )lÚ§UwžJ!8Ðé €þHQ˜.”Xˆ£°d€„§2Áyê)tñ:˜™xï…™ €B'‚±+΋BÒ!–ø nI@‚°ašZ¨xm°‰} ¢ƒb34€bÅüU7È1™þ‹Â@‘ 6ã/+&(ÑoŒ£#›`Œ5ŒMÄæ´°0C'ý›Àf0@:ëÃΉÛû&QÄÃÁX»=¬Ó#x™õɪ ÒŽáó½Ú®ÜìÝš6] A=ÿ£Ç ƒ{üÀÕÆ2åm¤èƬídæô$zºÛ4ënŒbq¡ÔÝñ´äˆ,Ù.ÃÙçP[iµZ¶ªhýèÊ¢Ð>X­bÒ<„>6y‹ªôJRïOdÁû%oJÀÆÿ,°9l:œF»VýÂGÕ¨´›kûæxÎ í®Ö›Þp˜úÂÕ¡ é³Œ¢ý@uÉ‹'O¾WõæF°,ŸÚ=q4¢yIc£É¦k†K%«ÍæO+Ö)iA‚Þ·¾±:mý@ñýoæh•>Z ,s¨Æ0jµ@çZEú¹Õºÿ£ÍÌ—©iªYE]#{#OÏßW½ Þ&y4yÆzSáR±¼E•_rÈkË¥ôµšÆ$äש=ÏVß8·&_åkÉÄKŸ‹:‡vJ>^ç¶,}¨¹,ÞiBä·£×áP4ˆQŽ ýÞ5‘dÒ·nÉëàhìŽ@k ®¶,³#Í™1F倖{ûm³ ˆ)mH=­³¥ffðe.)ʤkTúÙ©f±wÜ¡Bªn™ÍZù©¨aìöùÞk¹ø-ǃ äÈŽŒ×a=õ«ïX §…г^êI9[bëy‰¤{SPObPDN½´(ûà»Ûºòs¿ñЕ{…7.wû+¾ºf5øvßAœ/·ÖÎZÊjêŒÕ‚a)&çW’Íoîql'e3î ]z¼ sÓö¢ñür±”^í»$¢â¯WYÒ>î‘”ô.›ÚÞb¿®´¯®à¶šg4l:Ÿ]ïƒçVe8Ý5âsÈÖ¹d±£eMOutTn•{YÏ]íWnoh¼ ×8&àz“ËÞݦ0º#:LKÝç :ÜwjQª¨>G¦¦ìåÅÊ…DŒî2ñ·ÙŸ|¸–ÿpÿ¬›ý‘êzfÏB›ŠK·ÞhÐJi%LþÌŠlÃ&læ`JG(®—óë©Ò=ÊMé&ßóÓæv0Áþ/þO\ƒc^›Ò “b52ô9cR+·h—ߨféIT^©¾²Ö­šFȰr¾^Gj&(¶þhž;G§ÄTÊÑžÉLÕ“¼Ñ"+ChrºEBsôhÁÊNL‡Už´]øV}w’&8 ø›$„Ð_«é^D_¾ÀvÏxò»·‡+Lø-v,ðëóü/1—Ñn©æŸl_OI†f¥û3I²Û$ëŒ8gä2_ ã]Ðæ‚2Nìú“ lb~÷Û—|•€Ã­3U' Bøþw'k–†áþ‘5³q-9U ù†þò1wògö‰Z=»"%~É=ÒIJÞ:µ) Õ­{á"šÑ÷pKŠjhhû­EÙ~†Pæ²µ¢]•ó³ìÒ.QUå%ĉ®%¦}þ°}5|OeχÐ:O9ÏAþ# 01—nô†tÓNm€k(˜²·öo¸‡¸oÁÜ[:±ÙÒn4çm9µPÓÆy¡Úóݯ¥2mkWe®óás“•0íÁZÃ-}¾#ŸÉ¼¦ ʮǕ·”"¼¨bì«$Pc½¼PQˆþ?Øÿ þ' TÏ`A4<#ö;×Yendstream endobj 143 0 obj << /Type /Font /Subtype /Type1 /Encoding 208 0 R /FirstChar 48 /LastChar 53 /Widths 209 0 R /BaseFont /XBAKDW+CMR8 /FontDescriptor 141 0 R >> endobj 141 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /XBAKDW+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/zero/one/two/three/four/five) /FontFile 142 0 R >> endobj 209 0 obj [531 531 531 531 531 531 ] endobj 208 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one/two/three/four/five 54/.notdef] >> endobj 139 0 obj << /Length1 908 /Length2 3303 /Length3 532 /Length 3940 /Filter /FlateDecode >> stream xÚí’gX“鶆•¡(½J‘òÑ;IÀPÅéeèEB Bè ‘®"J5AŠt”&R:‚4)†ŽR*¢xÐ9sÆ3ûç9¿öµ¿ïÏ{¯µÞg=×Z¯¸°©…<Ì ï‚ÔÁãˆòÈy@ËØX_8>‚ÁôââZ$‚ˆÆã.#ˆÈóDMM0ðÊJXå÷gí«ƒDº™¢‰®€;ã‹üGâÜþéäx|?}€®Xè›]¾"ûçbæLhÑ2È €ÿ.þÉ¿ùxDt `Vƒ!Ç…Çÿ_§«ÿè¥sÅ»¡q(@ª D=øXJ B ç† džA 8<ñø p<˜0ÀO ÿ±UUdò#ô“ÔŽÉåoR@®ÿC0¡Aeäù ª ¯¿ñøAð¿ "òþÏ Â/x,Eü¥üþFE0 ü‰ÿ:e8"¯xW„‚t*PpØÿ*tõ#8âχ|¼«¿Ø}¼^$2éJOûªßðL«½Y|M;o°„FÚ—?£ðF_stM†ºÂÚŒ:ûáÙ€%Rp‹-šÍ]ÊšúѰäæã­……v…X€¢ß°u1qJçdZÐm¸®98Rugw¶²`Iqï)B?ÉnLˆîÎú7Ó<1Z¨äò~Œ§.û¶}Íëú«9 Cº›èb*ýÕìF£ûHëåÙ;½_>èâóð”GÝÜ™»GÞÖéa¯)¦ µ„lã߯Š6íuŸÜß*î@LN¥·‡îš›žà]QÆÕ~ãºpž•±Ä…}a”¢vÇ÷z’"ö\ȵ)­äžÙËTÑu_¹HÌé#â·;ïNï[¸ÉJ{öOÀ€ÀÛ"•ƒÙœi÷–°Cer²êG$<óø9CdG{ãÆ~€‡5ÕáÏ'ÎáyÒ){j‰íh¯&:);=ŽPÔÇÁù÷bØWP½‡ýŒ©”ï×vÒ®’¯S­ÞdÕiµ{^ÙÔèìa½£Ç̈žä;Ÿuœ6˜^”ôÆ8NÆV¬¨_/0b©(Iôxº¨­Ë­é°‡ÛáÑP`L–8ñ[ÐÅùɤH{¾¼2¨Ñ]Ÿ'xz…Wþ)ìo HaÖ…qsÌ^ºJ(é‡IÈÇ/ „ÓiGE­!!ö<"Ð6çÖ¹#ß.6Z6µX±\Y¤ºoÅÙĨ=.©qÝ—¹…R77_W-xPnä|¶Í”`žCT­] ¾G0mã‰ÔÆÙu.†«ö\¸ùîVLU¤„¤d‚s>.M"P”Mq¶Oê%¤54( ÐΛƒî۷ؔΰd ÝÙÓ¸6Òo)_íäÍÖØQ¶Ì±ÕZßV¥·HpYöª-O"kMü,m[ï LÀD-*Š}aëaÉv!÷]æÅÞZ¨ÇfT7SW¨¥¢»‡ÄÛïÍÄÑüæb¼Ö Á{®cê@>ç_îÏp-ø¾%6Eå“ ºL ’O5†M€Çׇ?¦9¦¿åk½W2êOL<'ö"+7|8¡š~vʽ°f%ûÊrœ_q ew)Îüê–_¯-Æ"<ÇÑß×î²åî}R-vûº‚Ç]Žûh¦=²à뇩Rɽb-áòïâÜlŒÙïSÔOxeþV%TãÕ\Œ&¥Äê#»+l ¶[-±Ù3ù!äua¥3»­Ór‚̪¸ð¬uÎŒ¤ð!8aaú*±È(`Å[è¥U¥T¨¼e¤ryÉ…h&¾*¥ÙöõyÔÎ"•å|Ïj A!êÚé>ÓäŲÝßG íޭꠚʕe×N7ù 6ã!0âä;ÿzþnºäSrY–úwtN ˜·w‘rêµú&óÓŠö\ê®hoOqðóØ~`I,T»µ´¬¿y™!±³¡^êš|Q;.I†hÉž£|„<²,T·xP´ªë¼f;¬Ëº¾¯Ì% Z@•ÊÊ*³5W,7JÑb’U Œ½ÛúÑ,{.о-úy‚pP¨êw6!æÕ3¬'ø¬ókCÑNöJ)w &:Ö‹ŒiŒ2nX%o¨Ö Ì<^èé Nš.qÛ°ç!?ºþâ”—¡ïܦæ¸Y€3§¬QÊÓ³Ü4Ó¥¢>ó¨Q‡~ýÃú‘Y™.ḣâïú#|)¨?Kô“¬<6á;á L¿í»Ñ¤îS¥‰†>#šð˜¹Í¡)x !Pì¸ÿ,#UãSOڼ噳O=”߈¿dó {sPÓź\s­uñ![•Ví'=;á-µ½‹ä._ìd{‚Ú©…ôZÿ@æÈŸ<$¾böIR>7±Pe«0Žç}Xä"ËHãÜ'R{êðí9g[Ì2¤#(ù€ý ‹rAÉe$SþlÅÕ­§îM#•L×?.#ÂwÏ:XÍ÷…ŸÐ€Ôð¹¨ÑF‰í¾H ¥füœûÛˆ%Õ~‡ªÕÒÑ‚V7ÏûiÏ¥“/H°€¶‰bö)Î,© íp5Ç{ÁÈ&sÔÊöpæôž»S¥.$[¢GØ:‘)ËÀ.“•Wpõˆí”ØÛ‘×¹[ÎÞ……Ûת"ez¸®|žhƒ¿ÈÈ»øL¶qE'+¾þÜ´¸°õu ‡²3‘mv4#ü[¥Báa1ïç©ÛïhUÈÓxšæqáR¦Á¹…êñK\C¹J]åw/™Ké?c¶ºî·i/¡j0Ä.Rý{LìÃÖï»S1{ºƒüÝC²7ôË&lªŸ€Ãŧ6ŽU4NÕ„àˆ¦&ޏ£¤èþT¨ŸeÜøvÔ$Y‰íz=SF]6LðÉÑ}¿Ã¥gÀôU¼ jÚ%Ñr¤•Cù#´¹Œ«µ ;e®åÀëo>Œç´x;K×6ó\›âtÆÝ~ñþój‘èB¨€ä’îÓ¬è1—¬©?õì{£`òƒÀXÜDáî4‡1au°ºÐ‹£ ½cŽ2ar¦Ü$GÍV~·F-ˆzÇÛ—šGÝí­Ðuê«ÏÌÖ°Õ»Mh•3ã×›PrSé¡þ~—BÑÂá48.ÿ”€£b[‡Æsÿ›ÕJ{ ”sf}0‡}M¡¨:ü©Ì¨?_½íÍ .…tÚW”Úz|¦Ï•d×ÊZµ©uÌ.W®.£ø}£UêÓÕ[³™v¢ßûb+Hðýü1Æ÷)T ‡‚(ê,”ö¥Ì­¥É"NÄÎä0ÄJfä²Kùhòa„C­@Ë£ˆÀ îˬ¦û­Žƒ/! P9ø†ß»Y“0»óÝyÉ(*õˆ§VÛMìzmÂ%åh¿ØOL°ò F \ACš¸ V—œôá'ó¦N  ÷ÌfZê7zúøs3·’#BÄr—ûú…7<Œ/4éúÅe–>œòBY8+‹“%¯=qLpµ£‡Õùªî½ñJÕ÷ÉxOÿÀØÀ3^þ³-³“ S©s‹f™ôÉeUUÁ.‚Eƃ$ÌöûâOå՛Ư-pO/9ˆ•­µì¼ôñ×1ày¥œ¨îi6„Ìõríäˆv@æd$ŸMé‹%—–ÙÒ {[—Æ|èƒs“á:Èñܲ .üýNëÆ7%6}¤Yk&¯¨Ð\CÜ¡I¨Dõù»ðfÂ-ÛÉ”ÔËO²lòjø¤­‘{×söÜA+nBü}­TÝËXj¿b93ýóÇÅ Ò"¼ˆÞO›™ÕzœÈQ;ƒ:­'ù4se¤uID˜æìF­õûTÙÌ —ÕPóæu§–6Ï4ݱ'ßrj½´ŸO’’aÞþÂó„ÄIu6¸'7xœcWvÑI¸a(D4õ›j×;¨6¨,TD¹Ó›9¦Ñ‘B¹aÈÕVKéËߣš~™&e¿Ç¯—`a2DM™ê¸¥ô¢6¤ Ý‹š¡BOŒaÇAÕ~°%⩯Ó𢸭e{2]Ѧ³jÂÕöÈ—äç‡åò :¸®D¾ì$!ÞTs¼PÀ{Zc~x‚mà¬J—¢á—Ö„ájVTZE£âΜà`ÝJ¤ß»H–›`¹¤< a,¦{üQl³sô hÆÁÃ[ ÈJá̲k° äénÞ^òÌÁ]$GûW¢^ͳ"­Á¢ý•ˆqÍ >k.ï{o 1¨=îs 6Þzòæ1Iî ÿS"ƒ½U9ëZ­>f´Üss#oT^êò ­Fìc‰ü¢‰Ì´_»¤gA ²—¢ÀÿÇþ?ÿ®$‚@Äc/úÿõ2endstream endobj 140 0 obj << /Type /Font /Subtype /Type1 /Encoding 210 0 R /FirstChar 78 /LastChar 120 /Widths 211 0 R /BaseFont /ZSIQDZ+CMMI8 /FontDescriptor 138 0 R >> endobj 138 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ZSIQDZ+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/N/b/c/i/j/k/o/p/r/t/u/x) /FontFile 139 0 R >> endobj 211 0 obj [843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 455 460 0 0 0 0 0 362 430 553 0 0 0 514 535 0 479 0 384 615 0 0 598 ] endobj 210 0 obj << /Type /Encoding /Differences [ 0 /.notdef 78/N 79/.notdef 98/b/c 100/.notdef 105/i/j/k 108/.notdef 111/o/p 113/.notdef 114/r 115/.notdef 116/t/u 118/.notdef 120/x 121/.notdef] >> endobj 136 0 obj << /Length1 1012 /Length2 4782 /Length3 532 /Length 5478 /Filter /FlateDecode >> stream xÚí“w<œë¶ÇÕh½×!Qƒ)щ^‚(A$‚¨ƒäŒè-¢l ¢· ¢×èB$zN”Á6['¢G»vÎ9;çîóç½ÝÏ}ßžïZëù­ß»žçåç54S±GÙÂ4QHŒD"TÓÓÓ†@Wk0˜’Ÿ_Ífƒ£ê6˜"++Ôñ@¡Ò@°Œœ¤´œ¤$%?P åæíwtÂ…Ô„ÿ,’ª¸ÂÜáv6H ž Æ æz¥agƒ£ìà0Œ·8Pý¹ 4‚¡aîž0{qJh·ÃmaŽp$%èOOÚHPúa{·¥ùox%õË,z•ÅþÄÿík5ÄÎŽ-SóçìãË5?K ™‰p®îerdWå½–4•^Æ0û—ê%³+H©V _<—ƒÊ¿kÄJäÑV»YP2Ù?;ÝÃË„¦íÒ–ÓAÞÙÉ/ìv’|¯gÔTe?+Öß*¡©‰×ù.}ª>MûÝ>÷ªlî±®= ´8{ÕÑÀغGéxçäQ@ü²ïºtŽ lzÝdâ3hé¦þ RNœ2ó}@ÂC3òº¹ˆU"˜&BöÎßã—pÉÄÙIâi*­AôÜ2{¥µãÔU7Ú®´!¡xlvzxȹéêºM±¿A3 ð‰¢Ôí¤'Š?lÐz­»5;ܰß±E3ËÃHÏ"­ œxžÉ:ÕöUg’ßÅò¿|âCVÍ„%>kI˪<¦™ê¥ž"¶üÝõáÇì‚çjäVÁid/ÓœÝ xFçóäyëYCyã.j”|ê´T]ÎvŠ?e¯ò*ù±I7¯ —áÏ;Çðdó½Õ³õF\^'¯×(ŽûÖþaÏÇ»òÐvtû÷h4„U+¶ïÔê`©çÈâíâAöÞ[_f××Á¶!ÜDCæºø–QdUÇ­ì˜È™ÍÌ×!TŸ¾¾Aþš0œS kîÌÒ¢e}I;œ½Ã>f÷I<ˆ#}Yx/ŒzZêmËQäø­ÒUC…eþO†bm‹:fñ%•Š^ÌP"‡ñgêëoCš5:­f®í&.ýÔ“ŦÅÝ)ªúq]t¹ùF§Ç× 2ÊYŽüÑ_ߎ#Íód/xc‰UƒšûCÄ%YuW†6g£HºØ¨zÅù¾ï§i #ÆÙñ ú~Gë,Ó>ñ»ŠtbåFÍ醙T¿1<4øÜéJùLüÓç0ˆ ë ¦Ì¯±²©Ql$^$DÕû dÆy}p5U[ÅÒ§ÞsÊ•…ÍH@»*þhßea€Ðñ© £w¬sd‚Þ<ÿí+ñÀPÃý×%t²8m:á–rQÆp)–ç/ Çv€Ñ tó!0~zʪœ¤ ºF×kD/Ä„Ý:3†˜Õ?ˆôÅŸÏ)ãcÈ£‘MY_'Ow<>õ•²Re÷®²†|Ñ}>}s’­ ¤Dš=US­¿»e­©q³CT7$é¦ èÓž_ú.뙹ÅM…©·rÐìcÚvcšbEdݼˆy%ß/YÇ µN~)~ -Íü0ºeOï^GÜ´Ma¯ŸÄ(ý¾²‹òS'¿`2·ir爹ÄĬn“ðV™çb•jÍ£Ž®‡9¤7-+ÚÙ§¡Ù_Ùwøn©¬ß»à¾ŸpVqÆ,Æ)WÝßœ0ûñûüê¼Å×72s×MÜÈ¥ÝÂÈÆ¬ Žž‡¶A\Ú즸+¢cNjÊ—5Básíé^t/C"‡d·BMÎsh.’¢wa¨AO‡ › q]/>ó7ƒ{'ùŽÛÉÙê‚zÏÍÕ}˜y¶w`.û„´NîÔ(xˆYîx¾ '«¾Ðùù¢±P—dŒ-EÆ„™KñPîaÁ‡ 6˜éØÚʾ ¬‰¶Ã32×M½á­€}8ØÝ£ á/‹Š]fæß$”÷7³;{&„¯Ë¢©kâ±Ð©šÞùpN0C,RÉ ˜e°¢NZó™÷¨gÍõ ÐEˆ¬ã|uÔ¯s~a\ïWÁÙIkœtV—ùDfM~Õ³ŸÜý#)'œdçrjí›ÏKì@]«Ó›>šÝ*ÞÕIáK?¾ß…=sßn ˜­¬•Ç›ë-Qúɯ~ŧû76Í øNSR‰òºeí4 änÓix‘”“F®û•f²ÛÆ[†V>0ÃÝQé˜) _0a-tË šËÀ©ñ.w[¼º4àf›CïûÊ¢ŒB~CýAãÁ¬?æ­óè#ír¬œË{œ8’g•[éóë›4ƒXy8Ÿ5 ZƒÂ«X‚ÚÛXãnå4vÜ­ºA÷ìdóûTŒ*ÐÜ;/´ƒ"”%Òà>&PÈ ¾Ûÿ#uÂê`†Ãظ$.[U|Ç¢8NaÖ W €¶:÷`ðÖ\HKÄ“~;ƶ]Ø‹­ÄEäâ6Ipïω‹™[O,Õ¡øïu<‰ÌMAo/7¡7vÉ—•ÇÙý>– fpU*UÒĈè§6«IùÄ…çLÂ8â,öƒÍÁÙêaÓ”'_38OÚÊÙ­äSOª½ÝzÈÒ(K%OâZ€˜ ^[ ÷(5Ò&PËÐ,¤†y>)v Œ{îú>:V‰õº´0¨RÐ[_®6©üáº_‚B‹Fs¾f¬ Laûíûíë¡­×/bëY*´ý(ª²n¾nîÛdhÃÆÓe¹+ñ¾¦Q„X=òò­ù}M-’—$ùì|ÿ¡y³nÒ¢Óñb@²áý„y$ÞO×yÊXÝËÔ‡ ^š†mBˆ"ȽþXiî‹¢“­ÿí¦’cO«¿NE?ý%†hWsâ‡Â¢èÈÁÀæ­Ï¿ eð1Ö ]¬·qŸoôeo¦\gemÌNÈ\¥ŽS/S4ôNGÐOÀ°8´ÄïÜË?>ùšqܬÓs™ÑOgrnøÈ$¼y'õEHII ¡Ûá;] é\h‘ð„n¯gû=ê »œô§›‡&çÔ!Òas°wÙ¿m*aëC¹¯Û,Y}, Ä:42=é6uWÏ]+ÙxñØð?Ô :RÃᕼRéZ»ôMo­MQ»|c1ã™ß\\–øî¹ÿxdód\6†¯°ÇQg»&@ g(2ÅÐÔó² Ö>)à1sÞ;»ÜŒöTÞ ×Ü»0PúhÕ݆u-úâ½uQb˜Ô;ù,^ØéÏxs"~·wcd•·Žb (Ÿ€ßaÄ'÷TjºEYÓuö4^Ö¹5íR†ßœKä\”æ)ím0ʃ~z(bíEß`ÃgÈDšý1¨,€¹–=VÌÈ‚bG I½‰<èyË>ìxÇ¥ÌâÅÞXýì!¯YZ\—<ùß´ ›’4¼\æÍÙDY\D”m¬ëÇ‹eH& ܼÑÃù«ÈMN¨,|ªÏ6ºfQÅZC~‹¤Ë×rÙ\io²‚#„QˆXù¸:U!T”(²¢H«Í¬‘gœ¬Åb¢c0Ö&MÍj@µ£2Ó ©}ÙgªøÇ^†6ß]äz×DÈšµ2‚îeû‹Æ®ñµMc8ƒ§Öƒv7÷j£œÂ⥢ˆ:ÛƒøÀë|îå{#þ~’ü!Cˈ!ŠIë*øcõÛáÁø€ô³ˆ±à¥)ðˆðbUCŽù+І¡wÍ$™\gêÉÍâ¬À÷7輙䤔Òù-Z1çpB.¦Ê—3½ôÞ5™4g&` Žþ©ð7Có,¾j#0'~¡úÊb{v ’ubÀn§B„Tõ‘  Ù)ã \àûþ?uÛwbJ¢nC%ô”³þw´¸fÍ'_Ûß¾0‹„¦û"¢âÛðÏí•°0‚Ô:\˜èÛÎÑYémÞCüG8nÍFF£½U窒s&½¬ûú‘+œ.‘õmk0Ug¹Ÿú.,½Ô²¯‚èkä"Jñ£~ê´¿-Ú6x @T´¡JP¾…¬S‘°é‰ÂŽ=µf)5iLð²×Ûs…ž}µ_ˆ•œ{|òežã¨2߯ÆÞjxN³ç%y3=¿eÎ:GÇ$ߘôjI»Zdód-Õ=<`F¾h/Û+ψ¯Ñât¶‘{=ùf‘6ˆ‰pPªLFÛþ†n’S n7r!G X7” W^dsHgƒºY>×+ßÖ½4sæã®™±3ЉÔµ•¼4Êó ¹Îè.d½K®^y,ÿ´iôDbÎqÁêÇBš2Ÿ>†[æ>ÁŠBd¸‹š¥&‘±…áêº>®°/†sXOçèLðÄ6òi«×ô> rW •«ë¡÷+ƒL¤<üd‘¬±­Ú]z‡ü}’QÕã%R/í’Ê®ÑÌĵr‘ðÍG×MÙ„5ËÞà5`T»4/u'ÊÓ3ÕGRXêîÖ‹-#8‰£VÞÎÍ“uLjÔNkÝ£NÓpÖz/«ù&!Î&±ŸµÑP7-ÓTxÓ‰ÓÂCöÒzž°RµdxG½—ý„æ­ÄHÄ|*Ob”°»_œò!5åÅ)zg”ý­Zq%lže{Jjâªþmç†B ‹o]OÇ7«›++½ú³hÃhVcÁhS®ukPQ¾rƒîË+ôA¬õý¹KsE^¾ éš›‘ù=Ðc‚ÑÓæp5@sâ9.Ÿ^á<‰ú¥›:c#æbIçG¤°M õIÝ[oöðìm`@Ù‡©W4(Ú\öÜmúïféI# Öa)“¦l+E¨(2¡ÛsÏ l$æë?%TÚÔV~&öº¼ÖˆÄu¨µ¬•9&…X ¤˼ÄÃt Úi%뤲Ž‚ç¬Á£1ó5’ Ý4ÿæÉ¡Þ6.Dõ¯,@"I™3…RG=Vy´cæ=6ÒžŽæ•l¢ºSç YѰj¯)Í‚’/úµÒ¾¢˜·[!¿*ã!~ÿÈCEe#SŠV¢QÎIAÓ¼¸·ŸQÍûê8 VùYåAIRWAUÃÍã[…,xi‰ws’:Éêy`y¯§:-á¶’6ïýü¤tÊ‹C¤¦|‰`gm½(JÎÚ~`².†&; HÏÿ5QŸ¨ç]U‚´érÅÖ_²#'·¨¥Åbû†˜á:|*±ç=büü?|(ÿ_àÿ„€fãŽA¹Ú¸»PþLç÷‚endstream endobj 137 0 obj << /Type /Font /Subtype /Type1 /Encoding 212 0 R /FirstChar 28 /LastChar 120 /Widths 213 0 R /BaseFont /IUFMHC+CMMI12 /FontDescriptor 135 0 R >> endobj 135 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /IUFMHC+CMMI12 /ItalicAngle -14.04 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/tau/period/less/slash/greater/A/L/M/N/O/R/T/i/j/k/n/r/x) /FontFile 136 0 R >> endobj 213 0 obj [425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 0 762 490 762 0 0 734 0 0 0 0 0 0 0 0 0 0 666 947 784 748 0 0 745 0 574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 334 405 509 0 0 584 0 0 0 441 0 0 0 0 0 556 ] endobj 212 0 obj << /Type /Encoding /Differences [ 0 /.notdef 28/tau 29/.notdef 58/period 59/.notdef 60/less/slash/greater 63/.notdef 65/A 66/.notdef 76/L/M/N/O 80/.notdef 82/R 83/.notdef 84/T 85/.notdef 105/i/j/k 108/.notdef 110/n 111/.notdef 114/r 115/.notdef 120/x 121/.notdef] >> endobj 125 0 obj << /Length1 847 /Length2 1222 /Length3 532 /Length 1830 /Filter /FlateDecode >> stream xÚíR}%/š‹÷V'4™pÚ»[RoŒPO%ï¾fâaÜ1j±dØaå•ûQ8mÈNùoãõ7|UCO{óXͰ,q¡Œ,¨;câ2}$ú¢bûODyŽö\àÓRE‹FŸB—®ãØÛï|jñ/ê^]ª2[OñÕùÜúˆ¬)*ñÑŒ}W_÷îÒÑdþ:Mƒóñ¾ëroÐõµªüú£¡Œ¶([uRî]–±yð¾%·?”k ‹-ô‡HS’Ùáñ Cz3éIÍ›ÌQÕæ­ëÎ:BÛâÚUÌJ»Ú­cZ;ëo-ÜõôëoæSf•,[|Þ†žQbÑÏÓŽÖXqæ†uÒUÚ©ß?쮬Úa¹ÉMÑp5gÝgIW¬Ú´âX ‹e0ù¾›,ÏðÓâ€rÖÀ…Æ9Òç¨5wŸ'£ª±ñ•Ÿrßm™C–Í1Ûù¢—#&Öè0dœæ£^5µeÇ9ÃLf>_³òhø9S•&ŽqæßÐ:¦ÙÊèôÌ`çÃûÙ1îtRÑ»øìHöÍât»‹Õ"ýé¥{²vñùöb”g_öÃäžÊX{ö&½ë½[+¸ì4m½™Ú¹ïŠÿ¡à%çõeE˺>åä%ö?L_Í]Ë3¤*Íò÷–(Š- å×ÝÕǬ]n;Ä/9?²Ø::Ú00¢úzåR“úBq¦H®?”úw¦ót6jê}hvÒ3žéÈ(×éðn꺔# Ƚß6é<œ:1×êXh¡ˆZ. ¬±O=JY­S¥Œ¿Þ«é‰}õ©2ÝmrФqÜÎäß¡Ÿëvl”‹yF³³ŽZf$^ ¿‡ÛüÀ6}ùáeBuRAֽ걧L;É̪͎'CܽI÷ yGÒƒO²³ç©ÚéôCI>>ù?åmM…Üa­ÕgNqA‡3€å6Ùkãæè§yYÝ¥›÷JB VCZj ·ÕíÙ%&àFÕ~·e¸ýWï¿P)ZJ?`¬8eÒcÑ`”ÜQ@¹‡é…_¹¶?¥•œpBv|³Q@ƒkÛ5ÀÔEÅ壚£côMåÙ+îÝñ¥¥© ƒ¿Æ­÷©I5›lsŸ0œÜiȹ¥Ã÷¸üÏÕr¹údH%OE³ùKþìÒäîàc%ˆmb óq{“µvá|ѱèŒi¤Fm󓀆—¯¦•3œoæ²ãŒT£üÀ"%°uë‰õ™æ· ¾ÿ–ã¡„ÔR 8^~Eí£Yñe‰KrÚäË{rŸËHDäΡ3¤x³™ÍÖµOÍÖmÀÈh}Ah®ÿêM¤CþÝɱñ[ÑùÒéSl‹ ÕIlïˆÂ;ÝóÙIZNvpyÔýFõïªwÍbhÿåGøàÿ‚€ËƒAL$àƒX$ágIèɤendstream endobj 126 0 obj << /Type /Font /Subtype /Type1 /Encoding 214 0 R /FirstChar 0 /LastChar 24 /Widths 215 0 R /BaseFont /BQLTRK+CMSY10 /FontDescriptor 124 0 R >> endobj 124 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /BQLTRK+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/divide/bullet/lessequal/similar) /FontFile 125 0 R >> endobj 215 0 obj [778 0 778 0 778 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 778 0 0 0 778 ] endobj 214 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 2/multiply 3/.notdef 4/divide 5/.notdef 15/bullet 16/.notdef 20/lessequal 21/.notdef 24/similar 25/.notdef] >> endobj 102 0 obj << /Length1 885 /Length2 2823 /Length3 532 /Length 3443 /Filter /FlateDecode >> stream xÚí’y<”kÿÇe‰Y²dË-K†˜a,E#˱…¬ifŒa6cˆ"‰ìÙB1Ì4²Ät,Ò1vÉNd%!KÐJ=Sç9§óôüùûýõ{ýîûŸûý½>×çúÜß索äè¢e†"žF[ -˜6̰°·p±€A˜6¤ªjAFûS°DÂ1 Ú€³0 3`p#]}#]C*`A$E’±˜@  nþ&‚fx4‹ô'öþ”@4žãôÇ.D$M‰ÔÌp8ÀùÛŽPÀŠ&‡£QÚ  @a‘à4ƒ%€ ß"ÙˆüÏ2*Œô×R8šÊ ¨sB‚ND‘€‹PèÄÈ9 ÍIò¿êgs«0ÎÁÿÍþÏ6ý—ÀÅEþ[BÄ“Â(h2`OD¡É„Ÿ¥îè?ÓÙ£QØ0üÏ«6iFÀàÐôÏ6Ô F9b)È@ ÀŠþ^GP?‡àtî{Èqw7;'Í¿fú}ÕÑK ¸F’þöý&ÿΰÌéxAµ¡PGÈyÿúòùé4K’ˆÂ0€Žž>àO&ûG‚8·‡CzÀ9€% Ð:‚¢M R8[NW¢"ôm¤ú†Äò[é;Á9ôËßd Ž?@œ~qþA‡ˆËßÄ™5Äÿo‚A9¦øÈi„ðÔ ” goØwü連›#ÎÁt-=Î/Báp®þ2ŒLF(ßo,g2q–3G4:MŽ‘ÆñAWë*Î[Þ¬ä‡Êç—Ç?zpén¾±öòïÆâ£ä†Wô¾·b—Ä‚°LѼUÛ_!¨½Y™z³¨®s.KOĺ„%ÀŒþ×Èeo_înzg›¾(yaRñ©Aóõ”òæLø¾j»%¼Xf5…·bb|{ý|pLÿì¤à5”ò|ȇÞd—‹v[œÉìû´bM¼Aœ,í–ö.ØÜóeR¦=<-œo˜J·çË?²µ ŽxÖ‚.‡s_gî¨5*}Ⱥn©Îû‹Z0ãÜ‹Ä.jΧÎq„U|Gë«ÄæGgFAC’Î<¾¹s\!jfé£Ô@«T†CÒ˵s×ø‰òW±¥ÕÍê¾^’é·èÙDœ`†‚û$KAµê€¸ÞÞ¢ƒ“ÚnɳJÐäµË¥/ÂTûÒ™•¶ ÏWº$d¦Ñ×{¹Æ^ºç5?í:Šͤڤ£3CUÀ´¥ ‹ŽoyúëäA,ÆÊ"ÚÍ-ú—"\Z:™–ÛÞ»~=`_œM÷8Üó¨Ív¦35[Lô³ô-^«3Š”I iË=³cÜsÁªLzôeŸJcLÿ¯¼‰UÅ;>¿y!ÇÞ+[.sôþû|º{û¤ž´ö¦» JLB :3Ÿf‰Î© 7­¿,<Çå'Úd!ÞÛ¹ Î{ ßsº}û9ÿWY3Çw|ÝYê–ªä„åÝBÃ[ÜçÇŒûÈYÊw§ÞiŸŽ]ÜN)§.]QJHx[txRÕ ?–¸iv}JNžÕüJí+*õ.ël¢¢ÜýÉ ‹˜PGi±ÅCËZ&ûHW¶3ûkƦmÓY ¡•}à°Ž«d2ì3: ËYlè‘¿À;è3C‘„È(Š®“t2æB1sq+MÃO*·Â•%mNo ¬!²UGBî×c¸¼$?åŠE§Ë=ü1äå —ïŠE5ÙßpìóZ3fã¦y/®óvLØp+®„Tï,pËq‰Íâü\ÙBD°8x¹Zÿ<¶ùžnØÇ»Â•#¹ñ9¾5ì^[n/ꂎKÎQ1ˆRÉDyÔD_Å%ÔÒ„öZ.€¯Í– sõ•KDéé¶ó÷ßø4 º!Ïz³«šØïäy]Ü| á(!Úy[±|ë à&,.áêú`J Þ?¸Aø}·ñT…,³NxZ͇)×üéz)‚[o=—æGµ’”Ñ»ÜåödŽâEŽçÙºŸ Û§T’ºsÃÄa£«@#()Ø”íé75ôdnoåên•“oà:GÌ×ū乄²ÒMŠ7ÒfŠJR’ôH(¾¨„‘eq5O5 –íÛFu<*Ú¦ží(i19¼å ·ÇpI-Tïª\ADŒX1tXÛR/”°:Üíj:lÌ'¢u tÎ&¯c´‘ú‚·ÎÅh_Ë“ÖZ¹&ðÐ&}´œglºAî³Ýà*ÁZ¡|£3ÖmzKM>k—#ZÙ Ÿ½U«{vr!’\.§dÖ±eв’—ý(®¬‹Æïm¹y^ám¼—ô \]ÎìPì²êåf·ñS9+<›æ—-wвžW8é'ç”}¶‡H‹2x®f¹+`GƒŸ)S3|µ!öHÖQGeód…Ú©§^v–áÆ¸Jȱ˜þ§&šº¹_ŒaÃÌý ”\KGãv)*}ÄK5M?~nli56k~ÙØ÷üc´ þm·¬àçíµÚwÒåw&æŸEè;s[=Uö¶<£4l$¤à»zjiÕ?…ºÇU^£˜BmÑä†nõeµ fL!·SéhJØ¿v•ìÒ,úÃr*O¸„ÖßóÈÏíqØSˆ°`°Èí*óó©È¹¤Qƒ'ž¹Už¯–ÀNq:ô¶ E{cŸÎÁçžÔ²ÃïÛrN%V«»dÏñ:,5 LßÜ©ièSö£øãxFÀ‹‡Æ¦U”: *Ï­_n7µõ 5øGæUÑ(é‹~ñ׊ÓnÒXÓ¸˜+ïÂG¹[ ;©2dK¢ß[°nºÃj- =ïüåù®vyèÐ)¡bHÆ6ßv4n6á|ʼsb\KÁ Œ±´EÝ:Ê®”ç^E,ÈDƒygw¸‘»îZRñ71ּܓ}üzŠ!•EÌO.w†Û2èQk ¶u£‡hY~ßijý’ššY‚9À†uåJMÈÙ’fÔ´áÞ½;I^yI3Ópz’g²³ËãX9N âøY$†âå-Ìo{TÃ?Øa6*îùÞdâ+7—Ê SÕ7ÍM-51”]ñ» °®ÞóQ 5ju$ÒB,¤² 4Ý©Ÿ•Q´v¢Â×›ý…òO-Êò­¡ù¡—ý¸±Qe5’Ò‘ª/+£çB2q‘YVåZwrŠÂ;±2E©u> £·\y'lj)µ7ÜI1ó<ï½MsU÷d‚׸\w1/˜ÛXî9¨çS*™]Q+þyU;¹÷$Íj¨Ð,:¾Øf½ÞR#ÐŽlå‡|ç þZSc”B[ÿ)õÏs&¬fäö ù=nÁC®ë$1± %³ž_÷ˆ{-^»n®VÀúsOWëÄéÓêdx úrF2SI7½e(-Ú$A»Ù’@S*UÔë­ÎœëÖð†eàÕö˜ß«’„ÍO$‚^‹·­»ÕuÝ–S\N® ,…¯²ÖS×ÝéŽ.õ†Ó¢'~A”)ÝjX¬<Ût™8¥pBX^]‡*;‘4v@²Þ{¢ÐzØÂet¤m¶÷6æpMØiÆ¥—j¬^MŽAƒ=7ÔÊ?Œ[8Ö üV¯i¦WIz¹/Æ+6⃡'m.~(JZ~îÚ)ïš}A…ko%wŸgih?š{kr—þêRÍ]L÷hG`¬ó>ñ#ï ³‹Îè©9º.f+âxÊ®xÚ+¢ÐõK½þerzk˜ã~ÌñÜt!QÕM¶'MKà’@ßãèmYJiª ÊØñµ[õ³K³ŒÝº Ù¦7¸ó]4ñˆ-OãÓ;.T_Á½ðwXi/µªKî’6µ zó²Ú 5Ñà±çÝä>®ÂÚyã(hî©¢Pe}Ε> endobj 101 0 obj << /Ascent 514 /CapHeight 683 /Descent 0 /FontName /JWVLXQ+CMCSC10 /ItalicAngle 0 /StemV 72 /XHeight 431 /FontBBox [14 -250 1077 750] /Flags 4 /CharSet (/E/O/P/Q/R/S/a/m/n/t/u) /FontFile 102 0 R >> endobj 217 0 obj [742 0 0 0 0 0 0 0 0 0 844 742 844 800 611 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0 0 0 0 0 0 0 0 0 0 0 747 613 0 0 0 0 0 591 613 ] endobj 216 0 obj << /Type /Encoding /Differences [ 0 /.notdef 69/E 70/.notdef 79/O/P/Q/R/S 84/.notdef 97/a 98/.notdef 109/m/n 111/.notdef 116/t/u 118/.notdef] >> endobj 88 0 obj << /Length1 2040 /Length2 14289 /Length3 532 /Length 15406 /Filter /FlateDecode >> stream xÚí¶UX]Ͷh A‚[ ¸»»Cpwww¸[p îîîîîàîÜÝåÌ­½W²÷y¼÷é~^h½ªzoÕGÊ+Ñ  MD¶N´ŒtŒ\B2ŠŒLŒt 0¤¤B&N[a'.FNNFg3&F6.f.VR!€»ƒ…™¹…å?“Ø lL,Œ l d œÌMl€9Œ ¬ ”F&NîtÖÖŠÿ¬p$P4q4qp11¦ƒad$0¶0r"041³°…¡ÿGHÂÖ@Àþï°±³Ý¹˜88¥(€’”@Ec€­µ;±‰) ½,XËhòÿ†ÔÿN.êlm-k`óOúšô ØXX»ÿ×€³“‰ ÀØÄÁöOU3ù·›Œ‰±…³Íÿ•p2°¶0°5³6!`øwÈÂQÔÂÍÄXÞÂÉÈœÀÔÀÚÑä_q[ãÿ-ìÛ¿èeÔ4äÅĨÿý<ÿ5&o`aë¤ìn÷Ÿ¬ÿLþ3þa`w,Ü´è¿ÿý—Îÿª%bk0¶°V6wàÉ+'#…­±‰‰P˜žÎà\Bì‰7)ÀæŸÇ |âô¦ÿŠý™€hñ™hýYþ™ü×0'½°Åÿ‰0«YØü Ù;œLŒ ­ÿ}þ3ÂJ@oëlcøÏQ2³ýæfµ±F €ýO”ó¿ÒüÏ, ôv&¶Ö&¦Eÿ+ú¿&íì¬ÿ€nFƒ? “¹»¹É6à*`YÀvzGkGó? ´‡‰àOè °ýÓV ¨“ëŸqV ¢“¹ƒÉ_3þé=ÀÙáOàŸî[¸ü5¨ë<ÿa ¬£‰Ë_®À3@oò?öÌ Tµµø[„ãŸ=[þZÄùO‹ÿe šØ;üyülÀò2³« ü!`eÁ?¬*ô‡€%…ÿ°œÈˆØÑ?,*ö‡€ÿCÀvHü! ŒäºHý! ‹ôºÈü! ‹ìºÈý‡8€.òX]ñ«+ý!`uå?¬®ò‡€ÕUÿ°ºÚVWÿCÀêÿ!N¦?/Êÿ8ÍÀ{“þÏ å¦0üCÀF^HàŒÿžá_øÏ û [2û {2ÿ ›úëUgîÊò/:Yý…@©¿î  ÕŸ€‘heû­!ÐÊî/ZÙÿ…@+‡¿ðŸ#ÿ­œþB •ó_´rù V®]u@+·¿håþ­<þ…ÿ÷Ý.(pó¤^l´LÀטøPÙY¼ÿÇ<#gàõãô¯Ï&ðñßljüœ˜˜¸™Á,/Œ¸-“›‚K}Dò§Ê ¨@Íšcdë{f;a–bA­‹Æ¤ì©6êÔŸËÓ¾ ìCì㻾b;†wx)ü½øn“2ÿ¾ï¢¿ŸæÑŠ­~&ã¾gGôp‚ØÞ4w{Ê *7³1^š Q0˜y9t’+O!¬|ðy¤WË¥¡7=]]4ÍZ%$¨ŽŒ™P)ž4”%dÝ)!|}2ÀÇ2ª…zõ ÐáŒòœ•ÿ®}{4ïõ5cžMÇvb~Ñ|ÁÆÚÜ â‡85 þü¨ôÖ¶×çÊ z¾)æ&²˜Û9ÞŒx6‘â¸ù±m,¯†L:ÿµ¹ ñiW&ººýâLÇ5LY^‚¼•öô:škÕuÛFÙÓ6õï åËÌ^‡ù9ÓV ‹rŽÐ6wÜk¦íI!›IBŒÞzpËPÑ)(âõ-†‡:×õTí䌪ŒT´ðmù_¯4¦gq' ?¡©Ê>ÿØ6ËeÖœeZ)•ŸK,æfþp8ÎÇÒ s±5Òè1¯ô94ãŒû^ãÕ*Cùí­ñ‘j0X*þ{É‹Ñ/.±Ð†0DK %Úãk®º|ÿ0¶¬J;ûµÊBûDÒµ²Ùbnb›ÞmŒyBÆO÷ëÇ*µù‡ôÖÁIÝ3µÖ$ïô¤_“Žó zšÏí¦Žüm;Æ#ÙÓŽîd.’ñŸ¦ÜN(Ñ„D/ }>Ï[¯Å¬ ô™¼²ßE…aIÄ]c5/‘%¶/û„…Ä…Åb'ÿVtúÃg6óÎKL2F)Ø6#t_ׂ©-¤˜-ø¸4>ìQ-z σá,®¹¾û®c˜àvÇ¥Ÿ9±é¸½ÆMÁºÝ›Á ¯5$©Eßç´Ã"Aä¸Ä´? ìÌ[îÛê&Õ}¾Yõd7èÐ32žô¯”pG£‡¾fÝju† Qxjf÷Ð+ùV º”,WùAìÞ— q¾àé['·P>>K)_—Ȳ°Ã+£Oië’qÐárj¦=¶%Féq?Ý¥ãP·Ì‡Ž9Ë ¨u?X)¥ÈÜÆÛÅ—]¸ƒd2å¥I}1€ó6û"N#¾øt(‡Rikö Iµ L…å bZöZ6Ò/%¤fWcí!õc´Î6ñZšÏÛ$É= ©€cÜ 49jl¯3ôÅm]þµ–Ï&›Ä,ñ‹9ׄᇣ‚oŒÈ\×sl*©)yHæÊÉ*µÒÁä¨%ÍrŸž4ÇÙéF‰Pd!î¼ð^²èåbBÄhá°La¾¤‘¹Äq×Çfí… v:z¥ =¼Ás˜Ž (B‰Ûk{ʤöˆ€$wh‹ Œp" W#” s¹ÒIíÁ->ñ4¡Vìc‹ð^Žw¯ tذ%¶w©w»¦js¥<Ì%øWAÆîÌ š=â}ÆíIËŽáUæG©øïS7»©5ßRå% à½ïü=ñ»¾n j…¦øŸm§4k›>û}Ö½-Q¹~úz†–KsxÇ\CX›¯,ëJ—‹{uîZ6︰n¤22ŠÇžL{·õ¶yéÑEY{=P*9¦~S|eŸÞwÝßÓŽêÿ5þZp1‰g©xö…õ%ÑSÅõ/Ke÷Å'ôìžÏlrÒ¾µâZ-¡Pªè_8•CLîpU™ä¦hkƒ'“\R¹ÇÍÊ…à…Y*cM® ‘/7@@|› +ªDO®àΆeˆ*Çiœ85ᩈ+l,t‚®ð{A„ŸÔÄ­6ŽRÛü5)ɺÚ‡üžÀ*zÌ ‚ˆŒÝØúå·<§3\E[ééHŽäƒPEûô9-¹e/7Ž‹ºŒVó€ouσ´ù 4h¸¸;Ó6ýve2´s†~‹Æ~{éÛ¨JßדOÖ??)]'3ìß9ô62ŠÚ½.ú/Oi«õÊô¥ú§Šì×§T|4}ãIpw <~ 4ŠÐ•”¿¶áÃå°óê- {ýšÎìʶiãåÔV5r²½$£K‚Šš•áâù  Èdüy©Òèaý‹?§/ÏøÝ×õG² øý£è¼l6 fv¡xŸÓõ‘¤+¬¤°»UÁQN¾[3%êÇ ,RCò„ÜÒ›2OXáâoÐÁ€p¿ }•YÔÅ®"î$š˜ÇN“Ÿ*ü^øµvµÍ!/Ø‘8¼­”VÓ¤ad Ã,¼¼´áuÈ}Ø`"O Qm³Hˆ!‹ã÷)-F8 þ¿ó"ßç™í†Ðç´R ùF”ô=Rî%ô ¶mhC[’Ÿ¢L‰è"Má2£#2Öí-­Ì'®VfózWõR”d¬ÓÆýˆò1ðÖg_*úÉ;6QÀ¶ÊÚlL>àáÆï³‚Ê©·P å6‘îj[•ûû–ŽšóP®­cÖJÔš% f¿\ªÚÖÀ}Î)ºs¹TVGõ¾Hóð]›’åxL¬a£›÷9ÁÏ®¡¸ ²8˜J¾fÉ ° Z±ší域ÐäñÂ0ïÌ*¢¤N3ֈ̋ÆàbŒäâÏ•‹‰NõmM‘Ém:_q$i“×úE»¹)õÒ>"œäžßX$<üymh—´&ÓîªKzð ôË8ÞÓ•”(T¢@¯¹ii’HjµáXÍ•™˜ú›>¶]+%–F^ƒÆèßOþTl“ì$†µˆÐºbßã–+ß­ ˆ>•' d}{¦œ ®Iáb¸ŒõðGâóÛmÍ$>Ö˽>œºGüöY “ kÓÁß2«Æ'îžKAšE-w¥ÓEõÕàŸrãd†ÂP˜’<)õ‚B¿ÿ•l§¡,’²Œ` ŠÔ.+?Úä&nO8!ÈB1ÙÁ{‹ ±Ðš¤Ç`ó˜o½­ÍëlJŠÍx­Èˆ»•Q¹‹áâ<3Øg/ÃÙM6&[ép± sŒÛVVH|5B)Í(Òþ»sr²•wô}í6D^õ…·DŒB·²ójmw×"v·“÷|1|ðüÝYYnòÐù–ÏóuGt›\ÚhÒìÁ«ew^y—pðÆ’ƒ?*þ©R.¸¶„B\ç2n*AÝÛÓ‹‡7ÖíIÍ,\ÃûdD}æŠÆ3„ÄóGöÏÛWέ“–¢Ã]‡ØèÔh-“ùõ¹ã ªr"ÃZ}|ÀÓˆ_5´1»8®½òóÚÁ½(©,OŠ®oGYèÏÂÆÂN}3rv‡¯‡ûž¨{ ul3¿‰Ë%É Ï’¬§+ hSƒ˜ìb¯S~Š,;»Ã\ÒÎg@%äÓ¸×BÇâGT¦…iCZ]ôçöÜV–°ÖΠ˜ã³1•®f¡TX/QL øÚÕßIH5ŽâÈwÌ·¿(!‚Øùò}X/e}úô8ôd¬xÜ*œï”ô—¦ƒíë âEÕ(öGÃÚò©Õ¢à]øíP~Ô­`ºP!ˆ"DJºÙä&×<¦~Þ%A»Á9†ôJPžóžæž­ïG.ù¦˜§kÍ’Äl7ß3b#…]4Ñ®Uéf—¿Œ^xë /ò«Ÿ…º9§Iøâ°o­ùfZòÍ ŒT EeÙ|¥³ýb]ýåç<úa»ì* µÇZ´E ¤;ç¢úÐFr¡&´ ÏÄ&ÅóItS;§a¸"4÷qØðö(â%?i²”•³1£;ÔYvØÇ³\ªÀ‡k¢ñâQ›a›lòmu Vg0>ûÅOq{ïÐb//ÅoFy¡„ ý2»W¶ŠÑCõPÚU 7k2ŽSв)Ù‡. öo¼ÛÓr"½ùÚ¼®ûú~{ZŒ€{coóyr­´nØ™1ϯ4vÍé 2éE%s¾ìÖ£)üz~?T·„W@~ö‹QëªÃt™Ù<§fêô,E°ÅÕd/¨j94&¤²ðDpîÙƒ ¬çv_Ä í6´t(\dUçÛ±Süh³MzO@å‚Ó’ªœQ-x“ÍB¾Uæ…fYºUìª ’+аF“·;+Oòz‘@ÕdêÌ™nòv&\:Â(q:ZµåÏed,½W,IZ}1½¥4߃Ñþ5Î,f~AqÜt^åÁÛÆ_6¸ŠAGµxGÁÁFmÐ$gH&˜†¹>ká­ÃωoN#B¦C°½5K'Ù'±è§d ?ˆ›§9Î'º§ n’™tB="ÂzsƒH×®7ËTÌD—}·* »/K@€{âÑ[0éœV&ê͇w½žmLr‚É" Öf@Ȃߪ+ÌK&D"AvË/J®À…h^hTzÀ‚i_©pEwKˆ¼ÁßÈÔ=`ù‰;¦»Ê´eÙäÝ_dÇ•º0`œÜ¸ŒwpúLÄUúLƪ³ÍÈC1‰ú÷CüÎ÷ßY¨?˜ÇÄ æyðÕ/ ~KCç¼?”ÚD‘âê(“ y¯ݶ‰ä4èǹº(ª¥°®×ý@e¢Ý£j¨ž„»¾Œ95pËr‚M¢ù!Á»dgYd{НâÎBÚ²á‹†ÅæU¶ÂZé%H 0B'ÞþÔWµ»lÕ°²z?—giØÝ‚%V$Â0k6-TǾ®-ÛUùš .Š•æHô S?òL#ëš2!¸šöË>wÆÎ3!j["_©¯h©P÷=óƒ®ÕyÜÓ:Íôʦ…å”j¦.ÕW?©˜7nÄØA>7Ü0h:ζQbCQŠyq‰Œ#fÔËÕQ詞Û|NDšù{ñÌbBáõ«ÐeÌÅ‚ŠÊœ>´eÈOÃó2>oöž ˆ{È~û]òµ| Î` X#+}ÚXøv/r•9èžjÄÏòQÌW…Šdèý°B —½[c¸£–Èuèo ª ñ4ø^ôظƒë]nèªìw'Ú^åîö8àá]KƒØXÄç<Œ¾ØâQcìÏ;÷Ÿ÷Ÿo4!Áœ‹©óžGÉÚ +^ :É"£÷¼ñÔ3§eóX˜[BœoÃŽ†·—ÐLŒ¬FpO—ð¸L¨<Ži1÷¸æ×jVÂéNF¬‰]¥¡1|F¾íÝ<¼¨$à°3ƒ(×U7&.6ïøÒßéj‚Ó,(—úvXñy­jR/–Žù˜“¿æ²=)u¥=Ôbö‰ƒ0.fï°„Õ"-ŸR®ýó“­ÇaYChC¸Ø %ƒàvUŒLeå{OEb7r¾ÛÄ….¶y¹ãöª¿unjÅy·sKÌ×%q©D4¼=)qóez_î0 ÑÝ_S´ø/"8'÷º²Mxse„[†?½]µàêÓßÓ õRl‹§`¼ΠϽ]§âm¨{¼¬8á°¶´¦ýÍHª6‚;=Fí?¿Ú°î¢¹1Ŧ™ÍÔp+68/ÂÃÉê×åJÝ8-Ô(ð]g ÛZ$•9KHÔ¢Iq, Üó#˜™ªÅa~£•éÏÃMjHýêb¾Ý“bO]‹/Z¤ñNEÂU1¾ëË!âðû‹Fš¢é+ûv mÐ:Z';Ê7UÎ`w‡„Zå­eØŽ#–ƒ” äê 2ËjÅ4x‰Õc9 ¨hÊÃsµ¥† Ú© ;ŒË¯G«üé¹tCÆ\ž´¼g²K¥ðª¡Ø…9ÜŒ \¾J_†üðFö“?-9eÈB¤Ý]¼š©úålx—U²“àü>EìS–xLYÓw{“kiWÎ*áïg0>¾龡𱫠DÎ{ -—é}~ÁTæÔ#d9—EŸóoHÿUN†¾Ð õh”bÀ¼Þ2D:OÊ3KAd?Íbm$Fpò©^ñn«UûUæ<ŠpÚUÁC³AÆ+U< ¦vŠ*òZ’„O~¨™œy‹®ö[,óeN_BÛ­0!z`^ - ÏrU¸úîýݵe¤' |5fûY=ЋZIp§úà:Ïy¿#k0ÈÝ–K­ºÆ×¨ä¦bƒL`C¼óÐFÁkp& ƒŠX¶ÃÝܬµµ'ïñß»Vë,7m„~^÷Ð Wþr™ŠYMv×€®ÕÆòv>ým’¹Å/àêNñ–Üyˆ£Ì¬æë@†íwAÁOIÆT·åÄΡª“íˆ<2‚銛ˆ/|Ô>¦^)Êágo\¥ÚûØNSòStB•‡î`ƒxYདྷYÁuÇàÓâ#ýêÞL…—]BÇß§6°6ý<ï9Hy7üž ZBö·ý`û0åÙâ8Œ;·‹¬ ©KI!ãöÎédRtt¡Å„ùI%d/ʲÜYÁß„°Ø×7á© Ý’¨oàŸ®!Ñ’sdÞR!6Ñ ¥á¥À'ßK¡T†›z£æ»²Ýi_%bI'F茤æJ—ZnQÈ"D>ú‹T.¾ÚX5£]`НGÓ^¾&y©?J~–všzÙ×újlµqd¤¿K>÷º­;‘T=¤óø{eB>å8•‹ æÒŠMˆ^þÈûHlœÉC¤6­ùòK)¬j™;¨|µ•P©#Hœ£é\ò¦ÝäþµÎIÁi·3÷ oçU'@Àg™|ãìó>Y·nÚûMÞñHWaI\´$™ÕD?{<8í}–ßF.i)4v™Áú{É©¡¶+˜ðqOÿe¿uo*}Ïàªî±4Û|RåÁ5’Jz`!”2”½;ø$q瘃&,ª€Ô…gÐàÎÎmP­h–†d¾zY&Ê7©!PBÍâØñj—ójÄ·Ss8ßX)ÕÓ§7ûoæ %sÔ^¦Ø ã,*û”œÉZo¬‹TQ¢M{¨›é¼ñ_Î ábÌXÓ‘Y÷Œ®¼RÛ›ÈòùTž£)̰´ÚpÌxü£pÚ²œ ù’ðB8&ÍÀUôãA¾EžØ0-è5Ñš^qz†”E3°¢vCÓ¬ìsd{šýü©BÂÂ$«†#hä­ZôIÄìH°£}£©îão¿æÂúvd×àáøÇ¹u÷¡Š·œAu¾Xdõç cckŽsñóŭۇм*¯ÐäîÎ:èB3‚Èí¶­3Æ¡žYƒq‰ÞoŽ.}ŸàèW8%^=˜á­S¯¬gñƇbˆü“¿–ÖIèìMÖçã00½.b_>¾{’W:¤`U3T9”9zIÞÚ· ßh'‘¼€“‡«W·H@WðœªØ›°õQTª&s°„ØØÉV-Ðߺ$ãçÅážÐ¯2â>ç~-+£O‡ÉêA|ßñ*FÒÎkQÞïJô²k ûžéŒªÆá¶$&ªŠû7C¬t™tèIõ±ÞRCü3ÛsFR·±þà#ló‹õü•¦I¹Cæ ²5H·æ+Ž{6H‰ÎK}›ñ¼=3N*£ *‚õ`8…IÕ1ö-ö~×Oo”>Ûàwêö–e.èX78hMic â&æ„*~û&¤PˆEòŒæìCÃç”’™rO›‹~ÜÙ?:Vz@n^›ÑÅNd¶|~Fk~ƒý.Sûóù§Üt²ð/—ŠlîDkhmcàÁªj¿b«ÇNixaA‹Àìü*p]™Ä$Kcenöd´ ¤bê²VÀ´¼¢„hÙ>GëµÙ†Ó{×éÁÐ}ÊNÂz nŒÕŸ‘D|\Òh½$Ñ;KùmÖ¡c ƒp­Áø³In ÉÿMvˆ.]æž¼(aSžÉ‚–3GR ”ñ‡wÃ2äèêKM¢Ø¸¨"ßy`ÊnòõÏâðÞh3¿â=ÆÚŽQ¨´åbäèš;S“Lc‰®ûçyíȳ6£qdh9` ûÈ—æˆfÄJ‹d2ÅӉ֯ݦݑH?å}æ…²¡Û®5cõµÂeCŒG˜¤ÐZ jD`z7 íê2š’Íûûw^ºŽ¶œµ}$ovÓ/ÁûMâ¯Xiåö¤/ÞxÙ½A-¢½ný¢¾?~†ç1L ÔGÊ|rF4fÉh‹ÍÝ¿°.FBà@~<`¦œi#\^Æ ŠŒ}`w[“š°e¥qG!L˜ÇMå2òãѧþìC;Cü‰mOŸ z°’™•¬©_ýaIÇ©>[lð–W%­µ+|Cº¬ã´bú“ÛZ“Æ_Ã[¯Šf·0µ'Ê´þ¥˜ÔFÆ£õº'ïL`Â…Ÿ)™ŒBäN‹ë5^œ‰ Y ܸ²½‹ý¢¿³ˆ3K¤Çw+/ZdWPüü‹“ªò© XpGÝÙq¤p´4£åà{{í‘\åsódµ?‹8¶ZCm:> w¨wh§Œ{–¬[ç´þ>w7½yPS‹Žy`}çˆæ:^œ¶‘M}ʵúî®Jö:ô†ß?×Kò‡e7³þ:£ãÔþávà–¹Ä»C°øÓc:~¾º÷ç~µ°&ðz¨ò‚ÕCøëräÙóيمè}Ç÷TqbŸîÐtDàÛ{ÜõNJ}°Œ%ŸènóBØQ0eW =\xö˜>\'pXýá`7·§r½J>›ÎøõˆõÑÉGÀhe&áÖckÁv¼žVŸ]+¯5Ö½eøó’üaQ)œcQkçaó^òЗV’à†ÁX±¼Â¢¹„ÎÆòï2z‚¬O4\4i©­ák›ò¯j Nþ ÔPá ëNw#~+¹ó›l~=Óí‹N`¼˜ò›Ú„¿Á{ß p·9˜«u…ÁŽËÉ"#òR©“ó ÐÖɾ©cQ÷.®BŽÄ¶ëÜK´m–•üFáÉ«áCéûþÚ0Y×âÏŸ8)±Ã'/ ½VŒ+cg8¥ÅÑfùýj‚ÙqÞÞJõÎI÷<TûwÄÝâ;Ûex}ÿã Êïïé–ÖV!ß௷õä }yz03ÀV “eÊY-Z'•ñ‰i¼<(â¹[v8« a]d[Aÿ´d ‰‹®(ió(#a£¡P€•9\*Ð@nÅ3K¾]ûùC¾ø;¢8ˆ0±pdÆ]–eífï\ðÔ¹tôœªV3R·KD´±6y&¼œª¹¬P’R©Æù.7¥ω]Å/Úo [ÕŠ wŒÚ/˾ý‚ž½b>t)Äü"îÕâFÖ¯íZ8–œ‘]6Ù æ'0HKìo­:çúÂþªIxX —±L‰pí¡pay»ŒˆV|&¬eðyÓO šX ÓdéÇs¼E\Ê'Ü´Àåg\^odÇž±~O-* }Z iÏ{ð@ªÃa]I†YhWR×oß“ŠòÅÂ̈õ4Rì¯Æ9ÍÃÇ„!"ã:<Ø;üHôö—ƒï‹¸ÕÖ'²Ry÷T÷w–ý›E‰¿§}3é8õ¹4-á­<˜ ° B¦4+¹«f~ÎAq7¼¡8¾]Á úÞ¬9ÿQúixùißS ð ©~R‡¿±$†”ÊŽÅd»ío#°ý‘Óð°c—‹/]¸`#Iœ"U±ÄEož1ËTïð“4±Á#dt4FQÊSDÙ74âUS æ;W22ª‡UÄXÉBÁxA%¨O«‡Šé¶–c’ćœé%ú§ÁÜl»ÜOduÃØN£Š2^ƒ9AªUq,œ ŠÅÏáŠþ‹úû„M—k¹9µî7š¼ŸxÇj{ú¾–ë@;þúùÝUÔ¸«)X@œG žO†* µ*.S¸Bu)µéxPñ؇¤Ž™ÂÊõÅ8ÞÎ]:a²¿ßNR”:@9ƒ U)íjÖʫ⠘!€¬ø¾Ÿé‡o9[”:a°sµ3ÄP”Š´õš—!Òš<{$„©k.8Çç FßuyôR2±YG>1ì9øì5mke㕾ÛÚ—½VÀvÿ)&¡¿Ó•q'?Æåm¦_ øñÛ^¿ .úìØp‰Ÿ”Ò²‰VEGcª1ýAyu–üUË¢0T>$ŒQ‚>y̼:¦Êº5CéŠz÷Ðî"Û|šÄŒ^m×ËJ/ò£|‚t¸ú¡HâFÿªË—p¯dîEø.ÑQ²×T“ûo!b4îøù½Ç`Ú´”‹€]J»­7y¬q½ñÏ?èSà—Uê9*ˆÕ¹Xç :!#áCwÖ¯ÄDƒHuOÏXÇÔ¿ŸO늗YœÇ”~¶5Öÿ-Rïàv;KV%ïoÑZ¿OªÞ³É¹fÐ ¹%ðÁJã×ï‡ÄwsL÷^‘•‰Ù=5ÜÊFê0 1éXµ<8A§0’ÖÐÞ¼"ˆ¡«œÿ†1¥eåà`Ž?šï,Ù›ó‘ÏŽ®Ð4ƒ @xqÌ ×8ÃS ”9á–Š­NˆˆëªÔ}]Õ†§5Y/ôãÏôEý‚#0çÆA lQçŒ䟃#G×aþcÌ¢ 뵞 ¥L¬AþK—Y›aþSE?ß݆ ¥Ù¨Áh~\›Ž!$ÉrÁÆêã¯7½#¡Žù/bó¬§'¶ò»lLvèU4•,ÓýúË;õò3; ?­ö1Aœ çøu3µEs£áð…ðýrùÊ¥6Û&sÉ+˜3útÈÜø]>z´mÔ vJdÏÊýÊ-Ôˆ`Y‘å’§æ¬bÎ1dƒQב¢)œ:îó=š@óÜ›VzßÇY$ö._ÄOè ›³QVZU58ÏfjÙùlsiÝš¸Fí~BL³žþ;„ª’<ß–ªÌv &ähDÑ¿¶¤‰¬÷º=ç(甡VL*>,öX›’P#H•&ÝrM‹Cž1Æô®ê'Ç8²²0A/u§GCÁŸ{$%b,^à0{€Y|®Ös“o<'ŽºD+1TŠE4—ˆ×ªH1ÒR>¡5q¹|Ùð¡7ïŸÂ/¾GtoèƒÉ²_@¢49:¤ß æ‡HúU•š„[¬#¨ütr­ºï¡CƒÝ™4¦'4T&"ÔïûÎãJ ÚÓÍG@† l¨Ð{àÑ¥Ñ÷oþÄÃbYBå¯N­ÔÓ꘰QwžÓ‹sbß$mù_ƒjgðò®£dFhsŸìÜv¢"áœk{¥¹(·qòAªC@çšDœ54 XóN•ÕE/ÜX8«Û·?2a³jG¯Và?¶åžKD°ÊqžL­ü¤ÉËãü6Aû«å zÚ÷z@Óà›Þ6:$g²©Å¬Êj•±9 jx9'y† Ðq¯(â¼”¨­¯h{âk’¾ Œ WS%dN ¦|0 /+—%§1Wøê b;+|y䯝ué#-T")Ñç•È™"„?!?2?Ô>¥@ªX$â]©‰ûÒ¬M­›gúêó; ª‰>MØ †‰Ï­Š3f/é³¾ò™‡3¯¸ÛÄVB^¼Ú°¡Ô÷ÓÝ’ùŠ!ÌçévŸvÄâjsÚ& ¡¼xÓÉà7·?Oßq—ÓûÈB¢üï\®ŒŸòeñÏÀ°ª8’'Éwз›­»^6Ç`Âte Z0CƧ[<¼$¥»M‡"µs]÷\tgå#«¬x~)¤7Ìû”¥Út‡énbù“‘ H\š«›4xnB@ï¤Æ $áOàð‰CW¡¨GdspûÓø†wØ.c³„ªå±ÛùƒGÁÍQ2T”ÀÞ¿ùAt± ¢)…V¶ùXÃÓí‰_ç¶ATÜòUœ¹ë>ÓE%–¾“jË·¤P;ù+ؘ¥³_¡’|}J¿¸lDA¼*Hy`azU,´Ç8*B¶“!³€s@¡±$’<Ù#,o žx1ÙíÄt–Ñ-ëÀn‘?!1çÕ†rÛi¥@"º5àR½tðN×KëDÑ-tÖßKt\wñr23mƒCbq$Œ}?Ø-YUð$‡®€è—,žd!Ú§ï»vß0—¯ûí€î8K^ý…€Õ—ˆ>FÎzH ¤Ã<Ý'xÊ}³9L-÷fõ4É~ä×BЦrU²)û D‰:'rÑ΂ʧw÷¬ êÛå©zqN ×¢²-„Z ±fW‚?ôÒê‚Àø»ˆ¾ÕÑðÁÞO¢e9_ªc_Ò󩆟p£!·!‰rvž ±ü‹.ÚyÎEúÖ”Ø_ÛT ë®$òóüÚ„@¢§9ú¡^0Õ¯7ñ«õ~”ç}oǵ¹¡zT¯kR3¾~ \>–!ûøss\AµFxq^¸Ì|mi§‡ºÃ>ê›þéì*ogÁ˜ØáÆT¹%Ï‘=ÇÜкÒï–è¡©@ÕÃEL˜rM–Š)µ)Åú.Gng-ÝçÏÓ+‡çCn )„\%O”zd÷/GnmD…ù»]’ÁX\ûZ7¤Eð~«ÄüqžTÓ‰ý‡÷F>o-ŸfE~°rþ€.e@ókaB}=FýQ¶©j·rU»~¯:§A©Fµcùº2Ý΀‘kxÒ„ÿ¹x3¬·è¹wõ‰£©×ïÃ/?lqkàC^<®ÁVb"˜ÿÄè ®gpynï®sÝðLhb'Ñ7¥¨”fË\Gs!p¡¬K#F7Ì'”Ï;Ãáv±oìªeG!H‰ ´lâÛÐQ´yÒïÈ•È^òûŽÊ/—6Ñ2µäö2fJ+€BÈ«ð<§¥-äÌ-Œìç{€¶RÎOÌÃX®®æÀH$Þþ⨠Ìè…¢õÒ›k¥ìN«¨ñ)JßQ°~¤¹Mœuè]$tP:Ëpê|˜$ŸßL…¢íÉá^!‘¥ŠžŠ¸cŽ|8Q:þÕÂÉ)ì.ëàæQ}2Ö^”hîÞJá^/Êþbö~µä•øß¶¡4¯jÔ‹^—ñÕ˜À¯l]ò¢&e’Èd\èkÂçlHì&¡t%Nni›Ö4¸MÜæ¼VFÄœmX_׬֧<{>nب0°Ý*vÑæÍ°¢ †{› ׿91NùÌÎJUÔ†Ò½HªÅµ†}3žZd¨QOÅU·ÍU"Îê°ÀUNÝSL á³ûuÉ‘”ÑSS9Ä Ì«ç î?ÏÕÆI7[÷V¶ÇžÜ]ÃwA>~Ç×Á3ˆl, þFD íZÏsðtÏXÖ ‡çÎs aÌ\YÁSÙwd5ðñ$åš½?îàF¥§"Ê~Ÿd” *ÒÕ¬$Àr}†24nGApdPÄ7ð÷³DÛç3wì7UÍ÷K[Ä.Ïñíï8YÆà%ø”ø ¢–Ü7ÓsMo>¹g"A¿XxÅñÞ‚d§0%ÃÓß‘þcú¼ºŒG)tÇ6à×:Œó9ÒÒuïdâ•`y œçÚ<›ZzûuPÈsÎ{^O^ÞZ,¯ÊðÛ¡si¸å•³F,]Þ÷U5ñl샢Ö)Öt‚îË”seiœKó£ã3œŒï}ð™&œ£W› Ñrªýã!RQª<Êä ¤Ñ„ô3?ù£| 0?¹çN³¾ù÷Ç@q-æ­Y|;!£Ù±&^ŠÖÔ•+ðÿ w…øÐ‡ú$oñÒ/µ„<í×äð4Ëü×idüÓKoo„“¾Î,‰ÚÖMf0÷‡\ò€‹öä\XªŸ­ºŽD&¾öb+Úò5F˜IÏÉ*(g…0¿ûΆVjÖq­Îƒ’v½µr.Ôû°˜/š®ÆãWËy4Þùý"”¸Ú“S¶O²É5ClTÙ8ŸHá‡Á¾¥& &5v´”²N÷Vk ™R^ޏ,ÕCùhx4LÞ'õ%sÖï‚r_ÕVQí®zñK:P™’ou"³cYO Ù#¶ þzDÖ Þ/hNE„Á]…çÊ"Öƒ Þfÿô›*¢_ÃÙYXt÷(Aó­ò‰¥Ã8EŽð½# Áf¿¶‰­DŸŠÎ ÷ÖU=û!ìñIÌ?HÁ“›³=`·5ÁïA’=‚aû§_I.j…S×·Q>ÊIbÆÊÝäS‹]=Nè¥ ›0²‚ÜÙâÓ·ééwîkÎrBÔˆ)–$˜bB;É!*Œ(ê"ôØHg«6Å(«yÄ!!¯Ñm,{m”÷ÇØju7hypªU"dîÐ#²¯}ÎšŠ´ ζÄ|øIðG–ΓÑIy[Ì¥TÊͯÈ!Pf¸;²‘eiv ö²¯GwŽ—ééÔAÞÌTˆfœŠÖ¯¶ ‘U~³·^g–Ç»X³Óç“÷"0ö,Bº AÍyôXNÎf õ ±¦_'ý{,#HêœT‹Lî> 5 “¹XQëHI>t¬Œ&]x¶è«r-CûI1¼8Ë$Ò—AÈ«’ æ>Ãå`¯ãØÅ[42òæäà’WÉàŒÜä&ó³@69ŒRè8Ð÷«=¾mÆ—§ƒjHÜ4+¿ko¿ô“ýh&ÁŽ-.ˆ‹÷ûúÔæñqe:ÜŒ4 î.¯tzTð+§º«Ÿ„•¾ŽU°Að]«D qä¯xEHã><‹ «&LÛÃl-léñÁÁuËærý³PüÃüNY +à›AkuÅ›©k”¹é˜€sçFii(j „ήðSKC’êψLز™M´€rÍž¬uŒ°·©%TUðSi)½·ªóç̰Øø_†™oÛ„ågƒN¹‡îc>.2üäéB5÷‰L– \–!aoD±›b½$S#øâ~p¼…ÛóžÅýs ºÑT&ú`§vdĶ4:J=>ÔÃ{a¥ùdŸÄÑUoP-ÓSßÁH+!| |=S0ËW‹]üÜ÷ÙSE·r˜ÃT«ô¥ ÛÆ_(Ê3%yð9F ·h 8~º•h&Y„cC‚´pS&~ eú³uty=ÖâIš½•ð™Þo?ždêô2Ûi’s.5RÇUd7n\8ßôâa Ž„’¢£6OÝ3xaÐTÓ¼j&(4ܳ¬>5'Z¨Ò{Í|f-a„M¥o§aKÃWÍ{­¢4ïë,¦ ætWÕô‰Ô²'ŽS<5Šh³¿Xö¸“¨t<÷ñ`¢ÇFnö“ÁÔXävBbâÎd—ÒIÊxü—ý`\—y‘ ØbÏù"E—Ù(ª¯1þ”ƒvÌíBªzô1cÚîÆ>|ãRÜHõØÆ*”ÛãðQH(}X푳 e»q]¼™‹bÛòËëXœ·!îy0¥ž>×1ŽtžX ÏBQ´h¤ºñWtÌ^ãÄzr6RPiN>cV·ñÍÚùÓ îPåݪÆr1Ií‚5p|Ù®Þ2È0(‡­¿Öçf£—üKö&\ó …}ÆÁ{[‹»{:`¾(Pô’›ºÊ)3 –èÊ»)ï:˘ÁƒifUk­´*ìŠ0úÕÌ•e02Ä*-kwê^IíqŸ5ÊÔ§ŠÒöEr0ä0œÒ3]‹͘ñ3fW{ÇÄ™F:çS“>ag;_‚iÀB¦?FÙ8;×»ì8¢ šÚµ¤ƒbÌèþèÏ_Zðu(9©gšÚ,Aò^±³Ú ±Ãt³·ô°uä¾ÃÜtçWÎ>ƉI(Û<ÝØ#£4ŽX¤mâç|Ìr†Á‚¦aoM>úg2*<{¼/£ÎQß‡ß îÞ¶sê7вê|™†.¤ù°Ç”\zЀ"?üjèŸí–Á˜ç¡Ûñq; ¹´'Q%Ò˜ùu«…ÉëœCÏߌ‡{W³òÁYÛAl+ϳòâ cJÒÜ=¥~j°´œ»ÇqÀHM|CØÂÏׯÒXñä¶+µoå4_&Û9oa.«¨;}ß`îÓ“l#9]Wƒ¨Š ÃæºèÏÜ6OnJårñ¯Ä‹«oÆ7Ë÷ªmñXÌg8ýqzÂ_ºD¦Z¡G£¤©áFœ·rG¿àù›šÁê\Ð5ö‰Š·ÞÝ@ôúl²Ï/KÞ7í7:¥ŒyÍ\uÁëßcRþÁ°_,ý…O^~”)cä¥.nÝ—âãÙ=LËl.æ™Ð=[”-ëN% £C8Ä•B!‹¦ü.-O¯ç6jþä(°¸k¹ɪÀ"º¬RªÓ‰Årܺºw†dÝ€Be`octoðŠuWe–'y}ã ¼Hë[õ›s¶¢L¤q(àÆY'6I“WNô4Ô;PVT—[]ü Å(X³_LHDPÅ{C¿= ²t˜ŽZR5«éÚFSaè$Œÿ>>¡ž¤ƒˆî÷„/Ï$A¢r€V]´c€üñ¾êëÅ_zÆ¿1­ßD!y§¦´ìœâÉ a0Ð3§y2 PÀfOE6‘׳:tcz‘úT‹Öj¤Ç¡Ð>q–pBà™ðU<êVÀñq…Ú‡ÐJýlîþ³?†áÿáÌÿŸàÿ Œ¬M œ6V0ÿÕ±úendstream endobj 89 0 obj << /Type /Font /Subtype /Type1 /Encoding 218 0 R /FirstChar 11 /LastChar 122 /Widths 219 0 R /BaseFont /MWYPGG+CMR12 /FontDescriptor 87 0 R >> endobj 87 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /MWYPGG+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/ff/fi/fl/ffi/acute/exclam/quotedblright/numbersign/ampersand/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 88 0 R >> endobj 219 0 obj [571 544 544 816 0 0 0 0 490 0 0 0 0 0 0 0 0 0 0 0 0 0 272 490 816 0 0 762 272 381 381 0 762 272 326 272 490 490 490 490 490 490 490 490 490 490 490 272 272 0 762 0 0 762 734 693 707 748 666 639 768 734 353 503 761 612 897 734 762 666 0 721 544 707 734 734 1006 734 734 0 0 490 0 0 0 0 490 544 435 544 435 299 490 544 272 299 517 272 816 544 490 544 517 381 386 381 544 517 707 517 517 435 ] endobj 218 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi 15/.notdef 19/acute 20/.notdef 33/exclam/quotedblright/numbersign 36/.notdef 38/ampersand/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 64/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y 90/.notdef 92/quotedblleft 93/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 80 0 obj << /Length1 1411 /Length2 7489 /Length3 532 /Length 8335 /Filter /FlateDecode >> stream xÚí–eX”íúîABZJIaèn¤$¤†™¡™¡¥i¤[Bº”RB¤‘’évÏû®ÿzq¯õqïOûØ3_æw=×sçœ÷}?ÇÃD§©Í%[Bá0W.>n>1€œš¬?€›‡‰I¹ÚÂaò W¨€OT” ãf àçðÅÅ„q˜rp'/„­µ+€UŽí¯&a€Œ#a Áj W¨#räІƒm¡®^Ü€Ö_w¸´ .P„;ÂÃǀ؂]–Pk[Ï_Ž”aVp€ð¿Ê7§_r‡"\¦¬H“l¤Eæà€@­pxÔáH-(ÒÉÿ Sÿ9\ÑÍÁAäø×ø¿Sú¯ë G[¯ÿé€;:¹¹B58Š€ýg«>ô_ædáÿ%£ì r°ËÀ¬ Þ•l]m=¡M[W° À äàý»…AþÓ2¶¿ ðèȾÔÖ4äøŸõüû¢&ÈæªãåôÏØ¿ºÿf¾{F¦ƒ°õóróòò!‘ßÿ2ý1±…!7„B @^8È$!€7Àz žHÇ<Ü0¸+ò2_€ó×r"mñXÙþUûŠx@`dfÿT<`¸£#è¾"à±ñr²ÂîK@reáûrv?GˆÀãê¿g>$Û  tüe/üåÍý¾ˆ,8»A]þ:÷E¤™{ðÈÝ“€GþFZP¼'ä0å{BvªÿC"ÈNÍ{BÓº'ä}Ú÷„ŒGçž^tï ™ŠÞ=!éÿCȳÀs©(RÝòžÑï—„iò"ƒƒþ¥ö"ÝYÿH{6 Òߋ͋”uø‘ºŽ÷ȇԅýH]øˆÔuú‘Bˆ?)äò"“pý‘ÞíDÚp¿Gä“ÇóDêzýÿ}ÊdeážÞ\È}ÂÅÜO||¢a!^ßÿ­ì†@@a®?Àgõßle‹<ÙP¨'Œ3;‹‡Ø¥6†•ú)Œ–a°£ÊZˆWßñínðLªCQ¿ª3ûbÁUy ÁÆ­Ç •Kd«ÏË!Ń@çø´É» w‹ŒWMTGj^ëNôçÁ»Z'Nö„P5ÆJ“ »³{vó4Yåu6~§Cé4v¯ïÌ  (f8膇Ö1 Ði¦9—F†/x&½A_ ö³ ÇúÈ1ÿ ÞêF|U€õ6ñÎ 2¤gq®ºŸâ…¿jt?xN\`Z¹êöV-Ý0¶òÆÒø;mŸ±ÃQtæË1§«IzU›Ó\ÕDN¡Ñ¥…`™Òka|ÛÈæO…tº(µñÕÌþ#ò[m,ŒÔÏh ¦¨mT•~7D¼ÿ¹\ÿ ¶¹†ÇÀÇL¾KPÍšÉÆø[E@5t6n*Tá¶²Þ?Æ%¾–`ËNñ]u„U!½&ãäz—òbÃÌÞ@ò¬lp7PÒ¦0ÞY^ðPbÕ[(Ò¾ã}™B"¡:òYÕ­¢t=í÷âÈxÖx\¡«¤º\¦­Öe9]ôÂç ±V•bfƒK¡ñS™èš2èG¾Þäâ³*èž~ö¾¼–eDÏñR?\òí‹Ãy¦b!×ÂEn .SõX\9LAJªy)fÎ$wõJƒîГœ_Xrwå.Í¢ÄXá¯ãfNç— Ò[ùr¬¦ ©šôV1åò2ûRü(לsyqï ¬§æÌºÍÈ(¿}xxPÀ4á¯$ ÙÎì«%Œ 49ª¨¼rPoñ†šZKlG~ˆ3ÊõÏg.×?ô–òU÷Y%øöaŸW¨›4¦döJð¹ émÉê÷¥©ý ¢·:þ_±Ì Á”cYÛÀeÃX¾T€q LwdòQÕÉ•‘âÆHýʙϞ›4æGž …0§Pq€Ÿ åÇfPàÐáknD£3‰P¨? ƒ€Û&›Mâd[z2B`û’l½ßIÂ/1äqKˆt({™¬OIÌ‘Šc”k7?´).oÐ 2^Ù¸¡Äæò2_aá¬L<ˆi»"V‘·æ7ÿ”×KEeh¨zÑ9!C£Å~„d”µðönáGÉ1TN,þÑÓÏ¥‡[‘Ìü6Æ‚±Ú£‘åüÃY¬{@yÊÇ×Pqº_bŸQ·ÆŠÙ°¢dwÉ>륅Τ¢b¦øµ.öQP‰#-.h’ivÄÿkï³s+ýGð™ë_Ó`Ï•ã²5N5¸œW—­¹E²*rJÚeK-Yø x{ã丼׬ >³dÀZÃÜ\@.ŽIeq¢‡»fÕ^dÊÊR_–Êd–`ž?·Äô5>çy!1/S1—vâ¨-Ü,«Éfú‹Ãש—TÔ-ÉKàùÅaid¯Û´0ß:D~’=Û‡ýXΗs$:B&cG¸r]'­qº­Î«a>VÌ“ýµÊ]•¯|D;O ÐvJX@ŸrŠ;2_µã×¼¸œ'‹n)µ;Œy¸xÙ³µ'ƒ`Ô¾j:‹ûMFŒ¾ÜzúSΫb£É°öƒÚ¾¿X> 7ÅçÖ,ˆdX‹Ðb^7 P%¬~e­¥Æk ‡ßœ>[—¸ÊìèCÉõâcóx«£þÆ·ñ6Þá v°>ƒáàúñ“zÊÉâ›÷6®XDÀÕȉ ;Ú0ÙÜBøçó©“çÃ.úÉ*¿tC ÏÜrÔ·K;½‡jóPÃÇ,æMY~[6Ö¢½6ï¾32~ ì'E¼<0>£RmkÌYÒˆìcY6+©ÀÓÃQÈKU}éVCv3‹Ö‹>ÇUnî3fŽX­‡<| A•ˆ¡åÎ,lªÊÅT¯ç¢ói0S µ-4Ò@ß.Où^ê²U®¾ø¼…‘]M?¨½R'GâÜ¡;& +†ì.]éUÕäÁ¶æ7æ1ëðßOnúä«Ög…w.ûùÅ+*ª ¹û÷º'îÈÛR½1SÏ ®t¥žoææ×+ÊßJòîêG*=¾Ù+†„mqsq~Ÿ] gnƒçÓV†¡9[Zš{¿j›å‹Yö©r*Ó/(Fd6våè¬V-HüªpßOFt‘¥Î—Ì2ÌóéÔhÇêš’7ÞhÉÍmó5’{]Û¾/,ªðÀÓlvÏiã¯r“3Ëܰ“”bˆèx©ŽwOã«ÈÂö 7ñœÉ¶G«\`’¨¬.Œ ã—ÌN1,F¬¤9:ËX¿¡ÐàDÑ3#t¸À=˜`ï±<,z„¥Õ|­ó”ØXØLÝ$kñôàÎvgÀÒý9ÿÎÉÐÕm[¢M¶Ϲq‚íPßšùuZi3{9ŨæþËBïcö>×ñ/=‡Ê;9|œ5Iä¯*$¶ü©¨3Ÿ çTË5»ZÎÅIVÝ)ИæX~zzãt4úY$Ý$^<Þý a„!¦Ë–øàNÐøuâÔ£"‰­RbšôØÊ?XTŽw-]9˜¥^¤T‹Èòt¡™ØÉÛƒŸ,¥Zî…w‰B¯i(ŧ¬+Þ® @ßEJðï‰éK—Õoû»âžZZ>ê—äy¨FÂú±»€a¹Ïôä% ‘ALv¯œ§Fg™ô«*Ãÿù4ï¬l1£ìºs¦áÓ+·.Ò¡jsIr½ÞãìöR'¬9«É³b쌭-[`Ú"·ê«Ž>4IÆ3#›ÝºO‚Ôƒz†±[Qo®“ã¢{ÖPPÇj›åˆ–1¼èíMì 4 ÍòÁùU÷eôá\j°Tõ×¾ß+á9¶ü¬}WÊÄCB-ÛÀ£Ëˆ÷¯4`f¢ÆÉüŽ c‚á/ët§ðDh…g ²FJÀEz#»"šƒïZ9É–l(Á¼Óà @X;Ó³ØÔÆ4‚ÆÚ…K.ƒä’¨w’L(Þ³DœïMJ;û3ËÄêqg&¶)»²¤ozéƒÕÞ† ìß½¸ìš ²˜lT¾ÞiÖÌQŽýÚ:‡ß{ú¾üúˆ¼ãe‡*ÉÎ PîAJ©Kàh!ÎÃü°*]'© X¨³únäÈì]>³²ÖR÷íÈü Ûª­¾³»T“—§LÇ¡gWw!@• 1÷¬ŸšCÚb(;€šs‚tfõW¬—'¤íÀ²"Jº¦aéï zÒÙúf*·‰öâúÜÑ‘!?¼Î21Ü7@²WÊkÁþÚ¥AcßW —¹öø Ó¶Uµ±;,-ÆuO@×”ã%”—:ý` ëqüÅO {^>a·}÷Ö7kâˆç˜?õf‚bÀe†¤é)®tÔ‹”Ä›cCGMhªû\á¥díÇ~\‡Lg×nîîó¨a¶Ú¯}Xýt?@å^->ØY0=Ø]¾ÈI¹æYö—¹|nÁ–xÀŸä8iQ]hitk”ÿBÌÐéäZphKÈõÁ…â@D¸Å‹ÇÓ„þóM°[‹­Qƒ2s‹9ÁB¤Í®lAzë-qPXgE¦5êΩsºƒÛýÊè-ÁÖ0C™(ÅÀES;ƒw…‡ÇkJÑÅÑ\2%"T ÷iô÷xX¢³¤+ ÎéDº ^®œîúhì< mÅÈgoxR‚¥6ú¡ªß ¦Ë%´÷žŠå Z¿æé.é*\¤: ] •ýÁÖà·ìÁÍ¢{(UŠâÒÒÁ/¿Èp›Íüä´t§$X1}¬3¤ 'ï!xåf÷l#(Œz Õɼn;éO±v<˜¶ò6ÇZkbT'PãœÛ–jÝä@Üòx¬zÊ‘ì¤ÞrðN³®¿ŽÅ¶ç¥òÓ‡ßÄyçumÙ`Ðg½ŸbÎQpu̬èÁ9Ý;£Û |Èçí(”ç(|P »üZ$+Ô?Ù /³UjB—q x·r2…]T¡tp̯¯L­}'Òg/'¸š+f¿ffÀ:ŒÁ¨±fn_^ôíóvAD®|Ê{c\s^½ÞÄa2íÑÙ–fL³³Ò4ëWR.“Ô¿¼ÈËZ÷ã26ö‚ 巓•éÂwÕæ²¼‹oçLú6mCÞÐ9@àit¸9ù”ÇãÕôË©Õð7öþë‹4EƒÌªµÑ¿³óÏϯ¯ïæªAì—*ŸF¨e(1ùj®¥9—iÙàEŠMj‘Oç†d]«Õ öÙIMŽúí[±y?³#<ò6gp ¾û‰ ¾…ã2ÙdQ°e¤ˆa â–¥c™𳄿²rqmcŽGÍ,Wuç0,îqÁ¼ÏM3O]Õm¤« üÊ>z XhÕÌìÑ<çWÙÌ·`a¿|ž»1©Y 'ѯëR)Þ“pñ\uäÈçÄu•aï`jÌûõ`Lbƒœ"Š^¨K™s^ür´(ŠÚ­ÿòu.¢ýXuÎ33W³dV¾tÎ'ì'õ£!ûŒ¡¾¼2Ùé!Š(6 ãæô“¼ÉV¥3|‡’ùR†¤ÛÁgÖ1ö´5¯À)´ÆÞ9â·KbS9äq4—[h½sÌQK^ÌYÿL˜ì…v°·ñ1µå…áÒs©û&l*cla½ ’ <âN#+¦ÆY½5pÅYÖQï• ç8r«b9ª HöÇ~7âlѬÒÁ Þ¼yÊ;¾+¼^43-”9Q¹äCk¡ÁÑå×.Ëóšù~»bßÚƒSbjPàÛ<¤%qèó*Cq–}´QŠkOÜÁ4JªaiH &|ÑæÖ•ºZS©O¢ÊºmàGzdå žGî09¿^9:´[vå>xC³¹u~S»´fö¥L9ºu’˜cÂBèØßlЗ0ŸÍwÊ·C܃çÔ)”w ¿…Ö›¦¯´>õeO¥Ê£¯Ä"æTh¯y ”RPU='bÒ¡Ù–jî¬C²¿¯¤ñõCÇc*êf…E[\ OưsLe‘Ù‘±ž[G]— Ø—ôìÔöO% Íqæ3¦$†r8à²>CÉJQ³“ÌL(eЇEÔ‚ØeVd°4%[*fÁ•”ÄK‡¼â]ìlB¸³1žçQåHiÜ9‘ël4 xµº†¿ŠiO¨ê†Ú<ÓëÑâ4U¥¡²Qq$Ô&‹\`™ªx0™‰m ø(;Ó A‘e8ÈD:Ù‘Â=EŸ#ùèkÓW•õˆõ‹ä­S* lŒ¤Ê<½¡Áøxœ1’¯H\‘?-RÑ&¤Žð»„>ŸÚ ÝRZ£QÜO5Œ+êi ö}-Æg"’Ô¯°êÙ}÷¸¬âéítpÏTÞ¼€ÊKyã‹…ãw"6-w<Ü ìÃ0H¯Â{ÃY·ìJuÄ«ù¨H\¥ê)dê…‡ŸÖ}§$èË€uë%æ{e&Wq:° ljÜ-¤:'`6ÖcÃXKNÍ:¹#"²Dçä–m6ÖF¤~zoïrŠLÃ0¼K>“éÑÿ ¨6W æÅCqd¹éu£Ääü¼¥¡ûfùœ”N¨2ùI!ÃN1Þæ ¿ ±DyÀ¶xømþ²ï7ˆ€„‰4®´™g½.(ìŒ!žÎ\Í…¼  *Rш…—‘5øø2Ù6ìÄÏP€ö`,°FŸ‡jÉâ míñIXH·Ãÿ~t„ƒ-ðî7Hžý×ú&¯»YÀÈ< ÝÕx)= ÒZ•\ɧ1:üÝ™ûËÖEÉšëÆÁvŠh2”4¹Ü•x}ë‘G³n¿CãÆÙ%ƒýD&q•+E2!Í”D5+B[Q&SxwÅ3´Ÿr8•š-$)¤Y¶TO·l˜z¼‰¥ÿ…& î 5Ç–ˆ5”k@çŽBŒ¨ÂÖVS}¶€/lÎ7hŽ Ù:Fà%u±DÎKøì?E JƒI£W ¹ä<â/Ûc!ÎD•`¼îû<Œ°Êá o×fÏ'Ù) ïž;ìßiÇ›X«_Ì¥·Øœ D¼Æ&He¼†úª5Æÿ0Îvn•~Ø‚ñ²\~ÞNœ×@ÆŸ€Õïš·å§z‘0¨ñ—, ‡ÕÍá¼­s>¡ÎåÍP\ú¢•qŠeĹâç(‹Ç›l)Æ'äJ#ÜçûÍ"oqBô¹pWµ~$w>Oÿ-|¤ìõ°eøÝK]_$ÑRžÜ¤%è¬Ý¾”Ú?ôY´£J›øSÙÉNìèÛ×ÇÌ{ªOQÛã“H§wŽ:I´Â»Õ‹i½}2L§Î~)RfŽ]Gñ%>X1L®·ó@±–!W@œÙ‹ÿóüuöÛáÆíQ[ÖõqÆzÁ[2êØoÃxš=ͼsY|Õ#ËßN¥ž¿­ìÓçŠIŸâ”g¯º”*#Ο2´ô`F; >`ÓJ­Ò¡vZ7¬bGá—*OǸ¹C÷]_8®M`n2 ›؋–' ´3„ao?íßÑ Uá[‘çâ~nŒÝÝ—fìLjfstaù9²‚!>"³Ç}]GãŸ0>CØ™Ç ½öK¶Ÿ0¬"9yÅü­gS\O®Pkƒùb=Õ05U­­wTïwÈ•©¦êÀCet‰Þ8ŒÜ§ Á~»ÞY75«p©…ì®s¹tíÒÖûÏBÇßYšÓ÷‡·žõ-4;RXëN>~ùy_qâgŒSÖ“ó·,ÃyòfcŽ$¡ÇŸ|'g wH¦°i´ÝQ åǧɔ{›"8‹`Å*Ò%zQ'ûRØô·é(yÎÒ](VG¹xÑw•y¿[kÓ½ê!rÂÑÄ”:Pû`JŽ©Vã;6㜞WÌš(Ý0SÖ-x3C¡PÈF³>j3 V> •SûósGU° ÍUÂ}ÞÚ·Â!Vá,aèQ¼õ™ T~Ò’O7+Ø2ýérÉ;ñÖÒí|nWcþ±Vƒš%l²— Î9grM÷YˆÎBk²Å2”1]ŸÁÈÁ[«&’Òz‹÷mäÉËfÎÂ)_Ñ’§äÇ1ûÂp«µÍŒmz­_ 2,}î²:·2ËQØÐwhèÐÃÜW¢`ú$ÚuÙÓ¬,xJbF¶ØÎ6æ,ÎHknz.yn8I½µÑùÍ´Èá¹f —ÄØöŸ Š<Å'<ûá¦,žýÉþÎ7©Y·ÜsK0ÁëÌ^FtZ.Ý ÏÓÆN÷àÝŒ»ÿc±[¢~@ =G¸¼`jÕ1Åt‹… –CÚO4G^ÁóóH†Œý‡×"¢¦= ¦„·u|£²“™a†^ªNûq5•àêSíTýå'9äi"Ï>IÆmO2Ëöxq•žLnö¾6¶8fßtQŽ-,ˆ˜Ø ÝíC—µ+ž¼cãÅã‡ÊnõÓž¶¡‚¬ç´M¢œæ•ûKÅ Aá—úÜÝ]eà¾ìÚ4¿j*JL—Ü“„¹ÄDàDB—Šébó¥Pª¡ÈÒ¢Ì~\¿Ü4Û¾r9¢p¿Ì|ÝUc@õN‚¥#ó¶A– ÿ|G¹V©þçÜt-är~óx½¬žuù¡ÿÁn“†!KBTØ ð‚¿GK*Kà2›þ«‘ù•HKX²š¤{¿ÒoÅôZð2£\zJÅGUQÏEv[a{qÆæ}ø2ck.=§ç¼ ‰u°”‡Ûýa‰ÄÎŽŸBά%´ä¸‚Ô:“01¹ nŸò¡'/°Õ4I‰w¦ý& ÞAݶ¶1(÷–9ùé¦ôYh+ú¡‘É ´3ö&JöŒwù¹,çh7€ºt3¬GN5"ùGYg²rW#[0o/®ˆ¶ÇŽ Žd|Œ{’Ò²8õŽ™*eÍwjv™€øKîñ–Ù(OE@«OTÎËò˜ugïf»§¦]ã±ádm×(åY§¡ž7–èÈ{‚X¾üÅAVÚ_1)Þ@^jïä‚ÈÖvp²:¿ÆžlÑÚ­þ îRÓ¼ØÜñèÈò>ËØ.”b 8Í5:NÜV]{X@ýƒŠs4*ø‡<7UFmò åØS3ÎÒztç²§À½Xzódi÷î ¥;F®+ç8Þ|l·‚¼Õž{§ÜÜ]TP+o;ýcƒöSâxo—'j4œ:ç*S„|F£²µ[=ýJ«½¬(hô!:Ê/^ªƒmÞ><VÀ†4ÁÕ3IÜìkQöélÿ†’U{ÝIV{“±h{"ð¼R ÷x¦í1þÇ5J—'f#öZ é!:á~é˜~|šÝ®ã„—²}">Žv!Uh§õ±¨~zÆœªúMkÊîôÞºO—Õw ¢¥–FíTëÖ©ßZ²ûÃ]@{ŸmDÜL²N÷p~Kt–¼JÜ+]ÒÑ»"jÎõ%ö™_zÓLí…9´»v.78ïÕ0æ¸âø¶´_~—s8ë 5ýl ÑÊ01Ìv· üjY©­éæ±ù[žƒ!WnõÖlÞ—¿Ò4aP9ż̌©T}P"}+ÖÀ”^¶ei®ÅñRgš–_¸CÉ=;DpùbIû};6cˆÅ )ðxܰ¥Òàø(Cy»ªÄxáUðÝ, „t@(ªË=qg«Wшõ“„ê• {ò|ȵßQ|Äò‚`¡èX³&øF=Ò×¥´Q÷ygÁBè!ª‰žÞÌùPPÈèÝ}ä}@­H,‹Þç¿õ)áã¹™IGÖ/éà!{<2›J\ìÞ I[ãÍdDó² ïÿáçÿøbØ B¸ÂA{œÿUv®Šendstream endobj 81 0 obj << /Type /Font /Subtype /Type1 /Encoding 220 0 R /FirstChar 12 /LastChar 121 /Widths 221 0 R /BaseFont /TBQSPY+CMBX12 /FontDescriptor 79 0 R >> endobj 79 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /TBQSPY+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fi/acute/comma/hyphen/period/one/two/three/four/five/question/A/C/D/F/I/N/P/R/S/T/U/V/W/a/b/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/v/x/y) /FontFile 80 0 R >> endobj 221 0 obj [625 0 0 0 0 0 0 563 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313 375 313 0 0 563 563 563 563 563 0 0 0 0 0 0 0 0 0 531 0 850 0 813 862 0 707 0 0 419 0 0 0 0 880 0 769 0 839 625 782 865 850 1162 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 0 313 938 625 563 625 0 459 444 438 625 594 0 594 594 ] endobj 220 0 obj << /Type /Encoding /Differences [ 0 /.notdef 12/fi 13/.notdef 19/acute 20/.notdef 44/comma/hyphen/period 47/.notdef 49/one/two/three/four/five 54/.notdef 63/question 64/.notdef 65/A 66/.notdef 67/C/D 69/.notdef 70/F 71/.notdef 73/I 74/.notdef 78/N 79/.notdef 80/P 81/.notdef 82/R/S/T/U/V/W 88/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u/v 119/.notdef 120/x/y 122/.notdef] >> endobj 77 0 obj << /Length1 1873 /Length2 11570 /Length3 532 /Length 12628 /Filter /FlateDecode >> stream xÚíµU\œÏ¶ ;$Hpiw×àîî„@ãÐÐ8îîîîA‚»Kpw‚KÐéÿ>çl2{.¿ïj~Ó}ÓϪz×zVU½ÕTäÊjŒ"¦ Ï@I#++@LA]• ÀÊÄ‚BE%;Y‚ìÄ€|V^^V€ˆ³9€ÀÊÅÇÁÉÇÁ…BÙ»ƒ-Í-œ4b´ÿLâˆØÁ–&Ævc'  -$‡‰± @ db trgˆØØTÿy  t‚]€¦L(¬¬SK'Àg ¹¥ ó?F2vf ÷…MíÿgÈv„Hh ’´ˆ¢)ÈÎÆ` 4CaVAj!&ÿHýgrIgEcÛÒÿk•þqc[K÷ÿž²µwv‚ S Øî?§jÿKNhjélûŸ£2NÆ6–&"væ6@Ë…,%-Ý€¦Ê–N&'°3ð_a é:@Öí_ÌšŠŠZJôÿ½¡ÿT6¶´sRw·ÿwÖfÿ‹Y_²<`K7€  +d"äû?¿ þ£˜„ ÈÔÒr"8¹Æ`°±; äh@ˆàÉ °´3º€naf&;ädM¼f 0Ê?ûÉÎ`† ÛÛþÿ¯€ÙØÖ²ÃÆÖþå0;8ƒ Ëù¯UûŸ0 €ÙÞ ´³šýeýïèLfƒdvü'…£õkb`oãìøà0›€lm_#œf w{  Ýkˆ ò$èÕƒÀìhcìhñtâƒ^&@vÀ3'ÄÞÉõuœâídþ5¢lr¿ ºf–.Í€è:B6ëß 1þomsBÄì,ÿ.ËóO‡6 ×v¸ …ΗáßHÏ"¯I*úJ„b¯É&þJ%þMÜ%_ REê• ­I¿¤/™W‚Ô“%H=…W‚ÔS|%H=¥¤žò+A*¨¾¤‚Ú+A–Mý• Ýj¼¤ºæ+Aªk½¤ºö+Aªëü›x!Yœ!'ìh¿.7äâa~=L¼Ÿ_ ’ÀäßÄÊñ7ý ÿÙ–¿ðŸÃðB2ÿ !Yü…˿ғÕ_q²þ !R6!Äêõ…de…XÙý…+Ð_±²ÿ !V!Ä üB¬ÿBˆ•Ó_±rþ !V.!ÄÊõ!AÌn!ÄÊý/„Xyü…\ÿ¼ú&––N–6¦ÿµ¤ÿç¥)* ródd0²±s@Þ<Èaæôúߦ™8ƒ!·ŠÓ¿þŽ ïÿ°™%ä–Ý€&(¿æ@&üVÉ A¥ÞùeðtТæ1еÓ?Pýb¡mІäèVk´ïËÓ°1váwÉ\‰ÃÚ¾¨ŒJžú:ĤÌ>ïº|ÚMóh&Ò¾HSpß±§¸õ?zÓÚ0suÌ ­4µ:\š SЛyÖw”«L#®¾‡¸LÕ¥çRוÀÅ­-™f£Xó\õmŠCiGðŠëÛ„8¸•qo«`¤&ú¥sP›3Ö}>RNü³¬é¨æ§gìè6Nt†4ê(ƉޣٙLüŠãY;JõGµê÷g#ã0%szÜNë-*Rþaô{ŒO"³ÚRjösñ¥:TiR[ì’Ç…Åô¢ÂäDMÄ6$ÖpvbhfÖë¹·„)wG×Óî`ÃØ>åpFÎV/©i3£—{¬ÒŽG¶ ÇÍ–J‚×þ¼s¼ŒL"ÔÚ0ÞaÌ­Ãa 0ÞöqOõº7 Ã÷H¼Í3À‰®ýÙPÆfÂÀÖW£mL:_õŠ5U3"’›µØýð;ò7ýÝÞ\ÚoÍú¯k܃_\pÎY­þ±¿x£2“QQsŽ¡g{Ža[#üNòhG‹¼PîH –‚9¡¢7÷þR›ä6¸òÈ,ѫڒä-¢k8 :î٢뙮=ú*¹¼Â=ȼv~é€ÚtªŸ¯]þ-_À[wh®Ã 7|­{¹…އ–D¢ Ëè<´y,õ4€Œy”a|=­Ñ¾6¸„§(åÂ×{V=‚5õRË„;íÍæ»˜±e£ÎÔøðí…Xó¾*óÌÓ.\ÊÂQzµô1CmLse«Y4î»ÚC‚qf4Ol$*–}¯´c4Ã*(Ķšh,GF¨Ul}"Çzʉ©yÉ"˜µhàÏYõÓ= ÇªƒhŸë1Ç,Ú.õµ€¨+nuføûtLk²”N¢+ÂQðb„æ]·æF Ú%ãÖË·§ØRþ%k쟛KP+Ú"'Î\Øhä0ó®G­kßÜI²—9Rø¦ZÌ£ý eìãó‰Z2~[Ú„øQìN)üHè–· Ñ4&\T® šÖ‰&× †~KÝnqIgË_Iì\m¬^4&žë‰~qɸáίœíÑK0Õ¼ª¡3{aÿž°çŠ¢€#!n¿»ª÷#Änî‰øy^´ ö‡ßUï/1WëFŸ_dWÞþ´ à7û¹¼D­Zy?ò¾»”ª?†ú}¦QKÁ~u,Ëz"yîñ% ,ˆã˜åk¤|î¼iƒ/[?‰éX`Iè¢u1ô!‰I1ÙðÙæÊnÎôò5ùŠëéI÷FFŽÕÛ²¦/&h¿Ó‚Qh„ïÞT~ž®Ô?¥‚¿óvºW#Ù£ÆtLHíQ:ísiÔ{û§Ý·#ßþ»Uê¼ÛSS¥±\ºÃsOZ׆ÿ½E‚'õ07~ŸºX‚ÀQñ­e¯Í¦…Lÿ‰.ªóßé*••>5k97b„Ú3ݶ‰M ÒꬵÝ1ÄÍoîdniý‘Õ Œ-AÈúËå-†›zv Á,)i%˜ ØÆúõ0 Çû1ÙåG[ôL/{ÈøEŽ=®ÕBEUû.wµ[ðÌãaóÛ²[[²W£LãøGoûyÙ@±D‡ÓÉvéŽ\¨ÏŘ;¤"üõk®Ø…µ4«ÄÞ Jb‘LC…¤c¿Áé§Œ/=SòïË7Eò@«J½•§g ™YG¢ã«Û¶·MÂX "±½Ï—‰5š¤C(ˆ„7@9ñRáзJ$,!*¤Oþ‰J&T·O§Ë«¬äûP6'2M݈ÁJä¡ÙØ=Ç*"CZyòtªbKw¢‹oÑ­o†xPÇs+pJ(åçPèäš5I½¿jœ½ä¶9¨rަõt3æl¦)f£Û!š¸¥Èo•ÖPxxq¢ŒÆÂvɦæµ1Úyg^ ¤á\É20íÀß§¥<{®\‘~([¤Zm¾ì&Rí©†÷²høˆ`¶ŠÂTRxVˆkÎv#wóç"Ò¶oªãÓþÏ}¾K÷· ¿>8ïÖǤ!dª5ïšsÕÀK3À  ΩºEøØŠ-¯’ïpP‡fÝŠB sÍ=o©`®Äa_X WÞ„ÔÇ-Ä\Lªí®â‡~ÿ¥Fàêþ>?çìÑqã§t«æ,4ÔÅ ¹P»e ×,Ægö7*}xœ¹º!A“¦dã¦'¹7ÐyƒPy˜çmOãÛrVSÙ­·Ÿ±<²ßQPé%¡D;é*^3 /<Ðq ™ÒÌŽùÛªì-?³Z`¹<£©>?öF^TÌ-‰ ôhߨãW¥*jQ<ðÑù*{qåðÓÏ’„?],Uhð5ç͔ɕ90þ "þPæø•Ä+pȨ›g²ü¼ ´µ»Iã£ÿ ¢®QÄ©;IÙÙ¬’jVd~Jä°+s Ì“@þ—Î^[¨ª/Øumß=ïhrî>y-5q`]aúúûœ`H$pýŒaß’NÏ8øŠÍLösNUrMú$æÇj„Gî$—ó…íê{·­1“Ùñ/©¹I·qYëÑVæŽÍ4%ï#‹?“Œ e`&‡ÙàæèÁO²Ù_F kâ[?_ä=\>ã-™ú÷[Wq¥K'>.ú„ÀÊ㿹5ÎÛÐq-$ÝÈÓn€,q ¯PÅ r1²ßÝ$íàAnpÅ&Sç ¤Eµšèò¾€V ãø¹Ô@cúvÄ“wÄ¡°Þ‘W°j¸Vµ‘a ósTg4í,/Xó4²k€lS–ä^¿ŠWÐß×ÙÞtì ¶ZKHLIç÷åܵ 7P¿„ŠNEìóHx&Ö÷ÂeV®D P}®”ávÝ£û³J –K™®eB¶q–^@®`âïhGñÇMz4´Ãgðµ7[4¯WoÁ0³êËŽ¸¶{©ôáéeâ±3-7AÿàCºØd÷9RVnBjQ6°æG˜Õd%Z–µ£ÆOŒŽ|vÖaô²I†8&´SÏr'Z@ê¯4É!Öð}æsUkγu8¿7{·WaÝe»kÌ)žðH;,€X¥N:éá0³oà7Jq›ÀJI€Vù×I_ —…AjnŒõclzŸ8}dÝPF4VÜŸ½qéGÍŽ»ÕoQ«ÝüÒuVʺ?xzíý æZ:X\ ;Ñó˜ê³æîΛ)¾1å²ÿl %f&žH³áe¶éübÀ5gUoÚDÅnQXe_|ít˜ˆûYÿ£€eþáãG„ ÅJI¿ñMÒ¨Ül›{rxlJò'©Lž¸FÏtžº=\¸'íSóºI×§ŒQ¢)"F&c­ëºÙùÎϾ}ÿ®=Dò> u'…,ÚU•eo!”e ¡o¢6K“é’9ùÈ-«êSî©a‹ÂÖ/gF3¶z–ð”B¿§·(+(™kŰKVO4S§ÚåšÛâö<:£J<úÔ5ï¨+%%½ôrH(ØÓŽ‹³:f4µS›;lðVk‚ÞiÚp§d»¥ Ÿ£VqâÇÄ{x¿|Ã’Uù®\~ŸÅWS®› X ê‰wgÎA(, ¹y“E®mëN\9”¼Ý:“ɲh› ú\3VYoZ½FÛ­vÔ?çÍy+}8«ú:ø¨3­…û\üÙߢêá`Ê9'Òÿi¾ô9G¤†&c ´(Zíeß.¶j5³ýŒªkûµ—§šŒE”QëÍ#+òÙÛõ!cǧ‡h79(ãëø`peŸÓc3Ý´f£Iv=¢|œ,\œ’ _ge§ªZ³¨« óµá¤½¦ Ý7’©úË¿X ÿ<µ@”|¼ðÄõ{jµ êà! ίŒõÌÒ/7+²ÉÝI„òÔæ¡Á–¿¥£dë÷pd`£ñ½´=´û?{«f;?Ií H±özâØç|èN»K¥˜[²ùãó>¡Èwã²µ$r¬&¸ç{fmJ”Üó»Z‰4õiówbµ›‹£¸Oâd ùÆd{oò?7ëÜ7ñkÎS2þQ•2dˆ¿ÚŸ q·?¶K®A 3¢é¡3hÅ>² <òð˜& ?™ÀݬÅ#`(€IpŽÈ}[HÀ15—"eAÑEò÷©‡ËÓ ÚJT²kZHÕ%Ÿ|Ë’w D»÷)ŽŒ=ZòjÕ Â)Dg„ñ‰¦šOø™’Od(ˆßæê]Vû!@9˜°“#›m‹W­°/±t“¸̺ΔŒ’ïjÑ\œZ}p~­L2»Ï;² :á {äý¬ß|Reì"W¤Q«i0—~'aljË×õ á»OnfEB­7³á^þAÀÏ™sÔÛazNÈ¢‘ÈS aì^´ÉvÓ4ŸS3…õ—ã­âðÖ¼ÂîrÇ'o~¢Ñ±ý¢ªí¢M˜­†þQLþ0âÄèv ž³,ð]¸ˆÒâI«Àæ~—üÍÚ}±FhħiÀø/¥Ý•ªþôœh7–ùv“ýX²¸óü°6AÓúlÞÑûˆw t››mýßC=%…ÀàÞ´[‘A°xLƒèœ•É•C)ºþEÊÙ®ˆí§R,—’µ]"ˆßf‘åž„À$ÒL³^û…bÃÌO§a];B…o˜ì{§ m§»Ì|Lxâh¾çZTH†Çì?Šƒ¾4ßUlŒüÒ3g»KÏ™¹Ðýu•õ¦(+K§”ÃhdNY¤è‹=þ-ìj’()–G?yyô‰•T1è Í9­pŽð¹ÝÙ8íù[[³7ƒî±%“6P3÷‰©V}ˆá3;s mZF –›U‘ÎŽ´Â'¸i UVa'"áYƒç/•yña48¯¬qL¦3*‹MöiEÑ£ÔÝŠÛ¹÷»x40î’A4¥ /Ää÷”`¾P)Ö°Ûêe*ÉŠö­ ¬Êk‰V-ôA©¼ÒYœyÆÊ‰•…Ó /pë8ˆñxb;¢©©,¢–TPœ L$†úÁ·Æ:õ÷o/¬bôÞ¬¡ÔíKhÄÙ/Gü&ÝGÝfÙ’ˆ´ 'ï—…W¨q‡yÉsUÒ2œ³gF¼lüUÄ)º'“ãjˆµŠ‡€0„¨È\Ù0|Âõ†NÑ¥²ÎiÜ¿RÚÉɸeW0åèjÑÚ&ÖEÂëµìB÷vö&±p%&¬òyvÐYúy½kÃ’‚¹ñgˆ°[LО܎V*‚KRfß)|»ï8„QñsÂÞWÇ]ÉûJÊFAa˜RÌóânĵB JÀîÇ|(П¬©²,±ÁYú¶É+“\XjïÝP«Æ8gQù¨³x)} >°œªÚ×FF¸>]¯É€õ¯ (á ~ú:r+r–eaü ÞoÚ¬g­ƒ†_ Ò/CFô‡¦½EõçïfÊL,SbžE)h£«þ 8unÒ«÷ D„ù;;HqŒ•0õ¦ãhTåî 1•ß­@¹På3zš‹Ù´Þ®+¾—yPy™ìʼޏ•+ÌŸÝ`ïÓvwZÛΪ†ì@ÃTXQïW©WbNmÊŒé÷—sJÏ ¦>_,¹¹í:vðèö{Ò¶o^έejçj*Xi4DEËý—%¶Ì Æ9‹caÉ¿Kk9ó%ô{ÆäˆÇ^Ñ–EÙRX§Då©6)=À±!Õ•=A$ñc­§$¬­“ÝŠûѺ…XÂT¢9JËÝ:rîч[¹纴&ɼEózçÔ5ôË:(÷×Çáƒ\ ´A#ÍÍ\…Ž?„‘™l_AEtÕ góŽŽVÉ÷‚-$(A¸ådýã BRÂùnµ§·~þ‹PÐ"“NéD­²É‹–~k˜±å¹çÄdSØ øÕ 4­ìUžØ šzìÚ³gà­Ç“qWàU,ÀD—Ž5=’7gIlêsNÓÑ+Ã\/HiÁ;X¹KʶSþÎf}ŽYÄa³2to>ôûò[¢'M‰|š¾aŽeus)2I9 ÁÝ >×Kz¹y[äDÁiŸÚŸÎEЯŮVòÆÀÛx)Þ q/· 0Ãjên­çe¤Ûàe·n:T‹‚©|z'‡ø:÷áMÂ(ö°ÄÈ–xލKCê]ÝßMºP;Øw6 iÏeÜîKš3·9§‡ož(TÔÒ½qã˜à†ŽýÑŽe±+ŽˆÓGD È±_ÅÍc`UÓO5†¬Cõ5ÏRîç Š–^¿ Ýd‡j}ä´,IÎ`wúEÃÅ`Eâ£é o¦„8zéò¤X ±®Œa~}mÓ_f¦øÃ–L?v]\Öø)uÂÓnuæÞ7‡çÕ\º.uå=/(¿Ü̼ÍeüIyÌ8†Îó¾&™š66ÿ@ˆ€Mîõ|ï€Í’)ÖôéAåà‹c»ëSq‰ #‚ӯ丷²`²|e¡[£“.ƒŠåõÚÅ=RÆs݆ ½3m˜üç\_!%ØÀ' š6@/×£SÜu6ÞS…›pp‚K1›GDzÐ*~¨}[$+F¨wy|j\¶Bj°e÷utTÿz*qø4 VyhPC!ÏGê0Âs™õq5™úoªPt~èT;¢D§:/æ3=RúÜøÄ.B _3 MTe'z[ż´ZwJøYÈÞ)ÜpÜE|s°Z Ð6ìyÑóêùÆ ¥¼0&kk1­[ê17WŽ6+­*Á*ãAVª°Q‘zèÙŸÏM¥Š_ E0\ʃ² ^ýnÝœ÷‚Âç—ƒWCÙ½Í|¥$t¥Œão¶I&=÷?›‚ö?.`3Ä:UO<$«œ#•IŸïÏ,|tÀ(€¡/Å¥0cŒC¹× {8rL¡Ç¼”Óo¤€´Q;ŸßS=†¶Ã¾q-ëÛÖK4Cý$e·5–jý6SäUÐ{»’ÑܾÏ}6ªÎŠØ ¨úà­J3ŤÂã)¡áÛeöh<­ðÍÁŇ®ý]5w0MñnS•}=ÛÁ×ahpÌ'vÚ«I· ± EôªšÇXÙ'½`€ ô {ÒzÖ¨òT\,út+O åþL‚üÇ÷avï™Çp á7Å•`#jÅÂ’¼ïàÎØ‘kÅë¼æÙ(CáÞ|*ƒ›×/–F7þtø9q‚>Ìê:$u™Ûýq܆î/+‹8ƒ®»Ø½wìðùw3Û“ˆJ5–J Z*³× †Òæ°Akƒ íæNãN¯}Òé;;æ2G=]$o;è¿ÇPp".:@6j5ß96zª™•À@ýˆãlž5»8E©°ŸÄÅ×äïÀ2µ2Ÿ6Þ;YMúxÛJŠE(iX§ü#RÛm4$% Ù‰j-fn-l‚œH UùÁj•ïÅ +£DÐÃàHÝ‘t¸^£ÎéxåöÍ'‘‰{eíÒ›¦À|2?žeü16hDûô ©ל©¯c”u‡mPì\m Ztåï~ü¶÷,6ÁÏÈ¢ÛVP9]Õ D`Ô TÇ)F ¸Y£•¸—5w^6!2QˆqIç_e6¾…*[44y¦!qºÜéÐzGð†Iÿ/ôx‰$õàö;ù h>‘Cè©Á÷¨ç»¹Î„6òu·³æyÌöúH»ÏS¦\§pH› ôÅ—·½£<°Lý&_µ]LØk¤jQ3„òOfß-Lg6*¢ÿPš§83D‘8Ööƒ,‚Ö+üÑôSä—æÌñ³tšÅaÚ ¥©£øÐ¥^ZŸ½Ü“˜qÆ•GXÒ—Få[üªt Þáhõ÷©ÆÀ¾ké],ûî¯8LJ ZÄ6Žå~±ÇFS~4lÕ¾“V¥c6ê/ê¹pžkªþ,”|VZÍ#ÍSMg†K‘³ƒ] Ÿ"˜žߎ~Çuê ç3Ðn­J{—Uô/K¤\*º!›<&”’>1EU¾¸ÛŸUàåÑN»geœàª0'=|ÅmY€=ˆšbaaPùÛžvè—÷±òóõV€ñRDµêdjz´q;Ï’‚ÅȽ6}«;›vöîÂ,ß@‰ßÞ; N—$ó®(쪢·%ϧ/SH£W¥6ÌêSÔïÒ«TÑss|wÓwáóÕ=úæ>ò™¸Éðɵª¶¥>Îñ21†rB{àZÞ¢½-°¾÷•.Pr®=eåî¥åD‘᎙ <M ùµ±§-â广;Þ²“+Ÿa¹øSÜénDר#lc¡Ô®µ6Ò˜úQ"ÔÊfûž.×]¯¨÷•`ºb ®”EÌ)CÏ×r!’qaªšb-#½þ@8?ì¶l­Ä‰àóúã¶þóaÁïÓîœÈΓiÏoIÚ«hÌäÐ å¬ã–g­0ì“°X\´¶nÞyý—n`ШnÍ„‘{§èÉÅHr`¶‚l–‚åùËuOëOJÅ*36Ãփܱ´'›˜ZRÞfšHhcK Ñî—–3VàMÞÁ³G,Y ì¿?³Áºš«j©¬ÿÕÅÞÿØY4m’—>871¨ƒžûµŠ$íaÇ2åWî¥â‹·KÒÆÑ½ ìÌWñ$Ê™ÛAÔ»Vûæ¢×8ižIœ”†ïâA0 Ã+V<Ìq¦íŸ?“z¾%ðpÛN5Õ3¢™ò·R¥XI:²¼ý4ö9\Hßá«ÍKd!†ß5pÓMÆ€Iâ¯M—Üh)óöÊ*ƒ2´]ËvU…8Èú^„zÊN‹U¾l³îÃ㡚۞'Œºàϼ¨ Lóxg9•è/:JÓn¸ã-5ié¤-¦ôâô¡HâÛl}è.,TÛÄ ‹fÓ»d%ÍÂ.Y«¹–-ȹTÃj¶/þÐæ'¸ -POÅ?Å/E%ai*èn­çÓ=iIÐ>•lþºÃÎê’g?ÔÓ}•¸ý#ÈË1MB»¡áÔÂ!6Vœ”S).ÚÕbØÏù] ™†ÃåÍ;#Áa ³(¢ @â²À˜FÍ£sZƒme,â„Îù{+ÌiZ“µ èwwKIÊž–ˆ„¶£oZÒNö\¡ðx59.¶lj·*´øô¨ßʵ¾æ¨ªùj¡ÂT„Ó~ýi?k€*ž» BÑê³)ªU?„Â3K$6¡µ¢µªò$Vyé:””H8‡¿fé“<ï}‡Ç>ܼ+{B9ž‘Ø®!'©ÈO,Ú2VŠ­ˆ~…ŒÞì“@‚i+§ISg‰œ¸_¼Ú±u:!dï¤SטL4ƒ;úT-œž8Üv´¸ë=& ð‹ï Qøß´¡áÝS-]XÁˆF¯yˆ--äߦ `ÙÛ#ÍJWÔžˆg!ù€W÷;󡙎€…ÑdŠn¿qˆ±gÔ»y,id›Ñ­Ng¹VÆ­U¥híÅc_TùЯ®\:žRJ´Œ÷;™BÕ j¸Ký‚Ÿd¸—Ð,ß»”ß—n+m) ™]ÆÌ‰æâBÌ–óÜdHö‘¬ÞhL\vô´•"p åyÏ‹tعý!(m•¸F0p… %YÞûÞeâ“$íï†øO‚`-KHc¨Úr«û–¾\ãB…Þ„7Ug§¨ò‘&*;‘¢²>„«æ+'VI_Pš€T6±T¦ W íð¶¶%âkÜfœºçšÀä°‚‚_·;M_°º,²Ÿk¿*#3¬sø†w}æw:‰<ðA •ˆºkD)‘/ÚKñ4H·_™_âÓrkÊnÏOÞhÙ:ަ¹'ˆ#-H“Ý^ålƒhy5“6¸ª(†™ÊëÏÞ\Äéý5¯OµšâSçajÕlHÑá9ZÓ÷FÝÄA2Ú®1®«Å¦¸Èüvñ;H+j]ºÁ‰7-ÇcùPíÀûO ­)µSüS õÍ›-Âds î²ž^Ô×â\ǸG¾¢Úúõ_ößrwºôO„=¯%³Ql>aÇE3Ö‡${ròô.G{z( ]ù‘mîw¥Sçxb—ò|‹Ô?~…„”{L–JÖWýêÎ>/m:,C¯b+ö1fW8 ¾’²£B6—hà¯ÅÞ2+»à¹^¥üú¾¸A¾=ɳ ßIµ~4 ?Má'Î'KãtÎ0¦á̸»…c>¹õø­mmfÑø÷ø£^´jý…×l` ]n¨±Ë´÷'{ß!x77@7Ñ<Ù'jŒÐ÷ƒ!‰Ružäe@ÿa\ÅŽ/â'b}':s¡<s€EI@ãÖYæDNÀ=>ÞâØš×LåË*l].¬±-oí<þTÆ#ãè¦zõ;§;à²ø-QöˆL”¥.7¥|=†#Áõ. ÿ*‡ô¨ QO{aa¿^]a#R¶ao&3¯%!óqŠÈ)WZõÉ~ ÎJfeÜ~,ÁG·V_2ô¾bè¼5¶wô×]ma¸´ÚL,¶Öù°A—eñÊС5š9Œ'T!ºt¯‡nCúÑ‹s *QÈuà<°Ïy˜\ã~u"ÎWÁð…É5±Ü{ˆ 5+Îw.ÉH³&2 ñÏå#ëyÚ¬œKøÛ¥y«ÇÅSG™ÙF/vL Ÿô£5[g¯8mýÍw C¤)U…I¯‹ãškV+4k*Bв40LlëñòW™‘ÞL 'ùœ’þàÍ© 8]§LPÓŠT?Ù°æ*²§=Û-2‚1Ii™Lâ%"m1¸÷ë2gæ?*V^>¿µ¿‡°ŸÒòkÜÞšÙ\O`£U ¨NB3@/<”ýä ªh^“Ÿ xpþABõ«OŽäœ-˜Ì ¼J¢.D¶¸øŠËRgtÉ¿]ÿΆ]…ïhÂn}¥îˆxõNW]D“fTbcØfôö®ú[%¥kQ™_p†@ÖËáWÁg•KQ“–ç™P›ÎvAkUûSr&ë…’)àÏn ‡¬üæ`d»^ÀÂï^¾cJ…jÒðo"Ïc#Ĺ—±¶:~áèicá™îÔˆÐI¯@ðÛ¼ ßuŠt9->­ã8Çfžç¥‘!·ä ¹ïõ—½HJ Ô)ÈÌòm_.ÎÖ6à ­]´ }=v1ÍÉå¨êÉÆÔ’¬c™(9‡§O‡×™ÛµvemèGq|aThÕóï„Rá7›Xz ŒuÝÔá?õã9Þ$Vël4©õL ·ìÐ&‡ý¦“hH ¯Ðù•G Ln­Þ,u^›•˜ì:{âÍRm M-kñCº^çÏ—wE'›^¼ MpsŒi4#†‚Ô†°Ïå*ìüü¾Öƒ’8ôsjY‰=ur¡”5À\KúzgûP; ôä¼…ôÅ’åM˜÷å /QÞÏ/Jƒ‰GqÝ$ß# Y!"Ò zGÖú} áz³¿VAªf|çâŽÌO¯†ÎåÀ¼È‹=~l›r&lÁDZÇv¯©ãª³NÀwå\Z¢7|ûPŒ[o³‡¶ühöyïÙ{!<Ò†R€ÃJömK4-‰õõ&‡^Í–×` aŠ€å{ö !¾²ÝCñ—»®’l鸬“Ëïaž £Z+0€ùCh>~ª¾ý¸ðoq%±YÅ­øc5ØaIóë‡7fZ._ŠMfGbü¼žU=Qº‹nPVù^§WD¬ˆäcŒéº›è¨g¬Ì’n¿˜W§[-¯Ë„¤û¡“Ú®:‹v–çÝÛ½iÝkÇ%_T!àLÿ=-çYèLÐi?éC9vOíûFœ“¹•X§Ú û¨;eœXôÄ#ú½|ÿq‡,¤|žÇÙ3ùüCä]U¼p2X¢*Ì%Y¶8¤{oC• žïj\íoô’…m-:N·ý&÷Ý$”LÛ.EÐx\ÍÉòŒˆab9h1¸ªPämçëàF ƒ;viï*`‰Õ0³JícyP±‚ãetLßÈ}¢%F·–‚£±ˆˆ”ŸåXbSÄ<ýC~‹r<ô½ÏŽŠMP6kcåš1+µ:Ì,™¡è‹ÚqÂãÍ%ë-]†üÐ*†Íl°4ψA1~M;DìÔ ‹uìþµÖq££íúík f%-I˜ÄÆo…8é(äñ¢“™¶ÖúŽý«ñ…¥£T;ò"2x¼vAnËÏ/Æj§ôRç²ÛNc¬Å6|úÉfšbX2=²ÙrCÔŸ´VƒoÝi/´Z­ëuïÉüŒóXØQVéZj|[“6Ö­wâ {€…¢AØx -­C²¦ÓCž dQ0]™]oßæ\€‘¦^0±g3«RKðÑ¢14:ñ5}´1Ħÿ¬;µ®ÅKod—?¢Sq<¿e=#ÏsÀÇ=Nݼ÷›†ÙÅ”õ®\N;æ}”Iv›ô³r¹3j_T­r¹·œ®¬¢KEé2ö)^ f¦a‹ á%`è]âË‚ÃàØ\¥^%ÊUT›Èïáõ|»Øe2Åô™l‹é(Å÷?6˜kÝT,¸ô )ÈÄ!QÞ©î‚GöC¼s~Â2«}Šo<Ÿ`«û›½©’®ýá„DåæÅÔðp|Fubôà~3;<•/ÝMÇaožmä¹%ºÚ˜ìKjEj³ßȦmŤo\Ö#ÖÂ*Ñhá3£Û§ÿüHÓì··³h6m}gÅ|-"váY@±u6”"{U®Ãòÿñƒòÿü_‘ÀÄh vÙƒ­QþXà2éendstream endobj 78 0 obj << /Type /Font /Subtype /Type1 /Encoding 222 0 R /FirstChar 33 /LastChar 126 /Widths 223 0 R /BaseFont /EVNNWO+CMTT12 /FontDescriptor 76 0 R >> endobj 76 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /EVNNWO+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/exclam/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/eight/nine/colon/equal/A/B/C/D/E/F/G/H/I/L/M/N/O/P/R/S/T/U/V/W/X/Y/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/asciitilde) /FontFile 77 0 R >> endobj 223 0 obj [515 0 0 0 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 515 515 515 0 0 515 0 0 0 515 515 515 515 515 515 515 515 515 0 0 515 515 515 515 515 0 515 515 515 515 515 515 515 515 0 0 0 0 0 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 0 0 515 ] endobj 222 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam 34/.notdef 38/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six 55/.notdef 56/eight/nine/colon 59/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 76/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W/X/Y 90/.notdef 95/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef 126/asciitilde 127/.notdef] >> endobj 74 0 obj << /Length1 1036 /Length2 3707 /Length3 532 /Length 4394 /Filter /FlateDecode >> stream xÚíTy<”mÛ¶ÓÈZ–²Ý–±ÆÐ ÅY‡ˆHÊdØaŒ-ûN¢ÔسÙC¶$²—=»Èš!{eû¦ž÷yÞ¾Þ?¿ï¯ï÷Ý÷?÷qœçy\Çu^çuƒM!ê(ü-´6G„@e *€¦¡ @eä@`°&$bð¸‹H"Z€*+Cuw{@^€žQ)©È+€À€&ÞÅ›€±w âš?“à€º3š€±EâC$ÑíLÖ°EbS¼-Mô–Ô±XÀäg…`‚vC<Ð(  0¶DàÚƒÉþ4¤‹³Ãð¿h”»Ëß!4Ál '›”ÈQxÖ@¡í@²íÐw•œ|nñ£0åó<í¼€ç>ÛW¾—»µ×‚\ï' Î{ØÌ§Ü®á±ØH1ôþä"´²ÌR[5¸õE‘Ò¨²3Ÿd™Ýšöµm9ËXüâ•ú‚V©¡gàÚ)X³ˆ°ç¢0AÖ$×üH…ˆ OVÒš‰ÞdžRãëøWîì?ž0d><¼I#3 ÄQºB;D–Í#_†‹Ò“Ζ(·*öưïËǪˆÇwŒ9I³—Üoø|£¬+eNMepŸ_é =}¡¤m[Üh圭ZØKÄô¾#.!aÈÌ]‡‡Âçû¹l“UU×QÕ‚ò÷“’÷ZC™ŸY}úðPè3ßÑ 0Ó²Ž=;£}ï{EÓuùÍž\ý`¯¬Ò´ÜÅgF/K„W¶ŸLû)+Y›p\j.(Œ­¦ÕuǽŒÝÒ*ÑÓõÍ)ê:?¤…•ö?Cr´ZGÈÄ'Åï¶éž ˜×kë ‡‡‰=ÖÁ,Í<-ÞšQª&úóAØütaRЭ¤î&§ÍeôÔÃ…Å^ŸÐˆ]q¼ ;Ú4ž]ZlXœªäx±Š´hz”Ò¬‹­Á@ú¨Na|dÁÍñ£-6LÓZ­HAÜWk%.‚fóɈۘ¬&™³_§e>=æLõ5Øé I«¹£†d‘fò•Îø‘$tdF}m¬È²Ú?À\X¶I}Œÿ[<•½VUíœãTÎ…üa$qüøÓÛ/®ù>s úÊóAìñH®·`HÕÞÉB”©¾~·y´ˆó X’”R÷‚hôkbUic`ÜLÙ7?ùa¼á;á¾u&IÏ3ù6»’ n*lTJòÝ{·"s=5wƒ ïå74ïRœTötÝ?Hÿä{è÷àEÄ—È eÆÆ¢|-Q>~âÀW4G7ñ²¢àŽrÀRy±"á}ž(InŽþãU $WؾX0M€µòH*g8äa† |7!HœÛ[—7}Tmx'…ïU«Œ( ®ãâåÙÛ/ç¤+&…¹y¨ ,v|Œ9x ñ¤ö–€»Ìa›K=÷†ª3(ûUOTÙ•´Z#ÃkÜ™*+ßså?úÀ?mï3ÖK…U¾Ï]=v{’ºöì<-'³?˜#§â½šçïÝšCâC3ôÛиӤ~D:>\(^¼ü)ïw•š †þ™[•ÝüuýÏHª±Nµ‚§g©äü?J´Ü“úLéxÔ¥| Â=°Em¬¼cø /‡Ú,èt>JØÌƒ«G¯•ufvNø&ò×Xve©O¼ª‚ˆþˆ\Š„PJŸœ¥]®:xw¬P?£q¹ð’o­4ŽFµ.²£×WürªìõÄw©wî„—ÍS¶Î%i]%óé:î(Ü5êº;é¢È2ÙhDºÍÛ¯o{Añì,ìÑwh_$µn9y/Ð-Oxß­ÕÕ†Ûʵ#I²¤˜.î»ÚÌtjቑyȾ‡ËN`o;¹@<]R«®ÀÍQ!˜s×p÷ã2MÕDBg\^’EÄM[WÞ¦ÌI÷­pï¬ã[ƒk·hVé†2Þ­raO‰ñ]0¼ªÒ÷z¤ª_´wpI>㪆ÚÛJ•†ŒÜÉöóMfØíY3Èj碃ÀYÃŒ[§Q Æ!ý®vPFiׇu—¸nfž¤f®iR[²ml.o?r5T%M#yÃDàûW{/+èù¾«–Ð;îÆd1Ñß}"𮔯=zpvÆ®–‡Û~Åñ9/¡©ø¸ J¡ ›e¼Q ¾CEըߛlJ°.“•ò´\èÂ^±c’¬»ho.¶(DmãÃõ0D5Âm$Ð¥x¬¤À(=¯œtå9 ÞºãVÙ’´ƒ‰!ë‚.Õ­ÍÞ”Íf7ª.x&q¨V}~ÅÌ‚Í×?·ÃÚ;.»Aù6–øH!ŒÝé·"< ÂuŽ˜Ú\t,4ðj2‰½鹎Åοjü~4íÊå÷bHºŠA^ÞÒ?èì¸ /‘Ñ;—ɦíyêEã ¸üv¨Å÷aÕþÉþsgž¬ÎÏ,lb²jv.û3À’öoŠÏ¹di,Ñ0íU_ºg6ÁR`‘"%×cAóê]RãÝÌ9uÁKªÖz‡:ˆᜟ׎OµwÅèϯÅx‰?È×êw,ß{œÍnñå=ŸØóx¹/8ÅÝ ÙÖùÁÛÖ %3zJ-ׂ‹˜Å©aa™(¦…ˆº<Š¢íC(Úšõä*K'ÏÊÕ¨òÏpѺÑ*Dñ+ Jù„IMöƒ÷z"üÙ.m­èÇ4á…#büQŒµ6¬@_ËÅ8s¦5“Ã~´€öÅHre«ù†9 â8•e½ôG(vø‘_DgSt]e^n2†I'W£ÆþìïóˆõÀ˜%>¦›×sRÞØÓ§u&tŽž^¬œâÛ¬¶‚8²Fá·“XYŒ%u‰'tBÝDKªn:åè ÚyÝFidz[½#¡ÂÍü¬Õ®¹ôðXÎ+S ªmüCïüd•‰z:É<ò©þ$®lVþ°MuîônßjÌäí„^gz½¥N†÷Ûx9.\ä×gÅITþ³q×nÖ«rKZg˜«A/¯˜¸¯ôÅ[¼@=^¯´OqJ_#àl‹aâ¿]Ÿºõ¦ú#¡ˆ§ßÅ„íõÃíÅs…/l/#ÍJ°¯ü¯„î¾Ù?"5WEÈTŸÍß;Σ٦HÃRoÐk l÷=^„ËewÏTúeI †Å.K•ªeµR£{À-\i5§¼öŸœŒ?Âwfövœr蜴8UèUWF‰„Ó¾«Ï5Pf´’¦Nkw¯¸ÄðÖõ’= ȇ’HèiQÞüšO¾üÜUFÖÔ‚eïÖ‰ýæj?fiø++Ýl¢zZ#Ê!‰«8YIQ—ø’E(ØèϾ|Ýc2Å«Ô4óe¯zN©ïÜ âß;ÅÜQXÕ5«•^4è° Ž/L0\¸ë´53H§;ò¡·;>yaã]p Û‹`‰uN£éò¡cŽ×V:?Þ_(¸X›a^"y1ë« ~gt.óÊ< –s*-§œdÞÝ»6;ܧ>_¯yS"Ýþ54ÒúE}\÷qËÏÂç׎:Ú—§jÐËAr»ÖeITl:Eu‹N ©®‘÷dXµðÁ,sZOoxœŸ=1ì3vδ bBÍ6‹©@l +üg£øçØ^ 5Å컊 %VŠÑ‘5:ç‹k™§ÁtæšOT‹Ø“U3ä}{ŠH1_nìoŒ¬X»ªú"å†{^žM=ì.5N7J+»O½µ{fMÖß5Û„±uÅœËÕvŠ«M¼§Ô¬o×Ú®û°ç¡è­7&êÀÑNÊ|³¬YÂU²@¹Žž³'yO„L£6”Û³ÚX¤?B•òÛL/Ó=‡À:^º(h¼¦ûF30=êžþ<®J/$su¤¥T4æ³—Ý& šÑàHHóãYKúbá}UO#v²wªéF‹AO½;úDtn÷í²×?¼qôp/NJ3=ÃüÅù ÿ\wÚ“Ð÷oFÏLÑe^é>|îZœÒéPœÎg´'ÿƒïͰ*L{uUú~¥9Ûõº¡ö™\¸ògß–š'|§Ý–p t‘´(‘{A»½}º¶U4wa‹Åøè7mí«/¹"W<”hZüî×Ks1 NK\¦­3¿öÈ+Œ§¨µ¼M ’ñ ô±hg ¼í-»¯{°=‡H´¨y ÕsŸ­ü0¾ñ³•l`ꢱt… ×è÷¡(ÇŠt~¶·Ñª’/·Üi iâs˜VÞb8û@j„½î6?Ÿ³È˜~œ 6‘‰½#!³ú0ÜÙ5.6f娀‡Sį ŸÌ¼ÑÖõ|«cüF/»ÊtM¢1––e<9h +§óEôÔ¬³ ~˜|ˆÍà×C-uÜÙ¥“õAtX(Z›C¾,õˆ¼)íÏ­QOw¼1\X«u&è#wê™X¯(ÀÐT²ž6 ÞîÅd †6‡"LÒàö£ƒª\Õ qÁÝÙ&ëúz¡>)éì––”Åóތ떙Òs‹ß’/^!%„ûÜçT¥ï—÷I‡©‹œÌÖ@PðŠ9E¸*Nh|ñ”XEubWˆ™ôOA_\$3âQ8ˆò®îu iÔ©1»Ñ/×Ô'8릘‰‡«UÉŒ|õ.2n™œyM¬FÙ‹"Â=y|ælöކu­²y9ôfXûô'@ù˜Þ\RWÅagÏ}¦—’û> ÿø?!`‹E# D¼3’àú/üÈà©endstream endobj 75 0 obj << /Type /Font /Subtype /Type1 /Encoding 224 0 R /FirstChar 39 /LastChar 118 /Widths 225 0 R /BaseFont /HCUUXM+CMR17 /FontDescriptor 73 0 R >> endobj 73 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /HCUUXM+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/quoteright/parenleft/parenright/period/zero/two/five/G/U/d/e/f/i/n/o/r/s/u/v) /FontFile 74 0 R >> endobj 225 0 obj [250 354 354 0 0 0 0 250 0 459 0 459 0 0 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 0 0 0 0 0 0 0 0 0 0 0 0 511 406 276 0 0 250 0 0 0 0 511 459 0 0 354 359 0 511 485 ] endobj 224 0 obj << /Type /Encoding /Differences [ 0 /.notdef 39/quoteright/parenleft/parenright 42/.notdef 46/period 47/.notdef 48/zero 49/.notdef 50/two 51/.notdef 53/five 54/.notdef 71/G 72/.notdef 85/U 86/.notdef 100/d/e/f 103/.notdef 105/i 106/.notdef 110/n/o 112/.notdef 114/r/s 116/.notdef 117/u/v 119/.notdef] >> endobj 104 0 obj << /Type /Pages /Count 6 /Parent 226 0 R /Kids [66 0 R 121 0 R 128 0 R 132 0 R 145 0 R 149 0 R] >> endobj 161 0 obj << /Type /Pages /Count 6 /Parent 226 0 R /Kids [153 0 R 163 0 R 170 0 R 174 0 R 179 0 R 184 0 R] >> endobj 191 0 obj << /Type /Pages /Count 4 /Parent 226 0 R /Kids [188 0 R 193 0 R 197 0 R 201 0 R] >> endobj 226 0 obj << /Type /Pages /Count 16 /Kids [104 0 R 161 0 R 191 0 R] >> endobj 227 0 obj << /Type /Outlines /First 7 0 R /Last 63 0 R /Count 5 >> endobj 63 0 obj << /Title 64 0 R /A 61 0 R /Parent 227 0 R /Prev 27 0 R >> endobj 59 0 obj << /Title 60 0 R /A 57 0 R /Parent 43 0 R /Prev 55 0 R >> endobj 55 0 obj << /Title 56 0 R /A 53 0 R /Parent 43 0 R /Prev 51 0 R /Next 59 0 R >> endobj 51 0 obj << /Title 52 0 R /A 49 0 R /Parent 43 0 R /Prev 47 0 R /Next 55 0 R >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 43 0 R /Next 51 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 27 0 R /Prev 39 0 R /First 47 0 R /Last 59 0 R /Count -4 >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 27 0 R /Prev 35 0 R /Next 43 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 27 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 227 0 R /Prev 15 0 R /Next 63 0 R /First 31 0 R /Last 43 0 R /Count -4 >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 15 0 R /Prev 19 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 227 0 R /Prev 11 0 R /Next 27 0 R /First 19 0 R /Last 23 0 R /Count -2 >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 227 0 R /Prev 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 227 0 R /Next 11 0 R >> endobj 228 0 obj << /Names [(Doc-Start) 72 0 R (Item.1) 159 0 R (Item.2) 160 0 R (page.1) 71 0 R (page.10) 176 0 R (page.11) 181 0 R (page.12) 186 0 R (page.13) 190 0 R (page.14) 195 0 R (page.15) 199 0 R (page.16) 203 0 R (page.2) 123 0 R (page.3) 130 0 R (page.4) 134 0 R (page.5) 147 0 R (page.6) 151 0 R (page.7) 155 0 R (page.8) 165 0 R (page.9) 172 0 R (section*.1) 82 0 R (section*.2) 177 0 R (section*.3) 182 0 R (section.1) 6 0 R (section.2) 10 0 R (section.3) 14 0 R (section.4) 26 0 R (section.5) 62 0 R (subsection.3.1) 18 0 R (subsection.3.2) 22 0 R (subsection.4.1) 30 0 R (subsection.4.2) 34 0 R (subsection.4.3) 38 0 R (subsection.4.4) 42 0 R (subsubsection.4.4.1) 46 0 R (subsubsection.4.4.2) 50 0 R (subsubsection.4.4.3) 54 0 R (subsubsection.4.4.4) 58 0 R] /Limits [(Doc-Start) (subsubsection.4.4.4)] >> endobj 229 0 obj << /Kids [228 0 R] >> endobj 230 0 obj << /Dests 229 0 R >> endobj 231 0 obj << /Type /Catalog /Pages 226 0 R /Outlines 227 0 R /Names 230 0 R /PageMode /UseOutlines /OpenAction 65 0 R >> endobj 232 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfeTeX-1.21a)/Keywords() /CreationDate (D:20121121155153+01'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 233 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000062599 00000 n 0000184250 00000 n 0000000054 00000 n 0000000084 00000 n 0000066100 00000 n 0000184164 00000 n 0000000129 00000 n 0000000159 00000 n 0000069666 00000 n 0000184039 00000 n 0000000205 00000 n 0000000234 00000 n 0000072881 00000 n 0000183965 00000 n 0000000285 00000 n 0000000314 00000 n 0000072938 00000 n 0000183891 00000 n 0000000365 00000 n 0000000443 00000 n 0000074906 00000 n 0000183766 00000 n 0000000489 00000 n 0000000516 00000 n 0000077012 00000 n 0000183692 00000 n 0000000567 00000 n 0000000622 00000 n 0000080211 00000 n 0000183605 00000 n 0000000673 00000 n 0000000708 00000 n 0000086208 00000 n 0000183518 00000 n 0000000759 00000 n 0000000789 00000 n 0000092076 00000 n 0000183407 00000 n 0000000840 00000 n 0000000873 00000 n 0000092133 00000 n 0000183333 00000 n 0000000929 00000 n 0000000977 00000 n 0000096079 00000 n 0000183246 00000 n 0000001033 00000 n 0000001066 00000 n 0000101795 00000 n 0000183159 00000 n 0000001122 00000 n 0000001173 00000 n 0000101852 00000 n 0000183085 00000 n 0000001229 00000 n 0000001266 00000 n 0000105022 00000 n 0000183010 00000 n 0000001312 00000 n 0000001343 00000 n 0000003180 00000 n 0000003417 00000 n 0000049325 00000 n 0000062653 00000 n 0000001393 00000 n 0000062432 00000 n 0000062487 00000 n 0000181716 00000 n 0000177043 00000 n 0000181557 00000 n 0000175764 00000 n 0000162855 00000 n 0000175604 00000 n 0000161772 00000 n 0000153157 00000 n 0000161612 00000 n 0000062543 00000 n 0000060051 00000 n 0000060204 00000 n 0000060358 00000 n 0000060512 00000 n 0000151725 00000 n 0000136039 00000 n 0000151566 00000 n 0000060671 00000 n 0000060830 00000 n 0000060984 00000 n 0000061143 00000 n 0000061301 00000 n 0000061460 00000 n 0000061619 00000 n 0000061784 00000 n 0000061948 00000 n 0000062113 00000 n 0000062277 00000 n 0000135522 00000 n 0000131796 00000 n 0000135359 00000 n 0000182524 00000 n 0000003897 00000 n 0000004042 00000 n 0000048414 00000 n 0000048434 00000 n 0000048457 00000 n 0000048494 00000 n 0000049304 00000 n 0000049777 00000 n 0000049980 00000 n 0000050090 00000 n 0000059114 00000 n 0000059134 00000 n 0000059184 00000 n 0000059206 00000 n 0000060030 00000 n 0000066157 00000 n 0000065921 00000 n 0000062811 00000 n 0000066043 00000 n 0000131284 00000 n 0000129174 00000 n 0000131124 00000 n 0000069723 00000 n 0000069487 00000 n 0000066278 00000 n 0000069609 00000 n 0000072995 00000 n 0000072702 00000 n 0000069818 00000 n 0000072824 00000 n 0000128391 00000 n 0000122630 00000 n 0000128229 00000 n 0000122077 00000 n 0000117856 00000 n 0000121916 00000 n 0000117480 00000 n 0000114703 00000 n 0000117321 00000 n 0000074963 00000 n 0000074727 00000 n 0000073142 00000 n 0000074849 00000 n 0000077069 00000 n 0000076833 00000 n 0000075058 00000 n 0000076955 00000 n 0000080384 00000 n 0000080032 00000 n 0000077164 00000 n 0000080154 00000 n 0000114398 00000 n 0000113008 00000 n 0000114240 00000 n 0000080268 00000 n 0000080326 00000 n 0000182640 00000 n 0000083172 00000 n 0000082993 00000 n 0000080531 00000 n 0000083115 00000 n 0000112357 00000 n 0000108363 00000 n 0000112195 00000 n 0000086265 00000 n 0000086029 00000 n 0000083294 00000 n 0000086151 00000 n 0000088914 00000 n 0000088677 00000 n 0000086360 00000 n 0000088799 00000 n 0000088856 00000 n 0000092190 00000 n 0000091839 00000 n 0000089022 00000 n 0000091961 00000 n 0000092018 00000 n 0000096136 00000 n 0000095900 00000 n 0000092298 00000 n 0000096022 00000 n 0000098371 00000 n 0000098192 00000 n 0000096283 00000 n 0000098314 00000 n 0000182757 00000 n 0000101909 00000 n 0000101616 00000 n 0000098493 00000 n 0000101738 00000 n 0000105079 00000 n 0000104843 00000 n 0000102056 00000 n 0000104965 00000 n 0000108215 00000 n 0000108036 00000 n 0000105226 00000 n 0000108158 00000 n 0000112774 00000 n 0000112594 00000 n 0000114629 00000 n 0000114605 00000 n 0000117747 00000 n 0000117703 00000 n 0000122431 00000 n 0000122301 00000 n 0000128890 00000 n 0000128648 00000 n 0000131615 00000 n 0000131533 00000 n 0000135877 00000 n 0000135737 00000 n 0000152638 00000 n 0000152229 00000 n 0000162428 00000 n 0000162097 00000 n 0000176571 00000 n 0000176219 00000 n 0000182203 00000 n 0000181985 00000 n 0000182858 00000 n 0000182936 00000 n 0000184322 00000 n 0000185145 00000 n 0000185184 00000 n 0000185222 00000 n 0000185351 00000 n trailer << /Size 233 /Root 231 0 R /Info 232 0 R /ID [<553C7411C5A9FDB81E36D480CFF83DEF> <553C7411C5A9FDB81E36D480CFF83DEF>] >> startxref 185614 %%EOF espresso-5.0.2/dev-tools/0000755000700200004540000000000012053440273014274 5ustar marsamoscmespresso-5.0.2/dev-tools/guihelp.xsl0000644000700200004540000001714612053145634016475 0ustar marsamoscm # FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST help _flags {

Description of card's flags

}
help {
  •   Variable:

  •   Variables: (i), i=,

  •   Type:

}
help {
  •   Variables:

  •   Type:

} grouphelp { } {
  •   Variables:

  •   Type:

}
grouphelp { } {
  •   Variables: ,

  •   Variables: (i), i=,

  •   Type:

}
  •   Default:

  •   Status:

  •   See:

  •   Description:
  • help { }
    •   Variables: ,

    •   Type:

    •   Variable:

    •   Type:

    espresso-5.0.2/dev-tools/calltree.pl0000755000700200004540000000543212053145634016436 0ustar marsamoscm#!/usr/bin/perl -w use strict; { my $maxdepth = 2; # default if ($#ARGV > 0 && $ARGV[0] eq "-d") { $maxdepth = $ARGV[1]; if ($maxdepth !~ /^\d+$/) { print STDERR "error: non-numeric maxdepth\n"; print STDERR "usage: $0 [-d maxdepth] [targets]\n"; exit 1; } shift @ARGV; shift @ARGV; } # $basedir is directory where this script is my $basedir = $0; $basedir =~ s/(.*)\/.*/$1/; my @sources = split(/ /, `echo $basedir/*/*.f90`); # grab program, function and subroutine declarations my (%place, %fname, %pname); foreach my $file (@sources) { open(IN, "$file"); while () { $_ = "\L$_"; # cast everything to lowercase if (/^[^!'""']*\bfunction\s+(\w+)/o && ! /^\s*end\s+function\b/o) { $fname{$1} = 1; push_place(\%place, $1, $file); } elsif (/^\s*program\s+(\w+)/o) { $pname{$1} = 1; push_place(\%place, $1, $file); } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { push_place(\%place, $1, $file); } } close(IN); } my @names = sort keys %place; my @functions = sort keys %fname; # if no arguments are specified, stat all programs my @targets = @ARGV; if ($#targets < 0) { @targets = sort keys %pname; } my %cache; foreach my $name (@targets) { stat_name($name, \%place, \@functions, \%cache, 0, "", $maxdepth); } } sub push_place { my ($place, $name, $file) = @_; if (defined $$place{$name}) { $$place{$name} = "$$place{$name} $file"; } else { $$place{$name} = "$file"; } } sub stat_name { my ($name, $place, $functions, $cache, $depth, $indent, $maxdepth) = @_; print "$indent$name\n"; if ($depth >= $maxdepth || ! defined $$place{$name}) { return; } if (! defined $$cache{$name}) { my %cname; my @files = split(/ /, $$place{$name}); foreach my $file (@files) { my $current = ""; open(IN, $file); while () { $_ = "\L$_"; if (/^\s*program\s+(\w+)/o) { $current = "$1"; } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { $current = "$1"; } elsif (/^[^!'""']*\bfunction\s+(\w+)/o) { $current = "$1"; } # here we are inside the relevant program/subroutine/function elsif ($current eq $name) { # subroutine calls if (/^\s*call\s+(\w+)/o) { $cname{$1} = 1; } # function calls foreach my $fun (@$functions) { if (/^[^!'""']*\b$fun\b/) { $cname{$fun} = 1; } } } } close(IN); } my @calls = sort keys %cname; $$cache{$name} = \@calls; } foreach my $call (@{$$cache{$name}}) { if ($call ne $name) { stat_name($call, $place, $functions, $cache, $depth+1, " $indent", $maxdepth); } } } espresso-5.0.2/dev-tools/helpdoc0000755000700200004540000000077212053145634015651 0ustar marsamoscm#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" set basedir [file normalize [file dirname [info script]]] set sourcedir [file join $basedir helpdoc.d] source [file join $sourcedir helpdoc.tcl] # # MAIN # if { $argc < 1 } { puts stderr "\nUsage: $argv0 file1.def ?file2.def? ...\n" exit 1 } # custom ROBODOC program #set ::helpdoc::robodoc /path/to/robodoc # custom XSLTPROC program #set ::helpdoc::xsltproc /path/to/xsltproc # MAKE-IT-ALL ::helpdoc::process $argv espresso-5.0.2/dev-tools/update_gui_help0000755000700200004540000000263012053145634017364 0ustar marsamoscm#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" # # Usage: update_gui_help module # ( module = pw, ph, pp, projwfc, atomic, or d3 ) # # Requirements: execute the check_gui first !!! # # Purpose: updates the PWgui help file, i.e., moves the # module-help.tcl file that has been created by prior # execution of check_gui to $topdir/GUI/PWgui/modules/$module/ # proc Usage {} { global argv0 puts stderr [subst { Usage: $argv0 module Where module is one of: \tpw \tph \tpp \tprojwfc \tatomic \td3 }] exit 1 } if { $argc != 1 } { Usage } set module [lindex $argv 0] set basedir [file normalize [file dirname [info script]]] set topdir [file normalize [file join $basedir ..]] # PWgui's modules dir set pwguidir [file join $topdir GUI PWgui] set moduledir [file join $pwguidir modules] if { ! [file exists $module-help.tcl] } { puts stderr "ERROR: run the \"check_gui $module\" first ..." exit 1 } puts "* moving $module-help.tcl --> [file join $moduledir $module $module-help.tcl]" file rename -force $module-help.tcl [file join $moduledir $module $module-help.tcl] if { [file exists [file join $moduledir $module $module-help.tcl.bak]] } { puts "* removing backup file: [file join $moduledir $module $module-help.tcl.bak]" } # ok, we are done; since we loaded Tk, we need an explicit exit !!! exit 0 espresso-5.0.2/dev-tools/helpdoc.schema0000644000700200004540000001554312053145634017107 0ustar marsamoscm# ------------------------------------------------------------------------ # # This is the schema for helpdoc, written in its own schema-language # # ------------------------------------------------------------------------ # helpdoc schema-keywords: # ------------------------ # # -- comment # rootelement -- used to describe a root element # element -- used to describe an element # attribute -- used to describe an attribute # text -- tells that the content of an element or attribute is a simple text # string -- tells that the content of an element or attribute is a single word # ident -- tells that element has an identifier (syntax: myelem myIdent { ... }) # ref -- used to specify the reference to an element # (but the element is defined elsewhere) # define -- used to define a group of elements or ref's # (should be specified before referencing it) # interleave -- used to mark that the order of enclosed elements is not important # optional -- used to mark anything enclosed as optional # choice -- used to mark alternatice choices # group -- used for grouping items # ? -- zero or one repetition of instances of anything enclosed is allowed # * -- zero or more repetitions of instances of anything enclosed is allowed # + -- one or more repetitions of instances of anything enclosed is allowed # ancestorElements -- mark that all the elements (with rules, such as, optional, # conditional, and repetition) of the ancestor are allowed # # # IMPLICIT ASSUMPTIONS: # - order of attributes is not important # - attributes are mandatory (when they are not, use: optional { ... } keyword) # - order of elements is important (when it is not, use: interleave { ... } keyword) # - elements are mandatory (when they are not, use: optional { ... } keyword) # ------------------------------------------------------------------------ # toplevel element rootelement input_description { attribute distribution { string } attribute package { string } attribute program { string } optional { interleave { element intro { text } element toc {} } } + { interleave { optional { ref group ref namelist ref card ref linecard ref table ref label ref message ref if ref choose ref optional ref conditional ref section ref subsection ref subsubsection ref paragraph } } } } # # definition of simple elements # element info { text } element default { text } element status { text } element label { text } element message { text } element see { string } element keyword { ident } # # define what elements are used within var, dimension, ... # (will be used many times) # define varTags { interleave { optional { ref status ref default ref info ref see } } } # # definition of complex elements # element list { ident attribute type { string } interleave { element format { text } ref varTags } } element var { ident attribute type { string } ref varTags } element vargroup { attribute type { string } interleave { + { ref var } ref varTags } } element dimension { ident attribute type { string } attribute start { string } attribute end { string } ref varTags } element dimensiongroup { attribute type { string } attribute start { string } attribute end { string } interleave { + { ref dimension } ref varTags } } element table { ident choice { element rows { attribute start { string } attribute end { string } + { interleave { optional { ref col ref optional ref conditional element colgroup { attribute type { string } interleave { + { ref col } optional { ref varTags ref optional ref conditional } } } } } } } element cols { attribute start { string } attribute end { string } + { interleave { optional { ref row ref optional ref conditional element rowgroup { attribute type { string } interleave { + { ref row } optional { ref varTags ref optional ref conditional } } } } } } } } } element col { ident optional { attribute type { string } ref varTags } } element row { ident optional { attribute type { string } ref varTags } } # # higher level complex elements # element optional { ancestorElements } element conditional { ancestorElements } element group { ancestorElements } element namelist { ident interleave { + { optional { ref var ref vargroup ref dimension ref dimensiongroup } } * { optional { ref group ref label ref message ref if ref choose } } } } element card { ident optional { attribute nameless { string } ref flag } + { interleave { optional { ref syntax ref choose * { ref if ref label ref message } } } } } element linecard { interleave { + { optional { ref var ref vargroup ref list } } optional { ref optional ref conditional } } } element flag { ident optional { attribute use { string } } element enum { text } ref varTags } element syntax { ? { attribute flag { text } } + { interleave { optional { ref line ref table ref optional ref conditional } } } } element line { + { interleave { optional { ref group ref keyword ref var ref vargroup ref list ref if ref choose ref label ref message ref optional ref conditional } } } } element if { attribute test { text } optional { ref label } ancestorElements } element choose { element when { attribute test { text } optional { ref label } ancestorElements } * { element elsewhen { attribute test { text } optional { ref label } ancestorElements } } ? { element otherwise { optional { ref label } ancestorElements } } } # # some text structure stuff # element section { attribute title { text } + { interleave { optional { ref subsection ref subsubsection ref paragraph ref text } } } } element subsection { attribute title { text } + { interleave { optional { ref subsubsection ref paragraph ref text } } } } element subsubsection { attribute title { text } + { interleave { optional { ref paragraph ref text } } } } element paragraph { attribute title { text } ref text } element text { text } espresso-5.0.2/dev-tools/release.sh0000755000700200004540000000441412053145634016261 0ustar marsamoscm#!/bin/sh -x # Run this as "./dev-tools/release.sh" # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # VERSION=5.0.1 ESPRESSO_DIR=espresso-$VERSION GUI=PWgui-$VERSION # options (yes/no) do_doc=yes do_GUI=no do_ChangeLogs=no # BEWARE: # in order to build the .html and .txt documentation in Doc, # "tcl", "tcllib", "xsltproc" are needed # in order to build the .pdf files in Doc, "pdflatex" is needed # in order to build html files for user guide and developer manual, # "latex2html" and "convert" (from Image-Magick) are needed if test -d $ESPRESSO_DIR; then /bin/rm -rf $ESPRESSO_DIR; fi if test -d $ESPRESSO_DIR-Save; then /bin/rm -rf $ESPRESSO_DIR-Save; fi /bin/rm espresso-$VERSION.tar.gz espresso-$VERSION.lst /bin/rm espresso-$VERSION-examples.tar.gz espresso-$VERSION-examples.lst if test "$do_GUI" = "yes" ; then /bin/rm $GUI.tar.gz $GUI.lst ; fi # produce updated ChangeLogs if test "$do_ChangeLogs" = "yes" ; then make log mv ChangeLog Doc/ChangeLog-$VERSION mv ChangeLog.html Doc/ChangeLog-$VERSION.html fi # produce documentation if test "$do_doc" = "yes" ; then make doc fi # package using Makefile make tar if test "$do_GUI" = "yes" ; then make tar-gui PWGUI_VERSION=$VERSION ; fi # unpackage in directory with version mkdir $ESPRESSO_DIR $ESPRESSO_DIR-Save cd $ESPRESSO_DIR tar -xzf ../espresso.tar.gz /bin/rm ../espresso.tar.gz if test "$do_GUI" = "yes" ; then tar -xzf ../$GUI.tgz /bin/rm ../$GUI.tgz fi cd .. if test "$do_GUI" = "yes" ; then tar -cvzf $GUI.tar.gz $ESPRESSO_DIR/$GUI > $GUI.lst mv $ESPRESSO_DIR/$GUI $ESPRESSO_DIR-Save/ echo "$GUI.tar.gz saved in directory:" `pwd` echo "List of files in $GUI.lst" fi tar -cvzf espresso-$VERSION-examples.tar.gz $ESPRESSO_DIR/examples \ $ESPRESSO_DIR/pseudo $ESPRESSO_DIR/tests $ESPRESSO_DIR/cptests \ > espresso-$VERSION-examples.lst mv $ESPRESSO_DIR/examples $ESPRESSO_DIR/pseudo $ESPRESSO_DIR/tests \ $ESPRESSO_DIR/cptests $ESPRESSO_DIR-Save/ echo "espresso-$VERSION-examples.tar.gz saved in directory:" `pwd` echo "List of files in espresso-$VERSION-examples.lst" tar -cvzf espresso-$VERSION.tar.gz $ESPRESSO_DIR > espresso-$VERSION.lst echo "espresso-$VERSION.tar.gz saved in directory:" `pwd` echo "List of files in espresso-$VERSION.lst" espresso-5.0.2/dev-tools/check_gui0000755000700200004540000000633612053145634016156 0ustar marsamoscm#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" # # Usage: check_gui module # ( module = pw, ph, pp, projwfc, atomic, or d3 ) # # Purpose: check the PWgui modules wrt coprresponding INPUT_*.def # files and create a PWgui help files. # if { ! [info exists env(PWGUI)] } { # try with: ../GUI/PWgui set env(PWGUI) [file normalize [file join .. GUI PWgui]] } if { ! [info exists env(GUIB)] } { # try with: ../GUI/Guib set env(GUIB) [file normalize [file join .. GUI Guib]] } proc Usage {} { global argv0 puts stderr [subst { Usage: $argv0 module Where module is one of: \tpw \tneb \tph \tpp \tprojwfc \tbands \tdos \tatomic \td3 }] exit 1 } if { $argc != 1 } { Usage } set module [lindex $argv 0] set basedir [file normalize [file dirname [info script]]] set topdir [file normalize [file join $basedir ..]] # load helpdoc set helpdocdir [file join $basedir helpdoc.d] source [file join $helpdocdir helpdoc.tcl] # load Guib set guibdir [file join $topdir GUI Guib] lappend auto_path $guibdir package require Guib wm withdraw . # PWgui's modules dir set pwguidir [file join $topdir GUI PWgui] set moduledir [file join $pwguidir modules] source [file join $pwguidir init.tcl] # map from module to def- and module-file set mappings { pw PW/Doc INPUT_PW neb NEB/Doc INPUT_NEB ph PHonon/Doc INPUT_PH pp PP/Doc INPUT_PP projwfc PP/Doc INPUT_PROJWFC bands PP/Doc INPUT_BANDS dos PP/Doc INPUT_DOS atomic atomic/Doc INPUT_LD1 d3 PHonon/Doc INPUT_D3 } foreach {mod subdir def_prefix} $mappings { if { $mod == $module } { set deffile [file join $topdir $subdir $def_prefix.def] set modulefile [file join $moduledir $mod $mod.tcl] # compile the $deffile cd [file join $topdir $subdir] catch {exec make $def_prefix.html} cd $basedir # output info puts "Checking PWgui module: $mod" puts " * module file: $modulefile" puts " * definition file: $deffile" # the current $mod-help.tcl file will interfere the process, rename it: if { [file exists [file join $moduledir $mod $mod-help.tcl]] } { puts "Renaming the current $mod-help.tcl file to $mod-help.tcl.bak" file rename -force [file join $moduledir $mod $mod-help.tcl] [file join $moduledir $mod $mod-help.tcl.bak] } # make a black $mod-help.tcl file close [open [file join $moduledir $mod $mod-help.tcl] w] } } if { ! [info exists deffile] } { Usage } # read & load both the def & module file set def [::helpdoc::def_loadDef $deffile] set obj [::guib::loadModule $modulefile]; $obj storeModuleItems # # check DEF vs. MODULE file # ::helpdoc::checkGui_def_vs_module # # check MODULE vs. DEF file # ::helpdoc::checkGui_module_vs_def # # Create a HELP file # ::helpdoc::checkGui_makeHelpFile $deffile $modulefile if { [file exists [file join $moduledir $module $module-help.tcl.bak]] } { puts "Renaming back the $module-help.tcl.bak file to $module-help.tcl" file rename -force [file join $moduledir $module $module-help.tcl.bak] [file join $moduledir $module $module-help.tcl] } # ok, we are done; since we loaded Tk, we need an explicit exit !!! exit 0 espresso-5.0.2/dev-tools/input_xx.xsl0000644000700200004540000007333612053145634016721 0ustar marsamoscm *** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST ***

    Input File Description

    Program: / /

    This file has been created by helpdoc utility.

    TABLE OF CONTENTS

    INTRODUCTION

    Line-of-input: | | &

    | | | | | |

    INTRODUCTION

    	  
    	

    Namelist:

    Card: { }

    Description of items:

    Syntax:

    empty -flag { } [ ] non-empty -flag; ;;

    { } [ ]       var query =   
    //card//syntax//table/rows  . . .  . . . //card//syntax//table//rows->rows() { } [ ]   col query = () ()   //card//syntax//table/cols {   [     ]   }  . . .  . . . node=   () ()  

    Line of input

    Syntax:

    Description of items:

          
        
    IF :
    IF :
    ELSEIF :
    ELSE
    (i), i=,
    , (i), i=,
    Default: Status: See:
    ,

    espresso-5.0.2/dev-tools/Makefile0000644000700200004540000000056412053145634015744 0ustar marsamoscmTMP_FILES = INPUT_*.xml INPUT_*.xml.tcl *-help.tcl pw: makedoc ./check_gui pw ph: makedoc ./check_gui ph pp: makedoc ./check_gui pp projwfc: makedoc ./check_gui projwfc bands: makedoc ./check_gui bands dos: makedoc ./check_gui dos atomic: makedoc ./check_gui atomic d3: makedoc ./check_gui d3 makedoc: (cd ..; $(MAKE) doc) clean: - rm $(TMP_FILES)espresso-5.0.2/dev-tools/src-normal.py0000755000700200004540000001356112053145634016737 0ustar marsamoscm#!/usr/bin/env python # (C) 2010 Norbert Nemec # # USAGE: src-normal.py < input.f90 > output.f90 # # Script to normalize Fortran source code: # a) expand tabs to spaces (tab width 8 characters # b) remove trailing space # c) normalize multiword keywords # d) normalize capitalization of keywords and intrinsics # d) replace old relational operators (.eq., .gt., etc.) by new ones (==, >, etc.) # The script skips comments and strings within the code import sys,re dropspace_list = [ "BLOCK *DATA", "CASE *DEFAULT", # SPLIT NOT OPTIONAL ! "DOUBLE *PRECISION", "DO *WHILE", # SPLIT NOT OPTIONAL ! "ELSE *IF", "END *BLOCK *DATA", "END *DO", "END *FILE", "END *FORALL", "END *FUNCTION", "END *IF", "END *INTERFACE", "END *MODULE", "END *PROGRAM", "END *SELECT", "END *SUBROUTINE", "END *TYPE", "END *WHERE", "GO *TO", "IN *OUT", "MODULE *PROCEDURE", # SPLIT NOT OPTIONAL ! "SELECT *CASE", ] splitword_list = [ "BLOCK DATA", "CASE DEFAULT", # SPLIT NOT OPTIONAL "DOUBLE PRECISION", "DO WHILE", # SPLIT NOT OPTIONAL # "ELSEIF", # leave as one word "END BLOCK DATA", # "ENDDO", # leave as one word "END FILE", "END FORALL", "END FUNCTION", # "ENDIF", # leave as one word "END INTERFACE", "END MODULE", "END PROGRAM", "END SELECT", "END SUBROUTINE", "END TYPE", "END WHERE", # "GOTO", # leave as one word # "INOUT", # leave as one word "MODULE PROCEDURE", # SPLIT NOT OPTIONAL "SELECT CASE", ] dropspace_re = re.compile(r"\b("+"|".join(dropspace_list)+r")\b",re.I) def dropspace_fn(s): return s.group(0).replace(" ","") splitword_dict = dict( (a.replace(" ","").lower(),a) for a in splitword_list ) splitword_re = re.compile(r"\b("+"|".join(splitword_list).replace(" ","")+r")\b",re.I) def splitword_fn(s): return splitword_dict[s.group(0).lower()] uppercase_keywords = r""" MODULE SUBROUTINE PROGRAM FUNCTION INTERFACE ENDMODULE ENDSUBROUTINE ENDPROGRAM ENDFUNCTION ENDINTERFACE BLOCKDATA DOUBLEPRECISION MODULEPROCEDURE TYPE ENDTYPE CONTAINS USE ONLY ALLOCATABLE DIMENSION INTENT EXTERNAL INTRINSIC OPTIONAL PARAMETER POINTER COMMON FORMAT IMPLICIT NONE PRIVATE PUBLIC CHARACTER COMPLEX INTEGER LOGICAL ENTRY EQUIVALENCE INCLUDE NAMELIST SAVE SEQUENCE TARGET ELEMENTAL PURE RECURSIVE RESULT SELECTCASE CASE CASEDEFAULT ENDSELECT IF THEN ELSEIF ELSE ENDIF WHERE ELSEWHERE ENDWHERE FORALL ENDFORALL DO DOWHILE ENDDO ALLOCATE ASSIGN BACKSPACE CALL CLOSE CONTINUE CYCLE DEALLOCATE ENDFILE EXIT FORMAT GOTO INQUIRE NULLIFY OPEN PAUSE PRINT READ RETURN REWIND STOP WRITE """.split() lowercase_keywords = r""" in inout out """.split() intrinsics = r""" abort abs achar acos acosd acosh adjustl adjustr aimag aint all allocated and anint any asin asind asinh associated atan atan2 atan2d atand atanh baddress bit_size btest ceiling char cmplx conjg cos cosd cosh count cshift date date_and_time dble dcmplx dfloat digits dim dnum dot_product dprod dreal eoshift epsilon exit exp exponent floor flush fnum fraction free fset fstream getarg getenv gran hfix huge iachar iaddr iand iargc ibclr ibits ibset ichar idate idim ieor igetarg ijint imag index int int1 int2 int4 int8 inum iomsg ior iqint irand iranp ishft ishftc isign ixor izext jnum jzext kind kzext lbound len len_trim lge lgt lle llt loc log log10 lshft lshift malloc matmul max maxexponent maxloc maxval mclock merge min minexponent minloc minval mod modulo mvbits nearest nint not or pack precision present product qext qfloat qnum qprod radix ran rand random_number random_seed range repeat reshape rnum rrspacing rshft rshift scale scan secnds selected_int_kind selected_real_kind set_exponent shape sign sin sind sinh size sizeof spacing spread sqrt srand sum system system_clock tan tand tanh time tiny transfer transpose trim ubound unpack verify xor zext """.split() ignore_for_the_moment = r""" real REAL isnan """ special_keywords = r""" .and. .or. .not. .true. .false. .eqv. .neqv. .eq. .ge. .gt. .le. .lt. .ne. """.replace(".","\\.").split() def uppercase_fn(s): return s.group(0).upper() def lowercase_fn(s): return s.group(0).lower() def special_fn(s): res = s.group(0).lower() res = { '.eq.': '==', '.ge.': '>=', '.gt.': '>', '.le.': '<=', '.lt.': '<', '.ne.': '/=', }.get(res,res) return res uppercase_re = re.compile(r"\b("+"|".join(uppercase_keywords)+r")\b",re.I) lowercase_re = re.compile(r"\b("+"|".join(lowercase_keywords+intrinsics)+r")\b",re.I) special_re = re.compile(r"("+"|".join(special_keywords)+r")",re.I) def correctcase(line): line = dropspace_re.sub(dropspace_fn,line) line = uppercase_re.sub(uppercase_fn,line) line = lowercase_re.sub(lowercase_fn,line) line = special_re.sub(special_fn,line) line = splitword_re.sub(splitword_fn,line) return line ############## quote = " " QUOTES = "'\"" for lin in sys.stdin: lin = lin.rstrip().expandtabs() pos = 0 lout = "" if lin[:1] == "#": lout=lin pos=len(lin) while pos < len(lin): if quote in QUOTES: npos = lin.find(quote,pos) if npos >= 0: assert lin[npos] == quote lout += lin[pos:npos+1] pos = npos+1 quote = " " elif lin[-1] == "&": lout += lin[pos:] break else: raise "unterminated string in line ["+lin+"]" cpos = lin.find("!",pos) % (len(lin)+1) qpos = lin.find("'",pos) % (len(lin)+1) dpos = lin.find('"',pos) % (len(lin)+1) npos = min(cpos,qpos,dpos) lout += correctcase(lin[pos:npos]) pos = npos if pos == len(lin): break elif lin[pos] == "!": lout += lin[pos:] break elif lin[pos] in QUOTES: quote = lin[pos] lout += quote pos += 1 continue else: raise "Strange internal error" sys.stdout.write(lout+"\n") espresso-5.0.2/dev-tools/helpdoc.d/0000755000700200004540000000000012053440276016137 5ustar marsamoscmespresso-5.0.2/dev-tools/helpdoc.d/xml.tcl0000644000700200004540000000242612053145634017447 0ustar marsamoscm# # XML # proc ::helpdoc::xml_escape_chr {content} { # replace xml special characters by escape-characters foreach {chr escChr} { & {\&} < {\<} > {\>} } { regsub -all -- $chr $content $escChr content } regsub -all -- ' $content {\'} content regsub -all -- \" $content {\"} content return $content } proc ::helpdoc::xml_attr_escape_chr {content} { # replace xml special characters by escape-characters foreach {chr escChr} { & {\&} < {\<} > {\>} } { regsub -all -- $chr $content $escChr content } return $content } proc ::helpdoc::xml_tag_enter {tag attr content depth} { variable fid set indent [indent $depth] set sep "" if { $content != "" } { if { [llength [split $content \n]] > 1 } { set content [trimEmpty $content] set sep \n } else { set sep " " } } set attr [xml_attr_escape_chr $attr] set content [formatString [xml_escape_chr $content]] if { $attr != "" } { puts $fid(xml) "${indent}<$tag ${attr}>${sep}${content}" } else { puts $fid(xml) "${indent}<$tag>${sep}${content}" } } proc ::helpdoc::xml_tag_leave {tag attr content depth} { variable fid puts $fid(xml) "[indent $depth]" } espresso-5.0.2/dev-tools/helpdoc.d/txt.tcl0000644000700200004540000000627412053145634017473 0ustar marsamoscm# # TXT # proc ::helpdoc::attr2array_ {arrayVar attributes} { upvar $arrayVar attr foreach {name value} [::textutil::splitx $attributes "=\"|\"\[ \n\r\\t\]|\"$"] { if { $name != "" } { set attr($name) [string trim $value =] } } } proc ::helpdoc::printf {content {extraSpace 0}} { variable txtDepth variable indentNum variable fid set indent [indent $txtDepth] if { $extraSpace > 0 } { set indent $indent[::textutil::blank $extraSpace] } foreach line [split $content \n] { puts $fid(txt) ${indent}$line } } proc helpdoc::printfNormalize {content} { variable txtDepth variable indentNum variable fid set indent [indent $txtDepth] puts $fid(txt) [formatString $content] } proc helpdoc::labelMsg {label msg} { set il 1 set len [string length $label] set message {} foreach line [split [string trim $msg] \n] { if { $il == 1 } { append message [::format "%${len}s %s" $label $line] incr il } else { append message [::format "\n%${len}s %s" {} $line] } } return $message } proc ::helpdoc::arr {elem} { variable arr if { [info exists arr($elem)] } { return $arr($elem) } return "" } proc ::helpdoc::txt_tag_enter {tree node tag attr content depth} { variable txtDepth variable indentNum variable fid variable arr variable vargroup variable dimensiongroup variable colgroup variable rowgroup variable card variable mode variable rows variable cols if { [info exists arr] } { unset arr } set content [formatString [trimEmpty $content]] attr2array_ arr $attr global sourcedir source [file join $sourcedir txt_enter.tcl] } proc ::helpdoc::txt_tag_leave {tree node tag attr content depth} { variable fid variable txtDepth variable vargroup variable dimensiongroup variable colgroup variable rowgroup variable mode variable card variable rows variable cols global sourcedir source [file join $sourcedir txt_leave.tcl] } proc ::helpdoc::txt_subtree {tree node newMode} { variable mode lappend mode $newMode set newTree [::struct::tree] $newTree deserialize [$tree serialize $node] $newTree walkproc [$newTree rootname] -order both txt_subtree_print $newTree destroy ::tclu::lpop mode } proc ::helpdoc::txt_subtree_print {tree node action} { set depth [$tree depth $node] set tag [$tree get $node tag] set attributes [getFromTree $tree $node attributes] set content [getFromTree $tree $node text] txt_tag_${action} $tree $node $tag $attributes $content [expr $depth - 1] } proc ::helpdoc::printableVarDescription {tree node} { variable mode # Purpose: the description of variable in the card is printed only # when at least one of info, status or see records is present. set Info [getDescendantText $tree $node info] set Status [getDescendantText $tree $node status] set See [getDescendantText $tree $node see] if { ! [::tclu::lpresent $mode card] || ($Info != "" || $Status != "" || $See != "") } { return 1 } return 0 } espresso-5.0.2/dev-tools/helpdoc.d/txt_leave.tcl0000644000700200004540000000743212053145634020644 0ustar marsamoscmvariable indentNum switch -exact -- $tag { input_description { } intro { printf \n } toc { } } # simple elements switch -exact -- $tag { info { } "default" { } status { } label { } message { } see { } keyword { } } # composite elements switch -exact -- $tag { list { if { [::tclu::lpresent $mode syntax] } { syntaxFlush } else { if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- printf \n } } } format { # todo } var - dimension - col - row { if { ! $vargroup && ! $dimensiongroup && ! $colgroup && ! $rowgroup && ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { printf +--------------------------------------------------------------------\n set var_print 0 } } } vargroup - dimensiongroup - rowgroup - colgroup { # todo if { ! [::tclu::lpresent $mode syntax] } { set $tag 0 if { [printableVarDescription $tree $node] } { printf +--------------------------------------------------------------------\n } } } table { } rows { if { [::tclu::lpresent $mode syntax] && [::tclu::lpresent $mode rows] } { manageRow manageRow 1 manageRow 2 printRows unset rows ::tclu::lpop mode } } cols { if { [::tclu::lpresent $mode syntax] && [::tclu::lpresent $mode cols] } { manageCol manageCol 1 manageCol 2 printCols unset cols ::tclu::lpop mode } } optional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__optional::end__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__optional::end__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\}" } } conditional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__conditional::end__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__conditional::end__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\]" } } group { incr txtDepth -1 printf \\\\\\---\n } namelist { incr txtDepth -1 printf "===END OF NAMELIST======================================================\n\n" } card { } linecard { if { [::tclu::lpresent $mode syntax] } { syntaxFlush } } flag { if { [::tclu::lpresent $mode "description"] } { printf +-------------------------------------------------------------------- puts $fid(txt) "\n" } } enum { # todo } syntax { if { [::tclu::lpresent $mode syntax] } { incr txtDepth -2 printf "\n/////////////////////////////////////////\n" #printf "|______\n" #printf "| |" #printf "+---------------------------------------+" #printf "+---------------------------------------+\n" } } line { if { [::tclu::lpresent $mode syntax] } { syntaxFlush } } if { if { ! [::tclu::lpresent $mode description] } { incr txtDepth -1 printf ENDIF } } choose { if { ! [::tclu::lpresent $mode description] } { printf ENDIF printf ________________________________________________________________________\n } } when - elsewhen - otherwise { if { ! [::tclu::lpresent $mode description] } { printf " " incr txtDepth -1 } } } # some text structure stuff switch -exact -- $tag { section { puts $fid(txt) "" incr txtDepth -1 } subsection { puts $fid(txt) "" incr txtDepth -1 } subsubsection { puts $fid(txt) "" incr txtDepth -1 } paragraph { } text { } }espresso-5.0.2/dev-tools/helpdoc.d/parseTags.tcl0000644000700200004540000001206112053145634020574 0ustar marsamoscmproc ::helpdoc::attrsToOpts_ {attrList} { # PURPOSE # Tranform attribute list to option list, i.e.: # {name ident type} --> {-name -ident -type} set optList {} foreach attr $attrList { lappend optList -$attr } return $optList } proc ::helpdoc::optVal2AttrVal_ {optValList} { # PURPOSE # Tranform option-value pairs to attribute value pairs, i.e.: # {-option1 value1 -option2 value2} --> {option1="value1" option2="value2"} set result "" foreach {opt val} $optValList { set attr [string trimleft $opt -] append result "$attr=\"$val\" " } return $result } proc ::helpdoc::checkIdent_ {ident} { # PURPOSE # Check if $ident is valid ident: it should not start with -, and # should be one word only, starting with an alphabetical # character" set ident [string trim $ident] set tag [tag -3] if { [regexp {^-} $ident] } { ::tclu::abort "expecting ident for tag \"$tag\", but got an option $ident" } if { [llength $ident] > 1 } { ::tclu::abort "expecting ident for tag \"$tag\" (ident should be a single word), but got a text: $ident" } if { ! [regexp {^[a-zA-Z_]} $ident] } { ::tclu::abort "not a proper ident, $ident, for tag \"$tag\", ident start with a-z, or A-Z, or _" } } proc ::helpdoc::rootnameTag_ {args} { variable tree variable stack variable state variable elemArr set tag [tag -2] set code [lindex $args end] set tree [::struct::tree] set node [$tree rootname] $tree set $node tag $tag parseTagMsg_; puts "" # do tag uses ident ? #puts "tag=$tag" #puts "array(IDENT,*): [array names elemArr IDENT,*]\n" #puts "array(ATTRLIST,*): [array names elemArr ATTRLIST,*]\n" if { [info exists elemArr(IDENT,$tag)] } { # add name="string" to attribute list set ident [lindex $args 0] checkIdent_ $ident set attr "name=\"$ident\" " set args [lrange $args 1 end] } # do tag use attributes ? if { [info exists elemArr(ATTRLIST,$tag)] } { append attr [optVal2AttrVal_ [::tclu::extractArgs \ [attrsToOpts_ $elemArr(ATTRLIST,$tag)] args]] if { [llength $args] != 1 } { # wrong attributes have been specified ::tclu::abort "wrong attributes for the \"$tag\" specified, must be one of: [join $elemArr(ATTRLIST,$tag) ,]" } } # store attributes into the tree ... if { [info exists attr] } { $tree set $node attributes $attr } # proceed further $stack push [$tree rootname] namespace eval tag $code $stack pop puts {[OK] - parsing finished} } proc ::helpdoc::elementTag_ {args} { variable tree variable stack variable state variable elemArr if { $tree == "" } { # an element tag has been specified before rootelement ::tclu::abort "an element \"$tag\" specified before the rootelement \"$state(rootElem)\"" } set tag [tag -2] set node [$tree insert [$stack peek] end] set code [lindex $args end] $tree set $node tag $tag #puts "tag=$tag" #puts "array(TEXT,*): [array names elemArr TEXT,*]\n" #puts "array(IDENT,*): [array names elemArr IDENT,*]\n" #puts "array(ATTRLIST,*): [array names elemArr ATTRLIST,*]\n" if { [info exists elemArr(TEXT,$tag)] || [info exists elemArr(STRING,$tag)] } { # we have a simple-element (leaf) $tree set $node text [lindex $args 0] parseTagMsg_; puts ok } else { # we have a complex-element # do tag uses ident ? if { [info exists elemArr(IDENT,$tag)] } { # add name="string" to attribute list set name [lindex $args 0] parseTagMsg_ $name; puts "" checkIdent_ $name set attr "name=\"$name\" " set args [lrange $args 1 end] if { $args == "" } { set code "" } } else { parseTagMsg_; puts "" } # do tag use attributes ? if { [info exists elemArr(ATTRLIST,$tag)] } { if { [llength $args] > 1 } { # this is quick-and-dirty, but we need to do more cheking on order, optionality, .... append attr [optVal2AttrVal_ [::tclu::extractArgs \ [attrsToOpts_ $elemArr(ATTRLIST,$tag)] args]] if { [llength $args] != 1 } { # wrong attributes have been specified ::tclu::abort "wrong attributes for the \"$tag\" specified, must be one of: [join $elemArr(ATTRLIST,$tag) ,]" } } } # TODO: checks on order, optionality, ... # store attributes into the tree ... if { [info exists attr] } { $tree set $node attributes $attr } # proceed further $stack push $node namespace eval tag $code $stack pop parseTagMsgOK_; } } proc ::helpdoc::parseTagMsg_ {{name {}}} { variable tree set indent [uplevel 1 {indent [$tree depth $node]}] set tag [string toupper [tag -3]] puts -nonewline "${indent}parsing $tag $name ... " } proc ::helpdoc::parseTagMsgOK_ {{name {}}} { variable tree set indent [uplevel 1 {indent [$tree depth $node]}] set tag [string toupper [tag -3]] if { $name == "" } { puts "${indent}\[OK\] - parsing $tag completed" } else { puts "${indent}\[OK\] - parsing $tag $name completed" } } espresso-5.0.2/dev-tools/helpdoc.d/auxil.tcl0000644000700200004540000000166012053145634017770 0ustar marsamoscmproc ::helpdoc::tag {{level -2}} { # PURPOSE # Return the name of the calling proc, which is used as the name # of tag. return [namespace tail [lindex [info level $level] 0]] } proc helpdoc::indent {depth {extraDepth 0}} { variable indentNum return [::textutil::blank [expr ($depth + $extraDepth) * $indentNum]] } proc ::helpdoc::formatString {string {depth 0}} { variable indentNum set indent [indent $depth] return [::textutil::indent \ [::textutil::undent \ [::textutil::untabify [::textutil::trimEmptyHeading $string]]] \ $indent] } proc ::helpdoc::trimEmpty {text} { # PURPOSE # Trim empty lines (this is not equal to [string trim], because the # beginning and ending indenation would be lost with the latter. regsub -- "^(\[ \t\]*\n)*" $text {} text regsub -- "(\[ \t\n\])*$" $text {} text return $text } espresso-5.0.2/dev-tools/helpdoc.d/guihelp.tcl0000644000700200004540000001032212053145634020276 0ustar marsamoscmnamespace eval ::helpdoc::gui_help { variable helpContent variable helpNameList "" proc printHelp_ {channel} { variable helpContent variable helpNameList foreach name $helpNameList { puts $channel "\n# ------------------------------------------------------------------------" if { [llength $name] > 1 } { puts $channel "grouphelp [list $name] -helpfmt helpdoc -helptext [list $helpContent($name)]\n" } else { puts $channel "help $name -helpfmt helpdoc -helptext [list $helpContent($name)]\n" } } } proc addHelp_ {names helpTxt} { variable helpContent variable helpNameList ::tclu::ladd helpNameList $names append helpContent($names) ${helpTxt}\n } proc grouphelp {names helpTxt} { foreach name $names { if { [info exists ::guib::moduleObj::module_item($name)] } { if { $::guib::moduleObj::module_item(ident,$name) != "" } { switch -- $::guib::moduleObj::module_item($name) { var - dimension - table { lappend ok_names $::guib::moduleObj::module_item(ident,$name) } } } } } if { [info exists ok_names] } { addHelp_ $ok_names $helpTxt } } proc help {name helpTxt} { # hande exceptions switch -- $::module { atomic { switch -- $name { nwfts - test_wfs { # in module file we have nwfts_* #puts "[array names ::guib::moduleObj::module_item -glob ${name}_*]" set names [array names ::guib::moduleObj::module_item -glob ${name}_*] if { $names != "" } { grouphelp $names $helpTxt } } } } ph { if { $name eq "alpha_mix(niter)" } { # in module file we have alpha_mix(1) set name alpha_mix(1) } } } if { $name == "occupations_table" } { puts "occupations_table" puts " def-exists [info exists ::helpdoc::def_item($name)]" puts " module-exists [info exists ::guib::moduleObj::module_item($name)]" puts " module-ident $::guib::moduleObj::module_item(ident,$name)" } if { [info exists ::guib::moduleObj::module_item($name)] } { if { $::guib::moduleObj::module_item(ident,$name) != "" } { switch -- $::guib::moduleObj::module_item($name) { var - dimension - table - text { # important: we must pass from name to ident addHelp_ $::guib::moduleObj::module_item(ident,$name) $helpTxt } } } } } } proc ::helpdoc::checkGui_makeHelpFile {deffile modulefile} { variable xsltproc variable helpfile variable xml_temp if { $xsltproc == "" } { ::tclu::ERROR "can't find useable xsltproc, gui help file creation skipped" } # help file will be written to $helpfile set helpfile [file tail [file rootname $modulefile]]-help.tcl set orig_helpfile [file rootname $modulefile]-help.tcl if { "$helpfile" == "$orig_helpfile" } { puts stderr [::tclu::labelMsg WARNING "file \"$orig_helpfile\" exists.\nMaking a $orig_helpfile.bak backup copy."] file copy -force $orig_helpfile $orig_helpfile.bak } # open/create a temporaty xml file ... set orig_xmlfile [file rootname $deffile].xml set xml_prefix [file tail [file rootname $deffile]] if { "$xml_prefix.xml" == "$orig_xmlfile" } { # ups, we don't want to overwrite $xmlfile set xml_temp ${xml_prefix}_temp.xml } else { set xml_temp ${xml_prefix}.xml } set xml_fid [open $xml_temp w] # copy $orig_xmlfile to $xml_temp, but replace the stylesheet input_xx.xsl by guihelp.xsl ::tclu::lineread line $orig_xmlfile { if { [string match {} } else { puts $xml_fid $line } } close $xml_fid puts "\n\tXml-file $xml_temp has been written.\n" catch [list exec $xsltproc $xml_temp > $xml_temp.tcl] puts "\n\tAuxiliary help-file $xml_temp.tcl has been written.\n" # create a $helpfile namespace eval gui_help { set helpID [open $::helpdoc::helpfile w] puts $helpID { # # Help-file automatically created by helpdoc utility # # !!! DO NOT EDIT: CHANGES WILL BE LOST !!! # } source $::helpdoc::xml_temp.tcl printHelp_ $helpID close $helpID } puts "\n\tHelp-file $helpfile has been written.\n" } espresso-5.0.2/dev-tools/helpdoc.d/readSchema.tcl0000644000700200004540000002030712053145634020701 0ustar marsamoscm namespace eval ::helpdoc::schema { # here is the definition of Tcl-commands that are used in schema proc rootelement {name code} { uplevel 1 [list ::helpdoc::rootelement $name $code] } proc element {name code} { uplevel 1 [list ::helpdoc::element $name $code] } proc attribute {name code} { uplevel 1 [list ::helpdoc::attribute $name $code] } proc define {name code} { uplevel 1 [list ::helpdoc::define $name $code] } proc text {} { uplevel 1 [list ::helpdoc::text] } proc string {} { uplevel 1 [list ::helpdoc::String] } proc ref {name} { uplevel 1 [list ::helpdoc::ref $name] } proc ident {} { uplevel 1 [list ::helpdoc::ident] } proc optional {code} { uplevel 1 [list ::helpdoc::optional $code] } proc interleave {code} { uplevel 1 [list ::helpdoc::interleave $code] } proc choice {code} { uplevel 1 [list ::helpdoc::choice $code] } proc ancestorElements {} { uplevel 1 [list ::helpdoc::ancestorElements] } proc ? {code} { uplevel 1 [list ::helpdoc::? $code] } proc * {code} { uplevel 1 [list ::helpdoc::* $code] } proc + {code} { uplevel 1 [list ::helpdoc::+ $code] } } # actual implementation of commands ... proc ::helpdoc::rootelement {name code} { variable elemList variable itemList variable stackArr variable state parseMsg_ $name; puts "" incr state(depth) if { $state(rootVisited) } { ::tclu::abort "more than one rootelement; there can be only one !" } set state(rootVisited) 1 set state(rootElem) $name lappend elemList $name lappend itemList $name $stackArr(currentElem) push $name #eval $code namespace eval schema $code $stackArr(currentElem) pop incr state(depth) -1 parseMsgOK_ $name } proc ::helpdoc::element {name code} { variable elemList variable itemList variable state variable stackArr variable elemArr parseMsg_ $name; puts "" incr state(depth) # check that $name does not exists if { [::tclu::lpresent $elemList $name] } { ::tclu::abort "element \"$name\" already defined" } lappend elemList $name lappend itemList $name $stackArr(optional) push 0 $stackArr(interleave) push 0 set parentElem [$stackArr(currentElem) peek] lappend elemArr(ELEMLIST,$parentElem) $name lappend elemArr(OPTIONAL,$parentElem,$name) [$stackArr(optional) peek] lappend elemArr(INTERLEAVE,$parentElem,$name) [$stackArr(interleave) peek] lappend elemArr(REPETITION,$parentElem,$name) [$stackArr(repetition) peek] $stackArr(currentElem) push $name #eval $code namespace eval schema $code $stackArr(currentElem) pop $stackArr(optional) pop $stackArr(interleave) pop incr state(depth) -1 parseMsgOK_ $name } proc ::helpdoc::attribute {name code} { # so far we assume attributes have arbitrary values (which means # we ignore code) variable itemList variable stackArr variable elemArr parseMsg_ $name set currentElem [$stackArr(currentElem) peek] lappend itemList $name lappend elemArr(ATTRLIST,$currentElem) $name lappend attrArr(OPTIONAL,$currentElem) [$stackArr(optional) peek] puts ok } proc ::helpdoc::define {name code} { variable defineArr variable itemList parseMsg_ $name; lappend itemList $name set defineArr($name) $code puts ok } proc ::helpdoc::text {} { # BEWARE: so far can be called only from element (because # attribute does not yet support ...) variable stackArr variable elemArr set currentElem [$stackArr(currentElem) peek] set elemArr(TEXT,$currentElem) 1 } proc ::helpdoc::String {} { # BEWARE: so far can be called only from element (because # attribute does not yet support ...) variable stackArr variable elemArr set currentElem [$stackArr(currentElem) peek] set elemArr(STRING,$currentElem) 1 } proc ::helpdoc::ref {name} { variable stackArr variable elemArr variable defineArr parseMsg_ $name; if { [info exists defineArr($name)] } { puts "" # the ref points to define, evaluate it #eval $defineArr($name) namespace eval schema $defineArr($name) parseMsgOK_; return } set currentElem [$stackArr(currentElem) peek] if { $currentElem != "" } { lappend elemArr(REFLIST,$currentElem) $name lappend elemArr(OPTIONAL,$currentElem,$name) [$stackArr(optional) peek] lappend elemArr(INTERLEAVE,$currentElem,$name) [$stackArr(interleave) peek] lappend elemArr(REPETITION,$currentElem,$name) [$stackArr(repetition) peek] } else { ::tclu::abort "can't use \"ref\" outside element definition" } puts ok } proc ::helpdoc::ident {} { variable stackArr variable elemArr set currentElem [$stackArr(currentElem) peek] if { $currentElem != "" } { set elemArr(IDENT,$currentElem) 1 } else { ::tclu::abort "can't use \"ident\" outside element definition" } } proc ::helpdoc::optional {code} { variable stackArr variable state parseMsg_; puts "" incr state(depth) $stackArr(optional) push 1 # eval $code namespace eval schema $code $stackArr(optional) pop incr state(depth) -1 parseMsgOK_ } proc ::helpdoc::interleave {code} { variable stackArr variable state parseMsg_; puts "" incr state(depth) $stackArr(interleave) push 1 # eval $code namespace eval schema $code $stackArr(interleave) pop incr state(depth) -1 parseMsgOK_ } proc ::helpdoc::choice {code} { variable stackArr variable state # TODO: implement the CHOICE; so far this proc is dummy parseMsg_; puts "" incr state(depth) #eval $code namespace eval schema $code incr state(depth) -1 parseMsgOK_ } proc ::helpdoc::ancestorElements {} { parseMsg_ # DO nothing (this means no validation for correctness will be done) puts ok } proc ::helpdoc::? {code} { repetition_ $code } proc ::helpdoc::* {code} { repetition_ $code } proc ::helpdoc::+ {code} { repetition_ $code } proc ::helpdoc::repetition_ {code} { variable stackArr variable state set type [tag -2] uplevel 1 "parseMsg_; puts {}" incr state(depth) $stackArr(repetition) push $type #eval $code namespace eval schema $code $stackArr(repetition) pop incr state(depth) -1 uplevel 1 "parseMsgOK_" } proc ::helpdoc::assignRefs_ {} { variable elemList variable elemArr foreach elem $elemList { if { [info exists elemArr(REFLIST,$elem)] } { # we have a ref puts -nonewline " $elem --> " foreach ref $elemArr(REFLIST,$elem) { # check if ref points to "define" lappend elemArr(ELEMLIST,$elem) $ref puts -nonewline "$ref " # check that $ref exists if { ! [::tclu::lpresent $elemList $ref] } { puts "" ::tclu::abort "the \"$ref\" element has not been defined, yet it is referenced" } } puts "" } } } proc ::helpdoc::createTagCmds_ {} { variable state variable elemList if { $state(rootElem) == {} } { ::tclu::abort "rootelement was not defined" } # create the rootelement cmd puts " creating $state(rootElem) cmd ... ok" proc ::helpdoc::tag::$state(rootElem) {args} { eval ::helpdoc::rootnameTag_ $args } # create all elements cmds foreach elem $elemList { if { $elem != $state(rootElem) } { puts -nonewline " creating $elem cmd ... " proc ::helpdoc::tag::$elem {args} { eval ::helpdoc::elementTag_ $args } puts ok } } } # for the time being ... proc helpdoc::parseMsg_ {{name {}}} { variable state set indent [::textutil::blank [expr (1+$state(depth)) * 3]] set tag [string toupper [tag -2]] puts -nonewline "${indent}parsing $tag $name ... " } proc helpdoc::parseMsgOK_ {{name {}}} { variable state set indent [::textutil::blank [expr (1+$state(depth)) * 3]] set tag [string toupper [tag -2]] if { $name == "" } { puts "${indent}OK - parsing $tag completed" } else { puts "${indent}OK - parsing $tag $name completed" } } espresso-5.0.2/dev-tools/helpdoc.d/tree.tcl0000644000700200004540000000373212053145634017607 0ustar marsamoscmproc ::helpdoc::getFromTree {tree node key} { if { [$tree keyexists $node $key] } { return [$tree get $node $key] } return "" } proc ::helpdoc::getDescendantNodes {tree node args} { # Usage: getDescendantNodes $tree $node tag1 tag2 last_tag # get all descendant node's pointers that matches set result "" set tag [lindex $args 0] foreach child [$tree children $node] { set _tag [getFromTree $tree $child tag] if { $tag == $_tag } { if { $tag == $args } { append result "$child " } else { set args1 [lrange $args 1 end] return [getDescendantNodes $tree $child $args1] } } } return $result } proc ::helpdoc::getDescendantText {tree node args} { # Usage: getDescendantText $tree $node tag1 tag2 last_tag # Beware: it will get the text from all tags that matches set result "" set tag [lindex $args 0] foreach child [$tree children $node] { set _tag [getFromTree $tree $child tag] if { $tag == $_tag } { if { $tag == $args } { append result "[getFromTree $tree $child text] " } else { set args1 [lrange $args 1 end] return [getDescendantText $tree $child $args1] } } } return $result } proc ::helpdoc::getDescendantAttribute {tree node args} { # Usage: getDescendantText $tree $node tag1 tag2 last_tag attribute_of_last_tag # Beware: it will get the requested attribute from all tags that matches set result "" set tag [lindex $args 0] set att [lindex $args end] foreach child [$tree children $node] { set _tag [getFromTree $tree $child tag] if { $tag == $_tag } { if { [llength $args] == 2 } { # ok _tag is the attribute set attr [getFromTree $tree $child attributes] attr2array_ arr $attr if { [info exists arr($att)] } { append result $arr($att) } } else { set args1 [lrange $args 1 end] return [getDescendantAttribute $tree $child $args1] } } } return $result } espresso-5.0.2/dev-tools/helpdoc.d/helpdoc.tcl0000644000700200004540000001241112053145634020260 0ustar marsamoscmset dir [file dirname [info script]] lappend auto_path $dir [file join $dir .. .. GUI Guib lib] package require tclu 0.9 package require struct::tree 2.1 package require struct::stack 1.3 package require textutil namespace eval ::helpdoc { variable dir [file dirname [info script]] # schema-related variables variable attrArr; # stores all about attributes variable elemArr; # stores all about elements variable defineArr; # stores all about define's variable elemList "" variable itemList "" variable state array set state { depth 0 rootVisited 0 rootElem "" } variable stackArr array set stackArr [subst { repetition [::struct::stack] optional [::struct::stack] interleave [::struct::stack] currentElem [::struct::stack] }] $stackArr(repetition) push 1; # decimal-digit | + | * | ? (meaning integer-number of times, one-or-more, zero-or-more, zero-or-one) $stackArr(optional) push 0 $stackArr(interleave) push 0 $stackArr(currentElem) push "" # stack & tree for parsing input definitions variable tree "" variable stack [::struct::stack] # output-related variable indentNum 3 variable txtDepth 0 variable fid variable head variable rbd_var variable rbd_stack variable rbd_info variable robodoc [auto_execok robodoc] variable xsltproc [auto_execok xsltproc] # TXT variables variable vargroup 0 variable dimensiongroup 0 variable colgroup 0 variable rowgroup 0 } namespace eval ::helpdoc::tag {} namespace eval ::helpdoc::schema {} source [file join $::helpdoc::dir readSchema.tcl] proc ::helpdoc::openOutputs {file} { variable fid variable head set head [file rootname $file] set fid(xml) [open $head.xml w] set fid(txt) [open $head.txt w] # currently disabled #set fid(rbd) [open $head.rbd w] puts $fid(xml) {} puts $fid(xml) {} puts $fid(xml) { } puts $fid(txt) "*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST ***\n" #puts $fid(rbd) "# *** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST ***\n" } proc ::helpdoc::writeOutputs {} { variable tree variable head variable fid variable robodoc variable xsltproc variable rbd_info #$tree destroy puts "" foreach fmt [array names fid] { puts "File $head.$fmt has been written." close $fid($fmt) } # run XSLTPROC if { $xsltproc != "" } { catch [list exec $xsltproc $head.xml > $head.html] puts "File $head.html has been written." } # run ROBODOC if { 0 } { # currently disbabled if { $robodoc != "" } { if { ! [file isdirectory $head.d] } { file mkdir $head.d } else { foreach file [glob -nocomplain $head.d/*.html] { file delete $file } } if { ! [file isdirectory $head.robodoc] } { file mkdir $head.robodoc } file copy -force $head.rbd $head.robodoc/ catch {exec $robodoc --doc $head.d/ --src $head.robodoc/ --documenttitle "Description of $rbd_info(program) input file"} if { [file exists $head.d/toc_index.html] } { file copy -force $head.d/toc_index.html $head.d/index.html puts "File $head.d/index.html has been written." } } } } proc ::helpdoc::readSchema {} { puts "\n***\n*** Parsing the helpdoc.schema\n***\n" namespace eval schema { ::source [file join $basedir helpdoc.schema] } puts "\n\n***\n*** Assigning ref's\n***\n" assignRefs_ puts "\n\n***\n*** Creating tags commands\n***\n" createTagCmds_ } proc ::helpdoc::print_xml {tree node action} { variable fid set depth [$tree depth $node] set tag [$tree get $node tag] set attributes [getFromTree $tree $node attributes] set content [getFromTree $tree $node text] xml_tag_${action} $tag $attributes $content $depth } proc ::helpdoc::print_txt {tree node action} { variable fid set depth [$tree depth $node] set tag [$tree get $node tag] set attributes [getFromTree $tree $node attributes] set content [getFromTree $tree $node text] txt_tag_${action} $tree $node $tag $attributes $content [expr $depth - 1] # currently disabled: # robodoc #rbd_tag_${action} $tag $attributes $content $depth } proc ::helpdoc::process {fileList} { variable tree variable vargroup variable dimensiongroup variable mode # first read the schema (and load tag's commands) readSchema #puts "tag commands: [info procs ::helpdoc::tag::*]" foreach file $fileList { set vargroup 0 set dimensiongroup 0 if { [file exists $file] } { openOutputs $file puts "\n\n***\n*** Parsing definition file: $file\n***\n" namespace eval tag [list source $file] set mode default $tree walkproc root -order both print_xml $tree walkproc root -order both print_txt writeOutputs $tree destroy unset mode } else { puts stderr "file [file join [pwd] $file] does not exists : aborting ..." exit 1 } } } espresso-5.0.2/dev-tools/helpdoc.d/robodoc.tcl0000644000700200004540000000405412053145634020275 0ustar marsamoscm# Currently disabled: this file is likely to be purged in the future # # Robodoc # proc ::helpdoc::rbd_tag_enter {tag attr content depth} { variable fid variable rbd_var variable rbd_stack variable rbd_info set content [formatString [trimEmpty $content]] attr2array_ arr $attr switch -exact $tag { input_description { set rbd_stack [::struct::stack] set module {} set rbd_info(program) unknown if { [info exists arr(distribution)] } { set module $arr(distribution) } if { [info exists arr(package)] } { set module $arr(package) } if { [info exists arr(program)] } { set module $module/$arr(program) set rbd_info(program) $arr(program) } if { $module == "" } { set module /input } set current_module [lindex [split $module /] end] $rbd_stack push $current_module puts $fid(rbd) [formatString [subst { #****h* $module # DESCRIPTION # Description of the input syntax for program ... #****** }]]\n } namelist { set module "[$rbd_stack peek]/$arr(name)" $rbd_stack push $arr(name) puts $fid(rbd) [formatString [subst { #****n* $module # DESCRIPTION # Description of the $arr(name) namelist. #****** }]]\n } var { set name $arr(name) regsub -all -- , $name + name set rbd_var "#****v* [$rbd_stack peek]/$name\n" append rbd_var "# NAME\n" append rbd_var "# $arr(name)\n" } info { append rbd_var "# DESCRIPTION\n[::textutil::indent $content {# }]" } status { append rbd_var "# STATUS\n[::textutil::indent $content {# }]\n" } } if { $tag == "default" } { append rbd_var "# DEFAULT\n[::textutil::indent $content {# }]\n" } } proc ::helpdoc::rbd_tag_leave {tag attr content depth} { variable fid variable rbd_var variable rbd_stack switch -exact $tag { namelist { puts $fid(rbd) "\n\# *** END of NAMELIST\n" $rbd_stack pop } var { puts $fid(rbd) $rbd_var puts $fid(rbd) "#******\n" } } } espresso-5.0.2/dev-tools/helpdoc.d/txt_enter.tcl0000644000700200004540000002237712053145634020672 0ustar marsamoscmvariable indentNum set var_chars 15 set var_chars1 [expr $var_chars + 1] switch -exact -- $tag { input_description { printfNormalize [subst { ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: [arr program] / [arr package] / [arr distribution] ------------------------------------------------------------------------ }] printf \n } intro { printf $content\n } toc { # o-la-la ... } } # simple elements switch -exact -- $tag { label { if { ! [::tclu::lpresent $mode description] } { printf [string toupper $content]\n } } message { if { ! [::tclu::lpresent $mode description] } { printf $content\n } } keyword { if { [::tclu::lpresent $mode syntax] } { syntaxAppend [arr name] } } } if { ! $vargroup && ! $dimensiongroup && ! $colgroup && ! $rowgroup && ! [::tclu::lpresent $mode syntax] } { switch -exact -- $tag { info { printf [labelMsg [format "%-${var_chars}s" Description:] $content] } "default" { printf [labelMsg [format "%-${var_chars}s" Default:] $content] } status { printf [labelMsg [format "%-${var_chars}s" Status:] $content] } see { printf [labelMsg [format "%-${var_chars}s" See:] $content] } } } # composite elements switch -exact -- $tag { var - col - row { if { ! $vargroup && ! $colgroup && ! $rowgroup && ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" Variable:] [arr name]]\n printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] } } if { $tag == "var" && [::tclu::lpresent $mode syntax] } { syntaxAppend [arr name] } } dimension { if { ! $dimensiongroup && ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" Variable:] "[arr name](i), i=[arr start],[arr end]"]\n printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] } } if { [::tclu::lpresent $mode syntax] } { syntaxAppend "[arr name], i=[arr start],[arr end]" } } vargroup - dimensiongroup - colgroup - rowgroup { if { ($tag == "colgroup" || $tag == "rowgroup") && ! [::tclu::lpresent $mode description] } { return } if { ! [::tclu::lpresent $mode syntax] } { set $tag 1 foreach child [$tree descendants $node] { set _tag [getFromTree $tree $child tag] set _attr [getFromTree $tree $child attributes] set _text [getFromTree $tree $child text] attr2array_ _arr $_attr switch -exact -- $_tag { var - col - row { append Data(vars) "$_arr(name), " } dimension { append Data(dims) "${_arr(name)}(i), " } status - "default" - info - see { set Data($_tag) [formatString $_text] } } } if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- if { $tag != "dimensiongroup" } { printf [labelMsg [format "%-${var_chars}s" Variables:] [string trim $Data(vars) {, }]]\n } else { printf [labelMsg [format "%-${var_chars}s" Variables:] "${Data(dims)}i=[arr start],[arr end]"]\n } printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] foreach field {default status see info} { if { [info exists Data($field)] } { if { $field != "info" } { set label [string totitle $field]: } else { set label Description: } printf [labelMsg [format "%-${var_chars}s" $label] $Data($field)] } } } } } } switch -exact -- $tag { list { if { ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { set vars [getDescendantText $tree $node format] printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" Variables:] $vars]\n printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] } } if { $tag == "var" && [::tclu::lpresent $mode syntax] } { syntaxAppend [arr name] } } format { if { [::tclu::lpresent $mode syntax] } { syntaxAppend $content } } table { } rows { if { [::tclu::lpresent $mode syntax] } { set rows(start) [arr start] set rows(end) [arr end] lappend mode rows } } cols { if { [::tclu::lpresent $mode syntax] } { set cols(start) [arr start] set cols(end) [arr end] lappend mode cols } } rowgroup { set rowgroup 1 } colgroup { set colgroup 1 } col { if { [::tclu::lpresent $mode rows] } { append rows(line) "[arr name] " } } row { if { [::tclu::lpresent $mode cols] } { append cols(vline) "[arr name] " } } optional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__optional::begin__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__optional::begin__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\{" } } conditional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__conditional::begin__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__conditional::begin__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\[" } } group { # todo printf ///--- incr txtDepth } namelist { printf ======================================================================== printf "NAMELIST: &[arr name]\n" incr txtDepth } card { if { ! [::tclu::lpresent $mode card] } { lappend mode card set flags [getDescendantText $tree $node flag enum] set use [getDescendantAttribute $tree $node flag use] if { $use == "optional" } { set flag "{ $flags }" } else { set flag "$flags" } set card(name) [arr name] set card(flag) $flag set nameless [arr nameless] switch -- [string tolower $nameless] { 1 - true - yes - .true. { set card(name) "" } } printf ======================================================================== printf "CARD: $card(name) $flag\n" incr txtDepth # first parse subtree in syntax mode txt_subtree $tree $node syntax # now parse subtree in description mode printf "DESCRIPTION OF ITEMS:\n" incr txtDepth txt_subtree $tree $node description incr txtDepth -2 printf "===END OF CARD==========================================================\n\n" ::tclu::lpop mode ::struct::tree::prune } } linecard { if { ! [::tclu::lpresent $mode card] } { lappend mode card set card(name) "" set card(flag) "" printf ======================================================================== printf "Line of input:\n" incr txtDepth # first parse subtree in syntax mode incr txtDepth txt_subtree $tree $node syntax incr txtDepth -1 printf \n # now parse subtree in description mode printf "DESCRIPTION OF ITEMS:\n" incr txtDepth txt_subtree $tree $node description incr txtDepth -2 printf "===End of line-of-input=================================================\n\n" ::tclu::lpop mode ::struct::tree::prune } } flag { if { ! [::tclu::lpresent $mode syntax] } { printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" "Card's flags:"] $card(flag)]\n } } enum { # nothing } syntax { if { [::tclu::lpresent $mode syntax] } { set _flags [arr flag] if { $_flags == "" } { set flags $card(flag) } else { set flags $_flags } printf "/////////////////////////////////////////" printf "// Syntax: //" printf "/////////////////////////////////////////\n" incr txtDepth if { $card(name) != "" } { printf "$card(name) $flags" } incr txtDepth } } line { # nothing ?? } if { if { ! [::tclu::lpresent $mode description] } { printf "* IF [arr test] : \n" incr txtDepth } } choose { if { ! [::tclu::lpresent $mode description] } { printf ________________________________________________________________________ } } when { if { ! [::tclu::lpresent $mode description] } { printf "* IF [arr test] : \n" incr txtDepth } } elsewhen { if { ! [::tclu::lpresent $mode description] } { printf "* ELSE IF [arr test] : \n" incr txtDepth } } otherwise { if { ! [::tclu::lpresent $mode description] } { printf "* ELSE : \n" incr txtDepth } } } # some text structure stuff switch -exact -- $tag { section { printf "\n:::: [arr title]\n" incr txtDepth } subsection { printf "\n::: [arr title]\n" incr txtDepth } subsubsection { printf "\n:: [arr title]\n" incr txtDepth } paragraph { printf "* [arr title]\n" } text { printf $content\n } }espresso-5.0.2/dev-tools/helpdoc.d/syntax_txt.tcl0000644000700200004540000001334512053145634021076 0ustar marsamoscm proc ::helpdoc::syntaxAppend {txt} { variable syntax if { [info exists syntax(count)] } { append syntax(txt) " " } else { set syntax(count) 0 } append syntax(txt) $txt incr syntax(count) } proc ::helpdoc::syntaxFlush {} { variable syntax variable fid if { [info exists syntax] } { printf $syntax(txt) unset syntax } } proc ::helpdoc::manageRow {{add 0}} { variable rows set diff -1 if { [string is integer $rows(start)] && [string is integer $rows(end)] } { set diff [expr $rows(end) - $rows(start)] } if { $diff > 0 } { # numerical arguments ... if { $diff < $add } { return } elseif { $add == 2 } { if { $diff > $add } { append rows(text) ". . .\n" } manageRow_ $rows(end) } else { manageRow_ [expr $rows(start) + $add] } } else { # string arguments ... if { ! [string is integer $rows(start)] } { if { $add == 0 } { set index $rows(start) } elseif { $add < 2 } { set index "$rows(start)+$add" } else { set index "$rows(end)" append rows(text) ". . .\n" } manageRow_ $index } elseif { ! [string is integer $rows(end)] } { if { $add == 0 } { set index $rows(start) } elseif { $add < 2 } { if { [string is integer $rows(start)] } { set index [expr $rows(start)+$add] } else { set index "$rows(start)+$add" } } else { set index "$rows(end)" append rows(text) ". . .\n" } manageRow_ $index } } } proc ::helpdoc::manageRow_ {index} { variable rows foreach field $rows(line) { switch -- $field { __conditional::begin__ { append rows(text) "\[ " } __conditional::end__ { append rows(text) "\] " } __optional::begin__ - __optional::end__ { append rows(text) "$field " } default { append rows(text) "${field}(${index}) " } } } append rows(text) "\n" } proc ::helpdoc::printRows {} { variable rows # scan $rows(text) for width foreach line [split $rows(text) \n] { set count 0 foreach field $line { if { $field == "__optional::begin__" } { set field \{ } if { $field == "__optional::end__" } { set field \} } set len [string length $field] if { ! [info exists max($count)] } { set max($count) $len } else { if { $len > $max($count) } { set max($count) $len } } incr count } } # now print foreach line [split $rows(text) \n] { set pl "" set count 0 foreach field $line { if { $field == "__optional::begin__" } { set field \{ } if { $field == "__optional::end__" } { set field \} } if { $field == "." } { append pl ". " } else { append pl [format "%-$max($count)s " $field] } incr count } printf ${pl} } } proc ::helpdoc::manageCol {{add 0}} { variable cols set diff -1 if { [string is integer $cols(start)] && [string is integer $cols(end)] } { set diff [expr $cols(end) - $cols(start)] } if { $diff > 0 } { # numerical arguments ... if { $diff < $add } { return } elseif { $add < 2 } { lappend cols(indices) [expr $cols(start) + $add] } elseif { $add == 2 } { if { $diff > $add } { lappend cols(indices) "..." } lappend cols(indices) $cols(end) } } else { # string arguments ... if { ! [string is integer $cols(start)] } { if { $add == 0 } { lappend cols(indices) $cols(start) } elseif { $add < 2 } { lappend cols(indices) "$cols(start)+$add" } elseif { $add == 2 } { lappend cols(indices) ... lappend cols(indices) $cols(end) } } elseif { ! [string is integer $cols(end)] } { if { $add == 0 } { lappend cols(indices) $cols(start) } elseif { $add < 2 } { lappend cols(indices) [expr $cols(start)+$add] } elseif { $add == 2 } { lappend cols(indices) ... lappend cols(indices) $cols(end) } } } } proc ::helpdoc::printCols {} { variable cols # scan for field-width set extra 0 foreach row $cols(vline) { switch -- $row { __conditional::begin__ - __optional::begin__ { incr extra continue } __conditional::end__ - __optional::end__ { continue } } set count 0 foreach ind $cols(indices) { if { ! [info exists max($count)] } { set max($count) [string length ${row}(${cols(start)})] } set _len [string length ${row}(${ind})] if { $_len > $max($count) } { set max($count) $_len } incr count } } # now print set ct "" set fie 0 set newline 0 foreach row $cols(vline) { if { $extra } { switch -- $row { __conditional::begin__ { set cbe 1 continue } __conditional::end__ { set cen 1 append ct "\] " continue } __optional::begin__ { set obe 1 continue } __optional::end__ { set oen 1 append ct "\} " continue } default { if { [info exists obe] } { incr fie } if { [info exists cbe] } { incr fie } } } } if { $newline } { append ct \n } append ct [::textutil::blank [expr ($extra - $fie) * 2]] if { [info exists obe] } { append ct "\{ " } if { [info exists cbe] } { append ct "\[ " } set count 0 foreach ind $cols(indices) { if { $ind == "..." } { append ct ". . . " } else { append ct [format "%-$max($count)s " ${row}(${ind})] } incr count } foreach var {obe oen cbe cen} { if { [info exists $var] } { unset $var } } set fie 0 set newline 1 } # must be here, if "en" is the last row ... if { [info exists oen] || [info exists cen] } { append ct \n } printf $ct } espresso-5.0.2/dev-tools/helpdoc.d/tclIndex0000644000700200004540000002013312053145634017633 0ustar marsamoscm# Tcl autoload index file, version 2.0 # This file is generated by the "auto_mkindex" command # and sourced to set up indexing information for one or # more commands. Typically each line is a command that # sets an element in the auto_index array, where the # element name is the name of a command and the value is # a script that loads the command. set auto_index(::helpdoc::gui_help::printHelp_) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::gui_help::addHelp_) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::gui_help::grouphelp) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::gui_help::help) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::checkGui_makeHelpFile) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::getFromTree) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::getDescendantNodes) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::getDescendantText) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::getDescendantAttribute) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::xml_escape_chr) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::xml_attr_escape_chr) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::xml_tag_enter) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::xml_tag_leave) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::schema::rootelement) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::element) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::attribute) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::define) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::text) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::string) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::ref) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::ident) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::optional) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::interleave) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::choice) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::ancestorElements) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::?) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::*) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::+) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::rootelement) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::element) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::attribute) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::define) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::text) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::String) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::ref) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::ident) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::optional) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::interleave) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::choice) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::ancestorElements) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::?) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::*) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::+) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::repetition_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::assignRefs_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::createTagCmds_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::parseMsg_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::parseMsgOK_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::openOutputs) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::writeOutputs) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::readSchema) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::print_xml) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::print_txt) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::process) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::tag) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::indent) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::formatString) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::trimEmpty) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::syntaxAppend) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::syntaxFlush) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::manageRow) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::manageRow_) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::printRows) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::manageCol) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::printCols) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::attrsToOpts_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::optVal2AttrVal_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::checkIdent_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::rootnameTag_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::elementTag_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::parseTagMsg_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::parseTagMsgOK_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::rbd_tag_enter) [list source [file join $dir robodoc.tcl]] set auto_index(::helpdoc::rbd_tag_leave) [list source [file join $dir robodoc.tcl]] set auto_index(::helpdoc::attr2array_) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::printf) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::printfNormalize) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::labelMsg) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::arr) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_tag_enter) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_tag_leave) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_subtree) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_subtree_print) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::printableVarDescription) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::checkMsg) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::checkGui_def_vs_module) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::checkGui_module_vs_def) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_loadDef) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_checkExistance_) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_registerItem_) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_addToItemList__) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_getItemName) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_getItemLowercaseName) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_registerItems) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::module_getItemName_) [list source [file join $dir gui.tcl]] espresso-5.0.2/dev-tools/helpdoc.d/gui.tcl0000644000700200004540000001535012053145634017433 0ustar marsamoscm# # This file holds procs for checking the PWgui's modules against the # INPUT_*.def files (and vice versa) # proc ::helpdoc::checkMsg {type msg} { puts [labelMsg ${type}: $msg]\n } proc ::helpdoc::checkGui_def_vs_module {} { variable def_item variable def_itemL puts { ------------------------------------- *** Checking DEF vs MODULE file *** ------------------------------------- } foreach {name lowercase_name} $def_itemL { set def_type $def_item($name) switch -- $def_type { card { set def_mapping_type keyword } listvar - list { set def_mapping_type var set name [string trim $name ,] } default { set def_mapping_type "" } } if { [info exists ::guib::moduleObj::module_item($name)] } { set module_type $::guib::moduleObj::module_item($name) if { $def_type != $module_type } { # take care of guib vs. helpdoc mappings if { $def_mapping_type != $module_type } { set warning 1 # handle exceptions switch -glob -- $name { first_image - intermediate_image - last_image { if { $::module == "pw" } { # Don't report errors connected to: atomic_coordinates ... set warning 0 } } } if { $warning } { checkMsg WARNING "Type mismatch for item=$name.\n\tDef's type = $def_type\n\tModule's type = $module_type" } } } } else { set module_name [module_getItemName_ $name] if { $module_name != "" } { checkMsg WARNING "case-sensitivity mismatch for item $def_type $name.\n\tDef's name = $name (type=$def_type)\n\tModule's name = $module_name (type=$module_type)" } else { set error 1 # handle exceptions switch -glob -- $name { nwfts - test_wfs { if { $::module == "atomic" } { # Don't report errors connected to: atomic_coordinates ... set error 0 } } } if { $error } { checkMsg ERROR "$def_type $name does not exists in MODULE file" } } } } } proc ::helpdoc::checkGui_module_vs_def {} { variable def_item variable def_itemL puts { ------------------------------------- *** Checking MODULE vs DEF file *** ------------------------------------- } foreach {name lowercase_name} $::guib::moduleObj::module_itemL { set module_type $::guib::moduleObj::module_item($name) if { [info exists def_item($name)] } { set def_type $def_item($name) if { $def_type != $module_type } { # take care of guib vs. helpdoc mappings switch -- $def_type { card { set def_mapping_type keyword } listvar { set def_mapping_type var set name [string trim $name ,] } default { set def_mapping_type "" } } if { $def_mapping_type != $module_type } { # handle exceptions set warning 1 switch -glob -- $name { first_image - intermediate_image - last_image { if { $::module == "pw" } { # Don't report errors connected to: atomic_coordinates for pw.x ... set warning 0 } } } if { $warning } { checkMsg WARNING "Type mismatch for item=$name.\n\tModule's type = $module_type\n\tDef's type = $def_type" } } } } else { set def_name [def_getItemName $name] if { $def_name != "" } { checkMsg WARNING "case-sensitivity mismatch for item $def_type $name.\n\tModule's name = $name (type=$module_type)\n\tDef's name = $def_name (type=$def_type)" } else { # handle exceptions set error 1 switch -glob -- $name { atomic_coordinates_* - first_image - intermediate_image - last_image { if { $::module == "pw" } { # Don't report errors connected to: atomic_coordinates ... set error 0 } } nwfts_* - test_wfs_* { if { $::module == "atomic" } { set error 0 } } } if { $error } { checkMsg ERROR "$module_type $name does not exists in DEF file" } } } } } # # DEF's related proc's # proc ::helpdoc::def_loadDef {file} { variable tree variable def_item variable def_itemL if { [info exists def_item] } { unset def_item } if { [info exists def_itemL] } { unset def_itemL } # first read the schema (and load tag's commands) readSchema # now read the file namespace eval tag [list source $file] $tree walkproc root -order pre helpdoc::def_registerItems return $tree } proc ::helpdoc::def_checkExistance_ {tag name} { variable def_item set lowercase_name [string tolower $name] if { [info exists def_item(name,$lowercase_name)] } { puts [labelMsg WARNING: "item $name already exists (old-tag=$def_item(tag,$lowercase_name), new-tag=$tag).\nAutomatic checking is not reliable, please check item, $name, manually."] } } proc ::helpdoc::def_registerItem_ {tag name} { variable def_item variable def_itemL def_checkExistance_ $tag $name set lowercase_name [string tolower $name] set def_item($name) $tag append def_itemL "[def_addToItemList__ $name] " } proc ::helpdoc::def_addToItemList__ {name} { set lowercase_name [string tolower $name] return [list $name $lowercase_name] } proc ::helpdoc::def_getItemName {name} { variable def_itemL set lowercase_name [string tolower $name] foreach {Name LowercaseName} $def_itemL { if { $LowercaseName == $lowercase_name } { return $Name } } return {} } proc ::helpdoc::def_getItemLowercaseName {name} { set lowercase_name [string tolower $name] foreach {Name LowercaseName} $def_itemL { if { $LowercaseName == $lowercase_name } { return $lowercase_name } } return {} } proc ::helpdoc::def_registerItems {tree node action} { variable def_item variable def_itemL variable arr set tag [$tree get $node tag] set attr [getFromTree $tree $node attributes] attr2array_ arr $attr set name [arr name] set lowercase_name [string tolower $name] switch -- $tag { var - keyword - dimension - namelist - table { def_registerItem_ $tag $name } list { def_registerItem_ $tag $name set names [getDescendantText $tree $node format] foreach name $names { def_registerItem_ listvar $name } } card { set nameless [arr nameless] switch -- [string tolower $nameless] { 1 - true - yes - .true. { set name "" } } if { $name != "" } { def_registerItem_ $tag $name } } } } # # guib-MODULE's related procs # proc ::helpdoc::module_getItemName_ {name} { set lowercase_name [string tolower $name] foreach {Name LowercaseName} $::guib::moduleObj::module_itemL { if { $LowercaseName == $lowercase_name } { return $Name } } return {} } espresso-5.0.2/dev-tools/callhtml.pl0000755000700200004540000000554412053145634016447 0ustar marsamoscm#!/usr/bin/perl -w use strict; { # $basedir is directory where this script is my $basedir = $0; $basedir =~ s/(.*)\/.*/$1/; my @sources = split(/ /, `echo $basedir/*/*.f90`); # grab program, function and subroutine declarations my (%place, %fname, %pname, %sname); foreach my $file (@sources) { open(IN, "$file"); while () { $_ = "\L$_"; # cast everything to lowercase if (/^[^!'""']*\bfunction\s+(\w+)/o && ! /^\s*end\s+function\b/o) { $fname{$1} = 1; insert_place(\%place, $1, $file); } elsif (/^\s*program\s+(\w+)/o) { $pname{$1} = 1; insert_place(\%place, $1, $file); } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { $sname{$1} = 1; insert_place(\%place, $1, $file); } } close(IN); } my @targets = sort keys %place; my @programs = sort keys %pname; my @functions = sort keys %fname; # html preamble print "\n"; print "\n"; print "\n"; # list of programs print "
    \n"; print "
    list of programs:
    \n"; print "

    \n"; foreach my $program (@programs) { print " $program\n"; } print "

    \n"; print "
    \n"; print "\n"; # list of all routines print "
    \n"; foreach my $name (@targets) { print "
    "; if (defined $pname{$name}) { print "program "; } elsif (defined $sname{$name}) { print "subroutine "; } elsif (defined $fname{$name}) { print "function "; } print "$name
    \n"; my %cname; my @files = split(/ /, $place{$name}); foreach my $file (@files) { print "

    defined in file: $file
    \n"; print " calls:\n"; my $current = ""; open(IN, $file); while () { $_ = "\L$_"; if (/^\s*program\s+(\w+)/o) { $current = "$1"; } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { $current = "$1"; } elsif (/^[^!'""']*\bfunction\s+(\w+)/o) { $current = "$1"; } # here we are inside the relevant program/subroutine/function elsif ($current eq $name) { # subroutine calls if (/^\s*call\s+(\w+)/o) { $cname{$1} = 1; } # function calls foreach my $fun (@functions) { if ($fun ne $name && /^[^!'""']*\b$fun\b/) { $cname{$fun} = 1; } } } } close(IN); my @calls = sort keys %cname; foreach my $call (@calls) { print " $call\n"; } print "

    \n"; } } print "
    \n"; # html postamble print "\n"; print "\n"; print "\n"; } sub insert_place { my ($place, $name, $file) = @_; if (defined $$place{$name}) { $$place{$name} = "$$place{$name} $file"; } else { $$place{$name} = "$file"; } } espresso-5.0.2/dev-tools/src-normal0000755000700200004540000000047012053145634016303 0ustar marsamoscm#!/bin/bash TOOLDIR=$(dirname $0) if [[ $# == 0 ]] ; then fnames=$(for suffix in f90 ; do find -type f -name "*.$suffix" ; done) else fnames=$* fi for f in $fnames ; do mv $f $f.orig cat $f.orig |\ python $TOOLDIR/src-normal.py |\ cat > $f diff -q $f $f.orig && mv $f.orig $f done espresso-5.0.2/dev-tools/README.helpdoc0000644000700200004540000001000212053145634016565 0ustar marsamoscm --------------------------------- *** README file for HELPDOC *** --------------------------------- 1. HELPDOC PURPOSE Short: transform INPUT_*.def into INPUT_*.xml|html|txt HELPDOC is a small utility (located in ../dev-tools/) that transforms INPUT_*.def files into INPUT_*.txt and INPUT_*.xml files, and the latter are accordingly transformed into HTML format. The idea is to enhance/replace the plain ascii descriptions of input file syntax (i.e. INPUT_* files) with more structured and descriptive format yielding an enhanced documentation + better input syntax definition. -- 2. SOFTWARE REQUIREMENTS Helpdoc depends on tclsh, tcllib, and xsltproc. For example, to install these packages in GNU/Linux Debian-based distributions, execute as root (or sudo): apt-get install tcl tcllib xsltproc or, on RedHat-based distributions, the analogous command yum install tcl tcllib xsltproc -- 3. SYNTAX OF *.def FILES Perhaps the first choice for a markup would be XML, yet its markup is not very practical from typing point of view. Therefore *.def files use a markup that involves less typing (i.e. like wiki's use more practical markup than HTML). Consider an XML example: 1.0D-4 convergence threshold on total energy (a.u) for ionic ... The DEF markup (*.def) is more compact---involves less syntactic sugar---but is otherwise equally well-defined: var etot_conv_thr -type REAL { default { 1.0D-4 } info { convergence threshold on total energy (a.u) for ionic ... } } Full correspondence between XML and DEF markup is: XML: ... DEF: element -attribute value { ... } Technically, DEF files are Tcl-scripts (hence they use the Tcl syntax). 3.1 Differences between DEF and XML: * some elements must have a name attribute (e.g. variable and namelist must always have a name). For such elements the markup is simplified from "element -name ident ..." to "element ident ..." (i.e. -name is skipped). * attributes must be specified on a single line: # this is OK elem1 -attr1 value1 -attr2 value2 { ... } # this is BAD elem1 -attr1 value1 -attr2 value2 { ... } # but this is OK (because of line-continuation character "\") elem1 -attr1 value1 \ -attr2 value2 { ... } * separator between elements is either newline character or semicolon (;). E.g.: # this is OK element1 -attribute1 value1 { ... }; element2 -attribute2 value2 { ... } # this is BAD element1 -attribute1 value1 { ... } element2 -attribute2 value2 { ... } # this is OK element1 -attribute1 value1 { ... } element2 -attribute2 value2 { ....} The DEF markup (elements and attributes) is defined in file ./helpdoc.schema (which uses its own schema language that was inspired by RELAX NG schema language). Making use of an element and/or attribute in *.def files which is not defined in helpdoc.schema file, will produce an error during def-->xml conversion (otherwise the helpdoc is not a full validator). -- 4. HOW IT ALL WORKS To transform INPUT_*.def file to INPUT_*.xml and INPUT_*.html file, execute either: ../dev-tools/helpdoc INPUT_whatever.def or simply: make INPUT_whatever.html To convert all *.def to *.html files, use: make helpdoc During execution, the helpdoc transforms the *.def file into *.xml file and calls the xsltproc program that transforms the latter into *.html file. The instructions for doing that are provided by an XSL stylesheet (file: ./input_xx.xsl). 5. TO DO ... Put here more descriptions on the markup ... espresso-5.0.2/upftools/0000755000700200004540000000000012053440273014233 5ustar marsamoscmespresso-5.0.2/upftools/casino_pp.f900000644000700200004540000004153212053145633016535 0ustar marsamoscm MODULE casino_pp ! ! All variables read from CASINO file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! USE kinds, ONLY : dp CHARACTER(len=20) :: dft_ CHARACTER(len=2) :: psd_ REAL(dp) :: zp_ INTEGER nlc, nnl, lmax_, lloc, nchi, rel_ LOGICAL :: numeric, bhstype, nlcc_ CHARACTER(len=2), ALLOCATABLE :: els_(:) REAL(dp) :: zmesh REAL(dp) :: xmin = -7.0_dp REAL(dp) :: dx = 20.0_dp/1500.0_dp REAL(dp) :: tn_prefac = 0.75E-6_dp LOGICAL :: tn_grid = .true. REAL(dp), ALLOCATABLE:: r_(:) INTEGER :: mesh_ REAL(dp), ALLOCATABLE:: vnl(:,:) INTEGER, ALLOCATABLE:: lchi_(:), nns_(:) REAL(dp), ALLOCATABLE:: chi_(:,:), oc_(:) CONTAINS ! ! ---------------------------------------------------------- SUBROUTINE read_casino(iunps,nofiles, waveunit) ! ---------------------------------------------------------- ! ! Reads in a CASINO tabulated pp file and it's associated ! awfn files. Some basic processing such as removing the ! r factors from the potentials is also performed. USE kinds, ONLY : dp IMPLICIT NONE TYPE :: wavfun_list INTEGER :: occ,eup,edwn, nquant, lquant CHARACTER(len=2) :: label #ifdef __STD_F95 REAL(dp), POINTER :: wavefunc(:) #else REAL(dp), ALLOCATABLE :: wavefunc(:) #endif TYPE (wavfun_list), POINTER :: p END TYPE wavfun_list TYPE :: channel_list INTEGER :: lquant #ifdef __STD_F95 REAL(dp), POINTER :: channel(:) #else REAL(dp), ALLOCATABLE :: channel(:) #endif TYPE (channel_list), POINTER :: p END TYPE channel_list TYPE (channel_list), POINTER :: phead TYPE (channel_list), POINTER :: pptr TYPE (channel_list), POINTER :: ptail TYPE (wavfun_list), POINTER :: mhead TYPE (wavfun_list), POINTER :: mptr TYPE (wavfun_list), POINTER :: mtail INTEGER :: iunps, nofiles, ios ! LOGICAL :: groundstate, found CHARACTER(len=2) :: label, rellab INTEGER :: l, i, ir, nb, gsorbs, j,k,m,tmp, lquant, orbs, nquant INTEGER, ALLOCATABLE :: gs(:,:) INTEGER, INTENT(in) :: waveunit(nofiles) NULLIFY ( mhead, mptr, mtail ) dft_ = 'HF' !Hardcoded at the moment should eventually be HF anyway nlc = 0 !These two values are always 0 for numeric pps nnl = 0 !so lets just hard code them nlcc_ = .false. !Again these two are alwas false for CASINO pps bhstype = .false. READ(iunps,'(a2,35x,a2)') rellab, psd_ READ(iunps,*) IF ( rellab == 'DF' ) THEN rel_=1 ELSE rel_=0 ENDIF READ(iunps,*) zmesh,zp_ !Here we are reading zmesh (atomic #) and DO i=1,3 !zp_ (pseudo charge) READ(iunps,*) ENDDO READ(iunps,*) lloc !reading in lloc IF ( zp_<=0d0 ) & CALL errore( 'read_casino','Wrong zp ',1 ) IF ( lloc>3.or.lloc<0 ) & CALL errore( 'read_casino','Wrong lloc ',1 ) ! ! compute the radial mesh ! DO i=1,3 READ(iunps,*) ENDDO READ(iunps,*) mesh_ !Reading in total no. of mesh points ALLOCATE( r_(mesh_)) READ(iunps,*) DO i=1,mesh_ READ(iunps,*) r_(i) ENDDO ! Read in the different channels of V_nl ALLOCATE(phead) ptail => phead pptr => phead ALLOCATE( pptr%channel(mesh_) ) READ(iunps, '(15x,I1,7x)') l pptr%lquant=l READ(iunps, *) (pptr%channel(ir),ir=1,mesh_) DO READ(iunps, '(15x,I1,7x)', IOSTAT=ios) l IF (ios /= 0 ) THEN exit ENDIF ALLOCATE(pptr%p) pptr=> pptr%p ptail=> pptr ALLOCATE( pptr%channel(mesh_) ) pptr%lquant=l READ(iunps, *) (pptr%channel(ir),ir=1,mesh_) ENDDO !Compute the number of channels read in. lmax_ =-1 pptr => phead DO IF ( .not. associated(pptr) )exit lmax_=lmax_+1 pptr =>pptr%p ENDDO ALLOCATE(vnl(mesh_,0:lmax_)) i=0 pptr => phead DO IF ( .not. associated(pptr) )exit ! lchi_(i) = pptr%lquant DO ir=1,mesh_ vnl(ir,i) = pptr%channel(ir) ENDDO DEALLOCATE( pptr%channel ) pptr =>pptr%p i=i+1 ENDDO !Clean up the linked list (deallocate it) DO IF ( .not. associated(phead) )exit pptr => phead phead => phead%p DEALLOCATE( pptr ) ENDDO DO l = 0, lmax_ DO ir = 1, mesh_ vnl(ir,l) = vnl(ir,l)/r_(ir) !Removing the factor of r CASINO has ENDDO ! correcting for possible divide by zero IF ( r_(1) == 0 ) THEN vnl(1,l) = 0 ENDIF ENDDO ALLOCATE(mhead) mtail => mhead mptr => mhead NULLIFY(mtail%p) groundstate=.true. DO j=1,nofiles DO i=1,4 READ(waveunit(j),*) ENDDO READ(waveunit(j),*) orbs IF ( groundstate ) THEN ALLOCATE( gs(orbs,3) ) gs = 0 gsorbs = orbs ENDIF DO i=1,2 READ(waveunit(j),*) ENDDO READ(waveunit(j),*) mtail%eup, mtail%edwn READ(waveunit(j),*) DO i=1,mtail%eup+mtail%edwn READ(waveunit(j),*) tmp, nquant, lquant IF ( groundstate ) THEN found = .true. DO m=1,orbs IF ( (nquant==gs(m,1) .and. lquant==gs(m,2)) ) THEN gs(m,3) = gs(m,3) + 1 exit ENDIF found = .false. ENDDO IF (.not. found ) THEN DO m=1,orbs IF ( gs(m,1) == 0 ) THEN gs(m,1) = nquant gs(m,2) = lquant gs(m,3) = 1 exit ENDIF ENDDO ENDIF ENDIF ENDDO READ(waveunit(j),*) READ(waveunit(j),*) DO i=1,mesh_ READ(waveunit(j),*) ENDDO DO k=1,orbs READ(waveunit(j),'(13x,a2)', err=300) label READ(waveunit(j),*) tmp, nquant, lquant IF ( .not. groundstate ) THEN found = .false. DO m = 1,gsorbs IF ( nquant == gs(m,1) .and. lquant == gs(m,2) ) THEN found = .true. exit ENDIF ENDDO mptr => mhead DO IF ( .not. associated(mptr) )exit IF ( nquant == mptr%nquant .and. lquant == mptr%lquant ) found = .true. mptr =>mptr%p ENDDO IF ( found ) THEN DO i=1,mesh_ READ(waveunit(j),*) ENDDO CYCLE ENDIF ENDIF #ifdef __STD_F95 IF ( associated(mtail%wavefunc) ) THEN #else IF ( allocated(mtail%wavefunc) ) THEN #endif ALLOCATE(mtail%p) mtail=>mtail%p NULLIFY(mtail%p) ALLOCATE( mtail%wavefunc(mesh_) ) ELSE ALLOCATE( mtail%wavefunc(mesh_) ) ENDIF mtail%label = label mtail%nquant = nquant mtail%lquant = lquant READ(waveunit(j), *, err=300) (mtail%wavefunc(ir),ir=1,mesh_) ENDDO groundstate = .false. ENDDO nchi =0 mptr => mhead DO IF ( .not. associated(mptr) )exit nchi=nchi+1 mptr =>mptr%p ENDDO ALLOCATE(lchi_(nchi), els_(nchi), nns_(nchi)) ALLOCATE(oc_(nchi)) ALLOCATE(chi_(mesh_,nchi)) oc_ = 0 !Sort out the occupation numbers DO i=1,gsorbs oc_(i)=gs(i,3) ENDDO DEALLOCATE( gs ) i=1 mptr => mhead DO IF ( .not. associated(mptr) )exit nns_(i) = mptr%nquant lchi_(i) = mptr%lquant els_(i) = mptr%label DO ir=1,mesh_ chi_(ir:,i) = mptr%wavefunc(ir) ENDDO DEALLOCATE( mptr%wavefunc ) mptr =>mptr%p i=i+1 ENDDO !Clean up the linked list (deallocate it) DO IF ( .not. associated(mhead) )exit mptr => mhead mhead => mhead%p DEALLOCATE( mptr ) ENDDO ! ---------------------------------------------------------- WRITE (0,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- RETURN 300 CALL errore('read_casino','pseudo file is empty or wrong',1) END SUBROUTINE read_casino ! ---------------------------------------------------------- SUBROUTINE convert_casino(upf_out) ! ---------------------------------------------------------- USE kinds, ONLY : dp USE upf_module USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, & get_igcx, get_igcc IMPLICIT NONE TYPE(pseudo_upf), INTENT(inout) :: upf_out REAL(dp), ALLOCATABLE :: aux(:) REAL(dp) :: vll INTEGER :: kkbeta, l, iv, ir, i, nb WRITE(upf_out%generated, '("From a Trail & Needs tabulated & &PP for CASINO")') WRITE(upf_out%author,'("unknown")') WRITE(upf_out%date,'("unknown")') upf_out%comment = 'Info: automatically converted from CASINO & &Tabulated format' IF (rel_== 0) THEN upf_out%rel = 'no' ELSEIF (rel_==1 ) THEN upf_out%rel = 'scalar' ELSE upf_out%rel = 'full' ENDIF IF (xmin == 0 ) THEN xmin= log(zmesh * r_(2) ) ENDIF ! Allocate and assign the raidal grid upf_out%mesh = mesh_ upf_out%zmesh = zmesh upf_out%dx = dx upf_out%xmin = xmin ALLOCATE(upf_out%rab(upf_out%mesh)) ALLOCATE( upf_out%r(upf_out%mesh)) upf_out%r = r_ DEALLOCATE( r_ ) upf_out%rmax = maxval(upf_out%r) ! ! subtract out the local part from the different ! potential channels ! DO l = 0, lmax_ IF ( l/=lloc ) vnl(:,l) = vnl(:,l) - vnl(:,lloc) ENDDO ALLOCATE (upf_out%vloc(upf_out%mesh)) upf_out%vloc(:) = vnl(:,lloc) ! Compute the derivatives of the grid. The Trail and Needs ! grids use r(i) = (tn_prefac / zmesh)*( exp(i*dx) - 1 ) so ! must be treated differently to standard QE grids. IF ( tn_grid ) THEN DO ir = 1, upf_out%mesh upf_out%rab(ir) = dx * ( upf_out%r(ir) + tn_prefac / zmesh ) ENDDO ELSE DO ir = 1, upf_out%mesh upf_out%rab(ir) = dx * upf_out%r(ir) ENDDO ENDIF ! ! compute the atomic charges ! ALLOCATE (upf_out%rho_at(upf_out%mesh)) upf_out%rho_at(:) = 0.d0 DO nb = 1, nchi IF( oc_(nb)/=0.d0) THEN upf_out%rho_at(:) = upf_out%rho_at(:) +& & oc_(nb)*chi_(:,nb)**2 ENDIF ENDDO ! This section deals with the pseudo wavefunctions. ! These values are just given directly to the pseudo_upf structure upf_out%nwfc = nchi ALLOCATE( upf_out%oc(upf_out%nwfc), upf_out%epseu(upf_out%nwfc) ) ALLOCATE( upf_out%lchi(upf_out%nwfc), upf_out%nchi(upf_out%nwfc) ) ALLOCATE( upf_out%els(upf_out%nwfc) ) ALLOCATE( upf_out%rcut_chi(upf_out%nwfc) ) ALLOCATE( upf_out%rcutus_chi (upf_out%nwfc) ) DO i=1, upf_out%nwfc upf_out%nchi(i) = nns_(i) upf_out%lchi(i) = lchi_(i) upf_out%rcut_chi(i) = 0.0d0 upf_out%rcutus_chi(i)= 0.0d0 upf_out%oc (i) = oc_(i) upf_out%els(i) = els_(i) upf_out%epseu(i) = 0.0d0 ENDDO DEALLOCATE (lchi_, oc_, nns_) upf_out%psd = psd_ upf_out%typ = 'NC' upf_out%nlcc = nlcc_ upf_out%zp = zp_ upf_out%etotps = 0.0d0 upf_out%ecutrho=0.0d0 upf_out%ecutwfc=0.0d0 upf_out%lloc=lloc IF ( lmax_ == lloc) THEN upf_out%lmax = lmax_-1 ELSE upf_out%lmax = lmax_ ENDIF upf_out%nbeta = lmax_ ALLOCATE ( upf_out%els_beta(upf_out%nbeta) ) ALLOCATE ( upf_out%rcut(upf_out%nbeta) ) ALLOCATE ( upf_out%rcutus(upf_out%nbeta) ) upf_out%rcut=0.0d0 upf_out%rcutus=0.0d0 upf_out%dft =dft_ IF (upf_out%nbeta > 0) THEN ALLOCATE(upf_out%kbeta(upf_out%nbeta), upf_out%lll(upf_out%nbeta)) upf_out%kkbeta=upf_out%mesh DO ir = 1,upf_out%mesh IF ( upf_out%r(ir) > upf_out%rmax ) THEN upf_out%kkbeta=ir exit ENDIF ENDDO ! make sure kkbeta is odd as required for simpson IF(mod(upf_out%kkbeta,2) == 0) upf_out%kkbeta=upf_out%kkbeta-1 upf_out%kbeta(:) = upf_out%kkbeta ALLOCATE(aux(upf_out%kkbeta)) ALLOCATE(upf_out%beta(upf_out%mesh,upf_out%nbeta)) ALLOCATE(upf_out%dion(upf_out%nbeta,upf_out%nbeta)) upf_out%dion(:,:) =0.d0 iv=0 DO i=1,upf_out%nwfc l=upf_out%lchi(i) IF (l/=upf_out%lloc) THEN iv=iv+1 upf_out%els_beta(iv)=upf_out%els(i) upf_out%lll(iv)=l DO ir=1,upf_out%kkbeta upf_out%beta(ir,iv)=chi_(ir,i)*vnl(ir,l) aux(ir) = chi_(ir,i)**2*vnl(ir,l) ENDDO CALL simpson(upf_out%kkbeta,aux,upf_out%rab,vll) upf_out%dion(iv,iv) = 1.0d0/vll ENDIF IF(iv >= upf_out%nbeta) exit ! skip additional pseudo wfns ENDDO DEALLOCATE (vnl, aux) ! ! redetermine ikk2 ! DO iv=1,upf_out%nbeta upf_out%kbeta(iv)=upf_out%kkbeta DO ir = upf_out%kkbeta,1,-1 IF ( abs(upf_out%beta(ir,iv)) > 1.d-12 ) THEN upf_out%kbeta(iv)=ir exit ENDIF ENDDO ENDDO ENDIF ALLOCATE (upf_out%chi(upf_out%mesh,upf_out%nwfc)) upf_out%chi = chi_ DEALLOCATE (chi_) RETURN END SUBROUTINE convert_casino SUBROUTINE write_casino_tab(upf_in, grid) USE upf_module USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid IMPLICIT NONE TYPE(pseudo_upf), INTENT(in) :: upf_in TYPE(radial_grid_type), INTENT(in) :: grid INTEGER :: i, lp1 INTEGER, EXTERNAL :: atomic_number WRITE(6,*) "Converted Pseudopotential in REAL space for ", upf_in%psd WRITE(6,*) "Atomic number and pseudo-charge" WRITE(6,"(I3,F5.2)") atomic_number( upf_in%psd ),upf_in%zp WRITE(6,*) "Energy units (rydberg/hartree/ev):" WRITE(6,*) "rydberg" WRITE(6,*) "Angular momentum of local component (0=s,1=p,2=d..)" WRITE(6,"(I2)") upf_in%lloc WRITE(6,*) "NLRULE override (1) VMC/DMC (2) config gen (0 ==> & &input/default VALUE)" WRITE(6,*) "0 0" WRITE(6,*) "Number of grid points" WRITE(6,*) grid%mesh WRITE(6,*) "R(i) in atomic units" WRITE(6, "(T4,E22.15)") grid%r(:) lp1 = size ( vnl, 2 ) DO i=1,lp1 WRITE(6, "(A,I1,A)") 'r*potential (L=',i-1,') in Ry' WRITE(6, "(T4,E22.15)") vnl(:,i) ENDDO END SUBROUTINE write_casino_tab SUBROUTINE conv_upf2casino(upf_in,grid) USE upf_module USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid IMPLICIT NONE TYPE(pseudo_upf), INTENT(in) :: upf_in TYPE(radial_grid_type), INTENT(in) :: grid INTEGER :: i, l, channels REAL(dp), PARAMETER :: offset=1E-20_dp !This is an offset added to the wavefunctions to !eliminate any divide by zeros that may be caused by !zeroed wavefunction terms. channels=upf_in%nbeta+1 ALLOCATE ( vnl(grid%mesh,channels) ) !Set up the local component of each channel DO i=1,channels vnl(:,i)=grid%r(:)*upf_in%vloc(:) ENDDO DO i=1,upf_in%nbeta l=upf_in%lll(i)+1 !Check if any wfc components have been zeroed !and apply the offset IF they have IF ( minval(abs(upf_in%chi(:,l))) /= 0 ) THEN vnl(:,l)= (upf_in%beta(:,l)/(upf_in%chi(:,l)) & *grid%r(:)) + vnl(:,l) ELSE WRITE(0,"(A,ES10.3,A)") 'Applying ',offset , ' offset to & &wavefunction to avoid divide by zero' vnl(:,l)= (upf_in%beta(:,l)/(upf_in%chi(:,l)+offset) & *grid%r(:)) + vnl(:,l) ENDIF ENDDO END SUBROUTINE conv_upf2casino END MODULE casino_pp espresso-5.0.2/upftools/write_upf.f900000644000700200004540000003561012053145633016566 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE upf ! ! All variables to be written into the UPF file ! (UPF = unified pseudopotential format, v.1) ! ! pp_info INTEGER :: rel real(8) :: rcloc INTEGER :: nwfs real(8), ALLOCATABLE :: oc(:), rcut(:), rcutus(:), epseu(:) CHARACTER(len=2), ALLOCATABLE :: els(:) INTEGER, ALLOCATABLE:: lchi (:), nns (:) ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd, pseudotype INTEGER :: nv = 0 INTEGER :: iexch, icorr, igcx, igcc INTEGER :: lmax, mesh, nbeta, ntwfc LOGICAL :: nlcc real(8) :: zp, ecutrho, ecutwfc, etotps real(8), ALLOCATABLE :: ocw(:) CHARACTER(len=2), ALLOCATABLE :: elsw(:) INTEGER, ALLOCATABLE:: lchiw(:) ! ! pp_mesh real(8), ALLOCATABLE :: r(:), rab(:) ! ! pp_nlcc real(8), ALLOCATABLE :: rho_atc(:) ! ! pp_local real(8), ALLOCATABLE :: vloc0(:) ! ! pp_nonlocal ! pp_beta real(8), ALLOCATABLE :: betar(:,:) INTEGER, ALLOCATABLE:: lll(:), ikk2(:) ! pp_dij real(8), ALLOCATABLE :: dion(:,:) ! pp_qij INTEGER :: nqf, nqlc real(8), ALLOCATABLE :: rinner(:), qqq(:,:), qfunc(:,:,:) ! pp_qfcoef real(8), ALLOCATABLE :: qfcoef(:,:,:,:) ! ! pp_pswfc real(8), ALLOCATABLE :: chi(:,:) ! ! pp_rhoatom real(8), ALLOCATABLE :: rho_at(:) END MODULE upf ! SUBROUTINE write_upf_v1(ounps) USE upf, ONLY: nlcc INTEGER :: ounps CALL write_pseudo_comment(ounps) CALL write_pseudo_header(ounps) CALL write_pseudo_mesh(ounps) IF (nlcc) CALL write_pseudo_nlcc(ounps) CALL write_pseudo_local(ounps) CALL write_pseudo_nl(ounps) CALL write_pseudo_pswfc(ounps) CALL write_pseudo_rhoatom(ounps) ! PRINT '("*** PLEASE TEST BEFORE USING!!! ***")' PRINT '("review the content of the PP_INFO fields")' ! END SUBROUTINE write_upf_v1 ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_comment (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the comments of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps INTEGER :: nb, ios WRITE (ounps, '(a9)', err = 100, iostat = ios) "" WRITE (ounps, '(a)', err = 100, iostat = ios) generated WRITE (ounps, '(a)', err = 100, iostat = ios) date_author WRITE (ounps, '(a)', err = 100, iostat = ios) comment IF (rel==2) THEN WRITE (ounps, '(i5,t14,a)', err = 100, iostat = ios) rel,& &"The Pseudo was generated with a Full-Relativistic Calculation" ELSEIF (rel==1) THEN WRITE (ounps, '(i5,t14,a)', err = 100, iostat = ios) rel,& &"The Pseudo was generated with a Scalar-Relativistic Calculation" ELSEIF (rel==0) THEN WRITE (ounps, '(i5,t14,a)', err = 100, iostat = ios) rel, & & "The Pseudo was generated with a Non-Relativistic Calculation" ENDIF IF (rcloc > 0.d0) & WRITE (ounps, '(1pe19.11,t24,a)', err = 100, iostat = ios) & rcloc, "Local Potential cutoff radius" IF (nwfs>0) & WRITE (ounps, '(a2,2a3,a6,3a19)', err = 100, iostat = ios) "nl", & &" pn", "l", "occ", "Rcut", "Rcut US", "E pseu" DO nb = 1, nwfs WRITE (ounps, '(a2,2i3,f6.2,3f19.11)') els (nb) , nns (nb) , & lchi (nb) , oc (nb) , rcut (nb) , rcutus (nb) , epseu(nb) ENDDO WRITE (ounps, '(a10)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_comment: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_comment ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_header (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the header of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! CHARACTER (len=4) :: shortname CHARACTER (len=20):: dft INTEGER :: nb, ios ! ! WRITE (ounps, '(//a11)', err = 100, iostat = ios) "" WRITE (ounps, '(t3,i2,t24,a)', err = 100, iostat = ios) nv, & "Version Number" WRITE (ounps, '(t3,a,t24,a)', err = 100, iostat = ios) psd , & "Element" IF (pseudotype == 'NC') THEN WRITE (ounps, '(a5,t24,a)', err = 100, iostat = ios) "NC", & "Norm - Conserving pseudopotential" ELSEIF (pseudotype == 'US') THEN WRITE (ounps, '(a5,t24,a)', err = 100, iostat = ios) "US", & "Ultrasoft pseudopotential" ELSE WRITE(6,'("write_pseudo_header: unknown PP type ",A)') pseudotype STOP ENDIF WRITE (ounps, '(l5,t24,a)', err = 100, iostat = ios) nlcc , & "Nonlinear Core Correction" CALL dftname (iexch, icorr, igcx, igcc, dft, shortname) WRITE (ounps, '(a,t24,a4,a)', err = 100, iostat = ios) & dft, shortname," Exchange-Correlation functional" WRITE (ounps, '(f17.11,t24,a)') zp , "Z valence" WRITE (ounps, '(f17.11,t24,a)') etotps, "Total energy" WRITE (ounps, '(2f11.5,t24,a)') ecutwfc, ecutrho, & "Suggested cutoff for wfc and rho" WRITE (ounps, '(i5,t24,a)') lmax, "Max angular momentum component" WRITE (ounps, '(i5,t24,a)') mesh, "Number of points in mesh" WRITE (ounps, '(2i5,t24,a)', err = 100, iostat = ios) ntwfc, & nbeta , "Number of Wavefunctions, Number of Projectors" WRITE (ounps, '(a,t24,a2,a3,a6)', err = 100, iostat = ios) & " Wavefunctions", "nl", "l", "occ" DO nb = 1, ntwfc WRITE (ounps, '(t24,a2,i3,f6.2)') elsw(nb), lchiw(nb), ocw(nb) ENDDO !---> End header writing WRITE (ounps, '(a12)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_header: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_mesh (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the atomic charge density to the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios ! WRITE (ounps, '(//a9)', err = 100, iostat = ios) "" WRITE (ounps, '(t3,a6)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) (r(ir), ir=1,mesh ) WRITE (ounps, '(t3,a7)', err = 100, iostat = ios) "" WRITE (ounps, '(t3,a8)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) (rab(ir), ir=1,mesh ) WRITE (ounps, '(t3,a9)', err = 100, iostat = ios) "" WRITE (ounps, '(a10)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_mesh: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_nlcc (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the core charge for the nonlinear core ! correction of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios WRITE (ounps, '(//a9)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( rho_atc(ir), ir = 1, mesh ) WRITE (ounps, '(a10)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_nlcc: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_local (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the local part of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios WRITE (ounps, '(//a10)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( vloc0(ir), ir = 1, mesh ) WRITE (ounps, '(a11)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_local: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_nl (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the non local part of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: nb, mb, n, ir, nd, i, lp, ios WRITE (ounps, '(//a13)', err = 100, iostat = ios) "" DO nb = 1, nbeta WRITE (ounps, '(t3,a9)', err = 100, iostat = ios) "" WRITE (ounps, '(2i5,t24,a)', err=100, iostat=ios) & nb, lll(nb), "Beta L" WRITE (ounps, '(i6)', err=100, iostat=ios) ikk2 (nb) WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( betar(ir,nb), ir=1,ikk2(nb) ) WRITE (ounps, '(t3,a10)', err = 100, iostat = ios) "" ENDDO WRITE (ounps, '(t3,a8)', err = 100, iostat = ios) "" nd = 0 DO nb = 1, nbeta DO mb = nb, nbeta IF ( abs(dion(nb,mb)) > 1.0d-12 ) nd = nd + 1 ENDDO ENDDO WRITE (ounps, '(1p,i5,t24,a)', err=100, iostat=ios) & nd, "Number of nonzero Dij" DO nb = 1, nbeta DO mb = nb, nbeta IF ( abs(dion(nb,mb)) > 1.0d-12 ) & WRITE(ounps,'(1p,2i5,e19.11)', err=100, iostat=ios) & nb, mb, dion(nb,mb) ENDDO ENDDO WRITE (ounps, '(t3,a9)', err=100, iostat=ios) "" IF (pseudotype == 'US') THEN WRITE (ounps, '(t3,a8)', err = 100, iostat = ios) "" WRITE (ounps, '(i5,a)',err=100, iostat=ios) nqf," nqf.& & If not zero, Qij's inside rinner are computed using qfcoef's" IF (nqf>0) THEN WRITE (ounps, '(t5,a11)', err=100, iostat=ios) "" WRITE (ounps,'(i5,1pe19.11)', err=100, iostat=ios) & (i, rinner(i), i = 1, nqlc) WRITE (ounps, '(t5,a12)', err=100, iostat=ios) "" ENDIF DO nb = 1, nbeta DO mb = nb, nbeta WRITE (ounps, '(3i5,t24,a)', err=100, iostat=ios) & nb, mb, lll(mb) , "i j (l(j))" WRITE (ounps, '(1pe19.11,t24,a)', err=100, iostat=ios) & qqq(nb,mb), "Q_int" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( qfunc (n,nb,mb), n=1,mesh ) IF (nqf>0) THEN WRITE (ounps, '(t5,a11)', err=100, iostat=ios) & "" WRITE(ounps,'(1p4e19.11)', err=100, iostat=ios) & ((qfcoef(i,lp,nb,mb),i=1,nqf),lp=1,nqlc) WRITE (ounps, '(t5,a12)', err=100, iostat=ios) & "" ENDIF ENDDO ENDDO WRITE (ounps, '(t3,a9)', err = 100, iostat = ios) "" ENDIF WRITE (ounps, '(a14)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_nl: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_pswfc (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the pseudo atomic functions ! of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: nb, ir, ios WRITE (ounps, '(//a10)', err = 100, iostat = ios) "" DO nb = 1, ntwfc WRITE (ounps,'(a2,i5,f6.2,t24,a)', err=100, iostat=ios) & elsw(nb), lchiw(nb), ocw(nb), "Wavefunction" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( chi(ir,nb), ir=1,mesh ) ENDDO WRITE (ounps, '(a11)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_pswfc: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_rhoatom (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the atomic charge density to the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios WRITE (ounps, '(//a12)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err = 100, iostat = ios) & ( rho_at(ir), ir=1,mesh ) WRITE (ounps, '(a13)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_rhoatom: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_rhoatom !--------------------------------------------------------------------- SUBROUTINE dftname(iexch, icorr, igcx, igcc, longname, shortname) !--------------------------------------------------------------------- IMPLICIT NONE INTEGER iexch, icorr, igcx, igcc CHARACTER (len=4) :: shortname CHARACTER (len=20):: longname ! ! The data used to convert iexch, icorr, igcx, igcc ! into a user-readable string ! INTEGER, PARAMETER :: nxc = 6, ncc = 9, ngcx = 4, ngcc = 5 CHARACTER (len=20) :: exc, corr, gradx, gradc DIMENSION exc (0:nxc), corr (0:ncc), gradx (0:ngcx), gradc (0:ngcc) data exc / 'NOX ', 'SLA ', 'SL1 ', 'RXC ', 'OEP ', 'HF ', 'PB0X' / data corr / 'NOC ', 'PZ ', 'VWN ', 'LYP ', 'PW ', 'WIG ', 'HL ',& 'OBZ ', 'OBW ', 'GL ' / data gradx / 'NOGX', 'B88 ', 'GGX ', 'PBE ', 'TPSS' / data gradc / 'NOGC', 'P86 ', 'GGC ', 'BLYP', 'PBE ', 'TPSS' / IF (iexch==1.and.igcx==0.and.igcc==0) THEN shortname = corr(icorr) ELSEIF (iexch==1.and.icorr==3.and.igcx==1.and.igcc==3) THEN shortname = 'BLYP' ELSEIF (iexch==1.and.icorr==1.and.igcx==1.and.igcc==0) THEN shortname = 'B88' ELSEIF (iexch==1.and.icorr==1.and.igcx==1.and.igcc==1) THEN shortname = 'BP' ELSEIF (iexch==1.and.icorr==4.and.igcx==2.and.igcc==2) THEN shortname = 'PW91' ELSEIF (iexch==1.and.icorr==4.and.igcx==3.and.igcc==4) THEN shortname = 'PBE' ELSEIF (iexch==1.and.icorr==4.and.igcx==4.and.igcc==5) THEN shortname = 'TPSS' ELSE shortname = ' ' ENDIF WRITE(longname,'(4a5)') exc(iexch),corr(icorr),gradx(igcx),gradc(igcc) RETURN END SUBROUTINE dftname espresso-5.0.2/upftools/fhi2upf.f900000644000700200004540000003015412053145633016123 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM fhi2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential file in Fritz-Haber numerical format ! either ".cpi" (fhi88pp) or ".fhi" (abinit) ! to unified pseudopotential format (v.2) ! Adapted from the converter written by Andrea Ferretti ! USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE write_upf_v2_module, ONLY : write_upf_v2 ! IMPLICIT NONE TYPE(pseudo_upf) :: upf CHARACTER(len=256) filein, fileout INTEGER :: ios ! CALL get_file ( filein ) IF ( trim(filein) == ' ') & CALL errore ('fhi2upf', 'usage: fhi2upf "file-to-be-converted"', 1) OPEN ( unit=1, file=filein, status = 'old', form='formatted', iostat=ios ) IF ( ios /= 0) CALL errore ('fhi2upf', 'file: '//trim(filein)//' not found', 2) ! CALL read_fhi(1) ! CLOSE (1) ! convert variables read from FHI format into those needed ! by the upf format - add missing quantities ! CALL nullify_pseudo_upf ( upf ) ! CALL convert_fhi (upf) ! ! write to file ! fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') ! CALL write_upf_v2 (2, upf ) ! CLOSE (unit=2) CALL deallocate_pseudo_upf ( upf ) ! ---------------------------------------------------------- WRITE (6,"('Pseudopotential successfully written')") WRITE (6,"('Please review the content of the PP_INFO fields')") WRITE (6,"('*** Please TEST BEFORE USING !!! ***')") ! ---------------------------------------------------------- ! STOP END PROGRAM fhi2upf MODULE fhi ! ! All variables read from FHI file format ! TYPE angular_comp real(8), POINTER :: pot(:) real(8), POINTER :: wfc(:) real(8), POINTER :: grid(:) real(8) :: amesh INTEGER :: nmesh INTEGER :: lcomp END TYPE angular_comp !------------------------------ real(8) :: Zval ! valence charge INTEGER :: lmax ! max l-component used LOGICAL :: nlcc_ real(8), ALLOCATABLE :: rho_atc(:) ! core charge TYPE (angular_comp), POINTER :: comp(:) ! PP numerical info ! (wfc, grid, potentials...) !------------------------------ ! variables for the abinit header real(8) :: Zatom, Zion, r2well, rchrg, fchrg, qchrg INTEGER :: pspdat = 0, pspcod = 0 , pspxc = 0, lloc = -1, mmax = 0 CHARACTER(len=256) :: info END MODULE fhi ! ! ---------------------------------------------------------- SUBROUTINE read_fhi(iunps) ! ---------------------------------------------------------- ! USE fhi IMPLICIT NONE INTEGER, PARAMETER :: Nl=7 ! max number of l-components INTEGER :: iunps real(8) :: r, drhoc, d2rhoc ! INTEGER :: l, i, idum, mesh ! Start reading file READ(iunps,'(a)') info READ(info,*,iostat=i) Zval, l IF ( i /= 0 .or. zval <= 0.0 .or. zval > 100.0 ) THEN WRITE (6,'("Assuming abinit format. First line:",/,A)') trim(info) READ(iunps,*) Zatom, Zion, pspdat READ(iunps,*) pspcod, pspxc, lmax,lloc, mmax, r2well IF (pspcod /= 6) THEN WRITE (6,'("read_fhi: unknown PP type ",i1,"...stopping")') pspcod STOP ENDIF READ(iunps,*) rchrg, fchrg, qchrg ! READ(iunps,*) READ(iunps,*) READ(iunps,*) ! READ(iunps,*) Zval, l IF (abs(Zion-Zval) > 1.0d-8) THEN WRITE (6,'("read_fhi: Zval/Zion mismatch...stopping")') STOP ENDIF IF (l-1 /= lmax) THEN WRITE (6,'("read_fhi: lmax mismatch...stopping")') STOP ENDIF ELSE info = ' ' ENDIF lmax = l - 1 IF (lmax+1 > Nl) THEN WRITE (6,'("read_fhi: too many l-components...stopping")') STOP ENDIF DO i=1,10 READ(iunps,*) ! skipping 11 lines ENDDO ALLOCATE( comp(0:lmax) ) DO l=0,lmax comp(l)%lcomp = l READ(iunps,*) comp(l)%nmesh, comp(l)%amesh IF (mmax > 0 .and. mmax /= comp(l)%nmesh) THEN WRITE (6,'("read_fhi: mismatched number of grid points...stopping")') STOP ENDIF IF ( l > 0) THEN IF (comp(l)%nmesh /= comp(0)%nmesh .or. & comp(l)%amesh /= comp(0)%amesh ) THEN WRITE(6,'("read_fhi: different radial grids not allowed...stopping")') STOP ENDIF ENDIF mesh = comp(l)%nmesh ALLOCATE( comp(l)%wfc(mesh), & ! wave-functions comp(l)%pot(mesh), & ! potentials comp(l)%grid(mesh) ) ! real space radial grid ! read the above quantities DO i=1,mesh READ(iunps,*) idum, comp(l)%grid(i), & comp(l)%wfc(i), & comp(l)%pot(i) ENDDO ENDDO nlcc_ =.false. ALLOCATE(rho_atc(comp(0)%nmesh)) mesh = comp(0)%nmesh DO i=1,mesh READ(iunps,*,end=10, err=20) r, rho_atc(i), drhoc, d2rhoc IF ( abs( r - comp(0)%grid(i) ) > 1.d-6 ) THEN WRITE(6,'("read_fhi: radial grid for core charge? stopping")') STOP ENDIF ENDDO nlcc_ = .true. ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential with NLCC successfully read' ! ---------------------------------------------------------- RETURN 20 WRITE(6,'("read_fhi: error reading core charge, assuming no core charge")') WRITE(6,'("this error may be due to the presence of additional", & & " lines at the end of file")') 10 CONTINUE ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential without NLCC successfully read' ! ---------------------------------------------------------- RETURN ! STOP END SUBROUTINE read_fhi ! ---------------------------------------------------------- SUBROUTINE convert_fhi (upf) ! ---------------------------------------------------------- ! USE fhi USE pseudo_types, ONLY : pseudo_upf USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc USE constants, ONLY : fpi ! IMPLICIT NONE ! TYPE(pseudo_upf) :: upf ! real(8), ALLOCATABLE :: aux(:) real(8) :: vll CHARACTER (len=2):: label CHARACTER (len=2), EXTERNAL:: atom_name INTEGER :: l, i, ir, iv ! upf%nv = "2.0.1" upf%generated= "Generated using FHI98PP, converted with fhi2upf.x v.5.0.2" upf%author = "unknown" upf%date = "unknown" IF (trim(info) /= ' ') THEN upf%comment = trim(info) ELSE upf%comment = 'Info: automatically converted from FHI format' ENDIF upf%rel = 'scalar' ! just guessing IF (nint(Zatom) > 0) THEN upf%psd = atom_name(nint(Zatom)) IF (nint(Zatom) > 18) upf%rel = 'no' ! just guessing ELSE PRINT '("Atom name > ",$)' READ (5,'(a)') upf%psd ENDIF upf%typ = 'SL' upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp=.false. upf%nlcc = nlcc_ ! IF (pspxc == 7) THEN upf%dft = 'SLA-PW' ELSEIF (pspxc == 11) THEN upf%dft = 'PBE' ELSE IF (pspxc > 0) THEN PRINT '("DFT read from abinit file: ",i1)', pspxc ENDIF PRINT '("DFT > ",$)' READ (5,'(a)') upf%dft ENDIF ! upf%zp = Zval upf%etotps =0.0d0 upf%ecutrho=0.0d0 upf%ecutwfc=0.0d0 ! PRINT '("Confirm or modify l max, l loc (read:",2i3,") > ",$)', lmax, lloc READ (5,*) lmax, upf%lloc IF ( lmax == upf%lloc) THEN upf%lmax = lmax-1 ELSE upf%lmax = lmax ENDIF upf%lmax_rho = 0 upf%nwfc = lmax+1 ! ALLOCATE( upf%els(upf%nwfc) ) ALLOCATE( upf%oc(upf%nwfc) ) ALLOCATE( upf%epseu(upf%nwfc) ) ALLOCATE( upf%lchi(upf%nwfc) ) ALLOCATE( upf%nchi(upf%nwfc) ) ALLOCATE( upf%rcut_chi (upf%nwfc) ) ALLOCATE( upf%rcutus_chi(upf%nwfc) ) PRINT '("PPs in FHI format do not contain information on atomic valence (pseudo-)wavefunctions")' PRINT '("Provide the label and the occupancy for each atomic wavefunction used in the PP generation")' PRINT '("If unknown: list valence wfcts and occupancies for the atomic ground state ", & &"in increasing l order: s,p,d,f")' DO i=1, upf%nwfc 10 PRINT '("Wavefunction # ",i1,": label (e.g. 4s), occupancy > ",$)', i READ (5,*) label, upf%oc(i) READ (label(1:1),*, err=10) l upf%els(i) = label upf%nchi(i) = l IF ( label(2:2) == 's' .or. label(2:2) == 'S') THEN l=0 ELSEIF ( label(2:2) == 'p' .or. label(2:2) == 'P') THEN l=1 ELSEIF ( label(2:2) == 'd' .or. label(2:2) == 'D') THEN l=2 ELSEIF ( label(2:2) == 'f' .or. label(2:2) == 'F') THEN l=3 ELSE l=i-1 ENDIF upf%lchi(i) = l upf%rcut_chi(i) = 0.0d0 upf%rcutus_chi(i)= 0.0d0 upf%epseu(i) = 0.0d0 ENDDO upf%mesh = comp(0)%nmesh upf%dx = log( comp(0)%amesh ) upf%rmax = comp(0)%grid(upf%mesh) upf%xmin = log( comp(0)%grid(1)*Zatom ) upf%zmesh= Zatom ALLOCATE(upf%rab(upf%mesh)) ALLOCATE(upf%r(upf%mesh)) upf%r(:) = comp(0)%grid upf%rab(:)=upf%r(:)*upf%dx ALLOCATE (upf%rho_atc(upf%mesh)) IF (upf%nlcc) upf%rho_atc(:) = rho_atc(1:upf%mesh) / fpi ALLOCATE (upf%vloc(upf%mesh)) ! the factor 2 converts from Hartree to Rydberg upf%vloc(:) = 2.d0*comp(lloc)%pot upf%rcloc = 0.0d0 ALLOCATE(upf%vnl(upf%mesh,0:upf%lmax,1)) DO l=0, upf%lmax upf%vnl(:,l,1) = 2.d0*comp(l)%pot(:) ENDDO ! calculate number of nonlocal projectors IF ( upf%lloc >= 0 .and. upf%lloc <= upf%lmax ) THEN upf%nbeta= upf%lmax ELSE upf%nbeta= upf%lmax+1 ENDIF IF (upf%nbeta > 0) THEN ALLOCATE(upf%els_beta(upf%nbeta) ) ALLOCATE(upf%lll(upf%nbeta)) ALLOCATE(upf%kbeta(upf%nbeta)) iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=upf%lloc) THEN iv=iv+1 upf%kbeta(iv)=upf%mesh DO ir = upf%mesh,1,-1 IF ( abs ( upf%vnl(ir,l,1) - upf%vnl(ir,upf%lloc,1) ) > 1.0E-6 ) THEN ! include points up to the last with nonzero value upf%kbeta(iv)=ir+1 exit ENDIF ENDDO ENDIF ENDDO ! the number of points used in the evaluation of integrals ! should be even (for simpson integration) DO i=1,upf%nbeta IF ( mod (upf%kbeta(i),2) == 0 ) upf%kbeta(i)=upf%kbeta(i)+1 upf%kbeta(i)=MIN(upf%mesh,upf%kbeta(i)) ENDDO upf%kkbeta = maxval(upf%kbeta(:)) ALLOCATE(upf%beta(upf%mesh,upf%nbeta)) ALLOCATE(upf%dion(upf%nbeta,upf%nbeta)) upf%beta(:,:) =0.d0 upf%dion(:,:) =0.d0 ALLOCATE(upf%rcut (upf%nbeta)) ALLOCATE(upf%rcutus(upf%nbeta)) ALLOCATE(aux(upf%kkbeta)) iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=upf%lloc) THEN iv=iv+1 upf%lll(iv)=l upf%els_beta(iv)=upf%els(i) DO ir=1,upf%kbeta(iv) ! the factor 2 converts from Hartree to Rydberg upf%beta(ir,iv) = 2.d0 * comp(l)%wfc(ir) * & ( comp(l)%pot(ir) - comp(upf%lloc)%pot(ir) ) aux(ir) = comp(l)%wfc(ir) * upf%beta(ir,iv) ENDDO upf%rcut (iv) = upf%r(upf%kbeta(iv)) upf%rcutus(iv) = 0.0 CALL simpson(upf%kbeta(iv),aux,upf%rab,vll) upf%dion(iv,iv) = 1.0d0/vll ENDIF ENDDO DEALLOCATE(aux) ENDIF ALLOCATE (upf%chi(upf%mesh,upf%nwfc)) DO i=1,upf%nwfc upf%chi(:,i) = comp(i-1)%wfc(:) ENDDO ALLOCATE (upf%rho_at(upf%mesh)) upf%rho_at(:) = 0.d0 DO i=1,upf%nwfc upf%rho_at(:) = upf%rho_at(:) + upf%oc(i) * upf%chi(:,i) ** 2 ENDDO ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- RETURN END SUBROUTINE convert_fhi espresso-5.0.2/upftools/interpolate.f900000644000700200004540000005136112053145633017111 0ustar marsamoscm!--------------------------------------------------------------------- ! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE pseudo_data ! ! All variables to be read from the UPF file ! (UPF = unified pseudopotential format) ! INTEGER ,PARAMETER :: npsx = 2 ! npsx : maximum number of different pseudopotentials INTEGER, PARAMETER :: lmaxx = 3, nchix = 6, ndm = 2000 ! lmaxx : maximum non local angular momentum in PP ! nchix : maximum number of atomic wavefunctions per PP ! ndm : maximum number of points in the radial mesh INTEGER, PARAMETER :: nbrx = 8, lqmax = 5, nqfx = 8 ! nbrx : maximum number of beta functions ! lqmax : maximum number of angular momentum of Q ! nqfx : maximum number of coefficients in Q smoothing ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd(npsx), pseudotype CHARACTER (len=20):: dft(npsx) INTEGER :: lmax(npsx), mesh(npsx), nbeta(npsx), ntwfc(npsx) LOGICAL :: nlcc(npsx), isus(npsx) real(8) :: zp(npsx), ecutrho(npsx), ecutwfc(npsx), etotps(npsx) real(8) :: oc(nchix,npsx) CHARACTER(len=2) :: els(nchix,npsx) INTEGER :: lchi(nchix,npsx) ! ! pp_mesh real(8) :: r(ndm,npsx), rab(ndm,npsx) ! pp_nlcc real(8) :: rho_atc(ndm,npsx) ! ! pp_local real(8) :: vloc0(ndm,npsx) ! ! pp_nonlocal ! pp_beta real(8) :: betar(ndm, nbrx, npsx) INTEGER :: lll(nbrx,npsx), ikk2(nbrx,npsx) ! pp_dij real(8) :: dion(nbrx,nbrx,npsx) ! pp_qij INTEGER :: nqf(npsx), nqlc(npsx) real(8) :: rinner(lqmax,npsx), qqq(nbrx,nbrx,npsx), & qfunc(ndm,nbrx,nbrx,npsx) ! pp_qfcoef real(8) :: qfcoef(nqfx,lqmax,nbrx,nbrx,npsx) ! ! pp_pswfc real(8) :: chi(ndm,nchix,npsx) ! ! pp_rhoatom real(8) :: rho_at(ndm,npsx) END MODULE pseudo_data ! PROGRAM interpolate !--------------------------------------------------------------------- ! ! Read a pseudopotential in the Unified Pseudopotential Format (UPF) ! and interpolate all the data on a different radial grid. ! IMPLICIT NONE INTEGER :: is, ios, iunps = 4 real (8) :: xmin, dx CHARACTER (len=256) :: filein(2), fileout PRINT '('' '')' PRINT '('' Interpolate an UPF pseudopotential to a different radial mesh'')' PRINT '('' '')' ! is=2 PRINT '('' Read the pseudo to be converted '')' PRINT '('' Input PP file in UPF format > '',$)' READ (5, '(a)', end = 20, err = 20) filein(is) OPEN(unit=iunps,file=filein(is),status='old',form='formatted',iostat=ios) IF (ios/=0) STOP WRITE (*,*) " IOS= ", ios, is, iunps CALL read_pseudo(is, iunps) CLOSE (unit=iunps) PRINT '('' '')' ! 10 CONTINUE PRINT '('' radial mesh : r(i) = exp ( xmin + (i-1) *dx )/ Z_ion '')' WRITE(*,'(a,$)') " xmin, dx [typical values -7.0, 0.0125 ] > " READ (*,*) xmin, dx CALL interpolate_ps(filein,xmin,dx) fileout='NewPseudo.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) 20 STOP END PROGRAM interpolate ! !--------------------------------------------------------------------- SUBROUTINE interpolate_ps(filein,xmin,dx) USE pseudo_data USE upf, ONLY : & upf_rel => rel, upf_rcloc => rcloc, upf_nwfs => nwfs, & upf_oc => oc, upf_rcut => rcut, upf_rcutus => rcutus, & upf_epseu => epseu, upf_els => els, & upf_lchi => lchi, upf_nns => nns, & upf_generated => generated, upf_date_author => date_author, & upf_comment => comment, & upf_psd => psd, upf_pseudotype => pseudotype, & upf_iexch => iexch, & upf_icorr => icorr, & upf_igcx => igcx, & upf_igcc => igcc, & upf_lmax => lmax, upf_mesh => mesh, & upf_nbeta => nbeta, upf_ntwfc => ntwfc, upf_nlcc => nlcc, & upf_zp => zp, upf_ecutrho => ecutrho, upf_ecutwfc => ecutwfc, & upf_etotps => etotps, upf_ocw => ocw, & upf_elsw => elsw, upf_lchiw =>lchiw, & upf_r => r, upf_rab => rab, & upf_rho_atc => rho_atc, & upf_vloc0 => vloc0, & upf_betar => betar, upf_lll => lll, upf_ikk2 => ikk2, & upf_dion => dion, & upf_nqf => nqf, upf_nqlc => nqlc, & upf_rinner => rinner, upf_qqq => qqq, upf_qfunc => qfunc, & upf_qfcoef => qfcoef, & upf_chi => chi, & upf_rho_at => rho_at USE splinelib USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE real (8), INTENT(in) :: dx, xmin INTEGER :: i, j, ib CHARACTER (len=256) :: filein(2) CHARACTER (len=5) :: dxlabel, xminlabel real (8) :: capel real (8), ALLOCATABLE :: aux1(:,:), aux2(:,:) LOGICAL :: interpolate interpolate = .false. ! WRITE(dxlabel,'(f5.4)') dx WRITE(xminlabel,'(f5.2)')xmin !pp_info upf_rel = -1 upf_rcloc = 0.d0 ! !pp_header upf_generated = 'Pseudopotential interpolated using interpolate.x code ' upf_date_author= 'Author and generation date: unknown. '//& 'Refer to original pseudopotential file' upf_comment = 'Pseudo '//trim(filein(2))//' on mesh r(i) = exp ( '//trim(xminlabel)//' + (i-1)*'//trim(dxlabel)//' )/Z_ion' upf_psd = psd(2) upf_pseudotype = "NC" IF (isus(2)) upf_pseudotype = "US" CALL set_dft_from_name(dft(2)) upf_iexch = get_iexch() upf_icorr = get_icorr() upf_igcx = get_igcx() upf_igcc = get_igcc() upf_lmax = lmax(2) zp(1) = zp(2) mesh(1) = (log(r(mesh(2),2) * zp(2) ) - xmin ) /dx + 1 DO i=1,mesh(1) r(i,1) = exp(xmin+dble(i-1)*dx)/zp(1) rab(i,1) = r(i,1) * dx ENDDO WRITE (*,*) xmin, dx, mesh(1),zp(1) IF (mesh(1)/=mesh(2) ) THEN WRITE (*,*) " pseudopotentials have different mesh " WRITE (*,*) mesh(1),mesh(2) WRITE (*,*) r(1,1), r(1,2) WRITE (*,*) r(mesh(1),1),r(mesh(2),2) interpolate = .true. ENDIF upf_mesh = mesh(1) upf_nbeta = nbeta(2) upf_ntwfc = ntwfc(2) upf_nlcc = nlcc(2) upf_ecutrho = ecutrho(2) upf_ecutwfc = ecutwfc(2) upf_etotps = etotps(2) ALLOCATE( upf_ocw(upf_ntwfc), upf_elsw(upf_ntwfc), upf_lchiw(upf_ntwfc) ) upf_ocw(1:upf_ntwfc) = oc(1:upf_ntwfc,2) upf_elsw(1:upf_ntwfc) = els(1:upf_ntwfc,2) upf_lchiw(1:upf_ntwfc) = lchi(1:upf_ntwfc,2) upf_zp = zp(2) ! !pp_mesh capel = 0.d0 DO i=1,upf_mesh capel = capel + abs(r(i,1)-r(i,2)) + abs(rab(i,1)-rab(i,2)) ENDDO IF (capel>1.d-6) THEN WRITE (*,*) " pseudopotentials have different mesh " interpolate = .true. ENDIF WRITE (*,*) "INTERPOLATE =", interpolate !if (interpolate) call errore ("virtual", & ! "grid interpolation is not working yet",1) IF (interpolate) ALLOCATE ( aux1(1,mesh(1)), aux2(1,mesh(2)) ) ALLOCATE( upf_r(upf_mesh), upf_rab(upf_mesh) ) upf_r(1:upf_mesh) = r(1:upf_mesh,1) upf_rab(1:upf_mesh) = rab(1:upf_mesh,1) ! !pp_nlcc ALLOCATE( upf_rho_atc(upf_mesh) ) IF (interpolate) THEN WRITE (*,'(a,$)') "interpolate rho_atc" aux2(1,1:mesh(2)) = rho_atc(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_atc(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_atc(1:upf_mesh) = rho_atc(1:upf_mesh,2) ! !pp_local ALLOCATE( upf_vloc0(upf_mesh) ) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate vloc0" aux2(1,1:mesh(2)) = vloc0(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) vloc0(1:upf_mesh,2) = aux1(1,1:upf_mesh) ! Jivtesh - if the mesh of the first atom extends to a larger radius ! than the mesh of the second atom, then, for those radii that are ! greater than the maximum radius of the second atom, the local potential ! of the second atom is calculated using the expression ! v_local = (-2)*Z/r instead of using the extrapolated value. ! This is because, typically extrapolation leads to positive potentials. ! This is implemented in lines 240-242 DO i=1,mesh(1) IF(r(i,1)>r(mesh(2),2)) vloc0(i,2) = -(2.0*zp(2))/r(i,1) ENDDO WRITE (*,*) " done" ENDIF upf_vloc0(1:upf_mesh) = vloc0(1:upf_mesh,2) ! !pp_nonlocal !pp_beta ALLOCATE( upf_betar(upf_mesh,upf_nbeta), & upf_lll(upf_nbeta), upf_ikk2(upf_nbeta) ) ib = 0 DO i=1,nbeta(2) ib = ib + 1 IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate betar" aux2(1,1:mesh(2)) = betar(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) betar(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_betar(1:upf_mesh,ib) = betar(1:upf_mesh,i,2) upf_lll(ib) = lll(i,2) ! SdG - when the meshes of the two pseudo are different the ikk2 limits ! for the beta functions of the second one must be set properly ! This is done in lines 273-277 IF (interpolate) THEN j = 1 DO WHILE ( upf_r(j) < r( ikk2(i,2), 2) ) j = j + 1 ENDDO upf_ikk2(ib) = j ELSE upf_ikk2(ib) = ikk2(i,2) ENDIF ENDDO ! !pp_dij ALLOCATE( upf_dion(upf_nbeta, upf_nbeta) ) upf_dion(:,:) = 0.d0 DO i=1,nbeta(2) DO j=1,nbeta(2) upf_dion(i,j) = dion(i,j,2) ENDDO ENDDO ! !pp_qij upf_nqf = nqf(2) upf_nqlc = nqlc(2) ALLOCATE( upf_rinner(upf_nqlc), upf_qqq(upf_nbeta,upf_nbeta), & upf_qfunc(upf_mesh,upf_nbeta,upf_nbeta) ) upf_rinner(1:upf_nqlc) = rinner(1:upf_nqlc,2) upf_qqq(:,:) = 0.d0 upf_qfunc(:,:,:) = 0.d0 DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qqq(i,j) = qqq(i, j, 2) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate qfunc" aux2(1,1:mesh(2) ) = qfunc(1:mesh(2),i,j,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) qfunc(1:upf_mesh,i,j,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_qfunc(1:upf_mesh,i,j) = qfunc(1:upf_mesh,i,j,2) ENDDO ENDDO ! !pp_qfcoef ALLOCATE( upf_qfcoef(upf_nqf,upf_nqlc,upf_nbeta,upf_nbeta) ) upf_qfcoef(:,:,:,:) = 0.d0 DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qfcoef(1:upf_nqf,1:upf_nqlc,i,j) = & qfcoef(1:upf_nqf,1:upf_nqlc,i,j, 2) ENDDO ENDDO ! !pp_pswfc ALLOCATE (upf_chi(upf_mesh,upf_ntwfc) ) DO i=1,ntwfc(2) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate chi" aux2(1,1:mesh(2)) = chi(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) chi(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_chi(1:upf_mesh,i) = chi(1:upf_mesh,i,2) ENDDO !upf_chi(1:upf_mesh,1:upf_ntwfc) = chi(1:upf_mesh,1:upf_ntwfc,1) ! !pp_rhoatm ALLOCATE (upf_rho_at(upf_mesh) ) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate rho_at" aux2(1,1:mesh(2)) = rho_at(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_at(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_at(1:upf_mesh) = rho_at(1:upf_mesh,2) END SUBROUTINE interpolate_ps ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo (is, iunps) !--------------------------------------------------------------------- ! ! Read pseudopotential in the Unified Pseudopotential Format (UPF) ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! is : index of this pseudopotential ! iunps: unit connected with pseudopotential file ! IF (is < 0 .or. is > npsx ) CALL errore ('read_pseudo', 'Wrong is number', 1) WRITE ( *, * ) " Reading pseudopotential file in UPF format..." !------->Search for Header CALL scan_begin (iunps, "HEADER", .true.) CALL read_pseudo_header (is, iunps) CALL scan_end (iunps, "HEADER") !-------->Search for mesh information CALL scan_begin (iunps, "MESH", .true.) CALL read_pseudo_mesh (is, iunps) CALL scan_end (iunps, "MESH") !-------->If present, search for nlcc IF (nlcc (is) ) THEN CALL scan_begin (iunps, "NLCC", .true.) CALL read_pseudo_nlcc (is, iunps) CALL scan_end (iunps, "NLCC") ENDIF !-------->Search for Local potential CALL scan_begin (iunps, "LOCAL", .true.) CALL read_pseudo_local (is, iunps) CALL scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential CALL scan_begin (iunps, "NONLOCAL", .true.) CALL read_pseudo_nl (is, iunps) CALL scan_end (iunps, "NONLOCAL") !-------->Search for atomic wavefunctions CALL scan_begin (iunps, "PSWFC", .true.) CALL read_pseudo_pswfc (is, iunps) CALL scan_end (iunps, "PSWFC") !-------->Search for atomic charge CALL scan_begin (iunps, "RHOATOM", .true.) CALL read_pseudo_rhoatom (is, iunps) CALL scan_end (iunps, "RHOATOM") ! WRITE ( *, * ) " ...done" RETURN END SUBROUTINE read_pseudo !--------------------------------------------------------------------- SUBROUTINE scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string LOGICAL :: rew ! Flag: if .true. rewind the file CHARACTER (len=80) :: rstring ! String read from file INTEGER :: ios LOGICAL, EXTERNAL :: matches ios = 0 IF (rew) REWIND (iunps) DO WHILE (ios==0) READ (iunps, *, iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN ENDDO 300 CALL errore ('scan_begin', 'No '//string//' block', abs (ios) ) END SUBROUTINE scan_begin !--------------------------------------------------------------------- SUBROUTINE scan_end (iunps, string) !--------------------------------------------------------------------- IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string ! String read from file CHARACTER (len=80) :: rstring INTEGER :: ios LOGICAL, EXTERNAL :: matches READ (iunps, '(a)', iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN 300 CALL errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', - 1) END SUBROUTINE scan_end ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_header (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nv, ios, nw CHARACTER (len=75) :: dummy LOGICAL, EXTERNAL :: matches READ (iunps, *, err = 100, iostat = ios) nv, dummy READ (iunps, *, err = 100, iostat = ios) psd (is), dummy READ (iunps, *, err = 100, iostat = ios) pseudotype IF (matches (pseudotype, "US") ) isus (is) = .true. READ (iunps, *, err = 100, iostat = ios) nlcc (is), dummy READ (iunps, '(a20,t24,a)', err = 100, iostat = ios) dft(is), dummy READ (iunps, * ) zp (is), dummy READ (iunps, * ) etotps (is), dummy READ (iunps, * ) ecutwfc (is), ecutrho (is) READ (iunps, * ) lmax (is), dummy READ (iunps, *, err = 100, iostat = ios) mesh (is), dummy READ (iunps, *, err = 100, iostat = ios) ntwfc(is), nbeta (is), dummy READ (iunps, '(a)', err = 100, iostat = ios) dummy DO nw = 1, ntwfc(is) READ (iunps, * ) els (nw,is), lchi (nw, is), oc (nw, is) ENDDO RETURN 100 CALL errore ('read_pseudo_header', 'Reading pseudo file', abs (ios)) END SUBROUTINE read_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_local (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! READ (iunps, *, err=100, iostat=ios) (vloc0(ir,is) , ir=1,mesh(is)) 100 CALL errore ('read_pseudo_local','Reading pseudo file', abs(ios) ) RETURN END SUBROUTINE read_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_mesh (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! CALL scan_begin (iunps, "R", .false.) READ (iunps, *, err = 100, iostat = ios) (r(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "R") CALL scan_begin (iunps, "RAB", .false.) READ (iunps, *, err = 100, iostat = ios) (rab(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "RAB") RETURN 100 CALL errore ('read_pseudo_mesh', 'Reading pseudo file', abs (ios) ) END SUBROUTINE read_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nl (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nb, mb, n, ir, nd, ios, idum, ldum, icon, lp, i ! counters CHARACTER (len=75) :: dummy ! DO nb = 1, nbeta (is) CALL scan_begin (iunps, "BETA", .false.) READ (iunps, *, err = 100, iostat = ios) idum, lll(nb,is), dummy READ (iunps, '(i6)', err = 100, iostat = ios) ikk2(nb,is) READ (iunps, *, err = 100, iostat = ios) & (betar(ir,nb,is), ir=1,ikk2(nb,is)) DO ir = ikk2(nb,is) + 1, mesh (is) betar (ir, nb, is) = 0.d0 ENDDO CALL scan_end (iunps, "BETA") ENDDO WRITE(*,*)'ikk2',ikk2 CALL scan_begin (iunps, "DIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nd, dummy dion (:,:,is) = 0.d0 DO icon = 1, nd READ (iunps, *, err = 100, iostat = ios) nb, mb, dion(nb,mb,is) dion (mb,nb,is) = dion (nb,mb,is) ENDDO CALL scan_end (iunps, "DIJ") IF (isus (is) ) THEN CALL scan_begin (iunps, "QIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nqf(is) nqlc (is)= 2 * lmax (is) + 1 IF (nqlc(is)>lqmax .or. nqlc(is)<0) & CALL errore (' read_pseudo_nl', 'Wrong nqlc', nqlc (is) ) IF (nqf(is)/=0) THEN CALL scan_begin (iunps, "RINNER", .false.) READ (iunps,*,err=100,iostat=ios) & (idum,rinner(i,is),i=1,nqlc(is)) CALL scan_end (iunps, "RINNER") ENDIF DO nb = 1, nbeta(is) DO mb = nb, nbeta(is) READ (iunps,*,err=100,iostat=ios) idum, idum, ldum, dummy !" i j (l)" IF (ldum/=lll(mb,is) ) CALL errore ('read_pseudo_nl', & 'inconsistent angular momentum for Q_ij', 1) READ (iunps,*,err=100,iostat=ios) qqq(nb,mb,is), dummy ! "Q_int" qqq(mb,nb,is) = qqq(nb,mb,is) READ (iunps,*,err=100,iostat=ios) & (qfunc(n,nb,mb,is), n=1,mesh(is)) DO n = 0, mesh (is) qfunc(n,mb,nb,is) = qfunc(n,nb,mb,is) ENDDO IF (nqf(is)>0) THEN CALL scan_begin (iunps, "QFCOEF", .false.) READ (iunps,*,err=100,iostat=ios) & ((qfcoef(i,lp,nb,mb,is),i=1,nqf(is)),lp=1,nqlc(is)) CALL scan_end (iunps, "QFCOEF") ENDIF ENDDO ENDDO CALL scan_end (iunps, "QIJ") ELSE qqq (:,:,is) = 0.d0 qfunc(:,:,:,is) =0.d0 ENDIF 100 CALL errore ('read_pseudo_nl', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nlcc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps, *, err = 100, iostat = ios) (rho_atc(ir,is), ir=1,mesh(is) ) ! 100 CALL errore ('read_pseudo_nlcc', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_pswfc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! CHARACTER (len=75) :: dummy INTEGER :: nb, ir, ios ! DO nb = 1, ntwfc(is) READ (iunps,*,err=100,iostat=ios) dummy !Wavefunction labels READ (iunps,*,err=100,iostat=ios) (chi(ir,nb,is), ir=1,mesh(is)) ENDDO 100 CALL errore ('read_pseudo_pswfc', 'Reading pseudo file', abs(ios)) RETURN END SUBROUTINE read_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_rhoatom (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps,*,err=100,iostat=ios) (rho_at(ir,is), ir=1,mesh(is)) RETURN 100 CALL errore ('read_pseudo_rhoatom','Reading pseudo file',abs(ios)) END SUBROUTINE read_pseudo_rhoatom espresso-5.0.2/upftools/vanderbilt.f900000644000700200004540000002246512053145633016720 0ustar marsamoscm ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE Vanderbilt ! ! All variables read from Vanderbilt's file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! INTEGER :: nvalps, nang, nbeta_, kkbeta, nchi, ifpcor, keyps, & mesh_, iver(3), idmy(3), nnlz, ifqopt, nqf_, irel, npf, & nlc, lloc real(8) :: z_, zp_, exfact, etot, eloc, rcloc_, rpcor, & qtryc, ptryc, rinner1_ real(8), ALLOCATABLE:: wwnlps(:), eeps(:), rinner_(:), rc(:), & beta(:,:), ddd0(:,:), ddd(:,:), qqq_(:,:), eee(:), rho_atc_(:), & r_(:), rab_(:), rho_at_(:), qfunc_(:,:,:), vloc(:), vloc_(:), & wf(:,:), qfcoef_(:,:,:,:) INTEGER, ALLOCATABLE :: lll_(:), nnlzps(:), iptype(:) CHARACTER(len=20):: title END MODULE Vanderbilt ! ! ---------------------------------------------------------- SUBROUTINE read_uspp(iunit) ! ---------------------------------------------------------- ! USE Vanderbilt IMPLICIT NONE INTEGER :: iunit ! INTEGER :: i, j, k, lp real(8) :: rinner1 ! ! READ (iunit) (iver(i),i=1,3),(idmy(i),i=1,3) READ (iunit) title, z_, zp_, exfact, nvalps, mesh_, etot ALLOCATE(nnlzps(nvalps), wwnlps(nvalps), eeps(nvalps)) READ (iunit) (nnlzps(i),wwnlps(i),eeps(i),i=1,nvalps) READ (iunit) keyps, ifpcor, rinner1 IF ( iver(1) == 1 ) THEN nang = nvalps nqf_ = 3 nlc = 5 ELSEIF ( iver(1) == 2 ) THEN nang = nvalps nqf_ = 3 nlc = 2 * nvalps - 1 ELSEIF ( iver(1) >= 3 ) THEN READ (iunit) nang, lloc, eloc, ifqopt, nqf_, qtryc nlc = 2 * nang - 1 ENDIF ALLOCATE(rinner_(2*nang-1)) rinner_(1) = rinner1 rinner1_ = rinner1 IF (10*iver(1)+iver(2)>=51) & READ (iunit) (rinner_(i),i=1,nang*2-1) IF ( iver(1) >= 4 ) THEN READ (iunit) irel ELSE irel = 0 ENDIF ALLOCATE(rc(nang)) READ (iunit) (rc(i),i=1,nang) READ (iunit) nbeta_,kkbeta ! ALLOCATE(beta(kkbeta,nbeta_)) ALLOCATE(qfunc_(kkbeta,nbeta_,nbeta_)) ALLOCATE(ddd0(nbeta_,nbeta_)) ALLOCATE(ddd (nbeta_,nbeta_)) ALLOCATE(qqq_(nbeta_,nbeta_)) ALLOCATE(lll_(nbeta_)) ALLOCATE(eee(nbeta_)) ALLOCATE(qfcoef_(nqf_,nlc,nbeta_,nbeta_)) ! DO j=1,nbeta_ READ (iunit) lll_(j),eee(j),(beta(i,j),i=1,kkbeta) DO k=j,nbeta_ READ (iunit) ddd0(j,k),ddd(j,k),qqq_(j,k), & (qfunc_(i,j,k),i=1,kkbeta), & ((qfcoef_(i,lp,j,k),i=1,nqf_),lp=1,2*nang-1) ENDDO ENDDO ! ALLOCATE(iptype(nbeta_)) IF (10*iver(1)+iver(2)>=72) & READ (iunit) (iptype(j),j=1,nbeta_),npf,ptryc ! ALLOCATE(vloc_(mesh_)) READ (iunit) rcloc_,(vloc_(i),i=1,mesh_) ! ALLOCATE(rho_atc_(mesh_)) IF (ifpcor>0) THEN READ (iunit) rpcor READ (iunit) (rho_atc_(i),i=1,mesh_) ENDIF ! ALLOCATE(rho_at_(mesh_), vloc(mesh_)) READ (iunit) (vloc(i),i=1,mesh_) READ (iunit) (rho_at_(i),i=1,mesh_) ALLOCATE(r_(mesh_), rab_(mesh_)) READ (iunit) (r_(i),i=1,mesh_) READ (iunit) (rab_(i),i=1,mesh_) IF (iver(1) >= 6) THEN nchi = nvalps IF (iver(1) >= 7) READ (iunit) nchi ALLOCATE(wf(mesh_,nchi)) READ (iunit) ((wf(i,j), i=1,mesh_),j=1,nchi) ENDIF ! ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- ! END SUBROUTINE read_uspp ! ---------------------------------------------------------- ! ---------------------------------------------------------- SUBROUTINE read_vdb(iunit) ! ---------------------------------------------------------- ! USE Vanderbilt IMPLICIT NONE INTEGER :: iunit ! INTEGER :: i, j, k, lp real(8) :: rinner1 ! ! READ(iunit, *) (iver(i),i=1,3),(idmy(i),i=1,3) READ(iunit,'(a20,3f15.9)' ) title, z_, zp_, exfact READ(iunit, *) nvalps, mesh_, etot ALLOCATE(nnlzps(nvalps), wwnlps(nvalps), eeps(nvalps)) DO i = 1,nvalps READ(iunit, *) nnlzps(i), wwnlps(i), eeps(i) ENDDO READ(iunit, *) keyps, ifpcor, rinner1 IF ( iver(1) == 1 ) THEN nang = nvalps nqf_ = 3 nlc = 5 ELSEIF ( iver(1) == 2 ) THEN nang = nvalps nqf_ = 3 nlc = 2 * nvalps - 1 ELSEIF ( iver(1) >= 3 ) THEN READ(iunit, *) nang, lloc, eloc, ifqopt, nqf_, qtryc nlc = 2 * nang - 1 ENDIF ALLOCATE(rinner_(2*nang-1)) rinner_(1) = rinner1 IF (10*iver(1)+iver(2)>=51) & READ (iunit, *) (rinner_(i),i=1,nang*2-1) IF ( iver(1) >= 4 ) THEN READ (iunit, *) irel ELSE irel = 0 ENDIF ALLOCATE(rc(nang)) READ(iunit, *) ( rc(i), i=1,nang) READ (iunit,* ) nbeta_, kkbeta ALLOCATE(beta(kkbeta,nbeta_)) ALLOCATE(qfunc_(kkbeta,nbeta_,nbeta_)) ALLOCATE(ddd0(nbeta_,nbeta_)) ALLOCATE(ddd (nbeta_,nbeta_)) ALLOCATE(qqq_(nbeta_,nbeta_)) ALLOCATE(lll_(nbeta_)) ALLOCATE(eee (nbeta_)) ALLOCATE(qfcoef_(nqf_,nlc,nbeta_,nbeta_)) DO j=1,nbeta_ READ ( iunit, *) lll_(j) READ ( iunit, *) eee(j), ( beta(i,j), i=1,kkbeta ) DO k=j,nbeta_ READ( iunit, *) ddd0(j,k), ddd(j,k), qqq_(j,k), & (qfunc_(i,j,k),i=1,kkbeta),& ((qfcoef_(i,lp,j,k),i=1,nqf_),lp=1,2*nang-1) ENDDO ENDDO ALLOCATE(iptype(nbeta_)) IF (10*iver(1)+iver(2)>=72) THEN READ ( iunit, * ) (iptype(i), i=1,nbeta_) READ ( iunit, * ) npf, ptryc ENDIF ALLOCATE(vloc_(mesh_)) READ(iunit, *) rcloc_, ( vloc_(i), i=1,mesh_) ALLOCATE(rho_atc_(mesh_)) IF ( ifpcor>0 ) THEN READ(iunit, *) rpcor READ(iunit, *) ( rho_atc_(i), i=1,mesh_) ENDIF ALLOCATE(rho_at_(mesh_), vloc(mesh_)) READ(iunit, *) (vloc(i), i=1,mesh_) READ(iunit, *) (rho_at_(i), i=1,mesh_) ALLOCATE(r_(mesh_),rab_(mesh_)) READ(iunit, *) (r_(i), i=1,mesh_) READ(iunit, *) (rab_(i),i=1,mesh_) IF (iver(1) >= 6) THEN nchi = nvalps IF (iver(1) >= 7) READ (iunit, *) nchi ALLOCATE(wf(mesh_,nchi)) READ (iunit, *) ((wf(i,j), i=1,mesh_),j=1,nchi) ENDIF RETURN END SUBROUTINE read_vdb SUBROUTINE convert_uspp ! ---------------------------------------------------------- ! USE Vanderbilt USE constants, ONLY : fpi USE upf IMPLICIT NONE INTEGER i CHARACTER(len=1), DIMENSION(0:3) :: convel=(/'S','P','D','F'/) WRITE(generated, '("Generated using Vanderbilt code, version ",3i3)') iver WRITE(date_author,'("Author: unknown Generation date:",3i5)') idmy WRITE(comment,'("Automatically converted from original format")') IF (irel == 0) THEN rel = 0 ELSEIF (irel == 1) THEN rel = 2 ELSEIF (irel == 2) THEN rel = 1 ENDIF rcloc = rcloc_ nwfs = nvalps ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs nns (i) = nnlzps(i)/100 lchi(i) = mod (nnlzps(i)/10,10) rcut(i) = rinner1_ rcutus(i)= rc(lchi(i)+1) oc (i) = wwnlps(i) WRITE(els(i),'(i1,a1)') nns(i), convel(lchi(i)) epseu(i) = eeps(i) ENDDO DEALLOCATE (nnlzps, rc, wwnlps, eeps) psd = title IF (keyps<=2) THEN pseudotype = 'NC' ELSE pseudotype = 'US' ENDIF nlcc = ifpcor>0 zp = zp_ etotps = etot ecutrho=0.0d0 ecutwfc=0.0d0 lmax = nang - 1 mesh = mesh_ nbeta = nbeta_ IF (nvalps /= nchi) THEN PRINT *, 'WARNING: verify info on atomic wavefunctions' ENDIF ntwfc = nchi ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i=1, min(ntwfc,nwfs) elsw(i) = els(i) ocw(i) = oc (i) lchiw(i)=lchi(i) ENDDO IF ( exfact==0) THEN iexch=1; icorr=1; igcx=0; igcc=0 ! Perdew-Zunger ELSEIF ( exfact==1) THEN iexch=1; icorr=3; igcx=1; igcc=3 ! Becke-Lee-Yang-Parr ELSEIF ( exfact==2) THEN iexch=1; icorr=1; igcx=1; igcc=0 ! Becke88 exchange ELSEIF (exfact==-5.or.exfact==3) THEN iexch=1; icorr=1; igcx=1; igcc=1 ! Becke88-Perdew 86 ELSEIF (exfact==-6.or.exfact==4) THEN iexch=1; icorr=4; igcx=2; igcc=2 ! Perdew-Wang 91 ELSEIF (exfact== 5) THEN iexch=1; icorr=4; igcx=3; igcc=4 ! Perdew-Becke-Erkerhof ELSE WRITE (6,'("convert: wrong xc in pseudopotential ",f12.6)') exfact STOP ENDIF ALLOCATE (r(mesh), rab(mesh)) r = r_ rab=rab_ DEALLOCATE (r_, rab_) ALLOCATE (rho_atc(mesh)) ! Vanderbilt rho_core(r) = 4pi*r^2*rho_core(r) UPF rho_atc (1) = 0.d0 rho_atc (2:mesh) = rho_atc_(2:mesh) / fpi / r(2:mesh)**2 DEALLOCATE (rho_atc_) ALLOCATE (vloc0(mesh)) vloc0(2:mesh) = vloc_(2:mesh)/r(2:mesh) vloc0(1) = vloc0(2) DEALLOCATE (vloc_) ALLOCATE(ikk2(nbeta), lll(nbeta)) ikk2 = kkbeta lll = lll_ DEALLOCATE (lll_) ALLOCATE(betar(kkbeta,nbeta)) betar = beta DEALLOCATE (beta) ALLOCATE(dion(nbeta,nbeta)) dion = ddd0 DEALLOCATE (ddd0) ALLOCATE(qqq(nbeta,nbeta)) qqq = qqq_ DEALLOCATE (qqq_) ALLOCATE(qfunc(mesh,nbeta,nbeta)) qfunc(1:kkbeta,:,:) = qfunc_(1:kkbeta,:,:) qfunc(kkbeta+1:mesh,:,:) = 0.d0 DEALLOCATE (qfunc_) nqf = nqf_ nqlc= nlc ALLOCATE(rinner(nqlc)) rinner = rinner_ DEALLOCATE(rinner_) ALLOCATE(qfcoef(nqf,nqlc,nbeta,nbeta)) qfcoef = qfcoef_ DEALLOCATE (qfcoef_) ALLOCATE (rho_at(mesh)) rho_at = rho_at_ DEALLOCATE (rho_at_) ALLOCATE (chi(mesh,ntwfc)) chi = wf DEALLOCATE (wf) RETURN END SUBROUTINE convert_uspp espresso-5.0.2/upftools/casino2upf.f900000644000700200004540000000527512053145633016637 0ustar marsamoscm! ! Copyright (C) 2008 Simon Binnie ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM casino2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in CASINO tabulated ! format to unified pseudopotential format USE casino_pp USE write_upf_v2_module, ONLY : write_upf_v2 USE pseudo_types, ONLY : nullify_pseudo_upf, deallocate_pseudo_upf, & pseudo_upf IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! CHARACTER(len=256) :: pp_data CHARACTER(len=256) :: upf_file CHARACTER(len=256), ALLOCATABLE:: wavefile(:) INTEGER, ALLOCATABLE :: waveunit(:) INTEGER nofiles, i, ios, pp_unit TYPE(pseudo_upf) :: upf_out NAMELIST / inputpp / & pp_data, & !CASINO pp filename upf_file, & !output file tn_grid, & !.true. if Trail and Needs grid is used tn_prefac, & xmin, & !xmin for standard QE grid dx !dx for Trail and Needs and standard QE !grid pp_data= 'pp.data' upf_file= 'out.UPF' CALL nullify_pseudo_upf( upf_out ) WRITE(0,*) 'CASINO2UPF Converter' READ(*,inputpp,iostat=ios) READ(*,*,iostat=ios) nofiles ALLOCATE(wavefile(nofiles), waveunit(nofiles)) !Now read in the awfn file names and open the files DO i=1,nofiles READ(*,*,iostat=ios) wavefile(:) waveunit(i)=find_free_unit() OPEN(unit=waveunit(i),file=trim(wavefile(i)),& status='old',form='formatted', iostat=ios) IF (ios /= 0 ) THEN CALL errore ('casino2upf', 'cannot read file', trim(wavefile(i))) ENDIF ENDDO pp_unit=find_free_unit() OPEN(unit=pp_unit,file=trim(pp_data),status='old',form='formatted', iostat=ios) IF (ios /= 0 ) THEN CALL errore ('casino2upf', 'cannot read file', trim(wavefile(i))) ENDIF CALL read_casino(pp_unit,nofiles, waveunit) CLOSE (unit=pp_unit) DO i=1,nofiles CLOSE (waveunit(i)) ENDDO DEALLOCATE( wavefile, waveunit ) ! convert variables read from CASINO format into those needed ! by the upf format - add missing quantities CALL convert_casino(upf_out) PRINT '(''Output PP file in UPF format : '',a)', upf_file OPEN(unit=2,file=upf_file,status='unknown',form='formatted') CALL write_upf_v2(u=2,upf=upf_out) CLOSE(unit=2,status='keep') CALL deallocate_pseudo_upf( upf_out ) STOP END PROGRAM casino2upf espresso-5.0.2/upftools/upf2casino.f900000644000700200004540000000341312053145633016627 0ustar marsamoscm! ! Copyright (C) 2011 Simon Binnie ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM upf2casino !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in UFP ! format to CASINO tabulated format USE upf_module USE radial_grids, ONLY : radial_grid_type, deallocate_radial_grid, & & nullify_radial_grid USE pseudo_types, ONLY : nullify_pseudo_upf USE casino_pp IMPLICIT NONE INTEGER :: ierr TYPE(pseudo_upf) :: upf_in TYPE(radial_grid_type) :: grid CALL nullify_pseudo_upf ( upf_in ) CALL nullify_radial_grid ( grid ) WRITE(0,*) 'UPF2CASINO Converter' WRITE(0,*) 'Usage: ./upf2casino < pp_in.UPF > pp_out.dat' WRITE(0,*) 'All pseudopotential files generated should be & &thoroughly checked.' WRITE(0,*) 'In paticular make sure the local channel chosen& & in the CASINO pp file is what you expected.' CALL read_upf(upf_in, grid, ierr, 5) IF (upf_in%typ /= 'NC') THEN WRITE(0,*) '' WRITE(0,*) 'WRONG PSEUDOPOTENTIAL!' WRITE(0,*) 'Only norm-conserving pps can be used in CASINO!' STOP ENDIF WRITE(0,*) "Number of grid points: ", grid%mesh WRITE(0,*) "Number of KB projectors: ", upf_in%nbeta WRITE(0,*) "Channel(s) of KB projectors: ", upf_in%lll WRITE(0,*) "Number of channels to be re-constructed: ", upf_in%nbeta+1 CALL conv_upf2casino(upf_in,grid) CALL write_casino_tab(upf_in,grid) DEALLOCATE(vnl) CALL deallocate_radial_grid(grid) CALL deallocate_pseudo_upf(upf_in) STOP END PROGRAM upf2casino espresso-5.0.2/upftools/Makefile0000644000700200004540000000476212053145633015706 0ustar marsamoscm# Makefile for converters to UPF format include ../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../iotk/src $(MOD_FLAG)../Modules $(MOD_FLAG). OBJS = write_upf.o QEMODS = ../Modules/libqemod.a TLDEPS = mods libs libiotk all : tldeps casino2upf.x cpmd2upf.x fhi2upf.x fpmd2upf.x \ ncpp2upf.x oldcp2upf.x read_upf_tofile.x rrkj2upf.x upf2casino.x \ uspp2upf.x vdb2upf.x virtual.x interpolate.x casino2upf.x : casino2upf.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ casino2upf.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) upf2upf2.x : upf2upf2.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ upf2upf2.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) cpmd2upf.x : cpmd2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ cpmd2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) fhi2upf.x : fhi2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ fhi2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) fpmd2upf.x : fpmd2upf.o $(OBJS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ fpmd2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) ncpp2upf.x : ncpp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ ncpp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) oldcp2upf.x : oldcp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ oldcp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) read_upf.x : read_upf.o $(LD) $(LDFLAGS) -o $@ read_upf.o $(LIBS) read_upf_tofile.x : read_upf_tofile.o $(QEMODS) $(LD) $(LDFLAGS) -o $@ read_upf_tofile.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) rrkj2upf.x : rrkj2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ rrkj2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) upf2casino.x : upf2casino.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ upf2casino.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) uspp2upf.x : uspp2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ uspp2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) vdb2upf.x : vdb2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ vdb2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) virtual.x : virtual.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ virtual.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) interpolate.x : interpolate.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ interpolate.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) tldeps: test -n "$(TLDEPS)" && ( cd .. ; $(MAKE) $(MFLAGS) $(TLDEPS) || exit 1) || : clean : - /bin/rm -f *.x *.o *~ *.F90 *.mod *.d *.i *.L include make.depend espresso-5.0.2/upftools/oldcp2upf.f900000644000700200004540000001454512053145633016464 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM oldcp2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in the old CP90 format ! (without core correction) to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! CALL get_file ( filein ) OPEN (unit = 1, file = filein, status = 'old', form = 'formatted') CALL read_oldcp(1) CLOSE (1) ! convert variables read from old CP90 format into those needed ! by the upf format - add missing quantities CALL convert_oldcp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 CALL errore ('oldcp2upf', 'Reading pseudo file name ', 1) END PROGRAM oldcp2upf MODULE oldcp ! ! All variables read from old CP90 file format ! real(8) :: amesh, z, zv INTEGER :: exfact, lloc, nbeta_, mesh_ real(8) :: wrc1, rc1, wrc2, rc2, rcl(3,3), al(3,3), bl(3,3) real(8), ALLOCATABLE :: r_(:), vnl(:,:), chi_(:,:) ! !------------------------------ END MODULE oldcp ! ! ---------------------------------------------------------- SUBROUTINE read_oldcp(iunps) ! ---------------------------------------------------------- ! USE oldcp IMPLICIT NONE INTEGER :: iunps ! real(8), EXTERNAL :: qe_erf INTEGER :: i, l, j, jj ! READ(iunps,*, end=10, err=10) z, zv, nbeta_, lloc, exfact IF (z < 1 .or. z > 100 .or. zv < 1 .or. zv > 25 ) & CALL errore ('read_oldcp','wrong potential read',1) READ(iunps,*, end=10, err=10) wrc1, rc1, wrc2, rc2 READ(iunps,*, end=10, err=10) ( ( rcl(i,l), al(i,l), & bl(i,l), i = 1, 3), l = 1, 3) READ(iunps,*, end=10, err=10) mesh_, amesh ALLOCATE(r_(mesh_)) ALLOCATE (chi_(mesh_,nbeta_)) DO l = 1, nbeta_ IF (l > 1) READ(iunps,*, end=10, err=10) mesh_, amesh DO j = 1, mesh_ READ(iunps,*, end=10, err=10) jj, r_(j), chi_(j,l) ENDDO ENDDO ! ! convert analytic to numeric form ! ALLOCATE (vnl(mesh_,0:nbeta_)) DO l=0,nbeta_ ! ! DO NOT USE f90 ARRAY SYNTAX: qe_erf IS NOT AN INTRINSIC FUNCTION!!! ! DO j=1, mesh_ vnl(j,l)= - (wrc1*qe_erf(sqrt(rc1)*r_(j)) + & wrc2*qe_erf(sqrt(rc2)*r_(j)) ) * zv/r_(j) ENDDO ! DO i=1,3 vnl(:,l)= vnl(:,l)+ (al(i,l+1)+ bl(i,l+1)*r_(:)**2) * & exp(-rcl(i,l+1)*r_(:)**2) ENDDO ENDDO RETURN 10 CALL errore('read_oldcp','error in reading file',1) END SUBROUTINE read_oldcp ! ---------------------------------------------------------- SUBROUTINE convert_oldcp ! ---------------------------------------------------------- ! USE oldcp USE upf IMPLICIT NONE real(8), PARAMETER :: rmax = 10.0d0 real(8), ALLOCATABLE :: aux(:) real(8) :: vll CHARACTER (len=20):: dft CHARACTER (len=2), EXTERNAL :: atom_name INTEGER :: kkbeta INTEGER :: l, i, ir, iv ! WRITE(generated, '("Generated using unknown code")') WRITE(date_author,'("Author: unknown Generation date: as well")') comment = 'Info: automatically converted from old CP90 format' ! reasonable assumption IF (z > 18) THEN rel = 1 ELSE rel = 0 ENDIF rcloc = 0.0d0 nwfs = nbeta_ ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs PRINT '("Wavefunction # ",i1,": label, occupancy > ",$)', i READ (5,*) els(i), oc(i) nns (i) = 0 lchi(i) = i-1 rcut(i) = 0.0d0 rcutus(i)= 0.0d0 epseu(i) = 0.0d0 ENDDO psd = atom_name (nint(z)) pseudotype = 'NC' nlcc = .false. zp = nint(zv) etotps =0.0d0 ecutrho=0.0d0 ecutwfc=0.0d0 lmax = nbeta_ - 1 nbeta = nbeta_ mesh = mesh_ ntwfc = nwfs ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i=1, nwfs lchiw(i) = lchi(i) ocw(i) = oc(i) elsw(i) = els(i) ENDDO ! IF ( exfact==0) THEN iexch=1; icorr=1; igcx=0; igcc=0 ! Perdew-Zunger ELSEIF ( exfact==1) THEN iexch=1; icorr=3; igcx=1; igcc=3 ! Becke-Lee-Yang-Parr ELSEIF ( exfact==2) THEN iexch=1; icorr=1; igcx=1; igcc=0 ! Becke88 exchange ELSEIF (exfact==-5.or.exfact==3) THEN iexch=1; icorr=1; igcx=1; igcc=1 ! Becke88-Perdew 86 ELSEIF (exfact==-6.or.exfact==4) THEN iexch=1; icorr=4; igcx=2; igcc=2 ! Perdew-Wang 91 ELSEIF (exfact== 5) THEN iexch=1; icorr=4; igcx=3; igcc=4 ! Perdew-Becke-Erkerhof ELSE CALL errore('convert','Wrong xc in pseudopotential',1) ENDIF ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) r = r_ rab = r * log( amesh ) ! ! convert analytic to numeric form ! ! ALLOCATE (vloc0(mesh)) ! the factor 2 converts from Hartree to Rydberg vloc0(:) = vnl(:,lloc)*2.d0 IF (nbeta > 0) THEN ALLOCATE(ikk2(nbeta), lll(nbeta)) kkbeta=mesh DO ir = 1,mesh IF ( r(ir) > rmax ) THEN kkbeta=ir exit ENDIF ENDDO ikk2(:) = kkbeta ALLOCATE(aux(kkbeta)) ALLOCATE(betar(mesh,nbeta)) ALLOCATE(qfunc(mesh,nbeta,nbeta)) ALLOCATE(dion(nbeta,nbeta)) ALLOCATE(qqq (nbeta,nbeta)) qfunc(:,:,:)=0.0d0 dion(:,:) =0.d0 qqq(:,:) =0.d0 iv=0 DO i=1,nwfs l=lchi(i) IF (l/=lloc) THEN iv=iv+1 lll(iv)=l DO ir=1,kkbeta ! the factor 2 converts from Hartree to Rydberg betar(ir,iv) = 2.d0 * chi_(ir,l+1) * & ( vnl(ir,l) - vnl(ir,lloc) ) aux(ir) = chi_(ir,l+1) * betar(ir,iv) ENDDO CALL simpson(kkbeta,aux,rab,vll) dion(iv,iv) = 1.0d0/vll ENDIF ENDDO ENDIF ALLOCATE (rho_at(mesh)) rho_at = 0.d0 DO i=1,nwfs rho_at(:) = rho_at(:) + ocw(i) * chi_(:,i) ** 2 ENDDO ALLOCATE (chi(mesh,ntwfc)) chi = chi_ ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- RETURN END SUBROUTINE convert_oldcp espresso-5.0.2/upftools/read_upf.f900000644000700200004540000002766712053145633016364 0ustar marsamoscm! ! Copyright (C) 2001-2002 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE pseudo ! ! All variables to be read from the UPF file ! (UPF = unified pseudopotential format) ! INTEGER ,PARAMETER :: npsx = 6 ! npsx : maximum number of different pseudopotentials INTEGER, PARAMETER :: lmaxx = 3, nchix = 6, ndm = 2000 ! lmaxx : maximum non local angular momentum in PP ! nchix : maximum number of atomic wavefunctions per PP ! ndm : maximum number of points in the radial mesh INTEGER, PARAMETER :: nbrx = 8, lqmax = 5, nqfx = 8 ! nbrx : maximum number of beta functions ! lqmax : maximum number of angular momentum of Q ! nqfx : maximum number of coefficients in Q smoothing ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd(npsx), pseudotype CHARACTER (len=20):: dft(npsx) INTEGER :: lmax(npsx), mesh(npsx), nbeta(npsx), ntwfc(npsx) LOGICAL :: nlcc(npsx), isus(npsx) real(8) :: zp(npsx), ecutrho, ecutwfc, etotps real(8) :: oc(nchix,npsx) CHARACTER(len=2) :: els(nchix,npsx) INTEGER :: lchi(nchix,npsx) ! ! pp_mesh real(8) :: r(ndm,npsx), rab(ndm,npsx) ! pp_nlcc real(8) :: rho_atc(ndm,npsx) ! ! pp_local real(8) :: vloc0(ndm,npsx) ! ! pp_nonlocal ! pp_beta real(8) :: betar(ndm, nbrx, npsx) INTEGER :: lll(nbrx,npsx), ikk2(nbrx,npsx) ! pp_dij real(8) :: dion(nbrx,nbrx,npsx) ! pp_qij INTEGER :: nqf(npsx), nqlc(npsx) real(8) :: rinner(lqmax,npsx), qqq(nbrx,nbrx,npsx), & qfunc(ndm,nbrx,nbrx,npsx) ! pp_qfcoef real(8) :: qfcoef(nqfx,lqmax,nbrx,nbrx,npsx) ! ! pp_pswfc real(8) :: chi(ndm,nchix,npsx) ! ! pp_rhoatom real(8) :: rho_at(ndm,npsx) END MODULE pseudo ! !--------------------------------------------------------------------- PROGRAM read_ps !--------------------------------------------------------------------- ! ! Read pseudopotentials in the Unified Pseudopotential Format (UPF) ! IMPLICIT NONE INTEGER :: is, ios, iunps = 4 CHARACTER (len=256) :: filein ! is = 0 10 PRINT '('' Input PP file # '',i2,'' in UPF format > '',$)', is+1 READ (5, '(a)', end = 20, err = 20) filein OPEN(unit=iunps,file=filein,status='old',form='formatted',iostat=ios) IF (ios/=0) STOP is = is + 1 CALL read_pseudo(is, iunps) CLOSE (unit=iunps) GOTO 10 20 STOP END PROGRAM read_ps ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo (is, iunps) !--------------------------------------------------------------------- ! ! Read pseudopotential in the Unified Pseudopotential Format (UPF) ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! is : index of this pseudopotential ! iunps: unit connected with pseudopotential file ! IF (is < 0 .or. is > npsx ) CALL errore ('read_pseudo', 'Wrong is number', 1) WRITE ( *, * ) " Reading pseudopotential file in UPF format..." !------->Search for Header CALL scan_begin (iunps, "HEADER", .true.) CALL read_pseudo_header (is, iunps) CALL scan_end (iunps, "HEADER") !-------->Search for mesh information CALL scan_begin (iunps, "MESH", .true.) CALL read_pseudo_mesh (is, iunps) CALL scan_end (iunps, "MESH") !-------->If present, search for nlcc IF (nlcc (is) ) THEN CALL scan_begin (iunps, "NLCC", .true.) CALL read_pseudo_nlcc (is, iunps) CALL scan_end (iunps, "NLCC") ENDIF !-------->Search for Local potential CALL scan_begin (iunps, "LOCAL", .true.) CALL read_pseudo_local (is, iunps) CALL scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential CALL scan_begin (iunps, "NONLOCAL", .true.) CALL read_pseudo_nl (is, iunps) CALL scan_end (iunps, "NONLOCAL") !-------->Search for atomic wavefunctions CALL scan_begin (iunps, "PSWFC", .true.) CALL read_pseudo_pswfc (is, iunps) CALL scan_end (iunps, "PSWFC") !-------->Search for atomic charge CALL scan_begin (iunps, "RHOATOM", .true.) CALL read_pseudo_rhoatom (is, iunps) CALL scan_end (iunps, "RHOATOM") ! WRITE ( *, * ) " ...done" RETURN END SUBROUTINE read_pseudo !--------------------------------------------------------------------- SUBROUTINE scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string LOGICAL :: rew ! Flag: if .true. rewind the file CHARACTER (len=80) :: rstring ! String read from file INTEGER :: ios LOGICAL, EXTERNAL :: matches ios = 0 IF (rew) REWIND (iunps) DO WHILE (ios==0) READ (iunps, *, iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN ENDDO 300 CALL errore ('scan_begin', 'No '//string//' block', abs (ios) ) END SUBROUTINE scan_begin !--------------------------------------------------------------------- SUBROUTINE scan_end (iunps, string) !--------------------------------------------------------------------- IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string ! String read from file CHARACTER (len=80) :: rstring INTEGER :: ios LOGICAL, EXTERNAL :: matches READ (iunps, '(a)', iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN 300 CALL errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', - 1) END SUBROUTINE scan_end ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_header (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nv, ios, nw CHARACTER (len=75) :: dummy LOGICAL, EXTERNAL :: matches READ (iunps, *, err = 100, iostat = ios) nv, dummy READ (iunps, *, err = 100, iostat = ios) psd (is), dummy READ (iunps, *, err = 100, iostat = ios) pseudotype IF (matches (pseudotype, "US") ) isus (is) = .true. READ (iunps, *, err = 100, iostat = ios) nlcc (is), dummy READ (iunps, '(a20,t24,a)', err = 100, iostat = ios) dft(is), dummy READ (iunps, * ) zp (is), dummy READ (iunps, * ) etotps, dummy READ (iunps, * ) ecutwfc, ecutrho READ (iunps, * ) lmax (is), dummy READ (iunps, *, err = 100, iostat = ios) mesh (is), dummy READ (iunps, *, err = 100, iostat = ios) ntwfc(is), nbeta (is), dummy READ (iunps, '(a)', err = 100, iostat = ios) dummy DO nw = 1, ntwfc(is) READ (iunps, * ) els (nw,is), lchi (nw, is), oc (nw, is) ENDDO RETURN 100 CALL errore ('read_pseudo_header', 'Reading pseudo file', abs (ios)) END SUBROUTINE read_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_local (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! READ (iunps, *, err=100, iostat=ios) (vloc0(ir,is) , ir=1,mesh(is)) 100 CALL errore ('read_pseudo_local','Reading pseudo file', abs(ios) ) RETURN END SUBROUTINE read_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_mesh (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! CALL scan_begin (iunps, "R", .false.) READ (iunps, *, err = 100, iostat = ios) (r(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "R") CALL scan_begin (iunps, "RAB", .false.) READ (iunps, *, err = 100, iostat = ios) (rab(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "RAB") RETURN 100 CALL errore ('read_pseudo_mesh', 'Reading pseudo file', abs (ios) ) END SUBROUTINE read_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nl (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nb, mb, n, ir, nd, ios, idum, ldum, icon, lp, i ! counters CHARACTER (len=75) :: dummy ! DO nb = 1, nbeta (is) CALL scan_begin (iunps, "BETA", .false.) READ (iunps, *, err = 100, iostat = ios) idum, lll(nb,is), dummy READ (iunps, '(i6)', err = 100, iostat = ios) ikk2(nb,is) READ (iunps, *, err = 100, iostat = ios) & (betar(ir,nb,is), ir=1,ikk2(nb,is)) DO ir = ikk2(nb,is) + 1, mesh (is) betar (ir, nb, is) = 0.d0 ENDDO CALL scan_end (iunps, "BETA") ENDDO CALL scan_begin (iunps, "DIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nd, dummy dion (:,:,is) = 0.d0 DO icon = 1, nd READ (iunps, *, err = 100, iostat = ios) nb, mb, dion(nb,mb,is) dion (mb,nb,is) = dion (nb,mb,is) ENDDO CALL scan_end (iunps, "DIJ") IF (isus (is) ) THEN CALL scan_begin (iunps, "QIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nqf(is) nqlc (is)= 2 * lmax (is) + 1 IF (nqlc(is)>lqmax .or. nqlc(is)<0) & CALL errore (' read_pseudo_nl', 'Wrong nqlc', nqlc (is) ) IF (nqf(is)/=0) THEN CALL scan_begin (iunps, "RINNER", .false.) READ (iunps,*,err=100,iostat=ios) & (idum,rinner(i,is),i=1,nqlc(is)) CALL scan_end (iunps, "RINNER") ENDIF DO nb = 1, nbeta(is) DO mb = nb, nbeta(is) READ (iunps,*,err=100,iostat=ios) idum, idum, ldum, dummy !" i j (l)" IF (ldum/=lll(mb,is) ) CALL errore ('read_pseudo_nl', & 'inconsistent angular momentum for Q_ij', 1) READ (iunps,*,err=100,iostat=ios) qqq(nb,mb,is), dummy ! "Q_int" qqq(mb,nb,is) = qqq(nb,mb,is) READ (iunps,*,err=100,iostat=ios) & (qfunc(n,nb,mb,is), n=1,mesh(is)) DO n = 0, mesh (is) qfunc(n,mb,nb,is) = qfunc(n,nb,mb,is) ENDDO IF (nqf(is)>0) THEN CALL scan_begin (iunps, "QFCOEF", .false.) READ (iunps,*,err=100,iostat=ios) & ((qfcoef(i,lp,nb,mb,is),i=1,nqf(is)),lp=1,nqlc(is)) CALL scan_end (iunps, "QFCOEF") ENDIF ENDDO ENDDO CALL scan_end (iunps, "QIJ") ELSE qqq (:,:,is) = 0.d0 qfunc(:,:,:,is) =0.d0 ENDIF 100 CALL errore ('read_pseudo_nl', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nlcc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps, *, err = 100, iostat = ios) (rho_atc(ir,is), ir=1,mesh(is) ) ! 100 CALL errore ('read_pseudo_nlcc', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_pswfc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! CHARACTER (len=75) :: dummy INTEGER :: nb, ir, ios ! DO nb = 1, ntwfc(is) READ (iunps,*,err=100,iostat=ios) dummy !Wavefunction labels READ (iunps,*,err=100,iostat=ios) (chi(ir,nb,is), ir=1,mesh(is)) ENDDO 100 CALL errore ('read_pseudo_pswfc', 'Reading pseudo file', abs(ios)) RETURN END SUBROUTINE read_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_rhoatom (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps,*,err=100,iostat=ios) (rho_at(ir,is), ir=1,mesh(is)) RETURN 100 CALL errore ('read_pseudo_rhoatom','Reading pseudo file',abs(ios)) END SUBROUTINE read_pseudo_rhoatom espresso-5.0.2/upftools/virtual.f900000644000700200004540000005522312053145633016252 0ustar marsamoscm!--------------------------------------------------------------------- ! ! Copyright (C) 2001-2002 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Generate a pseudopotential in the Virtual Crystal Approximation: ! ! V^{(vca)} = V_{loc)^{(vca)} + V_{nl}^{(vca)} ! where ! V_{loc)^{(vca)} = x V_{loc}^{(1)} + (1-x) V_{loc}^{(2)} ! and ! V_{nl)^{(vca)} = \sum_{ij} |\beta^{(1)}_i> x D^{(1)}_{ij} <\beta^{(1)}_j| ! + \sum_{ij} |\beta^{(2)}_i>(1-x)D^{(2)}_{ij} <\beta^{{2)}_j| ! where ! V_{loc}^{(n)}(r) is the local part of pseudopot n ! \beta^{{n)}_i(r) are the projectors for pseudopot n ! D^{(n))_{ij} are the (bare) components of matrix D for pseudopot n ! MODULE pseudo ! ! All variables to be read from the UPF file ! (UPF = unified pseudopotential format) ! INTEGER ,PARAMETER :: npsx = 2 ! npsx : maximum number of different pseudopotentials INTEGER, PARAMETER :: lmaxx = 3, nchix = 6, ndm = 2000 ! lmaxx : maximum non local angular momentum in PP ! nchix : maximum number of atomic wavefunctions per PP ! ndm : maximum number of points in the radial mesh INTEGER, PARAMETER :: nbrx = 8, lqmax = 5, nqfx = 8 ! nbrx : maximum number of beta functions ! lqmax : maximum number of angular momentum of Q ! nqfx : maximum number of coefficients in Q smoothing ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd(npsx), pseudotype CHARACTER (len=20):: dft(npsx) INTEGER :: lmax(npsx), mesh(npsx), nbeta(npsx), ntwfc(npsx) LOGICAL :: nlcc(npsx), isus(npsx) real(8) :: zp(npsx), ecutrho, ecutwfc, etotps real(8) :: oc(nchix,npsx) CHARACTER(len=2) :: els(nchix,npsx) INTEGER :: lchi(nchix,npsx) ! ! pp_mesh real(8) :: r(ndm,npsx), rab(ndm,npsx) ! pp_nlcc real(8) :: rho_atc(ndm,npsx) ! ! pp_local real(8) :: vloc0(ndm,npsx) ! ! pp_nonlocal ! pp_beta real(8) :: betar(ndm, nbrx, npsx) INTEGER :: lll(nbrx,npsx), ikk2(nbrx,npsx) ! pp_dij real(8) :: dion(nbrx,nbrx,npsx) ! pp_qij INTEGER :: nqf(npsx), nqlc(npsx) real(8) :: rinner(lqmax,npsx), qqq(nbrx,nbrx,npsx), & qfunc(ndm,nbrx,nbrx,npsx) ! pp_qfcoef real(8) :: qfcoef(nqfx,lqmax,nbrx,nbrx,npsx) ! ! pp_pswfc real(8) :: chi(ndm,nchix,npsx) ! ! pp_rhoatom real(8) :: rho_at(ndm,npsx) END MODULE pseudo ! PROGRAM virtual !--------------------------------------------------------------------- ! ! Read pseudopotentials in the Unified Pseudopotential Format (UPF) ! IMPLICIT NONE INTEGER :: is, ios, iunps = 4 real (8) :: x CHARACTER (len=256) :: filein(2), fileout PRINT '('' '')' PRINT '('' Generate the UPF pseudopotential for a virtual atom '')' PRINT '('' combining two pseudopootentials in UPF format '')' PRINT '('' '')' ! DO is=1,2 PRINT '('' Input PP file # '',i2,'' in UPF format > '',$)', is READ (5, '(a)', end = 20, err = 20) filein(is) OPEN(unit=iunps,file=filein(is),status='old',form='formatted',iostat=ios) IF (ios/=0) STOP WRITE (*,*) " IOS= ", ios, is, iunps CALL read_pseudo(is, iunps) CLOSE (unit=iunps) PRINT '('' '')' ENDDO PRINT '('' New Pseudo = x '',a,'' + (1-x) '',a)', (trim(filein(is)), is=1,2) 10 CONTINUE PRINT '('' mixing parameter x [01) GOTO 10 CALL compute_virtual(x,filein) fileout='NewPseudo.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) 20 STOP END PROGRAM virtual ! !--------------------------------------------------------------------- SUBROUTINE compute_virtual(x,filein) USE pseudo USE upf, ONLY : & upf_rel => rel, upf_rcloc => rcloc, upf_nwfs => nwfs, & upf_oc => oc, upf_rcut => rcut, upf_rcutus => rcutus, & upf_epseu => epseu, upf_els => els, & upf_lchi => lchi, upf_nns => nns, & upf_generated => generated, upf_date_author => date_author, & upf_comment => comment, & upf_psd => psd, upf_pseudotype => pseudotype, & upf_iexch => iexch, & upf_icorr => icorr, & upf_igcx => igcx, & upf_igcc => igcc, & upf_lmax => lmax, upf_mesh => mesh, & upf_nbeta => nbeta, upf_ntwfc => ntwfc, upf_nlcc => nlcc, & upf_zp => zp, upf_ecutrho => ecutrho, upf_ecutwfc => ecutwfc, & upf_etotps => etotps, upf_ocw => ocw, & upf_elsw => elsw, upf_lchiw =>lchiw, & upf_r => r, upf_rab => rab, & upf_rho_atc => rho_atc, & upf_vloc0 => vloc0, & upf_betar => betar, upf_lll => lll, upf_ikk2 => ikk2, & upf_dion => dion, & upf_nqf => nqf, upf_nqlc => nqlc, & upf_rinner => rinner, upf_qqq => qqq, upf_qfunc => qfunc, & upf_qfcoef => qfcoef, & upf_chi => chi, & upf_rho_at => rho_at USE splinelib USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE INTEGER :: i, j, ib CHARACTER (len=256) :: filein(2) CHARACTER (len=5) :: xlabel real (8) :: x, capel real (8), ALLOCATABLE :: aux1(:,:), aux2(:,:) LOGICAL :: interpolate interpolate = .false. ! !pp_info upf_rel = -1 upf_rcloc = 0.d0 ! !pp_header upf_generated = 'Generated using virtual.x code ' upf_date_author= 'Author and generation date: unknown. '//& 'Refer to original pseudopotential files' WRITE( xlabel, '(f5.3)' ) x upf_comment = 'Pseudo = x '//trim(filein(1))//& ' + (1-x) '//trim(filein(2))//', with x='//xlabel upf_psd = "Xx" upf_pseudotype = "NC" IF (isus(1) .or. isus(2)) upf_pseudotype = "US" CALL set_dft_from_name(dft(1)) upf_iexch = get_iexch() upf_icorr = get_icorr() upf_igcx = get_igcx() upf_igcc = get_igcc() CALL set_dft_from_name(dft(2)) IF (get_iexch()/=upf_iexch .or. get_icorr()/=upf_icorr .or. & get_igcx()/=upf_igcx .or. get_igcc()/=upf_igcc) & CALL errore ('virtual','conflicting DFT functionals',1) upf_lmax = max(lmax(1), lmax(2)) IF (mesh(1)/=mesh(2) ) THEN WRITE (*,*) " pseudopotentials have different mesh " WRITE (*,*) mesh(1),mesh(2) WRITE (*,*) r(1,1), r(1,2) WRITE (*,*) r(mesh(1),1),r(mesh(2),2) interpolate = .true. ENDIF upf_mesh = mesh(1) upf_nbeta = nbeta(1)+nbeta(2) upf_ntwfc = ntwfc(1) upf_nlcc = nlcc(1).or.nlcc(2) upf_ecutrho = ecutrho upf_ecutwfc = ecutwfc upf_etotps = etotps ALLOCATE( upf_ocw(upf_ntwfc), upf_elsw(upf_ntwfc), upf_lchiw(upf_ntwfc) ) upf_ocw(1:upf_ntwfc) = oc(1:upf_ntwfc,1) upf_elsw(1:upf_ntwfc) = els(1:upf_ntwfc,1) upf_lchiw(1:upf_ntwfc) = lchi(1:upf_ntwfc,1) upf_zp = x * zp(1) + (1.d0-x) * zp(2) ! !pp_mesh capel = 0.d0 DO i=1,upf_mesh capel = capel + abs(r(i,1)-r(i,2)) + abs(rab(i,1)-rab(i,2)) ENDDO IF (capel>1.d-6) THEN WRITE (*,*) " pseudopotentials have different mesh " interpolate = .true. ENDIF WRITE (*,*) "INTERPOLATE =", interpolate !if (interpolate) call errore ("virtual", & ! "grid interpolation is not working yet",1) IF (interpolate) ALLOCATE ( aux1(1,mesh(1)), aux2(1,mesh(2)) ) ALLOCATE( upf_r(upf_mesh), upf_rab(upf_mesh) ) upf_r(1:upf_mesh) = r(1:upf_mesh,1) upf_rab(1:upf_mesh) = rab(1:upf_mesh,1) ! !pp_nlcc ALLOCATE( upf_rho_atc(upf_mesh) ) IF (interpolate) THEN WRITE (*,*) "interpolate rho_atc" aux2(1,1:mesh(2)) = rho_atc(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_atc(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_atc(1:upf_mesh) = x * rho_atc(1:upf_mesh,1) + & (1.d0-x) * rho_atc(1:upf_mesh,2) ! !pp_local ALLOCATE( upf_vloc0(upf_mesh) ) IF (interpolate) THEN WRITE (*,*) " interpolate vloc0" aux2(1,1:mesh(2)) = vloc0(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) vloc0(1:upf_mesh,2) = aux1(1,1:upf_mesh) ! Jivtesh - if the mesh of the first atom extends to a larger radius ! than the mesh of the second atom, then, for those radii that are ! greater than the maximum radius of the second atom, the local potential ! of the second atom is calculated using the expression ! v_local = (-2)*Z/r instead of using the extrapolated value. ! This is because, typically extrapolation leads to positive potentials. ! This is implemented in lines 240-242 DO i=1,mesh(1) IF(r(i,1)>r(mesh(2),2)) vloc0(i,2) = -(2.0*zp(2))/r(i,1) ENDDO ENDIF upf_vloc0(1:upf_mesh) = x * vloc0(1:upf_mesh,1) + & (1.d0-x) * vloc0(1:upf_mesh,2) ! !pp_nonlocal !pp_beta ALLOCATE( upf_betar(upf_mesh,upf_nbeta), & upf_lll(upf_nbeta), upf_ikk2(upf_nbeta) ) ib = 0 DO i=1,nbeta(1) ib = ib + 1 upf_betar(1:upf_mesh,ib) = betar(1:upf_mesh,i,1) upf_lll(ib) = lll(i,1) upf_ikk2(ib) = ikk2(i,1) ENDDO DO i=1,nbeta(2) ib = ib + 1 IF (interpolate) THEN WRITE (*,*) " interpolate betar" aux2(1,1:mesh(2)) = betar(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) betar(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) ENDIF upf_betar(1:upf_mesh,ib) = betar(1:upf_mesh,i,2) upf_lll(ib) = lll(i,2) ! SdG - when the meshes of the two pseudo are different the ikk2 limits ! for the beta functions of the second one must be set properly ! This is done in lines 273-277 IF (interpolate) THEN j = 1 DO WHILE ( upf_r(j) < r( ikk2(i,2), 2) ) j = j + 1 ENDDO upf_ikk2(ib) = j ELSE upf_ikk2(ib) = ikk2(i,2) ENDIF ENDDO ! !pp_dij ALLOCATE( upf_dion(upf_nbeta, upf_nbeta) ) upf_dion(:,:) = 0.d0 DO i=1,nbeta(1) DO j=1,nbeta(1) upf_dion(i,j) = x * dion(i,j,1) ENDDO ENDDO DO i=1,nbeta(2) DO j=1,nbeta(2) upf_dion(nbeta(1)+i,nbeta(1)+j) = (1.d0-x) * dion(i,j,2) ENDDO ENDDO ! !pp_qij IF (nqf(1)/=nqf(2)) & CALL errore ("Virtual","different nqf are not implemented (yet)", 1) IF (nqlc(1)/=nqlc(2)) & CALL errore ("Virtual","different nqlc are not implemented (yet)", 1) upf_nqf = nqf(1) upf_nqlc = nqlc(1) ALLOCATE( upf_rinner(upf_nqlc), upf_qqq(upf_nbeta,upf_nbeta), & upf_qfunc(upf_mesh,upf_nbeta,upf_nbeta) ) DO i=1,upf_nqlc IF(rinner(i,1)/=rinner(i,2)) & CALL errore("Virtual","different rinner are not implemented (yet)",i) ENDDO upf_rinner(1:upf_nqlc) = rinner(1:upf_nqlc,1) upf_qqq(:,:) = 0.d0 upf_qfunc(:,:,:) = 0.d0 DO i=1,nbeta(1) DO j=1,nbeta(1) upf_qqq(i,j) = x * qqq(i, j,1) upf_qfunc(1:upf_mesh,i,j) = x * qfunc(1:upf_mesh,i,j,1) ENDDO ENDDO DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qqq(nbeta(1)+i,nbeta(1)+j) = (1.d0-x) * qqq(i, j, 2) IF (interpolate) THEN WRITE (*,*) " interpolate qfunc" aux2(1,1:mesh(2) ) = qfunc(1:mesh(2),i,j,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) qfunc(1:upf_mesh,i,j,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_qfunc(1:upf_mesh,nbeta(1)+i,nbeta(1)+j) = (1.d0-x) * qfunc(1:upf_mesh,i,j,2) ENDDO ENDDO ! !pp_qfcoef ALLOCATE( upf_qfcoef(upf_nqf,upf_nqlc,upf_nbeta,upf_nbeta) ) upf_qfcoef(:,:,:,:) = 0.d0 DO i=1,nbeta(1) DO j=1,nbeta(1) upf_qfcoef(1:upf_nqf,1:upf_nqlc,i,j) = & x * qfcoef(1:upf_nqf,1:upf_nqlc,i,j, 1) ENDDO ENDDO DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qfcoef(1:upf_nqf,1:upf_nqlc,nbeta(1)+i,nbeta(1)+j) = & (1.d0-x) * qfcoef(1:upf_nqf,1:upf_nqlc,i,j, 2) ENDDO ENDDO ! !pp_pswfc ALLOCATE (upf_chi(upf_mesh,upf_ntwfc) ) IF (ntwfc(1)==ntwfc(2)) THEN DO i=1,ntwfc(2) IF (interpolate) THEN WRITE (*,*) " interpolate chi" aux2(1,1:mesh(2)) = chi(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) chi(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF ! Jivtesh - The wavefunctions are calcuated to be the average of the ! wavefunctions of the two atoms - lines 365-366 upf_chi(1:upf_mesh,i) = x * chi(1:upf_mesh,i,1) + & (1.d0-x) * chi(1:upf_mesh,i,2) ENDDO ELSE WRITE (*,*) "Number of wavefunctions not the same for the two pseudopotentials" ENDIF !upf_chi(1:upf_mesh,1:upf_ntwfc) = chi(1:upf_mesh,1:upf_ntwfc,1) ! !pp_rhoatm ALLOCATE (upf_rho_at(upf_mesh) ) IF (interpolate) THEN WRITE (*,*) " interpolate rho_at" aux2(1,1:mesh(2)) = rho_at(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_at(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_at(1:upf_mesh) = x * rho_at(1:upf_mesh,1) + & (1.d0-x) * rho_at(1:upf_mesh,2) END SUBROUTINE compute_virtual ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo (is, iunps) !--------------------------------------------------------------------- ! ! Read pseudopotential in the Unified Pseudopotential Format (UPF) ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! is : index of this pseudopotential ! iunps: unit connected with pseudopotential file ! IF (is < 0 .or. is > npsx ) CALL errore ('read_pseudo', 'Wrong is number', 1) WRITE ( *, * ) " Reading pseudopotential file in UPF format..." !------->Search for Header CALL scan_begin (iunps, "HEADER", .true.) CALL read_pseudo_header (is, iunps) CALL scan_end (iunps, "HEADER") !-------->Search for mesh information CALL scan_begin (iunps, "MESH", .true.) CALL read_pseudo_mesh (is, iunps) CALL scan_end (iunps, "MESH") !-------->If present, search for nlcc IF (nlcc (is) ) THEN CALL scan_begin (iunps, "NLCC", .true.) CALL read_pseudo_nlcc (is, iunps) CALL scan_end (iunps, "NLCC") ENDIF !-------->Search for Local potential CALL scan_begin (iunps, "LOCAL", .true.) CALL read_pseudo_local (is, iunps) CALL scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential CALL scan_begin (iunps, "NONLOCAL", .true.) CALL read_pseudo_nl (is, iunps) CALL scan_end (iunps, "NONLOCAL") !-------->Search for atomic wavefunctions CALL scan_begin (iunps, "PSWFC", .true.) CALL read_pseudo_pswfc (is, iunps) CALL scan_end (iunps, "PSWFC") !-------->Search for atomic charge CALL scan_begin (iunps, "RHOATOM", .true.) CALL read_pseudo_rhoatom (is, iunps) CALL scan_end (iunps, "RHOATOM") ! WRITE ( *, * ) " ...done" RETURN END SUBROUTINE read_pseudo !--------------------------------------------------------------------- SUBROUTINE scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string LOGICAL :: rew ! Flag: if .true. rewind the file CHARACTER (len=80) :: rstring ! String read from file INTEGER :: ios LOGICAL, EXTERNAL :: matches ios = 0 IF (rew) REWIND (iunps) DO WHILE (ios==0) READ (iunps, *, iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN ENDDO 300 CALL errore ('scan_begin', 'No '//string//' block', abs (ios) ) END SUBROUTINE scan_begin !--------------------------------------------------------------------- SUBROUTINE scan_end (iunps, string) !--------------------------------------------------------------------- IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string ! String read from file CHARACTER (len=80) :: rstring INTEGER :: ios LOGICAL, EXTERNAL :: matches READ (iunps, '(a)', iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN 300 CALL errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', - 1) END SUBROUTINE scan_end ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_header (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nv, ios, nw CHARACTER (len=75) :: dummy LOGICAL, EXTERNAL :: matches READ (iunps, *, err = 100, iostat = ios) nv, dummy READ (iunps, *, err = 100, iostat = ios) psd (is), dummy READ (iunps, *, err = 100, iostat = ios) pseudotype IF (matches (pseudotype, "US") ) isus (is) = .true. READ (iunps, *, err = 100, iostat = ios) nlcc (is), dummy READ (iunps, '(a20,t24,a)', err = 100, iostat = ios) dft(is), dummy READ (iunps, * ) zp (is), dummy READ (iunps, * ) etotps, dummy READ (iunps, * ) ecutwfc, ecutrho READ (iunps, * ) lmax (is), dummy READ (iunps, *, err = 100, iostat = ios) mesh (is), dummy READ (iunps, *, err = 100, iostat = ios) ntwfc(is), nbeta (is), dummy READ (iunps, '(a)', err = 100, iostat = ios) dummy DO nw = 1, ntwfc(is) READ (iunps, * ) els (nw,is), lchi (nw, is), oc (nw, is) ENDDO RETURN 100 CALL errore ('read_pseudo_header', 'Reading pseudo file', abs (ios)) END SUBROUTINE read_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_local (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! READ (iunps, *, err=100, iostat=ios) (vloc0(ir,is) , ir=1,mesh(is)) 100 CALL errore ('read_pseudo_local','Reading pseudo file', abs(ios) ) RETURN END SUBROUTINE read_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_mesh (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! CALL scan_begin (iunps, "R", .false.) READ (iunps, *, err = 100, iostat = ios) (r(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "R") CALL scan_begin (iunps, "RAB", .false.) READ (iunps, *, err = 100, iostat = ios) (rab(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "RAB") RETURN 100 CALL errore ('read_pseudo_mesh', 'Reading pseudo file', abs (ios) ) END SUBROUTINE read_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nl (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nb, mb, n, ir, nd, ios, idum, ldum, icon, lp, i ! counters CHARACTER (len=75) :: dummy ! DO nb = 1, nbeta (is) CALL scan_begin (iunps, "BETA", .false.) READ (iunps, *, err = 100, iostat = ios) idum, lll(nb,is), dummy READ (iunps, '(i6)', err = 100, iostat = ios) ikk2(nb,is) READ (iunps, *, err = 100, iostat = ios) & (betar(ir,nb,is), ir=1,ikk2(nb,is)) DO ir = ikk2(nb,is) + 1, mesh (is) betar (ir, nb, is) = 0.d0 ENDDO CALL scan_end (iunps, "BETA") ENDDO WRITE(*,*)'ikk2',ikk2 CALL scan_begin (iunps, "DIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nd, dummy dion (:,:,is) = 0.d0 DO icon = 1, nd READ (iunps, *, err = 100, iostat = ios) nb, mb, dion(nb,mb,is) dion (mb,nb,is) = dion (nb,mb,is) ENDDO CALL scan_end (iunps, "DIJ") IF (isus (is) ) THEN CALL scan_begin (iunps, "QIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nqf(is) nqlc (is)= 2 * lmax (is) + 1 IF (nqlc(is)>lqmax .or. nqlc(is)<0) & CALL errore (' read_pseudo_nl', 'Wrong nqlc', nqlc (is) ) IF (nqf(is)/=0) THEN CALL scan_begin (iunps, "RINNER", .false.) READ (iunps,*,err=100,iostat=ios) & (idum,rinner(i,is),i=1,nqlc(is)) CALL scan_end (iunps, "RINNER") ENDIF DO nb = 1, nbeta(is) DO mb = nb, nbeta(is) READ (iunps,*,err=100,iostat=ios) idum, idum, ldum, dummy !" i j (l)" IF (ldum/=lll(mb,is) ) CALL errore ('read_pseudo_nl', & 'inconsistent angular momentum for Q_ij', 1) READ (iunps,*,err=100,iostat=ios) qqq(nb,mb,is), dummy ! "Q_int" qqq(mb,nb,is) = qqq(nb,mb,is) READ (iunps,*,err=100,iostat=ios) & (qfunc(n,nb,mb,is), n=1,mesh(is)) DO n = 0, mesh (is) qfunc(n,mb,nb,is) = qfunc(n,nb,mb,is) ENDDO IF (nqf(is)>0) THEN CALL scan_begin (iunps, "QFCOEF", .false.) READ (iunps,*,err=100,iostat=ios) & ((qfcoef(i,lp,nb,mb,is),i=1,nqf(is)),lp=1,nqlc(is)) CALL scan_end (iunps, "QFCOEF") ENDIF ENDDO ENDDO CALL scan_end (iunps, "QIJ") ELSE qqq (:,:,is) = 0.d0 qfunc(:,:,:,is) =0.d0 ENDIF 100 CALL errore ('read_pseudo_nl', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nlcc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps, *, err = 100, iostat = ios) (rho_atc(ir,is), ir=1,mesh(is) ) ! 100 CALL errore ('read_pseudo_nlcc', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_pswfc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! CHARACTER (len=75) :: dummy INTEGER :: nb, ir, ios ! DO nb = 1, ntwfc(is) READ (iunps,*,err=100,iostat=ios) dummy !Wavefunction labels READ (iunps,*,err=100,iostat=ios) (chi(ir,nb,is), ir=1,mesh(is)) ENDDO 100 CALL errore ('read_pseudo_pswfc', 'Reading pseudo file', abs(ios)) RETURN END SUBROUTINE read_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_rhoatom (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps,*,err=100,iostat=ios) (rho_at(ir,is), ir=1,mesh(is)) RETURN 100 CALL errore ('read_pseudo_rhoatom','Reading pseudo file',abs(ios)) END SUBROUTINE read_pseudo_rhoatom espresso-5.0.2/upftools/upf2upf2.f900000644000700200004540000000544612053145633016237 0ustar marsamoscm! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM upf2upf2 !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in UPF v.1 format to UPF v.2 format ! USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE radial_grids, ONLY: radial_grid_type, nullify_radial_grid USE read_upf_v1_module, ONLY : read_upf_v1 USE write_upf_v2_module, ONLY: write_upf_v2 ! IMPLICIT NONE TYPE(pseudo_upf) :: upf TYPE (radial_grid_type), TARGET :: grid CHARACTER(len=256) filein, fileout INTEGER :: ios INTEGER, EXTERNAL :: atomic_number ! CALL get_file ( filein ) IF ( trim(filein) == ' ') & CALL errore ('upf2upf2', 'usage: upf2upf2 "file-to-be-converted"', 1) OPEN ( unit=1, file=filein, status = 'old', form='formatted', iostat=ios ) IF ( ios /= 0) & CALL errore ('upf2upf2', 'file: '//trim(filein)//' not found', 2) ! CALL nullify_pseudo_upf ( upf ) CALL nullify_radial_grid ( grid ) upf%grid => grid CALL read_upf_v1 (1, upf, grid, ios) IF ( ios /= 0) & CALL errore ('upf2upf2', 'file '//trim(filein)//' not UPF v.1', 3) ! CLOSE (unit=1) ! ! convert a few variables ! upf%nv = "2.0.1" IF ( .not. associated (upf%epseu) ) THEN ALLOCATE ( upf%epseu( upf%nwfc) ) upf%epseu=0 ENDIF ALLOCATE ( upf%nchi( upf%nwfc) ) IF ( .not. associated(upf%nn) ) THEN upf%nchi=0 ELSE upf%nchi=upf%nn(1:upf%nwfc) ENDIF ALLOCATE ( upf%rcut_chi( upf%nwfc ) ) ALLOCATE ( upf%rcutus_chi( upf%nwfc ) ) upf%rcut_chi=upf%rcut(1:upf%nwfc) upf%rcutus_chi=upf%rcutus(1:upf%nwfc) ! upf%rmax = upf%r(upf%mesh) upf%dx = log(upf%rmax/upf%r(1))/(upf%mesh-1) upf%zmesh = atomic_number( upf%psd ) upf%xmin = log(upf%r(1)*upf%zmesh ) IF ( upf%has_so) THEN upf%rel="full" ELSEIF ( upf%zmesh > 18 ) THEN upf%rel="scalar" ELSE upf%rel="no" ENDIF ! ! write to file ! fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') ! CALL write_upf_v2 (2, upf ) ! CLOSE (unit=2) CALL deallocate_pseudo_upf ( upf ) ! ---------------------------------------------------------- WRITE (6,"('Pseudopotential successfully written')") WRITE (6,"('Please review the content of the PP_INFO fields')") WRITE (6,"('*** Please TEST BEFORE USING !!! ***')") ! ---------------------------------------------------------- ! STOP END PROGRAM upf2upf2 espresso-5.0.2/upftools/uspp2upf.f900000644000700200004540000000235012053145633016341 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM uspp2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in Vanderbilt format ! (unformatted) to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! IF ( trim(filein) == ' ') & CALL errore ('uspp2upf', 'usage: uspp2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN(unit=1,file=filein,status='old',form='unformatted') CALL read_uspp(1) CLOSE (unit=1) ! convert variables read from Vanderbilt format into those needed ! by the upf format - add missing quantities CALL convert_uspp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 WRITE (6,'("uspp2upf: error reading pseudopotential file name")') STOP END PROGRAM uspp2upf espresso-5.0.2/upftools/read_upf_tofile.f900000644000700200004540000000526712053145633017716 0ustar marsamoscm! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- PROGRAM read_upf_tofile !--------------------------------------------------------------------- ! ! This small program reads the pseudopotential in the Unified ! Pseudopotential Format and writes three files ! in a format which can be plotted. The files are: ! ! filewfc with the pseudo-wavefunctions ! filebeta with the beta functions ! filepot with the local potential, the valence and core charge. ! ! ! PWSCF modules ! ! USE constants, ONLY : fpi USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE upf_module, ONLY : read_upf USE radial_grids, ONLY : radial_grid_type, nullify_radial_grid ! IMPLICIT NONE ! INTEGER :: iunps, ierr ! CHARACTER(30) :: file_pseudo ! ! Local variables ! INTEGER :: ios, n, j TYPE (pseudo_upf) :: upf TYPE (radial_grid_type) :: grid ! WRITE(6,'("Name of the upf file > ", $)') READ(5,'(a)') file_pseudo ! nullify objects as soon as they are instantiated CALL nullify_pseudo_upf( upf ) CALL nullify_radial_grid( grid ) iunps=2 OPEN(UNIT=iunps,FILE=file_pseudo,STATUS='old',FORM='formatted', & ERR=100, IOSTAT=ios) 100 CALL errore('read_upf_tofile','open error on file '//file_pseudo,ios) CALL read_upf(upf, grid, ierr, unit=iunps) ! IF (ierr /= 0) & CALL errore('read_upf_tofile','reading pseudo upf', abs(ierr)) ! CLOSE(iunps) ! OPEN(UNIT=iunps,FILE='filewfc',STATUS='unknown',FORM='formatted', & ERR=200, IOSTAT=ios) 200 CALL errore('read_upf_tofile','open error on file filewfc',abs(ios)) DO n=1,upf%mesh WRITE(iunps,'(30f12.6)') upf%r(n), (upf%chi(n,j), j=1,upf%nwfc) ENDDO CLOSE(iunps) OPEN(UNIT=iunps,FILE='filebeta',STATUS='unknown',FORM='formatted', & ERR=300, IOSTAT=ios) 300 CALL errore('read_upf_tofile','open error on file filebeta',abs(ios)) DO n=1,upf%mesh WRITE(iunps,'(30f12.6)') upf%r(n), (upf%beta(n,j), j=1,upf%nbeta) ENDDO CLOSE(iunps) OPEN(UNIT=iunps,FILE='filepot',STATUS='unknown',FORM='formatted', & ERR=400, IOSTAT=ios) 400 CALL errore('read_upf_tofile','open error on file filepot',abs(ios)) DO n=1,upf%mesh WRITE(iunps,'(4f12.6)') upf%r(n), upf%vloc(n), & upf%rho_at(n), upf%rho_atc(n)*fpi*upf%r(n)**2 ENDDO CLOSE(iunps) CALL deallocate_pseudo_upf( upf ) END PROGRAM read_upf_tofile espresso-5.0.2/upftools/rrkj2upf.f900000644000700200004540000001646312053145633016334 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM rrkj2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in "rrkj3" format ! (Rabe-Rappe-Kaxiras-Joannopoulos with 3 Bessel functions) ! to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! IF ( trim(filein) == ' ') & CALL errore ('rrkj2upf', 'usage: rrkj2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN (unit = 1, file = filein, status = 'old', form = 'formatted') CALL read_rrkj(1) CLOSE (1) ! convert variables read from rrkj3 format into those needed ! by the upf format - add missing quantities CALL convert_rrkj fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 WRITE (6,'("rrkj2upf: error reading pseudopotential file name")') STOP END PROGRAM rrkj2upf MODULE rrkj3 ! ! All variables read from RRKJ3 file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! CHARACTER(len=75):: titleps CHARACTER (len=2), ALLOCATABLE :: els_(:) INTEGER :: pseudotype_, iexch_, icorr_, igcx_, igcc_, mesh_, & nwfs_, nbeta_, lmax_ LOGICAL :: rel_, nlcc_ real (8) :: zp_, etotps_, xmin, rmax, zmesh, dx, rcloc_ INTEGER, ALLOCATABLE:: lchi_(:), nns_(:), ikk2_(:) real (8), ALLOCATABLE :: rcut_(:), rcutus_(:), oc_(:), & beta(:,:), dion_(:,:), qqq_(:,:), ddd(:,:), qfunc_(:,:,:), & rho_atc_(:), rho_at_(:), chi_(:,:), vloc_(:) END MODULE rrkj3 ! ! ---------------------------------------------------------- SUBROUTINE read_rrkj(iunps) ! ---------------------------------------------------------- ! USE rrkj3 IMPLICIT NONE INTEGER :: iunps INTEGER :: nb, mb, n, ir, ios !--- > Start the header reading READ (iunps, '(a75)', err = 100) titleps READ (iunps, *, err = 100) pseudotype_ READ (iunps, *, err = 100) rel_, nlcc_ READ (iunps, *, err=100) iexch_, icorr_, igcx_, igcc_ READ (iunps, '(2e17.11,i5)') zp_, etotps_, lmax_ READ (iunps, '(4e17.11,i5)', err=100) xmin, rmax, zmesh, dx, mesh_ READ (iunps, *, err=100) nwfs_, nbeta_ ALLOCATE(rcut_(nwfs_), rcutus_(nwfs_)) READ (iunps, *, err=100) (rcut_(nb), nb=1,nwfs_) READ (iunps, *, err=100) (rcutus_(nb), nb=1,nwfs_) ALLOCATE(els_(nwfs_), nns_(nwfs_), lchi_(nwfs_), oc_(nwfs_)) DO nb = 1, nwfs_ READ (iunps, '(a2,2i3,f6.2)', err = 100) els_(nb), & nns_(nb), lchi_(nb) , oc_(nb) ENDDO ALLOCATE(ikk2_(nbeta_)) ALLOCATE(beta( mesh_,nbeta_)) ALLOCATE(dion_(nbeta_,nbeta_)) ALLOCATE(ddd (nbeta_,nbeta_)) ALLOCATE(qqq_(nbeta_,nbeta_)) ALLOCATE(qfunc_(mesh_,nbeta_,nbeta_)) DO nb = 1, nbeta_ READ (iunps, *, err = 100) ikk2_(nb) READ (iunps, *, err = 100) (beta (ir, nb) , ir = 1,ikk2_(nb) ) DO ir = ikk2_(nb) + 1, mesh_ beta (ir, nb) = 0.d0 ENDDO DO mb = 1, nb READ (iunps, *, err = 100) dion_(nb, mb) dion_(mb, nb) = dion_(nb, mb) IF (pseudotype_==3) THEN READ (iunps, *, err = 100) qqq_(nb, mb) qqq_(mb, nb) = qqq_(nb, mb) READ (iunps, *, err = 100) (qfunc_(n,nb, mb), n = 1, mesh_) DO n = 1, mesh_ qfunc_(n, mb, nb) = qfunc_(n, nb, mb) ENDDO ELSE qqq_(nb, mb) = 0.d0 qqq_(mb, nb) = 0.d0 DO n = 1, mesh_ qfunc_(n, nb, mb) = 0.d0 qfunc_(n, mb, nb) = 0.d0 ENDDO ENDIF ENDDO ENDDO ! ! read the local potential ! ALLOCATE(vloc_(mesh_)) READ (iunps, *, err = 100) rcloc_, (vloc_(ir ) , ir = 1, mesh_ ) ! ! read the atomic charge ! ALLOCATE(rho_at_(mesh_)) READ (iunps, *, err=100) (rho_at_(ir), ir=1,mesh_) ! ! if present read the core charge ! ALLOCATE(rho_atc_(mesh_)) IF (nlcc_) THEN READ (iunps, *, err=100) (rho_atc_(ir), ir=1, mesh_) ENDIF ! ! read the pseudo wavefunctions of the atom ! ALLOCATE(chi_(mesh_,nwfs_)) READ (iunps, *, err=100) ( (chi_(ir,nb), ir = 1,mesh_) , nb = 1, nwfs_) ! ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- ! RETURN 100 WRITE (6,'("read_rrkj: error reading pseudopotential file")') STOP END SUBROUTINE read_rrkj SUBROUTINE convert_rrkj ! ---------------------------------------------------------- ! USE rrkj3 USE upf USE constants, ONLY : fpi IMPLICIT NONE INTEGER i, n real(8) :: x WRITE(generated, '("Generated using Andrea Dal Corso code (rrkj3)")') WRITE(date_author,'("Author: Andrea Dal Corso Generation date: unknown")') comment = 'Info:'//titleps IF (rel_) THEN rel = 1 ELSE rel = 0 ENDIF rcloc = rcloc_ nwfs = nwfs_ ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs nns (i) = nns_(i) lchi(i) = lchi_(i) rcut(i) = rcut_(i) rcutus(i)= rcutus_(i) oc (i) = oc_(i) els(i) = els_(i) epseu(i) = 0.0d0 ENDDO DEALLOCATE (els_, oc_, rcutus_, rcut_, nns_) psd = titleps (7:8) IF (pseudotype_==3) THEN pseudotype = 'US' ELSE pseudotype = 'NC' ENDIF nlcc = nlcc_ zp = zp_ etotps = etotps_ ecutrho=0.0d0 ecutwfc=0.0d0 lmax = lmax_ mesh = mesh_ nbeta = nbeta_ ntwfc = 0 DO i=1, nwfs IF (oc(i) > 1.0d-12) ntwfc = ntwfc + 1 ENDDO ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) n = 0 DO i=1, nwfs IF (oc(i) > 1.0d-12) THEN n = n + 1 elsw(n) = els(i) ocw (n) = oc (i) lchiw(n)=lchi(i) ENDIF ENDDO iexch = iexch_ icorr = icorr_ igcx = igcx_ igcc = igcc_ ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) ! define logarithmic mesh DO i = 1, mesh x = xmin + dble(i-1) * dx r (i) = exp(x) / zmesh rab(i) = dx * r(i) ENDDO ALLOCATE (rho_atc(mesh)) ! rrkj rho_core(r) = 4pi*r^2*rho_core(r) UPF rho_atc (:) = rho_atc_(:) / fpi / r(:)**2 DEALLOCATE (rho_atc_) ALLOCATE (vloc0(mesh)) vloc0 = vloc_ DEALLOCATE (vloc_) ALLOCATE(ikk2(nbeta), lll(nbeta)) ikk2 = ikk2_ lll = lchi_ DEALLOCATE (ikk2_, lchi_) ! kkbeta = 0 ! do nb=1,nbeta ! kkbeta = max (kkbeta , ikk2(nb) ) ! end do ALLOCATE(betar(mesh,nbeta)) betar = 0.0d0 DO i=1, nbeta betar(1:ikk2(i),i) = beta(1:ikk2(i),i) ENDDO DEALLOCATE (beta) ALLOCATE(dion(nbeta,nbeta)) dion = dion_ DEALLOCATE (dion_) ALLOCATE(qqq(nbeta,nbeta)) qqq = qqq_ DEALLOCATE (qqq_) ALLOCATE(qfunc(mesh,nbeta,nbeta)) qfunc = qfunc_ nqf = 0 nqlc= 0 ALLOCATE (rho_at(mesh)) rho_at = rho_at_ DEALLOCATE (rho_at_) ALLOCATE (chi(mesh,ntwfc)) n = 0 DO i=1, nwfs IF (oc(i) > 1.0d-12) THEN n = n + 1 chi(:,n) = chi_(:,i) ENDIF ENDDO DEALLOCATE (chi_) RETURN END SUBROUTINE convert_rrkj espresso-5.0.2/upftools/fpmd2upf.f900000644000700200004540000007142312053145633016307 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This utility can be used to convert norm-conserving ! pseudopotentials from FPMD old format to UPF format ! ! Usage: ! fpmd2upf.x < input.namelist ! ! input.namelist should contain the namelist fpmd_pseudo ! fpmd_pseudo parameter are: ! ! psfile pseudopotential filename in FPMD format ! nwfs Number of wavefunction ! wfl(i) i = 1, nwfs Wavefunction label ! wfoc(i) i = 1, nwfs Wavefunction occupation ! psd element name ! zp valence charge ! iexch exchange functional ! icorr correlation functional ! igcx exchange gradient correction ! igcc correlation gradient correction ! ! Example: MODULE fpmd2upf_module USE kinds, ONLY: dp USE parameters USE radial_grids, ONLY: ndmx IMPLICIT NONE SAVE REAL(dp), PRIVATE :: TOLMESH = 1.d-5 TYPE pseudo_ncpp CHARACTER(len=4) :: psd ! Element label CHARACTER(len=20) :: pottyp ! Potential type LOGICAL :: tmix LOGICAL :: tnlcc INTEGER :: igau INTEGER :: lloc INTEGER :: nbeta INTEGER :: lll(lmaxx+1) INTEGER :: nchan INTEGER :: mesh REAL(dp) :: zv REAL(dp) :: dx ! r(i) = cost * EXP( xmin + dx * (i-1) ) REAL(dp) :: rab(ndmx) REAL(dp) :: rw(ndmx) REAL(dp) :: vnl(ndmx, lmaxx+1) REAL(dp) :: vloc(ndmx) REAL(dp) :: vrps(ndmx, lmaxx+1) REAL(dp) :: wgv(lmaxx+1) REAL(dp) :: rc(2) REAL(dp) :: wrc(2) REAL(dp) :: rcl(3,3) REAL(dp) :: al(3,3) REAL(dp) :: bl(3,3) INTEGER :: nrps ! number of atomic wave function INTEGER :: lrps(lmaxx+1) ! angular momentum REAL(dp) :: oc(lmaxx+1) ! occupation for each rps REAL(dp) :: rps(ndmx, lmaxx+1) ! atomic pseudo wave function REAL(dp) :: rhoc(ndmx) ! core charge END TYPE pseudo_ncpp CONTAINS SUBROUTINE read_pseudo_fpmd( ap, psfile ) TYPE(pseudo_ncpp) :: ap CHARACTER(len=256) :: psfile CHARACTER(len=80) :: error_msg INTEGER :: info, iunit iunit = 11 OPEN(UNIT=iunit,FILE=psfile,STATUS='OLD') REWIND( iunit ) CALL read_head_pp( iunit, ap, error_msg, info) IF( info /= 0 ) GOTO 200 IF( ap%pottyp == 'GIANNOZ' ) THEN CALL read_giannoz(iunit, ap, info) IF( info /= 0 ) GOTO 200 ELSEIF( ap%pottyp == 'NUMERIC' ) THEN CALL read_numeric_pp( iunit, ap, error_msg, info) IF( info /= 0 ) GOTO 200 ELSEIF( ap%pottyp == 'ANALYTIC' ) THEN CALL read_analytic_pp( iunit, ap, error_msg, info) IF( info /= 0 ) GOTO 200 ELSE info = 1 error_msg = ' Pseudopotential type '//trim(ap%pottyp)//' not implemented ' GOTO 200 ENDIF 200 CONTINUE IF( info /= 0 ) THEN CALL errore(' readpseudo ', error_msg, abs(info) ) ENDIF CLOSE(iunit) RETURN END SUBROUTINE read_pseudo_fpmd !=----------------------------------------------------------------------------=! SUBROUTINE analytic_to_numeric(ap) TYPE (pseudo_ncpp), INTENT(inout) :: ap INTEGER :: ir, mesh, lmax, l, n, il, ib, ll REAL(dp) :: xmin, zmesh, dx, x ! REAL(dp) :: pi = 3.14159265358979323846_dp ! ... declare external function REAL(dp), EXTERNAL :: qe_erf IF( ap%mesh == 0 ) THEN ! ... Local pseudopotential, define a logaritmic grid mesh = size( ap%rw ) xmin = -5.0d0 zmesh = 6.0d0 dx = 0.025d0 DO ir = 1, mesh x = xmin + dble(ir-1) * dx ap%rw(ir) = exp(x) / zmesh IF( ap%rw(ir) > 1000.0d0 ) exit ENDDO ap%mesh = mesh ap%dx = dx ap%rab = ap%dx * ap%rw ENDIF ap%vnl = 0.0d0 ap%vloc = 0.0d0 ap%vrps = 0.0d0 DO l = 1, 3 DO ir = 1, ap%mesh ap%vnl(ir,l)= - ( ap%wrc(1) * qe_erf(sqrt(ap%rc(1))*ap%rw(ir)) + & ap%wrc(2) * qe_erf(sqrt(ap%rc(2))*ap%rw(ir)) ) *& ap%zv / ap%rw(ir) ENDDO DO ir = 1, ap%mesh DO n = 1, ap%igau ap%vnl(ir,l)= ap%vnl(ir,l)+ (ap%al(n,l)+ ap%bl(n,l)*ap%rw(ir)**2 )* & exp(-ap%rcl(n,l)*ap%rw(ir)**2) ENDDO ENDDO ENDDO ! ... Copy local component to a separate array ap%vloc(:) = ap%vnl(:,ap%lloc) DO l = 1, ap%nbeta ll=ap%lll(l) + 1 ! find out the angular momentum (ll-1) of the component stored ! in position l ap%vrps(:,l) = ( ap%vnl(:,ll) - ap%vloc(:) ) * ap%rps(:,ll) ENDDO RETURN END SUBROUTINE analytic_to_numeric !=----------------------------------------------------------------------------=! SUBROUTINE read_giannoz(uni, ap, ierr) ! USE constants, ONLY : fpi IMPLICIT NONE TYPE (pseudo_ncpp), INTENT(inout) :: ap INTEGER, INTENT(in) :: uni INTEGER, INTENT(out) :: ierr REAL(dp) :: chi( size(ap%rps, 1), size(ap%rps, 2) ) REAL(dp) :: vnl( size(ap%vnl, 1), size(ap%vnl, 2) ) REAL(dp) :: rho_core( size(ap%rhoc, 1) ) REAL(dp) :: r, ra, rb, fac REAL(dp) :: oc( size(ap%rps, 2) ) REAL(dp) :: enl( size(ap%rps, 2) ) REAL(dp) :: zmesh, xmin, dx, etot REAL(dp) :: zval INTEGER :: nn(size(ap%rps, 2)), ll(size(ap%rps, 2)) INTEGER :: nwf, mesh, i, j, in1, in2, in3, in4, m INTEGER :: lmax, nlc, nnl, lloc, l, il LOGICAL :: nlcc CHARACTER(len=80) :: dft CHARACTER(len=4) :: atom CHARACTER(len=2) :: el( size(ap%rps, 2) ) CHARACTER(len=80) :: ppinfo CHARACTER(len=80) :: strdum CHARACTER(len=2) :: sdum1, sdum2 ! ierr = 0 READ(uni,fmt='(a)') dft READ(uni,fmt='(a4,f5.1,3i2,a2,l1,a2,i2,a)') & atom, zval, lmax, nlc, nnl, sdum1, nlcc, sdum2, lloc, ppinfo ! WRITE(6,*) ' DEBUG ', atom, zval,lmax, nlc, nnl, nlcc, lloc, ppinfo IF( (lmax+1) > size(ap%vnl, 2) ) THEN ierr = 1 RETURN ENDIF IF( (nlcc .and. .not.ap%tnlcc) .or. (.not.nlcc .and. ap%tnlcc) ) THEN ierr = 2 RETURN ENDIF READ(uni,fmt='(f8.2,f8.4,f10.6,2i6)') zmesh, xmin, dx, mesh, nwf IF( mesh > size(ap%rps, 1) ) THEN ierr = 3 RETURN ENDIF IF( nwf > size(ap%rps, 2) ) THEN ierr = 4 RETURN ENDIF DO j = 0, lmax READ(uni,fmt="(A16,i1)") strdum, l READ(uni,'(4e16.8)') (vnl(i,j+1), i=1,mesh) ENDDO IF (nlcc) THEN READ(uni,fmt='(4e16.8)') (rho_core(i), i=1,mesh) ENDIF DO j = 1, nwf READ(uni,fmt="(A16,a2)") strdum,el(j) READ(uni,fmt='(i5,f6.2)') ll(j),oc(j) READ(uni,fmt='(4e16.8)') (chi(i,j), i=1,mesh) ENDDO ap%zv = zval ap%nchan = lmax+1 ap%mesh = mesh ap%rw = 0.0d0 ap%vnl = 0.0d0 ap%vrps = 0.0d0 fac = 0.5d0 ! WRITE(6,*) ' DEBUG ', ap%lloc, ap%numeric, ap%nbeta, ap%raggio, ap%zv DO i = 1, mesh r = exp(xmin+dble(i-1)*dx)/zmesh ap%rw(i) = r DO j = 1, lmax+1 ap%vnl(i,j) = vnl(i,j) * fac ENDDO ENDDO IF( minval( ap%rw(1:mesh) ) <= 0.0d0 ) THEN ierr = 5 RETURN ENDIF ap%dx = dx ap%rab = ap%dx * ap%rw ap%vloc(:) = ap%vnl(:,ap%lloc) ap%lrps(1:nwf) = ll(1:nwf) ap%oc = 0.0d0 ap%nrps = nwf ap%mesh = mesh ap%rps = 0.0d0 ! fac = 1.0d0/SQRT(fpi) fac = 1.0d0 DO i = 1, mesh r = exp(xmin+dble(i-1)*dx)/zmesh DO j = 1, nwf ap%rps(i,j) = chi(i,j) * fac ENDDO ENDDO DO l = 1, ap%nbeta il=ap%lll(l) + 1 ! find out the angular momentum (il-1) of the component stored ! in position l DO i = 1, mesh ap%vrps(i,l) = ( ap%vnl(i,il) - ap%vloc(i) ) * ap%rps(i,il) ENDDO ENDDO IF( nlcc ) THEN ap%rhoc = 0.0d0 DO i = 1, mesh r = exp(xmin+dble(i-1)*dx)/zmesh ap%rhoc(i) = rho_core(i) ENDDO ENDIF RETURN END SUBROUTINE read_giannoz !=----------------------------------------------------------------------------=! SUBROUTINE ap_info( ap ) TYPE (pseudo_ncpp), INTENT(in) :: ap INTEGER :: in1, in2, in3, in4, m, il, ib, l, i IF (ap%nbeta > 0) THEN WRITE(6,10) ap%pottyp IF (ap%tmix) THEN WRITE(6,107) WRITE(6,106) (ap%lll(l),l=1,ap%nbeta) WRITE(6,105) (ap%wgv(l),l=1,ap%nbeta) ELSE WRITE(6,50) ap%lloc ENDIF WRITE(6,60) (ap%lll(l),l=1,ap%nbeta) ELSE ! ... A local pseudopotential has been read. WRITE(6,11) ap%pottyp WRITE(6,50) ap%lloc ENDIF 10 FORMAT( 3X,'Type is ',A10,' and NONLOCAL. ') 107 FORMAT( 3X,'Mixed reference potential:') 106 FORMAT( 3X,' L :',3(9X,i1)) 105 FORMAT( 3X,' Weight:',3(2X,F8.5)) 50 FORMAT( 3X,'Local component is ..... : ',I3) 60 FORMAT( 3X,'Non local components are : ',4I3) 11 FORMAT( 3X,'Type is ',A10,' and LOCAL. ') 20 FORMAT( 3X,'Pseudo charge : ',F8.3,', pseudo radius : ',F8.3) WRITE(6,20) ap%zv IF( ap%pottyp /= 'ANALYTIC' ) THEN WRITE(6,131) ap%nchan, ap%mesh, ap%dx in1=1 in2=ap%mesh/4 in3=ap%mesh/2 in4=ap%mesh WRITE(6,132) WRITE(6,120) in1,ap%rw(in1),(ap%vnl(in1,m),m=1,ap%nchan) WRITE(6,120) in2,ap%rw(in2),(ap%vnl(in2,m),m=1,ap%nchan) WRITE(6,120) in3,ap%rw(in3),(ap%vnl(in3,m),m=1,ap%nchan) WRITE(6,120) in4,ap%rw(in4),(ap%vnl(in4,m),m=1,ap%nchan) 131 FORMAT(/, 3X,'Pseudopotentials Grid : Channels = ',I2,& ', Mesh = ',I5,/,30X,'dx = ',F16.14) 132 FORMAT( 3X,'point radius pseudopotential') 120 FORMAT(I8,F15.10,5F10.6) ELSE WRITE(6,25) ap%igau WRITE(6,30) WRITE(6,104) ap%wrc(1),ap%rc(1),ap%wrc(2),ap%rc(2) 25 FORMAT(/, 3X,'Gaussians used : ',I2,'. Parameters are : ') 30 FORMAT( 3X,'C (core), Alfa(core) : ') 104 FORMAT(4(3X,F8.4)) WRITE(6,40) DO il=1,3 DO ib=1,ap%igau WRITE(6,103) ap%rcl(ib,il),ap%al(ib,il),ap%bl(ib,il) ENDDO ENDDO 40 FORMAT( 3X,'Hsc radii and coeff. A and B :') 103 FORMAT(3X,F8.4,2(3X,F15.7)) ENDIF IF( ap%nrps > 0 .and. ap%mesh > 0 ) THEN WRITE(6,141) ap%nrps, ap%mesh, ap%dx in1=1 in2=ap%mesh/4 in3=ap%mesh/2 in4=ap%mesh WRITE(6,145) (ap%oc(i),i=1,ap%nrps) WRITE(6,142) WRITE(6,120) in1,ap%rw(in1),(ap%rps(in1,m),m=1,ap%nrps) WRITE(6,120) in2,ap%rw(in2),(ap%rps(in2,m),m=1,ap%nrps) WRITE(6,120) in3,ap%rw(in3),(ap%rps(in3,m),m=1,ap%nrps) WRITE(6,120) in4,ap%rw(in4),(ap%rps(in4,m),m=1,ap%nrps) ENDIF 141 FORMAT(/, 3X,'Atomic wavefunction Grid : Channels = ',I2,& ', Mesh = ',I5,/,30X,'dx = ',F16.14) 142 FORMAT( 3X,'point radius wavefunction') 145 FORMAT( 3X,'Channels occupation number : ',5F10.4) IF( ap%tnlcc ) THEN WRITE(6,151) ap%mesh, ap%dx in1 = 1 in2 = ap%mesh / 4 in3 = ap%mesh / 2 in4 = ap%mesh WRITE(6,152) WRITE(6,120) in1,ap%rw(in1),ap%rhoc(in1) WRITE(6,120) in2,ap%rw(in2),ap%rhoc(in2) WRITE(6,120) in3,ap%rw(in3),ap%rhoc(in3) WRITE(6,120) in4,ap%rw(in4),ap%rhoc(in4) ENDIF 151 FORMAT(/, 3X,'Core correction Grid : Mesh = ',I5, & ', dx = ',F16.14) 152 FORMAT( 3X,'point radius rho core') RETURN END SUBROUTINE ap_info !=----------------------------------------------------------------------------=! REAL(dp) FUNCTION calculate_dx( a, m ) REAL(dp), INTENT(in) :: a(:) INTEGER, INTENT(in) :: m INTEGER :: n REAL(dp) :: ra, rb n = min( size( a ), m ) ra = a(1) rb = a(n) calculate_dx = log( rb / ra ) / dble( n - 1 ) WRITE(6,*) 'amesh (dx) = ', calculate_dx RETURN END FUNCTION calculate_dx SUBROUTINE read_atomic_wf( iunit, ap, err_msg, ierr) USE parser, ONLY: field_count IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! CHARACTER(len=80) :: input_line INTEGER :: i, j, m, strlen, info, nf, mesh REAL(dp) :: rdum ! ... read atomic wave functions ! ... nchan : indicate number of atomic wave functions ( s p d ) ierr = 0 err_msg = ' error while reading atomic wf ' ap%rps = 0.0_dp ap%nrps = 0 ap%oc = 0.0d0 ap%lrps = 0 ! this is for local pseudopotentials IF( ap%nbeta == 0 ) RETURN READ(iunit,'(A80)',end=100) input_line CALL field_count(nf, input_line) strlen = len_trim(input_line) IF( nf == 2 ) THEN READ(input_line(1:strlen),*,IOSTAT=ierr) mesh, ap%nrps ELSE READ(input_line(1:strlen),*,IOSTAT=ierr) mesh, ap%nrps, ( ap%oc(j), j=1, min(ap%nrps,size(ap%oc)) ) ENDIF IF( ap%nrps > size(ap%rps,2) ) THEN ierr = 2 WRITE( 6, * ) ' nchan = (wf) ', ap%nrps err_msg = ' NCHAN NOT PROGRAMMED ' GOTO 110 ENDIF IF( mesh > size(ap%rw) .or. mesh < 0) THEN ierr = 4 err_msg = ' WAVMESH OUT OF RANGE ' GOTO 110 ENDIF DO j = 1, mesh READ(iunit,*,IOSTAT=ierr) rdum, (ap%rps(j,m),m=1,ap%nrps) IF( ap%mesh == 0 ) ap%rw(j) = rdum IF( abs(rdum - ap%rw(j))/(rdum+ap%rw(j)) > TOLMESH ) THEN ierr = 5 err_msg = ' radial meshes do not match ' GOTO 110 ENDIF ENDDO IF( ap%mesh == 0 ) THEN ap%mesh = mesh ap%dx = calculate_dx( ap%rw, ap%mesh ) ap%rab = ap%dx * ap%rw ENDIF GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_atomic_wf !=----------------------------------------------------------------------------=! SUBROUTINE read_numeric_pp( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! CHARACTER(len=80) :: input_line INTEGER :: i, j, m, strlen, info, nf, l, ll ! ... read numeric atomic pseudopotential ! ... nchan : indicate number of atomic wave functions ( s p d ) ierr = 0 err_msg = ' error while reading atomic numeric pseudo ' IF(ap%tmix) THEN READ(iunit,*) (ap%wgv(l),l=1,ap%nbeta) ENDIF READ(iunit,*,IOSTAT=ierr) ap%zv READ(iunit,*,IOSTAT=ierr) ap%mesh, ap%nchan IF((ap%nchan > size(ap%vnl,2) ) .or. (ap%nchan < 1)) THEN ierr = 1 WRITE( 6, * ) ' nchan (pp) = ', ap%nchan err_msg = ' NCHAN NOT PROGRAMMED ' GOTO 110 ENDIF IF((ap%mesh > size(ap%rw) ) .or. (ap%mesh < 0)) THEN info = 2 err_msg = ' NPOTMESH OUT OF RANGE ' GOTO 110 ENDIF ap%rw = 0.0d0 ap%vnl = 0.0d0 ap%vloc = 0.0d0 ap%vrps = 0.0d0 DO j = 1, ap%mesh READ(iunit,*,IOSTAT=ierr) ap%rw(j), (ap%vnl(j,l),l=1,ap%nchan) ENDDO IF( minval( ap%rw(1:ap%mesh) ) <= 0.0d0 ) THEN info = 30 err_msg = ' ap rw too small ' GOTO 110 ENDIF ! ... mixed reference potential is in vr(lloc) IF(ap%tmix) THEN DO j=1,ap%mesh ap%vnl(j,ap%lloc)= 0.d0 DO l=1,ap%nchan IF(l /= ap%lloc) THEN ap%vnl(j,ap%lloc)= ap%vnl(j,ap%lloc) + ap%wgv(l) * ap%vnl(j,l) ENDIF ENDDO ENDDO ENDIF ap%vloc(:) = ap%vnl(:,ap%lloc) ap%dx = calculate_dx( ap%rw, ap%mesh ) ap%rab = ap%dx * ap%rw CALL read_atomic_wf( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 DO l = 1, ap%nbeta ll=ap%lll(l) + 1 ap%vrps(:,l) = ( ap%vnl(:,ll) - ap%vloc(:) ) * ap%rps(:,ll) ENDDO IF(ap%tnlcc) THEN CALL read_atomic_cc( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 ENDIF GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_numeric_pp ! SUBROUTINE read_head_pp( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! INTEGER :: i, l ! ... read pseudo header ierr = 0 err_msg = ' error while reading header pseudo ' ap%lll = 0 READ(iunit, *) ap%tnlcc, ap%tmix READ(iunit, *) ap%pottyp, ap%lloc, ap%nbeta, (ap%lll(l), l = 1, min(ap%nbeta, size(ap%lll)) ) ap%lll = ap%lll - 1 IF( ap%nbeta > size(ap%lll) .or. ap%nbeta < 0 ) THEN ierr = 1 err_msg = 'LNL out of range' GOTO 110 ENDIF IF( ap%lloc < 0 .or. ap%lloc > size(ap%vnl,2) ) THEN ierr = 3 err_msg = 'LLOC out of range' GOTO 110 ENDIF IF( ap%tmix .and. ap%pottyp /= 'NUMERIC' ) THEN ierr = 4 err_msg = 'tmix not implemented for pseudo ' // ap%pottyp GOTO 110 ENDIF DO l = 2, ap%nbeta IF( ap%lll(l) <= ap%lll(l-1)) THEN ierr = 5 err_msg =' NONLOCAL COMPONENTS MUST BE GIVEN IN ASCENDING ORDER' GOTO 110 ENDIF ENDDO DO l = 1, ap%nbeta IF( ap%lll(l)+1 == ap%lloc) THEN ierr = 6 err_msg = ' LLOC.EQ.L NON LOCAL!!' GOTO 110 ENDIF ENDDO GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_head_pp !=----------------------------------------------------------------------------=! SUBROUTINE read_analytic_pp( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! INTEGER :: i, l ! ... read analytic pseudo gaussians ierr = 0 err_msg = ' error while reading atomic analytic pseudo ' READ(iunit,*,IOSTAT=ierr) ap%zv, ap%igau ap%mesh = 0 ap%nchan = 0 ap%dx = 0.0d0 ap%rab = 0.0d0 ap%rw = 0.0d0 ap%vnl = 0.0d0 ap%vloc = 0.0d0 ap%vrps = 0.0d0 SELECT CASE (ap%igau) CASE ( 1 ) READ(iunit,*,IOSTAT=ierr) ap%rc(1) ap%wrc(1) = 1.d0 ap%wrc(2) = 0.d0 ap%rc(2) = 0.d0 CASE ( 3 ) READ(iunit,*,IOSTAT=ierr) ap%wrc(1), ap%rc(1), ap%wrc(2), ap%rc(2) CASE DEFAULT ierr = 1 err_msg = ' IGAU NOT PROGRAMMED ' GOTO 110 END SELECT DO l=1,3 DO i=1,ap%igau READ(iunit,*,IOSTAT=ierr) ap%rcl(i,l), ap%al(i,l), ap%bl(i,l) ENDDO ENDDO CALL read_atomic_wf( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 IF(ap%tnlcc) THEN CALL read_atomic_cc( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 ENDIF ! ... Analytic pseudo are not supported anymore, conversion ! ... to numeric form is forced CALL analytic_to_numeric( ap ) GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_analytic_pp !=----------------------------------------------------------------------------=! SUBROUTINE read_atomic_cc( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! CHARACTER(len=80) :: input_line INTEGER :: j, mesh REAL(dp) :: rdum ! ... read atomic core ierr = 0 err_msg = ' error while reading atomic core pseudo ' ap%rhoc = 0.0d0 READ(iunit,*,IOSTAT=ierr) mesh IF(mesh > size(ap%rw) .or. mesh < 0 ) THEN ierr = 17 err_msg = ' CORE CORRECTION MESH OUT OF RANGE ' GOTO 110 ENDIF DO j = 1, mesh READ(iunit,*,IOSTAT=ierr) rdum, ap%rhoc(j) IF( ap%mesh == 0 ) ap%rw(j) = rdum IF( abs(rdum - ap%rw(j))/(rdum+ap%rw(j)) > TOLMESH ) THEN ierr = 5 err_msg = ' core cor. radial mesh does not match ' GOTO 110 ENDIF ENDDO IF( ap%mesh == 0 ) THEN ap%mesh = mesh ap%dx = calculate_dx( ap%rw, ap%mesh ) ap%rab = ap%dx * ap%rw ENDIF GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_atomic_cc END MODULE fpmd2upf_module PROGRAM fpmd2upf ! ! Convert a pseudopotential written in the FPMD format ! to unified pseudopotential format ! USE kinds USE fpmd2upf_module USE parameters USE upf IMPLICIT NONE TYPE (pseudo_ncpp) :: ap CHARACTER(len=256) :: psfile CHARACTER(len=2) :: wfl( 10 ) REAL(8) :: wfoc( 10 ) INTEGER :: nsp, nspnl, i, lloc, l, ir, iv, kkbeta REAL(8) :: rmax = 10 REAL(8) :: vll REAL(8), ALLOCATABLE :: aux(:) NAMELIST / fpmd_pseudo / psfile, nwfs, wfl, wfoc, psd, & iexch, icorr, igcx, igcc, zp ! ... end of declarations CALL input_from_file() READ( 5, fpmd_pseudo ) nsp = 1 CALL read_pseudo_fpmd(ap, psfile) WRITE(generated, '("Generated using unknown code")') WRITE(date_author,'("Author: unknown Generation date: as well")') comment = 'Info: automatically converted from CPMD format' rcloc = 0.0d0 ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs) ) ALLOCATE( lchi(nwfs), nns(nwfs) ) ALLOCATE( rcut (nwfs), rcutus (nwfs) ) els = '?' oc = 0.0d0 DO i = 1, nwfs els(i) = wfl(i) oc(i) = wfoc(i) lchi(i) = i - 1 nns (i) = 0 rcut(i) = 0.0d0 rcutus(i)= 0.0d0 epseu(i) = 0.0d0 ENDDO pseudotype = 'NC' nlcc = ap%tnlcc IF( ap%zv > 0.0d0 ) zp = ap%zv etotps = 0.0d0 lloc = ap%lloc lmax = max( maxval( ap%lll( 1:ap%nbeta ) ), ap%lloc - 1 ) nbeta = ap%nbeta mesh = ap%mesh ntwfc = nwfs ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i = 1, nwfs lchiw(i) = lchi(i) ocw(i) = oc(i) elsw(i) = els(i) ENDDO ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) r = ap%rw ap%dx = calculate_dx( ap%rw, ap%mesh ) rab = ap%rw * ap%dx WRITE(6,*) ap%lloc, ap%lll( 1:ap%nbeta ) , ap%nbeta, ap%dx ALLOCATE (rho_atc(mesh)) IF (nlcc) rho_atc = ap%rhoc ALLOCATE (vloc0(mesh)) ! the factor 2 converts from Hartree to Rydberg vloc0(:) = ap%vloc * 2.0d0 IF (nbeta > 0) THEN ALLOCATE(ikk2(nbeta), lll(nbeta)) kkbeta = mesh DO ir = 1,mesh IF ( r(ir) > rmax ) THEN kkbeta=ir exit ENDIF ENDDO ikk2(:) = kkbeta ALLOCATE(aux(kkbeta)) ALLOCATE(betar(mesh,nbeta)) ALLOCATE(qfunc(mesh,nbeta,nbeta)) ALLOCATE(dion(nbeta,nbeta)) ALLOCATE(qqq (nbeta,nbeta)) qfunc(:,:,:)=0.0d0 dion(:,:) =0.d0 qqq(:,:) =0.d0 iv = 0 DO i = 1, nwfs l = lchi(i) IF ( l /= (lloc-1) ) THEN iv = iv + 1 lll( iv ) = l DO ir = 1, kkbeta ! the factor 2 converts from Hartree to Rydberg betar(ir, iv) = 2.d0 * ap%vrps( ir, iv ) aux(ir) = ap%rps(ir, (l+1) ) * betar(ir, iv) ENDDO CALL simpson2(kkbeta, aux(1), rab(1), vll) dion(iv,iv) = 1.0d0/vll WRITE(6,*) aux(2), rab(2), kkbeta, vll ENDIF ENDDO ENDIF ALLOCATE (rho_at(mesh)) rho_at = 0.d0 DO i = 1, nwfs rho_at(:) = rho_at(:) + ocw(i) * ap%rps(:, i) ** 2 ENDDO ALLOCATE (chi(mesh,ntwfc)) chi = ap%rps ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- CALL write_upf_v1( 10 ) 100 CONTINUE END PROGRAM fpmd2upf !---------------------------------------------------------------------- SUBROUTINE simpson2(mesh,func,rab,asum) !----------------------------------------------------------------------- ! ! simpson's rule integrator for function stored on the ! radial logarithmic mesh ! IMPLICIT NONE INTEGER :: i, mesh real(8) :: rab(mesh), func(mesh), f1, f2, f3, r12, asum ! routine assumes that mesh is an odd number so run check ! if ( mesh+1 - ( (mesh+1) / 2 ) * 2 .ne. 1 ) then ! write(*,*) '***error in subroutine radlg' ! write(*,*) 'routine assumes mesh is odd but mesh =',mesh+1 ! stop ! endif asum = 0.0d0 r12 = 1.0d0 / 12.0d0 f3 = func(1) * rab(1) * r12 DO i = 2,mesh-1,2 f1 = f3 f2 = func(i) * rab(i) * r12 f3 = func(i+1) * rab(i+1) * r12 asum = asum + 4.0d0*f1 + 16.0d0*f2 + 4.0d0*f3 ENDDO RETURN END SUBROUTINE simpson2 ! ! Description of the Native FPMD pseudopotential format ! ! The format of the file must be as follows ! (lowercase text and }'s are comments): ! ! When POTTYP = 'ANALYTIC' the layout is: ! ! TCC TMIX additional stuff on each line is ignored ! POTTYP LLOC LNL ( INDL(i), i = 1, LNL ) ! ( WGV(i), i = 1, LNL ) this line only if tmix(is) is true ! ZV IGAU igau must be 1 or 3 } ! WRC(1) RC(1) WRC(2) RC(2) this line if igau = 3 } ! RC(1) this one if igau = 1 } ! RCL(1,1) AL(1,1) BL(1,1) } } this ! ... ... ... } l = 0 } section ! RCL(IGAU,1) AL(IGAU,1) BL(IGAU,1) } } only if ! RCL(1,2) AL(1,2) BL(1,2) } } pottyp is ! ... ... ... } l = 1 } 'ANALYTIC' ! RCL(IGAU,2) AL(IGAU,2) BL(IGAU,2) } } ! RCL(1,3) AL(1,3) BL(1,3) } } ! ... ... ... } l = 2 } ! RCL(IGAU,3) AL(IGAU,3) BL(IGAU,3) } } ! NMESH NCHAN } ! RW( 1 ) ( RPS( 1, j ), j = 1, NCHAN ) } pseudowave ! ... ... ... } ! RW( NMESH ) ( RPS( NMESH, j ), j = 1, NCHAN ) } ! ! ! When POTTYP = 'NUMERIC' the layout is: ! ! TCC TMIX additional stuff on each line is ignored ! POTTYP LLOC LNL ( INDL(i), i = 1, LNL ) ! ( WGV(i), i = 1, LNL ) this line only if tmix(is) is true ! ZV } ! NMESH NCHAN } this if ! RW( 1 ) ( VR( 1, j ), j = 1, NCHAN ) } pottyp is ! ... ... ... } 'NUMERIC' ! RW( NMESH ) ( VR( NMESH, j ), j = 1, NCHAN ) } ! NMESH NCHAN } ! RW( 1 ) ( RPS( 1, j ), j = 1, NCHAN ) } pseudowave ! ... ... ... } ! RW( NMESH ) ( RPS( NMESH, j ), j = 1, NCHAN ) } ! ! DETAILED DESCRIPTION OF INPUT PARAMETERS: ! ! TCC (logical) True if Core Correction are required for this ! pseudo ! ! TMIX (logical) True if we want to mix nonlocal pseudopotential ! components ! ! WGV(i) (real) wheight of the nonlocal components in the ! pseudopotential mixing scheme ! These parameters are present only if TMIX = .TRUE. ! 1 <= i <= LNL ! ! POTTYP (character) pseudopotential type ! pottyp = 'ANALYTIC' : use an analytic expression ! pottyp = 'NUMERIC' : read values from a table ! ! ZV (integer) valence for each species ! ! IGAU (integer) number of Gaussians in the pseudopotentials ! expression used only if pottyp='ANALYTIC' ! ! parameters from Bachelet-Hamann-Schluter's table: ! ! WRC(2) (real) c1, c2 (core) parameters ! RC(2) (real) alpha1, alpha2 parameters ! ! RCL(i,3) (real) alpha1, alpha2, alpha3 for each angular momentum ! 1 <= i <= IGAU ! AL(i,3) (real) parameters for each angular momentum ! 1 <= i <= IGAU ! BL(i,3) (real) parameters for each angular momentum ! 1 <= i <= IGAU ! ! nonlocality ! IGAU (integer) number of Gaussians for analytic pseudopotentials ! LLOC (integer) index of the angular momentum component added to ! the local part ( s = 1, p = 2, d = 3 ) ! LNL (integer) number of non local component ! INDL(i) (integer) indices of non local components ! 1 <= i <= LNL ! ( 1 3 means s and d taken as non local ) ! ! pseudo grids ! NMESH (integer) number of points in the mesh mesh ! NCHAN (integer) numbero of colums, radial components ! RW(i) (real) distance from the core in A.U. (radial mesh) ! 1 <= i <= NMESH ! RPS(i,j) (real) Atomic pseudo - wavefunctions ! 1 <= i <= NMESH ; 1 <= j <= NCHAN ! VP(i,j) (real) Atomic pseudo - potential ! 1 <= i <= NMESH ; 1 <= j <= NCHAN ! ! ---------------------------------------------- ! END manual espresso-5.0.2/upftools/ncpp2upf.f900000644000700200004540000002343012053145633016314 0ustar marsamoscm! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM ncpp2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in PWSCF format ! (norm-conserving) to unified pseudopotential format IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! CALL get_file ( filein ) OPEN(unit=1,file=filein,status='old',form='formatted') CALL read_ncpp(1) CLOSE (unit=1) ! convert variables read from NCPP format into those needed ! by the upf format - add missing quantities CALL convert_ncpp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in US format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 CALL errore ('ncpp2upf', 'Reading pseudo file name ', 1) END PROGRAM ncpp2upf MODULE ncpp ! ! All variables read from NCPP file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! CHARACTER(len=20) :: dft_ CHARACTER(len=2) :: psd_ real(8) :: zp_ INTEGER nlc, nnl, lmax_, lloc, nchi LOGICAL :: numeric, bhstype, nlcc_ real(8) :: alpc(2), cc(2), alps(3,0:3), aps(6,0:3) real(8) :: a_nlcc, b_nlcc, alpha_nlcc real(8) :: zmesh, xmin, dx real(8), ALLOCATABLE:: r_(:), rab_(:) INTEGER :: mesh_ real(8), ALLOCATABLE:: vnl(:,:), rho_atc_(:), rho_at_(:) INTEGER, ALLOCATABLE:: lchi_(:) real(8), ALLOCATABLE:: chi_(:,:), oc_(:) END MODULE ncpp ! ! ---------------------------------------------------------- SUBROUTINE read_ncpp(iunps) ! ---------------------------------------------------------- ! USE ncpp USE upf , ONLY : els IMPLICIT NONE INTEGER :: iunps ! CHARACTER(len=1), DIMENSION(0:3) :: convel=(/'S','P','D','F'/) CHARACTER(len=2) :: label real (8) :: x, qe_erf INTEGER :: l, i, ir, nb, n CHARACTER (len=255) line EXTERNAL qe_erf READ(iunps, *, end=300, err=300 ) dft_ IF (dft_(1:2)=='**') dft_ = 'PZ' READ (iunps, *, err=300) psd_, zp_, lmax_, nlc, nnl, nlcc_, & lloc, bhstype IF ( nlc>2 .or. nnl>3) & CALL errore( 'read_ncpp','Wrong nlc or nnl',1 ) IF ( nlc* nnl < 0 ) & CALL errore( 'read_ncpp','nlc*nnl < 0 ? ',1 ) IF ( zp_<=0d0 ) & CALL errore( 'read_ncpp','Wrong zp ',1 ) IF ( lmax_>3.or.lmax_<0 ) & CALL errore( 'read_ncpp','Wrong lmax ',1 ) IF (lloc==-1000) lloc=lmax_ ! ! In numeric pseudopotentials both nlc and nnl are zero. ! numeric = nlc<=0 .and. nnl<=0 IF (.not.numeric) THEN ! ! read pseudopotentials in analytic form ! READ(iunps, *, err=300) & ( alpc(i), i=1, 2 ), ( cc(i), i=1,2 ) IF ( abs(cc(1)+cc(2)-1.d0)>1.0d-6) & CALL errore ('read_ncpp','wrong pseudopotential coefficients',1) DO l = 0, lmax_ READ (iunps, *, err=300) & ( alps(i,l),i=1,3 ), (aps(i,l),i=1,6) ENDDO IF (nlcc_) THEN READ(iunps, *, err=300) & a_nlcc, b_nlcc, alpha_nlcc IF (alpha_nlcc<=0.d0) & CALL errore('read_ncpp','nlcc but alpha=0',1) ENDIF IF (bhstype) CALL bachel(alps,aps,1,lmax_) ENDIF READ(iunps, *, err=300) zmesh, xmin, dx, mesh_, nchi IF ( mesh_<=0) CALL errore( 'read_ncpp', 'mesh too small', 1) IF ( (nchilmax_ .or. lchi_(nb)<0) & CALL errore('read_ncpp','wrong lchi',nb) IF ( oc_(nb)<0.d0 .or. & oc_(nb)>2.d0*(2*lchi_(nb)+1)) & CALL errore('read_ncpp','wrong oc',nb) ! ! parse and check wavefunction label READ(line,'(14x,a2)', err=222, end=222) label IF (label(2:2)/=convel(lchi_(nb))) GOTO 222 DO l = 0, lmax_ IF (label(2:2)==convel(l)) THEN els(nb) = label(1:2) GOTO 223 ENDIF ENDDO 222 CONTINUE els(nb) = '*'//convel(lchi_(nb)) 223 CONTINUE ! ! finally read the wavefunction READ(iunps, *, err=300) (chi_(ir,nb),ir=1,mesh_) ENDDO ! ! compute the atomic charges ! ALLOCATE(rho_at_(mesh_)) rho_at_(:)=0.d0 DO nb = 1, nchi IF( oc_(nb)/=0.d0) & rho_at_(:) = rho_at_(:) + oc_(nb)*chi_(:,nb)**2 ENDDO ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- RETURN 300 CALL errore('read_ncpp','pseudo file is empty or wrong',1) END SUBROUTINE read_ncpp ! ---------------------------------------------------------- SUBROUTINE convert_ncpp ! ---------------------------------------------------------- USE ncpp USE upf USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE real(8), PARAMETER :: rmax = 10.0d0 real(8), ALLOCATABLE :: aux(:) real(8) :: vll INTEGER :: kkbeta, l, iv, ir, i WRITE(generated, '("Generated using ld1 code (maybe, or maybe not)")') WRITE(date_author,'("Author: unknown Generation date: as well")') comment = 'Info: automatically converted from PWSCF format' ! reasonable assumption IF (zmesh > 18) THEN rel = 1 ELSE rel = 0 ENDIF rcloc = 0.0d0 nwfs = nchi ALLOCATE( oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs nns (i) = 0 lchi(i) = lchi_(i) rcut(i) = 0.0d0 rcutus(i)= 0.0d0 oc (i) = oc_(i) epseu(i) = 0.0d0 ENDDO DEALLOCATE (lchi_, oc_) psd = psd_ pseudotype = 'NC' nlcc = nlcc_ zp = zp_ etotps = 0.0d0 ecutrho=0.0d0 ecutwfc=0.0d0 IF ( lmax_ == lloc) THEN lmax = lmax_-1 ELSE lmax = lmax_ ENDIF nbeta= lmax_ mesh = mesh_ ntwfc= nchi ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i=1, nchi lchiw(i) = lchi(i) ocw(i) = oc(i) elsw(i) = els(i) ENDDO CALL set_dft_from_name(dft_) iexch = get_iexch() icorr = get_icorr() igcx = get_igcx() igcc = get_igcc() ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) rab = rab_ r = r_ ALLOCATE (rho_atc(mesh)) rho_atc = rho_atc_ DEALLOCATE (rho_atc_) ALLOCATE (vloc0(mesh)) vloc0(:) = vnl(:,lloc) IF (nbeta > 0) THEN ALLOCATE(ikk2(nbeta), lll(nbeta)) kkbeta=mesh DO ir = 1,mesh IF ( r(ir) > rmax ) THEN kkbeta=ir exit ENDIF ENDDO ! make sure kkbeta is odd as required for simpson IF(mod(kkbeta,2) == 0) kkbeta=kkbeta-1 ikk2(:) = kkbeta ALLOCATE(aux(kkbeta)) ALLOCATE(betar(mesh,nbeta)) ALLOCATE(qfunc(mesh,nbeta,nbeta)) ALLOCATE(dion(nbeta,nbeta)) ALLOCATE(qqq (nbeta,nbeta)) qfunc(:,:,:)=0.0d0 dion(:,:) =0.d0 qqq(:,:) =0.d0 iv=0 DO i=1,nchi l=lchi(i) IF (l/=lloc) THEN iv=iv+1 lll(iv)=l DO ir=1,kkbeta betar(ir,iv)=chi_(ir,i)*vnl(ir,l) aux(ir) = chi_(ir,i)**2*vnl(ir,l) ENDDO CALL simpson(kkbeta,aux,rab,vll) dion(iv,iv) = 1.0d0/vll ENDIF IF(iv >= nbeta) exit ! skip additional pseudo wfns ENDDO DEALLOCATE (vnl, aux) ! ! redetermine ikk2 ! DO iv=1,nbeta ikk2(iv)=kkbeta DO ir = kkbeta,1,-1 IF ( abs(betar(ir,iv)) > 1.d-12 ) THEN ikk2(iv)=ir exit ENDIF ENDDO ENDDO ENDIF ALLOCATE (rho_at(mesh)) rho_at = rho_at_ DEALLOCATE (rho_at_) ALLOCATE (chi(mesh,ntwfc)) chi = chi_ DEALLOCATE (chi_) RETURN END SUBROUTINE convert_ncpp espresso-5.0.2/upftools/vdb2upf.f900000644000700200004540000000222112053145633016122 0ustar marsamoscm! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM vdb2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in Vanderbilt format ! (formatted) to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! IF ( trim(filein) == ' ') & CALL errore ('vdb2upf', 'usage: vdb2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN(unit=1,file=filein,status='old',form='formatted') CALL read_vdb(1) CLOSE (unit=1) ! convert variables read from Vanderbilt format into those needed ! by the upf format - add missing quantities CALL convert_uspp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP END PROGRAM vdb2upf espresso-5.0.2/upftools/make.depend0000644000700200004540000000302612053145633016334 0ustar marsamoscmcasino2upf.o : ../Modules/pseudo_types.o casino2upf.o : ../Modules/write_upf_v2.o casino2upf.o : casino_pp.o casino_pp.o : ../Modules/funct.o casino_pp.o : ../Modules/kind.o casino_pp.o : ../Modules/radial_grids.o casino_pp.o : ../Modules/upf.o cpmd2upf.o : ../Modules/constants.o cpmd2upf.o : ../Modules/pseudo_types.o cpmd2upf.o : ../Modules/write_upf_v2.o fhi2upf.o : ../Modules/constants.o fhi2upf.o : ../Modules/funct.o fhi2upf.o : ../Modules/pseudo_types.o fhi2upf.o : ../Modules/write_upf_v2.o fpmd2upf.o : ../Modules/kind.o fpmd2upf.o : ../Modules/parameters.o fpmd2upf.o : ../Modules/parser.o fpmd2upf.o : ../Modules/radial_grids.o fpmd2upf.o : write_upf.o interpolate.o : ../Modules/funct.o interpolate.o : ../Modules/splinelib.o interpolate.o : write_upf.o ncpp2upf.o : ../Modules/funct.o ncpp2upf.o : write_upf.o oldcp2upf.o : write_upf.o read_upf_tofile.o : ../Modules/constants.o read_upf_tofile.o : ../Modules/pseudo_types.o read_upf_tofile.o : ../Modules/radial_grids.o read_upf_tofile.o : ../Modules/upf.o rrkj2upf.o : ../Modules/constants.o rrkj2upf.o : write_upf.o upf2casino.o : ../Modules/pseudo_types.o upf2casino.o : ../Modules/radial_grids.o upf2casino.o : ../Modules/upf.o upf2casino.o : casino_pp.o upf2upf2.o : ../Modules/pseudo_types.o upf2upf2.o : ../Modules/radial_grids.o upf2upf2.o : ../Modules/read_upf_v1.o upf2upf2.o : ../Modules/write_upf_v2.o vanderbilt.o : ../Modules/constants.o vanderbilt.o : write_upf.o virtual.o : ../Modules/funct.o virtual.o : ../Modules/splinelib.o virtual.o : read_upf.o virtual.o : write_upf.o espresso-5.0.2/upftools/README0000644000700200004540000000722612053145633015124 0ustar marsamoscmUnified Pseudopotential File (UPF) Specifications - see: http://www.quantum-espresso.org/wiki/index.php/Unified_pseudopotential_format Available converters to UPF from: CASINO tabulated format (see below) CPMD (TYPE=NUMERIC, LOGARITHMIC, CAR, GOEDECKER) Fritz-Haber numerical format, either ".cpi" (fhi88pp) or ".fhi" (abinit) David Vanderbilt's code format (formatted or binary) Old Norm-Conserving PWSCF format (deprecated) Old "RRKJ3" PWSCF format (deprecated) Old Norm-Conserving CP90 format (deprecated) Pseudopotentials in PWSCF and CASINO ==================================== Two utilities are provided with the Quantum Espresso distribution to enable the PWscf code to be used in conjunction with the CASINO quantum Monte Carlo code. Of course all pseudopotentials generated via these automatic tools should be tested before being used for production runs. It should be noted that ultrasoft and PAW pseudopotentials cannot be used with the CASINO code. Currently only UPF files containing norm-conserving pseudopotentials can be converted using these utilities. ============ casino2upf.x ============ The first of these is casino2upf.x . This utility takes a given CASINO tabulated pseudopotential file and one or more awfn.data files specifying the pseudoatomic wavefunctions to be used in creating the Kleinman-Bylander projectors. A UPF file containing the projectors and the local potential is then written to the file name specified in inputpp. Any errors are communicated to the user via stderr. Usage: ./casino2upf.x < inputpp A sample inputpp file for converting a Trail and Needs pseudopotential would be: inputpp: &inputpp pp_data='pp.data' upf_file='my_pseudo_potential.UPF' / 3 awfn.data_s1_2S awfn.data_p1_2P awfn.data_d1_2D Here pp_data specifies the name and location of the file containing the CASINO pseudopotential. The utility then expects an input card after &inputpp consisting of the number of awfn.data files supplied (in this case 3) and then their names. The files are searched sequentially so the first s wavefunction found will be used for the s projector, first p for the p projector and so on. A note on the radial grid ------------------------- The utility currently performs no interpolation and attempts to use the same radial grid as the original pseudopotential. It therefore assumes that the grid will be of the standard form used by Trail and Needs. If this is not the case the flag tn_grid=.false. can be set in the input file. The standard logarithmic form, r(i)=exp(xmin + i*dx) / Z is then assumed. Values for xmin and dx can also be specified in the input file in the usual way. If interpolation from a different non-standard grid is required then the current recommended route is to use the casino2gon utility supplied with the CASINO distribution. This produces the older GON format that is (currently) still read by PWscf. Ghost states ------------ The Kleinman-Bylander form can unfortunately introduce ghost states into some calculations. If this does occur we recommend that the pseudopotential is re-converted using a different local channel. The local channel can be specified in the original CASINO pp.data file and is read in automatically by casino2upf.x . =========== up2casino.x =========== This utility takes a standard UPF pseudopotential from standard input and writes a CASINO tabulated pseudopotential file to standard output. Any errors are communicated via stderr. Usage: ./up2casino.x < pseudo.UPF > pp.data Care must be taken that the resulting pseudopotential file spec fies the required local channel. Also this utility should only be used with norm-conserving pseudopotentials. espresso-5.0.2/upftools/cpmd2upf.f900000644000700200004540000005441212053145633016303 0ustar marsamoscm! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM cpmd2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in the CPMD format, TYPE: ! NORMCONSERVING [ NUMERIC, LOGARITHMIC, CAR ], single radial grid ! to unified pseudopotential format (v.2) ! USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE write_upf_v2_module, ONLY : write_upf_v2 ! IMPLICIT NONE TYPE(pseudo_upf) :: upf CHARACTER(len=256) filein, fileout INTEGER :: ios ! IF ( trim(filein) == ' ') & CALL errore ('cpmd2upf', 'usage: cpmd2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN ( unit=1, file=filein, status = 'old', form='formatted', iostat=ios ) IF ( ios /= 0) CALL errore ('cpmd2upf', 'file: '//trim(filein)//' not found', 2) ! CALL read_cpmd(1) ! CLOSE (unit=1) ! ! convert variables read from CPMD format into those needed ! by the upf format - add missing quantities ! CALL nullify_pseudo_upf ( upf ) ! CALL convert_cpmd (upf) ! ! write to file ! fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') ! CALL write_upf_v2 (2, upf ) ! CLOSE (unit=2) CALL deallocate_pseudo_upf ( upf ) ! ---------------------------------------------------------- WRITE (6,"('Pseudopotential successfully written')") WRITE (6,"('Please review the content of the PP_INFO fields')") WRITE (6,"('*** Please TEST BEFORE USING !!! ***')") ! ---------------------------------------------------------- ! STOP END PROGRAM cpmd2upf MODULE cpmd ! ! All variables read from CPMD file format ! CHARACTER (len=80) title ! INTEGER :: ixc, pstype = 0 real(8) :: alphaxc REAL(8) :: z, zv ! Grid variables INTEGER :: mesh real(8) :: amesh, rmax, xmin real(8), ALLOCATABLE :: r(:) ! PP variables INTEGER, PARAMETER :: lmaxx=3 INTEGER ::lmax, nwfc=0 ! Car PP variables real(8) :: alphaloc, alpha(0:lmaxx), a(0:lmaxx), b(0:lmaxx) ! Goedecker PP variables INTEGER, PARAMETER :: ncmax=4, nlmax=3 INTEGER :: nc, nl(0:lmaxx) real(8) :: rc, rl(0:lmaxx), c(ncmax), h(0:lmaxx, nlmax*(nlmax+1)/2 ) ! Numeric PP variables real(8), ALLOCATABLE :: vnl(:,:) real(8), ALLOCATABLE :: chi(:,:) ! Core correction variables LOGICAL :: nlcc=.false. real(8), ALLOCATABLE :: rho_atc(:) ! Variables used for reading and for checks INTEGER :: maxinfo, info_lines PARAMETER (maxinfo = 100) CHARACTER (len=80), ALLOCATABLE :: info_sect(:) !------------------------------ END MODULE cpmd ! ! ---------------------------------------------------------- SUBROUTINE read_cpmd(iunps) ! ---------------------------------------------------------- ! USE cpmd IMPLICIT NONE INTEGER :: iunps ! INTEGER :: found = 0, closed = 0, unknown = 0 INTEGER :: i, l, dum, ios CHARACTER (len=256) line CHARACTER (len=4) token real (8) :: amesh_, vnl0(0:3) LOGICAL :: grid_read = .false., wfc_read=.false. LOGICAL, EXTERNAL :: matches INTEGER, EXTERNAL :: locate REAL(8), EXTERNAL :: qe_erf ! info_lines = 0 10 READ (iunps,'(A)',end=20,err=20) line IF (matches ("&ATOM", trim(line)) ) THEN found = found + 1 ! Z READ (iunps,'(a)',end=200,err=200) line l = len_trim(line) i = locate('=',line) READ (line(i+1:l),*) z ! Zv READ (iunps,'(a)',end=200,err=200) line l = len_trim(line) i = locate('=',line) READ (line(i+1:l),*) zv ! XC READ (iunps,'(a)',end=200,err=200) line l = len_trim(line) i = locate('=',line) READ (line(i+1:l),*) ixc, alphaxc ! TYPE READ (iunps,'(a)',end=200,err=200) line IF ( matches("NORMCONSERVING",line) ) THEN IF ( matches("NUMERIC",line) .or. matches("LOGARITHMIC",line) ) THEN pstype = 1 ELSEIF ( matches("CAR",line) ) THEN pstype = 2 ELSEIF ( matches("GOEDECKER",line) ) THEN pstype = 3 ENDIF ENDIF IF (pstype == 0 ) CALL errore('read_cpmd','unknown type: '//line,1) ELSEIF (matches ("&INFO", trim(line)) ) THEN found = found + 1 ! read (iunps,'(a)') title ! store info section for later perusal ALLOCATE (info_sect(maxinfo)) DO i=1,maxinfo READ (iunps,'(a)',end=20,err=20) title IF (matches ("&END", trim(title)) ) THEN closed = closed + 1 GOTO 10 ELSE info_sect(i) = trim(title) info_lines = i ENDIF ENDDO ELSEIF (matches ("&POTENTIAL", trim(line)) ) THEN found = found + 1 READ (iunps,'(a)') line IF ( pstype == 1 ) THEN ! ! NORMCONSERVING NUMERIC ! READ (line,*,iostat=ios) mesh, amesh_ IF ( ios /= 0) THEN READ (line,*,iostat=ios) mesh amesh_ = -1.0d0 ENDIF IF ( .not. grid_read ) ALLOCATE (r(mesh)) ! ! determine the number of angular momenta ! READ (iunps, '(a)') line ios = 1 lmax= 4 DO WHILE (ios /= 0) lmax = lmax - 1 READ(line,*,iostat=ios) r(1),(vnl0(l),l=0,lmax) ENDDO ALLOCATE (vnl(mesh,0:lmax)) vnl(1,0:lmax) = vnl0(0:lmax) DO i=2,mesh READ(iunps, *) r(i),(vnl(i,l),l=0,lmax) ENDDO IF ( .not.grid_read ) THEN CALL check_radial_grid ( amesh_, mesh, r, amesh ) grid_read = .true. ENDIF ELSEIF ( pstype == 2 ) THEN ! ! NORMCONSERVING CAR ! READ(iunps, *) alphaloc ! convert r_c's written in file to alpha's: alpha = 1/r_c^2 alphaloc = 1.d0/alphaloc**2 DO lmax=-1,2 READ(iunps, '(A)') line IF (matches ("&END", trim(line)) ) THEN closed = closed + 1 exit ENDIF READ(line, *) alpha(lmax+1), a(lmax+1), b(lmax+1) alpha(lmax+1) = 1.d0/alpha(lmax+1)**2 ENDDO ELSEIF ( pstype == 3 ) THEN ! ! NORMCONSERVING GOEDECKER ! c(:) = 0.d0 rl(:) = 0.d0 nl(:) = 0 h(:,:) = 0.d0 READ(iunps, *) lmax lmax = lmax - 1 IF ( lmax > lmaxx ) & CALL errore('read_cpmd','incorrect parameter read',1) READ(iunps, *) rc READ(iunps, '(A)') line READ(line, *) nc IF ( nc > ncmax ) & CALL errore('read_cpmd','incorrect parameter read',2) ! I am not sure if it is possible to use nc in the same line ! where it is read. Just in case, better to read twice READ(line, *) dum, (c(i), i=1,nc) DO l=0,lmax+1 READ(iunps, '(A)') line IF ( matches ("&END", trim(line)) ) THEN closed = closed + 1 exit ENDIF READ(line, *) rl(l), nl(l) IF ( nl(l) > nlmax ) & CALL errore('read_cpmd','incorrect parameter read',3) IF ( nl(l) > 0 ) & READ(line, *) rl(l), dum, ( h(l,i), i=1,nl(l)*(nl(l)+1)/2) ENDDO ENDIF ELSEIF (matches ("&WAVEFUNCTION", trim(line)) ) THEN wfc_read=.true. found = found + 1 READ (iunps,'(A)') line READ (line,*,iostat=ios) mesh, amesh_ IF ( ios /= 0) THEN READ (line,*,iostat=ios) mesh amesh_ = -1.0d0 ENDIF IF ( .not. grid_read ) ALLOCATE(r(mesh)) ! find number of atomic wavefunctions READ (iunps,'(A)') line DO nwfc = lmax+1,1,-1 READ(line,*,iostat=ios) r(1),(vnl0(l),l=0,nwfc-1) IF ( ios == 0 ) exit ENDDO IF ( ios /= 0 ) & CALL errore('read_cpmd','at least one atomic wvfct should be present',1) ALLOCATE(chi(mesh,nwfc)) chi(1,1:nwfc) = vnl0(0:nwfc-1) DO i=2,mesh READ(iunps, *) r(i),(chi(i,l),l=1,nwfc) ENDDO IF ( .not.grid_read ) THEN CALL check_radial_grid ( amesh_, mesh, r, amesh ) grid_read = .true. ENDIF ELSEIF (matches ("&NLCC", trim(line)) ) THEN found = found + 1 READ (iunps, '(a)') line READ(iunps, *) mesh nlcc = ( mesh > 0 ) IF (nlcc) THEN IF ( .not. matches ("NUMERIC", trim(line)) ) & CALL errore('read_cpmd',' only NUMERIC core-correction supported',1) ALLOCATE (rho_atc(mesh)) READ(iunps, * ) (r(i), rho_atc(i), i=1,mesh) ENDIF ELSEIF (matches ("&ATDENS", trim(line)) ) THEN ! skip over &ATDENS section, add others here, if there are more. DO WHILE(.not. matches("&END", trim(line))) READ (iunps,'(a)') line ENDDO ELSEIF (matches ("&END", trim(line)) ) THEN closed = closed + 1 ELSE PRINT*, 'line ignored: ', line unknown = unknown + 1 ENDIF GOTO 10 20 CONTINUE IF ( pstype /= 3 ) THEN IF (nlcc .and. found /= 5 .or. .not.nlcc .and. found /= 4) & CALL errore('read_cpmd','some &FIELD card missing',found) ELSE IF (found /= 3) & CALL errore('read_cpmd','some &FIELD card missing',found) ENDIF IF (closed /= found) & CALL errore('read_cpmd','some &END card missing',closed) IF (unknown /= 0 ) PRINT '("WARNING: ",i3," cards not read")', unknown ! IF ( .not. grid_read ) THEN xmin = -7.0d0 amesh=0.0125d0 rmax =100.0d0 PRINT '("A radial grid must be provided. We use the following one:")' PRINT '("r_i = e^{xmin+(i-1)*dx}/Z, i=1,mesh, with parameters:")' PRINT '("Z=",f6.2,", xmin=",f6.2," dx=",f8.4," rmax=",f6.1)', & z, xmin, amesh, rmax mesh = 1 + (log(z*rmax)-xmin)/amesh mesh = (mesh/2)*2+1 ! mesh is odd (for historical reasons?) ALLOCATE (r(mesh)) DO i=1, mesh r(i) = exp (xmin+(i-1)*amesh)/z ENDDO PRINT '(I4," grid points, rmax=",f8.4)', mesh, r(mesh) grid_read = .true. ENDIF rmax = r(mesh) xmin = log(z*r(1)) ! IF ( .not. wfc_read ) PRINT '("Notice: atomic wfcs not found")' ! IF ( pstype == 2 ) THEN ALLOCATE (vnl(mesh,0:lmax)) DO l=0, lmax DO i=1, mesh vnl(i,l) = ( a(l) + b(l)*r(i)**2 ) * exp (-alpha(l)*r(i)**2) - & zv * qe_erf (sqrt(alphaloc)*r(i))/r(i) ENDDO ENDDO ENDIF RETURN 200 CALL errore('read_cpmd','error in reading file',1) END SUBROUTINE read_cpmd ! ---------------------------------------------------------- SUBROUTINE convert_cpmd(upf) ! ---------------------------------------------------------- ! USE cpmd USE pseudo_types, ONLY : pseudo_upf USE constants, ONLY : e2 ! IMPLICIT NONE ! TYPE(pseudo_upf) :: upf ! REAL(8), ALLOCATABLE :: aux(:) REAL(8) :: x, x2, vll, rcloc, fac REAL(8), EXTERNAL :: mygamma, qe_erf CHARACTER (len=20):: dft CHARACTER (len=2):: label CHARACTER (len=1):: spdf(0:3) = ['S','P','D','F'] CHARACTER (len=2), EXTERNAL :: atom_name INTEGER :: lloc, my_lmax, l, i, j, ij, ir, iv, jv ! ! NOTE: many CPMD pseudopotentials created with the 'Hamann' code ! from Juerg Hutter's homepage have additional (bogus) entries for ! pseudo-potential and wavefunction. In the 'report' they have ! the same rc and energy eigenvalue than the previous angular momentum. ! we need to be able to ignore that part or the resulting UPF file ! will be useless. so we first print the info section and ask ! for the LMAX to really use. AK 2005/03/30. ! DO i=1,info_lines PRINT '(A)', info_sect(i) ENDDO IF ( pstype == 3 ) THEN ! not actually used, except by write_upf to write a meaningful message lloc = -3 rcloc=0.0 ELSE PRINT '("max L to use ( <= ",I1," ) > ",$)', lmax READ (5,*) my_lmax IF ((my_lmax <= lmax) .and. (my_lmax >= 0)) lmax = my_lmax PRINT '("local L ( <= ",I1," ), Rc for local pot (au) > ",$)', lmax READ (5,*) lloc, rcloc ENDIF ! IF ( pstype == 3 ) THEN upf%generated= "Generated in analytical, separable form" upf%author = "Goedecker/Hartwigsen/Hutter/Teter" upf%date = "Phys.Rev.B58, 3641 (1998); B54, 1703 (1996)" ELSE upf%generated= "Generated using unknown code" upf%author = "unknown" upf%date = "unknown" ENDIF upf%nv = "2.0.1" upf%comment = "Info: automatically converted from CPMD format" upf%psd = atom_name ( nint(z) ) ! reasonable assumption IF (z > 18) THEN upf%rel = 'no' ELSE upf%rel = 'scalar' ENDIF IF ( pstype == 3 ) THEN upf%typ = 'NC' ELSE upf%typ = 'SL' ENDIF upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp=.false. upf%nlcc = nlcc ! IF (ixc==900) THEN PRINT '("Pade approx. not implemented! assuming Perdew-Zunger LDA")' upf%dft='SLA-PZ-NOGX-NOGC' ELSEIF (ixc==1100) THEN upf%dft='SLA-PZ-NOGX-NOGC' ELSEIF (ixc==1111) THEN upf%dft='SLA-PZ-B86-P88' ELSEIF (ixc==1134 .or. ixc==1434) THEN upf%dft='SLA-PW-PBX-PBC' ELSEIF (ixc==1134) THEN upf%dft='revPBE' ELSEIF (ixc==1197) THEN upf%dft='PBESOL' ELSEIF (ixc==1312) THEN upf%dft='BLYP' ELSEIF (ixc==362) THEN upf%dft='OLYP' ELSEIF (ixc==1372) THEN upf%dft='XLYP' ELSEIF (ixc==55) THEN upf%dft='HCTH' ELSE PRINT '("Unknown DFT ixc=",i4,". Please provide a DFT name > ",$)', ixc READ *, upf%dft ENDIF PRINT '("Assuming DFT: ",A," . Please check this is what you want")', & trim(upf%dft) ! upf%zp = zv upf%etotps =0.0d0 upf%ecutrho=0.0d0 upf%ecutwfc=0.0d0 IF ( lmax == lloc) THEN upf%lmax = lmax-1 ELSE upf%lmax = lmax ENDIF upf%lloc = lloc upf%lmax_rho = 0 upf%nwfc = nwfc ! ALLOCATE( upf%els(upf%nwfc) ) ALLOCATE( upf%oc(upf%nwfc) ) ALLOCATE( upf%epseu(upf%nwfc) ) ALLOCATE( upf%lchi(upf%nwfc) ) ALLOCATE( upf%nchi(upf%nwfc) ) ALLOCATE( upf%rcut_chi (upf%nwfc) ) ALLOCATE( upf%rcutus_chi(upf%nwfc) ) DO i=1, upf%nwfc 10 PRINT '("Wavefunction # ",i1,": label (e.g. 4s), occupancy > ",$)', i READ (5,*) label, upf%oc(i) READ (label(1:1),*, err=10) l upf%els(i) = label upf%nchi(i) = l IF ( label(2:2) == 's' .or. label(2:2) == 'S') THEN l=0 ELSEIF ( label(2:2) == 'p' .or. label(2:2) == 'P') THEN l=1 ELSEIF ( label(2:2) == 'd' .or. label(2:2) == 'D') THEN l=2 ELSEIF ( label(2:2) == 'f' .or. label(2:2) == 'F') THEN l=3 ELSE l=i-1 ENDIF upf%lchi(i) = l upf%rcut_chi(i) = 0.0d0 upf%rcutus_chi(i)= 0.0d0 upf%epseu(i) = 0.0d0 ENDDO upf%mesh = mesh upf%dx = amesh upf%rmax = rmax upf%xmin = xmin upf%zmesh= z ALLOCATE(upf%rab(upf%mesh)) ALLOCATE(upf%r(upf%mesh)) upf%r(:) = r(1:upf%mesh) upf%rab(:)=upf%r(:)*amesh ALLOCATE (upf%rho_atc(upf%mesh)) IF (upf%nlcc) upf%rho_atc(:) = rho_atc(1:upf%mesh) upf%rcloc = rcloc ALLOCATE (upf%vloc(upf%mesh)) ! ! the factor e2=2 converts from Hartree to Rydberg ! IF ( upf%typ == "SL" ) THEN upf%vloc(:) = vnl(1:upf%mesh,upf%lloc)*e2 ALLOCATE(upf%vnl(upf%mesh,0:upf%lmax,1)) upf%vnl(:,:,1) = vnl(1:upf%mesh,0:upf%lmax)*e2 upf%nbeta= lmax ELSE DO i=1,upf%mesh x = upf%r(i)/rc x2=x**2 upf%vloc(i) = e2 * ( -upf%zp*qe_erf(x/sqrt(2.d0))/upf%r(i) + & exp ( -0.5d0*x2 ) * (c(1) + x2*( c(2) + x2*( c(3) + x2*c(4) ) ) ) ) ENDDO upf%nbeta=0 DO l=0,upf%lmax upf%nbeta = upf%nbeta + nl(l) ENDDO ENDIF IF (upf%nbeta > 0) THEN ALLOCATE(upf%els_beta(upf%nbeta) ) ALLOCATE(upf%lll(upf%nbeta)) ALLOCATE(upf%kbeta(upf%nbeta)) IF ( pstype == 3 ) THEN upf%kbeta(:) = upf%mesh ELSE iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=lloc) THEN iv=iv+1 upf%kbeta(iv)=upf%mesh DO ir = upf%mesh,1,-1 IF ( abs ( vnl(ir,l) - vnl(ir,lloc) ) > 1.0E-6 ) THEN ! include points up to the last with nonzero value upf%kbeta(iv)=ir+1 exit ENDIF ENDDO ENDIF ENDDO ! the number of points used in the evaluation of integrals ! should be even (for simpson integration) DO i=1,upf%nbeta IF ( mod (upf%kbeta(i),2) == 0 ) upf%kbeta(i)=upf%kbeta(i)+1 upf%kbeta(i)=MIN(upf%mesh,upf%kbeta(i)) ENDDO upf%kkbeta = maxval(upf%kbeta(:)) ENDIF ALLOCATE(upf%beta(upf%mesh,upf%nbeta)) ALLOCATE(upf%dion(upf%nbeta,upf%nbeta)) upf%beta(:,:) =0.d0 upf%dion(:,:) =0.d0 ALLOCATE(upf%rcut (upf%nbeta)) ALLOCATE(upf%rcutus(upf%nbeta)) IF ( pstype == 3 ) THEN iv=0 ! counter on beta functions DO l=0,upf%lmax ij = 0 DO i=1, nl(l) iv = iv+1 upf%lll(iv)=l WRITE (upf%els_beta(iv), '(I1,A1)' ) i, spdf(l) DO j=i, nl(l) jv = iv+j-i ij=ij+1 upf%dion(iv,jv) = h(l,ij)/e2 IF ( j > i ) upf%dion(jv,iv) = upf%dion(iv,jv) ENDDO fac= sqrt(2d0*rl(l)) / ( rl(l)**(l+2*i) * sqrt(mygamma(l+2*i)) ) DO ir=1,upf%mesh x2 = (upf%r(ir)/rl(l))**2 upf%beta(ir,iv) = upf%r(ir)**(l+2*(i-1)) * & exp ( -0.5d0*x2 ) * fac * e2 ! ...remember: the beta functions in the UPF format ! ...have to be multiplied by a factor r !!! upf%beta(ir,iv) = upf%beta(ir,iv)*upf%r(ir) ! ENDDO ! look for index kbeta such that v(i)=0 if i>kbeta DO ir=upf%mesh,1,-1 IF ( abs(upf%beta(ir,iv)) > 1.D-12 ) exit ENDDO IF ( ir < 2 ) THEN CALL errore('cpmd2upf','zero beta function?!?',iv) ELSEIF ( mod(ir,2) /= 0 ) THEN ! even index upf%kbeta(iv) = ir ELSEIF ( ir < upf%mesh .and. mod(ir,2) == 0 ) THEN ! odd index upf%kbeta(iv) = ir+1 ELSE upf%kbeta(iv) = upf%mesh ENDIF ! not really the same thing as rc in PP generation upf%rcut (iv) = upf%r(upf%kbeta(iv)) upf%rcutus(iv) = 0.0 ENDDO ENDDO upf%kkbeta = maxval(upf%kbeta(:)) ELSE ALLOCATE(aux(upf%kkbeta)) iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=lloc) THEN iv=iv+1 upf%lll(iv)=l upf%els_beta(iv)=upf%els(i) DO ir=1,upf%kbeta(iv) ! the factor e2 converts from Hartree to Rydberg upf%beta(ir,iv) = e2 * chi(ir,l+1) * & ( vnl(ir,l) - vnl(ir,lloc) ) aux(ir) = chi(ir,l+1) * upf%beta(ir,iv) ENDDO upf%rcut (iv) = upf%r(upf%kbeta(iv)) upf%rcutus(iv) = 0.0 CALL simpson(upf%kbeta(iv),aux,upf%rab,vll) upf%dion(iv,iv) = 1.0d0/vll ENDIF ENDDO DEALLOCATE(aux) ENDIF ELSE ! prevents funny errors when writing file ALLOCATE(upf%dion(upf%nbeta,upf%nbeta)) ENDIF ALLOCATE (upf%chi(upf%mesh,upf%nwfc)) upf%chi(:,:) = chi(1:upf%mesh,1:upf%nwfc) ALLOCATE (upf%rho_at(upf%mesh)) upf%rho_at(:) = 0.d0 DO i=1,upf%nwfc upf%rho_at(:) = upf%rho_at(:) + upf%oc(i) * upf%chi(:,i) ** 2 ENDDO ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- RETURN END SUBROUTINE convert_cpmd ! ! ------------------------------------------------------------------ SUBROUTINE check_radial_grid ( amesh_, mesh, r, amesh ) ! ------------------------------------------------------------------ ! IMPLICIT NONE INTEGER, INTENT (in) :: mesh REAL(8), INTENT (in) :: amesh_, r(mesh) REAL(8), INTENT (out) :: amesh INTEGER :: i ! ! get amesh if not available directly, check its value otherwise PRINT "('Radial grid r(i) has ',i4,' points')", mesh PRINT "('Assuming log radial grid: r(i)=exp[(i-1)*amesh]*r(1), with:')" IF (amesh_ < 0.0d0) THEN amesh = log (r(mesh)/r(1))/(mesh-1) PRINT "('amesh = log (r(mesh)/r(1))/(mesh-1) = ',f10.6)",amesh ELSE ! not clear whether the value of amesh read from file ! matches the above definition, or if it is exp(amesh) ... amesh = log (r(mesh)/r(1))/(mesh-1) IF ( abs ( amesh - amesh_ ) > 1.0d-5 ) THEN IF ( abs ( amesh - exp(amesh_) ) < 1.0d-5 ) THEN amesh = log(amesh_) PRINT "('amesh = log (value read from file) = ',f10.6)",amesh ELSE CALL errore ('cpmd2upf', 'unknown real-space grid',2) ENDIF ELSE amesh = amesh_ PRINT "('amesh = value read from file = ',f10.6)",amesh ENDIF ENDIF ! check if the grid is what we expect DO i=2,mesh IF ( abs(r(i) - exp((i-1)*amesh)*r(1)) > 1.0d-5) THEN PRINT "('grid point ',i4,': found ',f10.6,', expected ',f10.6)",& i, r(i), exp((i-1)*amesh)*r(1) CALL errore ('cpmd2upf', 'unknown real-space grid',1) ENDIF ENDDO RETURN END ! ------------------------------------------------------------------ REAL(8) FUNCTION mygamma ( n ) !------------------------------------------------------------------ ! ! mygamma(n) = \Gamma(n-1/2) = sqrt(pi)*(2n-3)!!/2**(n-1) ! USE constants, ONLY : pi IMPLICIT NONE INTEGER, INTENT(in) :: n ! REAL(8) :: x INTEGER, EXTERNAL :: semifact ! IF ( n < 2 ) CALL errore('mygamma','unexpected input argument',1) mygamma = sqrt(pi) * semifact(2*n-3) / 2.d0**(n-1) ! RETURN END FUNCTION mygamma ! ------------------------------------------------------------------ INTEGER FUNCTION locate(onechar,string) ! ------------------------------------------------------------------ ! CHARACTER(len=1) :: onechar CHARACTER(len=*) :: string ! INTEGER:: i ! DO i=1,len_trim(string) IF (string(i:i) == "=") THEN locate = i RETURN ENDIF ENDDO locate = 0 RETURN END FUNCTION locate espresso-5.0.2/make.sys0000644000700200004540000001110412053440503014026 0ustar marsamoscm# make.sys. Generated from make.sys.in by configure. # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas MANUAL_DFLAGS = DFLAGS = -D__INTEL -D__FFTW3 -D__MPI -D__PARA -D__SCALAPACK $(MANUAL_DFLAGS) FDFLAGS = $(DFLAGS) # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I../include # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = mpif90 #F90 = ifort CC = icc F77 = ifort # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 $(DFLAGS) $(IFLAGS) F90FLAGS = $(FFLAGS) -nomodule -fpp $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -O2 -assume byterecl -g -traceback -par-report0 -vec-report0 # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -O0 -assume byterecl -g -traceback # compiler flag needed by some compilers when the main is not fortran # Currently used for Yambo FFLAGS_NOMAIN = -nofor_main # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = mpif90 LDFLAGS = -static-intel LD_LIBS = # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = -lmkl_intel_lp64 -lmkl_sequential -lmkl_core BLAS_LIBS_SWITCH = external # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order LAPACK_LIBS = LAPACK_LIBS_SWITCH = external ELPA_LIBS_SWITCH = disabled SCALAPACK_LIBS = -lmkl_scalapack_lp64 -lmkl_blacs_openmpi_lp64 # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = -lfftw3 # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # wget or curl - useful to download from network WGET = wget -O # topdir for linking espresso libs with plugins TOPDIR = espresso-5.0.2/README0000644000700200004540000000242412053145634013245 0ustar marsamoscmThis is the distribution of the Quantum ESPRESSO suite of codes (ESPRESSO: opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), promoted by the IOM-DEMOCRITOS National Simulation Center of the Italian CNR (http://www.democritos.it). Quick installation instructions for the impatient: ./configure [options] make all ("make" alone prints a list of acceptable targets). Binaries go in bin/. For more information, see the general documentation in directory Doc/, package-specific documentation in */Doc/, and the web site http://www.quantum-espresso.org/ All the material included in this distribution is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. espresso-5.0.2/License0000644000700200004540000004313112053145634013672 0ustar marsamoscm GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.